

FIG. 30: Energy Λ as a function of α for the first two branches in d=3. For $\alpha \to +\infty$, the energy of the first branch undergoes damped oscillations around the value $\Lambda_s \simeq 1.13$. We have taken $\mu=1$.

Introducing the dimensionless variables defined previously, recalling that $r = \xi R/\alpha$ and $\mu = k_0 R$, and introducing the normalized energy (57), we obtain

$$\Lambda = -\frac{d}{2\eta} + \frac{1}{2\eta^2} \frac{1}{\alpha^{d-2}} \int_0^\alpha \left(\frac{d\psi}{d\xi}\right)^2 \xi^{d-1} d\xi
+ \frac{\mu^2}{2\eta^2} \frac{1}{\alpha^d} \int_0^\alpha (\psi + \beta m \Phi_0)^2 \xi^{d-1} d\xi.$$
(78)

Using the expressions of κ and λ following Eq. (68), we find that

$$\beta m\Phi_0 = -\frac{\lambda}{\kappa^2},\tag{79}$$

so that, finally,

$$\Lambda = -\frac{d}{2\eta} + \frac{1}{2\eta^2} \frac{1}{\alpha^{d-2}} \int_0^\alpha \left(\frac{d\psi}{d\xi}\right)^2 \xi^{d-1} d\xi
+ \frac{\mu^2}{2\eta^2} \frac{1}{\alpha^d} \int_0^\alpha \left(\psi - \frac{\lambda \alpha^2}{\mu^2}\right)^2 \xi^{d-1} d\xi.$$
(80)

This equation gives the relation between the energy Λ and α for the n-th branch. In Figs. 26, 27, 29 and 30, we plot the energy Λ as a function of α for the first two branches n=1 and n=2 in different dimensions of space d=1,2,3. The discussion is similar to the one given in Sec. III D. We have also represented the branch corresponding to the homogeneous solution. Using Eq. (87) and $\eta=\alpha^2/d$, its equation is given by $\Lambda=-d^2/(2\alpha^2)+d/(2\mu^2)$.

E. The entropy and the free energy

Finally, we relate α to the entropy S and to the free energy F. The entropy is given by

$$S = \frac{d}{2}Nk_B \ln T - k_B \int \frac{\rho}{m} \ln \frac{\rho}{m} d\mathbf{r}.$$
 (81)

FIG. 31: Free energy $\frac{J}{Nk_B}$ as a function of the inverse temperature η for d=1. We have taken $\mu=1<\mu_c$.

FIG. 32: Free energy $\frac{J}{Nk_B}$ as a function of the inverse temperature η for d=1. We have taken $\mu=10>\mu_c$. The free energies of the homogeneous phase and inhomogeneous phase become equal at $\eta=\eta_t(\mu)$. This corresponds to a first order phase transition in the canonical ensemble marked by the discontinuity of the slope $J'(\beta)=-E$.

FIG. 33: Free energy $\frac{J}{Nk_B}$ as a function of the inverse temperature η for d=2. We have taken $\mu=1$.