8 etale 代数

8.1 対角化

以下ではとくに述べない限り K を可換体とする。

定理 8.1. A: K-alg と L/K: 拡大としたときに集合 $\mathscr{H}:=\mathrm{Hom}_{K-alg}(A,L)$ は L- ベクトル空間 $\mathrm{Hom}_{K-vect.sp}(A,L)$ の中で L 上一次独立。

 $Proof.\ A$ を K-vect.sp として見ればこれは加法群であるので Dedekind の補題から従う。

補題 8.2. $\dim_L(\operatorname{Hom}_{K-vect.sp}(A,L)) = [\operatorname{Hom}_{K-vect.sp}(A,L):L] = [A:K]$ が成り立つ。

 $Proof.\ A_{(L)}:=L\otimes_K A$ としてその双対空間を $(A_{(L)})^*:=\operatorname{Hom}_L(A_{(L)},L)$ とする。以下簡単のため $\operatorname{Hom}_{K-vect.sp}(A,L)$ を $\operatorname{Hom}(A,L)$ と書く。 $\overline{\cdot}:(A_{(L)})^*\longrightarrow \operatorname{Hom}(A,L),u\longmapsto \overline{u}$ で $\overline{u}:A\longrightarrow L,x\longmapsto \overline{u}(x)=u(1\otimes x)$ とすればこの $\overline{\cdot}$ は同型であり双対空間であることから $\dim_L A_{(L)}=\dim_L(A_{(L)})^*=\dim_L \operatorname{Hom}(A,L)$ である。 $\dim_L A_{(L)}=\dim_K A$ より従う。

系 8.3. 上の状況において $h(L)(=h_A(L)):=|\mathrm{Hom}_{K-alg}(A,L)|\leq [A:K]$ が成り立つ。

Proof. $\operatorname{Hom}_{K-alg}(A,L)$ は $\operatorname{Hom}_{K-vect.sp}(A,L)$ で一次独立より $h(L) \leq \dim_L(\operatorname{Hom}_{K-vect.sp}(A,L))$ である。補題 (8.2) の $\dim_L(\operatorname{Hom}_{K-vect.sp}(A,L)) = [A:K]$ より従う。

定義 8.4. K-alg の A が 対角化可能 (diagonalizable) とは $\exists n \geq 1, A \cong K^n$ であること。 とくに n=[A:K] である。 K^n は成分ごとの演算を行う直積代数である。

Proof. n = [A:K] であることは A を K- ベクトル空間と見ることからわかる。

定義 8.5. A が拡大 L/K により対角化される (diagonaled by L) とは L-alg の $L\otimes_K A$ が対角化可能であること。

定義 8.6. A が K 上etaleとは \exists 拡大 L/K により対角化されること。

Rem 8.7. (e_1,\ldots,e_n) が $K^n(\cong A)$ の標準基底とすると成分ごとの演算を行うから $e_i^2=e_i,e_ie_j=0 (i\neq j),e_1+\cdots+e_n=1_A$ となる。

命題 8.8. 有限次 $K - alg\ A$ について次は同値 (n = [A:K] とする)

- (1) A は対角化可能。
- (2) A の K 上の基底 (e_1, \ldots, e_n) で $e_i^2 = e_i, e_i e_j = 0 (i \neq j)$ を満たすものが存在する。
- (3) $\operatorname{Hom}_{K-alg}(A,K)$ は $\operatorname{Hom}_{K-vect.sp}(A,K)$ を生成する。

Proof. (1) \Rightarrow (2) は Rem (8.7) より成立。

 $(2) \Rightarrow (1)$

 $A_i = Ke_i$ とすると $A_i \cong K$ で $A = \{k_1e_1 + \dots + k_ne_n | k_i \in K\} = A_1 \times \dots \times A_n \cong K^n$ より対角化可能。 (3) \Rightarrow (1)

有限次 K-alg なので $\operatorname{Hom}_{K-alg}(A,K)=\{\pi_1,\ldots,\pi_n\}$ とする。これは定理 (8.1) より一次独立で

仮定から全体を張るので $\operatorname{Hom}_{K-vect.sp}(A,K)$ の基底になる。そしてそれを並べた K- 代数の準同型 $\pi:=(\pi_1,\ldots,\pi_n):A\longrightarrow K^n, a\longmapsto (\pi_1(a),\ldots,\pi_n(a))$ とする。

系 8.9. 系 (8.3) における $|\text{Hom}_{K-alg}(A,L)| \leq [A:K]$ について

 $|\operatorname{Hom}_{K-alg}(A,L)| = [A:K] \Leftrightarrow A は L で対角化される。$

また、始域と終域を代数の準同型に制限して $\pi: \operatorname{Hom}_{K-alg}(A,L) \longrightarrow \operatorname{Hom}_{L-alg}(L \otimes_K A,L)$ でも同様に全単射になるから $|\operatorname{Hom}_{K-alg}(A,L)| = |\operatorname{Hom}_{L-alg}(L \otimes_K A,L)|$ である。

命題 (8.8) の (1) \Leftrightarrow (3) で A を $L \otimes_K A$ で置き換えて、補題 (8.2) も用いれば

A は L で対角化される $\Leftrightarrow L \otimes_K A$ は対角化可能

- ⇔ $\operatorname{Hom}_{L-alg}(A_{(L)},L)$ は $\operatorname{Hom}_{L-vect.sp}(A_{(L)},K)$ を生成する。(基底になる) ⇔ $|\operatorname{Hom}_{L-alg}(A_{(L)},L)| = \dim_L \operatorname{Hom}_{L-vect.sp}(A_{(L)},K)$ ⇔ $|\operatorname{Hom}_{K-alg}(A,L)| = |\operatorname{Hom}_{L-alg}(A_{(L)},L)|$ $= \dim_L \operatorname{Hom}_{L-v.s}(A_{(L)},L) = \dim_L \operatorname{Hom}_{K-v.s}(A,L) = [A:K]$
- $\Leftrightarrow |\operatorname{Hom}_{K-alg}(A, L)| = [A : K]$

命題 8.10. K - alg A について次は同値。

- (1) A は K 上 etale である。(: \Leftrightarrow ∃拡大により対角化される)
- (2) A は K の ³有限次拡大により対角化される。
- (3) A は K の \forall 代数閉な拡大により対角化される。
- (4) A は K の ³代数閉な拡大により対角化される。

Proof. (3) \Rightarrow (4) \Rightarrow (1) は明らか。

- $(1) \Rightarrow (2) \Rightarrow (3)$ を示す。
- $(1) \Rightarrow (2)$
- $(1):\Leftrightarrow$ $\exists L/K$ により対角化される。系(8.9)から $|\mathrm{Hom}_{K-alg}(A,L)|=[A:K]=n$ となる。 $\mathrm{Hom}_{K-alg}(A,L)=\{\phi_1,\ldots,\phi_n\}$ とすると $\phi_i(A)$ は L の部分体で対角化可能だから $\phi_i(A)\otimes_K A\subset L\otimes_K A\cong K^n$ より $\phi_i(A)$ は K 上 n 次以下。よって $M:=(\phi_i(A)$ たちの合成)($\subset L$) も K の有限次拡大となり、 $\mathrm{Im}(\phi_i)\subset M$ より終域を制限することができるから $\mathrm{Hom}_{K-alg}(A,M)=\{\phi_1,\ldots,\phi_n\}$ である。系(8.9)より $|\mathrm{Hom}_{K-alg}(A,M)|=[A:K]$ だから A は K 上有限次拡大の M で対角化されるから(2)が示された。

