Reference No.: WTS13S0503804E

Page 1 of 69

FCC TEST REPORT

FCC ID : WY9-BTS-70

Applicant : Telnova Technology Co.,Ltd

Address : F7,Block B, Jiuzhou Electronic Building, Southern No.12 Rd, High-tech

Industrial Park, Nanshan District, Shenzhen, Guangdong Province, China

Manufacturer : The same as above
Address : The same as above

Equipment Under Test (EUT):

Product Name : Bluetooth Receiver

Model No. : BTS-70

Rules : FCC CFR47 Part15 C Section 15.247:2010

Date of Test : May 21 ~ 25, 2013

Date of Issue : May 31, 2013

Test Result : PASS*

Remark:

The test results have been reviewed against the directives above and found to meet their essential requirements.

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West of Baima Road., Songgang Street, Bao'an District, Shenzhen, China

Tel: +86-755-83551033 Fax: +86-755-83552400

Compiled by:

Approved by:

Zero Zhou / Project Engineer

Philo Zhong / Manager

Thelo shoul

^{*} The sample detailed above has been tested to the requirements of FCC rules mentioned above.

Report No.: WTS13S0503804E Page 2 of 69

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
	15.205(a)	
Radiated Emissions	15.209	PASS
	15.247(d)	
Duty Cycle	15.35	PASS
Spurious RF Conducted Emissions from out of band	15.247(d)	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure	4 4207/h)/4)	DACC
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 **Contents**

		Page .
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T4.2 DETAILS OF E.U.T	
	4.3 CHANNEL LIST	
	4.4 TEST FACILITY	
	4.6 GENERAL CONDITION	
	4.6.1 Environmental condition of test site	
	4.6.2 Test Mode	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	-
6	CONDUCTED EMISSIONS	
•	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	6.3 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	12
	7.1 EUT OPERATION:	
	7.2 TEST SETUP	
	7.4 TEST PROCEDURE	
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6 SUMMARY OF TEST RESULTS	
8	DUTY CYCLE	
	8.1 Test Procedure	
	8.2 Test Result	
9	SPURIOUS RF CONDUCTED EMISSIONS FROM OUT OF BAND	
	9.1 Test Procedure	
10	BAND EDGE MEASUREMENTS	
	10.1 Test Procedure:	
	10.2 Test Result:	
11	20 DB BANDWIDTH MEASUREMENT	38
	11.1 Test Procedure:	38
	11.2 Test Result:	38
12	MAXIMUM PEAK OUTPUT POWER	44
	12.1 Test Procedure:	
	12.2 TEST RESULT:	
13	HOPPING CHANNEL SEPARATION	
	13.1 TEST PROCEDURE:	
۱۸/	13.2 TEST RESULT:	50
٧٧	raiter delvides (difetiziteti) du.,Llu.	

14	NUME	BER OF HOPPING FREQUENCY	52
	14.1 14.2	TEST PROCEDURE:TEST RESULT:	
15	DWEL	LL TIME	
	15.1	Test Procedure:	53
	15.2	TEST RESULT:	53
16	ANTE	NNA REQUIREMENT	60
17	RF EX	XPOSURE	61
	17.1	REQUIMENTS:	61
	17.2	THE PROCEDURES / LIMIT	
	17.3	MPE CALCULATION METHOD	
18	PHOT	TOGRAPHS -TEST SETUP	63
	18.1	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	63
	18.2	RADIATED EMISSIONS	
19	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	
	19.1	EUT – External View	65
	19.2	EUT- INTERNAL VIEW	

Report No.: WTS13S0503804E Page 5 of 69

4 General Information

4.1 General Description of E.U.T.

Product Name : Bluetooth Receiver

Model No. : BTS-70

Frequency Range : 2402-2480MHz, 79 Channels in total

Oscillator : Crystal 16MHz

Antenna installation : PCB Printed Antenna

Type of Modulation: GFSK,Pi/4DQPSK,8DQPSK

Note : All the modulation modes were tested, all the test data deeply

conform to the standard and the data of the worst mode (GFSK) were recorded in the following pages. That all modulation

methods do not exceed the above mentioned limits.

