UMF-exam

DGAP

May 2019

Внимание! Составители не несут никакой ответственности за написанное! Мы попытаемся все перепроверить, но будьте готовы ко всякому. Лучшим решением будет посомтреть все лекции, разобраться со всем там сказанным, а затем уже пользоваться этим файлом. Все, кто взял себе билет и не успел в дедлайн - пидорасы. Примечание для составителей: используйте окружение \paper{homep билета}{формулировка билета}, чтобы автоматически добавить билет в оглавление, выделить ему новую страницу, оформить все билеты одинаковым шрифтом.

Для теорем используйте overleaf guide

Содержание

5]	L -
6.]	L 4
]	
]	
																											4	
																											2	
																											2	
																											4	
																											4	
																											2	
22		 											 							 						 		3
23																												3

1. Постановка задачи Коши для гиперболического в заданной области линейного дифференциального уравнения второго порядка с двумя независимыми переменными. Полуклассическое решение решение этой задачи в характеристических переменных, его существование и единственность

Классификация Основное уравнение:

$$\left(\widehat{L} + c(x)\right)u(x) = \left(\sum_{i,j=1}^{m} a_{ij}(x)\frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{m} b_k(x)\frac{\partial}{\partial x_i} + c(x)\right)u(x) = f(x)$$

 $x \in G$; $a_{ij}, b_k, c, f \in C(G)$; $u \in C^2(G)$, удовлетворяющая основному уравнению, называется **решением** поставленной задачи. G - некоторая область в \mathbb{R}^m

Рассмотрим матрицу $(A(x))_{ij} = a_{ij}$, в общем случае она не является симметричной, но её всега можно сделать такой, в силу равенства смешанных производных $(\widetilde{A}_{ij} = (A_{ij} + Aji)/2$, уравнение не изменится) далее будем считать её симметричной, тогда:

- \bullet если $\det A = 0$, то уравнение называется **параболическим** в точке
- если $\det A \neq 0$ и A строго знакоопределена (все собственные значения одн ого знака), то уравнение называется **эллиптическим** в точке
- если $\det A \neq 0$ и A строго знаконеопределена (существуют собственные значения разных знаков), то уравнение называется **гиперболическим** в точке

Если какое-то из условий выполняется во всех точках области, то говорят, что уравнение имеет такой тип в области.

Преобразования основного уравнения уравнения при гладкой замене в области $G \subset \mathbb{R}^m$. Рассматриваем $\xi = \xi(x)$ — взаимооднозначную функцию, $\xi \in C^2(G)$. И $J = \frac{\partial \xi}{\partial x} = \frac{\partial (\xi_1, \dots, \xi_m)}{\partial (x_1, \dots, x_m)}$ не вырождена в G. Обозначим $\xi(G) = D \subset \mathbb{R}^m$. Тогда существует $\xi^{-1} = x : D \to G$. Поймем, как приобразуется основное уравнение:

$$u(x) = u(x(\xi)) = v(\xi)$$

$$\frac{\partial u}{\partial x_i} = \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i}$$

$$\frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{s,l=1}^m \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j}$$

$$\hat{L}u(x) = \sum_{i,j}^m \sum_{s,l=1}^m a_{ij}(x) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{i,j=1}^m \sum_{s=1}^m a_{ij}(x) \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m \sum_{s=1}^m b_k(x) \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i} =$$

$$= \sum_{s,l=1}^m \left(\sum_{i,j}^m a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} + \sum_{s=1}^m \left(\sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial v}{\partial \xi_s}$$

$$(1)$$

Получаем выражения для коэффицентов в новых координатах:

$$\tilde{c}(\xi) = c(x(\xi))$$

$$\tilde{b}_s(\xi) = \sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_i}$$

$$\tilde{a}_{sl} = \sum_{i,j}^m \frac{\partial \xi_s}{\partial x_i} a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \Rightarrow \boxed{\tilde{A} = JAJ^T}$$

Для диагональных элементов A: $\tilde{a}_{ss} = (\nabla_x \xi_s)^T A (\nabla_x \xi_s)$

Постановка задачи Коши для уравнения

$$\left(\sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{2} b_k(x) \frac{\partial}{\partial x_i} + c(x)\right) u(x) = f(x)$$

Введем обозначения $x_1 = x$, $x_2 = y$. В G рассматриваем задачу Коши с граничными условиями на γ :

$$u|_{\gamma} = u_0 \in C^1$$

$$\frac{\partial u}{\partial n}|_{\gamma} = u_1 \in C$$

$$u \in C^2(G \setminus \gamma) \cap C^1(G)$$

Пусть в точке $(x_0, y_0) \in G$ $a_{11} \neq 0$. В силу непрерывности \exists окретсность $U_0 \subset G$, в которой $a_{11} \neq 0$. Пусть $F \in C^1(U_0)$ и $\nabla F \neq 0$ в U_0 .

Хотим занулить диагональные элементы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$. Для этого сделаем характеристическую замену. Требуем $(\nabla F)^T A(\nabla F) = 0$ – как мы видели, такая замена занулит диагональный элемент. $\nabla F = \begin{pmatrix} F_x' \\ F' \end{pmatrix}$. Получаем уравнение

$$a_{11}(F_x')^2 + 2a_{12}F_x'F_y' + a_{22}(F_y')^2 = 0$$

Предположим, что $F'_y \neq 0$ в U_0 , если это не так, то переобозначим U_0 . По теореме о неявной функции, уравнение F(x,y) = const задает в $U_1 \subset U_0$ функцию y = y(x). Причем дифференцируя обе части вырожения F(x,y(x)) = const, получаем

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'}$$

Что дает

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}$$

Причем $a_{12}^2 - a_{11}a_{22} > 0$, так как det A < 0 в силу знаконеопределенности A. Тогда пусть $F_+(x,y) = const$ и $F_-(x,y) = const$ интегральные кривые этих решений. Определим характеристическую замену

$$\begin{cases} \xi = F_{+}(x, y) = const = \xi(x, y) \\ \eta = F_{-}(x, y) = const = \eta(x, y) \end{cases}$$

В характеристических переменных в окрестности $V(\xi_0, \eta_0), \, \xi_0 = \xi(x_0, y_0), \, \eta_0 = \eta(x_0, y_0)$ уравнение запишется как

$$2\tilde{a}_{12}v_{\xi\eta}'' + \tilde{b}_{1}v_{\xi}' + \tilde{b}_{2}v_{\eta}' + \tilde{c}v = \tilde{f}$$

Разделим на $2\tilde{a}_{12}$ и переобозначим коэффиценты.

$$v_{\xi\eta}'' + d_1 v_{\xi}' + d_2 v_{\eta}' + ev = h$$

Решение называется полуклассическим, если $v \in C^1(V)$ и $\exists v_{\xi\eta} = v_{\eta\xi} \in C(V)$ и удовлетворяет в V уравнению выше. Под действием характеристической замены γ перейдет в $\tilde{\gamma}$.

$$\gamma = \left\{ \begin{pmatrix} x_{\gamma}(t) \\ y_{\gamma}(t) \end{pmatrix} \mid t \in T \right\}$$

Т – числовой интервал. Тогда в характеристических координатах

$$\tilde{\gamma} = \left\{ \begin{pmatrix} \xi_{\gamma}(t) = \xi(x_{\gamma}(t), y_{\gamma}(t)) \\ \eta_{\gamma}(t) = \eta(x_{\gamma}(t), y_{\gamma}(t)) \end{pmatrix} \mid t \in T \right\}$$

 γ не должна касаться характеристик. Условие не касания характеристик записывается как

$$\dot{\xi}_{\gamma} = \xi_x \dot{x}_{\gamma} + \xi_y \dot{y}_{\gamma} = \left(\nabla \xi, \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}\right) \neq 0$$

$$\dot{\eta}_{\gamma} = \eta_x \dot{x}_{\gamma} + \eta_y \dot{y}_{\gamma} = \left(\nabla \eta, \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}\right) \neq 0$$

Значит по теореме об обратной функции $\exists I: \xi_0 \in int I$ и $K: \eta_0 \in int K$ отрезки, на которых функции обратимы. Введём $\varphi(\xi) = \eta_\gamma(\xi_\gamma^{-1}(\xi))$ и $\psi(\eta) = \xi_\gamma(\eta_\gamma^{-1}(\eta))$ Перепишем граничные условия:

$$v|_{\gamma} = v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I)$$

$$u_1 = \left. \frac{\partial u}{\partial n} \right|_{\gamma} = \frac{\partial u}{\partial (x, y)} {\left(-\dot{y}_{\gamma}(t) \atop \dot{x}_{\gamma}(t) \right)} \frac{1}{\sqrt{\dot{x}_{\gamma}^2 + \dot{y}_{\gamma}^2}}$$

$$\frac{\partial u}{\partial(x,y)} = \frac{\partial v}{\partial(\xi,\eta)} J, J = \frac{\partial(\xi,\eta)}{\partial(x,y)}$$

Подставляя эту замену во второе условие и дифференцируя первое, получаем систему:

$$\begin{cases} \frac{\partial v}{\partial(\xi,\eta)} \begin{pmatrix} 1\\ \varphi'(\xi) \end{pmatrix} = v'_0(\xi) \\ \frac{\partial v}{\partial(\xi,\eta)} J \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}_{\gamma}(t)\\ \dot{y}_{\gamma}(t) \end{pmatrix} = w_1(\xi_{\gamma}^{-1}(\xi)) \end{cases}$$

Матрица $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ делает из вектора касательной вектор нормали к $\tilde{\gamma}$ Исследуем линейную зависимость столбцов $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $J \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$. Если они линейно независимы, то v'_{ξ} и v'_{η} будут найдены как непрерывные функции. $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $\begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$ это касательные к $\tilde{\gamma}$, запсанные в разных параметризациях, таким образом они параллельны.

$$\begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix} = J^{-1} \begin{pmatrix} \dot{\xi}_{\gamma}(t) \\ \dot{\eta}_{\gamma}(t) \end{pmatrix} \parallel J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$$

Исследуем линейную независимость $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $J\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J^{-1}\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ Если вдруг

$$\exists \lambda = \lambda(\xi) : J \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$$

ТО

$$J\left(\begin{pmatrix}0&1\\-1&0\end{pmatrix}+\lambda\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)J^{-1}\begin{pmatrix}1\\\varphi'(\xi)\end{pmatrix}=0$$

Но

$$\begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1 > 0$$

а также J и J^{-1} не вырождены, следовательно произведение дает невырожденную матрицу. А невырожденная матрица на нетривиальном векторе нуля давать не может. Получили противоречие, такого λ не существует. Следовательно, мы можем разрешить систему, поэтому будем считать, что нам известны граничные условия в терминах характеристических переменных

$$\begin{cases} v_{\xi\eta}'' + d_1 v_{\xi}' + d_2 v_{\eta}' + ev = h \\ v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I) \\ v'(\xi, \varphi(\xi)) = v_1(\xi) \in C(I) \end{cases}$$

Пусть имеется решение. Возьмем любую $(\xi,\eta)\in (I\times K)\backslash\gamma$. И рассмотрим "кривой треугольник" $D(\xi,\eta)$ как на картинке. Тогда мы можем проинтегрировать вторую производную по этому треугольнику.

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = -\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, (d_1 v_{\xi}' + d_2 v_{\eta}' + ev - h)$$

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \, \int\limits_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \left(v_{\widehat{\xi}}(\widehat{\xi},\varphi(\widehat{\xi})) - v_{\widehat{\xi}}(\widehat{\xi},\eta) \right) = \int\limits_{\psi(\eta)}^{\xi} v_1(\alpha) \, d\alpha - v(\xi,\eta) + v_0(\psi(\eta))$$

Выражаем $v(\xi, \eta)$

$$v(\xi,\eta) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (d_1 v_{\xi}' + d_2 v_{\eta}' + ev - h)$$

Покажем, что решение существует и единственно Рассмотрим отображение $\Phi:C^1(\Pi)\longrightarrow C^1(\Pi),\ \Pi=I\times K$

$$\Phi(\omega) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (d_1 \omega_{\xi}' + d_2 \omega_{\eta}' + e\omega - h)$$

Непосредственно дифференцируя, проверяем, что при естественной гладкости параметров для $v = \Phi(\omega) \exists v_{\xi\eta} = v_{\eta\xi}$ и справеливо вложение $v \in C^1(\Pi)$. Тогда если существует w такое, что $w = \Phi(w)$, то w будет полуклассическим решение.

Принцип сжимающих отображений Банаха (Дается без докозательства) 1. (Z, ρ) – полное метрическое пространство.

F — сжимающее отображение, т.е. $\exists \ q \in [0,1)$ такое что $\rho(F(z_1),F(z_2)) \leqslant q\rho(z_1,z_2)$. Тогда $\exists! \ z^* \in Z$, такое что $F(z^*) = z^*$.

