Ames House Price prediction using tidymodel tools

Ravi Hela

22/03/2020

Load libraries

```
library(tidymodels)
library(readr)
library(tidyverse)
library(lubridate)
library(skimr)
library(DataExplorer)
library(tidyquant)
library(corrr)
library(caret)
library(Hmisc)
```

Define some useful functions

Calling few function to help get correlation dataframe

```
#function to help filter corelated variables
source("correlation_df.R")
#get model metrics in a dataframe
source("model_metric_compare.R")
```

Read data

```
train <- read_csv("train.csv")
test <- read_csv("test.csv")

names(train) <- make.names(names(train))
names(test) <- make.names(names(test))</pre>
```

The "test" file is the one to be used for Kaggle submission. This will not beused for model training but is a good for EDA use. For training model we crate a validation set from train file later on. For model training we call the validation set as testing set

Combinie test and train for EDA

Lets look at the summary of this combined dataset

Table 1: Data summary

Name Number of rows	house_comb 2919
Number of columns	82
Column type frequency:	
character	44
numeric	38
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
MSZoning	4	1.00	2	7	0	5	0
Street	0	1.00	4	4	0	2	0
Alley	2721	0.07	4	4	0	2	0
LotShape	0	1.00	3	3	0	4	0
LandContour	0	1.00	3	3	0	4	0
Utilities	2	1.00	6	6	0	2	0
LotConfig	0	1.00	3	7	0	5	0
LandSlope	0	1.00	3	3	0	3	0
Neighborhood	0	1.00	5	7	0	25	0
Condition1	0	1.00	4	6	0	9	0
Condition2	0	1.00	4	6	0	8	0
BldgType	0	1.00	4	6	0	5	0
HouseStyle	0	1.00	4	6	0	8	0
RoofStyle	0	1.00	3	7	0	6	0
RoofMatl	0	1.00	4	7	0	8	0
Exterior1st	1	1.00	5	7	0	15	0
Exterior2nd	1	1.00	5	7	0	16	0
MasVnrType	24	0.99	4	7	0	4	0
ExterQual	0	1.00	2	2	0	4	0
ExterCond	0	1.00	2	2	0	5	0
Foundation	0	1.00	4	6	0	6	0
BsmtQual	81	0.97	2	2	0	4	0
BsmtCond	82	0.97	2	2	0	4	0
BsmtExposure	82	0.97	2	2	0	4	0
BsmtFinType1	79	0.97	3	3	0	6	0
BsmtFinType2	80	0.97	3	3	0	6	0
Heating	0	1.00	4	5	0	6	0
HeatingQC	0	1.00	2	2	0	5	0
CentralAir	0	1.00	1	1	0	2	0
Electrical	1	1.00	3	5	0	5	0
KitchenQual	1	1.00	2	2	0	4	0
Functional	2	1.00	3	4	0	7	0
FireplaceQu	1420	0.51	2	2	0	5	0
GarageType	157	0.95	6	7	0	6	0
GarageFinish	159	0.95	3	3	0	3	0
GarageQual	159	0.95	2	2	0	5	0
GarageCond	159	0.95	2	2	0	5	0
PavedDrive	0	1.00	1	1	0	3	0

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
PoolQC	2909	0.00	2	2	0	3	0
Fence	2348	0.20	4	5	0	4	0
MiscFeature	2814	0.04	4	4	0	4	0
SaleType	1	1.00	2	5	0	9	0
SaleCondition	0	1.00	6	7	0	6	0
set	0	1.00	4	5	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Id	0	1.00	1460.00	842.79	1	730.5	1460.0	2189.5	2919
MSSubClass	0	1.00	57.14	42.52	20	20.0	50.0	70.0	190
LotFrontage	486	0.83	69.31	23.34	21	59.0	68.0	80.0	313
LotArea	0	1.00	10168.11	7887.00	1300	7478.0	9453.0	11570.0	215245
OverallQual	0	1.00	6.09	1.41	1	5.0	6.0	7.0	10
OverallCond	0	1.00	5.56	1.11	1	5.0	5.0	6.0	9
YearBuilt	0	1.00	1971.31	30.29	1872	1953.5	1973.0	2001.0	2010
${\bf YearRemodAdd}$	0	1.00	1984.26	20.89	1950	1965.0	1993.0	2004.0	2010
MasVnrArea	23	0.99	102.20	179.33	0	0.0	0.0	164.0	1600
BsmtFinSF1	1	1.00	441.42	455.61	0	0.0	368.5	733.0	5644
BsmtFinSF2	1	1.00	49.58	169.21	0	0.0	0.0	0.0	1526
BsmtUnfSF	1	1.00	560.77	439.54	0	220.0	467.0	805.5	2336
TotalBsmtSF	1	1.00	1051.78	440.77	0	793.0	989.5	1302.0	6110
X1stFlrSF	0	1.00	1159.58	392.36	334	876.0	1082.0	1387.5	5095
X2ndFlrSF	0	1.00	336.48	428.70	0	0.0	0.0	704.0	2065
LowQualFinSF	0	1.00	4.69	46.40	0	0.0	0.0	0.0	1064
GrLivArea	0	1.00	1500.76	506.05	334	1126.0	1444.0	1743.5	5642
BsmtFullBath	2	1.00	0.43	0.52	0	0.0	0.0	1.0	3
BsmtHalfBath	2	1.00	0.06	0.25	0	0.0	0.0	0.0	2
FullBath	0	1.00	1.57	0.55	0	1.0	2.0	2.0	4
HalfBath	0	1.00	0.38	0.50	0	0.0	0.0	1.0	2
$\operatorname{BedroomAbvGr}$	0	1.00	2.86	0.82	0	2.0	3.0	3.0	8
KitchenAbvGr	0	1.00	1.04	0.21	0	1.0	1.0	1.0	3
${\bf TotRmsAbvGrd}$	0	1.00	6.45	1.57	2	5.0	6.0	7.0	15
Fireplaces	0	1.00	0.60	0.65	0	0.0	1.0	1.0	4
GarageYrBlt	159	0.95	1978.11	25.57	1895	1960.0	1979.0	2002.0	2207
GarageCars	1	1.00	1.77	0.76	0	1.0	2.0	2.0	5
GarageArea	1	1.00	472.87	215.39	0	320.0	480.0	576.0	1488
WoodDeckSF	0	1.00	93.71	126.53	0	0.0	0.0	168.0	1424
OpenPorchSF	0	1.00	47.49	67.58	0	0.0	26.0	70.0	742
EnclosedPorch	0	1.00	23.10	64.24	0	0.0	0.0	0.0	1012
X3SsnPorch	0	1.00	2.60	25.19	0	0.0	0.0	0.0	508
ScreenPorch	0	1.00	16.06	56.18	0	0.0	0.0	0.0	576
PoolArea	0	1.00	2.25	35.66	0	0.0	0.0	0.0	800
MiscVal	0	1.00	50.83	567.40	0	0.0	0.0	0.0	17000
MoSold	0	1.00	6.21	2.71	1	4.0	6.0	8.0	12
YrSold	0	1.00	2007.79	1.31	2006	2007.0	2008.0	2009.0	2010
SalePrice	1459	0.50	180921.20	79442.50	34900	129975.0	163000.0	214000.0	755000

EDA

Lets do EDA for data quality.

We first check for missing values.

```
##
   # A tibble: 82 x 3
##
      feature
                    num_missing pct_missing
##
      <fct>
                           <int>
                                        <dbl>
##
    1 PoolQC
                            2909
                                      0.997
##
    2 MiscFeature
                            2814
                                      0.964
                            2721
                                      0.932
##
    3 Alley
##
    4 Fence
                            2348
                                      0.804
##
    5 SalePrice
                            1459
                                      0.500
##
    6 FireplaceQu
                            1420
                                      0.486
    7 LotFrontage
##
                             486
                                      0.166
    8 GarageYrBlt
                                      0.0545
##
                             159
    9 GarageFinish
                                      0.0545
##
                             159
## 10 GarageQual
                             159
                                      0.0545
## # ... with 72 more rows
```


Most of the higher missing values is result of absence of a particular feature in the property as per Data description. We will code the missing values with appropriate categorical variable later on. Rest of the features have very low missing percentages which can be handled during model data preprocessing using median or knnimpte.

Further Data Exploration

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

distribution of Price

Sale Price distribtion is right skewed however log transformation is Normal and is a candidate for Linear Regression. Lets explore other features.

Check distribution of categorical variables

Page 2

Page 3

Page 4

Page 5

Check distribution of Numeric features

Page 2

Page 3

Explore categorical variables against Sale price.

Page 2

Page 3

Checking correlation among variables

```
##
## Correlation method: 'pearson'
## Missing treated using: 'pairwise.complete.obs'
## Registered S3 method overwritten by 'seriation':
## method from
## reorder.hclust gclus
```

Don't know how to automatically pick scale for object of type noquote. Defaulting to continuous.


```
## Missing treated using: 'pairwise.complete.obs'
##
   # A tibble: 18 x 3
##
      rowname
                    features
                                  corr
##
      <chr>
                    <chr>
                                 <dbl>
##
    1 GarageCars
                    GarageArea
                                 0.890
##
    2 YearBuilt
                    GarageYrBlt
                                 0.835
##
    3 GrLivArea
                    TotRmsAbvGrd 0.808
    4 TotalBsmtSF
                   X1stFlrSF
                                 0.802
##
##
    5 OverallQual
                   SalePrice
                                 0.791
    6 GrLivArea
                                 0.709
##
                    SalePrice
    7 BedroomAbvGr TotRmsAbvGrd 0.670
##
##
    8 X2ndFlrSF
                    GrLivArea
                                 0.655
    9 YearRemodAdd GarageYrBlt
                                 0.652
## 10 GarageCars
                    SalePrice
                                 0.640
## 11 BsmtFinSF1
                    BsmtFullBath 0.639
## 12 GrLivArea
                    FullBath
                                 0.630
   13 GarageArea
                    SalePrice
                                 0.623
  14 TotalBsmtSF
                   SalePrice
                                 0.614
  15 YearBuilt
                    YearRemodAdd 0.612
##
  16 X2ndFlrSF
                    HalfBath
                                 0.611
## 17 X1stFlrSF
                    SalePrice
                                 0.606
## 18 OverallQual
                   GarageCars
                                 0.601
```

Correlation method: 'pearson'

##

Check for near zero variables

```
##
     Street
                LandContour Utilities
                                           LandSlope
                                                         Condition2
                                                                          RoofMatl
##
    Grvl: 12
                Bnk: 117
                             AllPub:2916
                                            Gt1:2778
                                                               :2889
                                                                       CompShg: 2876
                                                       Norm
                                                                       Tar&Grv:
##
    Pave:2907
                HLS: 120
                             NoSeWa:
                                       1
                                           Mod: 125
                                                       Feedr
                                                                 13
                                                                                 23
                Low: 60
                             NA's :
                                                                       WdShake:
##
                                       2
                                            Sev:
                                                 16
                                                       Artery:
                                                                   5
                                                                                  9
                                                                                  7
##
                Lv1:2622
                                                       PosA
                                                                   4
                                                                       WdShngl:
##
                                                       PosN
                                                                       ClyTile:
                                                                                  1
##
                                                       RRNn
                                                                   2
                                                                       Membran:
                                                                                  1
##
                                                       (Other):
                                                                   2
                                                                       (Other):
##
    BsmtCond
                BsmtFinType2
                                BsmtFinSF2
                                                  Heating
                                                               LowQualFinSF
##
    Fa : 104
                ALQ: 52
                              Min.
                                         0.00
                                                 Floor:
                                                              Min.
                                                                          0.000
                                                          1
                                                                          0.000
                BLQ :
##
    Gd
       : 122
                        68
                              1st Qu.:
                                         0.00
                                                 GasA :2874
                                                              1st Qu.:
            5
                GLQ :
                       34
                              Median :
                                         0.00
                                                 GasW :
                                                         27
                                                              Median :
                                                                          0.000
##
    Pο
                                                 Grav :
##
    TA:2606
                LwQ: 87
                              Mean
                                        49.58
                                                          9
                                                                          4.694
                                                              Mean
                Rec : 105
                                                              3rd Qu.:
    NA's: 82
                              3rd Qu.:
                                                 OthW:
                                                                          0.000
##
                                         0.00
                                                          2
##
                Unf :2493
                              Max.
                                     :1526.00
                                                 Wall:
                                                              Max.
                                                                      :1064.000
                              NA's
##
                NA's: 80
                                     :1
                                    GarageQual
                                                 GarageCond
                                                              OpenPorchSF
##
     KitchenAbvGr
                      Functional
##
    Min.
           :0.000
                            :2717
                                    Ex
                                       :
                                            3
                                                 Ex :
                                                         3
                                                             Min. : 0.00
                    Тур
    1st Qu.:1.000
                    Min2
                              70
                                        : 124
                                                 Fa
                                                        74
                                                             1st Qu.: 0.00
##
                            :
                                    Fa
                                                    :
    Median :1.000
                                                             Median : 26.00
##
                    Min1
                               65
                                    Gd
                                        •
                                           24
                                                 Gd
                                                    :
                                                        15
          :1.045
##
    Mean
                    Mod
                               35
                                    Ро
                                            5
                                                 Po
                                                    : 14
                                                             Mean
                                                                   : 47.49
##
    3rd Qu.:1.000
                    Maj1
                               19
                                    TA:2604
                                                 TA:2654
                                                             3rd Qu.: 70.00
                                    NA's: 159
                                                 NA's: 159
##
    Max.
           :3.000
                     (Other):
                               11
                                                             Max.
                                                                     :742.00
##
                    NA's
                                2
                                         ScreenPorch
##
    EnclosedPorch
                        X3SsnPorch
                                                             PoolArea
                                              : 0.00
                            : 0.000
                                                                : 0.000
##
    Min.
          :
               0.0
                     Min.
                                        Min.
                                                          Min.
                     1st Qu.: 0.000
##
    1st Qu.:
               0.0
                                        1st Qu.: 0.00
                                                          1st Qu.: 0.000
##
    Median :
               0.0
                     Median : 0.000
                                        Median: 0.00
                                                          Median : 0.000
##
    Mean
              23.1
                      Mean
                             : 2.602
                                        Mean
                                                : 16.06
                                                          Mean
                                                                  : 2.252
           :
    3rd Qu.:
                      3rd Qu.: 0.000
                                        3rd Qu.: 0.00
                                                          3rd Qu.: 0.000
##
               0.0
           :1012.0
    Max.
                     Max.
                             :508.000
                                        Max.
                                                :576.00
                                                          Max.
                                                                  :800.000
##
##
##
       MiscVal
                0.00
##
    Min.
    1st Qu.:
                0.00
##
##
    Median :
                0.00
##
    Mean
          :
               50.83
##
    3rd Qu.:
                0.00
##
    Max.
           :17000.00
##
```

