第五章数组和广义表

数组和广义表

- 1. 数组的定义
- 2. 数组的顺序表示和实现
- 3. 矩阵的压缩存储
- 4. 广义表的定义
- 5. 广义表的存储结构

数组的定义

- 口 k维数组D= $\{a_{j1,j2,...,jk}|k>0$ 称为数组的维数, b_i 是数组第i维的长度, j_i 是数组元素第i维的下标, $a_{j1,j2,...,jk}$ 属于ElemSet $\}$
- $j_i = 0, ..., b_i 1, i = 1, 2, ..., k$

说明: $a_{j1,j2,...,jn}$ 属于ElemSet表示同一数组的数据元素性质相同

二维数组: 假设 $b_1=m,b_2=n$

$$A_{m \times n} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & a_{m-1,n-1} \end{bmatrix}$$

看成N个数据元素的线性表,每 个数据元素代表数组中的一列

$$A_{m \times n} = (R_0, R_1, ..., R_{n-1})$$

 $R_0 = (a_{00}, a_{10}, ..., a_{m-1,0})$
 $R_i = (a_{0,i}, a_{1,i}, ..., a_{m-1,i})$

看成m个数据元素的线性表,每个数据元素代表数组中的一行

$$A_{m \times n} = (S_0, S_1, ..., S_{m-1})$$

$$S_0 = (a_{00}, a_{01}, ..., a_{0,n-1})$$

$$S_i = (a_{i,0}, a_{i,1}, ..., a_{i,n-1})$$

数组的基本操作

- •初始化一个数组
- •取数组元素的值
- •给数组元素赋值

说明:

- •数组一般不做插入、删除操作----多采用顺序存储结构
- •数组是多维的结构,而存储空间是一个一维的结构,
- 数组顺序存储就是把多维结构存为一维结构

数组的顺序表示和实现

- 二维数组有两种顺序映象的方式:
- 1. 以行序为主序
- 2. 以列序为主序
- 多维数组同样有两种顺序映象的方式

二维数组的存储方法 特点:有地址计算公式,可以随机访问

以"行序为主序"的存储映象

2行3列的二维数组

二雅数组呢"行序笱主序"存到一维存储空间—存到一维数组

二维数组A中任一元素a_{i,j} 的存储位置:

$$LOC(a_{i,j}) = LOC(a_{0,0}) + (b_2 \times i + j) \times L$$

称为基地址或基址

- •从数组的第一行开始依次存放每一行的数组元素;
- ·存放第i行时,从第一列开始顺次存放

二维数组的存储方法 特点:有地址计算公式,可以随机证证

以"列序为主序"的存储映象

2行3列的二维数组

二维数组以"列序为主序"存到一维存储空间—存到一维数组

二维数组A中任一元素a_{i,j} 的存储位置:

$$LOC(a_{i,j}) = LOC(a_{0,0}) + (b_1 \times j + i) \times L$$
 称为基地址或基址

- •从数组的第一列开始依次存放每一列的数组元素;
- ·存放第i列时,从第一行开始顺次存放

矩阵 (二维数组) 的压缩存储

寓旨: 为值相同的矩阵元素只分配一个空间, 对零元不分配存储空间

- □研究二类矩阵的压缩存储:
- •特殊矩阵:非零元在矩阵中的分布有一定规则
- 1. 上 (下) 三角矩阵
- 2. 对称矩阵
- 3. 对角矩阵
- •稀疏阵:零元多,分布无规律
- □设计的压缩存储方式要方便访问操作,最好仍能"随机访问"

1、上三角矩阵 $(a_{ij})_{n\times n}$, $1\leq i,j\leq n$

特点: i>j时, $a_{ij}=0$ 或常量C

	a_{11}	a_{12}	$-a_{13}$	•••	a_{1n}	a_{11}	a_{12}	a_{13}	• • •	a_{1n}
-	0	a_{22}	a_{23}	• • •	a_{2n}	C	a_{22}	a_{23}	•••	a_{2n}
	0	0	a_{33}	• • •	a_{3n}	C	$\boldsymbol{\mathcal{C}}$	a_{33}	•••	a_{3n}
		•			•		•			•
		•			•		•			•
		•			•		•			•
	$\lfloor 0 \rfloor$	0	0	•••	a_{nn}	C	\mathcal{C}	\mathcal{C}	•••	a_{nn}

存储方式:列为主序压缩存储和行为主序压缩存储,存储空间是一维的,将二维数组以一维方式存储

上三角矩阵示例2

特点:均可以随机访问数组元素

上三角矩阵示例1

1、上三角矩阵——列为主序压缩存储-数组sa[M]

特点: i > j时, $a_{ii} = 0$ 或常量C

i≤j时, a_{ii} 为非O元,存放地址Loc (a_{ii}) 的计算公式:

$$a_{13}$$
 ... a_{1n} | Loc(a_{ij})= Loc(a_{11})+($(j-1)j/2+i-1$)* L

一维存储空间用一维数组sa[M]表示, $Loc(a_{ij})$ 计算公式(a_{11} 存于sa[0],地址为0):

Loc(
$$a_{ij}$$
)= 0 +($(j-1)j/2+i-1$)*1

 $Loc(a_{ij})=k=(j-1)j/2+i-1$, $a_{ij}(i\leq j)$ 存于下标为k的数组元素中。

数组的大小M=? M=n(n+1)/2

, 特点: 有地址计算公式, 可以随机访问

列为主序压缩存储:从第一列开始依次存放每一列的"非0元"一个推存储空间——一维数组

1、上三角矩阵——列为主序压缩存储-数组sa[M]

sa[n(n+1)/2-1]

特点: *i>j*时, a_{ij}=常量C

sa[0] sa[1]

列为主序压缩存储:从第一列开始依次存放每一列的"非C元" 最后一个数组元素存务量C

2、下三角矩阵 $(a_{ij})_{n\times n}$, $1\leq i,j\leq n$

上特点: i < j时, $a_{ij} = 0$ 或常量C

下三角矩阵示例1

$$A_{nn} = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix} \qquad A_{nn} = \begin{bmatrix} a_{11} & c & c & \cdots & c \\ a_{21} & a_{22} & c & \cdots & c \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix}$$

存储方式:列为主序压缩存储和行为主序压缩存储,存储空间是一维的,将二维数组以一维方式存储特点:均可以随机访问数组元素

下三角矩阵示例2

行为主序压缩存储:从第一行开始依次存放每一行的"非O(C)元"

2、下三角矩阵——行为主序压缩存储 -数组sa[M]

特点: i < j时, $a_{ij} = 0$ 或常量C

行为主序压缩存储:从第一行开始依次存放每一行的"非O (C) 元"

一维存储空间—一维数组

特点:有地址计算公式, 可以随机访问

2、下三角矩阵——行为主序压缩存储 -数组sa[M]

特点: i < j时, $a_{ii} = 0$ 或常量C

$$A_{nn} = \begin{bmatrix} a_{11} & c & c & \cdots & c \\ a_{21} & a_{22} & c & \cdots & c \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix}$$
数组sa 的 大小M=?

$$M = n(n+1)/2+1$$

$$\vdots \geq j \text{ 时}, \ a_{ij} \beta \# C \wedge A, \ \beta \% \text{ 地址Loc}(a_{ij}) \text{ 计算公式}:$$

$$Loc(a_{ij}) = (i-1)i/2+j-1$$

下三角矩阵示例2

$$M=n(n+1)/2+1$$

$$Loc(a_{ij}) = (i-1)i/2 + j-1$$

常量C的存放地址:

$$n(n+1)/2$$

$$\begin{vmatrix} a_{11} & a_{21} & a_{22} & a_{31} & a_{32} \end{vmatrix} \cdots \begin{vmatrix} a_{n1} & a_{nn} & c \end{vmatrix}$$

行为主序压缩存储:从第一行开始依次存放每一行的"非C元"

3、对称矩阵,特点: $a_{ij} = a_{ji}$

存放方式: 只存上三角阵或只存下三角阵都可以

4、对角矩阵 -- 2d+1对角阵: 主对角线和主对角线上面d条对角线、主对角线下面d条对角线上的数据元素分布不规律,非0 (C)

2d+1 对角阵特点:第一行和最后一行每行有d+1个数据元素,余下每行最多2d+1个数据元素

压缩存储方法:第一行和最后一行各存d+1个数据元素, 余下每行存2d+1个数据元素

压缩存储方法:第一行和最后一行各存d+1个数据元素,余下 每行存2d+1个数据元素

a_{00}	a_{01}	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	a_{21}	a_{22}	a_{23}				

3-对角阵行为主序压缩存储

压缩存储方法:第一行和最后一行各存d+1个数据元素,余下 每行存2d+1个数据元素

a_{00}	a_{01}	a_{02}	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{20}	a_{21}	a_{22}	a_{23}	a_{23}		

5-对角阵行为主序压缩存储

2d+1-对角阵行为主序压缩存储地址计算公式

- 矩阵元素下表从0开始的地址计算公式:
- \rightarrow Loc(a_{ij})=Loc(a_{00})+(2d+1)*i-d+j-(i-d)
- \rightarrow 0 \leq i, j \leq n-1, |i-j| \leq d
- 矩阵元素下表从1开始的地址计算公式:
- Loc(a_{ij})=Loc(a_{11})+(2d+1)*(i-1)-d+j-i+d = Loc(a_{11})+(2d+1)*(i-1)+j-I
- \rightarrow 1 \le i, j \le n, |i-j| \le d

4. 稀疏矩阵:零元多, 在矩阵中随机出现

假设m行n列的矩阵含t个非零元素,则称

$$\delta = \frac{t}{m \times n}$$

为稀疏因子。

通常认为 $\delta \leq 0.05$ 的矩阵为稀疏矩阵。

常规存储方法缺点:

- 1) 零值元素占了很大空间;
- 2) 计算中进行了很多和零值的运算, 遇除法, 还需判别除数是否为零。

解决问题的原则:

- 1)尽可能少存或不存零值元素;
- 2) 尽可能减少没有实际意义的运算;
 - 3) 操作方便。即:尽可能快地找到与下标值(i,j) 对应的元素,尽可能快地找到同一行或同一列的 非零值元。

稀疏矩阵的压缩存储方法:

- 一、三元组顺序表
- 二、行逻辑联接的顺序表
- 三、十字链表

一、三元组顺序表

- •采用一维数组以行为主序存放每一非零元;
- •每一非零元只存行号、列号、非零元的值

```
#define MAXSIZE 12500
typedef struct {
  int i, j; //该非零元的行下标和列下标
  ElemType e; //该非零元的值
} Triple; // 三元组类型
typedef struct {
  Triple data[MAXSIZE];
        mu, nu, tu; //矩阵的行数、列数和非O元总数
} TSMatrix; // 稀疏矩阵类型
```


$\begin{bmatrix} 0 & 14 & 0 & 0 & -5 \end{bmatrix}$

 $0 -7 \ 0 \ 0 \ 0$

36 0 0 28 0

稀疏矩阵

1	5	-5
1	2	14
2	2	-7
3	1	36
3	4	28

1	2	14
1	V	-5
3	1	36
2	2	- 7
3	4	28

i	j	е
1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

M.data[0]

M.data[1]

M.data[2]

M.data[3]

M.data[4]

M.data[5]

TSMatrix M; //稀疏矩阵对应的三元组顺序表

三元组顺序表要求: 非零元以行为主序顺 序存放

一、三元组顺序表运算

- 矩阵运算的实现:
- > 矩阵转置
- A=(a_{ij})_{m×n}转置为B=(b_{ji})_{n×m}
- $a_{ij} = b_{ji}$
- · B阵仍为稀疏矩阵,采用三元组顺序表存放
- > 矩阵相加
- C=A+B要求A和B行数、列数相同
- · A和B对应位置的矩阵元素相加
- · C采用三元组顺序表存放

矩阵转置

特置

$\int 0$	0	36
14	-7	0
0	0	0
0	0	28
_5	0	$0 \rfloor$

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

非零元以行为主序顺序存放

矩阵的三元组顺序表

转置后矩阵的三元组顺序表

矩阵转置

方法1:

》根据三元组顺序表的特点,首先扫描一遍三元组,将扫描到的列号为1的非0元的行列交换存放于转置后的新阵,生成新阵第一行的非0元; 》再扫描一遍三元组,将扫描到的列号为2的非0元的行列交换存放于转置后的新阵,生成新阵第二行的非0元;

