## **BLOOD TRANSFUSION-1**



DR. GEORGE MUGENYA MBCHB, M.MED, FCS (ECSA)

## INTRODUCTION

- Blood transfusion is the process of transferring blood or blood based products from one individual into the circulation system of another person.
  - This is referred to as homologous transfusion.
  - In autologous transfusion the donor and recipient is the same person.
- Earlier transfusions used whole blood but current practice uses only deficient blood components separately (component therapy).

- The history of practice of blood transfusion can be traced as way back as 15<sup>th</sup> century.
- It has evolved through a lot of controversies and sometimes ridiculous experiences into a specialized medical science of today; eg.
  - Giving blood orally.
  - Transfusion of animal blood to human.
  - Transfusion of milk.
  - Direct transfusion from donor's vein to recipient's vein, etc).

- Some of the landmarks in the development of modern transfusion science include:
  - Description of blood circulatory system by Harvey in 17<sup>th</sup> century.
  - Discovery of ABO blood groups in 1901
  - Discovery of anticoagulants in 1910s (sodium citrate) and refrigeration to prolong blood storage.
  - Soviet Union set up first national blood bank in 1930s.
  - Discovery of Rhesus group system in 1940 as major cause of transfusion reactions.

- ...Some of the landmarks...
  - Discovery of Acid-Citrate-Dextrose (ACD) solution in 1940s to help reduce amount of anticoagulant needed to preserve blood.
  - Introduction of plastic bags to replace glass bottles in 1950.
  - Adoption of WHO policy of voluntary blood donation in 1975.
  - ➤ Introduction of CPDA-1 anticoagulant in 1979 to increase shelf life to 35 days.
  - Emergence of HIV in 1980s brought up new challenges in management of blood transfusion services.

## KENYAN BLOOD TRANSFUSION POLICY

- Kenya is a signatory to World Health Assembly Resolution (WHA 28.72) of 1975 and Regional Commonwealth Ministers of Health Resolution of 1989 which requires:
  - Each member state to develop a comprehensive, well coordinated blood transfusion service, based on voluntary, non-remunerated blood donation.
  - Each member state to make provision for safe blood to the people a national priority.

## ...KENYAN BLOOD TRANSFUSION POLICY

- In different countries the mandate to coordinate national blood transfusion services are entrusted to specific organizations, eg. Red Cross, Red Crescent, AABB, etc.
- In Kenya this mandate has been given to National Blood Transfusion Services (NBTS):
  - It is a unit under National Public Health Laboratories Services (NPHLS).

# ...KENYAN BLOOD TRANSFUSION POLICY

The GOAL of NBTS is to provide safe blood whenever it is needed, through creating a strong, efficient, and self sustaining national blood transfusion service capable of meeting all the needs of the country.

# ...KENYAN BLOOD TRANSFUSION POLICY

- NBTS is managing the blood transfusion program through:
  - National Blood Transfusion Centre (NBTC), located in Nairobi.
  - Regional Blood Transfusion Centres (RBTC), located in Mombasa, Embu, Nyeri, Nakuru, Eldoret and Kisumu.
  - Satellite Centres—Naivasha, Eldama-Ravine, Kericho, Kisii, etc.
  - Primary Hospital Blood Banks—though being discouraged/phased out.

- The STRATEGY of NBTS to fulfill its mandate include the following:
  - Proper organizational structures of the blood transfusion services.
  - Recruitment of safe blood donors.
  - Screening of units of blood for Transfusion Transmissible Infections (TTIs).
  - Ensuring appropriate clinical use of blood and blood products;
    - eg. issue transfusion guidelines.

## **BLOOD DONOR RECRUITMENT**

- The following are the different types of blood donors (sources):
  - Family / replacement donors donate blood for a specific/ known recipient.
  - Voluntary / unpaid donors—donate blood to be given to whoever needs it.
  - Commercial / paid donors—donate blood in exchange for money or favours.
  - Autologous donors—donate blood for his / her anticipated use / need.

## ...BLOOD DONOR RECRUITMENT

#### Criteria for qualification as a blood donor are:

- Healthy individual: normal BP and Pulse, not on medications, no history of exposure to TTIs.
- Age: 16 to 65 years.
- Weight: 50 kg and above (45—50 kg may be allowed in exceptional circumstances).
- Haemoglobin level: 12.5 g/dl and above (for Autologous 10 g/dl and above).
- Donated blood last not less than 3 months ago (in special circumstances 2 months interval may be allowed).
- Willing to declare his/her health status both present and past.

## ...BLOOD DONOR RECRUITMENT

Safe Donor: That person who knows that she/he is at a low risk of TTIs and is willing to give blood voluntarily on a regular basis.

#### Advantages:

- Are not under pressure to give blood therefore are more likely to meet the national criteria for low risk donors.
- Are willing to donate blood on a regular basis which is important in maintaining adequate supply of blood.
- Are at low risk of TTIs because they have been educated about the importance of safe blood and are screened each time they attend to give blood.
- Are more likely to respond to an appeal for blood donation during an emergency because they have already expressed commitment to voluntary blood donation.

# BLOOD COLLECTION, PROCESSING AND STORAGE

### Methods of blood donations are:

- Whole blood donation (commonest):
  - All blood components are collected together.
- Apheresis donation:
  - Only required component(s) is/are donated /collected.
  - Uncommon and requires expensive equipment.

