Machine Learning

Concepts et méthodologie

marie.szafranski@ensiie.fr

Introduction

What's now?

Méthodologie

- Comment évaluer les performances d'un modèle?
- Mesures de performance « brutes »
 - → Matrice de confusion
- Procédures d'estimation du risque empirique
 - → Découpage
 - → Simulation
 - → Pénalisation

(Vignette Wikistat)

http://wikistat.fr/pdf/st-m-app-risque.pdf

- 2 Comment choisir un bon modèle?
 - → Inclusion dans les procédures d'estimation du risque empirique

Minimisation du risque empirique

Ensemble d'apprentissage

$$\sim$$
 Cf. 01_concepts.pdf $S = \{(\boldsymbol{x_i}, y_i)\}_{i=1}^N$

$$orall i,~m{x}_i \in \mathcal{X} = \mathbb{R}^M$$
 $orall i,~y_i \in \mathcal{Y} = \{0,1\}$ ou $\{\pm 1\}$

Construire un modèle

$$\hat{y} = \mathrm{sign}\left[h_{S,oldsymbol{p}}^{m{\star}}(oldsymbol{x})
ight] \ h_{S,oldsymbol{p}}^{m{\star}}: \mathbb{R}^M o \mathcal{Y}$$

Erreur empirique : estimation optimiste de l'erreur de généralisation

$$\begin{aligned} h_{S,p}^{\star} &= \operatorname{argmin}_{h \in \mathcal{H}} & R_{emp}(h) \\ &= \operatorname{argmin}_{h \in \mathcal{H}} & \frac{1}{N} \sum_{i=1}^{N} L(y_i, h(x_i)) \end{aligned}$$

ensiie 2023-2024

Fonction de perte

- Pénalisation de l'erreur ± sévère
- Mesure de performance?

Crédits: http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html

Fonction de perte

- Pénalisation de l'erreur ± sévère
- Mesure de performance?

$$\hat{y} = \operatorname{sign} \left[h_{S, \mathbf{p}}^{\star}(\mathbf{x}) \right]$$

Crédits: http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html

ensiie 2023-2024

Mesurer l'erreur en pratique

Supervisé

Matrice de confusion
 Mesures associées

→ Taux d'erreur, précision, rappel, . . .

Courbe ROC

Mesures associées

 \leadsto Sensibilité, spécificité, aire sous la courbe, . . .

Mesurer l'erreur en pratique

Supervisé

Matrice de confusion
 Mesures associées

→ Taux d'erreur, précision, rappel, . . .

• Courbe ROC

Mesures associées

→ Sensibilité, spécificité, aire sous la courbe, . . .

Classification (C > 2) ou régression

⇒ Adaptations nécessaires

Terminologie

$\begin{array}{ccc} Observations & \to \\ Pr\'edictions & \downarrow \end{array}$	y = 1	y = 0	Total
$\hat{y} = 1$	$N_{\hat{1}1}$	$N_{\hat{1}0}$	$N_{\hat{1}}.$
$\hat{y} = 0$	$N_{\hat{0}1}$	$N_{\hat{0}0}$	$N_{\hat{0}}$.
Total	N.1	$N_{\cdot 0}$	N

```
# prédictions positives (N_{\hat{1}}, \widehat{Pos}) et négatives (N_{\hat{0}}, \widehat{Neg})
# vrais positifs (N_{\hat{1}1}, VP, TP) et négatifs (N_{\hat{0}0}, VN, TN)
                                                                                   #préd. correctes
# faux positifs (N_{\hat{1}0}, FP) et négatifs (N_{\hat{0}1}, FN)
                                                                                    #préd. erronées
```

ensiie

observations positives $(N_{\cdot 1}, Pos)$ et négatives $(N_{\cdot 0}, Neg)$

Mesure de performance globale

Observations \rightarrow Prédictions \downarrow	y=1	y = 0	Total
$\hat{y} = 1$	TP	FP	Pos
$\hat{y} = 0$	FN	TN	Neg
Total	Pos	Neg	N

$$\frac{\mathsf{TP} + \mathsf{TN}}{N} = 1 - \frac{\mathsf{FP} + \mathsf{FN}}{N}$$

