Natural Language Processing Sequence Labeling and Hidden Markov Models

Felipe Bravo-Marquez

June 20, 2023

Overview

- The Sequence Labeling (or Tagging) Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm

This slides are based on the course material by Michael Collins: http://www.cs.columbia.edu/~mcollins/cs4705-spring2019/slides/tagging.pdf

Sequence Labeling or Tagging Tasks

- Sequence Labeling or Tagging is a task in NLP different from document classification.
- Here the goal is to map a sentence represented as a sequence of tokens x_1, x_2, \ldots, x_n into a sequence of tags or labels y_1, y_2, \ldots, y_n .
- Well known examples of this task are Part-of-Speech (POS) tagging and Named Entity Recognition (NER) to be presented next.

Part-of-Speech Tagging

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

- N = Noun
- V = Verb
- P = Preposition
- Adv = Adverb
- Adj = Adjective
- •

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Named Entity Extraction as Sequence Labeling

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SC = Start Company
- CC = Continue Company
- SL = Start Location
- CL = Continue Location
- SP = Start Person
- CP = Continue Person

Our Goal

Training set:

- Pierre/NNP Vinken/NNP, /, 61/CD years/NNS old/JJ, /, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD./.
- Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
- 3. Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.
- 4. ...

Our Goal: From the training set, induce a function/algorithm that maps new sentences to their tag sequences.

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

"Local":

 e.g., "can" is more likely to be a modal verb MD rather than a noun NN

"Contextual":

 e.g., a noun is much more likely than a verb to follow a determiner

Sometimes these preferences are in conflict:

• The trash can is in the garage

Supervised Learning Problems

- We have training examples $x^{(i)}$, $y^{(i)}$ for i = 1, ..., m. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.
- Task is to learn a function f mapping inputs x to labels f(x).
- Conditional models:
 - Learn a distribution p(y|x) from training examples.
 - For any test input x, define $f(x) = \arg \max_{v} p(y|x)$.

Generative Models

- Given training examples $x^{(i)}$, $y^{(i)}$ for i = 1, ..., m. The task is to learn a function f that maps inputs x to labels f(x).
- Generative models:
 - Learn the joint distribution p(x, y) from the training examples.
 - Often, we have p(x, y) = p(y)p(x|y).
 - Note: We then have

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$
 where $p(x) = \sum_{y} p(y)p(x|y)$.

Decoding with Generative Models

- Given training examples $x^{(i)}$, $y^{(i)}$ for i = 1, ..., m. The task is to learn a function f that maps inputs x to labels f(x).
- Generative models:
 - Learn the joint distribution p(x, y) from the training examples.
 - Often, we have p(x, y) = p(y)p(x|y).
- Output from the model:

$$f(x) = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(y)p(x|y)}{p(x)}$$
$$= \arg \max_{y} p(y)p(x|y)$$

Hidden Markov Models

- We have an input sentence $x = x_1, x_2, ..., x_n$ (x_i is the i-th word in the sentence).
- We have a tag sequence $y = y_1, y_2, ..., y_n$ (y_i is the i-th tag in the sentence).
- We'll use an HMM to define $p(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n)$ for any sentence $x_1, ..., x_n$ and tag sequence $y_1, ..., y_n$ of the same length. [Kupiec, 1992]
- Then, the most likely tag sequence for x is:

$$\arg\max_{y_1,\ldots,y_n} p(x_1,\ldots,x_n,y_1,\ldots,y_n)$$

Trigram Hidden Markov Models (Trigram HMMs)

For any sentence x_1, \ldots, x_n where $x_i \in V$ for $i = 1, \ldots, n$, and any tag sequence y_1, \ldots, y_{n+1} where $y_i \in S$ for $i = 1, \ldots, n$, and $y_{n+1} = STOP$, the joint probability of the sentence and tag sequence is:

$$p(x_1,\ldots,x_n,y_1,\ldots,y_{n+1})=\prod_{i=1}^{n+1}q(y_i|y_{i-2},y_{i-1})\prod_{i=1}^ne(x_i|y_i)$$

where we have assumed that $x_0 = x_{-1} = *$.

Parameters of the Model

- q(s|u,v) for any $s \in S \cup \{STOP\}$, $u,v \in S \cup \{*\}$
- e(x|s) for any $s \in S$, $x \in V$

An Example

If we have n = 3, x_1 , x_2 , x_3 equal to the sentence "the dog laughs", and y_1 , y_2 , y_3 , y_4 equal to the tag sequence "D N V STOP", then:

$$p(x_1, ..., x_n, y_1, ..., y_{n+1}) = q(D|*, *) \times q(N|*, D)$$

$$\times q(V|D, N) \times q(STOP|N, V)$$

$$\times e(\text{the}|D) \times e(\text{dog}|N) \times e(\text{laughs}|V)$$

- STOP is a special tag that terminates the sequence.
- We take $y_0 = y_{-1} = *$, where * is a special "padding" symbol.

Why the Name?

$$p(x_1, \dots, x_n, y_1, \dots, y_n) = q(STOP|y_{n-1}, y_n)$$

$$\times \prod_{j=1}^n q(y_j|y_{j-2}, y_{j-1})$$

$$\times \prod_{i=1}^n e(x_j|y_j)$$

• Markov Chain:

$$q(STOP|y_{n-1}, y_n) \times \prod_{j=1}^n q(y_j|y_{j-2}, y_{j-1})$$

Observed:

$$e(x_j|y_j)$$

Smoothed Estimation

$$\begin{split} q(\mathit{Vt}|\mathit{DT},\mathit{JJ}) = & \lambda_1 \times \frac{\mathsf{Count}(\mathit{Dt},\mathit{JJ},\mathit{Vt})}{\mathsf{Count}(\mathit{Dt},\mathit{JJ})} \\ & + \lambda_2 \times \frac{\mathsf{Count}(\mathit{JJ},\mathit{Vt})}{\mathsf{Count}(\mathit{JJ})} \\ & + \lambda_3 \times \frac{\mathsf{Count}(\mathit{Vt})}{\mathsf{Count}()} \end{split}$$
 where $\lambda_1 + \lambda_2 + \lambda_3 = 1$, and for all $i, \lambda_i \geq 0$.

$$e(\mathsf{base}|\mathit{Vt}) = \frac{\mathsf{Count}(\mathit{Vt},\mathsf{base})}{\mathsf{Count}(\mathit{Vt})}$$

Dealing with Low-Frequency Words

A common method is as follows:

- Step 1: Split vocabulary into two sets
 - Frequent words = words occurring ≥ 5 times in training
 - Low frequency words = all other words
- Step 2: Map low frequency words into a small, finite set, depending on prefixes, suffixes, etc.

Dealing with Low-Frequency Words: An Example

Below is an example of word classes for named entity recognition [Bikel et al., 1999]:

Word class	Example	Intuition
twoDigitNum	90	Two-digit year
fourDigitNum	1990	Four-digit year
containsDigitAndAlpha	<i>A</i> 8956 – 67	Product code
containsDigitAndDash	09 — 96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	<i>M</i> .	Person name initial
firstWord	First word of sentence	No useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example

Original Sentence:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

Transformed Sentence:

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SC = Start Company
- CC = Continue Company
- SL = Start Location
- CL = Continue Location
- SP = Start Person
- CP = Continue Person

Dynamic Programming

- Dynamic programming is a technique used to solve optimization problems by breaking them down into overlapping subproblems.
- It stores the solutions to these subproblems in a table, so they do not need to be recalculated.
- Dynamic programming can greatly improve the efficiency of algorithms.

Factorial

 Recursive implementation: **def** recur_factorial(n): # Base case **if** n == 1: **return** n else: return n * recur_factorial(n-1) Dynamic programming implementation: **def** dynamic_factorial(n): table = [0 for i in range(0, n+1)]# Base case table[0] = 1for i in range(1, len(table)): table[i] = i * table[i-1]

Fibonacci

Recursive implementation:

```
def recur_fibonacci(n):
    if n == 1 or n == 0:
        return 1
    else:
```

```
return recur_fibonacci(n-1) + recur_fibo

    Dynamic programming implementation:
```

def dynamic_fibonacci(n):

```
# Base case
table[0] = 1
table[1] = 1
```

```
for i in range(2, len(table)):
    table[i] = table[i-1] + table[i-2]
```

table = [0 for i in range(0, n+1)]

Complexity

- Recursive factorial: Exponential complexity
- Dynamic factorial: Linear complexity
- Recursive Fibonacci: Exponential complexity
- Dynamic Fibonacci: Linear complexity

The Viterbi Algorithm

Problem: For an input $x_1 \dots x_n$, find

$$\arg\max_{y_1...y_{n+1}} p(x_1...x_n, y_1...y_{n+1})$$

where the arg max is taken over all sequences $y_1 \dots y_{n+1}$ such that $y_i \in S$ for $i = 1 \dots n$, and $y_{n+1} = STOP$. We assume that p takes the form:

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)$$

Brute Force Search is Hopelessly Inefficient

Problem: For an input $x_1 \dots x_n$, find

$$\arg\max_{y_1...y_{n+1}} p(x_1...x_n, y_1...y_{n+1})$$

where the arg max is taken over all sequences $y_1 \dots y_{n+1}$ such that $y_i \in S$ for $i = 1 \dots n$, and $y_{n+1} = STOP$.

The Viterbi Algorithm

The Viterbi algorithm efficiently computes the maximum probability of a tag sequence by using dynamic programming. **Steps:**

- Define n as the length of the sentence.
- Define S_k for $k = -1 \dots n$ as the set of possible tags at position k: $S_{-1} = S_0 = \{*\}$, $S_k = S$ for $k \in \{1 \dots n\}$.
- Define $r(y_{-1}, y_0, y_1, \dots, y_k) = \prod_{i=1}^k q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^k e(x_i|y_i).$
- Define a dynamic programming table: $\pi(k, u, v) =$ maximum probability of a tag sequence ending in tags u, v at position k.

