در این پروژه، پردازنده ۶ بیتی که در کلاس طراحی شده را پیادهسازی کرده و برای آن برنامهنویسی میکنیم.

توجه: این پروژه در صورتی قابل قبول است که برای آن گزارش هم نوشته شود. در این گزارش نحوه پیادهسازی پردازنده و اجرای برنامه توسط آن با استفاده از عکسهای مناسب از خروجی شبیهسازی نشان داده شود.

بخش اول (۴۰٪ نمره پروژه): برای انجام این پروژه ابتدا پردازنده را با استفاده از VHDL یا Verilog پیادهسازی کرده و صحت عملکرد آن را با اجرای کد زیر که دو عدد ۷ و ۴ را با هم جمع می کند بررسی کنید.

LOAD R0, 7 LOAD R1, 4 ADD R0, R1

بخش دوم (۲۰٪ نمره پروژه): با توجه به این که این پردازنده دستور ضرب ندارد، عمل ضرب را با استفاده از عمل جمع و به صورت نرمافزاری پیاده سازی کرده و صحت عملکرد آن را با یک مثال نشان دهید (مشابه بخش اول یک کد اسمبلی بنویسید که عمل ضرب را انجام دهد). به عنوان مثال، حاصلضرب عدد ۸ در ۶ را حساب کند.

بخش سوم (۴۰٪ نمره پروژه): دستور ضرب را با کمترین سربار سختافزاری به مجموعه دستورات اضافه کرده و صحت عملکرد آن را با نوشتن یک کد که حاصلضرب ۸ در ۶ را حساب کند نشان دهید. توجه کنید که برای این کار نیاز است تغییراتی در سختافزار و کد دستورات ایجاد کنید.

نمره اضافی (۱ نمره): پیاده سازی اسمبلر برای تبدیل کد اسمبلی به کد باینری با استفاده از زبانهای سطح بالا مانند جاوا و پایتون. معماری پردازنده:

دستورات پردازنده:

این پردازنده چهار دستور LOAD ،LOAD ،LOAD و JNZ با کد دستور (Op Code) زیر است:

کد دستور	دستور	
00	LOAD	
01	ADD	
10	SUB	
11	JNZ	

قالب دستورات:

چینش در حافظه	RTL	اسمبلی دستور
00 Rx 00 مقدار دستور بعدی	Rx ← M[PC]	LOAD Rx, VALUE
01 Rx Ry PC → دستور بعدی	$Rx \leftarrow Rx + Ry$	ADD Rx, Ry
10 Rx Ry PC → دستور بعدی	Rx ← Rx - Ry	SUB Rx, Ry
11 Rx 00 الدرس پرش الدرس پرش الدرس يدى	If (Rx != 0) PC \leftarrow M[PC] else PC \leftarrow PC + 1	JNZ Rx, Address

