Decomposition and Normal Forms COMPSCI 2DB3: Databases

Jelle Hellings Holly Koponen

Department of Computing and Software McMaster University

Winter 2024

stud	ent				
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

What is wrong with this table?

stud	ent				
sid	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

What is wrong with this table?

► The *age* is derivable from *birthdate*.

stud	ent				
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

What is wrong with this table?

- ► The *age* is derivable from *birthdate*.
- ► The derivation of *age* from *birthdate* is stored repeatedly.

student					
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

What is wrong with this table?

- ► The *age* is derivable from *birthdate*.
- ► The derivation of *age* from *birthdate* is stored repeatedly.
- ► The *department* of a *program* is stored repeatedly.

student						
<u>sid</u>	name	age	birthdate	program	department	
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.	
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.	
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.	
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.	
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.	
6	Frieda	21	August 27, 2000	CLASSICS	Classics	

Remember the functional dependencies

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".

stud	ent				
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

Remember the functional dependencies

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".

Exactly those attributes that are involved in *redundancies*.

Remember the functional dependencies

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".

Exactly those attributes that are involved in redundancies.

Improving the table structure

stude	ent		
<u>sid</u>	name	birthdate	program
1	Alicia	August 27, 2000	COMPSCI
2	Во	December 15, 2000	SFWRENG
3	Celeste	April 24, 1999	SFWRENG
4	Dafni	February 1, 2001	COMPSCI
5	Eva	July 2, 1998	COMPSCI
6	Frieda	August 27, 2000	CLASSICS

date_info birthdate	age
August 27, 2000 December 15, 2000 April 24, 1999 February 1, 2001 July 2, 1998	21 20 22 20 23

COMPSCI Comp. and	ıt
SFWRENG Comp. and CLASSICS Classics	

Remember the functional dependencies

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".

Exactly those attributes that are involved in redundancies.

Improving the table structure

stude sid	e nt name	birthdate	program
1	Alicia	August 27, 2000	COMPSCI
2	Во	December 15, 2000	SFWRENG
3	Celeste	April 24, 1999	SFWRENG
4	Dafni	February 1, 2001	COMPSCI
5	Eva	July 2, 1998	COMPSCI
6	Frieda	August 27, 2000	CLASSICS

prog_dept	
program	department
COMPSCI	Comp. and Soft.
SFWRENG	Comp. and Soft.
CLASSICS	Classics

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

What is wrong with this table?

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

What is wrong with this table?

► The enrolled *students* of a *course* are stored repeatedly.

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

What is wrong with this table?

- ► The enrolled *students* of a *course* are stored repeatedly.
- ► The *TA*s of a *course* are stored repeatedly.

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

Remember the multivalued dependencies

► "course —» student" and "course —» TA".

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

Remember the multivalued dependencies

► "course —» student" and "course —» TA".

Exactly those attributes that are involved in *redundancies*.

/41

Remember the multivalued dependencies

► "course → student" and "course → TA".

Exactly those attributes that are involved in *redundancies*.

Improving the table structure

course_studen	ts	course_TAs	
course	TA	course	TA
Programming	Celeste	Programming	Alicia
Programming	Frieda	Programming	Dafni
Databases	Во	Databases	Eva
Databases	Dafni	Databases	Alicia

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

The **all_course_details** table is a big relationship table that:

- enrolls students in courses; and
- assigns TAs and instructors to courses.

We assume that each course has *exactly* one instructor.

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 1: Redundant storage

Information is stored repeatedly.

Celeste is the instructor of Databases is stored *four* times.

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 1: Redundant storage

Information is stored repeatedly.

Celeste is the instructor of Databases is stored four times.

- ► Storage is not *free*: hardware and energy costs.
- Can negatively affect performance: less data overall can be stored in *fast* memory (e.g., CPU caches, main memory, non-volatile memory, SSDs, ...).

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 2: Update anomalies

Updating a value becomes harder: one has to track down and update *all copies*!

4/4

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 2: Update anomalies

Updating a value becomes harder: one has to track down and update all copies!

- ► Will negatively affect performance.
- ► Can lock the involved tables and prevent other (concurrent) usages!

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 3: Insert anomalies

Inserting a value becomes harder: one has to duplicate many records!

 $E.g.,\,to\;enroll\;a\;student\;to\;a\;course,\,we\;need\;to\;duplicate\;all\;instructor\;and\;TA\;data.$

We cannot create a new course without students, or TAs.

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 3: Insert anomalies

Inserting a value becomes harder: one has to duplicate many records! E.g., to enroll a student to a course, we need to duplicate all instructor and TA data.

We cannot create a new course without students, or TAs.

- ► As inserts become more complex: will negatively affect performance.
- Workaround: create a new course by allowing NULL values for student and TA. Should an *enrollment relationship* be responsible to maintain the course *entity*?

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 4: Delete anomalies

Deleting a value becomes harder: one has to track down and delete *all copies*!

We cannot delete the last student or the last TA without deleting the entire course.

4/4

all_course_details				
course	student	TA	Instructor	
Databases	Во	Eva	Celeste	
Databases	Dafni	Eva	Celeste	
Databases	Во	Alicia	Celeste	
Databases	Dafni	Alicia	Celeste	

Downside 4: Delete anomalies

Deleting a value becomes harder: one has to track down and delete *all copies*!

We cannot delete the last student or the last TA without deleting the entire course.

- ► As deletes become more complex: will negatively affect performance.
- We again can work around some limitations by using NULL values. But: NULL values complicate queries and are to be avoided in most cases.

► Redundancies are *bad*.

5/4

- ► Redundancies are bad.
- ▶ Breaking up tables can *improve* their structure.

- Redundancies are bad.
- ▶ Breaking up tables can *improve* their structure.
- ▶ Breaking up tables can *eliminate* redundancies.

- ► Redundancies are bad.
- ▶ Breaking up tables can *improve* their structure.
- ▶ Breaking up tables can *eliminate* redundancies.
- ▶ Dependencies seem to indicate *where and how* to break up tables.

- Redundancies are bad.
- Breaking up tables can improve their structure.
- ► Breaking up tables can *eliminate* redundancies.
- ▶ Dependencies seem to indicate *where and how* to break up tables.

Definitions

A decomposition of a relational schema \mathbf{R} consists of replacing \mathbf{R} by multiple relational schemas, each over a subset of the attributes of \mathbf{R} .

5/4

- Redundancies are bad.
- Breaking up tables can improve their structure.
- ► Breaking up tables can *eliminate* redundancies.
- ▶ Dependencies seem to indicate *where and how* to break up tables.

Definitions

A decomposition of a relational schema \mathbf{R} consists of replacing \mathbf{R} by multiple relational schemas, each over a subset of the attributes of \mathbf{R} .

- Decomposition is an example of schema refinement.
- Decomposition can reduce redundancies.
- Not all decompositions are good schema refinements.

An example of a bad decomposition

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

An example of a bad decomposition

courses	students students	TAs TA
Programming Databases	Celeste Frieda Bo Dafni	Alicia Dafni Eva

An example of a bad decomposition

courses	students students	TAs TA
Programming Databases	Celeste Frieda Bo Dafni	Alicia Dafni Eva

This decomposition *looses* information!

- ► To which courses do *students* belong?
- ► To which courses do *TAs* belong?
- ► Are there TAs/students that are TA/student for *several* courses?

Criteria for good decompositions

Consider a relational schema \mathbf{R} decomposed into schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$. Let \mathcal{I} be any instance of \mathbf{R} that is decomposed into instances \mathcal{I}_1 of $\mathbf{R}_1, \dots, \mathcal{I}_n$ of \mathbf{R}_n .

We say that a decomposition is

7/4

Criteria for good decompositions

Consider a relational schema \mathbf{R} decomposed into schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$. Let \mathcal{I} be any instance of \mathbf{R} that is decomposed into instances \mathcal{I}_1 of $\mathbf{R}_1, \dots, \mathcal{I}_n$ of \mathbf{R}_n .

We say that a decomposition is

Lossless-Join if the join of the decomposed parts is always the original instance. Hence,

$$\mathbf{R}=\mathbf{R}_1\bowtie\ldots\bowtie\mathbf{R}_n.$$

Rationale.

