

Лабораторная работа №4.5.2

Интерференция лазерного излучения

Цель работы: исследование зависимости видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

В работе используются: Не-Ne-лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

Теория

Гелий-неоновый лазер

Лазер представляет собой интерферометр Фабри-Перо — газовую трубку с двумя параллельными зеркалами по обе стороны. В лазере длиной L для излучения вдоль оси для резонансных частот выполняется

$$\nu_m = \frac{mc}{2L}.\tag{1}$$

В этом случае генерируется несколько волн – мод – межмодовое расстояние для которых

$$\Delta \nu = \nu_{m+1} - \nu_m = \frac{c}{2L}.\tag{2}$$

Видность

Видность интерфереционной картины – параметр, определяемый формулой

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} , I_{min} — максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$
.

Здесь γ_1 отвечает за соотношение интенсивности интерферирующих волн:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{4}$$

где $\delta = \frac{B_m^2}{A_m^2}, \, A_m$ и B_m – амплитуды волн. Параметр δ определяется устройством разделения волн.

Функция γ_2 возникает вследствие немонохроматичности волн.

$$\gamma_2 = \left| \frac{1}{n} \frac{\sin \frac{\pi l}{2L} n}{\sin \frac{\pi l}{2L}} \right|,\tag{5}$$

Установка

Источником света служит гелий-неоновый лазер (средняя длина волны $\lambda_0=632.8$ нм). Пучок лазерного излучения отражается от зеркала 3 и проходит призму полного внутреннего отражения РФ (ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Если в установке используется лазер, излучающий неполяризованный

Рис. 2. Схема установки. З, 3_1 , 3_2 , 3_3 — зеркала. Π_1 и Π_2 — поляроиды. B_1 и B_2 — блоки № 1 и 2. ДК — делительный кубик, $P\Phi$ — ромб Френеля. Φ Д — фотодиод, Э — экран, Π К — пьезокерамика, Π — линза

Рис. 1: Схема установки.

свет, то ромб Френеля не нужен, но он и не мешает выполнению работы. Далее лазерное излучение делится диагональной плоскостью делительного кубика ДК на два пучка.

Пучок 1 проходит поляроид П1, отражается под небольшим углом от зеркала З1, снова проходит поляроид П1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадает на зеркало З3 и далее на фотодиод ФД. Зеркало З1 наклеено на пьезокерамику ПК, которая может осуществлять малые колебания зеркала вдоль направления распространения падающего пучка. Поляроид и зеркало с пьезокерамикой собраны в единый блок Б1, который крепится к вертикально стоящей плите. В блоке Б1 имеются юстировочные винты, которые позволяют регулировать угол наклона зеркала З1. В установке предусмотрена возможность вращения поляроида П1. Угол поворота отсчитывается по шкале, нанесённой на оправу поляроида.

Пучок 2 проходит линзу Л, поляроид П2, отражается от зеркала 32, снова проходит поляроид П2, линзу Л и делительный кубик, выходит из интерферометра, попадает на зеркало 33 и далее на фотодиод ФД. Таким образом, от зеркала 33 под небольшим углом друг к другу идут на фотодиод два пучка, прошедшие разные плечи интерферометра. Между ними происходит интерференция и образуются интерференционные полосы. Линза Л, поляроид П2 и зеркало 32 собраны в единый блок Б2. Зеркало 32 установлено в фокальной плоскости линзы Л. Это сделано для того, чтобы падающий и выходящий из блока Б2 пучки всегда были параллельны друг другу. Блок Б2 может перемещаться вдоль пучка 2 по штанге, жёстко связанной с плитой интерферометра. Длина штанги 90 см. В установке предусмотрена возможность небольшого поперечного перемещения блока Б2, что позволяет регулировать расстояние между падающим и выходящим из блока пучками. При измерениях блок Б2 крепится к штанге при помощи двух винтов. Вдоль штанги на величину x_1 геометрическая разность хода между пучками 1 и 2 изменяется на величину $l=2x_1$.

Измерение видности

Типичная осциллограмма сигнала фотодиода приведена на рис. 2. По осциллограмме можно найти следующие величины: фоновую засветку (линия 0 — перекрыты оба пучка 1 и 2); интенсивность света каждого из пучков (линии 1 или 2 — перекрыт пучок 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба пучка). При этом параметр δ , необходимый для расчёта γ_1 в формуле (4), определяется данным

Рис. 2: Осциллограмма сигналов фотодиода.

соотношением $\delta = \frac{h_1}{h_2}, \tag{6}$

Видность интерференционной картины рассчитывается по формуле:

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3},\tag{7}$$

Здесь 0 — уровень при отсутствии лучей, 1 и 2 — при закрытии одного из них.

При условии одинаковой поляризации лучей ($\beta=0$), т.е. когда ($\gamma_3=1$)

$$\gamma_2 = \frac{\gamma}{\gamma_1}.\tag{8}$$

Если же разность хода отсутствует (l=0), или же $(\gamma_2=1)$ то для известного угла β

$$\gamma_3 = \frac{\gamma}{\gamma_1}.\tag{9}$$

Ход работы

Пронаблюдаем интерференционную картину на экране. Поставим дополнительный поляроид между лазером и $\Pi\Phi$, вращая его, наблюдаем, что поляризация линейная. Перенесём поляроид и поставим его на пути луча, выходящего из $\Pi\Phi$. Наблюдаем, что теперь у луча круговая поляризация. Установим минимальную чёткость интерфереционной картину вращением Π_1 . Внесём дополнительный поляроид на пути луча, идущего на экран, интерфереционная картина вновь возникает из-за поляризованности света, так как после прохождения второго поляроида два луча будут иметь одну поляризацию, задаваемую поляроидом.

Исследуем зависимость видности интерфереционной картина от угла α между плоскостями поляризации интерферирущих лучей. В нашем случае α – угол поворота поляроида Π_1 . Результаты измерений представлены в Таблице 1. При подсчётах были использованы формулы (8), (5), (9) и (11). Погрешность измерения угла приборная $\sigma_{\alpha}=1^{\circ}$, погрешность измерения всех h – половина цены деления $\sigma_{h_i}=0.1$ дел. Для γ_3 погрешность вычисляется по формуле

$$\sigma_{\gamma_3} = \sqrt{\sum_{i=1}^4 \left(\frac{\partial \gamma_3}{\partial h_i}\right)^2 \sigma_{h_i}^2}.$$

β	h_1 , дел	h_2 , дел	h_3 , дел	h_4 , дел	γ_3	σ_{γ_3}
0	0.2	0.4	1.4	1.7	0.1	0.07
30	0.2	0.4	1.0	2.2	0.4	0.07
60	0.2	0.4	0.6	2.3	0.6	0.07
90	0.2	0.4	0.5	2.9	0.7	0.07
120	0.2	0.4	0.5	1.9	0.6	0.07
165	0.2	0.4	1.0	1.2	0.1	0.07

Таблица 1: Результаты измерений для $\gamma_3 = \gamma_3(\beta)$.

Рис. 3: Сравнение $\gamma_3(\beta)$ и $\cos(\beta)$.

Теперь исследуем зависимость видимости интерфереционной картины от разности хода между лучами. Для этого будем перемещать блок B_2 вдоль направления распространения луча, координата блока x будет определять разность хода. Значения измерений представлены в Таблице 2, а так же на графике (Puc. 4).

На графике явно видны два максимума — на $x_1=16\pm 2$ см и на $x_2=80\pm 2$ см. Тогда $L=\frac{1}{2}(x_2-x_1)=32.0\pm 1.4$ см. Отсюда из формулы (2)

$$\Delta \nu = \frac{c}{2L} = (47 \pm 2) \cdot 10^7 \ \Gamma$$
ц.

Погрешность считается из соотношения $\varepsilon_{\Delta\nu}=\varepsilon_L$. Полуширина кривой из графика

$$l_{1/2} \approx 12 \pm 2 \text{ cm},$$

откуда по формуле:

$$\Delta
u_{\text{полн}} = 0.6 \frac{c}{l_{1/2}} = (145 \pm 38) \cdot 10^7 \; \Gamma$$
ц.

Погрешность считается аналогично $\Delta \nu$. Тогда по формуле число мод:

$$N = 1 + 1.2 \frac{L}{l_{1/2}} = 4.2 \pm 0.6,$$

погрешность рассчитана по формуле:

$$\sigma_{N} = \sqrt{\left(\frac{\partial N}{\partial \Delta \mathbf{L}}\right)^{2} \sigma_{\Delta \mathbf{L}}^{2} + \left(\frac{\partial N}{\partial \Delta l_{1/2}}\right)^{2} \sigma_{\Delta l_{1/2}}^{2}}$$

с округлением до целых.

Рис. 4: Зависимость $\gamma_2 = \gamma_2(x)$.

Вывод

В данной работе исследована зависимость видности интерференционной картины от угла поворота поляроида, зависимость видности от разности хода между пучками, задержка на половине высоты главного максимума, а также определен диапазон частот, в котором происходит генерация продольных волн.

x, cm	h_1 , дел	h_2 , дел	h_3 , дел	h_4 , дел	γ_2
10	0.9	0.6	0.8	1.2	0.2
11	0.9	0.2	0.6	1.6	0.6
12	0.8	0.2	0.6	1.8	0.6
13	0.9	0.3	0.5	1.9	0.7
14	0.9	1.7	1.3	4.0	0.5
16	0.2	0.4	0.5	2.9	0.7
18	1.3	2.3	2.0	5.8	0.5
20	1.2	2.6	2.5	5.5	0.4
22	1.2	3.2	3.4	6.1	0.3
24	1.2	3.9	4.1	6.4	0.3
26	2.0	2.0	3.2	5.2	0.2
30	1.7	3.2	4.8	5.4	0.1
34	1.1	2.2	3.1	3.4	0.0
38	2.1	3.4	5.0	6.3	0.1
42	1.2	3.1	3.5	5.0	0.2
46	2.0	4.2	5.5	7.6	0.2
50	0.9	0.5	0.9	1.6	0.3
54	0.5	2.0	2.1	3.1	0.2
58	2.1	2.1	3.5	4.6	0.1
62	4.2	2.6	6.8	7.5	0.1
70	4.4	1.0	4.2	7.0	0.3
74	1.5	2.9	2.2	6.5	0.5
76	0.8	2.1	1.2	4.5	0.6
78	2.0	1.2	1.0	5.8	0.7
80	1.2	2.1	0.9	6.5	0.8
82	1.4	1.1	0.6	4.5	0.8
84	1.2	1.9	1.1	5.5	0.7
86	2.9	2.1	2.8	6.9	0.4
88	1.2	1.6	1.6	4.4	0.5

Таблица 2: Результаты измерений для $\gamma_2 = \gamma_2(x)$.