Topologia I

Data ostatniej aktualizacji: 9 października 2024

1 Przestrzenie Metryczne i przestrzenie topologiczne

Twierdzenie 1: Przydatne Zależności Zbiorowe

- $\bigcup_{i \in I} (A_i \cup B_i) = \bigcup_{i \in I} A_i \cup \bigcup_{i \in I} B_i$
- $\bigcup_{i \in I} (A_i \cap B_i) \subseteq \bigcup_{i \in I} A_i \cap \bigcup_{i \in I} B_i$
- $D \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (A_i \cap D)$
- $D \cup \bigcup_{i \in I} A_i = \bigcup_{i \in I} (A_i \cup D)$

- $D \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} D \setminus A_i$
- $\bullet \bigcup_{j \in J} \bigcup_{k \in K} C_{j,k} = \bigcup_{k \in K} \bigcup_{j \in J} C_{j,k}$
- $\bigcup_{j \in J} \bigcap_{k \in K} C_{j,k} \subseteq \bigcap_{k \in K} \bigcup_{j \in J} C_{j,k}$

Definicja 1: Metryka i Przestrzeń Metryczna

Metryką na zbiorze X nazywa się funkcję $d: X \times X \to \mathbb{R}$ spełniającą następujące warunki:

- 1. d(x,y) = 0 wtedy i tylko wtedy, gdy x = y,
- 2. d(x,y) = d(y,x), dla $x, y \in X$,
- 3. $d(x,y) \leq d(x,z) + d(z,y)$,dla $x, y, z \in X$.

Parę (X, d) nazywamy przestrzenią metryczną.

Definicja 2: Zbiór Otwarty w Przestrzeni Metrycznej

U jest otwarty w przestrzeni metrycznej, jeśli

$$\forall_{x \in U} \underset{r \in \mathbb{R}}{\exists} B(x,r) \subset U$$

Inaczej: Dla każdego punktu należącego do zbioru, istnieje kula o środku w tym punkcie, która się całkowicie zawiera w tym zbiorze

1

Definicja 3: Topologia

Rodzina zbiorów \mathcal{T} jest Topologia na X jeśli spełnione są warunki:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. Iloczyn dowolnej skończonej liczby elementów topologii należy do tej topologii
- 3. Suma dowolnej liczby elementów topologii należy do tej topologii.

Elementy \mathcal{T} nazywamy Zbiorami Otwartymi. Mają one następujące własności:

- 1. Dowolna suma (nawet nieskończona) zbiorów otwartych jest zbiorem otwartym.
- 2. Skończony iloczyn zbiorow otwartych jest zbiorem otwartym.

Własności:

1. Punkty izolowane są zbiorami otwartymi.

Definicja 4: Typy Topologii

Przestrzeń topologiczna (X, \mathcal{T}) spełnia warunek:

- $T_0: \bigvee_{x \neq y \in \mathcal{T}} \exists_{V \in \mathcal{T}} (x \in V, y \notin V) \lor (x \notin V, y \in V)$
- $T_1: \bigvee_{x \neq y \in \mathcal{T}} \exists_{V,U \in \mathcal{T}} (x \in U, y \notin U) \land (x \in V, y \in V)$
- $T_2(\text{Hausodrffa}): \bigvee_{x \neq y \in \mathcal{T}} \exists_{V,U \in \mathcal{T}} (x \in U, y \in U) \land (U \cap V = \emptyset)$ Własności:
 - Przestrzeń X jest Hausdorffa wtedy i tylko wtedy, gdy przekątna $\{(x,x):x\in X\}$ jest zbiorem domkniętym w przestrzeni produktowej $X\times X$.
 - Podprzestrzeń przestrzeni Hausdorffa jest przestrzenią Hausdorffa
 - Przestrzeń produktowa przestrzeni Hausdorffa również jest Hausdorffa.
 - Zwarte podprzestrzenie przestrzeni Hausdorffa są domknięte.

