Matrix Computations

Fall 2020

Lecture 8: Positive Semidefinite Matrices and Pesudo-inverse

Lecturer: Prof. Yue Qiu & Prof. Ziping Zhao Scribe: Zhihang Xu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Positive Semidefinite Matrices

1.1 Definitions

Definition 1. A matrix $\mathbf{A} \in \mathbb{S}^{n1}$ is said to be **positive semidefinite** (**PSD**) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$, \mathbf{A} is said to be **positive definite** (**PD**) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq 0$, and \mathbf{A} is said to be **indefinite** if both \mathbf{A} and $-\mathbf{A}$ are not PSD.

We use $\mathbf{A} \succeq \mathbf{0}$ to denote \mathbf{A} is PSD, $\mathbf{A} \succ \mathbf{0}$ to denote \mathbf{A} is PD, and $\mathbf{A} \not\succeq \mathbf{0}$ to denote that \mathbf{A} is indefinite. In this way, we can define **Matrix inequalities**: $\mathbf{A} \succeq \mathbf{B}$ means that $\mathbf{A} - \mathbf{B}$ is PSD, $\mathbf{A} \succ \mathbf{B}$ means that $\mathbf{A} - \mathbf{B}$ is PD, and $\mathbf{A} \not\succeq \mathbf{B}$ means that $\mathbf{A} - \mathbf{B}$ is indefinite. If \mathbf{A} is PD, then it is also PSD by definition.

Definition 2. For a vector $\mathbf{x} \in \mathbb{R}^n$ and a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the scalar function defined by

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n x_i x_j A_{ij}$$

is called a quadratic form. A quadratic form is said to be positive definite whenever **A** is a positive definite matrix, in that case, $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq 0$.

Exercise:

- 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PD. Show that \mathbf{A} is nonsingular (i.e., invertible).
- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PSD (resp. PD). Show that its diagonal elements are non-negative (resp. positive).
- 3. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PSD. Show that $\mathbf{B}^T \mathbf{A} \mathbf{B}$ is PSD for any $\mathbf{B} \in \mathbb{R}^{n \times m}$.
- 4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PD. Show that $\mathbf{B}^T \mathbf{A} \mathbf{B}$ is PD for any $\mathbf{B} \in \mathbb{R}^{n \times m}$ with linearly independent columns.
- 5. If $\mathbf{A} \succeq \mathbf{0}$, $\alpha > 0$, then $\alpha \mathbf{A} \succeq \mathbf{0}$.
- 6. If $\mathbf{A}, \mathbf{B} \succeq \mathbf{0}$, and $\alpha, \beta > 0 \in \mathbb{R}$, then $\alpha \mathbf{A} + \beta \mathbf{B} \succeq \mathbf{0}$.
- 7. If $A \succeq B$, $B \succeq C$, then $A \succeq C$.
- 8. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PSD. Show that the eigenvalues of \mathbf{A} are all non-negative.

 $^{{}^{1}\}mathbb{S}^{n}$ denotes the set of $n \times n$ real symmetric matrices.

9. Orthogonal projection matrices are PSD.

Solutions.

- 1. Let $\mathbf{x} \in \mathcal{N}(\mathbf{A})$, then $\mathbf{A}\mathbf{x} = \mathbf{0}$, and therefore $\mathbf{x}^T \mathbf{A}\mathbf{x} = 0$. Hence $\mathbf{x} = \mathbf{0}$ since \mathbf{A} is PD, which implies $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$. Therefore \mathbf{A} is nonsingular.
- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be PSD and let $\mathbf{x} = \mathbf{e}_i$ (the *i*-th unit vector), then

$$\mathbf{e}_i^T \mathbf{A} \mathbf{e}_i = \mathbf{A}_{ii} > 0$$
, $i = 1, \dots, n$.

3. For any $\mathbf{y} \in \mathbb{R}^m$, let $\mathbf{x} = \mathbf{B}\mathbf{y} \in \mathbb{R}^n$, then

$$\mathbf{y}^T(\mathbf{B}^T \mathbf{A} \mathbf{B}) \mathbf{y} = (\mathbf{B} \mathbf{y})^T \mathbf{A} (\mathbf{B} \mathbf{y}) = \mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$$

therefore $\mathbf{B}^T \mathbf{A} \mathbf{B}$ is PSD.

4. For any $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y} \neq 0$, let $\mathbf{x} = \mathbf{B}\mathbf{y} \in \mathbb{R}^n$, since **B** has linearly independent columns, $\mathbf{y} \neq 0$ indicates that $\mathbf{x} \neq 0$, then

$$\mathbf{y}^T(\mathbf{B}^T \mathbf{A} \mathbf{B}) \mathbf{y} = (\mathbf{B} \mathbf{y})^T \mathbf{A} (\mathbf{B} \mathbf{y}) = \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$

therefore $\mathbf{B}^T \mathbf{A} \mathbf{B}$ is PD.

- 5. For every $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x}^T(\alpha \mathbf{A})\mathbf{x} = \alpha \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$, therefore $\alpha \mathbf{A} \succeq \mathbf{0}$.
- 6. For every $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x}^T (\alpha \mathbf{A} + \beta \mathbf{B}) \mathbf{x} = \alpha \mathbf{x}^T \mathbf{A} \mathbf{x} + \beta \mathbf{x}^T \mathbf{B} \mathbf{x} \ge 0$, therefore $\alpha \mathbf{A} + \beta \mathbf{B} \succeq \mathbf{0}$.
- 7. For every $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x}^T(\mathbf{A} \mathbf{C})\mathbf{x} = \mathbf{x}^T(\mathbf{A} \mathbf{B})\mathbf{x} + \mathbf{x}^T(\mathbf{B} \mathbf{C})\mathbf{x} \ge 0$, therefore $\mathbf{A} \succeq \mathbf{C}$.
- 8. Let (λ, \mathbf{x}) be an eigenpair of \mathbf{A} , i.e., $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, therefore

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \lambda \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x} = \lambda ||\mathbf{x}||_2^2 \ge 0$$

since $\|\mathbf{x}\|_2^2$ are non-zero (eigenvectors are non-zero), we can get

$$\lambda = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \ge 0.$$

(The relation between eigenvalues and PSD matrices will be further introduced in the subsequent.)

9. For any vector $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^T \mathbf{P} \mathbf{x} = \mathbf{x}^T \mathbf{P}^2 \mathbf{x} = ||\mathbf{P} \mathbf{x}||_2^2 \ge 0$.

1.2 PSD matrices and eigenvalues

Theorem 1. For matrix $\mathbf{A} \in \mathbb{S}^n$, let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of \mathbf{A} , we have

- 1. $\mathbf{A} \succeq \mathbf{0} \Leftrightarrow \lambda_i \geq 0 \text{ for } i = 1, \dots, n.$
- 2. $\mathbf{A} \succ \mathbf{0} \Leftrightarrow \lambda_i > 0 \text{ for } i = 1, \dots, n$.

Proof. Let $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ be the eigendecomposition of \mathbf{A} , then

$$\mathbf{A} \succeq \mathbf{0} \Leftrightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

$$\Leftrightarrow \mathbf{z}^T \mathbf{\Lambda} \mathbf{z} \ge 0, \quad \forall \mathbf{z} \in \mathcal{R}(\mathbf{V}^T) = \mathbb{R}^n$$

$$\Leftrightarrow \sum_{i=1}^n \lambda_i |z_i|^2 \ge 0, \quad \forall \mathbf{z} \in \mathbb{R}^n$$

$$\lambda_i \ge 0, \quad i = 1, \dots, n$$

And the PD case can be proven by the same manner.

1.3 Symmetric Factorization

Theorem 2 (Symmetric Factorization). A matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD if and only if it can be factored as

$$\mathbf{A} = \mathbf{B}^T \mathbf{B}$$
,

for some $\mathbf{B} \in \mathbb{R}^{m \times n}$ with some integer m.

Proof. 1. If **A** can be factored as $\mathbf{A} = \mathbf{B}^T \mathbf{B}$, then for any $x \in \mathbb{R}^n$,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = \|\mathbf{B} \mathbf{x}\|_2^2 \ge 0,$$

then **A** is PSD.

2. For PSD **A**, **A** has eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ with non-negative eigenvalues, then let $\mathbf{\Lambda}^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$,

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{V}^T = (\mathbf{V} \mathbf{\Lambda}^{1/2}),$$

therefore PSD **A** can be factored as $\mathbf{A} = \mathbf{B}^T \mathbf{B}$.

Such factorization is *not* unique, since for $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ and any orthogonal $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{B} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{V}^T$ is a factor fir $\mathbf{A} = \mathbf{B}^T \mathbf{B}$,

$$\mathbf{B}^T \mathbf{B} = (\mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{U}^T) (\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{V}^T) = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{A}.$$

However, there exists one and only one lower-triangular upper-triangular matrix \mathbf{G} with $\mathbf{G}_{ii} > 0$ such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$, which is the *Cholesky factorization* of \mathbf{A} (details can be found in 1.3.1). $\mathbf{B} = \mathbf{A}^{1/2} = \mathbf{V}\mathbf{\Lambda}^{1/2}\mathbf{V}^T$ is the *unique PSD* factor for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$.

1.3.1 Cholesky decomposition revisited

In this subsection, we will focus on Cholesky decomposition (Recall Problem 4 in Homework 2).

Lemma 3. If a nonsingular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an LDU decomposition, then the LDU factors are uniquely determined.

Proof. To prove the uniqueness, first we assume that A has two LDU decompositions as

$$\mathbf{A} = \mathbf{L}_1 \mathbf{D}_1 \mathbf{U}_1$$
, $\mathbf{A} = \mathbf{L}_2 \mathbf{D}_2 \mathbf{U}_2$,

and we try to prove that $\mathbf{L}_1 = \mathbf{L}_2$, $\mathbf{D}_1 = \mathbf{D}_2$, and $\mathbf{U}_1 = \mathbf{U}_2$.

