

EMBEDDED SYSTEM DESIGN Composition of State Machines

Doan Duy, Ph. D.

Email: <u>duyd@uit.edu.vn</u>

Objectives

- Definition of Composite State Machine
- Kinds of Composite State Machine

Contents

- 1. Introduction to CSM
- 2. Kinds of CSM:
 - > Spatial CSM vs Temporal CSM
 - > Synchronous vs Asynchronous

Introduction to Composition of State Machine

Introduction of Composite State Machine

How do we construct complex state machines out of simpler "building blocks"?

Kinds of Composition

Sequential Composition

Modal models: Sequencing between modes

https://www.youtube.com/watch?v=iD3QgGpzzIM

[Tomlin et al.]

Concurrent Composition

Expose inputs and outputs, enabling concurrent composition:

Kinds of Spatial Composition

- ■Side-by-side composition
- Cascade composition
- ■Feedback composition

Side-by-Side Composition

A key question: When do these machines react?

How the reactions of composed machines is coordinated is called a "Model of Computation" (MoC).

Side-by-Side Composition (cont.)

When do these machines react? Two of many possibilities:

- Together, in lock step (synchronous, concurrent composition)
- Independently (asynchronous, concurrent composition)

Synchronous Composition

outputs: a, b (pure)

Synchronous composition

Note that these two states are not reachable.

Asynchronous Composition

outputs: a, b (pure)

Asynchronous composition using <u>interleaving</u> semantics

Note that now all states are reachable.

Syntax vs. Semantics

The answers to these questions defines the MoC being used.

Synchronous or Asynchronous composition?

If asynchronous,
does it allow
simultaneous
transitions in
A & B? How to
choose whether A
or B reacts when
C reacts?

Cascade Composition

Output port(s) of A connected to input port(s) of B

Time-Triggered Pedestrian Light

variable: pcount: $\{0, \dots, 55\}$

input: *sigR*: pure

outputs: *pedG*, *pedR*: pure

This light stays green for 55 seconds, then goes red. Upon receiving a sigR input, it repeats the cycle.

Time-Triggered Car Light

Pedestrian Car Light

What is the size of the state space of the composite machine?

variables: count: $\{0, \dots, 60\}$, pcount: $\{0, \dots, 55\}$

input: pedestrian: pure

outputs: sigR, sigG, sigY, pedR, pedG: pure

Synchronous composition with unreachable states removed

Shared Variables

Example: Feedback Composition

Reasoning about feedback composition can be very subtle. (more about this later)

Kinds of Spatial Composition

- ■Side-by-side composition
- Cascade composition

Feedback composition

Temporal Composition

Sequential vs. Parallel

Asynchronous vs. Synchronous

Q&A