4.2 Details of E.U.T.

Technical Data : (1)DC 3.7V, 80mAh from battery

(2)DC 5V from USB charging

4.3 Description of Support Units

No.	Equipment	Manufacturer	Model No.	Serial No.
1	Notebook	IBM	2672-39C	99-8D3W4
2.				

4.4 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

Report No.: WTS13S0503804E Page 6 of 69

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: IC7760A

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.6 Test Location

All the tests were performed at:

Waltek Services (Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

4.7 General condition

Ambient Condition: 25.5 °C 51 %RH

4.7.1 Environmental condition of test site

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

The follow condition is not applicable for adapter:

Test Voltage	Input voltage
Rated voltage-15%	
normal	
Rated voltage+15%	

The follow condition is applicable.

Test voltage	Test Voltage
Rated voltage	New Battery DC 3.7V

4.7.2 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Lower channel	Middle channel	Upper channel
Transmitting	2402MHz	2441MHz	2480MHz
Receiving	2402 MHz	2441MHz	2480MHz

Report No.: WTS13S0503804E Page 7 of 69

5 Equipment Used during Test

5.1 Equipments List

	Equipments List					
Conducted Emissions						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Aug. 13,2012	Aug. 12,2013
2.	LISN	R&S	ENV216	101215	Aug. 13,2012	Aug. 12,2013
3.	Cable	Тор	TYPE16(3.5M)	-	Aug.14,2012	Aug. 13,2013
3m Se	emi-anechoic Chambe	r for Radiation(TD	() (Test Frequen	cy: 16MHz~10	00MHz)	
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Aug.09,2012	Aug.09,2013
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Aug. 13,2012	Aug. 13,2013
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Aug.11,2012	Aug.11,2013
4	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.07,2013	Apr.07,2014
5	Cable	HUBER+SUHNE R	CBL2	525178	Sep.15,2012	Sep.15,2013
3m Se	mi-anechoic Chamber	for Radiation Emis	sions (Test Free	quency:Above	1GHz)	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Aug. 13,2012	Aug. 13,2013
2.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Aug. 13,2012	Aug. 13,2013
3.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Aug. 13,2012	Aug. 13,2013
4.	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07,2013	Apr.07,2014
5.	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-148	Aug. 13,2012	Aug. 13,2013
6.	10m Coaxial Cable with N- plug	SCHWARZBECK	AK 9515 H	-	Aug. 13,2012	Aug. 13,2013

Report No.: WTS13S0503804E Page 8 of 69

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Spurious	(30M~1000MHz)
Emissions test	± 4.74 dB
	(1000M~25000MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Report No.: WTS13S0503804E Page 9 of 69

6 Conducted Emissions

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-Peak &

Average if maximised peak within 6dB of Average Limit

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1016 mbar

EUT Operation:

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The EUT was placed on the test table in shielding room.

6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Test Mode: Charging(Connected to the PC)+BT Linking Mode

Live line:

Neutral line:

Report No.: WTS13S0503804E Page 12 of 69

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705
Test Result: PASS
Measurement Distance: 3m

15.209 Limit:

. <u>203 Liiiiit.</u>		
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 -0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.247 (d) Limit:

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.1 EUT Operation:

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1011 mbar

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested from 8 MHz to 25 GHz.

Below 30MHz

Sweep Speed	Auto
IF Bandwidth	10KHz
Video Bandwidth	10KHz
Resolution Bandwidth	10KHz

30MHz ~ 1GHz

Sweep Speed	Auto
IF Bandwidth	
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	

Above 1GHz

Sweep Speed	. Auto
IF Bandwidth	
Video Bandwidth	.3MHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	.Normal
Resolution Bandwidth	

Report No.: WTS13S0503804E Page 15 of 69

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand). After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows: Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain the "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

7.6 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1000MHz

The Test Mode: (1)charging (Connected to the PC)+BT linking mode, (2)BT linking (battery)

Test mode as above, Only the worst mode were shown in the report.

Antenna polarization: Vertical

Antenna polarization: Horizontal

Test Frequency: 1GHz ~ 25GHz radiation test data

And the below is the Fundamental and Harmonic

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)				
Lower frequency											
2402.00	AV	Vertical	73.68	N/A	(Fund.)	1.1	110				
4804.00	AV	Vertical	40.11	54.00	13.89	1.4	140				
7206.00	AV	Vertical	36.26	54.00	17.74	1.6	170				
9608.00	AV	Vertical	32.52	54.00	21.48	1.4	130				
12010.00	AV	Vertical	30.05	54.00	23.95	1.8	185				
14412.00	AV	Vertical	34.91	54.00	19.09	1.2	195				
16814.00	AV	Vertical	30.02	54.00	23.98	1.9	160				
19216.00	AV	Vertical	31.74	54.00	22.26	1.4	140				
21618.00	AV	Vertical	30.22	54.00	23.78	1.4	30				
24020.00	AV	Vertical	30.41	54.00	23.59	1.1	145				
2402.00	AV	Horizontal	78.62	N/A	(Fund.)	1.7	70				
4804.00	AV	Horizontal	42.54	54.00	11.46	1.2	180				
7206.00	AV	Horizontal	36.07	54.00	17.93	1.4	100				
9608.00	AV	Horizontal	31.81	54.00	22.19	1.4	195				
12010.00	AV	Horizontal	32.15	54.00	21.85	1.6	110				
14412.00	4412.00 AV Horizontal		33.64	54.00	20.36	1.2	190				
16814.00	AV Horizontal 32.02		54.00 21.98		1.7	150					
19216.00	216.00 AV Horizontal		30.74	54.00	23.26	1.6	175				
21618.00	AV	Horizontal	31.56	54.00	22.44	1.4	160				
24020.00	AV	Horizontal	29.84	54.00	24.16	1.4	90				
2402.00	PK	Vertical	83.29	N/A	(Fund.)	1.3	30				
4804.00	PK	Vertical	41.77	74.00	32.23	1.7	145				
7206.00	PK	Vertical	31.62	74.00	42.38	2.1	160				
9608.00	PK	Vertical	30.55	74.00	43.45	1.2	240				
12010.00	PK	Vertical	29.41	74.00	44.59	1.1	100				
14412.00	PK	Vertical	30.28	74.00	43.72	1.4	155				
16814.00	PK	Vertical	31.45	74.00	42.55	1.5	185				
19216.00	PK	Vertical	30.88	74.00	43.12	1.1	190				
21618.00	PK	Vertical	31.73	74.00	42.27	1.9	110				
24020.00	PK	Vertical	32.66	74.00	41.34	1.2	165				
2402.00	PK	Horizontal	81.46	N/A	(Fund.)	2.0	120				
4804.00	PK	Horizontal	42.51	74.00	31.49	1.7	170				
7206.00	PK	Horizontal	32.72	74.00	41.28	1.6	90				
9608.00	PK	Horizontal	30.64	74.00	43.36	1.1	85				
12010.00	PK	Horizontal	32.11	74.00	41.89	1.7	205				
14412.00	PK	Horizontal	30.84	74.00	43.16	1.0	60				
16814.00	PK	Horizontal	32.71	74.00	41.29	1.7	220				
19216.00	PK	Horizontal	31.23	74.00	42.77	1.7	155				
21618.00	PK	Horizontal	30.18	74.00	43.82	1.3	170				

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)			
24020.00	PK	Horizontal	31.44	74.00	42.56	1.5	140			
Middle frequency										
2441.00	AV	Vertical	71.68	N/A	(Fund.)	1.7	70			
4882.00	AV	Vertical	37.12	54.00	16.88	1.4	185			
7323.00	AV	Vertical	36.11	54.00	17.89	1.1	140			
9764.00	AV	Vertical	34.52	54.00	19.48	1.5	70			
12205.00	AV	Vertical	31.63	54.00	22.37	1.7	50			
14646.00	AV	Vertical	33.45	54.00	20.55	1.4	225			
17087.00	AV	Vertical	31.68	54.00	22.32	1.6	60			
19528.00	AV	Vertical	32.58	54.00	21.42	1.5	80			
21969.00	AV	Vertical	30.12	54.00	23.88	1.9	210			
24410.00	AV	Vertical	29.66	54.00	24.34	1.7	175			
2441.00	AV	Horizontal	78.53	N/A	(Fund.)	1.5	190			
4882.00	AV	Horizontal	36.79	54.00	17.21	1.7	150			
7323.00	AV	Horizontal	35.96	54.00	18.04	1.7	310			
9764.00	AV	Horizontal	33.46	54.00	20.54	1.0	215			
12205.00	AV	Horizontal	32.67	54.00	21.33	1.2	200			
14646.00	AV	Horizontal	34.65	54.00	19.35	1.7	250			
17087.00	AV	Horizontal	32.77	54.00	21.23	2.1	185			
19528.00	AV	Horizontal	33.01	54.00	54.00 20.99		165			
21969.00	AV	Horizontal	31.85	54.00	22.15	1.3	210			
24410.00	AV	Horizontal	30.09	54.00 23.91		1.7	200			
2441.00	PK	Vertical	82.93	N/A	(Fund.)	1.3	30			
4882.00	PK	Vertical	45.01	74.00	28.99	1.7	175			
7323.00	PK	Vertical	35.74	74.00	38.26	1.8	170			
9764.00	PK	Vertical	37.09	74.00 36.91		1.4	180			
12205.00	PK	Vertical	35.21	74.00	38.79	1.9	220			
14646.00	PK	Vertical	34.87	74.00	39.13	1.0	95			
17087.00	PK	Vertical	31.11	74.00	42.89	1.4	50			
19528.00	PK	Vertical	32.55	74.00	41.45	1.9	190			
21969.00	PK	Vertical	29.47	74.00	44.53	2.0	185			
24410.00	PK	Vertical	30.12	74.00	43.88	1.4	195			
2441.00	PK	Horizontal	85.27	N/A	(Fund.)	1.7	60			
4882.00	PK	Horizontal	43.12	74.00	30.88	1.7	125			
7323.00	PK	Horizontal	34.75	74.00	39.25	1.7	120			
9764.00	PK	Horizontal	35.63	74.00	38.37	1.7	145			
12205.00	PK	Horizontal	34.14	74.00	39.86	1.8	220			
14646.00	PK	Horizontal	33.84	74.00	40.16	1.1	210			
17087.00	PK	Horizontal	32.65	74.00	41.35	1.3	160			
19528.00	PK	Horizontal	30.11	74.00	43.89	1.3	245			
21969.00	PK	Horizontal	30.06	74.00	43.94	1.1	50			
24410.00	PK	Horizontal	31.04	74.00	42.96	1.3	215			

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)				
Upper frequency											
2480.00	AV	Vertical	77.19	N/A	(Fund.)	1.2	220				
4960.00	AV	Vertical	35.25	54.00	18.75	1.4	95				
7440.00	AV	Vertical	31.64	54.00	22.36	1.3	170				
9920.00	AV	Vertical	31.36	54.00	22.64	1.1	130				
12400.00	AV	Vertical	31.47	54.00	22.53	2.0	140				
14880.00	AV	Vertical	32.98	54.00	21.02	1.5	195				
17360.00	AV	Vertical	31.26	54.00	22.74	1.2	160				
19840.00	AV	Vertical	30.14	54.00	23.86	1.1	260				
22320.00	AV	Vertical	32.11	54.00	21.89	1.5	150				
24800.00	AV	Vertical	29.84	54.00	24.16	1.0	220				
2480.00	AV	Horizontal	73.82	N/A	(Fund.)	1.5	190				
4960.00	AV	Horizontal	36.46	54.00	17.54	2.3	210				
7440.00	AV	Horizontal	32.61	54.00	21.39	1.4	160				
9920.00	AV	Horizontal	32.86	54.00	21.14	1.3	275				
12400.00	AV	Horizontal	32.77	54.00	21.23	1.2	185				
14880.00	AV	Horizontal	31.97	54.00	22.03	1.5	190				
17360.00	AV	Horizontal	30.67	54.00	23.33	1.9	230				
19840.00	AV	Horizontal	31.12	54.00	22.88	1.5	135				
22320.00	AV	Horizontal	33.24	54.00	20.76	1.4	150				
24800.00	AV	Horizontal	30.84	54.00	23.16	2.4	170				
2480.00	PK	Vertical	Vertical 86.59		(Fund.)	1.3	210				
4960.00	PK	Vertical 35.66		74.00	74.00 38.34		115				
7440.00	PK	Vertical	33.26	74.00			180				
9920.00	PK	Vertical	31.47	74.00	42.53	1.1	160				
12400.00	PK	Vertical	33.46	74.00	40.54	1.6	130				
14880.00	PK	Vertical	30.02	74.00	43.98	1.0	155				
17360.00	PK	Vertical	31.69	74.00	42.31	1.2	140				
19840.00	PK	Vertical	30.32	74.00	43.68	1.6	190				
22320.00	PK	Vertical	32.86	74.00	41.14	2.1	170				
24800.00	PK	Vertical	29.87	74.00	44.13	1.0	210				
2480.00	PK	Horizontal	82.11	N/A	(Fund.)	1.8	240				
4960.00	PK	Horizontal	34.21	74.00	39.79	1.4	140				
7440.00	PK	Horizontal	35.74	74.00	38.26	1.6	150				
9920.00	PK	Horizontal	32.19	74.00	41.81	1.5	265				
12400.00	PK	Horizontal	32.68	74.00	41.32	1.6	160				
14880.00	PK	Horizontal	30.22	74.00	43.78	1.6	150				
17360.00	PK	Horizontal	32.61	74.00	41.39	2.1	190				
19840.00	PK	Horizontal	31.41	74.00	42.59	1.3	245				
22320.00	PK	Horizontal	33.26	74.00	40.74	1.9	170				
24800.00	PK	Horizontal	30.84	74.00	43.16	1.6	260				

Report No.: WTS13S0503804E Page 21 of 69

Duty Cycle

Test Requirement: FCC Part 15.35
Test Mothed: ANSI C63.4:2003

Test Status: TX mode.

7.7 Test Procedure

1. The EUT was placed on a turntable which is 0.8m above ground plane

- 2. Set EUT as normal wrking mode
- 3. Set SPA center frequency = fundamental frequency, RBW = 100 kHz, VBW = 100 kHz, Span = 0 Hz, Adjacent sweep time.

7.8 Test Result

The EUT is auto. operation for transmitter, it is declared by the manufacturer as a duty cycle ratio of less than 100%.

The EUT's work time: Ton = pulse time = 0.42 ms

The EUT's work period : $T=T_{ON}+T_{OFF}=$ transmission period =1.25 ms

The EUT's duty cycle : D = $T_{on}/T = 0.42/1.25*100\% = 34\%$

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)=20* Log₁₀(34 %)

= -9dB

Report No.: WTS13S0503804E Page 23 of 69

8 Spurious RF Conducted Emissions from out of band

Test Requirement: FCC Part 15.247(d) In any 100 kHz bandwidth outside the frequency band

in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter

demonstrates compliance with the peak conducted power limits.

Test Mothed: DA 00-705
Test Status: TX mode

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set to span from the lowest frequency generated in the device up to and including the tenth harmonic of the highest fundamental frequency.
- 3. Set RBW = 100kHz and VBW = 300kHz.Sweep =auto.
- 4. mark the worst point and record.

8.2 Test Result

Test Frequency: Below 30MHz

Remark: For emissions below 30MHz,no emission higher than background level, so the data does not show in the report.

Test Frequency: 30MHz ~ 25GHz

Test result plots shown as follows:

Report No.: WTS13S0503804E Page 24 of 69

Modulation:GFSK

Report No.: WTS13S0503804E Page 25 of 69

Report No.: WTS13S0503804E Page 27 of 69

Modulation: Pi/4DQPSK

Report No.: WTS13S0503804E Page 29 of 69

Report No.: WTS13S0503804E Page 30 of 69

Modulation: 8DPSK

Report No.: WTS13S0503804E Page 31 of 69

Report No.: WTS13S0503804E Page 32 of 69

Report No.: WTS13S0503804E Page 33 of 69

9 Band Edge Measurements

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. As defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz. 74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

9.1 Test Procedure:

Detector: For Peak value:

RBW = 1 MHz for f ≥ 1 GHz VBW ≥ RBW; Sweep = auto Detector function = peak Trace = max hold

For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = max hold

Test mode: Test in fixing operating frequency at lower and upper channel.

9.2 Test Result:

Lower Channel - Peak, Vertical

No	о.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	1	2400.000	-9	37.52	54.00	-16.48	AV	
2	2	2402.000	-9	67.12	54.00	13.12	AV	

Lower Channel - Peak, Horizontal

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2400.000	-9	34.02	54.00	-19.98	AV	
2	2401.977	-9	67.96	54.00	13.96	AV	

Upper Channel - Peak, Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2480.240	-9	65.57	54.00	11.57	AV	
2	2483.500	-9	23.61	54.00	-30.39	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2480.240	-9	67.22	54.00	13.22	AV	
2	2483.500	-9	24.91	54.00	-29.09	AV	

Report No.: WTS13S0503804E Page 38 of 69

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at lower, middle, upper

channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

10.2 Test Result:

Modulation	Test Channel	Bandwidth(MHz)	
	Lower	1.120	
GFSK	Middle	1.128	
	Upper	1.128	
	Lower	1.367	
Pi/4DQPSK	Middle	1.357	
	Upper	1.376	
	Lower	1.356	
8DPSK	Middle	1.356	
	Upper	1.346	

Test result plot as follows:

Modulation:GFSK

Date: 27.MAY.2013 16:16:16

Date: 27.MAY.2013 16:19:58

Upper Channel

Date: 27.MAY.2013 16:20:53

Modulation: Pi/4DQPSK

Date: 27.MAY.2013 16:22:43

Report No.:

Date: 27.MAY.2013 16:23:51

Date: 27.MAY.2013 16:25:00

Modulation: 8DPSK

Date: 27.MAY.2013 16:26:33

Date: 27.MAY.2013 16:27:25

Date: 27.MAY.2013 16:28:17

Report No.: WTS13S0503804E Page 44 of 69

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.4:2003

Test Limit: Regulation 15.247 (b)(1)For frequency hopping systems operating in the

2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-

2483.5 MHz band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this document.

The 1watts (30 dBm) limit applies.

Test Mode: Test in fixing operating frequency at lower, middle, upper channel.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
	Lower	-1.10	30
GFSK	Middle	-0.97	30
	Upper	-1.69	30
	Lower	-2.37	30
Pi/4DQPSK	Middle	-2.09	30
	Upper	-2.61	30
	Lower	-2.34	30
8DPSK	Middle	-2.13	30
	Upper	-2.60	30

Modulation:GFSK

Date: 27.MAY.2013 16:47:02

Date: 27.MAY.2013 16:47:27

Date: 27.MAY.2013 16:47:56

Modulation: Pi/4DQPSK

Date: 27.MAY.2013 16:48:38

Date: 27.MAY.2013 16:48:59

Date: 27.MAY.2013 16:49:18

Modulation: 8DPSK

Date: 27.MAY.2013 16:49:45

Date: 27.MAY.2013 16:50:08

Upper Channel

Date: 27.MAY.2013 16:50:27

Report No.: WTS13S0503804E Page 50 of 69

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a) (1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

operate with an output power no greater than 125 mW.

Test Mode: Test in fixing operating frequency at lower, middle, upper channel.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 100kHz, Span = 10MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Test Channel	Separation (MHz)	Result
Lower	1.008	PASS
Middle	1.008	PASS
Upper	1.008	PASS

Test result plot as follows:

Modulation:GFSK Lower Channel:

Middle Channel

Date: 27.MAY.2013 17:08:49

Upper Channel

Date: 27.MAY.2013 17:13:07

Report No.: WTS13S0503804E Page 52 of 69

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1000 kHz. VBW = 3000 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Center Frequency = 2441MHz, Span = 100MHz. Submit the test result graph.

13.2 Test Result:

Total Channels are 79 Channels

Date: 27.MAY.2013 16:05:43

Report No.: WTS13S0503804E Page 53 of 69

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a) (1) (iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping

channels employed.

Test Mode: Test in fixing operating frequency at lower, middle, upper channel.

14.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centered on a hopping channel;

3. Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g. data rate. modulation format. etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6 (s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000

Note: Mkr Delta is once pulse time.

Report No.: WTS13S0503804E Page 54 of 69

Dwell time of each occupation in this channel as follows:

Data Packet	Channel	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	Lower	2.96	0.316	0.400	Pass
DH3	Lower	1.72	0.275	0.400	Pass
DH1	Lower	0.48	0.154	0.400	Pass

Data Packet	Channel	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	Middle	2.98	0.318	0.400	Pass
DH3	Middle	1.73	0.277	0.400	Pass
DH1	Middle	0.46	0.147	0.400	Pass

Data Packet	Channel	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	Upper	2.98	0.318	0.400	Pass
DH3	Upper	1.73	0.277	0.400	Pass
DH1	Upper	0.45	0.144	0.400	Pass

Report No.: WTS13S0503804E Page 60 of 69

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a integrated antenna, fulfil the requirement of this section.

Report No.: WTS13S0503804E Page 61 of 69

16 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

16.1 Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Report No.: WTS13S0503804E Page 62 of 69

16.3 MPE Calculation Method

$$\mathsf{E}\left(\mathsf{V/m}\right) = \frac{\sqrt{30 \times P \times G}}{d} \qquad \qquad \mathsf{Power \ Density:} \ \ \mathit{Pd}\left(\mathsf{W/m^2}\right) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric) ,Gain_{numeric} = 10^{(dBi/10)}

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Modulation	Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)
GFSK	0	1	-0.97	0.800	0.000159	1
Pi/4DQPSK	0	1	-2.09	0.618	0.000123	1
8DPSK	0	1	-2.13	0.612	0.000124	1

Report No.: WTS13S0503804E Page 63 of 69

17 Photographs -Test Setup

17.1 Photograph – Conducted Emission Test Setup

17.2 Radiated Emissions

From 30-1000MHz

Report No.: WTS13S0503804E Page 65 of 69

18 Photographs - Constructional Details

18.1 EUT - External View

Report No.: WTS13S0503804E Page 66 of 69

Report No.: WTS13S0503804E Page 67 of 69

Report No.: WTS13S0503804E Page 68 of 69

18.2 EUT-Internal View

Report No.: WTS13S0503804E Page 69 of 69

=End of test report==