TD14-Fonctions de deux variables

Exercice 1

Déterminer et représenter l'ensemble de définition des fonctions de deux variables réelles suivantes :

1.
$$f:(x,y) \mapsto \ln(xy) + \frac{\sqrt{2}}{2}x^2y + x^2$$
.

2.
$$g:(x,y)\mapsto \sqrt{9-x^2-y^2}$$

Exercice 2

Représenter les lignes de niveau suivantes.

- 1. La ligne de niveau -1 de la fonction $(x,y) \in \mathbb{R}^2 \mapsto x^2 4x + 4 + y^2 5$.
- 2. La ligne de niveau 0 de la fonction $(x, y) \in \mathbb{R}^2 \mapsto x^2 y^2$.

Exercice 3

Justifier que les fonctions suivantes, définies sur \mathbb{R}^2 *, sont continues sur* \mathbb{R}^2 .

1.
$$f_1:(x,y)\mapsto x^2+y^2+\ln(x^2+1);$$

2.
$$f_2:(x,y)\mapsto \frac{e^{xy+2x^2}}{x^2+3y^2+1};$$

3.
$$f_3:(x,y)\mapsto \frac{1}{x^2-3x+3+2y^2}$$

4.
$$f_4:(x,y)\mapsto \sqrt{e^{xy+y^3x}+e^{x^2y^2-x^3y^5}}$$

Exercice 4

Justifier que les fonctions suivantes sont de classe C^1 sur \mathbb{R}^2 et déterminer leurs dérivées partielles d'ordre 1.

1.
$$g_1: (x,y) \mapsto x^3y^3 + 3x^2y - 2y^2x + x + 1$$
.

2. La fonction f_1 de l'exercice précédent.

3.
$$g_2: (x,y) \mapsto e^{xy} \ln(1+x^2+y^2)$$
.

4.
$$g_3: (x,y) \mapsto (x+y)(e^x - e^y + 1)$$
.

Exercice 5

Justifier que les fonctions de l'exercice précédent sont de classe \mathbb{C}^2 sur \mathbb{R}^2 et déterminer

leurs dérivées partielles d'ordre 2.

Exercice 6

Déterminer le gradient et la hessienne des fonctions de l'exercice précédent aux points (0,0), (1,0) et (1,1). Écrire le DL à l'ordre 2 en chacun de ces points.

Exercice 7

Dessiner les sous-ensembles de \mathbb{R}^2 suivant et dire s'ils sont ouverts, fermés, bornés ou non (sans justifier).

1.
$$[0,1] \times [0,2]$$
.

4.
$$\mathbb{R}^* \times \mathbb{R}$$

2.
$$\mathbb{R} \times \mathbb{R}_+$$
.

5.
$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 1\}$$

3.
$$]0,1[\times]0,1[$$
.

6.
$$\{(x,y) \in \mathbb{R}^2 | y \ge 2x + 3 \}$$
.

Exercice 8

Montrer que les fonctions suivantes sont de classe C^2 sur l'ouvert U donné et calculer les dérivées partielles d'ordre 2.

1.
$$f$$
 définie par $f(x,y) = \frac{xy}{x^2+y^2} \operatorname{sur} \mathbb{R}^2 \setminus \{(0,0)\}.$

2.
$$g$$
 définie par $g(x,y) = x(\ln(x) + x + y^2) sur \mathbb{R}_+^* \times \mathbb{R}$.

3.
$$h$$
 définie par $h(x,y) = \frac{\sqrt{x}}{\ln(y)} sur]0, +\infty[\times]1, +\infty[.$

Exercice 9

1

Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x,y) = (x^2 + y^2)e^{-(x^2 + y^2)}$

- 1. Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- 2. Calculer les dérivées partielles d'ordre 1 de f et en déduire que l'ensemble des points critiques est

$$\{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

3. Étudier les variations de la fonction g définie sur \mathbb{R}_+ par

$$\forall x \in \mathbb{R}_+, \quad g(x) = xe^{-x}.$$

En déduire que les points critiques de *f* sont des extrema globaux (on précisera lesquels sont des maxima et lesquels sont des minima).

Exercice 10

Déterminer les points critiques des fonctions suivantes et préciser leur nature (extremum, point selle, autre).

- 1. $f_1:(x,y)\in\mathbb{R}^2\mapsto 3xy-y^3-x^3$.
- 2. $f_2:(x,y)\in\mathbb{R}^2\mapsto x^2-xy+y^2$.
- 3. $f_3:(x,y) \in \mathbb{R}_+^* \times \mathbb{R} \mapsto x(\ln(x)^2 + y^2)$.

Exercice 11 (EDHEC 2006)

Soit f la fonction définie pour tout couple (x, y) de \mathbb{R}^2 par :

$$f(x,y) = 2x^2 + 2y^2 + 2xy - x - y.$$

- 1. (a) Justifier que f est de classe C^2 sur \mathbb{R}^2 et calculer les dérivées partielles premières de f.
 - (b) En déduire que le seul point critique de f est $A = (\frac{1}{6}, \frac{1}{6})$.
- 2. (a) Calculer les dérivées partielles secondes de f.
 - (b) Montrer que *f* présente un minimum local en *A* et donner la valeur *m* de ce minimum.
- 3. (a) Développer $2(x + \frac{y}{2} \frac{1}{4})^2 + \frac{3}{2}(y \frac{1}{6})^2$.
 - (b) En déduire que m est le minimum global de f sur \mathbb{R}^2 .
- 4. On considère la fonction g définie pour tout couple (x,y) de \mathbb{R}^2 par :

$$g(x,y) = 2e^{2x} + 2e^{2y} + 2e^{x+y} - e^x - e^y.$$

- (a) Utiliser la question 3) pour établir que : $\forall (x,y) \in \mathbb{R}^2, g(x,y) \geq -\frac{1}{6}$.
- (b) En déduire que g possède un minimum global sur \mathbb{R}^2 et préciser en quel point ce minimum est atteint.

Exercice 12 (EML 2015)

On considère l'ouvert $U =]0, +\infty[\times \mathbb{R} \text{ de } \mathbb{R}^2 \text{ et l'application de classe } \mathcal{C}^2 \text{ suivante : }$

$$g = U \longrightarrow \mathbb{R}, (x,y) \longmapsto g(x,y) = \frac{1}{x} + e^x - y^2 e^y.$$

- 1. Représenter graphiquement l'ensemble U.
- 2. Calculer, pour tout (x,y) de U, les dérivées partielles premières de g en (x,y).
- 3. (a) Établir que l'équation $e^x = \frac{1}{x^2}$, d'inconnue $x \in]0; +\infty[$, admet une solution et une seule, notée α , et que α appartient à l'intervalle $\left[\frac{1}{2}; 1\right[$. (on pourra étudier la fonction $x \mapsto x^2 e^x 1$)
 - (b) Montrer que g admet deux points critiques et deux seulement, et que ceux-ci sont $(\alpha, 0)$ et $(\alpha, -2)$, où α est le réel défini ci-dessus.
- 4. Est-ce que g admet un extremum local en $(\alpha, 0)$?
- 5. Est-ce que g admet un extremum local en $(\alpha, -2)$?
- 6. Est-ce que g admet un extremum global sur U?