STA260 Summer 2025 - Tutorial 4

July 2025

Overview:

- 1. Bias
- 2. MSE

Summary

Bias and MSE

Given a point estimator $\hat{\theta}$ for the parameter θ , the bias is calculated as $B(\hat{\theta}) = E[\hat{\theta}] - \theta$. We say a point estimator is unbiased if $E[\hat{\theta}] = \theta$.

The mean square error (MSE) of $\hat{\theta}$ is $MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + B(\hat{\theta})^2$.

Question 1

Let $X_1, X_2, \dots X_n$ denote a random sample from a distribution with the probability density

 $\text{ is the Smellest Val possible}_{f(x) = \begin{cases} e^{-(x-\mu)} & \text{if } x \geq \mu \\ 0 & \text{otherwise} \end{cases}$

Let
$$\hat{\mu} = \text{Min}(X_1, X_2, ..., X_n)$$
. Calculate the bias of $\hat{\mu}$.

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = D(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = F[\alpha] - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = E(\hat{h}) - A$$

$$\beta(\hat{h}) = E(\hat{h}) - \Theta \qquad n-1 > \beta[\hat{h}] = E(\hat{h}) - A$$

$$\beta(\hat{h}) = E(\hat{h}) - E(\hat{h}) - A$$

$$\beta(\hat{h})$$

$$= n\theta \left(\frac{(x-n)}{e} \right) - \frac{(x-n)}{n}$$

$$= (x-n) \left(\frac{(x-n)}{e} \right)$$

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 2

Let $X_1, X_2, \dots X_n$ denote a random sample from a distribution with the probability density function

$$f(x) = \begin{cases} e^{-(x-\mu)} & \text{if } x \ge \mu \\ 0 & \text{otherwise} \end{cases}$$

Calculate the mean square error of $\hat{\mu}$.

$$MSE(\hat{a}) = Var(\hat{a}) + B(\hat{a})$$

Question 3

Let $Y_1,Y_2,\ldots Y_n$ denote a random sample from a Uniform $(\theta,\theta+1)$ distribution. Consider the following estimators:

$$\hat{\theta}_1 = \bar{Y} - \frac{1}{2}$$
 $\hat{\theta}_2 = Y_{(n)} - \frac{n}{n+1}$

Which estimators are unbiased?