

# Workshop 5

COMP90051 Machine Learning Semester 2, 2020

### Learning Outcomes

At the end of this workshop you should be able to:

- 1. be able to prove the validity of kernels, e.g. by applying Mercer's theorem
- 2. be able to fit SVMs in scikit-learn using a grid search for the hyperparameters
- 3. develop intuition about how SVM decision surfaces are affected by hyperparameters

## Worksheet 5a

Let  $K_1$  and  $K_2$  be valid kernels on a vector space  $\mathcal{X}$ , c > 0 be a constant and f() be a real-valued function on  $\mathcal{X}$ .

Prove that the following new kernels are also valid:

- $K(\mathbf{u}, \mathbf{v}) = cK_1(\mathbf{u}, \mathbf{v})$
- $K(\mathbf{u}, \mathbf{v}) = K_1(\mathbf{u}, \mathbf{v}) + K_2(\mathbf{u}, \mathbf{v})$
- $K(\mathbf{u}, \mathbf{v}) = f(\mathbf{u})K_1(\mathbf{u}, \mathbf{v})f(\mathbf{v})$

Hint: you may use Mercer's theorem.

#### Mercer's theorem

A symmetric function  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a valid kernel on  $\mathcal{X}$  if the Gram matrix

$$\mathbf{K} = \begin{bmatrix} K(x_1, x_1) & \cdots & K(x_1, x_n) \\ \vdots & \ddots & \vdots \\ K(x_n, x_1) & \cdots & K(x_n, x_n) \end{bmatrix}$$

is positive semidefinite for all finite sequences  $x_1, x_2, ..., x_n \in \mathcal{X}$ .

Prove that  $K(\mathbf{u}, \mathbf{v}) = cK_1(\mathbf{u}, \mathbf{v})$  is a valid kernel

Let  $\phi_1$  be the feature map associated with  $K_1$ .

**Observe that:** 

$$K(\mathbf{u}, \mathbf{v}) = cK_1(\mathbf{u}, \mathbf{v}) = \langle \sqrt{c}\phi_1(\mathbf{u}), \sqrt{c}\phi_1(\mathbf{v}) \rangle$$

Since K can be written as an inner product with the feature map  $\phi(\mathbf{u}) = \sqrt{c}\phi_1(\mathbf{u})$ , it is a valid kernel.

Prove that  $K(\mathbf{u}, \mathbf{v}) = K_1(\mathbf{u}, \mathbf{v}) + K_2(\mathbf{u}, \mathbf{v})$  is a valid kernel

We'll give a proof by Mercer's theorem.

Given a set of vectors  $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathcal{X}$  let  $\mathbf{K}_1$  be the gram matrix for kernel  $K_1$  (similarly for  $\mathbf{K}_2$  and  $K_2$ )

The Gram matrix associated with K is  $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$ .

Now **K** is positive semi-definite since for any  $\mathbf{x} \in \mathbb{R}^n$ 

$$\mathbf{x}^{\mathsf{T}}\mathbf{K}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\mathbf{K}_{2}\mathbf{x} \ge 0$$

(since  $\mathbf{K}_1$  and  $\mathbf{K}_2$  are both p.s.d.)

Prove that  $K(\mathbf{u}, \mathbf{v}) = f(\mathbf{u})K_1(\mathbf{u}, \mathbf{v})f(\mathbf{v})$  is a valid kernel

Let  $\phi_1$  be the feature map associated with  $K_1$ .

**Observe that:** 

$$K(\mathbf{u}, \mathbf{v}) = f(\mathbf{u})K_1(\mathbf{u}, \mathbf{v})f(\mathbf{v}) = \langle f(\mathbf{u})\phi_1(\mathbf{u}), f(\mathbf{v})\phi_1(\mathbf{v}) \rangle$$

Since K can be written as an inner product with the feature map  $\phi(\mathbf{u}) = f(\mathbf{u})\phi_1(\mathbf{u})$ , it is a valid kernel.

### Worksheet 5b