Algorithms for 3-SAT An Exposition

N.R. Aravind

Indian Institute of Technology Hyderabad

Outline

- SAT: History of algorithms
- Branching
- 2 Local Search
- **8** Random Walk
- 4 Resolutions and randomness

0. SAT: history of algorithms

CNF SAT

Input: C_1, \ldots, C_m : Disjunctive clauses over x_1, \ldots, x_n

Output: $\{x_1, \ldots, x_n\} \to \{T, F\}$ that satisfies every clause

CNF SAT

Input: C_1, \ldots, C_m : Disjunctive clauses over x_1, \ldots, x_n

Output: $\{x_1, \ldots, x_n\} \to \{T, F\}$ that satisfies every clause

Eg 1: $(x \lor y \lor z)$, $(\neg x \lor \neg y \lor \neg z)$

Eg 2: $(x \lor y)$, $(x \lor \neg y)$, $(\neg x)$

k-SAT: Each clause has at most k literals.

Polynomial-time algorithm when k=2; NP-hard for $k\geq 3$.

Algorithms for 3-SAT

$O(1.61^n)$	1987	Monien, Speckenmeyer	
$O(1.38^n)$	1998	PPSZ	
$O(1.33^n)$	1999	Schöning	
$O(1.308^n)$	2011	PPSZ, Hertli	
$O(1.47^n)$	2002,'04	DGHKPRS, Brueggemann, Kern	
$O(1.308^n)$	2019	Hansen, Kaplan, Zamir, Zwick	

Algorithms for SAT

k-SAT	$O((2-2/k)^n)$	Schöning
SAT	$O^*(2^{n(1-\frac{1}{1+\log m/n})})$	Schuler
SAT $(m = cn)$	$\rightarrow O\left(\left(2-\varepsilon\right)^n\right)$	Arvind,Schuler
SAT	$O^*(2^{n-c\sqrt{n}})$	Pudlak

Exponential Time Hypothesis

- For every k, k-SAT needs $\Omega(c_k{}^n)$ time, $c_k > 1$
- SAT cannot be solved in time $O(2^{o(n)})$.

Branching

Consider a clause $(x \lor \neg y \lor z)$

Branching

Consider a clause $(x \lor \neg y \lor z)$

$$T(n) = T(n-1) + T(n-2) + T(n-3) \to 1.83^n$$

Branching

Consider a clause $(x \lor \neg y \lor z)$

$$T(n) = T(n-1) + T(n-2) + T(n-3) \rightarrow 1.83^n$$

Improve to: $T(n) = T(n-1) + T(n-2) \rightarrow 1.61^n$

- $\textbf{ 1} \ \, \mathsf{Cover} \,\, \{0,1\}^n \,\, \mathsf{with} \,\, \mathsf{Hamming} \,\, \mathsf{balls} \,\, B(a,r) = \{x: H(x,a) = r\}$
- Search each ball in time

- $\textbf{0} \ \ \mathsf{Cover} \ \{0,1\}^n \ \ \mathsf{with} \ \ \mathsf{Hamming} \ \ \mathsf{balls} \ B(a,r) = \{x: H(x,a) = r\}$
- **2** Search each ball in time $O(3^r)$.

- ① Cover $\{0,1\}^n$ with Hamming balls $B(a,r)=\{x:H(x,a)=r\}$
- **2** Search each ball in time $O(3^r)$.
- **3** While there is a false clause $(l_1 \vee l_2 \vee l_3)$, change one of them.

- ① Cover $\{0,1\}^n$ with Hamming balls $B(a,r)=\{x:H(x,a)=r\}$
- ② Search each ball in time $O(3^r)$.
- **3** While there is a false clause $(l_1 \lor l_2 \lor l_3)$, change one of them.
- $O(1.732^n)$ algorithm for 3-SAT

- $r \sim \varepsilon n \to Vol(B) \sim 2^{H(\varepsilon)n}$
- Number of balls: $O^*(2^{n(1-H(\varepsilon))})$

- $r \sim \varepsilon n \to Vol(B) \sim 2^{H(\varepsilon)n}$
- Number of balls: $O^*(2^{n(1-H(\varepsilon))})$
- Minimize $k^{\varepsilon n} 2^{n(1-H(\varepsilon))}$.
- $\bullet O^*(\left(\frac{2k}{k+1}\right)^n)$
- \circ $O(1.5^n)$ for 3-SAT

Local Search for 3-SAT

How efficiently can we search B(a,r)?

Local Search for 3-SAT

How efficiently can we search B(a, r)?

- Need $\sim (1.9)^r$ to beat $(1.308)^n$

3. Random walks

• Pick a random assignment.

- Pick a random assignment.
- ullet If C is a false clause, randomly flip a literal of C.

- Pick a random assignment.
- ullet If C is a false clause, randomly flip a literal of C.
- \bullet If no solution in 3n steps, restart.

- Pick a random assignment.
- If C is a false clause, randomly flip a literal of C.
- If no solution in 3n steps, restart.
- Pr[Reaching a satisfying assignment] $\geq \left(\frac{3}{4}\right)^n$.

$$\Pr[\mathsf{Success}]: \sum_{j=0}^{n} \binom{n}{j} \frac{1}{2^n} q_j$$

 q_j : Pr[reaching n within 3n steps from n-j].

Claim:
$$q_j \ge \binom{3j}{j} \left(\frac{2}{3}\right)^j \left(\frac{1}{3}\right)^{2j} \ge \frac{c}{\sqrt{j}2^j}$$

4. Resolutions and randomness

$$\bullet \ \varphi = \{(x \vee y), \ (x \vee \neg y), \ (\neg y \vee \neg x)\}$$

$$(C_1 \vee C_2) \to x$$

$$\bullet \ \varphi = \{(x \vee y), \ (x \vee \neg y), \ (\neg y \vee \neg x)\}$$

- $(C_1 \vee C_2) \to x$
- $(C_2 \vee C_3) \to \neg y$

- $(C_1 \vee C_2) \to x$
- $(C_2 \lor C_3) \to \neg y$
- x = T, y = F.

 $\varphi \in \mathsf{Unique}\text{-3-SAT}$ if it has exactly one satisfying assignment: (a_1, a_2, \dots, a_n) .

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

$$\bullet \ (C_1 \vee C_2 \vee C_3) \to y$$

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

$$\bullet \ (C_1 \vee C_2 \vee C_3) \to y$$

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

- $\bullet \ (C_1 \vee C_2 \vee C_3) \to y$

Unique 3-SAT and Implications

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

$$(C_1 \vee C_2 \vee C_3) \to y$$

Unique 3-SAT and Implications

$$\bullet \ \varphi = \{(x \vee y \vee z), \ (x \vee y \vee \neg z), \ (\neg x \vee y), \ (\neg y \vee \neg z), \ (\neg x \vee z)\}$$

- $(C_1 \vee C_2 \vee C_3) \to y$

t-Implication

$$\varphi \stackrel{\mathsf{t}}{\Rightarrow} x$$

if

$$\varphi \xrightarrow{\mathbf{t}} x \text{ or } \varphi \xrightarrow{\mathbf{t}} \neg x$$

if

 φ contains t clauses that imply x or $\neg x$

t-implication

The t-implication subroutine checks whether there exists a set of t clauses that force some variable.

Time: $O(m)^t = n^{O(t)}$.

$PPSZ(\varphi,t)$

- **1** Random ordering of variables: x_1, \ldots, x_n
- \bigcirc For i=1 to n:
 - If $\varphi[x_1 = b_1, \dots, x_{i-1} = b_i] \stackrel{\mathsf{t}}{\Rightarrow} x_i = T$, set $x_i = T$.
 - Else If $\varphi[x_1 = b_1, \dots, x_{i-1} = b_i] \stackrel{\mathsf{t}}{\Rightarrow} x_i = F$, set $x_i = F$.
 - Else set $x_i \in_U \{T, F\}$.

