INFORME DE LOS ACCIDENTES DE TRÁNSITOS NICOLÁS DÍAZ

Introducción

El presente informe tiene como objetivo analizar los datos de accidentes de tráfico, identificando patrones y tendencias relevantes para comprender las principales causas y condiciones que afectan la seguridad vial. Utilizando técnicas de análisis de datos, se han obtenido insights clave que pueden servir como base ra la toma de decisiones informadas.

Los **accidentes de tráfico** son un problema crítico que afecta a millones de personas cada año. Este **análisis** lo que busca es desentrañar que **factores** contribuyen a los accidentes más graves, explorando desde las condiciones climáticas hasta las horas más críticas. A través de este estudio, espero aportar claridad sobre estas dinámicas.

Preguntas clave abordadas en este análisis:

- 1. ¿Cuáles son las ciudades con más accidentes?
- 2. ¿En qué días de la semana ocurren más accidentes y en qué horas del día son más frecuentes?
- 3. ¿Cuál es la distribución de la severidad de los accidentes?
- 4. ¿Cuáles son las condiciones climáticas más asociadas a accidentes graves?
- 5. ¿Qué ciudades necesitan más control de tráfico?

Resultados del análisis

1. Ciudades con más accidentes

A continuación, se presentan las cinco ciudades con el mayor número de accidentes:

Ciudades	Máximo de Accidentes
New York	10
Houston	9
Phoenix	9
Chicago	8
Los Angeles	7

Metodología:

Se utilizó la librería de Python "Pandas" para identificar las ciudades con más accidentes, aplicando técnicas de agrupación y ordenamiento sobre el conjunto de datos.

```
Identifica cuáles son las ciudades con más accidentes.
   severity_injuries=df.groupby('City')['Injuries'].max()
   df_ordenado=severity_injuries.sort_values(ascending=False).head(10)
   df_ordenado
 ✓ 0.0s
City
New York
               10
Houston
               9
Phoenix
               9
               8
Chicago
Los Angeles
                7
Name: Injuries, dtype: int64
```

2. Días y horas con mayor frecuencia de accidentes

Se analizaron los días de la semana y las horas del día para identificar los períodos más críticos.

Metodología:

Se realizó un filtrado de datos utilizando "Pandas" para ordenar los accidentes según los días de la semana y las horas del día.

3. Distribución de la severidad de los accidentes

Se evaluó la distribución de la severidad de los accidentes para identificar:

- La severidad más común.
- La severidad menos frecuente.

Metodología:

Primero, se analizó la distribución de la severidad por cada condición climática.

Posteriormente, se identificaron los valores máximo y mínimo para determinar los niveles de severidad más comunes y menos frecuentes.

.

4. Condiciones climáticas asociadas a accidentes graves

Las condiciones climáticas tienen un impacto directo en la gravedad de los accidentes.

Metodología:

Se creó una nueva columna denominada "Serios accidentes" que sumaba la gravedad y las lesiones. A continuación, se agruparon los datos por condiciones climáticas y se calcularon tanto el total como el promedio de accidentes graves.

5. Ciudades que necesitan más control de tráfico

En base a los datos analizados, **Phoenix** y **Chicago** son las ciudades que más necesitan medidas de control de tráfico debido a la alta incidencia de accidentes.

- En **Phoenix**, el promedio de accidentes diarios es de **3.96** y las tormentas eléctricas son un factor recurrente.
- En **Chicago**, el promedio diario asciende a **4.18**, también influido por condiciones climáticas adversas.
- En **New York**, el promedio diario asciende a 3.92, lo mismo por las condiciones climáticas adversas en especial las tormentas eléctricas.

		sum	mean	max
City	Condition			
Phoenix	Thunderstorm	819	3.956522	11
Chicago	Thunderstorm	828	4.181818	10
New York	Thunderstorm	816	3.923077	10

Conclusión

El análisis se realizó utilizando un conjunto de datos que incluía información detallada sobre accidentes de tránsito, con variables como la gravedad, las condiciones climáticas, la ubicación geográfica y la hora del día. Este enfoque permitió explorar correlaciones y patrones significativos, lo que facilita la identificación de áreas prioritarias para implementar medidas de seguridad vial.

En particular, las ciudades de Phoenix y Chicago destacan como puntos críticos debido a la frecuencia de tormentas eléctricas y su impacto en los accidentes graves. Este informe proporciona una base sólida para futuras acciones orientadas a reducir los accidentes de tráfico y mejorar la seguridad vial en estas regiones.