Staatsexamen 66116 / 2019 / Frühjahr / Thema Nr. 1 / Aufgabe Nr. 3

Aufgabe 3 [Relation A-F]

Gegeben sei folgendes relationales Schema R in erster Normalform:

Für *R* gelte folgende Menge *FD* funktionaler Abhängigkeiten:

$$FA = \left\{ \begin{cases} \{A, D, F\} \rightarrow \{E\}, \\ \{B, C\} \rightarrow \{A, E\}, \\ \{D\} \rightarrow \{B\}, \\ \{D, E\} \rightarrow \{C, B\}, \\ \{A\} \rightarrow \{F\}, \end{cases} \right.$$

(a) Bestimmen Sie alle Kandidatenschlüssel/Schlüsselkandidaten von R mit FD. Hinweis: Die Angabe von Attributmengen, die keine Kandidatenschlüssel sind, führt zu Abzügen.

```
- { D, A }
- { D, C }
- { D, E }
```

(b) Prüfen Sie, ob R mit FD in 2NF bzw. 3NF ist.

```
R ist in 1NF, da \{d\} \rightarrow \{b\}
```

- (c) Bestimmen Sie mit folgenden Schritten eine kanonische Überdeckung FD_C von FD:
 - (i) Führen Sie eine Linksreduktion von FD durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Linksreduktion an (FD_L) .

```
Linksreduktion
```

{A, D, F} → **{E}**

$$E \notin AttrH\ddot{u}lle(F, \{A, D, F \setminus A\}) = \{D, F, B\}$$

$$E \notin AttrH\ddot{u}lle(F, \{A, D, F \setminus D\}) = \{A, F\}$$

$$E \in AttrH\ddot{u}lle(F, \{A, D, F \setminus F\}) = \{A, B, D, F\}$$
{B, C} → **{A, E}**

$$A, E \notin AttrHülle(F, \{B, C \setminus B\}) = \{C\}$$

$$A, E \notin AttrHülle(F, \{B, C \setminus C\}) = \{B\}$$

$$\{A, D\} \rightarrow \{E\},$$

$$\{B, C\} \rightarrow \{A, E\},$$

$$\{D\} \rightarrow \{B\},$$

$$\{D, E\} \rightarrow \{C, B\},$$

$$\{A\} \rightarrow \{F\},$$

(ii) Führen Sie eine Rechtsreduktion des Ergebnisses der Linksreduktion (FD_L) durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Rechtsreduktion an (FD_R).

Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"{u}lle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

Е

$$E \notin AttrHülle(F \setminus \{A, D\} \rightarrow \{E\}, \{A, D\}) = \{A, B, D, F\}$$

 $E \notin AttrHülle(F \setminus \{B, C\} \rightarrow \{A, E\} \cup \{B, C\} \rightarrow \{A\}, \{B, C\}) = \{A, B, C, F\}$

В

$$B \notin AttrHülle(F \setminus \{D\} \to \{B\}, \{D\}) = \{D\}$$

$$B \in AttrHülle(F \setminus \{D, E\} \to \{C, B\} \cup \{D, E\} \to \{C\}, \{D, E\}) = \{B, D, E\}$$

$$FA =$$

$$\{A, D\} \rightarrow \{E\},$$

$$\{B, C\} \rightarrow \{A, E\},$$

$$\{D\} \rightarrow \{B\},$$

$$\{D, E\} \rightarrow \{C\},$$

$$\{A\} \rightarrow \{F\},$$

- (iii) Bestimmen Sie eine kanonische Überdeckung FD. von FD auf Basis des Ergebnisses der Rechtsreduktion (FD_R) .
 - Löschen leerer Klauseln
 - --- Entferne die funktionalen Abhängigkeiten der Form α → ∅, die im 2. Schritt möglicherweise entstanden sind. ----
 - Ø Nichts zu tun
 - Vereinigung
 - Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt.
 - Ø Nichts zu tun
- (d) Zerlegen Sie R mit FD_C mithilfe des Synthesealgorithmus in 3NF. Geben Sie zudem alle funktionalen Abhängigkeiten der erzeugten Relationenschemata an.
 - Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_{\alpha} := \alpha \cup \beta$.

$$R_{1}(\underline{A},\underline{D},E)$$

$$R_{2}(\underline{B},\underline{C},A,E)$$

$$R_{3}(\underline{D},B)$$

$$R_{4}(\underline{D},E,C)$$

$$R_{5}(\underline{A},F)$$

- Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

Ø Nichts zu tun

- Entfernung überflüssiger Teilschemata

- Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha}\subseteq R_{\alpha'}$. ——
- Ø Nichts zu tun
- (e) Prüfen Sie für alle Relationen der Zerlegung aus d), ob sie jeweils in BCNF sind.

R1 und R4 sind in BCNF, weil ihre Determinanten Schlüsselkandidaten sind.

 $Github: {\tt Staatsexamen/66116/2019/03/Thema-1/Aufgabe-3.tex}$