

Non-SUSY String Phenomenology from

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Work in collaboration with Alon E. Faraggi and Viktor G. Matyas

Benjamin Percival

Overview: Non-SUSY $\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold Landscape

Tachyonic 10D Heterotic: SO(32), $O(16) \times E_8$, $O(8) \times O(24)$, $(E_7 \times SU_2)^2$, U(16), E_8 [1, 2] Type 0 10D strings: Type 0A/B, 8 Pin⁻ ([3])

Outline of Talk 1

- 1. Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map
- 3. S vs Š 4D SO(10) Models
- 4. Partition Function and Cosmological Constant for Š SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Free Fermion Construction I

- Worldsheet CFT construction of heterotic string defined at enhanced symmetry point in moduli space [4].
- $D = 10 \implies$ introduction of free fermions on worldsheet

$$\{\underbrace{\psi^{\mu}, \chi^{i=1,...,6}}_{\text{S'partners}} \mid \underbrace{\bar{\psi}^{1,2,3,4,5}, \bar{\eta}^{1,2,3}}_{\text{constable G. G.}}, \underbrace{\bar{\phi}^{1,2,3,4,5,6,7,8}}_{\text{rank 8}} \}$$
(1)

• Reduction to $D = 4 \implies$ introduction of

$$\{y^i, w^i \mid | \bar{y}^i, \bar{w}^i \}, i = 1, ..., 6$$
 (2)

 \longleftrightarrow fermionised coordinates of internal T^6 such that $i\partial X^i_L = y^i w^i$.

Free Fermion Construction II

- 1-loop partition function (vacuum → vacuum amplitude) sufficient to get M.I. constraints and consistent 10D models.
- 2 ingredients for Model:
 - 1. N boundary Condition basis vectors

$$v_i = \{\alpha(f_1), \alpha(f_2), ..., \alpha(f_n)\},$$
 (3)

where
$$\alpha(f) = 0 \implies NS$$
 and $\alpha(f) = 1 \implies R$.

2. GGSO phases

$$C\begin{bmatrix} v_i \\ v_i \end{bmatrix} = \pm 1 \text{ or } \pm i, \quad i > j$$
 (4)

modular invariance \implies 2^{N(N-1)/2} independent coefficients.

Free Fermion Construction III

GSO projections to derive Hilbert space:

$$\mathcal{H} = \bigoplus_{\alpha \in \Xi} \prod_{i=1}^{N} \left\{ e^{i\pi v_i \cdot F_{\alpha}} \left| S_{\alpha} \right\rangle = \delta_{\alpha} C \begin{pmatrix} \alpha \\ v_i \end{pmatrix}^* \left| S_{\alpha} \right\rangle \right\} \mathcal{H}_{\alpha} \tag{5}$$

- The v_i span Ξ and sectors, α , are their linear combinations.
- Sectors characterised according to mass level:

$$M_{L}^{2} = -\frac{1}{2} + \frac{\xi_{L} \cdot \xi_{L}}{8} + N_{L}$$

$$M_{R}^{2} = -1 + \frac{\xi_{R} \cdot \xi_{R}}{8} + N_{R}$$
(6)

where N_L and N_R sum over any oscillators.

Outline of Talk 2

FOVER STUDIES

- 1. Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map
- 3. S vs Š 4D SO(10) Models
- 4. Partition Function and Cosmological Constant for S

 SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

10D Heterotic Strings

• $E_8 \times E_8$ and $O(16) \times O(16)$ [5] heterotic-models have common basis vectors:

$$v_{1} = \mathbb{1} = \{ \psi^{\mu}, \chi^{1,\dots,6} \| \overline{\eta}^{1,2,3}, \overline{\psi}^{1,\dots,5}, \overline{\phi}^{1,\dots,8} \},$$

$$v_{2} = z_{1} = \{ \overline{\psi}^{1,\dots,5}, \overline{\eta}^{1,2,3} \},$$

$$v_{3} = z_{2} = \{ \overline{\phi}^{1,\dots,8} \},$$
(7)

distinguished by GGSO phase: $C\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \pm 1$

SUSY vector:

$$S = 1 + z_1 + z_2 = \{ \psi^{\mu}, \chi^{1, \dots, 6} \}$$
 (8)

10D Tachyonic String

• Consider map [6, 7]:

$$S \mapsto \tilde{S} = \{ \psi^{\mu}, \chi^{1,\dots,6} \mid \bar{\phi}^{3,4,5,6} \}$$
 (9)

- Model with $\{1, \tilde{S}\}$ can relate to $O(8) \times O(24)$ tachyonic heterotic string, see [1].
- No massless gravitinos, and untwisted tachyonic states:

$$|0\rangle_L \otimes \bar{\phi}^{3,4,5,6}|0\rangle_R \tag{10}$$

are invariant under S.

