Introduction to Machine Learning

Supervised learning

Summary

Introduction to Machine Learning

Introduction to Supervised Learning

Machine Learning Types

Supervised Learning

Unsupervised Learning

Reinforcing Learning

Supervised Learning

Input Output
$$X \longrightarrow f(X)$$

Input X: CT scans

Output Y: Tumor presence

Application f(X): Image analysis

Input X: Clinical data

Output Y: Myocardial infarction

Application f(X): Clinical risk prediction

Input X: Physical therapy assessment

Output Y: Improvement in physical function

Application f(X): Planning rehabilitation regimens

Input X: Chemotherapy, patient data

Output Y: Tumor growth

Application f(X): Predict tumor response

Why estimate f(X)?

Prediction

$$\hat{Y} = \hat{f}(X) + \varepsilon$$

Inference

$$Y = f(X) + \varepsilon$$

$$(x_1,y_1)$$

$$(x_2,y_2)$$

$$(x_n,y_n)$$

$$(x_n,y_n)$$

- X
 - Independent variable(s), inputs, predictors, features

- Y
 - Dependent variable, output, response, outcome
 - **Regression** if *Y* is continuous
 - Classification if Y is binary
- Parameters of f(X)

How to evaluate estimation of f(X)?

We assess the error

$$Y \approx f(X)$$

$$J(y,\hat{y})=MSE=rac{1}{N}\sum_{n=1}^{N}(y_n-\hat{y}_n)^2$$

Cost function

How to evaluate estimation of f(X)?

Introduction to Machine Learning

Linear regression

Simple Linear regression

$$\stackrel{\wedge}{Y} \approx \beta_0 + \beta_1 X$$

Linear regression

$$Y \approx \beta_0 + \beta_1 X$$

BloodPressureReduction = 4.1 + 2.5 * Dosage

Fitting data

$$e_i = y_i - \hat{y}_i$$

$$ext{SSR} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - (eta_0 + eta_1 X_i))^2$$

× Data points Fitted line

8

10

Scatter Plot with Linear Regression and Residuals

Dosage (mg)

Evaluating a Linear regression: assessing model's fit

- Mean Square Error (MSE)
 - MSE is the average of the squared differences between the actual and the predicted values

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Lower MSE indicates a better fit

- R-squared (R²)
 - Measures the proportion of the variance in the dependent variable that is predictable from the independent variable(s)

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$$

Higher R² indicates a better fit

Introduction to Machine Learning

Multiple Linear regression

Multiple linear regression

$$\hat{y} = eta_0 + eta_1 \cdot x_1 + eta_2 \cdot x_2 + eta_3 \cdot x_3 + eta_4 \cdot x_4 + eta_5 \cdot x_5$$

$$\hat{y} = eta_0 + \sum_{i=1}^N eta_i \cdot x_i$$

Evaluating a multiple linear regression

- Mean Square Error (MSE)
 - MSE is the average of the squared differences between the actual and the predicted values

$$J(y,\hat{y})=MSE=rac{1}{N}\sum_{n=1}^{N}(y_n-\hat{y}_n)^2$$

Lower MSE indicates a better fit

- R-squared (R²) or coefficient of determination
 - Measures the proportion of the variance in the dependent variable that is predictable from the independent variable(s)

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$$

Higher R² indicates a better fit

Linear regression: recap

Pros

- Really easy to understand (comparing to other algorithms)
- Fast optimization (comparing to other algorithms)
- Easy to extend the model (see next lessons)

Cons

- Sensible to outliers
- Assumes that there is no multicollinearity
- Feature scaling is required
- Monotonicity assumption: for the model, the relation between each feature and the output

