Math CS 122B HW6

Zih-Yu Hsieh

May 7, 2025

1

Question 1 Freitag Chap. V.6 Exercise 5:

Lef f be an elliptic function for the lattice L. We choose $b_1, ..., b_n$ to be a system of representatives modulo L for the poles of f, and we consider for each j the principal part of f in the pole b_j :

$$\sum_{v=1}^{l_j} \frac{a_{v,j}}{(z-b_j)^v}$$

The Second Liiouville Theorem ensures the relation

$$\sum_{j=1}^{n} a_{1,j} = 0$$

Show:

(a) Let $c_1, ..., c_n \in \mathbb{C}$ b given numbers, and let $b_1, ..., b_n$ modulo L be a set of different points in \mathbb{C}/L . The function

$$h(z) := \sum_{j=1}^{n} c_j \zeta(z - b_j)$$

constructed by means of the Weierstrass ζ -function, is then elliptic, iff

$$\sum_{j=1}^{n} c_j = 0$$

(b) Let $b_1, ..., b_n$ be pairwise different modulo L, and let $l_1, ..., l_n$ be prescribed natural numbers. Let $a_{v,j}$ $(1 \le j \le n, \ 1 \le v \le l_j)$ be complex numbers such that $\sum_{j=1}^n a_{1,j} = 0$ and $a_{l_j,j} \ne 0$ for all j.

Then, there exists an elliptic function for the lattice L, having poles modulo L exactly in the points $b_1, ..., b_n$, and having the corresponding principal parts respectively equal to

$$\sum_{v=1}^{l_j} \frac{a_{v,j}}{(z-b_j)^v}$$

Pf:

(a) Given the Weierstrass σ -function below ($\sigma: \mathbb{C} \to \mathbb{C}$), the Weierstrass ζ -function ($\zeta: \mathbb{C} \setminus L \to \mathbb{C}$) is

defined as:

$$\sigma(z) = z \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{z}{w}\right) \exp\left(\frac{z}{w} + \frac{1}{2} \left(\frac{z}{w}\right)^2\right), \quad \zeta(z) = \frac{\sigma'(z)}{\sigma(z)}$$

Based on the formula of σ , it has simple zeros at all $w \in L$; and, it implies that ζ is not defined only on L. Now, to prove the statement, consider the following:

 \Longrightarrow : Suppose the defined h(z) is elliptic. Then, since for each index $j \in \{1, ..., n\}$, $\sigma(z - b_j)$ has a simple zero at $(w + b_j)$ for each $w \in L$ (which the set $b_j + L$ contains all the simple zeros of $\sigma(z - b_j)$, which is discrete). Then, since $\bigcup_{j=1}^n (b_j + L)$ is also discrete, choose the fundamental region P of lattice L such that ∂P contains no points from $\bigcup_{j=1}^n (b_j + L)$ (the set containing all the zeros of each $\sigma(z - b_j)$, also the set of all undefined points of all $\zeta(z - b_j)$), by the Second Liouville's Theorem, we get the following:

$$0 = \frac{1}{2\pi i} \int_{\partial P} h(z)dz = \frac{1}{2\pi i} \int_{\partial P} \sum_{j=1}^{n} c_j \zeta(z - b_j)dz = \sum_{j=1}^{n} c_j \cdot \frac{1}{2\pi i} \int_{\partial P} \frac{\sigma'(z - b_j)}{\sigma(z - b_j)}dz$$

For each $j \in \{1, ..., n\}$, since P only contains one representative of $b_j \in \mathbb{C}/L$, then it only contains one zero of $\sigma(z - b_j)$. Hence, by argument principle, we get the following:

$$\frac{1}{2\pi i} \int_{\partial P} \frac{\sigma'(z - b_j)}{\sigma(z - b_j)} dz = 1 = \text{Number of zeros of } \sigma(z - b_j) \text{ in } P$$

Hence, the original integral becomes:

$$0 = \frac{1}{2\pi i} \int_{\partial P} h(z)dz = \sum_{j=1}^{n} c_j \cdot \frac{1}{2\pi i} \int_{\partial P} \frac{\sigma'(z - b_j)}{\sigma(z - b_j)} dz = \sum_{j=1}^{n} c_j$$

So, $\sum_{j=1}^{n} c_j = 0$.

 $\Leftarrow=:$ Now, suppose $\sum_{j=1}^n c_j=0$. For all $w\in L$, since $\sigma(z+w)$ and $\sigma(z)$ both have simple zeros at any $w'\in L$, then $\frac{\sigma(z+w)}{\sigma(z)}$ is an entire function with no zeros in $\mathbb C$ (since the zeros cancel out at each $w'\in L$). Hence, there exists an analytic function $h:\mathbb C\to\mathbb C$, with $\frac{\sigma(z+w)}{\sigma(z)}=e^{h(z)}$. Then, apply derivatives, we get:

$$\frac{\sigma'(z+w)\sigma(z) - \sigma'(z)\sigma(z+w)}{(\sigma(z))^2} = h'(z)e^{h(z)} = h'(z) \cdot \frac{\sigma(z+w)}{\sigma(z)}$$
$$\frac{\sigma'(z+w)\sigma(z+w)}{\sigma(z+w)\sigma(z)} - \frac{\sigma'(z)\sigma(z+w)}{(\sigma(z))^2} = h'(z) \cdot \frac{\sigma(z+w)}{\sigma(z)}$$
$$\frac{\sigma'(z+w)}{\sigma(z+w)} - \frac{\sigma'(z)}{\sigma(z)} = h'(z)$$

On the other hand, since $\left(\frac{\sigma'(z)}{\sigma(z)}\right)' = -\wp(z)$, then:

$$h''(z) = \left(\frac{\sigma'}{\sigma}\right)'(z+w) - \left(\frac{\sigma'}{\sigma}\right)'(z) = (-\wp(z+w)) - (-\wp(z)) = 0$$

Hence, h(z) is in fact a degree 1 polynomial. So, there exists $a_w, b_w \in \mathbb{C}$, such that:

$$\frac{\sigma(z+w)}{\sigma(z)} = e^{h(z)} = e^{a_w z + b_w}, \quad \sigma(z+w) = e^{a_w z + b_w} \sigma(z)$$

Then, apply the derivative, and take its quotient with $\sigma(z+w)$, we get:

$$\sigma'(z+w) = a_w e^{a_w z + b_w} \sigma(z) + e^{a_w z + b_w} \sigma'(z)$$

$$\zeta(z+w) = \frac{\sigma'(z+w)}{\sigma(z+w)} = \frac{a_w e^{a_w z + b_w} \sigma(z) + e^{a_w z + b_w} \sigma'(z)}{e^{a_w z + b_w} \sigma(z)} = a_w + \frac{\sigma'(z)}{\sigma(z)} = a_w + \zeta(z)$$

Which, apply it to the definition of h(z), we get:

$$h(z+w) = \sum_{j=1}^{n} c_j \zeta(z-b_j+w) = \sum_{j=1}^{n} c_j (a_w + \zeta(z-b_j)) = a_j \sum_{j=1}^{n} c_j + \sum_{j=1}^{n} c_j \zeta(z-b_j) = \sum_{j=1}^{n} c_j \zeta(z-b_j) = h(z)$$

(Note: recall that $\sum_{j=1}^{n} c_j$ is assumed to be 0).

Hence, h(z) is an elliptic function.

he above two implication shows that h(z) is an elliptic function iff $\sum_{j=1}^{n} c_j = 0$.

(b) To construct the desired principal part for each point $b_1, ..., b_n$ modulo L, we need to consider the order 1 case separately from the other poles:

For order 1, we have the condition that $\sum_{j=1}^{n} a_{1,j} = 0$, so we can utilize the statement proven in **part** (a). Notice that $\zeta(z) = \frac{\sigma'(z)}{\sigma(z)}$ is the logarithmic derivative of $\sigma(z)$, with the formula given in **part** (a), we get the following:

$$\zeta(z) = \frac{\sigma'(z)}{\sigma(z)} = \frac{1}{z} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{-1/w}{1 - z/w} + \frac{d}{dz} \left(\frac{z}{w} + \frac{1}{2} \cdot \frac{z^2}{w^2} \right) \right) = \frac{1}{z} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{z - w} + \frac{1}{w} + \frac{z}{w^2} \right)$$

This demonstrats that $\zeta(z)$ has its principal part given as $\frac{1}{z-w}$ at all $w \in L$. Hence, $\zeta(z-b_j)$ would have its principal part given as $\frac{1}{z-b_j}$ for all point equivalent to $b_j \mod L$. Which, using the statement in **part** (a), we know since $\sum_{j=1}^n a_{1,j} = 0$, it implies that $h_1(z) = \sum_{j=1}^n a_{1,j} \zeta(z-b_j)$ is an elliptic function; moreover, since each b_j is distinct, its principal part is governed by only $a_{1,j}\zeta(z-b_j)$ for each index j, hence this is an elliptic function describing the principal part up to the simple poles at each point.

For order ≥ 2 , we could utilize the fact that $\wp(z)$ has a double pole at all $w \in L$. Recall the formula of $\wp(z)$ in series form:

$$\wp(z) = \frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$$

Which, its principal part is given by $\frac{1}{(z-w)^2}$ at all $w \in L$. So, for any index j with $l_j \geq 2$, to describe the principal part with $\frac{a_{2,j}}{(z-b_j)^2}$ at each point equivalent to $b_j \mod L$, we can use $a_{2,j}\wp(z-b_j)$ (shift the double poles to each point in $b_j + L$).

Besides that, for any n > 0, since $\wp(z)$ converges normally within $\mathbb{C} \setminus L$, then its n^{th} order derivative can be performed term by term:

$$\wp^{(n)}(z) = \frac{d^n}{dz^n} \left(\frac{1}{z^2}\right) + \sum_{\substack{w \in L \\ w \neq 0}} \frac{d^n}{dz^n} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2}\right) = \frac{(-1)^n \cdot (n+1)!}{z^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1)!}{(z-w)^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{(-1)^n \cdot (n+1$$

$$\frac{(-1)^n}{(n+1)!}\wp^{(n)}(z) = \frac{1}{z^{n+2}} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{1}{(z-w)^{(n+2)}}$$

This shows that the function $\frac{(-1)^n}{(n+1)!}\wp^{(n)}(z)$ has principal part $\frac{1}{(z-w)^{n+2}}$ at all $w \in L$. So, for all index j with $l_j > 2$, any $2 < v < l_j$ with its principal part given by $\frac{a_{v,j}}{(z-b_j)^v}$ at each point equivalent to b_j mod L, could be given by $a_{v,j} \cdot \frac{(-1)^{(v-2)}}{(v-1)!}\wp^{(v-2)}(z-b_j)$, based on similar logic as above.

In general, to create an elliptic function with the prescribed principal parts, one explicit formula can be given as:

$$\sum_{j=1}^{n} a_{1,j} \zeta(z - b_j) + \sum_{j=1}^{n} \sum_{v=2}^{l_j} a_{v,j} \cdot \frac{(-1)^{v-2}}{(v-1)!} \wp^{(v-2)}(z - b_j)$$

(Note: if $l_j < 2$, simply ignore the term).

Question 2 Freitag Chap. V.6 Exercise 7:

We are interested in alternating \mathbb{R} -bilinear maps (forms)

$$A: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$$

Show:

(a) Any such map A is of the form

$$A(z, w) = hIm(z\overline{w})$$

with a uniquely determined real number h. We have explicitly h = A(1,i).

(b) Let $L \subset \mathbb{C}$ be a lattice. Then A is called a Riemannian form with respect to L iff h is positive, and A only takes integral values on $L \times L$. If

$$L = \mathbb{Z}w_1 + \mathbb{Z}w_2, \quad Im\left(\frac{w_2}{w_1}\right) > 0$$

then the formula

$$A(t_1w_1 + t_2w_2, s_1w_1 + s_2w_2) := \det \begin{pmatrix} t_1 & s_1 \\ t_2 & s_2 \end{pmatrix}$$

defines a Riemannian form A on L.

(c) A non-constant analytic function $\Theta : \mathbb{C} \to \mathbb{C}$ is called a theta function for the lattice $L \subset \mathbb{C}$, iff it satisfies an equation of the type

$$\Theta(z+w) = e^{a_w z + b_2} \cdot \Theta(z)$$

for all $z \in \mathbb{C}$, and all $w \in L$. Here, a_w and b_w are onstants that may depend on w, but not on z.

Show the existence of a Riemannian form A with respect to L, such that

$$A(w,\lambda) = \frac{1}{2\pi i} (a_w \lambda - w a_\lambda)$$

for all $w, \lambda \in L$.

Pf:

(a) For any $z, w \in \mathbb{C}$, there exists $a, b, c, d \in \mathbb{R}$, with z = a + bi and w = c + di. Then, by the property of a bilinear form, we get:

$$A(z,w) = A(a+bi,c+di) = A(a,c+di) + A(bi,c+di) = A(a,c) + A(a,di) + A(bi,c) + A(bi,di)$$
$$= acA(1,1) + adA(1,i) + bcA(i,1) + bdA(i,i)$$

Then, because of the property of alternating form, A(z, w) = -A(w, z), which any $u \in \mathbb{C}$ satisfies A(u, u) = -A(u, u), so A(u, u) = 0. Hence, we can further reduce the equation to the following:

$$A(z,w) = acA(1,1) + adA(1,i) + bcA(i,1) + bdA(i,i) = adA(1,i) - bcA(1,i) = (ad - bc)A(1,i)$$

Now, notice that if we take $z\overline{w}$, we get:

$$z\overline{w} = (a+bi)\overline{(c+di)} = (a+bi)(c-di) = (ac+bd) + (bc-ad)i$$

Which, $\text{Im}(z\overline{w}) = bc - ad$. So in fact, we get the following formula:

$$A(z, w) = (ad - bc)A(1, i) = -A(1, i) \cdot \operatorname{Im}(z\overline{w})$$

So, let h = -A(1, i) = A(i, 1) (which is uniquely determined by the alternating form), we get:

$$A(z,w) = A(i,1) \cdot \operatorname{Im}(z\overline{w}) = h \cdot \operatorname{Im}(z\overline{w})$$

(b)

3

Question 3 Freitag Chap. V.7 Exercise 5:

Pf:

4

Question 4 Freitag Chap. V.8 Exercise 3:

Pf: