Introduction à l'assimilation de données non paramétrique Projet Inter-Labex SEACS

Pierre Tandeo

En collaboration avec : P. Ailliot, A. Cuzol, V. Monbet, R. Fablet, R. Lguensat

Telecom Bretagne Laboratoire Signal & Communications

27 mai 2015

Objectifs de l'étude

- Objectifs :
 - reconstruction de dynamique complexes
 - application à la surface des océans
- Moyens:
 - modèles dynamiques
 - observations satellite

Méthodologie générale

Assimilation de données :

- estimer p(x|y), avec x l'état caché, cf. Evensen (2009)
- ullet mélange modèle ${\mathcal M}$ et observations ${f y}$:

$$rac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta}(t))$$
 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon}(t))$

Problématiques de l'assimilation de données

- données VS modèle (haute résolution)
- évaluation couteuse du modèle (méthodes Monte Carlo)
- paramétrisations incertaines

Solutions possibles

- Alternatives paramétriques
 - modèles réduits
 - modèles statistiques

- Alternative non paramétrique
 - répétabilité des évènements
 - données historiques

Assimilation de données non paramétrique

Modèle espace d'état :

$$\mathcal{\Lambda}$$

 $\mathsf{Etat} \,\, \mathsf{cach\'e}: \qquad \quad \mathsf{x}(t-1) \quad \longrightarrow \quad \mathsf{x}(t) \quad \longrightarrow \quad \cdot$

 $\downarrow \mathcal{H}$

Observations: y(t)

Idée principale:

- ullet émulation statistique de \mathcal{M} (machine learning)
- utilisation de données historiques (catalogue)

Analogues (t)	Successeurs $(t+dt)$
(-0.3268, +3.2644, +25.5134)	(+0.0131, +3.2278, +24.8371)
(+0.0131, +3.2278, +24.8371)	(+0.3177, +3.2017, +24.1889)
:	:
(-2.7587, -4.5007, +19.1790) (-2.9344, -4.7112, +18.8037)	(-2.9344, -4.7112, +18.8037) (-3.1147, -4.9464, +18.4530)

Assimilation de données non paramétrique

Modèle espace d'état :

Etat caché :
$$\mathsf{x}(t-1) \stackrel{\mathcal{M}}{\longrightarrow} \mathsf{x}(t) \stackrel{}{\longrightarrow} \cdots$$

y(t)

Plusieurs implémentations :

Observations:

- ullet état continu Gaussien (EnKF) o Pierre Tandeo
- ullet état continu non paramétrique (PF) ightarrow Anne Cuzol
- ullet état discret (HMM) o Redouane Lguensat

Application sur Lorenz-63 Objectif

Application sur Lorenz-63 Mise en oeuvre (état Gaussien)

Application sur Lorenz-63

Résultats (modèle statistique autorégressif paramétrique VS non paramétrique)

Application sur Lorenz-63

Résultats (assimilation classique VS assimilation non paramétrique)

Tandeo et al. (2015), à paraître aux éditions Springer, Machine Learning and Data Mining Approaches to Climate Science

Application sur Lorenz-63 Résultats (estimation de paramètres)

Application sur Lorenz-96 Equations

$$\frac{\mathrm{d}x_i(t)}{\mathrm{d}t} = (-x_{i-2}(t) + x_{i+1}(t))x_{i-1}(t) - x_i(t) + F$$

Application sur Lorenz-96 Résultats

Conclusions et perspectives

- Conclusions :
 - méthode basée observations
 - peu couteuse
 - autres applications (estimation de paramètres)
- Perspectives :
 - fouille de données efficace
 - analogues locaux ou globaux
 - application à des archives satellitaires
 - données altimétriques (20 ans)

Références

- Lorenz (1963) Deterministic nonperiodic flow. Journal of the atmospheric sciences.
- Lorenz (1996) Predictability: A problem partly solved. Proc. Seminar on predictability.
- Evensen (2009) Data assimilation: the ensemble Kalman filter.
 Springer Science & Business Media.
- Tandeo, Ailliot, Ruiz, Hannart, Chapron, Cuzol, Monbet, Easton, Fablet (2015) Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system. Machine Learning and Data Mining Approaches to Climate Science.