Exercises in Marine Ecological Genetics

08. Detecting selection

- Detect selection by identifying *F*_{ST} outlier loci
- Perform genome scans using overlapping windows
- Learn about haplotype-based tests
- Investigate candidate genes under selection

Martin Helmkampf

https://github.com/mhelmkampf/meg25

Detecting selection

Positive selection influences genetic variation by:

- Reducing genetic diversity (e.g. π)
- Increasing linkage disequilibrium
- Skewing allele frequencies / abundance of rare alleles (Tajima's D)
- Increasing population differentiation (F_{ST})
- Extending homozygous haplotypes (iHS, EHH)

Genome-wide scans using windows

Increment / step size

F_{ST} scan across whole genome

VCFtools, 50 kb sliding windows, joint F_{ST} of 14 Caribbean hamlet populations

Red = 99.8th percentile

Hench et al. 2022, PNAS

Outlier region and whole chromosome compared

20 -5 - -10 - PC1

PCA whole chromosome 12

PCA high F_{ST} region

General Feature Format (GFF)

Contig49		gene	406	8055		+
	ID=HPv1G00000000001;;Parentgenename=ZNF484					
Contig49		mRNA	406	8055		+
	ID=HPv1M00000000001;; Parentgenename=ZNF484					
Contig49		exon	406	700		+
	ID=HPv1E00000000001;;Parentgenename=ZNF484					
Contig49		exon	5740	5843		+
	ID=HPv1E00000000002;;Parentgenename=ZNF484					
Contig49		exon	5993	6110		+
	ID=HPv1E00000000003;; Parentgenename=ZNF484					
Contig49		exon	7271	8055		+
	ID=HPv1E00000000004;; Parentgenename=ZNF484					

Haplotype-based methods

 Positive selection increases the frequency of a beneficial mutation in the population

- Nearby loci "hitchhike" due to linkage disequilibrium, faster than recombination can break up the association (selective sweep)
- As the haplotype rises in frequency, more individuals carry the same extended haplotype around the selected site (extended haplotype homozygosity)
- Haplotype-based methods (e.g. iHS, XP-EHH) detect this pattern of long, highfrequency homozygous haplotypes as a signature of recent positive selection
- Longer homozygous haplotypes = stronger evidence for selection

Haplotype-based methods

Ancestral population

Haplotype under selection

Gibson 2007, Current Biology

Genome-wide scans centered on casz1 region

Hench et al. 2019, Nat Ecol Evol

08. Detecting selection

Selection

```
vcftools ... --weir-fst-pop --fst-window-step 5000 --fst-window-size 50000
scan_hh() ### Scan for EHH (Extended Haplotype Homology), rehh package
manhattanplot() ### Create Manhattan plot, rehh package
```

- Loci with unusually high F_{ST} may be under divergent selection between populations
- Haplotype-based methods detect recent selection by identifying long, unbroken stretches of shared DNA (extended homozygous haplotypes)
- Sliding-window scans smooth out noise and help detect regional signals of selection along the genome