Projet de programmation C++

Résolution de circuit

JÉRÉMIE FOURMANN (Promo 2013 - Eléctronique - Enseeiht) MAXIME MORIN (Promo 2013 - Eléctronique - Enseeiht)

28 décembre 2011

Plan

1	Objectif	2
2	Organistion du code	3
	2.1 Le concept général	3
	2.2 L'objet circuit	3
	2.3 L'objet source	4
	2.4 Le main	4
3	Résultats	5
	3.1 Exemple 1	5
	3.2 Exemple 2	5
	3.3 Réponse du CircuitA	7
	3.4 Réponse du CircuitB	8
	3.5 Réponse du CircuitC	9
	3.6 Réponse du CircuitD	10
A	Listing du programme	11
	A.1 main.cpp	11
	A.2 circuits.h	12
	A.3 circuits.cpp	14
	A.4 sources.h	18
	$A.5 \hspace{0.2cm} sources.cpp \hspace{0.2cm} \ldots 0.2c$	19
В	Gnuplot	21

1 Objectif

Nous devons réaliser un programme en C++ permetant de résoudre des équations différentielles du 1^{er} et 2^{e} ordre à coefficients constants.

Ce type d'équation se retrouve en électronique lors de la résolution de circuits RC, RLC. Nous allons utliser une méthode de résolution numérique de type différence finis. Nous utliserons plus particulierement la méthode d'Euler.

L'utilisateur du programme pourra via un terminal :

- choisir le type de circuit (1 ou 2 ordre)
- choisir les valeur de ces composants
- choisir le type de source (c'est a dire le second membre de l'equation différentielle

Le pas de simulation et la durée son réglé par defaut, (mais il peuvent etre facilement modifiés).

Le programme affichera dans le terminal ou dans un fichier texte la solution numérique trouvée. Il sera alors possible de la tracer (voir annexe Gnuplot).

Nous allons à présent détailler et expliquer la structure de notre programme et les choix que l'on a fait. Puis nous commenterons nos résultat obtenus sur les divers circuits. Une fois notre code opérationel nous essayerons d'étudier la méthode d'Euler plus en détaille (influence du pas sur l'erreur, convergence ...).

En annexe nous détaillerons notre méthode pour tracé nos résultats via un script élementaire unix et l'utilitaire Gnuplot.

2 Organistion du code

2.1 Le concept général

Nous utilisons principalement les notions de classe, héritage, polymorphysme.

En effet en fonction du type de circuit la méthode de résolution n'est plus la meme, nous faisont apelle a la notion de polymorphysme pour résoudre se problème. Dans notre cas les fonctions circuitSolve() et diffsolve() auront plusieurs versions possible en fonction du circuit.

2.2 L'objet circuit

Figure 1 – Hièrarchie de la classe circuit

Les principales caractéristique de cet objet :

La classe Euler:

- permet de définir les paramètres de simulation
- 2 méthode circuitSolve() et diffSolve() en virtuelles qui permettrons la résolutions du problème en fonction de la classe instancièe

La classe Circuit:

- Hérite d'Euler
- Son constructeur permet le choix de la Source

La classe Circuit1:

- Hérite de circuit
- définition de la fonction circuiSolve(),qui permet de calculer résoudre au'+bu=E

La classe Circuit1:

- Hérite de circuit
- définition de la fonction circuiSolve(), qui permet de calculer résoudre au"+bu'+cu=E

Les autres classe héritant de ces 2 dernières, permettent de résoudre les circuit A,B,C,D, nous avons essayé de relier les exemples dans le cas général en considérant leurs seconds membres commes des sources particulières.

2.3 L'objet source

Figure 2 – Hièrarchie de la classe source

Les classe carré, échelon, \dots héritent de la classe mère source. Elles définissent chacune une vesion de la fontion E(t) et règle certains attributs qui leurs sont propres comme l'amplitude, fréquences, offset \dots . La fonction E(t) renvoit la valeur à l'instant t de la source. L'objet Circuit vat avoir comme attribut une source, car il en a besoin lors de la résolution de l'equation différentielle.

2.4 Le main

Notre main permet à l'utilisateur de choisir son circuit, il cré donc un pointeur sur le circuit en question. Et il execute ensuite la methode d'affichage de la solution du circuit qui est diffsolve().

