R crash course - Data frames

Jongbin Jung

Data Frame Basics

Exploring Data Frames

Exercise Solution

Munging Data with dplyr

Exercise Solution

Reshape Data with tidyr

Exercise Solution

Combining Data with joins

Dependencies

- ► Latest version (≥ 3.1.2) of R (free from https://www.r-project.org/)
- Latest version of Rstudio (also free from https://www.rstudio.com/)
- ► A bunch of *free* packages

```
# The single tidyverse package now includes
# dplyr and tidyr
install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('tidyr')
install.packages('nycflights13') # sample data frame
```

Data Frames: Introduction

- Data frames are the primary representation of data in R
- You can think of a data frame as a two-dimensional table of data
- It helps your sanity to always think of data frames as a table where
 - Each column represents a variable/feature
 Each row represents an observation/instance
- Conceptually, a data frame is also a collection of vectors, i.e., each column is a vector that belongs to the (parent) data frame
- The fastest path to achieving R-ninja status is to get familiar with data frames

Data Frames: First Impression

Let's load an existing data frame to take a look at

```
# install data package (only need to do once)
install.packages('nycflights13')
```

```
# load data package to workspace
library('nycflights13')
```

- ► The nycflights13 package contains a single data frame named flights
- Contains data (16 variables) on all 336,776 flights that departed NYC (i.e. JFK, LGA, or EWR) in 2013
- ▶ See documentation for details on what the 16 variables are

?flights

Data Frames: First Impression (cont'd)

\$ sched arr time: int

\$ arr delay

\$ air time

##

##

##

str(flights) # take a peek at the data frame

```
$ year
                          2013 2013 2013 2013 2013 2013 20
##
                   : int
##
   $ month
                   : int
                          1 1 1 1 1 1 1 1 1 1 ...
##
   $ day
                   : int
                          1 1 1 1 1 1 1 1 1 1 ...
               : int
##
   $ dep_time
                          517 533 542 544 554 554 555 557
##
   $ sched_dep_time: int
                          515 529 540 545 600 558 600 600
##
   $ dep_delay
                          2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
                   : num
                          830 850 923 1004 812 740 913 709
##
   $ arr_time
                   : int
```

819 830 850 1022 837 728 854 723

11 20 33 -18 -25 12 19 -14 -8 8

227 227 160 183 116 150 158 53

Classes 'tbl df', 'tbl' and 'data.frame': 336776 obs

\$ carrier : chr "UA" "UA" "AA" "B6" ... ## \$ flight : int 1545 1714 1141 725 461 1696 507 ## \$ tailnum : chr "N14228" "N24211" "N619AA" "N804

: num

· niim

\$ origin : chr "EWR" "LGA" "JFK" "JFK" ... ## \$ dest : chr "IAH" "IAH" "MIA" "BQN" ...

Some Question

- What questions could you ask (and answer) with this data?
 - how many flights were there each day?
 - what was the mean departure delay for flights every month/day?
 - what is the proportion of annual departures from each of the three airports?
 - what else?
- ▶ By the end of this session, we'll have the tools to answer most (if not all) of the questions you can come up with!

Data Frame Basics

tibble

- ► A tibble is a trimmed down version of data.frame that is more convenient to work with
- Throughout this course, we will use the terms tibble and data frames interchangably, which is technically incorrect, but easier to read

Simple Example

- Use tibble() function (from tidyverse) to create a tibble data frame
- ► Arguments of tibble() are vectors or lists (of equal length) that constitute each column (variable)
- ► For example, let's create a data frame of the following table:

Age	Personality	Income
24	Good	2000
22	Bad	5800
23	Good	4200
25	Bad	1500
22	Good	6000

Simple Example (cont'd)

▶ We'll save the data frame to an object (I'll call mine data)

```
data <- tibble( # start tibble()
  age = c(24, 22, 23, 25, 22),
  personality = c('g', 'b', 'g', 'b', 'g'),
  income = c(2000, 5800, 4200, 1500, 6000)
) # finish the tibble() function</pre>
```

- ▶ Note that the new lines are just a matter of coding style, i.e., it makes the code easier to read
- ▶ The same data frame can be created in a single line:

```
data <- tibble(age = c(24, 22, 23, 25, 22),
personality = c('g', 'b', 'g', 'b', 'g'), income
= c(2000, 5800, 4200, 1500, 6000))</pre>
```

