Adversarially regularized GAE (ARGA)

Adversarially regularized VGAE (ARVGA)

Gabriele Santin¹

MobS¹ Lab, Fondazione Bruno Kessler, Trento, Italy

O1 Recap

GAE vs VGAE:

- Embedding on nodes
- Each nodes is mapped to its latent representation

O1 Recap

Autoencoder (encoder)

GAE vs VGAE:

- Embedding on nodes
- Each nodes is mapped to its latent representation

Variational Autoencoder (encoder)

Motivation:

0.0

0.5

1.0

Motivation:

Motivation:

Motivation:

Motivation:

The importance of the latent representation

AE and GAE: only reconstruction loss

VAE and VGAE: regularize to have continuous latent representation

Motivation:

The importance of the latent representation

AE and GAE: only reconstruction loss

VAE and VGAE: regularize to have continuous latent representation

ARGA & ARVGA improve it

Motivation:

The importance of the latent representation

Adversarially regularized graph autoencoder (ARGA) **Adversarially** regularized variational graph autoencoder (ARVGA)

S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, *Adversarially regularized graph autoencoder for graph embedding*. in Proc. of IJCAI, 2018, pp. 2609–2615.

Motivation:

The importance of the latent representation

Adversarially regularized graph autoencoder (ARGA) **Adversarially** regularized variational graph autoencoder (ARVGA)

We have a look at adversarial training

S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, *Adversarially regularized graph autoencoder for graph embedding*. in Proc. of IJCAI, 2018, pp. 2609–2615.

Goal: generate fake objects (e.g. images) similar to real ones **Idea:** play an adversarial game with two agents

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

Goal: generate fake objects (e.g. images) similar to real ones

Idea: play an adversarial game with two agents

Generator: maps noise z to a fake object x

Discriminator: maps object x to probability of real/fake

Game: The generator tries to fool the discriminator

The discriminator tries to detect the fake objects

Goal: generate fake objects (e.g. images) similar to real ones **Idea:** play an adversarial game with two agents

Generator: maps noise z to a fake object x

Discriminator: maps object x to probability of real/fake

Game: The generator tries to fool the discriminator

The discriminator tries to detect the fake objects

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

- Recall that D(x) is in [0, 1]
- First term:
 - \rightarrow large if D(x) is close to 1
 - \rightarrow assign high probability to real objects

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

- Recall that D(x) is in [0, 1]
- First term:
 - \rightarrow large if D(x) is close to 1
 - → assign high probability to real objects
- Second term:
 - \rightarrow large if 1-D(G(z) is close to 1
 - \rightarrow large if D(G(z)) is close to 0
 - → assign low probability to fake objects
- I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{\boldsymbol{x}} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Generator** wants to min:

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

The **Generator** wants to min:

- Second term:
 - \rightarrow small if 1-D(G(z) is close to 0
 - \rightarrow small if D(G(z) is close to 1
 - → fool the discriminator into assigning high probability to fake objects

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

Architecture as in GAE/VGAE:

- **Encoder**: 2-layer GCN (with 2x for mean and logstd in VGAE)
- **Decoder**: inner product

→ Same **loss** as GAE/VGAE:

- **GAE**: reconstruction loss
- **VGAE**: rec. + KL regularization

Architecture of the discriminator:

- Standard fully connected NN with 3 layers

- Standard fully connected NN with 3 layers

Working on the latent space

→ continuous values!

- Standard fully connected NN with 3 layers

 $Z \sim q(Z)$ $Z \sim q(Z)$

Working on the latent space → continuous values!

→ Adversarial **loss**:

Real: samples from N(0, 1)

Fake: samples from the latent encoding

 $\min_{\mathcal{G}} \max_{\mathcal{D}} \mathbb{E}_{\mathbf{z} \sim p_z} [\log \mathcal{D}(\mathbf{Z})] + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\log (1 - \mathcal{D}(\mathcal{G}(\mathbf{X}, \mathbf{A})))]$

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator;

d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

Generate latent variables matrix **Z** through Eq.(4);

3:

4:

5:

6:

- 7: Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for
- end for 8: **return** $\mathbf{Z} \in \mathbb{R}^{n \times d}$

This is: Z = E(X, A)

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator;

d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

Generate latent variables matrix **Z** through Eq.(4);

3:

4:

5:

6:

Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for

8: return $\mathbf{Z} \in \mathbb{R}^{n \times d}$

This is: Z = E(X, A)

These are the usual GAE/VGAE losses

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator; d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

2: Generate latent variables matrix **Z** through Eq.(4);

3: **for** $k = 1, 2, \dots, K$ **do** -

4: Sample m entities $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from latent matrix \mathbf{Z}

5: Sample m entities $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}\}$ from the prior distribution p_z

6: Update the discriminator with its stochastic gradient:

$$abla rac{1}{m} \sum_{i=1}^m [\log \mathcal{D}(\mathbf{a}^i) + \log (1 - \mathcal{D}(\mathbf{z}^{(i)}))]$$

end for

7: Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for

8: **return** $\mathbf{Z} \in \mathbb{R}^{n \times d}$

K training loops of the discriminator

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator; d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

2: Generate latent variables matrix **Z** through Eq.(4);

3: **for** $k = 1, 2, \dots, K$ **do** -

4: Sample m entities $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from latent matrix \mathbf{Z}

5: Sample m entities $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}\}$ from the prior distribution p_z

6: Update the discriminator with its stochastic gradient:

$$\nabla \frac{1}{m} \sum_{i=1}^{m} [\log \mathcal{D}(\mathbf{a}^i) + \log (1 - \mathcal{D}(\mathbf{z}^{(i)}))]$$

end for

7: Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for

8: **return** $\mathbf{Z} \in \mathbb{R}^{n \times d}$

K training loops of the discriminator

Sample fake gaussians

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator; d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

2: Generate latent variables matrix **Z** through Eq.(4);

3: **for** $k = 1, 2, \dots, K$ **do** -

4: Sample m entities $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from latent matrix \mathbf{Z}

5: Sample m entities $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}\}$ from the prior distribution p_z

6: Update the discriminator with its stochastic gradient:

$$\nabla \frac{1}{m} \sum_{i=1}^{m} [\log \mathcal{D}(\mathbf{a}^i) + \log (1 - \mathcal{D}(\mathbf{z}^{(i)}))]$$

end for

7: Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for

8: return $\mathbf{Z} \in \mathbb{R}^{n \times d}$

K training loops of the discriminator

Sample fake gaussians

Sample true gaussians

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator;

d: the dimension of the latent variable $\frac{1}{2}$

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

2: Generate latent variables matrix **Z** through Eq.(4);

3: **for** $k = 1, 2, \dots, K$ **do** -

4: Sample m entities $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from latent matrix \mathbf{Z}

5: Sample m entities $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}\}$ from the prior distribution p_z

6: Update the discriminator with its stochastic gradient:

$$\nabla \frac{1}{m} \sum_{i=1}^{m} [\log \mathcal{D}(\mathbf{a}^i) + \log (1 - \mathcal{D}(\mathbf{z}^{(i)}))]$$

end for

7: Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA; end for

8: **return** $\mathbf{Z} \in \mathbb{R}^{n \times d}$

K training loops of the discriminator

Sample fake gaussians

Sample true gaussians

Update the discriminator

Algorithm 1 Adversarially Regularized Graph Embedding

Require:

 $G = \{V, E, X\}$: a Graph with links and features;

T: the number of iterations;

K: the number of steps for iterating discriminator; d: the dimension of the latent variable

Ensure: $\mathbf{Z} \in \mathbb{R}^{n \times d}$

1: **for** iterator = $1, 2, 3, \dots, T$ **do**

Generate latent variables matrix **Z** through Eq.(4);

3: for $k = 1, 2, \dots, K do -$

Sample m entities $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from latent matrix \mathbf{Z} 4:

Sample m entities $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}\}$ from the prior distri-5: bution p_z

6: Update the discriminator with its stochastic gradient:

$$\nabla \frac{1}{m} \sum_{i=1}^{m} [\log \mathcal{D}(\mathbf{a}^i) + \log (1 - \mathcal{D}(\mathbf{z}^{(i)}))]$$

end for

Update the graph autoencoder with its stochastic gradient by Eq. (10) for ARGA or Eq. (11) for ARVGA;

end for

8: return $\mathbf{Z} \in \mathbb{R}^{n \times d}$

K training loops of the discriminator

Sample fake gaussians

Sample true gaussians

Update the discriminator

Missing: update the encoder (written in the text)

Jupyter Notebook

