Data-driven Intelligent Systems

Lecture 11
Theory of Learning, Evaluation

http://www.informatik.uni-hamburg.de/WTM/

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
 - Training, Validation & Test Data
 - Cross Validation
 - Evaluation of Classification models
 - Confusion Matrix

Machine Learning & Human Learning

- Supervised, unsupervised, semi-supervised, selfsupervised, reinforcement learning
- Learning from examples
- Case-based learning
- Learning by analogy
- Learning by doing

Machine Learning Issues

- Static vs. dynamic data
- Centralized vs. distributed data
- Batch vs. incremental (on-line) learning
- Active/adaptive learning
- Life-long learning

. . . .

Types of Inference: Induction, Deduction, Transduction

A Learning Scenario

Given:

- observed samples {(X, Y)}How to select f(X, w):
- Approximating function f?
 - Hyperparameters?
- Parameters: w?
- ← A priori knowledge required!

Example:

f: linear in parameters:

$$y = w_1 x^n + w_2 x^{n-1} + \dots + w_0$$

nonlinear in parameters:

$$y = e^{-wx}$$

Hypotheses for a Given Data Set

- Given: samples (x_d, y_d)
- Unknown: true function y=F(x)

• Wanted: approximation h(x) of the true function hypothesis

Polynomial (linear, quadratic, etc.) or exponential model?

How to Learn with a Learning Machine? (1)

- Learning objective
 - Inductive principle a general prescription for learning
 - Tells us what we wish to achieve with the data
 - → define a Risk function
 - → choose a model (approximating function) of suitable complexity
- Learning method
 - Tell us how to obtain an optimal estimate
 - I.e. a constructive implementation of an inductive principle
 - → find good model parameters

How to Learn with a Learning Machine? (2)

- **Loss function** $L(y_d, f(x_d, w))$: (also: **Error function**)
 - measure of difference between y_d and $f(x_d, w)$ for each sample d
 - y_d the output produced by the system,
 - X_d − a tuple of inputs,
 - $f(X_d, w)$ the output produced by the learning machine for a selected approximating function f,
 - w the set of parameters in the approximating function.
- Risk functional R(w):
 - measure of accuracy of the learning machine:

$$R(w) = \frac{1}{\#d} \cdot \sum_{d} L(y_{d}, f(x_{d}, w))$$

Analogue terms: Cost, Score, Profit, Fitness, Utility, Reward, Objective function

How to Learn with a Learning Machine? (3)

- Examples of loss function L(y, f(x, w)):
 - Classification error:

$$L(y, f(x, w)) = \begin{cases} 0 & \text{if } y = f(x, w) \\ 1 & \text{if } y \neq f(x, w) \end{cases}$$

Squared error (a measure for regression):

$$L(y, f(x, w)) = (y - f(x, w))^2$$

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
- Evaluation of Classification models
 - Confusion Matrix

Statistical Learning Theory (1)

- SLT formalizes many learning procedures developed in AI, ANN, statistics, Data Mining, Pattern Recognition
- SLT considers learning with small sets of samples
 - \rightarrow Exact distribution of data p(x, y) is unknown
 - → When does overfitting occur?
 - \rightarrow Approximate true risk R(w) with an empirical risk
- Empirical Risk Minimization (ERM) the basic inductive principle:
 - Find the optimal estimate = minimum of risk function R(w) based only on the available data
 - Implementation of ERM depends on selected L and f(x, w)
- SLT = VC theory (Vapnik Chervonenkis)

Statistical Learning Theory (2)

Asymptotically consistent estimator:

- For $n \to \infty$
 - true model parameter values will be estimated
 - model will generalize to "unseen" data
- Asymptotic consistency should hold for ALL classes of approximating functions

each n

Statistical Learning Theory (3)

- To ensure asymptotic consistency, approximating functions should be like a growth function
- As the number of samples grows, the approximating functions should start to generalize
- Generalization means
 - failure to model noise
 - failure to model overly complex data
- The set of hypothesis that the approximating function can make over the data should be limited

