

Batistical Processing of Natural Language

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

Model Estimation: Maximum Likelihood vs. Maximum Entropy

DMKM - Universitat Politècnica de Catalunya

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Basics

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

Random variable: Function on a stochastic process.

 $X:\Omega\longrightarrow\mathcal{R}$

- Continuous and discrete random variables.
- Probability mass (or density) function, Frequency function: p(x) = P(X = x).

Discrete R.V.: $\sum_{x} p(x) = 1$

Continuous R.V: $\int_{-\infty}^{\infty} p(x) dx = 1$

- Distribution function: $F(x) = P(X \le x)$
- Expectation and variance, standard deviation $E(X) = \mu = \sum_{x} xp(x)$

$$VAR(X) = \sigma^2 = E((X - E(X))^2) = \sum_{x} (x - \mu)^2 p(x)$$

Joint and Conditional Distributions

- Joint probability mass function: p(x, y)
- Marginal distribution:

$$p_X(x) = \sum_{y} p(x, y)$$

 $p_Y(y) = \sum_{x} p(x, y)$ $p_{X|Y}(x \mid y) = \frac{p(x, y)}{p_Y(y)}$

Simplified Polynesian. Sequences of C-V syllabes: Two random variables C,V

P(C,V)		t	k		P(p i) = ?
а	1/16	3/8	1/16	1/2	
i	1/16	3/16	0	1/4	$P(a \mid t \lor k) = 0$
u	0	3/8 3/16 3/16	1/16	1/4	$P(a \lor i \mid p) = 3$
	1/8	3/4	1/8		

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Samples and Estimators

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

Random samples

Sample variables:

Sample mean:
$$\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} nx_i$$

Sample mean:
$$\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} nx_i$$

Sample variance: $s_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} n(x_i - \bar{\mu}_n)^2$.

- Law of Large Numbers: as n increases, $\bar{\mu}_n$ and s_n^2 converge to μ and σ^2
- Estimators: Sample variables used to estimate real parameters.

dm² Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

- Choose the alternative that maximizes the probability of the observed outcome.
- $\blacksquare \bar{\mu}_n$ is a MLE for E(X)
- \mathbf{s}_n^2 is a MLE for σ^2
- Data sparseness problem. Smoothing techniques.

P(a,b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.10	0.15	0	0.08	0.03		
on	0.06	0.25	0.10	0.15	0	0	0.04	0.60
total	0.10	0.35	0.25	0.15	0.08	0.03	0.04	1.0

Introduction

Statistical Models for

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

dm² Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

■ Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(en \lor \grave{a}) = 0.6$$

P(a,b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04				0.04	0.04	0.04	
on	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
total								1.0
	0.6							

Likelihood Estimation (MLE)

Maximum

Introduction

Statistical Models for NI P

Maximum Entropy Modeling

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(en \lor \grave{a}) = 0.6;$$
 $p((en \lor \grave{a}) \land in) = 0.4$

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(en \lor \grave{a}) = 0.6;$$
 $p((en \lor \grave{a}) \land in) = 0.4;$ $p(in) = 0.5$

Maximum Likelihood Estimation (MLE)

Introduction

Statistical Models for NI P

Maximum Entropy Modeling

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

2 Statistical Models for NLP

- Overview
- Prediction & Similarity Models
- Statistical Inference of Models for NLP

3 Maximum Likelihood Estimation (MLE)

- Overview
- Smoothing & Estimator Combination

4 Maximum Entropy Modeling

- Overview
- Building ME Models
- Application to NLP
- 5 References

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

2 Statistical Models for NLP

- Overview
- Prediction & Similarity Models
- Statistical Inference of Models for NLP

3 Maximum Likelihood Estimation (MLE)

- Overview
- Smoothing & Estimator Combination

4 Maximum Entropy Modeling

- Overview
- Building ME Models
- Application to NLP
- 5 References

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Introduction

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Introduction

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Introduction

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Introduction

Statistical Models for NLP

Overview

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Statistical Models for NLP Prediction &

Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

2 Statistical Models for NLP

- Overview
- Prediction & Similarity Models
- Statistical Inference of Models for NLP

