DERIVATION OF THE REAL-ROOTEDNESS OF COORDINATOR POLYNOMIALS FROM THE HERMITE-BIEHLER THEOREM

M. H. Y. $XIE^{1,2}$ and P. B. $ZHANG^{1,2,*}$

¹Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China e-mail: xiehongye@163.com

²Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R. China e-mail: zhangbiaonk@163.com

(Received June 17, 2013; revised August 28, 2013; accepted August 28, 2013)

Abstract. By using the Hermite–Biehler theorem, we give a new proof of the real-rootedness of the coordinator polynomials of type D, which was recently established by Wang and Zhao. As a consequence, we also obtain the compatibility between the coordinator polynomials of type D and those of type C.

1. Introduction

This paper is concerned with the real-rootedness of the polynomials

(1)
$$\sum_{k=0}^{n} {2n \choose 2k} z^k + 2nz(1+z)^{n-2},$$

which arose in the theory of coordinator polynomials of Weyl group lattices developed by Conway and Sloane [6]. These polynomials are known as the coordinator polynomials of type D_n , denoted $h_{D_n}(z)$. Wang and Zhao [13] proved that for any $n \geq 2$ the polynomial $h_{D_n}(z)$ has only real roots. Their proof uses a technique of trigonometric substitution. The main objective of this paper is to give a new proof of the real-rootedness of $h_{D_n}(z)$ by using the Hermite–Biehler theorem. Our proof is motivated by the Hermite–Biehler theorem approach to the real-rootedness of the coordinator polynomials of

Published online: 08 February 2014

^{*} Corresponding author.

Key words and phrases: coordinator polynomial, real-rootedness, the Hermite–Biehler theorem, compatibility.

Mathematics Subject Classification: 26C10, 30C15, 05A15.

type C_n given by

(2)
$$h_{C_n}(z) = \sum_{k=0}^n \binom{2n}{2k} z^k.$$

As a result of our approach, we get the compatibility between $h_{C_n}(z)$ and $h_{D_n}(z)$ in the sense of Chudnovsky and Seymour [5].

Let us first review some background on the coordinator polynomials $h_{C_n}(z)$ and $h_{D_n}(z)$. For more information on the coordinator polynomials of root lattices, see [1,2,6] and references therein. Let \mathbb{Z} be the ring of integers, and let \mathbb{R} be the field of real numbers. Let

$$M_{C_n} = \{ \pm \mathbf{e}_i \pm \mathbf{e}_j \mid 1 \le i < j \le n \} \cup \{ \pm 2\mathbf{e}_i \mid 1 \le i \le n \},$$

$$M_{D_n} = \{ \pm \mathbf{e}_i \pm \mathbf{e}_j \mid 1 \le i < j \le n \},$$

where \mathbf{e}_i denotes the vector in \mathbb{R}^n with the *i*th entry one and all other entries zero. It is clear that both M_{C_n} and M_{D_n} generate the same root lattice

$$\mathcal{L} = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n \mid \sum x_i \text{ is even} \right\}$$

as a monoid. For each $u \in \mathcal{L}$, let $w_{C_n}(u)$ denote the word length of u with respect to M_{C_n} given by

$$w_{C_n}(u) = \min \left\{ \sum c_i \mid u = \sum c_i \mathbf{a}_i, \ c_i \in \mathbb{N}, \ \mathbf{a}_i \in M_{C_n} \right\}.$$

In the same manner, we can define the word length of u with respect to M_{D_n} , denoted $w_{D_n}(u)$. The coordinator polynomials are related to the generating functions for word lengths over the root lattice \mathcal{L} . Baake and Grimm [2] conjectured that

$$\sum_{u \in C} z^{w_{C_n}(u)} = \frac{h_{C_n}(z)}{(1-z)^n},$$

and Conway and Sloane [6] conjectured that

$$\sum_{u \in \mathcal{L}} z^{w_{D_n}(u)} = \frac{h_{D_n}(z)}{(1-z)^n}.$$

Subsequently, Bacher et al. [3] confirmed these two conjectures. For other proofs, see Ardila et al. [1].

