

MODELADO Y SIMULACIÓN DE SISTEMAS

Dr. D. Javier González Monroy

Dpto. de Ingeniería de Sistemas y Automática

MODELADO Y SIMULACIÓN DE SISTEMAS DE EVENTOS DISCRETOS

Tema 5: Modelado Intermedio con Arena

ENRUTADO HETEROGÉNEO SEQUENCES

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción

DEFINICIÓN

- Sistema compuesto por:
 Llegada de piezas (3 tipos)
 Cuatro células procesamiento

 - Salida de piezas

Células:

- 1, 2 y 4 disponen de una sola "máquina"
- 3 dispone de dos máquinas (la nueva un 20% más rápida que las demás)
- Disposición circular (ver figura)
- Hay que modelar recursos con características diferentes

Transferencia:

 \square Tiempos de transferencia: EXPO(1), EXPO(1.5) y EXPO(2) min. para cada tipo de pieza.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción

- Tres tipos de productos diferentes
 - Tiempo entre llegadas ~ expo(13) minutos
 - 26% tipo 1, 48% tipo 2, 26% tipo 3
 - Nota: Usar the discrete statistical distribution: DISC(CumP1, Val1, . . ., CumPn, Valn)
- Cada tipo de pieza sigue una ruta diferente de procesamiento!!, y poseen tiempos de procesamiento diferentes (TRIA) en cada célula:

	Célula Tiempo				
1	1 6, 8, 10	2 5, 8, 10	3 15, 20, 25	4 8, 12, 16	
2	1 11, 13, 15	2 4, 6, 8	4 15, 18, 21	2 6, 9, 12	3 27, 33, 39
3	2 7, 9, 11	1 7, 10, 13	3 18, 23, 28		

Hay que cambiar de ruta según el tipo de pieza.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Sequence

Seguence - Advanced Transfer

Name

Sea1

Seg2

Seq3

Steps

Double-click here to add a new row

5 rows

6 rows

4 rows

Define nombres de secuencias de estaciones a visitar

- Generalmente dependiente del tipo de entidad. Esto es, en nuestro ejemplo hay que asignar una secuencia diferente a cada tipo de entidad.
- En cada paso/step se pueden asignar atributos o variables que toman su valor antes de salir al siguiente destino. En nuestro ejemplo tendremos que asignar el tiempo de Proceso.

Value

TRIA(6,8,10)

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Sequence

Double-click here to add a new row

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Asignación de Sequences

Nos queda **asignar** (modulo **Assign**) a cada tipo de pieza creada su secuencia correcta. Para ello editaremos su atributo **Entity.Sequence** asignándole la secuencia correcta tras su creación.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Rutas con Sequences

Importante. Modificar nodos "Route" para que transfieran las entidades atendiendo a estas secuencias y no de forma fija.

Route 1

Para ello marcar "By Sequence" en el campo "Destination
 Type".

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Sequence

- Arena internamente sigue la pista de las secuencias de una entidad con los atributos automáticos:
 - Nombre de secuencia, NS
 - Estación, M
 - Paradas de trabajo en la secuencia (Jobstep), IS
- Normalmente, las entidades Llegan, se les asigna un nombre de Secuencia, realizan la ruta, Salen
 - Se puede interrumpir la secuencia, salto hacia delante o atrás
- Es importante definir una estación de "salida" par las secuencias

Tema 5: Modelado Intermedio con Arena

VARIABLES Y CONJUNTOS VARIABLE, EXPRESSION, SET

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Variable

- Las variables (globales) permiten reusar el mismo valor en sitios diferentes del modelo.
- Pueden funcionar como constantes o se pueden reasignar nuevos valores en función del tiempo.
 - Define variabes y sus valores iniciales
 - Puede ser escalar, vector, o matriz de 2-dim.
- No puede contener aritmética, atributos u otras variables o distribuciones.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Expression

- Motivación similar a Variables reusar la misma "cosa" en varias partes del modelo.
- Una expresión es una "fórmula" fija o función que puede involucrar aritmética, atributos, otras **Variables** distribuciones.
- La forma de la expresión no se puede cambiar durante la simulación.

EXPO(1)

EXPO(2)

EXPO(1.5)

- Define nombres, forma de la expresión
- Puede ser escalar, vector, o matriz de 2-dim.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Expression

Ejemplo:

- Definimos una Expresión dónde guardamos todos los tiempos de transferencia (TTransf), de forma que sea más sencillo hacer cambios en el sistema.
- A cada Entidad le asignamos un atributo (index) con la Distribución Discreta.
- Los modulos Route, usarán esa expresión para definir los tiempos de transferencia.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Set (Conjuntos)

- Agrupa objetos similares (recursos, secuencias, iconos, otros) juntos bajo un mismo nombre. Los conjuntos deben contener la misma clase de miembros.
- **Función**: Referir los objetos de un conjunto por su nombre original (independientemente del conjunto al que pertenece) o por un índice dentro del conjunto.
- Un objeto puede ser miembro de más de un conjunto.

Tema 5: Modelado Intermedio con Arena

Modulo Datos: Set (Conjuntos)

- Los conjuntos más comunes: Recursos (resources)
 - Permite agrupar recursos dispares más genérico que la multicapacidad de un solo recurso, donde todos son idénticos.
 - Las entidades pueden elegir entre los miembros de un conjunto de recursos según preferencias o reglas.
 - Se pueden animar los recursos de un conjunto de forma individual (estados, iconos) — a diferencia de multi-Capacidad de un solo recurso.
- También se agrupan Secuencias e iconos de entidades en conjuntos para un mejor acceso (por el número de tipo de pieza)

Tema 5: Modelado Intermedio con Arena

IMPLEMENTACIÓN EJEMPLO CLASE

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción

Existen varias formas de implementar un modelo. Típicamente, determinada por los requerimientos de los datos, disponibilidad.

- Lo primero: decidir como se representarán las cosas:
 - Secuencias (en un Conjunto) para controlar el flujo de piezas
 - Asignar tiempos de proceso a las entidades en el módulo Secuencias
 - Usar un vector de Expresiones para los tiempos de Transferencia de piezas
 - Usar Variables para factor de velocidad en Célula 3 (lenta/rápida)

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sequence

• Define las rutas de transito por las estaciones del sistema para los diferentes tipos de piezas (entidades). **En nuestro ejemplo creamos 3 secuencias**:

Tipo	Célula	Célula	Célula	Célula	Célula
Pieza	Tiempo	Tiempo	Tiempo	Tiempo	Tiempo
1	1 6, 8, 10	2 5, 8, 10	3 15, 20, 25	4 8, 12, 16	

- Correspondencia Stations en el Sistema:
 - Station 1 = Create (creación de entidades)
 - Stations 2,3,4,5 = Células 1,2,3,4 ←
 - Station 6 = Dispose (eliminación de entidades)

Mejor asignar nombres descriptivos a cada estación, y no usar station 1, 2, ...

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sequence

• Se pueden definir acciones en cada estación como parte de la definición de las secuencias. En nuestro ejemplo definir un atributo que represente el **Process Time** en cada paso.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sequence

- Finalmente, podemos **agrupar** las secuencias en un **Conjunto/Set** para poder referirnos a ellas como SeqSet(1), SeqSet(2) y SeqSet(3).
- Las secuencias se agrupan seleccionando la opción "Other" en el campo "Set Type"

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sequence

• Nos queda **asignar** (modulo Assign) a cada tipo de pieza creada su secuencia correcta. Para ello editaremos su atributo **Entity.Sequence** asignándole la secuencia correcta tras su creación.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Expresiones

- Vamos a usar una expresión para determinar el tiempo de transferencia entre estaciones, en función del tipo de pieza.
- Denominación de la expresión: **Ttransf**
 - Uso de un vector 3x1, uno por cada tipo de pieza
 - Se deben indexar en el orden correcto

Transferencia:

☐ Las piezas se mueven sólo en sentido horario☐ Tiempos de transferencia:

 \square EXPO(1) \square EXPO(1.5) \square EXPO(2)

 Para evaluar esta expresión necesitamos darle el índice de cada tipo de pieza. Esto se usará en el módulo Route: Ttransf(Part Index)

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Variables

- Los **tiempos de proceso** se han definido para cada estación y cada tipo de entidad en el módulo **Sequence**. Luego veremos como asignar estos tiempos en los módulos **Process**. No obstante, para la célula 3 tenemos 2 velocidades de procesamiento.
- Usaremos 2 variables diferentes para modelar el tiempo de proceso de la Célula 3.
 - Factor de velocidad de la Célula 3: vector 2x1 "Factor"
 - 0.8 (máquina nueva), 1.0 (vieja)

□Célula 3 dispone de dos máquinas (la nueva un 20% más rápida que las demás). La máquina nueva empleará por tanto un 80% del tiempo establecido en la secuencia.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Set Resources

Cada célula del sistema tiene 1 solo recurso, pero la Célula 3 dispone de dos máquinas diferentes (dos recursos con propiedades diferentes)

- Hacemos un conjunto: SetMachine
- Lo usaremos en el módulo Process para la Célula 3

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Process & Resources

- Para Células 1, 2 y 4
 - Recursos: solo definimos un recurso con capacidad 1.
 - Process Time: usamos tipo "expresión" y haremos referencia al atributo
 "TProceso" que se definió al crear la secuencia.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Process & Resources

- Para Célula 3
 - Recursos: solo definimos un recurso que será un conjunto (son dos recursos en el fondo). Como regla de selección usaremos cíclico y el resultado se guardará en un atributo llamado "machine".

Process Time: usamos tipo "**expresión**" y haremos referencia al atributo "**TProceso**", a la variable "**Factor**" que se definió para modelar las diferencias de velocidad.

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sets

- Conjunto de Iconos (Pictures)
 - Para mostrar diferentes tipos de piezas en la animación
 - Nombre del conjunto Parts, las entradas Part 1, etc.
 - Dibuja los iconos en el módulo Simulate (más tarde...)

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Sets

- Conjunto de Estadísticos basados en las observaciones (Tallies)
 - Separar los tiempos de ciclo en el sistema según el tipo de pieza
 - Nombre del conjunto Part Cycle Times
 - Los miembros son nombres de Tally que saldrán en los resultados

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Create

Diálogo principal

- Station: Create Parts

Time Between: EXPO (13)

Tema 5: Modelado Intermedio con Arena

Ejemplo: Sistema de Producción: Dispose

- Se necesita calcular los tiempos en el sistema (TCiclo) según el tipo de pieza.
 Para ello ya habíamos definido un conjunto de Tally con los tres valores a guardar.
- En el módulo **Record** indexaremos el cálculo por el tipo de pieza. Para ello seleccionamos la opción "**Record into Set**" y completaremos.

