AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

Claim 1 (Currently Amended). A carbon nanotube composition that contains a water soluble conducting polymer having an acidic group (a), a water or a water-containing organic solvent (b) and carbon nanotubes (c).

Claim 2 (Withdrawn). A carbon nanotube composition that contains a heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c).

Claim 3 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a high molecular weight compound (d).

Claim 4 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a basic compound (e).

Claim 5 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a surfactant (f).

Claim 6 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a silane coupling agent (g) represented by the following formula (1):

Application No. 10/532,685

AMENDMENT AFTER FINAL REJECTION dated May xx, 2008

Reply to Office Action of February 11, 2008

$$\begin{array}{c} R^{242} \\ Y - - X - Si - R^{243} \\ R^{244} & \cdots _{(1),} \end{array}$$

wherein in the formula (1) R³⁴², R²⁴⁵ and R²⁴⁴ respectively and independently represent a group selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, linear or branched alkoxy group having 1 to 6 carbon atoms, amino group, acetyl group, phenyl group and halogen group, X represents the following:

$$-\left(\begin{array}{c} CH_2 \end{array}\right)_1$$
 or $-\left(\begin{array}{c} CH_2 \end{array}\right)_1$ O $-\left(\begin{array}{c} CH_2 \end{array}\right)_m$

l and m represent values from 0 to 6, and Y represents a group selected from the group consisting of a hydroxyl group, thiol group, amino group, epoxy group and epoxycyclohexyl group.

Claim 7 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a colloidal silica (h).

Claim 8 (Canceled).

Claim 9 (Previously Presented). A carbon nanotube composition according to claim 1, wherein the water soluble conducting polymer has at least one of a sulfonic acid group and a carboxyl group.

Claim 10 (Previously Presented). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of at least one type of the repeating units selected from the following formulas (2) to (10) relative to the total number of repeating units throughout the entire polymer:

wherein in the formula (2) R^1 and R^2 are respectively and independently selected from the group consisting of H, $-SO_3^-$, $-SO_3H$, $-R^3SO_3^-$, $-R^3SO_3H$, $-OCH_3$, $-CH_3$, $-C_2H_3$, -F, -C1, $-B_T$, -I, $-N(R^{30})_2$, $-NHCOR^{35}$, -OH, $-O^-$, $-SR^{35}$, $-OCOR^{35}$, $-OCOH_3$, -COOH, $-R^{35}COOH$, $-COOR^{35}$, $-COR^{35}$, -COH0 and -CN, where R^{35} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R^1 and R^2 is a group selected from the group consisting of $-SO_3^-$, $-SO_3H$, $-R^{35}SO_3^-$, $-R^{35}SO_3H$, -COOH and $-R^{35}COOH$;

wherein in the formula (3) R³ and R⁴ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³§SO₃⁻, -R³§SO₃H, -OCH₃, -CH₃, -C₂H₃, -F, -Cl, -Br, -N(R³)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R³ and R⁴ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R⁵SO₃⁻, -R³SO₃H, -COOH and -R⁵COOH;

Application No. 10/532,685

AMENDMENT AFTER FINAL REJECTION dated May xx, 2008

Reply to Office Action of February 11, 2008

wherein in the formula (4) R^8 to R^8 are respectively and independently selected from the group consisting of H, -SO₃", -SO₃H, -R*SO₃", -R*SSO₃H, -OCH₃, -CH₃, -CH₅, -F, -Cl, -Br, -I, -N(R^{30})₂, -NHCOR³⁵, -OH, -O", -SR*5, -OR35, -OCOR35, -NO₂, -COOH, -R*SCOOH, -COOR35, -COR35, -CHO and -CN, where R^{35} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R^3 to R^8 is a group selected from the group consisting of -SO₃", -SO₃H, -R*SSO₃", -R*SSO₃H, -COOH and -R*SCOOH;

$$R^{9}$$
 R^{10} R^{13} R^{12} (5)

wherein in the formula (5) R^9 to R^{13} are respectively and independently selected from the group consisting of H, $-SO_3^-$, $-SO_3H$, $-R^{38}SO_3^-$, $-R^{38}SO_3H$, $-CCH_3$, $-CH_3$, $-C_2H_3$, -F, -CI, -Br, -I, $-N(R^{39})_2$, $-NHCOR^{35}$, -OH, $-O^-$, $-SR^{35}$, $-OR^{35}$, $-OCOR^{35}$, $-NO_2$, -COOH, $-R^{35}COOH$, $-COOR^{35}$, $-COR^{35}$, -COH0 and -CN, where R^{35} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R^9 to R^{13} is a group selected from the group consisting of $-SO_3^-$, $-SO_3H$, $-R^{35}SO_3^-$, $-R^{35}SO_3H$, -COOH and $-R^{35}COOH$ 5;

Application No. 10/532,685

Amendment After Final Rejection dated May xx, 2008

Reply to Office Action of February 11, 2008

wherein in the formula (6) R¹⁴ is selected from the group consisting of -SO₃⁻, -SO₃H, -R⁴²SO₃⁻, -R⁴²SO₃H, -COOH and -R⁴²COOH, where R⁴² represents an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms;

wherein in the formula (7) R⁵² to R⁵⁷ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -CH₃, -C₂H₅, -F, -CI, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -Ō, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R³² to R³⁷ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH, Ht represents a heteroatom group selected from the group consisting of NR³², S, O, Se and Te, where R³² represents hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, or a substituted or non-substituted aryl group having 1 to 24 carbon atoms, the hydrocarbon chains of R³² to R³⁷ mutually bond at arbitrary locations and may form a bivalent chain that forms at least one cyclic structure of saturated or unsaturated

hydrocarbons of a 3 to 7-member ring together with the carbon atoms substituted by the groups, the cyclic bonded chain formed in this manner may contain a carbonyl ether, ester, amide, sulfide, sulfinyl, sulfonyl or imino bond at arbitrary locations, and n represents the number of condensed rings sandwiched between a hetero ring and a benzene ring having substituents R⁵³ to R⁵⁶, and is 0 or an integer of 1 to 3;

wherein in the formula (8) R⁵⁸ to R⁶⁶ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -CH₅, -F, -CI, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -ORO³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COOR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁵⁶ to R⁶⁶ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R⁵⁸ and R⁵⁹ and a benzene ring having substituents R⁶¹ to R⁶⁴, and is 0 or an integer of 1 to 3;

wherein in the formula (9) Re^o to R^o are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R^oSO₃⁻, -R^oSO₃H, -OCH₃, -CH₃, -C₂H₃, -F, -Cl, -Br, -l, -N(R^oS)₂ -NHCOR^oS, -OH, -O⁻, -SR^oS, -OR^oS, -OCOR^oS, -NO₂, -COOH, -R^oSCOOH, -COOR^oS, -COR^oS, -CHO and -CN, where R^oS represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R^oTo R^oS is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R^oSO₃⁻, -R^oSO₃H, -COOH and -R^oSCOOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R^oTo R^oS and a benzoquinone ring, and is 0 or an integer of 1 to 3; and,

$$\begin{array}{c|c}
R^{77} & R^{78} \\
\hline
N & \\
R^{81} & \\
R^{90} & R^{80} & (X^{e^{-}})
\end{array}$$
(10)

wherein in the formula (10) R⁷⁷ to R⁸¹ are respectively and independently selected from the group consisting of H, -SO₅⁻, -SO₅H, -R³⁸SO₅⁻, -R³⁸SO₅H, -OCH₃, -CH₃, -C₃H₅, -F, -CI, -Br, -I, -N(R³⁸)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -ORS³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁸COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group or alkylene, arylene having 1 to 24 carbon atoms or an aralkylene group having 1 to 24 carbon atoms, at least one of R⁷⁷ to R⁸¹ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁸SO₃H, -COOH and -R³⁸COOH, Xa⁻ is at least one type of anion selected from the group of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion, a represents the ion valence of X and is an integer of 1 to 3, and p represents the doping ratio and has a value of 0.001 to 1.

