SU1137698

Publication Title:

PROCESS FOR PREPARING CIS-DIAMINODICHLORODIHYDROXOPLATINUM(IV)

Abstract:

Abstract not available for SU1137698 Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

⁽¹⁹⁾ SU ⁽¹¹⁾ 1 137 698 ⁽¹³⁾ A1

(51) MПK⁶ C 01 G 55/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

(21), (22) Заявка: 3651749/26, 17.10.1983

(46) Дата публикации: 27.09.1996

(56) Ссылки: Черняев И.И., Красовская Н.Н., О геометрической изометрии дигидроксодиамминохлоридов четырехвалентной платины. - Неорганическая химия, 1958, т.3, с.2025.

(71) Заявитель: МГУ им. М.В.Ломоносова

(72) Изобретатель: Желиговская Н.Н., Красовская Е.П.

(54) СПОСОБ ПОЛУЧЕНИЯ ЦИС-ДИАММИНДИХЛОРОДИГИДРОКСОПЛАТИНЫ (IY)

(57)
Способ получения
цис-диамминдихлородигидроксоплатины (IV),
включающий обработку суспензии
цис-диамминдихлороплатины (II) 25 - 30%-ной
перекисью водорода с последующим
отделением твердого остатка, растворением
его в минеральной кислоте и осаждением

CO

целевого продукта, отличающийся тем, что, с целью повышения чистоты целевого продукта, отработку цис-диамминдихлорплатины (II) ведут при 60 - 80°С, в качестве минеральной кислоты используют серную или фосфорную кислоту и осаждают целевой продукт щелочью.

⁽¹⁹⁾ SU ⁽¹¹⁾ 1 137 698 ⁽¹³⁾ A1

(51) Int. Cl.⁶ C 01 G 55/00

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(21), (22) Application: 3651749/26, 17.10.1983

(46) Date of publication: 27.09.1996

(71) Applicant: MGU im. M.V.Lomonosova

(72) Inventor: Zheligovskaja N.N., Krasovskaja E.P.

(54) PROCESS FOR PREPARING CIS- DIAMINODICHLORODIHYDROXOPLATINUM(IV)

(57) Abstract:

ဖ

FIELD: medicine. SUBSTANCE: process for preparing cis-diaminodichlorodihydroxoplatinum (IV) comprises treating cis-diaminodichloroplatinum (II) suspension with 25-30 hydrogen peroxide, separating

solid residue, dissolving it in mineral acid and precipitating the desired product. Cis-diaminodichloroplatinum (II) is treated at 60-80 C. Mineral acid is sulfuric or phosphoric acid and the desired product is precipitated with alkali. EFFECT: improved purity of the desired product.

Изобретение относится к способам получения соединений платины, в частности цис-диамминдихлородигидроксоплатины (IV) $[Pt(NH_3CI)_2(OH)_2]$ проявляющей противоопухолевую активность.

Известен способ получения цис-диамминдихлородигидроксоплатины (IV), включающий обработку суспензии цис-диамминдихлороплатины (II) [Pt(NH₃Cl)₂] избытком 10 20% -ной перекиси водорода при 40°C с последующим выделением целевого продукта кристаллизацией [1] Выход 40 80%

Недостатками способа являются низкий выход и низкая чистота целевого продукта.

Наиболее близким ПО технической сущности и достигаемому результату является способ, включающий обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при комнатной температуре с последующим отделением твердого остатка, растворением его в азотной кислоте и осаждением целевого продукта раствором аммиака [2] Выход 75 80%

Использование азотной кислоты приводит к тому, что часть аквагрупп в условиях высокой концентрации аквакомплекса замещается на NO ₃-ионы с образованием нитратокомплекса [$Pt(NH_3Cl)_2(NO_3)_2$] Добавление NH₄OH во второй переосаждения приводит к тому, что NO 3_-ионы легко замещаются образом происходит NH 3-группы. Таким загрязнение целевого продукта нитратом тетрамминдихлороплатины (IV) [Pt(NH 3Cl)2(NH3)2](NO3)2.

