Home Credit Default Risk

이중한 김주희 박춘수 송주혁 이수영

CONTENTS

Home Credit Default Risk

01 프로젝트 배경 및 목적

02 분석 데이터 정의

03 데이터 처리 및 분석 과정

04 서비스 활용 방안 및 기대 효과

01. 프로젝트 배경 ---정형 데이터

01. 프로젝트 배경

주제 선정 이유

Home Credit

- 체코에 설립된 국제적인 비은행 금융기관
- 신용기록이 거의 없는 사람을 대상으로 대출
- 고객의 상환 능력을 예측하기 위해 거래 정보 등다양한 대체 데이터 사용
- 고객의 더 나은 상환 능력 예측을 위해 Kaggle Contest 진행(~ 2018.08.29)

사회적 배경

- 코로나19로 당장 생계가 급한 소상공인·자영업 자를 위한 긴급 대출 심사에 많은 시간 소요
- 간편 금융 서비스 확장으로 대출 상환 예측에 대한 수요 증가 예상
- 비대면 대출 서비스에 대한 니즈

01. 프로젝트 목적 및 목표

프로젝트 목적: 대출 상환 능력 여부 평가

프로젝트 목표:

- Kaggle Score 0.792
- **1735등** / 7190등, **24%** 이내

"0.792를 baseline으로 정하고 그 이상의 점수가 나타나는 결과는 충분히 가치가 있다."

- Kaggle Home Credit Competition

#	∆pub	Team Name	Notebook	Team Members	Score 0	Entries	1
1	1 0	Home Aloan		43	0.80570	499	
2	_	ikiri_DS		+9	0.80561	477	
3	- 1	alijs & Evgeny		2	0.80511	143	
4	6	Quad Machine		🚣 🙉 🚨 🜃	0.80474	178	
5	~ 4	Kraków, Lublin i Zhabinka			0.80449	329	
6	8	silver		+4	0.80419	372	
7	- 10	A.Assklou _ Aguiar			0.80396	200	
8	▼ 2	七上八下		4 6 6	0.80376	476	
9	4 2	International Fit Club		+5	0.80374	513	
10	1 9	Best Friend Forever: CV			0.80354	476	

02. 분석 데이터 정의

Data Set

02. 분석 데이터 정의

Data Set

02. 분석 데이터 정의

Data Set

1차 데이터 처리 및 분석 과정

- 결측치 처리
- 이상치 처리
- Feature 분석

- Random Forest
- Logistic Regression
- LightGBM
- XGBoost
- CatBoost

- LightGBM
- XGBoost
- CatBoost

1차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

Feature 분석으로 컬럼에 대해 이해

결측치 확인 및 처리

이상치 처리

Groupby할 때 개인 판단으로 aggregation 값 지정

범주형 데이터 인코딩

- 2개: label encoding

- 3개 이상: one-hot encoding

1차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

결측치 확인

	Total	Percent
COMMONAREA_MEDI	248360	69.714109
COMMONAREA_AVG	248360	69.714109
COMMONAREA_MODE	248360	69.714109
NONLIVINGAPARTMENTS_MODE	246861	69.293343
NONLIVINGAPARTMENTS_MEDI	246861	69.293343
NONLIVINGAPARTMENTS_AVG	246861	69.293343
FONDKAPREMONT_MODE	243092	68.235393
LIVINGAPARTMENTS_MEDI	242979	68.203674
LIVINGAPARTMENTS_MODE	242979	68.203674
LIVINGAPARTMENTS_AVG	242979	68.203674
FLOORSMIN_AVG	241108	67.678489
FLOORSMIN_MEDI	241108	67.678489
FLOORSMIN_MODE	241108	67.678489

AMT_REQ_CREDIT_BUREAU_WEEK 47568 13.352234 AMT_REQ_CREDIT_BUREAU_DAY 47568 13.352234 AMT_REQ_CREDIT_BUREAU_HOUR 47568 13.352234 47568 13.352234 AMT_REQ_CREDIT_BUREAU_MON 0.618377 NAME_TYPE_SUITE 2203 OBS_30_CNT_SOCIAL_CIRCLE 1050 0 294733 OBS_60_CNT_SOCIAL_CIRCLE 1050 0.294733 DEF_60_CNT_SOCIAL_CIRCLE 0.294733 1050 DEF_30_CNT_SOCIAL_CIRCLE 1050 0.294733 EXT_SOURCE_2 0.187506 AMT_GOODS_PRICE 0.078034 AMT_ANNUITY 0.010105 CNT_FAM_MEMBERS 0.000561 DAYS_LAST_PHONE_CHANGE 0.000281

application_{train|test}

✓ 결측치가 있는 컬럼 67개

1차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

결측치 확인

	Total	Percent
AMT_ANNUITY	1226791	71.473490
AMT_CREDIT_MAX_OVERDUE	1124488	65.513264
DAYS_ENDDATE_FACT	633653	36.916958
AMT_CREDIT_SUM_LIMIT	591780	34.477415
AMT_CREDIT_SUM_DEBT	257669	15.011932
DAYS_CREDIT_ENDDATE	105553	6.149573
AMT_CREDIT_SUM	13	0.000757

→ bureau

- ✓ 결측치가 있는 컬럼 7개
- ✓ 결측치 51% 이상인 컬럼 ['AMT_ANNUMITY'] 제외

	Total	Percent
CNT_INSTALMENT_FUTURE	1153	0.180066
CNT_INSTALMENT	1152	0.179909
SK_DPD_DEF	1	0.000156
SK_DPD	1	0.000156
NAME_CONTRACT_STATUS	1	0.000156

→ POS_CASH_balance

✓ 결측치가 있는 컬럼 5개

	Total	Percent
AMT_PAYMENT	2905	0.021352
DAYS_ENTRY_PAYMENT	2905	0.021352

→ instalments_payments

✓ 결측치가 있는 컬럼 2개

1차 데이터 처리 및 분석 과정 – EDA & Data Preprocessing

결측치 확인

	Total	Percent
AMT_PAYMENT_CURRENT	767988	19.998063
AMT_DRAWINGS_OTHER_CURRENT	749816	19.524872
CNT_DRAWINGS_POS_CURRENT	749816	19.524872
CNT_DRAWINGS_OTHER_CURRENT	749816	19.524872
CNT_DRAWINGS_ATM_CURRENT	749816	19.524872
AMT_DRAWINGS_ATM_CURRENT	749816	19.524872
AMT_DRAWINGS_POS_CURRENT	749816	19.524872
CNT_INSTALMENT_MATURE_CUM	305236	7.948208
AMT_INST_MIN_REGULARITY	305236	7.948208

- credit_card_balance
 - ✓ 결측치가 있는 컬럼 9개

	Total	Percen
RATE_INTEREST_PRIVILEGED	1664263	99.643698
RATE_INTEREST_PRIMARY	1664263	99.643698
RATE_DOWN_PAYMENT	895844	53.636480
AMT_DOWN_PAYMENT	895844	53.636480
NAME_TYPE_SUITE	820405	49.11975
DAYS_TERMINATION	673065	40.298129
NFLAG_INSURED_ON_APPROVAL	673065	40.298129
DAYS_FIRST_DRAWING	673065	40.29812
DAYS_FIRST_DUE	673065	40.298129
DAYS_LAST_DUE_1ST_VERSION	673065	40.298129
DAYS_LAST_DUE	673065	40.298129
AMT_GOODS_PRICE	385515	23.08177
AMT_ANNUITY	372235	22.28666
CNT_PAYMENT	372230	22.286366
PRODUCT_COMBINATION	346	0.02071
AMT_CREDIT	1	0.000060

previous_application

- ✓ 결측치가 있는 컬럼 16개
- ✓ 결측치가 51% 이상인 컬럼
 ['RATE_INTEREST_PRIVILEGED'],
 ['RATE_INTEREST_PRIMARY'],
 ['RATE_DOWN_PAYMENT'],
 ['AMT_DOWN_PAYMENT'] 제외

1차 데이터 처리 및 분석 과정 – EDA & Data Preprocessing

결측치 처리

✓ 결측치를 처리할 근거가 있는 경우 합리적 접근법으로 결측치 처리

(예)

	Total	Percent
AMT_PAYMENT_CURRENT	767988	19.998063
AMT_DRAWINGS_OTHER_CURRENT	749816	19.524872
CNT_DRAWINGS_POS_CURRENT	749816	19.524872
CNT_DRAWINGS_OTHER_CURRENT	749816	19.524872
CNT_DRAWINGS_ATM_CURRENT	749816	19.524872
AMT_DRAWINGS_ATM_CURRENT	749816	19.524872
AMT_DRAWINGS_POS_CURRENT	749816	19.524872
CNT_INSTALMENT_MATURE_CUM	305236	7.948208
AMT_INST_MIN_REGULARITY	305236	7.948208

['AMT_DRAWINGS_CURRENT'](총 인출량), ['CNT_DRAWINGS_CURRENT'](총 인출횟수)가 0인 경우에 대해 세부항목 인출량, 인출횟수가 NA로 확인됨

→ 이 경우 NA를 0으로 대체함

1차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

이상치 처리

1차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

Groupby할 때 개인 판단으로 aggregation 값 지정

(예)

SK_ID_CURR	MONTHS_BALANCE
328243	-11
328243	-10
328243	-9
328243	-8
328243	-7
328243	-6
328243	-5
328243	-4
328243	-3
328243	-2

- → ['MONTHS_BALANCE']는 max값으로 남은 대출기간을 알 수 있고, size로 지난 대출기간을 알 수 있음
- → max와 size로 aggregation 결정

- → ['AMT_DRAWINGS_ATM_CURRENT']는 0이 50% 이상을 차지함
- → 중앙값 0, 평균 14062.5
- → 평균으로 aggregation 결정

1차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

Random Forest

- 트리 기반 Bagging 앙상블
- 사용성이 쉽고, 성능이 우수함

Logistic Regression

- 결과값이 범주형일 때 사용되는 회귀 분석 알고리즘
- 데이터의 결과가 특정 분류로 나눠지는 회귀 분석으로 분류 기법으로 사용 가능

Light GBM

- Light Gradient Boosting Machine
- 속도가 매우 빠르고, 성능이 우수함

XGBoost

- eXtreme Gradient Boosting

CatBoost

- Categorical Boosting

- ✓ 데이터 테이블을 하나씩 결합하면서 각 모델에 적합한 Data Set을 선정
- ✓ Light GBM은 Bayesian Optimization 방법, 그 외 모델은 Grid Search 방법을 통해 Hyperparameter를 조정해 성능 향상시킴

1차 데이터 처리 및 분석 과정 – 모델 평가 및 채택

1차 데이터 처리 및 분석 과정 – 개선 방안

- 1) Grid Search 방법 단점
 - ✓ 탐색 대상 hyperparameter 개수를 한 번에 많이 사용 할수록, **탐색 시간이 기하급수적으로 증가**
 - ✓ 다음에 시도할 hyperparameter 값을 선정하는 과정에서, 이전 조사에서 얻어진 hyperparameter 값의성능 결과에 대한 '사전 지식' 미반영
- 2 개인 판단에 따른 aggregation 값 지정

- ✓ Bayesian Optimization을 다른 모델에도 적용
- ✓ 매 회 조사 대상 선정을 자동화하고, 확률적 추정을 통해 '사전 지식'을 충분히 반영

✓ 통합적으로 aggregation 값 지정

1차 데이터 처리 및 분석 과정 – 개선 방안

3 instalments_payments 테이블에만 새로운 컬럼 추가

✓ 컬럼 추가 시 성능이 향상되었음

(예)

납입일과 실제 납입일 차이

ins['DAYS_INADVANCE'] = (ins['DAYS_INSTALMENT'] - ins['DAYS_ENTRY_PAYMENT'])

할부금과 실제 납입금 차이

ins['AMT_GAP'] = (ins['AMT_INSTALMENT'] - ins['AMT_PAYMENT'])

✓ 컬럼 추가 시 성능이 향상되었음

✓ 모든 테이블에 새로운 컬럼 추가

03. 데이터 처리 및 분석 과정 2차 데이터 처리 및 분석 과정

2차 데이터 처리 및 분석 과정 - EDA & Data Preprocessing

Feature 심화 분석 : 컬럼에 대한 보다 깊은 이해

결측치 확인: 결측치 비율이 51% 초과하는 컬럼을 제외하지 않은 Data Set도 만들어 비교

이상치 처리, 범주형 데이터 인코딩: 1차와 동일

Groupby할 때 통합적으로 aggregation 값 지정

- 수치형 데이터: min, max, mean, median, sum, size
- 범주형 데이터: mean, sum

2차 데이터 처리 및 분석 과정 – Feature Engineering

Feature 심화 분석을 통해 새로운 Feature 추가

Polynomial Feature 추가

Feature Selection

- Feature들 간의 상관관계(Correlation)가 기준(0.9)보다 높으면 둘 중 하나를 제외
- Light GBM에서 Feature importance가 0인 Feature 제외
- PCA(Principal Component Analysis, 주성분분석)

2차 데이터 처리 및 분석 과정 – Feature Engineering

Feature 심화 분석을 통해 새로운 Feature 추가

(예) 한도에 대한 카드대금 비율

df['AMT_BALANCE_RATIO'] = df['AMT_BALANCE'] /df['AMT_CREDIT_LIMIT_ACTUAL']

1회당 인출량

df['ONCE_DRAWINGS_ATM_CURRENT'] = df['AMT_DRAWINGS_ATM_CURRENT']/df['CNT_DRAWINGS_ATM_CURRENT']
df['ONCE_DRAWINGS_CURRENT'] = df['AMT_DRAWINGS_CURRENT']/df['CNT_DRAWINGS_CURRENT']
df['ONCE_DRAWINGS_OTHER_CURRENT'] = df['AMT_DRAWINGS_OTHER_CURRENT']/df['CNT_DRAWINGS_OTHER_CURRENT']
df['ONCE_DRAWINGS_POS_CURRENT'] = df['AMT_DRAWINGS_POS_CURRENT']/df['CNT_DRAWINGS_POS_CURRENT']

credit_card_balance 테이블

(예) 연체일 = 최초 상환 예정일 – 실제 상환일

df['DAYS_FIRST_OVERDUE'] = df['DAYS_FIRST_DUE'] - df['DAYS_FIRST_DRAWING']

지불기간 = 최종 지불일 - 최초 상환 예정일

df['DAYS_PAYMENT_PERIOD'] = df['DAYS_LAST_DUE'] - df['DAYS_FIRST_DUE']

previous_application 테이블

2차 데이터 처리 및 분석 과정 - Feature Engineering

Polynomial Feature 추가

2차 데이터 처리 및 분석 과정 - Feature Engineering

Feature 추가 결과

Light GBM 모델에서 K-fold 교차 검증으로 구한 Feature importance 상위 15위에서

- ✓ 통합적인 aggregation ✓ Feature 심화 분석
- ✓ polynomial Feature로 11개 컬럼 새로 추가

→ 다른 모델에서도 유의미한 영향을 주면서 1차에 비해 성능 향상

2차 데이터 처리 및 분석 과정 – Feature Engineering

Feature Selection

- Feature Engineering으로 Feature를 추가해 총 1293개 컬럼을 갖는 Data Set 생성
- 불필요한 Feature 제거 필요

Feature Selection

- Feature들 간의 상관관계(Correlation)가 기준(0.9)보다 높으면 둘 중 하나를 제외
- Light GBM에서 Feature importance가 0인 Feature 제외
- PCA(Principal Components Analysis)
- → Feature Selection 방법 3가지를 모두 적용한 Data Set을 만들 계획이었으나 한 단계마다 컬럼 수가 급격히 감소하여 한번에 3가지를 모두 적용하지 않고 1~2가지만 적용하여 6가지 종류의 Data Set을 구축

2차 데이터 처리 및 분석 과정 - Feature Engineering

Feature Engineering을 통해 만들어진 Data Set

Data Set	설명	Feature 개수
df_fi_d	- Bureau, previous_application에서 결측치 비율이 51% 초과하는 컬럼 제외 - Feature importance가 0인 컬럼 제외	643
df_fi_n	- Feature importance가 0인 컬럼 제외	639
df_corr_fi_d	- Bureau, previous_application에서 결측치 비율이 51% 초과하는 컬럼 제외 - Feature사이 상관관계가 0.9이상인 경우 둘 중 하나 제외 - Feature importance가 0인 컬럼 제외	431
df_corr_fi_n	- Feature사이 상관관계가 0.9이상인 경우 둘 중 하나 제외 - Feature importance가 0인 컬럼 제외	454
df_fi_pca_d	- Bureau, previous_application에서 결측치 비율이 51% 초과하는 컬럼 제외 - Feature importance가 0인 컬럼 제외 - PCA를 이용하여 분산의 비율이 0.999로 유지하는데 필요한 최소한의 차원으로 차원 축소	326
df_fi_pca_n	- Feature importance가 0인 컬럼 제외 - PCA를 이용하여 분산의 비율이 0.999로 유지하는데 필요한 최소한의 차원으로 차원 축소	313

