MPC Cheat Sheet - 2020Fall - Yujie He

Mat.Derivation: vec a; mat A; taking derivative of x 1) mat & vec product: $\nabla \mathbf{A} \mathbf{x} = \mathbf{A}$; 2) inner product: $\nabla(\mathbf{a^T x}) = \mathbf{a}$; 3) $\nabla \|\mathbf{x}\|_2^2 = \nabla(\mathbf{x}^T \mathbf{x}) = 2\mathbf{x}$; $\nabla \mathbf{x^T} \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$ (symmetry: $\nabla \mathbf{x^T} \mathbf{A} \mathbf{x} = 2 \mathbf{A} \mathbf{x}$)

$$G(s) = \frac{w^2}{s^2 + 2\zeta w s + w^2} \rightarrow \dot{x} = \begin{bmatrix} -2\zeta \omega & -\omega^2 \\ 1 & 0 \end{bmatrix} x$$

Distable $\sqrt[p]{d^p}$: p=0-number of >0; p=1: sum of axes : p=2-Euclidean; $p=\infty$ -max value (convex $p\geq 1$) V(x)>0; 2) mono.decre. $V(f(x))-V(x)\leq -\alpha(x)$ **Comp** a system is stable (exist Lyapunov function) \rightarrow eigenvalues in the unit ball \rightarrow given $A/A + BK \rightarrow$ $|\lambda I - A| = 0$, get $\{\lambda_i\} \to (\lambda I - A)x = 0$, get $\{e_i\}$

System Theory Basics

Models: Continuous-time system: $\dot{x} = A^c x + B^c u$ Solution: $x(t) = e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}Bu(\tau)d\tau$

Discrete-time system: x(k+1) = g(x(k), u(k)). Discr-time linear system: x(k+1) = Ax(k) + Bu(k). **Analysis:** Open-loop $x_{k+1} = Ax_k + Bu_k$, $y = Cx_k$

1) Stability: An LTI system is globally asympt. stable $\lim_{k\to\infty} x(k) = 0 \ \forall x(0) \in \mathbb{R}^n \ \text{iff} \ |\lambda_j| < 1 \ \forall j=1,..,n;$

2) Controllable \iff rank($[B \ AB \cdots A^{n-1}B]$) = n;

 $\exists 0$ in control matrix $B \iff$ not ctrl.

3) **Stabilizable** \iff iff all of its uncontrollable modes are stable: Controllability implies stabilizability

4) Observable iff rank($[C\ (CA)\ \cdots\ (CA^{n-1})]^T$) = n; $\exists 0$ in output matrix $C \iff$ not obs.

Unconstrained Optimal Control

Stage cost $l(x, u) = x^T Q x + u^T R u$, Q, R pos.definite; $J^{\star}(x(0)) := \min_{u} \sum_{i=0}^{N-1} l(x_i, u_i) + x_N^T P x_N; \text{ s.t.}$ $x_{i+1} = Ax_i + Bu_i, x_0 = x; \text{ Set } Q = C^T \text{ and } R = \rho I \to \mathcal{X}_f \subseteq \mathcal{X} \; ; \quad F_{\infty} x_i \in \mathcal{U} \quad \forall x_i \in \mathcal{X}_f \in \mathcal{X}_f \subseteq \mathcal{X} \; ;$ $\sum_{i=0}^{N}\|y_i\|^2+u_i\rho\|u_i\|^2$ (Large ρ leads to small input energy and weakly controlled)

Bellman recursion/Parametric

Cost function: $V^{\star}(x_0) := \min_{\mathbf{u}} \sum_{i=0}^{N} l(x_i, u_i)$ s.t. $x_{i+1} = Ax_i + Bu_i$; Comp DP: 1) Assume PSD $V_{i+1}(x_{i+1}) = x_{i+1}^T H_{i+1} x_{i+1}$; 2) iterate $V(x_i)$ backwards for N-1 to 0 given constraint: 3) Setting $\nabla_{u_i} V = 0$; $2(Au_i + Bx_i)^T H_{i+1} B + 2\mathcal{R}u_i = 0$; 4) obtain optimal input $u_i^* = K_i x_i$ until optimal $u_0^*(x_0)$

Conclusion: $V_i^*(x_i)$ is quadratic and positive definitive Optimizer $u_0^*(x)$ is linear function of current state

Transformed into matrix representation $V^{\star}(x_0) := \min_{u} \mathbf{x}^T \mathcal{Q} \mathbf{x} + \mathbf{u}^{\top} \mathcal{R} \mathbf{u}, \text{ s.t. } \mathcal{A} \mathbf{x} + \mathcal{B} \mathbf{u} = \mathcal{C} x_0$

$$\begin{bmatrix} -1 & 0 & \cdots & \cdots & 0 \\ A & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & A & -1 \end{bmatrix} \mathbf{x} + \mathcal{B}\mathbf{u} = \begin{bmatrix} -A \\ 0 \\ \vdots \\ 0 \end{bmatrix} \mathbf{x} + \mathcal{B}\mathbf{u} = \begin{bmatrix} -A \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -A \\ 0 \\$$

where $\mathcal{B} = \operatorname{diag}\{B\}$; $\mathbf{x} = [x_1^T, \dots, x_N^T]$; $\mathbf{u} = [u_0^T, \dots, u_{N-1}^T] \ \mathcal{Q} = \operatorname{diag}(Q); \ \mathcal{R} = \operatorname{diag}(R)$ Least-squares solver to obtain $\mathbf{u} = \mathcal{K}x_0$, where $\mathcal{K} = -(\mathcal{R} + F^T \mathcal{Q} F)^{-1} F^T \mathcal{Q} G$ (different from DP)

Infin.Horizon.Ctrl/Stability of LQR

Bellman equation: Can find a function V such that $V^*(x) = \min_u l(x, u) + V^*(Ax + Bu)$ so that $V^*(x) = V_{\infty}^*(x)$; \to DT Riccati Equation (DRDE) for Infin.LQR u = Kx, $K = (R + B^T PB)^{-1}B^T PA$: $P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A$ Optimal cost-to-go: $J_i^{\star}(x_i) = x_i^{\top} P_i x_i$.

Lyapunov function: 1) positive $-\{0\}$: V(0) = 0. $\exists V(x) \Longrightarrow$ asymptotically stable in Ω . LTI system, then ← DT Lyapunov equation: $V(x) = x^{\top} P x$ with P > 0: $A^{\top} P A - P = -Q$, Q > 0**Pro** $V^*(x_1) = V^*(x_0) - x_0^T(Q + K^TRK)x_0 < V^*(x_0)$

Optimization

Feasibility and Stability

Feasible set: set of feasible variables z (satisfies the constraints); Optimizer: achieves min.cost $z \in \mathcal{C}$ and $p^* = f(z^*)$; infeasible if \mathcal{C} is empty In order to ensure feasibility and stability, we must introduce $l_f(\cdot)$ and \mathcal{X}_f to mimic an infinite horizon.

Theorem: The closed-loop system under MPC $x(k+1) = Ax(k) + Bu_0^{\star}(x(k))$ is recursively feasible and asymptotically stable if:

1. Stage cost is positive definite;

2. Terminal set is invariant under control $\kappa_f(x_i)$ $x_{i+1} = Ax_i + B\kappa_f(x_i) \in \mathcal{X}_f \quad \forall x_i \in \mathcal{X}_f$ All state and input constraints are satisfied in \mathcal{X}_f $\mathcal{X}_f \subset \mathcal{X} \quad \kappa_f(x_i) \in \mathcal{U} \quad \forall x_i \in \mathcal{X}_f$

3. Terminal cost is a Lyapunov function in \mathcal{X}_f : $l_f(x_{i+1}) - l_f(x_i) \le -l(x_i, \kappa_f(x_i)) \quad \forall x_i \in \mathcal{X}_f$

Option 1: Choose $P = P_{\infty}$ solution of LQR control and \mathcal{X}_f maximum invariant set of $x_{i+1} = (A + BF_{\infty})x_i$

Option 2: $P = A^{T}PA + Q$ assuming no control input after horizon (only possible if A is stable). Under these assumptions, $J^{\star}(x)$ is Lyapunov function: $J^{\star}(x(k+1)) - J^{\star}(x(k)) < -l(x(k), u^{\star}(k))$

Convex Sets

 $\lambda z_1 + (1-\lambda)z_2 \in S$ for all $z_1, z_2 \in S, \lambda \in [0,1]$ -convex combination of points inside S are also inside SIntersection of convex sets is convex. Union is not **Hyperplane:** $\{x \in \mathbb{R}^n \mid a^{\top}x = b\}$ (affine and convex) **Halfspace:** $\{x \in \mathbb{R}^n \mid a^\top x \leq b\}$ open if <, closed if \leq . Polyhedron: finite intersection of closed halfspaces: $P = \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \}$ **Polytope** is **bounded** polyhedron \rightarrow convex set

Convex Functions & Problems

 $f: \mathrm{dom}(f) \to \mathbb{R}$ is **convex** \iff $\mathrm{dom}(f)$ is convex and $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ $\iff f(y) > f(x) + \nabla f(x)^{\top} (y - x)$ if differentiable $\iff \nabla^2 f(x) \succeq 0 \ \forall x \in \text{dom}(f) \ \text{if twice-differentiable}.$

Some operations preserve convexity: non-negative weighted sum, composition with affine function, pointwise maximum/supremum, partial minimization. Convex Problems: An optimization problem is convex if $\min_{x \in \text{dom}(f)} f(x)$; [subj. to $g_i(x) \leq 0$ $i = 1, \dots, m$ $h_i(x) = 0$ $i = 1, \dots, p$; $dom(f), f, g_i$ are convex, $h_i(x) = a_i^{\top} x - b$ are affine.

For convex problems, local optima are global optima. A Infinite-horizon will be stable → optimal cost is Lyapunov stricly convex problem has also a unique minimizer. $\min \operatorname{convex} \operatorname{or} \min \operatorname{concave} \to \operatorname{convex} \operatorname{problem}$

Linear programs: $f(x) = c^{T}x$. The solution can be:

- 1. unbounded $\implies p^* = -\infty$
- 2. bounded and unique $\implies p^{\star} \in \mathbb{R}$, x_{opt} is a point
- 3. bounded and multiple $\implies x_{opt} \subseteq \mathbb{R}^s$

QP: $f(x) = \frac{1}{2}x^{T}Hx + q^{T}x(+r)$. If solution exists, it can lie inside the feasible space or on its boundary.

Constrained minimizationTurn constrained problem into unconstrained problem with Barrier method: barrier function $\phi(z)$ with indicator function $I \phi(z) = \sum_{i=1}^{m} I_{-}(g_{i}(z))$ (keep g(z) neg, if outside feasible set $\rightarrow \infty$; but Underivable)

Augmented via log: $\phi(z) = -\sum_{i=1}^m \log{(-g_i(z))};$ Comp gradient: $\nabla \phi = \sum_{i=1}^m \frac{1}{-g_i(z)} \nabla g_i(z);$ hessian: $\nabla^2 \phi = \sum_{i=1}^m \frac{1}{q_i(z)^2} \nabla g_i(z) \nabla g_i(z)^T + \frac{1}{q_i(z)} \nabla^2 g_i(z);$ Path-following Method-start from analytical center, $\arg\min_{z} \phi(z)$ decrease during optimization as $\kappa \to 0$,

f(z) dominates & reaches opt **Unconstrained minimization**

1) Necessary condition $f(\cdot)$ differentiable at z^* , a local minimizer $\rightarrow \nabla f(z^*) = 0$; 2) **Sufficient** condition: $f(\cdot)$ twice differentiable at z^* , Hessian $\nabla^2 f(z^*) > 0$ is positive definite \rightarrow local minimizer; **Theo**.: with (1,2), if f convex, z^* is global optimizer iff $\nabla f(z^*) = 0$

Descent Methods $z^{(k+1)} = z^{(k)} + t^{(k)} \Delta z^{(k)}$: 1) Descent direction Δz ; Gradient descent: $\Delta z := -\nabla f(z)$; Newton method (invert the Hessian): $\Delta z = -\nabla^2 f(z)^{-1} \nabla f(z)$ 2) step size t (Line-search): $t^* = \operatorname{argmin}_{t>0} f(z + t\Delta z)$

Descent direction $\delta z \iff \text{overall.cost } f(z^{k+1}) < f(z^k)$ \rightarrow **Pro** $\nabla f(z)^T \delta z < 0 \iff \nabla f + \kappa \nabla \phi)^T \delta_{nt} < 0 \text{ (NT)}$

Barrier Interior-point 1) Centering step using Newton's Method: Compute $z^*(\kappa)$ by minimizing $f(z) + \kappa \phi(z)$ starting from z 2) Update $z := z^*(\kappa)$ (repeat) 3) Stopping criterion: Stop if $m_{\kappa} < \epsilon$

4) Decrease barrier parameter: $\kappa := \mu \kappa$

Comp Centering step Δz_{nt} min 2nd-order approx.: $(\nabla^2 f(z) + \kappa \nabla^2 \phi(z)) \Delta z_{nt} = -\nabla f(z) - \kappa \nabla \phi(z)$

Unconstrained Control

Invariance Invariance: Region in which an autonomous system will satisfy the constraints for all time; Controlled invariance: Region for which there exists a controller so that the system satisfies the constraints for all time A set \mathcal{O} is **positive invariant** for the autonomous system $x^+ = f(x)$ if $x_i \in \mathcal{O} \implies x_{i+1} \in \mathcal{O} \ \forall k = \{0, 1, \ldots\}$ The max.invar. $\mathcal{O}_{\infty} \subset \mathbb{X}$ contains all invar. sets \mathcal{O} **Pre-Set:** $pre(S) = \{x \mid g(x) \in S\}$ (states evolve in S). Positive invariant $\mathcal{O} \iff \mathcal{O} \subseteq \operatorname{pre}(\mathcal{O})$ \iff pre(\mathcal{O}) $\cap \mathcal{O} = \mathcal{O}$

Control Invariant Set $\mathcal{C} \subseteq \mathbb{X}$ is $x_i \in \mathcal{C} \Rightarrow \exists u_i \in \mathbb{U}$ such that $x^+ = f(x_i, u_i) \in \mathcal{C}$ for all $i \in \mathbb{N}^+$ **Maxi.ctrl.invar.** \mathcal{C}_{∞} is the largest set for any controller **Pro** If no state constraints X, we can setting u=0 so input constraints are met everywhere $\to \mathcal{C}_{\infty} = \mathbb{R}^2$

Algo.-Compute O_{∞}/C_{∞} : input g, \mathcal{X} ; output \mathcal{O}_{∞} 1. $\Omega_0 \leftarrow \mathcal{X}$

2. while $\Omega_i \neq \Omega_{i-1}$ do $\Omega_{i+1} \leftarrow \operatorname{pre}(\Omega_i) \cap \Omega_i$ if $\Omega_{i+1} = \Omega_i$ then return $\mathcal{O} = \Omega_i$ end7. end

If \mathcal{X} and \mathcal{U} are boxes, and x(k+1) = (A+BF)x(k) is linear, it is sufficient to check all corner points of \mathcal{X} to prove its invariance.

Represent set Ω_i as Polytopes

- 1) inequility form $P := \{x \mid Ax < b\}$;
- 2) **convex hull**: conv(S) is the smallest convex set containing S. given a set of points $\{v_1,\ldots,v_k\}\in\mathbb{R}^d$ (weighted sum of points)
- 1-D case: $[a,b] \oplus [c,d] = [a+c,b+d]$; higher dim \rightarrow Minkowski Sum: $A \oplus B := \{x + y \mid x \in A, y \in B\}$

Conditions using inequality: 1) Input saturation: $u_{lb} \le u \le u^{ub} \to [1 - 1]^T u \le [u^{ub} - u_{lb}]^T;$

2) Rate constraints: $||x_i - x_{i+1}||_{\infty} \leq \alpha \rightarrow$

 $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} x_i \\ x_{i+1} \end{pmatrix} \leq \mathbf{1}\alpha;$ 3) overshoot ≤ 0.1 response to a step of size r: $y \leq 1.1r$;

Intersec. $I = S \cap T = \left\{ x \mid [C \ D]^T \ x \leq [c \ d]^T \right\}$ (stack)

Pre-set: $S = \{x \mid Fx \le f\}, \text{ pre}(S) = \{x \mid FAx \le f\}$

MPC & Practical MPC

Main idea: Introduce terminal cost, constraints to ensure stability, feasibility to guarantee valid approx. infin.

$$\begin{array}{l} J^{\star}(x) = \min_{x,u} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N; \text{ s.t.} \\ x_{i+1} = A x_i + B u_i, \, x_0 = x, \, C x_i + D u_i \leq b, \, x_N \in \mathcal{X}_f \end{array}$$

1) Up to time k = N, calculate with constraints; 2) For k > N, drop the the constraints \rightarrow Unconstrained LQR starting from state x_N :

Pro How to define terminal?

- 1) pos.invar. stage cost Q, R >= 0; 2) control law: first set local law $K_f = 0$, satisfy $Ax + K_f u \in X_f$
- 3) set: All states and input constraints are in X_f as $\mathcal{X}_f \subseteq \mathbb{X}, \kappa_f(x) \in \mathbb{U}$ for all $x \in \mathcal{X}_f$ 4) cost satisfy stability condition: $V_f(x^+) - V_f(x) < -l(x, \kappa_f(x)) \ \forall x \in \mathcal{X}_f$;

As local κ_f : $-l(x, \kappa_f(x)) = -x^T Q x$, so $x^T A^T Q_f Ax - x^T Q_f x \le -x^T Qx, \ \forall x \in X_f \iff$

 $A^T Q_f A - Q_f \leq -Q$ [e.g., We can implement cost as $V_f(x_N) = x_N^T P x_N$, where P from DARE

Feasible set \mathcal{X}_N : the set of initial states x for which the MPC problem with horizon N is feasible;

Recursive feasibility: For all feasible initial states, feasibility is guaranteed along the closed-loop trajectory. **Pro** \exists a feasible solution $(x_{0...u}, u_{0...u})$ at all time instance when starting from a feasible initial point $x_{0(1)}$ and (next step) remain in the constraint set X.

Stability: A pos.invar. X for system containing a neighborhood of the origin in its interior.

Pro Asymptotic Stability: 1) Lyapunov stable; 2) Approaching 0: $\lim_{k\to\infty} ||x_k|| = 0$ for all $x(0) \in \mathcal{X}$

Soft-Constrained MPC Noise & may infeasible → Enlarging set → Relax state constraints by introducing slack variables ϵ_i and penalize $|w|<=1, \ x^+=1/2x+w$ them by adding $\rho(\epsilon_i) = \epsilon_i^T S \epsilon_i$ to the cost. Same solution (if feasible) in the original problem \rightarrow Quadratic penalty is added for controllability.

 $J_{\text{soft}}^{\star}(x) \leq J^{\star}(x)$ for all feasible $x \in S \to \text{if standard}$ MPC feasible, soft-const must be feasible Increasing s reduces size but longer duration of violation. Increasing v peak violation \uparrow but with shorter duration.

Reference Tracking

The reference $r = Cx_s$ is achieved by state x_s which should be a steady-state: $x_s = Ax_s + Bu_s$.

Target conditions:
$$\begin{bmatrix} I-A & -B \\ H & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} 0 \\ r \end{bmatrix}$$

- If $n_u = n_r \implies \overline{\text{unique solution}}$
- If $n_u > n_r \implies \infty$ solutions: find $\min u_s^{\top} R_s u_s$
- If $n_u < n_r \implies \text{impossible: } \min Q_s (Hx_s r)^2$

$$\begin{array}{l} \textbf{Delta-formulation:} \ \Delta x = x - x_s \ \text{and} \ \Delta u = u - u_s \\ \Delta x_{i+1} = A \Delta x + B \Delta u \ ; \ l = \Delta x_i^\top Q \Delta x_i + \Delta u_i^\top R \Delta u_i \\ H_x x \leq h_x \implies H_x \Delta x \leq h_x - H_x x_s \\ H_u u \leq h_u \implies H_u \Delta u \leq h_u - H_u u_s \end{array}$$

If, in addition to the three conditions stated before. $\{x_s\} \oplus \mathcal{X}_f \subseteq \mathcal{X}, \quad K\Delta x + u_s \in \mathcal{U} \quad \forall \Delta x \in \mathcal{X}_f \text{ then the Therefore } x_i \in \{z\}_i \oplus \mathcal{E} \subset \mathcal{X} \iff z_i \in \mathcal{X} \ominus \mathcal{E} \text{ and } x_i \in \mathcal{X}_f \in \mathcal{X} \subset \mathcal{X}$ closed-loop system converges to x_s for $k \to \infty$. Input to apply: $u^{\star}(k) = \Delta u_0^{\star}(x(k)) + u_s$.

Constant Disturbance Rejection

Remove offset, converge to desired setpoint **Model:** $x(k+1) = A(x(k)) + Bu(k) + B_d d(k)$ $d(k+1) = d(k), y(k) = Cx(k) + C_d d(k)$ The augmented system is **observable** \iff (A, C) is observable and $\mathrm{rank}\left(\begin{bmatrix}A-I & B_d\\ C & C_d\end{bmatrix}\right) = n_x + n_d$

Linear State Estimator:
$$\begin{bmatrix} \hat{x}(k+1) \\ \hat{d}(k+1) \end{bmatrix} = \begin{bmatrix} A & B_d \\ 0 & I \end{bmatrix} \begin{bmatrix} \hat{x}(k) \\ \hat{d}(k) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} L_x \\ L_d \end{bmatrix} \begin{bmatrix} -y(k) + C\hat{x}(k) + C_d\hat{d}(k) \end{bmatrix}$$

$$\begin{array}{l} \underbrace{L_d} \left[-y(k) + Cx(k) + C_d a(k) \right] \\ \text{Error dyn.: } \hat{e}_x(k) = x(k) - \hat{x}(k), \hat{e}_d(k) = d(k) - \hat{d}(k) \\ \left[\hat{e}_x(k+1) \right] = \left(\begin{bmatrix} A & B_d \\ 0 & I \end{bmatrix} + \begin{bmatrix} L_x \\ L_d \end{bmatrix} [C & C_d] \right) \begin{bmatrix} \hat{e}_x(k) \\ \hat{e}_d(k) \end{bmatrix} \\ L_x, L_d \text{ are linear estimator to achieve } d_s = \hat{d} \end{array}$$

New target conditions:

$$\begin{bmatrix} I - A & -B \\ C & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} -B_d \hat{d} \\ r - C \hat{d} \end{bmatrix}$$

Procedure: 1) Estimate \hat{x} and \hat{d} ; 2) Obtain (x_s, u_s) from target conditions using \hat{d} ; 3) Solve MPC problem with (x_s, u_s) and using \hat{d} . If $n_y = n_d$ and the target steady-state is strictly feasible, then the target is achieved with zero offset.

Robust MPC

 $x(k+1) = Ax(k) + Bu(k) + w(k), w \in \mathcal{W}$ bounded.

A set $\mathcal{O}^{\mathcal{W}}$ is robust positive invariant if

$$x(k) \in \mathcal{O}^{\mathcal{W}} \implies x(k+1) = g(x(k), w) \in \mathcal{O}^{\mathcal{W}} \ \forall w \in \mathcal{W}$$

Robust Pre-Set: Pre-set ∀ values of disturbance: $\operatorname{pre}^{\mathbb{W}}(S) = \{x \mid q(x, w) \in S \mid \forall w \in \mathcal{W}\}\$ Given $\Omega = \{x | Fx \leq f\}$ and g(x, w) = Ax + w, $\operatorname{pre}^{\mathbb{W}}(\Omega) = \{x | FAx + Fw < f \ \forall w \in \mathcal{W}\}$

$$\begin{array}{ll} \text{Comp robust.invar. } \Omega \cap \operatorname{pre}^{\mathbb{W}}\{\Omega\}; \text{ e.g. } X = [-10.10], \\ |w| <= 1, \ x^+ = 1/2x + w \\ \operatorname{pre}^{\mathbb{W}}(\Omega) = \{x|-10 \leq 1/2x + w \leq 10, \forall w \in [-1,1]\} \\ = \{x|-20 - 2w \leq x \leq 20 - 2w, \forall w \in [-1,1]\} \\ = \{x|18 \leq x \leq 18\} \rightarrow \Omega \cap pre = [-10,\ 10] \end{array}$$

A set $\mathcal{O}^{\mathcal{W}}$ is robust pos. inv. $\iff \mathcal{O}^{\mathcal{W}} \subseteq \operatorname{pre}^{\mathcal{W}}(\mathcal{O}^{\mathcal{W}})$ In order to compute it, we can use Algorithm 1.

Robust Open-Loop MPC

Nominal system + offset caused by the disturbance: $J^{\star}(x(0)) := \min_{u} l_f(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i); \text{ s.t.}$ $x_{i+1} = Ax_i + Bu_i; x_i \in \mathcal{E} = \bigoplus_{k=0}^{i-1} A^k \mathbb{W}; u_i \in \mathcal{U},$ $x_0 = x(k), x_N \in \mathcal{X}_f \ominus (\mathcal{W} \oplus A \mathcal{W} \oplus \cdots \oplus A^{N-1} \mathcal{W})$ where $\hat{\mathcal{X}}_f$ is a robust invariant set for the system x(k+1) = (A+BF)x(k) for some stabilizing F. This problem has a very small region of attraction.

eparate control authority in two parts: v controls the nominal system z(k+1) = Ax(k) + Bv(k) and another that compensates disturbances: $u_i = K(x_i - z_i) + v_i$. We fix K offline and optimize the nominal trajectory. **Error dynam.:** $e_{i+1} = x_{i+1} - z_{i+1} = (A + BK)e_i + w_i$

Minimum robust invariant set: $\mathcal{E} = \bigoplus_{k=0}^{i-1} A^k \mathbb{W}$ the smallest set in which the state will remain inside. $u_i \in K\mathcal{E} \oplus v_i \subset \mathcal{U} \iff v_i \in \mathcal{U} \ominus K\mathcal{E}$ **Algo.-Compute** $\mathcal{E} = F_{\infty}$: 0) input A, output F_{∞} ; 1) $\Omega_0 = \{0\}$; 2) loop and update $\Omega_{i+1} \leftarrow \Omega_i W$ until $\Omega_{i+1} = \Omega_i$ 3) return F_{∞}

Tube-MPC Formulation:

$$(V^{\star}(x_0), Z^{\star}(x_0)) := \arg\min_{V,Z} \ l_f(z_N) + \sum_{i=0}^{N-1} l(z_i, v_i)$$
 Comp value $f^{\star}(z)$ by setting $(\mathbf{v}, \mathbf{s}), (\mathbf{z}, \lambda),$ Comp given a q, plot vector q and cheak from (e_1, e_2) or (e_2, m_1) or (m_1, m_2) or set others as $0 \to \text{obtain}$ by $(M - I)^{-1}q$
$$z_i \in \mathcal{X} \ominus \mathcal{E} \qquad v_i \in \mathcal{U} \ominus \mathcal{K} \mathcal{E} \quad \forall i$$

$$z_N \in \mathcal{X}_f \subseteq \mathcal{X} \ominus \mathcal{E} \qquad x_0 \in z_0 \oplus \mathcal{E} \qquad Gu \geq Ex + e, \ u \geq 0$$

And apply
$$\mu_{\text{tube}}(x) := K(x - z_0^{\star}(x)) + v_0^{\star}(x);$$
 $\lim_{k \to \infty} z_0^{\star}(x(k)) = 0$ but $\lim_{k \to \infty} x(k) \in \{0\} \oplus \mathcal{E}$

Assumptions: 1) The stage cost is a positive definite function; 2) The terminal set is invariant for the nominal system under the local control law $\kappa_f(z)$:

 $Az + B\kappa_f(z) \in \mathcal{X}_f$ $\forall z \in \mathcal{X}_f$ Pro Comp All tightened constraints are satisfied in \mathcal{X}_f : $\mathcal{X}_f \subseteq \mathcal{X} \ominus \mathcal{E}; \qquad \kappa_f(z) \in \mathcal{U} \ominus K\mathcal{E} \quad \forall z \in \mathcal{X}_f$ 3) Terminal cost is a Lyapunov function in \mathcal{X}_f

Pontryagin Diff.: $A \ominus B := \{x \mid x + e \in A, \forall e \in B\}$ Property: $A \ominus B \oplus B \subseteq A$ (but not equal)

Offline: 1) Choose stabilizing K such that

tightened constraints: $\tilde{\mathcal{X}}:=\mathcal{X}\ominus\mathcal{E}$ and $\tilde{\mathcal{U}}:=\overline{\mathcal{U}\ominus K\mathcal{E}}$; 4) Newton's; Gauss-Newton; Sequenctial QP Choose cost and terminal set \mathcal{X}_f

Online: 1 Measure/estimate the state x; 2) Solve the optimization problem; 3) Apply input $u = \mu_{\text{tube}}(x)$

the system ignoring noise is Input-to-State Stable: Bound that monotonically decreases to $\max\{\|w\||w\in\mathbb{W}\}\ (\text{noise size})\to \text{Converges to}\ \approx 0$

Explicit MPC

KKT Conditions for min f(z). A constraints coeff.; λ introduced variables; conditions for optimality:

- 1. Stationarity: $\nabla f(z) + A^{\mathsf{T}} \lambda = 0$
- 2. Primal feasibility: $Az \leq b$, original constraints
- 3. Dual feasibility: $\lambda \geq 0$ constraints for λ
- 4. Complementarity: $\lambda^{\mathsf{T}}(Az-b)=0$

$$f^{\star}(x) = \min_{z} \frac{1}{2}z^{2} + 2xz \qquad \nabla_{z}\mathcal{L} = z + 2x - \lambda - \nu = 0 \qquad \text{Stationarity} \\ \text{s.t. } z \geq x - 1 \qquad \qquad x - 1 - z \leq 0, \ z \geq 0 \qquad \text{Primal feasibility} \\ z \geq 0 \qquad \qquad \lambda(z - x - 1) = \nu z = 0 \qquad \text{Complementarity}$$

Four complementarity cases:

$$\begin{vmatrix} \lambda \geq 0 & z = x - 1 \\ \nu = 0 & z \geq 0 \end{vmatrix} \xrightarrow{\int f^*(x)} \begin{cases} z^*(x) & = x - 1 \\ f^*(x) & = \frac{5}{2}x^2 - 3x + \frac{1}{2} \\ x & \geq 1 \end{vmatrix} \begin{vmatrix} \lambda \geq 0 & z = x - 1 \\ \nu \geq 0 & z = 0 \end{vmatrix} \xrightarrow{\int f^*(x)} \begin{cases} z^*(x) & = 0 \\ f^*(x) & = 0 \\ x & = 1 \end{vmatrix}$$

Comp $[v + (-A^T)\lambda - \nabla f(z) = 0]; [s + A^T z = b]$ **Comp** value $f^*(z)$ by setting (v,s), (z, λ), (v, λ) =0 **Comp** given a q, plot vector q and cheak the cone area from (e_1,e_2) or (e_2,m_1) or (m_1,m_2) or (m_2,e_1) and

 $\mathbf{pQP}: J^{\star}(x) := \min_{u} \frac{1}{2} u^{T} Q u + (Fx + f)^{T} u, \text{ s.t.}$ Gu > Ex + e, u > 0

→ Parametric Linear Complementarity (pLCP): Iw - Mz = Qx + q; $w, z > 0, w^Tz = 0$;

KKT Conditions:
$$\begin{array}{c} \bullet Qu + Fx + f - G^T\lambda - \nu = 0 \\ -s + Gu = Ex + e \ , \ u \geq 0 \\ v^Tu = 0 \ , \ \lambda^Ts = 0 \end{array} \qquad \begin{array}{c} \text{Stationarity} \\ \text{Primal feasibility} \\ \text{Primal feasibility} \\ \text{Primal and dual feasibility} \\ \text{Complementarity} \\ v^Tu = s^T\lambda = 0 \end{array} \qquad \begin{array}{c} \text{Stationarity} \\ \text{Primal and dual feasibility} \\ v^Tu = s^T\lambda = 0 \end{array}$$

Find cone containing q (critical region): define the polyhedral critical region using the solution

$$CR(B) := \left\{ x \mid A_B^{-1}(q + Qx) \ge 0 \right\}$$

Convex pLCP \rightarrow sufficient matrix \rightarrow 1) unoverlapped cones (unique solution); 2) connected domain (connected \bullet MPC value function for all x: $J^*(x)$ unconstrained neighbour) -> Calculate piecewise affine function and online evaluation \rightarrow Point Location by sequential or logarithmic search

Nonlinear MPC

Nonlinear system $x_{i+1} = f(x_i, u_i) \rightarrow \text{nonconvex overal}$ cost $\arg\min \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$ while same theory and assumption on feasibility and stability. **Challenges**: 1) hard to calculate the invariance set \rightarrow $=\{x|F_iAx\leq f_i-\max F_iw \ \forall i\}=A(\Omega\ominus\mathbb{W}) \ \|A+BK\|<1;\ 2) \ \text{$ \ \, $} \$

1) Compute nonconvex \rightarrow descent method; example: 2) Discretiziation: $u(t) = u(t_k) \ \forall t \in [t_k, t_{k+1})$

Non-linear: $x(k+1) = x(k) + T_s \cdot q^c(x(k), u(k))$

Naive-Euler: $A = I + T_s A^c$ and $B = T_s B^c$ Exact: $A = e^{A^c T_s}$ and $B = (A^c)^{-1} (A - I) B^c$ Solution:

lin. comb. of initial state and inputs
$$x(k+N) = A^N x(k) + \sum_{i=0}^{N-1} A^i B u(k+N-1-i)$$

Advanced: Direct integration / Collocation Runge-Kutta (RK)-2 as example $x^+ = x(t+h)$

2nd-order Taylor series $x^+ = x + h\dot{x} + \frac{h^2}{2}\ddot{x} + \mathcal{O}(h^3)$ $x^{+} \approx x + \frac{h}{2}f(x) + \frac{h}{2}f(x + hf(x)) = x + h\left(\frac{1}{2}k_{1} + \frac{1}{2}k_{2}\right)$ where $k_1 = f(x)$ and $k_2 = f(x + hk_1)$

RK4 use higher-order Taylor series \rightarrow high acc. $x_{k+1} = x_k + h\left(\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}\right)$, where $k_1 = f(t_k, x_k), k_2 = f\left(t_k + \frac{h}{2}, x_k + \frac{h}{2}k_1\right),$ $k_3 = f(t_k + \frac{h}{2}, x_k + \frac{h}{2}k_2), k_4 = f(t_k + h, x_k + hk_3)$

- Remark

 Union of a finite set of ellipses not necessarily convex
- intersection of an ellipse and a polytope → convex
- symmetric $Q = Q^T$ and nonnegtive eigenvalues $Q \succeq 0$ (all nonnegtive \times) \rightarrow guarante optimization prob $\min x^T Q x$ with local $x = x^*$ a global minimum • quadratic function xTPx is convex iff P is PSD.
- $J^*(x_{k+1}) J^*(x_k) \le -I(x_k, u_0^*)$ eusures $J^*(x)$ Lyapunov function \rightarrow stability
- ∃ subset of pos.invar. ≠ invariant
- Not all pos.invar. for system $x^+ = f(x)$ can be written as a polyhedron $\{x|Gx < h\}$
- intersection and union of two pos.invar. are invar.
- Convex hull of pos.invar. is invar. if f linear
- max.invar. for system is union of given invar.
- \exists **possible** that N-step sequence $\in \mathbb{X}$ and MPC controller $\in \mathbb{U}$ given x_0 not in max.ctrl.invar. C_{∞}
- Given x_0 in max.ctrl.invar. C_{∞} for system f(x,u)with constraints $\to \exists u_0 \in \mathbb{U}$ that $f(x_0, u_0) \notin \mathbb{X}$
- $\exists x \in \mathbb{X}$ and $\exists u \in \mathbb{U}$ such that $f(x,u) \in C \iff \mathsf{Not}$ $\exists x \in \mathbb{X} - \{C\}$ and $\exists u \in \mathbb{U}$ such that $f(x, u) \in C$, given same setting before with (X, S)
- x_s always in the interior (boundary \times) of invar. • No slack variable weight ρ ensure soft-constrained
- $J_{\mathrm{soft}}^{\star}\left(\bar{x}
 ight)=J^{\star}(\bar{x})$ standard [pprox soft with higher ho]
- Minimal **robust** invar. $F_{\infty} > \mathbb{X} \to \text{feasible set } \emptyset$
- $S \subseteq \operatorname{pre}(S \ominus W) = pre^{\mathbb{W}}(s)$ is invar. of the uncertain system with $w \in \mathbb{W}$
- Bounded disturbance system $x^+ = Ax + Bu + Ew$. $\max robust crtl.invar.$ C_{∞} will $=\downarrow$, $=\uparrow$, and $=\downarrow$ after $0.5~\mathbb{U},~\mathbb{W},~\mathsf{and}~\mathbb{X}$
- <= constrained infin.hori.ctrl = constrained fin.hori.ctrl w/o terminal <= w.terminal

Credits

Predictive Control given by Prof. Colin Jones . Written by Yujie He (yujie.he@epfl.ch). Last Updated and Rendered February 4, 2021 © Yujie He. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.