

Ensemble Decoding for Statistical Machine Translation

Anoop Sarkar

Joint work with Majid Razmara and Baskaran Sankaran

SFU Natural Language Lab

Simon Fraser University, Vancouver, Canada

http://natlang.cs.sfu.ca

Multi-metric optimization

Pivot language triangulation

Ensemble Decoding

But first, Mixtures

Translation models: $m = 1 \dots M$

Log-linear mixture:
$$p(\bar{e}|\bar{f}) \propto \exp\left(\sum_{m}^{M} \lambda_{m} \log p_{m}(\bar{e}|\bar{f})\right)$$

- Each (phrase-table) component in the usual discriminative SMT model is a mixture.
- The mixture weights are tuned on a dev set.

Linear Mixtures

$$p(\bar{e}|\bar{f}) = \sum_{m}^{M} \lambda_{m} p_{m}(\bar{e}|\bar{f})$$

- Extract joint phrase pair distribution p(e, f)
- Find the weights that minimize the crossentropy of the mixture $p(e \mid f)$ with respect to p(e, f)

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmax}} \sum_{\bar{e}, \bar{f}} \tilde{p}(\bar{e}, \bar{f}) \log \sum_{m}^{M} \lambda_{m} p_{m}(\bar{e}|\bar{f})$$

Linear Mixtures

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmax}} \sum_{\bar{e}, \bar{f}} \tilde{p}(\bar{e}, \bar{f}) \log \sum_{m}^{M} \lambda_{m} p_{m}(\bar{e}|\bar{f})$$

- Train the weights on the dev set using any optimization technique (L-BFGS).
- Linear mixtures are used as feature functions in standard discriminative SMT.
- State of the art for domain adaptation in SMT (Foster et al, EMNLP 2010).

Ensemble Decoding

- Previous mixtures of translation models were pre-processing steps.
- This work: Explore mixtures of translation models in the decoder.
- On the fly combination of models in Hiero

Ensemble Decoding

P(have dipl. relns. with N.K | yu Beihan you bangjiao)

$$\propto \exp\left(\begin{array}{ccc} \mathbf{w_1} \cdot \boldsymbol{\phi_1} & \otimes & \mathbf{w_2} \cdot \boldsymbol{\phi_2} & \otimes & \cdots \end{array}\right)$$
 $1^{st} \bmod 2^{nd} \bmod 2$

Ensemble Operations

Weighted Sum (wsum)

$$p(\bar{e} \mid \bar{f}) \propto \sum_{m}^{M} \lambda_{m} \exp(\mathbf{w}_{m} \cdot \boldsymbol{\phi}_{m})$$

- Ensemble score is the weighted sum of individual model scores
- m is each component model, a total of M components in the ensemble.

en une autre maladie métabolique héréditaire or other disease hereditary metabolic or another hereditary metabolic disease

mI4.5m210.5ens7.25

ml	16.5		
m2	3.5		
ens	10		

Weighted Max (wmax)

$$p(\bar{e} \mid \bar{f}) \propto \max_{m} (\lambda_{m} \exp (\mathbf{w}_{m} \cdot \boldsymbol{\phi}_{m}))$$

- Ensemble score is the weighted max of all the model scores
- The n-best list can contain entries from different models

fr une autre maladie métabolique héréditaire

en or other disease hereditary metabolic

or another hereditary metabolic disease

ml	4.5	
m2	10.5	
ens	4.5	

ml	16.5		
m2	3.5		
ens	3.5		

Model Switching (Switch)

$$p(\bar{e} \mid \bar{f}) = \sum_{m}^{M} \delta(\bar{f}, m) \ p_{m}(\bar{e} \mid \bar{f})$$

- Switch models in each CKY cell. Possibly picking a different model from the ensemble.
- The n-best list can contain entries from only one model.

$$\delta(\bar{f}, m) = \begin{cases} 1, & m = \underset{n \in M}{\operatorname{argmax}} \psi(\bar{f}, n) \\ 0, & \text{otherwise} \end{cases}$$

Model Switching (Switch)

$$\delta(\bar{f}, m) = \begin{cases} 1, & m = \underset{n \in M}{\operatorname{argmax}} \psi(\bar{f}, n) \\ 0, & \text{otherwise} \end{cases}$$

For each cell the model that has the highest weighted score wins:

$$\dot{\psi}(\bar{f}, n) = \lambda_n \max_{\bar{e}} (\mathbf{w}_n \cdot \boldsymbol{\phi}_n(\bar{\mathbf{e}}, \bar{\mathbf{f}}))$$

For each cell, the model with highest weighted sum of scores wins:

$$\psi(\bar{f}, n) = \lambda_n \sum_{\bar{e}} \exp\left(\mathbf{w}_n \cdot \boldsymbol{\phi}_n(\bar{\mathbf{e}}, \bar{\mathbf{f}})\right)$$

Product (prod)

$$p(\bar{e} \mid \bar{f}) \propto \exp\left(\sum_{m}^{M} \lambda_{m} \left(\mathbf{w}_{m} \cdot \boldsymbol{\phi}_{m}\right)\right)$$

- Compute the product of all the probabilities in the ensemble (sum of log-probs).
- A Logarithmic Opinion Pool (LOP).
- LOPs work best when the ensemble is used to down-vote a highly confident but incorrect candidate.

