17 November, 2023

- tworzącej dla ciągu $s_n = a_0 + a_1 + a_2 + \ldots + a_n$ Wskazówka:Trzeba użyć funkcji tworzącej $\frac{1}{1-x}$
- 2. Wyznacz funkcje tworzące ciągów:

 - (a) $a_n = n^2$ (b) $a_n = n^3$

Wskazówka:Przyda się funkcja tworząca $\frac{1}{1-x}$

- 3. (+) Wyznacz funkcję tworzącą ciągu: $\binom{n+k}{k}$ Wskazówka: Odpowiednia potęga funkcji $\frac{1}{1-x}$
- 4. Oblicz funkcje tworzące ciągów:
 - (a) $a_n = n$ dla parzystych n i $a_n = 1/n$ dla nieparzystych n
 - (b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$
- 5. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0,0,0,a_3,0,0,a_6,\ldots)$, czyli takiego, że dla każdego naturalnego k, $b_{3k}=a_{3k}$ oraz $b_{3k+1}=b_{3k+2}=0$.

Wskazówka: Użyj zespolonych pierwiastków stopnia 3 z 1

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

 $(a_k, a_{k+1}, a_{k+2}, \ldots)$. Tzn. szukamy funkcji tworzącej dla ciągu $< b_n > = E^k < a_n > .$

- 7. Na ile sposobów można wybrać zbiór k-elementowy ze zbioru $\{1,2,\dots,n\}$ tak, by różnica dowolnych dwóch wybranych liczb wynosiła przynajmniej r?
- 8. Sprawdź prawdziwość następujących relacji:

$$n^2\in O(n^3);\, n^3\in O(n^{2.99});\, 2^{n+1}\in O(2^n);\, (n+1)!\in O(n!);\, \log_2 n\in O(\sqrt{n});\, \sqrt{n}\in O(\log_2 n).$$

- 9. Niech $f,g,h:N\to R.$ Pokaź,
że:
 - (a) jeśli f(n) = O(g(n) i g(n) = O(h(n)), to f(n) = O(h(n)),
 - (b) f(n) = O(g(n)) wtedy i tylko wtedy, gdy $g(n) = \Omega(f(n))$,
 - (c) $f(n) = \Theta(g(n))$ wtedy i tylko wtedy, gdy $g(n) = \Theta(f(n))$.
- 10. Niech fi gbędą dowolnymi wielomianami o stopniach ki ltakimi, że k < l

Pokaż, że wówczas f(n) = o(g(n))

11. (3p) Przestrzeń R^n to zbiór wszystkich punktów (x_1,x_2,\ldots,x_n) o n rzeczywistych współrzędnych. Hiperplaszczyzna w R^n zadana jest wzorem $a_1x_1+a_2x_2+\ldots+a_nx_n=b$, gdzie przynajmniej jedno a, jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą m hiperplaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.