Introduction to Vectors

Sam Kantor Instructor Dan Wolczuk January 4, 2016 Vectors in \mathbb{R}^N

Theorem 0.1

$$\mathbb{R}^n = \begin{bmatrix} X_i \\ \vdots \\ X_n \end{bmatrix} \mid X_i, \dots X_n \in \mathbb{R}$$

Sometimes to better understand vectors in \mathbb{R}^n , we can use points to visualize them.

$$\vec{x} = \begin{bmatrix} X_i \\ \vdots \\ X_n \end{bmatrix}$$
 is equivalent to (x_i, \ldots, x_n)

Example 0.2 Vector
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 as point $(1, 2)$

Vectors always start at the origin and end at the points it's defined by.

Theorem 0.3 The set of vectors of the form

$$\vec{x} = \begin{bmatrix} s \\ t \\ 0 \end{bmatrix}, s, t \in \mathbb{R}$$

are the set of all points of the form (s, t, 0). Hence the plane in \mathbb{R}^3

Definition Let
$$\vec{x} = \begin{bmatrix} X_i \\ \vdots \\ X_n \end{bmatrix}, \vec{y} = \begin{bmatrix} Y_i \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}$$
, we say

that \vec{x} and \vec{y} are **equal** and write $\vec{x} = \vec{y}$ if $x_i = y_i$ for all i <= x <= y.

Definition

We define addition by
$$\vec{x} + \vec{y} = \begin{bmatrix} X_i + Y_1 \\ \vdots \\ X_n + Y_n \end{bmatrix}$$

For any real scalar $t \in \mathbb{R}$, we define scalar multiplication by:

$$t\vec{x} = \begin{bmatrix} tx_i \\ \vdots \\ tx_n \end{bmatrix}$$

Example 0.4 -

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Example 0.5 -

$$3 \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \end{bmatrix}$$

Example 0.6 -

$$(-1) \cdot \begin{bmatrix} 2 \\ 5 \end{bmatrix} + (\sqrt{2}) \cdot \begin{bmatrix} 2 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} tbd \\ tbd \end{bmatrix}$$