Technical Report: A Systematic Mapping Study on the Combination of Information Retrieval and Requirements Traceability: Models, Strategies, Datasets, Measures and Baselines

1. Extracted Data

1.1. Extracted Data for RQ1

Index	Title	Author	Year	Venue	Publication type
		Zhang Yuchen			
S1	An empirical study on recovering requirement-to-code links	Wan Chengcheng	2016	6 SNPD	Conference
		Jin Bo			
		Jiale Zhou			
S2	An Improved VSM-based Post-Requirements Traceability	Yue Lu	2013	Semantic	Other
	Recovery Approach Using Context Analysis	Kristina Lundqvist		Scholar	
		Sebastian Eder			
	Configuring Latent Semantic Indexing for Requirements	Henning Femmer			
S3	Tracing	Benedikt Hauptmann	2015	RET	Conference
		Maximilian Junker			
S4	A Context-based Information Retrieval Technique for Recovering Use-Case-to-Source-Code Trace Links in	Jiale Zhou	2013	SEAA	Conference
34	Embedded Software Systems	Yue Lu	2013	SEAA	Contended
	Emission service systems	Kristina Lundqvist			
		Hongyu Kuang			
		Jia Nie			
	Analyzing closeness of code dependencies for improving	Hao Hu			
S5	IR-based Traceability Recovery	Patrick Rempel	2017	SANER	Conference
		Jian Lü			
		Alexander Egyed			
		Patrick Mäder			
		Nasir Ali			
S6	An empirical study on the importance of source code entities	Zohreh Sharafi	2014	ESE	Journal
30	for requirements traceability	Yann-Gaël Guéhéneuc	2014	ESE	Journal
		Giuliano Antoniol			
		Haijuan Wang			
	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Guohua Shen			
S7		Zhiqiu Huang	2021	FITEE	Journal
		Yaoshen Yu			
		Kai Chen			
		Anas Mahmoud			
S8	A semantic relatedness approach for traceability link	Nan Niu	2012	ICPC	Conference
	recovery	Songhua Xu			Workshop Papers
		Farina Faiz			
S9	Achieving better requirements to code traceability: which	Rubaida Easmin	2016	QUATIC	Conference
5)	refactoring should be done first?	Alim Ul Gias	2010	QUITTE	Connecence
	A.E. III G. I. B. I. W. W. IV.	Nasir Ali			
S10	An Empirical Study on Requirements Traceability Using Eye-Tracking	Zohreh Sharafl	2012	ICSM	Conference
	Lyc-macking	Yann-Gaël Guéhéneuc			
		Giuliano Antoniol			
911	An Improved Approach to the Recovery of Traceability	Jianwei Shao	2012	Taga.	
S11	Links between Requirement Documents and Source Codes Based on Latent Semantic Indexing	Wei Wu	2013	ICCSA	Conference
		Peng Geng			
S12	An IR-Based Artificial Bee Colony Approach for	Danissa V. Rodriguez	2020	ICTAI	Conference
	Traceability Link Recovery	Doris L. Carver	1		
S13	Toward multilevel textual requirements traceability using	Nicolas Sannier	2012	MoDRE	Conference
- 10	model-driven engineering and information retrieval	Benoit Baudry		MODICE	Contelence
S14	Code Patterns for Automatically Validating	Achraf Ghabi	2012	ASE	Conference
D17	Requirements-to-Code Traces	Alexander Egyed	2012	1101	Conference
	C 1: YOM IDTM	Bangchao Wang			
S15	Combining VSM and BTM to improve requirements trace links generation	Rong Peng	2019	SEKE	Conference
-	miko generation	Zhuo Wang			

