MATH 2207: Linear Algebra Homework 2, due 15:45 Monday 12 February 2018

You must justify your answers to receive full credit.

1. For each set of vectors below, determine the value(s) of h for which the set is linearly dependent:

a)
$$\left\{ \begin{bmatrix} 2\\-2\\4 \end{bmatrix}, \begin{bmatrix} 4\\-6\\7 \end{bmatrix}, \begin{bmatrix} -2\\2\\h \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 1\\-1\\3 \end{bmatrix}, \begin{bmatrix} -2\\-9\\6 \end{bmatrix}, \begin{bmatrix} 3\\h\\-9 \end{bmatrix} \right\}$$

2. Without doing any row-reduction, determine whether the following sets are linearly independent, and explain why:

a)
$$\left\{ \begin{bmatrix} 4\\4\\1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\3 \end{bmatrix}, \begin{bmatrix} 0\\5\\2 \end{bmatrix}, \begin{bmatrix} 8\\1\\-1 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} -8\\10\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 2\\-4\\8\\-2 \end{bmatrix}, \begin{bmatrix} -3\\6\\-12\\3 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 3\\5\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} -6\\5\\4 \end{bmatrix} \right\}$$

- 3. For each of the transformations below:
 - (i) decide whether it is linear, and explain your answer,
 - (ii) if it is linear, find its standard matrix,
 - (iii) if it is linear, decide whether it is one-to-one and whether it is onto.

a)
$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} \sqrt{2}x_1 + x_2 - x_3 \\ 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- b) $g: \mathbb{R}^2 \to \mathbb{R}^4$ given by $g(\mathbf{x}) = \mathbf{0}$.
- c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection through the line $x_1 = 1$.

MATH 2207: Linear Algebra Homework 2, due 15:45 Monday 12 February 2018

4. Let A be the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix},$$

and T be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$

- a) What is the domain of T?
- b) What is the codomain of T?
- c) Is T onto? (Hint: a theorem may be useful.)
- d) Find the kernel of T.
- e) Is T one-to-one?
- f) Find the image of $e_1 + e_2$ under T.
- 5. Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a linearly independent subset of \mathbb{R}^n , and $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - a) Prove that, if T is one-to-one, then $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly independent.
 - b) Show that the assumption that T is one-to-one is necessary that is, find a numerical example of a linear transformation T that is not one-to-one, and a linearly independent set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$, such that $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly dependent.
- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If a set of non-zero vectors in \mathbb{R}^n is linearly dependent, then the set contains at least n vectors.
 - b) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n . If $\{\mathbf{u}, \mathbf{v}\}$, $\{\mathbf{u}, \mathbf{w}\}$ and $\{\mathbf{v}, \mathbf{w}\}$ are each linearly independent, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.
 - c) If $A \begin{bmatrix} 4 \\ 0 \\ 2 \\ -3 \end{bmatrix} = \mathbf{0}$, then $A\mathbf{e}_4$ is a linear combination of the first three columns of A.
 - d) $A\mathbf{x} = \mathbf{b}$ is a homogeneous equation if and only if $\mathbf{x} = \mathbf{0}$ is a solution.
 - e) Let A be a 4 x 3 matrix with columns $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_3}$. If **b** is a vector in \mathbb{R}^4 such that $A\mathbf{x} = \mathbf{b}$ has a solution, then $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{b}\}$ is linearly dependent.
 - f) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $\{\mathbf{v_1}, \mathbf{v_2}\}$ spans \mathbb{R}^2 , then $\{T(\mathbf{v_1}), T(\mathbf{v_2})\}$ also spans \mathbb{R}^2 .