Лабораторная работа 2 Математические операции в Python

Цель работы: познакомиться с основными математическими операциями в Python

Язык Python, благодаря наличию огромного количества библиотек для решения разного рода вычислительных задач, сегодня является конкурентом таким пакетам как Matlab и Octave. Запущенный в интерактивном режиме, он, фактически, превращается в мощный калькулятор. В этом уроке речь пойдет об арифметических операциях, доступных в данном языке Арифметические операции изучим применительно к числам. Если в качестве операндов некоторого арифметического выражения используются только целые числа, то результат тоже будет целое число. Исключением является операция деления, результатом которой является вещественное число. При совместном использовании целочисленных и вещественных переменных, результат будет вещественным.

В этом уроке речь пойдет об арифметических операциях, доступных в данном языке. Если в качестве операндов некоторого арифметического выражения используются только целые числа, то результат тоже будет целое число. Исключением является операция деления, результатом которой является вещественное число. При совместном использовании целочисленных и вещественных переменных, результат будет вещественным.

Целые числа (int)

Числа в Python 3 поддерживают набор самых обычных математических операций:

x + y	Сложение	
x - y	Вычитание	
x * y	Умножение	
x / y	Деление	
x // y	Получение целой части от деления	
x % y	Остаток от деления	
-X	Смена знака числа	
abs(x)	Модуль числа	
divmod(x, y)	Пара (х // у, х % у)	
x ** y	Возведение в степень	

pow(x, y[, z])	х : Число, которое требуется возвести в степень.
	у: Число, являющееся степенью, в которую нужно возвести
	первый аргумент. Если число отрицательное или одно из чисел
	"x" или "y" не целые, то аргумент "z" не принимается.
	z: Число, на которое требуется произвести деление по модулю.
	Если число указано, ожидается, что "х" и "у" положительны и
	имеют тип int.

Пример применения вышеописанных операций над целыми числами

```
x = 5
y = 2
z = 3
x+y = 7
x-y = 3
x*y = 10
x/y = 2.5
x//y = 2
x%y = 1
-x= -5
abs(-x) = 5
divmod(x,y) = (2, 1)
x**y = 25
pow(x,y,z) = 1
```

Вещественные числа (float)

Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к опибкам.

Пример применения вышеописанных операций над вещественными числами

```
x = 5.5
y = 2.3
x+y = 7.8
x-y = 3.2
x*y = 12.64999999999999
x/y = 2.3913043478260874
x//y = 2.0
x%y = 0.9000000000000004
-x= -5.5
abs(-x) = 5.5
divmod(x,y) = (2.0, 0.90000000000000)
x**y = 50.44686540422945
```

Библиотека (модуль) math

В стандартную поставку Python входит библиотека math, в которой содержится большое количество часто используемых математических функций.

Для работы с данным модулем его предварительно нужно импортировать.

Paccмотрим наиболее часто используемые функции модуля math

math.ceil(x)	Возвращает ближайшее целое число большее, чем х	
math.fabs(x)	Возвращает абсолютное значение числа х	
math.factorial(x)	Вычисляет факториал х	
math.floor(x)	Возвращает ближайшее целое число меньшее, чем х	
math.exp(x)	Вычисляет е**х	
math.log2(x)	Логарифм по основанию 2	
math.log10(x)	х) Логарифм по основанию 10	
math.log(x[, base])	По умолчанию вычисляет логарифм по основанию е, дополнительно можно указать основание логарифма	
math.pow(x, y)	$y(\mathbf{x}, \mathbf{y})$ Вычисляет значение х в степени у	
math.sqrt(x)	Корень квадратный от х	

Пример применения вышеописанных функций над числами

В программе определены 4 переменные - а, b, c, d, каждая из которых является либо целым числом, либо вещественным, либо отрицательным.

Командой print() выводится значение каждой переменной на экран при выполнении программы.

В переменную z помещается результат выполнения функции модуля math.

Затем командой print() выводится сообщение в виде используемой функции и её аргумента и результат её выполнения.

```
👺 Python 3.4.1: puthon.py - C:\Documents and Settings\Student\Paбочий стол\puthon.py
File Edit Format Run Options Windows Help
import math
a=10
b=-5
c=4.3
d=3
print('a =',a)
print('b =',b)
print('c =',c)
print('d =',d)
z=math.ceil(a)
print('math.ceil(',c,') =',z)
z=math.fabs(b)
print('math.fabs(',b,') =',z)
z=math.factorial(a)
print('math.factorial(',a,') =',z)
z=math.floor(c)
print('math.floor(',c,') =',z)
z=math.exp(b)
print('math.exp(',b,') =',z)
z=math.log2(a)
print('math.log2(',a,') =',z)
z=math.log10(a)
print('math.log10(',a,') =',z)
z=math.log(d,a)
print('math.log(',d,',',a,') =',z)
z=math.pow(a,d)
print('math.pow(',a,',',d,') =',z)
z=math.sqrt(a)
print('math.sqrt(',a,') =',z)
                                                                                             Ln: 21 Col: 29
```

