1 Proof by Contradiction

To prove P is true, we assume P is False(i.e. $\neg P$ is True) then you use that hypothesis to derive a falsehood or contradiction.

If P is true, then $\neg P$ is false, and this means that $\neg P \implies F$ is true.

Ex: Thm: $\sqrt{2}$ is *irrational*. An irrational number is something that can't be expressed as the ratio of integers.

1.1 Proof(by Contradiction)

Assume for the purpose of contradiction, that $\sqrt{2}$ is **rational**.

```
\Rightarrow \sqrt{2} = a/b(a \ fraction \ in \ lowest \ terms, i.e. \ a \ and \ b \ have \ no \ common \ divisors.)
\Rightarrow 2 = a^2/b^2
\Rightarrow 2b^2 = a^2
\Rightarrow a \ is \ even \ (2 \mid a)
\Rightarrow 4 \mid a^2
\Rightarrow 4 \mid 2b^2
\Rightarrow 2 \mid b^2
\Rightarrow b \ is \ even \ (2 \mid b)
\Rightarrow a/b \ is \ not \ in \ lowest \ terms
\Rightarrow contradiction \ (\Rightarrow \Leftarrow)
\Rightarrow \sqrt{2} \ is \ irrational.
```

2 Induction axiom