Solution to Neukirch's Algebraic Number Theory

Yang

2023 Sep 20

Problem 1 $A \subseteq B$ be commutative rings, with B integral over A. Show that $B^* \cap A = A^*$ Solution: $(A^* \subset B^* \cap A)$ This is obvious.

 $(B^* \cap A \subset A^*)$ For any $a \in B^* \cap A$, then there exists $b \in B$ such that ab = 1. As $b \in B$ is integral over A, there exists a monic polynomial with coefficients α_i in A for b: $b^n + \alpha_1 b^{n-1} + \cdots + \alpha_n = 0$. Multiplying a^n gives us the following one : $1^n + \alpha_1 a^1 + \cdots + \alpha_n a^n = 0$, after some transformation, we have $1 = -a(\alpha_1 + \cdots + \alpha_n a^{n-1})$ where $(\alpha_1 + \cdots + \alpha_n a^{n-1}) \in A$, so $a \in A^*$. Thus $B^* \cap A \subset A^*$.

Problem 2 Exercise 7 on page 15: The discriminant d_K of an algebraic number field K is always $\equiv 0 \pmod{4}$ or $\equiv 1 \pmod{4}$ (Stickelberger's discriminant relation).

The discriminate $d_K = d_{\mathcal{O}_K} = \det((\sigma_i \omega_j))^2$ (assuming ω_j is the integral basis). By the definition of discrimination, $\det((\sigma_i \omega_j)) = \sum_{\pi \in S_n} sgn(\pi) \prod_{i=1}^n \sigma_i \omega_{\pi(i)} = \sum_{\pi \in A_n} \prod_{i=1}^n \sigma_i \omega_{\pi(i)} - \sum_{\pi \notin A_n} \prod_{i=1}^n \sigma_i \omega_{\pi(i)}$. By primitive element theorem, number field $K = Q(\theta)$ with all its conjugations in the form of $\sigma_i \theta$. In this way, $\omega_i = f_i(\theta)$ with $f_i \in Q[x]$, and $P = \sum_{\pi \in A_n} \prod_i \sigma_i \omega_{\pi(i)} = \sum_{\pi \in A_n} \prod_i f_{\pi(i)}(\sigma_i \theta)$, in the same way, $N = \sum_{\pi \notin A_n} \prod_i \sigma_i \omega_{\pi(i)} = \sum_{\pi \notin A_n} \prod_i f_{\pi(i)}(\sigma_i \theta)$.

As shown in the hint, what we need to do is to prove that P+N and PN are integers. After action of elements in A_n on index of both P and N, nothing changes. While for elements not in A_n , P becomes Q and Q becomes P. So P+N and PN, if we view them as polynomials for $x_i = \sigma_i \theta$, they are symmetrical polynomials, and because $f_i \in Q[x]$, so we have PN, $P+N \in Q[x]$ (viewed as polynomials for $x_i = \sigma_i \theta$ and considering that except $\sigma_i \theta$, everthing appearing in P and N are rational numbers, this can be done).

By symmetrical function theorem, (remember $\sigma_i\theta$ are roots for the minimal polynomial $g \in Q[x]$ for θ , and elementary symmetrical functions with indeterminates valued as $\{\sigma_i\theta\}$ is coefficient of this polynomial), $P + N, PN \in Q$, considering that they are integral over Q, they must be in $Q \cap \mathcal{O}_K = Z$. So $(P - N)^2 = (P + N)^2 - 4PN \equiv 0, 1 \pmod{4}$.

Problem 3 (a).If $g(\alpha)$ is dovisible by 3 in $Z[\alpha]$.

Then $g(\alpha) = 3h(\alpha)$ where $h = h_0 + h_1 x + \cdots + h_n x^n \in Z[x]$. So $g(\alpha) = 3h_0 + 3\alpha(h_1 + \cdots)$. And $g(\alpha) - 3h(\alpha) = 0$, thus g(x) - 3h(x) has root α , and $g(x) - 3h(x) = \psi(x)f(x)$ (f is irreducible polynomial for α). Modulo 3, then we have $\bar{g}(x) - 0 = \bar{\psi}(x)\bar{f}(x)$. So \bar{g} is divisible by \bar{f} in $\mathbb{F}_3[x]$.

