Lecture 38 (Phasors & Alternating Current)

Physics 161-01 Spring 2012
Douglas Fields

- Until now, we have dealt with circuits where the source of EMF (e.g., the battery) has a constant value.
- This is known as a direct current (DC) source.
- For many reasons however, much of the world's power is not delivered as a unidirectional EMF.

When switch S is in this position, the emf charges the capacitor.

When switch S is moved to this position, the capacitor discharges through the resistor and inductor.

Alternating EMF

- So, now we want to examine how the circuit elements we have behave when they are driven with an alternating current (AC) source.
- An AC source supplies an EMF which follows a cosine dependency:

$$v(t) = V_{max} \cos(\omega t)$$

- Is this a random choice?
- No, remember what you get naturally from a generator?

Phasors

Phasors

 If we have some quantity that depends sinusoidally on time,

$$i(t) = I_{max} \cos(\omega t)$$
$$= I \cos(\omega t)$$

we can represent that as a vector of length I, which rotates around the origin with an angular velocity ω .

 i(t) is now represented by the projection of the phasor onto the horizontal axis.

Phasors

- Here is a nice representation of a moving phasor.
- You can find this at: <u>http://en.wikipedia.org/wik</u>
- You may be wondering: "How is this useful?"
- Hopefully, by the end of today's lecture, you will see.

AC Circuits With a Resistor

- Now, let's re-look at all of our circuit elements, now with an AC source.
- If we put a resistor in series with an AC source, the current through the resistor will just be given by Ohm's Law:

$$v_R = iR \Longrightarrow$$

$$v_R = IR\cos(\omega t)$$

(a) Circuit with ac source and resistor

(b) Graphs of current and voltage versus time

AC Circuits With a Resistor

 So we can represent the voltage across the resistor as a phasor, which is in phase with current phasor.

$$v_R = IR\cos(\omega t)$$

(a) Circuit with ac source and resistor

(b) Graphs of current and voltage versus time

AC Circuits With a Resistor

 Notice that the magnitude of the phasor gives its maximum value, and we can write that maximum value as:

$$v_R = IR\cos(\omega t) = V_R\cos(\omega t)$$
 $V_R = IR$

(b) Graphs of current and voltage versus time

CPS 38-1

A resistor is connected across an ac source as shown. For this circuit, what is the relationship between the instantaneous current i through the resistor and the instantaneous voltage v_{ab} across the resistor?

(a) Circuit with ac source and resistor

- A. *i* is maximum at the same time as v_{ab} .
- B. *i* is maximum one-quarter cycle before v_{ab} .
- C. *i* is maximum one-quarter cycle after v_{ab} .
- D. not enough information given to decide

CPS 38-1

A resistor is connected across an ac source as shown. For this circuit, what is the relationship between the instantaneous current i through the resistor and the instantaneous voltage v_{ab} across the resistor?

(a) Circuit with ac source and resistor

/

- A. i is maximum at the same time as v_{ab} .
- B. *i* is maximum one-quarter cycle before v_{ab} .
- C. *i* is maximum one-quarter cycle after v_{ab} .
- D. not enough information given to decide

AC Circuits With an Inductor

 Now, let's look at what an inductor looks like when connected to an AC source.

$$v_{L} = L\frac{di}{dt} = L\frac{d}{dt}(I\cos(\omega t)) = -I\omega L\sin(\omega t)$$
$$= I\omega L\cos(\omega t + 90^{\circ})$$

 So, the voltage across the inductor is out of phase with the current source... (a) Circuit with ac source and inductor

© 2012 Pearson Education, Inc.

(b) Graphs of current and voltage versus time

Voltage curve *leads* current curve by a quarter-cycle (corresponding to $\phi = \pi/2$ rad = 90°).

AC Circuits With an Inductor

 So we can represent the voltage across the inductor also as a phasor, which leads the current phasor by 90 degrees.

$$v_L = I\omega L\cos(\omega t + 90^\circ)$$

(b) Graphs of current and voltage versus time

Voltage curve *leads* current curve by a quarter-cycle (corresponding to $\phi = \pi/2$ rad = 90°).

Voltage phasor *leads* current phasor by $\phi = \pi/2$ rad = 90°.

AC Circuits With an Inductor

 Notice that the magnitude of the phasor gives its maximum value, and we can write that maximum value as:

$$\begin{aligned} v_L &= I\omega L \cos\left(\omega t + 90^{\circ}\right) = V_L \cos\left(\omega t + 90^{\circ}\right) \\ V_L &= IX_L, \\ X_L &= \omega L \end{aligned}$$

 X_L is called the inductive reactance. (b) Graphs of current and voltage versus time

Voltage curve *leads* current curve by a quarter-cycle (corresponding to $\phi = \pi/2$ rad = 90°).

Voltage phasor *leads* current phasor by $\phi = \pi/2$ rad = 90°.

AC Circuits With a Capacitor

 Now, let's see what a capacitor looks like when connected to an AC source.

$$v_C = \frac{q}{C}$$

$$q = \int_0^q i dt = \int_0^q I \cos(\omega t) dt = \frac{I}{\omega} \sin(\omega t) \Rightarrow$$

$$v_C = \frac{I}{\omega C} \sin(\omega t) = \frac{I}{\omega C} \cos(\omega t - 90^\circ)$$

 So, the voltage across the capacitor is out of phase with the current source... (a) Circuit with ac source and capacitor

© 2 (b) Graphs of current and voltage versus time

Voltage curve *lags* current curve by a quartercycle (corresponding to $\phi = -\pi/2$ rad = -90°).

AC Circuits With a Capacitor

 So we can represent the voltage across the inductor also as a phasor, which *lags* the current phasor by 90 degrees.

$$v_C = \frac{I}{\omega C} \cos(\omega t - 90^\circ)$$

(b) Graphs of current and voltage versus time

Voltage curve *lags* current curve by a quartercycle (corresponding to $\phi = -\pi/2$ rad = -90°).

(c) Phasor diagram

AC Circuits With a Capacitor

 Notice that the magnitude of the phasor gives its maximum value, and we can write that maximum value as:

$$\begin{aligned} v_C &= \frac{I}{\omega C} \cos\left(\omega t - 90^\circ\right) = V_C \cos\left(\omega t - 90^\circ\right) \\ V_C &= IX_C, \\ X_C &= \frac{1}{\omega C} \end{aligned}$$

 X_C is called the capacitive reactance. (b) Graphs of current and voltage versus time

Voltage curve *lags* current curve by a quartercycle (corresponding to $\phi = -\pi/2$ rad = -90°).

(c) Phasor diagram

Usefulness of Reactances

Table 31.1 Circuit Elements with Alternating Current

Circuit Element	Amplitude Relationship	Circuit Quantity	Phase of v
Resistor	$V_R = IR$	R	In phase with <i>i</i>
Inductor	$V_L = IX_L$	$X_L = \omega L$	Leads i by 90°
Capacitor	$V_C = IX_C$	$\bar{X_C} = 1/\omega C$	Lags i by 90°
© 2012 Pearson Education, Inc.			

- Notice that the reactances are dependent on the angular frequency, (the resistance is not).
- As ω→0 (DC), there is no inductive effect X_L goes to zero and current is passed through the inductor, while no current is passed through the capacitor X_C diverges.
- As ω gets large, X_C goes to zero and current is passed through the capacitor, while no current is passed through the inductor – X_L gets large because of the quickly changing current.

Usefulness of Reactances

- We can use these properties to create frequency filters.
- Inductors are used as "low-pass" filters.
- Capacitors are used as "high-pass" filters.
- In combination, you can create a "cross-over" circuit.

(a) A crossover network in a loudspeaker system

(b) Graphs of rms current as functions of frequency for a given amplifier voltage