3 Résultats

3.1 Exemple 1

Résolution de l'équation différentielle du 1^{er}ordre :

$$\left\{\begin{array}{l} u'(t){=}{-}3\cdot u(t)-3\cdot t\\ u(0){=}0\end{array}\right.$$

La solution exacte étant $u(t) = -1/3 \cdot exp(-3t) - 1/3$

Figure 3 – Solution de l'exemple 1

3.2 Exemple 2

Résolution de l'équation différentielle du 1^{er}ordre :

$$\left\{ \begin{array}{l} u''(t){=}{-}\lambda \cdot u(t) \\ u(0)\,{=}0 \\ u'(0){=}1 \end{array} \right.$$

La solution exacte étant u(t) = sin(t)

Figure 4 – Solution de l'exemple 2

3.3 Réponse du CircuitA

FIGURE 5 - Circuit A

Le circuit A est un circuit RC du 1^{er}ordre, régit par l'équation différentielle :

$$Vs + RC \cdot Vs' = Ve$$

Nous allons étudier la réponse du circuit A à plusieur type d'exitation, avec comme paramètres de simulation :

- R=1 et C=1
- durée= ,durée=

Figure 6 – Réponse du circuit A

3.4 Réponse du CircuitB

FIGURE 7 - Circuit B

Le circuit B est un circuit RC du 1^{er} ordre, il n'est pas linéaire à cause de la diode, nous devons donc l'étudier dans 2 cas .

1er cas : diode passante (Vd>0.6), on a une équation de charge de la capacitée .

2ième cas : diode bloqué(Vd<0.6), on a une équation de decharge de la capacité dans la résistance.

Notre programme test la condition de Vd pour savoir quelle équation il doit résoudre, par ailleur ici on doit prendre en compte les conditions initialles.

Car lors d'un changement d'équation, nous avons des conditions "initialles" différentes.

Nous allons étudier la réponse du circuit B à plusieur type d'exitation, avec comme paramètres de simulation :

- R=1 et C=1
- durée= ,durée=

Figure 8 – Réponse du circuit B

3.5 Réponse du CircuitC

Figure 9 - Circuit A

Le circuit C est un circuit RLC du $2^{\rm e}$ ordre, régit par l'équation différentielle :

Todo

Nous allons étudier la réponse du circuit C à plusieur types d'exitations, avec comme paramètres de simulation :

- R=1 et C=1
- pas= ,durée=

Figure 10 – Réponse du circuit C

3.6 Réponse du CircuitD

Figure 11 - Circuit D

Le circuit D est un circuit RLC du $2^{\rm e}$ ordre, régit par l'équation différentielle :

Todo

Nous allons étudier la réponse du circuit D à plusieur types d'exitations, avec comme paramètres de simulation :

- R=1 et C=1
- pas= ,durée=

Figure 12 – Réponse du circuit D

A Listing du programme

A.1 main.cpp

```
/* Programmation ortientee objet : BE2 */
    /* Jeremie Fourmann et Maxime Morin */
    /* main.cpp
                                               */
    /* Programme principal
                                               */
    #include <iostream>
    #include "circuits.h"
    #include "sources.h"
    using namespace std;
   int main(int argc, char **argv)
15
        cout.width(6);
        cout.precision(4);
17
        circuit * montage;
        int choix=0;
^{21}
            cout << "#Premier Ordre :" << endl;</pre>
            cout << "#1 - Exemple 1" << endl;</pre>
23
            cout << "#2 - Circuit A" << endl;</pre>
            cout << "#3 - Circuit B" << endl;</pre>
25
            cout << "#Deuxime Ordre :" << endl;</pre>
            cout << "#4 - Exemple 2" << endl;</pre>
27
            cout << "#5 - Circuit C" << endl;</pre>
            cout << "#6 - Circuit D" << endl;</pre>
            cin >> choix;
            switch(choix){
            case 1:
33
                 montage = new exemple1;
                 break;
35
            case 2:
                 montage = new circuitA;
37
                 break;
             case 3:
                 montage = new circuitB;
41
                 break;
            case 4:
                 montage = new exemple2;
43
                 break;
            case 5:
45
                 montage = new circuitC;
                 break;
47
            case 6:
                 montage = new circuitD;
49
                 break;
            default:
                 cout << "#Mauvaix choix" << endl;</pre>
53
                 return 0;
            }
55
        montage->circuitSolve();
57
        return 0;
    }
```

