

Bilgisayar Mühendisliğinde Matematik Uygulamaları Ders Notları Prof.Dr. Adnan Kavak

İçindekiler

1	Böl	$\ddot{\mathrm{u}}\mathrm{m}1$ 5
	1.1	Ortagonal Alt Uzaylar
		1.1.1 İzdüşüm Matrisi(Projection Matrix) 6
		1.1.2 Vektör İzdüşümü
		1.1.3 Ev Ödevi Sorusu
	1.2	Gram-Schmidt Dikleştirme Prosedürü
		1.2.1 Ev Ödevi Sorusu
		1.2.2 Örnek
	1.3	Range Space Of A Matrix(Bir Matrisin Değer Uzayı) 11
		1.3.1 Boş Uzay(NULL Space)
	1.4	Bazı Önemli Matris Ayrıştırmaları
		1.4.1 A=mxm ise
		1.4.2 A->mxn matris ise m>n
		1.4.3 LU Matris ayrıştırması
		1.4.4 Cholesky Matris ayrıştırması
		1.4.5 QR ayrıştırması
	1.5	EigenValue Decomposition (EVD) Veya Singular Value De-
		composition (SVD)
	1.6	LU Ayrıştırması Ve Denklem Sistemi Çözümü 15
2 Bölüm2		$\ddot{\mathrm{u}}\mathrm{m}2$ 17
	2.1	LU Ayrıştırması
	2.2	Pivot Seçme İle LU Ayrıştırması
3	Böl	$\ddot{\mathrm{u}}\mathrm{m}3$
	3.1	EigenValue Decomposition(Özdeğer Ayrıştırması) 23
		3.1.1 Özdeğer Ve ÖzVektör Nasıl Bulunur? 24
		3.1.2 ÖzVektörlerin(EigenVectors)Lineer Bağımsızlığı? 26
	3.2	Matrisin Ayrıştırılması
	3.3	Özdeğer Ve Özvektörlerden Matris Oluşturma
	3.4	Self-Adjoint Matrislerin Köşegenleştirilmesi

	3.5	EVD Uygulamaları							
	3.6	Korelasyon Matrisi Özellikleri							
4	Böl	Bölüm4 33							
	4.1	QR Ayrıştırması							
	4.2	Niçin QR ?							
	4.3	HouseHolder Dönüşümü:							
	4.4	QR Yöntemi İle Denklem Sistemi Çözümü Matlab Örneği 40							
5	Böl	üm5 47							
	5.1	Optimizasyon(En İyileme)							
	5.2	Koşullu (Constraint) Optimizasyon							
	5.3	Ara Sınav Çözümleri							

Bölüm 1

Bölüm1

1.1 Ortagonal Alt Uzaylar

Şekil 1.1: Ortagonal Alt Uzay

$$\overline{\mathbf{X}} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \in \mathbf{S}$$

- $\mathbf{S} = R^3$
- $V \subset \mathbf{S}$
- $\bullet \ V^1 = W$
- $\bullet \ W^1 = V$

- \checkmark X ve W ortagonal altuzaylardır.
- \sqrt{X} vektoru S'de bir vektordur.
- $\sqrt{X_v}$ V altuzayinda $\overline{X}'in$ izdüşüm vektörüdür. $\sqrt{X_w}$ W altuzayinda $\overline{X}'in$ izdüşüm vektörüdür.

İzdüşüm Matrisi(Projection Matrix) 1.1.1

 $\overline{P}_1,\overline{P}_2,\overline{P}_3\cdots\overline{P}_n$ V altuzayını tarayan (span) vektörleri olsun

$$\begin{split} \overline{X}_v &= C_1 \overline{P}_1 + C_2 \overline{P}_2 + C_3 \overline{P}_3 + \dots + C_n \overline{P}_n \\ \mathbf{A_{m*n}} &= \left[\overline{P}_1 \overline{P}_2 \overline{P}_3 \dots \overline{P}_n \right] \\ \overline{P}_v &= A_{m*n} (A_{m*n}^H A_{m*n})^{-1} A_{m*n}^H -> \text{izdüşüm matrisi} \end{split}$$

Vektör İzdüşümü 1.1.2

$$\overline{a} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \overline{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \overline{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\overline{a}_x = ?$$

$$\langle \overline{a}, \overline{x} \rangle = \overline{a}^T * \overline{x} = \begin{bmatrix} 3 & 2 \end{bmatrix} * \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3$$

$$\begin{aligned} & \overline{a}_x = 3 * \overline{x} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ & \overline{a}_y = ? \\ & < \overline{a}, \overline{y} >= \overline{a}^T * \overline{y} = \begin{bmatrix} 3 & 2 \end{bmatrix} * \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2 \\ & \overline{a}_y = 2 * \overline{y} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \\ & < \overline{a}, \overline{x} >= \|\overline{a}\| * \|\overline{x}\| * \cos(\Theta) = \|\overline{a}\| * \cos(\Theta) \text{ yandaki ifadede } \|\overline{x}\| = 1 \text{ dir.} \end{aligned}$$

1.1.3 Ev Ödevi Sorusu

Ev ödevi sorusu aşağıdaki gibidir:

Şekil 1.2: Ev Ödevi Sorusu

$$\mathbf{V} \longrightarrow \overline{A}_v = \begin{bmatrix} \overline{P}_1 & \overline{P}_2 \end{bmatrix} \longrightarrow \overline{P}_{A_v} = \cdots$$

$$\mathbf{W} \longrightarrow \overline{A}_w = \begin{bmatrix} \overline{P}_2 & \overline{P}_3 \end{bmatrix} \longrightarrow \overline{P}_{A_w} = \cdots$$

$$\overline{X}_v = \overline{P}_{A_v} \cdot \overline{X} \cdots$$

$$\overline{X}_w = \overline{P}_{A_w} \cdot \overline{X} \cdots$$

1.2 Gram-Schmidt Dikleştirme Prosedürü

 \overline{a} ve \overline{b} 'yi kullanarak birbirine dik vektörler nasıl oluşturulur? || $\overline{\bf q}_1$ ||=1 , || $\overline{\bf q}_2$ ||=1

- 1- $\overline{\triangle}_1 \longrightarrow \overline{b}'nin \ \overline{\mathbf{q}}_1$ üzerindeki bileşeni
- 2- $\overline{\bf e}_1 \longrightarrow \overline{b}'nin \ \overline{\triangle}_1$ 'den fark vektörü
- 3- $\overline{\mathbf{q}}_2 \longrightarrow \overline{\mathbf{e}}_1$ 'in normalize edilmiş hali

Algoritma:

$$\mathbf{r} = \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \qquad \kappa$$

$$<\overline{\mathbf{q}}_{i},\overline{\mathbf{q}}_{j}>=\overline{\mathbf{q}}_{i}^{T}\cdot\overline{\mathbf{q}}_{j}=\delta_{ij}$$

$$\delta_{ij} = \begin{cases} 1 & \text{i=j ise} \\ 0 & i \neq j \end{cases}$$

1)
$$\overline{\mathbf{q}_1} = \frac{\overline{\mathbf{p}_1}}{\|\overline{\mathbf{p}_1}\|}$$

$$\|\overline{\mathbf{p}_1}\| = (\overline{\mathbf{p}_1}^T \cdot \overline{\mathbf{p}_1})^{\frac{1}{2}}$$

$$2) \ \overline{\Delta_2} = <\overline{\mathbf{p}}_2, \overline{\mathbf{q}}_1 > \overline{\mathbf{q}}_1$$

$$\begin{split} & \overline{\Delta_2} \quad \overline{\mathbf{p}}_2' nin \quad \overline{\mathbf{q}}_1 \\ & \overline{\mathbf{e}}_2 = \overline{\mathbf{p}}_2 - \overline{\Delta_2} \\ & \overline{\mathbf{q}}_2 = \frac{\overline{\mathbf{e}}_2}{\|\overline{\mathbf{e}}_2\|} \\ & \vdots \\ & \mathbf{k}.\mathbf{a}\mathbf{d}\mathbf{i}\mathbf{m}\mathbf{d}\mathbf{a} \\ & \overline{\mathbf{e}}_k = \overline{\mathbf{p}}_k - \sum_{i=1}^{k-1} < \overline{\mathbf{p}}_k, \overline{\mathbf{q}}_i > \overline{\mathbf{q}}_i \\ & \overline{\mathbf{q}}_k = \frac{\overline{\mathbf{e}}_k}{\|\overline{\mathbf{e}}_k\|} \end{split}$$

1.2.1 Ev Ödevi Sorusu

 $\overline{P}_1,\overline{P}_2,\overline{P}_3$ ve \overline{P}_4 'ü kullanarak Gram-Schmidt yöntemiyle birbirine dik olan vektörleri bulunuz ?

1.2.2 Örnek

1.3 Range Space Of A Matrix(Bir Matrisin Değer Uzayı)

$$\mathbf{A} = \begin{bmatrix} \overline{P}_1 & \overline{P}_2 & \cdots & \overline{P}_m \end{bmatrix} \qquad \mathbf{A} \cdot \overline{x} = \overline{y} \qquad \overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \in \mathbf{R}^m$$

$$\overline{y} = x_1 \overline{P}_1 + x_2 \overline{P}_2 + \cdots + x_m \overline{P}_m$$

$$\ddot{\mathbf{O}} \mathbf{rnek} : \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$A \cdot \overline{x} = x_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ x_1 + x_3 \end{bmatrix} = \overline{y}$$

$$\overline{y} \text{ vekt\"{o}} \ddot{\mathbf{u}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ vekt\"{o}} \text{rinn lineer birleşimidir.}$$

$$\mathbf{R}(\mathbf{A}) = \mathbf{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \mathbf{R}(\mathbf{A}) - \rightarrow \mathbf{d} \text{ eğer uzayıdır.}$$

Boş Uzay(NULL Space) 1.3.1

 $A\overline{x} = \overline{0}$ işlemini sağlayan \overline{x} vektörüne A'nın boş uzayı(null space) denir.N(A) ile gösterilir.

Örnek: Yukarıdaki A matrisi için:

Örnek: Yukarıdaki A matrisi için:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$x_1 = 0, x_1 + x_3 = 0 \rightarrow x_3 = 0 \quad x_2 \text{ herhangi bir } \alpha \text{ değeridir}$$
$$N(A) = span \left\{ \begin{bmatrix} 0 \\ \alpha \\ 0 \end{bmatrix} \right\}$$

Bazı Önemli Matris Ayrıştırmaları 1.4

 $A\overline{x} = \overline{b}$ denklem sistemi için

1.4.1A=mxm ise

Klasik yöntem: $\overline{x} = A^{-1} \cdot \overline{b}$

Bazı durumlarda A^{-1} almak oldukça zor ve karmaşık bir işlem.

 $O(m^3) \longrightarrow \text{polinom derecesi en fazla } m^3 \text{ olan sayıda } (+)\text{ve } (*) \text{ işlemi gerekir.}$

1.4.2 A->mxn matris ise m>n

$$\begin{split} \mathbf{A}\overline{x} &= \overline{b} \\ (A_{n*m}^H \cdot A_{m*n}) \overline{x}_{n*1} &= A_{n*m}^H \overline{b}_{m*1} \\ \overline{x} &= (A^H A)^{-1} A^H \cdot \overline{b} \\ (A^H A)^{-1} A^H &\to A^\sharp : \text{A'nın pseduo-inxers} \end{split}$$

LU Matris ayrıştırması

A:m × m kare matris $A = L \cdot U$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ x & 1 & 0 & 0 \\ x & \vdots & \ddots & 0 \\ x & \dots & x & 1 \end{bmatrix}_{m*m} \implies \text{Lower-Triangular(alt "uçgensel)}$$

$$\mathbf{U} = \begin{bmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & \vdots & \ddots & x \\ 0 & \dots & 0 & x \end{bmatrix}_{m*m} \implies \text{Upper-Triangular("ust "uçgensel)}$$

Uygulaması: $A\overline{x} = \overline{b}$ denklem sistemi çözümünde kullanılır.(Eğer A:m*m ise)

1.4.4 Cholesky Matris ayrıştırması

A = simetrik, pozitif-definite bir matris ise $A \rightarrow m \times m$ $\overline{x}^T \cdot A \overline{x} > 0 \qquad \overline{x} \in R^n$ vektör ise A pozitif definite bir matris $<\overline{x}, A\overline{x}> = \overline{x}^T \cdot A\overline{x} \qquad y = A\overline{x}$

$$A = LD\overline{L}^{H}, D \Rightarrow \text{k\"osegen} \quad D = \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \dots & 0 & x \end{bmatrix}$$

Cholesky ayrıştırması aşağıdaki gibidir:

$$\begin{cases}
A = UDU^H \\
A = LD\overline{L}^H
\end{cases}$$

Uygulaması:Kestirim ve Kalman filtresi problemlerinin çözümünde

1.4.5QR ayrıştırması

 $A: m \times n$ kare olmayan bir matris ise

$$A_{m \times n} \overline{x}_{n \times 1} = \overline{b}_{m \times 1} \qquad A = QR$$

$$A_{m \times n} \overline{x}_{n \times 1} = b_{m \times 1}$$
 $A = QR$

$$Q \text{ unitary bir matris } \Rightarrow Q^H \cdot Q = I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

 $R = \ddot{\text{u}}$ st- $\ddot{\text{u}}$ çgense bir matris ancak köşegendeki değerler "1" değil-

$$\begin{array}{l} \mathbf{A}\overline{x}=\overline{b}\\ \downarrow\\ Q\cdot R\cdot \overline{x}=\overline{b}\\ Q^HQ\cdot R\overline{x}=Q^H\overline{b}\\ \mathbf{I} \qquad \mathbf{R}\cdot \overline{x}= \qquad \overline{c} \qquad \longrightarrow$$
 çözümü $A\overline{x}=\overline{b}$ ' ye göre daha kolay ·

1.5 EigenValue Decomposition (EVD) Veya Singular Value Decomposition (SVD)

 $A: m \times m \text{ kare} \Longrightarrow \text{EVD}$

 $A: m \times n$ kare değil \Longrightarrow SVD

$$\sum = \begin{bmatrix} A = U \sum V^{H} \\ \Lambda_{1} & 0 & 0 & 0 \\ 0 & \Lambda_{2} & 0 & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \dots & 0 & \Lambda_{n} \end{bmatrix}_{n \times n}$$

 $\Lambda_i: ext{singular(tekil)de}$ degerler

$$A = \left[\left[\right]_{> (m=n) \times n} \right]$$

 $U = m \times n \Longrightarrow \text{unitary} \quad U^H \cdot U = I_{n \times n}$ $V^H = m \times n \Longrightarrow \text{unitary} \quad V \cdot V^H = I_{n \times n}$ Hyperborne Sinyal islams haborlesses has element for the string of the st

Uygulama: Sinyal işleme , haberleşme , kestirim v
s \cdots

1.6 LU Ayrıştırması Ve Denklem Sistemi Çözümü

$$A_{m \times m} \overline{x}_{m \times 1} = \overline{b}_{m \times 1}$$

$$A = L \cdot U$$

$$\downarrow$$

$$LU \overline{x} = \overline{b}$$

$$U \overline{x} = \overline{y}$$

$$L \overline{y} = \overline{b} \Longrightarrow \overline{y} \Longrightarrow \overline{x}$$

$$\begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ l_{m1} & l_{m2} & \cdots & l_{mm} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$y_1 = \frac{b_1}{l_{11}} \quad l_{11} = 1 \longrightarrow y_1 = b_1$$

$$l_{21} \cdot y_1 + l_{22} \cdot y_2 = b_2 \longrightarrow y_2 = \frac{b_2 - l21 \cdot y_1}{l_{22}} = b_2 - l21 \cdot y_1 \longrightarrow l_{22} = 1$$

$$\downarrow$$

$$y_j = \left(b_j - \sum_{i=1}^{j-1} l_{ji} \cdot y_i \right)$$

$$j = 2, 3, 4, \cdots, m \text{ forward substitution (ileri yerine koyma)}$$

$$\begin{array}{c} U\overline{x} = \overline{y} \\ \downarrow \\ \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1m} \\ 0 & u_{22} & u_{23} & \cdots & u_{2m} \\ 0 & 0 & u_{33} & \cdots & u_{3m} \\ \vdots & \vdots & 0 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{mm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{bmatrix} \\ x_m = \frac{1}{u_{mm}} \cdot y_m \\ x_{m-1} = \frac{1}{u_{m-1 \cdot m-1}} (y_{m-1} - x_m \cdot u_{m-1,m}) \\ \vdots \end{array}$$

 $x_j = \frac{1}{u_{jj}} \left(y_j - \sum_{k=j+1}^m (u_{jk} \cdot x_k) \right) \longrightarrow \text{Backward substitution}(\text{geriye yerine koyma})$ $O(\frac{m^2}{2}) \text{ işlem gerektirir ve } \overline{x} = \overline{A}^{-1} \cdot \overline{b} \text{ yöntemine göre daha az işlem yükü gerektirir.}$

Zorluk:

- 1-) u_{ii} 'lerin "0" olması
- 2-) u_{ii} 'ler pivot olarak adlandırılır .

Bölüm 2

Bölüm2

2.1LU Ayrıştırması

Gauss Elimination

Satır işlemlerini saklayarak

(Birim Satır İşlemleri)

$$\mathbf{A} = \begin{bmatrix} \overline{a_1^T} \\ \overline{a_2^T} \\ \vdots \\ \overline{a_m^T} \end{bmatrix}_{m \times m} = \begin{bmatrix} \text{satur1} \\ \text{satur2} \\ \vdots \\ \text{saturm} \end{bmatrix}_{m \times m}$$

Birim Satır İşlemi(B.S.İ)= satır i $\leftarrow \alpha$ satır i $+\beta$ satır j $\alpha, \beta \in \mathbb{R}$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -5 \\ 6 & 8 & 1 \\ 4 & -8 & -3 \end{bmatrix} \longrightarrow \mathbf{A} = LU?, L =?, U =?$$

Amaç BSİ ile köşegen altındaki değerleri sıfırlamak

$$1)S_2 \longleftarrow S_2 - 3S_1 \qquad 3 = \frac{a_{21}}{a_{22}}$$

Amaç BSI ne köşegen artındaki degerleri sınıramak
$$1)S_2 \longleftarrow S_2 - 3S_1 \qquad 3 = \frac{a_{21}}{a_{11}}$$

$$\mathbf{A}_1 = \begin{bmatrix} 2 & 4 & -5 \\ 0 & -4 & 16 \\ 4 & -8 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -5 \\ 6 & 8 & 1 \\ 4 & -8 & -3 \end{bmatrix} \longleftarrow \text{Orjinal A matrisi}$$

$$(2)S_3 \leftarrow S_3 - 2S_1$$
 $(2) = \frac{a_{31}}{a_{31}}$

$$\mathbf{A}_{2} = \begin{bmatrix} 2 & 4 & -5 \\ 0 & -4 & 16 \\ 0 & -16 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -5 \\ 0 & -4 & 16 \\ 4 & -8 & -3 \end{bmatrix} \longleftarrow \text{updated(Bir öncekind)}$$

update edilmis A)

U matrisi oluşturuldu .

L'yi bulmak için:

$$\frac{E_{3}F_{3}E_{3}E_{4}F_{3}F_{4}}{U = E_{3}E_{2}E_{1}A} \Longrightarrow A = E_{1}^{-1}E_{2}^{-1}E_{3}^{-1}U
E_{1}A = A_{1} \quad E_{2}E_{1}A = A_{2} \quad L = E_{1}^{-1}E_{2}^{-1}E_{3}^{-1}
E_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}
E_{1}^{-1}E_{2}^{-1}E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{bmatrix} = L$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -5 \\ 0 & -4 & 16 \\ 0 & 0 & -57 \end{bmatrix}$$

$$L \qquad U$$

2.2 Pivot Seçme İle LU Ayrıştırması

Amaç: Pivot(köşegen) elemanlarının o sütunda en büyük değer alacak şekilde satır yerlerinin değiştirilmesi (pivoting)

Örnek:

$$\begin{array}{|c|c|c|c|c|}
\hline
2 & 4 & -5 \\
6 & 8 & 1 \\
4 & -8 & -3
\end{array}$$

 $(1-)a_{11}$ max olacak şekilde $S_1 \longleftrightarrow S_2$

Bunun anlamı orjinal A matrisini yer değiştirme matrisi (P_{12}) ile soldan çarpmak demektir. _

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Yukarıdaki P_{12} matrisi birim matristeki 2.satırın yer değiştirilmiş halidir.

$$\mathbf{I_{3\times3}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = P_{12}A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -5 \\ 6 & 8 & 1 \\ 4 & -8 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 8 & 1 \\ 2 & 4 & -5 \\ 4 & -8 & -3 \end{bmatrix}$$

$$\vdots$$

 a_{21} 'i sıfırlamak için katsayı $\frac{-1}{3} = \frac{-a_{21}}{a_{11}} \to E_1$ a_{31} 'i sıfırlamak için katsayı $\frac{-2}{3} = \frac{-a_{31}}{a_{11}} \to E_2$

$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-2}{3} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \frac{-1}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A_1$$

$$- \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \downarrow$$

$$- \qquad E_2 \qquad E_1 \qquad P_{12} \cdot A$$

$$A_2 = \begin{bmatrix} 6 & 8 & 1 \\ 0 & \frac{4}{3} & \frac{-16}{3} \\ 0 & \frac{-40}{3} & \frac{-11}{3} \end{bmatrix} \longrightarrow 1. \text{ s\"{u}tundaki } a'_{11}in \text{ altındaki elemanlar sıfırlandı }.$$

$$3-)$$

 $2.\mathrm{s\ddot{u}tun}$ için en son adımda güncellenmiş olan A_2 matrisinin a_{22} elemanı için pivot seçilir .

 $|\frac{-40}{3}|>|\frac{4}{3}|$ olduğundan $S_2\longleftrightarrow S_3(A_2'de)$ ya da $S_1\longleftrightarrow S_2(A_{21}'de)$ A_2' yi göz önüne alırsak:

$$P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad A_3 = P_{23} \cdot A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 6 & 8 & 1 \\ 0 & \frac{4}{3} & \frac{-16}{3} \\ 0 & \frac{-40}{3} & \frac{-11}{3} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 6 & 8 & 1 \\ 0 & \frac{-40}{3} & \frac{-11}{3} \\ 0 & \frac{4}{3} & \frac{-16}{3} \end{bmatrix} \dashrightarrow a_{32}$$
'yi sıfırlamak için katsayı
$$= \frac{\frac{-4}{3}}{\frac{-40}{3}} = \frac{1}{10} \Rightarrow E_3$$
4--)
$$A_4 = E_3 \cdot A_3 = E_3 \cdot P_{23} \cdot E_2 \cdot E_1 \cdot P_{12} \cdot A$$
$$A_1 = P_{12} \cdot A$$
$$A_2 = E_2 \cdot E_1 \cdot P_{12} \cdot A$$
$$A_3 = P_{23} \cdot E_2 \cdot E_1 \cdot P_{12} \cdot A$$

$$A_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{10} & 1 \end{bmatrix} \begin{bmatrix} 6 & 8 & 1 \\ 0 & \frac{-40}{3} & \frac{-11}{3} \\ 0 & \frac{4}{3} & \frac{-16}{3} \end{bmatrix} = \underbrace{\begin{bmatrix} 6 & 8 & 1 \\ 0 & \frac{-40}{3} & -\frac{11}{3} \\ 0 & 0 & \frac{-57}{10} \end{bmatrix}}_{0 & 0 & 0}$$

$$\vdots$$

$$E_{3} \qquad U$$

$$U = E_{3}P_{23}E_{2}E_{1}P_{12}A$$

$$\Rightarrow A = \underbrace{P_{12}^{-1}E_{1}^{-1}E_{2}^{-1}P_{23}^{-1}E_{3}^{-1}}_{0 & 1 & 0} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = P_{23}^{-1} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{10} & 1 \end{bmatrix} \rightarrow E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{10} & 1 \end{bmatrix}$$

$$P_{23}^{-1}E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{10} & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-2}{3} & 0 & 1 \end{bmatrix} \rightarrow E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{2}{3} & 0 & 1 \end{bmatrix}$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow E_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{1} + E_{2}^{-1}P_{23}^{-1} \cdot E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{10} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{1} + E_{2}^{-1}P_{23}^{-1} \cdot E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{10} & 1 \\ \frac{1}{2} & 1 & 0 \end{bmatrix}$$

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = P_{12}^{-1}$$

$$P_{12}^{-1} \cdot E_{1}^{-1} E_{2}^{-1} P_{23}^{-1} E_{3}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{-1}{10} & 1 \\ \frac{1}{2} & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{-1}{10} & 1 \\ 1 & 0 & 0 \\ \frac{2}{3} & 1 & 0 \end{bmatrix} = \mathbf{V}$$

$$A = \underbrace{P_{12}^{-1} \cdot E_{1}^{-1} E_{2}^{-1} P_{23}^{-1} E_{3}^{-1} \cdot \mathbf{U}}_{-}$$

$$- \mathbf{V}$$

$$L = P_{23} P_{12} \cdot V = P_{23} P_{12} P_{12}^{-11} E_{1}^{-1} E_{2}^{-1} P_{23}^{-1} E_{3}^{-1}$$

$$- = \underbrace{P_{12} P_{12}^{-1} E_{1}^{-1} E_{2}^{-1} P_{23}^{-1} E_{3}^{-1}}_{-}$$

$$- \mathbf{I} \qquad \mathbf{I}$$

$$- \mathbf{E}_{1}^{-1} E_{2}^{-1} E_{3}^{-1}$$

$$\Rightarrow L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ \frac{1}{3} & \frac{-1}{10} & 1 \end{bmatrix}$$

Pivot seçme yönteminde

$$A = V \cdot U$$
$$P \cdot A = LU$$

 $^{^{1}}P_{12}P_{12}^{-1}$ I birim matrisine eşittir

Bölüm 3

Bölüm3

3.1 EigenValue Decomposition(Özdeğer Ayrıştırması)

Fark denklemi (*):
$$y_{1}(t+1) = -y_{1}(t) - 1.5y_{2}(t)$$

$$y_{2}(t+1) = 0.5y_{1}(t) + y_{2}(t)$$

$$\overline{y_{2}}(t+1) = \begin{bmatrix} y_{1}(t+1) \\ y_{2}(t+1) \end{bmatrix} \overline{y}(t) = \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = ?$$

$$\Longrightarrow \overline{y}(t+1) = \underbrace{\begin{bmatrix} -1 & -1.5 \\ 0.5 & 1 \end{bmatrix}}_{A} \overline{y}(t) \Longrightarrow \overline{y}(t+1) = A\overline{y}(t)$$
Cözüm:
$$y_{1}(t) = \lambda^{t}x_{1} \quad y_{2}(t) = \lambda^{t}x_{2}$$

$$\lambda^{t+1}x_{1} = -\lambda^{t}x_{1} - 1.5\lambda^{t}x_{2}$$

$$\lambda^{t+1}x_{2} = 0.5\lambda^{t}x_{1} + \lambda^{t}x_{2}$$

$$\Longrightarrow A\underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\overline{x}} = \lambda\underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\overline{x}}$$

$$\Longrightarrow A\overline{x} = \lambda \overline{x} \quad (**)$$

(**)denklem siteminin çözümü aynı zamanda (*) denklem sisteminin çözümüdür.

 \overline{x} : eigenvector(özvektör) λ :eigenvalue(özdeğer)

3.1.1 Özdeğer Ve ÖzVektör Nasıl Bulunur?

 $A\overline{x} = \lambda \overline{x}$

Genel olarak:

 $A: n \times n$

 $\overline{x}: n \times 1$

 $\lambda:1\times1$

$$\Longrightarrow A\overline{x} = \lambda \overline{x} (A - \lambda I)\overline{x} = \overline{0}$$

 $\chi_A(\lambda) = det(A - \lambda I) = |A - \lambda I|$ karakteristik polinom

 $\chi_A(\lambda) = \det(A - \lambda I) = 0 \longrightarrow$ çözümü λ değerlerini verir.

$$\frac{\ddot{O}rnek:}{A = \begin{bmatrix} -1 & -1.5 \\ 0.5 & 1 \end{bmatrix}} A - \lambda I = \begin{bmatrix} -1 & -1.5 \\ 0.5 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -1 - \lambda & -1.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\chi_A(\lambda) = \det(A - \lambda I) = (-1 - \lambda)(1 - \lambda) - (0.5)(-1.5)$$

$$\lambda^2 - 0.25 = 0$$

$$(\lambda - 0.5)(\lambda + 0.5) = 0$$

$$\downarrow$$

$$\lambda_1 = 0.5 \qquad \lambda_2 = -0.5$$

bulduğumuz bu λ değerlerini $(A - \lambda I)\overline{x} = 0$ 'da yerine koyarsak:

$$\lambda_1 = 0.5 \longrightarrow \underbrace{\begin{bmatrix} -1 - \lambda & -1.5 \\ 0.5 & 1 - \lambda \end{bmatrix}}_{\text{B}} \overline{x}_1 = 0$$

 \overline{x}_1 vektörü B'nin null space'ini oluşturur

$$\overline{x}_1 = \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix} \qquad \alpha = 1 \longrightarrow \overline{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\|\overline{x}_1\| = \sqrt{\alpha^2 + \alpha^2} = \sqrt{2}\alpha \longrightarrow \overline{x}_1 = \frac{\overline{x}_1}{\|\overline{x}_1\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\lambda_2 = -0.5 \longrightarrow (A - \lambda_2 I)\overline{x}_2 = \underbrace{\begin{bmatrix} -0.5 & -1.5 \\ 0.5 & 1.5 \end{bmatrix}}_{C} \overline{x}_2 = \overline{0}$$

$$\overline{x}_2 \text{ C'nin null-space'idir.}$$

$$\overline{x}_2 = \begin{bmatrix} -3\alpha \\ \alpha \end{bmatrix} \longrightarrow \|\overline{x}_2\| = \sqrt{9\alpha^2 + \alpha^2} = \sqrt{10}\alpha$$

$$\overline{x}_2 = \begin{bmatrix} \frac{-3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$
"

Özdeğer ÖzVektör

$$\lambda_1 = 0.5 \longrightarrow \overline{x}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$\lambda_2 = -0.5 \longrightarrow \overline{x}_2 = \begin{bmatrix} \frac{-3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$

Denklem sistemi çözümü:

$$\overline{y}_1(t) = \begin{bmatrix} \overline{y}_1(t) \\ \overline{y}_2(t) \end{bmatrix} = \lambda_1^t \overline{x}_1 = (0.5)^t \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$\overline{y}_2(t) = \begin{bmatrix} \overline{y}_1(t) \\ \overline{y}_2(t) \end{bmatrix} = \lambda_2^t \overline{x}_2 = (-0.5)^t \begin{bmatrix} \frac{-3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$

Hem $\overline{y}_1(t)$ hem de $\overline{y}_2(t)$ orjinal denklem sist. çözümünü sağlıyor. Sistem linear bir sistem olduğundan toplam çözüm:

$$\overline{y}_t(t) = C_1 \lambda_1^t \overline{x}_1 + C_2 \lambda_2^t \overline{x}_2$$

Denklem sisteminde başlangıç koşulları verilirse C_1 ve C_2 bulunabilir.

