Study of Closed Ideals of Disc Algebra

Indian Institute of Science Education and Research – Thiruvananthapuram

Ashish Kujur

Last Updated: February 3, 2023

Contents

1	Ana	lytic and Harmonic Functions
	1.1	The Cauchy and Poisson Kernels
	1.2	Boundary Values
		1.2.1 Weak* convergence of measures
		1.2.2 Convergence in norm
		1.2.3 Weak* convergence of bounded functions
		1.2.4 The entire picture!
	1.3	Fatou's Theorem
	1.4	Hardy Spaces – H^p spaces
2		space H^1
	2.1	Brief Recap!
	2.2	The Helson-Lowdenslager Approach
		Szegö's Theorem

Chapter 1

Analytic and Harmonic Functions

1.1 The Cauchy and Poisson Kernels

Proposition 1.1.0.1. Let $u: \overline{\mathbb{D}} \to \mathbb{C}$ be a harmonic function. Then we have that

$$u\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt \tag{1.1.0.1}$$

1.2 Boundary Values

1.2.1 Weak* convergence of measures

Theorem 1.2.1.1. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $\mu \in \mathcal{M}(\mathbb{T})$. Then for all $i, \varphi_i * \mu \in L^1(\mathbb{T})$ with

$$\|\varphi_i * \mu\|_1 \le C_{\varphi} \|\mu\|$$

and

$$\|\mu\| \le \sup_i \|\varphi_i * \mu\|_1.$$

Moreover, the measures $d\mu_i = (\varphi_i * \mu) (e^{it}) dt/2\pi$ converge to $d\mu (e^{it})$ in the weak* topology, i.e.

$$\lim_{i} \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}\right) \left(\varphi_{i} * \mu\right) \left(e^{it}\right) dt = \int_{\mathbb{T}} \varphi\left(e^{it}\right) d\mu \left(e^{it}\right)$$

for all $f \in \mathcal{C}(\mathbb{T})$.

1.2.2 Convergence in norm

Theorem 1.2.2.1. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $f \in L^p(\mathbb{T})$ with $p \in [1, \infty)$. Then for all $i, \varphi_i * f \in L^p(\mathbb{T})$ with

$$\|\varphi_i * f\|_p \le C_{\varphi} \|f\|_p$$

and

$$\lim_{i} \|\varphi_i * f - f\|_p = 0.$$

1.2.3 Weak* convergence of bounded functions

Theorem 1.2.3.1. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $f \in L^{\infty}(\mathbb{T})$. Then for all $i, \varphi_i * \mu \in \mathcal{C}(\mathbb{T})$ with

$$\|\varphi_i * \mu\|_{\infty} \le C_{\varphi} \|\mu\|_{\infty}$$

and

$$||f||_{+\infty} \le \sup_{i} ||\varphi_i * f||_{\infty}.$$

Moreover, $\varphi_i * f$ converge to f in the weak* topology, i.e.

$$\lim_{i} \int_{-\pi}^{\pi} g\left(e^{it}\right) \left(\varphi_{i} * f\right) \left(e^{it}\right) dt = \int_{\mathbb{T}} g\left(e^{it}\right) f\left(e^{it}\right) dt$$

for all $g \in L^1(\mathbb{T})$.

1.2.4 The entire picture!

Definition 1.2.4.1 (Poisson integral of some function or measure). Let $\tilde{f}: \mathbb{D} \to \mathbb{C}$ be a harmonic function. Then \tilde{f} is said to be the *Poisson integral* of the function $f: \mathbb{T} \to \mathbb{C}$ if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} f\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt$$

In such a case, we will denote the function \tilde{f} by P[f]. Similarly, f is said to be the *Poisson integral* of a complex measure μ on T if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

In such a case, we will denote the function \tilde{f} by $P[\mu]$.

