NIM: 1301174224

LAPORAN

Tugas Besar MK Penambangan Data semester 2020-1

Task

Buat model untuk mengklasifikasi transaksi fraud atau tidak fraud

Terdapat dua file "train.csv" dan "test.csv" yang fitur-fiturnya identical.

File train.csv berisi data untuk melatih model klasifikasi, dan file test.csv digunakan untuk mencari prediksi *fraud*-nya

Kolom *fraud* berisi dua kemungkinan integer, (0,1)

Data Analisis

Analisis Fitur

Column name	Description	Value range		
trustLevel	A customer's individual trust level. 6: Highest trustworthiness	{1,2,3,4,5,6}		
totalScanTimeInSeconds	Total time in seconds between the first and last product scanned	Positive whole number		
grandTotal	Grand total of products scanned	Positive decimal number with maximum two decimal places		
lineltemVoids	Number of voided scans	Positive whole number		
scansWithoutRegistration	Number of attempts to activate the scanner without actually scanning anything	Positive whole number or 0		
quantityModification	Number of modified quantities for one of the scanned products	Positive whole number or 0		
scannedLineItemsPerSecond	Average number of scanned products per second	Positive decimal number		
valuePerSecond	Average total value of scanned products per second	Positive decimal number		
lineItemVoidsPerPosition	Average number of item voids per total number of all scanned and not cancelled products	Positive decimal number		
fraud	Classification as fraud (1) or not fraud (0)	{0,1}		

NIM: 1301174224

Isi data train

	trustLevel	totalScanTimeInSeconds	grandTotal	lineItemVoids	scansWithoutRegistration	quantityModifications	scannedLineItemsPerSecond	valuePerSecond	lineItemVoidsPerPosition	fraud
0	5	1054	54.70	7	0	3	0.027514	0.051898	0.241379	0
1	3	108	27.36	5	2	4	0.129630	0.253333	0.357143	0
2	3	1516	62.16	3	10	5	0.008575	0.041003	0.230769	0
3	6	1791	92.31	8	4	4	0.016192	0.051541	0.275862	0
4	5	430	81.53	3	7	2	0.062791	0.189605	0.111111	0

Isi data test

	trustLevel	totalScanTimeInSeconds	grandTotal	lineItemVoids	scansWithoutRegistration	quantityModifications	scannedLineItemsPerSecond	valuePerSecond	lineItemVoidsPerPosition
0	4	467	88.48	4	8	4	0.014989	0.189465	0.571429
1	3	1004	58.99	7	6	1	0.026892	0.058755	0.259259
2	1	162	14.00	4	5	4	0.006173	0.086420	4.000000
3	5	532	84.79	9	3	4	0.026316	0.159380	0.642857
4	5	890	42.16	4	0	0	0.021348	0.047371	0.210526

Tidak ada value yang kosong pada kedua dataset

```
print(df.isnull().values.any())
print(data_test.isnull().values.any())
```

False False

Distribusi data terhadap fraud

NIM: 1301174224

Korelasi setiap fitur pada data train

											-1.0
trustLevel	1.000	0.025	0.048	-0.017	0.017	0.007	0.031	0.028	0.009	-0.320	-1.0
totalScanTimeInSeconds	0.025	1.000	-0.001	0.019	0.009	-0.011	-0.263	-0.208	-0.012	0.110	- 0.8
grandTotal	0.048	-0.001	1.000	0.006	-0.031	-0.008	-0.012	0.076	-0.009	0.001	
lineltemVoids	-0.017	0.019	0.006	1.000	-0.017	-0.007	-0.004	0.005	0.347	0.063	- 0.6
scansWithoutRegistration	0.017	0.009	-0.031	-0.017	1.000	0.019	-0.024	-0.019	0.003	0.074	- 0.4
quantityModifications	0.007	-0.011	-0.008	-0.007	0.019	1.000	-0.015	0.011	0.018	-0.001	
scannedLineItemsPerSecond	0.031	-0.263	-0.012	-0.004	-0.024	-0.015	1.000	0.692	-0.056	-0.023	- 0.2
valuePerSecond	0.028	-0.208	0.076	0.005	-0.019	0.011	0.692	1.000	0.020	-0.029	- 0.0
lineItemVoidsPerPosition	0.009	-0.012	-0.009	0.347	0.003	0.018	-0.056	0.020	1.000	-0.090	
fraud	-0.320	0.110	0.001	0.063	0.074	-0.001	-0.023	-0.029	-0.090	1.000	- -0.2
	frustLevel	totalScanTimeInSeconds	grandTotal	lineltemVoids	scansWithoutRegistration	quantityModifications	cannedLineltemsPerSecond	valuePerSecond	lineItemVoidsPerPosition	fraud	_

Korelasi antar fitur terhadap fraud

fraud	1.000000
trustLevel	0.319765
totalScanTimeInSeconds	0.110414
lineItemVoidsPerPosition	0.090116
scansWithoutRegistration	0.074123
lineItemVoids	0.063496
valuePerSecond	0.028873
scannedLineItemsPerSecond	0.023085
grandTotal	0.001421
quantityModifications	0.000864

NIM: 1301174224

Feature Engineering

Menambahkan 1 fitur

totalItem = totalScanTimeInSeconds x scannedLineItemsPerSecond

Fitur ini ditambahkan karena memiliki korelasi yang tinggi terhadap fraud

Bisa dibilang untuk totalItem < 20 merupakan transaksi tidak *fraud*, model pun akan lebih optimal berlatih pada data *train*

Terlihat korelasi trustLevel paling tinggi yaitu 0.319765, sekarang kita lihat distribusinya

Sama seperti sebelumnya, untuk trustLevel > 2 merupakan transaksi tidak *fraud*, dengan demikian model bisa lebih optimal lagi berlatih pada data *train*.

NIM: 1301174224

Rancangan Sistem

Untuk melatih model, kita harus membagi data train menjadi X sebagai fitur dan y sebagai label, tidak hanya itu, X dan y kita bagi lagi menjadi data *train* dan data *validation*

a. Data train

Data yang digunakan untuk melatih model *machine learning*, model akan melihat dan belajar dari data ini.

b. Data Validation

Data validation digunakan untuk mengevaluasi model, data ini tidak digunakan model untuk belajar, namun data ini digunakan untuk memperbarui parameter pada model agar lebih optimal

Pembagian data train dan data validation porsinya sebagai berikut:

Data yang diberikan sangat tidak *balance* atau *imbalance*. Data *imbalance* sangat mempengaruhi model belajar, data ini akan mempengaruhi kinerja model yang akan dibuat. Klasifikasi yang dilakukan akan membuat model belajar secara bias, sehingga akurasi pada kelas minoritas akan lebih kecil dibanding kelas mayoritas. Oleh karena itu, akan dilakukan *oversampling* pada data *train. Oversampling* adalah metode untuk menduplikasi kelas minoritas sampai berukuran sama dengan atau mendekati ukuran kelas mayoritas.

NIM: 1301174224

Metode *oversampling* yang digunakan adalah Synthetic Minority Oversampling Technique (SMOTE). Cara kerjanya yaitu dengan memilih salah satu data pada kelas minoritas, kemudian k dari tetangga terdekat dipilih secara acak menjadi *sample* baru. Prosedur ini terus berulang sampai kelas minoritas berukuran sama dengan kelas mayoritas.

Setelah itu kita inisialisasi model klasifikasi apa saja yang akan kita coba, di sini penulis menggunakan.

- 1. K-Nearest Neighbors
- 2. Support Vector Machine (SVM)
- 3. Linear SVC
- 4. Decision Tree
- 5. Random Forest
- 6. AdaBoost
- 7. GradientBoost
- 8. Naïve Bayes
- 9. Balance Bagging
- 10. RUSBoost
- 11. Linear Discriminant Analysis
- 12. Quadratic Discriminant Analysis

NIM: 1301174224

Dari beberapa model klasifikasi tersebut, kita coba latih satu persatu ke data train, dan dapatkan laporan klasifikasi dari prediksi data *validation*.

Hasil model-model kelasifikasi, sebagai berikut

Classifier	F1 Sco	re (fraud)	Akurasi
Classifici	Kelas 0	Kelas 1	7 IKurusi
KNN	0.85	0.17	74.7340 %
SVM	1.00	0.98	99.7340 %
Linear SVC	0.86	0.35	77.6595 %
Decision Tree	0.99	0.84	97.8723 %
Random Forest	0.99	0.86	98.1383 %
AdaBoost	1.00	0.96	99.4681 %
GradientBoost	0.99	0.90	98.6702 %
Naïve Bayes	0.95	0.56	90.4255 %
Balance Bagging	0.99	0.89	98.6702%
RUSBoost	0.99	0.83	97.6064%
Linear DA	0.93	0.51	87.7660 %
Quadratic DA	0.97	0.69	94.4149 %

Dengan demikian, kita mendapat 3 metode kelasifikasi terbaik, yaitu :

- 1. SVM
- 2. AdaBoost
- 3. GradientBoost

Selanjutnya kita gabungkan ketiga model tersebut menggunakan Stacking Classifier

NIM: 1301174224

Model Stacking Classifier kemudian dilatih dengan data train dan diuji dengan data validation.

Hasil laporan klasifikasi dari model terhadap data validation sebagai berikut:

Classifier	F1 Sco	ore (frau	Akurasi		
Classifici	Kelas 0	Kela	Kelas 1		xurusi
Stacking	1.00	1.0	00	10	00 %
Accuracy: 100.000					
pre	cision	recall	f1-s	core	support
0	1.00	1.00		1.00	352
1	1.00	1.00	:	1.00	24
accuracy			:	1.00	376
macro avg	1.00	1.00		1.00	376
weighted avg	1.00	1.00		1.00	376

Hasilnya cukup memuaskan, yaitu akurasi = 100%.

Evaluasi Model

Kemudian, dilakukan prediksi pada data *test* menggunakan model Stacking Classifier yang sudah dilatih sebelumnya.

Dikarenakan saat penulis membuat model, sudah terdapat solusi untuk data *test* ini. Maka dari itu, kita bisa mencari akurasi model terhadap data *test* ini.

Setelah memprediksi data *test* dan dibandingkan dengan solusi yang ada, hasilnya sebagai berikut.

Classifier	F1	Scor	Akurasi		
Classifiei	Kelas 0		Kelas 1		Akurasi
Stacking	ng 1.00 0.91		0.91		99.0913 %
prec	ision	red	all	f1-score	support
0	1.00	6	9.99	1.00	474394
1	0.89	6	9.92	0.91	23727
accuracy				0.99	498121
macro avg	0.95	6	9.96	0.99	498121
weighted avg	0.99	6	9.99	0.99	498121
True positive = 4 False positive = False negative = True negative = 2	2569 1957				

NIM: 1301174224

FLOWCHART SISTEM

File notebook bisa dilihat di : https://github.com/ridaffa/dmc2019/blob/main/tubes.ipynb

NIM: 1301174224