Précision globale = 1 - taux d'erreur

Accuracy vs Error rate

Précision

$\begin{array}{ll} Observations & \to \\ Pr\'edictions & \downarrow \end{array}$	y=1	y = 0	Total
$\hat{y} = 1$	TP	FP	Pos
$\hat{y} = 0$	FN	TN	Neg
Total	Pos	Neg	N

Combien d'éléments sélectionnés sont pertinents? (parmi tous les éléments sélectionnés : $\hat{y} = 1$)

$$\frac{\mathsf{TP}}{\widehat{\mathsf{Pos}}} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

Precision, Positive Predictive Value (PPV)

Crédits : Wikipedia

2023-2024

Rappel

Taux de vrais positifs, sensitivité

Observations – Prédictions ↓	→	y=1	y = 0	Total
$\hat{y} = 1$		TP	FP	Pos
$\hat{y} = 0$		FN	TN	Neg
Total		Pos	Neg	N

Combien d'éléments pertinents sont sélectionnés? (parmi tous les éléments pertinents : y = 1)

$$\frac{\mathsf{TP}}{\mathsf{Pos}} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Recall, True Positive Rate (TPR), sensitivity

Crédits : Wikipedia

Spécificité

Taux de vrais négatifs, sélectivité

$\begin{array}{ccc} Observations & \to \\ Pr\'edictions & \downarrow \end{array}$	y = 1	y = 0	Total
$\hat{y} = 1$	TP	FP	Pos
$\hat{y} = 0$	FN	TN	Neg
Total	Pos	Neg	N

Combien d'éléments pertinents sont sélectionnés? (parmi tous les éléments pertinents : y = 0)

$$\frac{\mathsf{TN}}{\mathsf{Neg}} = \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FF}}$$

True Negative Rate (TNR), selectivity

Crédits : Wikipedia

Autres taux d'erreurs et mesures dérivées

Taux de faux positifs

$$\frac{\text{FP}}{\text{Neg}} = \frac{\text{FP}}{\text{TN} + \text{FP}} = 1 - \frac{\text{TN}}{\text{Neg}} = 1 - \text{spécificité}$$

Taux de faux négatifs

$$\frac{FN}{Pos} = \frac{FN}{TP + FN} = 1 - \frac{TP}{Pos} = 1 - rappel$$

Taux de fausses découvertes

11

$$\frac{\overline{FP}}{\overline{Pos}} = \frac{\overline{FP}}{\overline{TP} + \overline{FP}} = 1 - \frac{\overline{TP}}{\overline{Pos}} = 1 - \text{précision}$$

F1-score

$$F_1 = 2 \times \frac{\mathsf{PPV} \times \mathsf{TPR}}{\mathsf{PPV} + \mathsf{TPR}} = 2 \times \frac{\mathsf{TP}}{(\mathsf{TP} + \mathsf{FP} + \mathsf{FN})}$$

ensiie 2023-2024

Récapitulatif et mesures supplémentaires

Vignette Wikistat

→ récap. + point de vue complémentaire
http://wikistat.fr/pdf/st-m-app-risque.pdf

Article Wikipedia

→ mesures complémentaires

https://en.wikipedia.org/wiki/Precision_and_recall

Receiver Operating Caracteristic

Définition informelle et intuitions

Évaluation au seuil s d'un algorithme retournant un score

→ probabilité qu'un exemple soit positif

Score

$$h_{sc}(x) \in [0,1]$$

Artificiel

$$K$$
-nn : $h_{sc}({m x}) = \frac{\#_K({m x}|y=1)}{K}$

Intrinsèque

Régression logistique :
$$h(x) = \frac{1}{1 + \exp(x^T \beta)}$$

Seuil

$$\hat{y} = 1$$
 si $h(x) \ge s$
 $\hat{y} = 0$ si $h(x) < s$

2023-2024

ensiie

Représentation graphique

- ↑ proba de détecter un vrai signal
- \rightarrow proba de détecter un signal à tord

$$(TPR = sensibilité)$$

 $(FPR = 1 - spécificité)$

Point de la courbe

Seuil s

Crédits : scikit-learn

Représentation graphique

- ↑ proba de détecter un vrai signal
- ightarrow proba de détecter un signal à tord

$$(TPR = sensibilité)$$

 $(FPR = 1 - spécificité)$

Crédits : scikit-learn

• Point de la courbe

Seuil s

Area Under the Curve

AUC

2023-2024

ensiie

Illustration

Exemple tiré du cours de M. Mougeot

$$y = 0$$
 et $y = 1$

1.
$$h(x) = x^1 \ge s \in [0, 9]$$

2.
$$h(x) = x^2 \ge s \in [0, 9]$$

15

Illustration

16

s	TPR	TNR	FPR	
0.50	1.00	0.00	1.00	
				d L
				۲
				-

TPR =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{4}{4 + 0} = 1.00$$

TNR =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{0}{0 + 4} = 0.00$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

ensiie 2023-2024

Illustration

16

s	TPR	TNR	FPR	
0.50	1.00	0.00	1.00	
1.50	1.00	0.25	0.75	
				ά
				TPR
	İ	İ		
	1			-

TPR =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{4}{4 + 0} = 1.00$$

TNR =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{1}{1+3} = 0.25$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

ensiie 2023-2024

Illustration

16

s	IPK	INK	FPR	
0.50	1.00	0.00	1.00	
1.50	1.00	0.25	0.75	
2.50	0.75	0.25	0.75	
				TPR

$$TPR = \frac{TP}{TP + FN} = \frac{3}{3+1} = 0.75$$

$$\mathsf{TNR} \,=\, \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}} = \frac{1}{1+3} = 0.25$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

TPR

Courbe ROC

Illustration

16

s	TPR	TNR	FPR
0.50	1.00	0.00	1.00
1.50	1.00	0.25	0.75
2.50	0.75	0.25	0.75
3.50	0.75	0.50	0.50
4.50	0.50	0.50	0.50
5.50	0.50	0.75	0.25
6.50	0.25	0.75	0.25
7.50	0.25	1.00	0.00
8.50	0.00	1.00	0.00

$${\sf TPR} \ = \ \frac{{\sf TP}}{{\sf TP} + {\sf FN}} = \frac{0}{0 + 4} = 0.00$$

TNR =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{4}{4 + 0} = 1.00$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

1 – spécificité

Illustration

s	TPR	TNR	FPR	
0.50	1.00	0.00	1.00	
				Ė
				-
	1			-

$$\mathsf{TPR} \ = \ \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} = \frac{4}{4 + 0} = 1.00$$

TNR = $\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{0}{0 + 4} = 0.00$

sensitivité

spécificité

FPR = 1 - TNR

1 – spécificité

Illustration

17

s	TPR	TNR	FPR	
0.50	1.00	0.00	1.00	
1.50	1.00	0.25	0.75	
				TPR
				Ë
				-

TPR =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{4}{4 + 0} = 1.00$$

$$\mathsf{TNR} \,=\, \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}} = \frac{1}{1+3} = 0.25$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

Illustration

17

s	TPR	TNR	FPR	
0.50	1.00	0.00	1.00	
1.50	1.00	0.25	0.75	
2.50	1.00	0.50	0.50	
				H
				-

$${\sf TPR} \ = \ \frac{{\sf TP}}{{\sf TP} + {\sf FN}} = \frac{4}{4 + 0} = 1.00$$

TNR =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{2}{2 + 2} = 0.50$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

Illustration

s	TPR	TNR	FPR
0.50	1.00	0.00	1.00
1.50	1.00	0.25	0.75
2.50	1.00	0.50	0.50
3.50	1.00	0.75	0.25
4.50	1.00	1.00	0.00
5.50	0.75	1.00	0.00
6.50	0.50	1.00	0.00
7.50	0.25	1.00	0.00
8.50	0.00	1.00	0.00

