

HIGH PERFORMANCE COMPUTER SYSTEMS

300 SERIES

SERVICE MANUAL

COMPONENT LEVEL SUPPLEMENT

© Copyright Acorn Computers Limited 1988

Neither the whole nor any part of the information contained in, or the product described in, this manual may be adapted or reproduced in any material form except with the prior written approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development and improvement. All information of a technical nature and particulars of the product and its use (including the information and particulars in this manual) are given by Acorn Computers in good faith. However, it is acknowledged that there may be errors or omissions in this manual or in the products it describes. Acorn Computers welcome comments and suggestions relating to the product and this manual. A list of details of any amendments or revisions to this manual can be obtained upon request from Acorn Computers Technical Enquiries or via the Acorn Support Information Database (SID)*.

All correspondence should be adressed to:-

Technical Enquiries Acorn Computers Limited Fulbourn Road Cherry Hinton Cambridge CB1 4JN

All maintenance and service on the product must be carried out by Acorn Computers' authorised dealers. Acorn Computers can accept no liability whatsoever for any loss or damage caused by service, maintenance or repair by unauthorised personnel. This manual is intended only to assit the reader in the use of this product, and therefore Acorn Computers shall not be liable for any loss or damage whatsoever arising from the use of any information or particulars in, or any error or omission in, this manual, or any incorrect use of the product.

This manual is for the sole use of Acorn Computers' authorised dealers and must only be used by them in connection with the product described within.

Within this publication the term 'BBC' is used as an abbreviation for 'British Broadcasting Corporation'. Acorn, Archimedes, ARM and Econet are trademarks of Acorn Computers Limited.

First published 1988
Published by Acorn Computers Limited
Produced by DAW Publications, Cambridge
Part No. 0476,145

*SID is a direct dial viewdata system available to registered SID users. You can gain access to SID on (0223) 243642, this will allow you to inspect the system and use a response frame for registration.

Contents

1. Introduction	5
1.1.Nature and purpose of this manual	5
2. System Description	6
3. Upgrades	25
4. Fault-finding information	28
4.1 Basic Checks	29
4.2 Run Main PCB Functional Test	32
4.3 Main PCB Faults	32
4.3.1 Video failure	32
4.3.2 System Failure	32
4.3.3 Unstable or scrolling display	33
4.3.4 Corrupted Display	33
4.3.5 Colours incorrect or missing	33
4.4 Peripheral Area Faults	34
4.4.1 Keyboard and Mouse	34
4.4.2 Floppy Disc Drive	34
4.4.3 Printer	34
4.4.4 Serial Port	34
4.4.5 Audio	34
4.4.6 Configuration, Non-volatile RAM and Real Time Clock	34
4.5 Hard Disc	35
4.6 Podules	35
4.7 Keyboard	35
4.8 Audio	35
4.9 Test ROMs	35
4.9.1 Main Memory Test	36
4.9.2 Repetitive Reset Test.	37
5. Appendices	39
5.1 Parts Lists	41
5.2 Production and Field Changes	45
5.3 Hard Disc Podule Circuit Diagram	49
5.4 MIDI Podule Circuit Diagram	51
5.5 Econet Module Circuit Diagram.	53
5.6 2-way Backplane Circuit Diagram	55

WARNING: THIS COMPUTER MUST BE EARTHED

Important: The wires in the mains lead for the computer are coloured in accordance with the following code:

Green and yellow Earth
Blue Neutral
Brown Live

For United Kingdom users

The moulded plug must be used with the fuse and fuse carrier firmly in place. The fuse carrier is of the same basic colour (though not necessarily the same shade of that colour) as the coloured insert in the base of the plug. Different manufacturers' plugs and fuse carriers are not interchangeable. In the event of loss of the fuse carrier, the moulded plug MUST NOT be used. Either replace the moulded plug with another conventional plug wired as described below, or obtain a replacement fuse carrier from an Acorn Computers' authorised dealer. In the event of the fuse blowing it should be replaced, after dearing any faults, with a 5-amp fuse that is ASTA approved to BS1362.

For all users

If the socket outlet available is not suitable for the plug supplied, either a different lead should be obtained or the plug should be cut off and the appropriate plug fitted and wired as noted below. The moulded plug which was cut off must be disposed of as it would be a potential shock hazard if it were to be plugged in with the cut off end of the mains cord exposed.

As the colours of the wires may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which is marked by one of the following: the letter E, the safety earth symbol, the colour green, or the colour green and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the letter N, or coloured black. The wire which is coloured brown must be connected to the terminal which is marked with the letter L, or coloured red.

GUIDELINES FOR SAFE OPERATION

The equipment described in this guide is designed and manufactured to comply with International safety standards IEC65 (BS415) and IEC380 (BS5850), and is intended for use only as a desktop microcomputer. It should not be used for other purposes. It is most important that unpacking and installation is carried out in accordance with the instructions given in the Welcome Guide.

The equipment is robustly constructed but in the interests of continued safe and reliable operation, careful handling and the following guidelines should be observed.

- **DO** keep the machine within a room temperature of 5 to 35 degrees C (41 to 95 degrees Fahrenheit) and a relative humidity of 15% to 95% (non-condensing).
- DO avoid sudden extremes in temperature, exposure to direct sunlight, heat sources (such as an electric fan heater) and rain.
- DO make sure that the equipment is standing on a suitable horizontal flat surface, allowing enough space for air to circulate
 when the equipment is in use.
- **DO** ensure that wires and cables are routed sensibly so that they cannot be snagged or tripped over. Don't tug or twist any wires or cables, or use them to hang or lift any of the units.
- **DO** switch off and unplug the equipment and any accessories before opening any unit, to install an upgrade, for example. The main computer unit should normally be operated with the cover attached, but it can safely be switched on with the cover removed, provided that care is taken not to short circuit any connections or to allow any fingers or objects in the area of the fan or disc drives when these are running. Be especially careful with jewellery. Do not attempt to open any display or monitor unit, whether supplied with this equipment or not.
- **DO** make sure you have read and understood any installation instructions supplied with upgrade kits before attempting to fit them. If you have any doubts, contact your supplier.
- DON'T spill liquids on the machine. If liquid does spill, turn the machine off immediately and take it to your dealer for assessment.
- DON'T drop the equipment or subject it to excessive bumping and jarring. This is particularly important if you have a hard disc installed.
- DON'T poke objects through the ventilation openings in the computer casing, and don't let items such as necklaces or bracelets
 drop into the openings.
- **DON'T** exceed a maximum power consumption of 20 watts from the Podule backplane supply.
- DON'T balance any objects or stand other equipment not designed for the purpose, on top of this equipment.

1. Introduction

1.1. Nature and purpose of this manual

This manual is a supplement to, and should be read in conjunction with, the Archimedes 300 Series Module Level Service Manual, Acorn Part Number 0476,140.

It is intended to provide the information required to diagnose and rectify faults in the Archimedes 300 series high performance computer system at module level and, unless the module is non-serviceable, at component level.

The information contained in this manual is aimed at service engineers and Acorn dealers who will be servicing the Archimedes 300 series high performance computer system on behalf of Acorn Computers Limited.

Details of service policy are as specified by Acorn Computers Limited in the Service and Support Strategy document.

For the following information, see the 300 Series Module Level Service Manual: Technical

Specification

Packaging and Installation

Disassembly and Assembly

Upgrading (upgrade kit fitting instructions)

Connectors, Interfaces, Links and Test Points

Appendix:

Archimedes Serial Port - Application Note

Acorn Dealer Test Software Test Instructions

Sample Service Report

Main PCB Layout Drawings

Main PCB Circuit Diagram

Assembly Drawings

Reference should be made to the Appendix for the latest Production and Field Change information, prior to servicing.

2. System Description

Introduction

The Archimedes 300 series is built around the *A Series* chip set, comprising the Acorn Risc Machine (ARM), the Memory Controller (MEMC), Video Controller (VIDC) and Input Output Controller (IOC).

A schematic of the Archimedes 300 series is shown below:

General

The ARM (Acorn Risc Machine) IC is a pipelined, 32 bit reduced instruction set microprocessor which accepts instructions and manipulates data via a high speed 32 bit data bus and 26 bit address bus giving a 64 MByte uniform address space. The ARM supports virtual memory systems using a simple but powerful instruction set with good high-level language compiler support.

The Memory Controller (MEMC) acts as the interface between the ARM, the Video Controller, I/O Controllers, Read-Only Memory (ROM) and Dynamic memory devices (DRAM), providing all the critical system timing signals including processor clocks.

1 MByte of DRAM (0.5 MByte in model 305) is connected to MEMC which provides all signals and refresh operations. A Logical to Physical Translator maps the Physical Memory into a 32 MByte Logical address space (with three levels of protection) allowing Virtual Memory and Multi-Tasking operations to be implemented. Fast 'page mode' DRAM accesses are used to maximise memory bandwidth. The VIDC requests data from the RAM when required and buffers it in one of three FIFOs before using it. Data is requested in blocks of four 32-bit words, allowing efficient use of paged-mode DRAM without locking the system data bus for long periods.

MEMC supports Direct Memory Access (DMA) operations with a set of programmable DMA Address Generators which provide a circular buffer for Video data, a linear buffer for Cursor data and a double buffer for Sound data.

The Video Controller (VIDC) takes video data from memory under DMA control, serialises it and passes it through a colour lookup palette and converts it to analogue signals for driving the CRT guns. The VIDC also controls all the display timing parameters and controls the position and pattern of the cursor sprite. In addition, it incorporates an exponential Digital to Analogue Converter (DAC) and stereo image table for the generation of high quality sound from data in the DRAM.

The VIDC is a highly programmable device, offering a very wide choice of display formats. The colour look-up palette which drives the three on-chip DACs is 13 bits wide, offering a choice from 4096 colours or an external video source.

The cursor sprite is 32 pixels wide and any number of rasters high. Three simultaneous colours (again from a choice of 4096) are supported and any pixel can be defined as transparent, making possible cursors of many shapes. It can be positioned anywhere on the screen. The sound system implemented on the device can support up to 8 channels, each with a separate stereo position.

The Input Output Controller (IOC) controls the I/O bus, expansion Podules and provides basic functions such as the keyboard interface, system timers, interrupt masks and control registers. It supports a number of different peripheral cycles and all I/O accesses are memory mapped.

The I/O system

The I/O system is controlled by the I/O Controller IOC and the Memory Controller MEMC. The I/O Bus supports all the internal peripherals and the PODULE expansions. Details of the expansion bus can be found elsewhere in this manual.

This section presents details of the I/O system for particular versions of the Archimedes series. It is intended to give the reader an understanding of Archimedes computers and should not be used to program the I/O system directly. The implementation details are liable to change at any time and only the published software interfaces should be used to manipulate the I/O system. It is important to realise that future systems may have a different implementation of the I/O system, and in particular the addresses (and number) of Podule locations may move. For this reason, and to ensure that any device may be plugged into any slot, all driver code for Podules must be relocatable. References to the direct Podule addresses should never be used. It is up to the machine operating system, in conjunction with the Podule ID to determine the address at which a Podule should be accessed. To this extent, some of the following sections are for background information only.

System Architecture

The I/O system (which includes podule devices) consists of a 16 bit data bus (BD[0:151) a buffered address bus (LA[2:21]) and various control and timing signals. The I/O data bus is independent from the main 32-bit system data bus, being separated from it by bidirectional latches and buffers. In this way the I/O data bus can run at much slower speeds than the main system bus to cater for slower peripheral devices. The latches between the 2 buses and hence the I/O bus timing are controlled by the I/O controller, IOC. The IOC caters for 4 different cycle speeds (slow, medium, fast and synchronous).

A typical 300 series I/O system with 'simple' Podules fitted is shown in the diagram on page 8. The Podules are controlled by IOC. For clarity, the data and address buses are omitted from this diagram.

SYSTEM MEMORY MAP

The system memory map is defined by the MEMC, and is shown on page 9. Note that all system components, including I/O devices, are memory mapped.

I/O SPACE MEMORY MAP

This IOC-controlled space has allocation for Simple Podules and External Podules.

DATA BUS MAPPING

The I/O data bus is 16 bits wide. Bytewide accesses are used for 8-bit peripherals. The I/O data bus (BD[0:15]) connects to the main system data bus (D[0:31]) via a set of bidirectional data latches.

The mapping of the BD[0:15] bus onto theD[0:31] bus is as follows:

During a WRITE (ie ARM to peripheral)BD[0:15] is mapped toD[16:31]

. During a READ (ie peripheral to ARM)BD[0:15] is mapped toD[0:15]

BYTE ACCESSES

To access bytewide podules, byte instructions are used. A byte store instruction will place the written byte on all four bytes of the word, and will therefore correctly place the desired value on the lowest byte of the I/O bus. A byte or word load may be used to read a bytewide podule into the lowest byte of an ARM register.

HALF-WORD ACCESSES

To access a 16-bit wide podule, half-word instructions are used. When storing, the half-word is placed on the upper 16 bits,D[16:31]. To maintain upwards compatibility with future machines, half-word stores replicate the written data on the lower half-word,D[0:15]. When reading, the upper 16 bits are undefined.

PODULE IDENTIFICATION

It is important that the system is able to identify what podules (if any) are present, and where they are. This is done by reading the Podule Identification (PI) byte, or bytes, from the Podule Identification Field.

I/O ADDRESS MEMORY MAPPING

All I/O accesses are memory mapped. The IOC is connected as detailed in the table below:

IOC	ARM
[OE] = [TM] = [T[0]] = [B[2]] = [B[1]] = [B[0]] =	[LA[21]] [LA[20]] [LA[19]] [LA[18]] [LA[17]] [LA[16]]
,,	r r - 11

IOC address mapping

1	Address	 Read 	Write			
ï						
ı	3200000Н	Control	Control			
I	3200004H	Serial Rx Data	Serial Tx Data			
I	3200008Н	-	1 -			
1	320000CH	-	1 -			
	3200010Н	IRQ status A	1 -			
	3200014H	IRQ request A	IRQ clear			
1	3200018H	IRQ mask A	IRQ mask A			
1	320001CH	=	-			
1	3200020H	IRQ status B	1 -			
1	3200024H	IRQ request B	-			
1	3200028H	IRQ mask B	IRQ mask B			
1	320002CH	-	-			
	3200030H	FIQ status	-			
1	3200034H	FIQ request	-			
1	3200038H	FIQ mask	FIQ mask			
1	320003CH	-	-			
I	3200040H	T0 count Low	TO latch Low			
I	3200044H	T0 count High	TO latch High			
1	3200048H	-	T0 go command			
1	320004CH	-	T0 latch command			
1	3200050Н	T1 count Low	T1 latch Low			
I	3200054H	T1 count High	T1 latch High			
1	3200058H	–	T1 go command			
1	320005CH	-	T1 latch command			
1	3200060H	T2 count Low	T2 latch Low			
	3200064H	T2 count High	T2 latch High			
1	3200068H	-	T2 go command			
1	320006CH	-	T2 latch command			
	3200070H	T3 count Low	T3 latch Low			
1	3200074H	T3 count High	T3 latch High			
1	3200078Н	_	T3 go command			
1	320007CH	-	T3 latch command			
1			I			

Internal Register Memory Map

Programming Details

EXTERNAL LATCH A

The External Latch A is a write only latch used to control parts of the floppy disc sub-system.

 Cycle Type E	Bank	Base Address	IC	Use
 Fast	1	 &3310000	1772	Floppy Disc Controller
 Sync	2	 33A0000 	6854	Econet Controller
Sync	3	&33B0000 &33B0000	6551	Serial Line Controller
Slow	4	. 3240000 i	Podule	Internal Podules
Med.	4	&32C0000 I	Podule	Internal Podules
Fast	4	&3340000 I	Podule	Internal Podules
Sync	4	&33C0000	Podule	Internal Podules
1		 	1	
Med.	5	&32D0000	HD63463	Hard disc REGISTER WRITE
Med.	5	&32D0020	HD63463	Hard disc REGISTER READ
Med.	5	&32D0008	HD63463	Hard disc DMA READ
Med.	5	&32D0028	HD63463	Hard disc DMA WRITE
1	!	l I	١	I
Fast	5	&3350010	HC374	Printer Data
1	1	l I	1	
Fast	5	&3350018	HC574	Latch B
	ĺ	l •	I	
Fast	5	&3350040	HC574	Latch A
1	6	 -	- I	Reserved
 Slow	7	 &3270000 	Podule	External Podules
•		' '		' — — — — — — — — — — — — — — — — — — —

Peripheral address

Bit [0:3] US [0:3]

These bits select the floppy disc unit 0 through 3 when written LOW. Only one bit should be LOW at any one time.

Bit 4 Side Select

This controls the side select line of the floppy disc interface.

0 = Side 1 (upper)

1 = Side 0 (lower)

Bit 5 Floppy Motor ON/OFF Control

This bit control the floppy disc motor line. Its exact use depends on the type of drive.

Bit 6 In Use

This bit controls the INUSE line of the floppy disc. Its exact use depends on the type of drive.

Bit 7 Disc Eject

This controls the DISC EJECT or DISC CHANGED RESET line of the floppy disc drive.

EXTERNAL LATCH B

The External Latch B is a write only register shared between several users who must maintain a consistent RAM copy. Updates must be made with IRQ disabled.

Bit [0:2] CD [0:2]

CD[0:2] should be programmed LOW for future compatibility. CD [1] controls the floppy disc data separator format.

CD[1] = 0 Double Density CD[1] = 1 Single Density

Bit 3 FDCR

This controls the floppy disc controler reset line. When programmed LOW, the controller is RESET.

Bit 4 Printer Strobe

This used to indicate valid data on the printer outputs. It should be set HIGH when valid data has been written to the printer port and LOW after typically $5 \mu sec.$

Bit [5:6] AUX [1:2]

These bits allow the auxiliary I/O connector AUX [1:2] pins to be programmed.

Bit 7 HS3

This bit controls the HS3 line of the hard disc interface. It allows extension of the ST506 interface to support up to 16 heads. It may be link selected to implement the standard ST506 "Reduced Write Current" function.

INTERRUPTS

The I/O system generates two independent interrupt requests, IRQ and FIQ. Interrupt requests can be caused by events internal to IOC or by external events on the interrupt or control port input pins.

The interrupts are controlled by four types of register, *status, mask, request* and *clear*. The status *registers* reflect the current state of the various interrupt sources. The *mask registers* determine which sources may generate an interrupt. The *request registers* are the logical AND of the *status* and *mask registers* and indicate which sources are generating interrupt requests to the processor. The *clear register* allows clearing of interrupt requests where appropriate. The *mask registers* are undefined after power up.

The *IRQ* events are split into two sets of registers *A* and *B*. There is no priority encoding of the sources.

Internal Interrupt Events

- Timer interrupts TM[0:1]
- Power-on reset POR
- Keyboard Rx data available SRx
- Keyboard Tx data register empty STx
- Force interrupts "1"

External Interrupt Events

- IRQ active low inputs IL[0:7] wired as PFIQ, SIRQ WIRQ DCIRQ, PIRQ PBSY and RII.
- IRO falling-edge input IF wired as PACK
- IRO rising-edge iput IR wired as VFLY
- FIQ active high inputs FII[0:1] wired as FEDQ and FFIQ
- FIQ active low input FL wired as EFIQ
- Control port inputs C[3:5]

IRQ STATUS A

Bit 0 PBSY

This bit indicates that the printer is busy.

Bit 1 RII

This bit indicates that a Ringing Indication has been detected by the serial line interface.

Bit 2 Printer Acknowledge

This bit indicates that a printer acknowledgement bit has been received.

Bit3 Vertical Flyback

This bit indicates that a vertical flyback has commenced.

Bit 4 Power-on Reset

This bit indicates that a power-on reset has occured.

Bit [5:6] Timer 0 and Timer 1 events

These bits indicate that events have occurred.

Note: latched interrupt.

Bit 7 Force

This bit is used to force an IRQ request. It is usually owned by the FIQ owner and is used to downgrade FIQ requests into IRQs.

IRQ STATUS B

Bit 0 Podule FIQ request (PFIQ)

This bit indicates that a Podule FIQ request has been received. It should usually be masked OFF.

Bit 1 Sound buffer swap (SIRQ)

This bit indicates that the MEMC sound buffer pointer has been relocated.

Bit 2 Serial line controller (SLCI)

This bit indicates that 65C51 serial line controller interrupt has occurred.

Bit 3 Winchester interrupt

This bit indicates that a Winchester (Hard disc) interrupt has occurred.

Bit 4 Disc Changed Interrupt (DCIRQ)

This bit indicates that the floppy disc has been removed.

Bit 5 Podule interrupt request (PIRQ)

This bit indicates that a Podule IRQ request has occurred.

Bit 6 Keyboard transmission event

This bit indicates that the keyboard transmit register is empty and may be reloaded.

Bit 7 Keyboard reception event

This bit indicates that the keyboard reception register is full and may be read.

INTERRUPT STATUS FIQ

Bit 0 Floppy disc data request (FFDR)

This bit indicates that a Floppy Disc Data Request has occurred.

Bit 1 Floppy disc interrupt request (FFTIQ)

This bit indicates that a Floppy Disc Interrupt Request has occurred:

Bit 2 Econet Interrupt request (EFIQ)

This bit indicates that an Econet Interrupt Request has occurred.

Bit [3:5] C[3:5]

See IOC data sheet for details.

Bit 6 Podule FIQ request (PFIQ)

This bit indicates that a Podule FIQ Request has occurred.

Bit 7 Force

This bit allows an FIQ interrupt request to be generated.

CONTROL PORT

The control register allows the external control pins C[0:5] to be read and written and the status of the PACK and VFLY inputs to be inspected. The C[0:5] bits manipulate the C[0:5] I/O port. When read, they reflect the current state of these pins. When written LOW the output pin is driven LOW. These outputs are open-drain, and if programmed HIGH the pin is undriven and may be treated as an input.

On reset all bits in the control register are set to "1".

C[7] (VFLYBK) and Test Mode

C[7] allows the state of the (VFLYBK) signal to be inspected. This bit will be read HIGH during vertical flyback and LOW during display. See VIDC datasheet for details. This bit MUST be programmed HIGH to select normal operation of the chip.

C[6] (PACK) and Test Mode

C[6] allows the state of the parallel printer acknowledge input to be inspected. This bit MUST be programmed HIGH to select normal operation of the the chip.

C[5] (SMUTE)

This controls the muting of the internal speaker. It is programmed HIGH to mute the speaker and LOW to enable it. The speaker is muted on reset.

C[4] (C4)

C[4] is available on the Auxiliary I/O connector.

C[3]

C[3] is reserved and should be programmed HIGH.

C[2] (READY)

C[2] is used as the floppy disc (READY) input and must be programmed HIGH.

C[1:0] SDA, SCL The VC Bus

The C[0:1] pins are used to implement the bi-directional serial I2C bus to which the Real Time Clock and battery RAM are connected.

The Sound System

The sound system is based on the VIDC stereo sound hardware. External analogue anti-alias filters are used which are optimised for a 20 kHz sample rate. The high quality sound output is available at a 3.5mm stereo jack socket at the rear of the machine which will directly drive personal stereo headphones or alternatively an amplifier and speakers. A mono mix of the sound output is sent to the internal loudspeaker. In addition, an unfiltered stereo signal is available at the Auxiliary Audio connector on the main board.

THE VIDEO CONTROLLER SOUND SYSTEM HARDWARE

VIDC contains an independent sound channel consisting of the following components: A four-word FIFO buffers sixteen 8-bit sound samples with a DMA request issued whenever the last byte is consumed from the FIFO. The sample bytes are read out at a constant sample rate programmed into the 8-bit Audio Frequency Register; which may be programmed to allow samples to be output synchronously at any integer value between 3 and 255 microsecond intervals .

The sample data bytes are treated as sine plus seven-bit logarithmic magnitude and after exponential digital to analogue conversion, de-glitching and sign-bit steering, are output as a current at one of the audio output pins to be integrated and filtered externally.

VIDC also contains a bank of eight stereo image position registers each of 3 bits. These 8 registers are sequenced through at the sample rate with the first register synchronised to the first byte clocked out of the FIFO. Every sample time is divided into eight time slots and the three bit image value programmed for each register is used to pulse width modulate the output amplitude between the LEFT and RIGHT audio current outputs in multiples of time slot subdivisions. This allows the signal to be spatially positioned in one of seven stereo image positions.

THE MEMORY CONTROLLER SOUND SYSTEM HARDWARE

MEMC provides three internal DMA address registers to support Sound buffer output; these control the DMA operations performed following Sound DMA requests from VIDC. The registers allow the physical addresses for the START, PNTR (incremental) and END buffer pointers to a block of data sample in the lowest half Megabyte of physical RAM to be accessed. These operate as follows: programming a 19-bit address into the PNTR register sets the physical address from which sequential DMA reads will occur (in multiples of 4 words) and programming the END pointer sets the last physical address of the buffer. Whenever the PNTR register increments up to this END value the address programmed into the START

register is automatically written into the PNTR register for the DMA to continue with a new sample buffer in memory. A Sound Buffer Interrupt (SIRQ) signal is generated when the reload operation occurs which is processed by IOC as a maskable interrupt (IRQ) source.

The Memory Controller also includes a sound channel enable/disable signal. Because this enable/disable control signal is not synchronised to the sound sampling requests will normally be disabled after the waveforms which are being synthesised have been programmed to decay to zero amplitude; the last value loaded into the Audio data latch in the VIDC will be output to each of the Stereo image positions at the current Audio Sample rate.

THE I/O CONTROLLER SOUND SYSTEM HARDWARE

IOC provides a programmed output control signal which is used to turn the internal speaker on or off, as well as an interrupt enable/status/reset register interface for the Sound Start Buffer reload signal generated by the Memory Controller.

The internal speaker may be muted by the control line SMUTE which is driven from the IOC output C5. On reset this signal will be taken high and the internal speaker will be muted.

The stereo output to the Hi-Fi stereo output is not muted by SMUTE and will always reflect the current output of the DAC channels.

The Keyboard

The ARM to keyboard connection is essentially a half duplex connection with handshaking by the ARM, plus a small amount of command protocol by the ARM. When the keyboard has sent a byte, in normal operation, it will not send again until it has received an Ack from the ARM. The only exception to this is during the reset protocol used to synchronise the handshaking, where each side is expecting specific responses from the other, and will not respond further until it has those.

In addition to this simple handshaking system, the keyboard will not send mouse data unless specifically allowed to, as indicated by Ack Mouse, which allows the transmission of one set of accumulated mouse coordinate changes, or the next move made by the mouse. While it is not allowed to send mouse changes the keyboard will buffer mouse changes.

A similar handshake exists on key changes, transmitted as key up and key down, and enabled by Ack Scan. At the end of a keyboard packet (two bytes) ARM should always perform an Ack Scan as there is no protocol for re-enabling later. With the mouse, the ARM may request mouse data some time later by means of Request Mouse Position (RQMP).

KEY CODES

The keyboard identifies each key by its row and column address in the keyboard matrix. Row and column codes are appended to the key up or down prefix to form the complete key code.

e.g. 'Q' key down, the complete row code is 11000010 (C2 hex) and the column code is 11000111 (C7 hex).

Note: Eight keys have N key roll over. The ARM is responsible for implementing two-key rollover, therefore the keyboard transmits all key changes (when enabled). The keyboard does not operate any auto-repeat, only one down code is sent, at the start of the key down period.

Operating voltage range (measured at the cable plug) is $5 \text{ V} \pm 0.5 \text{ V}$. Maximum current consumption of the of the keyboard is 60 mA (note that the mouse may use up to an additional 100 mA).

A maximum delay of 100ms is permissible from release of the reset switch to the first keyboard transmission of HRST.

SERIAL INTERFACE

Information on the keyboard status is sent to the ARM via a serial data link using NRZ encoding. Command and acknowledge codes are similarly sent from the computer to the keyboard along a serial data link. The two links form a full duplex system which operates at 31.25 k baud. Each data byte (eight data bits) is preceded by a single start bit (Logic 1). The least significant data bit (DO) is sent first. The last data bit (D7) is followed by two stop bits (Logic 0). Note that data is sent in inverted form, that is a logic 1 data bit will appear on the serial line as a logic 0 and vice versa.

When idle the line is held at a logic 0 level.

Use Inverter externally for TX and RX

Serial INPUT/OUTPUT characteristics

Serial line signals are CMOS compatible. The data line logic input has a nominal switching threshold of 50% of the supply voltage, to minimise skew between rising and falling edges. Signal hysteresis is provided on input lines, to minimise noise susceptibility.

SERIAL DATA PROTOCOL

Serial data transmissions from the keyboard are either one or two bytes in length. Each byte sent is individually acknowledged by the ARM. The keyboard will not transmit a byte until the previous byte has been acknowledged, unless it is the HRST code indicating that a power on or user reset occurred or that a protocol error occurred; see below.

Reset Protocol

The keyboard restarts when it receives a HardReSeT (HRST) code from the ARM. To initiate a restart the keyboard sends a HRST code to the ARM, which will then send back FIRST to command a restart. The keyboard sends HRST to the ARM if:

A power on reset occurs A

User reset occurs

ARM -> Kb

A protocol error is detected

After sending FIRST, the keyboard waits for a HRST code. Any non HRST code received causes the keyboard to resend HRST. The pseudo program below illustrates the reset sequence or protocol.

```
START reset
ONerror Send HRST code to ARM then wait for code from ARM.
IF code = HRST THEN restart ELSE
                                    error
            clear mouse position counters
            set mouse mode to data only in response to an RMPS request.
            stop key matrix scanning and set key flags to up
            send HRST code to ARM
Wait for next code
IF code = RAK1 THEN send RAK1 to ARM
                                        FISE
                                               error
Wait for next code
IF code = RAK2 THEN send RAK2 to ARM
                                        ELSE
                                               error
Wait for next code
IF code = SMAK THEN mouse mode to send if not zero and enable key scan
ELSE IF code = SACK THEN enable key scanning
ELSE IF code = MACK THEN set mouse mode to send when not zero
ELSE IF code = NACK THEN do nothing
                                        ELSE
END reset
Reset sequencing
                        Expected
                                                Action on
                                                            Action if
Direction
            Code
                                    Action on
                                    wrong reply timeout
                                                            unexpected
                        reply
                                    (Sender)
                                                (Sender)
                                                            (Receiver)
                        Hard reset Resend
                                                Resend
                                                            Hard reset
ARM -> Kb
            Hard reset
                                                            Hard reset
Kb -> ARM Hard reset
                        Reset Ack 1 Resend
                                                Nothing
            Reset Ack 1 Reset Ack 1 Hard reset Hard reset Hard reset
ARM -> Kb
           Reset Ack 1 Reset Ack 2 Nothing
                                                            Hard reset
Kb
   -> ARM
                                                Nothing
```

Note, the on/off state of the LED's does not change across a reset event, hence the LED state is not defined at power on. The ARM is always responsible for selecting the LED status. After the reset sequence, Key scanning will only be enabled if a scan enable acknowledge (SACK or SMAK) was received from the ARM.

Reset Ack 2 Reset Ack 2 Hard reset Hard reset Hard reset

Data Transmission

When enabled for scanning, the keyboard informs the ARM of any new key down or new key up by sending a two byte code incorporating the key row and column addresses. The first byte gives the row and is acknowledged by a byte acknowledge (BACK) code from the ARM. If BACK was not the acknowledge code then the error process (ONerror) is entered. If the BACK code was received the keyboard sends the column information and waits for an acknowledge. If either a NACK,SACK, MACK or SMAK acknowledge code is received, the keyboard continues by processing the ack. type and selecting the mouse and scan modes implied. If the character received as the second byte acknowledge was not one of NACK/MACK/SACK/SMAK then the error process is entered.

Mouse Data

Mouse data is sent by the keyboard if requested by a RQMP request from the ARM or if a SMAK or MACK have enabled transmission of non-zero values. Two bytes are used for mouse position data. Byte one encodes the accumulated movement along the X axis while byte two gives Y axis movement.

Both X and Y counts must be transferred to temporary registers when data transmission is triggered, so that accumulation of further mouse movement can occur. The X and Y counters are cleared upon each transfer to the transmit holding registers. Therefore, the count values are relative to the last values sent. The ARM acknowledges the first byte (Xcount) with a BACK code and the second byte (Ycount) with any of NACK/MACK/SACK/SMAK. A protocol failure causes the keyboard to enter the error process (ONerror).

When transmission of non-zero mouse data is enabled, the keyboard gives Key data transmission priority over mouse data except when the mouse counter over/underflows.

Acknowledge Codes

There are seven acknowledge codes which may be sent by the ARM. RAK1 and RAK2 are used during the reset sequence. BACK is the acknowledge to the first byte of a two byte keyboard data set. The four remaining types, NACK/MACK/SACK and SMAK, acknowledge the final byte of a data set. NACK disables key scanning and therefore key up/down data transmission as well as setting the mouse mode to send data only on RQMP request. SACK enables key scanning and key data transmission but disables unsolicited mouse data. MACK disables key scanning and keydata transmission and enables the transmission of mouse count values if either X or Y counts are non-zero. SMAK enables key scanning and both key and mouse data transmission. It combines the enable function of SACK and MACK.

While key scanning is suspended (after NACK or MACK) any new key depression is ignored and will not result in a key down transmission unless the key remains down after scanning resumes following a SACK or SMAK. Similarly a key release is ignored while scanning is off.

Command may be received at any time. Therefore, commands can be interleaved with acknowledge replies from the ARM, eg keyboard sends KDDA (1st byte), keyboard receives command, keyboard receives BACK, keyboard sends KDDA (2nd byte), keyboard receives command, keyboard receives SMACK. If the HRST command is received the keyboard immediately enters the restart sequence, see (ONrestart). The LEDS and PRST commands may be acted on immediately. Commands which require a response are held pending until the current data protocol is complete. Repeated commands only require a single response from the keyboard.

ARM COMMANDS

Mnemonic	Function
HRST	Reset keyboard
LEDS	Turns key cap LED's on/off. A three bit field indicates which
	state the LED's should be in. Logic 1 is ON, logic 0 (zero) OFF. D0 controls CAPS LOCK D1 controls NUM LOCK D2 controls SCROLL LOCK
RQMP	Request mouse position (X,Y counts)
RQID	Request keyboard identification code. The keyboard is manufactured with a 6 bit code to identify the keyboard type to the ARM. Upon receipt of RQID the keyboard transmits KBID to the ARM
PRST	Reserved for future use, keyboard ignores this command
RQPD	For future use. The kayboard will encode the four data bits into the PDAT code data field and then send PDAT to the ARM.

Code values

Mnemonic	msb lsb	Comments
HRST	1111 1111	One byte command, keyboard reset
RAK1	1111 1110	One byte response in reset protocol
RAK2	1111 1101	One byte response in reset protocol
RQPD	0100 xxxx	One byte From ARM, encodes four bits of data
PDAT	1110 xxxx	One byte from keyboard, echoes four data bits
of RQPD		
RQID	0010 0000	One byte ARM request for keyboard ID
KBID	10xx xxxx	One byte from keyboard encoding keyboard ID
KDDA	1100 xxxx	New key down data. Encoded Row (1st byte) and
		column (2nd byte) numbers
KUDA	1101 xxxx	Encoded Row (1st byte) and column (2nd byte)
	:	numbers for a new key up
RQMP	0010 0010	One byte ARM request for mouse data
MDAT	0xxx xxxx	Encoded mouse count, X (byte1) then Y (byte2)
		Only from ARM to keyboard
BACK	0011 1111	Ack for first keyboard data byte pair
NACK	0011 0000	Last data byte ack, selects scan/mouse mode
		see 1.5.7
SACK	0011 0001	Last data byte ack, see 1.5.7
MACK	0011 0010	Last data byte ack, see 1.5.7
SMAK	0011 0011	Last data byte ack, see 1.5.7
LEDS	0000 0xxx	bit flag to turn LED(s) on/off
PRST	0010 0001	From ARM, one byte command, does nothing

x is a data bit in the Code e.g. xxxx is a four bit data field

INTERCONNECTION CABLE

The interconnection cable has stranded conductors, suitable for operation at 5 V, 200 mA per conductor.

MOUSE INTERFACE

The mouse interface has three switch sense inputs and two quadrature encoded movement signals for each of the X axis and Y axis directions. Mouse key operations are debounced and then reported to the ARM using the Acorn key up / key down protocol. The mouse keys are allocated unused row and column codes within the main key matrix.

Switch 1 (left)	Row code - 7	Column code -
Switch 2 (middle)	Row code - 7 Colu	mn code - 1
Switch 3 (right)	Row code - 7 Colu	mn code - 2

e.g. Switch 1 release would give 11010111 (D7 hex) as the complete row code, followed by 11010000 (DO hex) for the column code.

Note: Mouse keys are disabled by NACK and MACK acknowledge codes, and are only enabled by SACK and SMAK codes, ie they behave in the same way as the keyboard keys.

The mouse is powered from the keyboard 5 V supply and may consume up to 100 mA. The keyboard design ensures that the power supply volatge at the mouse connecr=tor is within ± 150 mV of the voltage supplied at the keyboard cable plug. Sufficient power supply decoupling is provided to ensure that connection and disconnection of the mouse from the keyboard does not affect normal keyboard operation.

Movement Signals

Each axis of movement is independently encoded in two quadrature signals. The two signals are labelled REFerence and DIRection (e.g. X REF and X DIR). The table below defines the absolute direction of movement. Circuitry in the keyboard decodes the quadrature signals and maintains a signed 7 bit count for each axis of mouse movement.

Initial State		Next Stat			
REF I	DIR	REF I	DIR		
1 1 0 0	1 0 0 1	1 0 0 1	0 0 1 1	} } } }	Increase count by one for each change of state.
1 0 0 1	1 1 0 0	0 0 1 1	1 0 0	} } } }	Decrease count by one for each change of state.

When count overflow or underflow occurs on either axis both X and Y axis counts lock and ignore further mouse movement until the current data has been sent to the ARM.

Overflow occurs when a counter holds its maximum positive count (0111111 binary). Underflow occurs when a counter holds its maximum negative count (1000000 binary).

KEY SWITCH MAPPING

Key Posn	Key Size	Key Name	Row code	Col. code	See table		cap front Legend
F1	1	Esc	0	0	1		
F2	1	F1	Ö	1	2		
F3	1	F2	Ö	2	2		
F4	1	F3	Ö	3	2		
F5	1	F4	Ö	4	2		
F6	1	F5	ō	5	2		
F7	1	F6	Ö	6	2		
F8	ī	F7	Ö	7	2		
F9	1	F8	Ö	8	2		
F10	ī	F9	Ö	9	2		
F11	ī	F10	ō	Ā	2		
F12	1	F11	Ō	В	2		
F13	1	F12	Ō	C	2		
F14	1	Print	ō	D	1,3		
F15	1	Scroll		E	1		
F16	1	Break	Ö	F	1	TBA	(P959 Pause)
	_		_	_	_		(
E1	1	~	1	0			
E2	1	1	1	1			
E3	1	2	1	2			
E4	1	3	1	3			
E5	1	4	1	4			
E6	1	5	1	5			
E7	1	6	1	6			
E8	1	7	1	7			
E9	1	8	1	8			
E10	1	9	1	9			
E11	1	0	1	A			
E12	1	_	1	В			
E13	1	= +	1	С			
E14	1	•	1	D			
E15		backspc		E	1		
E16	1	Insert		F	1		
E17	1	Home	2	0	1,3		
E18	1	Pg up	2	1	1		
E19		Numlock		2	1,4		
E20	1	/	2	3	1		
E21	1	*	2	4	1		
E22	1	#	2	5	1		
	-		_	-	_		

```
D1
      1.5
            Tab
                                 1
 D2
       1
            Q
                    2
                         7
 D3
       1
             W
                    2
                         8
 D4
             E
                    2
       1
                         9
 D5
       1
             R
                    2
                         Α
 D6
                    2
       1
             Т
                         В
 D7
       1
             Y
                    2
                         С
                    2
 D8
       1
             U
                         D
 D9
       1
             I
                    2
                         E
                    2
 D10
       1
             0
                         F
 D11
       1
             Р
                    3
                         0
 D12
       1
            [ {
                    3
                         1
 D13
                         2
       1
                    3
            ] }
 D14
      1.5
            \ |
                         3
 D15
      1
           Delete
                    3
                         4
                                 1
 D16
       1
           Сору
                    3
                         5
                                 1
                                         TBA (E1100 End)
 D17
       1
           Pg dwn
                    3
                         6
                                 1
 D18
                    3
                         7
 D19
             8
                    3
                         8
       1
       1
 D20
             9
                    3
                         9
 D21
       1
                    3
                         Α
                                 1
 C1 1.75
            Ctrl
                    3
                         В
                                 1,3
 C2
      1
            Α
                    3
                         С
 C3
       1
             s
                    3
                         D
 C4
      1
            D
                    3
                         E
 C5
      1
             F
                    3
                         F
 C6
      1
            G
                    4
                         0
 C7
       1
             Н
                    4
                         1
 C8
       1
             J
                         2
                    4
 C9
       1
             K
                    4
                         3
 C10
      1
             L
 C11
       1
            ; :
                    4
                         5
 C12
       1
                    4
                         6
 C13 2.25
                         7
           return
                    4
                                 1
 C14
                         8
 C15
                    4
       1
             5
                         9
 C16
       1
             6
                    4
                         Α
 C17
       1
             +
                                 1
                         В
Key Key
            Key
                  Row
                        Col.
                                 See
                                            Key cap front
Posn Size Name code code
                                Table
                                                Legend
B1 2.25
          shift
                         С
                                 1,3
                    4
          "Spare"
B2
                    4
                         D
 вз
       1
           Z
                         Ε
 В4
      1
            Х
                    4
                         F
B5
      1
            С
                    5
                         0
В6
            V
                    5
      1
                         1
В7
            В
                    5
            N
В8
      1
                    5
                         3
В9
      1
            M
                    5
                         4
           , <
. >
/ ?
B10
      1
                    5
                         5
B11
      1
                    5
                         6
B12
      1
                    5
B13 2.75
           shift
                    5
                         8
                                 1,3
B14
     1
           crsrUp
                    5
                         9
B15
                    5
      1
                         Α
           1
B16
      1
           2
                        В
           3
B17
     1
```

A 1	1.5	Caps	5	D	1,4			
A2	1.5	Alt	5	E	1,3			
A3	7.0	Space	5	F				
A4	1.5	Alt	6	0	1,3			
A 5	1.5	Ctrl	6	1	1,3	TBA	(A1009 Action	n)
A 6	1	crsrLt	6	2	1			
Α7	1	crsrDn	6	3	1			
A8	1	crsrRt	6	4	1			
Α9	2.0	0	6	5				
A 10	1	•	6	6				
A11	2.0	Enter	6	7	1			

Row and column codes are in Hexadecimal Key positions are as shown on page 22. Key position with N key rollover.

Green light emitting diode under key cap.

3. Upgrades

Details of upgrades available for Archimedes 300 series computers are given in the Module Level Service Manual, as follows:

Backplane and Fan

Econet Module

Podule Installation Leaflet

0.5Mbyte RAM Upgrade Instructions Second Floppy

Disc Upgrade Instructions Hard Disc Upgrade

Instructions

Hard Disc Upgrade Installation Leaflet MIDI

Module Installation Leaflet

Arthur ROM Fitting Instructions

3.1 Hard Disc Drive Interface

The following describes the Hard disc interface circuitry incorporated onto the Archimedes model 440 main PCB. It applies equally to the Hard disc Podule fitted as an upgrade to Archimedes 300 series units, with the exception of the IC component reference numbers and the Archimedes standard Podule ID circuitry which is fitted to the Podule version only.

CIRCUIT DESCRIPTION

All functions of the Hard disc drive are controlled by the Hitachi HD63463 Hard disc Controller chip (IC22).

Host Connection

This device is connected to the system CPU by means of the 16 bit I/O bus. It is memory-mapped from address &032D0000 to &032D0028 (nb: these addresses are different for the Hard disc Podule, which are slot-dependant). The only unusual feature of this circuit is the use of an address line for the HD63463 read/write line. This is necessary to allow the host CPU to simulate DMA cycles, during which this line reverses its function.

Reset is provided by the host system, as is the 8 MHz clock (CLK8) from which all host communication signal timing is derived.

ST506 Hard Disc Inteface

The connection to the Hard disc drive is an implementation of the standard ST506 interface. Drive control signals are provided on a 34-way bus which may be daisy-chained for up to four Hard disc drive units, and data is transferred on a separate 20-way cable for each drive in the system.

Before any data transfer can take place between the Hard disc drive and the HD63463, the correct drive and correct read/write head in that drive must be selected. This is achieved by two drive select lines and three head select lines, all buffered by a 7406 (IC33). Having selected the drive, the HDC (Hard Disc Controller) will check the READY line before proceeding with the required function. A failure of this signal (or the SEEK COMPLETE signal, see below) may result in a polling action (ie repeated attempts to select) by the HDC. All control signals on the 34-way bus from a Hard disc unit will only be active when the drive is selected.

If a seek is required before selecting the read/write head then the direction signal DIR will be set high or low to indicate movement in or out and the requisite number of step pulses transmitted on the STEP

control line. The HDC must then wait for the SEEK COMPLETE (SC) signal to be returned from the drive unit. As previously mentioned, the HDC may go into a polling action while waiting for this signal.

All control signals to the drive are buffered by the 7406 (IC33) and all signals from the drive are buffered by a 74HCT14 (inverting Schmitt trigger), IC32. Demultiplexing and buffering of the direction (DIR), step and reduced write current (RE+WC) signals is achieved by a 7438 (IC34).

Read Data Path

Read data is received from the drive as a differential signal and applied to the differential receiver 26LS32 (IC39). From here it passes through a multiplexer (this circuit can control two Hard disc drives) and onto the data separator circuit.

Data Separator

The data from the Hard disc drive takes the form of a stream of pulses whose position with respect to a clock signal defines their meaning, binary 1 or 0. The nominal frequency of this clock is 10 MHz although it may have to vary slightly to compensate for variations in disc speed and/or disk wobble. Since this clock signal is not provided by the Hard disc drive it has to be generated by the interface circuitry. The Data-Separator contains a voltage controller oscillator NCO), some filter components and an input for a crystal controlled 10 MHz clock. When the HDC is not trying to read data from the Hard disc drive, the VCO is locked onto the 10 MHz crystal clock.

To read data the HDC first asserts the read-gate signal (RGATE), this causes the data-separator DP8455 (IC50) to attempt to adjust the VCO frequency and phase until the VCO cycles are in quadrature with the data pulses when they are present.

When the data separator has detected valid preamble (a special pattern of Os and 1s) it asserts lock-detect (LD) which enables the now synchronised data stream to the HDC. In turn, when the HDC sees a special data pattern called an address mark it asserts SYNC. This signal is linked back to the data separator and used to slow down the tracking action of the VCO during the actual read process.

Write Data

Write data timing is synchronised to the 10 MHz crystal oscillator. The data emerges from the bidirectional data pin RWDATA on the HDC and is fed to a delay line (IC42) which is a 50 nS 5-tap device. This gives three identical versions of the write data stream separated in time by 10 nS. These three signals are fed to a multiplexer 74HCT153 (IC41) which selects the appropriate version of the write data stream when manipulated by the write-precompensation control lines EARLY and LATE. Finally, the data is passed through a differential driver 26LS31 (IC40) before going on to the Hard disc drive itself.

Format

Data is stored in the form of sectors. There are 32 sectors on each track and 4 tracks in each cylinder. A sector has an ID (identity) field and a DATA field. The ID field contains the sector's number and the DATA field contains the data stored in that sector.

Before data can be written to the data field of a sector, the correct sector must be located by repeated reading of ID fields on the track until the required sector is found.

3.2 MIDI Podule

The MIDI Podule is a single Eurocard sized plug-in card for the Archimedes range of computers. The Podule offers users access to the wide range of synthesisers, keyboards and other instruments which use the MIDI standard for communication between system units.

The following circuit description of the MIDI Podule does not cover operating software or MIDI protocols. For operational details, see the Acorn MIDI User Guide.

The Podule connects to the Archimedes computer via the computer's internal backplane. Conection is via a DIN standard PCB mounted plug fitted with 64 contacts in a 96 way housing. Connector rows a and c are populated. Refer to the circuit diagram for pinout details.

CIRCUIT DESCRIPTION

On the PCB are eight ICs. The principle device is IC5, an SCC 2619 UART. The UART, under control of software running on the Archimedes computer, sends and receives MIDI serial data at the required 32.5 K Baud rate. Input serial data is optically isolated by IC6, a 6N138. Diode Dl protects against reverse

polarity of the normally unipolar signal. Resistor R6 sets the working current for the opto LED, in conjunction with the source impedance of the external MIDI driver.

IC7, an open drain collector TTL Hex inverter, is used for signal buffering and to drive the MIDI 'out' and 'through' sockets.

Buffered MIDI data feeds directly to the Receive data pin of the UART IC5 and, via a separate open collector gate IC7, to the 'through' output socket.

MIDI 'out' data is buffered (IC7) onto two output sockets SK3 and SK4, the data is the serial stream output from the UART IC5.

To conform to the Archimedes Podule specification, the MIDI Podule is equipped with a Byte wide EPROM IC2. IC2 contains the Podule ID and low level driver code (which is down-loaded into the main computer memory for execution). Optional large EPROMs are supported by a paging system, using IC3, a 273 octal latch. Links 1, 2 and 3 are preset (cuttable tracks) for a 27128 EPROM. See the table below for alternative options. Note that the PCB is tracked for a 32 pin EPROM but normally assembled with a 28 pin socket so a 27512 is the largest EPROM easily fitted.

Example type	Size	LK1	LK2	LK3
27128	16kByte	5 V	5 V	5 V
27256	32 kByte	5 V	5 V	PA3
27152	64 kByte	PA4	5 V	PA3
27C101	128 kByte	PA4	N.C.	PA3
	256 kByte	PA4	PA6	PA3
	512 kByte	PA4	PA6	PA3

The 74HCT32 (IC8) and 74HCT138 (IC4) decode the address space occupied by the EPROM, the page patch (IC3) and the UART (IC5). Finally, the 74HCT245 (ICI) buffers data to and from the backplane data lines BDO through BD7.

The Archimedes computer hardware reset is used on the Podule to clear the page latch IC3 to a known state, ie zero, as well as resetting the UART. For full details of the effect of reset on the UART, refer to the Signetics SCC2619 data sheet.

The UART is clocked continuously at 2 MHz, internal programmable dividers derive the serial data (baud) rate from the 2 MHz clock.

Any access made to the Podule slot (notPS at logic zero) occupied by the MIDI Podule will enable the data bus buffer IC1, data direction being set by the logic level of the PR/notW line. The internal device access is then selected by IC4 decoding LA12 with LA13 high and notPS low, or by part of IC8 if LA13 is low.

LA13 low selects the EPROM for read access. Note that there is no protection from bus conflicts if an attempt to write to the EPROM occurs.

LA13 high selects the UART is LA12 is low, or the Page latch IC3 if LA12 is high, IC8 gates in notPWE to ensure the page latch is write only.

3.3 I/O Podule

For details of the I/O podule and the optional MIDI module, see the information supplied in the manual accompanying the Podule upgrade kit.

3.4 Econet Module

Econet systems can only be serviced properly by Econet service centres, who will have the necessary test equipment to check the system thoroughly. However, there are some simple checks which can be made without the test equipment. See the Econet board circuit diagram in the Appendix.

Check that the module is installed and fitted correctly. Check that the two connectors on the Econet module are correctly inserted. The longer connector has two spare pins on the left of the PCB socket. If the module is displaced and plugged into one or both of these pins, it will not work.

4. Fault-finding information

See the 300 Series Module Level Service Manual for:

Dealer Test Software test instructions (section 7.4) Main PCB circuit diagram (pages 80/81)
Main PCB test point and layout diagrams (pages 76 and 77).

The purpose of this fault-finding information is to enable the engineer to trace faults to module level and, unless the module is non-serviceable, to component level. The modules are defined as the:

Main PCB,

PSIJ*

Floppy disc drive(s)+

Hard disc drive (where fitted)+ Podule(

s), as fitted

Podule backplane

Keyboard**

Mouse*

Monitor+

- * These are available as service-replacement only items and are non-serviceable. ** These are part-serviceable but include service-replacement only items.
- + These items are third party units, for which service information is available separately.

It is important to determine as closely as possible the nature and location of the fault in order to identify the faulty module.

Basic test equipment required:

100 MHz oscilloscope DC

Voltmeter

Continuity tester

In all instances, follow through the checks until the fault is located and identified, then change or repair the appropriate module. For information on module replacement procedures, etc., see the Acorn Service and Support Strategy document.

IMPORTANT NOTE

WHEN REFITTING OR FITTING A REPLACEMENT ASSEMBLY, CHECKS SHOULD BE MADE FOR EARTH CONTINUITY BETWEEN THE EARTH PIN OF THE MAINS PLUG AND THE FOLLOWING:

THE BASE METALWORK

THE REAR PANELS (INCLUDING BLANKING PANELS)

THE TOP COVER

USE AN EARTH CONTINUITY TESTER SET TO 25 AMPS.

CAUTION REPAIRS TO MULTI-LAYER PCBs

The main PCB is a four-layer board. Components should only be removed from the board using equipment specifically designed for this purpose. For details of suitable equipment available, contact Acorn Computers Ltd.

4.1 Basic checks

4.1.1 FIRST, CHECK THE OBVIOUS:

With both the monitor and the computer switched on, check for POWER ON indications (computer and monitor ON LEDs). If neither have power, check the main fuse in the wall plug.

If the computer is powered but not the monitor, check for power on the AC outlet socket at the rear of the computer main unit by plugging in a known good monitor. Should this also fail, replace the computer power supply.

If the monitor is powered but not the computer, an internal power supply fuse may have blown. Replace the PSU.

If both have power, check by substitution that the monitor and the interconnection cable are serviceable. Check for the correct power supply output voltages on the main PCB:

$$PL5 = +12 \text{ V}$$
; $PL6 = 0 \text{ V}$; $PL7 = 5 \text{ V}$ and $PL8 = -5 \text{ V}$

If the power supply is emitting a clicking sound, this indicates either a short between two of its outputs or a faulty power supply.

Make sure all of the ROMs are inserted correctly and that the relevant links (LK2, LK6 and LK12) are correct for the type of ROMs used. The options and settings of these links are detailed in section 5, "Connectors, interfaces, links and test points", in the Module Level Service Manual.

The keyboard CAPS LOCK light should toggle on and off when pressed and assuming a disc is present, the disc drive light will glow after a *CAT command. If so, this indicates that the system is alive and that the failure is confined to the video circuitry. See section 4.3.1.

If there is no response, substitute a known good keyboard and repeat the check. If there is still no response, there is a system failure - see section 4.3.2. If the substitute keyboard restores normal working, change the original keyboard PCB.

4.1.2 FLOW CHARTS

The following flow charts will be useful aids to basic checks:

NO DISPLAY

^{*} See Appendix 7.4 in the Module Level Service Manual

NO SOUND

*TEST PROGRAM:

- 10 REM > Check all channels
- 20 VOICES 8
- 30 FOR channel=1 TO 8
- 40 OSCLI("Channelvoice "+STR\$(channel)+" "+STR\$(2))
- 50 NEXT
- 60 FOR channel = 1 to 8
- 70 SOUND channel, -15, 100,24
- 80 PRINTchannel
- 90 k=GET
- 100 NEXT

RUN PROGRAM.
PRESS A KEY AND REPEAT 8 TIMES.
PRINTS CHANNEL NUMBER ON
SCREEN AND PLAYS VOICE 2 FOR
EACH CHANNEL.

4.2 Run main PCB Functional Test

Action resulting from test failure

The following notes refer to the test procedures on the PCB functional test disc, and the action that should be taken as the result of a test failure.

Type/Model: Memory area fault -

Perform memory tests, section 4.9, and repair as necessary.

Memory: Repair as above.

Battery-

backed RAM: Perform "NVM and RTC" tests, section 4.4.6, and repair as necessary.

Loudspeaker: If no sound, check speaker connections. Substitute a known good speaker and re-

test. If OK, replace speaker. If test still fails, perform "AUDIO" tests, section 4.4.

5, and repair as necessary.

Headphones: If no sound or poor/faulty sound on known good headphones, perform AUDIO

tests and repair as necessary. See also Production and Field Changes, Appendix

section 5.2.

Monitor Screen: If display rolls or is unstable, perform 'R' reset until correct default value obtained. If

no improvement, perform "Unstable or Scrolling Display" tests, section 4.3.3, and

repair as necessary.

If the display breaks up around its edges and spurious characters appear suspect the

system oscillator. See "Corrupted Display", section 4.3.4.

Colours incorrect or missing -

With a full white screen, VIDC IC 17 pins 39, 40 and 41 should all have the same

signal on them. If not, change the VIDC IC17.

Floppy Disc: See "Floppy disc drive", section 4.4.2.

Serial port If test fails, see "Serial Port, section 4.4.4". If a fault is reported but the test is passed,

see the Serial Port Application Note in the Appendix for possible explanations.

Printer: See "Printer", section 4.4.3.

4.3. Main PCB faults

4.3.1 VIDEO FAILURE

Check for +5 V on both ends of L1, if open circuit then check C14 for short circuit. Also check for 3.5 Volts (approx.) on IC 17 pin 43. Should this not be present then check R67.

Check for a 24 MHz clock on IC 17 pin 19. If missing then check continuity to and through P13a and its shunt.

Check for video data on IC 17 pins 39, 40 and 41. If not present, check power supply to IC 17 before finally changing IC 17.

Check for short circuits on signals VIDRQ and VIDAK.

Check connection of all data lines to VIDC.

6.3.2 SYSTEM FAILURE

In order to eliminate the major devices first, change in turn the ARM IC 43, MEMC IC 45, IOC21 and VIDC IC17. If the system still appears to be dead, proceed as follows:

Check for main system clock of 24 MHz on LK1 position c or d. If absent, check again on IC 15 pins 2 or 3 and change IC15 if required. Finally, change the crystal XL2.

Check for clocks on IC45 pion 67 and IC17 pin 19.

Check that the signal RST driving IC 45 pin 44 and IC 43 pin 9 is not stuck high.

Check for the presence and validity of the processor addresses and PHI 1 clock. This can be done by examining the signals on IC 36 pins 12 to 19, IC 35 pins 12 to 19 and IC 28 pins 16 to 19, whilst holding down the RESET button on the keyboard. In this situation the processor continuously increments its address bus. Should any of the signals not toggle, suspect either a short or open circuit on that line. Should none of the signals toggle, check for the PHI 1 clock on the appropriate IC and at its source on Q15 emitter and IC 45 pin 66. Also check to see that addresses are being presented to the inputs of the above devices. Change ICs 36, 35 or 28 as appropriate, or if no addresses are present, change the ARM IC 43.

The data bus can be inspected by probing on resistors R141 to 172. By their nature, it is difficult to interpret the signals seen, so just check for the ability of the signals to move between logic states. None of these lines should be stuck permanently high, low or in a midrail state. Any of these resistors may be removed in order to isolate the DRAM bank from the CPU, thus easing the tracing of shorts, etc. Also check for short or open circuits on the BDATA bus, IC 11 pins 12 to 19 and IC 19 pins 12 to 19.

Check for shorts on DRAM address bus, either on the DRAMS themselves or on IC 45 pins 28 to 36.

Check for Data and Address signals on all four of the ROMs. This is especially important if an ARTHUR ROM upgrade has been carried out, as misuse of a screwdriver during ROM removal may have damaged or broken PCB tracks.

Check for all address lines on MC, again with RESET held down.

Check the processor interrupt lines FIQ and IRG pins 8 and 7 on ARM IC 43. Neither of these should be stuck low. IRQ can be expected to pulse low, FIQ should be high. These interrupts should also be checked at their source on IOC IC 21 pins 50 and 51. Should these also be low, the interrupt source can be traced by examining all interrupt inputs to IOC IC 21 on pins 30 to 42 (note that pins 30, 31 and 42 are active high logic).

Check for short or open circuits on the latched 1O data bus, IC11 pins 12 to 19 and IC19 pins 12 to 19. This may well cause a false interrupt condition to occur.

Check corner pins of IOC IC21 for short circuits. Check for a

RAS signal on pin 5 of all the DRAMS.

4.3.3 UNSTABLE OR SCROLLING DISPLAY

The computer may have lost its configuration value for SYNC. Type at the keyboard:

*CON. SYNC 1 (RETURN)

press reset RESET and see if if any change occurs. Investigate configuration failure as detailed in section 4.4.6.

Check for CSYNC signal on SK2 pin 4. If not present, trace back through LK10, R7 and IC4, finally changing VIDC IC17.

4.3.4 CORRUPTED DISPLAY

If the display breaks up around its edges and spurious characters appear then investigate the system oscillator. Replace XL2.

Check DRAM using the main memory test routines, section 4.9.

4.3.5.COLOURS INCORRECT OR MISSING

With a full white screen, VIDC IC17 pins 39, 40 and 41 should all have the same signal on them. If not, change the VIDC IC17

Trace each signal through the periphery circuitry and out to SK2 until the fault is found. Check that IC4 pin

2 is responding to its input on pin 1 (pulls low only).

Make sure that the configuration items "BAUD" and "DATA" are set to sensible values. Check for -5 V on IC7 pin 8 and R12 to R15. Check for the clock on IC9 pins 6 and 7, change XL1 if faulty. Change ICs 7 and 6.

4.4 Peripheral area faults

4.4.1 KEYBOARD AND MOUSE

Make sure that the configuration items "DELAY" and "REPEAT" are set to sensible values - see the Archimedes Welcome Guide.

Check computer interface by swapping to a known good keyboard and mouse. If failure still present, check continuity of keyboard connector SK 12 and ensure that +5 V can be found on pin 4 and 0 v on pin 3.

Check functionality of inverting buffers in IC 20, check continuity through R 176 and R 180. Replace IOC IC 21.

4.4.2 FLOPPY DISC DRIVE

Make sure that the configuration items "STEP" and "FLOPPIES" are correctly set. Check that the disc drive ID selection switch is in the required position (usually 0). Swap the disc drive for a known good drive and cable. If this also fails, check the power supply connection for +12 V, +5 V and 0 V (see section 5 in the Module Level Service Manual).

4.4.3 PRINTER

Make sure that the configuration items for "IGNORE" and "PRINT" are set to sensible values. Swap the printer for a known good printer and cable.

If the printer fails completely, check for a STROBE signal on SK 3 pin 1, trace back through R 33, Q 5 and R 51 to IC 30. Also check for shorts or open circuits on PACK and PBSY.

If the data printed is incorrect, check the continuity of the data lines into and out of IC 3, though R 25 to R 32 and onto SK 3.

If both the printer and the floppy disc drive fail, change IC 30.

4.4.4 SERIAL PORT

Make sure that the configuration items "BAUD" and "DATA" are set to sensible values. Check for -5 V on IC 7 pin 8 and R 12 to R 15. Check for the clock on IC 9 pins 6 and 7; change XL 1 if faulty. If OK, change ICs 6 and 7.

4.4.5 AUDIO

Test the audio with both headphones and internal speaker. Do not forget to issue *SPEAKER ON and *VOLUME 127 commands.

If only the speaker fails, check connections to the main PCB via PL9 and check IC68 pin 5 for a signal of 3 V amplitude. If no signal is present on pin 5 but can be found on pin 3, change IC68. Check continuity through R173 and check that IC4 pin 10 is not stuck low.

If there is no audio at all, first check for +5 V on both ends of L3. If this is open circuit, check the condition of C36 before replacement. Check for -5 Von IC13 pin 11 and R40 and R42. Check for about 3 V on VIDC IC17 pin 12.

A low amplitude signal should be found on VIDC IC17 pins 13, 14, 15 and 16. If not, change VIDC. These signals can be traced through the perpheral circuitry and out to Q9 and Q11. Th signal amplitude at these points should be about 1.5 V pk-to-pk.

Check for short or open circuit on signals "SNDAK" and "SNDRQ" on VIDC IC17 pins 9 and 24. See also Appendix section 5.2, "Production and Field changes".

4.4.6 CONFIGURATION, NON-VOLATILE MEMORY & REAL TIME CLOCK

If the NVM suffers data retention problems and the RTC fails, then, with the computer power off, check for about 2.8 V on IC16 pin 8. If this voltage is not present, inspect PL11, D3 and the charge state of the batteries (>1.4 V per cell).

If the NVM IC16 consistently fails on the same data bits, change the device.

If the clock fails to run or runs inaccurately, check and if necessary replace XL3. TP1 allows access to the clock signal.

4.5 Hard Disc

Carry out the hard disc and Podule interface tests. IMPORTANT

THE HARD DISC AND PODULE INTERFACE TESTS WILL DESTROY ANY DATA ALREADY STORED ON THE DISC.

Check that the configuration settings are correct.

If drive is faulty, replace it using the Hard Disc Upgrade instructions as a guide. Replace a Podule using the Podule installation leaflet as a guide.

4.6 Podules

Run basic checks first - see section 4.1.

Run the relevant Podule test; if it fails, substitute a known good Podule. If the test still fails, check through "System failure ", section 4.3.2, tracing all signals through to Podule backplane. If necessary, replace the Podule backplane.

4.7 Keyboard

Make sure that the configuration items 'DELAY' and 'REPEAT' are set to sensible values - eg DELAY 32, REPEAT 4.

Perform the basic checks first - see section 4.1. Run the keyboard functional test. If the keyboard is replaced, re-run the keyboard functional test.

4.8 Audio

Run the main PCB Functional test - see section 4.2. for details.

4.9 Test ROMs

The Archimedes series Test ROMs are designed to assist in the repair of all Archimedes systems where 'Failure to Initialise' faults are present - ie the machine appears to be 'dead' on power-up.

The ROMs contain software which can be catagorised in two sections:

- 1. Main memory test routines.
- 2. Test routines for use under repetitive reset.

To install the test ROMs, carefully remove the ARTHUR ROM set, ICs 24, 25, 26 and 27 and replace them with the test ROMs, 0, 1, 2 and 3 respectively - see diagram below.

Fitting the test ROMs in place of the ARTHUR ROMs

Use the bare minimum of hardware to run the system - remove/disconnect all peripherals not needed for the tests.

4.9.1 MAIN MEMORY TEST

Providing that the ARM, memory controller and video controller are functioning, the test ROMs will auto-boot into the menudriven display below. At any point in the operation of the test ROMs, pressing the RESET key or re-powering the machine will re-start the program and re-display the menu.

O123456789012345678901234567890123456789012345678901234567890123

A1 DIAGNOSTIC TEST ROMS MEMORY SIZE =&OXXO0000 BYTES

1. CYCLIC MEMORY TEST WITH PRINTOUT

2. CYCLIC MEMORY TEST

SELECT:

The memory test checks memory according to memory size selected.

It is possible that faulty memory may lie in the region designated as 'screen memory'. If this occurs, the video display may become unreadable. For this reason, the sequence 0123456789 is repeated across the top line of the display. Every 4 digits represents a 32 bit word. Watch for missing or corrupted display.

As the start of the screen memory is known to be at physical address &2000000, it should be possible to determine the exact device that is faulty by examining the corruption pattern on the display.

The default 'memory size' is &100000 bytes (1 Mbyte), however this may be cycled through 0.5, 1, 2 and 4 Mbyte memory sizes by pressing the 'M' key.

When using the ROMs on a machine having memory content other than 1 Mbyte, the video display may at first appear out of line or incorrect. In this instance press the 'M' key repeatedly until the required memory size has been selected.

The memory test is cyclic and on completion of each full memory test a full stop ('.') will be displayed. The 0.5 Mbyte test takes between 3 and 4 seconds to complete whilst the 4 Mbyte test takes about 29 seconds.

If for some reason the video display is completely blank or unreadable (eg because of a video fault), a printed output may be obtained by selecting option 1, the output being produced at the printer port as well as on the VDU.

If an error is found in the memory, the display will show:

where 'nnnn' is the faulty address, 'pppp' is the data written to that address and 'xxxxxxxx' is the data read back from that address in binary form.

The memory tests do not terminate unless an error is found, in which case after reporting 8 or 9 errors, the test will terminate.

An additional check is now made on the state of CMOS RAM control lines CO and Cl. If either of these lines are short-circuit to 0 Volts, the Test ROMs will indicate this on power-up.

Physical Address	IC Numbers
&2000000 - &200003F)
&2000080 - &20000BF)
&2000100 - &200013F) 70, 72, 74, 76)
&2000180 - &200001BF) 79, 81, 83, 85)
etc. up to)
&207FF80 - &207FFBF)
&2000040 - &200007F)
&20000C0 - &20000FF) 69, 71, 73, 75)
etc. up to) 78, 80, 82, 84)
&207FFC0 - &207FFFF)
&2080000 - &208003F)
&2080080 - &20800BF) 52, 54, 56, 58
etc. up to) 61, 63, 65, 67
&20FFF80 - &20FFFBF)
&2080040 - &208007F)
&20800C0 - &20800FF) 51, 53, 55, 57
etc. up to) 60, 62, 64, 66
&20FFFC0 - &20FFFFF)

Memory map for A305/A310

4.9.2 REPETITIVE RESET TEST

This section of test code is intended for use when the main memory test menu fails to initialise.

To make use of this section of the ROMs the following test equipment is required: Oscilloscope

Signal or pulse generator

The purpose of the code is to produce certain signals around specific areas of the PCB. These signals may then be monitored using the oscilloscope to assess the operation of that area of the circuit.

The code is written in a loop which should execute three times before proceeding to the main memory test. For this reason the machine must be reset repeatedly.

A suitable square wave or, preferably, a negative-going pulse generator output at 10 kHz should be connected to the reset line via a component connected to IOC IC21 pin 29.

After setting the border colour to white, the signals should be observable in the following order:

```
SVPMD low
SVPMD low
SVPMD low
IOC CS & S1 hi
IOC CS & S2 hi
IOC CS & S4 hi
IOC CS & S4 hi
IOC CS & S5 hi
IOC CS & S6 hi
```

```
IOC CS & S7 i
nB/W
     low
nB/W
     low
nB/W
     low
IOC CS & CO
IOC CS & C1
IOC CS & C2
IOC CS & C3
               hi
IOC CS & C4
               hi
IOC CS & C5
               hi
IOC CS hi
```

Return to start for three executions.

After execution of this code, the border colour is reset to black. The assembler listing for this section of the code is given below:

```
Start1
         LDRT
                     [r5]
               r0,
                                       ;SVPMD pin low
         LDRT
               r0,
                     [r5]
                                                           )continual toggle of:-
         LDRT
              r0,
                    [r5]
         LDR
                   iocmof
               r1,
                                      ;re-load ioc base addr. -offset
         LDR
                    [r1,r6]!
                                      ;SVPMD pin high
               r0,
         LDR
                    [rl, r6]!
               rO,
                                      ;IOC CS pin high
                                                          ;S1 ioc hi
         LDR
               r0,
                    [r1, r6]!
                                      ;IOC CS pin high ;S2 ioc hi
         LDR
               r0,
                    [r1, r6]!
                                      ;IOC CS pin high ;S3 ioc hi
         LDR
               r0,
                    [r1, r6]!
                                     ;IOC CS pin high ;S4 ioc hi
                                     ;IOC CS pin high
                                                        ;S5 ioc hi
         LDR
                    [r1, r6]!
               rO,
                    [r1, r6]!
[r1, r6]!
                                      ;IOC CS pin high
                                                         ;S6 ioc hi
         LDR
               rO,
         LDR
               r0,
                                      ;IOC CS pin high
                                                          ;S7 ioc hi
         LDRB
               rO,
                     [r5]
                                      ;nB/W pin high
         LDRB
               r0,
                     [r5]
                                      ;nB/W pin high
                                       ;nB/W pin high
         LDRB
               r0,
                     [r5]
         VOM
                     #&FE0000
               r1
         STR
               r1,
                    [r7]
                                          set CO
         VOM
               r1
                     #&FD0000
                                                           )
         STR
               r1,
                    [r7]
                                         set C1
         VOM
                     #&FB0000
               r1
         STR
               r1,
                    [r7]
                                         set C2
                                                           )
         MOV
               r1
                     #&F70000
                                                           ) I.O.C.
         STR
               r1,
                     [r7]
                                       ; set C3
         MOV
               r1
                     #&EF0000
                                                           )
                                       ;
                                       ;
               r1,
         STR
                     [r7]
                                          set C4
                                                           )
                                       ;
         MOV
                     #&DF0000
               r1
                                                           )
         STR
               r1,
                     [r7]
                                       ;
                                          set C5
         VOM
               r1
                     #&FF0000
                                       ;
         STR
               r1,
                     [r7]
                                          reset all
         LDR
               r1, &5555555
                                      ;
                                          write to printer port
         STR
               r1,[r8}
         SUBS
               r9, r9, #1
         BNE
               start1
         В
               main
```

5. Appendices

5.2 Production and Field Changes	15
5.3 Hard Disc Podule Circuit Diagram	19
5.4 MIDI Podule Circuit Diagram	
5.5 Econet Module Circuit Diagram	53
5.6 Backplane Circuit Diagram (2-way)	

5.1 Parts Lists

Items identified by a * are normally available as spare parts. For details of service and spares policy, see the Acorn Service and Support Strategy document.

Items denoted *+ are available only in sets - see 'Component Sets' at the end of the parts lists.

Archii	medes 300Series P	ackaging Assembly	
4	0176,003 *	Mouse	1
9	0276,019 *	Carton	1
10	0277,020 *	Welcome Disc	1
11	0276,029 *+	Packaging, Top	1
12	0276,030*+	Packaging, Bottom	1
14	0476,000 *	Welcome Guide	1
15	0476,002 *	User Guide	1
16	0476,003 *	BASIC/Sprite Editor Keycard	1
19	0870,353 *	Power Lead, 2M Long, c/w 13A Plug	1

Archimedes 300 Series Final Assembly

Item	Part No.	Description	Qty	Remarks
1	0176,006 *	Speaker and LED Assy.	1	
2	0176/008/A	Case LowerAssy.	1	
4	0276,002 *+	Front Moulding	1	
5	0276,003 *+	Front Sub-Moulding	1	
6	0276,006 *+	Case Metalwork, Upper	1	
7	0276,015 *+	Front Label, 305	1	
	0276,315 *+	Front Label, 310	1	
8	0276,017 *+	Base Label	1	
11	0817,005 *	Battery, Alkaline 1V5 2AH `AA'	2	
13	0882,655	Screw No. 6 x 1/2" Pan Hd. Pozi AB	2	Item 4 to 2
14	0882,121	Screw M3 x 6 Pan Hd Pozi	5	Item 6 to 2
15	0882,654	Screw No. 6 x 3/8" Pan Hd Pozi AB	5	Item 4 to 2/5
16	0882,949 *	Spire Clip No. 6	5	For item 4
Archi	medes 300 Series Case	Lower Assembly		
1	0376,340	PCB Assembly (305)	1	Ex ROMS
2	0176,002 *	55W 240V PSU	1	
3	0176,004 *	3.5" 1 MB Floppy Disc Drive	1	
4	0176,005 *	Single Drive Cable Assy	1	
5	0176,009 *	Battery Holder Assy	1	
8	0276,004 *+	Rear Moulding	1	
10	0999,462 *+	Case Metalwork, Lower	1	
11	0276,010 *	L.H. Busbar	1	
12	0276,011 *	R.H. Busbar	1	
13	0276,012 *	Blanking Panel	2	
14	0276,013 *+	Drive Saddle	1	
15	0276,014 *	Drive Bracket	1	
16	0276,037 *	PCB Side Slide Guide	2	See page 46
37	0884,065 *	Spacer, Nylon 8mm PCB	1	See page 46
	0884,063 *	PCB Support Pillar	S	ee page 46
40	0890,009 *	Foot Pop-Fit 4mm High	4	

40

Archimedes 300	Series	Keyboard	Assembly
----------------	--------	----------	----------

1	0276,101*+	Keyboard Case Upper	1	
2	0276,102 *+	Keyboard Case Lower	1	
3	0276,106 *+	Name Case Label	1	
4	0276,107 *+	Logo Case Label	1	
5	0176,100 *	Keyboard PCB Assy.	1	C/W Curly Cable
6	0276,103 *	Leg Moulding	1	
7	0276,104 *	Window Moulding	1	
8	0276,105 *	Friction Pad	1	For item 7
9	0276,108 *	Reset Switch Cap Moulding	1	
10	0890,011 *	Rubber Foot	4	
11	0999,438 *	Curly Cable	1	For Keytronics board only

Archimedes 300 Series Main PCB Assembly

Ī						
I	ten	nPart No.	Description		Qty	Remarks
7	7	0277,022 *	1M Arthur F	ROM 1 V1.2	1	IC24
8	3	0277,023 *	1M Arthur F	ROM 2 V1.2	1	IC25
Ç)	0277,024 *	1M Arthur F	ROM 3 V 1.2	1	IC26
1	0	0277,025 *	1M Arthur F	ROM 4 V 1.2	1	IC27
]	1	,				
1	2	0276,032 *	Programmed	d PAL 16L8A	1	IC44
	3	,	U			
	4					
	5	2201,365 *	IC ARM 2μ	m PLSTC	1	IC43
	6	2201,366 *	IC MEMC F		1	IC45
	7	2201,367 *	IC VIDC 1A		1	IC17
	8	2201,368 *	IC IOC PLS		1	IC21
	9	2201,500	TO TOO TES	10	•	1021
	20					
	21					
	22	0502,100	RES 10R	C/MF 5% 0W25	1	R175
	23	0502,100	RES 100R	C/MF 5% 0W25	2	R176,177
	24	0502,101	RES 1K	C/MF 5% 0W25	3	R51,65,66
	25	0502,102	RES 10K	C/MF 5% 0W25	11	R2, 12, 13, 14, 15, 16, 17, 61, 67, 178, 179
	26	0302,103	KLS TOK	C/WII 570 0 W 25	11	K2 , 12, 13, 14, 13, 10, 17, 01, 07, 170, 177
	27	0502,104	RES 100K	C/MF 5% 0W25	2	R73,88
	28	0302,104	KES TOOK	C/WII 5/0 0 W 25	2	R/3,00
	29	0502,122	RES 1K2	C/MF 5% 0W25	5	R89, 114, 120, 122, 138
	.9 80	0302,122	KES 1K2	C/IVII 570 0 W 25	3	K69, 114, 120, 122, 136
	81	0502,181	RES 180R	C/MF 5% 0W25	1	R35
	32	0302,161	KES TOOK	C/MIF 3% 0 W 23	1	K33
	33	0502 220	DEC 22D	C/MF 5% 0W25	9	R25-33
		0502,220	RES 22R		6	
	34	0502,221	RES 220R	C/MF 5% 0W25	0	R1, 3, 9, 18, 180, L2
	35	0502 272	DEC OVA	C/ME 50/ OWO5	1	D 40
	6	0502,272	RES 2K7	C/MF 5% 0W25	1	R49
	37	0502 220	DEC 22D	C/ME 50/ OWG5	2	D101 102
	88	0502,330	RES 33R	C/MF 5% 0W25	2	R181,182
-	9	0502,331	RES 330R	C/MF 5% 0W25	3	R60, 123, 129

Archimedes 300 Series Main PCB Assembly - cont'd

			•		
Iten	n Part No.	Description		Qty	Remarks
40	0502,333	RES 33K	C/MF 5% 0W25	7	R53, 54, 56, 57, 58,107
41	0502,471	RES 470R	C/MF 5% 0W25	1	R52
42	0502,472	RES 4K7	C/MF 5% 0W25	24	R19, 21, 22, 23, 24, 34, 36, 38, 90, 91, 92, 93, 94, 95, 96, 108, 109, 111, 112, 113, 126, 136, 137, 173
43					
44					
45					
46					
47	0502,680	RES 68R	C/MF 5% 0W25	59	R4, 5, 6, 7, 8, 64, 69, 70, 71, 72, 74, 75, 76, 77, 78, 87, 97, 98, 99, 100, 115, 116, 117, 118, 119, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 183
56	0502,681	RES 680R	C/MF 5% 0W25	2	R43, 44
57	0502,820	RES 82R	C/MF 5% 0W25	1	R45
58	0502,821	RES 820R	C/MF 5% 0W25	1	R174
59	0506,161	RES 43R2	MF 1% 0W25 E96	3	R20, 41, 59
60	0506,250	RES 332R	MF 1% 0W25 E96	3	R37, 50, 63
61	0506,300	RES 1K00	MF 1% 0W25 E96	4	R103, 104, 105, 106
62	0506,517	RES 150K	MF 1% 0W25 E96	8	R79, 80, 81, 82, 83, 84, 85, 86
64	0508,101	RES 100R	MF 10% 0W50	2	R40, 42
65					
66	0590,102	RES NET	1K0 TF10% 9P	1	RP1
67					
68					
69 (0610,005	CPCTR TA	NT 4µ7 10V 20%	19	C40, 'B' X 18
70 (0610,010	CPCTR TA	NT 10µ 10V 20%	5	C14, 20, 35, 36, 52
71	0611,101	CPCTR TA	NT 100µ 16V 20%	3	C37, 38, 39
72					
73 (0629,010	CPCTR CP	LT 10n 30V 80%	1	C51
74					
75 (0630,100	CPCTR CP	LT 1n 30V 10%	2	C1, 2
76	0630,220	CPCTR CP	LT 2n2 30V 10%	8	C5, 6, 7, 8, 9, 10, 11, 12
77 (0630,270	CPCTR CP	LT 2n7 30V 10%	2	C17,24
78					
79	0631,010	CPCTR CP	LT 10p 30V 2%	1	C26
80	0631,012	CPCTR CP	LT 12p 30V 2%	1	C21
81	0631,033	CPCTR CP	LT 33p 30V 2%	2	C19,33
82	0631,047	CPCTR CP	LT 47p 30V 2%	3	C15, 16, 18
83	0631,100	CPCTR CP	LT 100p 30V 2%	5	C3, 4, 13, 25, 27
84	0631,330	CPCTR CP	LT 330p 30V 2%	4	C28, 29, 31, 32
85					
86	0635,221	CPCTR AL	EC 220p. 16V RAD	1	C50

Archimedes 300 Series Main PCB Assembly - coned

Item 87	Part No.	Description	Qty	Remarks
88	0640,473	CPCTR CER 47n 30V 80%	1	C49
89	0650,223	CPCTR MPSTR 22n 50V 20%	2	C22, 23
90	,			- , -
91	0680,002	CPCTR DCPLR 33/47n 0.2"	18	'Z'
92	0680,100	CPCTR DCPLR 33/47n AX 12V	39	'A'
	0000,100	er erre er erree, i,milli 12 i		• •
96	0701,772 *	IC 1772 FDC 28/0.6"	1	IC47
98	0704,105 *	IC 4464 DRAM 120nS 64Kx4	16	IC69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84,
	,			85
101	0706,552 *	IC 65C51	1	IC9
	0708,583 *	IC PCF8583	1	IC16
103	,			
104	0732,630 *	IC 26LS30 RS422/423 DRVE	1	IC7
	0732,632 *	IC 26LS32	1	IC6
106				
107	0742,005 *	IC 74LS05 TTL 14/0.3"	2	IC4, 38
108	0742,374 *	IC 74LS374 TTL 20/0.3"	1	IC3
109				
110	0744,138 *	IC 74ALS138 TTL 16/0.3"	1	IC59
111				
112	0747,000 *	IC 74HC00 CMOS 14/0.3"	1	IC46
113	0747,004 *	IC 74HC04 CMOS 14/0.3"	1	IC15
114	0747,014 *	IC 74HC14 CMOS 14/0.3"	1	IC20
115	0747,075 *	IC 74HC75 CMOS	1	IC77
116	0747,138 *	IC 74HC138 CMOS 16/0.3"	1	IC31
117	0747,573 *	IC 74HC573 CMOS 20/0.3"	5	IC11, 19, 28, 35, 36
118	0747,574 *	IC 74HC574 CMOS	2	IC29,30
119				
120	0749,573 *	IC 74HCT573 CMOS 20/0.3"	2	IC10,18
121				
122	0770,324 *	IC LM423 QUAD OP AMP	1	IC13
123	0770,386 *	IC LM386 AUDIO AMP	1	IC68
	0780,239 *	TRANS BC239 NPN	2	Q2, 5
	0780,510 *	TRANS ZTX510 PNP TO92	1	Q15
	0783,906 *	TRANS 2N3906 NP	9	Ql, 3, 4, 6, 7, 8, 10, 12, 13
	0783,904 *	TRANS 2N3904 NPN TO92 CBE	2	Q9, 11
	0794,001 *	DIODE SI 1N4001 50V 1A	2	D2, 3
131	0794,148 *	DIODE SI 1N4148	2	Dl, 4
135	0800,004 *	CONR 5W SKT DIN RA PCB	1	SK4 (ECONET)
136	,	COME SIT DIN KAT CD	1	DIT (DCOILL)
	0800,050 *	CONR 2W WAFR 0.1" ST PCB	2	PL3A
	0800,050 *	CONR 2W WAFR 0.1 ST PCB	2 2	
	0800,051 *			LK2, 6 (NF) PL2
	0800,052 * 0800,070 *	CONR 5W WAFR 0.1" ST PCB CONR 2W SHUNT 0.1"	2 4	
140	0000,070	COME 2 W BITUINT U.I	4	PL3A, LK2, 6

Archimedes 300 Series Main PCB Assembly - cont'd

Item Part No.	Description	Qty	Remarks
141			
142 0800,118 *	SKT IC 18/0.3" NORM	16	IC51-58 & 60-67
143 0800,120 *	SKT IC 20/0.3" NORM	1	IC44
144 0800,131 *	SKT IC 32/0.6" NORM	4	IC24, 25, 26, 27
145 0800,169 *	SKT IC 68P PLCC	3	IC17, 21, 45
146 0800,185 *	SKT IC 84P PLCC	1	IC43
147			
148 0800,203 *	FSTN TAB 6.3MM X 0.8 ST PCB	4	PL5, 6, 7, 8 (POWER)
153 0800,400 *	CONR 64W SKT ST AC PCB SH	1	SK7 (EXPANSION)]
154 0800,458 *	CONR 2W WAFR 0,1" ST LK	1	PL11 (BATTERY)
155 0800,459 *	CONR WAFR 0.1" ST LK	1	PL9 (FRONT PANEL)
156 0800,481 *	CONR 5W HSNG 0.1" PCB	1	SK6 (NET MODULE)
157 0800,484 *	CONR 17W SKT HSNG 0.1" PCB	1	SK5 (NET MODULE)
158 0800,611 *	CONR PHONO SKT RA PCB	1	SK13
159 0800,642 *	CONR 3W 3,5MM RA PCB JSKT	1	SK1 (AUDIO)
160 0800,853 *	CONR 2W WAFR 0.156" ST LK	1	PL12 (FAN)
161 0800,919 *	SKT 6W MINDIN RA PCB RFI	1	SK12 (KEYBOARD)
163 0803,102 *	CONR 34W BOX IDC LP ST	1	SK11 (DISC DATA)
168 0820,019 *	XTAL 1.8432MHz HC18/U	1	XL1
169 0820,240 *	XTAL 24.00 MHz HC18/U	1	XL2
170 0821,327 *	XTAL 32.768 kHz CC 0.05"	1	XL3
172 0860,005 *	COIL RF 33µH AX Q=45	2	L1, 3
186 0800,291	CONRD 9W PLG RA PCBLK+LK	1	PL1 (SERIAL)
0800,271*	CONRD 9W PLG RA PCB+RFI+L		OPTION
190 0800,292	CONRD 9W SKT RA PCBLK+LK	1	SK2 (VIDEO)
0800,272*	CONRD 9W SKT RA PCB+RFI+L		OPTION
194 0800,293	CONRD 25W SKT RA PCBLK+LK	1	SK3 (PRINTER)
0800,273*	CONRD 25W SKT RA PCB+RFIL		OPTION
0884,044	Rivet, Pop, 3,2D	2	For OPTION items 186, 190, 194
	_		

COMPONENT SETS

The following items are available only as sets:

300 SERIES MA	AIN UNIT	310 Label Set, comprising:
Case Metalwork,	comprising:	0276,315 310 Case Front Label
0276,006	Case Metalwork Upper	0276,017 310 Case Base Label
0999,462	Case Metalwork, Lower	Packaging Set, comprising:
0276,013	Drive Saddle	0276,029 Poly Case Lower
0176,009	Battery Holder Assy.	0276,030 Poly Case Upper Case Moulding Set, comprising:
0276,002	Front Moulding	300 SERIES KEYBOARD
0276,003	Front Sub-Moulding	Keyboard Case, comprising:
0276,004	Rear Moulding	0276,101 Keyboard Case, Upper
305 Label Set, co	omprising:	0276,102 Keyboard Case, Lower
0276,015	305 Case Front Label	Keyboard Label Set, comprising:
0276,017	305 Case Base Label	0276,106 Name Case Label
		0276,107 Logo Case Label

5.2 Production and Field Changes

The following information gives changes and deviations made to the Archimedes 300 series during production and is the latest available when this manual was compiled. It will be updated accordingly as information becomes available.

Main PCB

MONO VIDEO OUTPUT

Some issue 2 boards may have a mono video output fault. If other checks do not reveal the cause, check for the presence of insulation tape beneath the RGB video connector SK2 mounting bracket. If no tape is fitted, suspect a short circuit on the mono video track; check for a short circuit to earth (NOT 0v) and, if found, drill out the rivet securing the bracket and place insulation tape underneath the bracket leg to insulate the track.

SOUND OUTPUT FAILURE

Insertion of the jack plug into the audio output socket SKT1 causes a temporary short of both audio output devices Q9 and Q11 to OV. If the audio output is not working, check for BC239s fitted at Q9 and Q11. If so, replace them with 2N3904s, Acorn Part Number 0783,904. Note that the 2N3904s have a different pinout to BC239s and have to be fitted in a reversed position - see diagram below. Later boards are fitted with 2N3904s. As these will tolerate the momentary short, they are unlikely to be the cause of audio output failure.

VIEW OF ALTERNATIVE TYPES Q9, Q11 AS SEEN FROM ABOVE.

SERIAL PORT

On issue 1 boards only, two wire links are fitted around ICs 7 and 15, as follows:

IC7 pin 3 and IC15 pin 10 are not inserted into their IC sockets and are connected by a wire link across the top side of the PCB.

The second wire link is fitted between IC7 pins 1 and 4 on the underside of the PCB.

EXCESSIVE BACKGROUND NOISE ON SPEAKER (Acorn FCO E008 refers)

Later boards have a modification to reduce hum from the internal loudspeaker caused by acoustic pickup.

The modification comprises a 10 V or higher 10 p.F capacitor fitted between pins 7 (+ve) and 4 (-ve) of IC68. The capacitor should be fitted as close as possible to the IC and should be secured to the PCB using glue or hot wax. RS part number 104-449 or 103-957 are suitable capacitors.

Machines in the original serial number range 27-AKB10-1000001 to 27-AKB10-1001277 and 27-AKB15-1000001 to 27-AKB15-1001752 were not fitted with this modification in production. However, machines outside this range may, on subsequent repair, have been fitted with circuit boards which are not modified.

Note that the noise on earlier computers when BREAK or ESCAPE is pressed is due to a software problem with earlier versions of Arthur, and will be cured when Arthur 1.20 is fitted.

RGB OUTPUT VOLTAGE LEVELS (ACORN FCO E009 REFERS)

The RGB output voltage levels have been raised in production to improve compatibility with certain types of multi-sync monitors. In addition, sync on green is no longer provided. Where problems are experienced with RGB levels being too low for a given monitor, change the values of 0.25W 1% resistors R20, R41 and R59 to 43.20 and remove R39. If 43.20 resistors are not available, 430 1% 0.25W, Farrell part number MRS2543R or RS part number 148-168 may be used as an alternative.

Note: There are problems inherent with removing components from four-layer boards. Components should only be desoldered from the board using vacuum desoldering equipment. An acceptable alternative would be to cut the wires to the components concerned, leaving enough of the wire on the board to allow the new resistor wires to be soldered to them. The new wires should be cropped close to the resistor, but allowing the new solder joint to be effected. On removing R39, which is no longer required, crop the wires back to the board.

VIDEO NOISE (ACORN FCO E011 REFERS)

Breakthrough of system noise occurs onto the screen. This shows as rippling on screen and is particularly noticeable with colour monitors. This seems to be particularly prevalent when running 'Arcwriter'.

If this occurs, solder a 1N4148 diode in parallel with R67 (adjacent to VIDC IC17) with the cathode (dark stripe) at the end nearest Q13. Remove the decoupling capacitor 'A' nearest to 1C17, between it and Q12 either by using desoldering equipment or by cutting the capacitor out, leaving wires long enough to attach a new component. Replace this capacitor with a $22\mu F 6.3 \text{ V}$ or higher axial lead electrolytic capacitor, eg Farnell part number 030 34229. Observe polarity - positive end furthest away from Q12.

PCB MOUNTING

There have been several methods employed of mounting the main PCB in the case. These include:

- 8 support pillars, part number 0884,063, fixed to the case. The board rests on these pillars, and is attached to the rear panel.
- ii. Later boards are supported by finger grips in the front moulding, with 3 support pillars 0884,063 under the PCB, plus the rear panel. On some units, the 3 support pillars are attached to the board.
- iii. The PCB is supported by finger grips in the front moulding and attached to the rear panel. Two PCB slide guides support the board along each side of the case, plus one central nylon spacer, part number 0884,065, attached to the board.

In all instances, exercise extreme care when removing the board from the case, so as not to snag supports or damage the board.

Link 12

Link 12 enables selection of ROM device types. The default setting is for EPROMs up to 0.5Mbit, 1Mbit ROMs and 1Mbit non-JEDEC EPROMs. Changing link 12 would allow the use of 1Mbit JEDEC EPROMs.

Issue 1 boards do not have the link fitted.

Issue 2 boards have a link consisting of either four pads or pins and shunts. The tracking is as for an issue 1 board. If the shunts are reversed, this may stop the machine functioning. Tracks need to be cut to change the link.

Phono socket (mono video)

Issue 1 boards have a mono video phono connector fitted to the PCB rear panel, with flying leads from the PCB.

Issue 2 boards have a board-mounted socket.

Battery holder

The battery holder is riveted to the base metalwork. If the battery holder is replaced, care must be taken to ensure that the fixing rivets are fitted to the two holes originally used. Only two of the four possible holes hold the battery holder assembly rigid.

Saddle

The disc drive support 'saddle' is fixed to the base metalwork by either screws or, on later units, rivets. All replacement base metalwork will have a saddle riveted in position.

DCI

Power Supply Units manufactured by Sanken have a screw head in the case which may foul the rear panel busbar. If fitting a Sanken PSU as a replacement, it may be necessary to modify the busbar by filing a piece out of it to clear the screwhead.

5.3 HARD DISC PODULE CIRCUIT DIAGRAM

5.4 MIDI PODULE CIRCUIT DIAGRAM

5.5 ECONET MODULE CIRCUIT DIAGRAM

5.6 2-WAY BACKPLANE CIRCUIT DIAGRAM

PL1		B 2 6 MS2	5	SK2		ģ	SK0
1a 5	8		1a o	1c o		1a &	10
	2c O .5v		28	2c Q		2a O	2c Q
4 3a 0	n- 0		3a 🕽	3c Q		За О	
	3c <u>0</u> 0V					38 0	3c 9
4a O	4C 0 0V	- - - - - - - - - -	44 6	4c Q		4a Ó	4C Q
5a 0	5c Q SPVMD		Sa d	Sc O		Sa O	5€ 0
6a 6	6c O LA21		Sa o	6c Q MS2	***	6a O	6c O MSO
	LA10		7a 0	7¢ Q		7a 0	7c Q
	LA9						
8a Ċ (BC CPB		8e 6	8a Q		8a Ó	88 0
9a O 1	9c Q CP1		981 0	9c Ç		98.0	9c 9
1000	LA7 18cO OPC		10a Š	10c Q		10eO	10c Q
_	LA6		11a Š	1100		1180	
	1.A5					1120	1160
12a Ó	12cO RST		12a Ó	1200		12#0	1200
13a O	13cO PR/W		13a O	130 0		1340	1360
1480	LA3 14CO PWE		14a O	146 0		1480	14cQ
15a O	15cO PRE		15a O	15c Q	****	1540	15cQ
	BD15		16a J				1
	16cQ PIRQ BD14		102 0	16c Q		16aÒ	1600
17a Ó .	17¢Q PFKQ		17a b	17c O		17 a O	1700
18a 6	BD13 18cO RESERVED		18a Ó	18c Q		1880	1800
19a O	BD12		19a O	19c Q		1980	19cQ
г	BD11		20a	20c Q		20=0	
	BD10		204.0	- wy		2080	20c O
21 a Ó	21c O <u>\$7</u> BD9		218 0	210 0		21aO	2100
22a O	22cO <u>\$4</u>		22a O	22c Q PS2		2290	22cO PS0
23a O	8D8 23cO <u>IOGT</u>		23a Ó	23c O		2380	2360
248	BD7 24c O IORO		24a 0	24c Q		2450	2400
	BD6					1	
25a Ò ;	25cO BL BDS		25a Č	25c O		25 a Ô	25cO
268	26c O 0V		26a O	26c O		2680	2800
27a 0	BD4 27cO CLK2		27a 0	27c Q		2780	2760
	BD3		28a Ó	28c Q		2840	28c Q
	BD2						
298 0 :	29cO REF 8M BD1		29a Å	29c O		2940	2900
30a 0 :	30c O 0V		30a O	30c O +5∨		30,00	300
31a 0	BD0 31cO MDBE		31a 0	31¢ 🗘		3120	3100
	32c Q		32a	32c Q		3280	32c Q
328		+5V		+12V			
		T.					
		LA14 14 74HC139	0 12 PSO				
		LA15 13 B 2 EN	0 PS2				