COMP-170: Homework #5

Ben Tanen - March 5, 2017

Problem 5

Let $L = \{\langle M_1, M_2 \rangle \mid M_1 \text{ accepts fewer than 2 inputs and } M_2 \text{ accepts greater than 2 inputs.} \}$ Prove that L and \overline{L} are both unrecognizable.

* * *

To show that L and \overline{L} are both unrecognizable, we can prove $\overline{A_{TM}} \leq_m L$ and $\overline{A_{TM}} \leq_m \overline{L}$. We can prove $\overline{A_{TM}} \leq_m L$ by constructing a function $f: \Sigma^*_{\overline{A_{TM}}} \to \Sigma^*_L$ such that $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. We can use similar methods to prove $\overline{A_{TM}} \leq_m \overline{L}$. Once we show $\overline{A_{TM}} \leq_m L$ and $\overline{A_{TM}} \leq_m \overline{L}$, because $\overline{A_{TM}}$ is unrecognizable, we will have shown that both L and \overline{L} are also unrecognizable.

First, we will show $\overline{A_{TM}} \leq_m L$. To start, we claim $\overline{A_{TM}} \leq_m L$. To prove this claim, we will first show how $\overline{A_{TM}}$ and L relate to each other (using the "Tony Square").

Now that we've built our "Tony Square", we can define our function. Let $f: \Sigma^*_{\overline{A_{TM}}} \to \Sigma^*_L$ be defined as follows:

f on input $\langle M, w \rangle$ outputs $\langle M_1, M_2 \rangle$, where M_1 and M_2 are defined by:

M_1 on input x:

Run M on w

If M accepts w, ACCEPT

If M rejects w, LOOP

M_2 on input x:

ACCEPT

Given our definition of f, we claim that f is computable. Because M_1 and M_2 are valid Turing machines and f is a finite function (made up of finite steps), we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Consider the following two cases:

- 1. Suppose $\langle M, w \rangle \in \overline{A_{TM}}$ such that M doesn't accept w. Because M_1 loops on everything if M doesn't accept w, we can see that $|L(M_1)| = 0 < 2$. We can also see that M_2 accepts everything so $|L(M_2)| > 2$. Thus, we can see that if $\langle M, w \rangle \in \overline{A_{TM}}$, then $\langle M_1, M_2 \rangle \in L$.
- 2. Suppose $\langle M, w \rangle \notin \overline{A_{TM}}$ such that M accepts w. Because M_1 accepts everything if M accepts w, we can see that $|L(M_1)| > 2$. We again can also see that M_2 accepts everything so $|L(M_2)| > 2$. Thus, we can see that if $\langle M, w \rangle \notin \overline{A_{TM}}$, then $\langle M_1, M_2 \rangle \notin L$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Therefore, we can see that $\overline{A_{TM}} \leq_m L$.

Next, we will show $\overline{A_{TM}} \leq_m \overline{L}$. To start, we claim $\overline{A_{TM}} \leq_m \overline{L}$. To prove this claim, we will first show how $\overline{A_{TM}}$ and \overline{L} relate to each other (using the "Tony Square").

Now that we've built our "Tony Square", we can define our function. Let $f: \Sigma_{\overline{A_{TM}}}^* \to \Sigma_{\overline{L}}^*$ be defined as follows:

f on input $\langle M, w \rangle$ outputs $\langle M_1, M_2 \rangle$, where M_1 and M_2 are defined by:

 M_1 on input x:

LOOP

 M_2 on input x:

Run M on w

If M accepts w, ACCEPT

If M rejects w, LOOP

Given our definition of f, we claim that f is computable. Because M_1 and M_2 are valid Turing machines and f is a finite function (made up of finite steps), we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in \overline{L}$. Consider the following two cases:

1. Suppose $\langle M, w \rangle \in \overline{A_{TM}}$ such that M doesn't accept w. Because M_1 loops on everything, $|L(M_1)| = 0 < 2$. We can also see that M_2 loops on everything when M doesn't accept w so $|L(M_2)| = 0 < 2$. Thus, we can see that if $\langle M, w \rangle \in \overline{A_{TM}}$, then $\langle M_1, M_2 \rangle \in \overline{L}$.

2. Suppose $\langle M, w \rangle \not\in \overline{A_{TM}}$ such that M accepts w. Again, M_1 loops on everything so $|L(M_1)| = 0 < 2$. Now that M accepts w, we can see that M_2 accepts everything so $|L(M_2)| > 2$. Thus, we can see that if $\langle M, w \rangle \not\in \overline{A_{TM}}$, then $\langle M_1, M_2 \rangle \not\in \overline{L}$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in \overline{L}$. Therefore, we can see that $\overline{A_{TM}} \leq_m \overline{L}$.

Because we know $\overline{A_{TM}}$ is unrecognizable and because we have proven $\overline{A_{TM}} \leq_m \overline{L}$ and $\overline{A_{TM}} \leq_m \overline{L}$, we can see that both L and \overline{L} are unrecognizable. \boxtimes