Decision Tree Hyperparameters, Overfitting, and Underfitting

1. Introduction

Decision Trees are powerful but can easily become too simple (underfitting) or too complex (overfitting). Hyperparameters are the "guardrails" that control this balance.

2. Depth of Tree

- What it means: The maximum number of splits from the root to the deepest leaf.
- Small depth: Tree is shallow → can't capture complex patterns → underfitting.
- Large depth: Tree is very deep → captures noise → overfitting.
- Depth control = controlling model complexity.

3. Geometrical Intuition of Overfitting

- Imagine plotting data points and letting the tree split until it perfectly separates each training point.
- This creates **very wiggly, irregular boundaries** perfect fit for training, but poor generalization on new data.
- Overfitting = the model "memorizes" instead of "learning patterns".

4. Geometric Intuition of Underfitting

- If the tree is too shallow, its decision boundaries are too broad and crude.
- This misses important structure in the data, leading to poor performance on both training and test data.
- Underfitting = the model is too simplistic to capture relationships.

5. Decision Tree Hyperparameter Tuning

Key hyperparameters to control complexity and improve generalization:

1. max_depth

- 1. Restricts how deep the tree can grow.
- 2. Prevents overfitting by avoiding too many detailed splits.

2. min_samples_split

- 1. Minimum number of samples required to split an internal node.
- 2. Larger values → fewer splits → simpler model.

3. min_samples_leaf

1. Minimum number of samples allowed in a leaf node.

- 2. Ensures leaves represent enough data to be meaningful.
- 4. max_features (not in all implementations)
 - Limits the number of features considered at each split → adds randomness → reduces overfitting.
- 5. max_leaf_nodes
 - * Restricts the total number of leaves in the tree.
- 6. min_impurity_decrease
 - Splits only occur if impurity reduction is at least this value.

Tuning Strategy:

 Start with default → Check train/test accuracy → Adjust one hyperparameter at a time to balance bias (underfitting) and variance (overfitting).

6. Balancing Overfitting & Underfitting

- If overfitting:
 - 1. Reduce max_depth
 - 2. Increase min_samples_split or min_samples_leaf
 - 3. Reduce max_leaf_nodes
- If underfitting:
 - 1. Increase max_depth
 - 2. Reduce min_samples_split
 - 3. Allow more features per split

7. Key Takeaway

- Decision Trees are flexible but too much freedom = memorization, too little freedom = ignorance.
- Hyperparameters are your *knobs* to dial in the right amount of complexity.
- Always validate performance on unseen data to ensure the chosen settings generalize.