

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07H 21/04, C12P 21/02, C12N 15/11, 15/33, 15/48, 15/85	A1	(11) International Publication Number: WO 98/12207 (43) International Publication Date: 26 March 1998 (26.03.98)
(21) International Application Number: PCT/US97/16639		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 18 September 1997 (18.09.97)		
(30) Priority Data: 08/717,294 20 September 1996 (20.09.96) US		
(71) Applicant: THE GENERAL HOSPITAL CORPORATION (US/US); 55 Fruit Street, Boston, MA 02114 (US).		
(72) Inventors: SEED, Brian; Apartment 5J, Nine Hawthorne Place, Boston, MA 02114 (US). HAAS, Jürgen; Huberweg 13, D-69198 Schriesheim (DE).		Published <i>With international search report.</i>
(74) Agent: ELBING, Karen, L.; Clark & Elbing LLP, 176 Federal Street, Boston, MA 02110 (US).		

(54) Title: **HIGH LEVEL EXPRESSION OF PROTEINS**

(57) Abstract

The invention features a synthetic gene encoding a protein normally expressed in a mammalian cell wherein at least one non-preferred or less preferred codon in the natural gene encoding the protein has been replaced by a preferred codon encoding the same amino acid.

	Leu	CTG	118.00	81.21	0.94
	Leu	CTA	3.00	2.06	0.02
	Leu	CTT	1.00	0.69	0.01
5	Leu	CTC	3.00	2.06	0.02
	Pro	CCG	4.00	2.75	0.05
	Pro	CCA	0.00	0.00	0.00
	Pro	CCT	3.00	2.06	0.04
10	Pro	CCC	68.00	46.80	0.91

TABLE 4: Codon Frequency Table of the Native Factor
VIII B Domain Deleted Gene

15 AA Codon Number /1000 Fraction

	Gly	GGG	12.00	8.26	0.15
	Gly	GGA	34.00	23.40	0.41
	Gly	GGT	16.00	11.01	0.20
20	Gly	GGC	20.00	13.76	0.24
	Glu	GAG	33.00	22.71	0.39
	Glu	GAA	51.00	35.10	0.61
	Asp	GAT	55.00	37.85	0.67
25	Asp	GAC	27.00	18.58	0.33
	Val	GTG	29.00	19.96	0.33
	Val	GTA	19.00	13.08	0.22
	Val	GTT	17.00	11.70	0.19
30	Val	GTC	23.00	15.83	0.26
	Ala	GCG	2.00	1.38	0.03
	Ala	GCA	18.00	12.39	0.25
	Ala	GCT	31.00	21.34	0.44
35	Ala	GCC	20.00	13.76	0.28

	Arg	AGG	18.00	12.39	0.25
	Arg	AGA	22.00	15.14	0.30
	Ser	AGT	22.00	15.14	0.18
	Ser	AGC	24.00	16.52	0.20
5					
	Lys	AAG	32.00	22.02	0.40
	Lys	AAA	48.00	33.04	0.60
	Asn	AAT	38.00	26.15	0.60
	Asn	AAC	25.00	17.21	0.40
10					
	Met	ATG	43.00	29.59	1.00
	Ile	ATA	13.00	8.95	0.18
	Ile	ATT	36.00	24.78	0.49
	Ile	ATC	25.00	17.21	0.34
15					
	Thr	ACG	1.00	0.69	0.01
	Thr	ACA	23.00	15.83	0.28
	Thr	ACT	36.00	24.78	0.43
	Thr	ACC	23.00	15.83	0.28
20					
	Trp	TGG	28.00	19.27	1.00
	End	TGA	1.00	0.69	1.00
	Cys	TGT	7.00	4.82	0.37
	Cys	TGC	12.00	8.26	0.63
25					
	End	TAG	0.00	0.00	0.00
	End	TAA	0.00	0.00	0.00
	Tyr	TAT	41.00	28.22	0.60
	Tyr	TAC	27.00	18.58	0.40
30					
	Leu	TTG	20.00	13.76	0.16
	Leu	TTA	10.00	6.88	0.08
	Phe	TTT	45.00	30.97	0.58
	Phe	TTC	32.00	22.02	0.42
35					
	Ser	TCG	2.00	1.38	0.02
	Ser	TCA	27.00	18.58	0.22
	Ser	TCT	27.00	18.58	0.22
	Ser	TCC	18.00	12.39	0.15
40					

	Arg	CGG	6.00	4.13	0.08
	Arg	CGA	10.00	6.88	0.14
	Arg	CGT	7.00	4.82	0.10
	Arg	CGC	10.00	6.88	0.14
5					
	Gln	CAG	42.00	28.91	0.63
	Gln	CAA	25.00	17.21	0.37
	His	CAT	28.00	19.27	0.55
	His	CAC	23.00	15.83	0.45
10					
	Leu	CTG	36.00	24.78	0.29
	Leu	CTA	15.00	10.32	0.12
	Leu	CTT	24.00	16.52	0.19
	Leu	CTC	20.00	13.76	0.16
15					
	Pro	CCG	1.00	0.69	0.01
	Pro	CCA	32.00	22.02	0.43
	Pro	CCT	26.00	17.89	0.35
	Pro	CCC	15.00	10.32	0.20
20					

Use

The synthetic genes of the invention are useful for expressing the a protein normally expressed in mammalian cells in cell culture (e.g. for commercial production of human proteins such as hGH, TPA, Factor VIII, and Factor IX). The synthetic genes of the invention are also useful for gene therapy. For example, a synthetic gene encoding a selected protein can be introduced in to a cell which can express the protein to create a cell which can be administered to a patient in need of the protein. Such cell-based gene therapy techniques are well known to those skilled in the art, see, e.g., Anderson, et al., U.S. Patent No. 5,399,349; Mulligan and Wilson, U.S. Patent No. 5,460,959.

What is claimed is:

1. A synthetic gene encoding a protein normally expressed in an eukaryotic cell wherein at least one non-preferred or less preferred codon in a natural gene encoding said protein has been replaced by a preferred codon encoding the same amino acid, said synthetic gene being capable of expressing said protein at a level which is at least 110% of that expressed by said natural gene in an *in vitro* mammalian cell culture system under identical conditions.
- 5
2. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 150% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 10
3. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 200% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 15
4. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 500% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 5
5. The synthetic gene of claim 1 wherein said synthetic gene comprises fewer than 5 occurrences of the sequence CG.
- 20
6. The synthetic gene of claim 1 wherein at least 10% of the codons in said natural gene are non-preferred codons.

7. The synthetic gene of claim 1 wherein at least 50% of the codons in said natural gene are non-preferred codons.
8. The synthetic gene of claim 1 wherein at least 50% of the non-preferred codons and less preferred codons present in said natural gene have
5 been replaced by preferred codons.
9. The synthetic gene of claim 1 wherein at least 90% of the non-preferred codons and less preferred codons present in said natural gene have been replaced by preferred codons.
10. The synthetic gene of claim 1 wherein said protein is normally
10 expressed by a mammalian cell.
11. The synthetic gene of claim 1 wherein said protein is a retroviral protein.
12. The synthetic gene of claim 1 wherein said protein is a lentiviral protein.
- 15 13. The synthetic gene of claim 11 wherein said protein is an HIV protein.
14. The synthetic gene of claim 13 wherein said protein is selected from the group consisting of gag, pol, and env.
15. The synthetic gene of claim 13 wherein said protein is gp120.

16. The synthetic gene of claim 13 wherein said protein is gp160.

17. The synthetic gene of claim 1 wherein said protein is a human protein.

18. The synthetic gene of claim 1 wherein said human protein is
5 Factor VIII.

19. The synthetic gene of claim 1 wherein 20% of the codons are preferred codons.

20. The synthetic gene of claim 18 wherein said gene has the coding sequence present in SEQ ID NO:42.

10 21. The synthetic gene of claim 1 wherein said protein is green fluorescent protein.

15 22. The synthetic gene of claim 20 wherein said synthetic gene is capable of expressing said green fluorescent protein at a level which is at least 200% of that expressed by said natural gene in an *in vitro* mammalian cell culture system under identical conditions.

23. The synthetic gene of claim 20 wherein said synthetic gene is capable of expressing said green fluorescent protein at a level which is at least 1000% of that expressed by said natural gene in an *in vitro* mammalian cell culture system under identical conditions.

24. The synthetic gene of claim 21 having the sequence depicted in Figure 11 (SEQ ID NO:40).

25. An expression vector comprising the synthetic gene of claim 1.

5 26. The expression vector of claim 21, said expression vector being a mammalian expression vector.

27. A mammalian cell harboring with the synthetic gene of claim 1.

10 28. A method for preparing a synthetic gene encoding a protein normally expressed by mammalian cells, comprising identifying non-preferred and less-preferred codons in the natural gene encoding said protein and replacing one or more of said non-preferred and less-preferred codons with a preferred codon encoding the same amino acid as the replaced codon.

Syngp120mn

1/18

1 CTCGAGATCC ATTGTGCTCT AAAGGAGATA CCCGGCCACA CACCCCTCACC
 51 TCGGGTGCCC ACGCTGCCAG CCTGAGCCAA GAGAAGGCCA GAAACCATGC
 101 CCATGGGTC TGTGCAACCG CTGGCCACCT TGTACCTGCT GGGGATGCTG
 151 GTCGCTTCCG TTGCTAGCCAC CGAGAAGCTG TGGGTGACCG TGTACTACGG
 201 CGTGCCCCGTG TCGAAGGAGG CCACCAACAC CCTGTTCTGC GCCAGCGACG
 251 CCAAGGCGTA CACACCCGAG GTGCACAAACG TGTGGGCCAC CCAGGGCTCC
 301 GTGCCACCG ACCCAAACCC CCAGGAGGTG GAGCTCGTGA ACGTGACCGA
 351 GAACTCAAC ATGTGGAAGA ACAACATGGT GGAGCAGATG CATGAGGACA
 401 TCATCAGCCT GTGGGACCAAG AGCCTGAAGC CCTGCGTGAA GCTGACCCCC
 451 CTGTGCGTGA CCTGAACTG CACCGACCTG AGGAACACCA CCAACACCAA
 501 CAACAGCACC GCACAAACA ACAGCAACAG CGAGGGCACC ATCAAGGGCG
 551 GCGAGATGAA CAACTGCAGC TTCACATCA CCACCCAGCAT CCCGACAAAG
 601 ATGGAGAAGG ATGAGCCCT GCTGTACAAG CTGGATATCG TGAGCATCGA
 651 CAACGACACC ACCAGCTACC GCCTGATCTC CTGCAACACC AGCGTGATCA
 701 CCCAGGCCCTG QCCCAAGATC AGCTTCGAGC CCATCCCCAT CCACTACTGC
 751 GCCCCCCCGG GTTGCGCAT CCTGAAAGTCC AACGACAAGA ATTCAGCGG
 801 CAAGGGCACC TCGAAGAACG TGAGCACCGT GCAGTGCACC CACGGCATTCC
 851 GCCCCGGTGGT GAGCACCCAG CTCCGTGAA ACGGCAGCCT GCGCGAGGAG
 901 GAGGTGGTCA TCCGCAGCGA GAACTTCACC GACAACGCCA AGACCATCAT
 951 CGTGCACCTG AATGAGAGCG TGCAGATCAA CTGCACCGGT CCCAACTACA
 1001 ACAAGGCCAA GGGCATCCAC ATCGGCCCCG GCGCGCCCTT CTACACCACC
 1051 AAGAACATCA TCGGCACCAT CGCCAGGGCC CACTGCAACA TCTCTAGAGC
 1101 CAAGTGGAAC GACACCCCTGC GCCAGATCGT GAGCAAGCTG AAGGAGCAGT
 1151 TCAAGAACAA GACCATCGTG TTCAACCAGA CGAGGGCGG CGACCCCGAC
 1201 ATCGTGTGATGC ACAGCTCAA CTGCGGGGGC GAATTCTTCT ACTGCAACAC
 1251 CAGCCCCCTG TTCAACAGCA CCTGGAACCG CAAACACACC TCGAACAAACA
 1301 CCACCGGCAG CAACAACAA ATTACCCCTCC AGTGCAGAT CAAGCAGATC
 1351 ATCAACATGT CGCAGGAGGT GGGCAAGGCC ATGTACGGCC CCCCCATCGA
 1401 GGGCCAGATC CGCTGCAGCA CCAACATCAC CGGTCTGCTG CTGACCCCCG
 1451 ACGGCGGCCAA CGACACCGAC ACCAACGACA CGAAATCTT CGCCCCGGC

