Analiza wydajności technologii Scala w zagadnieniu agentowej symulacji ruchu miejskiego

Scala Performance Analysis in Agent-based Urban Traffic Simulation

Promotor: dr inż. A. Byrski

Agenda

- →Cel pracy
- → Stan wiedzy oraz literatura
- →Problem
 - → Symulacja
 - → Modele symulacji
 - → Technologia
- → Harmonogram pracy
- → Spis treści

Cel pracy

Szukamy odpowiedzi na pytania:

- Czy warto symulować za pomocą aktorów?
- Jakie podejście do symulacji? (granulacja)
- Czy Scala (Akka) nadaje się do symulacji na dużą skale?

Odpowiedzi szukamy na przykładzie symulacji ruchu miejskiego w Krakowie

Stan wiedzy

Czy warto symulować za pomocą aktorów?

Tak – ilość symulacji oraz artykułów i publikacji.

Jakie podejście do symulacji? (granulacja)

Są opracowania ale ciągle warto drożyć temat

Czy Scala (Akka) nadaje się do symulacji na dużą skale?

Dokumentacja mówi że jak najbardziej - ale zawsze warto sprawdzić

Literatura

- Akka in Action

Raymond Roestenburg, Rob Bakker, and Rob Williams 2012

- Multi-agent transportation simulation

Kai Nagel 2004

- A cellular automation model for freeway traffic

Kai Nagel, Michael Schreckenberg

- Modelowanie złożonych procesów naprzykładzie symulacji ruchu drogowego,
 Paweł Gora 2009
- Symulacja mikroskopowa ruchu w modelu obszrowym sieci drogowej

Stanisław Krawiec, Ireneusz Celiski 2012

Problem: Symulacja ruchu miejskiego

Mapa natężenia ruchu w krakowie /zikit.krakow.pl/

Model

Do symulacji zastosuje model dyskretny

 W każdym kroku symulacji każde auto może poruszyć się na zadane pole zgodnie z funkcją prędkości.

- Jeżeli pole jest zajęte auto czeka.
- Skrzyżowania rozwiązywanie konfliktów.
- Samochód jedzie po zadanej trasie.
- Trasa obliczana makroskopowo bez uwzględnienia natężenia ruchu.

Model – rozwinięcia

- Wyprzedzanie
- Zmiana trasy w oparciu o natężenie
- Drogi wielopasmowe
- Uprzejmość na drodze
- Światła
- Wypadki,remonty, incydenty na drodze

Celem pracy nie jest symulacja sama w sobie – ona jest tylko problemem dla którego badamy różne podejścia

Modele rozwiązań – współbieżność

Synchroniczne

Krok symulacji składa się z dwóch przebiegów: najpierw samochody rezerwują pole, potem rozwiązujemy konflikty.

Aktorzy - mała granulacja

Modelujemy ulicę albo samochód jako pojedynczego aktora.

Aktorzy – duża granulacja

Modelujemy dzielnice (dobrze wyodrębnioną część miasta) jako aktora.

Map-reduce

W części map mapujemy komórkę drogi na listę samochodów które chcą nią jechać. W części reduce rozwiązujemy konflikty (pierwszeństwo) oraz zmieniamy pozycję samochodów

Autoadaptacja trasy

- Każdy samochód dostaje początek i koniec podróży
- Początkowo najkrótsza droga
- Uczenie maszynowe do optymalizacji trasy

Technologie

Spis Treści

- 1. Wstęp
- 2. Podstawy teoretyczne
 - 2.1 Symulacja ruchu miejskiego
 - 2.2 Model aktorowy
- 3. Opis badanych modeli
- 4. Wyniki symulacji
- 5. Analiza oraz wnioski
- 6. Bibliografia

Stan prac

- 1. Tworzenie modelu ulic
- 2. Zaimplementowane pierwszeństwo
- 3. Model ruchu, wyznaczanie trasy
- 4. Drobne modyfikacje początkowej koncepcji

Harmonogram

Do końca kwietnia 2014

- Poprawki oraz zbieranie danych,
- Opis rozwiązania
- Implementacja wszystkich modeli
- Stworzenie modelu ulic

Do końca maja 2014

- Analiza danych
- Opis wyników
- Wstęp teoretycny

Czerwiec 2014 roku

- Ostanie poprawki
- Obrona