The Duckworth-Lewis-Stern Method

Data Analytics - DLS Lecture 3

The story thus far

- Revision of targets in shortened matches.
- ► D/L method: Quantify the resources of overs-to-go and wickets-in-hand. Resources = run scoring potential.
- ► Identify quantity of resources available with both teams. Set target by equating runs per resource.
- ▶ In this lecture: A discussion on the D/L method and new fixes.

Fix high first innings scores: D/L Professional Edition

Introduce dependence of curves on the first innings score.

The fix for high first innings scores

- ▶ Higher the first innings score, closer to a straight line.
- Resources remaining after 25 overs is lesser,
 R₂ is higher,
 T = SR₂ is higher.
- Again, the choice of parameters based on data and is in the Professional Edition.

A discussion on the "relative positions" criterion

- The relative positions of the two teams before and after interruption should be the same.
- Think about the hypothetical IND-AUS game. What was your strategy? What did you try to optimise?
- One appealing criterion is isoprobability: The probability of winning before and after the interruption must be the same.
- ▶ Does D/L satisfy this?

An example to bring home the point

- ▶ 20 July 2003, Cambridge vs. Oxford, at the Lord's.
- ▶ Cambridge scored 190 off their 50 overs.
- ➤ Oxford were 162/1 off 31 overs when rain interrupted play. (29 to win off 19 overs)
- When rain stopped, 12 overs remained.
 But Oxford had already exceeded any target that D/L would set.
 Oxford was declared winner by D/L method.
- Before the rain, Oxford had a huge advantage, but cricket is a game of 'glorious uncertainties'.
 - The probability of Oxford winning was not 1. Yet, after the interruption, Oxford was declared winner at resumption.
- ▶ Isoprobability criterion would have given Cambridge a positive chance to bowl Oxford out. Low probability, but still positive. Would spectators have preferred that? Players?

An insightful pair of comparable games

- Two adjacent grounds A and B hosting two matches.
 Both Teams 1 scored 250 off 50 overs.
 Both Teams 2 played 20 overs, lost 3 wickets, when it rained.
 10 overs lost due to rain, and now 20 overs remain.
- ► Team 2A: 120/3 Team 2B: 50/3.
- ▶ Before the break, Teams 2A and 2B needed 131 and 201 (resp.) off 30 overs with 7 wickets in hand.
- ▶ But since both teams used up the same amount of resources, and get the same (reduced) resources at resumption, their D/L targets are identical: 221.
 - ► Team 2A must score 101 off 20
 - ► Team 2B must score 171 off 20.
- ▶ More difficult for Team 2B. D/L improved the advantage for the team that was ahead before the interruption.

Isoprobability criterion

- ▶ Isoprobability targets: Team 2A 228, Team 2B 216.
 - ► Team 2A must score 108 off 20. (7 runs more than D/L).
 - ▶ Team 2B must score 166 off 20. (5 runs less than D/L).

▶ A case of "from each according to his ability"?

Adding a third match (Carter and Guthrie)

Three adjacent grounds A, B, C hosting three matches.

Teams 1A and 1B scored 250 off 50 overs.

Team 1C scored 180 off 50 overs.

All Teams 2 played 20 overs, lost 3 wickets, when it rained.

10 overs lost due to rain. 20 overs remain.

		Team 1	Team 2	Target	D/L	D/L	IsoP	IsoP
		score	at int	at int	target	to-go	target	to-go
	Α	250	120/3	131 (in 30)	221	101 (20)	228	108 (20)
	В	250	50/3	201 (in 30)	221	171 (20)	216	166 (20)
	C	180	50/3	131 (in 30)	159	109 (20)	158	108 (20)

- ▶ Isoprobability: Teams 2A and 2C must go the same distance. D/L: Team 2A has it easier.
- ► Team 2A was the poorer bowling team. D/L gives it a discount. Again a case of 'socialism'?
- Which is the better criterion?

Incentive to alter strategy under D/L rule

- ► Team 1 is at 160/4 in 39 overs. Rain is expected in the next over. Predicted duration of rain is such that their innings will be terminated, and Team 2 will have about 40 overs.
- Consider two options for Team 1:
 - (i) bat carefully and lose no further wickets (Team 2 target 206)
 - (ii) bat to maximise score but lose two wickets (Team 2 target 194).
- ▶ D/L assume that Team 1 will bat normally as in an uninterrupted match, and maximise their expected score.
- ▶ Will Team 1 do this? Team 1's sole objective is also maximising its chances of winning. D/L method is likely to distort their strategy. Is it ok if Team 1 plays (at that stage) contrary to maximising runs? What about ARR method?

Applying D/L to T20

Applying D/L to T20

- ► Curves are a lot flatter D/L is now much closer to ARR method.
- ► ICC World T20: ENG-WI (May 2010).
- ► ENG 191/5 off 20. WI 30/0 in 2.2 overs. Rain stops play. At resumption, WI target reduced to 60 (in 6 overs).
- ▶ If rain had come before start of WI's play, RR method target = 58 (in 6 overs).

But D/L target is only 66 (in 6 overs). Too much of an advantage for WI.

