Résumé de cours : Semaine 25, du 4 avril au 8.

Les polynômes (fin)

1 Arithmétique (suite et fin)

1.1 PGCD

Théorème. Si \mathbb{K} est un corps, alors $\mathbb{K}[X]$ est un anneau principal. Il faut savoir le démontrer.

Notation. Jusqu'à la fin de ce chapitre "arithmétique", on fixe un anneau A que l'on suppose principal.

Définition. Soit $(a, b) \in A^2$. d est un PGCD de a et b si et seulement si aA + bA = dA.

Caractérisation du PGCD par divisibilité : d est un PGCD de $(a,b) \in A^2$ si et seulement si d est un diviseur commun de a et b et si, pour tout diviseur commun d' de a et b, d' divise d. Il faut savoir le démontrer.

Propriété. a et b sont premiers entre eux si et seulement si 1 est un PGCD de a et b.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in A$, on dit que d est un PGCD de a_1, \ldots, a_k si et seulement si $dA = a_1A + \cdots + a_kA$, i.e si et seulement si d est un commun diviseur de a_1, \ldots, a_k tel que si d' est un autre commun diviseur de a_1, \ldots, a_k , alors d' divise d.

Soit B une partie quelconque de A. d est un PGCD de B si et seulement si dA = Id(B), i.e si et seulement si d est un diviseur commun des éléments de B tel que si d' est un autre diviseur commun des éléments de B, alors d' divise d.

Propriété. Lorsque $A = \mathbb{Z}$ (resp : $A = \mathbb{K}[X]$), en imposant au PGCD d'être positif (resp : unitaire) il est unique. On le note alors $a \wedge b$.

Propriété. Soit $k \in \mathbb{N}$, $a_1, \ldots, a_k \in A$ et $h \in \{1, \ldots, k\}$.

Alors, en convenant de noter $a \sim b$ lorsque a et b sont associés,

- Commutativité du PGCD :
 - pour tout $\sigma \in \mathcal{S}_k$, $PGCD(a_1, \ldots, a_k) \sim PGCD(a_{\sigma(1)}, \ldots, a_{\sigma(k)})$.
- Associativité du PGCD :
 - $PGCD(a_1,\ldots,a_k) \sim PGCD(PGCD(a_1,\ldots,a_h),PGCD(a_{h+1},\ldots,a_k)).$
- Distributivité de la multiplication par rapport au PGCD : pour tout $\alpha \in A$, $PGCD(\alpha a_1, \ldots, \alpha a_k) \sim \alpha PGCD(a_1, \ldots, a_k)$.

Il faut savoir le démontrer.

1.2 PPCM

Définition. Soit $(a,b) \in A^2$. m est un PPCM de a et b si et seulement si $aA \cap bA = mA$.

Caractérisation du PPCM par divisibilité : m est un PPCM de $(a,b) \in A^2$ si et seulement si m est un multiple commun de a et b et si, pour tout multiple commun m' de a et b, m' est un multiple de m.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in A$, m est un PPCM de a_1, \ldots, a_k si et seulement si $mA = a_1A \cap \cdots \cap a_kA$, i.e si et seulement si m est un commun multiple de a_1, \ldots, a_k tel que si m' est un autre commun multiple de a_1, \ldots, a_k , alors m' est un multiple de m.

Soit B est une partie quelconque de A. m est un PPCM de B si et seulement si $mA = \bigcap_{b \in B} bA$, i.e

si et seulement si m est un multiple commun des éléments de B tel que si m' est un autre multiple commun des éléments de B, alors m' est un multiple commun de m.

Propriété. Soit $k \in \mathbb{N}$, $a_1, \ldots, a_k \in A$ et $h \in \{1, \ldots, k\}$.

