MATLAB 的使用

第一章 MATLAB 使用環境

第二章 常用函式

第三章 M-File 程式設計

第四章 矩陣與線性代數

第五章 2D & 3D 繪圖

第六章 數值分析與統計

第七章 微分

第八章 積分

第九章 常微分方程

第十章 傅立葉轉換

第十一章 向量微分

第十二章 向量積分

第十三章 偏微分方程

第十四章 常用工具箱

第一章 MATLAB 使用環境

● 視窗介面

- 1. 命令指令視窗 command window
 - i. pwd, ls, cd, ...
 - ii. who, whos, ...
 - iii. edit, workspace, demo, ...
- 2.M-file editor:編輯檔案,如 Edit vrml.m。
- 3. Workspace: 觀看變數和變數值,使用 workspace 以呼叫視窗。
- 4. Command history: 觀看指令記錄。
- 5.demo: 觀看各種 demo。

● 線上說明

- 1.help:命令指令視窗的說明,如 help sin、help min、help diff...。
- 2.helpwin: 說明輔助視窗,如 helpwin sin、helpwin min、helpwin diff...。

● 程式語言

- 1. 變數: mat lab 提供變數資料型態的種類,如 char、double、struct ,且在 matlab 中,不需事先宣告變數資料型態。
- 2. 運算子:
 - i. 數學運算子:.'(轉置矩陣)、.^(矩陣的次方運算)、'(共軛複數)、.*(方陣次方)、./(右除法)、.\(左除法)、+、_、*、/...。
 - ii. 關係運算子: <、<=、>、>=、==、~=。
 - iii. 邏輯運算子: &、 |、 ~。
- 3.判斷(if、else、elseif)
 - i. if (a>=0) a=a; else a=a*(-1);

.....

4. 迴圈(for、while)

i. for index = start : increment : endend

.....

- 5. 函數(function)
- 6. 函式庫(如 sin(o)、sin(pi/2)、sin(pi)...)
- 7. 檔案的輸出與輸入(fopen、fclose)

● 數學應用

- 1.解線性代數
- 2.2D & 3D 繪圖
- 3.數值分析
- 4.統計方法
- 5. 微分 & 積分

.....

demo

- 1. 在命令視窗中使用 demo,以呼叫出視窗。
- 2. MATLAB >> Matrices >> Basic matrix operation >> RUN_o
- 3. MATLAB >> Graphics >> 2-D Plots >> RUN_o
- 4. MATLAB >> Graphics >> 3-D Plots >> RUN_o
- 5. Toolboxes >> Mapping >> Animated Satellite Orbits >> RUN_o
- 6. Toolboxes >> Mapping >> Map Projections Comparison >> RUN_o

.....

- Toolbox
- 變數與矩陣

	1.11.0.0.1.7.1.70.01
>> A=[3.5]	>> A=[1 2 3; 4 5 6; 7 8 9]
>> B=[1.5,3.1]	A =
>> C=[-1,0,0;1,1,0;1,-1,0;0,0,2]	1 2 3
C =	4 5 6
-1 0 0	7 8 9
1 1 0	>> B=inv(A)
1 -1 0	>> S=1-1/2+1/3-1/4+1/5-1/6+1/7-1/8
0 0 2	+1/9+1/10
>> X = C(:,1)	>> format short
X =	>> format short g
-1	>> format long
1	>> format long e
1	>> format long g
0	>> format bank
>> Y=C(:,2:3)	>> format rat
Y =	>> format hex
0 0	
1 0	
-1 0	
0 2	
	•

● 實例演練一 (chap1_1.m)

% File:/ch1/ch1_1.m	a =	ans =
% Author: Ming-Kai Chen, 20 Oct 2002	1 2 3	8.8818e-016
% Prupose: Introduce the Input prompt	c =	e = -2.8601
	4 5	6.4300 + 5.0434i
a=[1 2 3]	6	6.4300 - 5.0434i
c=[4;5;6]	ans =	C =
a*c	32	4 8 12 8
dot(a,c)	ans =	5 10 15 9
A=c*a	32	6 12 18 10
b=a.^2	A = 4 8 12	D = -3 0 1
a.*b	4 8 12 5 10 15	2 5 -7
	6 12 18	-1 4 8
exp(a)	b =	1 2 3
log(ans)	1 4 9	
sqrt(a)	ans =	I3 =
format long	1 8 27	1 0 0
sqrt(a)	ans = 2.7183 7.3891 20.0855	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
format	ans =	Y = 0 0 1
2^(-24)	1 2 3	0 0 0 0 0
sum(b),mean(c)	ans =	0 0 0 0 0
pi	1.0000 1.4142 1.7321	0 0 0 0 0
y=tan(pi/6)	ans =	Z =
B=[-3 0 1; 2 5 -7; -1 4 8]	1.0000000000000	1 1 1 1
$x=B\setminus c$	1.41421356237310 1.73205080756888	1 1 F =
norm(B*x-c)	ans =	0.7062 0.3586 0.8468
e=eig(B)	5.9605e-008	0.5260 0.8488 0.3270
[V,D]=eig(B);	ans =	0.2157 0.0426 0.5541
v=1:6;	14	G =
w=2:3:10,y=1:-0.25:0;	ans =	1.4051 1.1780 -1.114 0.2474 -0.8169
C=[A,[8;9;10]],D=[B;a]	5 ans =	0.2474 -0.8169 Your variables are:
C(2,3)	3.1416	A C F I3 Y a
C(2:3,1:2)	y =	e w y
I3=eye(3,3),Y=zeros(3,5),Z=ones(2)	0.5774	B D G V Z ans
rand('state',20),randn('state',20)	B =	
F=rand(3),G=randn(1,5)	-3 0 1	v x
who	2 5 -7 -1 4 8	
workspace	$X = \begin{bmatrix} -1 & 4 & 6 \\ X = & \end{bmatrix}$	
workspace	-1.3717	
	1.3874	
	-0.1152	

● 實例演練二 (chap1_2.m)

● 實例演練三 (chap1_3.m)

● 實例演練四 (chap1_4.m)

● 實例演練五 (chap1_5.m)

```
%File: ../ch1/ch1 5.m
% Author: Ming-Kai Chen, 20 Oct 2002
% Prupose: Collatz interation bar graphy
%Use starting value 1,2,...,N
N=29;
%Preallocate array
niter=zeros(N,1);
for i=1:N
     count=0;
     n=i;
     while n \sim = 1
         if rem(n,2) == 1
               n=3*n+1;
         else
               n=n/2;
         end
         count=count+1;
     end
     niter(i)=count;
end
%Bar graphy
bar(niter)
% Add horizontal and vertical grid lines
title('Collatz iteration count','FontSize',16)
%Label of x and y label
xlabel('Starting value','FontSize',16)
ylabel('Number of interation','FontSize',16)
```

● 實例演練六 (chap1_6.m)

第二章 常用函式

● 矩陣產生函式

函式	功能
zero	產生零矩陣(zeros array)
ones	產生全部元素均為一的矩陣(ones array)
eyes	產生單位矩陣(identity matrix)
repmat	產生元素區塊重複矩陣
rand	產生均勻分佈亂數
randn	產生正規分佈亂數
linspace	產生線性空間
logspace	產生對數空間
meshgrid	產生給 3-D plots 的 X 和 Y 陣列

● 基本陣列資料函式

逐式	功能
size	矩陣大小
length	向量長度
ndims	陣列的階數
disp	顯示陣列或文字
isempty	檢測空矩陣
isequal	檢測單位矩陣
isnumeric	檢測數值矩陣
islogical	檢測邏輯矩陣
logical	轉換數值矩陣為邏輯矩陣

● 矩陣運算操作函式

函式	功能
reshape	更改大小
diag	對角矩陣或陣列
tril	取出矩陣下三角部份
triu	取出矩陣上三角部份
fliplr	將矩陣左右對調
flipud	將矩陣上下對調
flipdim	將矩陣沿特定方向對調
rot90	將矩陣旋轉 90 度
find	找出非零元素的指標
end	最後指標
sub2ind	Linear index from multiple subscripts.
ind2sub	Multiple subscripts from linear index.

● 特殊值與特殊矩陣

函式	功能
ans	Most recent answer.
eps	Floating point relative accuracy.
realmax	Largest positive floating point number.
realmin	Smallest positive floating point number.
pi	3.1415926535897, $PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897$
i,j	Imaginary unit.
inf	Returns the IEEE arithmetic representation for positive infinity.
nan	The IEEE arithmetic representation for Not-a-Number.
isnan	True for Not-a-Number.
isinf	True for infinite elements.
isfinite	True for finite elements.
flops	Obsolete floating point operation count.
clock	Current date and time as date vector.
date	Current date as date string.

● 一般數學函式

函式	功能
abs(x)	The absolute value of the elements of X
sqrt(x)	The square root of the elements of X.
round(x)	Rounds the elements of X to the nearest integers.
fix(x)	Rounds the elements of X to the nearest integers towards zero.
floor(x)	Rounds the elements of X to the nearest integers towards minus infinity.
ceil(x)	Rounds the elements of X to the nearest integers towards infinity.
sign(x)	Signum function.
rem(x)	Remainder after division.
exp(x)	The exponential of the elements of X, e to the X.
log(x)	The natural logarithm of the elements of X.
log10(x)	The base 10 logarithm of the elements of X.

● 三角函式

函式	功能
sin(x)	The sine of the elements of X.
cos(x)	The cosine of the elements of X.
tan(x)	The tangent of the elements of X.
asin(x)	Inverse sine.
acos(x)	Inverse cosine.
atan(x)	Inverse tangent.
atan2(y,x)	Four quadrant inverse tangent.

● hyperbolic 函式

函式	功能
asinh(x)	The inverse hyperbolic sine of the elements of X.
cosh(x)	The hyperbolic cosine of the elements of X.
tanh(x)	The hyperbolic tangent of the elements of X.
asinh(x)	The inverse hyperbolic sine of the elements of X.
acosh(x)	The inverse hyperbolic cosine of the elements of X.
atanh(x)	The inverse hyperbolic tangent of the elements of X.

● 複數函式

函式	功能
conj(x)	The complex conjugate of X.
real(x)	The real part of X.
imag(x)	Displays matrix C as an image.
abs(x)	The absolute value of the elements of X.
angle(x)	Returns the phase angles, in radians, of a matrix with complex elements.
polar(theta,r)	Makes a plot using polar coordinates of the angle THETA, in radians, versus
	the radius RHO.

● 多項式函式

函式	功能
polyval(a,x)	Evaluate polynomial.
conv(a,b)	Convolution and polynomial multiplication.
[q,r]=deconv(n,d)	Deconvolution and polynomial division.
roots(a)	Find polynomial roots.
poly(r)	Convert roots to polynomial.

● 2D 繪圖函式

函式	功能
plot(x,y)	Plots vector Y versus vector X.
semilogx(x,y)	Semi-log scale plot.
semilogy(s,y)	Semi-log scale plot.
loglog(x,y)	Log-log scale plot.
Axis,axis(v)	Control axis scaling and appearance.
subplot	Create axes in tiled positions.
pause	Wait for user response.
title	Graph title.
xlabel, ylabel	Adds text beside the X-axis and Y-axis on the current axis.
grid	Adds grid lines to the current axes.
meshgrid	X and Y arrays for 3-D plots.

● 3D 繪圖函式

函式	功能	
mesh(x_pts,y_pts,z)	3-D mesh surface.	
surf(x_pts,y_pts,z)	3-D colored surface.	
contour(x,y,z)	X and Y specify the (x,y) coordinates of the surface as for SURF.	
contour(x,y,z,v)	Draw LENGTH(V) contour lines at the values specified in vector V.	
meshc(x_pts,y_pts,z)	Combination mesh/contour plot.	

● 數值分析函式

函式	功能	
max(x)	The largest element in X	
[y,k]=max(x)	Returns the indices of the maximum values in vector I.	
max(x,y)	Returns an array the same size as X and Y with the largest elements taken	
	from X or Y.	
min(x)	The smallest element in X.	
[y,k]=min(x)	Returns the indices of the minimum values in vector I.	
min(x,y)	Returns an array the same size as X and Y with the smallest elements taken	
	from X or Y.	
sum(x)	The sum of the elements of X.	
prod(x)	The product of the elements of X.	
cumsum(x)	A vector containing the cumulative sum of the elements of X.	
cumprod(x)	A vector containing the cumulative product of the elements of X.	
Mean(x)	The mean value of the elements in X.	
mediam(x)	The median value of the elements in X.	
sort(x)	Sorts the elements of X in ascending order.	
std(x)	Returns the standard deviation.	
hist(x)	Bins the elements of Y into 10 equally spaced containers	
hist(x,n)	Returns the number of elements in each container.	

● 邏輯函式

函式	功能	
any(x)	True if any element of a vector is nonzero.	
all(x)	True if all elements of a vector are nonzero.	
find(x)	Find indices of nonzero elements.	
isnan(x)	True for Not-a-Number.	
isempty(x)	True for empty matrix.	

● 亂數函式

函式	功能	
rand(n)	N-by-N matrix with random entries,	
rand(m,n)	M-by-N matrices with random entries.	
rand('seed',n)	Cause the MATLAB 5 generator to be used.	
rand('seed')	Returns the current seed of the MATLAB 4 uniform generator.	
randn(n)	An N-by-N matrix with random entries	
randn(m,n)	M-by-N matrices with random entries.	

● 輸入與輸出函式

函式	功能	
fprintf	Write formatted data to file.	
save	Save workspace variables to disk.	
load	Load workspace variables from disk.	
input	Prompt for user input.	
disp	Displays the array, without printing the array name.	

● 數值表現格式(format)

MATLAB command	display	
format short	Default, ex:/ 15.2345	
format long	14 decimals, ex:/ 15.2345333333333	
format bank	2 decimals, ex:/ 15.23	
format short e	4 decimals, ex:/ 1.5235e+01	
format long e	15 decimals, ex:/ 1.523453333333333e+01	
format +	+,-,blank, ex:/ +	

● 實例演練一 (chap2_1.m)

% File:/ch2/ch2_1.m	ans =
% Author: Ming-Kai Chen, 20 Oct 2002	1.6180e+000 ans =
% Prupose: Interaction and Script Files	1.1102e-016
70 Frupose. Interaction and Script Piles	x =
	-8.8513e-003
$(1+\operatorname{sqrt}(5))/2$	x =
2^(-53)	y =
x=sin(22)	9.5534e-001
	z =
y=2*x+exp(-3)/(1+cos(.1));	5.7320e+000
$x=2,y=\cos(.3),z=3*x*y$	exmark =
	12 0 5 28 97 3 56 exsort =
exmark=[12 0 5 28 97 3 56]	0 3 5 12 28 56 97
exsort=sort(exmark)	exmean =
	2.8714e+001
exmean=mean(exmark)	exmed =
exmed=median(exmark)	12 exstd =
exstd=std(exmark)	3.5906e+001
	A =
A=rand(3)	5.6361e-001 6.7911e-001 2.6952e-001
	5.1677e-001 4.8714e-001 8.0017e-002
inv(A)	2.5689e-001 3.7027e-001 3.2226e-001 ans =
ans*A	-1.3388e+001 1.2515e+001 8.0896e+000
format short e	1.5345e+001 -1.1815e+001 -9.9007e+000
ans	-6.9595e+000 3.5983e+000 8.0303e+000
	ans = 1.0000e+000 0 4.4409e-016
	1.7764e-015 1.0000e+000 -4.4409e-016
%help sqrt	0 0 1.0000e+000
%lookfor elliptic	ans =
	1.0000e+000 0 4.4409e-016
x=1+1/2+1/3+1/4+1/5+1/6+	1.7764e-015 1.0000e+000 -4.4409e-016 0 0 1.0000e+000
1/7+1/8+1/9+1/10	x =
1//+1/6+1/9+1/10	2.9290e+000
	w =
$w=(-1)^0.25$	7.0711e-001 +7.0711e-001i
exp(i*pi)	ans = -1.0000e+000 +1.2246e-016i
	1 0
save filename A x	0 1
Save mename A x	Result:
	1.4286e-001
A=eye(2);disp(A);	
disp('Result:'),disp(1/7)	
	<u>.</u>

● 實例演練二 (chap2_2.m)

```
% File: ../ch2/ch2 2.m
                                                           \mathbf{x} =
                                                                      0
                                                                             0
                                                                0
% Author: Ming-Kai Chen, 20 Oct 2002
                                                           x =
% Prupose: Distinctive Feature and Arithmetic of
                                                                      0
                                                                             0
                                                                                   0
                                                                                         0
                                                                                                0
                                                                0
MATLAB
                                                           \mathbf{x} =
                                                                3
                                                                       4
%Distinctive Feature
                                                           ans =
                                                                5
clear:
                                                           ans =
x(3)=0
x(6)=0
                                                           m =
x = [3 \ 4]
norm(x)
                                                           m =
norm(x,1)
                                                           \mathbf{k} =
m=max(x)
                                                                2
[m,k]=max(x)
                                                           A =
A=size(5,3)
                                                                1
s=size(A)
                                                           s =
                                                                1
                                                                       1
[m,n]=size(A)
                                                           m =
% Arithmetic
                                                           n =
computer
                                                           ans =
isieee
                                                           PCWIN
eps
                                                           Warning: ISIEEE is obsolete. MATLAB only runs on IEEE machines.
realmax
                                                           > In C:\MATLABR12\toolbox\matlab\general\isieee.m at line 9
-2*realmax
                                                             In D:\書籍資料\Matlab\ch2\ch2_2.m at line 20
1.1*realmax
                                                           ans =
0/0
                                                           ans =
inf-inf
                                                             2.2204e-016
inf-inf
                                                           ans =
NaN-NaN
                                                             1.7977e+308
realmin
                                                           ans =
                                                             -Inf
realmin*eps
                                                           ans =
realmin*eps/2
                                                              Inf
2^10/10
                                                           Warning: Divide by zero.
2+3*4
                                                           > In D:\書籍資料\Matlab\ch2\ch2_2.m at line 25
-2-3*4
                                                              NaN
1+2/3*4
                                                           ans =
1+2/(3*4)
                                                              NaN
                                                           ans =
                                                              NaN
                                                           ans =
                                                              NaN
                                                           ans =
                                                             2.2251e-308
                                                           ans =
                                                             4.9407e-324
                                                           ans =
                                                           ans =
                                                             1.0240e+002
                                                           ans =
                                                               14
                                                           ans =
                                                              -14
                                                           ans =
                                                             3.6667e+000
                                                           ans =
                                                            1.1667e+000
```

第三章 M-File 程式設計

● 資料型態: Matlab 提供有 char、double、sparse、unit8、cell、struct 等六種型態,每一種都是陣列模式。

型態類別	範例	說明
char	char 'Luoson-1'	字元陣列。每一個字元用 16 個位元表示。
double	[1.5 2;0.01 0]	倍精準數值陣列。一般運算子、函式、陣列
		函式都支援。
sparse	speye(4)	倍精準數植稀疏陣列。僅適用於二維陣列 ,
		只儲存非零元素與其向量。運算時須配合特
		殊的運算函式,例如:splu、spchol。
unit8	unit(magic(3))	無符號的八位元整數陣列。表 0~255 的整
		數。目前無運算元可用,一般使用於資料儲
		存或配合影像處理工具箱使用。
cell	{'Luoson' 100 eye(2)}	密室陣列。可以包含其它不同類別的資料陣
		列,適用於大型資料庫使用。
struct	Cat.name='mimi'	結構陣列。與密室陣列一樣,可以將不同的
	Cat.age=1.2	資料型態包在同一個變數名稱下,但結構陣
	Cat.color='yellow'	列另外含有欄位名稱。
UserObject		使用者定義的資料型態。

● 運算子: Matlab 運算子型態有數學(ex:/+,-,*,/...)、關係(ex:/>,<...)、邏輯運算子(and, or...)三種,處理順序為數學運算子>關係運算子>邏輯運算子。

數學運算子

運算子符號	功能	範例
,	轉置矩陣 A ^T	A=[10 1 2]; A.'=[10; 1; 2]
.^	矩陣的次方運算	A.^3=[1000 1 4]; A.^0.5=[3.162 1.000 1.414]
6	共軛複數	Z=4+5i; Z'=4-5i
^	方陣次方	M=[1 2; 3 4]; M^2=[7 10; 15 22]
.*	乘法運算	10 .* 100=1000
./	右除法	100 ./ 10=10
.\	左除法	100 .\ 10=0.1000
*	矩陣乘法運算	A=[10.5 2.5]; B=[3.5; -5]; A*B=24.2500
/	矩陣右除法運算	A=[10.5 2.5]; A/2=[5.2500 1.2500]
\	矩陣左除法運算	B=[3.5;-5]; 2\B=[1.7500 -2.500]
+	加法運算	M=[10 20 30]; N=[70 60 50];M+N=[80 80 80]
_	減法運算	M-N=[-60 -40 -20]

關係運算子

運算子符號	功能	範例 (A=[1 2 -1 -5]; B=[0 2 3 1])
<	小於	A <b; 0="" 1="" 1]="" 1]<="" [0="" a<1;="" ans:="" ans:[0="" td=""></b;>
<=	小於或等於	A<=B; ans: [0 1 1 1]// A<=1; ans: [1 0 1 1]
>	大於	A>B; ans: [1 0 0 0]// A>1; ans: [0 1 0 0]
>=	大於或等於	A>=B; ans: [1 1 0 0]// A>=1; ans: [1 1 0 0]
==	相等	A==B; ans: [0 1 0 0]// A==1; ans: [1 0 0 0]
~=	不相等	A~=B; ans: [1 0 1 1]// A~=1; ans: [0 1 1 1]

邏輯運算子

運算子符號	功能	範例 (C=[5-400.5]; D=[0109])	
&	And	C&D ans: [0 1 0 1]// C&1; ans: [1 1 0 1]	
	Or	C D; ans: [1 1 0 1]// C 1; ans: [1 1 1 1]	
~	Not	~C; ans: [0 0 1 0]// ~1; ans: 0	

邏輯函式

(J=[1 0 1 0]; K=[0 0 1 1]; L=[0 1 NaN -inf]; M=[0 0 9 inf])

函式名稱	功能	範例
xor(X,Y)	執行 XY 運算	xor(J,K); ans: [1 0 0 1]// xor(J,1); ans: [0 1 0 1]
all(X)	檢查是否 X 全為有 True	all(J); ans: 0// all(J 1); ans: 1
isfinite(X)	檢查是否 X 全為限大值	isfinite(L); ans: [1 1 0 0]
		isfinite(L./M); ans:[0 0 0 0]
isnan(X)	檢查是否 X 全為 NaN	isnan(L); ans: [0 0 1 0]
		isnan(L./M); ans: [1 0 1 1]
isinf(X)	檢查是否X全為無限大值	isinf(L); ans: [0 0 0 1];// isinf(L./M); ans: [0 1 0 0]

● 流程控制(迴圈、判斷)

關鍵字	功能
if, else, elseif	根據邏輯條件,來執行一群運算。
switch, case, otherwise	根據條件值,來選擇執行項目。
while	根據邏輯條件,來決定迴圈的執行次數。
for	執行一固定次數的迴圈。

if, else, else, 與 switch 語法

if 邏輯表示式子 運算指令	if 邏輯條件一 運算指令一	switch 評估描述子(整數或字串) case 數值(或字串)條件一
	1	, ,
end	elseif 邏輯條件二	運算指令一
	運算指令二	case 數值(或字串)條件二
if 邏輯表示式子	elseif 邏輯條件三	運算指令二
運算指令一	運算指令三	
else		otherwise
運算指令二	else	運算指令 N
end	運算指令四	end
	end	

while, 與 for 語法

運算指令一	for (索引數值=起始數:遞增數:終止數)
white (終止條件)	運算指令
運算指令二	end
end	

● 函式:如第二章所述

● 檔案輸入與輸出

● 實例演練一 (chap3_1.m)

