TRANSISTOR THEORY OF OPERATION

GRADING SYSTEM

30%

30%

40%

PRELIM

MIDTERM

ENDTERM

50%

WEEKLY

50%

EXAM

100%

LABORTORY

O 3 7_{max}

ABSENT 45-min LATE 15-min LATE

TOPIC OUTLINE

Transistor Construction and Operation

Transistor Configurations

Common Base

Common Collector

Common Emitter

Characteristic Curve

Regions of Operation

Reading Datasheet

TRANSISTOR

CONSTRUCTION AND

OPERATION

THE FIRST TRANSISTOR

December 23, 1947

Dr. William Shockley

Dr. John Bardeen

Dr. Walter Brattain

EMITTER-BASE DIODE

forward-biased

Emitter is heavily doped

Base is lightly doped

COLLECTOR-BASE DIODE

reverse-biased

Collector is "intermediate" doped

KIRCHHOFF'S CURRENT LAW

$$i_E = i_C + i_B$$

TRANSISTOR CONFIGURATIONS

COMMON-COLLECTOR

COMMON-EMITTER

CHARACTERISTIC CURVE

THE BASE CURVE

BASE CURRENT

Base-Emitter Loop,

$$i_B = \frac{V_{BB} - V_{BE}}{R_B}$$

THE COLLECTOR CURVE

COLLECTOR-EMITTER VOLTAGE

Collector-Emitter Loop,

$$V_{CE} = V_{CC} - i_c R_c$$

Alpha,

$$lpha_{dc} = rac{i_C}{i_E}$$

Beta,

$$oldsymbol{eta_{dc}} = rac{oldsymbol{\iota}_C}{oldsymbol{i}_B}$$

REGIONS OF OPERATION

BREAKDOWN REGION

SATURATION REGION

CUTOFF REGION

ACTIVE REGION

READING DATASHEET

MAXIMUM_RATINGS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

ON CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain (Note 2) $ (I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $ $ (I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $ $ (I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $ $ (I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $ $ (I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $ $ (I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $	2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904	h _{FE}	20 40 35 70 50 100 30 60 15 30	- - - 150 300 - - -	_
Collector – Emitter Saturation Voltage (Note 2) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$		V _{CE(sat)}	1-1	0.2 0.3	Vdc
Base-Emitter Saturation Voltage (Note 2) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$		V _{BE(sat)}	0.65	0.85 0.95	Vdc

LABORATORY