

Prof. Jose J. Camata
Prof. Marcelo Caniato
Prof. Barbara Quintela

<u>camata@ice.ufjf.br</u>

<u>marcelo.caniato@ice.ufjf.br</u>

<u>barbara@ice.ufjf.br</u>

- 1. Definição
- 2. Funções Hash
- 3. Tratamento de Colisões
 - a. Encadeamento
 - b. Endereçamento Aberto

Pesquisa em Memória Primária

- Estudo de como recuperar informação a partir de uma grande massa de informação previamente armazenada.
- > A informação é dividida em registros.
- Cada registro possui uma chave para ser usada na pesquisa.
- Objetivo da pesquisa:
 - Encontrar uma ou mais ocorrências de registros com chaves iguais à chave de pesquisa.

Escolha do Método de Pesquisa

- > Depende principalmente:
 - Quantidade dos dados envolvidos.
 - Arquivo estar sujeito a inserções e retiradas frequentes.

Se conteúdo do arquivo é estável, torna-se importante minimizar o tempo de pesquisa, sem preocupação com o tempo necessário para estruturar o arquivo

- É importante considerar os algoritmos de pesquisa como tipos abstratos de dados, com um conjunto de operações associado a uma estrutura de dados, de tal forma que haja uma independência de implementação para as operações.
- Operações mais comuns:
 - Inicializar a estrutura de dados.
 - Pesquisar um ou mais registros com determinada chave.
 - o **Inserir** um novo registro.
 - Retirar um registro específico.
 - Ordenar um arquivo para obter todos os registros em ordem de acordo com a chave.
 - Ajuntar dois arquivos para formar um arquivo maior.

Dicionário

- Nome comumente utilizado para descrever uma estrutura de dados para pesquisa.
- Dicionário é um tipo abstrato de dados com as operações:
 - Inicializa
 - Insere
 - Pesquise
 - Remova

- Método de pesquisa mais simples:
 - A partir do primeiro registro do dicionário, pesquise sequencialmente até encontrar a chave procurada; então pare.
- > Exemplo: procurar pela chave 4 (vetor e lista encadeada)

PesqSeq(A: vetor, n: int, chave: int)
 Para i ← 1 até n faça
 Se (A[i] == chave) retorne i;
 Fim-Pare
 retorne -1

Pesquisa Sequencial

- Pesquisa retorna o índice do registro que contém a chave x;
- Caso não esteja presente, o valor retornado é -1.
- A implementação não suporta mais de um registro com uma mesma chave.
- Para aplicações com esta característica é necessário incluir um argumento a mais na função Pesquisa para conter o índice a partir do qual se quer pesquisar.

Pesquisa Sequencial: Análise

> Pesquisa com sucesso:

melhor caso :
$$C(n) = 1$$

pior caso : $C(n) = n$
caso médio : $C(n) = (n+1)/2$

O algoritmo de pesquisa sequencial é a melhor escolha para o problema de pesquisa em tabelas com até 25 registros.

Outra Abordagem....

Ao invés de organizar a tabela segundo o valor relativo de cada chave em relação aos demais, usa-se em conta somente o seu valor absoluto, interpretado como um valor numérico.

Outra Abordagem....

- > Exemplo:
 - Uma empresa possui 100
 funcionários. Cada funcionário é
 representado pela seguinte
 estrutura de dados:
 - Os funcionários foram inseridos em tabela na ordem de contratação, onde o funcionário mais antigo tem matrícula 1 e o mais recente tem matrícula 100.

```
typedef struct {
   int matricula;
   string nome;
   // Outros
atributos
} Funcionario;
```


Outra Abordagem....

- > Exemplo (continuação):
 - A pesquisa sobre um determinado funcionário pode ser feito de forma direta através de sua matrícula (chave de pesquisa)
 - Pesquise em T funcionário com matrícula 3:
 - $\blacksquare \quad \mathsf{F} = \mathsf{T}[3]$
- Note que a pesquisa ocorre com endereçamento direto!
 - Custo da pesquisa: O(1)

T

Matrícula: 1 Nome: Jose

Matrícula: 2 Nome: Matria

Matrícula: 3 Nome: João

.

100

Nome: Fulano

Matrícula: 100

- Técnica simples que funciona bem quando o universo U de chaves é razoavelmente pequeno.
- ➤ Na Tabela de endereçamento diretos T=[0,...,m-1], cada posição corresponde a uma chave no universo U = {0,1, ..., m-1}, onde m não é muito grande.

Tabelas de Endereçamento Direto

- > O ponto negativo do endereçamento direto é óbvio:
 - Se o universo U é grande, armazenar uma tabela T de tamanho
 |U| pode ser impraticável ou mesmo impossível!!
- Exemplo:
 - Imagine agora se, ao invés de usar a matrícula dos funcionários como chave, fosse usado o seu CPF.
 - As chaves possíveis do universo U iriam variar de 000.000.000 até 999.999.999 (excluído os dois dígitos verificadores).
 - Assim, T teria que ser alocado com 1 Bi de posições mas somente 100 seriam utilizadas.

Tabela de Espalhamento (Hash)

Os registros armazenados em uma tabela são diretamente endereçados a partir de uma transformação aritmética sobre a chave de pesquisa.

- Acesso direto, mas endereçamento indireto.
 - Função de dispersão (função hash) h(k) != k, em geral
 - Resolve uso ineficiente de espaço de armazenamento

- Com endereçamento direto, um elemento com a chave *k* é armazenado na posição *k*.
- Com hash, esse elemento é armazenado na posição h(k); isto é, usamos uma função hash h para calcular a posição da chave k na tabela T.
- Qualquer que seja a função hash, algumas colisões poderão fatalmente ocorrer, e tais colisões têm de ser resolvidas de alguma forma.
- Mesmo que se obtenha uma função de transformação que distribua os registros de forma uniforme entre as entradas da tabela, existe uma alta probabilidade de haver colisões.

Tabelas de Espalhamento (Hash)

- ➤ O paradoxo do aniversário (Feller,1968, p. 33), diz que em um grupo de 23 ou mais pessoas, juntas ao acaso, existe uma chance maior do que 50% de que 2 pessoas comemorem aniversário no mesmo dia.
- Assim, se for utilizada uma função de transformação uniforme que enderece 23 chaves randômicas em uma tabela de tamanho 365, a probabilidade de que haja colisões é maior do que 50%.
- ➤ A probabilidade p de se inserir N itens consecutivos sem colisão em uma tabela de tamanho M é:

$$p = \frac{M-1}{M} \times \frac{M-2}{M} \times \ldots \times \frac{M-N+1}{M} = \prod_{i=1}^{N} \frac{M-i+1}{M} = \frac{M!}{(M-N)!M^N}$$

Tabelas de Espalhamento (Hash)

Alguns valores de p para diferentes valores de N, onde M=365.

N	p
10	0,883
22	0,524
23	0,493
30	0,303

Para N pequeno a probabilidade p pode ser aproximada por $p \approx \frac{N(N-1)}{730}$. Por exemplo, para N=10 então $p\approx 87,7\%$.

Funções Hash

- ➤ Uma função hash deve mapear chaves em inteiros dentro do intervalo [0...M - 1], onde M é o tamanho da tabela.
- > A função de transformação ideal é aquela que:
 - Seja simples de ser computada.
 - Para cada chave de entrada, qualquer uma das saídas possíveis é igualmente provável de ocorrer.

Funções hash

➤ Hashing perfeita:

- Transforma diferentes chaves em diferentes posições sem colisões
- Tabela tem que conter mesmo número de posições que o número de elementos que sofreram hashing
- Problema:
 - Pode-se não conhecer a priori o número total de elementos
 - O número possível de elementos pode ser muito maior do que o número total de elementos

Funções Hash

- Métodos:
 - Divisão
 - Multiplicação
 - Compressão de Chaves Alfanuméricas
 - Enlaçamento
 - Deslocado
 - Limite
 - Meio-Quadrado
 - Extração
 - Transformação de Raiz

Método da divisão

Mapeia uma chave inteira k para uma de m posições, tomando o resto da divisão de k por m:

$$h(k) = k \mod m$$

- Cuidado na escolha do valor de m!!!
 - o m não deve ser potência de 2.
 - m como um número primo não muito próximo de uma potência de 2 é uma boa escolha.
- > Se m não é um número primo pode-se utilizar função:
 - o h(k) = (k mod p) mod m, onde p é um número primo maior que m.

Método da multiplicação

- Realizado em duas etapas:
 - Multiplicamos a chave k por uma constante A na faixa 0 < A < 1 e extraímos a parte fracionária.
 - o Multiplicamos esse valor por m e tomamos o piso do resultado.

$$h(k) = floor(m(kA mod 1))$$

onde kA mod 1 significa a parte fracionária de kA.

- A escolha de m não é crítico. Pode ser potência de 2.
- o O método depende da escolha de A.
 - Escolha ótima depende dos dados.
 - Knuth [1971] sugere: A = (sqrt(5) 1) / 2

Enlaçamento

- Neste método a chave é dividida em diversas partes que são combinadas ou "enlaçadas" e transformadas para criar o endereço.
- Existem dois tipos de enlaçamento:
 - Enlaçamento deslocado
 - Enlaçamento limite

- 1. Chave é dividida em partes homogêneas
- 2. Uma parte é colocada embaixo da outra
- 3. Enlaçamento deslocado soma estas partes.
- 4. Aplica-se o método de divisão no resultado

Exemplo: Código pessoal 123-456-789

- Dividir em partes e colocar uma embaixo da outra: 789
- 2. Somar as partes: 123+456+789 = 1368
- 3. Aplicar o método da divisão:
 - a. Supondo m = 1000
 - o. 1368 mod 1000 = 368

Enlaçamento Limite

- > As partes da chave são colocadas em ordem inversa.
- ➤ Considerando as mesmas divisões do código 123-456-789.
- Alinha-se as partes sempre invertendo as divisões da seguinte forma 321-654-987.
- > O resultado da soma é 1566.
- Esse valor pode usar o método da divisão

Meio-Quadrado

- A chave é elevada ao quadrado e a parte do resultado é usada como endereço.
- Exemplo: k = 3121
 - \circ 3121² = 9740641
 - Em uma tabela com m=1000, pode-se utilizar os 3 dígitos do meio:
 - h(3121) = 406
 - Uma máscara binária pode ser usada para obter a posição:
 - Se tamanho da tabela é 1024 (em binário 1000000000)
 - 3121² em binário é igual a 1001010**0101000010**11000001
 - 0101000010, que é igual a 322, pode ser extraído usando máscara e uma operação de deslocamento

Extração

- Neste método somente uma parte da chave é usada para criar o endereço
- > Para o código 123-456-789 pode-se usar os primeiros ou os últimos 4 dígitos ou outro tipo de combinação como 1289.
- Somente uma porção da chave é usada.

Transformação de raiz

- A chave é transformada para outra base numérica.
- O valor obtido é aplicado no método da divisão para obter o endereço.
- > Exemplo:
 - k = 345 na base decimal.
 - Valor de k na base nona: 423
 - Aplica método de divisão:
 - \blacksquare Se m= 100, h(345) = 423 mod 100 = 23.
 - Não evita colisões!

Exercício:

1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, 10, 20, 25, 24.

Exercício:

- 1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: **1**, 5, 10, 20, 25, 24.
 - Inserindo 1 em T:
 - h(1) = 1 % 7 = 1
 - \circ T[h(1)] = 1

- 1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, **5**, 10, 20, 25, 24.
 - Inserindo 5 em T:
 - \circ h(5) = 5 % 7 = 5
 - \circ T[h(5)] = 5

Exercício:

- 1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, **10**, 20, 25, 24.
 - Inserindo 10 em T:
 - h(10) = 10 % 7 = 3
 - T[h(10)] = 10

- 1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, 10, **20**, 25, 24.
 - Inserindo 20 em T:

 - \circ T[h(20)] = 20

- 1. Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, 10, 20, **25**, 24.
 - Inserindo 25 em T:
 - \circ h(25) = 25 % 7 = 4
 - \circ T[h(25)] = 25

25

- Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, 10, 20, 25,
 24.
 - Inserindo 24 em T:

 - \circ T[h(24)] = 24

10

Exercício:

- Considere uma tabela hash de tamanho igual a 7. Usando o método da divisão, faça a inserção dos seguintes números: 1, 5, 10, 20, 25,
 24.
 - Inserindo 24 em T:
 - \circ h(24) = 24 % 7 = 3
 - \circ T[h(24)] = 24

10, 24

COLISÃO

Tratamento de Colisões

Tratamento de Colisões

O que fazer quando duas chaves são mapeadas para a mesma posição da tabela?

O que fazer quando duas chaves são mapeadas para a mesma posição da tabela?

Tratamento de Colisões

- > Encadeamento
 - Separado
 - Coalescido
 - Coalescido com porão
- Endereçamento Aberto
 - Sondagem Linear
 - Sondagem Quadrática
 - Sondagem Dupla

Encadeamento Separado

Tratamento de Colisões por Lista Encadeada

Uma das formas de resolver as colisões é construir uma lista linear encadeada para cada endereço da tabela. Assim, todas as chave k com mesmo endereço são encadeadas em uma lista linear.

Tratamento de Colisões por Lista Encadeada

- Manter m listas encadeadas, uma para cada possível endereço base.
- A tabela base não possui nenhum registro, apenas os ponteiros para as listas encadeadas.
- Por isso chamamos de encadeamento exterior: a tabela base não armazena nenhum registro!!

Cada nó da lista encadeada armazena:

- Registro
- Ponteiro para o próximo nó da lista

- Utilizado quando não é desejável a manutenção de um estrutura externa a tabela hash.
 - Quando n\u00e3o se pode permitir que o espa\u00e7o de registros cres\u00e7a indefinidamente.
- Cada posição na tabela possui espaço para a chave para um ponteiro que aponta para a posição da próxima chave.
- Quando ocorre uma nova colisão, a nova chave é inserida no primeiro espaço vazio a partir, por exemplo, do compartimento onde ocorreu a colisão, ou do final da tabela.

Cada posição da tabela armazena dois atributos	Cada r	osicão	da t	tabela	armazena	dois	atributos
--	--------	--------	------	--------	----------	------	-----------

- INFO: armazena informação da chave
- NEXT: índice para a próxima chave caso haja colisão.
 - -2 pode indicar posição livre.
 - -1 pode indicar final de uma cadeia.

Exemplo de Inserção:		T	
Tabela Vazia	0		-2
	1		-2
	2		-2
	3		-2
	4		-2
	5		-2
	6		-2
	7		-2
	8		-2
	I I 9		-2

	_ Exemplo de Inserçao:	_	<u></u>	
1.	Inserção de A2:	0		-2
		1		-2
 		2	A2	-1
		3		-2
		4		-2
		5		-2
 		6		-2
		7		-2
		8		-2
				-2

> Exemplo de Inserção:

· · · · · · · · · · · · · · · · · · ·	1.	Inserção	de A2
---------------------------------------	----	----------	-------

2. Inserção de A3:

0		-2
1		-2
2	A2	-1
3	A 3	-1
4 5		-2
5		-2
6		-2
7		-2
8		-2
9		-2

Exemplo	de	Inserção:
		n roor yaar

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:

0		-2
1		-2
2	A2	-1
3	А3	-1
4		-2
5	A5	-1
6		-2
7		-2
8		-2
9		-2

ļ.	1
	2
	3
	4
	5
· ·	6
	7
	8
	9

Exemple	o de l	Inserção:
LAGITIPI	U UC	niserçau.

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:

0		-2
1		-2
2	A2	-1
3	A 3	-1
		-2
5	A5	-1
6		-2
7		-2
8		-2
9		-2

l	
I	
l	
l	
I	
I	
-	
fjf	

Exemple	o de l	Inserção:
LAGITIPI	U UC	niserçau.

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:
- 5. Colisão com A5

1	_

3

4

5

6

8

9

	-2
	-2
A2	-1

A2	-1
А3	-1

-2

-2

Exemplo de Inserção.

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final da tabela

0		-2	
1		-2	
2	A2	-1	
3	А3	-1	
4		-2	
5	A 5	9	•
6		-2	
7		-2	
8		-2	
•	R5	_1	

Exempl	o de	Inserção:
Exempl	U UE	IIIS C IÇAU.

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final
 - da tabela
- 7. Inserir A9

			_
0		-2	
1		-2	
2	A2	-1	
3 4	А3	-1	
4		-2	
5	A 5	9	
6		-2	
7		-2	
8		-2	
			l V

B5

9

-1

1	R	

Exemple	o de l	Inserção:
		moon galor

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final
 - da tabela
- 7. Inserir A9
- 8. Colisão com B5

			_
0		-2	
1		-2	
2	A2	-1	
3 4	А3	-1	
4		-2	
5	A 5	9	
6		-2	
7		-2	
8		-2	
		4	1

B5

Exemplo de Inserção:

- 1. Inserção de A2:
- 2. Inserção de A3:
- 3. Inserção de A5:
- 4. Inserção de B5:
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final da tabela, ie, em T[9]
- 7. Inserir A9
- 8. Colisão com B5
- 9. Insere na primeira posição vazia a partir do final da tabela, ie,em T[8]

0		-2	
1		-2	
2	A2	-1	
3	А3	-1	
4		-2	
5	A 5	9	
5 6	A5	9 -2	
	A5		
6	A5 A9	-2	/ *

B5

9

Exempl	o de l	Inserção:
	. . .	

- 1. Inserção de A2
- 2. Inserção de A3
- 3. Inserção de A5
- 4. Inserção de B5
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final da tabela, ie, em T[9]
- 7. Inserção de A9
- 8. Colisão com B5
- 9. Insere na primeira posição vazia a partir do final da tabela, ie,em T[8]
- 110. Inserção de B2

0		-2	
1		-2	
2	A2	-1	
3	А3	-1	
4		-2	
5	A 5	9	\
6		-2	
7		-2	
8	A9	-1	

B5

9

Exemple	o de l	Inserção:
— - · · · · / · · ·		

- 1. Inserção de A2
- 2. Inserção de A3
- 3. Inserção de A5
- 4. Inserção de B5
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final da tabela, ie, em T[9]
- 7. Inserção de A9
- 8. Colisão com B5
- 9. Insere na primeira posição vazia a partir do final da tabela, ie,em T[8]
- 110. Inserção de B2
- 11. Colisão com A2

	T		
0		-2	
1		-2	
2	A2	-1	
3	А3	-1	
4		-2	
5	A5	9	
6		-2	
7		-2	
8	A9	-1	*
0	B5	8	<u> </u>

Exemplo de	Inserção:
	ga

- 1. Inserção de A2
- 2. Inserção de A3
- 3. Inserção de A5
- 4. Inserção de B5
- 5. Colisão com A5
- 6. Insere na primeira posição vazia a partir do final da tabela, ie, em T[9]
- 7. Inserção de A9
- 8. Colisão com B5
- 9. Insere na primeira posição vazia a partir do final da tabela, ie,em T[8]
- 10. Inserção de B2
- 11. Colisão com A2
- 12. Insere na primeira posição vazia a partir do final da tabela, ie,em T[7]

Encadeamento Coalescido com porão

- No encadeamento coalescido, o tamanho da tabela limita o número de chaves que podem ser escrutinadas na tabela!
- Outra opção de solução é separar uma área de transbordamento, conhecida como porão, para o tratamento das colisões
- Pode ser alocada dinamicamente

Coalescido com Porão

- > Exemplo de Inserção:

(C	A5,	A2,F	13,B	5,A9),B2,	B9,	C_2
Tabela \	- √az	– – ia						_

Coalescido com Porão

> Exemplo de Inserção:

Inserção de A5

- **A5**,A2,A3,B5,A9,B2,B9,C2

Coalescido com Porão

- > Exemplo de Inserção:
 - A5,A2,A3,B5,A9,B2,B9,C2
 - Inserção de A5
- Inserção de A2

3

4

5

6

8

9

10

A2

A3

A5

-2

-2

-2

-2

-2

Coalescido com Porão

- > Exemplo de Inserção:
 - A5,A2,**A3**,B5,A9,B2,B9,C2
 - Inserção de A5
- Inserção de A2
- 3. Inserção de A3

- - - - 6
 - 8

9

0

3

4

5

0

8

9

Coalescido com Porão

- > Exemplo de Inserção:
 - *A5,A2,A3,B5,A9,B2,B9,C2*
 - Inserção de A5
- Inserção de A2 3. Inserção de A3
- Inserção de B5

- A2 A3 -2 3 4 **A5** -1 5 6
 - - -2

-2

-2

- 10 -2 11

Coalescido com Porão

- > Exemplo de Inserção:
 - A5,A2,A3,**B5**,A9,B2,B9,C2
- Inserção de A5 Inserção de A2
- 3. Inserção de A3
- Inserção de B5 4.
- 5. Colisão com A5:
 - Insere na primeira posição livre do porão.

8

T

10

11

Coalescido com Porão

- > Exemplo de Inserção:
 - o *A5,A2,A3,B5,A9,B2,B9,C2*
- Inserção de A5
- Inserção de A2
- 3. Inserção de A3 Inserção de B5
- Colisão com A5:
- - Insere na primeira posição livre do porão.
 - 6. Inserção de A9

_	1		
0		-2	
1		-2	
2	A2	-1	
3	A3	-2	
4		-2	
5	A5	12	
6		-2	
7		-2	
8		-2	
9	A9	-1	
40		-2	/

Coalescido com Porão

- > Exemplo de Inserção:
 - o *A5,A2,A3,B5,A9,B2,B9,C2*
- Inserção de A5 Inserção de A2
- Inserção de A3
- Inserção de B5 Colisão com A5:

 - Ins a.
- 6. Inserção
- Inserção de B2

	=		
0		-2	
1		-2	
2	A2	-1	
3	A3	-2	
4		-2	
5	A5	12	
6		-2	
7		-2	
8		-2	\
9	A9	-1	
		-2	
10 11		-2	
			. /

sere	na	primeira	posição	livre	do	porão.
م لام	۸0	\				

	•	د		
o de A9				

Coalescido com Porão

- > Exemplo de Inserção:
 - o *A5,A2,A3,B5,A9,B2,B9,C2*
- Inserção de A5
 Inserção de A2
- 3. Inserção de A3
- 4. Inserção de B5
 - Colisão com A5:

 a. Insere na primeira posição livre do porão.
 - Inserção de A9
 - Inserção de B2
- 8. Colisão com A2

6.

a. Insere na primeira posição livre do porão.

U			
1		-2	
2	A2	11	1
3	A3	-2	\
4		-2	
5	A5	12	
6		-2	
7		-2	
8		-2	\
9	A9	-1	
		-2	
10 11	B2	-1	/ /
1.1			I ./

Coalescido com Porão

- > Exemplo de Inserção:
 - *A5,A2,A3,B5,A9,B2,***B9**,*C2*
- Inserção de A5 Inserção de A2
- 3. Inserção de A3
- Inserção de B5 5.
 - Colisão com A5: Insere na primeira posição livre do porão.
 - Inserção de A9
- Inserção de B2

6.

- Colisão com A2

 - Insere na primeira posição livre do porão.

9. Inserção de B9

Coalescido com Porão

- Exemplo de Inserção:
 - o *A5,A2,A3,B5,A9,B2,B9,C2*
- Inserção de A5
- Inserção de A2
- Inserção de A3
- Inserção de B5
 - Colisão com A5: a. Insere na primeira posição livre do porão.
- Inserção de A9 Inserção de B2
- Colisão com A2
 - a. Insere na primeira posição livre do porão.
 - Inserção de B9
- Colisão com A9 10.
 - Insere na primeira posição livre do porão

5

6

8

9

10

11

12

Coalescido com Porão

- > Exemplo de Inserção:
 - o *A5,A2,A3,B5,A9,B2,B9,***C2**
- 1. Inserção de A5
- 2. Inserção de A23. Inserção de A3
- 4. Inserção de B5
- 5. Colisão com A5:
- a. Insere na primeira posição livre do porão.
- 6. Inserção de A9
- 7. Inserção de B2
- 8. Colisão com A2
- a. Insere na primeira posição livre do porão.
- 9. Inserção de B9
- 10. Colisão com A9
- a. Insere na primeira posição livre do porão
- 11. Inserção de C2

B2

B5

11

-1

Coalescido com Porão

> Exemplo de Inserção:

1.	Inse	rção	de	A5
_	_			

- Inserção de A2
 Inserção de A3
- 4. Inserção de B5
- 5. Colisão com A5:
- Collsão com A5.
 a. Insere na primeira posição livre do porão.
- 6. Inserção de A9
- 7. Inserção de B2
- 8. Colisão com A2
- a. Insere na primeira posição livre do porão.
- 9. Inserção de B9
- 10. Colisão com A9
 - a. Insere na primeira posição livre do porão Inserção de C2
- 11. Inserção de C2 12. Colisão com A2 e Colisão com B2
- a. Sem espaço porão, insere na primeira posição livre da tabela

3

4

5

6

8

9

10

11

A2 11

A3 -2

-2

A5 12

C2 -1 A9 10

B2 8

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Remoção por Encadeamento

- Encadeamento por Lista Encadeada:
 - Remover a chave k na lista encadeada T[h(k)].
- Encadeamento Coalescido/Coalescido com porão:
 - Remoção exige mais cuidados.
 - A remoção de uma elemento da lista encadeada armazenada em T pode gerar resultados errôneos na busca por uma chave

Possível Solução:

Manter chaves removidas, marcando as posições como elementos REMOVIDOS.

Encadeamento

- A eficiência desta implementação depende do tamanho M da tabela e do número N de chaves existentes na tabela.
- ightharpoonup O valor $\alpha = N/M$ é o fator de carga da tabela.
- > O fator α é também o tamanho médio da lista encadeada.
 - Custo médio de busca ≈ 1 + α/2.
 - Ideal a ser constante.

Tratamento de Colisões

- > Encadeamento
 - Separado
 - Coalescido
 - Coalescido com porão
- Endereçamento Aberto
 - Sondagem Linear
 - Sondagem Quadrática
 - Sondagem Dupla

Endereçamento Aberto

- Motivação: as abordagens anteriores utilizam ponteiros/índices nos encadeamentos
 - Aumento no consumo de espaço
 - Ideia básica do Endereçamento Aberto:
 - Armazenar as chaves sinônimas sem qualquer informação adicional
 - Quando houver colisão, determina-se por cálculo o novo endereço pela qual a próxima posição deva ser examinada.
 - Busca com sucesso quando um compartimento é encontrado com a chave procurada
 - Busca sem sucesso seria a computação de um um compartimento vazio ou a exaustão da tabela

Endereçamento Aberto:

Funcionamento

Quando uma chave k é endereçada para uma entrada da tabela que já esteja ocupada (colisão), uma sequência de localizações alternativas h(k,1), h(k,2), ..., h(k,m-1) é escolhida.

➤ Para cada chave k, a função h deve ser capaz de fornecer uma permutação de endereços base no conjunto {0,...,m-1}.

Endereçamento Aberto: Funções Hash

- Existem várias propostas para a escolha de localizações alternativas:
 - Sondagem Linear
 - Sondagem Quadrática
 - Sondagem Dupla

Dada uma função hash comum h', o método de sondagem linear usa a função:

$$h(x,i) = (h'(k) + i) \mod m$$
 para $i = 0,...,m-1$

Dada uma chave k, primeiro sondamos T[h'(k)], depois T[h'(k)+1], e assim por diante até T[m-1];

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando função h'(k)=k mod 11.

INSERÇÃO:

TENTATIVAS:

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando função h'(k)=k mod 11.

$$h(10,0) = (h'(10) + 0) \mod 11$$

= 10 mod 11
= 10

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando função h'(k)=k mod 11.

$$h(10,0) = (h'(10) + 0) \mod 11$$

= 10 mod 11
= 10

Endereçamento Aberto:

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: 0
$$h(22,0) = (h'(22) + 0) \mod 11$$

= 0 mod 11

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

TENTATIVAS: 0
$$h(22,0) = (h'(22) + 0) \mod 11$$

= 0 mod 11
= 0

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

10

Endereçamento Aberto:

Sondagem Linear

22

TENTATIVAS: 0
$$h(22,0) = (h'(22) + 0) \mod 11$$

= 0 mod 11
= 0

Endereçamento Aberto:

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: 0
$$h(31,0) = (h'(31) + 0) \mod 11$$

= 9 mod 11
= 9

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

TENTATIVAS: 0
$$h(31,0) = (h'(31) + 0) \mod 11$$

= 9 mod 11
= 9

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

TENTATIVAS: 0
$$h(31,0) = (h'(31) + 0) \mod 11$$

= 9 mod 11
= 9

Endereçamento Aberto:

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

TENTATIVAS: 0
$$h(4,0) = (h'(4) + 0) \mod 11$$

= 4 mod 11
= 4

TENTATIVAS: 0
$$h(4,0) = (h'(4) + 0) \mod 11$$

= 4 mod 11
= 4

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: 0
$$h(4,0) = (h'(4) + 0) \mod 11$$

= 4 mod 11
= 4

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: 0
$$h(15,0) = (h'(15) + 0) \mod 11$$

= 4 mod 11
= 4

$$h(15,1) = (h'(15) + 1) \mod 11$$

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

 $= (4 + 1) \mod 11$

 $= 5 \mod 11 = 5$

Endereçamento Aberto:

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: **0**
$$h(28,0) = (h'(28) + 0) \mod 11$$

= $(6 + 0) \mod 11$
= $6 \mod 11 = 6$

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: **0**
$$h(28,0) = (h'28) + 0) \mod 11$$

= $(6 + 0) \mod 11$
= $6 \mod 11 = 6$

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

TENTATIVAS: **0**
$$h(28,0) = (h(28) + 0) \mod 11$$

= $(6 + 0) \mod 11$
= $6 \mod 11 = 6$

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

TENTATIVAS: **0**
$$h(59,0) = (h'(59) + 0) \mod 11$$

= $(4 + 0) \mod 11$
= $4 \mod 11 = 4$

$$h(59,0) = (h'(59) + 0) \mod 11$$

= $(4 + 0) \mod 11$
= $4 \mod 11 = 4$

$$h(59,1) = (h'(59) + 1) \mod 11$$

= $(4 + 1) \mod 11$
= $5 \mod 11 = 5$

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h(k)=k mod 11.

Sondagem Linear

Exemplo: Insira as chaves {10,22,31,4,15,28,59} em uma tabela T de tamanho 11 com sondagem linear usando a função h'(k)=k mod 11.

Desvantagem: É suscetível ao agrupamento primário, isto é, são construídas longas sequências de posições ocupadas, o que degrada o desempenho da busca.

Sondagem Quadrática

> A sondagem quadrática utiliza uma função hash da forma:

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$

onde, h'(k) é uma função de hash auxiliar, c_1 e c_2 são constantes não nulas e i=0,2,...,m-1.

- A posição inicial sondada é T[h'(k)]; posições posteriores são deslocadas por quantidades que dependem de forma quadrática do número da sondagem i.
- Funciona melhor que a sondagem linear, mas para fazer pleno uso da tabela hash, os valores de c₁, c₂ e m são restritos.

Sondagem Dupla

- Um dos melhores métodos disponíveis, pois as permutações produzidas têm muitas características de permutações escolhidas aleatoriamente.
- > O hash duplo usa uma função hash da forma:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m,$$

onde h_1 e h_2 são funções hash auxiliares e i = 0,1,2,..., m-1;

Sondagem inicial vai a posição T[h₁(k)]; posições sucessivas são deslocadas em relação às posições anteriores pela quantidade h₂(k), módulo m.

Sondagem Dupla

Questão importante: como escolher h_1 , h_2 e m?

- O valor de $h_2(k)$ e o tamanho de m da tabela hash devem ser primos entre si.
- Como fazer isso?
 - Fazer m ser potência de dois e projetar h, para sempre retornar um número ímpar.
 - Fazer m primo e projetar h, para sempre retornar um número inteiro positivo menor que m.

Exemplo para o segundo caso

Escolher *m* primo e fazer:

$$h_1(k) = k \mod m,$$

 $h_2(k) = 1 + (k \mod m'),$ onde o valor de m'escolhido é

ligeiramente menor que *m*.

tem-se:

 $h_2(123456) = 257$

 $h_1(123456) = 80$

→ A primeira posição sondada é de número 80; as demais estão separadas por 257 posições.

→ Para k= 123456, m= 701 e m'= 700,

Exemplo: Inserir as chaves: 74,92,32,70,47

(1) Escolher
$$m = 7 e m' = 5$$

(2) Função hash: $h(k,i) = (h_1(k) + i h_2(k)) \mod 7$

$$h_1(k) = k \mod 7$$

 $h_2(k) = 1 + k \mod 5$

(1) Escolher
$$m = 7 e m' = 5$$

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

$$h_1(74) = 74 \mod 7 = 4$$

 $h_2(74) = 1 + 74 \mod 5 = 1 + 4 = 5$
 $h(74,0) = (4 + 0 . 5) \mod 7 = 4$

(1) Escolher
$$m = 7 e m' = 5$$

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

$$h_1(92) = 92 \mod 7 = 1$$

 $h_2(92) = 1 + 92 \mod 5 = 1 + 2 = 3$
 $h(92,0) = (1 + 0 \cdot 3) \mod 7 = 1$

(1) Escolher
$$m = 7 e m' = 5$$

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

$$h_1(92) = 92 \mod 7 = 1$$

 $h_2(92) = 1 + 92 \mod 5 = 1 + 2 = 3$
 $h(92,0) = (1 + 0 \cdot 3) \mod 7 = 1$

- (1) Escolher m =7 e m' = 5
- (2) Função hash: $h(k,i) = (h_1(k) + i h_2(k)) \mod 7$ $h_1(k) = k \mod 7$ $h_2(k) = 1 + k \mod 5$

Inserção: 32

$$h_1(32) = 32 \mod 7 = 4$$

 $h_2(32) = 1 + 32 \mod 5 = 1 + 2 = 3$
 $h(32,0) = (4 + 0 . 3) \mod 7 = 4$
 $h(32,1) = (4 + 1 . 3) \mod 7 = 7 \mod 7 = 0$

74, 92, **32**, 70, 47

Sondagem Dupla

Exemplo: Inserir as chaves:

(1) Escolher
$$m = 7 e m' = 5$$

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

$$h_1(70) = 70 \mod 7 = 0$$

 $h_2(70) = 1 + 70 \mod 5 = 1 + 0 = 1$
 $h(70,0) = (0 + 0 \cdot 1) \mod 7 = 0$
 $h(70,1) = (0 + 1 \cdot 1) \mod 7 = 1 \mod 7 = 1$
 $h(70,2) = (0 + 2 \cdot 1) \mod 7 = 2 \mod 7 = 2$

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

Inserção: 47

$$h_1(47) = 47 \mod 7 = 5$$

 $h_2(47) = 1 + 47 \mod 5 = 1 + 2 = 3$
 $h(47,0) = (5 + 0 \cdot 3) \mod 7 = 5$

74, 92, 32, 70, **47**

Sondagem Dupla

Exemplo: Inserir as chaves:

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

Inserção: 47

$$h_1(47) = 47 \mod 7 = 5$$

 $h_2(47) = 1 + 47 \mod 5 = 1 + 2 = 3$
 $h(47,0) = (5 + 0 \cdot 3) \mod 7 = 5$

74, 92, 32, 70, **47**

Remoção em Endereçamento Aberto

- Suponha que queremos remover o elemento de chave k da tabela.
- A partir da posição h(k) temos que procurar k usando a sequência de sondagem para descobrir a posição verdadeira deste. Suponha que ele esteja na posição j.
- Não podemos simplesmente colocar T[j] = NULL. Por quê?
 - Influência na busca dos elementos na hash!

Exemplo: Remover a chave 74 e pesquisar a chave 32.

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

Remover: 74

$$h_1(74) = 74 \mod 7 = 4$$

 $h_2(74) = 1 + 74 \mod 5 = 1 + 4 = 5$
 $h(74,0) = (4 + 0.5) \mod 7 = 4$

Remoção usando Sondagem Dupla

Exemplo: Remover a chave 74 e pesquisar a chave 32.

(2) Função hash:
$$h(k,i) = (h_1(k) + i h_2(k)) \mod 7$$

 $h_1(k) = k \mod 7$
 $h_2(k) = 1 + k \mod 5$

Pesquisar chave: 32

$$h_1(32) = 32 \mod 7 = 4$$

 $h_2(32) = 1 + 32 \mod 5 = 1 + 2 = 3$
 $h(32,0) = (4 + 0 . 3) \mod 7 = 4$

Remoção em Endereçamento Aberto

- > Suponha que queremos remover o elemento de chave k da tabela.
- A partir da posição h(k) temos que procurar k usando a sequência de sondagem para descobrir a posição verdadeira deste. Suponha que ele esteja na posição j. Não podemos simplesmente colocar T[j] = NULL. Por que?
 - Influência na busca dos elementos na hash!
 - Uma chave não pode ser removida de fato pois perderia a sequência de sondagens
- ➤ Podemos resolver isso colocando um marcador REMOVIDO em vez de NULL. Isto indica que uma busca não deve parar neste ponto. Além disso, para a inserção, esta corresponderia a uma posição livre.

Tabela Hash - Discussão

A técnica de hashing é mais utilizada nos casos em que existem muito mais buscas do que inserções de registros

Tabela hash

- Referências:
 - ZIVIANI, NIVIO. Projeto de Algoritmos com Implementação em Java e C++. Cengage Learning. 2007.
 - LEISERSON, C. E.; STEIN, C.; RIVEST, R. L., CORMEN, T.H. Algoritmos: Teoria e Prática.
 Tradução da 2a. edição americana. Editora Campus, 2002.
 - PREISS, Bruno. Estrutura de Dados e Algoritmos. Elsevier. 2001.

Extras

- Hash para arquivos extensíveis
- Leitura do seção 10.6.1 do Livro
 - Drozdek, A. Estrutura de Dados e Algoritmos em C++ Tradução da 4ª edição norte-americana: Cengage Learning Brasil, 2018. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788522126651/. Acesso em: 11 Sep 2020

Exercício 1:

Uma tabela hash de tamanho 10 usa endereçamento aberto com função hash $h(k) = k \mod 10$ e sondagem linear. Após 6 inserções em uma tabela hash vazia, tem-se a seguinte configuração

0	1	2	3	4	5	6	7	8	9
S		42	23	34	52	46	33		

Qual das opções a seguir fornece uma ordem possível em que as chaves poderiam ter sido inseridas na tabela?

- (a) 46, 42, 34, 52, 23, 33
- (b) 34, 42, 23, 52, 33, 46
- (c) 46, 34, 42, 23, 52, 33
- (d) 42, 46, 33, 23, 34, 52

Exercício 2:

Considere a inserção das chaves 10, 22, 31, 4, 15, 28, 17, 88, 59 em uma tabela hash de comprimento M = 11 usando o endereçamento aberto com sondagem dupla com

- $\bullet h_1(k) = k \bmod m$
- $h_2(k) = 1 + (k \mod (m-1))$

Quantas colisões ocorreram nas inserções acima?