

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT DEPARTAMENTO DE FÍSICA – DFIS MECÂNICA QUÂNTICA – I

Aluno(a): Rodrigo Ribamar Silva do Nascimento

Professor(a): Bruno Duarte da Silva Moreira Capítulo(s) Ref.: III

Lista de Exercícios: 002 Data: 01/06/2023 Fase: LEF102-08U

SEGUNDA AVALIAÇÃO

Sumário

Problema 01																				1
Problema 02																				1
Problema 03																				1
Problema 04																				1
Problema 05																				1
Problema 06																				2
Problema 07																				2
Problema 08																				2

Problema 1. Considere os vetores de estados

$$|\psi\rangle = \begin{pmatrix} 5i\\2\\-1 \end{pmatrix}, \quad e |\phi\rangle = \begin{pmatrix} 3\\8i\\-9i \end{pmatrix}$$
 (1)

- a) Estes vetores estão normalizados? Se não, normalize-os.
- b) Estes vetores são ortogonais?

Solução 1.

Problema 2. Mostre que os operadores \hat{p} e \hat{p}^2 são hermitianos. Lembrando que:

$$\hat{p} = -i\hbar \frac{d}{dx} \tag{2}$$

Problema 3. Os autoestados do poço infinito são autoestados do momento? Justifique.

Sugestão: Teste se a equação atuação do operador momento nos autoestados do poço infinito $\hat{p}\psi_n$ geram uma equação de autovalores. Se gerarem uma equação de autovalores, então ψ_n (que são autoestados do Hamiltoniano) serão também autoestados do momento.

Problema 4. (Problema 3.11 do Griffiths) Encontre a função de onda $\Phi(p,t)$, para uma partícula no estado fundamental do hoscilador harmômico. Qual é a probabilidade (com 2 algarismos significativos) de que uma medida do momento p de uma partícula neste estado produza um valor fora do range clássico.

Sugestão 01: Procure numa tabela matemática por uma "Distribuição Normal" ou "Função Erro" ou calcule com algum programa (wxMaxima, Mathematica, etc...) ou ainda consulte as notas da aula 08 (em particular o exercício feito no final desta aula).

Sugestão 02: Estude primeiramente o exemplo 3.4 do Griffiths (página 108).

Problema 5. Na lista 1 foi mostrado que $[\hat{p}, f(x)] = -i\hbar \frac{\partial f(x)}{\partial x}$. Utilizando este resultado, obtenha a relação de incerteza entre o operador hamiltoniano do oscilador harmônico

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 x^2}{2} \tag{3}$$

e o operador $(\sigma_H \sigma_p)$. Comente se os operadores hamiltoniano e momento são compatíveis.

Problema 6. Um hamiltoniano de um certo sistema de 2 níveis é dado por

$$\hat{H} = \varepsilon \left(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1| \right) \tag{4}$$

onde $|1\rangle$, $\langle 2|$ é uma base ortonormal e ε é um número com dimensão de energia.

- a) Encontre a matriz que representa este Hamiltoniano (sugestão: encontre os elementos de matriz fazendo os sanduíches do operador).
- b) Calcule seus autovalores e autovetores normalizados.

Problema 7. Um operador \hat{A} , representando um observável A, têm dois autoestados normalizados ψ_1 e ψ_2 , com autovalores a_1 e a_2 respectivamente. O operador \hat{B} , representando o observável B, têm dois autoestados normalizados ϕ_1 e ϕ_2 , com autovalores b_1 e b_2 , respectivamente. Os autoestados se relacionam por:

$$|\psi_1\rangle = \frac{1}{5} (3|\psi_1\rangle + 4|\psi_2\rangle), \quad e |\psi_2\rangle = \frac{1}{5} (4|\psi_1\rangle - 3|\psi_2\rangle)$$
 (5)

- a) O observável A é medido e o valor a_2 é obtido. Qual é o estado do sistema imediatamente após esta medida?
- b) Se B é medido em seguida, quais são os possíveis resultados e quais são suas possibilidades?
- c) Logo após a medida de B, A é medido novamente. Qual a é a probabilidade de obter a_1 novamente? **Cuidado:** considerar o problema completo, onde (item a) medida a_2 , logo após medimos um dos estados de B (item b), e por fim medimos a_1 .

Problema 8. Considere um sistema de dois níveis os kets $|\alpha_1\rangle$ e $|\alpha_2\rangle$ formam uma base ortonormal. Uma nova base $|\beta_1\rangle$ e $|\beta_2\rangle$ se relacionam com a antiga por:

$$|\beta_1\rangle = \frac{1}{\sqrt{2}} (|\alpha_1\rangle + |\alpha_2\rangle), \quad e \frac{1}{\sqrt{2}} (|\alpha_1\rangle - |\alpha_2\rangle)$$
 (6)

Um operador \hat{P} é representado na base $|\alpha_1\rangle$ e $|\alpha_2\rangle$ pela matriz

$$P = \begin{pmatrix} 1 & \epsilon \\ \epsilon & 1 \end{pmatrix} = \begin{pmatrix} \langle \alpha_1 | \hat{P} | \alpha_1 \rangle & \langle \alpha_1 | \hat{P} | \alpha_2 \rangle \\ \langle \alpha_2 | \hat{P} | \alpha_1 \rangle & \langle \alpha_2 | \hat{P} | \alpha_2 \rangle \end{pmatrix}$$
(7)

- a) Encontre os autovalores deste operador e escreva-o na forma diagonal.
- b) Encontre a representação de \hat{P} na base $|\beta_1\rangle$ e $|\beta_2\rangle$.

Sugestão:

Escreva \hat{P} na forma matricial abaixo

$$P = \begin{pmatrix} \langle \beta_1 | \hat{P} | \beta_1 \rangle & \langle \beta_1 | \hat{P} | \beta_2 \rangle \\ \langle \beta_2 | \hat{P} | \beta_1 \rangle & \langle \beta_2 | \hat{P} | \beta_2 \rangle \end{pmatrix} = \begin{pmatrix} \langle \beta_1 | \hat{\mathbb{1}} \hat{P} \hat{\mathbb{1}} | \beta_1 \rangle & \langle \beta_1 | \hat{\mathbb{1}} \hat{P} \hat{\mathbb{1}} | \beta_2 \rangle \\ \langle \beta_2 | \hat{\mathbb{1}} \hat{P} \hat{\mathbb{1}} | \beta_1 \rangle & \langle \beta_2 | \hat{\mathbb{1}} \hat{P} \hat{\mathbb{1}} | \beta_2 \rangle \end{pmatrix}$$
(8)

onde a identidade $\hat{\mathbb{1}}$ na base α_1 e α_2 é dada por

$$\hat{1} = \sum_{i=1}^{2} |\alpha_i\rangle\langle\alpha_i| = |\alpha_1\rangle\langle\alpha_1| + |\alpha_2\rangle\langle\alpha_2|$$
(9)