

UNIVERSIDADE DE COIMBRA FACULDADE DE CIÊNCIAS E TECNOLOGIA

0xBB

0xAA

0xAA

0xBB

0xCC

0xBB

0xBB

0xCC

Departamento de Engenharia Informática

Exame de Tecnologia da Informática LEI - Época Normal

2019-2020 15-01-2020

SEM CONSULTA. Apenas está autorizado o uso de calculadoras não-científicas.

Nome:				Número:					
	quer tentativa	de fraude	e leva a a	nulação	da prova	tanto do	facilitad		te do ensino superior e futuro no do prevaricador. Não pode
	Pergunta	1	2	3	4	5	6	7]
	Resposta								
1. Qual é o resultado da	operação (11	001100) ₂ + (0xA	.00)16 ?					
a) (101011001100) ₂		b) 0x/	ACB		c) 0x	CCA		d)	(2763) ₁₀
impostos pelo tamanho o sendo a posição de mem	dos registos - ória dentro d ida endereço	- a segn le cada s o é repre	nentação segment esentado	o . Consi to identi o no for	dera-se ficada p mato s e	a divisã ela dist egmento	o da me ância re	emória Iativa	a, ultrapassando os limites a em segmentos de 64KiB, ao seu início, chamada de to (ambos com 16 bits) –
	Endere	ço Abso	luto = (Segmen	to << 4)	+ Deslo	cament	:0	
Quando se excede o endo mais significativo é desca	•		_		-				el pelo processador, e o bit PU ?
a) 24bits b) 20bits		c) 32k	oits		d) 16	bits		
3. Imagine que codifica un (2 canais). Qual a largura					•				stras de 16 bits, em stereo este modo ?
a) ~1.41Mbit/s	b) 88k	Kbit/s	c) 176	5Kbit/s	d) 88	KiB/s			
4. Considere um program o valor (-1) ₁₀ . Qual o resu				, com di	uas variá	áveis: A	(int) e B	(unsig	gned int), sendo que A tem
a) 0 b) -2	c) 655	534		d) 0x	FFFD			
5. Considere a representa	ação em com o) (01011100	-	-	L, em 8 l erflow	oits. A o	-) (11111 010001		+ (AA) ₁₆ dá:
6. Considere os valores (seguintes afirmações é ve		16 . Ass	umindo	o uso d	e comp	lemento	para c	lois er	n 8 bits, indique qual das
a) O primeiro valorc) A soma é igual a	_	2	<u>-</u>	segundo soma do				omo (-	53) ₁₀

7. Considere um CPU *little endian*. Um *array* de inteiros de 16bits, de duas posições, armazena os valores 0xAABB e 0xBBCC. Como é que estes valores estarão armazenados em memória ? Considere a célula mais à esquerda como o endereço de memória mais baixo (num array, posições consecutivas são armazenadas sequencialmente na memória).

0xBB

d) 0xAA

0xAA

0xBB

0xBB 0xCC

0xCC

0xBB

Pergunta	8	9	11	12
Resposta				

- **8.** Assumindo o padrão de 32 bits 0xAABBCCDD, como faria a troca de bits para converter para 0xAACCDDBB? Assuma que o valor está armazenado numa variavel *val*, inteira de 32 bits.
- a) (((val >> 24) & 0x000000FF) | ((val >> 8) & 0x0000FF00) | ((val << 8) & 0x00FF0000) | ((val << 24) & 0xFF000000))
- b) ((val & 0xFF000000) | ((val>>16) & 0x000000FF) | ((val<<8) & 0x0000FF00) | ((val<<8) & 0x000FF0000))
- c) ((val & 0xFF000000) | ((val<<16) & 0x000000FF) | ((val<<8) & 0x0000FF00) | ((val>>8) & 0x00FF0000))
- d) ((val & 0xFF000000) | ((val>>16) & 0x0000FF00) | ((val<<8) & 0x0000FF00) | ((val<<8) & 0x0000FF000))
- **9.** Qual das seguintes opções aproxima o resultado da conversão de (10.33)₁₀ para binário (vírgula fixa) usando 4 bits para a parte decimal, do modo mais preciso ?
- a) (1010.1010)₂
- b) (1010.0100)₂
- c) (10.3125)₁₀
- d) (10.3120)₁₀
- **10.** Considere que R2 é um LDR, e que a saída do divisor de tensão está ligada a um pino digital de um Arduino Uno. Considerando uma leitura de 768, obtida via analogRead() calcule o valor da resistência do LDR.

- 11. O Arduino Uno possui um conversor ADC. Qual das seguintes afirmações é verdadeira?
 - a) Podem ser lidos valores entre 0 e 1024, com a função digitalRead()
 - b) Podem ser lidos valores entre 0 e 1023, com a função analogRead()
 - c) Podem ser lidos valores entre 0 e 1024, com a função analogRead()
 - d) Podem ser lidos valores entre 0 e 1023, com a função digitalRead()

(Pergunta 12 removida)

Nome: Número:

Pergunta	13	14	15	16
Resposta				

13. Pretende-se implementar um programa que leia os valores de dois LDRs ligados em duas portas consecutivas (A0, A1). A leitura de cada LDR um deve ser separada por intervalo de tempo de 20ms. Qual dos seguintes casos permite assegurar esta funcionalidade?

```
a) int val_LDR_A, val_LDR_B;
  byte time_int=20;

void loop(){
    val_LDR_A = analogRead(A0);
    unsigned long c_time=millis();
    while((millis()-c_time) < time_int) {}
    val_LDR_B = analogRead(A1);
    c_time = millis();
    while((millis()-c_time) < time_int) {}
}

c) int val_LDR_A, val_LDR_B;
  byte time_int=20;

void loop(){
    val_LDR_A = analogRead(A0);
    delay(time_int);
    val_LDR_B = analogRead(A1);
  }
}</pre>
```

```
b) byte val_LDR_A, val_LDR_B;
byte time_int=20;

void loop(){
   val_LDR_A = analogRead(A0);
   unsigned long c_time=millis();
   while((millis()-c_time) < time_int) {}
   val_LDR_B = analogRead(A1);
   c_time = millis();
   while((millis()-c_time) < time_int) {}
}

d) int val_LDR_A, val_LDR_B;
byte time_int=20;

void loop(){
   val_LDR_A = digitalRead(A0);
   delay(time_int);
   val_LDR_B = digitalRead(A1);
}</pre>
```

- **14.** Um dos problemas do IPv4 tem a ver com limite de endereços disponíveis, derivado da codificação em 32 bits. Indique qual das seguintes soluções tem vindo a ser utilizada para mitigar este problema e prolongar o uso do IPv4:
 - a) Numa rede privada é comum os dispositivos possuirem um IP (IPv4) público
 - b) O encaminhador possui dois interfaces de rede: um na rede privada e outro ligado na rede de acesso
 - c) Usa-se tradução de endereços, com apenas um endereço IP público atribuído ao encaminhador
 - d) Usa-se DHCP para atribuir o endereço IP público do encaminhador
- **15.** Considere o circuito da próxima figura. Assumindo que os *flip-flops* se encontram incializados a 0, qual a sequência gerada para XY quando a entrada A estiver a 1 ?

- c) (11)->(01)->(11)->(00)
- d) Nenhuma das anteriores

16. Considere um sistema de ficheiros FAT16, com um tamanho de partição de 2GB. Qual o tamanho ótimo para os *clusters*, nesta configuração ?

17. Considere a próxima figura, que descreve o modo de operação de um tipo de *malware*. Baseando-se nos seus conhecimentos, classifique o tipo de *malware* em causa, justificando o seu raciocínio. Explique que tipo de ameaça constitui, e como pode ser utilizado para causar dano ou perturbação.

