In the Claims

- 1. (currently amended) A flame retardant composition which comprises
 - (a) a thermoplastic polymeric substrate and
 - (b) a mixture of
 - (i) a hydroxylamine ester of formula C

where .

 G_1 , G_2 , G_3 and G_4 are methyl or G_1 and G_3 are methyl and G_2 and G_4 are ethyl;

G₅ and G₆ are independently hydrogen or methyl;

n is 1;

R₃ is C₂-C₈alkylene or hydroxyalkylene or C₄-C₃₆acyloxyalkylene and

X is hydrogen, C₁-C₃₆alkyl or C₆-C₁₀aryl;

having a structural element of formula (I) or formula (I') or a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')-

$$N-0$$
 X (1) $N-0$ X (1)

in ard a. ordhig

$$G_5$$
 G_4 G_3 G_5 G_4 G_5 G_5 G_4 G_5 G_5 G_6 G_2 G_1 G_6 G_2 G_1

-wherein-

X is hydrogen, C_4 - C_{36} alkyl, C_2 - C_{36} alkenyl, C_2 - C_{18} alkinyl, C_6 - C_{40} aryl, -O- C_4 - C_{48} alkyl, -O- C_6 - C_{40} aryl, -NH- C_4 - C_{6} alkyl) $_2$;

X' is a direct bond or C₁-C₃₆alkylene, C₂-C₃₆alkenylene, C₂-C₃₆alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene)- or a group from a dimer-acid;

 G_4 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_4 and G_2 together and G_3 and G_4 together, or G_4 and G_2 together or G_3 and G_4 together are pentamethylene;

G_s and G_s are independently hydrogen or C₁-C₄ alkyl; and

R₄ is C₄-C₄₂alkyl, C₅-C₇cycloalkyl, C₇-C₉aralkyl, C₂-C₄₈alkanoyl, C₃-C₅alkenoyl or benzoyl[[;]]

and

(ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon or antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.

2-6. (canceled)

1 3

7. (original) A composition according to claim 1 wherein the hydroxylamine ester is present in an amount of from 0.1 to 15 weight-% based on the weight of the polymer.

realf.

CHG

 $, [\cdot; 2, \gamma,$

nated, undes

بلو: بن

8. (previously presented) A composition according to claim **1** wherein the polymer substrate is a resin selected from the group consisting of the polyolefins, the thermoplastic olefins and styrenic polymers or copolymers.

* * * * 3.3**.4**,

ાં os મુદ્ર

v 2311

orandi. Oranga Oranga

13.43

1 200.

1:23

: - 6

- **9.** (previously presented) A composition according to claim **8** wherein the polymer substrate is polypropylene, polyethylene, thermoplastic olefin (TPO), polystrene, ABS, high impact polystyrene, expandable polystyrene (EPS) or extrusion foamed polystyrene.
- **10.** (previously presented) A composition according to claim **1** wherein the flame retardant compound is selected from the group consisting of

tetraphenyl resorcinol diphosphite, chloroalkyl phosphate esters, polybrominated diphenyl oxide, decabromodiphenyl oxide, antimony trioxide (Sb₂O₃), antimony pentoxide (Sb₂O₅), tris[3-bromo-2,2-(bromomethyl)propyl] phosphate, triphenyl phosphate, bis(2,3-dibromopropyl ether) of bisphenol A, ammonium polyphosphate (APP), resorcinol diphosphate oligomer (RDP), brominated epoxy resin, tetrabromobisphenol A-bis-(allyl ether), hexabromocyclododecane, dibromocyclohexane, tribromophenol-cyanurate, ethylene-bis(tetrabromophthalimide), bis(hexachlorocyclopentadieno)cyclooctane, calcium sulfate, chlorinated paraffins, magnesium carbonate,

melamine phosphates,
melamine pyrophosphates,
molybdenum trioxide,
zinc oxide,
1,2-bis(tribromophenoxy)ethane,
tetrabromo-bisphenol A,
Saytex® BC-56HS,
magnesium hydroxide,
alumina trihydrate,
zinc borate,
ethylenediamine diphosphate (EDAP) and
Oligomeric diisopropyl benzene.

i. .

- **11. (previously presented)** A composition according to claim **10** wherein the flame retardant compound is tris[3-bromo-2,2-(bromomethyl)propyl] phosphate, hexabromocyclododecane, tetrabromobisphenol A-bis-(allyl ether), dibromocyclohexane or Saytex BC-56HS.
- **12.** (previously presented) A composition according to claim **1** wherein the flame retardant compound is present in an amount of from 0.1 to 30 weight-% based on the weight of the polymer.
- **13.** (original) A composition according to claim 1 wherein the ratio by weight between component (i) and (ii) is from 10:1 to 1:100.
- **14. (original)** A composition according to claim **1**, which additionally contains an organic peroxide and/or another radical generator.
- **15. (original)** A composition according to claim **1** which additionally contains a further additive selected from the group consisting of a UV absorber, a sterically hindered amine, a phenolic antioxidant, a phosphite or phosphonite and a benzofuranone or an indolinone.

16. (currently amended) A method of making a thermoplastic polymer flame retarding by incorporating into the thermoplastic polymer

a mixture of

(i) a hydroxylamine ester of formula C

where

4,. -

 G_1 , G_2 , G_3 and G_4 are methyl or G_1 and G_3 are methyl and G_2 and G_4 are ethyl;

G₅ and G₆ are independently hydrogen or methyl;

n is 1;

R₃ is C₂-C₈alkylene or hydroxyalkylene or C₄-C₃₆acyloxyalkylene and

X is hydrogen, C₁-C₃₆alkyl or C₆-C₁₀aryl;

having a structural element of formula (I) or formula (I') or a polymeric hydroxylamine esterhaving a repetitive structural unit of formula (II) or (II')

$$N-0$$
 X (1) $N-0$ X' $0-N$ $(1')$

 $z \in \mathbb{Z}(4)$

33

$$-\underbrace{\begin{array}{c} G_5 \\ G_6 \\ G_2 \\ G_1 \end{array}} G_3 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_6 \\ G_2 \\ G_1 \end{array}} G_3 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_3 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_3 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_3 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_4 \\ G_3 \\ G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_2 \\ G_1 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_5 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_2 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_1 \\ G_2 \\ G_1 \\ \end{array}} G_2 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_1 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_1 \\ G_2 \\ G_1 \\ \end{array}} G_1 \\ \underbrace{\begin{array}{c} G_6 \\ G_2 \\ G_1 \\ G_2 \\ G_1 \\ G_2 \\ G_1 \\ G_2 \\ G_1 \\ \underbrace{\begin{array}{c} G_6 \\$$

wherein -

X is hydrogen, C_4 - C_{36} alkyl, C_2 - C_{36} alkenyl, C_2 - C_{48} alkinyl, C_6 - C_{40} aryl, -O- C_4 - C_{48} alkyl, -O- C_6 - C_{40} aryl, -O- C_6 - C_{40} - C_6 - C_6 - C_6 - $C_{$

X' is a direct bond or C1-C36alkylene, C2-C36alkenylene, C2-C36alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene)- or a group from a dimer acid;

 G_4 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_4 and G_2 together and G_3 and G_4 together, or G_4 and G_2 together or G_3 and G_4 together are pentamethylene;

G₅ and G₆ are independently hydrogen or C₁-C₄ alkyl; and

R₄-is C₄-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl[[;]]

and

- (ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon or antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.
- 17. (currently amended) A flame retardant mixture comprising
 - (i) a hydroxylamine ester of formula C

where

٠:٠

G₁, G₂, G₃ and G₄ are methyl or G₁ and G₃ are methyl and G₂ and G₄ are ethyl;

G₅ and G₆ are independently hydrogen or methyl;

n is 1;

R₃ is C₂-C₈alkylene or hydroxyalkylene or C₄-C₃₆acyloxyalkylene and

X is hydrogen, C₁-C₃₆alkyl or C₆-C₁₀aryl;

having a structural element of formula (I) or formula (I') or with a polymeric hydroxylamine esterhaving a repetitive structural unit of formula (II) or (II')

(ii)

$$N-O$$
 X (I) $N-O$ X' $O-N$ (I')

-wherein-

 $X \text{ is hydrogen, } C_4\text{-}C_{36}\text{alkyl, } C_2\text{-}C_{36}\text{alkenyl, } C_2\text{-}C_{48}\text{alkinyl, } C_6\text{-}C_{40}\text{aryl, } -O\text{-}C_4\text{-}C_{48}\text{alkyl, } -O\text{-}C_6\text{-}C_{40}\text{aryl, } -O\text{-}C_6\text{-}C_{40}\text{aryl, } -O\text{-}C_7\text{-}C_{48}\text{alkyl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{aryl, } -O\text{-}C_8\text{-}C_{40}\text{-}$

 $-NH-C_1-C_{18}alkyl, -NH-C_6-C_{10}aryl, -N(C_1-C_6alkyl)_2;$

X' is a direct bond or C₁-C₃₆alkylene, C₂-C₃₆alkenylene, C₂-C₃₆alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene) or a group from a dimer acid;

 G_4 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_4 and G_2 together or G_3 and G_4 together are pentamethylene;

G₆-and G₆-are independently hydrogen or C₄-C₄-alkyl; and

 $R_{4} - is - C_{4} - C_{42} - C_{42} - C_{5} - C_{7} - C_{7} - C_{8} - C_{8} - C_{8} - C_{8} - C_{18} - C_{18$

and

(ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon or antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.

18-19. (canceled)

20. (new) A composition according to claim 1 wherein the hydroxylamine ester of formula (C) is

2.055000

10000

,;