If \bar{g} is divisible by \bar{f} in $\mathbb{F}_3[x]$, then $\bar{f}(x)\phi(\bar{x}) = \bar{g}(x)$. Thus $(f(x) + 3f'(x))(\phi(x) + 3\phi'(x)) = g(x) + 3g'(x)$ where $f', \phi', g' \in Z[x]$. Value x as α , then $f(\alpha) = 0$, and $(3f'(\alpha))(\phi(\alpha) + 3\phi'(\alpha)) - 3g'(\alpha) = g(\alpha)$. So obviously $g(\alpha)$ is divisible by 3.

(b). Now suppose that $\mathcal{O}_K = Z[\alpha]$, consider the four algebraic integers $\alpha_1 = (1 + \sqrt{7})(1 + \sqrt{10})$, $\alpha_2 = (1 + \sqrt{7})(1 - \sqrt{10})$, $\alpha_3 = (1 - \sqrt{7})(1 + \sqrt{10})$, $\alpha_4 = (1 - \sqrt{7})(1 - \sqrt{10})$. All products $\alpha_i \alpha_j$ will have factors $(1 + \sqrt{7})(1 - \sqrt{7}) = 1 - 7 = -6$ or $(1 + \sqrt{10})(1 - \sqrt{10}) = -9$ which are divisible by 3. For α_i , all its conjugates under Galois transformation are exactly $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ ($\sqrt{7} \leftrightarrow -\sqrt{7}$ and $\sqrt{10} \leftrightarrow -\sqrt{10}$).

Thus by definition, $Tr(\alpha_i^n) = \sum \alpha_i^n$. This is congruent to $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n$ (mod 3) because in the expansion series of $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n$, except α_i^n , all other terms contain $\alpha_i \alpha_j$ ($i \neq j$) which is divisible by 3. And by calculation, $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) = 4$, and $(1+3)^n \equiv 1 \pmod{3}$. So α^n is not divisible by 3, otherwise $Tr(3 \cdot \alpha_n/3)$ must be divisible by 3.

- (c). For $\alpha_i \alpha_j = f_i(\alpha) f_j(\alpha_j)$ is divisible by 3, so by (a), $\bar{f} | \bar{f}_i \bar{f}_j$ (for $i \neq j$), in the same way, $\bar{f} \nmid \bar{f}_i^n$. Because $\mathbb{F}_3[x]$ is PID, then it is UFD, so \bar{f} has an irreducible factor which does not divide \bar{f}_i but does not divide all \bar{f}_j (for $j \neq i$).
- (d). By the above (c), we can see that \bar{f} has at least four distinct irreducible factors over \mathbb{F}_3 , but its degree must be over 4
- (d). By the above conclusions, we can see that \bar{f} has at least four distinct irreducible factors over \mathbb{F}_3 and the degree of field extension $Q(\sqrt{7}, \sqrt{10})$ is four, so the degree of f is at most 4. In this way, the degree of f can only be 4. However, this requires the (at least) four distinct irreducible factors of to be all of degree 1, however, over \mathbb{F}_3 , there are only three irreducible polynomials of degree 1: $x \bar{1}, x \bar{2}, x \bar{3}$. Thus, there must be one factor with degree at least 2, this leads to contradiction because \bar{f} is thus of degree 5 but f is at most degree 4.

Problem 4

Solution:

For A is the finite module over Z, (and it is contained in a number field thus torsion free, so it must be free module over Z as Z os PID), take the generator set as $\{\lambda_i\}$, and $Z[\lambda_i]$ is submodule of A so it must be finitely generated as Z is PID. So λ_i is integral over Z.

Now take the fractional field of A as K, then K is subfield of K_0 and also a number field. Take the integral closure of Z in K, then it must be contained in A as integral closure of $A \supset Z$ in K is A, while it also contains A as the generators of A are all integral over Z so they are contained in the integral closure of Z. The proof is thus done, A is the integral closure of K.

Problem 3

Decompose $33 + 11\sqrt{-7}$ into irreducible integral elements of $Q(\sqrt{-7})$.

 $33 + 11\sqrt{-7} = 11(3 + \sqrt{-7})$ and $11 = (2 + \sqrt{-7})(2 - \sqrt{-7})$ where $2 + \sqrt{-7}$ must be irreducible as its norm is exactly 11, nondecomposable.

For $3 + \sqrt{-7}$, its decomposition may not be that obvious. The norm of $3 + \sqrt{-7} = 16 = 2^4$, so it's

necessary to find some irreducible element with norm 2.

Take $\alpha = \frac{1+\sqrt{-7}}{2}$ into consideration, then $\alpha^2 - \alpha + 2 = 0$ and norm of α is 2, so it must be irreducible. Thus α is integral and $2 = -\alpha^2 + \alpha = \alpha(1-\alpha)$, so $3 + \sqrt{-7} = 2(\frac{3+\sqrt{-7}}{2})$. The norm of $\frac{3+\sqrt{-7}}{2}$ is $4 = 2^2$, indeed, $\frac{3+\sqrt{-7}}{2} = -(\frac{1-\sqrt{-7}}{2})^2$. $33 + 11\sqrt{-7} = -(2+\sqrt{-7})(2-\sqrt{-7})(\frac{1+\sqrt{-7}}{2})(\frac{1-\sqrt{-7}}{2})^3$

Problem 5

Solution:

By the hint given, we shall consider the quotient $\mathcal{O}_K/p\mathcal{O}_K$.

By the course notes, if d is square free, the $\mathcal{O}_{\mathcal{Q}(\sqrt{d})} = Z[d]$ $(d \equiv 2, 3 \pmod{4})$ or $Z\left[\frac{1+\sqrt{d}}{2}\right]$ $(d \equiv 1 \pmod{4})$

Take Z[d] as the ring of integers. Then $\mathcal{O}_K = Z[x]/(x^2 - d)$, so $\mathcal{O}_K/p\mathcal{O}_K = \mathbb{F}_p[x]/(x^2 - \bar{d})$. If $p\mathcal{O}_K = \prod_i \mathfrak{B}_i^{e_i}$ where \mathfrak{B}_i is prime ideal in \mathcal{O}_K .

lemma: $\left[Q(\sqrt{d}):Q\right] = \sum_{i} e_i d_i$ where e_i is defined as above and $d_i = [\mathcal{O}_K/\mathfrak{B}_i:\mathbb{F}_p]$.

So there is at most two primes in the decomposition and the ramification index is at most two. $p\mathcal{O}_K = \mathfrak{B}_1^{e_1}\mathfrak{B}_2^{e_2}$ where $(e_1, e_2) = (1, 1), (2, 0) \cong (0, 2), (1, 0) \cong (0, 1)$.

So by the chinese remainder theorem: $\mathcal{O}_K/p\mathcal{O}_K = \mathcal{O}/\mathfrak{B}_1^{e_1} \oplus \mathcal{O}/\mathfrak{B}_2^{e_2}$.

If $\bar{d} = 0$, then $\mathbb{F}_p[x]/(x^2)$ which contains nilpotent elemets which can only happen when ramification index is larger than 1.

If $x^2 \equiv d$ has nonzero solution, then $\mathbb{F}_p[x]/(x^2 - \bar{d}) = \mathbb{F}_p[x]/(x - \bar{x_1}) \oplus \mathbb{F}_p[x]/(x - \bar{x_2})$ which is the case when $(e_1, e_2) = (1, 1)$, which $p\mathcal{O}_K$ splits.

If $x^2 \equiv d$ has no solution mod d, then over \mathbb{F}_p , $x^2 - \bar{d}$ is irreducible and the quotient $\mathcal{O}_K/p\mathcal{O}_K$ is field, thus $p\mathcal{O}_K$ is prime.

For the remaining case, I am stuck and also curious about how to use the condition p does not divide 2d.

Problem 6

The quotient \mathcal{O}/\mathfrak{a} of a Dedekind ring \mathcal{O} by an ideal \mathfrak{a} is a principal ring.

