#### Герметичный теоречтич.

## ИСХОДНЫЕ ДАННЫЕ

Ширина (W) \*

Высота (Н) \*

Объём (Vвнут)

Площадь крышки (Soc)

Длина (L) \*

Мощность, рассеиваемая нагретой зоной  $P_3$  \*

Температура окружающей среды Tc (K)

Коэффициент заполнения Кз \*

Мощность, рассеиваемая элементом Pэл \*

Площадь поверхности элемента с радиатором\* обдуваемая воздухом,  $S_{\scriptscriptstyle \, \mathrm{эл}\,}$ \*

Величина атмосферного давления снаружи корпуса аппарата. Н 1

\* Радиатор для корпуса ТО-220, 6 ребер, двухсторонний (4-2), для расчетов возьмем HS184-100, тепловое сопротивление Rra=5,1 K/Bт, 30x41x100, алюминий

## С ВНУТРЕННИМ ПЕРЕМЕШИВАНИЕМ

α

Gв/0,000472 - воздушный поток в CFM; \*

Gв – производительность вентилятора\* в кубометрах в секунду;

 $K_w$ 

\* Вентилятор EC4010SL12X

## С НАРУЖНЫМ ОБДУВОМ

Предел температуры рабочей схемы

D вен – диаметр вентилятора\*; \*

N – количество оборотов в минуту \*

\* Вентилятор Case Fan ID-Cooling WF-14025-XT

### В ГЕРМЕТИЧНОМ ОРЕБРЕННОМ КОРПУСЕ

Высота ребра\* h р: \*

Ширина ребра 1 p: \*

Количество ребер N р: \*

\* Расчет ведется для лицевой стороны корпуса блока со сторонами L и W

## В ПЕРФОРИРОВАННОМ КОРПУСЕ

Количество перфорационных отверстий\*, п

Ширина отверстия w п: \*

Длина отверстия 1 п: \*

Шаг между отверстиями d п: \*

\* Расчет ведется для перфорированных отверстий расположенных с двух торцевых частей корпуса (верхней и нижней со сторонами W и H) в один ряд (в соотв. С ГОСТ 58602-2019)

| ПРИ ПРИНУДИТЕЛЬНОМ ВОЗДУШНОМ ОХЛАЖДЕНИИ    |
|--------------------------------------------|
| Объемный расход вентилятора* Q: *          |
| Плотность воздуха р:                       |
| Массовый расход воздуха G:                 |
| Расстояние от вентилятора до элемента 1: * |
| * Вентилятор EX04010S3P                    |

0,056 0,028 7,213E-05 0,002576 0,046 3,5 318 45 0,195 3,5 0,002 101325

0,6 2,96 0,0013971 0,7219636

423 150 0,14 1600

0,025 0,003 8

22 0,0014 0,02 0,0031 0,0027 1,128 0,0030456 0,22

| РАСЧЕТ В ГЕРМЕТИЧНОМ КОРПУСЕ                                        |          |
|---------------------------------------------------------------------|----------|
| Рассчитываем поверхность корпуса (S_k):                             | 0,0112   |
| *Определяем условную поверхность нагретой зоны (S_3):               | 0,00615  |
| Удельную мощность корпуса блока (q k)                               | 312,5    |
| Удельную мощность нагретой зоны (q_3):                              | 569,1057 |
| Коэффициент (9_1) в зависимости от удельной мощности корпуса        | 26,61707 |
| Коэффициент (9_2) в зависимости от удельной мощности нагретой зоны: | 50       |
| Коэффициент (К_Н1) в зависимости от давления среды вне корпуса      | 0,999021 |
| Коэффициент (К_Н2) в зависимости от давления среды внутри корпуса:  | 0,996065 |
| Перегрев корпуса блока (9_к):                                       | 26,591   |
| Перегрев нагретой зоны (9_3):                                       | 49,88192 |
| Средний перегрев воздуха в блоке (9_в):                             | 38,23646 |
| Удельную мощность элемента (q_эл):                                  | 1750     |
| Перегрев поверхности элемента (9_эл):                               | 75,75816 |
| Перегрев окружающей элемент среды (9_эс):                           | 58,07162 |
| Температуру корпуса блока (T_k):                                    | 344,591  |
| Температуру нагретой зоны (Т_3):                                    | 367,8819 |
| Температуру поверхности элемента (Т_эл):                            | 393,7582 |
| Среднюю температуру воздуха в блоке (Т_в):                          | 356,2365 |
| Температуру окружающей элемент среды (Т_эс):                        | 376,0716 |