Рассмотрим $\Pi_0 = I_0 \times K_0 \in \Pi$, $I_0 = \psi(K_0)$, $K_0 = \varphi(I_0)$. Введем метрику

$$\rho(v, w) = \max_{\Pi_0} |v - w| + \max_{\Pi_0} |v_{\xi} - w_{\xi}| + \max_{\Pi_0} |v_{\eta} - w_{\eta}|$$

 $(C(\Pi_0), \rho)$ является полным. Покажем, что отображение Φ является сжимающим. Для этого проверяем, что справедливы следующие соотношения.

$$M = \max(\max_{\Pi} |d_1|, \max_{\Pi} |d_2|, \max_{\Pi} |e|)$$

$$|\Phi(w) - \Phi(v)|(\xi, \eta) \leqslant |I_0||K_0|M\rho(w, v)$$

$$|\Phi_{\xi}(w) - \Phi_{\xi}(v)|(\xi, \eta) \leqslant |K_0|M\rho(w, v)$$

$$|\Phi_{\eta}(w) - \Phi_{\eta}(v)|(\xi, \eta) \leqslant |I_0|M\rho(w, v)$$

Тогда

$$\rho(\Phi(z_1), \Phi(z_2)) \leq M(|I_0||K_0|+|I_0|+|K_0|)\rho(w, v)$$

Можем подобрать $|I_0|$ и $|K_0|$ так, что отображение будет сжимающим. Тогда решение существует и единственно.

4. Нефинитность классического преобразования Фурье нетривиальной функции из $\mathcal{D}(\mathbb{R}).$ Простр Π . Шварца $\mathcal{S}(\mathbb{R}^m)$ и плотность $\mathcal{D}(\mathbb{R}^m)$ в нем. Классическое преобразование Фурье как линейное непрерывное преобразование пространства $\mathcal{S}(\mathbb{R}^m)$ и теорема обращения.

4.0. Вспомогательные теоремы

В этом билете мы будем много пользоваться всякой констовской херней.

Т4.0.1 - Теорема Лебега об ограниченной сходимости (без док-ва)

- 1) Имеем последовательность $f_n: \mathbb{R}^m \to \mathbb{C}$, которая почти всюду сходится: $f_n \to f$ в \mathbb{R}^n
- 2) $\exists h \in L_1(\mathbb{R}^m) : |f_n| \leq h$ почти всюду в $x \in \mathbb{R}^m \forall n$.

Тогда
$$f_n$$
 и $f \in L_1(\mathbb{R}^m)$, а также $\int_{\mathbb{R}^m} f_n \longrightarrow \int_{\mathbb{R}^m} f$ при $n \to \infty$

Т4.0.2 - Теорема Фубини (без док-ва)

Имеем
$$f: \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{C}$$
 - измерима по Лебегу; Притом такая, что $\int\limits_{\mathbb{R}^m} dx \int\limits_{\mathbb{R}^l} dy |f(x,y)| < +\infty$.

Тогда
$$f \in L_1(\mathbb{R}^m \times \mathbb{R}^l)$$
 и $\int_{\mathbb{R}^m \times \mathbb{R}^l} f(x,y) dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^l} dy f(x,y) = \int_{\mathbb{R}^l} dy \int_{\mathbb{R}^m} dx f(x,y)$

Л4.0.1 - Свойство интеграла Лебега о его интегрируемости в среднем (без док-ва)

$$f \in L_1(\mathbb{R}^m \times \mathbb{R}^l) \Rightarrow \int_{\mathbb{R}^m} |f(x+z) - f(x)| dx \longrightarrow 0$$
 при $z \to 0$ в \mathbb{R}^m .

Т4.0.3 - Теорема Римана об осцилляции

$$f \in L_1(\mathbb{R}^m) \Rightarrow \int_{\mathbb{R}^m} e^{i(x,y)} f(x) dx \longrightarrow 0$$
 при $|y| \to \infty$.

Док-во: пользуемся **Л4.0.1**. Рассмотрим
$$\int\limits_{\mathbb{T}_{p,y}} e^{i(x,y)} f(x) dx$$
 с $x = z + \frac{\pi y}{|y|^2}$.

Получим
$$\int\limits_{\mathbb{R}^m} e^{i(z,y)}e^{i\pi}f(z+\frac{\pi y}{|y|^2})dz=-\int\limits_{\mathbb{R}^m} e^{i(x,y)}f(x+\frac{\pi y}{|y|^2})dx$$
. Последний интеграл получается просто переобозначением индекса с z на x .

чением индекса с z на x.

Значит мы получили
$$\frac{1}{2} \int e^{i(x,y)} f(x) dx = \int e^{i(x,y)} (f(x) - f(x + \frac{\pi y}{2})) dx$$

чением индекса с
$$z$$
 на x . Значит, мы получили $|2\int e^{i(x,y)}f(x)dx|=|\int e^{i(x,y)}(f(x)-f(x+\frac{\pi y}{|y|^2}))dx|\leq \int\limits_{\mathbb{R}^m}(f(x)-f(x+\frac{\pi y}{|y|^2})dx.$

По $\Pi 4.0.1$ получаем справа 0 при $|y| \to \infty$.

4.1. Из лекции 10 - нефинитность Фурье и пространство Шварца.

Рассмотрим классическое Фурье для $f \in L_1(\mathbb{R}^m)$.

$$F[f](y) = \int\limits_{\mathbb{R}^m} e^{i(x,y)} f(x) dx, y \in \mathbb{R}^m$$
. Заметим, что подинтегральная функция $\in L_1(\mathbb{R}^m) \forall y \in \mathbb{R}^m$.

Л4.1.1 - Непрерывность

Преобразование непрерывно: если $y \to y_0$ в \mathbb{R}^m , то $F[f](y) \to F[f](y_0)$.

Док-во: $|e^{i(x,y)}f(x)| \le f(x) \equiv h(x)$ из **Т4.0.1** (Т Лебега). Пользуемся ей:

$$\lim_{y \to y_0} F[f](y) = \int e^{i(x,y_0)} f(x) dx = F[f](y_0) \, \, \spadesuit.$$

Мы можем рассмотреть Фурье как функционал, которая будет действовать на пробные функции.

$$F[f](y) \subset Loc_1(\mathbb{R}^m) \subset \mathcal{D}'(\mathbb{R}^m)$$

$$< F[f], \varphi > = \int_{\mathbb{R}^m} dy F[f](y) \varphi(y) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(x,y)} f(x) \varphi(y)$$

$$\int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx |e^{i(x,y)} f(x) \varphi(y)| = \int_{\mathbb{R}^m} dy |\varphi(y)| \int_{\mathbb{R}^m} dx |f(x)| < +\infty.$$
Here a very eq. T. (Dyfwyn, (T4.0.2)):

$$\int_{\mathbb{D}_m} dy \int_{\mathbb{D}_m} dx |e^{i(x,y)} f(x) \varphi(y)| = \int_{\mathbb{D}_m} dy |\varphi(y)| \int_{\mathbb{D}_m} dx |f(x)| < +\infty.$$

$$\int\limits_{\mathbb{D}_m} dx f(x) \int\limits_{\mathbb{D}_m} dy e^{i(x,y)} \varphi(y) = \int\limits_{\mathbb{D}_m} dx f(x) F[\varphi](x) = < f, F[\varphi] >$$

Обратим внимание, что Т Фубини прекрасно применяется, потому что $f(x) \in L_1(\mathbb{R}^m)$, а $F[\varphi](x) \in BC(\mathbb{R}^m)$ - пространство непрерывных ограниченных функций. Значит, подинтегральная функция тоже $\in L_1(\mathbb{R}^m)$.

Рассмотрим некую φ из $\mathcal{D}(\mathbb{R}^m)$. Пусть $supp(\varphi) \subset B_R(0)$ - шар радиуса R с центром в нуле. Тогда $F[\varphi](x) = \int\limits_{B_R(0)} dy(iy)e^{i(x,y)}\varphi(y)$, и поскольку $\varphi(y) \in C^\infty(\mathbb{R}^m)$, то по теореме о дифф. по параметру $F[\varphi] \in C^\infty(\mathbb{R}^m) \Rightarrow$

$$\partial_x^{\alpha}(F[\varphi](x)) = \int_{B_R(0)} dy (iy)^{\alpha} e^{i(x,y)} \varphi(y) = F[(iy)^{\alpha} \varphi(y)](x).$$

Финитность такого преобразования Фурье благополучно теряется; об этом следующая теорема.

Т4.1.1 - Нефинитность Фурье

 $\forall \varphi \in \mathcal{D}(\mathbb{R}^m) : F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \hookrightarrow \varphi \equiv 0.$

Док-во (в 1D): $F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \Rightarrow \exists R > 0 : F[\varphi](y) = 0 \ \forall |y| \geq R;$ аналогично $\varphi(x) = 0 \ \forall |x| \geq r$

$$\int dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} x^k \varphi(x)$$

 $|\frac{(iy)^k}{k!}x^k \varphi(x)| \leq \frac{|y|^k r^k}{k!} \max_{[-r;r]} |\varphi(x)|$ - т. е. получились члены равномерно сходящегося ряда (по Т Вейерштрасса). Значит, можно переставить интеграл и ряд по Т об интегрировании равномерно сходящихся рядов.

$$\sum_{k=0}^{\infty} \frac{(iy)^k}{k!} \int\limits_{-r}^r x^k \varphi(x) dx = 0 \ \forall |y| \geq R.$$
 Тогда по Т о единственности степ. ряда
$$\int\limits_{-r}^r x^k \varphi(x) dx = 0 \ (*)$$

Разложим в Фурье по основной триг. системе на [-r;r]. Её можно записать как $\{e^{\frac{i\pi sx}{r}}; x \in [-r;r]; s \in \mathbb{Z}\}$.

$$\varphi(x)=\sum_{m=-\infty}^{+\infty} \varphi_m e^{rac{i\pi mx}{r}} \; \forall x \in [-r;r]$$
 - равн. сх. триг. ряд Фурье на отрезке.

$$\varphi_m = \frac{\int\limits_{-r}^{r} e^{-\frac{i\pi mx}{r}}}{2r} = \frac{1}{2r} \int\limits_{-r}^{r} dx \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \frac{x^k \varphi(x)}{k!}.$$
 Всё это дело сходится равномерно по признаку Вейерштрасса, а

значит, по Т об интегрировании равномерно сходящихся рядов ряд и интеграл можно переставить.

$$\varphi_m = \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \int\limits_{-r}^r x^k \varphi(x) dx = 0 \ (*) \ \forall m \in (Z)$$
 Значит, если все коеф. $\varphi_m = 0$, то $\varphi \equiv 0$.

Как дышать? Надо вводить другое пространство, из которого мы не будем вылетать после Фурье. Это есть не что иное, как пространство Шварца.

Опр. 1 Пространство $\mathcal{S}(\mathbb{R}^m)$ Шварца пробных функций задается как $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^{\infty}(\mathbb{R}^m) | \forall \alpha, \beta \in \mathbb{N}_0^m \}$ $x^{\beta} \partial_x^{\alpha} \varphi(x) \longrightarrow 0 \ \forall |x| \to \infty \}$. Здесь α, β - мультииндексы.

Опр. 2 А еще можно задать пространство так: $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^{\infty}(\mathbb{R}^m) | \forall \alpha \in \mathbb{N}_0^m \ \forall p \in \mathbb{R} \ |x|^p \partial_x^{\alpha} \varphi(x) \longrightarrow 0 \ \forall |x| \rightarrow \infty \}.$

Л4.1.2 - Эквивалентность определений

$\mathbf{1} o \mathbf{2}$:

$$|x|^p \le m^{\frac{p}{2}} \max_{k=1..m} |x_k^p| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p$$

$$|x|^p |\partial_x^\alpha \varphi| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p |\partial_x^\alpha \varphi(x)| \longrightarrow 0 \ \forall |x| \to \infty \}. \ \spadesuit$$

$\mathbf{2} \, o \, \mathbf{1}$:

 $\forall \alpha, \beta \in \mathbb{N}_0^m$:

$$|x^{\beta}\partial_{x}^{\alpha}\varphi| = |x_{1}|^{\beta_{1}}..|x_{m}|^{\beta_{m}}|\partial_{x}^{\alpha}\varphi| \leq |x|^{|\beta|}\partial_{x}^{\alpha}\varphi \longrightarrow 0 \ \forall |x| \to \infty\}. \ \spadesuit$$

Т4.1.2 - Инвариантность относительно Фурье

 $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$

Док-во:

$$F[\varphi] = \int_{\mathbb{R}^m} e^{i(x,y)} \varphi(x) dx.$$

 $\partial_y^{\alpha}e^{i(x,y)}\varphi(x)=|(ix)^{\alpha}\varphi(x)e^{i(x,y)}|\leq |x|^{\alpha}|\varphi(x)|$ Так как $\varphi\in(S)$, то $(1+|x|^{2m})|x|^{\alpha}|\varphi(x)|\to 0$ и принадлежит $C(\mathbb{R}^m)$. Отсюда по Т Вейерштрасса имеем ограниченность $|x|^{\alpha}|\varphi(x)|\leq \frac{M}{1+|x|^{2m}}$.