3.1.2 ÖzVektörlerin(EigenVectors)Lineer Bağımsızlığı?

$$\overline{x}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \qquad \overline{x}_2 = \begin{bmatrix} \frac{-3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$

$$< \overline{x}_1, \overline{x}_2 >= \overline{x}_1^T \cdot \overline{x}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{-3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix} = \frac{-3}{\sqrt{20}} - \frac{1}{\sqrt{20}}$$

$$\overline{x}_1 * \overline{x}_2 = \frac{-4}{\sqrt{20}} = \frac{-4}{2\sqrt{5}} = \frac{-2}{\sqrt{5}}$$

$$\underline{Lema:} \ n \times n \ \text{boyutlu A matrisinin tüm özdeğerleri birbirinden farklı ise A matrisinin özvektörleri brbirinden lineer bağımsızdır.}$$

$$k_1 \overline{x}_1 + k_2 \overline{x}_2 = \overline{0}$$

$$k_1 A \overline{x}_1 + k_2 A \overline{x}_2 = k_1 \lambda_1 \overline{x}_1 + k_2 \lambda_2 \overline{x}_2 = 0(*)$$

 $k_1 \lambda_1 \overline{x}_1 + k_2 \lambda_1 \overline{x}_2 - k_1 \lambda_1 \overline{x}_1 + k_2 \lambda_2 \overline{x}_2 = 0$ $k_1 \lambda_2 \overline{x}_1 + k_2 \lambda_2 \overline{x}_2 = 0 (**)^1$ $(*) - (**) \longrightarrow k_1 (\lambda_1 - \lambda_2) \overline{x}_1 = \overline{0}$

 $\lambda_1 \neq \lambda_2, \overline{x}_1 \neq \overline{0} \longrightarrow k_1 = 0$ olmalı aynı şekilde $\lambda_1 \neq \lambda_2$ için $\longrightarrow k_1 = 0$ olmalı

.

3.2 Matrisin Ayrıştırılması

$$A: n \times n$$

$$\ddot{\text{O}}\text{zvekt\"{o}rleri}: \overline{x}_{1}, \overline{x}_{2}, \overline{x}_{3}, \cdots, \overline{x}_{n}$$

$$- \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\ddot{\text{O}}\text{zde\~{g}erleri}: \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$$

$$A\overline{x}_{i} = \lambda_{i}\overline{x}_{n} \quad i = 1, 2 \cdots, n$$

$$[A\overline{x}_{1} \quad A\overline{x}_{2} \quad A\overline{x}_{3} \quad \cdots A\overline{x}_{n} \quad]_{n \times n} = [\lambda_{1}\overline{x}_{1} \quad \lambda_{2}\overline{x}_{2} \quad \lambda_{3}\overline{x}_{3} \quad \cdots \lambda_{n}\overline{x}_{n} \quad]_{n \times n}$$

$$- \qquad \downarrow$$

$$A_{n \times n} \underbrace{\left[\overline{x}_{1} \quad \overline{x}_{2} \quad \overline{x}_{3} \quad \cdots \overline{x}_{n} \quad \right]_{n \times n}}_{n \times n} = \underbrace{\left[\overline{x}_{1} \quad \overline{x}_{2} \quad \overline{x}_{3} \quad \cdots \overline{x}_{n} \quad \right]_{n \times n}}_{n \times n} \underbrace{\begin{bmatrix} \lambda_{1} \quad 0 \quad 0 \quad \cdots \quad 0 \\ 0 \quad \lambda_{2} \quad 0 \quad \cdots \quad 0 \\ \vdots \\ 0 \quad 0 \quad 0 \quad \cdots \quad \lambda_{n} \end{bmatrix}_{n \times n}}_{n \times n}$$

$$- \qquad S \qquad S \qquad \lambda$$

$$\longrightarrow AS = S\lambda$$

 $[\]overline{k_1}\overline{x_1}+k_2\overline{x_2}=\overline{0}$ denklemi λ_2 ile çarpılırak elde edildi

Eğer eigenvector'ler lineer bağımsız iseler, S matrisi full rank ve tersi alınabilirler.

.....

$$\begin{split} & \underline{e^{At} \ \mathbf{nasil} \ \mathbf{bulunur?}} \\ e^x &= \sum_{i=0}^{\infty} \frac{x^i}{i!} \\ e^{At} &= \sum_{i=0}^{\infty} \frac{A^i t^i}{i!} \end{split}$$

3.3 Özdeğer Ve Özvektörlerden Matris Oluşturma

$$\lambda_{i}, \overline{x}_{i} \quad i = 1, 2, \cdots, n \qquad \overline{x}_{i}^{H} \overline{x}_{j} = 0 \text{ olsun } (i \neq j)$$

$$n = 2 \text{ ele alalım.} \qquad \|\overline{x}_{i}\| = 1$$

$$S = \begin{bmatrix} \overline{x}_{1} & \overline{x}_{2} \end{bmatrix} \qquad \bigwedge = \begin{bmatrix} \overline{x}_{1} & 0 \\ 0 & \overline{x}_{2} \end{bmatrix}$$

$$S^{-1}S = I$$

$$\begin{bmatrix} - & \overline{x}_1^H & - \\ - & \overline{x}_2^H & - \end{bmatrix} \begin{bmatrix} \overline{x}_1 & \overline{x}_2 \end{bmatrix} = \begin{bmatrix} \|\overline{x}_1\|^2 & \overline{x}_1^H \overline{x}_2 \\ \overline{x}_2^H \overline{x}_1 & \|\overline{x}_2\|^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow S^{-1} = S^H$$

$$A = S \wedge S^{-1} = S \wedge S^{H}$$

$$= \begin{bmatrix} \overline{x}_{1} & \overline{x}_{2} \end{bmatrix} \begin{bmatrix} \overline{\lambda}_{1} & 0 \\ 0 & \overline{\lambda}_{2} \end{bmatrix} \begin{bmatrix} - & \overline{x}_{1}^{H} & - \\ - & \overline{x}_{2}^{H} & - \end{bmatrix} = \begin{bmatrix} \lambda_{1} \overline{x}_{1} & \lambda_{2} \overline{x}_{2} \end{bmatrix}_{2 \times 2} \begin{bmatrix} - & \overline{x}_{1}^{H} & - \\ - & \overline{x}_{2}^{H} & - \end{bmatrix}$$

$$A = \lambda_{1} \overline{x}_{1} \overline{x}_{1}^{H} + \lambda_{2} \overline{x}_{2} \overline{x}_{2}^{H}$$

Genel olarak ,özdeğerleri (λ_i) ve özvektörleri (\overline{x}_i) verilen bir matris için , eğer $\overline{x}_i^H \cdot \overline{x}_j = 0$ ise bu matris şu şekilde oluşturulabilir:

$$A = \lambda_1 \overline{x}_1 \overline{x}_1^H + \lambda_2 \overline{x}_2 \overline{x}_2^H + \dots + \lambda_n \overline{x}_n \overline{x}_n^H$$

$$\Longrightarrow A = \sum_{i=1}^{n} \lambda_i \overline{x}_i \overline{x}_i^H \qquad P_i = \overline{x}_i \overline{x}_i^H$$

Örnek:

$$\frac{OTHek.}{\lambda_1 = \lambda_2 = 1} \quad \lambda_3 = -1$$

$$\overline{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \overline{x}_2 = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \overline{x}_3 = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

A matrisini oluşturunuz?

Cevap:

$$\frac{C \cdot \text{vap.}}{A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}} \quad \text{olmali} .$$

Örnek:

$$\lambda_1 = 5, \lambda_1 = 10$$

$$\overline{x}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \overline{x}_2 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$

$$A = ?$$

$$\overline{x}_{1}^{H} \overline{x}_{2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} -4 \\ 3 \end{bmatrix} = 0 \qquad \overline{x}_{1} \perp \overline{x}_{2}$$

$$\overline{u}_{1} = \frac{\overline{x}_{1}}{\|\overline{x}_{1}\|} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \overline{u}_{2} = \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$

$$P_{1} = \overline{u}_{1} \overline{u}_{1}^{H} = \frac{1}{25} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$$

$$P_{2} = \overline{u}_{2}\overline{u}_{2}^{H} = \frac{1}{25} \begin{bmatrix} -4\\3 \end{bmatrix} \begin{bmatrix} -4\\3 \end{bmatrix} \begin{bmatrix} -4\\3 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 16\\-12\\9 \end{bmatrix}$$

$$A = \lambda_{1}P_{1} + \lambda_{2}P_{2} = 5 \cdot \frac{1}{25} \begin{bmatrix} 9\\12\\12\\16 \end{bmatrix} + 10 \cdot \frac{1}{25} \begin{bmatrix} 16\\-12\\9 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 9+32&12-24\\12-24&16+18 \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{41}{5} & \frac{-12}{5}\\ \frac{-12}{5} & \frac{34}{5} \end{bmatrix}$$

Not: A simetrik bir matris.

3.4 Self-Adjoint Matrislerin Köşegenleştirilmesi

Self-adjoint matris
$$\longrightarrow \langle A\overline{x}, \overline{x} \rangle = \langle \overline{x}, A^H \overline{x} \rangle$$

- $\downarrow \qquad \qquad \downarrow$
- $\overline{x}^H A \overline{x} = \overline{x}^H A x$

- * A matrisinin elemanları reel değerler ise Self—adjoint matrise simetrik matris denir ve $A^T=A$
- * A matrisinin elemanları kompleks değerler ise Self—adjoint matrise hermitian matris denir ve $A^T=A$

Özellikleri:

- 2- Self-adjoint(simetrik veya hermitian)matrisler için birbirinden farklı eigenvalue'lara karşılık gelen eigenvektörler birbirine diktir. ispat:< $A\overline{x}_1, \overline{x}_2 > =< \overline{x}_1, A^H \overline{x}_2 > =< \overline{x}_1, \lambda_2 \overline{x}_2 >= \lambda_2 < \overline{x}_1, \overline{x}_2 >=$ $\overline{\lambda_2} \overline{x}_1^H \overline{x}_2$

$$\langle A\overline{x}, \overline{x} \rangle = \langle \lambda_1 \overline{x}_1, \overline{x}_2 \rangle = \lambda_1 \overline{x}_1^H \overline{x}_2$$

$$\Rightarrow (\lambda_1 \overline{x}_1^H \overline{x}_2 - \lambda_2 \overline{x}_1^H \overline{x}_2) = 0$$

$$\Rightarrow (\lambda_1 - \lambda_2)(\overline{x}_1^H \overline{x}_2) = 0$$

 $\lambda_1 \neq \lambda_2$ ise $\overline{x}_1 \perp \overline{x}_2$ olmalı.

<u>Teorem:</u> $n \times n$ boyutu A matrisi hermitian bir matris ise $(A^H = A \text{ ise})$ A matrisinin EVD açılımı:

 $\begin{array}{ll} A = U \bigwedge U^H = \sum_{i=1}^n \lambda_i \overline{U}_i \overline{U}_i^H & \text{şeklinde yazlır .} \\ \text{Bu arada U matrisi } U = \left[\overline{U}_1 \quad \overline{U}_2 \overline{U}_3 \cdots \overline{U}_n\right] \text{ unitary bir matristir.} \end{array}$

EVD Uygulamaları 3.5

$$R = \frac{\text{Korelasyon matrisi:}}{R = E\{\overline{x}\overline{x}^H\}}$$

$$R \longrightarrow EVD \longrightarrow \lambda_i, \overline{U}_i$$

Dominant eigenvalue sayısı \longrightarrow r, ortamda r adet kullanıcı vardır. $\text{EVD} \longrightarrow \text{MUSIC,ESPRIT,} \cdots$ vs high resolution algoritmalarla Q_i 'ler bulunabilir .

Korelasyon Matrisi Özellikleri 3.6

1) $R \longrightarrow hermitian bir matris$ $\underline{\ddot{\text{ornek}}}$: $x(t) = e^{jwt} \longrightarrow \text{kompleks sinusoid}$

$$\overline{\mathbf{x}} = \begin{bmatrix} 1 \\ e^{jw} \\ e^{j2w} \\ \vdots \\ e^{j(M-1)w} \end{bmatrix}$$

$$R = E\{\overline{x}\overline{x}^H\} \cong \frac{1}{N} \sum_{i=1}^{N} \overline{x}(i)\overline{x}^H(i)$$

$$R = E\left\{ \begin{bmatrix} 1\\ e^{jw}\\ e^{j2w}\\ \vdots\\ e^{j(M-1)w} \end{bmatrix} \begin{bmatrix} 1 & e^{jw} & e^{j2w} & \cdots & e^{j(M-1)w} \end{bmatrix} \right\}$$

$$= \mathrm{E} \left\{ \begin{bmatrix} 1 & e^{-jw} & e^{-j2w} & \cdots & \cdots & e^{-j(M-1)w} \\ e^{jw} & 1 & e^{-jw} & e^{-j2w} & \cdots & e^{-j(M-1)w} \\ e^{j2w} & e^{jw} & 1 & \cdots & \cdots & e^{-j(M-3)w} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ e^{j(M-1)w} & e^{j(M-1)w} & \cdots & \cdots & \ddots & 1 \end{bmatrix}_{m \times m} \right\}$$

R hermitian bir matris

- 2) R'nin eigenvalue'ları reel ve pozitif değerlerden oluşur . $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_m > 0$
- 3) R'nin eigenvektörleri biribirine diktir. $(\overline{q}_i \perp \overline{q}_j)$ $\overline{q}_1, \overline{q}_2, \cdots, \overline{q}_m \rightarrow \overline{q}_i^H \cdot \overline{q}_j$
- 4) R^k matrisinin eigenvalue'ları $\lambda_1^k, \lambda_2^k, \cdots, \lambda_m^k$ <u>ispatı</u>? (ödev)

$$5) \ Q = \begin{bmatrix} \overline{q}_1 & \overline{q}_2 & \cdots & \overline{q}_m \end{bmatrix} Q^H R Q = \bigwedge = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \lambda_m \end{bmatrix}$$

Unitary—similarity transformation

6)
$$tr[R] = \sum_{i=1}^{M} \lambda_i$$
 İspatı?

Bölüm 4

Bölüm4

4.1 QR Ayrıştırması

A = QRQ:unitary matris R:üst üçgensel matris

Unitary matris: $Q^H \cdot Q = I$

Eğer Q'nun sadece gerçek değerlikli elemanları varsa Q'ya ortogonal matris denir.

 $\begin{array}{ll} \underline{\text{Lema1:}} & \overline{y} = Q\overline{x} & \|y\| = \|x\| & \overline{y} \in R^{m\times 1}, \overline{x} \in R^{m\times 1} \\ \underline{\text{Lema2:}} & Y = QX & \text{, Y ve X birer matris} \end{array}$

$$||Y||_F = ||X||_F$$

Not: $\|\cdot\|_F \to \text{matris Frobenius norm}$ $\overline{\|X\|_F} = (\sum_{i=1}^m \sum_{j=1}^n |X_{ij}^2|)^{\frac{1}{2}} = (tr(X^H X))^{\frac{1}{2}}$ <u>Örnek:</u> OTHER: $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, X^H = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ $X^H X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix}$ $tr(X^H X) = a^2 + b^2 + c^2 + d^2 = (\sum_{i=1}^2 \sum_{j=1}^2 |X_{ij}^2|)$

Niçin QR? 4.2

$$A_{m \times n} \overline{x}_{n \times 1} = \overline{b}_{m \times 1} \longrightarrow \zeta \ddot{\text{o}} \ddot{\text{z}} \ddot{\text{u}} \dot{x} = \underbrace{(A^H A)^{-1} A^H}_{\text{pseduo-inverse}} \cdot \overline{b}$$

-bu çözüm $\|A\overline{x}-\overline{b}\|_2^2$ minimize eden bir çözümdür. -aynı zamanda least—squares(en küçük kareler) çözümü olarakda adlandırılır.

$$||A\overline{x} - \overline{b}||^2 = (A\overline{x} - \overline{b})^H (A\overline{x} - \overline{b}) = (\overline{x}^H A^H - \overline{b}^H) (A\overline{x} - \overline{b})$$

$$J(\overline{x}) = \overline{x}^H A^H A \overline{x} - \overline{x}^H A^H \overline{b} - \overline{b}^H A \overline{x} + \overline{b}^H b$$

maliyet fonksiyonu

vektörel türev
$$\rightarrow \frac{\partial J(\overline{x})}{\partial \overline{x}} = A^H A \overline{x} + A^H A \overline{x} - A^H \overline{b} - A^H b = 0$$

$$\Rightarrow 2A^H A \overline{x} - 2A^H \overline{b} = 0$$

$$\Rightarrow \overline{x} = (A^H A)^{-1} A^H \overline{b}$$
 LS çözüm

$$\frac{\partial}{\partial \overline{x}} \frac{\mathbf{\dot{I}pucu:}}{(x^H A)} = A, \quad \frac{\partial}{\partial \overline{x}} (A \overline{x}) = A^H$$

$$\overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \overline{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\overline{x}^H \overline{c} = \begin{bmatrix} x_1 c_1 + x_2 c_2 + x_3 c_3 \end{bmatrix}$$

$$\frac{\partial}{\partial \overline{x}_1} \overline{x}^H \overline{c} = c_1 \quad , \frac{\partial}{\partial \overline{x}_2} \overline{x}^H \overline{c} = c_2 \quad , \frac{\partial}{\partial \overline{x}_3} \overline{x}^H \overline{c} = c_3$$

$$\frac{\partial}{\partial \overline{x}} = \begin{bmatrix} \frac{\partial}{\partial \overline{x}_1} \\ \frac{\partial}{\partial \overline{x}_2} \\ \frac{\partial}{\partial \overline{x}_2} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \overline{c}$$

$$A_{m \times n} = Q_{m \times m} R_{m \times n} = Q \begin{bmatrix} R_1 \\ \overline{0} \end{bmatrix}$$

$$m > n \qquad R_1 : n \times n, \overline{0} : (m - n) \times n$$

$$A_{m \times n} \overline{x}_{n \times 1} = b_{m \times 1}(*)$$

$$\Rightarrow QR\overline{x} = \overline{b}$$

$$Q^{H}QR\overline{x} = Q^{H}\overline{b}$$

$$R\overline{x} = Q^{H} \cdot \overline{b}$$

$$Q_{m \times m}^{H} \cdot b_{m \times 1} = \begin{bmatrix} c \\ d \end{bmatrix} \to c : n \times 1 \qquad d : (m - n) \times 1$$

$$R\overline{x} = Q^{H}\overline{b}$$

$$\Rightarrow \begin{bmatrix} R_{1} \\ \overline{0} \end{bmatrix} \overline{x} = \begin{bmatrix} c \\ d \end{bmatrix}$$

$$R_{1n \times n}\overline{x}_{n \times 1} = \overline{c}_{n \times 1} \quad (**)$$

- (*) ve (**) denklemlerinin çözümü aynı \overline{x} vektörüdür.
- (**) kolaylıkla çözülebilir çünkü R_1 üst üçgensel bir matrisdir.

not: m < n ise QR kullanılamaz!

QR Ayrıştırması:

Gram-Scmidt algoritması, Householder dönüşümü veya Givens rotation yöntemlerinden birisi kullanılarak yapılabilir.

HouseHolder Dönüşümü: 4.3

 $\overline{x}_v:\overline{x}$ vektörünün \overline{v} vektörü üzerine izdüşümü

 $\overline{x}_v^\perp:(\overline{x}-\overline{x}_v)$ yani \overline{x} 'in \overline{x}_v 'ye dik olan bileşeni $\overline{H}_v\overline{x}:\overline{x}$ vektörünün \overline{x}_v^\perp 'ye göre yansıtılmışı(döndürülmüşü)

$$\overline{x}_{v} = P_{v} \cdot \overline{x}$$

$$P_{v} = \frac{\overline{VV}^{H}}{(\overline{V}^{H}\overline{V})} , \overline{V} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix}$$

$$\Rightarrow \overline{x}_{v} = \frac{\overline{VV}^{H}}{(\overline{V}^{H}\overline{V})} \cdot \overline{x}$$

$$\overline{x}_{v}^{\perp} = \overline{P}_{v}^{\perp} \overline{x} , \overline{P}_{v}^{\perp} = I = \overline{P}_{v} = I - \frac{\overline{VV}^{H}}{(\overline{V}^{H}\overline{V})}$$

$$\overline{x}_{v}^{\perp} = (I - \frac{\overline{VV}^{H}}{(\overline{V}^{H}\overline{V})}) \overline{x} = \overline{x} - \overline{x}_{v}$$

$$H_{v} = I - 2 \frac{\overline{VV}^{H}}{(\overline{V}^{H}\overline{V})}$$

Householder dönüşüm matrisi \overline{x} 'in yalnızca \overline{V} vektörü üzerindeki bileşenin yönünü değiştirir.

youthly degistrin:
$$H_{v} = I - \frac{\overline{V}\overline{V}^{H}}{(\overline{V}^{H}\overline{V})} - \frac{\overline{V}\overline{V}^{H}}{(\overline{V}^{H}\overline{V})}$$

$$= P_{v}^{\perp} - P_{v}$$

$$H_{v}\overline{x} = P_{v}^{\perp}\overline{x} - P_{v}\overline{x} = \overline{x}_{v}^{\perp} - \overline{x}_{v} = \overline{x}_{v}^{\perp} + (-\overline{x}_{v})$$

$$H_{v}^{2} = I \quad H_{v}^{H} = H_{v}$$

Ödev: $H_v.H_v=I$ olduğunu gösteriniz.

$$\overline{\mathbf{X}} = egin{bmatrix} \overline{X} & \mathbf{Nasıl seçilir?} \ \overline{\mathbf{X}} & = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}_{n imes 1} \end{split}$$

Amaç ,
bu \overline{X} vektörünü öyle bir H_v ile çarpmak ve sonuçt
a $x_2=x_3=\cdots=x_n=0$ yapmak.

Amaç:
$$H_v \overline{x} = \begin{bmatrix} \alpha \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \overline{e}_1$$

$$\Rightarrow \left[I - 2\frac{\overline{V}\overline{V}^H}{(\overline{V}^H \overline{V})}\right] \overline{x} = \alpha \overline{e}_1$$

$$\overline{x} - 2\frac{(\overline{V}^H \overline{x})\overline{V}}{(\overline{V}^H \overline{V})} = \alpha \overline{e}_1$$

$$\Rightarrow \overline{x} - \alpha \overline{e}_1 = 2\frac{(\overline{V}^H \overline{x})}{(\overline{V}^H \overline{V})} \cdot \overline{V} \qquad (2\frac{(\overline{V}^H \overline{x})}{(\overline{V}^H \overline{V})} = 1 \text{kabul edersek})$$

$$(\text{Not:} H_v \overline{x} = \alpha \overline{e}_1 \qquad ||H_v \overline{x}|| = ||\alpha \overline{e}_1|| \qquad H_v : \text{"unitary.} \qquad \Rightarrow ||\overline{x}|| = \alpha)$$

$$\overline{x} - \alpha \overline{e}_1 = \overline{V}$$

$$\overline{x} \pm ||\overline{x}|| \overline{e}_1 = \overline{V}$$

$$\Rightarrow \overline{V} = \overline{x} + sign(x_1) ||x|| \overline{e}_1$$

$$\begin{array}{l} H_1 = Q = I - 2 \frac{v_1 \overline{v_1}^H}{\|\overline{v_1}\|^2} \\ \overline{v_1} = \overline{x} + sign(x_1) \|\overline{x}\| \overline{e_1} \, |^{\alpha} \, 4 \times 1 \\ \overline{e_1} = [1000]^T \\ V_1 : 4 \times 1 \\ \hline {\text{Step2}} \\ \overline{H_2} : 3 \times 3 \\ H_2 = I - 2 \frac{\overline{v_2} \overline{v_2}^H}{\|\overline{v_2}\|^2} \\ \overline{v_2} = \overline{y} + sign(y_1) \|\overline{y}\| e_1 \, |^{\alpha} \, 3 \times 1 \\ Q_2 = \begin{bmatrix} 1 & \overline{0}^T \\ \overline{0}^T & H_2 \end{bmatrix}_{2 \times 2} & \overline{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ Q_2 Q_1 A = \begin{bmatrix} \alpha_1 & x & x \\ 0 & \alpha_2 & x \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix} \\ \hline {\text{Step3}} : \\ \overline{H_3} : \overline{2} \times 2 \\ H_3 = I - 2 \frac{\overline{v_3} \overline{v_3}^H}{\|\overline{v_3}\|^2} \\ \overline{v_3} = \overline{z} + sign(z_1) \|\overline{z}\| e_1 \, |^{\alpha} \, 2 \times 1 \\ V_3 : 2 \times 1 \\ \hline Q_3 = \begin{bmatrix} 1 & 0 & \overline{0}^T \\ 0 & 1 & \overline{0}^T \\ \overline{0} & \overline{0} & H_3 \end{bmatrix}_{3 \times 3} & \overline{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ Q_3 Q_2 Q_1 A = \begin{bmatrix} \alpha_1 & x & x \\ 0 & \alpha_2 & x \\ 0 & 0 & \alpha_3 \\ 0 & 0 & 0 \end{bmatrix} = R \\ \hline {\text{Sonucta}} : \\ Q_3 Q_2 Q_1 A = Q_3^H R \\ Q_3^H Q_3 Q_2 Q_1 A = Q_3^H R \\ 1 \\ Q_1^H Q_1 A = Q_1^H Q_2^H Q_3^H R \\ 1 \\ Q_2^H Q_2 Q_3^H A = Q_1^H Q_2^H Q_3^H R \\ 1 \\ Q = Q_1^H Q_2^H Q_3^H , Q_1^H = Q_3 Q_2 Q_1 \\ Denklem & \text{sistemi} \\ A \overline{x} = \overline{b} \\ Q R \overline{x} = \overline{b} \\ \end{array}$$

$$R\overline{x} = Q^{H}b = \begin{bmatrix} \overline{c} \\ \overline{d} \end{bmatrix}$$

$$\mathbf{m} \cdot \mathbf{n} \left\{ \begin{bmatrix} \mathbf{R} \\ \overline{\mathbf{Q}} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \overline{c} \\ \overline{d} \end{bmatrix} \right\} \mathbf{m} \cdot \mathbf{n}$$

Problem $R_1\overline{X}=\overline{C}$ sistemi çözümüne indirgenmiştir.

 R_1 üst üçgensel bir matris olduğundan çözüm geri yerine koyma yöntemiyle kolaylıkla bulunabilir.

Not:

2. ve 3. adımdaki Q_2 ve Q_3 'ler

$$Q_{24\times 4} = I - 2\frac{\tilde{V}_2 \tilde{V}_2^H}{\|\tilde{V}_2\|^2} \qquad \tilde{V}_2 = \begin{bmatrix} 0\\ \tilde{V}_2 \end{bmatrix}_{4\times 1}$$
$$Q_{34\times 4} = I - 2\frac{\tilde{V}_3 \tilde{V}_3^H}{\|\tilde{V}_3\|^2} \qquad \tilde{V}_3 = \begin{bmatrix} 0\\ 0\\ \tilde{V}_3 \end{bmatrix}_{4\times 1}$$

4.4 QR Yöntemi İle Denklem Sistemi Çözümü Matlab Örneği

```
\gg A = [788; 862; 173; 073; 695]
      788
      862
A =
      173
      073
      695
\gg b = [47\overline{2}6242339]'
     26
b = |24|
     23
\gg [m,n] = size(A)
5
n =
function v = makehouse(x)
\% Make the Householder vector v such that
Hx has zeros in
\% all but the first component
% function v = makehouse(x)
\% x = vector to be transformed
\% v = Householder vector
\% © 1999 by Todd K. Moon
   v = x(:);
nv = norm(v);
if(abs(x(1)) == nv)
v = 0 * v;
else
if(v(1))
```

```
v(1) = v(1) + sign(v(1)) * nv;
else
v(1) = v(1) + nv;
end
end
.>> v = makehouse(A(:,1));
      19.2474
      8.0000
v =
         0
     6.0000
\gg a = A(:,1)
      8
a =
\gg na = (a' * a)^0.5
na =
12.2474
\gg e_1 = [10000]
e_1 =
[10000]
\gg e_1 = na * e_1
e_1 =
[12.2474 0000]
e_1 = e_1'
      12.2474
          0
          0
e_1 =
          0
          0
\gg v = a + e_1
     [19.2474]
      8.0000
      1.0000
v =
      6.0000
\gg eye(5,5)
```

$$ans = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\gg H_1 = eye(5,5) - 2 * v * v'/(v' * v)$$

$$\begin{bmatrix} -0.5715 & -0.6532 & -0.0816 & 0 & -0.4899 \\ -0.6532 & 0.7285 & -0.0339 & 0 & -0.2036 \\ -0.0816 & -0.0339 & 0.9958 & 0 & -0.0225 \\ 0 & 0 & 0 & 1.0000 & 0 \\ -0.4899 & -0.2036 & -0.0255 & 0 & 0.8473 \end{bmatrix}$$

$$\gg Q_1 = H_1$$

$$\begin{bmatrix} -0.5715 & -0.6532 & -0.0816 & 0 & -0.4899 \\ -0.6532 & 0.7285 & -0.0339 & 0 & -0.2036 \\ -0.0816 & -0.0339 & 0.9958 & 0 & -0.0225 \\ 0 & 0 & 0 & 1.0000 & 0 \\ -0.4899 & -0.2036 & -0.0255 & 0 & 0.8473 \end{bmatrix}$$

$$\gg A_1 = \begin{bmatrix} -12.2474 & -13.4722 & -8.5732 \\ -0.0000 & -2.9247 & -4.8885 \\ -0.0000 & 2.3065 & -0.1664 \end{bmatrix}$$

$$a_1 = A_1(2 : 5, 2)$$

$$\begin{bmatrix} -2.9247 \\ 5.8844 \\ 7.0000 \\ 2.3065 \end{bmatrix}$$

$$\gg v_2 = a_1 - (sqrt(a'_1 * a_1)) * [1000]'$$

$$t_2 = \begin{bmatrix} -12.7989 \\ 5.8844 \\ 7.0000 \\ 2.3065 \end{bmatrix}$$

$$\gg H_2 = eye(4, 4) - 2 * v_2 * v'_2/(v'_2 * v_2)$$

$$\begin{bmatrix} -0.2962 & 0.5959 & 0.7089 & 0.2336 \\ 0.5959 & 0.7260 & -0.3259 & -0.1074 \\ 0.7089 & -0.3259 & 0.6123 & -0.1278 \\ 0.2336 & -0.1074 & -0.1278 & 0.9579 \end{bmatrix}$$

$$Q_2 = zeros(5, 5)$$

 $\gg Q3(1:2,1:2) = eye(2,2)$

 $\gg z = Q_h * b$

```
-64.9115
      34.1800
      11.3680
       0.0000
      -64.9115<sup>-</sup>
      34.1800
      11.3680
m = 3;
\gg x(3) = c(3)/U(3,3)
x = [0 \quad 0 \quad 3.0000]
Geri yerine koyma Matlab kodu:
m=3;
x(m)=c(m)/U(m,m);
for j=m-1:-1:1;
tmp=0;
for k=j+1:m;
tmp=tmp+U(j,k)*x(k);
end
x(j)=(1/U(j,j))*(c(j)-tmp);
end
yukarıdaki kod kullanılabilir veya manual olarak tek tek şu şekilde hesapla-
>> x(2) = (1/U(2,2)) * (c(2) - U(2,3) * x(3))
x =
   0 2.0000 3.0000
>> x(1) = (1/U(1,1)) * (c(1) - [U(1,2) * x(2) + U(1,3) * x(3)])
x =
```

