

AMAZON WEB SERVICES ДЛЯ МАШИННОГО ОБУЧЕНИЯ

Глеб Ивашкевич, независимый разработчик

Глеб Ивашкевич

независимый разработчик

Y3HAEM

- что такое Amazon Web Services;
- как его применять для задач машинного обучения;
- как запускать и настраивать серверы на AWS;
- как пользоваться готовыми сервисами AWS для машинного обучения.

- 1. Как устроен AWS;
- 2. Небольшие задачи: работаем с одним сервером;
- 3. Сложные задачи: работаем с AWS CLI;
- 4. Готовые сервисы AWS для машинного обучения.

Машинное обучение

- данные:
- → хранение
- → быстрый доступ

Машинное обучение

- данные:
- → хранение
- → быстрый доступ

- алгоритмы:
 - → ресурсоемкие
- → специальное железо

Машинное обучение

- данные:
 - → хранение
- → быстрый доступ

- алгоритмы:
 - → ресурсоемкие
- → специальное железо

нам поможет

облачная инфраструктура

Облачная инфраструктура

- любые вычислительные ресурсы доступны;
- нет upfront затрат;
- легко масштабируется;
- гибкость.

Amazon Web Services

- облачная инфраструктура Amazon;
- запущена в 2002, перезапущена в 2006;
- managed;
- набор сервисов для (почти) любых задач;
- pay-as-you-go.

Amazon Web Services

- вычисления:
 - EC2(Elastic Compute Cloud), Lambda
- хранение и БД:
 - \$3(Simple Storage Service), EFS(Elastic File System), RDS(Relational Database Service)
- машинное обучение:
 - Amazon Rekognition, Amazon Comprehend
- многое другое

Compute

Lightsail C

Lambda

Batch

Elastic Container Service

EC2

History

aws

Console Home

EC2

Cost Explorer

Billing

VPC

Machine Learning

Find a service by name or feature (for example, EC2, S3 or VM, storage).

Machine Learning

Amazon SageMaker Amazon Comprehend

AWS DeepLens

Amazon Lex

Machine Learning

Amazon Polly

Rekognition

Amazon Transcribe

Amazon Translate

AR & VR

Amazon Sumerian 2

A-Z

Group

Application Integration

Step Functions

Amazon MQ

Simple Notification Service

Simple Queue Service

SWF

Storage

S3

EFS

Glacier

Database

DynamoDB

ElastiCache

Amazon Redshift

Storage Gateway

Elastic Beanstalk

Management Tools

CloudWatch

AWS Auto Scaling

Developer Tools

CodeStar

CodeBuild

Cloud9

X-Ray

CodeCommit

CodeDeploy

CodePipeline

CloudFormation

CloudTrail

Config

OpsWorks

Service Catalog

Systems Manager

Trusted Advisor

Managed Services

Analytics

Athena

EMR

CloudSearch

Elasticsearch Service

Kinesis

QuickSight 2

Data Pipeline

AWS Glue

Customer Engagement

Amazon Connect

Pinpoint

Simple Email Service

Business Productivity

Alexa for Business

Amazon Chime 2

WorkDocs

WorkMail

Migration

AWS Migration Hub

Application Discovery Service

Relational Database Service

Database Migration Service

Server Migration Service

Snowball

Media Services

Elastic Transcoder

Kinesis Video Streams

MediaLive

MediaConvert

MediaPackage

Security, Identity & Compliance

IAM

Cognito

GuardDuty

Inspector

Amazon Macie IX

Desktop & App Streaming

WorkSpaces

AppStream 2.0

AWS используют

- крупный бизнес: Siemens, General Electric
- сервисы: Airbnb, Netflix, Spotify
- правительства: NASA, ESA

ДЛЯ

- интернет-сервисов
- HPC^(High Performance Computing) и анализа данных
- резервного копирования и др.

production

R&D

что будем изучать мы

Часть 1

Начнем с простого: один сервер в AWS

Что сделаем?

- запустим сервер (EC2 instance);
- настроим доступ (security groups);
- создадим блочное хранилище (EBS);
- установим и настроим ПО (Jupyter);
- создадим образ виртуальной машины (АМІ);
- создадим ключи доступа для AWS CLI и boto.

Для каких задач?

- индивидуальное использование;
- небольшие проекты по машинному обучению (размер данных до 1Тб);
- соревнования на Kaggle.

Запускаем EC2 сервер (в консоли AWS)

- создаем ssh-ключ (NETWORK AND SECURITY → Key Pairs → Create Key Pair)
- выбираем образ (INSTANCES → Instances → Launch Instance)
- Hactpaubaem запуск (INSTANCES → Instances → Launch Instance)
- подключаемся по ssh (INSTANCES → Instances → Launch Instance)

Настраиваем EC2 сервер (по ssh)

- устанавливаем пакеты Python;
- запускаем Jupyter;
- проверяем;
- создаем конфигурацию Jupyter:
 - → доступ по https с паролем
 - → настройка Jupyter

Настраиваем Jupyter

- создаем пароль;
- создаем файл конфигурации;
- базовые параметры;
- доступ по https;
- директория с ноутбуками;
- добавляем systemd сервис для Jupyter.

