

Angle Sensors

GMR-Based Angle Sensors

TLE5012B Register Setting

TLE5012B

Application Note

V1.5, 2012-11-15

Edition 2012-11-15

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History						
Page or Item	ge or Item Subjects (major changes since previous revision)					
V1.5, 2012-11-1	15					
All	Changed reset values of fuse-calibrated registers to "device-specific"					
8	Added description for CRC check, derivate-specific reset values, device-specific reset values and multi-purpose registers.					
All	Added extensive description to all registers					

Trademarks of Infineon Technologies AG

AURIXTM, BlueMoonTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, COMNEONTM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, I2RFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OmniTuneTM, OptiMOSTM, ORIGATM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SMARTITM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM, X-GOLDTM, X-PMUTM, XMMTM, XPOSYSTM.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS $^{\text{\tiny{IM}}}$, WIND RIVER $^{\text{\tiny{IM}}}$ of WIND RIVER SYSTEMS, INC. ZETEX $^{\text{\tiny{IM}}}$ of Diodes Zetex Limited.

Last Trademarks Update 2010-10-26

Application Note 3 V1.5, 2012-11-15

TLE5012B

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	5
	List of Tables	6
1	Introduction	7
2	SSC Registers	7
2.1	Registers Chapter	
2.1.1	Register Descriptions	
2.2	Communication Examples	30
3	Fuse Values	31

List of	Figures
---------	---------

Lis	t o	f F	igι	ıres

rigure i Derivate-specific fuse settings	Figure 1	Derivate-specific fuse settings	31
--	----------	---------------------------------	----

List of Tables

List of Tables

Table 1	Bit Types	. 7
Table 2	Registers Overview	. 7
Table 3	SSC Command to read the angle value	30
Table 4	SSC Command to read angle speed and angle revolution	30
Table 5	SSC Command to change Interface Mode2 register	30

Introduction

1 Introduction

This document is the second part of the electrical specification. Generally the latest data sheet of TLE5012B is valid.

The main interface of the TLE5012B is Synchronous Serial Communication (SSC) and the following section describes the configuration bits.

2 SSC Registers

Table 1 lists the various bit types used in the SSC registers.

Table 1 Bit Types

Abbreviation	Function	Description	
r	Read	Read-only registers	
W	Write	Read and write registers	
u	Update	Update buffer for this bit is present. If an update is issued and the Update-Register Access bit (UPD in Command Word) is set, the immediate values are stored in this update buffer simultaneously. This enables a snapshot of all necessary system parameters at the same time.	

2.1 Registers Chapter

This section describes the registers of the TLE5012B. It also defines the read/write access rights of the specific registers. **Table 2** identifies the values with symbols. Access to the registers is accomplished via the SSC Interface.

Table 2 Registers Overview

Register Short Name	Register Long Name	Offset Address	Page Number			
Registers Chapter, Register Descriptions						
STAT	STATus register	00 _H	9			
ACSTAT	ACtivation STATus register	01 _H	12			
AVAL	Angle VALue register	02 _H	14			
ASPD	Angle SPeeD register	03 _H	15			
AREV	Angle REVolution register	04 _H	16			
FSYNC	Frame SYNChronization register	05 _H	17			
MOD_1	Interface MODe1 register	06 _H	17			
SIL	SIL register	07 _H	18			
MOD_2	Interface MODe2 register	08 _H	20			
MOD_3	Interface MODe3 register	09 _H	21			
OFFX	OFFset X	0A _H	22			
OFFY	OFFset Y	0B _H	22			
SYNCH	SYNCHronicity	0C _H	23			
IFAB	IFAB register	0D _H	23			
MOD_4	Interface MODe4 register	0E _H	24			

Application Note 7 V1.5, 2012-11-15

Table 2 Registers Overview (cont'd)

Register Short Name	Register Long Name	Offset Address	Page Number
TCO_Y	Temperature COefficient register	0F _H	27
ADC_X	ADC X-raw value	10 _H	28
ADC_Y	ADC Y-raw value	11 _H	28
IIF_CNT	IIF CouNTer value	20 _H	29

The register is addressed wordwise.

Configuration Register Checksum

To monitor the integrity of the sensor configuration, the TLE5012B performs a cyclic redundancy check of the configuration registers in address range 08_H to $0F_H$. The 8bit CRC is stored in register CRC_PAR (address $0F_H$). When changing one or more of these registers, a new checksum has to be calculated from registers 08_H to $0F_H$ using the generator polynomial described in the **TLE5012B Data Sheet**, and written to the CRC_PAR register. Otherwise, a CRC fail error (status bit S_FUSE = 1) will occur. The CRC check can be disabled by setting register AS_FUSE to 0. It is automatically deactivated if auto calibration is active, as auto calibration performs periodical adjustments of several configuration registers.

Derivate-Specific Reset Values:

The reset values of certain registers (for example interface settings) are set by laser fuses which are specific for the employed derivate (Exxxx number) of the TLE5012B. In this case, the reset values in the register table are marked as "derivate-specific". A list of specific reset values for all derivates is given in **Chapter 3**.

Factory-Calibrated Reset Values:

The reset values of calibration registers (for example offset calibration) are set by laser fuses which are written during the factory calibration of the sensor. These values are specific for each individual device. In this case, the reset values in the register table are marked as "device-specific". When modifying parts of these registers, the register content should be read first, then only the relevant bits should be changed and the content should be written back into the register in order to avoid unintended over-writing of the calibration values.

Multi-Purpose Registers:

Some configuration registers have more than one assignment and change different settings depending on the selected interface for the IFA, IFB, IFC pins (selectable via the IF_MD register, address 0E_H). These registers are marked as "multi-purpose", and their assignments are described separately for each relevant interface.

2.1.1 Register Descriptions

Status Register

STAT Status Register				fset 0 _H			Reset Value 8001 _H
15	14	13	12	11	10	9	8
RD_ST	s_	NR	NO_GMR_ A	NO_GMR_ XY	S_ROM	S_ADCT	Res
r	V	V	ru	ru	r	ru	
7	6	5	4	3	2	1	0
S_MAGOL	S_XYOL	s_ov	S_DSPU	S_FUSE	S_VR	S_WD	S_RST
ru	ru	ru	ru	ru	ru	ru	ru

Field	Bits	Туре	Description	
RD_ST	15	r	Read Status 0 _B status values not changed since last readout 1 _B status values changed Reset: 1 _B	
S_NR	14:13	w	Slave Number Used to identify up to four sensors in a bus configuration The levels on pin SCK and pin IFC can be used to change the default slave number for SPC interface. Pin SCK represents S_NR[13] and pin IFC the S_NR[14]. Reset: 00 _R	
NO_GMR_A	12	ru	No valid GMR Angle Value Cyclic check of DSPU output. 0 _B valid GMR angle value on the interface 1 _B no valid GMR angle value on the interface (e.g test vectors) Reset: 0 _B	
NO_GMR_XY	11	ru	No valid GMR XY Values Cyclic check of ADC input. 0 _B valid GMR_XY values on the ADC input 1 _B no valid GMR_XY values on the ADC input (e.g. test vectors) Reset: 0 _B	

Field	Bits	Type	Description	
S_ROM	10	r	Status ROM ¹⁾ Check of ROM-CRC at startup. After fail, DSPU does not start. SPI access possible. 0 _B CRC ok 1 _B CRC fail or running Reset: 0 _B	
S_ADCT	9	ru	Status ADC-Test ¹⁾ Check of signal path with test vectors. All test vectors at startup tested. Activation in operation via AS_ADCT possible. 0 _B Test vectors ok 1 _B Test vectors out of limit Reset: 0 _B	
S_MAGOL	7	ru	Status Magnitude Out of Limit ¹⁾ Cyclic check of available magnetic field strength (magnet loss check). Deactivation via AS_VEC_MAG. 0 _B GMR-magnitude ok 1 _B GMR-magnitude out of limit Reset: 0 _B	
S_XYOL	6	ru	Status X,Y Data Out of Limit ¹⁾ Cyclic check of X and Y raw values. Deactivation via AS_VEC_XY 0 _B X,Y data ok 1 _B X,Y data out of limit (>23230 digits, <-23230 digits Reset: 0 _B	
s_ov	5	ru	Status Overflow ¹⁾ Cyclic check of DSPU overflow. Deactivation via AS_OV. 0 _B No DSPU overflow occurred 1 _B DSPU overflow occurred Reset: 0 _B	
S_DSPU	4	ru	Status Digital Signal Processing Unit Check of DSPU, CORDIC and CAPCOM at startup. Activation in operation via AS_DSPU possible. 0 _B DSPU self-test ok 1 _B DSPU self-test not ok, or self test is running Reset: 0 _B	

