E202 – Circuitos Elétricos II

Aula 1 — Fontes Alternadas

Prof. Luciano Leonel Mendes PED Pedro Henrique de Souza

Fonte DC – Corrente Contínua

- Uma fonte de tensão gera uma diferença de potencial que força o deslocamento de elétrons sobre uma carga.
- Na fonte DC, o fluxo de elétrons se desloca sempre num mesmo sentido.

$$I = \frac{V}{R} \qquad P = VI \qquad P = \frac{V^2}{R} \qquad P = RI^2$$

 Numa fonte alternada, o fluxo de elétrons muda de sentido de tempos em tempos.

As tensões e as correntes são funções do tempo.

As formas de ondas dos sinais vão depender de como a fonte se comporta ao longo do tempo.

Como os elétrons se deslocam de forma ordenada sobre a carga, há potência sendo dissipada.

Em circuitos resistivos, as mesmas relações vistas para corrente contínua se mantém.

$$i(t) = \frac{v(t)}{R}$$
 $p(t) = v(t)i(t)$ $p(t) = \frac{v(t)^2}{R}$ $p(t) = Ri(t)^2$

• Relação entre tensão e corrente em circuitos resistivos alimentados com fonte alternadas de tensão.

Acesse o circuito aqui

• Exercício: Considere o seguinte abaixo. Trace as curvas para a tensão a a corrente

Acesse o circuito aqui.

Fonte AC – Sinais Periódicos

ullet As fontes alternadas normalmente são periódicas, ou seja, seus valores se repetem a cada período T.

$$x(t) = x(t + kT)$$

• Nos exemplos abaixo, as formas de ondas se repetem a cada 1s, ou seja, T=1s.

Fonte AC – Sinais Periódicos

- A frequência de sinais periódicos é definida como o número de ciclos que ocorrem em 1 segundo.
- A frequência é dada pelo inverso do período:

$$f = \frac{1}{T}$$

• Período e frequência são grandezas fundamentais para a caracterização de fontes alternadas.

Fonte AC – Sinais Periódicos

• Exemplo: determine o período e a frequências das fontes de tensão abaixo.

Fonte AC – Valor de Pico

- As fontes AC também são caracterizadas pelos seus níveis de tensão ou corrente.
- Valor de Pico representado como V_p ou E_p para tensões e I_p para corrente, é o máximo valor que a forma de onde pode assumir.

Fonte AC – Valor de Pico à Pico

• Valor de Pico à Pico – representado como V_{pp} ou E_{pp} para tensões e I_{pp} para corrente, é a diferença entre o valor máximo e o valor mínimo da forma de onda.

Fonte AC – Valor Médio

• Valor médio – representado por V_m ou E_m para tensão e I_m para corrente, é o valor em torno do qual o sinal varia ao longo do tempo.

• Para formas de ondas simétricas: $V_m = \frac{V_{max} + V_{min}}{2}$

Fonte AC – Valor Médio

• O valor médio é dado pela área sobre a curva ao longo de um período, normalizado pelo período. T

$$E_m = \frac{1}{T} \int_0^T x(t)dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t)dt$$

• Exemplo: mostre que os valores médios dos sinais abaixo são realmente nulos.

Fonte AC – Valor RMS

• Valor RMS - representado como V_{rms} ou E_{rms} para tensões e I_{rms} para corrente, é o valor de tensão ou corrente que dissiparia uma potência equivalente a uma fonte DC, ao ser aplicada numa resistência R.

$$V_{RMS} = \sqrt{\frac{(V_{max} - V_m)^2}{2} + V_m^2}$$

$$V_{RMS} = \sqrt{(V_{max} - V_m)^2 + V_m^2}$$

$$V_{RMS} = \sqrt{\frac{(V_{max} - V_m)^2}{3} + V_m^2}$$

Fonte AC – Valor RMS

• O valor RMS (root mean square) é a raiz quadrada do valor médio quadrático

$$E_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} x^{2}(t) dt}$$

• Exemplo: Encontre os valores RMS dos sinais abaixo.

Fonte AC – Gerador de Funções

• Equipamento capaz de gerar diversas formas de ondas.

SAÍDA PRINCIPAL	
Faixa de frequência	0,5 Hz a 4 MHz em seis faixas
	Seis formas de onda (senóide, quadrada, triângulo, declive, +pulso, -pulso)
Amplitude	20 Vp-p entrada aberta (10 Vp-p entrada de 50 Ω)
	0 dB, -20 dB (+2%) — Capítulo 21
Impedância de saída	50 Ω (+2%) — Capítulo 26
Distorção	
Tempo de subida/queda	<60 ns — Capítulo 24
SAÍDA SYNC	
Tempo de subida	
Formas de onda	Quadrada, pulso — Capítulo 24
VARREDURA	
Modo	Varredura linear/log — Capítulo 21
Taxa	De 10 ms a 5 s variável continuamente
Saída de varredura	10 Vp-p (aberto)
Impedância de saída	