Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>25</u>

Виконав	111-15, Плугатирьов дмитро Валеріиович
студент	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвише, ім'я, по батькові)

Лабораторна робота № 1

Дослідження лінійних алгоритмів

Мета — дослідити лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набути практичних навичок їх використання під час складання лінійних програмних специфікацій.

Варіант 25

Завдання

Трикутник задано координатами своїх вершин. Знайти периметр та площу трикутника.

1 Постановка задачі

Створити змінні, які відповідатимуть за координати точок. Потім використати ці дані для знаходження відстаней між ними. Знайшовши їх, обчислити периметр утвореного трикутника та його площу.

Результатом розв'язку ϵ периметр та площа трикутника.

2 Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Периметр	Дійсний	Perimeter	Результат,
трикутника			проміжні
Площа трикутника	Дійсний	Square	Результат
Х першої вершини	Цілочисельний	X1	Початкові дані
Х другої вершини	Цілочисельний	X2	Початкові дані

Х третьої вершини	Цілочисельний	X3	Початкові дані
У першої вершини	Цілочисельний	Y1	Початкові дані
Ү другої вершини	Цілочисельний	Y2	Початкові дані
Ү третьої вершини	Цілочисельний	Y3	Початкові дані
Сторона 1	Дійсний	Side1	Проміжні дані
Сторона 2	Дійсний	Side2	Проміжні дані
Сторона 3	Дійсний	Side3	Проміжні дані
Напівпериметр	Дійсний	Halfper	Проміжні дані

Для знаходження сторін трикутника доречно скористатись формулою відстані між двома точками на площині координат: $AB = \operatorname{sqrt}((X2 - X1)^2 + (Y2 - Y1)^2)$, де A — перша точка, B — друга точка; X, Y — координати точки. Обчислення площі трикутника можливе завдяки формулі Герона: $S = \operatorname{sqrt}(p(p-a)(p-b)(p-c))$, де a, b, c — сторони довільного трикутника; p — напівпериметр.

Дія sqrt() означає корінь певного числа. Дія ^ означає піднесення числа до степеня.

3 Розв'язання

Програмні специфікації записати у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначити основні дії.

Крок 2. Деталізація дії знаходження відстаней (далі - сторін) між вершинами (точками координат (X, Y)) таких, які утворюють трикутник.

Крок 3. Деталізація додавання сторін трикутника, щоб отримати периметр.

Крок 4. Деталізація ділення периметру на 2 з метою до отримання напівпериметру та використання отриманих даних для визначення площі трикутника.

4 Псевдокод

Крок 1

початок

обчислення відстаней між трьома вершинами (Х1, У1), (Х2, У2), (Х3, У3)

в якості трьох сторін Side1, Side2, Side3

обчислення додавання сторін трикутника Side1, Side2, Side3 в якості Perimeter

обчислення Halfper з метою визначення площі трикутника Square

кінець

Крок 2

початок

Side1 :=
$$sqrt((X2 - X1)^2 + (Y2 - Y1)^2)$$

Side2 :=
$$sqrt((X3 - X2)^2 + (Y3 - Y2)^2)$$

Side3 :=
$$sqrt((X3 - X1)^2 + (Y3 - Y1)^2)$$

обчислення додавання сторін трикутника Side1, Side2, Side3 в якості Perimeter

обчислення Halfper з метою визначення площі трикутника Square

кінець

Крок 3

початок

Side1 :=
$$sqrt((X2 - X1)^2 + (Y2 - Y1)^2)$$

Side2 :=
$$sqrt((X3 - X2)^2 + (Y3 - Y2)^2)$$

Side3 :=
$$sqrt((X3 - X1)^2 + (Y3 - Y1)^2)$$

Perimeter := Side1 + Side2 + Side3

обчислення Halfper з метою визначення площі трикутника Square

кінець

Крок 4

початок

Side1 :=
$$sqrt((X2 - X1)^2 + (Y2 - Y1)^2)$$

Side2 :=
$$sqrt((X3 - X2)^2 + (Y3 - Y2)^2)$$

Side3 :=
$$sqrt((X3 - X1)^2 + (Y3 - Y1)^2)$$

Halfper := Perimeter / 2

Square := sqrt(Halfper(Halfper - Side 1)(Halfper - Side 2)(Halfper - Side 3))

кінець

Блок-схема

5 Тестування

Блок	Дія
	Початок
1	X1 = 2, X2 = 3, X3 = 4, Y1 = 5, Y2 = 6, Y3 = 9
2	Side1 = $sqrt((3-2)^2 + (6-5)^2) = 1.414$,
	Side2 = $sqrt((4-3)^2 + (9-6)^2) = 3.162$,
	Side3 = $sqrt((4-2)^2 + (9-5)^2) = 4.472$
3	Perimeter = 1.414 + 3.162 + 2.8 = 4.472
4	Halfper = 4.472 / 2 = 2.814, Square =
	sqrt(2.814 * (2.814 – 1.414) * (2.814 – 1.414) *
	(2.814 - 2.8)) = 0.03
	Кінець

6 Висновки

В цій роботі в мене з'явилася нагода до дослідження лінійних програмних специфікацій для подання перетворювальних операторів та операторів суперпозиції. Я набув практичних навичок їх використання під час складання лінійних програмних специфікацій, обчислюючи площу та периметр трикутника, вершини якого задані двома координатами.