Cours 6 : dualité

Christophe Gonzales

LIP6 - Université Paris 6, France

En route vers la dualité (1/5)

max
$$4x_1 + x_2 + 5x_3 + 3x_4$$

s.c. $x_1 - x_2 - x_3 + 3x_4 \le 1$
 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$
 $x_1, x_2, x_3, x_4 > 0$

Algo du simplexe \Longrightarrow borne inférieure de la fonction objectif

Et si on voulait une borne supérieure?

2ème contrainte
$$\times \frac{5}{3}$$
: $\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$

or
$$z \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \Longrightarrow z \le \frac{275}{3}$$

Cours 6 : dualité

En route vers la dualité (2/5)

$$\max 4x_1 + x_2 + 5x_3 + 3x_4$$
s.c. $x_1 - x_2 - x_3 + 3x_4 \le 1$
 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

Somme des 2ème et 3ème contraintes :

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$

$$\implies z \leq 58$$

principe valable pour toute combinaison linéaire à coeffs ≥ 0

Cours 6 : dualité 3/35

En route vers la dualité (3/5)

Principe du dual

- faire une combinaison linéaire des contraintes :
 - $\sum_{i=1}^{m} y_i \times i \text{ème contrainte, avec } y_i \geq 0$
- z inférieur à la combinaison linéaire $\Longrightarrow z \leq \sum_{i=1}^{m} y_i b_i$

Cours 6 : dualité 4/3

En route vers la dualité (4/5)

max
$$4x_1 + x_2 + 5x_3 + 3x_4$$

s.c. $x_1 - x_2 - x_3 + 3x_4 \le 1$
 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

$$y_1 \times (x_1 - x_2 - x_3 + 3x_4 \le 1)$$

$$y_2 \times (5x_1 + x_2 + 3x_3 + 8x_4 \le 55)$$

$$y_3 \times (-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3)$$

$$(y_1 + 5y_2 - y_3) \times x_1 + (-y_1 + y_2 + 2y_3) \times x_2 + (-y_1 + 3y_2 + 3y_3) \times x_3 + (3y_1 + 8y_2 - 5y_3) \times x_4 \le (y_1 + 55y_2 + 3y_3)$$

En route vers la dualité (5/5)

$$(y_1 + 5y_2 - y_3) \times x_1 + (-y_1 + y_2 + 2y_3) \times x_2 + (-y_1 + 3y_2 + 3y_3) \times x_3 + (3y_1 + 8y_2 - 5y_3) \times x_4 \le (y_1 + 55y_2 + 3y_3)$$

Or fonction objectif = $4x_1 + 1x_2 + 5x_3 + 3x_4$

$$(y_1 + 5y_2 - y_3) \ge 4$$

$$\implies (-y_1 + y_2 + 2y_3) \ge 1$$

$$(-y_1 + 3y_2 + 3y_3) \ge 5$$

$$(3y_1 + 8y_2 - 5y_3) \ge 3$$

$$\Longrightarrow z \leq (y_1 + 55y_2 + 3y_3)$$

meilleure borne \implies min $y_1 + 55y_2 + 3y_3$

Problème dual

Définition du dual

• problème d'origine : le primal :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

• le problème dual :

$$\min \sum_{i=1}^{m} b_{i} y_{i}$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j} & (j = 1, 2, ..., n) \\ y_{i} \geq 0 & (j = 1, 2, ..., m) \end{cases}$$

Cours 6 : dualité 7/35

Comparaison primal – dual (1/2)

$$\min \sum_{i=1}^{m} b_i y_i$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_i \ge c_j & (j = 1, 2, ..., n) \\ y_i \ge 0 & (j = 1, 2, ..., m) \end{cases}$$

- (x_1, \ldots, x_n) solution du primal
- (y_1, \ldots, y_m) solution du dual

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} \leq \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

$$\sum_{i=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

Cours 6 : dualité

Comparaison primal – dual (2/2)

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

- (x_1^*, \dots, x_n^*) solution du primal
- (y_1^*, \dots, y_m^*) solution du dual

alors
$$\sum_{i=1}^{n} c_i x_i^* = \sum_{i=1}^{m} b_i y_i^* \Longrightarrow (x_1^*, \dots, x_n^*)$$
 et (y_1^*, \dots, y_m^*) optimaux

Démonstration :

transparent précédent : $\forall (x_1, \dots, x_n), \sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i^* = \sum_{j=1}^n c_j x_j^*$

transparent précédent : $\forall (y_1, \dots, y_m), \sum_{i=1}^m b_i y_i \ge \sum_{i=1}^n c_i x_j^* = \sum_{i=1}^m b_i y_i^*$

Cours 6 : dualité

Théorème de la dualité

Théorème de D. Gale, H.W. Kuhn & A.W. Tucker (1951)

Théorème de la dualité

- Si le primal a une solution optimale (x_1^*, \dots, x_n^*)
- Alors le dual a une solution optimale (y_1^*, \dots, y_m^*) telle que :

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Démonstration du théorème de la dualité (1/7)

Démonstration : |

supposons que (x_1^*, \dots, x_n^*) solution optimale du primal

transparents précédents :

$$\exists \; (y_1^*,\ldots,y_m^*) \; \text{tel que} \; \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^* \Longrightarrow (y_1^*,\ldots,y_m^*) \; \text{optimal}$$

⇒ il suffit de montrer qu'il existe une solution du dual telle que :

$$\sum_{i=1}^{n} c_{i} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Cours 6 : dualité 11/35

Démonstration du théorème de la dualité (2/7)

Problème d'origine :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Introduction des variables d'écart :

$$x_{n+i} = b_i - \sum_{i=1}^n a_{ij} x_j$$
 $(i = 1, 2, ..., m)$

À l'optimum du primal :

$$z = z^* + \sum_{k=1}^{n+m} \widehat{c_k} x_k$$
, avec les $\widehat{c_k} \le 0$

Démonstration du théorème de la dualité (3/7)

Définition des
$$y_i^*$$
: $y_i^* = -\widehat{c_{n+i}}$

les y_i^* sont bien ≥ 0

 y_i^* = -coeff dans z de la variable d'écart de la *i*ème contrainte

Reste de la démo : montrer que (y_1^*, \dots, y_m^*) est réalisable

À l'optimum du primal :

$$z = z^* + \sum_{k=1}^{n+m} \widehat{c_k} x_k = z^* + \sum_{k=1}^{n} \widehat{c_k} x_k + \sum_{k=n+1}^{n+m} \widehat{c_k} x_k$$
$$= z^* + \sum_{k=1}^{n} \widehat{c_k} x_k - \sum_{i=1}^{m} y_i^* x_{n+i}$$

Démonstration du théorème de la dualité (4/7)

Variables d'écart :
$$x_{n+i} = b_i - \sum_{i=1}^n a_{ij} x_j$$
 $(i = 1, 2, ..., m)$

$$\implies z = z^* + \sum_{k=1}^{n} \widehat{c_k} x_k - \sum_{i=1}^{m} y_i^* x_{n+i}$$

$$= z^* + \sum_{k=1}^{n} \widehat{c_k} x_k - \sum_{i=1}^{m} y_i^* \left(b_i - \sum_{j=1}^{n} a_{ij} x_j \right)$$

$$= \left(z^* - \sum_{i=1}^{m} b_i y_i^* \right) + \sum_{i=1}^{n} \left(\widehat{c_i} + \sum_{i=1}^{m} a_{ij} y_i^* \right) x_j$$

Cours 6 : dualité 14/35

Démonstration du théorème de la dualité (5/7)

À l'origine
$$z = \sum_{j=1}^{n} c_j x_j$$

algo du simplexe : opérations algébriques

$$\Longrightarrow \forall \text{ tableaux, } z = \sum_{j=1}^{n} c_j x_j$$

⇒ d'après le transparent précédent :

$$z = \sum_{j=1}^{n} c_{j} x_{j} = \left(z^{*} - \sum_{i=1}^{m} b_{i} y_{i}^{*}\right) + \sum_{j=1}^{n} \left(\widehat{c}_{j} + \sum_{i=1}^{m} a_{ij} y_{i}^{*}\right) x_{j}$$

