

La notion d'infini a turlupiné les plus grands esprits pendant des siècles. De rudes batailles philosophico-mathématiques ont été menées de l'Antiquité à nos jours.

Même si la conception de limite est encore en évolution, celle que vous avez découverte en classe de Première a vu le jour en 1850 grâce au charmant WEIERSTRASS et avait échappé à GALILÉE, DESCARTES, PASCAL, LEIBNIZ, NEWTON, etc. bref : du beau monde...et on vous demande d'assimiler cette notion en quelques semaines!

L'humanité ayant pris son temps pour l'acquérir, n'hésitez pas vous non plus à réfléchir calmement à ce à quoi peut ressembler un « infiniment grand »et un « infiniment petit ».

Cela vous permettra peut-être d'éviter d'écrire, comme tant d'autres lycéens, de grosses bêtises sur vos copies au moment de calculer des limites.

1. Limite d'une fonction à l'infini

1.1 Limite infinie à l'infini

On considère une fonction f définie sur un intervalle de la forme a; $+\infty$.

On dit que f a **pour limite** $+\infty$ **en** $+\infty$ lorsque tout intervalle de la forme $]A; +\infty[$ contient toutes les valeurs de x dès que x est suffisamment grand.

On écrit :

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Illustration:

Remarque. Je vous laisse adapter cette définition pour cet énoncé au cas d'une limite en $-\infty$.

- Définition 2.3 -

On considère une fonction f définie sur un intervalle de la forme $]a; +\infty[$. On dit que f a **pour limite** $-\infty$ **en** $+\infty$ lorsque tout intervalle de la forme $]-\infty; A[$ contient toutes les valeurs de x dès que x est suffisamment grand.

On écrit :

$$\lim_{x \to +\infty} f(x) = -\infty.$$

Illustration:

Remarque. Je vous laisse adapter cette définition pour cet énoncé au cas d'une limite en $-\infty$.

Propriété 1.3 (Limites de référence).

1. En
$$+\infty$$
:

(a)
$$\lim_{x \to +\infty} x^2 = +\infty$$

(b)
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

2. En
$$-\infty$$
:

(a)
$$\lim_{x \to -\infty} x^2 = +\infty$$

(c)
$$\lim_{x \to +\infty} x^p = +\infty \text{ si } p \geqslant 1$$

(d)
$$\lim_{x \to +\infty} e^x = +\infty$$

(b)
$$\lim_{x \to -\infty} x^p = +\infty$$
 si p est pair et $-\infty$ si p est impair.

 \bigstar Démonstration de l'exponentielle en $+\infty$

1.2 Limite finie à l'infini

- Définition 3.3 -

On considère une fonction f définie sur un intervalle de la forme a; a; b et un réel b. On dit que f a pour limite ℓ en $+\infty$ lorsque tout intervalle I ouvert contenant ℓ (comme $|\ell - \varepsilon, \ell + \varepsilon|$ contient toutes les valeurs de f(x) dès que x est suffisamment grand. Il existe un réel x_0 tel que pour tout $x \ge x_0$, $f(x) \in I$. On écrit :

$$\lim_{x \to +\infty} f(x) = \ell.$$

Remarque. Je vous laisse de nouveau adapter cet énoncé au cas d'une limite en $-\infty$.

Illustration:

Propriété 2.3 (Limites de référence).

$$1. \lim_{x \to +\infty} \frac{1}{x} = 0$$

2.
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$

1.
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
2.
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$
3.
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$4. \lim_{x \to -\infty} \frac{1}{x} = 0$$

$$5. \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

$$6. \lim_{x \to -\infty} e^x = 0.$$

★ Dém	onstration de l'expo	onentielle en –	$-\infty$	

- Définition 4.3 -

Lorsque f a pour limite ℓ en $+\infty$ (resp. $-\infty$), on dit que la droite d'équation $y=\ell$ est **asymptote horizontale** à la courbe représentative de la fonction f notée \mathscr{C}_f au voisinage de $+\infty$ (resp. $-\infty$).

Exemple.

Dans cet exemple $\lim_{x\to +\infty} f(x) = \ell$, ce qui implique que la droite d'équation $y=\ell$ est **asymptote** horizontale à la courbe représentative de f au voisinage de $+\infty$.

2. Limite infinie d'une fonction en un réel

– Définition 5.3 –

On considère une fonction f définie sur un ensemble ouvert dont le réel a est une borne. On dit que f a **pour limite** $+\infty$ **en** a lorsque tout intervalle de la forme]A; $+\infty[$ contient toutes les valeurs de x dès que x **est assez proche de** a. On écrit :

$$\lim_{x\to a} f(x) = +\infty.$$

- Définition 6.3 -

On dit que f admet pour $+\infty$ en a à droite lorsque tout intervalle A; $+\infty$ contient toutes les valeurs de f(x) dès que x est assez proche de a, x restant strictement supérieur à

On écrit:

$$\lim_{\substack{x \to a \ x > a}} f(x) = +\infty.$$

Remarque. Je vous laisse encore adapter cet énoncé au cas d'une limite en a par valeurs inférieures.

Propriété 3.3 (Limites de référence).

- $\bullet \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty.$ $\bullet \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty.$

- $\lim_{x \to 0} \frac{1}{x^2} = +\infty$. $\lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty$

– Définition 7.3 ————

Lorsque f a pour limite $+\infty$ ou $-\infty$ en a (ou à droite de a, ou à gauche de a), on dit que la droite d'équation x = a est asymptote verticale à la courbe représentative de la fonction f.

Exemple.

 \blacksquare Application 1.3. On considère une fonction f dérivable dont le tableau de variation est donné ci-dessous :

x	$-\infty$ –	1	2	$+\infty$
signe de $f'(x)$	_	_	0	+
$\begin{array}{c} \text{Variations} \\ \text{de} \\ f \end{array}$	5 $-\infty$	+∞	-4	2

Préciser les différentes asymptotes à la courbe représentative de la fonction f .

3. Théorèmes d'opérations

3.1 Limites et opérations

Les principaux résultats sur les calculs de limites ont été vus au chapitre 2, avec les formes indéterminées.

Un exemple pour illustrer avec une rédaction possible :

PAPPLICATION 2.3. On considère la fonction f définie sur $\mathbb{R}\setminus\{2\}$ par $f(x)=$	$\frac{1}{2x-4}.$
--	-------------------

Déterminer les limites de f eux bornes de son ensemble de définition et en déduire l'existence d'asyntotes à la courbe représentative de f .

Il existe des limites que l'on ne pourra calculer à l'aide des opérations algébriques déjà vues. Par exemple, comment peut-on procéder pour calculer la limite de $f: x \mapsto e^{-\sqrt{x}}$ en $+\infty$?

3.2 Limite d'une composée

Pour décrire une fonction, on peut parfois la décomposer en enchaînements de fonctions plus simples, comme les fonctions de référence vues en 1^{re} comme $x\mapsto x^2,\,x\mapsto \mathrm{e}^x,\,x\mapsto \frac{1}{x}...$

- Définition 8.3 -

Soient deux fonctions u et v définies sur deux ensembles I et J tels que l'image de I par u est contenue dans $J:u(I)\subset J$.

La fonction obtenue en appliquant successivement u, puis v, s'appelle la **composée** de la fonction u par la fonction v et est notée $v \circ u$, ou parfois.

Pour tout réel x de I:

$$(v \circ u)(x) = v[u(x)].$$

Théorème 3.3.

Soient ω , Ω et ℓ des réels ou l'infini et u et v deux fonctions, alors

$$\left| \begin{array}{l} \lim\limits_{x \to \omega} u(x) = \Omega \\ \lim\limits_{T \to \Omega} v(T) = \ell \end{array} \right\} \Longrightarrow \lim\limits_{x \to \omega} v \circ u(x) = \ell$$

PApplication 4.3. Retour sur l'exemple avec $f: x \mapsto e^{-\sqrt{x}}$ en $+\infty$.	

Limites et comparaisons 3.3

On dispose de théorèmes analogues à ceux déjà vus pour les suites.

Soient deux fonctions f et g définies sur un intervalle a; $+\infty$ [telles que pour tout réel x > a, $g(x) \ge$ f(x).

Théorème 5.3.

1. Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$.
2. Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$.

2. Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
 alors $\lim_{x \to +\infty} f(x) = -\infty$

Remarque. On obtient des théorèmes analogues en $-\infty$.

Application 6.3. Déterminer la limite, si elle existe, de $3x - \sin x$ en $-\infty$.	

Théorème 7.3.

Soit x_0 un réel ou $x_0 = \pm \infty$.

Si $f \leqslant g \leqslant h$ et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \in \mathbb{R}$, alors :

$$\lim_{x \to x_0} g(x) = \ell$$

Illustration.

PAPPLICATION 8.3. Déterminer la limite, si elle existe, de $\frac{\sin x}{\sqrt{x}}$ en $+\infty$.

3.4 Croissances comparées

Propriété 4.3. Soit n un entier naturel.

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty, \qquad \lim_{x \to -\infty} x^n e^x = 0, \qquad \lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = 0$$

PApplication 9.3. Calculer $\lim_{x\to -\infty} x e^x + 2x - 4$ et $\lim_{x\to +\infty} \frac{e^{3x}}{x}$.

Illustration des croissances comparées :

4. Compléments sur la dérivation

4.1 Dérivée de la composée

Propriété 5.3. Soit v une fonction dérivable sur un intervalle J telle que pour tout réel x de l'intervalle I, $u(x) \in I$. La fonction $(v \circ u)$ est **dérivable** sur I et :

$$(v \circ u)' = u' \times (v' \circ u)$$

4.2 Cas particuliers

4.2.1 Dérivée de u^n

Propriété 6.3. Soit n un entier non nul n. Si u est une fonction **dérivable** sur un intervalle I et si lorsque n est **strictement négatif**, u ne s'annule pas sur I, alors la fonction u^n est dérivable sur I et :

$$(u^n)' = nu'u^{n-1}$$

4.2.2 Dérivée de \sqrt{u}

Propriété 7.3. Si u est une fonction **dérivable** et **strictement positive** sur un intervalle I alors la fonction \sqrt{u} est dérivable sur I et :

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

4.2.3 Dérivée de e^u

Propriété 8.3. Si u est une fonction dérivable sur un intervalle I alors la fonction e^u est dérivable sur I et :

$$(\mathbf{e}^u)' = u'\mathbf{e}^u$$

■ Application 10.3. Calculer la dérivée des fonctions suivantes :

$$f_1(x) = e^{-x^2+6x+4}$$
 sur $I = \mathbb{R}$ et $f_2(x) = (3x^2+7x-5)^9$ sur $I = \mathbb{R}$.