4 Year B. Tech. CS Effective from: 2021

SOFT COMPUTING TECHNIQUES			
Course Code:	CS403	Course Credits:	3
Course Category:	CC	Course (U / P)	U
Course Year (U / P):	4U	Course Semester (U / P):	7 U
No. of Lectures + Tutorials (Hrs/Week):	03 + 00	Mid Sem. Exam Hours:	1
Total No. of Lectures (L + T):	45 + 00	End Sem. Exam Hours:	3

UNIT I INTRODUCTION

Introduction to Soft Computing; Definition, requirement, necessity and adequacy; various dialects of soft computing – Evolutionary Algorithms, Fuzzy Sets and Fuzzy Logic, Artificial Neural Networks - their suitability in Searching, optimization, decision matching and pattern related problems; potential areas of applications.

UNIT II FUZZY SETS AND FUZZY LOGIC

Introduction to fuzzy sets and fuzzy logic; difference between classical and fuzzy sets; chance vs fuzziness; limitations of fuzzy systems; typical shapes of membership functions and their usage; operations on fuzzy sets: compliment, intersection, union; combinations on operations, aggregation operation.

UNIT III FUZZY RELATIONS AND FUZZY SYSTEMS

Cartesian Product; Classical Relations and Fuzzy Relations; Cardinality, operations and properties of crisp and fuzzy relations; Composition of operations, Fuzzy cartesian product; The linguistic variables, Reasoning in fuzzy logic, Fuzzification and defuzzification; Mamdani and Sugano Fuzzy Inference Systems.

UNIT IV NEURAL NETWORK

Overview of biological neurons; McCulloch-Pitts model, Rosenblatt's Perceptron model, difference, capabilities and limitations; Model of generic computational neuron; Basic activation functions; Basic Learning laws of neurons; Single layer and multilayer architectures; Feedforward and feedback networks.

UNIT V LEARNING FUNDAMENTALS

Learning paradigms, supervised and unsupervised learning, reinforced learning; back propagation algorithm; Radial basis neurons, Generalized Regression Neural network, Probabilistic Neural Networks; Competitive learning; Self Organizing Features Map, Hopfield networks, associative memories, applications of artificial neural networks. Elasticity vs plasticity dilemma, preprocessing, post processing, early stopping.

UNIT VI EVOLUTIONARY ALGORITHMS

Problems suitable and not suitable for applying evolutionary algorithms; Various dialects of evolutionary Algorithms; Terminology of Genetic Algorithms; Canonical Genetic Algorithm; Common representations and related reproduction operators; premature convergence, schema theorem, minimal deceptive problem and Royal Road function; fitness function, Roulette wheel selection, Rank selection, Tournament Selection; termination criteria, survivor selection, population models; parallel implementations.

4 Year B. Tech. CS Effective from: 2021

Text Books:

1. Artificial Neural Networks: An introduction to ANN Theory and Practice, Peteus J. Braspenning,

PHI publication, 2005.

- 2. Fuzzy Logic: A spectrum of Theoretical and Practical issues, Paul P. Wang, pearson publication 2004.
- 3. An Introduction to Genetic Algorithms, Milanie Mitchell, MIT Press 1998.
- 4. A Genetic Algorithm Tutorial, Darrell Whitley.
- 5. Fuzzy Sets, Fuzzy logic, and Fuzzy Systems: Selected Papers- Lotfi Asker Zadeh, George J. Kilr, Bo yuan, 2005.
- 6. Foundations of Fuzzy logic and Soft Computing: 12th International Fuzzy conference proceeding, 2005.
- 7. Neural Networks Theory, Particia Melin, Oxford University press, 2003
- 8. Neural Networks Theory and Application, Oscar Castillo, Wiley Eastern publication
- 9. Genetic Algorithms in Search, Optimization and Machine Learning, David E Goldberg, Eddison-Wesley, 1988.