 $(2) \Rightarrow (3)$

A はある有限次拡大 M で対角化されるとする。有限次拡大より Rem $(\ref{Rem}$ $(\ref{Rem$

 $|\mathrm{Hom}_{K-alg}(A,M)|=|\mathrm{Hom}_{K-alg}(A,\Omega)|=[A:K]$ となる。よって A は任意の代数閉体 Ω で対角化される。

8.2 etale 代数の部分代数

以下では etale 代数 $A=K^n$ とし、その標準基底を $\{e_1,\ldots,e_n\}$ とする。

命題 **8.11.** $[n]:=\{1,\ldots,n\}$ でこれを共通部分が無いように $[n]=I_1 \bigsqcup \cdots \bigsqcup I_r \ (I_j \neq \emptyset)$ と分割する。 $I\subset [n]$ に対して $e_I:=\sum_{i\in I}e_i$ とする。 $[n]=I_1 \bigsqcup \cdots \bigsqcup I_r$ に対し、 $A_{(I_1,\ldots,I_r)}:=Ke_{I_1}+\cdots+Ke_{I_r}$ は A の部分 K-alg である。

そして A の任意の部分 K-alg は対角化可能で $A_{(I_1,\dots,I_r)}$ のもので尽き、とくに有限個である。

 $Proof.\ e_{I_i}$ が $A_{(I_1,...,I_r)}$ の標準基底になること。

 $A_{(I_1,\dots,I_r)}$ の定義より全体を張り、一次独立性も保つ。 e_i は標準基底より打ち消し合って冪等元より $I_k \neq I_l$ とするとき

$$e_{I_k}^2 = \left(\sum_{i \in I_k} e_i\right)^2 = \sum_{i \in I_k} e_i^2 = e_{I_k}$$

$$e_{I_k} e_{I_l} = \left(\sum_{i \in I_k} e_i\right) \left(\sum_{i \in I_l} e_i\right) = 0$$

$$e_{I_1} + \dots + e_{I_r} = \sum_{i \in [n]} e_i = 1$$

より標準基底になるのでそれで K 上張られている $A_{(I_1,...,I_r)}$ は A の部分 K-alg であり、命題 (8.8) の (2) から対角化可能である。

また、 B を A の任意の部分代数とするとき射影

$$v_i: A(=K^n) \longrightarrow K$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \longmapsto a_i$$

の定義域を B に制限したものを考える。これを再度 v_i とおくときこれは $v_i \in \operatorname{Hom}_{K-alg}(B,K)$ である。

$$\alpha = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \beta = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in B, k \in K$$

とするとき $v_i(\alpha+\beta)=a_i+b_i=v_i(\alpha)+v_i(\beta), v_i(\alpha\beta)=a_ib_i=v_i(\alpha)v_i(\beta), v_i(k\alpha)=ka_i=kv_i(\alpha), v_i(1_{K^n})=1_K$ より $v_i\in \operatorname{Hom}_{K-alg}(B,K)$ である。そして定義より $v_i(e_j)=\delta_{ij}$ なので $\{v_1,\ldots,v_n\}$ は $\operatorname{Hom}_{K-vect.sp}(B,K)$ を生成する。つまり、 $f\in \operatorname{Hom}_{K-vect.sp}(B,K)$ に対して $v_i(c_1e_1+\cdots+c_ne_n)=c_i$ より $f=f(e_1)v_1+\cdots+f(e_n)v_n$ とすればよい。

したがって $\operatorname{Hom}_{K-alg}(B,K)$ の元 v_1,\ldots,v_n が $\operatorname{Hom}_{K-vect.sp}(B,K)$ を生成するので命題 (8.8) から任意 の部分代数は対角化可能である。また、基底として $(\varepsilon_1,\ldots,\varepsilon_m)$ で $\varepsilon_i^2=\varepsilon,\varepsilon_i\varepsilon_j=0 (i\neq j)$ となるものが存在 する。

この基底は A の元なので e_1,\ldots,e_n で作られるが冪等性と総和が 1 になることを考えれば e_{I_1},\ldots,e_{I_r} で出し尽くされる。したがって全ての部分代数は $A_{(I_1,\ldots,I_r)}$ であり、[n] の分割を考えれば部分代数は有限個。 \square

