1. Introduction

1.1. Cubic equations over \mathbb{C}

- For a polynomial equation, a solution by radicals is a formula for solutions using only addition, subtraction, multiplication, division and radicals $\sqrt[m]{\cdot}$ for $m \in \mathbb{N}$.
- For general cubic equation $x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Tschirnhaus transformation is substitution $t = x + \frac{a_2}{3}$, giving

$$t^3+pt+q=0, \quad p:=\frac{-a_2^2+3a_1}{3}, \quad q:=\frac{2a_2^3-9a_1a_2+27a_0}{27}$$

This is a **reduced** (or **depressed**) cubic equation.

- When t = u + v, $t^3 (3uv)t (u^3 + v^3) = 0$ which is in the reduced cubic form with p = -3uv, $q = -(u^3 + v^3)$.
- We have

$$(y-u^3)(y-v^3) = y^2 - (u^3 + v^3)y + u^3v^3 = y^2 + qy - \frac{p^3}{27} = 0$$

so
$$u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$
.
• So a solution to $t^3 + pt + q = 0$ is

$$t = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

The other solutions are $\omega u + \omega^2 v$ and $\omega^2 u + \omega v$ where $\omega = e^{2\pi i/3}$ is the 3rd root of unity. This is because u and v each have three solutions independently to $u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$, but also $uv = -\frac{p}{3}$.

• Remark: the above method doesn't work for fields of characteristic 2 or 3 since the formulas involve division by 2 or 3 (which is dividing by zero in these respective fields).

1.2. Quartic equations over \mathbb{C}

- For general quartic equation $x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Substitution $t = x + \frac{a_3}{4}$ gives **reduced** quartic equation

$$t^4 + pt^2 + qt + r = 0$$

• We then manipulate the polynomial so that it is the sum or difference of two squares and use $a^2 + b^2 = (a + ib)(a - ib)$ or $a^2 - b^2 = (a + b)(a - b)$:

$$(t^2 + w)^2 + (p - 2w)t^2 + qt + (r - w^2) = 0$$

• $(p-2w)t^2+qt+(r-w^2)=0$ is a square iff its discriminant is zero:

$$q^2 - 4(p-2w)\big(r-w^2\big) = 0 \Longleftrightarrow w^3 - \frac{1}{2}pw^2 - rw + \frac{1}{8}\big(4pr - q^2\big) = 0$$

1

• This **cubic resolvent** is solvable by radicals. Taking any of the solutions and substituting for w gives a sum or difference of two squares in t. The quadratic factors can then be solved.

2. Fields and polynomials

2.1. Basic properties of fields

- **Definition**: ring R is **field** if every element of $R \{0\}$ has multiplicative inverse and $1 \neq 0 \in R$.
- Lemma: every field is integral domain.
- **Definition**: **field homomorphism** is ring homomorphism $\varphi : K \to L$ between fields:
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$
 - $\varphi(ab) = \varphi(a)\varphi(b)$
 - $\varphi(1) = 1$

These imply $\varphi(0) = 0$, $\varphi(-a) = -\varphi(a)$, $\varphi(a^{-1}) = \varphi(a)^{-1}$.

- Lemma: let $\varphi: K \to L$ field homomorphism.
 - $\operatorname{im}(\varphi) = \{ \varphi(a) : a \in K \}$ is field.
 - $\ker(\varphi) = \{a \in K : \varphi(a) = 0\} = \{0\}$, i.e. φ is injective.
- **Definition**: subfield K of field L is subring of L where K is field. L is field extension of K.
- The above lemma shows image of $\varphi: K \to L$ is subfield of L.
- Lemma: intersections of subfields are subfields.
- **Definition**: **prime subfield** of L is intersection of all subfields of L.
- **Definition**: **characteristic** char(K) of field K is

$$char(K) := \min\{n \in \mathbb{N} : \chi(n) = 0\}$$

(or 0 if this does not exist) where $\chi: \mathbb{Z} \to K$, $\chi(m) = 1 + \dots + 1$ (m times).

- Example: $\operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, $\operatorname{char}(\mathbb{F}_n) = p$ for p prime.
- Lemma: for any field K, char(K) is either 0 or prime.
- Theorem:
 - If char(K) = 0 then prime subfield of K is $\cong \mathbb{Q}$.
 - If char(K) = p > 0 then prime subfield of K is $\cong \mathbb{F}_p$.
- Corollary:
 - If \mathbb{Q} is subfield of K then $\operatorname{char}(K) = 0$.
 - If \mathbb{F}_p is subfield of K for prime p then $\operatorname{char}(K) = p$.
- Remark: let char(K) = p, then $p \mid {p \choose i}$ so $(a+b)^p = a^p + b^p$ in K. Also in K[x] for p > 2 prime, $x^p 1 = (x-1)^p$.
- Fermat's little theorem: $\forall a \in \mathbb{F}_p, a^p = a$.

2.2. Polynomials over fields

- Definition: degree of $f(x) = a_0 + a_1 x + \dots + a_n x_n$, $a_n \neq 0$ is $\deg(f(x)) = n$.
 - Degree of zero polynomial is $deg(0) = -\infty$.
 - $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$

- $\deg(f(x) + g(x)) \le \max\{\deg(f(x)), \deg(g(x))\}\$ with equality if $\deg(f(x)) \ne \deg(g(x))$.
- Only invertible elements in K[x] are non-zero constants $f(x) = a_0 \neq 0$.
- Similarities between \mathbb{Z} and K[x] for field K:
 - K[x] is integral domain.
 - There is a division algorithm for K[x]: for $f(x), g(x) \in K[x], \exists ! q(x), r(x) \in K[x]$ with $\deg(r(x)) < \deg(g(x))$ such that

$$f(x) = q(x)g(x) + r(x)$$

• Every $f(x), g(x) \in K[x]$ have greatest common divisor gcd(f(x), g(x)) unique up to multiplication by non-zero constants. By Euclidean algorithm for polynomials,

$$\exists a(x), b(x) \in K[x] : a(x)f(x) + b(x)g(x) = \gcd(f(x), g(x))$$

• Can construct field from K[x]: field of fractions of K[x] is

$$K(x) \coloneqq \operatorname{Frac}(K[x]) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in K[x], g(x) \neq 0 \right\}$$

where $f_1(x)/g_1(x) = f_2(x)/g_2(x) \iff f_1(x)g_2(x) = f_2(x)g_1(x)$. (We can construct the field of fractions for any integral domain).

