

Bases de Datos - MER

Santiago W. Fernández Lorenzo

Temario

Diseño Consultas

Definición de BD

Modelos de bases de datos

Modelo Entidad-Relación

Paso a Modelo relacional

SQL

Realizar consultas sobre BD

Definir BD

Bases de Datos

Introducción

Pincelada histórica

Sin Bases de Datos

- Papel
- Ficheros de texto
- Hojas de cálculo

Problemas

- Pérdida de datos
- Seguridad
- Dificultad para localizar datos
- Cruzar datos es muy complejo
- Datos complejos

Con Bases de Datos

- Eficiencia
- Sin redundancia
- Sin incongruencias
- Tamaño ilimitado
- Información centralizada
- Accesible desde cualquier sitio
- Copias de seguridad
- Control de acceso
- Consultas sencillas empleando SQL
- Acceso concurrente

¿Qué es una Base de Datos?

Una serie de datos organizados y relacionados entre sí.

Colegio

Alumnos, profesores, ...

Biblioteca

Libros, socios, ...

Empresa

Empleados, clientes, facturas, nóminas, ...

¿Qué es un SGBD?

Son los programas que permiten realizar operaciones sobre las bases de datos.

- Consulta
- Inserción
- Actualización
- Borrado

Bases de Datos

Tipos de bases de datos

Modelos de datos

Un **modelo de datos** establece la estructura en la que almacenaremos los datos.

El modelo de datos debe describir:

- Estructura de la base de datos.
- Restricciones de integridad
- Operaciones de manipulación de datos

SGDB Relacionales

Orientadas a ficheros

Search Engine

Cuota de mercado

#	SGBD	Modelo	%
1.	Oracle	Relacional	22,42
2.	MySQL	Relacional	21,21
3.	Microsoft SQL Server	Relacional	18,10
4.	PostgreSQL	Relacional	8,00
5.	MongoDB	Documentos	6,81
6.	IBM Db2	Relacional	2,82
7.	Elasticsearch	Motor de búsqueda	2,48
8.	Redis	Clave - Valor	2,36
9.	Microsoft Access	Relacional	2,17
10.	Cassandra	Columnas	2,04
		Otros (Más de 400 SGBD)	11,57

https://db-engines.com/en/ranking_trend

Modelos de Bases de Datos

Relacionales: Son las más empleadas actualmente

- Es un modelo simple de comprender
- Los datos se amacenas en relaciones (tablas).
- Deben cumplir unas restricciones (Integridad, Unicidad, ...)
- La estructura es intuitiva

Bases de Datos

Modelo relacional

Relaciones = Tablas

Es la estructura básica en dónde se almacenarán los datos

- Registro o tupla: Es cada *filα* de la tabla.
- Atributo: Es cada columna de la tabla.
- Campo: Es cada celdα de la tabla.

Conceptos básicos

Una base de datos está formado por un <u>conjunto</u> de relaciones que pueden estar vinculadas entre sí.

- Persona (Nombre, Sexo, DNI, Teléfono, DNI, nombre, titulación, ...)
- Coche(Matrícula, Marca, Modelo, ...)

¿Los datos de una tabla (tradicional) están ordenados?

Sí

¿Los datos de una relación están ordenados?

- No, el SGBD lo almacena como un conjunto de datos.
- A la hora de recuperar los datos podremos indicar en qué orden queremos que se muestren

Restricción de dominio

- Cada tupla únicamente puede tener un valor en un campo.
 - No es posible almacenar dos valores (por ejemplo, dos números de teléfono) en la celda "teléfono".

DNI	Nombre	Dirección	Teléfono
11.222.333-A	Juan Ares	Calle Mayor 1	981 123 456
44.555.666-B	Miguel Pérez	Calle Mayor 2	981 111 222 645 123 456
•••			

¡Viola la restricción de dominio!

 Para que un campo de una persona se relacione con otras entidades necesitaremos crear nuevas relaciones...

Valores nulos

Un valor NULL indica que un dato se desconoce o no aplica.

Un valor **NULL** es diferente a un valor **0** o a una cadena de caracteres vacía Se puede indicar que una columna de una tabla admita valores **NULL** o no.

Ejemplo:

Una persona puede tener un número de teléfono móvil o no.

Claves

Llamamos **clave** son aquellos valores que nos permiten identificar a una entidad de forma única.

- ¿Una clave puede tener valores NULL?
 - No, ¿Cómo diferenciamos vehículos cuyas matrículas sean NULL?
- ¿Una clave puede estar repetida?
 - No, ¿Cómo diferenciamos dos vehículos con la misma marca?

¿Puede haber más de una clave en una relación?

Si, por ejemplo: Matrícula y Número de bastidor

Clave Primaria (Primary Key)

Es aquella clave que seleccionamos para identificar a la entidad

Vehiculo(Bastidor, Matricula, Marca, Modelo,)

<u>Bastidor</u>	Marca	Modelo	Matrícula
6527GFD5676	Renault	Mégane	1234-ABC
6576D3G6788	Mercedes	Clase A	C-0121-AG
998123TG542	Seat	León	2211-XXX
Clave primaria			Clave candidata

Al resto de las claves de la entidad se les denomina claves candidatas

Clave Primaria (Primary Key)

Si una entidad no tiene ningún atributo que pueda ser utilizado como clave primaria: La autogeneramos

idPaquete	Ancho	Alto	Largo	Peso	Destino
1	200	200	400	1200	Lugo
2	400	200	200	1000	Madrid
3	300	200	200	1474	Valencia
4	500	2000	500	6700	Barcelona
5	100	100	300	1200	Segovia
		• • •			

Clave autogenerada

La clave primaria de una tabla suele llamarse ID_ENTIDAD

Clave Foránea (Foreign Key)

Para relacionar dos entidades necesitamos llevarnos una referencia de la clave primaria de la tabla A a la tabla B.

