Relatorio

A Lógica Computacional é uma e atividade essencial para forma profissionais na tecnologia , servindo como base essencial para a construção de algoritmos e a compreensão das linguagens de programação. Ela se concentra na "arte de bem pensar" e na "ciência das formas do pensamento", estudando a correção do raciocínio.

Um sólido entendimento da lógica permite desenvolver e analisar sistemas computacionais, otimizar a comunicação e até mesmo fundamentar argumentos no dia a dia.

Conceito fundamental da lógica

Proposição: Frase declarativa que pode ser verdadeira (V) ou falsa (F), mas nunca ambas. São representadas por valores binários: 1 (V) ou 0 (F).(todos homens sao mortais (V))

Premissas: Proposições utilizadas como base para um raciocínio lógico (Elias e homem (V))

Operador logico: Conjunto de proposições em que algumas (premissas) sustentam uma conclusão. (and)

Silogismo: Raciocínio dedutivo composto por duas premissas e uma conclusão lógica.(elias e mortal (V))

Estrutura if / else. E um aplicação lógica na programação

Tipos de Logicas

Existe 11 de tipos de lógicas algumas delas são

Premissas, Lógica Formal, Lógica Simbólica, Lógica dedutiva etc.

Conclusao

Premissas são variáveis booleanas

Conclusão depende da validez lógica

Introdução

A **Lógica Computacional** é uma atividade essencial para a formação de profissionais na área de tecnologia. Ela serve como a **base fundamental para a construção de algoritmos e a compreensão das linguagens de programação**. A lógica se concentra na "arte de bem pensar" e na "ciência das formas do pensamento", estudando a **correção do raciocínio**.

Um sólido entendimento da lógica permite:

- **Desenvolver e analisar sistemas computacionais**: É indispensável para entender como trabalhar com programação e construir algoritmos, auxiliando na criação de softwares eficazes e na minimização de bugs, falhas e comportamentos não esperados. Tanto o hardware quanto o software computacional dependem da Lógica Formal.
- Otimizar a comunicação: Contribui para uma comunicação mais clara e precisa, tanto escrita quanto falada, evitando falhas de interpretação e ambiguidades.
- Fundamentar argumentos no dia a dia: Ajuda a entender como o raciocínio lógico é formado, a construir argumentos válidos e a desenvolver o senso crítico e o pensamento racional para as decisões cotidianas.
- Conceitos Fundamentais da Lógica
- Proposição: Uma frase declarativa que pode ser classificada como verdadeira (V) ou falsa (F), mas nunca ambas ao mesmo tempo. Proposições podem ser representadas por valores binários: 1 (V) ou 0 (F).
- Premissas: Proposições que são utilizadas como base para um raciocínio.
- **Argumento**: Um conjunto de enunciados que se relacionam entre si, onde algumas proposições (premissas) sustentam uma conclusão.
- Operador Lógico (ou Conectivo Lógico): Uma palavra ou símbolo que une proposições simples para formar proposições compostas, influenciando a valoração da proposição composta. Exemplos incluem "e" (AND ou Ù), "ou" (OR ou Ú), "não" (NOT ou ¬), "se... então" (CONDICIONAL ou ®), e "se, e somente se" (BICONDICIONAL ou «).
- Silogismo: Consiste em um raciocínio dedutivo que possibilita a dedução de uma conclusão a partir das premissas. Exemplo: "Todos os homens são mortais. Elias é homem. Logo, Elias é mortal.".
- Falácia: Argumentos que, logicamente, estão incorretos.
- **Inferência**: O processo que permite chegar a conclusões a partir de premissas, constituindo a argumentação lógica perfeita. Pode ser de dois tipos: indutiva e dedutiva.

• Estruturas if/else: São uma aplicação da lógica na programação, utilizadas para criar estruturas condicionais ou de decisão em algoritmos.

Tipos de Lógica

A lógica pode ser classificada de diversas formas, cada uma com seu foco específico:

- Lógica Formal: Inicia com os estudos de Aristóteles e analisa a forma dos argumentos para determinar sua validade, independentemente da veracidade das premissas.
- Lógica Simbólica (ou Matemática): Desenvolvida a partir do século XIX, utiliza símbolos matemáticos para expressar premissas e suas relações, buscando uma linguagem absolutamente precisa e sem ambiguidades. Esta lógica originou a lógica utilizada em computadores.
- Lógica Transcendental: Desenvolvida por Immanuel Kant, investiga a origem dos conceitos *a priori*, concentrando-se nos conceitos que se referem aos objetos não apenas como dados, mas como pensados. Distingue o Conhecimento Empírico (a posteriori) do Conhecimento Puro (a priori).
- Lógica Dedutiva: Parte de premissas afirmativas ou leis mais gerais para obter conclusões menos gerais ou particulares. O silogismo é um tipo de argumentação dedutiva.
- Lógica Indutiva: Preocupa-se com argumentos que permitem conclusões gerais a partir de casos particulares. Um único contraexemplo é capaz de invalidar todo um raciocínio indutivo.
- Lógica Clássica: Regida pelos princípios da identidade (todo objeto é idêntico a si mesmo), da não contradição (uma proposição não pode ser verdadeira e falsa ao mesmo tempo), e do terceiro excluído (toda proposição ou é verdadeira ou falsa, sem terceira possibilidade). A conclusão pode ter dois valores lógicos: verdadeiro (1) ou falso (0).
- Lógicas Não Clássicas: Permitem variações, como a aplicação de mais de dois valores de verdade. Incluem a lógica fuzzy (onde o valor verdade pode ser qualquer número real entre 0 e 1) e a lógica modal (onde a proposição pode ser necessária ou impossível, além de V/F). Caracterizam-se por linguagens mais ricas, princípios distintos e semânticas distintas.

Conclusão

A lógica é um pilar fundamental para a tecnologia e para o desenvolvimento do raciocínio crítico. No contexto computacional, as **premissas** são proposições que, ao serem valoradas, se comportam de maneira **binária** (**verdadeiro/falso**). A **validade de uma conclusão** em um argumento depende diretamente da correção do raciocínio lógico aplicado às premissas, e não apenas da veracidade do seu conteúdo. A compreensão e aplicação desses princípios são essenciais para o desenvolvimento de sistemas robustos e para a resolução de problemas complexos no dia a dia e na vida profissional.

🧠 Primeiras Palavras em Humanos – Fundamentos da Lógica Computacional

Este repositório foi criado para quem está dando os **primeiros passos na lógica computacional**. Aqui você vai encontrar uma introdução clara e simples aos conceitos básicos de lógica, com explicações e exemplos práticos em **Python**.

Sobre o projeto

A lógica está presente em tudo o que fazemos com computadores. Este projeto tem como objetivo:

- Ajudar iniciantes a entender **como funciona o raciocínio lógico** na computação.
- Mostrar a aplicação da lógica usando **códigos em Python**.
- Servir como material de apoio para **estudos, aulas ou revisões**.

📥 Conteúdo do repositório

- `relatorio_logica.md` → Texto explicativo sobre lógica computacional.
- `silogismo_dedutivo.py` → Exemplo em Python de raciocínio lógico (silogismo).
- `README.md` → Este arquivo com informações iniciais para quem acessar o repositório.

Requisitos

Você só precisa ter o **Python instalado** ou usar o [Google Colab](https://colab.research.google.com) para rodar os exemplos online.

🚀 Como usar

1. Clone este repositório:

```bash

git clone https://github.com/seu-usuario/seu-repositorio.git