Image Sensors

CCD – CMOS image sensors

Master

CMOS Image Sensors

Historical background

1960 :

First CMOS image sensor : Passive Pixel Sensor

1973:

First CCDs: Characteristics are better than CMOS image sensors

2000 :

The development of CMOS stems from the comercial crisis of the microelectronics industry at the end of the 20th century. Microlectronic industry has work on the development of new image sensors using CMOS process

3 Architectures of CMOS image sensor :

- Passive Pixel Sensor (the oldest)
- Active Pixel Sensor (the most used)
- Digital Pixel Sensor (a promising technology)

Photo-element

Passive Pixel sensor

Advantage : only one transistor in the pixel

Disadvantage: a lot of noise in the images produced by PPS image sensor

- Active Pixel Sensor
 - Pixel based on 3 transistors

- Active Pixel Sensor
 - Correlated Double Sampling

Active Pixel Sensor

General problem of 3T APS

Image projected on the sensor

Image generated by the sensor

Why this effect ?

4T Active Pixel Sensor

5T Active Pixel Sensor

	Advantage	Disadvantage
3T APS	Low noise image sensor	No Electronic Shutter (Rolling Shutter)
4T APS	Electronic Shutter	No CDS
5T APS	Electronic Shutter	No CDS

 We have seen here the 3 most popular architectures of APS. But it's interisting to know that architectures of APS can be more complex, using 6 or more transistors.

Digital Pixel Sensors (DPS)

DPS : Architecture of the pixel

Logarithmic Image Sensors

Logarithmic Pixel

DPS for Logarithmic Image Sensor

DPS for Logarithmic Image Sensor

DPS for Logarithmic Image Sensor

Conclusion

- A lot of architectures of CMOS image sensors have been developed during the 10 years.
- Each of these has some advantages compared to the others.
- The goal of CMOS image sensors manufacturers is to produce sensors with caracteristics wich are equivalent to CCD image sensors.