# STOCHASTIC PROCESSES

# LECTURE 12: PERIOD, LIMITING BEHAVIOR, FINITE STATE DTMC

Hailun Zhang@SDS of CUHK-Shenzhen

March 10, 2021

# Another reducible DTMC

Consider the following DTMC.



# Limiting distribution?

•  $\lim_{n\to\infty} P^n$  does not exist.  $\lim_{n\to\infty} (P^n + P^{n+1})/2$  exists.

| $\int 5/13$ | 8/13        | 0 | 0 | 0 | 0         | 0 \                   |
|-------------|-------------|---|---|---|-----------|-----------------------|
| 5/13        | 8/13        | 0 | 0 | 0 | 0         | 0                     |
| (1/2)(5/13) | (1/2)(8/13) | 0 | 0 | 0 | (1/2)(.5) | (1/2)(.5)             |
| (.6)(5/13)  | (.6)(8/13)  | 0 | 0 | 0 | (.4)(.5)  | (1/2)(.5)<br>(.4)(.5) |
| 5/13        | 8/13        | 0 | 0 | 0 | 0         | 0                     |
| 0           | 0           | 0 | 0 | 0 | .5        | .5                    |
| ( 0         | 0           | 0 | 0 | 0 | .5        | .5                    |

# Periodicity

#### **DEFINITION**

The period of state i of a DTMC is  $d(i) = \gcd\{n : P_{ii}^n > 0\}$ .

# THEOREM (SOLIDARITY PROPERTY)

If state i and j communicate, then d(i) = d(j).

• Assume  $P_{ij}^{k_1} > 0$  and  $P_{ji}^{k_2} > 0$ . For  $k \ge 0$ ,

$$P_{ii}^{k+k_1+k_2} \ge P_{ij}^{k_1} P_{jj}^k P_{ji}^{k_2}$$

- Take k = 0,  $P_{ii}^{k_1 + k_2} > 0$ , which implies  $d(i) | k_1 + k_2$ .
- Whenever  $P_{jj}^k > 0$ ,  $P_{ii}^{k+k_1+k_2} > 0$ , thus,  $d(i) | k + k_1 + k_2$ , which implies d(i) | k. Thus,  $d(i) \le d(j)$ .

# Periodicity and limit

#### DEFINITION

An irreducible DTMC is aperiodic if d = 1. Otherwise, it's periodic.

## THEOREM

If an irreducible DTMC is aperiodic, then

$$\lim_{n\to\infty} P^n = P^{(\infty)}$$

exists, where  $P_{ij}^{(\infty)} = 1/\mathbb{E}_j(T_j)$ . Therefore, when the DTMC is positive recurrent, every row of the limiting matrix  $P^{(\infty)}$  is equal to the DTMC's stationary distribution  $\pi$ .

The Theorem is false if the DTMC is periodic, but...

# Limit of periodic DTMC

#### Recall

## THEOREM

If an irreducible DTMC is periodic, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P^n = P^{(\infty)}$$

exists...



## Random walks on circles

- R.w. on a circle of three points.
- R.w. on a circle of four points.

# Communicating classes

#### **DEFINITION**

- (a) A set  $C \subset S$  is said to be a communicating class if  $i \in C$  and  $i \leftrightarrow j$  imply  $j \in C$ .
- (b) A communicating class is said to be *closed* if  $i \in C$  and  $i \to j$  imply  $j \in C$ .

#### THEOREM

Let C be a communicating class. Then either all states in C are transient or all are recurrent.

#### THEOREM

Every recurrent class is closed.

### COROLLARY

For a finite state DTMC, there exists at least one (closed) recurrent class.

#### COROLLARY

For a finite state DTMC, at least one state is positive recurrent.

# PROOF.

Let C be a (closed) recurrent class. Restricting on C, the DTMC is a finite-state, irreducible DTMC. Suppose that every state is not positive recurrent. Then for each  $i, j \in S$ ,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (P^k)_{ji} = 0.$$

Note that for each n and state state i,  $\frac{1}{n} \sum_{i \in S} \sum_{k=1}^{n} (P^k)_{ji} = 1$ . Taking  $n \to \infty$  on both sides, one has

$$1 = \lim_{n \to \infty} \frac{1}{n} \sum_{i \in S} \sum_{k=1}^{n} (P^k)_{ji} = \sum_{i \in S} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} P_{ji}^k = \sum_{i \in S} 0 = 0.$$

## Finite state DTMC

# COROLLARY

For a DTMC having finitely many states, there is no state that is null recurrent.