

INTRODUCTION TO DEEP LEARNING

Mouhidine SEIV

FOUNDER - RIMINDER

Deep LEARNING A PRACTICAL COURSE ECOLE POLYTECHNIQUE, 05/04/2018

History of Learning Systems

Évolution de l'intérêt pour cette recherche

Google Trends

- Apprentissage supervisé
 Apprentissage non supervisé
- Apprentissage par renforcement

Program & Course Logistics

- **Course 1**: (05-04-18)
 - Introduction to Deep Learning Mouhidine SEIV (Riminder)
- **Course 2 : (**12-04-18)
 - Deep Learning in Computer Vision Slim FRIKHA (Riminder)
- **Course 3**: (19-04-18)
 - Deep Learning in NLP Paul COURSAUX (Riminder)
- **Course 4 : (**26-04-18)
 - Efficient Methods and Compression for Deep Learning INVITED GUEST
- **Course 5:** (03-05-18)
 - Introduction to Deep Learning Frameworks INVITED GUEST
- **Course 6:** (10-05-18)
 - Deployment in Production and Parallel Computing INVITED GUEST

Location: Ecole Polytechnique from 6:30 pm to 7:30pm

Prerequisites

- Proficiency in python
- Linear algebra
- Basic probability and statistics
- Basic machine learning (cost functions, derivatives, gradient methods)

Machine Learning vs Deep Learning

Reasons for Exploring Deep Learning

- In 2006 deep learning techniques started outperforming other Machine learning techniques. Why now?

- DL techniques benefit more from a lot of data
- Faster machines and multicore CPU/GPU help DL
- New models, algorithms, ideas
- → Improved performance (first in speech and vision, then NLP)

What is Deep Learning?

- Representation learning attempts to automatically learn good features or representations
- Deep learning algorithms attempt to learn (multiple levels of) representation and an outputs
- From "raw" inputs **x** (e.g. words)

Deep Representations

- A deep representation is a composition of many functions

- Its gradient can be backpropagated by the chain rule

Deep Neural Network

- A **deep neural network** is typically composed of:
 - Linear transformations

$$h_{k+1} = Wh_k$$

Non-linear activation functions

$$h_{k+2} = f(h_{k+1})$$

- A loss function on the output, e.g.
 - Mean-squared error

$$I = ||y^* - y||^2$$

Log likelihood

$$I = \log \mathbb{P}[y^*]$$

Non-linear activation functions

Training Neural Networks

- Sample gradient of expected loss L(w) = E [l]

$$\frac{\partial I}{\partial \mathbf{w}} \sim \mathbb{E}\left[\frac{\partial I}{\partial \mathbf{w}}\right] = \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$$

- Adjust **w** down the sampled gradient

$$\Delta w \propto rac{\partial I}{\partial \mathbf{w}}$$

Weight Sharing

 Recurrent neural network shares weights between time-steps

 Convolutional neural network shares weights between local regions

What is NLP?

- Natural language processing is a field at the intersection of
 - Computer science
 - Artificial intelligence
 - and linguistics.
- Goal: for computers to process or "understand" natural language inorder to perform tasks that are useful, e.g.
 - Question Answering
- Fully understanding and representing the meaning of language (or even defining it) is an illusive goal.
- Perfect language understanding is Al-complete

Deep Learning for NLP

BEFORE Deep Learning

After Deep Learning

What is Computer Vision?

- Most deep learning groups have (until 2 years ago) focused on computer vision
- Break through paper: ImageNet
 Classification with Deep Convolutional
 Neural Networks by Krizhevsky et al. 2012

https://github.com/riminder

Deep Learning for Computer Vision

BEFORE Deep Learning

After Deep Learning

Histogram of Gradients (HoG) Dalal & Triggs, 2005

orientation

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

Zeiler and Fergus (2013)

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl al. (2010)

Acoustic model	Recog \ WER	RT03S FSH	Hub5 SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass –adapt	18.5 (-33%)	16.1 (-32%)

Phonemes/Words

Visualization

- Singular Value Decomposition (SVD)
- Principal component analysis (PCA)

 \hat{X} is the best rank k approximation to X, in terms of least squares.

t-distributed stochastic neighbor embedding (T-SNE)
 https://distill.pub/2016/misread-tsne/

Singular Value Decomposition (SVD)

Corpus:

I like deep learning. I like NLP. I enjoy flying.

```
import numpy as np
la = np.linalg
words = ["I", "like", "enjoy",
         "deep", "learnig", "NLP", "flying", "."]
X = np.array([[0,2,1,0,0,0,0,0]],
              [2,0,0,1,0,1,0,0]
              [1,0,0,0,0,0,1,0],
              [0,1,0,0,1,0,0,0]
              [0,0,0,1,0,0,0,1],
              [0,1,0,0,0,0,0,1],
              [0,0,1,0,0,0,0,1],
              [0,0,0,0,1,1,1,0]
U, s, Vh = la.svd(X, full matrices=False)
```


- Printing first two columns of U corresponding to the 2 biggest singular values.

Trouble with Learning systems

Adversarial example 98% Toaster

Bias example 95% Unqualified

GENDER STEREOTYPING: WORD EMBEDDINGS

<u>HE</u>

homemaker

nurse

receptionist

librarian

SOFTBALL

pitcher

bookkeeper

registered nurse

waitress

<u>SHE</u>

maestro

skipper

protege

philosopher

FOOTBALL

footballer

businessman

maestro

cleric

GENDER STEREOTYPING: REPRESENTATION

Formulation:

- Let B be the gender subspace
- "Hard bias correction": For a gender neutral word w , set $w \leftarrow w$ w_B / $||w w_B||$
- "Soft Bias correction": For word matrix W, gender neutral words N find a linear transformation T

$$\min_{T} | | (TW)^{T} TW - W^{T} W | |_{F}^{2} + \lambda | | (TN)^{T} TB - |_{F}^{2}$$

Results:

- Reduced gender stereotyping in the word embeddings
- Performance on downstream tasks still almost the same

Man Is To Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. T Bolukbasi, K-W Chang, J Zou, V Saligrama, A Kalai. Arxiv 2016

Adversarial examples

Original image Temple (97%)

Perturbations

Adversarial example
Ostrich (98%)

Generating Adversarial Examples

The Fast Gradient Sign Method

$$J(\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \approx J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x}).$$

Maximize

$$J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x})$$

subject to

$$||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_{\infty} \le \epsilon$$

$$\Rightarrow \tilde{x} = x + \epsilon \operatorname{sign}(\nabla_x J(x)).$$

Modern deep nets are very piecewise linear

POINT OF CONTACT

Mouhidine SEIV
CEO & Founder @Riminder
mouhidine.seiv@riminder.net