RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	
Source:	IFWO
Date Processed by STIC:	3/1/05

ENTERED

DATE: 03/01/2005

IFWO

```
RAW SEQUENCE LISTING
                PATENT APPLICATION: US/10/696,909A
                                                        TIME: 08:06:04
                Input Set : A:\-58-2.app
                Output Set: N:\CRF4\03012005\J696909A.raw
3 <110> APPLICANT: Lorens, James B.
        Atchison, Robert E.
        Friera, Anabella
5
        Holland, Sacha
6
7
        Rigel Pharmaceuticals, Inc.
9 <120> TITLE OF INVENTION: Modulators of Angiogenesis and Tumorigenesis
11 <130> FILE REFERENCE: 021044-005820US
13 <140> CURRENT APPLICATION NUMBER: US 10/696,909A
14 <141> CURRENT FILING DATE: 2003-10-29
16 <150> PRIOR APPLICATION NUMBER: US 60/512,251
17 <151> PRIOR FILING DATE: 2003-10-17
19 <150> PRIOR APPLICATION NUMBER: US 60/421,989
20 <151> PRIOR FILING DATE: 2002-10-29
22 <160> NUMBER OF SEQ ID NOS: 72
24 <170> SOFTWARE: PatentIn Ver. 2.1
26 <210> SEQ ID NO: 1
27 <211> LENGTH: 80
28 <212> TYPE: DNA
29 <213> ORGANISM: Artificial Sequence
31 <220> FEATURE:
32 <223> OTHER INFORMATION: Description of Artificial Sequence:synthetic Axl
         GH2 420 G3F1
35 <400> SEQUENCE: 1
36 ctccaggggt tcaggataac ctccaccctc atccatgttg acatagagga tttcgtcagg 60
                                                                      80
37 ctcctgggca ggaggcaagg
40 <210> SEQ ID NO: 2
41 <211> LENGTH: 113
42 <212> TYPE: DNA
43 <213> ORGANISM: Artificial Sequence
45 <220> FEATURE:
46 <223> OTHER INFORMATION: Description of Artificial Sequence:synthetic Axl
        GH2 420 G3R1
47
49 <400> SEQUENCE: 2
50 atctatctaa ccactgtgct tgggttctgc ggccttgcct cctgcccagg agcctgacga 60
51 aatcctctat gtcaacatgg atgagggtgg aggttatcct gaaccccctg gag
54 <210> SEQ ID NO: 3
55 <211> LENGTH: 5014
56 <212> TYPE: DNA
57 <213> ORGANISM: Homo sapiens
59 <220> FEATURE:
60 <223> OTHER INFORMATION: AXL receptor tyrosine kinase (AXL), transcript
61
         variant 1 cDNA
```

63 <400> SEQUENCE: 3

Input Set : A:\-58-2.app

```
64 qaqtqqaqtt ctggaggaat gtttaccaga cacagagccc agagggacag cgcccagagc 60
65 ccagatagag agacacggcc tcactggctc agcaccaggg tccccttccc cctcctcagc 120
66 tecetecetg geceetttaa gaaagagetg atecteteet etettgagtt aacceetgat 180
67 tgtccaggtg gcccctggct ctggcctggt gggcggaggc aaaggggggag ccaggggcgg 240
68 agaaaqggtt gcccaagtct gggagtgagg gaaggaggca ggggtgctga gaaggcggct 300
69 qctgggcaga gccggtggca agggcctccc ctgccgctgt gccaggcagg cagtgccaaa 360
70 tecqqqqage etggagetgg ggggagggee ggggacagee eggeeetgee eeeteeeeeg 420
71 ctgggagccc agcaacttct gaggaaagtt tggcacccat ggcgtggcgg tgccccagga 480
72 tgggcagggt cccgctggcc tggtgcttgg cgctgtgcgg ctgggcgtgc atggccccca 540
73 ggggcacgca ggctgaagaa agtcccttcg tgggcaaccc agggaatatc acaggtgccc 600
74 ggggactcac gggcaccett eggtgtcage tecaggttca gggagagece ecegaggtac 660
75 attggcttcg ggatggacag atcctggage tegeggacag cacceagace caggtgeece 720
76 tgggtgagga tgaacaggat gactggatag tggtcagcca gctcagaatc acctccctgc 780
77 agettteega eaegggaeag taecagtgtt tggtgtttet gggaeateag acettegtgt 840
78 cccagcctgg ctatgttggg ctggagggct tgccttactt cctggaggag cccgaagaca 900
79 ggactgtggc cgccaacacc cccttcaacc tgagctgcca agctcaggga cccccagagc 960
80 cegtggacet actetggete caggatgetg tecceetgge caeggeteca ggtcaeggee 1020
81 cccagcgcag cctgcatgtt ccagggctga acaagacatc ctctttctcc tgcgaagccc 1080
82 ataacgccaa gggggtcacc acatcccgca cagccaccat cacagtgctc ccccagcagc 1140
83 cccgtaacct ccacctggtc tcccgccaac ccacggagct ggaggtggct tggactccag 1200
84 geetgagegg catetacece etgacecaet geaceetgea ggetgtgetg teagaegatg 1260
85 ggatgggcat ccaggcggga gaaccagacc ccccagagga gccctcacc tcgcaagcat 1320
86 cegtgeecce ceateagett eggetaggea geetecatee teacaceeet tateacatee 1380
87 gegtggeatg caccageage cagggeeeet cateetggae ceaetggett eetgtggaga 1440
88 cqccqqaqqq aqtqcccctq qqcccccctq aqaacattag tgctacgcgg aatgggagcc 1500
89 aggccttcgt gcattggcaa gagccccggg cgcccctgca gggtaccctg ttagggtacc 1560
90 ggctggcgta tcaaggccag gacaccccag aggtgctaat ggacataggg ctaaggcaag 1620
91 aggtgaccct ggagctgcag ggggacgggt ctgtgtccaa tctgacagtg tgtgtggcag 1680
92 cctacactgc tgctggggat ggaccctgga gcctcccagt acccctggag gcctggcgcc 1740
93 cagggcaagc acagccagtc caccagctgg tgaaggaacc ttcaactcct gccttctcgt 1800
94 ggccctggtg gtatgtactg ctaggagcag tcgtggccgc tgcctgtgtc ctcatcttgg 1860
95 ctctcttcct tgtccaccgg cgaaagaagg agacccgtta tggagaagtg tttgaaccaa 1920
96 cagtggaaag aggtgaactg gtagtcaggt accgcgtgcg caagtcctac agtcgtcgga 1980
97 ccactgaagc taccttgaac agcctgggca tcagtgaaga gctgaaggag aagctgcggg 2040
98 atgtgatggt ggaccggcac aaggtggccc tggggaagac tctgggagag ggagagtttg 2100
99 gagetgtgat ggaaggeeag eteaaceagg acgaeteeat ceteaaggtg getgtgaaga 2160
100 cgatgaagat tgccatctgc acgaggtcag agctggagga tttcctgagt gaagcggtct 2220
101 gcatgaagga atttgaccat cccaacgtca tgaggctcat cggtgtctgt ttccagggtt 2280
102 ctgaacgaga gagetteeca geacetgtgg teatettace ttteatgaaa catggagace 2340
103 tacacagett ceteetetat teeeggeteg gggaccagee agtgtacetg cecaeteaga 2400
104 tgctagtgaa gttcatggca gacatcgcca gtggcatgga gtatctgagt accaagagat 2460
105 tcatacaccg ggacctggcg gccaggaact gcatgctgaa tgagaacatg tccgtgtgtg 2520
106 tggcggactt cgggctctcc aagaagatct acaatgggga ctactaccgc cagggacgta 2580
107 tegecaagat gecagteaag tggattgeca ttgagagtet agetgaeegt gtetaeaeea 2640
108 gcaagagega tgtgtggtee tteggggtga caatgtggga gattgeeaca agaggeeaaa 2700
109 ccccatatcc gggcgtggag aacagcgaga tttatgacta tctgcgccag ggaaatcgcc 2760
110 tgaagcagcc tgcggactgt ctggatggac tgtatgcctt gatgtcgcgg tgctgggagc 2820
111 taaatcccca ggaccggcca agttttacag agctgcggga agatttggag aacacactga 2880
112 aggeettgee teetgeecag gageetgaeg aaateeteta tgteaacatg gatgagggtg 2940
```

Input Set : A:\-58-2.app

```
113 gaggttatee tgaaceeect ggagetgeag gaggagetga ceeeccaace cagecagace 3000
114 ctaaggatte etgtagetge etcaetgegg etgaggteea teetgetgga egetatgtee 3060
115 tetgecette cacaacceet agecegete agectgetga taggggetee ceageagece 3120
116 cagggcagga ggatggtgcc tgagacaacc ctccacctgg tactccctct caggatccaa 3180
117 gctaagcact gccactgggg aaaactccac cttcccactt tcccacccca cgccttatcc 3240
118 ccacttgcag ccctgtcttc ctacctatcc cacctccatc ccagacaggt ccctccctt 3300
119 ctctqtqcag tagcatcacc ttgaaagcag tagcatcacc atctgtaaaa ggaaggggtt 3360
120 ggattgcaat atctgaagcc ctcccaggtg ttaacattcc aagactctag agtccaaggt 3420
121 ttaaagagtc tagattcaaa ggttctaggt ttcaaagatg ctgtgagtct ttggttctaa 3480
122 ggacctgaaa ttccaaagtc tctaattcta ttaaagtgct aaggttctaa ggcctacttt 3540
123 ttttttttt tttttttt ttttttttt tgcgatagag tctcactgtg tcacccaggc 3600
124 tggagtgcag tggtgcaatc tcgcctcact gcaaccttca cctaccgagt tcaagtgatt 3660
125 ttcctgcctt ggcctcccaa gtagctggga ttacaggtgt gtgccaccac acccggctaa 3720
126 tttttatatt tttagtagag acagggtttc accatgttgg ccaggctggt ctaaaactcc 3780
127 tgacctcaag tgatctgccc acctcagcct cccaaagtgc tgagattaca ggcatgagcc 3840
128 actgcactca accttaagac ctactgttct aaagctctga cattatgtgg ttttagattt 3900
129 tctggttcta acatttttga taaagcctca aggttttagg ttctaaagtt ctaagattct 3960
130 gattttagga gctaaggctc tatgagtcta gatgtttatt cttctagagt tcagagtcct 4020
131 taaaatgtaa gattatagat totaaagatt otatagttot agacatggag gttotaaggo 4080
132 ctaggattct aaaatgtgat gttctaaggc tctgagagtc tagattctct ggctgtaagg 4140
133 ctctagatca taaggcttca aaatgttatc ttctcaagtt ctaagattct aatgatgatc 4200
134 aattatagtt tetgaggett tatgataata gattetettg tataagatee tagateetaa 4260
135 gqqtcqaaaq ctctagaatc tgcaattcaa aagttccaag agtctaaaga tggagtttct 4320
136 aaggteeggt gttetaagat gtgatattet aagaettaet etaagatett agattetetg 4380
137 tgtctaagat tctagatcag atgctccaag attctagatg attaaataag attctaacgg 4440
138 tetqttetqt tteaaggeac tetagattee attggteeaa gatteeggat cetaageate 4500
139 taaqttataa qactctcaca ctcagttgtg actaactaga caccaaagtt ctaataattt 4560
140 ctaatqttgg acacetttag gttctttgct gcattctgcc tctctaggac catggttaag 4620
141 agtccaagaa tccacatttc taaaatctta tagttctagg cactgtagtt ctaagactca 4680
142 aatgttctaa gtttctaaga ttctaaaggt ccacaggtct agactattag gtgcaatttc 4740
143 aaggttctaa ccctatactg tagtattctt tggggtgccc ctctccttct tagctatcat 4800
144 tgcttcctcc tccccaactg tgggggtgtg cccccttcaa gcctgtgcaa tgcattaggg 4860
145 atgcctcctt tcccgcaggg gatggacgat ctcccacctt tcgggccatg ttgcccccgt 4920
146 gagccaatcc ctcaccttct gagtacagag tgtggactct ggtgcctcca gaggggctca 4980
147 ggtcacataa aactttgtat atcaacgaaa aaaa
150 <210> SEQ ID NO: 4
151 <211> LENGTH: 894
152 <212> TYPE: PRT
153 <213> ORGANISM: Homo sapiens
155 <220> FEATURE:
156 <223> OTHER INFORMATION: AXL receptor tyrosine kinase (AXL), isoform 1; AXL
          transforming sequence/gene; oncogene AXL
159 <400> SEQUENCE: 4
160 Met Ala Trp Arg Cys Pro Arg Met Gly Arg Val Pro Leu Ala Trp Cys
161
163 Leu Ala Leu Cys Gly Trp Ala Cys Met Ala Pro Arg Gly Thr Gln Ala
                                     25
166 Glu Glu Ser Pro Phe Val Gly Asn Pro Gly Asn Ile Thr Gly Ala Arg
167
             35
```

Input Set : A:\-58-2.app

169 170	Gly	Leu 50	Thr	Gly	Thr	Leu	Arg 55	Cys	Gln	Leu	Gln	Val 60	Gln	Gly	Glu	Pro
172 173	Pro 65	Glu	Val	His	Trp	Leu 70	Arg	Asp	Gly	Gln	Ile 75	Leu	Glu	Leu	Ala	Asp 80
175 176	Ser	Thr	Gln	Thr	Gln 85	Val	Pro	Leu	Gly	Glu 90	Asp	Glu	Gln	Asp	Asp 95	Trp
178 179	Ile	Val	Val	Ser 100	Gln	Leu	Arg	Ile	Thr 105	Ser	Leu	Gln	Leu	Ser 110	Asp	Thr
181 182	Gly	Gln	Tyr 115	Gln	Cys	Leu	Val	Phe 120	Leu	Gly	His	Gln	Thr 125	Phe	Val	Ser
184 185	Gln	Pro 130	Gly	Tyr	Val	Gly	Leu 135	Glu	Gly	Leu	Pro	Tyr 140	Phe	Leu	Glu	Glu
	Pro 145	Glu	Asp	Arg	Thr	Val 150	Ala	Ala	Asn	Thr	Pro 155	Phe	Asn	Leu	Ser	Cys 160
190 191	Gln	Ala	Gln	Gly	Pro 165	Pro	Glu	Pro	Val	Asp 170	Leu	Leu	Trp	Leu	Gln 175	Asp
193 194	Ala	Val	Pro	Leu 180	Ala	Thr	Ala	Pro	Gly 185	His	Gly	Pro	Gln	Arg 190	Ser	Leu
196 197	His	Val	Pro 195	Gly	Leu	Asn	Lys	Thr 200	Ser	Ser	Phe	Ser	Cys 205	Glu	Ala	His
199 200	Asn	Ala 210	Lys	Gly	Val	Thr	Thr 215	Ser	Arg	Thr	Ala	Thr 220	Ile	Thr	Val	Leu
	Pro 225	Gln	Gln	Pro	Arg	Asn 230	Leu	His	Leu	Val	Ser 235	Arg	Gln	Pro	Thr	Glu 240
205 206	Leu	Glu	Val	Ala	Trp 245	Thr	Pro	Gly	Leu	Ser 250	Gly	Ile	Tyr	Pro	Leu 255	Thr
208 209	His	Cys	Thr	Leu 260	Gln	Ala	Val	Leu	Ser 265	Asp	Asp	Gly	Met	Gly 270	Ile	Gln
211 212	Ala	Gly	Glu 275	Pro	Asp	Pro	Pro	Glu 280	Glu	Pro	Leu	Thr	Ser 285	Gln	Ala	Ser
214 215	Val	Pro 290	Pro	His	Gln	Leu	Arg 295	Leu	Gly	Ser	Leu	His 300	Pro	His	Thr	Pro
218	305			-		310		Thr			315					320
221			_		325			Thr		330					335	
224				340				Arg	345					350		
227			355					Leu 360					365			
230		370	_		_		375					380				Gly
233	385					390					395					Ser 400
236					405			Ala		410					415	
238 239	Trp	Ser	Leu	Pro 420	Val	Pro	Leu	Glu	Ala 425	Trp	Arg	Pro	Gly	Gln 430	Ala	Gln
241	Pro	Val	His	Gln	Leu	Val	Lys	Glu	Pro	Ser	Thr	Pro	Ala	Phe	Ser	Trp

Input Set : A:\-58-2.app

. . .

