STAT 260 - Nonparametric Statistics

Ying Sun

Statistics (STAT) Program

Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division King Abdullah University of Science and Technology (KAUST)

HOMEWORK

Ι

Henrique Aparecido Laureano

Spring Semester 2018

Contents

Problem 1	2
Problem 2	4
Problem 3	4
Problem 4	4
Problem 5	5
Problem 6	5

Problem 1

Question Q1.1-1.3 on page 15 of Topic 2.

Q1.1

$$\mathbb{V}\hat{\beta}_0 = \sigma^2 \frac{\sum_{i=1}^n x_i^2}{nS_{xx}} ?$$

Solution:

$$\mathbb{V}\hat{\beta}_0 = \mathbb{V}(\bar{y} - \hat{\beta}_1 \bar{x}) = \mathbb{V}\bar{y} + \bar{x}^2 \mathbb{V}\hat{\beta}_1 - 2\bar{x} \operatorname{Cov}(\bar{y}, \hat{\beta}_1).$$

The variance terms are

$$\mathbb{V}\bar{y} = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V} y_i = \frac{\sigma^2}{n}, \qquad \mathbb{V}\hat{\beta}_1 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{S_{xx}}.$$

The covariance term is

$$Cov(\bar{y}, \hat{\beta}_1) = \mathbb{E}\bar{y}\hat{\beta}_1 - \mathbb{E}\bar{y}\mathbb{E}\hat{\beta}_1 = \beta_1(\beta_0 + \beta_1\bar{x}) - (\beta_0 + \beta_1\bar{x})\beta_1 = 0.$$

So

$$\begin{split} \mathbb{V}\hat{\beta}_{0} &= \mathbb{V}(\bar{y} - \hat{\beta}_{1}\bar{x}) = \mathbb{V}\bar{y} + \bar{x}^{2}\mathbb{V}\hat{\beta}_{1} - 2\bar{x}\mathrm{Cov}(\bar{y}, \hat{\beta}_{1}) \\ &= \frac{\sigma^{2}}{n} + \frac{\bar{x}^{2}\sigma^{2}}{S_{xx}} - 0 = \sigma^{2}\frac{S_{xx} + n\bar{x}^{2}}{nS_{xx}} = \sigma^{2}\frac{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2} + n\bar{x}^{2}}{nS_{xx}} \\ &= \sigma^{2}\frac{\sum_{i=1}^{n}x_{i}^{2} - n\bar{x}^{2} + n\bar{x}^{2}}{nS_{xx}} = \sigma^{2}\frac{\sum_{i=1}^{n}x_{i}^{2}}{nS_{xx}}. \end{split}$$

Therefore

$$\boxed{\mathbb{V}\hat{\beta}_0 = \sigma^2 \frac{\sum_{i=1}^n x_i^2}{nS_{xx}}.}$$

Q1.2

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\bar{x}}{S_{xx}} ?$$

Solution:

$$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = \mathbb{E}(\hat{\beta}_{0} - \mathbb{E}\hat{\beta}_{0})(\hat{\beta}_{1} - \mathbb{E}\hat{\beta}_{1}) = \mathbb{E}(\hat{\beta}_{0} - \beta_{0})(\hat{\beta}_{1} - \beta_{1})$$

$$= \mathbb{E}(\bar{y} - \hat{\beta}_{1}\bar{x} - \beta_{0})(\hat{\beta}_{1} - \beta_{1})$$

$$= \mathbb{E}(\beta_{0} + \beta_{1}\bar{x} - \hat{\beta}_{1}\bar{x} - \beta_{0})(\hat{\beta}_{1} - \beta_{1})$$

$$= \mathbb{E}(-(\hat{\beta}_{1} - \beta_{1})\bar{x})(\hat{\beta}_{1} - \beta_{1})$$

$$= -\bar{x}\mathbb{E}(\hat{\beta}_{1} - \beta_{1})^{2}$$

$$= -\bar{x}\mathbb{E}(\hat{\beta}_{1}^{2} - 2\beta_{1}\hat{\beta}_{1} + \beta_{1}^{2})$$

$$= -\bar{x}[\mathbb{E}\hat{\beta}_{1}^{2} - 2\beta_{1}\mathbb{E}\hat{\beta}_{1} + \beta_{1}^{2}]$$

$$= -\bar{x}[\mathbb{V}\hat{\beta}_{1} + \mathbb{E}^{2}\hat{\beta}_{1} - \beta_{1}^{2}]$$

$$= -\bar{x}\left[\frac{\sigma^{2}}{S_{xx}} + \beta_{1}^{2} - \beta_{1}^{2}\right].$$

Therefore,

$$\boxed{\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\sigma^2 \bar{x}}{S_{xx}}}.$$

Q1.3

What does mean $\mathbb{V}\hat{\beta}_1 \neq 0$?

Solution:

We don't know the real slope, β_1 , so $\hat{\beta}_1$ is an estimative with mean β_1 and with a respective variance. If the variance of $\hat{\beta}_1$ is zero this means that, is this case, $\hat{\beta}_1$ is exactly equal to β_1 .

What is the source of randomness in $\hat{\beta}_1$?

Solution:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

The source of randomness is the data itself. In the numerator and denominator of the estimator we have the difference of each observation of the independent variable with its mean. This we can't control, depends from the data. This is the source of randomness.

How can you reduce $\mathbb{V}\hat{\beta}_1$?

Solution:

$$\mathbb{V}\hat{\beta}_1 = \frac{\sigma^2}{S_{xx}} = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

Collecting more data. With a bigger sample size the component S_{xx} is bigger and consequently the variance is smaller.

the variance is smaller.	П
Problem 2	_
Question Q2.1-2.2 on pages 16-17 of Topic 2.	
Q2.1	
Solution:	
$\mathbf{Q2.2}$	
Solution:	
Problem 3	
Question Q3 on page 19 of Topic 2.	
Solution:	
Problem 4	
Question Q4 on page 20 of Topic 2.	
Solution:	

Problem 5

Write your own version of anova() function on page 14 of Topic 3 using R. Your function should not use lm() function. Must be able to compare two nested models. Replicate results on slides 14, 17, 18, 21 and 22 about the gala data set.

Solution:

Problem 6

Write an R function that can be used to automatically determine the order d of the polynomial regression and replicate the results on pages 31 and 32 of Topic 3 about the savings data. (The output should be the chosen order d and the plot of the fitted polynomial function to the data.)

Solution: