Écriture positionnelle des nombres Conversions Unicité et période Opérations en base B Encodage des nombres

MATHÉMATIQUES DISCRÈTES

Chapitre 4 Numération

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

2015-2016

Encodage des nombres

Chapitre 4: Numération

- ÉCRITURE
 POSITIONNELLE DES
 NOMBRES
 - Base quelconque
 - Exemples
- 2 Conversions
 - Vers la base 10
 - Depuis la base 10
- 3 Unicité et période
 - Nombres rationnels
 - Problème d'unicité

- Opérations en base B
 - Somme et produit
 - Différence et complément
- 5 ENCODAGE DES
 - Nombres non signés
 - Nombres signés
 - Nombres flottants

ECRITURE POSITIONNELLE

Base et Chiffres

Soit $B \ge 2$ la base du système de numération.

En base B les chiffres sont B symboles différents $0, 1, 2, \dots, B-1$.

ÉCRITURE POSITIONNELLE EN BASE B DE X

Tout réel x positif s'écrit en base B comme une suite (éventuellement infinie)

$$x = (c_k c_{k-1} c_{k-2} \cdots c_1 c_0, c_{-1} c_{-2} \cdots)_B$$

où les c_i sont des chiffres en base B_i , si et seulement si on a :

$$x = \sum_{i \le k} c_i B^i$$

M1201-4

Partie entière et fractionnaire

DÉFINITION

La partie entière de x, est la suite des chiffres d'indice positif ou nul.

$$int(x) = (c_k c_{k-1} c_{k-2} \cdots c_1 c_0)_B$$

La partie fractionnaire de x, est la suite des chiffres d'indice négatif.

$$frac(x) = (0, c_{-1}c_{-2}\cdots)_B$$

REMARQUE

- $\forall x \in \mathbb{R}^+$, $\operatorname{int}(x) \in \mathbb{N}$
- $\forall x \in \mathbb{R}^+, \ 0 \le \operatorname{frac}(x) < 1$
- $\forall x \in \mathbb{R}^+, \ x = \operatorname{int}(x) + \operatorname{frac}(x)$

Conventions d'écriture

Remarque

Dans l'écriture positionnelle de x on observe certaines conventions d'écriture :

- le premier chiffre c_k doit être non nul sauf si c'est c_0 .
- s'il existe un entier négatif ou nul m tel que $c_m \neq 0$ et $\forall i < m, \ c_i = 0$ alors on n'écrit pas les 0 qui suivent, c'est à dire que l'on écrira

$$x = (c_k c_{k-1} c_{k-2} \cdots c_1 c_0, c_{-1} c_{-2} \cdots c_m)_B$$

On dira dans ce cas que x admet une partie fractionnaire limitée. Si par contre un tel entier m n'existe pas, alors x admet une partie fractionnaire illimitée.

Encodage des nombres

Base 10

RAPPEL

En base 10, chaque chiffre, selon sa position, est multiplié par une puissance de 10.

EXEMPLE

Le nombre $N = (4275, 306)_{10}$ représente

$$4 \cdot 10^3 + 2 \cdot 10^2 + 7 \cdot 10^1 + 5 \cdot 10^0 + 3 \cdot 10^{-1} + 6 \cdot 10^{-3}$$

Et l'on a

- $int(N) = (4275)_{10}$
- $frac(N) = (0,306)_{10}$.

BITS

Les chiffres 0 et 1 du système de numération en base 2, dit système binaire, sont appelés bits à partir des mots anglais binary digits.

ECRITURE BINAIRE

$$\begin{array}{rcl} (11001,1)_2 & = & 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} \\ & = & 16 + 8 + 1 + 0,5 \\ & = & 25,5_{10} \end{array}$$

Système ternaire

Les chiffres du système de numération en base 3 sont 0,1,2.

EXEMPLE

On écrit alors tout nombre réel comme la somme de 0, 1 ou 2 puissances de 3.

$$(25)_{10} = 2 \cdot 9 + 2 \cdot 3 + 1 = (221)_3$$

Viceversa

$$(2102,2)_3 = 2 \cdot 3^3 + 1 \cdot 3^2 + 0 \cdot 3^1 + 1 \cdot 3^0 + 2 \cdot 3^{-1}$$
$$= 2 \cdot 27 + 9 + 2 + 0,6666...$$
$$= 65,6666..._{10}$$

M1201-4

REMARQUE

Comme $4=2^2$ tous les chiffres de la base 4 s'écrivent en binaire avec 2 bits :

$$\begin{array}{rcl}
00_2 & = & 0_4 \\
01_2 & = & 1_4 \\
10_2 & = & 2_4 \\
11_2 & = & 3_4
\end{array}$$

Donc la conversion entre base 2 et 4 est aisée :

$$(57,5)_{10} = (111001,1)_2 = (321,2)_4$$

Système octal

Les chiffres du système octal sont 0, 1, 2, 3, 4, 5, 6, 7. Chacun s'écrit avec 3 bits en binaire.

