Esercizio 1:

Sia dato il seguente schema relazionale relativo alle filiali di una data banca presenti sul territorio nazionale:

Filiale (Codice Filiale, Città, Direttore, Totale Depositi); dian condidate: dicettore

SiTrovaIn(Città, Regione);

CCclienti(CodiceFiscale, Filiale, NumeroCC).

Si assuma che ogni filiale sia identificata univocamente dal suo codice e sia caratterizzata dalla città in cui si trova, dal codice fiscale del direttore e dall'ammontare complessivo di denaro depositato presso di essa (attributo Totale Depositi). Si assuma che filiali diverse abbiano direttori diversi. Si assuma anche che la banca possa avere più di una filiale in una data città. Ogni città sia identificata univocamente dal suo nome. Ogni cliente sia identificato unicamente dal suo codice fiscale e possa possedere uno o più conti correnti presso una o più filiali. Ogni conto corrente sia identificato univocamente dal suo numero, sia associato ad una sola filiale e abbia un unico proprietario.

Definire preliminarmente le chiavi primarie, le eventuali altre chiavi candidate e, se ve ne sono, le chiavi esterne delle relazioni date. Successivamente, formulare opportune interrogazioni in algebra relazionale che permettano di determinare (senza usare l'operatore di divisione e usando solo se necessario le funzioni aggregate):

- (a) i clienti che possiedono conti correnti solo in filiali della banca con sede in città della regione Veneto;
- (b) per ogni città con almeno 3 filiali, il numero di filiali con un valore dell'attributo TotaleDepositi maggiore di 50000000 di euro;

a	самматі ← Т	TodiceFisc ((~REGIONE = 'VE	veto' (F)2	IALE M	SITROVA	N)) M (CLIENTE DICEFILIACE)		
	N0-G∞D ← ∏										
	S ← CANDIDATI	-No-600D									
b.	ALMENO 3 → A X	« A × A									
	FILIALE1 (1,1,) ← FILIA	ALE								
	FILIALE 2 (2,2,) ← FILIA	ALE.								
	S CITTA Janti(*) (~ TOTAU OR T	E DEPOSITI = 5000 OTALE DEPOSITI 4 = OTALE DEPOSITI 2 =	O~ CODICE FILE AND CITTA: CODICE FILEA AND CITTA	ALE < CODICE CITTAL AND LEL < CODICI CITTAL	FILIALEA (FI	LIALE × FILIO	ALE 1 × FI	LIALE 2)))		
С.	CONTICLIENTE -	- TFILIALE	O CODICEFISCALE	= 'MLN" (CCCLIENTI))					
	STATO_DI_FATTO ←	- TCODFISC,F	ILIACE (CCCLIENTI)							
	REQUISITI ← TT	coofise (ce cli	enti) x contilc	JENTE							
	No. Good ← RE	TATZ - ITIZIUQ	O_DL_FATTO								
	$NO.GOOD \leftarrow RE$ $S \leftarrow \Pi_{COOFIS}(CC)$			(40							
				(40							

Esercizio 4:

Si considerino le due transazioni seguenti:

```
start transaction; -- T1
  select qta from Articolo where id = 123;
  select qta from Articolo where id = 123;
commit;

start transaction; -- T2
  update Articolo set qta = qta - 1 where id = 123;
commit;
```

Si supponga che T1 e T2 siano sottomesse al sistema simultaneamente. Si spieghi, giustificando la risposta, quali risultati possono produrre le due select, nei casi in cui le due transazioni siano eseguite:

- 1. nel livello serializable;
- nel livello repeatable read;
- 3. nel livello read committed;
- 4. nel livello read uncommitted.

mel cas	N O	.72 siamo	sequenzi	ali (UMO	dei d	me or	dimi)	allo	ιa	le c	tue	sele	d h	amm	o ri	.sult	ati	com	sistemt	i pen	tutti	i liv	elli					
2" umica	am	omalia	ē LETTU	RA (NK	CONSI	STENT	Œ e	d ē	possik	z9kc	ક્ટ િ	o qu	ando	o.															
	T1:	select	gta fro	m f	Ntico	ര.																							
	τ <u>ン</u> :	update	Articolo	set	gta=																								
	TA ·	select 9	ta fron	m Ar	ticolo)																							
nel a) OSC	li livello							vata ata —			_																e mom e Napsho	
			- REP	eatagl	e rea	D: 6					NON		AWEN			hē	2PL s	tretto	im	letturco	/sccitt	ura -		uma	deue	due t	tramso	E. vier	ne mess so fimcha etha mon
			- SEI	MHLIZ	ABLE			"			11		"				"			"								con	ana morr

Esercizio 5:

Dato il seguente insieme di chiavi:

```
2, 1, 18, 17, 21, 14, 13, 7, 6, 15, 12, 11, 3, 19, 5, 4, 16,
```

mostrare il **B-albero**, con ordine dei nodi interni p = 4, ottenuto inserendo un elemento dopo l'altro nell'ordine dato (riportando la sequenza di alberi generata dal processo di inserimento).

Successivamente, si identifichino i nodi del B-albero visitati nella ricerca di rispettivamente: (i) il record contraddistinto dal valore 9 e (ii) il record contraddistinto dal valore 6.

