An integrated assessment of soil and fire emissions of greenhouse gases from slash-and-burn and chop-and-mulch agriculture in the eastern Amazon

Eric A. Davidson¹, Tatiana Deane de Abreu Sá², Claudio Reis de Carvalho², Ricardo de Oliveira Figueiredo², Françoise Yoko Ishida³, Renata Tuma Sabá², Elisana B. dos Santos⁴, and Jorge F. B. Freitas⁵

¹The Woods Hole Research Center

²Embrapa Amazônia Oriental

³CENA/USP

⁴Instituto de Pesquisa Ambiental da Amazônia

⁵Universidade Federal Rural da Amazônia

ALTERNATIVAS NA AGRICULTURA AMAZÔNICA (SHIFT – TIPITAMBA)

LBA original over-arching question:

"How do tropical forest conversion, re-growth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes and the prospect for sustainable land use in Amazonia?"

Consider sustainability of small-holder agriculture at local scales:

soil fertility, crop yield, water quality, economics and at global scales:

greenhouse gas emissions, C sequestration

Could improved soil fertility conferred by chop & mulch technology cause unsustainably high emissions of methane and nitrous oxide from soil?

Methods

- A 15-year-old secondary forest contained 99,6 \pm 19,5 Mg biomass ha⁻¹.
- Nov/Dec '01: one field slash & burned; another chopped & mulched (2 ha each).
- Jan '02: both fields planted in maize in January 2002. Mulched plot fertilized with 60 kg N, 60 kg P, and 30 kg K ha⁻¹ at planting. An additional 30 kg N ha⁻¹ added in the mulched plot 45 days after germination.
- Feb '02: Cassava planted under the maize.
- May '02: maize harvested.
- June '02: Plots weeded, and leguminous trees (*Acacia mangium*, *Sclerolobium paniculatum*l) planted in 2 m x 2m spacing.
- June '03: Cassava harvested; site allowed to return to fallow enriched with leguminous trees.

Trace gas flux measurements: 8 chambers in each of 2 plots per treatement, plux 8 chambers in adjacent. Approximately bimonthly. Due to non-normal distributions of the flux data, all values were log-transformed prior to statistical analyses.

Soil moisture measured gravimetrically weekly.

Crop Yields

Corn grain:

Chop-and-mulch: $1.55 \pm 0.09 \text{ Mg ha}^{-1}$

Slash-and-burn: $0.97 \pm 0.16 \text{ Mg ha}^{-1}$

Manioc root:

Chop-and-mulch: $16.2 \pm 1.2 \text{ Mg ha}^{-1}$

Slash-and-burn: $14.2 \pm 1.1 \text{ Mg ha}^{-1}$

Table 1. Estimates of soil emissions by management phase. Negative values for CH₄ indicate net uptake of atmospheric CH₄ by the soil; positive values indicate net efflux from the soil to the atmosphere.

	Pre-planting	Crops	Post-harvest	Sum
	(60 days)	(480 days)	fallow (240 days)	
CH ₄ (kg CH ₄ /ha)				
slash & burn	-0.7	-3.2	-1.1	-5.0
chop & mulch	-0.4	13.4	2.6	+15.6
fallow	-0.7	-0.4	-1.2	-2.3
N ₂ O (kg N/ha)				
slash & burn	8.0	1.2	0.9	2.9
chop & mulch	0.4	2.9	0.8	4.2
fallow	0.1	0.8	0.9	1.9
NO (kg N/ha)				
slash & burn	0.1	4.1	ND	4.2
chop & mulch	0.0	6.6	ND	6.6
fallow	0.0	1.2	ND	1.2
CO ₂ (Mg C/ha)				
slash & burn	8	33	ND	41
chop & mulch	5	27	ND	32
fallow	4	18	ND	22

Table 2. Comparison of calculated emissions from the fire in the slash-and-burn treatment and the difference in soil emissions for the two years of the study (mulching treatment mean – burning treatment mean) due to adopting chop-and-mulch technology. Emission factors (amount of compound released per amount of dry fuel consumed, expressed as g kg⁻¹) are taken from Andreae and Merlet (2001).

	Emission factor	Fire emission	Difference in soil	
			emissions due to	
			mulching	
CH ₄	6.8 ± 2	630 kg CH ₄ ha ⁻¹	+21 kg CH ₄ ha ⁻¹	
N ₂ O	0.20	12 kg N ha ⁻¹	+1.3 kg N ha ⁻¹	
NO	1.6 ± 0.7	59 kg N ha ⁻¹	+2.4 kg N ha ⁻¹	
CO ₂	1580 ± 90	40 Mg C ha ⁻¹	-9 Mg C ha ⁻¹	

Table 3. Comparison of greenhouse warming potentials (GWP) for a 100 - year time frame of emissions from slash -and-burn and chop-and-mulch cropping systems over approximately a 2 -year cycle. All values are in kg ha⁻¹, except for diesel fuel, which is in L ha ⁻¹. All values are rounded to two significant figures.

	Slash and Burn		Chop and Mulch	
	flux	CO ₂ equivalents	flux	CO ₂ equivalents
Soil CH ₄ efflux	-5.0	-120	16	370
Fire CH ₄ emissions	630	14,000	0	0
Soil N ₂ O-N efflux	2.9	1,300	4.2	2,000
Fire N ₂ O-N emissions	12	5,600	0	0
N fertilizer*	0	0	90	370
P fertilizer*	0	0	60	37
K fertilizer*	0	0	30	15
Diesel fuel for	0	0	170	1000
mulching				
Total CO ₂ equivalents		21,000		3,800

^{*}Conversion of fertilizer use to CO $_2$ equivalents is from West and Marland (2002) and includes energy use for fertilizer manufacture, transportation, and application.

Globally, the contribution of biomass burning to total emissions is estimated at:

- 7% of CH₄
- 3% of N₂O
- 14% of NO
- 45% of CO
- 6% of VOCs

Conclusions

Despite a large increase in soil emissions of CH₄ in the chop & mulch treatment, the avoided fire emissions of CH₄ were yet another order of magnitude larger.

Accounting for emissions from fire, soil, fertilizer use, and fuel use, the chop & mulch cropping system released 5-times fewer CO₂-equivalents of GWP gases compared to the slash & burn system.

Chop and mulch appears to contribute to sustainability at both local and global scales.