# Camouflaged Object Detection

**Team:** Ismail Elomari Alaoui - **A20497221**Reda Chaguer - **A20497223** 

Under the supervision of: Prof. Gady Agam

# Camouflaged Object Detection (COD)

What is it?

**Task**: Identify objects that are seamlessly embedded in their surroundings.

**Difficulty**: High intrinsic similarities between the target object and the background.

Other tasks. Generic Object Detection, Salient Object Detection

#### **Motivation**:

Solving this problem is very beneficial for applications in the fields of computer vision (e.g., for search-and-rescue work, or rare species discovery), medical image segmentation, agriculture (locust detection to prevent invasion), art, etc



### COD10K dataset

**CHAMELEON 2018**: Has only 76 images with manually annotated object-level ground-truths.

**CAMO 2019**: 2500 images covering eight categories.

**COD10K 2020 :** 6000 images for training and 4000 images for testing, randomly chosen from the entire dataset.

#### **Images categories:**

- Camouflaged Objects
- **❖ Non-Camouflaged Objects**
- **A Background Objects**



### Model Intuition

The model is inspired by the hunting operation of a predator. Biologists have shown that a predator will first identify whether a potential prey exists (search), then identify (identification) the target, and finally catch it.

The model simulates the first two stages of hunting, including:

A Search Module: SM
Which is responsible for searching a camouflaged object.



An Identification Module: IM Which is used to precisely detect the camouflaged object.



### Model components

- Implemented using the Keras Functional API
- Blue layers from ResNet50 pre-trained on ImageNet



#### Reproduces the search and identification stages of animal predation.

#### Mimics the structure of RFs in the human visual system





### SINet Model

**Search Attention (SA)**: An attention mechanism that eliminates interference from irrelevant features. By applying a convolution with a Gaussian filter



## Loss Functions & Training

The model uses the Cross-entropy loss

**Total loss:** 

$$L = L_{CE}^{s}(C_{csm}, G) + L_{CE}^{i}(C_{cim}, G)$$

#### **Training parameters:**

Epochs: 40

Batch size: 20

Optimizer: Adam

Learning rate: 1e-4



# Results & Training time

Training on Kaggle: Tesla P100-PCIE-16GB GPU

The result after training for 40 epochs over the dataset. (2 hours):



# Progression over time



#### Input image:

One seahorse camouflaged between sea algae of the same color.



#### **Result 2:**

After training for 40 epochs over the dataset. (2 hours)



After training for 2 epochs over the dataset.



### Problems and Further improvements:

Two problems:

**Search Attention function: SA** 

$$C_h = f_{max}(g(\mathcal{X}_2, \sigma, \lambda), C_s),$$

**f\_max**, a maximum function that highlights the initial camouflage regions of Cs: difficult to implement in Keras.

**Loading resnet50 weights:** 

The SINet architecture uses an old version of ResNet50, with slight modifications in the layers => weights loading problems.

### References:

#### Original paper:

https://openaccess.thecvf.com/content\_CVPR\_2020/papers/Fan\_Camouflaged\_Object\_Detection\_CVPR\_2020\_paper.pdf

#### Pytorch implementation of SINet:

https://github.com/DengPingFan/SINet/tree/master/Src

#### Video explanation of Camouflaged Object Detection:

https://www.youtube.com/watch?v=0MKrTekrPUQ

Thank you

Team: Ismail Elomari Alaoui - A20497221

Reda Chaguer - A20497223