CS & IT ENGINEERING

Theory of Computation

Push Down Automata:

Context Free Grammar

Lecture No. 01

Every	LLG	ïs	RG	
Every	LLQ	75	LG	
Even	LLa	7.5	CFG	
Every	RLG	īs	RG	
Even	RLC	15	LG	
Even	719	15	(FG	
Every	RG	is	L6	
Even	RG	15	CEQ	

Every LG is CFG

Derivation of a String

Lest Most Desivation Parse Tree (Desivation True)

Right Most Desivation


```
No. of Substitutions
No of steps
Length of Derivation
```

AB. Any Segleen 6 Sentential from

What is LMD?

```
In every sentential form, left most nonterminal is substituted to derive a string
```

What is RMD?

In every sentential form, Right most non-terminal is Bubstituted to derive a string.

RMD (Right Most Derivation)

LMD: SILMD
AB
JaB
J

Identify Right Sentential
forms for deriving "ab"
Using (S-1AB, A-1a, B-16)

S AB AB

if unique decivation exist for string

Mo of LMDs = No of RMDs = No of park trees

S - a | AB

$$A \rightarrow E|a$$
 $B \rightarrow E|a|b$
 $A \rightarrow E|a|b$
 A

Pw

Root: S Leaf: & or terminal Nonlag: Non-terminal Lengt of dirivation NO. of Steps in derivation No. of Steps in LMD No. of Steps in RMD No. of Substituting in LMD or RMD LMD order: S, A,B

RMD order: S, D, A

S -> AB

A -> a

B -> b

w=ab

(No of non leaf nody in parse toll

I) If every string derived from given CFG has only one park thee

then CFG is unambiguous

(not ambiguous)

+ Park trees = # LMPs = # RMDs = 1

G is unambiguous

I) If some string has more than one parse tree then CFG is Ambiguoup $= \int W \in L(G)$, # parse trees = 2

Note: No Algo exist for checking Ambighous/Unambiguous

Amb (FG

Some string)

I

PT

Unamb (FG

Every String

1

1

PT

$$\bigcirc S \rightarrow S \bigcirc A$$

$$L = aa^* = a^*$$

$$\begin{array}{c|c} (2) & S \longrightarrow S@ | b \\ \hline \end{array}$$

$$3$$
 S-, Sa|Sb|E

$$L = (atb)(atb)^* = (atb)^T$$

$$(5)$$
 $S \rightarrow aS | E$

$$(7)$$
 S-, aS | 6S | c

$$\begin{array}{c}
(9) \\
S \rightarrow Aa
\end{array}$$

$$\begin{array}{c}
L = A \cdot a \\
= (a+b)^{\dagger}a
\end{array}$$

$$\begin{array}{c}
A \rightarrow Ba \quad Bb \quad = B(a+b) = (a+b)^{\dagger}(a+b) = (a+b)^{\dagger}
\end{array}$$

$$\begin{array}{c}
B \rightarrow Ba \quad Bb \mid E
\end{array}$$

$$\begin{array}{c}
(a+b)^{\dagger} \\
(a+b)^{\dagger}
\end{array}$$

$$L = (a+b)a$$

$$L = a(a+b)b$$
 $L = (a+b)b$
 $= (a+a+b)b$
 $= (a+a+b)b$
 $= ab+ab$

= { a b m >1, n > 0}

$$\begin{array}{c|c} \hline (6) & S \rightarrow a & Sb & \varepsilon \\ L = \{ ab \mid n \geq 0 \} \end{array}$$

$$L = \frac{a}{a} \frac{a}{a} = \frac{|2n+1|}{|a|} \frac{|n=0|}{|a|}$$

$$= \frac{a(aa)}{|a|} = \frac{|a|}{|a|} \frac{|a|}{|a|}$$

(21)
$$S \rightarrow aaSb \in E$$

$$L = \{an \mid | n \ge 0\}$$

(I8)
$$S \rightarrow aSb / a$$

$$L = \{a^{n+1} \mid b^n \mid n = o\}$$

$$\begin{array}{c|c} (22) & S \rightarrow a & S & b & \varepsilon \\ L = \left\{ \begin{array}{c|c} x & 2n & n \geq 0 \end{array} \right\} \end{array}$$

$$ext{19}$$
 S \rightarrow a Sa \rightarrow $ext{2}$ ext

(23)
$$S - 1 = aa Sbb | E$$

$$1 - (aa)^3 (bb)^9 = \frac{2n}{a} \frac{2n}{b} \frac{2n}{n \ge 0}$$

S-AB
$$\frac{A \rightarrow aAb}{B \rightarrow bBc} = \frac{k}{ab}$$

$$\frac{B \rightarrow bBc}{B \rightarrow bC} = \frac{k}{ab} = \frac{k}{ab}$$

$$\frac{A \leftarrow k}{ab} = \frac{k}{ab} = \frac{k}{ab} = \frac{k}{ab} = \frac{k}{ab} = \frac{k}{ab}$$

$$\begin{array}{c|c}
\hline
(25) & S \rightarrow AB \\
L=abb^* & \overline{A} \rightarrow aAbb \\
= abb^* & B \rightarrow bB \\
= \{abb^* | j \geq i\}
\end{array}$$

$$S \rightarrow AB$$

$$A \rightarrow aAb/e$$

$$B \rightarrow cBd/e$$

$$L = \{ab, c', d'\} = \{ab, c', d'\}$$

$$\begin{array}{c} (28) \quad S \rightarrow \alpha \quad S \rightarrow A \\ \hline A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A \rightarrow c \quad A \rightarrow c \quad A \rightarrow b \quad E \\ \hline A \rightarrow c \quad A$$

8) AAA - ab 22 AAA -

$$A^* = LA^* = \{ab^*\}^*$$
 $= \{ab^*\}_{n \geq 0}^*$

i) dåb | n > 04

in) {a" b" | n = 0 }*

111) {(n n)* | n > 0}

v) (abab ... k timer | K = 1 }

 $N > 0 = (\tilde{a}\tilde{b})^{0} U(\tilde{a}\tilde{b})^{0} U(\tilde{a$ 92200 allas not generated SASAF) SAAF) AA # app A =) a6 A) = 76 aps 79 Gasss

S-aSa bSb E

S-aSa 6S6 L = qwxw we qa,63* xeda,63 be = Set of an odd length pakindumed

S-rasabsbabe L = Set of all palindemes

$$S \rightarrow aSa | bSb | #$$

$$L = \{W # W | w \in \{a, b\}^*\}$$

$$S \rightarrow ABC$$

$$A \rightarrow aP \mid E$$

$$B \rightarrow Bb \mid E$$

$$C \rightarrow aC \mid E$$

$$A \rightarrow \alpha \beta | \xi$$

$$B \rightarrow b B c | \xi$$

$$C \rightarrow \alpha (b | \xi$$

$$D \rightarrow c D | \xi$$

$$S \rightarrow ABC$$
 $A \rightarrow aAb/\epsilon$

$$S \rightarrow aSb \mid A$$

$$A \rightarrow aA \mid Ab \mid a \mid b$$

-> CFG

Next: PDP

Every Reglang is (FL

Some non regulars are CFL, Some non regulars are not CFL,

ab cm+n $a^{n}b^{n} = n$ am & men WW WEda, Lit W#WP,