| РАСЧЕТ В ГЕРМЕТИЧНОМ ОРЕБРЕННОМ КОРПУСЕ                        |          |
|----------------------------------------------------------------|----------|
| Поверхность оребрённого корпуса блока без ребер (S_kh):        | 0,0112   |
| Поверхность ребер оребрённого корпуса блока (S_p):             | 0,0184   |
| Поверхность оребрённого корпуса блока (S_kp):                  | 0,0296   |
| Удельная мощность оребрённого корпуса блока (q_kp):            | 118,2432 |
| Коэффициент (9_1р) в зависимости от оребрённого корпуса блока: | 13,78106 |
| Перегрев корпуса блока (9_к):                                  | 13,76756 |
| Перегрев нагретой зоны (9_3):                                  | 37,05848 |
| Средний перегрев воздуха в блоке (9_в):                        | 27,79386 |
| Перегрев поверхности элемента (9_эл):                          | 56,28257 |
| Перегрев окружающей элемент среды (9_эс):                      | 42,21193 |
| Температуру корпуса блока (T_k):                               | 331,7676 |
| Температуру нагретой зоны (Т_3):                               | 355,0585 |
| Температуру поверхности элемента (Т_эл):                       | 374,2826 |
| Среднюю температуру воздуха в блоке (Т_в):                     | 345,7939 |
| Температуру окружающей элемент среды (Т_эс):                   | 360,2119 |

| РАСЧЕТ В ПЕРФОРИРОВАННОМ КОРПУСЕ        |          |  |  |
|-----------------------------------------|----------|--|--|
| Площадь перфорационных отверстий (S_п): | 0,000616 |  |  |
| Коэффициент перфорации (П):             | 0,196429 |  |  |
| К_п:                                    | 0,710064 |  |  |

| Перегрев корпуса блока (9_к):                | 17,55961 |
|----------------------------------------------|----------|
| Перегрев нагретой зоны (9_3):                | 35,41543 |
| Средний перегрев воздуха в блоке (9_в):      | 21,24926 |
| Перегрев поверхности элемента (9_эл):        | 53,78719 |
| Перегрев окружающей элемент среды (9_эс):    | 32,27231 |
| Температуру корпуса блока (T_k):             | 335,5596 |
| Температуру нагретой зоны (Т_3):             | 353,4154 |
| Температуру поверхности элемента (Т_эл):     | 371,7872 |
| Среднюю температуру воздуха в блоке (Т_в):   | 339,2493 |
| Температуру окружающей элемент среды (Т_эс): | 350,2723 |

\* формулу поверхности нагретой зоны надо изменить (брать из книги, но размеры не корпуса, а печатной платы с элементами)

#### РАСЧЕТ С ВНУТРЕННИМ ПЕРЕМЕШИВАНИЕМ

Объем воздуха в блоке (V в):

Скорость перемешивания воздуха в блоке (W):

Перегрев корпуса блока (9 к):

Перегрев нагретой зоны ( $\theta$  3):

Средний перегрев воздуха в блоке (9 в):

Перегрев поверхности элемента (9 эл):

Перегрев окружающей элемент среды (9 эс):

Температуру корпуса блока (T k):

Температуру нагретой зоны (Т з):

Температуру поверхности элемента (Т\_эл):

Среднюю температуру воздуха в блоке (Т в):

Температуру окружающей элемент среды (Т эс):

# РАСЧЕТ С НАРУЖНЫМ ОБДУВОМ

71,5909961 94,88191826

120,7581634

83,23645718

103,0716193

Перегрев между нагретой зоной и корпусом блока ( $9_21$ ):

Скорость обдува (9)

Перегрев корпуса блока с наружным обдувом (9 К):

Перегрев нагретой зоны блока с наружным обдувом (9 3):

Средний перегрев воздуха в блоке (9 в):

Перегрев поверхности элемента (9 эл):

Перегрев окружающей элемент среды (9\_эс):

Температуру корпуса блока (T k):

Температуру нагретой зоны (Т з):

Температуру поверхности элемента (Т эл):

Среднюю температуру воздуха в блоке (Т в):

Температуру окружающей элемент среды (Т эс):

### РАСЧЕТ ПРИ

Средний перегрев воздуха в блоке (9 в):

Площадь поперечного сечения корпуса блока (S):

Коэффициент (m\_1): \*

Коэффициент (т 2): \*

Коэффициент (т 3): \*

Коэффициент (т 4): \*

Перегрев нагретой зоны блока ( $\theta$  3):

Перегрев поверхности элемента (9 эл):

Перегрев окружающей элемент среды ( $\theta$  эс):

Среднюю температуру воздуха в блоке (Т в):

Температуру нагретой зоны (Т з):

Температуру поверхности элемента (Т эл):

Температуру воздуха на выходе из блока (Т в2):

58,76755806 82,05848022 101,2825668 72,79386017

87,21192513

Температуру окружающей элемент среды (Т\_эс):

62,55961155

80,41543233

98,78718785

66,2492594

77,27231271

|             | Ī        |
|-------------|----------|
|             |          |
| 5,8063E-05  |          |
| 1,78        |          |
| 26,5909961  |          |
| 36,07210949 |          |
| 27,05408212 |          |
| 54,78451629 |          |
| 41,08838722 |          |
| 344,5909961 | 71,591   |
| 354,0721095 | 81,07211 |
| 372,7845163 | 99,78452 |
| 345,0540821 | 72,05408 |
| 359,0883872 | 86,08839 |

| 23,29092216 | 1        |
|-------------|----------|
| 11,72266667 |          |
| 5,132751851 |          |
| 28,42367401 |          |
| 21,31775551 |          |
| 43,1684549  |          |
| 32,37634118 |          |
| 323,1327519 | 50,13275 |
| 346,423674  | 73,42367 |
| 361,1684549 | 88,16845 |
| 339,3177555 | 66,31776 |
| 350,3763412 | 77,37634 |

|   |      | K_w | $V(\mathbf{W})$ |      |
|---|------|-----|-----------------|------|
| 0 | 1    | 2   | 3               | 4    |
| 1 | 0,82 | 0,7 | 0,6             | 0,52 |



|   | К_п(П) |     |      |      |
|---|--------|-----|------|------|
| 0 | 0,2    | 0,4 | 0,6  | 0,8  |
| 1 | 0,7    | 0,6 | 0,51 | 0,48 |



|                   |          |              | 0,574599422 |
|-------------------|----------|--------------|-------------|
|                   |          |              | 0,001568    |
|                   | 3,0456   | G*10^3 =     | 0,02        |
| Брать из графиков | 0,001568 | 1_1*1_2 =    | 2,7         |
| справа ->         | 0,046    | 1_3 =        | 5           |
|                   | 0,195    | <b>К</b> 3 = | 1,8         |
|                   |          |              | 2,275599422 |
|                   |          |              | 18,25704759 |
|                   | _        |              | 4,609989304 |
|                   |          | 45,5746      | 318,5745994 |
|                   |          | 47,2756      | 320,2755994 |
|                   |          | 63,25705     | 336,2570476 |
|                   |          | 46,1492      | 319,1491988 |

322,6099893 49,60999





| Элемент                                          | Тип           | Рабочая рассеиваемая мощность |                  |    |  |  |
|--------------------------------------------------|---------------|-------------------------------|------------------|----|--|--|
|                                                  |               |                               |                  |    |  |  |
| BAV70                                            | Диод          | 0,35                          |                  |    |  |  |
| B27V                                             | Диод          | 1                             |                  |    |  |  |
| 1N4007                                           | Диод          | 1                             |                  |    |  |  |
| FR104                                            | Диод          | 1                             |                  |    |  |  |
| 1N4148                                           | Диод          | 0,3                           |                  |    |  |  |
| 2N7002                                           | Транзистор    | 0,2                           | Вот такие пироги |    |  |  |
| 2N3904                                           | Транзистор    | 0,35                          |                  |    |  |  |
| 3904                                             | Транзистор    | 0,35                          |                  |    |  |  |
| 4160                                             | Транзистор    | 1                             | 1                |    |  |  |
| 7N60-B                                           | Транзистор    | 15                            | 1                |    |  |  |
| MBRB20100CTG                                     | Транзистор    | 8                             |                  |    |  |  |
| MBRB20150CTG                                     | Транзистор    | 8,5                           |                  |    |  |  |
| Тр-р на EFD30                                    | Трансформатор | 6                             |                  |    |  |  |
| Кол-во резисторов(~): 10 Кол-во кондеснторов(~): |               |                               |                  | 10 |  |  |
| Сумма (мощность нагретой зоны)                   |               |                               |                  |    |  |  |
| 44,15                                            |               |                               |                  |    |  |  |