

Time Series and Sequence Learning

General AR models, Estimation

Fredrik Lindsten, Linköping University

Likelihood decomposition

Recall, the joint pdf $p(y_{1:n})$ can be factorized as

$$p(y_{1:n}) = \prod_{t=1}^{n} p(y_t \mid y_{1:t-1}).$$

A model for $p(y_t | y_{1:t-1})$ tells us how the **current value** y_t depends on the past values $y_{1:t-1}$.

ex) AR(1): model:

$$p(y_t | y_{1:t-1}) = p(y_t | y_{t-1}) = \mathcal{N}(y_t | ay_{t-1}, \sigma_{\varepsilon}^2).$$

Auto-regressive models of higher order

Idea: Generalize the first-order AR model and assume a linear dependence on a fixed number of the most recent values.

Def: A linear auto-regressive (AR) model of **order** p is given by

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots a_p y_{t-p} + \varepsilon_t, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2).$$

Auto-regressive models of higher order

Idea: Generalize the first-order AR model and assume a linear dependence on a fixed number of the most recent values.

Def: A linear auto-regressive (AR) model of **order** p is given by

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots a_p y_{t-p} + \varepsilon_t, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2).$$

Equivalently, we can write the AR(p) model as

$$p(y_t | y_{1:t-1}) = \mathcal{N}\left(y_t \mid \sum_{j=1}^p a_j y_{t-j}, \sigma_{\varepsilon}^2\right).$$

Graphical representation

The dependencies of an AR(p) model can be illustrated graphically.

ex) AR(2): PR(3):

Estimating an AR(p) model

Assume that we have observed $y_{1:n}$ and wish to fit an AR(p) model to the data.

The log-likelihood given by
$$\log P(Y_{i:n}; \theta) = \sum_{t=1}^{n} \log P(Y_{t}|Y_{i:t-1}; \theta)$$

$$= -\frac{1}{2\sigma_{\epsilon}^{2}} \sum_{t=1}^{n} (Y_{t} - \sum_{j=1}^{n} a_{j}Y_{t-j})^{2} = N(Y_{t}|\sum_{j=1}^{n} a_{j}Y_{t-j}, \sigma_{\epsilon}^{2})$$

since log of normal distN(x|u,sig 4 2) = log N(x,u,sig 2) = -1/2 log(s pi sig 2) - (x-u) 2 (2sig 2) replace x=yt and u=sum(a_j y_{t-j}), so sum all, we have log(y_{1:n},theta) = sum(log(...))

const term -n/2 log(2*pi*sig^2) is ignored, so it become like above

- We get a standard least-squares regression problem!
- For the t:th term, $y_{t-p:t-1}$ can be viewed as a known input and y_t as the output.

The least squares loss for estimating an AR(p) model is given by

$$L(\theta) = \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{\theta^{\mathsf{T}} \phi_t}{2} \right)^2 \qquad \sum_{j=1}^{\mathsf{P}} \alpha_j \, \gamma_{\mathsf{k} - j}$$

with

$$\boldsymbol{\theta} = \begin{pmatrix} a_1 & \dots & a_p \end{pmatrix}^\mathsf{T}$$
 and $\boldsymbol{\phi}_t = \begin{pmatrix} y_{t-1} & \dots & y_{t-p} \end{pmatrix}^\mathsf{T}$

The least squares loss for estimating an AR(p) model is given by

$$L(\boldsymbol{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \boldsymbol{\theta}^\mathsf{T} \boldsymbol{\phi}_t \right)^2$$

with

$$\boldsymbol{\theta} = \begin{pmatrix} a_1 & \dots & a_p \end{pmatrix}^\mathsf{T}$$
 and $\boldsymbol{\phi}_t = \begin{pmatrix} y_{t-1} & \dots & y_{t-p} \end{pmatrix}^\mathsf{T}$

Caveat! The input ϕ_t depends on $y_0, y_{-1}, \ldots, y_{-p+1}$ for $t \leq p$.

