Fachbereich Mathematik Prof. J. Lehn Hasan Gündogan, Nicole Nowak

Sommersemester 2008 10./11./14. April

2. Übungsblatt zur "Mathematik II für BI, MaWi, WI(BI), AngGeo"

Gruppenübung

Aufgabe G3 (Lineare Unabhängigkeit, Linearkombination, Basis) Gegeben seien die folgenden Vektoren aus dem \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ -1 \\ -\frac{2}{3} \end{pmatrix}$$

- (a) Prüfen Sie, ob die Vektoren linear unabhängig sind.
- (b) Geben Sie die Menge aller Linearkombinationen $Lin(v_1, v_2, v_3)$ an.
- (c) Was für ein Gebilde stellt diese Menge im \mathbb{R}^3 dar?
- (d) Finden Sie eine Basis für $Lin(v_1, v_2, v_3)$ und geben Sie die Dimension an.
- (e) Finden Sie einen Vektor in \mathbb{R}^3 , der nicht als Linearkombination der Basisvektoren geschrieben werden kann und begründen Sie warum dies nicht geht.

Lösung:

- (a) Um zu prüfen, ob die Vektoren linear unabhängig sind, benutzen wir das in der Vorlesung vorgestellte Kriterium und lösen also das Gleichungssystem $\alpha v_1 + \beta v_2 + \gamma v_3 = 0$. Leicht ist zu sehen, dass z.B. $\alpha = \frac{2}{3}$, $\beta = -\frac{1}{3}$ und $\gamma = -1$ eine mögliche Lösung dieses Gleichungssystems ist. Hier sind nicht alle Koeffizienten gleich 0, also sind die Vektoren linear abhängig.
- (b) $\text{Lin}(v_1, v_2, v_3) = \{x \in \mathbb{R}^3 \mid x = \alpha v_1 + \beta v_2 + \gamma v_3, \alpha, \beta, \gamma \in \mathbb{R}\}$
- (c) Die lineare Hülle bildet eine Ursprungsebene. Dies kann man sehen, da v_1 und v_2 sicher linear unabhängig sind und deshalb wird eine Ebene aufgespannt.
- (d) Da, wie oben bereits erwähnt v_1 und v_2 linear unabhängig sind, können diese auch als Basis verwendet werden. Unsere Ebene hat (auch anschaulich klar) Dimension 2.
- (e) Beispielsweise der Vektor $p = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$ liegt nicht in $\text{Lin}(v_1, v_2, v_3)$. Dies kann dadurch gezeigt werden, dass das Gleichungssystem $\alpha v_1 + \beta v_2 = p$ keine Lösung hat. Denn so ist p nicht als Linearkombination der Basisvektoren darstellbar und daher kein Element der linearen Hülle.

Aufgabe G4 (Vektorraum)

Betrachten Sie den Vektorraum $\mathbb{P}_2 := \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ der Polynome vom Grad ≤ 3 .

Gegeben seien die Polynome $p_1(x) = \frac{1}{2}x^2 + 3$ und $p_2(x) = (x-2)(x-3)$ aus \mathbb{P}_2 .

- (a) Stellen Sie das Polynom $p_3(x) = 5x$ als Linearkombination von p_1 und p_2 dar.
- (b) Zeigen Sie, dass p_1 und p_2 linear unabhängig sind.
- (c) Bilden diese beiden Polynome eine Basis von \mathbb{P}_2 ? Begründen Sie.

Lösung:

- (a) Nach dem Ausmultiplizieren sieht man, dass gilt $p_2 = x^2 5x + 6$. Dadurch sieht man leicht, dass gilt: $2p_1 p_2 = 5x$.
- (b) Wir betrachten die Gleichung $\alpha p_1 + \beta p_2 = 0$ also $\alpha(\frac{1}{2}x^2 + 3) + \beta(x^2 5x + 6) = 0$. Da der Koeffizient vor x in p_2 ungleich 0 ist, muss $\beta = 0$ sein. Es folgt, dass dann auch $\alpha = 0$ sein muss. Also sind die beiden Vektoren linear unabhängig.
- (c) Nein, sie bilden keine Basis, da ich ein Polynom aus \mathbb{P}_2 finden kann, dass nicht mit Hilfe von p_1 und p_2 als Linearkombination dargestellt werden kann. Beispielsweise gilt dies für $p_3(x) = 6$.

Aufgabe G5 (Lineare Gleichungssysteme)

Bestimmen Sie mit dem Gauß-Jordan Eliminations-Algorithmus die vollständige Lösungsmenge des Gleichungssystems Ax = b mit

$$A := \begin{pmatrix} 1 & 2 & -1 & 3 \\ 1 & 4 & 3 & 1 \\ -1 & 0 & 5 & -5 \\ 0 & 1 & 2 & -1 \end{pmatrix} \quad \text{und} \quad b := \begin{pmatrix} 1 \\ -1 \\ -3 \\ -1 \end{pmatrix}.$$

Lösung: Die erweiterte Koeffizientenmatrix lautet

Folglich sind zwei Variablen frei wählbar. Setzt man $x_3 = s$ und $x_4 = t$, dann folgt $x_2 = -1 - 2s + t$ und $x_1 = 1 - 2(-1 - 2s + t) + s - 3t = 3 + 5s - 5t$. Daher ist

$$L = \left\{ \begin{pmatrix} 3 + 5s - 5t \\ -1 - 2s + t \\ s \\ t \end{pmatrix} \mid s, t \in \mathbb{R} \right\} = \left\{ s \begin{pmatrix} 5 \\ -2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -5 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} \mid s, t \in \mathbb{R} \right\}$$

die Lösungsmenge des Gleichungssystems.

Hausübung

Aufgabe H4 ((Unter-)Vektorraum)

(5 Punkte)

Zeigen Sie, dass die Menge \mathbb{P}_3 der Polynome mit reellen Koeffizienten vom Höchstgrad 3 einen Untervektorraum des Raums \mathbb{P}_7 der Polynome mit reellen Koeffizienten vom Höchstgrad 7 bildet.

Lösung: Um zu zeigen, dass es sich um einen Untervektorraum handelt, müssen wir die Abgeschlossenheit bezüglich der Multiplikation mit reellen Zahlen und der Summenbildung überprüfen. Zunüchst zur Summenbildung (U1 im Skript).

Seien q_1 und q_2 aus \mathbb{P}_3 . Wir müssen zeigen, dass auch q_1+q_2 aus \mathbb{P}_3 ist. Die beiden Polynome lassen sich auch so schreiben: $q_1=a_0+a_1x+a_2x^2+a_3x^3$ und $q_2=b_0+b_1x+b_2x^2+b_3x^3$, wobei a_i und b_i für $i \in \{0,1,2,3\}$ aus \mathbb{R} sind. Betrachten wir nun die Summe, so wird klar, dass auch q_1+q_2 in der für \mathbb{P}_3 geforderten Form schreiben können, denn $q_1+q_2=(a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2+(a_3+b_3)x^3$. Daher ist gezeigt, dass $q_1+q_2 \in \mathbb{P}_3$.

Nun zur Abgeschlossenheit unter Multiplikation mit Skalaren aus \mathbb{R} (U2 im Skript). Sei $\gamma \in \mathbb{R}$ und q_1 aus \mathbb{P}_3 wie oben. Dann ist $\gamma q_1 = \gamma (a_0 + a_1 x + a_2 x^2 + a_3 x^3) = (\gamma a_0) + (\gamma a_1) x + (\gamma a_2) x^2 + \gamma a_3) x^3$. So haben wir auch gezeigt, dass γq_1 ein Element aus \mathbb{P}_3 ist.

Insgesamt ist hiermit gezeigt, dass \mathbb{P}_3 ein Untervektorraum von $\mathbb{P}_{\not\triangleright}$ ist, da natürlich jedes Polynom vom Höchstgrad 3 auch ein Polynom vom Höchstgrad 7 ist.

Aufgabe H5 (Erzeugendensystem, Basis)

(5 Punkte)

Zeigen Sie, dass die Vektoren

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

ein Erzeugendensystem des \mathbb{R}^3 bilden und stellen Sie v_4 als Linearkombination von v_1 , v_2 und v_3 dar. Zeigen Sie weiterhin, dass v_1 , v_2 und v_3 eine Basis von \mathbb{R}^3 bilden.

Lösung:

Um zu zeigen, dass v_1, \ldots, v_4 ein Erzeugendensystem von \mathbb{R}^3 bilden, müssen wir zeigen, dass sich jeder beliebige Vektor $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ aus \mathbb{R}^3 als Linearkombination von v_1, \ldots, v_4 schreiben lässt. Das

heißt wir müssen zeigen, dass das folgende Gleichungssystem immer eine Lösung hat.

$$\alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Dies übersetzt sich zu:

$$\beta + \gamma + \delta = x_1$$
$$\alpha + \gamma + \delta = x_2$$
$$\alpha + \beta + \delta = x_3$$

Dieses Gleichungssystem ist überbestimmt, aber es lässt sich zum Beispiel immer die Lösung $\alpha = -x_1$, $\beta = -x_2$, $\gamma = -x_3$ und $\delta = x_1 + x_2 + x_3$ finden.

Um v_4 als Linearkombination aus v_1, v_2 und v_3 darzustellen, müssen wir das Gleichungssystem folgende Gleichungssystem lösen:

$$\alpha v_1 + \beta v_2 + \gamma v_3 = v_4$$

Also Lösung ergibt sich $\alpha = \beta = \gamma = \frac{1}{2}$.

Dadurch haben wir gesehen, dass der Vektor v_4 also für das Erzeugendensystem nicht nötig war. v_1, v_2, v_3 bilden also immernoch ein Erzeugendensystem von \mathbb{R}^3 . Um zu zeigen, dass diese Vektoren sogar eine Basis bilden, müssen wir noch nachweisen, dass die Vektoren auch linear unabhängig sind. Dazu zeigen wir, dass das Gleichungssystem $\alpha v_1 + \beta v_2 + \gamma v_3 = 0$ nur die Lösung $\alpha = \beta = \gamma = 0$ besitzt.

Man erhält das Gleichungssystem mit folgender erweiterter Koeffizientenmatrix

$$\begin{pmatrix}
0 & 1 & 1 & | & 0 \\
1 & 0 & 1 & | & 0 \\
1 & 1 & 0 & | & 0
\end{pmatrix}
\xrightarrow{\text{tausche } II \text{ und } I}
\begin{pmatrix}
1 & 0 & 1 & | & 0 \\
0 & 1 & 1 & | & 0 \\
0 & 1 & -1 & | & 0
\end{pmatrix}$$

$$III-II \begin{pmatrix}
1 & 0 & 1 & | & 0 \\
0 & 1 & 1 & | & 0 \\
0 & 0 & -2 & | & 0
\end{pmatrix}.$$

Hier können wir nun ablesen, dass $\alpha=\beta=\gamma=0$ die einzige Lösung ist.

Aufgabe H6 (Lineare Gleichungssysteme)

(5 Punkte)

Sei

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 4 & 8 & 4 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} 5 \\ 32 \\ 8 \end{pmatrix}.$$

Lösen Sie das Gleichungssystem Ax = b.

Lösung:

Aus der ersten Zeile des Gleichungssystems folgt

$$x_1 + 2x_2 = 5 \Leftrightarrow x_1 = 5 - 2x_2.$$

Aus der dritten Zeile folgt

$$x_2 + 2x_3 = 8 \quad \Leftrightarrow \quad x_3 = 4 - \frac{x_2}{2}.$$

Aus der zweiten Zeile folgt dann

$$4x_1 + 8x_2 + 4x_3 = 32$$
 \Leftrightarrow $5 - 2x_2 + 2x_2 + 4 - \frac{x_2}{2} = 8$ \Leftrightarrow $x_2 = 2$.

Einsetzen ergibt, daß

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

die einzige Lösung des Gleichungssystems ist.