C/ TII /10/10 1	5.4.4.13 54.0.03	1 54 0 46 40 4 01 D 540 0
% File:/ch3/ch3_1.m	$x=[-1 \ 1 \ 1];y=[1 \ 2 \ -3];$	A=[4 2 16;12 4 3],B=[12 3
% Author: Ming-Kai Chen, 20 Oct	x>0 & y<0	1;10 -1 7]
2002	x>0 y>0	f=find(A <b)< td=""></b)<>
% Prupose: Operations	xor(x>0,y>0)	A(f)=0
•	any(x>0)	clear;
clear;	all(x>0)	$y=[1\ 2\ 0\ -3\ 0]$
A=[1 2; 3 4];	%x y & z	i1=logical(y)
B=2*ones(2);	$\%(x \mid y) \& z$	$i2=(y \sim = 0)$
A=B	$%x \mid (y \& z)$	i3=[1 1 0 1 0]
A>2	$x=[-3 \ 1 \ 0 \ -inf \ 0];$	whos
isequal(A,B)	f=find(x)	y(i1)
	x(find(isfinite(x)))	y(i2)
	x(find(x<0))=0	isequal(i2,i3)
		%y(i3)
ans =	B =	
$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	12 3 1 10 -1 7	
ans =	f =	
0 0	1	
1 1	3	
ans =	6	
ans =	A = 0 0 16	5
0 0 1	12 4	
ans =	y =	
1 1 1	1 2 () -3 0
ans = 1 0 1	i1 = 1 2 0) -3 0
ans =	i2 =	0 -5 0
1	1 1 () 1 0
ans =	i3 =	
0	1 1 (
	Name Size i1 1x5	Bytes Class 40 double array (logical)
ans =	i2 1x5	40 double array (logical)
-3 1 0 0	i3 1x5	40 double array
x =	y 1x5	40 double array
0 1 0 0 0	Grand total is 20 elem	ents using 160 bytes
A = 4 2 16	ans = 1 2 -3	
12 4 3	ans =	
	1 2 -3	
	ans =	
	1	

● 實例演練二 (chap3_2.m)

% File:/ch3/ch3_2.m	e=exp(1);	x =
% Author: Ming-Kai Chen, 20 Oct 2002	if $2^e > e^2$	8
% Prupose: Flow Control: if, elseif	disp('2^e is bigger')	y = 6
x=[8], y=[6],	else	x =
if x>y	disp('e^2 is bigger')	
temp=y;	end	2.44948974278318
y=x;	if isnan(x)	e^2 is bigger
x=temp;	disp('Not a Number')	A'regular'float point number
end	elseif isinf(x)	патост
if x>0	disp('Plus or minus infinity')	
x = sqrt(x)	else	
end	disp('A"regular"float point number')	
	end	

● 實例演練三 (chap3_3.m)

```
% File: ../ch3/ch3 3.m
                                                                                3.81595817775351
% Author: Ming-Kai Chen, 20 Oct 2002
                                                                                0.52359877559830
                                                                                                   0.500000000000000
                                                 s =
% Prupose: Flow Control: for, while, switch
                                                    1.500000000000000
                                                                                                   0.70710678118655
                                                                                0.78539816339745
                                                                                                   0.86602540378444
                                                 s =
                                                                                1.04719755119660
s=0:
                                                    1.83333333333333
for i=1:25, s=s+1/i, end,
                                                                                 4.940656458412465e-324
                                                 s =
                                                    2.083333333333333
                                                                                 4.940656458412465e-324
                                                 s =
for x=[pi/6 pi/4 pi/3],disp([x,sin(x)]),end
                                                    2.283333333333333
                                                 s =
n=5;A=eye(n);
                                                    2.450000000000000
                                                                                  8
for j=2:n
                                                 s =
                                                    2.59285714285714
                                                                                  9
     for i=i:j-1
                                                                                 10
          A(i,j)=i/j;
                                                    2.71785714285714
          A(j,i)=i/j;
                                                 s =
                                                                             Enter a real number:5
     end
                                                    2.82896825396825
                                                                             Nonzero and finite
end
                                                    2.92896825396825
                                                 s =
x=1;
                                                    3.01987734487734
while x>0,xmin=x;x=x/2;end
                                                 s =
xmin
                                                    3.10321067821068
                                                 s =
                                                    3.18013375513376
x=1;
                                                 s =
while 1
                                                    3.25156232656233
     xmin=x;
                                                 s =
     x=x/2;
                                                    3.31822899322899
     if x== 0,break,end
                                                    3.38072899322899
end
xmin
                                                    3.43955252264076
                                                 s =
for i=1:10
                                                    3.49510807819631
     if i<5, continue, end
                                                 s =
                                                    3.54773965714368
     disp(i)
                                                 s =
end
                                                    3.59773965714368
                                                 s =
p=2;
                                                    3.64535870476273
switch p
                                                 s =
                                                    3.69081325021727
case 1
                                                 s =
     y=sum(abs(x));
                                                    3.73429151108684
case 2
     y=sort(x'*x);
                                                    3.77595817775351
case inf
                                                    3.81595817775351
     y=max(abs(x));
otherwise
     error('P must be 1, 2 or inf.');
x=input('Enter a real number:');
switch x
case {inf,-inf}
     disp('Plus or minus infinity')
case 0
     disp('Zero')
otherwise
     disp('Nonzero and finite')
end
```

● 實例演練四 (chap3_4.m)

```
function y=maxentry(A)
%MAXENTRY File: ../ch3/maxentry.m
            Author: Ming-Kai Chen, 20 Oct 2002
            Prupose: function y=maxentry(A)
% ====> Largest absolute value of matrix entries.
%
            MAXENTRY(A) is the maximum of the absolute values
%
            of the entries of A.
y=max(max(abs(A)));
function [f,fprime]=flogist(x,a)
%MAXENTRY File: ../ch3/flogist.m
            Author: Ming-Kai Chen, 20 Oct 2002
%
            Prupose: [f,fprime]=flogist(x,a)
            Logistic function and its derivative.
% ====>
%
            [F,FPRIME]=FLOGIST(X,A) evaluates the logistic
%
            function F(X)=X.*(1-A*X) and its derivative FPRIME
            at the matrix argument X, where A is a scalar parameter
%
f=x.*(1-a*x);
fprime=1-2*a*x;
function [x,iter]=sqrtn(a,tol)
%MAXENTRY File: ../ch3/sqrtn.m
            Author: Ming-Kai Chen, 20 Oct 2002
            Prupose: [x,iter]=sqrtn(a,tol)
% ====> Square root of a scalar by Newton's method.
            X=SQRTN(A,TOL) computes the square root of the scalar
%
%
            A by Newtom's method (also know as Heron's method).
%
            A is assumed to be \geq =0.
            TOL is convergence tolerance (default FSP).
%
            [X,ITER]=SQRTN(A,TOL) returns also the number of
            interations ITER for convergence.
if nargin < 2,tol=eps;end
x=a;
iter=0;
xdiff=inf;
fprintf('k
                x_k
                             rel. change\n')
while xdiff>tol
    iter=iter+1;
    xold=x;
    x=(x+a/x)/2;
    xdiff=abs(x-xold)/abs(x);
    fprintf('%2.0f: %20.16e %9.2e\n',iter,x,xdiff)
    if iter > 50
         error('Not converged after 50 interation.')
    end
function [x_sort,x_mean,x_med,x_std]=marks2(x)
%MAXENTRY File: ../ch3/marks2.m
            Author: Ming-Kai Chen, 20 Oct 2002
            Prupose: [x_sort,x_mean,x_med,x_std]=marks2(x)
%
            Statistical analysis of marks vector.
% ===
            Given a vector of marks X,
%
%
            [X_SORT,X_MEAN,X_MED,X_STD]=MARKS2(X) computes a
%
            sorted marks list and the mean, medium and standard deviation
            of the marks.
x sort=sort(x);
if nargout > 1, x_mean=mean(x); end
if nargout > 2, x_med=median(x); end
if nargout > 3, x_std=std(x); end
```

	1			
% File:/ch3/ch3_4.m	ans =			
% Author: Ming-Kai Chen, 20 Oct 2002	ans =			
% Prupose: Script M-files and Function M-files	10			
	ans =			
clear;	16			
%counts number of real eigenvalus of random matrix	f=			
A=randn(8);sum(abs(imag(eig(A)))<.0001)	-2 f=			
%Empirical distribution of number of real eigenvalues	1.600000000000000			
k=1000;	fprime =			
wheel=zeros $(k,1)$;	0.60000000000000			
for $i=1:k$	ans =			
	-1 -6 -15 -28 k x_k rel. change			
A=randn(8);	1: 1.500000000000000000e+000 3.33e-001			
wheel(i)=sum(abs(imag(eig(A)))<.0001);	2: 1.4166666666666665e+000 5.88e-002			
end	3: 1.4142156862745097e+000 1.73e-003			
hist(wheel,[0 2 4 6 8]);	4: 1.4142135623746899e+000 1.50e-006			
	5: 1.4142135623730949e+000 1.13e-012 6: 1.4142135623730949e+000 0.00e+000			
%maxentry function	0: 1.4142133025730949e+000 0.00e+000 x =			
maxentry(1:10)	1.41421356237309			
maxentry(magic(4))	iter =			
	6			
%flogist function	k x_k rel. change			
f=flogist(2,1)	1: 1.5000000000000000e+000 3.33e-001 2: 1.4166666666666665e+000 5.88e-002			
[f,fprime]=flogist(2,.1)	3: 1.4142156862745097e+000 1.73e-003			
flogist(1:4,2)	4: 1.4142135623746899e+000 1.50e-006			
	x =			
% squtn function	1.41421356237469			
[x,iter]=sqrtn(2)	exmark = 12 0 5 28 87 3 56			
$x = \operatorname{sqrtn}(2, 1e-4)$	x_sort =			
x-5qrti(2,10-1)	0 3 5 12 28 56 87			
% marks2 function	x_sort =			
exmark=[12 0 5 28 87 3 56]	0 3 5 12 28 56 87			
	x_mean = 27.28571428571429			
x_sort=marks2(exmark)	x_med =			
[x_sort,x_mean,x_med]=marks2(exmark)	12			
	ab			
%Command/Function Duality	cd			
comfun('ab','cd','ef')	ef ob			
comfun ab cd ef	ab cd			
	ef			
format long, format('long')	Hello			
disp('Hello'),disp Hello	Hello			
diary mydiary,diary('mydiary')	ans =			
warning off, warning('off')	7.07106781186548			
-				
sqrt 2				

● 實例演練五 (chap3_5.m)

	1
% File:/ch3/ch3_5.m	Starting point: 0.5
% Author: Ming-Kai Chen, 20 Oct 2002	x =
% Prupose: Input and Output	0.50000000000000
	Title fo plot: experiment2
%Input	mytitle =
x=input('Starting point: ')	experiment2
mytitle=input('Title fo plot: ','s')	Here is a 3-by-3 magic square
axis([0 1 0 1])	8 1 6
[x,y]=ginput(4);	3 5 7 4 9 2
P=[x';y'];	
1, 1,	3.142 31.416
%Output to the Screen	3.142e+000
disp('Here is a 3-by-3 magic square')	2.72
disp(magic(3))	-2.72
fprintf('%6.3f\n',pi)	9
	103.00
fprintf('%6.3f\n',pi*10)	9
fprintf('% 12.3e\n',pi)	103
fprintf($\%5.2f\n\%5.2f\n',exp(1),-exp(1)$)	iter=11
fprintf('%5.0f\n%5.2f\n',9,103)	norm(U'*U-I)=6.0346e-010
fprintf('%-5.0f\n%-5.0f\n',9,103)	2.71828 4.85165e+008
	A =
m=5; $iter=11$; $U=orth(randn(m))+1e-10$;	30 40 50 60 70
fprintf('iter=%2.0f\n',iter)	30 miles/hour=48 kilometers/hour
fprintf('norm(U"*U-I)=%11.4e\n',norm(U'*U-eye(m)))	40 miles/hour=64 kilometers/hour
fprintf('%g %g\n',exp(1),exp(20))	50 miles/hour=80 kilometers/hour
	60 miles/hour=96 kilometers/hour
A=[30 40 50 60 70]	70 miles/hour=112 kilometers/hour
fprintf('%g miles/hour=%g kilometers/hour\n',[A;8*A/5])	erroe_msg =
	Must supply a 16-by-16 matrix
n=16;	title_str =
erroe_msg=sprintf('Must supply a %d-by-%d matrix',n,n)	Result of experiment3
ciroc_msg=sprintr(Must supply a 70d by 70d matrix ,n,n)	ans =
i=3;	0
title_str=['Result of experiment' int2str(i)]	X =
title_sti =[Result of experiment int2sti(1)]	30
0/ Eile Least and Outrot	48
% File Input and Output	40
A=[30 40 60 70];	64
fid=fopen('myoutput','w');	60
fprintf(fid, '%g miles/hour=%g kilometers/hour\n',[A;8*A/5]);	96
fclose(fid)	70
	112 V –
fid=fopen('myoutput','r');	X = 30 48
X=fscanf(fid,'%g miles/hour=%g kilometers/hour')	40 64
fclose(fid);	60 96
	70 112
fid=fopen('myoutput','r');	X =
X=reshape(X,2,4)'	30 48
X=fscanf(fid,'%g miles/hour=%g kilometers/hour',[2 inf]);	40 64
X=X'	60 96
	70 112

第四章 矩陣與線性代數

● 向量

一向量
$$\bar{A} = (a_x\hat{i}, a_y\hat{j}, a_z\hat{k})$$
 , 其中 $\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ 、 $\hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 、 $\hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, 則 $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$ 、

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$$

因:
$$\hat{i} \cdot \hat{i} = \hat{i}^T \cdot \hat{i} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}_{1 \times 3} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{3 \times 1} = 1$$

$$\hat{i} \cdot \hat{j} = \hat{i}^T \cdot \hat{j} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}_{1 \times 3} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{3 \times 1} = 0$$

● 向量加法與減法

若
$$\vec{A} = (a_x, a_y, a_z), \vec{B} = (b_x, b_y, b_z)$$
 , 則 $\vec{C} = \vec{A} + \vec{B} = (a_x + b_x, a_y + b_y, a_z + b_z)$ 、
$$\vec{D} = \vec{A} - \vec{B} = (a_x - b_x, a_y - b_y, a_z - b_z)_{\circ}$$

● 向量範數

向量 X 的二階範數(2-norm)為 $\|X\| = (\sum x_i^2)^{1/2} \Rightarrow \sqrt{x_1^2 + x_2^2} \ or \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$,向量 X 的 P 階範數(p-norm)為 $\|X\| = (\sum x_i^p)^{1/p} \Rightarrow \sqrt{x_1^p + x_2^p} \ or \sqrt{x_1^p + x_2^p + ... + x_n^p}$,其中 P>1、P=1,2,3... ,以 norm(variable,P)函數求取。

>> A_[2 4]	C-[1 2 2]
>> A=[3 4]	>> C=[1 2 3]
A =	C =
3 4	1 2 3
>> norm(A,2)	>> norm(C,2)
ans =	ans =
5	3.7417
>> B=[9 12]	>> norm(C,3)
B =	ans =
9 12	3.3019
>> norm(B,2)	
ans =	
15	

● 向量積

長度大小相等的行向量或列向量相乘,有向量內積(dot)和向量外積(cross X)。若 $A = [a_i] \rightarrow A_{\times 3}$, $B = [b_j] \rightarrow B_{\mathbb{I} \times 3}$, $C = A_{\times 3} * B_{\mathbb{I} \times 3} = A_{\times 3} * B_{\mathbb{I} \times 3}^{T} \Rightarrow A_{\times 3} * B_{\mathbb{I} \times 3} = C_{\mathbb{I} \times 1}$ 、 $D = B_{\mathbb{I} \times 3} * A_{\times 3} = B_{\mathbb{I} \times 3}^{T} * A_{\times 3} \Rightarrow B_{\mathbb{I} \times 3} * A_{\times 3} = C_{\mathbb{I} \times 3} * A_{\times 3} * A_{\times 3} = C_{\mathbb{I} \times 3} * A_{\times 3} * A_{\times 3} = C_{\mathbb{I} \times 3} * A_{\times 3} * A_{\times 3} * A_{\times 3} = C_{\mathbb{I} \times 3} * A_{\times 3} * A_{\times 3} * A_{\times 3} = C_{\mathbb{I} \times 3} * A_{\times 3} * A_$

● 特徵值與特徵向量

若存在一向量 v 與一常數 ,使得一方陣 a 滿足 $\mathbf{A}v = \lambda v$,稱 為特徵值,v 為特徵 向量。

A=[-2 2 -3;2 1 -6;-1 -2 0],[U,S,V]=svd(A)	S =
A =	7.0321 0 0
-2 2 -3	0 3.0000 0
2 1 -6	0 0 2.1331
-1 -2 0	V =
U =	0.1408
0.4450 -0.8944 0.0448	0.2816 -0.4472 -0.8489
0.8899 0.4472 0.0895	-0.9492 0.0000 -0.3148
-0.1001 0.0000 0.9950	

● 單位矩陣

>> A=eye	(3)		>> B=eye(3,2)
A=			B =
1	0	0	1 0
0	1	0	0 1
0	0	1	0 0

● 零矩陣

>> zeros(3	3)		>> zeros(3,2)	
ans =			ans =	
0	0	0	0 0	
0	0	0	0 0	
0	0	0	0 0	

● 轉置矩陣

將 i 行 j 列元素變到 j 行 i 列,若 $\mathbf{A} = \left[a_{ij} \right]$ 則 $\mathbf{A}^T = \left[a_{ji} \right]$ 。

>> A=[5,4,6]	>> B=[1,2,3;4,5,6]		
A =	B =		
5 4 6	1 2 3		
>> E=A'	4 5 6		
E =	>> E=B'		
5	E =		
4	1 4		
6	2 5		
	3 6		

● 矩陣加法與減法

大 小 相 等 的 矩 陣 方 可 進 行 加 減 動 作 , 若 $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}$ 、 $\mathbf{B} = \begin{bmatrix} b_{ij} \end{bmatrix}$ 則

$$C = A + B \Rightarrow [c_{ij}] = [a_{ij} + b_{ij}], D = A - B \Rightarrow [d_{ij}] = [a_{ij} - b_{ij}]_{\circ}$$

>> A	>> A=fix(10*rand(3,3))					>> C=A+B						
A=							C =					
	9	4	4					13	13	8		
	2	8	0					8	15	9		
	6	7	8					13	8	17		
>> B	>> B = fix(10*rand(3,3))					>> D	=A-E	3				
$\mathbf{B} =$							D=					
	4	9	4					5	-5	0		
	6	7	9					-4	1	-9		
	7	1	9					-1	6	-1		

● 矩陣乘法

A 的行數等於 B 的列數,若 $A=\left[a_{ij}\right]$ 、 $B=\left[b_{ij}\right]$ 、 $C=\left[c_{ij}\right]$,且存在C=AB關係,則

$$[c_{ij}] = \left[\sum_{k} a_{ik} b_{kj}\right]$$
。若 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \end{bmatrix}$ 、 $B = \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}$,

$$\mathbb{H} \, \mathbf{A}_{2\times 3} \mathbf{B}_{3\times 2} = \mathbf{C}_{2\times 2} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} 1+0+4 & 0+0+2 \\ 0+0+2 & 0+9+1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 10 \end{bmatrix}$$

$$\mathbf{\textit{B}}_{3\times2}\mathbf{\textit{A}}_{2\times3} = \mathbf{\textit{D}}_{3\times3} = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{bmatrix} = \begin{bmatrix} 1+0 & 0+0 & 2+0 \\ 0+0 & 0+9 & 0+3 \\ 2+0 & 0+3 & 4+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 9 & 3 \\ 2 & 3 & 5 \end{bmatrix}.$$

>> A=[1 0 2;0 3 1]	>> A*B			
A =	ans =			
1 0 2	5 2			
0 3 1	2 10			
>> B=[1 0;0 3;2 1]	>> B*A			
B =	ans =			
1 0	1 0 2			
0 3	0 9 3			
2 1	2 3 5			

● 行列式

● 反矩陣

若 AX = / ,則 X = A⁻¹,以 inv(variable)函數求值。

>> A=[1 2; 3 4]	>> B=[1 2 3;2 1 3; 3 2 1]					
A =	B =					
1 2	1 2 3					
3 4	2 1 3					
>> inv(A)	3 2 1					
ans =	>> inv(B)					
-2.0000 1.0000	ans =					
1.5000 -0.5000	-0.4167 0.3333 0.2500					
>> det(A)	0.5833 -0.6667 0.2500					
ans =	0.0833					
-2	>> det(B)					
	ans =					
	12					

● 矩陣除法

若AX = B,則以X = A B或 $X = A^{-1}B$ 求之。

若
$$2x+5y-7z=5$$
 , 令 $\mathbf{A} = \begin{bmatrix} -3 & 0 & 1 \\ 2 & 5 & -7 \\ -1 & 4 & 8 \end{bmatrix}$ 、 $\mathbf{X} = \begin{bmatrix} x \\ y \\ x \end{bmatrix}$ 、 $\mathbf{B} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$

利用
$$X = A B$$
或 $X = A^{-1}B$ 求取 X , 得 $X = \begin{bmatrix} -1.3717 \\ 1.3874 \\ -0.1152 \end{bmatrix}$ 。

● 矩陣冪次方項與指數

>> A=[1 2;4 9]	>> A.^2
A =	ans =
1 2	1 4
4 9	16 81
>> A^2	>> A.^(1/2)
ans =	ans =
9 20	1.0000 1.4142
40 89	2.0000 3.0000
>> A^(1/2)	>> sqrt(A)
ans =	ans =
0.5774 0.5774	1.0000 1.4142
1.1547 2.8868	2.0000 3.0000
>> sqrtm(A)	
ans =	
0.5774 0.5774	
1.1547 2.8868	

● 矩陣 Y 的 P 階範數

$$\|\mathbf{Y}\|_{P} = \frac{\max}{x} \|\mathbf{Y}_{x}\|_{P} / \|X\|_{P}$$
 ,以 $\operatorname{norm}(Y,P)$ 求之。

● 特徵值與特徵矩陣

● 解線性方程式

若 N 為資料量個數(number of data), M 為未知的控制變數個數(number of model parameter)。

- (1)方陣系統(even-determined): N=M,存在維一的一組解,若 AX = B,則以 $X = A \mid B$ 或 $X = A^{-1}B$ 求之。
- (2)過限定系統(over-determined): N>M,以 min error(least square)求之。下面以 $t=[0\ 0.3\ 0.8\ 1.1\ 1.6\ 2.3]$, $y=[0.82\ 0.72\ 0.63\ 0.60\ 0.55\ 0.50]$ 為例,認為 數值有 $y(t)\sim c_1+c_2e^{-t}$ 的衰減指數趨勢,過程如下,求得趨勢方程式為 $y(t)\sim 0.4760+0.3803e^{-t}$ 。
- (3)限定不足系統(under-determined): N<M,以 min length(simplify model)求之。在 MATLAB 中會找出一組構成通解的基底,而方程式的特解則由 QR 法來決定。

>> A=fix(15*rand(3,3))	>> t=[0 0.3 0.8 1.1 1.6 2.3]'	>> c=E\y			
A =	t =	c =			
14 7 6	0	0.4760			
3 13 0	0.3000				
9 11 12	0.8000	0.3413			
>> B=fix(15*rand(3,1))	1.1000	>> A=fix(15*rand(3,4))			
B =	1.6000	A =			
6	2.3000	13 6 6 5			
9	>> y=[0.82 0.72 0.63 0.60 0.55 0.50]'	11 14 13 12			
11	y =	2 13 0 0			
>> X=A\B	0.8200	>> B=fix(15*rand(3,1))			
X =	0.7200	B =			
-0.0588	0.6300	2			
0.7059	0.6000	3			
0.3137	0.5500	2			
>> X=inv(A)*B	0.5000	>> P=A\B			
X =	0.4760	P =			
-0.0588	0.3413	0.0859			
0.7059	>> E= [ones(size(t)) exp(-t)]	0.1406			
0.3137	E =	0.0067			
>> C=A*X	1.0000 1.0000	0			
C =	1.0000 0.7408				
6.0000	1.0000 0.4493				
9.0000	1.0000 0.3329				
11.0000	1.0000 0.2019				
	1.0000 0.1003				

- LU, QR, Cholesky 分解
- 奇異值分解

第五章 2D & 3D 繪圖

● 2D 繪圖

у	黃色	m	紫色	c	青色	r	紅色
g	綠色	b	藍色	W	白色	k	黑色

	點	V	向下三角形	-	實線
0		٨	向上三角形	:	虛線
X	打叉	<	向左三角形		中軸線
*	星號	>	向右三角形		斷折線
S	正方形	p	五角星形		
d	菱形	h	六角星形		

● 3D 繪圖

第六章 數值分析與統計

● 多項式: Matlab 使用列向量表示一個多項式,提供 roots 指令求解, poly 指令還原方程式, polyval 指令計算多項式的值, polyvalm 指令做多項式矩陣運算, conv 和 deconv 指令求 迴旋折積和反回旋折積, polyder 指令求多項式微分, redisidue 指令求一個分式之部份分式分解, polyfit(x,y,n)指令求多項式的曲線揉合方程式。

以下[分別以 $p(x)=x^3-2x+5$ 、 $\frac{4s-8}{s^2+6s+8}$ 、 $p(X)=X^3-2X+5$ 多項式為例。

```
>> A=[1 2 3;4 5 6; 7 8 0]
>> p=[1 \ 0 \ -2 \ 5]
                                               A =
p =
                        5
                 -2
                                                          5
                                                                 6
>> r=roots(p)
                                                    7
                                                                 0
                                                          8
  -2.0946
                                               >> p3=poly(A)
  1.0473 + 1.1359i
   1.0473 - 1.1359i
                                                   1.0000 -6.0000 -72.0000 -27.0000
                                               >> X=[1 0 3;2 4 5;7 0 5]
>> p2=poly(r)
p2 =
    1.0000
                       -2.0000
                    0
                                    5.0000
                                                          0
                                                                 3
                                                    2
                                                                 5
>> clear
                                                          4
>> p=[1 \ 0 \ -2 \ 5]
                                                          0
                                                                 5
                                              >> p
               -2
           0
                        5
                                              p =
                                                                -2
                                                                       5
>> polyval(p,5)
ans =
                                              >> Y=polyvalm(p,X)
\Rightarrow a=[1 2 4];b=[3 5 6];
                                                          0
                                                              150
                                                  151
                                                              460
                                                  430
>> c=conv(a,b)
                                                         61
                                                  350
                                                          0
                                                              351
                 28
                       32
                             24
                                               >> b=[4 -8];a=[1 6 8];
          11
                                               >> [r,p,k]=residue(b,a)
>> [q,r]=deconv(c,a)
                                              r =
q =
           5
                                                    12
                                                    -8
r =
           0
                 0
                               0
                                               p =
\Rightarrow a=[2 4 6];b=[1 2 3];
                                                    -4
>> c=polyder(a,b)
                                               k =
          24
                 40
>> [q,d]=polyder(a,b)
                                               >> x=[1 2 3 4 5];
                                               >> y=[5 43 128 280 500];
q =
                                               >> p = polyfit(x,y,3)
d =
                10
                                                    1.7500
                                                              15.0357 -20.7143
                                                                                        9.2000
                       12
                                               >> x2=1:.1:5;
                                              >> y2=polyval(p,x2);
                                              \gg plot(x,y,'o',x2,y2)
```

● 資料分析

指令	功能
max	
min	
mean	
median	
std	
sort	
sortrows	
sum	
cumsum	
prob	
cumprob	
diff	
conv	
corrcoef	

● 回歸分析與曲線揉合

● 快速傅立葉轉換

指令	功能
fft	離散傅立葉轉換
fft2	二維傅立葉轉換
fftn	N 維傅立葉轉換
ifft	逆傅立葉轉換
ifft2	二維逆傅立葉轉換
ifftn	N 維逆傅立葉轉換
abs	向量絕對值(magnitude)
angle	向量向位值(phase)
unwrap	使相位在 180 度不會產生不連續點

第七章 微分

第八章 積分

第九章 常微分方程

● 一階微分方程

- 1. If y' = f(x, y) with $y(x_0) = y_0$, then $y(x) = y_0 + \int_{x_0}^x f(x) dx$.
- 2. If y' = f(x, y) With $y(x_0) = y_0$, then formal solution can be solved interactively as $y^{[n+1]}(x) = y_0 + \int_{x_0}^x f(x, y^{[n]}(x)) dx$, starting with $y^{[n+1]}(x) = y_0$.
- 3. If y' + M(x)y = N(x), then $y(x) = e^{-\int Mdx} \left(\int Ne^{\int Mdx} dx + C \right)$, where C is a constant_o

● 二階微分方程

If
$$p(x)y'' + q(x)y' + r(x)y = h(x)$$
 with $y(x_0) = y_0$ and $y'(x_0) = v_0$, then

$$y_1 \equiv y$$
 $y_1(x_0) = y_0$ $y_1' = y'$

$$y_2 \equiv y'$$
 $y_2(x_0) = v_0$ $y_2' = \frac{h(x)}{p(x)} - \frac{q(x)}{p(x)}y' - \frac{r(x)}{p(x)}y = \frac{h(x)}{p(x)} - \frac{q(x)}{p(x)}y_2 - \frac{r(x)}{p(x)}y_1$

● ODE 常用函數

Solver	Problem type	Type of alogorith
ode45	Nonstiff	Explicit Range-Kutta pair, orders 4 and 5.
ode23	Nonstiff	Explicit Range-Kutta pair, orders 2 and 3.
ode113	Nonstiff	Explicit linear multistep, orders 1 and 13.
ode15s	Stiff	Implicit linear multistep, orders 1 and 5.
ode23s	Stiff	Modified Rosenbrock pair (one-step), order 2 and 3.
ode23t	Mildly stiff	Trapezoidal rule (implicit), orders 2 and 3.
ode23tb	Stiff	Implicit Runge-Kutta type algorithm, order 2 and 3.

Function	Meaning
odeset	Create/alter ODE OPTIONS structure.
odeget	Get ODE OPTIONS parameters.
brussode	Stiff problem modelling a chemical reaction (the Brusselator).
rigidode	Euler equations of a rigid body without external forces.
ballode	Run a demo of a bouncing ball.
orbitode	Restricted three body problem.
fem1ode	Stiff problem with a time-dependent mass matrix, $M(t)*y' = f(t,y)$.
fem2ode	Stiff problem with a constant mass matrix, $M*y' = f(t,y)$.
batonode	Simulate the motion of a thrown baton.
hb1dae	Stiff differential-algebraic equation (DAE) from a conservation law.

amp1dae Stiff differential-algebraic equation (DAE) from electrical circuit.

Taylor series

The Taylor's series expansion for f(b) is following:

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \dots$$

A **first-order** Taylor's series approximation uses the terms involving the function and its first derivative: $f(b) \approx f(a) + (b-a)f'(a)$

A **second-order** approximation uses the terms involving the function, its first derivative, and its second derivative: $f(b) \approx f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a)$

Runge-Kutta Method

A **first-order** Runge-Kutta method: uses a first-order Taylor series expansion. And Euler's method is equivalent to a first-order Runge-Kutta method.

A second-order Runge-Kutta method: uses a second-order Taylor series expansion.

The Taylor's series expansion for f(b) is

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \dots$$

We assume that the term (b-a) represents a step size h and $y_b = f(b)$, $y_a = f(a)$, $y_a' = f(a)$, and so on. So:

$$f(b) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + \dots$$
$$y_b = y_a + hy_a' + \frac{h^2}{2!}y_a'' + \dots + \frac{h^n}{n!}y_a^{(n)} + \dots$$

A first-order Runge-Kutta integration equation is the following: $y_b = y_a + hy_a'$. If we have determined the value of y_b , we can estimate the next value of the function f(c) using the following: $y_c = y_b + hy_b'$. And an initial value or boundary value is need to start the process of estimating other points of the function f(x), the Runge-Kutta methods (and Euler's method) are also called **initial-value solutions** or **boundary-value solution**.

A nth-order Runge-Kutta integration equation uses terms in the Taylor's series expansion that include the first, second, ..., nth derivatives, and computes the function estimate using n

tangent-line estimates.

• ode functions

1. ode23: using second-order and third-order Runge-Kutta methods.

[T,Y] = ODE23(ODEFUN,TSPAN,Y0), TSPAN = [T0 TFINAL]

[T,Y] = ODE23(ODEFUN,TSPAN,Y0,OPTIONS), OPTIONS, an argument created with the ODESET function

2. ode45: using fourth-order and fifth-order Runge-Kutta methods

[T,Y] = ODE45(ODEFUN,TSPAN,Y0)

 $\label{eq:continuous} [T,Y] = ODE45 (ODEFUN, TSPAN, Y0, OPTIONS) \ , \ OPTIONS, \ an \ argument \ created$ with the ODESET function

• First-Order Ordinary Differential Equations

$$y' = \frac{dy}{dx} = g(x, y)$$

Equation 1: $y' = g_1(x, y) = 3x^2$

Equation 1 Solution: $y = x^3 - 7.5$

function $dy = g1(x,y)$	>>				
%MAXENTRY File:/ch9/g1.m	2	2.0000	2.0000	0.5000	0.5000
% Author: Ming-Kai Chen, 5 Dec 2002	2	2.0021	2.0021	0.5251	0.5251
% Prupose: $dy = g1(x,y)$	2	2.0042	2.0042	0.5503	0.5503
	2	2.0063	2.0063	0.5756	0.5756
$dy = 3*x.^2;$	2	2.0084	2.0084	0.6009	0.6009
,	2	2.0188	2.0188	0.7282	0.7282
% File:/ch9/demo9_1.m					
% Author: Ming-Kai Chen, 5 Dec 2002					
% Prupose: ODE example			Street, or o	-	
1					1
clear;		-			/
tspan = [2 7]; yzero = 0.5;					1
$[x,num_y] = ode45(@g1,tspan,yzero);$					
[,,					
y=x.^3-7.5;					
disp([x x num_y y])					
plot(x,num_y,x,y,'o'),			1		
title('Solution to Equation 1'),	3	50	- American		
xlabel('x'), ylabel('y=f(x)'),grid		-			
$\lambda auc (\lambda)$, $y auc (y-i(\lambda))$, $g iu$		T 10	1 10 1 1	3 45 4	0 1