1.5

10.5

12.0

m2

m3

ens

fr une autre maladie métabolique héréditaire

or other disease hereditary metabolic

en

IN-domain

EMEA (Medical)

Train	11770
Dev	1533
Test	1522

OUT-of-domain

EuroParl (fr-en)

Train 1.3M

- Scaling the model scores using ensemble weights:
 - Find the appropriate model scores that can participate in an ensemble.
 - We use CONDOR (Vanden Berghen and Bersini, 2005) which uses Powell's algorithm and no gradient information.
 - Component weights for each mixture operation is tuned on the dev set.

Example

SOURCE REF	aménorrhée, menstruations irrégulières amenorrhoea, irregular menstruation			
IN	amenorrhoea	,	menstruations irrégulières	
OUT	aménorrhée,	irr	regular menstruation	
ENSEMBLE	amenorrhoea	,	irregular menstruation	

Example

SOURCE	le traitement par naglazyme doit être supervisé par un médecin ayant l'expérience de					
	la prise en charge des patients atteints de mps vi ou d' une autre maladie métabolique					
	héréditaire.					
REF	naglazyme treatment should be supervised by a physician experienced in the management					
	of patients with mps vi or other inherited metabolic diseases .					
IN	naglazyme treatment should be supervisé by a doctor the with					
	in the management of patients with mps vi or other hereditary metabolic disease .					
OUT	naglazyme 's treatment must be supervised by a doctor with the experience of the care					
	of patients with mps vi. or another disease hereditary metabolic .					
ENSEMBLE	naglazyme treatment should be supervised by a physician experienced					
	in the management of patients with mps vi or other hereditary metabolic disease .					

Multi-metric optimization

Joint work with Baskaran Sankaran and Kevin Duh

Multi-metric optimization

- Quite a few proposals for MT evaluation.
- In this talk, the focus is on BLEU, RIBES, TER, METEOR.
- Can other metrics be useful as a loss function for training SMT systems. (be useful how?)
- Most systems tune towards BLEU and test on BLEU. Can other metrics provide a second opinion?

Multi-objective optimization

$$\max_{w} (F_1(w), F_2(w), \dots, F_k(w))$$

- Find one w that simultaneously optimizes k objectives.
- A well formed notion of optimality wrt multiple objectives: Pareto optimality

Finding Pareto points

- Duh et al (ACL 2012) give an algorithm called PMO-PRO that finds Pareto optimal points as part of the tuning step.
- PRO (May and Hopkins, EMNLP 2011) show a pairwise ranking classifier can be used to train an SMT log-linear model.
- PMO-PRO puts Pareto points as positive examples and low scoring non-Pareto points as negative examples.
- This can be used to find Pareto points in the dev set.

Using the Pareto Points

- Each Pareto point in the dev set is a weight vector that produced that point.
- **PMO-Ensemble**: Each of these weight vectors is a model and we can simply combine them using an ensemble model.
- **Union**: Take the union of "good" points wrt multiple objectives as positive examples and vice versa for negative examples. Simpler version of PMO-PRO.

Using the Pareto Points

$$\max_{w} (F_1(w), F_2(w), \dots, F_k(w))$$

• Ensemble Tuning:

- For each $F_i(w)$ perform error rate tuning (using PRO) to obtain the best w_i according to F_i in each iteration of tuning.
- When decoding the dev set for the next search for w use an ensemble model with the same features but weights: w₁, ..., w_k
- Tune the ensemble model hyperparameters using PMO-PRO to get Pareto points in the ensemble.
- Repeat.

Ar-En: MTA-devset (redecode)

Can multi-metric tuning help a single metric?

Pivot language triangulation

Triangulation

- **Direct**: From source to target using available data
- Phrase-based triangulation (Cohn and Lapata, ACL 2007)

Phrase-based Triangulation

 Create a triangulated phrase table using source, pivot and target language data.

$$p(e|f) = \sum_{i} p(e, i|f)$$

$$= \sum_{i} p(e|i, f) p(i|f)$$

$$\approx \sum_{i} p(e|i) p(i|f)$$

 Mixture: Interpolate the triangulated model with the direct source to target model

Ensemble-based Triangulation

- Typically, one pivot language does not provide an improvement.
- More pivot languages used, the better.
- Ensemble-based Triangulation: an ensemble of different pivot models.
- Each one goes from source to pivot_k to target for pivot_I to pivot_M
- **Ensemble**: Finally add the direct source to target model to the ensemble as well.

Experiment

- Compare Direct, Mixture and Ensemble
- Use EuroParl (en, fr, de, es, it)
- Each source language is translated to a target language through 3 pivot languages.
- For example, en to fr goes through de, es, it
- IOK sentence pairs (as in Cohn and Lapata, ACL 2007)
- To be done: 700K EuroParl corpus.

Ensemble Triangulation

	en	es	fr	de
en	•	+0.2	+1.0	-0.09
es	+0.24	-	+1.06	+0.38
fr	+0.9	+0.93	_	+0.03
de	+0.75	-0.48	+0.06	-

Comparison of Ensemble Model and Mixture model (Cohn and Lapata, ACL 2007)

Summary

- Ensemble models combine translation models during SMT decoding.
 - Allows more dynamic combination methods.
 - Do not need to be tuned (with uniform weights)
- Applied to:
 - Domain adaptation
 - Multi-metric optimization
 - Pivot language triangulation

