

Polynomial Features:

• Das sind neue Merkmale, die entstehen, indem man vorhandene Merkmale potenziert (hoch 2, hoch 3 usw.) oder miteinander multipliziert. Dadurch kann das Modell besser erkennen, wie Merkmale zusammenwirken oder nichtlineare Zusammenhänge bestehen. Beispiel: In einem Modell zur Vorhersage von Immobilienpreisen kann Fläche² dem Modell mehr Informationen geben, wie größere Häuser den Preis beeinflussen.

Polynomial Features:

Vorteile

- Erkennen komplexer Zusammenhänge: Polynomial Features ermöglichen es dem Modell, nichtlineare Beziehungen in den Daten zu erfassen, die ein lineares Modell alleine nicht erkennen könnte.
- Verbesserte Modellleistung: Durch die zusätzlichen Merkmale kann das Modell oft genauer werden, besonders wenn die Daten tatsächlich eine nichtlineare Struktur aufweisen.
- Tools und Libraries: Scikit-learn bietet PolynomialFeatures, um solche Merkmale leicht zu generieren

Nachteile

- Overfitting: Zu viele polynomiale Merkmale können das Modell überanpassen", also zu stark auf die Trainingsdaten fixieren, sodass es auf neuen Daten schlecht generalisiert.
- Höherer Rechenaufwand: Die Berechnung und Verarbeitung vieler Polynomial Features kann das Training des Modells verlangsamen und die Anforderungen an Speicher und Rechenleistung erhöhen.
- Anwendungsbereiche: Besonders nützlich bei linearen Modellen für Daten mit nichtlinearen Beziehungen

Der Unterschied zwischen quadratischen und kubischen Termen liegt in der Potenz, auf die ein Merkmal angehoben wird:

- 1. Quadratische Terme: Hier wird ein Merkmal zum Quadrat genommen, also mit der Potenz 2. Beispiel: Fläche bedeutet, dass der Wert des Merkmals "Fläche" mit sich selbst multipliziert wird (z. B. 50 m² * 50 m² = 2500 m²²). Quadratische Terme helfen dabei, einfache, gekrümmte Beziehungen darzustellen.
- **2. Kubische Terme:** Hier wird ein Merkmal mit der Potenz 3 angehoben, also "hoch drei" genommen. Beispiel: Fläche bedeutet, dass der Wert der "Fläche" dreimal miteinander multipliziert wird (z. B. 50 m² * 50 m² * 50 m² = 125000 m³). Kubische Terme sind hilfreich, um noch komplexere und steilere Kurven darzustellen.

Zusammengefasst:

- Quadratische Terme (Fläche²) bilden leichte Krümmungen in den Daten ab.
- Kubische Terme (Fläche³) ermöglichen die Abbildung stärkerer, nichtlinearer Effekte und können komplexere Muster darstellen.

Hochschule Düsseldorf University of Applied Sciences

Target Encoding

Bei der Target-Kodierung wird für jede Kategorie der durchschnittliche Zielwert berechnet, um so die kategorialen Werte durch numerische Werte zu ersetzen. Dies ist besonders nützlich für Merkmale mit vielen einzigartigen Werten.

Vorteile:

• Verbessert die Vorhersagegenauigkeit, indem die Beziehung zum Zielwert erfasst wird.

Nachteile:

 Risiko für Overfitting, insbesondere wenn die Kategorien sehr wenige Datenpunkte enthalten.

Hochschule Düsseldorf University of Applied Sciences

Beispiel:

Target Encoding

Feature	Target
Apple	0
Banana	1
Apple	0
Banana	0
Banana	1

Feature	Average(Target)	
Apple	0	
Banana	2/3 = 0.66	

Feature	Encoded
Apple	0
Banana	0.66
Apple	0
Banana	0.66
Banana	0.66

Frequency Encoding:

ersetzt jede Kategorie eines Merkmals durch ihre Häufigkeit im Trainingsdatensatz, wodurch ein numerischer Wert zwischen 0 und 1 entsteht. Diese Methode eignet sich gut, wenn die Häufigkeit einer Kategorie für den Zielwert relevant ist . Neue, unbekannte Kategorien werden automatisch mit 0 kodiert, und der Logarithmus kann helfen, große Häufigkeitsunterschiede auszugleichen.

Height	Sex
173.1	Male
160.4	Female
178.5	Male
155.5	Female
163.7	Female

Height	Sex
173.1	0.4
160.4	0.6
178.5	0.4
155.5	0.6
163.7	0.6

Hochschule Düsseldorf University of Applied Sciences

Vorteile:

• Einfach, leistungsfähig und gut interpretierbar.

