SEMESTER 4

INDUSTRIAL ENGINEERING

SEMESTER S4

MATHEMATICS FOR PHYSICAL SCIENCE-4

(C Group)

Course Code	GCMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hr. 30 Min.
Prerequisites (if any)	Basic calculus.	Course Type	Theory

Course Objectives:

- **1.** To familiarize students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science.
- **2.** To provide the students with the basics of various numerical methods to develop problem solving skills used in various engineering disciplines.

Module No.	Syllabus Description	Contact Hours
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Binomial distribution, Poisson distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	9

	Continuous random variables and their probability distributions,		
	Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two		
2	Continuous random variables, Marginal pdf, Independent random	9	
2	variables, Expectation value of a function of two continuous variables.	9	
	[Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1,		
	5.2]		
	Confidence Intervals, Confidence Level, Confidence Intervals and		
	One-side confidence intervals for a Population Mean for large and		
	small samples (normal distribution and <i>t</i> -distribution), Hypotheses and		
_	Test Procedures, Type I and Type II error, z Tests for Hypotheses		
3	about a Population Mean (for large sample), t Test for Hypotheses	9	
	about a Population Mean (for small sample), Tests concerning a		
	population proportion for large and small samples.		
	[Text 1: Relevant topics from 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4]		
	Newton-Raphson Method, Gauss Elimination Method, Gauss - Jordan		
	Method, Numerical solution of ordinary differential equations-Euler's		
	method, Modified Euler's method, Runge - Kutta method of 2 nd	_	
4	Order, Numerical solution of Laplace equation -Jacobi's Method,	9	
	Curve Fitting by Method of Least Squares - Straight lines, Parabola.		
	(Text 2: Relevant topics from sections 2.5,4.2,7.5,8.4,8.5,9.4)		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
601	Understand the concept, properties and important models of discrete	К3
CO1	random variables and to apply in suitable random phenomena.	KS
COA	Understand the concept, properties and important models of continuous	К3
CO2	random variables and to apply in suitable random phenomena.	KS
	Estimate population parameters, assess their certainty with confidence	
CO3	intervals, and test hypotheses about population means and proportions	К3
	using <i>z</i> -tests and the one-sample <i>t</i> -test.	
604	Apply numerical methods to find solutions of linear system of	К3
CO4	equations, ordinary differential equations and Laplace equations.	KS

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	2
CO2	3	3	2	2	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	_	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Probability and Statistics for Engineering and the Sciences Devore J. L		Cengage Learning	9 th edition, 2016				
2	Introductory Methods of Numerical Analysis	S SSastry	PHI Learning Pvt Limited	5 th edition, 2012				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Probability, Random Variables and Stochastic Processes,	Papoulis, A. &Pillai, S.U.,	McGraw Hill.	4 th edition, 2002				
2	Introduction to Probability and Statistics for Engineers and Scientists	Ross, S. M.	Academic Press	6 th edition, 2020				
3	Numerical methods for Engineers	Steven C. Chapra, Raymond P. Canale	McGraw Hill Education	8 th edition, 2021				

	Video Links (NPTEL, SWAYAM)					
Module No.	Module No. Link ID					
1	1 https://archive.nptel.ac.in/courses/117/105/117105085/					
2	https://archive.nptel.ac.in/courses/117/105/117105085/					
3	3 https://archive.nptel.ac.in/courses/117/105/117105085/					
4	https://archive.nptel.ac.in/courses/111/107/111107105/					

SEMESTER S4
MACHINE TOOLS AND DIGITAL MANUFACTURING

Course Code	PCIET402	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the foundational knowledge of metal cutting processes, including tool nomenclature, chip formation, and cutting force analysis.
- 2. To provide hands-on experience and theoretical understanding of operating conventional machine tools and CNC machines, emphasizing their construction, operation, and programming.
- 3. To familiarize students with the architecture and functions of digital manufacturing systems, Programmable Logic Controllers (PLCs), and the key principles of Industry 4.0, fostering their ability to implement advanced manufacturing strategies

Module No.	Syllabus Description	Contact Hours
1	Introduction to Metal Cutting: Overview of metal cutting processes, Tool Nomenclature, Attributes of each tool nomenclature, Standardised systems of nomenclature of single point cutting tool like ASA, ORS, Case studies and examples with varying tool attributes to analyse their impact on surface roughness and material removal rate (MRR), Orthogonal and Oblique Cutting. Mechanism of metal removal, Primary and secondary deformation shear zones, Mechanism of chip formation, Types of chips and types of chip breakers. Merchant's theory Friction forces in metal cutting, Analysis of cutting	11

	forces (simple problems), Work done and power required.	
	Cutting Tool Materials, Properties and applications of various tool materials, Advanced tool materials and coatings, Thermal Aspects of Machining, Techniques for thermal management in machining.	
	Tool Wear and Mechanisms of tool wear, Types of tool wear, Role and types of cutting fluids. Tool life, Factors affecting tool life, Taylor's tool life equation (simple problems), Economics of Machining, case studies on machining economics.	
2	Conventional Machine Tools: Lathes Machine—Types of lathes and size, specification and parts, Work holding devices. Types of operations in a lathe, plain turning, taper turning, thread cutting and facing operations. Turning Centres, C axis machining, Vertical/Inclined turrets. Milling machines - Types of milling machines, Milling operations, end milling and slot milling. Types of milling cutters, up milling and down milling. Work holding devices, Indexing and indexing heads, 5 and 6 axis milling. Reciprocating machines- shapers, planers, slotting machines, broaching machines, uses and specific applications. Grinding machines — Classification — Operations — Surface, cylindrical and centreless grinding machines.	11
3	Computer Numeric Controlled Machines: NC and CNC machines, classification and principle, Point to point, straight cut and contouring positioning - incremental and absolute systems – open loop and closed loop systems -Parts: Positional Encodes, axis and spindle drives, LM Guideways, ball screws, automatic tool changer(ATC). NC part programming: part programming fundamentals - manual	11

	programming –NC coordinate systems and axes – sequence number,	
	preparatory functions, dimension words, speed word, feed world, tool	
	world, miscellaneous functions, Tool nose radius compensation and	
	constant surface speed control, Canned cycles and Multiple repetitive	
	cycles.	
	Programmable Logic Controllers (PLC): Need – relays - logic	
	ladder program –timers, simple problems only.	
	Digital Manufacturing: Definition and Illustration of Digital	
	Manufacturing, Operation reference mode of digital manufacturing	
	system, Architecture of digital manufacturing system, General function	
	structure model of digital manufacturing system.	
	Core pillars of Computer Integrated Manufacturing, Flexible	
4	manufacturing Cell (FMC), Automated Guided vehicles (AGV),	11
	Automated Storage and Retrieval Systems (ASRS), Industrial robots-	
	major configurations and applications.	
	PLM and its implementation, Steps in PLM, manufacturing data and its	
	use, Overview of Industry 4.0.	
1		
		i

Continuous Internal Evaluation Marks (CIE):

At	tendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
	5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledge Level (KL)
CO1	Understand the different types of conventional and CNC machine tools, their parts, and their specific applications.	K2
CO2	Explain the mechanisms of metal removal, chip formation, tool wear and the role of tool angles in determining surface roughness and material removal rate (MRR).	K2
СОЗ	Apply knowledge to create and interpret part programs for CNC machines, including manual programming, canned cycles, and multiple repetitive cycles.	К3
CO4	Evaluate the economics of machining through case studies, considering factors such as cutting forces, tool life, and material costs to make informed decisions on machining strategies.	K4

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	-		-	-	-	-	-	-	-	-	2
CO2	3	3		-	-	-	-	-	-	-	-	2
CO3	3	3	3	-	3	-	-	-	-	-	-	2
CO4	3	3	-	3	-	-	=.	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Manufacturing Process	H. N. Gupta, R.C. Gupta Arun Mittal	New Age International	2nd Edition, 2009			
2	Computer control of manufacturing systems	Yoram Koren	TATA McGraw-Hill	1st Edition, 1983			
3	Fundamentals of Digital Manufacturing Science	Zude Zhou, Shane (Shengquan) Xie, Dejun Chen	Springer London	1st Edition, 2023			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Machining and Machine Tools	Geoffrey Boothroyd, Winston A. Knight	CRC Press Inc.	3rd Edition, 2005				
2	CAD/CAM Computer Aided Design and Manufacturing	P.Groover, E. M. Zimmers	Pearson Education	1st Edition, 2014				
3	Programmable logic controllers	Petruzella Frank. D	McGraw-Hill	2nd Edition, 2006				

	Video Links (NPTEL, SWAYAM)				
Link ID	https://onlinecourses.nptel.ac.in/noc24_me123/preview				
	https://onlinecourses.nptel.ac.in/noc24_me100/preview				

SEMESTER S4

WORK SYSTEM DESIGN

Course Code	PCIET403	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarise concepts of work system design in organisations.
- 2. To enable students to utilize techniques in work system design for productivity improvement in organisations.

Module No.	Syllabus Description	Contact Hours
1	Productivity and Work Systems: Concepts, definition and importance of productivity, holistic approach to productivity, productivity and living standards, measuring productivity, fractional and multifactor productivity, work systems and productivity, techniques for productivity improvement, techniques in work study for productivity improvement, effect of workplace environment and workplace design in productivity improvement.	11
2	Method Study: Definition and objectives of method study, procedure of method study, selection of work, recording the work and activities, classification of activities, representation of activities, use of different charts and diagrams, examining the work, developing methods, evaluation and implementation of method study.	11

	Work Measurement and Standard Time: Definition and objectives of	
	work measurement, basic procedure of stop watch time study, classification	
3	of elements, breaking the job into elements, determination of sample size,	
	performance rating systems, calculation of allowances and estimation of	
	standard time, development of incentive schemes with examples.	
	Indirect methods of work measurement: Work sampling, determination	
	of sample size, conducting work sampling study, calculation procedures,	
	MTM and MOST in work measurement.	
4	Micro motion study: Therbligs, film analysis and SIMO chart preparation,	11
	principles of motion economy pertaining to worker, workplace and tools,	
	worker, applications of these principles in design.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledge Level (KL)
CO1	Make use of productivity concepts in an industry and identify the importance of work study and workplace environment	К3
CO2	Apply method study concepts and identify its use in productivity improvement	К3
CO3	Apply time study concepts of work measurement and identify the use of standard time in development of incentive schemes	К3
CO4	Utilize PMTS and Work sampling concepts in work measurement and identify the role of principles of motion economy in workplace design	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										U	I	2
CO1	3	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	3	2	1	-	-	-	-	_	-	-	-	2
CO4	3	2	2	-	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to work study	ILO	Oxford and IBH	3rd Edition,			
				2015			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Motion and time study design and measurement of work	Ralph M.Barnes	Wiley India Private Limited	7th Edition, 2013				
2	Work systems: The Methods, Measurements and Management of works	Mikell P. Groover	Pearson International	1st Edition, 2013				
3	Niebel's Methods, Standards and Work Design	Andris Freivalds, Benjamin Niebel	McGraw Hill	13th Edition, 2013				

	Video Links (NPTEL, SWAYAM)
Link ID	https://archive.nptel.ac.in/courses/112/107/112107249/

SEMESTER S4
THEORY OF MACHINES AND DESIGN

Course Code	PBIET404	CIE Marks	60
Teaching Hours/Week (L:T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce different mechanisms and enable the students to do the kinematic analysis of planar mechanisms.
- 2. To discuss the theory of different machine elements in order to carry out the design.
- 3. To discuss the theories of failure and enable the students to do the strength based design for some practical applications such as shafts, gears and structural joints viz. riveted, bolted and weld joints at the basic level.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Kinematics and Mechanisms: Mechanisms such as Quick return motion, steering mechanism, universal coupling. Kinematic analysis of planar mechanisms: Kinematic chain, kinematic diagrams, Degrees of freedom, Grashof's condition, mechanical advantage; Position vector loop, velocity and acceleration diagrams of four bar chain and slider crank mechanisms.	10

