

Fig. 1A

	10*	20*	30*	40*	50*	60*
BTHKURHD flsynbt.fin bssyn	ATGGATAACAATCCGAACATCAATGAATGCATTCTTATAATTGTTAACGTAACCCCTGAAC.....C..C.....C..G.....C..C..C..C..CC.G..C.....C..GC.....C..C.....C..G.....C..C..C..C..CC.G..C.....C..G					
	70*	80*	90*	100*	110*	120*
BTHKURHD flsynbt.fin bssyn	GTAGAAGTATTAGGTGGAGAAGAATAGAAACTGGTTACACCCCAATCGATATTCCTTG ..G..G..GC..G..C..C..GC..C..C..G..C..C.....C.....C..CAG.C.. ..G..G..GC..G..C..C..GC..C..C..G..C..C.....C.....C..CAG.C..					
	130*	140*	150*	160*	170*	180*
BTHKURHD flsynbt.fin bssyn	TCGCTAACGCAATTCTTTGAGTGAATTGTTCCCGGTGCTGGATTGTGTTAGGACTA AGC..G..C..G..C..GC.....C..G..C..G.....C..C..C..C..C..G..C..G AGC..G..C..G..C..GC.....C..G..C..G.....C..C..C..C..C..G..C..G					
	190*	200*	210*	220*	230*	240*
BTHKURHD flsynbt.fin bssyn	GTTGATATAATATGGGAATTGGTCCCTCTCAATGGGACGCATTCTGTACAAATT ..G..C..C..C.....C..C..C..C..AGC..G.....C..C..G..G..C.. ..G..C..C..C.....C..C..C..C..AGC..G.....C..C..G..G..G..C					
	250*	260*	270*	280*	290*	300*
BTHKURHD flsynbt.fin bssyn	GAACAGTTAACCAAGAATAGAAGAACATTGCGTAGGAACCAAGCCATTCTAGATTA ..G..C..G..C.....GC..C..C..G..G.....CC..C.....G.....CAGCC..CC..G ..G..C..G..C.....GC..C..C..G..G.....CC..C.....G.....CAGCC..CC..G					
	310*	320*	330*	340*	350*	360*
BTHKURHD flsynbt.fin bssyn	GAAGGACTAACGCAATTACCAAATTACGAGAACATTGAGAGTGGGAAGCAGAT ..G..C..G.....C..G..C.....C..G.....C..GAGC..CC..C.....G..C..C ..G..C..G.....C..G..C.....C..G.....C..GAGC..CC..C.....G..C..C					
	370*	380*	390*	400*	410*	420*
BTHKURHD flsynbt.fin bssyn	CCTACTAACCGCATTAAGAGAACAGAGATGCGTATTCAATTCAATGACATGAACAGTGCC ..C..C..C..C..CC..GC..C..G.....C..C..G.....C..C.....C..C.. ..C..C..C..C..CC..GC..C..G.....C..C..G.....C..C.....C..C..C					
	430*	440*	450*	460*	470*	480*
BTHKURHD flsynbt.fin bssyn	CTTACAACCGCTATTCTCTTTGCAGTTCAAATTATCAAGTTCTCTTTATCAGTA ..G..C.....C..C..G..C..C..G..G..G..C..C..G..G..C..G..C..G..C..G ..G..C.....C..C..C..G..C..C..G..G..G..C..C..G..G..C..G..C..G..G					
	490*	500*	510*	520*	530*	540*
BTHKURHD flsynbt.fin bssyn	TATGTTCAAGCTGCAAATTACATTATCAGTTTGAGAGATGTTCACTGTTGGACAA ..C..G..G..C..C..CC..G..CC..GAGC..GC..C..C..C..CAGC.....C..C..G ..C..G..G..C..C..CC..G..CC..GAGC..GC..C..C..C..CAGC.....C..C..G					
	550*	560*	570*	580*	590*	600*
BTHKURHD flsynbt.fin bssyn	AGGTGGGATTGATGCCGCGACTATCAATAGTCGTTATAATGATTAACTAGGCTTATT C..C.....C..C..C.....C..C.....C..C..C..C..C..CC..G..CC..C..G..C C..C.....C..C..C.....C..C.....C..C..C..C..C..CC..G..CC..C..G..C					

Fig. 1B

	610	620	630	640	650	660
BTHKURHD flsynbt.fin bssyn	GGCAACTATAAGATCATGCTGTACGCTGGTACAATAACGGGATTAGAGCGTGTATGGGAC..C..C..C..C..G.....C..C..CC.G.....C..G.....TC..C..C..C..C..G.....C..C..CC.G.....C..G.....T					
	670	680	690	700	710	720
BTHKURHD flsynbt.fin bssyn	CCGGATTCTAGAGATTGGATAAGATATAATCAATTAGAAGAGAATTAACACTAAGTGTA .C..CAGCC.C..C.....C..G..C..C..G..CC.CC.C..GC.G..C..G..C..G .C..CAGCC.C..C.....C..G..C..C..G..CC.CC.C..GC.G..C..G..C..G					
	730	740	750	760	770	780
BTHKURHD flsynbt.fin bssyn	TTAGATATCGTTCTCTATTCCGAACACTATGATACTAGAACGTTATCCAATTGAAACAGTT C.G..C.....GAGC..G..C.....C..C..CC.C..C..C..C..C..C..C..C..G C.G..C.....GAGC..G..C..C.....C..C..CC.C..C..C..C..C..C..G					
	790	800	810	820	830	840
BTHKURHD flsynbt.fin bssyn	TCCCAATTAAACAAGAGAAATTATACAAACCCAGTATTAGAAAATTGGATGGTAGTTT AG...GC.G..CC.C..G.....C..C.....C..GC.G..G..C..C..C..C..C..C AG...GC.G..CC.C..G.....C..C.....C..GC.G..G..C..C..C..C..C..C					
	850	860	870	880	890	900
BTHKURHD flsynbt.fin bssyn	CGAGGCTCGGCTCAGGGCATAGAAGGAAGTATTAGGAGTCACATTGATGGATATACTT .C..AGC..C.....C..G..C..C..CC.C..C..C..CC.....C..C..G .C..AGC..C.....C..G..C..C..CC.C..C..C..CC.....C..C..G					
	910	920	930	940	950	960
BTHKURHD flsynbt.fin bssyn	AACAGTATAACCATCTATACGGATGCTCATAGAGGAGAATATTGGTCAGGGCATCAAC..C.....C..C..C..CC..C..C..G..C..C..AGC..C..C..GC..C..C..C..C..CC..C..C..G..C..C..AGC..C..C..G					
	970	980	990	1000	1010	1020
BTHKURHD flsynbt.fin bssyn	ATAATGGCTTCTCCTGTAGGGTTTCGGGCCAGAATTCACTTTCCGCTATATGGAAC ..C.....CAGC..C..C..C..CAGC..C..C..G.....C..C..C..G..C..C..C ..C.....CAGC..C..C..C..CAGC..C..C..G.....C..C..C..G..C..C..C					
	1030	1040	1050	1060	1070	1080
BTHKURHD flsynbt.fin bssyn	ATGGGAAATGCAGCTCCACAAACACGTATTGTTGCTCAACTAGGTCAAGGGCGTGTATAGAC..C..T..A..T..G..G..C..C..G..A..G..G..C.....A.....CC..CC..C..T..A..T..G..G..G..C..C..G..A..G..G..C.....A.....CC..C					
	1090	1100	1110	1120	1130	1140
BTHKURHD flsynbt.fin bssyn	ACATTATCGTCCACTTATAGAAGACCTTTAATATAGGGATAAAATAATCAACAACTA ..CC..GAGCAG...CC..G..CC..TC.....C..C..C..C..C..C..G..G..G ..CC..GAGCAG...CC..G..CC..TC.....C..C..C..C..C..C..G..G..G					
	1150	1160	1170	1180	1190	1200
BTHKURHD flsynbt.fin bssyn	TCTGTTCTTGACGGGACAGAATTGCTTATGGAACCTCCTCAAATTGCCATCCGCTGTA AGC..G..G.....C..C..G..C..C..C..C..AG..AGC..CC.....C..G AGC..G..G.....C..C..G..C..C..C..AG..AGC..CC.....C..G					

Fig. 1C

Fig. 1D

	1800	1810	1820	1830	1840	1850
BTHKURHD	ATCGAATTGAATTGTTCCGGCAGAAGTAACCTTGAGGCAGAAATATGATTTAGAAAGAG					
flsynbt.fin	.C..C..C..G..C..C..G..G....C.....C..G..C..CC.G..G..G.					
bssyn	.C..C..C..G..C..G..C..G..G....C.....C..G..C..CC.G..G..G.					
	1860	1870	1880	1890	1900	1910
BTHKURHD	CACAAAAGGCCGTGAATGAGCTGTTACTTCTTCAATCAAATCGGGTTAAAAACAGATG					
flsynbt.fin	.T..G.....C.....C.....C..CAGCAG...C..G.....CC..G..G..C..C.					
bssyn	.T..G.....C.....C.....C..CAGCAG...C..G.....CC..G..G..C..C.					
	1920	1930	1940	1950	1960	1970
BTHKURHD	TGACGGATTATCATATTGATCAAGTATCCAATTAGTTGAGTGTTATCTGATGAATTTC					
flsynbt.finC..C..C..C..C.....G..GAG...CC..G..G.....CC..GAGC..C..G..C.					
bssynC..C..C..C..C.....					
	1980	1990	2000	2010	2020	2030
BTHKURHD	GTCTGGATGAAAAAAAAGAATTGTCCGAGAAAGTCAAACATGCGAAGCGACTTAGTGATG					
flsynbt.fin	.C.....C..G..G..G..GC..AG.....G..G..G..C..C.....C..G..C..C..					
bssyn	-----					
	2040	2050	2060	2070	2080	2090
BTHKURHD	AGCGGAATTACTTCAAGATCCAACTTAGAGGGATCAATAGACAACTAGACCGTGGCT					
flsynbt.finC..CC..G..G..G..C..C.....CC..C..C.....CC..C..G..G.....C..					
bssyn	-----					
	2100	2110	2120	2130	2140	2150
BTHKURHD	GGAGAGGAAGTACGGATATTACCATCCAAGGAGGCGATGACGTATTCAAAGAGAATTACG					
flsynbt.fin	..C..C..C..C..C..C.....G..C.....C.....G.....G.....C.....					
bssyn	-----					
	2160	2170	2180	2190	2200	2210
BTHKURHD	TTACGCTATTGGGTACCTTGATGAGTGCTATCCAACGTATTTATATCAAAAAATAGATG					
flsynbt.fin	.G..C..GC....C.....C..C.....C..C..C..CC..G..C..G..C..C..					
bssyn	-----					
	2220	2230	2240	2250	2260	2270
BTHKURHD	AGTCGAAATTAAAGCCTATAACCGTTACCAATTAGAGGGTATATCGAAGATAGTCAG					
flsynbt.fin	..AGC..GC..G..G.....C.....C.....GC..GC..C..C..C.....G..C..C..G..					
bssyn	-----					
	2280	2290	2300	2310	2320	2330
BTHKURHD	ACTTAGAAATCTATTAAATTCGCTACAATGCCAACACGAAACAGTAAATGTGCCAGGT					
flsynbt.fin	..C..G..G.....CC..G..C.....C.....G..G..C..G..C..C.....C..C..					
bssyn	-----					
	2340	2350	2360	2370	2380	2390
BTHKURHD	CGGGTTCCCTATGCCGCTTCAGCCCCAAGTCCAATCGAAAATGTGCCCATTC					
flsynbt.fin	.C..CAG..C..G.....C..GAGC.....C..C..C.....C..G..C..C.....C..CAG..					
bssyn	-----					

Fig. 1E

	2400 *	2410 *	2420 *	2430 *	2440 *	2450 *
BTHKURHD flsynbt.fin bssyn	ATCATTCTCCTGGACATTGATGTTGGATGTACAGACTTAATGAGGACTTAGGTGTAT .C..C...AG.C.....C..C..G..C..C..C..C.G..C.....C.G..C..G.					
	2460 *	2470 *	2480 *	2490 *	2500 *	2510 *
BTHKURHD flsynbt.fin bssyn	GGGTGATATTCAAGATTAAGACGCAAGATGCCATGCAAGACTAGGAAATCTAGAATTTCC.....C..G..C.....C..CC.C..G..C..C..G..G..C..					
	2520 *	2530 *	2540 *	2550 *	2560 *	2570 *
BTHKURHD flsynbt.fin bssyn	TCGAAGAGAAACCATTAGTAGGAGAACGACTAGCTCGTGTGAAAAGAGCGGAGAAAAAT .G..G.....G..CC.G..G..C..G..C..G..C..C.....GC.C..C.....G..G.					
	2580 *	2590 *	2600 *	2610 *	2620 *	2630 *
BTHKURHD flsynbt.fin bssyn	GGAGAGACAAACGTGAAAATTGGAATGGAAACAAATATTGTTATAAGAGGGCAAAG .C.C.....G..C..G..GC....G....G..C..C..C..G..C..G....C..G.					
	2640 *	2650 *	2660 *	2670 *	2680 *	2690 *
BTHKURHD flsynbt.fin bssyn	AATCTGTAGATGCTTATTGTAAACTCTCAATATGATAGATTACAAGCGGATACCAACA .GAGC..G..C..CC.G..C..G..AGC..G..C..CC.CC.G..G..C..C.....					
	2700 *	2710 *	2720 *	2730 *	2740 *	2750 *
BTHKURHD flsynbt.fin bssyn	TCGCGATGATTCATGCCAGATAAACCGCGTTCATAGCATTGAGAAGCTTATCTGCCTGC.....C..C..C..C..G.....G..C.....C..G..C..C.....C..					
	2760 *	2770 *	2780 *	2790 *	2800 *	2810 *
BTHKURHD flsynbt.fin bssyn	AGCTGTCTGTGATTCCGGGTGTCAATGCGGCTATTGAAAGAATTAGAAGGGCGTATTTAGC.....C..C..C..G..C..C..C..C..G..GC..G..G..C..C..C..					
	2820 *	2830 *	2840 *	2850 *	2860 *	2870 *
BTHKURHD flsynbt.fin bssyn	TCACTGCATTCTCCCTATATGATGCGAGAAATGTCATTAAAATGGTGATTTAATAATGC..C..AG...G..C..C..CC.C..C..G..C..C..C..C..C..C..C..C..					
	2880 *	2890 *	2900 *	2910 *	2920 *	2930 *
BTHKURHD flsynbt.fin bssyn	GCTTATCCTGCTGGAACGTGAAAGGGCATGTAGATGTAGAAGAACAAACACCACCGTT ..C.GAG.....G..C..C..G..C..G..G..G..G.....CA					
	2940 *	2950 *	2960 *	2970 *	2980 *	2990 *
BTHKURHD flsynbt.fin bssyn	CGGTCCCTGTTCCGGAATGGGAAGCAGAAGTGTACAAAGAAGTTCGTGTCTGTCCGG GC..G..G..G..G..C..G.....G..C..G..AGC..G..G..G..C..G..C..C..					