Alors, en convenant de noter $a \sim b$ lorsque a et b sont associés,

- Commutativité du PPCM :
- pour tout $\sigma \in \mathcal{S}_k$, $PPCM(a_1, \ldots, a_k) \sim PPCM(a_{\sigma(1)}, \ldots, a_{\sigma(k)})$.
- Associativité du PPCM :
 - $PPCM(a_1,\ldots,a_k) \sim PPCM(PPCM(a_1,\ldots,a_h),PPCM(a_{h+1},\ldots,a_k)).$
- Distributivité de la multiplication par rapport au PPCM : pour tout $\alpha \in A$, $PPCM(\alpha a_1, ..., \alpha a_k) \sim \alpha PPCM(a_1, ..., a_k)$.

1.3 Les théorèmes de l'arithmétique

```
Théorème de Bézout. Soit (a, b) \in A^2.
```

a et b sont premiers entre eux si et seulement si : $\exists (u,v) \in A^2 \ ua + vb = 1.$

Propriété. Soit $(a, b) \in A^2$. Notons d un PGCD de a et b. Alors

il existe $(a',b') \in A^2$, avec a' et b' premiers entre eux, tel que a=a'd et b=b'd.

Théorème de Gauss. Soit $(a, b, c) \in A^3$. Si a|bc avec a et b premiers entre eux, alors a|c.

Corollaire. Soit $p, a, b \in A$. Si $p \mid ab$ avec p irréductible, alors $p \mid a$ ou $p \mid b$.

Propriété. Soit $(a, b, c) \in A^3$, $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in A$.

On désigne par $a \wedge b$ un PGCD de a et b et par $a \vee b$ un PPCM de a et b.

- \diamond Si $a \wedge b = a \wedge c = 1$, alors $a \wedge bc = 1$.
- \diamond Si $a \wedge b = 1$, $\forall (k, l) \in (\mathbb{N}^*)^2$ $a^k \wedge b^l = 1$.
- \diamond Si a|b, c|b et $a \wedge c = 1$ alors ac|b.

Si pour tout $i \in \{1, ..., n\}$, $a_i | b$ et si $i \neq j \Longrightarrow a_i \land a_j = 1$, alors $a_1 \times \cdots \times a_n \mid b$.

 $\diamond ab \sim (a \wedge b)(a \vee b)$. En particulier, $a \wedge b = 1 \Longrightarrow a \vee b \sim ab$.

Il faut savoir le démontrer.

1.4 $\mathbb{K}[X]$ est un anneau factoriel

Notation. On suppose ici que $A \in \{\mathbb{Z}, \mathbb{K}[X]\}$ (\mathbb{K} étant un corps quelconque). Si $A = \mathbb{Z}$, on pose $\mathcal{P} = \mathbb{P}$, et si $A = \mathbb{K}[X]$, \mathcal{P} est l'ensemble des polynômes irréductibles et unitaires.

Théorème. Soit $a \in A$ avec $a \neq 0$. Il existe un unique couple $(u, (\nu_p)_{p \in \mathcal{P}})$, où $u \in U(A)$ et où $(\nu_p)_{p \in \mathcal{P}}$ est une famille presque nulle d'entiers, tel que $a = u \prod_{p \in \mathcal{P}} p^{\nu_p}$: c'est la **décomposition de** $a \in \mathcal{P}$

en facteurs irréductibles. ν_p s'appelle la valuation p-adique de a.

Il faut savoir le démontrer.

Propriété. Soit $(a, b) \in (A \setminus \{0\})^2$, dont les décompositions en facteurs irréductibles sont $a = u \prod_{n \in \mathbb{N}} p^{\nu_p}$ et $b = v \prod_{n \in \mathbb{N}} p^{\mu_p}$. Alors $a \mid b \iff [\forall p \in \mathcal{P}, \ \nu_p \leq \mu_p]$.

De plus, $a \wedge b = \prod_{p \in \mathcal{P}} p^{\min(\nu_p, \mu_p)}$ et $a \vee b = \prod_{p \in \mathcal{P}} p^{\max(\nu_p, \mu_p)}$. En particulier, a et b sont premiers entre

eux si et seulement si aucun élément de \mathcal{P} n'intervient à la fois dans la décomposition en facteurs irréductibles de a et dans celle de b.

Lemme d'Euclide. Soient $(a,b) \in A^2$ avec $b \neq 0$, et q,r tels que a = bq + r. Alors $a \wedge b = b \wedge r$.

Algorithme d'Euclide. Soit $(a_0, a_1) \in A^2$.

- Pour $i \ge 1$, tant que $a_i \ne 0$, on note a_{i+1} le reste de la division euclidienne de a_{i-1} par a_i . On définit ainsi une suite finie $(a_i)_{0 \le i \le N}$ d'éléments de A telle que $a_N = 0$ et, pour tout $i \in \{0, \ldots, N-1\}$, $a_0 \wedge a_1 = a_i \wedge a_{i+1}$. En particulier, pour i = N-1, on obtient $a_0 \wedge a_1 = a_{N-1}$.
- Supposons maintenant que $a_0 \wedge a_1 = a_{N-1} = 1$. D'après le théorème de Bézout, il existe $(s,t) \in A^2$ tel que $sa_0 + ta_1 = 1$. La suite de l'algorithme d'Euclide permet le calcul d'un tel couple (s,t): Notons q_i le quotient de la division euclidienne de a_{i-1} par a_i . Ainsi, $a_{i+1} = a_{i-1} q_i a_i$.

En particulier, avec i = N - 2, on obtient $1 = a_{N-3} - q_{N-2}a_{N-2}$.

Supposons que, pour un entier $i \in \{1, \ldots, N-3\}$, on dispose d'entiers s_i et t_i tels que $1 = s_i a_i + t_i a_{i+1}$. Alors $1 = s_i a_i + t_i (a_{i-1} - a_i q_i) = (s_i - t_i q_i) a_i + t_i a_{i-1}$, ce qui donne des entiers s_{i-1} et t_{i-1} tels que $1 = s_{i-1} a_{i-1} + t_{i-1} a_i$.

Par récurrence descendante, on peut donc calculer des entier s_0 et t_0 tels que $1 = s_0 a_0 + t_0 a_1$.

Corollaire. Supposons que \mathbb{L} est un sous-corps de \mathbb{K} et soit $(A, B) \in \mathbb{L}[X] \times (\mathbb{L}[X] \setminus \{0\})$. Les PGCD et PPCM de A et B sont les mêmes, que l'on regarde A et B comme des polynômes de $\mathbb{L}[X]$ ou de $\mathbb{K}[X]$.

Exercice. Soit $a, b, c \in A$ avec a et b non nuls.

Résoudre l'équation de Bézout (B): au + bv = c en l'inconnue $(u, v) \in A^2$.

Il faut savoir le démontrer.

2 Racines d'un polynôme

2.1 Identification entre polynômes formels et applications polynomiales

Notation. On fixe un corps \mathbb{K} quelconque.

Propriété. Soit $P \in \mathbb{K}[X]$ et a_1, \ldots, a_k k éléments de \mathbb{K} deux à deux distincts : a_1, \ldots, a_k sont toutes racines de P si et seulement si P est un multiple de $(X - a_1) \times \cdots \times (X - a_k)$. Il faut savoir le démontrer.

Corollaire. Un polynôme non nul admet au plus deg(P) racines.

Principe de rigidité des polynômes : si $P \in \mathbb{K}[X]$ possède une infinité de racines, alors P = 0.

Propriété. Soit $n \in \mathbb{N}$ et $P, Q \in \mathbb{K}_n[X]$.

Si $\{x \in \mathbb{K} \mid P(x) = Q(x)\}$ contient au moins n+1 scalaires, alors P=Q.

Théorème. On peut identifier l'ensemble $\mathbb{K}[X]$ des polynômes formels avec l'ensemble $\mathcal{P}_{\mathbb{K}}$ des applications polynomiales de \mathbb{K} dans \mathbb{K} si et seulement si \mathbb{K} est de cardinal infini.

Remarque. Si \mathbb{K} est fini de cardinal q, alors $\prod_{a \in \mathbb{F}} (X - a) = X^q - X$.

Il faut savoir le démontrer.

