

# PRIPRAVA NA LABORATORIJSKE VAJE Vaja 3: Interpolacija in decimacija slik

#### Obdelava slik in videa

prof. dr. Tomaž Vrtovec







#### Kaj je interpolacija?



**Interpolacija** je metoda določanja novih podatkovnih točk na diskretnem intervalu znanih podatkovnih točk. Z **interpolacijo slik** povečamo vzorčno frekvenco slik (ločljivost slikovnega elementa) in omogočimo izvedbo:

- prerezov in projekcij,
- povečav,
- geometrijskih preslikav ter
- različnih upodobitev slik.

→ Določanje vrednosti v točkah, ki ne sovpadajo z diskretno mrežo slike.









#### Primer interpolacije slik







## Optična in digitalna povečava



Originalna slika

10 × optični zoom



#### Optična in digitalna povečava



Originalna slika



10 × optični zoom



10 × digitalni zoom



Kakovost digitalne povečave





Interpolacija ničtega reda



Interpolacija ničtega reda priredi vrednost najbližje točke na 2D diskretni mreži točk z znanimi vrednostmi.



$$f(x,y) = f(x_i, y_{j+1})$$

(x,y)

 $(x_i,y_j)$ 

 $(x_i, y_{j+1})$ 

 $(x_{i+1},y_j)$ 

 $(x_{i+1}, y_{j+1}$ 

Interpolacija prvega reda



**Interpolacija prvega reda** priredi uteženo vrednost štirih sosednjih točk na 2D diskretni mreži točk z znanimi vrednostmi.

$$f(x,y) = af(x_i, y_j) + bf(x_{i+1}, y_j) + cf(x_i, y_{j+1}) + df(x_{i+1}, y_{j+1})$$

 $(x_i,y_j)$ 

 $(x_i, y_{j+1})$ 

(x,y)

 $\boldsymbol{a}$ 

 $(x_{i+1}, y_{j+1})$ 

Interpolacija tretjega reda



**Interpolacija tretjega reda** priredi uteženo vrednost šestnajstih sosednjih točk na 2D diskretni mreži točk z znanimi vrednostmi.



(x,y)

#### Interpolacije različnih redov

#### **Interpolacije 2D slik:**

- 0. reda (najbližji sosed)
- 1. reda (bilinearna): 4 uteži
- 3. reda (bikubična): 16 uteži
- z zlepki

#### Interpolacije 3D slik:

- 0. reda (najbližji sosed)
- 1. reda (trilinearna): 8 uteži
- 3. reda (trikubična): 64 uteži
- z zlepki

Diskretne sivinske vrednosti slike



Interpolacija po principu najbližji sosed (0. reda)



Bilinearna interpolacija (1. reda)



Bikubična interpolacija (3. reda)



#### Primerjava interpolacij različnih redov





#### Geometrijska preslikava z interpolacijami različnih redov



Originalna slika



Rotacija slike za 30° z interpolacijo 0. reda



Rotacija slike za 30° z interpolacijo 1. reda



Interpolacijo slik potrebujemo pri različnih elementarnih linearnih geometrijskih preslikavah (skaliranje oz. povečava, rotacija oz. vrtenje, strig) ter pri nelinearnih geometrijskih preslikavah.

#### Kaj je decimacija?



**Decimacija** je metoda zmanjševanja vzorčne frekvence signala ter posledično velikosti podatkov. Z **decimacijo slik** torej zmanjšamo velikost slik ter pohitrimo postopke obdelave in analize slik.



#### Primer decimacije slik







 $3,52 \text{ mm} \times 3,52 \text{ mm}$ (7,22 dpi)









#### Filtriranje z nizkopasovnim sitom









$$^{(d)}\nu_{\text{max}} \leq \frac{^{(d)}\nu_{\text{vz}}}{2} = \frac{\nu_{\text{vz}}}{2d}$$

$$^{(d)}
u_{ ext{vz}} = rac{
u_{ ext{vz}}}{d}$$

#### Piramidna decimacija

#### Lastnosti piramidne decimacije:

- večstopenjska zaporedna decimacija
- vhodna slika ter decimirane kopije
- velikost slik pada s potenco števila 2
- zaporedno filtriranje in opuščanje vsakega drugega vzorca





