### Correction

### Change 1:

For zero division problem of Question 7, to prevent a division by zero error in the calculation of the following code:

```
male_high_income_percentage = (
    data['data['Gender'] == 'Male') & (data['Income'] > 75000)].shape[0] /
    data[data['Gender'] == 'Male'].shape[0]
)
```

We added an if-else statement to control that the calculation only proceeds if the condition total\_male\_customers > 0 is met. This ensures the denominator is not zero before attempting to compute the percentage of male customers with an income greater than \$75,000.

This is our final code for question7 after correction:

```
# 7.What percentage of Male customers have an income greater than $75,000?
### BEGIN SOLUTION
# First, calculate the total number of male customers
total_male_customers = data[data['Gender'] == 'Male'].shape[0]

if total_male_customers > 0:
    # If there are male customers, calculate the number of male customers with an income greater than $75,000
    male_high_income_count = data[(data['Gender'] == 'Male') & (data['Income'] > 75000)].shape[0]
# Calculate the percentage
    male_high_income_percentage = male_high_income_count / total_male_customers
    print("Percentage of Male with Income > $75,000:", male_high_income_percentage)
else:
    # If there are no male customers, output 0 or a corresponding message
    print("No male customers available for analysis.")
### END SOLUTION
```

# Change 2:

For zero division problem of Question 8, to prevent a division by zero error in the calculation of the following code:

```
older_than_50_percentage = data[data['Age'] > 50].shape[0] / data.shape[0]
```

We also added an if-else statement to ensure that the calculation only proceeds if the condition data.shape[0] > 0 is met. This ensures that the denominator is not zero before attempting to compute the percentage of customers older than 50.

This is our code for question7 after correction:

```
# 8.What percentage of customers are older than 50 years (in float, e.g., 0.15)?

### BEGIN SOLUTION
# 检查数据集是否为空
if data.shape[0] > 0:
    # 计算年龄大于50岁的顾客占比
    older_than_50_percentage = data[data['Age'] > 50].shape[0] / data.shape[0]
    # 格式化输出百分比,保留两位小数
    print(f"Percentage of Customers Older than 50: {older_than_50_percentage*100:.2f}%")
else:
    # 如果数据集为空,输出提示信息
    print("No data available.")
### END SOLUTION
```

# Change 3:

In visualization part, we change our Heatmap from covariance to correlation:

#### This is our code after correction:

```
# 3. Draw heat map for all variables.
### BEGIN SOLUTION
# Select numeric features
numeric_columns = data.select_dtypes(include=["float64", "int64"]).columns
# Calculate the covariance matrix
correlation_matrix = data[numeric_columns].corr()
# Draw a covariance heat map
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
# Set the title
plt.title("Correlation Heatmap", fontsize=16)
plt.show()
### END SOLUTION
```

#### This is the heatmap after correction:



From the correlation heatmap, we can conclude that:

- 1) Strong positive correlation: Usage and Age (0.15).
- 2) Strong negative correlation: Education and Usage (-0.18).
- 3) Negligible correlation: Age and Education (0.01) & Fitness and Income (-0.01).

Most variables show weak or no linear relationships, aiding further analysis and modeling.

# Change 4:

For Question 11 and 12 optional questions:

To further validate the performance and accuracy of the decision tree model, we split the training data and calculate the specific accuracy.

#### 1. Dataset Splitting

The dataset is split into training and validation sets in an 8:2 ratio:

```
# Split the dataset into training and validation sets (8:2 ratio)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42)
```

This ensures the training and validation datasets are separated to evaluate model performance.

#### 2. Model Evaluation

The model is evaluated on the validation set, and its accuracy is calculated:

```
# Evaluate model performance using the validation set
y_valid_pred = clf.predict(X_valid)
accuracy = accuracy_score(y_valid, y_valid_pred)
# Output the model accuracy on the validation set
print(f"Model accuracy on the validation set: {accuracy:.2f}")
```

The accuracy\_score function is used to calculate the model's performance on the validation data.