

Architecture-based Uncertainty Impact Analysis for Confidentiality

Architectural Review Niko Benkler

Motivating Example

Motivating Example: Find Uncertainties

Motivating Example: Represent Uncertainties

Motivating Example: Uncertainty Propagation

Motivating Example: Represent Uncertainties

Concept Overview

- Expert: Specify uncertainty types
 - Guided by template
- User: Instantiate uncertainties
 - Tool Support, enhance architecture
- Uncertainty Impact Analysis
 - Propagate uncertainties
 - Based on pre-defined rules
- Retrieve statements of impact with regard to confidentiality
 - Direct impact (via template)
 - Indirect impact (via propagation)

Uncertainties in Software Architectures

- Jansen et al.: SWA = Set of ADD
 - Extract Uncertainties from existing ADDs
- Ex.: Communication Type
 - Resolvable, Design Time
- Ex.: Deployment Location
 - Partially resolvable (Assumption)
 - Deployment Time
- Ex.: Human Behavior
 - Not resolvable, Runtime
- Goal:
 - Assignment:
 - Uncertainty Palladio Element
 - Transitively via ADDs

Categorise Uncertainties

- Related work
 - Taxonomies for Self-adaptive Systems and others
 - None explicitly for uncertainty at architecture level
- Contribution: Template
 - Combines existing taxonomies + additional knowledge
 - Structure
 - ADD (1 : n) Uncertainties
 - -> Extract possible impact (See .xls file)
 - Architectural-based categories (ADD assessment)
 - ADD Class: Structural decision, behavioural decision, ...
 - **...**
 - Uncertainty related categories
 - Location: Component, Interface, Context, ...
 - Manageability: Fully reducible, partial reducible, irreducible
 - Severity of the impact on confidentiality: High, Low, None
 - **...**

Represent Uncertainties

- Multi-Level Modelling
 - We provide model (M2) for Experts (M1) AND Users (M1): M2 \rightarrow M1 \rightarrow M1
 - (See next slide)
- Experts
 - Use template to identify and categorize uncertainties
 - Define uncertainty types
 - Including attributes (nature, manageability, level, ...)
 - Representation: Assignable Palladio element type
 - Propagation rules: Palladio element types (defined via <<impact on>>)
- Users
 - Instantiate uncertainties (direct impact)
 - Assign uncertainties to concrete Palladio elements

Represent Uncertainties: Model

Represent Uncertainties: Example

- Uncertainty Types:
 - Defined by Experts
 - T1: DeploymentLocation
 - Assignable Element: ResourceContainer
 - Impact: Interface (Communication)
 - Nature: Epistemic, ...
 - T2: UserDataStored
 - Assignable Element: Component
 - Impact: DeploymentLocation
 - Nature: Epistemic, ...
- Instantiated Uncertainties
 - Defined by users in actual architectures
 - U1: DeploymentLocation → Specific container
 - U2: UserDataStored → Component B

Uncertainty Propagation Rules

- Us: Pre-define propagation rules
 - Starting Palladio element & ending Palladio element
 - Algorithm to traverse Palladio models
 - Re-Use of KAMP-Approach?
 - Collect impacted elements
- Experts: Assign rules to uncertainty types
 - Type of starting element & ending element extracted from template
- User: Start Uncertainty Impact Analysis (UIA)
 - Assign instantiated uncertainty to Palladio elements
 - Start UIA → get impactedelements

Uncertainty Propagation Rules: Example

- DeploymentLocation > CommunicationType
 - DeploymentLocation: Resource container
 - CommunicationType: Interfaces
- Rule:
 - ResourceContainer
 - →Assemblies
 - →(CompositeComponents)
 - →BasicComponents
 - → Interfaces
- Application of Rule:
 - Specific resource container to interface of component B

Uncertainty Propagation Rules: Example

- UserDataStored → DeploymentLocation
 - UserDataStored: Basic component
 - DeploymentLocation: Resource container
- Rule:
 - BasicComponents
 - → (CompositeComponents)
 - → Assemblies
 - → ResourceContainers
- Application of Rule:
 - Specific component to resource container where it is deployed

Uncertainty Propagation Rules: Problem!

- "Depth" of propagation
 - What if data is transmitted via Interfaces?
 - Propagation to other components
- Problem:
 - Uncertainties might have impact on "everything"

Retrieve general Statements

- Use Uncertainty Impact Analysis Plugin to get information about...
 - Direct impact:
 - Presence of uncertainty with predefined impact assessment (categories/template)
 - Indirect impact:
 - Propagation of uncertainty to other (less obvious) architecture elements
- statements regarding impact on confidentiality