Тогда по признаку Вейерштрасса в силу абс. интегрируемости $\int_{-\infty}^{\infty} \frac{dx}{1+|x|^{2m}}$ мы получим равномерную по y сходи-

мость интеграла $\int dy \partial_y^{\alpha} e^{i(x,y)} \varphi(x) dx$. Значит, можно дифференциировать по параметру.

Теперь разберёмся со степенью: $y^{\beta}F[(ix)^{\alpha}\varphi(x)](y)$; обозначим $\psi(x)=(ix)^{\alpha}\varphi(x)$

Проинтегрировав по частям $|\beta|$ раз, получим $F[\partial_x^\beta\psi](y)=(-iy)^\beta F[\psi](y)$. А значит, $y^\beta F[\psi](y)=i^\beta F[\partial_x^\beta\psi]$.

В итоге по Т Римана об осцилляции (**T4.0.3**) $i^{\beta}F[\partial_x^{\beta}\psi] \longrightarrow 0$ при $|y| \to \infty$ \spadesuit

Опр. 3 $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{S}(\mathbb{R}^m)$, если $\forall \alpha, \beta \in \mathbb{N}_0^m \ x^\beta \partial_x^\alpha \varphi_n(x) \longrightarrow x^\beta \partial_x^\alpha \varphi(x)$ при $n \to \infty$. Две стрелки обозначают равномерную сходимость.

$\Pi 4.1.3$ - Плотность $\mathcal S$ в $\mathcal D$

 $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{S}(\mathbb{R}^m)$, если $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{D}(\mathbb{R}^m)$

Док-во:

$$\sup_{\mathbb{R}^m} [|x|^p |\partial_x^{\alpha}(\varphi_n - \varphi)|] \le R^p \max_{B_R(0)} |\partial_x^{\alpha}(\varphi_n - \varphi)| \, \spadesuit$$

Отсюда тут же следует, что \mathcal{S}' - это подмножество функционалов \mathcal{D}' , которые работают на суженном пространстве, ведь из сходимости в \mathcal{D} следует сходимость в \mathcal{S} .

4.2. Из лекции 11 - Классическое преобразование Фурье как линейное непрерывное преобразование пространства + Т обращения

Очевидно, что классическое преобразование Фурье линейно. Покажем его непрерывность.

Л4.2.1 - Непрерывность

Если $\varphi_n \to \varphi$ в $S(\mathbb{R}^m)$, то $\forall \alpha, \beta \in \mathbb{N}_0^m y^\beta \partial^\alpha F[\varphi_n - \varphi](y) \longrightarrow 0$ по $y \in \mathbb{R}^m$.

Проделаем те же вычисления, что и в Т4.1.2:

$$y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[x^{\alpha}(\varphi_n - \varphi)(x)](y)$$

$$F[\partial^{\beta}\psi](y) = -(iy)^{\beta}F[\psi]$$

Соберём эти два соотношения в одно: $y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)=-(i)^{(\beta+\alpha)}F[\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi)(x))](y)$ По определению сходимости в \mathcal{S} $|x|^{p}\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi))\longrightarrow 0$ в \mathbb{R}^{m} при $n\to\infty$; тогда выбирая p=0,2m, получим: $(1+|x|^{2m})\partial^{\beta}(x^{\alpha}(\varphi_n-\varphi)) \leq \varepsilon \ \forall n \geq N(\varepsilon) \ \forall x \in \mathbb{R}^m.$

Окончательно $|y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)| \leq \int\limits_{\mathbb{R}_{nm}} |y^{\beta}\partial^{\alpha}(\varphi_{n}-\varphi)(x)| dx \leq \int\limits_{\mathbb{R}_{nm}} \frac{\varepsilon}{1+|x|^{2m}} dx \longrightarrow 0$ при $\varepsilon \to 0$. То есть, наш интеграл

равномерно сходится к нулю и тогда $F[\varphi_n] - F[\varphi]$ в $\mathcal{S}(\mathbb{R}^m)$.

Т4.2.1 - Т обращения: main

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int_{\mathbb{R}^m} F[\varphi](y) dy = (2\pi)^m \varphi(0)$$

док-во.
$$\forall \varphi, \psi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int \varphi(y) F[\psi](y) dy = \int F[\varphi](x) \psi(x) dx \text{ по T Фубини (T4.0.2), т.к. } \varphi, \psi \in \mathcal{S}(\mathbb{R}^m); F[\varphi], F[\psi] \in L_1$$
 Введём специальную функцию $\psi_{\varepsilon} \stackrel{def}{=} e^{-\varepsilon |x|^2} \in \mathcal{S}(\mathbb{R}^m) \ \forall \varepsilon > 0.$ Фурье от этой функции считается тупо в лоб с

выделением полного квадрата показателя ехр.

$$F[\psi_{\varepsilon}](y) = \int_{\mathbb{R}^m} dx e^{i(xy)} e^{-\varepsilon|x|^2} = \frac{1}{\sqrt{\varepsilon}^m} \int_{\mathbb{R}^m} dz e^{-|z - \frac{iy}{2\sqrt{\varepsilon}}|^2} e^{-\frac{|y|^2}{4\varepsilon}} = \frac{1}{\sqrt{\varepsilon}^m} e^{-\frac{|\pi|^2}{4\varepsilon}} \prod_{k=1}^m \int_{\mathbb{R}} dt e^{-(t - \frac{iy_k}{2\sqrt{\varepsilon}})^2} = (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|\pi|^2}{4\varepsilon}}$$

Предпоследний переход - это теорема Фубини (Т4.0.2), сводящая кратный интеграл к повторному.

Последний в общем-то ясен, но для любителей попетушиться я принес вам покушать говнеца:

Рассмотрим
$$\Phi(\xi) = \int e^{-(t-\xi)^2}$$
; $|\frac{d}{d\xi}e^{-(t-\xi)^2}| = |2(\xi-t)||e^{-(t-\xi)^2}| \le 2(r+|t|)e^{-t^2+2|t|r+r^2} \in L_1(\mathbb{R})$ При $|\xi| \le r$ сходится равномерно $\Rightarrow \exists \Phi'(\xi) = \int_{\mathbb{R}} \frac{d}{d\xi}e^{-(t-\xi)^2}dt \ \forall |\xi| \le r$.

Значит, функция хорошая и по теореме единственности из ТФКП $\Phi(\xi) = \Phi(\xi_{Re}) = \sqrt(\pi)$

Таким образом, мы осилили Фурье и теперь можем пописать Фубини: $\int \varphi(y) F[\psi_{\varepsilon}](y) dy = \int_{\mathbb{R}^n} F[\varphi](x) \psi_{\varepsilon}(x) dx$

Подставим нашу функцию: $\int\limits_{-\infty}^{\infty} \varphi(y) (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|\pi|^2}{4\varepsilon}} dy = \int\limits_{-\infty}^{\infty} F[\varphi](x) e^{-\varepsilon |x|^2} dx$. Правая часть интегрируется, потому что

$$F[\varphi] \in \mathcal{S}(\mathbb{R}^m) \subset L_1(\mathbb{R}^m).$$

 $|F[\varphi](x)e^{-\varepsilon|x|^2}|dx \leq |F[\varphi](x)| \in L_1.$

Тогда по Т Лебега об огр. сходимости (**T4.0.1**) получим
$$\int F[\varphi](x)e^{-\varepsilon|x|^2}dx \longrightarrow \int F[\varphi](x)dx$$
 при $\varepsilon \to 0$.

Тем временем в левой части после замены переменной в интеграле получим $(\sqrt{\frac{\pi}{\varepsilon}})^m (2\sqrt{\varepsilon})^m \int \varphi(2\sqrt{\varepsilon}z) e^{-|z|^2} dz$

Подинтегральная функция оценивается: $|\varphi(2\sqrt{\varepsilon}z)e^{-|z|^2}| \leq (\sup_{z \in \mathbb{Z}} |\varphi|)e^{-|z|^2} \in L_1(\mathbb{R}^m) \forall z \in \mathbb{R}^m$

Тогда по Т Лебега об огр. сходимости получим $(2\sqrt{\pi})^m \varphi(0) (\int dt e^{-t^2})^m$

Т4.2.2 - Т обращения: как мы привыкли ее видеть

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[F[\varphi(x)](y)](z) = (2\pi)^m \varphi(-z)$$

$$F[F[\varphi(x)](y)](z) = \int_{\mathbb{R}^m} dy e^{i(y,z)} \int_{\mathbb{R}^m} dx e^{i(x,y)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(y,x+z)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(y,\xi)} \varphi(\xi-z) = \int_{\mathbb{R}^m} dy F[\varphi(\xi-z)](y) = (2\pi)^m \varphi(-z) \text{ no } \mathbf{T4.2.1} \ \spadesuit$$

Дальше немножечко напряжем мозг и высрем вот это.

Опр. 4
$$F^{-1}[\varphi(x)](y) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[\varphi(x)](-y) = \frac{1}{(2\pi)^m} F[\varphi(-x)](y)$$

gg wp спасибо всем кто прочитал эту хуйню

5. Пространство обобщенных функций $\mathcal{S}'(\mathbb{R}^m)$. Обобщеннюе преобразование в $\mathcal{S}'(\mathbb{R}^m)$ по всем или по части переменных, и его свойства, связанные с операцией обобщенного дифференцирования.

Определение. Пространство обобщенных функций Шварца $S'(\mathbb{R}^m)$ – множество линейных непрерывных функционалов над $S(\mathbb{R}^m)$. Линейность и непрерывность в $S'(\mathbb{R}^m)$ определяется так же, как и в $\mathcal{D}'(\mathbb{R}^m)$.

Определение. $\forall \alpha \in \mathbb{N}_0^m$ обобщенной производной функционала $f \in \mathcal{S}'(\mathbb{R}^m)$ называется

$$\langle \partial^{\alpha} f, \varphi \rangle \stackrel{def}{=} (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (2)

Определение. Пусть $\forall f \in \mathcal{S}'(\mathbb{R}^m) \ \forall g \in C^{\infty}(\mathbb{R}^m) : \forall \alpha \in \mathbb{N}_0^m \hookrightarrow \partial^{\alpha} g$ имеет медленный рост. Тогда определено произведение функции g на обобщенную функцию f по следующему правилу:

$$\langle gf, \varphi \rangle \stackrel{def}{=} \langle f, g\varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (3)

Определение. Пусть $f \in \mathcal{S}'(\mathbb{R}^m)$, $A \in \mathbb{R}^{m \times m}$, $b \in \mathbb{R}^m$. Тогда определена замена переменных z = Ax + b в обобщенной функции:

$$\langle f(Ax+b), \varphi \rangle \stackrel{def}{=} \left\langle f(z), \frac{\varphi\left(A^{-1}(z-b)\right)}{|\det A|} \right\rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (4)

Определение. Пусть $f \in \mathcal{S}'(\mathbb{R}^m)$. Тогда можно определить обобщенное преобразование Фурье по следующему правилу:

$$\langle F[f], \varphi \rangle \stackrel{def}{=} \langle f, F[\varphi] \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (5)

Замечание. Для корректности данных выше определений необходимо доказывать линейность и непрерывность соответствующих функционалов. Линейность очевидна во всех случаях, а доказательство непрерывности приведем только для Фурье – в остальных определениях это либо очевидно, либо делается аналогично.

Доказательство. Пусть задана последовательность пробных функций $\varphi_n \to \varphi \in \mathcal{S}(\mathbb{R}^m)$. Тогда $\forall \alpha, \beta \in \mathbb{N}_0^m$ рассмотрим следующую функцию:

$$g(y) = y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[(ix)^{\alpha} (\varphi_n - \varphi)](y) = i^{\alpha + \beta} F[\partial^{\beta} (\varphi_n - \varphi)](y)$$
(6)

По определению сходимости в $\mathcal{S}(\mathbb{R}^m)$:

$$\forall p \in \mathbb{N}_0 \hookrightarrow |x|^p \partial^\beta (x^\alpha (\varphi_n - \varphi)) \rightrightarrows 0 \ (n \to \infty)$$

Тогда:

$$\exists \varepsilon : \forall n \geqslant N(\varepsilon) \ \forall x \in \mathbb{R}^m \hookrightarrow (1+|x|^{2m}) \partial^{\beta} (x^{\alpha}(\varphi_n - \varphi)) \leqslant \varepsilon$$
 (7)

Из (6) и (7) получаем:

$$|g(y)| = |y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y)| \leqslant \int_{\mathbb{R}^m} |\partial^{\beta} (x^{\alpha} (\varphi_n - \varphi))| dx \stackrel{n \geqslant N(\varepsilon)}{\leqslant} \int_{\mathbb{R}^m} \frac{\varepsilon}{1 + |x|^{2m}} dx = \varepsilon \frac{\pi S_m}{2m}$$
 (8)

Таким образом $g(y) \rightrightarrows 0 \ (n \to \infty)$, а значит $F[\varphi_n] \to F[\varphi]$ в $\mathcal{S}(\mathbb{R}^m)$.

Определение (Обратное преобразование). Пользуясь теоремой об обращении можно определить обратное преобразование Фурье в $\mathcal{S}'(\mathbb{R}^m)$:

$$F^{-1}[f](x) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[f](-x) \in \mathcal{S}'(\mathbb{R}^m)$$
(9)

Таким образом, мы получили, что обобщенное преобразование Фурье является изоморфизмом над $\mathcal{S}'(\mathbb{R}^m)$, т.е., зная Фурьевый образ, можно найти саму функцию, и наоборот.

С помощью преобразования Фурье можно определить замену переменных в обобщенной функции для случая неквадратной матрицы перехода.

Определение (Замена переменных в обобщенной функции). Пусть $f \in \mathcal{S}'(\mathbb{R}^l), \ A \in \mathbb{R}^{l \times m} : \operatorname{rg} A = l, \ b \in \mathbb{R}^l$. Тогда:

$$\langle f(Ax+b), \varphi(x) \rangle \stackrel{def}{=} \langle F^{-1}[f](y), e^{i(b,y)} F[\varphi](A^T y) \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (10)

Докажем корректность такого определения.

Доказательство. Из определения обратного преобразования следует:

$$\forall f \in \mathcal{S}'(\mathbb{R}^l) \ \exists h(y) = F^{-1}[f] \in \mathcal{S}'(\mathbb{R}^l) : f(z) = F[h](z)$$

Тогда:

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^l) \left\langle f(z), \varphi(z) \right\rangle = \left\langle F[h(y)](z), \varphi(z) \right\rangle = \left\langle h(y), F[\varphi(z)](y) \right\rangle = \left\langle h(y), \int\limits_{\mathbb{R}^l} dz \, \varphi(z) e^{i(z,y)} \right\rangle$$

Рассмотрим теперь $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \ \forall y \in \mathbb{R}^l$ функцию:

$$\psi(y) = \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(Ax+b,y)} = e^{i(b,y)} \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(x,A^Ty)} = e^{i(b,y)} F[\varphi](A^Ty)$$

Выясним, для каких A выполнено вложение

$$\xi(y) = F[\varphi](A^T y) \in \mathcal{S}(\mathbb{R}^l)$$

Так как $F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$, то $|z|^p |\partial_z^\beta F[\varphi](z) \to 0 \ (|z| \to \infty)$. Заметим теперь, что:

$$\partial^{\alpha} \xi(y) \in \operatorname{span} \{ \partial_{z}^{\beta} F[\varphi](z) \mid |\beta| \leqslant |\alpha| \} \Big|_{z=A^{T} y}$$

Соответственно $\xi(y) \in \mathcal{S}(\mathbb{R}^l)$ для таких матриц A, что $|A^Ty| \to \infty$ ($|y| \to \infty$). Рассмотрим выражение $|A^Ty|^2 = y^T(AA^T)y$. Матрица AA^T является симметрической матрицей размера $l \times l$, которая задает квадратичную форму. Для того, чтобы $y^T(AA^T)y \to \infty$ ($|y| \to \infty$), необходимо, чтобы все ее собственные числа были строго больше нуля, то есть матрица была бы невырожденной. Это возможно тогда и только тогда, когда rg A = l (ker $A^T = 0$). Непрерывность заданного функционала доказывается аналогично через представление

Рассмотрим теперь преобразование Фурье по части переменных.

Определение (Преобразование Фурье по части переменных). Рассмотрим $f(x,z) \in \mathcal{S}'(\mathbb{R}^l), \ x \in \mathbb{R}^m, \ z \in \mathbb{R}^l.$ Тогда:

$$\langle F_x[f(x,z)](y,z), \varphi(y,z) \rangle \stackrel{def}{=} \langle f(x,z), F_y[\varphi(y,z)](x,z) \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^l)$$
 (11)

Докажем корректность этого определения.

Доказательство. Для начала нужно показать, что $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^l)$. Это означает, что:

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^\mu z^\nu \partial_y^\alpha \partial_z^\beta \psi(y,z) \to 0 \ (|y| + |z| \to \infty)$$

По теореме о дифференцировании несобственного интеграла:

$$y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}\psi(y,z) = y^{\mu}z^{\nu}\int_{\mathbb{R}^{m}}dx\,(ix)^{\alpha}e^{i(x,y)}\partial_{z}^{\beta}\varphi(x,z) = (*)$$
(12)

Теперь обозначим $\Phi(x,z) = (ix)^{\alpha} \partial_z^{\beta} \varphi(x,z) \in \mathcal{S}(\mathbb{R}^l)$. Далее проинтегрируем по частям выражение (12) и получим:

$$(*) = i^{\mu} z^{\nu} \int_{\mathbb{D}^m} dx \, e^{i(x,y)} \partial_x^{\mu} \Phi(x,z) \tag{13}$$

Если |z| ограничен, то $|y| \to \infty$, а значит это выражение стремится к нулю в силу теоремы Римана об осцилляции. Если же $|z| \to \infty$, то в силу того, что $\Phi(x,z) \in \mathcal{S}(\mathbb{R}^l)$, получаем:

$$|\partial_x^{\mu}\Phi(x,z)| \le \frac{C}{(1+|x|^{2m})(1+|z|^{2\nu+1})}$$

Тогда, подставляя это в (13), получаем такую оценку:

$$\left| z^{\nu} \int_{\mathbb{R}^{m}} dx \, e^{i(x,y)} \partial_{x}^{\mu} \Phi(x,z) \right| \leqslant \frac{C|z|^{|\nu|}}{1 + |z|^{2\nu + 1}} \int_{\mathbb{R}^{m}} \frac{dx}{1 + |x|^{2m}} \to 0 \, (|z| \to \infty)$$
 (14)

Значит $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^l)$. Линейность искомого функционала очевидна. Рассмотрим теперь непрерывность. Нужно доказать, что

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^{\mu} z^{\nu} \partial_{\nu}^{\alpha} \partial_z^{\beta} F_x[(\varphi_n - \varphi)(x, z)](y, z) \Longrightarrow 0 \ (n \to \infty)$$
 (15)

Аналогично первой части доказательства, получаем:

$$y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z) = i^{\mu}z^{\nu}\int_{\mathbb{R}^{m}}dx\,e^{i(x,y)}\partial_{x}^{\mu}\left((ix)^{\alpha}\partial_{z}^{\beta}(\varphi_{n}-\varphi)(x,z)\right)$$

$$\tag{16}$$

Функция $\Phi_n(x,z) = \partial_x^\mu \left((ix)^\alpha \partial_z^\beta (\varphi_n - \varphi)(x,z) \right) \in \mathcal{S}(\mathbb{R}^l)$. Значит ее можно равномерно ограничить:

$$|\Phi_n(x,z)| \leqslant \frac{\varepsilon}{(1+|x|^{2m})(1+|z|^{|\nu|})} \tag{17}$$

Тогда получаем, подставляя это в (16), получаем равномерную оценку:

$$|y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z)| \leqslant \varepsilon \frac{C|z|^{|\nu|}}{1+|z|^{|\nu|}} \int_{\mathbb{D}^{m}} \frac{dx}{1+|x|^{2m}}$$

$$\tag{18}$$

При $\varepsilon \to 0$ эта штука равномерно стремится к нулю, что и доказывает непрерывность.

Наблюдение Пусть $f \in \mathcal{S}'(\mathbb{R}^l)$. Тогда, как следует из теоремы Фубини:

$$F[f(x,z)](a,b) = F_z[F_x[f(x,z)]](a,b) = F_x[F_z[f(x,z)]](a,b)$$
(19)

Рассмотрим важное свойство преобразования Фурье.

Теорема (О Фурье-образе производной обобщенной функции). Пусть $f(x,z) \in \mathcal{S}(\mathbb{R}^l)$. Тогда:

$$F_x[\partial_x^\alpha\partial_z^\beta f(x,z)](y) = (-iy)^\alpha\partial_z^\beta F_x[f(x,z)](y)$$

Доказательство. Пусть $\varphi(y,z) \in \mathcal{S}(\mathbb{R}^l)$. Тогда:

$$\left\langle F_x[\partial_x^{\alpha}\partial_z^{\beta}f(x,z)](y),\varphi(y,z)\right\rangle = \left\langle f(x,z),(-1)^{|\beta|}\partial_z^{\beta}(-1)^{|\alpha|}\partial_x^{\alpha}F_y[\varphi(y,z)](x)\right\rangle =
= \left\langle f(x,z),(-1)^{|\alpha|+|\beta|}F_y[(iy)^{\alpha}\partial_z^{\beta}\varphi(y,z)](x)\right\rangle = \left\langle F_x[f(x,z)](y),(-iy)^{\alpha}(-1)^{|\beta|}\partial_z^{\beta}\varphi(y,z)](x)\right\rangle =
= \left\langle \partial_z^{\beta}F_x[f(x,z)](y),(-iy)^{\alpha}\varphi(y,z)](x)\right\rangle = \left\langle (-iy)^{\alpha}\partial_z^{\beta}F_x[f(x,z)](y),\varphi(y,z)](x)\right\rangle \quad (20)$$

6..

Свёртка обобщённых функций в пространстве $S'(R^m)$. Лемма о дифференцировании действия обобщённой функции на гладко зависящую от параметра основную функцию. Дифференцирование свёртки обобщённых функций

Пусть для $f \in S'(\mathbb{R}^m)$ и $g \in S'(\mathbb{R}^m)$ \exists такое $h \in S'(\mathbb{R}^m)$, что для \forall срезки $\eta(x)$ и для $\forall \varphi \in S(\mathbb{R}^m)$

$$\exists \lim_{x \to +\infty} (f(x), \eta(x)_R(g(y), \varphi(x+y))) = (h(x), \varphi(x))$$

Тогда h(x) будем называть сверткой f(x), g(x) и обозначать h(x) = f(x) * g(x)

Дифференцирование свёртки обобщённых функций

Пусть для $f \in S'(\mathbb{R}^m)$ и $g \in S'(\mathbb{R}^m)$ $\exists \ f * g \in S'(\mathbb{R}^m)$ тогда $\forall \alpha \in N_0^m \exists f * (D^\alpha g) \ , \ (D^\alpha f) * g$ и справедливы равенства:

$$D^{\alpha}(f*g) = f*(D^{\alpha}g) = (D^{\alpha}f)*g$$

Доказательство.

$$\begin{split} &((\eta(\frac{x}{r})f(x))*(D^{\alpha}g(x)),\varphi(x)) = (f(x),\eta(\frac{x}{r})((D^{\alpha}g(x)),\varphi(x+y))) \\ &= (f(x),\eta(\frac{x}{r})(g(x),(-1)^{\alpha}D^{\alpha}\varphi(x+y))) = ((\eta(\frac{x}{r})f(x)*g(x),(-1)^{\alpha}D^{\alpha}\varphi(x))) \end{split}$$

Так как по условию $\exists f^*g$

$$\exists \lim_{x \to +\infty} ((\eta(\frac{x}{r})f(x) * g(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = ((f * g)(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = (D^{\alpha}(f * g)(x), \varphi(x))$$

Следовательно

$$\exists \lim_{x \to +\infty} ((\eta(\frac{x}{r})f(x) * g(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = (D^{\alpha}(f * g)(x), \varphi(x))$$

Мы доказали, что существует свертка

$$f * (D^{\alpha}q) = D^{\alpha}(f * q)$$

Докажем теперь, что $\exists (D^{\hat{}} \alpha f) * g$

$$((\eta(\frac{x}{r})D^{\alpha}f(x)) * g(x), \varphi(x)) = (D^{\alpha}f(x), \eta(\frac{x}{r})(g(y), \varphi(x+y))) = (f(x), (-1)^{\alpha}D^{\alpha}(\eta(\frac{x}{r})(g(y), \varphi(x+y))))$$

По формуле Лейбница дифференцирования произведения функций

$$D^{\alpha}(\eta(\frac{x}{r})(g(y),\varphi(x+y))) = \eta(\frac{x}{r})D^{\alpha}(g(y),\varphi(x+y)) + \psi_r(x)$$

Где $\psi_r(x)$ является конечной линейной комбинацией функций

$$D^{\beta}\eta(\frac{x}{r})D^{\gamma}(g(y),\varphi(x+y)) = D^{\beta}\eta(\frac{x}{r})(g(y),D^{\gamma}\varphi(x+y))$$

Для всевозможных $\beta \in N^m$ и $\gamma \in N^m$ вида $\beta + \gamma = \alpha$

Покажем, что

$$\lim_{x \to +\infty} (f(x), \psi_r(x)) = 0$$

Для этого достаточно доказать, что для $\forall \beta \in N^m$ и $\gamma \in N^m$ вида $\beta + \gamma = \alpha$ выполнено

$$\lim_{x \to +\infty} (f(x), D^{\beta} \eta(\frac{x}{r})(g(y), D^{\beta} \varphi(x+y))) = 0$$

Зафиксируем β и γ и рассмотрим функцию

$$\varsigma(z) = D^{\beta} \eta(z)$$

Тогда

$$D^{\beta}\eta(\frac{x}{r}) = \frac{1}{r^{\beta}}\varsigma(\frac{x}{r})$$

Нам требуется показать, что

$$\lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y)D^{\gamma}\varphi(x+y)) = 0$$

