Semester VIII (B.Tech.)

Academic Year: 2023-24

Jaypee University of Engineering & Technology, Guna Mid Term Examination VIII Semester-Project At Industry (2024)

18B14CI741 - Soft Computing

Maximum Duration: 1 Hour 30 Minutes

Maximum Marks: 25

7. 1	_4		
- IN	OΤ	66	

- 1. This question paper has 5 questions.
- 2. Write relevant answers only.
- 3. Do not write anything on question paper (Except your Er. No.).
- 4. Assume suitable numerical data for providing the examples.

A3 = (-1.11.11)B3 = (-1.11.1.1)

4. Assume suitable numerical data for providing the examples.						
Q1.	(a)	What do you mean by Soft Computing? Explain its characteristics with help of suitable examples.	Marks [05]	CO No.		
Q2.	(a)	Obtain the output of the neuron for a network with inputs are given as [x1, x2] =[0.7, 0.8] and the weights are [w1, w2] = [0.2, 0.3] with bias = 0.9. Use (i) Binary sigmoid activation function (ii) Bipolar sigmoid activation function	[05]	CO4		
Q3.	(a)	Train the auto-associative network for input vectors [-1, 1, -1, 1]. Also test the network for the following case: (i) For the same input vector. (ii) For the noisy input vector [1, 1, 1, 1]	[05]	CO2		
Q4.	(a) (b)	What do you mean by Adaptive Resonance Theory? Explain its use in Neural Networks. Implement NAND function using McCulloch-Pitts neuron model.	[03] [02]	CO3		
Q5.	(a)	Bidirectional hetero-associative network stores the given bipolar input vectors $A=(A1, A2, A3)$ with associated output vector $B=(B1, B2, B3)$. Compute the weight matrix also check the performance of the network by using any given input pattern. $A1 = (1 - 1 - 1 - 1 - 1 - 1) B1 = (1 1 - 1 - 1 - 1) A2 = (-1 1 1 - 1 - 1 - 1) B2 = (1 - 1 1 - 1 - 1)$	[05]	CO4		