Fall 2020 A. Stepanov

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

$$\Theta_0 \cap \Theta_1 = \emptyset$$
.

$$\text{Reject H}_0 \quad \text{if} \qquad \Lambda^* = \frac{\displaystyle \max_{\theta \in \Theta_0} L(\theta)}{\displaystyle \max_{\theta \in \Theta_1} L(\theta)} \leq k \qquad \Leftrightarrow \qquad \Lambda = \frac{\displaystyle \max_{\theta \in \Theta_0} L(\theta)}{\displaystyle \max_{\theta \in \Theta_0 \cup \Theta_1} L(\theta)} \leq k$$

$$\text{since } \Lambda = \min \left(\Lambda^*, 1 \right)$$

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$ Reject H_0 if $\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})} \leq k$ (Likelihood Ratio Test)

Example 1:

Let $X_1, X_2, ..., X_n$ be a random sample of size n from an Exponential distribution with mean $1/\lambda$. That is,

$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda \neq \lambda_0$

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n \exp\left\{-\lambda \sum_{i=1}^{n} x_i\right\}.$$
 $\hat{\lambda} = \frac{1}{\overline{X}}.$

$$\Lambda = \frac{L(\lambda_0)}{L(\hat{\lambda})} = \frac{\lambda_0^n \exp\left\{-\lambda_0 \sum_{i=1}^n x_i\right\}}{\left(\frac{1}{x}\right)^n \exp\left\{-\left(\frac{1}{x}\right) \sum_{i=1}^n x_i\right\}} = e^n \lambda_0^n (\bar{x})^n \exp\left\{-n \lambda_0 \bar{x}\right\}.$$

$$\Lambda \leq k \qquad \Leftrightarrow \qquad \overline{x} \exp\{-\lambda_0 \overline{x}\} \leq c$$

Reject
$$H_0$$
 if $\bar{x} \exp\{-\lambda_0 \bar{x}\} \le c$.

Example 2:

Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$ distribution (σ^2 known).

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$

$$\hat{\mu} = \overline{X}$$
.

$$\Lambda = \frac{L(\mu_0)}{L(\hat{\mu})} = \frac{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \mu_0)^2\right\}}{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \bar{x})^2\right\}}$$

$$= \exp\left\{\frac{1}{2\sigma^2} \left[\sum_{i=1}^{n} (x_i - \bar{x})^2 - \sum_{i=1}^{n} (x_i - \mu_0)^2\right]\right\}$$

$$= \exp\left\{-\frac{n(\bar{x} - \mu_0)^2}{2\sigma^2}\right\}.$$

$$\Lambda \leq k \qquad \Leftrightarrow \qquad \frac{n(\overline{x} - \mu_0)^2}{\sigma^2} \geq k_1 \qquad \Leftrightarrow \qquad \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \geq c$$

Reject
$$H_0$$
 if $\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge c$.

Recall:
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 has N(0,1) distribution. $\Rightarrow c = z_{\alpha/2}$.

Example 3:

Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$ distribution (σ^2 unknown).

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$

$$\hat{\mu} = \overline{X}, \qquad \hat{\sigma}^2 = \frac{1}{n} \cdot \sum_{i=1}^n (X_i - \overline{X})^2.$$

Under
$$H_0$$
, $\hat{\mu}_0 = \mu_0$, $\hat{\sigma}_0^2 = \frac{1}{n} \cdot \sum_{i=1}^n (X_i - \mu_0)^2$.

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})} = \frac{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \, \hat{\sigma}_0} \exp\left\{-\frac{1}{2\hat{\sigma}_0^2} (x_i - \hat{\mu}_0)^2\right\}}{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \, \hat{\sigma}} \exp\left\{-\frac{1}{2\hat{\sigma}_0^2} (x_i - \hat{\mu}_0)^2\right\}}$$

$$= \left(\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \mu_{0})^{2}}\right)^{n/2} = \left(\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n(\overline{x} - \mu_{0})^{2} + \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}\right)^{n/2}.$$

$$\Lambda \leq k \qquad \Leftrightarrow \qquad \frac{n(\bar{x} - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \geq k_1 \qquad \Leftrightarrow \qquad \left| \frac{\bar{x} - \mu_0}{\sqrt[s]{n}} \right| \geq c$$

Reject
$$H_0$$
 if $\left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge c$.

Recall:
$$\frac{\overline{X} - \mu}{S / \sqrt{n}}$$
 has $t(n-1)$ distribution. $\Rightarrow c = t_{\alpha/2}(n-1)$.

Example 4:

Let $Y_1 < Y_2 < ... < Y_n$ be the order statistics of a random sample of size n from a distribution with a p.d.f. $f(x;\theta) = \frac{1}{\theta}$, for $0 \le x \le \theta$, zero elsewhere, where $\theta > 0$.

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})} = \frac{\left(\frac{1}{\theta_0}\right)^n I\{Y_n < \theta_0\}}{\left(\frac{1}{Y_n}\right)^n} = \left(\frac{Y_n}{\theta_0}\right)^n I\{Y_n < \theta_0\}.$$

$$\Lambda \le k$$
 \Leftrightarrow $Y_n \le c$ or $Y_n \ge \theta_0$

Reject
$$H_0$$
 if $Y_n \le c$ or $Y_n \ge \theta_0$.

<u>Example 5</u>: **8.2.2** (7th and 6th edition)

Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size n = 4 from a distribution with a p.d.f. $f(x;\theta) = \frac{1}{\theta}$, for $0 \le x \le \theta$, zero elsewhere, where $0 < \theta$. Let the observed value of Y_4 be y_4 . The hypothesis $H_0: \theta = 1$ is rejected and $H_1: \theta \ne 1$ is accepted if either $y_4 \le \frac{1}{2}$ or $y_4 \ge 1$. Find and sketch the power function $K(\theta)$, $0 < \theta$, of the test.

Hint: Consider three cases: $0 < \theta < \frac{1}{2}$, $\frac{1}{2} < \theta < 1$, and $\theta > 1$.

$$F_{Y_4}(y) = \frac{y^4}{\theta^4}, \quad 0 < y < \theta.$$
 $f_{Y_4}(y) = \frac{4y^3}{\theta^4}, \quad 0 < y < \theta.$

Reject H₀ if $y_4 \le \frac{1}{2}$ or $y_4 \ge 1$.

Case 1:
$$\theta < \frac{1}{2}$$
.

Power $(\theta) = 1$.

Case 2:
$$1/2 < \theta < 1$$
.

Power
$$(\theta) = F_{Y_4}(\frac{1}{2}) = \frac{1}{16\theta^4}$$
.

Case 3: $\theta > 1$.

Power
$$(\theta) = F_{Y_4}(\frac{1}{2}) + [1 - F_{Y_4}(1)]$$

= $\frac{1}{16\theta^4} + \left[1 - \frac{1}{\theta^4}\right] = 1 - \frac{15}{16\theta^4}$.