Заметим, что $\varsigma(z)=0$ при $|z|\leq 1$ Отсюда следует, что $\eta 1(z)=\eta(z)+\varsigma(z)$ является 1-срезкой Поэтому, так как $\exists \ f*g$

$$((f * g)(x), D^{\gamma}\varphi(x)) = \lim_{x \to +\infty} (f(x), \eta 1(\frac{x}{x})(g(y), D^{\gamma}\varphi(x+y)))$$

$$\begin{split} &= \lim_{x \to +\infty} (f(x), \eta(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) + \lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) \\ &= ((f*g)(x), D^{\gamma}\varphi(x)) + \lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) \end{split}$$

Отсюда получаем, что

$$\lim_{x\to +\infty} (f(x),\varsigma(\frac{x}{r})(g(y),D^{\gamma}\varphi(x+y))) = 0$$

Значит

$$\lim_{x\to +\infty} (f(x),\varsigma(\frac{x}{r})(g(y)D^{\gamma}\varphi(x+y)=0$$

$$\lim_{x \to +\infty} (f(x), \psi_r(x)) = 0$$

Наконец

$$((\eta(\frac{x}{r})D^{\alpha}f(x))*g(x),\varphi(x)) = (f(x),(-1)^{\alpha}(\eta(\frac{x}{r})(g(y),(-1)^{\alpha}D^{\alpha}\varphi(x+y)))) = (D^{\alpha}(f(x)*g(x)),\varphi(x))$$

Мы получили, что

$$(D^{\alpha}f) * g = D^{\alpha}(f * g)$$

ч.т.д

10. Функция Грина оператора Лапласа в $S'(\mathbb{R}^3)$ и вычисление в $S'(\mathbb{R}^3)$ обобщённого решения уравнения Пуассона с абсолютно интегрируемым на \mathbb{R}^3 источником, формула Пуассона

Будем работать с уравнением Пуассона:

$$\Delta U(x) = f(x)$$

где
$$f(x) \in \mathbb{L}_1(\mathbb{R}^3)$$
, т.е. $\int_{\mathbb{R}^3} |f(x)| dx$, $\forall \varphi \in S(\mathbb{R}^3)$ и $\langle f, g \rangle = \int_{\mathbb{R}^3} f(x) \varphi(x) dx$

Функция Грина опекратора Лапласа:

$$E(x) = -\frac{1}{4\pi|x|}, \ x \in \mathbb{R}^3$$

T.e. $\Delta E = \delta(x)$ в $S'(\mathbb{R}^3)$

Для нахождения решения уравнения требуется доказать существование и найти свёртку:

$$f(x) * E(X)$$
 в $S'(\mathbb{R}^3)$

По определению:

$$\forall \varphi \in S'(\mathbb{R}^3) \ \forall \ 1$$
-срезки $\eta_1\left(\frac{x}{R}\right) \in D(\mathbb{R}^3) \mapsto$

$$\lim_{R \to \infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle E(y), \varphi(x+y) \right\rangle \right\rangle = \lim_{R \to \infty} \int_{\mathbb{R}^3} dx f(x) \eta_1\left(\frac{x}{R}\right) \int_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \stackrel{\text{e}}{=}$$

Требуется доказать, что $\exists C_{\varphi}>0: \left|\int\limits_{\mathbb{R}^3} \frac{\varphi(x+y)}{|y|}\right| \leq C_{\varphi}, \ \forall x \in \mathbb{R}^3 \backslash \{0\}$ Тогда

$$\left| f(x)\eta_1\left(\frac{x}{R}\right) \int_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \right| \le \frac{MC_{\varphi}}{4\pi} |f(x)| \in \mathbb{L}_1(\mathbb{R}^3)$$

Т.е. выполнены условия теоремы Лебега об ограниченной сходимости Докажем существование C_{φ}

$$\left|\int\limits_{\mathbb{R}^3} \frac{\varphi(x+y)}{|y|}\right| \leq \int\limits_{\mathbb{R}^3} \frac{|\varphi(x+y)|}{|y|} = /y = z - x/ = \int\limits_{\mathbb{R}^3} \frac{\varphi(z)}{|z-x|} \stackrel{\textstyle >}{\mathop{>}} \left(\varphi \in S(\mathbb{R}^3) \Rightarrow \exists M_\varphi > 0: \ |\varphi(x)| \leq \frac{M_\varphi}{1+|z|^4}\right)$$

$$\stackrel{\textstyle >}{\mathop{>}} \frac{M_\varphi}{(1+|z|^4)|z-x|} = /\text{в сфер. коорд.: } |z| = r, \alpha - \text{угол между 0х и 0z/=}$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \int\limits_0^\pi \frac{\sin(\alpha) d\alpha}{\sqrt{r^2+|x|^2-2r|x|\cos\alpha}} = /\cos\alpha = \xi/=$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \int\limits_0^\pi \frac{d\xi}{\sqrt{r^2+|x|^2-2r|x|\xi}} = (\text{по Th Ньютона-Лейбница}) =$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \cdot \frac{r+|x|-|r-|x||}{r|x|} = \frac{2\pi M_\varphi}{|x|} \left(\int\limits_0^{|x|} \frac{r}{1+r^4} \cdot 2r dr + \int\limits_{|x|}^+ \frac{r}{1+r^4} \cdot 2|x| dr\right) \leq$$

$$= (r \leq |x| \text{ в 1-ом инт-ле, по 1-ому r}) \leq |x| \arctan |x|^2 + |x| \left(\frac{\pi}{2} - \arctan |x|^2\right) = \pi^2 M_\varphi = C_\varphi$$

Итак мы доказали существование C_{φ} . Теперь можно занести предел под интеграл и 1-срезка уходит:

$$\stackrel{\circ}{=} -\frac{1}{4\pi} \int_{\mathbb{R}^3} dx \int_{\mathbb{R}^3} dz \frac{f(x)\varphi(z)}{|z-x|} \stackrel{\circ}{=}$$

Т.к.

$$\frac{|f(x)\varphi(z)|}{|z-x|} \le \frac{M_{\varphi}|f(x)}{(1+|z|^4)|z-x|} \in \mathbb{L}_1(x \in \mathbb{R}^3, \ z \in \mathbb{R}^3)$$

То по Th Фубини

$$\stackrel{\circ}{=} -\frac{1}{4\pi} \int\limits_{\mathbb{R}^3} dz \int\limits_{\mathbb{R}^3} dx \frac{f(x)\varphi(z)}{|z-x|} = \int\limits_{\mathbb{R}^3} dz \varphi(z) \int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = (\text{абс. сх. по } z \in \mathbb{R}^3 \text{ по Th Фубини}) = \\ = \left\langle -\int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, \varphi(z) \right\rangle$$

Итак предел существует и не зависит от срезки.

Линейность следует из линейности интеграла по функции.

Осталось показать непрерывность:

$$S(\mathbb{R}^3) \ni \varphi \mapsto \int_{\mathbb{R}^3} dz \varphi(z) \int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{f(x)\varphi(z)}{(-4\pi)|z-x|} \in \mathbb{C}$$

Требуется доказать, что последний интегралл непрерывно зависит от φ

Пусть $\varphi_n \to \varphi$ в $S(\mathbb{R}^3)$

Тогда по определению:

$$(1+|z|^4)|\varphi_n(z)-\varphi(z)| \Rightarrow 0, (z \in \mathbb{R}^3, n \to \infty)$$

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \forall z \in \mathbb{R}^3 \mapsto |\varphi_n - \varphi(z)| \le \frac{\varepsilon}{1 + |z|^4}$$

Тогда

$$\left| \left\langle -\int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, (\varphi_n - \varphi)(z) \right\rangle \right| \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{|f(x)||(\varphi_n - \varphi)(z)|}{(4\pi)|z-x|} =$$

$$= \frac{1}{4\pi} \int_{\mathbb{R}^3} dx |f(x) \int_{\mathbb{R}^3} \frac{|(\varphi_n - \varphi)(z)|}{|z-x|}$$

$$\leq /x \neq 0/\leq \pi^2 \varepsilon ||f||_{\mathbb{L}_1(\mathbb{R}^3)|} \cdot \frac{1}{4\pi}$$

Следовательно непрерывность по φ есть.

12. Вычисление методом регуляризации функции Грина оператора Даламбера в пространсте $S^{'}(\mathbb{R} \times \mathbb{R}^{3})$ и обобщенное решение волнового уравнения с источником медленного роста, запаздывающий потенциал.

Оператор Даламбера

$$L = \left(\frac{\partial}{\partial t}\right)^2 - a^2 \Delta_x$$

где

$$x \in \mathbb{R}^3$$

$$t \in \mathbb{R}$$

Мы хотим найти функцию Грина $\mathcal{E}(t,x) \in S'(\mathbb{R} \times \mathbb{R}^3)$ такую что

$$L\mathcal{E}(t,x) = \delta(t,x)$$

$$\operatorname{supp} \mathcal{E} \subset \{t \geqslant 0, x \in \mathbb{R}^3\}$$

Будем решать равносильное уравнение. Применим преобразование Фурье

$$F\left[L\mathcal{E}(t,x)\right](\tau,y) = 1$$

$$\left((-i\tau)^2 - a^2 \sum_{k=1}^3 (-iy_k)^2 \right) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$
$$(-\tau^2 + a^2 |y|^2) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$

Рассмотрим многочлен

$$P_L(\tau, y) = a^2 |y|^2 - \tau^2$$

где

$$y \in \mathbb{R}^3$$

$$\tau \in \mathbb{R}$$

Заметим, что он не отделен от нуля, поэтому придется вводить регуляризацию. Рассмотрим другой многочлен

$$P_{\varepsilon}(\tau, y) = a^2 |y|^2 - (\tau + i\varepsilon)^2$$

и будем решать вспомогательную задачу в $S'(\mathbb{R} \times \mathbb{R}^3)$

$$P_{\varepsilon}(\tau, y)v_{\varepsilon}(\tau, y) = 1$$

$$|P_{\varepsilon}(\tau, y)| = |a|y| - \tau - i\varepsilon ||a|y| - \tau + i\varepsilon| \geqslant \varepsilon^2$$

Этот многочлен уже отделим от нуля поэтому существует и единственно решение уравнеиня в обобщенных функциях

$$v_{\varepsilon}(\tau, y) = \frac{1}{P_{\varepsilon}(\tau, y)}$$

Если бы существовал предел

$$\lim_{\varepsilon \to +0} F^{-1} \left[v_{\varepsilon}(\tau, y) \right] (t, x) = g(t, x)$$

то предельная функция решала бы наше уравнение, покажем это

$$\langle P_L F[g], \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_L \varphi \rangle$$

это можно сделать поскольку спаривание непрерывно. Добавим и вычтем

$$\lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{L} \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{\varepsilon} \varphi \rangle + \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, (P_{L} - P_{\varepsilon}) \varphi \rangle =$$

$$= \langle 1, \varphi \rangle + \lim_{\varepsilon \to +0} (2\tau i \varepsilon - \varepsilon^{2}) \langle v_{\varepsilon}, \varphi \rangle$$

Поскольку

$$\lim_{\varepsilon \to +0} v_{\varepsilon} = F[g]$$

второй член стремится к нулю. Тем самым мы показали, что предельная функция будет искомым решением. Давайте найдем этот предел. Для любой пробной функции

$$\lim_{\varepsilon \to +0} < F^{-1} \left[\frac{1}{P_\varepsilon(\tau,y)} \right](t,x), \varphi(t,x) > = \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} d\tau \frac{1}{a^2 |y|^2 - |\tau + i\varepsilon|^2} \frac{1}{(2\pi)^4} \int\limits_{\mathbb{R}^4} dt dx \ \varphi(t,x) e^{-it\tau - i(x,y)} e^{-it$$

Заметим, что подынтегральная функция абсолютно интегрируема при любом фиксированном $y \neq 0$ (точка ноль не считается, это множество меры нуль, я в домике), т.е

$$\frac{1}{a^2|y|^2 - |\tau + i\varepsilon|^2} \varphi(t, x) e^{-it\tau - i(x, y)} \in \mathbb{L}_1 \left[\tau \in \mathbb{R}, \ t \in \mathbb{R}, \ x \in \mathbb{R}^3 \right]$$

Поэтому воспользуемся чудесной теоремой Фубини и переставим интералы по $d\tau$ и dtdx

$$\lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^4} \ e^{-i(x,y)} \int\limits_{\mathbb{R}} d\tau \frac{e^{-it\tau}}{a^2|y|^2 - |\tau + i\varepsilon|^2}$$

Интеграл по $d\tau$ вычислим методами ТФКП, два полюса хуе мое, вычеты, так паддажи ебана. Оба полюса находятся в нажней части комплексной плоскости. При t<0 контур нужно замыкать сверху, при t>0 - снизу (лемма Жордана). Поэтому при t<0 полюсы не попадают внутрь контура - интеграл обнуляется. Итого получаем

$$\int\limits_{\mathbb{T}} d\tau \frac{e^{-it\tau}}{a^2|y|^2-|\tau+i\varepsilon|^2} = -2\pi i\theta(t) \left(\frac{e^{-it(a|y|-i\varepsilon)}}{-2a|y|} + \frac{e^{-it(-a|y|-i\varepsilon)}}{2a|y|}\right) = 2\pi\theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|}$$

Подставим обратно и перепишем часть функции как Фурье по части переменных.

$$\begin{split} &\lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^3} \ e^{-i(x,y)} \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} = \\ &= \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) \end{split}$$

Фурье по части переменных от пробной функции является пробной функцией. Также заметим, что

$$\theta(t) e^{-t\varepsilon} \frac{\sin at|y|}{a|y|} \leqslant t$$
$$t F_x^{-1}[\varphi(t,x)](y) \in \mathbb{L}_1(\mathbb{R}^4)$$

Проверив, что подынтегральная функция мажорируется абсолютно интегрируемой, можем воспользоваться теоремой Лебега об огр. сходимости и внести предел под интеграл

$$\begin{split} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ \lim_{\varepsilon \to +0} e^{-t\varepsilon} \ \frac{\sin at |y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) &= \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ \frac{\sin at |y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) = \\ &= <\theta(t) \ \frac{\sin at |y|}{a|y|}, \ F_x^{-1}[\varphi(t,x)](y) > = < F_y^{-1} \left[\theta(t) \ \frac{\sin at |y|}{a|y|}\right](t,x), \varphi(t,x) > \end{split}$$

Сейчас воспользуемся леммой, которую докажем позже

$$F[\delta_R(x)](y) = \frac{4\pi R \sin R|y|}{|y|}$$

Тогда получим

$$F_y^{-1} \left[\theta(t) \frac{\sin at|y|}{a|y|} \right] (x) = \theta(t) \frac{\delta_{at}(x)}{4\pi a^2 t}$$

Подставим в свертку

$$<\theta(t)\frac{\delta_{at}(x)}{4\pi a^{2}t},\varphi>=\int_{0}^{+\infty}dt\int_{|x|=at}dS_{x}\frac{\varphi(t,x)}{4\pi a^{2}t}=/at=r/=\int_{0}^{+\infty}dr\int_{|x|=r}dS_{x}\frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^{2}|x|}=$$

$$=\int_{\mathbb{R}^{3}}\frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^{2}|x|}=\int_{\mathbb{R}^{4}}dtdx\;\varphi(t,x)\frac{\delta\left(t-\frac{|x|}{a}\right)}{4\pi|x|a^{2}}=<\frac{\delta\left(t-\frac{|x|}{a}\right)}{4\pi|x|a^{2}},\varphi(t,x)>$$

Итого получаем ответ в пространстве обобщенных функций(by bashka)

$$\mathcal{E}(t,x) = \frac{\delta\left(t - \frac{|x|}{a}\right)}{4\pi|x|a^2}$$

13. 1) Формула Кирхгоффа решения обобщённой задачи Коши для однородного волнового уравнения в $S'(\mathbb{R}^4)$ при начальных условиях медленного роста. 2) Достаточные условия, при которых обобщёное решение становится классическим.

Формулировка: 1)

$$u(t,x) = \frac{\partial}{\partial t} \left(\frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_0(z) dS_z \right) + \frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_1(z) dS_z$$

Для любых абсолютно интегрируемых функций медленного роста $u_0(x)$ и $u_1(x)$ (Интегрирование по поверхности).

2)
$$u_0(x)\in C^3(\mathbb{R}^3)$$
 и $u_1(x)\in C^2(\mathbb{R}^3)$

Идея доказательства:

- 1) из 2 более простых задач с одним однородным условием.
- 2) из непрерывности интеграла

Доказательство:

Я не вижу смысла его тут приводить, потому что оно есть в лекциях Константинова на страницах 339-352. А любые сокращения могут привести к потере смысла.

Указатель хода решения:

- 1) свертка с функцией Грина 339-340
- 2) анализ правой части свертки
(принадлежность к $S(\mathbb{R}^4)$) 341-342
- 3) доказательство того, что интеграл по поверхности можно вынести из свертки(с введением и доказательством леммы) 343-346
- 4) свертка с производной функциии Грина 347
- 5) решение 1 задачи с однородным вторым условием 348
- 6) решение 2 задачи с однородным первым условием 349-351
- 7) вид при выполнении условия для классичности 352

14. Сопряжённый оператор линейного оператора в гильбертовом пространстве. Область определения сопряжённого оператора. Теорема Фредгольма о связи множества значений линейного оператора и ядра его сопряжённого. Теорема о связи графиков линейного оператора и его сопряжённого.

Предварительно разберём две теоремы, которые будут использоваться в дальнейшем. На экзамене первую из них доказывать точно не будет необходимости, вторую с какой-то вероятностью в этом вопросе смогут спросить, для введения основных определений по билету пользуемся следствием из второй теоремы. Так что эти теоремы упоминаем, формулируем, пользуемся ими, а доказываем только если очень попросят.

Теорема. (Рисса об ортогональном разложении, без доказательства) Пусть $L \subseteq \mathcal{H}$ - замкнутое подпространство. Тогда $L \oplus L^{\perp} = \mathcal{H}$

Теорема. (Pucca, Фреше) \forall лин. u непр. $\varphi : \mathcal{H} \to \mathbb{C}$ $\exists ! h_{\varphi} \in \mathcal{H} : \forall f \in \mathcal{H}$ $\varphi(f) = (f, h_{\varphi})$ u верно \forall лин. u непр. $\varphi, \psi : \mathcal{H} \to \mathbb{C}$ $h_{\varphi+\psi} = h_{\varphi} + h_{\psi}$ $u \, \forall \alpha \in \mathbb{C}$ $h_{\alpha\varphi} = \overline{\alpha}h_{\varphi}$.

Доказательство. Рассматриваем $L = \ker \varphi = \{f \in \mathcal{H} | \varphi(f) = 0\}$. L - подпространство в \mathcal{H} . Так как φ непр. $\Rightarrow L = \ker \varphi$ замкнуто в \mathcal{H} (возьмём точку прикосновения множества L и подберем последовательность Гейне из ядра, сходящуюся к ней. Все значения образов будут нули, значит, и предел будет нулевой, то есть точка прикосновения принадлежит $\ker \varphi$). Таким образом выполняются условия теоремы Рисса об ортогональном разложении и можно записать $\ker \varphi \oplus (\ker \varphi)^{\perp} = \mathcal{H}$. Далее есть две возможности:

- 1. $\ker \varphi = \mathcal{H} \quad \Rightarrow \forall f \in \mathcal{H}$ возьмем $h_{\varphi} = 0$.
- $2. \ \ker \varphi \neq \mathcal{H} \Rightarrow \ \exists g \in (\ker \varphi)^{\perp} \setminus \{0\}. \ \text{Тогда} \ \forall f \in \mathcal{H} \ \text{имеем} \ f = \underbrace{\frac{\varphi(f)}{\varphi(g)}g}_{\in (\ker \varphi)^{\perp}} + \underbrace{(f \frac{\varphi(f)}{\varphi(g)}g)}_{\in \ker \varphi}. \ \text{Отсюда} \ (f,g) = \underbrace{\frac{\varphi(f)}{\varphi(g)}}_{\varphi(g)}(g,g) \Rightarrow$

 $\varphi(f)=(f, \frac{\overline{\varphi(g)}g}{||g||^2})$. Итак, по полученному нами $g\in(\ker\varphi)^\perp$ удалось построить требуемый в условии теоремы $h_{\varphi}=\frac{\overline{\varphi(g)}}{||g||^2}g\in\mathcal{H}.$

Осталось доказать единственность найденного вектора. Пускай мы нашли второй вектор $\widetilde{h_{\varphi}} \in \mathcal{H}$: $\forall f \in \mathcal{H}$ $\varphi(f) = (f, h_{\varphi}) = (f, h_{\varphi}) \Rightarrow \forall f \in \mathcal{H}$ $(f, h_{\varphi} - h_{\varphi}) = 0$. В качестве f возьмем $f = h_{\varphi} - h_{\varphi}$. Тогда получаем $||h_{\varphi} - h_{\varphi}||^2 = 0 \Rightarrow h_{\varphi} = h_{\varphi}$, то есть единственность доказана. Теперь получим формулы для $h_{\varphi+\psi}$ и $h_{\alpha\varphi}$. $\forall f \in \mathcal{H}$ $(\varphi + \psi)(f) = (f, h_{\varphi+\psi}) = \varphi(f) + \psi(f) = (f, h_{\varphi} + h_{\psi})$, отсюда по свойству единственности и получаем $h_{\varphi+\psi} = h_{\varphi} + h_{\psi}$. Наконец $(\alpha\varphi)(f) = (f, h_{\alpha\varphi}) = \alpha\varphi(f) = \alpha(f, h_{\varphi}) = (f, \overline{\alpha}h_{\varphi}) \Rightarrow h_{\alpha\varphi} = \overline{\alpha}h_{\varphi}$

Следствие: Пусть $L \subset \mathcal{H}$ - подпространство. Тогда \forall лин. и непр. $\varphi: L \to \mathbb{C}$ $\exists ! \ h_{\varphi} \in \overline{L}: \ \forall f \in L \ \varphi(f) = (f, h_{\varphi})$ и верно \forall лин. и непр. $\varphi, \psi: L \to \mathbb{C}$ $h_{\varphi+\psi} = h_{\varphi} + h_{\psi}$ и $\forall \alpha \in \mathbb{C}$ $h_{\alpha\varphi} = \overline{\alpha}h_{\varphi}$

Доказательство. \forall лин. и непр. $\varphi:L\to\mathbb{C}$ \exists ! лин. и непр. $\psi:\overline{L}.\to\mathbb{C}$. Это утверждение вряд ли придется доказывать на экзамене. Покуда у меня первый в списке из билетов про операторы, приведу упорядоченно леммы, которые вводил Константинов с самого начала и доведу их до доказательства нашего утверждения.

Лемма. $\varphi: L \to \mathbb{C}$ - линейный функционал. Тогда φ непрерывен на $L \Leftrightarrow \exists C_{\varphi} > 0: |\varphi(f)| \leqslant C_{\varphi} ||f|| \; \forall f \in L$. То есть непрерывность линейного функционала в нашем случае равносильна его липшицевости.

Доказательство. Справа налево утверждение очевидно, ведь из липшицевости непрерывность гарантирована. $|\varphi(f)-\varphi(g)|=|\varphi(f-g)|\leqslant C_{\varphi}||f-g||\leqslant \varepsilon$, если $||f-g||\leqslant \frac{\varepsilon}{C_{\varphi}+1}$, получили даже больше чем непрерывность - равномерную непрерывность. Теперь доказываем слева направо. φ непр. в нуле $\Rightarrow \exists \ \delta > 0 \ \forall f \in L : ||f|| \leqslant \delta \Rightarrow |\varphi(f)| \leqslant 1. \Rightarrow \forall g \in L \setminus \{0\}$ рассмотрим $f=\delta \frac{g}{||g||} \Rightarrow ||f|| \leqslant \delta$, $f \in L$. Тогда $|\varphi(\delta \frac{g}{||g||})| \leqslant 1 \Rightarrow |\varphi(g)| \leqslant \frac{||g||}{\delta}$, то есть для ненулевых g липшицевость обнаружена. Если $g=0 \Rightarrow \varphi(0)=0 \leqslant \frac{||0||}{\delta_{\varphi}}$. Получили искомую липшицевость.

Лемма. Пусть $L \subset \mathcal{H}$ - подпространство, $\varphi : L \to \mathbb{C}$ - линейный и непрерывный функционал. Тогда $\exists ! \, \psi : \overline{L} \to \mathbb{C}$: ψ линеен и непрерывен и $\psi|_L = \varphi$. (процедуру построения ψ называем продолжением функционала на замыкание по непрерывности).

