Shenzhen VSEEI Semiconductor Co., Ltd

#### **DESCRIPTION:**

With high ability to withstand the shock loading of large current, BTB16-600SW series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.



#### **MAIN FEATURES**

| Symbol                             | Value        | Unit |
|------------------------------------|--------------|------|
| I <sub>T(RMS)</sub>                | 16           | А    |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 600/800/1200 | V    |



#### **ABSOLUTE MAXIMUM RATINGS**

| Р                                                                                                                                                                                                                                                                                                    | arameter | Symbol              | Value                 | Unit       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|-----------------------|------------|
| Storage junction temperature range                                                                                                                                                                                                                                                                   |          | T <sub>stg</sub>    | -40-150               | $^{\circ}$ |
| Operating junction temperature range                                                                                                                                                                                                                                                                 |          | Tj                  | -40-125               | $^{\circ}$ |
| Repetitive peak off-state voltage (T <sub>j</sub> =25℃)                                                                                                                                                                                                                                              |          | V <sub>DRM</sub>    | 600/800/1200          | V          |
| Repetitive peak reverse voltage (T <sub>j</sub> =25℃)                                                                                                                                                                                                                                                |          | V <sub>RRM</sub>    | 600/800/1200          | V          |
| Non repetitive surge peak Off-state voltage                                                                                                                                                                                                                                                          |          | V <sub>DSM</sub>    | V <sub>DRM</sub> +100 | V          |
| Non repetitive peak reverse voltage                                                                                                                                                                                                                                                                  |          | V <sub>RSM</sub>    | V <sub>RRM</sub> +100 | V          |
| $ \begin{array}{c} \text{TO-220A(Ins)/} \\ \text{TO-220F(Ins)} \ (\text{T}_{\text{C}}\text{=}75^{\circ}\text{C}) \\ \text{TO-220A(Non-Ins)/} \\ \text{TO-220C} \ (\text{T}_{\text{C}}\text{=}95^{\circ}\text{C}) \\ \text{TO-262} \ (\text{T}_{\text{C}}\text{=}70^{\circ}\text{C}) \\ \end{array} $ |          | I <sub>T(RMS)</sub> | 16                    | А          |
| Non repetitive surge peak on-state current (full cycle, F=50Hz)                                                                                                                                                                                                                                      |          | I <sub>TSM</sub>    | 160                   | А          |

Shenzhen VSEEI Semiconductor Co., Ltd

| I <sup>2</sup> t value for fusing (tp=10ms)                         | l <sup>2</sup> t   | 128 | A <sup>2</sup> s |
|---------------------------------------------------------------------|--------------------|-----|------------------|
| Critical rate of rise of on-state current $(I_G = 2 \times I_{GT})$ | dl/dt              | 50  | A/µs             |
| Peak gate current                                                   | I <sub>GM</sub>    | 4   | Α                |
| Average gate power dissipation                                      | P <sub>G(AV)</sub> | 1   | W                |
| Peak gate power                                                     | P <sub>GM</sub>    | 5   | W                |

# **ELECTRICAL CHARACTERISTICS** ( $T_j$ =25 $^{\circ}$ C unless otherwise specified)

## 3 Quadrants

| Symbol           | Test Condition Q                                                   | Quadrant    |       | Value |     |     | Unit |       |
|------------------|--------------------------------------------------------------------|-------------|-------|-------|-----|-----|------|-------|
|                  |                                                                    |             |       | BW    | CW  | sw  | TW   | Offic |
| lgт              | V <sub>D</sub> =12V R <sub>L</sub> =33Ω                            | I - II -III | MAX   | 50    | 35  | 10  | 5    | mA    |
| V <sub>G</sub> T | VD-12V KL-3312                                                     | I - II -III | MAX   | 1.3   |     |     |      | V     |
| V <sub>GD</sub>  | $V_D = V_{DRM} T_j = 125$ °C<br>RL = 3.3KΩ                         | I - II -III | MIN   | 0.2   |     |     | V    |       |
| IL               | I <sub>G</sub> =1.2I <sub>GT</sub>                                 | I -III      | MAX   | 70    | 50  | 30  | 15   | mΛ    |
|                  |                                                                    | II          | IVIAA | 80    | 60  | 40  | 20   | mA    |
| Ін               | I <sub>T</sub> =100mA                                              |             | MAX   | 60    | 40  | 25  | 15   | mA    |
| dV/dt            | V <sub>D</sub> =2/3V <sub>DRM</sub> Gate Open T <sub>j</sub> =125℃ |             | MIN   | 1000  | 500 | 200 | 100  | V/µs  |

## 4 Quadrants

| Symbol           | Test Condition Quadra                                              | Quadrant    | ), in dramt | Va  | Unit |      |
|------------------|--------------------------------------------------------------------|-------------|-------------|-----|------|------|
|                  |                                                                    | Quaurani    |             | В   | С    | Onit |
| I <sub>GT</sub>  |                                                                    | I - II -III | MAX         | 50  | 25   | mΛ   |
| IGI              | V <sub>D</sub> =12V R <sub>L</sub> =33Ω                            | IV          |             |     | 50   | mA   |
| V <sub>G</sub> T |                                                                    | ALL         | MAX         | 1.5 |      | V    |
| V <sub>GD</sub>  | $V_D = V_{DRM} T_j = 125^{\circ}C$<br>$R_L = 3.3 K\Omega$          | ALL         | MIN         | 0.2 |      | V    |
| IL               | I <sub>G</sub> =1.2I <sub>GT</sub>                                 | I -III-IV   | MAX         | 70  | 50   | mA   |
|                  |                                                                    | II          | IVIAA       | 100 | 80   | IIIA |
| Ін               | I <sub>T</sub> =100mA                                              |             | MAX         | 60  | 40   | mA   |
| dV/dt            | V <sub>D</sub> =2/3V <sub>DRM</sub> Gate Open T <sub>j</sub> =125℃ |             | MIN         | 500 | 200  | V/µs |

Shenzhen VSEEI Semiconductor Co., Ltd

## **STATIC CHARACTERISTICS**

| Coursels of      | Parameter                                                         |                      | V     | 11:4  |        |      |
|------------------|-------------------------------------------------------------------|----------------------|-------|-------|--------|------|
| Symbol           |                                                                   |                      | -600V | -800V | -1200V | Unit |
| V <sub>TM</sub>  | I <sub>тм</sub> =22.5A tp=380µs                                   | Tj=25℃               | 1.5   |       |        | V    |
| IDRM             | V <sub>D</sub> =V <sub>DRM</sub> V <sub>R</sub> =V <sub>RRM</sub> | Tj=25℃               | 5     | 5     | 10     | μA   |
| I <sub>RRM</sub> |                                                                   | T <sub>j</sub> =125℃ | 1     | 1     | 2      | mA   |

## **THERMAL RESISTANCES**

| Symbol   | Parameter            |                              | Value | Unit |
|----------|----------------------|------------------------------|-------|------|
| Rth(j-c) |                      | TO-220A(Ins)                 | 2.1   | °C/W |
|          | junction to case(AC) | TO-220A(Non-Ins)/<br>TO-220C | 1.2   |      |
|          |                      | TO-220F(Ins)                 | 2.3   |      |
|          |                      | TO-262                       | 2.5   |      |



**FIG.1** Maximum power dissipation versus RMS on-state current



**FIG.3:** Surge peak on-state current versus number of cycles



**FIG.5:** Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I<sup>2</sup>t (dI/dt < 50A/µs)



**FIG.2:** RMS on-state current versus case temperature



**FIG.4:** On-state characteristics (maximum values)



**FIG.6:** Relative variations of gate trigger current, holding current and latching current versus junction temperature

