

<pre>In [47]: Out[47]:</pre>	regressor_OLS=sm.OLS (endog=y, exog=X_be3).fit() regressor_OLS.summary() OLS Regression Results Dep. Variable: y R-squared (uncentered): 0.872 Model: OLS Adj. R-squared (uncentered): 0.872 Method: Least Squares F-statistic: 2273. Date: Sat, 04 Dec 2021 Prob (F-statistic): 0.00
	Time: 19:18:20 Log-Likelihood: -13630. No. Observations: 1338 AIC: 2.727e+04 Df Residuals: 1334 BIC: 2.729e+04 Covariance Type: nonrobust x1 235.7394 7.296 32.313 0.000 221.427 250.051 x2 -317.3367 337.286 -0.941 0.347 -979.006 344.332 x3 2.36e+04 432.714 54.549 0.000 2.28e+04 2.45e+04 x4 -297.2863 146.476 -2.030 0.043 -584.635 -9.937
	x3 2.36e+04 432.714 54.549 0.000 2.28e+04 2.45e+04 x4 -297.2862 146.476 -2.030 0.043 -584.635 -9.937 Omnibus: 264.736 Durbin-Watson: 2.077 Prob(Omnibus): 0.000 Jarque-Bera (JB): 616.743 Skew: 1.084 Prob(JB): 1.19e-134 Kurtosis: 5.523 Cond. No. 104. Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [48]: Out[48]:	
	Time: 19:18:21 Log-Likelihood: -13630. No. Observations: 1338 AIC: 2.727e+04 Df Residuals: 1335 BIC: 2.728e+04 Df Model: 3 Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] x1 233.0209 6.699 34.786 0.000 219.880 246.162
	x2 2.355e+04 429.299 54.864 0.000 2.27e+04 2.44e+04 x3 -316.1703 145.088 -2.179 0.029 -600.796 -31.544 Omnibus: 266.314 Durbin-Watson: 2.077 Prob(Omnibus): 0.000 Jarque-Bera (JB): 620.932 Skew: 1.089 Prob(JB): 1.47e-135 Kurtosis: 5.528 Cond. No. 102.
In [50]:	[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. #Best Features are Age, Smoker, Regions X=dataset.iloc[:,[0,4,5]].values y=dataset.iloc[:,6].values X array([[19, 1, 3],
	array([16884.924 , 1725.5523, 4449.462 ,, 1629.8335, 2007.945 , 29141.3603])
<pre>In [54]: Out[54]: In [55]: Out[55]:</pre>	<pre>X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.20, random_state=0) X_train.shape (1070, 3) X_test.shape (268, 3) y_train.shape</pre>
Out[57]:	y_test.shape
	<pre>regressors=[['Linear Regression :',LinearRegression()],</pre>
	<pre>reg_pred.append(rms) accuracy= model.score(X_test,y_test) accuracies.append(accuracy) print(name,rms,accuracy) y_ax=['Linear Regression' ,'Decision Tree Regression', 'Random Forest Regression'] x_ax=reg_pred plt.figure(figsize=(12,5)) plt.subplot(1,2,1) sns.barplot(x=x_ax,y=y_ax,linewidth=1.5,edgecolor="0.1") plt.title('RMS Scores')</pre>
Out[58]:	<pre>plt.plot() plt.subplot(1,2,2) sns.barplot(x=accuracies, y=y_ax,linewidth=1.5,edgecolor="0.1") plt.title('Accuracies') plt.plot() Results Linear Regression: 6016.213695593682 0.7725454923581263 Decision Tree Regression: 7543.001912826166 0.6424502524438279 Random Forest Regression: 6938.857439698769 0.6974313205014286</pre>
	RMS Scores Linear Regression - Decision Tree Regression - Decision Tree Regression -
In [59]: In [60]:	
<pre>In [62]: Out[62]: In [63]:</pre>	array([19, 18, 28,, 18, 21, 61], dtype=int64)
<pre>In [64]: Out[64]:</pre>	<pre>X_fs1=dataset.iloc[:,0].values regressor_OLS=sm.OLS(endog=y,exog=X_fs1).fit() regressor_OLS.summary() OLS Regression Results Dep. Variable:</pre>
	Time: 19:18:26
	Omnibus:393.480Durbin-Watson:2.037Prob(Omnibus):0.000Jarque-Bera (JB):840.455Skew:1.714Prob(JB):3.14e-183Kurtosis:4.823Cond. No.1.00 Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
<pre>In [65]: Out[65]:</pre>	<pre>X_fs2=dataset.iloc[:,[0,1]].values regressor_OLS=sm.OLS(endog=y, exog=X_fs2).fit() regressor_OLS.summary() OLS Regression Results Dep. Variable:</pre>
	Time: 19:18:27 Log-Likelihood: -14415. No. Observations: 1338 AIC: 2.883e+04 Df Residuals: 1336 BIC: 2.884e+04 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] x1 306.1242 10.150 30.160 0.000 286.213 326.036 x2 2043.2674 594.697 3.436 0.001 876.626 3209.908
	Omnibus:387.299Durbin-Watson:2.052Prob(Omnibus):0.000Jarque-Bera (JB):819.051Skew:1.691Prob(JB):1.40e-178Kurtosis:4.803Cond. No.78.4 Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
<pre>In [66]: Out[66]:</pre>	
	Date: Sat, 04 Dec 2021 Prob (F-statistic): 6.55e-262 Time: 19:18:27 Log-Likelihood: -14400. No. Observations: 1338 AIC: 2.881e+04 Df Residuals: 1335 BIC: 2.882e+04 Covariance Type: nonrobust coef std err to P> t [0.025 0.975] x1 207.6709 20.510 10.125 0.000 167.436 247.906 x2 979.3428 619.212 1.582 0.114 -235.392 2194.078
	v3 158.2079 28.739 5.505 0.000 101.830 214.586 Omnibus: 364.363 Durbin-Watson: 2.024 Prob(Omnibus): 0.000 Jarque-Bera (JB): 731.846 Skew: 1.631 Prob(JB): 1.21e-159 Kurtosis: 4.578 Cond. No. 102.
