#### DOCUMENT RESUME

ED 414 170 SE 060 860

AUTHOR Miller-Whitehead, Marie

TITLE A Longitudinal Analysis of Science Scale Scores Grades 2-8

in Tennessee for 1992-1996.

PUB DATE 1997-10-00

NOTE 25p.; For a related study, see SE 060 722.

PUB TYPE Reports - Research (143) EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS \*Academic Achievement; \*Academic Standards; Analysis of

Variance; \*Educational Assessment; Elementary Education; Longitudinal Studies; \*Norm Referenced Tests; \*Science

Education; \*Scores

IDENTIFIERS Tennessee

#### ABSTRACT

In light of the continuing debate over the relative merits of various ways of assessing student achievement, it seems appropriate to examine longitudinal data which reflect student performance on one measure as a basis for recognizing and utilizing the measure's particular strengths. This study is the follow-up to an earlier study conducted using data from the state of Tennessee for student scale scores in science for the years 1990-1994. The current data set consisted of school system level science scale scores on the CTBS/4 science test, grades 2 through 8, for each of the 138 Tennessee school systems for the years 1992-1996. The normed portion of the science subtest of the CTBS/4 consists of 20 items with four possible answers for each item. Examination of the descriptives revealed an increase in the mean of science scale scores for grades 2-8 each year except 1993, which showed a "negative gain." This population represents the remaining members of the cohort of students (grades 4-8) included in the mean score for 1991, which also had a "negative gain." This finding seems to indicate that teacher effect on student achievement may be both cumulative and residual. Contains 21 references. (Author/PVD)

\*\*\*\*\*\*

Reproductions supplied by EDRS are the best that can be made

from the original document.



A longitudinal analysis of science scale scores grades 2 - 8 in

Tennessee for 1992 - 1996

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

U.S. DEPARTMENT OF EDUCATION OF COURT O

CENTER (ERIC)
This document has been reproduced as aceived from the person or organization originating it.

Minor changes have been made to improve reproduction quality.

 Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

Marie Miller-Whitehead Education Consultant October 1997



In light of the continuing debate over the relative merits of various ways of assessing student achievement, including criterion referenced tests, performancebased assessments, norm-referenced tests, and portfolio evaluation to mention only a few, it seems appropriate to examine more closely longitudinal data which reflect student performance on one measure as a basis for recognizing and utilizing its particular strengths. For example, scoring of performance assessments for students in K-12 continues to evolve and become more sophisticated as more and more teachers gain expertise in its usage; however, there are certain advantages to be gained from an examination of data which have been recorded on a consistent measurement over a long period of time. Those states, school systems, or institutions which are fortunate enough to have in place mechanisms for collecting and disseminating such data can provide invaluable information for school administrators, policymakers, and the community. The value of this information lies not only in what is answered by the data but in what remains to be answered. As accountability mechanisms become more pervasive and in some cases more closely tied to funding it is particularly critical to provide decisionmakers at every level with published findings and reports pertinent to policy and long range planning. For example, much of the data collected via Tennessee's accountability mechanism has provided researchers with empirical evidence on smaller class size (Achilles, Zaharias, & Nye, 1995; Finn & Achilles , 1990; Nye et al., 1992; Underwood &



1

Lumsden., 1994), multiage grouping (Nye, 1993), and teacher effects (Sanders & Rivers, 1996). Such initiatives as the National Assessment of Educational Progress (NAEP) have also provided policymakers with nationwide and state-by-state trends in student achievement accompanied by a variety of demographic and ethnic disaggregated data (Johnson et al., 1992; Campbell et al., 1996; Ballator, 1996; Bruschi & Anderson, 1994). While opponents of accountability via standardized testing have been very vocal, there is no denying the fact that disaggregated data provided by these analyses have helped school districts to assess to what extent each subpopulation is achieving at the same level. Until other reliable assessments can be developed (be they performance or portfolio related) the data-provided for policymakers, despite admitted drawbacks, are continuing to contribute to more effective schools and educational equity.

The focus of this analysis on student scores on the norm-referenced CTBS/4 test should not be taken to minimize the merits of any of the other measures of student performance, progress, and achievement. There are many resources available for those interested in a more indepth discussion of student assessment (McLean & Lockwood, 1996; Noble & Sawyer , 1992; O'Sullivan, 1995; Yepes Baraya, 1995), particularly in issues concerning reliability and validity of various instruments.

In addition to systems which are participating in NAEP projects and testing,



Tennessee has a state-mandated accountability system which provides for student testing each year in grades 2 - 8 in the five subject areas of reading, language arts, math, science, and social studies. There have been several detailed reports published on the Tennessee Comprehensive Assessment Program (Baker & Xu, 1995; Bock, Wolfe, and Fisher, 1996) which will provide those interested in comparison of various state accountability mechanisms with an overview of the program.

The present study is a followup to an earlier study conducted using state of Tennessee data for student scale scores in science for the years 1990-1994 (Miller-Whitehead, 1997). The findings of the earlier study indicated that mean science scale scores over grades 2 - 8 across the state of Tennessee had improved each year except 1991 (mean 721.42) from 1990 to 1994. However, there had also been an indication that while minimum mean scores had risen, maximum mean scores had declined. While this data is not necessarily indicative of a widespread plunge in the achievement of students on the higher end of the performance scale it does raise questions which each school system should be prepared to answer relative to its own student data.

The data set consisted of school system level science scale scores on the CTBS/4 science test, grades two through eight, for each of the 138 Tennessee school systems for the years 1992 to 1996. The normed portion of the science



subtest of the CTBS/4 consists of 20 itemswith four possible answers for each item. For Tennessee CTB computes IRT scale scores with a possible continuous range of values over grades K - 8 of from 0 - 999 (Tables 2, 3). The CTBS/4 technical manual provides additional information regarding benchmarks and test-retest reliability coefficients for each level of the science subtest. SEM for the IRT scores for each level of the test and information in respect to grade equivalencies for levels of the test is available in the Spring Norms manual. Those interested in specifics of the CTBS/4 may refer to published reviews (Bock et al., 1996; Miller, 1992; Hopkins, 1992) and the technical manual (CTB, undated). Five of the 138 systems were omitted due to grade configurations specific to individual systems; therefore the main analysis was conducted with data from the 133 systems which include grades two through eight. However, mean scores by year and mean scores by grade are mean scores for all systems which reported scores for the grades included in the analysis. The minimum and maximum mean scores reported also may reflect relatively small outlier systems or new specialized schools within systems with disproportionately large numbers of either high or low achieving students. The analysis was conducted using the SPSS for Windows 7.5 statistical software package.

An examination of the descriptives revealed an increase in the mean of science scale scores for grades 2-8 each year except 1993, which showed a "negative gain" (Table 1). This population represents the remaining members of the



cohort of students (grades 4 - 8) included in the mean score for year 1991 which also had a "negative gain." This finding would seem to reinforce that of Sanders and.

Rivers (1996) which determined that the teacher effect on student achievement may be both cumulative and residual. A comparison of the aggregate mean scores by grade level over the years 1990-1994 with the mean of scores over the years 1992-1996 showed an increase in mean for each grade level in the 1992-1996 scale scores (Table 2). The implication is that student achievement as measured by the CTBS/4 science test has improved and that for each grade level tested, students in later years are doing better on the average than their predecessors in public schools across the state of Tennessee. While this finding does not address how Tennessee science students compare with students across the U.S., these results are encouraging and point to the success of Tennessee's efforts to assure that all students receive a fair and equitable education.

To determine the statistical significance of these findings a within subjects MANOVA procedure was conducted with 5 levels for year and 7 levels for grade thus creating 35 new variables for mean science scale scores. The null hypothesis of the investigation was that there is no statistically significant difference in mean science scale scores across years or grade levels.

A preliminary examination of univariate parameters and 95% confidence intervals for the variables was conducted. The results of this analysis indicated that



the sample exceeded the norm for Year 93 and Year 94. The 95% confidence interval included 0 for both Year 95 and Year 96. For the Grade variable, Grade 3 exceeded the sample norm, Grade 4 was lower than the sample norm, Grade 6 had a 95% confidence which included 0, the Grade 7 sample was less than the norm, and the Grade 8 sample was more than the norm. An examination of univariate F tests for the variables showed that there were significant univariate tests for Year 93 and Year 94 and for Grade 3, Grade 4, Grade 5, Grade 7, and Grade 8. Year 94 and Year 95 had nonsignificant univariate F, as did Grade 6. These findings were in accordance with the examination of the univariate 95% confidence intervals. For the Year by Grade effect, univariate F tests showed nonsignificant univariate F tests for Year 93 Grade 3, for Year 93 Grade 8, for Year 94 Grade 3, for Year 94 Grade 8, for Year 95 Grade 3, and for Year 96 Grade 6. An examination of univariate 95% confidence intervals showed values exceeding the norm for Year 93 Grade 4, Year 93 Grade 7, Year 94 Grade 4, Year 94 Grade 5, Year 95 Grade 5, Year 95 Grade 6, Year 95 Grade 7, Year 95 Grade 8, Year 96 Grade 4, and Year 96 Grade 5. The sample values were poorer than the norm for Year 93 Grade 5, Year 93 Grade 6, Year 94 Grade 6, Year 94 Grade 7, Year 95 Grade 4, Year 96 Grade 3, Year 96 Grade 7, and Year 96 Grade 8. The 95% confidence intervals included 0 for Year 93 Grade 3, Year 93 Grade 8, Year 94 Grade 3, Year 94 Grade 8, Year 95 Grade 3, and Year 96 Grade 6. However, the F tests are not adjusted for number of variables in



the analysis. A stepdown analysis indicated that after controlling for Type I error there were significant effects for Year 93 Grade 4, Year 93 Grade 5, Year 93 Grade 6, Year 93 Grade 7, Year 93 Grade 8, Year 94 Grade 7, Year 95 Grade 6, Year 95 Grade 6, Year 95 Grade 7, Year 95 Grade 8, Year 96 Grade 3, Year 96 Grade 5, and Year 96 Grade 8. Not surprisingly, the strength of association effect was greatest for the Grade variable ( $\eta^2 = .98$ ) with the interaction of Year by Grade having practical significance at  $\eta^2 = .23$ . Practical significance of the effect of Year was marginal with an  $\eta^2 = .18$ .

<u>Table 1</u>

<u>Mean science scale scores for grades 2 - 8 by year</u>

| 1992.  |     | 1993   |     | 19     | 1994 |        | 1995 |        | 996 |
|--------|-----|--------|-----|--------|------|--------|------|--------|-----|
| М      | N   | M.     | N   | M      | N    | M      | N    | M      | N.  |
| 723.90 | 956 | 723.14 | 956 | 724.34 | 956  | 726.47 | 957  | 728.90 | 958 |



<u>Table 2</u>

<u>Mean science scale scores for Tennessee 1992 - 1996 by grade level</u>

| Grade     | 2      | . 3    | . 4.   | . 5    | 6      | 7      | .8.    |
|-----------|--------|--------|--------|--------|--------|--------|--------|
| 1990-1994 | 667.51 | 690.96 | 713.44 | 728.49 | 739.64 | 754.89 | 766.82 |
| 1992-1996 | 668.56 | 692.55 | 716.64 | 729.57 | 742.37 | 759.03 | 771.38 |
|           | N=690  | N=690  | N=690  | N=690  | N=687  | N=669  | N=667  |

Table 3

Science scale score descriptives for Tennessee by grade level and by year

|         | N   | М      | min    | max                 | variation | SD    |
|---------|-----|--------|--------|---------------------|-----------|-------|
| SS92.2  | 138 | 667.01 | 630.70 | 697.50              | 155.65    | 12.48 |
| SS92.3  | 138 | 690.57 | 662.90 | 720.30              | 118.94    | 10.91 |
| SS92.4  | 138 | 718.57 | 695.90 | 739.50              | 60.55     | 7.78  |
| SS92.5  | 138 | 727.22 | 690.90 | 774.20              | 81.25     | 9.01  |
| SS92.6  | 138 | 734.00 | 699.00 | 763.90              | 106.63    | 10.33 |
| SS92.7  | 138 | 757.62 | 730.10 | 781.30              | 66.33     | 8.14  |
| SS92.8  | 138 | 768.07 | 740.80 | 795.30              | 90.01     | 9.49  |
| SS93.2  | 138 | 662.57 | 627.90 | 692.90              | 157.98    | 12.57 |
| SS93.3  | 138 | 686.48 | 653.50 | 717.40              | 119.89    | 10.95 |
| SS93.4  | 138 | 716.46 | 681.60 | 741.40              | 119.28    | 10.92 |
| SS93.5  | 138 | 726.97 | 699.60 | 751.20 <sup>-</sup> | 72.34     | 8.51  |
| SS93.6. | 138 | 746.42 | 705.70 | 775.60              | 1.06.53   | 10.32 |
| SS93.7  | 138 | 754.55 | 729.70 | , 779.00            | 61.99     | 7.87  |
| SS93.8  | 138 | 770.67 | 747.80 | 794.60              | 54.75     | 7.40  |
| SS94.2  | 138 | 674.56 | 625.20 | 714.60              | 166.74    | 12.91 |



|           | N     | М      | - min  | max    | variation | SD    |
|-----------|-------|--------|--------|--------|-----------|-------|
| . SS94.3. | 138   | 698.61 | 650.10 | 732.50 | 162.42    | 12.75 |
| SS94.4    | 138   | 715.85 | 682.30 | 743.60 | 95.15     | 9.76  |
| SS94.5    | . 138 | 733.48 | 698.90 | 754.30 | 87.22     | 9.34  |
| SS94.6    | 137   | 734.98 | 698.20 | 756.50 | 79.74     | 8.93  |
| SS94.7    | 134   | 753.05 | 720.80 | 784.30 | 73.07     | 8.55  |
| SS94.8    | 133   | 765.08 | 745.60 | 787.40 | 60.60     | 7.79  |
| SS95.2    | 138.  | 668.99 | 631.70 | 702.40 | 166.09    | 12.89 |
| SS95.3    | 138   | 691.48 | 644.20 | 728.10 | 139.28    | 11,80 |
| SS95.4    | 138   | 715.38 | 671.40 | 743.50 | 112.09    | 10.59 |
| SS95.5    | 138   | 727.88 | 696.70 | 771.60 | 103.30    | 10.16 |
| SS95.6    | 137   | 747.45 | 722.50 | 784.40 | 121.15    | 11.01 |
| SS95.7    | 134   | 764.37 | 732.50 | 788.90 | 81.62     | 9.03  |
| SS95.8    | 134   | 772.34 | 743.40 | 796.60 | 63.06     | 7.94  |
| SS96.2    | 138   | 675.51 | 629.80 | 713.10 | 219.84    | 14.83 |
| SS96.3    | 138   | 699.24 | 642.60 | 729.90 | 196.50    | 14.02 |
| SS96.4    | 138   | 717.88 | 666.70 | 747.00 | 122.47    | 11.07 |
| SS96.5    | 138   | 731.47 | 694.20 | 759.10 | 109.71    | 10.47 |
| SS96.6    | 137   | 744.91 | 713.50 | 779.40 | 105.30    | 10.26 |
| SS96.7    | 135   | 760.96 | 730.30 | 788.60 | 94.04     | 9:70  |
| SS96.8    | 134   | 774.49 | 744.70 | 798.30 | 73.15     | 8.55  |



\* \* \* \* \* \* Analysis of Variance -- design 1 \*

## Orthonormalized Transformation Matrix (Transposed)

|                      | CONST             | YR93 | YR94  | YR95 | YR96  | GRD3  |
|----------------------|-------------------|------|-------|------|-------|-------|
|                      |                   |      |       |      |       |       |
| SS92.2               | .169              | 239  | .202  | 120  | .045  | 254   |
| SS92.3               | .169              | 239  | .202  | 120  | _045  | 169   |
| SS92.4               | .169              | 239  | .202  | 120  | .045  | 085   |
| SS92-5               | .169              | 239, | -202. | 120  | -045. | -000  |
| SS92.6               | .169              | 239  | .202  | 120  | .045  | .085  |
| SS92.7               | .169              | 239  | .202  | 120  | .045  | .169. |
| SS92.8               | .169              | 239  | .202  | 120  | .045  | .254  |
| SS93.2               | .169              | 120  | 101   | .239 | 181   | 254   |
| SS93.3               | .169              | 120  | 101   | .239 | 181   | 169   |
| SS93.4               | .169 <sup>-</sup> | 120  | 101   | .239 | 181   | 085   |
| SS93.5               | .169              | 120  | 101   | .239 | 181   | .000  |
| SS93.6               | .169              | 120  | 101   | .239 | 181   | .085  |
| SS93.7               | .169              | 120  | 101   | .239 | 181   | .169  |
| SS93 <sup>-</sup> .8 | .169              | 120  | 101   | .239 | 181   | .254  |
| SS94.2               | .169              | .000 | 202   | .000 | .271  | 254   |
| SS94-3               | .169              | .000 | 202   | .000 | .271  | 169   |
| SS94.4               | .169              | .000 | 202   | .000 | .271  | 085   |
| SS94.5               | .169              | .000 | 202   | .000 | .271  | .000  |
| SS94.6               | .169              | .000 | 202   | .000 | .271  | .085  |
| SS94.7               | .169              | .000 | 202   | .000 | .271  | .169  |
| SS94.8               | .169              | .000 | 202   | .000 | .271  | .254  |
| SS95.2               | .169              | .120 | 101   | 239  | 181   | 254   |
| SS95.3               | .169              | .120 | 101   | 239  | 181   | 169   |
| SS95.4               | .169              | .120 | 101   | 239  | 181   | 085   |



| SS95.5 | .169 | .120 | 101  | 239  | 181  | .000  |
|--------|------|------|------|------|------|-------|
| SS95.6 | .169 | .120 | 101  | 239  | 181  | .085  |
| SS95.7 | .169 | .120 | 101  | 239  | 181  | .169  |
| SS95.8 | .169 | .120 | 101  | 239  | 181  | .254  |
| SS96.2 | .169 | .239 | .202 | .120 | .045 | 254   |
| SS96.3 | .169 | .239 | .202 | .120 | .045 | 169   |
| SS96.4 | .169 | .239 | .202 | .120 | .045 | 085   |
| SS96.5 | .169 | .239 | .202 | .120 | .045 | .000  |
| SS96.6 | .169 | .239 | 202  | .120 | .045 | .085  |
| SS96.7 | .169 | .239 | .202 | .120 | .045 | .169  |
| SS96.8 | .169 | .239 | .202 | .120 | .045 | .254  |
|        |      |      |      |      |      |       |
|        | GRD4 | GRD5 | GRD6 | GRD7 | GRD8 | Y93G3 |
|        |      |      |      |      |      |       |
| SS92.2 | .244 | 183  | .108 | 049  | .015 | .359  |
| SS92.3 | .000 | .183 | 252  | .195 | 088  | .239  |
| SS92.4 | 146  | .183 | .036 | 244  | .221 | .120  |
| SS92.5 | 195  | .000 | .216 | .000 | 294  | .000  |
| SS92.6 | 146  | 183  | .036 | .244 | .221 | 120   |
| SS92.7 | .000 | 183  | 252  | 195  | 088  | 239   |
| SS92.8 | .244 | .183 | .108 | .049 | .015 | 359   |
| SS93.2 | .244 | 183  | .108 | 049  | .015 | .179  |
| SS93.3 | .000 | .183 | 252  | .195 | 088  | .120  |
| SS93.4 | 146  | .183 | .036 | 244  | .221 | .060  |
| SS93.5 | 195  | .000 | .216 | .000 | 294  | .000  |
| SS93.6 | 146  | 183  | .036 | .244 | .221 | 060   |
| SS93.7 | .000 | 183  | 252  | 195  | 088  | 120   |
| SS93.8 | .244 | .183 | .108 | .049 | .015 | 179   |
| SS94.2 | .244 | 183  | .108 | 049  | .015 | .000  |
| SS94.3 | .000 | .183 | 252  | .195 | 088  | .000  |
| SS94.4 | 146  | .183 | .036 | 244  | .221 | .000  |
| SS94.5 | 195  | .000 | .216 | .000 | 294  | .000  |
| SS94.6 | 146  | 183  | .036 | .244 | .221 | .000  |
|        |      |      |      |      |      |       |





| SS94.7 | .000  | 183   | 252   | 195   | 088    | .000  |
|--------|-------|-------|-------|-------|--------|-------|
| SS94.8 | .244  | .183  | .108  | .049  | .015   | .000  |
| SS95.2 | .244  | 183   | .108  | 049   | .015   | 179   |
| SS95.3 | .000  | .183  | 252   | .195  | 088    | 120   |
| SS95.4 | 146   | .183  | .036  | 244   | .221   | 060   |
| ss95.5 | 195   | .000  | .216  | .000  | 294    | .000  |
| SS95.6 | 146   | 183   | .036  | .244  | .221   | .060  |
| SS95.7 | .000  | 183   | 252   | 195   | 088    | .120  |
| SS95.8 | . 244 | .183  | .108  | .049  | .015   | .179  |
| SS96.2 | .244  | 183   | .108  | 049   | .015   | 359   |
| SS96.3 | .000  | .183  | 252   | .195  | 088    | 239   |
| SS96.4 | 146   | .183  | .036  | 244   | ` .221 | 120   |
| SS96.5 | 195   | .000  | .216  | .000  | 294    | .000  |
| SS96.6 | 146   | 183   | -036  | .244  | .221   | .120  |
| SS96.7 | .000  | 183   | 252   | 195   | 088    | .239  |
| SS96.8 | .244  | .183  | .108  | .049  | .015   | .359  |
|        |       |       |       | *     |        |       |
|        | Y93G4 | ¥93G5 | ¥93G6 | Y93G7 | ¥93G8  | Y94G3 |
| SS92.2 | 345   | .258  | 153   | -069  | 021    | 303   |
| SS92.3 | .000  | 258   | .357  | 276   | .125   | 202   |
| SS92.4 | .207  | 258   | 051   | .345  | 312    | 101   |
| SS92.5 | .276  | .000  | 306   | .000  | .416   | .000  |
| SS92.6 | .207  | .258  | 051   | 345   | 312    | .101  |
| SS92.7 | .000  | .258  | .357  | .276  | .125   | .202  |
| SS92.8 | 345   | 258   | 153   | 069   | 021    | .303  |
| SS93.2 | 173   | .129  | 076   | .035  | 010    | .152  |
| SS93.3 | .000  | 129   | .178  | 138   | .062   | -101  |
| SS93.4 | .104  | 129   | 025   | .173  | 156    | .051  |
| SS93.5 | .138  | .000  | 153   | .000  | .208   | .000  |
| SS93.6 | .104  | .129  | 025   | 173   | 156    | 051   |
| SS93.7 | .000  | .129  | .178  | .138  | .062   | 101   |
| SS93.8 | 173   | 129   | 076   | 035   | 010    | 152   |
| SS94.2 | .000  | .000  | .000  | .000  | .000   | .303  |



\$\$94.3 .000 .000 .000 .000 .000 .202 \$\$94.4 .000 .000 .000 .000 .000 .101

\* \* \* \* \* Analysis of Variance -- design 1 \* \* \* \*

#### Orthonormalized Transformation Matrix (Transposed) (Cont.)

| \$\$94.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Y93G4 | Y93G5 | Y93G6 | Y93G7  | Y93G8           | Y94G3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|--------|-----------------|-------|
| SS94.6         .000         .000         .000         .000         .000        101           SS94.7         .000         .000         .000         .000         .000         .000         .000        202           SS94.8         .000         .000         .000         .000         .000         .033           SS95.2         .173        129         .076        035         .010         .152           SS95.3         .000         .129        178         .138        062         .101           SS95.4        104         .129         .025        173         .156         .051           SS95.5        138         .000         .153         .000        208         .000           SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |         |       |       |       |        |                 |       |
| \$894.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS94.5  | .000  | .000  | .000  | .000   | .000            | .000  |
| SS94.8         .000         .000         .000         .000        303           SS95.2         .173        129         .076        035         .010         .152           SS95.3         .000         .129        178         .138        062         .101           SS95.4        104         .129         .025        173         .156         .051           SS95.5        138         .000         .153         .000        208         .000           SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312         .101           SS96.5        276         .000         .306         .00                                                                                  | SS94.6  | .000  | .000  | .000  | .000   | .000            | 101   |
| SS95.2         .173        129         .076        035         .010         .152           SS95.3         .000         .129        178         .138        062         .101           SS95.4        104         .129         .025        173         .156         .051           SS95.5        138         .000         .153         .000        208         .000           SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312        101           SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258                                                                                                    | SS94.7  | .000  | .000  | .000  | .000   | 000             | 202   |
| SS95.3         .000         .129        178         .138        062         .101           SS95.4        104         .129         .025        173         .156         .051           SS95.5        138         .000         .153         .000        208         .000           SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312        101           SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258         .051         .345         .312         .101           SS96.7         .000        258         -                                                                                        | SS94.8  | .000  | .000  | .000  | .000   | .000            | 303   |
| \$\$95.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SS95.2  | .173  | 129   | .076  | 035    | .010            | .152  |
| SS95.5        138         .000         .153         .000        208         .000           SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312        101           SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258         .051         .345         .312         .101           SS96.7         .000        258        357        276        125         .202           SS96.8         .345         .258         .153         .069         .021         .303           SS92.2         .292        218         .                                                                                        | SS95.3  | .000  | .129  | 178   | .138   | 062             | .101  |
| SS95.6        104        129         .025         .173         .156        051           SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312        101           SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258         .051         .345         .312         .101           SS96.7         .000        258        357        276        125         .202           SS96.8         .345         .258         .153         .069         .021         .303           SS92.2         .292        218         .129        058         .018         .179           SS92.3         .000         .218                                                                                                | \$S95.4 | 104   | .129  | .025  | 173    | -156            | .051  |
| SS95.7         .000        129        178        138        062        101           SS95.8         .173         .129         .076         .035         .010        152           SS96.2         .345        258         .153        069         .021        303           SS96.3         .000         .258        357         .276        125        202           SS96.4        207         .258         .051        345         .312        101           SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258         .051         .345         .312         .101           SS96.7         .000        258        357        276        125         .202           SS96.8         .345         .258         .153         .069         .021         .303           SS92.2         .292        218         .129        058         .018         .179           SS92.3         .000         .218        302         .233        106         .120           SS92.4        175         .218         .0                                                                                     | SS95.5  | 138   | .000  | .153  | .000   | 208             | .000  |
| SS95.8       .173       .129       .076       .035       .010      152         SS96.2       .345      258       .153      069       .021      303         SS96.3       .000       .258      357       .276      125      202         SS96.4      207       .258       .051      345       .312      101         SS96.5      276       .000       .306       .000      416       .000         SS96.6      207      258       .051       .345       .312       .101         SS96.7       .000      258      357      276      125       .202         SS96.8       .345       .258       .153       .069       .021       .303         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                              | SS95.6  | 104   | 129   | 025   | .173   | .156            | 051   |
| SS96.2       .345      258       .153      069       .021      303         SS96.3       .000       .258      357       .276      125      202         SS96.4      207       .258       .051      345       .312      101         SS96.5      276       .000       .306       .000      416       .000         SS96.6      207      258       .051       .345       .312       .101         SS96.7       .000      258      357      276      125       .202         SS96.8       .345       .258       .153       .069       .021       .303         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                             | SS95.7  | .000  | 129   | 178   | 138    | 062             | 101   |
| SS96.3       .000       .258      357       .276      125      202         SS96.4      207       .258       .051      345       .312      101         SS96.5      276       .000       .306       .000      416       .000         SS96.6      207      258       .051       .345       .312       .101         SS96.7       .000      258      357      276      125       .202         SS96.8       .345       .258       .153       .069       .021       .303         Y94G4       Y94G5       Y94G6       Y94G7       Y94G8       Y95G3         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                              | SS95.8  | .173  | .129  | .076  | .035   | •.0 <b>I</b> 0: | 152   |
| SS 96.4      207       .258       .051      345       .312      101         SS 96.5      276       .000       .306       .000      416       .000         SS 96.6      207      258       .051       .345       .312       .101         SS 96.7       .000      258      357      276      125       .202         SS 96.8       .345       .258       .153       .069       .021       .303         Y94G4       Y94G5       Y94G6       Y94G7       Y94G8       Y95G3         SS 92.2       .292      218       .129      058       .018       .179         SS 92.3       .000       .218      302       .233      106       .120         SS 92.4      175       .218       .043      292       .264       .060         SS 92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                | SS96.2  | .345  | 258   | .153  | 069    | .021            | 303   |
| SS96.5        276         .000         .306         .000        416         .000           SS96.6        207        258         .051         .345         .312         .101           SS96.7         .000        258        357        276        125         .202           SS96.8         .345         .258         .153         .069         .021         .303           Y94G4         Y94G5         Y94G6         Y94G7         Y94G8         Y95G3           SS92.2         .292        218         .129        058         .018         .179           SS92.3         .000         .218        302         .233        106         .120           SS92.4        175         .218         .043        292         .264         .060           SS92.5        233         .000         .258         .000        352         .000                                                                                                                                                                                                                                                                                                                          | SS96.3  | .000  | .258  | 357   | .276   | 125             | 202   |
| SS96.6      207      258       .051       .345       .312       .101         SS96.7       .000      258      357      276      125       .202         SS96.8       .345       .258       .153       .069       .021       .303         Y94G4       Y94G5       Y94G6       Y94G7       Y94G8       Y95G3         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS96.4  | 207   | .258  | .051  | 345    | .312            | 101   |
| SS96.7       .000      258      357      276      125       .202         SS96.8       .345       .258       .153       .069       .021       .303         Y94G4       Y94G5       Y94G6       Y94G7       Y94G8       Y95G3         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS96.5  | 276   | .000  | 306   | .000   | 416             | .000  |
| SS96.8       .345       .258       .153       .069       .021       .303         Y94G4       Y94G5       Y94G6       Y94G7       Y94G8       Y95G3         SS92.2       .292      218       .129      058       .018       .179         SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS96.6  | 207   | 258   | .051  | .345   | .312            | .101  |
| Y94G4     Y94G5     Y94G6     Y94G7     Y94G8     Y95G3       SS92.2     .292    218     .129    058     .018     .179       SS92.3     .000     .218    302     .233    106     .120       SS92.4    175     .218     .043    292     .264     .060       SS92.5    233     .000     .258     .000    352     .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS96.7  | .000  | 258   | 357   | 276    | 125             | .202  |
| SS92.2 .292218 .129058 .018 .179 SS92.3 .000 .218302 .233106 .120 SS92.4175 .218 .043292 .264 .060 SS92.5233 .000 .258 .000352 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS96.8  | .345  | .258  | .153  | .069   | .021            | .303  |
| SS92.2 .292218 .129058 .018 .179 SS92.3 .000 .218302 .233106 .120 SS92.4175 .218 .043292 .264 .060 SS92.5233 .000 .258 .000352 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       |       |        |                 |       |
| SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Y94G4 | Y94G5 | Y94G6 | Y94G7  | Y94G8           | Y95G3 |
| SS92.3       .000       .218      302       .233      106       .120         SS92.4      175       .218       .043      292       .264       .060         SS92.5      233       .000       .258       .000      352       .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |       |       |        |                 |       |
| SS92.4175 .218 .043292 .264 .060<br>SS92.5233 .000 .258 .000352 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS92.2  | .292  | 218   | .129  | 058    | .018            | .179  |
| SS92.5233 .000 .258 .000352 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS92.3  | .000  | .218  | 302   | .233   | 106             | .120  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS92.4  | 175   | .218  | .043  | 292    | .264            | .060  |
| SS92.6175218 .043 .292 .264060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS92.5  | 233   | .000  | .258  | .000 . | 352             | .000  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS92.6  | 175   | 218   | .043  | .292   | .264            | 060   |



| SS92.7   | 000   | 218                       | 302           | 233   | 106  | 120   |
|----------|-------|---------------------------|---------------|-------|------|-------|
| SS92-8   | -292  | -218                      | <b>-129</b> - | .058  | .018 | - 179 |
| SS93.2   | 146   | .109                      | 065           | .029  | 009  | 359   |
| ss93.3   | .000  | 109                       | .151          | 117   | .053 | 239   |
| SS93.4   | .087  | 109                       | 022           | .146  | 132  | 120   |
| \$\$93.5 | ,117  | <b>.</b> 000 <sub>.</sub> | - 129         | .000  | .176 | ,000  |
| SS93.6   | .087  | .109                      | 022           | 146   | 132  | .120  |
| SS 93.7  | .000  | .109                      | .151          | .117  | .053 | .239  |
| SS93.8   | 146   | 109                       | 065           | 029   | 009  | .359  |
| SS94.2   | 292   | .218                      | 129           | .058  | 018  | .000  |
| SS94.3   | .000  | 218                       | .302          | 233   | .106 | .000  |
| SS94.4   | .175  | 218                       | 043           | .292  | 264  | .000  |
| SS94.5   | .233  | .000                      | 258           | .000  | .352 | .000  |
| SS94.6   | .175  | .218                      | 043           | - 292 | 264  | .000  |
| SS94.7   | .000  | .218                      | .302          | .233  | .106 | .000  |
| SS94.8   | 292   | 218                       | 129           | 058   | 018  | .000  |
| SS95.2   | 146   | .109                      | 065           | .029  | 009  | .359  |
| SS95.3   | • 000 | 109                       | .151          | 117   | .053 | .239  |
| SS95.4   | .087  | 109                       | 022           | .146  | 132  | .120  |
| SS95.5   | .117  | .000                      | 129           | .000  | .176 | .000  |
| SS95.6   | .087  | .109                      | 022           | 146   | 132  | 120   |

