

Exercice 1

On considère un cube ABCDEFGH.

Le point M est le milieu de [BF], I est le milieu de [BC], le point N est défini par la relation $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{GC}$ et le point P est le centre de la face ADHE.

- 1. Justifier que la droite (MN) coupe le segment [BC] en son milieu I.
- 2. Construire, sur la figure ci-dessous, la section du cube par le plan (MNP).

Exercice 2

Dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$, on considère :

• les points A, B, C, D et E de coordonnées respectives :

$$A(0; 4; -1),$$

$$B(-2;4;-5),$$

$$C(1;1;-5),$$

$$D(1;0;-4),$$

$$D(1;0;-4), E(-1;2;-3);$$

- la droite $\mathcal D$ définie par le système d'équations paramétriques :

$$\begin{cases} x = -3 + k \\ y = k \text{, avec } k \in \mathbb{R}; \\ z = -5 + k \end{cases}$$

- le plan \mathcal{P}_1 d'équation cartésienne : x + 2z + 7 = 0.
- **a.** Donner les coordonnées d'un vecteur normal $\overrightarrow{n_1}$ au plan \mathscr{P}_1 . 1.
 - **b.** Soit I le milieu du segment [AB]. Montrer que I appartient au plan \mathcal{P}_1 .
 - **c.** Montrer que la droite (AB) est orthogonale au plan \mathcal{P}_1 .
- **2.** Soit \mathcal{P}_2 le plan d'équation cartésienne : x y + d = 0, où d désigne un réel.
 - **a.** Donner les coordonnées d'un vecteur normal n_2 au plan \mathcal{P}_2 .
 - **b.** Soit J le point de coordonnées $\left(-\frac{1}{2}; \frac{5}{2}; -5\right)$. Déterminer d pour que J appartienne au plan \mathcal{P}_2 . Justifier la réponse.
- a. Donner les coordonnées du vecteur CD. 3.
 - b. Calculer les coordonnées du milieu K du segment [CD].
 - **c.** Soit \mathcal{P}_3 le plan passant par K et orthogonal à la droite (CD). Déterminer une équation cartésienne du plan \mathcal{P}_3 . Justifier la réponse.
- **4.** Le but de cette question est de prouver que les plans \mathcal{P}_1 , \mathcal{P}_2 et \mathcal{P}_3 ont comme seul point commun, le point E.
 - **a.** Justifier que les plans \mathscr{P}_2 et \mathscr{P}_3 sont sécants et que leur droite d'intersection est la droite \mathscr{D} .
 - **b.** Montrer que la droite \mathcal{D} coupe le plan \mathcal{P}_1 au point E.
- 5. Donner les coordonnées des vecteurs \overrightarrow{EA} , \overrightarrow{EB} , \overrightarrow{EC} et \overrightarrow{ED} .
- 6. Donner les distances EA, EB, EC et ED. Détailler le calcul pour ED.
- 7. En déduire que A, B, C et D appartiennent à une sphère $\mathcal S$ dont on précisera le centre et le rayon R. Justifier la réponse.
- **8.** Donner une équation cartésienne de la sphère \mathcal{S} .