The decomposition *must* represent exactly the original data!

/41

Criteria for good decompositions

Consider a relational schema \mathbf{R} decomposed into schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$. Let \mathcal{I} be any instance of \mathbf{R} that is decomposed into instances \mathcal{I}_1 of $\mathbf{R}_1, \dots, \mathcal{I}_n$ of \mathbf{R}_n .

We say that a decomposition is

Lossless-Join if the join of the decomposed parts is always the original instance. Hence,

$$\mathbf{R}=\mathbf{R}_1\bowtie\ldots\bowtie\mathbf{R}_n.$$

Rationale.

The decomposition *must* represent exactly the original data!

Dependency-Preserving if all constraints on \mathbf{R} can be maintained using only constraints on the individual relational schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$.

Rationale.

The decomposition *simplifies* maintaining data consistency!

An example of a bad decomposition—revisited

student	TA
Celeste	Alicia
Frieda	Alicia
Celeste	Dafni
Frieda	Dafni
Во	Eva
Dafni	Eva
Во	Alicia
Dafni	Alicia
	Celeste Frieda Celeste Frieda Bo Dafni Bo

An example of a bad decomposition—revisited

courses
course
Programming
Databases

students
students
Celeste
Frieda
Bo
Dafni

TAs TA Alicia Dafni Eva

An example of a bad decomposition-revisited

courses	students students	TAs
Programming Databases	Celeste Frieda Bo Dafni	Alicia Dafni Eva

This decomposition is *not* lossless-join.

An example of a bad decomposition-revisited

courses course Programming Databases	students students Celeste Frieda Bo Dafni	M	TAs TA Alicia Dafni Eva
---------------------------------------	--	---	-------------------------------------

An example of a bad decomposition-revisited

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Celeste	Dafni
Programming	Celeste	Eva
Programming	Frieda	Alicia
Programming	Frieda	Dafni
Programming	Frieda	Eva
Programming	Во	Alicia
Programming	Во	Dafni
Programming	Во	Eva
÷	÷	÷

An example of a bad decomposition—revisited

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Celeste	Dafni
Programming	Celeste	Eva
Programming	Frieda	Alicia
Programming	Frieda	Dafni
Programming	Frieda	Eva
Programming	Во	Alicia
Programming	Во	Dafni
Programming	Во	Eva
:	÷	:

Eva is not a TA of Programming. Bo is not enrolled in Programming.

:

An example of dependency preservation

student					
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

Functional dependencies to preserve

- ► "sid → name, age, birthdate, program, department".
- ightharpoonup "birthdate \longrightarrow age".
- ightharpoonup "program \longrightarrow department".

/41

An example of dependency preservation

Functional dependencies to preserve

- ▶ "sid → name, age, birthdate, program, department".
- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".

stude	ent		
sid	name	birthdate	program
1	Alicia	August 27, 2000	COMPSCI
2	Во	December 15, 2000	SFWRENG
3	Celeste	April 24, 1999	SFWRENG
4	Dafni	February 1, 2001	COMPSCI
5	Eva	July 2, 1998	COMPSCI
6	Frieda	August 27, 2000	CLASSICS

date_info birthdate	age
August 27, 2000 December 15, 2000 April 24, 1999 February 1, 2001 July 2, 1998	21 20 22 20 23

prog_dept program	department
COMPSCI	Comp. and Soft.
SFWRENG	Comp. and Soft.
CLASSICS	Classics

An example of dependency preservation

Functional dependencies to preserve

- ▶ "sid → name, age, birthdate, program, department".
- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".

student			
<u>sid</u>	name	birthdate	program
1	Alicia	August 27, 2000	COMPSCI
2	Во	December 15, 2000	SFWRENG
3	Celeste	April 24, 1999	SFWRENG
4	Dafni	February 1, 2001	COMPSCI
5	Eva	July 2, 1998	COMPSCI
6	Frieda	August 27, 2000	CLASSICS

date_info birthdate	age
August 27, 2000 December 15, 2000 April 24, 1999 February 1, 2001 July 2, 1998	21 20 22 20 23

prog_dept program	department
COMPSCI	Comp. and Soft.
SFWRENG	Comp. and Soft.
CLASSICS	Classics

Improvement: every functional dependency is *now* a primary key!

A *normal form* puts requirements on the structure of relational schemas.

A *normal form* puts requirements on the structure of relational schemas.

If these requirements are met, then some kinds of problems cannot arise.

A *normal form* puts requirements on the structure of relational schemas.

If these requirements are met, then some kinds of problems cannot arise.

There are many normal forms proposed over the years.

- ► First Normal Form (1NF);
- Second Normal Form (2NF);
- Third Normal Form (3NF);
- Boyce-Codd Normal Form (BCNF);
- ► Fourth Normal Form (4NF); and
- ► Fifth Normal Form (5NF).

A *normal form* puts requirements on the structure of relational schemas.

If these requirements are met, then some kinds of problems cannot arise.

There are many normal forms proposed over the years.

- ► First Normal Form (1NF);
- Second Normal Form (2NF);
- ► Third Normal Form (3NF);
- ► Boyce-Codd Normal Form (BCNF);
- ► Fourth Normal Form (4NF); and
- ► Fifth Normal Form (5NF).

- ← functional dependencies
- \leftarrow functional dependencies
- \leftarrow functional dependencies
- ← multivalued dependencies
- ← join dependencies

A *normal form* puts requirements on the structure of relational schemas.

If these requirements are met, then some kinds of problems cannot arise.

There are many normal forms proposed over the years.

- First Normal Form (1NF);
- Second Normal Form (2NF);
- ► Third Normal Form (3NF);
- ► Boyce-Codd Normal Form (BCNF);
- ► Fourth Normal Form (4NF); and
- Fifth Normal Form (5NF).

- ← functional dependencies
- \leftarrow functional dependencies
- \leftarrow functional dependencies
- \longleftarrow multivalued dependencies
- ← join dependencies

These normal forms are a hierarchy of successively-more restrictive requirements.

Definition

A relational schema is in *first normal form* if the domain of every attribute is atomic.

11/4

Definition

A relational schema is in *first normal form* if the domain of every attribute is atomic.

A domain is *atomic* if elements of the domain are "indivisible".

11/4

Definition

A relational schema is in *first normal form* if the domain of every attribute is atomic. A domain is *atomic* if elements of the domain are "indivisible".

- Sets and lists are not atomic.
- Complex objects are not atomic.
- Debatable: derivable attributes are not atomic.

Definition

A relational schema is in *first normal form* if the domain of every attribute is atomic. A domain is *atomic* if elements of the domain are "indivisible".

- Sets and lists are not atomic.
- Complex objects are not atomic.
- Debatable: derivable attributes are not atomic.

Our relational data model enforces 1NF by definition.

The Second Normal Form (2NF)

"... mainly of historical interest ..."

The Second Normal Form (2NF)

"... mainly of historical interest ..."

Definition

A relational schema **R** is in *second normal form* if it is in 1NF and if each attribute A of **R**

- ▶ is part of some key of **R**; or
- ► there is no functional dependency of the form X → A with X a proper subset of a key.

The Second Normal Form (2NF)

"...mainly of historical interest ..."

Definition

A relational schema **R** is in *second normal form* if it is in 1NF and if each attribute A of **R**

- ▶ is part of some key of **R**; or
- ► there is no functional dependency of the form X → A with X a proper subset of a key.

I did not even know that when I made these slides!

degree_programs			
department	<u>program</u>	building	type
Comp. and Soft.	Computer Science	ITB	B.A.Sc
Comp. and Soft.	Mechatronics	ITB	B.Eng.
Chemical Engineering	Chemical Engineering	JHE	B.Eng.

degree_programs			
department	<u>program</u>	building	type
Comp. and Soft.	Computer Science	ITB	B.A.Sc
Comp. and Soft.	Mechatronics	ITB	B.Eng.
Chemical Engineering	Chemical Engineering	JHE	B.Eng.

 $department \longrightarrow building$

degree_programs			
department	<u>program</u>	building	type
Comp. and Soft.	Computer Science	ITB	B.A.Sc
Comp. and Soft.	Mechatronics	ITB	B.Eng.
Chemical Engineering	Chemical Engineering	JHE	B.Eng.

 $department \longrightarrow building$

The relational schema **degree_programs** is not in 2NF

Take A = "building" and X = "department".

There is a functional dependency of the form $X \longrightarrow A$ with X a proper subset of a key.

degree_programs			
department	<u>program</u>	building	type
Comp. and Soft.	Computer Science	ITB	B.A.Sc
Comp. and Soft.	Mechatronics	ITB	B.Eng.
Chemical Engineering	Chemical Engineering	JHE	B.Eng.

department → building

The relational schema **degree_programs** is not in 2NF

Take A = "building" and X = "department".

There is a functional dependency of the form $X \longrightarrow A$ with X a proper subset of a key.

The 2NF violation points directly at a redundancy!

We can decompose along the lines of department \longrightarrow building.

degree_programs		
<u>department</u>	<u>program</u>	type
Comp. and Soft.	Computer Science	B.A.Sc
Comp. and Soft.	Mechatronics	B.Eng.
Chemical Engineering	Chemical Engineering	B.Eng.

department_building department	building
Comp. and Soft.	ITB
Chemical Engineering	JHE

This is a *lossless-join* and *dependency-preserving* decomposition and the result is in 2NF.

Note

We only verify 2NF with regards to the set of given functional dependencies!

The result would *not* be in 2NF if other functional dependencies hold (e.g., program \longrightarrow department).

The Third Normal Form (3NF)

Definition

A relational schema **R** is in *third normal form* with respect to functional dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ► $A \subseteq X$ (the dependency is trivial);
- ► *X* is a (super)key; or
- each attribute in $A \setminus X$ is part of a key of **R**.

The Third Normal Form (3NF)

Definition

A relational schema **R** is in *third normal form* with respect to functional dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ► $A \subseteq X$ (the dependency is trivial);
- ► *X* is a (super)key; or
- each attribute in $A \setminus X$ is part of a key of **R**.

Key versus superkey

Superkey Any set of attributes that can uniquely identify rows.

Key A superkey of minimal size: if we remove any attribute from a key, it is no longer a superkey!

If $X \longrightarrow A$ caused a violation of 3NF

If $X \longrightarrow A$ caused a violation of 3NF and X is a proper subset of some key then we can end up storing (X, A) pairs redundantly.

15/4

If $X \longrightarrow A$ caused a violation of 3NF and X is a proper subset of some key then we can end up storing (X, A) pairs redundantly.

degree_programs department	program	building	type
Computing and Software	Computer Science	ITB	B.A.Sc
Computing and Software	Mechatronics	ITB	B.Eng.
Chemical Engineering	Chemical Engineering	JHE	B.Eng.

department \longrightarrow building.

These redundancies are already recognized by 2NF.

If $X \longrightarrow A$ caused a violation of 3NF and X is not a proper subset of any key then there is a chain of dependencies $key \longrightarrow X$ and $X \longrightarrow A$: we cannot relate a key to a X without already knowing the A (determined by X).

15/4

If $X \longrightarrow A$ caused a violation of 3NF and X is not a proper subset of any key then there is a chain of dependencies $key \longrightarrow X$ and $X \longrightarrow A$: we cannot relate a key to a X without already knowing the A (determined by X).

stud	student					
<u>sid</u>	name	age	birthdate	program	department	
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.	
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.	
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.	
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.	
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.	
6	Frieda	21	August 27, 2000	CLASSICS	Classics	

"birthdate \longrightarrow age" and "program \longrightarrow department".

We cannot relate a *student* to a program *without* already knowing its department.

Decomposition into 3NF: 3NF Synthesis

DECOMPOSE- $3NF(R, \mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

1: $result := \emptyset$.

11: return result.

Decomposition into 3NF: 3NF Synthesis

DECOMPOSE- $3NF(R, \mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

1: $result := \emptyset$.

2: $cover := a minimal cover of \mathfrak{S}$.

11: return result.

Decomposition into 3NF: 3NF Synthesis

Decompose- $3NF(\mathbf{R},\mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

- 1: $result := \emptyset$.
- 2: $cover := a minimal cover of \mathfrak{S}$.
- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

11: return result.

6/4

Decomposition into 3NF: 3NF Synthesis

DECOMPOSE- $3NF(\mathbf{R}, \mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

- 1: $result := \emptyset$.
- 2: $cover := a minimal cover of \mathfrak{S}$.
- 3: **for** attributes *A* of **R** such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to result.
- 6: if none of the schemas in result contain a key for R then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

11: return result.

Decomposition into 3NF: 3NF Synthesis

DECOMPOSE- $3NF(\mathbf{R},\mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

- 1: $result := \emptyset$.
- 2: $cover := a minimal cover of \mathfrak{S}$.
- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to result.
- 6: **if** none of the schemas in *result* contain a key for **R** then
- Let key be the attributes of a key of **R**.
- 8: Add relational schema with attributes *key* to *result*.
- 9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from *result*.
- 11: return result.

stud	student					
<u>sid</u>	name	age	birthdate	program	department	
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.	
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.	
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.	
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.	
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.	
6	Frieda	21	August 27, 2000	CLASSICS	Classics	

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".
- ► "sid → name, age, birthdate, program, department".

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ► "sid → name, age, birthdate, program, department".

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

1: $result := \emptyset$.

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ► "sid → name, age, birthdate, program, department".

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{dge}{dt}, \text{birthdate}, \text{program}, \frac{dge}{dt}\}$.

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid \longrightarrow x" with $x \in \{\text{name}, \frac{\text{Age}}{\text{total}}, \text{birthdate}, \text{program}, \frac{\text{depathment}}{\text{total}}\}$.

 $result = \{\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

 student

 sid
 name
 age
 birthdate
 program
 department

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{Age}}{\text{otherwise}}, \text{birthdate}, \text{program}, \frac{\text{depaythment}}{\text{otherwise}}\}$.

 $result = \{(birthdate, age)\}.$

- 3: **for** attributes A of R such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{Alge}}{\text{otherwise}}, \text{birthdate}, \text{program}, \frac{\text{Alge}}{\text{otherwise}}\}$.

 $result = \{(birthdate, age), (program, department)\}.$

- 3: **for** attributes A of R such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{defe}}{\text{defe}}, \text{birthdate}, \text{program}, \frac{\text{defe}}{\text{defe}}\}$.

 $\textit{result} = \{(\textit{birthdate}, \textit{age}), (\textit{program}, \textit{department}), (\textit{sid}, \textit{name}, \textit{birthdate}, \textit{program})\}.$

- 3: **for** attributes A of R such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{Age}}{\text{total plants}}, \text{birthdate}, \text{program}, \frac{\text{Adeplants}}{\text{total plants}}\}$.

 $\textit{result} = \{(\textit{birthdate}, \textit{age}), (\textit{program}, \textit{department}), (\textit{sid}, \textit{name}, \textit{birthdate}, \textit{program})\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

```
studentsidnameagebirthdateprogramdepartment
```

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{Age}}{\text{total plants}}, \text{birthdate}, \text{program}, \frac{\text{Adeplants}}{\text{total plants}}\}$.

 $result = \{(birthdate, age), (program, department), (sid, name, birthdate, program)\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{Age}}{\text{total plants}}, \text{birthdate}, \text{program}, \frac{\text{Adeplants}}{\text{total plants}}\}$.