- K[x] is PID and so UFD.
- Definition: for field K, $f(x) \in K[x]$ irreducible in K[x] (or f(x) is irreducible over K) if
 - $\deg(f(x)) \ge 1$ and
 - $f(x) = g(x)h(x) \Longrightarrow g(x)$ or h(x) is constant

2.3. Tests for irreducibility

- If f(x) has linear factor in K[x], it has root in K[x].
- Rational root test: if $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ has rational root $\frac{b}{c} \in \mathbb{Q}$ with gcd(b,c) = 1 then $b \mid a_0$ and $c \mid a_n$. Note: this can't be used to show f is irreducible for $deg(f(x)) \geq 4$.
- Gauss's lemma: let $f(x) \in \mathbb{Z}[x]$, f(x) = g(x)h(x), $g(x), h(x) \in \mathbb{Q}[x]$. Then $\exists r \in \mathbb{Q} : rg(x), r^{-1}h(x) \in \mathbb{Z}[x]$. i.e. if f(x) can be factored in $\mathbb{Q}[x]$ it can be factored in $\mathbb{Z}[x]$.
- **Example**: let $f(x) = x^4 3x^3 + 1 \in \mathbb{Q}[x]$. Using the rational root test, $f(\pm 1) \neq 0$ so no linear factors in $\mathbb{Q}[x]$. Checking quadratic factors, let

$$f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$$
 by Gauss's lemma

So $1 = ar \Rightarrow a = r = \pm 1$. $1 = ct \Rightarrow c = t = \pm 1$. -3 = b + s and 0 = c(b + s): contradiction. So f(x) irreducible in $\mathbb{Q}[x]$.

• Example: let $f(x) = x^4 - 3x^2 + 1 \in \mathbb{Q}[x]$. The rational root test shows there are no linear factors. Checking quadratic factors, let

$$f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$$
 by Gauss's lemma

As before, $a = r = \pm 1$, $c = t = \pm 1$. $0 = b + s \Rightarrow b = -s$, $-3 = at + bs + cr = -b^2 \pm 2$. b = 1 works. So $f(x) = (x^2 - x - 1)(x^2 + x - 1)$.

- **Proposition**: let $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$. If exists prime $p \nmid a_n$ such that $\overline{f}(x)$ is irreducible in $\mathbb{F}_p[x]$, then f(x) irreducible in $\mathbb{Q}[x]$.
- Example: let $f(x) = 8x^3 + 14x 9$. Reducing mod 7, $\overline{f}(x) = x^3 2 \in \mathbb{F}_7[x]$. No roots exist for this, so f(x) irreducible in $\mathbb{Q}[x]$. For polynomials, no p is suitable, e.g. $f(x) = x^4 + 1$.
- Gauss's lemma works with any UFD R instead of \mathbb{Z} and field of fractions $\operatorname{Frac}(R)$ instead of \mathbb{Q} : e.g. let F field, R = F[t], K = F(t), then $f(x) \in R[x]$ irreducible in K[x] iff f(x) has no proper factors in R[x].
- Eisenstein's criterion: let $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$, prime $p \in \mathbb{Z}$ such that $p \mid a_0, ..., p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$. Then f(x) irreducible in $\mathbb{Q}[x]$.
- Example: let $f(x) = x^3 3x + 1$. Consider $f(x 1) = x^3 3x^2 + 3$. Then by Eisenstein's criterion with p = 3, f(x 1) irreducible in $\mathbb{Q}[x]$ so f(x) is as well, since factoring f(x 1) is equivalent to factoring f(x).
- Example: p-th cyclotomic polynomial is

$$f(x) = \frac{x^p - 1}{x - 1} = 1 + \dots + x^{p-1}$$

Now

$$f(x+1) = \frac{(1+x)^p - 1}{1+x-1} = x^{p-1} + px^{p-2} + \dots + \binom{p}{p-2}x + p$$

so can apply Eisenstein with p = p.

• Generalised Eisenstein's criterion: let R be integral domain, K = Frac(R),

$$f(x) = a_0 + \dots + a_n x^n \in R[x]$$

If there is irreducible $p \in R$ with

$$p \mid a_0, ..., p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$$

then f(x) is irreducible in K[x].

3. Field extensions

3.1. Definitions and examples

- **Definition**: field extension L/K is field L containing subfield K. Can specify homomorphism $\iota: K \to L$ (which is injective).
- Example:
 - \mathbb{C}/\mathbb{R} , \mathbb{C}/\mathbb{Q} , \mathbb{R}/\mathbb{Q} .
 - $L = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is field extension of \mathbb{Q} . $\mathbb{Q}(\theta)$ is field extension of \mathbb{Q} where θ is root of $f(x) \in Q[x]$.
 - $L = \mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$ is smallest subfield of \mathbb{R} containing \mathbb{Q} and $\sqrt[3]{2}$.
 - K(t) is field extension of K.

- **Definition**: let L/K field extension, $S \subseteq L$. Then K with S adjoined, K(S), is minimal subfield of L containing K and S. If |S| = 1, L/K is a simple extension.
- Example: $\mathbb{Q}(\sqrt{2}, \sqrt{7}) = \{a + b\sqrt{2} + c\sqrt{7} + d\sqrt{14} : a, b, c, d, \in \mathbb{Q}\}$ is \mathbb{Q} with $S = \{\sqrt{2}, \sqrt{7}\}.$
- **Example**: \mathbb{R}/\mathbb{Q} is not simple extension.
- **Definition**: tower is chain of field extensions, e.g. $K \subset M \subset L$.

3.2. Algebraic elements and minimal polynomials

• **Definition**: let L/K field extension, $\theta \in L$. Then θ is algebraic over K if

$$\exists 0 \neq f(x) \in K[x] : f(\theta) = 0$$

Otherwise, θ is transcendental over K.

- **Example**: for $n \ge 1$, $\theta = e^{2\pi i/n}$ is algebraic over \mathbb{Q} (root of $x^n 1$).
- Example: $t \in K(t)$ is transcendental over K.
- Lemma: the algebraic elements in K(t)/K are precisely K.
- Lemma: let L/K field extension, $\theta \in L$. Define $I_K(\theta) := \{f(x) \in K[x] : f(\theta) = 0\}$. Then $I_K(\theta)$ is ideal in K[x] and
 - If θ transcendental over K, $I_K(\theta) = \{0\}$
 - If θ algebraic over K, then exists unique monic irreducible polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$.
- **Definition**: for $\theta \in L$ algebraic over K, **minimal polynomial of** θ **over** K is the unique monic polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$. The **degree** of θ over K is $\deg(m(x))$.
- Remark: if $f(x) \in K[x]$ irreducible over K, monic and $f(\theta) = 0$ then f(x) = m(x).
- Example:
 - Any $\theta \in K$ has minimal polynomial $x \theta$ over K.
 - $i \in \mathbb{C}$ has minimal polynomial $x^2 + 1$ over \mathbb{R} .
 - $\sqrt{2}$ has minimal polynomial x^2-2 over \mathbb{Q} . $\sqrt[3]{2}$ has minimal polynomial x^3-2 over \mathbb{Q} .

3.3. Constructing field extensions

• Lemma: let K field, $f(x) \in K[x]$ non-zero. Then

$$f(x)$$
 irreducible over $K \iff K[x]/\langle f(x) \rangle$ is a field

- **Definition**: let L_1/K , L_2/K field extensions, $\varphi: L_1 \to L_2$ field homomorphism. φ is K-homomorphism if $\forall a \in K, \varphi(a) = a$ (φ fixes elements of K).
 - If φ is isomorphism then it is **K-isomorphism**.
 - If $L_1 = L_2$ and φ is bijective then φ is K-automorphism.
- **Theorem**: let $m(x) \in K[x]$ irreducible, monic, $K_m := K[x]/\langle m(x) \rangle$. Then
 - K_m/K is field extension.
 - Let $\theta = \pi(x)$ where $\pi : K[x] \to K_m$ is canonical projection, then θ has minimal polynomial m(x) and $K_m \cong K(\theta)$.

- **Proposition**: let L/K field extension, $\tau \in L$ with $m(\tau) = 0$ and $K_L(\tau)$ be minimal subfield of L containing K and τ . Then exists unique K-isomorphism $\varphi: K_m \to K_L(\tau)$ such that $\varphi(\theta) = \tau$.
- Example:
 - Complex conjugation $\mathbb{C} \to \mathbb{C}$ is \mathbb{R} -automorphism.
 - Let K field, $\operatorname{char}(K) \neq 2$, $\sqrt{2} \notin K$, so $x^2 2$ is minimal polynomial of $\sqrt{2}$ over K, then $K(\sqrt{2}) \cong K[x]/\langle x^2 2 \rangle$ is field extension of K and $a + b\sqrt{2} \mapsto a b\sqrt{2}$ is K-automorphism.
- **Proposition**: let θ transcendental over K, then exists unique K-isomorphism $\varphi: K(t) \to K(\theta)$ such that $\varphi(t) = \theta$:

$$\varphi\left(\frac{f(t)}{g(t)}\right) = \varphi\left(\frac{f(\theta)}{g(\theta)}\right)$$

3.4. Explicit examples of simple extensions

- Let $r \in K^{\times}$ non-square in K, char $(K) \neq 2$, then $x^2 r$ irreducible in K[x]. E.g. for $K = \mathbb{Q}(t)$, $x^2 t \in K[x]$ is irreducible. Then $K(\sqrt{t}) = \mathbb{Q}(\sqrt{t}) \cong K[x]/\langle x^2 t \rangle$.
- Define $\mathbb{F}_9 = \mathbb{F}_3[x]/\langle x^2 2 \rangle \cong \mathbb{F}_3(\theta) = \{a + b\theta : a, b \in \mathbb{F}_3\}$ for θ a root of $x^2 2$.
- **Proposition**: let $K(\theta)/K$ where θ has minimal polynomial $m(x) \in K[x]$ of degree n. Then

$$K[x]/\langle m(x)\rangle \cong K(\theta) = \left\{c_0 + c_1\theta + \dots + c_{n-1}\theta^{n-1} : c_i \in K\right\}$$

and its elements are written uniquely: $K(\theta)$ is vector space over K of dimension n with basis $\{1, \theta, ..., \theta^{n-1}\}$.

• Example: $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\} \cong \mathbb{Q}[x]/\langle x^3 - 2 \rangle$. $\mathbb{Q}(\omega\sqrt[3]{2})$ and $\mathbb{Q}(w^2\sqrt[3]{2})$ where $\omega = e^{2\pi i/3}$ are isomorphic to $\mathbb{Q}(\sqrt[3]{2})$ as $\omega\sqrt[3]{2}$, $\omega\sqrt[3]{4}$ have same minimal polynomial.

3.5. Degrees of field extensions

• **Definition**: **degree** of field extension L/K is

$$[L:K]\coloneqq \dim_L(F)$$

- Example:
 - When θ algebraic over K of degree n, $[K(\theta):K]=n$.
 - Let θ transcendental over K, then $[K(\theta):K]=\infty$, so $[K(t):K]=\infty$, $[\mathbb{Q}(\pi):\mathbb{Q}]$, $[\mathbb{R}:\mathbb{Q}]=\infty$.
- **Definition**: L/K is algebraic extension if every element in L is algebraic over K.
- **Proposition**: let $[L:K] < \infty$, then L/K is algebraic extension and $L = K(\alpha_1, ..., \alpha_n)$ for some $\alpha_1, ..., \alpha_n \in L$.
- Tower law: let $K \subseteq M \subseteq L$ tower of field extensions. Then
 - $[L:K] < \infty \iff [L:M] < \infty \land [M:K] < \infty$.
 - [L:K] = [L:M][M:K].
- Example:

- $K=\mathbb{Q}\subset M=\mathbb{Q}(\sqrt{2})\subset L=\mathbb{Q}(\sqrt{2},\sqrt{7}).$ M/K has basis $\{1,\sqrt{2}\}$ so [M:K]=2. Let $\sqrt{7}\in\mathbb{Q}(\sqrt{2}),$ then $\sqrt{7}=c+d\sqrt{2},$ $c,d\in\mathbb{Q}$ so $7=(c^2+2d^2)+2cd\sqrt{2}$ so $7=c^2+2d^2,$ 0=2cd so $d^2=\frac{7}{2}$ or $c^2=7,$ which are both contradictions. So [L:K]=4 with basis $\{1,\sqrt{2},\sqrt{7},\sqrt{14}\}.$
- Let $K = \mathbb{Q} \subset M = \mathbb{Q}(i) \subset \mathbb{Q}(i, \sqrt{2})$. We know $[\mathbb{Q}(i) : \mathbb{Q}] = 2$, and $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, $[\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = 2$ (since $i \notin \mathbb{R}$) so $[\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 2$.
- Let $K = \mathbb{Q} \subset M = \mathbb{Q}(\sqrt{2}) \subset L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. Then $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 3$ so $2 \mid [L : K]$ and $3 \mid [L : K]$ so $6 \mid [L : K]$ so $[L : K] \ge 6$. But $[L : M] \le 3$ and $[M : K] \le 2$ so $[L : K] \le 6$ hence [L : K] = 6.
- More generally, we have $[K(\alpha, \beta) : K] \leq [K(\alpha) : K][K(\beta) : K]$.

• Example:

- Let $\theta = \sqrt[3]{4} + 1$. $\mathbb{Q}(\theta) = \mathbb{Q}(\sqrt[3]{4})$ so minimal polynomial over \mathbb{Q} , m, has $\deg(m) = 3$. $(\theta 1)^3 = 4$ so minimal polynomial is $x^3 3x^2 + 3x 5$.
- Let $\theta = \sqrt{2} + \sqrt{3}$. $\mathbb{Q}(\sqrt{2}, \theta) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ which has degree 2 over $\mathbb{Q}(\sqrt{2})$ so minimal polynomial of θ over $\mathbb{Q}(\sqrt{2})$ has degree 2, $\theta \sqrt{2} = \sqrt{3}$ so minimal polynomial is $x^2 2\sqrt{2}x 1$.
- Let $\theta = \sqrt{2} + \sqrt{3}$. $\mathbb{Q} \subset \mathbb{Q}(\theta) \subset \mathbb{Q}(\sqrt{2}, \sqrt{7})$ so $[\mathbb{Q}(\theta) : \mathbb{Q}] \mid [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$ so $[\mathbb{Q}(\theta) : \mathbb{Q}] \in \{1, 2, 4\}$. Can't be 1 as $\theta \notin \mathbb{Q}$. If it was 2 then $1, \theta, \theta^2$ are linearly dependent over \mathbb{Q} which leads to a contradiction. So degree of minimal polynomial of θ over \mathbb{Q} is 4. $\theta^2 = 5 + 2\sqrt{6} \Rightarrow (\theta^2 5)^2 = 24$ so minimal polynomial is $x^4 10x^2 + 1$.