\* \* \* \* Analysis of Variance -- design 1 \* \* \* \* \*

| Orthonormalized | Transformat | tion Matrix | (Transpose | d) (Cont.) |       |       |
|-----------------|-------------|-------------|------------|------------|-------|-------|
|                 | Y94G4       | Y94G5       | Y94G6      | Y94G7      | Y94G8 | Y95G3 |
|                 |             |             |            |            |       |       |
| SS95.7          | .000        | .109        | .151       | .117       | .053  | 239   |
| SS95.8          | 146         | 109         | 065        | 029        | 009   | 359   |
| SS96.2          | .292        | 218         | .129       | 058        | .018  | 179   |
| SS96.3          | .000        | .218        | 302        | .233       | 106   | 120   |
| SS96.4          | 175         | .218        | .043       | 292        | .264  | 060   |
| SS96.5          | 233         | .000        | .258       | .000       | 352   | .000  |
| SS96.6          | 175         | 218         | .043       | .292       | .264  | .060  |
| SS96.7          | .000        | 218         | 302        | 233        | 106   | .120  |
| SS96.8          | .292        | .218        | .129       | .058       | .018  | .179  |
|                 |             |             |            |            |       |       |
|                 | Y95G4       | Y95G5       | Y 95G6     | Y95G7      | Y95G8 | Y96G3 |
|                 |             |             |            |            |       |       |
| SS92.2          | 173         | .129        | 076        | .035       | 010   | 068   |
| SS92.3          | .000        | 129         | .178       | 138        | .062  | 045   |
| SS92.4          | .104        | 129         | 025        | .173       | 156   | 023   |
| SS92.5          | .138        | .000        | 153 ,      | .000       | .208  | .000  |
| SS92.6          | .104        | .129        | 025        | 173        | 156   | .023  |
| SS92.7          | .000        | .129        | .178       | .138       | .062  | .045  |
| SS92.8          | 173         | 129         | 076        | 035        | 010   | .068  |
| SS93.2          | .345        | 258         | .153       | 069        | .021  | .271  |
| SS93.3          | .000        | .258        | 357        | .276       | 125   | .181  |
| SS93.4          | 207         | .258        | .051       | 345        | .312  | .090  |
| SS93.5          | 276         | .000        | .306       | .000       | 416   | .000  |
| SS93.6          | 207         | 258         | .051       | .345       | .312  | 090   |
| SS93.7          | .000        | 258         | 357        | 276        | 125   | 181   |
| SS93.8          | .345        | .258        | .153       | .069       | .021  | 271   |

| 5 | SS94.2              | ,000  | .000  | .000  | .000  | .000  | 407   |
|---|---------------------|-------|-------|-------|-------|-------|-------|
| 5 | SS94.3              | .000  | .000  | .000  | .000  | .000  | 271   |
| 5 | SS94.4              | .000  | .000  | .000  | .000  | .000  | 136   |
| 5 | SS94:5·             | .000  | .000  | .000  | .000  | .000  | .000  |
|   | SS94.6              | .000  | .000  | .000  | .000  | .000  | .136  |
| 5 | SS94.7              | .000  | .000  | .000  | .000  | .000  | .271  |
| 5 | SS94.8              | .000  | .000  | .000  | .000  | .000  | .407  |
| 5 | SS95.2              | 345   | .258  | 153   | .069  | 021   | .271  |
| S | SS95.3              | .000  | 258   | .357  | 276   | .125  | .181  |
| S | SS95.4              | .207  | 258   | 051   | .345  | 312   | .090  |
| 5 | SS95.5              | .276  | .000  | 306   | .000  | .416  | .000  |
| 5 | SS95:6-             | .207  | .258  | 051   | 345   | 312   | 090   |
| 5 | SS95.7              | .000  | .258  | .357  | .276  | .125  | 181   |
| 5 | SS95.8              | 345   | 258   | 153   | 069   | 021   | 271   |
| 5 | SS96.2              | .173  | 129   | .076  | 035   | .010  | 068   |
| 5 | SS9 <del>6</del> .3 | .000  | .129  | 178   | .138  | 062   | 045   |
| 5 | SS96.4              | 104   | .129  | .025  | 173   | .156  | 023   |
| 5 | SS96.5              | 138   | .000  | .153  | .000  | 208   | .000  |
| S | 5896.6              | 104   | 129   | .025  | .173  | .156  | .023  |
| S | 5896.7              | .000  | 129   | 178   | 138   | 062   | .045  |
| S | 5596.8              | .173  | .129  | .076  | .035  | .010  | .068  |
|   |                     | Y95G4 | Y95G5 | Y95G6 | Y95G7 | Y95G8 | Y96G3 |
|   |                     |       |       |       |       |       |       |
| S | 5592.2              | .065  | 049   | .029  | 013   | .004  |       |
| 5 | 5892.3              | .000  | .049  | 067   | .052  | 024   |       |
| 5 | 3892.4              | 039   | .049  | .010  | 065   | .059  |       |
| 5 | SS <b>92.</b> 5     | 052   | .000  | .058  | .000  | 079   |       |
| 5 | SS92.6              | 039   | 049   | .010  | .065  | .059  |       |
| 5 | 3892.7              | .000  | 049   | 067   | 052   | 024   |       |
| 5 | SS92.8              | .065  | .049  | .029  | .013  | .004  |       |
| 5 | SS93.2              | 261   | .195  | 116   | .052  | 016   |       |
| 5 | SS93.3              | .000  | 195   | .270  | 209   | .094  |       |
| 5 | 5893.4              | .156  | 195   | 039   | .261  | 236   |       |



| SS93.5         | 209  | . 000 | 231  | .000  | .315 |  |
|----------------|------|-------|------|-------|------|--|
| SS93.6         | .156 | .195  | 039  | 261   | 236  |  |
| SS93.7         | .000 | .195  | .270 | .209  | .094 |  |
| SS93.8         | 261  | 195   | 116  | 052   | 016  |  |
| SS94.2         | .391 | 293   | .173 | 078   | .024 |  |
| SS94.3         | .000 | .293  | 405  | .313  | 142  |  |
| SS94.4         | 235  | .293  | .058 | 391   | .354 |  |
| SS945          | 313  | .000  | .347 | .000  | 472  |  |
| SS94.6         | 235  | 293   | .058 | . 391 | .354 |  |
| SS94.7         | .000 | 293   | 405  | 313   | 142  |  |
| SS94.8         | .391 | .293  | .173 | .078  | .024 |  |
| \$\$95.2.      | 261  | .195  | 116  | .052  | 016  |  |
| SS95.3         | .000 | 195   | .270 | 209   | .094 |  |
| SS95.4         | .156 | 195·  | 039  | .261  | 236  |  |
| SS95.5         | .209 | .000  | 231  | .000  | .315 |  |
| SS956          | .156 | .195  | 039  | 261   | 236  |  |
| SS95.7         | .000 | .195  | .270 | .209  | .094 |  |
| SS95.8         | 261  | 195 · | 116  | 052   | 016  |  |
| SS96.2         | .065 | 049   | .029 | 013   | .004 |  |
| SS96.3         | .000 | .049  | 067  | .052  | 024  |  |
| SS96.4         | 039  | .049  | .010 | 065   | .059 |  |
| SS96.5         | 052  | .000  | .058 | .000  | 079  |  |
| SS96.6         | 039  | 049   | .010 | .065  | .059 |  |
| SS96.7         | .000 | 049   | 067  | 052   | 024  |  |
| SS96.8         | .065 | .049  | .029 | .013  | .004 |  |
| - <del>-</del> |      |       |      |       |      |  |

Note.. TRANSFORMED variables are in the variates column.

These TRANSFORMED variables correspond to the Between-subject effects.



Table 4

Tests of Year, Grade, and Year by Grade Interaction

|           |       | Univariate F | df-      | Stepdown F  | df |
|-----------|-------|--------------|----------|-------------|----|
| YEAR      | -     |              | <u> </u> |             |    |
|           | 1993  | 39.84ª       | 1.       | 39.84***    | 1  |
|           | 1994  | 17.72°       | 1        | 0.50        | 1  |
|           | 1995  | 0.65         | 1        | 36.34***    | 1  |
|           | 1996  | 1.13         | 1        | 32.09       | 1  |
| GRADE     |       |              |          |             | -  |
|           | 3     | 11461.53ª    | 1        | 11461.53*** | 1  |
|           | 4     | 443.0287ª    |          | 33.91***    | 1  |
| ·         | 5     | 170.19       | 1        | 17.58***    | 1  |
|           | 6     | 1.79         | 1        | 10.91***    | 1  |
|           | 7     | 127.79       | 1        | 0.41        | 1  |
|           | 8     | 5.28         | 1        | 0.84        | 1  |
| YR by GRD |       |              |          |             |    |
|           | Y93G3 | 0.09         | 1        | 0.09        | 1  |
|           | Y93G4 | 16:29ª       | 1        | 16.31***    | 1  |
|           | Y93G5 | 27.04ª       | 1        | 24.37***    | 1  |
|           | Y93G6 | 12.28ª       | 1        | 9.32**      | 1  |
|           | Y93G7 | 39.61ª       | 1        | 19.33***    | 1  |
|           | Y93G8 | 2.09         | 1        | 28.47***    | 1  |
|           | Y94G3 | 2.74         | 1        | 0.07        | 1  |
|           | Y94G4 | 18.98ª       | 1        | 2.66        | 1  |



|     |                | Univariate F      | df         | Stepdown F | df             |
|-----|----------------|-------------------|------------|------------|----------------|
| Υ   | /94 <b>G</b> 5 | 6.73 <sup>b</sup> | 1          | 3.43       | . 1            |
| - Υ | /94G6 -        | 12.67ª            | 1          | 0.13       | 1              |
|     | ′94G7          | -22.00ª           | . 1        | 12.86***   | : <b>1</b> · · |
| Y   | ′94G8          | 2.67-             | 1          | 6.64*      | : <b>1</b> .   |
|     | ′95G3          | 0.07              | 1.         | -0.11      | . 1            |
| Y   | /95G4          | 13.58°            | 1,         | 2.51       | 1              |
| Y   | /95G5.         | 17.79ª            | . 1        | 1.63       | . 1.           |
| Y   | ′95G6          | 84.33ª            | 1          | 60.57***   | 1              |
| Y   | ⁄95G7          | . 48.68ª          | . 1        | 25.98***   | . 1            |
|     | ⁄95G8          | 20.43             | <u>1</u> . | 5.23*      | - 1            |
| - Y | ⁄96G3          | 407:09ª           | . 1        | 131.20***  | 1              |
| Y   | ′96G4          | 23.92ª            | 1          | 2.13       | . 1            |
| Υ   | ′96G5          | 75.70°            | 1          | 5.32*      | . 1            |
| . Y | ′96G6          | 0.04              | 1          | 0.07       | . 1            |
| Y   | <b>′</b> 96G7  | 6.52 <sup>b</sup> | 1          | 0.36       | 1              |
| Y   | ′96G8          | 249.03ª           | . 1        | 18.87.***  | . 1            |

Note. a,b alpha levels not evaluated.



<sup>\*</sup>p < .051

<sup>\*\*\*</sup>p < .001

Table 5

Analysis of Variance Summary Table for Year Effect

| Source   | SS       | df  | MS      | F        | η²   |
|----------|----------|-----|---------|----------|------|
| Within   | 91765.87 | 528 | 173.80  |          |      |
| . Year . | 20113.74 | 4.  | 5028.43 | 28.93*** | 0.18 |

<sup>\*\*\*</sup>p < .001

<u>Table 6</u>

<u>Analysis of Variance Summary Table for Grade Effect</u>

| Source    | SS          | <sub>:</sub> df- | MS        | F          | η²   |
|-----------|-------------|------------------|-----------|------------|------|
| . Within. | . 115095.24 | . 792.           | 145.32    |            | ·    |
| Grade     | 5063530.13  | 6                | 843921.69 | 5807.24*** | 0.98 |

<sup>\*\*\*</sup>p < .001

<u>Table 7</u>

<u>Analysis of Variance Summary Table for Year by Grade Effect</u>

| Source        | SS-       | df-  | MS      | F        | η²   |
|---------------|-----------|------|---------|----------|------|
| . Within      | 177649.98 | 3168 | 56.08   |          |      |
| Year by Grade | 54051.70  | 24   | 2252.15 | 40.16*** | 0.23 |

