Assignment 1

Students

January 6, 2023

1 Question 1

1.1 i)

Table 1: OLS regression for log-earnings on schooling, age, and age squared.

	$Dependent\ variable:$
	logwage
schooling	0.216***
	(0.032)
age	-0.342
	(0.521)
$I(age^2)$	-0.011
	(0.008)
Constant	26.409***
	(8.057)
Observations	416
\mathbb{R}^2	0.815
Adjusted R ²	0.813
Residual Std. Error	1.499 (df = 412)
F Statistic	$604.261^{***} (df = 3; 41)$
Note:	*p<0.1; **p<0.05; ***p<

From Table 1 can be observed that only the intercept and schooling are significant. Both are significant at the 1%-significance level. For a given worker, an additional year of schooling is associated with a $(e^{0.216}-1)\cdot 100\approx 24.11\%$ increase in wage. The intercept and explanatory variables explain 81.5% of the variation in logwage.

1.2 ii)

logwage is only observed when a worker earns a wage.

Let Z'_i , γ , and V_i denote some exclusion restriction, the corresponding coefficient, and error term for individual i,

respectively. Then, we have the selection equation

$$I_{i}^{*} = Z_{i}^{'} \gamma + V_{i},$$

where I_{i} takes value 1 if the wage for individual i $I_i^* > 0$, and value 0 otherwise. In addition, let Y_i^* denote the latent variable logwage, $X_i^{'}$ the regressor(s), β the coefficient (vector) and U_i the error term. The second regression equation is

$$Y_i^* = X_i^{'}\beta + U_i.$$

However, instead of the true ${\tt logwage}\ Y_i^*$ we observe

- 1.3 iii)
- 1.4 iv)
- 1.5 v)
- 2 Question 2
- 2.1 i)
- 2.2 ii)
- 2.3 iii)