Couplage maximum dans un graphe biparti

Quentin Fortier

April 12, 2023

Dans ce cours, $G=\left(\, V,E \right)$ est un graphe non orienté et non pondéré.

Définition

Un **couplage** de G est un ensemble d'arêtes $M\subseteq E$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Dans ce cours, $G=(\mathit{V},\mathit{E})$ est un graphe non orienté et non pondéré.

Définition

Un **couplage** de G est un ensemble d'arêtes $M\subseteq E$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Définition

Un sommet $v \in V$ est **couvert** par M s'il appartient à une arête de M. Sinon, v est **libre** pour M.

Dans ce cours, $G=\left(\, V,E \right)$ est un graphe non orienté et non pondéré.

Définition

Un **couplage** de G est un ensemble d'arêtes $M\subseteq E$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Définition

Un sommet $v \in V$ est **couvert** par M s'il appartient à une arête de M. Sinon, v est **libre** pour M.

Applications:

- Mariage : chaque personne est mariée à au plus une autre personne
- Rech. de logement : couplage entre étudiants et logements

Un graphe ${\cal G}$

Un couplage de ${\it G}$ (en rouge)

Pas un couplage

Exercice

Écrire une fonction

est_couplage : int array array -> (int*int) list -> bool

déterminant si un ensemble d'arêtes forme un couplage d'un graphe.

Soit M un couplage d'un graphe G.

Définitions

- La **taille** de M, notée |M|, est son nombre d'arêtes.
- M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage **maximal** s'll n'existe pas de couplage M' tel que $M \subsetneq M'$.
- M est un couplage **parfait** si tout sommet de G appartient à une arête de M.

Soit M un couplage d'un graphe G.

Définitions

- La **taille** de M, notée |M|, est son nombre d'arêtes.
- M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage **maximal** s'll n'existe pas de couplage M' tel que $M \subsetneq M'$.
- M est un couplage **parfait** si tout sommet de G appartient à une arête de M.

Question

Quelle(s) implication(s) a t-on entre couplage maximum et couplage maximal ?

Exercice

- Le couplage ci-dessous est-il parfait ?
- Quels sont les sommets couverts par ce couplage? Et ceux libres?
- Le graphe ci-dessous admet-il un couplage parfait ?

On va s'intéresser au problème suivant :

Problème : Couplage maximum

Entrée : Graphe G non orienté, non pondéré.

Sortie : Un couplage maximum de G.

Soit M un couplage d'un graphe G.

Définition

- Un chemin est **élémentaire** s'il ne passe pas deux fois par le même sommet.
- Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $E \setminus M$.
- Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

Soit M un couplage d'un graphe G.

Définition

- Un chemin est **élémentaire** s'il ne passe pas deux fois par le même sommet.
- Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $E \setminus M$.
- Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

Question

Donner un exemple de chemin augmentant pour le couplage ci-dessous.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

Un chemin est vu comme un ensemble d'arêtes.

Théorème

Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

Un chemin est vu comme un ensemble d'arêtes.

Théorème

Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

Soit M un couplage d'un graphe G.

Théorème

M est un couplage maximum de G

 \iff

Il n'existe pas de chemin M-augmentant dans G

Soit M un couplage d'un graphe G.

Théorème

M est un couplage maximum de ${\it G}$

Il n'existe pas de chemin M-augmentant dans G

Preuve:

 \implies Soit M un couplage maximum.

Supposons qu'il existe un chemin M-augmentant P.

Alors $M\Delta P$ est un couplage de G et $|M\Delta P|>|M|$: absurde.

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

Preuve:

 \longleftarrow Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$.

Théorème

M est un couplage maximum de ${\it G}$

Il n'existe pas de chemin M-augmentant dans G

- - **1** Les degrés des sommets de G^* sont au plus 2,

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.

Théorème

M est un couplage maximum de ${\it G}$

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (V, M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de $M^{\ast}.$

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*|>|M|$. Considérons $G^*=(V,M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^{\ast} .
 - $\ \ \,$ Comme $|M^*|>|M|,$ un de ces chemins contient plus d'arêtes de M^* que de M

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (V, M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^{\ast} .
 - **③** Comme $|M^*| > |M|$, un de ces chemins contient plus d'arêtes de M^* que de M: c'est un chemin M^* -augmentant.

Illustration de la preuve précédente :

Couplage maximum par chemin augmentant

Entrée : Graphe G = (V, E)

 $\textbf{Sortie} \ : \textbf{Couplage maximum} \ M \ \textbf{de} \ G$

 $M \leftarrow \emptyset$

Tant que il existe un chemin M-augmentant P dans G :

 $\ \ \, \bot \ \, M \leftarrow M \Delta P$

Couplage maximum par chemin augmentant

Entrée : Graphe G = (V, E)

 $\textbf{Sortie} \ : \mathsf{Couplage} \ \mathsf{maximum} \ M \ \mathsf{de} \ G$

 $M \leftarrow \emptyset$

Tant que il existe un chemin M-augmentant P dans G:

Question

Comment trouver un chemin M-augmentant ?

- Dans un graphe quelconque, avec le Blossom algorithm (très compliqué et HP).
- Plus facilement dans un graphe biparti.

Définition

Un graphe G=(V,E) est **biparti** s'il existe une partition $V=A\sqcup B$ telle que toute arête de E a une extrémité dans A et une extrémité dans B.

Définition

Un graphe G=(V,E) est **biparti** s'il existe une partition $V=A\sqcup B$ telle que toute arête de E a une extrémité dans A et une extrémité dans B.

Question

Montrer que le graphe ci-dessous est biparti, en donnant une partition de ses sommets.

Définition équivalente :

Définition

On appelle k-coloration de G une fonction $c:V\longrightarrow \{1,2,\ldots,k\}$ telle que pour tout arc $(u,v)\in E$, on a $c(u)\neq c(v)$.

Lemme

G admet une 2-coloration

G est biparti

Exercice

Écrire une fonction est_biparti : int list array -> bool pour déterminer si un graphe est biparti, en complexité linéaire.

Exercice

Écrire une fonction est_biparti : int list array -> bool pour déterminer si un graphe est biparti, en complexité linéaire.

Exercice

Modifier la fonction précédente pour renvoyer un 2-coloriage.

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- Partir d'un sommet libre.
- ② Se déplacer en alternant entre des arêtes de M et des arêtes de $G\setminus M$, sans revenir sur un sommet visité (DFS).
- ${f 3}$ Si on arrive à un sommet libre, alors on a trouvé un chemin M-augmentant.

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- Partir d'un sommet libre.
- ② Se déplacer en alternant entre des arêtes de M et des arêtes de $G\setminus M$, sans revenir sur un sommet visité (DFS).
- $\ensuremath{\mathfrak{g}}$ Si on arrive à un sommet libre, alors on a trouvé un chemin $M\text{-}{\it a}{\it u}{\it g}{\it m}{\it e}{\it m}{\it e}{\it i}$

Question

Pourquoi cet algorithme ne fonctionne pas sur un graphe général (non biparti) ?

On peut aussi construire un graphe $\overrightarrow{G_M}$ pour simplifier la recherche d'un chemin M-augmentant.

On peut aussi construire un graphe $\overrightarrow{G_M}$ pour simplifier la recherche d'un chemin M-augmentant.

Soit G=(V,E) un graphe biparti, avec $V=A\sqcup B$, et M un couplage de G.

On définit un graphe orienté $\overrightarrow{G_M} = (V_M, \overrightarrow{E_M})$ où :

- $V_M = V \cup \{s, t\}$, où s et t sont deux nouveaux sommets.
- $\bullet \overrightarrow{E_M} = \{(s,u) \mid u \in A \text{ et } u \text{ est libre}\} \cup \{(v,t) \mid v \in B \text{ et } v \text{ est libre}\} \cup \{(u,v) \mid \{u,v\} \in E \setminus M\} \cup \{(v,u) \mid \{u,v\} \in M\}.$

Autrement dit, $\overrightarrow{G_M}$ est construit à partir de G de la façon suivante :

- ullet On ajoute deux nouveaux sommets s et t.
- ullet On mets des arcs depuis s vers chaque sommet libre de A.
- ullet On mets des arcs depuis chaque sommet libre de B vers t.
- ullet On oriente les arcs de M de B vers A.
- On oriente les arcs de $E \setminus M$ de A vers B.

Théorème

 \overrightarrow{P} est un chemin de s à t dans $\overrightarrow{G_M}$

 \iff

 $P\cap E \text{ est un chemin }M\text{-augmentant dans }G$ (où \overrightarrow{P} est obtenu à partir de P en enlevant les orientations)

Théorème

 \overrightarrow{P} est un chemin de s à t dans $\overrightarrow{G_M}$

 $P\cap E \text{ est un chemin }M\text{-augmentant dans }G$ (où \overrightarrow{P} est obtenu à partir de P en enlevant les orientations)

Il suffit donc de trouver un chemin de s à t dans $\overrightarrow{G_M}$ pour trouver un chemin M-augmentant dans G.

Théorème

 \overrightarrow{P} est un chemin de s à t dans $\overrightarrow{G_M}$

 $P\cap E \text{ est un chemin }M\text{-augmentant dans }G$ (où \overrightarrow{P} est obtenu à partir de P en enlevant les orientations)

(où P est obtenu à partir de P en enlevant les orientations)

Il suffit donc de trouver un chemin de s à t dans $\overrightarrow{G_M}$ pour trouver un chemin M-augmentant dans G.

Complexité:

Théorème

 \overrightarrow{P} est un chemin de s à t dans $\overrightarrow{G_M}$

 \iff

 $P\cap E$ est un chemin M-augmentant dans G (où \overrightarrow{P} est obtenu à partir de P en enlevant les orientations)

Il suffit donc de trouver un chemin de s à t dans $\overrightarrow{G_M}$ pour trouver un chemin M-augmentant dans G.

Complexité:

- Construction de $\overrightarrow{G_M}$: O(|V| + |E|).
- 2 Recherche d'un chemin de s à t dans $\overrightarrow{G_M}$: $\mathrm{O}(|V|+|E|)$ (DFS ou BFS).

 $\underline{\mathsf{\Gammaotal}}: \left| \mathsf{O}(|V| + |E|) \right|.$

Couplage maximum par chemin augmentant

Entrée : Graphe G = (V, E)

Sortie : Couplage maximum M de G

$$M \leftarrow \emptyset$$

Tant que il existe un chemin M-augmentant P dans G:

Complexité:

Il y a au plus $\vert E \vert$ d'itération du « Tant que », car on ajoute une arête au couplage à chaque fois.

Sur un graphe biparti, on obtient alors une complexité

$$\mathrm{O}(|E|(|V|+|E|))$$
 (= $\boxed{\mathrm{O}(|V||E|)}$ si G est supposé connexe).

Question

Appliquer l'algorithme précédent au graphe ci-dessous.

Exercice (TP pendant les vacances)

Écrire une fonction couplage_max telle que, si g est un graphe biparti représenté par liste d'adjacence et a, b partitionne les sommets de g, alors couplage_max g a b renvoie un couplage maximal de g.