Пример программы на Python

```
Python 3.4.1 Shell
<u>File Edit Shell Debug Options Windows Help</u>
Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) [MSC v.1600 32 bit
(Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>>
a = 10
b = -5
c = 4.3
d = 3
math.ceil(4.3) = 10
math.fabs(-5) = 5.0
math.factorial( 10 ) = 3628800
math.floor(4.3) = 4
math.exp( -5 ) = 0.006737946999085467
math.log2( 10 ) = 3.321928094887362
math.log10(10) = 1.0
math.log(3, 10) = 0.47712125471966244
math.pow(10,3) = 1000.0
math.sqrt( 10 ) = 3.1622776601683795
>>>
                                                                 Ln: 19 Col: 4
```

Результат выполнения программы с применением функций модуля math

Тригонометрические функции модуля math

<u> </u>	, -
math.cos(x)	Возвращает соѕ числа Х

math.sin(x)	Возвращает sin числа X
math.tan(x)	Возвращает tan числа X
math.acos(x)	Возвращает асоѕ числа Х
math.asin(x)	Возвращает asin числа X
math.atan(x)	Возвращает atan числа X

Пример применения вышеописанных функций над числами

В программе определена переменная х, содержащая целое число.

Значение переменной выводится командой print() на экран.

В переменную z помещается результат выполнения тригонометрической функции модуля math.

Затем командой print() выводится сообщение в виде используемой функции и её аргумента и результат её выполнения.

Пример программы с использованием тригонометрических функций модуля math

Результат выполнения программы с применением тригонометрических функций модуля math

Константы:

math.pi - число Рі.

math.e - число е (экспонента).

Пример

Напишите программу, которая бы вычисляла заданное арифметическое выражение при заданных переменных. Ввод переменных осуществляется с клавиатуры. Вывести результат с 2-мя знаками после запятой.

Вариант 0

$$Z = \frac{9\pi t + 10\cos(x)}{\sqrt{t} - |\sin(t)|} * e^x$$

x=10; t=1

Решение

Сначала импортируем модуль math. Для этого воспользуемся командой import math.

Затем следует ввести значения двух переменных целого типа х и t.

Для ввода данных используется команда input, но так как в условии даны целые числа, то нужно сначала определить тип переменных: x=int(), t=int().

Определив тип переменных, следует их ввести, для этого в скобках команды int() нужно написать команду input().

Для переменной х это выглядит так: x=int(input("сообщение при вводе значения")).

Для переменной t аналогично: t=int(input("сообщение при вводе значения")).

Следующий шаг - это составление арифметического выражения, результат которого поместим в переменную z.

Сначала составим числитель. Выглядеть он будет так: 9*math.pi*t+10*math.cos(x).

Затем нужно составить знаменатель, при этом обратим внимание на то, что числитель делится на знаменатель, поэтому и числитель и знаменатель нужно поместить в скобки (), а между ними написать знак деления /.

Выглядеть это будет так: (9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))). Последним шагом является умножение дроби на экспоненту в степени x.

Так как умножается вся дробь, то следует составленное выражение поместить в скобки (), а уже потом написать функцию math.pow(math.e,x).

В результате выражение будет иметь вид:

z=((9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))))*math.pow(math.e,x).

При составлении данного выражения следует обратить внимание на количество открывающихся и закрывающихся скобок.

Командой print() выведем значение переменной, отформатировав его командой format. Сам формат записывается в апострофах в фигурных скобках {}.

В задаче требуется вывести число с двумя знаками после запятой, значит вид формата будет выглядеть следующим образом: {0:.2f}, где 2 - это количество знаков после запятой, а f указывает на то, что форматируется вещественное число. При этом перед 2 нужно поставить точку, указав тем самым на то, что форматируем именно дробную часть числа.

```
Elle Edit Format Run Options Window Help

import math
x=int(input("Введите переменную х:"))
t=int(input("Введите переменную t:"))
z=((9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))))*math.pow(math.e,x)
print("z = [{0:.2f}".format(z))
```

Результат

```
Eile Edit Shell Debug Options Window Help

Python 3.7.1 (v3.7.1:260ec2c36a,
1)] on win32

Type "help", "copyright", "credit
>>>
======= RESTART: C:/Users/maxim/
Введите переменную x:10
Введите переменную t:1
z = 2762685.71
>>>
```

ВАРИАНТЫ ЗАДАНИЙ.

Вариант 1.

$$x=-0.93; y=8.3$$

Вариант 2.

Вариант 3.

Вариант 4.

$$x=5,5; y=-0,57$$

Вариант 5.

$$a=-7,85$$
 $b=0,13$

Вариант 6.

$$x=1,13$$
 $y=-5,75$ $z=2,2$

Вариант 7.

$$x=-7,65$$
 $y=3,51$

Вариант 8.

Вариант 9.

$$m=3,13$$
 $v=-8,1$

Вариант 10.

Вариант 11.

$$x=6,65$$
 $y=-5,8$

Вариант 12.

$$x=0,53$$
 $y=4,3$

Вариант 13.

$$x=0,77$$
 $y=0,89$

Вариант 14.

$$x= 1.5 y= -0.176$$

Вариант 15.

$$x=1.34 y= 1.34$$

Список литературы

- $1.\ https://pythonworld.ru/tipy-dannyx-v-python/chisla-int-float-complex.html$
- 2. https://metanit.com/python/tutorial/2.3.php
- 3. https://devpractice.ru/python-lesson-4-arithmetic-operations/