R-intro - Session 2 exercise solutions

João Gonçalves 19 de Julho de 2018

Contents

Missing data in R (NA values) Exercise 1	1 1
Dataframes in R Quick exercise 1	2 2
Exploratory data analysis - scatterplots and correlations Exercise 2	3 8 8 10 10
Factor variables Exercise 4	11 11
Analyzing distributions Exercise 5 Hypothesis testing Exercise 6 Analysis of variance (one-way) Exercise 7 Exercise 8 Missing data in R (NA values)	12 12 13 13 15 15 16
Exercise 1	
la) avg_temp <- c(10.5, NA, 12.3, 14.4, 15.6, 17.7, NA, 20.4, 20.3, 17.1, 13.3, 10.5)	
# Calculate the sum of the logical vector to count the number of NA's sum(is.na(avg_temp))	
## [1] 2 1b)	
# When NA values exist in a vector to calculate the mean or the std-dev the option # $na.rm$ must be set to TRUE	
<pre>mean(avg_temp, na.rm= TRUE)</pre>	

```
## [1] 15.21
sd(avg_temp, na.rm= TRUE)
## [1] 3.650099
1c)
\# Don't forget to turn the option na.rm equal to TRUE to calculate the median
avg_temp[is.na(avg_temp)] <- median(avg_temp, na.rm = TRUE)</pre>
print(avg_temp)
## [1] 10.5 15.0 12.3 14.4 15.6 17.7 15.0 20.4 20.3 17.1 13.3 10.5
1d)
# Redefine the avg-temp again with NA values
avg_temp <- c(10.5, NA, 12.3, 14.4, 15.6, 17.7, NA, 20.4, 20.3, 17.1, 13.3, 10.5)
# Start by creating a vector for all vector indices
ind <- (1:length(avg_temp))</pre>
# Use vector ind to get the indices which are NA
ind_NA <- ind[is.na(avg_temp)]</pre>
# This is equal to using the which() function
ind_NA <- which(is.na(avg_temp))</pre>
# Replace values using vector positions
avg_temp[2] <- mean(avg_temp[c(1,3)])</pre>
avg_temp[7] <- mean(avg_temp[c(6,8)])</pre>
# More general solution using the ind_NA vector with NA indices
# Replace the first NA
avg_temp[ind_NA[1]] <- mean(avg_temp[c(ind_NA[1] - 1, ind_NA[1] + 1)])</pre>
# And the second NA
avg_temp[ind_NA[2]] \leftarrow mean(avg_temp[c(ind_NA[2] - 1, ind_NA[2] + 1)])
print(avg_temp)
## [1] 10.50 11.40 12.30 14.40 15.60 17.70 19.05 20.40 20.30 17.10 13.30
## [12] 10.50
```

Dataframes in R.

Quick exercise 1

QE1)

```
precip <- data.frame(</pre>
  cities = c("Mobile", "Juneau", "Phoenix", "Little Rock", "Los Angeles",
             "Sacramento", "San Francisco", "Denver", "Hartford", "Wilmington"),
  precipitation = c(67.0, 54.7, 7.0, 48.5, 14.0, 17.2, 20.7, 13.0, 43.4, 40.2),
  stringsAsFactors = FALSE
print(precip)
             cities precipitation
## 1
             Mobile
                             67.0
## 2
             Juneau
                             54.7
## 3
            Phoenix
                             7.0
## 4
        Little Rock
                             48.5
## 5
        Los Angeles
                             14.0
## 6
                             17.2
         Sacramento
## 7 San Francisco
                             20.7
## 8
             Denver
                             13.0
## 9
           Hartford
                             43.4
## 10
         Wilmington
                              40.2
precip$cities
  [1] "Mobile"
                         "Juneau"
                                         "Phoenix"
                                                          "Little Rock"
   [5] "Los Angeles"
                         "Sacramento"
                                         "San Francisco" "Denver"
## [9] "Hartford"
                         "Wilmington"
class(precip$cities)
```

[1] "character"

