Université libre de Bruxelles 2024

Examen blanc MATH-F211

18 novembre 2024

Nom:									
Prénom :									
 Vous ne pouvez apporter à l'examen qu'un stylo et une bouteille d'eau (une boisson). N'apportez pas de papier à l'examen. Cet examen blanc ne couvre environ que les 2/3 de la matière. L'examen réel contiendra également des problèmes concernant la dernière partie du cours. Pour vous tester, essayez de résoudre (et d'écrire clairement!) autant de problèmes que possible en 3 heures. 									
T1 T2 T2 1-5 5-10 11 12 13 14 15	Σ								

Note:

Partie A

Veuillez écrire vos réponses dans cette partie directement sous chaque exercice. Temps estimé : 20 min.
Exercice 1 (2P). Finir la définition suivante : Une collection \mathcal{T}_X de sous-ensembles de X est une topologie sur X si
Exercice 2 (2P). Finir la définition suivante : Soit M un ensemble non-vide. Une fonction $d \colon M \times M \to \mathbb{R}$ est une $\textit{métrique}$ si
Exercice 3 (2P). Formuler le théorème à propos de l'unicité d'un prolongement continu.

Exercice 7 (2P). On définit la fonction $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ par

$$d(x,y) := \begin{cases} x - y & \text{si } x \ge y, \\ 1 & \text{sinon.} \end{cases}$$

[]d	est	une	métrique	sur	$\mathbb{R}.$
---	----	-----	-----	----------	-----	---------------

[] d n'est pas une métrique sur \mathbb{R} parce que l'inégalité triangulaire n'est pas satisfaite.

[] d n'est pas une métrique sur \mathbb{R} parce qu'il existe un $x \in \mathbb{R}$ tel que $d(x, x) \neq 0$.

[] d n'est pas une métrique sur \mathbb{R} pour une raison non mentionnée ci-dessus.

Exercice 8 (2P). Soit (M, d) un espace métrique. La boule ouverte $B_1(p)$ de rayon r = 1 centrée en $m \in M$ est...

[] toujours connexe.

[] peut être fermé.

[] peut ne pas être Hausdorff (par rapport à la topologie induite).

[] aucune des réponses ci-dessus ne s'applique.

Exercice 9 (2P). Soit X un espace topologique et \sim une relation d'équivalence sur X. Choisir une vraie affirmation dans la liste suivante :

[] Si X est Hausdorff, alors X/\sim est Hausdorff.

[] Si U est ouvert dans X, alors $\pi(U)$ est ouvert dans X/\sim , où π est la projection canonique.

[] Si X est connexe, alors X/\sim est connexe.

Aucune des réponses ci-dessus ne s'applique.

Exercice 10 (2P). Soit X est un espace topologique. Choisir une vraie affirmation dans la liste suivante :

[] Si X est connexe, alors X est localement connexe.

[] Si X est connexe par arcs, alors X est localement connexe par arcs.

 $[\hspace{1em}]$ Si X est connexe par arcs, alors X est localement connexe.

[] Aucune des réponses ci-dessus ne s'applique.

Partie C

Veuillez écrire vos solutions aux exercices des parties C et D sur les feuilles blanches fournies. Temps estimé : 1 h 20 min.

Exercice 11 (5+5P). Soit (M,d) un espace métrique et soient

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)},$$
 et $d_2(x,y) = (d(x,y))^2.$

Démontrer que d_1 est une métrique sur M, mais démontrer que d_2 n'en est pas forcément une.

Exercice 12 (10P). Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) des espaces topologiques et $f, g: X \to Y$ des fonctions continues, où (Y, \mathcal{T}_Y) est un espace Hausdorff. Démontrer que l'ensemble

$$E := \left\{ x \in X \mid f(x) = g(x) \right\}$$

est un fermé de X.

Exercice 13 (10P). Démontrer que l'intervalle [0,1] muni de la topologie induite de \mathbb{R} est connexe.

Partie D

Temps estimé: 1 h.

Exercice 14 (10P). Soit (M, d) un espace métrique et $A \subset M$ un sous-ensemble quelconque. Pour $m \in M$, posons

$$\rho(m, A) = \inf \left\{ d(m, a) \mid a \in A \right\}.$$

Démontrer que $\rho(x, A) = 0$ si et seulement si $a \in \bar{A}$.

Exercice 15 (10P). Trouver toutes les composantes connexes de l'espace

$$X = \{ A \in M_n(\mathbb{R}) \mid A = A^t, \det A \neq 0 \},\$$

où A^t est la matrice transposée de A et X est muni de la topologie induite de $M_n(\mathbb{R})$.