

b-Trigger Efficiencies in 2016

Laurie McClymont

<u>Di-b-jet Meeting</u> 8 September 2016

b-Jet Triggers: Introduction

- b-Jet Triggers to get to low masses
 - 2015 data: IP3D+SV1 Algorithm
 - 2016 data: mv2c20 online alg.
- HLT_j150_bmv2c2060_split
 _j50_bmv2c2060_split
- 77% Eff Offline WP.
- b-Jet Trigger Strategy
 - Derive b-Jet Trigger Efficiencies
 - Data driven technique using high b-purity dilepton ttbar sample
 - Efficiencies are applied to signal samples to emulate trigger
 - Not required for background Exact light-jet and c-jet rejections not needed
 - Use fit to model background rather than MC

- High purity b-jet sample: Di-lepton tt selection
 - Single lepton bperf trigger: HLT_(mu26_imedium/e26_tight_iloose/e26_lhtight_iloose)_2j35_bperf
 - Calculate online b-tagging algorithms on all jets with p_T > 35 GeV
 - 1 medium electron & 1 medium muon (p_T > 30 GeV)
 - 2 b-tagged jets, MV2c10 ($p_T > 50$ GeV, $|\eta| < 2.5$)

Need to double check these cuts.

4 b-Jet Triggers (2015 run)

<u>Jet p_T < 120 GeV</u>

- Data Eff. taken as central value
- Data/MC difference taken as syst.
- Precision of data also as syst.

<u>Jet p_T > 120 GeV</u>

- 1) Linear fit to Data/MC eff. ratio
 - Used to correct tail in MC eff.
 - This gives central value
- 2) Linear fit to Data/Corrected MC ratio
 - Errors are taken from this fit
 - Symmetric systematic

Periods A-F

- -> Approx 12 fb⁻¹
- -> Fit 1 is a linear fit
- -> Fit 2 is a quadratic fit

2016 data - First look - Flat offset correction

Efficiency

Periods A-F

- -> Approx 12 fb⁻¹
- -> Fit 1 is an flat line fit
- -> Fit 2 is a linear fit

7 b-Jet Triggers: To Do

- Work out how best to deal with low stats at high pT
 - => Last time we did a data/MC fit to correct MC
 - => We can do something similar with appropriate systematic
- Ascertain purity of selection
- Systematics to deal with MC
- 1) Data/MC extrapolation to high pT
- 2) Non b-jet impurities
 - => Difference between effs. for inclusive and truth-matched as b-quads
- 3) The initial light flavour composition
 - => Vary the non-b-jet component of the tt sample by +/- 100%
 - => Difference in calculated b-jet trigger efficiency taken as a systematic
- 4) The light-jet efficiency of the trigger
 - => Vary light-jet trigger efficiency from 0 to 1
 - => Difference in calculated b-jet trigger efficiency taken as systematic

Backup!