Lecture 19 Chapter 3: Orthogonality

3.1 Orthogonal Vectors and Subspaces

Course Outcomes: Students will be acquainted with orthogonal vectors, orthonormal vectors, orthonormal subspaces, and orthogonal compliment of subspaces.

```
Length of a vector: It is denoted by ||x||. Let x = (x_1, x_2).

Length in 2D = ||x|| = \sqrt{x_1^2 + x_2^2}.

Length squared=||x||^2 = x_1^2 + x_2^2.

Let x = (x_1, x_2, x_3).

Length in 3D = ||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}.

Length squared=||x||^2 = x_1^2 + x_2^2 + x_3^2

Let x = (x_1, x_2, ....., x_n).

Length in R^n = ||x|| = \sqrt{x_1^2 + x_2^2 + ..... + x_n^2}.

Length squared=||x||^2 = x_1^2 + x_2^2 + ..... + x_n^2.
```

Inner Product:

```
Let x = (x_1, x_2) and y = (y_1, y_2). Then the inner product of two vectors x and y is denoted by x^Ty and defined as x^Ty = x_1y_1 + x_2y_2
Let x = (x_1, x_2, x_3) and y = (y_1, y_2, y_3). Then x^Ty = x_1y_1 + x_2y_2 + x_3y_3
Let x = (x_1, x_2, ....., x_n) and y = (y_1, y_2, ...., y_n).
Then x^Ty = x_1y_1 + x_2y_2 + ..... + x_ny_n
```

Note:

$$x^{T}x = \begin{pmatrix} x_{1} & x_{2} & \dots & x_{n} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \dots & x_{n} \end{pmatrix}$$

= $x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} = ||x^{2}||$

Hence inner product of a vector with itself is equal to the length square of the vector.

- The inner product x^Ty is zero if and only if x and y are orthogonal vectors
- If $x^Ty > 0$, their angle is less than deg 90. If $x^Ty < 0$, their angle is greater than deg 90.
- The only vector with length zero and the only vector orthogonal to itself is the zero vector.

Orthogonal Vectors:

Two vectors x and y are said to be orthogonal iff $x^Ty = 0$

Orthogonal Subspaces:

Two subspaces V and W of the same space R^n are orthogonal if every vector v in V is orthogonal to every vector w in W i.e $v^T w = 0$ for all v and w.

Examples

- x-axis and y-axis are subspaces of R^2 and every vector of x-axis is orthogonal to every vector in y-axis. So, x-axis \perp y-axis in R^2
- y = x line $\perp y = -x$ line in \mathbb{R}^2 .
- All the three axes in \mathbb{R}^3 are orthogonal to each other.

Notes

- The subspace {0} is orthogonal to all subspaces.
- A line can be orthogonal to another line, or it can be orthogonal to a plane, but a plane cannot be orthogonal to a plane.

Fundamental theorem of orthogonality: The row space is orthogonal to the nullspace (in \mathbb{R}^n). The column space is orthogonal to the left nullspace (in \mathbb{R}^m).

Orthogonal Complement Given a subspace V of \mathbb{R}^n , the space of all vectors orthogonal to V is called the orthogonal complement of V. It is denoted by $V^{\perp} =$ "V perp."

Examples

- x-axis is the orthogonal complement of y-axis in \mathbb{R}^2 .
- y = x line is the orthogonal complement of y = -x line in \mathbb{R}^2 .
- x-axis is the orthogonal complement of yz-plane in \mathbb{R}^3 .

Fundamental Theorem of Linear Algebra: The nullspace is the orthogonal complement of the row space in \mathbb{R}^n . The left nullspace is the orthogonal complement of the column space in \mathbb{R}^m .