Mathematics: analysis and approaches Higher level Paper 1 Practice Set A (Hodder)

2 hours

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [110 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1 [Maximum mark: 5]
On his way to school, Suresh stops for coffee with probability 0.8. If he stops for coffee, the probability that he is late for school is 0.4; otherwise, the probability that he is late is 0.1. Given that on a particular day Suresh is late for school, what is the probability that he did not stop for coffee?

 itution $u = x - 3$ to			

is the con	n mark: 6] mplex number which satisfies the equation	on $3z - 4z^* = 18 + 21i$. Find $\left \frac{z}{3} \right $.

4 [Maximum mark: 6]

$find (f \circ g)^{-1}$	$x \neq -3$) and $g(x) = \frac{2}{x-1} (x \neq 1)$ in the form $\frac{ax+b}{cx+d}$.
• • • • • • • • • • • • • • • • • • • •	
	,

5 [Maximum mark: 6] Given the functions

			ithmetic sequence
 	 	 · • • • • • • • • • • • • • • • • • • •	
 	 	 • • • • • • • • • • • •	
 	 	 , .	

$\lim_{x \to \pi} \frac{x \sin x}{\ln \left(\frac{x}{\pi}\right)}.$

7 [Maximum mark: 6]

Use L'Hôpital's rule to find

3	[Maximum mark: 7]	,
	Sketch the graph of	

$$y = \frac{2x^2 + 5x - 12}{x + 3}$$

 $y = \frac{2x^2 + 5x - 12}{x + 3}$ State the coordinates of all axis intercepts and the equations of all asymptotes.

9	a Prove that $\log_2 5$ is an irrational number.						
	b	Aron says that $\log_2 n$ is an irrational number for every integer $n \ge 10$. Give a counterexample to disprove this statement.	[2]				

Section B

Answer all questions in an answer booklet. Please start each question on a new page.

- **10** [Maximum mark: 20]
 - a Sketch the graph of $y = x^2 + 3x 10$, showing clearly the axes intercepts and the coordinates of
- [4]

- **b** i Show that the line y = 2x 20 does not intersect the graph of $y = x^2 + 3x 10$.
 - ii Find the set of values of k for which the line y = 2x k intersects the graph of $y = x^2 + 3x 10$ at two distinct points.
- [7]
- c Describe fully a sequence of transformations which transforms the graph of $y = x^2 + 3x 10$ to the graph of $y = (2x + \frac{3}{2})^2 + 2$.
- [4]
- d Sketch the following graphs, indicating clearly all axes intercepts, asymptotes and turning points:
 - i $v = |x^2 + 3x 10|$

ii
$$y = \frac{1}{x^2 + 3x - 10}$$
 [5]

11 [Maximum mark: 16]

The graph of $y = e^{-x} \sin 2x$ for $0 \le x \le \pi$ is shown below.

The graph has a maximum point at P, a minimum point at Q and points of inflection at R and S.

Show that the x-coordinates of point P and point Q satisfy

 $\tan 2x = 2.$

b Show that the x-coordinates of points R and S satisfy $\tan 2x = -\frac{4}{3}$.

[4]

Show that the area of the shaded region enclosed below the curve and above the x-axis is

[4]

given by $a + be^c$, where a, b and c are constants to be found.

[8]

- **12** [Maximum mark: 19]
 - a State and prove de Moivre's theorem.

[5]

b Use de Moivre's theorem to prove that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$.

[4] [2]

c Solve the equation $\cos 5\theta = 0$ for $0 \le \theta \le \pi$.

- **d** By considering the equation $16c^5 20c^3 + 5c = 0$, where $c = \cos \theta$, find the exact value of $\cos \left(\frac{\pi}{10}\right)$

Justify your choice. e Find the exact value of $\cos\left(\frac{\pi}{10}\right)\cos\left(\frac{7\pi}{10}\right)$. [6] [2]