APSC 101

Week 1 Video 1: Safety and Hand Tools

- · Learning goals
 - Describe basic safety protocols for working with handtools
 - Name all of the tools used in Module 5, and describe the function and operation of each
 - Identify which tools were used to create various features in components
- Studio expectations
 - PPE including closed toe shoes, long pants and safety goggles
 - Safety goggles
 - Worn at ALL TIMES. Eyeglasses are not alternatives
 - Encouraged to bring our own
 - Injuries
 - Minor injury: notify instructor. Get bandage if necessary.
 - Serious injury: notify instructor, call 911 and stay on line, have someone wait outside EDC for paramedics
- Hand tools
 - Aviation Snips or Shears
 - Two types that are mirror images
 - Used like scissors to cut sheet metal
 - Do **not** cut wires
 - Often, one tool is easier to use in a particular direction
 - Curved cuts (waves, circles) are also possible
 - o Pliers
 - Used to cut wires
 - Seamer (sheet metal pliers)
 - Used to make a straight fold in sheet metal
 - Nibbler
 - Insert sheet metal to "nibble" a small piece from the sheet
 - Nibbles out straight lines and slots
 - o Hole Punch
 - For most people, easier to use upside down
 - Mark holes with cross hairs
 - Locate position and punch hole
 - If sheet metal becomes stuck, rapidly pull apart handles
 - Pop Riveter (Riveting tool)
 - Use the first piece to transfer holes to the second piece
 - Used to hold 2 sheets together permanently
 - Push the pop rivet back into the riveting tool after every squeeze

Week 2 Video 1: Managing Risk

- · Learning goals
 - Define the term "risk"
 - Describe the factors that determine risk
 - Classify risks by common sources and categories
 - Explain what a risk matrix is and how it is used
 - Describe the risk management procedure
- Risk = Severity * Likelihood. Risk is the possibility of injury, loss, or damage
- Sources of risk
 - o Preventable risks: within team control
 - Strategic risks: risk with possibility of reward
 - o External: outside of control, but must be considered
- Risk Categories

Risk Categories

• Relating to health and welfare of people and the environment

• Related to design and manufacturing that prevent the device from working as intended

• Related to completing the project on time and on budget

• Related to decision-making and operation of the organization or device

• Economic, political, market, etc.

- Risk classification
 - Risk source vs risk category
- Risk management strategies
 - Avoid (best but often unable)
 - Mitigate (minimize likelihood or severity)
 - Transfer (pass risk to others, i.e. insurance)

- Accept to live with consequences
- Safety is paramount
- Risk matrix
 - Severity (1 to 5) and likelihood (1 to 5). Risk is the product (from 1 to 25)
- Procedure: Identify risk -> risk analysis -> is risk acceptable? (risk matrix). Either accept, avoid/transfer, or mitigate

Week 2 Video 2: Team Development

- Learning Goals
 - Describe the different stages of typical team development (Tuckman model)
 - Identify key features of effective engineering teams
 - o Describe the benefits and costs of conflict on a team
 - Identify appropriate conflict management strategies to use in various team situations
- Tuckman's Stages of Team Development
 - Completion of tasks vs team relationships
 - Forming: politeness, uncertainty, optimism. Lack of clear goals, people try to help. Team members work as individuals
 - Storming: members feel more willing to speak. Leads to conflict, tension, stress. Quality and quantity of work diminishes
 - Norming: consensus built, roles established, standards set
 - Updated model: good and bad norming. Bad norming is where bad norms like skipping meetings comes to be accepted
 - o Performing: successful performance, openness, trust established
- Transition between stages
 - Conflict: always present, but is out in the open and more intense during storming
 - Forming -> storming: time spent building team relations, leadership established
 - Storming -> norming: open communication, desire to get better as a team
 - Norming -> performing: environment where people feel safe to speak their minds. Value on the team over the individual
- Norms
 - Bad team norm if a teammate doesn't show up and that is just accepted
- Conflict management styles
 - Assertiveness (achieving own needs) and cooperativeness (achieve other's needs)

Using Conflict Management Styles

Avoiding:

Helpful if stepping away will help to deescalate tensions and think things through

Accommodating:

Good when the issue is not important to you

but you will earn goodwill

Competing:

Consider if the issue is critical to you and action must be taking immediately

Compromising:

Use if time is short and you want to balance team relationships and resolving the issue

Collaborating:

For when you have the time to work towards finding the ideal solution for everyone

- Suited to different situations
- Best to be flexible and adaptable

Week 3 Video 1: Isometric and Orthographic Projection

- Learning goals
 - Describe what is meant by "projection" in the context of engineering drawings
 - Explain how isometric and orthographic projection drawings are produced, and the pros and cons of each
 - Explain why hidden lines are used in orthographic drawings
 - Interpret isometric and orthographic drawings
- Projection: view of 3D object on 2D plane
- Isometric Projection
 - Oblique view from one corner
 - Properties
 - Vertical lines are vertical
 - Horizontal axes rise at 30 degrees to horizontal on the page
 - Equal distant along axes have equal distance on the page
 - Parallel lines are parallel (different from perspective)
 - In perspective, parallel lines converge to vanishing point
 - Sketching Isometric Projections
 - Lightly sketch enclosing box(es)

- Draw shape
- Erase box
- Orthographic Projection
 - o Front, End, Top, Other End, Bottom, Back views
 - o Typically use three: Front, Top, and one of the Ends
 - Hidden lines: dashed lines that reveal features on the inside or back of the part
 - o Centerlines (long short dashes): used to identify center of circles and axes of cylinders

Week 3 Video 2: Engineering Drawings - Layout and Dimensions

- Learning goals
 - Describe what is meant by "Third Angle Projection" and be able to arrange orthographic views in accordance with it
 - Describe what a "title block" is and how it is used on an engineering drawing
 - Describe the standards of dimensioning engineering drawings and identify dimensioning errors
- Third Angle Projection (used in North America)
 - Unfold three standard orthographic views
 - Front view and top view align, front view and end view align

- Title Blocks
 - Border: numbers and letter provide a way to reference regions of the drawing
 - Third angle projection symbol is included in the title block
 - Information included
 - Drawing name
 - Drawing number
 - Revision number/letter
 - Drawing scale
 - Who prepared/checked drawing
 - Detail on units and precision of dimensions
- Dimensions
 - Dimensions indicate length/size
 - Dimension (# of units)
 - Dimension line with arrows on both sides
 - Extension line (comes close to object but does not touch)
 - Guidelines
 - Draw dimensions outside of the view of the part
 - Do not show redundant dimensions
 - When possible, place dimensions between views

- Dimension the view that most clearly shows the feature
- Extension lines may cross, dimension lines may not

Week 4 Video 1: Giving and Receiving Feedback

- Learning goals
 - Recall three types of feedback in the workplace (from module 4)
 - Describe how the 7 Cs of communication relate to face-to-face feedback
 - Describe the 3x3 Model of Feedback and how it applies to face-to-face feedback
- Types of feedback
 - Appreciation: appreciation for job done
 - Coaching: help someone improve
 - Evaluation: rate someone against standards
- Clear, Correct, Concise, Concrete, Complete, Courteous, Considerate
- Sender, Receiver. Message, Response
- 3x3 Model
 - Message
 - Concrete (descriptive, specific, non-judgmental)
 - Complete (details but also suggestions and impacts)
 - Considerate (empathetic and relevant)
 - Sender
 - Clear (consistent, unambiguous language)
 - Courteous (sincere and polite)
 - Considerate (choose time and method of delivering feedback)
 - o Receiver
 - Clear (consistent, unambiguous language)
 - Courteous (receptive, respectful)
 - Complete (acknowledge feedback and request clarification as appropriate)

Sender

Clear consistent, unambiguous speech and body language

Courteous polite and respectful tone, language, and body language

Considerate consider receiver when choosing time and method of feedback

Message

Concrete descriptive, specific, and non-judgmental; focuses on receiver

Complete includes observations, impacts, and suggestions for improvement

Considerate is empathetic and relevant to the receiver

Receiver

Clear consistent, unambiguous speech and body language

Courteous receptive; polite and respectful tone, language, and body language

Complete acknowledge the feedback; ask for clarification

Week 4 Video 2: Top Performing Teams

- Learning Goals
 - Describe the characteristics of relationships on top-performing teams
 - o Describe what equity, diversity, and inclusion (EDI) are and how they impact teams
 - Define implicit bias, stereotype threat, microaggressions, and psychological safety
 - o Describe the origins and consequences of bias
 - Explain how psychological safety relates to team performance
- Equity, Diversity, and Inclusion
 - Equity: making sure everyone has similar opportunities to success
 - Different from equality
 - o Diversity: differences between background and experiences
 - Race, gender, and race
 - Political belief, orientation, etc
 - Benefits of diversity: more creative solutions, cultivate stronger relationships -> better performance of individual, teams, companies, and companies with diverse leadership outperform those without
 - Inclusion: address inequities, support diverse perspectives, integrate everyone's contributions
- Bias
 - Implicit bias
 - Shaped through media, environment, culture, people around us, and our lives
 - Subconscious attitudes and stereotypes
 - Everyone has implicit biases
 - Microaggressions
 - Brief and common-place statements that are hostile towards some groups

- Seemingly small statements that reinforce stereotypes
- Stereotype threat
 - People worrying about confirming stereotype
 - Increases anxiety and self-doubt
- Effective teams
 - Dependability
 - Structure & clarity
 - Meaning (work is fulfilling)
 - Impact (team members feel their work matters)
 - o Psychological Safety (team members feel free to take risks and express themselves)
- Allyship
 - Taking actions to support individuals from underrepresented groups

Week 5 Video 1: Module 6 Case Study Introduction

- Learning goals
 - Describe the engineering design stages that can be informed by sustainability
 - Explain the challenges related to providing drinking water in Canada
 - Describe the overall objective of the Module 6 case study
- Case study
 - Application for funding for a water treatment system for a fictitious small, remote community in BC
 - Written proposal (Expression of Interest, EOI)
 - Formal presentation
 - Costs committed in the early stages affect actual costs in the later stages
 - Sustainability should be considered from the very beginning
 - Module 6: focus on study and clarify problem, generate and identity solution
 - Stage 0,1,2,3
 - Module 7: develop and test solution (water treatment system)
 - Stage 4
- Same Drinking Water XPrize
 - Goal: to provide access to safe drinking water to everyone, all the time
 - o Including developed nations (for example, Flint Michigan)
- Water stress
 - Lack of quantity/quality of water
- Boil water advisory: boil water, do not drink directly (due to concern with water treatment)
 - o Issued when safety of water cannot be guaranteed
 - Small communities tend to get more boil water advisory (~80% for communities with <500 ppl)
 - Disproportionate water advisories for first nations communities
- Challenges for small & remote systems
 - Difficult to supply chemicals and parts

- Challenging to retaining skilled operators
- Source water quality is often lower
- Economies of scale (costs more per volume to treat water in small systems)

