# Demostraciones del problema del polígono de área máxima

Natalia Hernández, Felipe Castro, Dara Meneses

#### Diciembre 2023

## 1. Preguntas

1. Demuestre que la función objetivo es el área del polígono

$$f(x) = \frac{1}{2} \sum_{i=1}^{n_v - 1} r_{i+1} r_i sen(\theta_{i+1} - \theta_i)$$

- 2. Pruebe que el número de elementos no cero en  $\nabla^2 f(x)$  es  $11(n_v-1)-8$
- 3. Pruebe que la primera restricción,  $r_i^2 + r_j^2 2r_i r_j cos(\theta_i \theta_j) \le 1$  con  $1 \le i < n_v, i < j \le n_v$  es equivalente a que el diámetro del polígono sea menor o igual a uno.

#### 2. Demostraciones

## 2.1. Por demostrar: el área del polígono equivale a la función objetivo

Sea n vértices del polígono. Podemos hacer la transformación a coordenadas polares  $(r_i, \theta_i)$ . Partiendo del punto (0,0) se pueden crear triángulos tomando el origen, el vértice i y el vértice i-1 como se muestra en la Figura 1.

Por ejemplo, en la figura anterior el triángulo 1 está dado por  $v_0, v_1$  y  $v_3$ . Tomando la longitud de estos triángulos como  $r_i$  como base entonces podemos calcular la altura de la siguiente manera:  $r_{i+1}sin(\theta_{i+1} - \theta_i)$  De todo lo anterior obtenemos que el área de cada triángulo es

$$A_i = \frac{1}{2}r_{i+1}r_isen(\theta_{i+1} - \theta_i)$$



Figura 1: Calcular el área del polígono a través de triángulos

Dado que el área total es la suma de las areas de los n-1 triángulos, obtenemos que el área del polígono está dada por:

$$f(x) = \frac{1}{2} \sum_{i=1}^{n_v - 1} r_{i+1} r_i sen(\theta_{i+1} - \theta_i)$$

De lo anterior se puede concluir que la función objetivo es el área del polígono.

## 2.2. Por demostrar: el número de elementos no cero en $\nabla^2 f(x)$ es $11(n_v-1)-8$

Calculando la matriz Hessiana de  $f(x) = \frac{1}{2} \sum_{i=1}^{n_v-1} r_{i+1} r_i sen(\theta_{i+1} - \theta_i)$ . Notemos que es una función que depende de  $r_i$ ,  $r_{i+1}$ ,  $\theta_i$  y  $\theta_{i+1}$  para cada  $i \in \{1, ..., n_v - 1\}$  Por lo que la hessiana se puede definir por bloques

$$\begin{bmatrix} H_{rr} & H_{r\theta} \\ H_{\theta r} & H_{\theta \theta} \end{bmatrix} \tag{1}$$

Donde cada bloque corresponde a las hessianas por pares.

#### 2.2.1. Calcular elementos no cero de $H_{rr}$

$$\bullet \frac{\partial f}{\partial r_i} = \frac{1}{2} r_{i+1} sen(\theta_{i+1} - \theta_i) \Rightarrow \frac{\partial^2 f}{\partial r_i^2} = 0 \Rightarrow \frac{\partial^2 f}{\partial r_i \partial r_{i+1}} = \frac{1}{2} sen(\theta_{i+1} - \theta_i)$$

$$\bullet \quad \frac{\partial f}{\partial r_{i+1}} = \frac{1}{2} r_i sen(\theta_{i+1} - \theta_i) \Rightarrow \frac{\partial^2 f}{\partial r_{i+1}^2} = 0 \Rightarrow \frac{\partial^2 f}{\partial r_{i+1} \partial r_i} = \frac{1}{2} sen(\theta_{i+1} - \theta_i)$$

Notemos que  $\frac{\partial^2 f}{\partial r_i^2}=0$ ,  $\frac{\partial^2 f}{\partial r_i\partial r_{i+k}}=0$  para  $k\in\{2,3,...,n_v-1\}$  entonces existen  $2(n_v-2)$  elementos no cero en  $H_{rr}$ 

#### 2.2.2. Calcular elementos no cero de $H_{r\theta}$

$$\bullet \frac{\partial^2 f}{\partial r_i \partial \theta_{i+1}} = \frac{1}{2} r_{i+1} cos(\theta_{i+1} - \theta_i)$$

Notemos que  $\frac{\partial^2 f}{\partial r_i \partial \theta_{i+k}} = 0$  para  $k \in \{2, 3, ..., n_v - 1\}$  entonces existen  $2(n_v - 2) + n_v - 1$  elementos no cero en  $H_{r\theta}$ 

#### 2.2.3. Calcular elementos no cero de $H_{\theta\theta}$ y $H_{\theta r}$

Análogamente al subcaso 2.2.2,  $H_{\theta\theta}$  y  $H_{\theta r}$  tienen  $2(n_v-2)+n_v-1$  elementos no cero

## 2.3. Calcular el número total de elementos no ceros de $\nabla^2 f(x)$ Sumando:

$$2(n_v - 2) + 3[(2(n_v - 2) + n_v - 1)]$$

$$= 2n_v - 4 + 3(2n_v - 4 + n_v - 1)$$

$$= 2n_v - 4 + 6n_v - 12 + 3n_v - 3$$

$$= 11n_v - 19$$

$$= 11(n_v - 1) - 8$$

Por lo tanto, el número total de elementos no cero es  $11(n_v - 1) - 8$ 

# 2.4. Por demostrar: la primera restricción, $r_i^2 + r_j^2 - 2r_i r_j cos(\theta_i - \theta_j) \le 1$ con $1 \le i < n_v, i < j \le n_v$ es equivalente a que el diámetro del polígono sea menor o igual a uno

Sea j > i tomamos el triangulo formado por los vertices  $(0,0), (r_i,\theta_i), (r_j,\theta_j)$ . Definimos el ángulo del triángulo formado desde el origen como  $\Theta = \theta_j - \theta_i$ 

Definamos  $d_{ji}$  como la distancia entre los dos vértices. Tenemos que los lados del triangulo son  $d_{j(i)}$ ,  $r_i$  y  $r_j$ , entonces podemos aplicar la ley de cosenos de la siguiente manera:

$$d_{ji}^{2} = r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}cos(\theta_{j} - \theta_{i})$$

Por la primera restricción

$$r_i^2 + r_j^2 - 2r_i r_j cos(\theta_j - \theta_i) \le 1 \Rightarrow d_{ji}^2 \le 1$$

Lo que significa que la distancia entre cualesquiera pares de vértices es menor o igual a 1. Recordemos que el diámetro D de un polígono es la mayor distancia entre todas

las diagonales y lados.

$$\therefore D = max\{d_{ij}\} \le 1, 1 \le i < j \le n_v$$

$$\begin{array}{lll} \text{Min} & -\frac{1}{2}\sum_{i=1}^{n-1}r_{i+1}r_{i} \operatorname{sen}(\theta_{i+1}-\theta_{i}) \\ \text{s.a.} & 1-r_{i}^{2}-r_{j}^{2}+2r_{i}r_{j} \operatorname{cos}(\theta_{j}-\theta_{i}) & \geq 0 & 1 \leq i < j \leq n \\ & 1-r_{i} & \geq 0 & 1 \leq i \leq n \\ & r_{i} & \geq 0 & 1 \leq i \leq n \\ & \theta_{i+1}-\theta_{i} & \geq 0 & 1 \leq i \leq n-1 \\ & \pi-\theta_{i} & \geq 0 & 1 \leq i \leq n \\ & \theta_{i} & \geq 0 & 1 \leq i \leq n \end{array}$$