Nom(s): Prénom(s): Groupe:

Contrôle continu Complexité et Algorithmes

Novembre 2019

Durée: 1h30. Documents de CM/TD autorisés, calculatrices interdites. Le barème est indicatif. Dans tout l'énoncé, les complexités sont demandées sous la forme "notation de Landau", et les tableaux sont indicés à partir de 1.

Exercice 1 (Questions diverses – 4 points)

On suppose avoir deux algorithmes A_1 et A_2 . Si la taille des données est n:

- A_1 est au mieux en $\Omega(\log n)$ et au pire en $O((\log n)^2)$
- A_2 est au mieux en O(1) et au pire en $O(n \log n)$

On se donne maintenant les 2 algorithmes suivants, appelés Fromage et Dessert.

```
Algorithme Fromage
  Début
                                                                                  Algorithme Dessert
     int i:=1;
                                                                                     Début
     Tant que i<=n faire
                                                                                        int k:=1;
       Exécuter A1;
                                                                                        Tant que k<=n faire
       i := i + 2;
                                                                                          Exécuter A2;
     Fin TantQue
                                                                                          Exécuter Al;
                                                                                          k := 2 * k;
     Pour i de 1 à log(n) faire
                                                                                        Fin TantQue
       Exécuter A2;
                                                                                     Fin
   1. Quelles sont les complexités au mieux et au pire de Fromage ?
   2. Quelles sont les complexités au mieux et au pire de Dessert ?
   3. Pourquoi les problèmes NP-complets sont-ils dans NP?
   4. Soit Pb<sub>1</sub> et Pb<sub>2</sub> deux problèmes de décision, et supposons que l'on a démontré Pb<sub>1</sub> \geq_PPb<sub>2</sub> (c'est-à-dire que Pb<sub>1</sub> se réduit
      polynomialement en Pb<sub>2</sub>). Si Pb<sub>2</sub> est dans P, que dire de Pb<sub>1</sub> ? Pourquoi ?
```

Exercice 2 (Calcul de la plus grande somme – 8 points)

On se donne un tableau T, contenant n entiers, strictement positifs ou strictement négatifs (0 n'appartient donc pas à T). On supposera que T contient au moins un entier positif et un entier négatif.

Le problème MAX-SOMME qu'on se pose est le suivant: trouver la valeur de $S_{i,j}$ la plus grande dans le tableau, sachant que $S_{i,j} = \sum_{k=i}^{j} T[k]$ est la somme des éléments consécutifs de T compris entre T[i] et T[j] (T[i] et T[j] inclus).

Par exemple, si $T = [2, -3, \underline{15, 7, -8, 11}, -22, 14, 6]$, alors $S_{3,6} = 25$ est la plus grande somme (elle correspond à la partie soulignée).

Dans cet exercice, on cherche à définir un algorithme qui prend en entrée le tableau T et qui résout MAX-SOMME en renvoyant la somme maximale recherchée. On supposera que le tableau T d'entiers qui satisfait aux conditions du problème est représenté par le type tab-entiers, et qu'il contient n valeurs.

On affirme que MAX-SOMME est dans P, et plus précisément qu'il existe un algorithme, que l'on appellera max-somme1, dont la complexité au pire est polynomiale.

1. Écrire en pseudo-code l'algorithme max-somme1.	
2. Montrer que max-somme1 est correct, et donner, en la justifiant, la complexité au pire de max-somme1.	

Voici un autre algorithme, récursif, qui résout MAX-SOMME. Cet algorithme est appelé max-somme 2. On précise la signification des trois fonctions suivantes, qui s'exécutent chacune en temps constant:

- pei(x) (pour "partie entière inférieure") renvoie l'entier $y \le x$ qui est le plus proche de x (par exemple, pei(7.5)=7).
- max3(p,q,r) renvoie le maximum des trois entiers p,q et r
- max(p,q) renvoie le maximum des deux entiers p et q

```
int max-somme2(T: tab-entiers; a,b: int) {
 var i, somme, ama, bma, resultat:int;
    Si a=b alors
      return max(0,T[a]);
    c:=pei((a+b)/2);
    ama:=0;
    somme:=0;
    Tant que i>=a faire{
       somme:=somme+T[i];
       ama=max(ama, somme);
       i := i-1;
    }
    bma:=0;
    somme:=0;
    i := c+1;
    Tant que i<=b faire{</pre>
       somme:=somme+T[i];
       bma=max(bma, somme);
       i := i + 1;
    }
   resultat:=max3(ama+bma, max-somme2(T,a,c), max-somme2(T,c+1,b));
   return resultat;
  3. Si T = [2, -3, 15, 7, -8, 11, -22, 14, 6], a = 1 et b = 9 (9 étant le nombre d'éléments de T), que valent ama et bma avant
     le premier appel récursif?
     indices a et b?
```

4. Au vu de la question précédente, que représente, en général, la valeur ama+bma lorsqu'on appelle max-somme 2 avec les

5. Montrer que max-somme2 e	st correct (lorsqu'on l	'appelle avec a	= 1 et b = n o	n est le nombre n	d'éléments de T).
6. En utilisant le Master Theorer	n, donner la complexi	té au pire de ma	x-somme2(l	orsqu'on l'appelle	avec $a = 1$ et $b = n$
Voici un troisième algorithme, appel		résout MAX-So	MME, et dont	on admettra qu'il e	est correct.
<pre>.nt max-somme3(T: tab-entiers; var p,q,i: int;</pre>	n: int) {				
p:=0; q:=0;					
i:=1; Tant que i<=n faire{					
q:=max(q+T[i],0); p:=max(p,q);					
i:=i+1; }					
return p;					
7. Remplir le tableau ci-dessous	aui représente l'évol	lution des variah	$\log n$ et a lors	de l'exécution de	max-somme3 sur 1
tableau T suivant : $T = [2, -3]$	3, 15, 7, -8, 11, -22,	-5, 6] avec $n =$	9, et indiquer	la valeur retournée	2.
	i 1 2	3 4 5 6	5 7 8 9		
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
	<i>P</i>			Ш	
Valeur retournée:					
8. Que représente p dans l'algori	thme max-somme3	? Que représente	eq?		
9. Donner, en la justifiant, la con	nplexité au pire de ma	x-somme3.			

Exercice 3 (Le problème 3-SAT – 8 points)

On rappelle les définitions des problèmes SAT et 3-SAT ci-dessous.

SAT

Instance: Une formule booléenne Φ en forme normale conjonctive (FNC), construite à partir d'un ensemble $X = \{x_1, x_2 \dots x_n\}$ de n variables.

Question : Existe-t-il une affectation (Vrai/Faux) des variables de X qui rend Φ satisfiable ?

3-SAT

Instance: Une formule booléenne Φ' en FNC, construite à partir d'un ensemble $X' = \{x'_1, x'_2 \dots x'_p\}$ de p variables, et dans laquelle chaque clause contient 3 variables. Question: Existe-t-il une affectation (Vrai/Faux) des variables de X' qui rend Φ' satisfiable?

1. Montrer que 3-SAT est dans NP.

On veut maintenant montrer que SAT se réduit vers 3-SAT (SAT \geq_P 3-SAT). Pour cela, partant d'une instance quelconque I de SAT, on construit une instance I_3 de 3-SAT de la manière suivante:

- (a) Pour toute clause C = (a) de I contenant une seule variable a, on crée dans I_3 la clause $C' = (a \lor a \lor a)$.
- (b) Pour toute clause $C = (a \lor b)$ de I contenant deux variables a et b, on crée dans I_3 la clause $C' = (a \lor b \lor b)$.
- (c) Pour toute clause C de I contenant trois variables, on garde la même clause dans I_3 (donc C' = C).
- (d) Pour toute clause $C = (a_1 \vee a_2 \vee \ldots \vee a_k)$ de I contenant $k \geq 4$ variables, on crée dans I_3 l'expression $E'_C = (a_1 \vee a_2 \vee y_1) \wedge (\overline{y_1} \vee a_3 \vee y_2) \wedge (\overline{y_2} \vee a_4 \vee y_3) \ldots (\overline{y}_{k-4} \vee a_{k-2} \vee y_{k-3}) \wedge (\overline{y}_{k-3} \vee a_{k-1} \vee a_k)$, où les y_i sont de nouvelles variables.
- (e) La formule I_3 relie les clauses et expressions listées ci-dessus par des "ET" logiques.
- 2. Supposons que $I = (x_1 \vee \overline{x_2}) \wedge (x_1 \vee x_2 \vee \overline{x_3} \vee \overline{x_4} \vee x_5) \wedge (\overline{x_2} \vee x_3 \vee \overline{x_5})$. Que vaut l'instance I_3 ?

3. Montrer que si une clause C à $k \leq 3$ variables est satisfaite dans I , alors sa clause correspondante C' est satisfaite dans I_3 .

Soit $C = (a_1 \lor a_2 \lor \ldots \lor a_k)$ une clause à $k \ge 4$ variables dans I et E'_C son expression correspondante dans I_3 . Supposons que C soit satisfaite. Il existe donc au moins une variable, que l'on appellera a_i , qui rend C vraie.

4. Montrer que l'affectation $y_1, y_2 \dots y_{i-2} = \forall \text{rai et } y_{i-1}, y_i \dots y_{k-3} = \exists \text{raux satisfait } E'_C$.
5. Que déduit-on des Questions 3. et 4. ?
Une clause C' de I_3 construite à partir d'une clause C à $k \leq 3$ variables de I est appelée une $petite$ clause.
6. Montrer que si une petite clause C' est satisfaite dans I_3 , alors la clause C dont elle provient est satisfaite dans I .
7. Supposons que tous les a_i sont à Faux dans une expression E'_C . Montrer que E'_C ne peut jamais être satisfaite.
8. En déduire que si une expression E'_C est satisfaite dans I_3 , alors la clause C dont elle provient est satisfaite dans I .
9. Que déduit-on des Questions 6. et 8. ?
10. Que déduit-on des Questions 5. et 9. ?
11. Que déduit-on des Questions 1. et 10. ?