Twierdzenie 2

Jeśli \mathcal{T} jest generowane przez metrykę $d: X \times X \to \mathbb{R}$ to (X, \mathcal{T}) jest Hausdorffa.

$$B\left(x, \frac{d(x,y)}{2}\right) \cap B\left(y, \frac{d(x,y)}{2}\right) = \emptyset$$

Definicja 5: Baza Topologii

Rodzinę ${\cal B}$ podzbiorów otwartych przestrzeni topologicznej (X, T) nazywamy bazą topologii ${\cal T},$ jeśli:

$$\bigvee_{U \in \mathcal{T}} \bigvee_{x \in U} \mathop{\exists}_{B \in \mathcal{B}} x \in B \subset U$$

Przykłady Baz:

- $\mathcal{T} = \mathcal{T}(d)$ to bazą są kule B(x,r), r-dowolne, $x \in X$
- $(\mathbb{R}, \mathcal{T}(d_e))$ to baza jest rodzina $\{(q \frac{1}{n}, q + \frac{1}{n}), q \in \mathbb{Q}, n \in \mathbb{N}\}$

Twierdzenie 3

 $X\text{-}\mathrm{dowolny}$ zbi
ór, $\mathcal{B}\text{-}\mathrm{rodzina}$ podzbiorów X

- 1. $\bigcup_{B \in \mathcal{B}B=X}, \emptyset \in \mathcal{B}$
- 2. $B_1, B_2 \in \mathcal{B}$ jeśli $x \in B_1 \cap B_2$ to istnieje $B \in \mathcal{B}$, t. że $B \subset B_1 \cap B_2$

Wówczas rodzina \mathcal{T} zbiorów $U \subset X$ takich, że jeśli $x \in U$, to $x \in B \subset U$ dla pewnego $B \in \mathcal{B}$, jest topologią w X.

Definicja 6: Przykład przestrzeni topologicznych

$$\begin{split} X &= \mathbb{R} \\ Z &= \left\{ \frac{1}{i}, i \in \mathbb{Z} \setminus \{0\} \right\} \\ \mathcal{B} &- \operatorname{rodzina} \ \operatorname{podzbiorów} \ \mathbb{R} \end{split}$$

$$\mathcal{B} = \begin{cases} B\left(x, \frac{1}{n}\right), x \neq 0, n \in \mathbb{N}_{+} \\ U_{i}(0) = B\left(0, \frac{1}{n}\right) \setminus \mathbb{Z} \end{cases}$$

Definicja 7: Płaszczyzna Niemyckiego

$$P \subset \mathbb{R}^2, P = \{((x, y), x \geqslant 0\}$$

$$\mathcal{B} = \begin{cases} B_{d_e}\left(x, \frac{1}{n}\right) \subset P, n \in \mathbb{N}_+, x \in P \\ B_{d_e}\left(x, \frac{1}{n}\right) \text{ styczne do osi } y \text{ wraz z punktem styczności} \end{cases}$$

Definicja 8: Topologia Porządkowa

 (X,\leqslant) - zbiór z linowym porządkiem

$$\mathcal{B} = \begin{cases} \forall B_y = \{x \in X, y < x\} \\ \forall B^y = \{x \in X, y > x\} \\ \forall B^y = \{x \in X, y > x\} \\ \forall B^y = \{z \in X, x < z < y\} \end{cases}$$

Definicja 9: Topologia Strzałki na $\mathbb R$

$$\mathcal{B} = \{(a, b], a, b \in \mathbb{R}\} \cup \emptyset$$

Definicja 10: Otoczenie punktu

Zbiór V jest otoczeniem punktu $x \in X$ w przestrzeni topologicznej (x, \mathcal{T}) jeśli $\exists_{u \in \mathcal{T}}$ t.że $x \in U \subset V$

Definicja 11: Zbieżność

Jeśli $\mathcal{T} = \mathcal{T}(d)$ to mówimy że:

$$(x_n)_{n=1}^{\infty} \in X$$
 zbieżny do $x_0 \iff d(x_n, x_0) \xrightarrow{n} 0$

Definicja 12: Domknięcie zbioru

Niech $A \subset X$, (X, \mathcal{T}) -prz.topologiczna. A jest domknięty jeśli

$$\overline{A} = \{x \in X, \underset{V \text{- otwarte}}{\forall} V \cap A = \emptyset\}$$