Field	Bits	Type	Description
S_FUSE	3	ru	Status Fuse CRC ¹⁾ CRC check configuration registers 08 _H to 0F _H (CRC_PAR register 0F _H). Deactivation via AS_FUSE. CRC check is automatically disabled if auto calibration is active. Note: When changing the content of one or more configuration registers in address range 08 _H to 0F _H , a new CRC has to be calculated and stored in register CRC_PAR (address 0F _H), otherwise CRC fail will occur.
			0 _B CRC ok 1 _B CRC fail Reset: 0 _B
S_VR	2	ru	Status Voltage Regulator ¹⁾ Permanent check of internal and external supply voltages. Deactivation via AS_VR 0 _B Voltages ok 1 _B V _{DD} over voltage; V _{DD} -off; GND-off; or V _{OVG} ; V _{OVA} ; V _{OVD} too high Reset: 0 _B
S_WD	1	ru	Status Watchdog Permanent check of watchdog. After watchdog-counter overflow, the DSPU stops. Deactivation via AS_WD 0 _B normal operation 1 _B watchdog counter expired (DSPU stop), AS_RST must be activated. Outputs deactivated, Pull Up/Down active. Reset: 0 _B
S_RST	0	ru	Status Reset ¹⁾²⁾ Permanent check of any reset. Deactivation via AS_RST. 0 _B no reset since last readout 1 _B indication of power-up, short power-break, firmware or active reset Reset: 1 _B

¹⁾ reset to "0" after readout

Note: When an error occurs, the corresponding bit in the safety word remains "0" until the status register is read.

²⁾ bit remains "1" after reset occurred until status register is read.

Activation Status Register

ACSTAT Activation St	atus Register			fset 1 _H			Reset Value 5AFE _H
15			1	11	10	9	8
		Res			AS_FRST	AS_ADCT	Res
	I	W			W	W	
7	6	5	4	3	2	1	0
AS_VEC_ MAG	AS_VEC_ XY	AS_OV	AS_DSPU	AS_FUSE	AS_VR	AS_WD	AS_RST
W	W	W	W	W	W	W	W

Field	Bits	Type	Description	
Res	15:11	w	Reserved Reset: 01011 _B	
AS_FRST	10	w Activation of Firmware Reset All configuration registers retain their contents. 0 _B after execution 1 _B activation of firmware reset (S_RST is set) Reset: 0 _B		
AS_ADCT	9	w Enable ADC Test vector Check Activation of this test is only allowed by deactiva AUTOCAL. 0 _B after execution 1 _B activation of ADC Test vector Check Reset: 1 _B		
AS_VEC_MAG	7	W	w Activation of Magnitude Check 0 _B monitoring of magnitude disabled 1 _B monitoring of magnitude enabled Reset: 1 _B	
AS_VEC_XY	6	W	Activation of X,Y Out of Limit-Check 0 _B monitoring of X,Y Out of Limit disabled 1 _B monitoring of X,Y Out of Limit enabled Reset: 1 _B	
AS_OV	5	W	Enable of DSPU Overflow Check 0 _B monitoring of DSPU Overflow disabled 1 _B monitoring of DSPU Overflow enabled Reset: 1 _B	
AS_DSPU	4	W	Activation DSPU BIST 0 _B after execution 1 _B activation of DSPU BIST or BIST running Reset: 1 _B	

Field	Bits	Туре	Description
AS_FUSE	3	w	Activation Fuse CRC Automatically enabled by deactivation of AUTOCAL. 0 _B monitoring of CRC disabled 1 _B monitoring of CRC enabled Reset: 1 _B
AS_VR	2	w	Enable Voltage Regulator Check 0 _B check of regulator voltages disabled 1 _B check of regulator voltages enabled Reset: 1 _B
AS_WD	1	w	Enable DSPU Watchdog-HW-Reset 0 _B DSPU watchdog monitoring disabled 1 _B DSPU Watchdog monitoring enabled Reset: 1 _B
AS_RST	0	w	Activation of Hardware Reset Activation occurs after CSQ switches from '0' to '1' after SSC transfer. 0 _B after execution 1 _B activation of HW Reset (S_RST is set) Reset: 0 _B

