US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12392136

B2

August 19, 2025

Kiik; Matti et al.

Roofing material

Abstract

A roofing material is provided having an asphalt-coated mat or felt made up of or in combinations of fiberglass, polyester, nylon, cotton, cellulosic fibers or materials, polyethylene, polypropylene, co-polymers, melamine, phenolic, acrylics, polycarbonate, carbon fiber, clay, metallic in woven, non-woven, strands or sheets, styrene compounds, rubber, silk, leather, or wool in a woven, non-woven, or solid form. The surfacing materials can be made up of or in combination minerals, plastic particles or film, metal particles or film, cement particles, clay particles, paints, coatings, glass, ceramics, wood, wood fiber, or composite materials.

Inventors: Kiik; Matti (Richardson, TX), Bryson; Michael L. (Independence, MO), Wilson;

Paul G. (Waxahachie, TX), Beerer; Margie A. (Ennie, TX), Leitch; Olan

(Bakersfield, CA)

Applicant: BMIC LLC (Dallas, TX)

Family ID: 1000008766797

Assignee: BMIC LLC (Dallas, TX)

Appl. No.: 18/764897

Filed: July 05, 2024

Prior Publication Data

Document IdentifierUS 20250043574 A1 **Publication Date**Feb. 06, 2025

Related U.S. Application Data

continuation parent-doc US 18473977 20230925 US 12060714 child-doc US 18764897 continuation parent-doc US 17314788 20210507 US 11802408 child-doc US 18473977 continuation parent-doc US 16680263 20191111 US 11002015 child-doc US 17314788 continuation parent-doc US 16546464 20190821 US 10995495 20210504 child-doc US 16680263

continuation parent-doc US 15811988 20171114 US 10415247 20190917 child-doc US 16546464 continuation parent-doc US 14606666 20150127 US 9845602 20171219 child-doc US 15811988 us-provisional-application US 61931828 20140127

Publication Classification

Int. Cl.: B32B3/10 (20060101); **B32B5/02** (20060101); **C09D195/00** (20060101); **E04D1/12** (20060101); **E04D1/28** (20060101); B32B17/02 (20060101); E04D1/00 (20060101); E04D5/02 (20060101)

U.S. Cl.:

CPC **E04D1/28** (20130101); **B32B5/022** (20130101); **C09D195/00** (20130101); **E04D1/12** (20130101); B32B17/02 (20130101); B32B2262/101 (20130101); B32B2419/06 (20130101); E04D2001/005 (20130101); E04D5/02 (20130101); Y10T428/24802 (20150115)

Field of Classification Search

USPC: None

References Cited

U.S. PATENT DOCUMENTS

U.S. PATENT DUCUMENTS				
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
RE16621	12/1926	Busha	N/A	N/A
RE16832	12/1926	O'Dell	N/A	N/A
2129833	12/1937	Fradette	N/A	N/A
2161440	12/1938	Venrick	N/A	N/A
3138897	12/1963	McCorkle	N/A	N/A
3190040	12/1964	Theobald	N/A	N/A
3252257	12/1965	Price et al.	N/A	N/A
4738884	12/1987	Algrim	N/A	N/A
H000788	12/1989	Schneider, Jr.	N/A	N/A
5000826	12/1990	Kitano	N/A	N/A
5394672	12/1994	Seem	N/A	N/A
5822943	12/1997	Frankoski et al.	N/A	N/A
5950387	12/1998	Stahl et al.	N/A	N/A
D417513	12/1998	Blanpied	N/A	N/A
6471812	12/2001	Thompson et al.	N/A	N/A
6516572	12/2002	Nowacek et al.	N/A	N/A
6804919	12/2003	Railkar	N/A	N/A
6813866	12/2003	Naipawer, III	N/A	N/A
6851240	12/2004	Peng et al.	N/A	N/A
6936239	12/2004	Kiik et al.	N/A	N/A
6968662	12/2004	Rodrigues	N/A	N/A
7082724	12/2005	Railkar et al.	N/A	N/A
7172678	12/2006	Canfield et al.	N/A	N/A
7219476	12/2006	Akins et al.	N/A	N/A

7272915	12/2006	Peng	N/A	N/A
D554275	12/2006	Sieling et al.	N/A	N/A
7320767	12/2007	Edge et al.	N/A	N/A
7442658	12/2007	Rodrigues et al.	N/A	N/A
7448177	12/2007	McClintick	N/A	N/A
7454873	12/2007	McClintick	N/A	N/A
7582155	12/2008	Mehta et al.	N/A	N/A
D611620	12/2009	Kalkanoglu et al.	N/A	N/A
7805905	12/2009	Rodrigues et al.	N/A	N/A
7833371	12/2009	Binkley et al.	N/A	N/A
7836654	12/2009	Belt et al.	N/A	N/A
7851051	12/2009	DeJarnette et al.	N/A	N/A
7861631	12/2010	Freshwater et al.	N/A	N/A
7900266	12/2010	Longcor, IV	N/A	N/A
7928023	12/2010	Canfield et al.	N/A	N/A
8006457	12/2010	Binkley et al.	N/A	N/A
8033072	12/2010	Mcclintick	N/A	N/A
8127514	12/2011	Binkley et al.	N/A	N/A
8156704	12/2011	Belt et al.	N/A	N/A
8181413	12/2011	Belt et al.	N/A	N/A
8226790	12/2011	Rodrigues et al.	N/A	N/A
D665103	12/2011	Rodrigues et al.	N/A	N/A
D665104	12/2011	Rodrigues et al.	N/A	N/A
8240100	12/2011	Kalkanoglu et al.	N/A	N/A
8240102	12/2011	Belt et al.	N/A	N/A
D666744	12/2011	Rodrigues et al.	N/A	N/A
D666745	12/2011	Rodrigues et al.	N/A	N/A
D666746	12/2011	Rodrigues et al.	N/A	N/A
D666747	12/2011	Rodrigues et al.	N/A	N/A
8297020	12/2011	Swanson	N/A	N/A
D670407	12/2011	Leitch	N/A	N/A
D670408	12/2011	Leitch	N/A	N/A
D670409	12/2011	Leitch	N/A	N/A
D670825	12/2011	Leitch	N/A	N/A
D670826	12/2011	Leitch	N/A	N/A
D670827	12/2011	Leitch	N/A	N/A
8302358	12/2011	Kalkanoglu	N/A	N/A
8316608	12/2011	Binkley et al.	N/A	N/A
8381489	12/2012	Freshwater et al.	N/A	N/A
8389103	12/2012	Kiik et al.	N/A	N/A
8397460	12/2012	Rodrigues et al.	N/A	N/A
8430983	12/2012	Vermilion et al.	N/A	N/A
8535786	12/2012	Schroer	N/A	N/A
8607521	12/2012	Belt et al.	N/A	N/A
8623164	12/2013	Belt et al.	N/A	N/A
8752351	12/2013	Belt et al.	N/A	N/A
8763339	12/2013	Bryson et al.	N/A	N/A
8813453	12/2013	Kalkanoglu et al.	N/A	N/A
8863388	12/2013	Aschoff et al.	N/A	N/A
8978332	12/2014	Leitch	N/A	N/A

8984835	12/2014	Kalkanoglu	N/A	N/A
8991130	12/2014	Belt et al.	N/A	N/A
9010058	12/2014	Dejarnette et al.	N/A	N/A
9021760	12/2014	Kiik et al.	N/A	N/A
9057194	12/2014	Jenkins et al.	N/A	N/A
9121178	12/2014	Belt et al.	N/A	N/A
9140012	12/2014	Leitch et al.	N/A	N/A
9157236	12/2014	Jenkins	N/A	N/A
9187903	12/2014	Buzza	N/A	N/A
9212487	12/2014	Kiik et al.	N/A	N/A
D747007	12/2015	Leitch	N/A	N/A
D747501	12/2015	Leitch	N/A	N/A
D749240	12/2015	Rodrigues et al.	N/A	N/A
D750810	12/2015	Buzza	N/A	N/A
9279255	12/2015	Bryson et al.	N/A	N/A
9290945	12/2015	Beerer et al.	N/A	N/A
9340371	12/2015	Mishler	N/A	N/A
D760924	12/2015	Rodrigues et al.	N/A	N/A
D760925	12/2015	Rodrigues et al.	N/A	N/A
D761445	12/2015	Rodrigues et al.	N/A	N/A
D761446	12/2015	Rodrigues et al.	N/A	N/A
D761447	12/2015	Anderson et al.	N/A	N/A
9399870	12/2015	Leitch et al.	N/A	N/A
9399871	12/2015	Leitch et al.	N/A	N/A
D762879	12/2015	Leitch	N/A	N/A
D762880	12/2015	Leitch	N/A	N/A
D762881	12/2015	Leitch	N/A	N/A
D763468	12/2015	Leitch et al.	N/A	N/A
D763470	12/2015	Leitch	N/A	N/A
D763471	12/2015	Leitch	N/A	N/A
D764076	12/2015	Leitch	N/A	N/A
D764687	12/2015	Anderson et al.	N/A	N/A
D765271	12/2015	Anderson et al.	N/A	N/A
D765273	12/2015	Leitch et al.	N/A	N/A
D765274	12/2015	Leitch et al.	N/A	N/A
9404260	12/2015	Leitch	N/A	N/A
9410323	12/2015	Leitch	N/A	N/A
9416539	12/2015	Duque et al.	N/A	N/A
D765885	12/2015	Leitch et al.	N/A	N/A
D765886	12/2015	Leitch et al.	N/A	N/A
D765887	12/2015	Leitch et al.	N/A	N/A
D765888	12/2015	Leitch et al.	N/A	N/A
D766466	12/2015	Leitch	N/A	N/A
D766467	12/2015	Leitch	N/A	N/A
D766468	12/2015	Leitch	N/A	N/A
D766469	12/2015	Leitch et al.	N/A	N/A
D767172	12/2015	Leitch	N/A	N/A
D767272	12/2015	Gibson	N/A	N/A
D769472	12/2015	Leitch	N/A	N/A
D769473	12/2015	Rodrigues et al.	N/A	N/A

9458633	12/2015	McGraw et al.	N/A	N/A
9464439	12/2015	Buzza	N/A	N/A
D774215	12/2015	Duque et al.	N/A	N/A
D774664	12/2015	Rodrigues et al.	N/A	N/A
9523202	12/2015	Anderson et al.	N/A	N/A
D776303	12/2016	Duque et al.	N/A	N/A
9540821	12/2016	Houchin et al.	N/A	N/A
9605434	12/2016	Belt et al.	N/A	N/A
9624670	12/2016	Belt et al.	N/A	N/A
9657478	12/2016	Belt et al.	N/A	N/A
D793584	12/2016	Leitch	N/A	N/A
9739062	12/2016	Leitch	N/A	N/A
9752324	12/2016	Leitch	N/A	N/A
9758970	12/2016	Grubka et al.	N/A	N/A
D799271	12/2016	Pogue et al.	N/A	N/A
D804687	12/2016	Duque et al.	N/A	N/A
D805221	12/2016	Leitch	N/A	N/A
9845602	12/2016	Kiik et al.	N/A	N/A
9856649	12/2017	Selway	N/A	N/A
9890540	12/2017	Weitzer	N/A	N/A
10009929	12/2017	Zhou et al.	N/A	N/A
D825081	12/2017	Rodrigues et al.	N/A	N/A
D827158	12/2017	Duque et al.	N/A	N/A
D827159	12/2017	Anderson et al.	N/A	N/A
10060132	12/2017	Beerer et al.	N/A	N/A
D827864	12/2017	Rodrigues et al.	N/A	N/A
D827865	12/2017	Rodrigues et al.	N/A	N/A
D827866	12/2017	Rodrigues et al.	N/A	N/A
D827867	12/2017	Rodrigues et al.	N/A	N/A
D827868	12/2017	Rodrigues et al.	N/A	N/A
D829935	12/2017	Duque et al.	N/A	N/A
D831233	12/2017	Anderson et al.	N/A	N/A
D834220	12/2017	Duque et al.	N/A	N/A
10180001	12/2018	Leitch	N/A	N/A
10189656	12/2018	Belt et al.	N/A	N/A
10195640	12/2018	Svec	N/A	N/A
10196821	12/2018	Anderson et al.	N/A	N/A
10308448	12/2018	Belt et al.	N/A	N/A
10315863	12/2018	Belt et al.	N/A	N/A
10322889	12/2018	Belt et al.	N/A	N/A
D856538	12/2018	Duque et al.	N/A	N/A
D856539	12/2018	Duque et al.	N/A	N/A
D857931	12/2018	Leitch	N/A	N/A
D857932	12/2018	Leitch	N/A	N/A
10415247	12/2018	Kilk et al.	N/A	N/A
10428525 10995495	12/2018	Belt et al. Kiik et al.	N/A	N/A
11002015	12/2020 12/2020	Kilk et al. Kilk et al.	N/A N/A	N/A N/A
D943642 11352792	12/2021 12/2021	Svec et al.	N/A N/A	N/A
11332/32	12/2021	Boss et al.	11//1	N/A

11377731	12/2021	Chikaishi et al.	N/A	N/A
D973583	12/2021	Horikoshi et al.	N/A	N/A
2001/0055680	12/2000	Kiik et al.	N/A	N/A
2003/0124292	12/2002	Unterreiter	N/A	N/A
2004/0083674	12/2003	Kalkanoglu et al.	N/A	N/A
2004/0123932	12/2003	Sanger	N/A	N/A
2004/0258883	12/2003	Weaver	N/A	N/A
2005/0130519	12/2004	Rodrigues et al.	N/A	N/A
2005/0178428	12/2004	Laaly et al.	N/A	N/A
2005/0202197	12/2004	Mohseen et al.	N/A	N/A
2005/0252141	12/2004	Kerkar et al.	N/A	N/A
2006/0269713	12/2005	Zuege et al.	N/A	N/A
2008/0134612	12/2007	Koschitzky	N/A	N/A
2009/0139175	12/2008	Todd et al.	N/A	N/A
2009/0220720	12/2008	Mohseen et al.	N/A	N/A
2010/0170169	12/2009	Railkar et al.	N/A	N/A
2010/0173110	12/2009	Wiercinski et al.	N/A	N/A
2011/0041446	12/2010	Stephens et al.	N/A	N/A
2011/0086214	12/2010	Rockwell	N/A	N/A
2011/0223384	12/2010	Whitaker	427/221	C04B 18/02
2012/0047838	12/2011	Kalkanoglu et al.	N/A	N/A
2013/0025225	12/2012	Vermilion et al.	N/A	N/A
2010/0020220	12/2012	verminon et ai.		
2013/0023223	12/2012	Buller et al.	N/A	N/A
			N/A N/A	N/A N/A
2013/0068279	12/2012	Buller et al.		
2013/0068279 2013/0095293	12/2012 12/2012	Buller et al. Boss et al.	N/A	N/A
2013/0068279 2013/0095293 2014/0147611	12/2012 12/2012 12/2013	Buller et al. Boss et al. Ackerman, Jr.	N/A N/A	N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468	12/2012 12/2012 12/2013 12/2013	Buller et al. Boss et al. Ackerman, Jr. Weitzer	N/A N/A N/A	N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895	12/2012 12/2012 12/2013 12/2013 12/2014	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch	N/A N/A N/A N/A	N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282	12/2012 12/2012 12/2013 12/2013 12/2014 12/2014	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282 2016/0369509	12/2012 12/2012 12/2013 12/2013 12/2014 12/2014 12/2015	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker Leitch et al.	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282 2016/0369509 2017/0314271	12/2012 12/2012 12/2013 12/2013 12/2014 12/2014 12/2015 12/2016	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker Leitch et al. Sutton et al.	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282 2016/0369509 2017/0314271 2018/0038108	12/2012 12/2012 12/2013 12/2013 12/2014 12/2014 12/2015 12/2016 12/2017	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker Leitch et al. Sutton et al. Aschenbeck et al.	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282 2016/0369509 2017/0314271 2018/0038108 2018/0363302 2019/0256304 2020/0040582	12/2012 12/2013 12/2013 12/2014 12/2014 12/2015 12/2016 12/2017 12/2017 12/2018 12/2019	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker Leitch et al. Sutton et al. Aschenbeck et al. Beerer et al. Belt et al. Boss et al.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A
2013/0068279 2013/0095293 2014/0147611 2014/0283468 2015/0089895 2015/0176282 2016/0369509 2017/0314271 2018/0038108 2018/0363302 2019/0256304	12/2012 12/2012 12/2013 12/2013 12/2014 12/2014 12/2015 12/2016 12/2017 12/2017	Buller et al. Boss et al. Ackerman, Jr. Weitzer Leitch Baker Leitch et al. Sutton et al. Aschenbeck et al. Beerer et al. Belt et al.	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
3115524	12/2016	EP	N/A

OTHER PUBLICATIONS

Houston Restoration Services: Experienced Roofers Houston TX—Houston Roofing | "Roofing That Beats The Weather" | http://www.qualityroofertx.com/houston-roofing/roofing-thal-beats-lheweather.hlml, downloaded Mar. 16, 2020. cited by applicant

Trudefinition™ Duration® shingles with Surenail® technology |

https:/lwww2.owenscorning.com/lilerature/pdfs/10013980.pdf. cited by applicant

Installation instructions east asphalt shingles | https://bpcan.com/wp-conlenl/uploads/2017/05/d-6013bpmode-de-pose-bardeauxeneasl.pdf, downloaded Mar. 18, 2020. cited by applicant RegencyTM CRC Roofing Excellence | Regency Brochure | hllps://www.weblrack-

cgs.ca/produclfiles/12824/CRC-Regency-Brochure.pdf. cited by applicant

Landmark[™] Series and Landmark[™] TL; CertainTeed Website;

https://www.certainteed.com/residential-roofing/products/landmark-tl, downloaded Mar. 19, 2020. cited by applicant

What Makes the Windsor® a Designer Shingle! Malarkey Roofing Products |

http://malarkeyroofing.com/blog/delail/whal-makes-the-windsor-a-designer-shingle, downloaded Mar. 18, 2020. cited by applicant

GAF Timberline; Lifetime High Definition Shingles brochure; 2011, 13 pgs. cited by applicant "CertainTeed; Landmark Woodscape Series Designer Shingles" brochure, 22 pgs., Code No. 20-20-1833; Nov. 2009 CertainTeed Corporation. cited by applicant

"Highlander—CS; Laminated Architectural Shingle" brochure, 2 pgs., Malarkey Roofing Products; Sep. 2013. cited by applicant

"Owens Corning: Oakridge Shingles featuring Artisan Colors" brochure, 10 pgs., Owens Corning Roofing and Asphalt, LLC, Pub. No. 10017748, Nov. 2012. cited by applicant

"Tamko Building Products: Heritage Premium Laminated Asphalt Shingles, Heritage Laminated Asphalt Shingles" brochure, Tamko Building Products, Inc. 2014. cited by applicant

"IKO Setting the Standard: IKO Sales International: Bitumen Shingles", application guide, 22/02-E/RU/RO/H-02/05. cited by applicant

"CRC Roofing Excellence: Regency—Limited Lifetime Architectural Shingles", brochure, 4 pgs., MC3L044—Oct. 2015. cited by applicant

Roofing Excellence | Regency Brochure | https://www.weblrack-cgs.ca/produclfiles/12824/CRC-Regency-Brochure.pdf. cited by applicant

"Owens Corning Roofing Introduces Its Next Generation of Shingles: High Performance TruDefinition Duration Series Shingles with Enhanced SureNail Technology", Feb. 1, 2012 <<ht>https://newsroom.owenscorning.com/all-news-releases/news-details/2012/Owens-Corning-Roofing-Introduces-Its-Next-Generation-of-Shingles-High-Performance-TruDefinition-Duration-Series-Shingles-with-Enhanced-SureNail-Technology/default.aspx>>. cited by applicant "Timberline High Definition", brochure, GAF Mar. 2013 #027. cited by applicant

Primary Examiner: Polley; Christopher M

Attorney, Agent or Firm: GREENBERG TRAURIG, LLP

Background/Summary

CROSS REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. patent application Ser. No. 18/473,977, filed on Sep. 25, 2023, which is a continuation of U.S. patent application Ser. No. 17/314,788,filed May 7, 2021, which is a continuation of U.S. patent application Ser. No. 16/680,263, filed on Nov. 11, 2019, which is a continuation of U.S. patent application Ser. No. 16/546,464, filed on Aug. 21, 2019, now U.S. Pat. No. 10,995,495, which is a continuation of U.S. patent application Ser. No. 15/811,988, filed on Nov. 14, 2017, now, U.S. Pat. No. 10,415,247, which is a continuation of U.S. patent application Ser. No. 14/606,666, filed on Jan. 27, 2015, now U.S. Pat. No. 9,845,602, which claims priority to U.S. Provisional Application No. 61/931,828, filed on Jan. 27, 2014, the contents of all of which are incorporated herein by reference in their entireties.

FIELD OF THE DISCLOSED SUBJECT MATTER

(1) The disclosed subject matter relates to roofing material, including roofing shingles and roll roofing, having a novel construction.

BACKGROUND

- (2) Asphalt shingles and asphalt roll roofing for decades have been limited by building codes mandating compliance with certain industry specifications. For example, the ASTM D3462 specification, "Standard Specification for Asphalt Shingles made from Glass Felt and Surfaced with Mineral Granules," is one such industry standard for asphalt shingles and asphalt roll roofing. (3) The D3462 specification is quite limited, however, in the acceptable materials and construction parameters for producing roofing material. D3462 requires a fiberglass mat with a minimum weight, asphalt content, mineral surfacing, and mineral fillers mixed in the asphalt with a maximum percentage. For example, the exposed surface material and the headlap surface material must be composed of a suitable material such as sand, talc, or mica. Additionally, the overall shingle under D3462 has a minimum shingle mass requirement. The entirety of the D3462 specification is hereby incorporated by reference. Flexibility in shingle design and manufacture has thus been somewhat limited.
- (4) Recently, however, the International Code Compliance Evaluation Service has approved an alternative shingle specification (ICC-ES AC438). The primary material requirement of ICC-ES AC438 is that shingles contain asphalt. AC438 focuses on shingle performance, rather than materials, and contains a number of shingle performance requirements, including those of the ASTM standards.
- (5) There is therefore a need for asphalt shingles constructed of alternative materials other than those required by the D3462 specification. The presently disclosed subject matter satisfies these and other needs.

SUMMARY

- (6) The purpose and advantages of the disclosed subject matter will be set forth in and are apparent from the description that follows, and will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the devices particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
- (7) To achieve these and other advantages and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter includes a roofing material using felts or mats of different compositions and alternatives to mineral surfacing materials. This roofing material meets the ICC-ES AC438 standard, including the physical and performance requirements. The disclosed roofing material can be made from lighter-weight and lower-cost materials, and will perform as well or better than existing shingles and roll roofing.
 (8) In accordance with another aspect of the disclosed subject matter, a roofing material is provided comprising a mat, comprising top and back surfaces, at least one asphalt layer, disposed on the mat, comprising asphalt and an asphalt filler, an exposed surface covering material disposed on an exposed area of the top surface, and a headlap surface covering material disposed on a headlap area of the top surface, wherein the roofing material satisfies the performance requirements of the AC438 standard, including, wind resistance, fire rating, weather resistance, temperature cycling, wind-driven rain resistance, and breaking strength after weathering.
- (9) In further embodiments of the disclosed subject matter, the roofing material mat comprises one or more of fiberglass, polyester, nylon, cotton, cellulosic fibers or materials, polyethylene, polypropylene, co-polymers, melamine, phenolic, acrylics, polycarbonate, carbon fiber, clay, metallic in woven, non-woven, strands or sheets, styrene compounds, rubber, silk, leather, and wool in a woven, non-woven, or solid form.
- (10) In further embodiments of the disclosed subject matter, the roofing material exposed surface covering material comprises one or more of minerals, plastic particles or film, metal particles or film, cement particles, clay particles, paints, coatings, glass, ceramics, wood, wood fiber, and composite materials.
- (11) In further embodiments of the disclosed subject matter, the roofing material headlap surface

covering material comprises one or more of minerals, plastic particles or film, metal particles or film, cement particles, clay particles, paints, coatings, glass, ceramics, wood, wood fiber, and composite materials.

- (12) In further embodiments of the disclosed subject matter, the roofing material back surface covering material comprises one or more of sand, coal slag, and polymer film.
- (13) It is to be understood that the foregoing general description and the following detailed description and drawings are only examples and are provided for purpose of illustration and not intended to limit the scope of the disclosed subject matter in any way.
- (14) The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the devices of the disclosed subject matter. Together with the description, the drawings serve to explain the principles of the disclosed subject matter.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) The subject matter of the application will be more readily understood from the following detailed description when read in conjunction with the accompanying drawings, in which:
- (2) FIG. **1** is a perspective view of a roofing material in accordance with the present disclosure.
- (3) FIG. **2** is a cross-sectional view of a roofing material in accordance with the present disclosure. DETAILED DESCRIPTION
- (4) Reference will now be made in detail to embodiments of the disclosed subject matter, an example of which is illustrated in the accompanying drawings. The disclosed subject matter will be described in conjunction with the detailed description of the system.
- (5) In accordance with the disclosed subject matter, the use of different felts to make an asphalt shingle can be made up of or in combinations of: fiberglass, polyester, nylon, cotton, cellulosic fibers or materials, polyethylene, polypropylene, co-polymers, melamine, phenolic, acrylics, polycarbonate, carbon fiber, clay, metallic in woven, non-woven, strands or sheets, styrene compounds, rubber, silk, leather, or wool in a woven, non-woven, or solid form. The surfacing materials can be made up of or in combination minerals, plastic particles or film, metal particles or film, cement particles, clay particles, paints, coatings, glass, ceramics, wood, wood fiber, or composite materials.
- (6) The various embodiments of the disclosed subject matter, described in detail below, are constructed with one common raw material, asphalt. Other materials, however, can vary. For example, the felt that is the base of an asphalt shingle can be a polypropylene woven material coated on the top and back surface with an asphaltic compound containing finely ground mineral stabilizer. The back of the shingle can be coated with a crushed waste cement product that keeps the shingles from sticking together in the bundle before being applied to the roof On the top portion of the single the exposure area of the shingle can be covered with a colored crushed brick material and the non-exposure area of the shingle can be covered with a mineral surfacing material such as limestone.
- (7) In further embodiments of the disclosed subject matter, the felt can be a fiberglass non-woven mat coated on both the top and bottom surface with the filled asphalt coating. The back surface and the non-exposure area of the top of the shingles can be covered with a crushed expanded clay material. The exposed portion of the shingle can be covered with a ceramic coated aluminum flake material.
- (8) In further embodiments of the disclosed subject matter the felt can be made with a combination of fiberglass and aluminum strands and can be coated on both top and back surfaces with a filled asphalt coating. The back surface may be covered with a mineral surfacing material. The top of the

- shingle's exposed surface may be coated with a reduced size colored ceramic coated mineral surfacing granule mixed with a antimicrobial polypropylene granule. The non-exposed portion of the top side of the shingle may be covered with a mineral surfacing material.
- (9) In further embodiments of the disclosed subject matter the felt can be made with a fiberglass and can be coated on both top and back surfaces with a filled asphalt coating. The back side of the felt can be covered with a polyethylene film. The top surface can be coated with a filled asphalt coating. In some embodiments, the back surface covering material can be omitted. The top of the shingle's surface can be covered with a crushed waste concrete and the exposure can be painted. (10) Solely for the purpose of illustration, FIG. 1 depicts an embodiment of a roofing shingle in accordance with the present disclosure. Particularly, and as illustrated, the roofing shingle 20 can comprise a headlap section 21 and a buttlap (or exposed) section 22. The headlap section 21 is the portion of the shingle that is covered by an overlaid shingle after installation. The buttlap section is the portion of the shingle that is exposed after installation. In FIG. 1, the dashed line indicates the demarcation between these two sections.
- (11) FIG. 2 depicts an embodiment of a roofing material 200 in accordance with the present disclosure. The roofing material 200 can comprise a mat or felt 206, an asphalt filled coating 208, which can be disposed on top of the mat 206, a second asphalt filled coating 212, which can be disposed beneath the mat 206. A layer of top surface material 210 can be disposed over the first asphalt filled coating 208. A layer of back surface material 214 can be disposed over the second asphalt filled coating 212. The top surface layer 210 can be subdivided into headlap and buttlap sections as depicted in FIG. 1. The headlap and buttlap sections of the top surface layer 210 can be comprised of the same or different materials, as described in more detail below. Optionally, a layer of color coating 211 (e.g., paint) can be disposed on top of the top surface layer 210.
- (12) The examples herein are not intended to limit the scope of the disclosed subject matter. It will be understood that the configuration depicted in FIG. 1, known as a "no cut-out" or strip shingle, is just one of many well-known asphalt-based roofing products, such as three-tab shingles, laminated or architectural shingles, hip and ridge shingles, and roll roofing. These and other such products are all compatible with the disclosed subject matter. Similarly, the configuration depicted in FIG. 2 is an exemplary layout, but not intended to be limiting or exhaustive. A variety of well-known roofing material configurations can be used with the disclosed subject matter.
- (13) Although some of the materials described herein are previously known for use in shingles, such as in the D3462 specification, the combinations as described herein are unique and offer improvements over known combinations. For example, many of the materials used in embodiments of the disclosed subject matter are lower-cost and/or lighter-weight than existing materials, and therefore offer previously unrealized advantages such as lower costs of production and shipping, improved ease of manufacture and installation and/or improved performance. Example Shingles
- (14) Specific exemplary embodiments of the disclosed subject matter are provided in the tables below. The data provided in these tables are based on construction of a 36 inch by 12 inch no cutout shingle with a 5-inch exposure, such as depicted in FIG. 1. A "square" containing 80 shingles is made up of 240 square feet of shingles and covers 100 square feet of roof at the recommended exposure. The term "wt./100 sq. ft." represents the weight of the material per 100 square feet of shingle. The term "Wt./Sq." represents the weight of the material per square. As a benchmark, an exemplary prior-art shingle constructed according to the D3462 specification is also provided. (15) Although the examples are provided for a no cut-out shingle for simplicity, the scope of the invention is not limited to any specific shingle configuration or other roof covering product. Moreover, the values given below are not intended to be limiting or exclusive. A person of ordinary skill in the art would understand that weights and compositions of certain materials can be varied or adjusted without a substantial change in shingle performance or quality.
- (16) TABLE-US-00001 TABLE 1 Prior Art Shingle (D3462) Mat (felt) Material non-woven

- fiberglass wt./100 sq. ft. 1.35 lbs. (min.) Wt./Sq. 3.24 lbs. Asphalt wt./100 sq. ft. 15.00 lbs. (min.) Wt./Sq. 36.00 lbs. Asphalt Filler Material limestone Filler Percentage 70% (max.) Wt./Sq. 84.00 lbs. Exposed Surface Covering Material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. (min.) Wt./Sq. 25.00 lbs. Headlap surface covering material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. (min.) Wt./Sq. 35.00 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 195.24 lbs.
- (17) TABLE-US-00002 TABLE 2 Example 1 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 10.50 lbs. Wt./Sq. 25.20 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 46.80 lbs. Exposed Surface Covering Material Material grade 18 mineral granules wt./100 sq. ft. 18.00 lbs. Wt./Sq. 18.00 lbs. Headlap surface covering material Material grade 18 mineral granules wt./100 sq. ft. 18.00 lbs. Wt./Sq. 25.20 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 130.92 lbs.
- (18) TABLE-US-00003 TABLE 3 Example 2 Mat (felt) Material spunglass polypropylene wt./100 sq. ft. 1.00 lbs. Wt./Sq. 2.40 lbs. Asphalt wt./100 sq. ft. 10.50 lbs. Wt./Sq. 25.20 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 46.80 lbs. Exposed Surface Covering Material Material grade 18 mineral granules wt./100 sq. ft. 18.00 lbs. Wt./Sq. 18.00 lbs. Headlap surface covering material Material grade 18 mineral granules wt./100 sq. ft. 18.00 lbs. Wt./Sq. 25.20 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 129.60 lbs.
- (19) TABLE-US-00004 TABLE 4 Example 3 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 10.50 lbs. Wt./Sq. 25.20 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 46.80 lbs. Exposed Surface Covering Material Material aluminum flakes wt./100 sq. ft. 3.00 lbs. Wt./Sq. 3.00 lbs. Headlap surface covering material Material fine mineral surfacing wt./100 sq. ft. 12.00 lbs. Wt./Sq. 16.80 lbs. Back Surface covering material Material fine coal slag wt./100 sq. ft. no requirement Wt./Sq. 8.00 lbs. Total lbs./Sq. 103.52 lbs.
- (20) TABLE-US-00005 TABLE 5 Example 4 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 15.00 lbs. Wt./Sq. 36.00 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 66.86 lbs. Exposed Surface Covering Material Material plastic granules wt./100 sq. ft. 10.00 lbs. Wt./Sq. 10.00 lbs. Headlap surface covering material Material plastic granules wt./100 sq. ft. 10.00 lbs. Wt./Sq. 14.00 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 142.58 lbs.
- (21) TABLE-US-00006 TABLE 6 Example 5 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 15.00 lbs. Wt./Sq. 36.00 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 66.86 lbs. Exposed Surface Covering Material Material plastic & mineral granule blend wt./100 sq. ft. 20.00 lbs. Wt./Sq. 20.00 lbs. Headlap surface covering material Material plastic & mineral granule blend wt./100 sq. ft. 20.00 lbs. Wt./Sq. 28.00 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 166.58 lbs.
- (22) TABLE-US-00007 TABLE 7 Example 6 Mat (felt) Material non-woven polyester wt./100 sq. ft. 1.05 lbs. Wt./Sq. 2.52 lbs. Asphalt wt./100 sq. ft. 10.50 lbs. Wt./Sq. 25.20 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 46.80 lbs. Exposed Surface Covering Material Material granules wt./100 sq. ft. 18.00 lbs. Wt./Sq. 18.00 lbs. Headlap surface covering material Material expanded clay granules wt./100 sq. ft. 12.00 lbs. Wt./Sq. 16.80 lbs. Back Surface covering material Material fine coal slag wt./100 sq. ft. no requirement Wt./Sq. 8.00 lbs. Total lbs./Sq. 117.32 lbs.
- (23) TABLE-US-00008 TABLE 8 Example 7 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 12.00 lbs. Wt./Sq. 28.80 lbs. Asphalt Filler

Material limestone Filler Percentage 65% Wt./Sq. 53.50 lbs. Exposed Surface Covering Material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. Wt./Sq. 25.00 lbs. Headlap surface covering material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. (min.) Wt./Sq. 35.00 lbs. Back Surface covering material Material sand wt./100 sq. ft. no requirement Wt./Sq. 12.00 lbs. Total lbs./Sq. 158.02 lbs.

- (24) TABLE-US-00009 TABLE 9 Example 8 Mat (felt) Material mineral & acrylic coated fiberglass mat, one side wt./100 sq. ft. 12.00 lbs. Wt./Sq. 28.80 lbs. Asphalt wt./100 sq. ft. 9.00 lbs. Wt./Sq. 21.60 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 40.11 lbs. Exposed Surface Covering Material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. Wt./Sq. 25.00 lbs. Headlap surface covering material Material grade 11 mineral granules wt./100 sq. ft. 25.00 lbs. (min.) Wt./Sq. 35.00 lbs. Back Surface covering material Material n/a wt./100 sq. ft. no requirement Wt./Sq. 0.00 lbs. Total lbs./Sq. 150.51 lbs.
- (25) TABLE-US-00010 TABLE 10 Example 9 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 10.50 lbs. Wt./Sq. 25.20 lbs. Asphalt Filler Material limestone Filler Percentage 65% Wt./Sq. 46.80 lbs. Exposed Surface Covering Material Material aluminum flakes wt./100 sq. ft. 3.00 lbs. Wt./Sq. 3.00 lbs. Headlap surface covering material Material polymer film wt./100 sq. ft. 1.50 lbs. Wt./Sq. 2.10 lbs. Back Surface covering material Material polymer film wt./100 sq. ft. 1.50 lbs. Wt./Sq. 3.60 lbs. Total lbs./Sq. 84.42 lbs. (26) TABLE-US-00011 TABLE 11 Example 10 Mat (felt) Material non-woven fiberglass wt./100 sq. ft. 1.55 lbs. Wt./Sq. 3.72 lbs. Asphalt wt./100 sq. ft. 7.50 lbs. Wt./Sq. 18.00 lbs. Asphalt Filler Material limestone Filler Percentage 60% Wt./Sq. 27.00 lbs. Exposed Surface Covering Material Material textured & painted polymer film wt./100 sq. ft. 3.50 lbs. Wt./Sq. 3.50 lbs. Headlap surface covering material Material polymer film wt./100 sq. ft. 1.50 lbs. Wt./Sq. 2.10 lbs. Back Surface covering material Material polymer film wt./100 sq. ft. 1.50 lbs. Wt./Sq. 3.60 lbs. Total lbs./Sq. 57.92 lbs.
- (27) All of the above examples have a lighter total weight than the prior art D3462 shingle (57.92 to 166.85 pounds per square compared to 195.24). This is a result of the lighter-weight materials used in their construction.
- (28) Furthermore, roofing material of the disclosed subject matter conform to the AC438 standard, which includes some of the physical requirements of the D3462 specification such as dimensions and pliability, but replaces several of the D3462's physical requirements with performance requirements. The performance requirements of the AC438 standard include, for example: wind resistance, which are a minimum of either ASTM D 7158 Class D or, alternatively, ASTM D 3161 Class A; fire rating of at least ASTM E 108 or UL790, Class C; weather resistance, after testing of which, according to ASTM G 155, the weathered specimens show no visual signs of surfacing material loss, cracks, erosion or exposed felt substrate; temperature cycling, after testing of which the specimens do not show signs of tearing or cracking of the filled asphalt coating that exposes the reinforcing felt of the shingle, or separation greater than ½ inch (6.4 mm) at the joints between the specimens, and there are no signs of tearing of the shingle at the fastener locations or pull-through of the fasteners, and no portion of the asphalt-coated reinforcing felt breaks or separates from the specimens; wind-driven rain resistance, which is tested according to Florida Building Code Test Protocol TAS-100, after which any test specimen which exhibits water infiltration through the sheathing is considered as failing the wind-driven rain test, and any test specimen which has the prepared roof covering or any portion thereof "blow off," tear or blow upward without reseating during the test is considered as failing the wind driven rain test; and breaking strength after weathering, according to which the average breaking strength of weathered specimens is not less than 80 percent of the average breaking strength of unweathered specimens. A more detailed description of the AC438 requirements are found in the AC438 specification, which is hereby incorporated by reference in its entirety.
- (29) While the disclosed subject matter is described herein in terms of certain preferred and

exemplary embodiments, those skilled in the art will recognize that various modifications and improvements can be made to the disclosed subject matter without departing from the scope thereof. Moreover, although individual features of one embodiment of the disclosed subject matter can be discussed herein or shown in the drawings of the one embodiment and not in other embodiments, it should be apparent that individual features of one embodiment can be combined with one or more features of another embodiment or features from a plurality of embodiments. (30) In addition to the various embodiments depicted and claimed, the disclosed subject matter is also directed to other embodiments having other possible combinations of the features disclosed and claimed herein. As such, the particular features presented herein can be combined with each other in other manners within the scope of the disclosed subject matter such that the disclosed subject matter includes any suitable combination of the features disclosed herein. Thus, the foregoing description of specific embodiments of the disclosed subject matter has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosed subject matter to those embodiments disclosed.

