

2 Relation Model

Generic Car

Make	Model	Production Year	Energy	Miles per Gallon	Seats
BMW	X5	2016	Gas	20	5

JHUberCar

VIN	Make	Model	Production Year	millage	license number	age	Ammenities Type
000000000000000000	BMW	X5	2016	2123	ABC123	3	001

owner SSN	Driver SSN
123456789	123456789

Ammenities

	Ammenities Type	Bottled water	Television	Music	Iphone Charging
ĺ	001	Yes	NO	YES	YES

Person

S	SN	Name	Gender	Birthday	Age	Address	Phone Number	Email
1234	156789	Mike Smith	Male	6/01/87	29	None	4101111111	m87@gmail.com

Driver

$\underline{\mathrm{SSN}}$	<u>DriverName</u>	<u>Driver License</u>	AccidentID	TicketID	Driving Year	Car License
123456789	Mike Smith	012345678	A001	003	8	ABC123

Guest

SSN	Name	$\underline{\text{UserName}}$	Payment Method
123456789	Cathy Miller	Cathy@gmail.com	Credit Card

Location

Longitude	<u>Latitude</u>
39.3259	-76.6191

Waypoint

<u>Latitude</u>	Longitude	Standard Name	Zip Code
39.3259	-76.6191	E0674	21210

Landmark

Latitude	Longitude	Waypoint Standard Name	Zip Code	LandMark Name
39.3259	-76.6191	E0674	21210	Baltimore Museum of Art

$Travel_Between$

<u>LandMark1</u>	LandMark2	Standard Time	Standard Distance	Standard Cost
Baltimore Museum of Art	Inner Harbor	13 min	4.8miles	\$15

Accident

AcciedntID	Driver License	Car License Number	Date	Time	NearestWaypoint
A013	012345678	ABC456	8/09/15	1:35pm	E4682

Ticket

	TicketID	Driver License	Date	Time	NearestWaypoint	Type	Infraction Detail
ĺ	B013	012345678	8/09/2015	1:35pm	E4682	Speeding	60 mph on Charles Street

Penalty	
\$50	

Get

<u>Driver License</u>	Times
012345678	2

$Been_To$

<u>Driver License</u>	$\underline{\mathrm{LandMark}}$	Times
012345678	Baltimore Museum of Art	15

Drives_Near

<u>Driver License</u>	Waypoint	Time	Date
012345678	E3567	3:12pm	7/19/15

Segment

Waypoint1	Waypoint2	Distance	Current Time	Isholiday	Direction	Traffic Load	Estimated Time
E3566	E3567	0.6miles	7:00am	No	East	Low	2min
E3566	E3567	0.6miles	8:30am	No	East	Median	4min
E3566	E3567	0.6miles	5:45pm	No	East	High	8min

Trip

Trip ID	Waypoint1	Waypoint2	Date	Day	Estimated Time	Distance
K0782901	E3867	E3920	7/28/15	Tuesday	$56 \mathrm{min}$	24miles

Start Time	End Time	Average Speed	Driver	Guest UserName	Review Score
9:19am	10:12am	27.17 mph	012345678	Cathy@gmail.com	9

Start_From

Waypoints	Day	Times
E5648	Wednesday	15

$\operatorname{End} \operatorname{In}$

Waypoints	Day	Times
E5648	Wednesday	15

$Income_and_Cost$

	$\underline{\text{DriverSSN}}$	Maintenance Fee	Gas Cost	JHUber Share	Passenger Fare	Total Distance
ĺ	012345678	\$0	\$20	\$20	\$200	100 miles

Total Hour	Date
6	8/28/15

Lost

VIN	Date	Hour	Reason
000000000000000000	8/09/2014	3	Unscheduled maintenance

Relational Algebra

1)

2)

3)

4)

5) Bars in T TBNO (Facity = "Towson" (BAR))

Drinkers VISIT :— Bars in T

Result TDName, Age (Drinkers X) DRINKER)

- 6) $RESULT \leftarrow \Pi_{DName, Age}((DRINKER COVIDDIAGNOSIS) \bowtie (DRINKER VISIT))$
- 7) $UniqueDrinkers \leftarrow \Pi_{DLicNo}((VISIT \bowtie \sigma_{DLicNo=AK117229}(VISIT)) (VISIT \bowtie \sigma_{DLicNo=SM193312}(VISIT))) \\ RESULT \leftarrow \Pi_{DName, Age}(DRINKER \bowtie UniqueDrinkers)$
- 8) $PeopleAtNameBar \leftarrow \Pi_{DLicNo}(\sigma_{DRINKER.DName=BAR.BarName}(DRINKER \bowtie VISIT) \bowtie BAR) \\ PeopleWithNameBeer \leftarrow \Pi_{DLicNo}(\sigma_{DRINKER.DName \neq LIKES.BeerName}(DRINKER \bowtie BEER PURCHASE)) \\ RESULT \leftarrow \Pi_{DName}(DRINKER \bowtie PeopleAtNameBar \bowtie PeopleWithNameBeer)$
- 9) $TrumpF \ avorites \leftarrow \Pi_{BeerName}(\sigma_{DName = Donald \ Trump}(DRINKER) \bowtie LIKES)$ $TrumpDislikes \leftarrow \Pi_{BeerName}(SERVES) TrumpF \ avorites$ $RESULT \leftarrow \Pi_{BarName}(BAR \bowtie SERVES \bowtie TrumpDislikes)$
- 10) $TimoniumBeers \leftarrow \Pi_{BeerName}(\sigma_{BCity=Timonium}(BAR) \bowtie SERVES)$

```
BarsThatServeTimoniumBeers \leftarrow \Pi_{BNO}(SERVES \bowtie TimoniumBeers)
RESULT \leftarrow \Pi_{BarName}(\sigma_{BCitv=Towson}(BAR) - BarsThatServeTimoniumBeers)
11)
DonaldLikes \leftarrow \Pi_{BeerName}(\sigma_{DName="Donald Trump"}(DRINKER) \bowtie LIKES)
IvankaLikes \leftarrow \Pi_{BeerName}(\sigma_{DName="Ivanka\ Trump"}(DRINKER) \bowtie LIKES)
BothLike \leftarrow DonaldLikes \cap IvankaLikes
Result \leftarrow \Pi_{ReerName}BothLike \bowtie SERVES)
12)
BeerCount \leftarrow {}_{BNO}G_{Count (BeerName)}(SERVES)
MaxBeer \leftarrow {}_{BNO}G_{Max\,(Count-BeerName)}(BeerCount)
Result \leftarrow \Pi_{BarName, BCitv, BState}(MaxBeer \bowtie Bar)
13)
LikeCount \leftarrow _{DLicNo}G_{Count (BeerName)}(LIKES)
MinLike \leftarrow \Pi_{DLicNo}(G_{Min(Count-BeerName)}(LikeCount))
Result \leftarrow \Pi_{DName, Age}(MinLike \bowtie DRINKER)
14)
DonaldMikeLike \leftarrow \Pi_{BeerName}(\sigma_{DName="Donald\ Trump"}(DRINKER) \bowtie LIKES)\ \cup
                                \Pi_{BeerName}(\sigma_{DName="Mike\ P\ ence"}(DRINKER) \bowtie LIKES)
DislikesAll \leftarrow \Pi_{DLicNo}(DRINKER) - \Pi_{DLicNo}(DonaldMikeLike \bowtie LIKES)
Result \leftarrow \Pi_{DName.\ PoliticalP\ arty}(DislikesAll \bowtie DRINKER)
15)
DonaldLikes \leftarrow \Pi_{BeerName}(\sigma_{DName="Donald\ Trump"}(DRINKER) \bowtie LIKES)
DrinksSame \leftarrow LIKES \div DonaldLikes
Result \leftarrow \Pi_{DName, \ PoliticalP \ arty}(\sigma_{DName \ \neq \ "Donald \ Trump"}(DrinksSame \bowtie DRINKER))
16)
\Pi_{\textit{BeerName}}(\sigma_{\textit{DateOfDiagnosis}} \leq \textit{DateOfPurchase} \land \textit{EstiamtedEndDate} \geq \textit{DateOfPurchase}(\textit{BEER}\_\textit{PURCHASE} \bowtie \textit{COVID}\_\textit{DIAGNOSIS}))
17)
A \leftarrow VISIT \bowtie (\sigma_{DName = Donald\ Trump}(DRINKER))
B \leftarrow A
visitedMoreThanOnce \leftarrow \sigma_{A.BNO=B.BNO\land A.DateOfV\ isit \neq B.DateOfV\ isit}(A \times B)
Result \leftarrow \Pi_{BarName} visitedMoreThanOnce
```

18)

```
IT Diagnosis ← Visit ⋈ (COVID_Diagnosis ⋈ ODNome = "Ivanka Trump" (Drinker))
 IT COVID Days 

\[ \Pi_{\text{BNO}, DateOf Visit} \left( \sigma_{\text{Extimated start Date}} \cup = \text{Date Of Visit} \quad \text{(IT Diagnosis)} \]

\[ \sigma_{\text{Date Of Visit}} \cup = \text{Extimated End Date} \]
  Result ← ∏<sub>Diame.Phone</sub> (Drinker ⋈ ( Visit ⋈ IT COVIDDays))
19)
COVIDDays 

\[ \Pi_{\text{BNO}, DateOfVisit} \left( \sigma_{\text{Estimoted start Date}} \columnus = Date OfVisit \left( \text{Visit} \times COVID_Diagnosis \right) \right)
\[ \sigma_{\text{Date OfVisit}} \left( \columnus \text{Estimoted End Date} \]
 Result ← ∏ DName Phone ( Drinker ⋈ ( Visit ⋈ COVIDDoys))
20)
      TEMP1 \longleftarrow \sigma_{DateOfVisit \geq DateOfDiagnosis \ \land \ DateOfVisit \leq Estir\_stedEndDate} (VISIT \bowtie COVID\_DIAGNOSIS)
     RESULT \longleftarrow \Pi_{DName,\ BarName,\ EstimatedStartDate,\ EstimatedEndDate} (DRINKER \bowtie TEMP1 \bowtie BAR)
21)
    BIDENBARTIMES \leftarrow {}_{BNO}G_{Count}BNO \ (\sigma_{DName="Joe\ Biden"}(DRINKER\ \bowtie VISIT))
                    ALLBARTIMES \leftarrow DLicNo, BNO (DRINKER \bowtie VISIT)
      OUTPUT \leftarrow \Pi_{Dname,Age}(DRINKER \bowtie (ALLBARTIMES \div BIDENBARTIMES))
22)
  VACTESTPOS \leftarrow \Pi_{DLicNo} \left( \sigma_{DateOfVaccine < DateOfDiagnosis} (COVID\_DIAGNOSIS \bowtie COVID\_VACCINE) \right)
                               OUTPUT \leftarrow \Pi_{DName,Age,PoliticalParty}(VACTESTPOS \bowtie DRINKER)
23)
   Bat\_Beer \leftarrow \prod_{BNO, BeerName} ((\sigma_{BarName-"BatBar"}(BAR)) \bowtie SERVES)
   All_Purchaser \leftarrow \prod_{DLieNo, BNO, BeerName}(BEER_PURCHASE)
   People ← All_Purchaser ÷ Bat_Beer
   Result \leftarrow \prod_{DName, Age}(People \bowtie DRINKER)
```

Relational Calculus (Draft)

```
1)
\{t \mid \exists d1 \in DRINKER (
        \exists d2 \in DRINKER (
        \exists v1 \in VISIT (
        \exists v2 \in VISIT (
                d1[DName] = "Ivanka Trump" ^ v1[DLicNo] = d1[VLicNo] ^
                v1[DateOfVisit] = v2[DateOfVisit] ^ v2[BNO] = v1[BNO] ^
                v2[DLicNo] = d2[DLicNo])))^
        t[DName] = d2[DName] ^ t[PoliticalParty] = d2[PoliticalParty])}
2)
\{t \mid \exists b1 \in BAR (
        b1[STATE] = "MD" ^ b1[BCity] ≠ "Baltimore" ^

\exists s \in SERVES(

                s[BNO] = b1[BNO] ^ s[BeerName] = "BudLite") ^
        t[BarName] = b1[BarName])
3)
\{t \mid \exists d1 \in DRINKER(d1[Age] < 30^
        ∃ v ∈ VISITS (
        \exists b \in BAR(
```

```
∃ I1 ∈ LIKES(
                                                                       ∄ I2 ∈ LIKES(
                                                                                                                                            v[BNO] = b[BNO] ^ b[BCity] = "Georgetown" ^
                                                                                                                                            I1[DLicNo] = d1[DLicNo] ^ I[BeerName] = "Bud Lite") ^
                                                                                                                                            I1[DLicNo] = d1[DLicNo] ^ I2 ≠ "Miller Lite"))) ^
                                                                       t[DName] = d1[DName])}
4)
\{t \mid \exists d1 \in DRINKER(t[DName] = d1[DName] \land t[Age] = d1[Age] \land t[Age] \land t[
                                                                          \exists v1 \in VISIT(
                                                                          \exists v1 \in VISIT(
                                                                                \exists d2 \in DRINKER(
                                                                                                                                            v1[DLicNo] = d1[DLicNo] \land v2[DLicNo] = d2[DLicNo] \land v1[BNo] = v2[BNo] \land v1[DLicNo] \land v1[DLicNo
                                                                                                                                            d2[Name] = "Donald Trump"
)))))}
9)
\{t \mid \exists b \in BAR(
                                                                          ∃ d ∈ DRINKER( d[DName] = "Donald Trump" ^
                                                                          \exists s \in SERVES(b[BNO] = s[BNO]^
                                                                       ∄ I ∈ LIKES(
                                                                                                                                            I[DLicNo] = d[DLicNo] ^ I[BeerName] = s[BeerName] ))) ^
                                                                       t[BarName] = b[BarName] )}
```

```
10)

{t | ∃ b1 ∈ BAR( b1[BCity] = "Towson" ^

∃ b2 ∈ BAR( b2[BCity] = "Timonium" ^

∃ s ∈ SERVES( s[BNO] = b1[BNO] ^

∄ s2 ∈ SERVES(

s2[BNO] = b2[BNO] ^ s1[BeerName] = s2[BeerName]))) ^

t[BarName] = b1[BarName])}
```