

Shorter Messages and Faster Post-Quantum Encryption with Round5 on Cortex M

Markku-Juhani O. Saarinen <mjos@pqshield.com>

S. Bhattacharya¹ O. Garcia-Morchon¹ R. Rietman¹ L. Tolhuizen¹ Z. Zhang²

(1) Philips Research, NL (2) Algorand, USA (Prev. OnBoard Security)

CARDIS 2018
13 November 2018 – Montpellier, France

Round2 + Hila5 = Round5

Dustin Moody (NIST) on April 30, 2018:

"NIST would like to encourage any submissions which are quite similar to consider merging. It would be helpful if any such merger is announced (to NIST) before November 30th. [..] While the selection of candidates for the second round will primarily be based on the original submissions, NIST may consider a merged submission more attractive than either of the original schemes if it provides improvements in security, efficiency, or compactness and generality of presentation."

- ▶ We took the NIST advice and decided to merge my personal round 1 candidate Hila5 with Round2, primarily from Philips. The resulting Round5 algorithm has better security analysis and is much more efficient that either one of its parents.
- Nound5 resembles the ring variants of Round2 more than Hila5. Hila5 was based on Ring-LWE in anticyclic $x^n + 1$ "NewHope" ring (n = 1024, q = 12289), but with a novel reconciliation method and importantly XEf error correction codes.

General and Ideal Lattices

Lattice \mathbb{Z}^2 with basis (b_1, b_2) .

Lattice basis:

$$\mathcal{L}(b_1,\ldots,b_n) = \sum_{i=1}^n x_i b_i \mid x_i \in \mathbb{Z}$$

If we replace b_2 with the shorter green vector, same lattice is generated. This is a reduced basis.

Shortest Vector Problem (SVP) is the task of finding the shortest vector in a lattice. Related hard lattice problems include: Bounded Distance Decoding (BDD), Short Integer Solution (SIS), Learning With Errors (LWE), and Learning With Rounding (LWR).

In order to go from n^2 variables to n variables, one may use ideal lattices, which are defined in rings.

(G)LWR vs (R/M)LWE

Hila5, Kyber, NewHope, Frodo, etc. are based on versions of the *Learning With Errors* (**LWE**) problem, which requires addition of "noise" sampled from a bell-shaped (e.g. Gaussian or Binomial) distribution to create hard instances.

(G)LWR: Noise from Rounding (no RNG)

Round5, Round2, Saber instead use versions of *Learning With Rounding* (LWR). No sampling is required in LWR; "noise" comes directly from <u>rounding</u> in the form of a lossy compression function we may call Round. It maps $x \in \mathbb{Z}_a$ to \mathbb{Z}_b using h:

$$Round_{a\to b}(x,h) = \left\lfloor \frac{b}{a} \cdot x + h \right\rfloor \mod b. \tag{1}$$

This is equivalent to rounding of $b/a \cdot x$ to closest integer when rounding constant h = 1/2. Each coefficient is operated on separately when Round or modular reduction ("mod") is applied to polynomials, vectors, or matrices.

Hila5: Ring-LWE (Learning With Errors - in a Ring)

Hila5 used the Ring Learning With Errors (RLWE) problem. Let \mathcal{R} be a ring with elements $\mathbf{v} \in \mathbb{Z}_q^n$. As usual, $n=2^m$ power of two and $n\mid q-1$ for NTT to work.

Definition (RLWE – Informal)

With all distributions and computations in ring \mathcal{R} , let \mathbf{s}, \mathbf{e} be elements randomly chosen from some non-uniform distribution χ , and \mathbf{g} be a uniformly random public value. Determining \mathbf{s} from $(\mathbf{g}, \mathbf{g} * \mathbf{s} + \mathbf{e})$ in ring \mathcal{R} is the (Normal Form Search) Ring Learning With Errors (RLWE $_{\mathcal{R},\chi}$) problem.

The hardness of the problem is a function of n, q, and χ . Typically χ is chosen so that each coefficient is a Gaussian or from some other "Bell-Shaped" distribution that is relatively tightly concentrated around zero. Hila5 used a binomial "bitcount" χ .

Round2, Round5: General Learning With Rounding

Definition (General LWR (GLWR) – Informal)

Let d, n, p, q be positive integers such that $q \ge p \ge 2$, and $n \in \{1, d\}$. Let $\mathcal{R}_{n,q}$ be a polynomial ring, and let D_s be a probability distribution on $\mathcal{R}_n^{d/n}$.

