Visualizing and Understanding Convolutional Networks [1]

Yu Wu

2017.10.31

[1] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]. European conference on computer vision. 2014: 818-833.

Outline

Visualization Approaches

Convnet Visualization

Experiments

My Experiments

Convnets

LeNet-5

What input image x cause a_i^2 to be maximally activated?

$$a_i^2 = f\left(\sum_{j=1}^n W_{ij}^1 x_j\right)$$

$$\begin{cases} \max \sum_{j=1}^{n} W_{ij}^{1} x_{j} \\ s. t. \sum_{i=1}^{n} x_{i}^{2} \le 10 \end{cases} x_{j} = \frac{W_{ij}^{1}}{\sqrt{\sum_{j=1}^{n} (W_{ij}^{1})^{2}}}$$

Edges at different positions and orientations

To visualize images that maximally activate certain units

[2] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014: 580-587.

Convnet: mapping image pixels to feature representation in network

Deconvnet: mapping feature maps back to the input pixel space, unsupervised learning [3]

The target for feature map i in the layer l:

$$\underset{f_{i}^{l}}{\arg\min} \|y - \hat{y}\|_{2}^{2} + \sum_{i=1}^{n_{l}} \|z_{i,l}\|$$

Reconstruction error

Sparsity constrain

[3] Zeiler, M. D., Taylor, G. W., Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011: 2018-2025

Deconvnets are not used in any learning capacity, just as a probe of an already trained convnet.

Unpooling

 χ

Rectification

Ensuring the feature maps are always positive

Filtering

No padding, no strides

Convolution

1d CNNs feedforward: no padding, no strides

$$z_1 = w_1 x_1 + w_2 x_2 + w_3 x_3$$

$$z_2 = w_1 x_2 + w_2 x_3 + w_3 x_4$$

$$z_3 = w_1 x_3 + w_2 x_4 + w_3 x_5$$

Matrix formulation:

$$\begin{bmatrix} w_1 & w_2 & w_3 & 0 & 0 \\ 0 & w_1 & w_2 & w_3 & 0 \\ 0 & 0 & w_1 & w_2 & w_3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

Transposed Convolution

0

Deconvolution:

Transposed Convolution

Matrix formulation:

$$\begin{bmatrix} w_1 & 0 & 0 \\ w_2 & w_1 & 0 \\ w_3 & w_2 & w_1 \\ 0 & w_3 & w_2 \\ 0 & 0 & w_3 \end{bmatrix} \times \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \\ x_5' \end{bmatrix}$$

Transposed Convolution

Matrix formulation 1:

$$\begin{bmatrix} w_1 & w_2 & w_3 & 0 & 0 \\ 0 & w_1 & w_2 & w_3 & 0 \\ 0 & 0 & w_1 & w_2 & w_3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

Matrix formulation 2:

$$\begin{bmatrix} w_1 & 0 & 0 \\ w_2 & w_1 & 0 \\ w_3 & w_2 & w_1 \\ 0 & w_3 & w_2 \\ 0 & 0 & w_3 \end{bmatrix} \times \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \\ x'_4 \\ x'_5 \end{bmatrix}$$

Feature representation: i

Visualization: x'

For a given image x and a fully trained model, to visualize the i-th feature map in the layer l:

- 1, for a given x, feedforward computing feature activities in the layer l
- 2, set all other activations (not the i-th feature map) in the layer to zero
- 3, for layer *l* to the first layer:

if the layer beneath is pooling layer: use **Unpooling** operation

else if the layer beneath is convolutional layer:

use **Rectify** first **and Transposed filters** operation

Outline

Visualization Approaches

Convnet Visualization

Experiments

My Experiments

Choosing a feature map and recording the top 9 activities

Mapping features back to the input pixel space

Corresponding original images

The strong grouping within each feature map

Layer 1

Layer 2 edge/color

Layer 3 texture

Layer 4

Layer 5

Feature Evolution

Feature Invariance

Red boxes display 5 original images

Feature Invariance

The probability of the true label for each image

Feature Invariance

Vertical translation

Scale

Rotation

Why they perform so well?