Curious to know if street type makes a difference

```
## # A tibble: 6 x 4
##
     Var1 Var2
                      Grvl
                               Pave
##
     <fct> <fct>
                              <dbl>
                     <dbl>
## 1 A
           Min.
                    55993
                             34900
## 2 A
           1st Qu.
                    88250
                           130000
## 3 A
           Median 114250
                           163000
## 4 A
           Mean
                   130190. 181131.
## 5 A
           3rd Qu. 169650
                           214000
## 6 A
                   228950 755000
           Max.
```

In general we do see House in pavement have higher Sale price than the Gravel.

Checking affect of time over Sale Price

There is no particular effect of month sold on Sale price. However, In general we dprices does increase Year on Year which makes common sense.

Data Cleaning Based on our EDA

The code below will fix few missing values which are actually features not present in a property. These features are related to . Alley . Bsmt . Garage . FireplaceQu . PoolQC . Fence . MiscFeatures . MasVnr

We also create a categorical bucketing variable out of YearSold and Yr Modelled. We create new variable 'log sale price' that is log of Sale Price. This new variable will be used as response variables.

Last we remove Id, Sale Price and set variable that will not contribute to the model.

```
#pp3
house <- train %>%
  #converting sales to log scale
  mutate(log_sale_price = log(SalePrice)) %>%
  #fill in missing values NA for factor variables as per data description
  #Alley
  mutate(Alley = if_else(is.na(Alley), "No Alley", Alley)) %>%
  #Bsmt
  mutate(
   BsmtCond = if_else(is.na(BsmtCond), "No Bsmnt", BsmtCond),
   BsmtExposure = if else(is.na(BsmtExposure), "No BsmtT", BsmtExposure),
   BsmtQual = if_else(is.na(BsmtQual), "No Bsmnt", BsmtQual),
   BsmtFinType1 = if_else(is.na(BsmtFinType1), "No Bsmnt", BsmtFinType1),
   BsmtFinType2 = if_else(is.na(BsmtFinType2), "No Bsmnt", BsmtFinType2),
   BsmtFinSF1 = if_else(is.na(BsmtFinSF1), 0, BsmtFinSF1),
   BsmtFinSF2 = if_else(is.na(BsmtFinSF2), 0, BsmtFinSF2),
   BsmtUnfSF = if_else(is.na(BsmtUnfSF), 0, BsmtUnfSF),
   TotalBsmtSF = if_else(is.na(TotalBsmtSF), 0, TotalBsmtSF),
   BsmtFullBath = if_else(is.na(BsmtFullBath), 0, BsmtFullBath),
   BsmtHalfBath = if_else(is.na(BsmtHalfBath), 0, BsmtHalfBath)
  ) %>%
  #GarageType, GarageType, GarageFinish, GarageQual, GarageCond, 'GarageYrBlt', 'GarageArea', 'GarageCa
   GarageType = if_else(is.na(GarageType), "No Garage", GarageType),
   GarageFinish = if_else(is.na(GarageFinish), "No Garage", GarageFinish),
   GarageQual = if_else(is.na(GarageQual), "No Garage", GarageQual),
   GarageCond = if_else(is.na(GarageCond), "No Garage", GarageCond),
   GarageYrBlt = if_else(is.na(GarageYrBlt), 0, GarageYrBlt),
