2003 EXT 1 July Common

Question 1 (10 marks)

- a) i) Write an expression for $\cos(A + B)$ (1)
 - ii) Hence find the exact value of cos 105° (2)
- b) Find the coordinates of P (x, y) that divides the interval AB externally in the ratio 5:1 given A (0,2) and B (3,0)
- Find the acute angle between the lines x-2y-6=0 and y=-3x+4 to the nearest minute. (2)
- d) Prove that the line 3x y 10 = 0 is a tangent to the circle $x^2 + y^2 = 10$ (3)

Question 2 (8 marks) Start a new page

a) Find i)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 (1)

ii)
$$\lim_{x \to \infty} \frac{2x}{x+2} \tag{2}$$

- b) Solve $2\sin\frac{x}{2} = \cos\frac{x}{2}$ for $0^{\circ} \le x \le 360^{\circ}$ (3)
- c) The minute and hour hands of a clock are 9cm and 6cm in length respectively. (2) Find the distance between the ends of the hands when the time is 5 o'clock (to the nearest mm).

Question 3 (10 marks) start a new page

a) Using
$$\tan \frac{\theta}{2} = t$$
 write $\frac{1}{2} \cot \frac{\theta}{2} - \cot \theta$ in terms of t in simplest form (2)

b) Differentiate with respect to x,
$$y = \frac{x}{3\sqrt{x}}$$
 (2)

c) Prove
$$\sin(\frac{\pi}{4} + A) - \sin(\frac{\pi}{4} - A) = \sqrt{2} \sin A$$
 (3)

d) Solve
$$\sin 2x + \cos x = 0$$
 for $0^{\circ} \le x \le 360^{\circ}$ (3)

Question 4 (10 marks) Start a new page

a) Differentiate

$$i) \qquad \frac{1}{4-x^2} \tag{2}$$

$$ii) \qquad \frac{1-x^2}{1+x^2} \tag{2}$$

b) i) Express
$$\sqrt{3} \cos x - \sin x$$
 in the form $A \cos(x + \theta)$ where $0^{\circ} \le \theta \le 90^{\circ}$ (2)

ii) Hence or otherwise solve
$$\sqrt{3}\cos x - \sin x = 1$$
 where $0^{\circ} \le x \le 360^{\circ}$ (2)

c) If
$$y = \sqrt{r^2 - x^2}$$
 where r is a constant, show that $\frac{dy}{dx} = \frac{-x}{y}$ (2)

Question 5 (9 marks) Start a new page

- a) Find the coordinates of the points on the curve $y = 2x^3 9x^2 + 27$ where the tangent is parallel to the x axis. (3)
- b) Given $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$, solve the equation $\cos 3\theta + \cos \theta = 0$ for $-180^\circ \le \theta \le 180^\circ$ (3)

c) i) For the function
$$f(x) = x\sqrt{2-x}$$
 find $f'(x)$ (2)

ii) Hence solve
$$f'(x) = 0$$
 (1)

Question 6 (10 marks) Start a new page

a) From a tower OR, the bearings of two points C and B, on the same level ground as the base of the tower, are 300° and 015° respectively. The angles of elevation to the top of the tower are 11° and 22° from Cand B respectively. BC is 150m. The tower OR has height h metres.

i) Redraw the above diagram showing all relevant information.

ii) Find
$$\angle BOC$$
 (1)

- iv) Find the height of the tower to the nearest metre. (3)
- b) i) If $\sin(x + \theta) = k \sin(x \theta)$ prove $(k-1) \tan x = (k+1) \tan \theta$

ii) Hence solve
$$\sin(x + 20^\circ) = 2\sin(x - 20^\circ)$$
 if $0^\circ \le x \le 360^\circ$ (2)

(2)

2003 FXT 1	a) i) d (4-x²) = -1x-2x(4-x²) (4-x²) = 2x (4-x²) +	(i) Ore quotients (i) 1 - 21 (ii) 1 - 2x (iii) 1 - 2x	b) i) Az (3+1) = 2 2 (\$\frac{13}{2}\cos\xi - \frac{1}{2}\cos\xi - \frac	1.) $2\cos x - \sin x = 2\cos (x + 30^{\circ})$ 1.) $2\cos (x + 30^{\circ}) = 1$ $\cos (x + 30^{\circ}) = 2$ $x + 30^{\circ} = 60^{\circ}$ 300° $3(= 30^{\circ}, 270^{\circ})$ $3(= 30^{\circ}, 270^{\circ})$ 3(= 30	15 n 14
SOLUTIONS	1 3 2 . x . 1/2	c) Prove sin (#+h) - sin (#-h) = (sin # LHS = sin # LOSA + cos # sin A = cos # sin A) = (sin #, cos A = cos # sin A) = 1 cos A + 1 sin A	= 2 sin A = 2 x 12 sin A = 2 x 12 sin A = 12 sin A	4) \$1-2x + cosx = 0 2 \$1-3x + cosx = 0 cosx (2\$1-x +1) = 0	
300 \$	a) i) lim (axx)(x+2) = + ii) lim (xxx) = 2x ii) lim 2x = 2	b) 2.31	4 150 x = q ² + 4 ² - 2 x q x 6 cos 150 x = 14.5 cm (1de.pl)	a) 1 cot 0 - cot 0 - 1 - t -	
FUR II ENTI XXL	(51100 1) cos (A+B) = cos AcosB-sinAsinB cos 105° = cos (60°+45°) sebo costS - sinbo sinvS°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3(-\frac{15}{44}, -\frac{1}{2})}{3(-\frac{1}{2})^{-\frac{1}{2}}}$ $\frac{3(-\frac{1}{2})^{-\frac{1}{2}}}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	tan 8 = 7 8 = 810 52 (to neaesthin) circle 3 + 4 = 10 has centre (0,0) radius = 110 perp onist (0,0) to 3x-4-10=0 f = -10 f = 10 rationalise p = 110 rationalise p = 110 rationalise p = 110 rationalise p = 110 rationalise	,

SHX OFX.

Oucstion 5

(T210) «19

<u>a</u>

150 = 12

0

ii) (2-x

(2 h h cos 75° tan 11° tan 11°

use cosine orule

V= (2-x = (2-x)"

c) i) {(x) = x (2->c

0= +40°

0 = 0 co) :

11= -1 (2-x)-11-

2 (2-x

2/2-x

f.(x)= (2-x

tar 22 tar 11 tan 22 tan 11

h = 29 m (newest meter)

0

4-231-4

2(2-3) - 3

x-2-2

r H M