(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年10月25日(25.10.2001)

PCT

(10) 国際公開番号 WO 01/79304 A1

Noriyuki) [JP/JP]. 石原伸英 (ISHIHARA, Nobuhide)

[JP/JP]; 〒299-0107 千葉県市原市姉崎海岸1番地1

(74) 代理人: 大谷 保(OHTANI, Tamotsu); 〒105-0001 東 京都港区虎ノ門3丁目8番27号 巴町アネックス2号館

徳行 (TANI,

(51) 国際特許分類7:

彦 (YOKOTA, Kiyohiko) [JP/JP]. 谷

(21) 国際出願番号:

PCT/JP01/03160

(22) 国際出願日:

2001 年4 月12 日 (12.04.2001)

C08F 4/60, 210/00, 212/00

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(81) 指定国 (国内): JP, US.

Chiba (JP).

4階 Tokyo (JP).

(30) 優先権データ:

特願2000-112208

2000年4月13日(13.04.2000)

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE,

(71) 出願人 (米国を除く全ての指定国について): 出光石油 化学株式会社 (IDEMITSU PETROCHEMICAL CO., LTD.) [JP/JP]; 〒130-0015 東京都墨田区横網一丁目6 番1号 Tokyo (JP).

添付公開書類:

国際調査報告書

(72) 発明者: および

(75) 発明者/出願人 (米国についてのみ): 横田清

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(54) Title: PROCESS FOR PRODUCING α -OLEFIN/AROMATIC VINYL COPOLYMER

(54) 発明の名称: αーオレフィンー芳香族ビニル化合物系共重合体の製造方法

(57) Abstract: A process for efficiently producing an α -olefin/aromatic vinyl copolymer of high quality. The process for producing an α -olefin/aromatic vinyl copolymer comprises copolymerizing an α -olefin with an aromatic vinyl compound with the aid of a catalyst comprising (A) a transition metal compound and (B) a promoter, wherein the ingredient (A) is a transition metal compound having two bridging groups, at least one of which consists of a carbon-carbon bond only.

(57) 要約:

高品質のαーオレフィンー芳香族ビニル化合物系共重合体を生産性よく製造す る方法を提供する。(A)遷移金属化合物と(B)助触媒からなる触媒を用いて αーオレフィンー芳香族ビニル化合物系共重合体を製造する方法において、) 成分として、2つの架橋基を持ち、その架橋基のうちの少なくとも1つが炭素 一炭素結合のみからなる架橋基である遷移金属化合物を用いて、αーオレフィン と芳香族ビニル化合物の共重合を行うαーオレフィン-芳香族ビニル化合物共系 重合体の製造方法である。

WO 01/79304 AJ

Š,

THIS PAGE BLANK (USPTO)

明細書

αーオレフィンー芳香族ビニル化合物系共重合体の製造方法

技術分野

本発明は、αーオレフィン-芳香族ビニル化合物系共重合体の製造方法に関する。さらに詳しくは、品質のよいαーオレフィン-芳香族ビニル化合物系共重合体を生産性よく製造する方法に関する。

背景技術

従来、エチレンースチレン共重合体などの α ーオレフィンー芳香族ビニル化合物系共重合体の製造には、チーグラー・ナッタ触媒により共重合を行う方法が検討されてきたが、共重合活性が充分でなく、ホモポリマーの混入量が多くなるという問題があった。

このような課題を解決するため、例えば、特開平3-25007号公報、特開平6-49132号公報、特開平7-278230公報、特開平8-269134公報、特開平9-40709号公報、特開平9-183809公報、特開平9-302014公報、特開平9-309925公報、特許第2684154号公報などにおいて、 $\alpha-$ オレフィン一芳香族ビニル化合物系共重合体の製造に用いる触媒として、(A)メタロセン骨格を有する遷移金属化合物と、(B)助触媒成分のアルミノキサンや硼素化合物とからなる共重合触媒を用いる方法が提案されている。

しかしながら、これら触媒を用いて充分に高い共重合活性を得るためには、アルミノキサンなどの助触媒成分を多量に用いる必要がある。したがって、これら 共重合体を製造する際の触媒コストが高くなり、また、得られる共重合体中に多 量の触媒残渣が残存して共重合体の着色や発泡を招く要因になるほか、成形品に

ゲルやフィッシュアイが発生する要因になるという問題がある。このような状況から、さらなる触媒活性の向上により触媒コストを低減させて生産性を高め、しかも製品の品質を向上させることが要望されている。

発明の開示

本発明は、αーオレフィンー芳香族ビニル化合物系共重合体の製造に用いる触媒の共重合活性を向上させて、品質のよいαーオレフィンー芳香族ビニル化合物系共重合体を生産性よく製造する方法を提供することを目的とする。

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定の化学 構造を有する遷移金属化合物と助触媒成分との組合せからなる触媒が、αーオレ フィンと芳香族ビニル化合物との共重合活性に優れることを見出し、これら知見 に基づいて本発明を完成させるに至った。

すなわち、本発明は、以下のとおりである。

- (1) α オレフィンと芳香族ビニル化合物を(A)遷移金属化合物成分と(B) 助触媒成分からなる共重合触媒の存在下に共重合させる α オレフィン-芳香族ビニル化合物系共重合体の製造方法において、(A)成分の遷移金属化合物として、2 つの架橋基を持つメタロセン骨格を有し、かつ該架橋基の少なくともしつは架橋骨格が炭素-炭素結合のみからなる架橋基である遷移金属化合物を用いる α オレフィン-芳香族ビニル化合物系共重合体の製造方法。
- (2) α π α π α π α π α π α α -

(3) メタロセン骨格の2つの架橋基が、互いに異なる架橋基である前記(1) または(2) に記載の α - オレフィン - 芳香族ビニル化合物系共重合体の製造方法。

- (4) さらに、触媒成分として(C) アルキル化剤を添加してなる共重合触媒を用いる、前記(1) ~ (3) のいずれかに記載の α オレフィン 芳香族ビニル化合物系共重合体の製造方法。
- (5) さらに、連鎖移動剤の存在下に共重合させる、前記(1) \sim (4) のいずれかに記載の α オレフィン 芳香族ビニル化合物系共重合体の製造方法。
- (6) 芳香族ビニル化合物がスチレンである、前記(1)~(5) のいずれかに 記載の α -オレフィンースチレン系共重合体の製造方法。

発明を実施するための最良の形態

本発明は、αーオレフィンと芳香族ビニル化合物を(A)遷移金属化合物成分と(B)助触媒成分からなる共重合触媒の存在下に共重合させてαーオレフィンー芳香族ビニル化合物系共重合体を製造する方法において、(A)成分の遷移金属化合物として、2つの架橋基を持つメタロセン骨格を有し、かつ該架橋基の少なくとも1つは架橋骨格が炭素ー炭素結合のみからなる架橋基である化学構造を有する遷移金属化合物を用いるαーオレフィンー芳香族ビニル化合物系共重合体の製造方法である。

前記メタロセン骨格の2つの架橋基は、互いに異なる架橋基であると好ましい

ここで、本発明における(A)成分の遷移金属化合物は、下記一般式[]]、

[式 [1] 中、 A^1 、 A^2 は、各々独立にシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基または置換インデニル基を示し、 Y^1 、 Y^2 は、各々独立に置換もしくは無置換のアルキレン基、置換もしくは無置換のシリレン基またはゲルマニウム含有基を示し、このうち少なくとも I つは置換もしくは無置換のアルキレン基であり、Mはチタン、ジルコニウムまたはハフニウムを示し、 X^1 、 X^2 は、各々独立に水素原子、ハロゲン原子、アルキル基、アリール基、アリール基、アリールアルキル基、アルキルアリール基、アルコキシ基、アリールオキシ基、ケイ素含有基またはイオウ含有基を示す。I で表される。

以下、上記一般式〔!〕について詳細に説明する。

(1) A¹及びA²は、

で表される構造を有しており、R¹~R³は、それぞれ独立に水素原子、炭化水素基、ハロゲン原子、アルコキシ基、ケイ素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基またはホウ素含有炭化水素基を示し、水素原子、炭化水素基、ケイ素含有炭化水素基が好ましい。この炭化水素基は一価の基として結合していてもよく、またこれが複数個存在する場合にはその2個が互いに結合してシクロベンタジエニル基、インデニル基の一部とともに環構造を形成していてもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tertーブチル基、ペンチル基、ネオベンチル基、シクロヘキシル基、フェニル基、2、6ージメチルフェニル基、2、6ージイソプロピルフェニル基などが挙げられる。ケイ素含有炭化水素基としては、炭素数1~20のものが好ましく、特に炭素数1~12のものが好ましい。具体的には、トリメ

***** チルシリル基、トリメチルシリルメチル基などが挙げられる。

(2) Y'及びY'におけるアルキレン基としては、例えば、メチレン基、エチレン基、プロパンー1、3ージイル基、ブタンー1、4ージイル基等が挙げられる。置換アルキレン基の置換基としては、メチル基、エチル基、プロピル基、ブチル基、tertーブチル基、シクロヘキシル基、フェニル基、2.6ージメチルフェニル基などが挙げられ、置換基間で環を形成していてもよく、例えば、イソプロピリデン基、シクロヘキシリデン基、1,2ーシクロヘキサンジイル基、テトラメチルエチレン基、フェニルメチルメチレン基、フルオレンー9.9ージイル基などが挙げられる。シリレン基としては、例えば、シリレン基、ジシリレン基等が挙げられる。置換シリレン基の置換基としては、メチル基、エチル基、プロピル基、ブチル基、tertーブチル基、シクロヘキシル基、フェニル基、2.6ージメチルフェニル基などが挙げられ、置換基間で結合していてもよく、例えば、ジメチルシリレン基、ジエチルシリレン基、ジフェニルシリレン基、フェニルメチルシリレン基、デトラメチルジシリレン基、1ーシラシクロヘキサンー1、1ージイル基、9ーシラフルオレンー9.9ージイル基等が挙げられる。

(3) X¹及びX²配位子としては、水素原子、ハロゲン原子、アルキル基、アリールアルキル基またはアルコキシ基が好ましい。また、アルキル基、アリール基、アリール基、アルコキシ基、アリールオキシ基、ケイ素含有基、イオウ含有基は、炭素数1~20のものが好ましく、特に炭素数1~12のものが好ましい。

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、例えば、フェニル基、トルイル基、2,6-ジメチルフェニル基等が挙げられる。アリールアルキルニル基、2,6-ジイソプロピルフェニル基等が挙げられる。アリールアルキル基としては、例えば、ベンジル基、4-メチルベンジル基、2,6-ジメチルベ

ンジル基、フェネチル基等が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tertーブトキシ基等があげられる。アリールオキシ基としては、例えば、フェノキシ基、pーメチルフェノキシ基、2.6ージメチルフェノキシ基、2.6ージイソプロピルフェノキシ基、2.6ージフェニルフェノキシ基等があげられる。ケイ素含有基としては、例えば、トリメチルシリル基、トリメチルシリルメチル基、ビス(トリメチルシリル)メチル基、トリス(トリメチルシリル)メチル基、トリス(トリメチルシリル)シリル基、トリス(トリメチルシリル)メチル基、トリス(トリメチルシリル)シリル基、フェニルジメチルシリル基、フェニルジメチルシリルメチル基等が挙げられる。イオウ含有基としては、例えば、メチルチオキシ基、エチルチオキシ基、フェニルチオキシ基等が挙げられる。

そして、この一般式[1]で表される遷移金属化合物においては、式中のY¹ とY²のうち少なくとも1つの架橋骨格が炭素-炭素結合のみからなる架橋基で ある化学構造を有していることが特に重要であり、このような化学構造を有する チタニウム化合物の具体的な例を挙げれば、例えば、(イソプロピリデン)(ジ メチルシリレン) ビス (シクロペンタジエニル) チタニウムジクロリド、(イソ プロピリデン) (ジメチルシリレン) ビス (シクロペンタジエニル) チタニウム ジメチル、(イソプロピリデン) (ジメチルシリレン) ビス(シクロペンタジエ ニル) チタニウムジベンジル、 (イソプロピリデン) (ジメチルシリレン) ビス (シクロペンタジエニル) チタニウムジフェニル、(イソプロピリデン)(ジメ チルシリレン) ビス (シクロペンタジエニル) チタニウムジメトキシド、(イソ プロピリデン) (ジメチルシリレン) ビス (シクロペンタジエニル) チタニウム ジフェノキシド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペン タジエニル)チタニウムビス(トリメチルシリル)、(イソプロピリデン)(ジ メチルシリレン) ビス (シクロペンタジエニル) チタニウムビス (トリメチルシ リルメチル)、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタ ジエニル) チタニウムビス(トリフルオロメタンスルホネート)、(イソプロピ

リド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル) チタニウムクロリドヒドリド、(イソプロピリデン)(ジメチルシリレン)ビ ス(シクロペンタジエニル)チタニウムクロリドメトキシド、(1,1'ーイソ プロピリデン) (2, 2'ージメチルシリレン) ビス(4-メチルシクロペンタ ジエニル)チタニウムジクロリド、(1,1'ーイソプロピリデン)(2,2' ージメチルシリレン)ビス(3.5ージメチルシクロペンタジエニル)チタニウ ムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージメチルシリレン) ビス(3,4,5-トリメチルシクロペンタジエニル) チタニウムジクロリド 、(1, 1'-イソプロピリデン)(2, 2'-ジメチルシリレン)ビス(3, 4-ジメチルシクロペンタジエニル)チタニウムジクロリド、(1,1'-イソ プロピリデン) (2, 2' -ジメチルシリレン) ビス(3, 4-ジエチルシクロ ペンタジエニル)チタニウムジクロリド、(1,1'ーイソプロピリデン)(2 . 2'ージメチルシリレン)ビス(3.4-ジイソプロピルシクロペンタジエニ ル) チタニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージメ チルシリレン) ビス(3.4-ジーn-ブチルシクロペンタジエニル) チタニウ ムジクロリド、(1,1'-イソプロピリデン)(2,2'-ジメチルシリレン) ビス (3, 4-ジーtertーブチルシクロペンタジエニル) チタニウムジク - ロリド、(1,1'-イソプロピリテン)(2,2'-ジメチルシリレン)ビス (3.4 -ジフェニルシクロペンタジエニル)チタニウムジクロリド、(1,1 'ーイソプロピリデン)(2,2'ージメチルシリレン)ビス(3,4ージベン ジルシクロペンタジエニル)チタニウムジクロリド、(2,2'ーイソプロピリ デン) (1, 1'ージメチルシリレン) ビス (インデニル) チタニウムジクロリ ド、(1,2'-イソプロピリデン)(2,1'-ジメチルシリレン)ビス(イ ンデニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1,1' ージメチルシリレン)ビス (テトラヒドロインデニル)チタニウムジクロリド、

(2, 2'-イソプロピリデン)(1, 1'-ジメチルシリレン)ビス(3-メ チルインデニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1 , 1' ージメチルシリレン) ビス(3ーイソプロピルインデニル) チタニウムジ クロリド、(2, 2' -イソプロピリデン)(1, 1' -ジメチルシリレン)ビ ス(3-n-ブチルインデニル)チタニウムジクロリド、(2,2'-イソプロ ピリデン) (1,1'ージメチルシリレン) ビス(3-tertーブチルインデ ニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ージ メチルシリレン) ビス (3-フェニルインデニル) チタニウムジクロリド、(2 , 2' ーイソプロピリデン)(1, 1' ージメチルシリレン)ビス(3ーベンジ ルインデニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(4,7ージメチルインデニル)チタニウムジク ロリド、(2,2'-イソプロピリデン)(1,1'-ジメチルシリレン)ビス (3, 4, 7-トリメチルインデニル) チタニウムジクロリド、(2, 2'ーイ ソプロピリデン) (1,1'-ジメチルシリレン) ビス(5,6-ジメチルイン デニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ー ジメチルシリレン) ビス (4-フェニルインデニル) チタニウムジクロリド、(2, 2'-イソプロピリデン)(1,1'-ジメチルシリレン)ビス(5-フェ ニルインデニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1 , 1'ージメチルシリレン)ビス(6-フェニルインデニル)チタニウムジクロ リド、(2, 2'-イソプロピリデン)(1, 1'-ジメチルシリレン)ビス(4-フェニル-7-メチルインデニル)チタニウムジクロリド、(2,2'-イ ソプロピリデン) (1, 1'ージメチルシリレン) ビス(4,5ーベンゾインデ ニル)チタニウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ージ メチルシリレン) ビス(5,6-ベンゾインデニル) チタニウムジクロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(6, 7-ベンゾインデニル)チタニウムジクロリド、(1,1'ーイソプロピリデン)(

゜ージタチルシクロペンタジエニル)チタニウムジクロリド、(l,l゜ーイソ プロピリデン) (2, 2'ージメチルシリレン) (4ーメチルシクロペンタジエ ニル) (3', 5'ージイソプロピルシクロペンタジエニル) チタニウムジクロ リド、(1, 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)(4ー メチルシクロペンタジエニル) (3', 5'-ジフェニルシクロペンタジエニル) チタニウムジクロリド、(1, 1'ーイソプロピリデン)(2, 2'ージメチ ルシリレン) (4-tert-ブチルシクロペンタジエニル) (3', 5'-ジ メチルシクロペンタジエニル)チタニウムジクロリド、(1,1'ーイソプロピ リデン) (2, 2'ージメチルシリレン) (4-フェニルシクロペンタジエニル) (3', 5'ージメチルシクロペンタジエニル) チタニウムジクロリド、(1 , 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)(シクロペンタジ エニル) (3', 4'-ジメチルシクロペンタジエニル) チタニウムジクロリド 、(1,1'-イソプロピリデン)(2,2'-ジメチルシリレン)(シクロペ ンタジエニル) (3', 4'ージイソブチルシクロペンタジエニル) チタニウム ジクロリド、(1,1,-イソプロピリデン)(2,2,-ジメチルシリレン) (3, 4-ジメチルシクロペンタジエニル)(3', 5'-ジフェニルシクロペ ンタジエニル)チタニウムジクロリド、(1,1'ーイソプロピリデン)(2, · 2' -ジメチルシリレン)(3. 4-ジメチルシクロペンタジエニル)(3', 5'ージイソプロピルシクロペンタジエニル)チタニウムジクロリド、(1,1 'ーイソプロピリデン)(2,2'ージメチルシリレン)(3,4ージメチルシ クロペンタジエニル) (3', 5'-ジフェニルシクロペンタジエニル) チタニ ウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ージメチルシリレ ン) (シクロペンタジエニル) (インデニル) チタニウムジクロリド、(エチレ ン) (ジメチルシリレン) ビス (シクロペンタジエニル) チタニウムジクロリド 、(2, 2'-エチレン)(1, 1'-ジメチルシリレン)ビス(インデニル)

どが挙げられる。

また、ジルコニウム化合物としては、例えば、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジクロリド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジメチル、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジベンジル、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジスニル)ジルコニウムジフェニル。(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジメトキシド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジフェノキシド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムビス(トリメチルシリル)、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムビス(トリスチルシリレン)ビス(シクロペンタジエニル)ジルコニウムビス(トリフルオロメタンスルホネート)、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジヒドリド、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジヒドリド、(イソプロピリデン)(ジメチルシリレン)ビス(シク

ロペンタジエニル)ジルコニウムクロリドヒドリド、(イソプロピリデン)(ジ メチルシリレン) ビス (シクロペンタジエニル) ジルコニウムクロリドメトキシ ド、(1,1'-イソプロピリデン)(2,2'-ジメチルシリレン)ビス(4 ーメチルシクロペンタジエニル)ジルコニウムジクロリド、(1.1.-イソプ ロピリデン) (2, 2'ージメチルシリレン) ビス(3, 5ージメチルシクロペ ンタジエニル) ジルコニウムジクロリド、(1,1'-イソプロピリデン)(2 , 2'-ジメチルシリレン) ビス(3,4,5-トリメチルシクロペンタジエニ ル) ジルコニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージ メチルシリレン) ビス(3.4ージメチルシクロペンタジエニル)ジルコニウム ジクロリド、(1, 1'ーイソプロピリテン)(2, 2'ージメチルシリレン) ビス(3,4-ジエチルシクロペンタジエニル)ジルコニウムジクロリド、(1 , 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)ビス(3, 4ージ イソプロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,1'ーイ ソプロピリデン) (2, 2'-ジメチルシリレン) ビス(3, 4-ジーn-ブチ ルシクロペンタジエニル)ジルコニウムジクロリド、(1,1'ーイソプロピリ デン) (2, 2' - ジメチルシリレン) ビス(3, 4 - ジ - tert - ブチルシクロペンタジエニル)ジルコニウムジクロリド、(1,1'ーイソプロピリデン) (2, 2'ージメチルシリレン) ビス(3, 4ージフェニルシクロペンタジエ ニル) ジルコニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ー ジメチルシリレン) ビス(3,4-ジベンジルシクロペンタジエニル) ジルコニ ウムジクロリド、(2,2'-イソプロピリデン)(1,1'ージメチルシリレ ン) ビス (インデニル) ジルコニウムジクロリド、(1,2'ーイソプロピリデ ン) (2,1'ージメチルシリレン) ビス (インデニル) ジルコニウムジクロリ ド、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(テ トラヒドロインデニル)ジルコニウムジクロリド、(2,2'ーイソプロピリデ ン) (1, 1'ージメチルシリレン) ビス(3ーメチルインデニル) ジルコニウ

ムジクロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン) ビス(3-イソプロピルインデニル) ジルコニウムジクロリド、(2, 2'-イソプロピリデン) (1,1'ージメチルシリレン) ビス(3-nープチルイン デニル)ジルコニウムジクロリド、(2,2'ーイソプロピリデン)(1,1' ージメチルシリレン) ビス (3-tert-ブチルインデニル) ジルコニウムジ クロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビ ス(3-フェニルインデニル)ジルコニウムジクロリド、(2,2'-イソプロ ピリデン) (1, 1'ージメチルシリレン) ビス(3ーベンジルインデニル) ジ ルコニウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ージメチル シリレン) ビス(4,7ージメチルインデニル) ジルコニウムジクロリド、(2 , 2' -イソプロピリデン) (1, 1' -ジメチルシリレン) ビス (3, 4, 7 ートリメチルインデニル)ジルコニウムジクロリド、(2,2'ーイソプロピリ デン) (1,1'-ジメチルシリレン) ビス(5,6-ジメチルインデニル) ジ ルコニウムジクロリド、(2,2'-イソプロピリデン)(1,1'-ジメチル シリレン) ビス(4ーフェニルインデニル) ジルコニウムジクロリド、(2,2 ' ーイソプロピリデン) (1,1'ージメチルシリレン) ビス(5-フェニルイ ンデニル)ジルコニウムジクロリド、(2,2'ーイソプロピリデン)(1,1 ' ージメチルシリレン) ビス(6-フェニルインデニル) ジルコニウムジクロリ ド、(2, 2' ーイソプロピリデン)(1, 1' ージメチルシリレン) ビス(4 ーフェニルー 7 ーメチルインデニル) ジルコニウムジクロリド、(2,2'ーイ ソプロピリデン) (1, 1'ージメチルシリレン) ビス(4,5ーベンゾインデ ニル) ジルコニウムジクロリド、(2,2'-イソプロピリデン)(1,1'-ジメチルシリレン) ビス (5,6-ベンゾインデニル) ジルコニウムジクロリド 、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(6, 7ーベンゾインデニル)ジルコニウムジクロリド、(1,1'ーイソプロピリデ ン) (2, 2'ージメチルシリレン) (4-メチルシクロペンタジエニル) (3

',5'-ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(1,1 ・ーイソプロピリデン)(2,2・-ジメチルシリレン)(4-メチルシクロペ ンタジエニル)(3',5'ージイソプロピルシクロペンタジエニル)ジルコニ ウムジクロリド、(1, 1'ーイソプロピリデン)(2, 2'ージメチルシリレ ン) (4-メチルシクロペンタジエニル) (3', 5'-ジフェニルシクロペン タジエニル)ジルコニウムジクロリド、(1,1'ーイソプロピリデン)(2, 2' ージメチルシリレン) (4-tertープチルシクロペンタジエニル) (3・, 5 ・ ージメチルシクロペンタジエニル)ジルコニウムジクロリド、(1, 1 ・ーイソプロピリデン)(2、2・-ジメチルシリレン)(4-フェニルシクロ ペンタジエニル) (3', 5'ージメチルシクロペンタジエニル) ジルコニウム ジクロリド、(1,1'ーイソプロピリデン)(2,2'ージメチルシリレン) (シクロペンタジエニル) (3', 4'-ジメチルシクロペンタジエニル) ジル コニウムジクロリド、(1,1'ーイソプロピリデン)(2-2'ージメチルシ リレン) (シクロペンタジエニル) (3', 4'-ジイソブチルシクロペンタジ エニル) ジルコニウムジクロリド、(1,1'-イソプロピリデン)(2,2' ージメチルシリレン) (3.4ージメチルシクロペンタジエニル) (3'...5' ージフェニルシクロペンタジエニル)ジルコニウムジクロリド、(1,1'ーイ ソプロピリデン) (2, 2'ージメチルシリレン) (3, 4ージメチルシクロペ ンタジエニル) (3', 5'ージイソプロピルシクロペンタジエニル) ジルコニ ウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージメチルシリレ ン) (3,4-ジメチルシクロペンタジエニル) (3',5'-ジフェニルシク ロペンタジエニル)ジルコニウムジクロリド、(2,2'ーイソプロピリデン) (1, 1'ージメチルシリレン)(シクロペンタジエニル)(インデニル)ジル コニウムジクロリド、(エチレン) (ジメチルシリレン) ビス(シクロペンタジ エニル) ジルコニウムジクロリド、(2,2'-エチレン)(1,1'-ジメチ ルシリレン) ビス (インデニル) ジルコニウムジクロリド、(1, 2'ーエチレ

ン) (2. 『シージメチルシリレン) ビス (インデニル) ジルコニウムジクロリド、ビス (イソプロピリデン) ビス (シクロペンタジエニル) ジルコニウムジクロリド、エチレン (イソプロピリデン) ビス (シクロペンタジエニル) ジルコニウムジクロリド、ビス (エチレン) ビス (シクロペンタジエニル) ジルコニウムジクロリド、(イソプロピリデン) (ジメチルゲルミレン) ビス (シクロペンタジエニル) ジルコニウムジクロリド、(1, 2' -エチレン) (2, 1' -エチレン) ビス (インデニル) ジルコニウムジクロリド、(1, 2' -エチレン) (2, 1' -エチレン) (2, 1' -エチレン) ビス (3 - ノルマルブチルインデニル) ジルコニウムジクロリド、(1, 2' -エチレン) ビス (3 - トリメチルシリルメチルインデニル) ジルコニウムジクロリドなどが挙げられる。

さらに、ハフニウム化合物としては、例えば、(イソプロピリデン)(ジメチ ルシリレン) ビス (シクロペンタジエニル) ハフニウムジクロリド、 (イソプロ ピリデン) (ジメチルシリレン) ビス (シクロペンタジエニル) ハフニウムジメ チル、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエニル) ハフニウムジベンジル、(イソプロピリデン) (ジメチルシリレン) ビス (シ クロペンタジエニル) ハフニウムジフェニル、(イソプロピリデン) (ジメチル シリレン) ビス (シクロペンタジエニル) ハフニウムジメトキシド、 (イソプロ ピリデン) (ジメチルシリレン) ビス (シクロペンタジエニル) ハフニウムジフ ェノキシド、(イソプロピリデン) (ジメチルシリレン) ビス (シクロペンタジ エニル) ハフニウムビス(トリメチルシリル)、(イソプロピリデン)(ジメチ ルシリレン) ビス (シクロペンタジエニル) ハフニウムビス (トリメチルシリル メチル)、(イソプロピリデン)(ジメチルシリレン)ビス(シクロペンタジエ ニル) ハフニウムビス(トリフルオロメタンスルホネート)、(イソプロピリデ ン) (ジメチルシリレン) ビス (シクロペンタジエニル) ハフニウムジヒドリド 、(イソプロピリデン) (ジメチルシリレン) ビス(シクロペンタジエニル) ハ フニウムクロリドヒドリド (イソプロピリデン) (ジメチルシリレン) ビス(

シクロペンタジエニル) ハフニウムクロリドメトキシボン (1,1'ーイソプロ ピリデン) (2, 2'ージメチルシリレン) ビス (4ーメチルシクロペンタジエ ニル)ハフニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージ メチルシリレン) ビス (3, 5ージメチルシクロペンタジエニル) ハフニウムジ クロリド、(1, 1'-イソプロピリデン)(2, 2'-ジメチルシリレン)ビ ス(3,4,5ートリメチルシクロペンタジエニル)ハフニウムジクロリド、(1, 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)ビス(3, 4-ジメチルシクロペンタジエニル) ハフニウムジクロリド、(1,1'ーイソプロ ピリデン) (2, 2'ージメチルシリレン) ビス(3,4ージエチルシクロペン タジエニル) ハフニウムジクロリド、(1,1'ーイソプロピリデン)(2,2 ' ージメチルシリレン) ビス (3, 4ージイソプロピルシクロペンタジエニル) ハフニウムジクロリド、(1,1'-イソプロピリデン)(2,2'-ジメチル シリレン) ビス(3,4-ジーn-ブチルシクロペンタジエニル) ハフニウムジ クロリド、(1, 1'-イソプロピリデン)(2, 2'-ジメチルシリレン)ビ ス(3,4-ジーtert-ブチルシクロペンタジエニル) ハフニウムジクロリ ド、(1,1'ーイソプロピリデン)(2,2'ージメチルシリレン)ビス(3 , 4 ージフェニルシクロペンタジエニル) ハフニウムジクロリド、(1 , l'ー イソプロピリデン) (2, 2' -ジメチルシリレン) ビス(3, 4 -ジベンジル シクロペンタジエニル) ハフニウムジクロリド、(2,2'ーイソプロピリデン) (1,1'ージメチルシリレン)ビス (インデニル)ハフニウムジクロリド、 (1.2'-イソプロピリデン)(2,1'-ジメチルシリレン)ビス(インデ ニル)ハフニウムジクロリド、(2,2'ーイソプロピリデン)(1,1'ージ メチルシリレン) ビス (テトラヒドロインデニル) ハフニウムジクロリド、(2 . 2' ーイソプロピリデン) (1, 1' ージメチルシリレン) ビス (3ーメチル インデニル) ハフニウムジクロリド、(2,2'-イソプロピリデン)(1,1 ・ ージメチルシリレン) ビス (3ーイソプロピルインデニル) ハフニウムジクロ

リド、(2,2"ニイソプロピリデン)(1,1"ージメチルシリレン)ビス(3-n-ブチルインデニル)ハフニウムジクロリド、(2, 2'-イソプロピリ デン) (1, 1' -ジメチルシリレン) ビス (3-tert-ブチルインデニル) ハフニウムジクロリド、(2, 2' -イソプロピリデン)(1, 1' ージメチ ルシリレン) ビス(3-フェニルインデニル) ハフニウムジクロリド、(2,2 · ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(3 ーベンジルイ ンデニル)ハフニウムジクロリド、(2,2'ーイソプロピリデン)(1,1' ージメチルシリレン) ビス(4,7ージメチルインデニル) ハフニウムジクロリ ド、(2, 2'-イソプロピリデン)(1, 1'-ジメチルシリレン)ビス(3 。4,7ートリメチルインデニル)ハフニウムジクロリド、(2,2'ーイソプ ロピリデン) (1,1'ージメチルシリレン) ビス(5,6ージメチルインデニ ル) ハフニウムジクロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメ チルシリレン) ビス(4-フェニルインデニル) ハフニウムジクロリド、(2, 2' -イソプロピリデン) (1, 1' -ジメチルシリレン) ビス (5-フェニル インデニル) ハフニウムジクロリド、(2,2'ーイソプロピリデン)(1,1 ・ ージメチルシリレン) ビス-(・6 ーフェニルインデニル) ハフニウムジクロリド 、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン)ビス(4ー フェニルー7ーメチルインデニル)ハフニウムジクロリド、(2,2'ーイソプ ロピリデン) (1, 1'ージメチルシリレン) ビス(4,5ーベンゾインデニル) ハフニウムジクロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメチ ルシリレン) ビス(5,6ーベンゾインデニル) ハフニウムジクロリド、(2, 2'ーイソプロピリデン)(1,1'ージメチルシリレン)ビス(6,7ーベン ゾインデニル) ハフニウムジクロリド、(1, 1'ーイソプロピリデン)(2, 2' ージメチルシリレン) (4ーメチルシクロペンタジエニル) (3',5'ー ジメチルシクロペンタジエニル)ハフニウムジクロリド、(1,1'ーイソプロ ピリデン) (2, 2' ージメチルシリレン) (4ーメチルシクロペンタジエニル

) (3', 5'ージイソプロピルシクロペンタジエニル) ハフニウムジクロリド 、(1, 1'ーイソプロピリデン)(2, 2'ージメチルジリレン)(4ーメチ ルシクロペンタジエニル) (3',5'-ジフェニルシクロペンタジエニル) ハ フニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ージメチルシ リレン) (4-tert-ブチルシクロペンタジエニル) (3',5'-ジメチルシクロペンタジエニル) ハフニウムジクロリド、(1,1'ーイソプロピリデ ン) (2, 2'ージメチルシリレン) (4-フェニルシクロペンタジエニル) (3', 5'ージメチルシクロペンタジエニル)ハフニウムジクロリド、(1, 1 ゛ーイソプロピリデン)(2.2゛-ジメチルシリレン)(シクロペンタジエニ ル) (3', 4'ージメチルシクロペンタジエニル) ハフニウムジクロリド、(1, 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)(シクロペンタ ジエニル) (3', 4'ージイソブチルシクロペンタジエニル) ハフニウムジク ロリド、(1, 1'ーイソプロピリデン)(2, 2'ージメチルシリレン)(3 . 4 - ジメチルシクロペンタジエニル) (3', 5' - ジフェニルシクロペンタ ジエニル)ハフニウムジクロリド、(1,1'ーイソプロピリデン)(2,2' ージメチルシリレン) (3, 4ージメチルシクロペンタジエニル) (3'.5' ージイソプロピルシクロペンタジエニル)ハフニウムジクロリド、(1,1'ー イソプロピリデン) (2, 2'ージメチルシリレン) (3, 4ージメチルシクロ ペンタジエニル) (3', 5'-ジフェニルシクロペンタジエニル) ハフニウム ジクロリド、(2, 2'ーイソプロピリデン)(1, 1'ージメチルシリレン) (シクロペンタジエニル) (インデニル) ハフニウムジクロリド、(エチレン) (ジメチルシリレン) ビス (シクロペンタジエニル) ハフニウムジクロリド、(2. 2'-エチレン) (1, 1'-ジメチルシリレン) ビス (インデニル) ハフ ニウムジクロリド、(1, 2'-エチレン)(2, 1'-ジメチルシリレン)ビ ス(インデニル)ハフニウムジクロリド、ビス(イソプロピリデン)ビス(シク ロペンタジエニル)ハフニウムジクロリド、エチレン(イソプロピリデン)ビス

(シクロペンタジェニル) ハフニウムジクロリド、ビス (エチレン) ビス (シクロペンタジェニル) ハフニウムジクロリド、(イソプロピリデン) (ジメチルゲルミレン) ビス (シクロペンタジェニル) ハフニウムジクロリド、(1, 2'-1) (2, 1'-エチレン) ビス (4) (4) バフニウムジクロリド、(1, 2'-1) (2, 1'-エチレン) ビス (3-1) (3) バフニウムジクロリド、(1, 2'-1) (2, 1'-エチレン) ビス (3-1) (2, 1'-エチレン) ビス (3-1) (3) ビス (3-1) (3) ドなどが挙げられる。

また、上記の塩化物における塩素原子を、臭素原子や沃素原子で置換したこれらの臭化物や沃化物であってもよい。そして、これら遷移金属化合物は1種単独で用いてもよいし、2種以上を組合せて用いてもよい。

本発明における(B)成分の助触媒としては、(b-l)含酸素有機金属化合物、(b-2)前記(A)遷移金属化合物と反応してイオン性の錯体を形成する化合物、(b-3)粘土、粘土鉱物またはイオン交換性層状化合物を用いることができる。

(b-1) 含酸素有機金属化合物としては、下記一般式(II) または一般式(I

[式中、 $R^9 \sim R^{15}$ は、それぞれ独立に、炭素数 $1 \sim 8$ のアルキル基を示し、 $G^4 \sim G^5$ は、それぞれ独立に、周期律表 1.3 族金属元素を示す。また $f \sim i$ は、そ

れぞれ $0 \sim 5$ 0 の数であり、かつ(f + g)と(h + i)は共に「以上である。」で表される化合物が好適に用いられる。

前記R 9 ~R 15 の炭素数 1 ~ 8 のアルキル基としては、メチル基、エチル基、 1 のプロピル基、イソプロピル基、 1 の一プロピル基、イソプロピル基、 1 の一が手ル基、 1 ながま、 1 なが表、 1 なが表。 1 なが表、 1 なが表は、 1 なが表に好適に用いられる。また 1 ないの値としては 1 ないのであるものが好ましい。

これらの一般式(II)または(III)で表される酸素含有化合物としては、例えば、テトラメチルジアルモキサン、テトライソブチルジアルモキサン、メチルアルモキサン、エチルアルモキサン、ブチルアルモキサン、イソブチルアルモキサン等のアルモキサン類、トリメチルボロキシン、メチルボロキサン等のボロキサン類が挙げられ、好ましくはアルモキサン類であり、特にメチルアルモキサンやイソブチルアルモキサンが好適に用いられる。

また、これらのアルモキサン類は、アルコール類で変成していても良い。変成に用いられるアルコール類としては、例えば、メタノール、エタノール、プロパノール、ブタノール、トリフェニルメタノール、2,6ージメチルフェノール、2,4,6ートリメチルフェノール、2,6ージイソプロピルフェノール、2,6ージイソプロピルー4ーメチルフェノール、ペンタフルオロフェノール、4ートリフルオロメチルフェノール、3,5ービス(トリフルオロメチル)フェノール、1,4ーブタンジオール、カテコール、トリメチルシラノール、トリフェニルシラノール等が挙げられる。

(b-2) 前記 (A) 遷移金属化合物と反応してイオン性の錯体を形成する化合物としては、複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物、またはルイス酸が好適に用いられる。

この配位錯化合物としては、下記一般式(IV) または(V)

 $([J'-H]^{c+})_{d}([Q'Z'Z^{2}\cdots Z^{p}]^{(p-q)-})_{e}\cdots (IV)$

 $([J^2]^{c+})_d([Q^2Z^1Z^2\cdots Z^p]^{(p-q)-}).$ (V)

[式中、J'はルイス塩基、 J^2 は、後述の Q^3 、 $R^{16}R^{17}Q^4$ または R^{18}_3 Cであり、Q'および Q^2 は、それぞれ周期律表の第 $5\sim1$ 5族から選ばれる金属、 Q^3 は周期律表の第1族および第 $8\sim1$ 2族から選ばれる金属, Q^4 は周期律表の第 $8\sim1$ 0族から選ばれる金属, $Z'\sim Z^9$ は,それぞれ独立に、水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数 $1\sim2$ 0のアルキル基、炭素数 $6\sim2$ 0のアリール基、アルキルアリール基、アリールアルキル基、置換アルキル基、有機メタロイド基またはハロゲン原子を示す。 R^{16} および R^{17} は、それぞれ独立に、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基またはフルオレニル基を示し、 R^{18} はアルキル基を示す。 qは Q^1 、 Q^2 の原子価で $1\sim7$ の整数、pは $2\sim8$ の整数、cは[J'-H]、 $[J^2]$ のイオン価数で $1\sim7$ の整数、dは1以上の整数であり、eは式 $[c\times d/(p-q)]$ により算出される値である。]で表される化合物が好適に用いられる。

上記一般式 (IV)、(V)におけるQ'およびQ²が示す金属としては、例えば、ホウ素、アルミニウム、ケイ素、りん、ヒ素、アンチモンが好ましく、Q³が示す金属としては、銀、銅、ナトリウム、リチウムが好ましく、Q¹が表す金属としては、鉄、コバルト、ニッケルなどが好適である。

Z'~Z°において、ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基等が好ましく、アルコキシ基としては、メトキシ基、エトキシ基、ローブトキシ基等が好ましく、アリールオキシ基としては、フェノキシ基、2,6-ジメチルフェノキシ基、ナフチルオキシ基等が好ましい。また、炭素数1~2

0のアルキル基としては、メチル基、エチル基、ロープロピル基、イソプロピル基、ローブチル基、ローオクチル基、2ーエチルヘキシル基等が好ましく、炭素数6~20のアリール基、アルキルアリール基またはアリールアルキル基としては、フェニル基、pートリル基、ベンジル基、ペンタフルオロフェニル基、3、5ービス(トリフルオロメチル)フェニル基、4ーtertーブチルフェニル基、2、6ージメチルフェニル基、3、5ージメチルフェニル基、2、4ージメチルフェニル基、2、3ージメチルフェニル基等が好ましい。さらにハロゲン原子としては、フッ素、塩素、臭素、沃素原子が好ましく、有機メタロイド基としては、ペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニルホウ素基などが好ましい。

また、R''およびR''が表す置換シクロペンタジエニル基としては、メチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などが好ましい。

前記複数の基が金属に結合したアニオンとしては、例えば、B(C₆F₅)₄⁻、B(C₆H₇F₃)₄⁻、B(C₆H₇F₂)₄⁻、B(C₆H₄F)₄⁻、B(C₆H₇F₃)₄⁻、B(C₆H₇F₂)₄⁻、B(C₆H₇F₂)₄⁻、FB(C₁₀ 下₇)₃⁻、PF₆⁻、P(C₆F₅)₆⁻、Al(C₆F₅)₄⁻、Al(C₆HF₄)₄⁻、FAl(C₆F₅)₃⁻、FAl(C₁₀F₇)₃⁻などが挙げられる。

前記複数の基が金属に結合したカチオンとしては、(C_sH_s) $_2Fe^+$ 、[(C_sH_s) $_2Fe^+$ 、[(C_sH_s) $_2C_sH_s$] $_2Fe^+$ 、[(C_sH_s) $_3C_sH_s$] $_2Fe^+$ 、[(C_sH_s) $_3C_sH_s$] $_2Fe^+$ 、[(C_sH_s) $_3C_sH_s$] $_2Fe^+$ 、[(C_sH_s) $_4C_sH$] $_2Fe^+$ 、[(C_sH_s) $_4C_sH$] $_2Fe^+$ 、[(C_sH_s) $_5C_s$] $_2Fe^+$ 、A $_5E_s$ Na $_5E_s$ (CH $_5E_s$)。 C_5E_s 2 $_5E_s$ 2 $_5E_s$ 0 $_5E_s$ 0 $_5E_s$ 2 $_5E_s$ 0 $_5E_s$

ージメチルアニリニウム、 N_1 、N ージエチルアニリニウムなどの窒素含有化合物、 N_2 トリフェニルカルベニウム、 N_3 トリ N_4 ーメチルフェニル)カルベニウム、 N_4 トリ N_4 と N_5 と N_4 と N_5 と N_5

前記一般式 ($\mathbb N$) で表される化合物としては、例えば、テトラフェニルホウ酸トリエチルアンモニウム、テトラフェニルホウ酸トリ(n-ブチル)アンモニウム、テトラフェニルホウ酸トリメチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリ(n-ブチル)アンモニウム、ヘキサフルオロヒ素酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ピロリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸 $\mathbb N$, $\mathbb N$ -ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルジフェニルアンモニウムなどが挙げられる。

前記一般式(V)で表される化合物としては、例えば、テトラフェニルホウ酸フェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸フェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ジメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸アセチルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ホルミルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ホルミルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸シアノフェロセニウム、テトラフェニルホウ酸銀、テト

ラキス(ペンタフルオロフェニル)ホウ酸銀、テトラフェニルホウ酸トリチル、 テトラキス(ペンタフルオロフェニル)ホウ酸トリチル、ヘキサフルオロヒ素酸 銀、ヘキサフルオロアンチモン酸銀、テトラフルオロホウ酸銀などが挙げられる

さらに、前記ルイス酸としては、例えば、B(C₆F₅)₃、B(C₆HF₄)₃、B(C₆H₂F₃)₃、B(C₆H₃F₂)₃、B(C₆H₄F)₃、B(C₆H₅)₃、BF 3、B [C₆(CF₃)F₄]₃、B(C₁₀F₇)₃、FB(C₆F₅)₂、PF₅、P(C₆F₅)₅、AI(C₆F₅)₃、AI(C₆HF₄)₃、AI(C₁₀F₇)₃など挙げられる。

(b-3) 粘土、粘土鉱物またはイオン交換性層状化合物としては、以下に示すものが用いられる。

本発明において、粘土とは、細かい含水ケイ酸塩鉱物の集合体であって、適当量の水を混ぜてこねると可塑性を生じ、乾けば剛性を示し、高温度で焼くと焼結するような物質をいう。また、粘土鉱物とは、粘土の主成分をなす含水ケイ酸塩をいう。粘土および粘土鉱物は、天然産のものに限らず、人工合成したものであってもよい。

粘土および粘土鉱物としては、モンモリロナイト含量が低くベントナイトと呼ばれる粘土、モンモリロナイトに他の成分が多く含まれる木節粘土、ガイロメ粘土、繊維状の形態を示すセピオライト、パリゴルスカイト、非結晶質あるいは低結晶質のアロフェン、イモゴライト等が挙げられる。

本発明において、イオン交換性層状化合物とは、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる化合物であり、含有するイオンが交換可能なものをいう。粘土鉱物の中には、イオン交換性層状化合物であるものがある。例えば、粘土鉱物として、フィロケイ酸やフィロケイ酸塩などのフィロケイ酸類が挙げられる。フィロケイ酸塩としては、天然品として、スメクタイト族に属するモンモリロナイト、サポナイト、ヘクトライト、雲

母族に属するイライト、セリサイト、スメクタイト族と雲母族との混合層鉱物または雲母族とバーミクキュライト族との混合層鉱物等が挙げられる。また、合成品として、フッ素四珪素雲母、ラポナイト、スメクトン等が挙げられる。その他、 $\alpha-Z$ r(HPO_4) $_2$ 、 $\gamma-Z$ r(HPO_4) $_2$ 、 $\alpha-T$ i(HPO_4) $_2$ および $\gamma-T$ i(HPO_4) $_2$ 等の粘土鉱物ではない層状の結晶構造を有するイオン結晶性化合物が挙げられる。これらイオン交換性層状化合物には、例えば、六方最密パッキング型、アンチモン型、塩化カドミウム型、沃化カドミウム型等の層状の結晶構造を有するイオン結晶性化合物が挙げられる。

上記した(b-3)成分のうち、これら粘土、粘土鉱物、イオン交換性層状化合物のうち、特に好ましいのは、粘土鉱物であるカオリン鉱物、蛇紋石およびその類縁鉱物、パイロフィライト、タルク、雲母粘土鉱物、緑泥岩、バーミキュライト、スメクタイト、混合層鉱物、セピオライト、パリゴルスカイト、アロフェン、イモゴライト、木節粘土、ガイロメ粘土、ヒシンゲル石、ナクライト等である。さらに好ましくは、スメクタイトであり、その中でもモンモリロナイト種、サポナイト種、又はヘクトライト種を好適に用いることができる。

そして、これら粘土、粘土鉱物またはイオン交換性層状化合物を本発明で用いる(B)成分の助触媒に用いる際には、これらを化学処理した後、有機シラン化合物などによる処理をしたものが好適に用いられる。

この化学処理の方法としては、たとえば酸処理、アルカリ処理、塩類処理、有機物処理などの方法によることができる。この酸処理の場合には、塩酸、硫酸などを用いる方法が好ましく、この酸処理によって、表面の不純物を取り除くとともに、粘土類の結晶構造中のアルミニウム、鉄、マグネシウムなどの陽イオンを溶出させることによって、その表面積を増大させることができる。また、アルカリ処理の場合には、水酸化ナトリウム水溶液やアンモニア水などを用いる方法が好ましく、これにより粘土類の結晶構造を好ましい形態に変化させることができる。そして、塩類処理においては、塩化マグネシウムや塩化アルミニウムなどが

用いられ、有機物処理では有機アルミニウムやシラン化合物、アンモニウム塩などを用いる方法が好ましい。これら塩類や有機物処理による場合、イオン複合体、分子複合体、有機複合体などを形成し、表面積や層間距離などを好ましい形態に変化させることができる。例えば、イオン交換性を利用して、層間の交換性イオンを別の嵩高いイオンと置換することによって、層間が拡大された状態の層間物質を得ることもできる。この場合、原料に用いる粘土類は、そのままで化学処理に用いてもよいし、新たに水を添加して水を吸着させたものを用いてもよく、あるいは予め加熱脱水処理をしたものを用いてもよい。

このようにして化学処理をした粘土類は、有機シラン化合物などによる処理を 行う。この処理に適した有機シラン化合物としては、例えば、トリメチルシリル クロリド、トリエチルシリルクロリド、トリイソプロピルシリルクロリド、te rtーブチルジメチルシリルクロリド、tertーブチルジフェニルシリルクロ リド、フェネチルジメチルシリルクロリドなどのトリアルキルシリルクロリド類 ・ジメチルシリルジクロリド、ジエチルシリルジクロリド、ジイソプロピルシリ ルジクロリド、ビスジフェネチルシリルジクロリド、メチルフェネチルシリルジ クロリド、ジフェニルシリルジクロリド、ジメシチルシリルジクロリド、ジトリ ルシリルジクロリドなどのジアルキルシリルジクロリド類:メチルシリルトリク ロリド、エチルシリルトリクロリド、イソプロピルシリルトリクロリド、フェニ ルシリルトリクロリド、メシチルシリルトリクロリド、トリルシリルトリクロリ ド、フェネチルシリルトリクロリドなどのアルキルシリルトリクロリド類;およ び上記クロリドの部分を他のハロゲン元素で置き換えたハライド類;ビス(トリ メチルシリル) アミン、ビス (トリエチルシリル) アミン、ビス (トリイソプロ ピルシリル) アミン、ビス (ジメチルエチルシリル) アミン、ビス (ジエチルメ チルシリル) アミン、ビス (ジメチルフェニルシリル) アミン、ビス (ジメチル トリルシリル) アミン、ビス (ジメチルメシチルシリル) アミン、N, Nージメ チルアミノトリメチルシラン、(ジエチルアミノ)トリメチルシラン、N-(ト

リメチルシリル) イミダゾールなどのシリルアミン類;パーアルキルポリシロキシポリオールの慣用名で称せられるポリシラノール類;トリス(トリメチルシロキシ)シラノールなどのシラノール類、N.Oービス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、Nー(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)尿素、トリメチルシリルジフェニル尿素などのシリルアミド類;1、3ージクロロテトラメチルジシロキサンなどの直鎖状シロキサン類;ペンタメチルシクロペンタンシロキサンなどの環状シロキサン類;ジメチルジフェニルシラン、ジエチルジフェニルシラン、ジイソプロピルジフェニルシランなどのテトラアルキルシラン類;トリメチルシラン、トリエチルシラン、トリイソプロピルシラン、トリーtーブチルシラン、トリフェニルシラン、トリトリルシラン、トリメシチルシラン、メチルジフェニルシラン、ジナフチルメチルシラン、ビス(ジフェニル)メチルシランなどのトリアルキルシラン類が好適なものとして挙げられる。

これら有機シラン化合物の中でも、珪素原子と直接結合するアルキル基を少なくとも一つ有するものが好ましく、アルキルシリルハライド類、特にジアルキルシリルハライド類が好適に用いられる。そして、これら有機シラン化合物は、1種単独で用いてもよく、また、2種以上のものを適宜組み合わせて用いることもできる。

そして、これら有機シラン化合物によって、上記粘土類の処理をする際には、水の存在下に行うことにより効果的に有機シラン化合物による処理を行うことができる。この場合、この水は、粘土類の結晶構造(特に積層構造)を崩し、有機シラン化合物と、粘土類との接触効率を高める作用をする。すなわち、この水が、粘土類の結晶の層間を拡大させ、積層内の結晶に、有機シラン化合物の拡散を促すのである。したがって、粘土類の有機シラン化合物による処理においては、水の存在が重要であり、水の量を増加させた方が好都合である。この水の添加量は、粘土類の原料成分の乾燥質量に対し1質量%以上、好ましくは10質量%以

上、さらに好ましくは 1 0 0 質量%以上である。この粘土類の原料成分の乾燥質量は、粘土類の原料成分をマッフル炉に入れて、3 0 分間で 1 5 0 ℃に昇温し、150℃で1時間保持した後に得られた乾燥粘土類の質量のことである。

ここで用いる水は、粘土類の原料に元々含まれているものをそのまま使用するのが操作上は簡便であるが、新たに水を添加する場合には、粘土類を水に懸濁させてもよく、水と有機溶媒の混合溶液に懸濁させてもよい。このような有機溶媒としては、アルコール、エステル、エーテル、ハロゲン化炭化水素、脂肪族炭化水素、芳香族炭化水素などを用いることができる。

また、これら粘土類の有機シラン化合物による接触処理は、大気中で行ってもよいが、アルゴンや窒素などの不活性気流中で行うのがより好ましい。そして、この処理に用いる有機シラン化合物の使用割合は、粘土類の1kgあたり、有機シラン化合物におけるケイ素原子のモル数が0.001~1,000、好ましくは、0.01~100となるようにすればよい。

前記(b-1)、(b-2)および(b-3)成分は、それぞれ一種単独あるいは二種以上を組み合わせて使用してもよい。

本発明において用いる触媒は、前記(A)成分の遷移金属化合物と(B)成分の助触媒を必須の構成成分とするが、これに(C)成分として、アルキル化剤を添加してなる触媒を用いてもよい。このアルキル化剤としては、有機アルミニウム化合物や有機マグネシウム化合物、有機亜鉛化合物が用いられ、特に、有機アルミニウム化合物が好ましい。

この有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリnープロピルアルミニウム、トリイソプロピルアルミニウム、トリローブチルアルミニウム、トリイソブチルアルミニウム、トリ tーブチルアルミニウムなどのトリアルキルアルミニウム類:ジメチルアルミニウムクロリド、ジェチルアルミニウムクロリド、ジロープロピルアルミニウムクロリド、ジローブチルアルミニウムクロリド、ジローブチルアルミニウムクロリド、ジローブチルアルミニウムクロリ

ド、ジイソブチルアルミニウムクロリド、ジェーブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド類:ジメチルアルミニウムメトキサイド、ジメチルアルミニウムエトキサイドなどのジアルキルアルミニウムアルコキサイド類:ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライドなどが好適なものとして挙げられ、特に、トリアルキルアルミニウム類が好ましい。

また、有機マグネシウム化合物としては、ジメチルマグネシウム、ジエチルマグネシウム、ジnープロピルマグネシウム、ジイソプロピルマグネシウムなどが好適に用いられる。そして、有機亜鉛化合物としては、ジメチル亜鉛、ジエチル亜鉛、ジnープロピルエチル亜鉛、ジイソプロピル亜鉛などが好適なものとして挙げられる。

前記(A)、(B)および(C)成分の配合割合は、(A)成分の遷移金属化合物に対して、(b-1)成分を用いる場合にはモル比で1:0.1~1:100000、好ましくは1:0.5~1:10000であり、(b-2)成分を用いる場合にはモル比で1:0.1~1:1000、好ましくは1:1~1:100である。また、(b-3)成分用いる場合には、(b-3)成分の単位重量(g)に対する(A)成分の添加量として、0.1~1000~770ロモル、好ましくは1~200~770ロモルであるとよい。さらに、(C)成分は、(A)成分の有機遷移金属化合物に対して、モル比において1:1~1:100000、好ましくは1:10~1:100000、

次に、上記の各触媒成分を用いて触媒を調製する場合には、窒素ガス等の不活性ガス雰囲気下に接触操作を行うことが望ましい。そして、これら各触媒成分は、予め、触媒調製槽において調製したものを使用してもよいし、 α ーオレフィンや芳香族ビニル化合物などの共重合を行う重合反応器内において調製したものをそのまま共重合に使用してもよい。

これら共重合体の製造に用いる α ーオレフィンとしては、例えば、エチレン、プロピレン、1ープテン、1ーペンテン、1ーヘキセン、1ーヘプテン、1ーインテン、1ーインテン、1ーフェニルー1ークテン、1ーノネン、1ーデセン、1ーブテン、1ーブテン、1ーブテン、1ーブテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーズンテン、1ーベンテン、1ーベンテン、1ーベンテン、1ーベンテン、1ーベンテン、1ーグンテン、1ーグロペン、1ーブロペン、1ーブロペン、1ーブテンなどが好適なものとして挙げられ、特に、エチレン、プロピレン、1ーブテン、1ーベンテン、1ーイクテンが好ましい。

pーブロモスチレン、mーブロモスチレン、oーブロモスチレン、pーフルオロスチレン、mーフルオロスチレン、oーフルオロスチレン、oーメチルーpーフルオロスチレンなどのハロゲン化スチレン; さらには、pーフェニルスチレン、トリメチルシリルスチレン、ビニル安息香酸エステル、ジビニルベンゼンなどが好適に用いられ、特に、スチレン、pーメチルスチレン、pーエチルスチレン、pーtertーブチルスチレン、pーフェニルスチレン、トリメチルシリルスチレン、ジビニルベンゼンが好ましい。これら芳香族ビニル化合物は、1種単独で用いてもよく、2種以上を組合せて用いてもよい。

そして、環状オレフィンとしては、シクロペンテン、シクロヘキセン、ノルボルネン、1-メチルノルボルネン、5-メチルノルボルネン、7-メチルノルボルネン、5-エチルノルボルネン、5-プロピルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、5,6-ジメチルノルボルネン、5,6-トリメチルノルボルネンなどが好適なものとして挙げられ、特に、シクロペンテン、ノルボルネンが好ましい。

さらに、ジエンとしては、1, 3-ブタジエン、1, 4-ペンタジエン、1, 5-ヘキサジエンなどが用いられ、特に、1, 5-ヘキサジエンが好ましい。

そして、上記のαーオレフィンや芳香族ビニル化合物、環状オレフィン、ジエンは、いずれも1種単独で使用してもよいし、2種以上を混合して使用してもよい。

次に、これら α ーオレフィンー芳香族ビニル化合物系共重合体を製造する際の重合方式としては、塊状重合や溶液重合を好適に採用することができる。溶液重合法による場合に用いる溶媒としては、ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素;シクロヘキサンなどの脂環族炭化水素:ベンゼン、トルエン、キシレンなどの芳香族炭化水素あるいは液化 α ーオレフィンが用いられる。そして、重合温度は、特に制限はないが、通常、-50 ~ 250 ℃、好ましくは 0 ~ 20 0 ℃ の範囲において行うことができる。また、重合時の圧力は、常圧~ 20 M P

a、好ましくは常圧~10MPaの範囲である。

また、これらαーオレフィンと芳香族ビニル化合物、あるいはさらに環状オレフィンやジエンとの共重合に際して、上記触媒とともに、(D)成分として連鎖移動剤を用いてもよい。このような連鎖移動剤としては、シラン、フェニルシラン、メチルシラン、エチルシラン、ブチルシラン、オクチルシラン、ジフェニルシラン、ジメチルシラン、ジエチルシラン、ジブチルシラン、ジオクチルシランなどのシラン類や水素が好適に用いられ、特に、水素が好ましい。これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。

このようにして得られる α ーオレフィンと芳香族ビニル化合物との共重合体としては、例えば、エチレンースチレン共重合体、プロピレンースチレン共重合体、ブテンー1ースチレン共重合体などを得ることができる。これら α ーオレフィン一芳香族ビニル化合物系共重合体の重合体鎖における α ーオレフィンの残基に由来する構造単位と芳香族ビニル化合物の残基に由来する構造単位との比率は、任意の比率の共重合体とすることができるが、芳香族ビニル化合物の残基に由来する構造単位の含有割合を0. $1\sim5$ 0 モル%以下としてあるものが、高い弾性回復性を示すことから実用性の高い共重合体を得ることができる。芳香族ビニル化合物の残基に由来する構造単位の含有割合が0. 1 未満であると共重合体の軟質制能としての特性が失われる。

また、αーオレフィンと芳香族ビニル化合物および環状オレフィンまたはジエンを用いて得られる三元共重合体としては、例えば、エチレンースチレンーノルボルネン共重合体、エチレンースチレンーブタジェン共重合体、エチレンースチレンー1.5ーへキサジエン共重合体などを得ることができる。これらαーオレフィン一芳香族ビニル化合物ー環状オレフィン共重合体や、αーオレフィン一芳香族ビニル化合物ージエン共重合体などの重合体鎖におけるαーオレフィンの残茎に由来する構造単位、および環状オレフィンまたはジエンの残茎に由来する構造単位の比率は、任意の比率

- j - 3

とすることができるが、特に芳香族ビニル化合物の残基に由来する構造単位の含有割合を $0.1\sim30$ モル%以下とし、かつ環状オレフィンまたはジエンの残基に由来する構造単位の含有割合を $0.1\sim20$ モル%以下としてあるものが、高い弾性回復性を示すことから実用性の高い共重合体を得ることができる。芳香族ビニル化合物、環状オレフィンまたはジエンの残基に由来する構造単位の含有割合が0.1未満であると共重合体の軟質樹脂としての特性が失われる。

以下、実施例および比較例により、本発明をさらに詳しく説明する。

[実施例1]

ついで、このオートクレーブに、エチレンをその分圧が 0.3MP a となるまで導入した。そして、触媒投入管より、触媒の(A)成分である(2.2' ーイソプロピリデン)(1.1' ージメチルシリレン)ビス(インデニル)ジルコニウムジクロリドの 10.0 マイクロモルをトルエン 20 ミリリットルに溶解させた溶液と、触媒の(B)成分であるメチルアルモキサン 10.0 ミリモルとの混合物を投入した。

そして、エチレンとスチレンの共重合の進展に伴って、オートクレーブの内圧が低下するので、エチレンはその分圧を0.3MPaに維持できるように連続的に導入しながら、1時間にわたり共重合反応を行った。その後、メタノールの添加により共重合を停止した。

反応生成物には、さらに大量のメタノールを加えて、濾過分離し、生成固体を減圧下に60%で4時間乾燥した。この結果、エチレンースチレン共重合体92. 0g(共重合活性= $101kg/g\cdot Zr/hr$)を得た。

ここで得られた共重合体は、「H-NMRによる測定結果よりこの共重合体中のスチレンの残基に由来する構造単位の含有割合は、5.5モル%であった。また、「C-NMRによる測定結果より、この共重合体はエチレンースチレン連鎖構造を有していることが確認された。

[実施例2]

原料のエチレンとともに、(D)成分の連鎖移動剤として水素を0.03MP aの分圧で導入した他は、実施例 l と同様にした。

この結果、エチレンースチレン共重合体 104.3g (共重合活性=114kg/g・Zr/hr)が得られた。

[実施例3]

ここで得られた共重合体は、「H-NMRによる測定結果から、この共重合体中のスチレンの残基に由来する構造単位の含有割合は、8モル%であった。また、「C-NMRによる測定結果より、この共重合体はエチレンースチレン連鎖構造を有していることが確認された。

[実施例4]

実施例 2 で用いた触媒の(A)成分に代えて、(1、2'ーエチレン)(1'、2ーエチレン)ビス(3ーノルマルブチルインデニル)ジルコニウムジクロリドを10.0マイクロモル用い、(D)成分の連鎖移動剤として水素を0.03 MPaの分圧で導入し、かつ重合時間を3分間とした他は、実施例 2 と同様にした。この結果、エチレンースチレン共重合体23.6g(共重合活性=517kg/g・Zr/hr)が得られた。

ここで得られた共重合体は、「H-NMRによる測定結果から、この共重合体中のスチレンの残基に由来する構造単位の含有割合は、1.5 モル%であった。また、 1^3 C-NMR による測定結果より、この共重合体はエチレンースチレン連鎖構造を有していることが確認された。

[実施例5]

実施例1で用いた触媒の(A)成分に代えて、(1,2'-エチレン)(1'、2-エチレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを10.0マイクロモル用いると共に、原料のエチレンをプロピレンに変更し、(D)成分の連鎖移動剤として水素を0.03MPaの分圧で導入し、重合時間を30分間とした他は、実施例1と同様にした。この結果、プロピレンースチレン共重合体19.8g(共重合活性=145kg/g・Zr/hr)が得られた。

ここで得られた共重合体について、GPC-FT/IRにより測定した質量平均分子量は、ポリスチレン換算で、14.500であり、また、分子量分布は、1.8であった。

[実施例6]

内容積 1. 6 リットルの触媒投入管付きオートクレーブに、トルエン 180 ミリリットルと、スチレン 200 ミリリットル、コモノマーとして 1 ーオクテン 2 0 ミリリットル、および触媒の(C)成分であるトリイソブチルアルミニウムの 1.0 モル濃度のトルエン溶液 1.0 ミリリットルを順次投入し、50 に昇温した。

ついで、このオートクレーブに、エチレンをその分圧が 0.3MPaとなるように導入した。そして、触媒投入管より、触媒の (A) 成分である (2,2'-4) (1,1'-ジメチルシリレン) ビス (4) (4) ジルコニウムジクロリドの 10.0 (1) ロモルをトルエン 20 ミリリットルに溶解させた溶液と、触媒の (B) 成分であるメチルアルモキサン 10 ミリモルを投入し

to THEMAN

そして、エチレンとスチレンの共重合の進展に伴って、オートクレーブの内圧が低下するので、エチレンはその分圧を 0.3 MPaに維持できるように連続的に導入しながら、1時間にわたり共重合反応を行った。その後、メタノールの添加により共重合を停止した。

反応生成物には、さらに大量のメタノールを加えて、濾過分離し、生成固体を減圧下に60%で4時間乾燥した。この結果、エチレンースチレンーオクテン共重合体92.3g(共重合活性= $101kg/g\cdot Zr/hr$)を得た。

ここで得られた共重合体は、「H-NMRによる測定結果から、この共重合体中のスチレンの残基に由来する構造単位の含有割合が4モル%であり、また、オクテンの残基に由来する構造単位の含有割合が12モル%であった。また、「3C-NMRによる測定結果より、この共重合体は、エチレンースチレンーエチレンの連鎖構造と、エチレンーオクテンーエチレンの連鎖構造が存在することが確認された。

[実施例7]

内容積 1. 6 リットルの触媒投入管付きオートクレーブに、トルエン 1 8 0 ミリリットルと、スチレン 2 0 0 ミリリットルおよび触媒の(C)成分であるトリイソブチルアルミニウムの 1 . 0 モル濃度のトルエン溶液 1 . 0 ミリリットルを順次投入し、5 0 \mathbb{C} に昇温した。

ついで、このオートクレーブに、(D) 成分の連鎖移動剤として水素を0.05 MPaの分圧で、かつプロピレンをその分圧が0.5 MPaとなるように導入した。そして、触媒投入管より、触媒の(A) 成分である(1,2'-エチレン)(1',2-エチレン)ビス(3-ノルマルブチルインデニル)ジルコニウムジクロリドの10.0マイクロモルをトルエン20ミリリットルに溶解させた溶液と、触媒の(B) 成分であるメチルアルモキサン10.0ミリモルをオートクレーブに投入した。

そして、プロピレンとスチレンの共重合の進展に伴って、オートクレーブの内 圧が低下するので、プロピレンはその分圧が 0.5 MPaを維持できるように連 続的に導入しながら、5 分間にわたり共重合反応を行った。その後、メタノール の添加により共重合を停止した。

反応生成物には、さらに大量のメタノールを加えて、濾過分離し、生成固体を減圧下に6.0 で 4 時間乾燥した。この結果、プロピレンースチレン共重合体 3 3 . 4 g(共重合活性=8.7.9 k g / g · Z r / h r)を得た。

ここで得られた共重合体について、GPC-FT/IRにより測定した質量平均分子量は、ポリスチレン換算で、16,800であり、また、分子量分布は、2.0であった。

[比較例1]

実施例1で用いた触媒の(A)成分に代えて、公知の遷移金属化合物触媒成分であるビス(ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジクロリドを10.0マイクロモル用いた他は、実施例1と同様にした。この結果、エチレンースチレン共重合体10.5g(共重合活性=22kg/g・Zr/hr)が得られた。

ここで得られた共重合体について、GPC-FT/IRにより測定した質量平均分子量は、ポリスチレン換算で16,400であり、また、分子量分布は、2.0であった。そして、「H-NMRによって測定した、この共重合体中のスチレンに由来する構造単位の含有割合は、38モル%であった。また、「3C-NMRによる測定結果より、この共重合体は、エチレンースチレン連鎖構造を有することが確認された。

産業上の利用可能性

本発明の方法によれば、 $\alpha-$ オレフィンと芳香族ビニル化合物、あるいはさらに環状オレフィンやジエンとの共重合活性が高く、助触媒のアルモキサンや硼素

化合物の使用量を低減でき、得られる共重合体中の残留触媒量が減少するので、 高品質のオレフィンー芳香族ビニル化合物系共重合体を生産性よく製造すること ができる。

請求の範囲

- 1. αーオレフィンと芳香族ビニル化合物を(A)遷移金属化合物成分と(B)助触媒成分からなる共重合触媒の存在下に共重合させるαーオレフィン一芳香族ビニル化合物系共重合体の製造方法において、(A)成分の遷移金属化合物として、2つの架橋基を持つメタロセン骨格を有し、かつ該架橋基の少なくとも1つは架橋骨格が炭素一炭素結合のみからなる架橋基である化学構造を有する遷移金属化合物を用いるαーオレフィン一芳香族ビニル化合物系共重合体の製造方法。
 2. αーオレフィン、芳香族ビニル化合物、環状オレフィンおよび/またはジエンを(A)遷移金属化合物成分と(B)助触媒成分からなる共重合触媒の存在下に共重合させるαーオレフィン一芳香族ビニル化合物系共重合体の製造方法において、(A)成分の遷移金属化合物として、2つの架橋基を持つメタロセン骨格を有し、かつ該架橋基の少なくとも1つは架橋骨格が炭素一炭素結合のみからなる架橋基である化学構造を有する遷移金属化合物を用いるαーオレフィン一芳香族ビニル化合物系共重合体の製造方法。
- 3. メタロセン骨格の2つの架橋基が、互いに異なる架橋基である請求項1に記載のα-オレフィン-芳香族ビニル化合物系共重合体の製造方法。
- 4. メタロセン骨格の2つの架橋基が、互いに異なる架橋基である請求項2に記載のα-オレフィン-芳香族ビニル化合物系共重合体の製造方法。
- 5. さらに、触媒成分として(C)アルキル化剤を添加してなる重合触媒を用いる請求項 1 に記載の α ーオレフィンー芳香族ビニル化合物系共重合体の製造方法
- 6. さらに、触媒成分として(C)アルキル化剤を添加してなる重合触媒を用いる請求項 2 に記載の α ーオレフィンー芳香族ビニル化合物系共重合体の製造方法
- 7. さらに、連鎖移動剤の存在下に共重合させる請求項1に記載のαーオレフィ

ンー芳香族ビニル化合物系共重合体の製造方法。

- 8. さらに、連鎖移動剤の存在下に共重合させる請求項 2 に記載のαーオレフィンー芳香族ビニル化合物系共重合体の製造方法。
- 9. 芳香族ビニル化合物がスチレンである請求項 1 に記載のαーオレフィンースチレン系共重合体の製造方法。
- 10. 芳香族ビニル化合物がスチレンである請求項2に記載の α ーオレフィンースチレン系共重合体の製造方法。

3 9

And the second second

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/03160

	SIFICATION OF SUBJECT MATTER C1 ⁷ C08F 4/50, C08F 210/00, C0	08F 212/00				
According to International Patent Classification (IPC) or to both national classification and IPC						
	S SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C08F 4/60-4/70, C08F 210/00-210/18, C08F 212/00-212/36						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.			
Y	JP, 9-302014, A (Denki Kagaku I 25 November, 1997 (25.11.97),	Kogyo K. K.),	1-10			
	entire description (Family:	none)				
Y	EP, 721954, A1 (IDEMITSU KOSAN 17 July, 1996 (17.07.96),	CO., LTD),	1-10			
	Claims; page 19, lines 17 to 2: & WO, 95/09172, A1 & US, 5854	l; example 165, A				
	& US, 6171994, B					
Y	EP, 818458, A1 (IDEMITSU KOSAN 14 January, 1998 (14.01.98),		1,2,5-10			
	Claims; page 17, lines 23 to 27 & WO, 96/30380, A1	7; example				
A	US, 5652315, A (Norihide Inoue 29 July, 1997 (29.07.97),	et al.),	1-10			
	entire description & EP, 572990, A2 & JP, 6-49	132, A				
A	US, 5883213, A (Toru Arai et a) 16 May, 1999 (16.05.99),	L.),	1-10			
Further	r documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not		"T" later document published after the inter priority date and not in conflict with th	e application but cited to			
"E" earlier	considered to be of particular relevance understand the principle or theory underlying the invention earlier document but published on or after the international filing "X" understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot					
	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be consider step when the document is taken alone "Y" document of particular relevance; the c				
"O" docume	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	when the document is documents, such			
means combination being obvious to a person skilled in the art document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed						
	actual completion of the international search (une, 2001 (05.06.01)	Date of mailing of the international searce 19 June, 2001 (19.06				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

International application No.

PCT/JP01/03160

Category*	Citation of document, with indication, where appropriate, of the relevant pass	sages Relevant to claim No
	entire description & DE, 19711339, A1 & JP, 9-309925, A & US, 6066709, A	
		·
	-	
* - *\ *		
	·	
	•	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/JP01/03160

A. 発明の属する分野の分類(国際特許分類(IPC))						
Int. Cl ⁷ , C08F 4/60, C08F 210/00, C08F 212/00						
	行った分野 最小限資料(国際特許分類(IPC))	- 4- 15				
Int. Cl ⁷ , CO8F 4/60-4/70, CO8F 210/00-210/18, CO8F 212/00-212/36						
最小限資料以外の資料で調査を行った分野に含まれるもの						
	•					
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)				
CAS	ONLINE					
						
	ると認められる文献		CD to be			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	関連する 請求の範囲の番号			
Y	JP, 9-302014, A (電気化学工業株5		1-10			
	25. 11月. 1997 (25. 11. 97), 明新	細書全体 (ファミリーなし)				
Υ .	EP, 721954, A1 (IDEMITSU KOSAN (1-10			
	17.7月.1996 (17.07.96),特許 施例 &WO,95/09172,A1 &US,585	•				
	лер, сто, 93/09172, A1 ссоз, 360	94103, A &03, 0171394, B				
Y	EP, 818458, A1 (IDEMITSU KOSAN (1, 2, 5-10			
	14. 1月. 1998 (14. 01. 98),特許 施例 &WO,96/30380,A1	- 請求の郵出,17頁23-2711,美				
	シアル 女神 47月半 キン・アリンス	□ パラントフェミル / 788 ナスロ	¢π. +. +> πΩ			
x C欄の続きにも文献が列挙されている。						
	ワカテゴリー 車のある文献ではなく、一般的技術水準を示す。	の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ	された文献であって			
もの		出願と矛盾するものではなく、多				
「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明						
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以						
文献(理由を付す) 上の文献との、当業者にとって自明である組合せに「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの						
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献						
国際調査を完了	了した日 05.06.01	国際調査報告の発送日 19.06.0	1			
国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 J 9640						
	国特許庁(ISA/JP) 郵便番号100-8915	小出 直也 即	<i>y</i>			
東京和	8千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3493			

国際調査報告

国際出願番号 PCT/JP01/03160

こ (続き) 川用文献の カテゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Α	US, 5652315, A (Norihide Inoue et al.) 29. 7月. 1997 (29. 07. 97), 明細書全体 &EP, 572990, A2 &JP, 6-49132, A	1-10
A	US, 5883213, A (Toru Arai et al.) 16. 5月. 1999 (16. 05. 99), 明細書全体 &DE, 19711339, A1 &JP, 9-309925, A &US, 6066709, A	1-10
		·
	to the control of the	
· · · · · · · · · · · · · · · · · · ·		
•		