Bayesian classification CISC 5800 Professor Daniel Leeds

Incorporating prior probability

- Define **prior** probabilities for each class $P(y) = P(\mu_y, \sigma_y)$ Probability of class y same as probability of parameters μ_y, σ_y
- "Posterior probability" estimated as likelihood \times prior : $P(x|\mu_y,\sigma_y)$ $P(\mu_y,\sigma_y)$
- Classify as $\operatorname{argmax}_{y} P(x|\mu_{y}, \sigma_{y}) P(\mu_{y}, \sigma_{y})$
- Terminology: μ_y , σ_y are "parameters." In general use $\boldsymbol{\theta}_y$ Here: $\boldsymbol{\theta}_y = \left\{\mu_y, \sigma_y\right\}$. "**Posterior"** estimate is $P(x|\theta_y) P(\boldsymbol{\theta}_y)$

Probability review: Bayes rule

Recall:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

and:
$$P(A,B) = P(B|A)P(A)$$

so:
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Equivalently:
$$P(y|x) = P(\theta_y|x) = P(\theta_y|D) = \frac{\frac{P(D|\theta_y)P(\theta_y)}{P(D)}}{\frac{P(D)}{P(D)}}$$

The posterior estimate

$$\operatorname*{argmax}_{\boldsymbol{\theta}_{y}} P\big(\boldsymbol{\theta}_{y} \big| \boldsymbol{D}\big) \propto P\big(\boldsymbol{D} \big| \boldsymbol{\theta}_{y}\big) P(\boldsymbol{\theta}_{y})$$

Posterior \propto Likelihood x Prior \propto - means proportional We "ignore" the P(**D**) denominator

because **D** stays same while comparing different classes (*y* represented by θ_{ν})

Typical classification approaches

MLE – Maximum Likelihood: Determine parameters/class which maximize probability of the data

$$\underset{\boldsymbol{\theta_y}}{\operatorname{argmax}} P(\boldsymbol{D}|\boldsymbol{\theta_y})$$

MAP – Maximum A Posteriori: Determine parameters/class that has maximum probability

$$\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{\theta}_{y}|\boldsymbol{D})$$

10

The **true**

posterior

Incorporating a prior

Three classes: Y={Cloudy, Non-Cloudy, Eclipse} 0.16 0.12 0.08 0.04 0 5 10 15 20 25

P(Cloudy)=0.4 P(Non-Cloudy)=0.4 P(Eclipse)=0.2

x=9

P(x=9 | Cloudy) P(Cloud) =0.12x.4 = .048 P(x=9 | Non-Cloud) P(Non-Cloud) = 0.02x.4 = 0.008 P(x=9 | Eclipse) P(Eclipse)=0.16x.2 = .032

12

Bernoulli distribution – coin flips

We have three coins with known biases (favoring heads or tails)

How can we determine our current coin?

Flip K times to see which bias it has

Data (**D**): {HHTH, TTHH, TTTT} Bias (θ_y): p_y probability of H for coin y

$$P(\boldsymbol{D}|\theta_{y}) = p_{y}^{|H|}(1-p_{y})^{|T|}|H|$$
 - # heads, $|T|$ - # tails

4

Bernoulli distribution – reexamined

$$P(\boldsymbol{D}|\theta_{\mathbf{y}}) = p_{\mathbf{y}}^{|H|} (1 - p_{\mathbf{y}})^{|T|} |H|$$
 - # heads, $|T|$ - # tails

More rigorously: in K trials, $side_k = \begin{cases} 0 & \text{if tails on flip k} \\ 1 & \text{if heads on flip k} \end{cases}$ $P(\mathbf{D}|\theta_y) = \prod_{k} p_y^{side_k} (1 - p_y)^{(1 - side_k)}$

15

Multinomial example

4-sided die – 4 probabilities:

$$p_{\text{side1}}, p_{\text{side2}}, p_{\text{side3}}, p_{\text{side4}}$$
 (Note: $p_{\text{side4}} = 1 - \sum_{k=1}^{3} p_{\text{sidek}}$)

Define:
$$\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & otherwise \end{cases}$$

$$P(\mathbf{D}|\theta_{y}) = \prod_{k} p_{side1}^{\delta(side_{k}-1)} p_{side2}^{\delta(side_{k}-2)} p_{side3}^{\delta(side_{k}-3)} p_{side4}^{\delta(side_{k}-4)}$$

Optimization: finding the maximum likelihood parameter for a fixed class (fixed coin)

$$\mathop{
m argmax}_{ heta} P(m{D}| heta_y) = p_y$$
 - probability of Head $\mathop{
m argmax}_{p} p_y^{|H|} (1-p_y)^{|T|}$

Equivalently, maximize $\log P(\boldsymbol{D}|\theta_y)$ argmax $|H|\log p_y + |T|\log (1-p_y)$

18

The properties of logarithms

Convenient when dealing with small probabilities

• $0.0000454 \times 0.000912 = 0.0000000414 \rightarrow -10 + -7 = -17$

19

Optimization: finding zero slope

Location of maximum has slope 0

p - probability of Head

maximize $\log P(\boldsymbol{D}|\theta)$

 $\underset{p}{\operatorname{argmax}} |H| \log p + |T| \log(1-p):$

$$\frac{d}{dp}|H|\log p + |T|\log(1-p) = 0$$

$$\frac{|H|}{p} - \frac{|T|}{1-p} = 0$$

Intuition of the MLE result

$$p_{y} = \frac{|H|}{|H| + |T|}$$

• Probability of getting heads is # heads divided by # total flips

Finding the maximum a posteriori

- $P(\theta_y|\mathbf{D}) \propto P(\mathbf{D}|\theta_y)P(\theta_y)$
- Incorporating the Beta prior:

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

 $\underset{\theta}{\operatorname{argmax}} P(D|\theta_y) P(\theta_y) = \\ \underset{\theta}{\operatorname{argmax}} \log P(D|\theta_y) + \log P(\theta_y)$

Example Beta distributions $\alpha = 0.5, \quad \beta = 0.5$ $0.5, \quad$

Intuition of the MAP result

$$p_{y} = \frac{|H| + (\alpha - 1)}{|H| + (\alpha - 1) + |T| + (\beta - 1)}$$

- Prior has strong influence when |H| and |T| small
- Prior has weak influence when |H| and |T| large
- $\alpha > \beta$ means expect to find coins biased to heads
- $\beta > \alpha$ means expect to find coins biased to tails

Multinomial distribution Classification

- What is mood of person in current minute? M={Happy, Sad}
- Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Data (**D**): {LLJLCY, JJLYJL, CCLLLJ, JJJJJJ}

Bias (θ_{ν}) : Probability table

	Нарру	Sad
Cry	0.1	0.5
Jump	0.3	0.2
Laugh	0.5	0.1
Yell	0.1	0.2

$$P(\boldsymbol{D} | \boldsymbol{\theta_y}) = (p_y^{Cry})^{|Cry|} (p_y^{Jump})^{|Jump|} (p_y^{Laugh})^{|Laugh|} (p_y^{Yell})^{|Yell|}$$

y) (Py) (Py) (Py)

Multinomial distribution – reexamined

$$P(\boldsymbol{D}|\boldsymbol{\theta}_{y}) = \left(p_{y}^{Cry}\right)^{|Cry|} \left(p_{y}^{Jump}\right)^{|Jump|} \left(p_{y}^{Laugh}\right)^{|Laugh|} \left(p_{y}^{Yell}\right)^{|Yell|}$$

More rigorously: in K measures,

$$\delta(trial_k = Action) = \begin{cases} 0 & \text{if } trial_k \neq Action \\ 1 & \text{if } trial_k = Action \end{cases}$$

$$P(\mathbf{D}|\theta_{\mathbf{y}}) = \prod_{k} \prod_{i} \left(p_{\mathbf{y}}^{\text{Action}_{i}} \right)^{\delta(trial_{k} = \text{Action}_{i})}$$

Classification: Given known likelihoods for each action, find mood that maximizes likelihood of observed sequence of actions (assuming each action is independent in the sequence)

Learning parameters

MLE:
$$P(A=a_i|M=m_j)=p_j^i=rac{\#D\{A=a_i\land M=m_j\}}{\#D\{M=m_j\}}$$

$$\text{MAP: } P\big(A = a_i \big| M = m_j\big) = \frac{\#D(A = a_i \land M = m_j) + (\gamma_i - 1)}{\#D(M = m_j) + \sum_k (\gamma_k - 1)}$$

 γ_k is prior probability of each action class $\mathbf{a_k}$

$$P(Y = y_j) = \frac{\#D(M = m_j) + (\beta_j - 1)}{|D| + \sum_m (\beta_m - 1)}$$

 β_k is prior probability of each mood class m_k

Multiple multi-variate probabilities							
Mood based on Action, Tunes, Weather		Нарру	Sad				
	Cry, Jazz, Sun	0.003	0.102				
	Cry, Jazz, Rain	0.024	0.025				
$\operatorname{argmax} P(A, T, W \boldsymbol{\theta_v})$		÷					
θ_y	Cry, Rap, Snow	0.011	0.115				
		÷					
How many entries in probability	Laugh, Rap, Rain	0.042	0.007				
table?		÷					
	Yell, Opera, Wind	0.105	0.052				
# params = $ M x(A x T x W -1)$							

						C . I			
Naïve bayes:					Нарру	Sad			
Indive Dayes.				Jazz	0.05	0.4			
Assuming independence of input features			ς	Rap	0.5	0.3			
independence of input leatures					0.45	0.3			
$\operatorname{argmax} P(A, T, W \boldsymbol{\theta}_{\boldsymbol{\gamma}}) =$									
θ_y					Нарру	Sad			
$\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(A \boldsymbol{\theta}_{y}) P(T \boldsymbol{\theta}_{y}) P(W \boldsymbol{\theta}_{y})$		Нарру	Sac	Sun	0.6	0.2			
How many entries in probability tables?	Crv	0.1	0.5	Rain	0.05	0.3			
	Jump	0.3	0.2	Snow	0.3	0.3			
	Laugh	0.5	0.1	Wind	0.05	0.2			
	Yell	0.1	0.3						
•# params = M x((A -1)+(T -1)+(W -1)) = 2x(3+2+3)=16									

Benefits of Naïve Bayes

Very fast learning and classifying:

- For multinomial problem:

 - Non-naı̈ve: learn $|Y|\times (\prod_i |X_i|-1)$ parameters

Often works even if features are NOT independent

|Y| is number of possible classes

 $|X_i|$ is number of possible values for ith feature

NB (Naïve Bayes): Find class y with ${m heta}_y$ to maximize $P({m heta}_y|{m D})$ Assuming variables independent

e.g., x1=Action, x2=Tunes

 $P(\mathbf{D}|\mathbf{\theta}_y) = \prod_i P(X^i|\mathbf{\theta}_y)$ where $\mathbf{D} = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix}$ is a list of feature values

 $P(oldsymbol{ heta}_{oldsymbol{y}})$ prior class probability

Typical Naïve Bayes classification

 $\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{\theta}_{y}|\boldsymbol{D}) \rightarrow \underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{D}|\boldsymbol{\theta}_{y}) P(\boldsymbol{\theta}_{y})$

Multi-dimensional probability functions

- Multiple features as vector: $\mathbf{x} = \begin{bmatrix} temperature \\ windSpeed \\ musicVolume \end{bmatrix}$
- In 1D: likelihood P(temperature | mood)

$$L = \frac{\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)}{\sigma\sqrt{2\pi}}$$

• In 2D: likelihood $P\left(\begin{bmatrix}temp\\wind\end{bmatrix} \mid mood\right)$

$$L = \frac{\exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^2 |\boldsymbol{\Sigma}|}}$$

Multi-dimensional Gaussian – Naïve

• In 2D: likelihood $P\left(\begin{bmatrix}temp\\wind\end{bmatrix} \mid mood\right)$

$$L = \frac{\exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^2 |\boldsymbol{\Sigma}|}}$$

$$\bullet \, \pmb{\Sigma} = \begin{bmatrix} \sigma_{temp}^2 & \sigma_{temp}\sigma_{wind} \\ \sigma_{temp}\sigma_{wind} & \sigma_{wind}^2 \end{bmatrix}$$

•
$$\mu = \begin{bmatrix} \mu_{temp} & \mu_{wind} \end{bmatrix}$$

 $\sigma_{temp}\sigma_{wind}=0$

Multi-dimensional Gaussian – Non-naive

• In 2D: likelihood $P\left(\begin{bmatrix}temp\\wind\end{bmatrix} \mid mood\right)$

$$\Sigma = \begin{bmatrix} \sigma_{temp}^2 & \sigma_{temp}\sigma_{wind} \\ \sigma_{temp}\sigma_{wind} & \sigma_{wind}^2 \end{bmatrix}$$

Gaussian parameter counts

For k dimensions

- Naïve: $k + k \approx 2k$ parameters
- Non-naïve: $k + \frac{k(k-1)}{2} \approx \frac{k^2}{2}$

$$\bullet \mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_1 \sigma_k \\ \vdots & \ddots & \vdots \\ \sigma_1 \sigma_k & \cdots & \sigma_k^2 \end{bmatrix}$$