2.2 Polynôme d'interpolation de Lagrange

Notation. Dans tout ce paragraphe, on fixe un corps quelconque \mathbb{K} , $n \in \mathbb{N}$ et une famille $a_0, \ldots, a_n \in \mathbb{K}$ de n+1 scalaires deux à deux distincts.

Pour tout
$$i \in \{0, \dots, n\}$$
, posons $L_i = \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{X - a_j}{a_i - a_j}$.

Les L_i sont appelés les polynômes de Lagrange associés à (a_0, \ldots, a_n) .

Propriété. Pour tout $i, k \in \{0, ..., n\}, \widetilde{L_i}(a_k) = \delta_{i,k}$.

Propriété. Pour tout
$$P \in \mathbb{K}_n[X]$$
, $P = \sum_{i=0}^n \tilde{P}(a_i)L_i$.

Il faut savoir le démontrer.

Théorème. Soit $(b_0, b_1, \ldots, b_n) \in \mathbb{K}^{n+1}$ une famille quelconque de scalaires. Il existe un unique polynôme P_0 de degré inférieur ou égal à n tel que, pour tout $i \in \{0, \ldots, n\}$, $\widetilde{P_0}(a_i) = b_i$. P_0 est appelé le polynôme d'interpolation de Lagrange (associé aux deux familles (a_0, a_1, \ldots, a_n) et (b_0, b_1, \ldots, b_n)).

On dispose de la formule suivante :
$$P_0 = \sum_{i=0}^n \left(b_i \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{X - a_j}{a_i - a_j} \right)$$
. Enfin, l'ensemble des polynômes P

vérifiant, pour tout
$$i \in \{0, ..., n\}$$
, $\tilde{P}(a_i) = b_i$, est égal à $P_0 + (\prod_{i=0}^n (X - a_i)) \mathbb{K}[X]$.

2.3 Polynôme dérivé

Notation. Dans ce paragraphe, on suppose que K est un corps de caractéristique nulle.

Propriété. Pour tout $P \in \mathbb{K}[X]$ tel que $\deg(P) \geq 1$, $\deg(P') = \deg(P) - 1$.

Corollaire. Soit $P \in \mathbb{K}[X]$. P est un polynôme constant si et seulement si P' = 0.

Corollaire. Si $P \in \mathbb{K}[X]$, $\deg(P) \ge n \Longrightarrow \deg(P^{(n)}) = \deg(P) - n$ et $P^{(n)} = 0 \Longleftrightarrow \deg(P) < n$.

Formule de Taylor : Soit
$$P \in \mathbb{K}[X]$$
 et $a \in \mathbb{K}$. Alors $P = \sum_{n \in \mathbb{N}} \frac{(X - a)^n}{n! \cdot 1_{\mathbb{K}}} P^{(n)}(a)$.

Il faut savoir le démontrer.

Corollaire. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $k \in \mathbb{N}$. Alors

le reste de la division euclidienne de
$$P$$
 par $(X-a)^k$ est égal à $\sum_{h=0}^{k-1} \frac{(X-a)^h}{h!.1_{\mathbb{K}}} P^{(h)}(a)$.

2.4 Racines multiples

Notation. K désigne un corps quelconque.

Définition. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}$. a est une racine de P de multiplicité m si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que $P(X) = (X - a)^m Q(X)$ avec $\tilde{Q}(a) \neq 0$.

Remarque. a n'est pas racine de P si et seulement si a est racine de P de multiplicité nulle.

Définition. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}$.

a est racine de P de multiplicité au moins m si et seulement si $(X-a)^m \mid P$.

Ainsi, a est racine de P de multiplicité m si et seulement si elle est racine de P de multiplicité au moins m, mais n'est pas racine de P de multiplicité au moins m+1.

Définition. On dit que $a \in \mathbb{K}$ est une racine simple (resp : double, triple) de $P \in \mathbb{K}[X]$ si et seulement si a est une racine de P de multiplicité 1 (resp : 2, 3).

Définition. Soit $P \in \mathbb{K}[X] \setminus \{0\}$. Posons $\{a_1, \ldots, a_k\} = \{x \in \mathbb{K}/P(x) = 0\}$. Pour tout $h \in \mathbb{N}_k$, notons m_h la multiplicité de a_h pour le polynôme P. On dit alors que le nombre de racines de P,

comptées avec multiplicité, est égal à $\sum_{h=1}^{k} m_h$.

Et k est le nombre de racines de P comptées sans multiplicité.

Propriété. Soit $P \in \mathbb{K}[X]$, $a_1, \ldots, a_k \in \mathbb{K}$ et $m_1, \ldots, m_h \in \mathbb{N}$. Pour tout $h \in \{1, \ldots, k\}$, a_h est racine de P de multiplicité au moins m_h si et seulement si P est un multiple de $\prod_{k=1}^{k} (X - a_h)^{m_h}$.

Propriété. Soit $P \in \mathbb{K}[X]$ un polynôme non nul. Le nombre de racines de P, comptées avec multiplicité est inférieur ou égal au degré de P.

Hypothèse: Pour la suite de ce paragraphe, on suppose que $car(\mathbb{K}) = 0$.

Théorème. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}$. a est racine de P de multiplicité au moins m si et seulement si $\forall i \in \{0, ..., m-1\}, P^{(i)}(a) = 0.$ Il faut savoir le démontrer.

Corollaire. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}$. a est racine de P de multiplicité m si et seulement si $\forall i \in \{0, \dots, m-1\}, \ P^{(i)}(a) = 0 \text{ et } P^{(m)}(a) \neq 0.$

Corollaire. Si $a \in \mathbb{K}$ est racine de $P \in \mathbb{K}[X]$ de multiplicité $m \in \mathbb{N}^*$, alors a est racine de P' de multiplicité m-1.

2.5Polynômes scindés

Notation. K désigne un corps quelconque.

Définition. $P \in \mathbb{K}[X] \setminus \{0\}$ est scindé dans $\mathbb{K}[X]$ si et seulement si sa décomposition en polynômes irréductibles dans $\mathbb{K}[X]$ ne fait intervenir que des polynômes de degré 1.

Propriété. Soit $P \in \mathbb{K}[X] \setminus \{0\}$. P est scindé dans $\mathbb{K}[X]$ si et seulement si le nombre de racines de P dans \mathbb{K} , comptées avec multiplicité, est égal au degré de P. Il faut savoir le démontrer.

Définition. Soit $P \in \mathbb{K}[X] \setminus \{0\}$. On dit que P est simplement scindé dans $\mathbb{K}[X]$ si et seulement si P est scindé dans \mathbb{K} et si toutes ses racines sont simples.

Relations de Viète entre coefficients et racines : Soit $P \in \mathbb{K}[X]$ un polynôme scindé dans $\mathbb{K}[X]$ de degré n, avec $n\geq 1$. Alors P peut s'écrire sous les deux formes suivantes : $-P(X)=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0, \text{ avec } a_0,\ldots,a_n\in\mathbb{K} \text{ et } a_n\neq 0\,;$

- $P(X) = a_n(X \beta_1) \times \cdots \times (X \beta_n)$, où β_1, \ldots, β_n est la liste des racines de P, comptées avec

multiplicité. Alors, pour tout
$$p \in \{1, \dots, n\}$$
,
$$\sigma_p = (-1)^p \frac{a_{n-p}}{a_n}, \text{ où } \sigma_p = \sum_{1 \le i_1 < \dots < i_p \le n} \beta_{i_1} \times \dots \times \beta_{i_p}.$$

Les σ_p s'appellent les fonctions symétriques élémentaires des racines. En particulier,

- Pour p = 1, $\sum_{i=1}^{n} \beta_i = -\frac{a_{n-1}}{a_n}$. Il s'agit de la somme des racines de P, comptées avec multiplicités.
- Pour p = n, $\prod_{i=1}^{n} \beta_i = (-1)^n \frac{a_0}{a_n}$. Il s'agit du produit des racines de P, comptées avec multiplicités.

La suite de ce paragraphe est hors programme.

Définition. Soit $n \in \mathbb{N}^*$ et $A \in \mathbb{K}[X_1, \dots, X_n]$ un polynôme à n indéterminées. On dit que A est symétrique si et seulement si, pour tout $\sigma \in \mathcal{S}_n$, $A(X_{\sigma(1)}, \dots, X_{\sigma(n)}) = A(X_1, \dots, X_n)$.

Exemples. Les polynômes de Newton : $X_1^p + \cdots + X_n^p$, où $n, p \in \mathbb{N}^*$ sont symétriques.

Les polynômes symétriques élémentaires : pour tout $p \in \{1, \dots, n\},$

$$\Sigma_p(X_1,\ldots,X_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_p \leq n} X_{i_1} \times \cdots \times X_{i_p} \text{ est bien un polynôme symétrique.}$$

Propriété. (Admise) Soit $n \in \mathbb{N}^*$. On suppose que A est un polynôme symétrique de $\mathbb{L}[X_1, \ldots, X_n]$ (où \mathbb{L} est un corps). Alors il existe $B \in \mathbb{L}[X_1, \ldots, X_n]$ tel que $A = B(\Sigma_1, \ldots, \Sigma_n)$.

Corollaire. Avec ces notations, si \mathbb{K} est un sur-corps de \mathbb{L} et si $P \in \mathbb{L}[X]$ est scindé dans $\mathbb{K}[X]$, alors en notant β_1, \ldots, β_n les racines de P comptées avec multiplicité, $A(\beta_1, \ldots, \beta_n) \in \mathbb{L}$.

Exemple. Soit $P \in \mathbb{Q}[X]$ un polynôme dont les racines complexes comptées avec multiplicité sont notées β_1, \ldots, β_n . Alors pour tout $p \in \mathbb{N}^*$, $\beta_1^p + \cdots + \beta_n^p \in \mathbb{Q}$.

3 Polynômes de $\mathbb{R}[X]$ et de $\mathbb{C}[X]$

Définition. Si
$$P = \sum_{k \in \mathbb{N}} a_k X^k \in \mathbb{C}[X]$$
, on note $\overline{P} = \sum_{k \in \mathbb{N}} \overline{a_k} X^k$.

Propriété. L'application $P \longmapsto \mathbb{C}[X] \longrightarrow \mathbb{C}[X]$ est un isomorphisme d'anneaux.

Propriété. Soit $P \in \mathbb{C}[X]$, $\alpha \in \mathbb{C}$ et $m \in \mathbb{N}$. α est racine de P de multiplicité m si et seulement si $\overline{\alpha}$ est racine de \overline{P} de multiplicité m.

Il faut savoir le démontrer.

Corollaire. Si $P \in \mathbb{R}[X]$ et si α est racine de P (resp : racine de multiplicité m), alors $\overline{\alpha}$ est aussi une racine de P (resp : racine de multiplicité m).

Théorème de d'Alembert : Tout polynôme à coefficients complexes de degré supérieur ou égal à 1 possède au moins une racine complexe.

Corollaire. Les polynômes irréductibles de $\mathbb{C}[X]$ sont exactement les polynômes de degré 1.

Corollaire. Dans $\mathbb{C}[X]$, deux polynômes sont premiers entre eux si et seulement si ils n'ont aucune racine complexe commune.

Corollaire. Dans $\mathbb{C}[X]$, tout polynôme non nul est scindé.

Dans $\mathbb{C}[X]$, le nombre de racines, comptées avec multiplicité, de tout polynôme non nul est égal à son degré.

Propriété. Soit $P, Q \in \mathbb{C}[X] \setminus \{0\}$. Alors $P \mid Q$ si et seulement si toute racine de P est racine de Q avec une multiplicité pour Q supérieure ou égale à celle pour P.

Propriété. Les polynômes irréductibles de $\mathbb{R}[X]$ sont exactement les polynômes de degré 1 et les polynômes de degré 2 à discriminant strictement négatif. Il faut savoir le démontrer.

Propriété. Soit $P \in \mathbb{R}[X] \setminus \{0\}$. P est scindé dans $\mathbb{R}[X]$ si et seulement si toutes ses racines sont réelles.