Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 07: Random networks

Version: May 27, 2014

vrije Universiteit amsterdam

Contents

Chapter	Description
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

/46

Random networks Introduction	Random networks Introduction
Introduction	
Observation	
Many real-world networks can be modeled as a random graph in which an edge $\langle u,v \rangle$ appears with probability p .	
Spatial systems: Railway networks, airline networks, computer networks, have the property that the closer <i>x</i> and <i>y</i> are, the higher the probability that they are linked.	
Food webs: Who eats whom? Turns out that techniques from random networks are useful for getting insight in their structure.	
Collaboration networks: Who cites whom? Again, techniques from random networks allows us to understand what is going on.	

ER-graphs

Notation

 $\mathbb{P}[\delta(u) = k]$ is probability that degree of u is equal to k.

- There are maximally n-1 other vertices that can be adjacent to u.
- We can choose k other vertices, out of n-1, to join with u $\Rightarrow \binom{n-1}{k} = \frac{(n-1)!}{(n-1-k)! \cdot k!}$ possibilities.
- ullet Probability of having exactly one specific set of k neighbors is:

$$p^k(1-p)^{n-1-k}$$

Conclusion

$$\mathbb{P}[\delta(u) = k] = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

ER-graphs: average vertex degree (the simple way)

- We know that $\sum_{v \in V(G)} \delta(v) = 2 \cdot |E(G)|$
- We also know that between each two vertices, there exists an edge with probability p.
- There are at most $\binom{n}{2}$ edges
- Conclusion: we can expect a total of $p \cdot \binom{n}{2}$ edges.

$$\overline{\delta}(v) = \frac{1}{n} \sum \delta(v) = \frac{1}{n} \cdot 2 \cdot p \binom{n}{2} = \frac{2 \cdot p \cdot n \cdot (n-1)}{n \cdot 2} = p \cdot (n-1)$$

Each vertex can have maximally n-1 incident edges \Rightarrow we can expect it to have p(n-1) edges.

ER-graphs: average vertex degree (the hard way)

Observation

All vertices have the same probability of having degree k, meaning that we can treat the degree distribution as a stochastic variable δ . We now know that δ follows a binomial distribution.

Recal

Computing the average (or expected value) of a stochastic variable x, is computing:

$$\overline{x} \stackrel{\text{def}}{=} \mathbb{E}[x] \stackrel{\text{def}}{=} \sum_{k} k \cdot \mathbb{P}[x = k]$$

/46 7/46

ER-graphs: average vertex degree (the hard way)

$$\sum_{k=1}^{n-1} k \cdot \mathbb{P}[\delta = k] = \sum_{k=1}^{n-1} {n-1 \choose k} k p^k (1-p)^{n-1-k}$$

$$= \sum_{k=1}^{n-1} {n-1 \choose k} k p^k (1-p)^{n-1-k}$$

$$= \sum_{k=1}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} k p^k (1-p)^{n-1-k}$$

$$= \sum_{k=1}^{n-1} \frac{(n-1)(n-2)!}{k(k-1)!(n-1-k)!} k p \cdot p^{k-1} (1-p)^{n-1-k}$$

$$= \sum_{k=1}^{n-1} \frac{(n-1)(n-2)!}{k(k-1)!(n-1-k)!} k p \cdot p^{k-1} (1-p)^{n-1-k}$$

$$= p(n-1) \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-1)!(n-1-k)!} p^{k-1} (1-p)^{n-1-k}$$

3/46

ER-graphs: average vertex degree (the hard way)

$$\sum_{k=1}^{n-1} k \cdot \mathbb{P}[\delta = k] = p (n-1) \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-1)!(n-1-k)!} p^{k-1} (1-p)^{n-1-k}$$

$$\{ \text{Take } l \equiv k-1 \} = p (n-1) \sum_{l=0}^{n-2} \frac{(n-2)!}{l!(n-1-(l+1))!} p^{l} (1-p)^{n-1-(l+1)}$$

$$= p (n-1) \sum_{l=0}^{n-2} \frac{(n-2)!}{l!(n-2-l)!} p^{l} (1-p)^{n-2-l}$$

$$= p (n-1) \sum_{l=0}^{n-2} \binom{(n-2)!}{l!(n-2-l)!} p^{l} (1-p)^{n-2-l}$$

$$\{ \text{Take } m \equiv n-2 \} = p (n-1) \sum_{l=0}^{n-1} \binom{m}{l} p^{l} (1-p)^{m-l}$$

$$= p (n-1) \cdot 1$$

Examples of ER-graphs

Important

ER(n,p) represents a group of Erdös-Rényi graphs: most ER(n,p)graphs are not isomorphic!