		Yaxin Zhao			
S16	Trustrac: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links	Nasir Ali Yann-Gaël Guéhéneuc Giuliano Antoniol	2013	TSE	Journal
S17	Leveraging historical co-change information for requirements traceability	Nasir Ali Fehmi Jaafar Ahmed E. Hassan	2013	WCRE	Conference
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	Danissa V. Rodriguez Doris L. Carver	2020	EIT	Conference
S19	Filtering of false positives from IR-based traceability links among software artifacts	Jyoti Jitender Kumar Chhabra	2017	I2CT	Conference
S20	Quality improvements for trace links between source code and requirements	Paul Hübner	2016	REFSQ	Conference
S21	Recovering Traceability Links between Code and Documentation for Enterprise Project Artifacts	Shouichi Nagano Yusuke Ichikawa Toru Kobayashi	2012	COMPSAC	Conference
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Jyoti Jitender Kumar Chhabra	2017	ICAICR	Journal
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	Wang Bangchao Peng Rong Wang Zhuo Wang Xiaomin Li Yuanbang	2020	IJSEKE	Journal
S24	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited	Nan Niu Anas Mahmoud	2012	RE Conference	Conference and Workshop Papers
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	Adnane Ghannem Mohamed Salah Hamdi Marouane Kessentini Hany H. Ammar	2017	CEC	Conference and Workshop Papers
S26	Supporting requirements traceability through refactoring	Anas Mahmoud Nan Niu	2013	RE Conference	Journal Articles
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	Ritika Jain Smita Ghaisas Ashish Sureka	2014	RAISE	Conference
S28	Towards feature-aware retrieval of refinement traces	Patrick Rempel Patrick Mäder Tobias Kuschke	2013	TEFSE	Conference
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Ryosuke Tsuchiya Hironor Washizakii Yoshiaki Fukazawa Keishi Oshima Ryota Mibe	2015	CAiSE	Conference
S30	Supporting requirements to code traceability through refactoring	Anas Mahmoud Nan Niu	2014	RE Conference	Journal
S31	Recovering traceability links between requirements and source code using the configuration management log	Ryosuke Tsuchiya Hironori Washizaki Yoshiaki Fukazawa Tadahisa Kato Masumi Kawakami Kentaro Yoshimura	2015	IEICE	Journal
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	Nasir Ali Haipeng Cai Abdelwahab Hamou-Lhadj Jameleddine Hassine	2018	IST	Journal
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Hongyu Kuang Hui Gao Hao Hu Xiaoxing Ma	2019	ICPC	Conference

		Jian Lü			
		Patrick Mäder			
		Alexander Egyed			
	Adaptive User Feedback for IR-Based Traceability	Annibale Panichella			
S34	Recovery	Andrea De Lucia	2015	SST	Conference
		Andy Zaidman			
S35	Evolving Software Trace Links between Requirements and	Mona Rahimi	2018	ESE	Journal
	Source Code	Jane Cleland-Huang	2016	ESE	Journal
		Guohua Shen			
	Supporting Requirements to Code Traceability Creation by Code Comments	Haijuan Wang	2021		
S36		Zhiqiu Huang		IJSEKE	Journal
		YaoShen Yu			
		Kai Chen			
		Diana Diaz			
		Gabriele Bavota			
S37	Using code ownership to improve IR-based Traceability	Andrian Marcus	2013	ICPC	Conference
331	Link Recovery	Rocco Oliveto	2013	ICIC	Conference
		Silvia Takahashi			
		Andrea De Lucia			

1.2. Extracted Data for RQ2

Index	1.2. Extracted Data for RQ2 Title	IR Model	Stage
S1	An empirical study on recovering requirement-to-code links	VSM	Links Generation Stage
S2	An Improved VSM-based Post-Requirements Traceability Recovery Approach Using Context Analysis	VSM	Preprocessing Stage
S3	Configuring Latent Semantic Indexing for Requirements Tracing	LSI	Links Generation Stage
S4	A Context-based Information Retrieval Technique for Recovering Use-Case-to-Source-Code Trace Links in Embedded Software Systems	VSM	Preprocessing Stage
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	VSM LSI JS	Links Refinement Stage
S6	An empirical study on the importance of source code entities for requirements traceability	LSI TM(LDA)	Preprocessing Stage
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	VSM	Links Generation Stage
S8	A semantic relatedness approach for traceability link recovery	VSM LSI	Preprocessing Stage
S9	Achieving better requirements to code traceability: which refactoring should be done first?	VSM LSI	Preprocessing Stage
S10	An Empirical Study on Requirements Traceability Using Eye-Tracking	LSI TM(LDA)	Preprocessing Stage
S11	An Improved Approach to the Recovery of Traceability Links between Requirement Documents and Source Codes Based on Latent Semantic Indexing	LSI	Preprocessing Stage Links Generation Stage
S12	An IR-Based Artificial Bee Colony Approach for Traceability Link Recovery	IR-based+	Links Generation Stage
S13	Toward multilevel textual requirements traceability using model-driven engineering and information retrieval	VSM	Links Generation Stage
S14	Code Patterns for Automatically Validating Requirements-to-Code Traces	TM(RTM)	Links Generation Stage
S15	Combining VSM and BTM to improve requirements trace links generation	VSM TM(BTM)	Links Generation Stage
S16	Trustrac: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links	VSM JS	Links Generation Stage
S17	Leveraging historical co-change information for requirements traceability	VSM JS	Links Generation Stage
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	IR-based+	Links Generation Stage
S19	Filtering of false positives from IR-based traceability links among software artifacts	VSM	Links Refinement Stage

S20	Quality improvements for trace links between source code and requirements	IR-based+	Links Generation Stage
S21	Recovering Traceability Links between Code and Documentation for Enterprise Project Artifacts	LSI	Preprocessing Stage
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	VSM	Links Refinement Stage
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	VSM TM(BTM)	Links Generation Stage
S24	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited	VSM	Links Refinement Stage
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	IR-based+	Links Generation Stage
S26	Supporting requirements traceability through refactoring	VSM	Preprocessing Stage
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	TM(LDA)	Preprocessing Stage, Links Generation Stage
S28	Towards feature-aware retrieval of refinement traces	VSM LSI	Links Refinement Stage
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	VSM	Links Generation Stage Preprocessing Stage
S30	Supporting requirements to code traceability through refactoring	VSM LSI	Preprocessing Stage
S31	Recovering traceability links between requirements and source code using the configuration management log	VSM	Links Generation Stage Preprocessing Stage
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	VSM JS	Links Refinement Stage
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	VSM LSI JS	Links Refinement Stage
S34	Adaptive User Feedback for IR-Based Traceability Recovery	VSM	Links Refinement Stage
S35	Evolving Software Trace Links between Requirements and Source Code	VSM LSI	Links Generation Stage
S36	Supporting Requirements to Code Traceability Creation by Code Comments	VSM	Preprocessing Stage
S37	Using code ownership to improve IR-based Traceability Link Recovery	VSM BM	Links Generation Stage

1.3. Extracted Data for RQ3

Index	Title	Enhancement strategy	
S1	An empirical study on recovering requirement-to-code links	Verb-object Phrases	
S2	An Improved VSM-based Post-Requirements Traceability Recovery Approach Using Context Analysis	Context-based	
S3	Configuring Latent Semantic Indexing for Requirements Tracing	None	
S4	A Context-based Information Retrieval Technique for Recovering Use-Case-to-Source-Code Trace Links in Embedded Software Systems	Context-based	
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Analyzing Close Relations of Code Dependencies	
S6	An empirical study on the importance of source code entities for requirements traceability	Improved Term Weighting Scheme	
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Analyzing Close Relations	
S8	A semantic relatedness approach for traceability link recovery	None	
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Refactoring	
S10	An Empirical Study on Requirements Traceability Using Eye-Tracking	Term weighting scheme	
S11	An Improved Approach to the Recovery of Traceability Links between Requirement Documents and Source Codes Based on Latent Semantic Indexing	Term Classification Class Clustering	
S12	An IR-Based Artificial Bee Colony Approach for Traceability Link Recovery	None	
S13	Toward multilevel textual requirements traceability using model-driven engineering and information retrieval	Model-Driven Engineering (MDE)	
S14	Code Patterns for Automatically Validating Requirements-to-Code Traces	Code Calling Relationships	
S15	Combining VSM and BTM to improve requirements trace links generation	Hybrid Method	
S16	Trustrac: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links	Mining Software Repositories	

S17	Leveraging historical co-change information for requirements traceability	Historical Co-change Information
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	None
S19	Filtering of false positives from IR-based traceability links among software artifacts	Correlation Among Classes
S20	Quality improvements for trace links between source code and requirements	None
S21	Recovering Traceability Links between Code and Documentation for Enterprise Project Artifacts	Syntax Tree
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Dynamic Integration of Structural Co-change Coupling
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	Hybrid Method Genetic Algorithm
S24	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited	Cluster hypothesis
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	None
S26	Supporting requirements traceability through refactoring	Refactoring
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	None
S28	Towards feature-aware retrieval of refinement traces	Graph Clustering
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Configuration Management Log User Feedback
S30	Supporting requirements to code traceability through refactoring	Refactoring
S31	Recovering traceability links between requirements and source code using the configuration management log	Configuration Management Log Commonality and Variability Analysis (CVA)
G22		Classification
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	ConPOS approach
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Frugal User Feedback with Closeness Analysis on Code
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Adaptive User Feedback
S35	Evolving Software Trace Links between Requirements and Source Code	Trace Link Evolver
S36	Supporting Requirements to Code Traceability Creation by Code Comments	Code Comments
S37	Using code ownership to improve IR-based Traceability Link Recovery	code OwNership