 $1.0000\ 2.0000\ 3.0000$

Bölüm 5

Bölüm5

Optimizasyon(En İyileme) 5.1

Tanım kümesi $\Omega : \{x : x \ge 0\}$

 x_1 : kesin lokal minimum

 x_2 : maksimum

$$x_{3} : \text{lokal minimum}$$

$$\frac{\partial f(x)}{\partial x}|_{x=x_{1}} = 0 \quad , \frac{\partial f(x)}{\partial x}|_{x=x_{2}} = 0 \quad , \quad \frac{\partial f(x)}{\partial x}|_{x=x_{3}} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

 $\overline{|x-x^*|} < \varepsilon$ için $f(x) \ge f(x^*)$ sağlayan $x^* \in R$ noktasına <u>lokal minimum</u> noktası denir.

Eğer $f(x) > f(x^*) \ \forall x$ için x^* noktasına <u>kesin lokal minimum</u> denir.

Tüm $x \in R$ kümesi içinde $f(x) \ge f(x^*)$ sağlayan $x \in R$ noktasına global minimum denir.

Gradyan Operatörü: (∇_x)

Gradyan Operatoru.
$$(\mathbf{v}_x)$$

$$\overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\nabla_x f(\overline{x}) = \begin{bmatrix} \frac{\partial f(\overline{x})}{\partial x_1} \\ \frac{\partial f(\overline{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\overline{x})}{\partial x_n} \end{bmatrix}_{n \times 1}$$

$$f(\overline{x}) : R^n \to R$$

Hessian Matrisi(H)

$$H = \nabla_x f(\overline{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}_{n \times n}$$

Minumum İçin Gerekli Koşul:

1. Eğer \overline{x}^* f fonksiyonun Ω tanım kümesinde lokal minimum noktası ise,

$$[\nabla f(\overline{x}^*)]^T \overline{d} \ge 0$$

 $\overline{d},\overline{x}^*$ noktasındaki uygulanabilir yön vektörü.

- $2. \nabla f(\overline{x}^*) = \overline{o}$
- 3. Verilen \overline{x}^* noktası için Hessian matrisi pozitif semidefinite bir matris olmalı

$$<\underbrace{\nabla^2 f(\overline{x}^*)}_{-}\overline{d}, \overline{d}> = \overline{d}^T \cdot \nabla^2 f(\overline{x}^*) \overline{d} \geq 0$$

<u>Örnek:</u>

$$\overline{\overline{x} = [x_1 x_2]^T}$$

$$\begin{array}{l} f(\overline{x}) = 3x_1^2 + 2x_1x_2 + 3x_1^2 - 20x_1 + 4x_2 \\ x_1 \geq 0 \quad x_2 \geq 0 \text{ için minimum noktası?} \end{array}$$

$$\frac{\partial f}{\partial x_1} = 6x_1 + 2x_2 - 20$$
 $\frac{\partial f}{\partial x_2} = 2x_1 + 6x_2 + 4$

$$\nabla f(\overline{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 6x_1 + 2x_2 - 20 \\ 2x_1 + 6x_2 + 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Çözüm:
$$\overline{x}^* = \begin{bmatrix} \overline{x}_1^* \\ \overline{x}_2^* \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

minimum nokta
$$\rightarrow \begin{bmatrix} \overline{x}_1^* \\ \overline{x}_2^* \end{bmatrix} = \begin{bmatrix} \frac{10}{3} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \overline{\partial x_2} \end{bmatrix}$$
 Çözüm: $\overline{x}^* = \begin{bmatrix} \overline{x}_1^* \\ \overline{x}_2^* \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ $f(\overline{x}^*) = f(4, -2) = -44$ $\overline{x}^* \ge 0$ koşulunu sağlamıyor. $\overline{x}_1^* \ge 0$ $\overline{x}_2^* \ge 0 \to \text{sınırlandırmaları}(\text{constraint})$ gözönüne alırsak: minimum nokta $\to \begin{bmatrix} \overline{x}_1^* \\ \overline{x}_2^* \end{bmatrix} = \begin{bmatrix} \frac{10}{3} \\ 0 \end{bmatrix}$ fonksiyonun lokal minimumu $\to f(\frac{10}{3}, 0) = -33, 33$ $\overline{x}^* = \begin{bmatrix} \frac{10}{3} \\ 0 \end{bmatrix}$ için $\to \nabla f(\overline{x}^*) = \begin{bmatrix} 6.\frac{10}{3} + 2.0 - 20 \\ 2.\frac{10}{3} + 6.0 + 4 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{32}{3} \end{bmatrix}$

o:global minimum x:sınırlandırılmış(constraint)minimum

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

Örnek:

$$\overline{f(x,y)} = x^2y$$

$$g(x,y) = 3y^2x$$

$$h(x,y) = x - 2y$$

$$F(x,y) = f(g(x,y), h(x,y)) = (3y^2x)^2(x-2y)$$

$$\frac{\partial F}{\partial x} = ?$$
 $\frac{\partial F}{\partial y} = ?$

$$v = g(x, y), w = h(x, y) \longrightarrow u = f(v, w) = v^2 w$$

$$\frac{\partial F}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial w} \cdot \frac{\partial w}{\partial x} =$$

$$\frac{\partial u}{\partial x} = 2vw = 2g(x, y).h(x, y) = 2(3y^2x)(x - 2y) = 6x^2y^2 - 12xy^3$$

$$\frac{\partial v}{\partial x} = 3y^2$$

$$\frac{\partial u}{\partial w} = v^2 = (3y^2x)^2 = 9x^2y^4$$

$$\frac{\partial w}{\partial x} = 1$$

$$\frac{\partial F}{\partial x} = (6x^2y^2 - 12xy^3)3y^2 + 9x^2y^4 = 18x^2y^4 - 36xy^5 + 9x^2y^4 = 27x^2y^4 - 36xy^5 /$$

Genel olarak x_1, x_2, \cdots, x_n bağımsız değişkenler

$$g_1(x_1, x_2, \dots, x_n), g_2(x_1, x_2, \dots, x_n), \dots, g_m(x_1, x_2, \dots, x_n)$$

$$F(x_1, x_2, \cdots, x_n) = f(g_1, g_2, \cdots, g_n)$$

$$\frac{\partial F}{\partial x_j} = \sum_{i=1}^m D_i f g_i$$
 $D_i : i$. argümanın türevi

$$= \frac{\partial f}{\partial g_1} \cdot \frac{\partial g_1}{\partial x_j} + \frac{\partial f}{\partial g_2} \cdot \frac{\partial g_2}{\partial x_j} + \dots + \frac{\partial f}{\partial g_m} \cdot \frac{\partial g_m}{\partial x_j}$$

Örnek:

$$f(x_1, x_2) = 3x_1^3 x_2^3 - 2x_1^2 x_2 + 5 \qquad \nabla_x f :? \qquad H = ? \qquad x_1 = 1, x_2 = 1$$

$$\nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 6x_1 x_2^3 - 4x_1 x_2 \\ 9x_1^2 x_2^2 - 2x_1 \end{bmatrix} \Big|_{x_1 = 1, x_2 = 1} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$Hessian matrisi \\ H = \begin{bmatrix} \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_1} f & \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f \\ \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} f & \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_2} f \end{bmatrix} = \begin{bmatrix} 6x_2^3 - 4x_2 & 18x_1x_2^2 - 4x_1 \\ 18x_1x_2^2 - 4x_1 & 18x_1^2x_2 \end{bmatrix}_{x_1 = 1, x_2 = 1} = \begin{bmatrix} 2 & 14 \\ 14 & 18 \end{bmatrix}$$
Örnek:

Ölçüm değerleri: $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$ y=ax+b a=?,b=?least— squares çözümü a ve b'yi verir?

$$\begin{split} & \text{model:} y = ax + b \\ & \text{\"{ol}} \varsigma \ddot{\text{u}} \text{m.} x_i, y_i \\ & 1. \\ & \text{\"{ol}} \varsigma \ddot{\text{u}} \text{m.} e_1 = y - y_1 = (ax_1 + b) - y_1 \\ & 2. \\ & \text{\"{ol}} \varsigma \ddot{\text{u}} \text{m.} e_2 = y - y_2 = (ax_2 + b) - y_2 \\ & \vdots \\ & \text{n.\"{ol}} \varsigma \ddot{\text{u}} \text{m.} e_n = y - y_n = (ax_n + b) - y_n \end{split}$$