Recently, the real-rootedness of the coordinator polynomials $h_{C_n}(z)$ and $h_{D_n}(z)$ has drawn attention. As pointed out by Wang and Zhao [13], there are at least two ways to prove that $h_{C_n}(z)$ has only real roots, one using the theory of total positivity, and the other using the theory of Sturm sequences. This paper is motivated by another proof of the real-rootedness of $h_{C_n}(z)$ by using the Hermite–Biehler theorem, which we shall recall below.

The Hermite–Biehler theorem is a basic result in the Routh–Hurwitz theory [11,12], which provides a criterion for determining the Hurwitz stability of a polynomial. Recall that a polynomial P(z) is said to be Hurwitz stable (respectively, weakly Hurwitz stable) if $P(z) \neq 0$ whenever $\operatorname{Re}(z) \geq 0$ (respectively, $\operatorname{Re}(z) > 0$), where $\operatorname{Re}(z)$ denotes the real part of z. Suppose that

$$P(z) = \sum_{k=0}^{n} a_k z^k.$$

Let

(3)
$$P^{E}(z) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k} z^{k} \quad \text{and} \quad P^{O}(z) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} a_{2k+1} z^{k}.$$

As will be seen in the Hermite-Biehler theorem, the stability of P(z) is closely related to the interlacing property between $P^E(z)$ and $P^O(z)$. Given two real-rooted polynomials f(z) and g(z) with positive leading coefficients, let $\{r_i\}$ be the set of zeros of f(z) and $\{s_j\}$ the set of zeros of g(z). We say that g(z) interlaces f(z), denoted $g(z) \leq f(z)$, if either deg $f(z) = \deg g(z) = n$ and

$$(4) s_n \leq r_n \leq s_{n-1} \leq \cdots \leq s_2 \leq r_2 \leq s_1 \leq r_1,$$

or $\deg f(z) = \deg g(z) + 1 = n$ and

(5)
$$r_n \leq s_{n-1} \leq \cdots \leq s_2 \leq r_2 \leq s_1 \leq r_1.$$

If all inequalities in (4) or (5) are strict, then we say that g(z) strictly interlaces f(z), denoted $g(z) \prec f(z)$. The Hermite–Biehler theorem is stated as follows.

Theorem 1.1 [4, Theorem 4.1]. Let P(z) be a polynomial with real coefficients, and let $P^E(z)$ and $P^O(z)$ be defined as in (3). Suppose that $P^E(z)P^O(z) \not\equiv 0$. Then P(z) is Hurwitz stable (respectively, weakly Hurwitz stable) if and only if $P^E(z)$ and $P^O(z)$ have only real and negative (respectively, non-positive) zeros, and $P^E(z) \succ P^O(z)$ (respectively, $P^E(z) \succeq P^O(z)$).

The Hermite–Biehler theorem has been widely used to study the real-rootedness of polynomials. Csordas et al. [8] utilized the Hermite–Biehler theorem to confirm a conjecture on the real-rootedness of some polynomials related to a class of Jacobi polynomials, which was proposed while developing a numerical solution for the Navier–Stokes equations. Craven and Csordas [7] applied stability analysis, in conjunction with the Hermite–Biehler theorem, in proving that certain Mittag–Leffler-type functions have only real zeros. By using the Hermite–Biehler theorem, Brändén [4] gave characterizations of two non-linear operators which send polynomials with only real and non-positive zeros to polynomials of the same kind.

To apply the Hermite–Biehler theorem to prove the real-rootedness of $h_{C_n}(z)$, in view of (2), we only need to take

$$P(z) = (1+z)^{2n} = \sum_{k=0}^{n} {2n \choose k} z^{k}.$$

It is clear that P(z) is Hurwitz stable and $h_{C_n}(z) = P^E(z)$.

