TTK4115

Lecture 5

Canonical forms, realizations, observability

Morten O. Alver (based on slides by Morten D. Pedersen)

This lecture

1. Canonical Forms

2. Realizations

3. Observability

Duality

Topic

1. Canonical Forms

2. Realizations

3. Observability

Duality

Canonical Forms

Canonical Forms

- Using the change of basis $\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}$ we can change a system into infinitely many similar forms.
- Some of these forms are more useful than others.
- Some of these are called canonical.

Equivalence/Similarity transform

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

$$\dot{\bar{x}} = \bar{T}^{-1}A\bar{T}\bar{x} + \bar{T}^{-1}Bu$$
 $y = C\bar{T}\bar{x} + Du$

Canonical Forms

Canonical Forms¹

- Jordan Form
- Modal Form
- Companion form
- Controllable form
- Observable form

5/38

¹This list is not exhaustive.

Canonical Forms

Jordan Form

The Jordan form is the most convenient to use when solving the system. We have seen that this form is very practical for finding solutions to LTI systems:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}_0 + \mathbf{C}\int_0^t e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au + \mathbf{D}\mathbf{u}(t)$$

Diagonal matrix

$$\mathbf{A} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \quad \Rightarrow \mathbf{e}^{\mathbf{A}t} = \begin{bmatrix} \mathbf{e}^{t\lambda_1} & 0 & 0 \\ 0 & \mathbf{e}^{t\lambda_2} & 0 \\ 0 & 0 & \mathbf{e}^{t\lambda_3} \end{bmatrix}$$

Jordan Block

$$\mathbf{A} = \mathbf{J} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix} \Rightarrow e^{\mathbf{A}t} = \begin{bmatrix} e^{t\lambda} & e^{t\lambda}t & \frac{1}{2!}e^{t\lambda}t^2 & \frac{1}{3!}e^{t\lambda}t^3 \\ 0 & e^{t\lambda} & e^{t\lambda}t & \frac{2!}{2!}e^{t\lambda}t^2 \\ 0 & 0 & e^{t\lambda} & e^{t\lambda}t \\ 0 & 0 & 0 & e^{t\lambda} \end{bmatrix}$$

Topic

1 Canonical Forms

2. Realizations

Observability

Duality

LTI systems overview

Realizations

The final piece in the diagram

Key points

Realization

- We have seen that a transformation $\bar{\mathbf{x}} = \mathbf{T}\mathbf{x}$ can change the state equation..
- but the transfer function remains the same.
- When we realize, we start with a transfer function $\mathbf{H}(s)$..
- and generate a state-space {A, B, C, D}
- that yields $\mathbf{H}(s) = \mathbf{C}(s\mathbb{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Note

There are infinitely many state-spaces we could realize to!

Note

We usually go for a canonical form.

Conditions

Proper

A transfer function must be proper to have a realization:

$$h(s) = \frac{n(s)}{d(s)} \quad \Rightarrow \deg d(s) \ge n(s)$$

$$|h_{\mathcal{P}}(j\infty)|<\infty,\quad |h_{\mathcal{SP}}(j\infty)|=0$$

Rational

A transfer function must be rational to have a realization.

- The degrees of the numerator and denominator must be finite.
- All lumped LTI systems are rational.

Proper transfer functions

We must have a proper transfer function for realization.

Example

$$h(s) = \frac{2 + 2s + s^2}{1 + s}$$

Question:

Is this a proper transfer function?

Signals are amplified

at infinite frequencies.. no device can do this

Proper transfer functions

Proper transfer functions behave nicely at high frequencies

Example

$$h(s) = \frac{4(2+2s+s^2)}{3+4s+s^2}$$

Question:

Is this a proper transfer function?

Answer

Yes, but not strictly proper. The transfer function is finite at infinite frequencies:

$$\lim_{\omega\to\infty}h(j\omega)=h_\infty\neq 0$$

Quiz

Are these transfer functions realizable?

- $g_1(s) = \frac{1}{s}$ (yes, strictly proper)
 - $g_2(s) = s$ (no, not proper)
 - $g_3(s) = \frac{1}{s+1}$ (yes, strictly proper)
 - $g_4(s) = \frac{1}{s-1}$ (yes, strictly proper)
 - $g_5(s) = \frac{s}{s+1}$ (yes, proper)
 - $g_6(s) = e^{-\tau s}$, $\tau > 0$ (no, not rational)
 - $g_7(s) = \frac{1 \frac{\tau}{2}s}{1 + \frac{\tau}{2}s}, \quad \tau > 0 \text{ (yes, proper)}$

Improper/Proper/Strictly proper

Improper

$$H_{i.p.}(s) = k_P + k_D s + \frac{k_I}{s} = \frac{k_D s^2 + k_P s + k_I}{s}$$
 PID regulator

Proper

$$H_p(s) = \frac{s}{T_{s+1}}$$
 Band-limited differentiator

Strictly proper

$$H_{s.p.}(s) = \frac{1}{s^2m + ds + k}$$
 Mass-spring-damper

Strictly proper transfer functions

Decomposition

We decompose the proper transfer function as:

$$\mathbf{G}(s) = egin{array}{c} \mathsf{strictly proper} & \mathsf{constant} \ \mathbf{G}(s) + egin{array}{c} \mathbf{G}_{\infty} \end{array}$$

Relation between system matrices and decomposed transfer function

$$\begin{split} \hat{\mathbf{y}}(s) &= & \mathbf{G}_{sp}(s)\hat{\mathbf{u}}(s) + \mathbf{G}_{\infty}\hat{\mathbf{u}}(s) \\ \hat{\mathbf{y}}(s) &= & & \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B}\hat{\mathbf{u}}(s) + \mathbf{D}\hat{\mathbf{u}}(s) \end{split}$$

Canonical forms

Matching

The crucial next step is to select a state-space model with unknown coefficients:

$$\Sigma_r:~\{\textbf{A},\textbf{B},\textbf{C},\textbf{D}\}$$

that can represent our transfer-function.

Matching

We shall use the **Controllable Canonical Form** today. This is one of many choices.

Controllable form

Let's pick a nice A for the realization

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(sI - A)^{-1}$$

$$(\mathbf{s}\mathbb{I} - \mathbf{A})^{-1} = \frac{1}{\mathbf{s}^4 + \mathbf{s}^3 \alpha_1 + \mathbf{s}^2 \alpha_2 + \mathbf{s} \alpha_3 + \alpha_4} \begin{bmatrix} s^3 & -s^2 \alpha_2 - \mathbf{s} \alpha_3 - \alpha_4 & -s^2 \alpha_3 - \mathbf{s} \alpha_4 & -s^2 \alpha_4 \\ s^2 & s^3 + s^2 \alpha_1 & -s \alpha_3 - \alpha_4 & -s \alpha_4 \\ s & s^2 + \mathbf{s} \alpha_1 & s^3 + s^2 \alpha_1 + \mathbf{s} \alpha_2 & -\alpha_4 \\ 1 & s + \alpha_1 & s^2 + \mathbf{s} \alpha_1 + \alpha_2 & s^3 + s^2 \alpha_1 + \mathbf{s} \alpha_2 \end{bmatrix}$$

Controllable form

Let's pick a nice B for the realization too

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \left[\begin{array}{cccc} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right]$$

$$(sI - A)^{-1}B$$

$$(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix} \frac{1}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

Controllable form

What about C?

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} n_1 & n_2 & n_3 & n_4 \end{bmatrix}$$

$$C(sI - A)^{-1}B$$

$$\mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = [n_1 \quad n_2 \quad n_3 \quad n_4] \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix} \frac{1}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

$$C(sI - A)^{-1}B$$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s^3 n_1 + s^2 n_2 + s n_3 + n_4}{s^4 + s^3 \alpha_1 + s^2 \alpha_2 + s \alpha_3 + \alpha_4}$$

$$\frac{x(s)}{f(s)} = \frac{y(s)}{u(s)} = \frac{1}{ms^2 + sd + k} = \frac{1/m}{s^2 + s(d/m) + (k/m)}$$

Controllable canonical form, n = 2

$$\mathbf{A} = \left[\begin{array}{cc} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} n_1 & n_2 \end{array} \right]$$

 $C(sI - A)^{-1}B$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s \underbrace{n_1}^{0} + \underbrace{n_2}^{1/m}}{s^2 + s \underbrace{\alpha_1}_{d/m} + \underbrace{\alpha_2}_{k/m}}$$

Realization

The mass spring damper back on state-space form:

$$\mathbf{A} = \left[\begin{array}{cc} -d/m & -k/m \\ 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} 0 & 1/m \end{array} \right]$$

Controllable form

Controllable canonical form: *p* inputs, *q* outputs

$$\mathbf{A} = \left[\begin{array}{cccc} -\alpha_1 \mathbb{I}_{\rho} & -\alpha_2 \mathbb{I}_{\rho} & -\alpha_3 \mathbb{I}_{\rho} & -\alpha_4 \mathbb{I}_{\rho} \\ \mathbb{I}_{\rho} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{I}_{\rho} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbb{I}_{\rho} & \mathbf{0} \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} \mathbb{I}_{\rho} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} \mathbf{N}_1 & \mathbf{N}_2 & \mathbf{N}_3 & \mathbf{N}_4 \end{array} \right]$$

$$\mathbf{C}(s\mathbb{I}-\mathbf{A})^{-1}\mathbf{B}$$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s^3\mathbf{N}_1 + s^2\mathbf{N}_2 + s\mathbf{N}_3 + \mathbf{N}_4}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

d(s)

We have to find the common denominator of $\mathbf{G}_{SD}(s)$: $d(s) = s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}(s) = \begin{bmatrix} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{bmatrix}$$

Find **G**_∞

$$\mathbf{D} = \mathbf{G}_{\infty} = \lim_{s \to \infty} \begin{bmatrix} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Find
$$\mathbf{G}_{sp} = \mathbf{G}(s) - \mathbf{G}_{\infty}$$

$$\mathbf{G}_{SP} = \left[\begin{array}{cc} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{array} \right] - \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{cc} -\frac{12}{1+2s} & \frac{3}{2+s} \\ \frac{1}{2+5s+2s^2} & \frac{1+s}{(2+s)^2} \end{array} \right]$$

Find common denominator d(s)

$$\textbf{G}_{\textit{Sp}} = \frac{1}{s^3 + (9/2)s^2 + 6s + 2} \left[\begin{array}{cc} -6(2+s)^2 & 3(1+s/2)(1+2s) \\ 1+s/2 & (1/2+s)(1+s) \end{array} \right]$$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}_{sp} = \frac{1}{d(s)} \left(\begin{bmatrix} -24 - 24s & 3 + \frac{15s}{2} \\ 1 + \frac{s}{2} & \frac{1}{2} + \frac{3s}{2} \end{bmatrix} + s^2 \begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix} \right)$$
$$d(s) = s^3 + (9/2)s^2 + 6s + 2$$

Find numerator matrices N_i

$$\mathbf{G}_{sp} = \frac{1}{d(s)} \left(\begin{array}{c} \mathbf{N}_3 & \mathbf{N}_2 & \mathbf{N}_1 \\ \hline \begin{bmatrix} -24 & 3 \\ 1 & \frac{1}{2} \end{bmatrix} + s \overline{\begin{bmatrix} -24 & \frac{15}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}} + s^2 \overline{\begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix}} \right)$$

$$d(s) = s^3 + (9/2)s^2 + 6s + 2$$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}_{sp} = \frac{1}{d(s)} \begin{bmatrix} \mathbf{N}_3 + s\mathbf{N}_2 + s^2\mathbf{N}_1 \end{bmatrix} \quad \mathbf{G}_{\infty} = \mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{N}_1 = \begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix} \quad \mathbf{N}_2 = \begin{bmatrix} -24 & \frac{15}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix} \quad \mathbf{N}_3 = \begin{bmatrix} -24 & 3 \\ 1 & \frac{1}{2} \end{bmatrix}$$

$$d(s) = s^3 + \alpha_1 s^2 + \alpha_2 s + \alpha_3 = s^3 + (9/2)s^2 + 6s + 2$$

Realize:

$$\mathbf{A} = \left[\begin{array}{ccc} -\alpha_1 \mathbb{I}_\rho & -\alpha_2 \mathbb{I}_\rho & -\alpha_3 \mathbb{I}_\rho \\ \mathbb{I}_\rho & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{I}_\rho & \mathbf{0} \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} \mathbb{I}_\rho \\ \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{ccc} \mathbf{N}_1 & \mathbf{N}_2 & \mathbf{N}_3 \end{array} \right]$$

Topic

1 Canonical Forms

2. Realizations

3. Observability

Duality

Observability: definition

The system:

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

is said to be **observable** if for any unknown initial state $\mathbf{x}(0)$ there exists a finite $t_1 > 0$ such that the knowledge of the input \mathbf{u} and the output \mathbf{y} over $[0, t_1]$ suffices to determine uniquely the initial state $\mathbf{x}(0)$.

Otherwise, the system is unobservable.

Observability Gramian

If the Observability Gramian:

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} au} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} au} d au$$

is nonsingular for any t > 0, then the state equation is observable.

Explanation

The solution to the state equation is:

$$\mathbf{y}(t) = \mathbf{C} e^{\mathbf{A}t} \mathbf{x}(0)$$
 We know the input. We know the input. $\mathbf{y}(t) = \mathbf{C} \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau + \mathbf{D} \mathbf{u}(t)$

Definition

The unknown part of the solution is:

$$\mathbf{y}_{\mathsf{nat.}}(t) \triangleq \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)$$

AKA the natural response.

1: Premultiply

$$e^{\mathbf{A}^{\mathsf{T}}t}\mathbf{C}^{\mathsf{T}}\mathbf{y}_{\mathsf{nat.}}(t) = e^{\mathbf{A}^{\mathsf{T}}t}\mathbf{C}^{\mathsf{T}}\mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)$$

2: Integrate

$$\int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{y}_{\mathsf{nat.}}(\tau) d\tau = \int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} \tau} d\tau \mathbf{x}(0)$$

3: Recover the Gramian

$$\int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{y}_{\mathsf{nat.}}(\tau) d\tau = \underbrace{\int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} \tau} d\tau}_{\mathbf{W}_o(t_1)} \mathbf{x}(0)$$

4: Invert² and premultiply

$$\mathbf{W}_o^{-1}(t_1) \int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{y}_{\mathsf{nat.}}(\tau) d\tau = \mathbf{W}_o^{-1}(t_1) \mathbf{W}_o(t_1) \mathbf{x}(0) = \mathbb{I} \mathbf{x}(0)$$

²Only possible if the system is observable.

Only one possible $\mathbf{x}(0)$ for a given $\mathbf{y}_{nat.}(t)$

$$\mathbf{W}_o^{-1}(t_1) \int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{y}_{\mathsf{nat.}}(\tau) d\tau = \mathbf{x}(0)$$

Observability Gramian

If the Observability Gramian:

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} au} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} au} d au$$

is nonsingular for any t > 0, then the state equation is observable.

-The initial conditions can be recovered from the output

Observability Gramian

Otherwise the Gramian:

$$\exists \ \mathbf{v}: \quad \mathbf{v}^\mathsf{T} \mathbf{W}_o(t) \mathbf{v} = \int_0^t \mathbf{v}^\mathsf{T} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} \tau} \mathbf{v} \ d\tau = \int_0^t \left\| \mathbf{C} e^{\mathbf{A} \tau} \mathbf{v} \right\|^2 \ d\tau = \mathbf{0}$$

is **singular**.

-Then the state equation is unobservable.

 $\mathbf{x}(0)$ cannot be identified uniquely given $\mathbf{y}_{\text{nat.}}(t)$

$$\int_0^{t_1} e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{y}_{\mathsf{nat.}}(\tau) d\tau = \mathbf{W}_{o}(t_1) [\mathbf{x}(0) + \mathbf{v}]$$

Topic

1 Canonical Forms

2. Realizations

3. Observability

Duality

Observability Gramian

If the Observability Gramian:

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} au} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} au} d au$$

is nonsingular for any t > 0, then the state equation is **observable**.

Controllability Gramian

If the Controllability Gramian:

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A} au} \mathbf{B} \mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T} au} d au$$

is nonsingular for any t > 0, then the state equation is **controllable**.

System Gramians

$$\mathbf{W}_{o}(t) = \int_{0}^{t} \mathbf{e}^{\mathbf{A}^{\mathsf{T}} \tau} \mathbf{C}^{\mathsf{T}} \mathbf{C} \mathbf{e}^{\mathbf{A} \tau} d\tau \quad \mathbf{W}_{c}(t) = \int_{0}^{t} \mathbf{e}^{\mathbf{A} \tau} \mathbf{B} \mathbf{B}^{\mathsf{T}} \mathbf{e}^{\mathbf{A}^{\mathsf{T}} \tau} d\tau$$

Imagine a system:

$$\dot{\boldsymbol{z}} = \boldsymbol{A}^T\boldsymbol{z} + \boldsymbol{C}^T\boldsymbol{u}$$

What is the controllability gramian?

$$\mathbf{W}_{c}^{z}(t) = \int_{0}^{t} e^{\mathbf{A}^{\mathsf{T}} au} \mathbf{C}^{\mathsf{T}} \mathbf{C} e^{\mathbf{A} au} d au$$

System Gramians

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} \tau} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} \tau} d\tau \quad \mathbf{W}_c(t) = \int_0^t e^{\mathbf{A} \tau} \mathbf{B} \mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T} \tau} d\tau$$

Dual system:

$$\dot{\boldsymbol{z}} = \boldsymbol{A}^T\boldsymbol{z} + \boldsymbol{C}^T\boldsymbol{u}$$

Implication?

$$\mathbf{W}_c^z(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} au} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} au} d au$$

Theorem of duality

The pair $\{\bm{A},\bm{C}\}$ is observable if and only if the pair $\{\bm{A}^T,\bm{C}^T\}$ is controllable.

The pair {A, B} is controllable iff:

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A} au} \mathbf{B} \mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T} au} d au$$

is nonsingular for all t > 0.

The controllability matrix:

has full row rank.

The pair $\{A, C\}$ is observable iff:

$$\mathbf{W}_o(t) = \int_0^t e^{\mathbf{A}^\mathsf{T} au} \mathbf{C}^\mathsf{T} \mathbf{C} e^{\mathbf{A} au} d au$$

is nonsingular for all t > 0.

The observability matrix:

$$\mathcal{O} = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C} \mathbf{A} \\ \vdots \\ \mathbf{C} \mathbf{A}^{n-1} \end{array} \right]$$

has full column rank.

Example

Linearized EOM:
$$M = 2kg$$
, $m = 1kg$, $l = 1m$, $g = 10\frac{m}{s^2}$

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -5 & 0 & 0 \\ 0 & 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} u$$

Linearized EOM:
$$M = 2kg$$
, $m = 1kg$, $l = 1m$, $g = 10\frac{m}{s^2}$

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -5 & 0 & 0 \\ 0 & 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} u$$

Case I

The angle is measured:

$$\mathbf{C} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \end{array} \right], \quad \mathcal{O} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 15 & 0 & 0 \\ 0 & 0 & 0 & 15 \end{array} \right]$$

Linearized EOM:
$$M = 2kg$$
, $m = 1kg$, $l = 1m$, $g = 10\frac{m}{s^2}$

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -5 & 0 & 0 \\ 0 & 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} u$$

Case II

The position is measured:

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{O} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & -5 \end{bmatrix}$$