242			42E					440					445			
	Pro	Т	435	Тиг	Wal.	T ON	T 011		λΙа	T/al	1721	λla		λla	Cve	Wal
	PLO	450	пр	тут	val	Leu	455	GIY	MIA	vai	vai	460	AIG	AIG	Суз	Vai
245	Leu		T 011	ח ד ת	T 011	Dho		17-1	uic	7120	λκα		Tuc	Glu	Thr	λνα
		TIE	neu	Ala	пеп	470	пец	vai	птэ	Arg	475	пур	цуз	GIU	1111	480
	465 Tyr	C1	C1	17.7	Dho		Dvo	Thr	\/	C1		C111	C1,,	LOU	7727	
	ıyı	GIY	GIU	vai	485	GIU	PIO	1111	vai	490	Arg	СТУ	GIU	пеп	495	vaı
251	7 ~~	Т	7 ~~~	7727		Tira	C0~	Т	202		7~~	Thr	Thr	Glu		Thr
	Arg	ıyı	Arg		Arg	гур	ser	TÄT	505	Arg	Arg	1111	1111	510	AIG	1111
254	Leu	7 ~~	Com	500	C1	т1.	Cox	C1		T 011	Turc	C1.,	Tvc		λrσ	Λcn
	ьеи	ASII	515	ьец	Gry	116	ser	520	GIU	Leu	цуъ	GIU	525	пеп	Arg	АЗР
257	Val	Mot		λcn	71 200	цic	Tvc		λla	Lau	Glv	Lare		T.611	G1v	Glu
	vai	530	vai	ASP	ALG	птэ	535	vai	AIG	пец	Gry	540	1111	пси	Gry	GIU
260	Gly		Dho	C111	ת ד ת	17 a 1		Glu	Clv	Cln	Lau		Gln.	Acn	Aen	Sar
	545	Giu	FIIE	GIY	міа	550	Mec	GIU	GIY	GIII	555	ASII	GIII	vab	тэр	560
	Ile	T ON	Tuc	17.1	אן א		Trrc	Thr	Mot	Tvc		λla	Tla	Cvc	Thr	
266	116	Leu	гур	val	565	vaı	пур	1111	MEC	570	116	на	116	Cys	575	Arg
	Ser	C1,,	Tou	Clu		Dha	Lau	Cor	Glu	-	TeV	Cvc	Mot	Lare		Dhe
269	ser	GIU	neu	580	АБР	FIIE	пеп	261	585	Αια	Vai	Cys	Mec	590	GIU	THE
	Asp	Hic	Dro		Val	Mot	Ara	T.A11		Glv	Val	Cvs	Dhe		Glv	Ser
271	ASP	шъ	595	POII	vai	Mec	мц	600	116	Gry	VUI	Cys	605	0111	O ₁	DCI
	Glu	Δra		Ser	Dhe	Pro	Δla		Val	Val	Tle	Len		Phe	Met	Lvs
275	GIU	610	Olu	JCI	1110	110	615	110	Val	vai	110	620				272
	His		Δen	T.e.11	Hic	Ser		T.e.11	T.e.u	Tyr	Ser		Len	Glv	Asp	Gln
	625	CIY	изъ	ПСЦ	1115	630	1110	LCu	пси	- 7 -	635	**** 3	u	O ₁	TIOP	640
	Pro	Val	Tvr	Len	Pro		Gln	Met	Len	Val		Phe	Met	Ala	Asp	
281	110	Vul	-1-	Lea	645		0111		Deu	650	_,_				655	
	Ala	Ser	Glv	Met		Tvr	Len	Ser	Thr		Ara	Phe	Ile	His		Asp
284	1114	001	0 -1	660	Q_u	-] -	204	002	665	-1-	5			670	5	F
	Leu	Ala	Ala		Asn	Cvs	Met	Leu		Glu	Asn	Met	Ser		Cvs	Val
287			675	5		- 2		680					685		2	
	Ala	Asp		Glv	Leu	Ser	Lys	Lys	Ile	Tyr	Asn	Gly	Asp	Tyr	Tyr	Arq
290		690		•			695	•		•		700	-	-	-	_
292	Gln	Gly	Arq	Ile	Ala	Lys	Met	Pro	Val	Lys	Trp	Ile	Ala	Ile	Glu	Ser
	705	-	_			710				_	715					720
295	Leu	Ala	Asp	Arg	Val	Tyr	Thr	Ser	Lys	Ser	Asp	Val	Trp	Ser	Phe	Gly
296				_	725					730					735	
298	Val	Thr	Met	Trp	Glu	Ile	Ala	Thr	Arg	Gly	Gln	Thr	Pro	Tyr	Pro	Gly
299				740					745					750		
301	Val	Glu	Asn	Ser	Glu	Ile	Tyr	Asp	Tyr	Leu	Arg	Gln	Gly	Asn	Arg	Leu
302			755					760					765			
304	Lys	Gln	Pro	Ala	Asp	Cys	Leu	Asp	Gly	Leu	Tyr	Ala	Leu	Met	Ser	Arg
305		770					775					780				
307	Cys	Trp	Glu	Leu	Asn	Pro	Gln	Asp	Arg	Pro	Ser	Phe	Thr	Glu	Leu	Arg
308	785					790					795					800
310	Glu	Asp	Leu	Glu	Asn	Thr	Leu	Lys	Ala	Leu	Pro	Pro	Ala	Gln	Glu	Pro
311					805					810					815	
313	Asp	Glu	Ile	Leu	Tyr	Val	Asn	Met		Glu	Gly	Gly	Gly	Tyr	Pro	Glu
314				820					825					830		

Input Set : A:\-58-2.app

Output Set: N:\CRF4\03012005\J696909A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:22; N Pos. 528,561 Seq#:42; N Pos. 353,445 VERIFICATION SUMMARYDATE: 03/01/2005PATENT APPLICATION: US/10/696,909ATIME: 08:06:05

Input Set : A:\-58-2.app

Output Set: N:\CRF4\03012005\J696909A.raw

 $L:1797\ M:341\ W:$ (46) "n" or "Xaa" used, for SEQ ID#:22 after pos.:480

M:341 Repeated in SeqNo=22

L:3454 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:42 after pos.:300

M:341 Repeated in SeqNo=42