- The search version of the GLWR problem $sGLWR_{d,n,m,q,p}(D_s)$ is as follows: given m samples of the form $(a_i,b_i=Round_{q\to p}(a_i^Ts\ mod\ q, 1/2)$ with $a_i\in\mathcal{R}_{n,q}^{d/n}$ and a fixed $s\leftarrow D_s$, recover s.
- The decision GLWR problem $dGLWR_{d,n,m,q,p}(D_s)$ is to distinguish between the uniform distribution on $\mathcal{R}_{n,q}^{d/n} \times \mathcal{R}_{n,p}$ and the distribution $(a_i,b_i=\mathsf{Round}_{q\to p}(a_i^Ts_i \bmod q,1/2))$ with $a_i\leftarrow \mathcal{R}_{n,q}^{d/n}$ and a fixed $s\leftarrow D_s$.

Here n = d implies the ring variant that we are using in Round5. Typically p, q are powers of two (no modular reduction) and there is more freedom in choosing n.

Round5 rough high-level description: Based on "Noisy ElGamal"

- ▶ Round5 comes in **both** ring and non-ring variants in this work we will focus on faster and smaller ring (n = d) variants on low-end microcontrollers (Cortex M).
- ➤ XEf is a forward error correction code that can be easily implemented in constant time fashion (this comes from Hila5).
- ▶ Two rings are used: $x^{n+1} 1$, with n+1 prime (cyclic, a bit like HILA5), and its subring $\Phi_{n+1} = (x^{n+1} 1)/(x 1) = x^n + \dots + x + 1$ (resembling Round2).
- For small-norm secrets we use "balanced" sparse ternary polynomials $D \subset \{-1,0,1\}^n$, with h/2 of both +1 and -1 coefficients (n-h) set to 0).
- ▶ The CPA versions R5ND_nKEM are intended for key establishment while CCA versions R5ND_nPKE are for public key encryption. $n \in \{1, 3, 5\}$ is the NIST security level (corresponding to security of AES with $\{128, 192, 256\}$ bit key).
- ► The CCA KEM can be used as Public Key Encryption Algorithm with a DEM: SHAKE-256 to expands the shared secret to AES-GCM key and IV for data.

Round5 Ring Variants: Simple Key Generation

KeyGenCPA(σ , γ): Key generation for CPA case.

Require: Random seeds σ , γ .

1: a
$$\stackrel{\$\sigma}{\leftarrow} \mathbb{Z}_q^n$$
 Uniform polynomial, seed σ .

2:
$$\mathbf{s} \overset{\$_{\gamma}}{\leftarrow} D$$
 Sparse ternary polynomial, seed γ .

3:
$$b \leftarrow \mathsf{Round}_{q \to p}(\mathsf{a} * \mathsf{s} \mod \Phi_{n+1}, 1/2)$$
 Compress product to range $0 \le b_i < p$.

4:
$$\mathbf{sk} = \mathbf{s}$$
 s: Random seed γ is sufficient.

5:
$$pk = (a, b)$$
 a: Random seed σ , b: $n \log_2 p$ bits.

Ensure: Public key pk = (a, b) and secret key sk = s.

<u>Note</u>: This description is simplified; e.g. the rounding constants are not always 1/2.

Round5 Ring Variants: Encryption uses (XEf) Error Correction

```
EncryptCPA(m, pk, \rho): Public key encryption (CPA).
```

Require: Message $m = \{0, 1\}^m$, public key pk = (a, b), random seed ρ .

1:
$$\mathbf{r} \stackrel{\$_{\rho}}{\leftarrow} D$$

2:
$$\mathbf{u} \leftarrow \mathsf{Round}_{q \rightarrow p}(\mathbf{a} * \mathbf{r} \mod \Phi_{n+1}, 1/2)$$

3:
$$\mathsf{t} \leftarrow \mathsf{Sample}_{\mu}(\mathsf{b} * \mathsf{r} \mod x^{n+1} - 1)$$

4:
$$\mathsf{v} \leftarrow \mathsf{Round}_{p \to t}(\mathsf{t} + \frac{p}{2}\mathsf{m}, \frac{1}{2})$$

5:
$$ct = (u, v)$$

Ensure: Ciphertext ct = (u, v).

Sparse ternary polynomial, seed ho

Compress product to range $0 \le u_i < p$.

Noisy shared secret, truncate to \mathbb{Z}_p^μ .

Add message + XEf $\mathbf{m} \in \mathbb{Z}_2^{\mu}$.

u: $n \log_2 p$ bits, v: $\mu \log_2 t$ bits.

The CPA scheme is transformed into a chosen-ciphertext (IND-CCA2) secure one (R5ND_xPKEb) using the usual Fujisaki-Okamoto Transform [FuOk99,HoHoKi17].

