Approximation Algorithms

 $L17\ start$

What do you do when a problem is NP-complete?

- or, when the "polynomial time solution" is impractically slow?
- assume input is random, do "expected performance." Eg, Hamiltonian path in all graphs. Problem: agreeing on good distribution.
- run a nonpolynomial (hopefully only slightly) algorithms such as branch and bound. Usually no proven bound on runtime, but sometime can.
- settle for a heuristic, but prove it does well enough (our focus)

Definitions:

- optimization problem, instances I, solutions S(I) with values $f:S(I)\to R$
- • maximization/minimization: find solution in S(I) maximizing/minimizing f
- called OPT(I)
- eg bin-packing. instance is set of $s_i \in {0,1}$, partition so no subset exceeds

Techincal assumptions we'll often make:

- assumption: all inputs and range of f are integers/rationals (can't represent reals, and allows, eg, LP, binary search).
- assumption $f(\sigma)$ is a polynomial size (num bits) number (else output takes too long)
- look for polytime in bit complexity

NP-hardness

- optimization NP-hard if can reduce an NP-hard decision problem to it
- (eg, problem of "is opt solution to this instance < k?")
- but use more general notion of turing-reducibility (GJ).

Approximation algorithm:

- any algorithm that gives a feasible answer
- \bullet eg, each item in own bin.
- of course, want good algorithm. How measure?

Absolute Approximations

Definition: k-abs approx if on any I, have $|A(I) - OPT(I)| \le k$ Example: planar graph coloring.

- NP-complete to decide if 3 colorable
- know 4-colorable
- easy to 5-color

Known only for trivial cases, where opt is bounded by a constant. Often, can show impossible by "scaling" the problem.

- EG knapsack.
 - define profits p_i , sizes s_i , sack B
 - wlog, integers.
 - suppose have k-absolute
 - multiply all p_i by k+1, solve, scale down.
- EG independent set (clique)
 - -k+1 copies of G

Relative Approximation

Definitions:

- An α -optimum solution has value at most α times optimum for minimization, at least $1/\alpha$ times optimum for maximization.
- an algorithm has approximation ratio α if on any input, it outputs an α -approximate feasible solution.
- called an α -approximation algorithm

How do we prove algorithms have relative approximations?

- Can't describe opt, so can't compare to it
- instead, comparison to computable lower bounds.

Greedy Algorithms

Do obvious thing at each step.

- Hard part is proving it works.
- Usually, by attention to right upper/lower bound.

Max cut

- Upper bound trivial
- Max-cut greedy.

Set cover

- \bullet *n* items
- OPT = k
- \bullet At each step, can still cover remainder with k sets
- So can cover 1/k of remainder

Vertex cover:

- define problem
- suppose repeatedly pick any uncovered edge and cover: no approx ratio
- $\bullet\,$ suppose pick uncovered edge and cover both sides: 2-approx
- sometime, need to be extra greedy
- Explicit attention to where lower bound is coming from—lower bound informs algorithm.

L17 end

Graham's rule for $P||C_{\max}$ is a $2-\frac{1}{m}$ approximation algorithm

- explain problem: m machines, n jobs with proc times p_j , min proc time.
- can also think of minimizing max load of continuously running jobs
- ullet use a $greedy\ algorithm$ to solve
- proof by comparison to lower bounds
- first lower bound: average load: OPT $\geq \frac{1}{m} \sum p_j$
- second lower bound: OPT $\geq \max p_i$
- consider max-load machine
- load before adding was less than average load, so less than OPT
- then add one job, length less than OPT

- so final weight is at most 2OPT
- Tighter: suppose M_1 has max runtime L at end
- Suppose j was last job added to M_1
- then before, M_1 had load $L p_j$ which was minimum

$$\begin{aligned} \text{OPT} &\geq (m(L-p_j)+p_j)/m & \text{(average load)} \\ &= (mL-(m-1)p_j)/m \\ mL &\leq m \cdot \text{OPT} + (m-1)p_j \\ &\leq m \cdot \text{OPT} + (m-1) \cdot \text{OPT} \\ L &\leq (2m-1)/m\text{OPT} \\ &= (2-1/m)\text{OPT} \end{aligned}$$

- in words: all machines busy till time $L p_i$
- at that point, even if could split up last job, every machine would be busy an additional p_j/m
- so lower bound on opt is $(L p_j) + p_j/m = L (1 1/m)p_j$
- another lower bound is p_i
- so $OPT + (1 1/m)OPT \ge L (1 1/m)p_j + (1 1/m)p_j = L$

Notice:

- this algorithm is *online*, competitive ratio $2 \frac{1}{m}$
- we have no idea of optimum schedule; just used lower bounds.
- we used a greedy strategy
- tight bound: consider m(m-1) size-1 jobs, one size-m job
- where was problem? Last job might be big
- LPT achieves 4/3, but not online
- newer online algs achieve 1.8 or so.

Now (after Graham) discuss general scheduling theory and its notation. **never lectured:**

Edge disjoint paths

- graph
- pairs that want to be connected by disjoint paths
- maximize number of pairs that connect

Greedy:

- find closest pair, take that shortest path
- if closest pair $<\sqrt{m}$, then only \sqrt{m} paths of opt destroyed
- so can do this \sqrt{m} times and still have pairs connected
- if at some point closest pair is $> \sqrt{m}$, then each path of opt costs \sqrt{m} , so only \sqrt{m} path remain
- result: \sqrt{m} approx
- NP-hard to approx better in directed graph
- but can do better in undirected

Approximation Schemes

So far, we've seen various constant-factor approximations.

- What is *best* constant achievable?
- defer APX-hardness discussion until later

An approximation scheme is a family of algorithms A_{ϵ} such that

- each algorithm polytime
- A_{ϵ} achieve $1 + \epsilon$ approx

But note: runtime might be awful as function of ϵ

FPAS, Pseudopolynomial algorithms

Knapsack

- Dynamic program for bounded profits
- $B(j,p) = \text{smallest subset of jobs } 1, \dots, j \text{ of total profit } \geq p.$
- rounding
 - Let opt be P.
 - Scale prices to $\lfloor (n/\epsilon P)p_i \rfloor$
 - New opt is it least $n/\epsilon n = (1 \epsilon)n/\epsilon$
 - So find solution within 1ϵ of original opt
 - But table size polynomial
- did this prove P = NP? No

• recall pseudopoly algorithms

pseudopoly gives FPAS; converse almost true

- Knapsack is only weakly NP-hard
- strong NP-hardness (define) means no pseudo-poly

From FPAS to pseudo poly:

- \bullet Suppose input instance has integers bounded by t
- Solution value is O(nt)
- Find ϵ -approx with $\epsilon = 1/(nt+1)$
- Solution will be integer, so equal optimum.

End of Lecture

Enumeration

More powerful idea: k-enumeration

- Return to $P||C_{\max}$
- \bullet Schedule k largest jobs optimally
- scheduling remainder greedily
- analysis: note $A(I) \leq OPT(I) + p_{k+1}$
 - Consider job with max c_i
 - If one of k largest, done and at opt
 - Else, was assigned to min load machine, so $c_j \leq OPT + p_j \leq OPT + p_{k+1}$
 - so done if p_{k+1} small
 - but note $OPT(I) \ge (k/m)p_{k+1}$
 - deduce $A(I) \leq (1 + m/k)OPT(I)$.
 - So, for fixed m, can get any desired approximation ratio

Scheduling any number of machines

- Combine enumeration and rounding
- Suppose only k job sizes
 - Vector of "number of each type" on a given machine—gives "machine type"
 - Only n^k distinct vectors/machine types

- So need to find how many of each machine type.
- Use dynamic program:
 - st enumerate all job profiles that can be completed by j machines in time T
 - * In set if profile is sum of j-1 machine profile and 1-machine profile
- Works because only poly many job profiles.
- Use rounding to make few important job types
 - Guess OPT T to with ϵ (by binary search)
 - All jobs of size exceeding ϵT are "large"
 - Round each up to next power of $(1 + \epsilon)$
 - Only $O(1/\epsilon \ln 1/\epsilon)$ large types
 - Solve optimally
 - Greedy schedule remainder
 - * If last job is large, are optimal for rounded problem so with ϵ of opt
 - * If last job small, greedy analysis shows we are within ϵ of opt.

Notes

- Is there always a PAS?
- MAX-SNP hard: some unbeatable constant
- Numerous problems in class (vertex cover, independent set, etc)
- Amplifications can prove *no* constant.

Relaxations

So far we've seen two techniques:

- Greedy: do the obvious
- Dynamic Programming: try everything

Can we be more clever?

TSP

- Requiring tour: no approximation (finding hamiltonian path NP-hard)
- Undirected Metric: MST relaxation 2-approx, christofides
- Directed: Cycle cover relaxation (HW)

2011 Lecture 17 end

intuition: SPT for $1||\sum C_j|$

- suppose process longer before shorter
- then swap improves
- note haven't shown local opt implies global opt
- rather, have relied on global opt being local opt

$1|r_j|\sum C_j$

- relaxation: allow preemption
- optimum: SRPT
 - assume no r_i : claim SPT optimal
 - proof: local optimality argument
 - consider swapping two pieces of two jobs
 - suppose currently processing k instead of SRPT j
 - remaining times p_i and p_k
 - total $p_j + p_k$ time
 - use first p_j to process j, then do k
 - some job must finish at $p_j + p_k$
 - and no job can finish before p_j
 - so this is optimal
- rounding: schedule jobs in preemptive completion order
 - take preemptive schedule and insert p_j time at C_j
 - now room to schedule nonpreemptively
 - how much does this slow down j?
 - $-\ p_k$ space inserted before j for every job completing before j in preemptive schedule
 - in other words, only inserted C_j time
 - so j completes in $2C_j$ time
 - so 2-approx
- More recently: rounding, enumeration gives PAS

LP relaxations

Three steps

- write integer linear program
- relax
- \bullet round

Vertex cover. Even weighted.

Facility Location

Metric version, with triangle inequality.

$$\min \sum_{i} f_{i} y_{i} + \sum_{i} c_{ij} x_{ij} x_{ij} \leq y_{i}$$

$$\sum_{i} x_{ij} \geq 1$$

Step 1: filtering

- Want to assign j to one of its "partial" assignments $x_{ij} > 0$
- $C_j = \sum_i x_{ij} c_{ij}$ is "average" assignment cost
- \bullet and is amount accounted for in fractional optimum
- but some $x_{ij} > 0$ may have huge c_{ij}
- which wouldn't be accounted for
- rely on "can't have everything above average"
- claim at most $1/\rho$ fraction of assignment can have $c_{ij} > \rho C_j$
- if more, average exceeds $(1/\rho)(\rho C_j) = C_j$, impossible
- so, zero out an x_{ij} with $c_{ij} \ge \rho C_j$
- and compensate by scaling up other x_{ij} by $1/(1-1/\rho)$ factor
- Also have to increase y_i by $1/(1-1/\rho)$ factor to "make room"
- New feasible solution to LP
- no longer necessarily optimal
- Now, assignment of client j to any nonzero x_{ij} costs at most ρC_j
- So, total assignment cost at most $\rho \sum C_j$

Step 2: Facility opening: intuition

- To assign, need to open facilities
- If y_i small, opening facility isn't paid for
- So, find a cluster of facilities of total $y_i > 1$
- Open minimum cost facility
- Cost $f_{\min} y_i \leq \sum f_i y_i$ so LP upper bounds cost
- Everything in cluster nearby, so using opened facility as "proxy" for all others without adding much cost

Step 2: Facility opening: details

- Choose client with minimum C_i
- Take all his "available" facilities $(c_{ij} < \rho C_j)$
- Open the cheapest and zero the others
- So cost at most $\sum f_i y_i$ over i in cluster
- \bullet assign every client that has nonzero x_{ij} to any node in cluster
 - cost of assigning j'
 - $\leq \rho C_{j'}$ to reach its nonzero $x_{i'j'}$ in cluster
 - then distance from i' to i is at most $2\rho C_j \leq 2\rho C_{j'}$ by choice of j'
 - so total $3\rho C_j$

Combine:

- multiplied y_i by $1/(1-1/\rho) = \rho/(\rho-1)$
- multiplied assignment costs by 3ρ
- for balance, set $\rho = 4/3$ and get 4-approx
- other settings of ρ yield bicriteria approximation trading facility and connection approximation costs

Further research progress has yielded 1.5-approximation and 1.463-hardness result. Algorithms based on greedy and local search.

2011 End lecture 19

MAX SAT

Define.

- \bullet literals
- clauses
- NP-complete

random setting

- achieve $1 2^{-k}$ (k is the number of literals in each clause)
- very nice for large k, but only 1/2 for k=1

LP

$$\max_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_1) \ge z_j$$

2011 lecture 18 ends Analysis

- $\beta_k = 1 (1 1/k)^k$. values 1, 3/4, .704, ...
- Random round y_i
- Lemma: k-literal clause sat w/pr at least $\beta_k \hat{z}_j$.
- proof:
 - assume all positive literals.
 - $\text{ prob } 1 \prod (1 y_i)$
 - maximize when all $y_i = \hat{z}_j/k$.
 - Show $1 (1 \hat{z}/k)^k \ge \beta_k \hat{z}_k$.
 - at z = 0, 1 these two sides are equal
 - in between, right hand side is linear
 - first deriv of LHS is $(1-z/k)^k$, second deriv is $-(1-1/k)(1-z/k)^{k-2}<0$,
 - so LHS cannot cross below and then return, must always be above RHS
- Result: (1-1/e) approximation (convergence of $(1-1/k)^k$)
- much better for small k: i.e. 1-approx for k=1

LP good for small clauses, random for large.

- Better: try both methods.
- n_1, n_2 number in both methods
- Show $(n_1 + n_2)/2 \ge (3/4) \sum \hat{z}_i$
- $n_1 \ge \sum_{C_j \in S^k} (1 2^{-k})\hat{z}_j$
- $n_2 \ge \sum \beta_k \hat{z}_j$
- $n_1 + n_2 \ge \sum (1 2^{-k} + \beta_k) \hat{z}_i \ge \sum \frac{3}{2} \hat{z}_i$

0.1 Chernoff-bound rounding

Set cover.

Theorem:

• Let X_i poisson (ie independent 0/1) trials, $E[\sum X_i] = \mu$

$$\Pr[X > (1+\epsilon)\mu] < \left[\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right]^{\mu}.$$

• note independent of n, exponential in μ .

Proof.

• For any t > 0,

$$\begin{split} \Pr[X > (1+\epsilon)\mu] &= \Pr[\exp(tX) > \exp(t(1+\epsilon)\mu)] \\ &< \frac{E[\exp(tX)]}{\exp(t(1+\epsilon)\mu)} \end{split}$$

• Use independence.

$$E[\exp(tX)] = \prod E[\exp(tX_i)]$$

$$E[\exp(tX_i)] = p_i e^t + (1 - p_i)$$

$$= 1 + p_i (e^t - 1)$$

$$\leq \exp(p_i (e^t - 1))$$

$$\prod \exp(p_i(e^t - 1)) = \exp(\mu(e^t - 1))$$

• So overall bound is

$$\frac{\exp((e^t - 1)\mu)}{\exp(t(1 + \epsilon)\mu)}$$

True for any t. To minimize, plug in $t = \ln(1 + \epsilon)$.

• Simpler bounds:

– less than
$$e^{-\mu\epsilon^2/3}$$
 for $\epsilon < 1$

- less than $e^{-\mu\epsilon^2/4}$ for $\epsilon < 2e 1$.
- Less than $2^{-(1+\epsilon)\mu}$ for larger ϵ .
- By same argument on $\exp(-tX)$,

$$\Pr[X < (1 - \epsilon)\mu] < \left[\frac{e^{-\epsilon}}{(1 - \epsilon)^{(1 - \epsilon)}}\right]^{\mu}$$

bound by $e^{-\epsilon^2/2}$.

Basic application:

- $cn \log n$ balls in c bins.
- max matches average
- \bullet a fortiori for n balls in n bins

General observations:

- Bound trails off when $\epsilon \approx 1/\sqrt{\mu}$, ie absolute error $\sqrt{\mu}$
- no surprise, since standard deviation is around μ (recall chebyshev)
- If $\mu = \Omega(\log n)$, probability of constant ϵ deviation is O(1/n), Useful if polynomial number of events.
- Note similarity to Gaussian distribution.
- **Generalizes:** bound applies to any vars distributed in range [0,1].

Zillions of Chernoff applications. Wiring.

- multicommodity flow relaxation
- chernoff bound
- union bound