Nachteile:

- Unterscheidet nicht zwischen Kategorien gleicher Häufigkeit.
- Kann manchmal die Vorhersagekraft nicht steigern.

Gleitender Durchschnitt

Definition und Ziel:

Definition:

Der gleitende Durchschnitt ist ein Verfahren zur Glättung von Zeitreihendaten, bei dem regelmäßig (z.B. monatlich) der Durchschnitt von Werten über eine festgelegte Periode (z.B. 3 Monate) berechnet wird. Er hilft dabei, Schwankungen zu reduzieren und langfristige Trends sichtbar zu machen.

Ziel und Vorteile:

Rauschunterdrückung:
Der gleitende
Durchschnitt glättet
rauschhafte Daten und
reduziert zufällige
Schwankungen, was
besonders hilfreich bei
Zeitreihendaten ist.

Effizienz und
Einfachheit: Da es eine
recheneffiziente Methode
ist, lässt sich der
gleitende Durchschnitt
schnell berechnen und in
DatenvorverarbeitungsPipelines integrieren.

Feature-Engineering: Er eignet sich zur Generierung von glatten Eingabedaten oder Features, die für bestimmte Modelle hilfreicher sein können als rohe Daten.

Wie funktioniert es?

- 1.Datenmenge wählen:.
- 2. Durchschnitt berechnen
- 3. Periode verschieben:
- 4. Wiederholen.
- Varianten :
- **Einfacher Gleitender Durchschnitt (SMA)**: Durchschnitt der letzten n Werte, alle gleich gewichtet. Gut für allgemeine Trends.
- Exponentiell Gleitender Durchschnitt (EMA): Neuere Werte werden stärker gewichtet, reagiert schneller auf Veränderungen. Häufig in der Finanzanalyse genutzt.
- Gewichteter Gleitender Durchschnitt (WMA): Neuere Werte erhalten mehr Gewicht als ältere, aber nicht exponentiell.

Monat	Umsatz (€)	Gleitender Durschnitt
Januar	1000	-
Februar	2000	-
März	3000	3000
April	4000	3000
Mai	5000	4000

Beispiel :3-Tage-Gleitender Durchschnitt (GD 3):

• Der grüne GD 3 glättet die täglichen Schwankungen, wodurch der allgemeine Trend klarer wird. Die kurzfristigen Zick-Zack-Bewegungen werden ausgeglichen

Korbproduktion

Gleitender Durchschnitt: Herausforderungen und Tools

Nachteile des Gleitenden Durchschnitts im Machine Learning

Begrenzte
Vorhersagekraft:
Basierend nur auf
historischen Daten;
keine eigenständige
Prognose zukünftiger
Werte.

Informationsverlust: Glättung kann feine Muster oder kurzfristige Trends übersehen.

Verzögerte Reaktion:
Langsame Anpassung
an plötzliche
Trendwechsel,
besonders bei längeren
Perioden.

Tools und Bibliotheken

- **Pandas:** Für Berechnung und Anwendung gleitender Durchschnitte auf Zeitreihen.
- scikit-learn: Bietet integrierte Funktionen zur Datenvorverarbeitung.
- statsmodels: Für fortgeschrittene Zeitreihenanalysen und Glättungstechniken.

<u>Saisonalitätsmerkmale</u>: Definition

- Saisonalität bezeichnet vorhersehbare, wiederkehrende Muster und Veränderungen, die innerhalb eines Jahres auftreten.
- Sie basieren auf saisonalen Zyklen, die zu regelmäßigen Schwankungen führen, beispielsweise wöchentlichen, monatlichen oder jährlichen Veränderungen.
- Ursachen sind oft jahreszeitliche, kalendarische oder handelsspezifische Einflüsse.
- Durch Feature Engineering mit Saisonalitätsmerkmalen lassen sich saisonale Muster in Zeitreihen (wie z. B. monatliche Verkaufszahlen) erkennen und Vorhersagen verbessern.
- Wie funktioniert es?
- Saisonalitätsmerkmale werden durch Extraktion von Zeitinformationen wie Wochentag, Monat, Quartal oder Jahreszeit erstellt. Diese Werte werden dann als separate Merkmale in das Modell integriert, wodurch saisonale Effekte berücksichtigt werden.

Vorteile und Herausforderungen im Feature Engineering

Vorteile und Ziele:

- Verbesserte Prognosegenauigkeit: Saisonale Merkmale helfen dabei, wiederkehrende Muster besser zu erfassen, was die Vorhersagegenauigkeit erhöht, insbesondere für periodische Daten.
- Vereinfachte Interpretation: Saisonale Effekte ermöglichen Einblicke in zyklische Trends (z.B. Umsatzspitzen in bestimmten Monaten), was zur besseren Entscheidungsfindung beiträgt.

