- Theorem: Intermediate value property
- statement:Let f be a continuous on [a,b] and let f(a) < f(b) (S is a value which is intermediate between two value which is intermediate between two values taken by f) then there exists x such that a < x < b and f(x) = s.
- Proof:
- Let $S = \{x \in [a,b] : f(x) \le s\}$. Since $a \in S$, we have $S \ne \emptyset$ and S is bounded above by b. Let c be the least upper bound of S.
- We claim that f(c) = s. Since c is the least upper bound of S, there exist a sequence $\{x_n\}$ from S such that $x_n \to c$. By the continuity of f. $f(x_n) \to f(c)$. Since for all n, we have $f(c) \le s$. Note that b > c. Consider a sequence $y_n = c + (b-c)/n$. As y_n It follows that f(c) = s.