29-3-2017

Practica 6

Programación en lenguaje Ensamblador del ATmega2560

CARLOS OMAR CALDERON MEZA

MICROPROCESADORES Y MICROCONTROLADORES INGENIERO EN COMPUTACION – FACULTAD DE CIENCIAS QUIMICAS E INGENIERIA

Objetivo:

Mediante esta práctica el alumno aprenderá el uso básico de programa AVR Studio como herramientas de programación en lenguaje Ensamblador para el sistema ATmega1280.

Equipo:

- Computadora Personal

Teoría:

- Arquitectura interna y conjunto de instrucciones del ATmega1280

Los microcontroladores de la familia ATmega640/1280/1281/2560/2561 son microcontroladores CMOS de 8 bits, todos estos modelos son de arquitectura RICS.

Diagrama a bloques del microcontrolador ATmega640/1280/1281/2560/2561:

Los dispositivos de la familia ATmega difieren en tamaño de memoria y numero de pines, en la siguiente tabla se muestra las características de cada microcontrolador.

Device	Flash	EEPROM	RAM	General Purpose I/O pins	16 bits resolution PWM channels	Serial USARTs	ADC Channels
ATmega640	64KB	4KB	8KB	86	12	4	16
ATmega1280	128KB	4KB	8KB	86	12	4	16
ATmega1281	128KB	4KB	8KB	54	6	2	8
ATmega2560	256KB	4KB	8KB	86	12	4	16
ATmega2561	256KB	4KB	8KB	54	6	2	8

Arquitectura principal de AVR.

La función principal del núcleo del CPU es asegurar la ejecución del programa. El CPU debe poder accesar a memorias, realizar cálculos, controlar periféricos, y manejar interrupciones.

Como se puede observar en el diagrama a bloques internamente el microcontrolador tiene un procesador el cual lo conforma una unidad aritmética y

lógica ALU, registros, contador de programa, registro de instrucción, decodificador de instrucción, buses etc. A su vez contiene dentro del mismo encapsulado puertos de entrada y salida y sección de memoria, una tipo RAM, tipo ROM con la EEPROM y memoria flash.

Conjunto de instrucciones

El set de instrucciones del ATmega se puede dividir según sus especialidades:

- Instrucciones Aritméticas y lógicas.
- Instrucciones de salto.
- Instrucciones de Transferencia de datos.
- Instrucciones orientadas a Bits.
- Instrucciones de control del MCU.

Instrucciones aritméticas y lógicas

Mnemónicos	Operandos	Descripción	Operación	Banderas afectadas	Ciclos de Reloj
ADD	Rd, Rr	Suma dos Registros	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Suma dos Registros mas el acarreo	Rd ← Rd + Rr + C	Z,C,N,V,H	1
ADIW	RdI,K	Suma un dato Inmediato a una Palabra	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Resta dos Registros	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Resta una Constante de un Registro	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Resta dos Registros y el acarreo	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Resta el Acarreo y una Constante de un Registro	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Resta un dato Inmediato de una Palabra	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Oper. Log. AND entre dos Registros	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Oper. Log. AND entre Registro y una Constante	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Oper. Log. OR entre dos Registros	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Oper. Log. OR entre Registro y una Constante	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Oper. Log. X-OR entre dos Registros	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd	Complemento a 1 de un Registro	Rd ← 0xFF - Rd	Z,C,N,V	1
NEG	Rd	Complemento a 2 de un Registro	Rd ← 0x00 - Rd	Z,C,N,V,H	1
SBR	Rd,K	Poner a 1 los bits del Registro	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Limpiar con 0 los bits del Registro	$Rd \leftarrow Rd \cdot (0xFF - K)$	Z,N,V	1
INC	Rd	Incrementar Registro	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrementar Registro	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Comprobar que un Registro sea Cero o Negativo	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Limpiar un Registro	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Colocar en 1's el Registro	Rd ← 0xFF	Ninguna	1
MUL	Rd, Rr	Multiplicación sin signo	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiplicación con signo	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiplicar un Reg. con signo con uno sin signo	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Multiplicación sin signo Fraccionaria	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Multiplicación con signo Fraccionaria	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Mult. Fraccionaria de un Reg. con signo con uno sin signo	R1:R0 ← (Rd x Rr) << 1	Z,C	2

Instrucciones de salto

Mnemónicos	Operandos	Descripción	Operación	Banderas afectadas	Ciclos de Reloj
RJMP	k	Salto relativo	PC ← PC + k + 1	Ninguna	2
IJMP		Salto Indirecto a (Z)	PC ← Z	Ninguna	2
RCALL	k	Llamado a Subrutina relativa	PC ← PC + k + 1	Ninguna	3
ICALL		Llamada Indirecta a (Z)	PC ← Z	Ninguna	3
RET		Retorno de una Subrutina	PC ← STACK	Ninguna	4
RETI		Retorno de una Interrupción	PC ← STACK	1	4
CPSE	Rd.Rr	Compara y Salta si es igual	if (Rd = Rr) PC ← PC + 2 or 3	Ninguna	1/2/3
CP	Rd.Rr	Compara	Rd - Rr	Z, N,V,C,H	1
CPC	Rd.Rr	Compara con el Acarreo	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd.K	Compara Registro con un dato Inmediato	Rd - K	Z. N.V.C.H	1
SBRC	Rr. b	Salta si el Bit en el Reg. es Cero	if (Rr(b)=0) PC ← PC + 2 or 3	Ninguna	1/2/3
SBRS	Rr. b	Salta si el Bit en el Reg. es Uno	if (Rr(b)=1) PC ← PC + 2 or 3	Ninguna	1/2/3
SBIC	P, b	Salta si el Bit en el Reg. de I/O es Cero	if (P(b)=0) PC ← PC + 2 or 3	Ninguna	1/2/3
SBIS	P, b	Salta si el Bit en el Reg. de I/O es Uno	if (P(b)=1) PC ← PC + 2 or 3	Ninguna	1/2/3
BRBS	s, k	Salta si la bandera de estado es Uno	if (SREG(s) = 1) then PC←PC+k + 1	Ninguna	1/2
BRBC	s, k	Salta si la bandera de estado es Cero	if (SREG(s) = 0) then PC←PC+k + 1	Ninguna	1/2
BREQ	k	Salta si es Igual	if (Z = 1) then PC ← PC + k + 1	Ninguna	1/2
BRNE	k	Salta si no es Igual	if (Z = 0) then PC ← PC + k + 1	Ninguna	1/2
BRCS	k	Salta si el Acarreo esta en Uno	if (C = 1) then PC ← PC + k + 1	Ninguna	1/2
BRCC	k	Salta si el Acarreo esta en Cero	if (C = 0) then PC ← PC + k + 1	Ninguna	1/2
BRSH	k	Salta si es Igual o Mayor	if (C = 0) then PC ← PC + k + 1	Ninguna	1/2
BRLO	k	Salta si es Menor	if (C = 1) then PC ← PC + k + 1	Ninguna	1/2
BRMI	k	Salta si es Negativo	if (N = 1) then PC ← PC + k + 1	Ninguna	1/2
BRPL	k	Salta si es Positivo	if (N = 0) then PC ← PC + k + 1	Ninguna	1/2
BRGE	k	Salta si es Mayor o Igual, con signo	if (N ⊕ V= 0) then PC ← PC + k + 1	Ninguna	1/2
BRLT	k	Salta si es Menor que Cero, con signo	if (N ⊕ V= 1) then PC ← PC + k + 1	Ninguna	1/2
BRHS	k	Salta si el Acarreo Intermedio es Uno	if (H = 1) then PC ← PC + k + 1	Ninguna	1/2
BRHC	k	Salta si el Acarreo Intermedio es Cero	if (H = 0) then PC ← PC + k + 1	Ninguna	1/2
BRTS	k	Salta si la bandera T esta en Uno	if (T = 1) then PC ← PC + k + 1	Ninguna	1/2
BRTC	k	Salta si la bandera T esta en Cero	if (T = 0) then PC ← PC + k + 1	Ninguna	1/2
BRVS	k	Salta si la bandera de Sobreflujo esta en Uno		Ninguna	1/2
BRVC	k	Salta si la bandera de Sobreflujo esta en Cero		Ninguna	1/2
BRIE	k	Salta si la Interrupción está habilitada	if (I = 1) then PC ← PC + k + 1	Ninguna	1/2
BRID	k	Salta si la Interrupción No está habilitada	if (I = 0) then PC ← PC + k + 1	Ninguna	1/2