First, the determinant of **A** satisfies $|\mathbf{A}| \neq 0$ since **A** is nonsingular. Besides, since $|\mathbf{A}| = |\mathbf{L}_1| \times |\mathbf{D}_1| \times |\mathbf{U}_1| = |\mathbf{L}_2| \times |\mathbf{D}_2| \times |\mathbf{U}_2|$, we have that \mathbf{L}_1 , \mathbf{D}_1 , \mathbf{U}_1 , \mathbf{L}_2 , \mathbf{D}_2 , and \mathbf{U}_2 are all nonsingular (*i.e.*, invertible).

Second, multiplying \mathbf{L}_2^{-1} to \mathbf{L}_1 gives

$$\mathbf{L}_2^{-1}\mathbf{L}_1 = \mathbf{D}_2\mathbf{U}_2(\mathbf{D}_1\mathbf{U}_1)^{-1}\,,$$

note that the left hand side $\mathbf{L}_2^{-1}\mathbf{L}_1$ is lower triangular, while the right hand side $\mathbf{D}_2\mathbf{U}_2(\mathbf{D}_1\mathbf{U}_1)^{-1}$ must be upper triangular. Hence, the left hand side and the right hand side are both diagonal matrices.

Third, the diagonal entries of the left hand side $\mathbf{L}_2^{-1}\mathbf{L}_1$ must be one, which implies $\mathbf{L}_2^{-1}\mathbf{L}_1 = \mathbf{I}$ and accordingly $\mathbf{L}_1 = \mathbf{L}_2$. Similarly, we can derive that $\mathbf{U}_1 = \mathbf{U}_2$ and $\mathbf{D}_1 = \mathbf{D}_2$, which concludes this proof.

Lemma 4. If **A** is a nonsingular symmetric matrix, then its LDU decomposition must be $\mathbf{A} = \mathbf{LDL}^T$, which is called LDL decomposition in this case.

Proof. For symmetric and nonsingular A, A = LDU, we have

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{U} = (\mathbf{L}\mathbf{D}\mathbf{U})^T = \mathbf{U}^T\mathbf{D}^T\mathbf{L}^T = \mathbf{U}^T\mathbf{D}\mathbf{L}^T,$$

these are the LDU decomposition for **A** and since it is unique, we must have $\mathbf{U} = \mathbf{L}^T$.

Definition 3 (Cholesky Factorization). Given a PSD matrix \mathbf{A} there exists a lower triangular matrix \mathbf{G} such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$. The lower triangular matrix \mathbf{G} is known as the Cholesky factor and $\mathbf{A} = \mathbf{G}\mathbf{G}^T$ is known as the Cholesky factorization of \mathbf{A} .

Theorem 5. A is positive definite matrix if and only if its Cholesky decomposition exists.

Proof. We will prove the theorem from two directions.

1. First we try to prove that if **A** is a positive definite matrix, then its Cholesky decomposition exists. According to Exercise 1 in subsection 1.1, PD matrix **A** must be nonsingular. Then according to Lemma 4, **A** has LDL decomposition $\mathbf{A} = \mathbf{LDL}^T$. For any vector $\mathbf{x} \in \mathbb{R}^n$, there exists a vector $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{y} = \mathbf{L}^T \mathbf{x}$. Since A is a positive definite matrix, we can derive that

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{x}^T \mathbf{L} \mathbf{D} \mathbf{L}^T \mathbf{x} = \mathbf{x}^T \mathbf{A} \mathbf{x} > 0.$$

Hence, the diagonal entries of **D** are all positive. Let $\mathbf{G} = \mathbf{L}\mathbf{D}^{1/2}$ yields the Cholesky decomposition.

- 2. Second, we try to prove that if the Cholesky decomposition for **A** exists, i.e., there exists **G** such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$, then **A** is PD.
 - (a) First we have $\mathbf{A}^T = (\mathbf{G}\mathbf{G}^T)^T = \mathbf{G}\mathbf{G}^T = \mathbf{A}$, therefore \mathbf{A} is symmetric.
 - (b) For any $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq 0$, $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{G} \mathbf{G}^T \mathbf{x} = \|\mathbf{G}^T \mathbf{x}\|_2 > 0$.

Hence \mathbf{A} is PD.

Theorem 6. If A is a PD matrix, then its Cholesky decomposition is uniquely determined.

Proof. From Exercise 1 in subsection 1.1, first we have that PD matrix **A** must be nonsingular. To prove the uniqueness, suppose **A** has two Cholesky decompositions

$$\mathbf{A} = \mathbf{G}_1 \mathbf{G}_1^T = \mathbf{G}_2 \mathbf{G}_2^T.$$

where G_1 and G_2 are lower triangular matrices with positive diagonal entries. Then we have

$$\mathbf{G}_1\mathbf{G}_1^T = \mathbf{G}_2\mathbf{G}_2^T \Rightarrow \mathbf{G}_1 = \mathbf{G}_2\mathbf{G}_2^T(\mathbf{G}_1^T)^{-1} \Rightarrow \mathbf{G}_2^{-1}\mathbf{G}_1 = \mathbf{G}_2^T(\mathbf{G}_1^T)^{-1},$$

the left side is lower triangular and the right side is upper triangular, therefore both sides are diagonal matrices which we denote as \mathbf{D} ,

