Лабораторная работа № 3 Численное интегрирование и дифференцирование

для потоков A-1,2,3,15-19 и A-4,6,7,8,9,12-19 «Вычислительные методы»

Цель работы. Применить на практике простейшие численные методы вычисления интегралов и производных. Исследовать поведение погрешности методов при измельчении шага. Познакомиться с понятиями порядка точности и обусловленности (плохой/хорошей) задачи и их отражением в расчетах. Вычислить определенный интеграл с заданной точностью.

Задача 1. Найти приближенные значения интеграла $\int_a^b f(x) dx$ и производной f'(a),

используя указанные в индивидуальном варианте методы. Организовать серию расчетов с шагами $h_k = (b-a)/10^k$ (k=1,2,...,15). Сделать выводы о порядке точности и обусловленности методов.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Вычислить точное значение J интеграла по формуле Ньютона-Лейбница.
- 2. Реализовать программно составную формулу численного интегрирования. Вычислить с ее помощью приближенные значения интеграла I_k для k=1,2,...,15. Заполнить второй столбец таблицы.
- 3. Для каждого приближенного значения интеграла найти погрешность $\Delta_k = \left| J I_k \right|$. Заполнить третий столбец таблицы.
 - **Прим 1.** Вычисления можно прекратить на том значении шага, при котором расчет занимает более 40 минут.
- 4. Вычислить точное значение D производной, подставив число a в формулу для f'(x).
- 5. Реализовать программно формулу численного дифференцирования. Вычислить с ее помощью приближенные значения производной d_k для k=1,2,...,15. Заполнить 4-ый столбец таблицы.
- 6. Для каждого приближенного значения производной найти погрешность $\Delta_k = |D d_k|$. Заполнить 5-ый столбец таблицы.

Прим 2. Все приближенные значения и их погрешности должны быть округлены по принятым правилам.

Таблица.

Шаг <i>h</i>	Приближенное	Погрешность	Приближенное	Погрешность
	значение	численного	значение	численного
	интеграла	интегрирования	производной	дифференцирования
(b-a)/10				
$(b-a)/10^2$				
$(b-a)/10^{15}$				

- 7. Сделать выводы (отдельно для каждой из двух формул).
 - 1. Указать порядок точности формулы по h.
 - 2. Пользуясь заполненной таблицей, показать, что расчет подтверждает указанный порядок точности.
 - 3. Отметить, все ли данные соответствующего столбца можно использовать для анализа порядка точности.
 - 4. Указать шаг h, при котором достигается наилучшая точность.

5. Определить, проявилась ли в расчетах (и в чем именно) хорошая или плохая обусловленность метода.

ВАРИАНТЫ ЗАДАНИЙ

N	f(x)	а	b	Квадратурная формула	Формула численного дифференцирования
1	$\frac{\sqrt{1-x^2}}{x^4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	левых прямоугольников	левая
2	$\frac{1+tg^3x}{\cos^2x}$	0	$\frac{\pi}{4}$	центральных прямоугольников	правая
3	$\frac{\sqrt{9-x^2}}{x^2}$	1	3	правых прямоугольников	центральная
4	$\frac{\sin x(1+\cos x)}{\sqrt{1+\cos^2 x}}$	0	$\frac{\pi}{2}$	трапеций	левая
5	$\frac{1}{\sqrt{1+x} + \sqrt{(1+x)^3}}$	0	2	левых прямоугольников	правая
6	tg x ln cos x	0	$\frac{\pi}{4}$	центральных прямоугольников	центральная
7	$\frac{x}{\sqrt{x^4 - x^2 - 1}}$	$\sqrt{2}$	$\sqrt{3}$	правых прямоугольников	левая
8	$\frac{1}{2+\sqrt{5-4x}}$	-1	1	трапеций	правая
9	$x\cos^2 x$	0	$\frac{\pi}{2}$	левых прямоугольников	центральная
10	$(3x+2)\cos 3x$	0	$\frac{\pi}{3}$	центральных прямоугольников	левая
11	$(2x+3)4^{2x}$	0	1	правых прямоугольников	правая
12	$x\sin^2\frac{x}{2}$	0	$\frac{\pi}{2}$	трапеций	центральная
13	$(x^2+1)\sin 2x$	0	$\frac{\pi}{4}$	левых прямоугольников	левая
14	$(2x-1)\cos 2x$	0	$\frac{\pi}{4}$	центральных прямоугольников	правая
15	$(x^2 - x)\sin\frac{\pi x}{2}$	0	1	правых прямоугольников	центральная
16	$e^{-x}(x^2-x)$	0	3	трапеций	левая

17	$(3x+1)\sin 2x$	0	$\frac{\pi}{4}$	левых прямоугольников	правая
18	$(2x-1)3^x$	0	1	центральных прямоугольников	центральная
19	$(x^2-1)e^{2x}$	1	2	правых прямоугольников	левая
20	$(x-2)e^{-2x}$	0	3	трапеций	правая
21	$\frac{\arccos 2x}{x^2}$	$\frac{1}{4}$	$\frac{1}{2}$	левых прямоугольников	центральная
22	$\ln(x^2+1)$	0	1	центральных прямоугольников	левая
23	$x \operatorname{arctg} 2x$	0	$\frac{1}{2}$	правых прямоугольников	правая
24	$\arccos \frac{x}{2}$	0	1	трапеций	центральная
25	$\frac{\cos x}{4 + \sqrt{\sin x}}$	0	$\frac{\pi}{2}$	левых прямоугольников	левая

Задача 2. Повторить расчет интеграла из Задачи 1 с помощью квадратурной формулы Симпсона. Сравнить результаты с результатами Задачи 1 (с учетом порядков точности использованных формул). Сделать выводы о порядке точности и обусловленности методов. Вычислить значение интеграла из Задачи 1 с помощью составной квадратурной формул Симпсона с заданной в индивидуальном варианте точностью ε . (без разбиения отрезка интегрирования, см. алгоритм в Приложении). Предусмотреть возврат значения шага, на котором происходит выход из расчета.

Заполнить таблицу

IIIar h	Приближенное значение интеграла	Погрешность численного интегрирования
10^{-1}		
10^{-2}		
$h = 10^{-15}$		

Заполнить таблицу

Значение точности	Точное значение <i>I</i>	Приближенное значение <i>I</i>	Абсолютная погрешность	Значение шага интегрирования
			_	

Сделать выводы: сравнить значение шага, на котором достигнута заданная точность, с данными из предыдущей таблицы и объяснить, проявилось ли преимущество одной из формул над другой.

ВАРИАНТЫ ЗАДАНИЙ

	3						
1	6	11	16	21	26	31	0.01
2	7	12	17	22	27	32	0.05
3	8	13	18	23	28	33	0.001
4	9	14	19	24	29	34	0.0001
5	10	15	20	25	30	35	0.005

Задача 3 (для студентов, претендующих на оценку «отлично»). Вычислить значение интеграла $\int_a^b f(x) dx$ с помощью составной квадратурной формулы Симпсона с заданной в индивидуальном варианте точностью $\varepsilon = pe-k$

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Разбить отрезок интегрирования на М отрезков.
- 2. На каждом отрезке применить алгоритм, разработанный в задаче 2
- 3. Сложить полученные результаты
- 4. Заполнить таблицу для значений M=2,3,4,5,6,7,8

Значение	Точное	Приближенн	Абсолютная	Значение минимального	Число
точности	значение $m{J}$	ое значение I	погрешность	из шагов интегрирования	отрезков
				на отрезках	разбиения

5. Сделать выводы:

- а) выбрать число отрезков, для которого достижение заданной точности фиксируется наибольшем из минимальных шагов для разных разбиений;
- b) выбрать параметр M, при котором достигнута наименьшая трудоемкость (по количеству вычислений интегрируемой функции) и объяснить, за счет чего произошла экономия действий.

ВАРИАНТЫ ЗАДАНИЙ

N	f(x)	а	b	Точность $\varepsilon = pe-k$
1	$\frac{x}{x^2 + 3x + 2}$	0	$\frac{\pi}{2}$	p=1, k=9
2	$\frac{1}{x\sqrt{(1+x)^3}}$	0	2	p=1, k=10
3	$\frac{x}{x^4 - 2x^2 + 5}$	3	8	p=1, k=11
4	$\frac{\sqrt{x}}{\sqrt{x}-1}$	1	$\sqrt{3}$	p=1, k=12
5	$\frac{1}{\sqrt{e^x + 4}}$	4	9	p=2, k=9
6	$\frac{\sqrt{\arctan x} + 1}{1 + x^2}$	ln 21	ln 32	p=2, k=10
7	$x^3\sqrt{x^2-16}$	0	1	p=2, k=11

				1
8	$\frac{x}{\cos^2 x^2}$	4	5	p=2, k= 12
9	$\frac{\cos\sqrt{x}}{\sqrt{x}}$	0	$\frac{\sqrt{\pi}}{2}$	p=3, k=9
10	$\frac{x^3}{\sqrt{x^4+9}}$	$\frac{\pi^2}{9}$	π^2	p=3, k=10
11	$\frac{\sqrt{\sin x}}{\sqrt{\cos^9 x}}$	0	2	p=3, k=11
12	$\frac{\sqrt{x+1}}{\sqrt{x}(x+1)^2}$	0	$\frac{\pi}{4}$	p=3, k= 12
13	$\frac{1}{\sqrt{x+1} + \sqrt[4]{x+1}}$	$\frac{1}{24}$	$\frac{1}{3}$	p=4, k=9
14	$\frac{1}{e^x(3+e^{-x})}$	15	80	p=4, k= 10
15	$\sqrt{16-x^2}$	0	ln 2	p=4, k= 11
16	$\frac{1}{x\sqrt{x^2-1}}$	0	4	p=4, k= 12
17	$\frac{x^3}{\sqrt{x^2+9}}$	$\sqrt{2}$	$\sqrt{3}$	p=5, k=9
18	$\frac{\ln x}{x(1-\ln^2 x)}$	0	3	p=5, k=10
19	$\frac{\sqrt{1+x}+1}{\sqrt{1+x}-1}$	e^2	e^3	p=5, k=11
20	$\frac{2x-8}{\sqrt{1-x-x^2}}$	3	8	p=5, k= 12
21	$\frac{e^x \sqrt{e^x - 1}}{e^x + 3}$	$-\frac{1}{2}$	0	p=6, k=9
22	$x \operatorname{arctg} 3x$	0	ln 5	p=6, k=10
23	$e^{-x}\sin 2x$	0	$\frac{1}{3}$	p=6, k=11
24	$arctg \sqrt{5x-1}$	0	π	p=6, k= 12
25	$e^{2x}\cos x$	$\frac{1}{2}$	1	p=7, k=9

Квадратурные формулы и априорные оценки погрешностей для приближенного вычисления интеграла $\int_{a}^{b} f(x) dx$

Формула <u>левых прямоугольников</u>:

$$\mathsf{S} = h \sum_{i=1}^n f(x_{i-1})$$
 ; априорная оценка погрешности $\left|I - I^*\right| \leq \frac{M_1(b-a)}{2} h$.

Формула правых прямоугольников

$$\mathsf{S} = h \sum_{i=1}^n f(x_i)$$
 ; априорная оценка погрешности $\left| I - I^* \right| \leq \frac{M_1(b-a)}{2} h$.

Формула центральных прямоугольников.

$$s=h\sum_{i=1}^n f(x_{i-rac{1}{2}})$$
 ; априорная оценка погрешности $\left|I-I^*
ight| \leq rac{M_2(b-a)}{24}h^2$.

Формула <u>трапеций*</u>:

$$\mathit{S}=h\!\!\left(rac{f(x_0)+f(x_n)}{2}+\sum_{i=1}^{n-1}f(x_i)
ight)$$
; априорная оценка погрешности $\left|I-I^*
ight|\leq rac{M_2ig(b-aig)}{12}h^2$.

Формула <u>Симпсона*</u>.

$$S = \frac{h}{6} \left(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) + 4 \sum_{i=1}^{n} f(x_{i-\frac{1}{2}}) \right);$$

априорная оценка погрешности $\left|I-I^*\right| \leq \frac{M_4(b-a)}{2880}h^4$.

<u>*</u> - при использовании Mathcad нужно предусмотреть отдельный расчет для элементарной формулы

Алгоритм вычисления интеграла с заданной точностью (для Задачи 2)

Пример вычисления определенного интеграла с помощью библиотек на Python

