1

WHAT IS CLAIMED IS:

2	1. A method of providing a graft vessel for a patient,
3	comprising:
4	a) dissecting the graft vessel from connective tissue adjacent to the
5	graft vessel to provide a free portion of the graft vessel;
6	b) positioning an active electrode of an electrosurgical probe in at
7	least close proximity to a first position of the free portion of the graft vessel; and
8	thereafter
9	c) upon application of a high frequency voltage between the active
10	electrode and a return electrode, transecting the graft vessel at the first position via
	localized molecular dissociation of graft vessel components.
1	
3	2. The method of claim 1, further comprising:
3	d) positioning the active electrode of the electrosurgical probe in at least
4	close proximity to a second position of the free portion of the graft vessel; and
订 5	thereafter
6	e) upon application of a high frequency voltage between the active
7	electrode and the return electrode, transecting the graft vessel at the second position via
8	localized molecular dissociation of the graft vessel components.
1	
2	3. The method of claim 2, further comprising:
3	f) prior or concurrently to said steps c) or e), delivering an electrically
4	conductive fluid to the active electrode such that the electrically conductive fluid
5	provides a current flow path between the active electrode and the return electrode.
1	
2	4. The method of claim 1, further comprising:
3	g) prior to said step a), accessing at least a portion of the graft vessel by
4	removing at least a portion of an overlying tissue which overlies the graft vessel.
1	
2	5. The method of claim 4, wherein said step g) comprises:

3	h) positioning the active electrode in at least close proximity to the
4	overlying tissue; and
5	i) after said step h), applying a high frequency voltage between the active
6	electrode and the return electrode, wherein the overlying tissue is ablated via localized
7	molecular dissociation of overlying tissue components.
1	
2	6. The method of claim 5, further comprising:
3	j) prior to or during said step i), delivering an electrically conductive
4	fluid to the active electrode such that the electrically conductive fluid provides a current
5	flow path between the active electrode and the return electrode.
1	
2	7. The method of claim 5, further comprising:
3	k) during said step i), moving the active electrode against a surface of the
4	overlying tissue to create an incision in the overlying tissue.
1	
2	8. The method of claim 4, wherein the overlying tissue is a sternum.
3	an intercostal space, or the skin of the patient.
1	
2	9. The method of claim 7, further comprising effecting hemostasis
3	of the overlying tissue at the incision.
1	
2	10. The method of claim 2, wherein transecting the graft vessel at the
3	first position or the second position comprises moving the active electrode with respect
4	to the graft vessel.
1	
2	11. The method of claim 1, wherein said step a) comprises:
3	1) positioning the active electrode of the electrosurgical probe in at least
4	close proximity to the connective tissue adjacent to the graft vessel; and
5	m) after said step l), applying a high frequency voltage between the
6	active electrode and the return electrode, wherein at least a portion of the connective
7	tissue adjacent to the graft vessel is ablated via localized molecular dissociation of
8	connective tissue components.

1		
2	12.	The method of claim 11, further comprising:
3	n) pri	for to or during said step m), providing an electrically conductive
4	fluid between the ac	tive electrode and the return electrode.
1		
2	13.	The method of claim 11, wherein during said steps c) and m) the
3	graft vessel and the	connective tissue, respectively, are exposed to a temperature in the
4	range of from about	40° C to 70° C.
1		
2	14.	The method of claim 1, wherein said steps a) through c) are
3	performed in a mini	mally invasive procedure or with laparascopic access.
1		
2	15.	The method of claim 1, wherein the method is performed
3	intercostally.	
1		
2	16.	The method of claim 1, wherein the method comprises a coronary
3	artery bypass graft ((CABG) procedure.
1		
2	17.	The method of claim 1, wherein said steps a) through c) are
3	performed in conjur	action with a median sternotomy.
1		
2	18.	The method of claim 1, wherein the graft vessel is a saphenous
3	vein or an internal r	nammary artery.
1		
2	19.	The method of claim 1, wherein the high frequency voltage has a
3	frequency in the ran	ge of from about 50 kHz to about 500 kHz.
1		
2	20.	The method of claim 1, wherein the high frequency voltage is
3	in the range of from	about 10 volts RMS to about 500 volts RMS.
1		
2	21.	The method of claim 11, wherein said step m) comprises effecting
3	hemostasis of the co	innective tissue

1	
2	22. The method of claim 1, wherein the active electrode consists
3	essentially of a single blade electrode having an active edge and first and second
4	blade sides.
1	
2	23. The method of claim 5, wherein the active electrode consists
3	essentially of a single blade electrode having an active edge and first and second blade
4	sides, the overlying tissue comprises the sternum, said step i) generates a high current
5	density in the region of the active edge such that an incision is formed in the sternum,
6	and at least one of the first and second blade sides engages the incised sternum, wherein
7	hemostasis of the incised sternum is effected.
1	
2	24. A method of harvesting a blood vessel, comprising:
3	a) providing an electrosurgical probe having a return electrode and an
4	active electrode, the return electrode and the active electrode electrically coupled to
5	opposite poles of a high frequency power supply;
6	b) positioning the electrosurgical probe adjacent to the blood vessel so
7	that the active electrode is brought into at least close proximity with the blood vessel at
8	a first position;
9	c) placing an electrically conductive fluid between the active electrode
10	and the return electrode; and
11	d) applying a high frequency voltage between the active electrode and the
12	return electrode such that the blood vessel is severed at the first position as a result of
13	localized molecular dissociation of the blood vessel components in the vicinity of the
14	active electrode.
1	
2	25. The method of claim 24, further comprising:
3	e) prior to said step b), removing at least a portion of an overlying tissue
4	by electrosurgical molecular dissociation of overlying tissue components, wherein
5	access is gained to at least a portion of the blood vessel.
1	
2	26. The method of claim 25, further comprising:

3	f) after said step e), dissecting at least a portion of the blood vessel from
4	connective tissue at least partially surrounding the blood vessel.
1	
2	27. The method of claim 25, wherein said step e) comprises:
3	g) positioning the active electrode in at least close proximity to the
4	overlying tissue;
5	h) delivering an electrically conductive fluid to the active electrode such
6	that the electrically conductive fluid provides a current flow path between the active
7	electrode and the return electrode; and
8	i) applying a high frequency voltage between the active electrode and the
9	return electrode, the high frequency voltage sufficient to effect molecular dissociation of
10	overlying tissue components.
1	
2	28. The method of claim 26, wherein said step f) comprises:
3	j) positioning the active electrode in at least close proximity to the
4	connective tissue;
5	k) delivering an electrically conductive fluid to the active electrode such
6	that the electrically conductive fluid provides a current flow path between the active
7	electrode and the return electrode; and
8	l) applying a high frequency voltage between the active electrode and the
9	return electrode, the high frequency voltage sufficient to effect removal of at least a
10 .	portion of the connective tissue via molecular dissociation of the connective tissue
11	components.
1	
2	29. The method of claim 24, further comprising:
3	m) during said step d), moving the active electrode relative to the blood
4	vessel.
1	
2	30. The method of claim 27, wherein during said step i) the overlying
3	tissue is exposed to a temperature in the range of from about 40° C to 70° C.
1	

2	31. The method of claim 24, wherein the blood vessel is a sa	phenous
3	vein or an internal mammary artery.	
1		
2	32. The method of claim 24, wherein said step b) is performed	ed in a
3	minimally invasive procedure.	
1		
2	33. The method of claim 24, wherein the method comprises a	ì
3	coronary artery bypass graft (CABG) procedure.	
1		
2	34. The method of claim 33, wherein the blood vessel is an i	nternal
3	mammary artery, and said step b) is performed intercostally.	
1		
2	35. The method of claim 25, wherein the overlying tissue con	nprises
3	an intercostal space, said step e) comprises forming an incision in the intercosta	al space,
4	and the method further comprises inserting an introducer device in the incision.	
1		
2	36. The method of claim 35, wherein said step b) comprises	passing a
3	distal end of the electrosurgical probe through the introducer device such that the	ne distal
4	end of the electrosurgical probe is in at least close proximity to an internal man	ımary
5	artery.	
1		
2	37. The method of claim 25, wherein the active electrode con	ısists
3	essentially of a single blade electrode having an active edge and substantially	
4	parallel first and second blade sides.	
1		
2	38. The method of claim 37, wherein the overlying tissue	
3	comprises the sternum, the active edge severs the sternum, and at least one of t	he
4	first and second blade sides engages the severed sternum and coagulates blood	
5	within the sternum, wherein internal bleeding of the sternum is minimized.	
1		
2	39. The method of claim 24, further comprising:	

3		n) afte	er said step d), transecting the blood vessel at a second position
4	via localized	molecul	lar dissociation of components of the blood vessel tissue.
1			•
2		40.	The method of claim 39, wherein transecting the blood vessel at
3	the second po	sition c	omprises:
4		o) pos	itioning the active electrode in at least close proximity to the blood
5	vessel at the s	second 1	position; and thereafter
6		p) app	lying a high frequency voltage to the active electrode sufficient to
7	sever the bloc	od vesse	el at the second position via localized molecular dissociation of the
8	components of	of the bl	ood vessel tissue.
1			
2		41.	A method of transecting a blood vessel of a patient's body,
3	comprising:		
4		a) pos	itioning an active electrode in contact with or in close proximity to
5	the blood ves	sel;	
6		b) app	lying a high frequency voltage to the active electrode, the high
7	frequency vol	ltage su	fficient to volumetrically remove tissue from the blood vessel via
8	localized mol	ecular c	dissociation of components of the blood vessel tissue; and
9		c) mo	ving the active electrode with respect to the blood vessel to create
10	an incision in	the blo	od vessel.
1			
2		42.	The method of claim 41, further comprising:
3		d) prio	or to said step b), dissecting at least a portion of the blood vessel
4	from a conne	ctive tis	ssue adjacent to the blood vessel.
1			
2		43.	The method of claim 41, wherein the blood vessel is an internal
3	mammary art	ery, a s	aphenous vein, or a gastroepiploic artery.
1			•
2		44.	The method of claim 41, further comprising performing a gross
3	thoracotomy	or a me	dian sternotomy prior to said step a).
1			

2	45. The method of claim 41, further comprising directing an
3	electrically conductive fluid over the active electrode and a return electrode to provide a
4	current flow path between the active electrode and the return electrode.
1	
2	46. The method of claim 41, further comprising placing an
3	electrically conductive gel at a target site on the blood vessel such that the electrically
4	conductive gel provides a current flow path from the active electrode through the
5	electrically conductive gel and to a return electrode.
1	
2	47. The method of claim 41, wherein said step a) comprises
3	positioning the active electrode in at least close proximity to an internal mammary
4	artery, and said step c) comprises transecting the internal mammary artery at the
5	incision location.
1	
2	48. The method of claim 41, wherein said step b) raises the
3	temperature of the blood vessel tissue to a temperature between approximately 45°C
4	and 90°C.
1	
2	49. The method of claim 41, wherein said step c) includes engaging a
3	tip or edge of the active electrode against the blood vessel, and the blood vessel is
4	transected at the incision location.
1	
2	50. The method of claim 41, wherein the active electrode comprises a
3	plurality of electrodes aligned in a substantially linear arrangement on a distal end of an
4	electrosurgical probe.
1	
2	51. The method of claim 50, wherein the high frequency voltage is in
3	the range of from about 10 volts RMS to 500 volts RMS.
1	
2	52. A method of harvesting a blood vessel with an electrosurgical
3	probe having an active electrode and a return electrode coupled to opposite poles of a
4	high frequency voltage source, the method comprising:

5	a) positioning the electrosurgical probe adjacent to the blood vessel at a		
6	first vessel position so that the active electrode is brought into at least partial contact or		
7	close proximity with the blood vessel in the presence of an electrically conductive fluid;		
8	b) applying a high frequency voltage between the active electrode and the		
9	return electrode such that an electric current flows from the active electrode through the		
10	blood vessel at the first vessel position and to the return electrode; and		
11	c) moving the active electrode relative to the blood vessel, wherein the		
12	blood vessel is severed at the first vessel position.		
1			
2	53. The method of claim 52, wherein application of the high		
3	frequency voltage causes tissue components of the blood vessel to undergo localized		
4	molecular dissociation in the vicinity of the active electrode.		
1			
2	54. The method of claim 52, wherein the active electrode comprises a		
3	blade electrode having an active edge adapted for incising tissue via molecular		
4	dissociation of tissue components.		
1			
2	55. The method of claim 52, wherein the blood vessel comprises a		
3	gastroepiploic artery, a saphenous vein, or an internal mammary artery.		
1			
2	56. A method of harvesting an internal mammary artery (IMA) of a		
3	patient with an electrosurgical probe having an active electrode and a return electrode		
4	disposed on a shaft distal end of the probe, the active electrode and the return electrode		
5	coupled to opposite poles of a high frequency power supply, the method comprising:		
6	a) positioning the distal end of the probe such that the active electrode is		
7	in at least close proximity to a target site of the IMA;		
8	b) providing an electrically conductive fluid to the shaft distal end such		
9	that the electrically conductive fluid forms a current flow path between the active		
10	electrode and the return electrode; and		
11	c) volumetrically removing tissue components of the IMA at the target		
12	site by application of a high frequency voltage between the active electrode and the		
13	return electrode, wherein the IMA is transected at the target site.		

1	
2	57. The method of claim 56, further comprising:
3	d) prior to said step a), accessing at least a portion of the IMA by
4	removing an overlying tissue which overlies the IMA.
1	
2	58. The method of claim 57, wherein said step d) comprises making
3	an incision in a sternum or making an incision in an intercostal space.
1	
2	59. The method of claim 58, wherein said step d) comprises removing
3	at least a portion of the overlying tissue by electrosurgical molecular dissociation of
4	overlying tissue components.
1	
2	60. The method of claim 56, further comprising:
3	e) prior to said step a), dissecting the IMA from a connective tissue
4	surrounding at least a portion of the IMA to provide a free portion of the IMA
5	substantially free from the connective tissue.
1	
2	61. The method of claim 60, wherein said step e) comprises severing
3	at least a portion of the connective tissue by electrosurgical molecular dissociation of
4	connective tissue components.
1	
2	62. The method of claim 56, further comprising:
3	f) during said step c), manipulating the probe such that the active
4	electrode is moved relative to the IMA at the target site.
1	
2	63. The method of claim 60, further comprising:
3	g) after said step e), anastomosing the IMA to a coronary artery.
1	
2	64. The method of claim 63, wherein said step g) comprises
3	anastomosing a transected end of the IMA to a side of the coronary artery.
1	

1 2

3

9

70. The method of claim 66, wherein said step d) comprises anastomosing the free end of the transected IMA to a side of a coronary artery.

of the IMA in the vicinity of the active electrode.

2	71. The method of claim 66, wherein said step d) comprises forming
3	an opening in a wall of the recipient vessel, the opening suitable for receiving the free
4	end of the transected IMA, wherein forming the opening comprises:
5	positioning an active electrode of an electrosurgical probe in at least close
6	proximity to the recipient vessel at a site targeted for the opening;
7	providing an electrically conductive fluid between the active electrode
8	and a return electrode; and
9	applying a high frequency voltage between the active electrode and the
10	return electrode sufficient to cause localized molecular dissociation of tissue components
11	of the recipient vessel in the vicinity of the active electrode.