

# Seamless Human Motion Synthesis: Leveraging Transformer Autoencoders for Interactive Control Inputs

Qianxuan Lin (Supervisor: Hongdong Li) Australian National University

U7079635@anu.edu.au

### Introduction



**Human motion synthesis** a field within computer vision focused on generating realistic digital human movements for applications like games, simulations, movies, and virtual reality.

**Significance**: It enhances realism, deepens immersion, supports healthcare, and advances AI research.

### State of the Art

**Text-based Motion Synthesis**: Generates motion from text inputs using models like CLIP and transformers.

**Action-based Motion Synthesis**: Produces motion based on actions (e.g., throw, pickup) with models like ACTOR.

Limitations: Text-based synthesis faces issues with ambiguity and data dependency, while action-based synthesis is limited by predefined action categories, affecting adaptability to new inputs.

# **Problem Definition**

Motivated by the above limitations, this thesis tackles the challenge of generating realistic human motion from intuitive controls like joysticks or mobile touch inputs. It aims to create a streamlined process that translates these inputs into natural, responsive movements, improving adaptability for interactive applications.



# Methodology

#### Model Formulation:

• Transformer Autoencoder:  $H = \Phi(X) = \text{TransformerEncoder}(X)$ .

 $\hat{X} = \Phi^{\dagger}(H) = \text{TransformerDecoder}(H).$   $\text{Cost}(X, \theta) = \|X - \Phi^{\dagger}(\Phi(X))\|_{2}^{2} + \alpha \|\theta\|_{1}$ 

Motion Synthesis Pipeline:

Control Inputs:  $T \in \mathbb{R}^{n \times 3}$  representing  $V_x$ ,  $V_z$ , and  $R_y$ . Footstep:  $F = \Upsilon(T) = \sigma \left(\sigma \left(TW_f^{(1)} + b_f^{(1)}\right)W_f^{(2)} + b_f^{(2)}\right)$ MI.P:  $H = \Pi([T, F]) = \sigma_3 \left(\sigma_3 \left(\sigma_1 \left([T, F]W^{(1)} + b^{(1)}\right)W^{(2)} + b^{(2)}\right)W^{(3)}$ 

MLP:  $H = \Pi([T, F]) = \sigma_3 \left(\sigma_2 \left(\sigma_1 \left([T, F]W_m^{(1)} + b_m^{(1)}\right) W_m^{(2)} + b_m^{(2)}\right) W_m^{(3)} + b_m^{(3)}\right)$ Motion Output:  $\hat{X} = \Phi^{\dagger}(H)$ 

#### • Network Architecture:



#### • Positional Encoding Methods:



Learnable encoding, with its lower test error, captures human motion patterns more effectively than sinusoidal encoding. This choice balances theoretical and practical considerations.

# Results



### Conclusion

- Introduces a transformer-based framework for realistic human motion from intuitive inputs like joysticks or mobile controls.
- Employs attention mechanisms to enhance naturalness and responsiveness by capturing temporal and joint dynamics.
- Offers a streamlined, adaptive process that addresses current limitations and aligns with user intent.
- Advances human motion synthesis with applications in gaming, VR, and other interactive environments.