Exercise

Find a prediction interval data listed below.

Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00
Subway Fare	0.15	0.35	1.00	1.35	1.50	2.00

Using: Cost of a slice of pizza: \$0.75;

99% confidence

Solution

The predicted values (from Excel):

	Coefficients	
Intercept	0.03456017	
X Variable 1	0.94502138	

$$\hat{y} = 0.034560 + 0.945021x$$

$$\hat{y} \Big|_{0.75} = 0.034560 + 0.945021(0.75)$$
$$= 0.743$$

$$\alpha = 0.01$$
 and $df = n - 2 = 4$
 $t_{\alpha/2} = t_{0.005} = 4.604$

TABLE A-3	t Distribution: Critical t Values							
	0.005	0.01	Area in One Tail 0.025	0.05	0.10			
Degrees of Freedom	0.01	0.02	Area in Two Tails 0.05	0.10	0.20			
4	4.604	3.747	2.776	2.132	1.533			

$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n(\sum x^2) - (\sum x)^2}}$$

$$= (4.604)(0.122987)\sqrt{1 + \frac{1}{6} + \frac{6(0.75 - 1.083333)^2}{6(9.77) - (6.5)^2}}$$

$$\approx 0.622$$

$$\begin{split} \hat{y} - E &< y < \hat{y} + E \\ 0.743 - 0.622 &< y_{0.75} < 0.743 + 0.622 \\ \$ 0.12 &< y_{0.75} < \$ 1.37 \end{split}$$