CD4098BMS

December 1992

CMOS Dual Monostable Multivibrator

Features

- High Voltage Type (20V Rating)
- · Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of RX, CX
- · Triggering from Leading or Trailing Edge
- Q and Q Buffered Outputs Available
- · Separate Resets
- . Wide Range of Output Pulse Widths
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Pulse Delay and Timing
- Pulse Shaping

Astable Multivibrator

Pinout **CD4098BMS** TOP VIEW CX1 1 16 VDD RXCX (1) 2 CX2 RESET (1) 3 14 RXCX (2) +TR (1) 4 13 RESET (2) -TR (1) 5 +TR (2) Q1 6 11 -TR (2) Q1 7 10 Q2 9 Q2 vss 8

TERMINALS 1, 8, 15 ARE ELECTRICALLY

CONNECTED INTERNALLY

Description

CD4098BMS dual monostable multivibrator provides stable retriggerable/resettable one shot operation for any fixed voltage timing application.

An external resistor (RX) and an external capacitor (CX) control the timing for the circuit. Adjustment of RX and CX provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of RX and CX.

Leading edge triggering (+TR) and trailing edge triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD4098BMS is not used, its RESET should be tied to VSS. See Table 9.

In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, \overline{Q} is connected to -TR when leading edge triggering (+TR) is used or Q is connected to +TR when trailing edge triggering (-TR) is used.

The time period (T) for this multivibrator can be approximated by: $TX = \frac{1}{2}RXCX$ for $CX = 30.01\mu F$. Time periods as a function of RX for values of CX and VDD are given in Figure 8. Values of T vary from unit to unit and as a function of voltage, temperature, and RXCX.

The minimum value of external resistance, RX, is $5k\Omega$. The maximum value of external capacitance, CX, is $100\mu F$. Figure 9 shows time periods as a function of CX for values of RX and VDD.

The output pulse width has variations of $\pm 2.5\%$ typically, over the temperature range of -55°C to +125°C for CX = 1000pF and RX = 100k Ω .

For power supply variations of $\pm 5\%$, the output pulse width has variations of $\pm 0.5\%$ typically, for VDD = 10V and 15V and $\pm 1\%$ typically, for VDD = 5V at CX = 1000pF and RX = $5k\Omega$.

The CD4098BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4T
Frit Seal DIP H1F
Ceramic Flatpack H6W

Functional Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $_{20^{o}\text{C/W}}^{\theta_{jc}}$ (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W 20°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For TA = Full Package Temperature Range (All Package Types) 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μΑ
				2	+125°C	-	200	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20V	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	DD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	DD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	DD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

implemented.

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS TEMPERATURI		MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
+TR, -TR to Q, Q	TPLH1	$RX = 5K \text{ to } 10K\Omega, CX \ge 15pF$	10, 11	+125°C, -55°C	-	675	ns
Transition Time	TTHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
		RX = 5K to $10K\Omega$, CX = 15pF to $10,000pF$	10, 11	+125°C, -55°C	-	270	ns
Transition Time	TTLH1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
(Note 2)		$RX = 5K \text{ to } 10K\Omega, CX \ge 15pF$	10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND			1	μΑ	
				+125°C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μА
				+125°C	-	120	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3, 4	+25°C	-	250	ns
+TR, -TR to Q, \overline{Q} CX \geq 15pF	TPLH1	VDD = 15V	1, 2, 3, 4	+25°C	-	200	ns
Propagation Delay	TPHL2	VDD = 5V	1, 2, 3	+25°C	-	450	ns
Reset CX ≥ 15pF	TPLH2	VDD = 10V	1, 2, 3, 4	+25°C	-	250	ns
		VDD = 15V	1, 2, 3,4	+25°C	-	150	ns
Transition Time	TTHL1	VDD = 10V	1, 2, 3, 4	+25°C	-	100	ns
CX = 15pF to 10,000pF		VDD = 15V	1, 2, 3, 4	+25°C	-	80	ns
Transition Time	TTLH2	VDD = 5V	1, 2, 3	+25°C	-	300	ns
$CX = 0.01 \mu F$ to $0.1 \mu F$	TTHL2	VDD = 10V	1, 2, 3, 5	+25°C	-	150	ns
		VDD = 15V	1, 2, 3, 5	+25°C	-	130	ns
Transition Time	TTHL3	VDD = 5V	1, 2, 3	+25°C	-	500	ns
$CX = 0.1 \mu F$ to $1 \mu F$		VDD = 10V	1, 2, 3, 4	+25°C	-	300	ns
		VDD = 15V	1, 2, 3, 4	+25°C	-	160	ns
Transition Time	TTLH1	VDD = 10V	1, 2, 3, 4	+25°C	-	100	ns
CX ≥ 15pF		VDD = 15V	1, 2, 3, 4	+25°C	-	80	ns
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3, 5	+25°C	-	200	ns
Width, $CX = 15pF$		VDD = 10V	1, 2, 3, 5	+25°C	-	80	ns
		VDD = 15V	1, 2, 3, 5	+25°C	-	60	ns
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3, 5	+25°C	-	1200	ns
Width, $CX = 1000pF$		VDD = 10V	1, 2, 3, 5	+25°C	-	600	ns
		VDD = 15V	1, 2, 3,5	+25°C	-	500	ns
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3, 5	+25°C	-	50	μs
Width, $CX = 0.1 \mu F$		VDD = 10V	1, 2, 3, 5	+25°C	-	30	μs
		VDD = 15V	1, 2, 3, 5	+25°C	-	20	μs
Pulse Width Match Be-	TW	VDD = 5V	1, 2, 3, 6	+25°C	-	10	%
tween Circuits in Same Package		VDD = 10V	1, 2, 3, 6	+25°C	-	15	%
i achaye		VDD = 15V	1, 2, 3, 6	+25°C	-	15	%
Trigger Rise or Fall Time	TRTR TFTR	VDD = 5V to 15V	1, 2	+25°C	-	100	μs
Input Capacitance	CIN	Any Inputs	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, inputs tR, tF < 20ns.
- 4. RX = 5K to $10M\Omega$.
- 5. $RX = 100k\Omega$
- 6. $RX = 10k\Omega$

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN MAX		UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.4. Read and Record

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFOR	MANCE GROUP	MIL-STD-883 METHOD			
Initial Test (P	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test 1	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test 2	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	1)	100% 5004	1, 7, 9, Deltas		
Interim Test 3	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	1)	100% 5004	1, 7, 9, Deltas		
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
	Subgroup B-6	Sample 5005	Sample 5005 1, 7, 9		
Group D	Group D Sample 50		1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	E-IRRAD POST-IRRAD		POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	6, 7, 9, 10	1-5, 8, 11-15	16			
Static Burn-In 2 Note 1	6, 7, 9, 10	1, 8, 15	2-5, 11-14, 16			
Dynamic Burn- In Note 1	-	1, 4, 8, 12, 15	2, 14, 16	6, 7, 9, 10	5, 11	3, 13
Irradiation Note 2	2, 6, 7, 9, 10, 14	1, 8, 15	3-5, 11-13, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

TABLE 9. FUNCTIONAL TERMINAL CONNECTIONS

		TO I. NO.		S TO II. NO.	_	ULSE TO 1. NO.	OTHER CONNECTIONS	
FUNCTION	MONO 1	MONO 2	MONO 1	MONO 2	MONO 1	MONO 2	MONO 1	MONO 2
Leading Edge Trigger/ Retriggerable	3, 5	11, 13			4	12		
Leading Edge Trigger/ Non-Retriggerable	3	13			4	12	5-7	11-9
Trailing Edge Trigger/ Retriggerable	3	13	4	12	5	11		
Trailing Edge Trigger/ Non-Retriggerable	3	13			5	11	4-6	12-10
Unused Section	5	11	3, 4	12, 13				

NOTES:

- 1. A retriggerable one-shot multivibrator has an output pulse width which is extended one full time period (TX) after application of the last trigger pulse. The minimum time between retriggering edges (or trigger and retrigger edges) is 40% of (TX).
- 2. A non-retriggerable one-shot multivibrator has a time period TX referenced from the application of the first trigger pulse.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Logic Diagram

FIGURE 1. LOGIC DIAGRAM

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL PROPAGATION DELAY TIME vs LOAD CA-PACITANCE, TRIGGER INTO Q OUT (ALL VALUES OF CX AND RX).

FIGURE 8. TYPICAL EXTERNAL RESISTANCE vs PULSE

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TRANSITION TIME vs LOAD CAPACITANCE FOR RX = $5k\Omega$ -10000k Ω AND CX = 15pF-10000pF

FIGURE 9. TYPICAL EXTERNAL CAPACITANCE vs PULSE WIDTH

Typical Performance Characteristics (Continued)

FIGURE 10. TYPICAL MINIMUM RESET PULSE WIDTH VS EXTERNAL CAPACITANCE

To calculate average power dissipation(P) for less than 100% duty cycle:

P100 = average power for 100% duty cycle:

 $P = \left(\frac{tm}{\tau T}\right) P100 \text{ where } \tau m = \text{one shot pulse}$ width

 τT = trigger pulse period

e.g. For $\tau m = 600 \mu s$, $tT = 1000 \mu s$. CX = 0.01 mF VDD = 5 V

P1 = $\left(\frac{600}{1000}\right)$ 10³ µW = 600µW (see dotted line on graph)

FIGURE 11. AVERAGE POWER DISSIPATION vs ONE-SHOT PULSE WIDTH

Applications

FIGURE 12. PULSE DELAY

Applications (Continued)

IDD

IDD, TX vs RX IDD TX (AVG.) (T1 + T2)**VDD** $10k\Omega$ 1mA 3.8µs ↓ 0.05mA 0.5s 2.5mA $3.2 \mu s$ 10V 0.5mA 0.5s 5mA 3µs 10V $10 M\Omega$ 0.5s 1mA

NOTES:

- 1. All values are typical.
- 2. CX range: $0.0001\mu\text{F}$ to $0.1\mu\text{F}$

FIGURE 13. ASTABLE MULTIVIBRATOR WITH RESTART AFTER RESET CAPABILITY

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches