PHYSICS

Chapter N° 23

Refracción de la Luz

MOTIVATING THEORY

REFRACCIÓN DE LA LUZ

Es el fenómeno que consiste en el cambio en la dirección de propagación de la luz al pasar de un medio transparente a otro medio transparente.

MOTIVATING THEORY

Que es el índice de Refracción(n)

Es un valor numérico adimensional que se define como el cociente de la rapidez de la luz en el vacío (o aire) y la rapidez de la luz en el medio.

$$n_2 > n_1$$

$$n_1 > n_2$$

MOTIVATING THEORY

ELEMENTOS DE LA REFRACCIÓN

INDICE DE REFRACCIÓN (n)

$$n_{\text{medio}} = \frac{\text{RAPIDEZ DE LA LUZ EN EL VACÍO}}{\text{RAPIDEZ DE LA LUZ EN EL MEDIO}}$$

$$n_{\text{medio}} = \frac{C}{V_{\text{medio}}} C > V_{\text{medio}}$$

$$C = 300\ 000 \frac{\text{km}}{\text{s}} = 3.10^8 \text{ m/s}$$

LEY DE SNELL

Relaciona a los ángulos de incidencia y de refracción con los índices de refracción de los medios donde se propagan el rayo incidente y el rayo refractante.

$$n_1$$
 Sen $\hat{i} = n_2$ Sen \hat{r}

Problema 1

Si la rapidez de la luz de un medio transparente es 200 000 km/s, determine el índice de refracción de dicho medio.

RESOLUCIÓN:

De la definición del índice de refracción:

Ahora:

$$n_{\text{medio}} = \frac{300\ 000\ \text{km/s}}{200\ 000\ \text{km/s}}$$

$$\therefore n_{\text{medio}} = \frac{3}{2}$$

Problema 2

Determine la rapidez de la luz en el agua cuyo índice de refracción es 4/3.

RESOLUCIÓN:

De la definición del índice de refracción:

Ahora:

$$\frac{4}{3} = \frac{300\ 000\ km/s}{V_{agua}}$$

$$V_{\text{agua}} = \frac{300\ 000\ \text{km/s}}{\frac{4}{3}}$$

Problema 3

Un rayo de luz que viene del aire se refracta en el agua. Determine la medida del ángulo de refracción. $(n_{aqua} = 4 / 3)$

RESOLUCIÓN:

Del gráfico original, obtendremos la medida del ángulo de incidencia.

$$n_1 \operatorname{Sen} \hat{i} = n_2 \operatorname{Sen} \hat{r}$$

$$1 \cdot \frac{4}{5} = \frac{4}{3} \operatorname{Sen} \alpha$$

Sen
$$\alpha = \frac{3}{5}$$

$$\alpha = 37^{\circ}$$

Problema 4

Se muestra la trayectoria de un rayo luminoso. Determine la medida del ángulo de incidencia. $(n_{líquido} = 1,2)$

RESOLUCIÓN:

Usando la ley de Snell

$$n_1 \operatorname{Sen} \hat{i} = n_2 \operatorname{Sen} \hat{r}$$

$$n_{aire} Sen \hat{i} = n_{líquido} Sen 30^{\circ}$$

$$1 \operatorname{Sen} \hat{\imath} = \left(\frac{6}{5}\right) \left(\frac{1}{2}\right)$$

Sen
$$\hat{i} = \frac{3}{5}$$

$$\therefore \hat{\mathbf{i}} = 37^{\circ}$$

Problema 5

Determine la medida del ángulo α en la refracción mostrada. sen16° = 7 /25

RESOLUCIÓN:

Ahora, usando la ley de Snell

$$n_1 \operatorname{Sen} \hat{i} = n_2 \operatorname{Sen} \hat{r}$$

4Sen
$$16^{\circ} = 1,4$$
Sen $(16^{\circ} + \alpha)$

$$4\left(\frac{7}{25}\right) = \left(\frac{14}{10}\right) \text{Sen} \left(16^{\circ} + \alpha\right)$$

$$\left(\frac{4}{5}\right) = \text{Sen} \left(16^{\circ} + \alpha\right)$$

$$16^{\circ} + \alpha = 53^{\circ}$$

$$\alpha = 37^{\circ}$$

Problema 6

Determine la medida del ángulo x en la refracción mostrada.

$$n_{\text{aceite}} = \sqrt{2}$$

Aire

Aeeite

RESOLUCIÓN:

Usando la ley de Snell

$$n_1$$
 Sen $\hat{i} = n_2$ Sen \hat{r}

Reemplazando

1·Sen
$$x = \sqrt{2}$$
Sen **30**°

$$Sen x = \sqrt{2} \left(\frac{1}{2}\right)$$

$$x = 45^{\circ}$$

Problema 7

Determine la rapidez de propagación de la luz en el líquido mostrado. (c = 300 000 km/s)

Usando la ley de Snell

$$n_1 \operatorname{Sen} \hat{i} = n_2 \operatorname{Sen} \hat{r}$$

1.Sen $45^{\circ} = n_2 \text{Sen } 30^{\circ}$

$$(\frac{\sqrt{2}}{2}) = n_2(\frac{1}{2})$$

$$n_2 = \sqrt{2}$$

Calculo de la rapidez

$$n_2 = \frac{C}{V_2}$$

$$\sqrt{2} = \frac{3 \cdot 10^8 \text{m/s}}{\text{V}_2}$$

$$V_2 = 2,1.10^8 \ m/s$$

Problema 8

En el laboratorio de la PUCP se invitó a los estudiantes de Sacos Oliveros para constatar que la luz monocromática y para un par dado de materiales a y b en lados opuestos de la interfaz, la razón de los senos de los ángulos y θ a y θ b, es igual al inverso de la razón de las índices de refracción según la ecuación

$$\frac{\operatorname{sen}\theta_a}{\operatorname{sen}\theta_b} = \frac{n_b}{n_a}$$

Se muestra el siguiente experimento. Determine la medida del ángulo θ_a .

Material a Material b

 $n_b = 5/4$

 $n_b=2$

DEL DATO

$$\frac{sen \theta a}{sen 30^{\circ}} = \frac{2}{\frac{5}{4}}$$

$$\frac{sen \theta a}{\frac{1}{2}} = \frac{8}{5}$$

$$\frac{sen\ \theta a}{1} = \frac{4}{5}$$

$$\theta a = 53^{\circ}$$