Decryption

DecryptCPA(ct, sk): Decryption (CPA)

Require: Ciphertext ct = (u, v), secret key sk = s.

```
1: \mathbf{t}' \leftarrow \mathsf{Sample}_{\mu}(\mathbf{u} * \mathbf{s} \mod x^{n+1} - 1) Noisy shared secret, truncate to \mathbb{Z}_p^{\mu}.
```

2: $\mathbf{m} \leftarrow \mathsf{Round}_{p \to 2}(\frac{p}{t}\mathbf{v} - \mathbf{t}', 1/2)$ Remove noise, apply XEf correction.

Ensure: Plaintext pt = m.

- ► To see why the algorithm works, note that the shared secrets EncryptCPA() and DecryptCPA() satisfy approximately $t \approx t' \approx a * s * r$.
- The Φ_{n+1} ring a subring of the $x^{n+1} 1 = (x-1) * \Phi_{n+1}$ ring. Since s and r are "balanced", their coefficients sum to zero and they are divisible by (x-1).
- ▶ High bits of t are used as a "one time pad" to transport the message payload.

Error Correction Code XEf

← Hey kids! Pay attention in coding theory classes. It's useful.

I chose a simple forward error correction code, XE5, for HILA5. Error correction helps to significantly shrink message sizes.

Additional Requirement: Fast, constant-time implementable.

XE5 has been generalized as **XEf** for Round5, where $f \in \{1, 2, 3, 4, 5\}$ is the number of bit flips it can always correct.

- ➤ XEf is a simple parity code. Both encoding and decoding are parallelizable and easy to implement efficiently on 8 to 64-bit architectures and in hardware.
- ► Constant-time. No table lookups or branches. An "error oracle" would lead to attacks under CCA security model. The KEMs also never fail (QROM proofs).

I first described similar constant-time error correction techniques (for TRUNC8) in: https://eprint.iacr.org/2016/1058 (Original uploaded November 15, 2016)

Round5 Ring Variants for Key Establishment

	Parameters	CPA NIST1	CPA NIST3 CPA NI		
Round5.KEM	d, n, h	490, 490, 162	756, 756, 242	940, 940, 414	
	q, p, t	$2^{10}, 2^7, 2^4$	$2^{12}, 2^8, 2^2$	$2^{12}, 2^8, 2^3$	
	B, \bar{n}, \bar{m}, f	1, 1, 1, 3	1, 1, 1, 3	1, 1, 1, 3	
	μ	128 + 91	192 + 103	256 + 121	
	Public key	445 B	780 B	972 B	
	Ciphertext	539 B	830 B	1082 B	
	PQ Security	2^{118}	2^{176}	2^{232}	
	Classical	2 ¹²⁸	2^{193}	2^{256}	
	Failure rate	2^{-78}	2^{-78}	2^{-95}	
	Version ID	R5ND_1KEMb	R5ND_3KEMb	R5ND_5KEMb	

In TLS, SSH, ... Key Establishment, ephemeral keys are used, so CPA is fine. Also a higher failure probability is acceptable since the process can be simply repeated.

Round5 Ring Variants for Public Key Encryption

	Parameters	CCA NIST1 CCA NIST3 CCA N		CCA NIST5	
Round5.PKE	d, n, h	522, 522, 208	756, 756, 242	940, 940, 406	
	q, p, t	$2^{13}, 2^8, 2^3$	$2^{12}, 2^8, 2^3$	$2^{12}, 2^8, 2^4$	
	B, \bar{n}, \bar{m}, f	1, 1, 1, 3	1, 1, 1, 3	1, 1, 1, 3	
	μ	128 + 91	192 + 103	256 + 121	
	Public key	538 B	780 B	972 B	
	Ciphertext	621 B	891 B	1161 B	
	PQ Security	2^{117}	2^{176}	2^{232}	
	Classical	2^{128}	2^{193}	2^{256}	
	Failure rate	2^{-202}	2^{-171}	2^{-131}	
	Version ID	R5ND_1PKEb	R5ND_3PKEb	R5ND_5PKEb	

Public Key Encryption variants have IND-CCA2 security (long-term keys) and have a negligible failure probability. You can use these e.g. for e-mail or cloud backups.

