Date: / / Page no:\_\_ CS-328 HW-2 Sagar Bisen 18 110145 Suppose there are n number of risers and let interest vectors of all the users are like;  $V_1 = \begin{cases} q_{11}, q_{12} \dots \end{cases}$   $V_2 = \begin{cases} q_{21}, q_{22} \dots \end{cases}$   $V_3 = \begin{cases} q_{31}, q_{32} \dots \end{cases}$ As per the question, V (computed rectors of all uses will be:  $V = \{ V_1, V_2, V_3, V_4 \dots V_n \}$ Since the now that any personalized Page Rank vector can be weitten in the form of clinear combination of { Vi, Vz... Vn }  $Z = \angle_1 V_1 + \angle_2 V_2 + \angle_3 V_3 + \dots + \angle_n V_n$   $\angle \in R$ Thujan ZE span (v) Set of all personalized page rank = span(v) vectors



| Date: / / Page no:                                                                 |
|------------------------------------------------------------------------------------|
| Combining all three factory                                                        |
| $p_0 = \alpha \lambda + \alpha \stackrel{\text{Epi}}{\leq} p_i + (1-\alpha) - (i)$ |
| Po = 4 / (1-a) - ()                                                                |
| (1) $(2)$ $(3)$                                                                    |
|                                                                                    |
|                                                                                    |
| Also $pi = \propto p_0 + (i - \chi) \times 1 - (ii)$                               |
| · lick                                                                             |
| (uniform distribution (random jump) of powento allpi)                              |
| of powerto allpi)                                                                  |
| V V                                                                                |
|                                                                                    |
| substitute (il) vin (i)                                                            |
|                                                                                    |
| Po=dx+d S (dpo+(1-d)) + 1-d<br>i=1 (K N)                                           |
| " CET (K N) N                                                                      |
|                                                                                    |
| $P_0 = d\lambda + d(1-d)k + d^2p_0 + 1-d$                                          |
| N                                                                                  |
| 0.2                                                                                |
| POC = 2 + (1-d)(kx+1)                                                              |
| $Po(1-d^2) = d\lambda + \frac{(1-d)(k\alpha + 1)}{k\alpha}$                        |
|                                                                                    |
| $P_0 = \frac{d\lambda}{1-d^2} + \frac{d\lambda}{(1+d)N}$                           |
| 1-0                                                                                |
|                                                                                    |

Criven a turnstile Stream of m distinct items.

no. of distinct items = n

no. of items with frequency K = C  $K^3$ no. of items with freq 1 = C with freq 2 = C with freg 3 = C  $\frac{2}{1^3} \frac{C+C+C+\dots}{2^3}$ Hence  $\lambda = \frac{1}{163}$  which converge and 163 us a constant 1.20 € Hence CZn C = n 1.20

| Date: / / Page no:                                    |     |
|-------------------------------------------------------|-----|
|                                                       |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |     |
| 1,2                                                   |     |
| Hence C = O(n)                                        |     |
|                                                       |     |
| On firing w, and d Cs. vis & will give                |     |
| better granantee por tre given distribution           | ) , |
| ·                                                     |     |
|                                                       |     |
| Collaborated guitn!-                                  |     |
| Houshit Kurran (18110163)                             |     |
| Houshil Knustur (10110103)                            |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |