

Larger-than-Memory Data Management on Modern Storage Hardware for In-Memory OLTP Database Systems

Lin Ma, Joy Arulraj, Sam Zhao, Andrew Pavlo, Subramanya R. Dulloor, Michael J. Giardino, Jeff Parkhurst, Jason L. Gardner, Kshitij Doshi, Col. Stanley Zdonik

MOTIVATION

 Allow an in-memory DBMS to store/access data on disk without bringing back all the slow parts of a disk-oriented DBMS.

• Different properties of storage devices may affect important design decisions.

STORAGE TECHNOLOGIES

- 10m Tuples 1KB each
- Synchronization Enabled

DESIGN DECISIONS

- Hardware independent policies
 - -Cold Tuple Identification
 - -Evicted Tuple Meta-data
- Hardware dependent policies
 - -Cold Tuple Retrieval
 - -Merging Threshold
 - -Access Methods

HARDWARE INDEPENDENT POLICIES

INDEPENDENT POLICIES

- Cold Tuple Identification
 - -Option #1: On-line identification
 - -Option #2: Off-line identification

- Evicted Tuple Meta-data
 - -Option #1: Marker to represent the on-disk position \blacksquare

- -Option #2: Bloom filter
- Option #3: Rely on virtual paging **()** ← MEMSQL

EVICTED TUPLE META-DATA

HARDWARE DEPENDENT POLICIES

COLD TUPLE RETRIEVAL

• Option #1: Abort-and-Restart

COLD TUPLE RETRIEVAL

 Option #2: Synchronous Retrieval

MERGING THRESHOLD

Option #1: Always Merge

Option #2:
 Merge Only on Update

Option #3: Selective Merge

Read: Tuple #00

Read: Tuple #01

Read: Tuple #02

Cold-Data Storage

header Tuple #01 Tuple #03 Tuple #04

ACCESS METHODS

- Option #1: Block-addressable
 - -Block-level access through file system
- Option #2: Byte-addressable (NVRAM)
 - Use mmap through a filesystem designed for byte-addressable NVRAM (PMFS)
 - Directly operate on NVRAM-resident data as if it existed in DRAM

EVALUATION

- Compare design decisions in H-Store with anti-caching.
- Storage Devices:
 - –Hard-Disk Drive (HDD)
 - -Shingled Magnetic Recording Drive (SMR)
 - -Solid-State Drive (SSD)
 - -3D XPoint (3DX)
 - –Non-volatile Memory (NVRAM)

COLD TUPLE RETRIEVAL

- YCSB Workload 90% Reads / 10% Writes
- 10GB Database using 1.25GB Memory

MERGING THRESHOLD

- YCSB Workload 90% Reads / 10% Writes
- 10GB Database using 1.25GB Memory

CONFIGURATION COMPARISON

Generic Configuration (2013 Anti-caching)

- -Abort-and-Restart Retrieval
- -Merge (All) Threshold
- -1024 KB Block Size

Optimized Configuration

- -Synchronous Retrieval
- -Top-5% Merge Threshold
- -Block Sizes (HDD/SMR-1024 KB) (SSD/3DX-16 KB)
- -Byte-addressable access for NVRAM

GENERIC VS OPTIMIZED

CONCLUSION

- Low-latency storage devices: Smaller block sizes and synchronous retrieval
- Constraints on merge frequency improve performance
- The performance of NVRAM is as good as pure DRAM if treated correctly

END

lin.ma@cs.cmu.edu

REAL-WORLD IMPLEMENTATIONS

- H-Store Anti-Caching
- Microsoft Hekaton Project Siberia
- EPFL's VoltDB Prototype
- Apache Geode Overflow Tables
- MemSQL Columnar Tables
- SolidDB
- P*TIME

MERGING THRESHOLD

- YCSB Workload 90% Reads / 10% Writes
- 10GB Database using 1.25GB Memory