4. Galois extensions

4.1. Splitting fields

- **Definition**: for field K, $0 \neq f(x) \in K[x]$, L/K is **splitting field** of f(x) over K if
 - $\bullet \ \exists c \in K^{\times}, \theta_1, ..., \theta_n \in L: f(x) = c(x \theta_1) \cdots (x \theta_n) \ (f(x) \ \text{splits over} \ \boldsymbol{L}).$
 - $\bullet \ \ L=K(\theta_1,...,\theta_n).$

• Example:

- \mathbb{C} is splitting field of $x^2 + 1$ over \mathbb{R} , since $x^2 + 1 = (x + i)(x i)$ and $\mathbb{C} = \mathbb{R}(i, -i) = \mathbb{R}(i)$.
- \mathbb{C} is not splitting field of $x^2 + 1$ over \mathbb{Q} as $\mathbb{C} \neq \mathbb{Q}(i, -i)$.
- \mathbb{Q} is splitting field of $x^2 36$ over \mathbb{Q} .
- \mathbb{C} is splitting of $x^4 + 1$ over \mathbb{R} .
- $\mathbb{Q}(i,\sqrt{2})$ is splitting field of $x^4-x^2-2=(x^2+1)(x^2-2)=(x+i)(x-i)(x+\sqrt{2})(x-\sqrt{2})$ over \mathbb{Q} .
- $\mathbb{F}_2(\theta)$ where $\theta^3 + \theta + 1 = 0$ is splitting field of $x^3 + x + 1$ over \mathbb{F}_2 .
- Consider splitting field of $x^3 2$ over \mathbb{Q} . Let $\omega = e^{2\pi i/3} = (-1 + \sqrt{-3})/2$ then $\mathbb{Q}(\sqrt[3]{2}, \omega)$ is splitting field since it must contain $\sqrt[3]{2}$, $\omega^2\sqrt[3]{2}$.
- **Theorem**: let $0 \neq f(x) \in K[x]$, $\deg(f) = n$. Then there exists a splitting field L of f(x) over K with

$$[L:K] \leq n!$$

• Notation: for field homomorphism $\varphi: K \to K'$ and $f(x) = a_0 + \dots + a_n x^n \in K[x]$, write

$$\varphi_*(f(x)) \coloneqq \varphi(a_0) + \dots + \varphi(a_n) x^n \in K'[x]$$

- Lemma: let $\sigma: K \to K'$ isomorphism and $K(\theta)/K$, θ has minimal polynomial $m(x) \in K[x]$, θ' be root of $\sigma_*(m(x))$. Then there exists unique K-isomorphism $\tau: K(\theta) \to K'(\theta')$ such that $\tau(\theta) = \theta'$.
- **Theorem**: for field isomorphism $\sigma: K \to K'$ and $0 \neq f(x) \in K[x]$, let L be splitting field of f(x) over K, L' be splitting field of $\sigma_*(f(x))$ over K'. Then there exists a field isomorphism $\tau: L \to L'$ such that $\forall a \in K, \tau(a) = \sigma(a)$.
- Corollary: setting K = K' and $\sigma = id$ implies that splitting fields are unique.

4.2. Normal extensions

- **Definition**: L/K is **normal** if: for all $f(x) \in K[x]$, if f is irreducible and has a root in L then all its roots are in L. In particular, f(x) splits completely as product of linear factors in L[x]. So the minimal polynomial of $\theta \in L$ over K has all its roots in L and can be written as product of linear factors in L[x].
- Example:
 - If [L:K] = 1 then L/K is normal.
 - If [L:K]=2 then L/K is normal: let $\theta \in L$ have minimal polynomial $m(x) \in K[x]$, then $K \subseteq K(\theta) \subseteq L$ so $\deg(m(x)) = [K(\theta):K] \in \{1,2\}$:
 - If deg(m(x)) = 1 then m(x) is already linear.
 - If deg(m(x)) = 2 then $m(x) = (x \theta)m_1(x)$, $m_1(x) \in L[x]$ is linear so m(x) splits completely in L[x].
 - If [L:K]=3 then L/K is not necessarily normal. Let θ be root of $x^3-2\in \mathbb{Q}[x]$. Other two roots are $\omega\theta$, $\omega^2\theta$ where $\omega=e^{2\pi i/3}$. If $\omega\theta\in \mathbb{Q}(\theta)$ then $\omega=\frac{\omega\theta}{\theta}\in L$ so $\mathbb{Q}\subset \mathbb{Q}(\omega)\subset \mathbb{Q}(\theta)$ but $[\mathbb{Q}(\omega):\mathbb{Q}]=2$ which doesn't divide $[\mathbb{Q}(\theta):\mathbb{Q}]=3$.
 - Let $\theta \in \mathbb{C}$ be root of irreducible $f(x) = x^3 3x 1 \in \mathbb{Q}[x]$. Let $\theta = u + v$, then $(u+v)^3 3uv(u+v) (u^3+v^3) \equiv 0$ implies $uv = 1 = u^3v^3$, $u^3 + v^3 = 1$. So $(y-u^3)(y-v^3) = y^2 y + 1$ has roots u^3 and v^3 . So the three roots of f are

$$\begin{split} \theta_1 &= u + v = e^{\pi i/9} + e^{-\pi i/9} = 2\cos(\pi/9) \\ \theta_2 &= \omega u + \omega^2 v = e^{7\pi i/9} + e^{-7\pi i/9} = 2\cos(7\pi/9) \\ \theta_3 &= \omega^2 u + \omega v = e^{13\pi i/9} + e^{-13\pi i/9} = 2\cos(13\pi/9) \end{split}$$

Furthermore, for each $i, j, \theta_i \in \mathbb{Q}(\theta_j)$, e.g.

$$\theta_2 = 2\cos \left(\pi - \frac{2\pi}{9}\right) = -2\cos \left(\frac{2\pi}{9}\right) = -2\left(2\cos \left(\frac{\pi}{9}\right)^2 - 1\right) = 2 - \theta_1^2$$

Also $\theta_1 + \theta_2 + \theta_3 = 0$ so $\theta_3 \in \mathbb{Q}(\theta_1)$. So $\mathbb{Q}(\theta_1)$ contains all roots of f(x).

- Theorem (normality criterion): L/K is finite and normal iff L is splitting field for some $0 \neq f(x) \in K[x]$ over K.
- Example:

- $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7})/\mathbb{Q}$ is normal as it is the splitting field of $f(x) = (x^2 2)(x^2 3)(x^2 5)(x^2 7) \in \mathbb{Q}[x].$
- $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal but $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$ is normal as it is the splitting field of $x^3-2\in\mathbb{Q}$.
- $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal but $\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}$ is normal.
- Let θ root of $f(x) = x^3 3x 1 \in \mathbb{Q}[x]$. Then $\mathbb{Q}(\theta)/\mathbb{Q}$ is normal as is splitting field of f(x) over \mathbb{Q} .
- $\mathbb{F}_2(\theta)/\mathbb{F}_2$ where $\theta^3 + \theta^2 + 1 = 0$ is normal, as $\mathbb{F}_2(\theta)$ contains all roots of $x^3 + x^2 + 1$.
- $\mathbb{F}_p(\theta)/\mathbb{F}_p(t)$ where $\theta^p=t$ is normal as it is the splitting field of $x^p-t=x^p-\theta^p=(x-\theta)^p$ so f(x) splits into linear factors in L[x].
- **Definition**: field N is **normal closure** of L/K if $K \subseteq L \subseteq N$, N/K is normal, and if $K \subseteq L \subseteq N' \subseteq N$ with N'/K normal then N = N'.
- **Theorem**: every finite extension L/K has normal closure, unique up to a K-isomorphism.
- **Definition**: $\operatorname{Aut}(L/K)$ is group of K-automorphisms of L/K with composition as the group operation.

• Example:

- Aut(\mathbb{C}/\mathbb{R}) contains at least two elements: complex conjugation: $\sigma(a+bi)=a-bi$ and the identity map $\mathrm{id}=\sigma^2$. If $\tau\in\mathrm{Aut}(\mathbb{C}/\mathbb{R})$ then $\tau(a+bi)=a+b\tau(i)$. But $\tau(i)^2=\tau(i^2)=\tau(-1)=-1$ hence $\tau(i)=\pm i$. So there are only two choices for τ . So $\mathrm{Aut}(\mathbb{C}/\mathbb{R})=\{\mathrm{id},\sigma\}$.
- Let $f(x) = x^2 + px + q \in \mathbb{Q}[x]$ irreducible with distinct roots θ, θ' . Then $\operatorname{Aut}(\mathbb{Q}(\theta)/\mathbb{Q}) = \{\operatorname{id}, \sigma\} \cong \mathbb{Z}/2$ where $\sigma(a+b\theta) = a+b\theta'$.
- Let θ root of $x^3 2$, let $\sigma \in \operatorname{Aut}(\mathbb{Q}(\theta)/\mathbb{Q})$. Now $\sigma(\theta)^3 = \sigma(\theta^3) = \sigma(2) = 2$ so $\sigma(\theta) \in \{\theta, \omega\theta, \omega^2\theta\}$ but $\omega\theta, \omega^2\theta \notin \mathbb{Q}(\theta)$ so $\sigma(\theta) = \theta \Longrightarrow \sigma = \operatorname{id}$.
- Let $\theta^p = t$, $\sigma \in \operatorname{Aut}(\mathbb{F}_n(\theta)/\mathbb{F}_n(t))$. Then

$$\sigma(\theta)^p = \sigma(\theta^p) = \sigma(t) = t = \theta^p$$

so
$$(\sigma(\theta) - \theta))^p = \sigma(\theta)^p - \theta^p = 0 \Longrightarrow \sigma(\theta) = \theta \Longrightarrow \sigma = id.$$

- Let $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$. Then $\alpha \leq \beta \in \mathbb{R} \Longrightarrow \beta \alpha = \gamma^2$, $\gamma \in \mathbb{R}$, so $\sigma(\beta) \sigma(a) = \sigma(\gamma)^2 \geq 0$ so $\sigma(\alpha) \leq \sigma(\beta)$. Given $\alpha \in \mathbb{R}$, there exist sequences $(r_n), (s_n) \subset \mathbb{Q}$ with $r_n \leq \alpha \leq s_n$ and $r_n \to \alpha$, $s_n \to \alpha$ as $n \to \infty$. Hence $r_n = \sigma(r_n) \leq \sigma(\alpha) \leq \sigma(s_n) = s_n$ so $\sigma(\alpha) = \alpha$ by squeezing. Hence $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = \{\operatorname{id}\}$.
- **Theorem**: let $L = K(\theta)$, θ root of irreducible $f(x) \in K[x]$, $\deg(f) = n$. Then $|\operatorname{Aut}(L/K)| \le n$, with equality iff f(x) has n distinct roots in L.
- **Theorem**: let L/K be finite extension. Then $|\operatorname{Aut}(L/K)| \leq [L:K]$, with equality iff L/K is normal and minimal polynomial of every $\theta \in L$ over K has no repeated roots (in a splitting field).

4.3. Separable extensions

• **Definition**: let L/K finite extension.

- $\theta \in L$ is **separable over** K if its minimal polynomial over K has no repeated roots (in its splitting field).
- L/K is **separable** if every $\theta \in L$ is separable over K.
- Example: let $K = \mathbb{F}_p(t)$, then $f(x) = x^p t \in K[x]$ is irreducible by Eisenstein's criterion with p = t, and $f(x) = x^p \theta^p = (x \theta)^p$ so θ is root of multiplicity $p \geq 2$. So $\mathbb{F}_p(\theta)/\mathbb{F}_p(t)$ is normal but not separable.
- Definition: let $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$. Formal derivative of f(x) is

$$Df(x) = D(f) := \sum_{i=1}^{n} i a_i x^{i-1} \in K[x]$$

• Formal derivative satisfies:

$$D(f+g) = D(f) + D(g), \quad D(fg) = f \cdot D(g) + D(f) \cdot g, \quad \forall a \in K, D(a) = 0$$

Also $\deg(D(f)) < \deg(f)$. But if $\operatorname{char}(K) = p$, then $D(x^p) = px^{p-1} = 0$ so it is not always true that $\deg(D(f)) = \deg(f) - 1$.

- Theorem (sufficient conditions for separability): finite extension L/K is separable if any of the following hold:
 - $\operatorname{char}(K) = 0$,
 - $\operatorname{char}(K) = p$ and $K = \{b^p : b \in K\}$ for prime p,
 - $\operatorname{char}(K) = p \text{ and } p \nmid [L:K].$
- **Definition**: *K* is **perfect field** if either of first two of above properties hold.
- Remark: all finite extensions of any perfect extension (e.g. \mathbb{Q}, \mathbb{F}_p) are separable (recall Fermat's little theorem: $\forall a \in \mathbb{F}_p, a = a^p$). So to find a non-separable extension L/K, we need char(K) = p > 0, K infinite and $p \mid [L:K]$. For example, $L = \mathbb{F}_p(\theta), K = \mathbb{F}_p(t)$ where $\theta^p = t$.
- Theorem: let $\alpha_1, ..., \alpha_n$ algebraic over K, then $K(\alpha_1, ..., \alpha_n)/K$ is separable iff every α_i is separable over K.
- Remark: for tower $K \subseteq M \subseteq L$, L/K is separable iff L/M and M/K are separable. However, the same statement for normality does not hold.
- Theorem of the Primitive Element: let L/K finite and separable. Then L/K is simple, i.e. $\exists \alpha \in L : L = K(\alpha)$.

