

الملكة المنزية المنية المناه ا الدورة الاستدراكية 2013

الموضوع RS24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة) أو المسلك

- مدة إنجاز الموضوع هي أ ربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
- - التمرين الثاني يتعلق بحساب الاحتمالات

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة لا يسمح باستعمال اللون الأحمر بورقة التحرير

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالع الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

التمرين الأول: (3.5 نقط) (الجزءان I و II مستقلان فيما بينهما

$$x * y = \frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)}$$
 نضع: $G =]1,2[$ نضع: $G = [1,2]$ نضع: المجال $G = [1,2]$

0.5

$$f(x) = \frac{x+2}{x+1}$$
 نعتبر التطبيق f من f نحو G المعرف بما يلي:

(G,*) نحو $(\Box_+^*, imes)$ نحو نقابلي من $(\Box_+^*, imes)$ نحو $(\Box_+^*, imes)$ نحو $(\Box_+^*, imes)$

ب) استنتج أن (G,*)زمرة تبادلية و حدد عنصرها المحايد .

 $A = egin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$: و أن $(M_3(\Box),+,\cdot)$ فضاء متجهي حقيقي و نضع :

 $(M_3(\square),+, imes)$. اتحقق أن: $A^3=0$ ثم استنتج أن A قاسم للصفر في الحلقة $A^3=0$. نحقق أن: $A^3=0$

 $(\mathbf{M}_3ig(\Box),+, imesig)$ ب تحقق أن: (A+I) ثم استنتج أن المصفوفة A+I تقبل مقلوبا في (A+I) =I تيم تحديده.

 $E = \{M\left(a,b
ight)/\left(a,b
ight)\in \square^2$ كك a و نعتبر المجموعة $M\left(a,b
ight) = aI + bA$ و نختبر المجموعة a بين أن $(E,+,\cdot)$ فضاء متجهي حقيقي وحدد أساسا له.

التمرين الثاني: (3 ن)

يحتوي صندوق على 3 كرات حمراء و4 كرات سوداء لا يمكن التمييز بينها باللمس.

L- نسحب عشوائيا بالتتابع وبإحلال أربع كرات من الصندوق ونعتبر المتغير العشوائي X الذي يساوي عدد الكرات السوداء المسحوبة من الصندوق.

X حدد قانون احتمال المتغير العشوائي (1)

X الأمل الرياضي للمتغير العشوائي E(X) الأمل الرياضي المتغير العشوائي E(X)

II- نقوم بالتجربة العشوائية التالية في 3 مراحل كالآتي:

المرحلة 1: نسحب كرة من الصندوق ، نسجل لونها ونعيدها إلى الصندوق.

المرحلة 2: نضيف إلى الصندوق 5 كرات لها نفس لون الكرة المسحوبة في المرحلة الأولى.

المرحلة 3: نسحب بالتتابع وبدون إحلال 3 كرات من الكيس الذي أصبح يحتوي على 12 كرة بعد المرحلة الثانية.

نعتبر الأحداث التالية:

الصفحة 4 4	RS24	الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كا كالموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	ن
			_

N "الكرة المسحوبة في المرحلة الأولى سوداء"

"الكرة المسحوبة في المرحلة الأولى حمراء"

"جميع الكرات المسحوبة في المرحلة الثالثة سوداء"

$$p(E \cap N) = \frac{12}{55}$$
 : بين أن (1)

0.5 p(E) احسب (2

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

. قد تحقق E علما أن الحدث E قد تحقق (3

التمرين الثالث: (3.5 ن) التمرين الثالث: معددا عقديا يخالف 1 . 1

$$(E): 2z^2 - 2(a-1)z + (a-1)^2 = 0: z$$
 نعتبر في المجموعة \Box المعادلة ذات المجهول

$$\left(E
ight)$$
 بين أن: $z_1=rac{\left(a-1
ight)}{2}\left(1-i
ight)$ و $z_1=rac{\left(a-1
ight)}{2}\left(1+i
ight)$ هما حلي المعادلة (1) بين أن:

$$0 < heta < \pi$$
 خيث $a = e^{i heta}$: نأخذ (2

$$a-1=2\sin{rac{ heta}{2}}e^{i\left(rac{ heta+\pi}{2}
ight)}$$
 أـ بين أن:

 Z_2 و Z_1 بـ استنتج الشكل المثلثي لكل حل من الحلين

المستوى العقدي منسوب إلى معلم متعامد و ممنظم و مباشر (O, \vec{u}, \vec{v}) .

$$B^{'}(1)$$
 و نعتبر النقط $A(a)$ و $A(a)$ و نعتبر النقط $\operatorname{Re}(a)$

$$a$$
 منتصفی AC و AB علی التوالی بدلالة AC علی التوالی بدلالة (1

$$rac{\pi}{2}$$
 الدوران الذي مركزه K وقياس زاويته $rac{\pi}{2}$ و وقياس زاويته $rac{\pi}{2}$ الدوران الذي مركزه وقياس زاويته (2

$$A'$$
 نضع A' و A' احق $A'=r_2(A)$ و $C'=r_1(C)$ نضع

$$c'=z_2$$
 بين أن: $a'=z_1$.

.
$$A^{'}B^{'}C^{'}$$
 ثم استنتج أن المستقيم $\left(AB^{'}\right)$ ارتفاع في المثلث $\frac{a^{'}\!-c^{'}}{a-1}$ باحسب (3

التمرين الرابع: (8.25 ن)

$$\begin{cases} f(x) = \frac{1}{\sqrt{1+x^2\ln^2 x}} \\ \text{الدالة العددية المعرفة على } [0,+\infty[$$
 بما يلي : $[0,+\infty[$ الدالة العددية المعرفة على]

$$\lim_{x \to +\infty} f(x)$$
 أـ بين أن الدالة f متصلة على اليمين في النقطة 0 ثم احسب

$$\lim_{x \to 0^+} x \ln^2 x = 0$$
 المين في النقطة $\lim_{x \to 0^+} x \ln^2 x = 0$ الدرس قابلية اشتقاق الدالة $\lim_{x \to 0^+} x \ln^2 x = 0$

$$(\forall x > 0) \; ; \; f'(x) = \frac{-x \ln x (1 + \ln x)}{(1 + x^2 \ln^2 x)^{\frac{3}{2}}}$$
 وأن: $[0, +\infty)$ وأن: $[0, +\infty]$ قابلة للاشتقاق على $[0, +\infty]$ وأن: $[0, +\infty]$

$$f$$
 د - ضع جدول تغیرات الدالة 0.5

$$\lim_{n o +\infty} lpha_n$$
 : ثم احسب $(orall n \in \square); \quad lpha_n \geq n$ تم احسب $(\forall n \in \square); \quad lpha_n \geq n$

(یمکنك استعمال مبر هنة التز ایدات المنتهیة)
$$(\forall n \ge 1)$$
 ; $0 \le \frac{F(\alpha_n)}{\alpha_n} \le \frac{F(n)}{n} + f(n)$) .5

$$\lim_{n\to +\infty} \frac{\alpha_n}{n}$$
 : $--$

0.5

$$v_n = \ln(u_n)$$
 و $u_n = \left(\frac{\arctan(n)}{\arctan(n+1)}\right)^{n^2}$ اکل عدد صحیح طبیعي غیر منعدم n نضع:

$$(\forall n \ge 1)$$
; $v_n = n^2 \left(\ln \left(\arctan(n) \right) - \ln \left(\arctan(n+1) \right) \right)$ نحقق أن: $(1 \mid 0.25)$

$$(\forall n \geq 1)(\exists c \in]n, n+1[); v_n = \frac{-n^2}{\left(1+c^2\right)\arctan(c)}$$
: باستعمال مبر هنة التزايدات المنتهية ، بين أن $(2 = 1)$

$$\left(\forall n \geq 1\right); \quad \frac{-n^2}{\left(1+n^2\right)\arctan\left(n\right)} < v_n < \frac{-n^2}{\left(1+\left(n+1\right)^2\right)\arctan\left(n+1\right)} : 0.5$$

0.5

$2 > \frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)}$

(2) $\forall (x,y) \in G^2$; 2 > x * y : يعني $\forall (x,y) \in G^2$; 1 < x * y < 2 : من النتيجتين (1) و (2) نستنج أن

 $\forall (x,y) \in G^2$; $x * y \in G$: يعني . G قانون تركيب داخلي في المجموعة

$$f: (\mathbb{R}_+^*, \times) \mapsto (G, *)$$
 لدينا $f: \mathbb{R}_+^*, \times \mapsto \frac{x+2}{x+1}$: لدينا f تطبيق معرف بما يلي

f نتحقق من أن تشاكلا يكفى أن نتحقق من أن أكى يكون التطبيق $\forall x, y \in \mathbb{R}_+^* ; f(x \times y) = f(x) * f(y)$

 \mathbb{R}^*_+ و γ عنصرين من المجموعة

$$f(x)*f(y) = \left(\frac{x+2}{x+1}\right)*\left(\frac{y+2}{y+1}\right)$$
: نينا

$$=\frac{2\left(\frac{x+2}{x+1}-1\right)\left(\frac{y+2}{y+1}-1\right)+\left(\frac{x+2}{x+1}-2\right)\left(\frac{y+2}{y+1}-2\right)}{\left(\frac{x+2}{x+1}-1\right)\left(\frac{y+2}{y+1}-1\right)+\left(\frac{x+2}{x+1}-2\right)\left(\frac{y+2}{y+1}-2\right)}$$

$$= \frac{\left(\frac{2}{x+1}\right)\left(\frac{1}{y+1}\right) + \left(\frac{-x}{x+1}\right)\left(\frac{-y}{y+1}\right)}{\left(\frac{1}{x+1}\right)\left(\frac{1}{y+1}\right) + \left(\frac{-x}{x+1}\right)\left(\frac{-y}{y+1}\right)}$$

$$=\frac{xy+2}{xy+1}=f(x\times y)$$

$f(x) * f(y) = f(x \times y)$

. (G,*) نحو (\mathbb{R}_+^*,\times) نمن f أذن

الكي يكون f تقابلا يكفي أن يحقق ما يلى :

$$(\forall y \in G)$$
, $(\exists! x \in \mathbb{R}^*_+)$: $f(x) = y$

f(x) = y أو بتعبير أسهل : يكون f تطبيقا تقابليا عندما يكون للمعادلة دات المجهول x حل وحيد في \mathbb{R}^*_+ مرتبط بـ y .

. f(x) = y المعادلة \mathbb{R}^*_+ المعادلة و لنحل في \mathcal{G} المعادلة و ليكن

$$\frac{x+2}{x+1} = y :$$
هذه المعادلة تصبح

(x+1) نضرب طرفى هذه المعادلة في العدد الغير المنعدم

$$(x+2) = y(x+1)$$
 : نجد

x(1-y) = (y-1) يعني x+2 = xy + y يعني : نضرب طرفي هذه المعادلة في العدد الغير المنعدم $\frac{1}{1-\nu}$

 $x = \frac{y-2}{1-y} : \quad \text{i.e.}$

نلاحظ أن التعبير $\frac{y-2}{1-y}$ وحيد لأنه إذا افترضنا غير ذلك .

$$x = \frac{y'-2}{1-y'}$$
 أي وجود عدد آخر y' يحقق

$$\frac{y-2}{1-y} = \frac{y'-2}{1-y'}$$
 : فإنه سوف نحصل على

$$y - yy^{'} - 2 + 2y^{'} = y^{'} - 2 - yy^{'} + 2y$$
 ;

أجوبة امتحان الدورة الإستدراكية 2013

منهجية التفكير في هذا السؤال:

 $\beta = (x-2)(y-2)$ و $\alpha = (x-1)(y-1)$ $\forall (x,y) \in G^2$; $x * y \in G$: نرید آن نبین آن $\forall (x,y) \in G^2$; 1 < x * y < 2 : يعني نريد أن نبين أن من أجل ذلك سوف نحتاج إلى أن نبين أن:

 $\forall (x,y) \in G^2 \; ; \; x*y>1 \quad gamma \; x*y<2$ يعني سوف نحتاج إلى أن نبين أن :

$$\forall (x,y) \in G^2 \; ; \; \frac{2\alpha+\beta}{\alpha+\beta} > 0 \; ; \; \frac{2\alpha+\beta}{\alpha+\beta} < 2$$

 $\forall (x,y) \in G^2$; $\alpha + \beta > 0$ و $\alpha > 0$ و $\beta > 0$. . G = [1,2] المجال عنصرين من المجال x و x عنصرين من المجال

. 1 < y < 2 و 1 < x < 2

.
$$0 < (y-1) < 1$$
 و منه : $0 < (x-1) < 1$:

$$0 < (x-1)(y-1) < 1$$
 : أي

و هذا يعنى أن الكمية (x-1)(y-1) كمية موجبة قطعا .

$$(x-1)(y-1) > 0$$
 : $y = 0$

$$1 < y < 2$$
 و لدينا كذلك : $x < 2$ و لدينا كذلك

$$-1 < (y-2) < 0$$
 $= -1 < (x-2) < 0$ $= -1 < (x-2) < 0$

. يعني أن :
$$(x-2)$$
 و $(y-2)$ كميتان سالبتان قطعا

(x-2)(y-2)>0 : يعنى موجبة قطعا موجبة قطعا ويعنى

$$\forall (x,y) \in G^2 \; ; \; x*y>1 \; :$$
 في المرحلة الأولى نبين أن $(x-1)(y-1)>0 \; :$ و من أجل ذلك ننطلق من الكتابة

(x-1)(y-1) + (x-2)(y-2) و نضيف إلى كلا الطرفين الكمية

$$2(x-1)(y-1) + (x-2)(y-2) >$$
:

> (x-1)(y-1) + (x-1)(y-2)نضرب طرفي هذه المتفاوتة في الكمية الموجبة قطعا التالية:

$$\frac{1}{(x-1)(y-1)+(x-2)(y-2)}$$

$$\frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)} > 1$$
: نحصل على :

 $\forall (x,y) \in G^2$; x*y>1 : و هذا يعني أنه

$$(1)$$
 $\forall (x,y) \in G^2 \; ; \; x*y<2$: في المرحلة الثانية نبين أن

(x-2)(y-2) > 0 : في من أجل ذلك ننطلق من الكتابة

و نضيف إلى كلا الطرفين الكمية
$$(x-2)(y-2)$$

نجد : $(x-2)(y-2) > (x-2)(y-2)$

2(x-1)(y-1) ثم نضيف بعد ذلك إلى طرفى هذه المتفاوتة الكمية

$$2(x-1)(y-1) + 2(x-2)(y-2) >$$
 : نجد : $(x-2)(y-2) + 2(x-1)(y-1)$

$$2[(x-1)(y-1)+(x-2)(y-2)]>$$
 : يعنى

$$> (x-2)(y-2) + 2(x-1)(y-1)$$

: نضرب طرفي هذه المتفاوتة في الكمية الموجبة قطعا

$$\frac{1}{1+(x-2)(x-2)}$$

y=y' : y=y'=0 أي : y=y'=0 أي : y=0 و بالتالي فإن التعبير $y=2\over 1-y$ وحيد . إذن المعادلة y=y'=0 تقبل حلا وحيدا و هو y=y'=0

 $\forall \ y \in]1,2[\ ; \ \frac{y-2}{1-y} > 0 \ : نبين أن نبين أن : 1,2[\ ; \ \frac{y-2}{1-y} > 0 \ : 1 < y < 2 \ : كلينا : 1 < y < 2 \ الجنن : 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1 < y < 1 \ | 1$

-1 < (1-y) < 0 . إذن 1 < y < 2 و لدينا y < 2 و الدينا y < 0 و الدينان عميتان سالبتان قطعا وأي أن خارجهما كمية موجبة قطعا والمحال

 $orall y \ \epsilon \]1,2[\ ;\ rac{y-2}{1-y}>0$: يعني $(\forall y \epsilon G)$, $\left(\exists !\ x=rac{y-2}{1-y}\ \epsilon \ \mathbb{R}_+^*
ight):\ f(x)=y$: إذن

یعنی أن f تقابل من \mathbb{R}^*_+ نحو G . $\frac{\mathbf{K}^*_+,\times}{\mathbf{K}^*_+} \text{ id} \ f : (G,*)$ نحو \mathbf{K}^*_+,\times

 $\begin{vmatrix} A^{3} \\ = \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathcal{O}$

 $A^3 = O$: إذن

 $\mathscr{M}_3(\mathbb{R})$ لاينا المصفوفة $\mathcal{O}=egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ لاينا المصفوفة المصفوف

 $A \neq \mathcal{O}$ نلاحظ في البداية أن $A^3 = A \times A^2 = \mathcal{O}$ و لدينا

 $A^2 = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \mathcal{O} \quad : \succeq \quad \bigg|$