Nachteile:

- Komplexere Modellierung: Saisonale Muster müssen explizit modelliert werden, was die Komplexität erhöht und möglicherweise zusätzliche Features (z.B. Monat, Quartal) erfordert.
- Benötigte Datenmenge: Für präzise Saisonmuster sind Daten aus mehreren Zyklen (z.B. Jahren) nötig, was die Datenanforderungen erhöht.

Saisonalitätsmerkmale im Feature Engineering für Zeitreihen Beispiel: Monatliche Verkaufszahlen

Beispiel-Ausgabe:

• Datum: 2020-01-31 | Verkäufe: 100 | Monat: 1 | Jahresquartal: 1 | Weihnachtssaison: 0

• Datum: 2020-12-31 | Verkäufe:

250 | Monat: 12 | Jahresquartal:4 | Weihnachtssaison: 1

Feature-Engineering für saisonale Merkmale: Ansätze und Tools zur Zeitreihenanalyse

Varianten:

- Dummy-Codierung: Wochentage oder Monate werden als separate Kategorien codiert.
- Trigonometrische Transformation: Sinus- oder Kosinus-Transformationen für zyklische Merkmale wie Tageszeit oder Monat, um Übergänge zwischen Perioden zu glätten

Anwendungsbereiche:

Besonders nützlich in der Analyse von Einzelhandelsdaten, Energieverbrauch (z. B. saisonale Heizkosten) oder anderen Bereichen, in denen es regelmäßige, saisonale Muster gibt.

Tools und Libraries (optional):

Pandas – Für die grundlegende Datenmanipulation und das Extrahieren saisonaler Merkmale wie Monat und Quartal "pip insTall pandas

Statsmodels – Für statistische Modelle zur Analyse saisonaler Muster, insbesondere SARIMA und Decomposition-Methoden, die saisonale Effekte isolieren können., *pip install statsmodels*.

Prophet – Einfache und leistungsstarke Bibliothek für Zeitreihenprognosen mit integrierter Unterstützung für saisonale Effekte (z. B. wöchentliche, monatliche und jährliche Saisonalität).: pip install prophet

Vergleich von Skalierungstechniken: Normalisierung und Standardisierung

→ Was ist Skalierung?

- -Skalierung bedeutet, Daten auf eine einheitliche Größenordnung zu bringen.
- -Besonders wichtig in Machine Learning, damit alle Merkmale gleich behandelt werden.

→ Warum ist Skalierung relevant?

- -Viele Algorithmen sind empfindlich gegenüber unterschiedlichen Größen der Daten.
- -Ohne Skalierung können manche Merkmale das Modell zu stark beeinflussen, andere werden vernachlässigt.
- -Skalierung macht Merkmale vergleichbar und verbessert die Leistung und Genauigkeit des Modells.

Standardisierung (Z-Score-Scaling):

- →Es ist eine Methode zur Transformation von Daten, bei der der Mittelwert (Durchschnitt) jedes Features auf 0 gesetzt und die Standardabweichung auf 1 skaliert wird.
- → Ziel ist es, die Daten so zu skalieren, dass alle Features die gleiche Skala und Varianz haben, ohne die ursprüngliche Verteilung zu verändern.
- → Funktionsweise:
- z-Wert berechnen mit der Formel:

$$z = \frac{(x - \mu)}{\mu}$$

- x = zu standardisierender Wert
- μ = Mittelwer
- σ = Standardabweichung

Beispiel: Vorhersage von Hauspreisen

→ Probleme:

- Hausgröße (100 bis 300 m²) hat größere
 Zahlenwerte als das Alter des Hauses (5 bis 30 Jahre).
- Risiko, dass das Modell sich stärker auf Hausgröße konzentriert, weil die Werte numerisch höher sind.

Haus-Nr	Haus Größe	Alter des Hauses	Preis (in Tausend \$)
1	100	10	250
2	150	20	350
3	200	5	500
4	250	30	600
5	300	15	750

Originalwerte der Merkmale und Preise

→ Vorteile der Standardisierung:

- Bringt beide Merkmale auf dieselbe Skala (Mittelwert 0, Standardabweichung 1)
- Ermöglicht dem Modell, beide Merkmale gleichermaßen zu berücksichtigen
- Verhindert, dass das Modell nur von der größeren Hausgröße beeinflusst wird.
- Ermöglicht, den Einfluss des Alters des Hauses korrekt zu berücksichtigen.

	Haus-Nr	Haus	Alter des	Preis (in
		Größe	Hauses	Tausend \$)
	1	-1,41	-0,68	250
→	2	-0,71	0,45	350
	3	0	-1,24	500
	4	0,71	1,58	600
	5	1,41	-0,11	750

Standardisierte Werte der Merkmale und Preise

Vergleich: **Original- und Standardisierte Merkmale**

Standardisierte Werte der Merkmale

Normalisierung (Min-Max-Scaling):

- → Bei der Min-Max-Normalisierung geht es darum, die Werte in einem bestimmten Bereich wie [0, 1] oder [-1, 1] zu skalieren. Man nutzt diese Methode, um die Daten leichter vergleichbar zu machen, besonders wenn die Werte ursprünglich sehr unterschiedlich sind.
- → Normalisierte Daten ermöglichen es dem Modell, alle Merkmale unabhängig von deren ursprünglicher Größenordnung zu berücksichtigen.
- → Führt zu höherer Genauigkeit und reduziert die Empfindlichkeit gegenüber großen Werten.
- → Verhindert, dass einzelne Merkmale das Modell dominieren und sorgt für konsistente Anpassung.
- → Funktionsweise:

$$X' = \frac{X - Xmin}{Xmax - Xmin}$$

X ist der Originalwert.

X' ist der normalisierte Wert.

Xmin ist der kleinste Wert in den Daten.

Xmax ist der größte Wert in den Daten.

Beispiel: Min-Max-Normalisierung

→ Vorteile:

- Vergleichbare Skala: Gehalt und Alter sind auf denselben Bereich gebracht (0 bis 1), was die Daten vergleichbar macht.
- Bessere Leistung in Algorithmen: Normalisierte Daten verbessern die Effizienz von maschinellen Lernmodellen, die auf Abstandsberechnungen basieren (z.B. KNN).

Person	Gehalt	Alter
А	60	25
В	80	40
С	50	30
D	90	60
Е	100	50

Datensatz vor der Normalisierung

→ Nachteile:

- Anfällig für Ausreißer: Extreme Werte (Ausreißer) können den Bereich [0, 1] verzerren, was die Aussagekraft der Daten verringern kann.
- Abhängigkeit von den Min/Max-Werten: Bei neuen oder veränderten Daten muss die Skalierung neu berechnet werden, da sich die Min- und Max-Werte ändern können.

Person	Gehalt	Alter
Α	0,25	0,111
В	0,5	0,556
С	0,125	0,222
D	0,625	0,889
Е	0,75	0,667

Normalisierte Daten (Bereich [0, 1])

Einfluss der Normalisierung auf Daten: Vorher und Nachher

DATENSATZ VOR DER NORMALISIERUNG

NORMALISIERTE DATEN (BEREICH [0, 1])

Anwendungsbereiche:

Normalisierung (Min-Max-Scaling) nützlich bei:

- Neuronale Netze: Eingabewerte werden in den gleichen Bereich (z. B. 0 bis 1) gebracht, damit das Training stabiler wird.
- 2. Zeitreihen: Vergleichbarkeit von Daten wie Temperaturen oder Preisen, die oft stark schwanken.
- 3. *Bildverarbeitung*: Pixelwerte liegen häufig zwischen 0 und 1, was für Modelle einfacher zu verarbeiten ist.

☐ Tools und Libraries:

- I. scikit-learn: MinMaxScaler schnelle und zuverlässige Normalisierung
- II. Pandas, NumPy: .min() und .max() für eine einfache Berechnung der Skala.

Standardisierung (Z-Score-Scaling) nützlich bei:

- Linearen Modellen: Algorithmen wie lineare und logistische Regression sind stabiler mit zstandardisierten Daten.
- Distanzbasierten Algorithmen: Bei Verfahren wie k-Nearest Neighbors und k-Means, die auf Abständen basieren, ist eine vergleichbare Skala der Features wichtig.
- 3. Normalverteilten Daten: Z-Score-Scaling bringt die Daten in eine Verteilung mit Mittelwert 0 und Standardabweichung 1.

☐ Tools und Libraries:

- I. *scikit-learn*: StandardScaler berechnet Mittelwert und Standardabweichung automatisch.
- II. Pandas und NumPy: .mean() und .std() für Standardisierun.

Hochschule Düsseldorf University of Applied Sciences

Quellen:

- www.researchgate.net/figure/Example-of-frequency-encoding_fig1_364144236
 Categorical Data Encoding Techniques | by Krishnakanth Naik Jarapala | Al Skunks | Medium
 Feature Engineering A-Z | Frequency Encoding Feature Engineering A-Z
- https://aktien-mit-strategie.de/exponentiell-gleitender-durchschnitt/