STAT 151A Homework 1 Questions 1-3 Solutions

Billy Fang

These are rough sketches for the solutions for some of Homework 1. Some computational steps are omitted for brevity.

1

(a) In $Y = X\beta + e$ form, the model is

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}.$$

So,
$$X = \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix}$$
.

(b) The normal equation is always $X^{\top}X\beta = X^{\top}y$. Plugging in our X from part (a) and doing some rearranging yields

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \beta = \begin{bmatrix} \overline{y} \\ \overline{y} \end{bmatrix},$$

where $\overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.

Thus the solutions to the normal equation is the subspace of vectors (β_0, β_1) satisfying

$$\beta_0 + \beta_1 = \overline{y}.$$

One such solution is $\beta_0 = 0$, $\beta_1 = \overline{y}$.

(c) From the previous part, it is \overline{y} .

(d) $\beta_1 = \Lambda^{\top} \beta$ for $\Lambda = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. By the definition of estimable, we need to check if there exists P such that $P^{\top} X = \Lambda^{\top}$. Plugging in X and Λ yields

$$P^{\top} \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

This is impossible because even if P^{\top} has the right dimension $1 \times n$, the left-hand side would always be a vector of the form $\begin{bmatrix} c & c \end{bmatrix}$ for some number c, and thus can never equal the right-hand side. Thus β_1 is not estimable.

(e) In $Y = X\beta + e$ form, the model is

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_n \\ e_{n+1} \end{bmatrix}.$$

The normal equation $X^{\top}X\beta = X^{\top}y$ is

$$\begin{bmatrix} n+1 & n+2 \\ n+2 & n+4 \end{bmatrix} \beta = \begin{bmatrix} y_1 + \dots + y_n + y_{n+1} \\ y_1 + \dots + y_n + 2y_{n+1} \end{bmatrix}$$

Then, doing some rearranging yields

$$\beta_0 + 2\beta_1 = y_{n+1}$$

 $\beta_0 + \beta_1 = \frac{1}{n} \sum_{i=1}^n y_i,$

from which we have

$$\widehat{\beta}_1 = y_{n+1} - \frac{1}{n} \sum_{i=1}^n y_i, \qquad \widehat{\beta}_0 = \frac{2}{n} \sum_{i=1}^n y_i - y_{n+1}.$$

2

(a)

$$X = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- (b) The two columns of X form a basis for C(X), since they span C(X) (by definition) and are linearly independent (since one is not a scalar multiple of the other). Thus the rank is 2.
- (c) The normal equation is

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix} \beta = \begin{bmatrix} y_1 + y_2 + y_3 \\ -y_2 + y_3 + y_4 \end{bmatrix}$$

Thus

$$\widehat{\beta}_0 = \frac{1}{3}(y_1 + y_2 + y_3), \qquad \widehat{\beta}_1 = \frac{1}{3}(-y_2 + y_3 + y_4).$$

3

To show (a) and (b) are equivalent, we must show that (a) implies (b), and that (b) implies (a). For (a) implies (b), we provide two different solutions.

• (b) \implies (a). Using the fact that projection matrices $M_0 = M_1 M_2$, M_1 , and M_2 are symmetric, we have

$$M_1 M_2 = (M_1 M_2)^{\top} = M_2^{\top} M_1^{\top} = M_2 M_1.$$

- (a) \Longrightarrow (b). it suffices to check that M_1M_2 is idempotent and symmetric, and that its column space is $C(M_1) \cap C(M_2)$.
 - (i) Idempotence:

$$(M_1M_2)(M_1M_2) = M_1M_1M_2M_2 = M_1M_2.$$

The first equality uses the assumption (a), and the second uses the fact that M_1 and M_2 are themselves projection matrices and thus are also idempotent ($M_1M_1=M_1$ and $M_2M_2=M_2$).

(ii) Symmetry:

$$(M_1 M_2)^{\top} = M_2^{\top} M_1^{\top} = M_2 M_1 = M_1 M_2.$$

Here we used the fact that M_1 and M_2 are symmetric because they are projection matrices, and we also used the assumption (a).

(iii) Finally, we need to check $C(M_1M_2) = C(M_1) \cap C(M_2)$. First, note

$$C(M_1M_2) \subseteq C(M_1)$$

$$C(M_1M_2) = C(M_2M_1) \subseteq C(M_2).$$

Together, these inclusions imply

$$C(M_1M_2) \subseteq C(M_1) \cap C(M_2)$$
.

We now prove the reverse inclusion

$$C(M_1M_2) \supset C(M_1) \cap C(M_2). \tag{1}$$

Let $v \in C(M_1) \cap C(M_2)$. By the definition of M_1 and M_2 , we have $M_1v = v$ and $M_2v = v$. Thus $M_1M_2v = M_1v = v$, so $v \in C(M_1M_2)$.

Another proof of (1) is as follows. Let $v \in C(M_1) \cap C(M_2)$. Since $v \in C(M_2)$, there is some vector u such that $v = M_2 u$. Moreover, since $v \in C(M_1)$, we have $M_1 v = v$. Therefore, $v = M_1 v = M_1 M_2 u$, so $v \in C(M_1 M_2)$. This implies $C(M_1) \cap C(M_2) \subseteq C(M_1 M_2)$.

- (a) \implies (b), alternate approach. it suffices to show the following two things.
 - (i) $M_1M_2v = v$ for any $v \in C(M_1) \cap C(M_2)$
 - (ii) $M_1 M_2 v = 0$ for any $v \in (C(M_1) \cap C(M_2))^{\perp}$

For (i), note that $M_2v=v$ since $v\in C(M_2)$, and $M_1v=v$ since $v\in C(M_1)$. For (ii), the key is to note that

$$(C(M_1) \cap C(M_2))^{\perp} = C(M_1)^{\perp} + C(M_2)^{\perp}.$$

That is, v can be written as $v=w_1+w_2$ where $w_1\in C(M_1)^\perp$ and $w_2\in C(M_2)^\perp$. Thus, by using the assumption (a) along with the fact that $M_1w_1=0$ and $M_2w_2=0$, we have

$$M_1M_2v = M_1M_2(w_1 + w_2) = M_1M_2w_1 + M_1M_2w_2 = M_2M_1w_1 + M_1M_2w_2 = 0 + 0 = 0.$$