 \mathcal{O} إذن نستنتج أن $A^2 \neq \mathcal{O}$ و توجد مصفوفة و هي A^2 تخالف

 $A \times A^2 = A^2 \times A = \mathcal{O}$ و تحقق

 $(\mathcal{M}_3(\mathbb{R}),+, imes)$ إذن حسب التذكير : المصفوفة A قاسم للصفر في الحلقة

 $(A^2 - A + I) \times (A + I) = A^3 + A^2 - A^2 - A + A + I$ = $A^3 + I = O + I = I$

 $\mathscr{M}_3(\mathbb{R})$ و بما أن A و A مصفوفتان من

 $\mathscr{M}_3(\mathbb{R})$ عنصر من $\mathscr{M}_3(\mathbb{R})$ فإن المصفوفة

و نعلم أن $(\times, +, +, \mathbb{Z})$ حلقة تبادلية وحدتها I إذن \times تبادلي في $\mathbb{Z}(\mathbb{R})$ يعني $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{R})$ مصفوفة قابلة للقلب في $\mathbb{Z}(\mathbb{R})$ $\mathbb{Z}(\mathbb{Z})$ $\mathbb{Z}(\mathbb{Z})$ $\mathbb{Z}(\mathbb{Z})$ $\mathbb{Z}(\mathbb{Z})$ $\mathbb{Z}(\mathbb{Z})$ $\mathbb{Z}(\mathbb{Z}$

$$(A+I) = \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : \mathfrak{b}$$

و لدينا كذلك :-

$$= (A^{2} - A + I) = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -3 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

<u> خلاصة</u>

 $\begin{pmatrix} 1 & -3 & 1 \ 0 & 1 & -1 \ 0 & 0 & 1 \end{pmatrix}$ هي المصفوفة $\begin{pmatrix} 1 & 3 & 2 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}$ هي المصفوفة الم

نعلم أن التشاكل التقابلي يحافظ على البنية الجبرية لمجموعة الإنطلاق و يُحولها إلى مجموعة الوصول .

يعني أنه عندما نتوفر على تشاكل تقابلي f من مجموعة (E,*) نحو (F,T) فإنه نستنتج البنية الجبرية للمجموعة (F,T) انطلاقا من البنية الجبرية للمجموعة (E,*) عن طريق التطبيق f .

<u>و من ثم :</u>—

إذا كان * تبادلي أو تجميعي في E فإن T تبادلي أو تجميعي في F . f(e) هو العنصر المحايد للقانون E في E فإن E هو العنصر المحايد للقانون E في E . E المحايد للقانون E في E . E مو التاريخ القانون E في E من التاريخ القانون E في E في E في التاريخ القانون E في التاريخ القانون E في E في التاريخ القانون E في التاريخ التا

إذا كان x' هو مماثل x بالنسبة للقانون * في E فإن f(x') هو مماثل f(x) بالنسبة للقانون f(x)

: في هذا السؤال لدينا f تشاكل تقابلي معرف بما يلي

$$f: (\mathbb{R}_{+}^{*}, \times) \mapsto (G, *)$$

إذن نستنتج البنية الجبرية للمجموعة (*,G) انطلاقا من البنية الجبرية لـ (\mathbb{R}_+^*,\times) عن طريق التطبيق f .

و بما أن (\mathbb{R}_+^*, \times) زمرة تبادلية عنصرها المحايد هو العدد الحقيقي 1 فإن f(1) زمرة تبادلية كذلك عنصرها المحايد هو العدد الحقيقي f(1) أي العدد $\frac{3}{2}$ و للتأكد من ذلك يكفي أن تتحقق من أن :

$$(\forall x \in G) \; ; \; x * \frac{3}{2} = \frac{3}{2} * x = x$$

تذكير : لتكن (E,*,T) حلَّقة و e هو العنصر المحايد للقانون * في E . نقول بأن عنصر ا χ من E قاسم للصفر إذا تحققت الشروط التالية :

$$\begin{cases} x \neq e \\ \exists y \in E \setminus \{e\} ; \ x \mid y = y \mid x = e \end{cases}$$

$$\mathcal{O}=egin{pmatrix} 0&0&0\0&0&0\0&0&0 \end{pmatrix}$$
 التي صفر ها $(\mathscr{M}_3(\mathbb{R}),+, imes)$ التي صفر الحلقة الواحدية

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 و وحدتها

@@<u>%</u>@@%@@%@@%@@

لكى يكون $(E, +, \cdot)$ فضاء متجهى حقيقى يكفى أن نتحقق من الشروط التالية:

$$\left(egin{array}{l} \forall \; x,y \in E \\ \forall \; lpha, eta \in \mathbb{R} \end{array}
ight) \;\; ; \;\; \left\{ egin{array}{l} \; lpha \cdot (x+y) = lpha \cdot x + lpha \cdot y \\ \; (lpha + eta) \cdot x = lpha \cdot x + eta \cdot x \\ \; (lpha \times eta) \cdot x = lpha \cdot (eta \cdot x) \\ \; 1 \cdot x = x \end{array}
ight.$$

بحيث × هو الضرب في ₪

 $\mathscr{M}_3(\mathbb{R})$ و + هو جمع المصفوفات في

و • هو ضرب مصفوفة في عدد حقيقي .

 $(\mathcal{M}_3(\mathbb{R}),+)$ في البداية نبين أن (E,+) زمرة جزئية من الزمرة $\mathscr{M}_3(\mathbb{R})$ لدينا E جزء غير فارغ من

. E مصفوفتان من M(c,d) و M(a,b)

$$M(a,b) - M(c,d) = aI + bA - cI - dA$$
 : لدينا
$$= (a-c)I + (b-d)A$$
$$= M(a-c;b-d) \in E$$

 $(\mathcal{M}_3(\mathbb{R}),+)$ زمرة جزئية من الزمرة (E,+)و بما أن + تبادلي في $\mathscr{M}_3(\mathbb{R})$ فإن (E,+) زمرة تبادلية (1)نستنتج الخاصيات المتبقية من خلال كون E جزء من الفضاء المتجهى (\cdot) و كون E جزء مستقر بالنسبة للقانون $(\mathcal{M}_3(\mathbb{R}),+,\cdot)$ $\forall M(a,b) \in E$, $\forall \alpha \in \mathbb{R}$; $\alpha \cdot M(a,b) = M(\alpha a, \alpha b) \in E$: و ذلك لأن

$$(2)$$
 $(\forall A, B \in E)$ $(\alpha \cdot (A + B) = \alpha \cdot A + \alpha \cdot B)$ $(\alpha + \beta) \cdot A = \alpha \cdot (A + \beta \cdot A)$ $(\alpha \times \beta) \cdot A = \alpha \cdot (\beta \cdot A)$ $(\alpha \times \beta) \cdot A = A$

من النتيجتين (1) و (2) نستنتج أن : $(E,+,\cdot)$ فضاء متجهي حقيقي (I,A) نعتبر الأسرة

من الواضح أن الأسرة (I,A) مولدة للفضاء المتجهي .

 $\forall M(a,b) \in E$; M(a,b) = aI + bA : لأن

A و I يعنى أن كل مصفوفة من E تكتب على شكل تأليفة خطية للمصفوفتين لنبين الآن أن الأسرة (I,A) حرة .

من أجل ذلك ننطلق من تأليفة خطية منعدمة للمصفو فتين I و A

$$\begin{vmatrix} a \cdot I + b \cdot A = \mathcal{O} \\ \Rightarrow \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 3b & 2b \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} a & 3b & 2b \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Rightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$$

إذن الأسرة (I,A) حرة .

و بما أن (I,A) أسرة حرة و مولدة للفضاء المتجهى E فإنها أساس لهذا الفضاء المتجهى الحقيقي

عندما نسحب عشوائيا بالتتابع و بإحلال أربع كرات من صندوق يحتوي على 7 كرات فإن هذه التجربة العشوائية تحتمل 7^4 نتيجة ممكنة .

 $card(\Omega) = 7^4 = 2401$: يعني

. بحيث : Ω هو كون إمكانيات هذه التجربة العشوائية

X هو المتغير العشوائي الذي يربط كل عملية بعدد الكرات السوداء X المسحوبة من الصندوق . إذن القيم التي يمكن أن يأخذها المتغير العشوائي

قانون احتمال المتغير العشوائي X سيكون إذن التطبيق P_X المعرف على المجموعة (0,1,2,3,4) نحو المجال [0,1] بما يلي:

 $P_X: \{0,1,2,3,4\} \mapsto [0,1]$ $k \mapsto P_X(k) = p[X = k]$

X من قيم المتغير العشوائي X من المتغير العشوائي X

p[X=0]:

الحدث [X=0] هو الحصول على أربع كرات كلها حمراء و توجد X=0امكانية لسحب الكرات الأربع .

$$p[X=0] = \frac{3^4}{7^4} = \frac{81}{2401}$$
 : إذن

p[X=1]:

الحدث [X=1] هو الحصول على كرة سوداء واحدة و ثلاث كرات حمراء . و من أجل ذلك لدينا :

 4^{1} إمكانية لسحب الكرة السوداء

إمكانية لاختيار السحبة صاحبة الكرة السوداء C_4^1

33 إمكانية لسحب ثلاث كرات حمراء

$$p[X=1] = \frac{4^1 \times C_4^1 \times 3^3}{7^4} = \frac{432}{2401}$$
: \dot{c}

p[X=2]:

الحدث [X=2] هو الحصول على كرتين حمر اوين و كرتين سوداوين . و من أجل ذلك لدينا:

. السوداوين 4^2

السوداوين الكرتين السوداوين C_4^2

32 إمكانية لسحب الكرتين الحمر اوين.

 $p[X = 2] = \frac{4^2 \times C_4^2 \times 3^2}{1 + (1 + 1)^2}$

$$p(E \cap N) = p_N(E) \times p(N)$$

$$= p_N(E_1) \times p_N(E_2) \times p_N(E_3) \times p(N)$$

$$= \frac{9}{12} \times \frac{8}{11} \times \frac{7}{10} \times \frac{4}{7} = \frac{2016}{9240} = \boxed{\frac{12}{55}}$$

$$p(E) = p(E \cap N) + p(E \cap R)$$

$$= \frac{12}{55} + p_R(E_1) \times p_R(E_2) \times p_R(E_3) \times p(R)$$

$$= \frac{12}{55} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times \frac{3}{7}$$

$$= \frac{12}{55} + \frac{72}{9240} = \frac{87}{385}$$

$$p_{E}(R) = \frac{p(R \cap E)}{p(E)} = \frac{p_{R}(E) \times p(R)}{p(E)}$$

$$= \frac{p_{R}(E_{1}) \times p_{R}(E_{2}) \times p_{R}(E_{3}) \times p(R)}{p(E)}$$

$$= \frac{\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times \frac{3}{7}}{\frac{87}{385}} = \boxed{\frac{1}{29}}$$

لنحل في مجموعة الأعداد العقدية) المعادلة التالية:

$$(E): 2z^2 - 2(a-1)z + (a-1)^2 = 0$$

$$\Delta = 4(a-1)^2 - 8(a-1)^2$$

$$= -4(a-1)^{2}$$

$$= (2i(a-1))^{2}$$

. z_2 و z_1 بنن عقديين z_1 و وين المعادلة

$$z_1 = \frac{2(a-1) + 2i(a-1)}{4} = \frac{(a-1)(1+i)}{2}$$
$$z_2 = \frac{2(a-1) - 2i(a-1)}{4} = \frac{(a-1)(1-i)}{2}$$

$$(a-1)=e^{i heta}-1$$
 : لدينا $0< heta<\pi$ مع $a=e^{i heta}$ لدينا $(a-1)=e^{i heta}-1$ $=\cos heta+i\sin heta-1$ $=\cos(heta)-1+i\sin(heta)$

. $(a-1)=r\,e^{i\varphi}$: هدفنا هو البحث عن r و φ بحيث

$$\cos(\theta) - 1 + i\sin(\theta) = r\cos(\varphi) + ir\sin(\varphi)$$
 يعني:
$$(\cos(\theta) - 1 = r\cos(\varphi))$$

أى : $\begin{cases} \sin(\theta) = r \sin(\varphi) \end{cases}$

من خلال دمج مربعي هاتين المتساويتين:

$$(\cos(\theta) - 1)^2 + \sin^2\theta = r^2(\cos^2\theta + \sin^2\theta) :$$

p[X=3]:

الحدث [X=3] هو الحصول على ثلاث كرات سوداء و كرة حمراء واحدة . و من أجل ذلك لدينا :

31 إمكانية لسحب الكرة الحمراء.

. إمكانية لاختيار السحبة صاحبة الكرة الحمراء C_A^1

. 4^3 إمكانية لسحب الكرات السوداء الثلاث

$$p[X=3] = \frac{3^1 \times C_4^1 \times 4^3}{7^4} = \frac{768}{2401} : 3$$

p[X=4]: \underline{tichur}

الحدث [X=4] هو الحصول على أربع كرات كلها سوداء .

$$p[X=4]=rac{4^4}{7^4}=rac{256}{2401}$$
 : إذَن

و بالتالي قانون احتمال المتغير العشوائي X هو التطبيق P_X المعرف بما يلي

$$P_X : \{0,1,2,3,4\} \mapsto [0,1]$$

$$0 \mapsto P_X(0) = \frac{81}{2401}$$

$$1 \mapsto P_X(1) = \frac{432}{2401}$$

$$2 \mapsto P_X(2) = \frac{864}{2401}$$

$$3 \mapsto P_X(3) = \frac{768}{2401}$$

$$4 \mapsto P_X(4) = \frac{256}{2401}$$

و للتأكد من صحة الجواب يجب أن نحصل على:

$$\frac{81}{2401} + \frac{432}{2401} + \frac{864}{2401} + \frac{768}{2401} + \frac{256}{2401} = 1$$

$$E(X) = \sum_{0}^{4} k \cdot p[X = k]$$

$$= 0 \left(\frac{81}{2401} \right) + 1 \left(\frac{432}{2401} \right) + 2 \left(\frac{864}{2401} \right) + 3 \left(\frac{768}{2401} \right) + 4 \left(\frac{256}{2401} \right)$$

$$= \frac{5488}{2401} = \frac{16}{7}$$

 $p(E \cap N) = p_N(E) \times p(N)$: لدينا

و لدينا كذلك الحدث E هو الحصول على ثلاث كرات سوداء من خلال ثلاث سحبات متتابعة بدون إحلال.

إذن نستطيع تجزيء الحدث E في المرحلة الثالثة إلى ثلاث أحداث جزئية و مستقلة فيما بينها و هي : –

الحصول على كرة سوداء في السحبة الأولى E_1 الحصول على كرة سوداء في السحبة الثانية E_2 الحصول على كرة سوداء في السحبة الثالثة E_3

 $E=E_1\cap E_2\cap E_3$: إذن نكتب

 $p_N(E) = p_N(E_1) \times p_N(E_2) \times p_N(E_3)$: و منه

%00%00%00%00%00%00

 $rac{\pi}{2}$ لدينا r_1 دوران مركزه J و زاويته

: إذن حسب التعريف العقدي للدوران نكتب $r_1(C) = C'$

$$\left(aff(C') - aff(J)\right) = e^{\frac{i\pi}{2}} \left(aff(C) - aff(J)\right)$$

$$\iff \left(c' - \frac{a+i}{2}\right) = i\left(i - \frac{a+i}{2}\right)$$

$$\Leftrightarrow c' = \frac{-1 - ia + a + i}{2} = \frac{(a - 1)(1 - i)}{2} = z_2$$

و بنفس الطريقة لدينا r_2 دوران مركزه K و زاويته r_2 دوران مركزه و لدينا $r_2(A)=A'$ إذن حسب التعريف العقدي للدوران نكتب :

$$\left(aff(A') - aff(K)\right) = e^{\frac{i\pi}{2}} \left(aff(A) - aff(K)\right)$$

$$\Leftrightarrow \left(a' - \frac{a-i}{2}\right) = i\left(a - \frac{a-i}{2}\right)$$
$$\Leftrightarrow a' = \frac{ia-1+a-i}{2} = \frac{(a-1)(1+i)}{2} = z_1$$

$$\begin{bmatrix} z & z & z \\ c' = z_2 & s & a' = z_1 \end{bmatrix}$$
: إذن

$$\left| \frac{a'-c'}{a-1} \right| = \frac{\frac{(a-1)(i+1)}{2} - \frac{(a-1)(1-i)}{2}}{\frac{a-1}{1}}$$
 دينا $\left| -\frac{(a-1)(i+1-1+i)}{2} \right|$

$$= \frac{(a-1)(i+1-1+i)}{2} \times \frac{1}{(a-1)}$$
$$= \frac{i(a-1)}{(a-1)} = i$$

$$\arg\left(rac{a^{'}-c^{'}}{a-1}
ight)\equivrac{\pi}{2}\,\left[\pi
ight]$$
 و منه : $\frac{a^{'}-c^{'}}{a-1}=i$ اِذَن : بغني $\left(\overline{B^{'}A,\overline{C^{'}A^{'}}}
ight)\equivrac{\pi}{2}\left[\pi
ight]$ و منه :

. (A'C') عمودي على المستقيم و هذا يعني أن المستقيم (AB') عمودي المثلث A'B'C' أي أن المستقيم (AB') ارتفاع في المثلث $A'C' \perp (AB') \perp B' \in (AB')$ لأن $B' \in (AB')$ و

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1}{\sqrt{1 + (x \ln x)^{2}}} = \frac{1}{\sqrt{1 + (0^{+})^{2}}} : \text{Light}$$

$$= \frac{1}{\sqrt{1 + 0}} = 1 = f(0)$$

 $\lim_{x\to 0^+} f(x) = f(0)$ إذن

و هذا يعنى أن الدالة f متصلة على يمين الصفر .

 $+\infty$ الأن نهاية f بجوار

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + (x \ln x)^2}} = \frac{1}{\sqrt{1 + (+\infty)^2}}$$

$$= \frac{1}{\sqrt{1 + \infty}} = \frac{1}{+\infty} = 0$$

 $\cos^2\theta - 2\cos\theta + 1 + \sin^2\theta = r^2$: يعنى

૽૾૾ૢૺ૽ઌ૽ૺ૾ૢૺ૽ઌ૽ૺૺ૽ઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺ

 $2(1 - \cos \theta) = r^2$: يعنى

$$2\left(1-\left(2\cos^2\left(\frac{\theta}{2}\right)-1\right)\right)=r^2$$
 : يعني

$$2\left(2-2\cos^2\left(\frac{\theta}{2}\right)\right)=r^2$$
 : يعني

$$4\left(1-\cos^2\left(\frac{\theta}{2}\right)\right)=r^2$$
يعني : يعني

$$4 \sin^2\left(rac{ heta}{2}
ight) = r^2$$
 : يعني

$$r>0$$
 يعني : $r=2\sin\left(rac{ heta}{2}
ight)$.

 $\sin \theta = r \sin \varphi$ يكفى الآن تحديد قيمة φ . و ننطلق من الكتابة

$$\sin\left(2\cdot\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\sin(\varphi)$$
 : $2\sin\left(\frac{\theta}{2}\right)\sin(\varphi)$

$$2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\sin(\varphi)$$
 : يعني

$$\cos\left(\frac{\theta}{2}\right) = \sin(\varphi)$$
 يعني :

$$\cos\left(rac{ heta}{2}
ight) = \cos\left(rac{\pi}{2} - arphi
ight)$$
 : يعني

$$\cos\left(\frac{\theta}{2}\right) = \cos\left(\varphi - \frac{\pi}{2}\right)$$
 يعني :

$$rac{ heta}{2}\equiv arphi-rac{\pi}{2}\left[2\pi
ight]$$
 يعني :

$$arphi \equiv rac{ heta - \pi}{2} \; [2\pi]$$
 يعني

$$\int (a-1)=2\sin\left(rac{ heta}{2}
ight)e^{i\left(rac{ heta-\pi}{2}
ight)}$$
 : إذن

$$(1+i) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{\frac{i\pi}{4}}$$

$$(1-i) = \sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right) = \sqrt{2}e^{\frac{-i\pi}{4}}$$

$$z_{1} = \frac{(a-1)(1+i)}{2} = \frac{1}{2} \cdot 2 \sin\left(\frac{\theta}{2}\right) \cdot \sqrt{2} e^{\frac{i\pi}{4}} \quad : \psi$$

$$= \sqrt{2} \sin\left(\frac{\theta}{2}\right) e^{\frac{i\pi}{4}}$$

$$z_2 = \frac{(a-1)(1-i)}{2} = \frac{1}{2} \cdot 2\sin\left(\frac{\theta}{2}\right) \cdot \sqrt{2} e^{\frac{-i\pi}{4}}$$
$$= \sqrt{2} \sin\left(\frac{\theta}{2}\right) e^{\frac{-i\pi}{4}}$$

لدينا / هي منتصف القطعة [AC]

$$aff(J) = rac{aff(A) + aff(C)}{2} = rac{a+i}{2}$$
 : إذن

. [AB] و لدينا K هي منتصف القطعة

$$aff(K) = \frac{aff(A) + aff(B)}{2} = \frac{a-i}{2}$$
 : إذن

الدر اسة اشتقاق الدالة f على اليمين في 0 نحسب النهاية التالية f $\lim_{x\to 0^+} \left(\frac{f(x) - f(0)}{x - 0} \right)$

و من أجل ذلك نستعين بالنهايتين التاليتين:

$$\lim_{x \to 0^+} x (\ln x)^2 = 0 \qquad \text{o} \qquad \lim_{x \to 0^+} (x \ln x) = 0$$

$$\lim_{x \to 0^{+}} \left(\frac{f(x) - f(0)}{x - 0} \right) = \lim_{x \to 0^{+}} \frac{1}{x} \left(\frac{1}{\sqrt{1 + (x \ln x)^{2}}} - 1 \right) :$$

$$= \lim_{x \to 0^{+}} \frac{1}{x} \left(\frac{1 - \sqrt{1 + (x \ln x)^{2}}}{\sqrt{1 + (x \ln x)^{2}}} \right)$$

–: نضرب البسط و المقام في المرافق $\left(1+\sqrt{1+(x\ln x)^2}
ight)$ نجد

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1 - \sqrt{1 + (x \ln x)^2}}{\sqrt{1 + (x \ln x)^2}} \right) \left(\frac{1 + \sqrt{1 + (x \ln x)^2}}{1 + \sqrt{1 + (x \ln x)^2}} \right)$$

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1 - 1 - (x \ln x)^2}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{-(x \ln x)^2}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= \lim_{x \to 0^+} (-x(\ln x)^2) \left(\frac{1}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= (-0) \left(\frac{1}{\sqrt{1 + (0)^2} \left(1 + \sqrt{1 + (0)^2} \right)} \right) = (0) \left(\frac{1}{2} \right) = 0$$

$$\lim_{x \to 0^+} \left(\frac{f(x) - f(0)}{x - 0} \right) = 0$$

. $f_d^{'}(0)=0$ و هذا يعني أن الدالة f قابلة للإشتقاق على يمين الصفر و

I دالة معرفة و قابلة للإشتقاق على مجال Iو كانت f دالة معرفة و قابلة للإشتقاق على مجال f

 $g(I)\subseteq J$: إذ تكون الدالة $f\circ g$ قابلة للإشتقاق على المجال الإذا كان $f\circ g$

$$f(x) = \frac{1}{\sqrt{1 + (x \ln x)^2}}$$
: لدينا

$$(\forall x \in \mathbb{R})$$
 ; $\varphi(x) = \frac{1}{\sqrt{1+x^2}}$: نضع

 $\forall x \in]0; +\infty[; \psi(x) = x \ln x : e$ و نضع $\forall x \in]0; +\infty[$; $f(x) = \varphi \circ \psi(x)$: إذن

 $[0,+\infty]$ لدينا ψ دالة معرفة و قابلة للاشتقاق على المجال

و φ دالة معرفة و قابلة للاشتقاق على $\mathbb R$.

 $]0;+\infty$ إذن تكون الدالة $\phi\circ\psi$ قابلة للاشتقاق على

 $\psi(]0,+\infty[)\subseteq\mathbb{R}$: اذا کان x عنصرا من المجال x عنصرا

 $\psi(x) = x \ln x \in \left[\frac{1}{a}, +\infty\right] \subset \mathbb{R}$: لدينا

 $\psi(\]0,+\infty[\)\subseteq\mathbb{R}$: إذن

.]0; $+\infty$ المجال على المجال $f=arphi\circ\psi$ إذن الدالة $\phi\circ\psi$

@@<u>\</u>@@@@@@@@@@@@@@@

: لدينا من المجال ∞ عنصرا من المجال عنصرا

$$f(x) = \frac{1}{\sqrt{1 + (x \ln x)^2}} = (1 + (x \ln x)^2)^{\frac{-1}{2}}$$

$$f'(x) = \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-1}{2} - 1} (1 + (x \ln x)^2)' : \frac{1}{2}$$

$$= \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-3}{2}} (2x \ln x) (x \ln x)'$$

$$= \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-3}{2}} (2x \ln x) (1 + \ln x)$$

$$= \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$

$$f'(x) = \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$
 : إذن

 $(\forall x > 0)$; $(1 + (x \ln x)^2)^{\frac{3}{2}} > 0$; if it is it if $(\ln x)$ و $(\ln x)$ و $(\ln x)$ يتعلق بإشارتي الكميتين f'(x) و الكمية $\ln x$ تتعدم في 1 و الكمية $1 + \ln x$ تتعدم في $\frac{1}{2}$. نستنتج إذن جدول تغيرات الدالة f كما يلى:

x	0		$\frac{1}{e}$		1		+∞
ln x		_		_	ø	+	
$1 + \ln x$		_	0	+		+	
$f^{'}(x)$		_	0	+	0	_	
f	f 1		$f(\frac{1}{e})$)	1		

$$\int \frac{1}{x \ln x} dx = \int \frac{\left(\frac{1}{x}\right)}{\ln x} dx = \int \frac{(\ln x)'}{(\ln x)} dx :$$
 البينا
$$= \ln(|\ln x|) + c ; c \in \mathbb{R}$$

 $\ln x \ge 1$: فإن $x \in [e; +\infty[$: بما أن

نأخذ الثابتة $x
ightarrow \ln(\ln x)$ نجد أن الدالة 0 نجد أن الدالة أصلية . $[e; +\infty[$ المجال $x \to \frac{1}{x \ln x}$ الدالة

و أشير إلى أن $x \to \ln(\ln x)$ دالة معرفة و متصلة على 0; 1[$[e, +\infty] \subset]1, +\infty[$ لأن فهي متصلة على $[e, +\infty]$ لأن فهي متصلة على

 $[e,+\infty]$ ليكن t عنصر ا من المجال

 $(t \ln t)^2$ ننطلق من المتفاوتة 1 < 0 و نضيف إلى طرفيها الكمية $(t \ln t)^2 < 1 + (t \ln t)^2$: نجد

$$\sqrt{(t \ln t)^2} < \sqrt{1 + (t \ln t)^2}$$
 : و منه

(1) $(\forall t \ge e)$; $t \ln t < \sqrt{1 + (t \ln t)^2}$: . $\ln t \ge 1$ إذن $t \ge e$

 $t \ln t \geq e > 1$: نضرب هاتين المتفاوتتين طرفا بطرف نجد

 $(\forall t \geq e)$; $t \ln t > 1$: نحتفظ بالمتفاوتة $(\forall t \geq e)$; $(t \ln t)^2 > 1$: التي تصبح

 $(t \ln t)^2$ نضيف إلى طرفى هذه المتفاوتة الكمية $(\forall t \ge e)$; $2(t \ln t)^2 > 1 + (t \ln t)^2$:

(2) $(\forall t \ge e)$; $\sqrt{2} t \ln t > \sqrt{1 + (t \ln t)^2}$: يعني من النتيجتين (1) و (2) نستنتج أن :

$$(\forall t \ge e) \; ; \; t \ln t < \sqrt{1 + (t \ln t)^2} < \sqrt{2} t \ln t$$

$$(\forall t \geq e)$$
 ; $\frac{1}{\sqrt{2}} \left(\frac{1}{t \ln t}\right) < \frac{1}{\sqrt{1 + (t \ln t)^2}} < \frac{1}{t \ln t}$ ليكن $x \geq e$ ليكن x عددا حقيقيا بحيث

: غُدخل التكامل $\int_{a}^{x}dt$ على هذا التأطير نجد $\int_{a}^{\infty}dt$

$$-\frac{1}{\sqrt{2}} \int_{e}^{x} \left(\frac{1}{t \ln t}\right) dt < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^{2}}} dt < \int_{e}^{x} \frac{1}{t \ln t} dt$$

$$rac{1}{\sqrt{2}}[\ln(\ln t)]_e^x < \int_e^x rac{1}{\sqrt{1+(t\ln t)^2}} dt < [\ln(\ln t)]_e^x$$
 : يعني

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^2}} dt < \ln(\ln x)$$
 : يعني

$$- \frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^{2}}} dt < \ln(\ln x)$$

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} f(t) dt < \ln(\ln x) : \dot{\psi}$$

 $\lim_{x \to +\infty} \ln(\ln x) = \ln(\ln(+\infty)) = \ln(+\infty) = +\infty$: لاينا إذن نحصل على الوضعية التالية:

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} f(t) dt < \underbrace{\ln(\ln x)}_{x \to +\infty} + \infty$$

$$\lim_{x \to +\infty} \int_{e}^{x} f(t) dt = +\infty$$

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \int_{0}^{x} f(t) dt \qquad : j$$

$$= \lim_{x \to +\infty} \left(\int_{0}^{e} f(t) dt + \int_{e}^{x} f(t) dt \right)$$

$$= \lim_{x \to +\infty} \left(\int_{0}^{e} f(t) dt \right) + \lim_{x \to +\infty} \left(\int_{e}^{x} f(t) dt \right)$$

$$= \lim_{x \to +\infty} \left(\frac{constante}{r\acute{e}elle} \right) + \lim_{x \to +\infty} \left(\int_{e}^{x} f(t) dt \right)$$

$$(1) \left[\lim_{x \to +\infty} F(x) = +\infty \right] : إذن$$

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} f(t) \, dt < \ln(\ln x)$$

- نضرب أطراف هذا التأطير في العدد الموجب قطعا χ نجد

$$-rac{1}{\sqrt{2}} \left(rac{\ln(\ln x)}{x}
ight) < rac{1}{x} \int_{e}^{x} f(t) dt < rac{\ln(\ln x)}{x}$$
لنحسب النهاية : $\left(rac{\ln(\ln x)}{x}
ight)$: نحسب النهاية

$$\lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) = \lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) \times \frac{\ln x}{\ln x}$$

$$= \lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{\ln x} \right) \times \frac{\ln x}{x}$$

$$= \lim_{x \to +\infty} \frac{\ln y}{y} \times \frac{\ln x}{x} = 0 \times 0 = 0$$

$$\lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) = 0 : 0$$

و نحصل بذلك على الوضعية التالية:

$$\underbrace{\frac{1}{\sqrt{2}} \left(\frac{\ln(\ln x)}{x} \right)}_{x \to +\infty} < \frac{1}{x} \int_{e}^{x} f(t) dt < \underbrace{\frac{\ln(\ln x)}{x}}_{x \to +\infty}$$

و منه حسب خاصية النهايات و التأطير نستنتج أن :

$$\lim_{x \to +\infty} \frac{1}{x} \int_{e}^{x} f(t) dt = 0$$

$$\lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt - \vdots$$

$$= \lim_{x \to +\infty} \frac{1}{x} \left(\int_0^e f(t) dt + \int_e^x f(t) dt \right)$$

$$= \lim_{x \to +\infty} \frac{1}{x} \left(\int_0^e f(t) dt \right) + \lim_{x \to +\infty} \frac{1}{x} \left(\int_e^x f(t) dt \right)$$

$$= \left(\frac{1}{+\infty} \right) \times \begin{pmatrix} constante \\ réelle \end{pmatrix} + 0 = 0$$

$$(2) \left[\lim_{x \to +\infty} \frac{F(x)}{x} = 0 \right] : نذن$$

و يمكن تفسير النهايتين (1) و (2) بقولنا : المنحنى (G_F) يقبل فرعا شلجميا في اتجاه محور الأفاصيل .

. F''(x) ندرس إشارة المشتقة الثانية المنحنى لاراسة نقط انعطاف المنحنى

$$F(x)=\int_0^x f(t)\,dt$$
 : يدينا F دالة عددية معرفة على F على المجال F بما يلي F دالة أصلية للدالة F على المجال F على المجال F دالة أصلية للدالة F على المجال F

 $\forall \ x \in [0,+\infty[\ ; \ F^{'}(x)=f(x)\ : ئو بتعبير الاشتقاق نكتب المجال <math>f(x)=f(x)$ و بما أن الدالة f قابلة للاشتقاق على المجال f(x)=f(x) . f(x)=f(x) فإن الدالة f(x)=f(x)

$$(\forall x \in]0, +\infty[); F''(x) = f'(x) = \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$
: و لدينا

[4] إذن تنعدم الدالة F''(x) على المجال F''(x) على المجال F''(x) . ($(1+\ln x)$ و $(1+\ln x)$. أي تنعدم الدالة F''(x) إذا كان $x=\frac{1}{e}$ أو x=1 أو x=1 المابق المابق المابق بيقبل بقوار تلك النقطتين و ذلك حسب جدول الإشارة السابق . و بالتالي \mathcal{C}_F يقبل نقطتي انعطاف أفصو لاهما على التوالي $\frac{1}{e}$ و (1+1) .

 $\begin{pmatrix} \mathcal{C}_F \end{pmatrix}$ و يمكن أن نضيف جدول النقعر للمنحنى . f'(x) و ذلك انطلاقا من جدول إشارة $\forall x \in]0, +\infty[$; F''(x) = f'(x)

 $\lim_{x \to +\infty} \frac{F(x)}{x} = 0 : \text{ in the limit } x \to \infty$

$$\lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} (x - F(x)) = \lim_{x \to +\infty} x \left(1 - \frac{F(x)}{x} \right)$$
$$= (+\infty)(1 - 0) = +\infty$$

 $\lim_{x \to +\infty} \varphi(x) = +\infty$: إذن

 $\varphi(x) = x - F(x)$: بما يلي $[0, +\infty[$ معرفة على φ معرفة أنية لدينا φ معرفة على $[0, +\infty[$ بحيث F'(x) = f(x) : بحيث $[0, +\infty[$ على المجال $\varphi(x) = f(x)$ على المجال $\varphi'(x) = f(x) = f(x)$ على المجال $\varphi'(x) = f(x) = f(x)$ نلاحظ أنه إذا كان $\varphi(x) = f(x) = f(x)$ عنى $\varphi'(x) = f(x) = f(x)$. $\varphi'(x) = f(x) = f(x)$

 $f(0) \ge f(x) \ge f\left(\frac{1}{e}\right)$ فإن $0 \le x \le \frac{1}{e}$

 $\left[0, \frac{1}{e}\right]$ لأن f دالة تناقصية على المجال $1 \geq f(x) \geq f\left(\frac{1}{e}\right)$. إذن

 $\varphi^{'}(x)\geq 0$: يعني : $1-f(x)\geq 0$: يعني : $\left[0,\frac{1}{\rho}\right]$. [0, $\frac{1}{\rho}$] .

 $f\left(\frac{1}{e}\right) \leq f(x) \leq f(1)$ فإن $\frac{1}{e} \leq x \leq 1$ فإن $\frac{1}{e} \leq x \leq 1$ لأن f دالة تزايدية على المجال f

 $\varphi^{'}(x)\geq 0$: $g^{'}(x)\geq 0$: يعني $f\left(\frac{1}{e}\right)\leq f(x)\leq 1$. إذن φ دالة تزايدية على المجال $\left[\frac{1}{e},1\right]$

. $\varphi^{'}(x) \geq 0$: أي $f(x) \geq 0$ يعني $f(x) \leq 1$ أي $f(x) \leq 1$ إذن φ دالة تز ايدية على المجال $|\infty|$.

 $[0,+\infty[$ دالة تزايدية قطعا على المجال arphi

 $[0,+\infty]$ دالة متصلة و تزايدية قطعا على المجال $\varphi([0,+\infty[$) نحو صورته $[0,+\infty[$ أنحو صورته $\varphi([0,+\infty[$ $\varphi([0,+\infty[)= \mid \varphi(0); \lim_{x\to+\infty} \varphi(x) \mid = [0,+\infty[::]]$ و لدينا $[0,+\infty]$ نحو المجال $[0,+\infty]$ نحو المجال أ $[0,+\infty]$. و هذا يعني حسب تعريف التقابل:

 $(\,\forall\,y\,\epsilon\,[0,+\infty[\,)\,,(\,\exists!\,x\,\epsilon\,[0,+\infty[\,)\,\,;\,\,\varphi(x)=y$ ليكن n عددا صحيحا طبيعيا .

 $\mathbb{N} \subset [0, +\infty[:]]$ لأن $n \in [0, +\infty[:]]$ $[0,+\infty[$ في المجال إذن يوجد عنصر وحيد نرمز له به α_n

 $\varphi(\alpha_n) = n$: بحيث أو بتعبير آخر : المعادلة $\varphi(x)=n$ ذات المجهول x تقبل حلا وحيدا و هو $lpha_n$ في المجال $lpha_n+\infty$ و ذلك كيفما كان n من n

 $(\forall n \in \mathbb{N})$, $(\exists ! \ \alpha_n \geq 0)$; $\varphi(\alpha_n) = n$: أو بتعبير أخير

 $(\forall n \in \mathbb{N}) \; ; \; \alpha_n \geq 0 \; :$ أن (السؤال ب). $[0,+\infty[$ لأن F تزايدية على المجال $F(\alpha_n) \geq F(0)$ (1) $(\forall n \in \mathbb{N})$; $F(\alpha_n) \geq 0$: يعنى أن $(\forall x \geq 0)$; $\varphi(x) = x - F(x)$: و نعلم أن $\alpha_n \geq 0$: لأن $\varphi(\alpha_n) = \alpha_n - F(\alpha_n)$: إذن

(2) $F(\alpha_n) = \alpha_n - \varphi(\alpha_n)$: يعني $\alpha_n - \varphi(\alpha_n) \ge 0$: بدمج (1) و (2) نحصل على

 $\alpha_n \geq \varphi(\alpha_n)$: يعني

 $(\forall n \in \mathbb{N})$; $\varphi(\alpha_n) = n$: و نعلم أن $(\forall n \in \mathbb{N})$; $\alpha_n \geq n$: إذن

 $\lim\limits_{n o \infty} n = \lim\limits_{n o \infty} n$ نلاحظ أن $\infty + \infty + \min\limits_{n o \infty} n$ إذن نحصل على الوضعية التالية

 $\lim(lpha_n) = +\infty$: إذن حسب مصاديق تقارب المتتاليات نستنج أن

 $n \in \mathbb{N}$ و $n \geq 1$ $[0, +\infty]$ لدينا الدالة F متصلة و قابلة للاشتقاق على المجال

 $\forall x \in [0, +\infty[; F'(x) = f(x) :$ بحيث إذن بإمكاننا تطبيق مبرهنة التزايدات المنتهية على الدالة F في أي مجال محدود يوجد ضمن $]\infty+0]$.

في المرحلة الأولى: نختار المجال [0; α_n] .

 $(\forall n \in \mathbb{N})$; $\alpha_n \geq 0$ لأن $[0; \alpha_n] \subset [0, +\infty[$ لاينا إذن ، حسب مبر هنة التزايدات المنتهية ، يوجد عنصر c من المجال

$$rac{F(lpha_n) - F(0)}{lpha_n - 0} = F^{'}(c) = f(c) :$$
 بحیث $]0; lpha_n[$ $rac{F(lpha_n)}{lpha_n} = f(c)$ و $0 < c < lpha_n$: يعني $0 < c < lpha_n$ لدينا $0 < c < lpha_n$

(*)
$$1 < \frac{F(\alpha_n)}{\alpha_n} < f(\alpha_n)$$
 : و منه

 $lpha_n \in [1; +\infty[$ بما أن $n \in [1; +\infty[$ فإن $lpha_n \geq n \geq 1$ بما أن $[1;+\infty[$ لأن f تناقصية على $\alpha_n \geq n$ لاينا $\alpha_n \geq n$ لاينا إذن بالرجوع إلى التأطير (*) نكتب :-

$$-0 < 1 < \frac{F(\alpha_n)}{\alpha_n} < f(\alpha_n) < f(n)$$

(1)
$$0 < \frac{F(\alpha_n)}{\alpha_n} < f(n)$$
 : يعني

[0;n] في المرحلة الثانية نُطبق مبرهنة التزايدات المنتهية على الدالة

-: بحيث n[بحيث n[$\frac{F(n) - F(0)}{n - 0} = F'(\varepsilon) = f(\varepsilon)$

$$(\varepsilon) = f(\varepsilon)$$

 $rac{F(n)}{n} = f(arepsilon)$ و 0 < arepsilon < n : يعني

 $f(0) < f(\varepsilon) < f(n)$: لاينا $0 < \varepsilon < n$

 $0 < 1 < \frac{F(n)}{n} < f(n)$: يعني $1 < \frac{F(n)}{n} < f(n)$: يعني

(2)
$$-f(n) < \frac{-F(n)}{n} < 0$$
 : يعني $0 < \frac{F(n)}{n} < f(n)$: يعني

نجمع التأطيرين (1) و (2) طرفا بطرف نجد :

$$-f(n) < \frac{F(\alpha_n)}{\alpha_n} - \frac{F(n)}{n} < f(n)$$

ما يهمنا في هذا التأطير الغربب هو الشق الأيمن فقط.