$$\begin{aligned} \mathbf{G}_{1}\mathbf{G}_{1}^{T} &= \mathbf{G}_{2}\mathbf{G}_{2}^{T} \Rightarrow \mathbf{G}_{1}^{T} = \mathbf{G}_{2}\mathbf{G}_{2}^{T}(\mathbf{G}_{1}^{T})^{-1} \\ &\Rightarrow \mathbf{I} = \mathbf{G}_{1}^{-1}\mathbf{G}_{2}\mathbf{G}_{2}^{T}(\mathbf{G}_{1}^{T})^{-1} = (\mathbf{G}_{1}^{-1}\mathbf{G}_{2})(\mathbf{G}_{1}^{-1}\mathbf{G}_{2})^{T} \\ &\Rightarrow \mathbf{I} = \mathbf{D}\mathbf{D}^{T}, \end{aligned}$$

also notice that both G_1 and G_2 have positive diagonal entries therefore **D** has positive diagonal entries and hence $\mathbf{D} = \mathbf{I}$. To sum up, $G_1 = G_2$ and the Cholesky decomposition of **A** is uniquely determined.

Exercise:

- 1. Let **A**, **B** be PSD matrices. Show that all eigenvalues of **AB** are non-negative.
- 2. Show that $rank(\mathbf{A}) = rank(\mathbf{A}^T) = rank(\mathbf{A}^T\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$ for any \mathbf{A} .
- 3. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is PSD with $\mathsf{rank}(\mathbf{A}) = r$ if and only if there exists a \mathbf{B} with $\mathsf{rank}(\mathbf{B}) = r$ such that $\mathbf{A} = \mathbf{B}^T \mathbf{B}$.
- 4. **A** is PD if and only if there exists a nonsingular **R** such that $\mathbf{A} = \mathbf{B}^T \mathbf{B}$.
- 5. If **A** is PD, then A^{-1} is PD.
- 6. Let $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$, and suppose that \mathbf{B} has full row rank. Then

$$\mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{A})$$
.

7. If **R** is a PSD matrix with factorization $\mathbf{R} = \mathbf{B}\mathbf{B}^T$ for some full-column rank **B**, then $\mathcal{R}(\mathbf{R}) = \mathcal{R}(\mathbf{B})$.

Solution:

1. Let (λ, \mathbf{x}) be an eigenpair for \mathbf{AB} , and let $\mathbf{B} = \mathbf{C}^T \mathbf{C}$ for some \mathbf{C} since \mathbf{B} is PSD. Then we have

$$\lambda \mathbf{x} = \mathbf{A} \mathbf{B} \mathbf{x} = \mathbf{A} \mathbf{C}^T \mathbf{C} \mathbf{x}$$
$$\Rightarrow \lambda \mathbf{C} \mathbf{x} = \mathbf{C} \mathbf{A} \mathbf{C}^T \mathbf{C} \mathbf{x}$$

which means $(\lambda, \mathbf{C}\mathbf{x})$ is an eigenpair for $\mathbf{C}\mathbf{A}\mathbf{C}^T$, we have proved that $\mathbf{C}\mathbf{A}\mathbf{C}^T$ is PSD (See Exercise 3 in Subsection 1.1), hence the eigenvalues $\lambda \geq 0$.

2. First we have

$$\mathbf{x} \in \mathcal{N}(\mathbf{A}) \Rightarrow \mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{N}(\mathbf{A}^T \mathbf{A}) \Rightarrow \mathcal{N}(\mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}^T \mathbf{A}),$$

conversely,

$$\mathbf{x} \in \mathcal{N}(\mathbf{A}^T \mathbf{A}) \Rightarrow \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = 0 \Rightarrow \mathbf{A} \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{N}(\mathbf{A})$$
$$\Rightarrow \mathcal{N}(\mathbf{A}^T \mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}),$$

therefore $\mathcal{N}(\mathbf{A}^T\mathbf{A}) = \mathcal{N}(\mathbf{A})$ and $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T\mathbf{A})$. Similarly, $\operatorname{rank}(\mathbf{A}^T) = \operatorname{rank}(\mathbf{A}\mathbf{A}^T)$ and the result follows.

3. Given **A** is PSD with $rank(\mathbf{A}) = r$, the eigendecomposition for **A** is given by

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$$
, $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0), \lambda_i > 0, i = 1, \dots, r$,

then let $\mathbf{\Lambda}^{1/2} = \text{diag}(\lambda_1^{1/2}, \dots, \lambda_r^{1/2}, 0, \dots, 0),$

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{V}^T = \mathbf{B}^T \mathbf{B}.$$

where $\operatorname{\mathsf{rank}}(\mathbf{B}) = \operatorname{\mathsf{rank}}(\mathbf{\Lambda}^{1/2}) = r$. Conversely, if $\mathbf{A} = \mathbf{B}^T \mathbf{B}$, then $\operatorname{\mathsf{rank}}(\mathbf{A}) = \operatorname{\mathsf{rank}}(\mathbf{B}) = r$ and

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = \|\mathbf{B} \mathbf{x}\|_2^2 \ge 0.$$