Angle Value Register

AVAL		Offse	Reset Value	
Angle Value R	egister	02 _H		8000 _H
15	14			8
RD_AV			ANG_VAL	
r	,		ru	
7	1			0
	,	ANG_V	/AL	
	1	ru	ı	

Field	Bits	Туре	Description	
RD_AV	15	r	Read Status, Angle Value 0 _B no new angle value since last readout 1 _B new angle value (ANG_VAL) present Reset: 1 _B	
ANG_VAL	14:0	ru	Calculated Angle Value (signed 15-bit) $Angle [°] = \frac{360°}{2^{15}} ANG _VAL[digits]$	(1)
			4000 _H -180° 0000 _H 0° 3FFF _H +179.99° (valid for ANG_RANGE = 0x080) Reset: 0 _H	

Angle Speed Register

ASPD Angle Speed	Register	Offset 03 _H	Reset Value 8000 _H
15	14		8
RD_AS		ANG_SPD	
r 7		ru	0
		ANG_SPD	
		ru	

Field	Bits	Type	Description
RD_AS	15	r	Read Status, Angle Speed 0 _B no new angle speed value since last readout 1 _B new angle speed value (ANG_SPD) present Reset: 1 _B
ANG_SPD	14:0	ru	Calculated Angle Speed Without prediction difference between three consecutive angle values. AngleRange [°] ANG SPD [digits]
			$Speed \ [\circ/s] = \frac{AngleRange \ [\circ]}{2^{15}} ANG \ _SPD \ [digits \]}{2t_{upd} \ [s]} $ (2)
			With prediction, difference between predicted value and next-to-last measured angle value.
			$Speed \ [°/s] = \frac{AngleRange \ [°]}{2^{15}} ANG \ _SPD \ [digits \]}{3t_{upd} \ [s]} $ (3)
			Reset: 0 _H

Angle Revolution Register

AREV		Offset		Reset Value
Angle Revolu	tion Register	04 _H		8000 _H
15	14		9	8
RD_REV	,	FCNT	'	REVOL
r	,	wu	1	ru
7				0
	'	REVOL	'	
		ru		

Field	Bits	Туре	Description
RD_REV	15	r	Read Status, Revolution 0 _B no new values since last readout 1 _B new value (REVOL) present Reset: 1 _B
FCNT	14:9	wu	Frame Counter (unsigned 6-bit value) Internal frame counter. Increments every update period (FIR_MD setting). Reset: 0 _H
REVOL	8:0	ru	Number of Revolutions (signed 9-bit value) Revolution counter. Increments for every full rotation in counter-clockwise direction (at angle discontinuity from 0° to 360°) and decrements for every full rotation in clockwise direction (at angle discontinuity from 360° to 0°) Reset: 0 _H

Frame Synchronization Register

FSYNC Frame Synchroniz	SYNC rame Synchronization Register		ffset 05 _H		Reset Value 0000 _H
15				9	8
		FSYNC			TEMPER
	1	wu		<u> </u>	r
7					0
		TEI	MPER	'	·
	-		r		

Field	Bits	Type	Description
FSYNC	15:9	wu	Frame Synchronization Counter Value Subcounter within one frame. Increments every internal clock cycle. Maximum counter value depends on FIR_MD setting. 16 @ FIR_MD=00; 32 @ FIR_MD=01; 64 @ FIR_MD=10; 128 @ FIR_MD=11. Reset: 0 _H
TEMPER	8:0	r	Temperature Value Signed integer temperature value. $T[^{\circ}C] = (TEMPER+152) / 2.776$ Reset: 0 _H

Interface Mode1 Register

Field	Bits	Type	Description
FIR_MD	15:14	W	Update Rate Setting (Filter Decimation) 00_B 21.3 μs 01_B 42.7 μs 10_B 85.3 μs 11_B 170.6 μs Reset: derivate-specific
CLK_SEL	4	W	Clock Source Select Switch to external clock. If there is no clock signal on the IFC pin or PLL out of lock, the sensor automatically switches to internal oscillator. 0 _B internal oscillator 1 _B external 4-MHz clock (IFC pin switched to input) Reset: 0 _B
DSPU_HOLD	2	W	Hold DSPU Operation If DSPU is on hold, no watchdog reset is performed by DSPU. Deactivate watchdog with AS_WD before setting DSPU on hold. 0_B DSPU in normal schedule operation 1_B DSPU is on hold Reset: 0_B
IIF_MOD	1:0	W	Incremental Interface Mode 00 _B IIF disabled 01 _B A/B operation with Index on CLK/HS3 10 _B Step/Direction operation with Index on CLK/HS3 11 _B not allowed Reset: derivate-specific

