CSCI 3800: Web API Technologies Course Syllabus Spring, 2017

Instructor: Shawn McCarthy

Email: shawn.mccarthy@ucdenver.edu

Phone: 303-349-9745 Office: North 3202

Office Hours: 530pm-630pm

Catalog Data: Special Topics in JavaScript Web technologies for front-end development and back-end development. Building a full end to end solution with a mobile or web front-end, Web API and NoSQL database

Co-requisites: N/A

Prerequisites: CSCI 2421-3 Data Structures & Program Design

Note: Each student must sign and return the attached Prerequisites Agreement form to receive any credit for any assignment or exam. If this form is not returned by the 1st week, the student will be administratively dropped from the course.

Expected Knowledge at the Start of the Course:

Data structures for simplifying algorithm design

Expected Knowledge Gained at the end of the Course:

 Solid understanding of JavaScript, NodeJS, Development of Web APIs, NoSQL Databases and AngularJS/Ionic in a complete solution

ABET Assessment Criteria:

• **(k)** An ability to apply design and development principles in the construction of software systems of varying complexity

Course Objectives:

Textbook: https://leanpub.com/mean-machine

Topics: Web APIs (Design, Best Practices and Development). JavaScript, NodeJS, TypeScript, Angular2, Ionic (Mobile)

Course Outline:

Lecture/ Week	Date	Topic	Reading	Assignments
1	Jan 18th	Syllabus	Introduction to	
		SOAP/WSDL	Primers	
		XML and XML Schemas		
2	Jan 24 th	HTTP	MEAN Thinking to	
		AJAX (Asynchronous JavaScript	Getting Started and	
		and XML)	Installation	
3	Jan 31st	JavaScript/jQuery/JSON	Starting Node	Hw1
	46	Pick Teams		Due
4	Feb 7 th	NodeJS	Routing Node	
			Applications to	
			Build a RESTful Node	
_	th		API	
5	Feb 14 th	Authorization	Node Authentication	
	= 1 a 1 st	Basic Auth, oAuth		
6	Feb 21 st	API Design / Swagger / Best		Hw2
_	- Looth	Practices		Due
7	Feb 28 th	API Management		
8	March 7 th	BaaS / MongoDB	Using MongoDB	Hw3
	a Lath	5 1: : //: : : : : : : : : : :		Due
9	March 14 th	Policies (limits, throttling)		
10	March 21 st	Spring Break		
11	March 28 th	Analytics		Hw4
- 10	a u ath			Due
12	April 4 th	TypeScript/Angular2	Starting Angular to	
			Animating Angular	
			Applications	
13	April11th	UX	MEAN Stack	Hw5
		Hw5 Due	Application	Due
			Structure to Angular	
1.4	A muit 4 Oth	D.A. a.i.a.	Authentication	
14	April 18 th	Mobile		
15	April 25 th	lonic		
15		IoT, Project Days		
16	May 2 nd	Project Presentations		

Grading Policy:

Homework 65%
Projects 35%
Notes: UCD Code of Honor as in the catalog:

http://catalog.ucdenver.edu/content.php?catoid=6&navoid=530&returnto=search#Academic_Honor_Code_and_Discipline_Policies

Projects

Scenario 1- Deny payment transaction based upon IP address lookup

- Create a proxy with a payment API such as eCommerce. Need to require IP address of the
 payment accepting client to be included in the transaction.
- Create an inline policy that takes IP address, performs a location lookup and based upon approved location allows the transaction to be processed.
- If denied decline the transaction with a meaningful error message.
- Also store the location where the transaction originated from for future use.

Scenario 2 - Transaction roundup to charity

- Create a payment enabled mobile application (maybe Applepay) using eComm Restful API.
- Before capturing the transaction ask if the user wants to round up to the closest dollar and donate the change to a charity of choice.
- Create summary page for mobile app to show how much the user has donated to charity.
- Also need a method where charities can be made available to donate to.

Scenario 3 - Commerce application intelligence

- Implement a proxy designed to inspect the transaction payload and store the information without latency impact.
- Needs to be configurable and cannot store any sensitive transaction information such as card number, expiration or CVV.
- Implement proxy to access the stored information if stored in app services.