Fig. 1F

	3000	3010	3020	3030	3040	3050
BTHKURHD flsynbt.fin bssyn	GTCGTGGCTATATCCTCGTGTACAGCGTACAAGGAGGGATATGGAGAAGGTTGCGTAA .C..C.....C....G..C..G..C..C.....C..C..C..G..C....G. -----					
	3060	3070	3080	3090	3100	3110
BTHKURHD flsynbt.fin bssyn	CCATTCCATGAGATCGAGAACAAATACAGACGAACCTGAAGTTAGCAACTGTGAGAAGAGGC..C.....C..C.....G..C.....C..C.....C..G..G.... -----					
	3120	3130	3140	3150	3160	3170
BTHKURHD flsynbt.fin bssyn	AAGTATATCCAACACACGGTAACGTGTAATGATTATACTGCGACTCAAGAAGAATATG .G..G..C..C.....C..G..C..C..C..C..C..G..G..G..C.. -----					
	3180	3190	3200	3210	3220	3230
BTHKURHD flsynbt.fin bssyn	AGGGTACGTACACTTCTCGTAATCGAGGATATGACGGAGCCTATGAAAGCAATTCTCTGC..C.....CAGC..C..C..C..C.....C..G.....CAGCAGC. -----					
	3240	3250	3260	3270	3280	3290
BTHKURHD flsynbt.fin bssyn	TACCAGCTGATTATGCATCAGCCTATGAAGAAAAGCATATACAGATGGACGAAGAGACA .G..C..C..C..C..CAGC.....C..G..G..C..C..C..C..CC..C... -----					
	3300	3310	3320	3330	3340	3350
BTHKURHD flsynbt.fin bssyn	ATCCTTGTGAATCTAACAGAGGGATATGGGGATTACACACCACTACCAGCTGGCTATGTGA .C..C..C..GAGC..C.C..C..C..C.....C..C..G..C..C..C..C... -----					
	3360	3370	3380	3390	3400	3410
BTHKURHD flsynbt.fin bssyn	CAAAAGAATTAGAGTACTTCCCAGAAACCGATAAGGTATGGATTGAGATCGGAGAACGG .C..G..GC..G.....C..G.....C..G.....C.....C..G..C.. -----					
	3420	3430	3440	3450	3460	
BTHKURHD flsynbt.fin bssyn	AAGGAACATTACATCGTGGACAGCGTGGATTACTTCTTATGGAGGAATAA .G..C..C.....GC..G..G.....G..G.....TG..G -----					

Fig. 2A

	10*	20*	30*	40*	50*	60*
BTHKURHD bssyn	ATGGATAACAATCCGAACATCAATGAATGCATTCTTATAATTGTTAACCGCTGAAC.....C..C.....C..G.....C..C..C..C..CC.G..C.....C..G					
	70*	80*	90*	100*	110*	120*
BTHKURHD bssyn	GTAGAAGTATTAGGTGGAGAAAGAATAGAAAATGGTTACACCCCAATCGATATTCTTG ..G..G..GC.G..C..GC.C..C..G..C..C.....C.....C..CAG.C..					
	130*	140*	150*	160*	170*	180*
BTHKURHD bssyn	TCGCTAACGCAATTCTTTGAGTGAATTGTTCCCGGTGCTGGATTGTGTTAGGACTA AGC..G..C..G..C..GC....C..G..C..G.....C..C..C..C..C..G..C..G					
	190*	200*	210*	220*	230*	240*
BTHKURHD bssyn	GTTGATATAATGGGAATTGGTCCCTCTCAATGGGACGCATTCTGTACAAATT ..G..C..C..C.....C..C..C..C..AGC..G.....C..C..G..G..G..C					
	250*	260*	270*	280*	290*	300*
BTHKURHD bssyn	GAACAGTTAACCAAGAATAGAAGAACCGTAGGAAAGCCATTCTAGATT ..G..C..G..C.....GC.C..C..G..G.....CC.C.....G.....CAGCC..CC.G					
	310*	320*	330*	340*	350*	360*
BTHKURHD bssyn	GAAGGACTAACGAACTTTATCAAATTACGCAGAATCTTAGAGAGTGGGAAGCAGAT ..G..C..G.....C..G..C.....C..G..C..G.....C..G..C.....G..C..C					
	370*	380*	390*	400*	410*	420*
BTHKURHD bssyn	CCTACTAACCGCATTAAGAGAACAGAGATGCGTATTCAATGACATGAACAGTGCC ..C..C..C..C..CC.GC.C..G.....C..C..G.....C.....C.....C..C..C					
	430*	440*	450*	460*	470*	480*
BTHKURHD bssyn	CTTACAACCGCTATTCCTCTTTGCAGTTCAAATTATCAAGTTCTCTTTATCAGTA ..G..C.....C..C..G..C..C..G..G..C..C..G..G..C..G..C..GC.GAGC..G					
	490*	500*	510*	520*	530*	540*
BTHKURHD bssyn	TATGTTCAAGCTGCAAATTACATTATCAGTTTGAGAGATGTTCAGTGTGGACAA ..C..G..G..C..C..CC.G..CC.GAGC..GC..C..C..C..CAGC.....C..C..G					
	550*	560*	570*	580*	590*	600*
BTHKURHD bssyn	AGGTGGGGATTGATGCCGCGACTATCAATAGTCGTATAATGATTAACTAGGCTTATT C..C.....C..C..C.....C..C..C..C..C..CC.G..CC.C..G..C					
	610*	620*	630*	640*	650*	660*
BTHKURHD bssyn	GGCAACTATACAGATCATGCTGTACGCTGGTACAATACGGGATTAGAGCGTGTATGGGAC..C..C..C..C..G.....C..C..C..CC.G..G..C..G.....T					
	670*	680*	690*	700*	710*	720*
BTHKURHD bssyn	CCGGATTCTAGAGATTGGATAAGATATAATTAGAAGAGAATTAAACACTAAGTGA ..C..CAGCC..C..C.....C..G..C..C..G..CC..CC..C..GC..G..C..G..C..G					

Fig. 2B

	730*	740*	750*	760*	770*	780*
BTHKURHD bssyn	TTAGATATCGTTCTCTATTCCGAACATATGATAGTAGAACGTATCCAATTGAAACAGTT C.G..C.....GAGC..G..C..C.....C..C..CC.C..C..C..C..C..C..C..G					
	790*	800*	810*	820*	830*	840*
BTHKURHD bssyn	TCCCAATTACAAGAGAAATTATACAAACCCAGTATTAGAAAATTGGATGGTAGTTT AG...GC.G..CC.C..G....C..C....C..GC.G..G..C..C..C..C..C..C..C					
	850*	860*	870*	880*	890*	900*
BTHKURHD bssyn	CGAGGCTCGGCTCAGGGCATAGAAGGAAGTATTAGGAGTCACATTGATGGATATACTT .C...AGC..C.....C..G..C..C..CC.C..C..C..CC.....C..C..G					
	910*	920*	930*	940*	950*	960*
BTHKURHD bssyn	AACAGTATAACCATCTATACGGATGCTCATAGAGGAGAATATTATTGGTCAGGGCATCAA .C..C.....C..C..C..C..CC.C..C..G..C..C..AGC..C..C..G					
	970*	980*	990*	1000*	1010*	1020*
BTHKURHD bssyn	ATAATGGCTTCTCCTGTAGGGTTTCGGGCCAGAATTCACTTTCCGCTATATGGAACT .C.....CAGC..C..C..CAGC..C..C..G.....C..C..C..G..C..C..C..C					
	1030*	1040*	1050*	1060*	1070*	1080*
BTHKURHD bssyn	ATGGGAAATGCAGCTCCACAACACGTATTGTTGCTCAACTAGGTCAAGGGCGTGTATAGA .C..C..T..A..T..G..G..C..C..G..A..G..G..C.....A.....CC..C					
	1090*	1100*	1110*	1120*	1130*	1140*
BTHKURHD bssyn	ACATTATCGTCCACTTATATAGAACCTTTAATATAGGGATAAATAATCAACAACTA .CC..GAGCAG...CC..G..CC..TC.....C..C..C..C..C..C..G..G..G					
	1150*	1160*	1170*	1180*	1190*	1200*
BTHKURHD bssyn	TCTGTTCTTGACGGACAGAATTGCTATGAAACCTCTCAAATTGCCATCCGCTGTA AGC..G..G.....C..C..G..C..C..C..C..AG..AGC..CC.....CAG...C..G					
	1210*	1220*	1230*	1240*	1250*	1260*
BTHKURHD bssyn	TACAGAAAAGCGGAACGGTAGATCGCTGGATGAAATACCGCCACAGAATAACAAACGTG .C..C..G.....C..C..G..CAGC.....C..G..C..C..T.....C.....C					
	1270*	1280*	1290*	1300*	1310*	1320*
BTHKURHD bssyn	CCACCTAGGCAAGGATTAGTCATCGATTAAGCCATGTTCAATGTTCGTTCAAGGCTTT .C..A..G..C..C..C..C..TC..G.....C..GAGC.....C..CAGT.....C					
	1330*	1340*	1350*	1360*	1370*	1380*
BTHKURHD bssyn	AGTAATAGTAGTGTAAAGTATAAGAGCTCCTATGTTCTCTGGATACATCGTAGTGCT .C..C..C..C..G..C..C..CC..T..A.....AGC.....T..C..C.....C					
	1390*	1400*	1410*	1420*	1430*	
BTHKURHD bssyn	GAATTAAATAATATAATTCCCTCATCA--CAAATTACACAAATACCTTAACAAAATCTA .G..C..C..C..C..C..C..G..G..C..G..C..C..CC..G..C..GAGC.					

Fig. 2C

Fig. 3A

	10*	20*	30*	40*	50*	60*
syn1T.mze	ATGGACAACAACCCCAACATCAACGAGTCATCCCCTACAAC	GCTGAGCAACCCCGAG				
bssyn
synful.mod
	70*	80*	90*	100*	110*	120*
syn1T.mze	GTGGAGGTGCTGGCGGGCGAGCGCATCGAG	A	CCGGCTACACCCCCATCGACATCAGCCTG			
bssyn
synful.mod
	130*	140*	150*	160*	170*	180*
syn1T.mze	AGCCTGACCCAGTTCCCTGCTGAGCGAGTT	CGTGC	CCGGCGCCGGCTTCGTGCTGGGCCTG			
bssyn
synful.mod
	190*	200*	210*	220*	230*	240*
syn1T.mze	GTGGACATCATCTGGGCATCTCGGCC	CCAG	GGACGCCTTCCTGGTGAGATC			
bssyn
synful.mod
	250*	260*	270*	280*	290*	300*
syn1T.mze	GAGCAGCTGATCAACCAGCGCATCGAGGAG	T	TCGCCGCAACCAGGCCATCAGCCGCCTG			
bssyn
synful.mod
	310*	320*	330*	340*	350*	360*
syn1T.mze	GAGGGCCTGAGCAACCTGTAC	CAG	ATCTACGCCGAGAGCTCCCGGAGTGGGAGGCCGAC			
bssyn
synful.mod
	370*	380*	390*	400*	410*	420*
syn1T.mze	CCCACCAACCCGCCCTGCGCGAGGAGAT	CGC	CATCCAGTTAACGACATGAACAGCGCC			
bssyn
synful.mod
	430*	440*	450*	460*	470*	480*
syn1T.mze	CTGACCACCGCCATCCCCCTGTTGCCGTG	CAGA	ACTACCAGGTGCCCTGCTGAGCGTG			
bssyn
synful.mod
	490*	500*	510*	520*	530*	540*
syn1T.mze	TACGTGCAGGCCGCCAACCTGCAC	TGAGCGTGCTGCGCGACGTGAGCGT	GTTGGGCCAG			
bssyn
synful.mod
	550*	560*	570*	580*	590*	600*
syn1T.mze	CGCTGGGCTTCGACGCCGCCACCAT	AA	CAGCCGCTACAAACGACCTGACCCGCCTGATC			
bssyn
synful.mod

Fig. 3B

	610*	620*	630*	640*	650*	660*
syn1T.mze	GGCAACTACACCGACCACGCCGTGCGCTGGTACAACACCGGCCTGGAGCGCGTGTTGGGC					T
bssyn	T
synful.mod
	670*	680*	690*	700*	710*	720*
syn1T.mze	CCCGACAGCCGCGACTGGATCCGCTACAACCAGTCCGCCGAGCTGACCCCTGACCGTG					
bssyn	A.G.
synful.mod	A.G.
	730*	740*	750*	760*	770*	780*
syn1T.mze	CTGGACATCGTGAGCCTGTTCCCCAACTACGACAGCCGCACCTACCCCATCCGCACCGTG					
bssyn
synful.mod
	790*	800*	810*	820*	830*	840*
syn1T.mze	AGCCAGCTGACCCGCGAGATCTACACCAACCCCCGTGCTGGAGAACTTCGACGGCAGCTTC					
bssyn	T
synful.mod	T
	850*	860*	870*	880*	890*	900*
syn1T.mze	CGCGGCAGCGCCCAGGGCATCGAGGGCAGCATCCGCAGCCCCCACCTGATGGACATCCTG					
bssyn
synful.mod
	910*	920*	930*	940*	950*	960*
syn1T.mze	AACAGCATCACCCTACACCGACGCCACCGCGCGAGTACTACTGGAGCGGCCACCAAG					
bssyn
synful.mod
	970*	980*	990*	1000*	1010*	1020*
syn1T.mze	ATCATGGCCAGCCCCGTGGCTTCAGCGGCCCGAGTTCACCTCCCCCTGTACGGCACCC					
bssyn	C
synful.mod	C
	1030*	1040*	1050*	1060*	1070*	1080*
syn1T.mze	ATGGGCAACGCCGCCCGCAGCAGCGCATCGTGGCCAGCTGGCCAGGGCGTGACCGC					
bssyn	T.A.T.	A	A
synful.mod	T.A.T.	A	A
	1090*	1100*	1110*	1120*	1130*	1140*
syn1T.mze	ACCCCTGAGCAGCACCTGTACCGCCGCCCTAACATCGGCATCAACAACCAGCAGCTG					
bssyn	T.A.T.
synful.mod	T.A.T.
	1150*	1160*	1170*	1180*	1190*	1200*
syn1T.mze	AGCGTGCTGGACGGCACCGAGTTGCCCTACGGCACCCAGCAGCAACCTGCCAGGCCGTG					
bssyn
synful.mod

Fig. 3C

	1210*	1220*	1230*	1240*	1250*	1260*
syn1T.mze	TACCGCAAGAGCGGCACCGTGGACAGCCTGGACGAGATCCCCCCCCA	GAAACAACAACGTG				
bssyn	T
synful.mod	T
	1270*	1280*	1290*	1300*	1310*	1320*
syn1T.mze	CCCCCCCCGCCAGGGCTTCAGCCACCGCCTGAGCCACGTGAGCATGTTCCGCAGCGGCTTC					
bssyn	..A..T..A.....TT
synful.mod	..A..T..A.....TT
	1330*	1340*	1350*	1360*	1370*	1380*
syn1T.mze	AGCAACAGCAGCGTGAGCATCATCCGCCCGCCATGTTCAGCTGGATCCACCGCAGCGCC					
bssyn	T..A..T..TT..
synful.mod	T..A..T..TT..
	1390*	1400*	1410*	1420*	1430*	1440*
syn1T.mze	GAGTTCAACACATCATCCCCAGCAGCCAGATCACCCAGATCCCCCTGACCAAGAGCACC					
bssyn
synful.mod
	1450*	1460*	1470*	1480*	1490*	1500*
syn1T.mze	AACCTGGGCAGCGGCACCAGCGTGGTGAAGGGCCCGGCTTCACCGCGGCGACATCCTG					
bssyn
synful.mod
	1510*	1520*	1530*	1540*	1550*	1560*
syn1T.mze	CGCCGCACCAGCCCCGGCCAGATCAGCACCCCTGCGCGTGAACATCACCGCCCCCTGAGC					
bssyn
synful.mod
	1570*	1580*	1590*	1600*	1610*	1620*
syn1T.mze	CAGCGCTACCGCGTGCATCCGCTACGCCAGCACCAACCTGCAGTTCCACACCAGC					
bssyn
synful.mod
	1630*	1640*	1650*	1660*	1670*	1680*
syn1T.mze	ATCGACGGCCGCCCATCAACCAGGGCAACTTCAGCGCCACCATGAGCAGCGGCAGCAAC					
bssyn
synful.mod
	1690*	1700*	1710*	1720*	1730*	1740*
syn1T.mze	CTGCAGAGCGGCAGCTCCGACCGTGGCTTCACCAACCCCTTCAACTTCAGCAACGGC					
bssyn
synful.mod
	1750*	1760*	1770*	1780*	1790*	1800*
syn1T.mze	AGCAGCGTGTTCACCCCTGAGCGCCCACGTGTTAACAGCGGCAACGAGGTGTACATCGAC					
bssyn
synful.mod

Fig. 3D

	1810*	1820*	1830*	1840*	1850*	1860*
syn1T.mze	CGCATCGAGTCGTGCCGCCGAGGTGACCTCGAGGCCGAGTACGACCTGGAGCGCGCC					
bssyn	A.G..T	
synful.mod	A.G..T	
	1870*	1880*	1890*	1900*	1910*	1920*
syn1T.mze	CAGAAGGCCGTGAACGAGCTGTTACCAGCAGCAACCAGATCGGCCTGAAGACCGACGTG					
bssyn	
synful.mod	
	1930*	1940*	1950*	1960*	1970*	1980*
syn1T.mze	ACCGACTACCACATCGACCAGGTGAGCAACCTGGTGGAGTGCCCTGAGCGACGAGTTCTGC					
bssyn	T.....	
synful.mod	
	1990*	2000*	2010*	2020*	2030*	2040*
syn1T.mze	CTGGACGAGAAGAAGGAGCTGAGCGAGAAGGTGAAGCACGCCAAGCGCCTGAGCGACGAG					
bssyn	
synful.mod	
	2050*	2060*	2070*	2080*	2090*	2100*
syn1T.mze	CGCAACCTGCTGCAGGACCCCCAACTTCCCGGGCATCAACCGCCAGCTGGACCAGCGGGCTGG					
bssyn	
synful.mod	
	2110*	2120*	2130*	2140*	2150*	2160*
syn1T.mze	CGCGGCAGCACCGACATCACCATCCAGGGCGGCCAGCACGTGTTCAAGGAGAACTACGTG					
bssyn	
synful.mod	
	2170*	2180*	2190*	2200*	2210*	2220*
syn1T.mze	ACCCCTGCTGGGCACCTTCGACGAGTGCTACCCCACCTACCTGTACCAGAACGATCGACGAG					
bssyn	
synful.mod	
	2230*	2240*	2250*	2260*	2270*	2280*
syn1T.mze	AGCAAGCTGAAGGCCTACACCGCTACCAAGCTGCGCGCTACATCGAGGACAGCCAGGAC					
bssyn	
synful.mod	
	2290*	2300*	2310*	2320*	2330*	2340*
syn1T.mze	CTGGAGATCTACCTGATCCGCTACAACGCCAAGCACGAGACCGTGAACGTGCCGGCACC					
bssyn	
synful.mod	
	2350*	2360*	2370*	2380*	2390*	2400*
syn1T.mze	GGCAGCCTGTGGCCCCCTGAGCGCCCCAGCCCCATCGGCAAGTGCACGCCACCACAGCCAC					
bssyn	
synful.mod	

Fig. 3E

	2410	2420	2430	2440	2450	2460
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	CACTTCAGCCTGGACATCGACGTGGGCTGCACCGACCTGAACGAGGACCTGGGCGTGTGG					
	2470	2480	2490	2500	2510	2520
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	GTGATCTTCAAGATCAAGACCCAGGACGCCACGCCCGCTGGCAACCTGGAGTTCTG					
	2530	2540	2550	2560	2570	2580
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	GAGGAGAAGCCCCGGTGGCGAGGCCCTGGCCCGGTGAAGCGCGCCGAGAAGAAGTGG					
	2590	2600	2610	2620	2630	2640
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	CGCGACAAGCGCGAGAACGCTGGAGTGGAGAACATCGTGTACAAGGAGGCCAAGGAG					
	2650	2660	2670	2680	2690	2700
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	AGCGTGGACGCCCTGTTCGTGAACAGCCAGTACGACCGCCTGCAGGCCGACACCAACATC					
	2710	2720	2730	2740	2750	2760
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	GCCATGATCCACGCCGACAAGCGCGTGCACAGCATCCCGAGGCCCTACCTGCCGAG					
	2770	2780	2790	2800	2810	2820
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	CTGAGCGTGATCCCCGGCGTGAACGCCCATCTCGAGGGAGCTGGAGGGCCGCATCTC					
	2830	2840	2850	2860	2870	2880
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	ACCGCCTCAGCCTGTACGACGCCGCAACGTGATCAAGAACGGCGACTTCAACAAACGGC					
	2890	2900	2910	2920	2930	2940
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	CTGAGCTGCTGGAACGTGAAGGGCCACGTGGACGTGGAGGAGCAGAACACCACCGCAGC					
	2950	2960	2970	2980	2990	3000
syn1T.mze bssyn synful.mod	*	*	*	*	*	*
	GTGCTGGTGGTGCCTGAGTGGGAGGCCGAGGTGAGCCAGGAGGTGCGCGTGTGCCCGGC					

Fig. 4A

Fig. 4B

Fig. 4C

Fig. 4D

1800 * 1810 * 1820 * 1830 * 1840 *

BTHKURHD ATCGAATTGAATTGTTCCGGCAGAACGTAACCTTGAGGCAGAATA-----
PMONBT .C..T...G..G..T..C..T...C..T..G..-----
bssyn .C..C..C..G..C..G..C..G..G..C..C..G..CGACCTGGAGAGGG

BTHKURHD CTCAGAAGGCCGTGAACGAGCTGTTACCAGCAGCAACCAGATCGGCCTGAAGACCGACG
PMONBT -----
bssyn

----- T
BTHKURHD ----- C
PMONBT TGACCGACTACCACATCGATCAGGTGTAG
bssyn

Fig. 5A

	10*	20*	30*	40*	50*	60*
PMONBT bssyn	ATGGACAACAACCAAACATCAACGAATGCATTCCATACAACACTGCTTGAGTAACCCAGAAC.....G.....C..C.....C....C....C..G					
	70*	80*	90*	100*	110*	120*
PMONBT bssyn	GTTGAAGTACTTGGTGGAGAACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG ..G..G..G..G..C..C..G.....C..G.....C.....C.....AG.C..					
	130*	140*	150*	160*	170*	180*
PMONBT bssyn	TCCTTGACACAGTTCTGCTCAGCGAGTTCGTGCCAGGTGCTGGGTTCGTTCTCGGACTA AG.C....C....C.....G.....C..C..C..C....G..G..C..G					
	190*	200*	210*	220*	230*	240*
PMONBT bssyn	GTTGACATCATCTGGGGTATCTTGGTCCATCTCAATGGGATGCATT CCTGGTGC AA ATT ..G.....C.....C..C..C..CAGC..G.....C..C.....G..C					
	250*	260*	270*	280*	290*	300*
PMONBT bssyn	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTGCCAGGAACCAGGCCATCTCTAGGTTGC.....C..C.....G.....C..C.....AGCC..CC..					
	310*	320*	330*	340*	350*	360*
PMONBT bssyn	GAAGGATTGAGCAATCTCTACCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT ..G..CC.....C..G.....C..C.....C..C.....G.....C					
	370*	380*	390*	400*	410*	420*
PMONBT bssyn	CCTACTAACCCAGCTCTCCCGAGGAAATGCGTATTCAATTCAACGACATGAACAGCGCC ..C..C.....C..C..G.....G.....C..C..G.....					
	430*	440*	450*	460*	470*	480*
PMONBT bssyn	TTGACCACAGCTATCCCATTGTTCGCAGTCCAGA ACTACCAAGTTCCCTCTCTGTCCGTG C.....C..C.....CC.....C..G.....G..G..C..GC..AG....					
	490*	500*	510*	520*	530*	540*
PMONBT bssyn	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTCGAGACGTTAGCGTGTGTTGGCAAG..G..C..C..C..G.....G.....G..C.....C..C..G					
	550*	560*	570*	580*	590*	600*
PMONBT bssyn	AGGTGGGGATTGATGCTGCAACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT C..C.....C.....C..C..C.....C.....G..CC..C.....C					
	610*	620*	630*	640*	650*	660*
PMONBT bssyn	GGAAACTACACCGGACCA CGCTGTTGGTACAACACTGGCTTGGAGCGTGTCTGGGGT ..C.....C..G..C.....C..C.....C..G.....					
	670*	680*	690*	700*	710*	720*
PMONBT bssyn	CCTGATTCTAGAGATTGGATTAGATAACCAACAGTCAGGAGAGAATTGACCCTCACAGTT ..C..CAGCC..C..C..G.....C..CC..C..GC.....G..C..G					

Fig. 5B

Fig. 5C

	1450*	1460*	1470*	1480*	1490*	1500*
PMONBT bssyn	AACCTTGGATCTGGAACCTCTGCGTAAAGGACCAGGCTTCACAGGAGGTGATATTCTTG..CAGC..C..CAGC..G....G..C..C.....C..C..C..C..C..G					
	1510*	1520*	1530*	1540*	1550*	1560*
PMONBT bssyn	AGAAGAACCTCTGCCAGATTAGCACCCCTCAGAGTTAACATCACTGCACCACCTCT C..C..C..CAGC..C.....C.....GC..C..G.....C..C..C..GAGC					
	1570*	1580*	1590*	1600*	1610*	1620*
PMONBT bssyn	CAAAGATATCGTGTCAAGGATTCTACCGCATCTACCAACTTGCAATTCCACACCTCC ..GC..C..C..C..C..C..C.....CAGC.....C..C..G.....AG.					
	1630*	1640*	1650*	1660*	1670*	1680*
PMONBT bssyn	ATCGACGGAAGGCCTATCAATCAGGGTAACCTCTCCGCAACCATGTCAAGCGGCAGAACCC..C..C.....C.....AG..C.....AGC.....					
	1690*	1700*	1710*	1720*	1730*	1740*
PMONBT bssyn	TTGCAATCCGGCAGCTTCAGAACCGTCGGTTCACTACTCCTTCAACTTCTAACGGA C.....GAG.....C..C.....G..C.....C..C..C.....AGC.....C					
	1750*	1760*	1770*	1780*	1790*	1800*
PMONBT bssyn	TCAAGCGTTTCACCCCTAGCGCTCATGTGTTCAATTCTGGCAATGAAGTGTACATTGAC AGC.....G.....G..C..C.....CAGC.....C..G.....C..					
	1810*	1820*	1830*	1840*		
PMONBT bssyn	CGTATTGAGTTGTGCCTGCCGAAGTTACCTCGAGGCTGAGTA----- ..C..C.....C.....C.....G..G.....C.....CGACCTGGAGAGGGCT					
	-----C					
PMONBT bssyn	ACCGACTACCACATCGATCAGGTGTAG					

Fig. 6A

64 ATGGACCTGC TGCCCGACGC CCGCATCGAG GACAGCCTGT GCATCGCCGA GGGCAACAAC
MetAspLeu LeuProAsp AlaArgIleGlu AspSerLeu CysIleAla GluGlyAsnAsn
124 ATCGACCCCT TCGTGAGCGC CAGCACCGTG CAGACCGGCA TCAACATCGC CGGCCGCATC
IleAspPro PheValSer AlaSerThrVal GlnThrGly IleAsnIle AlaGlyArgIle
184 CTGGGCGTGC TGGGCGTGCC CTTCGCCGGC CAGCTGGCCA GCTTCTACAG CTTCCTGGTG
LeuGlyVal LeuGlyVal ProPheAlaGly GlnLeuAla SerPheTyr SerPheLeuVal
244 GGCGAGCTGT GGCCCCGCGG CCGCGACCAG TGGGAGATCT TCCTGGAGCA CGTGGAGCAG
GlyGluLeu TrpProArg GlyArgAspGln TrpGluIle PheLeuGlu HisValGluGln
304 CTGATCAACC AGCAGATCAC CGAGAACGCC CGAACACCCG CCCTGGCCCG CCTGCAGGGC
LeuIleAsn GlnGlnIle ThrGluAsnAla ArgAsnThr AlaLeuAla ArgLeuGlnGly
364 CTGGGCGACA GCTTCCGCGC CTACCAGCAG AGCCTGGAGG ACTGGCTGGA GAACCGCGAC
LeuGlyAsp SerPheArg AlaTyrGlnGln SerLeuGlu AspTrpLeu GluAsnArgAsp
424 GACGCCCGCA CCCGCAGCGT GCTGTACACC CAGTACATCG CCCTGGAGCT GGACTTCCTG
AspAlaArg ThrArgSer ValLeuTyrThr GlnTyrIle AlaLeuGlu LeuAspPheLeu
484 AACGCCATGC CCCTGTTCGC CATCCGCAAC CAGGAGGTGC CCCTGCTGAT GGTGTACGCC
AsnAlaMet ProLeuPhe AlaIleArgAsn GlnGluVal ProLeuLeu MetValTyrAla
544 CAGGCCGCCA ACCTGCACCT GCTGCTGCTG CGCGACGCCA GCCTGTTGG CAGCGAGTTC
GlnAlaAla AsnLeuHis LeuLeuLeu ArgAspAla SerLeuPhe GlySerGluPhe
604 GGCCTGACCA GCCAGGAGAT CCAGCGCTAC TACGAGCGCC AGGTGGAGCG CACCCGCGAC
GlyLeuThr SerGlnGlu IleGlnArgTyr TyrGluArg GlnValGlu ArgThrArgAsp
664 TACAGCGACT ACTGCGTGGG GTGGTACAAAC ACCGGCCTGA ACAGCCTGCG CGGCACCAAAC
TyrSerAsp TyrCysVal GluTrpTyrAsn ThrGlyLeu AsnSerLeu ArgGlyThrAsn
724 GCCGCCAGCT GGGTGCCTA CAACCAGTTG CGCCGCGACC TGACCCTGGG CGTGCCTGGAC
AlaAlaSer TrpValArg TyrAsnGlnPhe ArgArgAsp LeuThrLeu GlyValLeuAsp
784 CTGGTGGCCC TGTTCCCCAG CTACGACACC CGCACCTACC CCATCAACAC CAGCGCCAG
LeuValAla LeuPhePro SerTyrAspThr ArgThrTyr ProIleAsn ThrSerAlaGln
844 CTGACCCGCG AGGTGTACAC CGACGCCATC GGCGCCACCG GCGTGAACAT GGCCAGCATG
LeuThrArg GluValTyr ThrAspAlaIle GlyAlaThr GlyValAsn MetAlaSerMet
904 AACTGGTACA ACAACAAACGC CCCCAGCTTC AGCGCCATCG AGGCCGCCGC CATCCGCAGC
AsnTrpTyr AsnAsnAsn AlaProSerPhe SerAlaIle GluAlaAla AlailleArgSer
964 CCCCCACCTGC TGGACTTCCT GGAGCAGCTG ACCATCTCA GCGCCAGCAG CCGCTGGAGC
ProHisLeu LeuAspPhe LeuGluGlnLeu ThrIlePhe SerAlaSer SerArgTrpSer
1024 AACACCCGCC ACATGACCTA CTGGCGCGGC CACACCATCC AGAGCCGCC CATCGCGGC
AsnThrArg HisMetThr TyrTrpArgGly HisThrIle GlnSerArg ProIleGlyGly

Fig. 6B

1084 GGCCTGAACA CCAGCACCCA CGGCGCCACC AACACCAGCA TCAACCCCGT GACCCTGCGC
GlyLeuAsn ThrSerThr HisGlyAlaThr AsnThrSer IleAsnPro ValThrLeuArg
1144 TTCGCCAGCC GCGACGTGTA CCGCACCGAG AGCTACGCCG GCGTGCTGCT GTGGGGCATC
PheAlaSer ArgAspVal TyrArgThrGlu SerTyrAla GlyValLeu LeuTrpGlyIle
1204 TACCTGGAGC CCATCCACGG CGTGCCCACC GTGCGCTTCA ACTTCACCAA CCCCCAGAAC
TyrLeuGlu ProIleHis GlyValProThr ValArgPhe AsnPheThr AsnProGlnAsn
1264 ATCAGCGACC GCGGCACCGC CAACTACAGC CAGCCCTACG AGAGCCCCGG CCTGCAGCTG
IleSerAsp ArgGlyThr AlaAsnTyrSer GlnProTyr GluSerPro GlyLeuGlnLeu
1324 AAGGACAGCG AGACCGAGCT GCCCCCCGAG ACCACCGAGC GCCCCAACTA CGAGAGCTAC
LysAspSer GluThrGlu LeuProProGlu ThrThrGlu ArgProAsn TyrGluSerTyr
1384 AGCCACCGCC TGAGCCACAT CGGCATCATC CTGCAGAGCC GCGTGAACGT GCCCGTGTAC
SerHisArg LeuSerHis IleGlyIleIle LeuGlnSer ArgValAsn ValProValTyr
1444 AGCTGGACCC ACCGCAGCGC CGACCGCACC AACACCATCG GCCCCAACCG CATCACCCAG
SerTrpThr HisArgSer AlaAspArgThr AsnThrIle GlyProAsn ArgIleThrGln
1504 ATCCCCATGG TGAAGGCCAG CGAGCTGCC CAGGGCACCA CCGTGGTGCG CGGCCCGGC
IleProMet ValLysAla SerGluLeuPro GlnGlyThr ThrValVal ArgGlyProGly
1564 TTCACCGGCG GCGACATCCT GCGCCGCACC AACACCGGCG GCTTCGGCCC CATCCGCGTG
PheThrGly GlyAspIle LeuArgArgThr AsnThrGly GlyPheGly ProIleArgVal
1624 ACCGTGAACG GCCCCCTGAC CCAGCGCTAC CGCATCGGCT TCCGCTACGC CAGCACCGTG
ThrValAsn GlyProLeu ThrGlnArgTyr ArgIleGly PheArgTyr AlaSerThrVal
1684 GACTTCGACT TCTTCGTGAG CCGCGGCAGG ACCACCGTGA ACAACTTCCG CTTCCCTGCGC
AspPheAsp PhePheVal SerArgGlyGly ThrThrVal AsnAsnPhe ArgPheLeuArg
1744 ACCATGAACA GCGCGACGA GCTGAAGTAC GGCAACTTCG TGCGCCGCGC CTTCACCA
ThrMetAsn SerGlyAsp GluLeuLysTyr GlyAsnPhe ValArgArg AlaPheThrThr
1804 CCCTTCACCT TCACCCAGAT CCAGGACATC ATCCGCACCA GCATCCAGGG CCTGAGCGGC
ProPheThr PheThrGln IleGlnAspIle IleArgThr SerIleGln GlyLeuSerGly
1864 AACGGCGAGG TGTACATCGA CAAGATCGAG ATCATCCCCG TGACCGCCAC CTTCGAGGCC
AsnGlyGlu ValTyrIle AspLysIleGlu IleIlePro ValThrAla ThrPheGluAla
1924 GAGTACGACC TGGAGCGCGC CCAGGAGGCC GTGAACGCC TGTTCACCAA CACCAACCCC
GluTyrAsp LeuGluArg AlaGlnGluAla ValAsnAla LeuPheThr AsnThrAsnPro
1984 CGCCGCCTGA AGACCGACGT GACCGACTAC CACATCGACC AGGTGAGCAA CCTGGTGGCC
ArgArgLeu LysThrAsp ValThrAspTyr HisIleAsp GlnValSer AsnLeuValAla
2044 TGCCTGAGCG ACGAGTTCTG CCTGGACGAG AAGCGCGAGC TGCTGGAGAA GGTGAAGTAC
CysLeuSer AspGluPhe CysLeuAspGlu LysArgGlu LeuLeuGlu LysValLysTyr

Fig. 6C

2104 GCCAAGCGCC TGAGCGACGA GCGCAACCTG CTGCAGGACC CCAACTTCAC CAGCATCAC
AlaLysArg LeuSerAsp GluArgAsnLeu LeuGlnAsp ProAsnPhe ThrSerIleAsn
2164 AAGCAGCCCC ACTTCATCAG CACCAACGAG CAGAGCAACT TCACCAGCAT CCACGAGCAG
LysGlnPro AspPheIle SerThrAsnGlu GlnSerAsn PheThrSer IleHisGluGln
2224 AGCGAGCACG GCTGGTGGGG CAGCGAGAAC ATCACCATCC AGGAGGGCAA CGACGTGTT
SerGluHis GlyTrpTrp GlySerGluAsn IleThrIle GlnGluGly AsnAspValPhe
2284 AAGGAGAACT ACGTGACCT GCCCGGCACC TTCAACGAGT GCTACCCCAC CTACCTGTAC
LysGluAsn TyrValThr LeuProGlyThr PheAsnGlu CysTyrPro ThrTyrLeuTyr
2344 CAGAAGATCG GCGAGAGCGA GCTGAAGGCC TACACCCGCT ACCAGCTGCG CGGCTACATC
GlnLysIle GlyGluSer GluLeuLysAla TyrThrArg TyrGlnLeu ArgGlyTyrIle
2404 GAGGACAGCC AGGACCTGGA GATCTACCTG ATCCGCTACA ACGCCAAGCA CGAGACCTG
GluAspSer GlnAspLeu GluIleTyrLeu IleArgTyr AsnAlaLys HisGluThrLeu
2464 GACGTGCCCG GCACCGAGAG CCTGTGGCCC CTGAGCGTGG AGAGCCCCAT CGGCCGCTGC
AspValPro GlyThrGlu SerLeuTrpPro LeuSerVal GluSerPro IleGlyArgCys
2524 GGCGAGCCA ACCGCTGCGC CCCCCACTTC GAGTGGAACCCGACCTGGA CTGCAGCTGC
GlyGluPro AsnArgCys AlaProHisPhe GluTrpAsn ProAspLeu AspCysSerCys
2584 CGCGACGGCG AGAAAGTGCAGC CCACCAACAGC CACCACTTCA GCCTGGACAT CGACGTGGGC
ArgAspGly GluLysCys AlaHisHisSer HisHisPhe SerLeuAsp IleAspValGly
2644 TGCACCGACC TGCACGAGAA CCTGGGCGTG TGGGTGGTGT TCAAGATCAA GACCCAGGAG
CysThrAsp LeuHisGlu AsnLeuGlyVal TrpValVal PheLysIle LysThrGlnGlu
2704 GGCCACGCC GCCTGGGCAA CCTGGAGTTC ATCGAGGAGA AGCCCCTGCT GGGCGAGGCC
GlyHisAla ArgLeuGly AsnLeuGluPhe IleGluGlu LysProLeu LeuGlyGluAla
2764 CTGAGCCGCG TGAAGCGCGC CGAGAAGAAG TGGCGCGACA AGCGCGAGAA GCTGCAGCTG
LeuSerArg ValLysArg AlaGluLysLys TrpArgAsp LysArgGlu LysLeuGlnLeu
2824 GAGACCAAAGC GCGTGTACAC CGAGGCCAAG GAGGCCGTGG ACGCCCTGTT CGTGGACAGC
GluThrLys ArgValTyr ThrGluAlaLys GluAlaVal AspAlaLeu PheValAspSer
2884 CAGTACGACC GCCTGCAGGC CGACACCAAC ATCGGCATGA TCCACGCCGC CGACAAGCTG
GlnTyrAsp ArgLeuGln AlaAspThrAsn IleGlyMet IleHisAla AlaAspLysLeu
2944 GTGCACCGCA TCCCGCGAGGC CTACCTGAGC GAGCTGCCCG TGATCCCCGG CGTGAACGCC
ValHisArg IleArgGlu AlaTyrLeuSer GluLeuPro ValIlePro GlyValAsnAla
3004 GAGATCTTCG AGGAGCTGGA GGGCCACATC ATCACCGCCA TCAGCCTGTA CGACGCCCGC
GluIlePhe GluGluLeu GluGlyHisIle IleThrAla IleSerLeu TyrAspAlaArg

Fig. 6D

3064 AACGTGGTGA AGAACGGCGA CTTCAACAAC GGCTGACCT GCTGGAACGT GAAGGGCCAC
AsnValVal LysAsnGly AspPheAsnAsn GlyLeuThr CysTrpAsn ValLysGlyHis
3124 GTGGACGTGC AGCAGAGCCA CCACCGCAGC GACCTGGTGA TCCCCGAGTG GGAGGCCGAG
ValAspVal GlnGlnSer HisHisArgSer AspLeuVal IleProGlu TrpGluAlaGlu
3184 GTGAGCCAGG CCGTGCAGCGT GTGCCCGGCG TGCGGCTACA TCCTGCGCGT GACCGCCTAC
ValSerGln AlaValArg ValCysProGly CysGlyTyr IleLeuArg ValThrAlaTyr
3244 AAGGAGGGCT ACCGGCGAGGG CTGCGTGACC ATCCACGAGA TCGAGAACAA CACCGACGAG
LysGluGly TyrGlyGlu GlyCysValThr IleHisGlu IleGluAsn AsnThrAspGlu
3304 CTGAAGTTCA AGAACCGCGA GGAGGGAGGAG GTGTACCCCA CCGACACCGG CACCTGCAAC
LeuLysPhe LysAsnArg GluGluGluGlu ValTyrPro ThrAspThr GlyThrCysAsn
3364 GACTACACCG CCCACCAGGG CACCGCCGGC TGCGCCGACG CCTGCAACAG CCGCAACGCC
AspTyrThr AlaHisGln GlyThrAlaGly CysAlaAsp AlaCysAsn SerArgAsnAla
3424 GGCTACGAGG ACCGCTACGA GGTGGACACC ACCGCCAGCG TGAACTACAA GCCCACCTAC
GlyTyrGlu AspAlaTyr GluValAspThr ThrAlaSer ValAsnTyr LysProThrTyr
3484 GAGGAGGGAGA CCTACACCGA CGTGCAGCGC GACAACCACT GCGAGTACGA CCGCGGCTAC
GluGluGlu ThrTyrThr AspValArgArg AspAsnHis CysGluTyr AspArgGlyTyr
3544 GTGAACTACC CCCCCGTGCC CGCCGGCTAC GTGACCAAGG AGCTGGAGTA CTTCCCCGAG
ValAsnTyr ProProVal ProAlaGlyTyr ValThrLys GluLeuGlu TyrPheProGlu
3604 ACCGACACCG TGTGGATCGA GATCGCGAG ACCGAGGGCA AGTCATCGT GGACAGCGTG
ThrAspThr ValTrpIle GluIleGlyGlu ThrGluGly LysPheIle ValAspSerVal
3664 GAGCTGCTGC TGATGGAGGA GTAG
GluLeuLeu LeuMetGlu Glu---

Fig. 7A

SEQUENCE OF THE FULL-LENGTH HYBRID SYNTHETIC/NATIVE CRYIA(B) CHIMERIC GENE
The fusion point between the synthetic and native coding sequences is
indicated by a slash (/) in the sequence.

1 ATGGACAAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG
MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
61 GTGGAGGTGC TGGGCGGGCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
121 AGCCTGACCC AGTCCTGCT GAGCGAGTTC GTGCCCGGCG CCGGCTTCGT GCTGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
181 GTGGACATCA TCTGGGCAT CTTCGGCCCC AGCCAGTGGG ACGCCTTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle
241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTGCCCCGCA ACCAGGCCAT CAGCCGCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
301 GAGGCCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
361 CCCACCAACC CCGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTACC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCCGTG ACGTCAGCGT GTTCGGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
541 CGCTGGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
601 GGCAACTACA CCGACCACGC CGTGCCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
661 CCCGACAGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
781 AGCCAGCTGA CCCGCGAGAT TTACACCAAC CCCGTGCTGG AGAAACTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln

Fig. 7B

961 ATCATGGCCA GCCCCGTCGG CTTCAGCGC CCCGAGTCA CCTTCCCCCT GTACGGCAC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr
1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg
1081 ACCCTGAGCA GCACCCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141 AGCGTGCTGG ACGGCACCGA GTTCGCCTAC GGCACCAAGCA GCAACCTGCC CAGCGCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal
1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC
ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC
SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
1441 AACCTGGGCA GCGGCACCA CGTGGTGAAG GGCCCCGGCT TCACCGGGCGG CGACATCCTG
AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCCCTGAGC
ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCAACCA ACCTGCAGTT CCACACCAGC
GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGCGCCA CCATGAGCAG CGGCAGCAAC
IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGC TTCACCAACCC CCTTCAACTT CAGCAACGGC
LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
1741 AGCAGCGTGT TCACCCCTGAG CGCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
1801 CGCATCGAGT TCGTGCCCCG CGAGGGTGAAC TTGAGGGCCG AGTACGACCT GGAGAGGGCT
ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
1861 CAGAAGGCCG TGAACGAGCT GTTCACCAAGC AGCAACCAAGA TCGGCCTGAA GACCGACGTG
GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal

Fig. 7C

1921 ACCGACTACC ACATCGAT/CA AGTATCCAAT TTAGTTGAGT GTTTATCTGATGAATTTGT
ThrAspTyr HisIleAsp/GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
1981 CTGGATGAAA AAAAGAATT GTCCGAGAAA GTCAAACATG CGAACGCGACT TAGTGATGAG
LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu
2041 CGGAATTTAC TTCAAGATCC AAACCTTAGA GGGATCAATA GACAACTAGA CCGTGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101 AGAGGAAGTA CGGATATTAC CATCCAAGGA GGCGATGACG TATTCAAAGA GAATTACGTT
ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
2161 ACGCTATTGG GTACCTTGAG TGAGTGCTAT CCAACGTATT TATATCAAAA AATAGATGAG
ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
2221 TCGAAATTAA AAGCCTATAC CCGTTACCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC
SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
2281 TTAGAAATCT ATTTAATTAG CTACAATGCC AAACACGAAA CAGTAAATGT GCCAGGTACG
LeuGluIle TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
2341 GGTTCCATTAT GGCGCTTTC AGCCCCAGT CCAATCGGAA AATGTGCCCA TCATTCCCAT
GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysAla HisHisSerHis
2401 CATTTCCTCT TGGACATTGA TGTTGGATGT ACAGACTTAA ATGAGGACTT AGGTGTATGG
HisPheSer LeuAspIle AspValGlyCys ThrAspLeu AsnGluAsp LeuGlyValTrp
2461 GTGATATTCA AGATTAAGAC GCAAGATGGC CATGCAAGAC TAGGAAATCT AGAATTCTC
ValIlePhe LysIleLys ThrGlnAspGly HisAlaArg LeuGlyAsn LeuGluPheLeu
2521 GAAGAGAAC CATTAGTAGG AGAACGACTA GCTCGTGTGA AAAGAGCGGA GAAAAAAATGG
GluGluLys ProLeuVal GlyGluAlaLeu AlaArgVal LysArgAla GluLysLysTrp
2581 AGAGACAAAC GTGAAAAATT GGAATGGAA ACAAAATATTG TTTATAAAGA GGCAAAAGAA
ArgAspLys ArgGluLys LeuGluTrpGlu ThrAsnIle ValTyrLys GluAlaLysGlu
2641 TCTGTAGATG CTTTATTTGT AAACTCTCAA TATGATAGAT TACAAGCGGA TACCAACATC
SerValAsp AlaLeuPhe ValAsnSerGln TyrAspArg LeuGlnAla AspThrAsnIle
2701 GCGATGATTC ATGCAGCAGA TAAACCGCGTT CATAGCATTC GAGAAGCTTA TCTGCCTGAG
Ala e Ile HisAlaAla AspLysArgVal HisSerIle ArgGluAla TyrLeuProGlu
2761 CTGTCTGTGA TTCCGGGTGT CAATGCGGCT ATTGTTGAAG AATTAGAAGG GCGTATTTTC
LeuSerVal IleProGly ValAsnAlaAla IlePheGlu GluLeuGlu GlyArgIlePhe
2821 ACTGCATTCT CCCTATATGA TGCGAGAAAT GTCATTAAA ATGGTGATTT TAATAATGGC
ThrAlaPhe SerLeuTyr AspAlaArgAsn ValIleLys AsnGlyAsp PheAsnAsnGly

Fig. 7D

2881 TTATCCTGCT GGAACGTGAA AGGGCATGTA GATGTAGAAC AACAAAACAA CCACCGTTCG
LeuSerCys TrpAsnVal LysGlyHisVal AspValGlu GluGlnAsn AsnHisArgSer
2941 GTCCCTTGTG TTCCCGGAATG GGAAGCAGAA GTGTCACAAG AAGTTCTGTGT CTGTCGGGT
ValLeuVal ValProGlu TrpGluAlaGlu ValSerGln GluValArg ValCysProGly
3001 CGTGGCTATA TCCTTCGTGT CACAGCGTAC AAGGAGGGAT ATGGAGAACCG TTGCGTAACC
ArgGlyTyr IleLeuArg ValThrAlaTyr LysGluGly TyrGlyGlu GlyCysValThr
3061 ATTCACTGAGA TCGAGAACAA TACAGACGAA CTGAAGTTA GCAACTGTGT AGAACAGGAA
IleHisGlu IleGluAsn AsnThrAspGlu LeuLysPhe SerAsnCys ValGluGluGlu
3121 GTATATCCAA ACAACACGGT AACGTGTAAT GATTATACTG CGACTCAAGA AGAATATGAG
ValTyrPro AsnAsnThr ValThrCysAsn AspTyrThr AlaThrGln GluGluTyrGlu
3181 GGTACGTACA CTTCTCGTAA TCGAGGGATAT GACGGAGCCT ATGAAAGCAA TTCTCTGTA
GlyThrTyr ThrSerArg AsnArgGlyTyr AspGlyAla TyrGluSer AsnSerSerVal
3241 CCAGCTGATT ATGCATCAGC CTATGAAGAA AAAGCATATA CAGATGGACG AAGAGACAAT
ProAlaAsp TyrAlaSer AlaTyrGluGlu LysAlaTyr ThrAspGly ArgArgAspAsn
3301 CCTTGTAAT CTAACAGAGG ATATGGGGAT TACACACCAC TACCAGCTGG CTATGTGACA
ProCysGlu SerAsnArg GlyTyrGlyAsp TyrThrPro LeuProAla GlyTyrValThr
3361 AAAGAATTAG AGTACTTCCC AGAAACCGAT AAGGTATGGA TTGAGATCGG AGAAACGGAA
LysGluLeu GluTyrPhe ProGluThrAsp LysValTrp IleGluIle GlyGluThrGlu
3421 GGAACATTCA TCGTGGACAG CGTGGATTAA CTTCTTATGG AGGAATAA
GlyThrPhe IleValAsp SerValGluLeu LeuLeuMet GluGlu---

Fig. 8

Fig. 9A

1 ATGGACAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG
MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu

61 GTGGAGGTGC TGGGGCGCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu

121 AGCCTGACCC AGTCCTGCT GAGCGAGTTC GTGCCCGCGC CCGGCTTCGT GCTGGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu

181 GTGGACATCA TCTGGGCAT CTTCGGCCCC AGCCAGTGGG ACGCCTTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle

241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTCGCCGCA ACCAGGCCAT CAGCCGCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu

301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp

361 CCCACCAACC CCGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla

421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTTAC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal

481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCCGCG ACGTCAGCGT GTTCGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln

541 CGCTGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle

601 GGCAACTACA CCGACCACGC CGTGCCTGG TACAACACCG GCCTGGAGCG CGTGTGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly

661 CCCGACAGGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal

721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal

781 AGCCAGCTGA CCCGCGAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe

841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu

901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln

961 ATCATGGCCA GCCCGCTCGG CTTCAGCGGC CCCGAGTTCA CCTCCCCCT GTACGGCACC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr

Fig. 9B

1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg

1081 ACCCTGAGCA GCACCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu

1141 AGCGTGCTGG ACGGCACCGA GTTCGCCTAC GGCACCAGCA GCAACCTGCC CAGCGCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal

1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal

1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC
ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe

1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC
SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla

1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr

1441 AACCTGGGCA GCGGCACCAAG CGTGGTGAAG GGCCCCGGCT TCACCGGCCG CGACATCCTG
AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu

1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCCGTGAGC
ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer

1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCAACCA ACCTGCAGTT CCACACCAGC
GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer

1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGGCCA CCATGAGCAG CGGCAGCAAC
IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn

1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGC TTCACCACCC CCTTCAACTT CAGAACCGGC
LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly

1741 AGCAGCGTGT TCACCCCTGAG CGCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp

1801 CGCATCGAGT TCGTGCCCCG CGAGGTGACC TTGAGGGCCG AGTACGACCT GGAGAGGGCT
ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla

1861 CAGAAGGCCG TGAACGAGCT GTTCACCAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG
GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal

1921 ACCGACTACC ACATCGATCA AGTATCCAAT TTAGTTGAGT GTTTATCTGA TGAATTTGT
ThrAspTyr HisIleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys

1981 CTGGATGAAA AAAAAGAATT GTCCGAGAAA GTCAAACATG CGAACGCGACT TAGTGATGAG
LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu

Fig. 9C

2041 CGGAATTTAC TTCAAGATCC AAACCTTAGA GGGATCAATA GACAACTAGA CCGTGGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101 AGAGGAAGTA CGGATATTAC CATCCAAGGA GGCGATGACG TATTCAAAGA GAATTACGTT
ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
2161 ACGCTATTGG GTACCTTCGA CGAGTGCTAC CCCACCTACC TGTACCAGAA GATCGACGAG
ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
2221 AGCAAGCTGA AGGCCTACAC CCGCTACCAG CTGCGCGGCT ACATCGAGGA CAGCCAGGAC
SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
2281 CTGGAAATCT ACCTGATCCG CTACAACGCC AAGCACGAGA CCGTGAACGT GCCCGGCACC
LeuGluIle TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
2341 GGCAGCCTGT GGCCCCTGAG CGCCCCCAGC CCCATCGGCA AGTGCAGGGGA GCCGAATCGA
GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysGly GluProAsnArg
2401 TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CTAGACTGCA GCTGCAGGGGA CGGGGAGAAG
CysAlaPro HisLeuGlu TrpAsnProAsp LeuAspCys SerCysArg AspGlyGluLys
2461 TGCGCCCCACC ACAGCCACCA CTTCAGCCTG GACATCGACG TGGGCTGCAC CGACCTGAAC
CysAlaHis HisSerHis HisPheSerLeu AspIleAsp ValGlyCys ThrAspLeuAsn
2521 GAGGACCTGG GCGTGTGGGT GATCTTCAAG ATCAAGACCC AGGACGGCCA CGCCCGCCTG
GluAspLeu GlyValTrp ValIlePheLys IleLysThr GlnAspGly HisAlaArgLeu
2581 GGCAATCTAG AATTCTCGA AGAGAAACCA TTAGTAGGAG AAGCACTAGC TCGTGTAAA
GlyAsnLeu GluPheLeu GluGluLysPro LeuValGly GluAlaLeu AlaArgValLys
2641 AGAGCGGAGA AAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATTGTT
ArgAlaGlu LysLysTrp ArgAspLysArg GluLysLeu GluTrpGlu ThrAsnIleVal
2701 TATAAAGAGG CAAAAGAACATC TGTAGATGCT TTATTTGAA ACTCTCAATA TGATAGATTA
TyrLysGlu AlaLysGlu SerValAspAla LeuPheVal AsnSerGln TyrAspArgLeu
2761 CAAGCGGATA CCAACATCGC GATGATTGAT GCGGCAGATA AACCGCGTTCA TAGCATTGCA
GlnAlaAsp ThrAsnIle AlaMetIleHis AlaAlaAsp LysArgVal HisSerIleArg
2821 GAAGCTTATC TGCTGTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA
GluAlaTyr LeuProGlu LeuSerValIle ProGlyVal AsnAlaAla IlePheGluGlu
2881 TTAGAAGGGC GTATTTCAC TGCATTCTCC CTATATGATG CGAGAAATGT CATTAAAAAT
LeuGluGly ArgIlePhe ThrAlaPheSer LeuTyrAsp AlaArgAsn ValIleLysAsn
2941 GGTGATTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA
GlyAspPhe AsnAsnGly LeuSerCysTrp AsnValLys GlyHisVal AspValGluGlu
3001 CAAAACAACC ACCGTTCGGT CCTTGTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA
GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu

Fig. 9D

09684321412001
3061 GTTCGTGTCT GTCCGGGTCTG TGGCTATATC CTTCGTGTCA CAGCGTACAA GGAGGGATAT
ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
3121 GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACATA CAGACGAACG GAAGTTTAGC
GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
3181 AACTGTGTAG AAGAGGAAGT ATATCCAAAC AACACGGTAA CGTGTATGA TTATACTGCG
AsnCysVal GluGluGlu ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
3241 ACTCAAGAAG AATATGAGGG TACGTACACT TCTCGTAATC GAGGGATATGA CGGAGCCTAT
ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301 GAAAGCAATT CTTCTGTACC AGCTGATTAT GCATCAGCCT ATGAAGAAAA AGCATATACA
GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
3361 GATGGACGAA GAGACAATCC TTGTGAATCT AACAGAGGAT ATGGGGATTA CACACCACTA
AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
3421 CCAGCTGGCT ATGTGACAAA AGAATTAGAG TACTTCCCAG AAACCGATAA GGTATGGATT
ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
3481 GAGATCGGAG AACCGGAAGG AACATTCATC GTGGACAGCG TGGAATTACT TCTTATGGAG
GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
3541 GAATAA
Glu---

Fig. 10

Fig. 11A

1 ATGGACAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG
MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
61 GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
121 AGCCTGACCC AGTTCTGCT GAGCGAGTTC GTGCCCGCGC CCGGCTTCGT GCTGGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
181 GTGGACATCA TCTGGGGCAT CTTCGGCCCG AGCCAGTGGG ACCGCTTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle
241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTGCCCCGCA ACCAGGCCAT CAGCCGCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
361 CCCACCAACC CGGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTACC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
481 TACGTGCAGG CGGCCAACCT GCACCTGAGC GTGCTGCCGCG ACGTCAGCGT GTTCGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
541 CGCTGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
601 GGCAACTACA CCGACCACGC CGTGCGCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
661 CCCGACAGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
781 AGCCAGCTGA CCCGCGAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGGCAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln
961 ATCATGGCCA GCCCGCTCGG CTTCAGCGGC CCCGAGTTCA CCTTCCCCCT GTACGGCACC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr

Fig. 11B

1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg
1081 ACCCTGAGCA GCACCCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141 AGCGTGCTGG ACGGCACCGA GTTCGCCTAC GGCACCAGCA GCAACCTGCC CAGGCCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal
1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC
ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC
SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
1441 AACCTGGGCA GCGGCACCA CGTGGTGAAG GGCCCCGGCT TCACCGGC GGACATCCTG
AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGGTGA ACATCACCGC CCCCCCTGAGC
ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCAACCA ACCTGCAGTT CCACACCAGC
GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGGCCA CCATGAGCAG CGGCAGCAAC
IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGGC TTCACCAACCC CCTTCAACTT CAGCAACGGC
LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
1741 AGCAGCGTGT TCACCCCTGAG CGCCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
1801 CGCATCGAGT TCGTGCCCCGC CGAGGTGACC TTCGAGGGCG AGTACGACCT GGAGAGGGCT
ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
1861 CAGAAGGCCG TGAACGAGCT GTTCACCAAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG
GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal
1921 ACCGACTTACCA ACATCGATCA GGTGAGCAAC CTGGTGGAGT GCTTAAGCGA CGAGTTCTGC
ThrAspTyr HisIleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
1981 CTGGACGAGA AGAAGGAGCT GAGCGAGAAG GTGAAGCACG CCAAGCGCCT GAGCGACGAG
LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu

Fig. 11C

2041 CGCAACCTGC TGCAGGACCC CAACTTCCGC GGCATCAACC GCCAGCTGGA CCGCGGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101 CGAGGCAGCA CCGATATCAC CATCCAGGGC GGCGACGACG TGTTCAGGA GAACTACGTG
ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
2161 ACCCTGCTGG GCACCTTCGA CGAGTGCTAC CCCACCTACC TGTACCAGAA GATCGACGAG
ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
2221 AGCAAGCTGA AGGCCTACAC CCGCTACCAG CTGCGCGCT ACATCGAGGA CAGCCAGGAC
SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
2281 CTGGAAATCT ACCTGATCCG CTACAACGCC AAGCACGAGA CCGTGAACGT GCCCGGCACC
LeuGluIle TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
2341 GGCAGCTGT GCCCCCTGAG CGCCCCCAGC CCCATCGGCA AGTGCAGGGGA GCCGAATCGA
GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysGly GluProAsnArg
2401 TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CTAGACTGCA GCTGCAGGGA CGGGGAGAAG
CysAlaPro HisLeuGlu TrpAsnProAsp LeuAspCys SerCysArg AspGlyGluLys
2461 TGCGCCCACC ACAGCCACCA CTTCAGCCTG GACATCGACG TGGGCTGCAC CGACCTGAAC
CysAlaHis HisSerHis HisPheSerLeu AspIleAsp ValGlyCys ThrAspLeuAsn
2521 GAGGACCTGG GCGTGTGGGT GATCTCAAG ATCAAGACCC AGGACGGCCA CGCCCGCCTG
GluAspLeu GlyValTrp ValIlePheLys IleLysThr GlnAspGly HisAlaArgLeu
2581 GGCAATCTAG AATTCTCGA AGAGAAACCA TTAGTAGGAG AACGACTAGC TCGTGTGAAA
GlyAsnLeu GluPheLeu GluGluLysPro LeuValGly GluAlaLeu AlaArgValLys
2641 AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATTGTT
ArgAlaGlu LysLysTrp ArgAspLysArg GluLysLeu GluTrpGlu ThrAsnIleVal
2701 TATAAAGAGG CAAAAGAAC TGTAGATGCT TTATTTGAA ACTCTCAATA TGATAGATTA
TyrLysGlu AlaLysGlu SerValAspAla LeuPheVal AsnSerGln TyrAspArgLeu
2761 CAAGCGGATA CCAACATCGC GATGATTTCAT GCGGCAGATA AACGCGTTCA TAGCATTGCA
GlnAlaAsp ThrAsnIle AlaMetIleHis AlaAlaAsp LysArgVal HisSerIleArg
2821 GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTGAAAGAA
GluAlaTyr LeuProGlu LeuSerValIle ProGlyVal AsnAlaAla IlePheGluGlu
2881 TTAGAAGGGC GTATTTCAC TGCATTCTCC CTATATGATG CGAGAAATGT CATTAAAAAT
LeuGluGly ArgIlePhe ThrAlaPheSer LeuTyrAsp AlaArgAsn ValIleLysAsn
2941 GGTGATTGTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA
GlyAspPhe AsnAsnGly LeuSerCysTrp AsnValLys GlyHisVal AspValGluGlu
3001 CAAAACAACC ACCGTTCTGG CCTTGTGTT CCGGAATGGG AAGCAGAAGT GTCACAAAGAA
GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu

Fig. 11D

3061 GTTCGTGTCT GTCCGGGTCTG TGGCTATATC CTTCGTGTCA CAGCGTACAA GGAGGGATAT
ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
3121 GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACATA CAGACGAACT GAAGTTAGC
GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
3181 AACTGTGTAG AAGAGGAAGT ATATCAAAC AACACGGTAA CGTGTAAATGA TTATACTGCG
AsnCysVal GluGluGlu ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
3241 ACTCAAGAAG AATATGAGGG TACGTACACT TCTCGTAATC GAGGATATGA CGGAGCCTAT
ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301 GAAAGCAATT CTTCTGTACC AGCTGATTAT GCATCAGCCT ATGAAGAAAA AGCATATAACA
GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
3361 GATGGACGAA GAGACAATCC TTGTGAATCT AACAGAGGAT ATGGGGATTA CACACCACTA
AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
3421 CCAGCTGGCT ATGTGACAAA AGAATTAGAG TACTTCCCAG AAACCGATAA GGTATGGATT
ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
3481 GAGATCGGAG AAACGGAAGG AACATTCATC GTGGACAGCG TGGAATTACT TCTTATGGAG
GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
3541 GAATAA
Glu---

Fig. 12

Fig. 13A

1 ATGGACAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG
MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
61 GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
121 AGCCTGACCC AGTTCTGCT GAGCGAGTTC GTGCCCGCG CC GGCTTCGT GCTGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
181 GTGGACATCA TCTGGGGCAT CTTCGGCCCC AGCCAGTGGG ACGCCCTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle
241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TT CGCCCGCA ACCAGGCCAT CAGCCGCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
361 CCCACCAACC CCGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTACC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCCGCG ACGTCAGCGT GTTCGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
541 CGCTGGGGCT TCGACGCCGC CACCATCAC ACGCCCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
601 GGCAACTACA CCGACCACCG CGTGCCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
661 CCCGACAGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
781 AGCCAGCTGA CCCCGAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGCCAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln
961 ATCATGGCCA GCCCCGTCGG CTTCAGCGGC CCCGAGTCA CCTTCCCCCT GTACGGCACC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr

Fig. 13B

29983452-142001
1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg
1081 ACCCTGAGCA GCACCCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141 AGCGTGCTGG ACGGCACCGA GTTCGCCTAC GGCACCAGCA GCAACCTGCC CAGGCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal
1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC
ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTCA GCTGGATTCA CCGCAGTGCC
SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
1441 AACCTGGGCA GCGGCACCAAG CGTGGTGAAG GGCCCCGGCT TCACCGGCGG CGACATCCTG
AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCCTGAGC
ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCAACCA ACCTGCAGTT CCACACCAGC
GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGGCCA CCATGAGCAG CGGCAGCAAC
IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGGC TTCACCACCC CCTTCAACTT CAGAACCGGC
LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
1741 AGCAGCGTGT TCACCCCTGAG CGCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
1801 CGCATCGAGT TCGTGCCCCGC CGAGGTGACC TTGAGGCCG AGTACGACCT GGAGAGGGCT
ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
1861 CAGAAGGCCG TGAACGAGCT GTTCACCAAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG
GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal
1921 ACCGACTACC ACATCGATCA GGTGAGCAAC CTGGTGGAGT GCTTAAGCGA CGAGTTCTGC
ThrAspTyr HisIleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
1981 CTGGACGAGA AGAAGGAGCT GAGCGAGAAG GTGAAGCAGC CCAAGCGCCT GAGCGACGAG
LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu

Fig. 13C

2041 CGCAACCTGC TGCAGGACCC CAACTTCCGC GGCATCAACC GCCAGCTGG ACGCGGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101 CGAGGCAGCA CCGATATCAC CATCCAGGGC GGCGACGACG TGTCAAGGA GAACTACGTG
ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
2161 ACCCTGCTGG GCACCTTCGA CGAGTGCTAC CCCACCTACC TGTACCAGAA GATCGACGAG
ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
2221 AGCAAGCTGA AGGCCTACAC CCGCTACCAG CTGCGCGGCT ACATCGAGGA CAGCCAGGAC
SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
2281 CTGGAAATCT ACCTGATCCG CTACAACGCC AAGCACGAGA CCGTGAACGT GCCCGGCACC
LeuGlule TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
2341 GGCAGCCTGT GGCCCCCTGAG CGCCCCCAGC CCCATCGGCA AGTGCGGGGA GCCGAATCGA
GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysGly GluProAsnArg
2401 TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CTAGACTGCA GCTGCAGGGA CGGGGAGAAG
CysAlaPro HisLeuGlu TrpAsnProAsp LeuAspCys SerCysArg AspGlyGluLys
2461 TGCGCCCCACC ACAGCCACCA CTTCAGCCTG GACATCGACG TGGGCTGCAC CGACCTGAAC
CysAlaHis HisSerHis HisPheSerLeu AspIleAsp ValGlyCys ThrAspLeuAsn
2521 GAGGACCTGG GCGTGTGGGT GATCTTCAAG ATCAAGACCC AGGACGGCCA CGCCCGCCTG
GluAspLeu GlyValTrp ValIlePheLys IleLysThr GlnAspGly HisAlaArgLeu
2581 GGCAATCTAG AGTTCTCTGGG GGAGAACGCCC CTGGTGGGCG AGGCCCTGGC CCGCGTGAAG
GlyAsnLeu GluPheLeu GluGluLysPro LeuValGly GluAlaLeu AlaArgValLys
2641 CGCGCCGAGA AGAAGTGGCG CGACAAAGCGC GAGAACGCTGG AGTGGGAGAC CAACATCGTG
ArgAlaGlu LysLysTrp ArgAspLysArg GluLysLeu GluTrpGlu ThrAsnIleVal
2701 TACAAGGAGG CCAAGGAGAG CGTGGACGCC CTGTTCTGTA ACAGCCAGTA CGACCGCCTG
TyrLysGlu AlaLysGlu SerValAspAla LeuPheVal AsnSerGln TyrAspArgLeu
2761 CAGGCCGACA CCAACATCGC CATGATCCAC GCCGCCGACA AGCGCGTGCA CAGCATTGCG
GlnAlaAsp ThrAsnIle AlaMetIleHis AlaAlaAsp LysArgVal HisSerIleArg
2821 GAGGCCTACC TGCCCGAGCT GAGCGTGATC CCCGGCGTGAC ACGCCGCCAT CTTCGAGGAA
GluAlaTyr LeuProGlu LeuSerValIle ProGlyVal AsnAlaAla IlePheGluGlu
2881 CTCGAGGGCC GCATCTTCAC CGCCTTCAGC CTGTACGACG CCCGCAACGT GATCAAGAAC
LeuGluGly ArgIlePhe ThrAlaPheSer LeuTyrAsp AlaArgAsn ValIleLysAsn
2941 GGCGACTTCA ACAACGGCCT GAGCTGCTGG AACGTGAAGG GCCACGTGG CGTGGAGGAG
GlyAspPhe AsnAsnGly LeuSerCysTrp AsnValLys GlyHisVal AspValGluGlu
3001 CAGAACAAACC ACCGCAGCGT GCTGGTGGTG CCCGAGTGGG AGGCCGAGGT GAGCCAGGAG
GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu

Fig. 13D

3061 GTGCGCGTGT GCCCCGGCCG CGGCTACATC CTGCGCGTGA CCGCCTACAA GGAGGGCTAC
ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
3121 GGCGAGGGCT GCGTGACCAT CCACGAGATC GAGAACACA CCGACGAGCT CAAGTTCA
GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
3181 AACTGCGTGG AGGAGGAGGT GTACCCAAC AACACCGTGA CCTGCAACGA CTACACCGCG
AsnCysVal GluGluGlu ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
3241 ACCCAGGAGG AGTACGAGGG CACCTACACC AGCCGCAACC GCGGCTACGA CGGCGCCTAC
ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301 GAGAGCAACA GCAGCGTGCC CGCCGACTAC GCCAGCGCCT ACGAGGAGAA GGCCTACACC
GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
3361 GACGGCCGCC GCGACAACCC CTGCGAGAGC AACCGCGGCT ACGGCGACTA CACCCCCCTG
AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
3421 CCCGCCGGCT ACGTGACCAA GGAGCTGGAG TACTTCCCCG AGACCGACAA GGTGTGGATC
ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
3481 GAGATCGGCG AGACCGAGGG CACCTTCATC GTGGACAGCG TGGAGCTGCT GCTGATGGAG
GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
3541 GAG
Glu

Fig. 14

Fig. 15A

1 ATGGACAAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG
MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
61 GTGGAGGTGC TGGGCGGCCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
121 AGCCTGACCC AGTTCTGCT GAGCGAGTTC GTGCCCGCGC CCGGCTTCGT GCTGGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
181 GTGGACATCA TCTGGGGCAT CTTCGGCCCC AGCCAGTGGG ACGCCTTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle
241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTGCCCCGCA ACCAGGCCAT CAGCCGCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
361 CCCACCAACC CGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTTAC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCCGCG ACGTCAGCGT GTTCGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
541 CGCTGGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
601 GGCAACTACA CCGACCACGC CGTGCCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
661 CCCGACAGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
781 AGCCAGCTGA CCCCGCAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln
961 ATCATGGCCA GCCCGCTCGG CTTCAGCGGC CCCGAGTTCA CCTCCCCCT GTACGGCACC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr

Fig. 15B

1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg
1081 ACCCTGAGCA GCACCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141 AGCGTGCTGG ACGGCACCGA GTTCGCCCTAC GGCACCAGCA GCAACCTGCC CAGGCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal
1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC
ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC
SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
1441 AACCTGGGCA GCGGCACCAAG CGTGGTGAAG GGCCCCGGCT TCACCGGCCG CGACATCCTG
AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCCTGAGC
ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCAACCA ACCTGCAGTT CCACACCAGC
GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGGCCA CCATGAGCAG CGGCAGCAAC
IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGC TTCACCACCC CCTTCAACTT CAGCAACGGC
LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
1741 AGCAGCGTGT TCACCCCTGAG CGCCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
1801 CGCATCGAGT TCGTGCCCCG CGAGGTGACC TTGAGGCCG AGTACGACCT GGAGAGGGCT
ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
1861 CAGAAGGCCG TGAACGAGCT GTTCACCAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG
GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal
1921 ACCGACTTACCA ACATCGATCA AGTATCCAAT TTAGTTGAGT GTTTATCTGA TGAATTGT
ThrAspTyr HisIleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
1981 CTGGATGAAA AAAAAGAATT GTCCGAGAAA GTCAAACATG CGAACGCACT TAGTGATGAG
LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu

Fig. 15C

2041 CGGAATTTAC TTCAAGATCC AAACTTAGA GGGATCAATA GACAACTAGA CCGTGGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101 AGAGGAAGTA CGGATATTAC CATCCAAGGA GGCGATGACG TATTCAAAGA GAATTACGTT
ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
2161 ACGCTATTGG GTACCTTTGA TGAGTGCTAT CCAACGTATT TATATCAAAA AATAGATGAG
ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
2221 TCGAAATTAA AAGCCTATAC CCGTTACCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC
SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
2281 TTAGAAATCT ATTAAATTCTG CTACAATGCC AAACACGAAA CAGTAAATGT GCCAGGGTACG
LeuGluIle TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
2341 GGTTCCCTAT GGCGCTTTC AGCCCCAAGT CCAATCGGCA AGTGCAGGGGA GCCGAATCGA
GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysGly GluProAsnArg
2401 TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CTAGACTGCA GCTGCAGGGGA CGGGGAGAAG
CysAlaPro HisLeuGlu TrpAsnProAsp LeuAspCys SerCysArg AspGlyGluLys
2461 TGCAGCCCACC ACAGCCACCA CTTCAGCCTG GACATCGACG TGGGCTGCAC CGACCTGAAC
CysAlaHis HisSerHis HisPheSerLeu AspIleAsp ValGlyCys ThrAspLeuAsn
2521 GAGGACCTGG GCGTGTGGGT GATCTTCAAG ATCAAGACCC AGGACGGCCA CGCCCGCCTG
GluAspLeu GlyValTrp ValIlePheLys IleLysThr GlnAspGly HisAlaArgLeu
2581 GGCAATCTAG AATTCTCGA AGAGAAACCA TTAGTAGGAG AAGCACTAGC TCGTGTGAAA
GlyAsnLeu GluPheLeu GluGluLysPro LeuValGly GluAlaLeu AlaArgValLys
2641 AGAGCGGAGA AAAAATGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATTGTT
ArgAlaGlu LysLysTrp ArgAspLysArg GluLysLeu GluTrpGlu ThrAsnIleVal
2701 TATAAAGAGG CAAAAGAAC TGTAGATGCT TTATTTGTA ACTCTCAATA TGATAGATTA
TyrLysGlu AlaLysGlu SerValAspAla LeuPheVal AsnSerGln TyrAspArgLeu
2761 CAAGCGGATA CCAACATCGC GATGATTCA GCGGCAGATA AACGCGTTCA TAGCATTGCA
GlnAlaAsp ThrAsnIle AlaMetIleHis AlaAlaAsp LysArgVal HisSerIleArg
2821 GAAGCTTATC TGCCTGAGCT GTCTGTGATT CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA
GluAlaTyr LeuProGlu LeuSerValIle ProGlyVal AsnAlaAla IlePheGluGlu
2881 TTAGAAGGGC GTATTTCAC TGCATTCTCC CTATATGATG CGAGAAATGT CATTAAAAAT
LeuGluGly ArgIlePhe ThrAlaPheSer LeuTyrAsp AlaArgAsn ValIleLysAsn
2941 GGTGATTATA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA
GlyAspPhe AsnAsnGly LeuSerCysTrp AsnValLys GlyHisVal AspValGluGlu
3001 CAAAACAACC ACCGTTCGGT CCTTGTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA
GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu

Fig. 15D

3061 GTTCGTGTCT GTCCGGGTCTG TGGCTATATC CTTCGTGTCA CAGCGTACAA GGAGGGATAT
ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
3121 GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACATA CAGACGAACT GAAGTTAGC
GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
3181 AACTGTGTAG AAGAGGAAGT ATATCCAAAC AACACGGTAA CGTGTAAATGA TTATACTGCG
AsnCysVal GluGluGlu ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
3241 ACTCAAGAAG AATATGAGGG TACGTACACT TCTCGTAATC GAGGATATGA CGGAGCCTAT
ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301 GAAAGCAATT CTTCTGTACC AGCTGATTAT GCATCAGCCT ATGAAGAAAA AGCATATACA
GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
3361 GATGGACGAA GAGACAATCC TTGTGAATCT AACAGAGGAT ATGGGGATTA CACACCACTA
AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
3421 CCAGCTGGCT ATGTGACAAA AGAATTAGAG TACTTCCCCAG AAACCGATAA GGTATGGATT
ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
3481 GAGATCGGAG AAACGGAAGG AACATTCATC GTGGACAGCG TGGAATTACT TCTTATGGAG
GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
3541 GAATAAG
Glu---

Fig. 16

Fig. 17

Fig. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

Fig. 23A

CrylA(b) Protein Levels in Transgenic Maize

ELISA Bt Values of Field Plants:

INBRED X PARENT	ABRU PLANT Number	ng Bt/mg protein
2ND01X171-4A	1646	29
5N984X171-4A	857	1705
5N984X171-4A	870	1760
5N984X171-13	969	22
5N984X171-15	1468	17
5N984X171-15	1470	28
5N984X171-14A	1502	180
5N984X171-14A	1529	1500
5N984X176-11	1667	408
5N984X176-11	1671	1270
5N984X176-11	1673	1522
5N984X176-11	1675	943
5N984X176-11	1679	967
5N984X171-4B	1942	15
5N984X171-4B	1946	16
5NA56X171-16ABX	1101	30
5NA89X176-11	1622	959
5NA89X176-11	1630	1172
5NA89X176-11	1635	1100
6F010X171-4	825	103
6F010X171-4	832	1298

-Bt levels are in ng crylA(b)/mg total protein.

-Data are from progeny of the described maize transformants expressing the crylA(b) protein.

-ELISA analysis of transgenic plant material was carried out using standard procedures as described elsewhere.

Fig. 23B

Bioassay of European corn borer, *Ostrinia nubilalis*, and sugarcane borer, *Diatraea saccharalis*

Plasmid	Promoter	Cross	Plant No.	Percent Mortality		
				Bt Gene	Ostrinia	Diatraea
pCIB4431	PEPC	5N984 X 176-8B	21	+	100	100
			22	-	0	0
			40	+	100	100
pCIB4431	PEPC	5N984 X 176-11	95	+	100	100
			96	-	0	0
			98	+	100	100
pCIB4418	35S	5N984 X 171-14A	45	-	0	10
			64	+	100	90
			68	+	100	100
pCIB4431	PEPC	2N217AF X 176-8B	1	-	0	0
			3	+	100	100
			4	+	100	100
pCIB4418	35S	2N217AF X 171-15	70	-	10	0
			83	+	90	80
			88	+	90	100

Fig. 23C

CryIA(b) Protein Levels in Transgenic Maize

Greenhouse plants

35S LINE	LEAF	PITH	ROOT	POLLEN
6F010 x 171-4A	-409 + 288	NT	NT	NT
5N984 x 171-14A	256 + 159	191	198	30
6F010 x 171-16AB	240 + 174	221	271	NT
5N984 x 171-13	201 + 94	NT	NT	NT
5NA89 x 171-13	37 + 7	150	0	NT
5N984 x 171-18	7.7 + 3	NT	NT	NT
6N615 x 171-16AB	7.5 + 3	0	0	
PEPC LINE				
6N615 x 176-11	1126 + 419	41	19	NT
6F010 x 176-10	774 + 159	NT	NT	130
5N984 x 176-11	719 + 128	16	20	186

-Bt levels are in ng cryIA(b)/mg total protein.

Data are from progeny of the described maize transformants expressing the cryIA(b) protein.

ELISA analysis of transgenic plant material was carried out using standard procedures as described elsewhere.

Fig. 23D
Bioassay of European corn borer, *Ostrinia nubilalis*, on Pith:SynBt maize

Plasmid	Promoter	Event	Plant No.	Percent Mortality
pCIB4433	Pith	JS21A-Top	1	90
			3	80
			11	90
			13	70
			14	75
			19	85
			28	80
pCIB4433	Pith	JS22D-Mid	3	70
			4	65
			7	85
			17	95
Control			1	5
			2	0
			3	0

Fig. 23E

EXPRESSION OF THE CRYIA(b) GENE IN TRANSGENIC MAIZE USING THE PITH-PREFERRED PROMOTER

Leaf samples from small plantlets transformed with pCIB4433 using procedures described elsewhere were analyzed for the presence of the crylA(b) protein using ELISA. All plants expressing crylA(b) were found to be insecticidal in the standard European corn borer bioassay.

Note that the pith-preferred promoter has a low, but detectable level of expression in leaf tissue of maize. Detection of CrylA(b) protein is consistent with this pattern of expression.

PLANT NUMBER	ng crylA(b)/mg protein
JS21A-1 TOP	169
JS21A-2 TOP	0
JS21A-3 TOP	113
JS21A-11 TOP	127
JS21A-12 TOP	112
JS21A-13 TOP	97
JS21A-14 TOP	118
JS21A-19 TOP	82
JS21A-24 TOP	0
JS21A-28 TOP	154
JS22D-3 MID	2946
JS22D-4 MID	5590
JS22D-11 MID	215
JS22D-17 MID	3004

Fig. 24A

1 GAATTGGATCCATTAAAGAAGTCTTGAAACAGATTCTAGAGATCTAGTTAACGCTC 60
 61 CCAAAAGTCTGAAAAATTCTAGCGGGGAGGCCATTAGGGCAGGGGTACTGTTATGTTT 120
 121 AAAGAGAACACCCTTCTGATCTCTAAAGAGAAATTTGTAAGAAGGATCCTG 180
 181 TCCCTCTCATCCAACCTTTCATCGGCAAATTTCATAGAGATATTAGAGGCAAGAGAG 240
 241 GGGCCAAAAGATCCATGTAATGGAAGTGGCACCTGGTTGATACCTCCCTCATCTCA 300
 301 ACAGAAAATCCATTATGAAAAGTGAATGGATTAAACTCTCTTCTCCCTTTG 360
 361 CAATGAGCTGAAAATATCTGGTATTATTCATCACCCCTATTAATGAATCTGTCCCTAG 420
 421 CAATTTGCTTCTCTGATCCCTCTGCAGCCACCATGTTCTTAAATTCCACTCCATAT 480
 481 CAAGCTTTCAATCTATCAGAATCTGAGATGGCTGCAATCTCTCATTTCTCAAGGA 540
 541 TATCGATGTTATCCATAAGGTATTCTTGAACTTCTTATATTCCCTCGACATTATAT 600
 601 TCCATCCTTCAACATTTTGTTCAATCTTTTGTCTTCCAAACATCGA 660
 661 TACATTTCCTGCTCCTCACAGGTAAAGGACGAGCTTCAAAAAACCTCTGCTTAAAGTC 720
 721 AGGTCTGAGCCTCCAGCAAAGCTCACATATCTAAAGTCCCTCTTAGTTGGGACAGAG 780
 781 TCAGTGCTAAGACACATGGGAACATGACCAGAAAAAAAAATCATATTAGCCCAGAGAC 840
 841 ACAAATATTCTGTACTGCAAGTCTCGTTATGGGCTAGCAAAGGAATCTACCCAACCTCT 900
 901 CAAATGTGTTGGGATGTCAAGTATATAGACTATTCACTACGTTCAACTCTATCAAACGT 960
 961 GCAGCTCAATTATAGAGTTGAATAAGTGCCTCCATCTATTGTTCTTATCCTCATATTG 1020
 1021 GTTAAGATATTAAATCACCTCCCACCAACATTAAAGTGCACCATTAAAGTGGCTCGC 1080
 1081 GAGCACCAAAACCGCTGAAAACCGGAAATGTTAGCACGTTGGCAGCGGGACCCCTTTCTA 1140
 1141 TCTCATCGTGTCTCGTTGTCACCACGGCCCCACGGCCAACGCTCTCCATCTGTAG 1200
 1201 TGTAGAGTATTCATTTGCGACCGAGCCGAGCATCGATCCAGCCACACTGGCCACTGC 1260
 84
 1261 CAGCCAGCCATGTGGCACTCCTACGTATACTACGTGAGGTGAGATTCACTCACATQGGAT 1320
 -465
 1321 GGGACCGAGATATTACTGCTGTGGTTGTGAGAGATAATAAGCATTATGACGATT 1380
 1381 GCTGAACAGCACACACCATGCGTCCAGATAGAGAAAGCTTCTCTTATTGCGATGCA 1440
 1441 TGTTTCATTATCTTTATCATATATATAACACATATTAAATGATTCTCGTTCCAATT 1500
 -285
 1501 TATAATTCAATTGACTTTTATCCACCGATGCTCGTTTATTAAAAAAATATTATAAT 1560
 -225
 1561 TATTGTTACTTTGTTGAATATTGTTAGCATATAATAACTTGATACTAGTATGTT 1620
 -165
 49
 1621 TCCGAGCAAAAAAAATATTAAATATTAGATTACGAGGCCATTAAATTATATTGAG 1680
 -105
 83 +1
 1681 ACAAGCGAAGCAAAGCAAAGCAAGCTAAATGTTGCCCTGCTGTGCATGCAGAGGCCCGCT 1740
 -45
 +15
 1741 CTTGCTATAAACGAGGCAGCTAGACGCGACTCGACTCATCAGCCTCATCAACCTCGACGA 1800
 +16
 +75

 1801 AGGAGGAACGAACGGACAGGTTGTTGCACAGAAGCGACATGGCTTCGCGCCAAACGT 1860
 +76
 M A F A P K T S +135

Fig. 24B

1861 CCTCCTCCTCGTGTCCGGCGTTGCAGGCAGCTCAGTCGCCGCCGCTGCTCCTGA 1920
 +126 S S S S L S S A L Q A A Q S P P L L L R +195

1921 GGCGGATGTCGTCACCGCAACACCGAGACGGAGGTACGACGCCGGCCGTGTCACTA 1980
 +196 R M S S T A T P R R R Y D A A V V V T T +255

1981 CCACCACCACTGCTAGAGCTGGCGGGCTGCTGTACGGTTCCCGCCGCCCGCAGG 2040
 +256 T T T A R A A A A A V T V P A A P P Q A +315

75 \$

2041 CGGGCCGCCGCCGCCGGTGCCACCAAAGCAAGCGGGCACCCGCAGAGGAGGCCGTC 2100
 +316 G R R R R C H Q S K R R H P Q R R S R P +375

2101 CGGTGTGGACACCATGGCGCGCTCATGGCCAAGGGCAAGGTTCGTATAGTACGCCGC 2160
 +376 V S D T M A A L M A K G K

2161 GTGTCGTCGTTATTTGCGCATAGGCGGGACATAACGTGCTTAGCTAGCTAAC 2220
 2221 GCTAGATCATCGGTGCAGACGGCGTACATCCGTACATCACCGCCGGGACCCGACCTA 2280
 T A F I P Y I T A G D P D L

2281 GCGACGACGGCCGAGGCCTGCGTCTGGACGGCTGTGGCGCCGACGTACGAGCTG 2340
 A T T A E A L R L L D G C G A D V I E L

2341 GGGGTACCCCTGCTGGACCCCTACATCGACGGGCCATCATCCAGGCGTCGGTGGCGGG 2400
 G V P C S D P Y I D G P I I Q A S V A R

2401 GCTCTGGCCAGCGGACCAACCATGGACGCCGTGCTGGAGATGCTGAGGGAGGTGACGCCG 2460
 A L A S G T T M D A V L E M L R E V T P

2461 GAGCTGTCGTCGCCCCGTGGTGCCTCTCCTACTACAAGCCATCATGTCGAGCTTG 2520
 E L S C P V V L L S Y Y K P I M S R S L

2521 GCCGAGATGAAAGAGGCCGGGGTCCACGGTAACATAGCTAGCTTCCGATCCCCCTTC 2580
 A E M K E A G V H

2581 ATTAATTAATTATAGTAGTCCATTGATGATGATTTGTTTTCTTTACTGACA 2640
 2641 GGTCTTATAGTGCCTGATCTCCGTACGTGGCCGCGACTCGCTGTGGAGTGAAGCCAAG 2700
 G L I V P D L P Y V A A H S L W S E A K

2701 ACAACAACCTGGAGCTGGTAGGTTGAATTAAGTTGATGCATGTGATGATTATGTAGCT 2760
 N N N L E L

2761 AGATCGAGCTAGCTATAATTAGGAGCATATCAGGTGCTGCTGACAACACCAGCCATACCA 2820
 V L L T T P A I P

2821 GAAGACAGGATGAAGGAGATCACCAAGGCTTCAGAAGGCTTCAGTACCTGGTAGTTATA 2880
 E D R M K E I T K A S E G F V Y L

2881 TGTATATATAGATGGACGACGTAACCTCATCCAGCCCATGCATATATGGAGGCTTCAT 2940
 2941 TCTGCAGAGACGACGAAGACCACGACGACTAACACTAGCTAGGGCGTACGTTGCAG 3000

3001 GTGAGCGTGAACGGAGTGACAGGTCTCGCGAAACGTGAACCCACGAGTGGAGTCAC 3060
 V S V N G V T G P R A N V N P R V E S L

Fig. 24C

3061 ATCCAGGAGGTTAAGAAGGTGACTAACAGCCCCTGCTGGCTCGGCATATCCAAG 3120
 I Q E V K K V T N K P V A V G F G I S K
 3121 CCCGAGCACGTGAAGCAGGTACGTACGTAGCTGACCAAAAAAAACTGTTAACAGTTTG 3180
 P E H V K
 3181 TTTGACAAGCCGGCTACTAGCTAACAGTACGTGACACACACACACAGAT 3240
 Q I
 3241 TCGCGAGTGGGGCGCTGACGGGTGATCATCGCAGGCCATGGTAGGCAGCTGGCGA 3300
 A Q W G A D G V I I G S A M V R Q L G E
 3301 AGCGGCTTCTCCAAGCAAGGCCCTGAGGAGGCTGGAGGAGTATGCCAGGGCATGAAGAA 3360
 A A S P K Q G L R R L E E Y A R G M K N
 +++
 3361 CGCGCTGCCATGAGTCATGACAAAGTAAAACGTACAGAGACACTTGATAATATCTATCT 3420
 A L P
 3421 ATCATCTCGGAGAACGACGACCGACCAATAAAATAAGCCAAGTGGAGTGAAGCTTAGCT 3480
 3481 GTATATACACCGTACGTGCGTCGTCGTTCCGGATCGATCTCGGCCGGCTAGCTAGCAG 3540
 3541 AACGTGTACGTAGTAGTATGTAATGCATGGAGTGTGGAGCTACTAGCTAGCTGGCGTTC 3600
 3601 ATTGATTATAATTCTCGCTCTGCTGTGGTAGCAGATGTACCTAGTCATTTGTACGA 3660
 3661 CGAAGAACGGCTAGCTAGCCGTCTCGATCGTATATGTAATGATTAATCTGCAGATTGA 3720
 \$
 3721 ATAAAAACTACAGTACGCATATGATGCGTACGTACGTGTGATAGTTGTGCTCATATAT 3780
 3781 GCTCCTCATCACCTGCCTGATCTGCCATCGATCTCTCGTACTCCTCCTGTAAATG 3840
 3841 CCTCTTTGACAGACACACCACCCAGCAGCAGTGACGCTCTGCACGCCGCCCTTAA 3900
 3901 GACATGTAAGATATTAAAGAGGTATAAGATACCAAGGAGCACAAATCTGGAGCACTGGG 3960
 3961 ATATTGCAAAGACAAAAAAACAAAATTAAAGTCCCACCAAAGTAGAGATAGTAAAGA 4020
 4021 GGTGGATGGATTAAATTATCTCATGATTTGGATCTGCTCAAATAGATCGATATGGTA 4080
 4081 TTCAGATCTATGTTGATAGCCTTTCATAGCTTCTGAAAAAAATGGTATGAG 4140
 4141 TCGGGAGTAGCTAGGGCTGTGAAGGAGTCGGATGGCTTCCACGTACTTGTGGGCC 4200
 4201 TAGTCGGTTCTATTAGTCCGATCCGAGTCCGGCATGGTCCGGTCCATACGGGCTAG 4260
 4261 GACCAAGCTCGGCACGTGAGTTAGGCCGTCGGCTAGCCGAGCACGACCCGTTTA 4320
 4321 AACTGGCTAGGACTCGCCCATTTAATAAGACAAACATTGCAAAAATAGCTCTATTTTT 4380
 4381 ATTAAAAATATTTGTTATTGTGAAATGTGTATTATTTGTAATATATATTATGTATA 4440
 4441 TAGTTATATCTCAATTATGATTATAAAATATGTTTTTATTATGAACTCATTTAAGT 4500
 4501 TTGATTATGCGTTGGCGGGCTCGAGGGAGGCACGGTGAACATTTGGGTGGGCTTAAC 4560
 4561 GGGTCGGCCCCGGCCGGTTCGGCCCATCCACGGCCATCCCGTGTGCGCCTCGTTCGGTG 4620
 4621 AGTTCAAGCCCGTCGGACAACCCGTCCCCGGCCGGATAATTAAATCGGGCTAACCGTGGC 4680
 4681 GTGCTTAAACGGTCCGTGCCTAACGGACGGGGCCGCGGGGGCCGGTTGACATCTTA 4740
 4741 GTGGTGTGATTAGAGATGGCGATGGGAACCGATCACTGATTCCGTGTGGAGAATCGATA 4800
 4801 TCAAGCTTATCGATACC 4817

Entire sequence of the maize TrpA gene, with introns and exons, transcription and translation strats, start and stop of cDNA.

\$ = start and end of cDNA; +1 = transcription start; 73***** = primer extension primer; ▼ = start of translation; +++ = stop codon; _____ = CCAAT Box, TATAA Box, poly A addition site.
 # above underlined sequences are PCR primers.

DODGE 44-2948366

Northern blot showing differential expression of TrpA gene in maize tissues. 2 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25A

Northern blot showing differential expression of
TrpA gene in maize tissues. 4 hour exposure against
film at -80C with Dupont Cronex intensifying screens.

Fig. 25B

Northern blot showing differential expression of TrpA gene in maize tissues. 18 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25C

Northern blot showing differential expression of
TrpA gene in maize tissues. 48 hour exposure against
film at -80C with Dupont Cronex intensifying screens.

Fig. 25D

Northern blot showing maize TrpA gene expression in
Funk lines 211D and 5N984 leaf and pith and the absence
of expression in 211D seed total RNA.
65 hour exposure against film at -80C with Dupont Cronex
intensifying screens.

Fig. 26

Genomic southern of Funk line 211D probed with the TrpA cDNA 8-2. B = BamHI, E = EcoRI, EV = EcoRV, H = HindIII and S = SacI.
120 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 27

Primer extension showing the transcription start of TrpA gene and sequencing ladder.
1 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 28A

RNase protection of region from +2 bp to +387 bp
with three annealing temperatures.
16 hour exposure against film at -80C with Dupont Cronex
intensifying screens.

Fig. 28B

Fig. 30B

DRAFT - NOT FOR PUBLICATION

969 CTG GAT AGA GAA GAG CAC CTT TAC ACA GCA TTC CAG TAT TTC GAC AAG GAC AAC AGC
323►Leu Asp Arg Glu Glu His Leu Tyr Thr Ala Phe Gln Tyr Phe Asp Lys Asp Asn Ser

1026 GGG TAC ATT ACT AAA GAA GAG CTT GAG CAC GCC TTG AAG GAG CAA GGG TTG TAT GAC
342►Gly Tyr Ile Thr Lys Glu Glu Leu Glu His Ala Leu Lys Glu Gln Gly Leu Tyr Asp

1083 GCC GAT AAA ATC AAA GAC ATC ATC TCC GAT GCC GAC TCT GAC AAT GAT GGA AGG ATA
361►Ala Asp Lys Ile Lys Asp Ile Ile Ser Asp Ala Asp Ser Asp Asn Asp Gly Arg Ile

1140 GAT TAT TCA GAG TTT GTG GCG ATG ATG AGG AAA GGG ACG GCT GGT GCC GAG CCA ATG
380►Asp Tyr Ser Glu Phe Val Ala Met Met Arg Lys Gly Thr Ala Gly Ala Glu Pro Met

1197 AAC ATC AAG AAG AGG CGA GAC ATA GTC CTA TAG TGAAGTGAAGCAGCAAGTGTATAATGTG
399►Asn Ile Lys Lys Arg Arg Asp Ile Val Leu ...

1263 TATAGCAGCTAAACAAGCAAATTGTACATCTGTACACAAATGCAATGGGTTACTTTGCAAAAAAAAAAAAAAA
①
1340 AAAAAAAA

Fig. 30A

Maize Pollen CDPK cDNA sequence sequence contained in clones pCIB3168 and pCIB3169

1 TG CAG ATC ATG CAC CAC CTC TCC GGC CAG CCC AAC GTG GTG GGC CTC CGC GGC GCG
1►Gln Ile Met His His Leu Ser Gly Gln Pro Asn Val Val Gly Leu Arg Gly Ala

57 TAC GAG GAC AAG CAG AGC GTG CAC CTC GTC ATG GAG CTG TGC GCG GGC GGG GAG CTC
 19 Tyr Glu Asp Lys Gln Ser Val His Leu Val Met Glu Leu Cys Ala Gly Gly Glu Leu

Aval
114 TTC GAC CGC ATC ATC GCC CGG GGC CAG TAC ACG GAG CGC GGC GCC GCG GAG CTG CTG
38►Phe Asp Arg Ile Ile Ala Arg Gly Gln Tyr Thr Glu Arg Gly Ala Ala Glu Leu Leu

171 CGC GCC ATC GTG CAG ATC GTG CAC ACC TGC CAC TCC ATG GGG GTG ATG CAC CGG GAC
57►Arg Ala Ile Val Gln Ile Val His Thr Cys His Ser Met Gly Val Met His Arg Asp

Aval
228 ATC AAG CCC GAG AAC TTC CTG CTG CTC AGC AAG GAC GAG GAC GCG CCG CTC AAG GCC
76►Ile Lys Pro Glu Asn Phe Leu Leu Leu Ser Lys Asp Glu Asp Ala Pro Leu Lys Ala

285 ACC GAC TTC GGC CTC TCC GTC TTC TTC AAG GAG GGC GAG CTG CTC AGG GAC ATC GTC
95 Thr Asp Phe Gly Leu Ser Val Phe Phe Lys Glu Gly Glu Leu Leu Arg Asp Ile Val

342 GGC AGC GCC TAC TAC ATC GCG CCC GAG GTG CTC AAG AGG AAG TAC GGC CCG GAG GCC
 114 ►Gly Ser Ala Tyr Tyr Ile Ala Pro Glu Val Leu Lys Arg Lys Tyr Gly Pro Glu Ala

399 GAC ATC TGG AGC GTC GGC GTC ATG CTC TAC ATC TTC CTC GCC GGC GTG CCT CCC TTC
133 Asp Ile Trp Ser Val Gly Val Met Leu Tyr Ile Phe Leu Ala Gly Val Pro Pro Phe

456 TGG GCA GAG AAC GAG AAC GGC ATC TTC ACC GCC ATC CTG CGA GGG CAG CTT GAC CTC
 152 Trp Ala Glu Asn Glu Asn Gly Ile Phe Thr Ala Ile Leu Arg Gly Gln Leu Asp Leu

513 TCC AGC GAG CCA TGG CCA CAC ATC TCG CCG GGA GCC AAG GAT CTC GTC AAG AAG ATG
 171▶Ser Ser Glu Pro Trp Pro His Ile Ser Pro Gly Ala Lys Asp Leu Val Lys Lys Met

570 CTC AAC ATC AAC CCC AAG GAG CGG CTC ACG GCG TTC CAG GTC CTC AAT CAC CCA TGG
 190►Leu Asn Ile Asn Pro Lys Glu Arg Leu Thr Ala Phe Gln Val Leu Asn His Pro Trp

627 ATC AAA GAA GAC GGA GAC GCG CCT GAC ACG CCG CTT GAC AAC GTT GTT CTC GAC AGG
209►Ile Lys Glu Asp Gly Asp Ala Pro Asp Thr Pro Leu Asp Asn Val Val Leu Asp Arg

684 CTC AAG CAG TTC AGG GCC ATG AAC CAG TTC AAG AAA GCA GCA TTG AGG ATC ATA GCT
228▶Leu Lys Gln Phe Arg Ala Met Asn Gln Phe Lys Lys Ala Ala Leu Arg Ile Ile Ala

741 GGG TGC CTA TCC GAA GAG GAG ATC ACA GGG CTG AAG GAG ATG TTC AAG AAC ATT GAC
 247►Gly Cys Leu Ser Glu Glu Glu Ile Thr Gly Leu Lys Glu Met Phe Lys Asn Ile Asp

798 AAG GAT AAC AGC GGG ACC ATT ACC CTC GAC GAG CTC AAA CAC GGG TTG GCA AAG CAC
266 Lys Asp Asn Ser Gly Thr Ile Thr Leu Asp Glu Leu Lys His Gly Leu Ala Lys His

855 GGG CCC AAG CTG TCA GAC AGC GAA ATG GAG AAA CTA ATG GAA GCA GCT GAC GCT GAC
 285 **Gly** Pro Lys Leu Ser Asp Ser Glu Met Glu Lys Leu Met Glu Ala Ala Asp Ala Asp

EcoRI

912 GGC AAC GGG TTA ATT GAC TAC GAC GAA TTC GTC ACC GCA ACA GTG CAT ATG AAC AAA
 304 ▶Gly Asn Gly Leu Ile Asp Tyr Asp Glu Phe Val Thr Ala Thr Val His Met Asn Lys

Fig. 29

Fig. 31

7406,BamHI
7264,EcoRV

FIG. 38

Fig. 37C

2641 AGAGCGGAGA 2VGWKTGGAG AGACAAACGT GAAAAATTGG AATGGGAAAC AAATATTGTT
ArgAlaGlu LysLysTrp ArgAspLysArg GluLysLeu GluTrpGlu ThrAsnIleVal
2701 TATAAAGAGG CAAAAGAACATC TGTAGATGCT TTATTTGTA ACTCTCAATA TGATAGATTA
TyrLysGlu AlaLysGlu SerValAspAla LeuPheVal AsnSerGln TyrAspArgLeu
2761 CAAGCGGATA CCAACATCGC GATGATTCA GCGGCAGATA AACCGTTCA TAGCATTGCA
GlnAlaAsp ThrAsnIle AlaMetIleHis AlaAlaAsp LysArgVal HisSerIleArg
2821 GAAGCTTATC TGCTTGAGCT GTCTGTGATT CCGGGTGTCA ATGCCGCTAT TTTTGAAGAA
GluAlaTyr LeuProGlu LeuSerValIle ProGlyVal AsnAlaAla IlePheGluGlu
2881 TTAGAAGGGC GTATTTCAC TGCATTCTCC CTATATGATG CGAGAAATGT CATTAAAAAT
LeuGluGly ArgIlePhe ThrAlaPheSer LeuTyrAsp AlaArgAsn ValIleLysAsn
2941 GGTGATTTA ATAATGGCTT ATCCTGCTGG AACGTGAAAG GGCATGTAGA TGTAGAAGAA
GlyAspPhe AsnAsnGly LeuSerCysTrp AsnValLys GlyHisVal AspValGluGlu
3001 CAAAACAACC ACCGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA
GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu
3061 GTTCGTGTCT GTCCGGGTG TGCTATATC CTTCGTGTCA CAGCGTACAA GGAGGGATAT
ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
3121 GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAAATA CAGACGAAC GAAAGTTAGC
GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
3181 AACTGTGTAG AAGAGGAAGT ATATCCAAAC AACACGGTAA CGTGTAAATGA TTATACTGCG
AsnCysVal GluGluGlu ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
3241 ACTCAAGAAG AATATGAGGG TACGTACACT TCTCGTAATC GAGGATATGA CGGAGCCTAT
ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301 GAAAGCAATT CTTCTGTACC AGCTGATTAT GCATCAGCCT ATGAAGAAAA AGCATATACA
GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
3361 GATGGACGAA GAGACAATCC TTGTGAATCT AACAGAGGAT ATGGGGATTA CACACCACTA
AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
3421 CCAGCTGGCT ATGTGACAAA AGAATTAGAG TACTTCCCAG AAACCGATAA GGTATGGATT
ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
3481 GAGATCGGAG AAACGGAAGG AACATTCAATC GTGGACAGCG TGGAATTACT TCTTATGGAG
GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
3541 GAATAA
Glu---