4.4. The fundamental theorem of Galois theory

- **Definition**: finite extension L/K is **Galois extension** if it is normal and separable. Equivalently, $|\operatorname{Aut}(L/K)| = [L:K]$. When L/K is Galois, the **Galois group** is $\operatorname{Gal}(L/K) := \operatorname{Aut}(L/K)$.
- **Definition**: let $\mathcal{F} := \{\text{intermediate fields of } L/K\}$ and $\mathcal{G} := \{\text{subgroups of } \operatorname{Gal}(L/K)\}$. Define the map $\Gamma : \mathcal{F} \to \mathcal{G}, \ \Gamma(M) = \operatorname{Gal}(L/M)$.
- **Definition**: let L field, G a group of automorphisms of L. **Fixed field** L^G of G is set of elements in L which are invariant under all automorphisms in G:

$$L^G := \{ \alpha \in L : \forall \alpha \in G, \, \sigma(\alpha) = \alpha \}$$

• **Theorem**: if G is finite group of automorphisms of L then L^G is subfield of L and $[L:L^G]=|G|$.

- Corollary: if L/K is Galois then
 - $L^{\operatorname{Gal}(L/K)} = K$.
 - If $L^G = K$ for some group G of K-automorphisms of L, then G = Gal(L/K).
- Remark: if L/K is Galois and $\alpha \in L$ but $\alpha \notin K$, then there exists an automorphism $\sigma \in \operatorname{Gal}(L/K)$ such that $\sigma(\alpha) \neq \alpha$.
- **Definition**: for H subgroup of Gal(L/K), set $L^H := \{ \alpha \in L : \forall \sigma \in H, \sigma(\alpha) = \alpha \}$, then $K \subseteq L^H \subseteq L$. Define $\Phi : \mathcal{G} \to \mathcal{F}$, $\Phi(H) = L^H$.
- Γ and Φ are inclusion-reversing: $M_1 \subseteq M_2 \Longrightarrow \Gamma(M_2) \subseteq \Gamma(M_1)$, and $H_1 \subseteq H_2 \Longrightarrow \Phi(H_2) \subseteq \Phi(H_1)$.
- Fundamental theorem of Galois theory Theorem A: for finite Galois extension L/K,
 - $\Gamma: \mathcal{F} \to \mathcal{G}$ and $\Phi: \mathcal{F} \to \mathcal{F}$ are mutually inverse bijections (the **Galois** correspondence).
 - For $M \in \mathcal{F}$, L/M is Galois and |Gal(L/M)| = [L:M].
 - For $H \in \mathcal{G}$, L/L^H is Galois and $Gal(L/L^H) = H$.
- Remark: Gal(L/K) acts on \mathcal{F} : given $\sigma \in Gal(L/K)$ and $K \subseteq M \subseteq L$, consider $\sigma(M) = \{\sigma(\alpha) : \alpha \in M\}$ which is a subfield of L and contains K, since σ fixes elements of K. Given another automorphism $\tau : L \to L$,

$$\begin{split} \tau \in \operatorname{Gal}(L/\sigma(M)) &\iff \forall \alpha \in M, \tau(\sigma(\alpha)) = \sigma(\alpha) \\ &\iff \forall \alpha \in M, \sigma^{-1}(\tau(\sigma(\alpha))) = \alpha \\ &\iff \sigma^{-1}\tau\sigma \in \operatorname{Gal}(L/M) \\ &\iff \tau \in \sigma \ \operatorname{Gal}(L/M)\sigma^{-1} \end{split}$$

Hence σ $\operatorname{Gal}(L/M)\sigma^{-1}$ and $\operatorname{Gal}(L/M)$ are conjugate subgroups of $\operatorname{Gal}(L/K)$. Now

$$[M:K] = \frac{[L:K]}{[L:M]} = \frac{|\mathrm{Gal}(L/K)|}{|\mathrm{Gal}(L/M)|}$$

- Fundamental theorem of Galois theory Theorem B: for finite Galois extension L/K, $G = \operatorname{Gal}(L/K)$ and $K \subseteq M \subseteq L$. Then the following are equivalent:
 - M/K is Galois.
 - $\forall \sigma \in G$, $\sigma(M) = M$.
 - $H = \operatorname{Gal}(L/M)$ is normal subgroup of $G = \operatorname{Gal}(L/K)$.

When these conditions hold, we have $Gal(M/K) \cong G/H$.

- Example: let L/K be Galois, [L:K]=p prime.
 - By the tower law, any $K \subseteq M \subseteq L$ has $[L:M] \in \{1,p\}$, $[M:K] \in \{p,1\}$, so M=L or K. In both cases, M/K is normal.
 - $|\operatorname{Gal}(L/K)| = [L:K] = p$ so $\operatorname{Gal}(L/M) \cong \mathbb{Z}/p$, so the only subgroups are $\operatorname{Gal}(L/K)$ and $\{\operatorname{id}\}$. In both cases, H is normal subgroup of $\operatorname{Gal}(L/K)$.

4.5. Computations with Galois groups

• Example - quadratic extension: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is normal (since degree is 2) and separable (since characteristic is zero). Any element of $\varphi \in G = \operatorname{Gal}(\mathbb{Q}(\sqrt{2})/Q)$ is

determined by the image of $\sqrt{2}$. But $\varphi(\sqrt{2})^2 = \varphi(2) = 2$ so $\varphi(\sqrt{2}) = \pm \sqrt{2}$. This gives two automorphisms $\mathrm{id}(\sqrt{2}) = \sqrt{2}$ and $\sigma(\sqrt{2}) = -\sqrt{2}$. So $G = \{\mathrm{id}, \sigma\} = \langle \sigma \rangle \cong \mathbb{Z}/2$. Subgroup $\{\mathrm{id}\}$ corresponds to $\mathbb{Q}(\sqrt{2})$, G corresponds to \mathbb{Q} .

