北京师范大学 2021 ~ 2022 学年第二学期期末考试试卷 (A卷)

i	果程名称:	数理统	计	任课老师姓名:				
女	性名:		_	学号:		_		
	题号	_	=	三	四	五*	六*	总分
	得分							

阅卷老师(签字):

- 1. (20分) X_1, X_2, X_3 相互独立, 且 $X_k \sim N(k, k^2), k = 1, 2, 3$. 利用 X_i 构造服从以下分布的统计量.
 - (1) 自由度为3的 χ^2 分布;
 - (2) 自由度为 2 的 t 分布;
 - (3) 自由度为 1, 2 的 F 分布;

(4) 求
$$c$$
 使得 $\mathbb{P}\left(\frac{2\sqrt{2}X_1 - \sqrt{2}X_2}{|X_3 - 3|} > c\right) = 0.05.$

- 2. (10分) X_1, X_2, \dots, X_n 为来自某分布族的简单随机样本. 写出样本均值 \overline{X} 和样本方差 S_n^2 的表达式, 证明 \overline{X} 和 S_n^2 分别是总体均值和总体方差的无偏估计.
- 3. (12分) 判断以下命题是否正确, 正确的直接打"√", 错误的给出反例或修改成正确的*.
 - (1) X_1 是正态分布族 $N(0, \sigma^2)$ 的样本, 那么 $|X_1|$ 是 σ^2 的充分统计量.
 - (2) 对于任意的分布族, 样本 (X_1, X_2, \dots, X_n) 就是其充分统计量.
 - (3) 对于任意的分布族, 全体次序统计量 $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 是其充分统计量.
 - (4) 正态分布族 $N(0, \sigma^2)$ 是完备的.
 - (5) X_1, X_2, \dots, X_n 来自正态分布族 $N(0, \sigma^2)$, 则统计量 \overline{X} 是完备的.
 - (6) 设 X_1, X_2, \dots, X_n 来自均匀分布 $U(\theta 0.5, \theta + 0.5)$ 的简单随机样本, 则 $(X_{(1)}, X_{(n)})$ 是完备统计量.
 - (7) 设 X_1, X_2, \dots, X_n 来自均匀分布 $U(\theta_1, \theta_2)$ 的简单随机样本, 则 $(X_{(1)}, X_{(n)})$ 是完备统计量.
 - (8) 若参数 θ 的置信度为 95%的置信区间的观测值为 [1.2, 3.4], 其含义是指区间 [1.2, 3.4] 覆盖 θ 真值的概率是 0.95.
 - (9) 若 X_1, X_2, \dots, X_n 来自密度形式为 $\frac{1}{\sigma} f\left(\frac{x-\theta}{\sigma}\right)$ 的一组简单随机样本, 那么 $\sum_{i=1}^n \frac{X_i}{\sigma}$ 是一个枢轴量.
 - (10) 假设检验中犯第一类错误的概率 α 与犯第二类错误的概率 β 之和等于 1.
 - (11) 假设检验中的显著性水平 α 越小, 原假设就越容易被拒绝.
 - (12) 对同一组观测数据, 如果在显著性水平为 0.01 时接受了原假设, 那么在显著性水平为 0.05时也会接受原假设.
- 4. (35分) 总体 X 的密度函数为 $f(x) = \frac{\theta}{(1+x)^{(\theta+1)}}, x > 0$, 其中参数 $\theta > 1$.
 - (1) 求参数 θ 的矩估计;
 - (2) 求参数 θ 的 MLE;
 - (3) θ 的矩估计和 MLE 是否为充分统计量, 简单说明理由;
 - (4) 证明 θ 的 MLE 是完备的;
 - (5) 求 $\frac{1}{\theta}$ 的 UMVUE;

- (6) 利用 θ 的 MLE 构造 θ 的一个置信度为 95% 的置信区间;
- (7) 若 $\frac{1}{\theta}$ 的一个置信区间为 $[\ln(1+X_1), 2\ln(1+X_1)]$,求置信度.(不用计算出具体数值)
- 5. (30分) 设 X_1, X_2, \dots, X_n 为来自均匀分布 $U(0, \theta)$ 的其简单随机样本, 其中参数 $\theta > 0$.
 - (1) 求 θ 的 UMVUE.
 - (2) 基于 θ 的 UMVUE(或者充分统计量或 MLE)求关于假设 $H_0: \theta = 1 \longleftrightarrow H_1: \theta = 2^{0.1}$ 的显著性水平为 α 的显著性检验.
 - (3) 若显著性水平 $\alpha = 0.96$,为控制以上得到的检验犯第二类错误的概率不大于 0.01,样本容量 n 至少要取成多少?
 - (4) 对给定的常数 $\theta_0 > 0$, 分别求假设 $H_0: \theta \ge \theta_0 \longleftrightarrow H_1: \theta < \theta_0$ 的显著性检验与似然比检验(显著性水平为 α).
 - (5) 对任意的正整数 k, 求 θ^k 的 UMVUE.
 - (6)* 进一步证明一般情形: 对任一总体分布族, 如果统计量 T 是某个未知参数 θ 的 UMVUE, 且对任意的正整数 k, $E(T^{2k}) < \infty$, 证明 T^k 是 $E(T^k)$ 的 UMVUE.

6* (附加题 10分)

- (1) 设 T 是参数分布族 $\mathcal{F} = \{f(x,\theta), \theta \in \Theta\}$ 的充分统计量, 且存在 θ 的 UMVUE, 证明 UMVUE 一定是充分统计量 T 的函数.
- (2) 设参数 $\theta \le 0$. X_1, X_2, \cdots, X_n 来自总体密度为 $e^{-(x-\theta)}, x < \theta$ 的简单随机样本,证明 $X_{(1)}$ 不是 θ 的完备统计量 (提示: 令 $\nu(X_{(1)})$ 为一非零的零无偏估计,由等式 $0 = E(\nu(X_{(1)}))$ 得到的积分表达,利用 $\theta \le 0$ 的特点,将 ν 构造成分段函数). 你能找到 θ 的一个 UMVUE 吗?(也即: UMVUE 未必是完备统计量的函数)

附注1 可供参考的信息, 不一定都有用 ^_^

- (1) $\Gamma(\alpha,\lambda)$ 分布的概率密度函数为 $f(x;\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x > 0$, 期望为 α/λ .
- (2) $\Gamma(\frac{n}{2}, \frac{1}{2}) = \chi^2(n); \Gamma(1, \lambda) = E(\lambda)$ (指数分布, 密度为 $\lambda e^{-\lambda x}, x > 0$).
- (3) $\xi \sim \Gamma(\alpha, \lambda)$, 则对任意的 k > 0, 有 $\eta = \xi/k \sim \Gamma(\alpha, k\lambda)$.
- (4) $\chi^2(n)$ 分布的概率密度函数为 $f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}, x > 0.$
- (5) 密度变换公式: 设随机变量 $\xi \sim p(x)$, 函数 f(x) 严格单调且处处可导,则 $\eta = f(\xi)$ 的概率密度 为 $p_{\eta}(y) = p(h(y)) \cdot |h'(y)|$,其中 h(y) 是f(x) 的反函数. (此处略写定义域与值域的转换)

附注2 标准正态分布分位数表 $X \sim N(0,1), P(X > u_{\alpha}) = \alpha$

α	0.002	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
u_{α}	3.0	2.33	2.05	1.88	1.75	1.65	1.55	1.50	1.40	1.35	1.28

附注3 $\chi^2(n)$ 分布分位数表 $P(X > \chi^2_{\alpha}(n)) = \alpha$

n	$\alpha = 0.975$	0.95	0.90	0.1	0.05	0.025
1	0.0	0.0	0.02	2.7	3.8	5.0
2	0.05	0.1	0.2	4.6	6.0	7.4

附注4 t(n) 分布分位数表 $P(X > t_{\alpha}(n)) = \alpha$

n	$\alpha = 0.3$	0.2	0.1	0.05	0.025
1	0.72	1.38	3.08	6.3	12.7
2	0.62	1.06	1.9	2.9	4.3
3	0.58	0.98	1.64	2.35	3.18