Проведение процесса при комнатной температуре не приводит к полному окислению большой навески исходного вещества. Оставшийся комплекс двухвалентной платины, далее окисляясь в азотной кислоте, приводит к образованию нитратокомплекса [Pt(NH₃Cl)₂(NO₃)₂] который при растворении в аммиаке также переходит тетраамминдихлороплатину (IV) $[Pt(NH_3CI)_2NH_3)_2]$ загрязняющую целевой продукт (таблица).

Целью изобретения является повышение чистоты целевого продукта.

Поставленная цель достигается способом описываемым получения цис-диамминдихлородигидроксоплатины (IV), включающим обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при 60 - 80°C с последующим отделением твердого остатка, растворением его в серной или фосфорной кислоте и осаждением целевого продукта щелочью.

Отпичие предложенного способа заключается в том, что обработку цис-диамминдихлороплатины (II) ведут при 60 80°C, в качестве минеральной кислоты используют серную или фосфорную кислоты и осаждают целевой продукт щелочью.

O

Сущность способа заключается следующем. При обработке водной суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при 60 - 80°C протекает быстрее и количественное окисление исходного вещества по реакции

5

25

30

35

с образованием цис-диамминдихлородигидроксоплатины (IV), выделяющейся виде R мелкокристаллического осадка охлаждении раствора. Полученный продукт загрязнен перекисными соединениями платины, для очистки от которых к нему добавляют серную или фосфорную кислоту до полного растворения осадка. При этом происходит образование хорошо растворимых акваформ по реакции

(2)ΟН нн c1NH ОН нон ин з C1 NH HOH

разрушение примесей пергидроксокомплексов. Далее к полученному раствору приливают водный раствор гидроксида натрия или калия до pH 8 9, что приводит К нейтрализации $[Pt(NH_3CI)_2(H_2O)_2]^{2+}$ и выделению в осадок чистой

цис-диамминдихлородигидроксоплатины (IV).

По сравнению с азотной кислотой, применяемой в способе-прототипе, серная и фосфорная кислоты обладают следующими преимуществами. Сульфат- и фосфат-ионы слабыми очень комплексообразователями и получение координационных соединений платины с $HSO_4^-, SO_4^{-2},$ внутрисферными $H_2PO_4^ HPO_4^{-2}$, PO_4^{-3} -ионами требует условий. Нами было показано методами изомолярных серий и молярных отношений, что эти ионы оксокислот не вступают во внутреннюю сферу

цис-диамминдихлородигидроксоплатины (IV), поэтому не происходит загрязнения целевого продукта сульфатными и фосфатными комплексами платины. Применение других кислот (кроме серной и фосфорной) приводит к снижению выхода и чистоты целевого продукта: в растворе соляной кислоты происходит быстрое И необратимое замещение ОН⁻-групп на СГ-ионы; муравьиная, уксусная, щавелевая кислоты являются слабыми кислотами и обладают восстанавливающим действием.

Применение водного раствора щелочи вместо раствора исключает аммиака

возможность образования тетраамминкомплексов. а возможность доведения рН реакционной смеси до 8 9 способствует более полному выделению цис-диамминдихлородигидроксоплатины (IV). Таким образом, замена аммиака на щелочь позволяет повысить не только чистоту, но и выход целевого продукта.

При проведении реакции окисления при 60°C температуре ниже комплекс двухвалентной платины окисляется не полностью, при этом целевой продукт загрязняется исходным веществом. Нагревание реакционной смеси до температуры выше 80°С приводит К образованию значительного количества оловых соединений (Pt O Pt), которые не растворяются в кислоте, что также приводит к снижению чистоты целевого продукта.

