EDB18802 - Eletrônica Digital II: Latches SR e D

João Cláudio Elsen Barcellos

Engenheiro Eletricista
Formado na Universidade Federal de Santa Catarina
campus Florianópolis
joaoclaudiobarcellos@gmail.com

28 de Abril de 2025

^{*} Créditos ao Prof. Emerson Ribeiro de Mello, o qual criou e disponibilizou o template aqui usado, via ShareLaTeX

Plano de aula

- 1 Introdução
- 2 Latches
 - Latch SR (set-reset)
 - Latch D
- 3 Simulação no Logisim
- 4 Conceitos para a próxima Aula
- 5 Referências e sugestões de leitura

Introdução

Introdução

- Circuitos digitais nos quais a saída depende exclusivamente do estado atual de suas entradas são classificados como: circuitos combinacionais;
- Não possuem memória, ou seja, não armazenam informações quanto à estados anteriores;
- Alguns exemplos são: multiplexador, comparador, decodificador, unidade lógica e aritmética (para operações matemáticas e lógicas).

Fonte: HARRIS; HARRIS (2015)

Fonte: HARRIS; HARRIS (2015)

Fonte: HARRIS; HARRIS (2015)

Fonte: HARRIS; HARRIS (2015)

Introdução

- Circuitos digitais nos quais a saída depende não só do estado atual de suas entradas, mas também de estados anteriores são classificados como: circuitos combinacionais;
- Possuem memória, ou seja, são capazes de reter informações quanto a estados anteriores:
- Alguns exemplos são: contador, máquina de estados finitos.

Fonte: GROUT (2008, p. 278)

Latches

Latches

- Latches são usados para armazenar um único bit de informação;
- O Latch é um circuito biestável, o que significa que ele pode estar em um de dois estados estáveis: 0 ou 1:
- Latches são formados por portas lógicas (como NOR ou NAND) e possuem entradas de controle para definir ou alterar seu estado;
- São elementos de memória mais "básicos"

Fonte: HARRIS; HARRIS (2015, p. 21)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Latch SR (set-reset)

Latch SR (set-reset)

Fonte: HARRIS; HARRIS (2015) Fonte: HARRIS; HARRIS (2015)

R ("resetar")	S ("setar")	Q (saída)	$ar{Q}$ (complemento da saída)
0	0	Q _{anterior}	$ar{Q}_{anterior}$
0	1	1	0
1	0	0	1
1	1	invalido	invalido

Latch SR (set-reset)

Fonte: modificado de HARRIS; HARRIS (2015)

Fonte: modificado de HARRIS; HARRIS (2015)

Fonte: modificado de HARRIS; HARRIS (2015)

Fonte: modificado de HARRIS; HARRIS (2015)

Latch D

Latch D

Fonte: HARRIS; HARRIS (2015)

Fonte: HARRIS; HARRIS (2015)

CLK	D	D	R ("reset")	S ("set")	Q (saída)	\bar{Q} (compl. da saída)
0	X	Ā	0	0	Q _{anterior}	$ar{Q}_{anterior}$
1	0	1	0	1	0	1
1	1	0	1	0	1	0

Latch D

Fonte: modificado de HARRIS; HARRIS (2015)

Fonte: modificado de HARRIS; HARRIS (2015)

Simulação no Logisim

Simulação no Logisim

- Para consolidar os conceitos apresentados em aula, realizamos a simulação de dois circuitos utilizando o Logisim:
 - Um Latch implementado com lógica combinacional;
 - Um Latch do tipo D, utilizado para armazenar um bit de forma controlada.
- A simulação permite observar o comportamento dos circuitos frente às variações nas entradas de controle e dados.
- É possível analisar a diferença entre os dois dispositivos em termos de sensibilidade ao clock e resposta às entradas.

Conceitos para a próxima Aula

Latch D vs Flip-Flop D

Característica	Latch D	Flip-Flop D
Tipo de ativação	Nível sensível (Level-triggered)	Borda sensível (Edge-triggered)
Atualização	Enquanto o clock (ou enable) estiver ativo	Apenas na transição (borda) do clock
Complexidade	Mais simples	Mais estável para contadores
Uso típico	Armazenamento temporário	Circuitos sequenciais

Comparação entre Latch D e Flip-Flop D

Próxima Aula: Introdução aos Flip-Flops

- Vamos iniciar o estudo dos Flip-Flops.
- Flip-Flops são elementos de memória síncronos, sensíveis à borda do clock.
- Eles serão amplamente utilizados ao longo do semestre para:
 - Construção de contadores.
 - Implementação de registradores.
 - Projetos de máquinas de estados.
- Compreender os Flip-Flops é essencial para o desenvolvimento de circuitos sequenciais.
- A base para muitos dos projetos digitais que faremos será formada a partir deles.

Referências e sugestões de leitura

Referências e sugestões de leitura

- I SILVINA HANONO WACHMAN. MIT 6.004 L06: Sequential Circuits. Disponível em: https://www.youtube.com/watch?v=hf0g3Ccfer8. Acesso em: 25 nov. 2024.
- **2** GHOSH, B. Basics of Digital Electronics. [s.l.] CRC Press, 2023.
- HARRIS, S. L.; DAVID MONEY HARRIS. Digital design and computer architecture. Amsterdam; Paris: Elsevier, Cop, 2015.
- 4 GROUT, I. Digital Systems Design with FPGAs and CPLDs. Burlington: Elsevier, 2008.