MIE1512 Data Analytics

MapReduce II

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of thumb:
 - Make M and R much larger than the number of nodes in cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds recovery from worker failure
- Usually R is smaller than M, because output is spread across R files

Combiners

- Often a map task will produce many pairs of the form (k,v1), (k,v2), ... for the same key k
 - E.g., popular words in Word Count
- Can save network time by pre-aggregating at mapper
 - combine(k1, list(v1)) \rightarrow v2
 - Usually same as reduce function
- Works only if reduce function is commutative and associative

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v_1) , (k,v_2) , ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in t mapper:
 - combine(k, list(v_1)) $\rightarrow v_2$
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):

— Much less data needs to be copied and shuffled!

Refinement: Partition Function

- Want to control how keys get partitioned
 - Inputs to map tasks are created by contiguous splits of input file
 - Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs
 from a host end up in the same output file

Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В		
a ₁	b_1		
a_2	b_1		
a_3	b_2		
a_4	b_3		

В	C	
b_2	C ₁	
b_2	C_2	
b_3	c_3	

S

Α	C
a_3	C ₁
a_3	c_2
a_4	c_3

R

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

UofT

Big Data Support on the Cloud

How? Use a Cloud processing framework that processes parallel tasks across commodity machines while taking care of the underlying communication, scheduling and monitoring of tasks

- Low-level: e.g. processing log files using Hadoop
- Records: e.g. relations (HadoopDB, Hive)
- Nested Records: e.g. JSON (Pig, Jaql), XML (ChuQL)
- Graphs: e.g. SPARQL (PigSPARQL), RDF Analytics (RAPID, ExpLOD), message-passing algorithms (Pregel)

Understanding How Semi-Structured Datasets are Processed on the Cloud

- Describe and compare low-level operations, such as joins and iterations, and how they leverage the data, processing, and storage models of Hadoop
 - Processing model includes the task scheduler
 - Low-level operations: hash join (default), repartition, theta-, broadcast, semi-, set-similarity; iterations
- Integration of low-level operations within high-level record, nested-record, and graph data models, and consider analytical, query, and algorithmic approaches

Example: Summing Ad Click Values

- **adinfo** (adID, cost, year), each record has a unique advertisement identifier, with its creation cost and year
- **clicklog** (vID, adclickID, adID, value, ..), each vendor provides its vendor identifier, a unique click identifier, the identifier of the advertisement that was clicked, and the click value. **Semi-Structured**.

```
      Vendor1 log:
      Vendor2 log:

      vID, adclickID, adID, value, browser
      vID, adclickID, adID, value, networkid, useridhash

      1, 3000, 5, 0.03, Chrome
      2, 2500, 5, 0.04, sports, C560363

      1, 3001, 6, 0.05, IExplore
      2, 1500, 5, 0.06, life, C560363
```

Hive [TSJ10], record-based join expression:

- 1 INSERT OVERWRITE TABLE alladcosts SELECT ai.adID, ai.cost, av.vsum
 2 FROM (SELECT cl.adID, SUM(cl.value) AS vsum
 3 FROM clicklog cl GROUP BY cl.adID) av
- 4 **JOIN** adinfo ai WHERE (ai.adID = av.adID); ;

[TSJ10] Thusoo, A.; Sarma, J. S.; Jain, N.; Shao, Z.; Chakka, P.; Zhang, N.; Antony, S.; Liu, H. & Murthy, R. Hive - A Petabyte Scale Data Warehouse Using Hadoop. *ICDE*, 2010, 996-1005

Summing Click Values
Records are "tagged" with the relation they are

Records are "tagged" with the relation they are selected from. This is also known as a **repartition join**: if **adinfo** then **<adID**, "cost":cost> else **<adID**, "cv":value>

HDFS

adinfo(adID, cost, year), <ad1, {cv:5, cost:1}> clicklogven1(vID, adclickID, adID, value, browser), <ad5, {cv:8, cost:7}> clicklogven2(vID, adclickID, adID, value, hetworkid, uidhash)

• Sum Click Values Using Broadcast join

 vendor logs streamed and joined with main-memory hash map of adinfo relation

adinfo(adID, cost, year),
clicklogven1(vID, adclickID, adID, value, sessionid),
clicklogven2(vID, adclickID, adID, value, browser)

<ad1, {cv:5, cost:1}> <ad5, {cv:8, cost:7}>₁₃

High-Level Approaches: Records, Nested-Records, Graphs

- Low-level approaches require coding using a programming language like Java, making it hard to maintain and reuse code amongst jobs
- Data-driven approaches to processing semi-structured data on the Cloud abstract away low-level implementation details behind high-level languages
- Support inter-job optimizations while integrating intra-job features/optimizations
- Support integration of data-driven and programmatic (imperative) approaches for different degrees of control

Summary of High-Level Approaches

HadoopDB	Hive	Pig Latin	Jaql	ChuQL
Relational	Nested-Record	Nested-Record	JSON	XML extended with records
Declarative query (HiveQL)	Declarative query (HiveQL)	Declarative script	•	Mixed functional expressions and imperative scripting
Equi-joins (partial results from RDBMS joins are hash-joined)	1 1	,	Equi-joins (hash or broadcast join)	Equi-joins based on XML's fn:deep-equals semantics (hash join)
Low-level	Low-level	Low-level	Low-level and functional	Low-level and functional

- HadoopDB's use of RDBMSes is a distinct approach of caching and indexing for improving performance
- Jaql [BEG11] and Pig Latin [ORS08] are declarative scripting languages that do not support loops, while some loops are supported by ChuQL's[KCS11, KCS11C] imperative language features
- Few integrated low-level operations
- Jaql and ChuQL give users the option to route data through the underlying MapReduce processing model

Our Own Work on MR

XML Related

- [KCS11] Khatchadourian, S.; Consens, M. P. & Siméon, J. Having a ChuQL at XML on the Cloud. *AMW*, 2011
- [KCS11C] Khatchadourian, S.; Consens, M. P. & Siméon, J. ChuQL: Processing XML with XQuery using Hadoop. *CASCON*, 2011

RDF Related

- [KC10] Khatchadourian, S. & Consens, M. P. Understanding Billions of Triples with Usage Summaries, Semantic Web Challenge ISWC, 2011
 - [KC10] Khatchadourian, S. & Consens, M. P. ExpLOD: Summary-Based Exploration of Interlinking and RDF Usage in the Linked Open Data Cloud. ESWC, 2010
 - [KC10D] Khatchadourian, S. & Consens, M. P. Exploring RDF Usage and Interlinking in the Linked Open Data Cloud using ExpLOD. LDOW, 2010

MIE1512 Data Analytics

Spark

Spark Bibliography

https://spark.apache.org/research.html

Required reading

Spark SQL: Relational Data Processing in Spark. Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, Matei Zaharia. SIGMOD 2015. June 2015.

 Introductory slides from KDD2015 Tutorial by J. Shanahan, L. Dai

http://kdd2015-sparktutorial.droppages.com/

