Big Data Analytics Word2Vec

Randy ANDRIAMANORO
Maxence RENIER

Carolyne VERET
Victoria STROPPIANA

Aya BOUMEDIENE Dylan ESTEVES

Summary

- 1- What is Word2Vec?
- 2- How Word2Vec works?
- **3- Application**
- 4- Benefits & Limits of the Word2Vec

What is Word2Vec?

Introduction

- A word embedding algorithm developed by a Google research team led by Tomas Mikolov
- Uses two-layser neural networks to learn vector representations of words
- Represents words with similar contexts as close numerical vectors

What is Word2Vec?

Neural Architectures

- CBOW: Continuous Bag of Words
- Skip Gram
- Training Process
- Key Parameters: The dimensionality of the vector space to be constructed and the size of the context of a word

How Word2Vec Works

2 architectures:

- a. Continuous Bag of Words (CBOW):
 - Objective: Predict a single target word given the words surrounding it.
 - For the sentence "The quick brown fox jumps," if the target word is "brown," the context words are "The," "quick," "fox," and "jumps."
 - The input is a one-hot encoded representation of these context words.
 - The network outputs the most likely word for the given context, which in this case should be "brown."

How Word2Vec Works

b. Skip-gram:

- Objective: Predict the surrounding context words given a single target word.
 - The model takes one word (e.g., "brown") as input and tries to predict its context words ("The," "quick," "fox," "jumps").
 - It works well for small datasets and is good at capturing semantic relationships between rare words.

Application

We did it in **five steps**:

- 1- Define a text
- 2- Delete all the words that was useless
- 3- Apply Word2Vec Model
- 4- Analyse the results
- 5 Representation of the results

1- Define the text

["The doctor prescribes a medication for the patient",

"The nurse works at the hospital with the doctor",

"Doctor examines with a nurse, the patient in his office",

"The nurse prepares the instruments for surgery",

"A nurse dispenses medications prescribed by a doctor",

"The hospital has an emergency service open all the day"]

2- Delete the words

3- Apply Word2Vec

4 - Analyse the results

```
Vector for 'nurse':
[0.25505593 0.45063633]

Words similar to 'nurse':
[('emergency', 0.999788761138916), ('hospital', 0.9940868020057678), ('examines', 0.9006913900375366)]
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package punkt_tab to /root/nltk_data...
[nltk_data] Package punkt_tab is already up-to-date!
```

5 - Representation of the results

Benefits & Limits of the word2vec

A. Benefits

1/ Captures semantic relationships:

- Similar words are close in the vector space (e.g., "cat" and "dog").
- Enables mathematical analogies.

2/ Compact vectors:

- Fixed size (e.g., 100 dimensions), regardless of vocabulary size.
- Reduces memory and computational requirements.

3/ Better contextual understanding:

- Represents words based on their context.
- Richer than traditional representations (e.g. one-hot encoding).

4/ Wide range of applications:

• Semantic search, machine translation, sentiment analysis.

B. Limits

1/ Fixed global context:

• One word = one vector, regardless of the context (e.g., "bank" [finance] vs. "bank" [river] share the same vector).

2/ Issues with rare or unknown words:

 Words not present in the training corpus have no vector representation.

3/ Corpus-dependent quality:

• The quality of vectors depends on the diversity and relevance of the training corpus.

4/ Outdated by modern models:

• Techniques like BERT or GPT handle dynamic contexts and complex sentences better.

Why using Word2vec instead of one-hot encoding

Criteria	One-Hot Encoding	Word2Vec
Vector size	Long, proportional to vocabulary size (too many dimensions)	Short and fixed (e.g., 100 dimensions)
Word relationships	None (independent vectors)	Captures relationships (e.g., king → queen)
Information content	None	Rich (contextual relationships)
Efficiency	Inefficient for large vocabularies	Compact and fast
Training	Slow and resource-intensive	Faster convergence

Word2Vec is meaningful, and efficient, making it ideal.

Why using Word2vec instead of one-hot encoding

ThankYou