[AULA 05] Avaliando o desempenho 1

Prof. João F. Mari joaof.mari@ufv.br

BIBLIOGRAFIA

- Definindo o desempenho
- [EX] Vazão e tempo de resposta
- Tempo de resposta
- [EX] Desempenho relativo
- Medindo o desempenho
- Desempenho da CPU e seus fatores
- [EX] Melhorando o desempenho
- Interface Hardware/Software
- [EX] Usando a equação do desempenho

DEFININDO O DESEMPENHO

Definindo o desempenho

- Executando o mesmo programa em dois desktops diferentes:
 - O mais rápido é o que termina a tarefa primeiro.
- CPD (central de processamento de dados) com vários servidores realizando tarefas submetidas por muitos usuários:
 - O mais rápido é aquele que completou a maior quantidade de tarefas durante um dia.

Definindo o desempenho

- Computador individual:
 - Reduzir o tempo de resposta;
 - Tempo de resposta (tempo de execução ou latência) :
 - O tempo entre o inicio e o término de uma tarefa.
- CPDs:
 - Reduzir a vazão;
 - Vazão (throughput):
 - Quantidade de trabalho feito em determinado tempo.

[EX] Vazão e tempo de resposta

- As seguintes mudanças e um sistema computacional aumentam a vazão, diminuem o tempo de resposta ou as duas coisas?
 - 1) Substituir o processador em com computador por uma versão mais rápida.
 - 2) Incluir processadores adicionais em um sistema que usa múltiplos processadores para tarefas distintas – por exemplo, busca na Web.

[EX] Vazão e tempo de resposta

RESPOSTA:

- Diminuir o tempo de resposta quase sempre aumenta a vazão.
 - Caso 1) Tanto o tempo de resposta como a vazão são melhorados
 - Caso 2) Como nenhuma tarefa é realizada primeiro, apenas a vazão é melhorada
 - Demanda por processamento maior que a vazão → enfileiramento.
 - Aumentar a vazão implicaria na redução do tempo de resposta pois reduziria o tempo de espera na fila.

Tempo de resposta

- Tempo de resposta:
 - Nossa principal preocupação!
- Para maximizar o desempenho devemos minimizar o tempo de execução de uma determinada tarefa:
 - Desempenho_x = 1 / TempoDeExecução_x
- Para dois computadores X e Y, se o desempenho de X é maior que o de Y, temos:
 - Desempenho_X > Desempenho_Y
 - 1 / TempoDeExecução_x > 1 / TempoDeExecução_y
 - TempoDeExecução_x < TempoDeExecução_y
- X é mais rápido de que Y, se o tempo de execução em Y é maior do que em X.

Tempo de resposta

- Relacionar o desempenho de dois computadores diferentes de maneira quantitativa
 - X é n vezes mais rápido do que Y:
 - $n = Desempenho_x / Desempenho_y$
- Se X é n vezes mais rápido que Y, então...
 - O tempo de execução em Y é n vezes maior do que em X:
 - n = TempoDeExecução_y / TempoDeExecução_x

[EX] Desempenho relativo

- Um computador A executa um programa em 10 segundos e o computador B executa o mesmo programa em 15 segundos. O quanto A é mais rápido do que B?
- Sabemos que A é n vezes mais rápido que B se
 - Desempenho_A / Desempenho_B = n
 - TempoDeExecução_B / TempoDeExecução_A = n
 - Fator de desempenho é:
 - 15 / 10 = 1,5
- A é 1,5 vezes mais rápido que B
 - Ou B é 1,5 vezes mais lento do que A
 - Desempenho_A / Desempenho_B = 1,5
 - Desempenho_A / 1,5 = Desempenho_B

Definindo o desempenho

- Desempenho e tempo de execução são recíprocos
 - Aumentar o desempenho → diminuir o tempo de execução.
 - Melhorar o desempenho \rightarrow aumentar o desempenho.
 - Melhorar o tempo de execução → diminuir o tempo de execução.
- Para evitar confusão com termos como 'aumentar' e 'diminui' utilizaremos a expressão:
 - "melhorar o desempenho" quando quisermos aumentar o desempenho.
 - "melhorar o tempo de resposta" quando quisermos diminuir o tempo de resposta.

MEDINDO O DESEMPENHO

Medindo o desempenho

- O tempo é a medida do desempenho dos computadores
 - O computador que realiza a mesma quantidade de trabalho em menos tempo é mais rápido.
- Tempo de execução do programa:
 - Medido em segundos por programa
 - Pode ser definido de diferentes maneiras:
- Tempo de relógio (tempo de resposta ou tempo decorrido):
 - Tempo total para executar uma tarefa
 - Incluindo acesso a disco, acesso a memória, atividades de E/S etc...

Medindo o desempenho

- Processadores trabalham em diversos programas simultaneamente...
 - Otimizar a vazão em vez de minimizar o tempo para cada programa.
- É necessário distinguir entre tempo decorrido e tempo que o processador trabalha para nós:
- Tempo de execução de CPU (tempo de CPU):
 - Tempo real que a CPU gasta computando uma tarefa especifica
 - Não inclui o tempo gasto esperando E/S ou executando outros programas
 - Tempo de CPU do usuário:
 - Tempo que a CPU gasta efetivamente com o programa
 - Tempo de CPU do sistema:
 - Tempo da CPU gasta no SO realizando tarefas a pedido do programa
- Desempenho do sistema → Tempo decorrido
- Desempenho da CPU → Tempo de CPU

Medindo o desempenho

- Medir a rapidez com que o hardware realiza funções básicas
- Clock
 - Relógio que trabalha em velocidade constante e determina quando os eventos ocorrem
 - Período de clock, ciclo de clock
 - Tempo de cada ciclo de clock (Ex: 0,25 ns, 250 ps)
 - Velocidade de clock (Ex: 4GHz)
 - Inverso do período de clock, frequência do processador.
 - Medido em Hz (hertz ciclos por segundo).

Desempenho da CPU e seus fatores

- Desempenho da CPU:
 - Medida de desempenho final → Tempo de execução da CPU
 - Medidas mais básicas (ciclos de clock e tempo de ciclo de clock)

```
Tempo de execução da CPU para um programa = Ciclos de clock da CPU para um programa × Tempo de ciclo de clock
```

Como velocidade do clock e tempo do ciclo de clock são inversos:

```
Tempo de execução da CPU para um programa

CPU para um programa

Velocidade de clock
```

- Melhorar o desempenho → reduzir a duração do ciclo de clock ou o número de ciclos necessários para um programa
- Muitas técnicas que diminuem o número de ciclos de clock aumentam o tempo do ciclo.

[EX] Melhorando o desempenho

- Um computador A possui clock de 4GHz e executa um determinado programa em 10 segundos.
- Queremos construir um computador B que execute esse mesmo programa em 6 segundos.
 - Entretanto, aumentar a velocidade do clock afeta o projeto da CPU e faz com que o computador B exija 1,2 vezes mais ciclos de clock do que A.
- Que velocidade de clock o projetista deve buscar?

- Número de ciclos de clock necessários para o programa em A:
 - Tempo de CPU_A = Ciclos de clock da CPU_A / Velocidade de clock_A
 - 10 segundos = Ciclos de clock da CPU_{Δ} / (4 x 10⁹ ciclos/seg.) (4GHz).
 - Ciclos de clock da $CPU_A = 10 \text{ seg.} \times (4 \times 10^9 \text{ ciclos/seg.})$
 - Ciclos de clock da $CPU_{\Delta} = 40 \times 10^9$ ciclos
- O tempo de CPU para B
 - Tempo de $CPU_B = 1.2 \times ciclos$ de clock de CPU_A / velocidade de clock_B
 - 6 segundos = 1,2 x 40 x 10⁹ ciclos / Velocidade de clock_B
 - Velocidade de clock_B = $1.2 \times 40 \times 10^9$ ciclos / 6 seg =
 - $= 8 \times 10^9 \text{ ciclos / seg} = 8 \text{GHz}$
- A velocidade de clock de B deve ser o dobro da velocidade de clock de A

Interface Hardware/Software

 Equações anteriores não consideram o número de instruções necessárias para o programa

```
TempoDeExecução
= númeroDeInstruçõesExecutadas
× tempoMédioDeCadaInstrução
```

Número de ciclos de clock necessários para um programa:

```
Ciclos de clock da CPU = Instruções para um programa × Média dos ciclos de clock por instrução
```

- Ciclos de clock por instrução (CPI) → Número médio de ciclos de clock que cada instrução leva para ser executada
 - Diferentes instruções → diferentes quantidades de tempo
 - CPI = média de todas as instruções executadas no programa
 - Comparar duas implementações diferentes do mesmo conjunto de instruções

- Duas implementações do mesmo conjunto de instruções.
 - O computador A tem um tempo de ciclo de clock de 250 ps e um CPI de 2,0 para um determinado programa.
 - O computador B tem um ciclo de clock de 500 ps e um CPI de 1,2 para o mesmo programa.
- Qual computador é mais rápido para esse programa e o quanto é mais rápido?

- Cada computador executa o mesmo número de instruções (I).
- Encontrar o número de ciclos de clock do processador para cada computador.
 - Ciclos de *clock* da $CPU_{\Delta} = I \times 2,0$
 - Ciclos de *clock* da $CPU_{R} = I \times 1,2$
- Tempo da CPU para cada computador
 - Tempo da CPU_A = Ciclos de *clock* da CPU_A x Tempo dos ciclos de clock_A = I x 2,0 x 250 ps = 500 x I ps
 - Tempo da $CPU_{B} = I \times 1.2 \times 500 ps = 600 \times I ps$
- Computador A é mais rápido que B. Quanto?

$$\frac{DesempenhoDaCPU_A}{DesempenhoDaCPU_B} = \frac{TempoDeExecução_B}{TempoDeExecução_A} = \frac{600 \times Ips}{500 \times Ips} = 1,2$$

Computador A é 1,2 vezes mais rápido que o computador B.

- Equação do desempenho em termos de:
 - Contagem de instruções,
 - CPI e
 - Tempo de ciclo de *clock*.

TempoDeCPU

 $= ContagemDeInstruções \times CPI \times TempoDeCicloDeClock$

- ou

$$TempoDeCPU = \frac{ContagemDeInstruções \times CPI}{Velocidade\ de\ clock}$$

Comparar duas implementações diferentes ou avaliar um projeto alternativo.

Desempenho da CPU e seus fatores

- Como determinar o valor desses fatores na equação do desempenho?
 - Tempo da CPU executando o programa.
 - Tempo de ciclo de clock publicado com o equipamento.
 - Contagem de instruções (C) e o CPI mais difíceis de obter.
- Contagem de instruções (C):
 - Ferramentas de software ou simuladores da arquitetura
- CPI Varia de acordo com o programa e implementação do conjunto de instruções
 - Pode ser obtida por simulação da implementação ou contadores de hardware
- Ciclos de clock da CPU:

$$CiclosDeClockDaCPU = \sum_{i=1}^{n} (CPI_i \times C_i)$$

- C_i: contagem do número de instruções da classe i executadas
- CPI_i: a média dos ciclos por instrução da classe i
- n é o número de classes de instrução.
- CPI geral de um programa dependerá do número de ciclos para cada tipo de instrução e da frequência de cada tipo de instrução.

Tempo de execução

 Como os fatores são combinados para fornecer o tempo de execução por segundo

$$Tempo = \frac{Segundos}{Programa} = \frac{Instruções}{Programa} \times \frac{Ciclos \ de \ clock}{Instrução} \times \frac{Segundos}{CiclosDeClock}$$

Componentes do desempenho	Unidade de medida
Tempo de execução da CPU para um programa	Segundos por programa
Contagem de instruções	Instruções executadas para o programa
Ciclos de clock por instrução	Média de ciclos de clock por instrução
Tempo de ciclo de <i>clock</i>	Segundos por ciclo de clock

- Única medida completa e confiável de desempenho do computador é o tempo.
 - Exemplo: Mudar o conjunto de instruções para baixar a contagem de instruções pode aumentar o tempo do ciclo de clock
 - CPI depende da instrução. O menor número de instruções executadas pode não ser mais rápido.

Apêndice – Frações de segundo

Unidade	Em segundos
Segundo (s)	1 s
Milisegundos (ms)	$0,001 \text{ s } (1 \times 10^{-3} \text{ s})$
Microsegundos (μs)	0,000001 s (1 × 10 ⁻⁶ s)
Nanosegundos (ns)	0,00000001 s (1 × 10 ⁻⁹ s)
Picosegundos (ps)	0,0000000001 s (1 × 10 ⁻¹² s)

BIBLIOGRAFIA

- PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A Interface Hardware/Software. 3a. Ed. Elsevier, 2005.
 - Capítulo 2.

- Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html

[FIM]

- FIM:
 - [AULA 05] Avaliando o desempenho 1
- Próxima aula:
 - [AULA 06] Avaliando o desempenho 2