Devoir à la maison n° 06

À rendre le 16 novembre

On considère le modèle d'évolution de population (dit de Verhulst) suivant : avec $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+$, on cherche à déterminer les fonctions p solutions de l'équation différentielle suivante.

$$p' = (a - bp)p \tag{\mathcal{V}}$$

On s'intéresse plus particulièrement aux solutions p de (\mathscr{V}) définies en 0 et vérifiant $p(0) \ge 0$.

La détermination du plus grand intervalle de définition d'une solution de (\mathscr{V}) (on parle alors de solution maximale) n'est pas possible a priori. Il convient d'abord de résoudre l'équation sur un intervalle I, puis après résolution de préciser quel peut-être I.

1) Résoudre (\mathscr{V}) dans le cas où b=0 (modèle de Malthus).

Dans le reste du problème, on considère que b > 0, et l'on pose $K = \frac{a}{b}$.

- 2) Déterminer deux solutions évidentes de (\mathscr{V}) .
- 3) Soit I un intervalle de \mathbb{R} et $p:I\to\mathbb{R}$ une fonction dérivable et ne s'annulant pas sur I, posons $y=\frac{1}{p}$. Montrer que p est solution de (\mathscr{V}) si et seulement si y est solution d'une équation différentielle (\mathscr{E}) , que l'on déterminera.
- 4) Déterminer l'ensemble des solutions de (\mathscr{E}) .

On cherche maintenant les intervalles les plus grands sur lesquels les solutions de (\mathcal{V}) sont définies. On procède par analyse-synthèse.

- 5) Soit p une solution de (\mathscr{V}) définie et ne s'annulant pas sur un intervalle I. Déterminer la forme de p ainsi que le plus grand intervalle sur lequel p peut-être définie.
- 6) Vérifier réciproquement que toutes ces fonctions sont solution de (\mathscr{V}) .
- 7) En déduire l'ensemble des solutions maximales de (\mathcal{Y}) .

On s'intéresse maintenant aux conditions initiales pertinentes pour le problème considéré.

- 8) Soit p une solution de (\mathscr{V}) trouvée précédemment et vérifiant $0 \leq p(0) \leq K$. Vérifier que p est bien définie sur \mathbb{R} .
- 9) Soit p une solution de (\mathcal{V}) trouvée précédemment et vérifiant K < p(0). Vérifier que p est bien définie au moins sur \mathbb{R}_+ .
- 10) Soit p une solution de (\mathscr{V}) définie en 0 et vérifiant $p(0) \ge 0$. Expliciter le sens de variations de p et la limite de p en $+\infty$, en fonction de K.

— FIN —