Illustrations sur les séries

Rappel: représentation graphique d'une suite

Pour afficher des représentation graphiques en Python, il faut effectuer l'importation :

```
import matplotlib.pyplot as plt.
```

Pour représenter les premières valeurs d'une suite $(u_n)_{n\in\mathbb{N}^*}$, on peut alors :

- 1 Créer le vecteur des abscisses : X = [1, ..., n]
- 2 Construire le vecteur des ordonnées : Y = $[u_1, \ldots, u_n]$
- 3 Relier les points avec plt.plot(X,Y) puis afficher la représentation avec plt.show().

Séries de Riemann

Exercice 1

Pour un réel a > 0, on considère la suite : $\forall n \ge 1, \ S_n = \sum_{k=1}^n \frac{1}{k^a}$.

1. Compléter la fonction riemann qui prend en entrée un réel a et un entier n et renvoie le vecteur Y = $[S_1, S_2, \ldots, S_n]$.

2. (a) Représenter les 20 premiers termes de la suite $(S_n)_{n\in\mathbb{N}^*}$ pour a=4.

(b) Superposer à ce graphe, en pointillés rouges, la droite d'équation $y = \frac{\pi^4}{90}$.

Noter qu'il suffit pour cela de relier les 2 points de coordonnées $(1, \frac{\pi^4}{90})$ et $(20, \frac{\pi^4}{90})$.

Juste avant le plt.show(), on rajoute ainsi :

```
c = np.pi**4/90
plt.plot( [.....] , [.....] , 'r--')
```

En déduire, graphiquement, pour a = 4, $\lim_{n \to +\infty} S_n = \dots$

3. Afficher les 1000 premiers termes de la suite $(S_n)_{n\in\mathbb{N}^*}$ pour a=1/2.

En déduire, graphiquement, pour a = 1/2, $\lim_{n \to +\infty} S_n = \dots$

4. (a) Afficher les 1000 premiers termes $(S_n)_{n\in\mathbb{N}^*}$ pour a=1 (série harmonique). Superposer, en pointillés rouges, les 1000 premiers termes de la suite $(\ln(n))_{n\in\mathbb{N}^*}$

(b) A l'aide de Python, calculer une valeur approchée de $\gamma = \lim_{n \to +\infty} (S_n - \ln(n))$. On pourra par exemple calculer la valeur $S_{1000} - \ln(1000)$.

On trouve $\gamma \simeq$

Adapter alors la portion de code précédente pour représenter, en rouge, les 1000 premiers termes de la suite $(\gamma + \ln(n))_{n \in \mathbb{N}^*}$.

```
gamma = .....
plt.plot( ....., 'r--')
```

Constater graphiquement que $S_n \simeq \gamma + \ln(n)$.

Plus précisément, on a $S_n = \gamma + \ln(n) + o(1)$.

Séries exponentielles

ℰ Exercice 2

Pour un réel x, on considère la suite $\forall n \ge 0$, $S_n = \sum_{k=0}^n \frac{x^k}{k!}$.

1. Compléter la fonction expo qui prend en entrée un réel x et un entier n et renvoie le vecteur $Y = [S_0, S_1, \dots, S_n]$. (On n'utilisera pas la fonction factorielle...)

2. Afficher les 51 premiers termes de la suite $(S_n)_{n\geqslant 0}$ pour x=5.

Superposer, en pointillés rouges, la droite d'équation $y = e^5$.

Constater la convergence $\lim_{n \to +\infty} S_n = e^5$.

3. Reprendre en variant les valeurs de x:10, -20, etc...