TPR =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{0}{0 + 4} = 0.00$$

TNR =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{4}{4 + 0} = 1.00$$

sensitivité

spécificité

$$FPR = 1 - TNR$$

2023-2024 ensiie

17

En résumé : comparaison de différents modèles

Crédits : Alex Yartsev

• C	omparaison globale	AUC
$h_{\mathcal{C}}$	$g(oldsymbol{x})$ à perf. exacte	1.0
h_I	$_{I}(oldsymbol{x})$ à perf. "moyenne"	~ 0.75
h_I	$p(oldsymbol{x})$ à perf. aléatoire	0.5

2023-2024

En résumé : comparaison de différents modèles

• Comparaison locale $h_{\ell}(x) \geq s$

$$h_{\ell}(x) \geq s$$

2023-2024

ensiie

What else?

Autres mesures de performance

Plein, vraiment plein...

Cas spécifiques

- Données déséquilibrées
- Multi-classes
- Régression
- Ordonnancement
- . .

https://scikit-learn.org/stable/modules/model_evaluation.html

2023-2024 ensiie

19

Interlude : évaluation des performances avec les K-nn

Algorithme

https://scikit-learn.org/stable/modules/neighbors.html

Données Pima

C=2

Évaluation

https://scikit-learn.org/stable/modules/model_evaluation.html

Focus sur les mesures vues aujourd'hui

- \rightarrow Module classification metrics
- → Extension au cas multiclasse

(K-nn)

Données Modèle

$$S = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N, \ \boldsymbol{y_i} = \boldsymbol{1} \text{ ou } \boldsymbol{y_i} = -\boldsymbol{1}$$

$$h_K \text{ avec } K = \{3 - , 5 - - -\}$$

Exemple tiré de Wikipedia

(K-nn)

$$S_{\ell} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_{\ell}}, \ S_u = \{\boldsymbol{x}_j\}_{j=1}^{N_u} \ \text{et } K$$
 $\{\hat{y}_j\}_{j=1}^{N_u}$

(K-nn)

Entrées Sortie

$$S_{\ell} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_{\ell}}, \ S_u = \{\boldsymbol{x}_j\}_{j=1}^{N_u} \ \text{et } \boldsymbol{K}$$
 $\{\hat{y}_j\}_{j=1}^{N_u}$

1. Calculer les similarités

$$\mathbf{D}_{i,i} = d(\boldsymbol{x}_i, \boldsymbol{x}_i)$$

$$\mathbf{D} \in \mathbb{R}^{N_{oldsymbol{u}} imes N_{oldsymbol{\ell}}}$$

$$1 \leq j \leq N_u$$
, $1 \leq i \leq N_\ell$

2. Ordonner les $oldsymbol{K}$ similarités

$$i_1: \overleftarrow{\mathbf{D}}_{j,i_1} \leq \cdots \leq i_{\pmb{K}-1}: \overleftarrow{\mathbf{D}}_{j,i_{\pmb{K}-1}} \leq i_{\pmb{K}}: \overleftarrow{\mathbf{D}}_{j,i_1}$$

3. Affecter les classes

$$\hat{y}_j = \mathsf{classe_majoritaire}(y_{i_1}, \cdots, y_{i_K})$$

$$1 \le j \le N_u$$

(K-nn)

Entrées Sortie

$$S_{\ell} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_{\ell}}, \ S_u = \{\boldsymbol{x}_j\}_{j=1}^{N_u} \ \text{et } \boldsymbol{K}$$
 $\{\hat{y}_j\}_{j=1}^{N_u}$

1. Calculer les similarités

$$\mathbf{D}_{i,i} = d(\mathbf{x}_i, \mathbf{x}_i)$$

 $\mathbf{D} \in \mathbb{R}^{N_{oldsymbol{u}} imes N_{oldsymbol{\ell}}}$

$$1 \leq j \leq N_u$$
, $1 \leq i \leq N_\ell$

2. Ordonner les K similarités

$$i_1 : \overleftarrow{\mathbf{D}}_{j,i_1} \leq \cdots \leq i_{K-1} : \overleftarrow{\mathbf{D}}_{j,i_{K-1}} \leq i_K : \overleftarrow{\mathbf{D}}_{j,i_K}$$

3. Affecter les classes

$$\hat{y}_j = \mathsf{classe_majoritaire}(y_{i_1}, \cdots, y_{i_K})$$

 $1 \le j \le N_u$

 $\stackrel{\leftarrow}{\mathsf{D}} \subset \mathbb{R}^{N_u \times K}$

(K-nn)

Entrées Sortie

$$S_{\ell} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_{\ell}}, \ S_u = \{\boldsymbol{x}_j\}_{j=1}^{N_u} \ \text{et } \boldsymbol{K}$$
 $\{\hat{y}_j\}_{j=1}^{N_u}$

1. Calculer les similarités

$$\mathbf{D}_{j,i} = d(\boldsymbol{x}_j, \boldsymbol{x}_i)$$

 $\mathbf{D} \in \mathbb{R}^{N_{oldsymbol{u}} imes N_{oldsymbol{\ell}}}$

$$1 \leq j \leq N_u$$
, $1 \leq i \leq N_\ell$

2. Ordonner les K similarités

$$i_1: \overleftarrow{\mathbf{D}}_{j,i_1} \leq \cdots \leq i_{\pmb{K}-1}: \overleftarrow{\mathbf{D}}_{j,i_{\pmb{K}-1}} \leq i_{\pmb{K}}: \overleftarrow{\mathbf{D}}_{j,i_{\pmb{K}}}$$

3. Affecter les classes

$$\hat{y}_j = \mathsf{classe_majoritaire}(y_{i_1}, \cdots, y_{i_{\pmb{K}}})$$

$$1 \le j \le N_u$$

 $\stackrel{\leftarrow}{\mathsf{D}} \subset \mathbb{R}^{N_u \times K}$

What's now?

Méthodologie

- Comment évaluer les performances d'un modèle?
- Mesures de performance « brutes »
 - √ Matrice de confusior
 - √ Courbe ROC
- Procédures d'estimation du risque empirique
 - → Découpage
 - → Simulation
 - → Pénalisation

(Vignette Wikistat)

http://wikistat.fr/pdf/st-m-app-risque.pdf

- 2. Comment choisir un bon modèle?
 - --- Inclusion dans les procédures d'estimation du risque empirique

What's now?

Méthodologie

- 1. Comment évaluer les performances d'un modèle?
- Mesures de performance « brutes »
 - √ Matrice de confusior
 - √ Courbe ROC
- Procédures d'estimation du risque empirique
 - → Découpage
 - → Simulation
 - → Pénalisation

(Vignette Wikistat)

http://wikistat.fr/pdf/st-m-app-risque.pdf

- 2. Comment choisir un bon modèle?
 - --- Inclusion dans les procédures d'estimation du risque empirique

Rappel

Minimisation du RE

$$h_S^{\star} = \operatorname{argmin}_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, h(\boldsymbol{x}_i))$$

• Dilemme B vs V
$$R(h_S^\star) = R(h^- + \underbrace{[R(h^\star) - R(h^-)]}_{\text{Biais}} + \underbrace{[R(h_S^\star) - R(h^\star)]}_{\text{Variance}}$$

Rappel

Minimisation du RE

$$h_S^* = \operatorname{argmin}_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, h(x_i))$$

Dilemme B vs V $R(h_S^\star) = R(h^- + [R(h^\star) - R(h^-)] + [R(h_S^\star) - R(h^\star)]$ Biais Variance

Crédits: Pascal Scalar - introduction au DM

Rappel

Minimisation du RE

$$h_S^* = \operatorname{argmin}_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^N L(y_i, h(\boldsymbol{x}_i))$$

• Dilemme B vs V
$$R(h_S^\star) = R(h^- + \underbrace{[R(h^\star) - R(h^-)]}_{\text{Biais}} + \underbrace{[R(h_S^\star) - R(h^\star)]}_{\text{Variance}}$$

Capacité de généralisation de h_S^{\star} sur S'?