- Example biquadratic extension: $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} is normal (as splitting field of $(x^2 2)(x^2 3)$ over \mathbb{Q}) and separable (as char(\mathbb{Q}) = 0), so is Galois extension. Let σ be given as before.
 - Suppose $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$, then $\sigma(\sqrt{3})^2 = \sigma(3) = 3$, so $\sigma(\sqrt{3}) = \pm \sqrt{3}$.
 - If $\sigma(\sqrt{3}) = \sqrt{3}$, then $\sqrt{3} \in \mathbb{Q}(\sqrt{2})^{\{id,\sigma\}} = \mathbb{Q}$: contradiction.
 - If $\sigma(\sqrt{3}) = -\sqrt{3}$, then $\sigma(\sqrt{2})\sigma(\sqrt{3}) = \sigma(\sqrt{6}) = (-\sqrt{2})(-\sqrt{3}) = \sqrt{6}$, so $\sqrt{6} \in \mathbb{Q}(\sqrt{2})^{\{\mathrm{id},\sigma\}} = \mathbb{Q}$: contradiction.
 - So $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, hence $[L : \mathbb{Q}] = [L : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 4$.
 - Now $G = Gal(L/\mathbb{Q})$ has order $[L : \mathbb{Q}] = 4$, so $G \cong \mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$.
 - For $\varphi \in G$, $\varphi(\sqrt{2})^2 = 2 \Longrightarrow \varphi(\sqrt{2}) = \pm \sqrt{2}$, $\varphi(\sqrt{3})^2 = 3 \Longrightarrow \varphi(\sqrt{3}) = \pm \sqrt{3}$. So there are four choices, corresponding to choices of \pm signs.
 - Define σ, τ by $\sigma(\sqrt{2}) = -\sqrt{2}$, $\sigma(\sqrt{3}) = \sqrt{3}$, $\tau(\sqrt{2}) = \sqrt{2}$, $\tau(\sqrt{3}) = -\sqrt{3}$. Now $\sigma^2 = \tau^2 = \mathrm{id}$, $\sigma\tau(\sqrt{2}) = -\sqrt{2}$, $\sigma\tau(\sqrt{3}) = -\sqrt{3}$ and $\sigma\tau = \tau\sigma$.
 - So $G = \langle \sigma, \tau : \sigma^2 = \tau^2 = \mathrm{id}, \sigma\tau = \tau\sigma \rangle = \langle \sigma \rangle \times \langle \tau \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2.$
 - G has proper subgroups $H_1 = \langle \sigma \rangle$, $H_2 = \langle \tau \rangle$, $H_3 = \langle \sigma \tau \rangle$.
 - So the intermediate fields are $L^{H_1}, L^{H_2}, L^{H_3}$.
 - $\sigma(\sqrt{3}) = \sqrt{3} \Longrightarrow \sqrt{3} \in L^{H_1}$ so $\mathbb{Q}(\sqrt{3}) \subseteq L^{H_1}$, but $[L:\mathbb{Q}(\sqrt{3})] = 2 = |H_1| = [L:L^{H_1}]$. Hence $L^{H_1} = \mathbb{Q}(\sqrt{3})$. Similarly $L^{H_2} = \mathbb{Q}(\sqrt{2})$.
 - $\sigma \tau(\sqrt{6}) = \sqrt{6} \Longrightarrow \sqrt{6} \in L^{H_3}$, so $L^{H_3} = \mathbb{Q}(\sqrt{6})$.
- Remark: it is not generally true that $[K(\sqrt{a}, \sqrt{b}) : K] = 4$, e.g. $\mathbb{Q}(\sqrt{2}, \sqrt{8}) = \mathbb{Q}(\sqrt{2})$.
- **Remark**: can generalise above example to arbitrary $K(\sqrt{a}, \sqrt{b})/K$ where $\operatorname{char}(K) \neq 2$, and $a, b \in K$, $a, b, ab \notin (K^{\times})^2$ where $(K^{\times})^2$ is set of squares of K^{\times} .
- Example degree 8 extension:
 - Consider $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} . L is splitting field of $(x^2 2)(x^2 3)(x^2 5)$, so is normal, and $\operatorname{char}(\mathbb{Q}) = 0$, so is separable, so is Galois.
 - Let $M = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. By above, $Gal(M/Q) = \langle \sigma \rangle \times \langle \tau \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.
 - Suppose $\sqrt{5} \in M$. Then $\sigma(\sqrt{5})^2 = \tau(\sqrt{5})^2 = 5$, so $\sigma(\sqrt{5}) = \pm \sqrt{5}$, $\tau(\sqrt{5}) = \pm \sqrt{5}$.
 - If $\sigma(\sqrt{5}) = \sqrt{5}$, then $\sqrt{5} \in M^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{3})$.
 - If $\tau(\sqrt{5}) = \sqrt{5}$, $\sqrt{5} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
 - If $\tau(\sqrt{5}) = -\sqrt{5}$, then since $\sqrt{15} \in M^{\langle \sigma \rangle}$, $\tau(\sqrt{15}) = \sqrt{15}$, so $\sqrt{15} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
 - If $\sigma(\sqrt{5}) = -\sqrt{5}$, then $\sigma(\sqrt{10}) = \sigma(\sqrt{2})\sigma(\sqrt{5}) = (-\sqrt{2})(-\sqrt{5}) = \sqrt{10}$, so $\sqrt{10} \in M^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{3})$.
 - If $\tau(\sqrt{5}) = \sqrt{5}$, $\tau(\sqrt{10}) = \sqrt{10} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
 - If $\tau(\sqrt{5}) = -\sqrt{5}$, $\tau(\sqrt{30}) = \tau(\sqrt{5})\tau(\sqrt{3})\tau(\sqrt{2}) = \sqrt{30} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.

- So $\sqrt{5} \notin M$, so $[L:\mathbb{Q}] = [L:M][M:\mathbb{Q}] = 8$. The 8 elements in $Gal(L/\mathbb{Q})$ are determined by choices of $\sqrt{a} \mapsto \pm \sqrt{a}$ where $a \in \{2,3,5\}$.
- $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ where $\sigma_1(\sqrt{2}) = -\sqrt{2}$, $\sigma_2(\sqrt{3}) = -\sqrt{3}$, $\sigma_1(\sqrt{5}) = -\sqrt{5}$ and the σ_i fix all other square roots.
- More generally, write $\sigma(\sqrt{5}) = (-1)^j \sqrt{5}$, $\tau(\sqrt{5}) = (-1)^k \sqrt{5}$, $j, k \in \{0, 1\}$. Define $m = 2^j 3^k$, then $\sigma(\sqrt{m}) = (-1)^j \sqrt{m} \Rightarrow \sigma(\sqrt{5m}) = \sqrt{5m}$ and $\tau(\sqrt{m}) = (-1)^k \sqrt{m} \Rightarrow \tau(\sqrt{5m}) = \sqrt{5m}$, so $\sqrt{5m} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
- Example cubic extension and its normal closure:
 - Let $L = \mathbb{Q}(\theta)$, $\theta^3 2 = 0$. L/\mathbb{Q} isn't Galois since not normal. Take the normal closure $N = \mathbb{Q}(\theta, \omega) = \mathbb{Q}(\theta, \sqrt{-3})$.
 - Let $M = \mathbb{Q}(\omega)$ so $[M : \mathbb{Q}] = 2$, $[L : \mathbb{Q}] = 3$ and $[N : \mathbb{Q}] = 6$. Let $G = \operatorname{Gal}(N/\mathbb{Q})$.
 - Since $|G| = [N : \mathbb{Q}] = 6$, $G \cong \mathbb{Z}/6$ or $G \cong D_3 \cong S_3$.
 - G contains Gal(N/L). Since $N = L(\omega)$,

$$\operatorname{Gal}(N/L) = \{ \operatorname{id}, \tau \} = \langle \tau \rangle \cong \mathbb{Z}/2$$

where $\tau(\sqrt{-3}) = -\sqrt{-3}$ (i.e. $\tau(w) = \omega^2$) and $\tau(\theta) = \theta$ as $\theta \in L$.