 $\sum_{i=-a}^{a} \sum_{j=-a}^{a} c(i,j)^{(n)} f(2x-i,2y-j)$ 

#### Jedra digitalnega filtra



Pomembna je izbira koeficientov c(i,j) digitalnega filtra:

- pozitivni
- unimodalni
- simetrični
- normalizirani

Prispevek vseh slikovnih elementov slike na naslednji nivo mora biti enak.

| M   | = | 7 |
|-----|---|---|
| 171 |   | _ |

| $\frac{1}{16}$ | $\frac{1}{8}$ | $\frac{1}{16}$ |
|----------------|---------------|----------------|
| $\frac{1}{8}$  | $\frac{1}{4}$ | $\frac{1}{8}$  |
| $\frac{1}{16}$ | $\frac{1}{8}$ | $\frac{1}{16}$ |

$$M = 5$$

| $\frac{1}{400}$ | $\frac{1}{80}$ | $\frac{1}{50}$ | $\frac{1}{80}$ | $\frac{1}{400}$ |
|-----------------|----------------|----------------|----------------|-----------------|
| $\frac{1}{80}$  | $\frac{1}{16}$ | $\frac{1}{10}$ | $\frac{1}{16}$ | $\frac{1}{80}$  |
| $\frac{1}{50}$  | $\frac{1}{10}$ | $\frac{4}{25}$ | $\frac{1}{10}$ | $\frac{1}{50}$  |
| $\frac{1}{80}$  | 1/16           | $\frac{1}{10}$ | 1/16           | $\frac{1}{80}$  |
| $\frac{1}{400}$ | $\frac{1}{80}$ | $\frac{1}{50}$ | $\frac{1}{80}$ | $\frac{1}{400}$ |

$$^{(2n)}f(x,y) = \sum_{i=-a}^{a} \sum_{j=-a}^{a} c(i,j) f(2x-i,2y-j)$$

#### Osnove prostorskega filtriranja





i=-a i=-b

## Učinki filtriranja z nizkopasovnim sitom





#### Decimacija 3D slik

$$^{(2n)}f(x,y,z) = \sum_{i=-a}^{a} \sum_{j=-a}^{a} \sum_{k=-a}^{a} c(i,j) f(2x-i,2y-j,2z-k)$$

$$k = -1$$

| $\frac{1}{64}$ | $\frac{1}{32}$ | $\frac{1}{64}$ |
|----------------|----------------|----------------|
| $\frac{1}{32}$ | $\frac{1}{16}$ | $\frac{1}{32}$ |
| $\frac{1}{64}$ | $\frac{1}{32}$ | $\frac{1}{64}$ |

$$k = 0$$

| $\frac{1}{32}$ | 1<br>16        | $\frac{1}{32}$ |
|----------------|----------------|----------------|
| $\frac{1}{16}$ | $\frac{1}{8}$  | $\frac{1}{16}$ |
| $\frac{1}{32}$ | $\frac{1}{16}$ | $\frac{1}{32}$ |

$$k = +1$$

| $\frac{1}{64}$ | $\frac{1}{32}$ | $\frac{1}{64}$ |
|----------------|----------------|----------------|
| $\frac{1}{32}$ | $\frac{1}{16}$ | $\frac{1}{32}$ |
| $\frac{1}{64}$ | $\frac{1}{32}$ | $\frac{1}{64}$ |

# LABORATORIJSKE VAJE

## Interpolacija in decimacija slik



- 1. Implementacija algoritmov za interpolacijo 2D slik:
  - interpolacija 0. reda (po principu najbližji sosed)

$$f(x,y) = f(x_i, y_j)$$



- interpolacija 1. reda (bilinearna interpolacija)

$$f(x,y) = af(x_i, y_j) + bf(x_{i+1}, y_j) + cf(x_i, y_{j+1}) + df(x_{i+1}, y_{j+1})$$



- 2. Implementacija algoritma za decimacijo 2D slik (neobvezni dodatek)
  - neobyezni dodatek