NIPS2019 CellSignal Challenge 2nd place solution

Team: SeuTao

Task and Challenge

Task:

• 1108 image classification;

Challenge:

- Multi-domain learning;
- Few shot learning;
- Semi-supervised learning;

Solution: Baseline

Baseline from the organizer^[1]

Split	100000000000000	HUVEC	RPE	HepG2	U2OS
Batch	$44.1\% \pm 5.7$	$56.7\% \pm 8.4$	$31.2\%\pm2.7$	$30.8\% \pm 4.0$	$2.4\%\pm1.0$
Random	$52.8\% \pm 0.0$	$68.9\% \pm 0.3$	$40.0\%\pm0.9$	$39.7\% \pm 0.2$	$22.0\% \pm 0.4$

[1] RxRx1 - An image set for cellular morphological variation across many experimental batches.

Solution: Multi domain learning

What is "domain" in this dataset?

- domain == cell
- domain == batch
- domain == plate

Solution: Multi domain learning

Devils in BatchNorm: AdaBN[1]

Baseline: random batch sampling, val top1 acc 40+%

Two options:

- 1. Training with domain sampling, Test with domain AdaBN
 - sample batches in the same cell type, val top1 acc 50+%
 - sample batches in the same experiment, val top1 acc 60+%
 - sample batches in the same plate, val top1 acc 70+%
- 2. DataNorm by domain: (data-mean) / std
 - data norm by cell type, val top1 acc 50+%
 - data norm by batch val top1 acc 60+%
 - data norm by plate, val top1 acc 70+%

[1] Li Y, Wang N, Shi J, et al. Adaptive Batch Normalization for practical domain adaptation[J]. Pattern Recognition, 2016, 80.

Solution: Few shot learning

Distance-based classification :

- Training the model with this distance-based classifier explicitly reduce intra-class variations^[1].
- Margin-based softmax (arcface loss): top 1 acc 70% -> 85%

Solution: Semi-supervised learning

- Mean teachers^[1]
- top 1 acc 85% -> 90%

[1] Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[J]. 2017.

Final solution-Dual Xception

- End-to-end semi-supervised learning pipeline
- top 1 acc 90% -> 95+%, 5fold + post processing -> 99.6%

- 1108 classification; Use Xception as the backbone; Model_A(xception), Model_B(xception_large);
- 5 fold cross validation; Finetuned on 4 cell types;
- Mean teachers with online prior pseudo-labeling; The pseudo labels updates using the highest validation score teacher models during training;

Other details:

Input and preprocessing:

- 6 channel input, image size 512*512
- per image standardization: normalization of 6 channels in images per plate, with small randomization
- augmentation: random flip, random rotation multiple of 90 degrees.

Training

- 1139 classification, 5 fold cross validation;
- Pretrain on all cell types, finetune on each cell type with semi-supervised learning(mean teacher + online pseudo labeling);
- LR schedule: Step LR for pretraining and cyclic LR for finetuning (5cycles/fold).

Post Processing

- Predictions from different site images and different test-time augmentations are combined by taking mean of logits;
- Predictions for control classes are ignored;
- Linear Sum Assignment (LSA) is applied;

Where the Improvements come from:

- Multi-domain learning; --> AdapBN / Data Plate Norm
- Few shot learning; --> Margin based softmax(ArcFace Loss)
- Semi-supervised learning; --> Mean teachers / Pseudo Labels

Score Growth Chart

Thank you