2.1 創薬・医療

健康で長寿な社会を目指して

社会的&サイエンス課題	計算科学からの貢献
個人ゲノム解析	次世代DNAシーケンサーからの大規模データの超高速解析
複合因子疾患の解明	遺伝子ネットワーク解析
新薬開発のコスト軽減	高精度シミュレーションによる計算スクリーニング(IT創薬) (物質科学分野の手法や、細胞環境、ウイルス全体など巨大系)
ナノバイオデバイスの開発	生体分子を応用した新しい機能性ナノ分子材料開発支援
疾患機構の解明	分子から細胞、臓器・全身スケールのマルチスケールシミュレーション
患者のQuality of Lifeの向上	超音波シミュレーションによる低侵襲治療支援
脳のメカニズム解明	脳機能の詳細なモデル化やリアルタイムシミュレーション
大規模実験施設との連携	X線自由電子レーザーSACLAとの連携

Molecular simulation of multidrug efflux transporter

2.1 創薬・医療

健康で長寿な社会を目指して

社会的&サイエンス課題

計算科学からの貢献

個人ゲノム解析

複合因子疾患の解明

ビッグデータ解析:3.2.3章を新設して詳述

新薬開発のコスト軽減

物質科学・ものづくり分野との連携:3.1.3章に詳述

ナノバイオデバイスの開発

疾患機構の解明

患者のQuality of Lifeの向上

脳のメカニズム解明

大規模実験施設との連携

分子から細胞、臓器・全身スケールのマルチスケールシミュレーション

生命科学分野:4.1章に詳述(脳神経系を統合)

SACLAとの連携:3.3.1章に詳述

Molecular simulation of multidrug efflux transporter

生体系の変更点

- 2章:創薬•医療
 - 用語説明をつけた
 - 要求スペックの記述、スライドへの記述
 - 文言の修正、句読点など
- ・ 3章:生体分子に関する連携
 - 各担当者に依頼 (山下さん、望月さん、吉井さん)
 - 文言の修正
 - スライド作成
- 3章:SACLAに関する連携
 - 担当者(JASRIの城地さん)に依頼
 - 文言の修正
 - スライド作成

生体系の変更点(続き)

- 3章:ゲノム解析 ビッグデータの新設
 - 玉田さんに依頼、4章からの移設
- 4章:生命科学
 - − ゲノム解析が3章にいくので、「脳・神経系」を「分子・細胞・臓器」に移動して、再編。
 - 文言の修正。スライドでの要求スペック。