TEMA2: Fundamentos de Señales y Sistemas

Contenidos del tema:

- Modelos de sistemas lineales en tiempo continuo:
 - Dominio del tiempo
 - ◆Dominio de la frecuencia, polos y ceros.
- ☐ Representación de señales continuas:
 - Señales periódicos y aperiódicas: Espectro de frecuencia
- ☐ Modelos de sistemas lineales en tiempo discreto:
 - ◆Dominio del tiempo, secuencias temporales
 - Dominio z, polos y ceros
- ☐ Representación de señales discretas:
 - Efecto del muestreo, espectro de frecuencia
 - ◆Teorema de Nyquist, aliasing
 - Reconstrucción de señales

Función de Transferencia de Sistemas lineales Continuos

☐ Forma General de la Ecuación que describe un circuito lineal invariante en el tiempo:

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{(n-1)}y}{dt^{n-1}} + \dots + a_{n-1}\frac{dy}{dt} + a_{n}y = b_{0}\frac{d^{m}w}{dt^{m}} + b_{1}\frac{d^{(m-1)}w}{dt^{m-1}} + \dots + b_{m}w$$

☐ Estructura de su ecuación transformada:

$$Y(s) + a_1 s^{n-1} Y(s) + \dots + a_{n-1} s Y(s) + a_n Y(s) = b_0 s^m W(s) + b_1 s^{m-1} W(s) + \dots + b_m W(s)$$

☐ Estructura alternativa:

$$\frac{Y(s)}{W(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

Función de Transferencia de Sistemas lineales Continuos

Función de Transferencia de Sistemas lineales Continuos

 $y(t) = \int_{0}^{t} h(t-\tau)w_{S}(\tau) d\tau$

Transformada de Laplace:

$$F(s) = \int_0^\infty f(t) \varepsilon^{-st} dt$$

$$y(t) = \sum_{j=1}^{n} c_{j} \varepsilon^{p_{j}t} + \frac{1}{2\pi} \int_{(\sigma - j\omega)}^{(\sigma + j\omega)} H(s) W(s) \varepsilon^{st} ds$$

$$\int_0^\infty h(t) \varepsilon^{-St} dt \equiv H(s)$$

$$H(s) = \sum_{j=1}^{n} \sum_{l=1}^{q_j} \frac{K_{jl}}{s} = \frac{Y(s)}{W(s)} = \frac{\sum_{j=1}^{n} b_j s^j}{\sum_{k=1}^{n} a_k s^k}$$

Función de Transferencia de Sistemas lineales Continuos

Función de Transferencia de Sistemas lineales Continuos

- ☐ Los polos de H(s) nos dan información sobre:
 - ☐ ☐ La parte de la Respuesta que se desvanece con el tiempo
 - ☐ ☐ El valor de Kj corresponde a la Respuesta al Impulso
 - ☐ ☐ El valor de los coeficientes para la Respuesta Natural depende de las condiciones iniciales

Los polos son singularidades del Sistema

Un Sistema es *Estable* sii todos sus polos están en

La respuesta frecuencial de un Sistema corresponde a su comportamiento sobre el eje Imaginario (Diagrama de Bode)

Transformada de Laplace

La Transformación de Laplace es una representación de una función en la base infinita de las funciones exponenciales

Ejemplo de Tabla de Transformadas de Laplace:

$$f(t) F(s) \stackrel{\triangle}{=} \int_{0-}^{\infty} f(t) \epsilon^{-st} dt$$

$$\frac{\delta(t)}{\delta^{(n)}(t)} 1$$

$$u(t) \frac{1}{s} s$$

$$\frac{t^n}{n!} (n = 1, 2, ...)$$

$$\frac{t^n}{\epsilon^{-nt}} \left(\begin{array}{c} a \text{ real or } \\ \text{complex} \end{array} \right) \frac{1}{s+a} (n = 1, 2, ...)$$

$$\frac{t^n}{n!} \epsilon^{-at} \left(\begin{array}{c} a \text{ real or } \\ \text{complex} \end{array} \right) \frac{1}{(s+a)^{n+1}} (n = 1, 2, ...)$$

$$\cos \beta t \frac{s}{s^2 + \beta^2}$$

$$\sin \beta t \frac{s}{s^2 + \beta^2}$$

$$\sin \beta t \frac{\beta}{s^2 + \beta^2}$$

$$\epsilon^{-at} \cos \beta t \frac{s}{(s+a)^2 + \beta^2}$$

$$\epsilon^{-at} \sin \beta t \frac{\beta}{(s+a)^2 + \beta^2}$$

$$a\epsilon^{-at} \cos \beta t + \frac{(b-a\alpha)}{\beta} \epsilon^{-at} \sin \beta t \frac{\beta}{(s+a)^2 + \beta^2}$$

$$\frac{As + b}{(s+a)^2 + \beta^2}$$

$$\frac{K}{s+a-j\beta} + \frac{K}{s+a+j\beta}$$

Transformada de Laplace

Propiedades de la Transformada de Laplace:

- ☐ Reduce la solucion de ecuaciones diferenciales lineales a la solución de ecuaciones lineales algebraicas.
- □ No todas las funciones temporales son transformables (en la práctica lo son todas aquellas que no duran infinitamente).
- ☐ Toda función temporal (de duración finita) tiene asociada unívocamente una transformada y viceversa.
- ☐ La Transformada de Laplace es lineal.
- ☐ La transformada de una derivada:

$$\Upsilon \left[\frac{\mathrm{d}}{\mathrm{d}t} f(t) \right] = s \Upsilon [f(t)] - f(0)$$

☐ La transformada de una integral:

$$\Upsilon \left[\int_{0_{-}}^{t} f(\tau) d\tau \right] = \frac{1}{s} \Upsilon [f(t)]$$

■ Estrictamente hablando, la transformación sólo es válida para Re (s) > 0, pero puede extenderse por continuación analítica. Sólo no está definida en las singularidades (teorema de los residuos).

Representación de Señales

- ☐ Las señales que se pueden manejar son muy diversas.
- ☐ En general, no serán señales periódicas.
- ☐ Una representación "general" (válida para cualquier señal) sería muy valiosa.
- ☐ Las funciones base que más interesan son periódicas.
- ☐ La herramienta adecuada es el desarrollo en serie de Fourier:

$$g(\theta) = \sum_{k=-\infty}^{k=\infty} c_k e^{jk\theta} \quad ; \quad -\pi < \theta < \pi \quad \text{donde: } c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-jk\theta} d\theta$$

- \square Es una serie infinita de funciones básicas ortogonales, válida para representar funciones (periódicas o no) en el intervalo ($-\pi$, π) (o funciones periódicas en todo intervalo).
- ☐ Puede truncarse esta serie, aunque ello tiene consecuencias (fenómeno de Gibbs):

$$g_N(\theta) = \frac{a_0}{2} + \sum_{k=1}^{N} [a_k \sin k\theta + b_k \cos k\theta]$$

Representación de Señales

☐ Si pretendemos representar señales no periódicas en cualquier intervalo, la herramienta es la Transformación de Fourier:

$$G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\tau) e^{-j\omega\tau} d\omega$$

donde:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} d\omega$$

- ☐ Las propiedades de linealidad se preservan.
- ☐ Un caso de interés es el de señales que combinan diversas frecuencias por debajo de un cierto valor (señales limitadas en banda).
- \square Tanto los coeficientes de la serie de Fourier como la función $G(\omega)$ dan lugar a la representación espectral de una función.

Señales discretizadas temporalmente

☐ Diferentes formas de muestrear una señal

SETI-03-04 J.L.Huertas

Representación de Señales Discretas

- ☐ Señal definida únicamente en intervalos discretos del tiempo
- ☐ Intervalos periódicos de muestreo (cada T segundos)
- ☐ Duración "nula" de la señal ("instantánea)

$$t = T \qquad \qquad -----> \qquad \qquad Y(1)$$

$$t = 2T \qquad \qquad -----> \qquad \qquad Y(2)$$

$$\begin{array}{ll} t = (n\text{-}1)T & -----> & Y(n\text{-}1) \\ t = nT & -----> & Y(n) \end{array}$$

Representación de algunas Secuencias

 \square Secuencia $\delta(n)$:

$$\delta(n) = \begin{array}{c} 1, n \equiv 0 \\ 0, n \neq 0 \end{array}$$

$$u(n) = 1, n \ge 0$$
$$0, n < 0$$

 \square Secuencia retrasada un tiempo n_d :

$$y(n) = x(n - n_d)$$

$$x(n) = x(n - n_d)$$
; para todo n

Proceso de Muestreo x(n)f(t) $C_k(n)$ $C_k(n) = \sum_{k=-\infty}^{\infty} \delta(n-k)$

Proceso de Cuantización (Conversión A/D)

Proceso de Cuantización (Conversión A/D)

Sistemas Discretos

☐ Respuesta de un sistema discreto a una secuencia es otra secuencia:

$$y(n) = x(n)$$

 \square Secuencia en función de una base $[\delta(n)]$:

$$x(n) = \sum_{k = -\infty}^{\infty} x(k)\delta(n - k)$$

 \square Respuesta a una secuencia $\delta(n)$:

$$\delta(n-k) \to h(n-k)$$

☐ Respuesta de un sistema

$$y(n) = \sum_{k = -\infty}^{\infty} x(k)h(n-k) = \sum_{k = -\infty}^{\infty} h(k)x(n-k) = x(n)*h(n)$$

Sistemas y Señales Discretos

☐ Respuesta de un sistema

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = x(n)*h(n)$$

Sistemas Discretos

☐ Forma General de la Ecuación que describe un circuito lineal invariante en el tiempo:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m)$$

$$y(n) = \sum_{k=0}^{M} b_{m} x(n-m) - \sum_{m=1}^{N} a_{k} y(n-k)$$

☐ En el caso continuo es posible "transformar" las e.d. y obtener la Función de Transferencia en el dominio s

$$\frac{Y(s)}{W(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = H(s) \quad \dots \dots H(s) < ---> h(t)$$

☐ ¿Es posible encontrar algo similar para secuencias y sistemas discretos?:

Señales Discretas

- ☐ No es práctico describir una señal continua por sus infinitos valores
- ☐ En cambio, sí puede serlo para una señal discreta y acotada en tiempo

Transformada z:

$$X(z) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega nT} \Delta T = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n} = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

Transformada de Laplace:

$$F(s) = \int_{-\infty}^{\infty} f(t) e^{-St} dt$$

0 (para funciones o secuencias causales)

Transformada Inversa en z:

$$x(n) = \frac{1}{2\pi j} \oint_{\Gamma} X(z) z^{n-1} dz$$

Algunas Transformadas

Función	Transformada	Restricción
x(n)	X(z)	
x*(n)	$X^*(z^*)$	
x(-n)	X(1/z)	
a ⁿ x(n)	X(z/a)	
nx(n)	-z dX(z)/dz	
$\delta(n)$	1	z > 0
δ(n-k)	z ^{-k}	k > 0
u(n)	$\sum_{n=-\infty}^{\infty} z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$	z > 1
a ⁿ u(n)	$\sum_{n=-\infty}^{\infty} a^n z^{-n} = \frac{z}{z-a}$ $n = -\infty$	z > a

Algunas Transformadas

☐ Propiedades Adicionales de la Transformada z:

$$w(n) = ax(n) + by(n)$$
 <-----> $W(z) = aX(z) + bY(z)$
 $w(n) = x(n-k)$ <-----> $W(z) = z^{-k}X(z)$
 $w(n) = x(n) \diamondsuit y(n)$ <----> $W(z) = X(z) Y(z)$

Respuesta en el dominio z:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n)*h(n) \longrightarrow Y(z) = X(z)H(z)$$

☐ Forma General de la Ecuación que describe un circuito lineal invariante en el tiempo:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m)$$

$$k = 0$$

$$y(n) = \sum_{m=0}^{M} b_m x(n-m) - \sum_{k=1}^{N} a_k y(n-k)$$

Función de Transferencia Discreta

☐ Forma General de la Ecuación que describe un circuito lineal invariante en el tiempo:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m)$$