Examples of ER-graphs

Some observations

- $G \in ER(100, 0.3) \Rightarrow$
 - $\overline{\delta} = 0.3 \times 99 = 29.7$
 - Expected |E(G)| = $\frac{1}{2} \cdot \sum \delta(v) = np(n-1)/2 = \frac{1}{2} \times 100 \times 0.3 \times 99 = 1485.$
 - In our example: 490 edges.
- $G^* \in ER(2000, 0.015) \Rightarrow$
 - $\bullet \ \overline{\delta} = 0.015 \times 1999 = 29.985$
 - Expected |E(G)| =
 - $\frac{1}{2}\sum \delta(v) = np(n-1)/2 = \frac{1}{2} \times 2000 \times 0.015 \times 1999 = 29,985.$ In our example: 29,708 edges.
- The larger the graph, the more probable its degree distribution will follow the expected one (Note: not easy to show!)

ER-graphs: average path length

Observation

For any large $H \in ER(n,p)$ it can be shown that the average path length $\overline{d}(H)$ is equal to:

$$\overline{d}(H) = \frac{\ln(n) - \gamma}{\ln(\rho n)} + 0.5$$

with γ the Euler constant (\approx 0.5772).

Observation

With $\overline{\delta} = p(n-1)$, we have

$$\overline{d}(H) \approx \frac{\ln(n) - \gamma}{\ln(\overline{\delta})} + 0.5$$

Random networks Classical random networks	Random networks Classical random networks
ER-graphs: clustering coefficient	
Reasoning	
 Clustering coefficient: fraction of edges between neighbors and maximum possible edges. 	
• Expected number of edges between k neighbors: $\binom{k}{2}p$	
 Maximum number of edges between k neighbors: (^k₂) 	
Expected clustering coefficient for every vertex: p	
15/40	45146
15/46	15/46

Small worlds: Six degrees of separation Pick two people at random Try to measure their distance: A knows B knows C ... Experiment: Let Alice try to get a letter to Zach, whom she does not know. Strategy by Alice: choose Bob who she thinks has a better chance of reaching Zach. Result: On average 5.5 hops before letter reaches target.

Random networks Small worlds	Random networks Small worlds
atts-Strogatz graphs	
gorithm (Watts-Strogatz)	
$= \{v_1, v_2, \dots, v_n\}. \text{ Let } k \text{ be even. Choose } n \gg k \gg \ln(n) \gg 1.$	
Order the n vertices into a ring	
Connect each vertex to its first k/2 right-hand (counterclockwise) neighbors, and to its k/2 left-hand (clockwise) neighbors.	
With probability p, replace edge $\langle u, v \rangle$ with an edge $\langle u, w \rangle$ where $w \neq u$ is randomly chosen, but such that $\langle u, w \rangle \notin E(G)$.	
Notation: WS(n,k,p) graph	

WS-graphs: clustering coefficient

Theorem
For any G from WS(n,k,0), $CC(G) = \frac{3}{4} \frac{k-2}{k-1}$.

