0.1Lecture 3

0.1.1Topics

- Polar Representation of complex numbers.
- Convergence of sequences in \mathbb{C} .

Polar Representation of Complex Numbers

First, let us introduce some notation:

- $\mathbb{C}^{\cdot} = \{z \in \mathbb{C} : z \neq 0\}.$
- $\bullet \ \mathbb{R}_+ = \{ \alpha \in \mathbb{R} : \alpha > 0 \}.$

Recall that any non-zero $(\alpha, \beta) \in \mathbb{R}^2$ can be represented as

$$(\alpha, \beta) = \gamma(\cos\varphi, \sin\varphi)$$

with $\tan \varphi = \frac{\beta}{\alpha}$. Note that if $\psi = 2\pi + \varphi$, then

$$(\alpha, \beta) = \gamma(\cos \psi, \sin \psi).$$

- γ is uniquely defined.
- φ is defined up to the addition of a multiple of 2π .

Remark. This representation may not be unique!

Proposition. The map $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{C}^{\cdot}$ defined by

$$(\gamma, \varphi) \longrightarrow \gamma(\cos \varphi + i \sin \varphi)$$

is surjective.

Remark. The proposition above is a systematic way of saying that if $z \in \mathbb{C}^{\cdot}$, then

$$z = \gamma(\cos\varphi + i\sin\varphi)$$

with $\gamma = |z|$ and φ can be determined up to a multiple of 2π .

If we insist, we can make the polar representation unique by restricting the domain to $-\pi < \varphi \le \pi$ where φ is denoted as the **argument of** z.

Definition (Agument and Principle Argument). Let $z \in \mathbb{C}$ and $z = \gamma(\cos\varphi + i\sin\varphi)$ be a polar representation of z. Then φ is called an argument of z. If $-\pi < \varphi \leq \pi$, then φ is called the **principal argument of** z and it is denoted by Arg(z).

Remark. For any other domain, we denote the argument by $\varphi = \arg((x,y))$.

Lemma. Let $z = \gamma(\cos\varphi + i\sin\varphi)$ and $w = \gamma'(\cos(\varphi') + \sin(\varphi'))$ in $\mathbb{C} \setminus \{0\}$. Then

$$zw = \varphi \varphi' [\cos(\varphi + \varphi') + i \sin(\varphi + \varphi')].$$

Proof. Using the addition formula, we can write

$$zw = \gamma \gamma' (\cos \varphi + i \sin \varphi)(\cos \varphi' + i \sin \varphi')$$

= $\gamma \gamma' [(\cos \varphi \cos \varphi' - \sin \varphi \sin \varphi') + i (\sin \varphi \cos \varphi' + \sin \varphi \cos \varphi')]$
= $\gamma \gamma' (\cos(\varphi + \varphi') + i \sin(\varphi + \varphi')).$

The proposition above allows us to visualize the multiplication of complex numbers as two parts:

- Scaling of the modulus.
- Addition of the two angles.

Corollary. Let $z \in \mathbb{C}$ with $z = \gamma(\cos \varphi + i \sin \varphi)$. Then

$$z^{-1} = \frac{1}{\gamma}(\cos(-\varphi) + i\sin(-\varphi))$$
$$= \frac{1}{\gamma}(\cos\varphi - i\sin\varphi).$$

Corollary (De Moivre's Theorem). Let $z = \gamma(\cos \varphi + i \sin \varphi) \in \mathbb{C} \setminus \{0\}$ and let $n \in \mathbb{Z}$. Then

$$z^n = \gamma^n(\cos n\varphi + i\sin n\varphi).$$

Remark. If n is a negative integer, then $z^n = (z^{-1})^{-n}$.

The corollary above allows us to compute the nth roots of a non-zero complex number.

Example 0.1.1 (An example of De Moivre's Theorem). Suppose we had the complex number

$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2}.$$

Suppose we want to find z^{10} . First, we need to find the angle that makes this complex number. Since the x and y coordinates are both positive this means that the angle must lie in the first quadrant. Thus, we have

$$\varphi = \arg(z) = \frac{\pi}{3}.$$

Using De Moivre's Theorem, we can write

$$z^{10} = \cos\left(10 \cdot \frac{\pi}{3}\right) + i\sin\left(10 \cdot \frac{\pi}{3}\right)$$
$$= -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Some notations we would like to establish are the following:

- (i) The set of all positive real numbers $\mathbb{R}_+ = \{r \in \mathbb{R} : r > 0\}$
- (ii) The set of all complex numbers excluding zero $\mathbb{C}^{\cdot} = \mathbb{C} \setminus \{0\}$.

Proposition. The map $\mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{C}$ defined by

$$(r, \varphi) \longrightarrow \gamma(\cos \varphi + i \sin \varphi)$$

is surjective.

Remark. This gives us the tool we need to show that every non-zero $z \in \mathbb{C}$ has a polar representation.

0.1.3 Convergence of Sequences in \mathbb{C}

Definition (Convergence in \mathbb{C}). Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} . We say that $\{z_n\}$ converges to $z \in \mathbb{C}$ if for all $\varepsilon > 0$, we can find $N_{\varepsilon} \in \mathbb{N}$ such that

$$|z_n - z| < \varepsilon$$

for all $n \geq N_{\varepsilon}$.

If (z_n) converges to z, then we write $z_n \to z$.

Proposition (Properties of Convergent Sequences). Assume $(z_n) \to z$ and $(w_n) \to w$.

- (i) Let $\alpha, \beta \in \mathbb{C}$, then $\alpha z_n + \beta w_n \to \alpha z + \beta w$.
- (ii) $z_n w_n \to zw$.
- (iii) $z_n^{-1} \to z^{-1}$.
- (iv) $(z_n) \to z$ if and only if $\Re(z_n) \to \Re(z)$ and $\Im(z_n) \to \Im(z)$ as a sequences in \mathbb{R} .

Proof. Suppose $(z_n) \to z$ and $(w_n) \to w$.

(i) Let $\alpha, \beta \in \mathbb{C}$. Let $\varepsilon > 0$. Since $(z_n) \to z$, there exists an $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$, we have

$$|z_n - z| < \frac{\varepsilon}{2\alpha}.$$

Likewise, $(w_n) \to w$ implies that we can find an $N_2 \in \mathbb{N}$ such that for any $n \geq N_2$, we have

$$|w_n - w| < \frac{\varepsilon}{2\beta}.$$

Now, choose $N = \max\{N_1, N_2\}$. Then for any $n \geq N$, we must have

$$\begin{aligned} |\alpha z_n + \beta w_n - (\alpha z + \beta w)| &= |\alpha (z_n - z) + \beta (w_n - w)| \\ &\leq \alpha |z_n - z| + \beta |w_n - w| \\ &< \alpha \cdot \frac{\varepsilon}{2\alpha} + \beta \cdot \frac{\varepsilon}{2\beta} \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Thus, we can conclude that

$$\alpha z_n + \beta w_n \to \alpha z + \beta w.$$

(ii) Let $\varepsilon > 0$. Our goal is to show that there exists an $N \in \mathbb{N}$ such that

$$|z_n w_n - zw| < \varepsilon.$$

Since $(z_n) \to z$, we can find a $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$, we have

$$|z_n - z| < \frac{\varepsilon}{2M}$$

where M > 0. Since $(w_n) \to w$, there exists $N_2 \in \mathbb{N}$ such that for $n \geq N_2$, we have

$$|w_n - w| < \frac{\varepsilon}{2|z|}.$$

Thus, choose $N = \max\{N_1, N_2\}$ such that for any $n \geq N$, we have

$$\begin{aligned} |z_n w_n - zw| &= |z_n w_n - w_n z + w_n z - zw| \\ &\leq |w_n| |z_n - z| + |z| |w_n - w| \\ &\leq M |z_n - z| + |z| |w_n - w| \\ &< M \cdot \frac{\varepsilon}{2M} + |z| \cdot \frac{\varepsilon}{2|z|} \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Thus, we conclude that

$$z_n w_n \to z w$$
.

(iii) Let $\varepsilon > 0$. We will show that $z_n^{-1} \to z^{-1}$ by showing that there exists an $N \in \mathbb{N}$ such that for any $n \geq N$, we have

$$|z_n^{-1} - z^{-1}| < \varepsilon.$$

Since $(z_n) \to z$, there must exists an $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$, we have

$$|z_n - z| < \frac{\varepsilon |z|^2}{2}.$$

Likewise, we can choose $N_2 \in \mathbb{N}$ such that for any $n \geq N_2$, we have

$$|z_n| > \frac{|z|}{2}.$$

If we choose $N = \max\{N_1, N_2\}$, and subsequently, let $n \geq N$, then we must have

$$|z_n^{-1} - z^{-1}| = \frac{|z_n - z|}{|z||z_n|}$$

$$< \frac{\varepsilon |z|^2}{2} \cdot \frac{2}{|z|^2}$$

$$= \varepsilon.$$

Thus, we conclude that $z_n^{-1} \to z^{-1}$.