Lab 13

Wiktor Soral

January 23rd 2018

Bayesian Analysis of Factorial Desings

Why factorial designs?

- Say we are interested in how some miracle diet affects weight loss.
- We are conducting a simple study and compare no diet to miracle diet.

Why factorial designs?

Why factorial designs?

- Ahh, the miracle diet...What is really important is a proper workout.
- We should conduct another experiment, should we?

Why factorial designs?

Why factorial designs?

- If we know in advance important n factors responsible for changes in DV, we should rather conduct n factorial experiment.
- E.g. with diet and workout.

Why factorial designs?

Model for factorial designs

 $y_{ijk} = \alpha + \beta_{1j} + \beta_{2k} + \beta_{1 \times 2jk} + \epsilon_{ijk}$

- α grand mean
- β_{1j} effect of factor 1 for level indicated by subscript j
- β_{2k} effect of factor 2 for level indicated by subscript k
- $\beta_{1\times 2jk}$ interactive effect of factors 1 and 2 for their levels indicated by subscripts j and k
- ϵ_{ijk} individual level variation for a subject i in groups j of factor 1 and k of factor 2
- we assume that $E(\epsilon_{ijk})$ and $Var(\epsilon_{ijk}) = \sigma^2$, ie. variance does not depend on group membership

Understanding the model

• Say $\alpha = 4.5$

	no diet	diet
watching TV	4.5	4.5
workout	4.5	4.5

Understanding the model

• Say β_{1j} refers to diet, and is equal to a vector of length equal to the number of levels of diet: (-2, 2)

	no diet	diet
watching TV workout	2.5 2.5	6.5 6.5

Understanding the model

• Say β_{2j} refers to workout, and is equal to a vector of length equal to the number of levels of workout: (-3. 3)

	no diet	diet
watching TV workout	1.5 7.5	1.5 7.5

Understanding the model

- The additive effect of β_{1j} and β_{2j} is just a combination of previous operations

	no diet	diet
watching TV	-0.5	3.5
workout	5.5	9.5

Understanding the model

- What's left are interaction terms, which are specific to each cell (ie. each combination of factors)
- Say we have this interaction effects:

	no diet	diet
watching TV	-1	1
workout	1	-1

Understanding the model

• When we add respective cells we will obtain estimated means

	no diet	diet
watching TV	-1.5	4.5
workout	6.5	8.5

Bayesian factorial model

- The implementation follows the guidelines of Kruschke
- We assume $y_{ijk} \sim \mathcal{N}(\mu_{jk}, \sigma_y^2)$ $\sigma_y^2 \sim \mathcal{U}(low, high)$ where low and high indicate values respective to the scale of the DV $\mu_{jk} = \alpha + \beta_{1j} + \beta_{2k} + \beta_{1\times 2jk}$ $\alpha \sim \mathcal{N}(M, S^2)$ where M and S are mean and multiple of observed DV variance

- $\beta_{xj} \sim \mathcal{N}(0.0, \sigma_x^2)$, are deflections related to x (where x is factor 1, 2, or interaction) $\sigma_x^2 \sim \mathcal{G}(Shape, Rate)$, are variances/standard deviations of deflections related to x (where x is factor 1, 2, or interaction), and shape and rate are calculated w.r.t. distribution of DV