MA 126 —	Spring 2017 -	— Prof. Clontz —	Mini Assessment
----------	---------------	------------------	-----------------

Name:		

- Each question is prefaced with a Standard for this course.
- When grading, each response will be marked as follows:
 - $-\sqrt{}$: The response is demonstrates complete understanding of the Standard.
 - $-\star$: The response may indicate full understanding of the Standard, but clarification or minor corrections are required.
 - \times : The response does not demonstrate complete understanding of the Standard.
- Only responses marked with a ✓ mark count toward your grade for the semester. Visit the course website for more information on how to improve ★ and × marks.
- \bullet This Assessment is due after 50 minutes. All blank responses will be marked with \times .

C07: This student is able to Use the washer or cylindrical shell method to express a volume of revolution as a definite integral.	Mark:	Reattempt/ Correction:
volume of revolution as a dominio integral.	(Instructor Use Only)	(Instructor Use Only)

Find a definite integral equal to the volume of the solid of revolution obtained by rotating the triangle with vertices (2,2), 4,2, (2,4) around the axis x=0. (Do not solve your integral.)

C08: This student is able to Express the work done in a system as a definite integral.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Hooke's Law states that the force required to compress a spring x units from its natural length requires F(x) = kx units of force for some constant k (depending on the spring). Suppose a spring satisfies k = 6 and is naturally length 11. Find a definite integral equal to the work required to compress this spring from length 8 to length 4. (Do not solve your integral.)

C09: This student is able to Parametrize a curve to express an arclength or area as a definite integral.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Recall the following. A smooth curve parametrized by one-to-one functions x(t), y(t) on $a \le t \le b$ where $y(t) \ge 0$ may be rotated around the x-axis to yield a surface of revolution. Its area is given by $2\pi \int_a^b y(t) \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt$. Use this to find a definite integral equal to the conical surface area obtained by rotating the

Use this to find a definite integral equal to the conical surface area obtained by rotating the line segment connecting (0,0) and (3,6) around the axis y=0. (Do not solve your integral.)

C10: This student is able to Use polar coordinates to express an arclength or area as a definite integral.	Mark:	Reattempt/ Correction:	
	(Instructor Use Only)	(Instructor Use Only)	

Find a definite integral equal to the arclength of $r = 3\cos\theta$ between $-\pi/4$ and $\pi/4$. (Do not solve your integral.)

C11: This student is able to Compute the limit of a convergent sequence.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Find
$$\lim_{k \to \infty} \frac{e^{2k+7}}{4 - e^k}$$
.

C12: This student is able to Express as a limit and find the value of a convergent geometric or telescoping series.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Find the value of the convergent series $\sum_{k=3}^{\infty} (\frac{k+3}{3k} - \frac{k+4}{3k+3})$.

S09: This student is able to Use parametric equations to find and use tangent slopes.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Find the point on the parametric curve defined by $x = t^2 + 1$, $y = t^3/3$ for all positive numbers t > 0 that has a tangent slope of 2.

S10: This student is able to Convert and sketch polar and Cartesian coordinates and equations.		Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

a) Find a Cartesian coordinate equal to the polar coordinate $p(4,2\pi/3).$

b) Sketch the polar curve $r=4\sin\theta$ for $0\leq\theta\leq\pi$ in the xy plane.

S11: This student is able to Define and use explicit and recursive formulas for sequences.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Give an explicit or recursive formula matching the sequence $\langle b_n \rangle_{n=0}^{\infty} = \langle 3, 8, 13, 18, 23, 28, 33, 38, \dots \rangle$.

S12: This student is able to Use the alternating series test to determine series conver-	Mark:	Reattempt/ Correction:
gence.	(Instructor Use Only)	(Instructor Use Only)

Does $\sum_{m=1}^{\infty} (-1)^{m+1} \frac{e^m}{1+e^{2m}}$ converge or diverge?

S13: This student is able to Use the integral test to determine series convergence.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

a) Does $\int_0^\infty \frac{2x}{1+x^2} dx$ converge or diverge?

b) Based on (a), does $\sum_{n=0}^{\infty} \frac{2n}{1+n^2}$ converge or diverge?

S14: This student is able to Use the ratio and root tests to determine series convergence.	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

Does $\sum_{k=3}^{\infty} \frac{k^3+7k+3}{2^k}$ converge or diverge?

Other: This student is able to Fill in here:	Mark:	Reattempt/ Correction:
	(Instructor Use Only)	(Instructor Use Only)

(Put question here.)

Use this space if you need extra room for a problem: