Form PTO 1449 US Department of ATTY DOCKET NO: SERIAL NO. 09/765,693 P-TB 4568 Commerce Patent and Trademark APPLICANT: Office Daniel S. Sem FILING DATE: GROUP: INFORMATION DISCLOSURE STATEMENT BY APPLICANT January 19, 2001 1627

U.S. PATENT DOCUMENTS

	EXAM. INITIALS		DOCUMENT NUMBER	DATE	NAME	CLASS	SUB- CLASS	FILING DATE
	M		4,863,876	9/5/89	Richard C. Hevey	436	537	
	TPE		5,422,281	6/6/95	Harris et al.	436	501	
	0. 7		5,585,277	12/17/96	Bowie & Pakula	436	518	
	APR 3 0 2001		5,661,019	8/26/97	Oh et al.	435	174	•
13			5,527,686	6/18/96	Fitzpatrick et al.	435	7.9	
	TO THE DEVINE		5,658,739	8/19/97	Virgil L. Woods Jr.	435	7.1	
			5,679,582	10/21/97	Bowie et al.	436	518	
			5,693,515	12/2/97	Clark et al.	435	184	
			5,698,401	12/16/97	Fesik et al.	435	7.1	
			5,710,009	1/20/98	Fitzpatrick et al.	435	7.9	
			5,710,129	1/20/98	Lynch et al.	514	018	
			5,717,092	2/10/98	Armistead et al.	544	129	
			5,723,490	3/3/98	Tung	514	478	
			5,830,462	11/3/98	Crabtree et al.	424	093.21	
	Me		5,804,390	9/8/98	Fesik & Hajduk	435	7.1	

FOREIGN PATENT DOCUMENTS

EXAM. IN J TIALS	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUB- CLASS	TRANSLATION (YES/NO)
\mathcal{M}_{\sim}	WO/89 04315	18/5/89	PCT			
-					10	

EXAMINER DATE CONSIDERED TO THE CONSIDERED TO TH

EXAMINER: Initial if citation considered, whether or not citation is in Conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Form PTO 1449 US Department of Commerce Patent		SERIAL NO. 09/765,693
and Trademark Office	APPLICANT: Daniel S. Sem	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	FILING DATE: January 19, 2001	GROUP: 1627

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages)

th	Appelt et al., "Design of enzyme inhibitors using iterative protein crystallographic analysis," <u>J. Med. Chem.</u> 34:1925-1934 (1991)
TA	Baldock et al., "A mechanism of drug action revealed by structural studies of enoyl reductase," <u>Science</u> 274:2107-2110 (1996)
PR 3 0 20m	Bayomi et al., "Probing the thymidylate synthase active site with bisubstrate analog inhibitors," <u>Nucleosides & Nucleotides</u> 7:103-115 (1988)
TRACEMPARE	Bellamacina, Cornelia R., "The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins," FASEB J. 10:1257-1269 (1996)
	Bemis and Murcko, "The Properties of Known Drugs. 1. Molecular Frameworks," <u>J. Med. Chem.</u> , 39:2887-2893 (1996)
	Bull et al., "Mechanism-based inhibition of human steroid 5α -reductase by finasteride: enzyme-catalyzed formation of NADP-Dihydrofinasteride, a protein bisubstrate analog inhibitor," <u>J. Am. Chem. Soc.</u> 118:2359-2365 (1996)
	Burke, Terrance R., "Protein-tyrosine kinase inhibitors," <u>Drugs of the Future</u> 17:119-131 (1992)
	Chen et al., "Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase," <u>J. Am. Chem. Soc.</u> 115:12591-12592 (1993)
	Combs et al., "Protein structure-based combinatorial chemistry: discovery of non-peptide binding elements to Src SH3 domain," <u>J. Am. Soc.</u> 118:287-288 (1996)
	Cohen et al., "Modular binding domains in signal transduction proteins," Cell , 80:237-248 (1995)
je	Constantine et al., "Characterization of NADP* Binding to Perdeuterated MurB: Backbone Atom NMR Assignments and Chemical-shift Changes," <u>J. Mol.</u> Biol., 267:1223-1246 (1997)

EXAMINER	$I\Lambda$	DATE CONSIDERED
		1000

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Form PTO 1449 US Department of Commerce Patent		SERIAL NO. 09/765,693	
and Trademark Office	APPLICANT: Daniel S. Sem		
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	FILING DATE: January 19, 2001	GROUP: 1627	

	po	Dalgarno et al., "SH3 domains and drug design: ligands, structure, and biological function," <u>Biopolymers</u> 43:383-400 (1998)
		Davis et al., "Alterations in chemical shifts and exchange broadening upon peptide boronic acid inhibitor binding to α -lytic protease," <u>J. Biomolecular NMR</u> 10:21-27 (1997)
	OPA	Davey and Fenna, "2.3 Å resolution x-ray crystal structure of the bisubstrate analogue inhibitor salicylhydroxamic acid bound to human myeloperoxidase: a model for a prereaction complex with hydrogen peroxide," Biochem. 35:10967-10973 (1996)
PATENT	47 3 mg, 50	Farmer et al., "Localizing the NADP binding site on the MurB enzyme by NMR," Nat. Structural Biol., 3:995-997 (1996)
(K)	PARCE ARK OF SE	Fejzo et al., "Dynamic NMR studies of ligand-receptor interactions: Design and analysis of a rapidly exchanging complex of RKBP-12/FK506 with a 24 kDa calcineurin fragment," Protein Sci., 5:1917-1921 (1996)
		Fejzo et al., "The SHAPES Strategy: An NMR Based Approach for Lead Generation in Drug Discovery," Abstract MIIA-4 International Conference on Magnetic Resonance in Biological Systems Meeting, Tokyo (1998)
		Feng et al., "Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands," Proc. Natl. Acad. Sci. USA , 92:12408-12415 (1995)
		Feng et al., "Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis," Chem. & Biol. 3:661-670 (1996)
		Feng and Schreiber, "Enantiomeric binding elements interacting at the same site of an SH3 protein receptor," <u>J. Am Chem. Soc.</u> 119:10873-10874 (1997)
		Gray et al., "Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors," <u>Science</u> 281:533-538 (1998)
	Mer	Hajduk et al., "Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR," <u>J. Am. Chem. Soc.</u> 119:5818-5827 (1997)

EXAMINER DATE CONSIDERED TO THE CONSIDERED TO TH		· · · · · · · · · · · · · · · · · · ·
	EXAMINER	DATE CONSIDERED REPORTED REPORTS AND THE PROPERTY OF THE PROPE

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. The lude copy of this form with next communication to applicant.

-	ATTY DOCKET NO: P-TB 4568	SERIAL NO. 09/765,693
and Trademark Office	APPLICANT: Daniel S. Sem	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	FILING DATE: January 19, 2001	GROUP: 1627

	- O	le		He et al., "Design and synthesis of new leads for PKC bisubstrate inhibitors," <u>Bioorganic & Medicinal Chemistry Letters</u> 4:2845-2850 (1994)
				Ikeda et al., "Multisubstrate analogs for deoxynucleoside kinases," <u>J.</u> <u>Biol. Chem.</u> 261:15836-15843 (1986)
				Labrou et al., "Molecular modelling for the design of chimaeric biomimetic dye-ligands and their interaction with bovine heart mitochondrial malate dehydrogenase," <u>Biochem. J.</u> 315:695-703 (1996)
	OT App	PE	, <u>sca</u>	Labrou et al., "Biomemetic-dye affinity chromatography for the purification of mitochondrial L-malate dehydrogenase from bovine heart," J. Biotechnol., 45:185-194 (1996)
1	75 TOA	20	Prec.	Labrou et al., "Oxaloacetate Decarboxylase: On the Mode of Interaction with Substrate-Mimetic Affinity Ligands," Arch.Biochem.Biophys. , 321(1):61-70 (1995)
			•	Labrou et al., "The Interaction of <i>Candida boidinii</i> Formate Dehydrogenase with a New Family of Chimeric Biomimetic Dye-Ligands," <u>Arch. Biochem. Biophys.</u> , 316(1):169-178 (1995)
	ļ			Levitzki, Alexander, "Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction," <u>FASEB</u> <u>J.</u> 6:3275-3282 (1992)
				Kapoor et al., "Exploring the specificity pockets of two homologous SH3 domains using structure-based, split-pool synthesis and affinity-based selection," J. Am. Chem. Soc. 120:23-29 (1998)
				Medzihradszky et al., "Solid-phase synthesis of adenosine phosphopeptides as potential bisubstrate inhibitors of protein kinases," J. Am. Chem. Soc. 116:9413-9419 (1994)
				Morken et al., "Exploring the leucine-proline binding pocket of the Src SH3 domain using structure-based, split-pool synthesis and affinity-based selection," J. Am. Chem. Soc. 120:30-36 (1998)
	N	e		Patel et al., "Phosphinyl acid-based bisubstrate analog inhibitors of Ras farnesyl protein transferase," <u>J. Med. Chem.</u> 38:435-442 (1995)

EXAMINER	DATE CONSIDERED TO THE TOTAL T
	5 N M

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Commerce Patent	1449 US Department of ATTY DOCKET NO: Commerce Patent P-TB 4568	SERIAL NO. 09/765,693	
and Trademark Office	APPLICANT: Daniel S. Sem		
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	FILING DATE: January 19, 2001	GROUP: 1627	

Men	Patel et al., "Phenol based tripeptide inhibitors of Ras farnesyl protein transferase," <u>Bioorganic & Medicinal Chem. Letters</u> 4:1883-1888 (1994)
	Pawson, "Protein modules and signaling networks," <u>Nature</u> , 373:573-580 (1995)
	Radzicka and Wolfenden, "Transition state and multisubstrate analog inhibitors," Methods in Enzymology 249:284-303 (1995)
OVP	Reinstein et al., "Fluorescence and NMR investigations on the ligand binding properties of adenylate kinases," <u>Biochem.</u> 29:7440-7450 (1990)
APR 9 0 2001	Rickles et al., "Phage display selection of ligand residues important for Src homology 3 domain binding specificity," Proc. Natl. Acad. Sci.uSA , 92:10909-10913 (1995).
THE TRADEMANTER	Rossman et al., "Evolutionary and Structural relationships among dehydrogenases," The Enzymes 11:61-102 (1975)
	Rozwarski et al., "Modification of the NADH of the isoniazid target (InhA) from mycobacterium tuberculosis," Science 279:98-102 (1998)
	Scheffzek et al., "Crystal structure of the complex of UMP/CMP kinase from <i>Dictyostelium discoideum</i> and the bisubstrate inhibitor P^1 -(5'-Adenosyl) P^5 -(5'-Uridyl) pentaphosphate (UP ₅ A) and Mg ²⁺ at 2.2 Å: implications for water-mediated specificity," <u>Biochem.</u> 35:9716-9727 (1996)
	Sem and Kasper, "Geometric relationship between the nicotinamide and isoalloxazine rings in NADPH-cytochrome P-450 oxidoreductase: implications for the classification of evolutionarily and functionally related flavoproteins," <u>Biochem.</u> 31:3391-3398 (1992)
	Shuker et al., "Discovering high-affinity ligands for proteins: SAR by NMR," <u>Science</u> 274:1531-1534 (1996)
per	Sikorski et al., "EPSP synthase: the design and synthesis of bisubstrate inhibitors incorporating novel 3-phosphate mimics," Phosphorus, Sulfur, and Silicon 76:115-118 (1993)

EXAMINER (DATE CONSIDERED REPORT OF THE PARTY OF THE P

EXAMINER: Initial if citation considered, whether or not citation is in confermance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Form PTO 1449 US Department of ATTY DOCKET NO: SERIAL NO. Commerce Patent P-TB 4568 09/765,693 and Trademark APPLICANT: Office Daniel S. Sem INFORMATION DISCLOSURE FILING DATE: GROUP: STATEMENT BY APPLICANT January 19, 2001 1627

1	R		Suyama et al., "Searching for common sequence patterns among distantly related proteins," Protein Engineering 8:1075-1080 (1995)
			Tartar et al., "Design of PKC inhibitors," <u>Actual. Chim. Thér.</u> 18:167-180 (1991)
	(0		Traxler et al., "Sulfonylbenzoly-Nitrostyrenes: potential bisubstrate type inhibitors of the EGF-receptor tyrosine protein kinase," <u>J. Med. Chem.</u> 34:2328-2337 (1991)
APA	302	yC90	Wierenga et al., "Prediction of the occurrence of the ADP-binding $\beta\alpha\beta$ -fold in proteins, using an amino acid sequence fingerprint," <u>J. Mol. Biol.</u> 187:101-107 (1986)
TAT \$ 19	409MAS	N. C.	Wimalasena et al., "Chiral multisubstrate inhibitors of dopamine β -Monoxygenase: evidence for dual modes of interaction," Biochem. 36:7144-7153 (1997)
			Yan and Lawrence, "Distinguishing between closely related protein kinases: a variation on the bisustrate inhibitor theme," <u>J. Am. Chem. Soc.</u> 118:6321-6322 (1996)
			Rickles et al., "Phage display selection of ligand residues important for Src homology 3 domain binding specificity," Proc. Natl. Acad. Sci.uSA , 92:10909-10913 (1995)
			Venters et al., "Characterizing the Use of Perdeuteration in NMR Studies of Large Proteins: 13 C, 15 N and 1 H Assignments of Human Carbonic Anhydrase II," <u>J. Mol. Biol.</u> , 264:1101-1116 (1996)
K			Wittekind et al., "Orientation of Peptide Fragments from Sos Proteins Bound to the N-Terminal SH3 Domain of Grb2 Determined by NMR Spectroscopy," <u>Biochem.</u> , 33:13531-13539 (1994)

	RECEI MAY -2 700 MA
EXAMINER	DATE CONSIDERED NO SE IN

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.