1.4. Extracted Data for RQ4

Index	Title	Source Artifact	Target Artifact	Datasets
S1	An empirical study on recovering requirement-to-code links	Requirements	Code	eTour iBooks SMS EasyClinic
S2	An Improved VSM-based Post-Requirements Traceability Recovery Approach Using Context Analysis	Use Cases	Code	eTour iTrust
S3	Configuring Latent Semantic Indexing for Requirements Tracing	Requirements Defect Reports Use Cases Change Requests	Requirements Use Cases Test Cases Use Cases	MODIS CM-1 EasyClinic MR0 MR1 MR2
S4	A Context-based Information Retrieval Technique for Recovering Use-Case-to-Source-Code Trace Links in Embedded Software Systems	Use Cases	Code	iRobot iTruck iSudoku
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Requirements	Code	iTrust GanttProject jHotDraw
S6	An empirical study on the importance of source code entities for requirements traceability	Requirements	Code	iTrust Lucene Pooka
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Use Case Requirements	Test Case Design	EasyClinic CM1-NASA

		D a guinamanta	Use Case	Pine
		Requirements	Requirements	GANNT
		Requirements Use Case	Code	iTrust
		Use Case	Code	iTrust
S8	A semantic relatedness approach for traceability link	Use Cases	Code	eTour
30	recovery	Requirements	Design	CM-1
	Achieving better requirements to code traceability:			iTrust
S9	which refactoring should be done first?	Use Cases	Code	eTour
	An Empirical Study on Requirements Traceability			iTrust
S10	Using Eye-Tracking	Requirements	Code	Pooka
	An Improved Approach to the Recovery of			1 OOKa
	Traceability Links between Requirement Documents			Labor Market Monitoring
S11	and Source Codes Based on Latent Semantic	Requirements	Code	Software Product Line (LMMSPL)
	Indexing			engineering
				EBT
S12	An IR-Based Artificial Bee Colony Approach for	Requirements	Code	Albergate
512	Traceability Link Recovery	Use Cases	0000	eTour
	Toward multilevel textual requirements traceability			01001
S13	using model-driven engineering and information	Requirements(not	Requirements(not	None
	retrieval	detail)	detail)	
				VideoOnDemand (VoD)
	Code Patterns for Automatically Validating			Chess
S14	Requirements-to-Code Traces	Requirements	Code	GanttProject
				jHotDraw (JHD)
		Use case	Test Case	WARC
S15	Combining VSM and BTM to improve requirements	Requirements	Test Case	EasyClinic
	trace links generation	Requirements	Requirements	EBT
		·	•	jEdit
916	Trustrac: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links	Requirements	G 1	Pooka
S16			Code	Rhino
				SIP Communicator
	Lavanasina historiaal oo ahanaa informatian fan			iTrust
S17	Leveraging historical co-change information for requirements traceability	Requirements	Code	Pooka
	requirements traceability			SIP Communicator
	Multi-Objective Information Retrieval-Based			EBT
S18	NSGA-II Optimization for Requirements Traceability	Requirements	Code	Albergate
	Recovery			eTour
S19	Filtering of false positives from IR-based traceability	Use Cases	Code	iTrust
	links among software artifacts	000 04000		
S20	Quality improvements for trace links between source	Requirements	Code	Mylyn
	code and requirements	Use Cases		iTrust
	Recovering Traceability Links between Code and			The experiment used actual enterprise
S21	Documentation for Enterprise Project Artifacts	Function Specification	Code	project, the project was the NTT search
				system "i-mage"
	Requirements Traceability Through Information			
S22	Retrieval Using Dynamic Integration of Structural	Use Cases	Code	iTrust
	and Co-change Coupling			
		Use Case	Test Case	WARC subset 1
625	An Automated Hybrid Approach for Generating	Requirements	Test Case	WARC subset 2
S23	Requirements Trace Links	Requirements	Requirements	EBT subset
		Use Cases	Code	EasyClinic
				eTour
624	Enhancing candidate link generation for requirements	Requirements	Code	iTrust
S24	tracing: The cluster hypothesis revisited	Requirements	Design	eTour
				CM-1
S25	Search-Based Requirements Traceability Recovery:	Dogi	C-1-	LEDA
523	A Multi-Objective Approach	Requirements	Code	Albergate
				ETOUR