Theorem 1.2.4.2 (Ultimate Convergence). Let $f : \mathbb{D} \to \mathbb{C}$ be a harmonic function. Define for each $r \in [0,1)$, the function $f_r : \mathbb{T} \to \mathbb{C}$ by

$$f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$$

The following statements holds:

- 1. If 1 then <math>f = P[g] for some $g \in L^p[g]$ iff for each r > 0, $||f_r||_p < +\infty$.
- 2. If p=1 then f=P[g] for some $g\in L^p[g]$ iff f_r converge in the L^1 norm.
- 3. $f = P[\mu]$ for some $\mu \in \mathcal{M}(\mathbb{T})$ iff for each r > 0, $||f_r||_1 < +\infty$

1.3 Fatou's Theorem

Theorem 1.3.0.1. Let μ be a complex measure on the unit circle \mathbb{T} , and let $f: \mathbb{D} \to \mathbb{C}$ be the harmonic function defined by

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{\mathbb{T}} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

Let $e^{i\theta_0}$ be any point where μ is differentiable with respect to the normalised Lebesgue measure. Then

$$\lim_{r \to 1} f\left(re^{i\theta_0}\right) = \left(\frac{d\mu}{d\theta}\right) \left(e^{i\theta_0}\right) = \mu'\left(e^{i\theta_0}\right)$$

In fact, $f(re^{i\theta}) \to \mu'(e^{i\theta_0})$ as $re^{i\theta}$ approaches $e^{i\theta_0}$ along any path in the open disc within the region of the form $|\theta - \theta_0| \le c(1-r)$ for some c > 0.

Corollary 1.3.0.2. Let μ be a complex measure on \mathbb{T} . Then $P[\mu]$ has nontangential limits equal everywhere to the Radon Nikodym derivative of μ with respect to the normalised Lebesgue measure.

Corollary 1.3.0.3. Let $f : \mathbb{T} \to \mathbb{C}$ be L^1 . Then P[f] has nontangential limits at almost everywhere and these limits equal to f almost everywhere.

Corollary 1.3.0.4. Let $f: \mathbb{D} \to \mathbb{C}$ be a harmonic function and $1 \leq p < \infty$. Suppose that for all $0 \leq r < 1$, we have that

$$||f_r||_p < +\infty$$

Then for almost every θ the radial limits

$$\tilde{f}(e^{i\theta}) = \lim_{r \to 1} f\left(re^{i\theta}\right)$$

exist and define a function \tilde{f} in $L^{p}(\mathbb{T})$. The following also holds:

- 1. If p > 1 then $f = P[\tilde{f}]$.
- 2. If p = 1 then $f = P[\mu]$ for some complex measure μ whose absolutely continuous part is $f d\theta$.
- 3. If f is bounded then the boundary values exist almost everywhere and define a bounded measurable function \tilde{f} on \mathbb{T} such that $f = P[\tilde{f}]$.

Proof. Suppose that for each $r \in [0,1)$, we have $||f_r||_p < +\infty$. We need to prove that for almost every θ , $\lim_{r\to 1} f\left(re^{i\theta}\right)$ exists. Then by Theorem 1.2.4.2, we have that f = P[g] for some $g \in L^p(\mathbb{T})$. Since $L^p(\mathbb{T}) \subset L^1(\mathbb{T})$, we can use the previous corollary. By the previous corollary, we have that P[g] has nontangential limits almost everywhere, we have that

$$\tilde{f}\left(e^{i\theta}\right) = \lim_{r \to 1} f(re^{i\theta}) = \lim_{r \to 1} P[g]\left(re^{i\theta}\right) \tag{1.3.0.1}$$

exists almost everywhere.

Now we proceed to prove part (1). Also by Theorem 1.2.4.2, we have that f = P[g] for some $g \in L^p(\mathbb{T})$. Hence, we have that by Equation 1.3.0.1 that $\tilde{f}(e^{i\theta}) = \lim_{r \to 1} P[g] (re^{i\theta})$ holds at almost every θ .

Also, by the previous corollary, $\lim_{r\to 1} P[g]\left(re^{i\theta}\right) = g(e^{i\theta})$ for almost every θ . Hence, we have that $\tilde{f} = g$.

Corollary 1.3.0.5. Let $f: \mathbb{D} \to \mathbb{R}_{\geq 0}$ be a harmonic function. Then f has nontangential limits at almost every point of \mathbb{T} . (Why demand nonnegative?)

