# 1 Medición de capacitores



Figura 1: Puente con Impedancias genericas

Se diseñó un puente que permita medir capacitores, en un rango de capacidad  $C \in [10nF, 100nF]$  y en un rango de factor de disipación  $D \in [0.015, 0.09]$ , para una frecuencia de 10KHz.

Partiendo del puente de la figura 1, donde  $V_d=\frac{Z_3}{Z_1+Z_3}-\frac{Z_4}{Z_4+Z_2}$ , en el equilibrio  $Z_1Z_4=Z_2Z_3$ . Reemplazando  $Z_1=R_1+\frac{1}{SC_1},~Z_2=R_x+\frac{1}{SC_x},~Z_3=R_3$  y  $Z_4=R_4$ . En el equilibrio se cumple que  $C_x=\frac{C_1R_3}{R_4},~R_x=\frac{R_1R_4}{R_3}$  y  $D_x=2\pi fC_1R_1$ .

### 1.1 Elección de componentes

Fijando  $C_1 = 3nF$  y  $R_3 = 1K\Omega$ , y a partir de las ecuaciones  $C_x = \frac{C_1R_3}{R_4}$  y  $D_x = 2\pi f C_1R_1$ , se obtuvieron los valores de las variables de ajuste,  $R_1 \in \left[\frac{D_{min}}{2\pi f C_1R_1}, \frac{D_{max}}{2\pi f C_1R_1}\right] = [79.5\Omega, 477.46\Omega]$  y  $R_4 \in \left[\frac{C_1R_3}{C_{X_{max}}}, \frac{C_1R_3}{C_{X_{min}}}\right] = [30\Omega, 300\Omega]$ .

La resistencia  $R_1$  se implementó con una resistencia de  $68\Omega$  en serie con dos presets de  $200\Omega$  y la resistencia  $R_4$  se implementó con una resistencia de  $20\Omega$  en seire con un preset de  $200\Omega$  y otro de  $100\Omega$ .

## 1.2 Analisis de sensivilidades

#### 1.3 Calculo del error

## 1.4 Conclusión