Lecture 03

SmartPhone Sensing

First assignment

- Confusion matrices
- Picture of App
- 2 page, please!
 - Don't explain things that were already explained in class.
- Code must be on phone!

Recap

current pdf (posterior) perception model pdf from last time step (sense) (prior) $p(X_{k} \mid Z_{1:k}) = \frac{p(Z_{k} \mid X_{k})}{p(Z_{k} \mid Z_{1:k-1})}$

normalization

current pdf (posterior) motion model pdf from last time step (move) (prior) $p(X_{k} \mid Z_{1:k-1}) = \int \gamma(X_{k} \mid X_{k-1}) \ p(X_{k-1} \mid Z_{1:k-1}) \ dX_{k-1}$

Initial belief

a robot *has a map* of the grid below, but it doesn't know where it is, what is its initial belief?

Sense

perception model

$$p(z="red" | Xi is "red") = 0.6$$
 $p(z="blue" | Xi is "blue") = 0.8$ $p(z="blue" | Xi is "red") = 0.4$ $p(z="red" | Xi is "blue") = 0.2$

X_1	X_2	X_3	X_4	X_5
0.2	0.2	0.2	0.2	0.2

Exercise: 'Xi' represents cell i.

'z' is the sensing measurement

Question: the observation z is "red",

what is the new belief?

Sense

perception model
$$p(z="red" | Xi is "red") = 0.6$$
 $p(z="blue" | Xi is "blue") = 0.8$ $p(z="blue" | Xi is "red") = 0.4$ $p(z="red" | Xi is "blue") = 0.2$

0.2	0.2	0.2	0.2	0.2	
0.2	0.6	0.6	0.2	0.2	
0.04	0.12	0.12	0.04	0.04	
0.04/0.36	0.12/0.36	0.12/0.36 0.04/0.36		0.04/0.36	
1/9	1/3	1/3	1/9	1/9	

p(x) [prior]
p(z|x)
p(z|x)*p(x)
normalize
p(x) [posterior]

current pdf (posterior) perception model pdf from last time step (sense) (prior)
$$p(X_{k} \mid Z_{1:k}) = \frac{p(Z_{k} \mid X_{k})}{p(Z_{k} \mid Z_{1:k-1})} = \frac{p(Z_{k} \mid Z_{1:k-1})}{p(Z_{k} \mid Z_{1:k-1})}$$
normalization

You need a good training phase to build your "perception model"
This is key!

Now let's look at the movement part

current pdf
(**posterior**)
$$p(X_i^t \mid X_j^{t-1}) = \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{j=1}^{t-1} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \sum_{j=1}$$

(posterior) (move) $p(X_i^t \mid X_i^{t-1}) = \sum p(X_i \mid X_i) \qquad p(X_i^{t-1})$

motion model pdf from last time step (prior)

Movement Model

Exercise: the robot is moving right, what is the new distribution?

Move

movement model	p(Xi Xi) = 0.1
	$p(Xi+1 \mid Xi) = 0.8$
	p(Xi+2 Xi) = 0.1

X1	X2	Х3	X4	X5
0	0.5	0.5	0	0
0	0.05	0.45	0.45	0.05

When using RF, you don't want to see people teletransporting in your localization app. Movements models (any model) help a ton!

Congratulations

you can now do discrete localization!!!

let's see how this can be used with phones

Paper 1: The Horus WLAN Location Determination System

http://www.cs.umd.edu/~moustafa/papers/horus_usenix.pdf

Paper2: Practical Robust Localization over Large-Scale 802.11 Wireless Networks

http://www.kavrakilab.rice.edu/sites/default/files/mobicom2004.pdf

STEP BY STEP: BAYESIAN LOCALIZATION

Step 1) Get RSS signals for each cell

position yourself in the center of each cell to gather RSS data

Step 2) Process signal & get histogram

Sub-steps:

- 2.1) filter signal
- 2.2) get features (RSS or avg RSS)
- 2.3) get histogram
- 2.4) get pmf

Radio Map

- Each cell has now a probability mass function (pmf)
- The higher the difference among pmf's the better
- Notice that the big room has two cells.

Step 3) Store data in phone

RSS values [0,255]

 $\Sigma pi = 1$

one table per access point

localization won't be trained on the spot

Considering the table below and given that a user measures an rss value of r_r , where is the user more likely to be?

RSS values [0,255]

pmf of cells

	Noo taldes [0/200]							
		r-2	r-1	r	r+1	r+ 2	r+3	÷
C1		0.3	0.4	0.2	0.1			
C2		0.1	0.2	0.4	0.2	0.1		
C3			0.5		0.5			
C4			0.2	0.6	0.2			
C5			0.1	0.2	0.5	0.2		
C6				0.3	0.4	0.3		
C7			1.0					

 $\Sigma pi = 1$

one table per access point

localization won't be trained on the spot

We have the radio map in the phone ... now, let's localize

Step 4) Get testing data

- Start with initial belief
- Do WiFi scan
- Sort Access Points in decreasing order based on RSS
- Choose highest RSS, then second, etc

We will test only one direction

Step 5) Apply Bayes

probability I am in cell i given that I got an RSS measurement r from access point j:

$$p(cell_i/rss_j^r) = p(cell_i) p(rss_j^r/cell_i) / p(rss_j^r)$$

RSS values for AP j

		0			r		 255
	C1						
F CE							
f of							
pmf of cells	Ci		0.1	0.2	0.5	0.2	
<u></u>							
	C17						

don't forget to normalize!

Step 6) When to stop iterations?

Step 6) When to stop iterations?

- No clear answer
- At every step you can update prior with
 - data from other access points
 - new scans
- Stop when you
 - pass a threshold: say 0.95
 - reach `steady state': oscillation around a max p

