Parallel Algorithms for Dense Matrices

CS121 Parallel Computing Spring 2019

M

Dense matrices

- Dense matrices are ones where most elements are nonzero.
- Dense matrices are used in many optimization problems, and physics and chemistry based simulations.
- Many dense matrix operations are compute bound. This, plus their highly regular structure, allows dense matrix operations to be highly optimized.
- High performance parallel implementations provided by LAPACK, ScaLAPACK, HPL, etc.
- We'll look at algorithms for matrix-vector multiplication, matrix-matrix multiplication and equation solving (Gaussian elimination).

(a) Initial partitioning of the matrix and the starting vector *x*

 (c) Entire vector distributed to each process after the broadcast

(b) Distribution of the full vector among all the processes by all-to-all broadcast

(d) Final distribution of the matrix and the result vector *y*

Source: Introduction to Parallel Computing, Grama et al

- Consider an n x n matrix A and an n x 1 vector x partitioned across p ≤ n processors.
 - □ Initially each process stores n/p rows of A and n/p values of x.
- Each process needs the entire vector to multiply by its rows.
 - In step (b), do all-to-all broadcast of the processors' vector segments.
- Each process multiplies the vector by its rows.
 - Each process ends up with n/p values of the output.

(a) Initial partitioning of the matrix and the starting vector *x*

(c) Entire vector distributed to each process after the broadcast

(b) Distribution of the full vector among all the processes by all-to-all broadcast

(d) Final distribution of the matrix and the result vector *y*

- Assume an underlying hypercube architecture.
- Compute time for each process is $\frac{n^2}{p}$.
- Communication time for all-toall broadcast is $t_s \log p + t_w n$.
- Overhead by all p processors from communication is $t_s p \log p + t_w n p$.
- Total amount of work is n^2 .
- For isoefficiency, need $n^2 = \Omega(t_s p \log p + t_w n p)$.
 - \square This is satisfied for p = O(n).

(b) One-to-all broadcast of portions of the vector along process columns

(c) All-to-one reduction of partial results

(d) Final distribution of the result vector

- Consider a logical 2D mesh of p processes, each initially with a $(n/\sqrt{p}) \times (n/\sqrt{p})$ portion of the matrix.
- The vector is stored only in the last column. Each process in last column has (n/\sqrt{p}) vector values.
- In (a), each process in last column sends its vector elements to a process on the diagonal.
- In (b), each diagonal process does a one-to-all broadcast of the vector chunk.
- In (c), each process multiplies its row chunks by its vector chunks, producing (n/\sqrt{p}) partial values. Then each row of processes does a reduction of the partial values to the last process in the row.
- The output is stored in the last column of processes.

(a) Initial data distribution and communication steps to align the vector along the diagonal

(c) All-to-one reduction of partial results

(b) One-to-all broadcast of portions of the vector along process columns

(d) Final distribution of the result vector

- Each process stores n^2/p matrix values, and does one multiplication and one addition for each value. So the total computation is $O(n^2/p)$.
- Communication time
 - \Box (a) $t_s + t_w n/\sqrt{p}$.
 - \Box (b) and (c) $(t_s + t_w n/\sqrt{p})\log(\sqrt{p})$.
- Total time per process is $O\left(\frac{n^2}{p} + \log p + \frac{n}{\sqrt{p}} \log p\right)$.
- Communication overhead is $p \log p + n \sqrt{p} \log p$.
- Isoefficiency requires $n^2 = \Omega$ (overhead)
 - So $n^2 = \Omega(n\sqrt{p}\log p)$, so $n = \Omega(\sqrt{p}\log p)$, so $n^2 = \Omega(p\log^2 p)$.
 - $\Box \quad \text{So need } p = O(\frac{n^2}{\log^2 p}).$
- 2D matrix-vector multiplication is more scalable than 1D.

Matrix-matrix multiplication

```
1. procedure MAT_MULT (A, B, C)

2. begin

3. for i := 0 to n - 1 do

4. for j := 0 to n - 1 do

5. begin

6. C[i, j] := 0;

7. for k := 0 to n - 1 do

8. C[i, j] := C[i, j] + A[i, k] \times B[k, j];

9. endfor;

10. end MAT_MULT
```

```
procedure BLOCK_MAT_MULT (A, B, C)
2.
      begin
3.
         for i := 0 to q - 1 do
4.
             for j := 0 to q - 1 do
5.
                 begin
6.
                    Initialize all elements of C_{i,j} to zero;
                    for k := 0 to q - 1 do
8.
                        C_{i,j} := C_{i,j} + A_{i,k} \times B_{k,j};
9.
                 endfor:
10. end BLOCK_MAT_MULT
```


- Matrix multiplication can be done element by element, or by breaking the matrices into blocks and multiplying block by block.
- We partition A and B into $\sqrt{p} \times \sqrt{p}$ blocks, each of size $(n/\sqrt{p}) \times (n/\sqrt{p})$.
- Suppose p processes form a $\sqrt{p} \times \sqrt{p}$ mesh.
- Each process stores the corresponding block from A and B.
- Each $C_{i,j}$ requires $A_{i,k}$ and $B_{k,j}$ for $1 \le k \le \sqrt{p}$.
 - So row i processes do all-to-all broadcast of their A blocks, and column j processes do all-to-all broadcast of their B blocks.
- Each process (i,j) ends up with C_{i,j} stored locally.

Matrix-matrix multiplication

```
1. procedure MAT_MULT (A, B, C)

2. begin

3. for i := 0 to n - 1 do

4. for j := 0 to n - 1 do

5. begin

6. C[i, j] := 0;

7. for k := 0 to n - 1 do

8. C[i, j] := C[i, j] + A[i, k] \times B[k, j];

9. endfor;

10. end MAT_MULT
```

```
procedure BLOCK_MAT_MULT (A, B, C)
2.
      begin
3.
         for i := 0 to q - 1 do
4.
             for j := 0 to q - 1 do
5.
                 begin
6.
                    Initialize all elements of C_{i,j} to zero;
                    for k := 0 to q - 1 do
8.
                        C_{i,j} := C_{i,j} + A_{i,k} \times B_{k,j};
9.
                 endfor:
    end BLOCK_MAT_MULT
```


- Each process does \sqrt{p} multiplications of $(n/\sqrt{p}) \times (n/\sqrt{p})$ matrices.
- Each row of \sqrt{p} processes does allto-all broadcast of $\frac{n^2}{p}$ amount of data.
 - \square Communication time is $O(\log \sqrt{p} + \frac{n^2}{p} \sqrt{p})$.
- Total work is $O(n^3)$, and total overhead is $O(p \log \sqrt{p} + n^2 \sqrt{p})$.
- Isoefficiency requires $n^3 = \Omega(n^2\sqrt{p})$, so need $p = O(n^2)$.
- One problem with this algorithm is that each process needs to store \sqrt{p} copies of $(n/\sqrt{p}) \times (n/\sqrt{p})$ matrices.
 - □ So memory use per process is n^2/\sqrt{p} , and total memory use for all processes is $n^2\sqrt{p}$.
 - This is \sqrt{p} factor more than for the sequential algorithm.

Cannon's matrix-matrix multiplication

Source: http://cseweb.ucsd.edu/classes/fa12/cse260-b/Lectures

- Cannon's algorithm has nearly the same efficiency as the previous algorithm, but uses $O(n^2)$ storage, just like the sequential algorithm.
- It uses the same partitioning as the previous algorithm, but moves some blocks of A and B to other processors.
 - ☐ Cyclically shift the i'th row of A to the left by i, and shift the i'th column of B up by i.
- Each C value is formed by multiplying like colored blocks from A and B, then adding up the products, one for each color.
 - \square Ex $C_{0,1} = A_{0,0}B_{0,1} + A_{0,1}B_{1,1} + A_{0,2}B_{2,1}$, i.e. we add up the red, blue and green products.
 - After shifting, for any i, all blocks with the i'th color in A and B lie along the i'th anti-diagonal.
 - So for any (i,j), like colored blocks from $A_{i,:}$ and $B_{::i}$ are on processor $P_{i,i}$.
 - \square When these blocks are multiplied, they make up one of the terms of $C_{i,j}$.

