Contents 1 Setting 1 7 String 2 Math 1 2.1Miscellaneous 3 3 4 Setting 4 1.1 vimrc 3 Data Structure set ts=4 sts=4 sw=4 set ai si nu Math 7 4 DP Basic Arithmetic typedef long long 11; typedef unsigned long long ull; // calculate ceil(a/b) 5 Graph $// |a|, |b| \le (2^63) - 1$ (does not dover -2^63) 11 ceildiv(ll a, ll b) { if (b < 0) return ceildiv(-a, -b); if (a < 0) return (-a) / b; return ((ull)a + (ull)b - 1ull) / b; // calculate floor(a/b) $// |a|, |b| \le (2^63) - 1 \text{ (does not cover } -2^63)$ 11 floordiv(ll a, ll b) { 10 if (b < 0) return floordiv(-a, -b); 10 if (a >= 0) return a / b; return -(11)(((ull)(-a) + b - 1) / b); } 6 Geometry 10

11

11

12

12

// calculate a*b % m

11 large_mod_mul(11 a, 11 b, 11 m)

// x86-64 only

```
return 11(( int128)a*( int128)b%m);
// calculate a*b % m
// |m| < 2^62, x86 available
// O(logb)
11 large mod mul(11 a, 11 b, 11 m)
   a \% = m; b \% = m; 11 r = 0, v = a;
   while (b) {
       if (b\&1) r = (r + v) % m;
       b >>= 1;
       v = (v << 1) % m;
    return r;
}
// calculate n^k % m
11 modpow(11 n, 11 k, 11 m) {
   11 ret = 1;
   n %= m;
   while (k) {
       if (k & 1) ret = large mod mul(ret, n, m);
       n = large_mod_mul(n, n, m);
       k /= 2;
    return ret;
// calculate gcd(a, b)
11 gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a % b);
// find a pair (c, d) s.t. ac + bd = gcd(a, b)
pair<11, 11> extended gcd(11 a, 11 b) {
   if (b == 0) return { 1, 0 };
   auto t = extended_gcd(b, a % b);
    return { t.second, t.first - t.second * (a / b) };
}
// find x in [0,m) s.t. ax === gcd(a, m) \pmod{m}
11 modinverse(ll a, ll m) {
    return (extended_gcd(a, m).first % m + m) % m;
}
// calculate modular inverse for 1 ~ n
void calc_range_modinv(int n, int mod, int ret[]) {
   ret[1] = 1;
    for (int i = 2; i \le n; ++i)
       ret[i] = (11) (mod - mod/i) * ret[mod%i] % mod;
```

2.2 Sieve Methods: Prime, Divisor, Euler phi

```
// find prime numbers in 1 ~ n
// ret[x] = false -> x is prime
// O(n*loglogn)
void sieve(int n, bool ret[]) {
    for (int i = 2; i * i <= n; ++i)
        if (!ret[i])
            for (int j = i * i; j <= n; j += i)
                ret[i] = true;
}
// calculate number of divisors for 1 ~ n
// when you need to calculate sum, change += 1 to += i
// O(n*logn)
void num_of_divisors(int n, int ret[]) {
    for (int i = 1; i \le n; ++i)
        for (int j = i; j \le n; j += i)
           ret[i] += 1;
// calculate euler totient function for 1 ~ n
// phi(n) = number of x s.t. 0 < x < n && gcd(n, x) = 1
// O(n*loglogn)
void euler_phi(int n, int ret[]) {
    for (int i = 1; i \le n; ++i) ret[i] = i;
    for (int i = 2; i \le n; ++i)
        if (ret[i] == i)
            for (int j = i; j \le n; j += i)
                ret[j] -= ret[j] / i;
```

2.3 Primality Test

```
bool test witness(ull a, ull n, ull s) {
    if (a >= n) a %= n;
    if (a <= 1) return true;
    ull d = n \gg s:
    ull x = modpow(a, d, n);
    if (x == 1 \mid \mid x == n-1) return true;
    while (s-- > 1) {
        x = large_mod_mul(x, x, n);
        x = x * x % n;
        if (x == 1) return false;
        if (x == n-1) return true;
    return false;
// test whether n is prime
// based on miller-rabin test
// O(logn*logn)
bool is_prime(ull n) {
    if (n == 2) return true;
    if (n < 2 || n % 2 == 0) return false;
```

2.4 Chinese Remainder Theorem

```
// \text{ find x s.t. } x === a[0] \pmod{n[0]}
//
                   === a[1] (mod n[1])
//
// assumption: gcd(n[i], n[j]) = 1
11 chinese_remainder(11* a, 11* n, int size) {
    if (size == 1) return *a;
    11 \text{ tmp} = \text{modinverse}(n[0], n[1]);
    11 \text{ tmp2} = (\text{tmp * (a[1] - a[0]) % n[1] + n[1]) % n[1];}
    11 \text{ ora} = a[1];
    11 tgcd = gcd(n[0], n[1]);
    a[1] = a[0] + n[0] / tgcd * tmp2;
    n[1] *= n[0] / tqcd;
    11 ret = chinese_remainder(a + 1, n + 1, size - 1);
    n[1] /= n[0] / tgcd;
    a[1] = ora;
    return ret;
```

2.5 Rational Number Class

```
struct rational {
    long long p, q;

    void red() {
        if (q < 0) {
            p *= -1;
            q *= -1;
        }
        ll t = gcd((p >= 0 ? p : -p), q);
        p /= t;
        q /= t;
}

rational(): p(0), q(1) {}
rational(long long p_): p(p_), q(1) {}
rational(long long p_, long long q_): p(p_), q(q_) { red(); }

bool operator==(const rational& rhs) const {
        return p == rhs.p && q == rhs.q;
}
bool operator!=(const rational& rhs) const {
```

```
return p != rhs.p || q != rhs.q;
}
bool operator<(const rational& rhs) const {
    return p * rhs.q < rhs.p * q;
}
rational operator+(const rational& rhs) const {
    return rational(p * rhs.q + q * rhs.p, q * rhs.q);
}
rational operator-(const rational& rhs) const {
    return rational(p * rhs.q - q * rhs.p, q * rhs.q);
}
rational operator*(const rational& rhs) const {
    return rational(p * rhs.p, q * rhs.q);
}
rational operator/(const rational& rhs) const {
    return rational(p * rhs.p, q * rhs.q);
}
rational operator/(const rational& rhs) const {
    return rational(p * rhs.q, q * rhs.p);
}
};</pre>
```

2.6 Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..) 해서 같은 경우들은 하나로 친다. 전체 경우의 수는?

- 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다"라는 operation도 있어야 함!)
- 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

2.7 Kirchoff's Theorem

그래프의 스패닝 트리의 개수를 구하는 정리.

무향 그래프의 Laplacian matrix L를 만든다. 이것은 (정점의 차수 대각 행렬) - (인접행렬) 이다. L에서 행과 열을 하나씩 제거한 것을 L'라 하자. 어느 행/열이든 관계 없다. 그래프의 스패닝 트리의 개수는 det(L')이다.

2.8 Fast Fourier Transform

```
double wr = wr * c - wi * s, wi = wr * s + wi * c;
            wr = \_wr, wi = \_wi;
       }
    for (int i = 1, j = 0; i < n; ++i) {
        for (int k = n >> 1; k > (j \land = k); k >>= 1);
       if (j < i) swap(real[i], real[j]), swap(imag[i], imag[j]);</pre>
// Compute Poly(a) *Poly(b), write to r; Indexed from 0
// O(n*logn)
int mult(int *a, int n, int *b, int m, int *r) {
    const int maxn = 100;
    static double ra[maxn], rb[maxn], ia[maxn], ib[maxn];
    int fn = 1;
    while (fn < n + m) fn <<= 1; // n + m: interested length
    for (int i = 0; i < n; ++i) ra[i] = a[i], ia[i] = 0;
    for (int i = n; i < fn; ++i) ra[i] = ia[i] = 0;
    for (int i = 0; i < m; ++i) rb[i] = b[i], ib[i] = 0;
    for (int i = m; i < fn; ++i) rb[i] = ib[i] = 0;
    fft(1, fn, ra, ia);
    fft(1, fn, rb, ib);
    for (int i = 0; i < fn; ++i) {
        double real = ra[i] * rb[i] - ia[i] * ib[i];
        double imag = ra[i] * ib[i] + rb[i] * ia[i];
       ra[i] = real, ia[i] = imag;
    fft(-1, fn, ra, ia);
    for (int i = 0; i < fn; ++i) r[i] = (int)floor(ra[i] / fn + 0.5);
    return fn:
```

2.9 Matrix Operations

```
const int MATSZ = 100;
inline bool is_zero(double a) { return fabs(a) < 1e-9; }</pre>
// out = A^{(-1)}, returns det(A)
// A becomes invalid after call this
// O(n^3)
double inverse_and_det(int n, double A[][MATSZ], double out[][MATSZ]) {
    double det = 1:
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) out[i][j] = 0;
        out[i][i] = 1;
    for (int i = 0; i < n; i++) {
        if (is_zero(A[i][i])) {
            double maxv = 0;
            int maxid = -1:
            for (int j = i + 1; j < n; j++) {
                auto cur = fabs(A[j][i]);
                if (maxv < cur) {
```

```
maxv = cur;
                maxid = j;
       if (maxid == -1 || is_zero(A[maxid][i])) return 0;
        for (int k = 0; k < n; k++) {
           A[i][k] += A[maxid][k];
            out[i][k] += out[maxid][k];
    det *= A[i][i];
    double coeff = 1.0 / A[i][i];
    for (int j = 0; j < n; j++) A[i][j] *= coeff;
    for (int j = 0; j < n; j++) out[i][j] *= coeff;
    for (int j = 0; j < n; j++) if (j != i) {
        double mp = A[j][i];
        for (int k = 0; k < n; k++) A[j][k] -= A[i][k] * mp;
       for (int k = 0; k < n; k++) out[j][k] -= out[i][k] * mp;
}
return det;
```

2.10 Gaussian Elimination

```
const double EPS = 1e-10;
typedef vector<vector<double>> VVD;
// Gauss-Jordan elimination with full pivoting.
// solving systems of linear equations (AX=B)
// INPUT:
             a[][] = an n*n matrix
//
             b[][] = an n*m matrix
// OUTPUT: X
                    = an n*m matrix (stored in b[][])
             A^{-1} = an n*n matrix (stored in a[][])
// O(n^3)
bool gauss_jordan(VVD& a, VVD& b) {
    const int n = a.size();
    const int m = b[0].size();
    vector<int> irow(n), icol(n), ipiv(n);
    for (int i = 0; i < n; i++) {
        int pj = -1, pk = -1;
        for (int j = 0; j < n; j++) if (!ipiv[j])
            for (int k = 0; k < n; k++) if (!ipiv[k])
                if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk}
        if (fabs(a[pj][pk]) < EPS) return false; // matrix is singular
        ipiv[pk]++;
        swap(a[pj], a[pk]);
        swap(b[pj], b[pk]);
        irow[i] = pj;
        icol[i] = pk;
        double c = 1.0 / a[pk][pk];
        a[pk][pk] = 1.0;
```

```
for (int p = 0; p < n; p++) a[pk][p] *= c;
for (int p = 0; p < m; p++) b[pk][p] *= c;
for (int p = 0; p < n; p++) if (p != pk) {
    c = a[p][pk];
    a[p][pk] = 0;
    for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
    for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
}
for (int p = n - 1; p >= 0; p--) if (irow[p] != icol[p]) {
    for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
}
return true;</pre>
```

2.11 Simplex Algorithm

```
// Two-phase simplex algorithm for solving linear programs of the form
//
      maximize
                    c^T x
//
      subject to Ax <= b
                    x >= 0
// INPUT: A -- an m x n matrix
        b -- an m-dimensional vector
//
         c -- an n-dimensional vector
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
          above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const double EPS = 1e-9;
struct LPSolver {
   int m, n;
   VI B, N;
   VVD D:
   LPSolver(const VVD& A, const VD& b, const VD& c) :
       m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
       for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i]
       for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1]
         = b[i]; }
       for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
       N[n] = -1; D[m + 1][n] = 1;
   void pivot(int r, int s) {
       double inv = 1.0 / D[r][s];
       for (int i = 0; i < m + 2; i++) if (i != r)
           for (int j = 0; j < n + 2; j++) if (j != s)
               D[i][j] -= D[r][j] * D[i][s] * inv;
       for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
```

```
for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;
        D[r][s] = inv;
        swap(B[r], N[s]);
    bool simplex(int phase) {
        int x = phase == 1 ? m + 1 : m;
        while (true) {
            int s = -1:
            for (int j = 0; j \le n; j++) {
                if (phase == 2 \&\& N[i] == -1) continue;
                if (s == -1 \mid | D[x][j] < D[x][s] \mid | D[x][j] == D[x][s] && N[j]
                   < N[s]) s = j;
            if (D[x][s] > -EPS) return true;
            int r = -1;
            for (int i = 0; i < m; i++) {
                if (D[i][s] < EPS) continue;
                if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s]
                     (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i]
                       < B[r]) r = i;
            if (r == -1) return false;
            pivot(r, s);
    double solve(VD& x) {
        int r = 0:
        for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
        if (D[r][n + 1] < -EPS) {
            pivot(r, n);
            if (!simplex(1) || D[m + 1][n + 1] < -EPS)
                return -numeric limits < double > :: infinity();
            for (int i = 0; i < m; i++) if (B[i] == -1) {
                int s = -1;
                for (int j = 0; j \le n; j++)
                    if (s == -1 \mid | D[i][j] < D[i][s] \mid | D[i][j] == D[i][s] &&
                      N[j] < N[s]) s = j;
                pivot(i, s);
        if (!simplex(2))
            return numeric_limits<double>::infinity();
        x = VD(n);
        for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];
        return D[m][n + 1];
};
```

