ME/ESE 4470 Wind and Tidal Power Aerodynamics

A. Introduction

B. One-Dimensional Momentum

Theory

Bernoulli Equation Along a Streamline:

$$P + 1/2\rho u^2 + \rho gz = C$$

Continuity Equation:

$$\frac{\partial}{\partial t} \int_{CV} \rho dV + \int_{CS} \rho(\vec{v} \cdot \hat{n}) dA = 0$$

x-Momentum Equation:

$$\frac{\partial}{\partial t} \int_{CV} \rho u dV + \int_{CS} \rho u(\vec{v} \cdot \hat{n}) dA = F_{s,x} + F_{b,x}$$

Energy Equation:

$$\frac{\partial}{\partial t} \int_{CV} (P+1/2\rho u^2 + \rho gz + \rho u_i) dV + \int_{CS} (P+1/2\rho u^2 + \rho gz + \rho u_i) (\vec{v} \cdot \hat{n}) dA = \dot{Q} + \dot{W}$$

B. One-Dimensional Momentum $A_2 = A_3 \qquad A_4$ Theory $A_1 \qquad u_{x,2} \qquad u_{x,3} \qquad (u_x, u_r, u_\theta)_4$

B. One-Dimensional Momentum $A_2 = A_3 \qquad A_4$ Theory $A_1 \qquad u_{x,2} \qquad u_{x,3} \qquad (u_x,u_r,u_\theta)_4$

B. One-Dimensional Momentum Theory

$$C_p = \frac{P}{1/2\rho u_{x,1}^3 A_2} = 4a(1-a)^2$$

C. Wake Rotation Effects

- C. Wake Rotation Effects
 - 1. Theory

C. Wake Rotation Effects

1. Theory

ME/ESE 4470 – Wind & Tidal Power

WT Aerodynamics- 15

- C. Wake Rotation Effects
 - 2. Practical Consideration

C. Wake Rotation Effects

2. Practical Consideration

D. Blade Aerodynamics

D. Blade Aerodynamics

1. Terminology

- D. Blade Aerodynamics
 - 1. Terminology

D. Blade Aerodynamics

2. Lift, Drag and Related Forces

- D. Blade Aerodynamics
 - 2. Lift, Drag and Related Forces

Source: Timmer and Rooij J. Solar Energy Engineering Vol. 125, November 2003

D. Blade Aerodynamics

3. Boundary Layers and Stall

$$Re_x = \frac{\rho U_{\infty} x}{\mu} = \frac{U_{\infty} x}{\nu}$$

laminar boundary layer \to transition \to turbulent boundary layer ${\rm Re}_x < 2\times 10^4 \qquad \qquad {\rm Re}_x > 3\times 10^6$

$$\delta = y$$
 where $u = 0.99U_{\infty}$

$$\delta^* = \int_0^\infty \left(1 - \frac{u}{U_\infty}\right) dy$$

$$\theta = \int_0^\infty \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty} \right) dy$$

- D. Blade Aerodynamics
 - 3. Boundary Layers and Stall

- D. Blade Aerodynamics
 - 4. Various Effects on Angle of Attack
 - a. Variations in Wind Speed

- D. Blade Aerodynamics
 - 4. Various Effects on Angle of Attack
 - b. Variations in Rotational Velocity

- D. Blade Aerodynamics
 - 5. Design Features to Overcome Varying α
 - a. Vary Rotation Speed to Overcome Variations in Wind Speed

- D. Blade Aerodynamics
 - 5. Design Features to Overcome Varying α
 - b. Vary Pitch to Overcome Variations in Wind Special

- D. Blade Aerodynamics
 - 5. Design Features to Overcome Varying α
 - c. Vary Pitch to Overcome Variations in Rotation Rate

- D. Blade Aerodynamics
 - 4. Effects of Blade Rotation

E. 3-D Blade Aerodynamics

- E. 3-D Blade Aerodynamics
 - 1. Finite Wing Effects

- E. 3-D Blade Aerodynamics
 - 2. Lifting Line Theory

- E. 3-D Blade Aerodynamics
 - 2. Lifting Line Theory

- E. 3-D Blade Aerodynamics
 - 2. Lifting Line Theory

- E. 3-D Blade Aerodynamics
 - 3. Other 3-D Effects

- E. 3-D Blade Aerodynamics
 - 4. Vortex System Behind a Wind Turbine

Wilson and Lissaman Applied Aerodynamics of Wind Power Machines, 1974

F. Blade Element Momentum Theory (BEM)

F. Blade Element Momentum Theory (BEM)

- F. Blade Element Momentum Theory (BEM)
 - 1. Equations

$$dT = \frac{1}{2}\rho(u_{x,1}^2 - u_{x,4}^2)dA$$

$$dT = \frac{1}{2}\rho u_{x,1}^2 4a(1-a)2\pi r dr$$

$$dT_x = \rho r u_{\theta,3} u_{x,3} dA$$

$$dT_x = \frac{1}{2} \rho u_{x,1} \Omega r^2 4a' (1-a) 2\pi r dr$$

F. Blade Element Momentum Theory (BEM)

1. Equations

$$\alpha = \phi - \theta_p$$

$$\tan \phi = \frac{V}{U} = \frac{(1-a)u_{1,x}}{(1+a')\Omega r}$$

$$L = \frac{1}{2}\rho W^2 cC_L$$
$$D = \frac{1}{2}\rho W^2 cC_D$$

- F. Blade Element Momentum Theory (BEM)
 - 1. Equations

$$F_N = L\cos(\phi) + D\sin(\phi)$$
 $C_N = C_L\cos(\phi) + C_D\sin(\phi)$

$$F_T = L\sin(\phi) - D\cos(\phi)$$
 $C_T = C_L\sin(\phi) - C_D\cos(\phi)$

$$\sigma(r) = \frac{c(r)B}{2\pi r}$$

F. Blade Element Momentum Theory (BEM)

1. Equations

$$dT = BF_N dr$$

$$dT = \frac{1}{2} \rho \frac{u_{1,x}^2 (1-a)^2}{\sin^2(\phi)} cC_N B dr$$

$$dT_x = rBF_T dr$$

$$dT_x = \frac{1}{2}\rho r \frac{u_{1,x}(1-a)\Omega r(1+a')}{\sin(\phi)\cos(\phi)} cC_T B dr$$

$$a = \left(1 + \frac{4\sin^2(\phi)}{\sigma C_N}\right)^{-1}$$

$$a' = \left(\frac{4\sin(\phi)\cos(\phi)}{\sigma C_T}\right)^{-1}$$

- F. Blade Element Momentum Theory (BEM)
 - 2. Implementation

- F. Blade Element Momentum Theory (BEM)
 - 3. Corrections
 - a. Prandtl's Tip Loss Factor

b. Glauert's Correction for High Values of a

- F. Blade Element Momentum Theory (BEM)
 - 4. Example

r (m)	c (m)	$\theta_p(\deg)$
4	1.5	20
6	1.4	13
8	1.3	8
10	1.2	6
12	1.0	4
14	0.8	3
16	0.6	2
18	0.4	1
20	0.2	0

- F. Blade Element Momentum Theory (BEM)
 - 4. Example

- F. Blade Element Momentum Theory (BEM)
 - 4. Example

F. Blade Element Momentum Theory (BEM)

4. Example

a. Results