Let $h(\mathbb{D})$ denote the set of all harmonic functions on \mathbb{D} . Let $p \in [1, \infty]$. Define

$$h^{p}\left(\mathbb{D}\right)=\left\{ f\in h\left(\mathbb{D}\right)\ |\ \left\{ f_{r}\right\} _{0\leq r<1}\ \text{is uniformly bounded in }L^{p}\ \text{norm}\ \right\}$$

We define a norm on $h^p(\mathbb{D})$ by

$$||f||_{h^{p}(\mathbb{D})} = \sup_{0 \le r < 1} ||f_{r}||_{L^{p}(\mathbb{D})} = \begin{cases} \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{p} d\theta \right)^{\frac{1}{p}} & \text{if } p \in [1, \infty) \\ \sup_{0 \le r < 1} ||f(re^{i\theta})||_{L^{\infty}(\mathbb{D})} & \text{if } p = \infty \end{cases}$$

It is easy to see why $||f|| < +\infty$ for any $f \in h^p(D)$. So we now proceed to show that $h^p(D)$ is a Banach space with this norm. First we show that it is indeed a normed linear space.

Clearly, $h(\mathbb{D})$ is a vector space. To show that $h^p(\mathbb{D})$ is a vector space, it suffices to check that $h^p(\mathbb{D})$ is a subspace.

Let $f, g \in h^p(\mathbb{D})$ and let $\alpha \in \mathbb{C}$. Then for any $r \in [0, 1)$, we have that

$$\|(f + \alpha g)_r\|_p = \|f_r + \alpha g_r\|$$

= $\|f_r\|_p + \alpha \|g_r\|_p$

Take note of the use of Holder's inequality. After this is done, since $\{f_r\}_{r\in[0,1)}$ and $\{g_r\}_{r\in[0,1)}$ is uniformly bounded, we have that $\{f+\alpha g\}_{r\in[0,1)}$ is uniformly bounded in L^p norm.

Now, we need to show that it is a normed linear space but this follows almost immediately. To show that it is a Banach space, we show that

Theorem 1.3.0.6. Let $p \in [1, \infty]$. If $u \in L^p(\mathbb{T})$ then $f = P * u \in h^p(\mathbb{D})$ and $\|f\|_p = \|u\|_p$. If $\mu \in \mathcal{M}(\mathbb{T})$ then $f = P * \mu \in h^1(\mathbb{D})$ and $\|f\|_1 = \|\mu\|$.

Proof. We consider the case $p \in [1, \infty)$. The other cases can be dealt similarly. Consider the map

$$u \overset{T}{\mapsto} U$$

where $U\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r\left(e^{i(\theta-t)}\right) u\left(e^{it}\right) dt$. By Theorem 1.2.2.1, we have that $||U|| = ||u||_p < +\infty$. Hence $U \in h^p(\mathbb{D})$.

Linearity is obvious. We need to check injectivity and surjectivity.

To check injectivity, let $u \in L^p(\mathbb{T})$ and suppose that T(u) = P[u] = 0. Now $\lim_{r\to 1} P[u] \left(re^{i\theta}\right) = u$ for almost θ by Corollary 1.3.0.3 and hence u = 0 almost everywhere.

Surjectivity is clear from Theorem 1.2.4.2.

1.4 Hardy Spaces $-H^p$ spaces

Let us denote the set of all analytic functions on \mathbb{D} by $H(\mathbb{D})$. Hence, $H(\mathbb{D}) \subset h(\mathbb{D})$. For $p \in (0, \infty]$, we consider the *Hardy classes* of analytic functions on the unit disc

$$H^{p}\left(\mathbb{D}\right) = \left\{ F \in H\left(\mathbb{D}\right) \mid \|F\|_{p} < \infty \right\}$$

Clearly,

$$H^{p}\left(\mathbb{D}\right)\subset h^{p}\left(\mathbb{D}\right)$$

We will see that $H^p(\mathbb{D})$, $1 \leq p \leq +\infty$, is also a Banach spaces isomorphic to a closed subspace of $L^p(\mathbb{T})$ denotes by $H^p(\mathbb{T})$.

To prove that $H^{p}(\mathbb{D})$ is a closed subspace of $h^{p}(\mathbb{D})$, we are going to identify $H^{p}(\mathbb{D})$ with the closed subspace

$$\left\{ u \in L^{p}\left(\mathbb{T}\right) : \int_{-\pi}^{\pi} u\left(e^{it}\right) e^{ikt} = 0 \text{ for all } k \in \mathbb{N} \right\}$$

Let $\{u_n\}$ be a sequence of functions in the above subspace; suppose that $\{u_n\}$ converge to $u \in L^p(\mathbb{T})$. Now, let $k \in \mathbb{N}$ be arbitrary. Since $\{u_n\}$ converge to u in p-norm, we have that $\{u_n\}$ converge to u in 1-norm. Hence we have the following:

$$\left| \int_{-\pi}^{\pi} u_n\left(e^{it}\right) e^{ikt} dt - \int_{-\pi}^{\pi} u\left(e^{it}\right) e^{ikt} dt \right| \leq \int_{-\pi}^{\pi} \left| u_n\left(e^{it}\right) - u\left(e^{it}\right) \right| dt$$

From the above inequality, it is evident that u is in the subspace mentioned above!

Series Representation of Harmonic Functions

Theorem 1.4.0.1. Let U be a harmonic on the disc $D_R = \{|z| < R\}$. Then, for each $n \in \mathbb{Z}$, the quantity

$$a_n = \frac{\rho^{-|n|}}{2\pi} \int_{-\pi}^{\pi} U\left(\rho e^{it}\right) e^{-int} dt \qquad (0 < \rho < R)$$
 (1.4.0.1)

is independent of ρ and we have

$$U\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{in\theta} \qquad \left(re^{i\theta} \in \mathbb{D}\right)$$
 (1.4.0.2)

The function

$$V\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} -isgn\left(n\right)a_n r^{|n|} e^{in\theta} \qquad \left(re^{i\theta} \in \mathbb{D}\right)$$
(1.4.0.3)

is the unique harmonic conjugate of U such that V(0) = 0. The series in 1.4.0.2 and 1.4.0.3 are absolutely and uniformly convergent on compact subsets of D_R

Chapter 2

The space H^1

2.1 Brief Recap!

Theorem 2.1.0.1. Let $u: \overline{\mathbb{D}} \to \mathbb{C}$ be a harmonic function. Then we have that

$$u\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right)$$

2.2 The Helson-Lowdenslager Approach

Let $\mathcal{C}\left(\overline{\mathbb{D}}\right)$ be the set of all continuous functions on $\overline{\mathbb{D}}$ and let $H\left(\mathbb{D}\right)$ be the set of all holomorphic functions on the open disc \mathbb{D} . We define $\mathcal{A} = \mathcal{C}\left(\overline{\mathbb{D}}\right) \cap H\left(\mathbb{D}\right)$.

We show that \mathcal{A} is an uniformly closed algebra of $\mathcal{C}\left(\overline{\mathbb{D}}\right)$. Let $\{f_n\}$ be a sequence in \mathcal{A} converging uniformly to $f \in \mathcal{C}\left(\overline{\mathbb{D}}\right)$.

We recall Morera's Theorem for analytic functions at this point:

Theorem 2.2.0.1 (Morera). A continuous, complex valued function $f: D \to \mathbb{C}$ that satisfies $\oint_{\gamma} f(z) dz = 0$ for any closed piecewise C^1 path γ in D must be holomorphic on D.

We use this theorem to prove what we want to prove. Now, let C be any closed curve in \mathbb{D} . Then for any $n \in \mathbb{N}$,

$$\oint_C f_n(z) \, dz = 0$$

So,

$$\oint_{C} f(z)dz = \oint_{C} \lim_{n \to \infty} f_{n}(z) dz = \lim_{n \to \infty} \oint_{C} f_{n}(z) dz = 0$$

Since C was arbitrary, f must be holomorphic. This shows that \mathcal{A} is uniformly closed. The fact that it is an algebra is easy to check \checkmark .

Now, note that since \mathbb{D} is a compact metric space, we have that $\mathcal{C}(\mathbb{D})$ is a complete metric space with supremum metric. Since the supremum metric can also be induced by a

norm, namely the supremum norm, we have that $\mathcal{C}(\mathbb{D})$ is a Banach space with the supremum norm.

