Section 8.4 – Solving Trigonometry Equations

Example

Find the solutions of the equation $\sin \theta = \frac{1}{2}$ if

- a) θ is in the interval $[0, 2\pi)$
- b) θ is any real number

Solution

$$a) \quad \theta = \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$

$$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

b) Since the sine function has period 2π .

$$\theta = \frac{\pi}{6} + 2\pi n$$
 and $\theta = \frac{5\pi}{6} + 2\pi n$

Example

Solve the equation $\sin x \tan x = \sin x$

Solution

$$\sin x \, \tan x - \sin x = 0$$

$$\sin x (\tan x - 1) = 0$$

$$\sin x = 0 \qquad \tan x - 1 = 0$$

$$\tan x = 1$$

$$\hat{x} = \sin^{-1} 0 = 0 \qquad \qquad \hat{x} = \tan^{-1} 1 = \frac{\pi}{4}$$

$$x = 0, \pm \pi, \pm 2\pi, \dots$$
 $x = \pm \frac{\pi}{4}, \pm \frac{5\pi}{4}, \dots$

$$x = \pi n \qquad \qquad x = \frac{\pi}{4} + \pi n$$

The solutions are: $x = \pi n$ and $x = \frac{\pi}{4} + \pi n$ for every integer n.

Example

Solve the equation $2\sin^2 t - \cos t - 1 = 0$, and express the solutions both in radians and degrees.

Solution

$$2\sin^{2}t - \cos t - 1 = 0$$

$$2\left(1 - \cos^{2}t\right) - \cos t - 1 = 0$$

$$2 - 2\cos^{2}t - \cos t - 1 = 0$$

$$-2\cos^{2}t - \cos t + 1 = 0$$

$$2\cos^{2}t + \cos t - 1 = 0$$

$$2\cos^{2}t + \cos t - 1 = 0$$

$$2\cos^{2}t + \cos t - 1 = 0$$

$$2\cos t = 1$$

$$\cos t = \frac{1}{2}$$

$$t = \frac{\pi}{3} \quad \text{or} \quad t = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

$$t = \pi$$

$$t = \frac{\pi}{3} + 2\pi n, \quad t = \frac{5\pi}{3} + 2\pi n, \quad t = \pi + 2\pi n$$

$$t = 60^{\circ} + 360^{\circ}n, \quad 300^{\circ} + 360^{\circ}n, \quad and \quad 180^{\circ} + 360^{\circ}n$$

Example

Solve the equation $4\sin^2 x \tan x - \tan x = 0$ in the interval $[0, 2\pi)$.

Solution

$$4\sin^2 x \tan x - \tan x = 0$$

$$\tan x \left(4\sin^2 x - 1 \right) = 0$$

$$\tan x = 0$$

$$\tan x = 0$$

$$\sin^2 x - 1 = 0$$

$$\sin^2 x = \frac{1}{4}$$

$$\tan x = 0$$

$$\sin x = \frac{1}{2}$$

$$\sin x = -\frac{1}{2}$$

$$\underline{x} = 0, \pi$$

$$\underline{x} = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\underline{x} = \frac{7\pi}{6}, \frac{11\pi}{6}$$

Example

Find the solutions of $\csc^4 2u - 4 = 0$

Solution

$$(\csc^2 2u - 2)(\csc^2 2u + 2) = 0$$

$$\csc^2 2u - 2 = 0 \qquad \csc^2 2u + 2 = 0$$

$$\csc^2 2u = 2 \qquad \csc^2 2u = -2 \times 2$$

$$\csc 2u = \pm \sqrt{2}$$

$$\sin 2u = \pm \frac{1}{\sqrt{2}}$$

$$\sin 2u = \frac{\sqrt{2}}{2} \qquad \Rightarrow 2u = \frac{\pi}{4} + 2\pi n \qquad \Rightarrow u = \frac{\pi}{8} + \pi n$$

$$\Rightarrow 2u = \frac{3\pi}{4} + 2\pi n \qquad \Rightarrow u = \frac{3\pi}{8} + \pi n$$

$$\sin 2u = -\frac{\sqrt{2}}{2} \qquad \Rightarrow 2u = \frac{5\pi}{4} + 2\pi n \qquad \Rightarrow u = \frac{5\pi}{8} + \pi n$$

$$\Rightarrow 2u = \frac{7\pi}{4} + 2\pi n \qquad \Rightarrow u = \frac{7\pi}{8} + \pi n$$

Example

Approximate to the nearest degree, the solutions of the following equation in the interval [0°, 360°):

$$5\sin\theta\tan\theta - 10\tan\theta + 3\sin\theta - 6 = 0$$

Solution

$$\tan \theta (5\sin \theta - 10) + (3\sin \theta - 6) = 0$$

$$5\tan \theta (\sin \theta - 2) + 3(\sin \theta - 2) = 0$$

$$(\sin \theta - 2)(5\tan \theta + 3) = 0$$

$$\sin \theta - 2 = 0 \qquad 5\tan \theta + 3 = 0$$

$$\sin \theta = 2 > 1 \qquad \tan \theta = -\frac{3}{5} \qquad \theta \in \mathbf{QII}, \mathbf{QIV}$$

$$\hat{\theta} = \tan^{-1} \left(\frac{3}{5}\right) = 31^{\circ}$$

$$\begin{cases} \theta = 180^{\circ} - 31^{\circ} = 149^{\circ} \\ \theta = 360^{\circ} - 31^{\circ} = 329^{\circ} \end{cases}$$

Exercises Section 8.4 – Trigonometric Equations

(1-9) Find all solutions of the equation

$$1. \qquad \sin x = \frac{\sqrt{2}}{2}$$

$$2. \qquad \cos x = -\frac{\pi}{3}$$

$$3. \qquad 2\cos\theta - \sqrt{3} = 0$$

4.
$$\sqrt{3} \tan \frac{1}{3} x = 1$$

$$5. \qquad \cos\left(4x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$6. \qquad (\cos\theta - 1)(\sin\theta + 1) = 0$$

7.
$$\cot^2 x - 3 = 0$$

$$8. \qquad \cos x + 1 = 2\sin^2 x$$

$$9. \quad \cos(\ln x) = 0$$

(10-24) Find the solutions of the equation that are in the interval $[0, 2\pi)$

10.
$$2\sin^2 x = 1 - \sin x$$

11.
$$\tan^2 x \sin x = \sin x$$

12.
$$1 - \sin x = \sqrt{3} \cos x$$

13.
$$\sin x + \cos x \cot x = \csc x$$

14.
$$2\sin^3 x + \sin^2 x - 2\sin x - 1 = 0$$

15.
$$2 \tan x \csc x + 2 \csc x + \tan x + 1 = 0$$

16.
$$5\cos t + \sqrt{12} = \cos t$$

17.
$$2\sin^2 x - \cos x - 1 = 0$$

18.
$$2\cos^2 t - 9\cos t = 5$$

19.
$$\tan^2 x + \tan x - 2 = 0$$

20.
$$\tan x + \sqrt{3} = \sec x$$

21.
$$2\sin^2\theta + 2\sin\theta - 1 = 0$$

22.
$$2\cos x - 1 = \sec x$$

23.
$$4\cos^2 x + 4\sin x - 5 = 0$$

24.
$$\sin \theta - \cos \theta = 1$$

(25 – 35) Find the solutions of the equation that are in the interval if $0^{\circ} \le \theta < 360^{\circ}$

25.
$$2\cos\theta + \sqrt{3} = 0$$

26.
$$\tan \theta - 2\cos \theta \tan \theta = 0$$

$$27. \quad 2\sin^2\theta - 2\sin\theta - 1 = 0$$

$$28. \quad 4\cos\theta - 3\sec\theta = 0$$

$$29. \quad \sin\theta - \sqrt{3}\cos\theta = 1$$

30.
$$7\sin^2\theta - 9\cos 2\theta = 0$$

31.
$$\sin \theta \tan \theta = \sin \theta$$

32.
$$2\sin\theta - 3 = 0$$

33.
$$3\sin\theta - 2 = 7\sin\theta - 1$$

34.
$$\cos 2\theta + 3\sin \theta - 2 = 0$$

$$35. \quad \sin 2\theta + \sqrt{2}\cos \theta = 0$$

36. Solve
$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2}$$

37. Solve
$$\cos(A - 25^\circ) = -\frac{1}{\sqrt{2}}$$

38. If a projectile (such as a bullet) is fired into the air with an initial velocity v at an angle of elevation θ , then the height h of the projectile at time t is given by: $h(t) = -16t^2 + vt\sin\theta$

- a) Give the equation for the height, if v is $600 \, ft$./sec and $\theta = 45^{\circ}$.
- b) Use the equation in part (a) to find the height of the object after $\sqrt{3}$ seconds.
- c) Find the angle of elevation of θ of a rifle barrel, if a bullet fired at 1,500 ft./sec takes 3 seconds to reach a height of 750 feet. Give your answer in the nearest of a degree.