EXEMPLE

$$(74,1)_8 = 7 \cdot 8 + 4 + 8^{-1} = (60,125)_{10}$$

= $(111\ 100,001)_2$

Encodage des nombres

Base 16

Système hexadécimal

Les chiffres du système hexadécimal sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Chacun s'écrit avec 4 bits en binaire.

EXEMPLES

$$F1_{16} = (1111\ 0001)_2$$

Chapitre 4: Numération

- ÉCRITURE
 POSITIONNELLE DES
 NOMBRES
 - Base quelconque
 - Exemples
- 2 Conversions
 - Vers la base 10
 - Depuis la base 10
- 3 Unicité et période
 - Nombres rationnels
 - Problème d'unicité

- Opérations en base B
 - Somme et produit
 - Différence et complément
- 5 ENCODAGE DES
 - Nombres non signés
 - Nombres signés
 - Nombres flottants

Conversion vers la base 10

MÉTHODE

Il suffit de multiplier chaque chiffre de la base B par la bonne puissance de B et faire la somme.

EXEMPLES

- depuis la base 5 : $(432.1)_5 = 4 \cdot 5^2 + 3 \cdot 5 + 2 + 1 \cdot 5^{-1} = (117.2)_{10}$
- depuis la base 11 : $(AAA)_{11} = 10 \cdot 11^2 + 10 \cdot 11 + 10 = 1210 + 110 + 10 = (1330)_{10}$

Conversion depuis la base 10

Conversion de la partie entière

Pour convertir un nombre entier N de la base 10 vers la base B:

- **1** on fait la division entière de N par $B: N = B \cdot q + r$
- $oldsymbol{2}$ r est le premier chiffre de l'écriture de N en base B
- \odot on recommence avec q à la place de N
- on stoppe quand q = 0

EXEMPLE BINAIRE

ECRITURE BINAIRE DE 109

$$109 = 2 \times 54 + 1
54 = 2 \times 27 + 0
27 = 2 \times 13 + 1
13 = 2 \times 6 + 1
6 = 2 \times 3 + 0
3 = 2 \times 1 + 1
1 = 2 \times 0 + 1$$

Et on trouve $(109)_{10} = (1101101)_2$.

CONVERSION DE LA PARTIE FRACTIONNAIRE

MÉTHODE

Pour convertir un nombre décimal x < 1 en base B:

- **1** on multiplie x par $B: y = x \cdot B$
- 2 la partie entière de y est le premier chiffre après la virgule de l'écriture de x en base B
- \bullet on recommence avec frac(y) à la place de x
- on stoppe quand frac(y) = 0

EXEMPLE BINAIRE

ECRITURE BINAIRE DE $(0,78125)_{10}$

$$0,78125 \times 2 = 1,5625$$

 $0,5625 \times 2 = 1,125$
 $0,125 \times 2 = 0,25$
 $0,25 \times 2 = 0,5$
 $0,5 \times 2 = 1$

Donc
$$(0,78125)_{10} = (0,11001)_2$$
.

EXEMPLE EN BASE 5

ECRITURE DE 64,7 EN BASE 5

Partie entière

$$64 = 5 \times 12 + 4$$

$$12 = 5 \times 2 + 2$$

$$2 = 5 \times 0 + 2$$

Partie fractionnaire

$$0,7 \times 5 = 3,5$$

 $0,5 \times 5 = 2,5$
 $0,5 \times 5 = 2,5$
...

