## Course Materials May Not Be Distributed or Posted Electronically

These course materials are the sole property of Dr. Todd M. Gross. They are strictly for use by students enrolled in a course taught by Dr. Gross. They may not be altered, excerpted, distributed, or posted to any website or other document-sharing service.

# PSTAT 126 Regression Analysis

Dr. Todd Gross

Department of Statistics and Applied Probability

University of California, Santa Barbara

## Lecture 4 Inference in Regression (con't)

#### Lecture Outline

• Review of Hypothesis Testing for  $\beta_1$  (including R commands)

Testing Regression Using Analysis of Variance

#### Example #1

- Research Question: Is GPA related to shoe size?
- Data:

| Shoe Size | 7   | 8   | 8   | 8.5 | 8.5 | 9   | 9   | 9.5 | 9.5 | 12  |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| GPA       | 3.5 | 2.7 | 3.2 | 1.8 | 2.8 | 3.2 | 3.4 | 4   | 2.2 | 3.1 |

- What question are we asking?
  - Is there a linear relationship between shoe size (x) and GPA
     (y)
  - $\bullet Y' = \beta_0 + \beta_1 X$
- What results do we need to answer research question?
  - Slope (b<sub>1</sub>)

#### R Commands – Example #1

```
x<-c(7,8,8,8,8.5,8.5,9,9,9.5,9.5,12)
y<-c(3.5,2.7,3.2,1.8,2.8,3.2,3.4,4,2.2,3.1)
model1<-lm(y~x)
plot(x,y,xlab="Shoe Size",ylab="GPA")
abline(model1)
summary(model1)</pre>
```

### R Plot – Example #1



#### R Output – Example #1

```
Call:
lm(formula = y \sim x)
Residuals:
   Min 10 Median 30 Max
-1.1852 -0.2557 0.1409 0.3618 1.0028
                                                   t-test for the
Coefficients:
                                                      slope
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.88365 1.53447 1.879
                                        0.097
  0.01195 0.17071
                                        0.946
                                0.070
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6807 on 8 degrees of freedom
Multiple R-squared: 0.0006121, Adjusted R-squared: -0.1243
F-statistic: 0.0049 on 1 and 8 DF, p-value: 0.9459
```

#### Hypothesis Test – Example #1

- Is a linear relationship between Shoe Size (x) and GPA (Y)?
  - We want to know if  $\beta_1 \neq 0$
  - Is  $b_1$  (the sample result) big enough to conclude that  $B_1 \neq 0$ ?
  - The null hypothesis is that there is NO linear relationship.
- $H_0$ :  $\beta_1 = 0$  vs.  $H_1$ :  $\beta_1 \neq 0$
- $t^* = 0.07$ , p=0.946
- Because p > 0.05, FAIL TO REJECT  $H_0$
- "There is NOT sufficient evidence to conclude that there is a relationship between Shoe Size and GPA"

#### Example #2

 Research Question: Is Hours of Study per Week related to Units Taken?

#### Data:

| Units Taken | 9  | 10 | 12 | 13 | 14 | 16 | 17 | 18 | 20 | 21 |
|-------------|----|----|----|----|----|----|----|----|----|----|
| Hours of    |    |    |    |    |    |    |    |    |    |    |
| Study       | 18 | 25 | 32 | 34 | 38 | 36 | 42 | 46 | 48 | 46 |

- What question are we asking?
  - Is there a linear relationship between Units Taken (x) and Hours of Study per Week (y)
  - $Y' = \beta_0 + \beta_1 X$
- What results do we use to answer it?
  - Slope (b<sub>1</sub>)

#### R Commands - Example #2

```
x<-c(9,10,12,13,14,16,17,18,20,21)
y<-c(18,25,32,34,38,36,42,46,48,46)
model2<-lm(y~x)
plot(x,y,xlab="Units Taken",ylab="Hours of Study per Week")
abline(model2)
summary(model2)</pre>
```

#### R Plot - Example #2



#### R Output - Example #2

```
Call:
lm(formula = y \sim x)
Residuals:
  Min 10 Median 30 Max
-4.940 -2.120 0.590 2.215 3.760
                                                    t-test for the
Coefficients:
                                                      slope
           Estimate Std. Error t value Pr(>|t|)
                    4.0090 0.649 0.535
(Intercept) 2.6000
                       0.2588
                               8.733 2.31e-05 ***
      2.2600
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.169 on 8 degrees of freedom
Multiple R-squared: 0.9051, Adjusted R-squared: 0.8932
F-statistic: 76.27 on 1 and 8 DF, p-value: 2.311e-05
```

#### Hypothesis Test – Example #2

- Is a linear relationship between Units Taken (x) and Hours of Study per Week (Y)?
  - We want to know if  $\beta_1 \neq 0$
  - Is  $b_1$  (the sample result) big enough to conclude that  $\beta_1 \neq 0$ ?
  - The null hypothesis is that there is NO linear relationship.
- $H_0$ :  $\beta_1 = 0$  vs.  $H_1$ :  $\beta_1 \neq 0$
- t\* = 8.733, p=0.00002
- Because p < 0.05, REJECT  $H_0$
- "There IS sufficient evidence to conclude that there is a relationship between Units Taken and Weekly Study Hours"

#### Example #2 – Confidence Interval

- The University expects at least 3 hours of study per week for each unit taken.
- Do the data support the University's claim?
- Calculate a confidence interval for B<sub>1</sub>

 "We are 95% confident that students study LESS than 3 hours per week for each unit taken."

