

Art of Problem Solving 2013 APMO

APMO 2013	
1	Let ABC be an acute triangle with altitudes AD , BE , and CF , and let O be the center of its circumcircle. Show that the segments OA , OF , OB , OD , OC , OE dissect the triangle ABC into three pairs of triangles that have equal areas.
2	Determine all positive integers n for which $\frac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to r .
3	For $2k$ real numbers $a_1, a_2,, a_k, b_1, b_2,, b_k$ define a sequence of numbers X_n by $X_n = \sum_{i=1}^k [a_i n + b_i] (n = 1, 2,).$ If the sequence X_N forms an arithmetic progression, show that $\sum_{i=1}^k a_i$ must be an integer. Here $[r]$ denotes the greatest integer less than or equal to r .
4	Let a and b be positive integers, and let A and B be finite sets of integers satisfying (i) A and B are disjoint; (ii) if an integer i belongs to either to A or to B , then either $i+a$ belongs to A or $i-b$ belongs to B . Prove that $a A =b B $. (Here $ X $ denotes the number of elements in the set X .)
5	Let $ABCD$ be a quadrilateral inscribed in a circle ω , and let P be a point on the extension of AC such that PB and PD are tangent to ω . The tangent at C intersects PD at Q and the line AD at R . Let E be the second point of intersection between AQ and ω . Prove that B , E , R are collinear.

Contributors: v_Enhance