Tarea I - Optimización y Control

Solución 1. Sea $P = \{J(y) \mid y \in C\}$, donde $C = \{y \in C^1 \mid y(0) = 0, y(1) = 1\}$ y

$$J(y) = \int_{1}^{\frac{1}{2}} |y(x)| dx + \int_{\frac{1}{2}}^{1} |y'(x)| dx$$

- 1. Notemos que el conjunto C es no vació, pues la función $\mathrm{Id}_{[0,1]}$ cumple las condiciones para pertenecer a este. Luego podemos evaluar el funcional en $\mathrm{Id}_{[0,1]}$ y nos dará un numero pues estamos integrando una función continua sobre un compacto. Notemos que $|y(x)| \geq 0$ e $|y'(x)| \geq 0$ para todo $y \in C$ y $x \in [0,1]$, por lo tanto tenemos que $\forall y \in C, J(y) \geq 0$. Dado que mostramos que el conjunto P es no vacío y tiene una cota inferior, existe ínf $P \in \mathbb{R}$ por axioma del supremo e ínfimo.
- 2. Dado que en el paso anterior mostramos que 0 es un cota inferior para el conjunto P y el ínfimo es la mayor de las cotas superiores tenemos que

$$0 \leq \inf P$$

3. La intuición nos dice que una función que minimiza J que esta fuera del conjunto C es la indicatriz del conjunto $[\frac{1}{2},1]$, construyamos una sucesión de funciones que la aproximen desde C. Consideremos la siguiente sucesión para $n \geq 3$

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, \frac{1}{2} - \frac{1}{n}) \\ P_n(x) & \text{si } x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \\ 1 & \text{si } x \in (\frac{1}{2}, 1] \end{cases}$$

Donde P_n sera un polinomio que a de cumplir con las siguientes condiciones

$$P_n(\frac{1}{2}) = 1$$

$$P'_n(\frac{1}{2}) = 0$$

$$P_n(\frac{1}{2} - \frac{1}{n}) = 0$$

$$P'_n(\frac{1}{2} - \frac{1}{n}) = 0$$

Pues si P_n cumple con esas cuatro condiciones, entonces $f_n \in C$, dado que están de acuerdo en la derivada en los puntos de pegado y en el valor de la función también. Notemos que por construcción $f_n(0) = 0$ y $f_n(1) = 1$.

Dado que tenemos 4 condiciones sobre P_n , un polinomio de grado 3 sera suficiente. Consideraremos $P_n(x) = a(x-\frac{1}{2})^3 + b(x-\frac{1}{2})^2 + c(x-\frac{1}{2}) + d$. Luego las cuatro condiciones se transforman en lo siguiente

$$d = 1$$

$$c = 0$$

$$-\frac{a}{n^3} + \frac{b}{n^2} + 1 = 0$$

$$\frac{3a}{n^2} - \frac{2b}{n} = 0$$

Resolviendo el sistema llegamos al polinomio P_n , el cual por construcción satisface todo lo que necesitábamos.

$$P_n(x) = -2n^3(x - \frac{1}{2})^3 - 3n^2(x - \frac{1}{2})^2 + 1$$

Luego $f_n \in C$. Probemos que en efecto $(f_n)_{n\geq 3}$ es una sucesión minimizante. Notemos que

$$J(f_n) = \int_0^{\frac{1}{2}} |f_n(x)| dx + \int_{\frac{1}{2}}^1 |f_n(x)'| dx$$
$$= \int_0^{\frac{1}{2} - \frac{1}{n}} 0 dx + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx + \int_{\frac{1}{2}}^1 0 dx$$
$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx$$

Dado que P_n' es una cuadrática con coeficiente líder negativo, y sabemos que $P_n'(\frac{1}{2}-\frac{1}{n})=0=P_n'(\frac{1}{2})$, tenemos que $\forall x\in[\frac{1}{2}-\frac{1}{n},\frac{1}{2}],P_n'(x)\geq0$, es decir P_n es creciente en ese intervalo, dado que $P_n(\frac{1}{2}-\frac{1}{n})=0$, tenemos que

$$\forall x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}], P_n(x) \ge 0$$

Luego seguimos con el calculo

$$J(f_n) = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} P_n(x) dx$$

$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} -2n^3 (x - \frac{1}{2})^3 - 3n^2 (x - \frac{1}{2})^2 + 1 dx$$

$$= -\frac{1}{2} n^3 (x - \frac{1}{2})^4 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} - n^2 (x - \frac{1}{2})^3 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} + \frac{1}{n}$$

$$= \frac{1}{2n} - \frac{1}{n} + \frac{1}{n}$$

$$= \frac{1}{2n}$$

Semestre: 2025-1

Por lo tanto obtenemos que

$$\lim_{n \to \infty} J(f_n) = 0$$

Es decir $(f_n)_{n\geq 3}$ es una sucesión minimizante.

4. No, no existe $\overline{y} \in C$ que minimice J, si suponemos que existe, entonces

$$J(\overline{y}) = 0$$

Pues existe la sucesión minimizante a 0 que construimos en el paso anterior y por tanto demostramos que ínf P=0. Dado que $J(\overline{y})$ es la suma de dos cantidades positivas y tiene que ser igual a 0, necesariamente cada una a de ser 0.

Notemos que

$$\int_0^{\frac{1}{2}} |\overline{y}(x)| dx = 0 \implies \forall x \in [0, \frac{1}{2}], |\overline{y}(x)| = 0 \implies \forall x \in [0, \frac{1}{2}], \overline{y}(x) = 0$$

Pues la cantidad de adentro es positiva y por tanto 0 c.t.p. y por continuidad, en todas partes. Por lo tanto tenemos que $\overline{y}|_{[0,\frac{1}{2}]}\equiv 0$. Análogamente, dado que estamos suponiendo $\overline{y}\in C, \overline{y}'$ es continua y por tanto su valor absoluto igual. Por el argumento anterior $\overline{y}'|_{[\frac{1}{2},1]}\equiv 0$, por lo tanto $\overline{y}|_{[\frac{1}{2},1]}\equiv c$ para algún $c\in\mathbb{R}$, dado que $\overline{y}(1)=1\implies c=1$. Esto es una contradicción pues entonces $0=\overline{y}(\frac{1}{2})=1$.

Solución 2. Usaremos el lema de Fermat. Supongamos que $y \in Y$ satisface el problema de minimización. Consideraremos una perturbación $h \in \mathcal{C}_0^2([0,L])$. Luego tenemos que

$$\lim_{\varepsilon \to 0} \frac{J(y+\varepsilon h) - J(y)}{h} = \frac{d}{d\varepsilon} J(y+\varepsilon h) \big|_{\varepsilon = 0} = 0$$

Hagamos el calculo

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \frac{d}{d\varepsilon}(\frac{1}{2}\int_0^L EI(y''(x)+\varepsilon h''(x))^2 dx - \int_0^L q(x)(y(x)+\varepsilon h(x)))$$

Dada la regularidad de las funciones con las que estamos trabajando, podemos entrar la derivada dentro de las integrales

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \int_0^L EI(y''(x) + \varepsilon h''(x)) \cdot h''(x)dx - \int_0^L q(x)h(x)dx$$
$$= \int_0^L -q(x)h(x) + EI(y''(x) + \varepsilon h''(x))h''(x)dx$$

Semestre: 2025-1

Luego tenemos que

$$\int_0^L -q(x)h(x) + EIy''(x)h''(x)dx = \frac{d}{d\varepsilon}J(y+\varepsilon h)|_{\varepsilon=0} = 0$$

Considerando $\alpha(x) = -q(x)$ y $\beta(x) = EIy''(x)$ podemos usar el lema, pues q es continua por hipótesis e y es continua pues estamos suponiendo que resuelve el problema. Por lo tanto concluimos que $EIy''(x) \in \mathcal{C}^2([0,L])$ lo que implica que $y \in \mathcal{C}^4([0,L])$. Tenemos entonces que

$$y^{(4)}(x) = \frac{q(x)}{EI}$$

Luego dado que la viga esta apoyada en el punto 0 y L, la variación angular en los puntos de contacto de la viga debe ser 0, pues no debería haber defleccion en los puntos de apoyo. Es decir y debe satisfacer lo siguiente

$$\begin{cases} y^{(4)}(x) = \frac{q(x)}{EI} \\ y(0) = 0 \\ y(L) = 0 \\ y''(0) = 0 \\ y''(L) = 0 \end{cases}$$

Solución 3. 1. Verifiquemos que $L(a,b) = k_1(k_2a - b - k_3)^2$ es convexa. Notemos que al ser de clase \mathcal{C}^2 , solo es necesario calcular una de las derivadas cruzadas, pues coinciden. Calculemos las derivadas

$$\partial_a L(a,b) = 2k_1(k_2a - b - k_3) \cdot k_2 \implies \partial_{aa} L(a,b) = 2k_1k_2^2$$

$$\partial_b L(a,b) = -2k_1(k_2a - b - k_3) \implies \partial_{bb} = 2k_1$$

$$\partial_{ab} L(a,b) = -2k_1k_2$$

Por lo tanto tenemos que el diferencial de L se ve de la siguiente forma

$$DL(a,b) = \begin{bmatrix} 2k_1k_2^2 & -2k_1k_2 \\ -2k_1k_2 & 2k_1 \end{bmatrix}$$

Aplicando el criterio de Sylvester tenemos que el primer subdeterminante es $2k_1k_2^2 \ge 0$ y el determinante de la matriz completa es

$$\det DL(a,b) = 4k_1^2k_2^2 - 4k_1^2k_2^2 = 0$$

Por lo tanto es una matriz definida positiva, lo que implica que la función es convexa.

2. El problema no tiene solución en C, consideremos el siguiente problema de valor inicial para $\lambda \in \mathbb{N}$

$$\begin{cases} k_2 y - y' - k_3 = \lambda \\ y(0) = y_0 \end{cases}$$

Semestre: 2025-1

Resolveremos este problema de valor inicial por metodos elementales, notemos que es de variables separables

$$\frac{y'}{k_2y - k_3 - \lambda} = 1$$

Integrando obtenemos que

$$\frac{1}{k_2}\ln(k_2y - k_3 - \lambda) = x + C_1 \implies \ln(k_2y - k_3 - \lambda) = k_2x + k_2C_1$$

tomando exponencial

$$k_2 y - k_3 - \lambda = C k_2 e^{k_2 x} \implies y = C e^{k_2 x} + \frac{k_3 + \lambda}{k_2}$$

Luego para la condición inicial tenemos que

$$y_0 = C + \frac{k_3 + \lambda}{k_2} \implies y_0 - \frac{k_3 + \lambda}{k_2} = C$$

Se puede verificar que en efecto es una solución de la edo. Definamos y_{λ} como la solución al problema para alguna lambda. Luego tenemos que $y_{\lambda} \in \mathcal{C}^{\infty}([0,T])$ y además $y_{\lambda}(0) = y_0$, por lo tanto $y_{\lambda} \in C$. Notemos que

$$J(y_{\lambda}) = \int_0^T k_1 \lambda^2 dx = k_1 \lambda^2 T$$

Lo cual se va a infinito cuando λ se va a infinito. Por lo tanto el problema **no** tiene solución.