Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 13 Linear independence, Bases, Dimension.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace, subspace spanned by a set of vectors, span.
- (Sec. 3.3) linearly dependent/independent set of vectors, basis, dimension.

Let \mathbb{F} be a subfield of \mathbb{C} . Let V be the set of functions from \mathbb{F} to \mathbb{F} of the form

$$f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$$

(where $c_i \in \mathbb{F}$ and n is a non-negative integer).

We **proved:** A set of vectors S spans a vector space V if and only if V is the set of all (finite) linear combinations of vectors in S.

Let $f_i(x) = x^i$ (for non-negative integers i). So $f_i \in V$.

We showed: $S = \{f_i \mid i \in \mathbb{N}\}$ spans V.

Vectors $\alpha_1, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} are linearly dependent if $c_1\alpha_1 + \ldots c_n\alpha_n = 0$ where not all c_i 's are 0 ($c_i \in \mathbb{F}$). If S is not linearly dependent then it is linearly independent.

We showed: $S = \{f_i \mid i \in \mathbb{N}\}$ is linearly independent.

A basis for a vector space V is a set of linearly independent vectors which spans V. V is finite-dimensional if it has a finite basis.

We showed: $S = \{f_i \mid i \in \mathbb{N}\}$ is a basis for V.

We showed: if V is a vector space spanned by vectors $\beta_1, \beta_2, \ldots, \beta_m$, then any set S of n vectors (with n > m) is linearly dependent.

1. **Claim:** if V is a vector space spanned by vectors $\beta_1, \beta_2, \ldots, \beta_m$, then any independent set of vectors is finite and has no more than m elements.

A vector space V with a finite basis is **finite dimensional**.

2.	${f Claim:}$ If if V is a finite-dimensional vector space, then every basis has the same number of elements.
	The dimension of a finite-dimensional vector space V is the number of elements in
3.	any basis of V and is denoted dim V . Find dim \mathbb{R}^2 .
4.	Find dim \mathbb{F}^n .
5.	Find the dimension of the vector space of polynomials over a field \mathbb{F} of degree at most 2.
6	Claim: Let S be a linearly independent subset of a vector space V. If β is not
0.	in the subspace spanned by S then the set obtained by adding β to S is linearly independent.
7.	Claim: Any linearly independent set in a finite-dimensional vector space V is part of (can be extended to) a (finite) basis for V .