



### **Outline**

- Agents and environments
- Good behavior: The concept of rationality
- The nature of environments
- The structure of agents

\_

# What is Agent?

- Al studies how to make computers do things that people are better at if they could
  - Extend what they do to huge data sets
  - · Do it fast, in near real-time
  - Not make mistakes
- Such systems are called Agents.



# What is Agent?

• An agent perceives its environment through sensors and acts upon that environment through actuators.



5

# **Examples of agents**



#### **Human agent**

Sensors: eyes, ears, and other organs.

Actuators: hands,

legs, vocal tract, etc.

#### Robotic agent

Sensors: cameras, infrared range finders, etc.

Actuators: levels, motors, etc.



#### Software agent

Sensors: keystrokes, file contents, network packets, etc.

Actuators: monitor, physical disk, routers, etc.

0

# The agent's behavior

- Percept: the agent's perceptual inputs at any given instant
- **Percept sequence**: the complete history of everything the agent has ever perceived
- An agent's behavior is described by the agent function that maps any given percept sequence to an action.

$$f: \mathcal{P} \to \mathcal{A}$$

Agent program: the implementation of the agent function



### The Vacuum-cleaner world



A vacuum-cleaner world with just two locations

- Percepts: location and contents, e.g., [A,Dirty]
- Actions: Left, Right, Suck, Do Nothing

### The Vacuum-cleaner world

Percept sequence



В



| [A, Clean]             | Right |
|------------------------|-------|
| [A, Dirty]             | Suck  |
| [B, Clean]             | Left  |
| [B, Dirty]             | Suck  |
| [A, Clean], [A, Clean] | Right |
| [A, Clean], [A, Dirty] | Suck  |
|                        |       |
|                        |       |

[A, Clean], [A, Clean], [A, Clean]

[A, Clean], [A, Clean], [A, Dirty]

Partial tabulation of a simple agent function for the vacuum-cleaner world

9

Right

Suck

Action

# Why do we need agents?

- A tool for analyze systems
- All areas of engineering can be seen as designing artifacts that interact with the world.
- Al designs artifacts that have significant computational resources and the task environment requires nontrivial decision making

### The Vacuum-cleaner world



00°00

**function** REFLEX-VACUUM-AGENT([location,status]) **returns** an action

**if** *status* = *Dirty* **then return** *Suck* 

**else if** *location = A* **then return** *Right* 

**else if** *location* = *B* **then return** *Left* 

The agent program for a simple reflex agent in the two-state vacuum environment.

# The concept of rationality

- Rationality
- Omniscience, learning, and autonomy



# Rational agents

- A rational agent is one that does the right thing.
  - Every entry in the table for the agent function is filled out correctly.
- What is "right" thing?
  - The actions that cause the agent to be most successful
- We need ways to measure success.



Performance measure

13

# **Design performance measures**

- General rule: Design performance measures according to What one actually wants in the environment Not how one thinks the agent should behave
- · For example, in vacuum-cleaner world
  - The amount of dirt cleaned up in a single eight-hour shift, or
  - The floor clean, no matter how the agent behaves
  - · Which one is better?

#### Performance measure

- An agent, based on its percepts → generates actions sequence → environment goes to sequence of states
  - If this sequence of states is desirable, then the agent performed well.
- Performance measure evaluates any given sequence of environment states (remember, not agent states!!!).
  - An objective function that decides how the agent does successfully.
     E.g., 90%? 30%?

14

# Rationality

· What is rational at any given time depends on

| Performance measure  Define the criterion of success |   | Prior knowledge What the agent knows about the environment |  |  |
|------------------------------------------------------|---|------------------------------------------------------------|--|--|
| Percept sec                                          | • | Actions What the agent can perform                         |  |  |

# **Definition of a rational agent**

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

- For example, in an exam,
  - Maximize marks based on the questions on the paper and your knowledge



17

# The Vacuum-cleaner agent

- Performance measure
  - Award one point for each clean square at each time step, over 10000 time steps
- Prior knowledge about the environment
  - The geography of the environment (2 squares)
  - · The effect of the actions
- Actions that can perform
  - · Left, Right, Suck and Do Nothing
- Percept sequences
  - · Where is the agent?
  - · Whether the location contains dirt?
- Under this circumstance, the agent is rational.

18

# Omniscience, learning, and autonomy





# **Omniscience vs. Rationality**

#### **Omniscience**

- Know the actual outcome of actions in advance
- No other possible outcomes
- However, impossible in real world
- Example?

#### Rationality

Maximize performance measure given the percepts sequence to date and prior knowledge

Rationality is not perfection

# Information gathering

- The agent must not engage in unintelligent activities due to inadvertency.
- Information gathering Doing actions in order to modify future percepts (e.g., exploration)
- This is an important part of rationality.



