Timer 使用手册

南京博芯电子技术有限公司

2009-04

This document contains information on a product under development. Prochip Corp reserves the

right to change or discontinue this product without notice.

Prochip Crop, 2009. All rights reserved.

版权说明

版权所有,未经南京博芯电子技术有限公司的授权,本说明文挡不可以被复制或以任何形式或方式(电子的或是机械的)传播,包括影印,记录或是用其他任何信息存储及检索系统。文挡所描述的任何一种电路对于第三方没有专利权及专利特许权。

否认书:

南京博芯电子技术有限公司保留对文档随时进行修改的权利,无须任何申明。南京博芯电子技术有限公司所提供的信息是精确可靠的。对于它的应用以及由于应用而导致违反专利权或是第三方的其他权利,本公司不负任何责任。

版本历史

日期	版本	描述	备注
2009-04	1.0	初稿	Jack

目 录

	Timer在SEP4020 中的位置4
<u></u> .	Nandflash介绍4
	2.1 功能介绍4
	2.1.1 基本性能4
	2.1.2 工作模式4
	2.2 寄存器介绍5
三.	实现原理8
	3.1 硬件原理8
	3.1.1 模块结构8
	3.2 软件原理9
	3.2.1 头文件定义说明9
	3.2.2 核心数据结构声明9
	3.2.3 代码实现流程图9
	3.2.4 主要函数及参数,返回值介绍9
四.	测试说明9
	4.1 测试流程
Ŧi.	注意事项

一. Timer 在 SEP4020 中的位置

图 1 Timer 在 SEP4020 中的位置

二. Timer 介绍

2.1 功能介绍

2.1.1 基本性能

- (1) 10 个独立通道, 其中6 通道32 位定时器, 4 通道16 位定时器
- (2) 具有重启计数、自由计数和 ONE-SHOT 计数三种计数模式
- (3) 4 个通道支持外部捕获(capture)功能和外部时钟源计数
- (4) 3个中断

2.1.2工作模式

2.1.2.1重启计数模式

TIMER 在重启计数模式时,当通道使能后计数器锁存加载计数寄存器的值,然后在系统时钟的驱动下递减计数。当计数到零时,产生一个标志用于设置相应的中断标志位,若中断未被屏蔽则产生中断;同时,计数器重新锁存加载计数寄存器的值开始一个新的计数周期。

2.1.2.2自由计数模式

TIMER 在自由计数模式时,当通道使能后计数器锁存加载计数寄存器的值,然后在系统时钟的驱动下递减计数。当计数到零时,产生一个标志用于设置相应的中断标志位,若中断

未被屏蔽则产生中断;同时,计数器加载数据0xFFFFFFF(针对32 位计数器)或0xFFFF(针对16 位定时器)开始一个新的计数周期。

2.1.2.30NE-SHOT 计数模式

ONE-SHOT 计数模式时,当通道使能后计数器锁存加载计数寄存器的值,然后在系统时钟的驱动下递减计数。当计数到零时,产生一个标志用于设置相应的中断标志位,若中断未被屏蔽则产生中断;同时计数器停止计数。

2.1.2.4外部捕获功能

外部捕获功能是指利用外部事件捕获计数器的当前值,也就是当检测到输入端口 TIN 上发生指定的边沿变化时,立即锁存计数器的当前值并发出中断。利用捕获功能可以确定外部输入信号的频率、脉冲宽度等。

2.1.2.5中断处理

TIMER 有10 个通道,每个通道的中断都可以通过各自的控制寄存器屏蔽。任意一个通道计数完毕都会产生一个中断,通道3~6 遇到capture 事件时也会产生中断。TIMER 有三个中断输出,中断输出1 是通道1 和通道2 中断源的或,中断输出2 是通道3~6 中断源的或,中断输出3 是通道7~10 中断源的或。

查询中断源有两种方法:1)查询各个通道的中断屏蔽状态寄存器是否被置1;2)查询TIMER中断屏蔽状态寄存器,看各个通道相应位是否被置1。

清除中断的方法也有两种: 1) 读各个通道的中断状态清除寄存器,相应通道的中断会被清除: 2) 读TIMER 中断状态清除寄存器,所有通道的中断都会被清除。

查询到中断源后,如果不重新配置,计数器会按照原来的配置继续计数,直到计数完毕再发出中断。如果要重新配置,清完中断后应该先将计数器关闭(disable),再配置,最后将计数器打开。

2.2 寄存器介绍

Timer模块的基址: 0x10003000

名称	偏移地址	复位值	描述
T1LCR	0x00	0x00000000	通道 1 加载计数寄存
			器
T1CCR	0x04	0x00000000	通道 1 当前计数值寄
			存器
T1CR	0x08	0x00000000	通道 1 控制寄存器
T1ISCR	0x0C	0x00000000	通道 1 中断状态清除
			寄存器
T1IMSR	0x10	0x00000000	通道 1 中断屏蔽状态
			寄存器
T2LCR	0x20	0x00000000	通道 2 加载计数寄存

	1		器		
Taccop	094	00000000			
T2CCR	0x24	0x00000000	通道 2 当前计数值寄存器		
T2CR	0x28	0x00000000	通道2 控制寄存器		
T2ISCR	0x2C	0x00000000	通道 2 中断状态清除		
			寄存器		
T2IMSR	0x30	0x00000000	通道 2 中断屏蔽状态		
			寄存器		
T3LCR	0x40	0x00000000	通道 3 加载计数寄存		
			器		
T3CCR	0x44	0x00000000	通道 3 当前计数值寄		
			存器		
T3CR	0x48	0x00000000	通道3 控制寄存器		
T3ISCR	0x4C	0x00000000	通道 3 中断状态清除		
			寄存器		
T3IMSR	0x50	0x00000000	通道 3 中断屏蔽状态		
			寄存器		
T3CAPR	0x54	0x00000000	通道3 捕获寄存器		
T4LCR	0x60	0x00000000	通道 4 加载计数寄存		
			器		
T4CCR	0x64	0x00000000	通道 4 当前计数值寄		
			存器		
T4CR	0x68	0x00000000	通道4 控制寄存器		
T4ISCR	0x6C	0x00000000	通道 4 中断状态清除		
			寄存器		
T4IMSR	0x70	0x00000000	通道 4 中断屏蔽状态		
			寄存器		
T4CAPR	0x74	0x00000000	通道4 捕获寄存器		
T5LCR	0x80	0x00000000	通道 5 加载计数寄存		
			器		
T5CCR	0x84	0x00000000	通道 5 当前计数值寄		
			存器		
T5CR	0x88	0x00000000	通道 5 控制寄存器		
T5ISCR	0x8C	0x00000000	通道 5 中断状态清除		
			寄存器		
T5IMSR	0x90	0x00000000	通道 5 中断屏蔽状态		
			寄存器		
T5CAPR	0x94	0x00000000	通道 5 捕获寄存器		
T6LCR	0xA0	0x00000000	通道 6 加载计数寄存		
			器		
T6CCR	0xA4	0x00000000	通道 6 当前计数值寄		
			存器		
T6CR	0xA8	0x00000000	通道6 控制寄存器		

T6ISCR	0xAC	0x00000000	海岸 6 中枢朴文洼岭		
TOISCK	UXAC	0x0000000	通道 6 中断状态清除寄存器		
T6IMSR	0xB0	0x00000000	通道 6 中断屏蔽状态 寄存器		
T6CAPR	0xB4	0x00000000	通道 6 捕获寄存器		
T7LCR	0xC0	0x00000000	通道 7 加载计数寄存器		
T7CCR	0xC4	0x00000000	通道 7 当前计数值寄存器		
T7CR	0xC8	0x00000000	通道7 控制寄存器		
T7ISCR	0xCC	0x00000000	通道 7 中断状态清除 寄存器		
T7IMSR	0xD0	0x00000000	通道 7 中断屏蔽状态 寄存器		
T8LCR	0xE0	0x00000000	通道 8 加载计数寄存器		
T8CCR	0xE4	0x00000000	通道 8 当前计数值寄 存器		
T8CR	0xE8	0x00000000	通道 8 控制寄存器		
T8ISCR	0xEC	0x00000000	通道 8 中断状态清除寄存器		
T8IMSR	0xF0	0x00000000	通道 8 中断屏蔽状态寄存器		
T9LCR	0x100	0x00000000	通道 9 加载计数寄存器		
T9CCR	0x104	0x00000000	通道 9 当前计数值寄存器		
T9CR	0x108	0x00000000	通道9 控制寄存器		
T9ISCR	0x10C	0x00000000	通道 9 中断状态清除 寄存器		
T9IMSR	0x110	0x00000000	通道 9 中断屏蔽状态 寄存器		
T10LCR	0x120	0x00000000	通道 10 加载计数寄存器		
T10CCR	0x124	0x00000000	通道 10 当前计数值寄 存器		
T10CR	0x128	0x00000000	通道 10 控制寄存器		
T10ISCR	0x12C	0x00000000	通道 10 中断状态清除 寄存器		
T10IMSR	0x130	0x00000000	通道 10 中断屏蔽状态 寄存器		
TIMSR	0x140	0x00000000	TIMER 中断屏蔽状态 寄存器		

TISCR	0x144	0x00000000	TIMER 中断状态清除
			寄存器
TISR	0x148	0x00000000	TIMER 中断状态寄存
			器

三. 实现原理

3.1 硬件原理

3.1.1 模块结构

图 Timer结构框图

3.1.1.1 SEP4020 Timer部分管脚定义

序号	管脚 名	方向	描述	驱动 电流 (mA)	属性	复位 值
32~35	TIN[6 :3]	I	时钟触发输入	4		_
36/37	TOUT [1:0]	О	Match Out输出	4		1'H0

3.2 软件原理

3.2.1 头文件定义说明

#include 〈stdio.h〉 标准输入输出函数库

#include "ub4020evb.h" 所有程序中用到的Typedef, Error Codes, PMU 模块时钟

#include "intc.h" INTC 模块的中断源,中断处理,定义中断的向量结构体

#include "timer.h" 对Nandflash的操作函数

3.2.2 核心数据结构声明

INT_VECTOR 中断向量结构体包括:中断号和中断处理函数

3.2.3 代码实现流程图

3.2.4 主要函数及参数,返回值介绍

(1) void InitTmier(void)

描述: 初始化函数

输入: 无

输出:无

(2) void Timer_IRQ_Service1(void)

描述: 中断服务函数

输入:无

输出:无

四. 测试说明

4.1测试流程

4. 2测试结果

正常运行时,在console窗口会输出: timerl restar mode test OK 在测试捕获模式的时候,在console窗口输出: In the catpure mode, the current value of count register is %ld

五. 注意事项

关于对TxS和TxEN设置的注意事项 正确的做法是: 将TxS位设为1,将TxEN位设为0 设置TxLCR 将TxEN位设为1

如果执行了以下操作: 将TxS设为0,将TxEN设为0 设置TxLCR 将TxEN设为1 将TxS设为1 那么Timer将会Load全F进行计数

而如果执行以下操作: 将TxEN设为0,将TxS设为0 设置TxLCR 将TxEN、TxS同时设为1

将无法预料Timer是否可以正常工作。

先 TxS 再 TxEN

TxS 是在计数的过程中暂停计数用的,在 TxEN 由 0 到 1 反转的过程中,一定要保证该位为 1, 否则将导致 Load 出错。