Thus, this is what we have proved so far:

Theorem 2.2.0.2. The disc algebra $\mathcal{A} = \mathcal{C}\left(\overline{\mathbb{D}}\right) \cap H\left(\mathbb{D}\right)$ is a Banach space under the sup norm

$$||f||_{\infty} = \sup_{|z| < 1} |f(z)|$$

We make a couple of observations at this point:

1. Each $f \in \mathcal{A}$ is the Poisson integral of its boundary values:

$$f\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt$$

2. It follows from the Maximum Modulus Theorem that

$$||f||_{\infty} = \sup |f(e^{it})|$$

Theorem 2.2.0.3 (Correspondence of \mathcal{A} with a closed subspace of $\mathcal{C}(\mathbb{T})$). Consider the subspace

$$\tilde{\mathcal{A}} = \left\{ f \in \mathcal{C}\left(\mathbb{T}\right) : \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{int} = 0 \text{ for } n = 1, 2, \dots \right\}$$

of $C(\mathbb{T})$. Then there is an isometric isomorphism of A with \tilde{A} .

Proof. First, we show that $\tilde{\mathcal{A}}$ is a closed subspace of $\mathcal{C}(\mathbb{T})$. Let $\{f_n\}$ be a sequence of functions in $\tilde{\mathcal{A}}$ converging to $f \in \mathcal{C}(\mathbb{T})$. Consider the following:

$$\left| \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{ikt} dt \right| = \left| \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{ikt} dt - \int_{-\pi}^{\pi} f_n\left(e^{it}\right) e^{ikt} dt \right|$$
$$= \int_{-\pi}^{\pi} \left| f\left(e^{it}\right) - f_n\left(e^{it}\right) \right| dt$$
$$\leq 2\pi \left\| f_n - f \right\|_{\infty} \to 0 \text{ as } n \to \infty$$

This shows that $\tilde{\mathcal{A}}$ is closed under $\mathcal{C}(\mathbb{T})$ with supremum norm.

Now consider the linear map $T: \mathcal{A} \to \tilde{\mathcal{A}}$ given by

$$f \stackrel{T}{\longmapsto} f \mid_{\mathbb{T}}$$

For the sake of convenience, we will write $f|_{\mathbb{T}}$ as $f_{\mathbb{T}}$. We first need to show this map is well defined! That is, we need to show that

$$\int_{-\pi}^{\pi} f_{\mathbb{T}}\left(e^{it}\right) e^{ikt} dt = 0$$

for all $k \in \mathbb{N}$ but this immediately follows from Cauchy's theorem.

Note that injectivity is clear from Theorem 2.1.0.1. To show surjectivity, let $f \in \tilde{A}$. We need to show that there is a function $u \in \mathcal{A}$ such that $u_{\mathbb{T}} = f$. Consider the function

$$u\left(re^{i\theta}\right) = \begin{cases} (P*f)(re^{i\theta}) & \text{if } 0 \le r < 1\\ f\left(e^{i\theta}\right) & \text{if } r = 1 \end{cases}$$

This is the Dirichlet problem on the unit disc! So, u is continuous on $\overline{\mathbb{D}}$. It remains to show that u is analytic on \mathbb{D} . But note that for $r \in [0, 1)$,

$$u\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e^{int}$$
$$= \sum_{n=0}^{\infty} r^{|n|} \hat{f}(n) e^{int}$$

This completes the proof of the theorem!

In view of the previous theorem, we will simply write $\tilde{\mathcal{A}}$ as \mathcal{A} .

Definition 2.2.0.4. An analytic trignometric polynomial p on the circle \mathbb{T} is of the form

$$p\left(e^{it}\right) = \sum_{k=0}^{n} a_k e^{ik\theta}$$

Proposition 2.2.0.5. The set of the trignometric polynomials is a dense subset of A.