A.2 circuits.h

```
/* Programmation ortientee objet : BE2 */
   /* Jeremie Fourmann et Maxime Morin
   /* circuits.h
                                             */
    /* Declaration des classes circuits
                                            */
   #ifndef DEF_circuits
   #define DEF_circuits
    #include "sources.h"
   /* Classe "euler" pour la resolution de au'+bu=f. */
   class euler{
11
        protected:
            double pas,duree,t ;
13
            source *generateur;
        public:
1.5
            euler();
            virtual void diffSolve()=0;
17
            virtual void circuitSolve()=0;
19
   };
    /* Classe "circuit" (permet le choix de la source) */
   class circuit : public euler{
^{23}
        protected:
            double a,b,ci,u,up;
25
        public:
            circuit();
27
            virtual void diffSolve()=0;
            virtual void circuitSolve()=0;
29
   };
31
   /* Classe "circuit1" (1er ordre) */
   class circuit1 : public circuit{
33
        public:
            void diffSolve();
35
            virtual void circuitSolve() =0; //defini en fct du circuit
   };
37
   /* Classe "exemple1". */
39
    class exemple1 : public circuit1{
41
        public:
            exemple1();
43
            void circuitSolve();
   };
45
   /* Classe "circuitA". */
47
   class circuitA : public circuit1{
        protected:
49
            double R,C;
        public:
51
            circuitA();
            void circuitSolve();
53
   };
55
    /* Classe "circuitB". */
   class circuitB : public circuit1{
57
        protected:
            double Rd,C,R;
59
        public:
            circuitB();
61
            void circuitSolve();
  };
```

```
/* Classe "circuit2" (2eme Ordre)*/
   class circuit2 : public circuit{
        protected:
67
            double ci2,u2,u2p;
        public:
            circuit2();
             virtual void diffSolve()=0;
71
             virtual void circuitSolve();
73 };
   /* Classe "exemple2" (2eme Ordre)*/
   class exemple2 : public circuit2{
75
        public:
            exemple2();
77
            void diffSolve();
            void circuitSolve(); //Redefinition pour les besoins de l'exemple
   };
81
   /* Classe "circuitC". */
   class circuitC : public exemple2{
83
        protected:
            double R,C,L;
85
        public:
            circuitC();
87
   };
   /* Classe "circuitD". */
   class circuitD : public circuit2{
        protected:
            double R,C,L;
93
        public:
            circuitD();
95
            void diffSolve();
97
   };
   #endif
```

