CS224n Lecture 14 Self-Attention For Generative Models

ESC 5조

RNN

- Sequential computation -> parallelization 제한
- Want to model hierarchy
- Long / short range dependencies에 명확한 모델링 x

WASTEFUL!

Convolutional Neural Networks

- Not sequentially -> But Depth
- Parallelize per layer <- apply convolutions simultaneously at every position
- Local dependencies
- Interaction distance btw positions linear or logarithmic

Long-distance Dependency -> MANY LAYERS!

Self-Attention

어떤 단어의 새로운 representation을 만든다고 가정

- Attention의 역할: re-expressing the word in certain terms of a weighted combination of its entire neighborhood
 - → 얘를 기반으로 모든 정보를 요약
- Constant 'path length' -> position can interact with any position
- Gating/multiplicative interactions
- Parallelize per layer <- attention just needs matmuls

Text Generation

Transformer – Using Attention primarily for computing Representations

Transformer – Why Attention? Cheap & Fast

Dimension이 length보다 훨씬 클 때 self-attention 모델이 아주 좋다 FLOPS

Self-Attention	O(length ² · dim)	= 4.109
RNN (LSTM)	O(length · dim²)	= 16·10 ⁹
Convolution	O(length · dim² · kernel_width)	= 6·10 ⁹

length=1000 dim=1000 kernel_width=3

EN-DE EN-FR

GNMT (orig) 24.6 39.9

ConvSeq2Seq 25.2 40.5

Transformer* 28.4 41.8

Machine Translation: WMT-2014 BLEU (Attention is All You Need)

^{*}Transformer models trained >3x faster than the others.

Transformer

Encoder Self-Attention: Simplicity & Speed

Just computes the representation for every position simultaneously using attention

Transformer

Encoder Self-Attention: Simplicity & Speed

: Btw every layer, and the input, we have a skip connection that just adds the activations

Transformer

Decoder Self-Attention: Simplicity & Speed

- Mimic a language model using self-attention to impose causality by just masking out positions that you can look at
- Has causal self-attention layer(followed by encoder-decoder attention)
- It cannot look forward. But it can look at itself because input was shifted.

Transformer

Decoder Self-Attention: Simplicity & Speed

Compare

Convolutions

Convolution filters
: different transformation based on relative distances

Compare

Self-attention – Single layer

Only possible

: just mixing proportions

-> it's impossible to pick out different pieces of information from different places

Compare

Self-attention – Parallel attention heads (Multihead Attention)

One attention layer for who

- : feature detector
- -> it carries with a linear transformation, so it's projecting them in a space which starts caring about syntax

 Or, it would start caring about "who" or not

All of these can actually done in parallel!

- For efficiency: instead of having these dimensions operating in a large space, we just reduce the dimensionality of all these heads
- Operating these attention layers in parallel is ort of bridging the gap

Importance of Residuals

Residuals – carry positional information to higher layers

With residuals

Without residuals

Unable to pick diagonal

Without residuals, with timing signals

Added position info back in at every layer -> accuracy was not recovered but diagonal focus is back!!

Self-similarity

In many cases, images and music have repetition of patches in different scales

Probabilistic Image Generation

Can self-attention help us in modeling other objects like image?

Self attention으로 단어 뿐만 아니라 image 등도 모델링할 수 있을까?

- model the joint distribution of pixels
- standard auto-regressive image modeling 사용

GAN이랑은 다름! Language Modeling을 image에 적용한 거라고 생각하자!

probabilistic image modeling

Probabilistic Image Generation

Self-attention is a good computation mechanism!

CNN에 비해 self-attention을 image에 적용했을 때 좋은점?

- 기존까지 image generation task에서 SOTA를 달성한 모델은 모두 CNN 기반 (PixelRNN, PixelCNN)

CNN은 병렬연산이 가능하기 때문에 계산속도가 더 빠르다

But long-range dependencies matter for images!

이미지에서는 어느 정도 원거리 유사성이 고려되어야 한다 (ex. symmetry)

image size도 점점 커지는 추세 => 이러한 문제점을 해결하기 위해

CNN을 사용하면...?

- more layers! 학습이 어려워진다..
- larger kernels! parameter/computation cost 증가..

Self-attention을 사용하면...?

- large receptive field => get attention at a lower computational cost
- no need for layers!

(CNN의 경우 멀리 떨어진 pixel과의 관계를 찿기 위해 layer가 많이 필요)

Probabilistic Image Generation

Attention is Cheap!

only if <u>length</u> << dimension..

	FLOPs
Self-Attention	O(length ² · dim) (length=3072 for images)
RNN (LSTM)	O(length · dim²)
Convolution	O(length · dim² · kernel_width)

Self-Similarity

Examples

Texture Synthesis with Self Similarity

Non-local Means (image denoising)

"denoise patch p"

↓
based on similarity btw all other patches in image,

↓
compute function of
content-based similarity

↓
get information

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, w(p,q1) and w(p,q2), while much different neighborhoods give a small weight w(p,q3).

