run

October 7, 2023

1 Using Machine Learning to predict Financial Crises

Author: Chris Reimann Date created: 2023/07/28 Last modified: 2023/10/07 Description: This notebook runs the experiments of the paper "Using Machine Learning to predict Financial Crises: An Evaluation of different Learning Algorithms for Early Warning Models".

1.1 Setup

Load the latest code from the repository and import it into the virtual machine.

```
[2]: from prepareData import Data
from doExperiment import Experiment
import pandas as pd
```

1.2 Load Data

Construct datasets using specified indicator variables from the MacroHistory database. Nominal values of local currencies are transformed to GDP-ratios, while growth rates are computed for percentages and index values. For additional details see Chapter 2.3 of the paper.

Macro: The final dataset contains 1591 observations with 63 distinct crisis events.

Credit: The final dataset contains 1373 observations with 60 distinct crisis

events.

Credit & Asset: The final dataset contains 1159 observations with 46 distinct crisis events.

All: The final dataset contains 1101 observations with 41 distinct crisis events.

1.3 Construct Experiments

Specify models to be tested. Available models are Logit, KNeighbors, RandomForest, ExtraTrees, SVM and NeuralNet.

1.4 Run Experiments

1.4.1 In-Sample

Compute ROC values for all models trained and tested on the whole dataset.

```
[4]:
                   Set
                                    Model
                                                 AUC
     0
                               KNeighbors 1.000000
                 Macro
                             RandomForest 0.975804
     1
                 Macro
                               ExtraTrees
     2
                 Macro
                                           0.825952
     3
                 Macro
                                      SVM 0.773601
     4
                 Macro
                                    Logit 0.709806
     5
                 Macro
                                NeuralNet
                                           0.707416
                 Macro Random Assignment 0.500000
```

```
0
           Credit
                           KNeighbors
                                       1.000000
                         RandomForest
1
           Credit
                                       0.983538
2
           Credit
                           ExtraTrees
                                       0.934343
3
           Credit
                                  SVM
                                       0.918643
4
           Credit
                            NeuralNet
                                       0.851912
5
           Credit
                                       0.790217
                                Logit
           Credit Random Assignment
6
                                       0.500000
                           KNeighbors
0
   Credit & Asset
                                       1.000000
  Credit & Asset
                        RandomForest
                                       0.992726
2 Credit & Asset
                           ExtraTrees
                                       0.955384
3 Credit & Asset
                                  SVM
                                       0.943323
4 Credit & Asset
                           NeuralNet 0.864574
5
  Credit & Asset
                                Logit
                                       0.808380
6
  Credit & Asset
                  Random Assignment
                                       0.500000
                           KNeighbors
0
              All
                                       1.000000
1
              All
                         RandomForest
                                       0.993947
2
              All
                           ExtraTrees
                                       0.963143
3
              All
                                  SVM
                                       0.949269
4
              All
                            NeuralNet
                                       0.927175
5
              A11
                                       0.858661
                                Logit
                   Random Assignment
6
              All
                                       0.500000
```

1.4.2 Out-of-Sample

Macro: NeuralNet:

Credit: Random Assignment:

Run experiments in cross-validation setting.

0%1

0%|

```
[5]: n = 100 # Specify number of cross-validation iterations
     ex_macro.run(n)
     ex_credit.run(n)
     ex_ca.run(n)
     ex_all.run(n)
     resCrossVal = pd.concat([ex_macro.auc, ex_credit.auc, ex_ca.auc, ex_all.auc])
     resCrossVal
    Macro: Random Assignment:
                                 0%1
                                               | 0/100 [00:00<?, ?it/s]
                                  | 0/100 [00:00<?, ?it/s]
    Macro: Logit:
                     0%1
    Macro: KNeighbors:
                          0%1
                                        | 0/100 [00:00<?, ?it/s]
    Macro: RandomForest:
                            0%1
                                          | 0/100 [00:00<?, ?it/s]
    Macro: ExtraTrees:
                          0%1
                                        | 0/100 [00:00<?, ?it/s]
                   0%1
                                | 0/100 [00:00<?, ?it/s]
    Macro: SVM:
```

| 0/100 [00:00<?, ?it/s]

| 0/100 [00:00<?, ?it/s]

Credit: Logit: 0% | 0/100 [00:00<?, ?it/s] Credit: KNeighbors: 0% | 0/100 [00:00<?, ?it/s] Credit: ExtraTrees: 0%| | 0/100 [00:00<?, ?it/s] Credit: SVM: 0%| | 0/100 [00:00<?, ?it/s] Credit: NeuralNet: 0%| | 0/100 [00:00<?, ?it/s] Credit & Asset: Random Assignment: 0%| | 0/100 [00:00<?, ?it/s] Credit & Asset: Logit: 0% | 0/100 [00:00<?, ?it/s] 0%1 Credit & Asset: KNeighbors: | 0/100 [00:00<?, ?it/s] Credit & Asset: RandomForest: 0%| | 0/100 [00:00<?, ?it/s] Credit & Asset: ExtraTrees: 0%| | 0/100 [00:00<?, ?it/s] Credit & Asset: SVM: 0%| | 0/100 [00:00<?, ?it/s] Credit & Asset: NeuralNet: 0% | 0/100 [00:00<?, ?it/s] All: Random Assignment: 0%| | 0/100 [00:00<?, ?it/s] All: Logit: 0% | 0/100 [00:00<?, ?it/s] All: KNeighbors: 0%| | 0/100 [00:00<?, ?it/s] All: RandomForest: 0%| | 0/100 [00:00<?, ?it/s]

All: ExtraTrees: 0%| | 0/100 [00:00<?, ?it/s]

All: SVM: 0%| | 0/100 [00:00<?, ?it/s]

All: NeuralNet: 0%| | 0/100 [00:00<?, ?it/s]

[5]:	Set	Model	AUC
0	Macro	${\tt RandomForest}$	0.704588
1	Macro	Logit	0.679660
2	Macro	NeuralNet	0.663692
3	Macro	ExtraTrees	0.656247
4	Macro	KNeighbors	0.603511
5	Macro	SVM	0.516354
6	Macro	Random Assignment	0.500000
0	Credit	ExtraTrees	0.825699
1	Credit	${\tt RandomForest}$	0.824423
2	Credit	KNeighbors	0.799671
3	Credit	NeuralNet	0.772014
4	Credit	Logit	0.755909
5	Credit	SVM	0.751870
6	Credit	Random Assignment	0.500000
0	Credit & Asset	ExtraTrees	0.839913
1	Credit & Asset	${\tt RandomForest}$	0.832740

```
2
   Credit & Asset
                           KNeighbors
                                        0.798748
3 Credit & Asset
                            NeuralNet
                                        0.772401
  Credit & Asset
                                Logit
                                        0.763955
   Credit & Asset
                                  SVM
                                        0.751551
5
6
   Credit & Asset
                   Random Assignment
                                        0.500000
                           ExtraTrees
                                        0.828041
0
              All
1
              All
                         RandomForest
                                        0.816599
2
              A11
                           KNeighbors
                                        0.795852
3
              All
                                        0.785161
                                Logit
4
              All
                            NeuralNet
                                        0.781879
5
              All
                                  SVM
                                        0.769958
6
              All
                    Random Assignment
                                        0.500000
```

[6]: ex_all.rocGraph() ex_allIS.rocGraph()

1.5 Explainability

Compute logistic regression coefficients and AEL for best performing black-blox model (Random Forest / Extremely Randomized Trees).

[7]: df_all.correlationMatrix()

[8]: df_all.vif()

```
[8]:
                  variable
                                   VIF
     0
                             3.139997
                rconsbarro
     13
                      hpnom
                             2.501668
                             2.482708
     6
                     tloans
     12
         globalyieldCurve
                             2.288070
     4
                             2.273961
                        cpi
     9
                        ltd
                              1.839108
     2
                              1.764422
                      money
     11
              globaltloans
                              1.743562
     3
                      xrusd
                              1.732725
     8
                yieldCurve
                              1.540389
     1
                              1.459956
                         iy
     7
                  debtServ
                              1.444777
     10
                              1.355034
                   debtgdp
     5
                         ca
                              1.302359
```

[9]: ex_all.logitCoef()

Optimization terminated successfully. Current function value: 0.179190 Iterations 8 const is significant at 1% rconsbarro is significant at 1% money is significant at 5% xrusd is significant at 5% cpi is significant at 1% debtServ is significant at 5% yieldCurve is significant at 1% 1td is significant at 1% globaltloans is significant at 1% globalyieldCurve is significant at 1% hpnom is significant at 10% [9]: Coef. Std.Err. P>|z| [0.025 \ z -3.697644 0.228878 -16.155525 1.038316e-58 -4.146237 const -0.629918 0.191872 -3.283011 1.027045e-03 -1.005980 rconsbarro iy -0.051658 0.169415 -0.304922 7.604257e-01 -0.383706 money 0.389246 0.174602 2.229332 2.579181e-02 0.047032 xrusd -0.410281 0.191527 -2.142155 3.218099e-02 -0.785668 cpi 0.748978 0.171188 4.375175 1.213349e-05 0.413456 ca -0.258403 0.158231 -1.633073 1.024535e-01 -0.568530 1.239010 2.153419e-01 -0.130112 tloans 0.223606 0.180472 debtServ -0.401652 0.176307 -2.278137 2.271840e-02 -0.747208 yieldCurve -0.787079 0.176864 -4.450203 8.578928e-06 -1.133725 ltd 0.531080 0.173788 3.055914 2.243756e-03 0.190462 debtgdp -0.170815 0.192149 -0.888970 3.740192e-01 -0.547421 globaltloans 4.389149 1.137953e-05 0.418633 0.756404 0.172335 globalyieldCurve -0.583369 0.160648 -3.631355 2.819367e-04 -0.898233 hpnom 0.236903 0.121942 1.942752 5.204617e-02 -0.002099 0.975] -3.249052 const rconsbarro -0.253856 iy 0.280389 money 0.731459 xrusd -0.034895 cpi 1.084501 ca 0.051724 tloans 0.577324 debtServ -0.056096 yieldCurve -0.440433 ltd 0.871697 debtgdp 0.205791

globaltloans

globalyieldCurve -0.268505

1.094174

hpnom 0.475905

[10]: ex_allIS.ALE(["Logit", "RandomForest", "ExtraTrees"], range(0,14))

LogisticRegression(max_iter=1000, penalty='none', random_state=1)

AUC: 0.8586610522094392

RandomForestClassifier(max_depth=6, n_estimators=1000, random_state=1)

AUC: 0.993946913301752

ExtraTreesClassifier(max_depth=6, n_estimators=1000, random_state=1)

AUC: 0.9631425921748502

1.6 Robustness Checks

```
[7]: # Robustness Check: ESRB Crisis Data
     df_alt1 = Data(iv_all, crisisData = "ESRB").getReady("ESRB")
     ex_alt1 = Experiment(df_alt1, models, "CrossVal")
     ex_alt1.run(n = 100)
     ex_alt1.auc
    ESRB: The final dataset contains 426 observations with 22 distinct crisis
    events.
                                            | 0/100 [00:00<?, ?it/s]
    ESRB: Random Assignment:
                               0%|
                                | 0/100 [00:00<?, ?it/s]
    ESRB: Logit:
                   0%1
                                     | 0/100 [00:00<?, ?it/s]
    ESRB: KNeighbors:
                        0%1
    ESRB: RandomForest:
                        0%1
                                       | 0/100 [00:00<?, ?it/s]
                                     | 0/100 [00:00<?, ?it/s]
    ESRB: ExtraTrees:
                        0%|
    ESRB: SVM:
                 0%1
                              | 0/100 [00:00<?, ?it/s]
    ESRB: NeuralNet:
                       0%1
                                    | 0/100 [00:00<?, ?it/s]
[7]:
         Set
                          Model
     O ESRB
                  RandomForest 0.896315
     1 ESRB
                    ExtraTrees 0.867543
     2 ESRB
                    KNeighbors 0.798209
     3 ESRB
                          Logit 0.770237
     4 ESRB
                            SVM 0.764440
     5 ESRB
                      NeuralNet 0.743398
     6 ESRB
             Random Assignment 0.500000
[8]: # Robustness Check: Laeven & Valencia Crisis Data
     df alt1 = Data(iv all, crisisData = "LaevenValencia").getReady("LaevenValencia")
     ex_alt1 = Experiment(df_alt1, models, "CrossVal")
     ex alt1.run(n = 100)
     ex alt1.auc
    Yugoslavia, SFR not found in regex
    LaevenValencia: The final dataset contains 674 observations with 18 distinct
    crisis events.
    LaevenValencia: Random Assignment:
                                         0%1
                                                       | 0/100 [00:00<?, ?it/s]
                             0%|
                                          | 0/100 [00:00<?, ?it/s]
    LaevenValencia: Logit:
                                  0%1
                                               | 0/100 [00:00<?, ?it/s]
    LaevenValencia: KNeighbors:
    LaevenValencia: RandomForest:
                                    0%1
                                                  | 0/100 [00:00<?, ?it/s]
                                               | 0/100 [00:00<?, ?it/s]
    LaevenValencia: ExtraTrees:
                                  0%1
                                        | 0/100 [00:00<?, ?it/s]
    LaevenValencia: SVM:
                           0%1
```

```
| 0/100 [00:00<?, ?it/s]
    LaevenValencia: NeuralNet: 0%|
[8]:
                 Set
                                 Model
                                            AUC
    0 LaevenValencia
                            KNeighbors 0.867680
    1 LaevenValencia
                            ExtraTrees 0.867093
    2 LaevenValencia
                             NeuralNet 0.863735
    3 LaevenValencia
                                   SVM 0.853616
    4 LaevenValencia
                          RandomForest 0.851058
    5 LaevenValencia
                                 Logit 0.837715
    6 LaevenValencia Random Assignment 0.500000
[]:
```