10/25 Math 331-1, Fall 2023

14 The class equation (10/23)

Definition 14.1. Recall the conjugation action of G on itself defined by $g \cdot h = ghg^{-1}$. We write G//G for the of orbits for the conjugation action. The set G//G is also called the set of **conjugacy classes** of G as two elements h and k satisfy $h \sim k$ if and only if they are conjugate: there exists a $g \in G$ such that $ghg^{-1} = k$.

Definition 14.2. Let G be a group and let $x \in G$. The **normalizer** of x in G, written $N_G(x)$, is the subgroup of elements $g \in G$ such that $gxg^{-1} = x$. Note that the normalizer $N_g(x)$ is just the stabilizer of x with respect to the conjugation action.

Theorem 14.3 (The class equation). If G is a finite group, then

$$|G| = \sum_{\mathfrak{O} \in G//G} \frac{|G|}{|N_G(x_{\mathfrak{O}})|},$$

where O ranges over the conjugacy classes in G and x_O is the choice of an element in O.

Proof. This is an example of the class equation for group actions, Lemma 13.4.

Remark 14.4. Here is another way the class equation is often stated. The **center** of a group G is the subgroup Z(G) consisting of elements $h \in G$ such that $ghg^{-1} = h$ for all $g \in G$. In other words, it is the set up elements that commute with all elements in G. Note that $h \in Z(G)$ if and only if $N_g(h) = G$. In particular, the orbit of the conjugation action containing $h \in Z(G)$ is just $\{h\}$. It follows that we can write the class equation as

$$|H| = \sum_{h \in Z(G)} 1 + \sum_{\mathfrak{O} \in G//G \text{ non-central}} \frac{|G|}{|N_G(x_{\mathfrak{O}})|} = |Z(G)| + \sum_{\mathfrak{O} \in G//G \text{ non-central}} \frac{|G|}{|N_G(x_{\mathfrak{O}})|},$$

where the sum on the right ranges over the non-central conjugacy classes O and x_O is a representative of O.

Notation 14.5. If G is a finite group and $H \subseteq G$ is a subgroup, then the **index** of H in G, written |G:H| is the number of right cosets G/H. In other words, $|G:H| = \frac{|G|}{|H|}$, which is an integer by Lagrange's theorem.

Remark 14.6 (Class equation, final form). Using the notation above and the simplification of Remark 14.4, we have

$$|G| = |Z(G)| + \sum_{\mathfrak{O} \in G//G \text{ non-central}} |G: N_G(x_{\mathfrak{O}})|,$$

where $x_{\mathcal{O}} \in \mathcal{O}$.

Definition 14.7. A p-group is a finite group G whose order is a prime power p^n for some prime p and natural number $n \ge 0$.

Theorem 14.8. If G is a p-group of order p^n for some $n \ge 1$, then Z(G) is non-trivial.

Proof. Use the class equation. If $0 \in G//G$ is non-central, then $N_G(x_0)$ is a proper subgroup of G (so it has order p^{m_0} for some $m_0 < n$ by Lagrange's theorem). Thus, using the class equation, we have

$$p^n = |G| = |Z(G)| + \sum_{\mathfrak{O} \in G//G \text{ non-central}} p^{n-m_{\mathfrak{O}}}.$$

Working modulo p and using that $n - m_{\mathcal{O}} \ge 1$ for all non-central conjugacy classes \mathcal{O} , we find that $|Z(G)| \equiv 0$ mod p. So, either |Z(G)| = 0 or it is non-trivial. But, $e \in Z(G)$, so |Z(G)| > 0 so Z(G) has at least p elements, so it is non-trivial.

14.1 Exercises

Exercise 14.1. Use Theorem 14.8 to show that if p is a group of order p^2 , then either $G \cong \mathbf{Z}/p^2$ or $G \cong \mathbf{Z}/p \times \mathbf{Z}/p$. In particular, G is abelian.

Exercise 14.2. Let G be a finite *abelian* group such that $p \mid |G|$ where p is a prime number. Prove that G has an element of order p.

Exercise 14.3. Suppose that $n \ge 1$ and let $1 \le n_1 \le n_2 \le \cdots \le n_r \le$ be integers such that $\sum_{i=1}^r n_i = n$. (Such a sequence is called a **partition** of n.) Say that an element $g \in S_n$ has cycle type (n_1, \ldots, n_r) if it can be written as a product of *disjoint* cycles of lengths n_1, \ldots, n_r . Prove the following statements.

- (a) If $f, g \in S_n$ are conjugate, then they have the same cycle types.
- (b) If $f, g \in S_n$ have the same cycle types, then they are conjugate.

This proves that the set of conjugacy classes $S_n//S_n$ is in bijection to the set of partitions of n.