Tarea No. 6

Haciendo uso de tablas de verdad, demostrar que la siguiente proposición compuesta:

$$(\{[(p \land q) \land r] \lor [(p \land r) \land \sim r]\} \lor \sim q) \rightarrow s$$

Es lógicamente equivalente a la proposición simplificada:

$$[q \land \sim (p \land r)] \lor s$$

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

MATEMÁTICA PARA COMPUTACIÓN 1

Nombre	Registro Académico				
Actividad	Corre	lativo	Fecha		
Tarea No.6	6	5			

DESCRIPCIÓN DE CALIFICACIÓN							
Presentación (20)							
Ejercicios (80)							
TOTAL (100)							

$(\{[(p \land q) \land r] \lor [(p \land r) \land \sim r]\} \lor \sim q) \rightarrow s$ $[q \land \sim (p \land r)] \lor S$

 $2^4 = 16$

				1	2	3	4	5	6	7	8	9	10	11	12
р	q	r	S	$p \land q$	1 A r	$p \land r$	~ r	3 A 4	2 ∨ 5	$\sim q$	6∨7	$8 \rightarrow s$	~ 3	q A 10	11 ∨ <i>S</i>
0	0	0	0	0	0	0	1	0	0	1	1	0	1	0	0
0	0	0	1	0	0	0	1	0	0	1	1	1	1	0	1
0	0	1	0	0	0	0	0	0	0	1	1	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	1	1	1	0	1
0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
0	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
0	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1
0	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
1	0	0	0	0	0	0	1	0	0	1	1	0	1	0	0
1	0	0	1	0	0	0	1	0	0	1	1	1	1	0	1
1	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	1	1	1	0	0	1
1	1	0	0	1	0	0	1	0	0	0	0	1	1	1	1
1	1	0	1	1	0	0	1	0	0	0	0	1	1	1	1
1	1	1	0	1	1	1	0	0	1	0	1	0	0	0	0
1	1	1	1	1	1	1	0	0	1	0	1	1	0	0	1