Пример 1. 10 Г [Pt(NH₃Cl)₂] (3,3 • 10⁻² моль) в 30 мл воды смешивают с 15 мл 30% -ной H_2O_2 (14,5• 10^{-2} моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 60°C. температуре периодически перемешивая. Через 40 мин реакция полностью заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок желтого цвета [Pt(NH₃CI)₂(OH)₂] отфильтровывают промывают водой. К суспензии осадка в 20 мл воды при помешивании приливают 0,5 н H₂SO₄ до полного растворения осадка. К отфильтрованному сернокислому раствору комплекса по каплям добавляют свежеприготовленный концентрированный раствор NaOH до рН 8 9. При этом выпадает ярко-желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход вещества 9.7 г. что составляет 87% от теории. Чистота 99,6%

2. Пример 20 [Pt(NH₃Cl)₂] $(6,6 \bullet 10^{-2} \text{ моль})$ в 40 мл воды смешивают с 20 мл 30% -ной H_2O_2 (19,4•10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 80 °C, периодически ее помешивая. Через 30 мин реакция заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок [Pt(NH₃Cl)₂(OH)₂] цвета отфильтровывают и промывают водой. К суспензии осадка в 30 мл воды при помешивании приливают 1 н. H₂SO₄ до растворения полного осадка. отфильтрованному раствору по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает ярко-желтый осадок

цис-диамминдихлородигидроксоплатины (IV). Выход вещества 18,8 г, что составляет 84% от теории. Чистота 99,4%

ဖ

Пример 3. 20 г [$Pt(NH_3Cl)_2$] (6,6•10⁻² моль) в 40 мл воды смешивают с 20 мл 30% -ной H ₂O₂ (13,4 • 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на кипящей водяной бане при 80 периодически ее перемешивая. Через 30 мин реакция заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок желтого цвета [Pt(NH₃Cl)₂(OH)₂] отфильтровывают

промывают водой. К суспензии осадка в 30 мл воды приливают фосфорную кислоту до полного растворения осадка. отфильтрованному раствору по каплям добавляют концентрированный раствор КОН до рН 8 9. При этом выпадает ярко-желтый

цис-диамминдихлородигидроксоплатины (IV). Выход 18,6 г, что составляет 83% от теории. Чистота 99,0%

Пример 4. 10 г [Pt(NH₃Cl)₂] (3,3_•10⁻² моль) в 30 мл воды смешивают с 15 мл 30% -ной Н ₂O₂ (14,5 • 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 40 °C, периодически ее перемешивая. Через 1,5 ч реакцию заканчивают. Выделившийся осадок желтого цвета [Pt(NH₃Cl)₂(OH)₂] отфильтровывают и промывают водой. К суспензии осадка в 20 мл воды при перемешивании приливают 0,5 н. H ₂SO₄. Осадок с трудом растворяется через несколько часов. К отфильтрованному сернокислому раствору комплекса по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает зеленовато-желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход вещества 7,7 г, что составляет 69% от

теории. Согласно рентгенофазовому и хроматографическому анализу цис-диамминдихлородигидроксоплатина (IV)

содержит соль Пейроне.

Пример 5. 20 г $Pt(NH_3Cl)_2$ (6,6•10⁻² моль) в 40 мл воды смешивают с 20 мл 30% -ной H_2O_2 (19,4• 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на кипящей водяной бане при температуре 95°C, периодически ее перемешивая. Реакция проходит очень бурно, происходит вспенивание и разбрызгивание раствора. Через 20 мин реакция заканчивается. Выделившийся зеленовато-желтый осадок отфильтровывают и промывают водой. К суспензии осадка в 30 мл воды приливают 0,5 н. H₂SO₄. Осадок с трудом растворяется через несколько часов. К отфильтрованному раствору по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход вещества составляет 8,0 г, что соответствует 72% от теории. Чистота 99,2%

Чистота целевого продукта подтверждена данными физико-химических исследований таблицу), а также методом (CM. газожидкостной хроматографии (УФ-детектор, λ= 220 нм), согласно которому единственной химической формой в образцах является цис-диамминодихлородигидроксоплатина (IV).

