Geschwindigkeitsmessung von Fahrzeugen durch Audio-Analyse

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) (vgl. Martinshorn)

$$\boldsymbol{v} = \frac{\boldsymbol{k} - \boldsymbol{1}}{\boldsymbol{k} + \boldsymbol{1}} \cdot \boldsymbol{c} \qquad mit \quad k = \frac{f_1}{f_2}$$

v: Geschwindigkeit des Fahrzeugs c: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

ERGEBNISSE

→ Akkurate Berechnung

→ Keine Konstanten notwendig

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

→ Sehr anfällig für Messfehler (z. B. starker Wind)

Begrenzte Nutzbarkeit: fehleranfällig, teilweise ungenau

