

Lecture 8: Bias-Variance tradeoff; More Ensembling

Outline

- 1. Bias-Variance Tradeoff
- 2. Validation Strategies
- 3. Blending
- 4. Stacking

Bias-Variance tradeoff

Bias-variance tradeoff

Bias-variance decomposition derivation

Bias-variance decomposition

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function $L(y,a) = (y-a(x))^2$.

The empirical risk takes form:

$$R(a) = \mathbb{E}_{x,y} \Big[\big(y - a(x) \big)^2 \Big] = \int_{\mathbb{X}} \int_{\mathbb{Y}} p(x,y) \big(y - a(x) \big)^2 dx dy.$$

Bias-variance decomposition

Let's show that

$$a_*(x) = \mathbb{E}[y \,|\, x] = \int_{\mathbb{Y}} y p(y \,|\, x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Returning to the risk estimation:

$$R(a) = \mathbb{E}_{x,y} L(y, a(x)) =$$

$$= \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 +$$

$$+ 2\mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x)) (\mathbb{E}(y \mid x) - a(x)).$$

$$R(a) = \mathbb{E}_{x,y}L(y,a(x)) =$$

$$= \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2 + 2\mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x)) (\mathbb{E}(y \mid x) - a(x)).$$

 $(y \mid x) (E(y \mid x) - a(x)).$ Does not depend on y

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\Big(\mathbb{E}(y \mid x) - a(x)\Big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

 $= \mathbb{E}_x \Big(\big(\mathbb{E}(y \mid x) - a(x) \big) \big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x) \big) \Big) =$

$$R(a) = \mathbb{E}_{x,y}L(y,a(x)) =$$

 $= \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2 +$ Focus on the last term: $+2\mathbb{E}_{x,y}(y-\mathbb{E}(y|x))(\mathbb{E}(y|x)-a(x)).$

$$\mathbb{E}_{x}\mathbb{E}_{y}\left[\left(y-\mathbb{E}(y\,|\,x)\right)\left(\mathbb{E}(y\,|\,x)-a(x)\right)\,|\,x\right]=$$

 $= \mathbb{E}_x \Big(\big(\mathbb{E}(y \mid x) - a(x) \big) \mathbb{E}_y \Big[\big(y - \mathbb{E}(y \mid x) \big) \mid x \Big] \Big) =$ $= \mathbb{E}_x \Big(\big(\mathbb{E}(y \mid x) - a(x) \big) \big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x) \big) \Big) =$

10

So the risk takes form:

$$R(a) = \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2.$$

Does not depend on a(x)

The minimum is reached when $a(x) = \mathbb{E}(y \mid x)$.

So the optimal regression model with square loss is

$$a_*(x) = \mathbb{E}(y \mid x) = \int_{\mathbb{Y}} yp(y \mid x)dy.$$

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[\big(y - \mu(X)(x) \big)^2 \Big] \Big]$$
 , where X dataset.

In further slides (x) is omitted!

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[ig(y - \mu(X)(x) ig)^2 \Big] \Big]$$
 , where X dataset.

In further slides (x) is omitted!

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\mid x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\mid x]-\mu(X)\big)^2\Big].$$

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[ig(y - \mu(X)(x) ig)^2 \Big] \Big]$$
 , where X dataset.

In further slides (x) is omitted!

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[\big(y - \mu(X)(x) \big)^2 \Big] \Big]$$
 , where X dataset.

In further slides (x) is omitted!

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

$$L(\mu) = \mathbb{E}_{X} \left[\underbrace{\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right]} + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right]$$

Does not depend on X

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{variance}}.$$

Bias-variance tradeoff

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big]}_{\text{variance}}.$$

This exact form of bias-variance decomposition is correct for square loss in regression.

However, it is much more general. See extra materials for more exotic cases.

Special case: Leave One Out (LOO) - good for tiny datasets

Special case: time series

Never use train_test_split in this case!

Stacking and blending

How to build an ensemble from different models?

How to build an ensemble from *different* models?

How to build an ensemble from *different* models?

Just combine several strong/complex models.

$$\hat{f}(x) = \sum_{i=1}^{M} \rho_i f_i(x), \qquad \sum_{i=1}^{M} \rho_i = 1, \quad \rho_i \in [0;1] \ \ \forall i$$

- Pros:
 - Simple and intuitive ensembling method.
 - Average several blendings to achieve better results.
- Cons:
 - Linear composition is not always enough.
 - Need to split the data. How to fix it?

Stacking

1. Split data into folds

Stacking

- Train base algorithm(s) on different groups of folds leaving one fold out.
- Predict the meta-features on the left-out fold and test data.
- Train the meta-algorithm on the meta-features representation of the train data.
- Use it on the meta-features representation of the test data.

Stacking

- Pros:
 - Powerful ensembling method, if you know how to use it
 - Quite popular in ML-competitions
 - One might perform stacking on the meta-features dataset as well
- Cons:
 - Meta-features on each fold are actually predicted by different models
 - However, regularization usually helps
 - Hard to explain your model behaviour

Recap: ensembling methods

- Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Blending.
- 5. Stacking.

Q & A

Appendix (continue from slide 13)

$$L(\mu) = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{Does not depend on X}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \, | \, x] - \mu(X) \big)^2 \Big] \right] = 0$$

$$L(\mu) = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{Does not depend on X}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \, | \, x] - \mu(X) \big)^2 \Big] \right] = 0$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^2 \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^2 \right] \right] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \Big[\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] \Big].$$

Focus on the second term:

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^2 \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^2 \right] \right] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \Big[\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big]\Big] =$$

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^2 \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^2 \right] \right] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] + \mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right)^{2} \right] \right]$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] + \mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big)^2 \Big] \Big] =$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mu(X) \Big)^{2} \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] + \mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] + \\
+ 2 \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big) \Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big) \Big] \Big].$$

Just a bit further, we are almost there

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\Big(\mathbb{E}[y \mid x] - \mu(X) \Big)^2 \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_X \Big[\mu(X) \Big] + \mathbb{E}_X \Big[\mu(X) \Big] - \mu(X) \Big)^2 \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_X \Big[\mu(X) \Big] \Big)^2 \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\Big(\mathbb{E}_X \Big[\mu(X) \Big] - \mu(X) \Big)^2 \Big] \Big] +$$

$$+2\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mathbb{E}_X\big[\mu(X)\big]\big)\big(\mathbb{E}_X\big[\mu(X)\big]-\mu(X)\big)\Big]\Big].$$

Focus on this term

$$\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big) \Big] =$$

$$\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \left(\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right) \right] =$$

$$= \left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \mathbb{E}_{X} \left[\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right] =$$

$$\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] =$$

$$\begin{split} \mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big) \Big] &= \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] = \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] = \\ &= 0. \end{split}$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mu(X) \Big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] + \mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] +$$

$$+ 2\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big) \Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big) \Big] \Big].$$