Growth Function

- Hypothesis set H =all the functions a learner can approximate
- A growth function is defined as

$$\Pi_H(n) = \max |H(S)|$$

over all input sets S of size n

i.e. the maximum number of ways *n* points can be classified by *H*

• E.g. binary classification: $\Pi_H(n) \le 2^n$

Vapnik Chervonenkis (VC) Dimension

- The VC dimension of H is the cardinality of the largest set S that can be fully represented by H (i.e. learned)
- VC(H) is typically finite in good learners
- A "saturating" growth function ensures asymptotic consistency

VC Dimension, Examples

Linear classifier in 2D:

$$VC(H) = 3$$

Linear classifiers for d features plus a constant term b:

$$VC(H) = d+1$$
 (perceptron)

Neural networks:

Decision tree of rank r that defines Boolean functions on n boolean variables:

$$VC(H) = \sum_{i=0}^{r} \binom{n}{i}$$

VC Dimension

- ERM applicable for large n (n/VC > 20)
- Possible overfitting for small n (n/VC < 20)
 - → need to constrain the structure of the learner → SRM

Structural Risk Minimization (1)

• SRM requires a priori specification of a structure for sets of approximating functions $S_1, S_2, ..., S_k$.

- SRM approach towards optimal model:
 - Calculate or estimate VC-dimension for any element S_k
 - Minimize empirical risk R(w) for each S_k
- The optimal solution is a tradeoff:
 - High complexity (large VC)
 → small empirical risk
 - Low complexity (small VC)
 → empirical risk ~ true risk
 good
 genera lization

Structural Risk Minimization (2)

 SRM – a trade off between complexity (of approximating functions) and quality (of results)

"As simple as possible, but with enough quality."

Occam's razor principle

- Optimal model estimation:
 - Select an element of the structure with optimal complexity
 - Define the model based on selected approximating functions
 - Penalize complex models by regularisation

SRM Optimization Strategy

With increasing complexity of approximating functions true & empirical risk R(w) decrease until the value – VC dimension; thereafter they diverge.

Optimization:

- Stochastic approximation (or gradient descent)
- Iterative methods
- Greedy optimization (following locally optimal choice)

Complexity and Generalization

- Complexity = degrees of freedom in the model
 - E.g.: number of variables
 - Effective model complexity may rise over the course of training (this justifies early stopping)

Bias-Variance Tradeoff

Model bias:

may result from SRM

- Model outputs are often biased models can learn certain aspects of the data, but have limitations elsewhere
 - Underfitting is a form of bias
- Model bias unwanted, since output shall depend on the data
- But: a smart bias may enable certain model performance!
- Model variance:

may result from ERM

- Models' outputs often have large variance under:
 - small variations in the data, e.g. different sampling, or
 - with different initial random values of the model parameters
- Unwanted variance often observed in powerful models, which are unconstrained by model bias
 - Overfitting models have this behaviour

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
- Evaluation of Classification models
 - Confusion Matrix

Bayes

Probability distribution of two random variables:

$$P(D,H) = P(D | H) \cdot P(H)$$
$$= P(H | D) P(D)$$

Rearrange terms:

$$P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)}$$

Relation of ERM/SRM to Bayesian View

Bayes Theorem:
$$P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)}$$

- P(D|H): Likelihood that model H generates the data D.
 Find maximum likelihood model ~ ERM
 try to model the data best, at any price.
- P(H): Prior probability of model H; penalizes models of complex structure; based on a priori knowledge.
- P(D): Evidence; just a normalizing factor.
- P(H|D): Posterior probability for H after having seen the data.
 Find maximum posterior model
 Tradeoff: well performing & simple.
 - ~ SRM

Relation Likelihood vs. Empirical Risk

Likelihood for the model to generate the data:

maximise
$$\longrightarrow$$
 $P(D | H) \sim \prod_{data \ d} e^{-(y_d - f(x_d, w))^2}$ Gaussian prob. of data deviating from model

- Take -ln(.) on both sides of the equation:
- Formulation as cost function:

Relation Likelihood vs. Empirical Risk

Likelihood probability (of data being produced by the model)

data around model

(between data and prediction)

Probabilities vs. Cost Functions

Bayes probabilistic formulation:

• Take -ln(.) on both sides of the equation:

$$\begin{array}{ccc} \text{minimise} & \rightarrow & -\ln(P(H \mid D)) \sim -\ln(P(D \mid H)) - \ln(P(H)) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

→ Maximising the posterior probability of the model is equivalent to minimising costs.

Probabilities vs. Cost Functions – Example

Probabilistic formulation:

Formulation as cost function:

$$-\ln(P(H\mid D)) \sim \sum_{data\;d} (y_d - f(x_d,w))^2 + w_{\text{N}}^2$$
 Penalty on large w imposes a model bias error

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
 - Evaluation of Classification models
 - Confusion Matrix

Using Data

 Use this data to find the best parameters w for each model k
 f_k(x, w)

• Use this data to calculate an estimate of score $S_k(w)$ for each $f_k(x, w)$ and select

$$k^* = \operatorname{argmin}_k S_k(w)$$

- → find best hyperparameters
- Use this data to calculate an unbiased estimate of $S_{k*}(w)$ for the selected model

The Data Mining Process

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
- Evaluation of Classification models
 - Confusion Matrix

Making Most of the Data

- Resubstitution method:
 - training data = testing data; naïve strategy, optimistically biased; not for small n.
- Bootstrap method:
 - resample randomly with replacement to generate data sets of same size but different proportion of samples for training and testing.
- Holdout method:
 - x% of data for training, (1-x)% for testing.
- Rotation method (k-fold cross validation):
 - total of k data segments, k-1 for training, one for testing; repeat k times.
- Leave-one-out method:
 - n-1 training samples, one testing sample; repeat n times.

Hold-out Method

Hold-out set. Partition data into training and test sets

- Data from the test set are "lost" for training
- Different partitioning → different estimates

K-fold Cross Validation

Create K equal partitions

Example 1:

10-fold cross validation:

- Use the first 90% of the data set for training and then test on the final 10%
- Then use the next 10% for testing etc.

Example 2:

K=n, number of data points

- "Leave-one-out method"
- Train n-times with n-1 data points

K-fold Cross Validation (for Regression)

Linear Regression: $MSE_{3FOLD} = 2.05$

Randomly break the dataset into k partitions

(here: k=3 - red, blue, purple)

- For red=test: Train on the points
 not in the red partition. Find the
 test-sum of errors on the red points.
- For blue=test: Train on the points
 not in the blue partition. Find the
 test-sum of errors on the blue points.
- For purple=test: Train on the points not in the purple partition. Find the test-sum of errors on the purple points.

Then report the mean square error (MSE).

Examples: Leave One Out Cross Validation

Linear regression (2 parameters)

Quadratic regression (3 parameters)

→ quadratic model is better: better hyperparameters

MSE typical for regression. Which measure for classification?

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
- Evaluation of Classification models
 - Confusion Matrix

Evaluation of Classification Systems (1)

- Task: Determine which of a fixed set of classes an example belongs to.
- Input: Training set of examples annotated with class values.
- Output: Induced hypothesis (model/concept description/classifier).

Evaluation of Classification Systems (2)

Evaluation criteria:

- Accuracy of the classification
- Interpretability
 - E.g. size of a decision tree; insight gained by the user
- Efficiency
 - ... of model construction
 - ... of model application
- Scalability
 - ... for large datasets
- Robustness
 - w.r.t. noise and unknown attribute values

Evaluation of Classification Systems (3)

- Training set: examples with class values for learning.
- Test set: examples with class values for evaluating.
- Evaluation: Model hypotheses are used to classify the test data; results are compared to known classes.

