Group Cayley Table: Example of Order 4 Group

•	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Group Cayley Table: Is the symmetry group of a rectangle.

c: Reflection about a axis.

Group Cayley Table: Symmetry group of a rectangle.

•	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

a: 180 deg rotation

b: Reflection about b axis.

c: Reflection about a axis.

EXAMPLE 4.5.4

The table for \mathbb{Z}_2 using the operation +:

$$\begin{array}{c|ccccc}
 & 0 & 1 \\
\hline
 & 0 & 0 & 1 \\
 & 1 & 1 & 0
\end{array}$$

Group Cayley Table: Symmetry group of a rectangle.

•	е	а	b	С
е	е	a	b	С
а	a	e	С	b
b	b	С	е	а
C	С	b	a	е

Also isomorphic to $Z_2 \times Z_2$

EXAMPLE 11.1.3

Figure 11.5a shows the group $\mathbf{Z}_2 \times \mathbf{Z}_2$

$$(a,b) \bullet (x,y) = (a \bullet x, b \bullet y)$$

c: Reflection about a axis.

Note each row is a permutation of the group elements.

Note each row is a permutation of the group elements.

•	е	а	b	С
e (е	а	b	c
a	a	е	С	b
b	b	С	е	a
С	С	b	а	е

Let's make the permutation explicit.

$$\begin{pmatrix}
1234\\
1324
\end{pmatrix}$$

Give each permutation a name, indexed by the row group element.

$$T_{b}(x) = bx$$
 $T_{b}(x) = bx$
 $T_{b}(a) = ba = c$
 $T_{b}(a) = ba = c$
 $T_{b}(b) = c$
 $T_{b}(c) = c$

Make the association (I.e., bijective map) between Group elements and their row permutation.

 $=\pi_{b}$

 $=\pi_{c}$

Cayley's Theorem: Look at the corresponding table of permutations.

一 >				1	
	0	π_{e}	π_{a}	π_{b}	π_{c}
	π_{e}	π_{e}	π_{a}	π_{b}	π_{c}
	π_{a}	π_{a}	π_{e}	The -	π_b .
- ,	π_{b}	π_{b}	π_{c}	$\pi_{\rm e}$	π_{a}
	π_{c}	π_{c}	π_{b}	π_{a}	π_{e}

Is This A Group?

Shannon -information 1947 -

Cayley's Theorem:

0	e a b c e a b c	e a b c a e c b	e a b c b c e a	e a b c c b a e
e a b c e a b c	π_{e}	π_{a}	π_{b}	π_{c}
e a b c a e c b	π_{a}	π_{e} (e a b c c b a e	π_{b}
e a b c b c e a	π_{b}	π_{c}	π_{e}	π_{a}
e a b c	π_{c}	π_{b}	π_{a}	π_{e}

The abstract group table and the table of corresponding permutations are *isomorphic*.

Cayley's Theorem: a • b = c

0	π_{e}	π_{a}	π_{b}	π_{c}
π_{e}	π_{e}	π_{a}	π_{b}	π_{c}
π_{a}	π_{a}	π_{e}	π_{c}	π_{b}
π_{b}	π_{b}	π_{c}	π_{e}	π_{a}
π_{c}	π_{c}	π_{b}	π_{a}	π_{e}

$$a \cdot b = c$$

$$\pi_a \circ \pi_b = \pi_c$$

$$a \cdot b = c$$

$$\pi_a \circ \pi_b = \pi_c$$

$$\pi_a \circ \pi_b = \pi_c$$

$$a \cdot b = c$$

$$\pi_a \circ \pi_b = \pi_c$$

$$\pi_a \circ \pi_b = \pi_c$$

$$\pi_{a \bullet b} = \pi_a \circ \pi_b$$
 <====> f(a • b) = f(a) o f(b)

This and next two slides are just scratch slides.

Cayley's Theorem:

•	е	а	b	С
е	е	а	b	С
а	а	e	С	b
b	b	С	е	а
С	С	b	а	е

0	e a b c	e a b c a e c b	e a b c b c e a	e a b c c b a e
e a b c e a b c	π_{e}	π_{a}	π_{b}	π_{c}
e a b c a e c b	π_{a}	π_{e}	e a b c c b a e	π_{b}
e a b c b c e a	π_{b}	π_{c}	π_{e}	π_{a}
e a b c	π_{c}	π_{b}	π_{a}	π_{e}

$$\begin{array}{c|c} e & a & b & c \\ \hline e & a & b & c \\ \hline e & a & b & c \\ \hline e & a & b & c \\ \hline e & a & b & c \\ \hline e & a & b & c \\ \hline a & e & c & b \\ \hline e & a & b & c \\ \hline a & e & c & b \\ \hline e & a & b & c \\ \hline e & a & b & c \\ \hline b & c & e & a \\ \hline e & a & b & c \\ \hline b & c & e & a \\ \hline e & a & b & c \\ \hline c & b & a & e \\ \hline \end{array}$$

Cayley's Theorem: $a \bullet b = c \Leftrightarrow \pi_a \circ \pi_b = \pi_c$

0	π_{e}	π_{a}	π_{b}	π_{c}
π_{e}	π_{e}	π_{a}	π_{b}	π_{c}
π_{a}	π_{a}	π_{e}	π_{c}	π_{b}
π_{b}	π_{b}	π_{c}	π_{e}	π_{a}
π_{c}	π_{c}	π_{b}	π_{a}	π_{e}

 $\frac{e \ a \ b \ c}{e \ a \ b \ c}$

e a b c = G = (e,a,b,c)
e e a b c = e • G = e • (e,a,b,c)
a a e c b = a • G = a • (e,a,b,c):
$$x \Rightarrow a • x$$

b b c e a
c c b a e = c • G = c • (e,a,b,c): $x \Rightarrow c • x$