 $\rightsquigarrow R(h_{S'}^{\star})$

Soit
$$h_{p}(x)$$
: $h_{p} = \operatorname{argmin}_{h \in \mathcal{H}_{p}} L(\{(x_{i}, y_{i})\})$

$$1 \leq p \leq P$$

$$\{S_A\}_{i=1}^{N_A} \qquad \{S_V\}_i$$

2023-2024 ensiie

Soit
$$h_{p}(x)$$
: $h_{p} = \operatorname{argmin}_{h \in \mathcal{H}_{p}} L(\{(x_{i}, y_{i})\})$

$$1 \leq p \leq P$$

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$\{S_T\}_{i=1}^{N_T}$$

$$N_A + N_V + N_T = N$$

Soit
$$h_p(x)$$
: $h_p = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{(x_i, y_i)\})$

 $1 \le p \le P$

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

$$\begin{split} h_1 &= \operatorname{argmin}_{h \in \mathcal{H}_1} L(S_A) \\ &\leadsto \widehat{R_{A1}}(h_1(S_A)) \\ & & \vdots \\ h_P &= \operatorname{argmin}_{h \in \mathcal{H}_P} L(S_A) \\ &\leadsto \widehat{R_{AP}}(h_P(S_A)) \\ & & \searrow \widehat{R_{AP}}(h_P(S_A)) \end{split}$$

$$p^* &= \operatorname{argmin}_p \widehat{R_{VP}}(h_P(S_V))$$

Soit
$$h_{p}(x)$$
: $h_{p} = \operatorname{argmin}_{h \in \mathcal{H}_{p}} L(\{(x_{i}, y_{i})\})$

1

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

$$\begin{split} h_1 &= \operatorname{argmin}_{h \in \mathcal{H}_1} L(S_A) \\ &\leadsto \widehat{R_{A1}}(h_1(S_A)) \\ & & \vdots \\ h_P &= \operatorname{argmin}_{h \in \mathcal{H}_P} L(S_A) \\ &\leadsto \widehat{R_{AP}}(h_P(S_A)) \\ & & \nearrow \widehat{R_{AP}}(h_P(S_A)) \end{split}$$

Soit
$$h_p(x)$$
: $h_p = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{(x_i, y_i)\})$

1

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

$$h_{1} = \operatorname{argmin}_{h \in \mathcal{H}_{1}} L(S_{A})$$

$$\Rightarrow \widehat{R_{A1}}(h_{1}(S_{A})) \qquad \Rightarrow \widehat{R_{V1}}(h_{1}(S_{V}))$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$h_{P} = \operatorname{argmin}_{h \in \mathcal{H}_{P}} L(S_{A})$$

$$\Rightarrow \widehat{R_{AP}}(h_{P}(S_{A})) \qquad \Rightarrow \widehat{R_{VP}}(h_{P}(S_{V}))$$

$$p^{*} = \operatorname{argmin}_{p} \widehat{R_{VP}}(h_{P}(S_{V}))$$

ensiie

Soit
$$h_p(x)$$
: $h_p = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{(x_i, y_i)\})$

1

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

$$\begin{split} h_1 &= \operatorname{argmin}_{h \in \mathcal{H}_1} L(S_A) \\ &\leadsto \widehat{R_{A1}}(h_1(S_A)) \\ & & \vdots \\ h_P &= \operatorname{argmin}_{h \in \mathcal{H}_P} L(S_A) \\ &\leadsto \widehat{R_{AP}}(h_P(S_A)) \\ & & \leadsto \widehat{R_{VP}}(h_P(S_V)) \\ \\ p^* &= \operatorname{argmin}_p \widehat{R_{VP}}(\cdot) \end{split}$$

ensiie

Soit
$$h_p(x)$$
: $h_p = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{(x_i, y_i)\})$

1

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

$$\begin{split} h_1 &= \operatorname{argmin}_{h \in \mathcal{H}_1} L(S_A) \\ &\leadsto \widehat{R_{A1}}(h_1(S_A)) \\ & & \vdots \\ h_P &= \operatorname{argmin}_{h \in \mathcal{H}_P} L(S_A) \\ &\leadsto \widehat{R_{AP}}(h_P(S_A)) \\ &\leadsto \widehat{R_{VP}}(h_P(S_V)) \end{split}$$

Est. erreur de généralisation

$$p^* = \operatorname{argmin}_p \widehat{R_{Vp}}(\cdot) \qquad \leadsto \widehat{R_{Tp}}(h_{p^*}(S_T))$$

Soit
$$h_{p}(x)$$
: $h_{p} = \operatorname{argmin}_{h \in \mathcal{H}_{p}} L(\{(x_{i}, y_{i})\})$

 $1 \le p \le P$

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$\{S_T\}_{i=1}^{N_T}$$

$$N_A + N_V + N_T = N$$

ullet Valable pour N suffisamment grand

$$N_A$$
 trop petit

→ qualité d'ajustement médiocre

+

 N_V ou N_T trop petits

 \rightsquigarrow variance de l'estimation importante

ullet Réitérer cette procédure sur B découpages

 \leadsto robustesse

2023-2024

Soit
$$h_{\mathbf{p}}(\mathbf{x}): \quad h_{\mathbf{p}} = \operatorname{argmin}_{h \in \mathcal{H}_{\mathbf{p}}} L(\{(\mathbf{x}_i, y_i)\})$$

$$1 \le p \le P$$

$$\{S_A\}_{i=1}^{N_A}$$
 $\{S_V\}_{i=1}^{N_V}$

$$N_A + N_V + N_T = N$$

 $\{S_T\}_{i=1}^{N_T}$

 \bullet Valable pour N suffisamment grand

$$N_A$$
 trop petit

→ qualité d'ajustement médiocre

 N_V ou N_T trop petits

→ variance de l'estimation importante

• Réitérer cette procédure sur B découpages

 \sim Bootstrap

(cf. Vignette Wikistat)

Soit
$$h_p(x)$$
: $h_p = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{(x_i, y_i)\})$

$$1 \le p \le P$$

$$\{S_A\}_{i=1}^{N_A}$$

$$\{S_V\}_{i=1}^{N_V}$$

$$\{S_T\}_{i=1}^{N_T}$$

$$N_A + N_V + N_T = N$$

Si plusieurs familles de méthodes

 $\mathcal{H}: K$ -nn

G: Réseau de neurones

 $\mathcal{F}: SVM$

$$\widehat{R_{Tp_{h}^{\star}}}(h_{p^{\star}}(S_{T}))$$

$$\widehat{R_{Tp_{g}^{\star}}}(g_{p^{\star}}(S_{T}))$$

$$\widehat{R_{Tp_f^{\star}}}(f_{p^{\star}}(S_T))$$

2023-2024

Principe avec K = 3 blocs

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

$$\{S_A\}_{i=1}^{N_A}$$
 $\{S_T\}_{i=1}^{N_T}$ $\{A_1^1\}$ $\{A_1^2\}$ $\{V_1\}$

$$1 \le p \le P$$

$$\{A_{m{o}}^1\}$$

$$\{A_3^2\}$$

 $\{S_T\}_{i=1}^{N_T}$

Estimation par validation croisée

Principe avec K = 3 blocs

k = 1

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

$$\{S_A\}_{i=1}^{N_A}$$

$$N_A/K \qquad N_A/K \qquad N_A/K$$

$$1 \le p \le P$$

$$h_1 = \operatorname{argmin}_{h \in \mathcal{H}_{\mathbf{p}}} L(\{A_1^1\} \cup \{A_1^2\})$$