SIL Register

SIL SIL Register			Off 07				Reset Value 0000 _H
15	14	13		11	10	9	8
FILT_PA R	FILT_IN V		Res		FUSE_RE L	Re	es
W	W				w		
7	6	5		3	2		0
Res	ADCTV_E N		ADCTV_Y			ADCTV_X	
	W		W			W	

Field	Bits	Туре	Description
FILT_PAR	15	W	Filter Parallel Diagnostic function to test ADCs. If enabled, the raw X-signal is routed also to the Y-ADC so SIN and COS signal should be identical. 0 _B filter parallel disabled 1 _B filter parallel enabled (source: X-value) Reset: 0 _B
FILT_INV	14	W	Filter Inverted Diagnostic function to test ADCs. If enabled, the X- and Y-signals are inverted. The angle output is then shifted by 180°. 0 _B filter inverted disabled 1 _B filter inverted enabled Reset: 0 _B
FUSE_REL	10	w	Fuse Reload 0 _B normal operation 1 _B fuse parameters reloaded to DSPU at next cycle start Reset: 0 _B
ADCTV_EN	6	W	ADC-Test Vectors Diagnostic function to test ADCs. If enabled, sensor elements are internally disconnected and test voltages are connected to ADCs. Test vectors can be selected via the register ADCTV_Y and ADCTV_X. 0 _B ADC-Test Vectors disabled 1 _B ADC-Test Vectors enabled Reset: 0 _B
ADCTV_Y	5:3	w	Test vector Y 000 _B 0V 001 _B +70% 010 _B +100% 011 _B +Overflow 101 _B -70% 110 _B -100% 111 _B -Overflow Reset: 0 _H
ADCTV_X	2:0	w	Test vector X 000 _B 0V 001 _B +70% 010 _B +100% 011 _B +Overflow 101 _B -70% 110 _B -100% 111 _B -Overflow Reset: 0 _H

Interface Mode2 Register

MOD_2	MOD_2			fset			Reset Value
Interface Mo	de2 Register		0)8 _H		deriv	vate-specific
15	14						8
Res				ANG_RANGE		1	
7			4	w 3	2	1	0
,	ANG_	RANGE	-	ANG_DIR	PREDICT	AUTO	
		W	1	W	W	V	ı

Field	Bits	Type	Description
ANG_RANGE	14:4	W	Angle Range ¹⁾ Changes the representation of ANG_VAL. ANG_VAL = ANG_VAL_INT*ANG_RANGE/128 (ANG_VAL_INT is always -180°180° -> -1638416383) Angle Range [°] = 360° * (2 ⁷ / ANG_RANGE[digits]) 200 _H represents 90° (-45°45° -> -1638416383) 080 _H represents 360° (-180°180° -> -1638416383) Reset: 080 _H
ANG_DIR	3	w	Angle Direction 0 _B counterclockwise rotation of magnet 1 _B clockwise rotation of magnet Reset: 0 _B
PREDICT	2	w	Prediction 0 _B prediction disabled 1 _B prediction enabled Reset: derivate-specific
AUTOCAL	1:0	W	Auto-calibration Mode Automatic calibration of offset and amplitude synchronicity for applications with full-turn capability. CRC check of calibration registers is automatically disabled if auto-calibration is activated. A detailed description of auto-calibration is given in the data sheet. 00 _B no auto-calibration 01 _B auto-cal. mode 1: update every angle update cycle (FIR_MD setting) 10 _B auto-cal. mode 2: update every 1.5 revolutions 11 _B auto-cal. mode 3: update every 11.25° Reset: derivate-specific

¹⁾Auto-calibration works only for ANG_RANGE = 080_H.

Interface Mode3 Register

Field	Bits	Туре	Description
ANG_BASE	15:4	w	Angle Base ¹⁾²⁾ Sets the 0° angle position (12 bit value). 800 _H -180° 000 _H 0° 7FF _H +179.912° Reset: device-specific
SPIKEF	3	w	Analog Spike Filter of Input Pads Filters voltage spikes on input pads. Additional delay of 10 µs for data input. 0 _B spike filter disabled 1 _B spike filter enabled Reset: derivate-specific
SSC_OD	2	W	SSC-Interface Data Pin Output Mode 0 _B Push-Pull 1 _B Open Drain Reset: 0 _B
PAD_DRV	1:0	W	Configuration of Pad-Driver OOB IFA/IFB/IFC: strong driver, DATA: strong driver, fast edge O1B IFA/IFB/IFC: strong driver, DATA: strong driver, slow edge 10B IFA/IFB/IFC: weak driver, DATA: medium driver, fast edge 11B IFA/IFB/IFC: weak driver, DATA: weak driver, slow edge Reset: derivate-specific

¹⁾ factory-calibrated to make the 0° direction parallel to the edge of the chip.

²⁾ to manually set the 0° position, rotate the magnet into the desired position, then read the AVAL register and drop the 3 LSBs to obtain a 12bit angle value; then subtract this value from the ANG_BASE register.

Offset X Register

Field	Bits	Туре	Description
X_OFFSET	15:4	w	Offset Correction of X-value in digits Raw X-value offset correction at 25°C. Reset: device-specific

Offset Y Register

Field	Bits	Туре	Description
Y_OFFSET	15:4	w	Offset Correction of Y-value in digits Raw Y-value offset correction at 25°C. Reset: device-specific

Synchronicity Register

Field	Bits	Туре	Description
SYNCH	15:4	W	Amplitude Synchronicity Raw value amplitude synchronicity correction. +2047 _D 112.494% 0 _D 100% -2048 _D 87.500% Reset: device-specific

IFAB Register (multi-purpose)

Field	Bits	Type	Description
ORTHO	15:4	w	Orthogonality Correction of X and Y Components GMR element orthogonality correction. +2047 _D 11.2445° 0 _D 0° -2048 _D -11.2500° Reset: device-specific
FIR_UDR	3	w	FIR Update Rate Initial filter update rate (FIR) setting to be loaded into FIR_MD on startup. Changes of FIR setting can be done after power-on via SPI within FIR_MD. 0 _B FIR_MD = '10' (85.3 μs) 1 _B FIR_MD = '01' (42.7 μs) Reset: derivate-specific
IFAB_OD	2	w	IFA,IFB,IFC Output Mode 0 _B Push-Pull 1 _B Open Drain Reset: derivate-specific
IFAB_HYST (multi-purpose)	1:0	W	HSM and IIF Mode: Hysteresis Electrical switching hysteresis for HSM and IIF interface. 00_B 0° 01_B 0.09° 10_B 0.27° 11_B 0.625° SPC Mode: Unit Time 00_B $3.0~\mu s$ 01_B $2.5~\mu s$ 10_B $2.0~\mu s$ 11_B $1.5~\mu s$ Reset: derivate-specific

Interface Mode4 Register (multi-purpose)

Field	Bits	Type	Description
TCO_X_T	15:9	w	Offset Temperature Coefficient for X-Component ¹⁾ Reset: device-specific
HSM_PLP (multi-purpose)	8:5	w	Hall Switch Mode: Pole-Pair Configuration
			0000 _B 1 pole pairs
			0001 _B 2 pole pairs
			0010 _B 3 pole pairs
			0011 _B 4 pole pairs
			0100 _B 5 pole pairs
			0101 _B 6 pole pairs
			0110 _B 7 pole pairs
			0111 _B 8 pole pairs
			1000 _B 9 pole pairs
			1001 _B 10 pole pairs
			1010 _B 11 pole pairs
			1011 _B 12 pole pairs
			1100 _B 13 pole pairs
			1101 _B 14 pole pairs
			1110 _B 15 pole pairs
			1111 _B 16 pole pairs
			Pulse-Width-Modulation Mode: Error Indication
			0000 _B error indication enabled
			0010 _B error indication disabled
			Incremental Interface Mode: Absolute Count
			Interface counts to absolute value at startup
			0000 _B absolute count enabled
			0100 _B absolute count disabled
			SPC Mode: Total Trigger Time
			Duration of the master pulse to trigger SPC output
			0000 _B 90*UT
			1000 _B t _{mlow} + 12 UT
			Reset: derivate-specific

Field	Bits	Type	Description
IFAB_RES (multi-purpose)	4:3	W	Pulse-Width-Modulation Mode: Frequency Selection of PWM frequency. 00 _B 244 Hz 01 _B 488 Hz 10 _B 977 Hz 11 _B 1953 Hz Incremental Interface Mode: IIF resolution 00 _B 12bit, 0.088° step 01 _B 11bit, 0.176° step 10 _B 10bit, 0.352° step 11 _B 9bit, 0.703° step SPC Mode: SPC Frame Configuration 00 _B 12bit angle 01 _B 16bit angle 10 _B 12bit angle + 8bit temperature 11 _B 16bit angle + 8bit temperature
IF_MD	1:0	w	Interface Mode on IFA,IFB,IFC Selected by external circuit of CLK pin at Power On Time. pull-up on IFC (CLK) pin> Incremental Interface is selected; pull-down on IFC (CLK) pin> IF_MD stored Interface is used. Switching to another interface during operation needs to stop the DSPU (DSPU_HOLD). SSC interface is always active in parallel on pins SCK, CSQ and DATA. 00 _B IIF 01 _B PWM 10 _B HSM 11 _B SPC ²⁾ Reset: derivate-specific

¹⁾ If auto-calibration is enabled, TCO_X_T is automatically set to 0. Once auto-calibration is deactivated, laser-fused calibration values are loaded into TCO_X_T.

²⁾ In SPC interface configuration, the sensor updates the AVAL register only when receiving an SPC trigger pulse on the IFA pin.

Temperature Coefficient Register

Field	Bits	Type	Description	
TCO_Y_T	15:9	w	Offset Temperature Coefficient for Y-Component ¹⁾ Reset: device-specific	
SBIST	8	w	Startup-BIST 0 _B Startup-BIST disabled 1 _B Startup-BIST enabled Reset: 1 _B	
CRC_PAR	7:0	w	CRC of Parameters CRC of parameters from address 08 _H to 0F _H . If any settings within these registers are changed, this CRC has to be changed accordingly. Reset: device-specific	

¹⁾ If auto-calibration is enabled, TCO_Y_T is automatically set to 0. Once auto-calibration is deactivated, laser-fused calibration values are loaded into TCO_Y_T.

X-raw Value Register

Field	Bits	Туре	Description
ADC_X	15:0	r	ADC value of X-GMR Read-out of this register will update ADC_Y Reset: 0 _H

Y-raw Value Register

ADC_Y	Offset Reset Value
Y-raw value	11 _H 0000 _H
15	0
	ADC_Y
	r

Field	Bits	Туре	Description
ADC_Y	15:0	r	ADC value of Y-GMR Updated when ADC_X or ADC_Y is read. Reset: 0 _H

Increment Counter Register

Field	Bits	Type	Description
IIF_CNT	13:0	r	Counter value of increments This counter increments or decrements for every pulse on the incremental interface, depending on the rotation direction. It can be used for synchronization purposes between sensor and counter value on microcontroller side. Reset: 0 _H

2.2 Communication Examples

This chapter gives some short SPI communication examples. The sensor has to be selected first via CSQ, and SCK must be available for the communication.

Table 3 SSC Command to read the angle value

SSC Word No.	Description	Master transmitting	TLE5012B transmitting	Note
1	Command	1_0000_0_000010_0001		R/W_Lock_UPD_ADD_ND
2	Read Data		1_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Read angle value
3	Safety Word		1_1_1_1_xxxx_xxxxxxx	Read Safety Word

Table 4 SSC Command to read angle speed and angle revolution

SSC Word No.	Description	Master transmitting	TLE5012B transmitting	Note
1	Command	1_0000_0_000011_0010		R/W_Lock_UPD_ADD_ND
2	Read Data		1_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Read angle speed
3	Read Data		1_xxxxxx_xxxxxxxxx	Read angle revolution
4	Safety Word		1_1_1_1_xxxx_xxxxxxxx	Read Safety Word

Table 5 SSC Command to change Interface Mode2 register

SSC Word No.	Description	Master transmitting	TLE5012B transmitting	Note
1	Command	0_1010_0_001000_0001		R/W_Lock_UPD_ADD_ND
2	Write Data	0_00010000000_1_0_01		ANG_Range: 080_H ; ANG_DIR: 1_B ; PREDICT: 0_B ; AUTOCAL: 01_B
3	Safety Word		1_1_1_1_xxxx_xxxxxxx	Read Safety Word

Fuse Values

3 Fuse Values

The derivate specific reset values for the configuration registers, which are stored in laser fuses on the sensor are shown in **Figure 1**.

Figure 1 Derivate-specific fuse settings

www.infineon.com