FIG 1
(SHEET 1 OF 4)

1501 GGGGGCGACA TGCAGCACAA CTCCAGATCT GAGCTGTACA AGTACAAGGT
1551 GGTGACCGATC GAGCCCCCTGG GCGTGGCCCC CACCAAGGCC AAGGGCCGGG
1601 TGCTCCAGGG CGAGAAGGCC TAAAGGGCC CC (SEQ ID NO:34)

FIG 1
(SHEET 2 OF 4)

3/18

Syngp160mn

1 ACCGAGAAGC TGTGGGTGAC CCTGTACTAC CGCGTGCCCCG TGTGGAAGGA
 51 GCGCCACCACCC ACCCTGTTCT CGGCCAGCGA CGCCAAAGCG TACGACACCG
 101 ACCTGCACAA CTTGTCGGCC ACCCAGGGGT CGGTGCCAAC CGACCCCCAAC
 151 CGCCAGGAGC TGGACCTCTT GAACTGAGCC GAGAAGCTCA ACATGTGGAA
 201 GAAACAACATG CTGGACCAGA TGGATGAGGA CATCATCAGC CTGTGGGACC
 251 AGACCTCTGAA GCGCTGCTTG AACCTGACCC CGCTGTGCTT GACCTCTAAC
 301 TGCAACGACC TGGAGAACAC CACCAACACC AACAAACAGCA CGCCCMCAA
 351 CAACACAAAC AGCGAGGGCA CCATCAAGGG CGCCCAAGATG AAGAACTGCA
 401 GCTTCACAT CACCAACCCG ATCCGGGACA AGATCCAGAA CGAUTCACCCC
 451 CTGCTCTACA AGCTGGATAT CGTGAGGATC CACAACGACA CGACCCACCA
 501 CGCGCTGATC TTCTGAAACA CGACCGTGTAT CACCCAGGCC TCCCCAAAGA
 551 TCAGCTTCGA GCGCGATCCC ATCCACTACT CGGGCCCCCG CGCTTCTGCC
 601 ATCTGAACT GCAACGACAA GAACTTCAGC CGCAAGGGCA CCTGCAAGAA
 651 CCTGACCAAC CGCGACATGCA CGCACCGCAT CGGGGGCGTG GTGAGGACCC
 701 ACCTCTCTCT GAAAGGAGG CTGGGGAGG AGGAGGTGST GATGGGAGG
 751 GAGAACTICA CGGACAAAGC CAAGACCCAT ATCGTGACCC TGAATGAGAO
 801 CGTGCAGATC AACTGCAEGC GTCCCCACTA CAACAAGCGC AACGGCATCC
 851 ACATCGGGCC CGGGCGGCC TTCTACACCA CCAAGAACAT CATGGCACC
 901 ATCCGGCCAG CGCAACTGCAAT CACTCTTAGA CGCAAGTGGG ACGACACCC
 951 CGCCAGATC GTGAGGAAAG TGAAGGAGCA GTTCAGGAGC AACACCATCC
 1001 TGTTCACCA GAGGAGGGGC GGCGACCCCG AGATCGTGTAT CGACAGCTTC
 1051 AACTGCGGCG CGGAATTCTT CTACTGCAAC ACCAGCCCCC TGTTCACAG
 1101 CACCTGGAAC GCGAACAAACG CCTGGACAA CACCAACUUG ACCAACAAACA
 1151 ATATTACCT CGAGTGCAG ATCAACCAAG TCAATCAACAT GTGGCAGGAG
 1201 GTGGGCAAGG CGACCTACCC CGGGGGGGATG GACCCCGAGA TCCCGTGCAG
 1251 CACCAACATC ACCCGTGTGCG TCTGACCCS CGACGGCGGC AAGGACACCG
 1301 ACACCAACCA CGCCGAATC TTCCGGGGCG CGGGCGGCCA CATEGGCGAC
 1351 AAGTGGAGAT CTGAGCTGTA CAACTACAAAG CTGGTGACGA TCGAGCCCC
 1401 CGCGCTGGCC CGCACCAAGC CGAAGGGCG CGTGGTGACG CGCGAGAAGC

FIG. 1
(SHEET 3 OF 4)

4/18

1451 GGGCCGCCAT CCGGCCCCCTG TTCTGGGCT TCCTGGGGCC GGGGGGCAGC
 1501 ACCATGGGG CCGCCAGCGT GACCCCTGACC GTGCAGGCC GCCTGCTCT
 1551 GAGCCGCCATC GTGCAGGCCAGC AGAACAAACCT CCTCCGGGCC ATCGAGGCC
 1601 AGCAGCATAT GCTCCAGCTC ACCGTGTGGG GCATCAAGCA GCTCCAGGCC
 1651 CGCGTGCTGG CGTGGAGCG CTACCTGAAG GACCAGCAGC TCCTGGGCTT
 1701 CTGGGGCTGC TCGGCAAGC TGATCTGCAC CACCAAGGTA CCCTGGAAACG
 1751 CCTCCCTGGAG CAACAAGAGC CTGGACGACA TCTGGAAACAA CATGACCTGG
 1801 ATGCAGTGGG ACGCCGAGAT CGATAACTAC ACCACCCCTGA TCTACAGCCT
 1851 CCTGGAGAAG ACGCAGACCC ACCAGGAGAA GACCGAGCAG GAGCTGCTGG
 1901 ACCTGGACAA CTGGGGAGC CTCTGGAACT GGTTCGACAT CACCAACTGG
 1951 CTGTGGTACA TCAAAATCTT CATCATGATT GTGGGGGGCC TGGTGGGCCT
 2001 CCGCATCGTG TCGCCCTTC TGAGCATCGT GAAACCCCGTG CCGCACAGGCT
 2051 ACAGCCCCCT GAGCTCCAG ACCCGGGCCC CCGTGGGGCC CGGGGGGGAC
 2101 CGCCCCCGAGG GATCCAGGA GGAGGGGGC GAGCGCGACC GCGACACCAAG
 2151 CGGCAGGCTC GTCCACGGCT TCCTGGCGAT CATCTGGTC GACCTCCGCA
 2201 CCCTGTTCTT GTCAGCTAC CACCAACCGCG ACCTGCTGCT GATCGCCGCC
 2251 CGCAGTGTGG AACCTCTAGG CCGCCGGGGC TGGGAGGTGC TGAAGTACTG
 2301 GTGGAACCTC CTCCAGTATT GGAGCCAGGA GCTGAAGTCC AGCGCCGTGA
 2351 GCCTGCTGAA CGCCACCGCC ATCGCCGTGG CCGAGGGCAC CGACCCGGTG
 2401 ATCGAGGTGC TCCAGAGGGC CGGGAGGGCG ATCCCTGCACA TCCCCACCCG
 2451 CAGCTGGAGA CGGCTGGAGA GCGCCGCTGCT G (SEQ ID NO:35)

FIG. 1

(SHEET 4 OF 4)

FIGURE 2

6/18

FIGURE 3

FIGURE 4

8/18

FIGURE 5

FIGURE 6

FIGURE 7

11/18

FIGURE 8

12/18

FIGURE 9

FIG. 10

14/18

1 GAATTCACGC GTAAGCTTGC CGCCACCATG CTGACCAAGG GCGAGGAGCT
51 GTTCACCGGG GTGGTGCCCCA TCCTGGTCGA GCTGGACGGC GACGTGAACG
101 GCCACAAGTT CAGCGTGTCC GGCGAGGGCG AGGGCGATGC CACCTACGGC
151 AAGCTGACCC TGAAGTTCAT CTGCACCACC GGCAAGCTGC CCGTGCCCTG
201 GCCCACCCCTC GTGACCACCT TCAGCTACGG CGTGCAGTGC TTCAGCCGCT
251 ACCCCGACCA CATGAAGCAG CACGACTTCT TCAAGTCCGC CATGCCGAA
301 GGCTACGTCC AGGAGCGCAC CATCTTCTTC AAGGACGACG GCAACTACAA
351 GACCCGCGCC GAGGTGAAGT TCGAGGGCGA CACCCTGGTG AACCGCATCG
401 AGCTGAAGGG CATCGACTTC AAGGAGGACG GCAACATCCT GGGGCACAAG
451 CTGGAGTACA ACTACAACAG CCACAACGTC TATATCATGG CCGACAAGCA
501 GAAGAACGGC ATCAAGGTGA ACTTCAAGAT CCGCCACAAC ATCGAGGACG
551 GCAGCGTGCA GCTCGCCGAC CACTACCAGC AGAACACCCC CATCGCGAC
601 GGCCCCGTGC TGCTGCCCGA CAACCACTAC CTGAGCACCC AGTCCGCCCT
651 GAGCAAAGAC CCCAACGAGA AGCGCGATCA CATGGTCCTG CTGGAGTTCG
701 TGACCGCCGC CGGGATCACT CACGGCATGG ACGAGCTGTA CAAGTAAAGC
751 GGCGCGGGAT CC (SEQ ID NO: 40)

