Задание 1в. Отображения (продолжение)

Задача 9. Докажите (находя взаимно однозначное отображение) равномощность следующих множеств:

- (1) $\{1, 2, 3\}$ $\bowtie \{\diamondsuit, \odot, \blacktriangle\};$
- (2) \mathbb{Z} \mathbb{Z} \mathbb{Z} ;
- (3) \mathbb{Z} и $\{x \in \mathbb{Z} | x > 1\}$;
- (4) \mathbb{Z} и $2\mathbb{Z} = \{2x | x \in \mathbb{Z}\};$
- (5) [0,1] и [0,2] ([0,1] это отрезок, то есть множество $\{x \in \mathbb{R} | 0 \le x \le 1\}$);
- (6) [0,1] и [-1,1];

- (7) [0,1] и (0,1] ((0,1] это полуинтервал, то есть множество $\{x \in \mathbb{R} | 0 < x \leqslant 1\}$);
- (8) (0,1] $\mu[1,\infty)$;
- (9) [0,1] и \mathbb{R} ;
- (10) любые два отрезка на плоскости;
- (11) отрезок и окружность;
- (12) множество всех подмножеств \mathbb{N} и множество всех бесконечных последовательностей 0 и 1;

Задача 10 (Теорема Кантора). Множество всех подмножеств множества A обозначается через 2^A . Рассматривая для отображения $f: A \to 2^A$ множество $\{x \in A | x \notin f(x)\}$ докажите, что A не может быть равномощно 2^A .

МГАВТ 2015 осень. Задание 1в-продолжение (в рамках допуска к экзамену) для группы ТП-1, ВАР 1

Задание 1в. Отображения (продолжение)

Задача 9. Докажите (находя взаимно однозначное отображение) равномощность следующих множеств:

- (1) $\{1, 2, 3\}$ и $\{\diamondsuit, ⊙, \blacktriangle\}$;
- (2) \mathbb{Z} и \mathbb{Z} ;
- (3) \mathbb{Z} и $\{x \in \mathbb{Z} | x > 1\}$;
- (5) [0,1] и [0,2] ([0,1] это отрезок, то есть множество $\{x\in\mathbb{R}|0\leqslant x\leqslant 1\}$);
- (6) [0,1] и [-1,1];

- (7) [0,1] и (0,1] ((0,1] это полуинтервал, то есть множество $\{x \in \mathbb{R} | 0 < x \leqslant 1\}$);
- (8) (0,1] и $[1,\infty)$;
- (9) [0,1] и \mathbb{R} ;
- (10) любые два отрезка на плоскости;
- (11) отрезок и окружность;
- (12) множество всех подмножеств \mathbb{N} и множество всех бесконечных последовательностей 0 и 1;

Задача 10 (Теорема Кантора). Множество всех подмножеств множества A обозначается через 2^A . Рассматривая для отображения $f: A \to 2^A$ множество $\{x \in A | x \notin f(x)\}$ докажите, что A не может быть равномощно 2^A .

МГАВТ 2015 осень. Задание 1в-продолжение (в рамках допуска к экзамену) для группы ТП-1, ВАР 1

Задание 1в. Отображения (продолжение)

Задача 9. Докажите (находя взаимно однозначное отображение) равномощность следующих множеств:

- (1) $\{1, 2, 3\}$ $\bowtie \{\diamondsuit, \odot, \blacktriangle\};$
- $(2) \quad \mathbb{Z} \text{ и } \mathbb{Z};$
- $(3) \ \mathbb{Z} \ \text{if } \{x \in \mathbb{Z} | x > 1\};$
- $(4) \ \mathbb{Z} \ \text{и} \ 2\mathbb{Z} = \{2x|x\in\mathbb{Z}\};$
- (5) [0,1] и [0,2] ([0,1] это отрезок, то есть множество $\{x\in\mathbb{R}|0\leqslant x\leqslant 1\}$);
- (6) [0,1] и [-1,1];

- (7) [0,1] и (0,1] ((0,1] это полуинтервал, то есть множество $\{x \in \mathbb{R} | 0 < x \leqslant 1\}$);
 - (8) (0,1] и $[1,\infty)$;
 - (9) [0,1] и \mathbb{R} ;
- (10) любые два отрезка на плоскости;
- (11) отрезок и окружность;
- (12) множество всех подмножеств \mathbb{N} и множество всех бесконечных последовательностей 0 и 1;

Задача 10 (Теорема Кантора). Множество всех подмножеств множества A обозначается через 2^A . Рассматривая для отображения $f:A\to 2^A$ множество $\{x\in A|x\not\in f(x)\}$ докажите, что A не может быть равномощно 2^A .