Własności:

- 1. $\overline{\overline{A}} = \overline{A}$
- 2. A jest domknięty $\iff X \setminus A$ jest otwarty
- 3. Jest to najmniejszy w sensie zawierania zbiór w \boldsymbol{X} zawierający \boldsymbol{A}
- 4. $\overline{A} = \bigcap \{ A \subset F \subset X, F \text{ domkniety} \}$
- 5. Skończona suma zbiorów domkniętych jest zbiorem domkniętym
- 6. Dowolny (nawet nieskończony) iloczyn zbiorów domkniętych jest zbiorem domkniętym

Dodatkowo, w przestrzeni metrycznej (X, d)

$$\overline{A} = \{ x \in X; \underset{(a_n)_{n=1}^{\infty} \in A}{\exists} a_n \to x \}$$

Inaczej: Zbiór A jest domknięty w przestrzeni metrycznej jeśli każdy ciąg nieskończony zawarty w A jest zbieżny do elementu z tego zbioru.

Twierdzenie 4

 (X, \mathcal{T}) przestrzeń topologiczna, $Y \subset X$. Wtedy

$$B \subset (Y, \mathcal{T}|_{Y})$$
 jest domknięty $\iff \exists_{A \text{ domknięty w } Y} B = Y \cap A$

Definicja 13: Wnętrze zbioru

 $Int(A) = \bigcap_{u \in \mathcal{T}, U \subset A} \iff Int(A)$ to maksymalny zbiór otwarty zawarty w A

Własności:

- 1. Wnętrze zbioru F jest otwartym podzbiorem F.
- 2. Wnętrze jest sumą wszystkich otwartych podzbiorów F.
- 3. Wnętrze jest największym zbiorem otwartym zawartym w F.
- 4. Zbiór jest otwarty wtedy i tylko wtedy, gdy jest swoim własnym wnętrzem.
- 5. Wnętrze dowolnego zbioru równa się swojemu wnętrzu: Int(Int(S)) = Int(S)
- 6. Jeżeli S jest podzbiorem F, to Int(S) jest podzbiorem Int(F).
- 7. Wnętrze części wspólnej zbiorów jest częścią wspólną wnętrz tych zbiorów: $Int(S \cap F) = Int(S) \cap Int(F)$
- 8. Jeżeli S jest zbiorem otwartym, to S jest podzbiorem F wtedy i tylko wtedy, gdy S jest podzbiorem Int(F).

Definicja 14: Brzeg Zbioru

$$bdA = \overline{A} \setminus Int(A)$$

Definicja 15: Odwzorowanie ciągłe w przestrzeni metrycznej

 $f:X\to Y$ jest ciągła jeśli

$$\bigvee_{a \in X} \bigvee_{\epsilon > 0} \mathop{\exists}_{\delta} \bigvee_{b} d_X(a, b) < \delta \implies d_Y(f(a), f(b)) < \epsilon \qquad \text{def. Cauchy'ego}$$

$$\forall a \in X \ a_n \xrightarrow{d_y} a f(a_n) \xrightarrow{d_y} f(a)$$
 def. Heine'ego

Twierdzenie 5: Charakteryzacja funkcji ciągłych

$$f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$$

NWSR

- 1. f jest Ciągła
- 2. Przeciwobraz każdego zbioru otwartego jest otwarty

$$\bigvee_{U \in \mathcal{T}_Y} f^{-1}(U) \in \mathcal{T}_X$$

3. Przeciwobraz każdego zbioru domkniętego jest domknięty.

$$F \subset Y - \text{domknięty} \implies \mathcal{T}^{-1}(F) - \text{domknięty w } X$$

4. Obraz domknięcia każdego zbioru zawiera się w domknięciu obrazu tego zbioru.

$$\bigvee_{A\subset X} f(\overline{A})\subset \overline{f(A)}$$

5. $\forall \forall \forall \exists f(U) \subset Y$ otwarte $U \subset X$ otoczenieX

Własności:

- Złożenie przekształceń ciągłych jest ciągłe
- Obcięcie przekształcenia ciągłego jest ciągłe

Uwaga:

Ciągłość wystarczy sprawdzić na dowolnej bazie ${\mathcal B}$

Definicja 16: Homeomorfizm

Odwzorowanie $f:(X,d_X)\to (Y,d_Y)$ jest HOMEOMORFIZMEM, jeśli

- 1. f jest bijekcją
- 2. f i f^{-1} jest bijekcją

Mówimy że f jest zanurzenie Homeomorfizm
u jeśli zadaje homeomorfizm ze zbioru X w jego obra
zf(X)

Własności:

1. Niezmiennikami homeomorfizmu są domkniętość, otwartość, zwartość, ośrodkowość, spójność, izolowaność, skupienie, spójność.

Twierdzenie 6: Homeomorficzność z dziedziną

Niech $f: X \to Y$ będzie ciągłym przekształceniem przestrzeni topologicznej (X, \mathcal{T}_X) w przestrzeń (Y, \mathcal{T}_Y) i rozpatrzymy wykres $W(Y) = \{(x, f(x)), x \in X\} \subset X \times Y$ przekształcenia f jako podprzestrzeń iloczynu kartezjańskiego $(X \times Y, \mathcal{T})$ przestrzeni (X, \mathcal{T}_X) i (Y, \mathcal{T}_Y) . Wtedy

- 1. (X, \mathcal{T}_X) jest homeomorficzna z W(f)
- 2. Jeśli (Y, \mathcal{T}_Y) jest przestrzenią Hausdorffa, to W(f) jest domkniętym podzbiorem $(X \times Y, \mathcal{T})$

Definicja 17: Zbiór Gęsty

 (X,\mathcal{T}) - p. topologiczna, $A\subset X$ NWSR

- 1. A jest gesty
- 2. Domknięciem zbioru A jest cała przestrzeń

$$\overline{A} = X$$

3. Zbiór A jest ma z każdym niepustym zbiorem otwartym co najmniej jeden punkt wspólny.

$$\bigvee_{U \in \mathcal{T}} A \cap U \neq \emptyset$$

4. Dopełnieniem zbioru A jest zbiór brzegowy -

$$X \setminus A$$
 – brzegowy

UWAGA: Zbiór może być jednocześnie gesty i brzegowy

UWAGA: Zbiór gesty musi zawierać wszystkie punkty izolowane danej przestrzeni.

Definicja 18: Zbiór Brzegowy

 (X,\mathcal{T}) - p. topologiczna, $A\subset X$ NWSR

- 1. A jest brzegowy
- 2. Wnętrze A jest puste

$$Int(A) = \emptyset$$

3. Dopełnienie zbioru A jest zbiorem gęstym

Zbiór A nazywamy BRZEGOWYM jeśli jego wnętrze jest puste **UWAGA:** Zbiór może być jednocześnie gęsty i brzegowy

Definicja 19: Przestrzeń Ośrodkowa

Przestrzeń Topologiczną (X,\mathcal{T}) nazywamy OŚRODKOWĄ, jeśli zawiera co najwyżej przeliczalny podzbiór gęsty.

Własności:

- 1. Podprzestrzeń przestrzeni ośrodkowej nie musi być ośrodkowa
- 2. Przestrzeń metryzowalna jest ośrodkowa wtedy i tylko wtedy, gdy przestrzeń posiada bazę przeliczalną.
- 3. Podprzestrzeń przestrzeni metrycznej ośrodkowej jest ośrodkowa.
- 4. Przestrzeń zwarta metryczna jest ośrodkowa.
- 5. Iloczyn kartezjański maksymalnie 2^{\aleph_0} wielu przestrzeni ośrodkowych jest ośrodkowy

Twierdzenie 7: Tieztego

Niech $f:A\to [a,b]$ będzie funkcją ciągłą okresloną na podprzestrzeni domkniętej przestrzeni metryzowalnej (X,\mathcal{T}) . Wówczas istnieje funkcja ciągła $\overline{f}(x):X\to [a,b]$ taka, że $\overline{f}(x)=f(x)$ dla $x\in A$.

UWAGA: Zachodzi to również dla $f: A \to \mathbb{R}^n$

2 Zwartość

Definicja 20: Zbiór zwarty

 (X,\mathcal{T}) - prz. topologiczna. Hausdorffa NWSR

- 1. X jest ZWARTA
- $2.\,$ Z dowolnego pokrycia Xzbiorami otwartymi można wybrać podpokrycie skończone

Własności:

- 1. Ciągły obraz przestrzeni zwartej jest zwarty.
- 2. Funkcja ciągła na przestrzeni zwartej o wartościach w $\mathbb R$ jest ograniczona i przyjmuje swoje kresy.
- 3. Obraz zbioru zwartego w funkcji ciągłej na przestrzeń Hausdorffa jest podzbiorem zwartym
- 4. Iloczyn kartezjański przestrzeni zwartych (z topologią produktową) jest zwarty.
- 5. Zwarty podzbiór przestrzeni Hausdorffa jest domknięty.
- 6. Ciągła bijekcja zwartej przestrzeni X na przestrzeń Hausdorffa Y jest homeomorfizmem.
- 7. Każdy domknięty podzbiór przestrzeni zwartej jest zwarty.
- 8. Metryczna przestrzeń zwarta jest zupełna

Gdy Xjest przestrzenią metryczną, zachodzą mocniejsze własności NWSR

- 1. X jest zwarta
- 2. Każdy ciąg (x_n) w tej przestrzeni zawiera podciąg (x_{n_k}) zbieżny do punktu należącego do tej przestrzeni (tzn. X jest ciągowo zwarta).
- 3. Z każdego przeliczalnego pokrycia można wybrać podpokrycie skończone
- 4. dla każdej funkcji ciągłej $f: X \to \mathbb{R}$ obraz f(X) jest ograniczony

Definicja 21: Kostka Cantora

Weźmy przestrzeń top. $(\{0,1\}^{\mathbb{N}}, d_{fd})$

$$d_{fd} = \begin{cases} 0 & a = b \\ \frac{1}{i}, i = \min(a_j \neq b_j) \end{cases}$$

Twierdzenie 8: Tw. Kuratowskiego

Niech $(X \times Y, \mathcal{T})$ będzie iloczynem przestrzeni topologicznej (Y, \mathcal{T}) i przestrzeni zwartej (Y, \mathcal{T}_Y) . Wykazać, że rzut zbioru domkniętego w iloczynie $X \times Y$ na X jest zbiorem domkniętym w (X, \mathcal{T}_X) .

Twierdzenie 9

 (X, \mathcal{T}_X) - zwarte

 (Y, \mathcal{T}_Y) - Hausdorffa.

 $f: X \to Y$ odwzorowanie ciągłe.

Wówczas $f(X) \subset Y$ jest podzbiorem zwartym.

Twierdzenie 10

Produkt przestrzeni zwartej z topologią produktową jest zwarty.

Twierdzenie 11: Tw. Tichonowa

Przeliczalny produkt przestrzeni zwartej jest zwarty.

Definicja 22: Przestrzeń Doklejona

Niech $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ prz. top.

 $K \subset X$

 $f: K \to Y$ - ciągłe

Na przestrzeni $X \sqcup Y$ w
prowadzamy relację równoważności:

$$\bigvee_{x \in K} \begin{cases} x \sim f(x) \\ \text{pozostałe klasy abstakcji są jednoelementowe} \end{cases}$$

Przestrzeń ($(X\sqcup Y_{/\sim},\mathcal{T}_{X\sqcup Y_{/\sim}})$ nazywamy Przestrzenią otrzymaną z X przez doklejenie Y wzdłuż f, ozn. $X\cup_f Y.$

Twierdzenie 12

Niech $X \subset \mathbb{R}^m$, $Y \subset \mathbb{R}^n$ zwarte

K- domknięty podzbiór w $X, f: K \to Y$.

