

ADRIELE SANTANA FIGUEREDO FLÁVIO CASTRO LUCAS THALES ALEXANDRE SOARES

PROJETO DE EXTENSÃO

Microcontroladores

SALVADOR

2025

ADRIELE SANTANA FIGUEREDO FLÁVIO CASTRO LUCAS THALES ALEXANDRE SOARES

PROJETO DE EXTENSÃO

Microcontroladores

Trabalho apresentado ao Curso de Ciência da Computação do Centro Universitário UniRuy como requisito parcial para obtenção de nota na disciplina de Programação de Microcontroladores.

Orientador: Prof. Heleno Cardoso.

SALVADOR

2025

SUMÁRIO

1. INTRODUÇÃO	04
2. CONCEPÇÃO E IDEALIZAÇÃO DO PROJETO	04
3. DESENVOLVIMENTO DO PROJETO FÍSICO	05
3.1. Construção Física	05
3.2. Simulação Virtual	06
4. APRESENTAÇÃO VISUAL DO PROJETO	07
4.1. Vista do Circuito	07
4.2. Vista Esquemática do Circuito	09
5. LISTA DE COMPONENTES UTILIZADOS	10
6. SIMULAÇÃO DO PROJETO	11
6.1. Simulação Física ou Virtual	11
6.2. Análise do comportamento do sistema	11
7. CONCLUSÃO	

1. INTRODUÇÃO

Este projeto visa aplicar os fundamentos da programação de microcontroladores na operação de um braço robótico, utilizando a plataforma Arduino. O principal objetivo é desenvolver um sistema capaz de controlar os movimentos do braço para a manipulação e movimentação de pequenos objetos, demonstrando a integração entre hardware e software no contexto da robótica.

2. CONCEPÇÃO E IDEALIZAÇÃO DO PROJETO

A criação deste projeto teve como propósito principal a aplicação prática dos conhecimentos em programação de microcontroladores. O objetivo é fazer com que um braço robótico que temos consiga mover pequenos objetos.

Na fase de idealização, pensamos em alguns pontos importantes:

- Escolha da Plataforma: Optamos pelo Arduino por ser uma plataforma eficiente e amplamente utilizada para desenvolver protótipos. Ela nos permite conectar e controlar diferentes partes eletrônicas de forma simplificada.
- Entendimento do Braço Robótico: Analisamos o braço robótico em si para entender como ele é montado e quais são os motores (servomotores) que fazem as articulações se moverem.
- Componentes Adicionais e Interface de Controle: Para que o braço funcione bem e permita uma interação intuitiva, a integração de dois joysticks. Esses dispositivos serão a principal interface para o operador controlar os movimentos do braço de forma manual. Cada joystick permitirá o controle de diferentes eixos ou funções do braço, como a rotação da base e a movimentação das articulações, proporcionando flexibilidade na manipulação dos objetos.
- Planejamento da Programação: No que diz respeito ao software, nossa ideia
 é programar o Arduino para interpretar os sinais de entrada dos joysticks e
 traduzi-los em comandos para controlar a posição exata de cada motor do
 braço. O grande desafio será criar sequências de movimentos coordenados,
 que permitam ao braço realizar a tarefa de pegar e largar objetos de maneira
 eficiente e precisa, utilizando o controle proporcionado pelos joysticks.

3. DESENVOLVIMENTO DO PROJETO FÍSICO

3.1. Construção Física: A fase de construção física do projeto envolveu a montagem prática do circuito eletrônico, integrando o microcontrolador Arduino com os atuadores (servomotores) do braço robótico e as interfaces de controle. Esta etapa foi crucial para transformar o diagrama conceitual em um sistema funcional.

A montagem foi realizada com base nos seguintes componentes e seu interligamento, conforme o esquema ilustrado na **Figura 1**.

Figura 1: Diagrama da Montagem do Circuito Eletrônico do Braço Robótico.

Componentes Utilizados:

- Microcontrolador Arduino Uno: Atua como a unidade central de processamento, responsável por receber os comandos e controlar os movimentos do braço.
- Servomotores (4 unidades): São os motores que impulsionam as articulações do braço robótico, permitindo seus movimentos angulares.

- Joysticks (2 unidades): Dispositivos de entrada utilizados para o controle manual do braço, traduzindo o movimento físico do operador em sinais elétricos.
- Protoboard: Uma placa de ensaio utilizada para organizar as conexões elétricas de forma temporária e segura, facilitando a prototipagem.
- Cabos Jumper: Fios condutores empregados para realizar as interconexões entre os componentes na protoboard e o Arduino.
- Fonte de Alimentação Externa: Necessária para fornecer a energia adequada e estável aos servomotores, garantindo seu funcionamento pleno.
- **3.2. Simulação Virtual:** Esta fase teve como objetivo principal criar e testar o projeto de forma digital, permitindo a identificação e correção de possíveis falhas lógicas e de conexão em um ambiente controlado, sem a necessidade de componentes físicos.

A utilização da plataforma Wokwi proporcionou diversas vantagens, incluindo:

- Teste do Código: Permitiu a execução e depuração do código-fonte desenvolvido para o Arduino em um ambiente virtual. Dessa forma, foi possível observar o comportamento das variáveis que controlam os servos e a interpretação das entradas dos joysticks de forma simulada, identificando erros de programação ou lógicas incorretas.
- Prevenção de Danos: Ao testar digitalmente a lógica, evitou-se o risco de comportamentos inesperados no hardware real, que poderiam levar a danos em componentes devido a falhas no código, o que também representou uma economia de recursos.
- Agilidade no Desenvolvimento: A capacidade de fazer alterações rápidas no código dentro do simulador acelerou o processo de otimização da lógica de controle.

Processo de Simulação no Wokwi:

Na plataforma Wokwi foi empregado, o código-fonte (em C++) foi escrito no editor integrado e carregado no Arduino virtual. O foco principal da simulação foi a validação das funções lógicas do código, que incluem:

- Inclusão da Biblioteca Servo e Definição dos Servos: Verificou-se se a inclusão da biblioteca Servo.h estava correta e se a declaração dos objetos Servo para cada eixo (servo_z_axis, servo_x_axis, servo_y_axis, servo_clamp) era compatível com a estrutura do braço.
- Mapeamento de Pinos e Variáveis de Posição: Testou-se a associação dos servomotores a seus respectivos pinos digitais no Arduino virtual (attach() na função setup()), e a inicialização e manipulação das variáveis que controlam a posição angular de cada servo (ex: x_axis_degree).
- Leitura e Interpretação Lógica dos Joysticks: O foco foi testar a parte do código que lê os valores dos joysticks (via analogRead()) e, mais crucialmente, a lógica condicional (if e else if) que ajusta os ângulos dos servos com base nesses valores. A simulação permitiu verificar se a lógica de incremento/decremento e os limiares estavam funcionando conforme o esperado.
- Limitação de Ângulos e Escrita nos Servos: Foi fundamental testar as funções de limitação de ângulos (min e max) para assegurar que os cálculos de movimento permanecessem dentro de faixas seguras e operacionais. A simulação confirmou se a lógica de envio dos comandos (servo_clamp.write(clamp_degree); e similares) estava correta.
- Saída Serial para Depuração: A simulação permitiu o uso do monitor serial virtual do Wokwi para acompanhar os valores dos ângulos dos servos em tempo real, facilitando a depuração e o ajuste fino da lógica de controle, mesmo sem a visualização física dos movimentos do braço.

A simulação virtual no Wokwi foi, portanto, uma etapa essencial que conferiu maior confiabilidade à lógica do projeto, permitindo a validação detalhada do código e otimizando o tempo de desenvolvimento antes da transição para a montagem e os testes com o hardware físico.

Simulação do projeto no Wokwi: https://wokwi.com/projects/377825276048594945

4. APRESENTAÇÃO VISUAL DO PROJETO

4.1. Vista do Circuito:

Figura 2: Vista do Circuito Eletrônico Detalhada.

A imagem detalha a seguinte organização dos componentes:

- Placa de Controle (Arduino com Shield): Visível na parte inferior central da imagem, esta placa atua como o cérebro do sistema. Ela possui conexões diretas para os servomotores, simplificando a montagem e, provavelmente, incorporando funcionalidades de alimentação e controle de servos.
- Conexões Diretas para Servos: A placa de controle na imagem é projetada para facilitar a conexão de múltiplos servomotores, com grupos de três pinos (S, V, G para Sinal, VCC, GND) dedicados a cada servo.
- Servomotores (4 unidades): Representados na parte superior da imagem, os quatro servomotores ("servo 1", "servo 2", "servo 3" e "servo 4") são os atuadores responsáveis pelos movimentos do braço robótico. Cada um está conectado diretamente à placa de controle. Observa-se que cada servomotor possui três fios:
 - Vermelho: Geralmente para alimentação positiva (VCC).
 - Preto: Geralmente para o terra (GND).
 - Amarelo: Para o sinal de controle PWM, proveniente da placa, que determina a posição angular do servo.

Figura 3: Vista Ilustrativa do Sistema Robótico Integrado.

A imagem demonstra a visualização do projeto em sua forma física completa, demonstrando a integração dos componentes eletrônicos com a estrutura mecânica do braço robótico e a interface de controle.

4.2. Vista Esquemática do Circuito:

Figura 4: Diagrama de circuito esquemático.

O Diagrama de Circuito Esquemático, é uma representação técnica padronizada das interconexões elétricas do sistema. Este diagrama utiliza símbolos eletrônicos

universais para ilustrar o fluxo de sinais e energia, priorizando a funcionalidade e a lógica das conexões sobre a disposição física dos componentes.

5. LISTA DE COMPONENTES UTILIZADOS

- 1. Keyestudio V4.0 Control Board (1)
- 2. Keyestudio Servo Motor Driver Shield (1)
- 3. Placas Acrílicas (1 conjunto)
- 4. Alça Acrílica (1)
- 5. Suporte Cilíndrico MeArm ABS (1)
- 6. Servo Preto 180° (4)
- 7. Módulo BT-24 (1)
- 8. Módulo Joystick Keyestudio (2)
- 9. Capa Joystick PS2 3D (2)
- 10. Chave de Fenda 3*40MM (1)
- 11. Chave Inglesa Galvanizada (1)
- 12. Parafusos de Cabeça Redonda M3*6MM (12)
- 13. Parafusos de Cabeça Redonda M3*10MM (22)
- 14. Parafusos de Cabeça Chata M3*14MM (2)
- 15. Parafusos de Cabeça Redonda M3*12MM (12)
- 16. Pilar de Cobre M3*24+6MM (4)
- 17. Pilar de Cobre M3*6mm+6mm (10)
- 18. Porcas Sextavadas de Aço Inoxidável M3 (22)
- 19. Porcas Sextavadas M3 (24)
- 20. Parafusos Auto-atarraxantes Phillips M1.2x5MM (8)
- 21. Parafusos Auto-atarraxantes Phillips M2x5MM (10)
- 22. Arruela Plana de Aço Inoxidável 304 M3 (10)
- 23. Parafusos Auto-atarraxantes Phillips M2x8MM (2)
- 24. Parafusos de Cabeça Chata M3*16MM (2)
- 25. Fio Jumper Macho-Fêmea 10CM (4)
- 26. Fio Jumper Fêmea-Fêmea 50CM (10)
- 27. Abraçadeiras de Cabo Pretas 3*100MM (7)
- 28. Suporte de Bateria 18650 de 2 Slots (1)

6. SIMULAÇÃO DO PROJETO

6.1. Simulação Física ou Virtual: demonstração do funcionamento real do circuito em sala.

6.2. Análise do comportamento do sistema e ajustes conforme necessários:

- Resposta dos Servomotores: Observou-se a fluidez e a precisão dos movimentos dos servomotores em resposta aos comandos dos joysticks.
 Verificou-se a ausência de travamentos ou oscilações indesejadas, indicando uma boa calibração dos ângulos máximos e mínimos definidos no código.
- Estabilidade Mecânica: Avaliou-se a robustez da estrutura do braço durante os movimentos, observando se havia folgas excessivas ou instabilidade que pudessem comprometer a precisão da manipulação de objetos.

7. CONCLUSÃO

Este projeto demonstrou com sucesso a aplicação da programação de microcontroladores para controlar um braço robótico, permitindo a movimentação de pequenos objetos. Utilizamos o Arduino como plataforma principal, integrando servomotores e dois joysticks para controle.

A fase de simulação virtual no Wokwi foi essencial para testar a lógica do código antes da montagem física. A construção do circuito e do braço foi realizada de forma robusta. A demonstração prática validou a funcionalidade do sistema, comprovando sua capacidade de realizar movimentos coordenados e manipular objetos.

O projeto consolidou conhecimentos em microcontroladores e robótica, destacando a importância de um desenvolvimento iterativo.