Goal: find tachyon-free S-models in D = 4.

Viable Standard-like S-Model

- In [7] (arXiv:1912.00061) S → S applied to phenomenologically viable, supersymmetric model of [9] (arXiv:0802.0470).
- Untwisted moduli field Thirring interactions have the general form

$$J^{i}(z)J^{j}(\bar{z}) =: y^{i}w^{i} :: \bar{y}^{j}\bar{w}^{j} : \text{ or } : y^{i}w^{i} :: \bar{\Phi}^{j}\bar{\Phi}^{*j} :, j = 1, ..., 22.$$
(11)

All projected via asymmetric BCs for $\{y, w \mid \bar{y}, \bar{w}\}^{1,\dots,6} \longleftrightarrow$ non-geometric orbifolding.

 [9] argued twisted moduli fixed by absence of exact supersymmetric flat directions. Internal space not affected by S → S̃.

The Model

Basis vectors: $\overline{NAHE} + \{\alpha, \beta, \gamma\}$

G.G: $SU(3)_C \times SU(2)_L \times U(1)_C \times U(1)_L \times U(1)_{1,2,3} \times U(1)_{4,5,6} \times SU(2)_{1,...,6} \times U(1)_{7,8}$

Tachyon-free, 3 generations, Higgs content, TQMC, (potentially) stable...
 Justifies further investigation of models derived from 10D tachyonic vacuum.

Outline of Talk 3

- Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map

- 4. Partition Function and Cosmological Constant for S SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Š vs S 4D SO(10) Models

Ŝ-models:

$$\begin{array}{llll} \mathbf{1} & = & \{ \text{ALL} \} \\ \mathbf{\tilde{5}} & = & \{ \psi^{\mu}, \chi^{1,\dots,6} \; \big| \; \bar{\phi}^{3,4,5,6} \} \\ \mathbf{e_i} & = & \{ y^i, w^i \; \big| \; \bar{y}^i, \bar{w}^i \}, \quad i = 1,\dots6 \\ \mathbf{b_1} & = & \{ \psi^{\mu}, \chi^{12}, y^{34}, y^{56} \; \big| \; \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5} \} \; (12) \\ \mathbf{b_2} & = & \{ \psi^{\mu}, \chi^{34}, y^{12}, y^{56} \; \big| \; \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5} \} \\ \mathbf{b_3} & = & \{ \psi^{\mu}, \chi^{56}, y^{12}, y^{34} \; \big| \; \bar{y}^{12}, \bar{y}^{34}, \bar{\eta}^3, \bar{\psi}^{1,\dots,5} \} \\ \mathbf{z_1} & = & \{ \bar{\phi}^{1234} \} \end{array}$$

- SO(10) × U(1)³ × SO(4)⁴
 untwisted gauge group
- SUSY explicitly broken by $S \rightarrow \tilde{S}$
- $2^{12(12-1)/2} = 2^{66}$ independent phases: $C[v_m], m > n$

S-models:

1 = {ALL}
S = {
$$\psi^{\mu}$$
, χ^{1}6}
 \mathbf{e}_{i} = { γ^{i} , ω^{i} | $\bar{\gamma}^{j}$, $\bar{\omega}^{i}$ }, $i = 1, ...6$
 \mathbf{b}_{1} = { χ^{3456} , γ^{34} , γ^{56} | $\bar{\gamma}^{34}$, $\bar{\gamma}^{56}$, $\bar{\eta}^{1}$, $\bar{\psi}^{1}$...5} (13)
 \mathbf{b}_{2} = { χ^{1256} , γ^{12} , γ^{56} | $\bar{\gamma}^{12}$, $\bar{\gamma}^{56}$, $\bar{\eta}^{2}$, $\bar{\psi}^{1}$...5}
 \mathbf{z}_{1} = { $\bar{\phi}^{1,2,3,4}$ }
 \mathbf{z}_{2} = { $\bar{\phi}^{5,6,7,8}$ }

