A 16Gb 27Gb/s/pin T-coil based GDDR6 DRAM with Merged-MUX TX, Optimized WCK Operation, and Alternative-Data-Bus

<u>Daewoong Lee</u>, Hye-Jung Kwon, Daehyun Kwon, Jaehyeok Baek, Chulhee Cho, Sanghoon Kim, Donggun An, Chulsoon Chang, Unhak Lim, Jiyeon Im, Wonju Sung, Hye-Ran Kim, Sun-Young Park, HyoungJoo Kim, Hoseok Seol, Juhwan Kim, Jungbum Shin, Kil-Young Kang, Yong-Hun Kim, Sooyoung Kim, Wansoo Park, Seok-Jung Kim, Chanyong Lee, Seungseob Lee, TaeHoon Park, ChiSung Oh, Hyodong Ban, Hyungjong Ko, Hoyoung Song, Tae-Young Oh, SangJoon Hwang, Kyung Suk Oh, JungHwan Choi, Jooyoung Lee

Samsung Electronics, Korea

Self Introduction

- First author (speaker): Daewoong Lee
- Education
 - B.S. in EE from KAIST, Korea in 2013
 - M.S. in EE from KAIST, Korea in 2015
 - Ph.D. in EE from KAIST, Korea in 2019

- Working at Samsung Electronics (2019.09 ~)
- **■** Interest
 - High-speed wireline interfaces
 - High-performance DRAM

Outline

- **■** Introduction of GDDR6
- Key schemes
 - T-coil based GDDR6
 - Merged-MUX transmitter
 - WCK optimization
 - ZQ calibration
 - Alternative data bus
- Implementation and measurements
- **■** Conclusion

Outline

- **■** Introduction of GDDR6
- Key schemes
 - T-coil based GDDR6
 - Merged-MUX transmitter
 - WCK optimization
 - ZQ calibration
 - Alternative data bus
- Implementation and measurements
- Conclusion

GDDR application

Higher speed and higher density

GDDR trend

Higher speed and higher density

→ Achieves 27Gb/s/pin by improving IO & data bus (How?)

Outline

- Introduction of GDDR6
- Key schemes
 - T-coil based GDDR6
 - Merged-MUX transmitter
 - WCK optimization
 - ZQ calibration
 - Alternative data bus
- Implementation and measurements
- Conclusion

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- WCK optimization
 - Quad-skew adjustment & wide freq. operation
- **■** ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- WCK optimization
 - Quad-skew adjustment & wide freq. operation
- ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

T-coil based GDDR6

*Rs: Sheet resistance

**RDL: Redistribution layer

- T-coil enhances I/O BW consuming no power
 - Only a few metal layers in DRAM process
 - *Rs of **RDL: 0.1 X Rs of nearest lower layer

- T-coil design: RDL based T-coil layer (single layer)
 - Optimum thickness & width for T-coil design are supported

T-coil based GDDR6

■ To improve BW of both RX and TX

- Considering C_{TX}, C_{ESD}+C_{RX}
 - Inductance (RDL length): L1 < L2
 → Asymmetric T-coil

Area efficient T-coil design

Rectangular aspect ratio, rather than square for power net

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- WCK optimization
 - Quad-skew adjustment & wide freq. operation
- ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

ZQ-coded transmitter [ISSCC'18]

- Full-rate path: 2 stages (4:1+Out drv.)
 - → ISI & PSIJ improvement ©

- Scattered 4:1 MUXs
 - ✓ WCK2 metal loading ⊗
- Skew among multiple 4:1 MUXs
 - ✓ Degraded SI of *DOUT* ⊗
- ZQ code logic gates (NOR/NAND)
 - ✓ Power & area ⊗

Proposed Merged-MUX transmitter

■ Full-rate path: 2 stages (4:1+Out drv.)

- Merged 4:1 MUX
 - ✓ WCK2 metal loading ②
- No skew by merged 4:1 MUX
 - ✓ Improved SI of DOUT
- No ZQ code logic gate
 - ✓ Power & area ☺

Transmitter comparison

Better performance on Merged-MUX transmitter

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- **■** WCK optimization
 - Quad-skew adjustment & wide freq. operation
- ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

Quad-skew training

Controllable max T_{qskew}: 3ps (8.1% of 1UI for 27Gbps)

Dual-mode frequency divider

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- WCK optimization
 - Quad-skew adjustment & wide freq. operation
- ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

ZQ calibration

Conventional

●Loop1

✓ Obtain pull-up codes

●Loop2

✓ Obtain pull-down codes

ZQ calibration considering T-coil

Three T-coils in calibration

●Loop1

✓ Obtain pull-up codes

●Loop2

✓ Obtain pull-down codes considering T-coil

●Loop3

✓ Obtain pull-up codes considering T-coil

ZQ calibration considering T-coil

Proposed (One T-coil in cal.): area reduction

- ●Loop1
 - ✓ Obtain pull-up codes

- ●Loop2
 - ✓ Obtain pull-down codes considering T-coil
- ●Loop3
 - ✓ Obtain pull-up codes considering T-coil

- T-coil based GDDR6
 - T-coil design in DRAM process
- Merged-MUX transmitter
 - Improve ISI & PSIJ
- WCK optimization
 - Quad-skew adjustment & wide freq. operation
- ZQ calibration
 - T-coil impact consideration
- Alternative data bus
 - Increase data window of G-BUS by x2

Alternative data bus

- G-bus: frequency limit
- Two G-BUSes
 - ✓ EVEN&ODD
- Increase data window of G-BUS by 2x
 - ✓ Achieve high BW (27Gbps)

Outline

- Introduction of GDDR6
- Key schemes
 - T-coil based GDDR6
 - Merged-MUX transmitter
 - WCK optimization
 - ZQ calibration
 - Alternative data bus
- Implementation and measurements
- Conclusion

Chip implementation

27Gb/s/pin
1z nm CMOS
Supply voltage: 1.35V
16 Bank/1-CH
8 Gb/1-CH
X16 IO/1-CH
36.3mm ² /1-CH

Measurements

- PASS Frequency-voltage shmoo
 - ✓ 27Gb/s @ 1.35V

- Error detection code (EDC) pin
 - √ 27Gb/s (1UI=37ps)
 - √ 0101 pattern, 1.35V

Outline

- Introduction of GDDR6
- Key schemes
 - T-coil based GDDR6
 - Merged-MUX transmitter
 - WCK optimization
 - ZQ calibration
 - Alternative data bus
- Implementation and measurements
- **■** Conclusion

Conclusion

■ 27Gb/s/pin 16Gb GDDR6 DRAM is implemented

■ I/O Bandwidth improvement

- T-coil for the first time in DRAM process
- Merged-MUX transmitter
- Quad-skew training & dual-mode divider

Alternative data bus

Increase data window of G-BUS by x2