Documentation.md 2025-09-26

Random Forest Penguin Classification Project

Project Overview

This project aims to build a Random Forest classification model to identify penguin species based on physical measurements. The dataset is sourced from the popular Palmer Penguins dataset.

Contents

- Data Description
- Data Preprocessing
- Modular Project Structure
- Machine Learning Workflow
- Model Performance
- Visualization
- Installation and Requirements

Data Description

The dataset includes the following features:

- species: Target variable representing the penguin species (Adelie, Gentoo, Chinstrap)
- island: The island the penguin inhabits (Biscoe, Dream, Torgersen)
- culmen_length_mm: Culmen length in millimeters
- culmen_depth_mm: Culmen depth in millimeters
- flipper_length_mm: Flipper length in millimeters
- **body_mass_g**: Body mass in grams
- sex: Gender of the penguin

Data Preprocessing

- Missing values are removed.
- Categorical variables island and sex are converted to numerical features using one-hot encoding.
- Original data files remain unchanged; preprocessing is handled in a dedicated function within the one_hot_encoder.py module.

Modular Project Structure

- one_hot_encoder.py: Contains the preprocess_penguin_data(filepath) function which loads, cleans, and encodes the dataset.
- data_inspector.py: Loads the processed data using the encoder and provides utilities for data inspection (e.g., displaying the first rows).
- random_forest.py: Implements model training, prediction, evaluation, and visualization.

Machine Learning Workflow

1. Load and preprocess data using preprocess_penguin_data.

Documentation.md 2025-09-26

- 2. Split data into training and testing sets.
- 3. Train a Random Forest classifier (n_estimators=100, using appropriate number of CPU cores).
- 4. Predict on test data.
- 5. Evaluate performance using accuracy, precision, recall, F1-score, and visualize results with a confusion matrix.

Model Performance

- Achieved high accuracy (~99%).
- Balanced classification performance across the penguin species.

Sample Dataset Preview

Visualization

• Confusion matrix visualization using sklearn.metrics.ConfusionMatrixDisplay to show true vs. predicted classifications.

Installation and Requirements

• Python 3.12.4 (recommended)

Required Python libraries (installation via pip):

- pandas
- numpy

Documentation.md 2025-09-26

- scikit-learn
- matplotlib