

UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA – DMA

DISCIPLINA: Fundamentos Elementares de Matemática

PERÍODO: 2022-1 TURMAS: 01 e 02

PROFESSOR: J. Anderson Valença Cardoso DATA: 28/07/2022

Lista de Exercícios 1

1. Estude os axiomas de Euclides da Geometria e identifique os conceitos primitivos usados. Faça o mesmo com os principais axiomas da teoria de conjuntos (Exemplo: Axiomas de Extensão, Especificação, etc).

2. Defina cada conceito a seguir e identique na definição os conceitos primitivos e axiomas usados:

(a) Número Par,

(b) Número Ímpar,

(c) Número Primo,

(d) Retas Paralelas,

(e) Retas Perpendiculares,

(f) Triângulo Regular,

(g) Triângulo Isósceles.

3. Considere os conjuntos a seguir e determine todos os seus subconjuntos:

(a) $A = \{0\},\$

(c) $C = \{0, 1, 2\},\$

(b) $B = \{a, b\},\$

(d) $D = \{a_1, a_2, \{a_1, a_3\}\}.$

4. Considere os conjuntos $A = \{d\}, B = \{c, d\}, C = \{a, b, c\}, D = \{a, b, d\}, E = \{a, b, \{c\}, \{c, d\}\}$ e $F = \{a, b, \{d\}\}$. Explique por que cada um dos seguintes itens são verdadeiros:

(a) $A \in F$,

(d) $B \in E$,

(g) $C \neq D$,

(b) $A \not\subset E$,

(e) $A \subset B$,

(h) $B \not\subset C$.

(c) $C \not\subset E$,

(f) $A \notin E$,

(i) $D \neq F$.

5. Determine os subconjuntos de $\mathbb{N} \times \mathbb{N}$ que valem as seguintes igualdades de pares ordenados:

(a) $(10, x^2 + 12) = (2y, 7x)$, (b) $(0, xy) = (y^2 + 1, 2)$, (c) (y+1, 2x+1) = (x+2, y+2).

6. Considere os conjuntos $A = \{1, 2, 3\}, B = \{a, e\}$ e $C = \{3, 4\}$. Determine:

(a) $A \times B$,

(d) $C \times A$,

(g) $A \times B \times C$.

(b) $B \times A$,

(e) $B \times C$,

(h) $B \times A \times C$,

(c) $A \times C$,

(f) $C \times B$.

(i) $C \times A \times B$.

 $\not E A \times B = B \times A? \not E B \times C = C \times B?$

7. Determine quais itens são e quais não são proposições ou sentenças abertas e justique (no caso das proposições, diga seus valores lógicos):

- (a) Este é um número primo.
- (b) Todo número par é múltiplo de 3.
- (c) O Brasil é o maior país das Américas.
- (d) Existe número par múltiplo de 3.
- (e) 1+1=2?
- (f) 1+1=2!
- (g) 1+1=3.
- (h) Multiplique 2x por 4.

- (i) Se $x^2 = 2$ então $x \notin \mathbb{N}$.
- (j) $x^2 4 = 0$.
- (k) Existe $x \in \mathbb{N}$ tal que x < 4 e $x^2 > 10$.
- (1) Existe $a \in \mathbb{N}$ tal que $a^2 > 36$ e $a \le 8$.
- (m) 2004 não é múltiplo de x.
- (n) A soma dos ângulos internos de um triângulo é 180°.
- 8. Escreva cada conjunto a seguir na forma de especificação de conjunto, destacando a senteça aberta usada:
 - (a) $P = \{0, 2, 4, 6, 8, \dots\},\$
 - (b) $I = \{1, 3, 5, 7, \dots\},\$

- (c) $M = \{0, 5, 10, 15, \dots\},\$
- (d) $N = \{7, 9, 11, 13, 15, \dots\}.$
- 9. Determine todas as triplas ordenadas (x, y, z) de $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ que:
 - (a) x + y + z + 1 = 0, (c) x + y + z = 1,
- (e) x + y + z = 2,

- (b) x + y + z = 0,
- (d) x + y + z < 1,
- (f) x + y + z < 2.
- 10. Reescreva as frases a seguir usando (explicitando) quanticadores, sentenças abertas e seus domínios.
 - (a) "Cada pessoa tem uma mãe."
 - (b) "Todo triângulo equilátero é equiângulo."
 - (c) "Pelo menos uma das letras da palavra Banana é uma vogal."
 - (d) "Os diâmetros de uma circunferência se intersectam num ponto."
 - (e) "Cada número primo diferente de dois é impar."
 - (f) "Há um número primo diferente de dois que é par."
 - (g) "Existe pelo menos um número primo diferente de dois que é impar."
- 11. Determine e justique o valor lógico e reescreva em palavras cada uma das seguintes afirmações:
 - (a) $\exists x \in \mathbb{N}$: $x^2 = x$.

(c) $\exists x \in \mathbb{N}; x^2 + 5 = 2x.$

(b) $\forall n \in \mathbb{N}; n+1 \geq 2.$

- (d) $\exists x \in \mathbb{N}: x^2 + 6 = 5x$.
- 12. Escreva em palavras cada proposição a seguir e determine os valores lógicos de cada uma. (Sugestão: use exemplos.)
 - (a) $\forall y \in \mathbb{N}, \exists x \in \mathbb{N} \text{ tal que } y^2 = x.$
- (e) $\exists x \in \mathbb{N} \text{ e } \exists y \in \mathbb{N} \text{ tais que } x^2 + y^2 = 25.$
- (b) $\exists x \in \mathbb{N} \text{ tal que } \forall y \in \mathbb{N} \text{ temos } y^2 = x.$
- (f) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \text{ tal que } x + y = 1.$
- (c) $\exists x \in \mathbb{N} \ e \ \exists y \in \mathbb{N} \ tais que \ y^2 = x$.
- (g) $\forall x \in \mathbb{N} \text{ e } \forall y \in \mathbb{N}, \text{ existe } z \in \mathbb{N} \text{ tal que}$ 2z = x + y.
- (d) $\forall x \in \mathbb{N}, \forall y \in \mathbb{N} \text{ temos } y^2 = x.$
- 13. Considere a sentença aberta $P(A): A \subset \{1,2,3\}$ com variável A e domínio $D = \mathcal{P}(\{1,2,3\})$ (conjunto das partes de $\{1, 2, 3\}$). Determine:
 - (a) todos os conjuntos $A \in D$ para os quais P(A) é verdadeira;

- (b) todos os conjuntos $A \in D$ para os quais P(A) é falsa;
- (c) todos os conjuntos $A \in D$ para os quais $A \cap \{1, 2, 3\} = \emptyset$.
- 14. Considere $S = \{1, 2, 3, 4, 5, 6\}$ e as sentenças abertas " $P(A) : A \cap \{2, 4, 6\} = \emptyset$ " e " $Q(A) : A \neq \emptyset$ " com domínio $D = \mathcal{P}(S)$ (conjunto das partes de S). Determine:
 - (a) todos os conjuntos $A \in D$ tais que $P(A) \wedge Q(A)$ é verdadeira;
 - (b) todos os conjuntos $A \in D$ tais que $P(A) \vee (\sim Q(A))$ é verdadeira;
 - (c) todos os conjuntos $A \in D$ tais que $(\sim P(A)) \land (\sim (Q(A))$ é verdadeira.
- 15. Determine a negação das seguintes sentenças com quantificadores:
 - (a) Para cada número racional r, o número 1/r é racional;
 - (b) Existe um número racional r tal que $r^2 = 2$.
- 16. Determine e justifique o valor lógico e reescreva em palavras (a exemplo do Exercício 15) cada uma das seguintes afirmações:
 - (a) $\exists x \in \mathbb{R}; \ x^2 x = 0.$
 - (b) $\forall n \in \mathbb{N}; n+1 \geq 2.$
 - (c) $\forall x \in \mathbb{R}$; $\sqrt{x^2} = x$.
 - (d) $\exists x \in \mathbb{Q}; \ 3x^2 27 = 0.$
- 17. A afirmação

"Para cada inteiro m, m < 1 ou $m^2 < 4$ "

pode ser expressa usando quantificadores e conectivos como

"
$$\forall m \in \mathbb{Z}; m \leq 1 \text{ ou } m^2 \geq 4$$
",

ou ainda,

"
$$\forall m \in \mathbb{Z}$$
; $(m < 1) \lor (m^2 > 4)$ ".

Faça o mesmo para as afirmações abaixo. Faça também a negação de cada uma.

- (a) Existem inteiros $a \in b$ tais que $ab < 0 \in a + b > 0$.
- (b) Para todos os números reais $x \in y$, $x \neq y$ implica que $x^2 + y^2 > 0$.
- (c) Existe um número real n tal que $n^2 = 2$.
- (d) Não existe número racional x tal que $x^2 = 2$.
- (e) Existe x tal que x^2 é par e divisível por 3.
- (f) Não existe número inteiro x tal que x^2 é primo ou x^2 é negativo.
- (g) Existe um número inteiro x tal que x^2 é par ou x^2 é impar.
- (h) Para cada número real x existe um número real y tal que x + y = 0.
- (i) Todo elemento do conjunto A é elemento do conjunto B.
- (j) Para todo ε , existe δ tal que se $0 < |x a| < \delta$ então $|f(x) f(a)| < \varepsilon$.
- 18. Em cada uma das senteças abertas P(x,y) e Q(x,y) dadas a seguir, com o domínio de ambas a váriáveis sendo \mathbb{Z} , determine o valor lógico de $P(x,y) \Rightarrow Q(x,y)$ para os valores de x e y dados:

(a) "
$$P(x,y): x^2 - y^2 = 0$$
" e " $Q(x,y): x = y$ ", com $(x,y) \in \{(1,-1), (3,4), (5,5)\}$;

(b) "
$$P(x,y): x^2+y^2=1$$
" e " $Q(x,y): x+y=1$ ", com $(x,y)\in\{(1,-1),(-3,4),(0,-1),(1,0)\}$.

19. Considere as sentenças abertas

"
$$P(n): \frac{n(n-1)}{2}$$
 é par" e " $Q(n): 2^{n-2} + 3^{n-2} + 6^{n-2} > \left(\frac{5}{2}\right)^{n-1}$ ",

com domínio \mathbb{N} . Determine três elementos a,b e c em \mathbb{N} tais que $P(a)\Rightarrow Q(a)$ é falso, $Q(b)\Rightarrow P(b)$ é falso e $P(c)\Leftrightarrow Q(c)$ é verdade.

Bons Estudos!