Topic 11: Wikipedia: Surface form extraction (HARD!)

Philipp Heinisch Ricardo Usbeck final presentation

February 1, 2018

Table of Contents

- Task
 - Task description
 - Theory (basics)
- My approach
- 3 Evaluation
 - Evaluation results
 - Discussion of evaluation results
- 4 Code

Knowledge extraction from text

Blaise Pascal (19 June 1623 to 19 August 1662) was a French mathematician, physicist, inventor, writer and Catholic theologian[...]

<u>Pascal</u> was an important mathematician[...]

Belongs Blaise Pascal and/ or Pascal to the URI http://dbpedia.org/resource/Blaise_Pascal?

Knowledge extraction from text

Blaise Pascal (19 June 1623 to 19 August 1662) was a French mathematician, physicist, inventor, writer and Catholic theologian[...]

<u>Pascal</u> was an important mathematician[...]

Belongs Blaise Pascal and/ or Pascal to the URI http://dbpedia.org/resource/Blaise_Pascal?

Task: Knowledge bases contain labels for resources (rdfs:label). [...] The goal of this task is to detect candidates for labels using Wikipedia. [...]

Knowledge extraction from text

Blaise Pascal (19 June 1623 to 19 August 1662) was a French mathematician, physicist, inventor, writer and Catholic theologian[...]

<u>Pascal</u> was an important mathematician[...]

Belongs Blaise Pascal and/ or Pascal to the URI

http://dbpedia.org/resource/Blaise_Pascal?

Task: Knowledge bases contain labels for resources (rdfs:label). [...]

The goal of this task is to detect candidates for labels using Wikipedia. [...]

Solve this task with the KATANA algorithm

- ∃ list of candidates (+ knowledge about these)
- ullet list of extracted labels with extracted knowledge from text

KATANA!

Match the labels to the candidates = calculate the score for each candidate-label \Rightarrow the highest score wins!

Solve this task with the KATANA algorithm

- ∃ list of candidates (+ knowledge about these)
- ullet \exists list of extracted labels with extracted knowledge from text

KATANA!

Match the labels to the candidates = calculate the score for each candidate-label \Rightarrow the highest score wins!

How good is the KATANA algorithm?

Solve this task with the KATANA algorithm

- ∃ list of candidates (+ knowledge about these)
- ullet list of extracted labels with extracted knowledge from text

KATANA!

Match the labels to the candidates = calculate the score for each candidate-label \Rightarrow the highest score wins!

How good is the KATANA algorithm?

KATANA Algorithm/ Formulas

Given

Knowledge base KB (s, p, o), our extracted triples ext from natural text with labels, find out the matching URI-candidate c_s from $\{c_1, ..., c_n\}$

Determine the ambiguity of a fact to a given subject s

$$\psi(p, o) = 1 - \frac{1}{|\{s|(s, p, o) \in KB\}|}$$

KATANA Algorithm/ Formulas

Given

Knowledge base KB (s, p, o), our extracted triples ext from natural text with labels, find out the matching URI-candidate c_s from $\{c_1, ..., c_n\}$

Determine the ambiguity of a fact to a given subject s

$$\psi(p, o) = 1 - \frac{1}{|\{s|(s, p, o) \in KB\}|}$$

Determine the score (matching grade) candidate o label (o λ)

for a certain candidate c:

$$M(c,s) = \{(p,o) | (\lambda, p,o) \in ext \cap (c,p,o) \in KB\}$$

$$score(c,s) = \begin{cases} 0 & M(c,s) = \emptyset \\ 1 - \prod_{(p,o) \in M(c,s)} \psi(p,o) & M(c,s) \neq \emptyset \end{cases}$$

KATANA Algorithm/ Formulas

Given

Knowledge base KB (s, p, o), our extracted triples ext from natural text with labels, find out the matching URI-candidate c_s from $\{c_1, ..., c_n\}$

Determine the ambiguity of a fact to a given subject s

$$\psi(p, o) = 1 - \frac{1}{|\{s|(s, p, o) \in KB\}|}$$

Determine the score (matching grade) candidate o label (o λ)

for a certain candidate c:

$$M(c,s) = \{(p,o)|(\lambda,p,o) \in ext \cap (c,p,o) \in KB\}$$

$$\mathit{score}(c,s) = egin{cases} 0 & \mathit{M}(c,s) = \emptyset \ 1 - \prod_{(p,o) \in \mathit{M}(c,s)} \psi(p,o) & \mathit{M}(c,s)
eq \emptyset \end{cases}$$

My application

My application

My application

My application follows the command pattern

Available commands without their parameters

- Environment commands: help, exit
- Database commands: load, edit, print
- KATANA (evaluation) commands: katana

Demo in the end

... if there is time...

My application follows the command pattern

Available commands without their parameters

- Environment commands: help, exit
- Database commands: load, edit, print
- KATANA (evaluation) commands: katana

Demo in the end

... if there is time...

Result measurement function (EvaluationHandler::calculateAccuracy())

L is set of guessed labels, $L' \subseteq L$ set of wrong guessed labels, C set of correct labels and $C' \subseteq C$ set of labels that doesn't appear in L:

Size of bubbles
$$s=rac{2-rac{|L'|}{|L|}-rac{|C'|}{|C|}}{2}$$
, $0\leq s\leq 1$

Discussion of evaluation results

- KATANA leads to much more better results than the random matching
- **②** KATANA is very precise (\geq 80%) until 90% data-loss [in a big data set, too]
 - lots of properties are nearly unambiguously, e.g.: birth date, spouse, (wikiPageExternalLink), ...
 - ullet to match 1 label in the real world, you would have ≥ 1 candidates (selective range)

Link to repository (Code)

https://github.com/dice-group/KATANA