Solution: \mathfrak{a} can be factorized as product of prime ideals $\prod \mathfrak{p}_i^{n_i}$. By the Chinese Remainder Theorem, we can see that $\mathcal{O}/\mathfrak{a} = \bigoplus_i \mathcal{O}/\mathfrak{p}_i^{n_i}$. So it suffice to prove that $\mathcal{O}/\mathfrak{p}_i^{n_i}$ is a principal ring because product of principal ring is principal ring.

To prove that $\mathcal{O}/\mathfrak{p}^n$ is principal, we first notice that any proper ideal \mathcal{I} containing \mathfrak{p}^n satisfying $\mathcal{I}|\mathfrak{p}^n$, by the uniqueness of decomposition of ideals in Dedekind ring, $\mathcal{I}\mathfrak{p}\cdots\mathfrak{p}=\mathfrak{p}^n$, so \mathcal{I} is in the form of \mathfrak{p}^i . Thus the proper ideals in $\mathcal{O}/\mathfrak{p}^n$ is in the form of $\mathfrak{p}/\mathfrak{p}^n\cdots\mathfrak{p}^{n-1}/\mathfrak{p}^n$. Besides, I want to mention that $\mathfrak{p}^i\neq\mathfrak{p}^j$ because of unique decomposition of ideals in the Dedekind ring

Denote the projection map $\pi: \mathcal{O} \to \mathcal{O}/\mathfrak{p}^n$, if $\pi(\mathfrak{p}) = \pi(\mathfrak{p}^2)$, then $\mathfrak{p}^2 + \mathfrak{p}^n = \mathfrak{p} + \mathfrak{p}^n$, so $\mathfrak{p} = \mathfrak{p}^2$. Thus $\mathcal{O}/\mathfrak{p}^n$ is a field which is definiely principal ideal ring.

If $\mathfrak{p} \neq \mathfrak{p}^2$, then for any $a \in \mathfrak{p}/\mathfrak{p}^2$, $(\pi(a)) \neq \mathfrak{p}^i/\mathfrak{p}^n$ for $i \geq 2$ (otherwise $(a) + \mathfrak{p}^n = \mathfrak{p}^i \rightarrow a \in \mathfrak{p}^2$) So $(\pi(a)) = \mathfrak{p}/\mathfrak{p}^n$ and $(\pi(a)^i) = \mathfrak{p}^i/\mathfrak{p}^n$. Thus it's a principal ring. The proof is done.

Problem 7

 \mathfrak{m} is an integral ideal in the Dedekind ring \mathcal{O} , show that in each ideal class of Cl_K , there is an

integral ideal \mathfrak{p} prime to \mathfrak{m} .

Solution: It suffices to find an element $u \in K^*$ such that $u\mathfrak{p}$ prime to \mathfrak{m} for a fixed fractional ideal

As \mathcal{O} is noetherian ring so there exists $c \in K^*$ such that $c\mathcal{O}$ is integral ideal. Denote the decomposition of \mathfrak{m} as $\mathfrak{p}_1^{i_1}\cdots\mathfrak{p}_n^{i_n}$ with $(i_l>0)$, and the integral ideal $c\mathfrak{p}$ can be decomposed as $\mathfrak{p}_1^{j_1}\cdots\mathfrak{p}_n^{j_n}\mathfrak{q}_1^{k_1}\cdots\mathfrak{p}_m^{k_m}$ with all upper indexes nonnegative. To construct an integral ideal equivalent but prime to \mathfrak{m} , we need to get rid of the factors \mathfrak{p}_i in $c\mathfrak{p}$.

