Chapitre II Cryptographie classique

Plan

- I. Notions de base
- II. Chiffrement par substitution
 - a. Chiffrement de César
 - b. Chiffrement affine
 - c. Chiffrement de Vigenère
- III. Chiffrement par transposition

Notions de base-1-

- □ Cryptosystèmes : Ensemble des méthodes de chiffrement et de déchiffrement assure le service de sécurité.
 □ Cryptographie : Art de cacher l'information, de la rendre accessible
- □Cryptographie: Art de cacher l'information, de la rendre accessible uniquement à un nombre restreint de personnes → confidentialité des données.
- □ *Cryptanalyses* : Art de casser des cryptosystèmes
- □ Chiffrement : la conversion des données d'un format lisible à un format codé incompréhensible par l'ennemi.
- □ Déchiffrement : une fonction <u>permet de retrouver le texte clair</u> à partir du texte chiffré.

Notions de base-2-

- On désigne par:
 - M: le message clair
 - C: le message chiffré
 - *E*: l'opération de chiffrement
 - *D* : l'opération de déchiffrement

Notions de base-3-

□ Cryptanalyse:

- Lorsqu'une méthode de cryptanalyse permet de déchiffrer un message chiffré à l'aide d'un cryptosystème, on dit alors que l'algorithme de chiffrement a été « cassé ».
- On a quatre techniques de cryptanalyse (d'attaque):
 - 1. Sur un texte chiffré seul : retrouver la clé de déchiffrement à partir d'un ou plusieurs textes chiffrés.
 - 2. A texte clair connu: retrouver la clé de déchiffrement à partir d'un ou plusieurs textes chiffrés, connaissant le texte en clair correspondant.
 - 3. A texte clair choisi: L'attaquant possède plusieurs paires (texte clair, texte chiffré). <u>Il peut chiffrer</u> un texte clair choisi.
 - 4. A texte chiffré choisi: L'attaquant possède plusieurs paires (texte clair, texte chiffré). <u>Il peut décrypter</u> un texte chiffré.

Notions de base-4-

□ Cryptanalyse (suite):

- On a quatre résultats possibles:
 - 1. Cassage partiel: le pirate connaît quelques informations sur le texte en clair.
 - 2. Cassage local: le pirate connaît quelques informations sur le texte en clair et le texte chiffré
 - 3. Cassage global: le pirate calcule la fonction de déchiffrement **D**© et peut donc déchiffrer tout message.
 - 4. Cassage complet: le pirate connaît la clé de cryptage.

Notions de base-5-

□Clé symétrique:

- Les clés sont identiques: $K_E = K_D = K$
- Les clés doit rester secrète entre l'émetteur et le récepteur.
- Les algorithmes qui utilisé le principe du clé symétrique, les plus répondus, sont:
 DES, AES, 3DES.
- Ces algorithmes sont basés sur des opérations de transposition et de substitution des bits du texte clair en fonction de la clé,
- L'avantage principal de ce mode de chiffrement par clés symétrique est sa rapidité.
- Désavantage: complexité : pour N utilisateurs il faut $\frac{N(N-1)}{2}$ clés

Notions de base-6-

Chiffrement symétrique

Un message chiffré avec la clé est déchiffré avec la même clé.

Le problème : comment transmettre la clé de façon sécurisée ?

Notions de base-7-

□*Clé asymétique*:

- lacktriangle On a une clé publique P_K et une autre clé privée S_k
 - \rightarrow La connaissance de P_K ne permet pas de déduire S_k

- L'algorithme de cryptographie asymétrique le plus connu est le RSA
- Avantage: Très sécurisé: on peut distribuer la clé publique sans risquer que les messages soient déchiffrés
- Désavantage: Le chiffrement par voie asymétrique est environ <u>1000 fois plus</u>
 <u>lent</u> que le chiffrement symétrique.

Attente du message

Chiffrement par substitution

Définition

- **Principe**: substituer un caractère ou un groupe de caractères par un autre dans le texte à chiffrer.
- Plusieurs types de chiffrement par substitution:
 - *Monoalphabétique*: remplacement de chaque lettre du message par une autre lettre de l'alphabet.
 - *Polyalphabétique*: c'est une suite de chiffrement momoalphabétique réutilisée périodiquement.
 - <u>Polygramme</u>: basé sur la substitution d'un groupe de caractères dans un message (texte claire) par un autre group de caractères.

