SUMMER-2018

UNIT 1

Q.1 a) Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
 (6)

b) Solve by the method of variation parameters

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$
 (7)

Q.2 a) Solve
$$(D^2 + 3D + 2) y = 4 \cos^2 x$$
 (6)

b) Solve
$$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 6x$$
 (7)

Q.3 a) Find Laplace transform of $\frac{\cos bt - \cos at}{t}$. Hence

Evaluate
$$\int_{0}^{\infty} \frac{\cos bt - \cos at}{t} dt$$
. (5)

b) Using convolution theorem. Find
$$L^{-1}\left\{\frac{1}{(s+2)(s^2+16)}\right\}$$
 (4)

Laplace transform of period function

$$f(t) = \begin{cases} \frac{t}{a} & 0 < t < a \\ \frac{1}{a}(2a - t) & a < t < 2a \end{cases}$$
 and $f(t)$ and $f(t) = f(t + 2a)$ (5)
Q.4 a) Find $\int_0^\infty \frac{\cos bt - \cos at}{t} dt$ (4)

Q.4 a) Find
$$\int_0^\infty \frac{\cos bt - \cos at}{t} dt$$
 (4)

b) Express the following function in terms of Haviside's unit step function and hence find its Laplace transform, if

$$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$$
 (5)

c) Solve (D + 1) $y = t^2 e^{-t}$ by using Laplace transform method, provided y(0) = 3(5)

UNIT 3

Q.5 a) Solve the difference equation

$$y_{n+2} - 16y_n = \cos\left(\frac{n}{2}\right) \tag{5}$$

b) Prove that,
$$z^{-1} \left\{ \frac{z}{z-a} \right\} = a^{k}$$
. (4)

c) Find z-transform of
$$\sin (3k + 5)$$
 (4)

Q.6 a) Solve the difference equations:

i)
$$y_{n+2} - 7y_{n+1} + 10y_n = 12e^{3n} + 4$$

ii)
$$y_{n+3} - 2y_{n+2} - 5y_{n+1} + 6y_n = 0$$
 (8)

b) Solve by z-transform method. $y_{n+2} - 5y_{n+1} + 6y_n = 6^n$, y(0) = y(1) = 0(5)

UNIT 4

Q.7 a) Find the Fourier transform of: $f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$

Hence evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
 (5)

b) Solve the following partial differential equations.

i.
$$p^2 - pq = 1 - z^2$$

ii.
$$p^2 - q^2 = x - y$$
 (8)

1. $p^2 - pq = 1 - z^2$ **ii.** $p^2 - q^2 = x - y$ **Q.8 a)** Express $f(x) = \begin{cases} 1 & 0 \le x \le \pi \\ 0 & x > \pi \end{cases}$ As a Fourier sine

integral and hence evaluate:
$$\int_{0}^{\infty} \frac{1 - \cos \pi \lambda}{\lambda} \sin \lambda x \, d\lambda$$
 (6)

b) Solve the following partial differential equations:

i.
$$yzp + xzq + 2xy = 0$$
 ii. $p^2 + q^2 = \frac{3a^3}{z^2}$ (8)

UNIT 5

Q.9 a) Find the analytic function

$$f(z) = u + iv, \text{ if } \frac{u}{v} = \cot y$$
 (5)

- **b)** Expand the function $\frac{e^{2z}}{(z-1)^3}$ about the point z = 1 (4)
- c) If f(z) is analytic then show that

$$\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) \log |\mathbf{f}(\mathbf{z})| = 0$$
(4)

- **Q.10 a)** If f(z) = u + iv is analytic function and $(u v) = (x y)(x^2 + 4xy + y^2)$; find f(z) in terms of z. (6)
- **b)** Expand $f(z) = \frac{1}{z^2 3z + 2}$ in the region

i.
$$|z| < 1$$
, ii. $1 < |z| < 2$ (7)

UNIT 6

- **Q.11 a)** Find the directional derivative of ϕ = xyz in the direction normal to the surface $x^2y + yz^2 = 3$ at the point P(1, 1, 1).
- **b)** Compute the divergence and curl of vector:

$$\overline{F} = \nabla (yz + zx + xy) \tag{7}$$

- **Q.12 a)** Show that $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ is irrotational. Hence find a scalar function ϕ such that $\overline{F} = \nabla \phi$.
- **b)** Evaluate the line integral $\int_C \overline{F} \cdot d\overline{r}$ where c is the circle $x^2 + y^2 = 1$ in xy-plane and $\overline{F} = (2x^2 y^2)i + (x^2 + y^2)j$. (7)