Produits dérivés de change

Richard Guillemot

DIFIQ

11 Avril 2014

Taux de change "Spot"

1 euro vaut 1.3889 dollar.

Taux de change "Spot"

1 euro vaut 1.3889 dollar.

EUR (euro) est la devise étrangère ou devise 1.

Taux de change "Spot"

1 euro vaut 1.3889 dollar.

EUR (euro) est la devise étrangère ou devise 1. **USD (dollar)** est la devise domestique ou devise 2.

Comment garantir un taux de change à une date future \mathbf{T} ? Et à quel taux \mathbf{X} .

Prêt en t de $\frac{1}{1+\delta R^{EUR}}$ euros. Remboursé en T avec les intérêts, c'est à dire 1 euros.

Change $\frac{1}{1+\delta R^{EUR}}$ euros contre $\frac{S}{1+\delta r^{EUR}}$ dollars.

Emprunt en t de $\frac{S}{1+\delta R^{EUR}}$ dollars

Remboursé en T avec les intérêts, c'est à dire $S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$ dollars.

$$X = S \frac{1 + \delta R^{USD}}{1 + \delta R^{EUR}}$$

Notation	Description	Formule	Valeur

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours

Notation	Description	Formule	Valeur
δ R^{EUR}	Maturité du forward Taux zéro coupon euro.	T-(t+2D)	$\begin{array}{l} 1 \text{ an} = 365 \text{ jours} \\ 0.5\% \end{array}$

Notation	Description	Formule	Valeur
δ R^{EUR}	Maturité du forward Taux zéro coupon euro.	T-(t+2D)	0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
			ı

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
X	Forward de change.	$S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
X	Forward de change.	$Srac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X =$$

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
X	Forward de change.	$Srac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.3889 \times \frac{1 + \frac{365}{360} \times 0.3\%}{1 + \frac{365}{360} \times 0.5\%}$$

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
X	Forward de change.	$Srac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.3889 \times \frac{1 + \frac{365}{360} \times 0.3\%}{1 + \frac{365}{360} \times 0.5\%} = 1.3861$$

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux zéro coupon euro.		0.5%
R ^{USD}	Taux zéro coupon euro.		0.3%
S	Taux de change spot.		1.3889
X	Forward de change.	$S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.3889 \times \frac{1 + \frac{365}{360} \times 0.3\%}{1 + \frac{365}{260} \times 0.5\%} = 1.3861$$

Soit 27.6 points de base d'écart négatif par rapport au taux spot.

Quizz

Si on vend 100 Mios euro dans 1 an d'euros au taux spot au lieu d'utiliser le taux foward précedemment calculé :

- a) On gagne 276 kEUR
- b) On perd 27 kEUR
- c) On gagne 2.76 millions d'euros.
- d) On perd 276 kEUR.

Quizz

Si on vend 100 Mios euro dans 1 an d'euros au taux spot au lieu d'utiliser le taux foward précedemment calculé :

- a) On gagne 276 kEUR VRAI
- b) On perd 27 kEUR FAUX
- c) On gagne 2.76 millions d'euros. FAUX
- d) On perd 276 kEUR. FAUX

On emprunte à 0.3% en dollars et on prête à 0.5% en euros!!!

On considère l'échéancier d'un swap standard.

On échange en t+2D ouvrés N^{USD} avec sa contrevaleur N^{EUR} . On fera l'échange inverse à la maturité du swap T.

On reçoit une jambe variable euro en contrepartie d'une jambe variable dollar.

En pratique il faut retirer la marge de basis m à la jambe EUR pour mettre le swap au pair (valeur nulle).

Un swap de devises d'un seule période est un foward de change de nominal $N^{EUR}(1 + \delta(L^{EUR} - \mathbf{m}))$.

Taux de change Forward et marge de basis.

$$X = S \frac{1 + \delta R^{USD}}{1 + \delta (R^{EUR} - \mathbf{m})}$$

Delta de change et position de change

 Le delta de change est la sensibilité ou la dérivé au taux de change de la valeur d'un portefeuille en devise domestique.

$$\Delta_{FX} = \frac{\partial \prod^d}{\partial S}$$

 La position de change correspond au nominaux équivalents Nⁱ au portefeuille dans chacune des devises. Elle indique la taille des opérations de change "Spot" nécessaires pour neutraliser le risque.

Delta de change et position de change

Illustration avec les 2 devises euro et dollar :

Taux de change	5	= EUR/USD
Valeur du portefeuille en dollar	П ^{USD}	$= N^{EUR} \times S + N^{USD}$
Delta de change	$\Delta_{\it EURUSD}$	$= N^{EUR}$
Position de change		(N^{EUR}, N^{USD})

Problème

On reprend les données du premier exemple la marge de basis m égale à 5 points de base :

- Opération 1: Une banque française doit recevoir de son client 138.70 millions de dollars contre 100 millions d'euros dans 1 an.
- Opération 2 : Sa filliale américaine doit recevoir de son client
 72.11 millions d'euros contre 100 millions de dollars dans 1 an.

Pour chacune des 2 opérations et le portefeuille total de la banque :

- Quel est le Profit & Loss (PNL) pour la banque?
- Quels sont de Delta FX et la position de change?
- Quelle est la sensibilité à un mouvement de 1 point de base des taux euros, dollar et de la marge de basis?
- Quelles opérations doit réaliser la banque pour neutraliser son risque de change?

Problème - Solution

	Cas 1	Cas 2	TOTAL	
PNL EUR	12	3	15	kEUR
PNL USD	17	4	21	kUSD
Delta FX	-99.55	71.79	-27.77	Mios EUR
Sensi taux	9.91	-7.15	2.76	kEUR/bp
Sensi taux	-13.79	9.94	-3.85	kUSD/bp
Sensi basis	-9.91	7.15	-2.76	kEUR/bp
NEUR	-99.552	71.787	-27.765	Mios EUR/bp
NUSD	138.285	-99.701	38.584	Mios USD/bp

Il faut vendre 38.584 millions de dollar contre 27.780 millions d'euros.

Option de change

Une **option de change** est un contrat asymétrique par lequel à une date future T :

- La contrepartie vendeuse s'engage à recevoir un montant
 N¹ en devise 1 contre N² en devise 2.
- La contrepartie acheteuse peut à son gré recevoir un nominal N^2 en devise 2 contre un nominal N^1 en devise 1.

Option de change

Une **option de change** est un contrat asymétrique par lequel à une date future T :

- La contrepartie vendeuse s'engage à recevoir un montant N^{EUR} en euro contre N^{USD} en dollar.
- La contrepartie acheteuse peut à son gré recevoir un nominal N^{USD} en dollar contre un nominal N^{EUR} en euros.

Quel est le payoff d'une option de change?

	S ^{EUR/USD}	S ^{USD/EUR}
EUR		
USD		

Quel est le payoff d'une option de change?

	S ^{EUR/USD}	S ^{USD/EUR}
EUR		
USD	$(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}$	

Quel est le payoff d'une option de change?

	S ^{EUR/USD}	S ^{USD/EUR}
EUR	$\frac{(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}}{S^{EUR/USD}}$	
USD	$(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}$	

Quel est le payoff d'une option de change?

	S ^{EUR/USD}	S ^{USD/EUR}
EUR	$\frac{(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}}{S^{EUR/USD}}$	$(N^{EUR}-N^{USD}\times S^{USD/EUR})_+$
USD	$(N^{EUR} \times S^{EUR/USD} - N^{USD})_+$	

Quel est le payoff d'une option de change?

	S ^{EUR/USD}	S ^{USD/EUR}
EUR USD	$\frac{(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}}{S^{EUR/USD}}$ $(N^{EUR} \times S^{EUR/USD} - N^{USD})_{+}$	$\frac{(N^{EUR} - N^{USD} \times S^{USD/EUR})_{+}}{(N^{EUR} - N^{USD} \times S^{USD/EUR})_{+}}$

Option de change - Black & Scholes

En contrepartie le vendeur reçoit une prime (\mathbf{p}) de la part de l'acheteur que l'on peut calculer à l'aide de la formule de Black & Scholes :

$$e^{-r^1 imes T} imes N^1 imes S imes \mathcal{N}(d_1) - e^{-r^2 imes T} imes N^2 imes \mathcal{N}(d_2)$$

avec:

 ${\cal N}$: fonction de répartition de la loi normale centrée réduite

$$d_1 = \frac{\ln\left(\frac{N^1}{N^2}S\right) + (r^1 - r^2) \times T + \frac{1}{2}\sigma^2T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

Option de change - Black & Scholes

En contrepartie le vendeur reçoit une prime (\mathbf{p}) de la part de l'acheteur que l'on peut calculer à l'aide de la formule de Black & Scholes :

$$e^{-r^{EUR} \times T} \times N^{EUR} \times S^{EUR/USD} \times \mathcal{N}(d_1) - e^{-r^{USD} \times T} \times N^{USD} \times \mathcal{N}(d_2)$$
 avec :

 ${\cal N}$: fonction de répartition de la loi normale centrée réduite

$$d_1 = \frac{\ln\left(\frac{N^{EUR}}{N^{USD}}S^{EUR/USD}\right) + (r^{EUR} - r^{USD}) \times T + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

Option de change - Symétrie

On peut exprimer la prime (p) de l'option de plusieurs manières :

$$e^{-r_{EUR} \times T} \times N^{EUR} \times S^{EUR/USD} \times \mathcal{N}(d_1) - e^{-r_{USD} \times T} \times N^{USD} \times \mathcal{N}(d_2)$$
 avec :

$$d_1 = \frac{\ln\left(\frac{N^{EUR}}{N^{USD}}S^{EUR/USD}\right) + (r_{EUR} - r_{USD}) \times T + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

Option de change - Symétrie

Comme un call sur EUR/USD :

$$e^{-r_{USD} imes T} imes N^{EUR} imes \left[F^{EUR/USD} imes \mathcal{N}(d_1) - K imes \mathcal{N}(d_2)
ight]$$
 avec :

$$\begin{aligned} d_1 &= \frac{\ln\left(\frac{F^{EUR/USD}}{K}\right) + \frac{1}{2}\sigma^2T}{\sigma\sqrt{T}} \\ d_2 &= d_1 - \sigma\sqrt{T} \\ K &= \frac{N^{USD}}{N^{EUR}} \\ F &= S^{EUR/USD}e^{(r^{EUR} - r^{USD}) \times T} \end{aligned}$$

Option de change - Symétrie

Comme un put sur USD/EUR :

$$e^{-r_{EUR} \times T} imes N^{USD} imes \left[rac{1}{K} imes \mathcal{N}(-d_2) - F^{USD/EUR} imes \mathcal{N}(-d_1)
ight]$$
 avec :

$$egin{aligned} d_1 &= rac{ ext{In} \left(F^{USD/EUR} imes K
ight) + rac{1}{2} \sigma^2 T }{ \sigma \sqrt{T} } \ d_2 &= d_1 - \sigma \sqrt{T} \ K &= rac{N^{USD}}{N^{EUR}} \ F &= S^{USD/EUR} \mathrm{e}^{(r^{USD} - r^{EUR}) imes T} \end{aligned}$$

Option de change - Jargon

On considère 5 chiffres significatifs dans un taux de change.

Option de change - Jargon

$$EUR/USD=1.3889$$

Le 3^{ème} chiffre en partant de la gauche est appelé "Big Figure".

Option de change - Jargon

$$_{\text{EUR/USD}=1.388}9$$

Le 5^{ème} chiffre en partant de la gauche est appelé "pips".

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros		
Prix en % de nominal dollar		
Prix en % de nominal euro		
Prix en dollars pips per EUR		
Prix en euros pips per USD		

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros	$\frac{p}{S}$	38.87 kEUR
Prix en % de nominal dollar		
Prix en % de nominal euro		
Prix en dollars pips per EUR		
Prix en euros pips per USD		

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros	<u>p</u>	38.87 kEUR
Prix en % de nominal dollar	$\frac{\breve{p}}{N \times K}$	3.8837%
Prix en % de nominal euro		
Prix en dollars pips per EUR		
Prix en euros pips per USD		

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros	<u>p</u>	38.87 kEUR
Prix en % de nominal dollar	$\frac{\breve{p}}{N \times K}$	3.8837%
Prix en % de nominal euro	$\frac{\widehat{p}}{N}$	5.3983%
Prix en dollars pips per EUR	,,	
Prix en euros pips per USD		

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros	<u>p</u> <u>S</u>	38.87 kEUR
Prix en % de nominal dollar	$\frac{\tilde{p}}{N \times K}$	3.8837%
Prix en % de nominal euro	$\frac{\frac{\hat{p}}{N}}{N}$	5.3983%
Prix en dollars pips per EUR	$\frac{\dot{p}}{1e^4}$	539.83 dollar pips
Prix en euros pips per USD		

On considère les même données de marché que précédemment avec une volatilité $\sigma=12\%$ et on quote la prime d'une option change de maturité 1 an qui reçoit 100 millions d'euros contre 139 millions de dollars.

Prix en dollars	р	53.98 kUSD
Prix en euros	<u>p</u> <u>S</u>	38.87 kEUR
Prix en % de nominal dollar	$\frac{\tilde{p}}{N \times K}$	3.8837%
Prix en % de nominal euro	$\frac{\tilde{p}}{N}$	5.3983%
Prix en dollars pips per EUR	$\frac{\ddot{p}}{1e^4}$	539.83 dollar pips
Prix en euros pips per USD	$\frac{1}{S \times K \times 1e^4}$	279.62 euro pips

Option de change - Delta de change

Le Delta de change δ est le pourcentage du nominal en devise 1 qu'il faut vendre pour couvrir la position de change.

$$\delta = rac{\partial p}{\partial \mathcal{S}} = \mathrm{e}^{-r^{EUR} imes T} imes \mathcal{N}(d_1)$$

On peut exprimer de façon équivalente le delta de change en pourcentage du nominal $\delta^{reverse}$ en devise 2 :

$$\delta^{reverse} = -\frac{\delta \times S}{K}$$