### 1 Schematic View of Filter



#### 2 State Vector x

 $x \in \mathcal{R}^7$  combines orientation q and angular velocity  $\omega$ ,  $x = \begin{pmatrix} q \\ \omega \end{pmatrix}$  where q is a unit quaternion, i.e.  $q = (q_0, q_1, q_2, q_3)$ .  $\omega = (\omega_x, \omega_y, \omega_z)$ .

### 3 Process Model A

 $x_{k+1} = A(x_k, w_k)$  where  $w_k$  is a random variable (process noise).

Suppose time interval is  $\Delta t$ , We have  $q_{k+1} = q_k q_\Delta$  in **quaternion multiplication** form. For 6-dimensional noise  $w_k$ , we can write as  $w_k = \begin{pmatrix} w_q \\ w_\omega \end{pmatrix}$  where  $w_q \in \mathcal{R}^3$  affects orientation and

 $w_{\omega} \in \mathcal{R}^3$  affects angular velocity.

Suppose quaternion representation of  $w_q$  is  $q_w$ .

A disturbed quaternion is  $\tilde{q}_k = q_k q_w$ . Likewise, a disturbed angular velocity is  $\tilde{\omega}_k = \omega_k + w_\omega$ . Finally, process model A is given by

$$x_{k+1} = \begin{pmatrix} \tilde{q}_k q_{\Delta} \\ \tilde{\omega}_k \end{pmatrix} = \begin{pmatrix} q_k q_w q_{\Delta} \\ \omega_k + w_{\omega} \end{pmatrix} = \begin{pmatrix} q_{k+1} \\ \omega_{k+1} \end{pmatrix}$$

#### 4 Measurement Model H

Generally,  $z_k = H(x_k, v_k)$  where  $v_k$  is a random variable (measurement noise).

Define  $\vec{g}$  be the vector of gravitational field (down),  $\vec{b}$  be the vector of magnetic field (north). Their quaternion vector can be written as  $g = (0, [g_x, g_y, g_z]) = (0, \vec{g})$ .

Transformation of  $\vec{g}$  from **global** coordinate system to **tracker** coordinate system  $\vec{g'}$  is  $g' = q_k g q_k^{-1}$ . Similar for b,  $b' = q_k b q_k^{-1}$  where g, g', b, b' are quaternion vectors.

# 5 Unscented Kalman Filter (UKF)

### 5.1 Sigma Points

For a  $n \times n$  matrix  $P_{k-1}$ , we can derive a set of 2n sigma points by Cholesky Decomposition  $P_{k-1} = S^T S$ . The n **column** vectors of S are multiplied by  $\pm \sqrt{2n}$  form the set  $\{W_i\}$  (with 0 mean and  $P_{k-1}$  covariance). By shifting mean, we get

$$\chi_i = \hat{x}_{k-1} + W_i$$

In quaternion representation,

$$\chi_i = \begin{pmatrix} q_{k-1} q_W \\ \overrightarrow{\omega_{k-1}} + \overrightarrow{\omega_W} \end{pmatrix}$$

where  $q_W$  is the quaternion w.r.t the first three components of  $W_i$ .  $\vec{\omega_W}$  is the angular velocity vector built from the remaining three components.

### 5.2 Transformation of Sigma Points

We transfer  $\{\chi_i\}$  into a different set of state vectors  $\{Y_i\}$ :  $Y_i = A(\chi_i, 0)$ . Let

$$\overline{\hat{x}_k} = Mean(\{Y_i\})$$

$$\overline{P_k} = Covariance(\{Y_i\})$$

Further Transfer  $\{Y_i\}$  into  $\{Z_i\}$ :  $Z_i = H(Y_i, 0)$ . Similarly, Let

$$\overline{z_k} = Mean(\{Z_i\})$$

$$P_{zz} = Covariance(\{Z_i\})$$

Define innovation  $v_k = z_k - \overline{\hat{z}_k}$ . Its covariance  $P_{vv} = P_{zz} + R$  where R is the measurement noise covariance. Kalman gain  $K_k = P_{xz}P_{vv}^{-1}$ .

# 5.3 Computation of Mean

Unit quaternion are members of a homogenous Riemannian manifold (four dimensional unit sphere). Quaternion representation of error vector  $\vec{e}_i$  is  $e_i = q_i \overline{q}_t^{-1}$ . The barycentric mean  $\vec{e}$  of all error vectors is

$$\vec{e} = \frac{1}{2n} \sum_{i=1}^{2n} \vec{e_i}$$

Then we can better estimate  $\overline{q}_{t+1}$  by

$$\overline{q}_{t+1} = e\overline{q}_t$$

Keep doing until

$$\overline{q}_{t+1} = \overline{q}_t$$

# 5.4 Computation of Covariance

Measurement covariance matrix is given by

$$P_{zz} = \frac{1}{2n} \sum_{i=1}^{2n} [Z_i - \overline{z_k}] [Z_i - \overline{z_k}]^T$$

Similarly, cross correlation matrix can be computed according to

$$P_{xz} = \frac{1}{2n} \sum_{i=1}^{2n} [W_i'] [Z_i - \overline{z_k}]^T = \frac{1}{2n} \sum_{i=1}^{2n} [Y_i - \overline{\hat{x}_k}] [Z_i - \overline{z_k}]^T$$