Week 11 IVLE Quiz

- 1. If x and y are both eigenvectors of A associated with the eigenvalue λ , which of the following statements is/are definitely true?
 - (I) x + y is an eigenvector of A associated with eigenvalue $\lambda + \lambda = 2\lambda$.
 - (II) If the eigenspace associated with λ is two dimensional, then \boldsymbol{x} is not a scalar multiple of \boldsymbol{y} .
 - (III) If the eigenspace associated with λ is one dimensional, then \boldsymbol{x} is a scalar multiple of \boldsymbol{y} .
 - (A) (II) and (III) only.
 - (B) (I) and (II) only.
 - (C) (III) only.
 - (D) None of the given combinations is correct.

Answer: (C). (I) is incorrect. x+y is still associated with λ . (II) is incorrect since E_{λ} is two dimensional does not imply that x and y must be linearly independent. (III) is correct since if E_{λ} is one dimensional, then x and y must be multiples of each other.

- 2. If λ is an eigenvalue of a matrix \boldsymbol{A} , which of the statements below is/are definitely correct?
 - (I) $(\lambda \mathbf{I} \mathbf{A})$ is a singular matrix.
 - (II) $(\boldsymbol{A} \lambda \boldsymbol{I})$ is a singular matrix.
 - (III) λ is an eigenvalue of \boldsymbol{A}^T .
 - (A) (I) only.
 - (B) (I) and (II) only.
 - (C) (I) and (III) only.
 - (D) All three statements are correct.

Answer: (D). (I) is true, since by defintion, any eigenvalue λ satisfies the equation $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = 0$. (II) is also true, since $\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = (-1)^n \det(\boldsymbol{A} - \lambda \boldsymbol{I})$. (III) is true as \boldsymbol{A} and \boldsymbol{A}^T has the same set of eigenvalues.

- 3. Suppose A, B and C are all 3×3 matrices such that 0 is an eigenvalue of A, 1 is an eigenvalue of B and 2 is an eigenvalue of C. Which of the following statements is/are definitely correct?
 - (I) 0×1 is an eigenvalue of AB.
 - (II) 1×2 is an eigenvalue of BC.
 - (III) 0+1 is an eigenvalue of A+B.
 - (A) All three statements are correct.
 - (B) (I) and (II) only.
 - (C) (I) and (III) only.
 - (D) None of the given combinations is correct.

Answer: (D). (I) is correct since AB is singular (because A is singular) which means that 0 must be an eigenvalue of AB. (II) is not necessarily true since there is no assurance that there will be a common eigenvector between E_1 (of B) and E_2 (of C). Similarly, for (III), there is no assurance that there will be a common eigenvector between E_0 (of A) and E_1 (of B).

- 4. How many statements below is/are correct?
 - (I) If there exists an invertible matrix P such that AP = PD where D is a diagonal matrix, then A is diagonalizable.
 - (II) Every diagonal matrix is diagonalizable.
 - (III) If there exists an invertible matrix P such that $P^{-1}AP = 0$, then the only eigenvalue that A has is 0.
 - (A) All three.
 - (B) Exactly two.
 - (C) Exactly one.
 - (D) None.

Answer: (A). (I) is correct since AP = PD is equivalent of $A = PDP^{-1}$. (II) is correct since we can write $D = IDI^{-1}$, so any diagonal matrix is trivially diagonalizable. (III) is correct since $\mathbf{0}$ is a diagonal matrix and the diagonal of $\mathbf{0}$ (which are all zeros) are the eigenvalues of A.

- 5. Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be **all** the eigenvalues of a $n \times n$ matrix \boldsymbol{A} . Suppose we know that \boldsymbol{A} is diagonalizable, which of the statements below is/are always true?
 - (I) \boldsymbol{A} has exactly n distinct eigenvalues (that is, k = n).
 - (II) The linear system $(A \lambda_1 I)x = 0$ has non trivial solutions.
 - (A) (I) only.

- (B) (II) only.
- (C) Both (I) and (II)
- (D) None of them.

Answer: (B). (I) is incorrect, see for example, the matrix \boldsymbol{B} in slide number 4 of unit 059. (II) is correct since $(\boldsymbol{A} - \lambda_1 \boldsymbol{I})$ is singular.