CSSE2010/CSSE7201 Learning Lab 17

Serial Peripheral Interface (SPI)

School of Information Technology and Electrical Engineering
The University of Queensland

LED Matrix

Two connections

- K1: 2-pin connector (VCC and GND)
 - Connect to IOBoard connector J1 (VCC on left, GND on right pin) use 2wire connector
- K2: 4-pin connector SPI connection
 - Connect to AVR SPI port (pins B7 to B4)
 - Check datasheet to confirm orientation
- Check LED Matrix Reference Manual
 - Blackboard Learning Resources -> Learning Labs -> Lab Resources
- Note AVR SPI port also used for device programming can lead to error (Err) state on LED matrix
 - After programming, you may need to hold down AVR reset button for at least 0.5 second to ensure error is cleared before AVR program starts

Recall from lecture 19

SPI

Serial Peripheral Interface

- Note communication takes time
 - Like ADC poll for completion or set up interrupt

Question

 Which bits of SPI control registers SPCR and SPSR need to be set (1) to enable SPI in Master Mode with the slowest possible clock rate?

Register/bit naming note

- Registers named **SPCR** and **SPSR** in the datasheet (pages 172 and 173 and IO register summary) are named **SPCR0** and **SPSR0** in C/Assembly code
- Bit names shown on pages 172/173 must also have 0 appended to use them in code, e.g.
 - SPIE is SPIE0, SPE is SPE0, SPR1 is SPR10 etc.
- Bit names in the IO register summary are correct (i.e. have the 0 appended)
 - Except, the bit labelled SPR01 should be SPR10

Tasks

- Task 1 LED matrix demo
 - Create project with lab17-1.c (from Blackboard)
 - Consult datasheet and update as required
 - Build and test
 - Try some of the the other SPI commands