- the availability of much larger training sets, with millions of labeled examples;
- powerful GPU implementations, making the training of very large models practical
- better model regularization strategies, such as Dropout
- deep layers with more abstract feature representations
- greater invariance at higher layers

Architecture Selection

How they might be improved?

[4] Krizhevsky, A., Sutskever, I., Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 2012: 1097-1105.

Architecture Selection

Architecture Selection

Smaller filters 11x11 to 7x7 and Smaller stride 4 to 2

Occlusion Sensitivity

If the model is truly identifying the location of the object in the image, or just using the surrounding context.

Input image

Classifier, probability of correct class

Classifier, most probable class

Occlusion Sensitivity

Input image

Probability of correct class

Racer

Occlusion Sensitivity

Input image

Strongest feature map

Outline

Visualization Approaches

Convnet Visualization

Experiments

My Experiments

Experimental Results

	Train	Val	Val
Error %	Top-1	Top-1	Top-5
Alexnt, 1 convnet	40.7	18.2	
Alexnt, 5 convnets	38.1	16.4	16.4
Alexnt*, 1 convnet	39.0	16.6	
Alexnt*, 7 convnets	36.7	15.4	15.3
			,
Our replication of AlexNet, 1convent	40.5	18.1	
ZFNet, 1 convnet	38.4	16.5	
ZFNet, 5 convnets –(a)	36.7	15.3	15.3
ZFNet, 1 convnet but with layers 3, 4,			
5: 512, 1024, 512 maps –(b)	37.5	16	16.1
6 convnets, (a) & (b) combined	36.0	14.7	14.8

ImageNet 2012 classification error rates (ACC %)

Experimental Results

Error %	Train	Val	Val
E1101 %	Top-1	Top-1	Top-5
The replication of AlexNet	35.1	40.5	18.1
Removed layers 3,4	41.8	45.4	22.1
Removed layers 6,7	27.4	44.8	22.4
Removed layers 3,4,6,7	71.1	71.3	50.1
Adjust layers 6,7: 2048 units	40.3	41.7	18.8
Adjust layers 6,7: 8192 units	26.8	40	18.1
ZFNet	33.1	38.4	16.5
Adjust layers 6,7: 2048 units	38.2	40.2	17.6
Adjust layers 6,7: 8192 units	22	38.8	17
Adjust layers 3,4,5: 512, 1024, 512 maps	18.8	37.5	16
Adjust layers 6,7: 8192 units and layers 3,4,5: 512, 1024, 512 maps	10	38.3	16.9

ImageNet 2012 classification error rates (ACC %)

Feature Generalization

#Methods	15/class	30/class
Jianchaoetal.,2009	73.2	84.3
Non-pretrained ZFNet	22.8 ± 1.5	46.5 ± 1.7
ImageNet-pretrained ZFNet	83.8 ± 0.5	86.5 ± 0.5

Caltech-101 classification accuracies (ACC %)

#Methods	15/class	30/class	45/class	60/class
Boetal.,2013	40.5 ± 0.4	48.0 ± 0.2	51.9 ± 0.2	55.2 ± 0.3
Non-pretrained	9.0 ± 1.4	22.5 ± 0.7	31.2 ± 0.5	38.8 ± 1.4
ImageNet-pretrained	65.7 ± 0.2	70.6 ± 0.2	72.7 ± 0.4	74.2 ± 0.3

Caltech-256 classification accuracies (ACC %)

Feature Analysis

	Caltech-101 (30/class)	Caltech-256 (60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	86.2 ± 0.8	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	71.7 ± 0.2
Softmax (5)	82.9 ± 0.4	65.7 ± 0.5
Softmax (7)	85.4 ± 0.4	72.6 ± 0.1

Outline

Visualization Approaches

Convnet Visualization

Experiments

My Experiments

Find a trained model and weights

■ Take an image

ImageNet-pretrained VGG-16

My computer

■ The image is presented to VGG-16 and features computed throughout the layers

■ keep concerned feature activity and set other activities to zero

put features as the input to a deconvnet

Thanks!