

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 11 EPG3310 - Probabilidad 29 de Mayo

- 1. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes. Suponga que para cada $n\geq 1$, se tiene que $P(X_n=1)=p_n$ y $P(X_n=0)=1-p_n$. Muestre que
 - a) $X_n \stackrel{P}{\to} 0$ si y sólo si $\lim_{n\to\infty} p_n = 0$.
 - b) $X_n \stackrel{c.s.}{\to} 0$ si y sólo si $\sum_{n>1} p_n < \infty$.
- 2. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas en un espacio (Ω, \mathcal{F}, P) . Asuma que

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} X_j = m \quad c.s.$$

donde $|m| < \infty$. Muestre que $E(X_1)$ es finita y $E(X_1) = m$ c.s.

3. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas tales que $E(|\ln X_1|) < \infty$. Calcule

$$\lim_{n \to \infty} \left(\prod_{i=1}^{n} X_i \right)^{\frac{1}{n}}$$

Además, si X_1 distribuye uniforme en (0,1), calcule su valor numérico.

4. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas en un espacio (Ω, \mathcal{F}, P) con $|E(X_n)| < \infty$. Muestre que si

$$\sum_{n>1} Var(X_n) < \infty$$

entonces $\sum_{n\geq 1} (X_n - E(X_n))$ existe c.s.