 $\overline{\mathcal{L}}$ оказательство. $\forall f \in \overline{L} \quad \exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$. Далыше смотрим на $\varphi(f_n)$. Расмотрим $|\varphi(f_n) - \varphi(f_m)| = |\varphi(f_n - f_m)| \le C_{\varphi}||f_n - f_m||$. Норма разности $||f_n - f_m||$ стремится к нулю при устремлении индексов к ∞ , тогда последовательность $\varphi(f_n)$ фундаментальная в \mathbb{C} числовая последовательность. Следовательно, по критерию Коши для последовательностей в \mathbb{C} $\exists \lim_{n \to \infty} \varphi(f_n) = \psi(g)$. Формально ψ зависит не только от g, но и от выбора последовательностей f_n , но в действительности от выбора последовательности $f_n \stackrel{n \to \infty}{\longrightarrow} g \in \overline{L}$ не зависит, сразу это докажем. Пусть $h_n \in L \to g$, $f_n \in L \to g \in \overline{L}$, $\Rightarrow |\varphi(h_n) - \varphi(f_n)| = |\varphi(h_n - f_n)| \le C_{\varphi}||h_n - f_n|| \to 0$. Тогда $\lim_{n \to \infty} \varphi(h_n) = \lim_{n \to \infty} \varphi(f_n) = \psi(g) \in \mathbb{C}$. ψ продолжение φ по непрерывности c L на \overline{L} . Получим, что $\psi_L = \varphi$. $\forall g \in L \Rightarrow f_n = g \ \forall n$. $\lim_{n \to \infty} \varphi(f_n) = \psi(g) = \varphi(g)$. Осталось доказать, что ψ будет непрерывен и линеен на \overline{L} . Возьмем $\forall f, g \in \overline{L}$, $\forall \alpha, \beta \in \mathbb{C}$ $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$, $\exists g_n \in L : g_n \stackrel{\|\cdot\|}{\to} g \Rightarrow \alpha f_n + \beta g_n \stackrel{\|\cdot\|}{\to} \alpha f + \beta g$. $\psi(\alpha f + \beta g) = \lim_{n \to \infty} \varphi(\alpha f_n + \beta g_n) = \lim_{n \to \infty} \alpha \varphi(f_n) + \beta \varphi(g_n) = \alpha \psi(f) + \beta \psi(g)$, так получили, что ψ линеен на замыкании \overline{L} . Чтобы доказать его непрерывность, отыщем для него константу Липпица. Так как φ линеен и непрерывен на L, то $\exists C_{\varphi} > 0 : |\varphi(f)| \leqslant C_{\varphi}||f|| \quad \forall f \in L$. Эта же C_{φ} годится как константа Липшида для ψ : $\forall g \in \overline{L}$ $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} g \Rightarrow |\psi(g)| = \lim_{n \to \infty} |\varphi(f_n)|$, а $|\varphi(f_n)| \leqslant C_{\varphi}||f_n|| \to C_{\varphi}||g||$. $||f_n|| - ||g|| \leqslant ||f_n - g|| \to 0$. Тогда $\psi(g) \leqslant C_{\varphi}||g||$. Следовательно $\psi: \overline{L} \to \mathbb{C}$ линеен и непрерывен.

Ну теперь-то мы стопудов не стесняемся сказать на экзамене, что \forall лин. и непр. $\varphi:L\to\mathbb{C}$ $\exists !$ $h_{\varphi}\in\overline{L}: \forall f\in L$ $\varphi(f)=(f,h_{\varphi})$ и верно \forall лин. и непр. $\varphi,\psi:L\to\mathbb{C}$ $h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$ и $\forall \alpha\in\mathbb{C}$ $h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}$. Теперь посмотрим на \overline{L} . Это - замкнутое подпространство в \mathcal{H} . Само \mathcal{H} полно, тогда \overline{L} полно как замкнутое в полном. Так что \overline{L} - тоже гильбертово. Тогда мы для этого \overline{L} и для линейного непрерывного функционала ψ запишем утверждение теоремы Рисса-Фреше: $\exists !$ $h_{\psi}\in\overline{L}: \quad \psi(f)=(f,h_{\psi}) \quad \forall \psi\in\overline{L}$. Вспомним, что $\psi|_{L}=\varphi$, тогда на элементах $\forall f\in L$ эта формула будет выглядеть так $\varphi(f)=(f,h_{\psi})$. Вот этот единственный $h_{\psi}\in\overline{L}$ и есть то, что мы искали как h_{φ} при формулировке задачи. Свойства h_{ψ} при суммировании функционалов и умножении на комплексные числа доказываются как и раньше для всего \mathcal{H} .

Пусть $A: D(A) \to \mathcal{H}$ - линейный оператор. Желаем определить A^* таким образом, чтобы было верно $(Af,g) = (f,A^*g) \ \forall f \in D(A) \ \forall g \in D(A^*)$. Для этого определим сначала, что такое $D(A^*)$.

Определение.
$$\mathit{D}(A^*) = \{g \in \mathcal{H} \, | \, \forall f \in \mathit{D}(A) \rightarrow (Af,g) \in \mathbb{C} \} \iff \exists C_g > 0: \, \forall f \in \mathit{D}(A) \ |(Af,g)| \leqslant C_g ||f|| \}$$

То есть мы желаем, чтобы действие $f \to (Af,g)$ было непрерывным. Определенное таким образом $D(A^*)$ - линейное подпространство в \mathcal{H} , т.к. $0 \in D(A^*)$ с $C_0 = 1$ и $\forall g,h \in D(A^*),\ \alpha,\beta \in \mathbb{C}|(Af,g)| \leqslant |\alpha|(Af,g) + |\beta|(Af,h) \leqslant (|\alpha|C_g + |\beta|C_h)||f||$, то есть нашлась константа Липшица $C_{\alpha g+\beta h} = (|\alpha|C_g + |\beta|C_h)$, значит, $\alpha g + \beta h \in D(A^*)$. Теперь нам понадобится следствие из теоремы Рисса-Фреше. Мы имеем линейный и непрерывный функционал $f \to (Af,g)$ на $D(A^*)$. Значит, $\exists ! \ h_g \in \overline{D(A)}: \ \forall f \in D(A) \ (Af,g) = (f,h_g)$. Тем самым мы подготовили почву для определения.

Определение. Сопряженным оператором A^* называется $A^*: D(A^*) \to \overline{D(A)} \subseteq \mathcal{H}$ такой что $\forall g \in D(A^*)$ $A^*g = h_g$. При этом по определению $\forall f \in D(A), \ \forall g \in D(A^*)(Af,g) = (f,A^*g)$

Теорема. (Фредгольма) Пусть $A:D(A)\to \mathcal{H}$ линейный оператор. Тогда $\ker A^*=(\Im A)^\perp$.

Доказательство. $\forall g \in \ker A^* \Leftrightarrow \begin{cases} g \in \mathrm{D}(A^*), \\ A^*g = 0 \end{cases}$. Из записанных условий следует $\forall f \in \mathrm{D}(A) \quad (Af,g) = (f,A^*g) = (f,0) = 0$. Поставим теперь задачу наоборот - пусть есть условие $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$, можно ли выяснить, что $g \in \mathrm{D}(A^*)$? Оказывается, можно, покажем это: пусть имеем $g \in \mathcal{H}$ такой, что $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$. Тогда строим функционал $\forall f \in \mathrm{D}(A) \quad f \to (Af,g) = 0$. Этот функционал получился непрерывен на $\mathrm{D}(A)$, так как липшицев с $C_g = 1$. Значит, к этому линейному и непрерывному функционалу мы можем предъявить

сопряженный
$$A^*$$
, причем $g \in D(A^*)$. Сведем результаты: $\forall f \in \mathrm{D}(A) \begin{cases} g \in \mathcal{H}, \\ (Af,g) = 0, \\ \forall f \in D(A) \end{cases} \Rightarrow \begin{cases} g \in D(A^*), \\ (Af,g) = (f,A^*g) = 0 \end{cases}$

Последнее равенство (красное) выполняется $\forall f \in \mathrm{D}(A)$, значит, $A^*g = 0$, то есть $g \in \ker A^*$. Но исходили мы из того, что $\forall f \in \mathrm{D}(A)$ (Af, g) = 0, а это можно записать как $g \in (\Im A)^{\perp}$ ($\Im A = \{Af, f \in \mathrm{D}(A)\}$). Так мы и выяснили, что $\ker A^* = (\Im A)^{\perp}$.

Теорема. (о связи графиков линейного оператора и его сопряженного) Пусть $A:D(A)\to \mathcal{H}$ линейный оператор. Тогда $\mathrm{Gr} A^*=(V\mathrm{Gr})^\perp\cap (\mathcal{H}\times\overline{\mathrm{D}(A)}).$

Доказательство. Будем последовательно определять понятия, которые нам потребуются.

Определение.
$$A:D(A)\to \mathcal{H}$$
 оператор, тогда $\mathrm{Gr} A=\{inom{f}{Af}\in\mathcal{H}\times\mathcal{H}:\ f\in\mathrm{D}(A)\}$

Пространство $\mathcal{H} \times \mathcal{H}$ - это пространство столбцов из элементов \mathcal{H} по 2 элемента. На этом пространстве вводится скалярное произведение по формуле: $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \end{pmatrix}_{\mathcal{H} \times \mathcal{H}} = (\varphi, f)_{\mathcal{H}} + (\psi, g)_{\mathcal{H}}$. Квадрат нормы элемента $\mathcal{H} \times \mathcal{H}$ тогда оказывается суммой квадратов норм элементов из столбцов. $\mathcal{H} \times \mathcal{H}$ с такой эвклидовой нормой полно. $GrA \subset \mathcal{H} \times \mathcal{H}$, причем GrA - подпространство.

Будем теперь рассматривать график сопряжённого оператора.

$$egin{align*} g \in D(A^*) & g \in D(A^*), \quad h \in \overline{D(A)} \\ h \in GrA^* \Leftrightarrow & \overline{D(A)} \text{ вспоминаем теорему Рисса-Фреше, куда погружен } h_{\varphi} & \forall f \in D(A) \quad (Af,g) = (f,h) \\ \Psi$$
 Чтобы продолжить цепочку эквивалентных утверждений, заметим, что из $\forall f \in D(A) \quad (Af,g) = (f,h)$ и $h \in \overline{D(A)}$ автоматически следует $g \in D(A^*)$ по определению. Действительно, ведь $(Af,g) = (f,h)$ линейно и непрерывно (в правой части нет A и g). (follow the red bracket)

$$\Leftrightarrow h \in \overline{\mathrm{D}(A)} \\ \forall f \in \mathrm{D}(A) \ (Af,g) = (f,h) \\ \Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) \ (-Af,g) + (f,h) = 0 \\ h \in \overline{\mathrm{D}(A)} \end{cases} \\ \Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) \ \left(\begin{pmatrix} -Af \\ f \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} \\ \Leftrightarrow \end{cases}$$

Теперь определим оператор $V: \mathcal{H} \times \mathcal{H} \to \mathcal{H} \times \mathcal{H}$, который переставляет элементы в столбцах местами и к элементу, который появился в 1 позиции, приписывает минус. $\binom{f}{Af} \stackrel{\text{V}}{\to} \binom{-Af}{f}$. С помощью этого оператора, как видно, очень удобно выразить сомножитель в полученном нами скалярном произведении через график оператора A.

$$\Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) & \left(\mathrm{V} \begin{pmatrix} f \\ Af \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} = 0 \\ h \in \overline{\mathrm{D}(A)} & \Leftrightarrow \begin{pmatrix} g \\ h \end{pmatrix} \in (\mathrm{VGr}A)^{\perp} \cap (\mathcal{H} \times \overline{\mathrm{D}(A)}). \end{cases} \Box$$

Замечание: Введенный в доказательстве оператор V обладает свойствами:

- Линеен на $\mathcal{H} \times \mathcal{H}$
- $V^2 = -I$, $V^{-1} = -V$ (левый и правый обратные)
- Изометричен $\left| \left| V \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}} = \left| \left| \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}}$ (изометрический изоморфизм)

16. Неравенство Фридрихса для функции $f \in C^1(\bar{G})$ и выпуклой ограниченной области $G \subset \mathbb{R}^m$ с кусочно–гладкой границей. Задача Дирихле в круге $K \subset \mathbb{R}^2$ для замыкания оператора Лапласа $\Delta: C^2(\bar{K}) \longrightarrow \mathbb{L}_2(K)$, существование и единственность ее решения.

В билете используются равенство Парсеваля и теорема Бетто-Леви добавлю их формулировки сюда попозже

Неравенство Фридрихса $G \subset \mathbb{R}^m$ – ограниченное, выпуклое множество с кусочно-гладкой границей ∂G . Пусть $f \in C^1(\bar{G})$ и $f|_{\partial G} = 0$. Тогда

$$\int_{G} |f|^{2} \leqslant (\operatorname{diam} G)^{2} \int_{G} |\nabla f|^{2}$$

Или в терминах $(L)_2$ -нормы

$$||f||_{\mathbb{L}_2(G)} \leq (\operatorname{diam} G)||\nabla f||_{\mathbb{L}_2(G)}$$

Докажем для $m \geqslant 2$, в случае m=1 доказательство тривиально. Рассмотрим $x \in G$. I_1 — проекция G ось x_1 , а G_0 на оставшееся подпространство \mathbb{R}^{m-1} . При заданых $(x_2 \dots x_m)^T \in G_0$ в силу выпуклости G $x_1 \in [a(x_2, \dots, x_m), b(x_2, \dots, x_m)] \subset I$, как изображено.

По Ньютону-Лейбницу и из-за того, что f на границе ноль

$$f(x) = f(x) - f(a(x_2, \dots, x_m)) = \int_{a(x_2, \dots, x_m)}^{x_1} \frac{\partial f}{\partial t}(t, x_2, \dots, x_m) dt$$

$$|f(x)| \leqslant \int_{a(x_2,\dots,x_m)}^{x_1} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \sqrt{b-a} \sqrt{\int_a^b \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right|^2} dt$$

Здесь третье неравенство это Коши-Буняковскй. В силу того, что $|\frac{\partial f}{\partial x_1}| \leqslant |\nabla f|$, а $b(x_2,\ldots,x_m) - a(x_2,\ldots,x_m) \leqslant |I_1|$

$$|f(x)|^2 \le |I_1| \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} |\nabla f(t,x_2,\dots,x_m)|^2 dt$$

Интегрируем по области G

$$\int_{G} |f(x)|^{2} dx \leq |I_{1}| \int_{G} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt dx \leq |I_{1}| \int_{G} dx_{1} \int_{G_{0}} dx_{2} \dots dx_{m} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt$$

Проинтегрировав по x_1 и оценивая $|I_1| \leqslant diamG$ получаем

$$\int_{G} |f(x)|^{2} dx \le (\operatorname{diam} G)^{2} \int_{G} |\nabla f(x)|^{2} dx$$

Задача Дирихле для замыкания оператора Лапласа в круге

$$\begin{cases} \bar{\Delta}u = 0, u \in D(\bar{\Delta}) \\ u|_{\partial K_R} = v \in \mathbb{L}_2(K_R) \end{cases}$$

Это означет, что $\exists \ u(N) \in D(\Delta): \begin{cases} u(N) \xrightarrow{\mathbb{L}_2(K_R)} u \\ \Delta u(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \end{cases}$ при $N \to \infty$ и $||u(r, \bullet) - v(\bullet)||_{\mathbb{L}_2(K_R)} \to 0$ при $r \to R$.

Рассмотрим следующие суммы

$$u(N) = \sum_{n=-N}^{N} u_n(r)e^{in\varphi}$$

$$v(N) = \sum_{n=-N}^{N} v_n e^{in\varphi}$$

Тогда u(N) сойдется к решению, если

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

Покажем, что эти условия выполняются при $u_n=v_n\left(\frac{r}{R}\right)^{|n|}$. Действительно $\forall n\in N$ справедливо

$$\Delta(v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi}) = 0$$

Теперь докажем сходимость к u. Для начала покажем, что

$$u = \sum_{n \in \mathbb{N}} v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi} \in \mathbb{L}_2(K_R)$$

В силу равенства Парсеваля и теоремы Бетто-Леви

$$\int\limits_{K_R} |u^2| = \int\limits_0^R dr \, r \int\limits_0^{2\pi} |u(r,\varphi)|^2 \, d\varphi = \int\limits_0^R dr \, r \sum_{n \in \mathbb{N}} |u_n|^2 2\pi = 2\pi \sum_{n \in \mathbb{N}} |v_n|^2 \int\limits_0^R r \left(\frac{r}{R}\right)^{2|n|} \, dr \leqslant \frac{R^2}{2} ||v||_{\mathbb{L}_2(K_R)} < +\infty$$

$$||u - u(N)||_{\mathbb{L}_2(K_R)} = \sum_{n>N} |v_n|^2 \int_0^R r\left(\frac{r}{R}\right)^{|n|} dr \to 0$$

В силу сходимости $\sum_{n\in\mathbb{N}}|v_n|^2$. Таким образом видим, что предъявленное u является решением.

Единственность этого решения Пусть решения два – u и w. Тогда по определению \exists такие сходящиеся к ним последовательности $u(N) \in C^2(\bar{K}_R)$ и $w(N) \in C^2(\bar{K}_R)$, что

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

$$\begin{cases} \Delta w(N) \xrightarrow{N \to \infty} 0 \\ w(N)|_{\partial K_R} = v(N) \end{cases}$$

Рассмотрим их разность q(N) = u(N) - w(N)

$$\begin{cases} q(N) \xrightarrow{\mathbb{L}_2(K_R)} u - w \\ \Delta q(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \\ q(N)|_{\partial K_R} = 0 \end{cases}$$

Воспользуемся формулой Грина

$$\int\limits_{K_R} \Delta(q(N)) q(\bar{N}) = \int\limits_{\partial K_R} \frac{\partial q(N)}{\partial n} q(\bar{N}) - \int\limits_{K_R} |\nabla q(N)|^2 = - \int\limits_{K_R} |\nabla q(N)|^2$$

По этому и еще из-за неравенства Коши-Буняковского

$$||\nabla(q(N))||_{\mathbb{L}_{2}(K_{R})} = \int\limits_{K_{R}} |\nabla q(N)|^{2} \leqslant \int\limits_{K_{R}} |\Delta(q(N))||q(\bar{N})| \leqslant ||\Delta(q(N))||_{\mathbb{L}_{2}(K_{R})} ||q(\bar{N})||_{\mathbb{L}_{2}(K_{R})} \stackrel{N \to \infty}{\longrightarrow} 0$$

Тогда по неравенству Фридрихса

$$||q(N)||_{\mathbb{L}_2(K_R)} \leqslant 2R||\nabla(q(N))||_{\mathbb{L}_2(K_R)} \xrightarrow{N \to \infty} 0$$

Таким образом $0 \leftarrow q(N) \rightarrow u - w,$ а значит u = w

19. Самосопряжённый линейный оператор в гильбертовом пространстве, его плотная определённость, замкнутость и симметричность. Пример несамосопряженногозамкнутого плотно определенного симметричного оператора. Вещественность спектра самосопряженного оператора.

Вещественность спектра

Далее в этом параграфе рассматриваем самосопряжённый оператор A.

Утверждение 5.9.1. Справедливы следующие свойства:

- 1) $(A(x), x) \in \mathbb{R}$ для любого $x \in \mathcal{H}$;
- 2) точечный спектр оператора A вещественен, т. е. $\sigma_p(A) \subset \mathbb{R}$;
- для любых двух различных собственных чисел оператора А любые соответствующие им собственные векторы ортогональны;
 - 4) $||A^n|| = ||A||^n$ для любого $n \in \mathbb{N}$, r(A) = ||A||.

Доказательство. Свойство 1 следует из равенств

$$(A(x), x) = (x, A(x)) = \overline{(A(x), x)},$$

т. е. мнимая часть ${\rm Im}(A(x),x)=0$. Рассмотрим произвольное собственное число $\lambda\in\sigma_p(A)$ оператора A. Пусть $x\in{\rm Ker}\,A_\lambda$ — собственный вектор A, соответствующий λ . Тогда получаем равенства $(A(x),x)=(\lambda x,x)=\lambda\|x\|^2$. Следовательно, в силу свойства 1 получаем $\lambda=\frac{(A(x),x)}{\|x\|^2}\in\mathbb{R}$. Таким образом, $\sigma_p(A)\subset\mathbb{R}$, т. е. свойство 2 доказано. Рассмотрим теперь два различных собственных числа

21. Начально-краевая задача для однородного уравнения Шрёдингера с самосопряжённым линейным оператором в гильбертовом пространстве. Метод Фурье решения этой задачи и критерий её разрешимости. Оператор эволюции.

Общий вид постановки начально-краевой задачи:

Пусть P(z) - полином степени N (с комплексными коэффициентами), $u(t) \in \mathcal{H}$, A - симметричный оператор над \mathcal{H} , а \bar{A} - его замыкание.

Начально краевая задача:
$$\stackrel{def}{=} \begin{cases} P\left(\frac{d}{dt}\right)u(t) = \bar{A}u(t), & t > 0, \quad u(t) \in D(\bar{A}) \\ u(+0) = v_0(t) \in \mathcal{H} \\ u'(+0) = v_1(t) \in \mathcal{H} \\ \dots \\ u^{(N-1)}(+0) = v_{N-1} \in \mathcal{H} \end{cases}$$
 (21)

Примечание: задача в том смысле «краевая», что область определения оператора содержит краевые условия, а функции рассматриваются из $D(\bar{A})$; начальные условия здесь - все остальные уравнения системы.

Важно: производная и предел понимаются в смысле нормы гильбертова пространства:

Говорят, что $\exists u'(t) \in \mathcal{H}, t > 0$: Если существует предел:

$$\exists \lim_{\Delta t \to 0} \frac{\|u(t + \Delta t) - u(t)\|}{\Delta t} \stackrel{def}{=} u'(t), \quad t > 0$$
 (22)

В силу этого определения получаются важные свойства производной и её коэффициентов Фурье. Выберем ортогональный базис собственных векторов ССО \bar{A} в \mathcal{H} и разложим u(t) по нему:

$$u(t) = \sum_{n=0}^{\infty} e_n u_n(t)$$

Пусть теперь $\exists u'(t) = \sum_{n=0}^{\infty} e_n u'_n(t)$. Тогда по определению коэффициентов Фурье и производной получим:

$$(u_n(t))' = \frac{u_n(t + \Delta t) - u_n(t)}{\Delta t} = \frac{(\frac{u(t + \Delta t) - u(t)}{\Delta t}, e_n)}{(e_n, e_n)} \to \frac{(u', e_n)}{(e_n, e_n)} = u'_n(t), \quad t \to 0$$

Здесь мы воспользовались непрерывностью скалярного произведения по каждому из сомножителей. Т.е. производная коэфициента Фурье - коэфициент производной. Производные высших порядков определяются аналогично.

Замечание: из существования производной следует, что компоненты вектора производной равны продифференцированным компонентам вектора, обратное неверно, и в задачах нужно доказывать, что «кандидат» на решение действительно удовлетворяет определению (22)

Методом Фурье называется разложение вектора u(t) на копоненты по базису собственных векторов оператора \bar{A} , благодаря этому задача сводится к задаче Коши.

А, благодаря этому задача сводител к задаче голи. Теперь покажем это. Пусть $u(t) \in D(\bar{A})$ Равенство Парсеваля $\sum_{n=0}^{\infty} |\lambda_n|^2 |u_n|^2 \|e_n\|^2 < \infty$ решение поставленной задачи.

Тогда, т.к. все производные у u(t) имеются, то нетрудно увидеть (в силу вышеуказанного свойства производной), что:

$$P\left(\frac{d}{dt}\right)u(t) = \sum_{n=0}^{\infty} P\left(\frac{d}{dt}\right)u_n(t)e_n$$

В то же время воспользуемся тем, что мы разложили векторы по собственным векторам симетричного самосопряженного оператора \bar{A}

$$\bar{A}u(t) = \sum_{n=0}^{\infty} \lambda_n u_n e_n$$

Приравнивания оба выражения в силу уравнения (21):

$$P\left(\frac{d}{dt}\right)u_n(t) = \lambda_n u_n e_n, \quad t > 0$$

Т.е. мы получили задачу Коши из теории обыкновенных диф. уравнений. Покажем, что остальные уравнения системы (21) являются начальными условиями для этого счетного набора задач Коши:

$$u^{(k)}(+0) = v_k \stackrel{def:}{\Leftrightarrow} \lim_{t \to +0} ||u^{(k)}(t) - v_k|| \to 0$$

Выражение выше можно ослабить, но получить более удобный результат:

$$||u^{(k)}(t) - v_k|| > |u_n^{(k)}(t) - (v_k)_n|||e_n|| > 0$$

По теореме о двух милиционерах получаем,

$$u_n^{(k)}(0) = (v_k)_n$$

Замечание: после решения всех задач Коши, необходимо проверить выполнение всех предположений, которые были сделаны для поиска решения: $u(t) \in D(\bar{A}), \forall k \in \{1,..N\} \hookrightarrow \exists u^{(k)}(t)$. Если эти условия выполнены, получим единственность решения, согласно единственности и существованию решения задачи Коши.

Уравнение Шредингера

$$\begin{cases} i\frac{d}{dt}u(t) = \bar{A}u(t), t > 0\\ u(+0) = v_0 \end{cases}$$

Воспользуемся методом Фурье и доказанными ранее свойствами:

$$\begin{cases} i(u_n(t))' = \lambda_n u_n, t > 0 \\ u(+0) = v_0 \end{cases} \rightarrow u_n(t) = e^{-i\lambda_n t} (v_0)_n \stackrel{def}{=} (e^{-it\bar{A}} v_0)_n$$

$$D(e^{-it\bar{A}}) = \mathcal{H}, \quad ||u(t)|| = ||e^{-it\bar{A}}v_0|| = ||v_0||$$

Этот оператор называется оператором эволюции. Последнее равенство очевидно из равенства Парсеваля. Это в свою очередь обозначает, что

$$u(t) \in D(\bar{A}) \Leftrightarrow v_0 \in D(\bar{A}) \stackrel{def}{\Leftrightarrow} \sum_{n=0}^{\infty} |(v_0)_n|^2 |\lambda_n|^2 ||e_n||^2 < +\infty$$

Это **Критерий разрешимости уравнения Шредингера**. Не для каждой начально-краевой он такой. Например, может быть критерий вида

$$\sum_{n=0}^{\infty} |(v_0)_n|^2 |\lambda_n| ||e_n||^2 < +\infty$$

Замечание: примеры решения других начально-краевых задач есть по ссылке: тык1, тык2

22. Собственные числа и собственные функции оператора Лапласа в круговом секторе при однородном граничном условии. Функции Бесселя. Своиство ортогональности и своиства нулеи функции Бесселя.

Короче, это первые три пункта методички Конста по Бесселям. Но, с другой стороны, это 12 страниц. Проще почитать/распечатать тут

23. Ортогональный базис в пространстве $\mathbb{L}_2(G)$ из собственных функций оператора Лапласа в круговом секторе $G \in \mathbb{R}^2$ при однородном граничном условии.

Подготовка к билету: 318 - 332 страницы учебника Владимирова