Although the expression of $h_{D_n}(z)$ looks very similar to that of $h_{C_n}(z)$, it is not an easy task to prove that $h_{D_n}(z)$ has only real zeros. By a technique of substituting the variable z by a trigonometric function, Wang and Zhao [13] managed to prove the real-rootedness of $h_{D_n}(z)$. Considering the similarity of (1) and (2), it is natural to ask whether the real-rootedness of $h_{D_n}(z)$ has a proof using the Hermite–Biehler theorem. In the next section, we shall give such a proof.

2. Real-rootedness and compatibility

The main objective of this section is to prove the following result by using the Hermite–Biehler theorem.

THEOREM 2.1 [13, Theorem 2.1]. For any $n \ge 2$, the polynomial $h_{D_n}(z)$ has only real zeros.

PROOF. To use the Hermite–Biehler theorem, as indicated in the proof of the real-rootedness of $h_{C_n}(z)$, we shall take

$$P(z) = (1+z)^{2n} - 2nz^{2}(1+z^{2})^{n-2} = \sum_{k=0}^{n} {2n \choose k} z^{k} - 2nz^{2}(1+z^{2})^{n-2},$$

and whence $h_{D_n}(z) = P^E(z)$.

We proceed to show the Hurwitz stability of P(z). It is clear that $P(0) \neq 0$. Without loss of generality, we may assume that $z \neq 0$. Note that

$$P(z) = (1+z)^{2n} - 2nz^{2}(1+z^{2})^{n-2} = (1+2z+z^{2})^{n} - 2nz^{2}(1+z^{2})^{n-2}$$

$$= 2^{n} z^{n} \left(\left(\frac{z + 1/z}{2} + 1 \right)^{n} - \frac{n}{2} \left(\frac{z + 1/z}{2} \right)^{n-2} \right).$$

Moreover, it is routine to verify that $\operatorname{Re}((z+1/z)/2) \geq 0$ if and only if $\operatorname{Re}(z) \geq 0$. Therefore, it suffices to prove the Hurwitz stability of the polynomial

$$Q(z) = (z+1)^n - \frac{n}{2}z^{n-2}.$$

Suppose that $\operatorname{Re}(z) \geq 0$. We need to show that $Q(z) \neq 0$. By the triangle inequality, we have

$$|Q(z)| \ge |z+1|^n - \frac{n}{2}|z|^{n-2}.$$

Note that the assumption $Re(z) \ge 0$ implies that

$$|z+1| \geqq \sqrt{|z|^2 + 1}.$$

Thus, we get

$$|Q(z)| \ge (\sqrt{|z|^2 + 1})^n - \frac{n}{2}|z|^{n-2}.$$

Now it suffices to prove that

$$((\sqrt{|z|^2+1})^n)^2 > (\frac{n}{2}|z|^{n-2})^2,$$

namely,

$$(|z|^2+1)^n > \frac{n^2}{4}|z|^{2n-4}.$$

Expanding the left hand side by the binomial theorem, we find that for $n \geq 2$,

$$(|z|^2+1)^n = \sum_{k=0}^n \binom{n}{k} |z|^{2k} > \binom{n}{n-2} |z|^{2(n-2)} \ge \frac{n^2}{4} |z|^{2n-4}.$$

Therefore, |Q(z)| > 0 if $\operatorname{Re}(z) \geq 0$. This means that Q(z) is Hurwitz stable, so is P(z). By the Hermite-Biehler theorem, we obtain the real-rootedness of $h_{D_n}(z)$. This completes the proof. \square

REMARK. Along the same lines it is easy to show that, for any $n \ge 2$ and $|r| \le 2\sqrt{2n(n-1)}$, the polynomial

(6)
$$\sum_{k=0}^{n} {2n \choose 2k} z^k + rz(1+z)^{n-2},$$

has only real zeros. In this case, we only need to take

$$P(z) = \sum_{k=0}^{n} {2n \choose k} z^{k} + rz^{2} (1+z^{2})^{n-2}.$$

The Hermite–Biehler theorem approach to the real-rootedness of $h_{C_n}(z)$ and $h_{D_n}(z)$ also leads us to the discovery of their compatibility. The notion of compatibility was introduced by Chudnovsky and Seymour [5] in the study of the real-rootedness of independence polynomials of claw-free graphs. Given two real-rooted polynomials f(z) and g(z) with positive leading coefficients, they are said to be compatible if for all real $a, b \geq 0$, the polynomial af(z) + bg(z) has only real zeros. The compatibility also has a characterization in terms of certain interlacing property of polynomials. We say that f(z) and g(z) have a common interleaver if there exists another real-rooted polynomial h(z) such that $f(z) \leq h(z)$ and $g(z) \leq h(z)$. The following lemma is a special case of a result of Chudnovsky and Seymour [5].

LEMMA 2.2. Suppose that f(z) and g(z) have only real zeros. Then f(z) and g(z) are compatible if and only if they have a common interleaver.

It should be mentioned that in the special case $\deg f(z) = \deg g(z)$, the above result has been proved by Dedieu [9]; see also Fisk [10, Ch. 1].

With the above results, we now proceed to show the compatibility between $h_{C_n}(z)$ and $h_{D_n}(z)$.

COROLLARY 2.3. For $n \ge 2$, the polynomials $h_{C_n}(z)$ and $h_{D_n}(z)$ are compatible.

Proof. Let

$$g(z) = \sum_{k=0}^{n-1} {2n \choose 2k+1} z^k.$$

As before, applying the Hermite-Biehler theorem to $P(z) = (1+z)^{2n}$, we obtain that $h_{C_n}(z) \succ g(z)$. If P(z) is taken to be

$$(1+z)^{2n} - 2nz^2(1+z^2)^{n-2}$$

COORDINATOR POLYNOMIALS

then we get that $h_{D_n}(z) \succ g(z)$. Therefore, $h_{C_n}(z)$ and $h_{D_n}(z)$ have a common interleaver g(z). By Lemma 2.2, these two polynomials are compatible.

Acknowledgements. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China.

References

- [1] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, SIAM J. Discrete Math., 25 (2011), 360–378.
- [2] M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, Z. Krist., 212 (1997), 253–256.
- [3] R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C.R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1137–1142.
- [4] P. Brändén, Iterated sequences and the geometry of zeros, J. Reine Angew. Math., 658 (2011), 115–131.
- [5] M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B, 97 (2007), 350–357.
- [6] J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII. Coordination sequences, Proc. Roy. Soc. London Ser. A, 453 (1997), 2369–2389.
- [7] T. Craven and G. Csordas, The Fox-Wright functions and Laguerre multiplier sequences, J. Math. Anal. Appl., 314 (2006), 109–125.
- [8] G. Csordas, M. Charalambides, and F. Waleffe, A new property of a class of Jacobi polynomials, *Proc. Amer. Math. Soc.*, **133** (2005), 3551–3560 (electronic).
- [9] J.-P. Dedieu, Obreschkoff's theorem revisited: what convex sets are contained in the set of hyperbolic polynomials?, J. Pure Appl. Algebra, 81 (1992), 269–278.
- [10] S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833 [math.CA].
- [11] O. Holtz, Hermite-Biehler, Routh-Hurwitz, and total positivity, Linear Algebra Appl., 372 (2003), 105–110.
- [12] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, vol. 26 of London Mathematical Society Monographs. New Series, The Clarendon Press Oxford University Press (Oxford, 2002).
- [13] D. G. L. Wang and T. Zhao, The real-rootedness and log-concavities of coordinator polynomials of Weyl group lattices, European J. Combin., 34 (2013), 490–494.