FastGeo: Efficient Geometric Range Queries on Encrypted Spatial Data

TDSC2019

Boyang Wang, Student Member, IEEE, Ming Li, Member, IEEE, and Li Xiong, Member, IEEE

I. Introduction

I. Introduction

- Searchable Encryption
 - Data
 - Sql queries
 - Keyword search -- comparison
 - Range search -- comparison

I. Introduction

- Searchable Encryption
 - Data
 - Sql queries
 - Keyword search -- comparison
 - Range search -- comparison

- Searchable Encryption
 - Spatial data
 - Arbitrary geometric range queries
 - Circles range queries -- computethen-compare

II. Problem

Server is honestbut-curious

II. Problem

- Geometrically Searchable Encryption(GSE)
 - $sk \leftarrow GenKey(\lambda)$
 - $\Gamma \leftarrow \text{BuildIndex}(\mathbf{D}, m)$
 - $\Gamma^* \leftarrow \operatorname{Enc}(\Gamma, \operatorname{sk})$
 - $tk_Q \leftarrow \text{GenToken}(Q, sk, m)$
 - $I_Q \leftarrow \text{Query}(\Gamma^*, tk_Q)$

Two-level search

- First level relies on equality checking.
- Second level depends on evaluating inner products.

Transform data and queries to equality-vector form.

 $x \in [0,9]$ and $y \in [0,9]$ only integers

Transform data and queries to equality-vector form.

Dictionary	Link Lists
	$\rightarrow (0,0,0,1,0,0,0,0,0,0)$
	$\rightarrow (0,0,0,0,0,0,0,1,0,0)$
	$\rightarrow (0,0,1,0,0,0,0,0,0,0) \rightarrow (0,0,0,0,1,0,0,0,0,0)$
x = 9	$\rightarrow (0,0,0,1,0,0,0,0,0,0)$

 $x \in [0,9]$ and $y \in [0,9]$ only integers

Transform data and queries to equality-vector form.

 $x \in [0,9]$ and $y \in [0,9]$ only integers

Dictionary	Link Lists
 	$\rightarrow (0,0,0,1,0,0,0,0,0)$
	$\rightarrow (0,0,0,0,0,0,1,0,0)$
	$ \rightarrow (0,0,1,0,0,0,0,0,0,0) \rightarrow (0,0,0,0,1,0,0,0,0,0) $
x = 9	$\rightarrow (0,0,0,1,0,0,0,0,0)$

Possible Points inside Query Q

$$(5,1), (5,2), (5,3), (5,4)$$

 $(6,1), (6,2)$
 $(7,1)$

Transform data and queries to equality-vector form.

 $x \in [0,9]$ and $y \in [0,9]$ only integers

$$\begin{array}{c|c} \textbf{Dictionary} & \textbf{Link Lists} \\ x = 1 & \rightarrow (0,0,0,1,0,0,0,0,0,0) \\ x = 4 & \rightarrow (0,0,0,0,0,0,0,1,0,0) \\ x = 6 & \rightarrow (0,0,1,0,0,0,0,0,0,0) \rightarrow (0,0,0,0,1,0,0,0,0,0) \\ x = 9 & \rightarrow (0,0,0,1,0,0,0,0,0,0) \end{array}$$

x-subqueries y-subqueries
$$\begin{array}{c} x = 5 \\ x = 6 \\ x = 7 \end{array} \quad \begin{array}{c} (1,0,0,0,0,1,1,1,1,1) \\ (1,0,0,1,1,1,1,1,1,1) \\ (1,0,1,1,1,1,1,1,1,1) \end{array}$$

Search with equality-vector form.

 $x \in [0,9]$ and $y \in [0,9]$ only integers

- 1. Equality checking
- 2. Evaluate an inner product

```
\begin{array}{l} x=5 \text{ false} \\ x=6 \text{ true} \\ <(0,0,1,0,0,0,0,0,0,0), (1,0,0,1,1,1,1,1,1,1)>=0 \\ <(0,0,0,0,1,0,0,0,0), (1,0,0,1,1,1,1,1,1,1)>=1\neq 0 \\ x=7 \text{ false} \end{array}
```

Search with enhanced equality-vector form.

Client give a search token $tk_Q = \{\{[x_1], [\overrightarrow{v_1}]\}, \{[x_2], [\overrightarrow{v_2}]\}\}$

Server mismatch it as $tk_{Q'} = \{\{[x_1], [\overrightarrow{v_2}]\}, \{[x_2], [\overrightarrow{v_1}]\}\}$

Search with enhanced equality-vector form.

Client give a search token $tk_Q = \{\{[x_1], [\overrightarrow{v_1}]\}, \{[x_2], [\overrightarrow{v_2}]\}\}$

Server mismatch it as $tk_{Q'} = \{\{[x_1], [\overrightarrow{v_2}]\}, \{[x_2], [\overrightarrow{v_1}]\}\}$

For data point (6, 2), its y-value in enhanced vector form is $\overrightarrow{u_e} = (0,0,H(6),0,0,0,0,0,0,0,-1)$

For x-subquery x=6 and its y-subquery $y \in [1,2]$, its y-subquery is $\overrightarrow{v_e} = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, H(6))$

IV. Evaluation

A real-world spatial dataset contains 49870 tuples.

Main parameters:

- Vector length m
- First-level query size q_1

IV. Evaluation

Main parameters:

- Vector length m
- First-level query size q_1

Impact of m on Average Search Time (s)

$ Q = m \times q_1$	m	Time
1×10^6	1,000 100 10	13.67 1.50 0.25

IV. Evaluation

Comparison among schemes

	Search Time (s)	Complexity	Token Size	Update
GR [8]	1,753	linear	0.96 KB	No
WLW [11]	1,583	logarithmic	20 KB	No
FastGeo	13.67	sublinear	132 KB	Yes

V. Conclusion

Major contributions of this paper:

- 1. FastGeo: a geometric range query scheme for encrypted spatial data is designed.
- 2. FastGeo supports not only efficient query for encrypted spatial data, but also update.
- 3. FastGeo is at least 100 times faster than previous schemes.