

Exam Cover Sheet

Instructors: Please complete sections 1-3 and return with all test materials to Testing Services.

Location: Rhodes West #215 Extension: 2272 E-mail: testingservices@csuohio.edu

Section 1:	S	tudent and	Course Informati	ion	
EY	16 litt		MTH	288	
1	Student's Name		Course Na	me/ Section Number	er
LU12 N	Instructor's Name		i. M MY	ting@csup	U D'AM
(last date s	Exam deadline tudent is allowed to tak	e test)		M \ M allowed for class calculate extended	time)
Section 2:	Materi	als allowed-	Please check all	that apply	
☐ Open Book	☐ Blue Scantron	☐ Internet A	NA.	uter Access	
☐ Open Note	☐ Green Scantron	✓ Calculato	r Other:		
Additional instruction	tions for proctor:	tware 1	nstalled b		putcy
Section 3:	C	ompleted te	st return metho	d	
			ery is not provided	15	
I will pick up	in testing services (ID r	equired)			
	Sign here upon		\$ 4 6 0 000		
A designated	person will pick up the		ing Services (ID Requ	ired)	
£	Name of I			* A	
	Sign here upo	n pick-up:			
Send test via	e-mail to my CSU acco	S- 34	п		
	s sent via e-mail mus			ces by the end of t	he semester
	t with the rest of the cla				
,					
Time and a Half		sting Service e Allowed: \\\	S Use Only: Other:	2500	sent 9
Date Received: 21	Date Tal	ken: 1	-17	Date Returned:	2/19
Method Received:	101 Start tim	ne: 10:22	End time: 12-13	Method Returned:	email
Initials:	Proctor	Initials:	ES	 Initials:	DA

		*	
		5	

Name and Student ID: Enc Lief 2667664

Instructions. All solutions must be justified, unless otherwise stated. Show all work leading to your answer in each problem. Solutions without appropriate work that supports it will receive no credit. All work must be written in the test. Do not attach computer printouts to the test. If not enough space is provided for an answer, continue it in the back of the page.

Please identify your final answer to each problem by surrounding it with a rectangle.

Ŷ		

Problem 1. (42 points.) Answer the following items based on the linear system below:

$$2x_1 + 6x_2 - 9x_3 - 4x_4 = 0$$
$$-3x_1 - 11x_2 + 9x_3 - x_4 = 0$$
$$x_1 + 4x_2 - 2x_3 + x_4 = 0$$

(a) (8 points.) Write the augmented matrix corresponding to this system.

$$\begin{bmatrix} 2 & 6 & -9 & -4 & | & 0 \\ -3 & -11 & 9 & -1 & | & 0 \\ 1 & 4 & -2 & 1 & | & 0 \end{bmatrix}$$

			w

(b) (16 points) Use a sequence of elementary row operations to find a matrix in reduced row echelon form that is equivalent to the matrix in Part (a). Write, in the space provided below, all row operations and intermediate matrices in your computations.

edicion form that is definited in a left matrices in your computations.

$$R(*(3/2)+R2\Rightarrow R2)$$

$$2 6 - 9 - 4 0$$

$$0 - 2 - 9/2 - 7 0$$

$$1 4 - 2 1 0$$

$$R_{2}*(Y_{2})+R3\Rightarrow R^{3}$$

$$2 6 - 9 - 4 0$$

$$0 - 2 - 9/2 - 7 0$$

$$1 4 - 2 1 0$$

$$R_{2}*(Y_{2})+R3\Rightarrow R^{3}$$

$$2 6 - 9 - 4 0$$

$$0 - 2 0 - 16 0$$

$$0 - 2 0 - 16 0$$

$$0 0 1/4 - 1/2 0$$

$$R_{2}*(3) + R1 \Rightarrow R1$$

$$R_{3}*(36) + R1 \Rightarrow R1$$

$$R_{3}*(3$$

$$\begin{bmatrix}
1 & 0 & 0 & -35 & 0 \\
0 & 0 & 1 & -2 & 0
\end{bmatrix}$$

(Extra space for Problem 1, Part b.)

L. Felipe Martins (l.martins@csuobio.edu)

(c) (8 points.) Write the linear system that corresponds to the reduced row echelon form matrix from the previous item.

$$x_1$$
 $-35x_4 = 0$ x_2 x_3 $-2x_4 = 0$ x_4 x_5 x_6 x_6 x_7 x_8 x_9 x_9

(d) (10 points) Determine the set of solution of the system. If there are infinitely many solutions, write the solutions in parametric form, that is, using a set of independent variables $(s_1, \ldots,$ etc.) to express the values of x_1, x_2, x_3 and x_4 . Finally, determine if the system has zero, one or infinitely many solutions.

$$x_3 = 2x_4 = 25$$
, $x_4 = -85$, $x_5 = 35x_4 = 35x_5$, $x_6 = 35x_6$

		*	3

Problem 2. (10 points.) When propane burns in oxygen, it produces carbon dioxide and water: $C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$

We want to balance this chemical equation. Write a system of linear equations that can be used to solve this problem, using the following variables:

 $x_1 = (amount of propane C_3H_8 in the reagents)$

 $x_2 = (amount of oxygen O_2 in the reagents)$

 x_3 = (amount of carbon dioxide CO₂ in the products)

 x_4 = (amount of water H_2O in the products)

4 unknowns/

(molecule 0)

It is not necessary to solve the linear system.

G:
$$3 \times 1 + 0 \times 2 = \times 3 + 0 \times 4$$

H: $8 \times 1 + 0 \times 2 = 0 \times 3 + 2 \times 4$
O $0 \times 1 + 2 \times 2 = 2 \times 3 + 2 \times 4$

So
$$3x_1 - x_3 = 0$$

 $8x_1 - 2x_4 = 0$
 $2x_2 - 2x_3 - x_4 = 0$

	×.

Problem 3. (18 points.) Determine if each of the following statements is true or false, and provide a brief justification for your answer.

(a) (3 points.) A linear system with 3 equations and 3 unknowns always has exactly one solution.

n = mCircle one: True Dy each variables but if

each variables but if

O by

O X=by is one equition then

if by #0, there is no solution Justification:

(b) (3 points.) If a homogeneous system has 5 equations and 8 unknowns, then it must have infinitely many solutions.

True Circle one: False

Justification:

A homogeneous system with more inknowns than equations (m>n), has infinitely many

(c) (3 points.) The matrix below is in reduced row echelon form:

False Circle one: All nonzero rows are above any zero rows All nonzero rows are above any zero rows Certing coefficient is one (1) Zeros above and below lending coefficient Justification:

			(e

(d) (3 points.) If a set of vectors $\{u_1, u_2, u_3, u_4\}$ are linearly dependent and u_5 is an arbitrary vector, then the vectors $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4,\mathbf{u}_5\}$ also are linearly dependent.

Circle one: / True

Justification:

The vector Us can be written as Ows

2) X, W, + X2 U2 + X3 U3 + X4 U4 + OX5 = 0

1) X1. U1 + X242+ X3 43 + X4 44

The above linear combination has a solution on since I does for nonzero X's m

(e) (3 points.) A set of 8 vectors can span \mathbb{R}^5 .

Circle one: (True)

A=[V, V2 ... V8] in TR5

= X, V, + X2 V2 + X3 V3 + X4 V4 + X5 V5 + X6 V6+ X7 V7+ X8 V8 (a) be solved if any three variebles (e.g.,

(x) Xu, Xi) are chosen arbitrarily, given

the remaining leading variables in the ry stema to Jution.

(f) (3 points.) Any set of 8 vectors spans R⁵.

True

Circle one:

ý 3

. .

Problem 4. (20 points.) To answer the following items, consider the following 3 vectors in \mathbb{R}^3 :

$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \mathbf{u}_2 = \begin{bmatrix} 3\\4\\2 \end{bmatrix} \quad \mathbf{u}_3 = \begin{bmatrix} 7\\8\\12 \end{bmatrix}$$

(a) (10 points.) Determine if these vectors are linearly independent in \mathbb{R}^3 . Show all computa-

$$X_1 + 0X_2 - 2X_3 = 0$$

 $0X_1 + X_2 + 3X_3 = 0$
 $0 = 0$

It the free variable is chosen artitrarily of there
are infinite solutions to the system, implying
linear dependency. The lack of a trivial solution
rules out linear independence.

		\$5	*
	#		

(b) (10 points.) Determine if the vector

$$\mathbf{v} = \begin{bmatrix} 1 \\ 4 \\ -14 \end{bmatrix}$$

is in the span of the vectors $\{u_1, u_2, u_3\}$. Show all computations, and explain your solution in terms of the definition of span.

$$\begin{array}{c} X_{1}V_{1} + X_{2}U_{2} + X_{3}U_{3} = V \\ X_{1}\begin{bmatrix} \frac{1}{2} \\ -\frac{3}{3} \end{bmatrix} + X_{2}\begin{bmatrix} \frac{3}{4} \\ \frac{1}{2} \end{bmatrix} + X_{3}\begin{bmatrix} \frac{7}{8} \\ 12 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{1}X_{2} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ & S_{2}X_{3} = \begin{bmatrix} \frac{1}{4} \\ -\frac{14}{3} \end{bmatrix} \\ &$$

	×	٠

Problem 5. (10 points.) Suppose that v is in the span of the vectors $\{u_1, u_2\}$. In other words, we are assuming that v can be written as a linear combination of u_1 and u_2 :

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2.$$

Show that v is in the span of $\{\mathbf{u_1} + \mathbf{u_2}, \mathbf{u_1} - \mathbf{u_2}\}$.

$$V = \frac{1}{2}(u_1 + u_2) + \frac{1}{2}(u_1 - u_2)$$

$$V = \frac{1}{2}(u_1 + \frac{1}{2}u_2 + \frac{1}{2}u_1 - \frac{1}{2}u_2)$$

$$u_1(x_1 + x_2) + u_2(x_1 - x_2)$$

$$c_1$$

$$c_1$$

$$c_2$$

$$x_{13} x_2 \in \mathbb{R} \implies \text{solutions for all}$$

$$chosen \quad x$$

$$chosen \quad x$$

$$thus \quad y \quad \text{is in span of } \mathcal{L}u_1 + u_2 \quad y_1 - u_2$$

$$e.g. \quad x_1 = 1, \quad x_2 = 2$$

$$V = 3u_1 - u_2, \quad with \quad c_1 = 3, c_2 = -1$$

VI VIN

.

(Eric Lief Scratch paper)

$$-\frac{9/2}{1/4} = \frac{119}{2} = 18$$

1/4

$$2(35) + 6(-8) - 9(2) = 0$$

$$70 = 48 - 18$$