Analysis II Theorems

By Shun (@shun4midx)

Statements

Notice: I have briefly mentioned this in my README.md document, but by "Theorems", I refer to not just Theorems, but also Lemmas, Propositions, Corollaries and other things of the sort.

2-18-25 (Week 1): Riemann-Stieltjes Integrals (Functions of Bounded Variation)

Proposition 1.1. Let $f:[a,b]\to\mathbb{R}$ be a **monotonic function**. Then, the set of its **discontinuities** D is a **countable** set.

Remark 1.1. For any $P = (x_k)_{0 \le k \le n} \in \mathcal{P}([a,b])$, we have $b - a = \sum_{k=1}^n \Delta x_k$.

Proposition 1.2. Let $f \in \mathcal{BV}([a,b],\mathbb{R})$, then

- (1) For any partitions $P \subseteq P'$, we have $V_P(f) \le V_{P'}(f)$
- (2) $\forall \varepsilon > 0$, \exists partition $P_{\varepsilon} \in \mathcal{P}([a,b])$, s.t. \forall finer partition $P \supseteq P_{\varepsilon}$, we have $V_P(f) \le V_f \le V_P(f) + \varepsilon$

Proposition 1.3. If $f:[a,b]\to\mathbb{R}$ is **monotonic**, then $\underline{f}\in\mathcal{BV}([a,b])$ and $V_f=|f(b)-f(a)|$

Proposition 1.4. If $f : [a, b] \to \mathbb{R}$ is **continuous** and **differentiable** on (a, b) with **bounded derivative**, then $f \in \mathcal{BV}([a, b])$.

Statements and Proof Outlines

Notice: I would give enough detail but not write my proofs formally here. They are proof **outlines** so it is easier to recall **for me**, not actual proofs nor in complete English. It may look messy to you, that's understandable. I have a certain chronic eye condition and am dyslexic, so I need such "messiness" to understand what I write. When I can't color-code stuff like in my notes, this is the best alternative.

2-18-25 (Week 1): Riemann-Stieltjes Integrals (Functions of Bounded Variation)

Proposition 1.1. Let $f:[a,b]\to\mathbb{R}$ be a **monotonic function**. Then, the set of its **discontinuities** D is a **countable** set.

Proof. $D := \{x \in I \mid f(x-) \neq f(x+)\}$. WLOG, assume f incr $\Rightarrow f(x-) \leq f(x+) \ \forall x \in D$. \mathbb{Q} dense in $\mathbb{R} \Rightarrow \exists \ q_x \in \mathbb{Q} \cap (f(x-), f(x+))$. $\therefore \exists \ \text{map} \ D \to \mathbb{Q}, \ x \mapsto q_x, \ \text{inj} \ \text{cuz} \ \forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. $\therefore D$ inj in countable $\mathbb{Q} \therefore D$ is countable.

Proposition 1.2. Let $f \in \mathcal{BV}([a,b],\mathbb{R})$, then

- (1) For any partitions $P \subseteq P'$, we have $V_P(f) \leq V_{P'}(f)$
- (2) $\forall \varepsilon > 0$, \exists partition $P_{\varepsilon} \in \mathcal{P}([a,b])$, s.t. \forall finer partition $P \supseteq P_{\varepsilon}$, we have $\underline{V_P(f) \leq V_f \leq V_P(f) + \varepsilon}$ *Proof.*
 - (1) By MI, only need to prove when $|\operatorname{Supp}(P')| = |\operatorname{Supp}(P)| + 1$. Let P, P, k s.t. $\operatorname{Supp}(P') = \operatorname{Supp}(P) \cup \{c\}, x_{k-1} < c < x_k$. Then, by \triangle ineq, $V_{P'}(f) = \sum_{k=1, k \neq i}^n |f(x_k) f(x_{k-1})| + |f(c) f(x_{i-1})| + |f(x_i) f(c)| \ge \sum_{k=1}^n |f(x_k) f(x_{k-1})| = V_P(f)$. Now by MI, done.
 - (2) By def, $V_f = \sup_{P \in \mathcal{P}([a,b])} V_P(f) \Rightarrow \forall \ \varepsilon > 0, \ \exists \ P_{\varepsilon} \in \mathcal{P}([a,b]), \text{ s.t. } V_f \leq V_{P_{\varepsilon}}(f) + \varepsilon. \ \therefore \ \forall P \supseteq P_{\varepsilon}, \text{ by}$ $(1), \ \underline{V_f \leq V_{P_{\varepsilon}}(f) + \varepsilon \leq V_P(f) + \varepsilon} \qquad \Box$

Proposition 1.3. If $f:[a,b]\to\mathbb{R}$ is **monotonic**, then $\underline{f}\in\mathcal{BV}([a,b])$ and $\underline{V_f}=|f(b)-f(a)|$

Proof. WLOG, assume f incr $\Rightarrow \forall P \in \mathcal{P}([a,b]), \ V_P(f) = \sum_{k=1}^n |\Delta f_k| = \sum_{k=1}^n \Delta f_k = f(b) - f(a)$, which is **indep** of P. $\therefore f \in \mathcal{BV}([a,b]), \ V_f = |f(b) - f(a)|$

Proposition 1.4. If $f:[a,b]\to\mathbb{R}$ is **continuous** and **differentiable** on (a,b) with **bounded derivative**, then $f\in\mathcal{BV}([a,b])$.

Proof. Let $P = (x_k)_{0 \le k \le n}$, then by MVT, $V_P(f) = \sum_{k=1}^n |\Delta f_k| = \sum_{k=1}^n |f'(t_k)| \Delta x_k \le \sup_{t \in [a,b]} |f'(t)| \sum_{k=1}^n \Delta x_k = \sup_{t \in [a,b]} |f'(t)| |(b-a)$ □