Simple Example (cont'd)

Let's take a look at our new data frame

data

```
## # A tibble: 5 \times 3
##
       age personality income
##
     <dbl>
                  <chr>
                         <dbl>
                          2000
## 1
        24
     22
                          5800
## 2
                      b
## 3
     23
                          4200
                      g
     25
                          1500
## 4
                      b
## 5
        22
                          6000
```

Indexing: The \$ Operator

► The \$ operator lets you reference elements of an object (e.g., column vectors of a data frame) in R

data\$age

[1] 24 22 23 25 22

data\$personality

```
## [1] "g" "b" "g" "b" "g"
```

Indexing: The [Operator

▶ The [operator, similar to the \$ operator, lets you reference elements of an object (e.g., column vectors of a data frame) either by name *or by index*

data['age']

```
## # A tibble: 5 × 1
## age
## <dbl>
## 1 24
## 2 22
## 3 23
## 4 25
## 5 22
```

Indexing: The [Operator (cont'd)

data[1]

```
## # A tibble: 5 × 1
## age
## <dbl>
## 1 24
## 2 22
## 3 23
## 4 25
## 5 22
```

Indexing: The [[Operator (cont'd)

- Note that when using the [operator, unlike \$, you get a new data frame of the indexed column, not a vector.
- ▶ Use the [[operator if you want a vector instead

data[[1]]

[1] 24 22 23 25 22

Indexing: Numeric Row/Column

Since a data frame is a table of data, you can treat it like a matrix, and index its entries by [row #, col #] notation

```
data[2, 3] # item in row 2 column 3
## # A tibble: 1 × 1
##
     income
      <dbl>
##
## 1
       5800
data[, 2] # entire column 2
## # A tibble: 5 × 1
##
     personality
##
           <chr>
## 1
                g
## 2
                b
```

Indexing: Named Variables

 Since the columns represent variables with names, you can index columns by a string representing variable names

```
data[, 'age'] # entire 'age' column
## # A tibble: 5 × 1
##
      age
##
    <dbl>
## 1
       24
## 2 22
## 3 23
    25
## 4
## 5
       22
```

```
# entries 3~5 of 'personality' column data[3:5, 'personality']
```

```
## # A tibble: 3 × 1
```

Indexing: Vectors

 As with vectors/matrices, you can index a data frame with vectors (either numeric or string)

data[1:3, c('age', 'income')]

```
## # A tibble: 3 × 2

## age income

## <dbl> <dbl>

## 1 24 2000

## 2 22 5800

## 3 23 4200
```

data[c(1,4), 2:3]

```
## # A tibble: 2 × 2
## personality income
## <chr> <dbl>
## 1 g 2000
```

Conditional Indexing

 Pick out entries that match specific criteria by first creating a binary vector for indexing

```
# find the 22-year-olds
ind <- data$age == 22
data[ind, ] # index rows by binary vector ind</pre>
```

Chained Indexing

- Note that
 - when you index rows of a single column, the result is a vector
 - when you index multiple columns, the result is a new data frame
- ▶ You can chain indices to pin-point elements of a data frame
- ► For example, all of the following operations are (almost) equivalent can you tell how the first two are different from the last two?

```
# (Almost) Equivalent operations to get the age of
# third observation (row 3)
data[3, 1] # if you know that 'age' is column 1
data[3, 'age']
data[3,]$age # get 'age' of row 3
data$age[3] # get third observation of 'age' variable
```

Column (Variable) Names

- ► To see the column name of a data frame, use the colnames() function
- ► The column names can be changed by directly assigning a new vector of names to the colnames() function

```
## # A tibble: 5 × 3

## age attitude income

## <dbl> <chr> <dbl> ## 1 24 g 2000

## 2 22 b 5800

## 3 23 g 4200
```

Write Data Frames to Files

- Use write_tsv() to write data frames to tab-separated (text) files
- The syntax is
 write_tsv(x, path = "")
- ► For example, to save our sample data to a file named data.tsv with the entries of each row separated by a tab character, write

```
write_tsv(data, path='data.tsv')
```

