

Sciences

Norwegian University of Science and Technology Department of Mathematical TMA4145 Linear Methods Fall 2017

Exercise set 7

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

- Suppose A is a closed subspace of a Banach space $(X, \|.\|)$. Show that $(A, \|.\|)$ is a complete subspace of X, i.e. $(A, \|.\|)$ is a Banach space.
- 2 Let $(X, \|.\|)$ be a normed space and $A \subseteq X$. Show that

$$\overline{A} = \bigcap_{n \in \mathbb{N}} (A + B_{1/n}(0)),$$

where $A + B_{1/n}(0) = \{x \in X : x = a + y \mid a \in A, y \in B_{1/n}(0)\}.$

- $\boxed{\mathbf{3}}$ Suppose $(X, \|.\|)$ is a normed space.
 - a) Show that $B_r(x) = \{y \in X : ||x y|| < r\}$ is an open set in X.
 - **b)** Show that singletons are closed sets, i.e. for any $x \in X$ we have that $\{x\}$ is closed.
- 4 Consider the integral equation

$$f(x) = \sin x + \lambda \int_0^3 e^{-(x-y)} f(y) dy$$

for some scalar λ .

- a) Determine for which λ there exists a continuous function f on [0,3] that solves this integral equation.
- b) Pick one of the values of λ found in a). Use the method of iteration, as described in Banach's fixed point theorem, to find approximations f_1 and f_2 to a potential solution by starting with $f_0(x) = 1$ on [0, 3].
- **5** Let A be a non-empty subset of a normed space $(X, \|.\|)$.

- a) Show that the closure of the linear span of A is a closed subspace of X, denoted by $\overline{\operatorname{span}(A)}$.
- **b)** We define the *closed linear span* of A, denoted by $\overline{span}(A)$, as the intersection of all the closed linear subspaces containing A. Show that $\overline{span}(A) = \overline{span}(A)$.