- 1. Sean $A = \{1, 2, 3, 4\}$ y $B = \{4, 5, 6\}$. El cardinal del conjunto $A \times (A \cup B)$ es
 - a) 6 b) 12 c) 16 d) 24
- 2. La aplicación $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por f(x,y) = 2x + 3y es
 - a) inyectiva y no sobreyectiva,
 - b) sobreyectiva y no inyectiva,
 - c) inyectiva y sobreyectiva,
 - d) no inyectiva y no sobreyectiva.
- 3. Sea $X = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. Para cada $A \subseteq X$ llamamos ΣA a la suma de los elementos de A, es decir, $\Sigma \{-3, -2, 0, 4\} = -1$ por ejemplo. Convenimos también que $\Sigma \varnothing = 0$. Sea R la relación de equivalencia en $\mathcal{P}(X)$ definida por ARB si y sólo si $\Sigma A = \Sigma B$. El cardinal del conjunto cociente $\mathcal{P}(X)/R$ es
 - a) 0 b) 9 c) 21 d) 512
- 4. Sobre los grupos $(\mathbb{Z},+)$ (los enteros con la suma usual de enteros) y $(\{1,-1\},\cdot)$ (con el producto usual) definimos la aplicación

$$f: \mathbb{Z} \longrightarrow \{1, -1\}$$

$$x \longmapsto \begin{cases} 1 & \text{si } x \text{ es par} \\ -1 & \text{si } x \text{ es impar.} \end{cases}$$

Entonces

- a) f es un homomorfismo sobreyectivo de grupos no inyectivo,
- b) f es un homomorfismo inyectivo de grupos no sobreyectivo,
- c) f es un isomorfismo (homomorfismo biyectivo) de grupos,
- d) f no es un homomorfismo de grupos.
- 5. Sea $\sigma = (12345)(246)^{-1}$. Entonces σ^{327} es igual a
 - a) Identidad b) σ c) σ^2 d) σ^3
- 6. Sean $B = \{v_1, v_2, v_3\}$ y $B' = \{v'_1 = v_1, v'_2 = v_1 + v_2, v'_3 = v_1 + v_2 + v_3\}$ dos bases de un espacio vectorial V sobre \mathbb{R} . Si las coordenadas de x respecto de la base B' son (1, -1, 1), entonces las coordenadas de x respecto de B son

(1) 26 de enero de 2004

- a) (1,0,1) b) (1,0,-1) c) (1,2,-1) d) (0,0,1)
- 7. Consideremos la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x,y,z) = (x+y,x+z,2x+y+z). Entonces
 - a) La dimensión de la imagen de f es 2.
 - b) La dimensión del núcleo de f es 2.
 - c) f es sobreyectiva.
 - d) f es inyectiva.
- 8. Consideremos los siguientes subespacios de $(\mathbb{Z}_5)^4$: $U_1 = \langle (1,1,2,0), (3,1,4,1) \rangle$, y $U_2 = \langle (0,1,0,3), (1,0,1,3) \rangle$. Una base de $U_1 \cap U_2$ es
 - a) $\{(2,0,2,1)\}$
 - b) $\{(1,1,2,0),(3,1,4,1),(0,1,0,3),(1,0,1,3)\}$
 - c) $\{(1,1,2,0)\}$
 - d) $\{(2,0,2,1),(1,0,1,3)\}$
- 9. Dada la matriz

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{Z}_5),$$

- a) A tiene dos valores propio de multiplicidades algebraicas 1 y 2 respectivamente.
- b) A tiene tres valores propios.
- c) A tiene un único valor propio de multiplicidad algebraica 3.
- d) A tiene un único valor propio de multiplicidad algebraica 1.
- 10. Sea $V = \{a(x) \in \mathbb{Z}_3[x] \mid el \text{ grado de } a(x) \text{ es menor o igual que } 2\}$. Entonces
 - a) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión 3.
 - b) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión 2.
 - c) V no es un espacio vectorial sobre \mathbb{Z}_3 .
 - d) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión infinita.
- 11. La matriz

$$A = \begin{pmatrix} 3 & 0 & 0 \\ \frac{-3}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Q})$$

(2) 26 de enero de 2004

representa un endomorfismo de \mathbb{Q}^3 en \mathbb{Q}^3 . Una base de \mathbb{Q}^3 formada por vectores propios de A es

- a) $\{(0,1,1),(0,-1,1),(4,-3,1)\}$
- b) $\{(0,4,1),(1,-1,1),(4,-3,1)\}$
- c) $\{(0,1,1),(0,-1,1),(0,0,2)\}$
- d) $\{(0,1,1),(0,-1,1),(1,-1,1)\}$
- 12. Sea $f: X \to Y$ una aplicación. Cual de las siguientes afirmaciones es falsa?
 - a) Si f es inyectiva entonces f* es inyectiva.
 - b) Si f es inyectiva entonces f* es inyectiva.
 - c) Si f es sobreyectiva entonces f* es sobreyectiva.
 - d) Si f es inyectiva entonces f* es sobreyectiva.

(3) 26 de enero de 2004