Coeficiente de Dilatación Térmica Práctica 6

Misael Iván Macías Márquez misaelmacias@ciencias.unam.mx

Facultad de Ciencias, UNAM

1 de Mayo de 2022 Semestre 2022-2

Resumen: Se determino el coeficiente de dilatación térmico lineal para el cobre, hierro y aluminio usando datos recabados experimentalmente por 2 grupos de alumnos, Los coeficientes de dilatación térmicos para el cobre, hierro y aluminio obtenidos son $(32.2 \pm 13) \times 10^6 \frac{1}{\circ C}$, $(47 \pm 15) \times 10^6 \frac{1}{\circ C}$ y $(16.3 \pm 4) \times 10^6 \frac{1}{\circ C}$ respectivamente, con discrepancias de 0,09, 0,15 y 1,78 veces sus incertidumbres absolutas.

Introducción

Cuando aumenta la temperatura, los átomos vibran con una amplitud mayor, y la distancia promedio entre los átomos aumenta. (Véase el estudio de la base microscópica de la dilatación térmica al final de esta sección.) Esto conduce a una dilatación de todo el cuerpo sólido. El cambio en cualquier dimensión lineal del sólido, tal como su longitud, su ancho, o su espesor, se llama dilatación lineal. Si la longitud de esta dimensión lineal es L, el cambio de temperatura ΔT causa un cambio de longitud ΔL . Por medio de la experimentación hallamos que, si ΔT es lo suficientemente pequeña, este cambio de longitud ΔL es proporcional al cambio de temperatura ΔT y a la longitud original L. Por lo tanto, podemos escribir[1]

$$\Delta L = \alpha(L\Delta T) \tag{1}$$

donde α es el coeficiente de dilatación lineal[1].

Desarrollo experimental

Figura 1: Diagrama del montaje experimental.

Figura 2: Material y arreglo experimental: (1) generador de vapor, (2) dilatómetro, (3) multímetro, (4) termistor y (5) manguera. Montaje para el caso de que el dilatómetro tenga termistor

La práctica fue realizada por otro grupo de estudiantes, su desarrollo experimental es el siguiente:

- 1. Con ayuda del flexómetro medir la longitud inicial de las varillas.
- 2. Conectar el dilatómetro con termistor con ayuda de la manguera al generador de vapor.
- 3. En el otro extremo del dilatómetro se conecta una manguera para que por ella salga el vapor que entra del debido al generador, figura (1).
- 4. Llenar generador de vapor con agua hasta 3/4 partes de su capacidad.
- 5. Colocar el generador de vapor sobre la parrilla y calentarlo.

- 6. . Pegar la varilla al termistor del dilatómetro con ayuda de la tuerca.
- Conectar los cables banana banana del dilatómetro al multímetro.
- 8. Ajustar el multímetro en $K\Omega$ para posteriormente hacer la conversión a $^{\circ}C$ para poder conocer la temperatura de cada varilla, figura (2).
- 9. Una vez generado el vapor, este pasara a través de la manguera hacia la varilla (lo cual provocara que se comience a dilatar). Usando el dilatómetro medir la longitud de dilatación a cada ΔT .

Resultados y Análisis

Cobre

Figura 3: Gráfica de ecuación 1 linealizada y ajustada para el cobre del grupo A.

El grupo A nos da un coeficiente de dilatación lineal para el cobre de:

$$\alpha_c = (55 \pm 12) \times 10^6 \frac{1}{^{\circ}C}$$

Figura 4: Gráfica de ecuación 1 linealizada y ajustada para el cobre del grupo B.

El grupo B nos da un coeficiente de dilatación lineal para el cobre de:

$$\alpha_c = (9.4 \pm 4.2) \times 10^6 \frac{1}{^{\circ}C}$$

Promediando los resultados de ambos grupos y sumando por cuadraturas sus incertidumbres, nos da un resultado final de:

$$\alpha_c = (32.2 \pm 13) \times 10^6 \frac{1}{^{\circ}C}$$

El coeficiente de dilatación lineal para el cobre reportado en la literatura es $33.4 \times 10^6 \frac{1}{\circ C}$.

Aluminio

Figura 5: Gráfica de ecuación 1 linealizada y ajustada para el aluminio del grupo A.

El grupo A nos da un coeficiente de dilatación lineal para el aluminio de:

$$\alpha_a = (72 \pm 15) \times 10^6 \frac{1}{^{\circ}C}$$

Figura 6: Gráfica de ecuación 1 linealizada y ajustada para el aluminio del grupo B.

El grupo B nos da un coeficiente de dilatación lineal para el aluminio de:

$$\alpha_a = (21 \pm 3) \times 10^6 \frac{1}{^{\circ}C}$$

Promediando los resultados de ambos grupos y sumando por cuadraturas sus incertidumbres, nos da un resultado final de:

$$\alpha_a = (47 \pm 15) \times 10^6 \frac{1}{^{\circ}C}$$

El coeficiente de dilatación lineal para el aluminio reportado en la literatura es $44.8 \times 10^6 \frac{1}{\circ C}$.

Hierro

Figura 7: Gráfica de ecuación 1 linealizada y ajustada para el hierro del grupo A.

EL grupo A nos da un coeficiente de dilatación lineal para el hierro de:

$$\alpha_h = (23 \pm 3) \times 10^6 \frac{1}{^{\circ}C}$$

Figura 8: Gráfica de ecuación 1 linealizada y ajustada para el hierro del grupo B.

El grupo B nos da un coeficiente de dilatación lineal para el hierro de:

$$\alpha_h = (9.6 \pm 2.5) \times 10^6 \frac{1}{\circ C}$$

Promediando los resultados de ambos grupos y sumando por cuadraturas sus incertidumbres, nos da un resultado final de:

$$\alpha_h = (16.3 \pm 4) \times 10^6 \frac{1}{^{\circ}C}$$

El coeficiente de dilatación lineal para el hierro reportado en la literatura es $23.4 \times 10^6 \frac{1}{\circ C}$.

Conclusiones

Los coeficientes de dilatación obtenidos para el grupo A y grupo B no fueron exactos pero al promediar los mismos estos errores se compensaron y los coeficientes de dilatación correspondieron de mejor manera a los reportados en la literatura. Las discrepancias para cada coeficiente de dilatación obtenidos son 0,09, 0,15 y 1,78 veces sus incertidumbres absolutas para el cobre. aluminio y hierro respectivamente, que al ser menores a 2 se pueden considerar resultados satisfactorios.

Referencias

- [1] Resnick, R., Halliday, D., Krane, K. (2002a). Física. Vol. 1(5ta Edición) (5.a ed.). Grupo Editorial Patria.
- [2] https://moodle.fciencias.unam.mx/cursos/pluginfile.php/ 151806/modresource/content/1/P6 %20Coeficiente %20de %20dilataci %C3 %B3n.pdf

Apéndices

Tablas

T (°C)	Δ L (mm)	Δ T (°C)
25	0	0
30	0.45	5
35	0.6	10
40	0.65	15
45	0.75	20
50	0.8	25
55	0.95	30
60	1	35
65	1.7	40
70	2.5	45

Cuadro 1: Medidas obtenidas para la barra de cobre.

T (°C)	Δ L (mm)	Δ T (°C)
25	0	0
30	0.9	5
35	1.1	10
40	1.15	15
45	1.35	20
50	1.49	25
55	1.6	30
60	2.1	35
65	3.2	40

Cuadro 2: Medidas obtenidas para la barra de aluminio.

T (°C)	Δ L (mm)	Δ T (°C)
25	0	0
30	0.3	5
35	0.3	10
40	0.45	15
45	0.5	20
50	0.6	25
55	0.65	30
60	0.65	35
65	0.7	40
70	0.9	45
75	1.2	50

Cuadro 3: Medidas obtenidas para la barra de hierro.

$\Delta T \pm 0.5$	$\Delta L \pm \delta$
$^{o}\mathrm{C}$	$^{\mathrm{cm}}$
0	0
2	0.003
3	0.01
28	0.038
10	0.041
13	0.042
16	0.043
21	0.044
31	0.05
32	0.051
33	0.052
35	0.057
36	0.061
45	0.107
	°C 0 2 3 28 10 13 16 21 31 32 33 35 36

Cuadro 5: Medidas obtenidas para la barra de aluminio.

Т	A77 1 0 F	A T S
Temperatura	$\Delta T \pm 0.5$	$\Delta L \pm \delta$
$^{o}\mathrm{C}$	°C	$^{ m cm}$
23	0	0
38	15	0.002
48	25	0.005
53	30	0.006
56	33	0.008
59	36	0.01
60	37	0.012
61	38	0.015
62	39	0.025
63	40	0.05

Cuadro 4: Medidas obtenidas para la barra de cobre. Cuadro 6: Medidas obtenidas para la barra de hierro.

Figura 9: Caption

Dilatómetro

Es un instrumento que sirve para medir el alargamiento que experimenta un cuerpo al incrementar la temperatura. La medición ayuda a encontrar el coeficiente de contracción o dilatación de un material en particular, a diferentes temperaturas.

Base principal: Su función es servir de base a los soportes fijo, móvil y soporte indicador de carátula, así como también de la base intermedia. Se encuentra soportada en cuatro tornillos.

Base intermedia: Su función es sostener el soporte del indicador de carátula y el soporte móvil. La base intermedia va atornillada a la base principal, además tiene un canal por donde se desliza el soporte móvil.

Soporte fijo: Su función es servir de soporte a la probeta cuando se va a realizar la medición. Para evitar la transferencia de 7 Laboratorio de Producción. calor por parte de la probeta en el soporte, se aloja una cerámica cilíndrica que está adherida en su interior.

Soporte móvil: Al igual que el soporte fijo, este evita la transferencia de calor mediante una cerámica adherida con un adhesivo refractario dentro del soporte, la cual sirve de apoyo a la probeta. A los lados se encuentran un par de tornillos los cuales reciben los resortes que le ayudan a dar empuje para registrar la medición.

Soporte indicador de carátula: Su función es alojar el indicador de carátula para registrar la medición de la contracción del material.

Indicador de carátula:Instrumento utilizado para medir la contracción longitudinal de la probeta a medida que se enfría. Está dividida en centésimas de milímetro. Este aparato tiene dos relojes; el exterior es el que indica la contracción de la longitud, y el interior, es el que indica la cantidad de vueltas que da el reloj exterior. Cada división del reloj interior (1 mm) corresponde a 100 divisiones del reloj exterior.

Probeta:Son tubos o barras sólidas con los cuales hacemos las prácticas del laboratorio del dilatómetro.