وَمَا أُوتِيتُوْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab.

Dr. Hesham Omran

Analog IC Design Design Challenge

Digitally Controlled Variable Gain Amplifier (VGA)

Intended Learning Objectives

In this design challenge you will:

- Learn how to select a proper circuit topology.
- Learn how to design an analog circuit on your own.
- Learn how to implement a digitally controlled analog circuit.
- Learn how variations affect the circuit.

Design Specs

It is required to design a digitally controlled variable gain amplifier with the following specifications.

Technology	65nm
Supply voltage	1.2V
Variations (Corners)	For passive elements used in the design:
	Assume caps vary +/- 10%
	Assume resistors vary +/- 20%
Reference signal	Use a single ideal reference current source.
	Use ideal DC bias voltage if needed.
Output type	Single ended
External load	500 fF
Feedback type	Inverting - Capacitive (use 500fF unit capacitors
	ONLY)
Digital control	Single bit signal (D0)
Closed loop gain	D0 = 0: 6 dB
	D0 = 1: 12 dB
Phase margin	> 60°
DC LG	> 60 dB
Closed loop BW	> 10 MHz
Output swing	> 0.8 V pk-to-pk
Power consumption	Minimize

Notes

- The PM, DC LG, and CL BW specs should be satisfied at all gain settings.
- Use an ideal feedback switch that is closed in DC and IC (initial condition) to set a correct DC bias point.

Deliverables

- From the closed loop specs, use hand analysis to find the worst-case open loop specs of the OTA (CLeff, DC Gain, UGF, PM).
- OTA topology selection and design steps (use ADT Cockpit <u>or</u> the Sizing Assistant).
- Schematics with device sizing.
- Schematics with DC OP and node voltages annotated.
- Simulations showing the amplifier closed loop specs (Closed loop gain and BW, DC LG, and PM) at the two different gain settings and across all required corners.
 - O What is the worst-case corner?
 - o Note: The PM is measured from the stb analysis (LG), not from the CL response!
- Closed loop transient simulations with sinusoidal input at 1 MHz at the nominal corner showing the maximum output swing at the two different gain settings.
 - Use the THD function in the calculator to calculate the distortion.
 - o Is the THD the same for both gain settings? Why?

Acknowledgements

Thanks to all who contributed to these labs. If you find any errors or have suggestions concerning these labs, contact Hesham.omran@eng.asu.edu.eg.