- **3.1** Let A, B, C be objects in C and hence objects in C^{op} . Let $f \in \operatorname{Hom}_{C^{op}}(A, B)$ and $g \in \operatorname{Hom}_{C^{op}}(B, C)$. Thus $f \in \operatorname{Hom}_{C}(B, A)$ and $g \in \operatorname{Hom}_{C}(C, B)$. Since C is a category, the morphism $f \circ_{C} g$ exists in C. Define $\circ_{C^{op}}$ as $g \circ_{C^{op}} f := f \circ_{C} g$. We are guaranteed that the composition of morphisms exists since C is a category. We gain associativity for the same reason. The composition of identity in C^{op} becomes composition of identity on the other side in C, which is still an identity.
- **3.2** $\operatorname{End}_{\operatorname{Set}}(A)$ is defined as $\operatorname{Hom}_{\operatorname{Set}}(A,A)$. This is the set of all set-functions $A \to A$; in other words, the set A^A . Thus $|\operatorname{End}_{\operatorname{Set}}(A)| = |A^A| = |A|^{|A|}$ (the last equality from a previous exercise.)

3.3