☐ Expresión Transformada:

$$\sum_{k=0}^{N} a_k Z[y(n-k)] = \sum_{m=0}^{M} b_m Z[x(n-m)]$$

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{m=0}^{M} b_m z^{-k} X(z)$$

$$k = 0 \qquad m = 0$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{M} b_m z^{-k}}{\sum_{n=0}^{N} a_n z^{-k}}$$

Ejemplos de Sistemas Discretos

- Dominio del tiempo: y(n) = x(n) + ay(n-1)
- ☐ Dominio de la frecuencia:

$$Y(z) = X(z) + az^{-1}Y(z)$$

☐ Función de Transferencia:

$$H(z) = \frac{1}{1 - az^{-1}}$$

Ejemplos de Sistemas Discretos

$$y(n) = \sum_{m=0}^{M} b_m x(n-m)$$

$$H(z) = \frac{Y(z)}{X(z)} = \sum_{m=0}^{M} b_m z^{-k}$$

SETI-03-04 J.L.Huertas

Respuesta a una Sinusoide

Respuesta en Frecuencia

$$x(n) = e^{j\omega n}$$

$$y(n) = \sum_{k = -\infty}^{\infty} x(k)h(n-k) = \sum_{k = -\infty}^{\infty} h(k)e^{j\omega(n-k)} = e^{j\omega n} \sum_{k = -\infty}^{\infty} h(k)e^{-j\omega k} = x(n) \sum_{k = -\infty}^{\infty} h(k)z^{-k}$$

$$y(n) = x(n)H(z)\Big|_{e^{j\omega}}$$
; $H(e^{j\omega}) = H'(\omega)$

La respuesta en frecuencia viene dada por H(z) evaluada en la circunferencia unitaria:

SETI-03-04 J.L.Huertas

Polos, Ceros: Estabilidad

- ☐ Un sistema *continuo* es estable sii todos sus polos se encuentran en el semiplano izquierdo (s < 0)
- ☐ Un sistema *discreto* es estable sii todos sus polos se encuentran dentro del círculo unidad (|z| < 1)

Ejemplo:
$$H(z) = \frac{b_0(1-z^{-2})}{1+a_1z^{-1}+a_2z^{-2}}$$
 -----> $H(s) = \frac{b(s^2-1)}{s^2+a_1s+a_2}$

Ceros: $z_1 = 1$, $z_2 = -1$; Polos: $p_{1,2} = -\frac{a_1}{2} \pm j \sqrt{a_2 - \frac{a_1^2}{4}}$

$$H(z) = \frac{b_0 \prod_{m=1}^{M} (1 - z_m z^{-1})}{a_0 \prod_{k=1}^{N} (1 - p_k z^{-1})} = \frac{b_0 z^{N-M} \prod_{m=1}^{M} (z - z_m)}{a_0 \prod_{k=1}^{N} (z - p_k)}$$

Polos, Ceros y Respuesta en Frecuencia

Polos y Ceros contribuyen como vectores:

$$(z-z_m) = B_m e^{j\theta_m}$$

 $(z-p_k) = A_k e^{j\phi_k}$

$$H(z) = \frac{b_0 z^{N-M} \prod_{m=1}^{M} B_m e^{j\sum_{m=1}^{\infty} \theta_m}}{a_0 \prod_{k=1}^{N} A_k e^{j\sum_{m=1}^{\infty} \theta_k}}$$

$$|H(\omega)| = \frac{b_0 \prod_{m=1}^{M} B_m}{a_0 \prod_{k=1}^{N} A_k}$$

$$fase(H(\omega)) = \sum_{m} \theta_{m} - \sum_{k} \phi_{k} + (N - M)\omega$$

Polos, Ceros y Respuesta en Frecuencia

$$y(n) = \frac{1}{M+1} \sum_{m=0}^{M} x(n-m)$$

$$H(z) = \frac{1}{M+1} \sum_{m=0}^{M} z^{-m} = \frac{1-z^{-(M+1)}}{(M+1)(1-z^{-1})}$$

Raices: $z^{-(M+1)} = 1$; z=0

Polos, Ceros y Respuesta en Frecuencia

Ejemplo:
$$H(z) = \frac{b_0(1-z^{-2})}{1+a_1z^{-1}+a_2z^{-2}}$$

- \Box Ceros: $z_1 = 1, z_2 = -1$;
- Polos: $p_{1,2} = -\frac{a_1}{2} \pm j \sqrt{a_2 \frac{a_1^2}{4}}$

Ejemplo:

 \Box Ceros: $z_1 = 1, z_2 = -1$;

Polos: $p_{1,2} = -\frac{a_1}{2} \pm j \sqrt{a_2 - \frac{a_1^2}{4}}$

Modelo de un Sistema Discreto

$$v_1(n) = v_3(n) + x(n)/2$$

$$v_2(n) = v_1(n-2)$$

$$v_3(n) = -a_1v_1(n-1) -a_2[v_2(n) + x(n)/2]$$

$$y(n) = v_1(n) - v_2(n)$$

¿Cómo obtener las ecuaciones en ambos dominios?

SETI-03-04 J.L.Huertas

¿Qué sabemos hasta ahora?

Sistemas Continuos:

(polos, ceros, ...)

$$H(s) = \sum_{j=1}^{n} \sum_{l=1}^{q_j} \frac{K_{jl}}{s} = \frac{Y(s)}{W(s)} = \frac{\sum_{j=1}^{n} b_j s}{\sum_{k=1}^{n} a_k s}$$

Señales Continuas:

$$g(\theta) = \sum_{k=-\infty}^{k=\infty} c_k e^{jk\theta}$$

$$g(\theta) = \sum_{k=-\infty}^{k=-\infty} c_k e^{jk\theta}$$
 ; $G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\tau) e^{-j\omega\tau} d\omega$

 $x(t) = \sin(wt)$

Señales Discretas:
$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
 & No hay modelo en el dominio de la frecuencia?

Sistemas Discretos:
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{\infty} b_m z^{-k}}{\sum_{k=0}^{\infty} a_k z^{-k}}$$
 (polos, ceros, ...)

Muestreo de una Señal Continua (dominio t) S/H x(t) $x^*(t) = \sum_{n=0}^{\infty} x(nT)\delta(t-nT)$ $n = -\infty$ x(nT)

Muestreo de una Señal Continua

¿Contienen la misma Información?

¿Es posible reconstruir esa Información?

$$x(t) = f[x(n)]?$$

Sabemos:

$$\mathbf{X}(\mathbf{j}\mathbf{w}) = L[\mathbf{x}(\mathbf{t})]|_{\mathbf{s}=\mathbf{j}\mathbf{w}}$$
$$\mathbf{X}^*(\mathbf{j}\mathbf{w}) = \mathbf{Z}[\mathbf{x}(\mathbf{n})]|_{\mathbf{z}=\mathbf{e}}^{\mathbf{j}\mathbf{w}}$$

Ejemplo Sinusoidal

$$x(t) = \cos w_0 t$$

$$X(jw) = p[d(w + w_0) + d(w - w_0)]$$

$$X(j\omega) = F[x(t)]$$

$$-\mathbf{W_0} \quad \mathbf{W_0}$$

Muestreo de una Señal Continua (dominio frecuencial)

$$x^*(t) = \sum_{n = -\frac{1}{2}}^{\frac{1}{2}} \cos(\mathbf{w}_0 nT) d(t - nT)$$

$$X^{*}(jw) = \frac{1}{T} \sum_{n = -\frac{Y}{2}}^{\frac{Y}{2}} X(jw + jnw_{s}) = \frac{p}{T} \sum_{n = -\frac{Y}{2}}^{\frac{Y}{2}} [d(w + nw_{s} + w_{0}) + d(w + nw_{s} - w_{0})]$$

 $\mathbf{W_0}$

 $-\mathbf{W_0}$

 $\frac{2w_s - w_o}{2w_s + w_o} W$

 $W_{\mathbf{s}} - W_{\mathbf{o}} W_{\mathbf{s}} + W_{\mathbf{o}}$

 $W_{\mathbf{S}}$

