Электрический ток

Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы.

Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-).

Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.

Электрическое напряжение

Электрическое напряжение (U) это характеристика работы сил поля по переносу электрических зарядов через внешние элементы цепи. При этом электрическая энергия преобразуется в другие виды. Единица измерения – вольт (B). За положительное направление напряжения приемника принимают направление, совпадающее с выбранным положительным направлением тока. В электрических цепях и энергетических системах напряжение может иметь значения в пределах от нескольких вольт до сотен тысяч вольт.

Электродвижущая сила

Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (го). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (R_H) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник ЭДС имеет следующие графические обозначения.

Вольтамперная характеристика источника ЭДС имеет вид:

Зависимость между напряжением на зажимах источника и его ЭДС имеет вид:

 $U = E - r_0 \times I$ (для реального источника ЭДС) U = E (для идеального источника).

Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения — Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения — сименс (См).

Электрическое сопротивление

Электрическое сопротивление проводника определяется по формуле

 $R=\rho l/S$

где

1 - длина;

S-поперечное сечение;

ρ — удельное сопротивление.

По способности проводить электрический ток электротехнические материалы можно разделить на группы: проводники, диэлектрики и полупроводники.

Проводниковые материалы

Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже.

Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы (нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используются в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах.

Электроизоляционные материалы (диэлектрики)

Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит — это диэлектрический материал основой которого является ткань, пропитанная фенолоформальдегидной смолой. Гетинакс это бумага, пропитанная фенолоформальдегидной смолой.

Полупроводники

Полупроводники по электропроводимости занимают промежуточное положение между проводниками и диэлектриками. Простые полупроводниковые вещества — германий, кремний, селен, сложные полупроводниковые материалы — арсенид галлия, фосфид галлия и др. В чистых полупроводниках концентрация носителей заряда — свободных электронов и дырок мала и эти материалы не проводят электрический ток.

Если в полупроводниковый материал ввести примесь (донорную или акцепторную), то есть произвести легирование, то полупроводник становится обладателем или электронной (п) проводимости (избыток электронов), или дырочной (р) проводимости (избыток положительных зарядов – дырок). Если соединить два полупроводника с различными видами проводимости, получим полупроводниковый прибор (диод), который используется для выпрямления переменного тока. Мощность в электрической цепи характеризует интенсивность преобразования энергии из одного вида в другой в единицу времени. Единица измерения мощности – Ватт (Вт).

Закон электромагнитной индукции

Закон электромагнитной индукции — устанавливает связь между электрическими и магнитными явлениями, был открыт в 1831 году М. Фарадеем, в 1873 году закон был обобщен и развит Д.Максвеллом:

Если магнитный поток Φ , проходящий сквозь поверхность, ограниченную некоторым контуром, изменяется во времени t, в контуре индуцируется ЭДС e, равная скорости изменения потока

$$e=-\frac{d\varPhi}{dt}$$

