Descrizione statistica del primo ordine

Fissato un istante t, X(t) rappresenta una variabile aleatoria

→ La sua funzione di distribuzione è detta funzione di distribuzione
del primo ordine del processo X(t):

$$F_X(x;t) = \Pr\{X(t) \le x\}$$

- Naturalmente questa funzione dipende anche da una variabile temporale perché le proprietà statistiche della variabile aleatoria X(t) cambiano, in generale, al cambiare dell'istante di tempo t al quale si "campiona" il processo
- Analogamente, si definisce la funzione densità di probabilità (ddp) del primo ordine del processo X(t):

$$f_X(x;t) = \frac{\partial F_X(x;t)}{\partial x}$$

Interpretazione di $f_{\times}(x;t)$ in termini di freq. relativa

- Ripetiamo N volte un dato esperimento \rightarrow In ciascuna prova osserviamo una funzione del tempo x(t) (una realizzazione). Otteniamo così N realizzazioni del processo
- Dati due numeri x e t, se indichiamo con $(\Delta n_t(x))$ il numero di realizzazioni per cui si verifica che al tempo t il valore della funzione x(t) è compreso tra x ed $x+\Delta x$, con Δx opportunamente piccolo, si ha:

(normalizzato)

Descrizione statistica del primo ordine Indici statistici del primo ordine

In generale sono funzioni del tempo t

Nota: non necessariamente $\eta_X(t)$ deve coincidere con una della funzioni campione del processo X(t)

Funzione valor medio del processo X(t):

$$(\eta_X(t)) = E\{X(t)\} = \int x f_X(x;t) dx$$

Funzione potenza media statistica (istantanea):

$$P_X(t) = E\left\{X^2(t)\right\} = \int_{-\infty}^{\infty} x^2 f_X(x;t) dx$$

Funzione varianza del processo X(t):

$$\sigma_X^2(t) = E\left\{ \left(X(t) - \eta_X(t) \right)^2 \right\}$$

$$= \int (x - \eta_X(t))^2 f_X(x;t) dx$$

$$= P_X(t) - \eta_X^2(t)$$

Descrizione statistica del primo ordine

$$F_X(x;t_1) = \Pr(\{X(t_1) \le x\})$$

 $F_X(x;t_1)$ è sufficiente a caratterizzare le proprietà del processo? NO

Esempio: Valore di un titolo in borsa

→ L'andamento del titolo al variare del tempo non è prevedibile

Sia X(t) la quotazione (aleatoria) del titolo: un investitore è interessato alla probabilità di realizzare un utile, cioè alla probabilità dell'evento che la quotazione del titolo all'istante t_2 di vendita sia maggiore della quotazione all'istante t_1 di acquisto:

$$\Pr(\{X(t_2) \ge X(t_1)\})$$

Questa probabilità <u>non</u> può essere ricavata dalla funzione $F_X(x;t_1)$ (del primo ordine) perché richiede la considerazione *congiunta* di *due* variabili aleatorie estratte dallo stesso processo *in due istanti distinti*

Descrizione statistica del secondo ordine

Dati due istanti t_1 e t_2 , consideriamo le v.a. $X(t_1)$ e $X(t_2)$; la loro funzione di distribuzione congiunta, che dipende in generale da t_1 e t_2 , è detta **funzione di distribuzione del secondo ordine** del processo X(t):

$$F_X(x_1, x_2; t_1, t_2) = \Pr\{X(t_1) \le x_1, X(t_2) \le x_2\}$$

Analogamente, si definisce la funzione densità di probabilità del secondo ordine del processo X(t):

$$f_X(x_1, x_2; t_1, t_2) = \frac{\partial^2 F_X(x_1, x_2; t_1, t_2)}{\partial x_1 \partial x_2}$$

Il ragionamento può essere esteso a piacere \rightarrow La descrizione statistica di un processo è completa solo quando si è in grado di caratterizzare il comportamento statistico congiunto di un numero N arbitrario di variabili aleatorie $X(t_1), X(t_2), ..., X(t_N)$ estratte da X(t) a N istanti diversi, comunque grande sia l'intero N, e comunque si scelga la N-upla di istanti $(t_1, t_2, ..., t_N)$

Interpretazione di $f_{\times}(x1,x2;t1,t2)$ in termini di frequenza relativa

Indicando con $\Delta n_{t_1t_2}(x_1,x_2)$ il numero di realizzazioni la cui ampiezza è compresa tra x_1 e $x_1+\Delta x_1$ all'istante t_1 e tra x_2 e $x_2+\Delta x_2$ all'istante t_2 , si ha:

Descrizione statistica del secondo ordine

Indici statistici del secondo ordine: autocorrelazione

- Fissiamo adesso due istanti di tempo arbitrari t_1 e t_2 sul nostro processo X(t), ottenendo le due variabili aleatorie $Y=X(t_1)$ e $\overline{Z}=X(t_2)$ → E' significativa la correlazione $r_{YZ}=E\{YZ\}$ fra queste due variabili
- Il valore di questa correlazione risulterà funzione dei due istanti t_1 e t_2 ai quali le variabili sono state estratte, e potrà essere calcolata solo conoscendo la funzione densità di probabilità del secondo ordine del processo:

$$R_{X}(t_{1},t_{2}) = E\{X(t_{1})X(t_{2})\} = \int_{x_{1}=-\infty}^{+\infty} \int_{x_{2}=-\infty}^{+\infty} \underbrace{x_{1} x_{2} \cdot f_{X}(x_{1},x_{2};t_{1},t_{2})}_{} dx_{1} dx_{2}$$

La funzione $R_X(t_1,t_2)$ si chiama funzione di <u>autocorrelazione</u> perché le due variabili aleatorie di cui si calcola la correlazione sono estratte dallo stesso processo aleatorio

Descrizione statistica del secondo ordine

Indici statistici del secondo ordine: autocovarianza

• Se invece tra le due variabili aleatorie Y e Z calcoliamo la covarianza otteniamo la funzione di autocovarianza $C_X(t_1,t_2)$ di X(t):

$$C_{X}(t_{1},t_{2}) = E\left\{\left[X(t_{1}) - \eta_{X}(t_{1})\right] \cdot \left[X(t_{2}) - \eta_{X}(t_{2})\right]\right\} =$$

$$= \int_{x_{1}=-\infty}^{+\infty} \int_{x_{2}=-\infty}^{+\infty} \left[x_{1} - \eta_{X}(t_{1})\right] \cdot \left[x_{2} - \eta_{X}(t_{2})\right] f_{X}(x_{1},x_{2};t_{1},t_{2}) dx_{1} dx_{2}$$

$$= R_{X}(t_{1},t_{2}) - \eta_{X}(t_{1})\eta_{X}(t_{2})$$

$$= R_{X}(t_{1},t_{2}) - \eta_{X}(t_{1})\eta_{X}(t_{2})$$

$$R_{X}(t_{1},t_{2}) - \eta_{X}(t_{1}) \cdot \eta_{X}(t_{2}) - \eta_{X}(t_{1}) \cdot \eta_{X}(t_{2}) - \eta_{X}(t_{1}) \cdot \eta_{X}(t_{2})$$
Nota: ponendo $t_{1} = t_{2} = t$, l'autocorrelazione e l'autocovarianza si

Nota: ponendo $t_1 = t_2 = t$, l'autocorrelazione e l'autocovarianza si identificano rispettivamente con il valore quadratico medio (potenza media statistica istantanea) e la varianza della v.a. X(t):

$$R_X(t,t) = E\left\{X^2(t)\right\} = P_X(t) \qquad C_X(t,t) = E\left\{\left[X(t) - \eta_X(t)\right]^2\right\} = \sigma_X^2(t)$$
219

- Un processo aleatorio si dice stazionario in senso stretto se il suo comportamento statistico è invariante rispetto ad una traslazione dell'origine dei tempi
- Questo significa che i due processi X(t) e $X(t+\varepsilon)$ hanno le stesse statistiche per ogni valore di ε e per ogni ordine N, ovvero la ddp congiunta soddisfa la seguente relazione:

$$\underbrace{f_X(x_1,\dots,x_N;t_1,\dots,t_N)} = f_X(x_1,\dots,x_N;t_1+\varepsilon,\dots,t_N+\varepsilon) \ \forall \ \varepsilon,\underbrace{t_1,\dots,t_N},\underbrace{N}$$

- I processi $X(t+\varepsilon)$ ed X(t) si dicono statisticamente equivalenti, nel senso che non sono distinguibili tramite la misurazione delle loro statistiche
 - → Ovviamente questo non vuol dire che le loro realizzazioni siano uguali

Stazionarietà del primo ordine

Un processo aleatorio si dice stazionario di ordine 1 se la densità di probabilità del primo ordine soddisfa la seguente relazione:

$$f_X(x;t) = f_X(x;t+\varepsilon) \ \forall \varepsilon,t$$

Questo implica che $f_X(x;t)$ sia indipendente da t:

$$f_X(x;t) = f_X(x)$$

Il valor medio, la potenza media e la varianza di un processo stazionario (almeno) di ordine 1 sono perciò <u>costanti</u>

$$\underline{\underline{\eta_X(t)}} = \underbrace{E\{X(t)\}} = \underbrace{\int x f_X(x;t) dx} = \underbrace{\int x f_X(x) dx} = \eta_X$$

$$\underbrace{P_X(t)}_{} = \underbrace{E\{X^2(t)\}}_{} = \int x^2 f_X(x;t) dx = \int x^2 f_X(x) dx = P_X$$

$$\underline{\sigma_X^2(t)} = P_X(t) - \eta_X^2(t) = P_X - \eta_X^2 = \sigma_X^2$$

INDIU STAT.

Px (X)

 \mathcal{L} 2

Stazionarietà del secondo ordine

Un processo aleatorio si dice stazionario di ordine 2 se la densità di probabilità del secondo ordine soddisfa la seguente relazione:

$$f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_1 + \varepsilon, t_2 + \varepsilon) \quad \forall \varepsilon, t_1, t_2$$

Questo implica che $f_X(x_1,x_2;t_1,t_2)$ dipenda solo da $\tau=t_2-t_1$:

$$\underbrace{f_X(x_1, x_2; t_1, t_2)} = f_X(x_1, x_2; 0, t_2 - t_1) = \underbrace{f_X(x_1, x_2; \tau)}_{\xi = -t_1}$$

Le funzioni di autocorrelazione e autocovarianza di un processo stazionario (almeno) di ordine 2 sono funzione di $\tau=t_2-t_1$:

$$\underbrace{R_{X}(t_{1},t_{2})}_{E} = E\{X(t_{1})X(t_{2})\} = E\{X(t_{1})X(t_{1}+\tau)\}
= \iint x_{1}x_{2}f_{X}(x_{1},x_{2};\tau)dx_{1}dx_{2} = R_{X}(\tau) = R_{X}(t_{1}-t_{1})
C_{X}(t_{1},t_{2}) = R_{X}(t_{1},t_{2}) - \eta_{X}(t_{1})\eta_{X}(t_{2}) = R_{X}(\tau) - \eta_{X}^{2}$$

Stazionarietà di ordine N

N \$155ATO Non ho più N a relta

Un processo aleatorio si dice stazionario di ordine N, se la densità di probabilità di ordine N soddisfa la seguente relazione:

$$f_X(x_1,\dots,x_N;t_1,\dots,t_N) = f_X(x_1,\dots,x_N;t_1+\varepsilon,\dots,t_N+\varepsilon)$$

$$\forall \varepsilon, t_1, t_2, \dots, t_N$$

Questo implica che:

$$f_X(x_1, \dots, x_N; t_1, \dots, t_N) = f_X(x_1, \dots, x_N; t_2 - t_1, t_3 - t_1, \dots, t_N - t_1)$$

• Un processo stazionario di ordine N lo è anche di ogni ordine minore di N

 \rightarrow Ciascuna densità di probabilità di ordine K < N si può ricavare da quella di ordine N mediante le regole marginali, ad esempio: $S S T \longrightarrow S S I$

$$\begin{split} f_X \Big(x_1, \cdots x_{N-1}; t_1, \cdots, t_{N-1} \Big) &= \int f_X \Big(x_1, \cdots x_N; t_1, \cdots, t_N \Big) dx_N \\ &= \int f_X \Big(x_1, \cdots, x_N; t_1 + \varepsilon, \cdots, t_N + \varepsilon \Big) dx_N = f_X \Big(x_1, \cdots, x_{N-1}; t_1 + \varepsilon, \cdots, t_{N-1} + \varepsilon \Big) \\ &\forall \varepsilon, t_1, t_2, \dots, t_{N-1} \end{split}$$

Processo stazionario in senso lato

• Un processo X(t) si dice stazionario in senso lato o debolmente stazionario se il suo valore medio è costante e la sua funzione di autocorrelazione dipende soltanto da $\tau = t_2 - t_1$:

$$\eta_X(t) = E\{X(t)\} = \eta_X$$

$$R_X(t_1, t_2) = E\{X(t_1)X(t_2)\} = E\{X(t_1)X(t_1 + \tau)\} = R_X(\tau)$$

- La stazionarietà in senso lato riguarda soltanto due particolari statistiche del primo e del secondo ordine (quelle coinvolte nell'analisi in potenza)
- La stazionarietà in senso lato è una condizione più debole della stazionarietà di ordine 2 → Se il processo è stazionario di ordine 2 (o maggiore di 2) lo è anche in senso lato, ma non vale in generale il viceversa

$$C_X(t_1, t_2) = R_X(t_1, t_2) - \eta_X(t_1)\eta_X(t_2) = R_X(\tau) - \eta_X^2 = C_X(\tau)$$

Esercizio 1: processo aleatorio parametrico

• Esempi 9.2-9.3 – Libro LV: sia dato il processo aleatorio parametrico $X(t) = a\cos(2\pi f_0 t + \Theta)$ dove $a \in f_0$ sono noti, e la fase iniziale è una variabile aleatoria $\Theta \in U(0,\pi)$

$$\eta_X(t) = E\{X(t)\} = \frac{1}{\pi}$$

$$\mathbb{E}\left\{a\cdot\cos\left(2\pi\beta t+0\right)\right\} = \int_{-\infty}^{+\infty} \cos\left(2\pi\beta t+0\right)\cdot \int_{0}^{\infty} \left(\theta\right) d\theta = \frac{\alpha}{\pi} \int_{0}^{\infty} \cos\left(2\pi\beta t+\theta\right) d\theta$$

•
$$R_X(t_1, t_2) = E\{X(t_1)X(t_2)\} =$$

$$=\frac{\alpha}{\pi}\left[\sin\left(2\pi i \int_{0}^{\pi} t + \theta\right)\right]_{0}^{\pi}$$

$$=\frac{\alpha}{\pi}\left[\sin\left(2\pi i \int_{0}^{\pi} t + \pi\right) - \sin\left(2\pi i \int_{0}^{\pi} t + \theta\right)\right]$$

$$=\frac{\alpha}{\pi}\left(\sin\left(2\pi i \int_{0}^{\pi} t + \theta\right)\right)$$

$$=\frac{\sin\left(2\pi i \int_{0}^{\pi} t + \theta\right)}{\pi}$$

$$=\frac{\alpha}{\pi}\left(\sin\left(2\pi i \int_{0}^{\pi} t + \theta\right)\right)$$

$$R_{\mathbf{x}}(t_{1},t_{2}) = \underbrace{\mathbb{E}\left\{X(t_{1}) \cdot X(t_{1})\right\}}_{+\infty} = \underbrace{\mathbb{E}\left\{a \cdot \cos(2\pi \int_{0}^{\infty} t_{1}+0) \cdot a \cos(2\pi \int_{0}^{\infty} t_{2}+0)\right\}}_{+\infty}$$

$$= \frac{a^{2}}{\pi} \int_{-\infty}^{\pi} \cos(2\pi \int_{0}^{\infty} t_{1}+0) \cdot \cos(2\pi \int_{0}^{\infty} t_{2}+0) d\theta \qquad cos x \cdot cos y = \frac{1}{2} \cos(\alpha+y) + \frac{1}{2} \cos(\alpha-y)$$

$$= \frac{a^{2}}{\pi \cdot 2} \int_{0}^{\pi} \underbrace{\cos(2\pi \int_{0}^{\infty} t_{1}+t_{2})}_{+\infty} \cdot \cos(2\pi \int_{0}^{\infty} t_{1}+t_{2}) + \underbrace{\cos(2\pi \int_{0}^{\infty} t_{1}+t_{2})}_{+\infty} d\theta = \frac{a^{2}}{2} \cdot \cos\left(2\pi \int_{0}^{\infty} (t_{1}+t_{2}) + 2\theta\right) + \underbrace{\cos(2\pi \int_{0}^{\infty} t_{1}+t_{2})}_{+\infty} d\theta = \frac{a^{2}}{2} \cdot \cos\left(2\pi \int_{0}^{\infty} (t_{1}-t_{2})\right)$$

$$= \frac{a^{2}}{\pi \cdot 2} \int_{0}^{\pi} \underbrace{\cos(2\pi \int_{0}^{\infty} t_{1}+t_{2})}_{+\infty} + 2\theta + \frac{a^{2}}{2} \cdot \cos\left(2\pi \int_{0}^{\infty} (t_{1}-t_{2})\right) d\theta = \frac{a^{2}}{2} \cdot \cos\left(2\pi \int_{0}^{\infty} (t_{1}-t_{2})\right)$$

Esercizio 2: processo aleatorio parametrico

- Esempio 9.5 Libro LV: sia dato il processo aleatorio parametrico $X(t) = a\cos(2\pi f_0 t + \Theta)$ dove $a \in f_0$ sono noti, e la fase iniziale è una variabile aleatoria $\Theta \in U(0, 2\pi)$
- $\eta_X(t) = E\{X(t)\} =$

$$= \frac{\alpha}{2\pi} \int_{0}^{2\pi} (2\pi f_0 t + 0) d\theta = 0 = M_X$$

$$= \frac{\alpha}{2\pi} \int_{0}^{2\pi} (2\pi f_{0}t + 0) d\theta = 0 = 0$$

$$R_{X}(t_{1}, t_{2}) = E\{X(t_{1})X(t_{2})\} = \frac{\alpha^{2}}{2\pi} \int_{0}^{2\pi} (2\pi f_{1}t_{1} + 0) d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 - t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 - t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 - t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 - t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 - t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) + \cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) + 2\Theta \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right) d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 + t_2 \right) \right] d\theta$$

$$= \frac{a^2}{2\pi} \cdot \frac{1}{2} \int \left[\cos \left(2\pi \int_0 \left(t_1 +$$

$$\frac{\alpha^2}{\alpha^2} \cdot \cos\left[2\pi f_0(t_1-t_2)\right] = R_{\times}(t_1-t_2)$$

Esercizio 3: processo aleatorio parametrico

Esempio 9.6 – Libro LV: Consideriamo il processo aleatorio parametrico

$$X(t) = \sum_{n=-\infty}^{+\infty} P(t - 2nT)$$

ottenuto attraverso la periodicizzazione del segnale aleatorio

$$P(t) = \left(1 - \frac{|t|}{\Theta}\right) \operatorname{rect}\left(\frac{t}{2\Theta}\right)$$

$$20$$

dove ⊖ è una variabile aleatoria uniformemente distribuita nell'intervallo [0,T]

Verifichiamo se X(t) è stazionario in senso lato.

$$\times (2kT + T) = \times [(2k+1)T] = 0$$

$$X(2KT)$$
, $K \in \mathbb{Z}$ $\int_{x(2K+1)7}^{x(2KT)} = 1$

$$\int_{227}^{1} \chi(2K+1)^{7} = 0$$

$$\gamma_{x} \left((2K+1)^{7} \right) = 0$$

Esercizio 4: processo aleatorio parametrico

 Esempio 9.8 – Libro LV: Una situazione che capita spesso è quella in cui l'andamento di un segnale è noto, ma non se ne conosce esattamente la posizione rispetto a un riferimento temporale → Modello appropriato di processo aleatorio è del tipo:

$$X(t) = p(t - \Theta)$$

dove p(t) è un segnale determinato, mentre Θ è una variabile aleatoria che modella l'incertezza temporale sulla posizione del segnale.

• Come caso particolare, supponiamo che p(t) sia un segnale determinato

periodico: di penodo To

 $p(t) = p(t + T_0)$

e che Θ sia uniformemente distribuito tra 0 e T_0

• Dimostriamo che X(t) è stazionario in senso lato

Scalge
$$t_1 = \frac{T_0}{2}$$

$$= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} p(\alpha) \cdot p[\alpha - (t_1 - t_1)] d\alpha = R_x(t_1 - t_2)$$

$$\chi(t) \in SSL$$

$$\gamma = t_1 - t_2$$

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} dt = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} dt = \int_{-\frac{T_0}{2}}^$$

$$\gamma = t_1 - t_2$$

$$R_{\chi}(\gamma) = \frac{1}{T_0} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} p(\alpha) \cdot p(\alpha - \gamma) d\alpha \rightarrow \text{functions of the separate state minutes}$$
e periodice of periodic To $p(t)$

Proprietà della funzione di autocorrelazione

Proprietà 1. L'ACF di un processo reale, stazionario almeno $R_{\chi}(\tau) = R_{\chi}(-\tau) \quad \text{in senso lato, è una funzione reale e pari:}$ $R_{\chi}(\tau) = E\{X(t)X(t+\tau)\} = E\{X(t'-\tau)X(t')\}$ $= E\{X(t')X(t'-\tau)\} = R_{\chi}(-\tau)$ $R_{\chi}(0) = E\{X^{2}(t)\} = P_{\chi} \ge 0$

- \checkmark $R_X(0)$ viene detta **potenza media statistica (istantanea)** del processo X(t): se consideriamo il processo X(t) come l'insieme delle funzioni campione che rappresentano la tensione applicata ai capi di una resistenza unitaria, $x^2(t, \omega)$ è la potenza istantanea dissipata dalla realizzazione associata al risultato ω dell'esperimento casuale
 - \rightarrow Perciò il valore quadratico medio $R_X(t,t)=E\{X^2(t)\}$ fornisce il valore medio (statistico) della potenza dissipata sulla resistenza unitaria all'istante t
- ✓ Se il processo è stazionario almeno in senso lato, $R_X(t,t) = R_X(0) = costante$ è la potenza media dissipata in qualunque istante

Proprietà della funzione di autocorrelazione

Proprietà 2. L'ACF di un processo stazionario (almeno) in senso lato (s.s.l.) assume il valore max nell'origine:

$$\begin{aligned} \left|R_X(\tau)\right| &\leq R_X(0) \\ &\stackrel{E\{[X(t+\tau)\pm X(t)]^2\}}{=} &\stackrel{E}{=} 0 \\ &\stackrel{E\{[X(t+\tau)\pm X(t)]^2\}}{=} &= E\{X^2(t+\tau)\} + E\{X^2(t)\} \pm 2E\{X(t)X(t+\tau)\} \\ &\stackrel{E}{=} 2R_X(0) \pm 2R_X(\tau) \geq 0 \\ &\stackrel{E}{=} 0 \\ &$$

■ Proprietà 3. Se un processo casuale X(t) contiene una componente periodica $X(t) = X(t+T_0)$, anche l'ACF contiene una componente periodica dello stesso periodo T_0

$$R_{X}(\tau) = E\{X(t)X(t+\tau)\} = E\{X(t)X(t+\tau+T_{0})\} = R_{X}(\tau+T_{0})$$

230

Proprietà della funzione di autocorrelazione

Proprietà 4. Se l'ACF di di un processo s.s.l. non contiene componenti periodiche, vale:

$$\lim_{\tau \to \infty} R_X(\tau) = \lim_{\tau \to \infty} \left[C_X(\tau) + \eta_X^2 \right] = \lim_{\tau \to \infty} C_X(\tau) + \eta_X^2 = \eta_X^2$$

- Al crescere di τ , la distanza tra gli istanti t e t τ aumenta e quindi le funzioni campione del processo «hanno tempo» per variare sensibilmente \rightarrow I valori delle v.a. X(t) e $X(t \tau)$ tendono a diventare incorrelati, cioè la loro covarianza $C_X(\tau)$ si riduce progressivamente
- Al limite, quando $\tau \to \infty$ la covarianza si annulla e la funzione di autocorrelazione tende a coincidere con il quadrato del valor medio

$$\int_{\mathbb{R}} \eta_{x} = 0 \longrightarrow \lim_{\tau \to \infty} R_{x}(\tau) = 0$$

ACF vs. velocità di variazione delle realizzazioni

- I due insiemi di funzioni campione sono relativi a due diversi processi stazionari, rispettivamente X(t) e Y(t), aventi stesse statistiche del primo ordine (valor medio nullo, potenza, densità del primo ordine)
- Evidentemente, però, i due processi differiscono parecchio nella rispettiva velocità media di variazione delle funzioni campione → La funzione di autocorrelazione misura la rapidità di variazione del segnale aleatorio
- Per quantificare con un singolo parametro la "velocità" del segnale si introduce il tempo di correlazione τ_{cor} , definito come la minima distanza che deve intercorrere tra due istanti di osservazione affinché le variabili aleatorie estratte dal processo siano incorrelate

ACF vs. velocità di variazione delle realizzazioni

ACF vs. velocità di variazione delle realizzazioni

• Estraggo due v.a. A e B rispettivamente ai tempi t_A e t_B che distano temporalmente $t_A-t_B=\tau_{AB}>\tau_{cor}$

•
$$C_{AB} = E\{AB\} = R_X(t_A, t_B) = R_X(t_A - t_B) = R_X(\tau_{AB}) = 0$$

Valor medio nullo

234

Relazione ingresso-uscita tra le statistiche semplificate

• Un caso tipico dell'elaborazione dei segnali è quello in cui l'osservato X(t) è dato da una componente determinata s(t) (il segnale "utile") accompagnata da un disturbo aleatorio a valor medio nullo D(t) (chiamato anche rumore):

$$X(t) = \underline{s(t)} + D(t)$$

- Naturalmente, cerchiamo di elaborare X(t) in modo da preservare la componente utile s(t) e reiettare il più possibile il disturbo D(t)
- Questa operazione può essere effettuata da un filtro, cioè da un sistema lineare stazionario il cui comportamento riguardo ai segnali determinati è perfettamente noto

Filtraggio di un processo aleatorio con un SLS

- Inviamo un generico processo aleatorio X(t) in ingresso ad un sistema lineare stazionario, e cerchiamo di stabilire le <u>caratteristiche statistiche</u> del processo aleatorio di uscita Y(t), note quelle di X(t)
- Il segnale di uscita Y(t) è un *nuovo* processo le cui funzioni campione possono essere facilmente messe in corrispondenza con i risultati dell'esperimento che ha generato X(t):

$$y(\bar{\omega};t) = x(\bar{\omega};t;) \otimes h(t)$$

dove h(t) è la risposta impulsiva del sistema in esame

• Questo risultato vale per qualunque realizzazione del processo X(t), quindi, per riassumere:

 $Y(t) = X(t) \otimes h(t)$