21

# **Autonomy**

- A rational agent should be autonomous Learn what it can to compensate for partial or incorrect prior knowledge.
  - If an agent just relies on the prior knowledge of its designer rather than its own percepts, then the agent lacks autonomy.
  - E.g., a clock
    - No input (percepts)
    - Run its own algorithm (prior knowledge)
    - No learning, no experience, etc.



# Learning

- A rational agent must learn as much as possible from what it perceives.
  - Its initial configuration may be modified and augmented as it gains experience.
- There are extreme cases in which the environment is completely known *a priori*.







22

# The Nature of Environments

- Specifying the task environment
- Properties of task environments



#### The task environment

• Task environments are essentially the "problems" to which rational agents are the "solutions."



 They come in a variety of flavors, which directly affects the appropriate design for the agent program.

25

# An example: Automated taxi driver

- Performance measure
  - · How can we judge the automated driver?
  - · Which factors are considered?
    - · getting to the correct destination
    - · minimizing fuel consumption
    - · minimizing the trip time and/or cost
    - · minimizing the violations of traffic laws
    - · maximizing the safety and comfort
    - · etc.











#### The task environment

· The task environment includes





- Environment
- Agent's Actuators
- Agent's Sensors
- It must always be the first step in designing an agent and should be specified as fully as possible.

26

# An example: Automated taxi driver

- Environment
  - A variety of roads (rural lane, urban alley, etc.)
  - Traffic lights, other vehicles, pedestrians, stray animals, road works, police cars, puddles, potholes, etc.
  - · Interaction with the passengers
- Actuators (for outputs)
  - · Control over the accelerator, steering, gear, shifting and braking
  - · A display to communicate with the customers
- Sensors (for inputs)
  - · Controllable cameras for detecting other vehicles, road situations
  - · GPS (Global Positioning System) to know where the taxi is
  - Many more devices are necessary: speedometer, accelerometer, etc.

.

# An example: Automated taxi driver

| Agent Type  | Performance<br>Measure                                      | Environment                                           | Actuators                                                    | Sensors                                                                                            |
|-------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Taxi driver | Safe, fast, legal,<br>comfortable trip,<br>maximize profits | Roads, other<br>traffic,<br>pedestrians,<br>customers | Steering,<br>accelerator,<br>brake, signal,<br>horn, display | Cameras, sonar,<br>speedometer,<br>GPS, odometer,<br>accelerometer,<br>engine sensors,<br>keyboard |

PEAS description of the task environment for an automated taxi.

29

# Agents and their PEAS descriptions

| Agent Type                         | Performance<br>Measure              | Environment                        | Actuators                                                                 | Sensors                                                          |  |
|------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Medical<br>diagnosis system        | Healthy patient,<br>reduced costs   | Patient, hospital,<br>staff        | Display of<br>questions, tests,<br>diagnoses,<br>treatments,<br>referrals | Keyboard entry<br>of symptoms,<br>findings, patient's<br>answers |  |
| Satellite image<br>analysis system | Correct image categorization        | Downlink from orbiting satellite   | Display of scene categorization                                           | Color pixel<br>arrays                                            |  |
| Part-picking robot                 | Percentage of parts in correct bins | Conveyor belt with parts; bins     | Jointed arm and hand Camera, joint angle sensors                          |                                                                  |  |
| Refinery<br>controller             | Purity, yield,<br>safety            | Refinery, operators                | Valves, pumps,<br>heaters, displays                                       | Temperature,<br>pressure,<br>chemical sensors                    |  |
| Interactive<br>English tutor       | Student's score<br>on test          | Set of students,<br>testing agency | Display of<br>exercises,<br>suggestions,<br>corrections                   | Keyboard entry                                                   |  |

# **Software agents**

- Sometimes, the environment may not be the real world.
  - E.g., flight simulator, video games, Internet
  - They are all artificial but very complex environments





- Those agents working in these environments are called software agent (softbots).
  - All parts of the agent are software.

31

# **Quiz 01: PEAS description**

 For each of the following activities, give a PEAS description of the task environment



Playing a tennis match in a tournament



Practicing tennis against a wall

# **Properties of Task environment**

| Fully observable | Partially observable |  |  |
|------------------|----------------------|--|--|
| Single agent     | Multiagent           |  |  |
| Deterministic    | Stochastic           |  |  |
| Episodic         | Sequential           |  |  |
| Static           | Dynamic              |  |  |
| Discrete         | Continuous           |  |  |
| Known            | Unknown              |  |  |

• These dimensions determine the appropriate agent design and the applicability of techniques for agent implementation.

33

# Single agent vs. Multiagent

- Single agent: An agent operates by itself in an environment.
  - E.g., solving crossword  $\rightarrow$  single-agent, playing chess  $\rightarrow$  two-agent
- Which entities must be viewed as agents?
  - Whether B's behavior is described as maximizing a performance measure whose value depends on A's behavior.
- Competitive vs. Cooperative multiagent environment
  - E.g., playing chess  $\rightarrow$  competitive, driving on road  $\rightarrow$  cooperative

### Fully Observable vs. Partially observable

- Fully observable: The agent's sensory gives it access to the complete state of the environment.
  - The agent need not maintain internal state to keep track of the world.
- Partially observable
  - · Noisy and inaccurate sensors
  - Parts of the state are simply missing from the sensor data, e.g., a vacuum agent with only a local dirt sensor cannot tell whether there is dirt in other squares
- Unobservable: The agent has no sensors at all

34

### **Deterministic vs. Stochastic**

- Deterministic: The next state of the environment is completely determined by the current state and the action executed by the agent.
  - E.g., the vacuum world  $\rightarrow$  deterministic, driving on road  $\rightarrow$  stochastic
- Most real situations are so complex that they must be treated as stochastic.

### **Episodic vs. Sequential**

- Episodic: The agent's experience is divided into atomic episodes, in each of which the agent receives a percept and then performs a single action.
  - · Quality of action depends just on the episode itself
  - · Do not need to think ahead
- Sequential: A current decision could affect future decisions.
- E.g., spotting defective parts on an assembly line vs. playing chess

37

# **Properties of Task environment**

- · Discrete vs. continuous
  - The distinction applies to the state of the environment, to the way time is handled, and to the agent's percepts and actions
  - E.g., the chess has a finite number of distinct states, percepts and actions; while the vehicles' speeds and locations sweep through a range of continuous values smoothly over time.
- · Known vs. unknown
  - Known environment: the outcomes (or outcome probabilities if the environment is stochastic) for all actions are given.
  - Unknown environment: the agent needs to learn how it works to make good decisions.

# Static vs. Dynamic

- Static: The environment is unchanged while an agent is deliberating.
  - E.g., crossword puzzles  $\rightarrow$  static, taxi driving  $\rightarrow$  dynamic
- Dynamic: The agent is continuous asked what it wants to do
  - · If it has not decided yet, that counts as deciding to do nothing.
- Semi dynamic: The environment itself does not change with the passage of time but the agent's performance score does
  - E.g., chess playing with a clock

38

#### **Environments and their characteristics**

| Task Environment                  | Observable             | Agents          | Deterministic            | Episodic   | Static  | Discrete                 |
|-----------------------------------|------------------------|-----------------|--------------------------|------------|---------|--------------------------|
| Crossword puzzle                  | Fully                  | Single          | Deterministic            | 1          | Static  | Discrete                 |
| Chess with a clock                | Fully                  | Multi           | Deterministic            |            | Semi    | Discrete                 |
| Poker                             | Partially              | Multi           | Stochastic               | Sequential | Static  | Discrete                 |
| Backgammon                        | Fully                  | Multi           | Stochastic               | Sequential | Static  | Discrete                 |
| Taxi driving<br>Medical diagnosis | Partially<br>Partially | Multi<br>Single | Stochastic<br>Stochastic | -          | -       | Continuous<br>Continuous |
| Image analysis Part-picking robot | Fully                  | Single          | Deterministic            | Episodic   | Semi    | Continuous               |
|                                   | Partially              | Single          | Stochastic               | Episodic   | Dynamic | Continuous               |
| Refinery controller               | Partially              | Single          | Stochastic               | Sequential | •       | Continuous               |
| Interactive English tutor         | Partially              | Multi           | Stochastic               | Sequential |         | Discrete                 |

Examples of task environments and their characteristics

## **Properties of Task environment**

- The simplest environment: Fully observable, deterministic, episodic, static, discrete and single-agent.
- Most real situations: Partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

41

# The structure of agents

- Agent programs
- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents



#### **Quiz 02: Task environment**

- For each of the following activities, characterize its task environment in term of properties listed.
  - Playing a tennis match in a tournament
  - Practicing tennis against a wall

42

# The agent architecture

#### agent = architecture + program

- Architecture: some sort of computing device with physical sensors and actuators that this program will run on.
  - Ordinary PC, robotic car with several onboard computers, cameras, and other sensors, etc.
- The program must be appropriate for the architecture.
  - Program: Walk action → Architecture: legs

### The agent programs

- They take the current percept as input from the sensors and return an action to the actuators.
- Agent program vs. Agent function
  - The agent program takes only the current percept, because nothing more is available from the environment.
  - The agent function gets the entire percept sequence that the agent must remember.

45

# A trivial agent program

- *P* = the set of possible percepts
- T =lifetime of the agent
  - I.e., the total number of percepts it receives
- The size of the look up table is  $\sum_{t=1}^{T} |P|^t$
- For example, consider playing chess
  - P = 10,  $T = 150 \rightarrow A$  table of at least  $10^{150}$  entries
- · Despite of huge size, look up table does what we want

# A trivial agent program

 Keep track of the percept sequence and index into a table of actions to decide what to do.

The TABLE-DRIVEN-AGENT program is invoked for each new percept and returns an action each time. It retains the complete percept sequence in memory.

46

# The key challenge of Al

- Write programs that produce rational behavior from a small amount of code rather than a large amount of table entries
  - E.g., calculate square roots a five-line program of Newton's Method vs. a huge lookup tables



https://en.wikipedia.org/wiki/Newton%27s method







# Simple reflex agents

- The simplest kind of agent, limited intelligence
- Select actions based on the current percept, ignoring the rest of the percept history
- The connection from percept to action is represented by condition-action rules.

#### IF current percept THEN action

- · E.g., IF car-in-front-is-braking THEN initiate-braking.
- Limitations
  - Knowledge sometimes cannot be stated explicitly → low applicability
  - · Work only if the environment is fully observable

50

# A Simple reflex agent in nature



**Action: SNAP or AVOID or NOOP** 

#### **RULES:**

- (1) If small moving object, then activate SNAP
- (2) If large moving object, then activate AVOID and inhibit SNAP

ELSE (not moving) then NOOP

Needed for completeness

# Model-based reflex agents

- The agent must keep track of an internal state in partially observable environments.
  - It depends on the percept history and reflects some of the unobserved aspects, e.g., driving a car and changing lane.
- The agent program updates the internal state information as time goes by by encoding two kinds of knowledge
  - How the world evolves independently of the agent

• How the agent's actions affect the world

model of the world

53

# **Goal-based agents**

- · Current state of the environment is always not enough
- The agent further needs some sort of goal information that describes desired situations.
  - E.g., at a road junction, the taxi can turn left, turn right, or go straight on, depending on where the taxi is trying to get to.
- Less efficient but more flexible
  - Knowledge supporting the decisions is represented explicitly and can be modified.





### **Utility-based agent**

- Goals are inadequate to generate high-quality behavior in most environments.
  - Many action sequences can get the goals, some are better, and some are worse, e.g., go home by taxi or Grab car?
- An agent's utility function is essentially an internalization of the performance measure.
  - Goal → success, utility → degree of success (how successful it is)
  - If state A is more preferred than others, then A has higher utility.

57

# **Utility-based agent: Advantages**

- · When there are conflicting goals
  - · Only some of which can be achieved, e.g., speed and safety
  - The utility function specifies the appropriate tradeoff.
- When there are several goals that the agent can aim for
  - None of which can be achieved with certainty
  - The utility weights the likelihood of success against the importance of the goals.
- The rational utility-based agent chooses the action that maximizes the expected utility of the action outcomes

### **Utility-based agent**



# **Learning agents**

- After an agent is programmed, can it work immediately?
  - · No, it still need teaching
- Once an agent is done, what can we do next?
  - · Teach it by giving it a set of examples
  - Test it by using another set of examples
- We then say the agent learns → learning agents

# Learning agents



# Learning agents: An example

#### Performance element

 Whatever collection of knowledge and procedures the taxi has for selecting its driving actions (may be further modified)

#### Critic

- · Observe the world and pass information to the learning element
- E.g., quick left turn across three lanes of traffic → shocking language used by other drivers observed → bad action

#### · Learning element

- Formulate new rules from the experience told by the critic
- E.g., a new rule for the above bad action

#### · Problem generator

- · Identify certain behaviors in need of improvement and suggest experiments
- E.g., try out the brakes on different road surfaces under different conditions

### **Learning agents**

- A learning agent is divided into four conceptual components
  - 1. Learning element → Make improvement
  - Performance element → Select external actions
  - Critic → Tell the Learning element how well the agent is doing with respect to fixed performance standard. (Feedback from user or examples, good or not?)
  - 4. Problem generator → Suggest actions leading to new and informative experiences

Learning in intelligent agents is a process of **modification of each component** of the agent to bring the components into **closer agreement** with the available feedback information, thereby improving the overall performance of the agent.

62

# **Quiz 03: Learning agents**

 Give an example of learning rational agent following four conceptual elements.



**THE END**