COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 05 Exercises

Dr. William M. Farmer McMaster University

Revised: February 6, 2020

Background Definitions

Consider the following definitions:

- 1. $\Sigma_{\text{stack}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where:
 - a. $\mathcal{B} = \{ Element, Stack \}.$
 - $\mathrm{b.}\ \mathcal{C} = \{\mathsf{error}, \mathsf{bottom}\}.$
 - c. $\mathcal{F} = \{ push, pop, top \}$.
 - d. $\mathcal{P} = \emptyset$.
 - e. $\tau(error) = Element$.
 - f. $\tau(bottom) = Stack$.
 - g. $\tau(push) = Element \times Stack \rightarrow Stack$.
 - h. $\tau(pop) = Stack \rightarrow Stack$.
 - i. $\tau(\mathsf{top}) = \mathsf{Stack} \to \mathsf{Element}$.
- 2. $\Sigma_{\text{mon}} = (\{M\}, \{e\}, \{*\}, \emptyset, \tau) \text{ where } \tau(e) = M \text{ and } \tau(*) = M \times M \rightarrow M.$
- 3. \mathcal{M}_{nat} is the Σ_{mon} -structure derived from $(\mathbb{N}, 0, +)$.
- 4. \mathcal{M}_{triv} is the Σ_{mon} -structure derived from the trivial monoid ($\{0\}, 0, +$).
- 5. Let Γ_{mon} be the following set of Σ -sentences:

Assoc
$$\forall x, y, z : M . (x * y) * z = x * (y * z).$$

IdLeft
$$\forall x : M \cdot e * x = x$$
.

IdRight
$$\forall x : M . x * e = x$$
.

6.
$$T_{\text{mon}} = (\Sigma_{\text{mon}}, \Gamma_{\text{mon}}).$$

Exercises

- 1. Let $\Sigma = (\alpha, a : \alpha, f : \alpha \times \alpha \to \alpha, p : \alpha \times \alpha \to \mathbb{B})$. Compute fvar and bvar for each of the following Σ -formulas:
 - a. $\exists x: \alpha . \exists y: \alpha . p(z:\alpha)$. b. $f(x:\alpha) = a \land \forall y: \alpha . ((p(y:\alpha) \lor p(x:\alpha)) \Rightarrow \exists x: \alpha . p(f(x:\alpha)))$.
- 2. Compute the following substitutions:
 - a. $f(x:\alpha) = a \land \forall y:\alpha . ((p(y:\alpha) \lor p(x:\alpha)) \Rightarrow \exists x:\alpha . p(f(x:\alpha)))[x \mapsto f(a)].$ b. $f(x:\alpha) = a \land \exists x:\alpha . p(f(x:\alpha)) \Rightarrow \exists x:\alpha . p(f(x:\alpha))[x \mapsto f(a)].$
 - b. $f(x : \alpha) = a \land \forall y : \alpha . ((p(y : \alpha) \lor p(x : \alpha)) \Rightarrow \exists x : \alpha . p(f(x : \alpha)))[y \mapsto f(a)].$
 - c. $f(x:\alpha) = a \land \forall y: \alpha . ((p(y:\alpha) \lor p(x:\alpha)) \Rightarrow \exists x: \alpha . p(f(x:\alpha)))[z \mapsto f(a)].$
- 3. Construct a signature of MSFOL that is suitable for formalizing:
 - a. A queue of abstract elements.
 - b. An abstract field.
 - c. An abstract vector space over an abstract field.
- 4. Let $\Sigma_{\text{ord}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be the signature defined in the lecture slides. Construct Σ_{ord} -structures that define the following mathematical structures: (\mathbb{N}, \leq) , $(\mathbb{Z}, <)$, $(\mathbb{Q}, >)$, and (\mathbb{R}, \neq) .
- 5. Let $\Sigma_{\rm stack}$ be the signature defined above. Construct a $\Sigma_{\rm stack}$ -structure such that $D_{\rm Element} = \mathbb{N}$, $D_{\rm Stack}$ is the set of finite sequences of members of \mathbb{N} , and the function symbols of $\Sigma_{\rm stack}$ manipulate the members of $D_{\rm Stack}$ as stacks.
- 6. Which of the following Σ_{mon} -formulas are satisfiable and which are universally valid?
 - a. e = e.
 - b. e = e * e.
 - c. $\forall x : M \cdot x = e$.
 - d. $\forall x : M . x \neq e$.
- 7. Which of the following Σ_{mon} -formulas are valid in \mathcal{M}_{nat} and which are valid in $\mathcal{M}_{\text{triv}}$?
 - a. e = e.
 - b. e = e * e.

- c. $\forall x : M . x = e$.
- d. $\forall x : M . x \neq e$.
- 8. Which are the following $\Sigma_{\rm mon}\text{-}\text{formulas}$ are valid in $T_{\rm mon}.$
 - a. e = e.
 - b. e = e * e.
 - c. $\forall x : M \cdot x = e$.
 - d. $\forall x : M . x \neq e$.