En définitive

$$(64,7)_{10} = (224,322...)_5$$

M1201-4

Chapitre 4: Numération

- 1 ÉCRITURE POSITIONNELLE DES NOMBRES
 - Base quelconque
 - Exemples
- 2 Conversions
 - Vers la base 10
 - Depuis la base 10
- UNICITÉ ET PÉRIODE
 - Nombres rationnels
 - Problème d'unicité

- Opérations en base
 B
 - Somme et produit
 - Différence et complément
- 5 ENCODAGE DES
 - Nombres non signés
 - Nombres signés
 - Nombres flottants

ECRITURE EN BASE B DES NOMBRES RATIONNELS

THÉORÈME

Tous les nombres rationnels s'écrivent, en base B

- soit avec une écriture fractionnaire finie
- soit avec une écriture fractionnaire infinie mais périodique

RÉCIPROQUE

Un nombre qui en base B a une écriture fractionnaire finie ou périodique est forcément un nombre rationnel

COROLLAIRE

Un nombre irrationnel a une écriture fractionnaire illimitée et non périodique dans toutes les bases.

UNICITÉ?

21/45

PROBLÈME

Y a-t-il unicité dans l'écriture d'un nombre N dans une base B?

En général, NON

Exemple (en base 10)

On considère le nombre $x=(0,999999999\dots)_{10}$ Alors, $10\cdot x=(9,999999999\dots)_{10}$ donc en soustrayant cette formule à la précédente :

$$10x - x = 9 \Rightarrow 9x = 9 \Rightarrow x = 1$$

Donc en conclusion j'ai deux façons différentes d'écrire le nombre 1.

Chapitre 4: Numération

- 1 ÉCRITURE POSITIONNELLE DES NOMBRES
 - Base quelconque
 - Exemples
- 2 Conversions
 - Vers la base 10
 - Depuis la base 10
- UNICITÉ ET PÉRIODE
 - Nombres rationnels
 - Problème d'unicité

- Opérations en base B
 - Somme et produit
 - Différence et complément
- 5 ENCODAGE DES
 - Nombres non signés
 - Nombres signés
 - Nombres flottants

SOMME

Addition en base B

L'algorithme d'addition usuel, somme chiffre par chiffre de la droite à la gauche en reportant les retenues, fonctionne dans toutes les bases

Il suffit de connaître les tables d'addition.

Tables en base 2, 3 et 4

+	0	1
0	0	1
1	1	10

+	0	1	2
0	0	1	2
1	1	2	10
2	2	10	11

+	0	1	2	3
0	0	1	2	3
1	1	2	3	10
2	2	3	10	11
3	3	10	11	12

MULTIPLICATION

Multiplications en base B

L'algorithme de produit usuel, fonctionne dans toutes les bases Il suffit de connaître les tables de multiplication.

Tables en base 2, 3 et 4

×	0	1
0	0	0
1	0	1

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	11

×	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	10	12
3	0	3	12	21

EXEMPLE

Exemple de produit en base 2

Exemple de produit en base 3

M1201-4

Complément

DÉFINITION

Si N est un entier naturel, alors le complément à la base B de N, noté $C_B(N)$ est le nombre positif qu'il faut rajouter à N pour avoir la plus proche puissance de B.

Si N en base B s'écrit avec k chiffres alors

$$C_B(N) = B^k - N$$

EXEMPLES

En base 10, $C_{10}(381) = 619$ car $381 + 619 = 10^3$. En base 2, $C_2(1011\ 1100) = 0100\ 0100$ car $1011\ 1100 + 0100\ 0100 = 1\ 0000\ 0000 = 2^8$.

M1201-4

PROPRIÉTÉS

Cas du binaire

En base 2, on calcule le complément à 2 de $N=1100\ 0100$ en deux étapes :

lacksquare on calcule le complément à $1:0\leftrightarrow 1$

$$C_1(N) = 0011 \ 1011$$

on ajoute 1 pour obtenir le complément à 2

$$C_2(N) = 0011\ 1011 + 1 = 0011\ 1100$$

Pour tout entier N et toute base B

$$C_B(C_B(N)) = N$$

SOUSTRACTION

SOUSTRACTION EN UTILISANT LE COMPLÉMENT

Le complément à la base permet de remplacer une soustraction par l'addition du complémentaire.

Pour faire une soustraction en base 10 on va avoir

$$A - B = A + C_{10}(B) - 10^k$$

où k est le nombre de chiffre utilisé pour écrire A et B.

Soustraction en base 10

CALCUL DE A-B

avec A = 2389 et B = 778.

• on calcule le complément à 10 de B sur 4 chiffres

$$C_{10}(0778) = 9222$$

② on ajoute le complément :

$$A + C_{10}(B) = 2389 + 9222 = 12611$$

on enlève le 1 qui dépasse.

$$A - B = 12611 - 10^4 = 2611.$$

Soustraction en base 2

EN BASE 2

En base 2, le bénéfice de passer par le complément à 2 est évident :

- le complément à 1 est juste une négation des bits
- la somme est une opération élémentaire
- la méthode du complément à 2 est utilisée pour stocker en mémoire les nombres négatifs : pour mémoriser un nombre entier négatif A, ce qui est écrit en mémoire est en fait $C_2(-A)$.

Chapitre 4: Numération

- ÉCRITURE
 POSITIONNELLE DES
 NOMBRES
 - Base quelconque
 - Exemples
- 2 Conversions
 - Vers la base 10
 - Depuis la base 10
- 3 Unicité et période
 - Nombres rationnels
 - Problème d'unicité

- Opérations en base B
 - Somme et produit
 - Différence et complément
- **5** ENCODAGE DES NOMBRES
 - Nombres non signés
 - Nombres signés
 - Nombres flottants

CODAGE EN MACHINE

Codage en machine

Dans un ordinateur toutes les données sont codées avec des 0 et des 1 sans forcément être des nombres :

- du texte (encodage ASCII, UTF-8, UTF-16)
- de la musique
- des images
- de la video.

On utilise des nombres binaires (écrits en hexadécimal) pour décrire le contenu d'une zone mémoire, même si ce n'est pas un nombre qui est stocké.

Exemple : les caractères imprimables de la table ASCII vont de 20_{16} à $7E_{16}$

CODAGE DES NOMBRES

DIFFÉRENTS CODAGES

Il y a différentes façons d'encoder des nombres en mémoire selon le type de nombre que l'on veut stocker. Les principaux sont les suivants :

- si on a des nombres entiers seulement positif ou nul, on va choisir un encodage comme entier non signé
- si on des entiers positifs ou négatifs on choisit le codage des entiers signés
- si on veut travailler avec des nombres à virgule, on choisit les représentations à virgule flottante

Chaque format à sa syntaxe et existe en plusieurs taille.

Entiers non signés

CODAGE

Si l'on doit représenter un entier N positif ou nul dans une mémoire de k bits, on code N en l'écrivant en binaire dans la mémoire (s'il rentre).

Le plus grand entier que l'on peut écrire avec k bits est $2^k - 1$.

EXEMPLES

• sur 8 bits : $0 \le N \le 255$

• sur 16 bits : $0 \le N \le 2^{16} - 1$

• sur 32 bits : $0 \le N \le 2^{32} - 1$

Entiers signés

CODAGE

Si l'entier N peut être positif ou négatif, on doit utiliser un des bits pour coder l'information sur le signe :

- Si N ≥ 0 :
 - le premier bit est 0;
 - on écrit N en binaire à l'aide des k-1 bits restants.
- Si N < 0 :
 - le premier bit est 1;
 - on écrit le complément à 2 de |N| en binaire à l'aide des k-1 bits restants.

EXEMPLES

ECRITURE DE 5 ET -5 SUR 8 BITS

- si N = 5 > 0, alors $N = 101_2$ et donc la représentation sera 0000 0101 sur 8 bits.
- si N = -5 < 0, alors $|N| = 5 = 101_2$ et $C_1(|N|) = 111$ 1010 et $C_2(|N|) = 111$ 1011₂. Donc -5 est représenté par 1111 1011.

Remarque

Avantage : $5 + (-5) = 0000 \ 0101 + 111 \ 11011 = 1 \ 0000 \ 0000 \ qui$ est 0 sur 8 bits.

QUELLES LIMITES?

Déséquilibre

Quels sont alors les nombres qui peuvent être écrits avec k bits en mode signé?

- si $N \ge 0$ alors $0 \le N \le 2^{k-1} 1$
- si N < 0 alors $-2^{k-1} < N < 0$

Au total : $2^{k-1} - 1$ nombres positifs, 1 nombre nul et 2^{k-1} nombres négatifs. Ce qui donne 2^k possibilités.

Cas usuels

- sur 8 bits : -128 < N < +127
- sur 16 bits : $-2^{15} < N < 2^{15} 1$
- sur 32 bits : $-2^{31} < N < 2^{31} 1$

M1201-4

ERREUR DE DÉPASSEMENT

OVERFLOW

Si l'on dépasse ces intervalles on obtient des erreurs de calcul. Par exemple avec des entiers signés sur un octet :

$$127 + 1 = 0111 1111 + 0000 0001$$
$$= 1000 0000$$
$$= -128$$

car
$$C_2(1000\ 0000) = 0111\ 1111 + 1 = 1000\ 0000 = 128$$
.

