DSAA 5002 - HW1

50015976 Ruiming ZHANG

Q1 [15 Marks]

Given the transaction database below,set the minimum support count to 2 and the minimum confidence level to 60% to find the strong association rule. Generate the set C_3 of the candidate 3-itemset, using prunning on Apriori principle.

Solution:

Thus we get the candidate 3-itemset C_3 .

Q2 [15 Marks]

Reducing the transactions using dynamic hashing and prunning(DHP) algorithm. Set the minimum support count to 2.

Hash function bucket #= $h(\{x y\}) = ((order of x)*10+(order of y)) \% 7$

Solution

Because we have:

- Items = A, B, C, D, E,
- Order = 1, 2, 3, 4, 5
- Hash function : $h(\{x y\}) = ((order of x)*10+(order of y)) \% 7$

Thus we have the hash table below:

bucket	0	1	2	3	4	5	6
count	1	1	1	4	3	2	1
2-itemset	{A D}	{A E}	{B C}	{B D}	{BE}	{AB}	{A C}
				{DE}	{BE}	{AB}	
				{B D}	{BE}		
				{DE}			

Let L_1*L_1 to generate a 2-itemset table, and choose the itemsets where the number of content in its bucket is above the minimum support.

Because if an item occurs in a frequent (k+1)-itemset, it must occur in at least k candidate k-itemsets.

TID	Item	2-itemset occurs				
T1	A, B, C	{A B}	Disgard		TID	Item
T2	B, D, E	{BD} {BE} {DE}	Keep {B D E}	 →	T2	B, D, E
Т3	A, B, D, E	{AB} {BD} {BE} {DE}	Keep {B D E}		Т3	B, D, E
T4	B, E	{E E}	Disacrd	·		

Thus we have reduced the transactions.

Q3 [35 Marks]

An itemset X is said to be a frequent itemset if the frequency count of X is at least a given support threshold.

An itemset Y is a proper super-itemset of X if $X \subset Y$ and $X \neq Y$.

An itemset X is said to be a closed frequent itemset if (1) X is frequent and (2) there exists no proper super itemset Y of X such that Y is frequent and Y has the same frequency count as X.

An itemset X is said to be a maximal frequent itemset if (1) X is frequent and (2) there exists no proper super-itemset Y of X such that Y is frequent.

Let F_c be the set of (traditional) frequent itemsets each of which is associated with a frequency in the dataset.

For example, if there are three frequent itemsets, $\{I_1\}$ with frequency 4, $\{I_2\}$ with frequency 5, and $\{I_1, I_2\}$ with frequency 3, $F = \{\{I_1\}, \{I_2\}, \{I_2, I_2\}\}$ and $F_c = \{\{\{I_1\}, 4\}, \{\{I_2\}, 5\}, \{\{I_1, I_2\}, 3\}\}$.

Similarly, let C be the set of closed frequent itemsets without specifying the frequency of itemsets.

Let C_c be the set of closed frequent itemsets each of which is associated with a frequency of itemsets.

Let M be the set of maximal frequent itemsets without specifying the frequency of itemsets.

Ler M_c be the set of maximal frequent itemsets each of which is associated with a frequency in the dataset.

The following shows six transactions with four items. Each row corresponds to a transaction where 1 corresponds to a presence of an item and 0 corresponds to an absence.

A	В	С	D
0	0	1	1
1	1	0	0
0	0	1	1
1	0	1	1
1	0	0	0
0	0	0	1