

Design of Embedded Hardware and Firmware Edge Detection

Andrea Guerrieri HES-SO//Genève

andrea.guerrieri@hesge.ch

We need real-time edge-detection on a live video stream

How to approach the problem??

- Real-time?
- Edge-detection?
- Video stream?

et d'architecture de Genève

Real-Time

Definition:

"A system where the response is time-predictable in respect with a determined deadline"

et d'architecture de Genève

Edge-Detection

Definition:

"An image filter, with the aim to extract boundaries of objects in images"

Video Stream

Definition:

"A video flow, where the data are continuously delivered from the source to the sink"

Implementation??

Solution Space

We need to add some constraints!

et d'architecture de Genève

Edge detection

We need to adapt to our problem

Haute école du paysage, d'ingénierie et d'architecture de Genève

Edge detection

1. RGB to Grayscale

2. Sobel filter

3. Threshold

RGB to Grayscale

RGB

Greyscale

Each pixel is composed by RED GREEN BLUE samples

Each pixel is a single sample representing only the intensity of light

How to transform it?

RGB to Grayscale

$$grayscale = \frac{Red + Green + Blue}{3}$$

RGB to Grayscale

$$grayscale = \frac{Red + Green + Blue}{3}$$

Well...is a bit more complex than this Depending on the standard (ITU-R BT.709/ITU-R BT.2100), the luma component has different coefficient. In our case ITU-R Rec.601

 $grayscale = 0.3 \cdot Red + 0.59 \cdot Green + 0.11 \cdot Blue$

Computing the gradient! For each pixel of the image, the result of the Sobel–Feldman operator represent the gradient vector or the norm of this vector.

et d'architecture de Genève

The gradient of an image is a vector of its partial derivatives

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} \end{bmatrix}$$

where $\frac{\partial f}{\partial x}$ is the gradient in x where $\frac{\partial f}{\partial x}$ is the gradient in y

The gradient direction

$$\theta = \tan^{-1} \begin{bmatrix} G_{\chi} \\ G_{\gamma} \end{bmatrix}$$

The gradient magnitude

$$M = \sqrt{G_x^2 + G_y^2}$$

The derivative can be approximated using the finite differences. Using the central difference, the computation is obtained with the convolution of the image for 1-dimensional filter

$$\frac{\partial f}{\partial x} = \begin{bmatrix} -1\\0\\+1 \end{bmatrix} * I$$

The Sobel filter uses two 3x3 kernels to calculate the approximations of the derivatives, one for the horizontal and one for the vertical

$$S_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = G_{x} = S_{x} * I$$

$$S_y = \begin{bmatrix} -1 & -2 & +1 \\ 0 & 0 & 0 \\ +1 & 2 & +1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = G_y = S_y * I$$

The Sobel filter uses two 3x3 kernels to calculate the approximations of the derivatives, one for the horizontal and one for the vertical

$$S_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = G_{\chi} = S_{\chi} * I$$

$$S_y = \begin{bmatrix} -1 & -2 & +1 \\ 0 & 0 & 0 \\ +1 & 2 & +1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = G_y = S_y * I$$

* Convolution??

Convolution is a mathematical operation which output is the shape relation between the functions arguments

Definition

$$f * g(t) \triangleq \int_{-\infty}^{+\infty} f(\tau) \cdot g(t - \tau) d\tau$$

Convolution is a mathematical operation which output is the shape relation between the functions arguments

Definition

$$f * g(t) \triangleq \int_{-\infty}^{+\infty} f(\tau) \cdot g(t - \tau) d\tau$$

Discrete approximation

$$f * g[n] \triangleq \sum_{m=-\infty}^{m=+\infty} f[m] \cdot g[n-m]$$

The gradient computation in discrete domain (Sobel)

$$\frac{\partial f}{\partial x} = G_{x} \rightarrow I[i,j] = \sum_{m=0}^{m=+2} \sum_{n=0}^{m=+2} I[n,m] \cdot S_{x}[n,m]$$

$$\frac{\partial f}{\partial y} = G_y \rightarrow I[i,j] = \sum_{m=0}^{m=+2} \sum_{n=0}^{n=+2} I[n,m] \cdot S_y[n,m]$$

Threshold

Apply a high-pass filter to the output results

$$I = \begin{cases} 0, \ I < Threshold \\ I \ I \ge Threshold \end{cases}$$

et d'architecture de Genève

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Sobel X

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

0

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

_	_	_	_	_		_		
Х	Х	Х	Х	Х	Х	Х	Х	X
Х								Х
Х								Х
Х								Х
Х								Х
Х								Х
Х								Х
Х								Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

0

*

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

Х	Х	Х	Х	Х	Х	Х	X	Χ
Х	0							Х
Х								Х
X								Х
Χ								Χ
Х								Χ
Χ								Х
X								Χ
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

	Х	Х	Х	Х	Х	Х	Х	Х	Χ
	Х	0	0						Х
	Х								Х
	Х								Х
=	Х								Х
	Х								Х
	Х								Х
	Х								Х
	Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

	_	_	_	_				
Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	10							Х
Х								Х
Х								Х
Х								Х
Х								Х
Х								Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	10	10	10	10	0	0	0	
0	0	10	10	10	10	0	0	0	*
0	0	10	10	10	10	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Filtered

Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	10	10						Х
Х								Х
Х								Х
Х								Х
Х								Х
Х								Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	10	10	10	10	0	0	0	
0	0	10	10	10	10	0	0	0	*
0	0	10	10	10	10	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Filtered

									_
	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Х	0	0	0	0	0	0	0	Х
	Х	10	10	0	0	-10	-10	0	Х
	Х	30							Х
-	Х								Х
	Х								Х
	Х								Х
	Х								Х
	Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	40	40	0	0	-40	-40	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	40	40	0	0	-40	-40	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

0

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

	X	Х	Х	Х	Х	Х	Х	Х	Х
	Х	0	0	0	0	0	0	0	Х
	Х	10	30	40	40	30	10	0	Х
	Х	10	30	40	40	30	10	0	Х
=	Х	0	0	0	0	0	0	0	Х
	Х	-10	-30	-40	-40	-30	-10	0	Х
	Х	-10	-30	-40	-40	-30	-10	0	Х
	Х	0	0	0	0	0	0	0	Х
	Х	Х	Х	Х	Х	Х	Х	Х	Х

0

-2 0 2	0 1	1	-1
	0 2	2	-2
-1 0 1	0 1	1	-1

 S_{x}

-1	-2	-1
0	0	0
1	2	1

 S_y

 S_{x}

Χ	Х	Х	X	Х	Х	Х	X	Х
X	0	0	0	0	0	0	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	40	40	0	0	-40	-40	0	Х
Х	30	30	0	0	-30	-30	0	Х
Х	10	10	0	0	-10	-10	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

 S_y

_									
	X	Х	X	Х	Х	Х	X	Х	Х
	Χ	0	0	0	0	0	0	0	Х
	X	10	30	40	40	30	10	0	Х
	Χ	10	30	40	40	30	10	0	Х
	Χ	0	0	0	0	0	0	0	Х
	Χ	-10	-30	-40	-40	-30	-10	0	Х
	Χ	-10	-30	-40	-40	-30	-10	0	Х
	Х	0	0	0	0	0	0	0	Х
	X	Х	Х	Х	Х	Х	Х	Х	Х

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

$$\sqrt{S_x^2 + S_y^2}$$

Filtered

	_	_						_
Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	14	32	40	40	32	14	0	Х
Х	32	42	40	40	42	32	0	Х
Х	40	40	0	0	40	40	0	Х
Х	32	42	40	40	42	32	0	Х
Х	14	32	40	40	32	14	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

$\sqrt{S_x^2 + S_y^2}$

$$|S_x| + |S_y|$$

Filtered

	_	_	_	_	_	_	_	_
Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	20	40	40	40	40	20	0	Х
Х	40	60	40	40	60	40	0	Х
Х	40	40	0	0	40	40	0	Х
Х	40	60	40	40	60	40	0	Х
Х	20	40	40	40	40	20	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

Threshold: 50

 $|S_x| + |S_y|$

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

Threshold: 30

 $|S_x| + |S_y|$

How put into an embedded target?

(First part)

- Traditional approach:
 - Constant HW
 - > SW adapts

- Traditional approach:
 - ➤ Constant HW
 - > (Moore's law)
 - > SW adapts

et d'architecture de Genève

- Traditional approach:
 - ➤ Constant HW
 - > (Moore's law)
 - > SW adapts
 - > (Limited by HW)

et d'architecture de Genève

- Traditional approach:
 - Constant HW
 - > (Moore's law)
 - > SW adapts
 - > (Limited by HW)

VS.

- Modern approach:
 - > HW+SW adapt

- Traditional approach:
 - Constant HW
 - (Moore's law)
 - > SW adapts
 - ➤ (Limited by HW)

VS.

- Modern approach:
 - >HW+SW adapt
 - > (Flexible HW: FPGA)

et d'architecture de Genève

- Traditional approach:
 - ➤ Constant HW
 - > (Moore's law)
 - > SW adapts
 - ➤ (Limited by HW)

VS.

- Modern approach:
 - >HW+SW adapt
 - ➤ (Flexible HW: FPGA)
 - >HW+SW codesign

- Traditional approach:
 - ➤ Constant HW
 - > (Moore's law)
 - ➤ SW adapts
 - ➤ (Limited by HW)

VS.

- Modern approach:
 - >HW+SW adapt
 - ➤ (Flexible HW: FPGA)
 - >HW+SW codesign
 - (Tasks partitioning)

et d'architecture de Genève

How to partition the system?

Power consumption

72

Haute école du paysage, d'ingénierie et d'architecture de Genève

Haute école du paysage, d'ingénierie et d'architecture de Genève

Function	Cycles/image	Cycles/pixel
conv_grayscale	127336549	~648
sobel_x	729624798	~3711
sobel_y	729677739	~3711
sobel_threshold	102849150	~523
TOTAL	1689488236	8593

et d'architecture de Genève

Function	Cycles/image	Cycles/pixel
conv_grayscale	127336549	~648
sobel_x	729624798	~3711
sobel_y	729677739	~3711
sobel_threshold	102849150	~523
TOTAL	1689488236	8593
	Camera: • RGB565 • 512x384 • 5-15 fps	VS. 17 cycles/pixel (~505x improvement)

et d'architecture de Genève

Problem specifications

We need real-time edge-detection on a live video stream

Backup

Function	Cycles/image	Cycles/pixel
conv_grayscale	50845746	~259
sobel_x	161582796	~822
sobel_y	161976127	~824
sobel_threshold	32185548	~164
TOTAL	406590217	2068

Function	Cycles/image	Cycles/pixel
conv_grayscale	50845746	~259
sobel_x	161582796	~822
sobel_y	161976127	~824
sobel_threshold	32185548	~164
TOTAL	406590217	2068
	Camera: • RGB565 • 512x384 • 5-15 fps	VS. 17 cycles/pixel (~122x improvement)

et d'architecture de Genève

Sobel filter

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

	_		_	_	_	_	_	_
Х	Х	Х	Х	Х	Х	Х	Х	Х
Х	0	0	0	0	0	0	0	Х
Х	-10	-10	0	0	10	10	0	Х
Х	-20	-20	0	0	20	20	0	Х
Х	-30	-30	0	0	30	30	0	Х
Х	-20	-20	0	0	20	20	0	Х
Х	-10	-10	0	0	10	10	0	Х
Х	0	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

*

0

Simple X

-1

Sobel filter

Original

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	10	10	10	10	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filtered

		_	_	_	_				
	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Х	0	0	0	0	0	0	0	Х
	Х	-10	-20	-30	-30	-20	-10	0	Х
	Х	-10	-20	-30	-30	-20	-10	0	Х
=	Х	0	0	0	0	0	0	0	Х
	Х	10	20	30	30	20	10	0	Х
	Х	10	20	30	30	20	10	0	Х
	Х	0	0	0	0	0	0	0	Х
	Х	Х	Х	Х	Х	Х	Х	Х	Х

0

-1

-1

Simple Y

*