By the poof in problem 1, we can see that in quotient $\mathcal{O}/\mathfrak{p}^n$, all proper ideals in this quotient ring is generated by an arbitrary fixed element t in $\mathfrak{p} \setminus \mathfrak{p}^2$, and if $x \equiv t^i \mod \mathfrak{p}^n$, then $(x)/\mathfrak{p}^n = (\bar{t})^i = \mathfrak{p}^i/\mathfrak{p}^n$. So for any $0 \le m < n$, $\nu_{\mathfrak{p}}(t^m) = \nu_{\mathfrak{p}}(x) = m$, otherwise, $(x)/\mathfrak{p}^n = \mathfrak{p}^m/\mathfrak{p}$ will be some $\mathfrak{p}^i/\mathfrak{p}^n$ with

By the chinese remainder theorem, we can thus find an element $x \in \mathcal{O}$ such that for any (i_1, \dots, i_n) where i_k is nonnegative, and prime ideals $\mathfrak{p}_1 \cdots \mathfrak{p}_n$, the index $(\nu_{\mathfrak{p}_1} \cdots \nu_{\mathfrak{p}_n})$ of (x) is exactly (i_1, \cdots, i_n) .

Back to the integral ideal $c\mathfrak{p}$, we can find such an $x \in \mathcal{O}$ such that $\nu(x)=(j_1,\cdots,j_n,k_1\cdots,k_m)$ with prime ideal factors as $(\mathfrak{p}_1 \cdots \mathfrak{p}_n \mathfrak{q}_1 \cdots \mathfrak{q}_m)$. Thus the decomposition of $x^{-1}c\mathfrak{p}$ has no factors as

While we successfully eliminate the factors such as \mathfrak{p}^i , there may be factors with negative indexes, thus we denote $x^{-1}c\mathfrak{p} = \mathfrak{r}_1^{-d_1}\cdots\mathfrak{r}_l^{-d_l}$ with $d_i \geq 0$.

Again we can find $y \in \mathcal{O}$ such that for prime ideal factors $(\mathfrak{p}_1, \cdots, \mathfrak{p}_n, \mathfrak{r}_1 \cdots, \mathfrak{r}_l)$ and index of (y)for these factors is $(0, \dots, 0, d_1 \dots, d_l)$. Thus multiplying y eliminates negative factors in $x^{-1}c\mathfrak{p}$, so $yx^{-1}c\mathfrak{p}$ has no factors \mathfrak{p}_i and is indeed an integral ideal.

Problem 8

Let I and a be ideals of A, with prime factorizations

$$I = \prod_{\mathfrak{p}} p^{\nu(p)}$$
 and $\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{\alpha(\mathfrak{p})}$.

- (1) Show that $I \supseteq \mathfrak{a}$ if and only if $\nu(\mathfrak{p}) \leq \alpha(\mathfrak{p})$ for all \mathfrak{p} .
- (2) Let \mathfrak{a} and \mathfrak{b} be nonzero ideals of A. Carefully prove that the ideal $\mathfrak{a} + \mathfrak{b}$ equals $\gcd(\mathfrak{a}, \mathfrak{b})$. Here, the gcd is defined in the obvious way using the prime factorizations of \mathfrak{a} and \mathfrak{b} . Indeed, write

$$\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{\alpha(\mathfrak{p})}$$
 and $\mathfrak{b} = \prod_{\mathfrak{p}} \mathfrak{p}^{\beta(\mathfrak{p})}$,

where the product is over all (distinct) nonzero prime ideals of A. Then $gcd(\mathfrak{a},\mathfrak{b}) = \prod_{\mathfrak{b}} \mathfrak{p}^{\min\{\alpha(\mathfrak{p}),\beta(\mathfrak{p})\}}$.

Solution:

- (1). (\rightleftharpoons) If $\nu(\mathfrak{p}) \leq \alpha(\mathfrak{p})$, then $\mathfrak{p}^{\alpha(\mathfrak{p})} \subset \mathfrak{p}^{\nu(\mathfrak{p})}$, thus we have $I \supset \mathfrak{a}$ (\rightleftharpoons) If $I \supset \mathfrak{a}$, then by definition, $I^{-1}\mathfrak{a} \subset \mathcal{O}$. That is $\prod_{\mathfrak{p}} \mathfrak{p}^{-\nu(\mathfrak{p}) + \alpha(\mathfrak{p})}$ is an integral ideal, thus all its index must be nonnegative by the decomposition theorem. so $\nu(\mathfrak{p}) \leq \alpha(\mathfrak{p})$
- (2). First of all, it's obvious that $\mathfrak{p}^{min\{\alpha(\mathfrak{p}),\beta(\mathfrak{p})\}} \supset \mathfrak{p}^{\alpha(\mathfrak{p})}$ and $\mathfrak{p}^{min\{\alpha(\mathfrak{p}),\beta(\mathfrak{p})\}} \supset \mathfrak{p}^{\beta(\mathfrak{p})}$. Thus $qcd(\mathfrak{q},\mathfrak{b})$ contains both \mathfrak{a} and \mathfrak{b} . Thus $gcd(\mathfrak{a},\mathfrak{b}) \supset \mathfrak{a} + \mathfrak{b}$

It suffices now to prove that $\mathfrak{a} + \mathfrak{b} \supset gcd(\mathfrak{a}, \mathfrak{b})$. Keep in mind that the definition of $\mathfrak{a} + \mathfrak{b}$ means that it is the smallest ideals containing both \mathfrak{a} and \mathfrak{b} . Thus if the $\mathfrak{a} + \mathfrak{b} = \prod_{\mathfrak{p}} \mathfrak{p}^{\mu(\mathfrak{p})}$ with $\mu(\mathfrak{p}) < min(\nu(\mathfrak{p}), \alpha(\mathfrak{p}))$, there is a contradiction that $\mathfrak{a} + \mathfrak{b} \supsetneq gcd(\mathfrak{a}, \mathfrak{b}) \supsetneq \mathfrak{a} + \mathfrak{b}$. Thus $\mathfrak{a} + \mathfrak{b} \supset gcd(\mathfrak{a}, \mathfrak{b})$. Thus $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$.

Problem 9

Show that Minkowski's lattice point theorem can not be improved. And if X is compact, the statement remains true. (Let Γ be a complete lattice in the euclidean space V and X a centrally symmetric, convex **compact** subset of V. Suppose that $\operatorname{Vol}(X) \geq 2^n \operatorname{Vol}(\gamma)$, then X contains at least one nonzero lattice point))

Solution: here is an example, the lattices $\Gamma = \lambda Z$ and $Vol(\Gamma) = \lambda$. Then the interval $(-\lambda, \lambda)$ has volume $2Vol(\Gamma) = 2\lambda$, $(-\lambda, \lambda)$ has no nonzero lattice point.

If X is compact, consider the dilate $X_{\epsilon} = (1+\epsilon)X$ with $\epsilon > 0$, then $X = \cap_{\epsilon} X_{\epsilon}$. Indeed, if $X \supsetneq \cap_{\epsilon} X_{\epsilon}$, then for any such element $z \in \cap_{\epsilon} X_{\epsilon} \setminus X$, we have $\frac{z}{1+\epsilon} \in X$, and by the compactness, the family $\frac{z}{1+\epsilon}$ has its limit point in X, that is $z \in X$. Contradiction! And obviously $X \subset \cap_{\epsilon} X_{\epsilon}$, so we have $X = \cap_{\epsilon} X_{\epsilon}$.

And for $\epsilon = 1$, that is X_1 , which is bounded, so there are at most finite lattice points in X_{ϵ} with $\epsilon \in (0,1)$ (because X is centrally symmetric and convex, so it must contains 0, and thus such dilation must form a nest, that is , $X_{\epsilon} \subset X_{\epsilon'}$ for $\epsilon < \epsilon'$). And for each X_{ϵ} , we can use the Minkowski theorem because the inequality is strict, so X_{ϵ} contains a lattice point nonzero, and because each of these lattice points must be contained in X_1 so there are only finite choices, thus we can pick an infinite series of $\epsilon_i \in (0,1)$ such that there is a fixed lattice point $p \in X_{\epsilon_i}$ for $i = 1 \cdots n \cdots$. And by the property $X_{\epsilon} \subset X_{\epsilon'}$ for $\epsilon < \epsilon'$, we can see that $p \in X_{\epsilon}$ for all $\epsilon > 0$. Thus $p \in \cap_{\epsilon} X_{\epsilon} = X$. Thus the Minkowski theorem still makes sense.