Allgemeines

Binomische Formeln

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b) \cdot (a-b)$$

Potenzgesetze

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$a^{n} \cdot b^{n} = (ab)^{n}$$

$$a^{n} \cdot b^{n} = a^{n-m}$$

$$a^{n} = a^{n-m}$$

1.3 Logarithmus-Gesetze

$$x = log_a(y) \Leftrightarrow y = a^x$$

$$log(x) + log(y) = log(xy)$$

$$log(x) - log(y) = log(\frac{x}{y})$$

$$log_a(x) = \frac{log_b(x)}{log_b(a)}$$

$$log(u^r) = r \cdot ln(u)$$

$$ln(1) = 0$$
 $ln(e^x) = x$
 $ln(e) = 1$ $e^{ln(x)} = x$

1.4 Komplexe Zahlen

$$(a+bi)\pm(c+di)=(a\pm c)+(c\pm d)i$$

$$(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i$$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}$$

Sin-Cos-Tan Tabelle

Ableitung

 $(ax^b)' = abx^(b-1)$

Funktion

c

 $x^a, a \neq -1$

 $x^{-1}, x \neq 0$

 a^{x}

sin(x)

cos(x)

tionen sind, dann gilt:

 $\int u' \cdot v = (u \cdot v) - \int u \cdot v'$

Aufleitung

 $c \cdot x$

ln(|x|)

 e^{x}

 $\frac{a^x}{ln(a)}$

-cos(x)

sin(x)

2.1 Partielle Integration

2.2 Substitutionsregel

 $\int f(g(x)) \cdot g'(x) dx = \int f(y) dy$

 $\int \frac{1}{5\pi} dx = ?$

z = 5x - 7

 $\int \frac{1 \cdot dz}{z \cdot 5} = \frac{1}{5} \int \frac{1}{z} dz$

 $=\frac{1}{5}ln(z)$

 $= \frac{1}{5}ln(5x-7)$

Wenn u und v zwei differenzierbare Funk-

X	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	$\frac{2}{3}$ 3.1	3 4 tv D	isœHe	Ableit	tu n gen	
Grad	0	30	45	60	90	120	135	150	180	210	
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	$=1_{1}$	$-\frac{\sqrt{3}}{3}$	$(\theta_x)'$	$=e^{\sqrt[3]{3}}$,
						(ax)	'=a		$(a^{\alpha})'$	$= a^{\frac{3}{3}} * log($	a)
						(ax^2)	(x')' = 2ax	:	ln(x)'	$\frac{1}{x} = \frac{1}{x}$	
2 Ir	ite	gral	rech	nur	ıg	$(\frac{1}{x})'$	$=-\frac{1}{x^2}$			$=\cos x$	
	•	_			U	(\sqrt{x})	$' = \frac{1}{2\sqrt{5}}$		$(\cos x)$	$=-\sin x$	
Foo u ä	muc	e vorh	er cube	tituiert	werder	1	$2\sqrt{x}$		(tan r		

Verknüpfungsfunktionen 4.2 Dichtefunktion

Summenregel:

$$(f(x) + g(x))' = f(x)' + g(x)'$$

Produktregel:

$$(f(x)g(x))' = f(x)'g(x) + g(x)'f(x)$$

Ouotientenregel:

$$(\frac{f(x)}{g(x)})' = \frac{f(x)'g(x) - g(x)'f(x)}{g(x)^2}$$

Kettenregel:

$$(f(g(x)))' = f(g(x))'g(x)'$$

Stochastik

 $\Omega = \{...\}$ beschreibt den Ereignisraum und somit die Menge aller möglichen Ausgänge des Zufallsexperiments.

 $A, B, C, ... \subseteq \Omega$ beschrieben ein Ereignisse des Zufallsexperimentes.

 $P: \Omega \to \mathbb{R}$ ist eine Abbildung, welche jedem Ereignis eine Wahrscheinlichkeit zu-

Eine Wahrscheinlichkeitsverteilung listet alle möglichen Ausgänge des Zufallsexperiments und ihre Wahrscheinlichkeiten auf.

Gesetze/Axiome/...

$$P(A) > 0 \text{ für alle } A \subset \Omega$$

$$P(\Omega) = 1$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(\Omega \setminus A) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \iff P(A) \le P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(A \cap B) = P(B) \cdot P(A|B)$$

$$= P(A) \cdot P(B|A)$$

$$P_B(A) = P(A|B)$$

 $w: \mathbb{R} \to \mathbb{R}$ ist eine integrierbare, nicht negative Funktion.

Es gilt:
$$\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$$

4.3 Verteilungsfunktion

 $F: \mathbb{R} \to [0,1]$ heißt Verteilungsfunktion. Verteilungsfunktion ist Aufleitung der Dichtefunktion.

F ist rechtsseitig stetig und es gilt:

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$P(X \ge x) = 1 - P(X \le x)$$

$$= \int_{x}^{\infty} w(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} w(t)dt$$

4.4 Formeln

E = Erwartungswert, V = Varianz

$$E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot w(x) dx$$

$$V(Y) = \sum_{n=0}^{\infty} (x - F(Y))^{2} \cdot P(Y - Y)$$

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 \cdot P(X = x)$$

$$= \left(\sum_{x \in X(\Omega)} x^2 \cdot P(X = x)\right) - E(X)^2$$

$$V(X) = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot w(x) dx$$
$$= \left(\int_{-\infty}^{\infty} x^2 w(x) dx \right) - E(X)^2$$

p-Ouantile:

Sortieren, $n \cdot p$, Einsetzen & Index suchen, Formel anwenden:

$$\widetilde{X}_p = \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } n \text{ ganzz.} \\ x_{\lceil np \rceil} & \text{falls } n \text{ nicht ganzz.} \end{cases}$$

Verschiedene Verteilungen

4.5.1 Gleichverteilung

Die Gleichverteilung ist die einfachste Verteilung. Jede Möglichkeit hat die glei-

che Wahrscheinlichkeit. Ein Würfel ist gleichverteilt mit $P(x_i) = \frac{1}{6}$.

$$P(X = x_i) = \frac{1}{N}$$

Dabei ist $N = |\Omega|$ und X eine Zufallsvariable, welche gleichverteilt ist.

4.5.2 Binominialverteilung

Ein Bernoulli-Experiment ist ein Experiment, welches nur zwei mögliche Ausgänge A und B hat. Eine Binominialverteilung ist eine Aneinanderreihung von Bernoulli-Experimenten. Dabei muss der Ereignisraum unabhängig sein. Ein Experiment kann beliebig oft, n-Mal, wiederholt werden.

$$X = B(n, p)$$

$$\Omega = \{A, B\}^{n}$$

$$P(A) = p$$

$$P(B) = 1 - p = q$$

Es ist ein **LaPlace**-Experiment, wenn p =q gilt.

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
$$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$

4.5.3 Hypergeometrische Vertei-

N = Grundmenge, n = Stichprobe, k =gewünscht, M = Defekte

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$

4.5.4 Poisson-Verteilung

Die Poisson-Verteilung eignet sich für seltene Ereignisse in einem fest definierten Zeitraum.

$$X = P(\lambda)$$

$$\Omega = \{x \in \mathbb{R} | x \ge 0\}$$

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

u.ä. muss vorher substituiert werden!

Die Poisson-Verteilung kann, wenn n > 150 und p < 0.1, eine Binominialverteilung annähren.

$$X = B(n, p)$$
$$\lambda = n \cdot p$$

$$P(X = k) \sim \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

4.6 Normalverteilung

 $N(\mu, \sigma^2)$ ist eine Normalverteilung. Für $\mu = 1$ und $\sigma = 1$ ist es eine Standardnormalverteilung.

$$w(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
$$P(a \le x \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Für Φ siehe Standardnormalverteilungstab. $y_0 = a_0$

N(0,1), dann folgt $\frac{X-\mu}{\sigma}$. X_B ist binominal verteilt. Wenn np(1-1)

 $(p) \ge 9$, dann $F_B(x) \sim \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$

 X_P ist possionverteilt. Wenn $\lambda > 9$, dann $F_P(x) \sim \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$.

Tabelle Erwartungswert/Varianz

	E(x)	V(x)
B(n,p)	<i>n</i> ⋅p	$n \cdot (1-p)$
H(n,M,N)	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$
$P(\lambda)$	λ	λ
N(x)	μ	σ^2

Numerik

5.1 Lagrange'sches Interpolationspolynom

n =Anzahl der Stützstellen

$$p(x) = \sum_{i=0}^{n} y_i \cdot L_i(x)$$
$$L_i(x) = \prod_{i=0, i \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

5.2 Newton'sches Interpolationspolynom

n = Anzahl der Stützstellen

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_n)$$

Auflösen nach a für die einzelnen Fakto-

Für
$$\Phi$$
 siehe Standardnormalverteilungstab. $y_0 = a_0$ $y_1 = a_0 + a_1(x_1 - x_0)$ **5.5 LU-Zerlegung** Wenn gilt, dass $X = N(\mu, \sigma^2)$ und $Z = y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$ L Matrizen sind Einheitsmatrizen plus:

5.3 Newton-Cotes-Formeln

a = untere Grenze

b = obere Grenze

 $\alpha_{i,n}$ Tabelle:

$$h = \frac{b-a}{n}$$

$$x_i = a + i \cdot h$$

$$p_n(x) = h \cdot \sum_{i=0}^{n} \alpha_{i,n} \cdot f(x_i)$$

5.4 **QR-Zerlegung**

Seien $A \in \mathbb{R}^{mxn}$ mit m > n und rg(A) = n. Es seien $a_1, a_2, ..., a_n \in \mathbb{R}^m$ die Spaltenvektoren von A.

Die Vektoren $u_1, u_2, ..., u_n \in \mathbb{R}^m$ sind die Gram-Schmidt orthogonalisierten Vekto-

$$u_{1} = \frac{1}{|a_{1}|} a_{1}$$

$$u'_{i} = a_{i} - \sum_{j=1}^{i-1} \langle u_{j}, a_{i} \rangle \cdot u_{j}$$

$$u_{i} = \frac{u'_{i}}{|u'_{i}|}$$

$$Q = (u_{1}, u_{2}, ..., u_{n})$$

$$a_{i} = \frac{1}{|a_{1}|} a_{1}$$

5.5 LU-Zerlegung

Step 1: L1 Matrix aufbauen:

 $x \in \{1, 2\}$

 $L_{x,1} = -\frac{A(x,1)}{A(1,1)}$

Step 2: $\tilde{A} = L1 \cdot A$

Step 3: L2 Matrix aufbauen:

 $L_{3,2} = -\frac{\tilde{A}(3,2)}{\tilde{A}(2,2)}$

Step 4: $U = L2 \cdot \tilde{A}$

Step 5: $L = L_1^{-1} \cdot L_2^{-1}$ (=Vorzeichen außerhalb Diagonale ändern.)

5.5.1 Lösung von PLUx = b

Wir berechnen zunächst ein y, welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen

sind.

P = EinheitsmatrixLineares Gleichungssystem:

$$Ly = P^T b \text{ mit } P^T = P^{-1}$$

 $Ux = y$

5.6 Cholesky-Zerlegung

Eine symmetrische Matrix ist die Voraussetzung für eine Cholesky-Zerlegung. Wir wollen eine Matrix L finden, für die gilt, dass $A = L \cdot L^T$. L sollte dabei eine Dreiecksmatrix sein, damit gilt, dass $L^T = L^{-1}$ **TODO:** Beispiel einfügen

Matrixnormen

$$\begin{vmatrix} \begin{pmatrix} \vdots \\ x_n \end{pmatrix} & = \sqrt{x_1 + \dots + x_n} \\ \begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} & = \sum_{i=1}^n x_i \\ \begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} & = \max_{1 \le i \le n} x_i \\ A \in R^{n \times n} \end{vmatrix}$$

$$|A|_1 = \max_{1 \le i \le n} \sum_{i=1}^n a_{ij} \text{ Spaltens.}$$

$$|A|_1 = \max_{1 \le i \le n} \sum_{j=1}^n a_{ij} \text{ Zeilens.}$$

Differentialgleichung

6.1 DGL 1. Ordnung

6.1.1 Variation der Konstanten

• Alle Ableitungen y' umformen: $y' = \frac{dy}{dx}$

• Umstellen durch Integration und $e^{ln(x)}$ -Trick nach y

6.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: $v = C_1$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0) = 2 ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

6.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $y^{(n)}$ ist, ist eine Störfunktion. $y(t) = y_h(t) +$ $y_p(t)$

6.3.1 Charakteristisches Polynom

Umformen der Ableitungen: $y^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

 $\rho \lambda \cdot x$ k-fache Nullstelle:

 $x^{k-1}e^{\lambda x}$ Komplexe Nullstelle:

 $(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$

Bsp.: $y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$

Bei inhomogenen DGL muss ein Ansatz gefunden werden, der zur Lösung führt, wenn man ihn samt Ableitungen in die ursprüngliche DGL einsetzt.

- 1. Aufstellen des Ansatzes für v = {Ansatz}
- 2. Ableiten und Einsetzen als homogenen Teil der DGL.
- 3. Parameter des Ansatzes ausrechnen und als y_p angeben.