PRIMERA ENTREGA DEL PROYECTO

POR

Natalia Marcela Henao

43.463.025

Andrés Felipe Duque Daza

1.152.706.282

Julián Camilo Duque Ospina

1.036.656.349

Introducción A la inteligencia Artificial

Raul Ramos Pollan

Universidad De Antioquia

Facultad De Ingeniería

Medellín, septiembre de 2023

1. Planteamiento del problema

La naturaleza nos presenta su diversidad de muchas maneras diferentes y diversidad en formas, texturas, tamaños, etc. despierta la curiosidad por conocer sus características y cómo se puede expresar esta diversidad. En este proyecto, el tipo de cubierta forestal (tipo de cubierta arbórea dominante) tuvo que predecirse a partir de variables cartográficas precisas (a diferencia de los datos de teledetección). El conjunto de datos es producido y proporcionado por el Sistema de información de recursos de la Región 2 del Servicio Forestal de los Estados Unidos (USFS) y el Servicio Geológico de los Estados Unidos. Los datos están en formato bruto (no escalados) y contienen columnas de datos binarios para variables cualitativas independientes, como la naturaleza y el tipo de suelo.

El área de estudio son cuatro áreas silvestres ubicadas en el Bosque Nacional Roosevelt del norte de Colorado. Cada observación es un parche de 30m x 30m. Se le pide que prediga una clasificación entera para el tipo de cubierta forestal. Los siete tipos son:

- 1. Picea/abeto
- 2. Pino Lodgepole
- 3. Pino Ponderosa
- 4. Álamo/Sauce
- 5. Álamo temblón
- 6. Abeto de Douglas
- 7. Krummholz

El conjunto de entrenamiento (15120 observaciones) contiene tanto entidades como Cover_Type (el tipo de cubierta forestal). El conjunto de prueba contiene solo las funciones. Debe predecir Cover_Type para cada fila en el conjunto de prueba (565892 observaciones).

2. Dataset

El dataset que usaremos es de una competencia de kaggle en la cual se proporcionan datos cartográficos para cada celda de 30m x 30m de corteza forestal, estos son:

- Elevation Elevación en metros.
- Aspect Aspecto en grados de acimut.
- Slope Pendiente en grados.
- Horizontal_Distance_To_Hydrology Horz Dist a las características de agua superficial más cercanas.
- Vertical_Distance_To_Hydrology Vert Dist a las características de agua superficial más cercanas.
 - Horizontal_Distance_To_Roadways Horz Dist a la carretera más cercana.
- Hillshade_9am (índice 0 a 255) Hillshade índice a las 9 a. m., solsticio de verano.
- Hillshade_Noon (índice de 0 a 255) Índice de sombreado al mediodía, solsticio de verano.
- Hillshade_3pm (índice de 0 a 255) Índice de sombreado a las 3 p.m., solsticio de verano.
- Horizontal_Distance_To_Fire_Points- Dist Horz a los puntos de ignición de incendios forestales más cercanos.
 - Wilderness_Area (4 columnas binarias, 0 = ausencia o 1 = presencia)
 - Designación de área silvestre.
- Soil_Type (40 columnas binarias, 0 = ausencia o 1 = presencia) Designación de tipo de suelo.

- Cover_Type (7 tipos, números enteros 1 a 7) Designación del tipo de cubierta forestal.
- Para conocer cuáles son los demás datos del dataset los invito a que visiten la página oficial de kaggle de este proyecto:
 - https://www.kaggle.com/competitions/forest-cover-type-prediction/data

***** train.csv:

Es un archivo con los datos de entrenamiento(con 15120 instancias), descritos anteriormente.

***** test.csv:

Son los datos de prueba (con más de 500.000 instancias), que tiene la misma naturaleza que los datos de entrenamiento, en este caso hay que predecir la columna Cover_Type, con el tipo de corteza a la que pertenezca del 1 al 7.

***** sample_submission.csv:

Un archivo de envío de muestra en el formato correcto.

3. Métricas

La métrica de evaluación principal para el modelo será el porcentaje de precisión multiclases que se representa de la siguiente manera : *Accuracy (ACC)*

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Donde:

P: Condición positiva. El número de casos positivos reales en los datos.

N: Condición negativa. El número de casos negativos reales en los datos.

TP: True positive. Un resultado de prueba que indica correctamente la presencia de una condición o característica.

TN: True negative. Un resultado de prueba que indica correctamente la ausencia de una condición o característica.

FP: False positive. Un resultado de prueba que indica erróneamente que una condición o atributo en particular está presente.

FN: False negative. Un resultado de prueba que indica erróneamente que una condición o atributo en particular está ausente.

4. Desempeño

Esperamos que a partir de este modelo, si se puede integrar a la investigación profesional, se pueda detectar eficazmente cada tipo de corteza de árbol según las características por las que se realiza este proyecto, y se puedan seguir desarrollando otras funcionalidades como la licencia. inversión.

5. Bibliografía

* FOREST COVER TYPE PREDICTION – Use cartographic variables to classify forest categories | Kaggle. (2022). Retrieved 4 July 2022, from www.kaggle.com/competitions/forest-cover-type-prediction/overview/description