

1.0MM PITCH DDR2 22.5 DEGREES THRU-HOLE SOCKET

(SERIES #: 87916)

Multi-Line Model Documentation

ALL DATA CONTAINED IN THIS REPORT IS **SIMULATED**. THE ACTUAL PERFORMANCE OF THE FINAL PRODUCT MAY DIFFER FROM THE INFORMATION STATED IN THIS REPORT.

HSPICE MODEL OF THE CONNECTOR; GENERATED FROM S-PARAMETER MODEL, WAS USED IN GENERATING ALL DATA REFLECTED IN THIS REPORT.

ALL EVALUATION OF THE MODEL SHOULD BE CONDUCTED AT 200ps RISETIME [10%~90%] OR SLOWER.

THE CONNECTOR MODEL IN THIS REPORT REPRESENTS A "PRODUCTION" QUALITY DESIGN WITH MOTHER BOARD AND MODULE CARD EFFECTS.

ALL INFORMATION IN THIS REPORT IS CONSIDERED MOLEX PROPRIETARY AND CONFIDENTIAL.

Table of Contents

OBJECTIVE	4
CONCLUSIONS	4
TEST SUMMARY OF HIGH SPEED ELECTRICAL PERFORMANCE	4
DISCUSSION	5
Model Information	5
HSPICE MODEL NODE MAP	6
CONNECTOR MODEL	7
SIMULATION SETUP	8
TIME DOMAIN RESULTS	9
TIME DOMAIN CHARTS	9
Table of Images and Figures	
Figure 1: 3D connector model used for SPICE extraction	7
Figure 2: Connector footprint	7
Figure 3: TDT simulation setup	8
Figure 4: TDR impedance simulation setup	8
Figure 5: Multi-line crosstalk simulation setup	9
Chart 1: Propagation delay response of Pin 21 at 300ps risetime [10%~90%]	9
Chart 2: Propagation delay response of Pin 22 at 300ps risetime [10%~90%]	10
Chart 3: Propagation delay response of Pin 140 at 300ps risetime [10%~90%]	10
Chart 4: Propagation delay response of Pin 141 at 300ps risetime [10%~90%]	11
Chart 5: Propagation delay response of Pin 21 at 500ps risetime [10%~90%]	11
Chart 6: Propagation delay response of Pin 22 at 500ps risetime [10%~90%]	12
Chart 7: Propagation delay response of Pin 140 at 500ps risetime [10%~90%]	12
Chart 8: Propagation delay response of Pin 141 at 500ps risetime [10%~90%]	13
Chart 9: TDR impedance of pin 21	13
Chart 10: TDR impedance of pin 22	14
Chart 11: TDR impedance of pin 140	14
Chart 12: TDR impedance of pin 141	15
Chart 13: Multi-line crosstalk performance of lower row at 300ps risetime [10%~90%]	15
Chart 14: Multi-line crosstalk performance of lower row at 500ps risetime [10%~90%]	16
Chart 15: Multi-line crosstalk performance of upper row at 300ps risetime [10%~90%]	16
Chart 16: Multi-line crosstalk performance of upper row at 500ps risetime [10%~90%]	17

Revisions

Tested / Written by : <u>C.M. WONG</u>

Reviewed by : <u>A. CHEAH</u>

Date : <u>02 October 2006</u>

Date : <u>02 October 2006</u>

Revision # : <u>1.0</u> Project # : <u>p0702</u>

Objective

Document the high-speed electrical characteristics of 1.0 mm pitch DDR2 22.5 degrees thru-hole socket for:

- Time Domain Transmission (TDT)
 - □ Propagation delay
- Time Domain Reflectometry (TDR)
- Multi-line crosstalk

Conclusions

At stipulated risetime of 500ps and slower, TDR impedance of the mated interconnect system falls within $50\Omega \pm 10\%$, and multi-line crosstalk values are expected to stay within 10%.

Test summary of high speed electrical performance

Time domain parameter	Designated risetime [10%~90%]	Row	Connector pin no.	Simulated results		Unit
	300ps	Lower	21	101.8		
			22	96.0		
		Upper	140	118.6		
Propagation delay			141	133.6		
[10%~10%]	500ps	Lower	21	103	3.1	ps
			22	96.8		
		Upper	140	120.8		
			141	136.3		
				Min.	Max.	
	300ps	Lower	21	48.8	50.5	
TDR impedance (Z _o)			22	48.5 (nominal)		
		Upper	140	48.8	52.6	
			141	48.9	56.2	Ω
	500ps -	Lower	21	49.3 (nominal)		
			22	49.1 (n	49.1 (nominal)	
		Upper	140	49.6	51.0	
			141	49.6	53.1	

