

Completeness of InstGenEQ

Alexander Maringele

a lexander. maringele @gmail.com

November 16, 2017

Harald Ganzinger and Konstantin Korovin.

Integrating Equational Reasoning into Instantiation-Based Theorem Proving.

In 18th CSL 2004. Proceedings, volume 3210 of LNCS, pages 71–84, 2004.

$\succ_{\sf gr}$	total simplification ordering on grounund terms
\succ_{ℓ}	
\succ_{cl}	

A&M (UIBK) Completeness 3/9

Unit Paramodulation

Definition

$$\frac{(\ell \approx r) \cdot \sigma \quad L[\ell'] \cdot \sigma'}{L[r]\theta \cdot \rho} \ \theta \qquad \qquad \frac{(s \not\approx t) \cdot \tau}{\Box} \ \mu$$

where

$$\blacktriangleright \ \ell\sigma \succ_{gr} r\sigma, \ \theta = \mathrm{mgu}(\ell,s), \ \ell\sigma = \ell'\sigma' = \ell'\theta\rho, \ \ell' \notin \mathcal{V}$$

$$ightharpoonup s au=t au$$
, $\mu= ext{mgu}(s,t)$

saturation process

 $\mathcal{R}_{Inst}(S)$ selection function, S-relevant

Lemma

Let $\mathcal I$ be an arbitrary total consistant extension of $\mathcal I_S$. Then for every $C \in S$ and $\sigma : \mathcal V \to \mathcal T(\mathcal F_f, \emptyset)$.

$$\mathcal{I} \models C \cdot \sigma$$

Proof.

Assume minimal w.r.t. \succ_{cl} ground instance $D' \cdot \sigma'$ of S with $\mathcal{I} \not\models D' \cdot \sigma'$.

A&M (UIBK) Completeness 7/

aturation Inst-Redundancy

Lemma

Let $M \cdot \tau = \min_{\succ_{\ell}} \{ M' \cdot \tau' \mid M' \cdot \tau' \in irred_{R_S}(\mathcal{L}_S^{sat}), \mathcal{I} \not\models M'\tau' \}$ Then, $M \cdot \tau$ is irreducible by R_S .

Proof.

Assume $M \cdot \tau$ is reducible by $(\ell \to r) \in R_S$ and $(\ell \to r)$ is produced by $(\ell' \approx r') \cdot \rho \in \mathcal{L}_S^{sat}$. Bei construction τ is irreducible by R_S . Hence UP-inference is applicable:

$$\frac{(\ell' \approx r) \cdot \rho \quad M[\ell''] \cdot \tau}{M[r']\theta \cdot \mu} \ UP$$

$$\ell' \rho = \ell'' \tau = \ell'' \theta \mu, \ \theta = \text{mgu}(\ell', \ell''), \ \mathcal{I} \not\models M[r']\theta \mu$$

- Assume $M[r']\theta \cdot \mu$ is UP-redundant in \mathcal{L}_S^{sat} . α is irreducible (lemma ...) by R_S . From definiton:
- ▶ Assume $M[r']\theta \cdot \mu$ is not UP-redundant in \mathcal{L}_S^{sat} .

A&M (UIBK) Completeness 9/9