

Downscaling of climate models

Léo Micollet

Climate models, weather and climate predictions

Future climate predictions

Issues:

- Historical values available
- Too coarse resolution
- No long enough predictions

Objectives:

- Fine resolution predictions over large areas
- Foresee small scale events on bigger time scales

Deadly flash floods 2018

See: EESL "Blue Marble"

Downscaling in a changing climate

Methods:

- Multiple point Geostatistics (QS)
- Machine learning (SRGAN, CNN)

Downscaling in a changing climate: QuickSampling

Downscaling in a changing climate: SRGAN and CNN

See: Stengels, Glaws et al. (2020)

Downscaling in a changing climate: CNN

Figure 17-15. A generative adversarial network

See: Aurelien Géron, Hands on machine learning (2017)

See: Ronneberger, Fischer, Brox (2015)

Working with remote data

Nom	Modifié le	Туре	ille
igit .git	18/08/2022 14:42	Dossier de fichiers	
ata data	19/08/2022 14:34	Dossier de fichiers	
dev	18/08/2022 14:40	Dossier de fichiers	
G2S	18/08/2022 15:34	Dossier de fichiers	
utils utils	21/08/2022 17:11	Dossier de fichiers	
bash	18/08/2022 15:21	Fichier	0 Ko
™ README	18/08/2022 14:38	Markdown Docum	1 Ko

Upscaling

Baselines implementation

Metrics implementation

Metrics implementation: Pixel-wise metrics

$$RMSE = \sqrt{\frac{\sum_{1}^{n} (x_{i \ original} - x_{i \ downscaled})^{2}}{n}}$$

$$MAE = \frac{1}{n} \sum_{1}^{n} |x_{i \ original} - x_{i \ downscaled}|$$

Metrics implementation: SSIM

$$l(x,y) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}; \quad c(x,y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}; \quad s(x,y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

$$SSIM(x,y) = f(l(x,y), c(x,y), s(x,y)) = \frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{\left(\mu_x^2 + \mu_y^2 + C_1\right)\left(\sigma_x^2 + \sigma_y^2 + C_2\right)}$$

Metrics implementation: Pdf metrics

Hellinger distance :

$$H^{2}(P,Q) = \frac{1}{\sqrt{2}} \cdot \|\sqrt{P} - \sqrt{Q}\|_{2}$$

Perkins skill score:

$$P(f,g) = \int \min(f(x), g(x)) dx$$

Metrics implementation: Temporal and spatial autocorrelation

Baselines results: Temperature

method	RMSE	MAE	SSIM	Hellinger	Perkins
bilinear	0.756	0.378	0.5444	0.028	0.976
bicubic	0.76	0.378	0.5541	0.024	0.979
quintic	0.764	0.38	0.550	0.023	0.98

Baselines results: Temperature

17

Baselines results: Relative humidity

method	RMSE	MAE	SSIM	Hellinger	Perkins
bilinear	3.46	1.97	0.380925	0.034	0.973364
bicubic	3.48	1.97	0.401112	0.028	0.977290
quintic	3.5	1.98	0.398616	0.028	0.977597

Baselines results: Relative humidity

Baselines results: Total precipitations

method	RMSE	MAE	SSIM	Hellinger	Perkins
bilinear	0.0002	0.000013	0.999974	0.04	0.514047
bicubic	0.0002	0.000014	0.999973	0.094	0.488452
quintic	0.0002	0.000015	0.999973	0.105	0.483243

Baselines results: Total precipitations

Baselines results: Future climate

QuickSampling results

QS Downscaling

Conclusion and future of this project