## 4. Methods of Proof

**Aaron Tan** 

#### 4. Methods of Proof

#### 4.1 Direct Proof and Counterexample

- Definitions: even and odd numbers; prime and composite.
- Proving existential statements by constructive proof.
- Disproving universal statements by counterexample.
- Proving universal statements by exhaustion.
- Proving universal statements by generalizing from the generic particular.

#### 4.2 Proofs on Rational Numbers

- Every integer is a rational number.
- Sum of any two rational numbers is rational.

#### 4.3 Proofs on Divisibility

Positive divisor of a positive integer; divisors of 1; transitivity of divisibility.

#### 4.4 Indirect Proof

• Proof by contradiction; proof by contraposition.

Reference: Epp's Chapter 4 Elementary Number Theory and Methods of Proof

4.1 Definitions

## 4.1.1. Definitions

#### **Assumptions**

- In this text we assume a familiarity with the laws of basic algebra, which are listed in Appendix A.
- We also use the three properties of equality: For all objects A, B, and C, (1) A = A, (2) if A = B then B = A, and (3) if A = B and B = C, then A = C.
- In addition, we assume that there is no integer between 0 and 1 and that the set of all integers is closed under addition, subtraction, and multiplication. This means that sums, differences, and products of integers are integers.
- Of course, most quotients of integers are not integers. For example,  $3 \div 2$ , which equals 3/2, is not an integer, and  $3 \div 0$  is not even a number.

Definitions: Even and Odd Integers

#### Recall from Lecture #2:

#### Definitions: Even and Odd Integers

An integer n is even if, and only if, n equals twice some integer.

An integer n is odd if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even  $\iff$   $\exists$  an integer k such that n=2k.

n is odd  $\iff$   $\exists$  an integer k such that n=2k+1.

**Definitions: Prime and Composite** 

## Definitions: Prime and Composite

An integer n is prime iff n > 1 and for all positive integers r and s, if n = rs, then either r or s equals n.

An integer n is composite iff n > 1 and n = rs for some integers r and s with 1 < r < n and 1 < s < n.

In symbols:

n is prime:  $\forall r, s \in \mathbb{Z}^+$ , if n = rs then either r = 1 and s = n

or r = n and s = 1.

n is composite:  $\exists r, s \in \mathbb{Z}^+$  s.t. n = rs and 1 < r < n and

1 < s < n.





## CS1231S Midterm Test (AY2019/20 Sem1)

#### Given the following predicate:

$$P(x) = (x \neq 1) \land \forall y, z (x = yz \rightarrow ((y = x) \lor (y = 1)))$$
  
and that the domain of  $x$ ,  $y$  and  $z$  is  $\mathbb{Z}^+$ , what is  $P(x)$ ?

- A. P(x) is true iff x is a prime number.
- B. P(x) is true iff x is a number other than 1.
- C. P(x) is always true irrespective of the value of x.
- D. P(x) is true if x has exactly two factors other than 1 and x.
- E. None of the above.

0 0 0 0

## 4.1.2. Proving Existential Statements by Constructive Proof

An existential statement:

$$\exists x \in D \text{ s.t. } Q(x)$$

is true iff Q(x) is true for at least one x in D.

To prove such statement, we may use constructive proofs of existence:

- Find an x in D that makes Q(x) true; or
- Give a set of directions for finding such an x.

Proving Existential Statements: Constructive Proof

## Example #1

- a. Prove that there exists an even integer n that can be written in two ways as a sum of two prime numbers.
- b. Suppose r and s are integers. Prove that there is an integer k such that 22r + 18s = 2k.
- a. Let n = 10. Then 10 = 5 + 5 = 3 + 7, where 3, 5 and 7 are all prime numbers.

Note that the question does <u>not</u> say that the two prime numbers must be distinct.

b. Let k = 11r + 9s. Then k is an integer because it is a sum of products of integers (by closure property); and 2k = 2(11r + 9s) = 22r + 18s (by distributive law).

Disproving Universal Statements: Counterexample

## 4.1.3. Disproving Universal Statements by Counterexample

Given an universal (conditional) statement:

$$\forall x \in D, P(x) \rightarrow Q(x).$$

Showing this statement is false is equivalent to showing that its negation is true.

The negation of the above statement is an existential statement:

$$\exists x \in D, P(x) \land \sim Q(x).$$

To prove that an existential statement is true, we use an example (constructive proof), which is called the counterexample for the original universal conditional statement.

#### Disproof by Counterexample

To disprove a statement of the form

$$\forall x \in D, P(x) \rightarrow Q(x),$$

Find a value of x in D for which the hypothesis P(x) is true but the conclusion Q(x) is false.

Such an *x* is called a counterexample.

Disproving Universal Statements: Counterexample

# Example #2: Disprove the following statement $\forall a, b \in \mathbb{R}$ , if $a^2 = b^2$ then a = b.

Counterexample: Let a=1 and b=-1. Then  $a^2=1^2=1$  and  $b^2=(-1)^2=1$  and so  $a^2=b^2$ . But  $a\neq b$ .

## 4.1.4. Proving Universal Statements by Exhaustion

Given an universal conditional statement:

$$\forall x \in D, P(x) \rightarrow Q(x).$$

When D is finite or when only a finite number of elements satisfy P(x), we may prove the statement by the method of exhaustion.

Proving Universal Statements: Exhaustion

## Example #3: Prove the following statement

 $\forall n \in \mathbb{Z}$ , if n is even and  $4 \le n \le 26$ , then n can be written as a sum of two primes.

## Proof (by method of exhaustion):

$$= 4 = 2 + 2$$

$$6 = 3 + 3$$

$$8 = 3 + 5$$

$$\blacksquare$$
 10 = 5 + 5

$$20 = 7 + 13$$

Divisibility
O O

Indirect Proof

Proving Universal Statements: Generalizing from the Generic Particular

## 4.1.5. Proving Universal Statements by Generalizing from the Generic Particular

The most powerful technique for proving a universal statement s one that works regardless of the size of the domain (possibly infinite) over which the statement is quantified.

#### Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a *particular* but *arbitrarily chosen* element of the set, and show that x satisfies the property.

Example #4: Prove that the sum of any two even integers is even.

#### Proof:

- 1. Let m and n be two particular but arbitrarily chosen even integers.
  - 1.1 Then m = 2r and n = 2s for some integers r and s (by definition of even number)
  - 1.2 m + n = 2r + 2s = 2(r + s) (by basic algebra)
  - 1.3 2(r+s) is an integer (by closure under integer addition and multiplication) and an even number (by definition of even number)
  - 1.4 Hence m + n is an even number.
- 2. Therefore the sum of any two even integers is even.

## 4.2 Proofs on Rational Numbers

Definition

## 4.2.1. Definition

In this section, we will apply proof techniques we have learned on rational numbers.

#### **Definition: Rational Numbers**

A real number r is rational if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator.

A real number that is not rational is irrational.

r is rational  $\iff \exists$  integers a and b such that  $r = \frac{a}{b}$  and  $b \neq 0$ .

## 4.2.2. Every Integer is a Rational Number

Theorem 4.2.1 (5<sup>th</sup>: 4.3.1)

Every integer is a rational number.

#### Proof:

- 1. Let a be a particular but arbitrarily chosen integer.
  - 1.1 Then  $a = \frac{a}{1}$  which is in the form  $\frac{a}{b}$  where a and b = 1 are integers.
  - 1.2 Hence a is a rational number.
- 2. Therefore every integer is a rational number.

0

The Sum of Any Two Rational Numbers is Rational

## 4.2.3. The Sum of Any Two Rational Numbers is Rational

Theorem 4.2.2 (5<sup>th</sup>: 4.3.2)

The sum of any two rational numbers is rational.

#### **Proof:**

- 1. Let r and s be two particular but arbitrarily chosen rational numbers.
  - 1.1 Then  $r = \frac{a}{b}$  and  $s = \frac{c}{d}$  for some integers a, b, c, d with  $b \neq 0$  and  $c \neq 0$  (by definition of rational number).
  - 1.2 Then  $r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$  (by basic algebra).
  - 1.3 Since ad + bc and bd are integers (by closure under integer addition and multiplication) and  $bd \neq 0$ , so r + s is rational.
- 2. Therefore the sum of any two rational numbers is rational.

Corollary; The Double of a Rational Number is Rational

#### Recall from Lecture #2:

## Corollary

A result that is a simple deduction from a theorem.

#### Example:

(Chapter 4)

Theorem 4.2.2 (5<sup>th</sup>: 4.3.2) The sum of any two rational numbers is rational Corollary 4.2.3 (5<sup>th</sup>: 4.3.3) The double of a rational number is rational.

## Theorem 4.2.2 (5th: 4.3.2)

The sum of any two rational numbers is rational.



Corollary 4.2.3 (5th: 4.2.3)

The double of a rational number is rational.

## 4.3 Proofs on Divisibility

Definition

00000

## 4.3.1. Definition

**Direct Proof and Counterexample** 

#### Recall from Lecture #2:

#### **Definition: Divisibility**

If n and d are integers and  $d \neq 0$ , then

n is divisible by d iff n equals d times some integer.

We use the notation  $d \mid n$  to mean "d divides n". Symbolically, if  $n, d \in \mathbb{Z}$  and  $d \neq 0$ :

 $d \mid n \iff \exists k \in \mathbb{Z} \text{ such that } n = dk.$ 

Theorems: A Positive Divisor of a Positive Integer

## 4.3.2. Theorems

00000

## Theorem 4.3.1 (5<sup>th</sup>: 4.4.1) A Positive Divisor of a Positive Integer

For all positive integers a and b, if  $a \mid b$ , then  $a \leq b$ .

#### Proof (direct proof):

- 1. Let a and b be two positive integers and  $a \mid b$ .
  - 1.1 Then there exists an integer k such that b=ak (by definition of divisibility).
  - 1.2 Since both a and b are positive integers, k is positive, i.e.  $k \ge 1$ .
  - 1.3 Therefore  $a \leq ak = b$ .
- 2. Therefore for all positive integers a and b, if  $a \mid b$ , then  $a \leq b$ .

Theorems: Divisors of 1

## Theorem 4.3.2 (5<sup>th</sup>: 4.4.2) Divisors of 1

The only divisors of 1 are 1 and -1.

#### Proof (by division into cases):

- 1. Suppose m is any integer that divides 1.
  - 1.1 Then there exists an integer k such that 1 = mk (by definition of divisibility).
  - 1.2 Since mk is positive, either both m and k are positive, or both negative.
  - 1.3 Case 1: Both m and k are positive. 1.3.1 Since  $m \mid 1$ ,  $m \leq 1$  (by Theorem 4.3.1).
    - 1.3.2 Then m = 1.
  - 1.4 Case 2: Both m and k are negative.
    - 1.4.1 Then m is a positive integer divisor of 1, i.e. m|1.
    - 1.4.2 By the same reasoning in 1.3.1 and 1.3.2, -m = 1, or m = -1.
- 2. Therefore the only divisors of 1 are 1 and -1.

Theorems: Transitivity of Divisibility

## Theorem 4.3.3 (5<sup>th</sup>: 4.4.3) Transitivity of Divisibility

For all integers a, b and c, if  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .

#### Proof:

- 1. Suppose a, b, c are integers s.t.  $a \mid b$  and  $b \mid c$ .
  - 1.1 Then b = ar and c = bs for some integers r and s. (by definition of divisibility)
  - 1.2 Then c = bs = (ar)s (by substitution) = a(rs) (associativity)
  - 1.3 Let k = rs, then k is an integer (by closure property) and c = ak.
- 2. Therefore  $a \mid c$ .



## 4.4 Indirect Proof

00000

## 4.4.1. Indirect Proof: Proof by Contradiction

Sometimes when a direct proof is hard to derive, we can try indirect proof.

Example: Theorem 4.7.1 (5<sup>th</sup>: 4.8.1)  $\sqrt{2}$  is irrational.

#### **Proof by Contradiction**

- 1. Suppose the statement to be proved, S, is false. That is, the negation of the statement,  $\sim S$ , is true.
- 2. Show that this supposition leads logically to a contradiction.
- 3. Conclude that the statement S is true.

Indirect Proof: Proof by Contradiction

## Theorem 4.6.1 (5<sup>th</sup>: 4.7.1)

There is no greatest integer.

## Proof (by contradiction):

- 1. Suppose not, i.e. there is a greatest integer.
  - 1.1 Let call this greatest integer g, and g > n for all integers n.
  - 1.2 Let G = g + 1.
  - 1.3 Now, G is an integer (closure of integers under addition) and G > g.
  - 1.4 Hence, g is not the greatest integer  $\rightarrow$  contradicting 1.1.
- 2. Therefore there is no greatest integer.

Indirect Proof: Proof by Contraposition

## 4.4.2. Indirect Proof: Proof by Contraposition

Recall: Contrapositive of  $p \rightarrow q$  is  $\sim q \rightarrow \sim p$ .

## **Proof by Contraposition**

- 1. Statement to be proved:  $\forall x \in D, P(x) \rightarrow Q(x)$ .
- 2. Rewrite the statement into its contrapositive form:

$$\forall x \in D, \sim Q(x) \rightarrow \sim P(x).$$

- 3. Prove the contrapositive statement by a direct proof.
  - 3.1 Suppose x is an (particular but arbitrarily chosen) element of D s.t. Q(x) is false.
  - 3.2 Show that P(x) is false.
- 4. Therefore, the original statement  $\forall x \in D, P(x) \rightarrow Q(x)$  is true.

0

Indirect Proof: Proof by Contraposition

## Proposition 4.6.4 (5<sup>th</sup>: 4.7.4)

For all integers n, if  $n^2$  is even than n is even.

## Proof (by contraposition):

- 1. Contrapositive statement: For all integers n, if n is odd then  $n^2$  is odd.
- 2. Let n be an arbitrarily chosen odd number.
  - 2.1 Then n = 2k + 1 for some integer k (definition of odd number).
  - 2.2 Then  $n^2 = (2k+1)(2k+1) = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
  - 2.3 Let  $m=2k^2+2k$ . Now, m is an integer (closure property) and  $n^2=2m+1$ .
  - 2.4 So  $n^2$  is odd.
- 3. Therefore, for all integers n, if  $n^2$  is even than n is even.

## **END OF FILE**