R을 활용한 홈 데이터 분석 플랫폼

2015-06-26 김 지 영 jeuyk@etri.re.kr

- 1. 소개
- 2. 기존 홈 네트워크 연구
- 3. 분석 플랫폼
- 4. 향후 계획

2010년 ETRI 입사 홈 네트워크 연구 5년차 데이터 분석 연구 2년차

컴퓨터과학과 분산시스템 연구실

기존 홈 네트워크 연구

▶ 홈 자원 관리 기술

자원 관리 기술을 활용한 예

홈 기기관리 서비스

단지 관리 서비스

장애진단 서비스

전력 사용량 확인 서비스

IoT + Home

Connected Devices

분석 대상

R 활용 파트

데이터 검토

분석테스트 및 분석엔진 개발

결과이미지 활용

분석 실행 구조

jpmml

PMML

- XML 기반 Predictive Model Markup Language(PMML)
- The Data Mining Group
 (DMG) 에서 정의
- DataFields와 OutputFields를
 활용해 input/output 정의
- 각 element별 자유로운
 Extension 가능

```
<xs:element name="PMML">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Header"/>
      <xs:element ref="MiningBuildTask" minOccurs="0"/>
      <xs:element ref="DataDictionary"/>
      <xs:element ref="TransformationDictionary" minOccurs="0"/>
      <xs:sequence minOccurs="0" maxOccurs="unbounded">
        <xs:group ref="MODEL-ELEMENT"/>
      </xs:sequence>
      <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
   </xs:sequence>
    <xs:attribute name="version" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>
<xs:group name="MODEL-ELEMENT">
   <xs:element ref="AssociationModel"/>
   <xs:element ref="BaselineModel"/>
   <xs:element ref="ClusteringModel"/>
    <xs:element ref="GeneralRegressionModel"/>
   <xs:element ref="MiningModel"/>
   <xs:element ref="NaiveBayesModel"/>
    <xs:element ref="NearestNeighborModel"/>
   <xs:element ref="NeuralNetwork"/>
   <xs:element ref="RegressionModel"/>
   <xs:element ref="RuleSetModel"/>
   <xs:element ref="SequenceModel"/>
   <xs:element ref="Scorecard"/>
   <xs:element ref="SupportVectorMachineModel"/>
   <xs:element ref="TextModel"/>
   <xs:element ref="TimeSeriesModel"/>
   <xs:element ref="TreeModel"/>
  </xs:choice>
</xs:group>
```

실제 분석 모델

- Appliance Usage Pattern Model
 - 가전 사용 패턴 분석 모델
 - > 두 가지 분석을 통해 패턴 발견
 - Number of Analysis Model =>2
 - Mining Update Interval => periodic, 1 week
 - Clustering Model => Appliance Status Model
 - Mining Field => PowerMeter
 - Target Resource => HERA_DEVICE_TYPE_RICEPOT
 - Output Field
 - » External Output => ApplianceStatus
 - » Output Decision => 1, Cook
 - » Output Decision => 2, Warm

실제 분석 모델

Appliance Usage Pattern Model

- Association Model => Appliance Usage Pattern Model
 - Transaction type => 1 week
 - Item => week;hour;previousModel
 - Mining Field => PowerMeter
 - Target Resource => HERA_DEVICE_TYPE_RICEPOT
 - Output Field
 - » External Output =>UsagePattern
 - » Output Pattern

실제 데이터 수집 환경

- ▶ 스마트(WiFi) 미터기 10가구에 배포
- 스마트 미터기를 자원화 하고 전력 사용량 DB에 기록
 - > 매 2초마다 수집
 - > 평균 6가구 (총 10가구)
 - › 평균 31GB/9일 생성

•				
► Hera				
열 데이터 제약 조건 권한 부여 통계 트리거 플래시백 종속성 세부 정보 인덱스 SQL				
≠ № № № № № ∀2				
₽ P LOGDATE	AGENTID RES	OURCEID	■ LISTINDEX VALUENAME	VALUEDATA
1 14/11/05 11:27:07,000156000	1A104D310H 1012341	AC 05C 000000000000000	0 RealValue	4,860000
214/11/05 11:27:07,000156000	1A104D310H 1012341	AC05C000000000000000	1 SumValue	486578, 125000
3 14/11/05 11:27:06,000730000	1A105D310H 1012341I	301E400000000000000	0 RealValue	0,000000
414/11/05 11:27:06,000730000	1A105D310H 1012341I	301E400000000000000	1 SumValue	9221, 233398
514/11/05 11:27:02,000220000	1A111D310H 1012341	AC 140000000000000000	0 RealValue	1,221000
6 14/11/05 11:27:02,000220000	1A111D310H 1012341	AC 140000000000000000	1 SumValue	719536,500000
714/11/05 11:24:46,0007777000	1A105D310H 1012341I	801E400000000000000	1 SumValue	9221,233398
8 14/11/05 11:24:46,0007777000	1A105D310H 1012341I	801E400000000000000	0 RealValue	0,000000
9 14/11/05 11:24:46,000233000	1A104D310H 1012341a	AC 05C 000000000000000	1 SumValue	486575,937500
10 14/11/05 11:24:46,000233000	1A104D310H 1012341	AC 05C 000000000000000	0 RealValue	4,806000
11 14/11/05 11:24:41,000292000	1A111D310H 1012341	AC 140000000000000000	0 RealValue	1,196000
12 14/11/05 11:24:41,000292000	1A111D310H 1012341	AC 140000000000000000	1 SumValue	719536,437500
13 14/11/05 11:22:26,000316000	1A104D310H 1012341	AC05C00000000000000	0 RealValue	83,443001
1414/11/05 11:22:26,000316000	1A104D310H 1012341	AC05C00000000000000	1 SumValue	486574,937500
15 14/11/05 11:22:25,000854000	1A105D310H 1012341I	301E400000000000000	1 SumValue	9221, 2333398
16 14/11/05 11:22:25,000854000	1A105D310H 10123411	B01E400000000000000	0 RealValue	0,000000
1714/11/05 11:22:20,000340000	1A111D310H 1012341	AC140000000000000000	0 RealValue	1,157000
1814/11/05 11:22:20,000340000	1A111D310H 1012341	AC140000000000000000	1 SumValue	719536,437500
1011 111 105 11 00 05 000050000			48.00	400000 000000

분석 결과

0.6 lift = 1

Clustering Result

Association Rule Results

0.2

0.3

support

홈 지식 RDFS

분석 결과 RDF화

RDF API 검색

분석 플랫폼 OpenAPI

서비스 활용 예

A P P

쯦

<u>철</u>

전기

누진세 방지 Energy-Saving Service

사용자

프로파일 입력

가구 유형

전력 사용량

(누진세 구간)

관리 구간

• 주소

지 알람

누진 구간 예측

향후 계획

▶ 분석 다양화

- > 분석 대상 데이터 다양화
- > 분석 알고리즘 고도화 및 확장
- > 오프라인 데이터 분석 방안

▶ 홈 지식 활용

- › RDF 추론 적용
- > 주방 가전 패턴을 통한 식생활 습관 분석

RUCK 2015

