

CHANGE DETECTION AND IMAGE CLASSIFICATION IN IMAGES

Guided by: Dr. K. R. Manjula, Associate Professor, School of Computing

123003058 - Deepak K 123015092 - Shiv Mohan L 123015121 - Yaredla Sai Charith Reddy

Base paper details

- <u>Tittle</u>: Unsupervised Change Detection in Landsat Images with Atmospheric Artifacts
- Authors: Kusetogullari Huseyin and Yavariabdi Amir
- <u>Journal</u>: Hindawi Journals/Mathematical Problems in Engineering
- Year of publication: 2018
- Indexing: Scopus
- <u>Base-paper URL:Unsupervised Change Detection in Landsat Images with Atmospheric Artifacts: A Fuzzy Multiobjective Approach (hindawi.com)</u>

THINK MERIT I THINK TRANSPARENCY I THINK SASTRA
THAN JAVUR KUMBAKONAM CHENNAI

CONTENT

- Base Paper Details
- Abstract
- Introduction
- Problem Statement
- Literature Review
- Methodology
 - Data Collection
 - Unsupervised Learning
 - Supervised Learning
- Result analysis
- Conclusion and future works
- Workflow
- References

ABSTRACT

- In remote sensing context, many automatic change detection algorithms have been proposed to obtain changed and unchanged pixels between images.
- Change detection helps in identifying the differences in satellite images taken at different points in time.
- The proposed method uses a photoelectric invariant technique, along with hybrid wavelet transform and mean shift clustering.
- Then a fusion method is used to get final change mask which is further used for the finding finding the change in real time.
- Also, The input satellite images are classified into using a customized labeled dataset.

INTRODUCTION

- The proposed method uses a photoelectric invariant technique, along with hybrid wavelet transform and mean shift clustering combined with an optimization technique.
- Various Clustering techniques are implemented to find out the most optimized change detection result
- Image Classification is typically achieved using machine learning algorithms, such as deep neural networks.
- Here, to classify satellite images Residual Network model(ResNet-50) is used.
- Its effective and efficient architecture delivers high accuracy with very few parameters.

PROBLEM STATEMENT

- Comparative analysis to find the most optimized method in finding the change in multi temporal satellite images.
- Classification of satellite images into a desired labeled dataset.

LITERATURE REVIEW

S.No.	Title	Journal	Work
1	Agriculture change detection model using remote sensing images and GIS	IEEE Xplore	Changes in agriculture detected using Landsat images
2	Fusion of difference images for change detection over urban areas	IEEE Xplore	Detecting spectral changes through fusion techniques merging multiple difference images in order to understand urbanization.
3	A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications	Hindawi	Analyzing the usage and applications of Particle Swarm Optimization.
4	Land Use and Land Cover using Deep Learning	IEEEXplore	Using Deep learning algorithm in classifying images.
5	Segmentation and histogram generation using the HSV color space for image retrieval	IEEE Xplore	Analysis of HSV colorspace with emphasis on visual perception of variation in hue, saturation and intensity values.

PROPOSED METHOD

The proposed method uses the following steps:

- Firstly, a photometric invariant technique is used to transform the Landsat images from RGB to HSV colour space.
- A hybrid wavelet transform based on Stationary and Discrete Wavelet Transforms is applied.
- After that, mean shift clustering method is applied to the subband difference images, computed using the absolute-valued difference technique.
- Then, the proposed method optimizes using PSO to evaluate changed and unchanged regions of the smoothed difference images separately.
- Finally, a fusion approach based on connected component with union technique is proposed to fuse two binary masks to estimate the final solution.
- The input images are also classified into a labeled dataset using ResNet model and its accuracy is predicted.

METHODOLOGY

(U/S 3 of the UGC Act, 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

CHENNAI

Workflow

(DATASET-Clustering)

INPUT IMAGES: SASTRA University (10°43'45.66"N 79°01'08.01"E) taken from Google Earth Pro

2013 2023

DATASET-Classification

- The dataset consists of pre processed images collected over a 10 year period.
- In pre processing, the input images are cleared of clouds and each image is divided into 192 images of 64x64 size.
- Each image is categorized into one of the 3 labels (i.e Residential, Industry and Herbaceous Vegetation).
- DATASET

ColorSpace Transformation (Unsupervised Learning)

Discrete Wavelet Transform

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

2013-LL

2023-LL

2013-HH

2023-HH

Stationary Wavelet Transform

(U/S 3 of the UGC Act, 1956)

2013-LL

2023-LL

2013-HH

2023-HH

Combining Subbands

2013-LL

2023-LL

(U/S 3 of the UGC Act, 1956)
THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

2013-HH

2023-HH

Absolute Valued Subband

LL

HH

K-Means

Mean Shift Clustering

DT-CWT

(U/S to Sale U/C (to 1986)

THINK MERIT I THINK TRANSPARENCY I THINK SASTRA
THAN JAVUR KUMBAKONAM CHENNAI

Particle Swarm Optimization

2013-2018

2013

INPUT OUTPUT(change)

2018-2023

2018 2023

INPUT OUTPUT(change)

Performance analysis

	K-Means	Mean-shift	DT-CWT	PSO
Pfa(false alarm)	0.65	0.5	0.56	0.41
Pmd(missed detection)	0.75	0.87	0.85	0.38
Pte(total error)	0.61	0.61	0.58	0.53

(II/S 3 of the HCC Act 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

Performance analysis

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA
THANJAVUR | KUMBAKONAM | CHENNAI

Model training-(Classification) (Supervised Learning) ResNet50 Model

```
Epoch 1/10
Epoch 2/10
101/101 [===========] - 631s 6s/step - loss: 0.9933 - accuracy: 0.6692 - val loss: 1.0030 - val accuracy: 0.6907
Epoch 3/10
Epoch 4/10
Epoch 5/10
101/101 [============ - 605s 6s/step - loss: 0.6406 - accuracy: 0.7316 - val loss: 0.6237 - val accuracy: 0.7826
Epoch 6/10
101/101 [============] - 611s 6s/step - loss: 0.7361 - accuracy: 0.7148 - val loss: 0.7497 - val accuracy: 0.6211
Epoch 7/10
101/101 [===========] - 616s 6s/step - loss: 0.8750 - accuracy: 0.6922 - val loss: 0.7452 - val accuracy: 0.7031
Epoch 8/10
Epoch 9/10
Epoch 10/10
```


THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

ResNet50 model with optimiser (adam)

history = model.fit(train_dataset, validation_data=test_dataset, epochs=10, batch_size=32)

```
Epoch 1/10
101/101 [=========== ] - 632s 6s/step - loss: 1.2980 - accuracy: 0.6631 - val loss: 1.5225 - val accuracy: 0.6484
Epoch 2/10
101/101 [=========== ] - 351s 3s/step - loss: 0.8470 - accuracy: 0.6913 - val loss: 0.9988 - val accuracy: 0.7006
Epoch 3/10
101/101 [===========] - 351s 3s/step - loss: 0.6660 - accuracy: 0.7387 - val loss: 0.6026 - val accuracy: 0.7739
Epoch 4/10
101/101 [===========] - 350s 3s/step - loss: 0.6367 - accuracy: 0.7418 - val loss: 0.8202 - val accuracy: 0.6994
Epoch 5/10
101/101 [============ ] - 349s 3s/step - loss: 0.6299 - accuracy: 0.7443 - val loss: 0.5192 - val accuracy: 0.8050
Epoch 6/10
101/101 [===========] - 352s 3s/step - loss: 0.5493 - accuracy: 0.7743 - val loss: 0.4986 - val accuracy: 0.7553
Epoch 7/10
101/101 [===========] - 353s 3s/step - loss: 0.5506 - accuracy: 0.7855 - val loss: 0.7973 - val accuracy: 0.7776
Epoch 8/10
101/101 [=========== ] - 352s 3s/step - loss: 0.5611 - accuracy: 0.7932 - val loss: 0.6385 - val accuracy: 0.7565
Epoch 9/10
101/101 [===========] - 357s 4s/step - loss: 0.4634 - accuracy: 0.8180 - val loss: 0.5272 - val accuracy: 0.7665
Epoch 10/10
101/101 [=========== ] - 352s 3s/step - loss: 0.4975 - accuracy: 0.8149 - val loss: 0.5434 - val accuracy: 0.7901
```

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA
THANIA VUR KUMBAKONAM CHENNAI

