Foundations of Applied Math

HW #5 Geometric Similarity, Coding and Euler's Method Due Friday, Oct. 16 by 7 am

Reminder You need to turn in a .zipped folder that contains your .tex file, your image files, your python files, your Excel file(s), and the tex file must compile. Rename the .tex file: HW5_YourLastName.tex and call the folder which you will compress: HW4_YourLastName

1. Recall that on Thursday Oct. 8, we ran this line in an example:

```
x=list(map(lambda x: x**3,x))
```

Recall also that in the HW #4 solutions that are posted and that I went over on Friday, Oct. 9, I did this line in the first problem:

```
Pnext=lambda P,Q: P-.1*(Q-500)
```

- a) Why does the first example have a map command and the second example does not? Hint. What sort of input does each example take? The first command was to make a list which had a clear connection between the input indeces and the output indeces. The second command, however, was a recursive command which depends on the previous values of P and Q, not on the values of the indeces of the array.
- b) Run the first example on a list of elements 2, 4, 6, 8. Paste your python code here and also your output here.

In [5]: runfile('C:/Users/lees19/Desktop/homework/Foundations/homeworks/HW5_Lee/number1b.py', wdir='C:/Users/lees19/Desktop/ homework/Foundations/homeworks/HW5_Lee') [8, 64, 216, 512]

Python file is also included in number1b.py.

c) Run the second example on P=100, Q=200. Paste your python code here and also your output here.

```
# -*- coding: utf-8 -*-
Created on Tue Oct 13 09:32:41 2020
@author: lees19
import numpy as np
import matplotlib.pyplot as plt
def main():
   first = 0
    last = 100
    n = np.linspace(first, last, last+1)
    P = np.zeros(len(n))
    Q = np.zeros(len(n))
    Pnext = lambda P, Q: P-.1*(Q-500)
    Qnext = lambda P, Q: Q+.2*(P-100)
    P[0] = 100
    Q[0] = 200
    for j in range(1, len(n)):
       P[j] = Pnext(P[j-1], Q[j-1])
        Q[j] = Qnext(P[j-1], Q[j-1])
    print(P)
    print(Q)
if(__name__ == "__main__"):
    main()
```

```
In [9]: runfile('C:/Users/lees19/Desktop/homework/Foundations/homeworks/HW5 Lee/number1b.py', wdi
homework/Foundations/homeworks/HW5 Lee')
List for the price:
[ 100.
               130.
                             160.
                                           189.4
                                                         217.6
               268.072
  244.012
                             289.25176
                                           307.07008
                                                        321.1033648
                             337.31497485 333.43558451 324.80989468
  330.995248
               336.4650639
  311.51549316 293.72489375 271.70398447 245.80857732 216.47909047
 184.23343208 149.65819189 113.39828305
                                          76.14521037
                                                         38.62417203
   1.58022948 -34.2361965 -68.08422708 -99.24753373 -127.04915583
 -150.86582726 -170.14151557 -184.39988734 -193.2554288 -196.42297251
 -193.72540764 -185.09938333 -170.59885086 -150.39633072 -124.78183357
  -94.1594098 -59.04134936 -20.04010073 22.14197489 66.72485253
  112.86489067 159.67043176 206.21867503 251.57350967 294.80397081
  335.00296175 371.30587328 402.90872558 429.08546041 449.20402072
 462.74087183 469.29364253 468.59159578 460.50367619 445.04392468
 422.37409965 392.80339612 356.78521061 314.91095716 267.90099951
 216.59282271 161.92662593 104.92857269 46.69198693 -11.64317029
  -68.91216724 -123.94830079 -175.60619099 -222.78511517 -264.45191554
 -299.6630136 -327.58507335 -347.51387283 -358.89097085 -361.3177914
 -354.56679254 -338.58943785 -313.52074731 -279.68026802 -237.56937377
 -187.86487417 -131.40898709 -69.19580253 -2.35443822
                                                        67.87084213
 140.14321125 213.05816353 285.17025158 355.02117636 421.16869611
 482.21579233 536.83951463 583.81892108 622.06153725 650.62777498
 668.75278198]
List for the quantity:
200.
                             206.
                                           218.
                                                         235.88
  259.4
               288.2024
                             321.8168
                                          359.667152
                                                        401.081168
 445.30184096 491.50089056 538.79390334 586.25689831 632.94401521
 677.90599415 720.20909278 758.95407153 793.29486843 822.45658389
 845.75240198 862.5990884 872.53072678 875.21038339 870.43942546
 858.16425987 838.48030576 811.63306646 778.01622105 738.1667143
 692.75688313 642.58371768 588.55541457 531.6754371 473.02435134
 413.73975684 354.99467531 297.97479864 243.85502847 193.77576233
 148.81939561 109.98751365 78.17924378 54.17122364 38.59961861
  31.94458912
               34.51756725 46.45165361 67.69538861 98.01009055
  136.97088471 183.97147706 238.23265171 298.81439683 364.63148891
 434.47229306 507.02046742 580.87919593 654.59751508 726.69825032 795.70703526 860.18185519 918.74253441 970.09957654 1013.08176797
 1046.66196787 1069.98053241 1082.3658576 1083.35157214 1072.68996952
 1050.36133546 1016.57890202 971.78924186 916.66800366 852.11098063
 779.22059752 699.2879948 613.77098013 524.26820556 432.49001139
 340.22645311 249.3130946 161.59520703 78.89105757
                                                         2.95500397
 -64.55887079 -122.13184562 -168.41364304 -202.25280355 -222.72369119
 -229.14952277 -221.12088052 -198.50924781 -161.47519749 -110.47096222
                30.20593547 117.57383839 214.33762261 318.74993006
  -46.237223
 428.875485051
```

2. Do 2.3) Projects #3 on p. 94. Include your python code in your compressed folder and write your analysis here.

Just as we did in Project 2, we start with some assumptions:

$$E_{spent} \propto S$$

$$E_{gain} \propto B$$

$$E_{spent} = E_{gain}$$

$$\rho = \frac{m}{V} \rightarrow V \rho = m \Rightarrow V \propto W$$

Then, since $E_{spent} \propto B$, $B \propto E_{spent}$. From there we see that B is proportional to W:

$$B \propto E_{spent} \propto S \propto V^{\frac{2}{3}} \propto W^{\frac{2}{3}}$$

$$B \propto W^{\frac{2}{3}}$$

Since B is also proportional to $pV_{heart} \propto pV \propto pW$, we also find that $pW \propto W^{\frac{2}{3}}$ Dividing both sides by W, we find that $p \propto W^{-\frac{1}{3}}$. With this information, we use python to find the proportionality constant using our data set:

```
runfile('C:/Users/lees19/Desktop/homework/Foundations/homeworks/HN5_Lee/number2.py', wdir='C:/Users/lees19/Desktop/
                             OLS Regression Results
Dep. Variable:
                                          R-squared:
                                          Adj. R-squared:
                                   0LS
                                          F-statistic:
Method:
                                          Prob (F-statistic):
Date:
No. Observations:
                                          AIC:
Df Residuals:
                                          BIC:
Df Model:
Covariance Type:
                    coef
                                                      P>|t|
                                                                  [0.025
                                                                               0.975]
                 77.2104
                              34.954
                                           2.209
                                                      0.052
                                                                   -0.671
weight^(-1/3) 1164.9797
                             159.289
                                           7.314
                                                      0.000
                                                                 810.063
                                                                             1519.897
Omnibus:
                                          Durbin-Watson:
                                 2.770
Prob(Omnibus):
                                 0.250
                                          Jarque-Bera (JB):
Skew:
                                          Prob(JB):
Kurtosis:
```

without forcing our y-intercept, and having a decent R^2 value, we fail to reject the null hypothesis that our y-intercept was zero. Therefore, we assume our data is proportional and force the y-intercept to be zero:

```
In [6]: runfile('C:/Users/lees19/.spyder-py3/untitled0.py', wdir='C:/Users/lees19/.spyder-py3')
                       OLS Regression Results
------
Dep. Variable:
                      pulse R-squared (uncentered):
                       OLS Adj. R-squared (uncentered):
Model:
                                                          0.873
              Least Squares F-statistic:
Method:
              Thu, 15 Oct 2020 Prob (F-statistic):

15:30:14 Log-Likelihood:
Date:
                                                        1.79e-06
                           Log-Likelihood:
Time:
                    15:30:14
                                                         -73.338
                            AIC:
No. Observations:
                                                          148.7
Df Residuals:
                        11
                            BIC:
                                                          149.2
Df Model:
Covariance Type:
             coef std err t P>|t|
weight^(-1/3) 1371.6083 149.951 9.147 0.000 1041.569
 ------
                      7.768 Durbin-Watson:
Prob(Omnibus):
                      0.021 Jarque-Bera (JB):
                                                    3.540
Skew:
                      -0.971 Prob(JB):
                                                    0.170
Kurtosis:
                      4.819 Cond. No.
______
```

From our python code, we find that our coefficient k=1371.6083. Therefore, we find that $p=1371.6083W^{-\frac{1}{3}}$

However, using this model, and looking at the percent errors for each of the weights, we find that the percent error is quite large for every single weight:

	Weight	Percent Error
0	4	30.918047
1	25	29.987544
2	200	44.156732
3	300	31.702976
4	2000	46.895304
5	5000	33.156548
6	30000	48.067714
7	50000	46.812602
8	70000	53.776275
9	450000	52.897674
10	500000	56.797044
11	3000000	80.187081

Therefore, we find that though our model is proportional, however the model we found does not fit our data very well.

3. Given

$$\frac{dP}{dt} = 0.24P(11 - P), P(0) = 3$$

where P is measured in 100's, answer the following.

a) Using Python, implement Euler's Method with step size h=0.1 to approximate the solution for P(2) and P(6). Write down the values for each. Also obtain a plot of the solution. Include your python file in your compressed folder and paste (use the includegraphics command) your plot here. Solution.

Using Euler's method and a step size of h = .1, we find that the approximation for P(2) and P(6) using python is approximately: P(2) = 10.902853 and P(6) = 11.000000.

The python file 'number3.py' is included.

b) Do this in Excel. Include your Excel file in your compressed folder. Your work should match part a. *Solution*.

Using excel, we get the same values for P(2) = 10.90285 and P(6) = 11.00000 and obtain a very similar looking graph as well:

The excel file 'number3.xlsx' is also included.

4. Given:

$$\frac{dR}{dt} = 0.65I(t)$$

$$\frac{dI}{dt} = -0.65I(t) + .0015I(t)S(t)$$

$$\frac{dS}{dt} = -.0015I(t)S(t)$$

Suppose that there are 2000 people in the population. Suppose also that initially 6 people are infected.

- a) Using Python, implement Euler's Method with step size h=0.1 Solution.
 - Python file 'number4.py' is included.
- b) Do this in Excel. Include your Excel file in your compressed folder. Your work should match part a. Solution.

Excel file 'number4.xlsx' is included. Using both excel and python, we see very similar results.

and looking at the actual values we see the actual numbers are also very similar :

S I R			s i		r
1994.0 6.0 0.0			1994	6	0
1992.2054 7.4046	0.390000000000000007		1992.205	7.4046	0.39
1989.992677384274	9.136023615726002	0.871299	1989.993	9.136024	0.871299
1987.2655843699183	11.269275095059493	1.4651405350221902	1987.266	11.26928	1.465141
1983.906327986337	13.896028597461942	2.1976434162010574	1983.906	13.89603	2.197643
1979.7710651260793	17.128049598884495	3.1008852750360836	1979.771	17.12805	3.100885
1974.6846225763918	21.101168924644384	4.2142084989635755	1974.685	21.10117	4.214208
1968.4343995073095	25.979816013624813	5.5857844790654605	1968.434	25.97982	5.585784
1960.763464977196	31.962062502852692	7.274472519951074	1960.763	31.96206	7.274473
1951.3629583140594	39.28503510330394	9.352006582636498	1951.363	39.28504	9.352007
1939.8640539665612	48.230412169087415	11.905533864351256	1939.864	48.23041	11.90553
1925.8299875353405	59.12950180931735	15.040510655341938	1925.83	59.1295	15.04051
1908.7489823754793	72.367089351573 18.883928272947564		1908.749	72.36709	18.88393
1888.0293911518856	88.3828197673143	23.58778908079981	1888.029	88.38282	23.58779
1862.9989869428503	107.66834069147427	29.33267236567524	1862.999	107.6683	29.33267
1832.911085497745	130.7577999916336	36.33111451062107	1832.911	130.7578	36.33111
1796.9609723297508	158.20865616017173	44.830371510077256	1796.961	158.2087	44.83037
1754.316755239066	190.56931060044536	55.11393416048842	1754.317	190.5693	55.11393
1704.168915045958	228.33014560452426	67.50093934951737	1704.169	228.3301	67.50094
1645.801944569886	271.8556566163023	82.34239881381144	1645.802	271.8557	82.3424
1578.688859324671	321.2981241814577	100.01301649387109	1578.689	321.2981	100.013
1502.6043939495937	376.49821148474024	120.89739456566585	1502.604	376.4982	120.8974
1417.7452139159236	436.8850077719022	145.36977831217396	1417.745	436.885	145.3698
1324.8364695958883	501.3962265867639	173.76730381734762	1324.836	501.3962	173.7673
1225.196268590902	568.4456728636105	206.35805854548727	1225.196	568.4457	206.3581
1120.7276409975311	635.9653317208468	243.30702728162197	1120.728	635.9653	243.307
1013.8160521011736	701.5391740553493	284.644773843477	1013.816	701.5392	284.6448
907.1313007259067	762.6238791170185	330.24482015707474	907.1313	762.6239	330.2448
803.3613020116981	816.823325688621	379.8153722996809	803.3613	816.8233	379.8154

5. Suppose squirrels and chipmunks compete for common resources in someone's backyard where they live all year long.

Let

- C(t)=the population of chipmunks at time t
- S(t)= the population of squirrels at time t

Suppose also that:

- Chipmunks grow at a rate proportional to their population at any time.
- Chipmunks decrease at a rate proportional to their interactions with each other.
 This is called intracompetition and occurs because chipmunks are competing with each other for the same food and resources.
- Squirrels grow at a rate proportional to their population at any time.
- Squirrels decrease at a rate proportional to their interactions with each other.
- Squirrels and chipmunks both compete for the same resources too. So this means that for squirrels and chipmunks they decrease at a rate proportional to the number of interactions they have with each other. Assume that the proportionality constant is the same for both.

Write down a differential equation system that models this.

$$\frac{dC}{dt} = k_1 C - k_2 C^2 - k_5 C S \tag{1}$$

$$\frac{dC}{dt} = k_1 C - k_2 C^2 - k_5 CS$$

$$\frac{dS}{dt} = k_3 S - k_4 S^2 - k_5 CS$$
(1)
(2)