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

→ 프로젝트 데이터 개수가 많아서 LGBM 사용

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

Light GBM

Data Set 선정

Data Set	AUC
df_fi_d	0.78313
df_fi_n	0.78334
df_corr_fi_d	0.78249
df_corr_fi_n	0.78272
df_fi_pca_d	0.76167
df_fi_pca_n	0.76341

✔ PCA를 이용하여 규모를 축소한
Data Set은 AUC 점수가 낮아 제외

Data Set	AUC	Feature 개수	시간(초)
df_fi_d	0.78961	643	2536
df_fi_n	0.78958	639	2423
df_corr_fi_d	0.78901	431	1623
df_corr_fi_n	0.78952	454	1666

- ✓ 상관관계가 높은 컬럼을 제거한 Data Set을 이용한 경우 시간은 적게 소모되고 AUC 점수는 비슷함
- ✓ 4개의 Data Set을 계속 이용

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

Light GBM

Hyperparameter 조정

Microsoft LightGBM

Bayesian Optimization을 이용

```
time_start = time.time()
bo.maximize(init_points=3, n_iter=5)
time_end = time.time()
```

iter	- 1	target		colsam	1	learni	ļ	max_depth	min_ch	min_sp	num_le	reg_alpha	reg_la	subsample
1	1	0.7873		0.9483	1	0.01476	1	8.946	38.89	0.0128	33.06	0.04397	0.06841	0.9635
2	1	0.7876	- Û	0.8387		0.01542	- Î	7.469	39.87	0.0199	34.98	0.04643	0.07184	0.8713
3	1	0.7876		0.855	1	0.01031	ĵ.	7.527	38.82	0.01352	34.2	0.03085	0.07051	0.8869
4	1	0.7876	ľ	0.8738		0.01216	ľ	8.999	38.04	0.01499	33.91	0.03477	0.0749	0.9075
5		0.7877	ľ	0.8378	Î	0.01477	ľ	7.219	39.19	0.02134	34.97	0.04785	0.06086	0.9174
6	1	0.7874	ľ	0.9011		0.01744		8.881	39.7	0.01991	33.11	0.04461	0.0697	0.9957
7	1	0.7878	-	0.8235	1	0.01028	1	7.15	38.23	0.01832	34.77	0.0478	0.0771	0.8715
8	1	0.7873		0.9709	1	0.01304		7.03	38.08	0.02453	33.51	0.03487	0.06158	0.8001
9	1	0.7874	1	0.9029	1	0.01379		7.272	39.94	0.0116	34.94	0.04635	0.07478	0.8103
10	Î	0.7874	Ĩ	0.892	Î	0.01775	Ĺ	8.91	38.07	0.01088	33.47	0.03399	0.0776	0.8886

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

XGBoost

모델 소개

모델 특징

- eXtreme Gradient Boosting Library
- 병렬 처리를 사용해 학습과 분류가 빠름
- 유연성이 좋음. 평가 함수를 포함해 다양한 커스텀 최적화 옵션 제공
- Greedy-algorithm을 사용한 자동 가지치기 기능 으로 과적합이 적게 발생
- 다른 알고리즘과 연계 활용성이 좋음

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

XGBoost

Data Set 선정

Data Set	시간(초)	AUC
df_fi_d	1957	0.78725
df_fi_n	1961	0.78583
df_corr_fi_d	1257	0.78499
df_corr_fi_n	1284	0.78539
df_fi_pca_n	1761	0.75946
df_fi_pca_d	1772	0.75867

Data Set	AUC	
df_fi_d	0.78725	
df_fi_n	0.78583	
df_corr_fi_d	0.78505	
df_corr_fi_n	0.78539	

✓ 상관관계 높은 컬럼을 제거한 Data Set이 feature importance만 한 Data Set보다 지속적으로 점수가 낮아 feature importance 처리한 2개 Data Set 이용

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

XGBoost Hyperparameter 조정

- Bayesian Optimization 이용
- Early stopping 기능을 통해 Validation Set의 AUC가 최대가 되는 최소한의 n_estimators 설정
- K-fold 교차 검증을 통해 예측 확률을 구한 후, 평균으로 최종 예측 확률을 구함

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

CatBoost

모델 소개

모델 특징

- 트리 기반 그래디언트 부스팅 모델
- 범주형 데이터 자동 one-hot encoding 기능
- Hyperparameter 튜닝 없이도 높은 성능
- 다른 모델에 비해 빠른 속도

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

CatBoost

Data Set 선정

Data Set	컬럼 수	모델	파라미터	시간(초)	AUC	선택여부	
df_fi_d	643			534.36	0.78647	×	
df_fi_n	639			531.52	0.78874		
df_corr_fi_d	431			369.59	0.78662		
		CatBoost	Default				
df_corr_fi_n	454		교차검증 3회	381.36	0.78511	×	
df_pca_fi_d	326			369.04	0.78303	×	
df_pca_fi_n	313			345.24	0.78406	×	

2차 데이터 처리 및 분석 과정 – 모델 선정 및 개발

CatBoost

Hyperparameter 조정

- Bayesian Optimization 이용
- Early stopping 기능을 통해 Validation Set의 AUC가 최대가 되는 최소한의 iterations 설정
- K-fold 교차 검증을 통해 예측 확률을 구한 후, 평균으로 최종 예측 확률을 구함

03. 데이터 처리 및 분석 과정 2차 데이터 처리 및 분석 과정 – 모델 평가 및 채택

03. 데이터 처리 및 분석 과정 2차 데이터 처리 및 분석 과정 – 개선방안

- 1 SVM 등 더 다양한 분류 모델을 적용
- 2 Featuretools 라이브러리를 사용해서 자동화된 Feature Engineering 적용
- ③ Hyperparameter 조정 시 Grid Search, Random Search 등 다양한 방법 시도
- 🝊 Feature Engineering부터 단계적으로 '데이터 처리 및 분석과정' 수행

3차 데이터 처리 및 분석 과정 - Preview

CREDIT_ACTIVE		bereau 테이블
Closed	1079273	「'CDCDIT ACTIVE'] 퀀텀·CD에 버그티 사용권과 사태
Active	630607	- 99% 차지 → [CREDIT_ACTIVE] 설립. CB에 보고된 신용기대 상대 • Closed: 비활성화된 신용거래
Sold	6527	• Active: 활성화된 신용거래
Bad debt	21	→ 행 추출 후 aggregation으로 새로운 컬럼 생성
NAME_CONTR	RACT_STATUS	previous_application 테이블
Approved	1036781	['NAME_CONTRACT_STATUS'] 컬럼: 이전 신청의 계약 상태
Canceled	316319	79% 차지 → • Approved: 신용거래 계약 승인
Refused	290678	• Refused: 신용거래 계약 거절
Unused offer	26436	→ 행 추출 후 aggregation으로 새로운 컬럼 생성

3차 데이터 처리 및 분석 과정 - Preview

LightGBM에서 Feature importance가 0인 Feature를 제외한 효과

<기대한 효과> 불필요한 Feature를 제거하여 시간 단축

<부수적인 효과> AUC도 높아져 성능 향상

 03. 데이터 처리 및 분석 과정

 3차 데이터 처리 및 분석 과정 - Preview

 03. 데이터 처리 및 분석 과정

 3차 데이터 처리 및 분석 과정 - Preview

04. 서비스 활용 방안

신용정보 데이터

개인 데이터

- ✓ 개인별 맞춤 신용대출 서비스 제공
- ✓ 대출 가능액 범위에 따라 개인별 대출상환 능력 예측 모델 개발

04. 서비스 기대 효과

회사 측면

비용절감 새로운 고객 유입

고객 측면

편리함 신속한 대출 가능

참고 문헌 및 사이트

HC 시작하기: https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction

Manual Feature Engineering

https://www.kaggle.com/willkoehrsen/introduction-to-manual-feature-engineering

Automated Feature Engineering

https://www.kaggle.com/willkoehrsen/automated-feature-engineering-basics

lightgbm 시작: https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features

"LightGBM: A Highly Efficient Gradient Boosting Decision Tree", Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu, "Neural Information Processing Systems 2017." lightgbm 공식 홈페이지 https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html

Catboost 공식 홈페이지 https://catboost.ai/

https://data-newbie.tistory.com/131

xgboost 파라미터 설명 http://machinelearningkorea.com/

xgboost 사용법 https://statkclee.github.io/model/model-python-xgboost-hyper.html

xgboost 공식 홈페이지 <u>https://xgboost.ai/</u>

