COMM.RF.200 Introduction to RF Electronics, Fall 2021

- 1. (a) Explain two alternatives to represent $complex\ numbers$: $coordinate\ form$ (rectangular form) and $polar\ form$.
 - (b) What is *Euler*'s formula, how is it related to complex numbers? Give an example of how and where to utilize it.
 - (c) Simplify
 - i. $\frac{2+i}{5-3i} = \frac{2+j}{5-3j}$
 - ii. $\frac{15\angle 45^{\circ}}{3\angle 90^{\circ}}$
- What are the impedances of ideal capacitor and ideal inductor? How 2. (a) do they vary as function of frequency? (We revisit this question in problem 3.)
 - (b) In which cases you can use impedances; try to state conditions for using impedances.
 - (c) Consider series and parallel RLC circuits.
 - i. State condition(s) when the circuit is at resonance.
 - ii. Determine expression of resonance frequency in both cases. What is the impedance value at resonance?
- 3. Look at the datasheet of an inductor (see "Course Material" -> "Component Data" -> "epcos inductors.pdf"). Consider $10\mu\text{H}$ inductor.
 - (a) Look at the table on page 5 (see page 4 for definition of the terms). What could you conclude about the inductor's behaviour from it?
 - Use $Q = \frac{\omega L}{R}$ to get an estimate of AC resistance of the component.
 - (b) Any differences to data given in the sheet. (Q denotes quality factor which is typically given in datesheets.)
 - (c) Look at the graph ||Z|| vs. f on page 7. What could you conclude from it?
 - (d) Consider the $4700\mu\text{H}$, what do you think about its I_R -value.