Wówczas $X \cup Y$ zawiera się homeomorficznie w \mathbb{R}^{n+m+1}

3 Spójność

Definicja 23: Przestrzeń Spójna

 (X, \mathcal{T}_X) jest spójna jeśli nie można jej przedstawić w postaci $X = A \cup B$ gdzie

- 1. A, B otwarte w X
- 2. $A \cap B = \emptyset$
- 3. $A \neq \emptyset \neq B$

Uwaga:

Równoważnie można zakładać spójność:

- 1. Nie istnieją domknięte A i B, $A \neq \emptyset \neq B$, $A \cap B = \emptyset$ $X = A \cup B$
- 2. Nie istnieje ciągła surjekcja $X \xrightarrow{"na"} \{0,1\}$ (jedynymi funkcjami ciągłymi z $X \le \{0,1\}$ są funkcje stałe)

Własności:

- 1. Ciągłe przekształcenia zachowują spójność przestrzeni. (Jest to równoważne własności Darboux na \mathbb{R}^n)
- 2. Suma dwóch zbiorów spójnych o niepustym przekroju jest zbiorem spójnym.
- 3. Iloczyn kartezjański dowolnej rodziny przestrzeni spójnych jest spójny.
- 4
- 5. Suma wszystkich podzbiorów spójnych jest zbiorem spójnym.

Twierdzenie 13

Niech (X, \mathcal{T}) , $S \subset T \subset \overline{S}$ zbiór S jest spójny, to zbiór T też jest spójny. W szczególności, domknięcie zbioru spójnego jest spójne.

Definicja 24: Droga

DROGĄ w przestrzeni topologicznej (X, \mathcal{T}) łączącą punkty a, b X nazywamy przekształcenie ciągłe $f: [0,1] \to X$ takie, że f(0) = a, f(1) = b.

Definicja 25: Przestrzeń łukowo spójna

Przestrzeń topologiczna (X, \mathcal{T}) jest ŁUKOWO SPÓJNA, jeśli każdą parę punktów z X można połączyć drogą w X. Własności:

- 1. Otwarty łukowo spójny podzbiór przestrzeni euklidesowej jest łukowo spójny
- 2. Przestrzeń ściągalna jest łukowo spójna.

Definicja 26: Składowa przestrzeni topologicznej

Składową przestrzeni topologicznej (X, T) nazywamy zbiór spójny $S \le X$ taki, że żaden zbiór w X, zawierający w istotny sposób S, nie jest spójny.

Własności

- 1. Każda przestrzeń jest sumą rozłączną swoich składowych spójności.
- 2. Składowe spójne są domknięte w X

Definicja 27: Składowa Łukowej Spójności

Składową łukowej spójności przestrzeni topologicznej (X, \mathcal{T}) nazywamy maksymalny, w sensie inkluzji, łukowo spójny podzbiór X.

UWAGA: Składowe łukowej spójności nie muszą być domknięte

4 Zupełność

Definicja 28: Ciąg Cauchy'ego

Ciąg punktów (x_n) w przestrzeni metrycznej (X,d) nazywamy ciągiem Cauchy'ego, jeśli

$$\bigvee_{\varepsilon>0} \underset{n_0}{\exists} \bigvee_{n,m \geqslant n_0} d(x_n, x_m) < \varepsilon$$

Własności:

- 1. Każdy ciąg zbieżny w (X, d) jest ciągiem Cauchy'ego
- 2. Każdy ciąg Cauchy'ego jest ograniczony
- 3. Jeśli ciąg Cauchy'ego x_n ma punkt skupienia x_0 , to $x_n \to x_0$.

Definicja 29: Zupełność

Przestrzeń metryczna (X,d) jest ZUPEŁNA, jeśli każdy ciąg Cauchy'ego w tej przestrzeni jest zbieżny.

