Cryptographie et Sécurité - TD2

guillaume.postic@universite-paris-saclay.fr

Exercice 1 : sécurité sémantique

Soit (E, D) un chiffrement sémantiquement sécurisé où l'espace des messages clairs et l'espace des chiffré est $\{0, 1\}^n$. Quels sont les chiffrements sémantiquement sécurisés parmi les suivants ?

Pour un chiffrement non sécurisé, détailler l'échange des messages entre l'adversaire et le *challenger*, puis calculer l'avantage de l'adversaire sur le protocole.

- 1. E'((k, k'), m) = E(k, m) || E(k', m)
- 2. $E'(k, m) = 0 \| E(k, m)$
- 3. $E'(k, m) = E(k, m) \parallel MSB(m)$
- 4. $E'(k, m) = E(0^n, m)$

Exercice 2 : réseau de Feistel

En utilisant un réseau de Feistel à deux rondes, chiffrer le texte clair suivant :

01100010 01100101

avec les clés de ronde

 k_1 : 10101011 k_2 : 11001101

et la fonction de ronde

 $f(k, R) = k \oplus [décalage circulaire à gauche sur 4 bits de R]$

Illustration d'un décalage circulaire à gauche sur 1 bit :

Exercice 3 : Mode d'opération

Soit un chiffrement par bloc de 3 bits défini dans la table ci-dessous et soit un message clair m=011011011

- 1. Produire le chiffré de m en utilisant le chiffrement par bloc avec le mode ECB.
- 2. Supposons que Trudy intercepte le chiffré. Supposons aussi qu'elle sache que le texte a été chiffré avec un chiffrement par bloc de 3 bits en mode ECB, mais sans connaître le chiffrement spécifique. Que peut-elle trouver à propos du message clair ?
- 3. Produire le chiffré de m en utilisant le chiffrement par bloc avec le mode CBC, en utilisant le vecteur d'initialisation 010.

Entrée	Sortie	Entrée	Sortie
000	001	100	010
001	100	101	110
010	111	110	011
011	000	111	101