	Cams: Radial cam- terminology; displacement, velocity, acceleration	
	diagrams- for uniform velocity, uniform acceleration and SHM. Cam	
	profile synthesis (knife edge follower).	
	promo oj maosa (maro ougo rene nor).	
2	Friction clutch- Design of plate friction clutch; Belt drive power	11
	transmission - open and crossed belt.	
	Brakes and dynamometers (no derivations): simple band brake, block	
	brake, disk brake; Rope brake dynamometer.	
	Introduction to stress analysis: Behaviour of materials- elastic and	
	plastic, Concept of Stress and Strain, Hooke's law (2D), principal stresses,	
	maximum shear stress, bending and torsional stresses, combining stresses	
	(2D), Mohr's circle, stress concentration factor; Stresses in pressure	
3	vessels.	
3		12
	Design for strength: Theories of failure- Max. normal stress, Max. shear	
	stress theory and von Mises theory; factor of safety. Failure criteria for	
	fatigue, endurance limit. Design of Shafts (with single pulley/gear	
	mounted on it), key.	
	Gears: Types, Gear terminology, pressure angle, law of gearing, Gear	
	trains- simple, compound and planetary, Lewis equation. Design of spur	
4	gears.	
4		11
	Design of structural joints: riveted joints, bolted joints and weld joints-	
	butt and lap fillet welds.	

Suggestion on Project Topics: Each student team can choose some simple close to real life projects from the areas discussed in the syllabus such as:

- Development and kinematic analysis of simple mechanisms.
- Cam profile synthesis.
- Design of a brake, clutch, shaft or spur gear using a design data book.
- Design of structural joints for some simple practical applications.
- Some simple case studies to understand and apply the theory/concepts discussed and learned during the lecture hours.

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from	• 2 questions will be given from each module,	
each module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 2 sub	40
each carrying 2	divisions. Each question carries 6 marks.	40
marks	(4x6 = 24 marks)	
(8x2 =16 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledg e Level (KL)
CO1	Analyse simple mechanisms using principles of kinematics.	K4
CO2	Execute the synthesis of radial cam profile and design of machine elements working on dry friction.	К3
CO3	Apply the principles of stress analysis to design components to resist failure by static loads.	К3
CO4	Apply principles of design for spur gear and structural joints.	К3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	-	-	-	2	2	-	1
CO2	3	2	3	-	-	-	-	-	2	2	-	1
CO3	3	2	3	-	2	3	-	-	2	2	-	3
CO4	3	2	3	_	2	2	-	-	2	2	-	1

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Theory of machines and mechanisms	Ballaney. P. L.	Khanna Publishers	21st Edition, 2020		
2	Theory of Machines	S. S. Rattan	Tata McGraw-Hill Education	5 th Edition, 2019		
3	Design of Machine Elements	Bhandari. V. B.	Tata McGraw-Hill Education	5 th Edition, 2020		

CI	Design Data Books (Permitted for reference in the university examination)						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Design Data Handbook.; Mechanical Engineers in SI and Metric Units.	Mahadevan, K., and K. Balaveera Reddy	CBS Publishers & Distributors	4 th Edition, 2013			
2	Design Data: Data Book of Engineers	Faculty in ME, PSG College	Kalaikathir Achchagam	4 th Edition, 2020			
3	Machine Design Data Handbook	NarayanaIyengar B.R & Lingaiah K	Tata McGraw Hill/Suma Publications	4 th Edition, 2006			

	Reference Books						
1	Theory of Mechanisms and Machines	Amithabha Ghosh and Asok Kumar Malik	East West Press	3 rd Edition, 2011			
2	Theory of Machines: Kinematics and Dynamics	Sadhu Singh	Pearson Education	3 rd Edition, 2011			
3	Theory of Machines	John J. Uicker Gordon R. Pennock, Joseph E. Shigley	Oxford University Press	5 th Edition, 2017			
4	Machine Design	P C Sharma and D K Aggarwal	S K Kataria & Sons	1997			
5	Design of Machinery	Robert L Norton	Tata McGraw-Hill	2005			
6	Shigley's Mechanical Engineering Design	Richard G. Budynas, J. Keith Nisbett, Kiatfa Tangchaichit	The McGraw-Hill companies	11 th Edition, 2020			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://nptel.ac.in/courses/112104121 (Kinematics of Machines by Prof. Ashok K Mallik, IIT Kanpur)			
2	https://archive.nptel.ac.in/courses/112/105/112105124/ (Design of Machine Elements-I, IIT Kharaghpur)			
3	https://archive.nptel.ac.in/courses/112/105/112105124/ (Design of Machine Elements-I, IIT Kharaghpur)			
4	https://archive.nptel.ac.in/courses/112/105/112105124/ (Design of Machine Elements-I, IIT Kharaghpur)			

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SEMESTER S4

ROBOTICS AND AUTOMATION

Course Code	PEIET411	CIE Marks	40
Teaching Hours/Week (L:T: P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarise the concepts and applications of hydraulic and pneumatic automation.
- 2. To enable students to develop automation logic using PLC and other techniques.
- 3. To familiarise the basics of robotics and its applications.

Modul e No.	Syllabus Description				
1	Introduction to automation: classification of drives-hydraulic and pneumatic-comparison. ISO symbol of fluid power generating elements-hydraulic pumps and motor gears, vane pumps, piston pumps. Control and regulating elements: Pressure, flow and direction control valves, spool valves, electro hydraulic servo valves.	9			
2	Electrical control of pneumatic and hydraulic circuits: interfacing with PLC, ladder diagrams, use of relays, timers and counters. Typical Design methods of automation-ladder diagram, circuit sequencing, combinational logic design, cascading, Karnaugh map method.	9			

3	Introduction to robotics: Drive systems: AC and DC servo and stepper motors. Actuators: Pneumatic and hydraulic actuators, Sensors: Proximity and range sensors, force and torque sensors, velocity sensors, encoders, vision sensors. Classification of robots: Work envelope, Classification of work cell layout. Consideration in work cell design. Flexible automation vs robotic technology.	9
4	Industrial application of robots: Spray painting, spot-welding, arc welding, drilling, assembly operation, loading unloading, role of a robot in a manufacturing cell. Safety considerations.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledge Level (KL)
CO1	Understand the basics of hydraulic and pneumatic automation.	K2
CO2	Develop automation circuits for various industrial applications using control valves.	К3
CO3	Develop automation logic using PLC and other techniques.	К3
CO4	Understand the basics of Robotics.	К2
CO5	Understand the application of robotics in various industries.	К2

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	-	-	-	-	-	-	_	-	-	3
CO2	3	2	-	-	-	-	-		-	-	-	3
CO3	3	2	-	-	-	-	-		-	-	-	3
CO4	3	2	_	_	_	_	_		_	_	_	3
CO5	3	2	-	-	_	_	_		_	_	_	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Hydraulics and Pneumatics	Jagadeesha T.	I K International Publishing House	10th Edition, 2015		
2	Fluid Power with application	Antony Esposito	Prentice-Hall	7th Edition, 2008		
3	Fluid power transmission a and control	Alavudeen A.	Charotar Publishing House	1st Edition, 2008		
4	Introduction to Robotic Mechanic and Control	John J. Craig	Pearson Education International	4th Edition, 2017		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fluid Power Logic Circuit Design	Peter Rohner	MacMillan Press	1st Edition,1994		
2	Introduction to Fluid Logic	E.C.Fitch and J.B.Surjaatmadja	McGrawHill	1st Edition,1978		
3	Robot Dynamics and Control	Mark.W.Spong&M.Vidy asagar	John Wiley and Sons	1st Edition, 2004		

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://nptel.ac.in/courses/108105063
2	https://nptel.ac.in/courses/108105088
3	https://nptel.ac.in/courses/112105249
4	https://onlinecourses.nptel.ac.in/noc23_de12

SEMESTER S4

INDUSTRIAL REFRIGERATION AND

AIR CONDITIONING

Course Code	PEIET412	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a comprehensive understanding of the principles and applications of refrigeration and air conditioning systems.
- 2. To familiarise fundamental concepts of refrigeration systems, psychrometry, and air conditioning system design.

Module No.	Syllabus Description	Contact Hours
	Introduction to Refrigeration : History, applications, and importance of refrigeration.	
	Thermodynamics of Refrigeration : Reversed Carnot cycle, heat pumps, refrigeration machines, limitations of the reversed Carnot cycle. Units of Refrigeration: Definition and practical examples.	
1	Air Refrigeration Systems : Reversed Joule cycle, aircraft refrigeration systems (simple, bootstrap, regenerative, and reduced ambient systems).	9
	Special Refrigeration Systems: Vortex tube refrigeration,	
	Thermoelectric Refrigeration (Peltier Effect), Magnetic Refrigeration,	
	Steam Jet Refrigeration.	

2	Vapour Compression Systems: Simple cycle, representation on T-s and P-h diagrams, Coefficient of Performance (COP), and methods to improve COP (superheating, undercooling, liquid suction heat exchanger). Multi-pressure Systems: Multi-compression and multi-evaporator systems, inter-cooling, flash intercooling, flash gas removal, cascade systems. Refrigerants: Properties, eco-friendly refrigerants, mixed refrigerants, selection criteria for different applications.	9
3	Vapour Absorption Systems: Ammonia-water system, Lithium bromidewater systems, Electrolux systems, comparison with vapour compression systems and drawbacks. Applications of Refrigeration: Domestic refrigerators, water coolers, ice plants, cold storage, food preservation (plate freezing, quick-freezing). Refrigeration System Components: Compressors, condensers, expansion devices, evaporators, cooling towers (types and applications), refrigerant leakage detection, refrigerant charging, and system controls.	8
4	Psychrometry: Properties of air (saturated, unsaturated, dry, wet, dew point, humidity levels), thermodynamic equations, adiabatic saturation process, psychrometric charts, processes (sensible heating/cooling, humidifying/dehumidifying), air washers, bypass factors, sensible heat factor, RSHF, GSHF. Air Conditioning Design: Comfort and Industrial air conditioning. Comfort air conditioning factors, effective temperature, comfort charts, cooling load estimation, design conditions, supply conditions, fresh air supply. Air Conditioning Systems: Room air conditioners, split systems, packaged systems, all-air systems, chilled water systems, winter and summer air conditioning, heating systems, humidifiers, year-round AC system and controls (thermostat, humidistat), air distribution systems (duct design), air conditioning for various environments (restaurants, hospitals, retail outlets, computer centers, theaters, industrial applications).	10

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions,	of which 1 question should be answered.	(0
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes		
CO1	Explain the fundamentals and thermodynamic principles of refrigeration systems.	К3	
CO2	Analyse vapour compression systems and select appropriate refrigerants for various applications.	K4	
CO3	Understand the working of vapour absorption refrigeration and to explore the various applications of refrigeration, and study the components of refrigeration systems.	К3	
CO4	Apply psychrometric principles to analyse and design air conditioning systems.	К3	

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	1	1	-	-	_	-	-	2	3
CO2	3	2	3	2	1	-	_	_	-	-	2	3
CO3	3	2	3	2	1	-	-	-	-	-	2	3
CO4	3	3	2	2	1	2	-	-	-	2	3	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Refrigeration and Air	Bill Whitman, Bill	Canada I camina	8th Edition,		
1	Conditioning Technology	Johnson, John Tomczyk	Cengage Learning	2023		
	Refrigeration and Air	G.F. Hundy, A.R. Trott,	Butterworth-	5th Edition,		
2	Conditioning	T.C. Welch	Heinemann	2021		
	Refrigeration and Air	C.P. Arora	McGraw Hill	5th Edition,		
3	Conditioning		Education	2017		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Refrigeration and Air Conditioning	Andrew D. Althouse, Carl H. Turnquist, Alfred F. Bracciano	Goodheart-Willcox	21st Edition, 2022			
2	Air Conditioning Engineering	W.P. Jones	Arnold	5th Edition, 2013			
3	Refrigeration and Air Conditioning Technology Handbook	J. Whitfield, P. Dincer	CRC Press	2nd Edition, 2020			
4	Handbook of Air Conditioning and Refrigeration	Shan K. Wang	McGraw-Hill	3rd Edition, 2017			
5	Practical Guide to Refrigeration and Air Conditioning	Minnick & Associates	Delmar Cengage Learning	2nd Edition, 2016			

6	Fundamentals of HVACR	Carter Stanfield, David Skaves	Pearson	3rd Edition, 2016
7	Air Conditioning and Refrigeration Repair	Roger A. Fischer, Ken Chernoff	McGraw-Hill	2nd Edition, 2014
8	Textbook of Refrigeration and Air Conditioning	R.K. Rajput	S. Chand Publishing	6th Edition, 2016
9	Principles of Refrigeration	Roy J. Dossat	Pearson Education	5th Edition, 2019
10	Air Conditioning Principles and Systems	Edward G. Pita	Prentice Hall	4th Edition, 2017