3 Maximum Likelihood Estimation (MLE)

- Overview
- Smoothing & Estimator Combination

4 Maximum Entropy Modeling

- Overview
- Building ME Models
- Application to NLP
- 5 References

Prediction Models & Similarity Models

Introduction

Statistical Models for NLP Prediction & Similarity

Models

Maximum
Likelihood
Estimation

(MLE)
Maximum
Entropy
Modeling

- Prediction Models: Able to predict probabilities of future events, knowing past and present.
- Similarity Models: Able to compute similarities between objects (may predict, too).
 - Compare feature-vector/feature-set represented objects.
 - Compare distribution-vector represented objects
 - Used to group objects (clustering, data analysis, pattern discovery, ...)
 - If objects are "present and past" situations, computing similarities may be used as a prediction (memory-based ML techniques).

Similarity Models

Introduction

Statistical Models for NI P

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

Example: Document representation

- Documents are represented as vectors in a high dimensional \Re^N space.
- Dimensions are word forms, lemmas, NEs, ...
- Values may be either binary or real-valued (count, frequency, ...)

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$
 $\vec{x}^T = [x_1 \dots x_N]$ $|\vec{x}| = \sqrt{\sum_{i=1}^N x_i^2}$

Prediction Models

Example: Noisy Channel Model (Shannon 48)

Introduction

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

NLP Applications

Appl.	Input	Output	p(i)	p(o i)	
MT	L word	M word	p(L)	Translation	
	sequence	sequence		model	
OCR	Actual text	Text with	prob. of	model of	
		mistakes	language text	OCR errors	
PoS	PoS tags	word	prob. of PoS	p(w t)	
tagging	sequence	sequence	sequence		
Speech	word	speech	prob. of word	acoustic	
recog.	sequence	signal	sequence	model	

Statistical Models for NLP

Statistical Inference of Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

2 Statistical Models for NLP

- Overview
- Prediction & Similarity Models
- Statistical Inference of Models for NLP

3 Maximum Likelihood Estimation (MLE)

- Overview
- Smoothing & Estimator Combination

4 Maximum Entropy Modeling

- Overview
- Building ME Models
- Application to NLP
- 5 References

Inference & Modeling

Introduction

Statistical Models for NLP Statistical Inference of Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Using data to infer information about distributions
 - Parametric / non-parametric estimation
 - Finding good estimators: MLE, MEE, ...
- Example: Language Modeling (Shannon game), N-gram models.
- Predictions based on past behaviour
 - \blacksquare Target / classification features \to Independence assumptions
 - Equivalence classes (bins).
 Granularity: discrimination vs. statistical reliability

N-gram models

Introduction

Statistical Models for NLP

Statistical Inference of Models for NLI

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

- Predicting the next word in a sequence, given the *history* or *context*. $P(w_n \mid w_1 \dots w_{n-1})$
- Markov assumption: Only *local* context (of size n-1) is taken into account. $P(w_i \mid w_{i-n+1} \dots w_{i-1})$
- bigrams, trigrams, four-grams (n = 2, 3, 4). Sue swallowed the large green <?>
- Parameter estimation (number of equivalence classes)
- Parameter reduction: stemming, semantic classes, PoS, ...

Model	Parameters
bigram	$20,000^2 = 4 \times 10^8$
trigram	$20,000^3 = 8 \times 10^{12}$
four-gram	$20,000^4 = 1.6 \times 10^{17}$

Language model sizes for a 20,000 words vocabulary

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Overview

Maximum Entropy Modeling

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

MLE Overview

observed data. The prediction task can be reduced to having good estimations of the *n*-gram distribution:

 $P(w_n \mid w_1 \dots w_{n-1}) = \frac{P(w_1 \dots w_n)}{P(w_1 \dots w_{n-1})}$

MLE (Maximum Likelihood Estimation)

Estimate the probability of the target feature based on

$$P_{MLE}(w_1 ... w_n) = \frac{C(w_1 ... w_n)}{N}$$

$$P_{MLE}(w_n \mid w_1 ... w_{n-1}) = \frac{C(w_1 ... w_n)}{C(w_1 ... w_{n-1})}$$

- No probability mass for unseen events
- Unsuitable for NLP
- Data sparseness, Zipf's Law

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE) Overview

Maximum Entropy Modeling

Statistical Models for NLP

Maximum
Likelihood
Estimation
(MLE)
Smoothing &
Estimator

Combination

Maximum

Entropy

Modeling References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Notation

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

- $C(w_1 ... w_n)$: Observed occurrence count for n-gram $w_1 ... w_n$.
- $C_A(w_1 ... w_n)$: Observed occurrence count for n-gram $w_1 ... w_n$ on data subset A.
- N: Number of observed n-gram occurrences

$$N = \sum_{w_1...w_n} C(w_1...w_n)$$

- N_k : Number of classes (n-grams) observed k times.
- N_k^A : Number of classes (n-grams) observed k times on data subset A.
- *B*: Number of equivalence classes or bins (number of potentially observable n-grams).

$\bigoplus \mathbf{q}^{\mathbf{m}^2}$ Smoothing 1 - Adding Counts

Introduction

Statistical Models for NI P Maximum

Likelihood Estimation (MLE) Smoothing & Estimator

Combination

Maximum Entropy Modeling

References

Laplace's Law (adding one)

$$P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{N + B}$$

- For large values of B too much probability mass is assigned to unseen events
- Lidstone's Law

$$P_{LID}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + \lambda}{N + B\lambda}$$

- Usually $\lambda = 0.5$, Expected Likelihood Estimation.
- Equivalent to linear interpolation between MLE and uniform prior, with $\mu = N/(N + B\lambda)$,

$$P_{LID}(w_1 \dots w_n) = \mu \frac{C(w_1 \dots w_n)}{N} + (1 - \mu) \frac{1}{B}$$

Smoothing 2 - Discounting Counts

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

References

Absolute Discounting

$$P_{ABS}(w_1 \dots w_n) = \left\{ egin{array}{ll} rac{r-\delta}{N} & if \ r > 0 \ \\ rac{(B-N_0)\delta/N_0}{N} & otherwise \end{array}
ight.$$

Linear Discounting

$$P_{LIN}(w_1 \dots w_n) = \left\{ egin{array}{ll} rac{(1-lpha)r}{N} & if \ r > 0 \ rac{lpha}{N_0} & otherwise \end{array}
ight.$$

Smoothing 3 - Held Out Data

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

References

■ *Notation:* γ stands for $w_1 \dots w_n$.

Divide the train corpus in two subsets, A and B.

■ Define:
$$T_r^{AB} = \sum_{\gamma: C_A(\gamma) = r} C_B(\gamma)$$

Held Out Estimator

$$P_{HO}(w_1 \dots w_n) = \frac{T_{C_A(\gamma)}^{AB}}{N_{C_A(\gamma)}^A} \times \frac{1}{N}$$

Cross Validation (deleted estimation)

$$P_{DEL}(w_1 \dots w_n) = \frac{T_{C_A(\gamma)}^{AB} + T_{C_B(\gamma)}^{BA}}{N_{C_A(\gamma)}^A + N_{C_B(\gamma)}^B} \times \frac{1}{N}$$

Cross Validation (Leave-one-out)

Combining Estimators

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

References

Simple Linear Interpolation

$$P_{LI}(w_n \mid w_{n-2}, w_{n-1}) =$$

$$= \lambda_1 P_1(w_n) + \lambda_2 P_2(w_n \mid w_{n-1}) + \lambda_3 P_3(w_n \mid w_{n-2}, w_{n-1})$$

General Linear Interpolation

$$P_{LI}(w_n \mid h) = \sum_{i=1}^k \lambda_i(h) P_i(w \mid h_i)$$

Katz's Backing-off

$$P_{BO}(w_i \mid w_{i-n+1} \dots w_{i-1}) = \begin{cases} (1 - d_{w_{i-n+1} \dots w_{i-1}}) \frac{C(w_{i-n+1} \dots w_i)}{C(w_{i-n+1} \dots w_{i-1})} \\ & \text{if } C(w_{i-n+1} \dots w_i) > k \\ \alpha_{w_{i-n+1} \dots w_{i-1}} P_{BO}(w_i \mid w_{i-n+2} \dots w_{i-1}) \\ & \text{otherwise} \end{cases}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