- SO(10) × U(1)³ × SO(8)² untwisted gauge group
- SUSY broken by GSO phase
- Independent phases: $2^{66} 2^{66-8}$

$$\left\{ c \begin{bmatrix} v_m \\ v_n \end{bmatrix} \middle| \neg \left(c \begin{bmatrix} S \\ e_i \end{bmatrix} = c \begin{bmatrix} S \\ z_1 \end{bmatrix} = c \begin{bmatrix} S \\ z_2 \end{bmatrix} = -1 \right) \right\}$$

$$\forall i \in \{1, \dots, 6\} \text{ and } m > n.$$
12/30

SO(10) Tachyonic Analysis I

• On-shell tachyons will arise when

$$M_L^2 = M_R^2 < 0, (15)$$

Same 126 Level-matched tachyonic sectors for SO(10) S and S-models

Mass Level	Vectorials	Spinorials	
(-1/2, -1/2)	$\{\bar{\lambda}^m\}$ NS \rangle	$ z_1\rangle$, $ z_2\rangle$	
(-3/8, -3/8)	$\{\bar{\lambda}^m\}\ket{e_i}$	$ e_i + z_1\rangle$, $ e_i + z_2\rangle$	
(-1/4, -1/4)	$\{\bar{\lambda}^m\} e_i + e_j \rangle$	$ e_i + e_j + z_1\rangle, e_i + e_j + z_2\rangle$	
(-1/8, -1/8)	$\left \left\{ \bar{\lambda}^m \right\} \left e_i + e_j + e_k \right\rangle \right $	$ e_i + e_j + e_k + z_1\rangle, e_i + e_j + e_k + z_2\rangle$	

$$i \neq j \neq k = 1, ..., 6$$
 and $m = 1, ..., 22$.

 Conditions on absence/survival under GSO projections of these tachyonic sectors listed in [12] (arXiv:2006.11340) for Š and in [13] for S-models.

\tilde{S} vs S Massless Sectors

S-Models:

• 16's of SO(10) arise from:

$$B_{pars}^{(1)F} = b_1 + pe_3 + qe_4 + re_5 + se_6$$

 $B_{pars}^{(2)F} = b_2 + pe_1 + qe_2 + re_5 + se_6$
 $B_{pars}^{(3)F} = b_3 + pe_1 + qe_2 + re_3 + se_4$

p, q, r, s = 0, 1.

- S-map makes bosonic counterparts massive.
- Vectorial 10's of SO(10) arise through map

$$\tilde{x} = b_1 + b_2 + b_3 = \{\psi^{\mu}, \chi^{1,...,6} \mid | \tilde{\psi}^{1,...,5}, \tilde{\eta}^{1,2,3} \} \sim S + x$$

$$V_{nors}^{(1,2,3)B} = B_{nors}^{(1,2,3)F} + \tilde{x}$$
(16)

• l.e.

S-Models:

• 16's of SO(10) arise from:

$$\begin{array}{lll} B_{pqrs}^{(1)F} & = & S+b_1+pe_3+qe_4+re_5+se_6 \\ B_{pqrs}^{(2)F} & = & S+b_2+pe_1+qe_2+re_5+se_6 \\ B_{pqrs}^{(3)F} & = & S+b_3+pe_1+qe_2+re_3+se_4 \end{array}$$

p, q, r, s = 0, 1.

Vectorial 10's of SO(10) arise through map

$$x = 1 + S + \sum_{i=1}^{6} e_i + \sum_{k=1}^{2} z_k = \{\bar{\psi}^{1,...,5}, \bar{\eta}^{1,2,3}\}.$$

$$V_{pqrs}^{(1,2,3)B} = S + B_{pqrs}^{(1,2,3)F} + x$$
 (17)

I.e.

$$B^{(1,2,3)F} \xrightarrow{S} B^{(1,2,3)B}$$

$$\downarrow^{x}$$

$$V^{(1,2,3)F}$$

$$V^{(1,2,3)B}$$

Outline of Talk 4

THE TOTAL STUDIO

- 1. Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map
- 3. S vs Š 4D SO(10) Models
- 4. Partition Function and Cosmological Constant for Š SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Partition Function and Cosmological Constant

• Full PF

$$Z = \int_{\mathscr{F}} \frac{d^2 \tau}{\tau_2^2} Z_B \sum_{\alpha,\beta} C \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \prod_f Z \begin{bmatrix} \alpha(f) \\ \beta(f) \end{bmatrix} = \sum_{n,m} a_{mn} \int_{\mathscr{F}} \frac{d^2 \tau}{\tau_2^3} q^m \bar{q}^n =: \sum_{m,n} a_{mn} I_{mn}.$$
(18)

 $(Z_B = \frac{1}{\tau_2} \frac{1}{\eta^2 \bar{\eta}^2})$ On-shell tachyon divergences:

$$I_{mn} = \begin{cases} \infty & \text{if } m+n < 0 \land m-n \notin \mathbb{Z} \setminus \{0\} \\ \text{Finite Otherwise.} \end{cases}$$
 (19)

- $N_b^0 = N_f^0$ interesting configurations. $\mathcal{O}(10^3)$ found in [12] for SO(10) \tilde{S} -models.
- In forthcoming PS classification [13] S and \tilde{S} configuration with $N_b^0 = N_f^0$ are found.

Classification Stats

• Phenomenological statistics from sample of 2×10^9 SO(10) \tilde{S} -models.

	Constraints	Total models in sample	Probability
	No Constraints	2 × 10 ⁹	1
(1)	+ Tachyon-Free	10741667	5.37×10^{-3}
(2)	+ No Observable Enhancements	10741667	5.37×10^{-3}
(3)	+ No Hidden Enhancements	9921843	4.96×10^{-3}
(4)	$+N_{16}-N_{\overline{16}}\geq 6$	69209	3.46×10^{-5}
(5)	+ N ₁₀ ≥ 1	69013	3.45×10^{-5}
(6)	$+ a_{00} = N_b^0 - N_f^0 = 0$	3304	1.65 × 10 ⁻⁶

Distribution of $a_{00} = N_b^0 - N_f^0$ for \tilde{S} -models

• Distribution of the constant term $a_{00} = N_b^0 - N_f^0$ for a sample of 10⁴ non-tachyonic and 10⁴ fertile models $(N_{16} - N_{\overline{16}} \ge 6, N_{10} \ge 1)$

Distribution of Λ for \tilde{S} -models

 Distribution of the cosmological constant for a sample of 10⁴ non-tachyonic and 10⁴ fertile models

Notable Model with $N_b^0 = N_f^0$

Š-model defined by

has
$$N_{16} = 7$$
, $N_{\overline{16}} = 1$ and $N_{10} = 8$. And the PF is (20)

$$Z = \underbrace{2q^0\bar{q}^{-1}}_{} + \underbrace{0q^0\bar{q}^0}_{} -288q^{1/8}\bar{q}^{1/8} - 4512q^{1/4}\bar{q}^{1/4} - 9808q^{3/8}\bar{q}^{3/8} + \cdots,$$

Proto-graviton No constant term

(21)

hence
$$N_b^0 = N_f^0$$
 and $\Lambda = -149.77$ $(\Lambda_{ST} = -\frac{1}{2(2\pi)^4} M_{String}^4 \Lambda)$.

No Heavy Higgs for S Models(?)

- Absence of $B^{(1,2,3)B}$ for \tilde{S} PS models means no $n_{4R}^B n_{\tilde{4}R}^B$ PS breaking Higgs.
- No other suitable scalars in model [19].
- No missing partner mechanism either
- SLMs (maybe) only viable SO(10) subgroup for \tilde{S} $(SU(3) \times SU(2) \times U(1)^2)$
- ⇒ PS S̃ classification only schematic

Outline of Talk 5

PAGE TOWN

- 1. Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map
- 3. S vs Š 4D SO(10) Models
- 4. Partition Function and Cosmological Constant for S

 SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifold

- Type 0 models where all massless fermion absent from spectrum explored in [17]
- In [18] (arXiv:2010.06637) we proved their existence in the space of $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifolds.
- All such examples contain physical tachyons at the free fermionic point in the moduli space
- Using analysis of [20] (arXiv:1680.04582) may be tachyon-free away from FF point
- May be instrumental in exploring string dynamics in early universe cosmology(?)

Type O Example

• Taking a minimal \tilde{S} -derived basis $\{1, \tilde{S}, b_1^B, b_2^B, b_3^B, z_1, x\}$ and conditions on the 9 phases $C[v_1]$:

$$\begin{split} & C\begin{bmatrix}\tilde{S}\\x\end{bmatrix}=1, \quad C\begin{bmatrix}z_1\\x\end{bmatrix}=1, \quad C\begin{bmatrix}z_1\\b_1\end{bmatrix}=C\begin{bmatrix}z_1\\b_2\end{bmatrix}=C\begin{bmatrix}z_1\\b_3\end{bmatrix}=1\\ & C\begin{bmatrix}\tilde{S}\\b_1\end{bmatrix}=-C\begin{bmatrix}\tilde{S}\\b_2\end{bmatrix}C\begin{bmatrix}\tilde{S}\\b_3\end{bmatrix}, \quad C\begin{bmatrix}x\\1\end{bmatrix}=C\begin{bmatrix}x\\b_1\end{bmatrix}C\begin{bmatrix}x\\b_2\end{bmatrix}C\begin{bmatrix}x\\b_3\end{bmatrix},\\ & C\begin{bmatrix}b_2\\b_3\end{bmatrix}=-C\begin{bmatrix}\tilde{S}\\b_2\end{bmatrix}C\begin{bmatrix}b_1\\b_2\end{bmatrix} \quad C\begin{bmatrix}b_3\\b_1\end{bmatrix}=-C\begin{bmatrix}\tilde{S}\\b_2\end{bmatrix}C\begin{bmatrix}\tilde{S}\\b_3\end{bmatrix}C\begin{bmatrix}b_1\\b_2\end{bmatrix} \end{split}$$

Find 4094 (2^{21-9}) versions of same type 0 model (no fermionic states)

$$Z = 2q^{0}\bar{q}^{-1} + 16q^{-1/2}\bar{q}^{-1/2} + 4264 + 45056q^{1/4}\bar{q}^{1/4} + \cdots$$
 (22)

- Many more such type 0 models found in generalised bases for \$\tilde{S}\$ and \$S\$ in [18]
- We also studied the Misaligned SUSY in this class of models

Outline of Talk 6

POVEMENT STUDIES

- 1. Free Fermionic Formulation (FFF)
- 10D Heterotic Strings in FFF
 10D Tachyonic String: S-map
- 3. S vs Š 4D SO(10) Models
- 4. Partition Function and Cosmological Constant for \tilde{S} SO(10) models
- 5. Type 0 $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds
- 6. Type $\overline{0} \mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds

Type $\overline{0}$: No Massless Twisted Boson Models

- Counterpart of type 0: no twisted massless bosons.
- We find tachyon-free Type $\overline{0}$ vacua in [26] (In Prep.) for S and \widetilde{S} 4D constructions.
- Exhibit maximal gauge group enhancement and spinorial 16 sectors absent.

Conclusion

- Tachyonic 10D string viable starting point for string pheno.
- Potentially stable S-models found from asymmetric orbifolding for SLM subgroup.
- Tools for exploring the cosmological constant and N_b⁰ N_f⁰ for Non-SUSY string developed.
- Existence of 2 extremes in string spectrum of $\mathbb{Z}_2 \times \mathbb{Z}_2$ Heterotic Orbifolds: Type 0 and Type $\overline{0}$.
- Perhaps promising configurations for cosmological scenarios
- More work to be done seeing how these rogue string theories (tachyonic 10D, type 0...) link to wider duality web [27] (arXiv:2010.10521, arXiv:0705.0980, arXiv:hep-th/0612116)

Bibliography I

- [1] L.J. Dixon and J.A. Harvey, Nucl. Phys. B274, 93 (1986)
- [2] N. Seiberg and E. Witten, Nucl. Phys. **B276**, 272 (1986)
- O. Bergman and M. R. Gaberdiel, Nucl. Phys. B499(1997) 183–204, [hep-th/9701137];
 O. Bergman and M. R. Gaberdiel, JHEP07(1999) 022, [hep-th/9906055]
- I. Antoniadis and C. Bachas, Nuclear Physics B, 298(3): 586 612, 1988.
 I. Antoniadis and C. Bachas, and C. Kounnas, Nuclear Physics B, 289(0): 87 108, 1987.
 H. Kawai, and D. C. Lewellen and S. H. H. Tye, Phys. Rev. Lett. 34 (1986) 12
- L. Alvarez-Gaumé, P. Ginsparg, G. Moore, and C. Vafa, Phys. Lett. B 171(1986)155;
 L.J. Dixon and J.A. Harvey, Nucl. Phys. B274(1986) 93
- [6] A.E. Faraggi, Eur. Phys. Jour.C79(2019) 703
- [7] A.E. Faraggi, V. Matyas and B. Percival Eur. Phys. Jour. C80 (2020) 4.
- [8] L. J. Dixon and J.A Harvey, Nucl. Phys. B274, 93 (1986).
- [9] G.B. Cleaver, A.E. Faraggi, E. Manno and C. Timirgaziu, Phys. Rev. D78(2008)046009
- [10] K. R. Dienes, Phys. Rev. Lett. 65 (1990) 1979
- A.E. Faraggi, C. Kounnas, S.E.M Nooij and J. Rizos, hep-th/0311058
 B. Assel, C. Christodoulides, A.E. Faraggi, C. Kounnas and J. Rizos, Phys. Lett. B683 (2010) 306; Nucl. Phys. B844 (2011) 365;
 A.E. Faraggi, J. Rizos and H. Sonmez, Nucl. Phys. B886 (2014) 202;
 H. Sonmez, Phys. Rev. D93 (2016) 125002.
 A.E. Faraggi, G. Harries and J. Rizos, Nucl. Phys. B936 (2018) 472.

Bibliography II

- [12] A.E. Faraggi, V. G. Matyas and B. Percival (2020), arXiv:2006.11340
- [13] A.E. Faraggi, V. G. Matyas and B. Percival (2020), Classification of Non-supersymmetric Pati-Salam Heterotic String Models, arXiv:2011.XXXXX
- A.E. Faraggi, J. Rizos and H. Sonmez, Nucl. Phys. B927 (2018) 1.
 A.E. Faraggi, G. Harries, B. Percival and J. Rizos Nucl. Phys. B953 (2020) 114969
- B. Assel et al, Phys. Lett. B683 (2010) 306; Nucl. Phys. B844 (2011) 365;
 C. Christodoulides, A.E. Faraggi and J. Rizos, Phys. Lett. B702 (2011) 81.
- [16] I.Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B246(1990)377
- [17] M. Bianchi and A. Sagnotti, Phys. Lett. B247 (1990) 517;
 - C. Angelantonj, Phys. Lett. B444 (1998) 309;
 - R. Blumenhagen, A. Font, D. Lüst, Nucl. Phys. B558 (1999) 159:
 - R. Blumenhagen, A. Kumar, Phys. Lett. B464 (1999) 46;
 - O. Bergman and M.R. Gaberdiel, JHEP 03 (1999) 013;
 - K. Forger, Phys. Lett. B469 (1999) 113;
 - E. Dudas and J. Mourad, Nucl. Phys. B598 (2001) 189;
 - C. Angelantonj and A. Armoni, Nucl. Phys. B578 (2000) 239;
 - D. Israel and V. Niarchos, JHEP 11 (2007) 093.
- [18] A.E. Faraggi, V. G. Matyas and B. Percival (2020), arXiv:2010.06637.
- [19] H. K. Dreiner, J. L. Lopez, D. V. Nanopoulos, D. B. Reiss. Phys. Rev. Lett. B216 (1989) 283;
 - D. C. Lewellen, Nucl. Phys. B337 (1990) 61;
 - K. R. Dienes, J. March-Russell, Nucl. Phys. B479 (1996) 113.
- [20] I. Florakis and J. Rizos, Nucl. Phys. B913 (2016) 495.

Bibliography III

- [21] K.R. Dienes, Phys. Rev. Lett. 65 (1990) 1979
- [22] K.R. Dienes, Nucl. Phys. B429 (1994) 533.
- [23] K.R. Dienes, M. Moshe, and R.C. Myers, Phys. Rev. Lett. 74 (1995) 4767.
- [24] C. Angelantonj, M. Cardella, S. Elitzur and E. Rabinovici, JHEP 1102 (2011) 024, arXiv:1012.5091.
- [25] S. Abel, K.R. Dienes and E. Mavroudi, Phys. Rev. D97 (2018) 126017; JHEP 2 (2011) 24.
- [26] A.E. Faraggi, V. G. Matyas and B. Percival (2020) In Preparation
- [27] J. Kaidi (2020), arXiv:2010.10521:
 - S. Hellerman and I. Swanson, Phys. Rev. Lett. 99 (2007) 171601, arXiv:0705.0980:
 - S. Hellerman and I. Swanson, JHEP 07 (2008) 022, arXiv:hep-th/0612116