Graph Theory

Aniket Solanki

Enroll - 92100133007

Malhar Manvar

Enroll - 92100133027

Arjun Ankola

Enroll - 92100133028

Darsh Kakadiya

Enroll - 92210133018

Subject

Discrete Mathematics Graph Theory

Guided By

Prof. Foram Rajdev

➤ About Project :

In this project we are preparing learning module. We have cover maximum graph theory concepts. We have also include gate questions so learner can self-check the learning. We have used Java for this project. This will be used as Learning Module for Graph theory learners.

Concepts which has be covered

- 1.) Types of Graphs
- 2.) Degree
- 3.) Walk, Path and Circuit
- 4.) Vertex proper Colouring
- 5.) Exact Colouring

> Softwares:

- IDE for develop android app we use <u>ANDROID STUDIO</u>.
- For designing all graphs
 - o **Adobe illustrator**
- For Logo animation on splash screen, we used **Adobe After Effects.**

> Screenshots:

DMGT

WELCOME

Created by A.D.A.M.

DMGT

Sub Graph :-

- -> A graph H=(V,E) is called sub graph of graph G=(V,E) if subset of V and E1 is subset of E.
- Ex :- Draw G-{A,B} for below given graph.

DMGT

Theorom - 1:-

-> In a graph G, the sum of the degree of all vertices of all vertices of G is equal to twice the number of edge of G.

deg(V1) + ... + deg(Vn) = 2*e

Proof:-

- -> Let f be any edge of graph G.
- If f is a loop on vertex V1 then f is count twice when we count degree of vertex V1.
- -> If f is incident on V1 and V2 then f is count inn both deg(V1) and deg(V2).so f is count twice if we add deg(V1) and deg(V2).
- So that adding the degree of all vertices involves counting twice of each

DMGT

1.GRAPH

2.NULL GRAPH

3.TRIVIAL GRAPH

4.PARALLEL EDGE AND LOOP

5.SIMPLE GRAPH

6.REGULAR GRAPH

7.DIRECTED GRAPH AND UNDIRECTED GRAPH

8.COMPLETE GRAPH

O DIDADTITE CDADL

DMGT

- Q-1. Let a simple graph
 G with 20 vertices and 8
 components. If we
 delete a vertex in
 G, then the number of
 components in G should
 lie between ____.
- (A) 8 and 20
- (B) 8 and 19
- (C) 7 and 19
- (D) 7 and 20

Ans :- 7 and 19

Explanation:

If the vertex we are deleting from G is an isolated vertex, which is a component by itself, then the number of components in G becomes 7.If G is a start Graph, then by deleting the cut vertex of G, we get 19 components.