

Botta - Pierce - Watkins theorem

 ${\bf Canonical\ name} \quad {\bf BottaPierceWatkinsTheorem}$

Date of creation 2013-03-22 19:20:21 Last modified on 2013-03-22 19:20:21 Owner kammerer (26336) Last modified by kammerer (26336)

Numerical id 6

Author kammerer (26336)

Entry type Theorem Classification msc 15A04

 $Related\ topic \qquad Fundamental Theorem Of Projective Geometry$

Related topic GerstenhaberSerezhkinTheorem

Let \mathbb{F} be an arbitrary field, and let n be a positive integer. Consider $\mathcal{M}_n(\mathbb{F})$, the vector space of all $n \times n$ matrices over \mathbb{F} . Define

- $\mathfrak{sl}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) : \operatorname{tr}(A) = 0 \},$
- $\mathcal{N} = \{ A \in \mathcal{M}_n(\mathbb{F}) : A \text{ is nilpotent} \},$
- $\mathcal{GL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) : \det(A) \neq 0 \}.$

Notice that $\mathfrak{sl}_n(\mathbb{F})$ is a linear subspace of $\mathcal{M}_n(\mathbb{F})$ and $\mathcal{N} \subseteq \mathfrak{sl}_n(\mathbb{F})$.

The Botta – Pierce – Watkins theorem on linear preservers of the nilpotent matrices [?] can be formulated as follows.

Theorem 1 Let $\varphi : \mathfrak{sl}_n(\mathbb{F}) \longrightarrow \mathfrak{sl}_n(\mathbb{F})$ be a linear automorphism. Assume that $\varphi(\mathcal{N}) \subseteq \mathcal{N}$. Then either $\exists P \in \mathcal{GL}_n(\mathbb{F}) \exists c \in \mathbb{F} \setminus \{0\} \, \forall A \in \mathfrak{sl}_n(\mathbb{F}) : \varphi(A) = cPAP^{-1}$, or $\exists P \in \mathcal{GL}_n(\mathbb{F}) \exists c \in \mathbb{F} \setminus \{0\} \, \forall A \in \mathfrak{sl}_n(\mathbb{F}) : \varphi(A) = cPA^TP^{-1}$.

The original proof is based on the Gerstenhaber - Serezhkin theorem, some elementary algebraic geometry, and the fundamental theorem of projective geometry.

References

[BPW] P. Botta, S. Pierce, W. Watkins, Linear transformations that preserve the nilpotent matrices, *Pacific J. Math.* **104** (No. 1): 39–46 (1983).