Exploratory data analysis - scatterplots and correlations

```
Exercise 2

2.

2a)

# Number of rows with missing values
sum(!complete.cases(airquality))

## [1] 42

# Clean dataframe using complete.cases() function
aq <- airquality[complete.cases(airquality), ]

# This is equal to using the na.omit() function to suppress rows with NA's
aq <- na.omit(airquality)
```

```
# Check which rows (by position) were omitted when function na.omit was used
attr(aq, "na.action")
##
        6 10 11 25
                     26 27
                             32
                                 33
                                    34
                                        35
                                           36
                                               37
                                                   39
                                                       42
                                                          43
                                                              45
                                                                  46
                     26
##
        6 10 11
                  25
                         27
                             32
                                 33
                                    34
                                        35
                                            36
                                               37
                                                   39
                                                       42
                                                          43
                                                              45
                                                                  46
##
   52 53 54 55
                 56
                     57
                        58
                             59
                                 60
                                    61
                                        65
                                           72
                                               75
                                                   83
                                                       84
                                                          96
                                                              97
                                                                  98
## 52 53 54 55 56 57 58 59 60 61 65 72 75 83 84 96 97 98
## 102 103 107 115 119 150
## 102 103 107 115 119 150
## attr(,"class")
## [1] "omit"
2b)
summary(aq)
##
       Ozone
                     Solar.R
                                     Wind
                                                    Temp
## Min. : 1.0
                  Min. : 7.0
                                Min. : 2.30
                                                      :57.00
                                               Min.
  1st Qu.: 18.0
                  1st Qu.:113.5
                                 1st Qu.: 7.40
                                               1st Qu.:71.00
## Median: 31.0 Median: 207.0
                                 Median : 9.70
                                               Median :79.00
## Mean : 42.1
                Mean :184.8
                                 Mean : 9.94
                                               Mean :77.79
                                               3rd Qu.:84.50
##
   3rd Qu.: 62.0 3rd Qu.:255.5
                                 3rd Qu.:11.50
## Max.
         :168.0 Max. :334.0
                                 Max. :20.70
                                               Max. :97.00
##
       Month
                      Day
## Min. :5.000
                Min. : 1.00
## 1st Qu.:6.000
                1st Qu.: 9.00
## Median :7.000 Median :16.00
## Mean :7.216 Mean :15.95
## 3rd Qu.:9.000
                  3rd Qu.:22.50
## Max. :9.000
                Max. :31.00
2c)
\# Use plot and specifically declare the x and y vector
```

plot(x = aq\$Wind, y = aq\$Ozone)


```
# Or you can use the formula interface to get a similar effect
plot(Ozone ~ Wind, data = aq)

# EXTRA: add a regression line to the plot based on the abline() function
# Notice that a linear model (lm) is used as an input in abline
abline(lm(Ozone ~ Wind, data = aq), col="red", lwd=2)
```



```
# The correct option is...
print("iv")

## [1] "iv"

2d)
plot(aq)
```


By visual inspection it seems that Temp (temperature), Wind (wind speed) and # Solar.R (solar radiation) are more clearly correlated with Ozone concentration

```
2e)
cor.test(aq$0zone, aq$Solar.R, method="spearman")
## Warning in cor.test.default(aq$0zone, aq$Solar.R, method = "spearman"):
## Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
##
## data: aq$Ozone and aq$Solar.R
## S = 148560, p-value = 0.0001806
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.3481865
## Rho = 0.3481865 p < 0.001
# (ii)
cor.test(aq$0zone, aq$Wind, method="spearman")
## Warning in cor.test.default(aq$0zone, aq$Wind, method = "spearman"): Cannot
## compute exact p-value with ties
```

```
##
## Spearman's rank correlation rho
##
## data: aq$Ozone and aq$Wind
## S = 365840, p-value = 1.998e-12
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
          rho
## -0.6051364
## Rho = -0.6051364 p < 0.001
# (iii)
cor.test(aq$0zone, aq$Temp, method="spearman")
## Warning in cor.test.default(aq$0zone, aq$Temp, method = "spearman"): Cannot
## compute exact p-value with ties
##
##
   Spearman's rank correlation rho
##
## data: aq$Ozone and aq$Temp
## S = 51753, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
         rho
##
## 0.7729319
## Rho = 0.7729319 p < 0.001
Dataframe indexation with [,]
Exercise 3
  3.
3a)
aq[,-c(3:ncol(aq))]
3b)
aq[,c("Day","Month")]
3c)
aq[1:3, ]
     Ozone Solar.R Wind Temp Month Day
               190 7.4
## 1
        41
                          67
                                 5
                                     2
## 2
        36
               118 8.0
                          72
## 3
                                 5
        12
               149 12.6
                          74
3d)
nr <- nrow(aq)</pre>
aq[(nr-10):nr, ]
```

```
Ozone Solar.R Wind Temp Month Day
## 142
          24
                  238 10.3
                              68
                                     9
                                         19
## 143
                  201 8.0
                                         20
          16
                              82
## 144
          13
                  238 12.6
                                         21
                              64
                                     9
## 145
          23
                   14 9.2
                              71
                                     9
                                         22
## 146
          36
                  139 10.3
                              81
                                     9
                                         23
## 147
           7
                   49 10.3
                              69
                                         24
## 148
                   20 16.6
                                         25
          14
                              63
                                     9
## 149
          30
                  193 6.9
                              70
                                     9
                                         26
## 151
          14
                  191 14.3
                              75
                                     9
                                         28
## 152
          18
                  131 8.0
                              76
                                     9
                                         29
## 153
                  223 11.5
                                         30
          20
                              68
                                     9
# Or more simply
tail(aq, n = 10)
       Ozone Solar.R Wind Temp Month Day
```

201 8.0 ## 143 238 12.6 ## 144 ## 145 14 9.2 ## 146 139 10.3 ## 147 49 10.3 ## 148 20 16.6 ## 149 6.9 ## 151 191 14.3 ## 152 131 8.0 ## 153 223 11.5 3e)

aq[aq\$0zone > mean(aq\$0zone),]

```
##
       Ozone Solar.R Wind Temp Month Day
## 29
           45
                  252 14.9
                              81
                                      5
                                         29
## 30
          115
                  223 5.7
                              79
                                      5
                                         30
## 40
          71
                  291 13.8
                              90
                                      6
                                          9
## 62
                  269
                      4.1
                                      7
          135
                              84
                                          1
## 63
           49
                  248 9.2
                              85
                                      7
                                           2
                  175 4.6
                                      7
                                          5
## 66
           64
                              83
## 68
           77
                  276 5.1
                              88
                                      7
                                          7
## 69
           97
                  267
                        6.3
                              92
                                      7
                                          8
## 70
           97
                  272 5.7
                              92
                                      7
                                          9
## 71
           85
                  175
                       7.4
                              89
                                      7
                                         10
## 77
           48
                  260
                       6.9
                              81
                                      7
                                         16
## 79
           61
                  285
                       6.3
                              84
                                      7
                                         18
## 80
           79
                  187
                       5.1
                              87
                                      7
                                         19
## 81
           63
                  220 11.5
                              85
                                      7
                                         20
## 85
                  294 8.6
                                      7
                                         24
           80
                              86
## 86
                  223 8.0
                                      7
                                         25
          108
                              85
## 88
           52
                   82 12.0
                              86
                                      7
                                         27
## 89
           82
                  213 7.4
                              88
                                      7
                                         28
                  275 7.4
                                         29
## 90
           50
                              86
                                      7
## 91
           64
                  253 7.4
                              83
                                      7
                                          30
## 92
                  254 9.2
                                      7
                                         31
           59
                              81
## 99
                  255 4.0
                                          7
          122
                              89
                                      8
## 100
           89
                  229 10.3
                              90
                                      8
                                          8
```

```
## 101
         110
                  207 8.0
                                         9
                              90
## 104
                                        12
          44
                  192 11.5
                              86
                                     8
## 106
                      9.7
                                         14
          65
                  157
                              80
## 109
                   51 6.3
                              79
                                        17
          59
                                     8
                  190 10.3
## 112
          44
                              78
                                     8
                                         20
## 116
          45
                  212 9.7
                              79
                                     8
                                        24
## 117
         168
                  238 3.4
                              81
                                     8
                                        25
## 118
                  215 8.0
                                     8
                                        26
          73
                              86
## 120
          76
                  203
                       9.7
                              97
                                     8
                                         28
## 121
                  225
                       2.3
                              94
                                     8
                                        29
         118
## 122
          84
                  237
                       6.3
                              96
                                     8
                                         30
## 123
                  188 6.3
                                        31
          85
                              94
                                     8
## 124
          96
                  167
                       6.9
                              91
                                     9
                                         1
## 125
                                     9
                                         2
          78
                  197
                      5.1
                              92
## 126
          73
                  183
                       2.8
                              93
                                     9
                                         3
## 127
          91
                  189
                       4.6
                              93
                                     9
                                         4
## 128
          47
                   95 7.4
                              87
                                     9
                                         5
## 134
                  236 14.9
          44
                              81
                                        11
## 139
          46
                  237 6.9
                              78
                                        16
3f)
aq[aq$0zone < quantile(aq$0zone, probs=0.1), ]</pre>
##
       Ozone Solar.R Wind Temp Month Day
## 9
           8
                   19 20.1
                                     5
                                         9
                              61
## 18
           6
                   78 18.4
                              57
                                     5
                                        18
## 21
                    8 9.7
                                        21
           1
                              59
                                     5
## 23
           4
                   25
                      9.7
                              61
                                     5
                                         23
                  264 14.3
## 73
          10
                              73
                                     7
                                        12
## 76
           7
                   48 14.3
                              80
                                     7
                                        15
                   24 13.8
## 94
           9
                              81
                                     8
                                         2
## 114
           9
                   36 14.3
                              72
                                     8
                                        22
## 137
           9
                   24 10.9
                              71
                                     9
                                        14
## 147
           7
                   49 10.3
                                        24
                              69
```

Slicing with subset()

4.6

Quick exercise 2

QE2)

127

Factor variables

```
Exercise 4
  4.
4a)
# Use the line below to call the data
data(iris)
head(iris) # This is used to make a first check of the data
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                        3.5
                                       1.4
                                                  0.2 setosa
## 2
             4.9
                         3.0
                                       1.4
                                                  0.2 setosa
## 3
             4.7
                        3.2
                                                  0.2 setosa
                                       1.3
## 4
             4.6
                         3.1
                                       1.5
                                                  0.2 setosa
## 5
             5.0
                         3.6
                                       1.4
                                                  0.2 setosa
             5.4
                         3.9
                                       1.7
                                                   0.4 setosa
# Check object class
class(iris$Species)
## [1] "factor"
# Check if it is a factor variable
is.factor(iris$Species)
## [1] TRUE
4b)
levels(iris$Species)
## [1] "setosa"
                    "versicolor" "virginica"
4c)
table(iris$Species)
##
##
       setosa versicolor virginica
                     50
##
          50
                                 50
4d)
# The function by() can be used for calculating a function for each level in INDICES
by(iris$Petal.Length, INDICES = iris$Species, FUN = mean)
## iris$Species: setosa
## [1] 1.462
## iris$Species: versicolor
## iris$Species: virginica
## [1] 5.552
```

```
# Or using indexation the mean can be calculated this way for each species
mean(iris$Petal.Length[iris$Species == "setosa"])
## [1] 1.462
mean(iris$Petal.Length[iris$Species == "versicolor"])
## [1] 4.26
mean(iris$Petal.Length[iris$Species == "virginica"])
## [1] 5.552
4e)
# The function by() can be used for calculating a function for each level in INDICES
by(iris$Petal.Length, INDICES = iris$Species, FUN = sd)
## iris$Species: setosa
## [1] 0.173664
## iris$Species: versicolor
## [1] 0.469911
## iris$Species: virginica
## [1] 0.5518947
# Or using indexation the std-dev can be calculated this way for each species
sd(iris$Petal.Length[iris$Species == "setosa"])
## [1] 0.173664
sd(iris$Petal.Length[iris$Species == "versicolor"])
## [1] 0.469911
sd(iris$Petal.Length[iris$Species == "virginica"])
## [1] 0.5518947
```

Analyzing distributions

Exercise 5

5. 5a)

```
# This command will allow to make a 2 x 2 plot i.e. with the 4 boxplots
par(mfrow=c(2,2))

# Now let's make the boxplots
# In boxplot it's possible to modify the title (main),
# the y-axis label (ylab) and x-axis label (xlab)
```

Sepal length by Iris species

Sepal length (cm) Sepal length (cm) setosa versicolor virginica Species

Sepal width by Iris species

Petal length by Iris species

Petal width by Iris species

5b)

- i) Overall, petal dimensions seems to provide better differentiation between species with lower overlap between boxes/distributions.
- ii) Both petal length and width provide very good differentiation.
- iii) Sepal width seems to perform worst due to the higher overlap between boxes/distributions.

Hypothesis testing

Exercise 6

6.

```
6a)
boxplot(weight ~ group, data = PlantGrowth)
```



```
6b)
# Make a variable with weight measurements for the control group
weight_control <- PlantGrowth$weight[PlantGrowth$group == 'ctrl']</pre>
\# Make a variable with weight measurements for the treatment-1 group
weight_trt1 <- PlantGrowth$weight[PlantGrowth$group == 'trt1']</pre>
# Now the t.test
t.test(x = weight_control, y = weight_trt1)
##
##
   Welch Two Sample t-test
##
## data: weight_control and weight_trt1
## t = 1.1913, df = 16.524, p-value = 0.2504
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
  -0.2875162 1.0295162
## sample estimates:
## mean of x mean of y
       5.032
##
```

According to the t-Test there is not sufficient evidence to reject the null-hypothesis, H0: Avg(control) =

```
6c)
# Make a variable with weight measurements for the control group
weight_control <- PlantGrowth$weight[PlantGrowth$group == 'ctrl']</pre>
# Make a variable with weight measurements for the treatment-2 group
weight_trt2 <- PlantGrowth$weight[PlantGrowth$group == 'trt2']</pre>
# Now the t.test
t.test(x = weight_control, y = weight_trt2)
##
##
   Welch Two Sample t-test
##
## data: weight_control and weight_trt2
## t = -2.134, df = 16.786, p-value = 0.0479
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.98287213 -0.00512787
## sample estimates:
## mean of x mean of y
       5.032
                 5.526
According to the t-Test there is sufficient evidence to reject the null-hypothesis, H0: Avg(control) = Avg(trt2),
given that the p-value < 0.05
Analysis of variance (one-way)
Exercise 7
  7.
7a)
aov_iris <- aov(Sepal.Width ~ Species, data = iris)</pre>
summary(aov_iris)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## Species
                  2 11.35
                             5.672
                                      49.16 <2e-16 ***
## Residuals
                147 16.96
                             0.115
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
According to the ANOVA test there is sufficient evidence to reject the null-hypothesis, H0: Avg(setosa) =
Avg(versicolor) = Avg(virginica), given that the p-value < 0.05
aov_iris <- aov(Petal.Width ~ Species, data = iris)</pre>
summary(aov_iris)
                Df Sum Sq Mean Sq F value Pr(>F)
## Species
                  2 80.41
                             40.21
                                        960 <2e-16 ***
## Residuals
                      6.16
                              0.04
               147
```

Avg(trt1), given that the p-value > 0.05

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
According to the ANOVA test there is sufficient evidence to reject the null-hypothesis, H0: Avg(setosa) =
Avg(versicolor) = Avg(virginica), given that the p-value < 0.05
Exercise 8
     8.
8a)
# Read the csv data file
# NOTE: depending on the working directory this path may not work and in that case you have to adjust i
diet <- read.csv("../Session-02/diet.csv")</pre>
8b)
# Use na.omit() to quickly exclude rows with NA values
diet <- na.omit(diet)</pre>
8c)
# To add a new column to the dataset we can use either the function data.frame() or cbind()
diet <- data.frame(diet, Treatment = factor(diet$Diet, levels = c(1,2,3),</pre>
                                                                                                                labels = c("Trt-A", "Trt-B", "Trt-C")))
# Solution with cbind()
\# diet <- cbind(diet, Treatment = factor(diet$Diet, levels = c(1,2,3), labels = c("Trt-A", "Trt-B", "Trt-B",
8d)
diet <- data.frame(diet, Weight.Loss = diet$pre.weight - diet$weight6weeks)
#print(diet)
8e)
aov_diet <- aov(Weight.Loss ~ Treatment, data = diet)</pre>
summary(aov_diet)
                                      Df Sum Sq Mean Sq F value Pr(>F)
##
## Treatment
                                        2
                                                   60.5 30.264
                                                                                         5.383 0.0066 **
## Residuals
                                     73 410.4
                                                                    5.622
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
According to the ANOVA test there is sufficient evidence to reject the null-hypothesis, H0: Avg(Trt-A) =
Avg(Trt-B) = Avg(Trt-C), given that the p-value < 0.05
```