中山大学软件学院 2011级软件工程专业(2011学年秋季学期)

《SE-103+线性代数》期末试题(B卷)

(考试形式: 闭 卷 考试时间: 2 小时)

《中山大学授予学士学位工作细则》第六条 考 试 作 弊 不 授 予 学 士 学 位

方向:		_ 姓名:	<u> </u>	学号:	
出卷:	伍丽华		复核: _	高成英	

- 1. Fill in the blank $(5\times4=20 \text{ Pts})$
- (1) If T is the linear transformation from P_2 to P_2 whose matrix relative to $B = \{1, t, t^2\}$ is

$$[T]_B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 1 & -2 & 4 \end{bmatrix}, \text{ then } T(a_0 + a_1 t + a_2 t^2) = \underline{\hspace{2cm}}.$$

- (2) If the row space of a 4×7 matrix A is 4-dimentional, then the dimension of the null space of A is ______. Is Col $A = R^4$?______ (Yes or No).
- (3) Let $v_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ be eigenvectors of a 3×3 matrix A, with

corresponding eigenvalues 3, 2, and 1. Compute $A \cdot A =$

- (4) Determine the value(s) of a such that the system $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \\ 0 \end{vmatrix}$ is inconsistent. a =
- (5) For x in R^3 , Let $Q(x) = 3x_1^2 + 5x_2^2 x_1x_2 + 8x_2x_3$, this quadratic form as $x^T A x$ is

- 2. Make each statement True or False, and descript your reasons. (5×4=20 Pts)
- (1) Whenever a system has free variables, the solution set contains many solutions.
- (2) If v_1, v_2, \dots, v_k are vectors in a vector space V and

 $\operatorname{Span}\{v_1, v_2, \dots, v_k\} = \operatorname{Span}\{v_1, v_2, \dots, v_{k-1}\}$, then v_1, v_2, \dots, v_k are linearly dependent.

- (3) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. If A is the standard matrix representation of T, then an $n \times n$ matrix B will also be a matrix representation of T if and only if B is similar to A.
- (4) If A is an $n \times n$ matrix, then A and A^T have the same eigenvectors.
- (5) If A is symmetric and det(A)>0, then A is positive definite.
- 3. Calculation ($5 \times 8 = 40 \text{ Pts}$)
- (1) let $A = [b_1 \ b_2 \ b_3]$ and $B = [b_1 + b_2 + b_3 \ b_1 + 2b_2 + 4b_3 \ b_1 + 3b_2 + 9b_3]$, where b_1, b_2 and b_3 are vectors in R^3 . Suppose det A = 1, find det B.
- (2) Computer A^6 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.

(3) Let
$$H = \begin{cases} 3a + 7b - c \\ -5b + 8c - 2d \\ 3d - 4e \\ 5b - 8c - d + 4e \end{cases}$$
 $a, b, c, d, e \text{ any real numbers} \end{cases}$,

- a. Show that H is a subspace of R^4
- b. Find a basis for H.

(4) Let
$$A = \begin{bmatrix} 1 & 5 \\ 3 & 1 \\ -2 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 4 \\ -2 \\ -3 \end{bmatrix}$.

- a. Find the orthogonal projection of b onto Col A.
- **b.** Find a least-squares solution of Ax = b.
- c. Determine the associated least-squares error.

(5) Let $W = \operatorname{Span}\{x_1, x_2\}$, where $x_1 = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$, and $x_2 = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$, Construct an orthonormal basis for W.

4. Prove issues $(2\times6=12 \text{ Pts})$

(1) Let W be a subspace of R^n such that $\dim W = p$, and let $S = \{w_1, w_2, \cdots, w_p\}$ be an orthonomal basis for W. Define $T: R^n \to W$ by

$$T(v) = (v \cdot w_1)w_1 + (v \cdot w_2)w_2 + \dots + (v \cdot w_p)w_p$$

Prove that T is a linear transformation.

(2) Let A and B be similar matrices. Show that if A satisfies the equation $A^3 - 3A + I = 0$, then B also satisfies a similar equation $B^3 - 3B + I = 0$.

5. Synthesis (8 points)

Let x be a vector in R^n with $x^Tx=1$, Show that if $A=I-xx^T$, then rank(A) < n.