DenseNet model (without optimiser)

print("Total time taken by the model:", total time, "seconds")

```
Epoch 1/10
101/101 [=======] - 2688s 26s/step - loss: 0.7034 - accuracy: 0.7415 - val loss: 0.4657 - val accuracy: 0.8211
Epoch 2/10
101/101 [========] - 11s 106ms/step - loss: 0.4126 - accuracy: 0.8149 - val loss: 0.4958 - val accuracy: 0.8224
Epoch 3/10
101/101 [========] - 11s 105ms/step - loss: 0.3202 - accuracy: 0.8571 - val loss: 0.6496 - val accuracy: 0.7826
101/101 [========] - 11s 106ms/step - loss: 0.2427 - accuracy: 0.9014 - val loss: 0.9986 - val accuracy: 0.7739
Epoch 5/10
Epoch 6/10
101/101 [=======] - 11s 109ms/step - loss: 0.1550 - accuracy: 0.9402 - val loss: 1.4511 - val accuracy: 0.7466
Fnoch 7/10
Epoch 8/10
101/101 [=======] - 11s 106ms/step - loss: 0.1147 - accuracy: 0.9616 - val loss: 1.2843 - val accuracy: 0.7540
Epoch 9/10
101/101 [=======] - 11s 105ms/step - loss: 0.0930 - accuracy: 0.9671 - val loss: 1.8285 - val accuracy: 0.7217
Epoch 10/10
101/101 [========] - 11s 105ms/step - loss: 0.0855 - accuracy: 0.9699 - val loss: 1.9735 - val accuracy: 0.6969
Total time taken by the model: 2838.1581342220306 seconds
```

/ On sampleted at 0:10 DM

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

DenseNet model (with optimiser) THANJAVUR KUMBAKONAM CHENNAI

Epoch 1/10 101/101 [=========== - 802s 8s/step - loss: 0.5626 - accuracy: 0.7616 - val loss: 0.4111 - val accuracy: 0.8037 Epoch 2/10 101/101 [===========] - 11s 105ms/step - loss: 0.3744 - accuracy: 0.8292 - val loss: 0.4154 - val accuracy: 0.8273 Epoch 3/10 101/101 [===========] - 10s 101ms/step - loss: 0.2885 - accuracy: 0.8723 - val loss: 0.5264 - val accuracy: 0.7925 Epoch 4/10 101/101 [============] - 10s 103ms/step - loss: 0.2233 - accuracy: 0.9086 - val loss: 0.8865 - val accuracy: 0.7627 Epoch 5/10 Epoch 6/10 Epoch 7/10 101/101 [===========] - 10s 100ms/step - loss: 0.1155 - accuracy: 0.9551 - val loss: 1.0163 - val accuracy: 0.7578 Epoch 8/10 101/101 [===========] - 10s 100ms/step - loss: 0.0818 - accuracy: 0.9709 - val loss: 1.0706 - val accuracy: 0.7839 Epoch 9/10 101/101 [=========== - 11s 104ms/step - loss: 0.0768 - accuracy: 0.9715 - val loss: 1.2101 - val accuracy: 0.6832 Epoch 10/10 101/101 [===========] - 10s 100ms/step - loss: 0.0690 - accuracy: 0.9771 - val loss: 1.2956 - val accuracy: 0.7031 Total time taken by the model: 912.7276697158813 seconds

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Inception resnet (without optimizer)

```
Epoch 1/10
102/102 [=========== - 1310s 13s/step - loss: 1.5030 - accuracy: 0.7010 - val loss: 0.4473 - val accuracy: 0.8463
Epoch 2/10
Epoch 3/10
Epoch 4/10
102/102 [===========] - 22s 215ms/step - loss: 0.2808 - accuracy: 0.8878 - val loss: 0.5334 - val accuracy: 0.8030
Epoch 5/10
Epoch 6/10
Epoch 7/10
102/102 [============== ] - 23s 220ms/step - loss: 0.1416 - accuracy: 0.9539 - val loss: 0.9409 - val accuracy: 0.7943
Epoch 8/10
Epoch 9/10
Epoch 10/10
Total time taken by the model: 1562.1777930259705 seconds
```


Inception resnet(with optimizer)

```
Epoch 1/10
102/102 [============] - 40s 254ms/step - loss: 1.0386 - accuracy: 0.7066 - val loss: 0.5526 - val accuracy: 0.7175
Epoch 2/10
Epoch 3/10
102/102 [============] - 22s 216ms/step - loss: 0.3490 - accuracy: 0.8550 - val loss: 0.6563 - val accuracy: 0.7559
Epoch 4/10
Epoch 5/10
102/102 [===========] - 24s 235ms/step - loss: 0.2116 - accuracy: 0.9184 - val loss: 0.6715 - val accuracy: 0.7770
Epoch 6/10
Epoch 7/10
102/102 [==========] - 23s 222ms/step - loss: 0.1497 - accuracy: 0.9437 - val loss: 0.8575 - val accuracy: 0.7596
Epoch 8/10
102/102 [============] - 23s 227ms/step - loss: 0.1302 - accuracy: 0.9601 - val loss: 1.0228 - val accuracy: 0.7633
Epoch 9/10
102/102 [==========] - 23s 220ms/step - loss: 0.0814 - accuracy: 0.9722 - val loss: 1.0612 - val accuracy: 0.7497
Epoch 10/10
102/102 [===========] - 23s 222ms/step - loss: 0.1027 - accuracy: 0.9647 - val loss: 1.1000 - val accuracy: 0.7869
Total time taken by the model: 245.01757049560547 seconds
```

ResNet50 model metrics

	Without Optimizer	With Optimizer(adam)
Accuracy	0.764	0.801
Precision Score	0.900	0.899
Recall Score	0.856	0.871
F1 Score	0.865	0.876
Error Rate	0.235	0.218
Computational Time(in sec)	8121.742	6101.651

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

ROC Curve and AUC(ResNet50)

DenseNet model metrics

	Without Optimizer	With Optimizer(adam)
Accuracy	0.699	0.720
Precision Score	0.718	0.871
Recall Score	0.776	0.843
F1 Score	0.820	0.836
Error Rate	0.308	0.300
Computational Time(in secs)	2838.158	912.727 seconds

THINK MERIT I THINK TRANSPARENCY I THINK SASTRA
THAN JAVUR KUMBAKONAM CHENNAI

ROC Curve and AUC(DenseNet)

Inception resnet model metrics

	Without Optimizer	With Optimizer(adam)
Accuracy	0.777	0.780
Precision Score	0.842	0.877
Recall Score	0.828	0.895
F1 Score	0.865	0.872
Error Rate	0.277	0.223
Computational Time(in sec)	1562.177	245.017

ROC Curve and AUC(Inception resnet)

Confusion matrix (ResNet50)

(U/S 3 of the UGC Act, 1956)
THINK MERIT I THINK TRANSPARENCY I THINK SASTRA

Confusion matrix (DenseNet)

(U/S 3 of the UGC Act, 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Confusion matrix (Inception)

(U/S 3 of the UGC Act, 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

RESULT ANALYSIS

- The accuracies of 4 different clustering methods(K-Means, Mean Shift, DT-CWT, PSO) are compared using a table consisting of Pfa, Pma Pte as comparison metrics.
- In image clustering, the clustering method with least metric value is considered the most effective.
- In image classification, the input dataset is fed into a deep learning algorithm(ResNet model) for better effective and efficient classification.
- The accuracy at each epoch is varied and the final epoch's(10) accuracy of 81% is achieved.
- The accuracy follows an increasing trend when plotted against epoch.
- The loss over each epoch is significantly decreasing with increase in epoch.
- In the confusion matrix, the true positives(diagonal elements) are high implying the overall accuracy is maximum.

CONCLUSIONS

- From the histogram the PSO method has the least Pfa, Pte and Pma values, implying that it is the most effective method.
- In image classification, the accuracy is optimal considering the dataset size and number of parameters.
- The final change mask can also be used for image segmentation in order to quantify the individual changes.
- The classification output can be used in calculating land cover land change over the years.

Workflow

0-2 weeks	Literature Survey
2-3 weeks	Data Collection
3-5 weeks	Algorithm Formation
5-9 weeks	Algorithm Implementation
9-10 weeks	Documentation

References

- Base Paper
- https://www.hindawi.com/journals/complexity/2020/6693411/
- LULC using deep learning
- Particle Swarm Optimization

THANK YOU