Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 1 - Introduction à la dynamique du solide indéformable

TD 1 - Corrigé

Véhicule TIM

Florestan Mathurin

Savoirs et compétences :

- Res1.C2: principe fondamental de la dynamique;
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement.

Détermination expérimentale du coefficient de résistance au roulement

Question 1 Écrire le principe fondamental de la statique appliqué au solide 1 réduit au point G en projection sur la base $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

• On isole le solide 1.

- Le solide est soumis à l'action de pesanteur et à l'action du sol.
- On applique le PFS:
 - TRS: $-T_{01}\overrightarrow{x} + N_{01}\overrightarrow{z} = -mg\overrightarrow{z_0} = -mg(\cos\alpha\overrightarrow{z} \sin\alpha\overrightarrow{x});$
 - TMS en *G* en projection sur \overrightarrow{y} : $-C_r + RT_{01} = 0$.
- On résout :
 - $T_{01} + mg \sin \alpha = 0;$
 - $N_{01} mg\cos\alpha = 0;$
 - $C_r = R T_{01}$.

Question 2 Déterminer l'expression analytique de l'angle α_{lim} à la limite de l'équilibre quand il y a début du roulement du solide 1 sur le plan 0.

Correction À la limite du roulement, on a $C_r = rN_{01} \Leftrightarrow RT_{01} = rN_{01} \Leftrightarrow Rmg \sin \alpha_{\lim} = rmg \cos \alpha_{\lim}$ et $\tan \alpha_{\lim} = \frac{r}{R}$.

Pour une masse du solide 1 $m=50\,\mathrm{kg}$ et pour un rayon $R=0.25\,\mathrm{m}$ le roulement se produit à partir d'un angle α_{lim} tel que tan $\alpha_{\mathrm{lim}}=0.008$.

Question 3 Déterminer le coefficient de résistance au roulement r.

Correction $r = 0.002 \,\mathrm{m}$.

Question 4 Au début du roulement, montrer qu'il ne peut pas y avoir glissement en A_1 si le coefficient de frottement au contact vaut f = 0,5.

Correction À la limite du glissement, on a $T_{01} = f N_{01}$ et $\frac{T_{01}}{N_{01}} = \tan \alpha$. Pour $\tan \alpha_{\lim} < f$ il y a donc roulement sans glissement.

Modélisation du véhicule

Question 5 Écrire les équations scalaires découlant des conditions de Roulement Sans Glissement (RSG) aux point A_{23} et A_4 .

De même en A_4 , $0 = -R\dot{\theta}_4 + \dot{x}$.

Question 6 En isolant l'ensemble E = 1 + 2 + 3 + 4, écrire le théorème de la résultante dynamique en projection sur \overrightarrow{x} et \overrightarrow{z}

Correction • On isole E.

- BAME:
 - Pesanteur: $\{\mathcal{T}(\operatorname{Pes} \to E)\} = \left\{\begin{array}{c} -(M+3m)g\overrightarrow{z_0} \\ \overrightarrow{0} \end{array}\right\}_C = \left\{\begin{array}{c} -(M+3m)g\left(\cos\alpha\overrightarrow{z} \sin\alpha\overrightarrow{x}\right) \\ \overrightarrow{0} \end{array}\right\}$
 - Résistance au roulement : $\{\mathscr{T}(T \to 0)\}_i = \left\{ \begin{array}{c} -T_{0i} \overrightarrow{x} + N_{0i} \overrightarrow{z} \\ -C_r \overrightarrow{y} \end{array} \right\}_{A_i}$.
 - Traînée: $\{\mathcal{T}(\text{Trainee} \to E)\} = \left\{ \begin{array}{c} -\frac{1}{2}\rho SC_x \dot{x}^2 \overrightarrow{x} \\ \overrightarrow{0} \end{array} \right\}$.
- La résultante dynamique est donnée par (M+3m) T(G∈E/0) = (M+3m) x x.
 On applique le théorème de la résultante dynamique en projection sur x et z :
- - $(M+3m)g\sin\alpha \frac{1}{2}\rho SC_x \dot{x}^2 T_{04} T_{023} = (M+3m)\ddot{x}$
 - $(M+3m)g\cos\alpha + N_{04} + N_{023} = 0$

Question 7 Pour chacune des roues 23 et 4, écrire les 2 équations scalaires correspondant au théorème du moment dynamique respectivement en O_{23} et O_4 en projection sur \overrightarrow{y} .

Correction • On isole 23.

- BAME:
 - 23 est soumis à la pesanteur;
 - action de la pivot sans frottement avec le solide 1
 - $-\text{ r\'esistance au roulement}: \{\mathscr{T}(T\rightarrow 0)\}_{23} = \left\{ \begin{array}{c} -T_{023}\overrightarrow{x} + N_{023}\overrightarrow{z} \\ -N_{023}\overrightarrow{r}\overrightarrow{y} \end{array} \right\}_{A_{23}} = \left\{ \begin{array}{c} -T_{023}\overrightarrow{x} + N_{023}\overrightarrow{z} \\ (-rN_{023} + RT_{023})\overrightarrow{y} \end{array} \right\}_{O_{23}}.$
- Le moment dynamique de O_{23} centre d'inertie des roues en projection sur $\overrightarrow{y_0}$ s'écrit $\overline{\delta(O_{23},23/0)}\overrightarrow{y_0}=2I\ddot{\theta}_{23}$
- TMD en O_{23} en projection sur $\overrightarrow{y_0}$ s'écrit donc $-rN_{023} + RT_{023} = 2I\ddot{\theta}_{23}$.

De même pour la roue 4 en ajoutant la sollicitation du couple moteur : $-rN_{04} + RT_{04} + C_m = I\ddot{\theta}_4$.

Question 8 Montrer à partir des équations scalaires obtenues précédemment que le couple moteur C_m vaut : $C_m = (M+3m)g\cos\alpha r + \left[\frac{3I}{R} + R(M+3m)\right]\ddot{x} - R(M+3m)g\sin\alpha + \frac{1}{2}R\rho SC_x\dot{x}^2$.

$$\begin{aligned} & \text{Correction} \quad \text{On a: } C_m = I \ddot{\theta}_4 + r N_{04} - R T_{04} = \frac{I}{R} \ddot{x} + r N_{04} - R T_{04} = \frac{I}{R} \ddot{x} - r N_{023} + r (M + 3m) g \cos \alpha - R T_{04} = \frac{I}{R} \ddot{x} - R T_{023} + \\ 2I \ddot{\theta}_{23} + r (M + 3m) g \cos \alpha - R T_{04} = \frac{I}{R} \ddot{x} + \frac{2I}{R} \ddot{x} + r (M + 3m) g \cos \alpha - R \left((M + 3m) g \sin \alpha - \frac{1}{2} \rho S C_x \dot{x}^2 - (M + 3m) \ddot{x} \right). \\ C_m = r (M + 3m) g \cos \alpha + \left(\frac{3I}{R} + R (M + 3m) \right) \ddot{x} + \left(-R (M + 3m) g \sin \alpha + R \frac{1}{2} \rho S C_x \dot{x}^2 \right). \end{aligned}$$

Question 9 Identifier dans l'expression de C_m les différentes actions qui ont tendance à affecter l'avancement du véhicule.

Correction

$$C_m = \underbrace{(M+3m)g\,r\cos\alpha}_{\text{R\'esistance au roulement}} - \underbrace{(M+3m)g\,R\sin\alpha}_{\text{Couple pour monter la pente}} + \underbrace{\left(\frac{3I}{R} + R(M+3m)\right)\ddot{x}}_{\text{Couple pour vaincre les effets d'inertie}} + \underbrace{R\frac{1}{2}\rho\,S\,C_x\,\dot{x}^2}_{\text{Couple pour vaincre la train\'es}}$$

Question 10 Déterminer l'expression du couple moteur C_m quand le véhicule a une vitesse constante V sur une piste horizontale.

2

Correction À vitesse constante sur du plat, on a :

$$C_m = \underbrace{(M+3m)gr}_{\text{R\'esistance au roulement}} + \underbrace{R\frac{1}{2}\rho SC_x \dot{x}^2}_{\text{Couple pour vaincre la train\'ee}}$$

Question 11 Déterminer dans les conditions d'essais le produit $\frac{1}{2}\rho SC_x$ caractérisant les effets aérodynamiques sur le véhicule. On précisera les unités.

Question 12 Évaluer la pente maximum que peut monter ce véhicule à vitesse stabilisée de $5 \,\mathrm{km}\,h^{-1}$ (on négligera le couple de résistance au roulement).

Correction