>

_		
1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

1	3	36
2	1	14
2	2	-7
4	3	28
5	1	-5

36

▶原阵有Nu列,转置后的新阵 就有nu行,要生成新阵,就 要对原阵的非O元扫描Nu遍

A

col=1

-5

_		

← q=1

i j e

_		J		_
				col=
	1	2	14	
	1	5	-5	← p=1
	2	2	-7	
	3	1	36	
	3	4	28	

i j

 J	

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28
\end{bmatrix}$

← q=1

i j e

3

			col=1
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	

i j e

			col=1
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

i j e

	<u> </u>	
		•

0	0	36
14	-7	0
0	0	0
0	0	28
5	\mathbf{O}	\cap

← q=1

i j e

			col=1
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

i j

1	3	36

0	0	36
14	- 7	0
\cap	Λ	\cap

0	0	0
0	0	28
-5	0	0

			col=1
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	← p=5

	$\int 0$	0	36
	14	-7	0
	0	0	0
	0	0	28
1	_5	0	$0 \rfloor$

e

col=1

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

1	3	36

 \leftarrow q=2

i j e $p \le A.tu$ B

_	<u> </u>		
			col=2
1	2	14	← p=1
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	

 $i \quad j \quad e \quad p \leq A.tu \quad B$

			-
			col=2
1	2	14	← p=1
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	

	36	3	1
← q=2	14	1	2

i j e $p \le A.tu$ B

	<u> </u>		
			col=2
1	2	14	
1	5	-5	← p=2
2	2	-7	
3	1	36	
3	4	28	

 $\begin{bmatrix} 0 & 0 & 36 \\ 14 & -7 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 28 \\ -5 & 0 & 0 \end{bmatrix}$

1 3 36 2 1 14 ← q=3

36 0 0 28 0

i j e $p \le A.tu$ B

			•
			col=2
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	
3	4	28	

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
-5 & 0 & 0
\end{bmatrix}$

i j e $p \le A.tu$ B

			-
			col=2
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	
3	4	28	

			_
1	3	36	
2	1	14	
2	2	-7	← q=3

i j e $p \le A.tu$ B

			col=2
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

	$\begin{bmatrix} 0 \end{bmatrix}$	0	36
	14	-7	0
	0	0	0
	0	0	28
]	_5	0	$0 \rfloor$

i	j	e	$\begin{vmatrix} 1 \\ -5 \end{vmatrix}$
1	3	36	
2	1	14	
2	2	-7	
			← q=4

 $i \quad j \quad e \quad p \leq A.tu \quad B$

			col=2
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	← p=5

i j e $p \le A.tu$ B

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

col=2

i	j	e	_
1	3	36	
2	1	14	
2	2	-7	
			•

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
-5 & 0 & 0
\end{bmatrix}$

← q=4

← p=6

	<u> </u>		•
			col=3
1	2	14	← p=1
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	

	J		. 1 — 5
1	3	36	
2	1	14	
2	2	7	
			← q=4

i j e $p \le A.tu$ B i j e

	<u> </u>		-
			col=3
1	2	14	
1	5	-5	← p=2
2	2	-7	
3	1	36	
3	4	28	

 $\begin{bmatrix}
 0 & 0 & 30 \\
 14 & -7 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 28 \\
 -5 & 0 & 0
 \end{bmatrix}$

			L
1	3	36	
2	1	14	
2	2	-7	
			← q

i j e $p \le A.tu$ B

			•
			col=3
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	
3	4	28	

 $\begin{bmatrix} 0 & 0 & 36 \\ 14 & -7 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 28 \\ -5 & 0 & 0 \end{bmatrix}$

36

3

i j e $p \le A.tu$ B

			col=3
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

	$\int 0$	0	36
	14	- 7	0
•	0	0	0
	0	0	28
Ī	_5	0	$0 \rfloor$

i	j	e	-5
1	3	36	
2	1	14	
2	2	-7	
			← q=4

i j e $p \le A.tu$ B

			col=3
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	← p=5

 $\begin{bmatrix} 0 & 0 & 36 \\ 14 & -7 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 28 \\ -5 & 0 & 0 \end{bmatrix}$

i	j	e	$\begin{vmatrix} 1 \\ -5 \end{vmatrix}$
1	3	36	
2	1	14	
2	2	-7	
			← q=4

i j e $p \le A.tu$ B

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

col=3

i	j	e	
1	3	36	
2	1	14	
2	2	-7	
			*

0	0	36
14	-7	0
0	0	0
0	0	28
- 5	0	0

i j e $p \le A.tu$ B

			-
			col=4
1	2	14	← p=1
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	

i j e

1	3	36
2	1	14
2	2	-7

ſ	0	0	36
	14	-7	0
Ī	0	0	0
	0	0	28
	_5	\cap	0

i j e $p \le A.tu$ B

	<u> </u>		_
			col=4
1	2	14	
1	5	-5	← p=2
2	2	-7	
3	1	36	
3	4	28	

36

14

3

i j e $p \le A.tu$ B

			-
			col=4
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	
3	4	28	

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
-5 & 0 & 0
\end{bmatrix}$

\underline{i}	j	e	-5
1	3	36	
2	1	14	
2	2	-7	
			← q=4

i j e $p \le A.tu$ B

			•
			col=4
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

	$\begin{bmatrix} 0 \end{bmatrix}$	0	36
	14	-7	0
	0	0	0
	0	0	28
Ī	5	0	$0 \rfloor$

i	j	e	$\begin{vmatrix} -5 \end{vmatrix}$
1	3	36	
2	1	14	
2	2	-7	
			← q=

i j e $p \le A.tu$ B

			col=4
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	← p=5

		30	
2	1	14	
2	2	-7	
			← q=4

 $i \quad j \quad e \quad p \leq A.tu \quad B \quad i \quad j$

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

col=4

1	3	36
2	1	14
2	2	-7
4	3	28

$\begin{bmatrix} 0 \end{bmatrix}$	0	36
14	-7	0
0	0	0
0	0	28
$\lfloor -5 \rfloor$	0	$0 \rfloor$

← q=5

← p=6

i j e $p \le A.tu$ B

			•
			col=5
1	2	14	← p=1
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	

i j e

1	3	36
2	1	14
2	2	-7
4	3	28

$\lceil 0$	0	36
14	-7	0
0	0	0
0	0	28
-5	0	0

i j e $p \le A.tu$ B i j

			_
			col=
1	2	14	
1	5	-5	← p=
2	2	-7	
3	1	36	
3	4	28	

1	3	36
2	1	14
2	2	-7
4	3	28

$\int 0$	0	36
14	- 7	0
0	0	0
0	0	28
$\left -5 \right $	0	0

i j e $p \le A.tu$ B i j

			-
			col=5
1	2	14	
1	5	-5	
2	2	-7	← p=3
3	1	36	
3	4	28	

1	3	36
2	1	14
2	2	7
4	3	28
5	5	-1

0	0	36
14	-7	0
0	0	0
0	0	28
_5	0	$0 \rfloor$

 $i \quad j \quad e \quad p \le A.tu \quad B \quad i \quad j$

			col=5
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← p=4
3	4	28	

l J e

1	3	36
2	1	14
2	2	7
4	3	28
5	5	-1

$\lceil 0 \rceil$	0	36
14	- 7	0
0	0	0
0	0	28
_5	0	$0 \rfloor$

i j e $p \le A.tu$ B

			col=5
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	
3	4	28	← p=5

 $\frac{1}{}$ $\frac{J}{}$ $\frac{e}{}$

1	3	36
2	1	14
2	2	7
4	3	28
5	5	-1

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
-5 & 0 & 0
\end{bmatrix}$

i j e $p \le A.tu$ B

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

col=5

1	3	36
2	1	14
2	2	-7
4	3	28
5	5	-1

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
-5 & 0 & 0
\end{bmatrix}$

← p=6

i j e $p \le A.tu$ B

1	2	14	
1	5	-5	
2	2	-7	
3	1	36	

3

col=6

col<=T.n	u 1	3	36
	2	1	14

2	2	- 7
4	3	28
4	4	_1

 $\begin{bmatrix}
0 & 0 & 36 \\
14 & -7 & 0 \\
0 & 0 & 0 \\
0 & 0 & 28 \\
6 & 0 & 0
\end{bmatrix}$

← p=6

28

i j e

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

l = l

1	3	36
2	1	14
2	2	-7
4	3	28
5	1	-5

$\int 0$	0	36
14	-7	0
0	0	0
0	0	28
-5	0	0

```
方法1:将矩阵A转置成矩阵B
Status TransposeSMatrix(TSMatrix A, TSMatrix &B){
B.mu = A.nu; B.nu = A.mu; B.tu = A.tu;
ii (B.tu) {
  q = 1;
  for (col=1; col<=A.nu; ++col)
    for (p=1; p \le A.tu; ++p)
     if(A.data[p], j == col) 
       B.data[q].i = A.data[p].i; B.data[q].i = A.data[p].i;
       B.data[q].e = A.data[p].e; q++;}
              时间复杂度为: O(A.nu*A.tu)
 return OK; 缺点: 財间效率低
} // TransposeSMatrix
```

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

•	•			元素的	的下标			
l	Ĵ	e		col	1	2	3	
				Num[col]	0	0	0	
				Cpot[col]				
1	2	14	← t=1	_				
1	5	-5						
2	2	-7						
3	1	36						

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

•	•			一 元素 6	的下标		
\boldsymbol{l}	J	e		col	1	2	3
				Num[col]	0	1	0
				Cpot[col]			
1	2	14	← t=1	L			
1	5	-5					
2	2	-7					
3	1	36					

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

i	\dot{J}	e	
1	2	14	
1	5	-5	← t=2
2	2	-7	
3	1	36	
3	4	28	

col	1	2	3	4	5
Num[col]	0	1	0	0	0
Cpot[col]					

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

3

0

•	•			九家	15
l	J	e		col	
				Num[col]	
				Cpot[col]	
1	2	14			
1	5	-5	← t=2	1	
2	2	-7			
3	1	36			
2	4	20			

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

i	\dot{J}	e		
	_			(
1	2	14		
1	5	-5		
2	2	-7	← t=3	
3	1	36		
3	4	28		

col	1	2	3	4	5
Num[col]	0	1	0	0	1
Cpot[col]					

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

i	j	e	
1	2	14	
1	5	-5	
2	2	-7	
3	1	36	← t=4
3	4	28	

col	1	2	3	4	5
Num[col]	0	2	0	0	1
Cpot[col]					

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	0	1
Cpot[col]					

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]					

t<=A.tu

1	2	14
1	5	5
2	2	-7
3	1	36
3	4	28

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1				

$$cpot[1] = 1;$$

$$cpot[col] = cpot[col-1] + num[col-1];$$

t<=A.tu

5

2

2

3

3

e

14

-5

-7

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2			

i j e

t<=A.tu

<i>J</i>					
1	2	14			
1	5	5			
2	2	-7			
3	1	36			
3	4	28			

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4		

t<=A.tu

1	2	14			
1	5	-5			
2	2	-7			
3	1	36			
3	4	28			

$$cpot[1] = 1;$$

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4	4	

$$cpot[1] = 1;$$

t<=A.tu

5

2

2

3

3

e

14

-5

-7

36

28

Num[col]:存放矩阵B中每一行非零元的个数

Cpot[col]:存放矩阵B中每一行非零元的当前存放的位置

初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4	4	5

$$cpot[col] = cpot[col-1] + num[col-1];$$

3

3

t<=A.tu

e

36

28

p<=A.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4	4	5

	i	\dot{J}	e			i	\dot{J}	e	
A				В					0
	1	2	14	← p=1	Ī				1
	1	5	-5						2
	2	2	-7						3
	3	1	36						4
	3	4	28						5

n<=	A	.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4	4	5

	i	\dot{J}	e
A			
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28

n<=	A	.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	3	4	4	5

	i	\boldsymbol{j}	e	_
A				
	1	2	14	
	1	5	-5	←
	2	2	-7	
	3	1	36	
	3	4	28	

i	j	e	
			0
			1
2	1	14	2
			3
			4
			5

B

p=2

n<=	$= \mathbf{\Lambda}$.tu
ν,	4	··u

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	3	4	4	5

	i	j	e
A			
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28

B **←** p=2

i	j	e	_
2	1	14	
5	1	-5	

p<=	=A .	.tu
r		

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	3	4	4	6

	i	\dot{J}	e		i	J
A				В		
	1	2	14			
	1	5	-5		2	
	2	2	-7	← p=3		
	3	1	36			
	3	4	28		5	-

_	e	j	i	
0				
1				İ
2	14	1	2	Ì
3				
4				
5	-5	1	5	

p<=	A	.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	3	4	4	6

	i	j	e	- -
A				В
	1	2	14	
	1	5	-5	
	2	2	-7	← p=3
	3	1	36	
	3	4	28	

i	j	e	
			0
			1
2	1	14	2
			3
			4
5	1	-5	5

p<=	A	.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	3	4	4	6

	i	\dot{J}	e	_	i	\boldsymbol{j}	e	
A				В				
	1	2	14					
	1	5	-5		2	1	14	
	2	2	-7	← p=3	2	2	-7	
	3	1	36					
	3	4	28		5	1	-5	