Cannon's matrix-matrix multiplication

A(0,1)	A(0,2)	A(0,0)
A(1,2)	A(1,0)	A(1,1)
A(2,0)	A(2,1)	A(2,2)

B(1,0)	B(2,1)	B(0,2)
B(2,0)	B(0,1)	B(1,2)
B(0,0)	B(1,1)	B(2,2)

Step 0

Step 1

- After the initial shifting, run for $\sqrt{p} 1$ more stages.
 - □ In every stage, shift A blocks left by 1, and B blocks up by 1.
- Each processor $P_{i,j}$ still has like colored blocks from A and B.
- Blocks from A stay in same rows and blocks from B stay in same columns.
- So product of the blocks makes up another term in $C_{i,j}$.
- After \sqrt{p} stages, $P_{i,j}$ contains $C_{i,j}$, for all i and j.

7

Cannon's matrix-matrix multiplication

A(0,1)	A(0,2)	A(0,0)
A(1,2)	A(1,0)	A(1,1)
A(2,0)	A(2,1)	A(2,2)

B(1,0)	B(2,1)	B(0,2)
B(2,0)	B(0,1)	B(1,2)
B(0,0)	B(1,1)	B(2,2)

Step 0

Step 1

- Each process only stores one block at a time. So total storage at any time is $O(n^2)$.
- Each process does $O\left(\frac{n^3}{p}\right)$ amount of computation.
- Each of the \sqrt{p} shifts costs each processor $O\left(t_S + \frac{t_W n^2}{p}\right)$ communication.
- Total overhead is $O(p^{\frac{3}{2}} + n^2\sqrt{p})$.
 - Isoefficiency requires $p = O(n^2)$.

SUMMA multiplication

% inner product approach
for i = 1:I
 for j = 1:J
 for k = 1:K
 C(i,j) = C(i,j) + A(i,k)*B(k,j);

% outer product approach

$$= \begin{bmatrix} C(:,:) \\ A(:,k) \end{bmatrix} \times \begin{bmatrix} K \\ X \end{bmatrix}$$

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^{\mathrm{T}} = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = egin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \ u_2 v_1 & u_2 v_2 & u_2 v_3 \ u_3 v_1 & u_3 v_2 & u_3 v_3 \ u_4 v_1 & u_4 v_2 & u_4 v_3 \end{bmatrix}.$$

- One of the drawbacks of Cannon is that it can only deal with square matrices, and n must be divisible by \sqrt{p} .
- SUMMA algorithm overcomes those problems.
 - Our example is still for a square matrix though.
- The basic matrix multiplication algorithm is three nested loops.
 - ☐ Fast MM algorithms such as Strassen's work differently.
- The loops can be done in any order.
 - ☐ The typical inner product approach is the ijk order.
 - ☐ The outer product approach is kij.

Source: https://patterns.eecs.berkeley.edu/?page_id=158

M

SUMMA multiplication

- SUMMA does n outer products.
 - k'th iteration does outer product of k'th column of A with k'th row of B.
 - Processors in k'th column broadcast their A block to their rows.
 - Processors in k'th row broadcast their B block to their columns.
 - \square Processor (i,j) computes $A_{i,k}$ $B_{k,j}$ and accumulates it into $C_{i,j}$.
- Matrices don't need to be square.
- Also allows more flexible mapping of processors to blocks.

3D matrix multiplication

- (a) Initial distribution of A and B
- (b) After moving A[i,j] from $P_{i,j,\theta}$ to $P_{i,j,j}$

- (c) After broadcasting A[i,j] along j axis
- (d) Corresponding distribution of B

- The 2D algorithms up to now used at most n² processors. Since MM has Ω(n³) operations, 2D algorithms have Ω(n) running time.
- We now show the DNS (Dekkel, Nassimi, Sahni) algorithm that can use n³ processors.
- Arrange the n³ processors in a n x n x n cube.
- For $0 \le i, j, k \le n$, processor $P_{i,j,k}$ computes $A_{i,k}$ $B_{k,j}$.
- Then processors in each column (i,j,:) does reduction to collect result onto processor P_{i,i,0}.

3D matrix multiplication

- (a) Initial distribution of A and B
- (b) After moving A[i,j] from $P_{i,j,\theta}$ to $P_{i,j,j}$

- Initially only processors $P_{i,j,0}$, for $0 \le i, j \le n-1$, hold the A and B matrices.
- (a) To distribute the data, the j'th group of processors along the i direction in 0'th (i,j)-plane send their data to corresponding processors in the j'th (i,j)-plane.
- (b) Then, in each (i,j)-plane, the processors along direction i broadcast in the j direction.
- Effect is that A is replicated in each (i,k)-plane.
- Do similar operations for B, so that B is replicated in each (k,j)-plane.
- Then do reduction in the k direction.
- The broadcast and reduction both take O(log n) time. So the total computation time is O(log n).

3D matrix multiplication

- (a) Initial distribution of A and B
- (b) After moving A[i,j] from $P_{i,j,\theta}$ to $P_{i,j,j}$

- (c) After broadcasting A[i,j] along j axis
- (d) Corresponding distribution of B

- The DNS algorithm isn't optimal using n³ processors, since the total work is O(n³ log n).
- For a cost optimal version, suppose $p=q^3$ for some $q \le n$. Partition the matrix into q x q blocks, each of size (n/q) x (n/q).
- Then apply the same algorithm as before on the blocks.
- The broadcast and reduction both take $t_s \log q + t_w \left(\frac{n}{q}\right)^2 \log q$. The block multiplication takes $\left(\frac{n}{q}\right)^3$.
- Since q = p¹/₃, the total time is n³/p + t_s log p + t_wn²/p log p.
 For isoefficiency, we need n³ =
- For isoefficiency, we need $n^3 = \Omega(n^2 p^{\frac{1}{3}} \log p)$, which implies $p = O\left(\left(\frac{n}{\log n}\right)^3\right)$.

Solving linear systems

$$a_{0,0}x_0 + a_{0,1}x_1 + \cdots + a_{0,n-1}x_{n-1} = b_0,$$

 $a_{1,0}x_0 + a_{1,1}x_1 + \cdots + a_{1,n-1}x_{n-1} = b_1,$
 $\vdots & \vdots & \vdots & \vdots & \vdots$
 $a_{n-1,0}x_0 + a_{n-1,1}x_1 + \cdots + a_{n-1,n-1}x_{n-1} = b_{n-1}.$

$$x_0 + u_{0,1}x_1 + u_{0,2}x_2 + \cdots + u_{0,n-1}x_{n-1} = y_0,$$

 $x_1 + u_{1,2}x_2 + \cdots + u_{1,n-1}x_{n-1} = y_1,$
 \vdots \vdots
 $x_{n-1} = y_{n-1}.$

1)
$$\begin{cases} 5x + 3y + 2z = -2 \\ x + y = 2 \\ 2x - y + z = 3 \end{cases} \Rightarrow \begin{cases} 5 & 3 & 2 & | -2 \\ 1 & 1 & 0 & | 2 \\ 2 & -1 & 1 & | 3 \end{cases} \Rightarrow \begin{cases} 1 & 1 & 0 & | 2 \\ 5 & 3 & 2 & | -2 \\ 2 & -1 & 1 & | 3 \end{cases} \Rightarrow \begin{cases} R_{1} & 1 & 0 & | 2 \\ 0 & -2 & 2 & | -12 \\ 0 & -3 & 1 & | -1 \end{cases} \Rightarrow \begin{cases} R_{1} & 1 & 0 & | 2 \\ 0 & 1 & -1 & | 6 \\ 0 & 1 & -1 & | 6 \\ 0 & -3 & 1 & | -1 \end{cases} \Rightarrow \begin{cases} R_{1} & 1 & 0 & | 2 \\ 0 & 1 & -1 & | 6 \\ 0 & 0 & -2 & | 17 \end{cases} \Rightarrow \begin{cases} r = r' = n \\ \Rightarrow \\ r = r' = n \end{cases} \Rightarrow \begin{cases} x + y = 2 \\ y - z = 6 \\ -2z = 17 \end{cases} \Rightarrow \begin{cases} x = \frac{9}{2} \\ y = -\frac{5}{2} \\ z = -\frac{17}{2} \end{cases}$$

- Given a system of n linear equations, we can reduce it to triangular form using Gaussian Elimination.
- Then the triangular equations can be solved by back substitution.
- As we'll see, Gaussian Elimination takes O(n³) operations, and back substitution takes O(n²) operations. So linear systems can be solved in O(n³) operations.
- Given a matrix A, if Ax = b needs to be solved for multiple b vectors, can also use Gaussian Elimination to compute the LU factorization of A, i.e. A = LU, where L is a lower triangular and U is an upper triangular matrix.
 - ☐ Then LUx = b can be solved by first solving Ly = b using backwards substitution, then solving Ux = y using backwards substitution.
 - Both steps take $O(n^2)$ time. So solving Ax = b for each b takes $O(n^2)$ instead of $O(n^3)$ time.
 - ☐ The initial LU decomposition takes O(n³) time.

