Week5 CR Inequality and UMVUE

- 4.1 Cramer-Rao Inequality
- 4.5 Rao-Blackwell Theorem
- 4.6 Uniqueness
- 4.7 Completeness
- 4.8 Lehmann-Scheffe

Conclusions

Confusion

Week5 CR Inequality and **UMVUE**

4.1 Cramer-Rao Inequality

Mean squared error: $MSE_{\theta}(T_n) = Var_{\theta}T_n + (b_n(\theta))^2$

Our aim is to minimize MSE, by imposing the crterion of unbiasedness, we only have to minimize the Variance

Condition for attain CR bound: $V(X, \theta) = k_n(\theta)[W(X) - \tau(\theta)]$

CR-Bound:

$$Var_{\theta}(W(X)) \ge \frac{\frac{\partial}{\partial \theta} \tau(\theta)^2}{I_X(\theta)}$$

Where $I_X(\theta) = -E(\frac{\partial^2}{\partial \theta^2} InL(X, \theta))$ is fisher information.

4.5 Rao-Blackwell Theorem

W: any unbiased estimator of $\tau(\theta)$

T: sufficient statistics for θ

What we need to find:

$$\hat{\tau}(T) = E(W|T)$$

4.6 Uniqueness

If an esitimator W is UMVUE for $\tau(\theta)$, then W is unique. Moreover, W is UMVUE iff W is uncorrelated with all unbiased estimators of zero.

4.7 Completeness

Let's say have a statistic T

$$E_{\theta}g(T) = 0$$
, for all $\theta \in \Theta$ implies $P_{\theta}(g(T) = 0) = 1$

Meaning of complete statistic

Practice:

1. $T = \sum_{i=1}^{n} X_i$ for Bernoulli distribution

4.8 Lehmann-Scheffe

It seems the only difference between Lehmann-Scheffe and Rao-Blackwell theorem is just "Completeness"

What we can do with it: find UMVUE even in situtations when the CR bound is not achievable

Once again, what we need to calculate is:

$$\hat{\tau}(T) = E(W|T)$$

Note: If W is a function of T, we can immediately come to the conclusion that W is UMVUE.

Conclusions

Mean squared error: $MSE_{\theta}(T_n) = Var_{\theta}T_n + (b_n(\theta))^2$

condition for attaining CR bound: $V(X, \theta) = k_n(\theta)[W(X) - \tau(\theta)]$

Confusion

- 1. During your note, example 4.9 Poisson distribution page3: what's the meaning of $Var(X_1)$? X_1 only has one value, how do we describe the extent of data spreading out?
- 2. Exampl 4.9 Uniform distribution Unbiased estimator $Y = \frac{n+1}{n} X_{(n)}$ Explain?

$$f_{\mathcal{X}(n)}(t,\theta) = \begin{cases} \frac{nt^{n-1}}{\theta^n} & 0 < t < \theta \\ 0 & \text{else} \end{cases}$$

Does it mean the probability density function of $X_{(n)}$? Also, in the additional notes, you mentioned if W is a function of T then W is UMVUE.

3. 4.6 uniqueness black bold part, explain the meaning?