## **BLOOD COLLECTION**

- Donor is screened to ensure normal criteria set for low risk donors is met:
  - verbal interview.
  - through questionnaire.
- After disinfecting the skin:
  - wide bore needle (G.18) is inserted into a forearm vein.
  - blood is collected by gravity through the connecting tubing into a plastic bag containing anticoagulant.

## ...BLOOD COLLECTION

- Commonly used anticoagulant:
  - CPDA-1 (Citrate Phosphate Dextrose with Adenine).
  - Previously it was ACD and CPD (Acid Citrate Dextrose & Citrate Phosphate Dextrose).
- CPDA-1 preserves blood for 35 days while
  ACD and CPD do it for 21 days.
- When SAGM (Sodium Adenine Glucose Mannitol) solution is added to CPDA-1 blood can be preserved for up to 42 days.

## ...BLOOD COLLECTION

## Actions of ingredients of anticoagulant solutions:

- Citrate: Prevents coagulation by chelating calcium.
- Dextrose: Supports ATP generation by glycolytic pathway.
- Sodium di-phosphate :- Prevents fall in pH.
- Adenine: Synthesizes ATP, increases level of ATP, and extends the shelf life of red blood cells to 35 days.

## ...BLOOD COLLECTION

- Each donation is 450 mls to 500 mls.
  - Half filled bags are normally discarded.
- The donated blood is immediately placed in a transport box which is maintained at a temperature of +20 to +24 degrees Celsius for not more than 6 to 12 hours.

## **BLOOD PROCESSING**

## Testing /laboratory screening for TTI:

- HIV (1 &2)
- Hepatitis B virus (HBV)
- Hepatitis C virus (HCV)
- VDRL for Treponema pallidum (Syphilis)
- Others: Malaria, Chaga's disease (T. cruzi),
  Leishmaniasis, CMV (Cytomegalovirus)

### **Blood Grouping:**

- A B O
- Rhesus

## ...BLOOD PROCESSING

## Separation of Whole Blood (Hct 40%) into blood components:

- Packed Red Blood Cells (PRBC) :-
  - 250 mls adult packs (Hct 70%).
  - > 125 mls paediatric packs (Hct 70%).
- Platelets :- 50 mls packs.
- Fresh Frozen Plasma (FFP) :-
  - 220 mls; contains all coagulation factors.
- Cryoprecipitate :-
  - 15mls; has fibrinogen, factor VIII, XIII and von Willebrand.

## **BLOOD STORAGE**

Whole blood and blood components are required to be maintained at specific temperatures (cold chain) for them to be useful when transfused.

Whole blood : Stored at +2 to +8 deg. C : \*Up to 21 days in ACD or CPD.
 \*Up to 35 days in CPDA-1.

\*Up to 42 days when SAGM is added to CPDA-1.

## ...BLOOD STORAGE

- Packed Red Blood Cell :-
  - > +2 to +8 deg. C and duration as for whole blood.
- Plasma :-
  - $\geq$  +2 to +8 deg. C for up to 5 days.
  - minus-18 deg. C or below for up to 5years.
- Fresh Frozen Plasma :
  - minus-18 deg. C or below for up to 1 year.
- Platelets Concentrate :-
  - Room Temp. with agitation for up to 5 days.
- Cryoprecipitate :- minus-18 deg. C for up to 1 year.

## **AUTOLOGOUS BLOOD DONATION**

Donation can be done as whole blood or by apheresis in one of the following ways:

- Pre-operative:
  - Blood is drawn before a planned surgery and stored until needed.
- Intra-operative haemodilution:
  - Blood is collected at the start of surgery and then infused during or at the end of the procedure.
- Blood salvage:
  - Blood is salvaged from the surgical field and infused during or after the surgical procedure.

## ...AUTOLOGOUS BLOOD DONATION

### Advantages Autologous blood donation:

- Prevents transmission of TTIs.
- Prevents blood transfusion reactions.
- Provide reassurance to donor—recipient.
- To stockpile rare blood groups.

### Disadvantages of Autologous blood donation:

- Adverse reaction to donation.
- Unnecessary loss of blood units if operation is postponed or transfusion is not needed.
- Increased work load to blood bank: ie needs special labeling and storage facilities.

## THE FUTURE

Due to increased demand for blood which outstrips the supply:

- Blood Substitutes (artificial blood or blood surrogates) are being developed.
  - Being used to fill fluid volume and/or carry oxygen and other blood gases in the cardiovascular system.
  - The preferred and more accurate terms are :-
    - Volume expanders for inert products.
    - Oxygen therapeutics for oxygen carrying products

## ...THE FUTURE

## Volume expanders: -

- Inert and merely increase blood volume.
  - Crystalloids: eg. Ringer's lactate, normal saline, D5W
  - Colloids:-eg. Haemacel, Dextran, Voluven, Gelofusin.

## Oxygen therapeutics: -

- Mimic human blood's oxygen transport ability.
  - Per fluorocarbon based: eg. Oxygent, Oxycyte, Perftoran, etc.
  - Haemoglobin based: eg. Hemopure, Oxyglobin, PolyHeme, Dextran-Haemoglobin, etc.

## ...THE FUTURE

### Stem Cell: -

Recently the scientific community has begun to look at the possibility of using stem cells as a means of producing an alternative source of transfusable blood.

## SPECIAL CONCERN

- Jehovah's Witnesses cannot accept donor packed red cells, platelets, white cells or plasma, and cannot accept autologous or cell-cycled intraoperative transfusion.
- The sect leadership used to be militantly antiimmunization, anti-germ theory, and anti-

transplantation as well.