Технико-экономическая эффективность предложенного способа обусловлена повышением чистоты получаемого целевого продукта, что гарантирует воспроизводимость результатов при биологических испытаниях и делает возможным его применение в медицине в качестве противоопухолевого препарата. TTT1 TTT2

Формула изобретения:

Способ получения цис-диамминдихлородигидроксоплатины (IV), включающий обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной

перекисью

ယ

698

водорода с

отделением твердого остатка, растворением

его в минеральной кислоте и осаждением

последующим

продукта, отработку

цис-диамминдихлорплатины (II) ведут при 60

80°C, в качестве минеральной кислоты

60

Физико-химические характеристики целевого продукта, полученного описываемым способом

Рентгенострук- Хромотогра-	турный анализ фические хар-	- A		6,12 0,3 Rf ≠ 0,26	5,64 1,0 в системе н-	5,15 1,0 бутанол-	4,46 0,7 уксусная к-та	3,81 0,9 -вода			3,65 0,9 50:10:15	3,47 0,2	3,14 0,2 6ywara	FILTRAK	FN18	детекция па-	рами иода
Полосы по-	глощения в ту	ИК-спектре	(ν, cм ⁻¹)	v (OH)3515	v (NH)3260		ð (NH)1590	δ (NH)1360			δ (OH)1240	A(NH)3910		v (PtN)450	v (PtCI)330	δ (PtN)270	
Электр, спект-	ры поглоще-	ния		λ=220 нм			$\varepsilon = 1.7 \cdot 10^4$										
Поведение в	водном рас-	творе		Раствори-	мость в воде	иди	20°C	0,1 Mac. %			10 ⁻³ м/л	растворы	pH=5,8	μ =3,2 om ⁻¹ cm ²			
Поведение при	нагревании по	дериватографи-	ческим данным	Разложение на-	чинается при	160 град. С;	присутствуют	пики, соответст-	вующие термиче-	ским эффектам	160°-эндо-	250°-эндо-	310°-экзо-	350°-эндо-			
зламент-	нализа	вычисл.		Pt, %	58.5			CI,	21,0		× ×		8,4				
Данные эламент-	ного анализа	найдено		Pt. %	58,7	58,3		CJ.	21,2	20,8	% Ź		8,1	8,6			
Внешний вид под мик-	роскопом			Однородные, хорошо	сформированные кри-	сталлы желтого цвета;	по форме правильно	образованные квадраты	Крупность кристаллов:	основная фракция	0,1-0,4 MK		небольшое количество	0,01-0,1 MK			

Продолжение таблицы

,	c		ſ	ξ		C		1	\\
Внешний вид под	Данные эламентно-	эментно-	Поведение	Поведение	электр.	Полосы по-	Рентгеноструктурный	руктурный	Хромотог-
микроскопом	го анализа	иза	при нагревании	в водном	спектры по-	глощения в	анализ	из	рафические
	найдено	вычисл.	по дериватогра-	растворе	глощения	ИК-спектре	0 4	_	хар-ки
			-иф			(V, CM⁻¹)	;		
			ческим данным				,		
	Физико-химические	ІМИЧЕСКИЕ	характеристики целевого продукта, полученного по способу-прототипу	влевого прод	јукта, получен	ного по спосс	бу-прототип)	,	
Смесь кристаллов	образец	ų 1							
желтого и белого цве-	Pt. %	ૠ	Разложение на-	Раствори-	1	ı	ı	1	1
тов переменного со-	57,78	œ	чинается при	MOCTЬ B BO-					
става	C. S.	≈ €	120°C	де при					
	19,3	m		20°C					
	ž	کر		0,5 мас. %					
	8'8								
	образец 2	ių 2							
-	Pt, % 55,2	55,2							
	CI, % 17,6	17,6				-			
	× Z	9,2							

SU 1137698 A1