Topic 2: Logarithmic and Exponential Functions

Objectives

- understand the relationship between logarithms and indices, and use the laws of logarithms (excluding change of base);
- understand the definition and properties of e^x and ln x, including their relationship as inverse functions and their graphs;
- use logarithms to solve equations of the form $a^x = b$, and similar inequalities;
- use logarithms to transform a given relationship to linear form, and hence determine unknown constants by considering the gradient and/or intercept.

Logarithmic Functions

General form:
$$y = log_a x$$
 where $a > 0$.

Definitions

 $\log x$ means $\log_{10} x$. All \log_a rules apply for \log . When a logarithm is written without a base it means common logarithm.

Rules:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a x^n = n \log_a x$$

$$\log_a a = 1$$

Change of base:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

Additional rules:

$$\log_a 1 = 0$$

$$\log_a\left(\frac{1}{a}\right) = -1$$

Careful!!!

$$1.\log(x+y)\neq$$

2.
$$\log(x-y) \neq$$

Graph of $y = log_a x$ where a > 0

- 1. For any base, the *x*-intercept is 1. Why?
- 2. Which numbers are those that have negative logarithms?
- 3. The function is defined only for positive values of x. The **domain** is x > 0.
- 4. The <u>range</u> of the function is all real numbers, $f(x) \in R$.

Exercise 1: Logarithmic Functions

Question 1

Express each of the following in the form $\log_a[f(x)]$

(a)
$$2 \log_a x$$

(b)
$$\log_a x + \log_a (x + 3)$$

(c)
$$\log_a(x + 1) - \log_a 2$$

(d)
$$\log_a(x^2 - 1) - \log_a(x + 1)$$

(e)
$$2 \log_a x - \log_a x(x+1)$$

(f)
$$3 \log_a x + \log_a (x+1)$$

(g)
$$4 \log_a x - \log_a (x^2 + x^3)$$

(h)
$$\frac{5}{2} \log_a x + \log_a (x + 1) - \log_a \sqrt{x}$$

- 2. Solve $log_b(x^2) = log_b(2x 1)$.
- 3. Solve $2log_b(x) = log_b(4) + log_b(x 1)$.
- 4. Solve the equation

a)
$$\lg (2x+5) = 1 + \lg x$$

b)
$$\log_4(3x+10) - \log_4(x-1) = 1$$

Answers -Exercise 1 Question 1

(a)
$$\log_u x^2$$

(b)
$$\log_a [x(x + 3)]$$

(a)
$$\log_a x^2$$
 (b) $\log_a [x(x+3)]$ (c) $\log_a \left(\frac{x+1}{2}\right)$ (d) $\log_a (x-1)$

(d)
$$\log_a (x-1)$$

(e)
$$\log_a \left(\frac{x}{x+1} \right)$$
 (f) $\log_a \left[x^3(x+1) \right]$ (g) $\log_a \left(\frac{x^2}{1+x} \right)$ (h) $\log_a \left[x^2(x+1) \right]$

(f)
$$\log_u [x^3(x+1)]$$

(g)
$$\log_a \left(\frac{x^2}{1+x} \right)$$

(h)
$$\log_a [x^2(x+1)]$$

Q2.
$$x = 1$$

Q3.
$$x = 2$$

Q3.
$$x = 2$$
 Q4. a) $x = 5/8$, b) $x = 14$

<u>Logarithm base *e* – Natural logarithm</u>

$$\lg x = \log x$$

means log_{10} - common logarithm

$$\ln x = \log_e x$$

means log_e – natural logarithm

The value of $e \approx 2.718281828...$

Rules:

1.
$$\ln xy =$$

$$2. \ln x/y =$$

3.
$$\ln x^m =$$

Additional rules:

$$ln e =$$

Graph of $y = log_e x = ln x$

Exercise 2: Natural Logarithm

Question 1

Sketch the graphs of the following functions giving in each case the coordinates of the points where it crosses the *x*-axis.

(a)
$$y = \ln(x + 1)$$

(b)
$$y = 1 + \ln x$$

(c)
$$y = |\ln x|$$

(d)
$$y = 1 - \ln x$$

(e)
$$y = |1 - \ln x|$$

(f)
$$y = 1 - \ln(x + 2)$$

Question 2

Given that $\ln 5 = 1.6$ and $\ln 11 = 2.4$ find the values of:

- (a) ln 625
- (b) ln 55
- (c) $\ln (2.2)$
- (d) ln 275

- (e) ln (0·2)
- (f) $\ln (0.04)$
- (g) log_511

3. It is given that $\ln a = x$ and $\ln b = y$. Express $\ln \left(\frac{a^2 b}{e} \right)$ in terms of x and y.

- 4. Write $\ln x^3 + \ln xy \ln y^2$ as a single term.
- 5. Solve the following simultaneous equations.

$$\ln 6 + \ln(x-3) = 2\ln y$$
 and $2y - x = 3$

Answers - Exercise 2

Question 2

(c)
$$0.8$$

(d)
$$5.6$$

(e)
$$-1.6$$

(b) 4 (c)
$$0.8$$
 (d) 5.6 (e) -1.6 (f) -3.2 (g) 1.5

(g)
$$1.5$$

Q3.
$$2x + y - 1$$

04.
$$\ln (x^4/v)$$

Q4.
$$\ln(x^4/y)$$
 Q5. $x = 9$, $y = 6$

Exponential Functions

Previously, you have dealt with such functions as

$$f(x) = x^2$$
,

where the variable *x* was the base and the number 2 was the power.

In the case of exponentials, however, you will be dealing with functions such as

$$g(x) = 2^x$$
,

where the base is the fixed number, and the power is the variable.

Rules:

$$a^{m} \times a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} \quad (a \neq 0)$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{0} = 1 \qquad (a \neq 0)$$

$$a^{-n} = \frac{1}{a^{n}} \qquad (a \neq 0)$$

Graph of $y = a^x$, a > 0

- 1. For a > 0, the y-intercept is 1. Why?
- 2. The function is defined for real numbers of x. The **domain** is $x \in \mathbb{R}$.
- 3. The **range** of the function is defined only for positive values of f(x), f(x) > 0.

The Relationship between $y = a^x$ and $y = \log_a x$

$$\int_{\text{base}}^{\log} a^b = c \Leftrightarrow \log_a c = b$$

Note:

The graphs below are $f(x) = \ln x$ and $f^{-1}(x) = e^x$. What is the relationship between this two functions?

Exercise 3: Exponential Functions Question 1

Sketch the graphs of the following functions giving in each case the coordinates of the point where it crosses the y-axis.

(a)
$$y = e^x - 3$$

(b)
$$y = e^{-x} + 1$$

(c)
$$y = 2 - e^x$$

(d)
$$y = -e^{-x}$$

(e)
$$y = 3e^x$$

(f)
$$y = e^{-x} - 1$$

(g)
$$y = 1 (e^{x})-1$$

(h)
$$y = |1 - e^{-x}|$$

(i)
$$y = |e^{-x} - 3|$$
 (j) $y = e^{|x|}$

(i)
$$v = e^{|x|}$$

a)
$$5^{x+1} = 625$$

b)
$$2^{x-5} = 32$$

c)
$$\log_5(2x+3) = 3$$

d)
$$\ln (5x - 1) = \ln (2x + 8)$$
.

e)
$$\ln (1 + x) - \ln (1 - x) = 1$$
.

$$10^{3x-1} = 2^{2x+1}$$

- 4. Solve the equation ln(5-x) = ln5 lnx giving your answers to 3 significant figures.
- 5. Solve for *x* the equation $e^{2x} e^x = 12$.
- 6. Given the simultaneous equations $2^x = 3^y$, x + y = 1. Show that $x = \frac{\ln 3}{\ln 6}$.
- 7. Given that $f(x) = 3x^3 4x^2 5x + 2$, show that (x 2) is a factor of f(x). Express f(x) as a product of three linear factors. Hence, solve for x, the equation $f(x) = 3e^{3x} - 4e^{2x} - 5e^x + 2 = 0$.
- 8. Find x and y given that $e^x + 3e^y = 3$ and $e^{2x} 9e^{2y} = 6$ expressing each answer as a logarithm to base e.

- 9. By means of the substitution $y = 8^x$, or otherwise, find the exact values of x which satisfy the equation $64^x 5(8^x) + 4 = 0$.
- 10. Solve the equation $ln(2 + e^{-x}) = 2$, giving your answer correct to 2 decimal places.
- 11. Solve, correct to 3 significant figures, the equation $e^x + e^{2x} = e^{3x}$.
- 12. Solve the equation $e^{\ln x} + \ln e^x = 8$.
- 13. If $5^x.25^{2y} = 1$ and $3^{5x}.9^y = \frac{1}{9}$, calculate the value of *x* and *y*.
- 14. Use the substitution $y = 2^x$ to solve for x the equation $2^{2x+1} 2^{x+1} + 1 = 2^x$.
- 15. Find the value of x for which $2^{3x+1} = 3^{x+2}$, giving three significant figures in your answer.

Question 16

Using the substitution $u = 3^x$, or otherwise, solve, correct to 3 significant figures, the equation $3^x = 2 + 3^{-x}$.

Answers - Exercise 3

THIS WOLD BACKERS B	
2.	a) $x = 3$ b) $x = 10$ c) $x = 61$
	d) $x = 3$ e) $x = (e-1) / (e+1)$
3.	$x = 1 + \log 2$
	3 – 2 log 2
4.	1.38 and 3.62
5.	1.39
7.	$(x-2)(3x-1)(x+1)$, $\ln 2$, $-\ln 3$
8.	
9.	x = 0 or 2/3
10.	-1.68
11.	0.481
12.	4
13.	- 4/9 , 1/9
14.	-1,0
15.	1.53
16.	0.804

Exponential Functions: Conversion to Linear Functions

$$y = ax^b$$
 Linear equation

Exercise 4 - Conversion to Linear Functions

1. Two variable quantities x and y are related by the equation , $y = ax^b$ where a and b are constants. When a graph is plotted showing values of $\ln y$ on the vertical axis and values of $\ln x$ on the horizontal axis, the points lie on a straight line having gradient 1.8 and crossing the vertical axis at the point (0,4.1). Find the values of a and b.

Two variable quantities x and y are related by the equation $y = Ax^n$, where A and n are constants. The diagram shows the result of plotting $\ln y$ against $\ln x$ for four pairs of values of x and y. Use the diagram to estimate the values of A and n.

3. The figure below shows the graph of $lg\ y$ against $lg\ x$, where $y=ax^b$. Find the values of a and b.

Question 4

The variables x and y satisfy the equation $y^3 = Ae^{2x}$, where A is a constant. The graph of ln y against x is a straight line.

(i) Find the gradient of this line.

[2]

(ii) Given that the line intersects the axis of $\ln y$ at the point where $\ln y = 0.5$, find the value of A correct to 2 decimal places. [2]