

STIC-ILL

~~454,700~~

YR. NO 4/10

From: STIC-Biotech/ChemLib
Sent: Thursday, July 10, 2003 12:04 PM
To: STIC-ILL
Subject: FW: I need this article, Mailbox 3D19

Message to you.

-----Original Message-----

From: Small, Andrea
Sent: Thursday, July 10, 2003 12:00 PM ✓
To: STIC-Biotech/ChemLib
Subject: I need this article, Mailbox 3D19

L4 ANSWER 2 OF 17 CAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1999:177059 CAPLUS Full-text
DOCUMENT NUMBER: 130:290619
TITLE: Synthesis and Characterization of 1,2-Bis(aziridin-N-yl)glyoxime and its Nickel(II), Palladium(II) and Cobalt(II) Complexes
AUTHOR(S): Musluoglu, Emel; Ahsen, Uefa
CORPORATE SOURCE: Department of Chemistry, TUBITAK Marmara Research Center, Kocaeli, 41470, Turk.
SOURCE: Journal of Chemical Research, Synopses (1999), (2), 142-143
PUBLISHER: Royal Society of Chemistry
DOCUMENT TYPE: Journal
LANGUAGE: English
AB An aziridine functional vic-dioxime ligand, 1,2-bis(aziridin-N-yl)glyoxime (L), and its ML₂ complexes with Ni^{II}, Pd^{II} and Co^{II} were prepd. starting from aziridine by the reaction with cyanogen di-N-oxide.
IT 82552-65-6P, 1,2-Bis(aziridin-N-yl)glyoxime
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(for prepn. of nickel(II), palladium(II) and cobalt(II) bis(aziridinyl)glyoximate complexes)
RN 82552-65-6 CAPLUS
CN Aziridine, 1;1'-[1,2-bis(hydroxyimino)-1,2-ethanediyl]bis- (9CI) (CA INDEX NAME)

Andrea D. Small, Esq.
Patent Examiner
Art Unit 1626
Technology Center 1600
TEL: (703) 305-0811
FAX: (703) 746-4984

3
604
7/11

AB An aziridine functional vic-dioxime ligand, 1,2-bis(aziridin-N-yl)glyoxime (L), and its ML₂ complexes with Ni^{II}, Pd^{II} and Co^{II} were prepd. starting from aziridine by the reaction with cyanogen di-N-oxide.

IT 82552-65-6P, 1,2-Bis(aziridin-N-yl)glyoxime
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(for prepn. of nickel(II), palladium(II) and cobalt(II)
bis(aziridinyl)glyoximato complexes)

RN 82552-65-6 CAPLUS

CN Aziridine, 1,1'-(1,2-bis(hydroxyimino)-1,2-ethanediyl)bis- (9CI) (CA INDEX NAME)

1999
ISSN 0308-2342

Issue No. 2
JRPSDC

This journal is covered by the following secondary information sources: Chemical Abstracts, Current Contents, Current Abstracts of Chemistry/Index Chemicus, Current Chemical Reactions, Current Bibliography on Science and Technology, Science Citation Index, Bulletin Signalétique, Referativnyi Zhurnal and ChemInform

Contents

68 (M 0501) **Synthesis of Triethyl N-Formyl-N-phosphonomethylglycinate and Diethyl N-Formyl-N-phosphonomethylglycine and Studies of Their Rotational Conformers by Dynamic NMR**

Zyta Ziora, Tomasz Cierpicki, Jolanta Grembecka and Paweł Kafarski

70 (M 0518) **The Chemistry of 5-Oxodihydroisoxazoles. Part 23. Photochemical and Thermal Reactions of Isoxazol-5(2H)-ones substituted at C-3 or C-4 with Nitrogen, Oxygen or Sulfur**

Jabbar Khalafy, Rolf H. Prager and Jason A. Smith

Decomposition via the carbene A occurs when Y = OR, SR or COR, and via carbene B when Y = Ph

72 (M 0601) **Thermally Unstable 5-(9-Anthrylmethyl)-10-methyl-5,10-dihydrophenazine**

Akira Sugimoto, Keisuke Matsumoto, Hideyuki Maruyama, Kazuhiko Mizuno and Kaku Uehara

74 (M 0628) **Coordination Networks with 1,3-Bis(4-pyridyl)propane. A Flexible Ligand Exhibiting Supramolecular Isomerism**

M. John Plater, Mark R. St J. Foreman and Alexandra M. Z. Slawin

76 (M 0449) **Synthesis and Reactivity of 3-Alkylthio-5-cyanomethyl-4-phenyl-1,2,4-triazoles**

Ramadan A. Mekheimer and Rafat M. Shaker

Synthesis and Characterization of 1,2-Bis(aziridin-N-yl)glyoxime and its Nickel(II), Palladium(II) and Cobalt(II) Complexes^{†‡}

J. Chem. Research (S),
1999, 142–143†

Emel Musluoglu^a and Vefa Ahseň^{*a,b}

^aDepartment of Chemistry, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470, Kocaeli, Turkey

^bDepartment of Chemistry, Gebze Institute of Technology, P.O. Box 141, 41400, Gebze, Kocaeli, Turkey

An aziridine functional *vic*-dioxime ligand and complexes with Ni^{II}, Pd^{II} and Co^{II} are prepared starting from aziridine by the reaction of cyanogen di-*N*-oxide.

Vicinal dioximes have received considerable attention as model compounds for vitamin B₁₂ and their complexes have been the source, through the decades, of a never-ending series of interesting reports. The exceptional stability of these complexes can be attributed to their planar structure which is stabilized by hydrogen-bonded bridges. Our group has initiated a series of studies on the chemistry of transition metal complexes of *vic*-dioximes incorporating cyclopentadienyl groups,¹ amino-crown ether,² thia-crown ether,³ tetrathia macrocycles,⁴ alkylthia ether groups,⁵ monoaza and benzomonoaza⁶ diazadioxa⁷ quinoxalinyl groups,⁸ and dendritic groups.⁹

The consequences of these functional groups are to effect the physical properties, e.g. solubility, melting point, gas sensing¹⁰ and phase transfer catalysis¹¹.

The reaction of amines or thiols with (*E,E*)-dichloroglyoxime or cyanogen di-*N*-oxide yielded various symmetrically substituted diaminoglyoxime or dithioglyoxime derivatives.¹¹ The (*E,E*)- and (*E,Z*)-stereoisomers of vicinal dioximes are capable of coordinating through N,N or N,O sites of the oxime groups. In the case of (*E,E*)-monochloroglyoxime, asymmetric vicinal dioximes have been obtained. Transition metal complexes of these vicinal dioximes are essentially *N,N*-coordinated square-planar structures. Now, we report on a vicinal-dioxime ligand in which these donor groups are directly bound to the N-pivot atoms of two aziridine units and its complexes with Ni^{II}, Pd^{II} and Co^{II}. Here aziridine groups have been chosen owing to their effectiveness in the field of carcinogenic activity.

Some of the aziridine derivatives exhibit anticarcinogenic activity, and hence, find use as antitumor agents. *o*-Ethoxyphenyl-*N*-carbamoylaziridine shows anticarcinogenic activity as shown using the pulmonary tumor-induction method in Strain A mice. Aziridines as a class are more active than the carbamates, with 3,4-dichlorophenyl-*N*-carbamoylaziridine being over 20 times more active on a molar dose basis than ethyl carbamate, which is the most active of the carbamates.¹² *N,N*-Octamethylene-bis-1-aziridine acetamide was effective in reducing the presence of carcinoma cells in the lung.¹³ A Raman investigation of hexaziridinocyclo triphosphazene interactions with DNA *in vitro* suggests that the alkylating sites on DNA for this powerful antitumor agent are the N(7) and NH₂ positions of adenine.¹⁴ A survey of crystal structures for aziridino-cyclophosphazenes shows that antitumor activity is presumably related to some specific ‘bow-tie’ conformation of aziridine wings which may be present in active drugs, rather than to the number of aziridine groups in the mol-

Scheme 1

ecule.¹⁵ Many aziridinocyclophosphazenes exhibit antitumor activity and this behaviour is attributed to the alkylating ability of these compounds by the facile opening of aziridine rings.¹⁶

1,2-bis(aziridin-N-yl)glyoxime (H₂L) was synthesized from aziridine and cyanogen di-*N*-oxide (Scheme 1). The product was obtained by treating a suspension of (*E,E*)-dichloroglyoxime in dichloromethane with 1 M aq. Na₂CO₃ at -40 °C.¹⁷ and elemental analysis of the white crystal line material corresponds to C₆H₁₀N₄O₂. A symmetrical *s*-trans form is expected for H₂L. In the IR spectrum of H₂L, the OH, C=N and N—O stretching vibrations are observed at 3200, 1620 and 950 cm⁻¹ respectively, in agreement with values reported for similar compounds.^{2,17} The ¹H NMR spectrum in (CD₃)₂SO exhibits a D₂O exchangeable signal for OH (δ 10.40) and a singlet for the CH₂ groups (δ 2.09). More detailed information about the structure of H₂L was provided by ¹³C NMR spectroscopy. The carbon resonance of the carbohydroximamide moiety was found at δ 151.24 and the CH₂ groups attached to the N-atom was observed at δ 28.17. The EI mass spectrum of H₂L shows the molecular ion peak at *m/z* = 170. H₂L was soluble in ethanol, Me₂SO, hot MeCN and DMF, but insoluble in dichloromethane, chloroform, acetone and diethyl ether.

To prepare complexes of H₂L with Ni^{II}, Pd^{II} and Co^{II} a solution of the ligand and a metal salt in EtOH was heated to 55–60 °C while an equivalent amount of NaOH in EtOH was added gradually. The IR spectra of the complexes are very similar to those of H₂L, except for the disappearance of the OH stretching frequencies for the Ni^{II} complex (Fig. 1). Weak bands at *ca.* 1700–1710 cm⁻¹ indicated O—H···O hydrogen-bonded bridges while the C=N vibrations appeared at lower wavenumbers,^{2,6} as expected for *N,N*-chelated vicinal-dioxime complexes. The diamagnetic nature of the nickel(II) and palladium(II) complexes were confirmed by their ¹H NMR spectra. The reddish color of Ni(HL)₂ is in accord with that of previously reported *vic*-dioximate complexes.¹⁸

Fig. 1 The structure of [M(HL)₂]

*To receive any correspondence (e-mail: vefa@mam.gov.tr).

†This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

‡Dedicated to Professor Dr. Özer Bekaroğlu on the occasion of his 65th birthday (May 3, 1998) with our best wishes.

Fig. 2 The structure of $[Pd(HL)_2]$

In the 1H NMR spectrum of $Ni(HL)_2$ the deuterium exchangeable O-H...O protons were observed at δ 17.2 as a singlet and CH_2 protons were observed at δ 3.29–3.61 as a multiplet. For the Pd^{II} complex the IR spectrum shows that the OH vibration is still present in the molecule (3200 cm^{-1}) and the OH proton was observed at δ 12.24 and CH_2 protons at δ 3.25–3.81 as a multiplet in the 1H NMR spectrum. This type of coordination is more usual in (*E,Z*)-complexes, where the ligand forms a six-membered chelate ring by coordinating to Pd through the N and O atoms as shown in Fig. 2. Attempts to record ^{13}C NMR spectra of these complexes were unsuccessful due to their low solubility. The structures of $Ni(HL)_2$ and $Pd(HL)_2$ are also confirmed by mass spectroscopy, which give a $[M - 1]^+$ peak at m/z 396 and $[M + 1]^+$ peak at m/z 446 respectively. Owing to the insolubility of the cobalt(II) complex, its mass spectrum could not be obtained.

Experimental

Routine IR spectra were recorded on a Perkin-Elmer 983 spectrophotometer as KBr pellets. Elemental analysis were performed using a Carlo Erba 1106 Instrument. 1H and ^{13}C NMR spectra were recorded on a Bruker 200 MHz spectrometer. Mass spectra were recorded on a VG Zabspec GC-MS spectrometer with electron impact methods.

Aziridine was synthesized according to the reported procedure.¹⁹ For the first time, the synthesis of aziridino dioximes, isomerization, and their reaction to obtain oxadiazines were achieved by Eremeev *et al.*²⁰

Synthesis of 1,2-Bis(aziridin-N-yl)glyoxime (H_2L).—To a stirring solution of aziridine (0.762 g, 17.7 mmol) in 300 ml of CH_2Cl_2 a solution of cyanogen di-N-oxide in CH_2Cl_2 (200 ml) was added at $-40^\circ C$ which was obtained by treating a suspension of dichloroglyoxime (2.03 g, 13 mmol) with 300 ml of 1 M Na_2CO_3 . The reaction mixture was stirred at $-40^\circ C$ for 2 h, then allowed to warm to room temperature. The product was filtered off and washed with dichloromethane. Recrystallization from EtOH (100 ml) gave the pure product. Yield: 0.4 g (27%). mp 192–195 °C (decomp) (Found; C, 42.17; H, 5.67; N, 32.27. $C_6H_{10}N_4O_2$ requires C, 42.35; H, 5.92; N, 32.92%). ν_{max}/cm^{-1} 3200 (OH), 2860 (CH_2), 1620 (C=N), 1450, 1380, 1305, 1160, 1080, 1010, 950 (N-O), 900, 800, 750, 700; δ_H [($CD_3)_2SO]$ 10.4 (s, 2 H, NOH, disappeared upon D_2O exchange), 2.09 (s, 8 H, CH_2N); δ_C [($CD_3)_2SO]$ 151.24 (C=NOH), 28.17 (CH_2N); m/z (100%, M^+), 123(17), 112(100), 95(74), 85(53), 82(30), 69(81), 67(55), 56(40).

