M2 ISN – Chaînes de Markov et modélisation

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

TP3

1 Échantillonage de Gibbs pour le modèle Ising

Simuler le modèle d'Ising (cf. TP précédent) en utilisant l'échantillonnage de Gibbs. Pour cela, on séparera une configuration aléatoire $\sigma = (\sigma_x)_{x \in \Lambda_N}$ en deux variables aléatoires $\sigma_N = (\sigma_x)_{x \in N}$ et $\sigma_B = (\sigma_x)_{x \in B}$ avec

$$N = \{(i, j) \in \Lambda_N : i = j \mod 2\}$$

$$B = \{(i, j) \in \Lambda_N : i = j + 1 \mod 2\}.$$

2 Problème du voyageur de commerce

On considère n villes v_1, \ldots, v_n repérées sur une carte. Le problème du voyageur de commerce est de :

- partir d'une ville, mettons v_1 , et d'y revenir à la fin de son voyage,
- de passer par toutes les villes,
- de minimiser le trajet parcouru.

Question 1. Ecrire un script qui, à une collection de villes $v_1, \ldots, v_n \in \mathbb{R}^2$ donnée, renvoie le résultat d'un algorithme de recuit simulé après Nstep étapes, pour un schéma de refroidissement $\beta_n = c \log n$ avec c > 0 au choix de l'utilisateur.

Question 2. Tester l'algorithme sur une configuration de villes tirées aléatoirement, puis disposées en cercle, et enfin sur une grille.

Question 3. Montrer la décroissance de l'énergie des configurations successives de l'algorithme sur un graphique.