Proof
Choose arbitrary $u \in V(G)$. Let H = G[N(u)]. Note that $G[\{u\} \cup N(u)]$ is equal to:

WS-graphs: clustering coefficient

Proof (cntd)

- v_i^- is missing only u as left-hand neighbor in $H \Rightarrow v_i^-$ has $\frac{k}{2}-1$ left-hand neighbors.
- $\delta(v_i^-) = \left(\frac{k}{2} 1\right) + \left(\frac{k}{2} i\right) = k i 1$ [Same for $\delta(v_i^+)$]

WS-graphs: clustering coefficient

Proof (cntd)

•
$$|E(H)| = \frac{1}{2} \sum_{v \in V(H)} \delta(v) =$$

$$\frac{1}{2} \sum_{i=1}^{k/2} \left(\delta(v_i^-) + \delta(v_i^+) \right) = \frac{1}{2} \cdot 2 \sum_{i=1}^{k/2} \delta(v_i^-) = \sum_{i=1}^{k/2} (k - i - 1)$$

- $\sum_{i=1}^{m} i = \frac{1}{2} m(m+1) \Rightarrow |E(H)| = \frac{3}{8} k(k-2)$
- $|V(H)| = k \Rightarrow$

$$cc(u) = \frac{|E(H)|}{{k \choose 2}} = \frac{\frac{3}{8}k(k-2)}{\frac{1}{2}k(k-1)} = \frac{3(k-2)}{4(k-1)}$$

WS-graphs: average shortest path length

Theorem

 $\forall \textit{G} \in \textit{WS}(\textit{n}, \textit{k}, 0) \textit{ the average shortest-path length } \overline{\textit{d}}(\textit{u}) \textit{ from vertex } \textit{u}$ to any other vertex is approximated by

$$\overline{d}(u) \approx \frac{(n-1)(n+k-1)}{2kn}$$

WS-graphs: average shortest path length

Proof

- Let L(u,1) =left-hand vertices $\{v_1^+, v_2^+, \dots, v_{k/2}^+\}$
- Let L(u,2) =left-hand vertices $\{v_{k/2+1}^+, \dots, v_k^+\}$.
- Let $L(u, m) = \text{left-hand vertices } \{v_{(m-1)k/2+1}^+, \dots, v_{mk/2}^+\}.$
- Note: $\forall v \in L(u, m)$: v is connected to a vertex from L(u, m-1).

Note

L(u,m) = left-hand neighbors connected to u through a (shortest) path of length m. Define analogously R(u,m).

28.

Random networks Small

mall worlds

Random networks

nall worlds

WS-graphs: average shortest path length

Proof (cntd)

- Index p of the farthest vertex v_p^+ contained in any L(u,m) will be less than approximately (n-1)/2.
- All L(u,m) have equal size $\Rightarrow m \cdot k/2 \le (n-1)/2 \Rightarrow m \le \frac{(n-1)/2}{k/2}$.

$$\overline{d}(u) \approx 2^{\frac{1 \cdot |L(u,1)| + 2 \cdot |L(u,2)| + \dots \frac{n-1}{k} \cdot |L(u,m)|}{n}}$$

which leads to

$$\overline{d}(u) \approx \frac{k}{n} \sum_{i=1}^{(n-1)/k} i = \frac{k}{2n} \left(\frac{n-1}{k}\right) \left(\frac{n-1}{k} + 1\right) = \frac{(n-1)(n+k-1)}{2kn}$$

46 29/

Random networks

Small worlds

Random networks Small worlds

WS-graphs: comparison to real-world networks

Observation

WS(n,k,0) graphs have long shortest paths, yet high clustering coefficient. However, increasing p shows that average path length drops rapidly.

Normalized: divide by $CC(G_0)$ and $\overline{d}(G_0)$ with

 $G_0 \in WS(n,k,0)$

30/

30/46

Important observation

In many real-world networks we see very few high-degree nodes, and that the number of high-degree nodes decreases exponentially: Web link structure, Internet topology, collaboration networks, etc.

Characterization

In a scale-free network, $\mathbb{P}[\delta(u) = k] \propto k^{-\alpha}$

Definition

A function f is scale-free iff $f(bx) = C(b) \cdot f(x)$ where C(b) is a constant dependent only on b

6 31/46

Random networks Scale-free networks	Random networks Scale-free networks
Constructing SF networks	
Observation	
Observation	
Where ER and WS graphs can be constructed from a given set of	
vertices, scale-free networks result from a growth process combined	
with preferential attachment.	
	<u> </u>
34/46	34/46
34/40	39740

Random networks Scale-free networks	Random networks Scale-free networks
Barabási-Albert networks	
lgorithm (Barabási-Albert)	
$G_0 \in ER(n_0, p)$ with $V_0 = V(G_0)$. At each step $s > 0$:	
1 Add a new vertex $v_s: V_s \leftarrow V_{s-1} \cup \{v_s\}$.	
Add $m \le n_0$ edges incident to v_s and a vertex u from V_{s-1} (and u not chosen before in current step). Choose u with probability	
$\mathbb{P}[select \ u] = \frac{\delta(u)}{\sum_{w \in V_{s-1}} \delta(w)}$	
Note: choose u proportional to its current degree.	
Stop when n vertices have been added, otherwise repeat the previous two steps.	
Result: a Barabási-Albert graph, BA(n, n ₀ , m).	

Random networks Scale-free networks	Random networks Scale-free networks
BA-graphs: degree distribution	
DA-graphs. degree distribution	
The second	
Theorem	
For any $BA(n, n_0, m)$ graph G and $u \in V(G)$:	
0 (1) 1	
$\mathbb{P}[\delta(u)=k]=\frac{2m(m+1)}{k(k+1)(k+2)}\propto\frac{1}{k^3}$	
k(k+1)(k+2)	
	·
36/46	36/46

Random networks Scale-free networks	Random networks Scale-free networks
Generalized BA-graphs	
Algorithm	
G_0 has n_0 vertices V_0 and no edges. At each step $s > 0$:	
• Add a new vertex v_s to V_{s-1} .	
② Add $m \le n_0$ edges incident to v_s and different vertices u from V_{s-1} (u not chosen before during current step). Choose u with probability proportional to its current degree $\delta(u)$.	
For some constant c ≥ 0 add another c × m edges between vertices from V _{s-1} ; probability adding edge between u and w is proportional to the product δ(u) · δ(w) (and ⟨u,w⟩ does not yet exist).	
Stop when n vertices have been added.	
37/46	37/46

Random networks Scale-free networks	Random networks Scale-free networks
Generalized BA-graphs: degree distribution	
Theorem	
For any generalized BA (n, n_0, m) graph G and $u \in V(G)$:	
$\mathbb{P}[\delta(u)=k] \propto k^{-(2+\frac{1}{1+2c})}$	
Observation	
• For $c = 0$, we have a BA-graph;	
• $\lim_{c\to\infty} \mathbb{P}[\delta(u)=k] \propto \frac{1}{k^2}$	

BA-graphs: clustering coefficient

BA-graphs after t steps

Consider clustering coefficient of vertex v_s after t steps in the construction of a $BA(t, n_0, m)$ graph. Note: v_s was added at step $s \le t$. $cc(v_s) = \frac{m-1}{8(\sqrt{t} + \sqrt{s}/m)^2} \left(\ln^2(t) + \frac{4m}{(m-1)^2} \ln^2(s) \right)$

Random networks Scale-free networks
Barabási-Albert with tunable clustering
Algorithm
Consider a small graph G_0 with n_0 vertices V_0 and no edges. At each step $s>0$:
• Add a new vertex v_s to V_{s-1} .
Select u from V_{s-1} not adjacent to v_s , with probability proportional to $\delta(u)$. Add edge $\langle v_s, u \rangle$.
 (a) If m - 1 edges have been added, continue with Step 3. (b) With probability q: select a vertex w adjacent to u, but not to v_s. If no such vertex exists, continue with Step c. Otherwise, add edge (v_s, w) and continue with Step a. (c) Select vertex u' from V_{s-1} not adjacent to v_s with probability
proportional to $\delta(u')$. Add edge $\langle v_s, u' \rangle$ and set $u \leftarrow u'$. Continue with Step a.
If n vertices have been added stop, else go to Step 1.
45/48

Random networks Scale-free networks

Barabási-Albert with tunable clustering

Special case: q = 1

If we add edges $\langle v_s, w \rangle$ with probability 1, we obtain a previously constructed subgraph.

Recall

$$cc(x) = \begin{cases} 1 & \text{if } x = w_i \\ \frac{2}{k+1} & \text{if } x = u, v_s \end{cases}$$