Week 5 Video 2: Water Treatment Systems

- Learning goals
 - Explain what is meant by "centralized", "semi-decentralized", and "decentralized" water treatment systems
 - List the advantages and disadvantages of each system
 - Describe the centralized and decentralized solutions for the Module 6 case study
- Centralized Water Treatment Systems
 - Found in large cities
 - Single large water treatment plant provides water for large number of people
 - Waste water is brought to one place and treated at waste-water treatment plants
 - Advantages
 - Easier to maintain
 - Easier to monitor treatment process
 - Lower cost/volume of water treated
 - o Disadvantages
 - Large infrastructure required
 - Vancouver: 1500km of water pipe, 3000km of sewer pipe
 - Difficult to adjust capacity (not well suited for growth)
- Semi-decentralized
 - Larger number of treatment plants
 - Treatment is still centralized locally
- Decentralized
 - Water treatment at each building (point of entry system)
 - Each business/household (point of use system)
- Module 6
 - Centralized: treated elsewhere
 - Water is treated, and then transported using boat (in bulk or smaller containers)
 - o Decentralized/semi decentralized: treated on island
 - Semi decentralized
 - Single source/treatment facility for entire community
 - Decentralized
 - Treatment at each water use facility (i.e. household)

Van Anda Interview notes

- 2015: small community Van Anda
- First year that they've worried about it

- Climate change
 - Flooding (has not happened in 50+ years)
 - o Drought (3 months of no rainfall)
 - Lake gone down 5 feet (evaporation)
- Dry summers, lake level dropped
 - Always had enough water
 - Now: making community aware of water usage
- Water
 - Ferries from Vancouver, or flown in (for high cost)
- No alternate source
 - If the lake is compromised, no options
 - Plan B: trucking in water, not much of a plan
- Lack of alternate source
 - Only piped to one lake
 - Limited number of lakes
- Chlorine
 - o \$16000 for chlorine
 - Would be best if there was another way not using chlorine
- More willingness to talk about water
- Difficult to talk to representatives of industry
 - Notion that: industry is more important than environment
- Front end load
 - Expensive upfront, minimal cost later on
 - Bad to hit with costs constantly
- Water
 - o Drinkable
 - Simple, easy to run
- Putting in a well
 - o Because of old mine shafts, not clean water
 - There's cost too (100k to just explore for water)
- Catch water
 - Not enough
- Small systems tend to not be engineered properly
- If money is spent, we want a good system that will last
- Some people are living off the grid, a system that needs power would be an issue to some people

Week 6 Video 1: Life Cycle

- Learning goals
 - List the key goals of assessing for sustainability

- Describe the main concepts considered in Life Cycle Thinking and list the associated Life
 Cycle stages
- o Describe how Life Cycle Thinking and Systems Thinking relate to assessing for sustainbility
- Sustainability: wellbeing of environment, society, economy
 - Not about tradeoffs between the dimensions
- Life cycle thinking

- Systems thinking
 - Considers how product interacts with other elements in a system
- Sustainability is a property of a system
 - Focus on creating positive contributions, not mitigating adverse effects

Week 6 Video 2: LCA & SLCA

- Learning goals
 - Explain how to conduct both Life Cycle Assessments (LCA) and Streamlined Life Cycle Assessments (SLCA)
 - Describe the advantages and disadvantages of LCAs and SLCAs, and where each might be used in the design process
 - Define the terms "functional unit" and "environmentally responsible product rating"
- LCA
 - Used by many companies in industry
 - Rigorous and structure process

- ISO 46 pages, 26 requirements
- Stages
 - Goal definition and scope
 - System boundary: aspects of product and lifecycle stages that are considered
 - Look at material and energy input/output
 - Functional unit: measure of performance for use as a reference unit
 - Inventory analysis
 - Detailed process of identifying material and energy input/output of system boundary
 - Impact assessment
 - Use environmental impact metrics
 - Interpretation
 - Distill impacts
- Challenges
 - Detailed knowledge is required
 - Impacts must be quantified
 - Focus is primarily on environmental impacts
- o Typically only available late in the design process, when all decisions have been made
- SLCA
 - Qualitatively assess criteria
 - Tabulate in SLCA matrix
 - Sum to determine rating
 - Benefits
 - Simple, fast, and inexpensive
 - Qualitative (more suitable for difficult to quantify criteria)
 - Suitable for use early in design process
 - Captures 80% of environmental issues identified by full LCA

Week 7 Video 1: Appropriate Technology

- Learning goals
 - Explain the concept of appropriate technology
 - List common features of appropriate technology
 - Explain the importance of the community when considering appropriate technology
- Appropriate technology
 - Design solution considers the key stakeholders across all life cycle stages for that solution
 - Solution is appropriate for the context
- Example: clean water in Africa
 - Play pump: intended for children to use by spinning, tens of millions funded
 - In reality: novelty wears off and children sit on it.
 - Sometimes it is too cold/hot for operating the play pump
 - The tech is difficult to maintain by locals

- Grown women end up using the play pump, which is not appropriately sized for the actual users
- Lack of consultation with communities and users
- Upon closer inspection, the play pump does not address the context of the problem. It is not appropriate technology
- Attributes of appropriate technology
 - Suitable for the social and economic context of the region in which it is to be applied
 - o It is environmentally sound
 - Locally accepted and adapted
- Build relationship & trust with the community from the beginning. Listen to and empathize with the community. Involve them in the design process.

Week 8 Video 1: Business Letters

- Learning Goals
 - Describe how to format a formal business letter
 - Describe how the 7Cs relate to business letter writing
 - Use appropriate tone and language for a formal business letter
- Formal
 - Consider audience, purpose, context
 - Attention to 7Cs
- Layout
 - o 1" to 1-1/4" margins
 - Block format (all text at left margin)
 - Body (left aligned)
 - o Font size 11/12 pt
- Elements
 - Sender's address
 - o Date
 - Receiver's address (include title)
 - Salutation (Dear [xyz]:)
 - Body (not indented)
 - Intro paragraph (greeting + purpose)
 - Supporting details
 - Concluding paragraph (restate purpose/request action)
 - Closing (sincerely, thank you, best regards, etc.)
 - Blank lines for signature
 - Name and title (if applicable)
- Variations
 - Letterhead (omit writing address). Only used on the first page
 - Long title for recipient: placed on new line
 - o Bolded reference: critical information
 - o Enclosures: additional information

Week 8 Video 2: Satisfaction Curves

- Learning goals
 - Describe the difference between requirements, evaluation criteria, attributes, and design parameters
 - Explain how attributes relate to satisfaction
 - Describe the general shape of common satisfaction curves
- Needs: wants and wishes
- Target design specifications: requirements
- Evaluation criteria: how well a solution addresses the needs

Week 9 Video 1

- Flow physics
 - Describe the relationship between pressure and depth in a fluid
 - Describe the relationship between pressure difference and fluid flow
 - Use the relationships between flow rate, flow velocity, depth, and pressure to express relevant quantities for a discharging tank
- Hydrostatic pressure
 - At surface: $p = p_{atm} = 0$ (reference pressure)
 - At depth h: $p = \rho g h$ [N/m² = Pa]
- Discharge tank

$$\circ \ Q_{out} = A_{nozzle} \sqrt{2gh}$$

$$\circ \;\; Q_{out} = A_{nozzle} \sqrt{rac{2p}{
ho}}. \; p$$
: pressure at outlet

$$\circ \ v_{out} = rac{Q_{out}}{A_{nozzle}} = \sqrt{2gh} = \sqrt{rac{2p}{
ho}}$$

- lacksquare Only depends on height h
- \circ Pressure as a function of velocity: $p=rac{
 ho v_{out}^2}{2}$
- Flow goes from higher pressure to lower pressure

Week 9 Video 2: RWH modelling

- Learning goals
 - Describe the relationship between catchment area, rainfall, and flowrate into the storage tank
 - Describe how to use a spreadsheet to model water collection in the rainwater harvesting system
- Rainwater harvesting system simulated in excel spreadsheet

Week 10 Video 1: Flow Physics and the RWH

• Describe the relationship between flow rate, flow velocity, and pressure for a discharging tank

 Describe the effect that piping losses, flow restrictions, and elevation changes have on pressure in a piping system

