CC I

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Questions de cours

1. Énoncer le Lemme de Fatou. Donner un exemple où l'inégalité est stricte. (1.5pt)

Soit (X, \mathscr{A}, μ) un espace mesuré, soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions $X \to \overline{\mathbb{R}}_+$ mesurables positives définies sur X. On a

$$\int_{X} \liminf_{n \to +\infty} (f_n) d\mu \leqslant \liminf_{n \to +\infty} \left(\int_{X} f_n d\mu \right).$$

Pour un exemple, prendre la "bosse fuyante" des $f_n = \mathbb{1}_{[n,n+1[} : (\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1) \to \mathbb{R}_+$ définies pour tout $n \in \mathbb{N}$.

2. Soit (X, \mathscr{A}) un espace mesurable et $f: X \to Y$ une application. Donner la définition de la tribu image $f_*(\mathscr{A})$. Montrer que c'est bien une tribu et que c'est la plus grande tribu qui rende f mesurable. (2.5pt)

Soit (X, \mathcal{A}) un espace mesurable et $f: X \to Y$ une application. On a alors

- (a) $f_*(\mathscr{A}) = \{B \subset Y \mid f^{-1}(B) \in \mathscr{A}\}$ est une tribu sur Y. C'est la tribu image de \mathscr{A} par f.
- (b) L'application f est \mathscr{A} - $f_*(\mathscr{A})$ -mesurable, et $f_*(\mathscr{A})$ est la plus grande tribu sur Y qui rende f mesurable.
- (a) On vérifie les conditions de la Définition d'une tribu.
 - (i) Comme $f^{-1}(Y) = X \in \mathcal{A}$, on a bien $Y \in f_*(\mathcal{A})$.
 - (ii) Soit $B \in f_*(\mathscr{A})$. On a $f^{-1}(B) \in \mathscr{A}$ et $f^{-1}(B^c) = f^{-1}(B)^c \in \mathscr{A}$, donc $B^c \in f_*(\mathscr{A})$.
 - (iii) Soit $(B_k)_{k\in\mathbb{N}}$ une suite de $f_*(\mathscr{A})$. Pour tout $k\in\mathbb{N}$ on a $f^{-1}(B_k)\in\mathscr{A}$, donc $f^{-1}(\bigcup_{k\in\mathbb{N}}B_k)=\bigcup_{k\in\mathbb{N}}f^{-1}(B_k)\in\mathscr{A}$ et $\bigcup_{k\in\mathbb{N}}B_k\in f_*(\mathscr{A})$.
- (b) Soit $B \in f_*(\mathscr{A})$. Par définition de cette tribu, on a $f^{-1}(B) \in \mathscr{A}$. Autrement dit, f est $\mathscr{A}-f_*(\mathscr{A})$ -mesurable.

Soit \mathcal{B} une tribu sur Y telle que f soit \mathcal{A} - \mathcal{B} -mesurable, et soit $B \in \mathcal{B}$. Par mesurabilité de f, on a $f^{-1}(B) \in \mathcal{A}$, donc $B \in f_*(\mathcal{A})$ et $\mathcal{B} \subset f_*(\mathcal{A})$.

3. Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}_+$ qui est dans $\mathscr{L}^1(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1)$ et telle que $\lambda_1(\{f \geq 1\} \cap [x, +\infty[) > 0 \text{ pour tout } x > 0.$ (1.5pt)

Prendre
$$f = \sum_{n=1}^{+\infty} \mathbb{1}_{[n,n+\frac{1}{2^n}]}$$
. On a $\int_{\mathbb{R}} f d\lambda_1 = \sum_{n=1}^{+\infty} \frac{1}{2^n} = 1$ et $\limsup_{x \to +\infty} f(x) = 1$.

Exercice 2. Mesurabilité Pour $x \in \mathbb{R}$ on note $f(x) = \begin{cases} \frac{1}{|x|} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

1. Expliciter $f^{-1}(]a, +\infty[)$ pour tout $a \in \mathbb{R}$. (1pt)

Soit $a \in \mathbb{R}$. On a

$$f^{-1}(]a, +\infty[) = \begin{cases}]-\frac{1}{a}, 0[\cup]0, \frac{1}{a}[& \text{si } a > 0, \\ \mathbb{R}^*, & \text{si } a = 0, \\ \mathbb{R}, & \text{si } a < 0. \end{cases}$$

2. Montrer que f est une fonction mesurable de \mathbb{R} dans \mathbb{R} . (0.5pt)

Dans tous les cas $f^{-1}(]a, +\infty[)$ est ouvert, et en particulier borélien. Puisque les intervalles de la forme $]a, +\infty[$ pour $a \in \mathbb{R}$ engendrent $\mathscr{B}(\mathbb{R})$, cela prouve que f est une fonction borélienne.

Exercice 3. Mélange de loi On se place dans $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ et on pose

$$\mu = \delta_0 + \delta_1 + \mathbb{1}_{[0,1]}\lambda_1.$$

où δ_x est la mesure de Dirac en $x \in \mathbb{R}$ et λ_1 est la mesure de Lebesgue sur \mathbb{R} .

1. Montrer que μ est une mesure finie. (0.5pt)

C'est une combinaison linéaire de 3 mesures (Proposition 2.3.1) : mesures de Dirac en 0 et en 1 ainsi qu'une mesure à densité (connue en probabilité sous le nom de mesure uniforme sur]0,1[). On a pour tout $A \in \mathcal{B}(\mathbb{R})$,

$$\mu(A) = \mathbb{1}_A(0) + \mathbb{1}_A(1) + \int_{[0,1[} \mathbb{1}_A d\lambda_1 = \mathbb{1}_A(0) + \mathbb{1}_A(1) + \lambda_1(]0, 1[\cap A). \tag{1}$$

On a donc $\mu(\mathbb{R}) = 1 + 1 + 1 = 3$.

- 2. Soit ν une mesure finie sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. On pose $F_{\nu}(t) = \nu(]-\infty, t]$ pour tout $t \in \mathbb{R}$.
 - (a) Montrer que $F_{\nu}: \mathbb{R} \to \mathbb{R}_+$ est bien définie et croissante. (0.5pt)

On a pour tout $t \in \mathbb{R}$, la demi droite fermée $]-\infty,t] \subset \mathbb{R}$ qui est bien un borélien. De plus, $F(t) < +\infty$ par hypothèse. Ainsi, F est bien définie.

Si $t \leqslant t'$ sont deux réels, on a $]-\infty,t] \subset]-\infty,t']$ qui donne $F(t)=\nu(]-\infty,t]) \leqslant \nu(]-\infty,t'])=F(t')$ grâce à la monotonie de la mesure ν (Proposition 2.3.3). F est donc croissante.

(b) Déterminer $\lim_{t\to -\infty} F_{\nu}(t)$ puis $\lim_{t\to +\infty} F_{\nu}(t)$. (1pt)

Pour étudier les limites de F en $\pm \infty$, on remarque que l'on peut utiliser la caractérisation séquentielle de la limite et (quitte à extraire une sous suite) se contenter de considérer des suites monotones.

On note que pour tout $(t_n)_{n\in\mathbb{N}}$ suite croissante de réels telles que $t_n \to +\infty$ quand $n \to +\infty$, la famille $(]-\infty,t_n])_{n\in\mathbb{N}}$ est monotone croissante. On a donc

$$\lim_{n} F(t_n) = \nu\left(\bigcup_{n}] - \infty, t_n]\right) = \nu(\mathbb{R}) < +\infty$$

par la propriété de limite croissante de la mesure (Proposition 2.3.3).

De même, on note que pour tout $(t_n)_{n\in\mathbb{N}}$ suite décroissante de réels telles que $t_n \to -\infty$ quand $n \to +\infty$, la famille $(]-\infty,t_n]_{n\in\mathbb{N}}$ est monotone décroissante. On a donc

$$\lim_{n} F(t_n) = \nu\left(\bigcap_{n}] - \infty, t_n\right] = \nu(\emptyset) = 0$$

par la propriété de limite décroissante de la mesure (Proposition 2.3.3).

(c) Montrer que F_{ν} admet une limite à gauche en tout point. (1.5pt)

Soit $t \in \mathbb{R}$ et $(t_n)_{n \in \mathbb{N}}$ une suite de réels telle que $t_n \to t$, $t_n < t$ quand $n \to +\infty$. Encore une fois, quitte à extraire une sous suite, on peut supposer $(t_n)_{n \in \mathbb{N}}$ croissante. On a donc par la propriété de limite croissante $F(t^-) = \lim_n \nu(]-\infty, t_n]) = \nu(\bigcup_n]-\infty, t_n]) = \nu(]-\infty, t[)$.

(d) Montrer que F_{ν} est continue à droite en tout point. (1.5pt)

Montrer que F est continue à droite en $t \in \mathbb{R}$ revient à montrer que la limite à droite de F en t est bien la valeur de F en t.

Soit $t \in \mathbb{R}$ et $(t_n)_{n \in \mathbb{N}}$ une suite de réels telle que $t_n \to t$, $t_n > t$ quand $n \to +\infty$. Encore une fois, quitte à extraire une sous suite, on peut supposer $(t_n)_{n \in \mathbb{N}}$ décroissante. On a donc par la propriété de limite décroissante $F(t^+) = \lim_n \nu(]-\infty, t_n]) = \nu(\bigcap_n]-\infty, t_n]) = \nu(]-\infty, t]) = F(t)$.

3. Calculer alors $F_{\mu}(t)$ en tout $t \in \mathbb{R}$ et tracer son graphe. (2.5pt)

On utilise (1) et on a

$$F_{\mu}(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 + t & \text{si } 0 \le t < 1 \\ 3 & \text{si } t \ge 1 \end{cases}$$

Exercice 4. Intégrale et série

1. Montrer que la fonction

$$f:]0, +\infty[\rightarrow \mathbb{R}, f(x) = \frac{\sin x}{e^x - 1}, \forall x > 0.$$

est Lebesgue intégrable sur $]0,\infty[$. (1.5pt)

Préliminaire. Notons le calcul suivant d'intégrale généralisée :

$$\int_0^\infty e^{-\alpha x} dx = -\frac{1}{\alpha} \left[e^{-\alpha x} \right]_{-\infty}^\infty = \frac{1}{\alpha}, \forall \alpha \in \mathbb{C} \text{ tel que Re } \alpha > 0.$$
 (2)

Première méthode. La fonction f étant continue, il suffit de montrer que l'intégrale généralisée de f est absolument convergente.

- Étude de $\int_0^1 |f(x)| dx$. Nous avons $\frac{|\sin x|}{e^x 1} \sim_{0+} 1$. Le critère de Riemann combiné avec le théorème des équivalents donne la convergence de l'intégrale.
- Étude de $\int_1^\infty |f(x)| dx$. Nous avons

$$|f(x)| \leqslant \frac{1}{e^x - 1} \sim_{\infty} \frac{1}{e^x}$$

La convergence de l'intégrale généralisée $\int_1^\infty e^{-x} dx$ (qui vaut $1-e^{-1}$) combinée avec le théorème des équivalents donne d'abord la convergence de l'intégrale $\int_1^\infty \frac{1}{e^x-1} dx$, puis celle de $\int_1^\infty \frac{|\sin x|}{e^x-1} dx$. En combinant les deux études, nous obtenons la convergence de $\int_0^\infty \frac{|\sin x|}{e^x-1} dx$.

Deuxième méthode. En utilisant la majoration $|\sin x| \leq |x|, \forall x \in \mathbb{R}$, la monotonie des intégrales généralisées, une intégration par parties et (2), nous obtenons

$$\int_0^\infty |\sin x e^x| \, dx \le \int_0^\infty x e^{-x} dx = -\left[x e^{-x}\right]_0^\infty + \int_0^\infty e^{-x} dx = 1 < \infty.$$

2. Montrer que pour tout x > 0 nous avons $f(x) = \sum_{n=1}^{\infty} e^{-nx} \sin x$. (1pt)

Comme $|e^{-x}| = e^{-x} < 1, \forall x > 0$, nous avons

$$\frac{1}{e^x - 1} = \frac{1}{e^x} \frac{1}{1 - e^{-x}} = e^{-x} \sum_{n \geqslant 0} \left(e^{-x} \right)^n = \sum_{n \geqslant 0} e^{-x - nx} = \sum_{n \geqslant 1} e^{-nx},$$

d'où la conclusion, en multipliant ce qui précède par $\sin x$.