$PPSZ(\varphi, b, t)$

- **1** Formula φ , random assignment $b:(b_1,\ldots,b_n)$.
- 2 Random ordering of variables: x_1, x_2, \ldots, x_n
- \bullet For i=1 to n:
 - If $\varphi[x_1 = b_1, \dots, x_{i-1} = b_i] \stackrel{\mathsf{t}}{\Rightarrow} x_i = T$, set $x_i = T$.
 - Else If $\varphi[x_1 = b_1, \dots, x_{i-1} = b_i] \stackrel{\mathsf{t}}{\Rightarrow} x_i = F$, set $x_i = F$.
 - Else set $x_i = b_i$.

PPSZ success

Theorem

If $\varphi \in \textit{Unique-3-SAT}$, then $PPSZ(\varphi,t)$ finds the unique solution with probability

 $2^{-0.39n} \sim 1.308^{-n}$.

PPSZ Example

$$(x \lor y)$$
, $(x \lor \neg y)$, $(\neg y \lor \neg x)$

 $\operatorname{Prob}[PPSZ(\varphi,1) \text{ succeeds}] \text{ is } \frac{1}{2}.$

 $\mathsf{Prob}[PPSZ(\varphi,2) \text{ succeeds}] \text{ is } 1.$

Guessed vs Forced variables

 π : Permutation of the variables

$$Forced(\pi) = \{x_i | \varphi(x_1 = a_1, \dots, x_{i-1} = a_i) \stackrel{t}{\Rightarrow} x_i = a_i\}.$$

$$Guessed(\pi) = \{x_1, \dots, x_n\} \setminus Forced(\pi).$$

For a fixed π , the probability that PPSZ correctly outputs a is:

$$\left(\frac{1}{2}\right)^{|Guessed(\pi)|}$$

Probability of success

$$\begin{split} Pr[\mathsf{PPSZ} \; \mathsf{succeeds}] &= E_{\pi} \Big[\left(\frac{1}{2} \right)^{|Guessed(\pi)|} \Big] \\ &\geq \left(\frac{1}{2} \right)^{E_{\pi}[Guessed(\pi)]} \\ &= \left(\frac{1}{2} \right)^{\sum_{i} p_{i}} \geq 2^{-pn} \end{split}$$

where $p_i = Pr_{\pi}[x_i \in Guessed(\pi)] \le p < 1$.

Probability of success

$$Pr[\mathsf{PPSZ} \ \mathsf{succeeds}] = E_{\pi} \Big[\Big(\frac{1}{2} \Big)^{|Guessed(\pi)|} \Big]$$

$$= \left(\frac{1}{2}\right)^{\sum_i p_i} \ge 2^{-pn}$$

where $p_i = Pr_{\pi}[x_i \in Guessed(\pi)] \le p < 1$.

Probability of success

$$\begin{split} Pr[\mathsf{PPSZ} \; \mathsf{succeeds}] &= E_{\pi} \Big[\left(\frac{1}{2} \right)^{|Guessed(\pi)|} \Big] \\ &\geq \left(\frac{1}{2} \right)^{E_{\pi}[Guessed(\pi)]} \\ &= \left(\frac{1}{2} \right)^{\sum_{i} p_{i}} \geq 2^{-pn} \end{split}$$

where $p_i = Pr_{\pi}[x_i \in Guessed(\pi)] \le p < 1$.

PPSZ Bounds for Unique-3-SAT

Theorem

For a Unique 3-SAT instance, $p \le 2 \log 2 - 1 \sim 0.386$

Forcing clauses

Unique satisfying assignment: x = y = z = T.

Then for every variable x, there is a clause of the form:

$$(x \vee \bar{y} \vee \bar{z})$$

$$Pr[x \text{ is forced}] \geq$$

Forcing clauses

Unique satisfying assignment: x = y = z = T.

Then for every variable x, there is a clause of the form:

$$(x \vee \bar{y} \vee \bar{z})$$

$$Pr[x \text{ is forced}] \ge \frac{1}{3}.$$

Implication in Partial Assignments

Unique sat assigment: $x_1 = T, x_2 = T, \dots, x_n = T$.

$$\varphi[(x_1=F,x_2=F,\ldots,x_k=F)]$$
 has a clause of the form:

$$\neg x_{k+1}$$

OR

$$\neg x_{k+1} \lor \neg x_{k+2}$$

Otherwise: $(x_1 = \ldots = x_k = F), (x_{k+1} = \ldots = x_n = T)$ satisfies φ .

Implication in Partial Assignments

$$C_1: (x, \neg y, \neg z)$$

 $C_2: (x, y, w)$
 $C_3: (x, z, t)$
 $C_4: (y, \neg w, \neg t)$
 $C_5: (t, \neg w)$
 $C_6: (z, \neg t)$

$$C_1:(x,\neg y,\neg z)$$
$$C_2:(x,y,w)$$

$$C_3:(x,z,t)$$

$$C_4:(y,\neg w,\neg t)$$

$$C_5:(t,\neg w)$$

$$C_6:(z,\neg t)$$

$$C_1: (x, \neg y, \neg z)$$

 $C_2: (x, y, w)$
 $C_3: (x, z, t)$

$$C_3:(x,z,t)$$

 $C_4:(y,\neg w,\neg t)$

$$C_5:(t,\neg w)$$

$$C_6:(z,\neg t)$$

$$y_1 = \ldots = y_4 = T$$

5-implies
 $x_1 = T$.

Clause Tree Lemma

- $R_x = \{v | v \text{ is on a } >_{\pi} \text{ path from } x\}.$
- If $|R_x| \leq t$, then $x \in Forced(\pi)$ if t-implication is used.

Clause Tree Lemma

- $R_x = \{v | v \text{ is on a } >_{\pi} \text{ path from } x\}.$
- If $|R_x| \leq t$, then $x \in Forced(\pi)$ if t-implication is used.

Lemma

If all variables $>_{\pi} x$ are at distance at most d, then x is 2^d -implied.

Probability lower bound

$$\geq \Pr[y > x \in B(x,d)]$$

Probability lower bound

```
\begin{aligned} &\Pr[y>x \text{ at distance at most } d\\ &\geq \Pr[y>x \text{ at finite distance}] - \varepsilon\\ &\sim 0.61 \end{aligned}
```


$$f:V\to [0,1]$$

$$Pr[root \rightarrow x_1 \rightarrow x_2 \rightarrow \dots]$$

 $f(x_1), f(x_2), f(x_3) \dots > root]$

$$f:V\to [0,1]$$

$$Pr[root \rightarrow x_1 \rightarrow x_2 \rightarrow \dots | f(x_1), f(x_2), f(x_3) \dots > root]$$

$$\begin{split} P(x) &= Pr[\text{Infinite path } \geq x] \\ P(x) &= (1-x)[1-(1-P(x))^2] \\ P(x) &= \frac{(1-2x)}{(1-x)} \\ \text{Ans: } \int_0^{1/2} \frac{(1-2x)}{(1-x)^2} dx \\ &= 2\log 2 - 1 \sim 0.386 \end{split}$$

$$P(x) = Pr[\text{Infinite path } \geq x]$$

$$P(x) = (1-x)[1-(1-P(x))^2]$$

Ans:
$$\int_0^{1/2} \frac{(1-2x)}{(1-x)^2} dx$$
$$= 2 \log 2 - 1 \sim 0.386$$

$$\begin{split} P(x) &= Pr[\text{Infinite path } \geq x] \\ P(x) &= (1-x)[1-(1-P(x))^2] \\ P(x) &= \frac{(1-2x)}{(1-x)} \\ \text{Ans: } \int_0^{1/2} \frac{(1-2x)}{(1-x)^2} dx \\ &= 2\log 2 - 1 \sim 0.386 \end{split}$$

Not in this talk...

- Parameterized algorithms
- Backdoors to 2-SAT, q-Horn etc
- Random SAT formulas
- Resolution-type exponential algorithms for hard problems