Suites et topologie de !

Résumé coloré des définitions, propositions et théorèmes clés sur les suites réelles et la topologie de ! .

2.2 Suites

Définition — Suite réelle

Une suite réelle est une application u : ! !' ! , notée (u ™) ™"e0.

Définition — Convergence

La suite (u ™) converge vers ! si pour tout ;R â Â –Â Pxiste N " ! tel que n "e N !Ò |u ™ " ! | < ;R est unique.

Proposition — Caractérisation séquentielle

La suite (u ™) converge vers! si et seulement si (u ™) est de Cauchy : pour tout ;R â Â –Â existe N tel que p, q "e N !Ò |u_p " u_q| < ;Rà

Définition — Suite de Cauchy

La suite (u $^{\text{TM}}$) est de Cauchy si |u_p " u_q| < ;R \div W" , q suffisamment grands. Dans ! toute suite de Cauchy converge.

Définition — Suite extraite

Si (n_k) est strictement croissante, la suite (u_{n_k}) est une suite extraite.

Définition — Valeurs d'adhérence

Un réel! est valeur d'adhérence de (u TM) si, pour tout r > 0, l'ensemble { n | |u TM " ! | < r } est infini. L'ensemble est noté Val(u TM).

Lemme — Extraction et adhérence

Toute valeur d'adhérence est limite d'une suite extraite convergente, et réciproquement.

Théorème — Bolzano-Weierstrass

Toute suite réelle bornée admet au moins une valeur d'adhérence, i.e. possède une sous-suite convergente.

Lemme — Localisation des valeurs d'adhérence

Si! est valeur d'adhérence, alors pour tout r > 0 et tout N, il existe n "e N tel que |u ™ " |! | < r.

2.3 Topologie de!

Définition — Voisinage

Pour x " !, un voisinage de x est un intervalle ouvert (x " r, x + r) avec r > 0.

Définition — Ouverts et fermés

Une partie O ", ! est ouverte si chaque point possède un voisinage contenu dans O. Un ensemble F est fermé si son complément est ouvert.

Proposition — Stabilité des ouverts et fermés

Les ouverts sont stables par réunion quelconque et intersection finie. Les fermés sont stables par intersection quelconque et réunion finie.

Proposition — Caractérisation séquentielle des fermés

Un ensemble F est fermé si et seulement si toute suite (x ™) de F qui converge dans ! a sa limite dans F.

Proposition — Caractérisation séquentielle des ouverts

Un ensemble O est ouvert si toute suite (x ildet M) convergeant vers un point de O est finalement dans O.

Définition — Continuité séquentielle

Une fonction f : E ! est continue en a " E si, pour toute suite $(x T^M)$ de E convergeant vers a, la suite $(f(x T^M))$ converge vers f(a).

Proposition — Continuité et invariance des ouverts/fermés

Pour f : E !'!, les assertions suivantes sont équivalentes : (1) f est continue ; (2) pour tout ouvert O, f^{-1}(O) est ouvert ; (3) pour tout fermé F, f^{-1}(F) est fermé.

Corollaire — Ensemble de zéros

Si f est continue, l'ensemble { $x \in E \mid f(x) = 0$ } est fermé.

Proposition — Composition

Sif: E!' F et g: F!'! sont continues, alors g " f est continue.

Définition — Lipschitz

f : E ! est K-Lipschitzienne s'il existe K "e 0 tel que |f(x)| " |f(y)| "d K|x " y| pour tous x, |y|" E.

Proposition — Lien entre Lipschitz et continuité

Toute fonction Lipschitzienne est continue. Si f est de classe C^1 sur [a, b], alors f est Lipschitzienne sur [a, b] avec $K = \sup_{x \in \mathbb{R}} |f'(x)|$.