CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Assignment Project Exam Help

Lecture 11 https://eduassistpro.githtb.lo/earning

Add Weathat edu_assist_pro

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

- Homework 3: MDP https://eduassistpro.gethutblicearning
 - Deadline: Nov 10th, 2020 WeChat edu_assist_pro

Thanh H. Nguyen 11/4/20

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per Atstignment Project Exam Help
 - A model T(s,a,s')
 - A reward function R(s,a,https://eduassistpro.github.io/
- Still looking for a policyAddsWeChat edu_assist_pro
- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Assignment Project Exam Help

Compute / policy iteration

Evaluate a https://eduassistpro.github.jo/

Add WeChat edu_assist_pro

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes
 Assignment Project Exam Help

https://eduassistpro.github.io/

- Update estimates ea Add WeChat edu_assist_pro
- Over time, updates will mimic Bellman updates

Q-Learning

• We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$
• But can't compute this uposite number Project Exam Help

- Instead, compute average https://eduassistpro.github.io/
 - Receive a sample transition (sart WeChat edu_assist_pro
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$$

Example

- Two states: A, B
- Two actions: Up, Down Assignment Project Exam Help
- Discount factor: γ
- Learning rate: $\alpha = \frac{\text{https://eduassistpro.github.io/}}{\alpha}$
- $\mathbf{Q}(A, Down) = ?$
- -Q(B, Up) = ?

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Add WeChat edu_assist_pro

Thanh H. Nguyen 11/4/20

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - -- even if you're acting suboptimally!

Assignment Project Exam Help

https://eduassistpro.github.io/

- Caveats:
 - You have to explore enough
 You have to eventually make the lear
 - You have to eventually make the lear small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions
 (!)

Exploration vs. Exploitation

Assignment Project Exam Help

https://eduassistpro.github.io/

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flassignment Project Exam Help
 - With (small) probabili
 - With (large) probabilit https://eduassistpro.github.io/(

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stephenting oject Exam Help

https://eduassistpro.github.io/

- Exploration function
 - Takes a value estimate **u** and **Avisit Wethat edu_assist_pro** returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference stemment Project Exam Help your (expected) rewards, incl youthful suboptimality, and https://eduassistpro.github.io/(expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot persibly Exam Help learn about every single state!
 - Too many states to visit themhttps://eduassistpro.github.io
 - Too many states to hold the q

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience

In naïve q-learning, we know nothing that this state is bad: Assignmehout this state is bad: Assign Or even this one!

https://eduassistpro.github.i

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the Help state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

https://eduassistpro.github.io/

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1^{\text{Assignment}} Project Exam Help_n(s)$$

https://eduassistpro.github.io/

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions ment Project Exam Help transition = (s, a, r, s')

https://eduassistpro.github.io/

$$Q(s,a) \leftarrow Q(s,a) + \alpha A \text{didfWe} \text{Cleant edu_assist} \underline{s} \text{pro}$$

$$w_i \leftarrow w_i + \alpha$$
 [difference] $f_i(s, a)$ Approximate Q's

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$ Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$Q(s, NORTH) = +1$$

difference = -501

$$r + \gamma \max_{a'} Q(s', a') = -500 + 0$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] \, 1.0$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

 $Q(s',\cdot)=0$

Q-Learning and Least Squares

Assignment Project Exam Help

https://eduassistpro.github.io/

Linear Approximation: Regression*

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

 $\binom{2}{1}$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Assignment Project Exam Help

(22)

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$error(w) = \frac{1}{2} \left(x - \sum_{k=0}^{\infty} w_{k} f_{k}(x) \right)^{2}$$

$$Exam Help$$

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*

 $\overbrace{24}$

Policy Search

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Thanh H. Nguyen 11/4/20

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still professing the Exam Help
 - Q-learning's priority: get Q-v
 - Action selection priority: get https://eduassistpro.gjthubtion)
 - We'll see this distinction between modeling a again later in the course Add WeChat edu_assist_pro
- Solution: learn policies that maximize rewards, not the values that predict them

 Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

https://eduassistpro.github.io/

- Problems:
 - How do we tell the policy Age Wecknat edu_assist_pro
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve oject Exam Help problems in:
 - Search
 - https://eduassistpro.github.io/ Constraint Satisfaction Problems Add WeChat edu_assist_pro

 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!