$$\rightsquigarrow \widehat{R_{V_{1\mathbf{p}}}}(h_1(V_1))$$

$$k=2 \hspace{1.5cm} \left\{ \begin{array}{c|c} A_2^1 \end{array} \right. \hspace{1.5cm} \left\{ \begin{array}{c|c} V_2 \end{array} \right\} \hspace{1.5cm} \left\{ A_2^2 \right\} \hspace{1.5cm}$$

$$=3$$
 $\{V_3\}$ $\{A_3^1\}$ $\{A_3^2\}$

 $\{S_T\}_{i=1}^{N_T}$

Estimation par validation croisée

Principe avec K = 3 blocs

k = 1

k = 2

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

$$N_A/K$$
 N_A/K N_A/K N_A/K $\{A_1^1\}$ $\{A_2^1\}$ $\{V_2\}$ $\{A_2^2\}$

 $\{S_A\}_{i=1}^{N_A}$

$$1 \le p \le P$$

$$= \operatorname{argmin}_{L(A_{+}^{1})} \cup \{A_{+}^{2}\})$$

$$h_1 = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{A_1^1\} \cup \{A_1^2\})$$

$$\rightsquigarrow \widehat{R_{V1p}}(h_1(V_1))$$

$$h_2 = \operatorname{argmin}_{h \in \mathcal{H}_p} L(\{A_2^1\} \cup \{A_2^2\})$$

$$\rightsquigarrow \widehat{R_{V_2p}}(h_2(V_2))$$

2023-2024

 $\{A_3^1\}$

Principe avec K=3 blocs

 $\{V_3\}$

k = 3

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

29

$$\{S_A\}_{i=1}^{N_A} \qquad \{S_T\}_{i=1}^{N_T}$$

$$N_A/K \qquad N_A/K \qquad N_A/K \qquad 1 \leq p \leq P$$

$$k = 1 \qquad \{A_1^1\} \qquad \{A_1^2\} \qquad \{V_1\} \qquad h_1 = \underset{\widehat{RV_{1p}}(h_1(V_1))}{\operatorname{argmin}_{h \in \mathcal{H}_p} L(\{A_1^1\} \cup \{A_2^2\})}$$

$$k = 2 \qquad \{A_2^1\} \qquad \{V_2\} \qquad \{A_2^2\} \qquad h_2 = \underset{\widehat{RV_{2p}}(h_2(V_2))}{\operatorname{argmin}_{h \in \mathcal{H}_p} L(\{A_3^1\} \cup \{A_3^2\})}$$

$$k = 2 \qquad \{V_1\} \qquad \{A_1^1\} \qquad \{A_2^2\} \qquad h_3 = \underset{\widehat{RV_{2p}}(h_2(V_2))}{\operatorname{argmin}_{h \in \mathcal{H}_p} L(\{A_3^1\} \cup \{A_3^2\})}$$

 $\{A_3^2\}$

ensiie 2023-2024

 $\rightsquigarrow \widehat{R_{V3p}}(h_3(V_3))$

Principe avec K=3 blocs

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

 $1 \le p \le P$

29

Principe avec K=3 blocs

K blocs $\neq K$ -nn!

$$N_A + N_T = N$$

 $1 \le p \le P$

Est. erreur généralisation $h_{p^{\star}} = \operatorname{argmin}_{h \in \mathcal{H}_{p^{\star}}} L(S_A)$

Principe avec K=3 blocs

$$K$$
 blocs $\neq K$ -nn!

$$N_A + N_T = N$$

 $1 \le p \le P$

29

Est. erreur généralisation $h_{p^{\star}} = \operatorname{argmin}_{h \in \mathcal{H}_{p^{\star}}} L(S_A)$

ensiie 2023-2024

 $\leadsto \widehat{R_T}(h_{p^*}(S_T))$

Remarques

- K généralement 5, 10 ou N_A-1 (leave one out)
- Veiller à l'équilibre des classes dans chaque bloc
- Réitérer cette procédure sur B découpages

→ stratification

30

En résumé et en pratique

https://openclassrooms.com/fr/courses/4297211-evaluez-les-performances-dun-modele-de-machine-learning