Using Refracting Radio Waves to Characterize Inversions

Shannon Mellin

Advisor Peter Conwell PhD (KG7VKJ)

Hypothesis

- The angle at which a signal refracts (bends) as it passes through the inversion layer, can determine the bulk properties that make up the pollution
- The degree of bending is related to the index of refraction of the medium

Image credit: New York Times "Nature Lovers' Paradise"

Introduction

- 1940s radio operators noted very enhanced range of high frequency radio signals when transmitting through an atmospheric inversion
- It was suspected that the inversion layer had a significantly different index of refraction than the clear layer above
 - This caused the signal to continually bounce from the earth to the top of the inversion layer
- No quantitative research has been done on this

Big Picture

Antenna Orientation and Signal Quality

- Highly directional antennas
- The amount the beam bends relates to the index of refraction
- Determining that bending angle requires knowing the angle of the antennas
- The signal quality will be greatest when the beam and the antenna are aligned
- I worked on a method to help determine thesignal quality

My Part

 Build a crude artificial ear to couple with a neural network that will determine the quality/strength of the received signal

Artificial Ear

- I made a filter bank consisting of three filters
- They listen for three different frequencies (pitches) within the range of human hearing
 - 50Hz
 - 500Hz
 - 5,000Hz

Process

- 1. Design
- 2. Simulation bug fixes
- 3. Bread Board simulation vs reality
- 4. Circuit Boards

Design Parameters

- Designed three bandpass
 filters (a bandpass filter
 allows signals of specific
 frequencies to pass, and
 discriminates against signals
 at other frequencies)
- Powered with a single 0 to 12 volt supply

Texas Industries 'A Single-Supply Op-Amp Circuit Collection'

Simulations with Multisim

First Bread Board Design

Final Bread Board Design

- Highly simplified
- No amplifier Required!
- Different resistors
- Potentiometer

Circuit Boards

- Shockingly it worked on my first try!
- My favorite part of the process

Filter Bank

Final Look

Performance

Future Work

- Develop a neural network using AI that can determine signal quality
- Make a sound generator to be heard by the pseudo ear
- Develop means to measure antenna orientation
- Field testing: baseline controls, reading refraction measurements and gathering data
- Secondary methods for comparison data

Long Term Goal

- Making a model that shows the relation of the index of refraction to atmospheric pollutants
- With this information we could determine what harmful chemicals are in the air

Bibliography

- Texas Instruments App Report: Single-Supply Op amp Design Techniques
- Kerr, D. E. (Ed.). (1951). Propagation of short radio waves (1st ed., Radiation Lab Series). New York: McGraw Hill. Print
- Hecht, Eugene. Optics. Harlow: Pearson Education Limited, 2014. Print.
- Silver, H. W. (Ed.). (2015). The ARRL handbook for radio communications: the comprehensive RF engineering reference. Newington, CT: American Radio Relay League.

Acknowledgements

- My advisor Peter Conwell
- The Gore Math and Science Endowment