Name:	Exercise T	'ype:
J#:	\mathbf{Quiz}	
Date: 2017 July 24		
Standard: This student is able to C12: FundThmLine. Apply the Fundamental Theorem of Line Integrals.		Mark:
4/4 * reatt	empt due on:	

Find $\int_C \langle 2x, z, y \rangle \cdot d\mathbf{r}$ where C is the curve parametrized by $\mathbf{r}(t) = \langle \sqrt{8t}, 2^t, t^2 - 2t + 1 \rangle$ for $0 \le t \le 2$.

Name:	Exercise T	ype:
J#:	\mathbf{Quiz}	
Date: 2017 July 24		
Standard: This student is able to So9: ParamSurf. Parametrize surfaces in three-dimensional Euclidean space.	ıl	Mark:
	sempt due on:	

Parameterize the plane x + 2y + 3z = 6.

Name:	Exercise T	Exercise Type:	
J#:	Quiz		
Date: 2017 July 24			
Standard: This student is able to S10: SurfInt. Compute and apply surface integrals.		Mark:	
2/3	* reattempt due on:		

The function $\mathbf{r}(\theta,z) = \langle \cos \theta, \sin \theta, z \rangle$ parametrizes the cylinder $x^2 + y^2 = 1$. Let $\mathbf{F} = \langle y, z, x \rangle$ and let S be the portion of the cylinder $x^2 + y^2 = 1$ where $0 \le z \le 2$ and $y \ge 0$. Express the flux $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ as a double iterated integral of θ and z. (Do not solve this integral.)

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 24		
Standard: This student is able to S11: GreenStokes. Apply Green's Theorem and Stokes's Theorem.		Mark:
* reat	tempt due on:	

Green's Theorem states that if the boundary ∂R of a 2D region R is oriented counterclockwise, then circulation may be computed as $\int_{\partial R} \mathbf{F} \cdot d\mathbf{r} = \iint_R \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \, dA$. Let C be the closed loop consisting of the line segments connecting $\langle 0,0 \rangle$ to $\langle 2,0 \rangle$ to $\langle 2,2 \rangle$ back to $\langle 0,0 \rangle$. Rewrite $\int_C \langle xy,3y^2 \rangle \cdot d\mathbf{r}$ as a double iterated integral. (Do not solve this integral.)

Name:	Exercise T	Exercise Type:	
J#:	Quiz		
Date: 2017 July 24			
Standard: This student is able to S12: DivThm. Apply the Divergence Theorem.		Mark:	
	\star reattempt due on:		

The Divergence Theorem states that if ∂R is the boundary of a 2D region R, then flux may

be computed as $\int_{\partial R} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R \operatorname{div} \mathbf{F} \, dA$. Let C be the closed loop consisting of the line segments connecting $\langle 0, 0 \rangle$ to $\langle 2, 0 \rangle$ to $\langle 2, 2 \rangle$ back to $\langle 0, 0 \rangle$. Rewrite $\int_C \langle xy, 3y^2 \rangle \cdot \mathbf{n} \, ds$ as a double iterated integral. (Do not solve this integral.)