Lecture 2

Xiaoqian Liu

1 Overview

In this lecture, we introduce the concept of convexity, including convex sets and some convexity-preserving operations.

2 Convex sets

A subset C of \mathcal{H} is **convex** if

- $\forall \alpha \in (0,1), \alpha C + (1-\alpha)C \subset C$.
- That is, $\forall \alpha \in (0,1), \forall x \in C, \forall y \in C, \alpha x + (1-\alpha)y \in C.$
- Or equivalently, $\forall x \in C, \forall y \in C, (x, y) \subset C$, where (x, y) denotes the segment between x and y.

Examples/counterexamples:

- A ball $B(x; \rho)$ is convex.
- Half space and affine space are convex.
- The union of two disjoint balls are not convex.

3 Convexity-preserving operations

- Let $(C_i)_{i\in I}$ be a family of convex subsets of \mathcal{H} , then $\cap_{i\in I}C_i$ is convex.
 - unioon, complement are not in general
- Let $(C_i)_{i \in I}$ be a finite family of convex subsets of \mathcal{H} , and let $(\alpha_i)_{i \in I} \in \mathbb{R}$, then $\sum_{i \in I} \alpha_i C_i$ is convex.
- Let \mathcal{G} be a Euclidean space, and $L: \mathcal{H} \to \mathcal{G}$ be a linear operator. Let $C \in \mathcal{H}$ and $D \in \mathcal{G}$ be convex subsets. Then,

- $\begin{array}{l} -\ L(C) = \{Lx \mid x \in C\} \text{ is convex} \\ -\ L^{-1}(D) = \{x \in \mathcal{H} \mid Lx \in D\} \text{ is convex} \end{array}$