<sup>\*\*\*</sup>p < .001



#### List of References

- Achilles, C. M., Zaharias, J. B., & Nye, B. A. (1995). <u>Analysis of Policy Application of Experimental Results: Project Challenge</u>. (ERIC Document Reproduction Service No. ED 393 151)
- Baker, A. P., & Xu, D. (1995). <u>The Measure of Education: A Review of the Tennessee Value Added Assessment System</u>: Tennessee State Comptroller of the Treasury, Nashville Office of Educational Accountability.
- Ballator, N. (1996). <u>The NAEP Guide: A Description of the Content and Methods of the 1994 and 1996 Assessments. Revised Edition</u>: Educational Testing Service, Princeton, N J.
- Bock, R. D., Wolfe, R., & Fisher, T. H. (1996). <u>A Review and Analysis of the Tennessee Value-Added Assessment System</u>. Nashville, TN: Office of Education Accountability.
- Bruschi, B. A., & Anderson, B. T. (1994). <u>Gender and Ethnic Differences in Science Achievement of Nine-, Thirteen-, and Seventeen-Year-Old Students</u>. (ERIC Document Reproduction Service No. ED 382 751)
- Campbell, J. R., & et al. (1996). <u>NAEP 1994 Trends in Academic Progress. Report in Brief</u>: Educational Testing Service, Princeton, NJ Center for the Assessment of Educational Progress; National Assessment of Educational Progress, Princeton, NJ.
- CTB. (undated). <u>Comprehensive test of basic skills spring norms book: March through June</u>. Monterey: CTB.
- Finn, J. D., & Achilles, C. M. (1990). Answers and Questions about Class Size: A Statewide Experiment. <u>American Educational Research Journal</u>, 27(3), 557-77.
- Hopkins, K. D. (1992). Review of the Comprehensive Test of Basic Skills, Fourth Edition. In J. J. Kramer & J. C. Conoley (Eds.), <u>The eleventh mental</u> <u>measurements yearbook</u>. Lincoln: University of Nebraska, Buros Institute of Mental Measurement.



- Johnson, E. G., et al. (1992). <u>The NAEP 1990 Technical Report</u>: National Assessment of Educational Progress, Princeton, NJ.
- McLean, J. E., & Lockwood, R. (1996). Why we assess students and how: The competing measures of student performance. Thousand Oaks, CA: Corwin Press, Inc.
- Miller, M. D. (1992). Review of the Comprehensive Test of Basic Skills, Fourth Edition. In J. J. Kramer & J. C. Conoley (Eds.), <u>The eleventh mental measurements yearbook</u>. Lincoln: University of Nebraska, Buros Institute of Mental Measurement.
- Miller-Whitehead, M. (1997). An analysis of science scale scores for grades 2-8 in Tennessee for 1990 -1994. Submitted for publication.
- Noble, J., & Sawyer, R. (1992). <u>A Comparison of Two Approaches for Measuring Educational Growth from CTBS and P-ACT+ Scores</u>. (ERIC Document Reproduction Service No. ED 346 163)
- Norusis, M. J. (1993). SPSS for Windows Base Systems Users Guide Release 6.0. Chicago: SPSS, Inc.
- Nye; B. (1993). <u>Some Questions and Answers about Multiage Grouping</u>. (ERIC Document Reproduction Service No. ED 384 998)
- Nye, B. A., et al. (1992). Smaller Classes Really Are Better: <u>American School Board Journal</u>, 179(5), 31-33.
- O'Sullivan; C. (1995): <u>The Cost of Performance Assessment in Science: The NAEP Perspective</u>: Educational Testing Service, Princeton, N.J. (ERIC Document Reproduction Service No. ED 384 638)
- Sanders, W. L., & Rivers, J. C. (1996). <u>Cumulative and residual effects of teachers on future student academic achievement</u> (R11-0435-02-001-97). Knoxville: University of Tennessee Value-Added Research and Assessment Center.
- Underwood, S., & Eumsden, E. S. (1994). <u>Class Size</u>: ERIC Clearinghouse on Educational Management, Eugene, Oreg; National Association of Elementary School Principals, Alexandria, VA Office of Educational Research and Improvement (ED), Washington, DC. (ERIC Document Reproduction Service No. ED 377 548)
  - Yepes Baraya, M. (1995). Task Analysis of Science Performance Tasks and



<u>Items: Identifying Relevant Attributes</u>: Educational Testing Service, Princeton, N J. (ERIC Document Reproduction Service No. ED 388 676)



3060810

# U. S. Department of Education Educational Resources Information Center (ERIC) Reproduction Release Form

For each document submitted, ERIC is required to obtain a signed reproduction release form indicating whether or not ERIC may reproduce the document. A copy of the release form appears below or you may obtain a form from ERIC/IT. Please submit your document with a completed release form to:

ERIC Clearinghouse on Information & Technology 4-194 Center for Science and Technology Syracuse University Syracuse, New York 13244-4100

If you have any questions about submitting documents to ERIC, please phone: 1-800-464-9107

I. Document Identification

Title:

A longitudinal analysis of science scale scores grades 2 - 8 in Tennessee

for 1992 - 1996

Author(s):

Marie Miller-Whitehead

Date:

Oct 20, 1997

II. Reproduction Release

A. Timely and significant materials of interest to the educational community are announced in the monthly abstract journal of the ERIC system, "Resources in Education" (RIE). Documents are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document. If reproduction release is granted, one of the following notices is affixed to the document.

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY:



|                                                                                                                                                                                                                                                                             | ·                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| III. Document Availability Information                                                                                                                                                                                                                                      | ·                                                                                                                                     |
| (Non-ERIC Source)                                                                                                                                                                                                                                                           |                                                                                                                                       |
| If permission to reproduce is not granted to ERIC, the document from another source, please provide to availability of the document. (ERIC will not annour and a dependable source can be specified. Contributoriteria are significantly more stringent for document EDRS). | the following information regarding the nee a document unless it is publicly available, tors should also be aware that ERIC selection |
| Publisher/Distributor:                                                                                                                                                                                                                                                      |                                                                                                                                       |
| Address:                                                                                                                                                                                                                                                                    |                                                                                                                                       |
| Price Per Copy:                                                                                                                                                                                                                                                             |                                                                                                                                       |
| Quantity Price:                                                                                                                                                                                                                                                             |                                                                                                                                       |
| IV. Referral to Copyright/ Reproduction Rights Ho                                                                                                                                                                                                                           |                                                                                                                                       |

If the right to grant reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Return to the ERIC Database page.



Marwhilly What (signature)

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

--OR--

| "PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY:(signature)                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) "                                                                                                                      |
| B. If permission is granted to reproduce the identified document, please CHECK ONE of the options below and sign the release.                                                 |
| Permitting microfiche (4" x 6" film) paper copy, electronic, and optical media reproduction (Level 1).                                                                        |
| Permitting reproduction in other than paper copy (level 2).                                                                                                                   |
| Documents will be processed as indicated provided quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1. |
|                                                                                                                                                                               |

C. "I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as indicated. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquires."

Name:

Marie Miller-Whitehead

Signature:

Organization: University of Alabama at Birmingham

Mani Miller In !

Position:

doctoral student, education consultant

Address:

P. O. Box 491, Leighton, AL

Tel. No.:

205-446-5115

Zip Code:

35646

E-mail:

TnMarie@aol.com