Chiffrement par substitution simple

• **Principe :** chaque lettre du plaintext est remplacé par un autre de manière unique.

• Exemple:

Plaintext: a bcdefghijk lmnopqrstuvwx y z

Ciphertext: mnbvcxzasdfghjklpoiuytrewq

○ Texte claire: bob. How are you.

Texte crypté: nkn. Akr moc why

Chiffrement de César-1-

- \square Principe: Décaler les lettres de l'alphabet. Soit p l'indice de la lettre et kle décalage (alors k est la clé).
 - Chiffrement: $C = E(p) \equiv p + k[26]$
 - Déchiffrement: $p = D(C) \equiv C k[26]$
 - On a en max 25 clés
- → c'est une chiffrement mono-alphabétique: Dans un texte en clair, une lettre est toujours substituée par <u>la même lettre</u>.

Chiffrement de César-2-

□*Exemple:*

- Remplacer chaque lettre par celle qui la succède de trois → k=3.
- L'algorithme est le suivant:
 - Chiffrement: $C = E(p) = (p+3) \mod (26)$
 - Déchiffrement: $p = D(c) = (c 3) \mod(26)$
 - Texte claire: bonjour
 - Texte chiffré: ERQMRXU

Cryptanalyse du chiffrement Monoalphabétique-1-

□ Principe du cryptanalyse:

Calculer la fréquence d'apparition de chaque symbole dans le texte

crypté et le comparer aux fréquences d'apparition des lettres de

l'alphabet dans une langue particulière.

Cryptanalyse du chiffrement Monoalphabétique-3-

□ Technique de cryptanalyse:

- Trouvez les lettres, diagrammes et trigrammes les plus fréquents dans le texte chiffré
- 2. Suppositions en les associant à ceux les plus fréquents dans un texte claire (dans la langue choisi)

Cryptanalyse du chiffrement Monoalphabétique-3-

□En anglais:

- Les lettres les plus fréquemment utilisé sont : e, t, o, a, n, i, ...
- Les deux lettres (diagrammes) les plus fréquemment utilisé sont : th, in, er, re et an.
- Les trois lettres (trigrammes)) les plus fréquemment utilisé sont : the, ing, and et ion.

Cryptanalyse du chiffrement Monoalphabétique-4-

Table des fréquences d'apparition des lettres pour un texte français

Lettre	Fréquence %	Lettre	Fréquence %
Α	9.42	N	7.15
В	1.02	0	5.14
С	2.64	P	2.86
D	3.39	Q	1.06
E	15.87	R	6.46
F	0.95	S	7.90
G	1.04	Т	7.26
Н	0.77	U	6.24
ı	8.41	V	2.15
J	0.89	w	0.00
K	0.00	X	0.30
L	5.34	Υ	0.24
M	3.24	Z	0.32

Cryptanalyse du chiffrement Monoalphabétique-5-

□ Exemple: Texte chiffré

JTVMNKKTVLDEVVTLWTWITKTXUTLWJERUTVTWTHDXATLIUNEWV.

JTVIEVWELOWENLVVNOEDJTVLTPTXYTLWTWUTSNLITTVQXTVXUJX

WEJEWTONKKXLT.

Cryptanalyse du chiffrement Monoalphabétique-6-

Exemple: Analyse des fréquences de caractères du texte chiffré

Cryptanalyse du chiffrement Monoalphabétique-7-

Exemple: Comparaison des fréquences entre texte clair et chiffré

Cryptanalyse du chiffrement Monoalphabétique-8-

□ Exemple: début du déchiffrement:

JEVIEVWELOWENLVVNOEDJEVLEPEXYELWEWUESNLI

EEVQXEVXUJXWEJEWEONKKXLE.

Chiffrement affine-1-

- □ <u>C'est une chiffrement par substitution mono-alphabétique</u>: la lettre d'origine n'est remplacée que par une unique autre lettre
- \square Principe: Soit $(k_1, k_2) \in [1, 25]x[1, 25]$ les clés et xl'indice de la lettre. Alors k_i est le décalage.
 - **■** Chiffrement: $C = E(p) \equiv (k_1 x + k_2)[26]$
 - Déchiffrement: $M \equiv k_1^{-1}(C k_2)[26]$
 - On a en max 25 clés

Chiffrement affine-2-

□ Exemple: chiffrer le mot CODE grâce au chiffre affine de clef (17,3)

■ **Etape I:** On commence par remplacer chaque lettre par son rang dans l'alphabet en commençant au rang 0 (ou rang 1)

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

 \triangleright CODE \rightarrow 2; 14; 3; 4

Chiffrement affine-3-

■ Etape II: Appliquer ensuite la fonction affine

$$\geq$$
2, 14, 3, 4 \rightarrow 37,241,54, 71

■ Etape III: Prendre les restes dans la division par 26

Etape IV: Chiffrement du message

 $>11, 7, 2, 19 \rightarrow LHCT$

Chiffrement affine-4-

■ Etape V: Retrouvé k_1^{-1} (c'est l'inverse modulaire) qui vérifie

$$> k_1 k_1^{-1} \stackrel{\bigcirc}{=} 26 = 1$$

$$> k_1^{-1} = 23$$

- Etape VI: Déchiffrement
 - 1. Ôte k_2 à chaque nombre
 - 2. Les multiplier par k_1^{-1} =23
 - 3. Chercher les restes dans la division par 26

Chiffrement affine-5-

$$\triangleright$$
 LHCT \rightarrow 11, 7, 2, 19

$$>11, 7, 2, 19 \rightarrow 8, 4, -1, 16$$

$$>$$
 184, 92, -23, 368 \rightarrow 2, 14, 3, 4

$$\geq$$
 2, 14, 3, 4 \rightarrow CODE

Chiffrement de Vigenère-1-

- ☐ <u>C'est une chiffrement par substitution polyalphabétique</u>: basé sur l'utilisation d'une suite de chiffres monoalphabétiques réutilisés périodiquement.
 - → une lettre peut être chiffrée de façon différente selon sa position dans le texte
- ☐ Utilise la même clé pour le chiffrement et le déchiffrement
- □ <u>Principe</u>: soit un tableau bi-dimensionnel comporter en X et en Y les lettres de l'alphabet, de A à Z.
 - En X, les lettres sont celles du texte en clair,
 - en Y les lettres sont celles de la clé.

Chiffrement de Vigenère-2-

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	1	J	\mathbf{K}	${f L}$	\mathbf{M}	${f N}$	\mathbf{o}	${f P}$	\mathbf{Q}	${f R}$	\mathbf{s}	${\bf T}$	\mathbf{U}	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{Y}	\mathbf{z}
\mathbf{A}	A	В	C	D	\mathbf{E}	F	G	н	1	J	\mathbf{K}	L	м	N	О	Р	Q	\mathbf{R}	\mathbf{s}	\mathbf{T}	\mathbf{U}	\mathbf{v}	w	\mathbf{x}	Y	Z
\mathbf{B}	В	С	D	\mathbf{E}	F	G	Н	Ι	J	K	L	м	N	0	Р	Q	\mathbf{R}	S	Т	\mathbf{U}	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	A
\mathbf{C}	C	D	\mathbf{E}	F	G	н	Ι	J	K	L	м	N	О	Р	Q	\mathbf{R}	S	Т	U	\mathbf{v}	w	\mathbf{x}	Y	\mathbf{z}	Α	В
\mathbf{D}	D	\mathbf{E}	F	G	н	Ι	J	K	L	м	N	0	Р	Q	\mathbf{R}	S	Т	U	\mathbf{v}	w	X	\mathbf{Y}	Z	Α	В	C
\mathbf{E}	E	F	G	н	I	J	K	L	м	N	0	Р	Q	\mathbf{R}	S	Т	U	\mathbf{v}	w	X	Y	Z	Α	В	C	D
\mathbf{F}	F	G	н	I	J	K	L	м	N	О	Р	Q	\mathbf{R}	\mathbf{s}	Т	U	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	Α	В	$^{\rm C}$	D	\mathbf{E}
\mathbf{G}	G	н	Ι	J	K	L	\mathbf{M}	N	0	Р	Q	\mathbf{R}	S	\mathbf{T}	\mathbf{U}	\mathbf{v}	w	\mathbf{x}	\mathbf{Y}	\mathbf{z}	A	в	C	D	E	\mathbf{F}
\mathbf{H}	н	Ι	J	K	L	м	N	0	Р	Q	\mathbf{R}	S	т	\mathbf{U}	\mathbf{v}	w	X	Y	Z	Α	В	С	D	\mathbf{E}	F	G
\mathbf{I}	Ι	J	K	L	м	N	0	Р	Q	\mathbf{R}	S	Т	U	\mathbf{v}	w	X	Y	\mathbf{z}	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	\mathbf{H}
\mathbf{J}	J	K	\mathbf{L}	м	N	О	Р	Q	\mathbf{R}	\mathbf{s}	Т	U	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	A	В	$^{\rm C}$	D	\mathbf{E}	F	\mathbf{G}	н	1
\mathbf{K}	K	L	м	N	О	Р	Q	\mathbf{R}	S	Т	\mathbf{U}	\mathbf{v}	w	X	Y	Z	Α	В	С	D	\mathbf{E}	F	G	н	I	J
\mathbf{L}	L	\mathbf{M}	Ν	0	Р	Q	\mathbf{R}	S	\mathbf{T}	\mathbf{U}	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	Α	В	C	D	\mathbf{E}	F	G	Н	I	J	\mathbf{K}
\mathbf{M}	м	Ν	0	Р	Q	\mathbf{R}	\mathbf{s}	Т	\mathbf{U}	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{Z}	A	В	С	D	\mathbf{E}	\mathbf{F}	G	н	I	J	K	L
\mathbf{N}	N	О	Р	Q	R	S	\mathbf{T}	\mathbf{U}	\mathbf{v}	w	\mathbf{x}	Y	Z	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	Н	Ι	J	K	L	\mathbf{M}
\mathbf{o}	О	Р	Q	\mathbf{R}	S	\mathbf{T}	\mathbf{U}	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	Α	В	$^{\rm C}$	D	\mathbf{E}	F	\mathbf{G}	н	I	J	K	\mathbf{L}	м	N
\mathbf{P}	Р	Q	\mathbf{R}	S	Т	\mathbf{U}	\mathbf{v}	w	X	\mathbf{Y}	\mathbf{z}	A	В	С	D	\mathbf{E}	F	\mathbf{G}	н	Ι	J	K	L	\mathbf{M}	N	0
\mathbf{Q}	Q	\mathbf{R}	\mathbf{s}	Т	U	\mathbf{v}	w	\mathbf{x}	\mathbf{Y}	Z	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	н	Ι	J	\mathbf{K}	\mathbf{L}	\mathbf{M}	N	О	P
\mathbf{R}	\mathbf{R}	\mathbf{S}	\mathbf{T}	U	\mathbf{v}	w	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Α	В	Ü	D	\mathbf{E}	\mathbf{F}	G	Н	I	J	\mathbf{K}	\mathbf{L}	\mathbf{M}	Ν	0	Р	Q
\mathbf{s}	S	Т	\mathbf{U}	\mathbf{v}	w	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Α	В	U	D	\mathbf{E}	\mathbf{F}	G	Н	Ι	J	\mathbf{K}	\mathbf{L}	\mathbf{M}	Ν	0	Р	Q	\mathbf{R}
\mathbf{T}	т	\mathbf{U}	\mathbf{v}	w	\mathbf{x}	\mathbf{Y}	\mathbf{z}	Α	В	С	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	н	I	J	\mathbf{K}	L	\mathbf{M}	N	0	Р	Q	\mathbf{R}	\mathbf{s}
\mathbf{U}	\mathbf{U}	\mathbf{v}	w	\mathbf{X}	\mathbf{Y}	\mathbf{z}	Α	В	С	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	I	J	K	L	\mathbf{M}	N	0	Р	Q	\mathbf{R}	\mathbf{S}	\mathbf{T}
\mathbf{v}	\mathbf{v}	w	X	\mathbf{Y}	Z	Α	В	$^{\rm C}$	D	\mathbf{E}	\mathbf{F}	G	н	Ι	J	\mathbf{K}	L	\mathbf{M}	\mathbf{N}	О	Р	Q	\mathbf{R}	\mathbf{s}	т	\mathbf{U}
w	w	X	\mathbf{Y}	\mathbf{z}	Α	В	$^{\rm C}$	D	\mathbf{E}	F	\mathbf{G}	н	Ι	J	K	L	м	N	О	Р	Q	\mathbf{R}	\mathbf{s}	\mathbf{T}	U	v
\mathbf{x}	X	\mathbf{Y}	\mathbf{z}	A	В	$^{\rm C}$	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	н	I	J	\mathbf{K}	L	\mathbf{M}	N	О	Р	Q	\mathbf{R}	\mathbf{s}	\mathbf{T}	\mathbf{U}	\mathbf{v}	w
\mathbf{Y}	\mathbf{Y}	\mathbf{z}	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	н	Ι	J	\mathbf{K}	\mathbf{L}	\mathbf{M}	Ν	О	Р	Q	\mathbf{R}	S	Т	\mathbf{U}	\mathbf{v}	W	X
\mathbf{z}	\mathbf{z}	Α	В	$^{\rm C}$	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	\mathbf{I}	J	\mathbf{K}	\mathbf{L}	\mathbf{M}	N	О	Р	Q	\mathbf{R}	\mathbf{s}	\mathbf{T}	\mathbf{U}	\mathbf{v}	W	\mathbf{x}	\mathbf{Y}

Chiffrement de Vigenère-3-

• Chiffrement:

- 1. Faire correspondre toutes les lettres du texte clair avec les lettres de la clé.
- 2. Si la clé est inférieure en taille au texte en clair → répète la clé autant de fois que nécessaire.
- Exemple: texte à chiffrer "Chiffre de Vigenere",la clé "clé "

Texte en claire : Chiffre de Vigenere

Clé: cleclec le clecl e cl

- 3. La i éme lettre chiffré est l'intersection entre la ligne du i éme lettre du texte en claire et la ligne du i ème lettre du clé.
- → Texte chiffré: e s m h q v g hg zkrippvg c l e c l e c le clecle

Chiffrement de Vigenère-4-

- *Déchiffrement*: on fait l'inverse mais cette fois on regarde dans <u>la colonne clé</u>
 - 1. On prend la i éme lettre du clé, et on suit la ligne jusqu'à trouver la i éme lettre du texte chiffré
 - 2. On remonte pour trouver la i éme lettre du texte en claire
 - → Pour notre exemple, la premiere lettre du clé est « C », on prend la lettre c et on suit la ligne jusqu'à trouver la lettre du texte chiffré, E ici.

Chiffrement de Vernam-1-

- □ Chiffrement de Vernam ou aussi appelé Chiffrement à masque jetable (One Time Pad) est une chiffrement polyalphabétique.
- □ Principe: on choisit un masque (une suite de bits) aléatoire (la clé), on convertit le texte en clair en une chaîne de bits (suivant le **code ASCII** par exemple) puis on effectue un OU exclusif (XOR) entre ces deux chaînes de bits.
 - Chiffrement: C = M ⊕ Km
 - Déchiffrement: M = C ⊕ Km

Chiffrement de Vernam-2-

- ☐ Chiffrement parfait
 - La clé est aussi longue que le message à chiffrer
 - La clé est nouvelle pour chaque nouveau message
- ☐ Confusion totale
 - Chiffrement complètement aléatoire
- □ Diffusion totale
 - La clé n'est jamais réutilisée : résultat différent à chaque fois.

Chiffrement de Vernam-3-

☐Exemple:

- M=SALUT
- → Conversion en binaire
 - →M=01010011 01000001 01001100 01010101 01010100

XOR

- Clé générée aléatoirement
 - → K=01110111 01110111 00100100 00011111 00011010
 - →C=00100100 00110110 01101000 01001010 01001110
- → Conversion en caractère
 - →C= (M XOR k)= \$6jJM

Chiffrement par transposition-1-

□ <u>Chiffrement par transposition:</u> c'est une réarrangement des

éléments du texte clair.

□ Exemple: technique de Rail fence

• Le texte clair est <u>réécrit comme une séquence de lignes</u>, puis <u>réordonnée</u> <u>comme une séquence des colonnes</u>

Chiffrement par transposition-2-

□*Exemple:*

```
      Key:
      4
      3
      1
      2
      5
      6
      7

      Texte claire:
      a
      t
      t
      a
      c
      k
      p

      o
      s
      t
      p
      o
      n
      e

      d
      u
      n
      t
      l
      t
```

Texte chiffré: TTN APT TSU AOD COI KNL PET