DNS – Zones et enregistrements

420-2S5-EM

Serveur 1 – Services intranet

Retour sur l'introduction

- Le service DNS permet une résolution de nom hiérarchique.
- Chaque serveur de cette hiérarchie s'occupe d'une portion précise du nom à résoudre.
- Les serveurs DNS peuvent gérer des requêtes récursives ou itératives.
- La mémoire cache des clients et des serveurs DNS permet d'accélérer le processus de résolution en évitant de résoudre une requête qui a été déjà été résolu.

Retour sur le processus de résolution

Les enregistrements DNS

Pour qu'un serveur DNS puisse traduire un nom en IP, celui-ci doit posséder les données qu'on lui demande de traduire, soit le nom concerné par la requête et l'adresse IP correspondante. Cette correspondance, c'est ce que l'on nomme un enregistrement. Exemple:

Les zones de recherche

Les enregistrements sont stockés dans des zones.

Une zone de recherche contient tous les enregistrements d'un nom de domaine.

Il existe deux types de zone de recherche:

Principal: Ces zones sont ouvertes en écriture. Les enregistrements y sont donc modifiables.

Secondaire: C'est une copie de la zone principale et elle n'est disponible qu'en lecture seule. Les zones secondaires permettent de distribué la charge de travail entre les serveurs DNS.

Les classes d'enregistrement

Les classes d'enregistrement sont un héritage de la structure originelle du système de noms de domaine (DNS). Elles ont été conçues à une époque pour supporter différents types de réseaux et d'infrastructures sur Internet et au sein de systèmes informatiques.

Aujourd'hui, toutes les autres classes autres que « IN » (internet) sont devenues obsolètes.

Vous devez donc toujours utiliser la classe « IN ».

Les types d'enregistrement

Les types d'enregistrement détermine le type d'information que l'on retrouvera dans la valeur d'un enregistrement donné.

Dans cet exemple, le type d'enregistrement « A » nous indique que la valeur sera une adresse IP, laquelle sera associé au nom d'hôte « www ».

Les types d'enregistrement

Туре	Explication				
А	Ce type d'enregistrement permet d'associer un nom de domaine à une IP.				
AAAA	C'est la même chose que l'enregistrement « A » mais pour l'IPv6				
CNAME	Permet de définir un alias pour un nom de domaine existant.				
MX	Spécifie les serveurs de messagerie utilisés pour les courriels d'un domaine particulier.				
NS	Indique les serveurs DNS autoritaires pour le domaine.				
SOA	Contient plusieurs informations essentielles sur le domaine.				
SRV	Permet de spécifier l'emplacement des serveurs pour des services spécifiques.				
TXT	Contient du texte, ni plus ni moins. Ces enregistrements sont souvent utilisés dans les politiques d'envoi de courriels par exemple.				

Exemple de zone

TTL: Time To Live

\$TTL 86400

Le TTL est une valeur exprimée en secondes. Ici 86400 est l'équivalent de 24h. C'est la durée de vie qu'auront les enregistrements dans les différentes mémoires caches des clients.

@:alias du domaine

Le caractère « @ » est particulier dans les fichiers de zone. En effet, celui-ci est un alias du nom de domaine. Donc que vous écriviez exemple.local ou « @ », c'est exactement la même chose.

Le caractère « ; » permet d'insérer des commentaires!

L'entrée SOA

Courriel de l'administrateur de la zone. Le « @ » est remplacé par un « . »

Il s'agit du serveur qui a autorité sur la zone et qui peut y apporter des modifications.

Numéro de série de la zone. Ce numéro est incrémenté à chaque modification. Cela permet aux serveurs secondaires de savoir s'il possède une copie à jour de la zone.

Le temps, en secondes que les serveurs secondaires doivent attendre avant de vérifier si des modifications ont été apportées à la zone. (1h)

Le temps, en secondes que les serveurs secondaires doivent attendre avant de réessayer de se mettre à jour suite à un échec de la requête initial. (15min) Le temps, en secondes après lequel une copie de la zone est considérée obsolète si aucune communication avec le serveur qui a autorité n'a pu être établie. (7 jours) Le temps en seconde pour la mise en cache des domaines non-trouvées dans les ordinateurs clients.
Cela permet d'éviter le trop grand trafic que pourrait généré des requêtes répétées pour des domaines inexistants. (1 jour)

Pour visualiser ces concepts

La commande nslookup

Cette commande permet d'interroger les serveurs de noms de domaine (DNS) afin d'obtenir des informations sur les enregistrements DNS d'un domaine spécifique.

C'est un outil essentiel pour diagnostiquer et résoudre certains problèmes en lien avec le DNS.

nslookup est disponible sur plusieurs systèmes d'exploitation.

Utilisation de nslookup

Syntaxe:

nslookup <options> <nom de domaine/ip> <serveur>

Exemple:

```
>nslookup -type=soa google.com
Address: 192.168.2.3
Réponse ne faisant pas autorité :
google.com
       primary name server = ns1.google.com
       responsible mail addr = dns-admin.google.com
       serial = 607273169
       refresh = 900 (15 mins)
       retry = 900 (15 mins)
       expire = 1800 (30 mins)
       default TTL = 60 (1 min)
```

```
CÉGEP D'AVENIR
```

```
Carte Ethernet Ethernet 7:
                                          Résultat d'ipconfig /all
  Suffixe DNS propre à la connexion. . . :
  Description. . . . . . . . . . . . . Dell GigabitEthernet
  Configuration automatique activée. . . : Oui
  Adresse IPv6 de liaison locale. . . . .: fe80::ab3d:5cf:86c2:fd1d%15(préféré)
  Adresse IPv4. . . . . . . . . . . . . . . . 192.168.2.136(préféré)
  Masque de sous-réseau. . . . . . . : 255.255.255.0
  Bail obtenu. . . . . . . . . . . . : 16 février 2024 09:08:51
  Bail expirant. . . . . . . . . . . . . 16 février 2024 12:08:50
  Passerelle par défaut. . . . . . . : 192.168.2.1
  Serveur DHCP . . . . . . . . . . . . . . 192.168.2.3
  IAID DHCPv6 . . . . . . . . . . . . . . . 772552598
  DUID de client DHCPv6. . . . . . . : 00-01-00-01-2C-CD-2F-56-74-5D-22-F5-FF-56
  Serveurs DNS. . . . . . . . . . . . . . . 192.168.2.3
  NetBIOS sur Tcpip. . . . . . . . . . . . Activé
```

