Aproximácia funkcie ohodnotení v algoritmoch Q-learning

Ing. Michal CHOVANEC Fakulta riadenia a informatiky

Marec 2016

Obsah

- Úvod
 - Agentové systémy
 - Adaptívne a učiace sa systémy
- Q-learning algoritmus
- Možnosti aproximácie
- Výsledky experimentov

Využite q-learning algoritmu

Agentové systémy

Agentové systémy

Racionálny agent :

- Schopný vnímať prostredie
- Robiť rozhodnutia
- Pre každú možnú postupnosť vstupov vyberá akciu maximalizujúcu očakavaný výkon

Obr. : Multiagentný systém

Adaptívne a učiace sa systémy

Adaptívny systém

- reaktívne správanie
- malá pamäť bez očakávaní
- rychlá dynamika

Učiaci sa systém

- konštruktívne správanie
- veľká pamäť očakávania
- pomalá dynamika

Adaptívne a učiace sa systémy

Adaptívny systém

Učiaci sa systém

Adaptívne a učiace sa systémy

Adaptívny systém PID regulátor

Učiaci sa systém Iterative learning controll

$$u(n) = u(n-1) + b_0(n)e(n) + b_1(n)e(n-1) + b_2(n)e(n-2)$$

$$u_k(n) = u_{k-1}(n) + \gamma e_{k-1}(n) + \Gamma(e_{k-1}(n) - e_{k-2}(n))$$

Q-learning algoritmus

Daná je množina stavov $\mathbb S$ a akcií $\mathbb A$, kde $\mathbb S \in \mathbb R^{n_s}$ a $\mathbb A \in \mathbb R^{n_a}$, kde n_s a n_a sú rozmery stavového vektora a vektora akcií. Je známa podmnožina východiskových stavov $\mathbb S_0$.

Existuje prechodová funkcia

$$s(n+1) = \lambda(s(n), a(n)) \tag{1}$$

zo stavu s(n) použitím akcie a(n) - táto funkcia je ale agentovi neznáma. Cieľom je nájsť takú postupnosť akcií $a(i) \in \mathbb{A}$ z východiskového stavu $s(0) \in \mathbb{S}_0$ pre ktorú bude maximálne

$$y(s(0)) = \prod_{i=0}^{t} Q(s(i), a(i)),$$
 (2)

kde s(t) je cieľový stav a Q(s(i), a(i)) je funkcia ohodnotení akcie a(i) v stave s(i).

Agent začlenený do prostredia

Odmeňovacia funkcia

Daná je funkcia ohodnotení

$$Q(s(n),a(n)) = R(s(n),a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1),a(n-1))$$

kde

- R(s(n), a(n)) je odmeňovacia funkcia s hodnotami v $\langle -1, 1 \rangle$,
- Q(s(n-1), a(n-1)) je odmeňovacia funkcia v stave s(n-1) pre akciu a(n-1),
- γ je odmeňovacia konštanta a platí $\gamma \in (0,1)$.

Odmeňovacia funkcia

Ilustračný príklad - inicializácia

Ilustračný príklad - prechod do ďalšieho stavu

Ilustračný príklad - prechod do ďalšieho stavu

Ilustračný príklad - prechod do cieľového stavu

Ilustračný príklad - ďalšie prechody

Ilustračný príklad - konečný stav algoritmu

Implementačné problémy

Problémy tabuľkovej interpretácie Q(s(n), a(n)):

- pre veľké n_s alebo n_a narastajú pamäťové nároky,
- o nevyplnených Q(s(n), a(n)) nevieme povedať nič,
- pre rozsiahle stavové priestory ťažko vypočítateľné,
- ako aproximovať Q(s(n), a(n))?

Aproximácia neurónovou sieťou

Utopická predstava :

Prečo nedáva správne výsledky?

Hypotéza

Na základe experimetov

Pre korektné vyplnenie hodnôt v s_{n-1} sa vyžaduje korektá hodnota v s_n

$$Q(s(1), a(1)) = R(s(1), a(1)) + \gamma \max_{a(0) \in \mathbb{A}} Q(s(0), a(0))$$

$$Q(s(2), a(2)) = R(s(2), a(2)) + \gamma \max_{a(1) \in \mathbb{A}} Q(s(1), a(1))$$

. . .

Učenie doprednej siete

- Nie je homogénne!
- V priebehu učenia Q(s(n), a(n)) chaoticky osciluje okolo požadovanej hodnoty.
- Ani po 10-mil. iteráciach sa hodnota neustáli na požadovanej hodnote.

Je možné zostaviť neurónovú sieť, ktorá sa dá naučiť lokálne?

Rozklad Q(s(n), a(n)) na bázické funkcie

$$f_i^1(s(n), a(n)) = e^{-\sum_{i=1}^{n_s} \beta_{aji}(n)(s_i(n) - \alpha_{aji}(n))^2}$$

$$f_j^2(s(n), a(n)) = \frac{1}{1 + \sum\limits_{i=1}^{n_s} \beta_{aji}(n)(s_i(n) - \alpha_{aji}(n))^2}$$

$$f_j^3(s(n),a(n)) = e^{-\sum_{i=1}^{n_s} \beta_{aji}(n)|s_i(n) - \alpha_{aji}(n)|}$$

$$f_j^4(s(n), a(n)) = \sum_{i=1}^m \sum_{j=1}^{n_s} \beta_{aji}(n)(s_i(n) - \alpha_{aji}(n))^k$$

Voľba bázických funkcií

Vzhľadom na charakter učiaceho algoritmu

$$Q(s(n), a(n)) = R(s(n), a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1), a(n-1))$$

boli zvolené bázické funkcie (parameter *n* pre prehľadnosť vynechaný)

$$f_{j}^{1}(s, a) = e^{-\sum_{i=1}^{n_{s}} \beta_{aji}(s_{i} - \alpha_{aji})^{2}}$$

$$f_{j}^{2}(s, a) = \frac{1}{1 + \sum_{i=1}^{n_{s}} \beta_{aji}(s_{i} - \alpha_{aji})^{2}}$$

Q-learning algoritmus - aproximácia

Pre symetrické prechody medzi stavmi možno zjednodušiť na

$$f_{j}^{1}(s,a) = e^{-eta_{aj} \sum\limits_{i=1}^{n_{s}} (s_{i} - lpha_{aji})^{2}} \ f_{j}^{2}(s,a) = rac{1}{1 + eta_{aj} \sum\limits_{i=1}^{n_{s}} (s_{i} - lpha_{aji})^{2}}$$

a ich lineárna kombinácia

$$Q^{\times}(s,a) = \sum_{i=1}^{l} w_{ja} f_{j}^{\times}(s,a)$$

kde I je počet bázických funkcií a x je voľba typu bázickej funkcie.

Voľba parametrov

- bázicke funkcie musia rovnomerne pokryť stavový priestor,
- parameter $\alpha_{ji}(n)$ reprezentuje posunutie bázickej funkcie bod s najväčou funkčnou hodnotou,
- parameter $\beta_i(n)$ reprezentuje strmosť bázickej funkcie.

Určenie parametrov $\alpha_{jia}(n)$

Paramatre $\alpha_{jia}(n)$ - pokrytie stavového priestoru do oblastí podľa veľkosti R(s(n), a(n)). Využije sa princíp Kohonenovej siete - najbližšie vzory $\alpha_{jia}(n)$ sa posunú podľa vstupných vektorov tak aby vrchol Gaussovej krivky ležal v ťazisku.

- na začiatku sa zvolia $\alpha_{jia}(n)$ náhodne
- spočítajú sa vzdialenosti od predloženého vstupu $d_{ja}(n) = |s(n) \alpha_{ja}(n)|$
- nájde sa také ka kde pre $\forall j: d_{ka}(n) \leq d_{ja}(n)$
- spočíta sa krok učenia $\eta_a'(n) = \eta_1 \mid Q_r(s(n), a(n)) \mid$
- upravia sa parametre $lpha_{\it aki}(\it n+1)=(1-\eta')lpha_{\it aki}(\it n)+\eta's_i(\it n)$

kde

 $Q_r(s(n), a(n))$ je požadovaný výstup η_1 je konštanta učenia

Určenie parametrov $\beta_{ia}(n)$

Paramatre $b_{ja}(n)$ - určuje strmosť krivky

- stanoví sa chyba $e(n) = Q_r(s(n), a(n)) Q(s(n), a(n))$
- ullet pre každú bázickú funkciu $eta_{ja}(n+1)=eta_{ja}(n)+\eta_2 e(n)w_{ja}(n)$
- skontroluje sa $eta_{ja}(n) \in (0,\infty)$

kde

 $Q_r(s(n), a(n))$ je požadovaný výstup η_2 je konštanta učenia

Určenie parametrov $w_{ia}(n)$

Paramatre w_i - váhové parametre

- stanoví sa chyba $e(n) = Q_r(s(n), a(n)) Q(s(n), a(n))$
- pre každé $w_{ja}: w_{ja}(n+1) = w_{ja}(n) + \eta_3 e(n) y_j(n)$
- skontroluje sa $w_{ja}(n) \in (-r, r)$

kde

 η_3 je konštanta učenia r je maximálny rozsah váh

Bloková schéma syntézy testovaného riešenia

Schéma priebehu experimentov

Návrh experimentov - podmienky

- 50000 iterácií učenia
- rozmer s je $n_s = 2$, rozmer a je $n_a = 2$
- predpis funkcie ohodnotení

$$egin{aligned} Q(s(n), a(n)) &= \ &lpha Q(s(n-1), a(n-1)) \ &(1-lpha)(R(s(n), a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1), a(n-1)) \end{aligned}$$

- $R(s(n), a(n)) \in \langle -1, 1 \rangle$ náhodná mapa s 1 cieľovým stavom
- $\gamma = 0.98 \text{ a } \alpha = 0.7$
- hustota referenčného riešenia = 1/32 (4096 stavov)
- počet akcií v každom stave = 8
- hustota riedkej tabuľky = 1/8 (1:16 pomer)
- počet bázických funkcií / = 64
- rozsah parametrov
 - $\alpha_{ja}(n) \in \langle -1, 1 \rangle$
 - $\beta_{ja}(n) \in \langle 0, 200 \rangle$
 - $w_{ia}(n) \in \langle -4, 4 \rangle$

Návrh experimentov - podmienky

 $Q_{rt}(s(n),a(n))$ referenčná funkcia Q (funkcia 0), kde $t\in\langle 0,19\rangle$ je číslo trialu

 $Q_{jt}(s(n), a(n))$ testované funkcie Q a $j \in \langle 1, 5 \rangle$. Celková chyba behu trialu t je

$$e_{jt} = \sum_{s,a} (Q_{rt}(s,a) - Q_{jt}(s,a))^2$$

priemerná, minimálna, maximálna chyba a smerodatná odchylka

$$\bar{a}_j = \frac{1}{20} \sum_t e_{jt}$$

$$e_j^{min} = \min_t e_{jt}$$

$$e_j^{max} = \max_t e_{jt}$$

$$\sigma_j^2 = \frac{1}{20} \sum_t (\bar{a}_j - e_{jt})^2$$

Funkcia R(s, a), mapa 1 - Výsledky experimentov

pre každý stav je zvolená rovnaka množina akcií. Ďalej platí s = (s[0], s[1]).

Mapa najlepších akcií - Výsledky experimentov

Funkcia voľby najlepšej z 8 akcií v stave s = (s[0], s[1]).

Obr. : sparse table

Obr.: linear combination Gauss

Mapa najlepších akcií - Výsledky experimentov

Funkcia voľby najlepšej z 8 akcií v stave s = (s[0], s[1]).

Obr. : sparse table + linear combination Gauss

Obr. : linear combination Kohonen function

Chybové funkcie - Výsledky experimentov

$$e_{jt}(s) = (Q_{rt}(s, a - Q_{jt}(s, a))^2$$

Obr. : sparse table

Obr.: linear combination Gauss

Chybové funkcie - Výsledky experimentov

$$e_{jt}(s) = (Q_{rt}(s, a - Q_{jt}(s, a))^2$$

Obr. : sparse table + linear combination Gauss

Obr. : linear combination Kohonen function

max Q(s, a) - Výsledky experimentov

Obr. : reference table

Obr. : sparse table + linear combination Gauss

Priebeh trialov - Výsledky experimentov

Výsledky experimentov - trials average

Mapa 0 - Výsledky experimentov

Mapa 2 - Výsledky experimentov

Mapa 3 - Výsledky experimentov

Ďakujem za pozornosť

michal.chovanec@yandex.ru https://github.com/michalnand/q_learning