S26	Supporting requirements traceability through refactoring	Requirements	Code	iTrust eTour WDS
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	Use Cases	Regulatory Documents	The experiments on real-world data obtained from software projects of a large global Information Technology (IT) services company
S28	Towards feature-aware retrieval of refinement traces	Requirements Use Case	Use Case Test Case	EasyClinie CM-1 Waterloo
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Requirements	Code	Author carried out experiments targeting an enterprise system developed by a Japanese company
S30	Supporting requirements to code traceability through refactoring	Requirements	Code	iTrust eTour WDS
S31	Recovering traceability links between requirements and source code using the configuration management log	Requirements	Code	CUnit Network Control System
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	Requirements	Code	iTrust Lynx Pooka SIP Communicator
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Requirements	Code	iTrust Maven Pig GanttProject Infinispan
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Use Cases Test Cases Code UML Interaction Diagram Requirements	Code Code JSP Code Requirements	Easy-Clinic i-Trust Modis
S35	Evolving Software Trace Links between Requirements and Source Code	Requirements	Code	Domain Analysis App DOTS File Generator Apache Cassandra Database System Dronology system
S36	Supporting Requirements to Code Traceability Creation by Code Comments	Use Cases	Code	eTour iTrust
S37	Using code ownership to improve IR-based Traceability Link Recovery	Use Cases	Code	eTour SMOS

1.5. Extracted Data for RQ5, RQ6, RQ7 and RQ8

Index	Title	Intercept points	Measure	Baseline	Evidence level
S1	An empirical study on recovering requirement-to-code links	Threshold	Recall Precision F-Measure	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S2	An Improved VSM-based Post-Requirements Traceability Recovery Approach Using Context Analysis	Unclear	MAP Precision	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S3	Configuring Latent Semantic Indexing for Requirements Tracing	Unclear	MAP AP	None	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S4	A Context-based Information Retrieval Technique for Recovering Use-Case-to-Source-Code Trace Links in Embedded Software Systems	Unclear	Recall, Precision, MAP	VSM	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Thresholds	Recall Precision F-Measure, MAP AP	VSM LIS JS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S6	An empirical study on the importance of source	Threshold	Recall	LSI	Level 4. Evidence obtained from

	code entities for requirements traceability		Precision F-Measure		industrial studies (e.g., causal case studies in an industrial setting).
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Threshold	Recall Precision MAP AP	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S8	A semantic relatedness approach for traceability link recovery	Threshold	Recall Precision F-Measure, MAP DiffAR Lag	VSM LSI	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Threshold	None	VSM LIS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S10	An Empirical Study on Requirements Traceability Using Eye-Tracking	Threshold	Recall, Precision F-Measure	LSI	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S11	An Improved Approach to the Recovery of Traceability Links between Requirement Documents and Source Codes Based on Latent Semantic Indexing	Threshold	Recall Precision	LSI	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S12	An IR-Based Artificial Bee Colony Approach for Traceability Link Recovery	Iteration	Recall Precision F-Measure	IR-based+	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S13	Toward multilevel textual requirements traceability using model-driven engineering and information retrieval	None	None	None	Level 1. Evidence obtained from demonstration or working out with toy examples.
S14	Code Patterns for Automatically Validating Requirements-to-Code Traces	None	Recall Precision	TM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S15	Combining VSM and BTM to improve requirements trace links generation	Threshold	Recall Precision	VSM TM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S16	Trustrac: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links	Threshold	Recall Precision F-Measure	VSM JS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S17	Leveraging historical co-change information for requirements traceability	Threshold	Recall Precision	VSM JS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	Iteration	Recall Precision F-Measure	VSM LSI JS TM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S19	Filtering of false positives from IR-based traceability links among software artifacts	Iteration	Recall Precision F-Measure	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S20	Quality improvements for trace links between source code and requirements	Threshold	Recall Precision	IR-based+	Level 1. Evidence obtained from demonstration or working out with toy examples.
S21	Recovering Traceability Links between Code and Documentation for Enterprise Project Artifacts	Threshold	Recall Precision F-Measure	LIS	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Threshold	Recall, Precision F-Measure	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	Selectivity	Recall Precision F-Measure Selectivity	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S24	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited	Threshold	Recall Precision MAP	VSM	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	Iteration	Recall Precision	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S26	Supporting requirements traceability through refactoring	Threshold	Recall Precision MAP DiffAR	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	Unclear	AP MAP	LDA	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S28	Towards feature-aware retrieval of refinement traces	Unclear	Recall Precision AP	VSM LSI	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).

S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Threshold	Recall Precision F-Measure	VSM	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S30	Supporting requirements to code traceability through refactoring	Threshold	Recall Precision MAP DiffAR	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S31	Recovering traceability links between requirements and source code using the configuration management log	Threshold	Recall Precision F-Measure	VSM	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	Unclear	Recall Precision MAP AP	VSM JS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Threshold	Recall Precision F-Measure MAP AP	VSM LSI JS	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Threshold	Recall Precision	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S35	Evolving Software Trace Links between Requirements and Source Code	Unclear	Recall Precision F-Measure	VSM LSI	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S36	Supporting Requirements to Code Traceability Creation by Code Comments	Unclear	Recall Precision MAP AP	VSM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S37	Using code ownership to improve IR-based Traceability Link Recovery	Threshold	Recall Precision	VSM BM	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).

Table 7. List of enhancement strategies for IR-based requirements trace recovery approaches

Table 7. List of enhancement strategies for IR-based requirements trace recovery approaches										
Strategy	VSM	LSI	JS	LDA	IR model BTM	RTM	BM	Applying Phrase	Strategy Characteristics	
Context- based [S2][S4]	•							P	Separating intent from context in requirements	
Improved Term Weighting Scheme [S6][S10]		•		•				P	Proposing an improved term weighting scheme, namely, Developers Preferred Term Frequency/Inverse Document Frequency (DPTF/IDF)	
Refactoring [S9][S26][S30]	•	•						P	Solving the problem of missing symbols, misplaced symbols and repeated symbols	
Syntax Tree [S21]		•						P	Primary identifier keywords are converted to comment keywords by their similarity in appearance in the syntax tree location	
Code Comments [S36]	•							P	Introducing different types of annotations to some extent compensate for vocabulary mismatches between requirements and source code to improve the accuracy of tracing links.	
Commonality and Variability Analysis (CVA) [S31]	•							P	Analyzing to which products elements (e.g., requirements, code elements) belong.	
Term Classification [S11]		•						P	Categorizing class names, comments, and all other terms in code	
Analyzing Close Relations [S7]	•							G	Calculating the close relations (semantic similarity) between target artifacts	
Verb-object Phrases [S1]	•							G	Extracting verb-object phrases as main information and essential meaning	
Model-Driven Engineering (MDE) [S13]	•							G	Combining use of both MDE and IR, analyzing the textual information (organization and hierarchy) contained in the model to retrieve implicit links between documents	
Hybrid Method [S15][S23]	•				•			G	Combing VSM and BTM which can help relieve data sparsity caused by short text	
Genetic Algorithm [S23]					•			G	Configuring initial parameters of BTM by introducing Genetic Algorithm	
Code Calling Relationships [S14]						•		G	Identifying errors between requirements and code traces by code-calling relationships	
Historical Co-change Information [S17]	•	•						G	Taking the processed corpora and co-change information of classes as input to reorder and filter baseline links	
Configuration Management Log [S29][S31]	•							G	Restoring links by finding revisions in the configuration management log that contain words related to requirements	
Adaptive User Feedback [S34]	•							G	Determining whether and how to apply relevant feedback based on the verbosity of the software artifacts and the number of correct links and false positives that have been categorized. The accuracy is improved by combining the judgment provided by users on classified links.	
Trace Link Evolver (TLE) [S35]	•	•						G	Proposing a TLE, which relies on a set of heuristics combined with refactoring detection tools and IR algorithms, to detect predefined change scenarios that occur between successive versions of a software system.	
Code Ownership [S37]	•						•	G	Using source code ownership information to capture relationships between source code artifacts to improve recovery of trace links between documents and source code.	
Mining software repositories [S16]	•		•					G	An expert is introduced to discard/reorder the baseline traceability links. The expert can submit messages and bugs reports by mining CVS/SVN in the software repository, and store all recovered requirements and links between the software repository in a dedicated set.	
Dynamic Integration of Structural and Co-change Coupling [S22]	•							R	Retrieving indirect links based on weighted integration of structural coupling and class coupling based on change history	
Cluster hypothesis [S24]	•							R	By discovering appropriate clustering mechanisms, distinguish between high quality and low-quality clusters, filter links in low quality clusters, catch all possible correct traceability links, and reduce false links.	
Frugal User Feedback with Closeness Analysis on Code [S33]	•	•	•					R	Introducing only a small amount of user feedback into the closeness analysis on call and data dependencies in code	
User Feedback [S29]	•							R	Introducing user validation for candidate links to improve accuracy	
Analyzing Closeness of Code Dependencies [S5]	•	•	•					R	Quantifying the interaction degree of call dependency and data dependency between two code classes	
Class Clustering [S11]		•						R	The products in the clustering have similar trace relationships	
Correlation among Classes [S19]	•							R	Using structural or co-changing dependencies or both to find correlations between classes and use these dependencies to verify traceability links	
Graph Clustering [S28]	•	•						R	Information about the cohesion of artifacts within a level of refinement helps improve the trace retrieval process between levels of refinement	
ConPOS approach [S32]	•		•					R	Pruning trace links using the primary POS classification and apply constraints to recovery as a filtering process	

POS approach [S32]

Note: "•" represents support; "P" represents Preprocessing Stage, "G" represents Links Generation Stage, "R" represents Links Refinement Stage.

