- 1. r = 2
 - p = (0,0)
 - $x^2 + y^2 = 4$

$$\begin{cases} x(t) = 2 \cdot \cos(t) \\ y(t) = 2 \cdot \sin(t) \\ 0 \le t < 2\pi \end{cases}$$

x	y
0	2
-2	0
	$\begin{bmatrix} x \\ 0 \\ -2 \end{bmatrix}$

0

- 2. r = 1
 - p = (1,3)
 - $(x-1)^2 + (y-3)^2 = 1$

$$\begin{cases} x(t) = 1 + \cos(t) \\ y(t) = 3 + \sin(t) \\ 0 \le t < 2\pi \end{cases}$$

\overline{t}	\boldsymbol{x}	y
$\frac{\pi}{2}$	1	4
$\bar{\pi}$	0	3
$\frac{3\pi}{2}$	1	2

- 3. r = 3
 - p = (0, 2)
 - $(x)^2 + (y-2)^2 = 9$

$$\begin{cases} x(t) = 3 \cdot \cos(t) \\ y(t) = 2 + 3\sin(t) \\ 0 \le t < 2\pi \end{cases}$$

t	x	y
$\frac{\pi}{2}$	0	5
π	-3	2
$\frac{3\pi}{2}$	0	-1

