Quantum Measurement (II)

April 14, 2020

1 Notation

An operator O on a Hilbert space is a map from vectors to vectors. We write O^{\dagger} for the adjoint of O mapping dual vectors to dual vectors. Recall that in the bra-ket notation, we write $\langle x|$ for $|x\rangle^{\dagger}$. It follows that if O maps $|x\rangle$ to $|y\rangle$, then O^{\dagger} maps $\langle x|$ to $\langle y|$.

2 Definition of Projectors

Projectors P are special operators that satisfy: $P^{\dagger} = P$ (i.e., they are Hermitian operators) and PP = P. The first condition holds iff $\langle x|Py\rangle = \langle Px|y\rangle$. In that case, we can unambiguously write $\langle x|P|y\rangle$ which could be interpreted as either $\langle x|Py\rangle$ or $\langle Px|y\rangle$ depending on how to choose to associate the operations.

```
Example 0. P|x\rangle = \bullet (the zero vector)
Trivially \langle x|Py\rangle = 0 = \langle Px|y\rangle
Trivially PP = P
This is called the empty projector \mathbb{O}.
```

```
Example I. P|x\rangle = |x\rangle
Trivially \langle x|Py\rangle = \langle x|y\rangle = \langle Px|y\rangle
Trivially PP = P
This is called the identity projector 1.
```

```
Example II. P = |a\rangle\langle a|.

|Py\rangle = |a\rangle\langle a|y\rangle and \langle Px| = \langle x|a\rangle\langle a|.

Then \langle x|Py\rangle = \langle x|a\rangle\langle a|y\rangle and \langle Px|y\rangle = \langle x|a\rangle\langle a|y\rangle

PP = (|a\rangle\langle a|)(|a\rangle\langle a|) = |a\rangle\langle a|a\rangle\langle a| = |a\rangle\langle a| = P.
```

Example III.
$$P = |a\rangle\langle a| + |b\rangle\langle b|$$
 with $a \neq b$

$$\langle x|Py\rangle = \langle x|a\rangle\langle a|y\rangle + \langle x|b\rangle\langle a|y\rangle$$

$$\langle Px|y\rangle = \langle x|a\rangle\langle a|y\rangle + \langle x|b\rangle\langle a|y\rangle$$

$$PP = (|a\rangle\langle a| + |b\rangle\langle b|)(|a\rangle\langle a| + |b\rangle\langle b|)$$

$$= (|a\rangle\langle a|)(|a\rangle\langle a|) + (|a\rangle\langle a|)(|b\rangle\langle b|) + (|b\rangle\langle b|)(|a\rangle\langle a|) + (|b\rangle\langle b|)(|b\rangle\langle b|)$$

$$= |a\rangle\langle a| + |b\rangle\langle b|$$

It is crucial that $\langle a|b\rangle=0$, i.e., that $|a\rangle$ and $|b\rangle$ are orthogonal.

Example IV.
$$P = P_1 + P_2$$
 with $P_1P_2 = P_2P_1 = 0$
$$\langle x | (P_1 + P_2)y \rangle = \langle x | P_1y \rangle + \langle x | P_2y \rangle$$
 $= \langle P_1x | y \rangle + \langle P_2x | y \rangle$ induction
$$\langle (P_1 + P_2)x | y \rangle = \langle P_1x | y \rangle + \langle P_2x | y \rangle$$
 $PP = (P_1 + P_2)(P_1 + P_2)$ $= P_1P_1 + P_1P_2 + P_2P_1 + P_2P_2$ $= P_1P_1 + P_2P_2$ $= P_1 + P_2$

= P

Sums of *orthogonal* projectors are also projectors.

Example V. $P = P_1 P_2 = P_2 P_1$

$$\langle x|P_1P_2y\rangle = \langle P_1x|P_2y\rangle \qquad \text{induction}$$

$$= \langle P_2P_1x|y\rangle \qquad \text{induction}$$

$$= \langle P_1P_2x|y\rangle \qquad \text{assumption}$$

$$PP = (P_1P_2)(P_1P_2)$$

$$= P_1(P_2P_1)P_2$$

$$= P_1(P_1P_2)P_2$$

$$= (P_1P_1)(P_2P_2)$$

$$= P_1P_2$$

$$= P$$

Products of commuting projectors are also projectors.

Example VI. Let
$$P$$
 be a projector. Then $\mathbb{1} - P$ is a projector. $\langle x | (\mathbb{1} - P)y \rangle = \langle x | y \rangle - \langle x | Py \rangle = \langle x | y \rangle - \langle Px | y \rangle = \langle (\mathbb{1} - P)x | y \rangle$ $(\mathbb{1} - P)(\mathbb{1} - P) = (\mathbb{1} - 2P + PP) = (\mathbb{1} - 2P + P) = (\mathbb{1} - P)$

Example.
$$P = |00\rangle\langle00| + |01\rangle\langle01|$$
 (valid because $\langle00|01\rangle = 0$.) Note: $|00\rangle\langle00| + |01\rangle\langle01| = |0\rangle\langle0| \otimes (|0\rangle\langle0| + |1\rangle\langle1|) = |0\rangle\langle0| \otimes 1$

Example.
$$P = P_1 P_2$$
 where $P_1 = |00\rangle\langle 00| + |01\rangle\langle 01|$ and $P_2 = |01\rangle\langle 01| + |11\rangle\langle 11|$. Commutative because $P_1 = |0\rangle\langle 0| \otimes 1$ and $P_2 = 1 \otimes |1\rangle\langle 1|$ and hence $P_1 P_2 = P_2 P_1 = |0\rangle\langle 0| \otimes |1\rangle\langle 1|$.