积分

1.计算累次积分
$$I = \int_0^1 dy \int_y^1 \sin x^2 dx.$$

2.计算累次积分
$$\int_0^1 dy \int_y^1 y^2 e^{-x^4} dx.$$

3.求曲线积分
$$I = \int_{L} (e^{y} + x) dx + (xe^{y} - 2y) dy$$
,

4.计算二重积分
$$\iint_{D} \frac{\sin x}{x} dx dy$$
, 其中 D 是由 $y = x^{2}$, $y = 0$, $x = 1$ 所围成的区域

5.计算二重积分
$$I = \iint_{D} \sqrt{1 - x^2 - y^2} dx dy$$
, 其中为圆域 $x^2 + y^2 \le x$.

6.计算曲线积分
$$I = \int_C (x^2 - y) dx - (x + \sin^2 y) dy$$
, 其中 C 是圆周 $x^2 + y^2 = 2x$

的上半部分,方向从点O(0,0)到点A(2,0).

7.计算曲线积分 $I = \prod_{L^+} (ye^x - \sin x^3) dx + \ell^x + x^3 + \sin x^3 dy$ 其中 L 是圆周

$$x^2 + y^2 = 1$$
 , 逆时针方向

8. 计算曲面积分
$$I = \iint_{S^+} (x^3z + x) dy dz + (\cos y - x^2yz) dz dx - x^2z^2 dx dy,$$
 其

中 S^+ 为曲面 $z = 2 - x^2 - y^2$, $1 \le z \le 2$, 取上侧

9. 计算曲面积分 $I=\iint\limits_{S^+}xdydz+ydzdx+zdxdy$, 其中 S 为锥面

$$z = \sqrt{x^2 + y^2}$$
, $0 \le z \le 4$, 取外侧

 $_{10.$ 设曲线积分 $I=\int_{L}xy^{2}dx+y\varphi(x)dy$ 与路径无关,其中函数 $\varphi(x)$ 连续可导且

 $\varphi(0)=0$, 求函数 $\varphi(x)$; 又设 L 为曲线 $y=x^{2009}$ 上从点 O(0,0)到 A(1,1)的弧段,求如上曲线积分 I.

11.曲面积分
$$I = \iint_{S^+} (x^4 - xz) dy dz + (x^3 + yz) dz dx - 4y^2 dx dy$$
, 其中 S 为上半球面

$$z = \sqrt{4 - x^2 - y^2}$$
,取上侧

12.计算曲面积分
$$I = \iint_{S^+} (y^2 + z^2) dy dz + yz dz dx + z(x^3 + y^2) dx dy$$
, 其中 S 为

上半球面
$$z = \sqrt{4 - x^2 - y^2}$$
 与锥面 $z = \sqrt{x^2 + y^2}$ 所围区域的表面,取外侧

初值问题

$$\int_{1.求初值问题:} \begin{cases} (2xy-1)dx + x^2dy = 0, \\ y(1) = 2. \end{cases}$$

2.求解一阶线性微分方程
$$\frac{dy}{dx} + y \cos x = e^{-\sin x}$$
.

$$3.求解初值问题: \begin{cases} y'' - 2y' - 3y = 3x + 1, \\ y(0) = \frac{1}{3}, y'(0) = 3. \end{cases}$$

4.求解一阶常微分方程
$$\frac{dy}{dx} = \frac{y}{2 x - \sqrt{2}}.$$

5.求解初值问题:
$$\begin{cases} y'' - 2y' + y = 1 + e^x, \\ y(0) = 2, y'(0) = 2. \end{cases}$$

$$\frac{dy}{dx} = e^{x+y}$$
 满足初始条件 $y(0) = 0$ 的解

7.求解一阶常微分方程:
$$\frac{dy}{dx} - \frac{2y}{x} + xy^2 = 0.$$

8.求解二阶非齐次方程的初值问题:
$$\begin{cases} y'' + y = 1 + e^x, \\ y(0) = y'(0) = 1. \end{cases}$$

含参变量的积分求导

1.若函数
$$g(y) = \int_{\sqrt{y}}^{y^3} \frac{\cos(xy)}{x} dx$$
, $y > 0$, 求 $g'(x)$.

$$_{2.$$
若函数 $F(x) = \int_{1}^{x} \frac{\sin(xt^{2})}{t} dt$, $x \neq 0$, 求 $F'(x)$.

3.设函数
$$g(y) = \int_{\sqrt{y}}^{y^3} \frac{\cos(xy)}{x} dx, y > 0, 求 g'(y).$$

级数收敛半径, 收敛域, 和函数

$$1.$$
求幂级数 $\sum_{n=1}^{\infty} \frac{\left(x-1\right)^{n-1}}{n2^n}$ 的收敛半径,收敛区间和收敛域,并求其和函数

$$2.$$
求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$ 的收敛半径和收敛域,并求其和函数

$$3.$$
求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛半径,收敛域及和函数

4.求幂级数
$$\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$
 的收敛半径,收敛域及和函数

级数展开和收敛域

1.求函数 $f(x) = \ln x$ 在 $x_0 = 2$ 处的泰勒展开式,并求其收敛域

2.把函数
$$f(x) = \frac{x-2}{4-x}$$
 展开成 $(x-2)$ 的幂级数,并求其收敛域

3.将函数 $f(x) = \ln 3x$ 在点 $x_0 = 2$ 展开成幂级数,并求其收敛域

4.把函数
$$f(x) = \ln(5+x)$$
 展开成 $(x-2)$ 的幂级数,并求其收敛域