   GarageArea = if_else(is.na(GarageArea), 0, GarageArea),
   GarageCars = if_else(is.na(GarageCond), 0, GarageCars)
  ) %>%
```

```
mutate(MasVnrType = if_else(is.na(MasVnrType), "No MasVnrType", MasVnrType)) %>%
mutate(MasVnrArea = if_else(is.na(MasVnrArea), 0, MasVnrArea)) %>%

#FireplaceQu, PoolQC, Fence, MiscFeature
mutate(
   FireplaceQu = if_else(is.na(FireplaceQu), "No Fireplc", FireplaceQu),
   PoolQC = if_else(is.na(PoolQC), "No Pool", PoolQC),
   Fence = if_else(is.na(Fence), "No Fence", Fence),
   MiscFeature = if_else(is.na(MiscFeature), "None", MiscFeature)
) %>%

mutate(YrBuilt_cat = cut2(YearBuilt, cuts = seq(min(YearBuilt), max(YearBuilt), 5))) %>%

mutate(YearRemodAdd = if_else(is.na(YearRemodAdd), YearBuilt, YearRemodAdd)) %>%

#remove non contributing features and IDs
select(-Id,-SalePrice, -set)
```

Creating a Training and Validation(test) set using rsample

```
set.seed(1234)
house_split <- initial_split(house)
train_split <- training(house_split)</pre>
```

Create recepies with series of preprocessing steps on training set

```
house_recipe <- train_split %>%
  recipe(log_sale_price ~ .) %>%
  step_string2factor(all_nominal(), -all_outcomes()) %>%
  step_num2factor(MoSold, levels = as.character(unique(train_split$MoSold))) %>%
  step_num2factor(YrSold, levels = as.character(unique(train_split$YrSold))) %>%
  step_num2factor(MSSubClass, levels = as.character(unique(train_split$MSSubClass))) %>%
  step_num2factor(OverallCond, levels = as.character(unique(train_split$MSSubClass))) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
  step_center(all_predictors(), -all_outcomes()) %>%
  step_scale(all_predictors(), -all_outcomes()) %>%
  step_corr(all_predictors(), -all_outcomes()) %>%
  step_nzv(all_predictors()) %>%
  step_nzv(all_predictors(), -all_outcomes())

doParallel::registerDoParallel()
house_prep <- prep(house_recipe)</pre>
```

```
house_recipe_treebased <- train_split %>%
  recipe(log_sale_price ~ .) %>%
  step_string2factor(all_nominal(), -all_outcomes()) %>%
  step_num2factor(MoSold, levels = as.character(unique(train_split$MoSold))) %>%
  step_num2factor(YrSold, levels = as.character(unique(train_split$YrSold))) %>%
  step_num2factor(OverallCond, levels = as.character(unique(train_split$OverallCond))) %>%
  step_num2factor(MSSubClass, levels = as.character(unique(train_split$MSSubClass))) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
  step_corr(all_numeric()) %>%
  step_nzv(all_numeric()) %>%
  step_knnimpute(all_predictors(), -all_outcomes())

doParallel::registerDoParallel()
house_treebased_prep <- prep(house_recipe_treebased)</pre>
```

Applying preprocessing on training and validation(testing) set

```
house_train <- juice(house_prep)
house_test <- bake(house_prep, testing(house_split))

#splits for tree based models
house_train_treebased <- juice(house_treebased_prep)
house_test_treebased <- bake(house_treebased_prep, testing(house_split))</pre>
```

Train models

Train linear regression

```
#linear model
lm_model <- #recipe(log_sale_price ~ . , data = house_train) %>%
  linear_reg() %>%
  set_mode("regression") %>%
  set_engine("lm") %>%
  fit(log_sale_price ~ . , data = house_train)
```

Important variables from linear model

Train random forest

```
#create recepie on the preped house train data
rf_rec <-
  recipe(log_sale_price ~. , data = house_train_treebased)
#give model spec
rf_mod <-
  rand_forest(mtry = tune(), min_n = tune()) %>%
  set_engine("ranger") %>%
  set_mode("regression")
#create Search grid
rf_grid <-
  grid_regular(mtry(range = c(15,40)), min_n(range = c(10, 2)), levels = 5)
#create samples for cross validation
folds <- vfold_cv(house_train_treebased, v = 10)</pre>
doParallel::registerDoParallel()
#create models with grid search
rf_res <-
```

```
tune_grid(model = rf_mod, rf_rec,resamples = folds , grid = rf_grid)

final_mtry <- select_best(rf_res, "rmse", maximize = FALSE)$mtry
final_min_node <- select_best(rf_res, "rmse", maximize = FALSE)$min_n

#random forest

rf_model <- rand_forest(mtry = final_mtry, min_n = final_min_node) %>%
    set_mode("regression") %>%
    set_engine("ranger",importance = 'impurity') %>%
    fit(log_sale_price ~ . , data = house_train_treebased)
```

Important variables from randome forest model

Selecting by abs_importance

${\it train~xgboost}$

```
doParallel::registerDoParallel()
#xgboost

xg_model <- boost_tree() %>%
   set_mode("regression") %>%
   set_engine("xgboost") %>%
   fit(log_sale_price ~ . , data = house_train_treebased)
```

Selecting by abs_importance

train linear model ridge

```
ridge_rec <-
    recipe(log_sale_price ~. , data = house_train)

ridge_mod <-
    linear_reg(penalty = tune(), mixture = tune()) %>%
    set_engine("glmnet")

ridge_grid <- expand.grid(penalty = seq(from = 0.01, to = 0.2, by=0.001), mixture = 0)

folds <- vfold_cv(house_train, v = 10)

doParallel::registerDoParallel()

ridge_res <-
    tune_grid(ridge_rec, model = ridge_mod, resamples = folds , grid = ridge_grid)

autoplot(ridge_res)</pre>
```



```
final_penalty <- select_best(ridge_res, "rmse", maximize = FALSE)$penalty

#apply best tuning parameter linear model ridge

lm_ridge_model <- linear_reg(penalty = final_penalty , mixture = 0) %>%

set_mode("regression") %>%

set_engine("glmnet") %>%

fit(log_sale_price ~. , data = house_train)
```

Important variables from ridge model

Selecting by abs_importance

Selecting by abs_importance

linear model lasso

```
lasso_rec <-
    recipe(log_sale_price ~. , data = house_train)

lasso_mod <-
    linear_reg(penalty = tune(), mixture = tune()) %>%
    set_engine("glmnet")

lasso_grid <- expand.grid(penalty = seq(from = 0.001, to = 0.005, by = 0.000001), mixture = 1)

folds_lasso <- vfold_cv(house_train, v = 10)

lasso_res <-
    tune_grid(lasso_rec, model = lasso_mod, resamples = folds_lasso , grid = lasso_grid)

lambda_final <-
    select_best(lasso_res, metric = "rmse", maximize = FALSE) %>% select(penalty) %>% unlist

autoplot(lasso_res)
```



```
#apply best tuning parameter linear model ridge
lm_lasso_model <- linear_reg(penalty = lambda_final, mixture = 1) %>%
set_mode("regression") %>%
set_engine("glmnet") %>%
fit(log_sale_price ~. , data = house_train)
```

Important variables from lasso model

Selecting by abs_importance

Selecting by abs_importance

Evaluate and consolidate model metrics

```
## # A tibble: 5 x 4
##
    .metric m_type train test
    <chr>
          <chr> <dbl> <dbl>
                   0.129 0.142
## 1 rmse
            lm
## 2 rmse
            rf
                   0.0569 0.140
## 3 rmse
                   0.107 0.159
            xg
## 4 rmse
            ridge 0.133 0.142
## 5 rmse
            lasso 0.135 0.138
```


Select Model

The lasso model gives the best test RMSE value.