Lógica CC Licenciatura em Ciências da Computação

Luís Pinto

Departamento de Matemática Universidade do Minho

1º. semestre, 2020/2021

2. Cálculo Proposicional da Lógica Clássica

Notação 21:

Normalmente, usaremos CP para abreviar Cálculo Proposicional da Lógica Clássica.

2.1 Sintaxe do Cálculo Proposicional

- **Definição 22**: O *alfabeto do CP* é notado por \mathcal{A}^{CP} e é constituído pelos seguintes símbolos (letras):
- a) $p_0, p_1, ..., p_n, ...$ (com $n \in \mathbb{N}_0$), chamados *variáveis proposicionais*, formando um conjunto numerável, denotado por \mathcal{V}^{CP} ;
- b) ⊥, ¬, ∧, ∨, →, ↔, chamados conetivos proposicionais (respetivamente, absurdo, negação, conjunção, disjunção, implicação e equivalência);
- c) (,) (abrir e fechar parênteses), chamados símbolos auxiliares.

Exemplo 23:

As sequências de símbolos

$$\perp p_{20}) e (p_1)$$

são palavras sobre $\mathcal{A}^{\mathit{CP}}$, ambas de comprimento 3.

A sequência de símbolos

 p_1

(de comprimento 1) é também uma palavra sobre \mathcal{A}^{CP} , sendo diferente da palavra (p_1).

Definição 24: O conjunto das *fórmulas do CP* é notado por \mathcal{F}^{CP} e é a linguagem sobre \mathcal{A}^{CP} definida indutivamente pelas seguintes regras:

- a) $\perp \in \mathcal{F}^{CP}$;
- **b)** $p \in \mathcal{F}^{CP}$, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $\varphi \in \mathcal{F}^{CP} \implies (\neg \varphi) \in \mathcal{F}^{CP}$, para todo $\varphi \in (\mathcal{A}^{CP})^*$;
- **d)** $\varphi, \psi \in \mathcal{F}^{\mathit{CP}} \Longrightarrow (\varphi \Box \psi) \in \mathcal{F}^{\mathit{CP}}$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in (\mathcal{A}^{\mathit{CP}})^*$.

Exemplo 25:

A palavra $((\neg \bot) \land (p_6 \rightarrow p_0))$ é uma fórmula do CP.

Por exemplo,

$$\perp$$
, $(\neg \perp)$, p_6 , p_0 , $(p_6 \rightarrow p_0)$, $((\neg \perp) \land (p_6 \rightarrow p_0))$

é uma sua sequência de formação (de comprimento 6).

As palavras $\perp p_{20}$) e (p_1) não são fórmulas do CP.

De facto, nenhuma palavra sobre \mathcal{A}^{CP} de comprimento 3 é uma fórmula do CP.

Exercício 26:

Particularize o conceito de sequência de formação, apresentado na Definição 9, ao caso da definição indutiva do conjunto \mathcal{F}^{CP} .

Notação 27:

Os parênteses extremos e os parênteses à volta de negações são muitas vezes omitidos.

Por exemplo, a palavra

$$(p_5 \wedge \neg p_0) \vee \bot$$

será utilizada como uma representação da fórmula

$$((p_5 \wedge (\neg p_0)) \vee \bot).$$

Por abuso de linguagem, chamaremos fórmulas a tais representações de fórmulas.

Teorema 28 (Princípio de indução estrutural para fórmulas do CP):

Seja $P(\varphi)$ uma condição sobre fórmulas $\varphi \in \mathcal{F}^{CP}$.

Se:

- a) $P(\perp)$;
- **b)** P(p), para todo $p \in \mathcal{V}^{CP}$;
- **c)** $P(\psi) \implies P(\neg \psi)$, para todo $\psi \in \mathcal{F}^{CP}$;
- **d)** $P(\psi_1)$ e $P(\psi_2) \Longrightarrow P(\psi_1 \Box \psi_2)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\psi_1, \psi_2 \in \mathcal{F}^{CP}$;

então $P(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$.

Dem.: Basta particularizar o Princípio de indução estrutural associado a uma definição indutiva ao caso da definição indutiva de \mathcal{F}^{CP} .

Observação 29:

Uma aplicação do resultado anterior para demonstrar uma proposição é chamada uma demonstração por indução estrutural em fórmulas do CP.

Exemplo 30:

Podemos recorrer a uma demonstração por indução estrutural em fórmulas do CP para provar que:

para toda a fórmula, o número de ocorrências de "(" é igual ao número de ocorrências de ")".

Consideremos a propriedade sobre fórmulas $P(\varphi)$, dada por

"npe(
$$\varphi$$
) = npd(φ),"

onde $npe(\varphi)$ e $npd(\varphi)$ denotam o número de ocorrências em φ de "(" e de ")", respetivamente.

Exemplo 30 (cont.):

- a) $npe(\bot) = 0 = npd(\bot)$, pelo que $P(\bot)$.
- **b)** Para todo $p \in \mathcal{V}^{CP}$, npe(p) = 0 = npd(p) e, portanto, P(p).
- c) Seja $\psi \in \mathcal{F}^{CP}$ e (como hipótese de indução) suponhamos $P(\psi)$. Então,

$$npe((\neg \psi)) = 1 + npe(\psi) = 1 + npd(\psi) = npd((\neg \psi)),$$

onde a segunda igualdade segue da hipótese de indução. Assim, $npe((\neg \psi)) = npd((\neg \psi))$, provando $P(\neg \psi)$.

Exemplo 30 (cont.):

d) Para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\psi_1, \psi_2 \in \mathcal{F}^{CP}$, $P(\psi_1) \in P(\psi_2) \implies P(\psi_1 \Box \psi_2)$. (Exercício.)

De **a)** a **d)**, pelo Princípio de indução estrutural para \mathcal{F}^{CP} , segue que, para toda a fórmula φ , $P(\varphi)$ é verdadeira, ou seja, o número de ocorrências de "(" em φ é igual ao número de ocorrências de ")" em φ .

Observação 31:

A definição indutiva de \mathcal{F}^{CP} é determinista.

Por esta razão, \mathcal{F}^{CP} admite um princípio de recursão estrutural.

Uma aplicação deste princípio para definir uma função é chamada uma definição por recursão estrutural em fórmulas do CP.

Definição 32: A função $var: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{V}^{CP})$, que a cada fórmula faz corresponder o conjunto das variáveis proposicionais que nela ocorrem, é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- **a)** $var(\bot) = \emptyset;$
- **b)** $var(p) = \{p\}$, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $var(\neg \varphi) = var(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $var(\varphi \Box \psi) = var(\varphi) \cup var(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Exemplo 33:

$$var(p_1 \to (\neg p_2 \lor \bot))$$

= $var(p_1) \cup var(\neg p_2 \lor \bot)$
= $\{p_1\} \cup var(\neg p_2) \cup var(\bot)$
= $\{p_1\} \cup var(p_2) \cup \emptyset$
= $\{p_1\} \cup \{p_2\}$
= $\{p_1, p_2\}.$

Definição 34: Sejam ψ uma fórmula e p uma variável proposicional. A função $[\psi/p]: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$, que a cada fórmula φ faz corresponder a fórmula notada por $\varphi[\psi/p]$, que resulta de φ por *substituição* das ocorrências de p por ψ , é definida, por recursão estrutural em fórmulas do CP, como a única função t.q.:

a)
$$\perp [\psi/\rho] = \perp$$
;

b)
$$p_i[\psi/p] = \left\{ egin{array}{ll} \psi & ext{se } p_i = p \ p_i & ext{se } p_i
eq p \end{array}
ight.$$
 , para todo $i \in \mathbb{N}_0$;

c)
$$(\neg \varphi_1)[\psi/p] = \neg \varphi_1[\psi/p]$$
, para todo $\varphi_1 \in \mathcal{F}^{CP}$;

d)
$$(\varphi_1 \square \varphi_2)[\psi/p] = \varphi_1[\psi/p] \square \varphi_2[\psi/p]$$
, para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}, \varphi_1, \varphi_2 \in \mathcal{F}^{CP}$.

Exemplo 35:

a)
$$(\neg p_1 \to (p_2 \land \bot))[p_0 \lor p_1/p_2]$$

 $= (\neg p_1)[p_0 \lor p_1/p_2] \to (p_2 \land \bot)[p_0 \lor p_1/p_2]$
 $= \neg p_1[p_0 \lor p_1/p_2] \to (p_2[p_0 \lor p_1/p_2] \land \bot [p_0 \lor p_1/p_2])$
 $= \neg p_1 \to ((p_0 \lor p_1) \land \bot)$

Exemplo 35 (cont.):

b) Verifique que

$$(\neg p_1 \rightarrow (p_2 \land \bot))[p_0 \lor p_1/p_0] = (\neg p_1 \rightarrow (p_2 \land \bot)).$$

Esta igualdade corresponde a um caso particular da proposição que se segue.

(Observe que $p_0 \notin var(\neg p_1 \rightarrow (p_2 \land \bot))$.)

Proposição 36: Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, $p \in \mathcal{V}^{CP}$, se $p \notin var(\varphi)$, então $\varphi[\psi/p] = \varphi$.

Dem.: Por indução estrutural em φ . (Exercício.)

Definição 37: A função $subf: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{F}^{CP})$ é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- a) $subf(\varphi) = \{\varphi\}$, para todo $\varphi \in \mathcal{V}^{CP} \cup \{\bot\}$;
- **b)** $subf(\neg \varphi) = {\neg \varphi} \cup subf(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- c) $subf(\varphi \Box \psi) = \{\varphi \Box \psi\} \cup subf(\varphi) \cup subf(\psi)$, para todo $\Box \in \{\land, \lor, \to, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Dadas fórmulas φ e ψ , diremos que φ é uma subfórmula de ψ quando $\varphi \in subf(\psi)$.

Exemplo 38:

$$subf(\neg p_1 \to p_2) \\ = \{\neg p_1 \to p_2\} \cup subf(\neg p_1) \cup subf(p_2) \\ = \{\neg p_1 \to p_2\} \cup \{\neg p_1\} \cup subf(p_1) \cup \{p_2\} \\ = \{\neg p_1 \to p_2\} \cup \{\neg p_1\} \cup \{p_1\} \cup \{p_2\} \\ = \{\neg p_1 \to p_2, \neg p_1, p_1, p_2\}.$$

Proposição 39: Para todo $\varphi, \psi \in \mathcal{F}^{\mathit{CP}}, \varphi$ é uma subfórmula de ψ se e só se uma das seguintes condições é satisfeita:

- a) $\psi = \varphi$;
- **b)** existe $\psi_1 \in \mathcal{F}^{CP}$ t.q. $\psi = \neg \psi_1$ e φ é uma subfórmula de ψ_1 ;
- **c)** existe um conetivo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e existem fórmulas $\psi_1, \psi_2 \in \mathcal{F}^\mathit{CP}$ t.q. $\psi = \psi_1 \square \psi_2$ e φ é uma subfórmula de ψ_1 ou de ψ_2 .

Dem. (Prop. 39): Por análise de casos em ψ .

```
Caso \psi \in \mathcal{V}^\mathit{CP} \cup \{\bot\}. Então, \varphi subfórmula de \psi sse \varphi \in \mathit{subf}(\psi) sse \varphi \in \{\psi\} sse \varphi = \psi.
```

Assim, supondo que φ é uma subfórmula de ψ , temos $\varphi = \psi$, pelo que a condição **a**) é satisfeita.

Reciprocamente, uma vez que $\psi \in \mathcal{V}^{CP} \cup \{\bot\}$, as condições **b**) e **c**) não são satisfeitas, pelo que teremos que ter $\varphi = \psi$. Logo, pela sequência de equivalências anterior, segue que φ é uma subfórmula de ψ .

Restantes casos (caso $\psi = \neg \psi_1$, para algum $\psi \in \mathcal{F}^{CP}$, e caso $\psi = \psi_1 \Box \psi_2$, para algum $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para alguns $\psi_1, \psi_2 \in \mathcal{F}^{CP}$): exercício.