Histogram of Oriented Gradients

Grace Tsai
Electrical Engineering, Systems
University of Michigan
September 28, 2010

How can we find a good representation for all these people?

Patch

How can we find a good representation for an interested point?

Introduction

- Find robust feature set that allows object form to be discriminated.
- Challenges
 - Wide range of pose and large variations in appearances
 - Cluttered backgrounds under different illumination
 - "Speed" for mobile vision
- Reference
 - [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005
 - [2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients
 - A low bit rate feature descriptor, CVPR 2009

Why HoG?

• Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients or edge directions.

Histogram of Gradient

- Dividing the image window into small spatial regions (*cells*)
- Cells can be either rectangle or radial.
- Each cell accumulating a weighted local 1-D histogram of gradient directions over the pixels of the cell.

Histogram of gradient

Normalization

- For better invariance to illumination and shadowing. it is useful to contrast-normalize the local responses before using them.
- Accumulate local histogram "energy" over a larger regions ("blocks") to normalize all of the cells in the block.

Radial Bins, Angular Bins

Implementation

- 64*128 detection window
- Normalize gamma and color by RGB and LAB to normalize the energy of the cells.
- Linear SVM for object/non-object classifications.
- [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005

Comparisons

Miss rate as the cell and block size changes.

Effect of number of orientation bins

Compressed Histogram of Gradients

• Feature compression is vital for reduction in storage, latency and transmission.

[2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients - A low bit rate feature descriptor, CVPR 2009

Compressed HoG

Gradient Histogram Binning

CHoG: Huffman coding

Search Strategies

Comparisons

Applications

• http://www.youtube.com/watch?v=1-rwzgUlyzw&feature=player_embedded

 http://www.youtube.com/watch?v=0HOO80RitVI &feature=player_embedded

http://www.stanford.edu/~vijayc/publication.html

Reference

- [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005
- [2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients A low bit rate feature descriptor, CVPR 2009
- [3] V. Chandrasekhar et al. "Quantization Schemes for the Compressed Histogram of Gradients descriptor," *Proceedings of International Workshop on Mobile Vision, Computer Vision and Pattern Recognition (CVPR)*, San Francisco, June 2010.
- [4] http://www.stanford.edu/~vijayc/publication.html
- [5] www.stanford.edu/~dmchen/documents/IWMV2010_CHOG_slides.pdf
- [6] http://www-forum.stanford.edu/events/2010slides/cleanslatePOMI/POMI2010Girod.pdf