Pollen MSE

May 31, 2019

```
In [31]: import warnings
         warnings.filterwarnings('ignore')
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set(font='IPAGothic')
         import numpy as np
         import statsmodels.api as sm
         from sklearn.metrics import mean_squared_error
In [7]: data = pd.read_excel('cleaned_data/Pollen_full_data_Eve.xlsx', parse_dates=['date_time']
In [9]: data = data['pollenGlobalIndex']
In [23]: print(data.index.min(), data.index.max())
2017-09-06 14:00:00 2019-05-20 11:00:00
In [89]: a = data['2017-09-06 15:00:00':]
In [99]: print(data.index.min(), data.index.max())
2017-09-06 15:00:00 2019-05-20 11:00:00
In [90]: a.head()
Out[90]: date_time
        2017-09-06 15:00:00
         2017-09-06 16:00:00
         2017-09-06 17:00:00
         2017-09-06 18:00:00
         2017-09-06 19:00:00
         Name: pollenGlobalIndex, dtype: int64
In [91]: a.count()
```

Out[91]: 33234

```
In [85]: data.count()
Out[85]: 33235
In [92]: data = a
In [93]: data.count()
Out [93]: 33234
In [98]: data[16617:]
Out[98]: date_time
                                  9
         2018-03-05 17:00:00
         2018-03-05 18:00:00
                                  9
         2018-03-05 19:00:00
                                 10
         2018-03-05 20:00:00
                                 10
         2018-03-05 21:00:00
                                 10
         2018-03-05 22:00:00
                                 10
         2018-03-05 23:00:00
                                 10
         2018-03-06 00:00:00
                                  9
         2018-03-06 01:00:00
                                  9
         2018-03-06 02:00:00
                                  9
         2018-03-06 03:00:00
                                 10
         2018-03-06 04:00:00
                                  9
         2018-03-06 05:00:00
                                  9
         2018-03-06 06:00:00
                                  9
         2018-03-06 07:00:00
                                 10
         2018-03-06 08:00:00
                                  9
         2018-03-06 09:00:00
                                  9
         2018-03-06 10:00:00
                                  9
         2018-03-06 11:00:00
                                  9
         2018-03-06 12:00:00
                                  9
         2018-03-06 13:00:00
                                  9
         2018-03-06 14:00:00
                                  9
         2018-03-06 15:00:00
                                 10
         2018-03-06 16:00:00
                                  9
         2018-03-06 17:00:00
                                 10
         2018-03-06 18:00:00
                                  9
         2018-03-06 19:00:00
                                  9
         2018-03-06 20:00:00
                                  9
         2018-03-06 21:00:00
                                  9
         2018-03-06 22:00:00
                                  9
                                 . .
         2017-10-26 12:00:00
                                  1
         2017-11-06 16:00:00
                                  1
         2017-11-07 12:00:00
                                  1
         2017-11-07 13:00:00
                                  1
         2017-11-07 14:00:00
                                  1
```

```
2017-11-16 15:00:00
         2017-11-16 16:00:00
                                 1
         2017-11-16 17:00:00
                                 1
         2017-11-16 18:00:00
                                 3
         2017-11-16 19:00:00
                                 3
         2017-11-16 20:00:00
                                 3
         2017-11-16 21:00:00
                                 3
         2017-11-16 22:00:00
                                 3
         2017-11-16 23:00:00
         2017-11-17 00:00:00
                                 1
         2017-11-17 01:00:00
                                 1
         2017-11-17 02:00:00
                                 1
         2017-11-17 03:00:00
                                 1
         2017-11-17 04:00:00
         2017-11-17 05:00:00
         2017-11-17 06:00:00
         2017-11-17 07:00:00
                                 1
         2017-11-17 08:00:00
                                 1
         2017-11-17 09:00:00
                                 1
         2017-11-17 10:00:00
                                 1
         2017-11-17 11:00:00
                                 1
         2017-11-17 13:00:00
         2017-11-17 14:00:00
         2017-11-17 15:00:00
                                 1
         2017-11-17 16:00:00
                                 1
         Name: pollenGlobalIndex, Length: 16617, dtype: int64
In [94]: 33234/2
Out[94]: 16617.0
In [70]: data['2019-05-18 15:00:00']
Out[70]: date_time
         2019-05-18 15:00:00
         Name: pollenGlobalIndex, dtype: int64
In [100]: tr_start, tr_end = '2017-09-06 15:00:00', '2018-03-05 17:00:00'
          te_start, te_end = '2018-03-05 18:00:00', '2019-05-20 11:00:00'
In [101]: tra = data[tr_start:tr_end].dropna()
          tes = data[te_start:te_end].dropna()
In [103]: tra.count()
Out[103]: 22411
In [104]: tes.count()
Out[104]: 22411
```

```
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
```

In [28]: resDiff = sm.tsa.arma_order_select_ic(tra, max_ar=7, max_ma=7, ic='aic', trend='c')

print('ARMA(p,q) =',resDiff['aic_min_order'],'is the best.')

```
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:488: HessianInversionWar
  'available', HessianInversionWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning:
  "Check mle_retvals", ConvergenceWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:488: HessianInversionWar
  'available', HessianInversionWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning:
  "Check mle_retvals", ConvergenceWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
```

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

' ignored when e.g. forecasting.', ValueWarning)

```
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:488: HessianInversionWar
  'available', HessianInversionWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:488: HessianInversionWar
  'available', HessianInversionWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning:
  "Check mle_retvals", ConvergenceWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning:
  "Check mle_retvals", ConvergenceWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
```

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir 'ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

 $/home/omar/.local/lib/python 3.5/site-packages/stats models/tsa/base/tsa_model.py: 225: \ Value Warning and the substitution of the substitution$

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir ' ignored when e.g. forecasting.', ValueWarning)

ARMA(p,q) = (7, 7) is the best.

Parameters

In [30]: arima = sm.tsa.statespace.SARIMAX(tra,order=(7,1,7),seasonal_order=(0,0,0,0), enforce_stationarity=False, enforce_invertibility=False arima.summary()

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir ' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: "Check mle_retvals", ConvergenceWarning)

Out[30]: <class 'statsmodels.iolib.summary.Summary'> 11 11 11

Statespace Model Results

______ Dep. Variable: pollenGlobalIndex No. Observations: 30344 Model: SARIMAX(7, 1, 7)Log Likelihood -45555.644 Date: Thu, 30 May 2019 AIC 91141.288 22:38:07 Time: BIC 91266.089 HQIC 91181.311 Sample:

- 30344

Covariance Type: opg

=======	=========	========	:=======	========	========	=======
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.3179	0.011	-29.973	0.000	-0.339	-0.297
ar.L2	-0.1826	0.009	-19.276	0.000	-0.201	-0.164
ar.L3	0.1550	0.010	14.772	0.000	0.134	0.176
ar.L4	-0.2773	0.011	-25.041	0.000	-0.299	-0.256
ar.L5	-0.1478	0.008	-17.755	0.000	-0.164	-0.131
ar.L6	-0.2519	0.007	-34.589	0.000	-0.266	-0.238
ar.L7	0.6020	0.008	73.819	0.000	0.586	0.618
$\mathtt{ma.L1}$	0.1330	0.010	13.464	0.000	0.114	0.152
$\mathtt{ma.L2}$	0.0894	0.009	10.286	0.000	0.072	0.106
${\tt ma.L3}$	-0.3877	0.009	-42.449	0.000	-0.406	-0.370
$\mathtt{ma.L4}$	0.1502	0.010	14.974	0.000	0.131	0.170

$\mathtt{ma.L5}$	0.0361	0.008	4.311	0.000	0.020	0.052
$\mathtt{ma.L6}$	0.0083	0.009	0.944	0.345	-0.009	0.026
$\mathtt{ma.L7}$	-0.9067	0.008	-107.486	0.000	-0.923	-0.890
sigma2	1.0554	0.011	92.209	0.000	1.033	1.078
======================================			======= 5985.72	Jarque-Bera	375630.19	
Prob(Q):			0.00	Prob(JB):	0.00	
Heteroskedasticity (H):			0.93	Skew:	0.40	
<pre>Prob(H) (two-sided):</pre>			0.00	Kurtosis:	20.22	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

pred = arima.predict(tr_end,te_end, dynamic=True)[1:] print('ARIMA model
MSE:{}'.format(mean_squared_error(tes,pred)))

ARIMA model MSE:29.15488319030185