CS 3313 Foundations of Computing:

Lab 9 – Asymptotic Notation and Polynomial Time

Time Complexity Background

- In programming, we want to minimize the time it takes for our algorithms to run
- By reducing the number of operations we need to compute, we see dramatic decreases in run-time
 - This is essential! We want things ASAP!
- For example, consider the following:

n	n^2	n^3
1	1	1
10	100	1,000
100	10,000	1,000,000
1,000	1,000,000	1,000,000,000

Asymptotic Notation

- When we compare programs, we look at them *asymptotically*
- This is because we are concerned with the *growth in time* of our functions as our value *n* (the number of elements we have) increases
- We saw an example of this on the previous slide, where a higher power resulted in a higher growth rate
 - We can demonstrate this visually as well

Note: $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

Big-O Notation

- Big-O Notation helps us describe how long an algorithm takes by setting an upper bound
- For example, if we take two functions, f(n) and g(n), we can say:
 - f(n) = O(g(n)) if and only if there exists constants c > 0 and $n_0 \ge 1$ s.t. $f(n) \le c * g(n)$ for all $n \ge n_0$
- True or False:
 - 5n + 3 = O(n)?
 - $n^2 + 5n + 3 = O(n)$?
 - $n^2 + 5n + 3 = O(n^2)$?
 - $n^2 + 5n + 3 = O(n^3)$?
 - $3^n = O(3^{n+1})$?

Big-O Notation

- Now that we have defined what Big-O means, how can we show that this holds true as *n* increases?
- The trick to this is through the induction proof technique

Big-O Notation: Induction Proof

- Let's do the following example from the previous slide:
 - $n^2 + 5n + 3 = O(n^2)$
 - $n^2 + 5n + 3 \le cn^2$ Now, we pick values for c and n_0
 - $n^2 + 5n + 3 \le 9n^2 \ \forall \ n \ge n_0 = 1$
 - Base case: n = 1 \rightarrow $(1)^2 + 5(1) + 3 \le 9(1)^2$ \rightarrow $9 \le 9$
 - Induction Hypothesis: Assume that $k^2 + 5k + 3 \le 9k^2$ holds for a value n=k
 - Induction: Demonstrate that the equality holds for k + 1:

$$(k+1)^{2} + 5(k+1) + 3 \leq 9(k+1)^{2}$$

$$(k^{2}+2k+1) + (5k+5) + 3 \leq 9(k^{2}+2k+1)$$

$$k^{2} + 7k + 9 \leq 9k^{2} + 18k + 9$$

$$0 \leq 8k^{2} + 11k$$

Therefore, this is true, as we know $k \ge n_0 = 1$

Polynomial Time

- We want to measure the number of steps taken by a TM to decide if an input x is in a language L
 - Need to measure runtime on ANY input (i.e., worst-case running time)
 - Runtime measured as a function of |x|
 - Remember that |x| may be much smaller than x (e.g., for numbers)
- We will use big-O notation to define efficient computation

- Polynomial Time:
 - $T(n) = O(n^c)$ for any constant c

Exercise 1:

- $L_1 = \{ww^r \mid w \in \{a, b\}^*\}$
 - Give a 1-tape TM solution to solve this problem in $O(n^2)$ time
 - Can we improve the time by having a 2-tape TM? If so, give a 2-tape TM solution and describe its time complexity

Big-Omega and Big-Theta (Big- Ω and Big- θ)

- Big- Ω denotes the following relationship between functions f(n) and g(n):
 - $f(n) = \Omega(g(n))$ if and only if there exists constants c > 0 and $n_0 \ge 1$ s.t. $f(n) \ge c * g(n)$ for all $n \ge n_0$
 - For example, $3n^2 = \Omega(n)$
- Big- θ denotes the following relationship between functions f(n) and g(n):
 - $f(n) = \theta(g(n))$ if and only if there exists constants $c_1, c_2 > 0$ and $n_0 \ge 1$ s.t. $c_1 * g(n) \le f(n) \le c_2 * g(n)$ for all $n \ge n_0$
 - For example, $3n = \theta(n)$

Transformations Between Notations

- Here, we see that these relationships are connected
 - For example, if f(n) = O(g(n)), then $g(n) = \Omega(f(n))$
 - Why is this?
 - Additionally, if f(n) = O(g(n)) and simultaneously $f(n) = \Omega(g(n))$, then $f(n) = \theta(g(n))$
 - Why is this?

Exercise 2:

Prove or disprove the following:

•
$$\frac{n(n+1)}{2} = \Omega(n^2)$$

- $\frac{n(n+1)}{2} = \theta(n^2)$ $2^{2n} = \theta(2^n)$