NMAG436 - HW3 Jan Oupický

1

By calculating $\frac{\partial f_1}{\partial x}(x,y) = 3x^2 + 1 = x^2 + 1$, $\frac{\partial f_1}{\partial y}(x,y) = 2y = 0$ we see that f_1 is singular at (1,1) because $\frac{\partial f_1}{\partial x}(1,1) = 1 + 1 = 0$, $\frac{\partial f_1}{\partial y}(1,1) = 0$.

To be able to use lemma 5.11 we need to express $L_1 = \mathbb{F}_2(\alpha, \beta)$ using a polynomial f' that is singular at (0,0). We define $f' := \tau_{(1,1)}^*(f) = y^2 + x^3 + x^2$. Now we can say that L_1 is AFF over \mathbb{F}_2 given by f'(u,t) = 0 where $(u,t) = \tau_{(1,1)}(\alpha,\beta) = (\alpha+1,\beta+1)$. Now we apply lemma 5.11 that tells us that $\frac{u}{t} = \frac{\alpha+1}{\beta+1} \notin f' \mathcal{O}_{(0,0)}$ and $\frac{t}{u} = \frac{\beta+1}{\alpha+1} \notin f' \mathcal{O}_{(0,0)}$. We know that $f' \mathcal{O}_{(0,0)} = f \mathcal{O}_{(1,1)}$. That means that $a := \frac{\alpha+1}{\beta+1}$ is the element we are looking for.

2

Since we are in $\mathbb{F}_2 \implies |V_{f_2}(\mathbb{F}_2)| \le 2^2$. So we can check all 4 possibilities for roots by substititing into $f_2(x,y)$ and we get that truly $V_{f_2}(\mathbb{F}_2) = \{(1,0),(1,1)\}$

- (a) We calculate $\frac{\partial f_2}{\partial x}(x,y) = 3x^2 = x^2$, $\frac{\partial f_2}{\partial y}(x,y) = 2y = 0$ and we see that $\frac{\partial f_2}{\partial x}(1,0) = 1$, $\frac{\partial f_2}{\partial x}(1,1) = 1$ so that means by definition that f_2 is smooth at $V_{f_2}(\mathbb{F}_2)$. Using theorem 5.8 (1) we get that there exists exactly one $P \in \mathbb{P}_{L_2/\mathbb{F}_2}$ s.t. $v_P(\alpha-1) > 0$, $v_P(\beta) > 0$. Now we can use proposition 5.13 (2) that tells us $P = P_{(1,0)}$. This gives us $P_{(1,0)} = P \in \mathbb{P}_{L_2/\mathbb{F}_2}$. Using the same reasoning $P_{(1,1)} \in \mathbb{P}_{L_2/\mathbb{F}_2}$.
- (b) By definition of $\mathcal{O}_{P_{(1,0)}}$ being a DVR, we know that there $\exists p \in P_{(1,0)} : (p) = P_{(1,0)}$. Let $P := P_{(1,0)}$. By definition of v_P we know that p is a generator of $P \iff v_P(a) = 1$ because $\forall a \in P = (p) : a = pb, b \in \mathcal{O}_P$. By following the proof of theorem 5.8 and using the knowledge that found P from 5.8 is $P_{(1,0)}$ we'll find the element $u : v_P(u) = 1$. As in previous homeworks we calculate $(a_1, a_2) = (1, 1)$ using partial derivatives. We choose $(b_1, b_2) = (1, 0)$, that gives us $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\gamma = (1, 0)$. We now have σ and we can calculate $(u, t) = \sigma(\alpha, \beta) \implies (u, t) = (\alpha + 1, \alpha + \beta + 1)$. We now have the generator we were looking for which is $\alpha + 1$.