Instrucciones de trasferencia de datos

				Banderas	
Mnemónicos	Operandos	Descripción	Operación	afectadas	Ciclos de Reloj
MOV	Rd, Rr	Movimiento entre Registros	Rd ← Rr	Ninguna	1
MOVW	Rd, Rr	Copia Registro de una Palabra	$Rd+1:Rd \leftarrow Rr+1:Rr$	Ninguna	1
LDI	Rd, K	Carga dato Inmediato	$Rd \leftarrow K$	Ninguna	2
LD	Rd, X	Carga dato Indirecto	$Rd \leftarrow (X)$	Ninguna	2
LD	Rd, X+	Carga dato Indirecto y se Incrementa	$Rd \leftarrow (X), X \leftarrow X + 1$	Ninguna	2
LD	Rd, - X	Se Decrementa y Carga dato Indirecto	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	Ninguna	2
LD	Rd, Y	Carga dato Indirecto	$Rd \leftarrow (Y)$	Ninguna	2
LD	Rd, Y+	Carga dato Indirecto y se Incrementa	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	Ninguna	2
LD	Rd, - Y	Se Decrementa y Carga dato Indirecto	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	Ninguna	2
LDD	Rd,Y+q	Carga dato Indirecto desplazado	$Rd \leftarrow (Y + q)$	Ninguna	2
LD	Rd, Z	Carga dato Indirecto	Rd ← (Z)	Ninguna	2
LD	Rd, Z+	Carga dato Indirecto y se Incrementa	$Rd \leftarrow (Z), Z \leftarrow Z+1$	Ninguna	2
LD	Rd, -Z	Se Decrementa y Carga dato Indirecto	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	Ninguna	2
LDD	Rd, Z+q	Carga dato Indirecto desplazado	$Rd \leftarrow (Z + q)$	Ninguna	2
LDS	Rd, k	Carga dato Directo de la SRAM	Rd ← (k)	Ninguna	2
ST	X, Rr	Almacenamiento Indirecto	(X) ← Rr	Ninguna	2
ST	X+, Rr	Almacena un dato Indirecto y se Incrementa	$(X) \leftarrow Rr, X \leftarrow X + 1$	Ninguna	2
ST	-X,Rr	Se Decrementa y almacena un dato Indirecto	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	Ninguna	2
ST	Y, Rr	Almacenamiento Indirecto	(Y) ← Rr	Ninguna	2
ST	Y+, Rr	Almacena un dato Indirecto y se Incrementa	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	Ninguna	2
ST	-Y,Rr	Se Decrementa y almacena un dato Indirecto	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	Ninguna	2
STD	Y+q,Rr	Se almacena dato Indir. con desplazamiento	$(Y + q) \leftarrow Rr$	Ninguna	2
ST	Z, Rr	Almacenamiento Indirecto	(Z) ← Rr	Ninguna	2
ST	Z+, Rr	Almacena un dato Indirecto y se Incrementa	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	Ninguna	2
ST	-Z,Rr	Se Decrementa y almacena un dato Indirecto	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	Ninguna	2
STD	Z+q,Rr	Se almacena dato Indir. con desplazamiento	$(Z + q) \leftarrow Rr$	Ninguna	2
STS	k, Rr	Almacenamiento Directo a la SRAM	(k) ← Rr	Ninguna	2
LPM		Carga Memoria de Programa	R0 ← (Z)	Ninguna	3
LPM	Rd, Z	Carga Memoria de Programa	$Rd \leftarrow (Z)$	Ninguna	3
LPM	Rd, Z+	Carga Memoria de Programa y se Incrementa	$Rd \leftarrow (Z), Z \leftarrow Z+1$	Ninguna	3
SPM		Se almacena Memoria de Programa	(Z) ← R1:R0	Ninguna	-
IN	Rd, P	Lee del Puerto un dato	Rd ← P	Ninguna	1
OUT	P, Rr	Saca un dato por el Puerto	P ← Rr	Ninguna	1
PUSH	Rr	Empuja un registro al Stack	STACK ← Rr	Ninguna	2
POP	Rd	Regresa un registro del Stack	Rd ← STACK	Ninguna	2

