Topics

- Regression
 - examples, assumptions, abstraction
- Linear regression
 - estimation, properties
 - generalization concepts

Regression problems

- The goal is to make quantitative (real valued) predictions on the basis of a (vector of) features or attributes
- Examples: house prices, stock values, survival time, fuel efficiency of cars, etc.
- what can we assume about the problem? how do we formalize the regression problem? how do we evaluate predictions?

- The input attributes are given as fixed length vectors $\mathbf{x} = [x_1, \dots, x_d]^T$, where each component such as x_i may be discrete or real valued.
- The outputs are assumed to be real valued $y \in \mathcal{R}$ (the values of actual outputs such as prices may be more restricted)

- The input attributes are given as fixed length vectors $\mathbf{x} = [x_1, \dots, x_d]^T$, where each component such as x_i may be discrete or real valued.
- The outputs are assumed to be real valued $y \in \mathcal{R}$ (the values of actual outputs such as prices may be more restricted)
- We have access to a set of n training examples, $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, sampled independently at random from some fixed but unknown distribution $P(\mathbf{x}, y)$

- The input attributes are given as fixed length vectors $\mathbf{x} = [x_1, \dots, x_d]^T$, where each component such as x_i may be discrete or real valued.
- The outputs are assumed to be real valued $y \in \mathcal{R}$ (the values of actual outputs such as prices may be more restricted)
- We have access to a set of n training examples, $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, sampled independently at random from some fixed but unknown distribution $P(\mathbf{x}, y)$
- The goal is to minimize the prediction error/loss on new examples (\mathbf{x}, y) drawn at random from the same $P(\mathbf{x}, y)$.

- The input attributes are given as fixed length vectors $\mathbf{x} = [x_1, \dots, x_d]^T$, where each component such as x_i may be discrete or real valued.
- The outputs are assumed to be real valued $y \in \mathcal{R}$ (the values of actual outputs such as prices may be more restricted)
- We have access to a set of n training examples, $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, sampled independently at random from some fixed but unknown distribution $P(\mathbf{x}, y)$
- The goal is to minimize the prediction error/loss on new examples (\mathbf{x}, y) drawn at random from the same $P(\mathbf{x}, y)$. The loss may be, for example, the squared loss

$$\mathsf{Loss}(y, \hat{y}) = (y - \hat{y})^2$$

where \hat{y} denotes our prediction in response to \mathbf{x} .

Types of predictions: regression function

 We need to define a class of functions (types of predictions we will try to make) such as linear predictions

$$f(x; w_1, w_0) = w_0 + w_1 x$$

where w_1, w_0 are the *parameters* we need to set.

Understanding Weight Space

Understanding Weight Space

Loss(h_w) =
$$\sum_{j=1}^{11} (y_j - (w_1 x_j + w_0))^2$$

Finding Minimum Loss

Argmin_w Loss(h_w)

Loss(h_w) =
$$\sum_{j=1}^{n} (y_j - (w_1 x_j + w_0))^2$$

$$\frac{\partial}{\partial W_0} Loss(h_w) = 0$$

$$\frac{\partial}{\partial W_1} Loss(h_w) = 0$$

Estimation criterion

• In addition, we need a fitting/estimation criterion so as to be able to select appropriate values for the *parameters* w_1, w_0 based on the training set $D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

For example, we can use the empirical loss:

$$J_n(w_1, w_0) = \frac{1}{n} \sum_{t=1}^n (y_t - f(x_t; w_1, w_0))^2$$

(note: the loss here is the same as in evaluation)

Empirical loss: motivation

• Ideally, we would like to find the parameters w_1, w_0 that minimize the expected loss (unlimited training data):

$$J(w_1, w_0) = E_{(x,y)\sim P} (y - f(x; w_1, w_0))^2$$

where the expectation is over samples from P(x, y).

