Examen de Traitement du signal

Master 1 IAFA, 2e Session, Juin 2022, durée 1h30

N.B.

Ce sujet comporte des exercices INDEPENDANTS. Il est demandé de JUSTIFIER les réponses. Documents autorisés : 4 pages A4 de résumé

RAPPELS

On rappelle les signaux élémentaires suivants :

L'impulsion de Dirac

 $\delta(n) = \left\{ \begin{array}{ll} 1 & \text{si } n = 0, \\ 0 & \text{sinon.} \end{array} \right.$

L'échelon unité

 $u(n) = \begin{cases} 1 & \text{si } n \ge 0, \\ 0 & \text{sinon.} \end{cases}$

On rappelle la transformée de Fourier Discrète (TFD) d'un signal discret x(n) de N valeurs et sa transformée inverse :

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-2j\pi nk/N}$$

$$x(n) = (1/N) \sum_{k=0}^{N-1} X(k)e^{2j\pi nk/N}$$

$$n, k = 0, 1, 2, ...N - 1$$

On rappelle la transformée de Fourier Continue (TFC) d'un signal discret x(n) et sa transformée inverse :

$$X(f) = \sum_{n=-\infty}^{\infty} x(n)e^{-2j\pi nf}$$
$$x(n) = \int_{-1/2}^{1/2} X(f)e^{2j\pi nf} df$$

EXERCICE 1: SYSTEMES

On considère un système T d'entree x(n) et de sortie $y(n) = \exp \left[x(n) \right]$

- 1) Ce système est-il linéaire ?
- 2) Ce système est-il invariant temporel ?
- 3) Ce système est-il causal ?
- 4) Donner sa réponse impulsionnelle h(n)
- 5) Montrer que $h(n) \neq 0$ pour tout n < 0
- 6) Un de vos camarades vous affirme que pour un système causal, on devrait avoir h(n) = 0 pour tout n < 0. Expliquez-lui son erreur dans le cas de la question précédente.
- 7) On appelle réponse indicielle d'un système, la réponse de ce système à un échelon unité. On considère un système linéaire invariant temporel (SLIT), de réponse impulsionnelle h(n) et de réponse indicielle g(n). On donne $g(n) = 2^n$ pour tout n. Donner l'expression de h(n).

EXERCICE 2: CONVOLUTION

- 1) Soient les signaux $x_1 = [1 \quad -2 \quad -1 \quad 1]^T$ et $x_2 = [1 \quad 2 \quad 3 \quad 4]^T$. Calculer $x_3 = x_1 * x_2$, la convolution complète entre x_1 et x_2 .
- 2) Quelle est la taille de x_3 .
- 3) Calculer $x_4 = x_1$ o x_2 , la convolution circulaire entre x_1 et x_2 .
- 4) Donner la matrice H telle que $x_4 = Hx_1$ où les vecteurs x_4 et x_1 sont définis dans la question précédente.
- 5) Soient les signaux $x(n) = (1/2)^n u(n)$ et h(n) = u(n), avec n = ..., -2, -1, 0, 1, 2, ... Calculer w(n) = (h * x)(n),
- 6) Soit g(n) = u(n) u(n-1), représenter g(n).
- 7) Calculer z(n) = (g * x)(n),
- 8) Calculer les transformées de Fourier continue Z(f), G(f), X(f), respectivement de z(n), g(n) et x(n).
- 9) Comparer Z(f), G(f),X(f) et conclure.

EXERCICE 3, TRANSFORMÉE DE FOURIER DICRÈTE, PROPRIÉTÉS

- 1) La transformée de Fourier discrète d'un signal discret de N points est-elle périodique? Si oui quelle est cette période. Sinon dire pourquoi.
 - On note $W_N^{nk}=e^{-2j\pi nk/N}$. Dans la suite on pose N=5
- 2) Soit $x(n) = \delta(n-2) + \delta(n-3)$. Calculer sa transformée de Fourier discrète X(k) en fonction de W_5
- 3) soit $Y(k) = X^2(k)$ où X(k) est définie dans la question précédente. Trouver y(n) la transformée de Fourier discrète

EXERCICE 4, IMAGE

Fig. 1. vue aérienne

On considère sur la figure 1, une image originale (a) d'une vue aérienne prise par temps de brouillard. Après traitement, on trouve les images résultats (b),(c) et (d).

- 1) En dehors d'une correction de gamma, donner deux traitements distincts permettant d'obtenir chacune des images résultats.
- 2) On applique une correction de gamma à l'image originale (a). On appelle γ_{ab} la valeur du gamma permettant de passer de l'image (a) à l'image (b) et de même γ_{ac} et γ_{ad} ceux permettant de passer resp. des images (a) à (c) et (a) à (d). Ranger les valeurs $\{0, 1, \gamma_{ab}, \gamma_{ac}, \gamma_{ad}\}$ dans l'ordre croissant.