Fig. 37B

0938462442064
 1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA CCATGTTCCG CAGTGGCTTC
 ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
 1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC
 SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
 1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC
 GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
 1441 AACCTGGGCA GCGGCACCAG CGTGGTGAAG GGCCCCGGCT TCACCCGGGG CGACATCCTG
 AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
 1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCCCTGAGC
 ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
 1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCCACCA ACCTGCAGTT CCACACCAGC
 GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
 1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGCGCCA CCATGAGCAG CGGCAGCAAC
 IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
 1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGGC TTCACCACCC CCTTCAACTT CAGAACCGGC
 LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
 1741 AGCAGCGTGT TCACCCCTGAG CGCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC
 SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
 1801 CGCATCGAGT TCGTGCCCGC CGAGGTGACC TTCGAGGCCG AGTACGACCT GGAGAGGGCT
 ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
 1861 CAGAAGGCCG TGAACGAGCT GTTCACCAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG
 GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal
 1921 ACCGACTACC ACATCGATCA AGTATCCAAT TTAGTTGAGT GTTTATCTGA TGAATTGAG
 ThrAspTyr HisIleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
 1981 CTGGATGAAA AAAAGAATT GTCCGAGAAA GTCAAACATG CGAACGCGACT TAGTGATGAG
 LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu
 2041 CGGAATTTC TTCAAGATCC AAACTTAGA GGGATCAATA GACAACTAGA CCGTGGCTGG
 ArgAsnLeu LeuGlnAsp ProAsnPheArg GlyIleAsn ArgGlnLeu AspArgGlyTrp
 2101 AGAGGAAGTA CGGATATTAC CATCCAAGGA GCGATGACG TATTCAAAGA GAATTACGTT
 ArgGlySer ThrAspIle ThrIleGlnGly GlyAspAsp ValPheLys GluAsnTyrVal
 2161 ACGCTATTGG GTACCTTGA TGAGTGCTAT CCAACGTATT TATATCAAAA AATAGATGAG
 ThrLeuLeu GlyThrPhe AspGluCysTyr ProThrTyr LeuTyrGln LysIleAspGlu
 2221 TCGAAATTAA AAGCCTATAC CCGTTACCAA TTAAGAGGGT ATATCGAAGA TAGTCAAGAC
 SerLysLeu LysAlaTyr ThrArgTyrGln LeuArgGly TyrIleGlu AspSerGlnAsp
 2281 TTAGAAATCT ATTTAATTCTG CTACAATGCC AAACACGAAA CAGTAAATGT GCCAGGTACG
 LeuGluIle TyrLeuIle ArgTyrAsnAla LysHisGlu ThrValAsn ValProGlyThr
 2341 GGTCCTTAT GGCCGCTTTC AGCCCCAAGT CCAATCGGAA AATGTGGGGA GCCGAATCGA
 GlySerLeu TrpProLeu SerAlaProSer ProIleGly LysCysGly GluProAsnArg
 2401 TGCCTCCGC ACCTGGAGTG GAACCCGGAC CTAGACTGCA GCTGCAGGGGA CGGGGAGAAG
 CysAlaPro HisLeuGlu TrpAsnProAsp LeuAspCys SerCysArg AspGlyGluLys
 2461 TGCGCCCATC ATTCCCATCA TTTCTCCTTG GACATTGATG TTGGATGTAC AGACTTAAAT
 CysAlaHis HisSerHis HisPheSerLeu AspIleAsp ValGlyCys ThrAspLeuAsn
 2521 GAGGACTTAG GTGTATGGGT GATATTCAAG ATTAAGACGC AAGATGGCCA TGCAAGACTA
 GluAspLeu GlyValTrp ValIlePheLys IleLysThr GlnAspGly HisAlaArgLeu
 2581 GGAAATCTAG AATTCTCGA AGAGAAACCA TTAGTAGGAG AAGCACTAGC TCGTGTGAAA
 GlyAsnLeu GluPheLeu GluGluLysPro LeuValGly GluAlaLeu AlaArgValLys

Fig. 37A

0908462 1.12.1991
1 ATGGACAAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCCTGAG CAACCCCCGAG
NetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
61 GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ACCGGCTACA CCCCATCGA CATCAGCCTG
ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
121 AGCCTGACCC AGTCCTGCT GAGCGAGTTC GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG
SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
181 GTGGACATCA TCTGGGGCAT CTTCGGCCCG AGCCAGTGAGG ACGCCTTCCT GGTGCAGATC
ValAspIle IleTrpGly IlePheGlyPro SerGlnTrp AspAlaPhe LeuValGlnIle
241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTTCGCCCCA ACCAGGCCAT CAGCCGCCCTG
GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCCGCAGTG GGAGGCCGAC
GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
361 CCCACCAAACC CCGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC
ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTACC AGGTGCCCT GCTGAGCGTG
LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCCGTG ACGTCAGCGT GTTCGGCCAG
TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
541 CGCTGGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC
ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
601 GGCAACTACA CCGACCACGC CGTGCCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT
GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
661 CCCGACAGGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG
ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCCAT CCGCACCGTG
LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
781 AGCCAGCTGA CCCCGAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC
SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
841 CGCGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG
ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
901 AACAGCATCA CCATCTACAC CGACGCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG
AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln
961 ATCATGGCCA GCCCGCTCGG CTTCAGCGGC CCCGAGTTCA CCTTCCCCCT GTACGGCACC
IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr
1021 ATGGGCAACG CTGCACCTCA GCAGCGCATC GTGGCACAGC TGGGCCAGGG AGTGTACCGC
MetGlyAsn AlaAlaPro GlnGlnArgIle ValAlaGln LeuGlyGln GlyValTyrArg
1081 ACCCTGAGCA GCACCCGTAA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG
ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141 AGCGTGCTGG ACGGCACCGA GTTCGCCCTAC GGCACCAGCA GCAACCTGCC CAGCGCCGTG
SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
1201 TACCGCAAGA GCGGCCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACTG
TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal

Fig. 36

Fig. 35E

pol CDPK gene Map (1 > 4165) Site and Sequence

TCAGCCGACAAACTAAACTATAGAAACCACATCATGATATCAA	3600
TTGGAGGTGGCGGTGCTACAGAAATAGAACCCAGT	
INTRON 6	
ACACCAAAATGACTAACTTGT	3680
CATGATTAGTTGTTCTCGTA	
ACTGAACATTGTGTTCTTAGTTCTTATTGTTAAACC	
INTRON 6	
AAAGACTTAAATTCACTTTGCACATGCAGGATGGAAGGATA	3760
GATTTCAGAGATGATGAGGAAAGGGAC	
INTRON 6 EXON 7	
GGCTGGTGCCGAGCCAATGAACATCAAGAAGAGGCAGACATAGTCCTATAGTGAAGTGAAGCAGWAAGTGTAAATGTA	3840
EXON 7	
ATGTGTATAGCAGCTAAACAAGCAAATTGTACATCTGTACACAAATGCAATGGGTTACTTTGCAACTTAGTCATG	3920
GATGGTTGTACGTTGTCTATTGATTGCAAGTGATTGAAAGACATGCATACTTAGGAAC	4000
GAAAGATAGATCTAC	
TACTGCTAGAGACAGAACAAATAGGATKKYATTCA	4080
GYAAGTGYGTATTCA	
GAAGACTACAGCTGGCATCTATTATTCTC	
ATTGTCCTCGCAAAATACTGATGATGCATTGAGAGAACAAATATGCAACAAAGATCGAGCTCCCTATAGTGAGTCGTATT	4160
AGGCC	
→ 4165	

Fig. 35D

Fig. 35C

pol CDPK gene Map (1 > 4165)

Site and Sequence

099834-112634

Fig. 35B

pol CDPK gene Map (1 > 4165)

Site and Sequence

Xba I

CAAAATCTAGAACCTTTTCTCCGATAACGCCCTCCATCTCGCCGTTCATGTCCGTGGCTGGCTGCCCTCC 1440

GTGGGAGCAGGCAGGCCACTCGTCCCCGCCAGCCATGGCCAGTGCTGCTCCAAGGGCGCCGGAGAGGGCCCCGCCA 1520

CCGAGGCAGCAAACGGCAGGCAGGCCAAGCCGCGGGCGTCCCGAACAACGCCGACGGACAACGGCGTCGTCCCTCGTCCGC 1600

GGTGGCTGCTGCCGCTGCTGCCGGTGGTGGCGGGCACGACGAAGCCGGCTCACCCACCGGCCAGGG 1680

CCAGCTCCGGCAGCAAACGGCGGCCGTGGCACGGTGCTGGGCCGGCCATGGAGGACGTGCGCGCACCTACTCG 1760

Ava I

ATGGGCAAGGAGCTGGCGCGGGCAGTTGGCGTACGCACCTGTGCACGCACCGGACGAGGGCGAGAAGCTGGCGTG 1840

CAAGACGATCGCGAAGCGGAAGCTGGCGGCCAGGGAGGACGTGGACGACGTGCGGGAGGTGCAGATCATGCACCACC 1920

TCTCCGGCCAGCCAACGTGGTGGGCCTCCGGCGCGTACGAGGACAAGCAGAGCGTGCACCTCGTCATGGAGCTGTGC 2000

Ava I

GCGGGCGGGAGCTTCGACCGCATCATGCCCGGGCAGTACACGGAGCGCGGCCGGAGCTGCTGCGCGCCAT 2080

Fig. 35A

pol CDPK gene Map (1 > 4165)

Site and Sequence

Enzymes : 6 of 198 enzymes (Filtered)

Settings : Circular, Certain Sites Only, Standard Genetic Code

TTAGTAACACCTCTCCAATCGCTGGGTTGGCACATTAGCTTTATCACATTAAAGAAATAGAGTTACCCACCTTC 80
AAAATATGCCTATAACAATGAATGATGCTTGGATGCAATATAGCTAGATTCAACTAGCTATATATGGTCAATAGAACCTG 160
TGAGCACCTCACAAACACGACTTCAATTGAGACCTAAGCGAGTAATGGTAAAGTCTCTTATTATTAGTCTTAGG 240
ACTTCTCCTTGCTAAATGCTTGTCAAGCGATCTATATATCTCCCCACTGCAGGAGATACTATATATAGGCCTTGGACCT 320
CTAGGGTATCTCAAAGGCCAGTCACAACAATTCTAACAGTATTAAATTATACATGTATGAACAGTGTAGGAATTG 400
AGTGCCCAACCCAAGAGTGGAGGTGTAAATTGGTAGCTAAACTTAAATAGGCTCTTATTAGGTTATCTAGTC 480
TCTACTTAGACTAATTAGAAAGAATTACAACCTATGGTAATCATCTAGTCTAAGCAAATTAGGAAAGTTAA 560
AAGCACACAATTAGGCACATGTGAAAGATGTATGGTAAGTAAAGACTTATAAGGAAAAAGTGGGTGAATCCTCAAGA 640
TGTGGTGGTATATCCCAATGATATTAGATGCCAGAATATAGGGGGAAATCGATGTATACCCTCTACCAAGGATAACCTG 720
TGGGACTGTGCAACTGACACATGGACCATGGTGTCTCTAGATTGGTTATTAGCTAATTGCGCTACAACTTGTTCAA 800
GGCTAGACCAAATTAAAAAACTAATATTAAACATAAAAGTTAGGCAAACATAGTAAATTATGCAGCGATCCAACAACA 880
AGCCATGTCTCGTGGGTATGAGCCACGCGTGGCCATACACCCACATGATGTTCCATACGGATGGCTTATGCAATT 960
TTGTCTGAAACACAAGCCTTAATACAGCCACGCGACAATCATGGAAGTGGTCGTTTAGGTCTCATCATGAAGTTCA 1040
GGGAAAACGCATCAAATGTAATGCAGAGAAATGGTATTCTCTTGTAAATCAGGGAGAGGAGTACCATCAGTACAGA 1120

EcoR I
TTCAGAACGAAATTCACTTCCAAACGACAATAATCGCAGCATCTGTAAAAATTGAGAAACTTCTGTTGACTTGT 1200
AGCCCTGACCTTGCAAATATTGAAGTTGTGCCTGCTGACACAACTTCATGGAAGTGTGTTGATCAGTTGCCA 1280
GAAACAGCAAGCAGCCTATATATCTGTCAAGGAGACACCCCTGCCGCCCTCTCTTCCGCCATTCCCTCCCTACCCCTT 1360

Fig. 34

Lipman-Pearson Protein Alignment

Gap Penalty: 2; Gap Length Penalty: 12

Seq1 pol CDPK ptn	Seq2 soybean CDPK ptn	Similarity	Gap Index	Gap Number	Gap Length	Consensus Length
1>551	1>509	62.4		1	1	464
pol CDPK ptn	VLGRPMEDVRATYSMGKELGRGQFGVTHLCTHRTSGEKLACKTIAKRKLAAREDVDDVRREVQIMHHLSG	150				
	.. :: ..: .: : . :: . : : . : : : .					
soybean CDPK ptn	VLPQRTQNIREVYEVGRKLGQGQFGTTFECTRRASGGKFACKSIPKRKLLCKEDYEDVWREIQIMHHSE	91				
pol CDPK ptn	QPNVVGLRGAYEDKQS VHLV MELCAG GELFDRIIARGQYTERGAAELLRAIVQIVHTCHSMGV MHRDIKP	220				
	: : : . : . : : : : : : : : :					
soybean CDPK ptn	HANVVRIEGTYEDSTAVHLV MELCEGG EGFDRIVQKGHYSERQAARLIK TIVEV VEA CHSLGV MHRDLKP	161				
pol CDPK ptn	ENFL LSKDEDAPLKATDF GLSVFFKE GELL RDIV GSAYYIAPEV LKR KYGP EAD IWSVG VML YIFLAGV	290				
	: : : : : : : : : : : : : : :					
soybean CDPK ptn	ENFL FDTID EAKL KATDF GLSVFYKPGESFC DVVGSPYYVAPEV LRK LYGP ESDV WSAG VIL YILL SGV	231				
pol CDPK ptn	PPFWAENENGIFTAILRGQLDLSSEPWP HIS PGAKDLVKKMLNINPKERLTAFQVLNHPWI KEDGDAPDT	360				
	: . : : : : : : . . : . . .					
soybean CDPK	PPFWAESEPGIFRQILLGKLD FHSEPWPSISDSAKDLIRKMLDQNP KTRLT AHEVLRHPWIVDDNIAPDK	301				
pol CDPK ptn	PLDNVVL DR LKQFRAM NQFKKA ALRIAG CLSEEITGLKEMFKNIDKD NSGTITLDELKHGLAKHGPKL	430				
	: . : . : . : . : . : . : . : . : . :					
soybean CDPK ptn	PLD SAVL SRLK QFSAMNKLKKM ALRVIAERLSEEIGGLKELFKMIDTDNSGTITFDELKDGLK RVGSEL	371				
pol CDPK ptn	SDSEM EKLMEA ADADGNGL IDYDEFVTATVHMNKL DREEHLYTA FQYFDKDN SGYITKEELEHALKEQGL	500				
	: : : . : . : . : . : . : . : . : . :					
soybean CDPK ptn	M ESEIKDLM DAADIDKSGT IDYGEFIAATVHLNK LEREENLVSAFSYFDKDGSGYITLDEIQQACKDFGL	441				
pol CDPK ptn	YDADKIKDIISDADSDNDGRIDYSEFVAMMRKG TAGAEP MN IKK	544				
	. . . : .: : : . : . : . : . : . : . :					
soybean CDPK ptn	-DDIHIDDMIKEIDQDNDGQIDYGEFAAMMRKGNGGIGRRTMRK	484				

Fig. 33

Lipman-Pearson Protein Alignment

Gap Penalty: 2; Gap Length Penalty: 12

Seq1 pol CDPK ptn	Seq2 humcama ptn	Similarity Index	Gap Number	Gap Length	Consensus Length
1>551	1>150	40.3	2	2	142

pol CDPK ptn I.SEEEITGLKEMFKNIKDKNSTITLDELKHGLAKHGPKLSDSEMEKLMEAADADGNGLIDYDEFVTATV 460
L:EE:I:::KE F. :DKD..GTIT .EL : . G.: :::E::::::.DADGNG ID: EF:T .
humcama ptn LTEEQIAEFKEAFSLFDKDGDTITTKELGTVMRSILGQNPTAEALQDMINEVDADGNGTIDFPEFLTMMA 74

pol CDPK ptn HMNKL-DREEHLYTAFQYFDKDNSGYITKEELEHALKEQGLYDADKIKDI-ISDADSNDGRIDYSEFVA 528
: M:, D.EE:: .AF: FDKD.:GYI: .EL H::: G .:::;I.:AD D.DG:::Y.EFV.
humcama ptn RKMKD TDSEEIREAFRVKDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYYEFVQ 144

pol CDPK ptn MM 530
MM
humcama ptn MM 146

Fig. 32

Lipman-Pearson Protein Alignment
 Gap Penalty: 2; Gap Length Penalty: 12

Seq1 pol CDPK ptn	Seq2 rat pk2 ptn	Similarity	Gap Index Number	Gap Length	Consensus Length
1>551	1>528	36.5	4	4	297

pol CDPK ptn YSMGKELGRGQFGVTHLCTHRTSGEKLACKTIAKRKLAAREDVDDVRREVQIMHHLSGQPNVGLRGAYE 162
 rat pk2 ptn YQLFEELGKGAFSVVRRCVKKTSTQEYAAKIINTKKLSARDH-QKLEREARICRLLK-HPNIVRLHDSIS 81

pol CDPK ptn DKQSVHLVMELCAGGELFDRIIARGQYTERGAAELLRAIVQIVHTCHSMGVHRDIKPENFLLSKDEDA 232
 rat pk2 ptn EEGFHLYLVFDLVTGGELFEDIVAREYYSEADASHCIHQILESVNHIHQDIVHRDLKPENLLLASKCKGA 151

pol CDPK ptn PLKATDFGLSVFFK-EGELLRDIVGSAYYIAPEVL-KRKYGPEADIWSVGVMLYIFLAGVPPWAENENG 300
 rat pk2 ptn AVKLADFGLAIEVQGEQQAWFGFAGTPGYSPEVLRKDYPGKPVDIACGVILYILLVGYPFWDEDQHK 221

pol CDPK ptn IFTAILRGQLDLSSEPWP HISPGAKDLVKKMLNINPKERLTAFQVLNHPWIKEGDAPDTPLDNVVLDR 370
 rat pk2 ptn LYQQIKAGAYDFPSPEWDTVTPEAKNLINQMLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECL 291

pol CDPK ptn KQFRAMNQFKKAALRII 387
 rat pk2 ptn RKFNARRKLKGAILTTM 308