

Теория вероятностей и математическая статистика

Вебинары

Теория вероятностей и математическая статистика

Проверка статистических гипотез. Р-значения. Доверительные интервалы. A/B тестирование

На этом уроке мы изучим:

- 1. Что такое статистическая гипотеза.
- 2. Нулевые и альтернативные гипотезы.
- 3. Статистические критерии для проверки гипотез.
- 4. P-value
- 5. Доверительные интервалы.

Статистическая гипотеза

Предположение о виде распределения и свойствах случайной величины, которое можно подтвердить или опровергнуть на основании имеющихся данных

Примеры:

- Математическое ожидание случайной величины равно 10
- Случайная величина имеет нормальное распределение
- Две случайные величины имеют одинаковое математическое ожидание.

1. Формулируются нулевая и альтернативная гипотезы.

Статистическая гипотеза

Нулевая гипотеза – утверждение о свойствах генеральной совокупности, которое кажется правдоподобным, но требует проверки, та гипотеза, которую проверяют (H_0)

Альтернативная гипотеза – гипотеза, противоречащая нулевой (H_1)

<u>Пример:</u> Имеется станок, изготавливающий шарики для подшипников, который настроен делать шарики с диаметром 1 мм. На основании выборки из значений диаметров таких шариков мы можем проверить, правильно ли станок откалиброван

 H_0 - математическое ожидание диаметра шарика равно 1 мм

 H_1 — математическое ожидание диаметра шарика не равно 1 мм

Альтернативная гипотеза

$$H_0$$
: $\mu = \mu_0$

- **1.** Двухсторонние H_1 : $\mu \neq \mu_0$
- **2.** Левосторонние H_1 : $\mu < \mu_0$
- **3.** Правосторонние $H_1: \mu > \mu_0$

Альтернативная гипотеза – это дополнение к нулевой (хотя бы одна из них будет верна)

- 1. Формулируются нулевая и альтернативная гипотезы.
- 2. Задаётся некоторая статистика (функция от выборки) S(X), которая в условиях справедливости нулевой гипотезы H0 имеет известное распределение (в частности, известна её функция распределения FS(x) = P(S < x)).

Выбор статистики S

Для проверки гипотез относительно математического ожидания нормально распределенной случайной величины *с известной дисперсией* используется Z-статистика

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

В предположении верности нулевой гипотезы z-статистика имеет стандартное нормальное распределение (0, 1)

Если дисперсия не известна, используется t-статистика

$$t = \frac{X - \mu}{\sigma_X / \sqrt{n}}$$

В предположении верности нулевой гипотезы t-статистика имеет распределение Стьюдента