## Testing Regression Using Analysis of Variance

#### **ANOVA Hypothesis Test**

- We can test the same hypothesis for slope using Analysis of Variance (ANOVA).
  - The ANOVA will yield the same conclusion as the t-test
- However, ANOVA will be <u>much more useful</u> when we move to multiple regression in the 2<sup>nd</sup> half of the course

#### Consider the hypothesis

$$H_0: \beta_1 = 0 \quad H_1: \beta_1 \neq 0$$

#### **Analysis of Variance**

- Analysis of Variance (ANOVA) is an alternative method of testing hypotheses
- ANOVA is performed by conducting an F test (similar to a t-test)

$$F = \frac{Variance(Effect)}{Variance(Error)} = \frac{MSR}{MSE}$$

 A stronger relationship between X and Y tends to increase the numerator, resulting in a larger value of F

#### **Partitioning Deviations**



### Partitioning Deviations (Y – Ybar)

FIGURE 2.7 Illustration of Partitioning of Total Deviations  $Y_i - \bar{Y}$ —Toluca Company Example (not drawn to scale; only observations  $Y_1$  and  $Y_2$  are shown).



#### Partitioning Sum of Squared Deviations

Partitioning the Total Deviation

$$(Y_i - \overline{Y}) = (\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i)$$

Partitioning the Sum of Squared Deviations

$$\sum (Y_{i} - \overline{Y})^{2} = \sum (\hat{Y}_{i} - \overline{Y})^{2} + \sum (Y_{i} - \hat{Y}_{i})^{2}$$

- Sum of Squares (SS) NotationSSTotal = SSRegression + SSError
- Partitioning Degrees of Freedom

$$df_T = df_R + df_E$$
  
(n-1) = 1 + (n-2)

### Partitioning SS (proof)

The following equality always holds:

$$Y_i - \bar{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \bar{Y})$$

So we have

$$\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

$$= \sum_{i=1}^{n} \{ (Y_{i} - \hat{Y}_{i}) + (\hat{Y}_{i} - \bar{Y}) \}^{2}$$

$$= \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} + \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y}) \}^{2} + 2 \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i}) (\hat{Y}_{i} - \bar{Y})$$

$$= \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} + \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}$$

### Proof (con't)

#### We used the fact that

$$\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \bar{Y})$$

$$= \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})\hat{Y}_{i} - \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})\bar{Y}$$

$$= \sum_{i=1}^{n} e_{i}\hat{Y}_{i} - \bar{Y}\sum_{i=1}^{n} e_{i}$$

$$= 0$$

#### Partitioning Sum of Squared Deviations (SS)

- The term  $\sum_{i=1}^{n} (Y_i \bar{Y})^2$  is called the total sum of squares (SSTO)
- The term  $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$  is the regression sum of squares (also called explained sum of squares) (SSR)
- The term  $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$  is the error sum of squares (also called residual sum of squares) (SSE)
- The above equation decomposes SSTO into two parts: explained by the linear regression model and unexplained:

$$SSTO = SSR + SSE$$

#### The Logic of ANOVA for Regression

- SSR is the sum of squares due to regression. So large SSR provide evidence against H<sub>0</sub>
- How large is large? Magnitude of SSR is not enough because it depends on scale. We want to use a relative quantity
- The F statistic

$$F^* = \frac{\text{SSR/1}}{\text{SSE}/(n-2)} = \frac{\text{MSR}}{\text{MSE}}$$

- From the ANOVA table,  $F^*$  is close to 1 under  $H_0$ . Thus a value much larger than 1 provide evidence against  $H_0$
- Under  $H_0$ ,  $F^* \sim F(1, n-2)$
- Reject  $H_0$  if  $F^* > F(1 \alpha; 1, n 2)$
- $F^* = (t^*)^2$ , thus F test and t test are equivalent for the simple linear regression

#### **ANOVA Source Table**

| Source | SS   | df  | MS              | F*      | P-value                      |
|--------|------|-----|-----------------|---------|------------------------------|
| Model  | SSR  | 1   | MSR = SSR/1     | MSR/MSE | From<br>Statistical<br>Table |
| Error  | SSE  | n-2 | MSE = SSE/(n-2) |         |                              |
| Total  | SSTO | n-1 |                 |         |                              |

#### ANOVA (F statistic)

 Mean Squared Deviation (aka Variance) is the Sum of Squared Deviations divided by degrees of freedom

$$MSR = \frac{SSR}{1} = SSR$$
  $MSE = \frac{SSE}{n-2}$ 

The ratio of two variances is distributed as F

$$F^* = \frac{MSR}{MSE}$$

F\* is compared to F(0.05,dfR/dfE)

#### ANOVA - R

- F(1,8) = 76.271, p < 0.05, therefore REJECT H<sub>O</sub>
- "There is sufficient evidence to conclude that there is a positive relationship between number of units taken and hours of study per week."

#### ANOVA Source Table Based on R Output

| Source | SS     | df | MS     | F*     | p-value  |
|--------|--------|----|--------|--------|----------|
| Model  | 766.14 | 1  | 766.14 | 76.271 | p<0.0001 |
| Error  | 80.36  | 8  | 10.04  |        |          |
| Total  | 846.5  | 9  |        |        |          |

- F(1,8) = 76.271, p < 0.05, therefore REJECT H<sub>o</sub>
- "There is sufficient evidence to conclude that there is a positive relationship between number of units taken and hours of study per week."