11. LP Duality and the Simplex Algorithm CPSC 535

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

Recall: Standard Form

standard form with *n* variables and *m* constraints:

maximize
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 subject to

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_{1,n} \le b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_{2,n} \le b_2$
 \vdots \vdots
 $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_{m,n} \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$

variables: $x_1, \ldots, x_n \in \mathbb{R}$ objective function defined by coefficients $c_1, \ldots, c_n \in \mathbb{R}$ constraints defined by coefficients $a_{i,j}, b_i \in \mathbb{R}$

Recall: Standard Form Matrix Notation

- more compact math notation
- collect:
 - ightharpoonup variables into vector $x = \langle x_1, \dots, x_n \rangle$
 - **b** objective coefficients into vector $c = \langle c_1, \dots, c_n \rangle$
 - ightharpoonup r.h.s. of inequalities into vector $b = \langle b_1, \dots, b_m \rangle$
 - ▶ a_{i,j} coefficients into matrix A
- ► LP can be written in terms of dot-product and matrix-vector multiplication as (and note the transpose c^T):

maximize $c^T x$ subject to

$$\begin{array}{ccc} Ax & \leq & b \\ x & \geq & 0 \end{array}$$

What is a Simplex?

simplex: generalization of a triangle to arbitrary dimensions

Slack Form

duality: the simplex algorithm views one LP in two ways,

- 1. standard form
- 2. slack form
- ▶ standard form: constraint says l.h.s ≤ r.h.s.
- ightharpoonup \Rightarrow the difference or "slack" between l.h.s. and r.h.s. is ≥ 0
- slack form: constraint says l.h.s. + slack = r.h.s.
- increasing objective = decreasing slack
- introduce one new basic variable to represent slack in each constraint
- (pre-existing variables are nonbasic)
- ightharpoonup z = value of objective function
- don't bother writing "maximize" or "subject to"

Standard versus Slack Form

maximize
$$x_1 + 2x_2 - \frac{1}{2}x_3$$
 subject to

$$\frac{1}{3}x_1 + x_3 \leq 5$$

$$x_1 + x_2 + x_3 \leq 100$$

$$x_1 - x_2 \leq -3$$

$$x_1, x_2, x_3 > 0$$

$$z = x_1 + 2x_2 - \frac{1}{2}x_3$$

$$x_4 = 5 - \frac{1}{3}x_1 - x_3$$

$$x_5 = 100 - x_1 - x_2 - x_3$$

$$x_6 = -3 - x_1 + x_2$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

basic var's: x_4, x_5, x_6 nonbasic var's: x_1, x_2, x_3

High-Level Simplex Algorithm

- convert standard form LP to slack form
- ▶ find a feasible (probably non-optimal) initial solution
 - intuitively: each $x_i = 0$
 - if this does not exist, return "infeasible"
- repeat:
 - choose a nonbasic variable x_i with positive coefficient in objective function (increasing x_i increases z)
 - \triangleright if no such x_i exists, return solution (it's optimal)
 - increase x_i until some basic variable x_j is decreased to zero ("tighten" the slack until we're up against a constraint)
 - ▶ if none exists, return "unbounded"
 - ightharpoonup swap roles: rewrite slack form with x_i as basic variable and x_j as nonbasic variable

(for further details, see CLRS section 29.3)

Geometric Intuition

- a solution is a point in *n*-dimensional space
- ▶ intuitively, initial solution is at the origin where $x_1, ..., x_n = 0$
- ▶ (for further details, see CLRS section 29.5)
- each iteration "reels in" the solution to hug the intersection between two constraints
- continues until we either
 - 1. go "off the map" and know the LP is infeasible; or
 - 2. cannot improve any further \Rightarrow found optimal solution
- each step moves us along the border of a simplex

Geometric Intuition

Analysis

- in LP's formulated to solve practical problems, usually
 - \triangleright each of the m halfspaces intersects O(m) other halfspaces
 - $ightharpoonup \Rightarrow O(m^2)$ intersection points in the feasible region
 - ightharpoonup \Rightarrow simplex iterates $O(m^2)$ times
 - each iteration involves evaluating n-dimension obj. function
 - $ightharpoonup
 ightharpoonup O(m^2n)$ worst-case time
 - order-3 polynomial, same as max-flow
 - often faster b/c each step can "jump" pretty far
- **however,** \exists feasible LP's that force simplex to take $\Omega(2^m)$ time
- ► Klee-Minty cube: $\forall d$, has n = d variables, n = d constraints, 2^d vertices, simplex is "tricked" into visiting all vertices
- this is a rare example of worst-case asymptotic analysis being misleading

Klee-Minty Cube

Klee-Minty Cube in 3D:

(image credit: Sophie Huiberts, CC-BY 4.0,

https://commons.wikimedia.org/wiki/File:Klee-Minty-cube-for-shadow-vertex-pivot-rule.png)

Summary

- for a standard-form LP with n variables and m constraints...
- ▶ simplex algorithm is fast in practice, technically takes $O(2^m)$ worst-case time
- ► Khachiyan's *ellipsoid algorithm* takes $O(n^4W)$ time
 - seminal result, proved that sub-exponential algorithms are possible
- now have faster pseudopolynomial algorithms, e.g Vaidya's alg. takes $O((n+m)^{1.5}nW)$ time
- open questions:
 - Is there a strongly-polynomial algorithm, or is LP NP-complete?
 - Is there an algorithm that has both simplex' practical speed and provable pseudonomial runtime?