Table 8. Datasets' information and the studied papers which used the datasets

	1 abie 8. L	Datasets' informati	on and th		papers whi	ich usec	the datasets	
Dataset Name	Source Artifacts (Number)	Target Artifacts (Number)	Space	True Links	Scale	Freq.	Resource links	Reference
·T.	Use Cases (34)	Code (243)	8262	603	Large	10	1	[S2][S5][S6][S7][S8][S9][S10][S17][S19][S20][S
iTrust	Requirements (50)	Code (299)	14950	314	~ "	18	http://www.coest.org/	22][S24][S26][S30][S33
	Use Cases (33) Use Cases (58)	JSP (47)	1551 6728	58 308	Small][S34][S35][S37]
eTour	` ′	Code (116)			Large	13	http://www.coest.org/	[S1][S2][S8][S9][S12][S 18][S23][S24][S25][S26
	Requirements (58)	Code (116)	6728	366	8-][S30][S37][S38]
	Requirements (30)	Code (47)	1410	83				
EasyClinic	Use Cases (30) UML Interaction Diagram	Test Cases (63)	1890	63	Small	7	http://www.coest.org/	[S1][S3][S7][S15][S23][S28][S35]
	(20)	Code Classes (47)	940	69				520][555]
	High-level Requirements (235)	Design (220)	51700	361				
CM-1	Requirements (235)	Design (220)	51700	361	Large	5	http://www.coest.org/	[S3][S7][S8][S24][S28]
	Requirements (235)	Use Case (Unclear)	Unclear	Unclear				
	Requirement (298)	Code (90)	26820	546	Unclear			
	Requirements (41)	Test Cases (25)	1025	51			http://www.guhania.n	[04][010][014][017][02
Pooka	Requirements (90)	Code (298)	26820	546	Large	5	http://www.suberic.n et/pooka/	[S6][S10][S16][S17][S3 3]
EBT	requirements (40)	Code (50)	2000	98	Small	4	http://www.coest.org/	[S12][S15][S18][S23]
EBI	Requirements (16)	Code (124)	1173	315	Siliali	-	1 2	[312][313][316][323]
GanttProject	Requirements (17)	Code (55)	935	54	Small	4	http://www.ganttproj ect.biz	[S5][S7][S14][S34]
Albergate	Requirements (82)	Code (1771)	145222	871	Small	3	http://www.coest.org/	[S12][S18][S25]
SIP Communicator	Non-functional	Software Requirements	1869	58	Large	3	http://www.jitsi.org	[S16][S17][S33]
Communicator	Requirements (21)	Specification (89)						
WARC	Functional Requirements (43)	Software Requirements Specification (89)	3827	78	Small	2	http://www.coest.org/	[S15][S23]
WARC	High-level Requirements (17)	Low-level Requirements (69)	1173	68	Large		nup.//www.coest.org/	[513][523]
GANNT	Use Cases (67)	Code (100)	6700	1044	Small	1	http://www.coest.org/	[S7]
SMOS	Requirements (34)	Code (483)	16422	Unclear	Large	1	http://www.coest.org/	[S38]
jEdit v4.3	Requirements (237)	Code (388)	91956	1515	Large	1	http://www.jedit.org.	[S16]
Infinispan Lucene	Requirements (116) Requirements (268)	Code (413) Code (138)	47908 36984	744 Unclear	Large Large	1	http://infinispan.org/ http://lucene.apache.	[S34] [S6]
Rhino v1.6	Requirements (90)	Code (298)	26820	507	Large	1	org http://www.mozilla.o rg/rhino/	[S16]
Lynx	Requirements (128)	Code (unclear)	Unclear	376	Unclear	1	http://lynx.isc.org/	[S33]
Maven	Requirements (68)	Code (236)	16048	356	Large	1	http://maven.apache.	[S34]
Pig	Requirements (Unclear)	Code (Unclear)	Unclear	Unclear	Large	1	https://pig.apache.org	[S34]
Mylyn	Requirements (16)	Code (144)	2,304	221	Unclear	1	http://www.eclipse.or g/mylyn/developers	[S20]
jHotDraw (JHD)	High-level Requirements (19)	Low-level Requirements (49)	931	567	Small	2		[S5][S14]
MODIS	Requirements (26)	Code (521)	13,546	229	Small	2		[S3][S35]
WDS Chess	requirements (8)	Code (408) Code (unclear)	3240	3240	Large	2		[S26][S30]
Chess	Requirements (15) Requirements (19)	Code (unclear) Code (61)	Unclear 1159	Unclear 104	Large	1		[S14]
iBooks	Use Cases (21)	Code (20)	420	45	Small	1		[S1]
iRobot	Use Cases (24)	Code (14)	336	37	Small	1		[S4]
iTruck	Use Cases (18)	Code (54)	872	51	Small	1		[S4]
iSudoku	Requirements (64)	Code (102)	6,528	1,071	Small	1		[S4]
SMS MR0	Use Cases (24) Defect Reports (135)	Test Cases (60) Use Cases (28)	1,440 3,780	711 Unclear	Small Small	1		[S1] [S3]
MR1	Change Requests (28)	Use Cases (21)	588	Unclear	Small	1		[83]
MR2	Requirements (49)	Use Cases (51)	2,499	Unclear	Small	1		[S3]
Pine	Requirements (13)	Code (169)	2,197	Unclear	Small	1		[S7]
VideoOnDema nd (VoD)	Requirements (unclear)	Use Cases (unclear)	Unclear	Unclear	Small	1		[S14]
Waterloo	Requirements (88)	Code (208)	18,304	Unclear	Unclear	1		[S28]
LEDA	Requirements (49)	Code (208) Code (unclear)	Unclear	Unclear	Large	1		[S25]
network control system	Requirements (9)	Code (thiclear)	36	11	Unclear	1		[S32]
Domain Analysis App	Requirements (7)	Code (5)	35	7	Small	1		[S36]

2. Search process record

Database	Number of searches	Number of repetitions in each database	Number of each database (After deleting repetitions)	Number of repetitions in all 6 databases	Total number (After deleting repetitions)
IEEE	485	369	116		
EI	1156	639	517		
Science Direct	87	47	40	102	1618
Springer	266	0	266	193	1018
ACM	62	31	31		
Google scholar	1073	232	841		

2.1. Search records

Search terms:

P1	requirement traceability			
P2	requirement trace			
Р3	requirement tracing			
P4	requirement traceability recovery			
I1	information retrieval			
I2	IR			
I3 semantic				

(1) IEEE

	Abstract	Title	Index term
P1+I1	38	2	49
P1+I2	21	0	12
P1+I3	38	3	20
P2+I1	34	0	23
P2+I2	17	0	4
P2+I3	27	1	11
P3+I1	34	0	23
P3+I2	17	0	4
P3+I3	27	1	11
P4+I1	13	1	20
P4+I2	9	0	9
P4+I3	9	1	6
Total		485	

An example screenshots of search process in IEEE

P1+I1: Abstract

(2) EI

	Abstract + Title + Keywords (Index term)
(p1 or p2 or p3 or p4) and (I1)	344
(p1 or p2 or p3 or p4) and (I2)	270
(p1 or p2 or p3 or p4) and (I3)	542
Total	1156

The screenshots of search process in EI

(p1 or p2 or p3 or p4) and (I1): Abstract + Title + Keywords

(3) Springer

	Abstract + Title + Keywords (Index term)
(p1 or p2 or p3 or p4) and	266
(I1 or I2 or I3)	200

The screenshots of search process in Springer:

(4) Science Direct

	Abstract + Title + Keywords (Index term)
P1+I1	10
P1+I2	16
P1+I3	12
P2+I1	10
P2+I2	16
P2+I3	12
P3+I1	3
P3+I2	4
P3+I3	3
P4+I1	1
P4+I2	0
P4+I3	0
Total	87

An example screenshots of search process in Elsevier

P1+ I1: Abstract + Title + Keywords:

(5) ACM

	Full text	Anywhere	
P1+(I1, I2, I3)	24	24	
P2+(I1, I2, I3)	4	4	
P3+(I1, I2, I3)	3	3	
P4+(I1, I2, I3)	0	0	
Total	62		

An example screenshots of search process in ACM Full text:

(6) Google Scholar

	Title	Abstract	Index term
(p1 or p2 or p3 or p4) and (I1 or I2 or I3)	216	7	850
Total	107:	3	

An example screenshots of search process in Google Scholar

intext:

