COMP4901W - Introduction to Blockchain, Cryptocurrencies and Smart Contract Spring 2023

Taught by Amir Gohashady Notes by Marcus Chan

May 20, 2023

Contents

1	Lecture1	1
	1.1 Properties of hasing:	1
	1.2 Applications:	1
2	Lecture3	2
	2.1 Merkle tree	2

1 Lecture1

1.1 Properties of hasing:

- 1. collision-resistant: $h(x) \neq h(y)$ for $x \neq y$
- 2. hiding: can't find x s.t. h(x) = y

1.2 Applications:

- 1. finding files
- 2. ledger with pointers
- 3. commitment scheme bidding protocol: for security reasons
 - (a) highest bid can be found
 - (b) no player can change the bid after seeing others' bid
 - (c) auditability (i.e. auditor won't change the deals)

steps:

- (a) compute $h(b_i + n_i)$ for each player and choose a random number n_i from large domain
- (b) player publishes the hash (commit)
- (c) player publish the bid and n_i for others to hash and verify (reveal)

2 Lecture3

2.1 Merkle tree

Protocol:

- 1. reclaim once
- 2. message is short(const)
- 3. deposit can be taken back
- 4. message doesnt leak
- 5. proof p_i is provided and can be decoded