

Who am I?

- Kevin Tran
- Senior Manager Technical Marketing
- HBM Product and Ecosystem Champion
- DRAM Memory Solutions for Automotive, Infrastructure and Networking.
- Emerging Memory Technologies

I Table of Contents

- 1. Trends driving TSV based DRAM devices
- 2. HBM Overview
- 3. Test/Quality/Reliability
- 4. Next-generation TSV Solutions

Major Trends Driving Higher Memory Performance

Scaling of DRAM memory density, bandwidth and form factor are critical for next generation processing architectures

HPC: Continuous Increasing of Cores

Graphics: Increasing High Performance Graphics Card Max. Fillrate

*Number of pixels a graphics card can provide and write to video memory (per sec); No. of raster operations (ROPs) X GPU clock frequency

Infrastructure: Unprecedented Growth of Data

(Source : CISCO VNI 'May'15)

Network: Ethernet Speed Demands Scaling of Memory Bandwidth

	Ethernet Interface						
	10GbE	25GbE	40GbE	100GbE	400GbE	1TbE	
Speed*	30Gbps	75Gbps	120Gbps	300Gbps	1.2Tbps	3Tbps	

*Speed = Read/Write x Overhead 150% x Ethernet Interface

High Bandwidth Memory & TSV

Through Silicon Via (TSV) technology enable DRAM memory to overcome existing performance challenges

2. High Bandwidth Memory Overview

HBM, What Exactly Is It?

Known Good Stacked Die(KGSD) DRAM Memory for 2.5D System in Package integration

Mechanical Outline: molded KGSD

• mKGSD (1 Base + 2/4/8 DRAM (Core); molded Known Good Stacked Die)

	ltem	Value	Bump		Remark	
	item	Value	CD	Pitch	Remark	
(a)	Gen1 - Package Dimension (X, Y)	5.48 mm x 7.29mm			Face Centered Rectangular (FCR) pattern ubump	
	Gen2 - Package Dimension (X, Y)	7.75 mm x 11.87mm	25um (As Reflow) 55ur	55um	FCR	
(b)	Gen1 - Package Body Height (Z)	0.49 mm				
(b)	Gen2 - Package Body Height (Z)	0.72 mm				
	Micro Bump Array (MPGA)	JEDEC	-	-	JC11-2.883, JC11-4.884	

HBM Functional Overview

HBM 1024 IO from base die PHY region connect to host PHY through the interposer

Features	Spec		
Burst Length	2, 4		
# of Die per Stack	2/4/8 DRAM (+1 Base Die)		
Density per Stack	2GB 4GB 8GB avail		
Channels / Stack	8		
Channel / DRAM Slice	Up to 8 (2/4)		
Banks / Channel	8/16		
IO / Channel	128		
Prefetch / Channel	32B (128x2bit)		
Total Data IO Width	1024		
Logic Buffer Data IO / Rate	1024 DQ's @ 1GT (500MHz)		
Peak Read BW / Stack	Up to 256GB/s		
Page Size	2KB		
DRAM Core voltage	1.2V		
Logic Buffer IO voltage	1.2V		

HBM Architecture

Each DRAM core die consists of a number of Channels
Pseudo Channel Mode - separate IO but independent ADD/CMD for each pseudochannel

Note: this is an illustration of a design with 2 Channels per DRAM slice

HBM Advantages

Bandwidth Per Chip

Power Efficiency @ IDD4R

To Achieve 1TB Bandwidth

System & Memory Architecture

HBM is designed to address multiple needs of next generation systems

HBM Product Available

Different HBM2 line-ups available for different needs of various market segments

8Gb/4Gb based	9mKGSD(8 Hi)		5	mKGSD(4 H	li)	3mKGSD(2 Hi)			
Density/Cube(GB)	8			4		2			
IO(DQ)	1024			1024		1024			
Speed/Pin(Gb/s)	1.0	1.6	2.0	1.0	1.6	2.0	1.0	1.6	2.0
Bandwidth(GB/s)	128	204	256	128	204	256	128	204	256
Usage	HPC, Server, Network		НРС,	Server, Gra Network	phics,	Graphics, Cache		he	
Configuration	, Rosa .		LERA .			HBM			

3. High Bandwidth Memory – Test/Quality/Reliability

HBM Test Flow

Quality and Reliability Features

HBM features enable high quality and reliability at post 2.5D assembly

Post Package Repair – DRAM Cells & TSV/ubumps

HBM includes test/repair features for Post SiP assembly through IEEE1500 standards HBM provides Soft & Hard Post Package Repair (PPR) functions

KGSD (Base/Core)

Test Area	Function	Detail item	Coverage
PHY	Function Test	RD/WT,CL,BL	100%
PHI	Margin Test	Speed, VDD, Setup/Hold Timing	100%
TSV	Function Test RD/WT,CL,BL,TSV interface		100%
	OS Check	TSV Open/Short Check	100%
Logic	Function Test	IEEE1500, Function, BIST, Repair	100%
	Margin Test	VDD, Speed, Setup/Hold	100%
	Function Test	RD/WT, Self Ref, Power Down	100%
Core	Margin Test	Speed, VDD, Async, Refresh	100%
	Repair	Cell Repair	100%

MBIST enable DRAM Cell Test and Repair through IEEE1500

- Conducted after SiP Assembly
- 4-Row Rep / 2-Bank (Repair DRAM)
- (64 row per channel @ 8Hi)
- Performed via MBIST

HBM supports interconnect lane remapping through IEEE1500 instructions

- Conducted after SiP Assembly
- Lane remapping is independent for each channel

HBM Thermal Management & Reliability

- Thermal dummy bumps enhance thermal dissipation
- There are no mechanical reliability issues by thermal dummy bumps

Collaterals Available from HBM Vendors

Item	Remarks
	Datasheet (Jedec / Vendor)
Eunctionality	Verilog (Mission mode & DFT)
Functionality	IBIS
	Hspice
	GDS
Mechanical/Interposer Design	Bump pad netlist
	Bump ballout
The wood Cinculation	Flotherm
Thermal Simulation	Icepak

5. Future TSV based DRAM solutions

Next generation HBMx will target multiple applications

Conclusion

- HBM is a breakthrough memory solution for performance, power and form-factor constrained systems by delivering high bandwidth, Low effective power & Small form factor
- HBM device provide various mechanisms to ensure quality/reliability at pre and post SiP assembly
- HBM is an industry standard solution with multiple supply sources

Thank You!

