Math 327 – Formulas for exam 1

Equation or Expression	R command(s)
$t^* = t\left(1 - \frac{\alpha}{2}; n - 2\right)$	qt (0.975,14) if $lpha = 0.05$ and $n = 16$.
$F(1-\alpha;df_1,df_2)$	qf (0.95,1,14) if $\alpha=0.05$, $df_1=1$ and $df_2=14$.
$P\{ t(df) > t^*\}$	$2*(1-pt(4.58,14))$ if $t^* = 4.58$ and $df = 14$
$P\{F > F^*\}$	1-pf (16.3, 1, 14) if $F^* = 16.3$ with 1 and 14 degrees of freedom
$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$	N/A (theoretical model)
$Y_i = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ji} + \varepsilon_i$	N/A (theoretical model)
$\varepsilon_i \sim N(\mu, \sigma^2)$, independent	N/A (theoretical model)
$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$	myfit=lm(Y~X)
$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$	predict (myfit)
$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} e_i^2$	<pre>sum(myfit\$residuals^2)</pre>
$MS_{res} = rac{SS_{res}}{n-p}$ $p=$ # parameters, incl. eta_0	<pre>mysumm=summary(myfit) mysumm\$sigma^2</pre>
$\hat{eta}_1 \pm t^* se\{\hat{eta}_1\}$	confint(myfit)
$\hat{\beta}_0 \pm t^* se\{\hat{\beta}_0\}$	confint(myfit)
$t = \frac{\hat{\beta}_1}{se\{b_1\}}$	mysumm\$coefficients
$\begin{aligned} \widehat{Y}_h &\pm t^* se\{\widehat{Y}_h\} \\ se\{\widehat{Y}_h\} &= \text{std. error of mean } \widehat{Y}_h \end{aligned}$	predict(fit, data.frame($X=X_h$), interval="confidence")
$\widehat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - p\right) se\{\widehat{Y}_{h,p}\}$ $se\{\widehat{Y}_h\} = \text{std. error of individual } \widehat{Y}_h$	$\texttt{predict}(\texttt{fit, data.frame}(\texttt{X=}\textcolor{red}{X_h}\texttt{), interval="prediction"})$
$SS_{Total} = SS_{Model} + SSE$	anova(fit) sum(anova(fit)[,2])
$R^2 = \frac{SS_{Model}}{SS_{Total}} = 1 - \frac{SSE}{SS_{Toysl}}$	summary(myfit)\$r.squared
$MS_{Model} = SS_{Model} / (p-1)$ MSE = SSE / (n-p)	<pre>anova(fit)\$`Sum Sq`/anova(fit)\$Df # x=regression or residual</pre>
$F = MS_{Model} / MSE$	anova(fit)\$`F value` or anova(fit)[1,3]/anova(fit)[2,3]
$r = \pm \sqrt{R^2}$	cor(X,Y) or cor(Yhat,Y)

Symbols from Chapters 1-2:

- X = predictor (explanatory) variable
- Y = response variable
- μ_{Y} = population mean of the response variable at a particular value of X
 - $\circ \quad Y = f(X) + \epsilon = \mu_Y + \epsilon$
 - $\circ \quad \mu_Y = f(X) = \beta_0 + \beta_1 X$
- $\epsilon =$ population residual = deviation from the mean = observed response fitted response
- β_0 = population y-intercept = expected response when X=0
- β_1 = population slope = expected change in Y for a one-unit change in X
- \hat{y} or \hat{Y} = fitted or predicted response value for a particular value of X
- $\hat{\beta}_0$ = fitted y-intercept = estimated response when X=0
- $\hat{\beta}_1$ = fitted slope = estimated change in Y for a one-unit change in X
- $residual = y \hat{y}$
- $\sigma_{\epsilon} =$ population residual standard deviation
- $\hat{\sigma}_{\epsilon} = \text{estimated residual standard deviation}$
- $N(0,\sigma_\epsilon)=$ Normal distribution with mean zero and (population) standard deviation, σ_ϵ
- $SSE = \sqrt{\sum_i (y_i \hat{y}_i)^2} = \text{Sum of Squares for Error} = \text{Error Sum of Squares} = \text{Residual Sum of}$
- $SE_{\widehat{\beta}_1} =$ Standard error of the estimated slope
- $t^* = \text{critical value}$ (or quantile) from a t_{n-2} distribution, i.e, a t distribution with n-2 degrees of freedom
- $SSModel = \sum_{i} (\hat{y}_i \bar{y})^2 = Model Sum of Squares$
- *MSModel* = Model Mean Square (divide by 1 for simple regression
- $SSTotal = \sum_{i} (y_i \bar{y})^2 = Total$ (corrected) Sum of Squares
- $MSE = \frac{SSE}{n-2} = \frac{\sum_i (y_i \hat{y}_i)^2}{n-2} = \text{Mean Squared Error}$ $F = \frac{MSModel}{MSE} = \text{F-statistic for conducting the F-test of } H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0$
- r = linear correlation
- $r^2 = R^2 =$ Coefficient of Determination
- $S_V =$ Sample standard deviation of the response variable
- S_X = Sample standard deviation of the predictor variable
- $x^* =$ a particular value of X used when predicting a value of Y at x^*
- $SE_{\hat{u}} = \text{Standard error of an estimated mean response value at } X = x^*$
- $SE_{\hat{v}} = \text{Standard error of an estimated individual response value at } X = x^*$