

ABSTRACT

A pseudo-chaotic coding/modulation method. The coding method
exploits symbolic dynamics of a chaotic map at the transmitter to encode data.
The encoding synthesizes the chaotic map based upon the data to be transmitted.
In a preferred embodiment, pseudo-chaotic iterates are generated from a digital
implementation of a Bernoulli shift map. The output of the shift map is translated
by a mapping, preferably implemented by a digital signal processor, to allow
transitions between states in a transmitted signal to differ, and the translated map
is used to drive a modulator (for example PPM, FSK, PSK, QAM, etc.). In the
specific case of pulse-position modulation (PPM) the translated map is used to
modulate pulse train positions within a periodic synchronization frame. The
preferred embodiment uses a shift register to implement an approximation of the
Bernoulli shift map acting as a form of convolutional code with a number of states
equal to the symbolic states defined on the chaotic map. A receiver may use
fewer states and still decode the data signal, allowing receiver scalability.