Contents

Chapter 1. The Fundamental Group		
_	Homotopies	
2	The Fundamental Grupoid	2
Chap	oter 2. Singular Homology	4
Fre	ee Abelian Groups	4
	ain Complexes	
Appe	ndix A. Set Theory	8
	Basic Concepts	

CHAPTER 1

The Fundamental Group

1. Homotopies

2. The Fundamental Grupoid

Theorem 1.1. *There is a functor* Top \rightarrow Grpd.

Proof. The proof is divided into several steps. Let us denote $\Pi : \mathsf{Top} \to \mathsf{Grpd}$ for the claimed functor.

Step 1: Definition of Π on objects. Let $X, Y \in \text{ob}(\mathsf{Top}), f, g \in \mathsf{Top}(X, Y)$ and $A \subseteq X$. A map $F \in \mathsf{Top}(X \times I, Y)$ is called a **homotopy from X to Y relative to A**, if

- F(x,0) = f(x), for all $x \in X$.
- F(x, 1) = g(x), for all $x \in X$.
- F(x,t) = f(x) = g(x), for all $x \in A$ and for all $t \in I$.

If there exists a homotopy between f and g relative to A we say that f and g are **homotopic** relative to A and write $f \simeq_A g$. If we want to emphasize the homotopy relative to A, we write $F: f \simeq_A g$.

Lemma 1.1. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $A \subseteq X$. Then being homotopic relative to A is an equivalence relation on $\mathsf{Top}(X,Y)$.

Proof. Define a binary relation $R_A \subseteq \text{Top}(X, Y) \times \text{Top}(X, Y)$ by

$$fR_Ag$$
 : \Leftrightarrow $f \simeq_A g$.

Let $f \in \text{Top}(X, Y)$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := f(x)$$
.

Then clearly $F: f \simeq_A f$. Hence R_A is reflexive.

Let $g \in \text{Top}(X, Y)$ and assume that fRg. Thus $G : f \simeq_A g$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := G(x, 1-t).$$

Then it is easy to check that $F: g \simeq_A f$ and so R_A is symmetric.

Finally, let $h \in \text{Top}(X, Y)$ and suppose that fR_Ag and gR_Ah . Hence $F_1: f \simeq_A g$ and

 $F_2: g \simeq_A h$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := \begin{cases} F_1(x,2t) & 0 \le t \le \frac{1}{2}, \\ F_2(x,2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

Continuity of F follows by an application of the gluing lemma. Then it is easy to check that $F: f \simeq_A h$ and hence R_A is transitive. \square Let $X \in \text{ob}(\mathsf{Top})$ and u a path in X from p to q. Define the **path class [u] of u** by $[u] := [u]_{R_{\partial I}}$.

3

CHAPTER 2

Singular Homology

Free Abelian Groups

Proposition 2.1. The forgetful functor $U : Ab \rightarrow Set$ admits a left adjoint.

Proof. We have to construct a functor $F : Set \rightarrow Ab$. Let S be a set. Define

$$F(S) := \{ f \in \mathbb{Z}^S : \text{supp } f \text{ is finite} \}.$$

Equipped with pointwise addition, F(S) is an abelian group. There is a natural inclusion $\iota: S \hookrightarrow U\left(F(S)\right)$ sending $x \in S$ to the function taking the value one at x and zero else. Hence we may regard elements of F(S) as formal linear combinations $\sum_{x \in S} m_x x$, where $m_x \in \mathbb{Z}$ for all $x \in S$. Let $G \in \text{ob}(\mathsf{Ab})$ be an abelian group and $\varphi \in \mathsf{Ab}\left(F(S), G\right)$ a morphism of groups. Define $\overline{\varphi} \in \mathsf{Set}\left(S, U(G)\right)$ by $\overline{\varphi} := U(\varphi)$. Conversly, if we have $f \in \mathsf{Set}\left(S, U(G)\right)$, define $\overline{f} \in \mathsf{Ab}\left(F(S), G\right)$ by $\overline{f}\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f(x)$. This is well defined since all but finitely many m_x are zero and G is abelian. It is easy to check that \overline{f} is indeed a morphism of groups. Let $\varphi \in \mathsf{Ab}\left(F(S), G\right)$. Then

$$\begin{split} \overline{\overline{\varphi}} \left(\sum_{x \in S} m_x x \right) &= \sum_{x \in S} m_x \overline{\varphi}(x) \\ &= \sum_{x \in S} m_x U(\varphi)(x) \\ &= \sum_{x \in S} m_x \varphi(x) \\ &= \varphi \left(\sum_{x \in S} m_x x \right). \end{split}$$

And for $f \in Set(S, U(G))$ we have that

$$\overline{\overline{f}}(x) = U(\overline{f})(x) = \overline{f}(x) = f(x).$$

Hence $\overline{\overline{\varphi}} = \varphi$ and $\overline{\overline{f}} = f$ and so we have a bijection

$$\mathsf{Ab}\left(F(S),G\right)\cong\mathsf{Set}\left(S,U(G)\right).$$

The mapping $f \mapsto \overline{f}$ will be referred to as *extending by linearity*. To check naturality in S and G is left as an exercise.

Exercise 0.1. Check the naturality of the bijection in proposition 2.1. Also check that $F : Set \to Ab$ is indeed a functor. F is called the *free functor from* **Set** *to* **Ab**.

Definition 2.1 (Free Abelian Group). Let $F : Set \to Ab$ be the free functor. For any set S, we call F(S) the free group generated by S.

Chain Complexes

Definition 2.2 (Chain Complex). A chain complex is a tuple $(C_{\bullet}, \partial_{\bullet})$ consisting of a sequence $(C_n)_{n \in \mathbb{Z}}$ in ob(Ab) and a sequence $(\partial_n)_{n \in \mathbb{Z}}$ in mor(Ab), called **boundary operators**, such that we have $\partial_n \in \mathsf{Ab}(C_n, C_{n-1})$ and $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 2.3 (Chain Maps). Let $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ be two chain complexes. A **chain map** $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ is a sequence $(f_n)_{n \in \mathbb{Z}}$ in mor(Ab) such that $f_n \in Ab(C_n, C'_n)$ and the diagram

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$f_{n} \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

commutes for all $n \in \mathbb{Z}$.

Proposition 2.2. There is a category with objects chain complexes and morphisms chain maps.

Proof. Let $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \to C''_{\bullet}$ be chain maps. Define a map $g_{\bullet} \circ f_{\bullet}$ by $g_n \circ f_n$ for each $n \in \mathbb{Z}$. This defines a chain map. Moreover, for each chain complex C_{\bullet} define $\mathrm{id}_{C_{\bullet}}$ by id_{C_n} for all $n \in \mathbb{Z}$. It is easy to check, that then \circ is associative and the identity laws hold.

Definition 2.4 (Comp). The category in 2.2 is called the **category of chain complexes** and we refer to it as Comp.

Theorem 2.1. *There is a functor* Top \rightarrow Comp.

Proof. The proof is divided into several steps. Let us denote C_{\bullet} : Top \rightarrow Comp for the claimed functor.

Step 1: Construction of a sequence of abelian groups. Let $v_0, \ldots, v_k \in \mathbb{R}^n$ for some $n, k \in \mathbb{N}$. We say that (v_0, \ldots, v_k) is **affinely independent** if $(v_1 - v_0, \ldots, v_k - v_0)$

is linearly independent. We define the *k*-simplex spanned by (v_0, \ldots, v_k) , written $[v_0, \ldots, v_k]$, to be

$$[v_0, \dots, v_k] := \left\{ \sum_{i=0}^k s_i v_i : s_i \ge 0 \text{ for all } i = 0, \dots, k \text{ and } \sum_{i=0}^k s_i = 1 \right\}.$$
 (1)

equipped with the subspace topology. Moreover, we define the *standard n-simplex* Δ^n to be the *n*-simplex spanned by (e_0, \ldots, e_n) where $(e_{i+1})_i$ is the standard basis of \mathbb{R}^{n+1} . Let $X \in \text{ob}(\mathsf{Top})$. Define a *singular n-simplex in* X to be a map $\sigma \in \mathsf{Top}(\Delta^n, X)$. Let $n \in \mathbb{Z}$. Define

$$C_n(X) := \begin{cases} F\left(\mathsf{Top}(\Delta^n, X)\right) & n \ge 0, \\ 0 & n < 0. \end{cases}$$
 (2)

We will call elements of $C_n(X)$ singular n-chains.

Step 2: Construction of boundary operators. Let $X \in \text{ob}(\mathsf{Top})$ and σ a singular n-simplex in X for $n \geq 1$. We define $\varphi_k^n : \Delta^{n-1} \to \Delta^n$, called the k-th face map, by

$$\varphi_k^n(s_0,\ldots,s_{n-1}) := \begin{cases} (0,s_0,\ldots,s_{n-1}) & k=0,\\ (s_0,\ldots,s_{k-1},0,s_k,\ldots,s_{n-1}) & 1 \le k \le n-1. \end{cases}$$
(3)

Define now

$$\partial \sigma := \sum_{k=0}^{n} (-1)^k \sigma \circ \varphi_k^n \in U\left(C_{n-1}(X)\right) \tag{4}$$

to be the **boundary of** σ . Moreover, the **singular boundary operator** is defined to be $\overline{\partial_n}$ and $\partial_n := 0$ for $n \le 0$.

Step 3: $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$. It is enough to consider $n \ge 1$, since $\partial_n \circ \partial_{n+1} = 0$ holds trivially in the other cases. Let $X \in \text{ob}(\mathsf{Top})$ and $\sigma \in \mathsf{Top}(\Delta^{n+1}, X)$. Then we have

$$(\partial_n \circ \partial_{n+1})(\sigma) = \partial_n \left(\sum_{k=0}^{n+1} (-1)^k \sigma \circ \varphi_k^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} (-1)^k \partial_n \left(\sigma \circ \varphi_k^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} \sum_{j=0}^{n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le k \le j \le n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le j \le k \le n} (-1)^{k+j} \sigma \circ \varphi_j^{n+1} \circ \varphi_k^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le j < k \le n+1} \left((-1)^{k+j-1} \sigma \circ \varphi_j^{n+1} \circ \varphi_{k-1}^n + (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \right)$$

Step 4: Construction of chain maps. Let $X,Y \in \text{ob}(\mathsf{Top})$ and $f \in \mathsf{Top}(X,Y)$. For $n \geq 0$, define $f_n^\# : \mathsf{Top}(\Delta^n,X) \to U\left(C_n(Y)\right)$ by $f^\# := f \circ \sigma$. Extending this map by linearity yields a homomorphism $f_n^\# : C_n(X) \to C_n(Y)$. Moreover, set $f_n^\# = 0$ for n < 0. Let $n \geq 1$ and $\sigma \in \mathsf{Top}(\Delta^n,X)$. Then on one hand we have

$$(f_{n-1}^{\#} \circ \partial_n)(\sigma) = f_{n-1}^{\#} \left(\sum_{k=0}^n (-1)^k \sigma \circ \varphi_k^n \right) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n$$

and on the other

$$(\partial_n \circ f_n^{\#})(\sigma) = \partial_n (f \circ \sigma) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n.$$

Step 5: Checking functorial properties. We are ready to define the functor C_{\bullet} : Top \rightarrow Comp. Let $C_{\bullet}(X)$ be the chain complex consisting of $(C_n(X))_{n\in\mathbb{Z}}$ and $(\partial_n)_{n\in\mathbb{Z}}$.

APPENDIX A

Set Theory

1. Basic Concepts

Problem 1.1. Let $n \in \mathbb{N}$ and $a_{kj} \in \mathbb{C}$ for k = 0, ..., n + 1, j = 0, ..., n. Show that

$$\sum_{k=0}^{n+1} \sum_{j=0}^{n} a_{kj} = \sum_{0 \le k \le j \le n} a_{kj} + \sum_{0 \le j < k \le n+1} a_{kj}.$$