An Example

 $\pi(k, u, v)$ = maximum probability of a tag sequence ending in tags u, v at position k

The man saw the dog with the telescope

An Example

$$S = \{D, N, P, V\}$$

There are many possible sequeces of tags. Each of these will have a probability calculated from parameters q and e.

 $\Pi(7,P,D) = \begin{array}{l} \mbox{This is the maxmimum probability of any} \\ \mbox{of those tag sequences ending in P D} \\ \mbox{at position 7, the path represents the} \\ \mbox{sequence with the maximum} \\ \mbox{probability.} \end{array}$

A Recursive Definition

Base case:

$$\pi(0,*,*)=1$$

Recursive definition: For any $k \in \{1 ... n\}$, for any $u \in S_{k-1}$ and $v \in S_k$:

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$

Justification for the Recursive Definition

For any $k \in \{1 \dots n\}$, for any $u \in S_{k-1}$ and $v \in S_k$:

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$

The man saw the dog with the telescope

Justification for the Recursive Definition

$$\begin{split} \mathcal{S}_5 &= \mathcal{S} = \{D, N, V, P\} \\ \Pi(7, P, D) &= \max_{w \in \mathcal{S}_5} \left(\Pi(6, w, P) \times q(D|w, P) \times e(\text{the}|D)\right) \end{split}$$

If we think of any tag sequence that ends with tags P and D at position 7, it must contain some tag at position 5.

We are basically searching for the tag that maximizes the probability at position 5.

The Viterbi Algorithm

Input: a sentence $x_1 ldots x_n$, parameters q(s|u,v) and e(x|s). **Initialization:** Set $\pi(0,*,*)=1$.

Define $S_{-1} = S_0 = \{*\}, S_k = S \text{ for } k \in \{1 \dots n\}.$

Algorithm:

- For k = 1 ... n,
- For $u \in S_{k-1}$, $v \in S_k$,

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$

• Return $\max_{u \in S_{n-1}, v \in S_n} (\pi(n, u, v) \times q(STOP|u, v))$

The Viterbi Algorithm

Algorithm 1: Viterbi Algorithm

Input: a sentence $x_1 ldots x_n$, parameters q(s|u,v) and e(x|s) **Initialization:** Set $\pi(0,*,*)=1$; $S_{-1}=S_0=\{*\}$, $S_k=S$ for $k\in\{1\ldots n\}$.

$$\begin{array}{c|c} \text{for } k=1 \text{ to } n \text{ do} \\ & \text{for } u \in S_{k-1}, v \in S_k \text{ do} \\ & & \\ & \pi(k,u,v) = \max_{w \in S_{k-2}} (\pi(k-1,w,u) \times q(v|w,u) \times e(x_k|v)) \\ & \text{end} \\ & \text{end} \end{array}$$

 $\texttt{return}\,(\mathsf{max}_{u \in \mathcal{S}_{n-1}, v \in \mathcal{S}_n}(\pi(n, u, v) \times q(STOP|u, v)))$

The Viterbi Algorithm with Backpointers

Algorithm 2: Viterbi Algorithm with Backpointers

Input: a sentence $x_1 \dots x_n$, parameters q(s|u,v) and e(x|s)

```
Initialization: Set \pi(0,*,*) = 1; S_{-1} = S_0 = \{*\}, S_k = S for k \in \{1 \dots n\}.
for k = 1 to n do
     for u \in S_{k-1}, v \in S_k do
                  \pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))
               bp(k, u, v) = \arg\max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))
     end
end
(y_{n-1}, y_n) = \arg\max_{(u,v)} (\pi(n, u, v) \times q(\mathsf{STOP}|u, v));
                                                            // Find maximum
 probability and corresponding tags
for k = (n-2) to 1 do
    y_k = bp(k+2, y_{k+1}, y_{k+2});
                                          // Retrieve tag seguence using
     backpointers
end
return (the tag sequence y_1 \dots y_n); // Return the final tag sequence
```

The Viterbi Algorithm: Running Time

- $O(n|S|^3)$ time to calculate $q(s|u,v) \times e(x_k|s)$ for all k, s, u, v.
- $n|S|^2$ entries in π to be filled in.
- O(|S|) time to fill in one entry.
- $\Rightarrow O(n|S|^3)$ time in total.

Pros and Cons

- Hidden Markov Model (HMM) taggers are simple to train (compile counts from training corpus).
- They perform relatively well (over 90
- Main difficulty is modeling e(word|tag), which can be very complex if "words" are complex.

Questions?

Thanks for your Attention!

References I

Bikel, D. M., Schwartz, R. M., and Weischedel, R. M. (1999). An algorithm that learns what's in a name. *Mach. Learn.*, 34(1-3):211–231.

Kupiec, J. (1992).

Robust part-of-speech tagging using a hidden markov model. *Computer speech & language*, 6(3):225–242.