Texture

Lu Peng
School of Computer Science,
Beijing University of Posts and Telecommunications

Machine Vision Technology								
Semantic information					Metric 3D information			
Pixels	Segments	Images	Videos		Ca	ımera	Multi-view (Geometry
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2		2	2	2	2

2020/4/13

Beijing University of Posts and Telecommunications

Today: Texture

What defines a texture?

2020/4/13

Beijing University of Posts and Telecommunications

2

Includes: more regular patterns

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

,

Includes: more random patterns

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Texture-related tasks

Shape from texture

• Estimate surface orientation or shape from image texture

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

_

Shape from texture

Use deformation of texture from point to point to estimate surface shape

Source:Kristen Grauman

2020/4/13 Pics from A. Loh: http://www.cssBeijing University-of Rosts and Telecommunications

Texture-related tasks

Shape from texture

• Estimate surface orientation or shape from image texture

Segmentation/classification from texture cues

- Analyze, represent texture
- Group image regions with consistent texture

Synthesis

• Generate new texture patches/images given some examples

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

2020/4/13

Beijing University of Posts and Telecommunications

0

Texture-related tasks

Shape from texture

• Estimate surface orientation or shape from image texture

Segmentation/classification from texture cues

- Analyze, represent texture
- Group image regions with consistent texture

Synthesis

• Generate new texture patches/images given some examples

2020/4/13

Beijing University of Posts and Telecommunications

2020/4/13

Beijing University of Posts and Telecommunications

Source:Kristen Grauman

トントトロロロウ 7 K 4 4 4 4 4 4 4 AAAAKAAY 44 PF 1 K 1 **d D D ケ ア ケ テ チ** DODDKYTY

What kind of response will we get with an edge detector for these images?

Images from Malik and Perona, 1990

2020/4/13

Beijing University of Posts and Telecommunications

...and for this image?

2020/4/13

Beijing University of Posts and Telecommunications

14

Why analyze texture?

Importance to perception:

- ➤ Often indicative of a material's properties
- > Can be important appearance cue, especially if shape is similar across objects
- ➤ Aim to distinguish between shape, boundaries, and texture

Technically:

➤ Representation-wise, we want a feature one step above "building blocks" of filters, edges.

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Texture representation

Textures are made up of repeated local patterns, so:

- Find the patterns
 - Use filters that look like patterns (spots, bars, raw patches...)
 - Consider magnitude of response
- Describe their statistics within each local window
 - Mean, standard deviation
 - Histogram
 - Histogram of "prototypical" feature occurrences

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

derivative filter responses, squared

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

- -

Texture representation: example

	<u>mean</u> <u>d/dx</u> <u>value</u>	mean d/dy value
Win. #1	4	10
Win.#2	18	7
Win.#9	20	20
	:	

statistics to summarize patterns in small windows

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Texture representation: example

$$D(a,b) = \sqrt{(a_1-b_1)^2 + (a_2-b_2)^2}$$

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

24

Texture representation: example

Distance reveals how dissimilar texture from window a is from texture in window b.

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Texture representation: window scale

We're assuming we know the relevant window size for which we collect these statistics.

Possible to perform scale selection by looking for window scale where texture description not changing.

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

26

Filter banks

Our previous example used two filters, and resulted in a 2-dimensional feature vector to describe texture in a window.

• x and y derivatives revealed something about local structure.

We can generalize to apply a collection of multiple (d) filters: a "filter bank"

Then our feature vectors will be *d*-dimensional.

• still can think of nearness, farness in feature space

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Filter banks

What filters to put in the bank?

• Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

28

Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

2020/4/13

Beijing University of Posts and Telecommunications

d-dimensional features

$$D(a,b) = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}$$
 Euclidean distance (L₂)

2020/4/13

Beijing University of Posts and Telecommunications

54

Example uses of texture in vision: analysis

2020/4/13

Beijing University of Posts and Telecommunications

Classifying materials, "stuff"

Source: Varma & Zisserman

2020/4/13

Beijing University of Posts and Telecommunications

56

Texture features for image retrieval

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. *International Journal of Computer Vision*, 40(2):99-121, November 2000,

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Characterizing scene categories by texture

L. W. Renninger and J. Malik. When is scene identification just texture recognition? Vision Research 44 (2004) 2301–2311

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

58

Segmenting aerial imagery by textures

http://www.airventure.org/2004/gallery/images/073104_satellite.jpg

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications

Summary

Texture is a useful property that is often indicative of materials, appearance cues

Texture representations attempt to summarize repeating patterns of local structure

Filter banks useful to measure redundant variety of structures in local neighborhood

• Feature spaces can be multi-dimensional

Source:Kristen Grauman

2020/4/13

Beijing University of Posts and Telecommunications