Gaussian Elimination

```
procedure GAUSSIAN_ELIMINATION (A, b, y)
2.
      begin
3.
         for k := 0 to n - 1 do
                                           /* Outer loop */
4.
         begin
5.
             for j := k + 1 to n - 1 do
                A[k, j] := A[k, j]/A[k, k]; /* Division step */
6.
             y[k] := b[k]/A[k, k];
            A[k, k] := 1;
             for i := k + 1 to n - 1 do
10.
            begin
11.
                for j := k + 1 to n - 1 do
                    A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
12.
13.
                b[i] := b[i] - A[i, k] \times y[k];
14.
                A[i, k] := 0;
15.
                              /* Line 9 */
             endfor:
16.
         endfor;
                              /* Line 3 */
17. end GAUSSIAN_ELIMINATION
```


- Three nested loops of size n, so O(n³) time.
- Here we assume for simplicity that A[k,k], which we divide by on line 6, is never 0.
 - We also ignore numerical accuracy issues.
 - These are addressed using pivoting.
- Iteration k of the algorithm uses A[k,k] to eliminate all nonzeros in column k.
- If we don't perform lines 7, 8, 13 and 14, the algorithm produces the LU decomposition of A, with L and U stored in the lower and upper triangular parts of A.

Parallel Gaussian Elimination

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_1	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P_2	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P_3	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
P_4	0	0	0	(4,3)\(4,4)\(4,5)\(4,6)\(4,7)
P ₅	0	0	0	(5,3) \((5,4) \((5,5) \((5,6) \((5,7) \)
P ₆	0	0	0	(6,3) \((6,4) \((6,5) \((6,6) \((6,7) \)
P ₇	0	0	0	$(7,3)^{\stackrel{.}{\lor}}(7,4)^{\stackrel{.}{\lor}}(7,5)^{\stackrel{.}{\lor}}(7,6)^{\stackrel{.}{\lor}}(7,7)$

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Computation:

- (i) A[k,j] := A[k,j]/A[k,k] for k < j <
- (ii) A[k,k] := 1

(b) Communication:

One-to-all broadcast of row A[k,*]

(c) Computation:

- (i) $A[i,j] := A[i,j] A[i,k] \times A[k,j]$ for k < i < n and k < j < n
- (ii) A[i,k] := 0 for k < i < n

Consider the k'th iteration.

- □ In step (a), divide the k'th row by A[k,k].
- In (b), broadcast the k'th row to the higher rows.
- □ In (c), each row subtracts the proper multiple of row k from itself.
- Total time over all iterations k for steps (a) and (c) take $\sum_{k=0}^{n-1} (n-k-1) = O(n^2).$
- For each k, step (b) takes $(t_s + t_w(n k 1)) \log n$. Thus, over all n iterations, it takes $O(n^2 \log n)$.
- Total work is $O(n^3 \log n)$, so this isn't cost optimal.

Pipelined Gaussian Elimination

		J. J.				
(0,0) (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)			
(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) _V $(1,1)$ _V $(1,2)$ _V $(1,3)$ _V $(1,4)$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)			
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$	(2,0) (2,1) (2,2) (2,3) (2,4)			
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)			
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)			
(a) Iteration $k = 0$ starts	(b)	(c)	(d)			
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)			
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)			
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)			
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)			
(4,0) _V $(4,1)$ _V $(4,2)$ _V $(4,3)$ _V $(4,4)$	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)			
(e) Iteration k = 1 starts	(f)	(g) Iteration $k = 0$ ends	(h)			
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)			
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)			
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)			
0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)			
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)			
(i) Iteration k = 2 starts	(j) Iteration $k = 1$ ends	(k)	(1)			
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)			
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)			
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)			
0 0 0 (3,3) (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)			
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) _V (4,4)	0 0 0 (4,3) (4,4)	0 0 0 0 (4,4)			
(m) Iteration k = 3 starts	(n)	(o) Iteration k = 3 ends	(p) Iteration k = 4			
· Communication	on for $k = 0, 3$	Computation	on for $k = 0, 3$			
> Communication	on for $k = 1$	Computation for $k = 1, 4$				
> Communication	on for $k = 2$	Computation for $k = 2$				

- One problem with previous algorithm is that it waited till iteration k was finished (i.e., the entire k'th column has been eliminated using the k'th row) before starting iteration k+1.
- We can use a more efficient pipelined algorithm, where each row uses and sends data as quickly as possible.
 - If a row receives data from the previous row, it sends the data to the next row.
 - If a row can eliminate some values using data it has, it does so.
 - Once a row has done elimination, it sends its new values to the next row.
 - Otherwise, the row waits to receive data.

Pipelined Gaussian Elimination

		J. J.			
(0,0) (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) _V $(1,1)$ _V $(1,2)$ _V $(1,3)$ _V $(1,4)$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)		
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$	(2,0) (2,1) (2,2) (2,3) (2,4)		
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	$(3,0)$ _{$\sqrt{(3,1)}$} $(3,2)$ _{$\sqrt{(3,3)}$} $(3,4)$		
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)		
(a) Iteration $k = 0$ starts	(b)	(c)	(d)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)		
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)		
$(4,0)_{}(4,1)_{}(4,2)_{}(4,3)_{}(4,4)$	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)		
(e) Iteration k = 1 starts	(f)	(g) Iteration $k = 0$ ends	(h)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)		
0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)		
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)		
(i) Iteration k = 2 starts	(j) Iteration $k = 1$ ends	(k)	(1)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)		
0 0 0 (3,3) (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)		
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 0 (4,4)		
(m) Iteration k = 3 starts	(n)	(o) Iteration k = 3 ends	(p) Iteration k = 4		
····> Communication	on for $k = 0, 3$	Computatio	on for $k = 0, 3$		
> Communication	on for $k = 1$	Computation for $k = 1, 4$			
> Communication	on for $k = 2$	Computation	on for $k = 2$		

- Call each of the first three steps above a cycle, and assume for simplicity all cycles take equal time.
- Then a row sends out a new version of itself every three cycles.
- The last row receives its last piece of data after 3n cycles. So entire algorithm finishes after O(n) cycles.
- Each cycle involves dividing, subtracting or sending O(n) items, so takes O(n) time.
- So algorithm takes total O(n²) time.
- So total work is O(n³), and the algorithm is work optimal.

Fewer processors, load balancing

	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_0	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P_1	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
	0	0	0	1 [(3,4), (3,5), (3,6), (3,7)]
P ₂	0	0	0	(4,3) (4,4) (4,5) (4,6) (4,7)
	0	0	0	(5,3) (5,4) (5,5) (5,6) (5,7)
P ₃	0	0	0	(6,3) (6,4) (6,5) (6,6) (6,7)
	0	0	0	(7,3) (7,4) (7,5) (7,6) (7,7)

-	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_0	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_1	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_2	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₃	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(0,2) (0	1 (0	3) (0,4)	(0,5) (0,6)	(0,7)	D
0 (4	0	3) (4,4)	(4,5) (4,6)	(4,7)	P_0
(1,2) (1	0	3) (1,4)	(1,5) (1,6)	(1,7)	P_1
0 (5	0	3) (5,4)	(5,5) (5,6)	(5,7)	-1
1 (2	0	3) (2,4)	(2,5) (2,6)	(2,7)	P ₂
0 (6	0	3) (6,4)	(6,5) (6,6)	(6,7)	12
0 (3	0	3) (3,4)	(3,5) (3,6)	(3,7)	P_3
0 (7	0	3) (7,4)	(7,5) (7,6)	(7,7)	13

(a) Block 1-D mapping

(b) Cyclic 1-D mapping

- If we have < n processors, we can assign (n/p) consecutive rows per processor.
 - □ Each processor does $O(\frac{n}{p}\sum_{i}(n-i)) = O(n^3/p)$ work.
- However, this leads to the initial processors finishing earlier than the later processors.
 - □ Total idle work (i.e. idle time x number of idle processors) = $\Theta(n^3)$.
- To prevent idling and achieve better load balancing, can assign the rows in cyclic (round robin) order to the processors.
 - □ Load difference between different processors in any iteration is then at most one row.
 - Since each row contains O(n) work, and there are O(n) iterations, the total idle work is $O(pn^2)$.