SÉQUENCE SUR 8 BITS

$$127 = 0111 1111$$

$$\cdots = \cdots$$

$$3 = 0000 0011$$

$$2 = 0000 0001$$

$$1 = 0000 0000$$

$$-1 = 1111 1111$$

$$-2 = 1111 1110$$

$$-3 = 1111 1101$$

$$\cdots = \cdots$$

$$-128 = 1000 0000$$

Nombres à virgule flottante

- Codage le plus utilisé pour stocker des nombres qui ne sont pas forcément entiers (standard international IEEE 754);
- basé sur l'écriture scientifique de x en base 2 :

$$x = \pm 1, c_{-1}c_{-2}c_{-3}c_{-4}\cdots c_{-k} \times 2^{e}$$

ECRITURE S-E-M SUR 32 OU 64 BITS

- s est le signe sur 1 bit : 0 pour positif et 1 pour négatif.
- e, l'exposant auquel on applique un décalage est écrit en binaire sur 8 bits (*float*) ou 11 bits (double).
- m, la mantisse (privée du 1 initial), $c_{-1}c_{-2}c_{-3}c_{-4}\cdots c_{-k}$ sur k bits; avec k=23 (float) ou k=52 (double).

DÉCALAGE DE L'EXPOSANT

PRINCIPE

Dans l'écriture scientifique d'un nombre, l'exposant peut être positif ou négatif. \Rightarrow il faudrait donc aussi coder le signe de l'exposant

Le choix fait par le standard IEEE754 est

- ajouter un nombre fixe à l'exposant (127 pour un float) : e' = e + 127
- coder le nombre obtenu en binaire (sur 8 bits pour un float)

EXEMPLES

- si l'exposant est −3 on code 124
- si l'exposant est +3 on code 130
- ullet de ce fait les exposants sont dans l'intervalle de -127 à +128

VALEURS SPÉCIALES

Plus ou moins infini

Les valeurs $\pm\infty$ sont codées en ne mettant que des 1 dans l'exposant et que des 0 dans la mantisse

NAN

NaN signifie Not A Number et peut être un résultat retourné par certains calculs (comme une division par zéro).

Il est codé en ne mettant que des 1 dans l'exposant, et autre chose que des zéros dans la mantisse.

Plus ou moins zéro

Il y a deux façons d'écrire 0 en tant que flottant, en mettant le signe plus ou moins.

EXEMPLE DE FLOAT

EXEMPLE DE CODAGE

Si on veut coder -13,75 comme un nombre flottant. On a :

$$13,75 = 1101,11_2 = 1,10111 \cdot 2^3$$

Donc:

- *s* = 1
- $e = 3 + 127 = 130 = 1000 \ 0010_2$
- $m = 101 \ 1100 \ 0000 \ 0000 \ 0000 \ 0000_2$

Ce qui donne en mémoire :

Exemple de float – suite

Exemple de décodage

Si un nombre flottant est codé par :

$$45 \ 3C \ F0 \ 00_{16} = 0100 \ 0101 \ 0011 \ 1100 \ 1111 \ 0000 \ 0000 \ 0000_2$$

Alors

- s = 0 donc le nombre est positif
- $e = 1000 \ 1010_2 = 138_{10}$ donc l'exposant de l'écriture scientifique est 138 127 = 11
- $m = 011 \ 1100 \ 1111 \ 0000 \ 0000 \ 0000_2$

Ce qui donne le nombre :

$$x = +1,01111001111 \cdot 2^{11} = 1011 \ 1100 \ 1111_2 = 3023_{10}$$

M1201-4

ARRONDI ET PRÉCISION

Précision

- Les nombres flottants en simple précision (32 bits) conservent 23 bits significatifs en plus du 1 avant la virgule. Leur précision en base 10 et de 7 décimales car $\log_{10}(2^{24}) \approx 7,2$.
- Pour la double précision, on a 53 bits de précision, soit 15 décimales.

Arrondi

Si le nombre à coder a une écriture scientifique en base 2 avec une mantisse de plus de 23 bits, on arrondit avec la règle suivante :

- si le 24^{ème} bit est 1, on arrondit par excès
- si le 24^{ème} bit est 0, on arrondit par défaut