Time domain pa	Time domain parameter		Row	Connector pin no.	Simulated results	Unit
		300ps	Lower	22	2.5	
	NEXT		Upper	141	16.3	
Multi lino	Multi-line crosstalk	500pg	Lower	22	1.6	
		500ps	Upper	141	10.6	%
(7 driven lines, 1 victim line)		20000	Lower	22	-2.0	70
FEXT	300ps	Upper	141	-10.1		
	500no	Lower	22	-1.3		
		500ps	Upper	141	-6.6	

Notes:

- All analytical tests were performed in a single ended 50Ω environment.
- All data were obtained using Piecewise Linear Source with designated risetimes of 300ps and 500ps [10%~90%].
- Signal-to-ground ratio is 2:1.
- Connector pin numbers with reference to Figure 1.

Discussion

Model Information

Molex Series Name :	1.0mm pitch DDR2 22.5 degrees thru-hole socket
HSPICE Model Filename :	mlm87916_int_revA.sp
Terminal Material :	Copper alloy
Housing Material :	High temperature thermoplastic, UL 94V-0
Modeled Pin Fields :	2 rows x 14 columns pin matrix for each model
Motherboard and Module Card Material :	FR4
Motherboard Stack Up :	Ground plane thickness = 0.03302mm PCB stack height = 0.254mm (10 mils)
Module Card Stack Up :	Ground plane thickness = 0.03302mm PCB stack height = 0.1mm (4 mils) Module pad size = 2.34mm x 0.80mm

HSPICE model node map

	Model Input		Model Output			
Connector Pin	Node Number	Pin Name	Node Number	Pin Name		
16						
17	1	Commoned within model				
18	1	LPort1	17	LPort17		
19	2	LPort2	18	LPort18		
20	Commoned within model					
21	3	LPort3	19	LPort19		
22	4	LPort4	20	LPort20		
23		Commoned	within model			
24	5	LPort5	21	LPort21		
25	6	LPort6	22	LPort22		
26	Commoned within model					
27	7	LPort7	23	LPort23		
28	8	LPort8	24	LPort24		
29	Commoned within model					
136		Commoned	within model			
137	9	LPort9	25	LPort25		
138	10	LPort10	26	LPort26		
139	Commoned within model					
140	11	LPort11	27	LPort27		
141	12	LPort12	28	LPort28		
142	Commoned within model					
143	13	LPort13	29	LPort29		
144	14	LPort14	30	LPort30		
145	Commoned within model					
146	15	LPort15	31	LPort31		
147	16	LPort16	32	LPort32		
148	Commoned within model					
149						

Notes:

- The signal configuration of the above model is GS⁺S⁻.
- All unused nodes are to be terminated with 50Ω resistors and returned to ground. Leaving the pins either open circuited or shorted to ground can result in simulation convergence issues.

Connector model

Figure 1: 3D connector model used for SPICE extraction

Figure 2: Connector footprint

Simulation setup

Figure 3: TDT simulation setup

Figure 4: TDR impedance simulation setup

Figure 5: Multi-line crosstalk simulation setup

Time domain results

The overall high-speed electrical performance of the mated connector has been observed to improve with a slower risetime.

Due to the geometry of the connector, lower row of the connector has shorter pins than the upper row. This could be the main reason for the better high-speed performance. Compensation introduced within the system could help to further enhance the high-speed electrical performance of the interconnect solution.

Time domain charts

Propagation delay charts

Chart 1: Propagation delay response of Pin 21 at 300ps risetime [10%~90%]

Chart 2: Propagation delay response of Pin 22 at 300ps risetime [10%~90%]

Chart 3: Propagation delay response of Pin 140 at 300ps risetime [10%~90%]

Chart 4: Propagation delay response of Pin 141 at 300ps risetime [10%~90%]

Chart 5: Propagation delay response of Pin 21 at 500ps risetime [10%~90%]

Chart 6: Propagation delay response of Pin 22 at 500ps risetime [10%~90%]

Chart 7: Propagation delay response of Pin 140 at 500ps risetime [10%~90%]

Chart 8: Propagation delay response of Pin 141 at 500ps risetime [10%~90%]

TDR impedance charts

Chart 9: TDR impedance of pin 21

Chart 10: TDR impedance of pin 22

Chart 11: TDR impedance of pin 140

Chart 12: TDR impedance of pin 141

Multi-line crosstalk chart

Chart 13: Multi-line crosstalk performance of lower row at 300ps risetime [10%~90%]

Chart 14: Multi-line crosstalk performance of lower row at 500ps risetime [10%~90%]

Chart 15: Multi-line crosstalk performance of upper row at 300ps risetime [10%~90%]

Chart 16: Multi-line crosstalk performance of upper row at 500ps risetime [10%~90%]