- Accuracy: percentage of examples in the test set that is classified correctly.
- Binary classification: "positive" or "negative"

Theory of Learning from Data

- Model Learning
 - Statistical Learning Theory (VC Dimension, ERM, SRM)
 - Cost Function and its Bayesian View
- Training, Validation & Test Data
 - Cross Validation
- Evaluation of Classification models
 - Confusion Matrix

Classifier Evaluation Metrics: Accuracy & Error Rate

Confusion Matrix

Predicted class\Actual class	C_1	¬ C ₁
C_1	True Positives (TP)	False Positives (FP)
¬ C ₁	False Negatives (FN)	True Negatives (TN)

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified,

$$accuracy \ A = \frac{TP + TN}{TP + TN + FP + FN}$$

Error rate: 1 – accuracy, or

$$error \ rate = \frac{FP + FN}{TP + TN + FP + FN}$$

Classifier Evaluation Metrics

Sensitivity/Recall: True Positive recognition rate

=1 if *all data* classified as positive

$$R = \frac{TP}{TP + FN}$$
 $(TP + FN = \text{actual positives})$

Specificity: True Negative recognition rate

$$SP = \frac{TN}{TN + FP}$$
 $(TN + FP = \text{actual negatives})$

Precision: exactness – what % of tuples that the classifier labelled as positive are actually positive?

$$P = \frac{TP}{TP + FP}$$

=1 if *just one* data point safely classified as positive

Perfect score is 1.0

Opposing goals when maximising precision
 & recall

Classifier Evaluation Metrics: F Measure

 F measure (F₁ or F-score): harmonic mean of precision and recall

$$F = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Confusion Matrix / Metrics – Summary

	Actual	Class 1	Class 2	
Predicted				
Class 1		True Positive	False Positive	
Class 2		False Negative	True Negative	

Evaluation metrics:

Accuracy

TP rate, Sensitivity, Recall

FP rate

TN rate, Specificity

Precision

F-score

A = (TP+TN)/(TP+FP+FN+TN)

R = TP/(TP+FN)

FPr = FP/(FP+TN) = 1-TN rate

SP = TN/(FP+TN) = 1 - FPr

 $P = \frac{TP}{(TP+FP)}$

 $F = 2 P \cdot R / (P+R)$

Classifier Evaluation Metrics: Example Confusion Matrix

Actual class\ Predicted class	buy_computer = yes	buy_computer = no	Total	Recognition (%)
buy_computer = yes	6954	412	7366	99.34 <i>sensitivity</i>
buy_computer = no	46	2588	2634	86.27 <i>specificity</i>
Total	7000	3000	10000	95.42 <i>accuracy</i>

- Given m classes, an entry, CM_{i,j} in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j.
- Extra rows/columns may provide totals or recognition rate per class.

Confusion Matrix for Three Classes

True Class				
Classification Model	0	1	2	Total
0	28	1	4	33
1	2	28	2	32
2	0	1	24	25
Total	30	30	30	90

$$Error = \frac{Sum \ of \ non \ diagonal}{Total} = 10 / 90 = 0.11 \ (11\%)$$

$$Accuracy = 1 - Error = 1 - 0.11 = 0.89 (89\%)$$

Accuracy Unsuitable for Skewed Distributions

Typical Class Imbalance Problem: majority in negative class

P\A	C	1	C2	•
C1	C)	0	
C2	1	0	90	
		,		
Accuracy		90/100		
Recall (sensitivity)			0/10	
Precision		0/0		
F-Scor	F-Score		0/0	

Cost Matrix

	ACTUAL CLASS			
	c(i j)	Class=Yes	Class=No	
PREDICED CLASS	Class=Yes	C(Yes Yes)	C(No Yes)	
	Class=No	C(Yes No)	C(No No)	

 $c(i \mid j) = c_{ij}$ - Cost of misclassifying class j example as class i

Total cost function:
$$C = \sum_{i} \sum_{j} c_{ij} \cdot e_{ij}$$

Computing Cost of Classification

Cost Matrix	Actual Class		
Predicted	C(i j)	+	-
Class	+	-1	1
	-	100	0

Model M ₁	Actual Class		
		+	-
Predicted Class	+	150	60
	_	40	250

Model M ₂	Actual Class		
		+	-
Predicted Class	+	180	160
	-	10	150

Accuracy =
$$80\%$$

Cost = 3910

Accuracy =
$$66\%$$

Cost = 980

Summary

- Statistical learning theory provides a theoretical foundation why a more powerful model isn't always better
 - Parallels between probabilistic (Bayes) and cost function formulations
- Validation and test data may come costly
 - cross validation makes the most of available data
- Confusion matrix and various evaluation metrics
 - accuracy, precision, recall, F-score