AACS3064 Computer Systems Architecture

Chapter 2: Representing Numerical Data

Chapter Overview

- 1) Unsigned Binary & BCD Representation
- 2) Signed Integers Representation
 - Sign-and-magnitude Representation
 - 1's Binary Complementary Representation
 - 2's Complement
 - Overflow and Carry Conditions
- 3) Floating point number
 - Exponential Notation
 - Floating Point Format
 - Normalizing and Formatting
 - Floating Point Calculations

1 Unsigned Binary & BCD Representation

1. Unsigned Binary & BCD

Unsigned Binary & BCD

Conventional binary representation

- Simply recognize that there is a <u>direct binary equivalent</u> for any decimal integers.
- Store any whole number as its binary representation.
- The range of integers that can store is determined by the number of bits available.
- Use multiple storage locations to expand the range of integers to be handled.

Conventional binary representation

Binary-coded decimal (BCD)

- The number is stored as a <u>digit-by-digit</u> binary representation of the original decimal integer.
- Each decimal digit is individually converted to binary. 4 bits per digit.

$$0110_2 = 6_{10}$$

$$1000_2 = 8_{10}$$

1. Unsigned Binary & BCD (

(Continued

Value Range: Binary VS. BCD

BCD range of values < conventional binary representation</p>

No. of Bits	BCD Range		Binary Range	
4	0-9	1 digit	0-15	1+ digit
8	0-99	2 digits	0-255	2+ digits
12	0-999	3 digits	0-4,095	3+ digits
16	0-9,999	4 digits	0-65,535	4+ digits

Disadvantages:

- Calculations are more difficult.
- Any product / sum of any BCD integers that > 9 must be reconverted to BCD each time to perform the carries from digit to digit.

Binary-coded decimal (BCD)

1. Signed Integers Representation

2. Signed Integer Representation

Sign-and-Magnitude Representation

- Use leftmost bit for sign.
 - 1 indicates a negative.
 - 0 indicates a positive.

- Example using 8 bits :
 - Unsigned: 1111 1111 (+255)
 - Signed: 0111 1111 (+127)
 1111 1111 (-127)
- Disadvantage: Calculations are difficult.

4	4	2	12
+ 2	- 2	- 4	- 4
6	2	- 2	8

1's Complement

- Complementary representation
 - The sign of the number is a natural result of the method
 - Does not need to be handled separately.
- Inversion: change 1's to 0's and 0's to 1's
 - Numbers beginning with 0 are positive
 - Numbers beginning with 1 are negative
 - 2 values for zero

```
E.g.
0111 1111 ( 127 )
1000 0000 ( -127 )
```

1's Complement

One's Complement Representation :

1000 0000	1111 1111	0000 0000	0111 1111
-127 ₁₀	-O ₁₀	010	12710

- - One's complement of 4
 0000 0000 0000 0100 (4) → 1111 1111 1111 1011 (-4)
 - One's complement of 165
 0000 0000 1010 0101 (165) → 1111 1111 0101 1010 (-165)

1's Complement

Arithmetic Example :

1's Complement

1's Complement

1's Complement

Arithmetic Example : (Overflow)

0100 0000 = 64

+ 0100 0001 = 65

1000 0001 = -126

The correct positive result, 129. exceeds the range for 8 bits.

2's Complement

- Find the 1's complement and adding 1 to the result.
- Two's Complement Representation :

1000 0000	1111 1111	0000 0000	0111 1111
-128 ₁₀	-1 ₁₀	010	127 ₁₀

E.g. 0111 1111 (127) 1000 0001 (-127)

2's Complement

```
    ► E.g.
    ■ Two's complement of 4
    One's complement of 4 → 1111 1111 1111 1011
    + 1
```

Two's complement of 4 -> 1111 1111 1111 1100 (-4)

1's Complement vs. 2's Complement

- ➤ 1's complement
 - Addition requires extra end-around carry
 - Algorithm must test for and convert -0
- 2's complement
 - Additional add operation required for sign change

Perform subtraction using 2's Complement

Example: 30 - 10

STEP 1: Change 10 to its binary format

 $10 \rightarrow 0000 \ 1010$

STEP 2: Apply 2's complement rule to

obtain its negative representation.

(Reserved bit and Add 1)

STEP 3: Perform addition

Overflow Flag (OF)

- Occurs when the result of an arithmetic operation does not fit into the fixed number of bits available for the result.
- Occur only when both operands have the same sign.
- Detected by the fact that the sign of the result is opposite of both operands.
- ➤ <u>E.g.</u>: slide 17

Carry Flag (CF)

- Occurs when the result of an arithmetic operation exceeds the fixed number of bits allocated, without regard to sign.
- For normal, single precision 2's complement addition and subtraction the carry bit is ignored.
- Detected when extra '1' bit generated.
- **E.g.**: slide 15, 16

Example: Addition of 4-bit 2's complement

Example: (+4)+(+2)No overflow, 0100 0010 No carry The result is correct 0110 (+6) (-4)+(-2)No overflow 1100 1110 Carry The result is correct 11010 (-6)

Example: Addition of 4-bit 2's complement

Example: (+4)+(+6)overflow, 0100 0110 No carry The result is incorrect 1010 (-6) (-4)+(-6)Overflow 1100 1010 Carry Ignoring the carry, The result is incorrect 10110 (+6)

3. Floating Point Number

3. Floating Point numbers

Floating Point Numbers

- Real number
- Used in the computer when the number :
 - Is outside the integer range of the computer (too large or too small)
 - Contains a decimal fraction

Exponential Notation

> Also called scientific notation

12345

12345 x 100

0.12345 x 105

123450000 x 10-4

 0.0012345×10^{7}

Exponential Notation

Floating Point Representation

Format Specification

Floating point numbers will be stored and manipulated in the computer using a "standard", predefined format, usually in 8 bits

Sign of the mantissa — SEEMMMMM

2-digit Exponent 5 digits of mantissa

NOTE: the base of the exponent and the location of the binary point are standardize as part of the format, so do not have to stored at all.

Format

- Mantissa: sign digit in sign-magnitude format
 - Assume decimal point located at beginning of mantissa
- Excess-N notation:
 - N is the chosen middle value
 - Example : Excess-50 representation

Allow a magnitude range of 0.00001 x 10⁻⁵⁰ < Number < 0.99999 x 10⁴⁹

Conversion Examples

Format used :

- SEEMMMMM, Excess-50
- 0 represent '+' sign, and 5 represent '-' sign
- The base is 10.
- The implied decimal point is at the beginning of the mantissa.

```
05324567 = 0.24567 \times 10^3 = 246.57
54810000 = -0.10000 \times 10^{-2} = -0.0010000
5555555 = -0.55555 \times 10^5 = -55555
04925000 = 0.25000 \times 10^{-1} = 0.025000
```

Normalization & Formatting

- ➤ <u>Normalization</u>
 Shift numbers left by increasing the exponent until leading zeros are eliminated.

 .MMMMM x 10^{EE}
- Steps to converting decimal number into standard format.
 - Provide number with exponent (0 if not yet specified).
 - Increase/decrease exponent to shift decimal point to proper position.
 - Decrease exponent to eliminate leading zeros on mantissa.
 - Correct precision by adding 0's or discarding / rounding least significant digits

Normalization & Formatting

Example 1: (Decimal to floating point format conversion)

Given 246.8035, normalized it and represent it in SEEMMMMM format.

i. Add exponent 246.8035 x 10°

ii. Position decimal point 0.2468035 x 10³

iii. Already normalized, no adjustment required.

iv. Cut to 5 digits 0.24680 x 10³

v. Convert number 05324680

Normalization & Formatting

Example 2:

1255 x 10-3

The number is already in exponential form.

 0.1255×10^{1}

ii. Position decimal point

iii. Already Normalized

iv. 5 digits of precision 0.12550 x 10¹

v. Convert number 05112550

Normalization & Formatting

Example 3:

-0.00000075

Add exponent -0.00000075 x 10^o

ii. Position decimal point -0.75 x 10⁻⁶

iii. Already Normalized

iv. 5 digits of precision -0.75000 x 10⁻⁶

v. Convert number 54475000

Floating Point Calculation: Add & Subtract

- Exponent and mantissa treated separately.
- Exponents of numbers must agree.
 - Align decimal points.
 - Least significant digits may be lost.
- Overflow of the most significant digit may occurs.
 - Number must be shifted right and the exponent incremented to accommodate overflow.

Floating Point Calculation: Add & Subtract

Example: Add the 2 floating-point numbers (Assume these numbers are formatted using SEEMMMMM and excess-50)

Add 2 floating point numbers

05199520

+ 04967850

Align exponents

05199520

By adding two zeros in front of mantissa

0510067850

Add mantissa, (1) Indicates a carry

(1) 0019850

Carry requires right shift of exponent

05210019 (850)

Round

05210020

Floating Point Calculation: Add & Subtract

Check Results:

 $05199520 = 0.99520 \times 10^{1} =$

04967850 = 0.67850 x 10⁻¹ =

9.9520

0.067850

10.019850

In sign-magnitude form

0.1001985 x 10²

Floating Point Calculation: Multiply & divide

- Mantissas: multiplied or divided.
- Exponents: added or subtracted and adjusted excess value since added twice.
- Example:
 - Assume we have two numbers with exponent 3, Each is represented in excess-50 notation as 53.
 - Adding the two exponents g 53 + 53 = 106.
 - Since 50 added twice, subtract: 106 50 = 56.
- Normalization necessary to:
 - Restore location of decimal point.
 - Maintain precision of the result.

Floating Point Calculation: Multiply & divide

Example: Multiply the 2 floating point numbers

Multiply 2 floating point numbers

05220000

X 04712500

Add exponents, subtract offset

Add exponents, subtract onset

Multiply mantissa

Normalized the result

52 + 47 - 50 = 49

0.20000 x 0.12500 = 0.025000000

04825000

Floating Point Calculation: Multiply & divide

Check results:

```
05220000 = 0.20000 \times 10^2 =
```

 $04712500 = 0.125 \times 10^{-3} =$

Multiply $0.20000 \times 10^2 \times 0.125 \times 10^{-3}$

0.025000000 x 10⁻¹

Normalizing and rounding

0.25000 x 10⁻²

Floating Point in the Computer

- Typical floating point format :
 - consists of 32 bits, divided into :
 - A sign bit
 - 8 bits of exponent, excess-127 notation, base 2
 - 23 bits of mantissas.

IEEE 754 Standard

- Normalized numbers must always start with a 1, the leading bit is not stored, but is instead implied.
- This bit is located to the left of the implied binary point. So, numbers are normalized to the form 1.MMMMMM.....

Precision	Single (32-bit)	Double (64-bit)
Sign	1 bit	1 bit
Exponent	8 bits	11 bits
Notation	Excess-127	Excess-1023
Implied Base	2	2
Range	2 ⁻¹²⁶ to 2 ¹²⁷	2 ⁻¹⁰²² to 2 ¹⁰²³
Mantissa	23	52

IEEE 754 Standard

Example:

Convert this decimal number 253.75 to binary floating-point form.

$$\begin{array}{c|c}
253.75 \\
111111101.11 \\
253.75 \rightarrow 11111101.11 \\
\rightarrow 1.1111101111 \times 2^{+7}
\end{array}$$

IEEE 754 Standard

Solution:

Convert 253.75 to binary	11111101.11
Add exponent	11111101.11 x 2 ⁰
Position Decimal Point	1.111110111 x 2 ⁺⁷
Exponent	127 + 7 = 134
Change 134 to binary	10000110
Sign of Mantissa (positive)	0
Mantissa in 23 bits (the leading bit is not stored, but is instead implied)	11111011 10000000 0000000
IEEE 754 format	0 10000110 11111011 10000000 0000000

Conversion of fractional number

Example 1: base 10 -> base 2

i. 16.5₁₀

22	21	20	2-1	2-2	2-3
4	2	1	1/2	1/4	1/8

The answer is:

$$16.5_{10} = 16_{10} + 0.5_{10}$$
$$= 10000_2 + 0.1_2$$
$$= 10000.1_2$$

Conversion of fractional number

Conversion of fractional number

Example 1: base 10 -> base 2

i. 0.828125₁₀

*** To validate it!

20	2-1	2-2	2-3	2-4	2-5	2-6
0	0.5	0.25	0	0.0625	0	0.015625
0	1	1	0	1	0	1

$$\rightarrow$$
 0.5 + 0.25 + 0.0625 + 0.15625

 $=0.828125_{10}$

Conversion of fractional number

The answer is:

=
$$(1 \times 2^{1}) + (1 \times 2^{0}) + (.) + (1 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-5}) + (1 \times 2^{-6})$$

= $2 + 1 + (.) + 0.5 + 0.25 + 0.03125 + 0.015625$
= $3.796875d$

Conversion of fractional number

Conversion of fractional number

Example 4: base 16 -> base 10

39.B8H = 57.71875D

3 9 . B 8 16

x 16¹ x 16⁰ . x 16⁻¹ x 16⁻²

The answer is:

=
$$(3 \times 16^{1}) + (9 \times 16^{0}) + (.) + (11 \times 16^{-1}) + (8 \times 16^{-2})$$

= $48 + 9 + (.) + 0.6875 + 0.03125$
= 57.71875_{10}

Conversion of fractional number

```
Example 5: base 16 -> base 2
4F5.09H = 010011110101.00001001B
         0100
                  1111
                           0101 . 0000
                                           1001
```

Chapter Review

- 1) Unsigned Binary & BCD Representation
- 2) Signed Integers Representation
 - Sign-and-magnitude Representation
 - 1's Binary Complementary Representation
 - 2's Complement
 - Overflow and Carry Conditions
- 3) Floating point number
 - Exponential Notation
 - Floating Point Format
 - Normalizing and Formatting
 - Floating Point Calculations