Partial Differential Equations

(Semester II; Academic Year 2024-25)

Indian Statistical Institute, Bangalore

Instructor: Renjith Thazhathethil renjitht_pd@isibang.ac.in

Assignment - 2

Given Date: January 15, 2025 Submission Date: January 24, 2025 Maximum Marks: 65 Number of questions: 4

- 1. Consider the PDE $Lu := x(u_x)^2 + yu_y u = 0$. (15)
 - (a) Find the equation of the Monge's cone at (1, 1, -1).
 - (b) Is it possible to find Monge's cone at (0,0,0)? Conclude the solvability of the PDE with initial data given in a curve containing origin.
 - (c) Find the integral surface passing through the line y = 1, x + z = 0.
- 2. Solve the following IVP:

- (a) $u_y = u_x^3$, $u(x,0) = 2x^{3/2}$.
- (b) $u_x^2 + u_y^2 = 1$, u(x, y) = 0 on the line x + y = 1.
- (c) $xp^2 + yq^2 = z, y = 1$ on the line x + z = 0.
- (d) $u_t + (x\cos t)u_x = 0$, $u(x,0) = \frac{1}{1+x^2}$, $x \in \mathbb{R}$, t > 0.
- (e) $u_t + (x+t)u_x + t(x+1)u = 0$, $u(x,0) = \phi(x)$, $x \in \mathbb{R}$, t > 0.
- (f) $u_t + u^2 u_x = 0$, u(x, 0) = x, $x \in \mathbb{R}$, t > 0.
- 3. Solve: (10)

(a)
$$u_t - \sqrt{u_{x_1}^2 + u_{x_2}^2} = 0$$
, $u(x_1, x_2, t_0) = \psi(x_1^2 + x_2^2)$, $\psi' > 0$; $(x_1, x_2) \in \mathbb{R}^2$, $t > t_0$

(b) $u_t + u(u_x + u_y) = 0$, $x, y \in \mathbb{R}$, t > 0, u(x, y, 0) = x + y, $x, y \in \mathbb{R}$.

4. Solve: (10)

$$u_t + \frac{1}{1+|x|}u_x = 0, \ u(x,0) = \phi(x), \ x \in \mathbb{R}, \ t > 0.$$