- 4. From Exercise 1 in Subsection 1.1, we know that PD **A** indicates that **A** is nonsingular, therefore let $\operatorname{rank}(\mathbf{A}) = r = n$ in Exercise 3, we have $\operatorname{rank}(\mathbf{B}) = r$.
- 5. Write $\mathbf{A} = \mathbf{B}^T \mathbf{B}$, \mathbf{B} is nonsingular for PD matrix \mathbf{A} , then $\mathbf{A}^{-1} = (\mathbf{B}^T \mathbf{B})^{-1} = \mathbf{B}^{-1} (\mathbf{B}^T)^{-1} = \mathbf{C}^T \mathbf{C}$ for some nonsingular \mathbf{C} . Therefore \mathbf{A}^{-1} is nonsingular.
- 6. We have

$$\mathcal{R}(\mathbf{A}\mathbf{B}) = \{\mathbf{y} = \mathbf{A}\mathbf{B}\mathbf{x} | \mathbf{x} \in \mathbb{R}^n\} \xrightarrow{\text{full row rank } \mathbf{B}} \{\mathbf{y} = \mathbf{A}\mathbf{z} | \mathbf{z} \in \mathcal{R}(\mathbf{B}) = \mathbb{R}^k\} = \mathcal{R}(\mathbf{A}).$$

7. Full-column rank **B** means full-row rank \mathbf{B}^T , then $\mathcal{R}(\mathbf{R}) = \mathcal{R}(\mathbf{B}\mathbf{B}^T) = \mathcal{R}(\mathbf{B})$.

1.4 Summary

Positive Definite Matrices

For real-symmetric matrices \mathbf{A} , the following statements are equivalent, and any one can serve as the definition of a positive definite matrix.

- 1. $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every nonzero $\mathbf{x} \in \mathbb{R}^n$ (most commonly used as the definition).
- 2. All eigenvalues of **A** are positive.
- 3. $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ for some nonsingular \mathbf{B} .
 - (a) While **B** is not unique, there is one and only one upper-triangular matrix **R** with positive diagonals such that $\mathbf{A} = \mathbf{R}^T \mathbf{R}$. This is the Cholesky factorization of **A**.

Positive Semi-Definite Matrices

For real-symmetric matrices such that $rank(\mathbf{A}_{n\times n}) = r$, the following statements are equivalent, so any one of them can serve as the definition of a positive semidefinite matrix.

- 1. $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for every nonzero $\mathbf{x} \in \mathbb{R}^n$ (most commonly used as the definition).
- 2. All eigenvalues of **A** are nonneagtive.
- 3. $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ for some \mathbf{B} with rank $(\mathbf{B}) = r$.

2 Pesudo-inverse

Definition 4. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, \mathbf{A}^{\dagger} is called the Moore-Penrose inverse, or pseudo-inverse of \mathbf{A} if

- 1. $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}=\mathbf{A}$.
- 2. $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$.

3.
$$(\mathbf{A}\mathbf{A}^{\dagger})^T = \mathbf{A}\mathbf{A}^{\dagger}$$
.

4.
$$(\mathbf{A}^{\dagger}\mathbf{A})^T = \mathbf{A}^{\dagger}\mathbf{A}$$
.

The pseudo inverse is a generalization of the matrix inverse when the matrix may not be invertible. If A is invertible, then the pseudo inverse is equal to the matrix inverse.

Theorem 7. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ exists and is unique.

Proof. First we show the existence. Suppose the full SVD for **A** is given by,

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T = \begin{bmatrix} \mathbf{U}_1, \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \underbrace{\mathbf{U}_1}_{\text{orthonormal basis for } \mathcal{R}(\mathbf{A})} \boldsymbol{\Sigma}_1 \underbrace{\mathbf{V}_1^T}_{\text{orthonormal basis for } \mathcal{N}(\mathbf{A})},$$

usually $\mathbf{A} = \mathbf{U}_1 \mathbf{\Sigma} \mathbf{V}_1^T$ is called thin SVD for \mathbf{A} . Let $\mathsf{rank}(\mathbf{A}) = r$, then we have $\mathbf{U}_1 \in \mathbb{R}^{m \times r}$, $\mathbf{V}_1 \in \mathbb{R}^{n \times r}$ and $\mathbf{\Sigma}_1 \in \mathbb{R}^{r \times r}$ with $\mathbf{U}_1^T \mathbf{U}_1 = \mathbf{I}$ and $\mathbf{V}_1^T \mathbf{V}_1 = \mathbf{I}$. Then the pseudo-inverse for \mathbf{A} is given by

$$\mathbf{A}^{\dagger} = \mathbf{V}_1 \mathbf{\Sigma}_1^{-1} \mathbf{U}_1^T \in \mathbb{R}^{n \times m}$$
.

Check if \mathbf{A}^{\dagger} satisfies the definition by

1.
$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}(\mathbf{V}_{1}\boldsymbol{\Sigma}_{1}^{-1}\mathbf{U}_{1}^{T})\mathbf{A} = (\mathbf{U}_{1}\boldsymbol{\Sigma}\mathbf{V}_{1}^{T})(\mathbf{V}_{1}\boldsymbol{\Sigma}_{1}^{-1}\mathbf{U}_{1}^{T})(\mathbf{U}_{1}\boldsymbol{\Sigma}\mathbf{V}_{1}^{T}) = \mathbf{U}_{1}\boldsymbol{\Sigma}\mathbf{V}_{1}^{T} = \mathbf{A}.$$

$$2. \ \mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = (\mathbf{V}_1\mathbf{\Sigma}_1^{-1}\mathbf{U}_1^T)(\mathbf{U}_1\mathbf{\Sigma}\mathbf{V}_1^T)(\mathbf{V}_1\mathbf{\Sigma}_1^{-1}\mathbf{U}_1^T) = \mathbf{V}_1\mathbf{\Sigma}_1^{-1}\mathbf{U}_1^T = \mathbf{A}^{\dagger}.$$

3.
$$(\mathbf{A}\mathbf{A}^{\dagger})^T = (\mathbf{U}_1\mathbf{\Sigma}\mathbf{V}_1^T\mathbf{V}_1\mathbf{\Sigma}_1^{-1}\mathbf{U}_1^T)^T = (\mathbf{U}_1\mathbf{U}_1^T)^T = \mathbf{U}_1\mathbf{U}_1^T = \mathbf{A}\mathbf{A}^{\dagger}.$$

4.
$$(\mathbf{A}^{\dagger}\mathbf{A})^T = (\mathbf{V}_1\mathbf{\Sigma}_1^{-1}\mathbf{U}_1^T\mathbf{U}_1\mathbf{\Sigma}\mathbf{V}_1^T)^T = (\mathbf{V}_1\mathbf{V}_1^T)^T = \mathbf{V}_1\mathbf{V}_1^T = \mathbf{A}^{\dagger}\mathbf{A}.$$

Next we show the uniqueness. Suppose $\mathbf{B}, \mathbf{G} \in \mathbb{R}^{n \times m}$ are pseudo-inverses of \mathbf{A} , i.e., they both satisfy the 4 properties in definition of pseudo-inverse. Then

$$\mathbf{A}\mathbf{B} \xrightarrow{\underline{\text{by property 1}}} \underbrace{(\mathbf{A}\mathbf{G}\mathbf{A})}_{\mathbf{A}} \mathbf{B} = (\mathbf{A}\mathbf{G})(\mathbf{A}\mathbf{B}) \xrightarrow{\underline{\text{by property 3}}} (\mathbf{A}\mathbf{G})^T (\mathbf{A}\mathbf{B})^T$$

$$= \mathbf{G}^T \mathbf{A}^T \mathbf{B}^T \mathbf{A}^T = \mathbf{G}^T (\mathbf{A}^T \mathbf{B}^T \mathbf{A}^T) = \mathbf{G}^T (\mathbf{A}\mathbf{B}\mathbf{A})^T \xrightarrow{\underline{\text{by property 1}}} = \mathbf{G}^T \mathbf{A}^T$$

$$= (\mathbf{A}\mathbf{G})^T = \underbrace{\underline{\text{by property 3}}}_{\mathbf{B}^T \mathbf{A}^T} = \mathbf{A}\mathbf{G},$$

and similarly, we can obtain

$$\mathbf{B}\mathbf{A} \xrightarrow{\text{by property 1}} = \mathbf{B}(\mathbf{A}\mathbf{G}\mathbf{A}) = (\mathbf{B}\mathbf{A})(\mathbf{G}\mathbf{A}) \xrightarrow{\text{by property 4}} (\mathbf{B}\mathbf{A})^T(\mathbf{G}\mathbf{A})^T$$

$$= (\mathbf{A}^T\mathbf{B}^T)(\mathbf{A}^T\mathbf{G}^T) = (\mathbf{A}^T\mathbf{B}^T\mathbf{A}^T)\mathbf{G}^T = (\mathbf{A}\mathbf{B}\mathbf{A})^T\mathbf{G}^T \xrightarrow{\text{by property 1}} \mathbf{A}^T\mathbf{G}^T$$

$$= (\mathbf{G}\mathbf{A})^T \xrightarrow{\text{by property 4}} \mathbf{G}\mathbf{A}.$$

Consequently, we have

$$\mathbf{G} \xrightarrow{\text{by property 2}} \mathbf{G}\mathbf{A}\mathbf{G} = (\mathbf{G}\mathbf{A})\mathbf{G} = (\mathbf{B}\mathbf{A})\mathbf{G} = \mathbf{B}(\mathbf{A}\mathbf{G}) = \mathbf{B}(\mathbf{A}\mathbf{B}) \xrightarrow{\text{by property 2}} = \mathbf{B},$$

which proves the uniqueness of the pseudo-inverse. To sum up, the pseudo-inverse of any arbitrary matrix A exists and is unique.

Exercise.

- 1. Show that $\mathbf{A}\mathbf{A}^{\dagger}$ and $\mathbf{A}^{\dagger}\mathbf{A}$ are orthogonal projections.
- 2. Show that $\mathbf{A}\mathbf{A}^{\dagger}$ is the orthogonal projection onto the range space of \mathbf{A} , and $\mathbf{A}^{\dagger}\mathbf{A}$ is the orthogonal projection on the orthogonal complement of $\mathcal{N}(\mathbf{A})$.

Solution.

- 1. Since $(\mathbf{A}\mathbf{A}^{\dagger})(\mathbf{A}\mathbf{A}^{\dagger}) = (\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A})(\mathbf{A}^{\dagger}) = \mathbf{A}\mathbf{A}^{\dagger}$, and $(\mathbf{A}\mathbf{A}^{\dagger})^{T} = \mathbf{A}\mathbf{A}^{\dagger}$, therefore $\mathbf{A}\mathbf{A}^{\dagger}$ are orthogonal projections. $\mathbf{A}^{\dagger}\mathbf{A}$ can be proved in the same manner. To be more specific, $\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{U}_{1}\mathbf{U}_{1}^{T}$ and $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{V}_{1}\mathbf{V}_{1}^{T}$.
- 2. First we have,

$$\mathbf{y} \in \mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}) \Rightarrow \mathbf{y} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{x} \text{ for some } \mathbf{x} \Rightarrow \mathbf{y} \in \mathcal{R}(\mathbf{A}) \Rightarrow \mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}) \subseteq \mathcal{R}(\mathbf{A}),$$

next we have

$$\mathbf{y} \in \mathcal{R}(\mathbf{A}) \Rightarrow \mathbf{y} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x} \Rightarrow \mathbf{A}\mathbf{A}^{\dagger}\mathbf{y} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x} = \mathbf{y} \Rightarrow \mathbf{y} \in \mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}),$$

therefore the image of $\mathbf{A}\mathbf{A}^{\dagger}$, i.e., $\mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger})$ is indeed $\mathcal{R}(\mathbf{A})$. Similarly,

$$\mathbf{x} \in \mathcal{N}(\mathbf{A}) \Rightarrow \mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A}^{\dagger}\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{N}(\mathbf{A}^{\dagger}\mathbf{A}) \Rightarrow \mathcal{N}(\mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}^{\dagger}\mathbf{A}),$$

next we have

$$\mathbf{x} \in \mathcal{N}(\mathbf{A}^\dagger \mathbf{A}) \Rightarrow \mathbf{A}^\dagger \mathbf{A} \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A} \mathbf{A}^\dagger \mathbf{A} \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A} \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{N}(\mathbf{A}) \Rightarrow \mathcal{N}(\mathbf{A}^\dagger \mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}) \,.$$

Therefore

$$\mathcal{N}((\mathbf{A}^{\dagger}\mathbf{A})^T) = \mathcal{N}(\mathbf{A}^{\dagger}\mathbf{A}) = \mathcal{N}(\mathbf{A}) \Rightarrow \mathcal{R}(\mathbf{A}^{\dagger}\mathbf{A}) = \mathcal{N}(\mathbf{A})^{\perp}$$

To sum up,

$$\mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}) = \mathcal{R}(\mathbf{A}), \quad \mathcal{R}(\mathbf{A}^{\dagger}\mathbf{A}) = \mathcal{N}(\mathbf{A})^{\perp}.$$

Combining the conclusion of Exercise 1 completes the proof.

2.1 Least square revisited

For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, let $\boldsymbol{\epsilon} = \mathbf{A}\mathbf{x} - \mathbf{b}$, the least squares problem is to find a vector \mathbf{x} that minimizes

$$\sum_{i=1}^m \epsilon_i^2 = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2.$$

Any vector that provides a minimum value for this expression is called a *least square solution*. (Recall Problem 6 of Homework 3).

Theorem 8. A vector \mathbf{x}^* is an optimal solution to the LS problem if and only if it satisfies

$$\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b} \,. \tag{1}$$

Equation (1) is called the normal equation.

Proof. **Proof by Convex Optimization** The LS objective function is given by

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{b}^T \mathbf{A}^T \mathbf{x} + \mathbf{b}^T \mathbf{b},$$

and $f(\mathbf{x})$ is convex since the Hessian matrix of f is PSD (you can verify it by yourself). Taking derivative of $f(\mathbf{x})$ with respect to \mathbf{x} equals to zero gives

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = \mathbf{0} \Rightarrow \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}.$$

Therefore \mathbf{x}^* is an optimal LS solution if and only if it satisfies $\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$.

Theorem 9. Least Squares Solutions \mathbf{x}^* has the form of $\mathbf{x}^* \in \mathbf{A}^{\dagger}\mathbf{b} + \mathcal{N}(\mathbf{A})$.

Proof. When $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consitent (has at least one solution), suppose $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$ for some \mathbf{x}_0 , then we have

$$\mathbf{A}\mathbf{x}_0 = (\mathbf{A}\mathbf{A}^\dagger\mathbf{A})\mathbf{x}_0 = (\mathbf{A}\mathbf{A}^\dagger)(\mathbf{A}\mathbf{x}_0) = (\mathbf{A}\mathbf{A}^\dagger)\mathbf{b} = \mathbf{A}(\mathbf{A}^\dagger\mathbf{b}) = \mathbf{b}$$

therefore, $\mathbf{A}^{\dagger}\mathbf{b}$ solves $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the general solution of the system is $\mathbf{A}^{\dagger}\mathbf{b} + \mathbf{z}$, $\mathbf{z} \in \mathcal{N}(\mathbf{A})$.

When $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsitent, the least squares solutions are the solution of the normal equation $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$, we can verify that

$$\mathbf{A}^T \mathbf{A} (\mathbf{A}^{\dagger} \mathbf{b}) = \mathbf{A}^T (\mathbf{A} \mathbf{A}^{\dagger}) \mathbf{b} \xrightarrow{\text{by property 3}} \mathbf{A}^T (\mathbf{A} \mathbf{A}^{\dagger})^T \mathbf{b} = \mathbf{A}^T (\mathbf{A}^{\dagger})^T \mathbf{A}^T \mathbf{b}$$
$$= (\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A})^T \mathbf{b} = \mathbf{A}^T \mathbf{b},$$

therefore $\mathbf{A}^{\dagger}\mathbf{b}$ satisfies the normal equation. To sum up, the least squares solutions can be given by $\mathbf{x}^{\star} \in \mathbf{A}^{\dagger}\mathbf{b} + \mathcal{N}(\mathbf{A})$.

Theorem 10. For $\mathbf{A} \in \mathbb{R}^{m \times n} (m > n)$, $\mathbf{A}^{\dagger} \mathbf{b}$ is the solution to $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ of minimum 2-norm.

Proof. According to Theorem 9, any solution to the LS problem can be written as

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + \tilde{\mathbf{z}}, \quad \tilde{\mathbf{z}} \in \mathcal{N}(\mathbf{A}).$$

For any vector $\mathbf{z} \in \mathbb{R}^n$, the orthogonal projection onto $\mathcal{R}(\mathbf{A})$ is given by

$$\Pi_{\mathcal{N}(\mathbf{A})} = \mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}$$
,

and therefore we can rewrite \mathbf{x} as

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{z}, \quad \mathbf{z} \in \mathbb{R}^{n}.$$

Note that

$$[(\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{z}]^T (\mathbf{A}^{\dagger} \mathbf{b}) = \mathbf{z}^T [\mathbf{I} - (\mathbf{A}^{\dagger} \mathbf{A})^T] (\mathbf{A}^{\dagger} \mathbf{b}) = \mathbf{z}^T \mathbf{A}^{\dagger} \mathbf{b} - \mathbf{z}^T \mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger} \mathbf{b} = 0,$$

which means $\mathbf{A}^{\dagger}\mathbf{b} \perp \tilde{\mathbf{z}}$, therefore we have

$$\|\mathbf{x}\|_{2}^{2} = \|\mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{z}\|_{2}^{2} = \|\mathbf{A}^{\dagger}\mathbf{b}\|_{2}^{2} + \|(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{z}\|_{2}^{2} \ge \|\mathbf{A}^{\dagger}\mathbf{b}\|_{2}^{2}.$$

Equality holds if and only if $\mathbf{z} = \mathbf{0}$. So $\mathbf{A}^{\dagger}\mathbf{b}$ is the unique minimum norm solution.

2.2 Summary

Pseudo-inverse

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ admits a SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, if $\mathsf{rank}(\mathbf{A}) = r$, then the thin SVD for \mathbf{A} is given by

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \begin{bmatrix} \mathbf{U}_1, \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^T$$

- 1. Pseudo-inverse: $\mathbf{A}^{\dagger} = \mathbf{V}_1 \mathbf{\Sigma}_1^{-1} \mathbf{U}_1^T$
- 2. LS solution: $\mathbf{x}_{LS} = \mathbf{A}^{\dagger}\mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{N}(\mathbf{A})\mathcal{R}(\mathbf{A})$.
- 3. Orthogonal projection:
 - (a) $\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{U}_1\mathbf{U}_1^T$ is the ortgonal projection onto $\mathcal{R}(\mathbf{A})$.
 - (b) $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{V}_1\mathbf{V}_1^T$ is the ortgonal projection onto $\mathcal{N}(\mathbf{A})^{\perp}$.

Least Square Solutions

Each of the following four statements is equivalent to saying that \mathbf{x}^* is a least square solution for a possibly inconsistent linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- $\bullet \|\mathbf{A}\mathbf{x}^{\star} + \mathbf{b}\|_{2} = \min_{\mathbf{x} \in \mathbb{R}^{n}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{2}^{2}.$
- $\mathbf{A}\mathbf{x}^* = \Pi_{\mathcal{R}(\mathbf{A})}\mathbf{b}$.
- $\bullet \ \mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}.$
- $\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{b} + \mathcal{N}(\mathbf{A})$. ($\mathbf{A}^{\dagger} \mathbf{b}$ is the minimal 2-norm LSS).

Notes and Reference

- 1. Gene H G, Charles F. *Matrix computations* [J]. Johns Hopkins University Press, 3rd edition, 1996.
- 2. Meyer C D. Matrix analysis and applied linear algebra [M]. Siam, 2000.