ElGamal and RSA Pseudocode Mia Kelley-Lanser and Tenzin Sommer

1 Encryption

Algorithm 1 RSA Encryption

INPUT: A plaintext message in numerical form m, the public encryption key of the receiver e, the receiver's generated public modulus N

OUTPUT: The cipher text message in numerical form

- 1: **procedure** ENCRYPT(m, e, N):
- 2: **return** $m^e \% N$

Algorithm 2 ElGamal Encryption

INPUT: A plaintext message in numerical form m, a random numerical key k, the public key of the receiver pubKey, the chosen public prime modulus p, the chosen public generator g

OUTPUT: A pair of cipher text values (c_1, c_2)

- 1: **procedure** ENCRYPT(m, k, pubKey, p, g):
- 2: $c_1 \leftarrow g^k \% p$
- 3: $c_2 \leftarrow m \cdot pubKey^k \% p$
- 4: **return** (c_1, c_2)

2 Decryption

Algorithm 3 RSA Decryption

INPUT: The cipher text numerical value c, the public encryption key of the receiver e, the receiver's generated public modulus N, the receiver's private primes p and q

OUTPUT: The decrypted message in numerical form

- 1: **procedure** DECRYPT(c, e, N, p, q):
- 2: $d \leftarrow c^{-1} \% (p-1)(q-1)$
- 3: **return** $c^d \% N$

Algorithm 4 ElGamal Decryption

INPUT: A pair of cipher text values (c_1, c_2) , the private key privKey, the chosen public prime modulus p, the chosen public generator g

OUTPUT: The decrypted message in numerical form

- 1: **procedure** DECRYPT $((c_1, c_2), privKey, p, g)$:
- 2: $x \leftarrow (c_1^{privKey})^{-1} \% p$
- 3: **return** $(x \cdot c_2) \% p$