TODO: Der Random-Walk Metropolis-Hastings-Algorithmus für Threshold-VAR-Modelle

Tim Baumann

29. April 2016

Threshold-VAR-Modell

Der Random-Walk Metropolis-Hastings-Algorithmus für Threshold-VAR-Modelle

Das Threshold-VAR-Modell

$$\begin{split} \text{(TVAR)} & \begin{cases} Y_t = \textbf{\textit{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_1 & \mathsf{wenn} \; S_t \leq Y^* \\ Y_t = \textbf{\textit{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_2 & \mathsf{wenn} \; S_t > Y^* \\ \mathsf{wobei} \; S_t \coloneqq Y_{j,t-d} \; \; \textit{(Threshold-Variable)} \\ Y_t, \textbf{\textit{v}}_t, \textbf{\textit{c}}_1, \textbf{\textit{c}}_2 \in \mathbb{R}^N, \; \; \beta_1, \beta_2 \in \mathbb{R}^{N \times N}, \; \; \Omega_1, \Omega_2 \in \mathbb{R}^{N \times N}, \; \; Y^* \in \mathbb{R} \end{split}$$

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Das Threshold-VAR-Modell

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Beispiel

Makroökonomische Modellierung, wobei vermutet wird, dass die Stärke wirtschaftlicher Zusammenhänge (z.B. Multiplikator für Staatsausgaben) in Wirtschaftkrisen unterschiedlich groß ist wie in wirtschaftlich normalen oder guten Zeiten.

$$\begin{aligned} \text{(TVAR)} & \begin{cases} Y_t = \textbf{\textit{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_1 & \mathsf{wenn} \; S_t \leq Y^* \\ Y_t = \textbf{\textit{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_2 & \mathsf{wenn} \; S_t > Y^* \\ \mathsf{wobei} \; S_t \coloneqq Y_{j,t-d} \; \; \textit{(Threshold-Variable)} \end{aligned}$$

Prior-Verteilung

Prior-Verteilung

• Für den Threshold: $p(Y^*) \sim \mathcal{N}(\overline{Y}^*, \sigma_{Y^*})$

$$\begin{aligned} \text{(TVAR)} & \begin{cases} Y_t = \textbf{\textit{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_1 & \mathsf{wenn} \; S_t \leq Y^* \\ Y_t = \textbf{\textit{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_2 & \mathsf{wenn} \; S_t > Y^* \\ \mathsf{wobei} \; S_t \coloneqq Y_{j,t-d} \; \; \textit{(Threshold-Variable)} \end{aligned}$$

Prior-Verteilung

- Für den Threshold: $p(Y^*) \sim \mathcal{N}(\overline{Y}^*, \sigma_{Y^*})$
- Für die VAR-Parameter $b_1, b_2 \in \mathbb{R}^{(1+NP) \cdot N}$ und $\Omega_1, \Omega_2 \in \mathbb{R}^{N \times N}$ verwenden wir die Normal-Inverse-Wishart-Verteilung mit Dummy-Observations $X_{D,i} \in \mathbb{R}^{k_i \times (1+NP)}$, $Y_{D,i} \in \mathbb{R}^{k_i \times N}$ (i=1,2):

$$p(b_i|\Omega_i) \sim \mathcal{N}(\text{vec}(B_{D,i}), \Omega_i \otimes (X_{D,i}^T X_{D,i})^{-1}),$$

 $p(\Omega_i) \sim \mathcal{IW}(S_{D,i}, \frac{TODO}{TODO} : T_{D,i} - ????)$

wobei
$$B_{D,i} := (X_{D,i}^T X_{D,i})^{-1} (X_{D,i} Y_{D,i}) \in \mathbb{R}^{(1+NP) \times N}$$

 $S_{D,i} := (Y_{D,i} - X_{D,i} B_{D,i})^T (Y_{D,i} - X_{D,i} B_{D,i}) \in \mathbb{R}^{N \times N}$

A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t \leq Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung

$$\begin{array}{lll} p(b_{i}|\Omega_{i},Y_{i,t}) & \sim & \mathcal{N}(\text{vec}(B_{i}^{*}),\Omega_{i}\otimes((X_{i}^{*})^{T}X_{i}^{*})^{-1}), \\ p(\Omega_{i},Y_{i,t}) & \sim & \mathcal{IW}(S_{i}^{*},TODO:T_{i}^{*}-???) \\ & \text{wobei} & B_{i}^{*} \coloneqq ((X_{i}^{*})^{T}X_{i}^{*})^{-1}(X_{i}^{*}Y_{i}^{*}) \\ & S_{i}^{*} \coloneqq (Y_{i}^{*}-X_{i}^{*}B_{i}^{*})^{T}(Y_{i}^{*}-X_{i}^{*}B_{i}^{*}) \\ & Y_{i}^{*} \coloneqq [Y_{i,t},Y_{D,i}] \\ & X_{i}^{*} \coloneqq [X_{i,t},X_{D,i}] \end{array}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t \le Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung

$$\begin{array}{lll} \rho(b_{i}|\Omega_{i},Y_{i,t}) & \sim & \mathcal{N}(\text{vec}(B_{i}^{*}),\Omega_{i}\otimes((X_{i}^{*})^{\mathsf{T}}X_{i}^{*})^{-1}), \\ p(\Omega_{i},Y_{i,t}) & \sim & \mathcal{TW}(S_{i}^{*},\textbf{TODO}:\textbf{T}_{i}^{*}-???) \\ & \text{wobei} & B_{i}^{*}:=((X_{i}^{*})^{\mathsf{T}}X_{i}^{*})^{-1}(X_{i}^{*}Y_{i}^{*}) \\ & S_{i}^{*}:=(Y_{i}^{*}-X_{i}^{*}B_{i}^{*})^{\mathsf{T}}(Y_{i}^{*}-X_{i}^{*}B_{i}^{*}) \\ & Y_{i}^{*}:=[Y_{i,t},Y_{D,i}] \\ & X_{i}^{*}:=[X_{i,t},X_{D,i}] \end{array}$$

2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* \coloneqq Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - ullet Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* \coloneqq Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\alpha = \frac{\pi(\phi^{G+1})}{\pi(\phi^G)} \cdot \frac{q(\phi^G \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^G)}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i|\Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - ullet Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* \coloneqq Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\alpha = \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^{*} \mid b_{1}, \Omega_{1}, b_{2}, \Omega_{2}, Y_{t})}{p(Y_{\text{old}}^{*} \mid b_{1}, \Omega_{1}, b_{2}, \Omega_{2}, Y_{t})}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime S_t ≤ Y*, eines für S_t > Y*.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - ullet Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* := Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} \alpha &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i|\Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* := Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} \alpha &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i|\Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* \coloneqq Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} \alpha &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \\ p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y^*) &= p(Y_{1,t} \mid b_1, \Omega_1, Y^*) \cdot p(Y_{2,t} \mid b_2, \Omega_2, Y^*) \\ \log p(Y_{i,t} \mid b_i, \Omega_i, Y^*) &= \frac{T}{2} \log |\Omega_i^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1} (Y_{i,t} - X_{i,t} \tilde{b}_i) \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i|\Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* \coloneqq Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

Berechne die Akzeptanz-Wahrscheinlichkeit

$$\begin{split} \alpha &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \\ p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y^*) &= p(Y_{1,t} \mid b_1, \Omega_1, Y^*) \cdot p(Y_{2,t} \mid b_2, \Omega_2, Y^*) \\ \log p(Y_{i,t} \mid b_i, \Omega_i, Y^*) &= \frac{T}{2} \log |\Omega_i^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1}(Y_{i,t} - X_{i,t} \tilde{b}_i) \end{split}$$

• Ziehe $u \sim \mathcal{U}(0,1)$. Behalte Y_{new}^* , falls $u < \alpha$, ansonsten verwerfe Y_{new}^* .

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i|\Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - ullet Generiere eine Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* := Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

• Berechne die Akzeptanz-Wahrscheinlichkeit

$$\alpha = \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)}$$

$$p(Y_{t} | b_{1}, \Omega_{1}, b_{2}, \Omega_{2}, Y^{*}) = p(Y_{1,t} | b_{1}, \Omega_{1}, Y^{*}) \cdot p(Y_{2,t} | b_{2}, \Omega_{2}, Y^{*})$$

$$\log p(Y_{i,t} | b_{i}, \Omega_{i}, Y^{*}) = \frac{T}{2} \log |\Omega_{i}^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_{i})^{T} \Omega_{i}^{-1} (Y_{i,t} - X_{i,t} \tilde{b}_{i})$$

• Ziehe $u \sim \mathcal{U}(0,1)$. Behalte Y_{new}^* , falls $u < \alpha$, ansonsten verwerfe Y_{new}^* .