Физика элементарных частиц

С точки зрения экспериментатора

Смирнова Лидия Николаевна, профессор, доктор физ.-мат. наук

Личное участие : методики и эксперименты

- искровые камеры
- ядерные фотоэмульсии
- большие пузырьковые камеры 2-м пропановая камера ОИЯИ, жидководородная камера
 «Мирабель», 15-футовая камера ФНАЛ
- Европейский Гибридный Спектрометр EHS
- LHC ATLAS эксперимент на Большом адронном коллайдере ЦЕРН, Женева, Швейцария

Введение

- 1. Физику движет эксперимент пример: открытие электрона; открытие атомного ядра - Резерфорд 1911г., и т.д.
- Предсказательная способность
 теории движет эксперимент открытие
 слабых токов (1973г.), тяжелых кварков: с 1974г., b- 1977г., t- 1995г.
- Изменился характер эксперимента от лабораторного к индустриальному, современная лаборатория физики высоких энергий это ускорительный комплекс с детектирующими установками

Особенности современных методик:

- Физика на расстоянии с середин 20 века, начало положено обработкой данных с больших пузырьковых камер, современное состояние система распределенных вычислений ГРИД, интернет
- Следствие унификация подходов,
 повышение конкурентности при общем снижении
 роли индивида, администрирование, НО
 одновременно повышение возможности проявления
 личности, ее продвижения роста ГЛОБАЛИЗАЦИЯ
- В итоге: Учиться в МГУ работать всюду!

Что называем элементарными частицами

или просто

« частицами»

Кварки, лептоны, калибровочные бозоны, хиггсовские бозоны

 γ , g, W[±], Z^o, H[±], H^o, A^o

Понятие элементарной частицы

Стандартная модель предполагает элементарными кварки, лептоны и калибровочные бозоны.

Кварки и лептоны - фермионы со спином 1/2,

Калибровочные бозоны имеют спин 1: γ , g, W^{\pm} , Z^{0}

Калибровочные бозоны	MACCA	Ширина
γ	менее 2·10 ⁻¹⁶ эВ	стабилен
д цвет	0 (теоретически)	
W±	80 ГэВ	2,12 ГэВ
Z0	91 ГэВ	2,5 ГэВ

Лептоны

```
Тип Электрон - е Мюон - д Тау-лептон (т- лептон)
 масса 0,5 МэВ 105,7 МэВ 1,777ГэВ
эл. заряд -1 (+1)
                            -1 (+1) \qquad -1 (+1)
 Тип Электронное v_{\rm e} Мюонное v_{\rm u} 	au нейтрино v_{
m t}
 масса <15·10<sup>-6</sup> МэВ < 0,17 МэВ < 19 МэВ
эл. заряд 0
                                1/_{2}
СПИН 1/2
                                                  \frac{1}{2}
```

Кварки

Аромат	Масса свободная	Ласса коституент	ная Заря	Д Барионное чи
U верхний	1,5-3 МэВ	0,33 ГэВ	+2/3	1/3
d нижний	3-7 МэВ	0,33 ГэВ	-1/3	1/3
С очарованный	1,25±0,09 ГэВ	1,5 ГэВ	+2/3	1/3
S странный	0,095±0,025 ГэВ	0,5 ГэВ	-1/3	1/3
t топ		175 ГэВ	+2/3	1/3
b красивый		4,5 ГэВ	-1/3	1/3

- Частицы с дробным электрическим зарядом не наблюдались как свободные частицы. Т.е. кварки, в отличие от лептонов, наблюдаются в виде кластеров (мезонов, барионов) с целочисленным зарядом.
- Отсутствие кварков в свободном состоянии делает проблематичным определение их массы.
- Конституентная масса определяется как средняя энергия кварка, связанного в адроне.
- Свободная (или «токовая») масса кварка проявляется в жестких процессах, т.е. в процессах с большими передачами импульса, т.к. входит в кварковые токи, и определяется экспериментально.

Бесцветные комбинации кварков составляют мезоны $(q\tilde{q})$ и барионы (qqq),

Комбинации барионов составляют ядра

<u>Померон</u> - объект, состоящий из глюонов <math>g

Типы взаимодействий: сильное

электромагнитное

слабое

- Включены в Стандартную модель

(гравитационное)

Современные коллайдеры

Коллайдеры рр, рр и ер

Название ускорителя	Сталкивающиеся частицы	Период эксплуат ации	Энергии сталкивающихся частиц,	Светимость <i>L</i> , см ⁻² с ⁻¹
Тэватрон	pρ	1987– 2009?	980 ГэВ	5 · 10 ³¹
HERA	ер	1992 – 2007?	е – 30 ГэВ р – 920 ГэВ	7,5 · 10 ³¹
RICH	pp, AuAu, d Au	2000 –	100 ГэВ, 100ГэВ/п	6· 10 ³⁰ 4·10 ²⁶ ,7·10 ²⁸
LHC (БАК)	pp, Pb Pb	2008 –	7 ТэВ 2,76 ТэВ/n	10 ³⁴ 10 ²⁷

