Matemáticas discretas II Lenguajes y gramáticas

Marzo 2018

1 Autómatas finitos

Contenido

1 Autómatas finitos

Introducción a los autómatas finitos

A.F de un interruptor

Uso de transiciones- ε para ayudar a reconocer palabras clave.

Un AFN-ε que acepta números decimales.

Reconocimiento de la palabra then

Autómatas finitos

Son máquinas abstractas que procesan cadenas, las cuales son aceptadas o rechazadas.

El autómata posee **unidad de control** que inicialmente escanea o lee la casilla desde el extremo izquierdo de la cinta. Tiene unos estados o configuraciones internas.

Función de transición

Sea un autómata $M = (Q, \Sigma, q_0, T, \delta)$

1. u = aabab.

v = aababa

Lenguaje aceptado por un autómata

Caso especial: la cadena λ es la cadena de entrada.

Dado un autómata M,el lenguaje aceptado o reconocido por M se denota ${\cal L}(M)$ y se define por

$$L(M) \ := \ \{u \in \Sigma^* : M \text{ termina el procesamiento de la cadena}$$
 de entrada u en un estado $q \in F\}.$

Autómatas finitos (FSAs: Finite State-Automata)

Los autómatas finitos se dividen en autómatas finitos deterministas (AFD) (es función) y en autómatas finitos no deterministas (AFN)(es una relación).

Autómata finito determinista

Sea $M = (Q, \Sigma, q_0, T, \delta)$ un AFD entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- $\delta: Q \times \Sigma \longrightarrow Q$ determina un único estado siguiente para el par $\delta(q_i, \gamma)$ correspondiente al estado actual y la entrada.

Un AFD puede ser representado por un grafo dirigido y etiquetado.

Ejemplo 1. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$

δ	a	b
\mathbf{q}_0	\mathbf{q}_0	\mathbf{q}_1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_1

$$\begin{split} \delta(q_0,a) &= q_0 \quad \delta(q_0,b) = q_1 \\ \delta(q_1,a) &= q_1 \quad \delta(q_1,b) = q_1 \end{split}$$

Ejemplos finitos deterministas

Ejemplo 2. Diseñar el AFD sobre $\Sigma=\{a,b\}$ que reconozca el lenguaje $L=a^+=\{a,a^2,a^3,\ldots\}$

Ejemplo 3. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje de todas las cadenas que tienen un número par de símbolos

Ejemplo 5. El diagrama y tabla de transición en cierta forma determinan si es un autómata finito determinista o no determinista.

Sea
$$\Sigma = \{a, b\}, Q = \{q_0, q_1, q_2\}$$

 q_0 : estado inicial

 $T = \{q_0, q_2\}$ estados finales o de aceptación.

$\mathbf{q}_0 \mathbf{q}_0 \mathbf{q}_1$
$\mathbf{q}_1 \mathbf{q}_1 \mathbf{q}_2$
\mathbf{q}_2 \mathbf{q}_1 \mathbf{q}_1

Es importante anotar que en la tabla de transición por cada pareja (q_i, γ) hay un sólo estado q_j por eso δ es una función de transición. el lenguaje que reconoce este AFD es:

Ahora como el estado inicial es un estado final este AFD reconoce ε

Ejemplo 6. Diseñar el AF sobre $\Sigma = \{0,1\}$ que reconozca en binario el lenguaje de todos los múltiplos de 2.

Binario	Decimal
_	_

0	0
10	2
100	4
110	6
1000	8
1010	10
1100	12
1110	14
:	:

Autómatas finitos No determinísticos

Autómatas finitos No determinísticos

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- △: es una relación tal que:

$$(Q \times \Sigma) \rightarrow 2^Q$$

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^Q = \{A | A \subseteq Q\}$$

Ejemplo 1. Diseñar el AFN sobre $\Sigma = \{a,b\}$ que reconozca el lenguaje regular $a^*b \cup ab^*$