FIG. 11

Native Factor VIII B domain deleted gene segment inserted in the expression vector

```

1 AAGCTTAAAC CATGCCATG GGGTCTCTGC AACCGCTGGC CACCTTGAC
51 CTGCTGGGA TGCTGGTCGC TTCCGTGCTA GCCGCCACCA GAAGATACTA
101 CCTGGGTGCA GTGGAACTGT CATGGGACTA TATGCAAAGT GATCTGGTG
151 AGCTGCCTGT GGACGCAAGA TTCCCTCCTA GAGTCCAAA ATCTTTCCA
201 TTCAACACCT CAGTCGTGTA CAAAAAGACT CTGTTTGTAG AATTCACGGA
251 TCACCTTTTC AACATCGCTA AGCCAAGGCC ACCCTGGATG GGTCTGCTAG
301 GTCCTTACCAT CCACCGCTGAC CTTTATCATA CAGTCTCAT TACACTTAAC
351 AACATGGCTT CCCATCCCTGT CAGTCTCAT GCTGGGGTG TATCCTACTG
401 CAAACCTTCT GAGGGAGCTG AATATGATGA TCAGACCACT CAAAGGGAGA
451 AAGAAGATGA TAAAGCTTTC CCTGGTGGAA GCCATACATA TGTCTGGCAC
501 GTCCTGAAAC AGAATGGTCC AATGGCCTCT GACCCACTGT GCCTTACCTA
551 CTCATATCTT TCTCATGTGG ACCTGGTAAAGACATTGAAT TCAGGCCCTCA
601 TTGGAGCCCT ACTAGTATG AGAGAAGGGA GTCTGGCCAA GGAAAAGACA
651 CAGACCTTGC ACAAAATTAT ACTACTTTT GCTGTATTG ATGAAGGGAA
701 AACTTGGCAC TCAAGAACAA AGAACTCTT GATGCAGGAT AGGGATGCTG
751 CATCTGCTCG GGCCTGGCCT AAAATGCACA CAGTCAATGG TTATGTAAC
801 AGGTCTCTGC CAGGTCTGAT TGGATGCCAC AGGAAATCAG TCTATTGGCA
851 TGTGATGGAA ATGGGACCCA CTCCTGAAGT GCACTCAATA TTCTCGAAG
901 GTCACACATT TCTTGTGAGG AACCATCGCC AGGCGTCCTT GGAATCTCG
951 CCAATAACTT TCCTTACTGTC TCAAAACACTC TTGATGGACC TTGGACAGTT
1001 TCTACTGTTT TGTCAATATCT CTTCCCACCA ACATGATGGC ATGGAAGCTT
1051 ATGTCAAACT AGACAGCTGT CCAGAGGAAC CCCAACTACG AATGAAAAT
1101 AATGAAAGAAG CGGAAGACTA TGATGATGAT CTTACTGATT CTGAAATGGA
1151 TGTGCTCAGG TTGATGATG ACAACTCTCC TTCCCTTATC CAAATTGCT
1201 CAGTTGCCAA GAAGCATCTT AAAACTTGGG TACATTACAT TGCTGCTGAA
1251 GAGGAGGACT GGGACTATGC TCCCTTAGTC CTGGCCCCCG ATGACAGAAC
1301 TTATAAAAGT CAATATTGAA ACAATGGCCC TCAGCGGATT GGTAGGAAGT
1351 ACAAAAAGT CCGATTTATG GCATACACAG ATGAAACCTT TAAGACTCGT
1401 GAAGCTATTG AGCATGAATC AGGAATCTTG GGACCTTTAC TTTATGGGA
1451 AGTTGGAGAC ACACCTGTTG TTATATTAA GAATCAAGCA AGCAGACCAT
1501 ATAACATCTA CCCTCACCGA ATCACTGATG TCCGTCTT GTATTCAAGG
1551 AGATTACCA AAGGTGTAAG ACATTTGAAG GATTTCCAA TTCTGCCAGG
1601 AGAAATATTG AAATATAAAAT GGACAGTGAC TGTAGAAGAT GGGCCAACRA
1651 AATCAGATCC TCGGTGCCTG ACCCGCTATT ACTCTAGTTT CGTTAATATG
1701 GAGAGAGATC TAGCTTCAGG ACTCAITGGC CCTCTCCCTA TCTGCTACAA
1751 AGAATCTGTA GATCAAGAG GAAACCAGAT AATGTCAGAC AAGAGGAATG
1801 TCATCCCTGT TTCTGTATTG GATGAGAACCC GAAAGCTGGTA CCTCACAGAG
1851 AAATACACAA GCTTCTCCC CAATCCACCT GGAGTCCAGC TTGAGGATCC
1901 AGAGTCCAA GCCTCCAACA TCATGACAG CATCAATGGC TATGTTTTG
1951 ATAGTTGCA GTTGTCACTT TGTGTCAGTT TGTTGCCATG AGCTGGCATA CTGGTACATT
2001 CTAAGCATTG GAGCACAGAC TGACTTCCCT TCTGCTTCT TCTCTGGATA
2051 TACCTTCAAA CACAAAATGG TCTATGAAAGA CACACTCACC CTATTCCCAT
2101 TCTCAGGAGA AACTGTCCTC ATGTCCTATG AAAACCCAGG TCTATGGATT
2151 CTGGGGTGCCTC ACAACTCAGA CTTTCGGAAC AGACCCATGA CCCCTTACT
2201 GAAAGTTCTC AGTTGTGACA AGAACACTGG TGATTATTAC GAGGACAGTT
2251 ATGAAGATAT TTCAGCATAC TTGCTGACTA AAAACATGC CATTGAACCA
2301 AGAAGCTTCT CCCAGAATTG AGACACCCCT AGCACTAGGC AAAAGCAATT
2351 TAATGCCACC CCACCACTCT TGAAACGCCA TCAACGGAA ATAAACTCGTA
2401 CTACTCTICA GTCAGATCAA GAGGAATG ACTATGATGA TACCATATCA
2451 GTTGAATGAA AGAAGGAAGA TTTTGACATT TATGATGAGG ATGAAAATCA
2501 GAGCCCCCGC AGCTTCAAA AGAAAACACGG ACACATTTTT ATGCTGCAG
2551 TGGAGAGGCT CTGGGATTAT GGGATGAGTA GCTCCCCACA TGTCTAAGA
2601 AACAGGGCTC AGAGTGGCAG TGTCCCTCAG TTCAAGAAG TTGTTTCCA
2651 GGAATTACT GATGGCTCCT TTACTCAGCC CTTATACCGT GGAGAACTAA
2701 ATGAACATTT GGGACTCCTG GGGCCATATA TAAGAGCAGA AGTTGAAGAT

```

Fig. 12

(1 of 2)

2751 AATATCATGG TAACTTTCAAG AAATCAGGCC TCTCGTCCCT ATTCCCTTCTA
 2801 TTCTAGCCTT ATTTCTTATG AGGAAGATCA GAGGCAAGGA GCAGAACCTA
 2851 GAAAAAAACTT TGTCAAGCCCT AATGAAAACCA AAACCTTACTT TTGGAAAGTG
 2901 CAACATCATA TGGCACCCAC TAAAGATGAG TTTGACTGCA AAGGCTGGGC
 2951 TTATTTCCTCT GATGTTGACC TGGAAAAAGA TGTGCACTCA CCCCTGATTG
 3001 GACCCCTCTC GGCTCTGCCAC ACTAACACAC TGAAACCTGTC TCATGGGAGA
 3051 CAAGTGCAG TACAGGAATT TGCTCTGTTT TTCACCATCT TTGATGAGAC
 3101 CAAAGCTGG TACTTCACTG AAAATATGGA AAGAAACTGC AGGGCTCCCT
 3151 GCAATATCCA GTGGAAGAT CCCACTTTA AAGAGAATTA TCGCTTCCAT
 3201 GCAATCAATG GCTACATAAT GGATACACTA CCTGGCTTAG TAATGGCTCA
 3251 GGATCAAAGG ATTCGATGGT ATCTGCTCAG CATGGCAGC AATGAAAACA
 3301 TCCATCTAT TCATTTCACT GGACATGTGT TCACTGTAG AAAAAAAGAG
 3351 GAGTATAAAA TGGCACTGTA CAATCTCTAT CCACGTGTTT TTGAGACACT
 3401 GGAAATGTTA CCATCCAAAG CTGGATTTC GCGGCTGGAA TGCCTTATTG
 3451 GCGAGCATCT ACATGCTGGG ATGAGCACAC TTTTCTGGT GTACAGCAAT
 3501 AAGTGTCAAGA CTCCCCCTGGG AATGGCTCT CGACACATTA GAGATTTICA
 3551 GATTACAGCT TCAGGACAAT ATGGACAGTG GGGCCCAAAG CTGGCCAGAC
 3601 TTCAATTTC CGGATCAATC AATGCTCTGA GCACCAAGGA GCCCTTTCT
 3651 TGGATCAAGG TGGATCTGTT GGCACCAATG ATTATTCAAGC CCATCAAGAC
 3701 CCAGGGTGCC CGTCAGAAGT TCTCCAGCCT CTACATCTCT CAGTTTATCA
 3751 TCATGTATAG TCTTGATGGG AAGAAGTGGC AGACTTATCG AGCAAAATTCC
 3801 ACTGGAACCT TAATGGTCTT CTTGGCAAT GTGGATTCTAT CTGGGATAAA
 3851 ACACAAATATT TTTAACCCCTC CAATTATTGC TCGATACATC CGTTTCCACC
 3901 CAACCTATTA TAGCATTCGG ACCACTCTC CGATGGAGTT GATGGGCTGT
 3951 GATTTAAATA GTTGCAGCAT GCCATTGGGA ATGGACACTA AAGCAATATC
 4001 AGATGCACAG ATTACTGCTT CATCCTACTT TACCAATATC TTTGCCACCT
 4051 GGTCTCTTC AAAAGCTCGA CTTCACCTCC AAGGGAGGAG TAATGCCCTGG
 4101 AGACCTCAGG TGAATAATCC AAAAGAGTGG CTGCAAGTGG ACTTCCAGAA
 4151 GACAATGAAA GTCACAGGGAG TAACTACTCA GGGAGTAAAAA TCTCTGCTTA
 4201 CCAGCATGTA TGTGAAGGAG TTCTCATCT CCAGCAGTCA AGATGGCCAT
 4251 CAGTGGACTC TCTTTTTCTA GAATGGCAAA CTAAACCTTT TTCAAGGGAAA
 4301 TCAAGACTCC TTCACACCTG TGGTGAACTC TCTAGACCCA CCGTTACTGA
 4351 CTCGCTACCT TCGAATTCA CCCCAGAGTT GGGTGCACCA GATTGCCCTG
 4401 AGGATGGAGG TTCTGGGCTG CGAGGCACAG GACCTCTACT GACGGTGGCC
 4451 ACTGCAGCAC CTGCCACTGC CGTCACCTCT CCCTCCTCAG CTCCAGGGCA
 4501 GTGTCCCTCC CTGGCTTGCC TTCTACCTTT GTGCTAAATC CTAGCAGACA
 4551 CTGCCTTGAA GCCTCTGAA TTAACTATCA TCAGTCTGC ATTTCCTTGG
 4601 TGGGGGCCA GGAGGGTGA TCCAATTAA CTTAACTCTT ACCGTGACCC
 4651 TGCAGGGCCA ACGCGGCCCG

Fig. 12

(2 of 2)

Synthetic Factor VIII B domain deleted gene segment inserted in the expression vector

