Homework 2, Interpolation circle

資工 3B 00957144 蔣佳純

日期:2022/10/23

1. Generate N+1 sample points in a circle of radius equal to r (r=10.0)

N=8:(等間距)

θ [i] = i* $\Delta \theta$	θ 0	θ 1	9 2	9 3	0 4	0 5	9 6	0 7	0 8
	0π/4	1 π /4	2 π / 4	3 π /4	4π/4	5 π / 4	6π/4	7 π / 4	8 π /4
X[i] = r*cos(θ[i]	X 0	X 1	X 2	Х 3	X 4	X 5	X 6	X 7	X 8
	10.00000	7.07107	0.00000	-7.07107	-10.00000	-7.07107	-0.00000	7.07107	10.00000
Y[i] = r*sin(0 [i]	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Υ 6		Y 8
	0.00000	7.07107	10.00000	7.07107	0.00000	-7.07107	-10.00000	-7.07107	-0.00000

N=16:(等間距)

$\theta[i] = i * \Delta \theta$	0 0	$\boldsymbol{\theta}$ 1	$oldsymbol{ heta}$ 2	9 3	θ 4	$oldsymbol{ heta}$ 5	$oldsymbol{ heta}$ 6	0 7	$\boldsymbol{ heta}$ 8
$\Theta[1] = 1 \cdots \Delta \Theta$	0π/8	1π/8	2π/8	3 π /8	4 π /8	5 π /8	6π/8	7 π /8	8π/8
θ [i] = i* $\Delta \theta$	θ 9	0 10	θ 11	9 12	0 13	0 14	0 15	9 16	
	9π/8	10 π /8	11π/8	12π/8	13π/8	14π/8	15 π /8	16π/8	
X[i] = r*cos(θ[i]	X 0	X 1	X 2	Х 3	X 4	X 5	х 6	X 7	х 8
	10.00000	9.23880	7.07107	3.82683	0.00000	-3.82683	-7.07107	-9.23880	-10.00000
$X[i] = r*\cos(\theta[i])$	1 X 9	X10	X11	X12	X13	X14	X15	X16	
	-9.23880	-7.07107	-3.82683	-0.00000	3.82683	7.07107	9.23880	10.00000	
Y[i] = r*sin(θ[i]	I Y O		Y 2	Y 3	Y 4	Y 5	Y 6		Y 8
	0.00000	3.82683	7.07107	9.23880	10.00000	9.23880	7.07107	3.82683	0.00000
Y[i] = r*sin(θ[i]	1 Y 9	Y10	Y11	Y12	Y13	Y14	Y15	Y16	
	-3.82683	-7.07107	-9.23880	-10.00000	-9.23880	-7.07107	-3.82683	-0.00000	

N=5:(隨機取樣 1)

	ポ <i>ン)</i> 80	θ1	θ2 6	θ3 θ4	θ5				
θ[i] = i*Δθ	0								
X[i] = r*cos(θ[i])	X0								
						93 10.00000			
V(1) + · (O(1))	Y0								
Y[i] = r*sin(θ[i])	0.00000								
N=10: (隨機耶	,	θ 2	θ3 θ4	ł 05	θ6	θ7 θ8	θ9	0 10	
θ[i] = i*Δθ -									
I						X 6 X			X10
X[i] = r*cos(θ[i]) - 						-10.00000 -1.73			10.00000
						У 6 У 7		у 9	У10
Y[i] = r*sin(θ[i]) - 						00000 -9.84808		-3.42020	-0.00000
N=8:(隨機取									
θ[i] = i*Δθ	00 	θ1	θ2	θ3	θ 4	θ5 θ6 	θ7	θ 8	
	1 0	10∘	30∘	50∘	100∘	120° 180°	200∘	360∘(21	r)
X[i] = r*cos(θ[i])	X0	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8
\[i] - 1 \cos(\o[i])	10.00000	9.84808	8.66025	6.42788	6.42788 -1.73648 -5.00000	-10.00000	-9.39693	10.00000	
Y[i] = r*sin(θ[i])	yo	У 1	y 2	у з	y 4	У 5	У 6	У 7	У 8
	0.00000	1.73648	5.00000	7.66044	9.8480	8 8.66025	0.00000	-3.42020	-0.00000

N=5:(隨機取樣 2)

- 2. Produce 361 points in the xy-plane by using the following two methods
 - A. $\Delta t = \frac{2\pi}{360}$, $px[i] = r * cos(i * \Delta t)$, $py[i] = r * sin(i * \Delta t)$, $0 \le i \le 360$.
 - B. Using Newton's polynomial and keep the interpolation points in qx[i] and qy[i]
 - ※綠色線為圓函數圖,藍色點為內插點(interpolation points),紅色點為取樣點(sample points)

N=5:(隨機取樣 1)中的結果圖:

N=5:(隨機取樣 2)中的結果圖:

N=10: (隨機取樣 3)中的結果圖:

N=8:(隨機取樣 4)中的結果圖:

等間距取點結果圖:

3. Compute the accumulative distance between the interpolation points calculated by these two methods:

A. 2norm =
$$\sqrt{\sum_{i=0}^{359}[(px[i] - qx[i])^2 + (py[i] - qy[i])^2]}$$

B.
$$\infty \text{ norm} = \max_{0 \le i \le 359} \sqrt{[(px[i] - qx[i])^2 + (py[i] - qy[i])^2}$$

4. 誤差分析

N=5:(隨機取樣 1)中的結果圖:

2 norm: $20.71840506803200199215 \sim norm: 2.88280875317205964592$

N=5:(隨機取樣2)中的結果圖:

2 norm: 20.85834116537506943700 ∞ norm: 2.31511379434827624380

N=10:(隨機取樣 3)中的結果圖:

2 norm: $0.00359969828754554654 \sim norm: 0.00050090673282823512$

N=8:(隨機取樣 4)中的結果圖:

2 norm: 5.71374188390470916232 ∞ norm: 0.84753198198009682685

每兩個樣本點之間,離樣本點遠的地方的誤差會比靠近樣本點的誤差還要小。(2 norm 或是 ∞ norm 都是)

在隨機取樣本點的圖,會發現並不是在 end intervals 就一定會有最大誤差。雖然在 end intervals 的誤差有比較大,但在兩個樣本點間距很大的地方誤差也會變大。

等間距取點結果圖:

2 norm: 0.08125623303642762196

2 norm: 0.00000002884120514204

2 norm: 0.0000000018510216434

2 norm: 0.00000305695707355610

∞ norm: 0.01258927570960070678

∞ norm: 0.0000000674464550049

∞ norm: 0.0000000005616550554

∞ norm: 0.00000130235315916593

※ 上面四張是 2 norm, 下面四張是 ∞ norm (每五個點計算一次)

由圖可看出,不管 N 為多少,也不論是 2 norm 或是 ∞ norm,在 end intervals 有最大誤差,在 middle intervals 則有最小誤差。

並非 N 越大誤差越小,N=40 時誤差比 N=24 大(縱坐標單位不同),但 N 越大有誤差的點有變少的趨勢。

發現每兩個樣本點之間,離樣本點遠的地方的誤差會比靠近樣本點的誤差還要小。

結論:

在兩個樣本點間距很大的地方有比較大的誤差

end intervals 也會有比較大的誤差

並不是 end intervals 就一定有最大誤差

在某兩個樣本點之間,離樣本點遠的地方的誤差會比靠近樣本點的誤差還要小

5. piecewise cubic spline method (N=8,分 8 個區域)

左圖是點代入每個區域的函數後繪出點點 右圖是分段繪出每個區域的函數圖

雖然不是很明顯,但能看出相接處有點不平滑。

f0: p0,p1,p2,p3 為取樣點 f1: p1,p2,p3,p4 為取樣點

f2: p2,p3,p4,p5 為取樣點

f3: p3,p4,p5,p6 為取樣點

f4: p4,p5,p6,p7 為取樣點

f5: p5,p6,p7,p8 為取樣點

6. Compute the errors. Compare the results with those of the Newton polynomial.

2 norm: 1.05437421960072219562 ∞ norm: 0.08470954970438765441

piecewise cubic splines 的誤差比 Newton's method 的還要大一些(同為等距 N=8) 和牛頓法一樣,每兩個樣本點之間,中間的誤差會比靠近樣本點的誤差還要大。(因為這也是牛頓多項式)

※每區的 3 階多項式拿來繪出全範圍(藍色),以及真正拿去做內插的範圍(紅色) 可以看出,紅色區域仍然是整個區域中誤差最小的(因為仍是用牛頓多項式)。

7. Are the piecewise cubic splines enjoy C1-continuity at the sample points?

接合點為 p1~p7:

p1: 以 f0, f1 作為連接的兩函數

p2: 以 f0, f2 作為連接的兩函數

p3: 以 f0, f3 作為連接的兩函數

p4: 以 f1, f4 作為連接的兩函數

p5: 以 f2, f5 作為連接的兩函數

p6: 以 f3, f5 作為連接的兩函數

p7: 以 f4, f5 作為連接的兩函數

連接 p1~p7 的兩個函數的微分值:

```
p1:

X'(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te\
```

 $X'(\theta 4) = 0.665710110712 Y'(\theta 4) = -10.911950700876$

 $X'(\theta 4) = -0.665710110712 Y'(\theta 4) = -10.911950700876$

```
※可見微分值不同,方向也不同,因此不為 C1- continuity。
連接 pl~p7 的兩個函數值:
X(\theta 1) = 7.071067811865 Y(\theta 1) = 7.071067811865
X(\theta 1) = 7.071067811865 Y(\theta 1) = 7.071067811865
p2:
X(\theta 2) = 0.0000000000000 Y(\theta 2) = 10.000000000000
X(\theta 2) = 0.0000000000000 Y(\theta 2) = 10.000000000000
p3:
X(\theta 3) = -7.071067811865 Y(\theta 3) = 7.071067811865
X(\theta 3) = -7.071067811865 Y(\theta 3) = 7.071067811865
p4:
X(\theta 4) = -10.0000000000000 Y(\theta 4) = 0.000000000000
X(\theta 4) = -10.0000000000000 Y(\theta 4) = 0.0000000000000
p5:
X(\theta 5) = -7.071067811865 Y(\theta 5) = -7.071067811865
X(\theta 5) = -7.071067811865 Y(\theta 5) = -7.071067811865
p6:
p7:
X(\theta 7) = 7.071067811865 Y(\theta 7) = -7.071067811865
X(\theta 7) = 7.071067811865 Y(\theta 7) = -7.071067811865
※函數值相同,因此為 CO- continuity。
```

 $X'(\theta 5) = 8.186642470151 \ Y'(\theta 5) = -7.245186202974$ $X'(\theta 5) = 7.245186202974 \ Y'(\theta 5) = -8.186642470151$

 $X'(\theta 6) = 10.911950700876 \ Y'(\theta 6) = 0.665710110712$ $X'(\theta 6) = 9.882151640869 \ Y'(\theta 6) = 0.364088949295$

 $X'(\theta7) = 7.245186202974 \ Y'(\theta7) = 8.186642470151$ $X'(\theta7) = 7.245186202974 \ Y'(\theta7) = 6.730286672971$

8. 想法和心得

p5:

დ6:

p7:

使用牛頓法若是取樣本點時取的很糟糕(間隔差太多),就有可能得到很大的誤差。但在等距取樣本點時,牛頓法表現比預想中的還要好,同樣是等距 N=8,牛頓法的誤差比peicewise cubic splines 更小。牛頓法在 N=6 時還稍微能看出誤差,但 N=8 之後看起來都差不多,誤差很小。

課本上的例子使用 peicewise cubic splines 時用的函數不是用牛頓內插創造出的,且課本上的例子是 C1- continuity,可能是因為建構函數方式不同,才導致最後結果不為 C1- continuity。