The Jet Part of a Category

Matthew Burke

Algebra Seminar, Masaryk University 29th October 2015

Summary

- 1. Formal Group Laws and Classical Lie Theory
- 2. The Jet Factorisation System
- 3. The Jet Part of a Category

4. The Coreflective Subcategory of Jet Categories

Classical Lie Theory

Recall that in classical Lie theory we have an adjunction

When we restrict to the simply connected Lie groups:-

- ▶ Lie's second theorem says that $(-)_{\infty}$ is full and faithful;
- ▶ Lie's third theorem says that $(-)_{\infty}$ is essentially surjective.

We will generalise this situation in two main ways:-

- we will replace groups with categories;
- we will use synthetic differential geometry to view the local and global objects in the same category:

Formal Group Laws

Definition 1.

A formal group law F of dimension n is an n-tuple $(F_1, ..., F_n)$ of power series in the indeterminates $X_1, ..., X_n, Y_1, ..., Y_n$ such that

$$F(0, \vec{Y}) = \vec{Y}$$
 , $F(\vec{X}, 0) = \vec{X}$ and $F(F(\vec{X}, \vec{Y}), \vec{Z}) = F(\vec{X}, F(\vec{Y}, \vec{Z}))$

Example 2.

Given a Lie group (G, μ, e) choose a trivialisation $U \ni e$ and $g, h \in U$ such that $\mu(g, h) \in U$. If $g = \vec{X}$ and $h = \vec{Y}$ in the local coordinates then $\mu(\vec{X}, \vec{Y})$ is a formal group law in \vec{X} and \vec{Y} .

- ▶ We could have used the Campbell-Baker-Hausdorff formula but the above is more direct.
- We had to choose a trivialisation.
- ▶ This trivialisation was not closed under μ .
- ► These two problems disappear if we consider the infinitesimal neighbourhood of the identity instead of *U*.

The Jet Factorisation System

Definition 3.

The spectrum of a Weil algebra D_W is an object of the form

$$\{(x_1,...,x_n): \bigwedge_{i=1}^n (x_i^{k_i}=0) \wedge \bigwedge_{j=1}^m (p_j=0)\}$$

for $n, m \in \mathbb{N}_{\geq 0}$, $k_i \in \mathbb{N}_{> 0}$ and p_j are polynomials in the x_i .

Definition 4.

An arrow $r: X \to Y$ in \mathcal{E}/M is jet closed iff it is a monomorphism and for all Weil spectra D_W the square

$$X^{M \times D_W \to M} \xrightarrow{X^0} X$$

$$\downarrow^{r^{M \times D_W \to M}} \downarrow^r$$

$$Y^{M \times D_W \to M} \xrightarrow{Y^0} Y$$

is a pullback in \mathcal{E}/M .

The Jet Factorisation System

Definition 5.

An arrow $I:A\to B$ is jet dense in \mathcal{E}/M iff for all jet closed r the square

$$X^{B} \xrightarrow{X^{I}} X^{A}$$

$$\downarrow^{r^{B}} \qquad \downarrow^{r}$$

$$Y^{B} \xrightarrow{Y^{I}} Y^{A}$$

is a pullback in \mathcal{E}/M .

Proposition 6.

The pair (JetDense, JetClosed) defines a factorisation system. That is to say every arrow f in \mathcal{E} factorises as f = rl where l is jet dense and r is jet closed.

Composition in the Jet Part

Definition 7.

The jet part of a category has arrow space \mathcal{C}_{∞} given by the jet factorisation of the identity arrow

$$(M,1_M) \xrightarrow{e_\infty} (C_\infty,s_\infty) \xrightarrow{\iota_C^\infty} (C,s)$$

Recall that for every arrow $f:C\to M$ in a topos $\mathcal E$ the pullback functor f^* has both a left and a right adjoint:

$$\mathcal{E}/C \underbrace{\overset{\Sigma_f}{\leftarrow f^* - \mathcal{E}/M}}_{\Pi_f}$$

Moreover f^* preserves exponentials and for all X in \mathcal{E}/C and A in \mathcal{E}/M there is an isomorphism $\Pi_f(X^{f^*A}) \cong (\Pi_f X)^A$.

Lemma 8.

The functor Π_f preserves jet closed arrows:

Corollary 9.

The functor f^* preserves jet dense arrows.

Lemma 10.

The functor Σ_f preserves jet dense arrows.

Hence the following three arrows are jet dense in \mathcal{E}/M , \mathcal{E}/G and \mathcal{E}/M respectively.

$$(M,1_M) \xrightarrow{e_\infty} (C,s_\infty)$$

$$t_{\infty}^*((M,1_M) \xrightarrow{e_{\infty}} (C,s_{\infty})) = (C,1_C) \xrightarrow{t_{\infty}^*(e_{\infty})} (C_{t_{\infty}} \times_{s_{\infty}} C,\pi_1)$$

$$\Sigma_{s_{\infty}}((C,1_C) \xrightarrow{t_{\infty}^*(e_{\infty})} (C_{t_{\infty}} \times_{s_{\infty}} C, \pi_1)) = (C,s_{\infty}) \to (C_{t_{\infty}} \times_{s_{\infty}} C, s_{\infty} \pi_1)$$

Proposition 11.

The subobject $C_{\infty} \rightarrow C$ induces a subcategory $\mathbb{C}_{\infty} \rightarrow \mathbb{C}$.

Proof.

The multiplication is given by the lift:

$$(C_{\infty}, s_{\infty}) \xrightarrow{1_{C_{\infty}}} (C_{\infty}, s_{\infty})$$

$$(1_{C_{\infty}}, e_{\infty}t_{\infty}) \downarrow \qquad \qquad \downarrow \iota_{\infty}$$

$$(2_{\times}C_{\infty}, s_{\infty} \circ \pi_{1}) \xrightarrow{\mu_{0}(2_{\times}\iota_{\infty})} (C, s)$$

Definition 12.

A category $\mathbb K$ is called a *jet category* iff the arrow $\iota_{\mathbb K}^\infty:\mathbb K_\infty\to\mathbb K$ is an isomorphism.

Proposition 13.

The category $Cat_{\infty}(\mathcal{E})$ of jet categories is a mono-coreflective subcategory of $Cat(\mathcal{E})$.

$$Cat_{\infty}(\mathcal{E}) \xrightarrow{\perp} Cat(\mathcal{E}) \xrightarrow{\perp} Cat_{int}(\mathcal{E})$$

The Jet Part of a Lie Group

Example 14.

Let
$$D_{\infty} = \bigcup_{k=1}^{\infty} D_k$$
 then $(R, +)_{\infty} = (D_{\infty}^n, +)$.

Example 15.

Since all Lie groups $\mathbb G$ are locally Euclidean we have that $\mathbb G_\infty=(D^n_\infty,\mu)$ for some $n\in\mathbb N$ and some multiplication μ .

Now using the Kock-Lawvere axiom arrows

$$D_{\infty}^{2n} \xrightarrow{\mu} D_{\infty}^n$$

are *n*-tuples of formal power series in indeterminates $X_1,...,X_n, Y_1,...,Y_n$ with values in nilpotent elements.

▶ But having values in nilpotent elements is equivalent to having zero constant term. Furthermore the unit and associativity laws for μ induce the structure of a formal group law on the n-tuple.

