Recurrent Neural Networks

CMPUT328

Nilanjan Ray

Source: Hands on Machine Learning Book

RNN: Unrolling through time

Note: The unrolled RNN is a DAG

Why is the DAG structure important?

RNN: A Layer of recurrent neurons

RNN

Unrolled through time

$$Y(t) = \varphi(X(t)W_x + Y(t-1)W_y + b)$$
 Note that parameters W_x and W_y are shared.

 φ is a non-linear activation function, such as ReLU

RNN: Memory cell

h(t) acts as a memory cell holding "memories" from past until time point t.

Types of inputs and outputs in RNN

Backpropagation through time

C: cost function

Dotted lines: forward pass

Solid lines: backward pass

Note: parameters are shared!

Backpropagation through time: normal backpropagation through unrolled RNN

MNIST classification: Using sequence!

Treat each as a sequence of 28 rows

Deep (Multi-layer) RNN

Example implementation for MNIST classification

Predicting a time series

Predicting a time series...

Wrapper function in TensorFlow for dimensionality reduction

Predicting a time series...

Backpropagation in RNN

$$\delta X = [f'(XW + b) \cdot \delta Z] * W^T$$

$$\delta W = X^T * [f'(XW + b) \cdot \delta Z]$$

$$\delta b = \sum_{k} [f'(XW + b) \cdot \delta Z]_{k,:}$$

Backpropagation in RNN...

How do we apply BP here?

$$h_t = f(x_t W_x^h + h_{t-1} W_h^h + b^h)$$

$$y_t = g(x_t W_x^y + h_{t-1} W_h^y + b^y)$$

Vanishing / Exploding gradient problem

• Use BP formula to understand this issue

Long Short-Term Memory (LSTM)

LSTM computations:

$$\mathbf{i}_{(t)} = \sigma(\mathbf{W}_{xi}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hi}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{h}_{l})
\mathbf{f}_{(t)} = \sigma(\mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{h}_{f})
\mathbf{o}_{(t)} = \sigma(\mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{h}_{o})
\mathbf{g}_{(t)} = \tanh(\mathbf{W}_{xg}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{h}_{g})
\mathbf{c}_{(t)} = \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)}
\mathbf{y}_{(t)} = \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh(\mathbf{c}_{(t)})$$

This architecture helps to mitigate vanishing/exploding gradient problem. Why? Let's use LSTM in our time series prediction.

Gated Recurrent Unit (GRU)

GRU is a much more simplified recurrent unit; but it is almost as good as LSTM.