 $\textit{result} = \{(\textit{birthdate}, \textit{age}), (\textit{program}, \textit{department}), (\textit{sid}, \textit{name}, \textit{birthdate}, \textit{program})\}.$

- 9: **while** the attributes of $\mathbf{R'} \in result$ are a subset of another schema in result **do**
- 10: Remove **R'** from *result*.
- 11: **return** *result*.

student					
<u>sid</u>	name	age	birthdate	program	department

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ▶ "sid $\longrightarrow x$ " with $x \in \{\text{name}, \frac{\text{defe}}{\text{defe}}, \text{birthdate}, \text{program}, \frac{\text{defe}}{\text{defe}}\}$.

result = {(birthdate, age), (program, department), (sid, name, birthdate, program)}.

date_info	
<u>birthdate</u>	age
August 27, 2000	21
December 15, 2000	20
April 24, 1999	22
February 1, 2001	20
July 2, 1998	23

prog_dept program	department
COMPSCI	Comp. and Soft.
SFWRENG	Comp. and Soft.
CLASSICS	Classics

student sid name birthdate program				
1	Alicia	August 27, 2000	COMPSCI	
2	Во	December 15, 2000	SFWRENG	
3	Celeste	April 24, 1999	SFWRENG	
4	Dafni	February 1, 2001	COMPSCI	
5	Eva	July 2, 1998	COMPSCI	
6	Frieda	August 27, 2000	CLASSICS	

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A\}$$

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A\}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

1: $result := \emptyset$.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A\}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\{A \longrightarrow B, A \longrightarrow C, A \longrightarrow D, BC \longrightarrow D, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\{A \longrightarrow B, A \longrightarrow C, A \longrightarrow D, \cancel{BC}//////\cancel{D}, BC \longrightarrow E, \cancel{B} \longrightarrow \cancel{D}, D \longrightarrow A\}$$

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\{A \longrightarrow B, A \longrightarrow C, A//////D, B/C//////D, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\{A \longrightarrow B, A \longrightarrow C, \not A / / / / / / D, \not B \not C / / / / / / D, B C \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

 $result = \{ABC\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{ABC, BCE\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover do$
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A}$$

 $result = \{ABC, BCE, BD\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$result = \{ABC, BCE, BD, DA\}.$$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$
 result = $\{ABC, BCE, BD, DA\}$.

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$result = \{ABC, BCE, BD, DA\}.$$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes key to result.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, A \longrightarrow C, BC \longrightarrow E, B \longrightarrow D, D \longrightarrow A\}$$

$$result = \{ABC, BCE, BD, DA\}.$$

- 9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from result.
- 11: return result.

$$\mathbf{r}(A, B, C, D, E)$$

$$\{A \longrightarrow B, D \longrightarrow E\}$$

$$\mathbf{r}(A, B, C, D, E)$$

 $\{A \longrightarrow B, D \longrightarrow E\}$

$$result = \{\}.$$

Steps of Decompose-3NF(\mathbf{R},\mathfrak{S})

1: $result := \emptyset$.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, D \longrightarrow E}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

$$\mathbf{r}(A, B, C, D, E)$$

 $\{A \longrightarrow B, D \longrightarrow E\}$

$$result = \{\}.$$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, D \longrightarrow E}$$

 $result = \{AB, DE\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, D \longrightarrow E}$$

 $result = \{AB, DE\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, D \longrightarrow E}$$

 $result = \{AB, DE\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

We are missing *C* altogether!

$$\mathbf{r}(A, B, C, D, E)$$

 $\{A \longrightarrow B, D \longrightarrow E\}$

 $result = \{AB, DE, ACD\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

A third example of Decompose-3NF

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow B, D \longrightarrow E}$$

 $result = \{AB, DE, ACD\}.$

- 9: **while** the attributes of $\mathbf{R'} \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from result.
- 11: return result.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbf{R},\mathfrak{S})

1: $result := \emptyset$.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

2: $cover := a minimal cover of \mathfrak{S}$.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC, BC\}.$

- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC, BC\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of **R**.
- 8: Add relational schema with attributes *key* to *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC, BC\}.$

- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes *key* to *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC, BC\}.$

- steps of Decompose-sinf(K, S)
 - 9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

$$result = \{ABC, BC\}.$$

- 9: **while** the attributes of $\mathbf{R'} \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from *result*.

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC\}.$

- 9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result do
- Remove \mathbf{R}' from result. 10:

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

 $result = \{ABC\}.$

Steps of Decompose-3NF(\mathbb{R},\mathfrak{S})

11: return result.

Redundancies in 3NF

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

Redundancies in 3NF

course_info(code, instructor, department)

 $\{\text{``code,department} \longrightarrow \text{instructor''}, \text{``instructor} \longrightarrow \text{department''}\}$

Redundancies in 3NF

course_info(code, instructor, department)

 $\{\text{``code,department} \longrightarrow \text{instructor''}, \text{``instructor} \longrightarrow \text{department''}\}\$

course_info				
code	instructor	department		
1	Alicia	Computing and Software		
2	Alicia	Computing and Software		
3	Во	Chemical Engineering		
4	Во	Chemical Engineering		
5	Celeste	Classics		

The Boyce-Codd Normal Form (BCNF)

Definition

A relational schema ${\bf R}$ is in *Boyce-Codd normal form* with respect to functional dependencies ${\mathfrak S}$ if

it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ► $A \subseteq X$ (the dependency is trivial); or
- ► *X* is a (super)key.

The Boyce-Codd Normal Form (BCNF)

Definition

A relational schema ${\bf R}$ is in *Boyce-Codd normal form* with respect to functional dependencies ${\bf \mathfrak S}$ if

it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ▶ $A \subseteq X$ (the dependency is trivial); or
- ► *X* is a (super)key.

3NF is almost BCNF.

BCNF misses the *exception* "each attribute in $A \setminus X$ is part of a key of **R**".

The Boyce-Codd Normal Form (BCNF)

Definition

A relational schema \mathbf{R} is in *Boyce-Codd normal form* with respect to functional dependencies \mathfrak{S} if

it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ▶ $A \subseteq X$ (the dependency is trivial); or
- ► *X* is a (super)key.

3NF is almost BCNF.

BCNF misses the *exception* "each attribute in $A \setminus X$ is part of a key of \mathbf{R} ".

All relational schemas in BCNF are in 3NF.

Proof
Let **R** be a binary relational scheme with two attributes, *A* and *B*.

(proof details)

Proof

Let \mathbf{R} be a binary relational scheme with two attributes, A and B.

Consider all *possible* functional dependencies:

Proof

Let \mathbf{R} be a binary relational scheme with two attributes, A and B.

Consider all *possible* functional dependencies:

 $A \longrightarrow B$: A must be a *key*;

Proof

Let **R** be a binary relational scheme with two attributes, *A* and *B*.

Consider all *possible* functional dependencies:

 $A \longrightarrow B$: A must be a *key*;

 $B \longrightarrow A$: B must be a key;

Proof

Let **R** be a binary relational scheme with two attributes, *A* and *B*.

Consider all *possible* functional dependencies:

 $A \longrightarrow B$: A must be a *key*;

 $B \longrightarrow A$: B must be a key;

all other dependencies are *trivial* (e.g., $A \longrightarrow A$ or $AB \longrightarrow B$).

Decomposition into BCNF

DECOMPOSE-BCNF(\mathbf{R}, \mathfrak{S})

Compute a decomposition of **R** that is in BCNF and that is lossless-join.

1: **if R** is in BCNF **then**

2: return $\{R\}$.

4/4

Decomposition into BCNF

DECOMPOSE-BCNF(\mathbf{R}, \mathfrak{S})

Compute a decomposition of **R** that is in BCNF and that is lossless-join.

- 1: **if R** is in BCNF **then**
- 2: return $\{R\}$.
- 3: **else**
- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$.

7: **return** Decompose-BCNF(\mathbf{R}_1 , \mathfrak{S}_1) \cup Decompose-BCNF(\mathbf{R}_2 , \mathfrak{S}_2).

Decomposition into BCNF

DECOMPOSE-BCNF(\mathbf{R}, \mathfrak{S})

Compute a decomposition of **R** that is in BCNF and that is lossless-join.

- 1: **if R** is in BCNF **then**
- 2: return $\{R\}$.
- 3: **else**
- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$:

$$\mathfrak{S}_i := \{ (Y \longrightarrow B) \in \mathfrak{S}^+ \mid \text{all } (Y \cup B) \text{ are attributes of } \mathbf{R}_i \}.$$

7: **return** Decompose-BCNF($\mathbf{R}_1, \mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2, \mathfrak{S}_2$).

