```
In [32]: import pandas as pd
import xlrd
```

In [33]: workbook = pd.read_stata('lawschs1_1.dta')

In [34]: workbook

Out [34]:

	Isat	gpa	race	resident	college	year	gender	admit	black	hispanic	asian
0	156.0	3.71	White	0.0	Arizona State	2006	0.0	1.0	0.0	0.0	0
1	161.0	3.85	White	0.0	Arizona State	2006	0.0	1.0	0.0	0.0	0
2	160.0	3.20	White	0.0	Arizona State	2006	1.0	0.0	0.0	0.0	0
3	132.0	2.95		1.0	Arizona State	2006	1.0	0.0	0.0	0.0	0
4	159.0	3.49	White	0.0	Arizona State	2006	1.0	0.0	0.0	0.0	0
124552	179.0	3.72	White	1.0	Washington	2006	0.0	1.0	0.0	0.0	0
124553	179.0	3.96	Asian	1.0	Washington	2006	0.0	1.0	0.0	0.0	1
124554	179.0	3.97	White	0.0	Washington	2006	0.0	1.0	0.0	0.0	0
124555	180.0	3.29	White	0.0	Washington	2006	1.0	1.0	0.0	0.0	0
124556	180.0	3.53	White	1.0	Washington	2006	1.0	1.0	0.0	0.0	0

124557 rows × 15 columns

```
In [35]: workbook = workbook.replace(r'^\s*$', '*', regex=True)
```

In [36]: workbook = workbook.drop(['black','hispanic','asian','white','missingr

In [37]: workbook.fillna('*').to_csv('lawschs1_1.csv')

In [38]: workbook

Out[38]:

	Isat	gpa	race	resident	college	year	gender	admit
0	156.0	3.71	White	0.0	Arizona State	2006	0.0	1.0
1	161.0	3.85	White	0.0	Arizona State	2006	0.0	1.0
2	160.0	3.20	White	0.0	Arizona State	2006	1.0	0.0
3	132.0	2.95	*	1.0	Arizona State	2006	1.0	0.0
4	159.0	3.49	White	0.0	Arizona State	2006	1.0	0.0
124552	179.0	3.72	White	1.0	Washington	2006	0.0	1.0
124553	179.0	3.96	Asian	1.0	Washington	2006	0.0	1.0
124554	179.0	3.97	White	0.0	Washington	2006	0.0	1.0
124555	180.0	3.29	White	0.0	Washington	2006	1.0	1.0
124556	180.0	3.53	White	1.0	Washington	2006	1.0	1.0

124557 rows × 8 columns

```
In [39]:
         import matplotlib.pyplot as plt
         plt.hist(workbook['admit'])
         /usr/local/lib/python3.7/site-packages/numpy/lib/histograms.py:839: R
         untimeWarning: invalid value encountered in greater_equal
            keep = (tmp a >= first edge)
         /usr/local/lib/python3.7/site-packages/numpy/lib/histograms.py:840: R
         untimeWarning: invalid value encountered in less equal
            keep &= (tmp_a <= last_edge)</pre>
Out[39]: (array([88033.,
                                                       0.,
                              0.,
                                       0.,
                                               0.,
                                                                0.,
                                                                        0.,
                                                                                 0
          ٠,
                      0., 32229.]),
          array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
          <a list of 10 Patch objects>)
          80000
          60000
          40000
          20000
             0
                       0.2
                               0.4
                                       0.6
                                              0.8
                                                      1.0
                0.0
In [40]: from fcit import fcit
         def nonparametric fcit test(X, Y, Z, data):
             X and Y are names of variables.
             Z is a list of names of variables.
             data is a pandas data frame.
             Return a float corresponding to the p-value computed from FCIT.
             # implement code here
             data_X = np.asmatrix(data[[X]].to_numpy())
             data_Y = np.asmatrix(data[[Y]].to_numpy())
```

data_Z = np.asmatrix(data[Z].to_numpy())
return fcit.test(data X, data Y, data Z)

```
In [41]: import numpy as np
 In [42]: import statsmodels.api as sm
          import pandas as pd
          import numpy as np
          from scipy.special import expit
          def odds_ratio(X, Y, Z, data):
              Compute the odds ratio OR(X, Y \mid Z).
              X, Y are names of variables
              in the data frame. Z is a list of names of variables.
              Return float OR for the odds ratio OR(X, Y \mid Z)
              # Implement your code here:
              Xtrain = data[[Y] + Z]
              Xtrain.insert(0, 'Ones', 1)
              ytrain = data[[X]]
              log_reg = sm.Logit(ytrain, Xtrain).fit(disp=0)
              beta 1 = log reg.params.values[1]
              OR = np.exp(beta 1)
              return OR
In [134]: race = list(workbook[['race']])
          admit = list(workbook[['admit']])
          lsat = list(workbook[['lsat']])
          gpa = list(workbook[['gpa']])
In [130]: for i in range(len(race)):
              if i == len(race):
                  break
              if race[i] == "White":
                   race[i] = 1
              elif race[i] == '*':
                   race[i] = 0
              elif race[i] == "Asian":
                   race[i] = 2
              elif race[i] == "Black":
                   race[i] = 3
              elif race[i] == "Hispanic":
                   race[i] = 4
```

```
In [162]: import math
          data = {'lsat': [], 'gpa': [], 'race':[], 'admit':[]}
          data = pd.DataFrame(columns=('lsat', 'gpa', 'race', 'admit'))
          for index, row in workbook.iterrows():
              if math.isnan(row[0]) or math.isnan(row[1]) or math.isnan(row[7]):
                  continue
              else:
                  new_row = row
                  if row[2] == '*':
                      new_row[2] = 0
                  elif row[2] == 'White':
                      new row[2] = 1
                  elif row[2] == 'Asian':
                      new_row[2] = 2
                  elif row[2] == 'Black':
                      new_row[2] = 3
                  elif row[2] == 'Hispanic':
                      new row[2] = 4
                  data.loc[index] = new_row
```

In [163]: data

Out[163]:

	Isat	gpa	race	admit
0	156.0	3.71	1	1.0
1	161.0	3.85	1	1.0
2	160.0	3.20	1	0.0
3	132.0	2.95	0	0.0
4	159.0	3.49	1	0.0
124552	179.0	3.72	1	1.0
124553	179.0	3.96	2	1.0
124554	179.0	3.97	1	1.0
124555	180.0	3.29	1	1.0
124556	180.0	3.53	1	1.0

118246 rows × 4 columns

```
In [175]: data['race'] = data['race'] * 0.25
```

In [176]: data

Out[176]:

	Isat	gpa	race	admit
0	156.0	3.71	0.25	1.0
1	161.0	3.85	0.25	1.0
2	160.0	3.20	0.25	0.0
3	132.0	2.95	0	0.0
4	159.0	3.49	0.25	0.0
124552	179.0	3.72	0.25	1.0
124553	179.0	3.96	0.5	1.0
124554	179.0	3.97	0.25	1.0
124555	180.0	3.29	0.25	1.0
124556	180.0	3.53	0.25	1.0

118246 rows × 4 columns

```
In [178]: odds_ratio("race", "admit", [], data.astype(float))
Out[178]: 0.9059681854213831
In [179]: odds_ratio("race", "admit", ["gpa"], data.astype(float))
```

In [179]: odds_ratio("race", "admit", ["gpa"], data.astype(float))

Out[179]: 1.0151255557984287

In [180]: odds_ratio("race", "admit", ["lsat"], data.astype(float))

Out[180]: 1.1871617843528481

In [181]: odds_ratio("race", "admit", ["lsat", "gpa"], data.astype(float))

Out[181]: 1.2294002430115953