平成28年度社会医学実習 公衆衛生学担当分

王 超辰 2016年6月23日

1 がんの記述疫学:

1.1 目的:

- 1. 各部位がんのリスク要因を調べる.
- 2. 年齢,出生コホート,時期効果に関する内容を理解する.

1.2 方法:

各部位がんのリスク要因を検索して、できるだけ挙げる.配布資料を参考した上で、日本のがん登録データをダウロードし、次の各部位のがんを解析する.各部位がんデータから年齢・出生コホート・時期効果があるかを説明する.

1.3 課題:

- 1. 肝がんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 1)
- 2. 胃がんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 2_菊地先生)
- 3. 胆のうがんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 3)
- 4. 膵がんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 4)
- 5. 食道がんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 5)
- 6. 肺がんのリスク要因と死亡データの年齢,出生コホート,時期効果分析 (Group 6)

2 参考:

- 1. https://rpubs.com/kaz_yos/epi-cross-long
- 2. テキストの該当部分[1] Chapter 1: 1.2 (Page 4-14) pdf download: http://winterwang.github.io/files/textbook.pdf
- 3. 実習用データの入手先:cancer_mortality(1958-2014).xls [2] http://ganjoho.jp/reg_stat/statistics/dl/index.html

3 年齢,出生コホート,時期効果に関する内容の理解

· 年齡効果:

年齢の増加とともに、罹患・死亡率が上昇・減少する.(生まれた年や調査時の年代に関わらず)

・ 出生コホート効果:

生まれた年により,罹患・死亡率が異なる.(調査時の年代と個人の加齢と関係なく)

· 時期効果:

ある時点で,ある集団のすべての世代の罹患・死亡率へ影響を及ぼす大事件.(例:戦争,疫病,即効薬・ワクチン・ 抗生物質の発売や投与,大規模の移民・難民の移動など)

- 3.1 Table 1. ある集団で,1975年から2005年に渡って,10年ごと一度某病気の罹患率を横断的な調査した結果:
 - ・変数説明:

group: 年齡世代

midpoint: 世代真ん中の年齢値

・ それぞれの横断的調査(縦方向)から見ると,年齢の増加につれて,罹患率が下がっているような結果になる.

	group	midpoint	s1975	s1985	s1995	s2005
1	10-19	15	17	28		
2	20-29	25	14	23	35	
3	30-39	35	12	19	30	45
4	40-49	45	10	18	26	40
5	50-59	55		15	22	36
6	60-69	65			20	31
7	70-79	75				27

Table 1: Same with Page 5 Table 1-2 in the textbook

- 3.2 Figure 1: 横断的な年齢効果を可視化した図 (Cross-sectional effect of age at each survey year)
 - ・ 実線を見ると、すべての時点の横断調査の結果、罹患率高齢者のほうに減少傾向がある.
 - ・ しかし,横断の結果から「加齢するとともに,罹患率が減っている」の結論を出してもいいのか?

Figure 1. Cross–sectional studies of prevalence of disease (Based on data from Table 1)

Same with Figure 1–2 in the textbook

- 3.3 Figure 2 各出生コホートにおいて,縦断的な年齢効果の可視化グラフ (Longitudinal effect of age for each birth cohort)
 - ・ 点線で示したものは、各出生コホートが加齢する(エージング)時の罹患率.
 - ・ すべての出生コホートにおいて,加齢とともに,罹患率は増加している.

Figure 2. Plot the data by birth cohort (dotted lines = birth cohorts) same with figure 1–3 in the textbook

3.4 Table 2. 出生コホートによる罹患率を再整理した表

・ 出生コホート(横方向)が加齢すると,罹患率は上昇している.

Table 2: Same with Page 8 Table 1-3 in the textbook

	15	25	35	45	55	65	75
1900							
1910							
1920							
1930				10	15	20	27
1940			12	18	22	31	
1950		14	19	26	36		
1960	17	23	30	40			
1970	28	35	45				
1980							
1990							

3.5 Figure 3: 出生コホートごとの罹患率

・この図は,異常な出生コホートを探すには有利である.

・ 年齢群を点線で示している.同じ年齢なのに,違う年に生まれたら,罹患率が異なる.(図中には横軸の右方向)

40 midpoint **-** ⋅ 15 - · 25 prevalence 30 . 35 <u>- · 45</u> . 55 65 20 · **-** · 75 10 1950 1960 1930 1940 1970 cohort

Figure 3. Plot the data by birth cohort in the x axis. same with figure 1–4 in the textbook

参考文献

- [1] Szklo, M. and Nieto, J. (2012) Epidemiology: Beyond the Basics. 3 edition. Jones & Bartlett Learning, Burlington, Mass.
- [2] 集計表のダウンロード がん登録・統計 [がん情報サービス] [Internet].