MC202 BC - Estrutura de

Lab 02Dad Qanelas 201 Matriz

Prazo de Entrega: 12/03/2014 - 23:59:59

Link Susy: https://susy.ic.unicamp.br:9999/mc202bc/02

(https://susy.ic.unicamp.br:9999/mc202bc/02)

As matrizes estão presentes em muitos problemas computacionais e matemáticos. Saber como implementálas e manipulá-las, o tornará apto a resolver tais problemas.

Considere uma matriz com r linhas e c colunas. Cada um de seus elementos possui uma posição (x,y), em que 0 <= x <= r-1 e 0 <= y <= c-1.

Sua tarefa será realizar sequências de operações em sub-matrizes ("janelas") desta matriz principal.

Você deverá implementar uma TAD para a resolução deste laboratório. Para facilitar o seu trabalho, estamos disponibilizando os cabeçalhos das funções no arquivo lab02.h no Susy (Arquivos auxiliares). Você deverá implementar todas as funções desta TAD em um arquivo chamado *lab02.c*, que também conterá a main de seu programa.

A não de implementação e o não uso de qualquer uma das funções da TAD implicará em nota ZERO, independente das saídas do programa.

Observações Gerais

Salve seu código com o nome: lab02.c e insira seu nome e RA nos locais indicados (nunca use acentuação num programa em C):

/* Nome: Seu nome aqui

* RA: Seu RA agui

- * Laboratorio 02
- As Janelas da

Matriz */

SEU

PROGRAMA

- 1. Utilize *return 0;* na main de seu programa;
- 2. Você deverá implementar todas as funções desta TAD em um arquivo chamado *lab02.c*, que também conterá a main de seu programa. A não de implementação e o não uso de qualquer uma das funções da TAD implicará em nota ZERO, independente das saídas do programa.
- A matriz principal utilizada deve ser alocada DINAMICAMENTE. A não alocação dinâmica ocasionará em nota ZERO, independente das saídas do programa;
- Todas as bibliotecas necessárias para a utilização do código já estão incluídas no arquivo *lab02.h*.
 NÃO INCLUA mais nenhuma biblioteca;
- 5. Na compilação do código no Linux, você pode utilizar: gcc -o lab02 lab02.c -ldiretorio_do_header
- Qualquer tentativa de fraude, plágio e afins, corresponderá em nota ZERO para os envolvidos;
- 7. Códigos ilegíveis serão considerados errados. A legibilidade é obtida com identação correta e coerente, bons nomes de variáveis e funções, bem como boa subdivisão do código em funções auxiliares:

MC202 BC

(/~lfabp4神6的f/courses/mc202/)

(/~ra144681/courses/mc202/labs)

Slides

(/~ra144681/courses/mc202/slides)

Notas

(/~ra144681/courses/mc202/notas)

Critérios de Avaliação

$$nota = \frac{\sum_{i}^{n} c_i}{n} * 10$$

onde **Ci** é o caso de teste i, com valores 1 (certo) e 0 (errado) e **n** é o número total de casos de teste.

A NÃO implementação e o NÃO uso das funções da TAD *lab02.h* implicará em **nota ZERO**, independente das saídas do programa.

Entrada

A primeira linha contém 3 valores inteiros positivos **r**, **c**, **m**, em que m (m >= 1) é o número de operações a serem realizadas.

Cada uma das próximas **m** linhas de entrada, conterá uma das operações mostradas a seguir:

1 x1 y1 x2 y2 v

Incrementa o valor inteiro v em cada elemento (x,y) da sub-matriz (x1,y1,x2,y2). Utilize a função increment_matrix.

2 x1 y1 x2 y2 v

Atribui o valor inteiro v em cada elemento (x,y) da submatriz (x1,y1,x2,y2). Utilize a função set_value_into_matrix.

3 x1 y1 x2 y2

Imprime o valor do **somatório**, **mínimo** e **máximo** dos elementos da sub-matriz **(x1,y1,x2,y2)**. Utilize a função *print_matrix_metrics*.

* Nas operações descritas acima, a sub-matriz (x1,y1,x2,y2) significa que todos os elementos (x,y) satisfazem x1<=x<=x2 e y1<=x<=y2.

Saída

A saída é acionada pelo seguinte comando de entrada:

3 x1 y1 x2 y2

que deve imprimir o valor do **somatório**, **mínimo** e **máximo** dos elementos da sub-matriz **(x1,y1,x2,y2)**. Comandos deste tipo serão sempre os últimos da lista de **m** comandos. P. ex, se temos 8 comandos (m = 8) e 3 comandos de impressão, tais comandos serão os 3 últimos desta sequência.

Caso haja algum erro, como p. ex., as dimensões das sub-matrizes estão fora das dimensões da matriz principal, entre outros, você deverá imprimir a palavra **erro** e terminar o programa.

Todas as restrições foram mencionadas na descrição.

Exemplos

#	Entrada	Saída
1	5 5 7 1 1 2 4 4 5	66 2 10 63 2 10
	111342	83 0 10
	221442	
	31134	
	3 1 2 4 4 3 0 0 4 4	
2	5 5 2	erro
	100625	

Obs: Notem que o comando de impressão imprimirá as saídas entre os comandos de entrada.

No terminal, teremos algo do tipo (as linhas em **negrito** correspondem às saídas):

5 5 7		
1124		
4 5		
1113		
4 2		
2214		
4 2		
1114		
3 3		
3113		
4		
66 2 10		
3124		
4		
63 2 10		
3004		
4		
83 0 10		