3. Calculer $\int_0^\infty e^{-nx} \sin x dx$ pour tout $n \in \mathbb{N}^*$. (1pt)

De (2), nous obtenons

$$\int_0^\infty e^{-\beta x} \sin(\gamma x) dx = \frac{1}{2i} \int_0^\infty e^{-\beta x} \left[e^{i\gamma x} - e^{-i\gamma x} \right] dx$$
$$= \frac{1}{2i} \left[\frac{1}{\beta - i\gamma} - \frac{1}{\beta + i\gamma} \right] = \frac{\gamma}{\beta^2 + \gamma^2}, \forall \beta \in]0, \infty[, \quad \forall \gamma \in \mathbb{R} \setminus \{0\}$$

Il s'ensuit que

$$\int_0^\infty e^{-nx} \sin x dx = \frac{1}{n^2 + 1}, \forall n \in \mathbb{N}^*,$$

4. En déduire que $\int_0^\infty \frac{\sin x}{e^x - 1} dx = \sum_{r=1}^\infty \frac{1}{n^2 + 1}$. (2pt)

Au vu des questions précédentes, l'identité à montrer revient à

$$\int_0^\infty \sum_{n \ge 1} e^{-nx} \sin x dx = \sum_{n \ge 1} \int_0^\infty e^{-nx} \sin x dx. \tag{3}$$

Première méthode. Preuve de (3) utilisant le théorème de convergence dominée. Par linéarité des intégrales généralisées, nous obtenons

$$\int_0^\infty \sum_{n\geqslant 1} e^{-nx} \sin x dx - \sum_{n< N} \int_0^\infty e^{-nx} \sin x dx = \int_0^\infty \sum_{n\geqslant N} e^{-nx} \sin x dx$$
$$= \int_0^\infty f_N(x) dx$$

où

$$f_N(x) := \sum_{n \geqslant N} e^{-nx} \sin x = e^{-Nx} \frac{1}{1 - e^{-x}} \sin x = \frac{1}{e^{(N-1)x}} f(x), \forall N \geqslant 1, \forall x > 0.$$

La majoration $|f_N(x)| \leq |f(x)|$ valable pour tout $N \geq 1$ et tout x > 0, montre que l'intégrale généralisée de f_N est absolument convergente, et donc coïncide avec $\int_{[0,\infty[} |f_N| d\nu_1$. De ce qui précède, nous devons montrer que

$$\lim_{N} \int_{[0,\infty[} |f_N| \, d\nu_1 = 0.$$

Ceci s'obtient par convergence dominée, en notant que :

- À x > 0 fixé, $f_N(x) \to 0$;
- Nous avons la majoration $|f_N(x)| \le |f(x)|, \forall N \ge 1, \forall x > 0$, et |f| est ν_1 -intégrable (question 1).

Deuxième méthode. Preuve de (3) via le Corollaire 3.3.2 que l'on rappelle ici : $Soit (X, \mathscr{A}, \mu)$ un espace mesuré et $(f_n)_{n \in \mathbb{N}} \in (\mathscr{L}^1_{\mathbb{C}}(X))^{\mathbb{N}}$ une suite de fonctions intégrables sur X telle que $\sum_{n \in \mathbb{N}} \int_X |f_n| \, d\mu < +\infty$. Alors la série $\sum_{n \in \mathbb{N}} f_n$ converge μ -pp vers une fonction intégrable $F: X \to \mathbb{C}$ et $\int_X F d\mu = \sum_{n \in \mathbb{N}} \int_X f_n d\mu$.

Nous devons donc montrer que $\sum_{n\geqslant 1}\int_{\mathbb{R}}|f_n|\,d\nu_1<\infty$. En utilisant la majoration $|\sin x|\leqslant |x|, \forall x\in\mathbb{R}$, la monotonie des intégrales généralisées, une intégration par parties, l'identité (2) et le critère de Riemann pour les séries, nous obtenons

$$\sum_{n \ge 1} \int_{\mathbb{R}} |f_n| \, d\nu_1 = \sum_{n \ge 1} \int_0^\infty |e^{-nx}| \, |\sin x| \, dx \le \sum_{n \ge 1} \int_0^\infty x e^{-nx} \, dx$$

$$= \sum_{n \ge 1} \left\{ -\frac{1}{n} \left[x e^{-nx} \right]_0^\infty + \frac{1}{n} \int_0^\infty e^{-nx} \, dx \right\} = \sum_{n \ge 1} \frac{1}{n} \int_0^\infty e^{-nx} \, dx$$

$$= \sum_{n \ge 1} \frac{1}{n^2} < \infty.$$