Equation 2: $y' = g_2(x, y) = -0.131y$ Equation 2 Solution: $y = 4e^{-0.131x}$

Equation 3: $y' = g_3(x, y) = 3.444E - 05 - 0.0015y$ Equation 3 Solution: $y = 0.022963 - 0.020763e^{-0.0015x}$

function dy = g3(x,y) %MAXENTRY File:/ch9/g3.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: dy = g3(x,y) dy = 3.4444E-05 - 0.0015*y;	>> 3.0000 6.0000 9.0000 12.0000	0 3.0000 6.0000 9.0000 12.0000	0.0022 0.0023 0.0024 0.0025 0.0026	0.0022 0.0023 0.0024 0.0025 0.0026
	100		Sodovis Caudim S	
% File:/ch9/demo9_3.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: ODE example	41			
clear; tspan = [0 120]; yzero = 0.0022; [x,num_y] = ode45('g3',tspan,yzero);	#3 E +		/	
y = 0.022963 - 0.020763*exp(-0.0015*x); disp([x x num_y y]) plot(x,num_y,x,y,'o'), title('Solution to Equation 3'), xlabel('x'), ylabel('y=f(x)'),grid	23	4	in s	8 100 120

Equation 4: $y' = g_4(x, y) = 2 \cdot x \cdot \cos^2(y)$ Equation 4 Solution: $y = \tan^{-1}(x^2 + 1)$

function dy = g4(x,y) %MAXENTRY File:/ch9/g4.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: dy = g4(x,y) dy = 2*x*cos(y).^2;	>>	0 0.0500 0.1000 0.1500	0 0.0500 0.1000 0.1500	0.7854 0.7866 0.7904 0.7965	0.7854 0.7866 0.7904 0.7965
% File:/ch9/demo9_4.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: ODE example clear; tspan = [0 2]; yzero = pi/4;		1.4	***	ova Equien-1	
[x,num_y] = ode45('g4',tspan,yzero); y = atan(x.*x+1); disp([x x num_y y]) plot(x,num_y,x,y,'o'), title('Solution to Equation 4'), xlabel('x'), ylabel('y=f(x)'),grid		23 21 22 42		+ 41 14	1.8 1.8 2

Equation 5: $y' = g_5(x, y) = 3y + e^{2x}$

Equation 5 Solution: $y = 4e^{3x} - e^{2x}$

function $dy = g5(x,y)$ %MAXENTRY File:/ch9/g5.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: $dy = g5(x,y)$ dy = 3*y + exp(2*x);	>> 1.0e+009 * 0.0000 0.0000 0.0000 0.0000	0 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000
 % File:/ch9/demo9_5.m % Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: ODE example clear; 	419		Asserts Equator 6	
tspan = $[0:0.1:7]$; yzero = 3;				H 1
[x,num_y] = ode45('g5',tspan,yzero);	Ę,			1
y = 4*exp(3*x)-exp(2*x); disp([x x num_y y]) plot(x,num_y,x,y,'o'), title('Solution to Equation 5'), xlabel('x'), ylabel('y=f(x)'),grid	-			

Higher-Order Differential Equations

The nth order differential equation: $y(n) = g(x, y, y', y'', y''', ..., y^{(n-1)})$

Define n new unknown function with these equations:

$$u_{n-2}(x) = y''$$

$$u_{n-1}(x) = y'$$

$$u_{n-1}(x) = y$$

The following system of n first-order equations is equivalent to the nth order differential equation given above:

$$u_{1_{\prime}} = y^{(n)} = g(x, u_{n}, u_{n-1}, u_{n-2}, ..., u_{1})$$

$$u_{2_{\prime}} = y^{(n-1)} = u_{1}$$

$$u_{3} = y^{(n-2)} = u_{2}$$

$$....$$

$$u_{n-2_{\prime}} = y' = u_{n-3}$$

$$u_{n-1} = y' = u_{n-2}$$

Define n new unknown function with these equations:

$$u_{1}(x) = y$$

$$u_{2}(x) = y'$$

$$u_{3}(x) = y''$$

$$\dots$$

$$u_{n-2}(x) = y^{(n-3)}$$

$$u_{n-1}(x) = y^{(n-2)}$$

$$u_{n}(x) = y^{(n-1)}$$

The following system of n first-order equations is equivalent to the nth order differential equation given above:

$$u_{1}'(x) = y' = u_{2}(x) \Rightarrow u_{2}$$

$$u_{2}'(x) = y'' = u_{3}(x) \Rightarrow u_{3}$$

$$u_{3}'(x) = y''' = u_{4}(x) \Rightarrow u_{4}$$
.....
$$u_{n-2}'(x) = y^{(n-2)} = u_{n-1}(x) \Rightarrow u_{n-1}$$

$$u_{n-1}'(x) = y^{(n-1)} = u_{n}(x) \Rightarrow u_{n}$$

$$u_{n}'(x) = y^{(n)} = g(x, u_{n}, u_{n-1}, u_{n-2},, u_{2})$$

Equation: $y'' = g(x, y, y') = y'(1 - y^2) - y$

Define: $u_1 = y', u_2 = y$

Thus: $u_1' = y'' = g(x, u_2, u_1)$

$$u_2' = y' = u_1$$

Obtain: $u_1' = y'' = u_1(1 - u_2^2) - u_2$

Define: $u_1 = y, u_2 = y'$

Thus: $u_1' = y' = u_2$

$$u_2' = y'' = y'(1 - y^2) - y = u_2(1 - u_1^2) - u_1$$

Now: initial condition of y'(0) = 0.0 and y(0) = 0.25.

function uprime = eqns2(x,u)

%MAXENTRY File: ../ch9/eqns2.m

% Author: Ming-Kai Chen, 5 Dec 2002 % Prupose: u_prime = eqns2(x,u)

uprime = $[u(2); u(2)*(1-u(1)^2)-u(1)];$

% uprime(1) = $u(1)*(1-u(2)^2)-u(2)$;

% uprime(2) = u(1);

% File: ../ch9/demo9_6.m

% Author: Ming-Kai Chen, 5 Dec 2002

% Prupose: ODE example

clear;

 $tspan = [0\ 20]; initial = [0\ 0.25];$

 $[x,num_y] = ode23('eqns2',tspan,initial);$

subplot(2,1,1),plot(x,num_y(:,1)),... title('1st Derivative of y'),grid,...

subplot(2,1,2),plot(x,num_y(:,2)),...

xlabel('x'), ylabel('y'),grid

● 實例演練一 (chap9_1.m)

$$\frac{d}{dt}y(t) = -y(t) - 5e^{-t}\sin 5t , y(0) = 1 , 0 \le t \le 3.$$

function yprime = myf(t,y) %MAXENTRY File:/ch9/myf.m % Author: Ming-Kai Chen, 16 Nov 2002 % Prupose: yprime = myf(t,y) % =====> ODE example function YPRIME = MYF(T,Y) evaluates derivative	>> 0 1.0000 1.0000 0.1043 2.0000 -0.1136 3.0000 -0.0378 4.0000 0.0075
yprime = -y -5*exp(-t)*sin(5*t); % File:/ch9/ch9 1.m	0 1.0000 -0.5000 -1.3209 -1.0000 0.7711
% Author: Ming-Kai Chen, 16 Nov 2002 % Prupose: ODE example	1.0000 0.7711
<pre>clear; tspan = [0 3]; yzero = 1; [t,y] = ode45(@myf,tspan,yzero); plot(t,y,'*') xlabel t, ylabel y(t)</pre>	
tspan2 = 0:4; [t2,y2] = ode45(@myf,tspan2,yzero); disp([t2 y2])	
tspan3 = [0 -0.5 -1]; [t3,y3] = ode45(@myf,tspan3,yzero); disp([t3 y3])	

● 實例演練二 (chap9_2.m)

Equation:
$$\frac{d^2}{dt^2}\theta(t) + \sin\theta(t) = 0$$
, $0 \le t \le 10$

Define:
$$y_1 = \theta(t)$$
, $y_2 = \frac{d}{dt}\theta(t)$

Thus:
$$y_1' = \frac{d}{dt}\theta(t) = y_2$$

$$y_2' = \frac{d^2}{dt^2}\theta(t) = -\sin\theta(t) = -\sin y_1$$

Obtain
$$\frac{d}{dt}y_1(t) = y_2(t)$$
, $\frac{d}{dt}y_2(t) = -\sin y_1(t)$

function yprime = pend(t,y)

%MAXENTRY File: ../ch9/pend.m

% Author: Ming-Kai Chen, 16 Nov 2002

% Prupose: yprime = pend(t,y)

yprime = $[y(2); -\sin(y(1))];$

% File: ../ch9/ch9_2.m

% Author: Ming-Kai Chen, 16 Nov 2002

% Prupose: ODE example

clear;

 $tspan = [0 \ 10];$

yazero = [1;1]; ybzero = [-5;2]; yczero = [5;-2];

[ta,ya] = ode45(@pend,tspan,yazero);

[tb,yb] = ode45(@pend,tspan,ybzero);

[tc,yc] = ode45(@pend,tspan,yczero);

[y1,y2] = meshgrid(-5:.5:5,-3:.5:3);

 $Dy1Dt = y2; Dy2Dt = -\sin(y1);$

quiver(y1,y2,Dy1Dt,Dy2Dt)

hold on

plot(ya(:,1),ya(:,2),yb(:,1),yb(:,2),yc(:,1),yc(:,2))

axis equal, axis([-5 5 -3 3])

xlabel y_1(t), ylabel y_(2), hold off

● 實例演練三 (chap9_3.m)

$$\frac{d}{dt}y_1(t) = -y_2(t) - y_3(t)$$

$$\frac{d}{dt}y_2(t) = y_1(t) + ay_2(t)$$

$$\frac{d}{dt}y_3(t) = b + y_3(t)(y_1(t) - c)$$

function yprime = rossler(t,y,a,b,c)

%MAXENTRY File: ../ch9/rossler.m

% Author: Ming-Kai Chen, 16 Nov 2002 % Prupose: yprime = rossler(t,y,a,b,c)

yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];

% File: ../ch9/ch9 3.m

% Author: Ming-Kai Chen, 16 Nov 2002

% Prupose: ODE example

clear:

 $tspan = [0 \ 100]; yzero = [1;1;1];$

options = odeset('AbsTol',1e-7,'RelTol',1e-4)

a = 0.2; b = 0.2; c = 2.5;

$$\label{eq:constraint} \begin{split} &[t,y] = ode45(@rossler,tspan,yzero,options,a,b,c);\\ &subplot(221),plot3(y(:,1),y(:,2),y(:,3)),title('c=2.5'),grid\\ &xlabel\ y_1(t),\ ylabel\ y_2(t),\ zlabel\ y_3(t)\\ &subplot(223),plot(y(:,1),y(:,2)),title('c=2.5')\\ &xlabel\ y_1(t),\ ylabel\ y_2(t) \end{split}$$

c = 5;

$$\label{eq:constraint} \begin{split} &[t,y] = ode45(@rossler,tspan,yzero,options,a,b,c);\\ &subplot(222),plot3(y(:,1),y(:,2),y(:,3)),title('c=5'),grid\\ &xlabel\ y_1(t),\ ylabel\ y_2(t),\ zlabel\ y_3(t)\\ &subplot(224),plot(y(:,1),y(:,2)),title('c=5')\\ &xlabel\ y_1(t),\ ylabel\ y_2(t) \end{split}$$

