

Dados e Aprendizagem Automática

Ensemble Learning

Contents

- Ensemble Learning
 - Bagging (Bootstrap Aggregating)
 - Boosting
 - Stacking
 - Max Voting
- Hands On

Ensemble Learning

The Problem and the Data

<u>Problem</u>: development of a Machine Learning model capable of **predicting the passenger survived** to the

Titanic disaster

<u>Dataset</u>: table with information regarding the **passengers** with 891 entries and 12 features, including:

- PassengerId
- Survived
- Pclass
- Name
- Sex
- Age
- SibSp
- Parch
- Ticket
- Fare
- Cabin
- Embarked

You may need to install xgboost. Use one of the following commands:

conda install -c conda-forge xgboost

pip install xgboost

6

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
    Column
                 Non-Null Count Dtype
                 -----
    PassengerId 891 non-null
                                int64
    Survived
                 891 non-null
                                int64
    Pclass
                 891 non-null
                                int64
    Name
                 891 non-null
                                object
                 891 non-null
    Sex
                                object
    Age
                 714 non-null
                                float64
    SibSp
                 891 non-null
                                int64
                 891 non-null
                                int64
    Parch
    Ticket
                 891 non-null
                                object
    Fare
                 891 non-null
                                float64
10 Cabin
                 204 non-null
                                object
11 Embarked
                 889 non-null
                                object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S

Let's check the missing values:

sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')

Let's analyze the *Age* distribution with the ticket class, *Pclass*:

```
plt.figure(figsize = (12, 7))
sns.boxplot(x = 'Pclass', y = 'Age', data = df)
```


Data Preprocessing

Let's impute the missing values in *Age* with the ticket class, *Pclass*, like we did on a previous class:

```
def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]

if pd.isnull(Age):
    if Pclass == 1:
        return 37

    elif Pclass == 2:
        return 29

    else:
        return 24

else:
        return Age

df['Age'] = df[['Age','Pclass']].apply(impute_age, axis = 1)
```

Data Preprocessing

We will drop features Cabin, Sex, Embarked, Name and Ticket.

```
df.drop('Cabin', axis = 1, inplace = True)
df.dropna(inplace = True)

df.drop(['Sex', 'Embarked', 'Name', 'Ticket'], axis = 1,inplace = True)

df.head()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500

Let's define the X and y and split the data:

```
X = df.drop('Survived', axis = 1)
y = df['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 2022)

X_train.shape, y_train.shape, X_test.shape, y_test.shape

((622, 6), (622,), (267, 6), (267,))
```

Comparison Models: Decision Tree

Let's try different models. We will implement a Decision Tree and a Support Vector Machine for comparison with the Ensemble Learning Models.

Decision Tree

```
dt_score = dt_model.score(X_test, y_test)
print("Accuracy: %.2f%%" % (dt_score * 100))
Accuracy: 69.29%
```

Saving the model's accuracy for latter comparison:

```
results = {'DT': dt_score}
```

<pre>dt_predictions = dt_model.predict(X_test) print(classification_report(y_test, dt_predictions))</pre>									
	precision	recall	f1-score	support					
0	0.76	0.76	0.76	173					
1	0.56	0.56	0.56	94					
accuracy			0.69	267					
macro avg	0.66	0.66	0.66	267					
weighted avg	0.69	0.69	0.69	267					

Comparison Models: Support Vector Machine

Support Vector Machine

```
svm_model = SVC(random_state = 2022)
svm_model.fit(X_train, y_train)
         SVC
SVC(random_state=2022)
svm score = svm model.score(X test, y test)
print("Accuracy: %.2f%%" % (svm score * 100))
Accuracy: 68.16%
svm_predictions = svm_model.predict(X_test)
print(classification_report(y_test, svm_predictions))
              precision
                           recall f1-score support
                   0.68
                             0.97
                                       0.80
                                                  173
                                       0.26
                   0.71
                             0.16
                                       0.68
                                                  267
    accuracy
                                       0.53
                   0.70
                             0.56
                                                  267
   macro avg
weighted avg
                                       0.61
                   0.69
                             0.68
                                                  267
results['SVM'] = svm_score
```

Ensemble Learning Models: BAGGing (Bootstrap AGGregating)

We will use *StratifiedShuffleSplit* which is another split technique:

```
sss = StratifiedShuffleSplit(n_splits = 10, test_size = 20, random_state = 2022)
```

Let's implement the *Bagging Classifier* from Sklearn:

▶ estimator: DecisionTreeClassifier

▶ DecisionTreeClassifier

BAGGing involves adjusting decision trees to different samples from the same dataset, evaluating by calculating the <u>average</u> of these predictions.

Ensemble Learning Models: Bagging

Best estimator

```
bg_predictions = bst_bg_model.predict(X_test)
print(classification_report(y_test, bg_predictions))
             precision
                          recall f1-score support
                  0.77
           0
                            0.78
                                      0.77
                                                 173
                                      0.57
           1
                  0.58
                            0.56
                                                  94
                                      0.70
                                                 267
    accuracy
                                      0.67
                  0.67
                            0.67
                                                 267
   macro avg
                  0.70
                            0.70
                                                 267
weighted avg
                                      0.70
results['Bagg']= bst_bg_score
```

Ensemble Learning Models: Bagging

Now, bagging with **Random Forest**:

Ensemble Learning Models: Bagging

```
rf_predictions = rf_model.predict(X_test)
                                         | elapsed:
[Parallel(n_jobs=1)]: Done 49 tasks
                                                      0.0s
rf_predictions = rf_model.predict(X_test)
print(classification_report(y_test, rf_predictions))
             precision
                         recall f1-score support
                  0.77
                            0.83
                                      0.80
                                                173
                            0.55
                                     0.59
          1
                  0.64
                                                 94
                                     0.73
                                                267
    accuracy
                  0.71
                            0.69
                                     0.70
                                                267
  macro avg
                  0.73
                            0.73
weighted avg
                                     0.73
                                                267
results['RF'] = rf_score
```

Ensemble Learning Models: Boosting

Gradient Boosting

```
gbc model = GradientBoostingClassifier(n estimators = 100, learning rate = 1.0,
                                       max_depth = 1, random_state = 2022)
gbc model.fit(X train, y train)
                          GradientBoostingClassifier
GradientBoostingClassifier(learning rate=1.0, max depth=1, random state=2022)
gbc score = gbc model.score(X test, y test)
print("Accuracy: %.2f%%" % (gbc score*100))
Accuracy: 71.16%
gbc predictions = gbc model.predict(X test)
print(classification_report(y_test, gbc_predictions))
              precision
                           recall f1-score support
                             0.81
                                       0.78
                   0.76
                                                  173
                   0.60
                             0.53
                                       0.56
                                                   94
                                       0.71
    accuracy
                                                  267
                   0.68
                             0.67
                                       0.67
                                                  267
   macro avg
weighted avg
                   0.71
                             0.71
                                       0.71
                                                  267
results['GB'] = gbc score
```

Boosting involves the sequential addition of ensemble members that correct the predictions made by previous models and produce a <u>weighted average</u> of the predictions.

Ensemble Learning Models: Boosting

XGBoost

```
xgb model = XGBClassifier(max_depth = 1, objective = 'reg:squarederror')
xgb model.fit(X train, y train)
                                 XGBClassifier
XGBClassifier(base_score=None, booster=None, callbacks=None,
              colsample bylevel=None, colsample bynode=None,
              colsample bytree=None, device=None, early stopping rounds=None,
              enable_categorical=False, eval_metric=None, feature_types=None,
              gamma=None, grow_policy=None, importance_type=None,
              interaction constraints=None, learning rate=None, max bin=None,
              max_cat_threshold=None, max_cat_to_onehot=None,
              max delta step=None, max depth=1, max leaves=None,
              min child weight=None, missing=nan, monotone constraints=None,
              multi strategy=None, n estimators=None, n iobs=None.
xgb_score = xgb_model.score(X_test, y_test)
print("Accuracy: %.2f%%" % (xgb score * 100))
Accuracy: 73.03%
```

```
xgboost.sklearn.XGBClassifier(base score=None, booster=None,
            callbacks=None, colsample bylevel=None,
            colsample bynode=None, colsample bytree=None,
            device=None, early stopping rounds=None,
            enable categorical=False, eval metric=None,
            feature types=None, gamma=None,
            grow policy=None, importance type=None,
            interaction constraints=None,
            learning rate=None, max bin=None,
            max cat threshold=None, max cat to onehot=None,
            max delta step=None, max depth=None,
            max leaves=None, min child weight=None,
            missing=nan, monotone constraints=None,
            multi strategy=None, n estimators=None,
            n jobs=None, num parallel tree=None,
            random state=None, ...)
```

Ensemble Learning Models: Boosting

<pre>xgb_predictions = xgb_model.predict(X_test) print(classification_report(y_test, xgb_predictions))</pre>									
	precision	recall	f1-score	support					
0	0.76	0.85	0.80	173					
1	0.65	0.51	0.57	94					
accuracy			0.73	267					
macro avg	0.71	0.68	0.69	267					
weighted avg	0.72	0.73	0.72	267					
results['XGB'] = xgb_score									

Ensemble Learning Models: Stacking

Stacking Classifier

