INDICI STATISTICI

MEDIA, MODA, MEDIANA, VARIANZA

OBIETTIVI SPECIFICI: Comprendere il significato di valore medio. Comprendere il significato di variabilità di un carattere. Saper scegliere il valore medio adatto ai diversi tipi di carattere e saper confrontare valori medi diversi. Saper confrontare diverse distribuzioni in funzione del valore medio e di variabilità.

Principali Indici Statistici

INDICI DI POSIZIONE

Consentono di valutare l'ordine di grandezza delle manifestazioni e servono per localizzare la distribuzione, ovvero individuare attorno a quale valore del carattere si accentra la distribuzione stessa.

Sono espressi nella stessa unità di misura con cui si estrinseca il fenomeno

MODA

E' definita come il valore che ha la frequenza più alta.

MEDIANA

E' quel valore al di sotto del quale cadono la metà dei valori campionari.

INDICI DI POSIZIONE

MEDIA Aritmetica

E' quel valore che corrisponde alla somma di tutti i valori diviso il numero dei valori stessi.

Rappresenta il valore che sostituito a ciascun \mathbf{x}_i lascia invariata la intensità totale (somma)

 $\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$

dove:

 X_i = esito i-ma misura - n = numero dei dati (taglia del campione)

MODA E MEDIA sono indici di posizione, poiché la loro variazione sposta appunto la posizione della curva (verso destra o verso sinistra) in funzione del segno della variazione.

ESEMPIO 1

Numero di componenti familiari

COMPON				
Mean		4,513		
Median		4		
Mode	_	4		

Media = 4.5 > 4 = mediana = moda

Ci sono più osservazioni alla sinistra della media

La distribuzione è più concentrata alla sinistra della media MA la coda è più lunga a destra

ESEMPIO 2

altezza

ALTEZZA			
Mean	169,011961		
Median	168		
Mode	160		

media = 169 > 168 = mediana > Moda = 160

Ci sono più osservazioni alla sinistra della media

La distribuzione è più concentrata alla sinistra della media e la coda è più lunga a destra

GRUPPO MAT06 – Dip. Matematica, Università di Milano - Probabilità e Statistica per le Scuole Medie - SILSIS - 2007

MISURE DI DISPERSIONE

 X_{max} - X_{min}

RANGE

(Campo di variazione)

$$\frac{1}{n}\sum_{i=1}^{n}\left|X_{i}-\overline{X}\right|$$

SCARTO MEDIO ASSOLUTO

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

VARIANZA (Media degli Scarti al Quadrato)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ VARIANZA <u>CAMPIONARIA</u> (Calcolata da Excel)

$$\mathbf{S} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}$$

DEVIAZIONE STANDARD CAMPIONARIA

$$CV = \frac{S}{\left|\overline{X}\right|}$$

COEFFICIENTE DI VARIAZIONE

l'importanza della varianza

Media uguale

Deviazione Standard Diversa

Media uguale (2) e Varianza diversa 0,34 e 7,68 rispettivamente

utilizzo strumento di analisi: statistica descrittiva

ESEMPI 1-2

Componenti familiari e altezza

COMPON			
Mean	4,513		
Median	4		
Mode	4		
Standard Deviati	1,131		

ALTEZZA			
Mean	169,011961		
Median	168		
Mode	160		
Standard Dev	8,23848231		

Calcolare

- 1.range
- 2. Scostamento medio assoluto
- 3. varianza
- 4.scarto quadratico medio
- 5. Coefficiente di variazione

ESEMPIO 3

ETA'			
Media	21,851		
Mediana	20,8		
Moda	20,8		
Deviazione standard	3,550		
Varianza campionari	12,599		
Curtosi	30,259		
Asimmetria	4,463		
range	44,4		
Minimo	19,1		
Massimo	63,5		
taglia campione	2759		

Più osservazioni a sinistra della media

Dev. Stand. piccola rispetto al range

Non c'è molta dispersione

Ci si aspetta una distribuzione, con una lunga coda a destra e la maggior parte della distribuzione concentrata a sinistra con un picco intorno alla media=mediana.

I dati raggruppati

...e se non abbiamo a disposizione i dati grezzi, ma solo le distribuzioni di frequenza? Come determiniamo gli indici di sintesi?

NUMERO DI FIGLI	FREQUENZA
$\mathbf{X_i}$	$\mathbf{f_i}$
0	5
1	6
2	15
3	13
4	4
5	3
6	3
9	1
Totale	50

Tabella: Distribuzione di frequenza del numero di figli di 50 famiglie di una comunità

Caso discreto

CLASSE DI	FREQUENZA
VALORI	CLASSE
	$\mathbf{f_i}$
10-19	4
20-29	66
30-39	47
40-49	36
50-59	12
60-69	4
Totale	169
	•

Tabella: Distribuzione delle età di 169 soggetti

Caso raggruppamento per classi

Caso discreto: LA MEDIA PONDERATA

ESEMPIO:

MUMEDO DI FICI I	EDECLIENZA	
NUMERO DI FIGLI	FREQUENZA	
Xi	$\mathbf{f_i}$	
0	5	
1	6	
2	15	
3	13	
4	4	
5	3	
6	3	
9	1	
Totale	50	

Tabella: Distribuzione di frequenza del numero di figli di 50 famiglie di una comunità

$$\bar{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i} = \frac{0 \times 5 + 1 \times 6 + \mathbf{K} + 9 \times 1}{5 + 6 + \dots + 1} = 2.66$$

LA MEDIA PER DATI RAGGRUPPATI IN CLASSI

 m_i valore centrale della classe i-ma

 f_i Frequenza della classe i-ma

ESEMPIO:

CLASSE DI	VALORE CENTRALE CLASSE	FREQUENZA	
VALORI	CLASSE	CLASSE	_
	m _i	$\mathbf{f_i}$	m _i f _i
10-19	14.5	4	58.0
20-29	24.5	66	1617.0
30-39	35.5	47	1621.5
40-49	44.5	36	1602.0
50-59	54.5	12	654.0
60-69	64.5	4	258.0
Totale		169	5810.5

$$\overline{x} = \frac{\sum_{i=1}^{k} m_i f_i}{\sum_{i=1}^{k} f_i} = \frac{5810.5}{169} = 34.48$$

LA VARIANZA PER DATI RAGGRUPPATI IN CLASSI

 m_i valore centrale della classe i-ma

 f_i Frequenza della classe i-ma

$$s^{2} = \frac{\sum_{i=1}^{k} (m_{i} - \bar{x})^{2} f_{i}}{\sum_{i=1}^{k} f_{i} - 1} = n - 1$$

ESEMPIO:

CLASSE DI	VALORE CENTRALE	FREQUENZA			
VALORI	CLASSE	CLASSE			
	$\mathbf{m_i}$	$\mathbf{f_i}$	$(\mathbf{m_i} - \overline{\mathbf{x})}$	$\left(\mathbf{m_i} - \mathbf{x}\right)^2$	$(\mathbf{m_i} - \mathbf{x})^2 \mathbf{f_i}$
10-19	14.5	4	-19.88	395.2144	1580.8576
20-29	24.5	66	-9.88	97.6144	6442.5504
30-39	35.5	47	.12	.0144	.6768
40-49	44.5	36	10.18	102.4144	3686.9184
50-59	54.5	12	20.12	404.2144	4857.7728
60-69	64.5	4	30.12	907.2144	3628.8576
Totale		169			20197.6336

$$s^{2} = \frac{\sum_{i=1}^{k} (m_{i} - \overline{x})^{2} f_{i}}{\sum_{i=1}^{k} f_{i} - 1} = -\frac{20197.6336}{168} = 120.224$$