La columna que se añade en la tabla B es una clave foránea.

Ejemplo: Relacionar quién es el dueño de cada vehículo

	Vehiculo					Persona	
Bastidor	Marca	Modelo	Propietario		DNI	Nombre	Ciudad
642HG345	Renault	Mégane	12.345.678 A	\rightarrow	12.345.678 A	Luis	Madrid
123JH343	Mercedes	Clase A	12.345.678 A	A	11.222.333 B	Miguel	Lugo
76HG3K12	Renault	Laguna	11.222.333 B		98.765.432 C	Julián	Valencia
				_			
lave primari	ia		Clave foránea		Clave primaria		

A través de propietario puedo saber a qué persona pertenece cada vehículo

Clave Foránea (Foreign Key)

Integridad referencial

Vahicula

Todo valor de la clave foránea debe existir en la clave primaria.

	veriiculo					ersona	
Bastidor	Marca	Modelo	Propietario		DNI	Nombre	Ciudad
642HG345	Renault	Mégane	12.345.678 A		12.345.678 A	Luis	Madrid
123JH343	Mercedes	Clase A	12.345.678 A	7	11.222.333 B	Miguel	Lugo
76HG3K12	Renault	Laguna	11.222.333 B		98.765.432 C	Julián	Valenci
72J12J32	0pel	Astra	77.888.333 C)	?		

¡Viola la restricción de integridad referencial!

Darcona

Clave Foránea (Foreign Key)

- ¿La clave foránea puede tener valores NULL?
 - Si. Puede reflejar dos cosas:
 - No sabemos con quién se relaciona
 - No está relacionado con nadie

Vehiculo

Bastidor	Marca	Modelo	Propietario
642HG345	Renault	Mégane	12.345.678 A
123JH343	Mercedes	Clase A	12.345.678 A
76HG3K12	Renault	Laguna	11.222.333 B
72J12J32	Opel	Astra	77.888.333 C
87SK72JA	Renault	Mégane	NULL

Persona

DNI	Nombre	Ciudad
12.345.678 A	Luis	Madrid
11.222.333 B	Miguel	Lugo
98.765.432 C	Julián	Valencia

Clave Foránea

Empleado

FΚ

<u>idEmp</u>	Nombre	idDepartamento
120	Juan	15
121	Miguel	15
122	Pedro	22
123	Ana	22

Presupuesto

FΚ

<u>idFact</u>	Año	Días	idDept
652	2008	120.000	15
653	2009	100.000	15
654	2010	230.000	22
655	1010	40.000	53

PK Departamento

Número	Actividad	Ciudad
15	Ventas	Madrid
22	Contabilidad	Lugo
53	Logística	Valencia

Borrado de tuplas

¿Podemos eliminar (o modificar) una PK referenciada por una FK?

<u>idEmp</u>	Nombre	idDepartamento
120	Juan	15
121	Miguel	15
122	Pedro	22
	_	

22

Ana

123

Departamentos

	<u>Número</u>	Actividad	Ciudad
>	15	Ventas	Madrid
>	22	Contabilidad	Lugo
	53	Logística	Valencia

- El 22 en la tabla empleados incumpliría la integridad referencial
 - Opción A: Poner NULL en la clave foránea (22 -> NULL)
 - Opción B: Eliminar las tuplas 122 y 123
 Esto se conoce como borrado (o actualización) en cascada

Estructuras básicas

¿Es esto una relación?

Id	Nombre	Apellidos	Teléfono	Segundo_Idioma	Nivel
1	Juan	Amor Gómez	981 000 000	Ruso	Alto
2	Miguel	Amor Gómez	981 123 456 645 654 321	NULL	NULL
3	Iria	Boedo Cuña	NULL	Italiano	NULL
4	Martín	Blanco Seoane	981 111 222	NULL	Bajo

- ¿Por qué?
 - Una persona no puede tener dos teléfonos
 - No hay claves candidatas.
 - La Primary Key debe ser autogenerada.

¿Estas tablas representan la misma relación?

Nombre	Apellidos	Teléfono	Segundo_Idioma	Nivel
Juan	Amor Gómez	981 000 000	Ruso	Alto
Miguel	Amor Gómez	981 111 111	Italiano	Bajo

Nombre	Apellidos	Teléfono	Segundo_Idioma	Nivel
Miguel	Amor Gómez	981 111 111	Italiano	Bajo
Juan	Amor Gómez	981 000 000	Ruso	Alto

- Dado el siguiente esquema de base de datos relacional:
 - Vehiculo (matricula, marca, modelo, bastidor)
 - Persona (nombre, teléfono, DNI, NSS)
 - Ciudad (nombre, provincia, poblacion)
 - Monumento (nombre, época, tipo)
- Detectar las claves candidatas y primarias
- Definir qué claves foráneas serían necesarias para
 - 1 monumento está en una ciudad. 1 ciudad puede tener varios monumentos

- Dado el siguiente esquema de base de datos relacional:
 - Vehiculo (matricula, marca, modelo, bastidor)
 - Persona (nombre, teléfono, DNI, NSS)
 - Ciudad (nombre, provincia, población, id_ciudad)
 - Monumento (nombre, época, tipo, <u>id_monumento</u>)
- Detectar las claves candidatas y primarias
- Definir qué claves foráneas serían necesarias para
 - 1 monumento está en una ciudad. 1 ciudad puede tener varios monumentos