

Departamento de Ingeniería de Sistemas y Computación Estructuras de Datos y Algoritmos ISIS-1225

ANÁLISIS DEL RETO (Sección 2-Grupo 02)

Frank Yasser Ramírez Marín (req4) fy.ramirez@uniandes.edu.co, 202215747 José Gabriel Bernal Cárdenas (req5) jg.bernalc1@uniandes.edu.co, 202213421 Juan Camilo Gómez Uribe (req3) j.gomezu@uniandes.edu.co, 202220238

Requerimiento 1

Descripción

La función recibe tres parámetros: los datos, la fecha inicial , y la fecha final (para tener un rango). Con eso se realiza la conversión de las fechas al formato apropiado. Luego se utilizan métodos como om.keys para obtener eventos sísmicos dentro del rango de fechas proporcionado. Luego, se organizan todos estos eventos utilizando un criterio de clasificación definido. Se emplea la estructura de newMap() para almacenar estos eventos y sus respectivas claves.

Entrada	data_structs, anioinicial y aniofinal
Salidas	

Análisis de complejidad

Pasos	Complejidad
Encontrar el rango y sacarlo	$O(N \log (N))$
Ordenar subconjunto	$O(N \log N))$
TOTAL	$O(N \log(N))$

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)	
small	172,6587	
5 pct	2988,2068	
10 pct	11100,7151	
20 pct	41834,0159	
30 pct	67298,0441	
50 pct	87607,7021	
80 pct	95917,3600	
large	121227,0180	

Graficas

Descripción

Se accede a la estructura de datos de magnitudes dentro de los datos para poder identificar eventos que estén dentro del rango de magnitudes que ingresa el usuario. Se organizan estos con sort, y todos

almacena estos eventos. Mediante iteraciones los que cumplen con el criterio de magnitud establecido se almacenan en todos.

La función devuelve y valores, que cumple con los límites establecidos de magnitud.

Entrada	Magnitudmin, magnitudmax
Salida	Los datos con las magnitudes que entran en el rango claves

Análisis de complejidad

Pasos	Complejidad
Encontrar el rango y sacarlo	O(N log (N))
Ordenar subconjunto	O(N log (N))
TOTAL	$O(N \log (N))$

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)
small	9,6234
5 pct	15,4145
10 pct	42,9734
20 pct	85,1673
30 pct	120,4479
50 pct	249,7733
80 pct	394,0599

large	572,2650

Graficas

Requerimiento 3

Descripción

La función accede a las magnitudes y calcula la máxima magnitud disponible y accede a las fechas. Luego, crea también a todos y busca los que están en el rango posible. Se itera y se revisala profundidad del evento es menor o igual a la del parámetro. Se añaden los que cumplan. Se ordena

Entrada	Magnitudmin,profunfidadmax
Salidas	

Análisis de complejidad

Pasos	Complejidad
Encontrar el rango y sacarlo	O(N log(N)
Ordenar subconjunto	O(Nlog N)
Iterar subconjunto para sacar eventos	O(N^2)?
TOTAL	$O(Nlog\ N)$

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)
small	5,6942
5 pct	25,7835
10 pct	62,9734
20 pct	105,1673
30 pct	188,4479
50 pct	349,7733
80 pct	594,0599
large	797,2644

Graficas

Requerimiento 4

Descripción

Se buscan los eventos más recientes que superen una significancia mínima y que estén a una distancia azimutal menor o igual a la especificada. Se busca la significancia máxima de los eventos en la estructura de

Se revisa de estos si su valor de gap es menor o igual a la distancia azimutal especificada.

Entrada	Significancia, azimutal
Salidas	

Análisis de complejidad

Pasos	Complejidad
Encontrar el rango y sacarlo	O(n log N)
Ordenar subconjunto	O(n log n)
Iterar subconjunto para sacar eventos	O(n^2)
TOTAL	$O(n \log N)$)

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)
small	5,21564
5 pct	30,89452
10 pct	77,32165
20 pct	124,5346
30 pct	217,38672
50 pct	399,468761
80 pct	619,23547
large	834,67984

Requerimiento 5

Descripción

Se accede a la estructura para tener profundidad máxima registrada. Se buscan aquellos que tienen una profundidad dentro del rango especificado por el parámetro y la maxima. Se revisa si tienen un número de estaciones de monitoreo (nst) mayor o igual al máximo . Finalmente, la función devuelve el número total de eventos antes del filtrado y los eventos

Entrada	

Salidas	

Análisis de complejidad

Pasos	Complejidad
Encontrar el rango y sacarlo	O(n log N)
Ordenar subconjunto	O(n log n)
Iterar subconjunto para sacar eventos	O(n^2)
TOTAL	$O(N \log N)$)

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)
small	7,657897
5 pct	25,6735
10 pct	87,9874
20 pct	147,9871
30 pct	209,32179
50 pct	350,21241
80 pct	596,7951
large	850,316554

Graficas

Requerimiento 6

Descripción

se utiliza la función auxiliar para obtener el evento más significativo dentro del área para el año dado. Se itera para obtener los n eventos más cercanos cronológicamente hablando antes y después de este evento significativo. Se usan los oventos ordenados por fechas y se iteran para que dé.

La función auxiliar busca los eventos sísmicos para el año dado dentro de un área especificada, está función tiene la función que calcula si están en el radio.

Entrada	Año, Latitud, Longitud, Radio, n eventos
Salidas	

tiempo Análisis de complejidad

Pasos	Complejidad
Encontrar ceeling y floor de cada	O(n)
Agregar cada llave al mapa	O(n)
Ordenar subconjunto	O(Nlog N)
Iterar subconjunto para sacar eventos small Spct 10pct 20pct 30pct 50pct 80pct	O(N^2)
TOTAL	$O(N \log N)$)

Pruebas Realizadas

Tablas de datos

Muestra	Tiempo (ms)
small	13,68786
5 pct	32,1345
10 pct	92,9874
20 pct	163,36847
30 pct	236,654789
50 pct	384,84136
80 pct	642,92314
large	954,46873

Graficas