• When the number of training examples n is large, however, the empirical error is approximately what we want

$$E_{(x,y)\sim P}(y-f(x;w_1,w_0))^2 \approx \frac{1}{n} \sum_{t=1}^n (y_t - f(x_t;w_1,w_0))^2$$

Linear regression: estimation

• We minimize the *empirical* squared loss

$$J_n(w_1, w_0) = \frac{1}{n} \sum_{t=1}^n (y_t - f(x_t; w_1, w_0))^2$$
$$= \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$

By setting the derivatives with respect to w_1 and w_0 to zero we get necessary conditions for the "optimal" parameter values

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = 0$$

$$\frac{\partial}{\partial w_0} J_n(w_1, w_0) = 0$$

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = \frac{\partial}{\partial w_1} \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = \frac{\partial}{\partial w_1} \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$
$$= \frac{1}{n} \sum_{t=1}^n \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)^2$$

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = \frac{\partial}{\partial w_1} \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{1}{n} \sum_{t=1}^n \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)$$

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = \frac{\partial}{\partial w_1} \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{1}{n} \sum_{t=1}^n \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)$$

$$= \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) (-x_t) = 0$$

$$\frac{\partial}{\partial w_1} J_n(w_1, w_0) = \frac{\partial}{\partial w_1} \frac{1}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{1}{n} \sum_{t=1}^n \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)^2$$

$$= \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) \frac{\partial}{\partial w_1} (y_t - w_0 - w_1 x_t)$$

$$= \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) (-x_t) = 0$$

$$\frac{\partial}{\partial w_0} J_n(w_1, w_0) = \frac{2}{n} \sum_{t=1}^n (y_t - w_0 - w_1 x_t) (-1) = 0$$

Interpretation

The optimality conditions

$$\frac{2}{n} \sum_{t=1}^{n} (y_t - w_0 - w_1 x_t)(-x_t) = 0$$

$$\frac{2}{n} \sum_{t=1}^{n} (y_t - w_0 - w_1 x_t)(-1) = 0$$

ensure that the prediction error $\epsilon_t = (y_t - w_0 - w_1 x_t)$ is decorrelated with any linear function of the inputs

Linear regression: matrix notation

 We can express the solution a bit more generally by resorting to a matrix notation

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ \cdots & \cdots \\ 1 & x_n \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

so that

$$\frac{1}{n} \sum_{t=1}^{n} (y_t - w_0 - w_1 x_t)^2 = \frac{1}{n} \left\| \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix} - \begin{bmatrix} 1 & x_1 \\ \cdots & \cdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \right\|^2$$
$$= \frac{1}{n} \|\mathbf{y} - \mathbf{X} \mathbf{w}\|^2$$

Linear regression: solution

By setting the derivatives of $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2/n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$\frac{\partial}{\partial \mathbf{w}} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 = \frac{\partial}{\partial \mathbf{w}} \frac{1}{n} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
...
$$= \frac{2}{n} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X}\mathbf{w}) = \mathbf{0}$$

which gives

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

The solution is a linear function of the outputs y

Could also Solve Iteratively

Argmin_w Loss(h_w)

w = any point in weight space
 Loop until convergence
 For each w_i in w do

$$w_i := w_i - \alpha \frac{\partial}{\partial w_i} Loss(w)$$

Linear regression: generalization

 As the number of training examples increases our solution gets "better"

We'd like to understand the error a bit better

Linear regression: types of errors

• Structural error measures the error introduced by the limited function class (infinite training data):

$$\min_{w_1, w_0} E_{(x,y) \sim P} (y - w_0 - w_1 x)^2 = E_{(x,y) \sim P} (y - w_0^* - w_1^* x)^2$$

where (w_0^*, w_1^*) are the optimal linear regression parameters.

Linear regression: types of errors

 Structural error measures the error introduced by the limited function class (infinite training data):

$$\min_{w_1, w_0} E_{(x,y) \sim P} (y - w_0 - w_1 x)^2 = E_{(x,y) \sim P} (y - w_0^* - w_1^* x)^2$$

where (w_0^*, w_1^*) are the optimal linear regression parameters.

 Approximation error measures how close we can get to the optimal linear predictions with limited training data:

$$E_{(x,y)\sim P} (w_0^* + w_1^* x - \hat{w}_0 - \hat{w}_1 x)^2$$

where (\hat{w}_0, \hat{w}_1) are the parameter estimates based on a small training set (therefore themselves random variables).

Linear regression: error decomposition

 The expected error of our linear regression function decomposes into the sum of structural and approximation errors

$$E_{(x,y)\sim P} (y - \hat{w}_0 - \hat{w}_1 x)^2 =$$

$$E_{(x,y)\sim P} (y - w_0^* - w_1^* x)^2 +$$

$$E_{(x,y)\sim P} (w_0^* + w_1^* x - \hat{w}_0 - \hat{w}_1 x)^2$$

