

# **Applied Deep Learning**

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

#### Learning objectives of today

**Goals:** Understand the key concepts of linear algebra and calculus relevant to deep learning

- Basic definitions
- Taking derivatives
- Typical operations on vectors and matrices

#### How will we do this?

- Pick up where the videos left off
- Not a comprehensive review, but focusing on the most relevant concepts for understanding deep learning
- Introduction how to implement concepts in Python
- Building our very own logistic regression algorithm (the simplest neural network)



#### Why are we even doing this?

- Straight up: this will be the most tedious class for most of you
- However, deep learning, at the very core, functions with fundamental linear algebra operations and gradient descent algorithms (calculus!)
- Hence, we need to learn the gist of these concepts in order to:
  - Understand what is happening "behind the scenes" of neural networks
  - Build intuition about how models can be adjusted and improved even many of the out-ofthe-box tools to tune your networks don't make sense if you don't know what a gradient descent algorithm is
  - Create confidence in handling ultra-high dimensional data with millions of observations without having to rely on visual inspection



•

Linear algebra – definitions

- Scalar: a single number
  - Integers (-1,0,1,2,...), real numbers (0.319375, 1.17,  $\pi$ ), rational numbers  $\left(\frac{integer}{integer}\right)$



- Scalar: a single number
  - Integers (-1,0,1,2,...), real numbers (0.319375, 1.17,  $\pi$ ), rational numbers  $\left(\frac{integer}{integer}\right)$
- Vector: One-dimensional array of scalars

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Entries can be real numbers, binary, integer, ...



- Scalar: a single number
  - Integers (-1,0,1,2,...), real numbers (0.319375, 1.17,  $\pi$ ), rational numbers  $\left(\frac{integer}{integer}\right)$
- Vector: One-dimensional array of scalars

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Entries can be real numbers, binary, integer, ...
- Matrix: Two-dimensional array of numbers





- Scalar: a single number
  - Integers (-1,0,1,2,...), real numbers (0.319375, 1.17,  $\pi$ ), rational numbers  $\left(\frac{integer}{integer}\right)$
- Vector: One-dimensional array of scalars

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Entries can be real numbers, binary, integer, ...
- Matrix: Two-dimensional array of numbers
- Tensor: Any array of numbers
  - Could have zero dimensions (scalar), one dimension (vector), two dimensions (matrix

Column

Could also have three or more dimensions

## A typical use of matrices in deep learning





### In Python

- We generally use Numpy to work with vectors, matrices, and sometimes tensors
- Later, we'll also see the TensorFlow-specific implementation of tensors





Linear algebra – typical operations

### **Matrix transpose**

Essentially a mirror image across the main diagonal

$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

$$(\boldsymbol{A}^{\top})_{i,j} = A_{j,i}.$$

• We call a matrix symmetric if  $A = A^T$ 



## **Matrix multiplication**

$$C = AB$$
.

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$





# In Python





Linear algebra – norms

#### **Norms**

- Functions f that measures the "length" of a vector x
- Such functions need to fulfill four conditions:
  - f needs to return non-negative values only (there is no negative length!)
  - The only vector that has length zero should be the 0-vector
  - The length "scales": For all  $x \in \mathbb{R}^n$ ,  $\alpha \in \mathbb{R}$ ,  $f(\alpha x) = |\alpha| f(x)$
  - The triangle inequality needs to hold: For all  $x, y \in \mathbb{R}^n$ ,  $f(x + y) \le f(x) + f(y)$



### Some commonly used norms

- $L^p$  norm:
  - $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$
  - Most commonly used norm:  $||x||_2 = \sqrt{\sum_i x_i^2}$  ( $L^2$  norm or "Euclidian" norm)
  - Quite common as well:  $||x||_1 = \sum_i |x_i|$  ( $L^1$  norm)
- An extreme case: the max-norm  $||x||_{\infty} = \max_{i} |x_{i}|$



#### Norms defined for matrices

There are many matrix norms, but we will only need one: the Frobenius norm

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m A_{i,j}^2}$$

• Note the similarity with the  $L^2$  norm for vectors



A refresher on calculus

#### What is a derivative?



Slope (derivative) of f(x) at 2 is  $\frac{\text{``height''}}{\text{``width''}}$ 



#### What is a derivative?



Slope (derivative) of f(x) at 2 is  $\frac{\text{``height''}}{\text{``width''}}$ 



# A few important derivatives

| f(x)                                  | $f'(x) = \frac{df(x)}{dx} = \frac{d}{dx}f(x)$ |
|---------------------------------------|-----------------------------------------------|
| 1                                     |                                               |
| $\boldsymbol{x}$                      |                                               |
| $x^2$                                 |                                               |
| $x^3$                                 |                                               |
| $\sqrt{x}$                            |                                               |
| $ \frac{\sqrt{x}}{\ln(x)} $ $ e^{x} $ |                                               |
| $e^x$                                 |                                               |



# Some rules about handling derivatives

| h(x)                | h'(x)                                  | Example                     |
|---------------------|----------------------------------------|-----------------------------|
| c f(x)              | c f'(x)                                | $h(x) = 18 x^k$             |
| f(x) + g(x)         | f'(x) + g'(x)                          | $h(x) = \log(x) - x^2 + 5$  |
| f(x)g(x)            | f'(x)g(x) + f(x)g'(x)                  | $h(x) = 2e^x x$             |
| $\frac{1}{f(x)}$    | $-\frac{f'(x)}{f(x)^2}$                | $h(x) = \frac{1}{\ln(x)}$   |
| $\frac{f(x)}{g(x)}$ | $\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ | $h(x) = \frac{\ln(x)}{x^2}$ |
| f(g(x))             | f'(g(x))g'(x)                          | $h(x) = e^{x^2}$            |

#### Using a computation graph for derivatives

- We can use the "chain rule" to simplify the search for derivatives
- Say, we want to compute the derivatives of  $f = x(\ln(3y) + z^2)$  to x, y, z at x = 1, y = 2, z = 3





Putting it together – gradient descent

# The gradient







### What are we seeing here?

• Say, we have a function 
$$f$$
, taking as input a vector  $\mathbf{x} = \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix}$ 

• The gradient (with respect to x) is the vector pointing in the direction of fastest increase:

$$abla_{x}f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}$$



## This naturally extends to functions that take as input a matrix

Say, now we have a function f, taking as input a matrix  $\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix}$ 

• The gradient (with respect to A) is now also a matrix  $\nabla_A f(A) = \begin{bmatrix} \frac{\partial f(A)}{\partial a_{1,1}} & \frac{\partial f(A)}{\partial a_{1,2}} & \cdots & \frac{\partial f(A)}{\partial a_{1,m}} \\ \frac{\partial f(A)}{\partial a_{2,1}} & \frac{\partial f(A)}{\partial a_{2,2}} & \cdots & \frac{\partial f(A)}{\partial a_{2,m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial a_{n,1}} & \frac{\partial f(A)}{\partial a_{n,2}} & \cdots & \frac{\partial f(A)}{\partial a_{n,m}} \end{bmatrix}$ 



### Why do we need the gradient? A thought experiment:

- You wake up somewhere in the mountain
- Your goal is to reach the lowest point as quickly as possible
- You have no map, GPS, and can only see a few meters ahead because of trees and fog
- How do you do it?



## **Gradient descent – the idea**







# The algorithm

- Take small steps
- For each step, go downhill in the locally steepest descent direction
- Repeat until you are on a flat surface



Taking a step back – logistic regression

## What do we actually do when training a logistic regression model?

- We are given values  $(x^{(i)}, y^{(i)})$ , where  $x^{(i)} \in \mathbb{R}^m$  and  $y^{(i)} \in \{0,1\}$
- Our prediction  $\hat{y}^{(i)}$  should reflect the probability that  $y^{(i)} = 1$ :  $\hat{y}^{(i)} = P(y^{(i)} = 1 | x^{(i)})$
- We model this probability, using the sigmoid function:



### What do we actually do when training a logistic regression model?

- We are given values  $(x^{(i)}, y^{(i)})$ , where  $x^{(i)} \in \mathbb{R}^m$  and  $y^{(i)} \in \{0,1\}$
- Our prediction  $\hat{y}^{(i)}$  should reflect the probability that  $y^{(i)} = 1$ :  $\hat{y}^{(i)} = P(y^{(i)} = 1 | x^{(i)})$
- We model this probability, using the sigmoid function:





### The optimization part

- Remember that  $w \in \mathbb{R}^m$  and  $b \in \mathbb{R}$
- To get to the "right" model, we optimize our parameters w, b so that the  $\hat{y}^{(i)}$ s are "as close as possible" to the  $y^i$ s
- What we do is to minimize the "cost-function" J(w, b), where  $\hat{y}^{(i)} = \frac{1}{1 + e^{-(x^{(i)}w + b)}}$ :

$$J(\mathbf{w}, b) = -\frac{1}{n} \sum_{i=1}^{n} \left[ y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln (1 - \hat{y}^{(i)}) \right]$$



### The optimization part

- Remember that  $w \in \mathbb{R}^m$  and  $b \in \mathbb{R}$
- To get to the "right" model, we optimize our parameters w, b so that the  $\hat{y}^{(i)}$ s are "as close as possible" to the  $y^i$ s
- What we do is to minimize the "cost-function" J(w,b), where  $\hat{y}^{(i)} = \frac{1}{1+e^{-\left(x^{(i)}w+b\right)}}$ :

$$J(\mathbf{w}, b) = -\frac{1}{n} \sum_{i=1}^{n} \left[ y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln(1 - \hat{y}^{(i)}) \right]$$

$$\uparrow J(\mathbf{w}, b)$$





# Solving the optimization problem through gradient descent





### Our first optimization algorithm

- Decide a "learning rate"  $\alpha$
- Start with some w and b and compute I(w, b)
- Until *J* "doesn't change" anymore:
  - Let  $w_1$ : =  $w_1 \alpha \frac{\partial J(w,b)}{\partial w_1}$ Let  $w_2$ : =  $w_2 \alpha \frac{\partial J(w,b)}{\partial w_2}$

  - Let  $w_m$ : =  $w_m \alpha \frac{\partial J(w,b)}{\partial w_m}$ Let b: =  $b \alpha \frac{\partial J(w,b)}{\partial b}$

  - Recompute I(w, b)
- Enjoy the fruits of your labor: you have fit a logistic regression model manually!



#### Wait a second, how do we find all those derivatives?

- We can use again the computation graph!
- Recall that  $\hat{y}^{(i)} = \frac{1}{1+e^{-(x^{(i)}w+b)}} = \sigma(x^{(i)}w+b)$



## As the same parameters influence all examples, we have to consider one final step

• Recall that 
$$J(\mathbf{w}, b) = -\frac{1}{n} \sum_{i=1}^{n} \left[ y^{(i)} \ln \hat{y}^{(i)} + \left( 1 - y^{(i)} \right) \ln \left( 1 - \hat{y}^{(i)} \right) \right] = \frac{1}{n} \sum_{i=1}^{n} L^{(i)}$$

• We have that 
$$\frac{\partial J(w,b)}{\partial w_j} = \frac{1}{n} \sum_{i=1}^n \frac{\partial L^{(i)}}{\partial w_j}$$



# Schema of a logistic regression





# We can now implement a logistic regression







#### Sources

- Bhaskhar, 2021, Linear Algebra: <a href="https://cs229.stanford.edu/notes2021fall/section1notes-linear-algebra-review.pdf">https://cs229.stanford.edu/notes2021fall/section1notes-linear-algebra-review.pdf</a>
- Collins, 2012, Intensity Surfaces and Gradients:
   <a href="http://www.cse.psu.edu/~rtc12/CSE486/lecture02\_6pp.pdf">http://www.cse.psu.edu/~rtc12/CSE486/lecture02\_6pp.pdf</a>
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: <a href="http://www.deeplearningbook.org">http://www.deeplearningbook.org</a>
- Kolter, Do, & Ma, 2020, Linear Algebra Review and Reference: <a href="https://cs229.stanford.edu/summer2020/cs229-linalg.pdf">https://cs229.stanford.edu/summer2020/cs229-linalg.pdf</a>
- Ivanovic, 2017, Python Introduction and Linear Algebra Review: <a href="https://web.stanford.edu/class/cs231a/section/section1.pdf">https://web.stanford.edu/class/cs231a/section/section1.pdf</a>