Cours 6 : dualité 15/35

Démonstration du théorème de la dualité (6/7)

$$\sum_{j=1}^{n} c_{j} x_{j} = \left(z^{*} - \sum_{i=1}^{m} b_{i} y_{i}^{*}\right) + \sum_{j=1}^{n} \left(\widehat{c}_{j} + \sum_{i=1}^{m} a_{ij} y_{i}^{*}\right) x_{j}$$

équation valable pour tout (x_1, \ldots, x_n)

$$(x_1,\ldots,x_n)=(0,\ldots,0)\Longrightarrow z^*=\sum_{i=1}^m b_iy_i^*$$

$$(x_j = 1, x_k = 0 \ \forall \ k \neq j) \Longrightarrow c_j = \widehat{c}_j + \sum_{i=1}^m a_{ij} y_i^* \qquad (j = 1, \dots, n)$$

Or condition d'arrêt du simplexe : $\widehat{c_k} \leq 0$

$$\implies \sum_{i=1}^{m} a_{ij} y_i^* \geq c_j \qquad (j=1,\ldots,n)$$

Démonstration du théorème de la dualité (7/7)

Conclusion:

- Si $y_i^* = -\widehat{c_{n+i}}$ alors :
- $y_i^* \ge 0$
- $\bullet \sum_{i=1}^{m} a_{ij} y_i^* \geq c_j \qquad (j=1,\ldots,n)$
- $\implies (y_1^*, \dots, y_m^*)$ est une solution réalisable du dual
- $z^* = \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^*$
 - $\Longrightarrow (y_1^*, \dots, y_m^*)$ solution optimale

CQFD

Application (1/2)

Problème d'origine :

Après introduction des variables d'écart :

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 > 0, x_2 > 0, x_3 > 0, x_4 > 0, x_5 > 0, x_6 > 0$$

Application (2/2)

Dictionnaire à l'optimum :

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

 $x_5 = 1 + 5x_2 + 2x_4$
 $x_3 = 1 + x_2 + 3x_4 - 2x_6$
 $z = 13 - 3x_2 - x_4 - x_6$

- solution du primal : $(x_1, x_2, x_3, x_4, x_5, x_6) = (2, 0, 1, 0, 1, 0)$
- solution du dual : $(y_1, y_2, y_3) = (-\widehat{c_4}, -\widehat{c_5}, -\widehat{c_6}) = (1, 0, 1)$
 - dans le simplexe sous forme tabulaire, on a -z \implies ne pas multiplier les coeffs de la dernière ligne par -1

Cours 6 : dualité 19/35

Relations entre primal et dual (1/4)

Expression d'un problème dual

$$\min \sum_{i=1}^{m} b_i y_i$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_i \ge c_j & (j = 1, 2, ..., n) \\ y_i \ge 0 & (j = 1, 2, ..., m) \end{cases}$$

Or $\min f = -\max -f$

$$-\max \sum_{i=1}^{m} (-b_i) y_i$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} (-a_{ij}) y_i \le -c_j & (j = 1, 2, ..., n) \\ y_i \ge 0 & (j = 1, 2, ..., m) \end{cases}$$

le dual est un nouveau primal!

Relations entre primal et dual (2/4)

Dual

$$-\max \sum_{i=1}^{m} (-b_i) y_i$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} (-a_{ij}) y_i \leq -c_j & (j=1,2,\ldots,n) \\ y_i \geq 0 & (j=1,2,\ldots,m) \end{cases}$$

Dual du dual

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Cours 6 : dualité

le dual du dual = primal

Relations entre primal et dual (3/4)

Relations primal – dual

- le dual du dual = le primal
- primal a un optimum ←⇒ dual a un optimum

$$\bullet \sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

⇒ primal non borné ⇒ dual non réalisable

dual non borné ⇒ primal non réalisable

🍂 primal et dual peuvent être tous deux non réalisables :

$$\begin{array}{ll} \max \ 2x_1 - x_2 \\ s.c. & x_1 - x_2 \leq 1 \\ -x_1 + x_2 \leq -2 \\ x_1, x_2 \geq 0 \end{array}$$

Relations entre primal et dual (4/4)

		Dual		
		∃ optimum	non réalisable	non borné
Primal	∃ optimum	✓	×	*
	non réalisable	*	~	✓
	non borné	*	~	*

 \Longrightarrow si le primal et le dual ont des solutions réalisables alors ils ont un optimum

Conséquence pratique

Il peut être avantageux d'appliquer l'algo du simplexe sur le dual plutôt que sur le primal

tableau du dual à l'optimum \Longrightarrow solution optimale du primal

Exemple : problème primal à 9 variables et 99 contraintes

 \Longrightarrow 100 lignes dans le primal et 10 lignes dans le dual

nb d'itérations du simplexe pprox proportionnel au nb de lignes

⇒ moins d'itérations dans le dual

algo révisé du simplexe ⇒ itérations pas plus coûteuses avec le dual

Théorème de complémentarité

Théorème de complémentarité

- (x_1^*, \dots, x_n^*) : solution réalisable du primal
- (y_1^*, \dots, y_m^*) : solution réalisable du dual

Alors une condition nécessaire et suffisante pour que (x_1^*, \ldots, x_n^*) et (y_1^*, \ldots, y_m^*) soient optimaux simultanément :

et

Cours 6 : dualité

Démonstration du théorème de complémentarité (1/3)

Démonstration :

$$\mathsf{dual} \Longrightarrow \sum_{i=1}^m a_{ij} y_i^* \geq c_j$$

$$\Longrightarrow \left(\sum_{i=1}^m a_{ij}y_i^*\right)x_j^* \geq c_jx_j^*$$

$$primal \Longrightarrow \sum_{i=1}^{n} a_{ij} x_{j}^{*} \leq b_{i} \Longrightarrow \left(\sum_{i=1}^{n} a_{ij} x_{j}^{*}\right) y_{i}^{*} \leq b_{i} y_{i}^{*}$$

$$\Longrightarrow \sum_{j=1}^n c_j x_j^* \leq \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^* = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j^*\right) y_i^* \leq \sum_{i=1}^m b_i y_i^*$$

Cours 6 : dualité 26/35

Démonstration du théorème de complémentarité (2/3)

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i}^{*} \right) x_{j}^{*} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j}^{*} \right) y_{i}^{*} \leq \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Si (x_1^*, \ldots, x_n^*) et (y_1^*, \ldots, y_m^*) optimaux

alors théorème de la dualité
$$\Longrightarrow \sum_{i=1}^n c_i x_i^* = \sum_{i=1}^m b_i y_i^*$$

$$\Longrightarrow \sum_{j=1}^n c_j x_j^* = \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^*$$

$$\mathsf{dual} \Longrightarrow \sum_{i=1}^m a_{ij} y_i^* \geq c_j \Longrightarrow \sum_{i=1}^m a_{ij} y_i^* x_j^* = c_j x_j^*$$

$$\implies x_j^* = 0$$
 ou $c_j = \sum_{i=1}^m a_{ij} y_i^*$

démo similaire pour $\sum_{i=1}^{n} a_{ij} x_{j}^{*} = b_{i}$ ou $y_{i}^{*} = 0$

Démonstration du théorème de complémentarité (3/3)

Réciproque

Si
$$\left[x_j^* = 0 \text{ ou } c_j = \sum_{i=1}^m a_{ij}y_i^*\right]$$
 et $\left[y_i^* = 0 \text{ ou } \sum_{j=1}^n a_{ij}x_j^* = b_i\right]$

alors
$$\sum_{j=1}^{n} c_j x_j^* = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^* \right) x_j^* = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j^* \right) y_i^* = \sum_{i=1}^{m} b_i y_i^*$$

théorème de la dualité $\Longrightarrow (x_1^*, \dots, x_n^*)$ et (y_1^*, \dots, y_m^*) optimaux

COFD

Cours 6 : dualité 28/

Rappel: Théorème de complémentarité

Théorème de complémentarité

- \bullet (x_1^*, \dots, x_n^*) : solution réalisable du primal
- (y_1^*, \dots, y_m^*) : solution réalisable du dual

Alors une condition nécessaire et suffisante pour que (x_1^*, \ldots, x_n^*) et (y_1^*, \ldots, y_m^*) soient optimaux simultanément :

et

$$\implies$$
 si $x_j^* > 0$ alors $\sum_{i=1}^m a_{ij} y_i^* = c_j$ si $y_i^* > 0$ alors $\sum_{j=1}^n a_{ij} x_j^* = b_i$

Cours 6 : dualité

Complémentarité : corollaire

Corollaire du théorème de complémentarité

- \bullet (x_1^*, \dots, x_n^*) : solution réalisable du primal
- (x_1^*, \dots, x_n^*) optimal si et seulement si $\exists (y_1^*, \dots, y_m^*)$ tel que :

$$\sum_{i=1}^m a_{ij} y_i^* = c_j$$
 dès que $x_j^* > 0$ $y_i^* = 0$ dès que $\sum_{j=1}^n a_{ij} x_j^* < b_i$

et tel que:

$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j \qquad \forall j = 1, 2, \dots, n$$
$$y_i^* \ge 0 \qquad \forall i = 1, 2, \dots, m$$

Cours 6 : dualité 30/35

Interprétation économique des variables duales (1/5)

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Problème : maximisation du profit d'une fabrique de meubles

- ⇒ utilise des matières premières et en produit des meubles
- \implies $x_j =$ nombre de meubles d'un certain type (chaises, bureaux) fabriqués
 - $c_i = \text{prix en } \in \text{d'une unit\'e de produit}$
 - a_{ij} = quantité de la *i*ème matière première nécessaire à la construction d'une unité du *j*ème type de meuble

 b_i = quantité de la ième matière première disponible

Interprétation économique des variables duales (2/5)

 x_j = nombre de meubles d'un certain type (chaises, bureaux) fabriqués

 $c_i = \text{prix en } \in \text{d'une unit\'e de produit}$

 $a_{ij} =$ quantité de la *i*ème matière première nécessaire à la construction d'une unité du *j*ème type de meuble

 b_i = quantité de la *i*ème matière première disponible

variable	unité	
Xj	unité de produit j	
c_{j}	\in par unité de produit j	
a _{ij}	unité de ressource i par unité de produit j	
bi	unité de ressource i	

Interprétation économique des variables duales (3/5)

$$\min \sum_{i=1}^{m} b_{i} y_{i}$$
s.c.
$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j} & (j = 1, 2, ..., n) \\ y_{i} \geq 0 & (j = 1, 2, ..., m) \end{cases}$$

variable	unité		
Cj	€ par unité de produit <i>j</i>		
a _{ij}	unité de ressource i par unité de produit j		

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \Longrightarrow \text{ (unit\'e de ressource } i \text{ par unit\'e de produit } j) \times$$
 unit\'e de $y_i = \in \text{ par unit\'e de produit } j$

y_i exprimé en € par unité de ressource i

Interprétation économique des variables duales (4/5)

Interprétation économique

 y_i mesure l'apport d'une unité de ressource i au profit de l'entreprise

on augmente d'1 le nombre d'unités de ressource $i \Longrightarrow$ le profit augmente de y_i

 \implies on est prêt à payer cette unité de ressource au maximum un prix de y_i

les y_i sont souvent appelés «prix marginaux»

Interprétation économique des variables duales (5/5)

Théorème

Si le primal a au moins une solution optimale non dégénérée, alors $\exists \ \epsilon > 0$ tel que si $|t_i| \le \epsilon \ \forall i = 1, 2, ..., m$ alors :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} + t_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

a une solution optimale et dont la valeur est $z^* + \sum_{i=1}^{m} y_i^* t_i$

où y_1^*, \dots, y_m^* = solution optimale du dual

Cours 6 : dualité 35/35