Proposed Method

Interest Sustainability Prediction

- First divide D chronologically such that $D = D_f || D_b$.
- D_f , D_b denote the front, back part
- All interactions in D_f are precedent to any interaction in D_b .
- || is concatenation operation.

- The divided data D_f and D_b are used for building input and labels:
 - Input: i, item i that appears in D_f .
 - . $Label: y_i = \begin{cases} 1, & \text{if } i \text{ appears in } D_b. \\ 0, & \text{otherwise.} \end{cases}$
- The goal is to predict whether item i, which appears in D_f , will be consumed in the future.

Proposed Method

Interest Sustainability Prediction

• Train a parameterized model M under a supervised-learning framework with binary cross entropy loss:

$$L_{IS} = \sum_{i}^{|I|} y_i log(M(f_i; \theta)) + (1 - y_i) log(1 - M(f_i; \theta))$$

- θ : model parameters
- f_i : feature representation of item i
- ISS is defined by the output of the trained model:
 - $p_i = M(f_i; \theta)$
 - $p_i \in \mathbb{R}$: ISS of item i in the form of probability.