Losses through restrictions

$$\frac{\rho(v_{out})^2}{2} = p_1 - p_2 - K \frac{\rho v_3^2}{2}$$

ullet $p_{loss}=Krac{
ho v^2}{2}$ (K is a loss coefficient tabulated for common components)

- $ullet \ p_{loss} = f rac{L}{D} rac{
 ho v^2}{2}$
 - *f*: friction factor
 - \circ D: diameter
 - *L*: length of the pipe (longer pipe = more losses)

Week 10 Video 2: RWH Implementation

- Learning goals
 - Describe the arrangement and role of components in the rainwater harvesting system
 - Explain how flowrate depends on the selection and sizing of the pump, filtration, and piping, and on the location of the storage tank
- Storage system

• Supply system

• Storage system details

Pump and System Curve

Flowrate, Q

Week 11 Video 1: Curve Fitting

- Learning Goals
 - Describe how to fit a function to a set of data in Excel
 - Describe what the coefficient of determination is, explain how it is used, and compute it for a curve fit in Excel
- Curve fitting in Excel: create scatter plot, add trendline
 - Set type of fit (linear, polynomial, power, etc.)

- Set y-intercept
- Show trendline equation
- \circ Show R^2 value
- Coefficient of determination \mathbb{R}^2
 - Indicates "goodness of fit"
 - $0 \le R^2 \le 1$
 - $\circ \ R^2 = 0$: no correlation
 - $R^2 = 1$: perfect correlation
- ullet Increasing the polynomial order will increase \mathbb{R}^2 because there are more parameters that can be adjusted

Week 11 Video 2: RWH System Integration

- Learning goals
 - Describe the arrangement and role of the filter components in the rainwater harvesting system
 - Explain how the satisfaction curves are used and combined to determine overall system satisfaction
 - Describe how a spreadsheet can be used to develop a numerical model of the rainwater harvester water consumption line subsystem
- Filtration and UV treatment
 - UV and 1 micron filter (mandatory)
 - 5 micron and 200 micron filter (optional)
 - \circ Overall C_f value is the sum of individual C_f values for each filter

<u> </u>			Cf	Actual Filter	Filt	Iter Life Data [L]		
ules	Filter Size	Present?	[Pa/(m/s)]	Life [L]	No pre-filter	5 μm pre	200 μm pre	
8	1 μm filter	У	10000	20000	5000	20000	15000	
Σ	5 μm filter	У	4000	20000	10000		20000	
Filter	200 µm filter	У	800	20000	20000			
-	Total		14800					

13								
14	40			Cf	Actual Filter	Fi	lter Life Data [[L]
15	n e	Filter Size	Present?	[Pa/(m/s)]	Life [L]	No pre-filter	5 μm pre	200 μm pre
16	<u>8</u>	1 μm filter	У	10000	20000	5000	20000	15000
17	a	5 μm filter	У	4000	20000	10000		20000
18		200 µm filter	У	800	20000	20000		
19	_	Total		14800				
20								
21	Attribute	es		Weights	Satisfaction			
22	QD	32.9	L/min	15%	S(QD)	100	%	
23	M	11	#/year	15%	S(M)	100	%	
24	C	625	L/day	20%	S(C)	63	%	
25					Total	42.5	%	
26								
27		Total Vo	lume Through	Filter [L]	Mainten	ance for Filte	r Change	Day with
28	Day	1 μm filter	5 μm filter	200 µm filter	1 μm filter	5 μm filter	200 µm filter	operation
29	1	625	625	625				

59	31	19375	19375	19375			
60	32	20000	20000	20000			
61	33	625	625	625	1	1	1 1
62	34	1250	1250	1250			
63	35	1875	1875	1875			

Maintenance

- o Filters are replaced the day before the exceed maximum life
- Multiple filters replaced on the same day counts as one operation

• Consumption

- We set our target consumption in L/day
- If consumption is not met, we assume occupants pay to ship in water that day

• Overall satisfaction

• Weighted sum of individual satisfactions (similar to WDM)