Self-Similarity

patches instead word embeddings!

Overall Structure

Combine with Locality

Attention is not cheap for images :(

	T LOI 3	
Self-Attention	O(length ² · dim) (length=3072 for images)	
RNN (LSTM)	O(length · dim²)	
Convolution	O(length · dim ² · kernel_width)	

FI OPe

- Restrict attention windows to be local neighborhoods

Usages and Results

Still more to go!

Image Generation: Not as good as GANs..

Super Resolution : 꽤 좋은 성과!

Usages and Results

Still more to go!

Conditional Image Completion

Super Resolution : 꽤 좋은 성과!

Music generation using relative self-attention

Raw representations in music and language

(Image from Simon & Oore, 2016)

Motif를 주고 그 뒤는 model이 알아서 만들게 시킴

- 처음에는 given motif를 반복하려고 하지만 뒤로 갈 수록 이상해짐
- It is not able to directly look back to what happened in the past.
- Becomes more and more blurry
- 처음에는 좋은 성능을 보이지만 Input 보다 더 긴 sequence는 만들어내지 못함

Unconditional sample from model

A lot of Replications with gaps on between

음영: motif

Self Attention Structure

- Looking at the relevant parts even if it was not immediately
- 다른 색들 → different attention head, 각각 motif 부분에서 다른 부분에 집중
- How?

Attention: a weighted average

- Regular attention으로 시작
- 아무리 멀리 떨어져 있어도
 Direct access 가능
- 작품 초반에 motif가 발생하더라도, 비슷한 것이 있었다는 것을 기억하고 반영할 수 있다.
- 하지만 과거 데이터들이 위치를 기억할 수 없다.
- positional sinusoids 사용

Convolution: Different linear transformations by relative position

- Fixed filter that's moving around that captures the relative distance.
- Bring in the distance information very explicitly.

Relative attention (Shaw et al, 2018) Multihead attention + convolution?

- Can access the history very directly.
- Also know how relate to this history.
- Relative attention을 통해 Music transformer는 train할 때 주어진 데이터 보다 긴 데이터를 학습할 수 있음.

Closer look at relative attention

- 기존 transformer는 모든 query와 key들을 비교해서 square matrix 형성
 - → self similarity
- Relative attention은 얼마나 떨어져 있는지도 고려
 - → similarity between positions
- 기존 attention score에 relative positional attention score 추가
- Gather the embedding that's irrelevant to the query key distance on the logits.

기존: 3D tensor를 만드는 것이라 메모리를 차지하는 비중과 연산량이 굉장히 높음

- 기존 relative attention은 모든 페어를 고려해서 relative distance를 구하기 때문에 LXLXD 만큼의 연산이 필요함
- Our work에서는 연산량은 줄어들었지만, 결과값의 순서가 query ordered by a relative distance이기 때문에 이를 query ordered by keys로 변환하는 과정이 필요함 → Do a series of skewing!

Convolutions and Translational Equivariance

- Translation equivariance: input의 위치가 변하면 출력도 동일하게 위치가 변한채로 나온다.
- 빨간 점 혹은 강아지에 대한 계산을 할 때 그림에서 어느 위치에 있는 지에 영향을 받지 않는다.
- In the large image, it just doesn't depend on its absolute location. It's going to produces the same activation.
- Convolution 연산을 하면 translation equivariance 특성과 더불어 파라미터를 공유하기 때문에 필터 하나로 다양한 위치에서 다양한 특징들을 추출할 수 있다.

Relative positions Translational Equivariance

- Positions 혹은 relative attention도 비슷한 효과를 보인다.
- Absolute position에 대한 정보를 지워도 좋은 성능을 보였다.
 - → Translation equivariance which is great property for images.
- Semis 같은 작업을 하는 경우 unlabeled data로 모델을 학습시킨 다음 위치를 변동시키기 때문에 Generative models of images가 유용하다.

Relative Attention And Graphs

Relative attention으로 다양한 뜻을 가진 단어에서로 다른 similarity를 부여할 수 있음.

If you have graph problems then relative self attention might be a good fit for you.

Message Passing Neural Networks

- Self attention imposes a fully connect, then now message passing neural networks did exactly that they were passing messages between nodes as well.
- 기존 message passing은 연결되어 있는 node들만 고려했지만, self attention을 사용한다면 softmax 함수를 사용하기에 모든 node들 사이의 interaction을 고려할 수 있다.

Multiple Towers

MPNN: Message Passing Neural Network

- Run k smaller copies of the MPNN in parallel.
- Mix node states after each message pass.
- Offers a factor of k speedup for the same node dimension d (> 2x speedup when d=200).
- Also helped improve performance when used with matrix multiply message function.

Self Attention

- Constant 'path length' between any two positions.
- Unbounded memory.
- Trivial to parallelize (per layer).
- Models Self-Similarity.
- Relative attention provides expressing timing, equivariance, and extends naturally to graphs

감사합니다.