Utilisation de nslookup

Exemple supplémentaire:

C:\Users\Gabriel>nslookup -type=a www.cegepmontpetit.ca ns1-32.azure-dns.com
Serveur : UnKnown
Address: 150.171.10.32

Nom : www.cegepmontpetit.ca
Address: 35.203.2.187

Dans cet exemple, je précise le serveur que je désir interroger en fin de commande. Cela peut être pratique dans les environnements locaux possédant plus d'un serveur DNS.

Avez-vous remarqué que je n'ai pas reçu le message « réponse ne faisant pas autorité » ? Pourquoi ?

La commande Resolve-DnsName

La commande resolve-dnsname s'utilise avec PowerShell. Son utilisation est très similaire à nslookup.

Syntaxe:

Exemple:

```
PS C:\Users\Gabriel> resolve-dnsname www.cegepmontpetit.ca -type A

Name
Type TTL Section IPAddress
----
www.cegepmontpetit.ca A 19135 Answer 35.203.2.187
```


Utilisation de Resolve-DnsName

Autres exemple:

PS C:\Users\Gabriel> resolve-dnsname perdu.com -type A -server 8.8.8.8						
Name 	Type	TTL	Section	IPAddress		
perdu.com perdu.com	A A	300 300	Answer Answer	104.21.5.178 172.67.133.176		

Étrange... 🤪

Dans cet exemple, on retrouve deux enregistrements « A » pour le même nom de domaine mais contenant des valeurs (adresses IP) différentes.

Qu'est-ce qui pourrait expliquer cela? Une idée?

La commande dig

Finalement, la commande dig permet, elle aussi, d'interroger les serveurs DNS. Cette commande est cependant réservée pour les systèmes Linux.

Syntaxe:

Exemple:

manager@ubuntuserver:~\$ dig 8.8.8.8 www.cegepmontpetit.ca A_

Particularités des réponses de dig

La commande dig fournit des réponses très détaillée.

Ces réponses peuvent vite devenir intimidantes au début. Cependant, elles peuvent s'avérer utiles aussi.

Qui plus est, vous pouvez spécifier à dig le niveau de détails désiré.

```
; <<>> DiG 9.18.18-Oubuntu0.22.04.2-Ubuntu <<>> 8.8.8.8 www.cegepmontpetit.ca A
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 3693
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;8.8.8.8.
                                ΙN
;; AUTHORITY SECTION:
                                                a.root-servers.net. nstld.verisign-grs.com.
00 1800 900 604800 86400
;; Query time: O msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Fri Feb 16 16:11:35 UTC 2024
;; MSG SIZE rcvd: 111
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60997
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;www.cegepmontpetit.ca.
;; ANSWER SECTION:
www.cegepmontpetit.ca. 6451
                                                35.203.2.187
;; Query time: O msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Fri Feb 16 16:11:35 UTC 2024
```


Gérer les réponses de dig

Il est possible de gérer le niveau de détails que l'on souhaite que dig nous renvoie. Par exemple, en ajoutant le terme « +short » à la fin de la commande, vous aurez une réponse très minimaliste:

manager@ubuntuserver:~\$ dig 8.8.8.8 www.cegepmontpetit.ca A +short 35.203.2.187

Cela dit, on passe un peu d'un extrême à un autre de cette façon.

Gérer les réponses de dig

Vous pouvez donc faire afficher seulement la partie « réponse » en détail en ajoutant les termes « +noall » et « +answer » à la fin de votre commande. Vous aurez ainsi une quantité limitée de détails:

```
manager@ubuntuserver:~$ dig 8.8.8.8 www.cegepmontpetit.ca A +noall +answer
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 61952
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;8.8.8.8.
;; AUTHORITY SECTION:
                                               a.root-servers.net. nstld.verisign-grs.com. 20240216
                        76912 IN
00 1800 900 604800 86400
;; Query time: O msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Fri Feb 16 16:51:09 UTC 2024
;; MSG SIZE rcvd: 111
www.cegepmontpetit.ca. 4077
                                                35.203.2.187
```


Bonnes pratiques

- Le nom d'hôte d'un ordinateur doit toujours correspondre au nom d'hôte dans le serveur DNS.
- 2. Incrémentez la valeur du champ « serial » lorsque vous apportez des modifications à une zone manuellement.
- 3. Maitrisez rapidement l'outil nslookup afin de pouvoir vous debugger rapidement.

Ressources complémentaires:

La commande nslookup et resolve-dnsname:

Comment utiliser nslookup et Resolve-DnsName sous Windows? (it-connect.fr)

Documentation d'Ubuntu en lien avec Bind9

bind9 [Wiki ubuntu-fr]

Fonctionnement des requêtes DNS

DNS Explained (youtube.com)

 Série de fiches d'apprentissage réalisé par Cloudflare sur le fonctionnement du service DNS

Qu'est-ce qu'un DNS ? | Fonctionnement du DNS | Cloudflare