Proof. It is clear that any trignometric polynomial on the circle is a member of the disc algebra. Now, if $f: \mathbb{T} \to \mathbb{C}$ is in \mathcal{A} , then its negative Fourier coefficients are zero! Since, the Cesaro sum of f

$$s_n(x) = \sum_{k=-n}^{k=n} \hat{f}(n)e^{ikx} = \sum_{k=0}^{n} \hat{f}(n)e^{ikx}$$

converge to f uniformly and is a sequence of trignometric polynomial, we are done!

The following result is used in the proof of the next theorem, so, we prove it here:

Theorem 2.2.0.6. The real parts of functions in \mathcal{A} are uniformly dense in $\mathcal{C}(\mathbb{T},\mathbb{R})$. In other words, if μ is finite signed Borel measure on \mathbb{T} such that $\int f d\mu = 0$ for every $f \in \mathcal{A}$ then μ is the zero measure.

Proof. We first show that any trignometric polynomial of the form

$$p\left(e^{it}\right) = \sum_{k=-n}^{n} c_k e^{ikt} \tag{2.2.0.1}$$

where $c_{-k} = \overline{c_k}$ for each $k \in \{1, ..., n\}$ is a real part of a function $f \in \mathcal{A}$. Note that $p(e^{it})$ in Equation 2.2.0.1 is the real part of the function:

$$f(e^{it}) = c_0 + 2c_1e^{it} + 2c_2e^{2it} + \dots + 2c_ne^{int}$$

Now, we claim that every function $f \in C(\mathbb{T}, \mathbb{R})$ is a uniform limit of a trignometric polynomial of the form 2.2.0.1. We will be done if we show that the negative Fourier coefficients of real valued function is the <u>conjugate</u> of the its positive counterpart, that is, for each $n \in \mathbb{Z}_{\geq 0}$, we have that $\hat{f}(-n) = \hat{f}(n)$. To show this, take any $n \in \mathbb{Z}_{\geq 0}$ and then observe that

$$\hat{f}(-n) = \int_{\mathbb{T}} f(e^{it}) e^{int} \frac{dt}{2\pi}$$

$$= \int_{\mathbb{T}} f(e^{it}) e^{-int} \frac{dt}{2\pi}$$

$$= \hat{f}(n)$$

This shows that the Cesaro means of a real valued function is a trignometric polynomial of the form 2.2.0.1 and since the Cesaro means converges to f uniformly. Thus, the closure of the real parts of \mathcal{A} is indeed $\mathcal{C}(\mathbb{T}, \mathbb{R})$.

Now, let μ be a finite signed measure on \mathbb{T} such that $\int f d\mu = 0$ for every $f \in \mathcal{A}$. We show that μ is the zero measure. Notice that if $f \in \mathcal{A}$ then

$$0 = \int_{\mathbb{T}} f \, d\mu = \int_{\mathbb{T}} \Re(f) \, d\mu + i \int_{\mathbb{T}} \Im(f) \, d\mu$$

Hence, it follows that

$$\int_{\mathbb{T}} \Re(f) \, d\mu = 0$$

for every $f \in \mathcal{A}$. Now, if $g \in \mathcal{C}(\mathbb{T}, \mathbb{R})$ then by the first part of this theorem, there is a sequence $\{f_n\} \in \mathcal{A}$ such that $\Re(f_n)$ converges to g uniformly. By the Dominated Convergence Theorem (which holds, thanks to Jordan Decomposition Theorem), we have that $\int_{\mathbb{T}} g \, d\mu = 0$.

Now to prove that every $\mu = 0$, it suffices to show that $\hat{\mu}(n) = 0$ for every $n \in \mathbb{Z}^1$. Now, notice that for any $n \in \mathbb{Z}$, we have

$$\hat{\mu}(n) = \int_{\mathbb{T}} e^{-int} d\mu \left(e^{it} \right)$$

$$= \int_{\mathbb{T}} \left(\cos \left(nt \right) - i \sin \left(nt \right) \right) d\mu \left(e^{it} \right)$$

$$= \int_{\mathbb{T}} \cos \left(nt \right) d\mu \left(e^{it} \right) - i \int_{\mathbb{T}} \sin \left(nt \right) d\mu \left(e^{it} \right)$$

$$= 0$$

This completes the proof!

¹See Page 41, Corollary 2.3 of Mashreghi.