Parameters are Optimized for Bandwidth

Polynomial Multiplication with Sparse Ternary Secrets

- Polynomial multiplication (and reduction) with our sparse ternary secrets of weight h degree n is requires $\Theta(nh)$ word additions / subtractions.
- Even though h is a lot smaller than n, and no word multiplications are needed, this is essentially an $O(n^2)$ algorithm.
- Since p, q, t are powers of two, no modular reduction is needed. So the complexity is this simple multiplication algorithm is $\Theta(nh \log_2 q)$ bit operations.
- ► Also **no word multiplications** are required; this is useful on extremely low-end CPUs such as 8-bit AVR that does not have a word × word multiplier.
- ▶ Parallel byte or word additions / subtractions resemble string operations. They are also directly supported by SIMD architectures (AVX2, AVX-512, ARM NEON) which makes them fast on high-end CPUs (and in hardware).
- ► In other words, the special form allows smaller implementation footprint in both hardware and software. Flexible, fast implementations are **easy to write**.

Polynomial Multiplication for General, Non-Ternary Secrets

This is much, much harder [1]:

"[..] systematically exploring different combinations of Toom-3, Toom-4, and Karatsuba decomposition of multiplication in \mathcal{R}_q , and by carefully hand-optimizing multiplication of low-degree polynomial multiplication at the bottom of the Toom/Karatsuba decomposition."

[1] M. J. Kannwischer, J. Rijneveld and P. Schwabe: "Faster multiplication in $\mathbb{Z}_{2^m}[x]$ on Cortex-M4 to speed up NIST PQC candidates", https://eprint.iacr.org/2018/1018, Oct 2018.

- ▶ NTT: $\Theta(n \log n)$ requires smooth n and $n \mid q 1$.
- ► Toom-3: $\Theta(n^{\frac{\log 5}{\log 3}}) \approx \Theta(n^{1.46497})$
- ► Karatsuba: $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.58496})$, etc.

$$\begin{array}{rcl}
\Theta(1) & = & \Theta(\Theta) \\
\Theta(\log(n)) & = & \Theta(\Theta) \\
\Theta((\log(n))^c) & = & \Theta(\Theta) \\
\Theta(n) & = & \Theta(\Theta) \\
\Theta(n\log(n)) & = & \Theta(\Theta) \\
\Theta(n^{1.5}) & = & \Theta(\Theta) \\
\Theta(n^2) & = & \Theta(\Theta) \\
\Theta(n^c) & = & \Theta(\Theta) \\
\Theta(c^n) & = & \Theta(\Theta) \\
\Theta(n!) & = & \Theta(\Theta)
\end{array}$$

The asymptotically best algorithm is not necessarily the fastest for given *n*.

Performance of our C implementation on Cortex M4

"NewHope" refers to NewHope1024CCA. Saber is [KaMeRo+18].

My \$20 Teensy 3.2 dev board has a (\$5) MK20DX256 @ 96 MHz. "Hi-spec": 64kB RAM, 256kB Flash. (A lo-spec Cortex M4 MCU costs \$1.)

Performing Key Establishment at NIST 3 Security Level

Xfer: Public key + Ciphertext. Time: KeyGen + Encaps + Decaps on M4 @ 24 MHz.

Code: Size of implementation in bytes. **Fail**: Decryption failure bound.

PQ: Claimed quantum security. Classic: Claimed classical security.

Algorithm	Xfer	Time	Code	Fail	PQ	Classic
R5ND_3KEMb (C)	1610	0.123s	4464	2^{-78}	2^{176}	2^{193}
R5ND_3PKEb (C)	1671	0.185s	5232	2^{-171}	2^{176}	2^{193}
Saber (CHES18 Asm)	2080	0.172s	?	2^{-136}	2^{180}	2 ¹⁹⁸
Kyber-768 (Asm)	2240	0.210s	7016	2^{-142}	2^{161}	2 ¹⁷⁸
sntrup4591761 (C)	2265	8.718s	71024	0	?	2 ²⁴⁸
NTRU-HRSS17 (C)	2416	7.814s	11956	0	2^{123}	2 ¹³⁶
NewHope1024-CCA	4032	0.264s	12912	2^{-216}	2^{233}	?
SIKEp751 (C)	1160	685.9s	19112	0	2^{124}	2 ¹⁸⁶

Conclusions

- Round5 is a merger of two NIST Post-Quantum Competition project KEM & Public Key Encryption algorithms: Hila5 (from me) and Round2 (mainly Philips).
- ► GLWR. Based on (Generalized) Learning With Rounding no need for random numbers or random samplers, helps to shrink message sizes.
- ▶ Large design space of *n* (dimension), *p*, *q*, *t* (moduli just bit masking), *h* (ternary secret weight), *f* (error correction), etc. compared to Ring-LWE or Module-LWE candidates. This helped us to carefully optimize the parameters.
- ▶ Bandwidth. Key sizes and message expansion of Round5 are the smallest among all NIST candidates suitable for embedded use.
- ▶ Performance. Even the portable C implementation outperforms most assembler-optimized schemes on embedded and PC. HW profile is also good.

Thank You!