1 Definition of classes

2 Field-theoretic treatment of interactions

Our treatment of interactions uses a field-theoretic treatment of the densities to determine the interactions between polymer segments. Following work by de Pick, *et al.* [1], we define

The simulation has a fixed volume with sides lengths L_x , L_y , and L_z . These lengths are discretize into M_x , M_y , and M_z bins of length $\Delta_x = L_x/M_x$, $\Delta_y = L_y/M_y$, and $\Delta_z = L_z/M_z$. The bins are defined by the three indices i_x , i_y , and i_z that run from zero to $M_x - 1$, $M_y - 1$, and $M_z - 1$, respectively.

We consider the *n*th bead located at position $\vec{r}^{(n)}$. We define a weight function $w_I(\vec{r}^{(n)})$ within the *I*th bin. The *I*th index is defined to be a superindex that combines i_x , i_y , and i_z into a single unique index $I = i_x + M_x i_y + M_x M_z i_z$ that runs from zero to $M_x M_y M_z - 1$ (total of $M_x M_y M_z$ unique indices) The total weight on the *I*th bin is given by the contributions from the three cartesian directions, *i.e.* $w_I(\vec{r}^{(n)}) = w_{i_x}^{(x)}(x^{(n)})w_{i_y}^{(y)}(y^{(n)})w_{i_z}^{(z)}(z^{(n)})$. Figure 1 shows a schematic of the *x*-direction weight function (same method for *y* and *z*). This shows a linear interpolation weighting method, consistent with Ref. [1].

The number of epigenetic proteins (e.g. HP1) to the *n*th site is given by $N_I^{(\alpha)}$, where α determines the type of epigenetic mark. The α -protein density within the *I*th bin is given by

$$\rho_I^{(\alpha)} = \frac{1}{\nu_{\text{bin}}} \sum_{n=0}^{n_b - 1} w_I(\vec{r}^{(n)}) N_I^{(\alpha)}$$
(1)

where $v_{\rm bin} = \Delta_x \Delta_y \Delta_z$ is the volume of a bin. The maximum number of epigenetic proteins bound $N_{\rm max}^{(\alpha)}$ gives an upper bound on the number of proteins that can bind to a bead, accounting for coarse graining of a bead to represent multiple nucleosomes. For discretization of one nucleosome per bead, the maximum $N_{\rm max}^{(\alpha)} = 2$ implies binding of a protein to the two histone tail proteins for the α epigenetic mark. We define the number of α marks on the *I*th bead as $M_I^{(\alpha)}$, which can take values from zero to $N_{\rm max}^{(\alpha)}$.

Protein binding to a marked tail results in energy $-\beta \varepsilon_m$ [non-dimensionalized by $\beta = 1/(k_B T)$], and protein binding to an unmarked tail is associated with energy $-\beta \varepsilon_u$.

Figure 1: Schematic of the weight function $w_{i_x}^{(x)}$ that gives the weighting of the particle in the i_x site in the x-direction based on a linear interpolation method [1].

3 Energetic contributions to the Monte Carlo simulation

3.1 Polymer chain model: shearable, stretchable wormlike chain

We consider a polymer with n_b number of beads. We consider the shearable, stretchable wormlike chain potential, given by

$$\beta E_{\text{elas}} = \sum_{n=0}^{n_b-2} \left[\frac{\varepsilon_b}{2\Delta} \left| \vec{t}_3^{(n+1)} - \vec{t}_3^{(n)} - \eta \Delta \vec{r}_{\perp}^{(n)} \right|^2 + \frac{\varepsilon_{\parallel}}{2\Delta} \left(\Delta \vec{r}^{(n)} \cdot \vec{t}_3^{(n)} - \Delta \gamma \right)^2 + \frac{\varepsilon_{\perp}}{2\Delta} \left| \Delta \vec{r}_{\perp}^{(n)} \right|^2 \right], \quad (2)$$

where $\Delta \vec{r}^{(n)} = \vec{r}^{(n+1)} - \vec{r}^{(n)}$ is the bond vector, $\Delta \vec{r}_{\perp}^{(n)} = \Delta \vec{r}^{(n)} - (\Delta \vec{r}^{(n)} \cdot \vec{t}_3^{(n)}) \vec{t}_3^{(n)}$ is the perpendicular component of the bond vector to the tangent vector.

References

[1] Darin Q. Pike, François A. Detcheverry, Marcus Müller, and Juan J. de Pablo. Theoretically informed coarse grain simulations of polymeric systems. *The Journal of Chemical Physics*, 131(8):084903, August 2009.