

#### **DMET 901 – Computer Vision**

# Image Segmentation

Seif Eldawlatly

#### **Image Segmentation**

- Image segmentation is the first step in image understanding
- The goal of segmentation is to group together pixels similar in some important way and distinguish groups of pixels that are different
- Image segmentation is the association of a segment label with each pixel

#### Example

| 40 | 50 | 60 | 0  | 0  |
|----|----|----|----|----|
| 50 | 50 | 40 | 0  | 0  |
| 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 50 | 80 |
| 0  | 0  | 0  | 60 | 40 |

**Original Image** 

| 1 | 1 | 1 | 0 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 2 | 2 |
| 0 | 0 | 0 | 2 | 2 |

**Segmented Image** 

### **Image Segmentation**

- Different approaches to image segmentation
  - Threshold-based segmentation
  - Region-based segmentation

- Basic Thresholding Algorithm
  - 1. Consider each pixel f(i, j)
  - 2. If f(i,j) > T, then pixel (i,j) is an object pixel, otherwise, it is a background pixel
- Other variations for the basic algorithm
  - Position-dependent Thresholding  $T = T(f, f_c)$  where  $f_c$  is part of the image for which threshold is selected
  - Band Thresholding
    A pixel (i, j) is considered an object pixel if  $f(i, j) \in B$ and

- How to set the threshold?
  - P-tile Thresholding:
    - Used if apriori information is known about the ratio between object area and image area. (e.g. 1/p)
    - From image histogram, choose T such that 1/p of image pixels have gray levels larger than T



 Usually such information about the size of the object is not available beforehand

- How to set the threshold?
  - Histogram Shape-based:
    - Choose T as the minimum histogram value between 2 maxima if the histogram is bimodal



- How to set the threshold?
  - Optimal Thresholding:
    - Based on the assumption that the image consists of a sum of two distributions. (one for background, the other for objects)



- Optimal Thresholding Algorithm
  - Consider as a first approximation that the 4 corners of the image contain background pixels and the remainder contains object pixels
  - 2. At step n, compute  $\mu_B^n$  and  $\mu_O^n$  as background mean and objects mean respectively where:

$$\mu_B^n = \frac{\sum\limits_{(i,j)\in B} f(i,j)}{No.of\ background\ pixels}$$

$$\mu_O^n = \frac{\sum\limits_{(i,j)\in O} f(i,j)}{No.of\ object\ pixels}$$

- 3. Let  $T_{n+1} = \frac{\mu_B^n + \mu_O^n}{2}$ , where  $T_{n+1}$  provides a new background-object distinction.
- 4. If  $T_{n+1} = T_n$ , stop; otherwise, go to step 2

Example

**Original Image** 





Optimal T = 89

#### **Segmented Image**



#### **Region-based Segmentation**

 Defines as distinct segments sets of connected pixels whose properties are sufficiently similar to one another and sufficiently dissimilar from neighboring segments

Similarity or dissimilarity is measured by a homogeneity criterion H. It
may be based on color, gray level, rate of change of gray level, ......

Split-Merge Segmentation is an example of Region-based segmentation

It consists of two phases

Phase 1: To create homogeneous regions

Phase 2: To group together the homogeneous regions

 Example: Consider the following example where H is defined as follows:

A region is considered homogeneous if the difference between maximum and minimum brightness within it is less than 2

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 3 | 1 | 4 | 9 | 9 | 8 | 1 | 0 |
| 1 | 1 | 8 | 8 | 8 | 4 | 1 | 0 |
| 1 | 1 | 6 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 2 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

Sample image

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 3 | 1 | 4 | 9 | 9 | 8 | 1 | 0 |
| 1 | 1 | 8 | 8 | 8 | 4 | 1 | 0 |
| 1 | 1 | 6 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 2 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

First split

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 3 | 1 | 4 | 9 | 9 | 8 | 1 | 0 |
| 1 | 1 | 8 | 8 | 8 | 4 | 1 | 0 |
| 1 | 1 | 6 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 2 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

Second split

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 3 | 1 | 4 | 9 | 9 | 8 | 1 | 0 |
| 1 | 1 | 8 | 8 | 8 | 4 | 1 | 0 |
| 1 | 1 | 6 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 3 | 1 | 0 |
| 1 | 1 | 5 | 6 | 6 | 2 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

Third split



Merge



Final result