Δ	а	ь
q_0	$\{q_1, q_4\}$	{q ₃ }
q_1	$\{q_1\}$	{q ₂ }
92	Ø	Ø
q_3	Ø	Ø
q_4	Ø	{q ₄ }

Ejemplo 2. Diseñar el AFN sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $(ab \cup aba)^*$

Ejemplo 3. Diseñar el AF sobre $\Sigma = \{0, 1\}$ que reconozca el lenguaje de todas las cadenas que terminan en 01

Ejemplo 4. Obtener la expresión regular del siguiente AFN sobre $\Sigma = \{a, b\}$.

$$(\underline{a} \cup \underline{b})^* (\underline{aa} \cup \underline{bb}) (\underline{a} \cup \underline{b})^*$$

Equivalencia de AFN y AFD

Teorema

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN. Entonces existe un AFD $M' = (Q', \Sigma', q'_0, T', \delta)$ tal que L(M) = L(M').

- El conjunto q₀ se corresponde con q₀'
- El conjunto de estados finales T' de Q' se corresponde con los conjuntos de estados de Q que contienen un estado de T
- El conjunto de estados de Q' se corresponde con el conjunto de estados de Q que se vaya formando mediante el análisis de una cadena sobre M

Equivalencia entre autómatas

Autómatas equivalentes

Dos AFD son equivalentes M_1 y M_2 son equivalentes si $L(M_1) = L(M_2)$.

Sean M_1 y M_2 sobre el alfabeto $\sum = \{a\}$,

$$M_1: \longrightarrow \stackrel{a}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{$$

$$L(M_1) = L(M_2) = a^+$$

Ejemplos equivalencia de AFN y AFD

Ejemplo 1. Consideremos el AFN M que acepta $a \cup (ab)^+$

Para este AFN se tiene:

$$\triangle(q_0, a) = \{q_1, q_2\} \qquad \triangle(q_0, b) = \emptyset$$

$$\triangle(\{q_1, q_2\}, a) = \emptyset \qquad \triangle(\{q_1, q_2\}, b) = \{q_3\}$$

$$\triangle(\emptyset, b) = \triangle(\emptyset, b) = \emptyset \qquad \triangle(q_3, a) = \{q_2\}$$

$$\triangle(q_3, b) = \emptyset \qquad \triangle(q_2, a) = \emptyset$$

$$\triangle(q_2, b) = \{q_3\}$$

Ejemplos equivalencia de AFN y AFD

Entonces se verifica que la regla de transición es una función. Por tanto, $M' = (Q', \Sigma', q'_0, T', \delta)$ donde:

$$\begin{array}{lcl} Q' & = & \{\emptyset, \{q_0\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}\} \\ \Sigma' & = & \Sigma \\ s' & = & \{q_0\} \\ T' & = & \{\{q_3\}, \{q_1, q_2\}\} \end{array}$$

y δ viene dada por la siguiente tabla:

δ	а	b
Ø	Ø	Ø
$\{q_0\}$	$\{q_1, q_2\}$	Ø
$\{q_2\}$	Ø	$\{q_3\}$
$\{q_3\}$	$\{q_2\}$	Ø
$\{q_1,q_2\}$	Ø	{q3}

Ejemplos equivalencia de AFN y AFD

Ejemplo 2. Consideremos el AFN M que acepta $(0 \cup 1)^*0(0 \cup 1)$

Caso desfavorable para la construcción de subconjuntos

Este AFN no tiene un AFD equivalente con menos de 2^n estados.

Intersección entre lenguajes regulares

Teorema

Si L_1 y L_2 son lenguajes regulares, también lo es $L_1 \cap L_2$.

Sean
$$L_1 = L(M_1)$$
 y $L_2 = L(M_2)$ donde: $M_1 = (Q_1, \Sigma_1, q_1, T_1, \delta_1)$ y $M_2 = (Q_2, \Sigma_2, q_2, T_2, \delta_2)$ Entonces construimos:

$$M = (Q_1 \times Q_2, \Sigma_1 \cup \Sigma_2, (q_1, q_2), T_1 \times T_2, \delta)$$

donde

$$\begin{array}{rcl} \delta: Q_1 \times Q_2 \times \Sigma & \to & Q_1 \times Q_2 \\ \delta((q_i, q_j), a) & = & (\delta_1(q_i, a), \delta_2(q_j, a)) \end{array}$$

Esta función satisface:

$$L(M) = L(M_1) \cap L(M_2)$$

Ejemplo intersección de lenguajes

Ejemplo. Construir el AFD que acepte el lenguaje L de todas las palabras sobre $\Sigma = \{a, b\}$ que tienen un número par de a's y un número par de b's.

Entonces el lenguaje $L(M) = L(M_1) \cap L(M_2)$ tiene cuatro estados: $Q_1 \times Q_2 = \{(q_1, q_2), (q_1, q_4), (q_3, q_2), (q_3, q_2)\}$ $T_1 \times T_2 = \{(q_1, q_2)\}$

Ejemplo intersección de lenguajes

Entonces δ se define como:

$$\begin{array}{lll} \delta((q_1,q_2),a) & = & (\delta_1(q_1,a),\delta_2(q_2,a)) = (q_3,q_2) \\ \delta((q_1,q_2),b) & = & (\delta_1(q_1,b),\delta_2(q_2,b)) = (q_1,q_4) \\ \delta((q_1,q_4),a) & = & (\delta_1(q_1,a),\delta_2(q_4,a)) = (q_3,q_4) \\ \delta((q_1,q_4),b) & = & (\delta_1(q_1,b),\delta_2(q_4,b)) = (q_1,q_2) \\ \delta((q_3,q_2),a) & = & (\delta_1(q_3,a),\delta_2(q_2,a)) = (q_1,q_2) \\ \delta((q_3,q_2),b) & = & (\delta_1(q_3,b),\delta_2(q_2,b)) = (q_3,q_4) \\ \delta((q_3,q_4),a) & = & (\delta_1(q_3,a),\delta_2(q_4,a)) = (q_1,q_4) \\ \delta((q_3,q_4),b) & = & (\delta_1(q_3,b),\delta_2(q_4,b)) = (q_3,q_2) \end{array}$$

Toerema de Kleene

Autómatas con ε -transiciones

Autómatas con ε -transiciones: Un autómata con ε -transiciones es un AFN $M=(Q,\Sigma,q_0,T,\triangle)$ en el que la relación de transición está definida así:

$$\triangle: Q \times (\Sigma \cup \varepsilon) \longrightarrow 2^Q$$

La ε -transición permite al autómata cambiar internamente de estado sin consumir el símbolo leído sobre la cinta.

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^Q = \{A | A \subseteq Q\}$$

Ejemplos

Ejemplo 1. Se puede representar el lenguaje de la expresión regular a^* sin necesidad de colocar el estado inicial como estado final.

Ejemplos

Ejemplo 2. Sea el siguiente AFN- ε

La ε -transición en el AFN permite que se reconozcan cadenas como:

w=aaab

w=abbbbaaa

w=a

w=b

Expresión regular del autómata

 $a^*b \cup ab^*a^*$

Ejemplos

Ejemplo 3. Construir un AFN- ε que reconozca sobre $\Sigma = \{a, b, c\}$, el lenguaje $L = a^*b^*c^*$

El siguiente AFN reconoce el mismo lenguaje que reconoce el AFN- ε anterior.

Teorema de Kleene

Teorema

Teorema de Kleene. Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN- ε)

- Construcción de autómatas finitos a partir de expresiones regulares.
- Construcción de expresiones regulares a partir de autómatas:
 - 1 Lema de Arden (Ecuaciones de Lenguaje)
 - Conversión de AFN a expresiones regulares por eliminación de estados.

Autómatas finitos y lenguajes regulares

Teorema

Dado un AFN- ε $M = (Q, \Sigma, q_0, T, \triangle)$, se puede construir un AFN M' equivalente a M, es decir L(M) = L(M').

Teorema

Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN- ε)

Autómatas finitos y lenguajes regulares

Teorema

Para toda expresión regular R se puede construir un AFN- ϵ M tal que L(R) = L(M).

Paso Básico

EL autómata

acepta el lenguaje vacío Ø

Autómatas finitos y lenguajes regulares

EL autómata

acepta el lenguaje $\{\epsilon\}$

■ EL autómata

PASO INDUCTIVO

1. Existe un autómata que acepta $R \cup S$

Sean $M_1=(Q_1,\Sigma_1,s_1,T_1,\triangle_1)$ y $M_2=(Q_2,\Sigma_2,s_2,T_2,\triangle_2)$ para el nuevo $M=(Q,\Sigma,s,T,\triangle)$ tenemos que:

- ${\color{red} 1} \; \; \Sigma = \Sigma_1 \cup \Sigma_2$
- **2** En T se agrega un estado s' si y sólo si

$$\triangle = \triangle_1 \cup \triangle_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\} \cup \{(T_1, \epsilon, s'), (T_2, \epsilon, s')\}$$

s' es un estado final NUEVO.

Por ejemplo se construye $ab \cup ba$.

Ejemplo. Sobre $\Sigma = \{a,b\}$ el lenguaje de todas las palabras sobre Σ que tienen un n

2. Autómata que acepta $R \cdot S$

Sean $M_1=(Q_1,\Sigma_1,s_1,T_1,\triangle_1)$ y $M_2=(Q_2,\Sigma_2,s_2,T_2,\triangle_2)$ para el nuevo AFN $M=(Q,\Sigma,s,T,\triangle)$ que acepta $L(M_1)\cdot L(M_2)$ tenemos que:

- $s_1 = s$
- $T = T_2$

$$\triangle = \triangle_1 \cup \triangle_2 \cup (T_1 \times \{\epsilon\} \times s2)$$

3. Autómata que reconoce R*

Sean $M_1 = (Q_1, \Sigma_1, s_1, T_1, \triangle_1)$ entonces el nuevo AFN $M = (Q, \Sigma, s, T, \triangle)$ que acepta $L(M) = (L(M_1))^*$ viene dado por

- $Q = Q_1 \cup \{s\} \cup \{s'\}$, donde s' es un nuevo estado final.
- $T = \{s'\}$

Ecuaciones de lenguaje

Ecuacion del lenguaje

Sea Σ un alfabeto y sean E y A subconjuntos de Σ^* , entonces la ecuación del lenguaje $X = E \cup A \cdot X$ admite la solición $X = A^* \cdot E$ cualquier otra solución Y deberá contener $A \cdot X$, además $\epsilon \notin A$, $X = A^* \cdot E$ es la única solución.

Ejemplos ecuaciones de lenguaje

Ejemplo 1. Encontrar la expresión del siguiente AFD.

Entones el sistema de ecuaciones a resolver:

$$x_0 = ax_1$$

 $x_1 = ax_2 + bx_4$
 $x_2 = ax_3 + bx_4$
 $x_3 = ax_3 + bx_4 + \epsilon$
 $x_4 = bx_4 + \epsilon$

Ejemplos ecuaciones de lenguaje

Ejemplo 2. Encontrar la expresión regular del siguiente AFD usando el lema del Arden:

El siguiente es el sistema de ecuaciones a resolver:

$$x_0 = ax_0 + bx_1 + \epsilon$$

$$x_1 = ax_1 + bx_2$$

$$x_2 = (a \cup b)x_1 + \epsilon$$

Ecuaciones de lenguaje

Teorema

Sean $n \ge 2$ considere el sistema de ecuaciones cuyas incognitas x_1, x_2, \ldots, x_n dado por:

$$\begin{array}{rcl}
x_1 & = & E_1 \cup A_{11}x_1 \cup A_{12}x_2 \cup \ldots \cup A_{1,n}x_n \\
x_2 & = & E_2 \cup A_{21}x_1 \cup A_{22}x_2 \cup \ldots \cup A_{2,n}x_n \\
\vdots & & \vdots \\
x_{n-1} & = & E_{n-1} \cup A_{(n-1)1}x_1 \cup \ldots \cup A_{(n-1),n}x_n \\
x_n & = & E_n \cup A_{n1}x_1 \cup A_{n2}x_2 \cup \ldots \cup A_{n,n}x_n
\end{array}$$

Entonces el sistema tiene una única solución:

 $\blacksquare En \, \forall i,j \in \{1,\ldots,n\}, \, \epsilon \notin A_i$

Ecuaciones de lenguaje

■ Entonces el nuevo sistema se obtiene hasta n-1:

$$x_{1} = \widehat{E}_{1} \cup \widehat{A}_{11}x_{1} \cup \widehat{A}_{12}x_{2} \cup \ldots \cup \widehat{A}_{1,(n-1)}x_{n-1}$$

$$x_{2} = \widehat{E}_{2} \cup \widehat{A}_{21}x_{1} \cup \widehat{A}_{22}x_{2} \cup \ldots \cup \widehat{A}_{2,(n-1)}x_{n-1}$$

$$\vdots$$

$$x_{n-1} = \widehat{E}_{n-1} \cup \widehat{A}_{(n-1)1}x_{1} \cup \ldots \cup \widehat{A}_{(n-1),(n-1)}x_{n-1}$$

Entonces \hat{E}_i y \hat{A}_{ij} se definen como:

$$\widehat{E}_{i} = E_{i} \cup (A_{in}A_{nn}^{*}E_{n}), \quad i = 1, \dots, n-1
\widehat{A}_{ij} = A_{ij} \cup (A_{in}A_{nn}^{*}A_{nj}), \quad \forall_{i,j} = 1, \dots, n-1$$

Donde:

$$E_i = \begin{cases} \emptyset & \text{si} \quad q_i \notin F \\ \epsilon & \text{si} \quad q_i \in F \end{cases}$$

Ejemplo ecuaciones de lenguaje

Ejemplo 1. Obtener la expresión regular del siguiente AFD usando ecuaciones del lenguaje y la solución única.

El sistema de ecuaciones inicial es:

$$x_1 = ax_1 + bx_2$$

$$x_2 = bx_1 + ax_2 + \epsilon$$

Ejemplo ecuaciones de lenguaje

Se aplica el teorema de solución de ecuaciones:

$$x_1 = \widehat{E}_1 + \widehat{A}_{11}x_1$$

Se obtiene \widehat{E}_1

$$\widehat{E}_1 = E_1 + (A_{12}A_{22}^*E_2)
\widehat{E}_1 = \emptyset + (b \cdot a^* \cdot \epsilon)
\widehat{E}_1 = ba^*$$

Se obtiene \widehat{A}_{11}

$$\hat{A}_{11} = A_{11} + (A_{12}A_{22}^*A_{21})
\hat{A}_{11} = a + (b \cdot a^* \cdot b)
\hat{A}_{11} = a + ba^*b$$

Ejemplo ecuaciones de lenguaje

Reemplazando \widehat{E}_1 y \widehat{A}_{11} en x_1

$$x_1 = \widehat{E}_1 + \widehat{A}_{11}x_1$$

 $x_1 = ba^* + (a + ba^*b)x_1$

Aplicando solución única se tiene:

$$x_1 = (a + ba^*b)^*ba^*$$

Sistema de ecuaciones por reducción de variables

$$x_1 = ax_3 + bx_2 + \varepsilon$$

$$x_2 = ax_4 + bx_1$$

$$x_3 = ax_1 + bx_4$$

$$x_4 = ax_2 + bx_3$$

$$\begin{array}{rcl} x_1 & = & \widehat{E}_1 \cup \widehat{A}_{11} x_1 \cup \widehat{A}_{12} x_2 \cup \widehat{A}_{13} x_3 \\ x_2 & = & \widehat{E}_2 \cup \widehat{A}_{21} x_1 \cup \widehat{A}_{22} x_2 \cup \widehat{A}_{23} x_3 \\ x_3 & = & \widehat{E}_3 \cup \widehat{A}_{31} x_1 \cup \widehat{A}_{32} x_2 \cup \widehat{A}_{33} x_3 \end{array}$$

Referencias