<pre>In [67]: Out[67]:</pre>	Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. X_fs4=dataset.iloc[:,[0,2]].values regressor_OLS=sm.OLS(endog=y,exog=X_fs4).fit() regressor_OLS.summary() OLS Regression Results Dep. Variable: y R-squared (uncentered): 0.595 Model: OLS Adj. R-squared (uncentered): 0.594
	Method: Least Squares F-statistic: 981.2 Date: Sat, 04 Dec 2021 Prob (F-statistic): 6.45e-263 Time: 19:18:28 Log-Likelihood: -14401. No. Observations: 1338 AIC: 2.881e+04 Df Residuals: 1336 BIC: 2.882e+04 Df Model: 2 Covariance Type: nonrobust
	x1 208.8632 20.507 10.185 0.000 168.633 249.094 x2 172.3943 27.318 6.311 0.000 118.803 225.986 Omnibus: 364.702 Durbin-Watson: 2.016 Prob(Omnibus): 0.000 Jarque-Bera (JB): 732.185 Skew: 1.634 Prob(JB): 1.02e-159 Kurtosis: 4.567 Cond. No. 5.51
<pre>In [68]: Out[68]:</pre>	regressor_OLS=sm.OLS(endog=y,exog=X_fs5).fit() regressor_OLS.summary()
	Method: Least Squares F-statistic: 3031. Date: Sat, 04 Dec 2021 Prob (F-statistic): 0.00 Time: 19:18:28 Log-Likelihood: -13631. No. Observations: 1338 AIC: 2.727e+04 Df Residuals: 1335 BIC: 2.728e+04 Df Model: 3 Covariance Type: nonrobust
	coef std err t P> t [0.025 0.975] x1 199.6458 11.535 17.307 0.000 177.017 222.275 x2 33.7512 15.580 2.166 0.030 3.188 64.315 x3 2.332e+04 433.987 53.745 0.000 2.25e+04 2.42e+04 Omnibus: 277.578 Durbin-Watson: 2.067 Prob(Omnibus): 0.000 Jarque-Bera (JB): 635.617 Skew: 1.141 Prob(JB): 9.49e-139 Kurtosis: 5.489 Cond. No. 126.
<pre>In [69]: Out[69]:</pre>	regressor_OLS=sm.OLS(endog=y,exog=X_fs6).fit() regressor_OLS.summary() OLS Regression Results
	Dep. Variable: y R-squared (uncentered): 0.873 Model: OLS Adj. R-squared (uncentered): 0.873 Method: Least Squares F-statistic: 2294. Date: Sat, 04 Dec 2021 Prob (F-statistic): 0.00 Time: 19:18:29 Log-Likelihood: -13625. No. Observations: 1338 AIC: 2.726e+04 Df Residuals: 1334 BIC: 2.728e+04
	Covariance Type: nonrobust coef std err t P> t [0.025 0.975] x1 200.8988 11.495 17.478 0.000 178.349 223.448 x2 58.8403 17.145 3.432 0.001 25.205 92.475 x3 2.334e+04 432.249 53.987 0.000 2.25e+04 2.42e+04 x4 -549.2686 159.673 -3.440 0.001 -862.507 -236.031 Omnibus: 273.748 Durbin-Watson: 2.071 Prob(Omnibus): 0.000 Jarque-Bera (JB): 626.116
In [70]:	Skew: 1.126 Prob(JB): 1.10e-136 Kurtosis: 5.482 Cond. No. 126. Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. X=dataset.iloc[:,[0,2,4,5]].values y=dataset.iloc[:,6].values
In [72]:	array([[19. , 27.9 , 1. , 3.],
	<pre>array([16884.924 , 1725.5523, 4449.462 ,, 1629.8335, 2007.945 ,</pre>
	<pre>['Decision Tree Regression :',DecisionTreeRegressor()], ['Random Forest Regression :',RandomForestRegressor()],] reg_pred=[] accuracies=[] print('Results\n') for name,model in regressors: model=model model.fit(X_train,y_train) predictions = model.predict(X_test) rms=np.sqrt(mean_squared_error(y_test, predictions)) reg_pred.append(rms) accuracy= model.score(X_test,y_test)</pre>
	<pre>accuracies.append(accuracy) print(name,rms,accuracy) y_ax=['Linear Regression' ,'Decision Tree Regression', 'Random Forest Regression'] x_ax=reg_pred plt.figure(figsize=(12,5)) plt.subplot(1,2,1) sns.barplot(x=x_ax,y=y_ax,linewidth=1.5,edgecolor="0.1") plt.title('RMS Scores') plt.plot() plt.subplot(1,2,2)</pre>
Out[74]:	<pre>sns.barplot(x=accuracies, y=y_ax, linewidth=1.5, edgecolor="0.1") plt.title('Accuracies') plt.plot() Results Linear Regression: 5688.626766322956 0.7966412232221931 Decision Tree Regression: 7371.155031214616 0.6585562787716069 Random Forest Regression: 4777.263090702525 0.8565811095236121 [] RMS Scores Accuracies</pre>
	Linear Regression - Decision Tree Regression - Decision Tree Regression -
In []:	