

1. Let **k** be pointing to the  $\hat{\mathbf{z}}$  direction, and let  $\mathbf{v}_A$  be in the y-z plane, i.e.,

$$\mathbf{v}_{A} = \nu_{A} (\cos \theta \,\hat{\mathbf{z}} + \sin \theta \,\hat{\mathbf{y}}) \tag{1}$$

The most general form of the amplitude  $\mathbf{v}_1$  is

$$\mathbf{v}_1 = \nu_1 \left(\cos \alpha \hat{\mathbf{z}} + \sin \alpha \cos \beta \hat{\mathbf{x}} + \sin \alpha \sin \beta \hat{\mathbf{y}}\right) \tag{2}$$

Recall equation (7.75)

$$-\omega^2 \mathbf{v}_1 + (s^2 + v_A^2)(\mathbf{k} \cdot \mathbf{v}_1)\mathbf{k} + (\mathbf{v}_A \cdot \mathbf{k})[(\mathbf{v}_A \cdot \mathbf{k})\mathbf{v}_1 - (\mathbf{v}_A \cdot \mathbf{v}_1)\mathbf{k} - (\mathbf{k} \cdot \mathbf{v}_1)\mathbf{v}_A] = 0$$
(3)

Inserting (1) and (2) into (3) produces the following component-wise equations

$$\hat{\mathbf{z}}$$
: 
$$-\omega^2 \cos \alpha + \left(s^2 + v_A^2\right) k^2 \cos \alpha + k^2 v_A^2 \cos^2 \theta \cos \alpha$$

$$-k^{2}v_{A}^{2}\cos\theta(\cos\theta\cos\alpha+\sin\theta\sin\alpha\sin\beta)-k^{2}v_{A}^{2}\cos^{2}\theta\cos\alpha=0 \tag{4}$$

$$\hat{\mathbf{x}}: \qquad -\omega^2 \sin \alpha \cos \beta + k^2 v_A^2 \cos^2 \theta \sin \alpha \cos \beta = 0 \tag{5}$$

$$\hat{\mathbf{y}}: \qquad -\omega^2 \sin \alpha \sin \beta + k^2 v_A^2 \cos^2 \theta \sin \alpha \sin \beta - k^2 v_A^2 \cos \theta \cos \alpha \sin \theta = 0$$
 (6)

With  $u^2 = \omega^2/k^2$ , (4)-(6) become

$$(-u^2 + s^2 + v_A^2 \sin^2 \theta) \cos \alpha - v_A^2 \cos \theta \sin \theta \sin \alpha \sin \beta = 0$$
 (7)

$$(-u^2 + v_A^2 \cos^2 \theta) \sin \alpha \cos \beta = 0$$
 (8)

$$(-u^2 + v_A^2 \cos^2 \theta) \sin \alpha \sin \beta - v_A^2 \cos \theta \sin \theta \cos \alpha = 0$$
(9)

We have the following cases to consider.

(a) If  $\sin \alpha \cos \beta \neq 0$ , we immediately see from (8) that

$$u^2 = v_A^2 \cos^2 \theta \tag{10}$$

then (9) requires

$$\cos\theta\sin\theta\cos\alpha = 0\tag{11}$$

This means

- Either  $\cos \alpha = 0$ , or
- $\cos \theta \sin \theta = 0$ , in which case by (7), we must have  $\cos \alpha = 0$  anyway.

To summarize, as long as  $\mathbf{v}_1$  has a non-zero  $\mathbf{\hat{x}}$  component, it must completely lie within the x-y plane, i.e., it is a transverse wave with phase velocity given by (10).

- (b) If  $\sin \alpha \cos \beta = 0$ , then we must have either  $\alpha = 0$  or  $\beta = \pi/2$ .
  - i. If  $\alpha = 0$ , this corresponds to the longitudinal wave  $\mathbf{v}_1 \parallel \mathbf{k}$ . (9) requires  $\cos \theta \sin \theta = 0$ , then by (7) we must have

$$u^2 = s^2 + v_A^2 \sin^2 \theta \tag{12}$$

Thus, depending on whether  $\theta=0$  (i.e.,  $\mathbf{v}_A\parallel\mathbf{k}$ ) or  $\theta=\pi/2$  (i.e.,  $\mathbf{v}_A\perp\mathbf{k}$ ), we have either u=s or  $u=\sqrt{s^2+v_A^2}$ , which are exactly the two longitudinal wave cases discussed in the text.

ii. If  $\beta = \pi/2$ 

- A. If  $\alpha = \pi/2$ , it's easy to see this is covered by case (a) above.
- B. If  $\alpha \neq \pi/2$  and  $\alpha \neq 0$ , this is the most general case which allows us to combine (7) and (9) and cancel the factor  $\sin \alpha \cos \alpha \sin \beta$  and obtain

$$\left(-u^2 + s^2 + \nu_A^2 \sin^2 \theta\right) \left(-u^2 + \nu_A^2 \cos^2 \theta\right) = \left(\nu_A^2 \cos \theta \sin \theta\right)^2 \tag{13}$$

which yields the solution

$$u_{\pm}^{2} = \frac{1}{2} \left[ \left( s^{2} + v_{A}^{2} \right) \pm \sqrt{\left( s^{2} + v_{A}^{2} \right)^{2} - 4s^{2} v_{A}^{2} \cos^{2} \theta} \right]$$
 (14)

- 2. The velocity vector's direction was discussed in detail in the cases above.
- 3. When  $v_A \gg s$ , up to  $O(s^2)$ , (14) can be approximated by

$$u_{\pm}^{2} \approx \frac{1}{2} \left\{ \left( s^{2} + v_{A}^{2} \right) \pm v_{A}^{2} \left[ 1 + \frac{s^{2}}{v_{A}^{2}} \left( 1 - 2\cos^{2}\theta \right) \right] \right\} \qquad \Longrightarrow \qquad u_{+}^{2} \approx v_{A}^{2} + O\left( s^{2} \right) \qquad u_{-}^{2} \approx O(s^{2})$$
 (15)

Recall the  $u_{\pm}^2$  solutions are the result of case (b).ii.B, with  $\beta = \pi/2$  and arbitrary  $\alpha$  as long as  $\alpha \neq 0, \alpha \neq \pi/2$ . But  $\beta = \pi/2$  means that  $\mathbf{v}_1$  is in the y-z plane, which is the plane of  $\mathbf{k}$  and  $\mathbf{v}_A$ .

Plugging  $u_{+}^{2}$  back into (9) and ignoring  $O(s^{2})$ , we have

$$-\sin\theta^2\sin\alpha - \cos\theta\sin\theta\cos\alpha = 0 \qquad \Longrightarrow \qquad \sin\theta\cos(\theta - \alpha) = 0 \tag{16}$$

this gives a direction of  $\mathbf{v}_1$  that is perpendicular to the field  $\mathbf{v}_A$ .

 $u_{-}^{2}$  can be ignored in (9) since it is  $O(s^{2})$ , this means

$$\cos^2\theta \sin\alpha - \cos\theta \sin\theta \cos\alpha = 0 \qquad \Longrightarrow \qquad \cos\theta \sin(\alpha - \theta) = 0 \tag{17}$$

this gives a direction of  $\mathbf{v}_1$  that aligns with the field  $\mathbf{v}_A$ .