

Operating Systems & Computer Networks Networked Computer & Internet

Content (2)

8. Networked Computer & Internet

- Sockets
- Internet
- Layers
- Protocols
- 9. Host-to-Network I
 - Physical Layer
 - Media
 - Signals
 - Modems
- 10. Host-to-Network II
 - Data Link Layer
 - Framing, Flow Control
 - Error Detection / Correction
 - Point-to-Point Protocol

11. Host-to-Network III

- Topologies
- Medium Access
- Local Area Networks
 - Ethernet, WLAN
- 12. Internetworking
 - Switches, Routers
 - Routing
 - Internet Protocol
 - Addressing
- 13. Transport Layer
 - Protocol Mechanisms
 - TCP, UDP
 - Addressing, Ports

Motivation – Networked Computers

Questions:

- How can a user/process communicate over the network?
- How can (possibly distant) computers exchange data?
- How does a computer now which other computer it should be talking to?

www.inf.fu-berlin.de

160.45.117.200

Socket

- Enable communication between a client and server
- Concatenation of a Port and an IP address form a socket, 160.45.117.200:80 (http://www.inf.fu-berlin.de)

OS Support for Networking

Types of Sockets (classical Internet)

- Stream sockets
 - Use Transmission Control Protocol (TCP)
 - Reliable data transfer
- Datagram sockets
 - Use User Datagram Protocol (UDP)
 - Delivery is not guaranteed

Processes may open sockets to transparently communicate with processes on remote computers

Socket Creation and Operation

System call

int socket(int domain, int type, int protocol)

- Parameters
 - domain Protocol family
 - ➤ e.g. **PF_INET** for TCP/IP
 - type
 - > Stream or datagram
 - protocol (optional)
 - e.g. TCP or UDP
 (for TCP/IP networking)

Datagram Communication

Simplest possible service: unreliable datagrams

Sender

to_addr and addr_length specify destination

Receiver

 Will wait until data is available on socket s and put the data into buffer

Byte Streams over Connection-Oriented Socket

- For reliable byte streams, sockets have to be connected first
- Receiver has to accept connection

Client

- 1. int s = socket(...);
- 2. connect(s,
 destination_addr,
 addr_length);
- 3. send(s,buffer,
 datasize, 0);
- 4. Arbitrary recv()/send()
- 5. close (s);
- Connected sockets use a send without address information

Server

- 1. int s = socket(...);
- 2. bind(s, local_addr, ...);
- 3. listen(s, ...);

- 6. Arbitrary recv()/send()
- 7. close (newsock);
 - • •
- 8. close(s);

The Internet

Internet / TCP/IP Network Stack

The Internet

- The Internet consists of
 - many computers
 - using same network protocol family TCP/IP
 - IP on top of lower-level protocol (Ethernet, WLAN, Bluetooth, ...)
 - that are (directly or indirectly) connected to each other
 - that offer or use certain services
 - many users that have direct access to the services
 - many networks interconnected via gateways

Freie Universität Berlin

Structure of the Internet (Concept)

- Backbone service providers
- Consumer Internet Service Provider (ISP)
- Peering Points shortcuts between operators
- Consumers
 - Direct backbone connectivity (companies) or ISP (private)

Structure of the Internet (Reality)

Freie Universität Berlin

Exemplary Services in the Internet

- World Wide Web (WWW)
 - World-wide interlinked resources
 - Based on "Hypertext Transfer Protocol" (HTTP)
- Electronic mail (email)
 - Exchange of digital multimedia messages
 - Based on "Simple Mail Transfer Protocol" (SMTP)
- File transfer
 - Exchange of files
 - Based on "File Transfer Protocol" (FTP)
- Network management
 - Monitoring and control of networked systems
 - Based on "Simple Network Management Protocol" (SNMP)
- P2P, VoIP, IPTV, ...
- Many company-specific services: Skype, Gaming, ...

Internet Design Principles

- Minimalism and autonomy
 - Independent operation of the network, no internal changes necessary if connected to other networks
- "Best-Effort" services
 - Network tries as best as possible to transmit data end-to-end
 - Reliable communication is feasible through retransmission
 - Today several extensions towards quality-of-service (QoS) support exist
- Stateless intermediate systems
 - No intermediate system (routers) should keep state related to any end-to-end communication
 - Big difference to classical telephone networks (circuit vs. packet switched)
 - Alternatives necessary for quality-of-service support
- Decentralized control
 - No global, centralized control of all interconnected networks

Freie Universität Berlin

Some (Historical) IP Design Principles

RFC 1958, based on papers from mid-80s

- Make sure it works before writing the standard
- Keep it simple
- Make clear choices
- Exploit modularity
- Expect heterogeneity
- Avoid static options and parameters
- Look for a good design; it need not be perfect
 - 80-20 rule: 80% of effects comes from 20% of causes
- Be strict when sending and tolerant when receiving
- Think about scalability (with regard to nodes and traffic)
- Consider performance and cost
- Looking back, some choices are not optimal anymore.

Freie Universität Berlin

Development of the Internet

(Department of Defense): ense depends on communication."
(Advanced Research Project Agency) of the DoD: ct reliable packet network at Stanford Research Inst.
"Internet" (4 hosts)
of ARPAnet, the first Internet backbone
protocol suite: TCP/IP smission Control Protocol/Internet Protocol)
smission Control Protocol/Internet Protocol)
ration of TCP/IP protocols into UNIX (BSD)
nnection to the Internet from Germany via EUnet- Oortmund and XLink (eXtended Lokales Informatik Karlsruhe)
IE: Européan backbone
net becomes visible due to WWW
ersity Corporation for Advanced Internet lopment - Internet2
nd Internet2-Backbone: Abilene
and fall of dotcoms
Web 2.0 hype (and history repeats)
ls, more clouds `
thing is mobile (> 4.5bn subscribers), apps rule
net of Things, IPv6 finally everywhere

Internet Users World-Wide

World Internet Penetration Rates by Geographic Regions

Usage **Population** Internet Users Internet Usage. % Population Usage **World Regions** Growth (Penetration) % of World (2008 Est.) Dec/31, 2000 Latest Data 2000-2008 **Africa** 955,206,348 5.3 % 3.5 % 1,031.2 % 4,514,400 51,065,630 3.776.181.949 114.304.000 578.538.257 Asia 15.3 % 39.5 % 406.1 % Europe 800,401,065 105,096,093 384,633,765 48.1 % 26.3 % 266.0 % 197.090.443 1,176.8 % Middle East 3,284,800 41.939.200 21.3 % 2.9 % 129.6 % **North America** 337,167,248 108,096,800 248,241,969 73.6 % 17.0 % Latin America/Caribbean 576,091,673 18,068,919 139,009,209 24.1 % 9.5 % 669.3 % Oceania / Australia 33,981,562 7,620,480 20,204,331 59.5 % 1.4 % 165.1 % 21.9 % 305.5 % **WORLD TOTAL** 6,676,120,288 360,985,492 1,463,632,361 100.0 %

Source: http://www.internetworldstats.com/stats.htm (09/11/06)

Internet Users World-Wide

Internet Users in the World by Geographic Regions - 2012 Q2

Source: Internet World Stats - www.internetworldstats.com/stats.htm 2,405,518,376 Internet users estimated for June 30, 2012 Copyright © 2012, Miniwatts Marketing Group

World Internet Penetration Rates by Geographic Regions - 2012 Q2

Source: Internet World Stats - www.internetworldststs.com/stats.htm Penetration Rates are based on a world population of 7,017,846,922 and 2,405,518,376 estimated Internet users on June 30, 2012. Copyright © 2012, Miniwatts Marketing Group

Hosts and Internet Domains

Protocols

The Internet Protocol Suite

- TCP (Transmission Control Protocol)
 - Reliable, connection oriented transport protocol over unreliable IP (Internet Protocol)
- UDP (User Datagram Protocol)
 - Connectionless transport protocol, offers application interface to IP plus multiplexing
- Examples for application oriented protocols
 - HTTP: HyperText Transfer Protocol
 - FTP: File Transfer Protocol
 - Telnet: Simple terminal protocol

Protocols

- Protocols are a set of rules
 - Describe how two (or more) remote parts of a layer cooperate to implement the service of the given layer
 - Behavior, packet formats
 - These remote parts are called peer protocol entities or simply peers

Use the service of underlying layer to exchange data with

Protocol Stacks

- Typically, several layers and thus several protocols in real system
- Layers/protocols are arranged as (protocol) stack
 - One atop the other, only using services from directly beneath (so-called strict layering)

Layers Do Not Care About Distributed Lower Layers

- A given layer n+1 does not care about the fact that its lower layer is actually distributed ...
 - Layer n+1 imagines layer n as something that "just works", has service access points where they are necessary
 - In reality, layer n of course is distributed in turn, relying on yet lower layers
 - At the end, the physical medium (layer 0) is transporting signals (as physical representation of data)

Freie Universität

ISO/OSI 7-layer Reference Model

Seven Layers (in brief)

- Physical layer: Transmit raw bits over a physical medium
- 2. Data Link layer: Provide a (more or less) error-free transmission service for data frames over a shared medium
- 3. Network layer: Solve the forwarding and routing problem for a network
- 4. Transport layer: Provide (possibly reliable, in order) end-to-end communication, overload protection, fragmentation
- **5. Session layer**: Group communication into *sessions* which can be synchronized, checkpointed, ...
- **6. Presentation layer**: Ensure that syntax and semantic of data is uniform between all types of terminals
- 7. Application layer: Actual application, e.g., protocols to transport web pages

TCP/IP Protocol Stack

ISO/OSI versus TCP/IP

- ISO/OSI: Very useful model, non-existing protocols
- TCP/IP: Non-existing model, very useful protocols
- Use simplified ISO/OSI model, but treat TCP/IP protocol stack in context of this model
 - With suitable add-ons especially for the lower layers

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

7 Layers with Intermediate System

Protocols and Messages

 When using lower-layer services to communicate with remote peer, administrative data is usually included in those messages

- Typical example:
 - Protocol receivers data from higher layer
 - Adds own administrative data (header/trailer)
 - Passes the extended message down to the lower layer
 - Receiver will receive original message plus administrative data

Extended packet passed to layer n

Encapsulation of Data

Content (2)

8. Networked Computer & Internet

- Sockets
- Internet
- Layers
- Protocols
- 9. Host-to-Network I
 - Physical Layer
 - Media
 - Signals
 - Modems
- 10. Host-to-Network II
 - Data Link Layer
 - Framing, Flow Control
 - Error Detection / Correction
 - Point-to-Point Protocol

11. Host-to-Network III

- Topologies
- Medium Access
- Local Area Networks
 - Ethernet, WLAN
- 12. Internetworking
 - Switches, Routers
 - Routing
 - Internet Protocol
 - Addressing
- 13. Transport Layer
 - Protocol Mechanisms
 - TCP, UDP
 - Addressing, Ports