Własności:

- 1. Przestrzenie euklidesowe (\mathbb{R}^n, d_e) są zupełne.
- 2. Dowolny zbiór z topologią dyskretną jest przestrzenią metryzowalną w sposób zupełny przez metrykę dyskretną.
- 3. Przestrzeń jest zupełna \iff każdy zstępujący ciąg niepustych zbiorów domkniętych o średnicach dążących do zera ma niepuste przecięcie. (Warunek Cantora)
- 4. W przestrzeni metrycznej zupełnej przeliczalna suma domkniętych zbiorów brzegowych jest zbiorem brzegowym.(Tw. Baire'a)
- 5. Przestrzeń metryczna jest zupełna i całkowicie ograniczona \iff przestrzeń metryczna jest zwarta.

Twierdzenie 14

Niech (X,d_x) będzie przestrzenią metryczną, $Y\subset X$ i niech d_y będzie obcięciem metryki d_y do Y . Wówczas:

1. jeśli przestrzeń (Y, d_y) jest zupełna, to zbiór Y jest domknięty w (X, d_x)

2. jeśli przestrzeń (X, d_x) jest zupełna i zbiór Y jest domknięty w (X, d_x) , to przestrzeń (Y, d_y) jest zupełna.

Twierdzenie 15

Jeśli przestrzeń metryczna (Y, d) jest zupełna, to dla dowolnej przestrzeni topologicznej (X, \mathcal{T}) , przestrzeń funkcyjna $(C_b(X, Y), d_{\sup})$ jest zupełna.

Definicja 30: Przekształcenie zwężające

Przekształcenie $T:X\to X$ przestrzeni metrycznej (X,d) w siebie jest zwężające, jeśli dla pewnej stałej $c\in[0,1)$ zachodzi

$$d(T(x), T(y)) \le c \cdot d(x, y), x, y \in X$$

Definicja 31: Punkt Stały

Mówimy, że x jest punktem stałym przekształcenia T, jeśli T(x) = x.

Twierdzenie 16

(X,d) - przestrzeń metryczna

 $T:X\to X$ - przekształceniem zwężające

to T ma dokładnie jeden punkt stały.

Ponadto, dla dowolnego $a \in X$ ciąg iteracji $T(a), T(T(a)), \dots$ zbiega do punktu stałego przekształcenia T

Definicja 32: Całkowita ograniczoność

Zbiór w przestrzeni metrycznej (X,d) jest CAŁKOWICIE OGRANICZONY, jeśli dla każdego $\varepsilon>0$ można go pokryć skończenie wieloma zbiorami o średnicach $\leqslant \varepsilon$.

Twierdzenie 17

Przestrzeń metryczna (X, d) jest zwarta \iff jest zupełna i całkowicie ograniczona. UWAGA:

W \mathbb{R}^n

domkniętość \iff zupełeność

ogrniczoność \iff całkowita ograniczoność

Definicja 33: Rodzina Przekształceń Jednakowo Ciągłych

 X, \mathcal{T} - p. topologiczna

Rodzina przekształceń ciągłych $\mathcal{F} \subset C(X,\mathbb{R}^n)$ z przestrzeni topologicznej (X,\mathcal{T}) w przestrzeń euklidesową (\mathbb{R}^n,d_e) jest JEDNAKOWO CIĄGŁA, jeśli dla każdego $x\in X$ i $\varepsilon>0$ istnieje otoczenie U punktu x takie, że dla wszystkich $f\in \mathcal{F}, diam f(U)\leqslant \varepsilon$

Definicja 34: Rodzina ograniczona

 X, \mathcal{T} - p. topologiczna

Rodzina $\mathcal{F} \subset C(X, \mathbb{R}^n)$ jest OGRANICZONA, jeśli dla pewnego r > 0, obrazy f(X) wszystkich przekształceń $f \in \mathcal{F}$ leżą w kuli $B(\mathbf{0}, r)$.

Twierdzenie 18

 (X,\mathcal{T}) - przestrzeń zwarta

 $\mathcal{F} \subset C(X,\mathbb{R}^n)$ - rodzina jednakowo ciągła i ograniczona

Wówczas domknięcie \mathcal{F} w przestrzeni metrycznej $(C(X,\mathbb{R}^n),d_{\text{sup}})$ jest zwarte

5 Homotopie

Definicja 35: Przekształcenie Homotopijne

Przekształcenia ciągłe $f,g:X\to Y$ przestrzeni (X,\mathcal{T}_X) w (Y,\mathcal{T}_Y) są homotopijne, jeśli istnieje przekształcenie ciągłe

$$H: X \times I \to Y$$
 – homotopia łącząca $f \ge g$

takie, że f(x) = H(x,0) i g(x) = H(x,1), dla $x \in X$. Piszemy wówczas $f \sim g$

Definicja 36: Homotopijna Równoważność

Przestrzenie X i Y są homotopijnie równoważne jeśli istnieją ciągłe

$$f: X \to Y$$
 $g: Y \to X$

t.że

$$g \circ f \sim id_X$$
 $f \circ g \sim id_Y$

Uwaga:

Jeśli X jest homeomorficzna z Y to X i Y są homotopijnie równoważne.

Definicja 37: Przestrzeń Ściągalna

Przestrzeń topologiczna (X, \mathcal{T}) jest ściącalna, jeśli identyczność jest homotopijna z przekształceniem stałym $\varepsilon_a(x) = a$, dla pewnego $a \in X$. Uwaga:

Przestrzeń ściągalna jest łukowo spójna.

Definicja 38: Pętle i Homotopie między pętlami

Niech (X, \mathcal{T}) będzie przestrzenią topologiczną z wyróżnionym punktem $a \in X$.

- 1. Pętlą w X zaczepioną w a nazywamy drogę $\alpha: I \to X$ taką, że $\alpha(0) = a = \alpha(1)$. Zbiór pętli w X zaczepionych w a oznaczamy symbolem $\Omega(X, a)$.
- 2. Homotopią między pętlami $\alpha, \beta \in \Omega(X, a)$ nazywamy homotopię $H: I \times I \to X$ łączącą α z β i spełniającą warunek H(0, t) = a = H(1, t), dla $t \in I$.

Własności:

1. Jeśli X jest ściągalna i $a \in X$ to $\Omega(A, a) / \sim$ jest jednopunktowy

Twierdzenie 19

Niech $f:I^n\to S^1$ będzie przekształceniem ciągłym, gdzie S^1 oznacza okrąg jednostkowy, oraz f(0)=1. Istnieje wówczas dokładnie jedno przekształcenie ciągłe $\tilde{f}:I^n\to\mathbb{R}$ takie, że $E\circ \tilde{f}=f$, oraz $\tilde{f}(0)=0$.

Twierdzenie 20

Pętle $\alpha, \beta \in \Omega(S^1, 1)$ są homotopijne wtedy i tylko wtedy, gdy mają równe stopnie, $\deg(\alpha) = \deg(\beta)$.

Definicja 39: Iloczyn Pętli

ILOCZYNEM PĘTLI $\alpha, \beta \in \Omega(X, a)$ nazywamy pętlę

1.
$$\alpha \star \beta(s) = \begin{cases} \alpha(2s), & \text{jeśli } s \in [0, \frac{1}{2}], \\ \beta(2s-1), & \text{jeśli } s \in [\frac{1}{2}, 1]. \end{cases}$$

2. Pętla odwrotna do $\alpha \in \Omega(X, a)$ jest określona formułą $\alpha^{-1}(s) = \alpha(1 - s), s \in [0, 1].$

Definicja 40: Grupą podstawową

Grupą podstawową $\pi_1(X,a)$ przestrzeni topologicznej (X,T) z wyróżnionym punktem a nazywamy zbiór klas abstrakcji $[\alpha] = \{\alpha' : \alpha' \in \Omega(X,a), \alpha \sim \alpha'\}, \ \alpha \in \Omega(X,a), \ z$ działaniem mnożenia $[\alpha][\beta] = [\alpha \star \beta]$, elementem jednostkowym $[\varepsilon_a]$ i operacją odwracania $[\alpha]^{-1} = [\alpha]$.

Twierdzenie 21

Jeśli przestrzeń (X,T) jest łukowo spójna, to dla dowolnych punktów $a,b\in X$, grupy $\pi_1(X,a)$ i $\pi_1(X,b)$ są izomorficzne.