Amaç: hataların karelerinin ortalamasını minimize eden a ve b değerlerini

 $J(a,b) = \frac{1}{n} \sum_{i=1}^n e_i^2 \longrightarrow$ hataların karelerinin ortalaması
(mean squared error-

$$\nabla J = \begin{bmatrix} \frac{\partial J}{\partial a} \\ \frac{\partial J}{\partial b} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \to \text{MSE'yi minimum yapan değer Minimum Mean Squared Error(MMSE) -Least Squares(LS)}$$

$$y = ax + b \longrightarrow J(a, b)$$

$$y = ax^2 + bx + c \longrightarrow J(a, b, c)$$

5.2 Koşullu (Constraint) Optimizasyon

Problem tanımı: $minf(\overline{x})$

$$\begin{array}{l}
h_1(\overline{x}) = 0 \\
h_2(\overline{x}) = 0 \\
\vdots \\
h_m(\overline{x}) = 0
\end{array}
\quad \begin{array}{l}
g_1(\overline{x}) \le 0 \\
g_2(\overline{x}) \le 0 \\
\vdots \\
g_p(\overline{x}) \le 0
\end{array}
\quad \begin{array}{l}
\text{eşitlik koşulları} \\
\vdots \\
g_p(\overline{x}) \le 0
\end{array}
\quad \begin{array}{l}
\text{eşitsizlik koşulları} \\
\vdots \\
g_p(\overline{x}) \le 0
\end{array}$$

$$n=(n_1,n_2,\cdots,n_m)$$

$$\bar{g}=(g_1,g_2,\cdots,g_p)$$

$$\mathbf{x} {\in \Omega} \quad, \Omega \in R^n$$

Yukarıdaki problem tekrar yazılırsa

 $\min_{\bar{x}} f(\bar{x})$

$$\bar{h}(\bar{x}) = \hat{\bar{0}}$$

$$\bar{g}(\bar{x}) \le 0 \quad \bar{x} \in \mathbb{R}^n$$

Eşitlik koşulu:

Teorem: (Eşitlik sınırlaması için gerekli koşul)

 \bar{x}^* noktası f
 fonksiyonunun $\bar{h}(\bar{x})=0$ koşulu altında lokal ekstremum noktası için aşağıdaki koşulu sağlaması gerekir.

$$\nabla f(\bar{x}^*) + \nabla \bar{h}(\bar{x}^*).\Lambda = 0$$

 $\Lambda \in R^m$ sayısı lagrange çarpanı olarak adlandırılır.

$$\nabla f(\bar{x}^*) + \sum_{i=1}^m \nabla h_i(\bar{x}^*) . \Lambda_i = 0$$

Lagrange fonksiyonu:

$$L(\bar{x}, \bar{\Lambda}) = f(\bar{x}) + \bar{h}(\bar{x})^T.\bar{\Lambda}$$

$$\nabla_x L(\bar{x}, \bar{\Lambda}) = 0$$

$$\nabla_{\Lambda}L(\bar{x},\bar{\Lambda})$$

min veya max olduğunu bulmak için 2.derece koşullar:

$$\overline{F_{n\times n}(\bar{x},\bar{\Lambda})} = \sum_{k=1}^{m} \frac{\partial^2 \bar{h}_k(\bar{x})}{\partial x_i \partial x_j} x_k \leftarrow \text{H matrisinin (i,j). eleman}$$

$$H_{n \times n}(\bar{x}) = \frac{\partial^2 f(\bar{x})}{\partial x_i \partial x_j} \leftarrow F$$
 matrisinin (i,j). elemanı

$$L(\bar{x}^*) = H(\bar{x}^*) + F(\bar{x}^*, \Lambda)$$

 $L(\bar{x}^*)$ pozitif semidefinite bir matris ise bulunan \bar{x}^* noktası minimum noktasıdır.

Örnek:

$$f(\overline{x_1, x_2)} = 3x_1^2 + 4x_2^2 + 6x_1x_2 - 8x_2 - 6x_1$$

Sınırlama: $h_1(x_1, x_2) = x_1 + x_2 - 9 = 0$

verilen koşulda f'yi minimize eden değeri $(x_1^*=?,x_2^*=?)$ **çözüm:** $\bar{x}=[x_1 \quad x_2]^T$, Lagrange çarpanı Λ_1 $L(\bar{x}_1\Lambda_1)=f(\bar{x})+\Lambda_1h_1(\bar{x})$ $\nabla_x L=\begin{bmatrix} \frac{\partial L}{\partial x_1}\\ \frac{\partial L}{\partial x_2} \end{bmatrix}$

$$L(\bar{x}, \Lambda_1) = (3x_1^2 + 4x_2^2 + 6x_1x_2 - 8x_2 - 6x_1) + \Lambda_1(x_1 + x_2 - 9)$$

$$\frac{\frac{\partial L}{\partial x_1}}{\frac{\partial L}{\partial x_2}} = 6x_1 + 6x_2 - 6 + \Lambda_1(*)$$

$$\frac{\frac{\partial L}{\partial x_2}}{\frac{\partial L}{\partial \lambda_1}} = 8x_2 + 6x_1 - 8 + \Lambda_1(**)$$

$$\frac{\partial L}{\partial \Lambda_1} = x_1 + x_2 - 9(***)$$

$$3 \text{ bilinmeyenli 3 denklem .}$$

$$(**) - (*) \rightarrow 2x_2 - 2 = 0 \Rightarrow \boxed{x_2^* = 1}$$

$$(***) \to \boxed{x_1^* = 8}$$

(*)'de
$$x_1^*$$
 ve x_2^* yerine yazılırsa $\rightarrow \boxed{\Lambda_1 = -48}$ $\bar{x}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$

Ornek:

Bir önceki örnekte $h_1(\bar{x}) = x_1^2 + x_2^2 - 9 = 0$ verilirse $x_1^*, x_2^* = ?$

<u>Örnek:</u>

üstteki örnekte $\begin{array}{l} h_1(x_1, x_2) = x_1^2 + x_2^2 - 9 = 0 \\ h_1(x_1, x_2) = 2x_1 - x_2 - 4 = 0 \end{array} \right\} x_1^* = ? \quad x_2^* = ?$ $L(\bar{x}, \bar{\Lambda}) = f(\bar{x}) + \Lambda_1 h_1(\bar{x}) + \Lambda_2 h_2(\bar{x})$

5.3 Ara Sınav Çözümleri

1) a)
$$A = \begin{cases} 10 & 15 & 20 & 30 \\ 9 & 10 & 15 & 20 \end{cases} \Rightarrow elma \\ 20 & 25 & 30 & 40 \Rightarrow portabal \\ 20 & 25 & 30 & 40 \Rightarrow portabal \\ MA & MB & MC & MD \end{cases}$$
 $B = \begin{cases} 20 & 30 & 40 \\ 0.21 & 0.11 & 0.31 \\ 1 & 1 & 1 \end{cases} \Rightarrow ogillik (kg)$
 $C = BA = \begin{cases} 1270 & 1600 & 2050 & 2800 \\ 9.3 & 12 & 15.2 & 20.9 \\ 1 & 1 & 1 \\ MA & MB & MC & MI) \end{cases}$
 $C = BA = \begin{cases} 1270 & 1600 & 2050 & 2800 \\ 15.2 & 20.9 \\ 11.1 & 1 \\ 11.1 & 1 & 1 \\ MA & MB & MC & MI) \end{cases}$

b)MATLAB

$$A(2:3,1:2:4) = \begin{bmatrix} 9 & 15\\ 20 & 30 \end{bmatrix}$$
c)B(1,:)*A(:,1)
d)B(2,:)*A(:,3)

2)
$$\bar{x}_1 = \begin{bmatrix} \alpha \\ -1 \\ 2 \end{bmatrix}$$
 $\bar{x}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

a)
$$<\bar{x}_1, \bar{x}_2> = \bar{x}_1^T.\bar{x}_2 = [\alpha - 1 \ 2] \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} = \alpha + 1 + 2 = 0 \Rightarrow \boxed{\alpha = -3}$$

b) $\bar{x}_1 \bot \bar{x}_2$ olduğundan $\bar{e}_1 \quad ve \quad \bar{e}_2$ 'yi bulurken normlarına bölmemiz yeterli

$$\|\bar{x}_1\| = \sqrt{\bar{x}_1^T . \bar{x}_1} = \left(\begin{bmatrix} -3 & -1 & 2 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} \right)^{\frac{1}{2}} = \sqrt{14}$$

$$\bar{e}_1 = \frac{\bar{x}_1}{\|\bar{x}_1\|} = \frac{1}{\sqrt{14}} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$$

$$\|\bar{x}_2\| = \sqrt{\bar{x}_2^T . \bar{x}_2} = \left(\begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right)^{\frac{1}{2}} = \sqrt{3}$$

$$\bar{e}_2 = \frac{\bar{x}_2}{\|\bar{x}_2\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

c)
$$\bar{y} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

 \bar{y}_1 $\bar{y}_2 = ?$

$$\langle \bar{y}, \bar{e}_1 \rangle = \begin{bmatrix} 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} \frac{-3}{\sqrt{14}} \\ \frac{-1}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \end{bmatrix} = \frac{-5}{\sqrt{14}}$$

$$<\bar{y}, \bar{e}_2> = \begin{bmatrix} 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$$

$$\bar{y} = \frac{-5}{\sqrt{14}}\bar{e}_1 + 2\sqrt{3}\bar{e}_2$$

$$3) \ A = \begin{bmatrix} 2 & 5 & 9 \\ 1 & 4 & 7 \\ 3 & 2 & 1 \end{bmatrix}$$

a) without pivoting
$$\longrightarrow L = ?$$

$$\frac{a_{21}}{a_{11}} = \frac{1}{2} \quad , \quad \frac{a_{31}}{a_{11}} = \frac{3}{2}$$

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 \\ \frac{-3}{2} & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 2 & 5 & 9 \\ 0 & \frac{3}{2} & \frac{5}{2} \\ 0 & \frac{-11}{2} & \frac{-25}{2} \end{bmatrix} \leftarrow \frac{a_{32}}{a_{22}} = \frac{-11}{\frac{2}{3}} = \frac{-11}{3}$$

$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{11}{3} & 1 \end{bmatrix} A_1 = \begin{bmatrix} 2 & 5 & 9 \\ 0 & \frac{3}{2} & \frac{5}{2} \\ 0 & 0 & \frac{-10}{3} \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & \frac{-11}{3} & 1 \end{bmatrix} \checkmark$$

b) pivoting
$$\longrightarrow E_2 = ?$$

$$|a_{31}| > |a_{11}| \longrightarrow S_3 \longleftrightarrow S_1$$

$$P_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A_1 = P_{13}A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 7 \\ 2 & 5 & 9 \end{bmatrix} \frac{a_{31}}{a_{11}} = \frac{2}{3} \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-2}{3} & 0 & 1 \end{bmatrix} \checkmark$$