Reinforcement Learning

Lecture 8: Function approximation in reinforcement learning

S. M. Ahsan Kazmi

Recap

Last lecture:

- This lecture: Model-free control
 - Optimise the value function of an unknown MDP
 - On-Policy Learning
 - Off-Policy Learning

This lecture:

- Function Approximation
 - Motivation
 - Incremental Methods
 - Batch Methods

____ Motivation

Motivation

- The policy, value function, model, and agent state update are all functions
- We want to learn these from experience
- If there are too many states, we need to approximate
- This is often called deep reinforcement learning when using neural networks to represent these functions
- The term is fairly new the combination is fairly old (50 years)
- Large-Scale Reinforcement Learning- How can we apply our methods for prediction and control?

Value Function Approximation

- So far we mostly considered lookup tables
 - Every state s has an entry v(s)
 - Or every state-action pair s; a has an entry q(s; a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
 - Individual environment states are often not fully observable

Value Function Approximation

- Solution for large MDPs:
 - Estimate value function with function approximation
 - Or every state-action pair s; a has an entry q(s; a)

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

- Update parameter **w** (e.g., using MC or TD learning)
- Generalise to unseen states

Which Function Approximator?

We consider differentiable function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- ...

In principle, any function approximator can be used, but RL has specific properties:

- Experience is not i.i.d. successive time steps are correlated
- Agent's policy affects the data it receives
- · Regression targets can be non-stationary

Which Function Approximator?

Which function approximation should you choose?

- This depends on your goals.
- Tabular: good theory but does not scale/generalize
- Linear: reasonably good theory, but requires good features
- Non-linear: less well-understood, but scales well
- (Deep) neural nets often perform quite well and remain a popular choice

Incremental Methods

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the **gradient** of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{pmatrix}$$

- Goal: to minimise of $J(\mathbf{w})$
- Method: move w in the direction of negative gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Value Function Approx. By Stochastic Gradient Descent

• Goal: find parameter vector **w** minimising mean-squared error between approximate value fn $\hat{v}(s, \mathbf{w})$ and true value fn $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2 \right]$$

• Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

• Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\nu_{\pi}(S) - \hat{\nu}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\nu}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Linear Value Function Approximation

- Feature Vectors
- Represent state by a feature vector

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

- $\mathbf{x}: \mathcal{S} \to \mathbb{R}^n$ is a fixed mapping from state (e.g., observation) to features Short-hand: $\mathbf{x}_t = \mathbf{x}(S_t)$
- For example:

Distance of robot from landmarks

Trends in the stock market

Piece and pawn configurations in chess

Linear Value Function Approximation

• Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{i=1}^{n} \mathbf{x}_{i}(S) \mathbf{w}_{i}$$

• Objective function is quadratic in parameters **w**

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w})^{2} \right]$$

• Stochastic gradient descent converges on *global* optimum Update rule is particularly simple

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta \mathbf{w} = \alpha (v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \mathbf{x}(S)$$

Update = step-size × prediction error × feature value

Incremental Prediction Algorithms

- Have assumed true value function $v_{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a *target* for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$

• For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha (\mathbf{R}_{t+1} + \gamma \hat{\mathbf{v}}(\mathbf{S}_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w})$$

• For TD(λ), the target is the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

Monte-Carlo with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w} = \alpha(\mathbf{G}_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha(\mathbf{G}_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

TD Learning with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a biased sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

• For example, using *linear TD(0)*

$$\Delta \mathbf{w} = \alpha (\mathbf{R} + \gamma \hat{\mathbf{v}}(\mathbf{S}', \mathbf{w}) - \hat{\mathbf{v}}(\mathbf{S}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{S}, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(\mathbf{S})$$

Linear TD(0) converges (close) to global optimum

TD(λ) Learning with Value Function Approximation

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle S_1, G_1^{\lambda} \rangle, \langle S_2, G_2^{\lambda} \rangle, ..., \langle S_{T-1}, G_{T-1}^{\lambda} \rangle$$

• Forward view linear $TD(\lambda)$

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$
$$= \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

• Backward view linear $TD(\lambda)$

$$egin{aligned} \delta_t &= R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}) \ E_t &= \gamma \lambda E_{t-1} + \mathbf{x}(S_t) \ \Delta \mathbf{w} &= lpha \delta_t E_t \end{aligned}$$

Control with Value Function Approximation

Policy evaluation Approximate policy evaluation, $\hat{q}(\cdot,\cdot,\mathbf{w}) \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

• Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^{2} \right]$$

• Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{i=1}^{n} \mathbf{x}_{i}(S, A) \mathbf{w}_{i}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S,A)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

• For TD(0), the target is the TD target $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

$$\Delta \mathbf{w} = \alpha(\mathbf{R}_{t+1} + \gamma \hat{q}(\mathbf{S}_{t+1}, \mathbf{A}_{t+1}, \mathbf{w}) - \hat{q}(\mathbf{S}_t, \mathbf{A}_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(\mathbf{S}_t, \mathbf{A}_t, \mathbf{w})$$

• For forward-view TD(λ), target is the action-value λ -return

$$\Delta \mathbf{w} = \alpha (\mathbf{q}_t^{\lambda} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

• For backward-view $TD(\lambda)$, equivalent update is

$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})$$

$$E_t = \gamma \lambda E_{t-1} + \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD(0)	✓	✓	×
	$TD(\lambda)$	\checkmark	✓	×
Off-Policy	MC	✓	✓	✓
	TD(0)	\checkmark	X	×
	$TD(\lambda)$	✓	X	X

Gradient Temporal-Difference Learning

- TD does not follow the gradient of any objective function
- This is why TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows the true gradient of the projected Bellman error

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	TD	✓	✓	×
	Gradient TD	✓	✓	✓
Off-Policy	MC	✓	✓	✓
	TD	\checkmark	X	×
	Gradient TD	✓	✓	✓

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	\checkmark	(✓)	×
Q-learning	✓	X	×
Gradient Q-learning	✓	✓	X

 (\checkmark) = chatters around near-optimal value function

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sampled efficient
- Batch methods seek to find the best-fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And experience \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{ \langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle \}$$

- Which parameters **w** give the best fitting value fn $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}} \left[(v^\pi - \hat{v}(s, \mathbf{w}))^2
ight] \end{aligned}$$

Stochastic Gradient Descent with Experience Replay

• Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

Repeat:

• Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ LS(\mathbf{w})$$

Q-Learning with Value Function Approximation

- Q-learning converges to the optimal $Q^*(s,a)$ using table lookup representation
- In value function approximation Q-learning we can minimize MSE loss by stochastic gradient descent using a target Q estimate instead of true Q
- But Q-learning with VFA can diverge Two of the issues causing problems:
 - Correlations between samples
 - Non-stationary targets
- Deep Q-learning (DQN) addresses these challenges by
 - Experience replay
 - Fixed Q-targets

Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i) \right)^2 \right]$$

Using variant of stochastic gradient descent

DQNs: Experience Replay

ullet To help remove correlations, store dataset (called a **replay buffer**) ${\cal D}$ from prior experience

$$\begin{array}{c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \vdots \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s, a, r, s' \\ \hline \end{array}$$

- To perform experience replay, repeat the following:
 - $(s, a, r, s') \sim \mathcal{D}$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha (r + \gamma \max_{\mathbf{a}'} \hat{Q}(s', \mathbf{a}'; \mathbf{w}) - \hat{Q}(s, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, \mathbf{a}; \mathbf{w})$$

DQNs: Fixed Q-Targets

- To help improve stability, fix the target weights used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- Let parameters w^- be the set of weights used in the target, and w be the weights that are being updated
- Slight change to computation of target value:
 - $(s, a, r, s') \sim \mathcal{D}$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{\mathbf{a}'} \hat{Q}(s', \mathbf{a}'; \mathbf{w}^{-}) - \hat{Q}(s, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, \mathbf{a}; \mathbf{w})$$

Thanks