10. OpenSSL: Síťové spojení, verifikace certifikátů, nastavení šifer

Komunikace přes OpenSSL

Za splnění celého zadání dostanete 5 bodů.

Napište program v jazyce C, který:

- připojí se na webový server (viz url níže)
- · ověří certifikát serveru
- nastaví a vypíše typ použité šifry
- stáhne stránku https://fit.cvut.cz/cs/fakulta/o-fakulte do souboru,
- · vypíše informace o certifikátu serveru fit.cvut.cz,
- uloží ho do souboru ve formátu PEM.

Dokumentace ke knihovně openssl naleznete na stránkách projektu: https://www.openssl.org/docs/, https://wiki.openssl.org/index.php/SSL/TLS_Client, návod na práci s certifikáty X.509 např. na https://zakird.com/2013/10/13/certificate-parsing-with-openssl. Nezapomeňte řádně odkazovat na zdroje.

Základní postup

- 1. Vytvořte TCP spojení na server fit.cvut.cz, port 443 (viz socket, connect)
- 2. Inicializujte knihovnu OpenSSL (SSL_library_init)
- 3. Vytvořte nový kontext (SSL_CTX_new, použijte metodu TLS_client_method)
 - a. Zakažte zastaralé a děravé protokoly: SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1 | SSL_OP_NO_TLSv1_1);
- 4. Vytvořte SSL strukturu (SSL_new)
- 5. Přiřaďte otevřené spojení (SSL_set_fd)
- 6. Nastavte jméno požadovaného serveru pro mechanizmus SNI: (SSL_set_tlsext_host_name)
- 7. Zahajte SSL komunikaci (SSL_connect)
 - a. Nyní je navázáno SSL spojení na HTTPS server, můžete poslat požadavek
- 8. Pošlete HTTP požadavek po zabezpečeném kanálu (ssl write)
 - a. Ve smyčce čtěte odpověď po částech, jak přicházejí po síti, a ukládejte výsledná data do souboru (SSL read)
- 9. Na závěr po sobě uklidíme
 - a. Ukončíme SSL session na otevřeném socketu (SSL_shutdown)
 - b. Zavřeme socket

c. Uvolníme strukturu SSL a kontext (SSL_free, SSL_CTX_free)

Nezapomeňte přidat do linkování knihovnu ssl -1ssl -1crypto.

Použitá šifra

- Zjistěte, na jaké šifře se klient a server dohodnou ve výchozím nastavení
 - o po navázání šifrovaného spojení zavolejte SSL_get_cipher_name
- Před voláním SSL_connect zakažte konkrétní šifru, kterou jste zjistili při prvním spuštění (simulujeme případ, kdy je
 nalezena zranitelnost šifry a je potřeba ji zakázat), zjistěte, na jaké šifře se dohodne klient a server po této změně.
 - TLS <= 1.2 Kdybychom např. chtěli zakázat šifru SEED, napíšeme SSL_set_cipher_list(ssl, "DEFAULT:!SEED");
 - TLS 1.3 používá jinou sadu šifer (ciphersuites) a jiné funkce API (SSL_set_ciphersuites), uvádí se pouze seznam povolených šifer (tu, kterou nechcete, neuvedete)
 - Vypište jméno šifry, kterou jste zakázali, a jméno šifry, která byla zvolena místo ní.
 - Vysvětlete, co znamenají jednotlivé identifikátory, ze kterých se skládá takto získané jméno použité šifry.
 Zapište svá zjištění.

Verifikace certifikátu serveru

- Po vytvoření nového kontextu (SSL_CTX), zavolejte SSL_CTX_load_verify_locations nebo
 SSL_CTX_set_default_verify_paths (a zkontrolujte výsledek) tím nastavíte, kde má knihovna hledat kořenové certifikáty.
- Po vytvoření SSL spojení (SSL_connect), získejte výsledek verifikace pomocí SSL_get_verify_result a otestujte jej.
- Napište, zda bylo ověření úspěšné.

Verifikaci certifikátu je potřeba provádět při každém navázání spojení.

Přečtení certifikátu ze serveru

- Získejte certifikát od serveru (SSL_get_peer_certificate)
- Vypište informace o certifikátu na terminál (např. X509_get_subject_name, X509_get_issuer_name, X509_NAME_oneline)
- a zapište ho do souboru (PEM_write_X509).

Příklad kódu pro vytvoření spojení

Známe-li IPv4 adresu serveru, stačí nám pro vytvoření TCP spojení jen několik příkazů.

```
struct sockaddr_in servaddr;
int sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr("111.111.111.111"); // ip address
servaddr.sin_port = htons(443); // port

// Pozor, nektere platformy maji jeste pole sin_len.

if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) != 0) {
    error...
}
```


Chcete-li umět překlad jmen (DNS) a zároveň IPv4 i IPv6, doporučujeme man getaddrinfo.

10. OpenSSL: Síťové spojení, verifikace certifikátů, nastavení šifer tutorials/10.adoc, poslední změna f10d3e76 (27.4.2021 ve 13:14, Marina Shchavleva)

pipeline passed