Skalarprodukt - Prikkprodukt Gitt to vektore ii og V Definen Svaret Wir da $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(x)$. et tall, en skabr. Hva represent era dette tallet. $\frac{7}{\sqrt{1}}$ $\frac{7$ $x = |\vec{v}| - \cos x$ y = | [] + cosx $\overrightarrow{U} \cdot \overrightarrow{V} = (\text{lengthen til } \overrightarrow{V} \text{ projisent wed } \overrightarrow{pa} \ \overrightarrow{U}) \cdot (\text{lengthen til } \overrightarrow{U})$ $= (\text{lengthen til } \overrightarrow{U} \text{ projisent wed } \overrightarrow{pa} \ \overrightarrow{V}) \cdot (\text{lengthen til } \overrightarrow{V})$

Ets: Arbeid wt Sout av en koast. Arbeid er kræft ganget strekning. W = Fx'S 125° Fy = F. cos 25°. S = F.s. cos 250 Frikgionsfritt underlag = F·s Cds 25° = $\frac{f_{2c}}{F}$ => f_{2c} = $F \cdot cos 25°$ For veletorer: Arbeid a Svendelæs kræst ganget stælning, men nå kræst veletor prikket med stælningsvelter. Vi bruker skolar produkt. Vi steal somme love on kryssprodukt/vektorprodukt, Tre spongual: Vi han to veletorer, vi. og Jär vite: Hva vet vi om u og v i disse til fellene? i) ū. V = 5 或 R·マ=-2 ũ· V= 1ũ1·1V1· cos Q. iii) v.v = 0 Huse: cos (180°-v°)=-cos (v)

Hvis ü.v >0 må x e [0,90°) Hvis ü.v <0 må x e (90°, 180°) Son art; x =90° eller 141=0 eller 171=0. Vet vi om vi har ca 3, hole) Mert: On vivet [u] og [v] og u.v, kan vi Sinne a. Q-V = |Q| - |V| - cos x $= > \cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$ => $\alpha = \arccos\left(\frac{u \cdot v}{|u| \cdot |v|}\right)$ For at dette skal væl nyttig trenge v: en alternativ måte å regne prikk produktet på. Vi har Sølgende regneregler for prikkproduktet: O û·v·v· (3) (a·u). (1·v) = a·b·(u·v)

Gjør det samme som to vilkarlige vektore $\vec{u} = [x_u, y_u] \quad \vec{v} = [x_v, y_v]$ = >Cuesc + yueg = xvesc + yveg 2.7 = (x, ex + y, ey). (x, ex + y, ey) = (scuex). (screx) + (scuex). (grey) + (yu eg). (xvez) + (yu eg). (gv eg) = XuXv(ex. ex) + Xuyv(ex. eg) + yuxv(eg·ez) + yuyv(eg·eg)

= XuXv + Yu yv

Formel:

 $[x_1, y_1]$ $[x_2, y_2]$ = $x_1x_2 + y_1y_2$

Eksemple:

a) Hva a prikkproduktet til
$$\vec{u} \cdot \vec{v}$$
 når $\vec{u} = [3, 4]$ og $\vec{v} = [-2, 2]$?

$$\vec{u} \cdot \vec{v} = 3 \cdot (-2) + 4 \cdot 2$$

$$= -6 + 8 = 2$$

$$|\vec{u}| = |\vec{3}^2 + 4^2| = |\vec{9} + |\vec{6}| = |\vec{25}| = 5.$$

$$|\vec{7}| = |\vec{(-2)}^2 + 2^2| = |\vec{4} + 4^2| = |\vec{8}| = 2\sqrt{2}$$

$$\cos \alpha = \frac{Z}{5.2\sqrt{2}} = \frac{1}{5\sqrt{2}}$$

$$x = cos^{-1}(\frac{1}{5\sqrt{2}}) = 81.87^{\circ}$$

$$2 = 5.18.9$$
 | : 5
$$\frac{2}{5} = \frac{8189}{8}$$
 | : $\frac{2}{5} = 189$ | : 187

$$\frac{2/5}{18} = \frac{18}{18} = \frac{2}{518} = 9$$

$$\frac{2}{5\sqrt{8}} = \frac{5\sqrt{8}y}{5\sqrt{8}} = \frac{2}{5\sqrt{8}} = y$$

$$\frac{2}{5\sqrt{8}} = \frac{5\sqrt{8}y + 1}{5\sqrt{8}} = \frac{5\sqrt{8}y}{5\sqrt{8}} + \frac{1}{5\sqrt{8}}$$

$$\frac{2}{5\sqrt{8}} = y + \frac{1}{5\sqrt{8}}$$
 $\left| -\frac{1}{5\sqrt{8}} \right|$

$$\frac{2}{5\sqrt{8}} - \frac{1}{5\sqrt{8}} = 9 + \frac{1}{5\sqrt{8}} = \frac{1}{5\sqrt{8}}$$

Vi kunne Sunnet vinkeler mellon vektorene uten prikkprodukt. Men ville vært mer jobb.

$$\tan \propto_u = \frac{4}{3}$$

$$\tan \propto_v = \frac{2}{2} = 1$$

$$\alpha_{u} = 53.13^{\circ}$$

 $\alpha_{v} = 45^{\circ}$

$$x = 180^{\circ} - 45^{\circ} - 53.13^{\circ}$$

$$= 81.87^{\circ}$$

Kunne sett ut som mye vant

Må da vite at vi har tegnet viktig Sigur Sora Så rett svar.

Like vinkler:		
Situasjon 1:		Disse e den samme vintelen
Situation 2:	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Pavallelle liujen
		Disse vinklene en den samme vinkelen
Elsompel Sign Sysill.		