Red-Black, Splay and Huffman Trees

Kuan-Yu Chen (陳冠宇)

2018/10/22 @ TR-212, NTUST

Review

- AVL Trees
 - Self-balancing binary search tree
 - Balance Factor
 - Every node has a balance factor of -1, 0, or 1

Red-Black Trees.

- A red-black tree is a self-balancing binary search tree that was invented in 1972 by Rudolf Bayer
 - A special point to note about the red-black tree is that in this tree, no data is stored in the leaf nodes
- A red-black tree is a binary search tree in which every node has a color which is either red or black
 - 1. The color of a node is either red or black
 - 2. The color of the root node is always black
 - 3. All leaf nodes are black
 - 4. Every red node has both the children colored in black
 - 5. Every simple path from a given node to any of its leaf nodes has an equal number of black nodes

Red-Black Trees..

Red-Black Trees...

Root is red

Red-Black Trees....

A leaf node is red

Red-Black Trees.....

- Every red node does not have both the children colored in black
- Every simple path from a given node to any of its leaf nodes does not have equal number of black nodes

Searching in a Red-Black Tree

• Since red-black tree is a binary search tree, it can be searched using exactly the **same algorithm** as used to search an ordinary binary search tree!

Insertion in a Red-Black Tree

- In a binary search tree, we always add the new node as a leaf, while in a red-black tree, leaf nodes contain no data
 - For a given data
 - 1. Searching the correct position for the data
 - 2. In the searching process, if there is a node with two red children
 - a) Perform color change algorithm
 - b) Check whether there are two consequent red nodes in the path
 - ① If yes, do rotation!
 - 3. Insert the data and set to a red node
 - 4. Check whether there are two consequent red nodes in the path
 - a) If yes, do rotation!
 - 5. Root should be black

Examples – 1.

Examples – 1...

Examples – 2.

Examples – 2...

Examples – 3.

• Given 1, 2, 3, 4, 5 and 6, please construct a red-black tree

Examples – 3..

• Given 1, 2, 3, 4, 5 and 6, please construct a red-black tree

Compared with AVL Trees

- Red-black trees are efficient binary search trees, as they offer worst case time guarantee O(log n) for insertion, deletion, and search operations
 - It is roughly a balanced binary search tree
- AVL trees also support O(log n) search, insertion, and deletion operations, but they are more rigidly balanced than red-black trees
 - Thereby, AVL trees are slower insertion and removal but faster retrieval of data

SPLAY Trees

- Splay trees were invented by Daniel Sleator and Robert Tarjan
- A splay tree is a **self-balancing binary search tree** with an additional property that **recently accessed elements can be re-accessed fast**
 - A simple idea behind it is that if an element is accessed, it is likely that it will be accessed again
- For many non-uniform sequences of operations, splay trees perform better than other search trees

SPLAY Trees – Splaying.

- When we access a node *N*, splaying is performed on the node to move it to the root
 - Zig Step
 - The zig operation is done when *P* (the parent of *N*) is the root of the splay tree

- Zig-zig Step
 - The zig-zig operation is performed when *P* is not the root
 - Besides, *N* and *P* are either both right or left children of their parents

SPLAY Trees – Splaying..

- Zig-zag Step
 - The zig-zag operation is performed when *P* is not the root
 - In addition to this, *N* is the right child of *P* and *P* is the left child of *G* or vice versa

SPLAY Trees – Insertion

- The steps performed to insert a new node *N* in a splay tree can be given as follows
 - Search *N* in the splay tree
 - If the search is successful, splay at the node *N*
 - If the search is unsuccessful, add the new node *N* in such a way that it replaces the NULL pointer reached during the search by a pointer to a new node *N*
 - Splay the tree at *N*

Example

• Insert 81 into a given Splay tree

SPLAY Trees – Search

- If a particular node N is present in the splay tree, then a
 pointer to N is returned; otherwise a pointer to the null
 node is returned
 - If the search is unsuccessful (the splay tree does not contain),
 Splay the tree at the last non-null node reached during the search
 - Searching 81

Huffman Trees

- Huffman coding is an entropy encoding algorithm developed by David A. Huffman that is widely used as a lossless data compression technique
- The key idea behind Huffman algorithm is that it encodes the most common characters using shorter strings of bits than those used for less common source characters
 - The internal node is used to link to its child nodes
 - The external node contains the actual character and weight

Weighted External Path Length

- The weighted external path length
 - For T_1

•
$$2 \times 3 + 3 \times 3 + 5 \times 2 + 11 \times 3 + 5 \times 3 + 2 \times 2 = 77$$

- For T_2
 - $5 \times 2 + 7 \times 2 + 3 \times 3 + 4 \times 3 + 2 \times 2 = 49$
- For T_3
 - $2 \times 3 + 3 \times 3 + 5 \times 2 + 11 \times 1 = 36$

Creating a Huffman Tree

- Given *n* nodes and their weights, the Huffman algorithm is used to find a tree with a **minimum** weighted path length
 - Creating a new node whose children are the two nodes with the smallest weight
 - The two nodes are merged into one node
 - Repeat the process until the tree has only one node

Example.

A 7	B 9	C 11	D 14	E 18	F 21	G 27	H 29	І 35	J 40
(1	6)	C 11	D 14	E 18	F 21	G 27	H 29	І 35	J 40
A B 9									
(1	6	(2	5)	E 18	F 21	G 27	H 29	1 35	J 40
A 7	B 9	C 11	D 14						

Example..

Example...

Example....

Example.....

Data Coding

- For a Huffman tree, every left branch is coded with 0 and every right branch is coded with 1
 - For a character sequence: AAERZ
 - By Huffman Coding Scheme: 000001111011
 - By Original Coding Scheme: 00000001010110

Character	Code	Original Coding
А	00	000
E	01	001
R	11	010
W	1010	011
X	1000	100
Υ	1001	101
Z	1011	110

31

Questions?

kychen@mail.ntust.edu.tw