• G contains $H = \operatorname{Gal}(N/M)$. $N = M(\theta)$, |H| = [N:M] = 3 so $\operatorname{Gal}(N/M)$ is cyclic so

$$H = {\mathrm{id}, \sigma, \sigma^2} = \langle \sigma \rangle \cong \mathbb{Z}/3$$

where $\sigma(\theta) = \omega \theta$, also $\sigma(\omega) = \omega$ as $\omega \in M$ and $\sigma^2(\theta) = \omega^2 \theta$, so H permutes the three roots of $x^3 - 2$.

- $\tau \notin H$ so $H = \{ \mathrm{id}, \sigma, \sigma^2 \}$ and $\tau H = \{ \tau, \tau \sigma, \tau \sigma^2 \}$ are disjoint cosets. So $G = H \cup \tau H = \langle \tau, \sigma \rangle$ so |G| = 6. $\tau^2 = \sigma^3 = \mathrm{id}$ and $\sigma \tau = \tau \sigma^2$. So $G \cong S_3 \cong D_3$.
- G has one subgroup of order 3, $H = \langle \sigma \rangle$. Fixed field is $N^H = M$. H is only proper normal subgroup of G. Correspondingly, M is only normal extension of Q in N.
- There are 3 order 2 subgroups: $\langle \tau \rangle$, $\langle \tau \sigma \rangle$, $\langle \tau \sigma^2 \rangle$. $N^{\langle \tau \rangle} = \mathbb{Q}(\theta) = L$, $N^{\langle \tau \sigma \rangle} = \mathbb{Q}(\omega \theta) = \sigma(L)$, $N^{\langle \tau \sigma^2 \rangle} = \mathbb{Q}(\omega^2 \theta) = \sigma^2(L)$.
- Example: show $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$.
 - Assume $\sqrt[3]{3} \in \mathbb{Q}(\sqrt[3]{2})$. Then $\sqrt[3]{3} \in N = \mathbb{Q}(\omega, \sqrt[3]{2})$, the normal closure.
 - As above, let $\sigma \in \operatorname{Gal}(N/\mathbb{Q})$, $\sigma(\sqrt[3]{2}) = \omega \sqrt[3]{2}$ and $N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$. Also,

$$\sigma(\sqrt[3]{3})^3 = \sigma(3) = 3 \Longrightarrow \sigma(\sqrt[3]{3}) \in \{\sqrt[3]{3}, \omega\sqrt[3]{3}, \omega^2\sqrt[3]{3}\}$$

- If $\sigma(\sqrt[3]{3}) = \sqrt[3]{3}$, then $\sqrt[3]{3} \in N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$, so $\mathbb{Q}(\sqrt[3]{3}) \subseteq \mathbb{Q}(\omega)$: contradiction.
- If $\sigma(\sqrt[3]{3}) = \omega \sqrt[3]{3}$, then $\sigma(\sqrt[3]{3}/\sqrt[3]{2}) = \sqrt[3]{3}/\sqrt[3]{2}$ hence $\sqrt[3]{3/2} \in N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$, so $\mathbb{Q}(\sqrt[3]{3/2}) = \mathbb{Q}(\sqrt[3]{12}) \subseteq \mathbb{Q}(\omega)$: contradiction.
- If $\sigma(\sqrt[3]{3}) = \omega^2 \sqrt[3]{3}$, $\mathbb{Q}(\sqrt[3]{3/4}) = \mathbb{Q}(\sqrt[3]{6}) \subseteq \mathbb{Q}(\omega)$: contradiction.
- Remark: in the above example, $N = \mathbb{Q}(\theta_1, \theta_2, \theta_3) = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where θ_i are the roots of $x^3 2$. Plotting this roots on Argand diagram gives the symmetry group $S_3 \cong D_3$ of an equilateral triangle. τ reflects the θ_i (complex conjugation), σ rotates the roots (but **doesn't** rotate all of N, as it fixes \mathbb{Q}). For $g \in G$, $g(\theta_j) = \theta_{\pi(j)}$ where π is permutation of $\{1, 2, 3\}$. So there is a group

- homomorphism $\varphi: G \to S_3$, $\varphi(g) = \pi$. $\ker(\varphi) = \{id\}$, so φ is injective and also surjective, since $|G| = |S_3| = 6$, so φ is isomorphism.
- **Definition**: for $f(x) \in K[x]$, $\deg(f) = n \ge 1$, with n distinct roots, the **Galois** group of f(x), G_f , is Galois group of splitting field of f(x) over K (provided it is separable).
- Remark: elements of G_f permute roots of f, so G_f is subgroup of S_n . If f(x) irreducible over K, then G_f is **transitive** subgroup, i.e. given 2 roots α, β of f, there is a $g \in G_f$ with $g(\alpha) = \beta$. This gives a general pattern

polynomial \longrightarrow field extension \longrightarrow permutation group

- **Example**: consider $\mathbb{Q} \subset L = \mathbb{Q}(\theta) \subset N = \mathbb{Q}(\theta, i)$ where $\theta = \sqrt[4]{2}$. N is normal closure of $\mathbb{Q}(\theta)$, $[N:\mathbb{Q}] = 8$ so $|\text{Gal}(N/\mathbb{Q})| = 8$.
 - Define $\sigma(\theta)=i\theta,\,\sigma(i)=i,\,\tau(\theta)=\theta,\,\tau(i)=-i.$ Then $\tau^2=\sigma^4=\mathrm{id}.$ We have

	id	σ	σ^2	σ^3	au	$ au\sigma$	$ au\sigma^2$	$ au\sigma^3$
θ	θ	$i\theta$	$-\theta$	-i heta	θ	-i heta	$-\theta$	$i\theta$
i	i	i	i	i	-i	-i	-i	-i

so $G = \operatorname{Gal}(N/\mathbb{Q}) = \langle \sigma, \tau : \sigma^4 = \tau^2 = \operatorname{id}, \sigma\tau = \tau\sigma^3 \rangle \cong D_4$.

- Order 2 subgroups are $\langle \tau \rangle$, $\langle \tau \sigma \rangle$, $\langle \tau \sigma^2 \rangle$, $\langle \tau \sigma^3 \rangle$, $\langle \sigma^2 \rangle$.
- Order 4 subgroups are $\langle \sigma^2, \tau \rangle \cong (\mathbb{Z}/2)^2$, $\langle \sigma \rangle \cong \mathbb{Z}/4$, $\langle \sigma^2, \tau \sigma \rangle \cong (\mathbb{Z}/2)^2$.
- Respectively, intermediate field extensions of degree 4 are $\mathbb{Q}(\sqrt[4]{2})$, $\mathbb{Q}(i\sqrt[4]{2})$, $\mathbb{Q}(\sqrt{2},i)$, $\mathbb{Q}((1-i)\sqrt[4]{2})$, $\mathbb{Q}((1+i)\sqrt[4]{2})$.
- Respectively, intermediate field extensions of degree 2 are $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{Q}(i\sqrt{2})$.