Relatório 1º Projeto ASA 2022/2023

Grupo: tp012

Alunos: David Pires (103458) Diogo Miranda (102536)

Descrição do Problema e da Solução

Problema: Dada uma matriz nxn, qual o número de combinações possível para cobrir essa mesma matrix com x quadrados de tamanho m x m.

Solução: Obtendo o vetor de colunas ocupadas por linha podemos ir inserindo quadrados m x m e decreescendo a linha onde foi colocado (e as seguintes (m-1) linhas) por m unidades. Para evitar combinações repetidas utilizámos um vetor auxiliar que guarda as colunas à esquerda ocupadas por linha. Utilizamos este vetor para dar prioridade à colocação de quadrados o mais à esquerda e cima possível (dando prioridade entre os dois à esquerda). Este método elimina o problema das combinações repetidas. Retirando a cada iteração do programa um quadrado atualiza-se os vetores que mapeiam a matriz do problema, quando a matriz ficar a zeros uma combinação foi alcançada. Focando-nos primeiro nos maiores quadrados e por fim nos 1 por 1 o programa acaba quando for alcançada a combinação de quadrados 1 por 1.

Análise Teórica

- Ler o input dado (simples loop que lê todas as entradas): O(n)
- Criação do hashcode dos vectores de quadrados ocupado e livre (lê todas as entradas do vetor): O(n)
- Normalizar o vector de quadrados ocupados (lê todas as entradas do vetor): $\mathrm{O}(\mathrm{n})$
- Verificação se um quadrado m x m cabe no espaço disponível (lê as entradas do vetor desde a posição atual + m posições, onde m = lado do quadrado m x m a inserir) pior caso = quadrado n x n: O(n)
- Encontrar um vetor hashmap (todas as entradas podem estar no mesmo "bucket"): O(n)
- Colocar um vector no hashmap : O(1)
- Apresentação dos dados (simples std::cout de uma variável global) : $\mathrm{O}(1)$

Complexidade Global (explicitada na última página):

 $O(e^n)$

Relatório 1º Projeto ASA 2022/2023

Grupo: tp012

Alunos: David Pires (103458) Diogo Miranda (102536)

Avaliação Experimental dos Resultados

Ambos os gráficos demonstram o tempo de execução em segundos para uma matriz n por n que pode ser totalmente preenchida. O primeiro gráfico demonstra a nossa primeira solução, sem programação dinâmica, já o segundo demonstra a nossa solução final, com programação dinâmica (note-se que o último caso do primeiro gráfico, 8x8 será ainda maior, uma vez que devido ao longo tempo que este teste estava a demorar este mesmo foi cancelado antes de acabar, sendo o tempo no gráfico o tempo no momento do cancelamento).

Este gráfico aproxima-se da função (Explicitado na última página):

 $O(n^n)$

Com esta complexidade este algoritmo é extremamente ineficiente, no entanto com a introdução da programação dinâmica conseguimos tornar o algoritmo bastante mais eficiente.

Este gráfico aproxima-se da função (Explicitado na última página):

 $O(e^n)$

Embora ainda bastante ineficiente este algoritmo, com programação dinâmica é extremamente mais rápido que o anterior, como se pode ver em comparação com os dois gráficos.

Possível explicitação da complexidade total de ambas as versões do projeto (extra)

Começaremos primeiro pela análise do algoritmo sem programação dinâmica, uma vez que a versão com programação dinâmica tem este como base. Como vimos na primeira parte do relatório o vetor analisa um vetor em O(n), no entanto como se trata de uma recursão este não vai ser o valor real. Como também não se trata de um problema que divida o problema em x sub-problemas iguais também não podemos utilizar a fórmula T(n) = aT(n/b) + O(nxd), já dada na disciplina pelo que teremos de recorrer a uma análise mais abstrata. Tendo um vetor de tamanho n, esse mesmo vetor será dividido em n sub-problemas (de complexidade n), onde o primeiro desses subproblemas se dividirá em (n-1) subproblemas (até quadrados (n-1)x(n-1)), o segundo em (n-2) subproblemas (até quadrados (n-2)x(n-2)) ... o n-ésimo-1 em 1 subproblema (quadrados 1x1) e o n-ésimo em 0 subproblemas (matriz preenchida). O número de subproblemas na 1^a geração é, (e a complexidade):

$$\sum_{k=1}^{n} (n-k) = \frac{1}{2} \times n \times (n-1) \approx n^{2}, \quad complexidade : n \times n^{2} = n^{3}$$

Após a 2^a geração o número cada sub-problema irá se dividir até (n-2)x(n-2) sub-problemas (a partir de (n-1)x(n-1)) sendo o número total de subproblemas obtido por (e a complexidade):

$$\sum_{k=1}^{n} \left(\sum_{p=k}^{n} (n-p) \right) \approx n \times n^{2} = n^{3}, \quad complexidade : n \times n^{3} = n^{4}$$

Sabendo que iremos ter no máximo n^2 gerações, (preencher uma matriz $n \times n$ com quadrados 1×1) a complexidade desta solução tenderá para um valor perto de (esta é a complexidade da solução sem programação dinâmica):

$$O(n^n)$$

Tendo em conta que a programação dinâmica ou acaba um ramo da nossa árvore recursiva imediatamente ou guarda o valor desse mesmo ramo, chegamos à conclusão que na primeira iteração são armazenados n valores (todos), na segunda n x (n-1) (n ramos x (n-1) subramos) e assim consecutivamente. Os valores guardados tendem para n!.

Sabendo que se um sub-problema estiver na hash table de programação dinâmica esse subproblema acaba nesse preciso momento podemos obter o número total de subproblemas pela fórmula de número de sub-problemas / sub-problemas guardados na hash table (cada ramo tem sub-problemas repetidos, explicação em baixo).

$$(subramo1 - hash) + (subramo2 - hash) + (...) = \frac{subramos}{hash}$$

Juntando as duas fórmulas, para o maior n x n possível a complexidade com programação dinâmica será complexidade(1 loop) x número de chamadas recursivas, Assim para um vetor de tamanho n iremos obter:

$$n \times \frac{n^n}{n!} = \frac{n^n}{n!} + \frac{n^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{n^n}{n!} = e^n$$