3 Data Structure

3.1 Order statistic tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/detail/standard_policies.hpp>
#include <functional>
#include <iostream>
using namespace __gnu_pbds;
using namespace std;
// tree<key_type, value_type(set if null), comparator, ...>
using ordered_set = tree<int, null_type, less<int>, rb_tree_tag,
    tree_order_statistics_node_update>;
int main()
    ordered_set X;
    for (int i = 1; i < 10; i += 2) X.insert(i); // 1 3 5 7 9
    cout << boolalpha;</pre>
    cout << *X.find_by_order(2) << endl; // 5</pre>
    cout << *X.find_by_order(4) << endl; // 9</pre>
    cout << (X.end() == X.find_by_order(5)) << endl; // true</pre>
    cout << X.order_of_key(-1) << endl; // 0
    cout << X.order_of_key(1) << endl; // 0</pre>
    cout << X.order_of_key(4) << endl; // 2</pre>
    X.erase(3):
    cout << X.order_of_key(4) << endl; // 1
    for (int t : X) printf("%d ", t); // 1 5 7 9
}
```

3.2 Fenwick Tree

```
const int TSIZE = 100000;
int tree[TSIZE + 1];

// Returns the sum from index 1 to p, inclusive
int query(int p) {
   int ret = 0;
   for (; p > 0; p -= p & -p) ret += tree[p];
   return ret;
}

// Adds val to element with index pos
void add(int p, int val) {
   for (; p <= TSIZE; p += p & -p) tree[p] += val;
}</pre>
```

3.3 Segment Tree with Lazy Propagation

```
// example implementation of sum tree
const int TSIZE = 131072; // always 2^k form && n <= TSIZE
int segtree[TSIZE * 2], prop[TSIZE * 2];
void seg_init(int nod, int 1, int r) {
    if (1 == r) segtree[nod] = dat[1];
    else {
        int m = (1 + r) >> 1;
        seg init(nod << 1, 1, m);
        seg_init(nod << 1 | 1, m + 1, r);</pre>
        segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
void seg_relax(int nod, int 1, int r) {
    if (prop[nod] == 0) return;
    if (1 < r) {
        int m = (1 + r) >> 1;
        segtree[nod << 1] += (m - 1 + 1) * prop[nod];
        prop[nod << 1] += prop[nod];</pre>
        segtree[nod << 1 | 1] += (r - m) * prop[nod];
        prop[nod << 1 | 1] += prop[nod];</pre>
    prop[nod] = 0:
int seg query(int nod, int 1, int r, int s, int e) {
    if (r < s || e < 1) return 0;
    if (s <= 1 && r <= e) return segtree[nod];
    seg_relax(nod, 1, r);
    int m = (1 + r) >> 1;
    return seg_query(nod << 1, 1, m, s, e) + seg_query(nod << 1 | 1, m + 1, r,
void seg update(int nod, int 1, int r, int s, int e, int val) {
    if (r < s \mid \mid e < 1) return;
    if (s <= 1 && r <= e) {
        segtree[nod] += (r - l + 1) * val;
        prop[nod] += val;
        return;
    seg_relax(nod, 1, r);
    int m = (1 + r) >> 1;
    seg_update(nod << 1, 1, m, s, e, val);
    seg_update(nod << 1 | 1, m + 1, r, s, e, val);</pre>
    segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
}
// usage:
// seg_update(1, 0, n - 1, qs, qe, val);
// seg_query(1, 0, n - 1, qs, qe);
```

3.4 Persistent Segment Tree

3.5 Link/Cut Tree

4 DP

4.1 Convex Hull Optimization

 $O(n^2) \to O(n \log n)$ 조건 1) DP 점화식 꼴 $D[i] = \min_{j < i} (D[j] + b[j] * a[i])$ 조건 2) b[j] < b[j+1]

특수조건) $a[i] \le a[i+1]$ 도 만족하는 경우, 마지막 쿼리의 위치를 저장해두면 이분검색이 필요없어지기 때문에 amortized O(n) 에 해결할 수 있음

4.2 Divide & Conquer Optimization

 $O(kn^2) \to O(kn \log n)$

조건 1) DP 점화식 꼴

 $D[t][i] = \min_{j < i} (D[t-1][j] + C[j][i])$

조건 2) A[t][i]는 D[t][i]의 답이 되는 최소의 j라 할 때, 아래의 부등식을 만족해야 함

 $A[t][i] \leq A[t][i+1]$

조건 2-1) 비용C가 다음의 사각부등식을 만족하는 경우도 조건 2)를 만족하게 됨

 $C[a][c]+C[b][d] \leq C[a][d]+C[b][c] \ (a \leq b \leq c \leq d)$

4.3 Knuth Optimization

 $O(n^3) \to O(n^2)$

조건 1) DP 점화식 꼴

 $D[i][j] = \min_{i < k < j} (D[i][k] + D[k][j]) + C[i][j]$

조건 2) 사각 부등식

 $C[a][c] + C[b][d] \le C[a][d] + C[b][c]$ ($a \le b \le c \le d$)

조건 3) 단조성

 $C[b][c] \le C[a][d] \ (a \le b \le c \le d)$

결론) 조건 2, 3을 만족한다면 A[i][j]를 D[i][j]의 답이 되는 최소의 k라 할 때, 아래의 부등식을 만족하게 됨

 $A[i][j-1] \le A[i][j] \le A[i+1][j]$

3중 루프를 돌릴 때 위 조건을 이용하면 최종적으로 시간복잡도가 $O(n^2)$ 이 됨

5 Graph

5.1 SCC (Tarjan)

```
const int MAXN = 100;
vector<int> graph[MAXN];
int up[MAXN], visit[MAXN], vtime;
vector<int> stk:
int scc_idx[MAXN], scc_cnt;
void dfs(int nod) {
    up[nod] = visit[nod] = ++vtime;
    stk.push_back(nod);
    for (int next : graph[nod]) {
        if (visit[next] == 0) {
            dfs(next);
            up[nod] = min(up[nod], up[next]);
        else if (scc_idx[next] == 0)
            up[nod] = min(up[nod], visit[next]);
    if (up[nod] == visit[nod]) {
        ++scc_cnt;
        int t;
        do {
            t = stk.back();
            stk.pop_back();
            scc_idx[t] = scc_cnt;
        } while (!stk.empty() && t != nod);
}
// find SCCs in given directed graph
// O(V+E)
void get scc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    scc cnt = 0;
    memset(scc_idx, 0, sizeof(scc_idx));
    for (int i = 0; i < n; ++i)
        if (visit[i] == 0) dfs(i);
}
```

5.2 SCC (Kosaraju)

```
이미 값이 assign되었다면 pass.
```

```
const int MAXN = 100;
vector<int> graph[MAXN], grev[MAXN];
int visit[MAXN], vcnt;
int scc_idx[MAXN], scc_cnt;
vector<int> emit;
void dfs(int nod, vector<int> graph[]) {
    visit[nod] = vcnt;
    for (int next : graph[nod]) {
        if (visit[next] == vcnt) continue;
        dfs(next, graph);
    emit.push_back(nod);
// find SCCs in given graph
// O(V+E)
void get_scc() {
    scc cnt = 0;
    vcnt = 1:
    emit.clear();
    memset(visit, 0, sizeof(visit));
    for (int i = 0; i < n; i++) {
       if (visit[i] == vcnt) continue;
        dfs(i, graph);
    for (auto st : vector<int>(emit.rbegin(), emit.rend())) {
        if (visit[st] == vcnt) continue:
        emit.clear();
        dfs(st, grev);
        ++scc_cnt;
        for (auto node : emit)
            scc_idx[node] = scc_cnt;
}
```

5.3 2-SAT

 $(b_x \lor b_y) \land (\lnot b_x \lor b_z) \land (b_z \lor \lnot b_x) \land \cdots$ 같은 form을 2-CNF라고 함. 주어진 2-CNF 식을 참으로 하는 $\{b_1,b_2,\cdots\}$ 가 존재하는지, 존재한다면 그 값은 무엇인지 구하는 문제를 2-SAT 이라 함.

boolean variable b_i 마다 b_i 를 나타내는 정점, $\neg b_i$ 를 나타내는 정점 2개를 만듦. 각 clause $b_i \lor b_j$ 마다 $\neg b_i \to b_j$, $\neg b_j \to b_i$ 이렇게 edge를 이어줌. 그렇게 만든 그래프에서 SCC를 다 구함. 어떤 SCC 안에 b_i 와 $\neg b_i$ 가 같이 포함되어있다면 해가 존재하지 않음. 아니라면 해가 존재함.

해가 존재할 때 구체적인 해를 구하는 방법. 위에서 SCC를 구하면서 SCC DAG를 만들어 준다. 거기서 위상정렬을 한 후, 앞에서부터 SCC를 하나씩 봐준다. 현재 보고있는 SCC 에 b_i 가 속해있는데 얘가 $\neg b_i$ 보다 먼저 등장했다면 b_i = false, 반대의 경우라면 b_i = true,

5.4 BCC, Cut vertex, Bridge