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	4	4	4	6

	i	\dot{J}	e	_	i	\dot{J}	e	
A				В				0
	1	2	14					1
	1	5	-5		2	1	14	2
	2	2	-7		2	2	-7	3
	3	1	36	← p=4				4
	3	4	28		5	1	-5	5

Ī

n<=	A	.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	4	4	4	6

_	i	j	e	- T
A				В
	1	2	14	
	1	5	-5	
	2	2	-7	
	3	1	36	← p=4
	3	4	28	

i	j	e	
			0
1	3	36	1
2	1	14	2
2	2	-7	3
			4
5	1	-5	5

n<=	= A	.tu
h /-		.tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	2	4	4	4	6

	i	j	e	
A				B
	1	2	14	
	1	5	-5	
	2	2	-7	
	3	1	36	← p=4
	3	4	28	

i	j	e	
			0
1	3	36	1
2	1	14	2
2	2	-7	3
			4
5	1	-5	5

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	2	4	4	4	6

	i	\dot{J}	e
A			
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28

	J	
	3	36
,	1	14
	2	-7
,	1	-5
	,	1 2

p<	= A .	.tm
μ,		tu

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	2	4	4	4	6

	i	\dot{J}	e
A			
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28

_	i	j	e	_
	1	3	36	
	2	1	14	
	2	2	-7	
	4	3	28	
	5	1	-5	

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	2	4	4	5	6

B

1	J	e	
			0
1	3	36	1
2	1	14	2
2	2	-7	3
4	3	28	4
5	1	-5	5

← p=6

```
Status FastTransposeSMatrix(TSMatrix A, TSMatrix &B){
 B.mu = A.nu; B.nu = A.mu; B.tu = A.tu;
if (B.tu) {
  for (col=1; col \le A.nu; ++col) num[col] = 0;
  for (t=1; t<=A.tu; ++t) ++num[A.data[t].j];
  cpot[1] = 1;
  for (col=2; col<=A.nu; ++col)
    cpot[col] = cpot[col-1] + num[col-1];
  for (p=1; p<=A.tu; ++p) { .....
 } // if
 return OK;
} // FastTransposeSMatrix
```


Col = A.data[p].j;

q = cpot[col];

B.data[q].i = A.data[p].j;

B.data[q].j = A.data[p].i;

B.data[q].e = A.data[p].e;

++cpot[col]

时间复杂度为: O(A.nu+A.tu)

二、行逻辑联接的顺序表

三元组顺序表又称有序的双下标法,它的特点 是,非零元在表中按行序有序存储,因此便于进行依 行顺序处理的矩阵运算。然而,若需随机存取某一行 中的非零元,则需从头开始进行查找。

行逻辑联接的顺序表:随机存取某一行中的非零元

```
#define MAXRC 500
typedef struct {
    Triple data[MAXSIZE + 1];
    int rpos[MAXRC + 1]; // 每一行非0元存放的起始位置
    int mu, nu, tu;
} RLSMatrix; // 行逻辑链接顺序表类型
```


	i	j	e
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28
•			

i	\dot{J}	e	
			T.data[0]
1	2	14	T.data[1]
1	5	-5	T.data[2]
2	2	-7	T.data[3]
3	1	36	T.data[4]
3	4	28	T.data[5]

rpos[];

3

例如:给定一组下标,求矩阵的元素值

```
ElemType value(RLSMatrix M, int r, int c)
  p = M.rpos[r];
  while (M.data[p].i==r &&M.data[p].i < c)
     p++;
  if (M.data[p].i==r & M.data[p].i==c)
    return M.data[p].e;
  else return 0;
} // value
```

三、十字链表

- 采用链表存放稀疏矩阵的非○元
- » 将稀疏矩阵每行的非O元按照列升序的顺序放在一个单链表中
- ▶ 将稀疏矩阵每列的非0元按照行升序的顺序放在一个单链表中
- □稀疏矩阵的每个非O元即位于一个行单链表,也同时位于一个列单链表
- □ 用一维数组保存每行非0元的单链表的头指针
- □ 用一维数组保存每列非0元的单链表的头指针
- □ 每个结点非O元的结点结构:
- > row, col,val分别代表非0元的行号,列号和值
- > down为指针,指向该非0元同一列的下一个非0元
- > right为指针,指向该非0元同一行的下一个非0元

row	col		val
down		r	ight

三、十字链表

