Notion d'espace affine

- ${\mathcal E}$ désigne un espace affine de dimension finie et de direction ${\mathcal E}$.
- Exercice 1 Soit $\mathcal V$ une partie non vide de $\mathcal E$.

 Montrer que $\mathcal V$ est un sous-espace affine si et seulement si pour tout couple (A,B) de points distincts de $\mathcal V$, la droite (AB) est incluse dans $\mathcal V$.
- *Exercice* 2 Soit V une partie non vide de \mathcal{E} . Montrer que, si tout barycentre de points de V est encore dans V, alors V est un sous-espace affine.
- Exercice 3 Soit A, B et C trois points non alignés de \mathcal{E} et $\alpha, \beta, \gamma \in \mathbb{R}^*$ tel que les barycentres G, G_1, G_2 et G_3 de $((A, \alpha), (B, \beta), (C, \gamma)), ((A, -\alpha), (B, \beta), (C, \gamma)), ((A, \alpha), (B, -\beta), (C, \gamma)),$ et $((A, \alpha), (B, \beta), (C, -\gamma))$ existent.

 a) Montrer que les droites $(A, G_1), (B, G_2), (C, G_3)$ concourent en G.

 b) Montrer que les droites $(G_2, G_3), (G_3, G_1), (G_1, G_2)$ passent respectivement par A, B, C.

Application affine

- ${\mathcal E}$ désigne un espace affine de dimension finie et de direction E .
- **Exercice 4** Soit f une application affine de \mathcal{E} dans lui-même et (A,B) un couple de points distincts de \mathcal{E} . Montrer que si A et B sont des points fixes de f alors la droite (AB) est invariante par f.
- Exercice 5 Soit A, B, C, D quatre points non coplanaires d'un espace affine \mathcal{E} de dimension 3. Montrer qu'il existe une unique application affine envoyant A, B, C, D sur B, C, D, A et déterminer un point invariant de celle-ci.
- **Exercice 6** Soit $f: \mathcal{E} \to \mathcal{E}$ une application affine telle qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = \operatorname{Id}_{\mathcal{E}}$. Montrer que f admet un point invariant.

Applications affines usuelles

- ${\mathcal E}$ désigne un espace affine de dimension finie et de direction E .
- **Exercice 7** Soit \vec{u} un vecteur de E et A un point de \mathcal{E} . Décrire la transformation $t_{\vec{u}} \circ s_A$.
- **Exercice 8** Soit H et H' deux homothéties de centres O et O' et de rapports λ et λ' . Décrire la transformation $H' \circ H$
- **Exercice 9** Soit f une transformation affine et h une homothétie de centre O et de rapport λ . Préciser l'application $f \circ h \circ f^{-1}$.
- *Exercice 10* Déterminer toutes les applications affines $f: \mathcal{E} \to \mathcal{E}$ commutant avec toutes les translations.
- **Exercice 11** Montrer que l'ensemble G formé par la réunion des translations et des symétries centrales de \mathcal{E} , muni du produit de composition des applications, forme un groupe.

- Exercice 12 Soit f une application affine de \mathcal{E} dans lui-même qui transforme toute droite vectorielle en une droite parallèle. Montrer que f est une translation ou une homothétie.
- *Exercice 13* On note \mathcal{HT} le groupe des homothéties-translations de \mathcal{E} . Montrer que si G est un sous-groupe commutatif de $\mathcal{H}\mathcal{T}$ alors G n'est que constitué que de translations ou d'homothéties de même centre.

Projection et symétrie affine

- **Exercice 14** On munit un espace affine \mathcal{E} de dimension 3 d'un repère $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.
 - a) Donner l'expression analytique de la projection sur $\mathcal{P}: x+y+z=1$ parallèlement à
 - $D = \text{Vect}(\vec{i} + \vec{j} \vec{k})$.
 - b) Donner l'expression analytique de la symétrie par rapport à \mathcal{P} : x+z=1 selon
 - $D = \text{Vect}(\vec{i} + \vec{i})$.
 - c) Donner l'expression de la projection affine sur Φ : x + y + z = 1 selon la direction $Vect(\vec{u}(1,2,-2))$.
- **Exercice 15** On munit un espace affine \mathcal{E} de dimension 3 d'un repère $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Déterminer la nature et les éléments caractéristiques de l'application $f: \mathcal{E} \to \mathcal{E}$ d'expression

a)
$$\begin{cases} x' = -y - z + 1 \\ y' = -2x - y - 2z + 2 \\ z' = x + y + 2z - 1 \end{cases}$$

b)
$$\begin{cases} 2x' = x - z + 1 \\ 2y' = x + 2y + z - 1 \\ 2z' = -x + z + 1 \end{cases}$$

a)
$$\begin{cases} x' = -y - z + 1 \\ y' = -2x - y - 2z + 2 \\ z' = x + y + 2z - 1 \end{cases}$$
 b)
$$\begin{cases} 2x' = x - z + 1 \\ 2y' = x + 2y + z - 1 \\ 2z' = -x + z + 1 \end{cases}$$
 c)
$$\begin{cases} x' = -y + z + 3 \\ y' = -x + z + 3 \\ z' = -x - y + 2z + 3 \end{cases}$$

- Exercice 16 A quelle condition une translation et une symétrie affine commutent-elle ?
- *Exercice 17* Soit $f: \mathcal{E} \to \mathcal{E}$ une application affine. Etablir:
 - a) f est une projection si et seulement si $f \circ f = f$.
 - b) f est une symétrie si et seulement si $f \circ f = \operatorname{Id}_{\varepsilon}$.
- **Exercice 18** Soit f une transformation affine telle que $\vec{f} \circ \vec{f} = \operatorname{Id}_E$.

