Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module			Beam Coverplate Connection	
MainMo	odule			Moment Connection
Moment(kNm)*			5.0	
Shear (kN)*			62.0
Axial (l	(N) *			151.0
		Section	•	
	Beam S	ection *		MB 450
т У	Prefe	rences		Outside + Inside
	Mate	erial *		E 250 (Fe 410 W)A
	Ultimate stren	ngth, fu (MPa)		410
<u>(B−t)</u> t	Yield Strength , fy (MPa)	250	R1(mm)	15.0
R ₁	Mass	72.4	R2(mm)	7.5
R ₂	Area(mm2) -	9220.0	Iz(mm4)	303580000.0
ļ	D(mm)	450.0	Iy(mm4)	8070000.0
	B(mm)	150.0	rz(mm)	181.0
	t(mm)	9.4	ry(mm)	30.0
	T(mm)	17.4	Zz(mm3)	1349300.0
	FlangeSlope	98	Zy(mm3)	108000.0
		Bolt Details		
Diameter	` /		[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]	
Grade	e *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*		Friction Grip Bolt	
Bolt hole	e type			Standard
Slip factor	r (µ_f)		0.3	
Type of	edges		a - Sheared or hand flame cut	
Gap between beam and	 support (mm)		10.0
Are the members exposed to	 br>corrosive	influences		False

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{9220.0 * 250}{1.1 * 10^3}$ $= 2095.45$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{415.2 * 9.4 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 512.12$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 405118.94 * 250}{1.1 * 10^6}$ $= 92.07$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 1349300.0 * 250}{1.1 * 10^6}$ $= 459.99$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(92.07, 459.99)$ = 92.07	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ $= 0.3 * 2095.45$ $= 628.64$ $Ac_{max} = Ac$ $= 2095.45$	$A_u = 628.64$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 512.12 = 307.27 $Vc_{max} = Sc$ = 512.12	$V_u = 307.27$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 92.07 = 46.04 $Mc_{max} = Mc$ = 92.07	$M_u = 46.04$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(450.0 - 2 * 17.4) * 9.4 * 628.64}{9220.0}$ $= 266.11 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{405118.94 * 46.04}{1551600.0}$ $= 12.02 \ kNm$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{628.64 * 150.0 * 17.4}{9220.0}$ $= 177.95 \ kN$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 46.04 - 12.02$ $= 34.02 \ kNm$ $F_f = flange \ force$ $= \frac{M_f * 10^3}{D - T} + A_f$ $= \frac{34.02 * 10^3}{450.0 - 17.4} + 177.95$ $= 256.59 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 256.59$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 150.0 * 17.4 * 250}{1.1}$ $= 593.18$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 266.11$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 415.2 * 9.4 * 250}{1.1}$ $= 887$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 150.0	Pass
flange_plate.InnerHeight	Inner.b >= 50	$inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{150.0 - 9.4 - (2 * 15.0)}{2}$ $= 55.3$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 8.7	$t_f = 12.0$	Pass
Plate Area check (mm2)	$pt.area>=$ $connected\ member\ area*1.05$ $=2740.5$	$outer.b = B$ $= 150.0$ $inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{150.0 - 9.4 - (2 * 15.0)}{2}$ $= 55.3$ $pt.area = (150.0 + (2 * 55.3)) * 12.0$ $= 3127.2$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	t = 4.7	$t_w = 6.0$	Pass
Plate Area check (mm2)	$pt.area >=$ $connected\ member\ area * 1.05$ $= 3604.52$	$web \ b = D - (2*T) - (2*r_1)$ $= 450.0 - (2*17.4) - (2*15.0)$ $= 365.2$ $pt.area = 6.0*2*365.2$ $= 4382.4$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 30 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (2.0 - 1) * 30$ $= 80.0$	365.2	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 0.0 (Row Limit (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (1.0 - 1) * 30$ $= 50.0$	55.3	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.9 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 12.0	
Grade	Bolt Grade Optimisation	12.9	
Bolt.fu		1200.0	
Bolt.fy		1080.0	
Hole Diameter (mm)		$d_0 = 13.0$	
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 1200.0 * 0.0}{1.25}$ $= 33.99$)
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 256.59^{2}}}{33.99}$ $= 16$	16	
No of Columns		$n_c = 8$	
No of Rows		$n_r = 2$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 300) 30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 300	0.0	N/A
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *12.0 * \sqrt{\frac{250}{250}}$ $= 144.0$	25	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	27.65	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *12.0 * \sqrt{\frac{250}{250}}$ $= 144.0$	27.65	Pass
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{8}{2} - 1) * 30 + 25) + 10.0$ $= 240.0$ $lr = 2 * ((\frac{2}{2} - 1) * 0.0 + 27.65$ $+ 15.0) + 9.4 = 94.7$ $l = 240.0$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 240.0/(200 * 12.0)$ $= 0.98$ $V_{rd} = 0.98 * 33.99 = 33.31$	
Capacity (kN)	32.07	33.31	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Bolt Checks

Check	Required	Provided	Remarks
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 1200.0 * 84}{1.25}$ $= 33.99$.3
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{307.27^{2} + 266.11^{2}}}{33.99}$ $= 24$	60	
No of Columns		$n_c = 6$	
No of Rows		$n_r = 10$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.0, \ 300 \ mm)$ = 192.0	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.0, \ 300 \ mm)$ = 192.0	30	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{250}}$ $= 72.0$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{250}}$ $= 72.0$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
	-	$l_n = length \ available$	
		$l_n = (n_r - 1) * g$	
		=(10-1)*30	
		= 270	
		$y_{max} = l_n/2$	
Parameters required for		= 270/2	
bolt force (mm)		= 135.0	
		$x_{max} = p * (\frac{n_c}{2} - 1)/2$	
		$= 30 * (\frac{6}{2} + -1)/2$	
		= 30.0	
		$M_d = (V_u * ecc + M_w)$	
Moment Demand (kNm		$=\frac{(307.27*10^3*75.0+12.02*1)}{10^6}$	$0^{6})$
		$= 35.07$ $vbv = V_u/(n_r * n_c)$	
		$=\frac{307.27}{(10*6)}$	
		= 10.24	
		$tmh = \frac{M_d * y_{max}}{\sum r_i^2}$	
		· ·	
		$=\frac{35.07*135.0}{240.75}$	
		= 19.66	
		$tmv = \frac{M_d * x_{max}}{\sum r_i^2}$	
Bolt.Force		$=\frac{35.07*30.0}{240.75}$	
		= 4.37	
		$abh = \frac{A_u}{(n_r * n_c)}$	
		266 11	
		$=\frac{26011}{(10*6)}$	
		= 8.87	
		$vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$	
		$= \sqrt{(10.24 + 4.37)^2 + (19.66 + 4.37)^2 + (19.66 + 4.37)^2 + (19.66 + 4.37)^2}$	$8.87)^2$
		= 32.06	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{6}{2} - 1) * 30 + 25) + 10.0$ $= 180.0$ $lr = (10 - 1) * 30 = 270$ $l = 270$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 270/(200 * 12.0)$ $= 0.96$ $V_{rd} = 0.96 * 33.99 = 32.63$	
Capacity (kN)	32.06	32.63	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Inner and Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$min\ flange\ plate\ ht = beam\ width$ $= 150.0$	150.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{8}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 278.4$	290.0	Pass
Min. Inner Plate Height (mm)	$= 278.4$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{150.0 - 9.4 - 2 * 15.0}{2}$ $= 55.3$	55.3	Pass
Max. Inner Plate Height (mm)	$= 55.3$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{150.0 - 9.4 - 2 * 15.0}{2}$ $= 55.3$	55.3	Pass
Min. Inner Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{8}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 278.4$	290.0	Pass
Min.Plate Thickness (mm)	$t_w = 8.7$	12.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.12 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Flange Tension Yielding		$=\frac{1*150.0*17.4*250}{1.1}$	
Capacity (kN)			
		= 593.18	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Elanga Tanaian Duntuna		7/m1 0.0 to (150.0 - 2 to 12.0) to 17.4 to	410
Flange Tension Rupture Capacity (kN)		$= \frac{0.9 * (150.0 - 2 * 13.0) * 17.4 *}{1.25}$	410
Capacity (kiv)		= 636.92	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Flange Block Shear Ca-		$0.9 * A_{vv} f_{v} A_{ta} f_{v}$	
pacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 630.9$ $T_{d} = min(T_{dq}, T_{dn}, T_{db})$	
Flange Tension Capacity	$f_f = 256.59$	= min(593.18, 636.92, 630.9)	Pass
(kN)	ff = 200.03		1 655
()		= 593.18 $l * t * f$	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
Web Tension Yielding Ca-		1*415.2*9.4*250	
pacity (kN)		$=\frac{1*415.2*9.4*250}{1.1}$	
		= 887.02	
		$= 887.02$ $T_{dn} = \frac{0.9 * A_n * f_u}{2}$	
		/m1	
Web Tension Rupture Ca-		$= \frac{0.9 * (415.2 - 10 * 13.0) * 9.4 *}{1.25}$	410
pacity (kN)		1.25	
		= 791.4	
		$= 791.4$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
		$\sqrt{3\gamma_{m0}}$ γ_{m1}	
Web Block Shear Capac-		$T_{db2} = rac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + rac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)		1	
		$T_{db} = min(T_{db1}, T_{db2}) = 703.61$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 266.11$	= min(887.02, 791.4, 703.61)	Pass
(kN)		=703.61	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Flange Plate Capacity Checks in axial-Outside/Inside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 260.6 * 12.0 * 250}{1.1}$ $= 710.73$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (260.6 - 2 * 13.0) * 12.0 *}{1.25}$ $= 831.05$	410
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 977.66$	
Plate Tension Capacity (kN)	$f_f = 256.59$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(710.73, 831.05, 977.66)$ $= 710.73$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 320 * 6.0 * 250}{1.1}$ $= 503.87$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (320 - 10 * 13.0) * 6.0 * 1}{1.25}$ $= 673.06$	200.0
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 898.23$	
Plate Tension Capacity (kN)	$A_w = 266.11$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(872.73, 673.06, 898.23)$ $= 673.06$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.15 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
Shear yielding Capacity		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}} $ $1 * 320 * 6.0 * 250$	
(V_dy) (kN)		$= \frac{1 * 320 * 6.0 * 250}{\sqrt{3} * 1.1}$ $= 503.87$	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$	
Shear Rupture Capacity (V_dn) (kN)		$= \frac{0.9 * (320 - (3.0 * 13.0)) * 6.0 *}{\sqrt{3} * 1.25}$	410
		$= 388.59$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 582.57$ $V_d = min(V_{du}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	$V_u = 307.27$	= min(503.87, 388.59, 898.23) $= 388.59$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View