- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Recap: Covering map

- Networks N = (V, P, p) and N' = (V', P', p')
- Surjection φ: V → V' that preserves inputs, degrees, connections, port numbers
- Theorem: preserves outputs for any PN-algorithm

Covering map $\phi: V \rightarrow V'$

Week 9

Local neighbourhoods

Recap: Locality

• State at time *T* only depends on initial information within distance *T*

Recap: Locality

- After T communication rounds, node x can only know about other nodes that are within distance T from it
 - distance = "number of hops"

Recap: Locality

Typical application:

- two possible worlds, need to produce different local outputs
- isomorphic local neighbourhoods
- fast algorithm → same local output

Example: Distance to nearest leaf

- Graph family: trees
- Problem: each node outputs the distance to the nearest degree-1 node
- Prove: not possible to solve in o(n) time in the LOCAL model

Common pitfalls

- Don't forget port numbering
- Don't forget unique identifiers
 - identifiers must also be sufficiently small
- Don't forget local inputs
 - did you e.g. assume that all nodes know n?

Problem:

- if G is a forest: all nodes output "yes"
- otherwise: at least one node outputs "no"

- Problem:
 - if G is a forest: all nodes output "yes"
 - otherwise: at least one node outputs "no"
- Can we solve this in PN model?
- How fast we can solve this in LOCAL model?

PN model:

- cannot be solved at all if we do not know n
- can be solved in O(n) rounds if we know n
- cannot be solved in o(n) rounds,
 even if we know n

LOCAL model:

- can be solved in O(n) rounds even if we do not know n
- cannot be solved in o(n) rounds even if we know n

LOCAL model:

- what is the exact running time if we know n?
- can we solve it in n/2 + 2 rounds?
- can we solve it in n/2 2 rounds?

LOCAL model:

- what is the exact running time if we know n?
- can we solve it in n/2 + 2 rounds?
- can we solve it in n/2 2 rounds?
- what if we do not know n?

Summary

- Two powerful lower-bound techniques:
 - covering maps → PN, computability
 - locality → LOCAL, computational complexity
- Sometimes we need to use both techniques together to argue about the PN model

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap