Lecture 12: Strain tensors

Logistics: - PS 5 is posted

Q1 is basie index manipulation

-> really for PS 2

- One PS4 is still missing

Last time: - Analysis of local deformation

- Break & down lute

 - · translation } no change in change in
 - · strech

⇒ born strain tensos on strech

- Cauchy-Green: $\subseteq = \underline{T}'\underline{T} = y^2$

Today: - Other strain tensors

- Analysis of G
- Volume changes → (class on == \(\nagger)\)

Other strain tensors (Finite strain)

Many ways to measure strain

I)
$$\subseteq = \overline{F}^T \overline{F}$$
 right Cauchy-Gor
 $C_{KL} = \overline{F_{i}}K^{T_{i}}L$ material lensor

I) $\subseteq = \mp^T \mp$ right Cauchy-Green

II) $b = \mp \mp^T$ lest Cauchy-Green (Finger Kuss) bki = F F spa h'al teuser

IV)
$$e = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$$
 Euler - Almansi
 $e_{kl} = \frac{1}{2} \left(S_{kl} - F_{Ik}^{-1} + F_{Ik}^{-1} \right)$ spatial lenser

Interpretation of ⊆

How is deformation quantified by comp. E?

$$\frac{dY}{dY} = \frac{Y}{Y} - \frac{X}{X} + \frac{\hat{Y}}{|dY|} = \frac{\frac{dY}{dY}}{|dY|}$$

For any XEB, and unit vectors \hat{Y} and \hat{Z} we define $\lambda(\hat{Y}) > 0$ and $\theta(\hat{Y}, \hat{Z}) \in [0, \pi]$ by

$$\lambda(\hat{Y}) = \sqrt{\hat{Y} \cdot \hat{\zeta} \hat{Y}}$$
 and

$$\lambda(\hat{Y}) = \sqrt{\hat{Y} \cdot \hat{\zeta} \hat{Y}} \text{ and } \cos \theta(\hat{Y}, \hat{Z}) = \frac{\hat{Y} \cdot \hat{\zeta} \hat{Z}}{|\hat{Y} \cdot \hat{\zeta}|^2 \sqrt{\hat{Z} \cdot \hat{\zeta}}}$$

I) Streches

In the limit a >0

$$\frac{|y-x|}{|y-x|} = \frac{dy}{dy} \rightarrow \lambda(\hat{y}) \qquad \frac{dz}{dz} \rightarrow \lambda(\hat{z})$$

 $\Rightarrow \lambda(\hat{Y})$ is a street, i.e. ratio of deformed to initial kn.

Use
$$dy = \frac{1}{2}dY$$
 $dy = \frac{1}{2} \cdot y = y \cdot dy$

$$|dY| = \alpha^2$$
 by def.
So that $\frac{dy^2}{dY^2} = \frac{\alpha^2 \hat{Y} \cdot \hat{C} \hat{Y}}{\alpha^2} = \hat{Y} \cdot \hat{C} \hat{Y} = \hat{X}(\hat{Y})$

If
$$U_i$$
 is a right-principal shrech
$$(\subseteq -\lambda_i^2 \underline{I}) \hat{U}_i = 0 \quad (\text{no sum})$$

$$\hat{U}_i \cdot \subseteq \hat{U}_i - \lambda_i^2 \hat{U}_i \cdot \hat{U}_i = 0$$

=> $\tilde{u}_i \cdot c \tilde{u}_i = \tilde{\lambda}_i$ hence $\lambda(\tilde{u}_i)$ are principal strectes

le extreme in strects.

I Shear

The shear $\gamma(\hat{Y},\hat{Z})$ at χ is the change in angle between \hat{Y} and \hat{Z} gaving $\Omega_c \rightarrow \Omega_c$ $\gamma(\hat{Y},\hat{Z}) = \Theta(\hat{Y},\hat{Z}) - \Theta(\hat{Y},\hat{Z})$

where

 $\lim_{\alpha \to 0} \cos \phi = \Theta(\hat{Y}, \hat{Z})$

To see this consider $\cos \phi = \frac{dy \cdot dz}{|dy| |dz|}$ where $\frac{dy}{dz} \cdot \frac{dz}{dz} = \frac{dy}{dz} \cdot \frac{dz}{dz} = \frac{dy}{dz} \cdot \frac{dz}{dz} = \frac{dy}{dz} \cdot \frac{dz}{dz}$ $= \alpha^2 \hat{y} \cdot \hat{y} \cdot \hat{z} \cdot \hat{z}$ with $|dy| = \alpha \sqrt{\hat{y} \cdot \hat{c}} \hat{y}$ $|dz| = \alpha \sqrt{\hat{z} \cdot \hat{c}}$

$$\Rightarrow \cos \phi = \frac{\hat{Y} \cdot \hat{z} \hat{z}}{\sqrt{\hat{Y} \cdot \hat{z}} \sqrt{\hat{z} \cdot \hat{z}}} \xrightarrow{\alpha \to 0} \cos \theta(\hat{Y}_1 \hat{Z})$$

Components of
$$\subseteq$$

Let C_{IJ} be comp. of \subseteq in $\{e_I\}$

at any point X we have

$$C_{II} = \lambda^2(e_I)$$

$$C_{IJ} = \lambda(e_I) \lambda(e_J) \sin \gamma(e_I,e_J)$$

=> diagonal components are squere strectus
in dir. of basis vectors
off-diagonal components are related
to shears between the dir. of basis vectors.

The components Aij = ei · Aej

$$C_{\dagger I} = \underline{e}_{I} \cdot \underline{C} \underline{e}_{I} = \lambda^{2} (\underline{e}_{I}) \checkmark$$

$$\cos\theta(e_1,e_j) = \frac{e_r \cdot e_j}{\chi e_r} \chi e_j$$

$$C_{ij} = e_i \cdot e_j$$

Cij =
$$\lambda(\underline{e}_{I}) \lambda(\underline{e}_{J}) \cos \theta(\underline{e}_{I},\underline{e}_{J})$$

where
$$\gamma(\underline{e}_{I},\underline{e}_{J}) = \frac{\pi}{2} - \gamma(\underline{e}_{I},\underline{e}_{J}) - \theta(\underline{e}_{I},\underline{e}_{J})$$
Substituting
$$\cos(\frac{\pi}{2} - \gamma) = \sin(\gamma)$$

$$C_{IJ} = \lambda(\underline{e}_{I}) \lambda(\underline{e}_{J}) \sin(\gamma(\underline{e}_{I},\underline{e}_{J}))$$

⇒ Components of ⊆ quantif the strech of and the shear between basis vectors.

Example: Simple Shear

$$\mathcal{B}_{t} \simeq \mathcal{P}(X) = \begin{bmatrix} \frac{X_{1} + \alpha X_{2}}{X_{2}} \\ \frac{X_{2}}{X_{3}} \end{bmatrix}$$

simple shear in 21-ez plane

$$\begin{bmatrix} \overline{f} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 how. def.

Find shear y for e, and ez

$$\Theta(\underline{e}_1,\underline{e}_c) = \frac{\underline{e}_1 \cdot \underline{C} \, \underline{e}_2}{\lambda(\underline{e}_1) \, \lambda(\underline{e}_2)} = \frac{\alpha}{\sqrt{1 + \alpha^2}} = \frac{\alpha}{\sqrt{1 + \alpha^2}}$$

Volume changes (from 3 lectuesage)

$$\frac{dX_1}{dX_2}$$

$$\frac{dX_2}{dX_3}$$

$$\frac{dX_2}{dX_2}$$

$$\frac{dX_2}{dX_3}$$

$$\frac{\partial X}{\partial X} = (\overline{C}^{\dagger}X''] [\overline{G}X''] [\overline{G}X'']$$

$$\frac{\partial X}{\partial X} = (\overline{G}X'' \times \overline{G}X'') \cdot \overline{G}X'' = \operatorname{Spec}(\overline{G}X)$$

$$dV_x = (dx, \times dx_2) \cdot dx_3 =$$

$$dV_{\infty} = det(\underline{T}) dV_{x}$$

The field $J(x) = det(\bar{f}(x)) = \frac{dV_x}{dV_x}$ is the Jacobian of f and it measures volume strain 3 >1 : volume increase

J <1: volume dievease

3 =1 : no volume change

admisse déformations must have J>0

Example: Expanding shere V= \$TT 13

 $\mathcal{B}_{e} \qquad V_{e} = \frac{4\pi}{3} \qquad V_{t} = \frac{4\pi}{3} \times^{3}$

Deformation map: $x = \varphi(x) = \lambda x$ $\lambda > 1$

 $\underline{F} = \nabla \varphi = \lambda \underline{I}$ how. $\Rightarrow J \neq J(\underline{x})$

 $J = \det(\underline{F}) = \det(\lambda I) = \lambda^3 \det(I) = \lambda^3$ $J = \frac{V_c}{V_c} = \lambda^3$

Homework questien