Distribusi Peluang Diskrit Khusus (1)

Probabilitas dan Statistika

Teknik Informatika, FTEIC Institut Teknologi Sepuluh Nopember Surabaya

Moment Generating Function (MGF)

Apabila X variabel random, dan

$$-h \le t \le h \quad (h > 0),$$

E(e^{tx}) disebut sebagai fungsi pembangkit momen.

Untuk X kontinu:
$$E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Untuk X diskrit:
$$E(e^{tx}) = \sum_{\infty}^{\infty} e^{tx} f(x)$$

Misalnya diambil f(x) dari X kontinu, maka:

$$M(t) = E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} \cdot f(x) \cdot dx$$

$$M'(t) = \frac{dM(t)}{dt} = \frac{dE(e^{tx})}{dt} = E(xe^{tx}) = \int_{-\infty}^{\infty} xe^{tx} f(x) dx$$

$$M'(0) = E(x \cdot e^{0}) = E(x) = \int_{-\infty}^{\infty} xe^{0x} f(x) dx = \mu_{x} = Moment I$$

$$M''(t) = \frac{dM'(t)}{dt} = \frac{dE(xe^{xt})}{dt} = E(x^{2}e^{tx}) = \int_{-\infty}^{\infty} x^{2}e^{tx} f(x) dx$$

$$M''(0) = E(x^{2}e^{0}) = E(x^{2}) = \int_{-\infty}^{\infty} x^{2}e^{tx} f(x) dx = Moment II$$

MGF dari VR Diskrit

$$f(x) = \left(\frac{1}{2}\right)^x, x = 1, 2, 3, \dots$$

$$M(t) = E(e^{tx}) = \sum_{x} e^{tx} \left(\frac{1}{2}\right)^{x}$$

$$M(t) = E(e^{tx}) = \sum \left[\frac{1}{2}e^{t}\right]^{x} = \frac{\frac{1}{2}e^{t}}{1 - \frac{1}{2}e^{t}} = \frac{e^{t}}{2 - e^{t}}, t < \ln 2$$

$$M'(t) = \frac{e^{t}(2-e^{t}) - e^{t}(-e^{t})}{(2-e^{t})^{2}} = \frac{2e^{t}}{(2-e^{t})^{2}}$$

Moment
$$I = \mu_x = M'(0) = \frac{2x1}{(2-1)^2} = 2$$

$$M''(t) = \frac{8e^t - 2e^{3t}}{(2 - e^t)^4}$$

$$E(x^2) = M''(0) = 6$$

$$Var(x) = 2$$

MGF dari VR Kontinu

$$f(x) = \left(\frac{1}{8}\right)^x, 0 \le x \le 4$$

 $Variansi = 8 - (8/3)^2$

$$E(e^{tx}) = \int_{0}^{4} e^{tx} \cdot \left(\frac{1}{8}\right)^{x} \cdot dx = \frac{1}{8} \left[\frac{x}{t}e^{tx} - \frac{1}{t^{2}}e^{tx}\right]_{0}^{4}$$

$$M(t) = \frac{1}{2t}e^{4t} - \frac{1}{8t^{2}}e^{4t} + \frac{1}{8t^{2}}$$

$$M'(t) = \frac{(4e^{4t} \cdot 2t) - 2e^{4t}}{4t^{2}} - \frac{(4e^{4t} \cdot 8t^{2}) - (e^{4t} \cdot 16t)}{64t^{4}} + \frac{1 \cdot (-2)t^{-3}}{8}$$

$$M'(0) = \frac{8}{3}$$

$$M''(t) = \frac{8e^{4t} \cdot t - 2e^{4t}}{t^{2}} - \frac{4e^{4t} \cdot t^{2} - e^{4t} \cdot 2t}{64t^{4}} + \frac{4e^{4t} \cdot 4t^{3} - (e^{4t} - 1) \cdot 12t^{2}}{16t^{6}}$$

$$M'''(t) = \frac{8e^{4t}}{t^{2}} - \frac{6e^{4t}}{t^{2}} + \frac{3e^{4t}}{t^{3}} - \frac{3(e^{4t} - 1)}{4t^{4}}$$

$$M'''(0) = 8$$

Distribusi Bernoulli

- Distribusi Bernoulli muncul berdasarkan percobaan dengan yang memiliki hanya dua kemungkinan hasil
- Hasil tersebut dilabeli dengan "success" atau "failure"
- **Terdapat** π yang menyatakan peluang sebuah *success*
- Maka peluang untuk sebuah failure adalah (1 π)
- Fungsi peluang Bernoulli sebagai berikut ...

$$P(1) = \pi$$
 $dan P(0) = (1 - \pi)$

Mean dan Variance untuk Variabel Random Bernoulli

Mean sbb:

$$\mu_X = E(X) = \sum_X xP(x) = (0)(1-\pi) + (1)\pi = \pi$$

Variance sbb:

$$\sigma_X^2 = E[(X - \mu_X)^2] = \sum_X (x - \mu_X)^2 P(x)$$
$$= (0 - \pi)^2 (1 - \pi) + (1 - \pi)^2 \pi = \pi (1 - \pi)$$

Distribusi Bernoulli

- Dalam suatu sekolah, jumlah murid laki-laki = 425 dan jumlah murid perempuan = 375.
- Pada suatu perlombaan, diperlukan 4 murid (tidak dipentingkan laki-laki atau perempuan, namun urutannya dipentingkan) yang dipilih melalui pengundian.
- Berapa peluang yang terpilih adalah berturut-turut perempuan perempuan laki-laki perempuan?

Urutan Terjadi *x success* dari *n* Percobaan

Jumlah terjadinya urutan dengan x success pada sejumlah n percobaan saling bebas (independent) adalah:

$$C_x^n = \frac{n!}{x!(n-x)!}$$

■ Dengan $n! = n \times (n-1) \times (n-2) \times ... \times 1$ dan 0! = 1.

Urutan C_xⁿ bersifat mutually exclusive,

dikarenakan tidak ada 2 atau lebih kejadian yang akan muncul bersamaan.

Distribusi Binomial

- Terdapat sebuah eksperimen secara acak yang memenuhi kejadian Bernoulli
- Nilai π menunjukkan peluang terjadinya kejadian sukses pada suatu percobaan
- Dilakukan percobaan yang saling bebas sejumlah n kali
- Distribusi yang menunjukkan hasil kemunculan kejadian sukses disebut dengan distribusi binomial
- Fungsi distribusi peluang untuk variabel random binomial X = x adalah :
 - \square P(x = jumlah sukses dari n kali percobaan) untuk x = 0, 1, 2 . . . , n

$$P(x) = \frac{n!}{x!(n-x)!} \pi^{x} (1-\pi)^{(n-x)}$$

Mean dan Variance dari Distribusi Peluang Binomial

- X adalah jumlah kejadian sukses pada n kali percobaan
- Nilai peluang sukses untuk setiap percobaan = π
- Nilai x mengikuti bentuk distribusi binomial dengan mean,

$$\mu_X = E(X) = n\pi$$

Dan variance,

$$\sigma_X^2 = E[(X - \mu)^2] = n\pi(1 - \pi)$$

Contoh Peluang Binomial

Seorang salesman diberi 5 kesempatan menawarkan produknya kepada 5 orang. Pada tiap usaha menjual tsb, dia meiliki peluang 40% berakhir pada transaksi penjualan.

Hitung peluang bahwa dia hanya akan berhasil menyelesaikan paling banyak satu transaksi penjualan.

$$P(\text{paling banyak satu}) = P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= 0.078 + 0.259 = 0.337$$

P(no sales) = P(0) =
$$\frac{5!}{0!5!}$$
 (0.4)⁰ (0.6)⁵ = 0.078

P(1 sale) = P(1) =
$$\frac{5!}{1!4!}$$
(0.4)¹(0.6)⁴ = 0.259

Peluang Binomial, n = 100, π =0.40 dengan Microsoft Excel

Figure 5.7						
Sample size	100					
Probability of success	0.4					
Mean	40					
Variance	24					
Standard deviation	4.898979					
Binomial Probabilities	Table					
	X	P(X)	P(<=X)	P(<x)< td=""><td>P(>X)</td><td>P(>=X)</td></x)<>	P(>X)	P(>=X)
	36	0.059141	0.238611	0.179469	0.761389	0.820531
	37	0.068199	0.30681	0.238611	0.69319	0.761389
	38	0.075378	0.382188	0.30681	0.617812	0.69319
	39	0.079888	0.462075	0.382188	0.537925	0.617812
	40	0.081219	0.543294	0.462075	0.456706	0.537925
	41	0.079238	0.622533	0.543294	0.377467	0.456706

Walpole, hal 124 no 2

- Dilakukan uji coba pengenalan suara untuk pembicara A dan B dengan karakter suara yang mirip
 - Kejadian sukses adalah berhasil mengenali suara pembicara, p
 = 0.5
 - \Box q = 1 p = 0.5
- Terdapat 12 orang yang akan mencoba mengenali suara
 - \Box n = 12
- Hitung peluang 3 orang akan memberikan hasil beda
 - \Box x = 3, p(x=3)?

Walpole, hal 124 no 2 dengan Analitis

$$b(x; n, p) = \binom{n}{x} p^{x} q^{n-x}, x = 0,1,...,n$$

$$p(x=3) = b(3;12,0.5) = {12 \choose 3} (0.5)^3 (0.5)^{12-3}$$

$$p(x=3) = \frac{12!}{3!(12-3)!}(0.5)^3(0.5)^9 = 0.0537$$

Walpole, hal 124 no 2 dengan Microsoft Excel

BINOMDIST-			
Number_s	3	3 = 3	
Trials	12	1 2	
Probability_s		🔣 = numbe	
Cumulative		= logical	
	al term binomial distribution probability.	=	
Formul	a result =	ОК	Cancel
BINOMDIST			
BINOMDIST Number_s	3	1 = 3	
		= 3 = 12	
Number_s	12		
Number_s Trials	12 0,5	= 12	
Number_s Trials Probability_s Cumulative	12 0,5	12 = 0,5	0938
Number_s Trials Probability_s Cumulative Returns the individu Cumulative	12 0,5 FALSE	= 12 = 0,5 = FALSE = 0,05371	

Walpole, hal 124 no 2 dengan Tabel

- Lihat Tabel A1, namun terdapat perkecualian
- Model pada Tabel A1 $\sum_{x=0}^{r} b(x; n, p)$

$$p(x=3) = \sum_{x=0}^{3} b(x;12,0.5) - \sum_{x=0}^{2} b(x;12,0.5)$$

Lihat kolom n = 12, kemudian lihat di kolom r cari baris dengan r = 3 dan r = 2, lihat hasilnya pada kolom p = 0.5

$$p(x=3) = 0.0730 - 0.0193 = 0.0537$$

Walpole, hal 124 no 2 dengan Microsoft Excel, Kumulatif

$$p(x=3) = \sum_{x=0}^{3} b(x;12,0.5) - \sum_{x=0}^{2} b(x;12,0.5)$$

$$p(x=3) = 0.0730 - 0.0193 = 0.0537$$

Walpole, hal 125 no 18 (Teorema Chebyshev)

- Uji coba dilakukan pada ban truk untuk medan tertentu
- Dicatat kegagalan pengujian dan berakhir dengan ban bocor terjadi pada 25% kendaraan
 - □ Kejadian sukses → terjadinya ban bocor, p = 0.25
 - \square q = 1-p = 1-0.25 = 0.75
- Pengujian dilakukan dengan 15 buah truk
 - \Box n = 15
- Hitung jumlah truk yang diharapkan berakhir dengan ban bocor
 - Variabel random binomial x menyatakan jumlah kendaraan gagal
 - Ditanya μ_x ? $\mu_x = np = (15)(0.25) = 3.75 <math>\cong 4$

Walpole, hal 125 no 18 (Teorema Chebyshev)