$$\frac{F(\alpha_n)}{\alpha_n} - \frac{F(n)}{n} < f(n)$$
 : ف

$$(3)$$
 $\frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)$: الذي يصبح

$$(4)$$
 $0 < \frac{F(\alpha_n)}{\alpha_n}$: و من التأطير (1) نستنتج أن

إذن من (3) و (4) نستنتج أن

$$(\forall n \ge 1) ; 0 < \frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)$$
 (*)

#(((((- 4))))))

نعلم حسب الأسئلة السابقة أن :

$$\lim_{x \to +\infty} \frac{F(x)}{x} = 0 \quad \text{im} \quad f(x) = 0$$

$$\lim_{n \to \infty} \left(\frac{F(n)}{n} + f(n) \right) = 0 \quad : \frac{1}{n} \int_{-\infty}^{\infty} \frac{f(n)}{n} dx dx$$

و منه فإن التأطير (*) يُصبح:

$$(\forall n \ge 1) ; 0 < \frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)$$

$$0$$

@@**%**@@%@@%@@%@@%@@%

و منه حسب مصاديق تقارب المتتاليات نستنتج أن :

$$-(\blacksquare)\left[\lim_{n\infty}\frac{F(\alpha_n)}{\alpha_n}=0\right]$$

 $(\forall x \geq 0)$; $\varphi(x) = x - F(x)$: من جهة أخرى نعلم أن $\varphi(\alpha_n) = \alpha_n - F(\alpha_n)$ لاينا $\alpha_n \ge 0$ لاينا $(orall n \epsilon \mathbb{N}) \; ; \; arphi(lpha_n) = n \;\; :$ و نعلم كذلك أن $F(\alpha_n) = \alpha_n - n$: يعني $n = \alpha_n - F(\alpha_n)$: إذن $\frac{F(\alpha_n)}{\alpha_n} = \frac{\alpha_n - n}{\alpha_n} = 1 - \frac{n}{\alpha_n}$: أي

$$\lim_{n \to \infty} \frac{F(\alpha_n)}{\alpha_n} = \lim_{n \to \infty} \left(1 - \frac{n}{\alpha_n}\right)$$
 : يعني

$$\lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right) = 1$$
 يعني $0 = 1 - \lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right)$ يعني $\lim_{n \to \infty} \left(\frac{\alpha_n}{n} \right) = \frac{1}{\lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right)} = \frac{1}{1} = 1$ و بالتالي $\lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right) = \frac{1}{1} = 1$

$$\left(\lim_{n\infty}\left(\frac{\alpha_n}{n}\right)=1\right) : \emptyset$$

$$v_n = \ln(u_n) = \ln\left(\left(\frac{arctan(n)}{arctan(n+1)}\right)^{n^2}\right)$$
 : النينا $= n^2 \ln\left(\frac{arctan(n)}{arctan(n+1)}\right)$ $= n^2 \left[\ln(arctan(n)) - \ln(arctan(n+1))\right]$

 $f(x) = \ln(\arctan(x))$: نعتبر f المعرفة على $[0; +\infty]$ بما يلي لدينا حسب الخاصيات العامة لاتصال مركب دالتين أن الدالة f متصلة $]0; +\infty[$ و كذلك f قابلة للاشتقاق على المجال $]0; +\infty[$ لأن ln دالة قابلة للإشتقاق على $]\infty + \infty$ و ln دالة قابلة قابلة $[0;+\infty]$ و \mathbb{R} و \mathbb{R}

إذن بإمكاننا تطبيق مبر هنة التزايدات المنتهية على الدالة f في أي مجال محدود و يوجد ضمن]∞+;0[

. [n; n+1] ليكن $n \geq 1$ و نختار المجال

إذن يوجد عدد حقيقي c من المجال [n;n+1] بحيث :

$$(**) \overline{\frac{f(n+1) - f(n)}{(n+1) - n}} = f'(c)$$

 $\forall x \in]0; +\infty[; f(x) = \ln(\arctan(x))]$

$$f'(x) = \frac{\left(arctan(x)\right)'}{arctan(x)} = \frac{\left(\frac{1}{1+x^2}\right)}{arctan(x)} = \frac{1}{(1+x^2) arctan(x)}$$

إذن بالرجوع إلى المتساوية (**) نجد:

$$\left(\frac{f(n+1) - f(n)}{(n+1) - n} = \frac{1}{(1+c^2)\arctan(c)}\right)$$

 $\ln(\arctan(n+1)) - \ln(\arctan(n)) = \frac{1}{(1+c^2)\arctan(c)}$

 $\ln(\arctan(n)) - \ln(\arctan(n+1)) = \frac{-1}{(1+c^2)\arctan(c)}$

: نجد n^2 نجد المتساوية في العدد الغير المنعدم

 $n^{2}\left[\ln\left(\arctan(n)\right) - \ln\left(\arctan(n+1)\right)\right] = \frac{-n^{2}}{(1+c^{2})\arctan(c)}$

 $v_n = \frac{c}{(1+c^2) \ arctan(c)}$: نجد (1) نجد نتیجة السؤال البوال (2) نجد

 $(\forall n \ge 1), (\exists c \in]n; n+1[); v_n = \frac{-n^2}{(1+c^2) \arctan(c)}$

n < c < n+1 : لدينا

نُدخل الدالة arctan على هذا التأطير و علما أنها تزايدية قطعا على IR نجد: (1) arctan(n) < arctan(c) < arctan(n+1)

n < c < n+1 : خذلك و لدينا

(2) $(1+n^2) < (1+c^2) < 1 + (n+1)^2$: نضرب التأطيرين (1) و (2) طرفا بطرف نجد:

 $(1+n^2)arctan(n) < (1+c^2)arctan(c) <$ $< (1 + (n+1)^2) arctan(n+1)$

نُدخل على هذا التأطير دالة المقلوب نجد:

$$\frac{1}{(1+(n+1)^2)arctan(n+1)} < \frac{1}{(1+c^2)arctan(c)} < \frac{1}{(1+n^2)arctan(n)}$$

و نضرب أطرف هذا التأطير في العدد السالب قطعا $-n^2$ نجد:

$$\frac{-n^{2}}{(1+n^{2})arctan(n)} < \frac{-n^{2}}{(1+c^{2})arctan(c)} < \frac{-n^{2}}{(1+(n+1)^{2})arctan(n+1)}$$

و نستغل بعد ذلك نتيجة السؤال 2) نجد:

$$\frac{-n^2}{(1+n^2)arctan(n)} < v_n < \frac{-n^2}{(1+(n+1)^2)arctan(n+1)}$$

$$(\bigotimes)$$

ي البداية أذكركم بالنهايتين المهمتين التاليتين:

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \quad \text{in} \quad \arctan(x) = \frac{-\pi}{2}$$

$$\lim_{n \to \infty} \frac{-n^2}{(1 + (n+1)^2) \arctan(n+1)}$$

$$= \lim_{n \to \infty} \left(\frac{-n^2}{n^2 + 2n + 2}\right) \left(\frac{1}{\arctan(n+1)}\right)$$

$$= (-1) \left(\frac{1}{\frac{\pi}{2}}\right) = \frac{-2}{\pi}$$

$$\lim_{n \to \infty} \frac{-n^2}{(1+n^2)arctan(n)}$$
 : و لدينا كذلك $=\lim_{n \to \infty} \left(\frac{-n^2}{n^2+1}\right) \left(\frac{1}{arctan(n+1)}\right)$

$$= \lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) \left(\frac{1}{\arctan(n+1)} \right)$$
$$= (-1) \left(\frac{1}{\frac{\pi}{2}} \right) = \frac{-2}{\pi}$$

إذن التأطير (⊗) يُصبح:

$$\underbrace{\left(\frac{-n^2}{(1+n^2)arctan(n)}\right)}_{n \gg 0} < v_n < \underbrace{\left(\frac{-n^2}{(1+(n+1)^2)arctan(n+1)}\right)}_{n \gg 0}$$

$$\displaystyle \lim_{n \infty} (v_n) = rac{-2}{\pi}$$
 : إذن حسب مصاديق تقارب المتتاليات نجد

$$u_n=e^{v_n}$$
 : إذن $v_n=\ln(u_n)$ و لدينا

$$\lim_{n \to \infty} (u_n) = \lim_{n \to \infty} e^{v_n} = e^{\left(\lim_{n \to \infty} v_n\right)} = e^{\left(\frac{-2}{\pi}\right)}$$
: و منه

$$\lim_{n\infty}(u_n)=e^{\left(rac{-2}{\pi}
ight)}$$
 : و بالتالي

و الحمد لله رب العالمين