Discrete Sample Quiz 10

Question 1 (A reminiscence about variance)

Assume that you want to encode six-letter alphabet $\mathcal{A} = \{a, b, c, d, e, f\}$ and transmit it over a computer network. You assign 2 or 3 bit codes to these letters:

a	00
b	01
С	100
d	101
е	110
f	111

For example, the 11-bit sequence "10100100110" means "dace". Denote by X the random variable – the number of bits used to encode a single letter. (All 6 letters have equal probabilities.)

Find E(X) and V(X).

Write them as two fractions: P1/Q1,P2/Q2 (Separate the fractions by comma, do not leave any spaces.)

Question 2 (Rosen7e, Ch.9, Q10-Q23).

Determine whether the binary relation is: (1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive. Express your answer as as a 4-letter string of T/F (true/false values that are answer to these 4 questions). For example, TFTT etc.

- (A) The relation R on $\{1, 2, 3, ...\}$ where aRb means $a \mid b$.
- (B) The relation R on $\{w, x, y, z\}$ where $R = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}.$
- (C) The relation R on \mathbb{Z} where aRb means $|a b| \le 1$.
- (D) The relation R on \mathbb{Z} where aRb means $a \neq b$.
- (E) The relation R on \mathbb{Z} where aRb means that the units digit of a is equal to the units digit of b.
- (F) The relation R on the set of all subsets of $\{1, 2, 3, 4\}$ where SRT means $S \subseteq T$.
- (G) The relation *R* on the set of all people where *aRb* means that a is younger than *b*.
- (H) The relation R on the set $\{(a,b) \mid a,b \in \mathbb{Z}\}$ where (a,b)R(c,d) means a=c or b=d.

Question 3 (Rosen7e, Ch.9, Q35-Q38).

Construct a matrix of the relations defined below. Output the matrix as a list of lists:

- (A) R on $\{1, 2, 3, 4, 6, 12\}$ where aRb means $a \mid b$.
- (B) R on $\{1, 2, 3, 4, 6, 12\}$ where aRb means $a \le b$.
- (C) R^2 , where R is the relation on $\{1, 2, 3, 4\}$ such that aRb means $|a b| \le 1$.

Question 4 (Rosen7e, Ch.9, Q42).

Define

$$M_R = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right)$$

determine if R is: (1) reflexive (2) symmetric (3) antisymmetric (4) transitive. Express your answer as a 4-letter string of T/F (true/false values that are answer to these 4 questions). For example, TFTT etc.

Question 5 (Rosen7e, Ch.9, Q47).

Let A be the set of all positive divisors of 60 (including 1 and 60 itself). Draw the Hasse diagram for the relation R on A where aRb means $a \mid b$.

Question 6 (Rosen7e, Ch.9, Q51).

Find the transitive closure of *R* if

$$M_R = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right).$$

Question 7 (Rosen7e, Ch.9, Q59).

Find the join of the 3-ary relation:

```
{ (Wages,MS410,N507),
(Rosen,CS540,N525),
(Michaels,CS518,N504),
(Michaels,MS410,N510) }
```

and the 4-ary relation:

```
{ (MS410,N507,Monday,6:00),
(MS410,N507,Wednesday,6:00),
(CS540,N525,Monday,7:30),
(CS518,N504,Tuesday,6:00),
(CS518,N504,Thursday,6:00) }
```

with respect to the last two fields of the first relation and the first two fields of the second relation.

Question 8 (Rosen7e, Ch.9, Q69-Q71). Give an example of a relation or state that there are none.

- (A) A relation on $\{a, b, c\}$ that is reflexive and transitive, but not antisymmetric.
- **(B)** A relation on $\{1, 2\}$ that is symmetric and transitive, but not reflexive.
- (C) A relation on $\{1, 2, 3\}$ that is reflexive and transitive, but not symmetric.

Question 9 (Rosen7e, Ch.9, Q73).

Suppose |A| = 7. Find the number of reflexive, symmetric binary relations on A.