Claim 11 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of the repeating unit represented by the following formula (11) relative to the total number of repeating units throughout the entire polymer:

(11)

wherein in the formula (11) y represents an arbitrary number such that 0 < y < 1, R^{15} to R^{32} are respectively and independently selected from the group consisting of H, $-SO_3^-$, $-SO_3H$, $-R^{38}SO_3^+$, $-R^{38}SO_3H$, $-OCH_3$, $-CH_3$, $-CH_5$, -F, -CI, -Br, -I, $-N(R^{28})_2$, $-NHCOR^{28}$, -OH, $-O^-$, $-SR^{28}$, $-OR^{25}$, $-OCOR^{25}$, $-OCOR^{25}$, -OCOH, $-R^{28}COOH$, $-COOR^{25}$, $-COOR^{25}$, -CHO and -CN, where R^{25} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R^{15} to R^{22} is a group selected from the group consisting of $-SO_3^-$, $-SO_3H$, $-R^{25}SO_3^-$, $-R^{25}SO_3H$, -COOH and $-R^{25}COOH$.

Claim 12 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is represented by the following formula (12):

,

wherein in the formula (12) R³³ represents one group selected from the group consisting of a sulfonic acid group, carboxyl group, their alkaline metal salts, ammonium salts and substituted ammonium salts, R³⁴ represents one group selected from the group consisting of a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, dodecyl group, tetracosyl group, methoxy group, ethoxy group, n-propoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, heptoxy group, hexoxy group, octoxy group, dodecoxy group, tetracoxy group, fluoro group, chloro

group and bromo group, X represents an arbitrary number such that 0 < X < 1, and n represents the degree of polymerization and has a value of 3 or more.

Claim 13 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one of type of acidic group-substituted aniline represented by the following formula (13), its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound:

$$R^{40}$$
 R^{37} $N H$ R^{38} R^{39} R^{39} (13)

wherein in the formula (13) R³⁶ to R⁴¹ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -CH₃, -C,H₅, -F, -CI, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -Ō, -SR³⁵, -ORO³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R³⁶ to R⁴¹ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH.

Claim 14 (Original). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one type of alkoxy group-substituted aminobenzene sulfonic acid, its alkaline metal salt, ammonium salt

and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound.

Claim 15 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is polyethylene dioxythiophene polystyrene sulfate.

Claim 16 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following formula (16):

wherein in the formula (16) R¹⁰ to R¹¹² are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or

branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 17 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (17):

Page 13 of 26

Application No. 10/532,685

AMENDMENT AFTER FINAL REJECTION dated May xx, 2008

Reply to Office Action of February 11, 2008

wherein in the formula (17) R¹¹³ to R¹²⁴ represent substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; at least one of R¹¹³ to R¹²⁴ is a cyano group, nitro group, amide group, sulfonic acid group, and carboxyl group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 18 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (18):

wherein in the formula (18) R¹²⁵ to R¹³⁶ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxylic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, introphenylcyanovinyl group and halogen group;

X^a represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 19 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (19):

wherein in the formula (19) R^{137} to R^{148} are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 20 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer obtained by reacting at least one type of heterocyclic compound represented by the following general formula (20) in a reaction mixture containing at least one type of oxidizing agent and at least one type of solvent:

wherein in the formula (20) R¹⁵⁰ to R¹⁵³ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or

branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; and,

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms.

Claim 21 (Withdrawn). A carbon nanotube composition according to claim 2, wherein said carbon nanotube composition includes a the heterocyclic compound trimer (i) having a layered structure.

Claim 22 (Previously Presented). A production method of a carbon nanotube composition comprising: irradiating a carbon nanotube composition according to claim 1 with ultrasonic waves and mixing.

Claim 23 (Previously Presented). A composite comprising a base material, and a coated film composed of the carbon nanotube composition according to claim 1 on at least one surface of the base material.

Claim 24 (Previously Presented). A method of producing a composite comprising: coating the carbon nanotube composition according to claim 1 onto at least one surface of a base material, and forming a coated film by allowing the coated carbon nanotube to stand at room temperature or subjecting it to heat treatment.

Application No. 10/532,685 Amendment After Final Rejection dated May XX, 2008 Reply to Office Action of February 11, 2008

Claim 25 (Original). A production method of a composite according to claim 24, wherein the heat treatment is carried out within a temperature range of normal temperature to 250°C.