$$1. p=7, q=11, e=13, P.T=17$$

$$Sol$$
: $N = p \times q = 7 \times 11 = 77$

$$\phi(n) = (p-1)(q-1) = 6x 10 = 60$$

Mo dulu S

Totient Function

We	Solve	for 'c	' using	Extended	Euclidea	in Algorithm.
Ro	w	۵_	Ь	On re	K	As $\Phi_n = 60$
•	L	1	D	>60		e = 13
2	2	٥	1	13	4	If dis negative?
3	3	1	-4	8	1	:. d new = dold + (n)
4	4	-1	5	5	I	= -23 +60
	5	2	– 9	3	1	
	6	- 3	14	2_	1	i.d = 37
	7	5	- 23	\	2_	

For Encryption
$$CT = (PT) \mod n$$

$$= (17)^{13} \mod 77$$

$$= (17)^{8+4+1} \mod 77$$

=
$$(37 \times 53 \times 17) \mod 77$$

:. $CT = 73$

$$\Rightarrow$$
 17 mod 77 = (58) mod 77 = 53

For Decryption

$$PT = (CT)^{d} \mod n$$
 $= (73)^{37} \mod 77$
 $= (73)^{32+4+1} \mod 77$
 $= (16 \times 25 \times 73) \mod 77$
 $PT = 17$

73 mod 71 = 73

$$\Rightarrow (73)^{4} \mod 77 = 16$$
 $\Rightarrow (73)^{4} \mod 77 = (16)^{2} / 17 = 25$
 $\Rightarrow (73)^{8} \mod 77 = (25)^{2} / 17 = 9$
 $\Rightarrow (73)^{16} \mod 77 = (9)^{2} / .77 = 4$
 $\Rightarrow (73)^{32} \mod 77 = (4)^{2} / .77 = 16$

$$0.2$$
 $P=3$, $9=11$, $M=12$, Apply RSA to encrypt & decrypt.

$$Sol: \qquad n = p \times q = 3 \times 11 \qquad = 33$$

$$\phi(n) = (p-1)(q-1) = 2 \times 10 = 20$$

Find 'e' such that it is relatively prime to $\phi(n)$ (Generally, we don't take e having same value as either p or q even if it's relatively prime to $\phi(n)$)

$$e = 7$$

$$(7 \times d) \mod (20) = 1$$

Row	a	٥	9	K	
l	٦	0	20		d = 3
2	0	١	7	2	
3	1	-2	6	1	As 7x3=21
4	-1	3	1	6	: 21 mod 20 =1

$$CT = (PT)^{e} \mod n$$

= $(12)^{7} \mod 33$

Now,
$$12 \mod 33 = 12$$

$$12 \mod 33 = 12$$

$$12 \mod 33 = 12$$

:. (12) mod 33 = 12 mod 33
$$CT = (12 \times 12 \times 12) \mid 33 = 12$$

For Decryption

$$PT = (CT)^{3} \mod 33$$

$$= (12)^{3} \mod 33$$

$$0.3.$$
 $p=7$, $q=11$, $e=17$, $M=25$

$$n = 7 \times 11 = 77$$

$$\phi(r) = 6 \times 10 = 60$$

e = 17

Using Extended Euclidean Algorithm

Row a b d K

1 0 60 -

2 0 1 17 3

1 -3 9

5 2 \[\-7 \] | 8

As
$$d = -7$$

So we need to make it positive by adding $\phi(n)$

$$d = -7 + \phi(n)$$

$$|\Rightarrow 25 \mod 77 = 9$$

$$\Rightarrow 25 \mod 77 = (9)^2 \mod 77 = 4$$

$$\Rightarrow 25 \mod 77 = (4)^2 \mod 77 = 16$$

$$\Rightarrow (25)^{16} \mod 77 = 25$$

CT= (25 x 25) mod 77 = 9

$$PT = (CT)^{d} \mod n$$

= $(9)^{53} \mod 77$

$$(9)^{53} = 9^{1+4+16+32}$$

$$(9)^{53} \mod 77 = (9 \times 16 \times 9 \times 4) \mod 77$$
$$= (5184) \mod 77$$

Hence Proved

0.4: For the given parameters p=3, q=19, find the value of 'e' & 'd' using RSA algorithm & encrypt the message M=6.

Sol:
$$n = p \times q = 3 \times 19 = 57$$

 $p(n) = (p-1)(q-1) = 36$

So we choose 'e' =

Hence d=

Using Extended Euclidean Algorithm

R. W	۵	Ь	4	K
1	l	Ó	36	
2	0	١	5	7
3	l	-7		5

Encryption

$$6^2 \mod 57 = 36$$

$$6^4 \mod 57 = 42$$

$$6 \mod 57 = (6x42) \mod 57$$

$$TCT = 24$$

Decryption

$$PT = (cT)^d \mod n$$

$$= (24)^{29} \mod 57$$

$$(24) \mod 57 = 6$$