Выбор статистики S

Mironkindy

							Mironkindy	
Нулевая гипотеза Н ₀	Дополни- тельные условия	СТАТИСТИКА КРИТЕРИЯ (выборочная характеристика)	Используемые распределение и таблица (уч. МС)	Конкур. гип. Н 1		ская область и формулы для ахождения её границ	Гипотеза H ₀ не отвергается если:	
$[H_0: \mu = \mu_0]$	$X \in N(\mu; \sigma),$ σ^2 известна	$t_n = \frac{\overline{x} - \mu_0}{\sigma} \sqrt{n}$		$\mu_1 > \mu_0$	ПКО		$t_{\rm H} \le t_{\rm KP}$	
					Φ (t _{кр}) = 1-2 α		$t_{\rm H} \ge -t_{\rm KP}$	
				Мощность критерия: $1-\beta = \frac{1}{2} \left[1 + \Phi \left(\frac{ \mu_1 - \mu_0 }{\sigma} \sqrt{n} - t \right) \right]$				
				$\mu_1 \neq \mu_0$	дко	$\Phi (t_{\rm sp}) = 1 - \alpha$	t _H ≤ t _{KP}	
2. $H_0: \mu = \mu_0$	$X \in N(\mu; \sigma),$ σ^2 неизвестна	$t_{n} = \frac{\overline{x} - \mu_{0}}{S} \sqrt{n - 1}$	Стьюдента St(t, v) v=n-1 таб.2	$\mu_1 > \mu_0$	ПКО	St $(t_{KD}, v) = 2\alpha$	t _n ≤t _{κp}	
				$\mu_1 < \mu_0$	ЛКО	$St(t_{kp}, V) = 2\alpha$	$t_{\rm H} \geq -t_{\rm KP}$	
				Мощност	$\sqrt{n-1}-t_{sp};n-1$			
				$\mu_1 \neq \mu_0$	дко	St $(t_{\kappa p}, v) = \alpha$	t, ≤ t,p	
3. $H_0: \mu_x = \mu_y$	$X \in N(\mu_x; \sigma_x)$ $Y \in N(\mu_y; \sigma_y)$ σ_x^2 и σ_y^2 известны	$t_{ii} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$	Нормальный закон Функция Лапласа Ф(t) таб.1	$\mu_{x} > \mu_{y}$	пко	***	$t_n \le t_{\kappa p}$	
				$\mu_x < \mu_y$	лко	$\Phi (t_{Kp}) = 1 - 2\alpha$	$t_{\scriptscriptstyle H} \ge -t_{\kappa p}$	
				$\mu_x \neq \mu_y$	дко	$\Phi (t_{\kappa p}) = 1 - \alpha$	t _H ≤ t _{KP}	
4. $H_0: \mu_x = \mu_y$	$X \in N(\mu_x; \sigma_x)$ $Y \in N(\mu_y; \sigma_y)$ σ_x^2 и σ_y^2 неизвестны, но равны проверить:	$t_{_{H}} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{n_{_{x}}S_{_{x}}^{2} + n_{_{y}}S_{_{y}}^{2}}{n_{_{x}} + n_{_{y}} - 2}}} \cdot \sqrt{\frac{n_{_{x}}n_{_{y}}}{n_{_{x}} + n_{_{y}}}}$	Стьюдента $St(t, v)$ $v = n_x + n_y - 2$ таб.2	$\mu_x > \mu_y$	пко	St (4 - 1) - 2a	$t_{_{\rm H}} \leq t_{_{ m KP}}$	
				$\mu_x < \mu_y$	лко	St $(t_{\kappa p}, \nu) = 2\alpha$	$t_{_{\rm H}} \ge -t_{_{\rm KP}}$	
				$\mu_x \neq \mu_y$	дко	St $(t_{\rm sp}, \nu) = \alpha$	t _H ≤ t _{EP}	
5. $H_0: \sigma^2 = \sigma_0^2$	$X \in N(\mu; \sigma)$	$\chi_{\rm H}^2 = \frac{nS^2}{\sigma_0^2}$	Пирсона χ^2 $v = n - 1$ таб.3	$\sigma_1^2 > \sigma_0^2$	пко	$P\left(\chi^2 > \chi^2_{ep}(\alpha, \nu)\right) = \alpha$	$\chi_{\rm H}^2 \leq \chi_{\rm KP}^2$	
				Мощность критерия: $1-\beta = P(\chi^2 > \frac{\sigma_0^2}{\sigma_1^2} \chi_{xp}^2(\alpha; n-1))$				
				$\sigma_1^2 < \sigma_0^2$	лко	$P(\chi^2 > \chi^2_{\kappa p}(1-\alpha, \nu)) = 1-\alpha$	$\chi_{H}^{2} \geq \chi_{KP}^{2}$	
				Мощность критерия: $1-\beta = 1-P(\chi^2 > \frac{\sigma_0^2}{\sigma_1^2} \chi_{sp}^2 (1-\alpha;n-1))$				
				$\sigma_1^2 \neq \sigma_0^2$	дко	$P(\chi^2_{\kappa p.n.}) = 1 - \frac{\alpha}{2}; P(\chi^2_{\kappa p.n.}) =$	$\frac{\alpha}{2} \left \chi_{\text{kp } n}^2 \leq \chi_{\text{H}}^2 \leq \chi$	