Instrucciones orientadas a manipulación de bits

Mnemónicos	Operandos	Descripción	Operación	Banderas afectadas	Ciclos de Reloj
SBI	P,b	Poner a 1 el Bit de Registro de I/O	I/O(P,b) ← 1	Ninguna	2
CBI	P,b	Poner a 0 el Bit de Registro de I/O	I/O(P,b) ← 0	Ninguna	2
LSL	Rd	Corrimiento Logico a la Izquierda	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Corrimiento Logico a la Derecha	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	4
ROL	Rd	Rotar a la Izquierda a través del Acarreo	$Rd(0)\leftarrow C, Rd(n+1)\leftarrow Rd(n), C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotar a la Derecha a través del Acarreo	$Rd(7)\leftarrow C, Rd(n)\leftarrow Rd(n+1), C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Corrimiento a la Derecha Aritmético	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Intercambiar Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	Ninguna	1
BSET	S	Poner a 1 las banderas	SREG(s) ← 1	SREG(s)	1
BCLR	S	Poner a 0 las banderas	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Almacenar Bit de un Register a T	T ← Rr(b) T 1	T	1
BLD	Rd, b	Cargar Bit de T al Registro	$Rd(b) \leftarrow T$	T	4
SEC	1 00000-000	Poner a 1 el Acarreo	C ← 1	С	1
CLC		Poner a 0 el Acarreo	C ← 0	С	1
SEN		Poner a 1 la bandera de los Negativos	N ← 1	N	1
CLN		Poner a 0 la bandera de los Negativos	N ← 0	N	1
SEZ		Poner a 1 la bandera de Ceros	Z ← 1	Z	1
CLZ		Poner a 0 la bandera de Ceros	Z ← 0	Z	1
SEI		Habiliar la Interrupción Global	I ← 1	1	
CLI		No Habiliar la Interrupción Global	1 ← 0	Ĭ.	1
SES		Poner 1 la band. Comprobación de Signo	S ← 1	S	1
CLS		Poner 0 la band. Comprobación de Signo	S ← 0	S	1
SEV		Poner 1 al Sobreflujo del Complemento a 2	V ← 1	V	1
CLV		Poner 0 al Sobreflujo del Complemento a 2	V ← 0	V	1
SET		Poner a 1 la bandera T en SREG	T ← 1	T	1
CLT		Poner a 0 la bandera T en SREG	T ← 0	T	1
SEH		Poner a 1 el Acarreo Auxiliar en SREG	H ← 1	Н	1
CLH		Poner a 0 el Acarreo Auxiliar en SREG	H ← 0	Н	1

Instrucciones de control de MCU

Mnemónicos	Operandos	Descripción	Operación	Banderas afectadas	Ciclos de Reloj
NOP		No Operacion		Ninguna	1
SLEEP		Sleep		Ninguna	1
WDR		Watchdog Reset		Ninguna	1
BREAK		Break For On-chip Debug Only		Ninguna	N/A

Desarrollo

Escriba un programa que invierte la posición de bits, intercambiando el orden de bits del más significativo al menos significativo, del valor dado en:

I. El registro R31-R30 si R24 es 0,

II. El registro R29-R28 si R24 es 1,

III. El programa realizará ninguna accion para cualquier otro valor en R24.

Nota: El programa debe realizar estas acciones indefinidamente.

Conclusiones y comentarios:

La arquitectura del microcontrolador ATmega en sus diferentes versiones contienen lo básico de un sistema computacional para trabajar como son unidad de procesamiento, sección de memoria y sección de entrada y salida de manera muy limitada, esto porque un microcontrolador funciona para una tarea en específico o están orientados a realizar una tarea o pocas, en contraste que el microprocesador es de uso general.

El lenguaje ensamblador de AVR es muy parecido a lo que ya conocía (x86) y no me tomo mucho trabajo o no se me presento mucha dificultad al realizar la practica por el gran parecido a lo que ya conozco de programación a nivel ensamblador. Sera agradable aprender y trabajar con estos dispositivos.

Bibliografía:

[1] Modos de Direccionamiento e Instrucciones del AVR ATmega32. 30-03-2017, de ITPS Sitio web:

https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjrksObmP SAhVml1QKHb7xAAUQFggcMAE&url=https%3A%2F%2Fuvirtual.unet.edu.ve%2Fpluginfile.php%2F199032%2Fmod folder%2Fcontent%2F0%2FTutorial%2520ATMEGA%2F7842870-Capitulo3-Modosde-Direccionamiento-e-Instrucciones-del-ATmega32-espanol.pdf%3Fforcedownload%3D1&usg=AFQjCNE8Y2Y8nnAxwPVNRMwKdbR

w2Mf4BA&sig2=K4YtBYHdc3GtKr0yWwcRxA&bvm=bv.151325232,d.cGw