4 Odhady a transformácie

Príklad 4.1. Uvažujme model $y_i = \beta x_i + \varepsilon_i$, kde ε sú i.i.d. s $E(\varepsilon_i) = 0$ a $D(\varepsilon_i) = \sigma^2$. Uvažujme dva odhady: $\hat{\beta}^{(1)} = \bar{y}/\bar{x}$, $\hat{\beta}^{(2)} = (\sum_i x_i y_i)/(\sum_i x_i^2)$. a) Ukážte, že $\hat{\beta}^{(2)}$ je MNŠ odhad parametra β , b) ukážte, že oba odhady sú nevychýlené, c) vyjadrite variancie $\hat{\beta}^{(1)}$ a $\hat{\beta}^{(2)}$ a určte, ktorá je menšia.

Príklad 4.2. Ekonóm sa snaží vysvetliť výkyvy v počte nehôd v rôznych štátoch. Predpokladajme, že nehodovosť v každom štáte závisí od priemernej rýchlosti a od rozptýlenosti rýchlostí. Ekonóm teda špecifikoval model $y = \beta_0 + \beta_1 x_1 + \beta_2 (x_2 - x_1) + \varepsilon$, kde y je miera nehodovosti, x_1 je priemerná rýchlosť a x_2 je 85-ty percentil rýchlostí.

Ekonómov asistent však odhadol model $y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \varepsilon$ s výsledkami $y = konšt. -0, 24x_1 + 0, 2x_2 + \hat{\varepsilon}$. Použite výsledky druhej regresie na vypočítanie odhadov β_1 a β_2 .

Príklad 4.3. Uvažujme priamkový model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. Ako sa zmení odhad β , ak vykonáme transformáciu **a)** $\widetilde{\mathbf{Y}} = k\mathbf{Y} + c\mathbf{1}_n$ $(k, c \in \mathbb{R})$; **b)** $\widetilde{x}_i = cx_i$ pre každé i $(c \in \mathbb{R})$? **c)** Ukážte, že odhad β_1 sa nezmení, ak vykonáme transformáciu $\widetilde{x}_i = x_i - \overline{x}$ pre každé i.