4/4

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-BCNF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2,\mathfrak{S}_2$).

$$r(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-BCNF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2,\mathfrak{S}_2$).

$$\mathbf{r}(A, B, C)$$
 $\{AC \longrightarrow B, B \longrightarrow C\}$

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbb{R}_1 = X^+$ and $\mathbb{R}_2 = X \cup Z$ with Z all attributes of \mathbb{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-BCNF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2,\mathfrak{S}_2$).

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-BCNF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2,\mathfrak{S}_2$).

$$\mathbf{R}_1 = (BC), \mathbf{R}_2 = (BA).$$

25/4

$$\mathbf{r}(A, B, C)$$

$$\{AC \longrightarrow B, B \longrightarrow C\}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-BCNF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2,\mathfrak{S}_2$).

$$\mathbf{R}_1 = (BC), \mathbf{R}_2 = (BA).$$

5/4

3NF versus BCNF

course_info(code, instructor, department)

 $\{\text{``code,department} \longrightarrow \text{instructor''}, \text{``instructor} \longrightarrow \text{department''}\}\$

3NF

course_info		
instructor	department	
Alicia	Comp. and Soft.	
Alicia	Comp. and Soft.	
Во	Chem. Eng.	
Во	Chem. Eng.	
Celeste	Classics	
	instructor Alicia Alicia Bo Bo	

versus

course_instr code instructor		
1	Alicia	
2	Alicia	
3	Во	
4	Во	
5	Celeste	

BCNF

instr_dep instructor	department
Alicia Bo Celeste	Comp. and Soft. Chem. Eng. Classics
Celeste	Classics

3NF versus BCNF

course_info(code, instructor, department)

{"code,department → instructor", "instructor → department"}

3NF

course_info		
code	instructor	department
1	Alicia	Comp. and Soft.
2	Alicia	Comp. and Soft.
3	Во	Chem. Eng.
4	Во	Chem. Eng.
5	Celeste	Classics

versus

BCNF

course_instr			
code	instructor		
1	Alicia		
2	Alicia		
3	Во		
4	Во		
5	Celeste		

instr_dep instructor department

Alicia Comp. and Soft.
Bo Chem. Eng.
Celeste Classics

redundancy

does not preserve dependencies

Dependency-preserving decompositions for functional dependencies

Consider a relational schema \mathbf{R} decomposed into schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$. Let \mathfrak{S} be the functional dependencies that hold in \mathbf{R} .

Definition

The decomposition $\mathbf{R}_1, \dots, \mathbf{R}_n$ of \mathbf{R} is dependency-preserving if all constraints on \mathbf{R} can be maintained using only constraints on the individual relational schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$.

7/4

Dependency-preserving decompositions for functional dependencies

Consider a relational schema \mathbf{R} decomposed into schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$. Let \mathfrak{S} be the functional dependencies that hold in \mathbf{R} .

Definition

The decomposition $\mathbf{R}_1, \dots, \mathbf{R}_n$ of \mathbf{R} is dependency-preserving if all constraints on \mathbf{R} can be maintained using only constraints on the individual relational schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$.

Which functional dependencies hold in $\mathbf{R}_1, \dots, \mathbf{R}_n$?

Dependency-preserving decompositions for functional dependencies

Consider a relational schema R decomposed into schemas R_1, \ldots, R_n . Let $\mathfrak S$ be the functional dependencies that hold in R.

Definition

The decomposition $\mathbf{R}_1, \dots, \mathbf{R}_n$ of \mathbf{R} is dependency-preserving if all constraints on \mathbf{R} can be maintained using only constraints on the individual relational schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$.

Which functional dependencies hold in $\mathbf{R}_1, \dots, \mathbf{R}_n$?

The *projection* of a set of functional dependencies S of \mathbf{R} onto relational schema \mathbf{R}' is:

 $\{(X \longrightarrow Y) \in S \mid \text{all attributes in } X \cup Y \text{ are attributes of } \mathbf{R}'\}.$

7/4

Dependency-preserving decompositions for functional dependencies

Consider a relational schema R decomposed into schemas R_1, \ldots, R_n . Let $\mathfrak S$ be the functional dependencies that hold in R.

Definition

The decomposition $\mathbf{R}_1, \dots, \mathbf{R}_n$ of \mathbf{R} is dependency-preserving if all constraints on \mathbf{R} can be maintained using only constraints on the individual relational schemas $\mathbf{R}_1, \dots, \mathbf{R}_n$.

Which functional dependencies hold in $\mathbf{R}_1, \dots, \mathbf{R}_n$?

The *projection* of a set of functional dependencies S of \mathbf{R} onto relational schema \mathbf{R}' is:

 $\{(X \longrightarrow Y) \in S \mid \text{all attributes in } X \cup Y \text{ are attributes of } \mathbf{R}'\}.$

In \mathbf{R}_i , $1 \le i \le n$, the projection of \mathfrak{S}^+ onto \mathbf{R}_i hold.

Dependency-preserving decompositions for functional dependencies

Consider a relational schema R decomposed into schemas R_1, \ldots, R_n . Let \mathfrak{S} be the functional dependencies that hold in R.

Which functional dependencies hold in $\mathbf{R}_1, \dots, \mathbf{R}_n$?

The *projection* of a set of functional dependencies S of \mathbf{R} onto relational schema \mathbf{R}' is:

$$\{(X \longrightarrow Y) \in S \mid \text{all attributes in } X \cup Y \text{ are attributes of } \mathbf{R}'\}.$$

In \mathbf{R}_i , $1 \le i \le n$, the projection of \mathfrak{S}^+ onto \mathbf{R}_i hold.

Definition (for functional dependencies)

The decomposition $\mathbf{R}_1, \ldots, \mathbf{R}_n$ of \mathbf{R} is dependency-preserving if $\mathfrak{S}^+ = (\mathfrak{S}_1 \cup \ldots \cup \mathfrak{S}_n)^+$ with $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$ the projection of \mathfrak{S}^+ onto the attributes of $\mathbf{R}_1, \ldots, \mathbf{R}_n$.

```
Original schema \mathbf{R}: (code, instructor, department);
dependencies \mathfrak{S} in \mathbf{R}: {"code,department \longrightarrow instructor",
"instructor \longrightarrow department"},
```

Result of Decompose-BCNF : $\mathbf{R}_1 = (\text{code}, \text{instructor}), \mathbf{R}_2 = (\text{instructor}, \text{department}).$

```
Original schema \mathbf{R}: (code, instructor, department);
dependencies \mathfrak{S} in \mathbf{R}: {"code,department \longrightarrow instructor",
"instructor \longrightarrow department"},
```

Result of Decompose-BCNF : $\mathbf{R}_1 = (\text{code}, \text{instructor}), \mathbf{R}_2 = (\text{instructor}, \text{department}).$

Dependencies \mathfrak{S}_1 in \mathbf{R}_1 : \emptyset (minimal cover).

Dependencies \mathfrak{S}_2 in \mathbf{R}_2 : "instructor \longrightarrow department" (minimal cover).

```
Original schema \mathbf{R}: (code, instructor, department);
dependencies \mathfrak{S} in \mathbf{R}: {"code,department \longrightarrow instructor",
"instructor \longrightarrow department"},
```

Result of Decompose-BCNF : $\mathbf{R}_1 = (\text{code}, \text{instructor}), \mathbf{R}_2 = (\text{instructor}, \text{department}).$

Dependencies \mathfrak{S}_1 in \mathbf{R}_1 : \emptyset (minimal cover).

Dependencies \mathfrak{S}_2 in \mathbf{R}_2 : "instructor \longrightarrow department" (minimal cover).

 $(\mathfrak{S}_1 \cup \mathfrak{S}_2)^+$: "instructor \longrightarrow department" (minimal cover).

```
Original schema \mathbf{R}: (code, instructor, department);
dependencies \mathfrak{S} in \mathbf{R}: {"code,department \longrightarrow instructor",
"instructor \longrightarrow department"},
```

Result of Decompose-BCNF : $\mathbf{R}_1 = (\text{code}, \text{instructor}), \mathbf{R}_2 = (\text{instructor}, \text{department}).$

Dependencies \mathfrak{S}_1 in \mathbf{R}_1 : \emptyset (minimal cover).

Dependencies \mathfrak{S}_2 in \mathbf{R}_2 : "instructor \longrightarrow department" (minimal cover).

 $(\mathfrak{S}_1 \cup \mathfrak{S}_2)^+$: "instructor \longrightarrow department" (minimal cover).

We lost "code, department \longrightarrow instructor" in the decomposition!

student					
<u>sid</u>	name	age	birthdate	program	department
1	Alicia	21	August 27, 2000	COMPSCI	Comp. and Soft.
2	Во	20	December 15, 2000	SFWRENG	Comp. and Soft.
3	Celeste	22	April 24, 1999	SFWRENG	Comp. and Soft.
4	Dafni	20	February 1, 2001	COMPSCI	Comp. and Soft.
5	Eva	23	July 2, 1998	COMPSCI	Comp. and Soft.
6	Frieda	21	August 27, 2000	CLASSICS	Classics

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".
- ► "sid → name, age, birthdate, program, department".

 student

 sid
 name
 age
 birthdate
 program
 department

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ► "sid name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a BCNF violation for **R**.
- 5: Let $\mathbf{R}_1 = X^+$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in X^+ .
- 6: Let \mathfrak{S}_i be all functional dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$.
- 7: **return** Decompose-BCNF($\mathbf{R}_1, \mathfrak{S}_1$) \cup Decompose-BCNF($\mathbf{R}_2, \mathfrak{S}_2$).

studentsidnameagebirthdateprogramdepartment

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ► "sid name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

 $\mathbf{R} = (\underline{\text{sid}}, \text{name}, \text{age}, \text{birthdate}, \text{program}, \text{department})$

studentsidnameagebirthdateprogramdepartment

- ▶ "birthdate → age".
- ▶ "program → department".
- ► "sid → name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

 $\mathbf{R} = (\underline{\text{sid}}, \text{name}, \text{age}, \underline{\text{birthdate}}, \text{program}, \text{department})$

student sid birthdate program department name age

- ightharpoonup "birthdate \longrightarrow age".
- ▶ "program → department".
- ► "sid name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbb{R},\mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

$$\mathbf{R} = (\underline{\mathbf{sid}}, \text{name}, \text{age}, \underline{\mathbf{birthdate}}, \text{program}, \text{department})$$

birthdate
$$\rightarrow$$
 age
$$= (birthdate, age)$$

$$\mathbf{R}_2 = (sid, name, birthdate, program, departners)$$

 $\mathbf{R}_1 = (\text{birthdate}, \text{age})$ $\mathbf{R}_2 = (\text{sid}, \text{name}, \text{birthdate}, \text{program}, \text{department})$

student sid birthdate program department name age

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".
- ► "sid name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbb{R},\mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

$$\mathbf{R} = (\underline{\text{sid}}, \text{name}, \text{age}, \text{birthdate}, \text{program}, \text{department})$$

birthdate, age)
$$\mathbf{R}_2 = (\text{sid}, \text{name}, \text{birthdate}, \text{program}, \text{department})$$

 $\mathbf{R}_1 = (birthdate, age)$

studentsidnameagebirthdateprogramdepartment

- ▶ "birthdate → age".
- ▶ "program → department".
- "sid → name, age, birthdate, program, department".

Steps of Decompose-BCNF(\mathbb{R}, \mathfrak{S})

"Find violating $X \longrightarrow A(X \text{ not a superkey})$, split off X^+ , recurse."

$$\mathbf{R} = (\underline{\text{sid}}, \text{name}, \text{age}, \text{birthdate}, \text{program}, \text{department})$$

 $\textbf{R}_1 = (\text{birthdate} \longrightarrow \text{age}) \\ \textbf{R}_2 = (\text{sid, name, birthdate, program, department}) \\ \text{program} \longrightarrow \text{department}$

 $\boldsymbol{R}_{2,1} = (\text{program}, \text{department}) \qquad \boldsymbol{R}_{2,2} = (\text{sid}, \text{name}, \text{birthdate}, \text{program})$

stud	ent				
<u>sid</u>	name	age	birthdate	program	department

- ightharpoonup "birthdate \longrightarrow age".
- ► "program → department".
- ► "sid name, age, birthdate, program, department".

R_1	
<u>birthdate</u>	age
August 27, 2000	21
December 15, 2000	20
April 24, 1999	22
February 1, 2001	20
July 2, 1998	23

R _{2,1} program	department
COMPSCI	Comp. and Soft.
SFWRENG	Comp. and Soft.
CLASSICS	Classics

R _{2,2} <u>sid</u>	name	birthdate	program
1	Alicia	August 27, 2000	COMPSCI
2	Во	December 15, 2000	SFWRENG
3	Celeste	April 24, 1999	SFWRENG
4	Dafni	February 1, 2001	COMPSCI
5	Eva	July 2, 1998	COMPSCI
6	Frieda	August 27, 2000	CLASSICS

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

► A, B, and D are keys!

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

- ► A, B, and D are keys!
- ► *BC* is a superkey!

$$\mathbf{r}(A, B, C, D, E)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

- ► A, B, and D are keys!
- ► *BC* is a superkey!

This schema is already in BCNF! No steps taken.

DECOMPOSE-3NF yielded (A, B, C), (B, C, E), (B, D), (D, A)!

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$$\{A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A\}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$A \longrightarrow BCD$$

$$\mathbf{R}_1 = (A, B, C, D, E)$$

$$\mathbf{R}_2 = (A, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$BC \longrightarrow DE$$

$$\mathbf{R}_1 = (A, B, C, D, E)$$

$$\mathbf{R}_2 = (B, C, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, D \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$\mathbf{R}_1 = (A, B, C, D, E)$$

$$\mathbf{R}_2 = (B, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BCD, BC \longrightarrow DE, B \longrightarrow D, \textcolor{red}{D} \longrightarrow A}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$\mathbf{R}_1 = (A, B, C, D, E)$$

$$\mathbf{R}_2 = (D, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BC, BD \longrightarrow E, F \longrightarrow B, FB \longrightarrow D}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BC, BD \longrightarrow E, F \longrightarrow B, FB \longrightarrow D}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$A \longrightarrow BC$$

$$\mathbf{R}_1 = (A, B, C)$$

$$\mathbf{R}_2 = (A, D, E, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BC, BD \longrightarrow E, F \longrightarrow B, FB \longrightarrow D}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$A \longrightarrow BC$$

$$\mathbf{R}_1 = (A, B, C)$$

$$\mathbf{R}_2 = (A, D, E, F)$$

$$\mathbf{R}_2 = (A, D, E, F)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BC, BD \longrightarrow E, F \longrightarrow B, FB \longrightarrow D}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$A \longrightarrow BC$$

$$\mathbf{R}_{1} = (A, B, C)$$

$$\mathbf{R}_{2} = (A, D, E, F)$$

$$\mathbf{R}_{2,1} = (F, D, E)$$

$$\mathbf{R}_{2,2} = (F, A)$$

$$\mathbf{r}(A, B, C, D, E, F)$$

$${A \longrightarrow BC, BD \longrightarrow E, F \longrightarrow B, FB \longrightarrow D}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

$$\mathbf{R} = (A, B, C, D, E, F)$$

$$\mathbf{R}_{1} = (A, B, C)$$

$$\mathbf{R}_{2} = (A, D, E, F)$$

$$\mathbf{R}_{2} = (A, D, E, F)$$

$$\mathbf{R}_{2,1} = (F, D, E)$$

$$\mathbf{R}_{2,2} = (F, A)$$

Redundancies in BCNF

BCNF does not look at multivalued dependencies

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

[&]quot;course \longrightarrow student" and "course \longrightarrow TA".

Definition

A relational schema **R** is in *fourth normal form* with respect to multivalued dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- $ightharpoonup A \subseteq X$, or A and X are all attributes in **R** (the dependency is trivial); or
- ► *X* is a (super)key.

34/4

Definition

A relational schema **R** is in *fourth normal form* with respect to multivalued dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- $ightharpoonup A \subseteq X$, or A and X are all attributes in **R** (the dependency is trivial); or
- ► *X* is a (super)key.

Replication: if $X \longrightarrow Y$, then $X \longrightarrow Y$.

4/4

Definition

A relational schema **R** is in *fourth normal form* with respect to multivalued dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- $ightharpoonup A \subseteq X$, or A and X are all attributes in **R** (the dependency is trivial); or
- ► *X* is a (super)key.

Replication: if
$$X \longrightarrow Y$$
, then $X \longrightarrow Y$.

BCNF is almost 4NF.

4NF extends the restrictions of BCNF to multivalued dependencies.

Definition

A relational schema **R** is in *fourth normal form* with respect to multivalued dependencies \mathfrak{S} if it is in 1NF and if, for every $(X \longrightarrow A) \in \mathfrak{S}^+$, the following holds:

- ▶ $A \subseteq X$, or A and X are all attributes in **R** (the dependency is trivial); or
- ► *X* is a (super)key.

Replication: if
$$X \longrightarrow Y$$
, then $X \longrightarrow Y$.

BCNF is almost 4NF.

4NF extends the restrictions of BCNF to multivalued dependencies.

All relational schemas in 4NF are in BCNF.

Many relation schemas in BCNF are in 4NF

A relational schema **R** is guaranteed to be in 4NF if:

R has at-most two attributes.

A relational schema **R** in 3NF is guaranteed to be in 4NF if:

• every key of **R** is a single-attribute key.

A relational schema **R** in BCNF is guaranteed to be in 4NF if:

► if **R** has a single-attribute key.

5/4

Decomposition into 4NF

DECOMPOSE-4NF(\mathbb{R},\mathfrak{S})

Compute a decomposition of **R** that is in 4NF and that is lossless-join.

1: **if R** is in 4NF **then**

2: return $\{R\}$.

6/4

Decomposition into 4NF

DECOMPOSE- $4NF(R, \mathfrak{S})$

Compute a decomposition of **R** that is in 4NF and that is lossless-join.

- 1: **if R** is in 4NF **then**
- 2: return $\{R\}$.
- 3: **else**
- 4: Let $(X \longrightarrow A) \in \mathfrak{S}^+$ be a 4NF violation for **R**.
- 5: Let $\mathbf{R}_1 = X \cup A$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in A.
- 6: Let \mathfrak{S}_i be all multivalued dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$:

$$\mathfrak{S}_i := \{ (Y \longrightarrow B) \in \mathfrak{S}^+ \mid \text{all } (Y \cup B) \text{ are attributes of } \mathbf{R}_i \}.$$

7: **return** Decompose-4NF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-4NF($\mathbf{R}_2,\mathfrak{S}_2$).

Note: *every* step of Decompose-BCNF is a *valid step* in this algorithm.

course_details		
course	student	TA
Programming	Celeste	Alicia
Programming	Frieda	Alicia
Programming	Celeste	Dafni
Programming	Frieda	Dafni
Databases	Во	Eva
Databases	Dafni	Eva
Databases	Во	Alicia
Databases	Dafni	Alicia

- ► "course —» student".
- ► "course → TA".

course_details course student TA

- ► "course → student".
- ► "course → TA".

Steps of Decompose-4NF(\mathbf{R},\mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a 4NF violation for **R**.
- 5: Let $\mathbf{R}_1 = X \cup A$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in A.
- 6: Let \mathfrak{S}_i be all multivalued dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-4NF($\mathbf{R}_1, \mathfrak{S}_1$) \cup Decompose-4NF($\mathbf{R}_2, \mathfrak{S}_2$).

course_details course student TA

- ► "course —» student".
- ► "course → TA".

Steps of Decompose-4NF(\mathbb{R},\mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a 4NF violation for **R**.
- 5: Let $\mathbf{R}_1 = X \cup A$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in A.
- 6: Let \mathfrak{S}_i be all multivalued dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$.
- 7: **return** Decompose-4NF($\mathbf{R}_1, \mathfrak{S}_1$) \cup Decompose-4NF($\mathbf{R}_2, \mathfrak{S}_2$).

course_details course student TA

- ► "course —» student".
- ► "course → TA".

Steps of Decompose-4NF(\mathbb{R},\mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a 4NF violation for **R**.
- 5: Let $\mathbf{R}_1 = X \cup A$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in A.
- 6: Let \mathfrak{S}_i be all multivalued dependencies that hold in \mathbf{R}_i , i ∈ {1, 2}.
- 7: **return** Decompose-4NF(\mathbf{R}_1 , \mathfrak{S}_1) \cup Decompose-4NF(\mathbf{R}_2 , \mathfrak{S}_2).

$$\mathbf{R}_1 = (\text{course}, \text{student}), \mathbf{R}_2 = (\text{course}, \text{TA}).$$

7/4

course_details course student TA

- ► "course → student".
- ► "course → TA".

Steps of Decompose-4NF(\mathbb{R},\mathfrak{S})

- 4: Let $(X \longrightarrow A) \in \mathfrak{S}$ be a 4NF violation for **R**.
- 5: Let $\mathbf{R}_1 = X \cup A$ and $\mathbf{R}_2 = X \cup Z$ with Z all attributes of \mathbf{R} not in A.
- 6: Let \mathfrak{S}_i be all multivalued dependencies that hold in \mathbf{R}_i , $i \in \{1, 2\}$.
- 7: **return** Decompose-4NF($\mathbf{R}_1,\mathfrak{S}_1$) \cup Decompose-4NF($\mathbf{R}_2,\mathfrak{S}_2$).

$$\mathbf{R}_1 = (\text{course}, \text{student}), \mathbf{R}_2 = (\text{course}, \text{TA}).$$

7/4

course_details course student TA

- ► "course → student".
- ► "course → TA".

course_students		course_TAs		
course	TA		course	TA
Programming	Celeste		Programming	Alicia
Programming	Frieda		Programming	Dafni
Databases	Во		Databases	Eva
Databases	Dafni		Databases	Alicia

all_course_details					
course	student	TA	Instructor		
Databases	Во	Eva	Celeste		
Databases	Dafni	Eva	Celeste		
Databases	Во	Alicia	Celeste		
Databases	Dafni	Alicia	Celeste		
Databases	Во	Eva	Frieda		
Databases	Dafni	Eva	Frieda		
Databases	Во	Alicia	Frieda		
Databases	Dafni	Alicia	Frieda		

 $\{\text{course} \longrightarrow \text{student}, \text{course} \longrightarrow \text{TA}, \text{course} \longrightarrow \text{Instructor}\}$

all_course_details course student TA Instructor

 $\{\text{course} \longrightarrow \text{student}, \text{course} \longrightarrow \text{TA}, \text{course} \longrightarrow \text{Instructor}\}$

Steps of Decompose-4NF(\mathbf{R},\mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off $X \cup A$, recurse."

$$\mathbf{R} = (C, S, T, I)$$
course \longrightarrow student
$$\mathbf{R}_1 = (C, S)$$

$$\mathbf{R}_2 = (C, T, I)$$

all_course_details course student TA Instructor

{course → student, course → TA, course → Instructor}

Steps of Decompose-4NF(\mathbf{R},\mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off $X \cup A$, recurse."

course
$$\longrightarrow$$
 student
$$\mathbf{R}_1 = (C, S)$$

$$\mathbf{R}_2 = (C, T, I)$$

$$\mathbf{R}_{2,1} = (C, T)$$

$$\mathbf{R}_{2,2} = (C, I)$$

all_course_details course student TA Instructor

{course → student, course → TA, course → Instructor}

course_students		course_TAs		course_instructors	
course	student	course	TA	course	instructor
Databases	Во	Databases	Eva	Databases	Celeste
Databases	Dafni	Databases	Alicia	Databases	Frieda

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Question: Is r in BCNF?

Vote at https://strawpoll.com/bfuszwggk.

Or: go to https://strawpoll.live and use the code 269641.

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Which functional dependencies hold in **r**?

We have $\{A \longrightarrow BC, B \longrightarrow C\} \models B \longrightarrow C$:

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Which functional dependencies hold in **r**?

We have $\{A \longrightarrow BC, B \longrightarrow C\} \models B \longrightarrow C$:

▶ Apply the Decomposition rule on $A \longrightarrow BC$ to derive $A \longrightarrow C$.

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Which functional dependencies hold in r?

We have $\{A \longrightarrow BC, B \longrightarrow C\} \models B \longrightarrow C$:

- ▶ Apply the Decomposition rule on $A \longrightarrow BC$ to derive $A \longrightarrow C$.
- ▶ We have $\{C\} \cap \{A\} = \emptyset$ and $\{C\} \subseteq \{C\}$.

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Which functional dependencies hold in r?

We have $\{A \longrightarrow BC, B \longrightarrow C\} \models B \longrightarrow C$:

- ▶ Apply the Decomposition rule on $A \longrightarrow BC$ to derive $A \longrightarrow C$.
- ▶ We have $\{C\} \cap \{A\} = \emptyset$ and $\{C\} \subseteq \{C\}$.
- ▶ Hence, we can apply Coalescence rule on $B \longrightarrow C$ and $A \longrightarrow C$ to derive $B \longrightarrow C$.

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A(X \text{ not a superkey})$, split off X^+ , recurse."

$$\mathbf{R} = (A, B, C)$$

$$\mathbf{r}(A, B, C)$$

$${A \longrightarrow BC, B \longrightarrow C}$$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

$$\mathbf{R} = (A, B, C) \in \mathfrak{S}^+!$$

$$r(A, B, C)$$
 $\{A \longrightarrow BC, B \longrightarrow C\}$

Steps of Decompose-BCNF(\mathbf{R}, \mathfrak{S})

"Find violating $X \longrightarrow A$ (X not a superkey), split off X^+ , recurse."

$$\mathbf{R} = (A, B, C) \in \mathfrak{S}^{+}!$$

$$\mathbf{R} = (A, B, C)$$

$$\mathbf{R}_{2,1} = (B, C)$$

$$\mathbf{R}_{2,2} = (A, B)$$

Proof (sketch): Decompose-3NF is dependency-preserving

Decompose- $3NF(\mathbf{R},\mathfrak{S})$

Compute a decomposition of **R** that is in 3NF and that is both lossless-join and dependency-preserving.

- 1: $result := \emptyset$.
- 2: $cover := a minimal cover of \mathfrak{S}$.
- 3: **for** attributes A of **R** such that $(A \longrightarrow X) \in cover$ **do**
- 4: Let $B = \{Y \mid (A \longrightarrow Y) \in cover\}.$
- 5: Add relational schema with attributes $A \cup B$ to result.
- 6: **if** none of the schemas in *result* contain a key for **R** then
- 7: Let key be the attributes of a key of \mathbf{R} .
- 8: Add relational schema with attributes key to result.
- 9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**
- 10: Remove **R**' from *result*.
- 11: return result.

Proof (sketch): Decompose-3NF is dependency-preserving

DECOMPOSE-3NF(\mathbb{R}, \mathfrak{S})

Compute a decomposition of **R** that is in 3NF and that is both lossless-join and dependency-preserving.

```
1: result := \emptyset.
```

2: cover := a minimal cover of \mathfrak{S} .

3: **for** attributes *A* of **R** such that $(A \longrightarrow X) \in cover$ **do**

4: Let
$$B = \{Y \mid (A \longrightarrow Y) \in cover\}.$$

Add relational schema with attributes $A \cup B$ to *result*. 6: **if** none of the schemas in *result* contain a key for **R then**

Let key be the attributes of a key of **R**.

Add relational schema with attributes key to result.

9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**

Remove \mathbf{R}' from result. 10:

11: return result.

Create a relational schema for each $A \longrightarrow X$ in the

Proof (sketch): Decompose-3NF is dependency-preserving

Decompose- $3NF(\mathbf{R},\mathfrak{S})$

Compute a decomposition of ${\bf R}$ that is in 3NF and that is both lossless-join and dependency-preserving.

```
1: result := \emptyset.
```

2: $cover := a minimal cover of \mathfrak{S}$.

3: **for** attributes
$$A$$
 of **R** such that $(A \longrightarrow X) \in cover$ **do**

4: Let
$$B = \{Y \mid (A \longrightarrow Y) \in cover\}.$$

7: Let *key* be the attributes of a key of **R**.

9: **while** the attributes of $\mathbf{R}' \in result$ are a subset of another schema in result **do**

10: Remove **R**' from *result*.

11: return result.

Create a relational schema for each $A \longrightarrow X$ in the

minimal cover.

Remove redundant schemas.

40/4

Let R be a relational schema and \mathfrak{S} a set of functional dependencies that hold over R. Let R_1 and R_2 be a decomposition of R.

Theorem

The decomposition of \mathbf{R} into \mathbf{R}_1 and \mathbf{R}_2 is lossless-join if there exists an $(A \longrightarrow B) \in \mathfrak{S}^+$ with:

- ightharpoonup A a (super)key of either $ightharpoonup A_1$ or $ightharpoonup A_2$; and
- ▶ the attributes in A are exactly those attributes common to \mathbf{R}_1 and \mathbf{R}_2 .

Let R be a relational schema and \mathfrak{S} a set of functional dependencies that hold over R. Let R_1 and R_2 be a decomposition of R.

Theorem

The decomposition of \mathbf{R} into \mathbf{R}_1 and \mathbf{R}_2 is lossless-join if there exists an $(A \longrightarrow B) \in \mathfrak{S}^+$ with:

- ightharpoonup A a (super)key of either $ightharpoonup A_1$ or $ightharpoonup A_2$; and
- ▶ the attributes in A are exactly those attributes common to \mathbf{R}_1 and \mathbf{R}_2 .

Proof.

Assume $(A \longrightarrow B) \in \mathfrak{S}^+$ with A a (super)key of \mathbf{R}_1 . We must have

$$\mathbf{R} = \pi_{\mathbf{R}_1}(\mathbf{R}) \qquad \bowtie \qquad \pi_{\mathbf{R}_2}(\mathbf{R})$$

1/4

Let R be a relational schema and \mathfrak{S} a set of functional dependencies that hold over R. Let R_1 and R_2 be a decomposition of R.

Theorem

The decomposition of \mathbf{R} into \mathbf{R}_1 and \mathbf{R}_2 is lossless-join if there exists an $(A \longrightarrow B) \in \mathfrak{S}^+$ with:

- ightharpoonup A a (super)key of either $ightharpoonup A_1$ or $ightharpoonup A_2$; and
- ▶ the attributes in A are exactly those attributes common to \mathbf{R}_1 and \mathbf{R}_2 .

Proof.

Assume $(A \longrightarrow B) \in \mathfrak{S}^+$ with A a (super)key of \mathbf{R}_1 . We must have

$$\mathbf{R} = \underbrace{\pi_{\mathbf{R}_1}(\mathbf{R})}_{\text{A single value per } A} \bowtie \underbrace{\pi_{\mathbf{R}_2}(\mathbf{R})}_{\text{many values per } A}.$$

Let R be a relational schema and \mathfrak{S} a set of functional dependencies that hold over R. Let R_1 and R_2 be a decomposition of R.

Theorem

The decomposition of \mathbf{R} into \mathbf{R}_1 and \mathbf{R}_2 is lossless-join if there exists an $(A \longrightarrow B) \in \mathfrak{S}^+$ with:

- ightharpoonup A a (super)key of either $ightharpoonup A_1$ or $ightharpoonup A_2$; and
- ▶ the attributes in A are exactly those attributes common to \mathbf{R}_1 and \mathbf{R}_2 .

Proof.

Assume $(A \longrightarrow B) \in \mathfrak{S}^+$ with A a (super)key of \mathbf{R}_1 . We must have

$$\mathbf{R} = \underbrace{\pi_{\mathbf{R}_1}(\mathbf{R})}_{\text{A single value per } A} \bowtie \underbrace{\pi_{\mathbf{R}_2}(\mathbf{R})}_{\text{many values per } A}$$
Natural join, matching on A