M1 ANDROIDE M1 DAC

Invervalles d'Allen

Relations d'Allen

Classées par le "degré" avec lequel a commence avant b puis par le "degré" avec lequel a finit après b. Les flèches indiquent les relations transposées : $a R b \iff b R^t a$

Composition des relations

	<	m	0	e^t	d^t	s	=	s^t	d	e	o^t	m^t	>
<	<	<	<	<	<	<	<	<	< mosd	< mosd	< mosd	< mosd	tout
m	<	<	<	<	<	m	m	m	osd	osd	osd	$e^t = e$	$d^t s^t o^t m^t > 1$
О	<	<	< mo	< mo	$< moe^t d^t$	о (0	$oe^t d^t$	osd	osd	Concur	$d^t s^t o^t$	$d^t s^t o^t m^t > 1$
e^t	<	m	0	e^t	d^t	о ($ e^t$	d^t	osd	$e^t = e$	$d^t s^t o^t$	$d^t s^t o^t$	$d^t s^t o^t m^t > 1$
d^t	$\begin{vmatrix} < m \\ oe^t d^t \end{vmatrix}$	$oe^t d^t$	$oe^t d^t$	d^t	d^t	$oe^t d^t$	d^t	d^t	Concur	$d^t s^t o^t$	$d^t s^t o^t$		$ \begin{vmatrix} d^t s^t o^t \\ m^t > \end{vmatrix} $
s	<	<	< mo	< mo	$< moe^t d^t$	s	s	$s = s^t$	$\mid d$	d	$ deo^t$	m^t	>
=	<	m	0	e^t	d^t	s	=	$ s^t $	$\mid d$	e	$ o^t$	m^t	>
s^t		$oe^t d^t$	$oe^t d^t$	d^t	d^t	$s = s^t$	s^t	s^t	deo^t	o^t	$ o^t $	m^t	>
d	<	<	$< mosd$	$< mosd$	tout	$\mid d$	$\mid d$	$ deo^t m^t >$	d	d	$ deo^t m^t >$	>	>
e	<	m	osd	$e = e^t$	$d^t s^t o^t m^t >$	$\mid d$	e	$ o^t m^t >$	$\mid d$	e	$ o^t m^t >$	>	>
o^t	$\left\ \begin{array}{c} < mo \\ e^t d^t \end{array}\right.$	$oe^t d^t$	Concur	$d^t s^t o^t$	$\left \begin{array}{c} d^t s^t o^t m^t > \end{array}\right $	deo^t	o^t	$ o^t m^t >$	deo^t	o^t	$ o^t m^t >$	>	>
m^t		$s = s^t$	deo^t	m^t	>	deo^t	m^t	>	deo^t	m^t	>	>	>
>	tout	$\begin{vmatrix} deo^t \\ m^t > \end{vmatrix}$	$deo^t \\ m^t >$	>	>	$\begin{vmatrix} deo^t \\ m^t > \end{vmatrix}$	>	>	$deo^t \ m^t >$	>	>	>	>

où Concur= $oe^t d^t s = s^t deo^t$ et tout= $< moe^t d^t s = s^t deo^t m^t >$

Algorithme de propagation des contraintes

voir au dos

Algorithme de propagation des contraintes

```
\begin{aligned} & \operatorname{Empiler} R_{ab} \\ & \operatorname{Tant} \ \operatorname{que} \ \operatorname{la} \ \operatorname{pile} \ \operatorname{est} \ \operatorname{non} \ \operatorname{vide} \\ & \operatorname{D\acute{e}piler} \ R_{ij} \\ & \operatorname{Pour} \ \operatorname{tout} \ k \ \operatorname{dans} \ [1,n], \ k \neq i \ \operatorname{et} \ k \neq j \\ & \operatorname{new} R_{ik} \leftarrow \operatorname{conjonction}(R_{ik}, \operatorname{composition}(R_{ij}, R_{jk})) \\ & \operatorname{new} R_{kj} \leftarrow \operatorname{conjonction}(R_{kj}, \operatorname{composition}(R_{ki}, R_{ij})) \\ & \operatorname{Si} \ \operatorname{new} R_{ik} = \emptyset \ \operatorname{ou} \ \operatorname{new} R_{kj} = \emptyset \\ & \operatorname{contradiction} \ \operatorname{temporelle} : \operatorname{arrêt} \\ & \operatorname{Si} \ \operatorname{new} R_{ik} \neq R_{ik} \\ & R_{ik} \leftarrow \operatorname{new} R_{ik} \\ & \operatorname{Empiler} \ R_{ik} \\ & \operatorname{Si} \ \operatorname{new} R_{kj} \neq R_{kj} \\ & R_{kj} \leftarrow \operatorname{new} R_{kj} \\ & \operatorname{Empiler} \ R_{kj} \end{aligned}
```