Deep Learning

21CSA640

Dr. Vimina E R

Why study Deep Learning?

- Mollywood Godfather Extended: Deepfake Edition |
 Mohanlal, Mammootty, DQ and Fahadh Faasil –
 YouTube
- https://www.facebook.com/reel/3676485885902222
- https://twitter.com/i/status/1851258134049837169
- https://www.youtube.com/watch?v=IQWUKWM2JrQ
- https://www.openaisora.video/

Some Other Interesting Applications...

• DALL·E: Creating Images from Text

Edit prompt or view more images +

Gemini, ChatGPT,

Gemini (google.com)

Continued...

1. TEXT 2 DREAM

Text 2 Dream tool can generate amazing art and photorealistic images from just a text prompt or a combination of a text prompt + base image.

The tool is based on the Stable Diffusion deep learning, text to image model.

2. DEEP STYLE

The technique is a much more advanced version of the original Deep Dream approach. It is capable of using its own knowledge to interpret a painting style and transfer it to the uploaded image.

3. DEEP DREAM

Initially it was invented to help scientists and engineers to see what a deep neural network is seeing when it is looking in a given image. Later the algorithm has become a new form of psychedelic and abstract art.

Reference: https://deepdreamgenerator.com/

DeepFake

- Generative Adversarial Networks (GAN)
- https://www.nytimes.com/interactive/202 0/11/21/science/artificial-intelligence-fakepeople-faces.html
- Mollywood Godfather Extended: Deepfake
 Edition | Mohanlal, Mammootty, DQ and
 Fahadh Faasil YouTube
- Deepfakes Web | Make Your Own
 Deepfake! [Online App]

Sora — OpenAl's text-to-video model

 Sora can create videos of up to 60 seconds featuring highly detailed scenes, complex camera motion, and multiple characters with vibrant emotions.

Sora | OpenAl

Computer Vision

Haze Removal

Underwater image enhancement

Colorizing videos and images

Night to day image conversion

Image Restoration

Assessment

- Internal: External -> 50:50
- Internal Assessment
 - Mid-Term examination: 30 Marks
 - Continuous Assessment: 20Marks
 - 1. Assignment
 - 2. Test
- External Assessment
 - End semester examination: 50 marks

What is

- Artificial intelligence?
- Machine Learning?
- Deep Learning?

What is artificial intelligence?

Artificial intelligence is the ability of a computer to perform tasks commonly associated with intelligent beings.

- See and Understand
- Speak
- Decide
- Respond

What is machine learning?

Machine learning is the study of algorithms that learn from examples and experience instead of relying on hard-coded rules and make predictions on new data.

Machine Learning is the study of algorithms that

- improve their performance P
 - at some task T
 - with experience **E**.

A well-defined learning task is given by <P,T,E>

This is a shirt we used to wear.

Is this a shirt?

Ok

Color: Green, red Size: Large, small Type: Formal, casual

1/22/17/18/is is also a shirt

Is this a shirt?

Color: Green, red, yellow Size : Large, small, medium Type: Formal, casual

Ok

This is also a shirt

Yes, these are all shirts

I learned to identify every shirt

Machine Learning

Supervised

Learns with labelled dataset (Training set)
Regression
Classification
K Nearest Neighbour (KNN)
Support Vector Machines (SVM)
Decision Tree
Random Forest
Artificial Neural Networks

Other learnings

Unsupervised

Learns from un-labelled dataset

Clustering

Association rule mining

Reinforcement learning

Semi Supervised

Regression

14
12
10
0.00 0.25 0.50 0.75 0.00 1.25 1.50 1.75 2.00

X_train

Iris setosa

Iris versicolor

Iris virginica

Labelled Dataset

Iris Flower species

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	versicolor
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	versicolor
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	Virginica
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	versicolor
10	4.9	3.1	1.5	0.1	versicolor

Model Training

- Data partitioning
 - Training set
 - Test set

1/22/2025 18

4.6

3.1

3.6

1.5

1.419

0.2

0.2

What is deep learning?

Deep learning is a subfield of machine learning focusing on learning data representations as successive layers of increasingly meaningful representations.

Deep Learning uses **artificial neural networks** to learn from lots of data without needing explicit programming.

"Traditional" machine learning:

Deep, "end-to-end" learning:

Supervised Learning

Image recognition / classification

Speech recognition

Machine translation

Conversational agent / chatbot

Why deep learning?

- Deep learning is a subset of machine learning involving neural networks with many layers
- Capabilities:
 - Handles large and complex datasets
 - Extracts meaningful patterns and insights from diverse data
 - Example: chemical structures, biological information, and patient data (Drug Response Prediction)
 - Enhances predictive accuracy

Programming vs Learning

Traditional Programming

Machine Learning

