

Höhere Mathematik IV - Stochastik für Ingenieure Übungsblatt 3

Aufgabe 3.1
Während einer Geschwindigkeits- und Verkehrskontrolle im Raum Kassel werden in einer 70er Zone von 10 Autos die folgenden Daten aufgenommen.

Kennzeichen	Anzahl Personen im Auto	Geschwindigkeit in km/h			
HR	4	75.5			
KS	2	68.2			
KS	1	65.3			
GÖ	5	60.1			
KS	1	80.9			
ESW	2	100.0			
HR	3	87.0			
KS	1	70.2			
KS	2	72.5			
KS	1	69.6			

- a) Berechnen Sie für alle quantitativen Merkmale
 - 1) den Mittelwert und den Median.
 - 2) die Spannweite, den Quartilsabstand und die empirische Standardabweichung.
- b) Berechnen Sie anschließend die Kennzahlen aus Teil a) mithilfe von R.

Aufgabe 3.2

Ausgehend von Aufgabe 3.1 wollen wir nun Boxplots erstellen.

a) Welche Kennzahlen sind zum Erstellen von Boxplots für die Daten aus Aufgabe 3.1 nötig?

- b) Erstellen Sie Boxplots von allen quantitativen Merkmalen per Hand.
- c) Zeichnen Sie Boxplots von allen quantitativen Merkmalen mithilfe von R.

Aufgabe 3.3

In einem Betrieb werden Stahlkugeln produziert.

Linie 1	1.18	1.42	0.69	0.88	1.62	1.09	1.53	1.02	1.19	1.32
Linie 2	1.72	1.62	1.69	0.79	1.79	0.77	1.44	1.29	1.96	0.99

- a) Welche Lage- und Streuparameter sind sinnvoll für die Beschreibung der Daten? Welche sind weniger geeignet?
- b) Berechnen Sie zum Vergleich der Produktionslinien alle Lage- und Streuparameter, sie Sie in 1) als sinnvoll erachten.
- c) Stellen Sie die Daten der beiden Produktionslinien der Stahlkugeln mittels Boxplots gegenüber.