1 AAGCTTAAAC CATCCCCATG GGGTCTCTGC AACCGCTGGC CACCTTGTC
 51 CTGCTGGGA TGGTGGTCC TTCCGTGCTA GCGGCCACCC GCCGCTACTA
 101 CCTGGGGCCC GTGGAGCTGT CCTGGGACTA CATCGAGAGC GACCTGGGGCG
 151 AGCTCCCCGT GGACGCCCCCG TTCCCCCCCCC GCGTGGCCAA GAGCTTCCCC
 201 TTCAACACCA CGCTGGTGTG CAAGAAAACC CTGTTGTGG AGITCACCGA
 251 CCACCTGTT AACATTGCCA AGCCGCGCCC CCCCTGGATC GGCGTGTGG
 301 GCGCCACCAT CCACGGGGAG GTGTACGACA CGCGGGTGTAT CACCCCTGAAG
 351 AACATGGCCA CGCACCCCGT CAGCCTGCAC GCGCTGGGGCG TGAGCTACTG
 401 GAAGGGCAGC GAGGGCGGGC AGTACGACGA CCAGACGTCC CACCGGGAGA
 451 AGGAGGACGA CAAGGTGTTC CGGGGGGGGA GCGCACCTA CGTGTGGCAG
 501 GTGCTTAAGG AGAACGGCCC TATGGCCAGC GACCCCTGT GCGTACCTA
 551 CAGCTACCTG AGCCACGTGG ACCTGGTGA GGATCTGAAC AGCGGGCTGA
 601 TCGGCGCCCT GCTGGTGTGT CGCGAGGGCA GCCTGGCCAA GGAGAAAAAC
 651 CACACCTGC ACAAGTTCAT CCTGCTGTTC GCGGTGTTCG ACGAGGGGAA
 701 GAGCTGGCAC AGCGAGACTA AGAACAGCTT GATGAGGAC CGCGACGGCG
 751 CCAGGGCCCC CGGCTGGCCC AAGATGCAAC CGCTAACGG CTACGTGAAC
 801 CGCAGCCTGC CGGGCCTGAT CGGCTGCAC CGCAAGAGCG TGACTGGCA
 851 CGTCATCGGC ATGGGCACCA CCCCTGAGGT GCACAGCATC TTCCCTGGAGG
 901 GCCACACCTT CCTGGTGCAC ACCACGGCC AGGCCAGCCT GGAGATCAGC
 951 CCCATCACCT TCTGACTGC CCAGACCTG CTGATGGACC TAGGCCAGTT
 1001 CCTGCTTTC TGGCACATCA CGAGCCACCA GCACGACGGC ATGGAGGCTT
 1051 ACGTAAGGT GGACAGCTGC CGCGAGGAGC CCCAGCTGCG CATGAAGAAC
 1101 AACGACGAGC CCCAGGACTA CGACGACGAC TGCACCGACA GCGAGATGGA
 1151 TGTGTAACGC TTGACCGACG ACAACAGCC CAGCTTCATC CAGATCCGA
 1201 GCGTGGCCAA GAAGCACCCCT AAGACCTGG TGCACATACAT CGCCGCGAG
 1251 GAGGAGGACT GGGACTACGC CCCGCTAGTA CTGGCCCCCG ACCACCGAG
 1301 CTACRAGGC CACTACCTGA ACAACGGCCC CGACGGCATC GGCCGCAAGT
 1351 ACAAGAAGGT GCGCTTCTG GCCTACACCG ACGAGACTTT CAAGACCCGC
 1401 GAGGCCATCC AGCACCGAGTC CGGCATCTC GGGCCCCCTGC TGTACGGCGA
 1451 GCTGGGGAC ACCCTGCTGA TCATCTTCAA GAACCAAGGC AGCAGGCCCT
 1501 ACAACATCTA CCCCCACGGC ATCACCGAGC TGGCCCCCT CTACACCCGC
 1551 CGCCTGCCCA AGGGCGTGA GCACCTGAG GACTTCCCCA TCCTGCCCCG
 1601 CGAGATCTTC AAGTACAAGT GGACCGTGCAC CGTGGAGGAC GGGCCCCACCA
 1651 AGAGCGACCC CGCGTGCCTG ACCCGCTACT ACAGCAGCTT CGTGAACATC
 1701 GAGCGGAGC TGGCCTCCGG ACTGATGGC CCGCTGCTGA TCTCTACAA
 1751 GGAGACCGTG GACCAGCGG GCAACCAAGAT CATGAGCGAC AAGCGAACCG
 1801 TGATCTGTT CAGCGTGTTC GACCGAGAAC CGAGCTGGTA TCTGACCGAG
 1851 AACATCCAGC GCTTCTGCG CAACCCCGT CGCTTCACCC TCGAAGATCC
 1901 CGAGTTCCAG CCCAGCAACA TCATGACAG CATCAACGGC TACGTGTTCG
 1951 ACAGCTGCA GCTGAGCGTG TCCCTGCATC AGCTGGCTA CTGGTACATC
 2001 CTGAGCATCG GGGCCCAGAC CGACTTCTG AGCGTGTCT TCTCCGGGTA
 2051 TACCTTCAAG CACAAGATGG TGATCGAGGA CACCCCTGACC CTGTTCCCCCT
 2101 TCTCCGGCGA GACTGTGTTC ATGTCTATGG AGAACCCCGG CCTGTGGATT
 2151 CTGGGCTGCC ACAACAGCGA CTTCGGCAAC CGCGGATGA CTGCCCCGT
 2201 GAAAGTCTCC AGCTGCGACA ACAACACCGG CGACTACTAC GAGGACAGCT
 2251 ACGAGGACAT CTCCGCCTAC CTGCTGCTCA AGAACAAACGC CATCGAGGCC
 2301 CGCTCCTTCT CCCCCAAACTC CGGGCACCCC AGCAGCGTC ACAAGCAGTT
 2351 CAACGCCACC CCCCCCGTGC TGAAGGCCA CGAGCGCGAG ATCACCCCGCA
 2401 CCACCCCTGCA AAGCGACCG GAGGAGATCG ACTACCGACCA CACCATCAGC
 2451 GTGGAGATGA ACAACAGCGA CTTCGACATC TACGACGAGG AGGAGAACCA
 2501 GAGCCCCCGC TCCTTCCAAA AGAAAACCGG CCACACTTTC ATCGCCGCGCG
 2551 TGGAGCGCGT GTGGGACTAC CGCATGACCA CGACCCCCCA CGTCTGCGC
 2601 AACCGGGCCC AGACGGCGAG CGTGGCCCGAG TTCAAGAAGG TGGTGTTC
 2651 GGAGTTCAAC GACGGCAGCT TCACCCAGCC CCTGTACCCG GGCGAGCTGA
 2701 ACGAGCACCT CGGGCTGCTC GGCCCCCTACA TCCGGCCCCGA GGTGGAGGAC

Fig. 13

(1 of 2)

