# Exploring the Use of Crowdsourcing to Support Empirical Studies in Software Engineering

Kathryn T. Stolee & Sebastian Elbaum

September 16, 2010





### Known Issue

Recruiting the right type and number of users for empirical studies in software engineering is hard.





### Known Issue

Recruiting the right type and number of users for empirical studies in software engineering is hard.

#### **Possible Solutions:**

- Use fewer participants of the right type
  - Limits generalizability to larger groups





#### Known Issue

Recruiting the right type and number of users for empirical studies in software engineering is hard.

#### **Possible Solutions:**

- Use fewer participants of the right type
  - Limits generalizability to larger groups
- Relax requirements for participation
  - Limits generalizability to target population





#### Known Issue

Recruiting the right type and number of users for empirical studies in software engineering is hard.

#### **Possible Solutions:**

- Use fewer participants of the right type
  - · Limits generalizability to larger groups
- Relax requirements for participation
  - Limits generalizability to target population
- Crowdsource the study





## Background

### Crowdsourcing

Leveraging a global community of users with different talents and backgrounds to help perform a task that would not be feasible without a mass of people behind it.







INNOCENTIVE\*

Companies with hard problems connect with people interested in solving. 1,000+ problems, 200,000+ solvers









Companies with hard problems connect with people interested in solving. 1,000+ problems, 200,000+ solvers

Photographers collect with people who need stock photography. 3,000,000+ members





# INNOCENTIVE\*





Companies with hard problems connect with people interested in solving. 1,000+ problems, 200,000+ solvers

Photographers collect with people who need stock photography. 3,000,000+ members

Companies with scientific problems connect with retired scientists. 1,000+ companies, 5,000+ scientists





# INNOCENTIVE\*







Companies with hard problems connect with people interested in solving. 1,000+ problems, 200,000+ solvers

Photographers collect with people who need stock photography. 3,000,000+ members

Companies with scientific problems connect with retired scientists. 1,000+ companies, 5,000+ scientists

People with many small tasks connect with scalable workforce. 100,000+ tasks, 100,000+ workers





### Requestors:







### Requestors:



### Types of tasks:

- Short duration (60s. or less)
- Require human intelligence (handwirting analysis, image tagging)
- Specialized (requires certain knowledge) or generic





### Workers:







### Workers:



| Answer Two Short Questions about Yahoo! Pipes - Easy!                                                                              |                                   |                      |                                             |                   |                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|---------------------------------------------|-------------------|------------------------------|--|--|--|
| Requester:                                                                                                                         | Katie Stolee                      | HIT Expiration Date: | May 13, 2010 (3 days 8 hours)               | Reward:           | \$0.20                       |  |  |  |
|                                                                                                                                    |                                   | Time Allotted:       | 60 minutes                                  | HITs Available:   | 8                            |  |  |  |
| Description: The task is to answer two short questions, comparing two versions of Yahoo! Pipes programs that have the same output. |                                   |                      |                                             |                   |                              |  |  |  |
| Keywords: programming, Yahoo, Pipes, survey, mashup, questionnaire, coding, easy                                                   |                                   |                      |                                             |                   |                              |  |  |  |
| Qualifications Required: Your Value                                                                                                |                                   |                      |                                             |                   |                              |  |  |  |
| Qualification (                                                                                                                    | Quiz for UNL Study on Yahoo! Pipe | s is greater than 90 | 100 You meet this qualification requirement |                   |                              |  |  |  |
| HIT approval i                                                                                                                     | rate (%) is greater than 90       |                      | 100 You meet this qualification             | requirement Conta | ct the Requester of this HIT |  |  |  |











### Goal of This Work

### Conjecture

Crowdsourcing can be a good solution for recruiting the right type and quantity of participants for an empirical study in software engineering.





### Goal of This Work

### Conjecture

Crowdsourcing can be a good solution for recruiting the right type and quantity of participants for an empirical study in software engineering.

In this work, we crowdsource a software engineering experiment using Amazon's Mechanical Turk service, and reflect on our experiences.





Definition

## Study Definition



**Purpose:** Evaluate the impact of coding practices (e.g., code smells) on end user's preferences and understanding of web mashups built in Yahoo! Pipes.





## **Experimental Task Example**



**Task Description:** Given two pipes with the same behavior, one with a smell and one without, select the preferable one.







## Experimental Task Example



**Task Description:** Given two pipes with the same behavior, one with a smell and one without, select the preferable one.







# Experimental Design



| Task | Subjects | Pretest                         | Object            | Treatment             | Posttest                        |
|------|----------|---------------------------------|-------------------|-----------------------|---------------------------------|
| 1    | R        | O <sub>1</sub> , O <sub>2</sub> | Pipe <sub>1</sub> | Smell <sub>5</sub>    | O <sub>3</sub> , O <sub>4</sub> |
| 2    | R        | $O_1$ , $O_2$                   | Pipe <sub>2</sub> | $Smell_4$             | O <sub>3</sub> , O <sub>4</sub> |
| 3    | R        | $O_1$ , $O_2$                   | Pipe <sub>3</sub> | $Smell_5$             | $O_3$ , $O_4$                   |
| 4    | R        | $O_1$ , $O_2$                   | Pipe <sub>4</sub> | Smell <sub>8</sub>    | $O_3$ , $O_4$                   |
| 5    | R        | $O_1$ , $O_2$                   | Pipe <sub>5</sub> | Smell <sub>7</sub>    | $O_3$ , $O_4$                   |
| 6    | R        | O <sub>1</sub> , O <sub>2</sub> | Pipe <sub>6</sub> | $Smell_1$             | O <sub>3</sub> , O <sub>4</sub> |
| 7    | R        | O <sub>1</sub> , O <sub>2</sub> | Pipe <sub>7</sub> | Smell <sub>5,10</sub> | O <sub>3</sub> , O <sub>4</sub> |
| 8    | R        | $O_1$ , $O_2$                   | Pipe <sub>8</sub> | $Smell_{2,9}$         | O <sub>3</sub> , O <sub>4</sub> |
|      |          |                                 |                   |                       |                                 |

 $O_1 = \mathsf{Education}$ 

 $O_2$  = Pipes test score

 $O_3$  = Preference

 $O_4 = \mathsf{Time} \; \mathsf{to} \; \mathsf{completion}$ 





# **Experimental Design**



#### Lessons Learned:

- Experimental tasks must be modular and independent, but can be longer (ours took 3-4 minutes, on average)
- Qualification tests can be used to capture pretest measures
- Cannot control which tasks are completed by which participants
- Self-selection of tasks may introduce bias that needs to be accounted for in the analysis





## Selection and Recruitment



### **Desired Participant Characteristics:**

- Limited computer science education (end users)
- Familiar with Yahoo! Pipes

#### Mechanical Turk:

- Facilitates recruitment by hosting tasks
- Allows for qualification tests to be administered prior to participation (pretest measures)





## Selection and Recruitment



#### Lessons Learned

- 50 qualification tests submitted in two weeks, 38 passed
- 22 participants in total, 14 were considered "end users"
- More variation and unknowns in participants (e.g., age, gender, education, experimental context)





# Experimental Task in Mechanical Turk









Planning

### Instrumentation



#### Lessons Learned

- Need to learn how to use a new tool and/or API
- Need to adjust presentation of tasks to fit the Mechanical Turk interface
- All tasks are in competition with other tasks for participants, so the task description must be enticing.





## **Experiment Operation**



#### Mechanical Turk:

- Hosts tasks for a custom time period (2 weeks)
- Administers qualification tests (50 requests)
- Maintains user anonymity
- Collects results and metrics (188 tasks submitted)





## **Experiment Operation**



#### Lessons Learned:

- Hand-grading qualification tests introduce delay, and may discourage further participation
- Time to completion is reported, but is suspicious





## **Analysis**



### **Response Quality:**

- Qualitative responses were detailed and demonstrated understanding (Average length was 31 words, only 10 were required)
- Did not need to reject any responses





## **Analysis**



#### Lessons Learned:

- We were able to validate our hypotheses (for only \$42)
- May need to throw away some data due to learning (we threw away 28 responses)
- Too many responses from a small group of participants could skew results



## Summary

### Crowdsourcing allowed us to:

- Obtain a sufficient number of participants with the desired characteristics
- Evaluate our research questions using an empirical study for low cost

#### However...

- Requires careful experimental design to work within the Mechanical Turk infrastructure
- Due to the "unknowns" about the subjects and environment, crowdsourcing may not be appropriate for all studies