$Ni(HL)_2$.—To a solution of 0.2 g (1.176 mmol) of H_2L in 25 ml of hot ethanol (60 °C) was added, $NiCl_2 \cdot 6H_2O$ (0.14 g, 0.588 mmol) in 10 ml of ethanol. A decrease in pH was observed and the yellowish-orange nickel(II) complex precipitated. The mixture was then heated to 60 °C for 15 min and an equivalent amount of NaOH (0.1 M in EtOH) was added dropwise to maintain a pH value of 5.5. The reaction mixture was then cooled to room temperature and the product filtered off, washed with EtOH, water, hot EtOH and dried with diethyl ether. Yield: 0.067 g (29%). m.p. > 270 °C (Found; C, 36.08; H, 4.53; N, 28.4. $C_{12}H_{18}N_6NiO_4$ requires C, 36.3; H, 4.57; N, 28.22%); ν_{max}/cm^{-1} 2860, 2820 (CH_2), 1705 (O-H...O), 1600 (C=N), 1310, 1040, 940 (N-O), 880; δ_H [($CD_3)_2SO]$ 17.19 (s, 2 H, O-H...O, disappeared by D_2O exchange), 3.11–3.52 (m, 16 H, CH_2N); m/z 396 (15%, $[M - 1]^+$), 207(16), 170(52), 154(15), 136(43), 105(54), 91(100), 73(69), 59(54).

$Pd(HL)_2$.— $Pd(HL)_2$ was prepared according to the same procedure as described for the preparation of $Ni(HL)_2$ by starting from H_2L (0.2 g, 1.176 mmol). Na_2PdCl_4 [prepared by stirring 0.104 g (0.588 mmol) of $PdCl_2$ and 0.069 g (1.176 mmol) of NaCl in 20 ml

of EtOH] was used. A dark-orange palladium(II) complex was obtained. Yield: 0.074 g (28.3%); m.p. > 270 °C (Found; C, 32.07; H, 3.77; N, 24.66. $C_{12}H_{18}N_8O_4Pd$ requires C, 32.41; H, 4.08; N, 25.2%); ν_{max}/cm^{-1} 3200 (OH), 2860, 2820 (CH_2), 1590 (C=N), 1440, 1340, 1040, 940 (N-O), 880; δ_H [($CD_3)_2SO]$ 12.24 (s, 2 H, OH, disappeared by D_2O exchange), 3.25–3.52 (m, 16 H, CH_2N); m/z 446 (41%, $[M + 1]^+$), 396(7), 354(42), 279(100), 256(41), 242(13).

$Co(HL)_2$ — $Co(HL)_2$ was prepared according to the same procedure as described for the preparation of $Ni(HL)_2$ by starting from H_2L (0.15 g, 1.026 mmol). $CoCl_2 \cdot 6H_2O$ (0.122 g, 0.513 mmol) was used and a brown cobalt(II) complex was obtained. Yield: 0.127 g (62.4%); mp > 270 °C (Found; C, 35.97; H, 4.31; N, 27.89; $C_{12}H_{18}CoN_8O_4$ requires C, 36.28; H, 4.56; N, 28.2%); ν_{max}/cm^{-1} 2860, 2820 (CH_2), 1705 (O-H...O), 1600 (C=N), 1440, 1320, 1040, 940 (N-O), 850.

Received, 13th October 1998; Accepted, 18th November 1998
Paper E/8/07944G

References

- 1 M. Ertaş, V. Ahsen, A. Güler and Ö. Bekaroğlu, *J. Organomet. Chem.*, 1987, **333**, 383; M. Ertaş, V. Ahsen, A. Güler and Ö. Bekaroğlu, *J. Organomet. Chem.*, 1986, **317**, 301.
- 2 A. Güler and Ö. Bekaroğlu, *J. Chem. Soc., Dalton Trans.*, 1983, 2537.
- 3 F. Gökceli, V. Ahsen and Ö. Bekaroğlu, *J. Chem. Soc., Dalton Trans.*, 1987, 1827.
- 4 V. Ahsen, A. Gürek, A. Güler and Ö. Bekaroğlu, *J. Chem. Soc., Dalton Trans.*, 1990, 5.
- 5 I. Gürol, V. Ahsen and Ö. Bekaroğlu, *J. Chem. Soc., Dalton Trans.*, 1992, 2283.
- 6 A. Ahsen, E. Musluoğlu, A. Gürek, A. Güler, M. Zehnder and Ö. Bekaroğlu, *Helv. Chim. Acta*, 1990, **73**, 174; E. Musluoğlu, A. Gürek, V. Ahsen, N. Tan and Ö. Bekaroğlu, *J. Chem. Res.*, 1990, (S) 146; (M) 988.
- 7 E. Hamuryudan and Ö. Bekaroğlu, *Chem. Ber.*, 1994, **127**, 2843.
- 8 M. Ertaş, A. Gürek, A. Güler and Ö. Bekaroğlu, *J. Chem. Res.*, 1988, (S) 109; (M) 1157.
- 9 E. Musluoğlu and Ö. Bekaroğlu, *J. Coord. Chem.*, 1996, **39**, 253.
- 10 Z. ÖzTÜRK, R. Zhou, V. Ahsen, Ö. Bekaroğlu and W. Göpel, *Sensors Actuators B*, 1996, **35–36**, 1.
- 11 C. Bank and Ö. Bekaroğlu, *Synth. React., Inorg. Met.-Org. Chem.*, 1983, **13**, 1047; S. Serin and Ö. Bekaroğlu, *Z. Anorg. Allg. Chem.*, 1983, **496**, 197; V. Ahsen and Ö. Bekaroğlu, *Synth. React., Inorg. Met.-Org. Chem.*, 1985, **15**, 61; M. Koçak and Ö. Bekaroğlu, *Synth. React., Inorg. Met.-Org. Chem.*, 1984, **14**, 689.
- 12 M. B. Shimkin, B. Michael, R. Wieder, M. Donough, L. Fishbein and D. Swern, *Cancer Res.*, 1969, **29**, 2184.
- 13 R. G. Rosso, M. G. Donelli, G. Franchi and S. Garattini, *Cancer Chemother. Rep.*, Part 1, 1970, **54**, 79.
- 14 M. Manfait, A. J. P. Alix, J. L. Butour, J. F. Labarre and F. Sournies, *J. Mol. Struct.*, 1981, **71**, 39.
- 15 F. Sournies, G. Guerch, J. F. Labarre and J. Jaud, *J. Mol. Struct.*, 1990, **238**, 283.
- 16 J. F. Labarre, *Top. Curr. Chem.*, 1982, **102**, 1; J. F. Labarre, F. Sournies, S. Cros, G. François, J. C. van der Grampel and A. A. van der Huizen, *Cancer Lett.*, 1981, **12**, 245; A. A. van der Huizen, J. C. van der Grampel, A. van der Meer-Kalverkamp, H. Lamberts, W. Akkerman and P. Lelieveld, *Inorg. Chim. Acta*, 1983, **78**, 239.
- 17 A. Güler, A. I. Okur, A. Cihan, N. Tan and Ö. Bekaroğlu, *J. Chem. Res.*, 1986, (S) 90; (M) 0881; C. Grundman, V. Mini, J. M. Dean and H. D. Formmied, *Liebigs Ann. Chem.*, 1965, **687**, 191; Y. Gökk and Ö. Bekaroğlu, *Synth. React., Inorg. Met.-Org. Chem.*, 1981, **11**, 621.
- 18 A. Nakamura, A. Konishi and S. Otsuka, *J. Chem. Soc., Dalton Trans.*, 1979, 490.
- 19 H. Bestian, *Methoden der Organischen Chemie (Houben Weyl)*, 1970, vol. XI/2, p. 227.
- 20 A. V. Eremeev, I. P. Piskunova, V. G. Andrianov and E. Liepins, *Khim. Geterotsikl. Soedin.*, 1982, **4**, 488; *Chem. Abstr.*, 1982, **97**, 72197v; V. G. Andrianov and A. V. Eremeev, *Zh. Org. Khim.*, 1991, **27**, 112; *Chem. Abstr.*, 1991, **115**, 48589v.