A.3 circuits.cpp

```
/* Programmation ortientee objet : BE2 */
    /* Jeremie Fourmann et Maxime Morin
    /* circuits.cpp
                                               */
    /* Definition des classes circuits
                                               */
    #include <iostream>
    #include <math.h>
    #include "circuits.h"
    using namespace std;
11
    euler::euler(){
        pas=0.01;
13
        duree=10;
        t=0.0;
15
17
    /* Choix de la source lors de la creation d'un circuit. */
    circuit::circuit(){
19
        int choix=0;
        a=0.0;
        b=0.0;
        ci=0.0;
^{23}
        u=0.0;
        up=0.0;
25
            cout << "#Choisir la source ?" << endl;</pre>
27
            cout << "#1 - Echelon" << endl;</pre>
            cout << "#2 - Porte" << endl;</pre>
29
            cout << "#3 - Carre" << endl;</pre>
            cout << "#4 - Triangle" << endl;</pre>
31
            cout << "#5 - Rampe f(t)=-3*t (Exemple1)" << endl;</pre>
            cout << "#6 - Nulle (Exemple 2)" << endl;</pre>
33
            cin >> choix;
35
            switch(choix){
            case 1:
37
                 generateur=new echelon;
                 break;
39
            case 2:
41
                 generateur=new porte;
                 break;
43
            case 3:
                 generateur=new carre;
^{45}
                 break;
            case 4:
                 generateur=new triangle;
47
                 break;
            case 5:
49
                 generateur=new fctExo1;
                 break;
51
                 generateur=new echelon; /* Generateur quelconque. */
                 generateur->setAB(0,0); /* Coupe le generateur. */
55
                 break;
            default:
57
                 break;
59
61
    void circuit1::diffSolve(){
            u=(pas/a)*(generateur->Esm(t)+up*(-b+a/pas));
```

```
65
            t=t+pas;
    }
67
    exemple1::exemple1(){    //Cas "mathematique" de l'exercice 1
        a=1;
69
        b=3;
        ci = 0;
71
    }
73
    void exemple1::circuitSolve(){
            cout << "#Temps" << " " " << "SolEuler" << " " " << "SolExacte" << " " " << endl;
75
        while(t<= duree){</pre>
            diffSolve();
77
            cout << t << " << u <<" << -(1/3)*exp(-3*t) -t + (1/3) << endl;
    }
81
    /* Circuit A avec comme parametres R et C */
    circuitA::circuitA(){
        cout << "#Choix des valeurs pour le circuit suivant :" << endl ;</pre>
85
        cout << "#____/\\/\\\___ " << endl ;
                                _|_" << endl ;
        cout << "#|
87
                               C ---" << endl ;
        cout << "#E
        cout << "#|_____|" << endl ;
        cout << "#Valeur de R (Ohm) : " << endl;</pre>
        cin >> R;
        cout << "#Valeur de C (Farad) : " << endl ;</pre>
93
        cin >> C;
95
        a=R*C;
        b=1;
97
        generateur->setAB(1,0); // Esm(t) = E(t)
99
    /* Resolution de l'equation differentielle du circuitA pour la source choisie. */
    void circuitA::circuitSolve(){
103
        cout << "#Temps" << " " << "Ve" << " " " << "Vs" << " " " << endl;
        while(t<= duree){</pre>
105
            diffSolve():
            cout << t << "
                              " << generateur->E(t) <<" " << u << endl;
107
    }
109
111
    /* Circuit B avec comme paramtres Rd, R et C. */
113
    circuitB::circuitB(){
        {\tt cout} << "#Choix des valeurs pour le circuit suivant :" << endl ;
        cout << "#____/\\/\\__|\\___ " << endl ;
115
                                                 " << endl ;
        cout << "#|
                          R.d
                                  -17
        cout << "#|
                                                 _|_" << endl ;
117
                                                  --- C " << endl ;
        cout << "#E
                                                  " << endl ;
        cout << "#
119
                                                __ " << endl ;
121
        cout << "#Valeur de Rd (Ohm) : " << endl;</pre>
123
        cin >> Rd;
        cout << "#Valeur de R (Ohm) : " << endl;</pre>
125
        cout << "#Valeur de C (Farad) : " << endl ;</pre>
        cin >> C;
127
129
    /*Resolution des equations differentielles circuitB pour la source
```

```
choisie, pour les deux differents etats de la diode */
131
    void circuitB::circuitSolve(){
         bool bloquee=1; //Flag d'etat de la diode
133
                         // A t=0, C dechargee donc D passante (vd>0.6)
135
                         // C dechargee
         cout << "#Temps" << " " << "Ve" << "Vs" << " " " << "Vd" << endl;
137
         while(t<=duree){
             if(vd>=.6 && bloquee ){
139
                 a=Rd*C;
                 b=1+Rd/R;
141
                 generateur->setAB(1,-0.6); // Offset pour le second membre
143
                 cout << "#Diode passante"<<endl;</pre>
                 bloquee=0;
145
             if(vd<.6 && !bloquee )</pre>
147
                 a=R*C;
149
                 b=1:
                 generateur->setAB(0,0); // Second membre nul, decharge de C dans R
151
                 cout << "#Diode bloquee"<<endl;</pre>
153
                 bloquee=1;
155
             diffSolve();
             vd=generateur->E(t)-u-Rd*C*(u-up)/pas+u/R;
157
                                                            " << u << " " << vd << endl;
             cout << t << " " << generateur->E(t) <<"</pre>
         }
159
    }
161
    /*Ciruit 2 ordre*/
163
    circuit2::circuit2(){
         u2=0.0;
165
         u2p=0.0;
167
         ci2=0;
    }
169
    void circuit2::circuitSolve(){
171
                                      " << "ESM" <<" " << "Vs" << " " << endl;
             cout << "#Temps" << "
             u=ci;
173
             u2=ci2;
             while(t<=duree){</pre>
175
                 diffSolve();
                 cout << t << "
                                  " << generateur->Esm(t) <<" " << u << endl;
             }
179
    }
    /*Resolution de l'exemple numero 2 */
181
    exemple2::exemple2(){    //Cas mathematique de l'exercice 2
         a=0.0;
183
         b=-1.0;
         ci2=1;
185
187
    void exemple2::diffSolve(){
189
             up=u;
             u2p=u2;
191
             u=up+pas*u2p;
             u2=u2p+pas*(b*up+a*u2p+generateur->Esm(t));
             t=t+pas;
193
195
    void exemple2::circuitSolve(){
```

```
197
     " << endl;
            u=ci;
            u2=ci2;
199
            while(t<=duree){</pre>
201
                diffSolve();
                               " << generateur->Esm(t) <<" " << u << " " << sin(t) << endl;
                cout << t << "
            }
203
    }
205
    /*Constructeur du circuitC*/
    circuitC::circuitC(){    //Cas special de l'exercice 2
207
        cout << "#Valeur de R (Ohm) : " << endl;</pre>
        cin >> R;
209
        cout << "#Valeur de L (Henry) : " << endl;</pre>
211
        cout << "#Valeur de C (Farad) : " << endl ;</pre>
        cin >> C;
213
        a=-R/L;
215
        b=-1/(L*C);
        ci=0.0;
217
        ci2=0.0;
219
        generateur->setAB(1,0);
    }
221
    circuitD::circuitD(){
223
        cout << "#Valeur de R (Ohm) : " << endl;</pre>
        cin >> R;
225
        cout << "#Valeur de L (Henry) : " << endl;</pre>
        cin >> L ;
227
        cout << "#Valeur de C (Farad) : " << endl ;</pre>
        cin >> C ;
229
231
        a=-1/(R*C);
        b=-1/(L*C);
        ci=0.0;
^{233}
        ci2=0.0;
235
        generateur->setAB(-a,0);
    }
237
    void circuitD::diffSolve(){
239
            up=u;
            u2p=u2;
241
            u=up+pas*u2p;
            u2=u2p+pas*(b*up+a*u2p)+(generateur->Esm(t)-generateur->Esm(t-pas)); //on code la deriv de la fct
    second membre
            t=t+pas;
    }
245
```

A.4 sources.h

```
/* Programmation ortientee objet : BE2 */
   /* Jeremie Fourmann et Maxime Morin
   /* sources.h
                                            */
    /* Declaration des classes sources
                                            */
   #ifndef DEF_sources
   #define DEF_sources
   /* Classe mere : source. */
   class source{
        protected:
            double T,phi,offset,ampli,alpha,sauvAmpli;
13
            double A,B;
        public:
15
            source();
            virtual double E(double t)=0;//fct virtuelle de la source
17
            double Esm(double t); // Transformation affine de E pour changer amplitude
                                   // ou ajouter un offset dans le second membre
19
            void setAB(double Ai, double Bi); //accesseur pour les valeurs A et B
   };
   /* Classe fille permettant de traiter l'exemple 1. */
   class fctExo1 : public source{
        public:
25
             double E(double t);
   };
27
   /* Classes filles pour les differents signaux d'entree. */
   class echelon : public source{
        public:
31
             double E(double t);
   };
33
   class porte : public source{
35
        public:
            double E(double t);
37
   };
39
   class triangle : public source{
41
       public:
             double E(double t);
   };
43
   class carre : public source{
^{45}
       public:
             double E(double t);
   };
47
   #endif
```

A.5 sources.cpp

```
/* Programmation ortientee objet : BE2 */
    /* Jeremie Fourmann et Maxime Morin
   /* sources.cpp
                                              */
    /* Definition des classes sources
                                              */
   #include <iostream>
   #include "sources.h"
    #include <math.h>
   using namespace std;
11
   /* Methodes de la classe mere "source". */
13
    source::source(){
        T=2:
1.5
        phi=1;
        offset=0;
17
        ampli=5;
        alpha=.6;
19
        A=1, B=0;
   }
^{21}
   double source::Esm(double t) // Transformation affine du signal de la source
^{23}
        return A*E(t)+B;
25
   }
27
29
   /* Definitions des sources filles pour differents types de signaux ou fonctions. */
31
   double fctExo1::E(double t){
33
        return -3*t;
   }
35
   void source::setAB(double Ai, double Bi)
37
   {
39
        A = Ai;
        B = Bi;
41
43
   double echelon::E(double t){
        double fx;
^{45}
        if(phi <=t ) fx= offset+ampli;</pre>
        else fx= offset;
47
        return fx;
   }
49
   double porte::E(double t){
51
        double fx;
53
        if(phi < t && t <phi+T) fx=offset+ampli;</pre>
                else fx=offset;
55
        return fx;
   }
57
   double carre::E(double t){
        double fx;
59
        if((t-phi)-floor((t-phi)/T)*T<T*alpha) fx=offset+ampli;</pre>
                else fx=offset;
61
        return fx;
   }
63
```

B Gnuplot

explication brève , passage de code