- ► Recall, the default directory is the current working directory, specified with setwd(), and retrieved with getwd()
- ▶ For more options, see documentation

?write_tsv

Read Data Frames from Files

- ► To read data frames that exist as text files, use the general read_table() function
- Note that specific options for read_table() will depend on the structure of the text file you wish to read (e.g., comma-separated or tab-separated)
- ► Some shortcuts for pre-defined for (commonly used) formats

```
read_csv(file)  # comma-separated values
read_tsv(file)  # tab-separated values
read_delim(file, delim)  # custom delimiters
```

Read Data Frames from Files (cont'd)

For example, to read the tsv file we just saved,

data <- read_tsv('data.tsv', col_names = TRUE)</pre>

```
## Parsed with column specification:
## cols(
## age = col_integer(),
## personality = col_character(),
## income = col_integer()
## )
```

- Notice how read_tsv() guesses the type of your columns
- It's good practice to specify column types manually so that
 - 1. you know exactly what you want, and
 - 2. you get what you want

Specify types for columns

You can use the output message from the previous read_tsv() call as a boiler plate input to the col_types parameter, e.g.,

```
data <- read_tsv('data.tsv', col_types = cols(
   age = col_double(),
   personality = col_character(),
   income = col_double()
), col_names = TRUE)</pre>
```

Or, you can use a compact specification,

See the documentation for more details

```
?read_delim
```

Read Data from Online Database

- read_*() can also load data frames from an online database
- While loading data directly from the web is not recommended, this can be useful when making a local copy of an online database
- For example, to make a local copy of the dataset saved in https://goo.gl/MGzatX

```
address <- 'https://goo.gl/MGzatX'
data <- read_tsv(address)
write_tsv(data, path='data.tsv')</pre>
```

 Note that you can read data in one format (e.g., comma-separated) and save the local copy in another (e.g., tab-separated) Exploring Data Frames

Example Data

- ► We'll use a sample dataset from https://goo.gl/epWdDj
- First, load the data into your workspace

```
address <- 'https://goo.gl/MaHL7q'
autompg <- read_tsv(address)</pre>
```

```
## Parsed with column specification:
## cols(
##
     mpg = col_double(),
##
     cylinders = col_integer(),
##
     displacement = col_double(),
##
     horsepower = col_character(),
##
     weight = col_integer(),
##
     accel = col double(),
     year = col integer(),
##
     origin = col integer(),
##
##
     model = col character(),
     make = col character()
##
```

Display Structure with str()

► The str() function is useful for exploring the overall structure of a data frame

str(autompg)

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 398 obs. or
   $ mpg : num 18 15 18 16 17 15 14 14 14..
##
##
   $ cylinders : int 8 8 8 8 8 8 8 8 8 ...
   $ displacement: num 307 350 318 304 302 429 45..
##
   $ horsepower : chr "130.0" "165.0" "150.0" ""...
##
   $ weight : int 3504 3693 3436 3433 3449 4..
##
##
   $ accel : num 12 11.5 11 12 10.5 10 9 8...
   $ year : int 70 70 70 70 70 70 70 70 70...
##
##
   $ origin : int 1 1 1 1 1 1 1 1 1 ...
   $ model : chr "chevrolet chevelle malib"..
##
   $ make : chr "chevrolet" "buick" "plym"..
##
##
   - attr(*, "spec")=List of 2
    ..$ cols :List of 10
##
```

Factors

- Note that some variables should be factors a data frame representation of categorical variables
- Use factor() to force variable into factor variables

```
autompg$year <- factor(autompg$year)
autompg$model <- factor(autompg$model)
autompg$make <- factor(autompg$make)</pre>
```

▶ The entries of a factor variable is defined by levels

```
levels(autompg$make)
```

unique values

▶ Use unique() to list the unique values of any variable

```
unique(autompg$cylinders)
```

```
## [1] 8 4 6 3 5
```

Basic plots

- Use plot() to generate quick and dirty (but sometimes helpful) plots
- By default, plot() will generate histograms of categorical variables (factors) and scatter plots (with respect to row index) of continuous variables

plot(autompg\$year)

Basic plots (cont'd)

plot(autompg\$mpg)

Basic plots (cont'd)

Use syntax plot(x, y) to plot two variables

plot(autompg\$weight, autompg\$mpg)

Plotting pairs

To plot more than two variables against each other, use pairs()

```
pairs(autompg[, c('mpg', 'weight', 'year')])
```


Note that you can plot the entire data frame with pairs(autompg)

Data Frame Basics: Exercise

- From the autompg data
 - create a new data frame with all the buick vehicles (i.e., make=="buick")
 - generate a summary() of the buick vehicles' mpg
 - make the cylinders variable of the buick data frame into a factor
 - plot a histogram of the buick's cylinders
- ► These are just (very) basic operations
- For more complicated operations, we'll use dlyr and tidyr (both part of tidyverse and covered next)
- ► For more sophisticated plots, we'll use ggplot2 (covered in the next session)

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ▶ Try the exercise before proceeding!

Solution

```
buick_index <- autompg$make == 'buick'
buick <- autompg[buick_index, ]
summary(buick$mpg)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.0 14.0 17.7 19.2 22.4 30.0
```

buick\$cylinders <- factor(buick\$cylinders)
plot(buick\$cylinders)</pre>

Munging Data with dplyr

Introduction to dplyr

- dplyr is a package that provides a convenient framework (along with a handful of useful functions) for wrangling data (frames)
- dplyr is a part of the tidyverse, so if you load tidyverse, dplyr is also loaded
- ► You can also, but don't have to, install and load the dplyr as a standalone package like you would any other R package

```
# Install, if you haven't already.
# Only need to do this once on a single machine.
install.packages('dplyr')
# load package into workspace
library('dplyr')
```

We'll primarily use the flights data frame from the nycflights13 package in this part

Work with tibble

- ► To be consistent, and avoid surprises, make sure you're working with a tibble and **NOT** a data.frame.
- Since tibbles are just an opinionated data.frame, you can make sure you're working with a tibble by converting your data.frames to tibbles with as_tibble()

flights <- as_tibble(flights)</pre>

Verbs

- A verb in the world of dplyr is a function that takes a data frame as its first argument, and returns another data frame as a result
- ▶ For example, the head() function can be considered a verb

head(flights, n = 10)

- Note that the result of the head() function is another data frame (in this case, with 3 rows)
- ► The **core idea of dplyr** is that most of your data manipulation needs can be satisfied with 5 basic verbs (or 4, depending on how you categorize them)

Five basic verbs

► The five basic verbs of dplyr and associated actions are presented below

select() sel	lect a subset of <i>rows</i> by specified conditions
	lect a subset of <i>columns</i>
mutate() cre	eate a new column (often from existing columns)
arrange() red	order (sort) rows by values of specified column(s)
summarize() ag	gregate values and reduce to single value

Some verbs have additional options or convenient wrappers

Selecting Rows: filter()

- Select a subset of rows
- Multiple conditions can be used
- Use & to specify AND conditions
- ▶ Use | to specify OR conditions
- ► AND(&)/OR(|) operations can be used together (where default behavior for multiple conditions is AND)

Selecting Rows: slice()

- ► To select rows by numerical index (position), use slice()
- ▶ For example, to select the first 10 rows

```
slice(flights, 1:10)
```

or to select the last 10 rows

```
slice(flights, (n() - 9):n())
```

Use n() inside a dplyr verb to to indicate the number of rows of the data frame

Selecting Columns: select()

- Select a subset of columns
- ▶ Either specify the columns that you want to select

```
select(flights, carrier, tailnum)
```

Or specify the columns you wish to drop

```
select(flights, -year, -month, -day)
```

Selecting Columns: select() (cont'd)

- dplyr provides useful helper functions you can use to select() columns that match specific criteria such as
 - starts_with(x): names that start with x
 - ends_with(x): names that end with x
 - contains(x): names that contain x
 - matches(x): names that match the (regular expression) x
- See the documentation for more details

?dplyr::select

While you can assign new column names with select() the convenience function rename() lets you rename columns while retaining the rest of the data frame

```
select(flights, tail_num = tailnum)
rename(flights, tail_num = tailnum)
```

Create New Columns: mutate()

- Create new columns, usually as a function of existing columns
- You can refer to new columns you just created, inside the same mutate() function

▶ Use transmute() to create a new data frame just from the new column(s)

```
transmute(flights, gain = arr_delay - dep_delay)
```

Sorting Rows by Column Value: arrange()

- ► Reorder the rows of a data frame by the specified column's value
- ▶ Multiple conditions are arranged from left to right
- ► Use desc() to arrange in descending order

```
arrange(flights, year, month, day)
arrange(flights, year, desc(month), day)
arrange(flights, year, month, desc(day))
arrange(flights, year, desc(month), desc(day))
```

Aggregate Data: summarize()

- Aggregate/collapse the data into a single row
- Think of as applying a function to columns

▶ More useful as a grouped operation (see next)

Grouped Operations

- If a data frame is grouped, operations are applied to each group separately, and the results are combined back to a single data frame
- Use the group_by() verb to specify variables to use for generating groups

flights_by_day <- group_by(flights, day)</pre>

 Some verbs have specific behavior when applied to grouped data

verb	group specific action
arrange() slice() summarize()	sort rows within each group extract rows within each group aggregate values group-wise

Grouped slice()

Retrieve the first 2 departures (rows) of each day

slice(flights_by_day, 1:2)

```
## Source: local data frame [62 x 19]
   Groups: day [31]
##
##
                     day dep_time sched_dep_time
       vear month
##
      <int> <int> <int>
                             <int>
                                             <int>
## 1
       2013
                               517
                                               515
## 2 2013
                               533
                                               529
## 3
       2013
                       2
                                42
                                              2359
## 4
       2013
                               126
                                              2250
## 5
       2013
                       3
                                32
                                              2359
       2013
                       3
                                50
                                              2145
## 6
       2013
                       4
                                25
                                              2359
## 7
## 8
       2013
                       4
                               106
                                              2245
                       5
                                14
##
       2013
                                              2359
```

Grouped summarize()

 Retrieve (1) number of departures (observations), (2) average distance, and (3) average arrival delay for each day (i.e., for flights grouped by day)

```
## day count dist delay
## 1 1 11036 1039 7.3637
## 2 2 10808 1047 6.7681
## 3 3 11211 1041 4.4699
## 4 4 11059 1038 -1.7827
## 5 5 10858 1038 0.4925
## 6 6 11059 1041 -1.7489
```

Multiple (Chained) Operations

► Consider the following task

find days when the mean arrival delay OR departure delay was greater than 30

- ▶ We can achieve the desired result with three operations
 - group_by date (year, month, day)
 - 2. summarize mean arrival/departure delay
 - filter summarized results (i.e., mean arr_delay > 30 | mean dep_delay > 30)
- ▶ Note that dplyr verbs do **not** modify the original data frame
 - ► This is generally a good thing, since it guarantees the integrity of your data
 - ▶ But it makes multiple operations on a data frame difficult
- ► There are two (acceptable) ways to apply multiple operations on a data frame, and one is definitely preferred to the other

Multiple Operations: The OK Way

- One way to perform multiple operations is to save intermediate data frames as new data frames
- This method delivers desired results, but makes your workspace quite messy (i.e., you'll end up with a workspace full of intermediate results)

```
flights_by_date <- group_by(flights, year, month, day)
summary_by_date <- summarize(
  flights_by_date,
  arr = mean(arr_delay, na.rm=TRUE),
  dep = mean(dep_delay, na.rm=TRUE))
big_delay_dates <- filter(
  summary_by_date,
  arr > 30 | dep > 30)
```

- ► This method might be preferred if you need the intermediate results in the future
- If not, there is a better way to chain multiple operations with

The Pipe Operator %>%

► The pipe operator, aka the 'magic' operator, takes the output from the verb on its left-hand side, and uses it as the first argument (data frame) for the verb on the right-hand side

- No need to save intermediate results
- Easier to read (i.e., you can follow the operations step-by-step without too much mental accounting)

The Pipe Operator %>% – Best Practice

 Always using the pipe operator – across multiple lines – makes it easier to add/remove/move things around, even for single expressions, i.e.,

```
flights_by_date <- flights %>%
  group_by(year, month, day)
```

dplyr: Exercise

- ▶ With the flights data
 - find the average speed (distance / air_time * 60) by each carrier (ignore NA), and sort the data in descending order of average speed
 - 2. find the number of flights and average flight time of all flights greater than 10 hours by each carrier in April

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ▶ Try the exercise before proceeding!

Solution 1

```
speed_by_carrier <- flights %>%
  group_by(carrier) %>%
  mutate(speed = distance / air_time * 60) %>%
  summarize(avg_speed = mean(speed, na.rm=TRUE)) %>%
  arrange(desc(avg_speed))
speed_by_carrier
```

```
## # A tibble: 6 × 2
##
    carrier avg_speed
##
      <chr> <dbl>
## 1
         HA
                480.4
         VX
                446.2
## 2
## 3
         AS
                443.7
## 4
         F9
                425.2
## 5
         IJΑ
                420.9
                418.5
## 6
         DI.
```

Solution 2

4

5

6

4

4

```
april long flights <- flights %>%
  group by (month, carrier) %>%
 filter(month == 4 & hour > 10) %>%
  summarize(avg = mean(hour, na.rm=TRUE), count = n())
april_long_flights
## Source: local data frame [6 x 4]
## Groups: month [1]
##
##
    month carrier avg count
    <int> <chr> <dbl> <int>
##
## 1
        4
               9E 16.68 1170
## 2
        4
               AA 15.55 1704
        4
               AS 18.00 30
## 3
```

4 B6 16.89 3012

DL 15.81 2747

EV 16.08 3048

Reshape Data with tidyr

Introduction to tidyr

▶ Recall, the prefered way to think about a data frame:

Each column represents a variable/feature
Each row represents an observation/instance

 Consider the following (fictional) data frame of students' homework grades

ID	HW1	HW2	HW3
jamie	6	7	3
cersei	8	5	2
hodor	9	10	9

- What are the variables of this data?
- ▶ What are the potential issues with this representation?
- ▶ What are the benefits of this representation?

Introduction to tidyr: An Example

- For data manipulation/visualization we often prefer to have data in the long form
- ▶ The *long* form of the previous data would be

ID	HW	Score
jamie	1	6
jamie	2	7
:	:	:
hodor	2	10
hodor	3	9

tidyr is a package that provides a tools for converting data between long and wide forms

Introduction to tidyr: Getting Started

- tidyr is also part of the tidyverse, so if you load tidyverse, tidyr is also loaded
- ► You can also, but don't have to, install and load tidyr as a standalone package like you would any other R package

```
# Install, if you haven't already.
# Only need to do this once on a single machine.
install.packages('tidyr')
```

```
# load package into workspace
library('tidyr')
```

Introduction to tidyr: Getting Started (cont'd)

Create some random data

```
## # A tibble: 3 × 5
## ID HW1 HW2 HW3 info
## <chr> <dbl> <dbl> <dbl> <chr>
## 1 jamie 2.861 9.140 7.650 male/lannister
## 2 cersei 3.570 8.571 5.319 female/lannister
## 3 hodor 9.690 8.234 7.008 male/stark
```

Create *long* data with gather()

With the grades data, we would like to create a data frame in the form of

ID	info	HW	score
	-	-	

- The verb for gathering multiple columns into key-value pairs in tidyr is gather()
- The syntax is

```
gather(data, key, value, ...)
```

where the ... should be replaced by column specifications

Create *long* data with gather() (cont'd)

```
grades.tidy <- grades %>%
  gather(HW, score, HW1:HW3)
grades.tidy
```

```
## # A tibble: 6 × 4
##
        TD
                     info
                           HW score
## <chr>
                    <chr> <chr> <dbl>
     jamie male/lannister
## 1
                           HW1 2.861
## 2 cersei female/lannister HW1 3.570
## 3 hodor male/stark HW1 9.690
  4 jamie male/lannister HW2 9.140
## 5 cersei female/lannister HW2 8.571
## 6 hodor
             male/stark
                            HW2 8.234
```

Split a Column to Multiple Variables with separate()

- Often, there will be column that you'd prefer to split into multiple variables, e.g., splitting a date column to year, month, and day
- ► From the grades data, notice that the info column combines two variables: sex and house
- We can split such columns to multiple variables with the separate() verb in tidyr

```
grades.split <- grades.tidy %>%
  separate(info, into = c('sex', 'house'), sep = '/')
grades.split
```

```
## # A tibble: 3 × 5
## ID sex house HW score
## <chr> <chr> <chr> <chr> <chr> <chr> HW1 2.861
## 2 cersei female lannister HW1 3.570
## 3 hodor male stark HW1 9.690
```

Chaining tidyr verbs

- ► Note that tidyr operations are also verbs that can be chained with the pipe operator %>%
- For example, we can do the previous operations on the grades data with the chained operation

```
grades.final <- grades %>%
  gather(HW, score, HW1:HW3) %>%
  separate(info, into=c('sex', 'house'), sep='/')
```

tidyr verbs can also be chained with dplyr verbs (and any other function that qualifies as a verb, i.e., takes a data frame as the first argument and results in a new data frame)

Exercise

Create some random data

```
address <- 'https://goo.gl/0hFk2w'
finance <- read_tsv(address)</pre>
```

1. Tidy the data to fit the form

ID	type	year	amount
-	-	-	-

2. Find the mean and total Income/Expense for each ID across all years

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ▶ Try the exercise before proceeding!

Solution 1

```
finance <- finance %>%
  gather(year, amount, 2:7) %>%
  separate(year, c('type', 'year'), sep='_')
finance
```

```
## # A tibble: 8 × 4
##
       ID
          type year amount
    <chr> <chr> <chr> <chr> <dbl>
##
    leia Income 2013 4174.3
## 1
## 2 han Income 2013 11064.9
## 3 luke Income 2013 11341.8
## 4
    leia Income 2014 17343.7
## 5 han Income 2014 - 5023.7
## 6 luke Income 2014 3547.0
## 7 leia Income 2015 3027.6
## 8 han Income 2015 -757.4
```

Solution 2

```
finance.summary <- finance %>%
  group_by(ID, type) %>%
  summarize(mean=mean(amount), total=sum(amount))
finance.summary
```

```
## Source: local data frame [6 x 4]
## Groups: ID [?]
##
##
       ID type mean total
##
    <chr> <chr> <dbl> <dbl>
## 1 han Expense 8170 24509
## 2 han Income 1761 5284
## 3 leia Expense 8818 26453
## 4 leia Income 8182 24546
## 5 luke Expense 12820 38461
     luke Income 8803 26408
## 6
```


Basic concatenations

- rbind: concatenate rows
- cbind: concatenate columns
- ► For data frames, bind_rows() and bind_cols() from dplyr is usually much faster.

Example (with matrix, but works with data frames too)

```
A <- matrix(1:4, 2, 2)
B <- matrix(5:8, 2, 2)
rbind(A, B)
```

```
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
## [3,] 5 7
## [4,] 6 8
```

cbind(A, B)

```
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

Introduction to joins

- Sometimes, you will find relevant data across multiple datasets, e.g., a list of grades in one dataset and a list of contact information in another
- ▶ In such cases, you may want to join the two datasets into a single data frame prior to further analysis
- ► For a successful join you must determine
 - 1. One or more variables that uniquely identify matching observations (rows) in both datasets
 - 2. How you wish to join the data, i.e.,
 - Left/right join Retain one of the datasets entirely, while only keeping matching entries of the other, possibly resulting in a few missing values (NA)
 - Inner join Retain only complete matches, possibly dropping some rows of both datasets
 - Outer (full) join Retain all rows of both datasets, but potentially resulting in many missing values (NA)

Example Datasets

► For illustration, let's create two data frames

```
info <- tibble(</pre>
  name=c('tony', 'tony', 'rey'),
  job=c('scientist', 'tiger', 'scavenger'),
  score=rnorm(3)
power <- tibble(</pre>
  name=c('tony', 'hank', 'rey'),
  job=c('scientist', 'scientist', 'scavenger'),
  strength=rexp(3)
```

▶ How is an observation (row) uniquely identified?

Left/Right join

Retain rows of one dataset, and match the rows of the other

```
left_join(info, power, by=c('name', 'job'))
```

right_join(info, power, by=c('name', 'job'))

Inner join

▶ Retain only the rows that have matches on both datasets

1 tony scientist 1.7708 0.5130 ## 2 rey scavenger 0.6836 0.2724

Outer (Full) join

Retain all rows

```
full_join(info, power, by=c('name', 'job'))
```

Reference

► A great "cheat sheet" for wrangling data with dplyr and tidyr is available for free at https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf