POLYNÔMES DE LEGENDRE

Pour tout $n \in \mathbb{N}$, on note P_n la fonction polynôme de la variable réelle x définie par :

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[\left(x^2 - 1 \right)^n \right]$$

- 1. Donner une expression explicite des fonctions polynômes P_0, P_1, P_2 et P_3
- 2. Exprimer $P_n(-x)$ en fonction de $P_n(x)$.
- 3. Calculer $P_n(0)$ et $P'_n(0)$.
- 4. En effectuant de deux façons différentes le calcul de $\frac{\mathrm{d}^{n+2}}{\mathrm{d}x^{n+2}}$ $\left[(x^2-1)^{n+1}\right]$, montrer que l'on a :

$$(1 - x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0$$

- 5. Soit k un nombre entier compris au sens large entre 0 et k-1. Préciser l'ordre de multiplicité de 1 et -1 en tant que racines de la dérivée d'ordre k de $(x^2-1)^n$.
 - En appliquant le théorème de Rolle aux dérivées successives de $(x^2 1)^n$, montrer que P, admet n racines réelles distinctes, toutes comprises strictement entre -1 et 1.

POLYNÔMES DE LEGENDRE

On notera pour tout $n \in \mathbb{N}$, f_n la fonction polynomiale $f_n : x \mapsto (x^2 - 1)^n$.

On notera également pour $k \in \mathbb{N}$, indifféremment, $D^k((x^2-1)^n) = (f_n)^{(k)}(x) = \frac{\mathrm{d}^k}{\mathrm{d}x^k}[(x^2-1)^n]$

1.
$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$$

$$P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$$

2. Pour tout $n \in \mathbb{N}$, la fonction f_n est paire. Par conséquent sa dérivée nième est une fonction paire si n est pair, impaire si n est impair.

Donc, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$,

$$P_n(-x) = (-1)^n P_n(x).$$

3. On déduit de ce qui précède que $P_n(0) = 0$ si n est impair et que si n est pair, P'_n est impaire d'où $P'_n(0) = 0$. Reste à déterminer pour tout $p \in \mathbb{N}$, $P_{2p}(0)$ et $P'_{2p+1}(0)$.

 $(x^2 - 1)^{2p} = \sum_{k=0}^{2p} C_{2p}^k (-1)^{2p-k} x^{2k}$. Comme $D^{2p}(x^{2k}) = 0$ si k < p, on obtient en dérivant 2p fois :

$$P_{2p}(x) = \frac{1}{2^{2p} (2p)!} \sum_{k=p}^{2p} C_{2p}^{k} (-1)^{2p-k} D^{2p}(x^{2k}).$$

 $D^{2p}(x^{2k})$ est nul en x=0 sauf si k=p auquel cas il vaut (2p)!. On en déduit après simplifications :

$$P_{2p}(0) = (-1)^p \frac{(2p)!}{2^{2p} (p!)^2}$$

De la même manière,

$$\begin{split} P'_{2p+1}(x) &= \frac{1}{2^{2p+1}} \sum_{k=0}^{2p+1} C^k_{2p+1} \left(-1\right)^{2p+1-k} D^{2p+2}(x^{2k}) \\ &= \frac{1}{2^{2p+1}} \sum_{k=n+1}^{2p+1} C^k_{2p+1} \left(-1\right)^{2p+1-k} \frac{(2k)!}{(2k-2p-2)!} \; x^{2k-2p-2}. \end{split}$$

D'où l'on déduit :

$$P'_{2p+1}(0) = (-1)^p \frac{(2p+1)!}{2^{2p} (p!)^2}$$

Soit finalement pour tout $p \in \mathbb{N}$,

$$P_{2p}(0) = (-1)^p \frac{(2p)!}{2^{2p} (p!)^2} \qquad P'_{2p}(0) = 0.$$

$$P_{2p+1}(0) = 0$$
 $P'_{2p+1}(0) = (-1)^p \frac{(2p+1)!}{2^{2p} (p!)^2}$

4. Soit $n \in \mathbb{N}$, en appliquant la formule de Leibnitz à $\frac{\mathrm{d}^{n+2}}{\mathrm{d}x^{n+2}}$ $[(x^2-1)(x^2-1)^n]$, on obtient

$$\frac{\mathrm{d}^{n+2}}{\mathrm{d}x^{n+2}} \left[(x^2 - 1)^{n+1} \right] = \sum_{k=0}^{n+2} C_{n+2}^k D^k (x^2 - 1) D^{n+2-k} ((x^2 - 1)^n)
= \sum_{k=0}^2 C_{n+2}^k D^k (x^2 - 1) D^{n+2-k} ((x^2 - 1)^n)
= (x^2 - 1) D^{n+2} ((x^2 - 1)^n) + 2(n+2) x D^{n+1} ((x^2 - 1)^n) + (n+2)(n+1) D^n ((x^2 - 1)^n)
= 2^n n! \left[(x^2 - 1) P_n''(x) + 2(n+2) x P_n'(x) + (n+2)(n+1) P_n(x) \right]$$

D'autre part, $f'_{n+1}(x) = 2(n+1)x(x^2-1)^n$. En appliquant de nouveau la formule de Leibnitz à la dérivée (n+1)ième de ce produit , on obtient :

Polynômes de Legendre

$$\frac{\mathrm{d}^{n+2}}{\mathrm{d}x^{n+2}} \left[(x^2 - 1)^{n+1} \right] = 2(n+1) \sum_{k=0}^{n+1} C_{n+1}^k D^k(x) D^{n+1-k} ((x^2 - 1)^n)
= 2(n+1) \left[x D^{n+1} ((x^2 - 1)^n) + (n+1) D^n ((x^2 - 1)^n) \right]
= 2(n+1) 2^n n! \left(x P'_n(x) + (n+1) P_n(x) \right)$$

En identifiant, on obtient l'égalité voulue

$$(1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0$$

- 5. Soit $n \in \mathbb{N}^*$ et $k \in [0, n-1]$. 1 et -1 sont racines d'ordre n de f_n donc racines d'ordre n-k de $f_n^{(k)} = D^k(f_n)$. Montrons par récurrence sur $k \in [0, n]$ la propriété \mathcal{P}_k : " $f_n^{(k)}$ s'annule au moins k fois sur]-1, 1[."
 - \mathcal{P}_0 est vraie.
 - f_n s'annule en -1 et en 1, est continue sur [-1,1] et dérivable sur]-1,1[, donc f'_n s'annule au moins une fois sur]-1,1[d'après le théorème de Rolle : \mathcal{P}_1 est établie.
 - Supposons \mathcal{P}_k vraie pour un certain $k \in [1, n-1]$. Notons $\alpha_1, \ldots, \alpha_k$ les zéros de $f_n^{(k)}$ dans]-1, 1[avec $-1 < \alpha_1 < \alpha_2 < \cdots < \alpha_k < 1$. Comme $n-k \geqslant 1$, $f_n^{(k)}(-1) = f_n^{(k)}(1) = 0$. Notons $\alpha_0 = -1$ et $\alpha_{k+1} = 1$. Pour tout $i \in [0, k]$, $f_n^{(k)}(\alpha_i) = f_n^{(k+1)}(\alpha_{i+1}) = 0$, $f_n^{(k)}$ est continue sur $[\alpha_i, \alpha_{i+1}]$, dérivable sur $]\alpha_i, \alpha_{i+1}[$: d'après le théorème de Rolle, il existe $\beta_i \in]\alpha_i, \alpha_{i+1}[$ tel que $f_n^{k+1}(\beta_i) = 0$.

On a $-1 = \alpha_0 < \beta_0 < \alpha_1 < \dots < \alpha_i < \beta_i < \alpha_{i+1} < \dots < \beta_k < \alpha_k = 1$, on obtient donc ainsi k+1 racines distinctes de $f_n^{(k+1)}$ dans]-1,1[ce qui prouve \mathcal{P}_{k+1} .

La récurrence est établie : \mathcal{P}_k est vraie pour tout $k \in [0, n]$.

En particulier, \mathcal{P}_n assure que $P_n = \frac{1}{2^n n!} f_n^{(n)}$ admet n racines distinctes dans]-1,1[. Comme de plus P_n est une fonction polynôme de degré n en tant que dérivée nième d'une fonction polynôme de degré 2n, P_n admet au plus n racines comptées avec leurs ordres de multiplicité.

Ce sont donc les seules racines de P_n et elles sont simples.