命題 8.12. 各 $I \subset [n]$ に対し $\mathfrak{a}_I := \sum_{i \in I} Ke_i$ とするとこれは A のイデアルになる。そして A のイデアルはこれに尽き、とくに有限個である。

Proof. a_I は明らかに A のイデアルになる。

A のイデアル \mathfrak{a} が $\forall i \in I, e_i \in \mathfrak{a}$ で $\forall j \in J := [n] - I, e_j \notin \mathfrak{a}$ となっているとする。定義より明らかに $\mathfrak{a}_I \subset \mathfrak{a}$ である。 $x = x_1 e_1 + \dots + x_n e_n \in \mathfrak{a}, x_i \in K$ と $j \in J$ に対して $e_j \in A, x \in \mathfrak{a}$ から $x e_j \in \mathfrak{a}$ なので $x e_j = x_1 e_1 e_j + \dots + x_n e_n e_j = x_j e_j \in \mathfrak{a}$ となる。ここで $x_j = 0$ のとき $x_j e_j = 0_{K^n} \in \mathfrak{a}$ である。 $x_j \neq 0$ のとき $x_j e_j \in \mathfrak{a}$ とすると K が体より x_j^{-1} が存在して、 $x_j^{-1} e_j \in A$ であるからイデアルより $x_j^{-1} e_j x_j e_j = e_j \in \mathfrak{a}$ となり、これは矛盾。したがって $x_j e_j \in \mathfrak{a}$ であるときは $x_j = 0$ である。これより $x \in \mathfrak{a}$ は $\sum_{i \in I} x_i e_i$ とかけるから $\mathfrak{a} \subset \mathfrak{a}_I$ なので $\mathfrak{a} = \mathfrak{a}_I$ 。任意のイデアルはそれが含んでいる標準基底によってのみ決まるから \mathfrak{a}_I で全てであり I のとり方より有限個である。

Rem 8.13. $A=K^n$ のイデアル $\mathfrak a$ はそれ自身は K-alg の構造を持つが、一般に A の部分 K-alg ではない。

また、 $\mathfrak{a} = \mathfrak{a}_I$ は A のイデアル $\mathfrak{b} = \mathfrak{a}_J = \mathfrak{a}_{[n]-I}$ の商 $K - alg\ A/\mathfrak{b}$ と同型である。

Proof. K - alg の構造を持つことは $\mathfrak{a} = \mathfrak{a}_I$ で $I = \{1, ..., k (\neq n)\}$ とすると

$$\phi: K \longrightarrow \mathfrak{a}$$

$$k \longmapsto \begin{pmatrix} k \\ \vdots \\ k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

とするとこれは環準同型で K が可換体より $\mathrm{Im}(\phi) \subset (\mathfrak{a}$ の中心) より K-alg になる。一般の I についても同様。

また、 $\mathfrak a$ の単位元 $1_{\mathfrak a}$ は $\underbrace{(1,\dots,1,0,\dots,0)}_k$ であり、これは A の単位元 $1_A=(1,\dots,1)$ と一致しないので A の部分 K-alg ではない。

 $I=\{1,\ldots,k\}$ として考える。このとき $J=\{k+1,\ldots,n\}$ である。 $\psi:A\longrightarrow \mathfrak{a},(a_1,\ldots,a_n)\longmapsto (a_1,\ldots,a_k)$ とするとこれは K-alg 準同型で全射であり、 $\ker(\psi)=(a_{k+1},\ldots,a_n)=\mathfrak{b}$ であるから準同型 定理より $A/\mathfrak{b}\cong\mathfrak{a}$ となるので示された。

命題 8.14. etale $K-alg\ A$ は部分 $K-alg\$ 及びイデアルを有限個しか持たない。

Proof. etale より $^{\exists}L/K$ により $L\otimes_K A\cong L^n$ であるので命題 (8.11)(8.12) より $L\otimes_K A$ の部分代数とイデアルは有限個。 よって $A\subset L\otimes_K A$ の部分代数とイデアルも有限個。

Rem 8.15. $\operatorname{Hom}_{K-alg}(A,L)$ は A の素イデアルの集合 $\operatorname{Spec}(A)$ の "L- 有理点"の集合である。

例 8.16. A:=K[X,Y]/(f) で $f(X,Y)=X^3+1-Y^2$ とする。このとき $\phi\in \operatorname{Hom}_{K-alg}(A,L)$ を取

り、 $x=X(\mod f), y=Y(\mod f), \phi(x)=a, \phi(y)=b$ とする。すると A で $f(X,Y)=0_A$ から $\phi(f)=f(a,b)=0$ よりこの a,b が f の L 上の有理点になる。 ϕ は準同型より x,y の送り先 a,b のみで $\phi(g(X,Y)+f$ $(\in A))=g(a,b)$ と定まるので $\operatorname{Hom}_{K-alg}(A,L)\cong\{(a,b)\in L^2|f(a,b)=0\}$ という同型が定まる。

8.3 分離次数

A: 有限次 K-alg で $^{\forall}L/K$ に対して $h(L):=|\mathrm{Hom}_{K-alg}(A,L)|$ とおく。このとき系 (8.3) より $h(L)\leq n=[A:K]$ が成り立っている。

補題 8.17. Ω/K : 拡大、 Ω : 代数閉体とするとき $\forall L/K$ に対し $h(L) \leq h(\Omega)$

Proof. L': K の相対的代数閉包とすると $\forall \phi \in \operatorname{Hom}_{K-alg}(A,L)$ において A の K 上の基底を (e_1,\ldots,e_n) とする。このとき $\forall x=a_1e_1+\cdots+a_ne_n\in A$ と書けて $\phi(x)=a_1\phi(e_1)+\cdots+a_n\phi(e_n)$ となる。 $\{\phi(e_1),\ldots,\phi(e_n)\}$ の部分集合が $\phi(A)$ の基底になるので $[\phi(A):K]\leq [A:K]=n$ より $\phi(A)/K$ は有限次拡大より代数拡大である。よって $\phi(A)\subset L'$ だから $\phi\in \operatorname{Hom}_{K-alg}(A,L')$ なので h(L)=h(L') になる。定理 (\ref{thm}) より L' は代数閉体と見た Ω に埋め込めるので終域が小さくなるから $\operatorname{Hom}_{K-alg}(A,L)=\operatorname{Hom}_{K-alg}(A,L')\subset \operatorname{Hom}_{K-alg}(A,\Omega)$ より $h(L)\leq h(\Omega)$ である。

定義 8.18. $[A:K]_s:=\max_{L/K}h(L)=h(\Omega)$ ($\Omega:K$ の代数閉包, 補題 (8.17) から言える。) を A の K 上の分離次数 (separable degree)という。系 (8.3) から $[A:K]_s \leq [A:K]$ が言える。

定義 8.19. ・K-alg~A が<u>分離的</u>とは $[A:K]_s=[A:K]$ となること。系 (8.9) から A が有限次 K-alg のときこれは A が K の代数閉包 Ω で対角化されることと同値。

- ・とくに有限次拡大 L/K が分離的とは K-alg として L が分離的であること。
- ・代数拡大 L/K が分離的とは \forall 有限次部分体 (中間体) が分離的であること。

命題 8.20. A, B: 有限次 K - alg、 L/K: 拡大、 $A_{(L)} = L \otimes_K A$ とする。

- (1) $[A \otimes_K B : K]_s = [A : K]_s [B : K]_s$
- (2) $[A_{(L)}:L]_s = [A:K]_s$
- (3) C:有限次 L-alg で L/K が有限次のとき $[C:K]_s=[C:L]_s[L:K]_s$