Создаем EBS диск

- в консоли AWS создаем диск на 100Gb;
- подключаем диск к нашему инстансу;
- создаем файловую систему;
- монтируем диск;
- создаем запись в /etc/fstab;
- создаем образ инстанса.

Финальный штрих

- создаем ключи доступа;
- понадобятся для AWS CLI и boto.
- My Security Credentials → Access keys (access key ID and secret access key) → Create New Access Key.

Что у нас теперь есть

- образ машины легко запускать;
- диск не нужно каждый раз копировать данные;
- базовые настройки: security group, ключ ssh и ключи доступа к AWS.

Что можно было бы добавить

- установка CUDA для tensorflow;
- упростить запуск с помощью AWS CLI.

Часть 2

Усложняем:

конфигурации посложнее и немного автоматизации

Что не так с нашим сервером?

- непонятно, как копировать данные на инстанс;
- запускаем вручную;
- а стоит ли даже с https и паролем светить Jupyter всему миру?
- данные на EBS диске доступны только одному инстансу.

Копируем данные

- проще всего с scp;
- на инстанс:

```
$ scp -i <ssh_key_pem_file> <local_file>\
ubuntu@<instance_public_ip>:<location>
```

- с инстанса:

```
$ scp -i <ssh_key_pem_file> ubuntu@<instance_public_ip>:<location>\
<local_file>
```

Запускаем с AWS CLI

- нужно установить awscli:

```
$ sudo pip install awscli
```

- запускаем:

```
$ aws configure
$ aws ec2 run-instances\
    --count 1 --image-id <ami-id>\
    --instance-type t2.micro\
    --key-name <key_name>\
    --security-group-ids <security_group_id>\
    --subnet-id <subnet id>
```

Запускаем Jupyter еще безопасней

– port forwarding для ssh:

```
$ ssh -i <ssh_key_pem_file> -N -L
<local_port>:localhost:<remote_port> ubuntu@<instance_public_ip>
```

- можно убрать пароль и https.

Объектное хранилище S3^(Simple Storage Service)

- масштабируемое;
- надежное;
- поддерживает шифрование;
- интегрировано с другими сервисами AWS;
- объекты хранятся в бакетах (buckets);
- возможно версионирование.

Объектное хранилище S3^(Simple Storage Service)

- создадим бакет с помощью консоли AWS;
- и с помощью AWS CLI:

```
$ aws s3 mb s3://<bucket_name>
$ aws s3 cp <filename> s3://<bucket_name>
$ aws s3 ls s3://<bucket_name>
```

Другие сервисы для хранения данных

- RDS Relational Database Service;
- EFS Elastic File System (расширяемая NFS);
- Glacier для редко используемых объектов;
- другие: Aurora, RedShift, etc

Хранение данных: NFS vs EFS

один сервер

много серверов + NFS

много серверов + EFS

Что у нас теперь есть

- пользуемся AWS CLI;
- знаем, что есть разные возможности для хранения данных;
- знаем, как работать с S3.

Что можно было бы добавить

- развернуть tensorflow и tensorboard;
- использовать **boto** вместо AWS CLI (удобнее автоматизировать).

Часть 3

Упрощаем:

готовые сервисы для машинного обучения

Делать ли все вручную?

- многие реальные задачи можно решить, комбинируя более простые решения;
- многие задачи уже решены, незачем изобретать велосипед: face recognition, text recognition, etc;
- трудозатраты отличаются не в разы, а на порядки.

Сервисы AWS для ML

- Rekognition: анализ изображений и видео;
- Comprehend: анализ текста;
- Transcribe: распознавание речи;
- SageMaker и другие: упрощают работу data scientist'a.

AWS Rekognition

- доступен по простому API;
- powered by deep learning ©;
- умеет: распознавать объекты, людей, текст и др.;
- может работать с изображениями и видео.

AWS Rekognition

- может работать с напрямую с изображениями или с изображениями, хранящимися на S3;
- попробуем:
 - \$ aws s3 cp <filename.jpg> s3://<bucket_name>
 \$ aws rekognition detect-faces\
 --image "S3Object={Bucket=<bucket_name>,Name=<image_name>}"
- попробовать самостоятельно: то же самое с boto, визуализировать распознанные landmarks.

AWS Comprehend

- распознавание тональности, языка, entities;
- попробуем:

```
$ aws comprehend detect-entities --text "Some funny English text about AWS, deep learning and tensorflow." --language-code en
```

Что у нас теперь есть

- знаем, какие есть готовые сервисы;
- не будем мастерить велосипед (ладно, будем, но только для самообразования!

Что дальше?

- исследовать;
- учиться строить инфраструктуру для своих задач из готовых блоков;
- стараться минимизировать затраты на решение задач, которые уже решены.

Что почитать?

- документация наш друг;
- Amazon Web Services in Action by Michael Wittig and Andreas Wittig;
- экспериментировать: например, создайте чат-бота, который может распознавать лица или текст, с EC2, S3, Lambda и Recognition (think big, start small).

Спасибо за внимание!

ГЛЕБ ИВАШКЕВИЧ