Corollary 2.2.0.7. Let μ be a finite signed measure on \mathbb{T} such that $\int f d\mu = 0$ for every $f \in \mathcal{A}$ which vanishes at the origin then μ is a constant multiple of Lebesgue measure.

Proof. We first prove the following claim: If $f \in \mathcal{A}$ then $\int_{\mathbb{T}} f d\mu = \frac{f(0)}{2\pi}$. Since the negative Fourier cofficients are zero and f is continuous, we have that the Cesaro means converge uniformly to f, that is,

$$\sum_{k=0}^{\infty} \hat{f}(n) e^{int} \to f \text{ uniformly}$$

Thus,

$$\int_{T} f\left(e^{it}\right) \frac{dt}{2\pi} = \frac{1}{2\pi} \int_{\mathbb{T}} \left(\sum_{k=0}^{\infty} \hat{f}\left(n\right) e^{int}\right) dt$$
$$= \frac{1}{2\pi} \sum_{k=0}^{\infty} \int_{\mathbb{T}} \left(\hat{f}\left(n\right) e^{int} dt\right)$$
$$= \frac{\hat{f}(0)}{2\pi}$$

Now, we proceed to the proof. We define a measure $d\nu = d\mu - \frac{1}{2\pi}\mu\left(\mathbb{T}\right)dt$. Now, we have that

$$\int_{\mathbb{T}} f\left(e^{it}\right) d\nu\left(e^{it}\right) = \int_{\mathbb{T}} [f - f\left(0\right)] \left(e^{it}\right) d\mu\left(e^{it}\right) + f\left(0\right) \int_{\mathbb{T}} d\nu\left(e^{it}\right)$$

$$= 0$$

Hence, we have that $d\mu = \frac{1}{2\pi}\mu(\mathbb{T}) dt$.

We will be working entirely on the \mathbb{T} . So, \mathcal{A} and H^2 will be the spaces on the unit circle rather on the open unit disc.

Now, consider \mathcal{A} as a subset of $L^2(\mathbb{T}, \mathcal{B}(\mathbb{T}), \mu)$ where μ is any finite positive measure. Let $\mathcal{A}_0 = \left\{ f \in \mathcal{A} : \int_{\mathbb{T}} f\left(e^{it}\right) \frac{dt}{2\pi} = \frac{\hat{f}(0)}{2\pi} = 0 \right\}$. It is easily seen that \mathcal{A}_0 is a subspace of $L^2(d\mu)$. Therefore, we have the closed subspace spanned by \mathcal{A} is $[\![\mathcal{A}_0]\!] = \overline{\text{span}(\mathcal{A}_0)} = \overline{\mathcal{A}_0}$. By a theorem of Hilbert spaces, we have that there is some vector $F \in [\![\mathcal{A}_0]\!]$ such that

$$\inf_{f \in \llbracket \mathcal{A}_0 \rrbracket} \int \left| 1 - f^2 \right| d\mu = \int \left| 1 - F^2 \right| d\mu$$

But since $d(1, \llbracket A_0 \rrbracket) = d(1, \overline{A}_0) \stackrel{2}{=} d(1, A_0)$, we have

$$\inf_{f \in \mathcal{A}_0} \int |1 - f^2| \, d\mu = \int |1 - F^2| \, d\mu$$

Note that this F is the orthogonal projection of 1 into the closed subspace spanned by A_0 .

Theorem 2.2.0.8. Let μ be a finite positive Borel measure on \mathbb{T} and suppose that the constant function 1 is not in $[\![\mathcal{A}_0]\!]$. Then let $f = P_{[\![\mathcal{A}_0]\!]}(1)$. Then the following holds:

- 1. The measure $d\nu = |1 F^2| d\mu$ is a nonzero constant multiple of the Lebesgue measure. In particular, Lebesgue measure is absolutely continuous with respect to μ .
- 2. The function $(1 F)^{-1} \in H^2$.
- 3. If $h = \left(\frac{d\mu}{d\theta}\right)$ then $(1 F) h \in L^2 = L^2 \left(\frac{d\theta}{2\pi}\right)$.

Theorem 2.2.0.9 (F and M. Riesz).

2.3 Szegö's Theorem