- ► But WI did much better. They consumed very little, and lost quite a bit of resources to rain.

 Revised target was much smaller.
- ▶ Is there a fix? ... Shrink the curves. Revised targets for shrink-the-curves method:
 - Rain at start: 87 off 6 overs.
 - Rain as in game: 69 (in 6 overs).
 - VJD method apparently fares better. (A possible project).

Another issue with the D/L method

- ▶ Given *u* overs to go and *w* wickets in hand, D/L method assumes that both Team 1 and Team 2 will have the same scoring pattern.
- Run scoring potential at any stage mapped to remaining resources.
 For this Team 1 data alone suffices.
- But Team 2 is maximising probability of winning. It's pattern of scoring is perhaps different.
- ▶ Stern (2009) analysed the pattern of play in the second innings.

The typical pattern in successful chases ...

- ▶ If the first innings score is low, use lesser amount of resources.
- ▶ If the first innings score is average or high, use the full quota of overs and resources.
- ▶ Picture ...
- Also, a fast start, then slow middle overs, followed by acceleration near the end.

Stern's correction to resources used

 $R_2'(u, w) = F(R_2(u, w))$: D/L Standard edition resources used R_2 transformed to Stern's resources used R_2'

Stern's correction to resources remaining

Lose overs where curve is steep \to lose more resources \to lower target. Lose overs either initially or at the end \to lower target.

Cricket as an Operations Research (OR) problem

- What is the 'optimal' batting strategy for Team 1 at any stage of the game?
 What is the 'optimal' batting strategy for Team 2?
- ▶ Suppose that there are *n* balls to go and *w* wickets in hand.
- ► The batsman can play a risky shot that fetches more runs or a safe shot with fewer runs.

```
p_d = probability of losing wicket.

p_x = probability of getting x runs, x = 0, 1, 2, 3, 4, 5, 6.
```

Through his choice, the batsman can shape this probability vector.

▶ What is his best strategy at any stage of Team 1's innings?

Clarke's simplified model - Team 1

- ▶ Ignore bowler quality or varying quality of later batsmen.
- Also, let us assume that if batsman's run rate (per ball) is r then the probability of losing wicket is $p_d(r)$. Assume known (from historical data).
- $r = \sum_{x=0}^{6} xp_x$.
- ▶ Let $Z_b(n, w) =$ expected number of runs in n balls, with w wickets.
- ▶ Goal: Maximise $Z_b(300 \text{ balls}, 10 \text{ wickets})$.
- ► A recursive formula:

$$Z_b(n, w) = \max_{p_0, \dots, p_1} \left[p_d Z_b(n-1, w-1) + (1-p_d) Z_b(n-1, w) + \sum_x x p_x \right]$$

This is called the dynamic programming equation or Bellman equation.

▶ Boundary conditions: $Z_b(0, w) = 0$ for all w, $Z_b(n, 0) = 0$ for all n. Enough information to determine $Z_b(n, w)$ for all relevant n, w.

Clarke's simplified model - Team 2

- Maximise probability of reaching the target.
- ▶ q(s, n, w) = probability of scoring s with n balls to go and w wickets in hand.
- ► Again a dynamic programming equation:

$$q(s, n, w) = \max_{p_d, p_0, \dots, p_6} \left[p_d q(s, n-1, w-1) + \sum_{x} p_x q(s-x, n-1, w) \right]$$

- Simplify even further. Assume batsman can score 0 or a runs only. He can choose p_a .
 - This gives a run rate of ap_a . Suppose this fixes the p_d via $p_d(r)$. Then $p_0 = 1 - p_a - p_d$.
- ▶ Boundary conditions: q(l, 0, w) = 0 for all l < s and all w. q(l, n, 0) = 0 for all l < s and all n. q(0, n, w) = 1 for all $n \ge 0$ and all $w \ge 0$. Enough to determine q(n, w) for all relevant n, w.

Your assignment

Generate the production function (as a function of wickets) on 12 years of ODIs.

Nonlinear regression to estimate the parameters.

Projects you could take up:

The OR problem for Team 1.

The OR problem for Team 2.

Stern's method to predict the probability of a win by Team 2. Jayadevan's method.

References

- Duckworth, F. C., and Lewis, A.J. "A fair method for resetting the target in interrupted one-day cricket matches" Journal of the Operational Research Society, (Mar 1998)
- 2. Duckworth, F. C., and A. J. Lewis. "A successful operational research intervention in one-day cricket." Journal of the Operational Research Society, (Jul 2004).
- Carter, M., and G. Guthrie. "Cricket interruptus: fairness and incentive in limited overs cricket matches." Journal of the Operational Research Society (2004).
- Duckworth, F. C., and A. J. Lewis. "Comment on Carter M and Guthrie G (2004). Cricket interruptus: fairness and incentive in limited overs cricket matches." Journal of the Operational Research Society (2005).
- Bhogle, S., https:/bademian.wordpress.com20141108the-dl-story-so-far
- Karandikar, R. L. and Bhogle, S., http://www.espncricinfo.commagazinecontentstory459431.html
- 7. Clarke, S. R. . Dynamic programming in one-day cricket-optimal scoring rates. Journal of the Operational Research Society (1998).