3

- (a) $\alpha^{-5} \in P \iff v_P(\alpha^{-5}) \ge 1 \iff -5v_P(\alpha) \ge 1 \iff v_P(\alpha) < 0 \stackrel{5.23}{\Longrightarrow} \exists ! P \in \mathbb{P}_{L_1/\mathbb{F}_2} : v_P(\alpha) < 0$. So the size of the set is 1. Assumptions of 5.23 are clearly satisfied and equivalences hold thanks to definitions and valuation properties.
- (b) First we will show that there does not exist a place $P \in \mathbb{P}_{L_1/\mathbb{F}_2} : \alpha \in P \land degP = 1$. For contradiction assume there is such P. Using corollary 5.17 (we have shown in 2) that we can use this) we get that either $P = P_{(1,0)}$ or $P = P_{(1,1)}$ or $\alpha^{-1} \in P$.

If $\alpha \in P \implies v_P(\alpha) \ge 1$ and if $\alpha^{-1} \in P \implies v_P(\alpha^{-1}) \ge 1 \iff v_P(\alpha) \le -1$ which is clearly a contradiction.

So either $P = P_{(1,0)}$ or $P = P_{(1,1)}$. In exercise 2) we have shown that $P_{(1,0)}$ is generated by $\alpha + 1$ which means $P_{(1,0)} = \{(\alpha + 1)r(\alpha, \beta)|r \in R_{(1,0)}\}$. So if $\alpha \in P_{(1,0)} \implies \alpha + 1|\alpha$ which is also a contradiction.

Using the same procedure (using the same A and $\gamma=(1,1)$) as in exercise 2) we find out that $P_{(1,1)}$ is also generated by $\alpha+1$ ($P_{(1,1)}=\{(\alpha+1)r(\alpha,\beta)|r\in R_{(1,1)}\}$) and we find the same contradiction.

Therefore α is not in a place of degree one. Using 4.6 we get $|L: \mathbb{F}_2(\alpha)| = deg_y(f_2) = 2$ and now we can use proposition 5.21 which says that if there are distinct P_1, \ldots, P_n where $n \in \mathbb{N}$ s.t. $v_{P_i}(\alpha) \geq 1 \iff \alpha \in P_i, \forall i = 1, \ldots, n$ this must hold: $2 \geq \sum_{i=1}^n v_{P_i}(\alpha) deg P_i$. Since $v_{P_i}(\alpha) \geq 1$ and we have shown that $deg P_i > 1$ means there is at most one such P. Using observation after 5.17 and $\alpha \in L \setminus \tilde{K}$ we know such place exists. Therefore the size of the set is 1.

- (c) In 2) and previous (b) we have shown that $\alpha + 1 \in P_{(1,0)}$, $\alpha + 1 \in P_{(1,1)}$. These places are distinct by definition. Also since $|L: \mathbb{F}_2(\alpha)| = 2$ and $\mathbb{F}_2(\alpha) = \mathbb{F}_2(\alpha + 1)$ we get $|L: \mathbb{F}_2(\alpha + 1)| = 2$. Now we use 5.21 again and we get $2 \geq v_{P_{(1,0)}}(\alpha + 1)degP_{(1,0)} + v_{P_{(1,1)}}(\alpha + 1)degP_{(1,1)} + \dots$ We know that $v_{P_{(1,0)}}(\alpha + 1) = v_{P_{(1,1)}}(\alpha + 1) = 1$ and $degP_i \geq 1$ since they are non trivial. Therefore there cannot be more places containing $\alpha + 1 \implies$ the size of the set is 2.
- (d) Using c) we can see that $deg P_{(1,0)} = deg P_{(1,1)} = 1$. Since $|V_{f_2}(\mathbb{F}_2)| = 2$ there can't be another place P of deg 1 s.t. $P = P_{\gamma}$ for some $\gamma \in V_{f_2}(\mathbb{F}_2)$. The only other place of degree 1 left (according to 5.17) is P s.t. $\alpha^{-1} \in P \iff -v_P(\alpha) \geq 1 \iff v_P(\alpha) \leq -1$. Corollary 5.23 tells us there is exactly one such place. Therefore the size of the set is 3.