# Выбор тензорных представлений для прогнозирования по мультимодальным измерениям.

#### Алсаханова Надежда

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2022



#### Данные

#### Определение

Временным рядом называется функция дискретного аргумента  $\mathbf{s}(t)$ , сопоставляющая отчетам времени  $t_i \in \mathcal{T}$  вектор значения измеряемых переменных  $\mathbf{s}(t_i) = s_i \in \mathbb{R}^M$ .

#### Определение

Пусть заданы набор временных рядов  $\{\mathbf s_n(t)\}_{n=1}^{N_s}$  и набор целевых временных рядов  $\{\mathbf y_n(t)\}_{n=1}^{N_y}$ . Задача восстановления значений  $\{\mathbf y_n(t)\}_{n=1}^{N_y}$  по предыдущим значениям  $\{\mathbf s_n(t)\}_{n=1}^{N_s}$  называется задачей декодирования временных рядов  $\{\mathbf y_n(t)\}_{n=1}^{N_y}$ .

Пусть из временных рядов  $\mathbf{s}(t)$ ,  $\mathbf{y}(t)$  составлена выборка  $(\mathbf{X}, \mathbf{Y})$ :

$$\underline{\mathbf{X}} \in \mathbb{R}^{M \times n_1 \times \dots \times n_D}, \qquad \mathbf{Y} \in \mathbb{R}^{M \times K},$$
 (1)

где  $\mathbf{y}_m = \mathbf{y}(t_m)$ , а  $\underline{\mathbf{X}}_m \in \mathbb{R}^{n_1 imes \dots imes n_D}$  - тензор.



#### Постановка задачи

#### Определение

Модель снижения размерности  $h:\mathbb{R}^{n_1 \times \ldots \times n_D} \to \mathbb{R}^{\ell_1 \times \ldots \times \ell_D}$ , где  $\ell_i < n_i$  является преобразованием, которое переводит из пространства большей размерности  $\mathbb{R}^{n_1 \times \ldots \times n_D}$  в пространство меньшей размерности  $\mathbb{R}^{\ell_1 \times \ldots \times \ell_D}$ , то есть  $\underline{\mathbf{Q}}_m = h(\underline{\mathbf{X}}_m, \theta)$ , где  $\theta$  – параметры преобразования.

#### Определение

Модель согласования  $g:\mathbb{R}^{\ell_1 \times \ldots \times \ell_D} \to \mathbb{R}^K$  — преобразование, переводящая из пространтсва меньшей размерности  $\mathbb{R}^{\ell_1 \times \ldots \times \ell_D}$  в пространство целевой переменной  $\mathbb{R}^K$ , то есть  $\mathbf{Y}_m = g\left(\underline{\mathbf{Q}}_m, \eta\right)$ , где  $\eta$  — параметры преобразования.

#### Постановка задачи

Предлагаемая модель:

$$\phi = h \circ g : \quad \mathbb{R}^{n_1 \times \dots \times n_D} \to \mathbb{R}^K, \tag{2}$$

где функции h и g удовлетворяют процессу:

$$\underline{\mathbf{X}}_m \xrightarrow{h(\cdot,\theta)} \underline{\mathbf{Q}}_m \xrightarrow{g(\cdot,\eta)} \mathbf{Y}_m$$

Модель  $\phi^*(\cdot, \theta, \eta)$  является оптимальной, если она минимизирует некоторый функционал ошибки  $\mathcal{L}$ :

$$\phi^* = \arg\min_{\{\theta, \eta\}} \mathcal{L}\left(\phi(\underline{\mathbf{X}}, \theta, \eta), \ \mathbf{Y}\right) \tag{3}$$

#### Мультимодальная регрессия

Тензор признаков  $\underline{\mathbf{X}}$  можно матрицизовать  $\underline{\mathbf{X}}$  по первой размерности:

$$\underline{\mathbf{X}}_{(1)} = \left[ \operatorname{vec} \left( \underline{\mathbf{X}}_{1} \right)^{\top}, \dots, \operatorname{vec} \left( \underline{\mathbf{X}}_{M} \right)^{\top} \right]^{\top} \in \mathbb{R}^{M \times (n_{1} \cdot \dots \cdot n_{D})}$$
(4)

