I225E Statistical Signal Processing

5. Stochastic Process and Systems II

MAWALIM and UNOKI

candylim@jaist.ac.jp and unoki@jaist.ac.jp

School of Information Science

3. Linear System

$$Y(t) = L[X(t)]$$

Properties of linear system

- (b1) For any $a_1, a_2, X_1(t), X_2(t),$ $L[a_1X_1(t) + a_2X_2(t)] = a_1L[X_1(t)] + a_2L[X_2(t)].$
- (b2) A system is called *time-invariant*, if its response to X(t+c) equals Y(t+c).

(b3) Output of linear time-invariant system is a convolution

$$Y(t) = X(t) * h(t) = \int_{-\infty}^{\infty} X(t - \alpha)h(\alpha)d\alpha$$

Here, $h(t) = L[\delta(t)]$ represents impulse response.

- (b4) Linear time-invariant system has following properties.
 - i) If input X(t) is a normal process, then output Y(t) is also a normal process.
 - ii) If input X(t) is strict sense stationary, then output Y(t) is also strict sense stationary.

Fundamental theorem

For any linear system, $E\{L[X(t)]\} = L[E\{X(t)\}]$

This means that output average $\eta_Y(t)$ equals to output of a system, to which input average $\eta_X(t)$ is input.

$$\eta_Y(t) = L[\eta_X(t)]$$

(Intuitive proof)

Supposing that *i*th trial is $Y(t, \omega_i) = L[X(t, \omega_i)]$

$$E\{Y(t)\} \approx \frac{Y(t,\omega_1) + Y(t,\omega_2) + \dots + Y(t,\omega_n)}{n}$$

$$= \frac{L[X(t,\omega_1)] + L[X(t,\omega_2)] + \dots + L[X(t,\omega_n)]}{n}$$

$$= L\left[\frac{X(t,\omega_1) + X(t,\omega_2) + \dots + X(t,\omega_n)}{n}\right]$$

$$\approx L[E\{X(t)\}]$$

(b5) Using the convolution of (b3), the theorem is described as

$$E\{Y(t)\} = \int_{-\infty}^{\infty} E\{X(t-\alpha)\}h(\alpha)d\alpha$$

$$= \int_{-\infty}^{\infty} \eta_X(t-\alpha)h(\alpha)d\alpha = \eta_X(t)*h(t)$$
(b6) Setting $\widetilde{X}(t) = X(t) - \eta_X(t)$ and $\widetilde{Y}(t) = Y(t) - \eta_Y(t)$,
$$\widetilde{Y}(t) = L[\widetilde{X}(t)]$$

[Proof]

$$\widetilde{Y}(t) = Y(t) - \eta_Y(t)$$

$$= L[X(t)] - L[\eta_X(t)]$$

$$= L[X(t) - \eta_X(t)]$$

$$= L[\widetilde{X}(t)]$$

(b7) With respect to input X(t) = f(t) + v(t) (f(t) is a deterministic signal; $E\{v(t)\} = 0$), the output average is

$$\eta_{Y}(t) = E\{Y(t)\} = E\{L[X(t)]\} = L[E\{X(t)\}] \\
= L[E\{f(t) + \nu(t)\}] \\
= L[E\{f(t)\} + E\{\nu(t)\}] \\
= L[f(t)] = f(t) * h(t)$$

Autocorrelation of output

Consider input X(t) and output Y(t) for a linear system. We represent output autocorrelation $R_{YY}(t_1, t_2)$ in terms of input autocorrelation $R_{XX}(t_1, t_2)$.

Theorem

(A)
$$R_{XY}(t_1, t_2) = L_{t_2}[R_{XX}(t_1, t_2)].$$

(B)
$$R_{YY}(t_1, t_2) = L_{t_1}[R_{XY}(t_1, t_2)].$$

[Proof]

Multiplying both side of $Y(t) = L_t[X(t)]$ by $X(t_1)$,

$$X(t_1)Y(t) = X(t_1)L_t[X(t)] = L_t[X(t_1)X(t)].$$

Taking expectation,

$$E\{X(t_1)Y(t)\} = E\{L_t[X(t_1)X(t)]\}\$$

= $L_t[E\{X(t_1)X(t)\}].$

Substitution of $t = t_2$ yields (A).

In a similar manner, multiplication of $Y(t) = L_t[X(t)]$ by $Y(t_2)$ and so on yields (B).

(c1) In the form of convolution,

(a)
$$R_{XY}(t_1, t_2) = R_{XX}(t_1, t_2) * h(t_2)$$

= $\int_{-\infty}^{\infty} R_{XX}(t_1, t_2 - \alpha) h(\alpha) d\alpha$

(b)
$$R_{YY}(t_1, t_2) = R_{XY}(t_1, t_2) * h(t_1)$$

= $\int_{-\infty}^{\infty} R_{XY}(t_1 - \alpha, t_2) h(\alpha) d\alpha$

(c) Combining (a) and (b),

$$R_{YY}(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{XX}(t_1 - \alpha, t_2 - \beta) h(\alpha) h(\beta) d\alpha d\beta$$

(c2) For cross-covariance, the following holds.

$$C_{XY}(t_1, t_2) = C_{XX}(t_1, t_2) * h(t_2)$$

$$C_{YY}(t_1, t_2) = C_{XY}(t_1, t_2) * h(t_1)$$

[Proof]

Denoting $\widetilde{X}(t) = X(t) - \eta_X(t)$, $\widetilde{Y}(t) = Y(t) - \eta_Y(t)$, $C_{XX}(t_1, t_2) = E\{\widetilde{X}(t_1)\widetilde{X}(t_2)\} = R_{\widetilde{X}\widetilde{X}}(t_1, t_2)$, $C_{XY}(t_1, t_2) = R_{\widetilde{X}\widetilde{Y}}(t_1, t_2)$, $C_{YY}(t_1, t_2) = R_{\widetilde{Y}\widetilde{Y}}(t_1, t_2)$.

From (b6), $\widetilde{Y}(t) = L[\widetilde{X}(t)]$. Hence, (a) and (b) can be applied to $R_{\widetilde{X}\widetilde{X}}$, $R_{\widetilde{X}\widetilde{Y}}$, and $R_{\widetilde{Y}\widetilde{Y}}$.

(c3) Above results can be extended to the case the impulse response h(t) is complex function. In this case,

$$R_{XY}(t_1, t_2) = R_{XX}(t_1, t_2) * \mathbf{h}^*(t_2)$$

 $R_{YY}(t_1, t_2) = R_{XY}(t_1, t_2) * \mathbf{h}(t_1)$

Response to white noise

Theorem

Consider white noise, whose autocorrelation is given by $R_{XX}(t_1, t_2) = q(t_1)\delta(t_1 - t_2)$, as input to linear system. The output power is given by

$$E\{\mathbf{Y}^2(t)\} = q(t) * h^2(t) = \int_{-\infty}^{\infty} q(t-\alpha)h^2(\alpha)d\alpha$$

[Proof]

Substitution of $R_{XX}(t_1, t_2) = q(t_1)\delta(t_1 - t_2)$ into convolution form of (A), (B) yields,

$$R_{XY}(t_1, t_2) = q(t_1)\delta(t_1 - t_2) * h(t_2) = q(t_1)h(t_2 - t_1)$$

$$R_{YY}(t_1, t_2) = \int_{-\infty}^{\infty} q(t_1 - \alpha)h[t_2 - (t_1 - \alpha)]h(\alpha)d\alpha.$$

Substitution of $t_1 = t_2 = t$ gives the output power.

(d1) If input X(t) is stationary white noise, q(t) = q. Therefore,

$$E\{Y^2(t)\} = qE, \quad E = \int_{-\infty}^{\infty} h^2(\alpha) d\alpha$$

(d2) If correlation time of impulse response h(t) is shorter than that of q(t),

$$E\{Y^2(t)\}\approx q(t)\int_{-\infty}^{\infty}h^2(\alpha)d\alpha=Eq(t).$$

(d3) If $R_{XX}(\tau) = q\delta(\tau)$ and X(t) is injected at t = 0. q(t) = qU(t)

Therefore,

$$E\{Y^2(t)\} \approx q \int_{-\infty}^t h^2(\alpha) d\alpha$$

Digression on Dirac's delta function

Properties of delta function $\delta(t)$:

$$\int_{-\infty}^{+\infty} dt \delta(t) = 1.$$

$$\int_{-\infty}^{+\infty} dt \delta(t) f(t) = f(0).$$

Delta function as a limit of infinitesimally narrow Gaussian:

$$\delta(t) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

Delta function has a uniform (white) spectrum:

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega e^{i\omega t}$$

Example 1

Consider a linear system having impulse response

$$h(t) = e^{-ct}U(t)$$

Input a white noise, whose autocorrelation is given by $R_{WW}(\tau) = q\delta(\tau)$, at t = 0. Calculate autocorrelation $R_{YY}(t_1, t_2)$ $(0 < t_1 < t_2)$ of the output Y(t).

Answer Denoting input as X(t), X(t) = W(t)U(t).

(I) Case of $t_1 < 0$ or $t_2 < 0$: Since there is no input,

$$R_{XX}(t_1, t_2) = R_{XY}(t_1, t_2) = R_{YY}(t_1, t_2) = 0$$

(II) Case of $0 < t_1 < t_2$:

$$R_{XX}(t_1, t_2) = R_{WW}(t_1 - t_2) = q\delta(t_1 - t_2)$$

Therefore,

$$\begin{split} R_{XY}(t_1,t_2) &= \int_{-\infty}^{t_2} R_{XX}(t_1,t_2-\alpha)h(\alpha)d\alpha \\ &= \int_{-\infty}^{t_2} q\delta(t_1-t_2+\alpha)e^{-c\alpha}U(\alpha)d\alpha \\ &= qe^{-c(t_2-t_1)} \\ R_{YY}(t_1,t_2) &= \int_{-\infty}^{t_1} R_{XY}(t_1-\alpha,t_2)h(\alpha)d\alpha \\ &= \int_{-\infty}^{t_1} qe^{-c(t_2-t_1+\alpha)}e^{-c\alpha}U(\alpha)d\alpha \\ &= qe^{-c(t_2-t_1)} \int_0^{t_1} e^{-2c\alpha}d\alpha \\ &= \frac{q}{2c}e^{-c(t_2-t_1)}(1-e^{-2ct_1}) \\ E\{Y^2(t)\} &= R_{YY}(t,t) = \frac{q}{2c}(1-e^{-2ct}). \end{split}$$

Example 2: Differentiator

Consider the output properties (mean and autocorrelation) of differentiator:

$$Y(t) = L[X(t)] = X'(t).$$

Mean is,

$$\eta_Y(t) = L[\eta_X(t)] = \eta_X'(t)$$

Autocorrelation is

$$R_{XY}(t_1, t_2) = L_{t_2}[R_{XX}(t_1, t_2)] = \frac{\partial R_{XX}(t_1, t_2)}{\partial t_2}$$

$$R_{YY}(t_1, t_2) = L_{t_1}[R_{XY}(t_1, t_2)] = \frac{\partial R_{XY}(t_1, t_2)}{\partial t_1}$$

Hence

$$R_{YY}(t_1, t_2) = L_{t_1}[R_{XY}(t_1, t_2)] = \frac{\partial^2 R_{XX}(t_1, t_2)}{\partial t_1 \partial t_2}$$

If X(t) is wide-sense stationary, its **mean**, $\eta_X(t)$, is a constant. Therefore, $\eta_Y(t) = 0$. Since **autocorrelation** is a function of $\tau = t_1 - t_2$,

$$\frac{\partial R_{XY}(t_1, t_2)}{\partial t_2} = -\frac{dR_{XX}(\tau)}{d\tau}$$
$$\frac{\partial^2 R_{XX}(t_1, t_2)}{\partial t_1 \partial t_2} = -\frac{d^2 R_{XX}(\tau)}{d\tau^2}$$

Hence,

$$R_{XY}(\tau) = -R'_{XX}(\tau),$$

$$R_{YY}(\tau) = -R''_{XX}(\tau),$$

Example 3: Differential Equation

Consider output properties (mean and autocorrelation) of the following differential equation driven by noise X(t).

$$a_n \mathbf{Y}^{(n)}(t) + a_{n-1} \mathbf{Y}^{(n-1)}(t) + \dots + a_0 \mathbf{Y}(t) = \mathbf{X}(t)$$

The initial condition is given by

$$Y(0) = Y^{(1)}(0) = \cdots = Y^{(n)}(0) = 0$$

Mean:

Taking the expectation $E\{\cdot\}$ for both sides,

$$a_n E\{Y^{(n)}(t)\} + a_{n-1} E\{Y^{(n-1)}(t)\} + \dots + a_0 E\{Y(t)\}$$

= $E\{X(t)\}$

Since $\frac{d}{dx}$ and $E\{\cdot\}$ are commutative, $E\{Y^{(k)}(t)\} = \eta_Y^{(k)}(t)$

$$a_n \eta_Y^{(n)}(t) + a_{n-1} \eta_Y^{(n-1)}(t) + \dots + a_0 \eta_Y(t) = \eta_X(t)$$

Because of $Y^{(k)}(0) = 0$, $\eta_Y^{(k)}(0) = 0$. The mean $\eta_Y^{(k)}(t)$ is obtained by integrating the differential equation for the following initial condition:

$$\eta_{Y}(0) = \eta_{Y}^{(1)}(0) = \dots = \eta_{Y}^{(n)}(0) = 0$$

Correlation:

By substituting $t = t_2$ and multiplying by $X(t_1)$, the differential equation becomes

$$X(t_1) \left[a_n \mathbf{Y}^{(n)}(t_2) + a_{n-1} \mathbf{Y}^{(n-1)}(t_2) + \dots + a_0 \mathbf{Y}(t_2) \right]$$

= $\mathbf{X}(t_1) \mathbf{X}(t_2)$

By taking the expectation and using the formula of

$$E\{X(t_1)Y^{(k)}(t_2)\} = \frac{\partial^k R_{XY}(t_1,t_2)}{\partial t_2^k},$$

$$a_n \frac{\partial^n R_{XY}(t_1,t_2)}{\partial t_2^n} + a_{n-1} \frac{\partial^{n-1} R_{XY}(t_1,t_2)}{\partial t_2^{n-1}} + \cdots$$

$$+a_0 R_{XY}(t_1,t_2) = R_{XY}(t_1,t_2),$$

Since $X(t_1)Y^{(k)}(0) = 0$, initial condition is given by

$$R_{XY}(t_1, 0) = \frac{\partial R_{XY}(t_1, 0)}{\partial t_2} = \dots = \frac{\partial^n R_{XY}(t_1, 0)}{\partial t_2^n} = 0$$

Autocorrelations $\frac{\partial^n R_{XY}(t_1,t_2)}{\partial t_2^n}$ are obtained by solving the differential equation for the above initial condition.

In a similar manner, by substituting $t=t_1$ and multiplying by $Y(t_2)$,

$$\left[a_n \mathbf{Y}^{(n)}(t_1) + a_{n-1} \mathbf{Y}^{(n-1)}(t_1) + \dots + a_0 \mathbf{Y}(t_1) \right] \mathbf{Y}(t_2)
 = \mathbf{X}(t_1) \mathbf{Y}(t_2)$$

By taking the expectation and by using the formula

$$E\{Y^{(k)}(t_1)Y(t_2)\} = \frac{\partial^k R_{YY}(t_1, t_2)}{\partial t_1^k},$$

$$a_n \frac{\partial^n R_{YY}(t_1, t_2)}{\partial t_1^n} + a_{n-1} \frac{\partial^{n-1} R_{YY}(t_1, t_2)}{\partial t_1^{n-1}} + \cdots$$

$$+ a_0 R_{YY}(t_1, t_2) = R_{XY}(t_1, t_2).$$

Since $Y(0)Y^{(k)}(t_2) = 0$, initial condition is given by

$$R_{YY}(0,t_2) = \frac{\partial R_{YY}(0,t_2)}{\partial t_1} = \dots = \frac{\partial^n R_{XY}(0,t_2)}{\partial t_1^n} = 0$$

Autocorrelations $\frac{\partial^n R_{YY}(t_1,t_2)}{\partial t_1^n}$ are obtained by solving the differential equation for the above initial condition.