Decontam-SARS Samples

Before you begin:

These scripts were tailored for the analyses performed in:

Seibert et al, 2021, Mild and severe SARS-CoV-2 infection induces respiratory and intestinal microbiome changes in the K18-hACE2 transgenic mouse model

Load the needed packages

```
library(seqinr)
library(decontam)
library(phyloseq)
library(ggplot2)
```

Information about Decontam

In addition to DADA2, @bejcal et al. also created a program for removing contaminants based on incorporated blanks called decontam (Nicole Davis et al. publication https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2). Documentation is available at this website:

https://benjjneb.github.io/decontam/vignettes/decontam_intro.html). Here, we will apply it without DNA concentrations – using prevalence of ASVs in the incorporated blanks – starting from our **count table** generated in dada2.

Import Files from dada2

First, we will need to import the ASV count table, taxonomy file, and fasta file that were generated from dada2.

The count table must be read in as a matrix to be used for decontam

```
# ASV Count Table
asv_tab <- as.matrix(read.table("/Users/ASVs_counts.tsv", sep = '\t', header
= TRUE, row.names = 1))
colnames(asv_tab) # List the colnames

# Taxonomy File
asv_tax_dada2 <- as.matrix(read.table("/Users/ASVs_taxonomy_dada.tsv", sep =
'\t', header = TRUE, row.names = 1))
colnames(asv_tax_dada2) # List the colnames

# Fasta File (package seqinr)
asv_fasta <- read.fasta("/Users/ASVs.fa")</pre>
```

Set Controls

We will need to set the vector of the samples that are considered negative controls in our data set.

I will treat each negative control from the sequencing batch as their own negative control samples against all samples (n = 4)

```
# We will need the column number of the negative controls. These are the
sampleIDs
which(colnames(asv_tab)=="BS.274") #column number for BS-274
which(colnames(asv_tab)=="BS.275") #column number for BS-275
which(colnames(asv_tab)=="BS.276") #column number for BS-276
which(colnames(asv_tab)=="BS.276") #column number for BS-277

# Set the vector containing the negative controls (which are BS-274, BS-275,
BS-276, BS-277) for decontam.
# Negative Samples Labeled = TRUE
# True Samples Labeled = FALSE
vector_for_decontam <- c(rep(FALSE, 58), rep(TRUE, 2), rep(FALSE, 12),
rep(TRUE, 2))
vector_for_decontam</pre>
```

Implement the Decontam algorithm using the Prevalence based method

seqtab: Integer matrix or phyloseq object. A feature table recording the observed abundances of each sequence variant (or OTU) in each sample. Rows should correspond to samples, and columns to sequences (or OTUs).

conc: Required if performing frequency-based testing. A quantitative measure of the concentration of amplified DNA in each sample prior to sequencing.

neg: Required if performing prevalence-based testing. TRUE if sample is a negative control, and FALSE if not (NA entries are not included in the testing).

method: Default). frequency, prevalence or combined will be automatically selected based on whether just conc, just neg, or both were provided.

batch: Default NULL. If provided, should be a vector of length equal to the number of input samples which specifies which batch each sample belongs to (eg. sequencing run). Contaminants identification will be performed independently within each batch

```
# Contaminants are identified by increased prevalence in negative controls.
The default threshold for a contaminant is that it reaches a probability of
0.1 in the statistical test being performed.
contam_df <- isContaminant(t(asv_tab), neg=vector_for_decontam)</pre>
```

```
# Report the number of ASVs that were not contaminants (FALSE) and those that
were contaminants (TRUE)
table(contam_df$contaminant) #identified 14 as contaminants

# Create vector containing the identified contaminant IDs
contam_asvs <- row.names(contam_df[contam_df$contaminant == TRUE, ])
contam_asvs

# Look at the 3 contaminants (Which ASV they were and the taxonomic
classification)
contam <- asv_tax_dada2[row.names(asv_tax_dada2) %in% contam_asvs, ]
contam

# Export the table of contaminants in an excel file
write.csv(contam, "/Users/contaminants_taxonomy.csv")</pre>
```

Export new fasta file, count table, and taxonomy table without the contaminants

I will export both analysis thresholds just in case I want to compare the differences in future analysis.

After looking into the ASVs I will use for future analysis in which only ASV 470 is removed since all of the other bacteria identified were biologically relevant.

```
# Fasta File
contam_indices <- which(asv_fasta %in% paste0(">", "ASV_470"))
dont_want <- sort(c(contam_indices, contam_indices + 1))
asv_fasta_no_contam_470 <- asv_fasta[- dont_want]

# ASV Count table
asv_tab_no_contam_470 <- asv_tab[!row.names(asv_tab) %in% "ASV_470", ]

# Taxonomy File
asv_tax_no_contam_470 <- asv_tax_dada2[!row.names(asv_tax_dada2) %in% "ASV_470", ]

# And now writing them out to files
write(asv_fasta_no_contam_470, "/Users/ASVs_no_contam_470.fa")

write.table(asv_tab_no_contam_470, "/Users/asv_tab_no_contam_470.tsv", sep="\t", quote=F, col.names=NA)

write.table(asv_tax_no_contam_470, "/Users/asv_tax_no_contam_470.tsv", sep="\t", quote=F, col.names=NA)</pre>
```