Современные коллайдеры

Коллайдеры e+e- высокой энергии

Размещение ускорителя	Название ускорителя	Начало эксплуатаци и	Энергии сталкивающихся частиц,	Светимость <i>L</i> , 10 ^{30см-2} с ⁻¹
Новосибирск	VEPP - 2000	2006	1 ГэВ	100
Новосибирск	VEPP – 4M	1994	6 ГэВ	20
Китай	BEPC	1989	2,2 ГэВ	12,6 макс
Китай	BEPC-II	2007	1,89 ГэВ	1000
Фраскатти	DAΦNE	1999	0,7 ГэВ	150
Корнель	CERS-C	2002	6 ГэВ	60 макс
КЕК (Япония)	KEKB	1999	8 e ⁻ x 3,5 e ⁺ ГэВ	16270
SLAC (CIIIA)	PEP-II	1999	е⁻ 7-12 ГэВ, е⁺ 2,5-4 ГэВ	10025
LEP, ЦЕРН	pp, Pb Pb	2008 –	101 ГэВ в 1999г.	24 at Z ⁰

Ускорительный комплекс ЦЕРН

Женева, Швейцария

Общий вид тоннеля ускорителя LHC

News on the LHC Schedule, as presented at the June CERN Council Week

Частота событий на коллайдерах

$$\nabla N / \nabla f = \Gamma \cdot Q^{B3}$$

L — светимость

σ_{вз} – сечение взаимодействия частиц

$$L = f \cdot n_1 n_2 / 4\pi \sigma_x \sigma_y$$

n₁,n₂ - количество частиц в сталкивающихся сгустках

- σ_{х ,}σ_у дисперсии Гауссова распределения частиц в плоскостях горизонтальной и вертикальной
- f частота соударений сгустков частиц

Сечения взаимодействий частиц

Вероятность взаимодействия частиц определяется сечением взаимодействия - геометрический смысл -> cm^2 , или барн (б) = $10^{-24}cm^2$

Соответственно используются единицы:

```
1 миллибарн (мб) = 10^{-27}см^2 = 10^{-3}б
```

1 микробарн (мкб) = 10^{-30} см² = 10^{-3} мб = 10^{-6} б

1 нанобарн (нб) $= 10^{-33}$ см $^2 = 10^{-3}$ мкб $= 10^{-6}$ мб $= 10^{-9}$ б

1 пикобарн (пб) $= 10^{-36}$ см $^2 = 10^{-3}$ нб $= 10^{-6}$ мкб $= 10^{-9}$ мб $= 10^{-12}$ б

1 фемтобарн (фб) = 10^{-39} см² = 10^{-3} пб = 10^{-6} нб = 10^{-9} мкб = 10^{-15} б

Пример:

Сечения взаимодействия протонов $\sim 40~\text{мб}$ при энергиях 10-100 ГэВ $\sim 80~\text{мб}$ при энергии в тысячи ГэВ

Сечения взаимодействия ядер $\sim \sigma_0 A_1^{2/3} A_2^{2/3} (1-\Delta)$ барны

Единицы измерения энергии

При ћ=с=1 единицы измерения массы и энергии

$$[m] = [E] = B$$

Соответственно, 1кэВ = 10^3 эВ, 1МэВ = 10^3 кэВ, 1ГэВ = 10^3 МэВ = 10^9 эВ

 $1 \text{ T}_{9}B = 10^{3} \text{ F}_{9}B = 10^{12} \text{ }_{9}B$

 $1 \text{ ppr} = 642 \cdot 10^9 \text{ pB} = 642 \text{ } \Gamma \text{ pB}$

Ускорители на ~100 ГэВ сообщают частице энергию ~эрга

 $1 \Gamma_9 B = 1,7827 \cdot 10^{-27} \ кг,$

т.е. масса протона $m_p = 1,673 \cdot 10^{-27} \text{кг} = 0,938 \ \Gamma \text{эВ}$

Кинетическая энергия T = E – m используется при E <<m - ядерная физика

Полная энергия E - используется при высоких энергиях E > 1ГэВ

Единицы измерения импульса, длины и времени

Импульс частиц измеряется в ГэВ/с (МэВ /с) Асимптотически при E>>m, т.е. E>> 1 ГэВ для адронов и E>>1МэВ для электронов, переменные импульса, полной энергии и кинетической равны друг другу (Для фотонов это верно всегда !) При \hbar =c=1 длину (метры) и время (секунды) можно выразить в 1/ГэВ : λ = \hbar /mc =1 / m ; λ /c= \hbar /mc² =1 / m : Подставляя массу в кг, соответствующую 1 ГэВ, получаем: ГэВ-1 = 0,19733 ферми = 0,19733 ·10-15 метра (м) ГэВ-1 = 6,5822 ·10-15 сек (с)

Запомним: $\hbar c = 197,33 \text{ МэВ-ферми}$ $\hbar = 6,5822 \cdot 10^{-22} \text{ МэВ-с}$