Выбор статистики S

Miron	kindy
-------	-------

H _o	Доп. условия	СТАТИСТИКА КРИТЕРИЯ		Распределение	н,		Критическая область	H₀ не отвер- гается, если
$6. H_0: \sigma_1^2 = \sigma_2^2$	$ \mathbf{F}_{H} = \frac{\hat{\mathbf{S}}_{1}^{2}}{\hat{\mathbf{S}}_{1}^{2} > \hat{\mathbf{S}}_{2}^{2}} \mathbf{F}_{H} = \frac{\hat{\mathbf{S}}_{1}^{2}}{\hat{\mathbf{S}}_{2}^{2}} \mathbf{S}_{1} = max(\mathbf{S}_{x}; \mathbf{S}_{y}) $ $ \mathbf{F}_{H} = \frac{\hat{\mathbf{S}}_{1}^{2}}{\hat{\mathbf{S}}_{2}^{2}} \hat{\mathbf{S}}_{1}^{2} = \frac{\mathbf{n}_{i}}{\mathbf{n}_{i} - 1} \mathbf{S}_{i}^{2} $		Фишера- Снедекора $F(\alpha, v_1, v_2)$ $v_i = n_i - 1$ таб.4	$\sigma_1^2 > \sigma_2^2$	пко	$P(F > F_{xp}(\alpha, v_1, v_2)) = \alpha$	F _H ≤ F _{Kp}	
7. $H_0: \sigma_1^2 = \sigma_2^2 =$ = σ_k^2 k - число генеральных совокупностей	$X_{i} \in N(\mu_{i}; \sigma_{i})$ $\mathbf{n}_{1} \neq \mathbf{n}_{2} \neq \dots$ $\dots \neq \mathbf{n}_{k}$	$\chi_{H}^{2} = \frac{v_{k} \cdot ln\hat{S}_{cp}^{2} - \sum_{i=1}^{k} (v_{i} \cdot ln\hat{S}_{i}^{2})}{1 + \frac{1}{3 \cdot (k-1)} \left(\left(\sum_{i=1}^{k} \frac{1}{v_{i}} \right) - \frac{1}{v_{k}} \right)}$	$\begin{aligned} v_{i} &= n_{i} - 1; \\ v_{k} &= \sum_{i=1}^{k} v_{i} \\ \hat{S}_{i}^{2} &= \frac{n_{i}}{n_{i} - 1} S_{i}^{2}; \\ \hat{S}_{cp}^{2} &= \frac{1}{v_{k}} \sum_{i=1}^{k} (\hat{S}_{i}^{2} \cdot v_{i}) \end{aligned}$	Пирсона 2 v=k-1 таб.3		пко	$P(\chi^2 > \chi_{\kappa p}^2(\alpha, \nu)) = \alpha$	$\chi_H^2 \le \chi_{KP}^2$
8. $H_0: \sigma_1^2 = \sigma_2^2 =$	$X_i \in N(\mu_i; \sigma_i)$ $\mathbf{n}_1 = \mathbf{n}_2 = \dots$ $\dots = \mathbf{n}_k = \mathbf{n}$	$\mathbf{G}_{H} = \frac{\mathbf{Max}(\hat{\mathbf{S}}_{i}^{2})}{\sum_{i=1}^{k} \hat{\mathbf{S}}_{i}^{2}} = \frac{\mathbf{max}(\mathbf{S}_{i}^{2})}{\sum_{i=1}^{k} \mathbf{S}_{i}^{2}}$		G- распределение G(α, v, k) v = n - 1 таб.9		пко	$P(G > G_{sp}(\alpha, \nu, k)) = \alpha$	$G_{\mu} \leq G_{\kappa p}$
$9. H_0: p = p_0$	Биномиал. распред., n→∞	$t_{H} = \frac{\hat{p} - p_{0}}{\sqrt{p_{0} \cdot (1 - p_{0})}}$	$\hat{p} = \frac{m}{n}$	Нормальный закон Функция		пко лко	$\Phi (t_{\kappa p}) = 1 - 2\alpha$	$t_{\rm H} \le t_{\rm KP}$ $t_{\rm H} \ge -t_{\rm KP}$
	(n > 30)	$\sqrt{\frac{1}{n}}$	"	Лапласа Ф(t) таб. l	$p \neq p_0$	дко	$\Phi (t_{\kappa p}) = 1 - \alpha$	t, ≤ t,p
10. Н ₀ : p ₁ = p ₂ = = p _k - число ген.сов.	Биноми- альное распред., n→∞ (n > 30)	$\chi_{H}^{2} = \sum_{i=1}^{k} \frac{\left(m_{i} - n_{i} \cdot \hat{\mathbf{p}}\right)^{2}}{n_{i} \cdot \hat{\mathbf{p}} \cdot (1 - \hat{\mathbf{p}})} = \frac{\sum_{i=1}^{k} (1 - \hat{\mathbf{p}})^{2}}{\hat{\mathbf{p}}}$ $\hat{\mathbf{p}} = \sum_{i=1}^{k} m_{i} / \sum_{i=1}^{k} n_{i} \qquad \qquad \hat{\mathbf{p}}_{i}$		Пирсона 2 v=k-1 таб.3		пко	$P(\chi^2 > \chi^2_{\rm sp}(\alpha, \nu)) = \alpha$	$\chi_H^2 \le \chi_{KP}^2$
i.	Полиноми- альное распреде- ление N→∞ (N > 30)	$\mathcal{L}_{H}^{2} = \sum_{j=1}^{h} \sum_{i=1}^{k} \frac{\left(\mathbf{m}_{ij} - \mathbf{n}_{i} \cdot \hat{\mathbf{p}}_{j} \right)^{2}}{\mathbf{n}_{i} \cdot \hat{\mathbf{p}}_{j}} \begin{vmatrix} \hat{\mathbf{p}}_{j} \\ \mathbf{N} = \sum_{i=1}^{h} \sum_{j=1}^{h} \frac{\left(\mathbf{m}_{ij} - \mathbf{n}_{i} \cdot \hat{\mathbf{p}}_{j} \right)^{2}}{\mathbf{N}_{i} \cdot \hat{\mathbf{p}}_{j}} \end{vmatrix}$	$= \sum_{i=1}^{k} m_{ij} / N;$ $\sum_{i=1}^{k} n_{ij} = \sum_{i=1}^{k} \sum_{j=1}^{h} m_{ij}$	Пирсона χ^{2} v = (k-1)·(h-1) таб.3		пко	$P(\chi^2 > \chi^2_{\rm sp}(\alpha, \nu)) = \alpha$	$\chi_H^2 \le \chi_{Kp}^2$

- 1. Формулируются нулевая и альтернативная гипотезы.
- 2. Задаётся некоторая статистика (функция от выборки) S(X), которая в условиях справедливости нулевой гипотезы H0 имеет известное распределение (в частности, известна её функция распределения FS(x) = P(S < x)).
- 3. Фиксируется уровень значимости α допустимая для данной задачи вероятность ошибки первого рода (чаще всего 0.01, 0.05 или 0.1)

Ошибки первого и второго рода

Ошибка первого рода (false positive)- это отказ от нулевой гипотезы, несмотря на то, что она верна

Ошибка второго рода (false negative)- это принятие нулевой гипотезы, хотя она не верна

Между вероятностями ошибок первого и второго рода приходится балансировать, т.е. уменьшение одной вероятности приводит к увеличению другой

Уровень значимости α — вероятность отвергнуть верную нулевую гипотезу

- 1. Формулируются нулевая и альтернативная гипотезы.
- 2. Задаётся некоторая статистика (функция от выборки) S(X), которая в условиях справедливости нулевой гипотезы H0 имеет известное распределение (в частности, известна её функция распределения FS(x) = P(S < x)).
- 3. Фиксируется уровень значимости α допустимая для данной задачи вероятность ошибки первого рода (чаще всего 0.01, 0.05 или 0.1).
- 4. Определяется критическая область $\Omega \alpha$, такая, что $P(S \in \Omega \alpha | H0) = \alpha$.
- 5. Проводится статистический тест : для конкретной выборки X считается значение S(X), и если оно принадлежит Ωα, то заключаем, что данные противоречат гипотезе H0, и принимается гипотеза H1.

Критическая область

$$P(S \in \Omega_{\alpha}|H_0) = \alpha$$

ЛКО

$$\Omega_{\alpha} = (-\infty, t_{\alpha})$$

$$\Omega_{\alpha} = (t_{1-\alpha}, \infty)$$

• JIKO
$$\Omega_{\alpha}=(t_{1-\alpha},\infty)$$
• ДКО $\Omega_{\alpha}=(-\infty,t_{\alpha/2})\cup (t_{1-\alpha/2},\infty)$

P-value

P-value — это такое значение α , при котором значение статистики попадает ровно на границу критической области p-value > α \Rightarrow нулевая гипотеза не отвергается на уровне значимости α p-value < α \Rightarrow нулевая гипотеза отвергается с вероятностью ошибки α

Доверительный интервал

Доверительный интервал — это интервал, который с некоторой вероятностью (заданной заранее) содержит значение оцениваемого параметра

Пусть задано число p, называемое уровнем доверия или доверительной вероятностью . Доверительным интервалом для параметра θ называется пара статистик L и U, таких, что

$$P(L \le \theta \le U) = p$$

Доверительный интервал

Пусть дана выборка X из нормально распределённой случайной величины с известной дисперсией. Построим доверительный интервал для математического ожидания µ с доверительной вероятностью р

$$Z = \frac{X - \mu}{\sigma / \sqrt{n}}$$

$$P\left(t_{\alpha/2} \le Z \le t_{1-\alpha/2}\right) = p,$$

$$P\left(t_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \le t_{1-\alpha/2}\right) = p$$

$$P\left(t_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \overline{X} - \mu \le t_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = p$$

$$P\left(\overline{X} + t_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + t_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = p$$

Доверительный интервал

Если дисперсия не известна, используем t-статистику

$$t = \frac{\overline{X} - \mu}{\sigma_X / \sqrt{n}}$$

$$P(t_{\alpha/2, n-1} \le t \le t_{1-\alpha/2, n-1}) = p,$$

$$P\left(\overline{X} + t_{\alpha/2, \, n-1} \cdot \frac{\sigma_X}{\sqrt{n}} \le \mu \le \overline{X} + t_{1-\alpha/2, \, n-1} \cdot \frac{\sigma_X}{\sqrt{n}}\right) = p$$

Итоги

- 1. Что такое статистическая гипотеза.
- 2. Нулевые и альтернативные гипотезы.
- 3. Статистические критерии для проверки гипотез.
- 4. P-value
- 5. Доверительные интервалы.