```
estimators = [("dt", dt model), ("svm", svm model), ("rf", rf model)]
st_model = StackingClassifier(estimators = estimators,
                             final estimator = LogisticRegression())
st model.fit(X train, y train)
[Parallel(n jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
[Parallel(n_jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
[Parallel(n jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
[Parallel(n jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
                                                       0.0s
[Parallel(n_jobs=1)]: Done 49 tasks
                                           elapsed:
[Parallel(n_jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
                                 StackingClassifier
                                                                   rf
                  dt
                                          svm
    ▶ DecisionTreeClassifier
                                                      ► RandomForestClassifier
                                        ▶ SVC
                                    final estimator
                               ▶ LogisticRegression
```

Stacking involves fitting different types of models to the same dataset, using another model to learn the <u>best way to combine</u> the predictions.

Ensemble Learning Models: Stacking

```
st_score = st_model.score(X_test, y_test)
[Parallel(n jobs=1)]: Done 49 tasks
                                         elapsed:
                                                      0.0s
print("Accuracy: %.2f%%" % (st_score*100))
Accuracy: 72.28%
st_predictions = st_model.predict(X_test)
[Parallel(n_jobs=1)]: Done 49 tasks
                                         elapsed:
                                                      0.0s
print(classification_report(y_test, st_predictions))
             precision
                        recall f1-score support
                  0.76
                            0.84
                                      0.80
                                                173
                  0.63
                            0.51
                                      0.56
                                                 94
                                      0.72
                                                267
    accuracy
                                      0.68
                  0.70
                            0.67
                                                267
   macro avg
weighted avg
                  0.71
                            0.72
                                      0.72
                                                 267
results['Stack']= st_score
```

Ensemble Learning Models: Max Voting

Majority Class Labels (Majority/Hard Voting)

```
hvt_model = VotingClassifier(estimators = [("dt", dt_model), ("svm", svm_model), ("rf", rf_model)],
                            voting = 'hard', weights = [2, 1, 2])
hvt model.fit(X train, y train)
[Parallel(n_jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
                                VotingClassifier
                dt
                                                                  rf
                                        svm
   ▶ DecisionTreeClassifier
                                      ▶ SVC
                                                     RandomForestClassifier
for model, label in zip([dt model, svm model, rf model, hvt model], ['dt', 'svm', 'rf', 'Ensemble']):
    hvt_score = cross_val_score(model, X_test, y_test, scoring = 'accuracy', cv = 5)
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (hvt score.mean(), hvt score.std(), label))
[Parallel(n_jobs=1)]: Done 49 tasks
                                           elapsed:
                                                       0.0s
Accuracy: 0.69 (+/- 0.05) [dt]
Accuracy: 0.66 (+/-0.04) [svm]
[Panalle] (n jobs-1)]: Done 49 tasks
```

Max voting involves fitting several models, each making a prediction and voting on each sample. Only the class with the <u>highest votes</u> is included in the final prediction class.

Ensemble Learning Models: Max Voting

```
hvt_score = hvt_model.score(X_test, y_test)
print("Accuracy: %.2f%%" % (hvt_score*100))
Accuracy: 70.79%
hvt_predictions = hvt_model.predict(X_test)
print(classification_report(y_test, hvt_predictions))
             precision
                        recall f1-score support
                  0.77
                            0.79
                                     0.78
                                                173
                  0.59
                            0.56
                                     0.58
                                                 94
                                     0.71
                                                267
    accuracy
   macro avg
                  0.68
                            0.67
                                     0.68
                                                267
weighted avg
                  0.71
                            0.71
                                     0.71
                                                267
results['HVotW']= hvt_score
```

Let's create a bar chart with the accuracy of each model created:

We can visualize it with horizontal bars:

```
fig, ax = plt.subplots()

y_values = np.arange(len(mod))

ax.barh(y_values, acc, align='center')
ax.set_yticks(y_values, labels = mod)
ax.invert_yaxis()
ax.set_xlabel('Accuracy')
ax.set_title('Models accuracy comparison')

plt.show()
```


Or we can print the results:

```
print("Models accuracy comparison")
for key, value in results.items():
    print("%s \t %.2f" % (key, value))
Models accuracy comparison
         0.69
DT
         0.68
SVM
         0.70
Bagg
         0.73
GB
         0.71
         0.73
XGB
         0.72
Stack
HVotW
         0.71
```

Which model performed better? Which models are worth tuning?

Or we can print the results:

```
print("Models accuracy comparison")
for key, value in results.items():
    print("%s \t %.2f" % (key, value))
Models accuracy comparison
DT
         0.69
SVM
         0.68
         0.70
Bagg
         0.73
GB
         0.71
XGB
         0.73
         0.72
Stack
HVotW
         0.71
```

Which model perfored better? Which models are worth tunning?

Hands On