Длина часто используется для расчетов площадей или сечений: ГэВ-2 = 0,38939 мб; а также $1/m_p^2$ = 0,44232 мб, $1/m_\pi^2$ = 19,987 мб

Немного кинематики

Основная кинематическая переменная частицы –

$$4^{x_{-}}$$
 вектор энергии-импульса $p=(p_{0}, \mathbf{p})=(E, p_{x}, p_{y}, p_{z}).$ $p^{2}=E^{2}-|\mathbf{p}|^{2}=m^{2}-$ определение массы частицы или системы частиц $(c=1)!$

Энергия
$$E^2 = \mathbf{p}^2 + m^2$$

Скорость
$$\mathbf{v} = \mathbf{p}/E = \beta$$
, $\gamma = E/m$, $\mathbf{v} \gamma = \mathbf{p}/m$

Преобразования Лоренца имеют вид:

V – скорость инерциальной системы отсчета вдоль оси Z

$$p_x' = p_x$$
, $p_y' = p_y$, $p_z' = \gamma (p_z - vE)$, $E' = \gamma (E - v p_z)$.

Инвариантные переменные: $S = (p_1 + p_2)^2 - квадрат полной энергии двух частиц, или квадрат их инвариантной массы;$

$$t = (p_1 - p_2)^2$$
 - квадрат переданного четырех-импульса.

Выделенные системы отсчета

1. Лабораторная система (Л.С.)— ускорители для взаимодействий с фиксированной мишенью = система мишени

$$P_A^*$$
 $P_B^* = P_A^*$; $V_C = P_A/(E_A + m_B)$ в л.с. 3. Система встречных пучков (с.в.п.) $P_B = S^{1/2} = 2 E_{B.\Pi.} (1 - \theta^2/8)$; $\theta^2/8 = 0,0083$ в ЦЕРН

$$|p_A| = |p_B|$$

Переходы между системами отсчета

1. Переход от л.с. к с.ц.м. - пучок по оси z

$$\begin{aligned} p_A^* = & (E_A^*, 0, 0, p_A^*) & p_A = (E_A, 0, 0, p_A) \\ p_B^* = & (E_B^*, 0, 0, -p_A^*) & p_B = (m_B, 0, 0, 0) \\ v_c = P_A / (E_A + m_B) \ ; \ \gamma_c = & (E_A + m_B) / \ s^{1/2} \ ; \ \gamma \ v_c = P_A / \ s^{1/2} \\ s = & (p_A + p_B)^2 = m_A^2 + m_B^2 + 2m_B E_A \end{aligned}$$

2. Переход от с.в.п. к с.ц.м.

$$eta_{c} = (P_{A} + P_{B})/(E_{A} + E_{B});$$
 $eta_{B\Pi} = eta_{A} \sin \theta / 2$, $eta_{A} - \text{скорость частицы A в л.с. (с.в.п.)}$
 $\gamma_{B\Pi} = \gamma_{A} / (\sin^{2} \theta / 2 + \gamma_{A}^{2} \cos^{2} \theta / 2)^{1/2}$

Пусть ось z направлена по направлению скорости системы В.П.

Тогда импульс в С.Ц.М. есть $P_A^* = P_A^{B\Pi} \cos \theta / 2$. $s = (p_A + p_B)^2 = (E_A + E_B)^2 - |P_A + P_B|^2 = 4m^2 + 4(P^{B\Pi} \cos \theta / 2)^2$ $S^{1/2} = 2E^{B\Pi}(1 - \theta^2 / 8) -> 2E$; $E_A = E^{B\Pi} = E$

Сравнение условий эксперимента на встречных пучках и на неподвижной мишени

1. При одной энергии пучка сравним энергии взаимодействия:

$$s^{1/2} = (2E_{\Delta})^{1/2}$$

И

$$s^{1/2} = 2E_A$$

На встречных пучках больше энергии доступно для образования новых частиц

- На неподвижной мишени можно использовать пучки вторичных частиц:
 - п, К, v, ...
- 3. Светимость выше в экспериментах на неподвижной мишени, т.е. быстрее набор статистики
- 4. Энергия коллайдера LHC эквивалентна энергии ШАЛ космических лучей

Будущие ускорители:

Линейные электронные коллайдеры

Задачи — поиск новых частиц и повышение точности измерения основных параметров взаимодействий

Цель лекций

Основная задача курса — подготовить к проведению исследований на LHC

Начало рабочих сеансов по получению физических результатов - июль 2008 г.

Задачи к лекции 1

- 1. Оценить свободную энергию, доступную для образования новых частиц, для пучка протонов с энергией Е на коллайдере и в соударениях с неподвижной мишенью.
- 2. Энергия соударения протонов на коллайдере LHC 14 ТэВ. Какова должна быть энергия пучка протонов для эквивалентного соударения на ускорителе с неподвижной мишенью?
- 3. За какое время электрон и протон с импульсом 1 ГэВ/с пролетят расстояние в 3м?