Hitung interval yang menyatakan setidaknya ¾ dari 15 truk akan gagal

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge \frac{3}{4}, k = 2$$

$$\mu = np = 15(0.25) = 3.75$$

$$\sigma = \sqrt{npq} = \sqrt{15(0.25)(0.75)} = 1.677$$

$$\mu \pm 2\sigma = 3.75 \pm 2(1.677) = 3.75 \pm 3.354$$

$$P(0.396 < X < 7.104) \ge \frac{3}{4}$$

Distribusi Multinomial

- Sebuah eksperimen dilakukan secara acak dengan kejadian sukses terdapat k kemungkinan, $E_1, E_2, ..., E_k$
- Untuk setiap kemungkinan memiliki p_i yang menyatakan peluang terjadinya kejadian sukses ke-i pada suatu percobaan, $p_1, p_2, ..., p_k$
- Dilakukan percobaan yang saling bebas sejumlah n kali
- Terdapat variabel random x_i untuk menyatakan jumlah kejadian sukses pada $E_1, E_2, ..., E_k$

$$f(x_1,...,x_k;p_1,...,p_k;n) = \binom{n}{x_1,...,x_k} p_1^{x_1},...,p_k^{x_k}$$

$$\sum_{i=1}^{k} x_i = n; \sum_{i=1}^{k} p_i = 1$$

Walpole, hal 126 no 22

- Berdasarkan teori Genetika, Guinea Pigs dapat menghasilkan keturunan berwarna merah:hitam:putih dengan rasio 8:4:4
 - □ Kejadian E_1 = keturunan warna merah dengan p_1 = ½
 - □ Kejadian E_2 = keturunan warna hitam dengan p_2 = 1/4
 - □ Kejadian E_3 = keturunan warna putih dengan p_3 = $\frac{1}{4}$
- Terdapat 8 keturunan yang dihasilkan, n = 8
- Hitung peluang keturunan terdiri dari 5 merah, 2 hitam, 1 putih, nilai $x_1 = 5$, $x_2 = 2$, $x_3 = 1$

$$f(x_1 = 5, x_2 = 2, x_3 = 1; p_1 = \frac{1}{2}, p_2 = \frac{1}{4}, p_3 = \frac{1}{4}; n = 8)$$

$$= \begin{pmatrix} 8 \\ 5 & 2 & 1 \end{pmatrix} (0.5)^5 (0.25)^2 (0.25)^1 = \frac{21}{256}$$

Distribusi Hypergeometrik

- Terdapat ruang sampel sejumlah n obyek diambil dari set yang berisi N obyek (N>=n)
- Pengambilan tersebut menghasilkan S obyek berlabel sukses
- Distribusi yang menyatakan jumlah kesuksesan dalan variabel X disebut distribusi hypergeometrik
- Fungsi peluangnya :

$$P(x) = \frac{C_x^S C_{n-x}^{N-S}}{C_n^N} = \frac{\frac{S!}{x!(S-x)!} \times \frac{(N-S)!}{(n-x)!(N-S-n+x)!}}{\frac{N!}{n!(N-n)!}}$$

 Nilai x bervariasi antara nilai terbesar yaitu 0 dan [n-(N-S)] sampai ke nilai terkecil yaitu of n dan S.

- Terdapat kotak berisi 10 missil
- Pada kotak tersebut terdapat 3 missil yang rusak
- Secara random diambil 4 missil
- Hitung peluang semua missil yg terambil tdk rusak
 - □ Cara mendapatkan 4 missil baik dan 0 missil rusak

$$\binom{7}{4} \binom{3}{0} = \frac{7!}{4!(7-4)!} \times \frac{3!}{0!(3-0)!} = 35$$

- □ Cara mendapatkan 4 missil dari kotak $\binom{10}{4} = \frac{10!}{4!(10-4)!} = 210$
- □ Peluang semua missil yg terambil tidak rusak = 35/210= 1/6

Mean dan Variance dari Distribusi Peluang Hypergeometrik

- Obyek tergolong menjadi dua kemungkinan hasil, dilabeli dengan "success" atau "failure"
- N adalah jumlah obyek keseluruhan yang ada
- n adalah jumlah obyek yang diambil untuk diamati
- k adalah jumlah obyek pada N yang dilabeli "success"
- X adalah jumlah kejadian sukses yang diamati dari n
- Nilai x mengikuti distribusi hypergeometrik dengan mean, $\mu_X = \frac{nk}{N}$
- Dan variance,

$$\sigma^2 = \frac{N - n}{N - 1} \times n \times \frac{k}{N} \times \left(1 - \frac{k}{N}\right)$$

Walpole, hal 131 no 10 Teorema Chebyshev

- Hitung berapa banyak missil rusak yang diharapkan masuk dalam pengambilan
- Dengan teorema Chebyshev

$$\mu_X = \frac{(4)(3)}{10} = 1.2$$

□Variance

$$\sigma^2 = \frac{10 - 4}{10 - 1} \times 4 \times \frac{3}{10} \times \left(1 - \frac{3}{10}\right) = \frac{504}{900}$$

$$\sigma = 0.7483$$

Walpole, hal 131 no 10 Teorema Chebyshev

Terdapat peluang ¾ untuk mendapatkan missil yang rusak dengan interval μ±2σ = (1.2) ±2(0.7483) = -0.297< x <2.697</p>

atau ...

■ Terdapat peluang 8/9 untuk mendapatkan missil yang rusak dengan interval $\mu\pm3\sigma=(1.2)$ $\pm3(0.7483)=-1.045< x <3.445$

Hypergeometrik ≅ Binomial

- Untuk jumlah data yang cukup besar, dilakukan aproksimasi/pendekatan
- Terdapat data pada ruang sampel sejumlah N dengan pengambilan obyek sejumlah n
- Jika n/N ≤ 0.05 → BINOMIAL

$$\mu = np = \frac{nk}{N}, \sigma^2 = npq = n\frac{k}{N}\left(1 - \frac{k}{N}\right)$$

- Dilakukan voting akan RUU dengan 10.000 voter dengan 4000 menolak
 - \square N = 10.000, k = 4000
- Diambil 15 voter secara acak
 - \square n = 15 \rightarrow n/N = 15/10.000 = 0,0015 \leq 0,05
 - □ Kejadian sukses dianggap voter setuju → p = (N-k)/N = 6000/10.000 = 0,6 dengan N yang baru = 15
- Hitung peluang paling banyak 7 diantaranya setuju akan RUU
 - □ P(x≤7) ?

HYPGEOMDIST	
Sample_s 1	<u></u>
Number_sample 15	<u>1</u> = 15
Population_s 6000	<u></u> = 6000
Number_pop 10000	<u>*</u> = 10000
Returns the hypergeometric distribution.	= 2,38646E-05
Number_pop is the population size.	
Formula result =2,38646E-05	OK Cancel
HYPGEOMDIST-	
Sample_s 3	1 = 3
Number_sample 15	1 5
Population_s 6000	<u>*</u> = 6000
Number_pop 10000	<u>*</u> = 10000
Returns the hypergeometric distribution.	= 0,001638164
Number_pop is the population size.	
Formula result =0,001638164	OK Cancel

HYPGEOMDIST				
Sample_s	4	1 = 4		
Number_sample	15	<u>15</u> = 15		
Population_s	6000	1 = 6000		
Number_pop	10000	<u>10000</u>		
= 0,007388371 Returns the hypergeometric distribution. Number_pop is the population size.				
[2] Formul	a result =0,007388371	ОК	Cancel	
HYPGEOMDIST-				
Sample_s	6	1 = 6		
Number_sample	15	1 5 = 15		
Population_s	6000	1 = 6000		
Number_pop	10000	<u>10000</u>		
= 0,061152795 Returns the hypergeometric distribution.				
Number_pop is the population size.				

HYPGEOMDIST			
Sample_s	5	<u></u>	
Number_sample	15	<u>1</u> = 15	
Population_s	6000	1 = 6000	
Number_pop	10000	1 0000	
Returns the hyperg	eometric distribution.	= 0,024420	6436
Number_pop	is the population size.		
? Formul	a result =0,024426436	ОК	Cancel
_HYPGEOMDIST			
Sample_s	7	1 = 7	
Number_sample	15	1 5 = 15	
Population_s	6000	1 = 6000	
Number_pop	10000	<u>10000</u>	
Returns the hyperg	eometric distribution.	= 0,11805	5708
Number_pop	is the population size.		
comed			

- Dihitung dengan Distribusi Hipergeometrik □ 0,212937749
- Dihitung dengan Distribusi Binomial □ 0,213103183 VPergeometrik =Binomial
- Pendekatan 3 digit desimal **□**0.213