Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$0.1(6) = \frac{15}{90} = \frac{1}{6}$	3р
	$2 \cdot \left(\frac{1}{6} + \frac{1}{3}\right) = 2 \cdot \frac{1}{2} = 1$	2p
2.	f(a) = 2a - 2	2p
	$2a-2=a \Leftrightarrow a=2$	3 p
3.	$x^2 + 6 = 5x \Leftrightarrow x^2 - 5x + 6 = 0$	3 p
	x=2 sau $x=3$	2p
4.	După prima ieftinire cu 10%, prețul obiectului este 900 – 10% · 900 = 810 lei	3 p
	După a doua ieftinire cu 10%, prețul obiectului este $810-10\% \cdot 810=729$ de lei	2p
5.	$AB = \sqrt{10}$, $AC = \sqrt{10}$, deci triunghiul ABC este isoscel	3 p
	$BC = \sqrt{20}$, şi cum $(\sqrt{20})^2 = (\sqrt{10})^2 + (\sqrt{10})^2$, obţinem că triunghiul ABC este dreptunghic	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} = \frac{6}{4} = \frac{3}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$0*(-2) = 2(0+(-2))+0\cdot(-2)+2=$	3p
	=-4+2=-2	2 p
2.	x * y = xy + 2x + 2y + 4 - 2 =	2p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
3.	x*(-1)=(x+2)(-1+2)-2=x+2-2=x	2p
	(-1)*x = (-1+2)(x+2)-2 = x+2-2 = x = x*(-1), pentru orice număr real x , deci $e = -1$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$(x+3)(x+3)-2=2 \Leftrightarrow x^2+6x+5=0$	3p
	x = -5 sau $x = -1$	2 p
5.	$(\lg x + 2)(\lg(2x) + 2) - 2 = -2 \Rightarrow \lg x + 2 = 0 \text{ sau } \lg(2x) + 2 = 0$	3 p
	$x = \frac{1}{100}$ sau $x = \frac{1}{200}$, care convin	2p
6.	$a*b \in \mathbb{Z} \Leftrightarrow (a+2)(b+2) \in \mathbb{Z}$	2p
	De exemplu, pentru $a+2=\frac{2}{3} \Leftrightarrow a=-\frac{4}{3} \in \mathbb{Q} \setminus \mathbb{Z}$ și $b+2=\frac{3}{2} \Leftrightarrow b=-\frac{1}{2} \in \mathbb{Q} \setminus \mathbb{Z}$, obținem	3 p
	a*b=-1, care este număr întreg	

SUBIECTUL al III-lea (30 d		ouncte)
1.	$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \Rightarrow \det A = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 1 =$	3p
	=2-0=2	2 p
2.	$M(a) = a \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a+1 & a \\ 0 & 2a+1 \end{pmatrix}$	3p
	$\det(M(a)) = \begin{vmatrix} a+1 & a \\ 0 & 2a+1 \end{vmatrix} = (a+1)(2a+1), \text{ pentru orice număr real } a$	2p
3.	$M(-2) = \begin{pmatrix} -1 & -2 \\ 0 & -3 \end{pmatrix} \Rightarrow \det(M(-2)) = 3$	2p
	$M^{-1}(-2) = \begin{pmatrix} -1 & \frac{2}{3} \\ 0 & -\frac{1}{3} \end{pmatrix}$	3p
4.	$M(1) \cdot M(2) = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 9 \\ 0 & 15 \end{pmatrix} = 3 \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$	3p
	$A \cdot A + I_2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}, \operatorname{deci} M(1) \cdot M(2) = 3(A \cdot A + I_2)$	2p
5.	$M(a) - 2aA = I_2 - aA = M(-a) \Rightarrow \det(M(a) - 2aA) = (1-a)(1-2a)$	2p
	$(1-a)(1-2a)=1 \Leftrightarrow 2a^2-3a+1=1 \Leftrightarrow a(2a-3)=0$, ceea ce este imposibil dacă a este	2n
	număr întreg nenul, deci $\det(M(a)-2aA) \neq 1$, pentru orice număr întreg nenul a	3 p
6.	$ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \Leftrightarrow \begin{cases} x + y = 0 \\ 2y = -4 \end{cases} $	2p
	$x=2$ şi $y=-2$, deci $X=\begin{pmatrix} 2\\ -2 \end{pmatrix}$	3p