Name:			_
			_

General Chemistry

Chemistry 129 Spring 2017

Second Examination:

Periodic table is provided.

You may use a calculator.

Show all your work!

page	1:	/22
page	2:	/18
page	3:	/13
page	4:	/17
page	5:	/15
page	6:	/15
Bonus	S:	/2

Total: ____/100

1. (12pts) Consider the following reaction:

10 Al
$$_{(s)}$$
 + 6 NH $_4$ ClO $_4$ $_{(s)}$ \rightarrow 4 Al $_2$ O $_3$ $_{(s)}$ + 2 AlCl $_3$ $_{(s)}$ + 12 H $_2$ O $_{(g)}$ + 3 N $_2$ $_{(g)}$

Determine the oxidation number of each element. Which element is reduced and which oxidized? Identify the reducing agent and the oxidizing agent.

Reactants		Products		
Element	Oxidation	Element Oxidation		
Al		Al (in Al ₂ O ₃)		
N		Al (in AlCl ₃)		
Н		N		
Cl		Н		
0		Cl		
		O (in Al ₂ O ₃)		
		O (in H ₂ O)		

- 2. (10pts) The cyanate ion (NCO) has three possible Lewis structures.
 - (a) Draw these three Lewis structures, and assign formal charges to the atoms in each structure.

(b) Which Lewis structure is the preferred one? Why?

(i)	Draw t	nsider the following molecules: heir Lewis structure, (ii) Deter geometries, (iii) Is the molecul	mine the electron group and
(a)	NO ₂		
		Electron Group Geometry: Molecular Geometry: Polar or Nonpolar?: Hybridization of Central Atom:	
(b)	IF ₅		
		Electron Group Geometry: Molecular Geometry: Polar or Nonpolar?: Hybridization of Central Atom:	
(c)	ClF ₃		
		Electron Group Geometry: Molecular Geometry: Polar or Nonpolar?: Hybridization of Central Atom:	

4. (13pts) (a) What are the hybridizations of the **six carbon**, the **two oxygen**, and **three nitrogen** atoms?

$$C_2$$
: C_6 : N_2 :

How many sigma bonds and pi bonds does the molecule have?

_____ sigma bonds _____ pi bonds

(b) Which angle is smaller a or b? Explain.

- 5. (17pts) Using the molecular orbital energy diagram given below (for **ALL** electrons):
- a. (8 pts) **Complete** the <u>molecular orbital energy-level diagram</u> for C_2 and <u>write its electron configuration</u>. **Label** all the atomic orbitals and molecular orbitals. **Sketch** the shape of the σ_{2p} and σ_{2p} * molecular orbitals.

- b. (3 pts) Determine the bond order of C_2 . Is C_2 paramagnetic or diamagnetic? Why?
- c. (6 pts.) If two electrons are added from C_2 to form ${C_2}^{2-}$, how many unpaired electrons would ${C_2}^{2-}$ have? Calculate the bond order of ${C_2}^{2-}$. Which would you expect to have a stronger bond, C_2 or ${C_2}^{2-}$? Longer bond? Why?

6. (15pts) (a) When NaF dissolves in water, the main force of attraction that exists between \bar{F} and H_2O is called

-----•

(b) Hydrogen sulfide (H_2S) is a gas at room temperature. What is the <u>major</u> attractive force that exists among different hydrogen sulfide molecules in the gas?

____•

(c) Identify intermolecular forces present in each of the following and arrange them in order of increasing boiling point: HCl, HF, and HBr. Explain.

(d) Which molecule would you expect to be more soluble in water, CH_2Cl_2 or CCl_4 ? Why?

7. (15pts) (i) The phase diagram of a hypothetical substance is shown in the following figure. Identify the phase(s) present at points A through F.

A:			
В:			
C:			
D:			
E:			
F:	 (bevond	this	point

(ii) Name the phase change shown by the $\underline{\text{dashed}}$ arrows. Is the process endothermic or exothermic?

a.	
b.	
c.	

Bonus: (2 pts)

Arrange the following in order of $\underline{\text{increasing}}$ length. Explain. Cl—Cl H—H H—Cl