Тогда задача сводится к задаче мультимодальной регрессии:

$$\mathbf{f}^* = \arg\min_{\mathbf{f}} \mathcal{L}\left(\mathbf{f}, \ \underline{\mathbf{X}}_{(1)}, \ \mathbf{Y}\right) \tag{5}$$

Рассматриваем только класс параметрических моделей  $f(\mathbf{X}, \mathbf{\Theta})$ , где  $\mathbf{\Theta}$  – матрица параметров. Тогда оптимальные параметры:

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta}} \mathcal{L}(\mathbf{\Theta}, \ \mathbf{X}, \ \mathbf{Y}) \tag{6}$$

Избыточность матрицы  $\underline{\mathbf{X}}_{(1)}$  приводит к неустойчивости решения (6).

#### Тензорная регрессия

Матрицизация тензора X плоха тем, что:

- получается черезмерно большое количество столбцов;
- теряется информация для структурированных данных.

Тензорная регрессия:

$$\mathbf{y}_m = \langle \underline{\mathbf{X}}_m | \underline{\mathbf{W}} \rangle + \varepsilon, \tag{7}$$

где  $\varepsilon\in\mathbb{R}^K$  — ошибка,  $\mathbf{y}_m\in\mathbb{R}^K$  — целевой вектор, а  $\langle \underline{\mathbf{X}}_m|\underline{\mathbf{W}}\rangle$  - тензорная свертка:

$$\langle \underline{\mathbf{X}}_{m} | \underline{\mathbf{W}} \rangle_{k} = \sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{D}=1}^{n_{D}} x_{i_{1},\dots,i_{D}} w_{i_{1},\dots,i_{D},k}$$
(8)

Тензор  $\underline{\mathbf{W}}$  представляют в раложении Такера:

$$\underline{\mathbf{W}} \approx \underline{\mathbf{G}} \times_1 \mathbf{U}^{(1)} \dots \times_D \mathbf{U}^{(D)} \times_{D+1} \mathbf{U}^{(D+1)}$$
 (9)

где  $\underline{\mathbf{G}}$  - центральный тензор меньшего размера,  $\mathbf{U}^{(i)}$  - унитарные матрицы.

## Partial Least Squares, PLS

Задана выборка  $(\mathbf{X},\mathbf{Y})$ , где  $\mathbf{X} \in \mathbb{R}^{m \times n}$  — матрицы объектов,  $\mathbf{Y} \in \mathbb{R}^{m \times r}$  — матрица ответов.



- максимизировать ковариацию между образами;
- сохранить информацию об исходных матрицах.

$$\mathbf{X}_{m \times n} = \mathbf{T}_{m \times \ell} \cdot \mathbf{P}^{\top} + \mathbf{F}_{m \times n} = \sum_{k=1}^{\ell} \mathbf{t}_{k} \cdot \mathbf{p}_{k}^{\top} + \mathbf{F}_{m \times n},$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{m \times \ell} \cdot \mathbf{Q}^{\top} + \mathbf{E}_{m \times r} = \sum_{k=1}^{\ell} \mathbf{u}_{k} \cdot \mathbf{q}_{k}^{\top} + \mathbf{E}_{m \times r}.$$



## Higher-Order Partial Least Squares, HOPLS

Задана выборка  $(\underline{\mathbf{X}},\underline{\mathbf{Y}})$ , где  $\underline{\mathbf{X}}\in\mathbb{R}^{M\times I_1\times\ldots\times I_N}$  — тензор объектов,  $\underline{\mathbf{Y}}\in\mathbb{R}^{M\times J_1\times\ldots\times J_N}$  — тензор ответов.

Для тензоров  $\underline{\mathbf{X}}$  и  $\underline{\mathbf{Y}}$  используется разложение Такера:

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \underline{\mathbf{G}}_{xr} \times_{1} \mathbf{t}_{r} \times_{2} \mathbf{P}_{r}^{(1)} \times_{3} \dots \times_{N+1} \mathbf{P}_{r}^{(N)} + \underline{\mathbf{E}}_{R},$$

$$\underline{\mathbf{Y}} = \sum_{r=1}^{R} \underline{\mathbf{G}}_{yr} \times_{1} \mathbf{t}_{r} \times_{2} \mathbf{Q}_{r}^{(1)} \times_{3} \dots \times_{N+1} \mathbf{Q}_{r}^{(N)} + \underline{\mathbf{F}}_{R},$$

где R – количество векторов в скрытом пространстве,

- $\mathbf{t}_r \in \mathbb{R}^M$  r-ый скрытый вектор;
- $\{\mathbf{P}_r^{(n)}\}_{n=1}^N \in \mathbb{R}^{I_n imes L_n}, \{\mathbf{Q}_r^{(n)}\}_{n=1}^N \in \mathbb{R}^{J_n imes K_n}$  факторные матрицы;
- $\underline{\mathbf{G}}_{\mathsf{xr}} \in \mathbb{R}^{1 \times L_1 \times \ldots \times L_N}, \underline{\mathbf{G}}_{\mathsf{yr}} \in \mathbb{R}^{1 \times K_1 \times \ldots \times K_N}$  ядра разложения Такера.



## Higher-Order Partial Least Squares, HOPLS

Перепишем разложение Такера следующим образом:

$$\underline{\mathbf{X}} = \underline{\mathbf{G}}_{\mathsf{X}} \times_{1} \mathbf{\mathsf{T}} \times_{2} \overline{\mathbf{\mathsf{P}}}^{(1)} \dots \times_{N+1} \overline{\mathbf{\mathsf{P}}}^{(N)} + \underline{\mathbf{\mathsf{E}}}_{R},$$

$$\underline{\mathbf{Y}} = \underline{\mathbf{G}}_{\mathsf{y}} \times_{1} \mathbf{\mathsf{T}} \times_{2} \overline{\mathbf{\mathsf{Q}}}^{(1)} \dots \times_{N+1} \overline{\mathbf{\mathsf{Q}}}^{(N)} + \underline{\mathbf{\mathsf{F}}}_{R},$$

где

- $\mathbf{E}_R$ ,  $\mathbf{F}_R$  тензоры остатков, полученные после извлечения R скрытых компонентов;
- $\underline{\mathbf{G}}_{x}$ ,  $\underline{\mathbf{G}}_{y}$  ядра разложения, которые имеют блочно-диагональную структуру.

Элементы  $\underline{\mathbf{G}}_{x}$ ,  $\underline{\mathbf{G}}_{y}$  указывают на уровень локальных взаимодействий между соответствующими скрытыми векторами и факторными матрицами.

## Автоэнкодер ReducedNet





Автоэкодер RedusedNet был применен для задачи с данными ECoG. Тензор признаков –  $\underline{X} \in \mathbb{R}^{T \times F \times C}$ , где F – количество частот, C - количество каналов. Функция потерь для обучения автоэнкодера:

$$\mathcal{L}_1 = \mathcal{L}_{rec} + \alpha \cdot \mathcal{L}_{dec},$$
 (10)

$$\mathcal{L}_{rec} = \frac{1}{M} \sum_{m=1}^{M} \|\underline{\mathbf{X}}_{m} - h \circ \psi(\underline{\mathbf{X}}_{m})\|^{2}$$

$$\mathcal{L}_{dec} = rac{1}{M} \sum_{m=1}^{M} \|\mathbf{Y}_m {-} \omega {\circ} h(\mathbf{\underline{X}}_m)\|^2$$

#### Автоэнкодер MatrixReduceNet



#### Отличия:

- Введен новый параметр сети  $N_F$ ;
- Увеличено количество каналов.

## Автоэнкодер TensorReduceNet



#### Отличия:

- Не теряется исходная структура данных, то есть на выходе энкодера тензор.

## Автоэнкодер TensorDimReduceNet



Можно создавать на выходе из энкодера тензора с дополнительными размерностями (дополнительные нелинейные признаки).

#### Другая функция потерь

Добавляется к функции потерь из статьи компонент с корреляций столбцов в тензоре на выходе из энкодера:

$$\mathcal{L}_2 = \mathcal{L}_{rec} + \alpha \cdot \mathcal{L}_{dec} + \beta \cdot \mathcal{L}_{cor}, \tag{11}$$

где:

$$\mathcal{L}_{rec} = \frac{1}{M} \sum_{m=1}^{M} \|\underline{\mathbf{X}}_{m} - h \circ \psi(\underline{\mathbf{X}}_{m})\|^{2}$$

$$\mathcal{L}_{dec} = \frac{1}{M} \sum_{m=1}^{M} \|\mathbf{Y}_m - \omega \circ h(\underline{\mathbf{X}}_m)\|^2$$

$$\mathcal{L}_{cor} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{i=1}^{n} corr(h(\underline{\mathbf{X}}_m)_i, \ h(\underline{\mathbf{X}}_m)_j)$$

где n - количество столцов в тензоре  $h(\mathbf{X}_m)$ .

## Сравнение

| Модель             | Учитывает | Нелинейность | Работа с<br>тензорами |
|--------------------|-----------|--------------|-----------------------|
| PCA                | -         | _            | _                     |
| PLS                | +         | _            | _                     |
| HOPLS              | +         | _            | +                     |
| Autoencoder        | _         | +            | +                     |
| Our<br>autoencoder | +         | +            | +                     |

## Датасет Sensors

 $X \in \mathbb{R}^{T \times 6 \times 15}$ , где 15 – количество частот,  $Y \in \mathbb{R}^{T \times 3}$ .



Рис.: Данные с гироскопа



Рис.: Признаки в частотно-временном пространстве

## Датасет ECoG

#### $\mathbf{X} \in \mathbb{R}^{\times 32 \times 27}$ , $\mathbf{Y} \in \mathbb{R}^{\times 3}$



Рис.: Траектория движения руки



Рис.: Данные с одного канала в частотно-временном пространстве

## Результаты на Sensors

| Модель                        | Компоненты             | RMSE  | Параметры |
|-------------------------------|------------------------|-------|-----------|
| PLS                           | 5                      | 0.757 | _         |
| HOPLS                         | <b>3</b> imes <b>1</b> | 0.811 | -         |
| MatrixReducedNet              | 6                      | 0.720 | 24163     |
| TensorReducedNet+LR           | $5 \times 2$           | 0.682 | 3069      |
| TensorReducedNet+TR           | $5 \times 2$           | 0.675 | 3069      |
| TensorDimReducedNet+LR        | $2 \times 6 \times 2$  | 0.710 | 3163      |
| TensorDimReducedNet+TR        | $2 \times 6 \times 2$  | 0.691 | 3163      |
| TensorReducedNet+LR (corr)    | $2 \times 3$           | 0.705 | 3076      |
| TensorReducedNet+TR (corr)    | <b>2</b> imes <b>3</b> | 0.654 | 3076      |
| TensorDimReducedNet+LR (corr) | $6 \times 4 \times 1$  | 0.704 | 3165      |
| TensorDimReducedNet+TR (corr) | $6 \times 4 \times 1$  | 0.664 | 3165      |
|                               |                        |       |           |

# Результаты на Sensors



# Результаты на ECoG

| Модель                        | Компоненты             | RMSE  | Параметры |
|-------------------------------|------------------------|-------|-----------|
| PLS                           | 4                      | 0.957 | -         |
| HOPLS                         | <b>1</b> imes <b>1</b> | 1.138 | -         |
| MatrixReducedNet              | 19                     | 0.925 | 57106     |
| TensorReducedNet+LR           | $6 \times 14$          | 0.926 | 12418     |
| TensorReducedNet+TR           | $6 \times 14$          | 0.922 | 12418     |
| TensorDimReducedNet+LR        | $2\times5\times14$     | 0.937 | 12808     |
| TensorDimReducedNet+TR        | $2\times5\times14$     | 0.931 | 12808     |
| TensorReducedNet+LR (corr)    | $6 \times 9$           | 0.939 | 10548     |
| TensorReducedNet+TR (corr)    | $6 \times 9$           | 0.941 | 10548     |
| TensorDimReducedNet+LR (corr) | $2\times4\times10$     | 0.970 | 11169     |
| TensorDimReducedNet+TR (corr) | $2\times4\times10$     | 0.973 | 11169     |
|                               |                        |       |           |

# Результаты на ECoG