The least squares loss for estimating an AR(p) model is given by

$$L(\boldsymbol{\theta}) \approx \frac{1}{n-p} \sum_{t=p+1}^{n} \left(y_t - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\phi}_t \right)^2$$

with

$$\boldsymbol{\theta} = \begin{pmatrix} a_1 & \dots & a_p \end{pmatrix}^\mathsf{T}$$
 and $\boldsymbol{\phi}_t = \begin{pmatrix} y_{t-1} & \dots & y_{t-p} \end{pmatrix}^\mathsf{T}$

Pragmatic solution: Ignore the first p terms of the loss function.

Solution given by standard least-squares,

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T y$$

where

$$\mathbf{y} = \begin{pmatrix} y_{p+1} \\ y_{p+2} \\ \vdots \\ y_n \end{pmatrix}, \qquad \Phi = \begin{pmatrix} y_p & y_{p-1} & \cdots & y_1 \\ y_{p+1} & y_p & \cdots & y_2 \\ \vdots & \vdots & \ddots & \vdots \\ y_{n-1} & y_{n-2} & \cdots & y_{n-p} \end{pmatrix}$$

Solution given by standard least-squares,

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T y$$

where

$$\mathbf{y} = \begin{pmatrix} y_{p+1} \\ y_{p+2} \\ \vdots \\ y_n \end{pmatrix}, \qquad \Phi = \begin{pmatrix} y_p & y_{p-1} & \cdots & y_1 \\ y_{p+1} & y_p & \cdots & y_2 \\ \vdots & \vdots & \ddots & \vdots \\ y_{n-1} & y_{n-2} & \cdots & y_{n-p} \end{pmatrix}$$

Noise variance can be estimated by the mean squared error (MSE),

$$\widehat{\sigma}_{\varepsilon}^{2} = \frac{1}{n-p} \sum_{t=n+1}^{n} \left(y_{t} - \widehat{\boldsymbol{\theta}}^{\mathsf{T}} \phi_{t} \right)^{2}$$

ex) Toy model

We simulate an AR(3) model for n = 300 time steps,

$$y_t = 0.9y_{t-1} - 0.4y_{t-2} + 0.2y_{t-3} + \varepsilon_t,$$
 $\varepsilon_t \sim \mathcal{N}(0, 1)$

ex) Toy model

3 -

We simulate an AR(3) model for n = 300 time steps,

$$y_t = 0.9y_{t-1} - 0.4y_{t-2} + 0.2y_{t-3} + \varepsilon_t,$$
 $\varepsilon_t \sim \mathcal{N}(0, 1)$

Estimating the model parameters with OLS gives:

let y_t-1 = lag1_t let y_t-2 = lag2_t let y_t-3 = lag3_t

 $\widehat{\theta} = (0.84, -0.33, 0.16) \text{ and } \widehat{\sigma}_{\varepsilon}^2 = 0.95.$

150 200 250

100

we construct matrix X as

lag1_4 lag2_4 lag3_4

lag1_5 lag3_5

lag1_n lag3_n

we got response y = [y4,...yn]

then hat(theta) = (X^tX)^{-1}X^{t}y

then hat(epsilon) = y-x*hat(theta)

then hat_sigma^2 = hat(epsilon)^t*hat(epsilon)/

(n-3)

or use the formula provided

ex) Toy model

We simulate an AR(3) model for n = 300 time steps,

$$y_t = 0.9y_{t-1} - 0.4y_{t-2} + 0.2y_{t-3} + \varepsilon_t,$$
 $\varepsilon_t \sim \mathcal{N}(0, 1)$

Estimating the model parameters with OLS gives:

$$\widehat{\theta} = (0.84, -0.33, 0.16) \text{ and } \widehat{\sigma}_{\varepsilon}^2 = 0.95.$$

