Name

1.1

Date

Instructor

EXPERIMENT 25

Lab Report

Part A - Preparation of Five Standard Fe(SCN)²⁺ Solutions

0.0015 M = 0.005 L = 3.00 X 6 -4

reactant & [Fe(SCN) = - [KSCN]

2.40 X10-4 4) 1.20×10-4 5) 6.00 x10-5

> Part B - Absorption Measurements for the Standard Solutions and Preparation of the Beer-Lambert Curve

> Should you determine the absorbance of each standard solution from the tab delimited files saved in Step 4? Should your λ_{max} be in the 450–460 nm region of the absorbance spectrum of each standard solution? Why or why not?

Yes - we want to kind relationship between Concentration and who surbonce

Yes-thats a local max with minimal roise

Part C – Equilibrium Solution Preparation and Absorption Measurements: Finding $K_{\rm c}$

Should you determine the absorbance of each equilibrium mixture from the tab delimited files saved in Step 11? Should your λ_{max} be in the 450–460 nm region of the absorbance spectrum of each equilibrium mixture? Why or why not?

Yes - We can use absorbance to Find concentration.

Yes-that's a local max with minimal noise.

Prepare an "ICE" table for each equilibrium mixture.

repare an rez table for each equilibrium in	ixture.
1) Fe3+ S(N Fe & (N)2+ 1 7.5x10-4 3x10-4 0	0.061 = 2953.3x -6.057 x = 4.0x10-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3) Fest S(N Fe (S(N)2+ 7.5x10 6x10 M C -x -x 4x e 6.5x10 x 5.0x10 y 9.9x10 - 5 0.235 = 2953.3x - 0.957 1. x - 9.9x10 - 5

Determine K_c for each of the three equilibrium solutions.

Determine the average K_c value for the equilibrium mixtures.