XXXX

Contents

Ta	able of contents	i
1	Introduction	1
2	question 1	2
3	question 2	3
4	question 3	4
5	conclusion	5
Li	st of references	6
6	Appendix	7
	6.1 Question 1	7
	6.1.1 Solving $Y(t)$	7

1 Introduction

2 question 1

We want to solve the following equation for $F(t) = F_0 cos(\omega t)$:

$$m\ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2 x(t) = F(t) \tag{1}$$

Equation 1 is a second order linear differential equation. According to theorem 3.5.2 in Boyce [1]:

$$x(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$
(2)

With Y(t), any solution to the nonhomogeneous differential equation and with $y_1(t)$ and $y_2(t)$ that form a fundamental set of solutions to the homogeneous differential equation.

$$\ddot{y}(t) + \frac{\omega}{Q}\dot{y}(t) + \omega^2 y(t) = 0 \tag{3}$$

We first solve y(t) by seeing that, for constant values of ω,m and Q, a solution for equation 3 is $y(t)=e^{rt}$. Applying to equation 3 yields:

$$(r^2 + \frac{\omega}{Q}r + \omega^2)y(t) = 0 \implies r^2 + \frac{\omega}{Q}r + \omega^2 = 0$$
(4)

We find two solutions for r:

$$r_1 = \frac{-1}{2} \left(\frac{\omega}{Q} + \sqrt{\left(\frac{\omega}{Q}\right)^2 - 4\omega^2} \right) , \quad r_2 = \frac{1}{2} \left(-\frac{\omega}{Q} + \sqrt{\left(\frac{\omega}{Q}\right)^2 - 4\omega^2} \right)$$

We use this to define:

$$y_1(t) = e^{r_1 t}$$
 , $y_2(t) = e^{r_2 t}$

 r_1 and r_2 will be complex numbers for $|Q| > \frac{1}{2}$ meaning that differential equation 1 will lead to a (damped) oscillator. Just as expected.

The method to find Y(t) is the method of undetermined coefficients described in section 3.5 of Boyce [1].

We assume the Y(t) is of the shape:

$$Y(t) = a_1 cos(\omega t) + a_2 sin(\omega t)$$

We find $a_1=0$ and $a_2=\frac{F_0Q}{\omega^2m}$ (see appendix). Therefore we find:

$$x(t) = c_1 y_1(t) + c_2 y_2(t) + \frac{F_0 Q}{\omega^2 m} sin(\omega t)$$

By imposing the initial conditions on the latter result (see appendix) we obtain:

$$c_1 = \frac{1}{r_2 - r_1} \left(-\dot{x}_0 + \frac{F_0 Q}{\omega m} + x_0 (2 r_2 - r_1) \right)$$

$$c_2 = \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right)$$

3 question 2

4 question 3

We want to solve equation 5 when a modulated external force is applied, this force follows from equation ??.

$$m\ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2 x(t) = F(t)$$
 (5)

$$F(t)$$
 (6)

5 conclusion

References

[1] W. E. Boyce, R. C. Dirpima, and D. B. Meade, *Elementary Differential Equations and Boundary Value Problems*. John Wiley and Sons, Inc., 11 ed., 2017.

6 Appendix

6.1 Question 1

6.1.1 Solving Y(t)

In order to solve the particular solution to the differential equation we assume Y(t) is of the shape:

$$Y(t) = a_1 cos(\omega t) + a_2 sin(\omega t)$$

Differentiating with respect to t once and twice yields:

$$\dot{Y}(t) = -a_1 \omega \sin(\omega t) + a_2 \omega \cos(\omega t)$$
$$\ddot{Y}(t) = -a_1 \omega^2 \cos(\omega t) - a_2 \omega^2 \sin(\omega t)$$

If we substitute this for x(t) in equation 1 and with $F(t) = F_0 \cos(\omega t)$ we find:

$$\begin{split} F(t)m &= \ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2x(t) \\ F_0\cos(\omega t) &= m\left[-a_1\omega^2\cos(\omega t) - a_2\omega^2\sin(\omega t)\right] + m\frac{\omega}{Q}\left[-a_1\omega\sin(\omega t) + a_2\omega\cos(\omega t)\right] + m\omega^2\left[a_1\cos(\omega t) + a_2\sin(\omega t)\right] \\ F_0\cos(\omega t) &= omega^2m\cos(\omega t)\left(a_1 + \frac{a_2}{Q} - a_1\right) + \omega^2m\sin(\omega t)\left(a_2 - \frac{a_1}{Q} - a_2\right) \\ F_0\cos(\omega t) &= a_2\frac{\omega^2m}{Q}\cos(\omega t) - a_1\frac{\omega^2m}{Q}\sin(\omega t) \end{split}$$

From this follows:

$$-a_1 \frac{\omega^2 m}{Q} = 0$$

$$a_2 \frac{\omega^2 m}{Q} = F_0$$

$$a_1 = 0$$

$$a_2 = \frac{F_0 Q}{\omega^2 m}$$

Therefore the solution to differential equation 1 is:

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \frac{F_0 Q}{\omega^2 m} sin(\omega t)$$

We can find c_1 and c_2 by imposing the initial conditions on the latter equation:

$$x(0) = x_0 = c_1 + c_2$$
$$c_1 = x_0 - c_2$$

$$\dot{x}(t) = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t} + \frac{F_0 Q}{\omega m} \cos(\omega t)$$

$$\dot{x}(0) = \dot{x}_0 = c_1 r_1 + c_2 r_2 + \frac{F_0 Q}{\omega m}$$

$$\dot{x}_0 = [x_0 - c_2] r_1 + c_2 r_2 + \frac{F_0 Q}{\omega m}$$

$$c_2(r_2 - r_1) = \dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_1$$

$$c_2 = \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right)$$

We substitute this back into the equation for c_1 :

$$\begin{split} c_1 &= x_0 - c_2 \\ &= x_0 - \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right) \\ &= \frac{1}{r_2 - r_1} \left(-\dot{x}_0 + \frac{F_0 Q}{\omega m} + x_0 (2 r_2 - r_1) \right) \end{split}$$