1 Complex Algebra

a) Express the following values in polar forms: -1, j, -j, \sqrt{j} , and $\sqrt{-j}$. Recall $j^2 = -1$.

b) Represent $\sin\theta$ and $\cos\theta$ using complex exponentials. (*Hint*: Use Euler's identity $e^{j\theta}=\cos\theta+j\sin\theta$.)

c) For complex number z = x + jy show that $|z| = \sqrt{z\bar{z}}$, where \bar{z} is the complex conjugate of z.

For the next two parts, let $A = 1 - j\sqrt{3}$ and $B = \sqrt{3} + j$.

d) Express *A* and *B* in polar form.

e) Find AB, $A\bar{B}$, $\frac{A}{B}$, $A + \bar{A}$, $A - \bar{A}$, \overline{AB} , $\bar{A}\bar{B}$, and \sqrt{B} .

f) Show the number A in complex plane, marking the distance from origin and angle with real axis.

g) Show that multiplying A with j is equivalent to rotating the magnitude of the complex number by $\pi/2$ or 90 degrees in the complex plane.

h) What are the roots of $z^2 = 1$? What about $z^3 = 1$? How many roots does $z^n = 1$ have? What is the general form for the solutions of $z^n = 1$?