(31) It will be apparent to those skilled in the art that various modifications and variations can be made in the system and method of the disclosed subject matter without departing from the spirit or scope of the disclosed subject matter. Thus, it is intended that the disclosed subject matter include modifications and variations that are within the scope of the appended claims and their equivalents.

Claims

- 1. A roofing material, comprising: a mat at least one asphalt layer, wherein the asphalt layer is disposed on the mat, wherein the asphalt layer comprises an asphalt and an asphalt filler, wherein the wt./100 sq. ft. of the asphalt is approximately 10.50 lbs.; an exposed surface covering material, wherein the exposed surface consists essentially of grade 18 mineral granules, disposed on the exposed surface, wherein the wt./100 sq. ft. of the exposed surface covering material is approximately 18.00 lbs.; and a headlap surface covering material, wherein the headlap surface covering material consists essentially of grade 18 mineral granules, disposed on the headlap surface, wherein the wt./100 sq. ft. of the headlap surface covering material is approximately 18.00 lbs, and a back surface covering material, wherein the back surface covering material consists essentially of sand.
- 2. The roofing material of claim 1, wherein the mat consists essentially of non-woven fiberglass, wherein the mat comprises a top and a back surfaces, wherein the top surface comprises an exposed surface and a headlap surface, wherein the wt./100 sq. ft. of the mat is approximately 1.55 lbs.
- 3. The roofing material of claim 1, wherein the mat consists essentially of spunglass polypropylene, wherein the mat comprises a top and a back surfaces, wherein the top surface comprises an exposed surface and a headlap surface, wherein the wt./100 sq. ft. of the mat is approximately 1.0 lbs.
- 4. The roofing material of claim 1, wherein the roofing material is an asphalt shingle.
- 5. The roofing material of claim 1, wherein the roofing material is roll roofing.
- 6. A roofing material, comprising: a mat wherein the mat consists essentially of non-woven fiberglass, wherein the mat comprises a top and a back surfaces, wherein the top surface comprises an exposed surface and a headlap surface, wherein the wt./100 sq. ft. of the mat is approximately 1.55 lbs.; at least one asphalt layer, wherein the asphalt layer is disposed on the mat, wherein the asphalt layer comprises an asphalt and an asphalt filler, wherein the wt./100 sq. ft. of the asphalt is approximately 10.50 lbs.; an exposed surface covering material, wherein the exposed surface consists essentially of aluminum flakes, disposed on the exposed surface, wherein the wt./100 sq. ft. of the exposed surface covering material is approximately 3.00 lbs.; and a headlap surface covering material, wherein the headlap surface, wherein the wt./100 sq. ft. of the headlap surface covering material is approximately 12.00 lbs, and a back surface covering material, wherein

the back surface covering material consists essentially of fine coal slag.

- 7. A roofing material, comprising: a mat wherein the mat consists essentially of non-woven fiberglass, wherein the mat comprises a top and a back surfaces, wherein the top surface comprises an exposed surface and a headlap surface, wherein the wt./100 sq. ft. of the mat is approximately 1.55 lbs.; at least one asphalt layer, wherein the asphalt layer is disposed on the mat, wherein the asphalt layer comprises an asphalt and an asphalt filler, wherein the wt./100 sq. ft. of the asphalt is approximately **15.00** lbs.; an exposed surface covering material, a headlap surface covering material, a back surface covering material, wherein the back surface covering material consists essentially of sand.
- 8. The roofing material of claim 7, wherein the exposed surface consists essentially of plastic granules, disposed on the exposed surface, wherein the wt./100 sq. ft. of the exposed surface covering material is approximately 10.00 lbs.; and wherein the headlap surface covering material consists essentially of plastic granules, disposed on the headlap surface, and wherein the wt./100 sq. ft. of the headlap surface covering material is approximately 10.00 lbs.
- 9. The roofing material of claim 8, wherein the exposed surface consists essentially of plastic and mineral granule blend, disposed on the exposed surface, wherein the wt./100 sq. ft. of the exposed surface covering material is approximately 20.00 lbs.; and wherein the headlap surface covering material consists essentially of plastic and mineral granule blend, disposed on the headlap surface, wherein the wt./100 sq. ft. of the headlap surface covering material is approximately 20.00 lbs.
- 10. The roofing material of claim 7, wherein the roofing material is an asphalt shingle.
- 11. The roofing material of claim 7, wherein the roofing material is roll roofing.
- 12. A roofing material, comprising: a mat wherein the mat consists essentially of non-woven fiberglass, wherein the mat comprises a top and a back surfaces, wherein the top surface comprises an exposed surface and a headlap surface, wherein the wt./100 sq. ft. of the mat is approximately 1.05 lbs.; at least one asphalt layer, wherein the asphalt layer is disposed on the mat, wherein the asphalt layer comprises an asphalt and an asphalt filler, wherein the wt./100 sq. ft. of the asphalt is approximately 10.50 lbs.; an exposed surface covering material, wherein the exposed surface consists essentially of grade 18 mineral granules, disposed on the exposed surface, wherein the wt./100 sq. ft. of the exposed surface covering material is approximately 18.00 lbs.; and a headlap surface covering material, wherein the headlap surface, wherein the wt./100 sq. ft. of the headlap surface covering material is approximately 12.00 lbs, and a back surface covering material, wherein the back surface covering material consists essentially of fine coal slag.
- 13. The roofing material of claim 12, wherein the roofing material is an asphalt shingle.
- 14. The roofing material of claim 12, wherein the roofing material is roll roofing.