```
const int MAXN = 100;
vector<pair<int, int>> graph[MAXN]; // { next vertex id, edge id }
int up[MAXN], visit[MAXN], vtime;
vector<int> stk:
vector<int> cut vertex;
vector<int> bridge:
int bcc idx[MAXN], bcc cnt;
void dfs(int nod, int par_edge) {
    up[nod] = visit[nod] = ++vtime;
    int child = 0:
    for (const auto& e : graph[nod]) {
        int next = e.first, edge id = e.second;
        if (edge_id == par_edge) continue;
        if (visit[next] == 0) {
            stk.push back(next);
            ++child;
            dfs(next, edge_id);
            if (up[next] == visit[next]) bridge.push_back(edge_id);
            if (up[next] >= visit[nod]) {
                ++bcc cnt;
                do {
                    bcc_idx[stk.back()] = bcc_cnt;
                    stk.pop_back();
                } while (!stk.empty() && stk.back() != nod);
                bcc idx[nod] = bcc cnt;
            up[nod] = min(up[nod], up[next]);
        else
            up[nod] = min(up[nod], visit[next]);
    if ((par edge != -1 && child >= 1 && up[nod] == visit[nod])
        || (par_edge == -1 && child >= 2))
        cut_vertex.push_back(nod);
// find BCCs & cut vertexs & bridges in undirected graph
// O(V+E)
void get bcc() {
    vtime = 0:
    memset(visit, 0, sizeof(visit));
    cut_vertex.clear();
    bridge.clear();
    memset(bcc_idx, 0, sizeof(bcc_idx));
    bcc cnt = 0:
    for (int i = 0; i < n; ++i) {
        if (visit[i] == 0)
            dfs(i, -1);
```

}

5.5 Lowest Common Ancestor

```
const int MAXN = 100;
const int MAXLN = 9;
vector<int> tree[MAXN];
int depth [MAXN];
int par[MAXLN] [MAXN];
void dfs(int nod, int parent) {
    for (int next : tree[nod]) {
        if (next == parent) continue;
        depth[next] = depth[nod] + 1;
        par[0] [next] = parent;
        dfs(next, nod);
void prepare lca() {
    const int root = 0;
    dfs(root, -1):
    par[0][root] = root;
    for (int i = 1; i < MAXLN; ++i)
        for (int j = 0; j < n; ++j)
            par[i][j] = par[i - 1][par[i - 1][j]];
}
// find lowest common ancestor in tree between u & v
// assumption : must call 'prepare_lca' once before call this
// O(logV)
int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);</pre>
    if (depth[u] > depth[v]) {
        for (int i = MAXLN - 1; i \ge 0; --i)
            if (depth[u] - (1 \ll i) >= depth[v])
                u = par[i][u];
    if (u == v) return u;
    for (int i = MAXLN - 1; i >= 0; --i) {
        if (par[i][u] != par[i][v]) {
            u = par[i][u];
            v = par[i][v];
    return par[0][u];
```

5.6 Heavy-Light Decomposition

5.7 Bipartite Matching (Hopcroft-Karp)

```
// in: n, m, graph
// out: match, matched
// vertex cover: (reached[0][left_node] == 0) || (reached[1][right_node] == 1)
// O(E*sqrt(V))
struct BipartiteMatching {
    int n, m;
    vector<vector<int>> graph;
    vector<int> matched, match, edgeview, level;
    vector<int> reached[2];
    BipartiteMatching(int n, int m): n(n), m(m), graph(n), matched(m, -1),
     match(n, -1) {}
    bool assignLevel() {
        bool reachable = false:
        level.assign(n, -1);
        reached[0].assign(n, 0);
        reached[1].assign(m, 0);
        queue<int> q;
        for (int i = 0; i < n; i++) {
            if (match[i] == -1) {
                level[i] = 0;
                reached[0][i] = 1;
                q.push(i);
        while (!q.empty()) {
            auto cur = q.front(); q.pop();
            for (auto adj : graph[cur]) {
                reached[1][adj] = 1;
                auto next = matched[adj];
                if (next == -1) {
                    reachable = true;
                else if (level[next] == -1) {
                    level[next] = level[cur] + 1;
                    reached[0][next] = 1;
                    g.push(next);
            }
        return reachable;
    int findpath(int nod) {
        for (int &i = edgeview[nod]; i < graph[nod].size(); i++) {</pre>
           int adj = graph[nod][i];
            int next = matched[adj];
            if (next >= 0 && level[next] != level[nod] + 1) continue;
            if (next == -1 || findpath(next)) {
                match[nod] = adj;
                matched[adj] = nod;
                return 1;
        return 0;
```

5.8 Maximum Flow (Dinic)

```
// usage:
// MaxFlowDinic::init(n);
// MaxFlowDinic::add_edge(0, 1, 100, 100); // for bidirectional edge
// MaxFlowDinic::add_edge(1, 2, 100); // directional edge
// result = MaxFlowDinic::solve(0, 2); // source -> sink
// graph[i][edgeIndex].res -> residual
// in order to find out the minimum cut, use `l'.
// if l[i] == 0, i is unrechable.
// O(V*V*E)
// with unit capacities, O(\min(V^{(2/3)}, E^{(1/2)}) * E)
struct MaxFlowDinic {
    typedef int flow_t;
    struct Edge {
       int next;
       int inv; /* inverse edge index */
        flow_t res; /* residual */
   };
    int n;
    vector<vector<Edge>> graph;
    vector<int> q, 1, start;
    void init(int _n) {
        n = _n;
        graph.resize(n);
        for (int i = 0; i < n; i++) graph[i].clear();
    void add_edge(int s, int e, flow_t cap, flow_t caprev = 0) {
        Edge forward{ e, graph[e].size(), cap };
        Edge reverse{ s, graph[s].size(), caprev };
        graph[s].push back(forward);
        graph[e].push_back(reverse);
   bool assign_level(int source, int sink) {
        int t = 0;
        memset(&1[0], 0, sizeof(1[0]) * 1.size());
       1[source] = 1;
        q[t++] = source;
```

```
for (int h = 0; h < t && !l[sink]; h++) {
            int cur = q[h];
            for (const auto& e : graph[cur]) {
                if (l[e.next] || e.res == 0) continue;
                l[e.next] = l[cur] + 1;
                q[t++] = e.next;
            }
        return 1[sink] != 0;
    flow_t block_flow(int cur, int sink, flow_t current) {
        if (cur == sink) return current;
        for (int& i = start[cur]; i < graph[cur].size(); i++) {</pre>
            auto& e = graph[cur][i];
            if (e.res == 0 || l[e.next] != l[cur] + 1) continue;
            if (flow_t res = block_flow(e.next, sink, min(e.res, current))) {
                e.res -= res;
                graph[e.next][e.inv].res += res;
                return res;
            }
        return 0:
    flow_t solve(int source, int sink) {
        q.resize(n);
        1.resize(n);
        start.resize(n);
        flow_t ans = 0;
        while (assign_level(source, sink)) {
            memset(&start[0], 0, sizeof(start[0]) * n);
            while (flow_t flow = block_flow(source, sink, numeric_limits<
              flow t>::max()))
                ans += flow;
        return ans;
};
```

- 5.9 Min-cost Maximum Flow
- 6 Geometry
- 6.1 Basic Operations
- 6.2 Compare angles
- 6.3 Convex Hull

```
// find convex hull
// O(n*logn)
vector<Point> convex_hull(vector<Point>& dat) {
```

```
if (dat.size() <= 3) return dat;
vector<Point> upper, lower;
sort(dat.begin(), dat.end(), [] (const Point& a, const Point& b) {
    return (a.x == b.x) ? a.y < b.y : a.x < b.x;
});
for (const auto& p : dat) {
    while (upper.size() >= 2 && ccw(*++upper.rbegin(), *upper.rbegin(), p)
        >= 0) upper.pop_back();
    while (lower.size() >= 2 && ccw(*++lower.rbegin(), *lower.rbegin(), p)
        <= 0) lower.pop_back();
    upper.emplace_back(p);
    lower.emplace_back(p);
}
upper.insert(upper.end(), ++lower.rbegin(), --lower.rend());
return upper;</pre>
```

6.4 Polygon Cut

6.5 Pick's theorem

격자점으로 구성된 simple polygon이 주어짐. i는 polygon 내부의 격자점 수, b는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다.

$$A=i+\tfrac{b}{2}-1$$

7 String

7.1 KMP

```
typedef vector<int> seq_t;
void calculate_pi(vector<int>& pi, const seq_t& str) {
   pi[0] = -1;
   int j = -1;
   for (int i = 1; i < str.size(); i++) {
       while (j \ge 0 \&\& str[i] != str[j + 1]) j = pi[j];
       if (str[i] == str[j + 1])
           pi[i] = ++j;
       else
           pi[i] = -1;
// returns all positions matched
// O(|text|+|pattern|)
vector<int> kmp(seq_t& text, seq_t& pattern) {
   vector<int> pi(pattern.size());
    vector<int> ans;
    if (pattern.size() == 0) return ans;
```

```
calculate_pi(pi, pattern);
int j = -1;
for (int i = 0; i < text.size(); i++) {
    while (j >= 0 && text[i] != pattern[j + 1]) j = pi[j];
    if (text[i] == pattern[j + 1]) {
        j++;
        if (j + 1 == pattern.size()) {
            ans.push_back(i - j);
            j = pi[j];
        }
    }
} return ans;
}
```

7.2 Aho-Corasick

```
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
struct AhoCorasick
    const int alphabet;
    struct node {
        node() {}
        explicit node(int alphabet) : next(alphabet) {}
        vector<int> next, report;
        int back = 0, output_link = 0;
    int maxid = 0;
    vector<node> dfa;
    explicit AhoCorasick(int alphabet) : alphabet(alphabet), dfa(1, node(
    template<typename InIt, typename Fn> void add(int id, InIt first, InIt
     last, Fn func) {
        int cur = 0;
        for (; first != last; ++first) {
            auto s = func(*first);
            if (auto next = dfa[cur].next[s]) cur = next;
                cur = dfa[cur].next[s] = (int)dfa.size();
                dfa.emplace_back(alphabet);
        dfa[cur].report.push_back(id);
        maxid = max(maxid, id);
    void build() {
        queue<int> q;
        vector<char> visit(dfa.size());
        visit[0] = 1;
        q.push(0);
        while(!q.empty()) {
```

```
auto cur = q.front(); q.pop();
            dfa[cur].output link = dfa[cur].back;
            if (dfa[dfa[cur].back].report.empty())
                dfa[cur].output_link = dfa[dfa[cur].back].output_link;
            for (int s = 0; s < alphabet; <math>s++) {
                auto &next = dfa[cur].next[s];
                if (next == 0) next = dfa[dfa[cur].back].next[s];
                if (visit[next]) continue;
                if (cur) dfa[next].back = dfa[dfa[cur].back].next[s];
                visit[next] = 1;
                q.push(next);
        }
    template<typename InIt, typename Fn> vector<int> countMatch(InIt first,
     InIt last, Fn func) {
        int cur = 0:
       vector<int> ret(maxid+1);
        for (; first != last; ++first) {
            cur = dfa[cur].next[func(*first)];
            for (int p = cur; p; p = dfa[p].output_link)
                for (auto id : dfa[p].report) ret[id]++;
        return ret;
};
```

7.3 Suffix Array with LCP

```
typedef char T;
// calculates suffix array.
// O(n*logn)
vector<int> suffix_array(const vector<T>& in) {
    int n = (int)in.size(), c = 0;
    vector<int> temp(n), pos2bckt(n), bckt(n), bpos(n), out(n);
    for (int i = 0; i < n; i++) out[i] = i;
    sort(out.begin(), out.end(), [&] (int a, int b) { return in[a] < in[b]; });</pre>
    for (int i = 0; i < n; i++) {
       bckt[i] = c;
       if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
    for (int h = 1; h < n && c < n; h <<= 1) {
       for (int i = 0; i < n; i++) pos2bckt[out[i]] = bckt[i];
       for (int i = n - 1; i >= 0; i--) bpos[bckt[i]] = i;
       for (int i = 0; i < n; i++)
           if (out[i] \ge n - h) temp[bpos[bckt[i]]++] = out[i];
       for (int i = 0; i < n; i++)
           if (out[i] >= h) temp[bpos[pos2bckt[out[i] - h]]++] = out[i] - h;
       c = 0;
       for (int i = 0; i + 1 < n; i++) {
           int a = (bckt[i] != bckt[i + 1]) || (temp[i] >= n - h)
                    || (pos2bckt[temp[i + 1] + h] != pos2bckt[temp[i] + h]);
           bckt[i] = c;
           c += a;
```

```
bckt[n - 1] = c++;
        temp.swap(out);
    return out;
// calculates lcp array. it needs suffix array & original sequence.
vector<int> lcp(const vector<T>& in, const vector<int>& sa) {
    int n = (int)in.size();
    if (n == 0) return vector<int>();
    vector<int> rank(n), height(n - 1);
    for (int i = 0; i < n; i++) rank[sa[i]] = i;
    for (int i = 0, h = 0; i < n; i++) {
        if (rank[i] == 0) continue;
        int j = sa[rank[i] - 1];
        while (i + h < n \&\& j + h < n \&\& in[i + h] == in[j + h]) h++;
        height[rank[i] - 1] = h;
        if (h > 0) h - -;
    return height;
```

7.4 Suffix Tree

7.5 Manacher's Algorithm

```
// find longest palindromic span for each element in str
// O(|str|)
void manacher(const string& str, int plen[]) {
   int r = -1, p = -1;
   for (int i = 0; i < str.length(); ++i) {
      if (i <= r)
            plen[i] = min((2 * p - i >= 0) ? plen[2 * p - i] : 0, r - i);
      else
            plen[i] = 0;
   while (i - plen[i] - 1 >= 0 && i + plen[i] + 1 < str.length()
            && str[i - plen[i] - 1] == str[i + plen[i] + 1]) {
            plen[i] += 1;
      }
      if (i + plen[i] > r) {
            r = i + plen[i];
            p = i;
      }
}
```

8 Miscellaneous

8.1 Fast I/O

```
namespace fio {
    const int BSIZE = 524288;
    char buffer[BSIZE];
    int p = BSIZE;
    inline char readChar() {
       if(p == BSIZE) {
           fread(buffer, 1, BSIZE, stdin);
           p = 0;
       return buffer[p++];
   int readInt() {
       char c = readChar();
       while ((c < '0' || c > '9') && c != '-') {
           c = readChar();
       int ret = 0; bool neg = c == '-';
       if (neg) c = readChar();
       while (c >= '0' && c <= '9') {
           ret = ret * 10 + c - '0';
           c = readChar();
       return neg ? -ret : ret;
}
```

8.2 Magic Numbers