CHAPTER 6 TREES PART 1

Terminology, Binary Tree, Expression Tree

Key Topics in Chapter 6

- Use a tree to represent a hierarchical organization of information
- □ Use recursion to process trees
- □ Different ways of traversing a tree
- Differences between binary trees, binary search trees, and heaps
- Implement binary trees, binary search trees, and heaps using linked data structures and arrays

Key Topics in Chapter 6

- Use binary search trees to store information for efficient retrieval
- Use a Huffman tree to encode characters efficiently
 - Used in compression

Key Topics in This PPT File

- □ Basic Terminologies about Trees
- □ Binary Tree
- □ Expression Tree

Trees - Introduction

- □ All previous data organizations we've studied
 - Are linear
 - Each element can have only one predecessor and successor
 - \square Accessing all elements in a linear sequence is O(n)
- □ Trees
 - Nonlinear and hierarchical
 - Each node can have multiple successors
 - But only one predecessor

Trees - Introduction (cont.)

- Examples of Tree applications
 - Store hierarchical organizations of information
 - class hierarchy
 - disk directory and subdirectories
 - family tree (single-parent)
 - Searching (via search tree)
 - Sorting (via heap)
 - Compression (via Huffman Tree)
- □ Trees are recursive data structures
 - Can be defined recursively
- Many methods to process trees are written recursively

Trees - Introduction (cont.)

Binary Trees

- □ Focus of Chapter 6
- Each element has at most two successors
- Can be represented by arrays or by linked data structures
- □ Searching a binary search tree, a sorted tree
 - Generally more efficient than searching an unsorted list
 - □ O(log n) (if balanced) versus O(n)

Tree Terminology and Applications

Section 6.1

Tree Terminology: Tree

A tree consists of a collection of elements or nodes, with each node linked to its successors

Tree Terminology: Root

The node at the top of a tree is called its *root*

Tree Terminology: Branch

The links from a node to its successors are called *branches*

Tree Terminology: Children

The successors of a node are called its *children*

Tree Terminology: Parent

The predecessor of a node is called its *parent*

Tree Terminology: Parent

Each node in a tree has exactly one parent except for the root node, which has no parent

Tree Terminology: Sibling

Nodes that have the same parent are siblings

Tree Terminology: Leaf node

A node that has no children is called a *leaf node*

Tree Terminology: Leaf node

Leaf nodes - also called <u>external nodes</u>
Nonleaf nodes are called <u>internal nodes</u>

Leaf nodes also are known as external nodes, and nonleaf nodes are known as internal nodes

A generalization of the parent-child relationship is the *ancestor-descendant relationship*

A generalization of the parent-child relationship is the *ancestor-descendant relationship*

canine is a descendant of cat in this tree

dog is an ancestor of canine in this tree

Tree Terminology: Subtree

A *subtree* of a node is a tree whose root is a child of that node

Tree Terminology: Subtree

A *subtree* of a node is a tree whose root is a child of that node

Tree Terminology: Subtree

A *subtree* of a node is a tree whose root is a child of that node

The <u>level</u> of a node is determined by its distance from the root

The <u>level</u> of a node is determined by its distance from the root

The *level of a node* is its distance from the root plus 1

The *level of a node* is defined recursively

The *level of a node* is defined recursively

- If node n is the root of tree T, its level is 1
- If node n is not the root of tree T, its level is
 1 + the level of its parent

Tree Terminology: Height of Tree

The <u>height</u> of a tree is the number of nodes in the <u>longest path</u> from the root node to a leaf node

The <u>height</u> of a tree is the number of nodes in the <u>longest</u> <u>path</u> from the root node to a leaf node

Tree Terminology: Height of Tree

The <u>height</u> of a tree is the number of nodes in the <u>longest path</u> from the root node to a leaf node

The height of a tree is the number of nodes in the longest path from the root node to a leaf node

canine

dog

The height of this tree is 3

Binary Trees

- Each node has two subtrees
- A set of nodes T is a binary tree if either of the following is true
 - T is empty
 - Its root node has two subtrees, T_L and T_R , such that T_L and T_R are binary trees

```
(T_L = left subtree; T_R = right subtree)
```

Binary Trees - Examples

Expression Tree

- Each node contains an operator or an operand
- Operands are stored in leaf nodes

Expression Tree

- Parentheses are not stored in the tree
 - Tree structure dictates the order of operand evaluation
- Operators in nodes at higher tree levels are evaluated after operators in nodes at lower tree levels