MEM Overview

- Introduction
- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)
- Maximum Entropy Modeling Overview
- References

- Maximum Entropy: alternative estimation technique.
- Able to deal with different kinds of evidence
- ME principle:
 - Do not assume anything about non-observed events.
 - Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.
- Example:

p(a, b)	0	1		p(a,b)	0	1		ŀ	o(a, b)	0	1	
X	?	?		X	0.5	0.1			X	0.3	0.2	
У	?	?		у	0.1	0.3			y	0.3	0.2	
total	0.6		1.0	total	0.6		1.0	_	total	0.6		1.0
			•									

Observations

One possible p(a, b)

Max.Entropy p(a, b)

ME Modeling

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

References

- Observed facts are constraints for the desired model p.
- Constraints take the form of feature functions:

$$f_i: \varepsilon \to \{0,1\}$$

■ The desired model must satisfy the constraints:

$$E_p(f_i) = E_{\widetilde{p}}(f_i) \ \forall i$$

where:

$$E_p(f_i) = \sum_i p(x)f_i(x)$$
 expectation of model p .

$$E_{\widetilde{p}}(f_i) = \sum_{x \in \mathbb{Z}} \widetilde{p}(x) f_i(x)$$
 observed expectation.

Example

Introduction Statistical

Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

References

■ Example:

$$\varepsilon = \{x, y\} \times \{0, 1\}$$

$$\begin{array}{c|cccc} p(a, b) & 0 & 1 \\ \hline x & ? & ? \\ y & ? & ? \\ \hline total & 0.6 & 1.0 \end{array}$$

- Observed fact: p(x, 0) + p(y, 0) = 0.6
- Encoded as a constraint: $E_p(f_1) = 0.6$ where:

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Probability Model

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling **Building ME** Models

References

■ There is an infinite set P of probability models consistent with observations:

$$P = \{ p \mid E_p(f_i) = E_{\widetilde{p}}(f_i), \ \forall i = 1 \dots k \}$$

Maximum entropy model

$$p^* = \operatorname*{argmax}_{p \in P} H(p)$$

$$H(p) = -\sum_{x \in \varepsilon} p(x) \log p(x)$$

Conditional Probability Model

■ For NLP applications, we are usually interested in conditional distributions P(A|B), thus:

$$E_{\widetilde{p}}(f_j) = \sum_{a,b} \widetilde{p}(a,b) f_j(a,b)$$

$$E_p(f_j) = \sum_{a,b} \widetilde{p}(b)p(a \mid b)f_j(a,b)$$

Maximum entropy model

$$p^* = \operatorname*{argmax}_{p \in P} H(p)$$

$$H(p) = H(A \mid B) = -\sum_{a,b} \widetilde{p}(b)p(a \mid b) \log p(a \mid b)$$

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Parameter Estimation

Example: Maximum entropy model for translating in to French

No constraints

P(x)	dans	en	à	au-cours-de	pendant	
	0.2	0.2	0.2	0.2	0.2	
total						1.0

■ With constraint p(dans) + p(en) = 0.3

■ With constraints p(dans) + p(en) = 0.3; $p(en) + p(\grave{a}) = 0.5$...Not so easy !

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Parameter estimation

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

References

Exponential models. (Lagrange multipliers optimization)

$$p(a \mid b) = \frac{1}{Z(b)} \prod_{j=1}^{k} \alpha_j^{f_j(a,b)} \qquad \alpha_j > 0$$

$$Z(b) = \sum_{a} \prod_{i=1}^{k} \alpha_i^{f_i(a,b)}$$

also formuled as

$$p(a \mid b) = \frac{1}{Z(b)} \exp(\sum_{j=1}^{k} \lambda_j f_j(a, b))$$

$$\lambda_i = \ln \alpha_i$$

- Each model parameter weights the influence of a feature.
- Optimal parameters (ME model) can be computed with:
 - GIS. Generalized Iterative Scaling(Darroch & Ratcliff 72)
 - IIS. Improved Iterative Scaling (Della Pietra et al. 96)
 - LM-BFGS. Limited Memory BFGS (Malouf 03)

Improved Iterative Scaling (IIS)

Input: Feature functions $f_1 ldots f_n$, empirical distribution $\widetilde{p}(a,b)$

Output: λ_i^* parameters for optimal model p^*

Start with $\lambda_i = 0$ for all $i \in \{1 \dots n\}$

Repeat

For each $i \in \{1 \dots n\}$ do

let $\Delta \lambda_i$ be the solution to

$$\sum_{\substack{a,b\\\lambda_i\leftarrow\lambda_i+\Delta\lambda_i}} \widetilde{p}(b)p(a\mid b)f_i(a,b)\exp(\Delta\lambda_i\sum_{j=1}^n f_j(a,b)) = \widetilde{p}(f_i)$$

end for

Until all λ_i have converged

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Application to NLP

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

Application to NLP Tasks

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Application to

- Speech processing (Rosenfeld 94)
- Machine Translation (Brown et al 90)
- Morphology (Della Pietra et al. 95)
- Clause boundary detection (Reynar & Ratnaparkhi 97)
- PP-attachment (Ratnaparkhi et al 94)
- PoS Tagging (Ratnaparkhi 96, Black et al 99)
- Partial Parsing (Skut & Brants 98)
- Full Parsing (Ratnaparkhi 97, Ratnaparkhi 99)
- Text Categorization (Nigam et al 99)

B dm² PoS Tagging (Ratnaparkhi 96)

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Application to NLP

References

Probabilistic model over $H \times T$

$$h_i = (w_i, w_{i+1}, w_{i+2}, w_{i-1}, w_{i-2}, t_{i-1}, t_{i-2})$$

$$f_j(h_i, t) = \left\{ egin{array}{ll} 1 & \emph{if suffix}(w_i) = \inf \wedge t = \mathtt{VBG} \\ 0 & \emph{otherwise} \end{array}
ight.$$

- Compute $p^*(h, t)$ using GIS
- Disambiguation algorithm: beam search

$$p(t \mid h) = \frac{p(h, t)}{\sum_{t' \in T} p(h, t')}$$

$$p(t_1 \ldots t_n \mid w_1 \ldots w_n) = \prod_{i=1}^n p(t_i \mid h_i)$$

(I) dpm² Text Categorization (Nigam et al 99)

Introduction

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Application to NLP

References

Probabilistic model over $W \times C$

$$d=(w_1,w_2\ldots w_N)$$

$$f_{w,c'}(d,c) = \begin{cases} \frac{N(d,w)}{N(d)} & \text{if } c = c' \\ 0 & \text{otherwise} \end{cases}$$

- Compute $p^*(c \mid d)$ using IIS
- Disambiguation algorithm: Select class with highest

$$P(c \mid d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i} f_{i}(d, c))$$

MEM Summary

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Application to NLP

References

Advantages

- Teoretically well founded
- Enables combination of random context features
- Better probabilistic models than MLE (no smoothing needed)
- General approach (features, events and classes)

Disadvantages

- Implicit probabilistic model (joint or conditional probability distribution obtained from model parameters).
- High computational cost of GIS and IIS.
- Overfitting in some cases.

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

References

1 Introduction

- 2 Statistical Models for NLP
 - Overview
 - Prediction & Similarity Models
 - Statistical Inference of Models for NLP
- 3 Maximum Likelihood Estimation (MLE)
 - Overview
 - Smoothing & Estimator Combination
- 4 Maximum Entropy Modeling
 - Overview
 - Building ME Models
 - Application to NLP
- 5 References

References

Introduction

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- T. Cover & J. Thomas, **Elements of Information Theory**. John Wiley & Sons, 1991.
- C. Manning & H. Schütze, Foundations of Statistical Natural Language Processing. The MIT Press. Cambridge, MA. May 1999.
- D. Jurafsky & J.H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics, 2nd edition. Prentice-Hall, 2009.
- A. Berger, S.A. Della Pietra & V.J. Della Pietra, A Maximum Entropy Approach to Natural Language Processing.
 Computational Linguistics, 22(1):39-71, 1996.
- R Malouf, A comparison of algorithms for maximum entropy parameter estimation. In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL-2002), Pages 49-55, 2002.
- A. Ratnaparkhi, Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D Thesis. University of Pennsylvania, 1998.