Week3

Qi'ao Chen 21210160025

March 15, 2022

Exercise 1. Show that the collection of formulas x > a for $a \in M$ generates a complete type $\tau_M(x) \in S_1(M)$. In other words, show that the partial type $\{(x > a) : a \in M\}$ has a unique completion

Proof. Let $\Sigma(x) = \{x > a : a \in M\}$, $p, q \in S_1(M)$, $p, q \supseteq \Sigma(x)$, $p \neq q$. Since DLO has quantifier elimination, there is a quantifier free formula $\varphi(x) \in$ of could also be a disjunction of these formulas $p \setminus q$. φ has the form

$$\bigwedge_{a \in A} x > a \land \bigwedge_{b \in B} x \le b \land \bigwedge_{c \in C} x \ne c \land \bigwedge_{d \in D} x = a$$

 $\bigwedge_{a \in A} x > a \land \bigwedge_{b \in B} x \le b \land \bigwedge_{c \in C} x \ne c \land \bigwedge_{d \in D} x = d$ The work of a contradiction. Hence p = q with $x \ne c$ and the contradiction of the contradiction of the contradiction. Hence p = q and the contradiction of the contradiction of the contradiction. Hence p = q and the contradiction of the contradiction of the contradiction. Hence p = q and the contradiction of the contradiction of the contradiction of the contradiction. Hence p = q are contradiction.

Exercise 2. Show that τ_M is definable

Proof. By exercise 3 for each $N \succeq M$, τ_M has a unique heir and thus τ_M is definable

Exercise 3. Suppose $N \succeq M$. Show that τ_N is an heir of τ_M

Proof. Let $q \in S_1(N)$ be an heir of τ_M and suppose $x \leq a \in q(x)$ for some $a \in N$. Then there is $a' \in M$ s.t. $x \leq a' \in \tau_M$, which is impossible. Thus $\{x>a:a\in N\}\subseteq q \text{ and } q=\tau_N.$ Hence τ_N is the unique heir of τ_M by

Exercise 4. Suppose $N \succeq M$ and N is $|M|^+$ -saturated. Show that τ_N is not a coheir of τ_M

40.5

Proof. Since N is $\left|M\right|^+$ -saturated, there is $c\in N$ s.t. $N\vDash \tau_M(c)$. Then there +1 is no $a \in M$ satisfying x > c. *Exercise* 5. If $N \succeq M$, show that τ_M has a unique coheir over NProof. Suppose τ_M has two different coheirs $p,q\in S_1(N)$. Because p and q technically this skep are the same thing as cuts, we may assume that there is $c\in N$ s.t. $x< c\in p$ *Proof.* Suppose τ_M has two different coheirs $p, q \in S_1(N)$. Because p and q+0.5 general pig in Si(N) and $x > c \in q$. But for any x realizing, x > m for all $m \in M$. Thus there is no the logicular a little unclear $m \in M$ satisfying x > c. Hence is not a coheir of τ_M , a contradiction \square Wait, is c > M? How do we know that? (x>c) is satisfiable $M \leq M$ of DLO where τ_N is a coheir $m \in M$. (consider p a constant type of the type infinites mally higher than p) +0.75 Proof. $M = \mathbb{Q}$, $N = \mathbb{R}$ Need some explanation here. (The coher wasn't explicitly calculated in Exercises, so it's not 100% oburres.) Or it could be using the fact that To has a unique extension in this case, plus the existence of cohers. (But need to explain.)