Montrer qu'il existe un unique couple (t,s) formé d'une translation et d'une symétrie tel que $f = t \circ s = s \circ t$.

Isométries du plan

- *Exercice 19* Montrer que toute isométrie du plan \mathcal{P} qui échange deux points distincts est involutive.
- *Exercice 20* Soit r et r' deux rotations du plan \mathcal{P} distinctes de Id.

Montrer qu'il existe 3 réflexions s, s', s'' telles que : $r = s'' \circ s$ et $r' = s' \circ s''$.

Décrire $r' \circ r$. Lorsqu'il s'agit d'une rotation donner une construction de son centre.

- *Exercice 21* Etudier à quelle condition une réflexion et une translation du plan \mathcal{P} commutent.
- **Exercice 22** Soit A_1, \ldots, A_n des points du plan.

Montrer que l'existence de $B_1, ..., B_n$ tels que $A_i = m[B_i, B_{i+1}]$ (avec $B_{n+1} = B_1$) est équivalente à

l'existence d'un point fixe pour une certaine composée de symétries centrales.

Discuter l'existence et l'unicité des points B_i et en donner une construction géométrique.

Exercice 23 On munit le plan d'un repère orthonormé direct $\mathcal{R} = (0; \vec{i}, \vec{j})$.

Déterminer la nature et les éléments caractéristiques de l'application $f: \mathcal{P} \to \mathcal{P}$ d'expression

a)
$$\begin{cases} x' = \frac{3}{5}x - \frac{4}{5}y + 4 \\ y' = \frac{4}{5}x + \frac{3}{5}y - 2 \end{cases}$$

b)
$$\begin{cases} x' = -y + 1 \\ y' = -x + 2 \end{cases}$$

- *Exercice 24* Déterminer le groupe des isométries du plan \mathcal{P} laissant globalement invariant :
 - a) Un carré.
 - b) Un rectangle non carré.
 - c) Un cercle.
- Exercice 25 Déterminer le groupe des isométries du plan \mathcal{P} laissant globalement invariant la réunion de deux droites parallèles distinctes du plan.

Similitudes du plan

Exercice 26 Soit ABC un triangle non aplati du plan \mathcal{P} .

On désigne par S_1, S_2, S_3 les similitudes directes du plan \mathcal{P} de centres respectifs A, B, C telles que $S_1(B) = C, S_2(C) = A$ et $S_3(A) = B$.

Décrire les composées $S_3 \circ S_2 \circ S_1$ et $S_1 \circ S_2 \circ S_3$.

Exercice 27 Soit AOB un triangle non aplati rectangle en $A, B' \in [O, A]$ et A' le projeté

orthogonal de B' sur (OB). Montrer: OB' + AB < OB + A'B'.

Exercice 28 Soit OAB et OA'B' deux triangles directement semblables. Soit I,J les milieux respectifs de A'B, AB' et H,H' les projections orthogonales de O sur (AB), (A', B').

Montrer : $(IJ) \perp (HH')$.

Exercice 29 On munit \mathcal{P} d'un repère orthonormé direct $\mathcal{R} = (0; \vec{i}, \vec{j})$.

Soit A, B, C trois points du plan \mathcal{P} d'affixes a, b, c telles que |a| = |b| = |c|.

Montrer que (ABC) est équilatéral si et seulement si a+b+c=0.

Exercice 30 a) Soit f une similitude du plan \mathcal{P} et Γ une conique de foyer f, de directrice \mathcal{D} et d'excentricité e. Justifier que $f(\Gamma)$ est une conique dont on précisera foyer, directrice et

b) A quelle(s) condition(s) deux coniques sont-elles directement semblables ?

Isométries de l'espace

Exercice 31 On munit l'espace affine $\mathcal E$ d'un repère orthonormé direct $\mathcal R=(O;\vec i\,,\vec j\,,\vec k\,)$.

Décrire l'application $f: \mathcal{E} \to \mathcal{E}$ d'expression analytique :

a)
$$\begin{cases} x' = \frac{1}{3}(-2x - y + 2z) + 1 \\ y' = \frac{1}{3}(2x - 2y + z) + 1 \\ z' = \frac{1}{3}(x + 2y + 2z) + 3 \end{cases}$$
 b)
$$\begin{cases} x' = \frac{1}{3}(-2x - 2y + z - 5) \\ y' = \frac{1}{3}(-2x + y - 2z - 2) \\ z' = \frac{1}{3}(x - 2y - 2z + 1) \end{cases}$$

Exercice 32 Déterminer les déplacements et les réflexions de $\mathcal E$ laissant globalement invariante une sphère donnée.

david Delaunay http://mpsiddl.free.fr