Force and Acceleration			
Objects with balanced forces (zeroin a	are either	or mov	ving at a
The of something with a This means that it	changes . It mig	ht,	or
The acceleration depends on the $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
850 N 50 kg → 1000 N	4 N ← 2 kg		20 N
The diagram above shows a $50~\rm kg$ trolley in a warehouse and a $2~\rm kg$ skateboard. (a) Calculate the resultant force on the trolley and also on the skateboard.			
(b) Calculate the resultant force on each I	kilogram for the tro	lley and the	skateboard.
(c) If the trolley and the skateboard were away from the start line more rapidly?	in a race with thes	e forces, whi	ch would pull
The acceleration of an object in is giver of the object.	by the	per	(in)
2 Use your answers to write down the			
(a) the acceleration of the trolley in Q1.			
(b) acceleration of the skateboard in Q1.			

Rewrite your word equations using symbols. a is the acceleration, F is the resultant force and m is the mass.

(a) a =

(a) Acceleration =

(b) F =

Complete the word equations using **Acceleration**, **Resultant Force** and **Mass**.

(b) Resultant Force =

(c) m =

(c) Mass =

5	Use your understanding of force and acceleration (including the formulae) to calculate (a) The resultant force needed to give a 200 kg pony a 2 m/s^2 acceleration.
	(b) The acceleration when a $20000~\mathrm{kg}$ bus is driven with a $10000~\mathrm{N}$ resultant force.
	(c) The mass of a melon if a $3\mathrm{N}$ force gives it a $6\mathrm{m/s^2}$ acceleration.
6	A $1.6\mathrm{kg}$ motion trolley is pulled with a $4\mathrm{N}$ force on a desk where there is $1.6\mathrm{N}$ of friction. (a) Calculate the resultant force on the trolley.
	(b) Calculate the acceleration of the trolley.
7	Calculate the acceleration of
	(a) A $40~{\rm kg}$ trolley pushed by $100~{\rm N}$ against $80~{\rm N}$ of friction.
	(b) A $60~{\rm kg}$ swimmer pushing forward with $200~{\rm N}$ against $120~{\rm N}$ of drag.
8	A 0.3 kg firework needs to accelerate upwards at 80 m/s ² . As it rises there is a combined downwards force of 9 N acting on it from its weight and the drag.
	(a) Calculate the resultant force from the acceleration and mass.
	(b) Calculate the upwards propulsion force needed to achieve this resultant force.
9	A 300000 kg train takes 80 s to get to its top speed of 100 m/s on a flat track. On average, there is a combined friction and air resistance force of 50 kN = 50000 N. Calculate
	(a) the acceleration needed. Remember: acceleration $=$ velocity change \div time taken.
	(b) the resultant force,
	(c) the force required from the engine.