Comparison of generative models

	Variational Autoencoders	GANs	Normalizing Flows
Bayesian Inference			
Stable Training			
Competitive Resolution			
Tractable in High Dimensions			

Reconstructions

Preliminary results using MHD Simulations

Summary Statistics

Computed on test set of 339 images.

Reconstructed power spectra, compared to original image power spectra.

Semantic Interpolation

Testing the smoothness of the latent space

$$\mathbf{z}_{1,2}(\lambda) = \frac{\sin((1-\lambda)\theta)}{\sin\theta} \mathbf{z}_1 + \frac{\sin(\lambda\theta)}{\sin\theta} \mathbf{z}_2$$

Semantic interpolation

Data Imputation

• The statistical model $q_{\phi}(z \mid x)$ allows us to perform Bayesian inference tasks. A toy model is:

$$\log p(\mathbf{z} \mid \mathbf{d}) = \log p(\mathbf{z}) + \log p_{\theta}(\mathbf{d} \mid \mathbf{z}) - \log p(\mathbf{d})$$

$$-2\log p(\mathbf{z} \mid \mathbf{d}_{\text{test}}) \propto \mathbf{z}^T \mathbf{z} + \frac{\mu_{\theta}(\mathbf{z})^T \mu_{\theta}(\mathbf{z})}{\sigma^2}$$

Data Imputation