● 實例演練四 (chap9_4.m)

$$\frac{d}{dt}y_1(t) = s(t)(r_1(t) - y_1(t)) , \frac{d}{dt}y_2(t) = s(t)(r_2(t) - y_2(t)) ,$$

where
$$s(t) = \frac{k\sqrt{\left(\frac{d}{dt}r_1(t)\right)^2 + \left(\frac{d}{dt}r_2(t)\right)^2}}{\sqrt{\left(r_1(t) - y_1(t)\right)^2 + \left(r_2(t) + y_2(t)\right)^2}}$$

$$\begin{bmatrix} r_1(t) \\ r_2(t) \end{bmatrix} = \sqrt{1+t} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$$

starting the fox at $y_1(0) = 3$, $y_2(2) = 0$, k = 0.75.

```
function yprime = fox1(t,y)
%MAXENTRY File: ../ch9/fox1.m
             Author: Ming-Kai Chen, 16 Nov 2002
             Prupose: yprime = fox 1(t,y)
k = 0.75;
r = \operatorname{sqrt}(1+t) * [\cos(t); \sin(t)];
r_p = (0.5/sqrt(1+t))*[cos(t)-2*(1+t)*sin(t);sin(t)+2*(1+t)*cos(t)];
dist = norm(r-y);
if dist > 1e-4
     factor = k*norm(r_p)/dist;
     yprime = factor*(r-y);
else
     error('ODE model ill-defined.')
end
% File: ../ch9/ch9_4.m
% Author: Ming-Kai Chen, 16 Nov 2002
% Prupose: ODE example
clear;
tspan = [0\ 10]; yzero = [3;0];
[tfox,yfox] = ode45(@fox1,tspan,yzero);
plot(yfox(:,1),yfox(:,2)), hold on
plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).*sin(tfox),'--')
plot([3 1],[0 0],'o')
axis equal, axis([-3.5 3.5 -2.5 3.1])
                                                                 hold
legend('Fox','Rabbit',0),
offsubplot(222),plot3(y(:,1),y(:,2),y(:,3)),title('c=5'),grid
xlabel y_1(t), ylabel y_2(t), zlabel y_3(t)
subplot(224),plot(y(:,1),y(:,2)),title('c=5')
xlabel y_1(t), ylabel y_2(t)
```

第十章 傅立葉轉換

● 傅立葉轉換與逆轉換數學方程式

FFT:
$$X(k) = \sum_{n=1}^{N} x(n)e^{-j2\Pi(k-1)\left(\frac{n-1}{N}\right)}$$
 , $1 \le k \le N$ o

IFFT:
$$X(n) = \frac{1}{N} \sum_{k=1}^{N} x(k) e^{-j2\Pi(k-1)\left(\frac{n-1}{N}\right)}$$
 , $1 \le n \le N$ o

● 快速傅立葉轉換(FFT)常用函數

函數	意義
fft	離散傅立葉轉換
fft2	二維傅立葉轉換
fftn	N 維傅立葉轉換
ifft	逆傅立葉轉換
ifft2	二維傅立葉轉換
iffn	N 維逆傅立葉轉換
abs	向量絕對值(magnitude)
angle	向量的相位角(phase)
unwrap	使相位在 180 度不會產生不連續點

• The fast Fourier transform (FFT), use fft function by y=fft(x). The inverse FFT, $x = F_n * y$, is carried out by ifft function using x=ifft(t).

● 波函式經傅立葉轉換後,觀察其純量和相位。

```
% File: ../ch10/demo10_1.m
% Author: Ming-Kai Chen, 7 Dec 2002
% Prupose: Gnerate a 20 Hz sinnsoid samples at 128 Hz.

clear;
N = 64;
T = 1/128;
k = 0:N-1;
x = sin(2*pi*20*k*T);
X = fft(x);
magX = abs(X);
hertz = k*(1/(N*T));

figure;
subplot(311);plot (0:T:T*(N-1),x), ylabel ('x(kT)'), grid on subplot(312);stem (k(1:N),magX(1:N)), ylabel ('|X(k)|'), grid on subplot(313);stem (hertz(1:N),magX(1:N)), ylabel ('|X(k)|'), grid on subplot(313);stem (hertz(1:N),magX(1:N)), ylabel ('|X(k)|'), grid on
```

```
% File: ../ch10/demo10_1.m
% Author: Ming-Kai Chen, 7 Dec 2002
% Prupose: Gnerate a 20 Hz sinnsoid samples at 128 Hz.
clear;
N = 64;
T = 1/128;
k = 0:N-1;
x = \sin(2*pi*19*k*T);
X = fft(x);
magX = abs(X);
hertz = k*(1/(N*T));
sum(x-ifft(fft(x)))
figure;
subplot(311);plot (0:T:T*(N-1),x), ylabel ('x(kT)'), grid on
subplot(312);stem (k(1:N/2),magX(1:N/2)), ylabel (|X(k)|), grid on
subplot(313);stem (hertz(1:N/2),magX(1:N/2)), ylabel ('|X(k)|'), grid
on
```


% File: ../ch10/demo10_4.m

% Author: Ming-Kai Chen, 7 Dec 2002

% Prupose: FFT example

clear;

n=63; L=2;

t = -L: 2*L/n: L;

 $y = \exp(13*i*pi*t/L);$

z = fft(y);

p1 = angle(z);

p2 = unwrap(angle(y));

figure;

subplot(411);stem (t,y), ylabel ('y=fft(t)'), grid on subplot(412);stem (0:n,abs(z)), ylabel ('Abs'), grid on subplot(413);stem (0:n,p1), ylabel ('phase'), grid on subplot(414);stem (0:n,p2), ylabel ('phase'), grid on

% File: ../ch10/demo10_5.m

% Author: Ming-Kai Chen, 7 Dec 2002

% Prupose: FFT example

clear;

n=63; L=2;

t = -L: 2*L/n: L;

 $y = \sin(13*pi*t/L);$

z = fft(y);

p1 = angle(z);

p2 = unwrap(angle(y));

figure;

subplot(411);plot (t,y), ylabel ('y=fft(t)'), grid on subplot(412);plot (0:n,abs(z)), ylabel ('Abs'), grid on subplot(413);plot (0:n,p1), ylabel ('phase'), grid on subplot(414);plot (0:n,p2), ylabel ('phase'), grid on

% File: ../ch10/demo10_6.m

% Author: Ming-Kai Chen, 7 Dec 2002

% Prupose: FFT example

clear;

n=63; L=2;

t = -L: 2*L/n: L;

 $y = \cos(20*pi*t/L);$

z = fft(y);

p1 = angle(z);

p2 = unwrap(angle(y));

figure;

subplot(411);plot (t,y), ylabel ('y=fft(t)'), grid on subplot(412);plot (0:n,abs(z)), ylabel ('Abs'), grid on subplot(413);plot (0:n,p1), ylabel ('phase'), grid on subplot(414);plot (0:n,p2), ylabel ('phase'), grid on

● 實例演練一 (chap10_1.m)

本範例所取得的資料來源為中央氣象局網站(http://www.cwb.gov.tw/V3.0/index.htm), 選取 1999/09/21, 921 大地震中主震原始資料(ASCI)的草嶺站資料(CHN5,CHY080), 本筆資料相關資訊如下:

StationCode: CHY080

LocationLongitude(°E): 120.678
LocationLatitude (°N): 23.597
LocationElavation(M): 840.0
InstrumentKind: A900A(T362002.263)
StartTime: 1999/ 9/20 17:47: 2.0

SampleRate(Hz): 200 AmplitudeUnit: gal

RecordLength(sec): 90.0
DataSequence: U(+); N(+); E(+)

Data: 3F10.3

5.323 -13.757 -15.612

第十一章 向量微分

第十二章 向量積分

第十三章 偏微分方程

第十四章 常用工具箱

一. 符號工具箱

function	Meaning	Example
sym	宣告任一符號變數	sym('x');sym('d1')
syms	宣告諸多符號變數	syms a b c d3
pretty	一般數學化外形	$F=(1+x)^4/(1+x^2)+4/(1+x^2)$; pretty(F)
simplify	簡化浮式	simplify(F)
expand	展開數學式	$p=expand((1+x)^4)$
horner	巢狀排列	horner(p)
factor	分解數學式	factor(a^3+b^3-a*b-a*c-b*c+b^2+c^2)
simple	嘗式不同方法以簡化數學式,並	syms x y;y=sqrt($cos(x)+i*sin(x)$);
	傳回最簡化式子	simple(y)
subs	代換不同變數	subs(p,x,2)
collect	整理同次幕	a=(x+3)(x-4); collect(a)
double	將符號表示化簡為標準數值	double(1/4*pi)
vpa	取得任何十進位數目	vpa(sqrt(16),100)
taylor	泰勒式展開開始	taylor(exp(x),8)
gamma	求取 gamma()函數之加合	gamma(5)
symsum	指數函數的級數展開之加合	symsum(1/gamma(r),1,inf)
zeta	求取 Riemann Zeta 函數之加合	zeta(2)
solve	求取多項式的解	solve(x^3-7/2*x^2-17/2*x+5)
diff	對任一函數進行符號式(偏)微分	syms z,k; $f=k*cos(z^4)$; $diff(f,z)$
int	對函數進行符號式積分	syms u; $f=u^2*\cos(u)$; int(f)
dsolve	求取微分方程的解	$s=dsolve((1+t^2)*Dy+2*t*y=cos(t),t(0)=0)$
laplace	求取函數之拉式轉換	syms t; laplace(t^4)
ztrans	求取函數 Z 轉換	syms z n; ztrans(1/4^n)
fourier	求取傅立葉轉換值	y=fourier(cos(3*x))
ifourier	求取反傅立葉轉換值	z=ifourier(y)

符號式變數與表示法

```
\gg x=sym('x')
                                                           >> p=expand((1+x)^4)
\mathbf{x} =
                                                           x^4+4*x^3+6*x^2+4*x+1
\gg d1=sym('d1')
                                                           >> horner(p)
d1 =
                                                           ans =
                                                           1+(4+(6+(4+x)*x)*x)*x
>> syms a b c d3
                                                           >>  syms x;y= sqrt(cos(x)+i*sin(x));
>> 1/(x+1)
                                                           >> simple(y)
ans =
                                                           simplify:
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
1/(x+1)
>> syms x y
                                                           radsimp:
\Rightarrow d=[x+1 x^2 x-y;1/x 3*y/x 1/(1+x); 2-x x/4 3/2]
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
d =
                                                           combine(trig):
                 x^2,
        x+1,
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
ſ
                              x-y]
                 3*y/x, 1/(x+1)
        1/x,
                                                           factor:
        2-x,
                1/4*x,
                              3/21
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
[
>> d(2,2)
                                                            expand:
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
ans =
3*y/x
                                                           combine:
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
>> c = d(2,:)
c =
                                                           convert(exp):
       1/x, 3*y/x, 1/(x+1)]
[
                                                           \exp(i*x)^{(1/2)}
>> e=(1+x)^4/(1+x^2)+4/(1+x^2)
                                                           convert(sincos):
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
(x+1)^4/(1+x^2)+4/(1+x^2)
                                                           convert(tan):
                                                           ((1-\tan(1/2*x)^2)/(1+\tan(1/2*x)^2)+2*i*\tan(1/2*x)/(1+
>> pretty(e)
                                                           \tan(1/2*x)^2)^(1/2)
      (x + 1)
                    4
                                                            collect(x):
                                                           (\cos(x)+i*\sin(x))^{(1/2)}
                      2
            2
                                                           ans =
       1 + x
                  1 + x
                                                           \exp(i*x)^{(1/2)}
>> simplify(e)
ans =
x^2+4*x+5
```

```
>> syms u v w
                                                      \gg subs(f,x,3)
>> fmv = pi*v*w/(u+v+w)
                                                      ans =
                                                      9+2*v^2
fmv =
pi*v*w/(u+v+w)
                                                      >> subs(ans,y,2)
>> subs(fmv,u,2*v)
                                                      ans =
ans =
                                                          17
pi*v*w/(3*v+w)
                                                      >> f
>> subs(ans,v,1)
                                                      f =
                                                      3*x+2*y^2
ans =
                                                      \gg subs(f,y,x-3)
pi*w/(3+w)
>> subs(ans,w,3)
                                                      ans =
ans =
                                                      3*x+2*(x-3)^2
    1.5708
                                                      >> collect(ans)
>> syms x y
                                                      ans =
                                                      2*x^2-9*x+18
>> f=3x+2*y^2
                                                      >> factor(f)
>> f=3*x+2*y^2
f =
                                                      ans =
                                                      3*x+2*y^2
3*x+2*y^2
\gg subs(f,x,2*y)
ans =
6*y+2*y^2
```

● 符號計算的變數精準度 (vpa)

● 級數展開與加合 (raylor, gamma, zeta)

$$e^{0.1} = \sum_{r=1}^{\infty} \frac{0.1^{r-1}}{(r-1)!} \stackrel{\text{def}}{=} \sum_{r=1}^{\infty} \frac{0.1^{r-1}}{\Gamma(r)}$$

$$S = 1 + 2^2 + 3^2 + 4^2 + \dots + n^2$$

$$S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4_2} + \dots$$

Riemann Zeta 函数(zeta): $\xi(k) = 1 + \frac{1}{2^k} + \frac{1}{3^k} + \frac{1}{4^k} + \dots + \frac{1}{r^k} + \dots$

$$S = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$S = 1 + \frac{1}{1!} + \frac{1}{(2!)^2} + \frac{1}{(3!)^2} + \frac{1}{(4!)^2} + \dots$$

```
>> taylor(cos(exp(x)),4)
                                                                      >> factor(ans)
\cos(1)-\sin(1)*x+(-1/2*\cos(1)-1/2*\sin(1))*x^2-1/2*\cos(1)*x^3
                                                                      1/6*n*(n+1)*(2*n+1)
                                                                                                         >>
>> s = taylor(exp(x),8)
                                                                      symsum(r^3,1,n)
1+x+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5+1/720*x^6+1/5040*x^7
                                                                      1/4*(n+1)^4-1/2*(n+1)^3+1/4*(n+1)^2
>> syms r
                                                                      >> factor(ans)
                                                                      ans =
>> symsum((0.1)^{(r-1)/gamma(r),1,8)}
                                                                      1/4*n^2*(n+1)^2
55700614271/50400000000
                                                                      >> symsum(1/r^2,1,inf)
                                                                      ans =
>> double(ans)
ans =
                                                                      1/6*pi^2
    1.1052
                                                                      >> zeta(2)
>> double(subs(s,x,0.1))
                                                                      ans =
ans =
                                                                           1.6449
                                                                      >> zeta(3)
    1.1052
>> symsum(r*r,1,n)
                                                                      ans =
                                                                           1.2021
1/3*(n+1)^3-1/2*(n+1)^2+1/6*n+1/6
```

● 符號式矩陣運算

● 符號式的解方程式 (solve)

>> syms x	>> f3=x^3-7/(2*x^2)-17/(2*x)+5	>> x.^2+y.^2,x.^2-y.^2
$>> f1=x^2-4*x+3$	f3 =	ans =
f1 =	x^3-7/2/x^2-17/2/x+5	[a]
$x^2-4*x+3$	>>	[a]
>> solve(f1)	$[x,y]=$ solve('x^2+y^2=a','x^2-y^2=b')	[a]
ans =	x =	[a]
[1]	$[1/2*(2*b+2*a)^{(1/2)}]$	ans =
$>> f2=x^3-7/2*x^2-17/2*x+5$	$[-1/2*(2*b+2*a)^{(1/2)}]$	[b]
f2 =	$[1/2*(2*b+2*a)^{(1/2)}]$	[b]
x^3-7/2*x^2-17/2*x+5	$[-1/2*(2*b+2*a)^{(1/2)}]$	[b]
>> solve(f2)	y =	[b]
ans =	$[1/2*(-2*b+2*a)^{(1/2)}]$	
[5]	$[1/2*(-2*b+2*a)^{(1/2)}]$	
[1/2]	$[-1/2*(-2*b+2*a)^{(1/2)}]$	
[-2]	[-1/2*(-2*b+2*a)^(1/2)]	

● 符號式微分(diff)

$$f1 = x^{n}, \frac{df1}{dx} = nx^{n-1}, \quad \int f1dx = \frac{x^{n+1}}{n+1} + k$$

$$f2 = x^{-1}, \frac{df2}{dx} = -x^{-2}, \quad \int f2dx = \ln(x) + k$$

$$f3 = \ln(x), \frac{df3}{dx} = nx^{n-1}, \quad \int f3dx = x\ln(x) - x + k$$

$$f4 = e^{a}x$$

$$f5 = e^{ax}$$

$$f6 = a^{x}$$

$$f7 = \sin(ax)$$

$$f8 = \cos(ax)$$

$$f9 = \sin^{-1}(\frac{x}{a})$$

$$f10 = \sinh(ax)$$

>> syms x n	>> syms e a	>> diff(f7)
>> f1=x^n	>> f4=e^a*x	ans =
f1 =	f4 =	cos(a*x)*a
x^n	e^a*x	>> f8=cos(a*x)
>> diff(f1)	>> diff(f4)	f8 =
ans =	ans =	cos(a*x)
x^n*n/x .	e^a	>> diff(f8)
>> f2=x^-1	>> f5=e^(a*x)	ans =
f2 =	f5 =	-sin(a*x)*a
1/x	e^(a*x)	>> f9=asin(x/a)
>> diff(f2)	>> diff(f5)	f9 =
ans =	ans =	asin(x/a)
-1/x^2	$e^{(a*x)*a*log(e)}$	>> diff(f9)
>> f3 = log(x)	>> f6=a^x	ans =
f3 =	f6 =	1/a/(1-x^2/a^2)^(1/2)
log(x)	a^x	\gg f10=sinh(a*x)
>> diff(f3)	>> diff(f6)	f10 =
ans =	ans =	sinh(a*x)
1/x	a^x*log(a)	>> diff(f10)
	\gg f7=sin(a*x)	ans =
	f7 =	cosh(a*x)*a
	sin(a*x)	

● 符號式積分 (int)

>> int(f1)	>> int(f4)	>> int(f7)
ans =	ans =	ans =
$x^{(n+1)/(n+1)}$	1/2*e^a*x^2	$-1/a*\cos(a*x)$
>> int(f2)	>> int(f5)	>> int(f8)
ans =	ans =	ans =
log(x)	$1/a/\log(e)*e^{(a*x)}$	sin(a*x)/a
>> int(f3)	>> pretty(ans)	>> int(f9)
ans =	(a x)	ans =
x*log(x)-x	e	$a*(x/a*asin(x/a)+(1-x^2/a^2)^(1/2))$
		>> int(f10)
	a log(e)	ans =
	>> int(f6)	$1/a*\cosh(a*x)$
	ans =	
	1/log(a)*a^x	

● 符號式偏微分 (diff)

```
>> syms u v w
>> fmv=u*v*w/(u+v+w)
fmv =
u*v*w/(u+v+w)
>> d=[diff(fmv,u) diff(fmv,v) diff(fmv,w)]
[\ v^*w/(u+v+w)-u^*v^*w/(u+v+w)^{\wedge}2,\ u^*w/(u+v+w)-u^*v^*w/(u+v+w)^{\wedge}2,\ u^*v/(u+v+w)-u^*v^*w/(u+v+w)^{\wedge}2]
v/(u+v+w) - u * v/(u+v+w)^2 - v * w/(u+v+w)^2 + 2 * u * v * w/(u+v+w)^3
>> pretty(ans)
                                                                                          2
                                                                                                                                                                          2
                                                                                                                                                                                                                                                                      3
              u + v + w
                                                                                    (u+v+w) \qquad \qquad (u+v+w)
                                                                                                                                                                                                                                                          (\mathbf{u} + \mathbf{v} + \mathbf{w})
\gg diff(d(2),w)
ans =
u/(u+v+w)-u*w/(u+v+w)^2-u*v/(u+v+w)^2+2*u*v*w/(u+v+w)^3
>> diff(ans,u)
1/(u+v+w)-u/(u+v+w)^2-w/(u+v+w)^2+2*u*w/(u+v+w)^3-v/(u+v+w)^2+2*u*v/(u+v+w)^3+2*v*w/(u+v+w)^3-v/(u+v+w)^2+2*u*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^3+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*v*w/(u+v+w)^4+2*
6*u*v*w/(u+v+w)^4
```

● 符號式解常微分方程 (dsolve)

函數 dsolve 解微分方程式的一般呼叫如下:

sol = dsolve('de1, de2, de3,, den, in1, in2, in3, ..., inn')

其中參數 de1, de2, de3,den 代表各別微分方程,需使用符號式變數;標準的 matlab 運算元與代表一階、二階、及高階的微分運算子為 D1, D2, D3,Dn,以符號式表示;初值設定條件為 in1, in2, in3,inn,代表微分方程的初值條件,若應變數為 y,初始條件為 y(0) = 1, Dy(0) = 0, D2y(3) = 9.1,表示 t=0 時,y 值為 1, $dy/dt = 0, d^2/dt^2 = 9.1$ 。值得注意的是 matlab 最大接受 12 個輸入參數。

下面舉一些微分方程為例,並執行之!

$$(1+t^2)\frac{dy}{dt} + 2ty = \cos t$$
。
$$\frac{d^2y}{dx^2} + y = \cos 2x , y(0) = 0$$
。
$$\frac{d^4y}{dt^4} = y , \text{ when } x = 0$$
 時,則 $y = 0, \frac{dy}{dx} = 1$ 。

```
>> syms t y
>> s = dsolve('(1+t^2)*Dy+2*t*y=cos(t)')
(\sin(t)+C1)/(1+t^2)
>> pretty(s)
       sin(t) + C1
                2
          1 + t
>> s = dsolve('(1+t^2)*Dy+2*t*y=cos(t),y(0)=0')
1/(1+t^2)*\sin(t)
>> pretty(s)
       sin(t)
       1 + t
>> dsolve('D2y+y=cos(2*x), Dy(0)=1, y(0)=0', 'x')
(1/6*\cos(3*x)-1/2*\cos(x))*\cos(x)+(1/2*\sin(x)+1/6*\sin(3*x))*\sin(x)+1/3*\cos(x)+\sin(x)
>> simplify(ans)
-2/3*\cos(x)^2+1/3*\cos(x)+\sin(x)+1/3
```

$$\frac{dy}{dx} = \frac{e^{-x}}{x}$$
, when $x = 1$ 時,則 $y = 1$ 。
$$\frac{dy}{dx} = \cos(\sin x)$$
。
$$\frac{d^2x}{dt^2} + \frac{a}{b}\sin t = 0$$
, when $t = 0$ 時,則 $x = 1, \frac{dx}{dt} = 0$ 。

>> vpa('Ei(1,1)',10)
dsolve('D4y=y,y(pi/2)=1,Dy(pi/2)=0,D2y(pi/2)=-1,D3y(pi/2)=0')
ans =
ans =
.2193839344

>> dsolve('Dy=exp(-x)/x,y(1)=1','x')
ans =
Int(cos(sin(x)),x)+C1

-Ei(1,x)+Ei(1,1)+1

>> x=dsolve('D2x+g*sin(t)/L,x(0)=1,Dx(0)=0')
x =
(g*sin(t)-g*t+L)/L

$$\frac{du}{dt} = -\frac{a}{b}\sin t$$

$$\frac{dx}{dt} = u$$

>> [u x]=dsolve('Du+g*sin(t)/L=0,Dx=u,x(0)=1,u(0)=0')	>> s=dsolve('Du+g*sin(t)/L=0,Dx=u,x(0)=1,u(0)=0')
u =	s =
$(-g+g*\cos(t))/L$	u: [1x1 sym]
$\mathbf{x} =$	x: [1x1 sym]
(g*sin(t)-g*t+L)/L	>> s.u
	ans =
	(-g+g*cos(t))/L
	>> s.x
	ans =
	$(g*\sin(t)-g*t+L)/L$

- 符號式拉普拉斯轉換 (laplace)
- 符號式 Z 轉換 (ztrans,iztrans)

● 符號式傅立葉轉換 (fourier,ifourier)

```
>> syms x
>> y=fourier(cos(3*x))
y =
pi*Dirac(w-3)+pi*Dirac(w+3)
>> z=ifourier(y)
z =
1/2*exp(3*i*x)+1/2*exp(-3*i*x)
>> simplify(z)
ans =
cos(3*x)
```

- 二. 地圖工具箱
- 三. 虛擬實境工具箱