Imágenes de los resultados

1. Ale-Fra

Figura 1: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ale-Fra. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ale-Fra para ambas configuraciones, CC y PP respectivamente.

2. Ale-Ita

Figura 2: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ale-Ita. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ale-Ita para ambas configuraciones, CC y PP respectivamente.

3. Ale-Esp

Figura 3: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ale-Esp. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ale-Esp para ambas configuraciones, CC y PP respectivamente.

4. Ale-Por

Figura 4: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ale-Por. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ale-Por para ambas configuraciones, CC y PP respectivamente.

5. Fra-Ita

Figura 5: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Fra-Ita. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Fra-Ita para ambas configuraciones, CC y PP respectivamente.

6. Fra-Esp

Figura 6: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Fra-Esp. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Fra-Esp para ambas configuraciones, CC y PP respectivamente.

7. Fra-Por

Figura 7: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Fra-Por. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Fra-Por para ambas configuraciones, CC y PP respectivamente.

8. Ita-Esp

Figura 8: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ita-Esp. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ita-Esp para ambas configuraciones, CC y PP respectivamente.

9. Ita-Por

Figura 9: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Ita-Por. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Ita-Por para ambas configuraciones, CC y PP respectivamente.

10. Esp-Por

Figura 10: Gráfico comparativo sobre la evolución de las métricas estudiadas en función del parámetro de control ω para la red multicapa Esp-Por. (A) Muestra C_A para los dos tipos de conexión: CC y PP. El tipo de conexión se denota en el subíndice. (B) y (C) ilustran los dos primeros mayores autovalores (λ_1 y λ_2) de la matriz de adyacencia de la red Esp-Por para ambas configuraciones, CC y PP respectivamente.