See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265094539

The complete mitochondrial genome of domestic sheep, Ovis aries

	Mitochondrial DNA · August 2014 //19401736.2014.953076 · Source: PubMed	
CITATIONS		READS
5		94
2 author	rs, including:	
	Chinese Academy of Sciences	
	150 PUBLICATIONS 1,285 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Mutational and Evolutionary Mechanisms of Plant Organelle Genomes View project

http://informahealthcare.com/mdn

ISSN: 1940-1736 (print), 1940-1744 (electronic)

Mitochondrial DNA, Early Online: 1–3 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2014.953076

MITOGENOME ANNOUNCEMENT

The complete mitochondrial genome of domestic sheep, Ovis aries

Xiao-di Hu¹ and Li-zhi Gao^{1,2}

¹Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China and ²Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, China

Abstract

In this study, we report a complete mitochondrial (mt) genome sequence of the Texel ewe, *Ovis aries*. The total genome is 16,615 bp in length and its overall base composition was estimated to be 33.68% for A, 27.36% for T, 25.86% for C, and 13.10% for G indicating an AT-rich (61.04%) feature in the *O. aries* mtgenome. It contains a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a control region (D-loop region). Comparisons with other publicly available sheep mitogenomes revealed a bunch of nucleotide diversity. This complete mitgenome sequence would enlarge useful genomic information for further studies on sheep evolution and domestication that will enhance germplasm conservation and breeding programs of *O. aries*.

Keywords

Comparative mitochondrial genomics, *Ovis* aries, Texel ewe

History

Received 13 July 2014 Revised 20 July 2014 Accepted 28 July 2014 Published online 26 August 2014

Domesticated sheep, Ovis aries, have had an important part in human settlement, providing a farmed source of food, wool and hide since the Neolithic Agricultural revolution approximately 8000-9000 years ago (Ryder, 1984). Mitochondrial genome has long been recognized as an important organelle related to disease, apoptosis, aging and metabolism (Boore, 1999). The complete mitochondrial (mt) genome sequencing and analyses of a number of haplotype groups identified in domestic sheep and its wild relatives have given in-depth insights into the sheep mtgenomeand variation their evolutionary relationships (Hiendleder et al., 1998; Hiendleder, 1998; Lancioni et al., 2013; Meadows et al., 2011; Miller et al., 2012). These obtained findings indicate that more representatives of sheep reference mtgenomes would better provide evidence of its origins and domestication and further enhance the germplasm conservation and breeding programs. Here, using the Velvet package (Zerbino & Birney, 2008), we assembled and characterized the complete mitochondrial genome of the Texel ewe, O. aries, with the Illumina sequencing dataset released by Jiang et al. (2014). This mitochondrial sequence will enlarge genomic resources of a global sheep reference mtgenome panel that would greatly help germplasm conservation and utilization of O. aries.

The complete mitochondrial genome (GenBank Accession Number: KJ954145) of *O. aries* (16,615 bp in length) harbored a

total 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and two non-coding regions: the origin of light-strand replication (*OL*) and control region (*D-loop*) (Table 1). The total base compositions are 33.68% A, 27.36% T, 25.86% C, and 13.10% G; the percentage of A+T (61.04%) was found to be higher than G+C (38.96%). Most of these genes are encoded on the H-strand, except for the *ND6* gene and 8 tRNA genes that are encoded on the L-strand. All protein-coding genes are 11,373 bp in length, which together encode 3805 amino acids. A total of 13 open reading frames of protein-coding sequences have the typical ATN initiation codon. Seven genes used TAA as their termination codon, whereas *ND2* and *Cyt b* use with TAG and AGA, respectively. In addition, there are four genes (*COX3*, *ND3*, *ND4* and *ND6*) that were found with an incomplete stop codon.

The mitogenome of *O. aries* contains a small subunit of 12S rRNA (958 bp), a large subunit of 16S rRNA (1574 bp) and a typical set of 22 tRNA genes. These ribosomal subunit genes are located between the *tRNA-Phe* and *tRNA-Leu* genes and further separated by the *tRNA-Val* gene. The total length of all tRNAs is 1510 bp, varying from 64 bp (*tRNA-phe*) to 75 bp (*tRNA-Leu*). The *OL* is 32 bp in length, which is located between *tRNA-Asn* and *tRNA-Cys* genes within the WANCY cluster (*tRNA-Asn*, *tRNA-Cys*, *tRNA-Trp*, *tRNA-Ala* and *tRNA-Tyr*). The control region (CR) or *D-loop* is 1180 bp in length and is positioned between *tRNA-Pro* and *tRNA-Phe*.

We next compared the complete Texel ewe mitochondrial genome with seven *O. aries* breeds and three *Ovis* species (*O. vignei*, *O. ammon* and *O. canadensis*) (Hiendleder et al., 1998; Hiendleder, 1998; Lancioni et al., 2013; Meadows et al., 2011; Miller et al., 2012) (Table 1). Our results show that the gene order and base composition were expectedly conserved one another; however, SNPs and genome sizes varied slightly within *O. aries* but higher levels of variation were detected among different *Ovis* species.

Table 1. Features of the Ovis aries mitochondrial genome of Texel breed and comparisons with other Ovis aries mitochondrial genomes.

	Position		Codons			
Genes	Start End	End	Length (bp)	Start	Stop	Strand
tRNA-Phe	1	66	66			+
12S rRNA	67	1024	958			+
tRNA-Val	1026	1092	67			+
16S rRNA	1093	2666	1574			+
tRNA-Leu	2668	2742	75			+
ND1	2745	3695	951	ATG	TAA	+
tRNA-Ile	3701	3769	69			+
tRNA-Gln	3767	3838	72			<u>.</u>
tRNA-Met	3841	3909	69			+
ND2	3910	4950	1041	ATA	TAG	+
tRNA-Trp	4952	5018	67	21171	1710	+
tRNA-Ala	5020	5088	69			_
tRNA-Asn	5090	5162	73			_
OL	5163	5194	32			_
	5105	5262	68			
tRNA-Cys			68			_
tRNA-Tyr	5263	5330		A TEC	TT 4 4	-
COX1	5332	6873	1542	ATG	TAA	+
tRNA-Ser	6874	6944	71			-
tRNA-Asp	6950	7017	68			+
COX2	7019	7699	681	ATG	TAA	+
tRNA-Lys	7706	7773	68			+
ATP8	7775	7972	198	ATG	TAA	+
ATP6	7936	8613	678	ATG	TAA	+
COX3	8616	9398	783	ATG	T	+
tRNA-Gly	9400	9468	69			+
ND3	9469	9813	345	ATA	TA-	+
tRNA-Arg	9816	9884	69			+
ND4L	9885	10,178	294	ATG	TAA	+
ND4	10,175	11,551	1377	ATG	T	+
tRNA-His	11,553	11,621	69			+
tRNA-Ser	11,622	11,681	60			+
tRNA-Leu	11,683	11,752	70			+
ND5	11,753	13,570	1818	ATA	TAA	+
ND6	13,560	14,087	528	ATG	T	· —
tRNA-Glu	14,085	14,153	69	7110	•	_
Cyt b	14,158	15,294	1137	ATG	AGA	+
tRNA-Thr	15,301	15,370	70	7110	71071	+
tRNA-Pro	15,370	15,435	66			_
D-loop	15,436	16,615	1180			_
Species Names and NCBI	Genome size (bp)		Base con	npositions		SNPs (In comparisons
Accession Numbers				•		with the Texel breed)
O. aries (Texel breed): KJ954145	16,615	A (33.68%)	T (27.36%)	C (25.86%)	G (13.10%)	0
O. aries (Merino breed): HM236174	16,617	A (33.66%)	T (27.36%)	C (25.87%)	G (13.11%)	112
O. aries (Merino landschaf breed): NC001941	16,616	A (33.67%)	T (27.40%)	C (25.81%)	G (13.12%)	28
O. aries (Appenninica breed): KF302450	16,618	A (33.69%)	T (27.39%)	C (25.83%)	G (13.09%)	21
O. aries (Karakas breed): HM236176	16,616	A (33.67%)	T (27.40%)	C (25.82%)	G (13.11%)	15
O. aries (Awassi breed): HM236182	16,620	A (33.65%)	T (27.34%)	C (25.90%)	G (13.11%)	168
O. aries (Tuj breed): HM236183	16,619	A (33.65%)	T (27.36%)	C (25.88%)	G (13.11%)	175
O. aries (Romney breed): HM236175	16,617	A (33.69%)	T (27.39%)	C (25.83%)	G (13.11%)	104
O. vignei: HM236187	16,694	A (33.71%)	T (27.49%)	C (25.85%)	G (13.10%)	383
O. vignet. HM236187 O. ammon: HM236188	16,613	. ,		C (25.85%)	,	429
		A (33.67%)	T (27.46%)	C (25.79%)	G (13.08%)	
O. canadensis: JN181255	16,463	A (33.75%)	T (27.46%)	C (23.80%)	G (12.93%)	795

Acknowledgements

The authors would like to thank anonymous reviewers for providing valuable comments on the manuscript.

Declaration of interest

This work was supported by Key Project of Natural Science Foundation of Yunnan Province (2010CC011), Top Talents Program of Yunnan Province (20080A009), Hundreds Oversea Talents Program of Yunnan Province and Hundreds Talents Program of Chinese Academy of Sciences (CAS) (to L. Z. GAO).

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Boore JL. (1999). Animal mitochondrial genomes. Nucleic Acids Res 27: 1767-80.

Hiendleder S, Lewalski H, Wassmuth R, Janke A. (1998). The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J Mol Evol 47: 441-8.

Hiendleder S. (1998). A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes. Animal Genet 29:

Meadows JRS, Hiendleder S, Kijas JW. (2011). Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity 106:700-6.

- Miller JM, Malenfant RM, Moore SS, Coltman DW. (2012). Short reads, circular genome: Skimming SOLiD sequence to construct the bighorn sheep mitochondrial genome. J Heredity 103:140-6.
- Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, et al. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:1168-73.
- Lancioni H, Di Lorenzo P, Ceccobelli S, Perego UA, Miglio A, Landi V, Antognoni MT, et al. (2013). Phylogenetic relationships of three Italian
- Merino-derived sheep breeds evaluated through a complete mitogenome analysis. PLoS ONE 8:e73712.
- Ryder ML. (1984). Sheep. In: Mason IL, editor. Evolution of domesticated animals. London and New York: Longman Group Limited. p 63-84.
- Zerbino DR, Birney E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821-9.