2751 AACATCATGG TGACCTTCCG CAACCAAGCC TCCCCGCCCT ACTCCTTCTA
 2801 CTCCCTCCCTG ATCAGCTACG AGGAGGACCA GCGCCAGGGC GCGGAGCCCC
 2851 GCAAGAACTT CGTGAAGCCC AACCGAGACTA AGACCTACTT CTGGAAGGTG
 2901 CAGCACCAACA TGCCCCCCAC CAAGGACGAG TTCGACTGCA AGGCCTGGGC
 2951 CTACTTCAGC GACGTGGACC TGGAGAAGGA CCTCCACAGC GGCTGATCG
 3001 GCCCCCTGCT GTGTTGCCAC ACCAACACCC TGAACCCCCC CCACGGGAGG
 3051 CAGGTGACTG TCCAGGAATT TGCCCTGTT TTCACCATCT TCGACGACAC
 3101 TAAGAGCTGG TACTTCACCG AGAACATGGA CGCACAATGC CGCGCCCCCT
 3151 GCAACATCCA GATGGAAGAT CCCACCTTCA AGGAGAACTA CGCTTCCAC
 3201 GCCATCAACG GCTACATCAT GGACACCTTG CCCGGCTGG TGATGGCCCA
 3251 GGACCGCAGC ATCCGCTGGT ACCTGCTGTC TATGGGCAGC AACGAGAAC
 3301 TCCACAGCAT CCACCTTCAGC GGCCACGTT TCACCGTGG CAAGAAGGAG
 3351 GAGTACAAGA TGCCCCCTGTA CAACCTGTAC CCCGGCTGT TCGAGACTCT
 3401 GGAGATGCTG CCCAGCAAGG CCGGGATCTG CGCGCTGGAG TGCTGATCG
 3451 GCGAGCACCT GCAAGCCGGC ATGAGCACCC TGTTCTGGT CTACAGCAAC
 3501 AAGTGCAGA CCCCCCTGGG CATGGCCACC GGGCACATCC GCGACTTCCA
 3551 GATCACCGCC AGCGGCCAAT CGGCCACTG GGCTCCAAAG CTGGCCCCGC
 3601 TGCACATACAG CGCGAGCATC AACGCTGTG CGACCAAGGA CCCCTTCTCC
 3651 TGGATCAAGG TGGACCTGCT GGCCCCATG ATCATCCACG CGATCAAGAC
 3701 CCAGGGCGCC CGCCAGAACT TCAGCAGCCT GTACATCAGC CAGTTCATCA
 3751 TCATGTACTC TCTAGACGGC AAGAAGTGGC AGACCTACCG CGGCAACAGC
 3801 ACCGGCACCC TGATGGTGTG TTTCGGCAAC GTGGACAGCA CGGGCATCAA
 3851 GCACAAACATC TTCAACCCCCC CCATCATCGC CCGCTACATC CGCTGCAAC
 3901 CCACCCACTA CACCATCCCCC ACCACCTTGC CGATGGAGCT GATGGGCTGC
 3951 GACCTGAACA GCTGCAGCAT GCCCCCTGGC ATGGAGAGCA AGGCCATCAG
 4001 CGACGCCAG ATCACCGCCT CCAGCTACTT CACCAACATG TTCCCCACCT
 4051 GGAGCCCCAG CAAGGCCCCC CTGCACCTGC AGGGCCGAG CAACGCCCTGG
 4101 CGCCCCCAGG TGAACAAACCC CAAGGAGTGG CTGCAGGTGG ACTTCCAGAA
 4151 AACCATGAAG GTGACTGGCG TGACCCACCA GGGCGTCAAG AGCCCTGCTGA
 4201 CCAGCATGTA CGTGAAGGAG TTCCCTGATCA GCAGCAGCCA GGACGGCCAC
 4251 CAGTGGACCC TGTCTTCCA AAACGGCAAG GTGAAGGTGT TCCAGGGCAA
 4301 CCAGGACAGC TTACACACCGG TCGTGAACAG CCTGGACCCCC CCCCTGCTGA
 4351 CCCGCTACCT GCGCATCCAC CCCCAGAGCT GGGTGACCA GATCGCCCC
 4401 CGCATGGAGG TGCTGGCTG CGAGGGCCAG CACCTGACT GAAGCGGGCG
 4451 C

Fig. 13

(2 of 2)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/16639

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C07H 21/04; C12P 21/02; C12N 15/11, 15/33, 15/48, 15/85
 US CL : 435/69.1, 70.1, 70.3, 172.3, 320.1; 536/23.1, 23.72, 25.3

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/69.1, 70.1, 70.3, 172.3, 320.1; 536/23.1, 23.72, 25.3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS, EMBASE, MEDLINE, DERWENT
 search terms: gene?, dna?, nucleic acid?, deoxyribonucleic?, synthe?, prefer? non-prefer? codon?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96/09378 A (THE GENERAL HOSPITAL CORPORATION) 28 March 1996, abstract, page 1, line 20-page 4, line 26, page 15, lines 25-32, page 17, lines 27-39 and pages 42-54.	1-28
A	SEETHARAM et al. Mistranslation in IGF-1 During Over-Expression of the Protein in Escherichia coli Using a Synthetic Gene Containing Low Frequency Codons. Biochem. Biophys. Res. Comm. 30 August 1988. Vol. 155. No. 1. entire document.	1-28

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
A	document defining the general state of the art which is not considered to be of particular relevance
B	earlier document published on or after the international filing date
L	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
O	document referring to an oral disclosure, use, exhibition or other means
P	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A"	document member of the same patent family

Date of the actual completion of the international search

21 NOVEMBER 1997

Date of mailing of the international search report

22 DEC 1997

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer

NANCY T. DEGEN

Telephone No. (703) 308-0196