The Elements of Statistical Learning

Ch3: Liner Methods for Regression - Forward type selection methods

Philip Lin

Data Science in Hsinchu

2015.08.19

DSHC is a non-profit studying group.

This slide is created to help us to discuss the content of "Hastie, T., Tibshirani, R. & Friedman, J., 2009. The Elements of Statistical Learning" and is not used in any profit-oriented activity.

Framework

Today, we talk about foreward type selection methods

- ightharpoonup Boosting (L_2 Boost)
 - ▶ Gradient Boosting Machine (Friedman, 1999)
 - \triangleright L_2 boost in high dimension (Peter Buhlmann, 2006)
- Forward type selections
 - \triangleright Incremental Forward Stagewise (FS_{ϵ})
 - $\triangleright FS_0$ versus L_2 Boost
 - \triangleright Lasso versus FS_0 (Hastie, 2007)
- An unified algorithm: Least Angle Regression (Efron, 2003)

keywords: steepest descent, monotone Lasso, path-based algorithm

In today's discussion, I take the following thesis as main reference

"Ehrlinger, J. (2011). Regularization: Stagewise regression and bagging. Ph.D. thesis, Case Western Reserve Univ., Cleveland, OH. MR2873516"

To avoid massive footenotes for citation, all uncited figures and equations come from this thesis.

Boosting

Steepest Descent

ightharpoonup Suppose a real-valued, differentiable function $\psi:\mathbb{R}^n \to \mathbb{R}$ decreases fastest from a point z if one goes in the direction $-\nabla \psi(z)$ of the negative gradient of ψ at z

Gradient Descent

Steepest Descent

Algorithm 2.1 Steepest Descent

- 1: Initialize \mathbf{z}_0 ; set m=0
- 2: while $\nabla \psi(\mathbf{z}_{m-1}) \neq \mathbf{0}$ do
- 3: Update $m \leftarrow m + 1$
- 4: Set $\mathbf{g}_m = -\nabla \psi(\mathbf{z}_{m-1})$
- 4: Set $\mathbf{g}_m = -\nabla \psi(\mathbf{z}_{m-1})$
- 5: Find ρ_m by a line search: $\rho_m = \arg\min_{\rho \geq 0} \psi(\mathbf{z}_{m-1} + \rho \mathbf{g}_m)$
- 6: Let $\mathbf{z}_m = \mathbf{z}_{m-1} + \rho_m \mathbf{g}_m$
- 7: end while
- Exact line search in line 5 is not necessary to ensure convergence. Instead, one can replace line 5 with $z_m=z_{m-1}+\rho_m^*g_m$ for any $0<\rho_m^*\leq\rho_m$, where ρ_m^* is determined by setting the directional directive equal to zero: $\psi'(z_{m-1}+\rho_m^*g_m)=0$. That is, at step m,

$$\frac{\partial}{\partial \rho} \psi(z_{m-1} + \rho g_m) = \nabla \psi(z_m)^T \frac{\partial}{\partial \rho} \{z_{m-1} + \rho g_m\} = \nabla \psi(z_m)^T g_m = 0$$

we see that $ho=
ho_m^*$ should be chosen such that g_m is orthogonal to $\triangledown\psi(z_m)$

- ▶ The directional derivative is often computationally expensive to evaluate, especially in high dimensions.
- $\,\,\vartriangleright\,\,$ We can set the descent parameter to a fixed value $\rho,$ small enough to ensure that $\rho<\rho_m^*$ for all m. (Why ?)

Functional gradient descent (Friedman, 1999)

ightharpoonup Recall statistical decision theory in Ch1, the goal is to approximate the unknown function F(x) (i.e., regression assumption)

$$\arg\min_{F} E_{x} E_{y|x} \Big(L(y, F(x)) | x \Big)$$

where $L(y,F(\boldsymbol{x}))$ is a prespecified loss function.

Technically Given training data set, the optimization problem becomes

$$F^*(\boldsymbol{x}) = \arg\min_{F} \psi(F(\boldsymbol{x})) = \arg\min_{F} E_{y|\boldsymbol{x}} \Big(L(y, F(\boldsymbol{x}))|\boldsymbol{x}\Big)$$

we solve this by functional gradient descent (cf: steepest descent)

$$F^*(\boldsymbol{x}) = \sum_{m=0}^{M} \rho_m g_m(\boldsymbol{x})$$

with

$$\begin{split} g_m(\boldsymbol{x}) &= -\left[\frac{\partial \psi(F(\boldsymbol{x}))}{\partial F(\boldsymbol{x})}\right]_{F_m(\boldsymbol{x}) = F_{m-1}(\boldsymbol{x})} \\ &= -\left[\frac{\partial E_{y|\boldsymbol{x}}\big[L(y,F(\boldsymbol{x}))|\boldsymbol{x}\big]}{\partial F(\boldsymbol{x})}\right]_{F_m(\boldsymbol{x}) = F_{m-1}(\boldsymbol{x})} \\ &= -E_{y|\boldsymbol{x}}\bigg[\frac{\partial L(y,F(\boldsymbol{x}))}{\partial F(\boldsymbol{x})}\bigg|\boldsymbol{x}\bigg]_{F(\boldsymbol{x}) = F_{m-1}(\boldsymbol{x})} \\ &\rho_m = \arg\min_{\boldsymbol{\alpha}} E_{y|\boldsymbol{x}}L(y,F_{m-1}(\boldsymbol{x}) - \rho g_m(\boldsymbol{x})) \end{split}$$

In statistical view

- ightharpoonup Usually, the loss function L is assumed to be smooth and convex in the second argument, to ensure that the gradient method works well. e.g.
 - 1. $L(y,F)=(y-F)^2/2$ with $y\in\mathbb{R}$: L_2 Boost
 - 2. $L(y,F) = \exp(yF)$ with $y \in \{-1,1\}$: AdaBoost
 - 3. $L(y, F) = \log_2(1 + \exp(-2yF))$ with $y \in \{-1, 1\}$: LogitBoost
- \triangleright Assume an additive expansion for F(x) of the form

$$F(\boldsymbol{x}; \{\beta_m, \boldsymbol{a}_m\}_1^M) = \sum_{m=1}^M \beta_m h(\boldsymbol{x}; \boldsymbol{a}_m)$$

such expansions are at heart of many function approximation method such as neural networks, radial basis function, MARS, wavelets, support vector machines and CART.

 \triangleright By the additive expansion assumption, we can parameterize a function F(x) by finite parameters $\{\beta_m, a_m\}_1^M$.

Thus

$$\{\beta_m, \boldsymbol{a}_m\}_1^M = \underset{\{\beta'_m, \boldsymbol{a}'_m\}_1^M}{\arg\min} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M \beta'_m h(\boldsymbol{x}; \boldsymbol{a}'_m)\right)$$

By the greedy stagewise approach. For $m=1,2,\ldots,M$

$$(\beta_m, \boldsymbol{a}_m) = \arg\min_{\beta, \boldsymbol{a}} \sum_{i=1}^n L(y_i, F_{m-1}(\boldsymbol{x}_i) + \beta h(\boldsymbol{x}_i; \boldsymbol{a}))$$

and then

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \beta_m h(\mathbf{x}; \mathbf{a}_m) = \sum_{i=1}^m \beta_i h(\mathbf{x}; \mathbf{a}_i)$$

- In greedy stagewise approach, we further restrict our parameter space (sequential relationship and local optimal in each step) in order to make a connection with the gradient descent algorithm.
- \triangleright note that the base learner $h(x; a_m)$ can be seen as steepest descent direction and is parameterized by a_m .
- \triangleright When (the second) optimization is difficult to obtain, we can choose a_m that is closet to the negative gradient.

$$a_m = \underset{\boldsymbol{a}}{\operatorname{arg min}} \sum_{i=1}^n \left[g_m(\boldsymbol{x}_i) - h(\boldsymbol{x}_i; \boldsymbol{a}) \right]^2 , g_m(\boldsymbol{x}_i) = -L'(y_i, F_{m-1}(\boldsymbol{x}_i))$$

Algorithm 2.2 Gradient_Boost

- 1: Initialize $F_0(\mathbf{x}) = \hat{\rho}$, where $\hat{\rho} = \arg\min_{\rho \geq 0} \sum_{i=1}^n L(y_i, \rho)$
- 2: **for** m = 1, ..., M **do**
- 3: $g_m(\mathbf{x}_i) = -L'(y_i, F_{m-1}(\mathbf{x}_i))$
- 4: $\mathbf{a}_m = \arg\min_{\mathbf{a} \in \mathbf{A}} \sum_{i=1}^n [g_m(\mathbf{x}_i) h(\mathbf{x}_i; \mathbf{a})]^2$
- 5: $\rho_m = \arg\min_{\rho \in \mathbb{R}} \sum_{i=1}^{n} L(y_i, F_{m-1}(\mathbf{x}_i) + \rho h(\mathbf{x}_i; \mathbf{a}_m))$
- 6: Update $F_m(\mathbf{x}) = \overline{F_{m-1}}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m)$
- 7: end for

Remarks:

Using the same strategy as modified steepest descent, it is possible to find a local minimum along the basis function vector by setting directional derivative to zero

$$\frac{\partial}{\partial \rho} \sum_{i=1}^{n} L(y_i, F_{m-1}(\boldsymbol{x}) + \rho h(\boldsymbol{x}_i; \boldsymbol{a}_m))$$

regularized strategy is of course possible

$$F_m(\boldsymbol{x}) = F_{m-1}(\boldsymbol{x}) + \nu \rho_m h(\boldsymbol{x}; \boldsymbol{a}_m) \quad , 0 < \nu \le 1$$

 $\triangleright \hat{F}_m(oldsymbol{x})$ is a direct estimate of $E(y|oldsymbol{x})$

Algorithm 3.1 LS_Boost

- 1: $F_0(\mathbf{x}) = \sum_i y_i/n$
- 2: for m=1 to M do
- 3: $g_m(\mathbf{x}_i) = y_i F_{m-1}(\mathbf{x}_i)$
- 4: $\{\rho_m, \mathbf{a}_m\} = \arg\min_{\{\rho, \mathbf{a}\}} \sum_{i=1}^n \left[g_m(\mathbf{x}_i) \rho h(\mathbf{x}_i; \mathbf{a}) \right]^2$
- 5: $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \rho_m h(\mathbf{x}; \mathbf{a}_m)$
- 6: end for

L_2 Gradient Boost

$$y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i \quad , i = 1, \dots, n$$

- $\triangleright \beta = (\beta_1, \dots, \beta_p)^T$, $F(x) = x\beta$, h(x; a) = x
- ightarrow assume squared loss, $L(y,z)=(y-z)^2/2$

$$g_m(\mathbf{x}_i) = -L'(y_i, F_{m-1}(\mathbf{x}_i))$$
$$= y_i - F_{m-1}(\mathbf{x}_i)$$

 \triangleright note that $g_m(x)$ is the partial residual in m-1 step and line 4 is an least square optimization of $g_m(x)$ on base learner h(x; a).

It is also possible to use **coordinate directions** as the base-learner.

Suppose $\sum_{i=1}^{n} y_i = 0, \sum_{i=1}^{n} x_{ik} = 0, k = 1, \dots, p$, we can modify line 4 in Algm 3.1:

$$\{\rho_m, k_m\} = \underset{(\rho,k) \in \mathbb{R} \times \{1,\dots,p\}}{\operatorname{arg \, min}} \|\boldsymbol{g}_m - \rho \boldsymbol{X}_k\|^2$$

where

$$k_m = \underset{k \in \{1, \dots, p\}}{\arg \min} \|\boldsymbol{g}_m - P_k \boldsymbol{g}_m\|^2$$
$$\rho_m = (\boldsymbol{X}_{k_m}^T \boldsymbol{X}_{k_m})^{-1} \boldsymbol{X}_{k_m}^T \boldsymbol{g}_m$$

Least Squares Gradient_Boost

LS_Boost_Linear and LARS

Algorithm 3.2 LS_Boost_Linear

- 1: $\mathbf{F}_0(\mathbf{x}) = 0$
- 2: for m=1 to M do
- 3: $\mathbf{g}_m = \mathbf{y} \mathbf{F}_{m-1}$
- 4: $k_m = \arg\min_{k \in \{1,\dots,p\}} \|\mathbf{g}_m P_k \mathbf{g}_m\|^2$ 5: $\mathbf{F}_m = \mathbf{F}_{m-1} + \nu \rho_m \mathbf{X}_{k\dots}$
- 6: end for

L_2 Boost in high dimension

for n>p (Peter Buhlmann, 2003)

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \dots, n$$

- $\triangleright \ \epsilon_1, \ldots, \epsilon_n \ \text{iid with} \ E[\epsilon_i] = 0, \ \text{var}(\epsilon_i) = \sigma^2$
- $\triangleright f(\cdot)$ is a real-valued, typical nonlinear function.
- Define

$$\begin{aligned} &\mathsf{bias}^{2}(m) = & n^{-1} \sum_{i=1}^{n} \left(E[\hat{F}_{m}(x_{i})] - f(x_{i}) \right)^{2} \\ &\mathsf{var}(m) = & n^{-1} \sum_{i=1}^{n} \mathsf{var}\Big(\hat{F}_{m}(x_{i})\Big) \\ &\mathsf{MSE}(m) = & n^{-1} \sum_{i=1}^{n} E[(\hat{F}_{m}(x_{i}) - f(x_{i}))^{2}] \\ &= & \mathsf{bias}^{2}(m) + \mathsf{var}(m) \end{aligned}$$

then, we have the following properties

ightharpoonup if X is a new test observation from the design-generating distribution but independent from the training set, then

$$MSE \xrightarrow{p} E \left[(\hat{F}_m(X) - f(X))^2 \right]$$

- By some regular conditions on eigenvalue of boosting operator,
 - 1. $bias^2(m)$ decays exponentially fast with increasing m
 - 2. $\operatorname{var}(m)$ exhibits exponentially small increase with increasing m

that is, we meet samllest MSE with few steps.

for p>n (Peter Buhlmann, 2006)

$$y_i = f_n(X_i) + \epsilon_i, i = 1, \dots, n$$
$$f_n(x_i) = \sum_{j=1}^{p_n} \beta_{jn} x_j$$

regular conditions

A1
$$p_n = O(\exp(Cn^{1-\xi})), n \to \infty$$
, for some $0 < \xi < 1, 0 < C < \infty$

A2
$$\sum_{n\in\mathbb{N}}\sum_{j=1}^{p_n}|\beta_{jn}|<\infty$$

A3
$$\sup_{1 \le j \le p_n} \|X_j\|_{\infty} < \infty$$

A4
$$E|\epsilon|^s < \infty$$
 for some $s > 4/\xi$ with ξ from (A1)

Note: no assumptions are needed on the correlation structure of the predictor variables.

Theorem consider the linear model with condition (A1)-(A4). the boosting estimate $\hat{F}^{(m)}(\cdot)$ with the componentwise linear base procedure satisfies: for some sequence $(m_n)_{n\in\mathbb{N}}$ with $m_n\to\infty(n\to\infty)$ sufficient slowly,

$$E_X |\hat{F}_n^{(m_n)}(X) - f_n(X)|^2 = o_p(1), n \to \infty$$

where X denotes a new predictor variable, independent of and with the same distribution as the X-component of the data $(X_i,Y_i), i=1,\ldots,n$

Incremental Foreward Stagewise

In Algm 3.2 (line 5), we can do some modification to obtain $FS(\nu)$

- \triangleright consider a limiting case for $\rho_m \to 0$
- \triangleright assume $\sum_{i=1}^{n} x_{ik}^2 = 1$, $k = 1, \ldots, p$, it can be shown that

$$\underset{k \in \{1,...,p\}}{\operatorname{arg \, min}} \|\boldsymbol{g}_m - P_k \boldsymbol{g}_m\|^2 = \underset{k \in \{1,...,p\}}{\operatorname{arg \, min}} |\boldsymbol{X}_k^T \boldsymbol{g}_m|$$

Least Squares Gradient_Boost

LS Boost Linear and LARS

Algorithm 3.2 LS_Boost_Linear

- 1: $\mathbf{F}_0(\mathbf{x}) = 0$
- 2: for m=1 to M do
- 3: $\mathbf{g}_m = \mathbf{y} \mathbf{F}_{m-1}$
- 4: $k_m = \arg\min_{k \in \{1,\dots,p\}} \|\mathbf{g}_m P_k \mathbf{g}_m\|^2$ 5: $\mathbf{F}_m = \mathbf{F}_{m-1} + \nu \rho_m \mathbf{X}_{k\dots}$
- 6: end for

Algorithm 3.3 $FS(\nu)$ (Incremental Forward Stagewise)

- 1: F₀(x) = 0
- 2: for m=1 to M do
- 3: $\mathbf{g}_m = \mathbf{y} \mathbf{F}_{m-1}$
- 4: $k_m = \arg\max_{k \in \{1,\dots,p\}} |\operatorname{corr}(\mathbf{g}_m, \mathbf{X}_k)|$
- 5: $\mathbf{F}_m = \mathbf{F}_{m-1} + \nu \delta_m \mathbf{X}_{k_m}$, where $\delta_m = \operatorname{sgn}[\operatorname{corr}(\mathbf{g}_m, \mathbf{X}_{k_m})]$
- 6: end for

Efron realized that the path of β is **piecewise constant** when taking $\nu \to 0$

Moreover, Efron also realized that there're some connections between FS_0 and Lasso.

Forward stepwise and forward stagewise

(a) Step m = 1: forward stepwise.

(b) Step m=2: forward stepwise.

(c) Step m=2: forward stagewise.

(d) Iterative stagewise.

Regularized forward stagewise

- (c) Regularized stagewise ($\nu = 0.2$).
- (d) Regularized stagewise ($\nu=0.1$) with LARS equiangular direction in red

v₂

(a) m = 1.

(b) m = 2.

 \triangleright By observing FS_0 , Efron found that the path move along the **equiangular** direction among the predictos in the active set.

Algorithm 3.2 Least Angle Regression.

- 1. Standardize the predictors to have mean zero and unit norm. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \, \beta_1, \beta_2, \dots, \beta_p = 0.$
- 2. Find the predictor \mathbf{x}_i most correlated with \mathbf{r} .
- Move β_j from 0 towards its least-squares coefficient ⟨x_j, r⟩, until some other competitor x_k has as much correlation with the current residual as does x_j.
- 4. Move β_j and β_k in the direction defined by their joint least squares coefficient of the current residual on $(\mathbf{x}_j, \mathbf{x}_k)$, until some other competitor \mathbf{x}_l has as much correlation with the current residual.
- 5. Continue in this way until all p predictors have been entered. After $\min(N-1,p)$ steps, we arrive at the full least-squares solution.

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the current joint least squares direction.

Algorithm 3.4 Incremental Forward Stagewise Regression— FS_{ϵ} .

- 1. Start with the residual r equal to y and $\beta_1, \beta_2, \dots, \beta_p = 0$. All the predictors are standardized to have mean zero and unit norm.
- 2. Find the predictor \mathbf{x}_j most correlated with \mathbf{r}
- 3. Update $\beta_j \leftarrow \beta_j + \delta_j$, where $\delta_j = \epsilon \cdot \text{sign}[\langle \mathbf{x}_j, \mathbf{r} \rangle]$ and $\epsilon > 0$ is a small step size, and set $\mathbf{r} \leftarrow \mathbf{r} \delta_j \mathbf{x}_j$.
- Repeat steps 2 and 3 many times, until the residuals are uncorrelated with all the predictors.

- note that in LARS, predictors cannot be removed out from active set once it is included, but Lasso can. (see blue line)
- \triangleright In the path-based algorithm (LAR-Lasso modification), only p (or a bit more) step is required. However, based on coordinate descent, we have to compute in grids of a wide range of λ . (same benifit in LAR- FS_0 modification.)
- ▷ "lars" Package in R

Lasso v.s. FS_0

If we create an expanded data $ilde{m{X}} = [m{X}: -m{X}]$, standard Lasso problem can be represented as

$$\begin{split} & \min_{\beta_0,\beta_j^+,\beta_j^-} \sum_{i=1}^n \left(y_i - \beta_0 - \left[\sum_{j=1}^p x_{ij} \beta_j^+ - \sum_{j=1}^p x_{ij} \beta_j^- \right] \right)^2 \\ & \text{subject to } \beta_j^+,\beta_j^- \geq 0 \ \forall j \ \ \text{and} \ \sum_{k=1}^p (\beta_j^+ + \beta_j^-) \leq s \end{split}$$

Hastie (2007) showed that if we seperate the Lasso path on positive side and negative side, the stagewise forward path can be obtained by constraining them to be monotone nondecreasing.

A simulation with very high correlation in the structure of predictors ($p=1000, N=60, \rho=0.95)$

the testing error performance are very similar

The End

30 / 30