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	http://nptel.ac.in/courses/112105128/				
2	https://onlinecourses.nptel.ac.in/noc24_me77/preview				
3	https://nptel.ac.in/courses/112105129				
4	https://archive.nptel.ac.in/courses/112/107/112107208/				

SEMESTER S4

DYNAMICS OF MACHINERY

Course Code	PEIET413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarise the rigid- body dynamics of kinematically driven machine components and perform the force analysis
- 2. To equip the students to analyze the effects of gyroscopic forces on vehicle stability, to control power and speed fluctuations in IC engines, and reduce machinery vibrations.
- 3. To outline the theoretical concepts of vibrations and to enable the students to perform the vibration analysis of single degree of freedom (SDOF) systems.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Mechanisms and machines: Mechanisms such as four bar chain, slider crank, quick return motion, steering mechanism, universal coupling. Static & Dynamic Force analysis: Static equilibrium conditions, Two & three force members, four bar and slider crank mechanisms, method of virtual work; Force & moment equilibrium, Inertial forces, D' Alembert's principle. Dynamic analysis of four-bar and slider-crank mechanisms.	9

2	Gyroscopic couple: gyroscopes, effect of gyroscopic couple on - bearings, stability of two wheel and four wheel vehicles. Balancing of rotating masses: single mass, several masses in same and in	9
	different planes; Balancing of reciprocating masses, partial balancing of single cylinder and multi-cylinder inline engines	9
3	Flywheels: Applications in punching press, IC engines; turning moment diagrams-for four stroke IC engines; Coefficient of fluctuation of energy, speed; design of flywheels. Governors: Types of governors, Watt, Porter and Proell governors-Isochronism, sensitivity and stability	9
4	Free vibrations: Undamped free vibrations of SDOF systems - natural frequency of longitudinal, transverse and torsional vibrations by Newton's method and energy method; Damped systems and critical damping, logarithmic decrement. Forced vibrations: Forced harmonic vibration, rotating unbalance, magnification factor, resonance; whirling of rotating shafts, vibration isolation and transmissibility.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the functions of mechanisms and execute the force analysis of kinematic systems.	К3
CO2	Examine the balancing of rotating and reciprocating masses in machines; determine the gyroscopic effect on stability of vehicles.	К3
CO3	Understand the principle of governors/ flywheel for the control of speed/power fluctuation in engines or machines and execute its analysis and design.	К3
CO4	Determine the natural frequencies and examine free or harmonically excited vibration response of damped and undamped vibration.	К3

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	-	-	-	-	-	-	-	-	3
CO2	3	2	3	-	-	-	-	-	-	-	-	3
CO3	3	2	3	-	-	2	-	_	-	_	-	3
CO4	3	2	3	-	3	2	-	-	-	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlatio

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Theory of Machines and Mechanisms	Ballaney P. L.	Khanna Publishers	21st Edition, 2020			
2	Theory of Machines	S. S. Rattan	Tata McGraw-Hill Education	4 th Edition, 2017			
3	Theory of vibration with applications	W. T Thomason	CBS Publishers	1 st Indian Edition, 1990			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Theory of Mechanisms and Machines	Amithabha Ghosh and Asok Kumar Malik	East West Press	3rd Edition, 2011			
2	Kinematics and dynamics of machinery	Robert L Norton	McGraw-Hill Education	1st Edition in SI units 2009			
3	Theory of Machines	Thomas Bevan	Pearson Education Ltd.	3rd Edition, 2010			

4	Theory of Machines and Mechanisms	John J. Uicker Gordon R. Pennock, Joseph E. Shigley	Oxford University Press	5th Edition, 2017
5	Mechanical vibrations and Industrial noise control	Lasithan L G	PHI Learning	1 st Edition, 2014

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/112104121 https://archive.nptel.ac.in/courses/112/104/112104114/					
2	https://archive.nptel.ac.in/courses/112/104/112104114/					
3	https://archive.nptel.ac.in/courses/112/104/112104114/					
4	https://archive.nptel.ac.in/courses/112/107/112107212/					

SEMESTER S4
MODERN AUTOMOTIVE TECHNOLOGIES

Course Code	PEIET414	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of modern automotive technologies, focusing on electric and hybrid vehicles and recent advancements in automotive power plants.
- 2. To familiarise advanced developments in autonomous vehicle technologies and fuel cells.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Electric and Hybrid Vehicle Technology: Introduction to Vehicle	
	Electrification: Low Emission Vehicle (LEV), Transitional Low	
	Emission Vehicle (TLEV), Ultra Low Emission Vehicle (ULV), and	
	Zero Emission Vehicle (ZEV).	
	Basic components of electric vehicles: Inverters, battery packs,	
	battery management systems, motors, and electronic power control	
1	units.	8
	Electric wiring harness: CAN Bus, Multiplex wiring. Regenerative	
	braking. Factors to consider for converting automobiles to electric	
	vehicles	
	Hybrid Electric Vehicles: Types: Series and parallel hybrid layouts,	
	Comparison of power systems and control systems, Different modes of	
	operation for best performance, Wireless Charging, Battery Recycling	
	and Lifecycle Management	

	Desent Tuends in Automotive Deserve Diantes Continued Inc.	
	Recent Trends in Automotive Power Plants: Stratified charge	
	engines, Reactivity Controlled Compression Ignition engines (RCCI),	
	Hydrogen engines, Flex fuel vehicles. Biofuels and synthetic fuels	
	Vehicle Operation and Engine Control Systems: Application of	
	sensors, actuators, and microprocessors for optimal fuel economy and	
2	performance, electronic engine management systems, electronic cruise	9
	control; and chassis control systems	
	Integrated Control Systems (Basics): Advanced integration of	
	vehicle control systems for enhanced performance and safety, AI and	
	Machine Learning in engine control, Predictive maintenance systems.	
	Autonomous Vehicle Technologies: Autonomous vehicle levels (0-	
	5), Sensor technologies (LiDAR, radar, cameras, ultrasonic sensors)	
	Driver Assistance Systems (ADAS): Vision systems in cars,	
	Comprehensive driver assistance: lane recognition, traffic sign	
	recognition, road recognition, and object recognition.	
3		9
	Connected Vehicles and IoT (Basics): Vehicle-to-Vehicle (V2V)	
	communication, Telematics and applications, Cybersecurity in	
	connected vehicles, Over-the-air (OTA) updates, 5G in automotive	
	communication, Human-Machine Interfaces (HMI), Role of AI and	
	ML in autonomous vehicles	
	Advanced Electronics and Microcontroller Systems in Modern	
	Vehicles: Electronically controlled systems: Headlights, Sunroofs,	
	Electro chromic mirrors, Head-up displays, Navigation systems,	
	Automatic climate control, Anti-theft systems, Automatic door locks,	
4	Tyre pressure sensing, Automated wipers, Anti Lock braking system	10
	(ABS), Electronic Stability Control (ESP).	
	Fuel Cells and Alternative Energy Systems: Introduction to fuel	
	cells: Operational voltages, types (Proton Exchange membrane fuel	

cells, Alkaline fuel cells, Medium and High temperature fuel cells),
Fuel choices, Fuel Processing, Fuel Stacks, Air supply, Auxiliary
systems.

Advanced Battery Technologies: Solid-state batteries, Fast-charging technologies, Second-life applications of EV batteries.

Sustainable Automotive Materials: Use of lightweight materials, Recycling and end-of-life vehicle strategies, Vehicle-to-Grid (V2G) technology

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	(0
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledge Level (KL)
CO1	Understand the basic concepts and identify the components of electric and hybrid vehicles.	К3
CO2	Analyze advanced automotive power plants, control systems, and integrated vehicle control technologies to enhance performance, safety, and fuel economy.	K4
CO3	Apply the technologies used in autonomous and connected vehicles and their impact on vehicle safety and efficiency.	К3
CO4	Apply knowledge of modern automotive electronics and alternative energy systems to innovate and improve vehicle systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	-	-	2	-	1	_	-	_	-	1
CO2	3	3	2	2	3	-	-	-	-	-	-	-
CO3	3	3	3	2	3	2	1	2	-	-	-	2
CO4	3	2	2	-	3	2	1	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Electric and Hybrid Vehicles: Design Fundamentals	Iqbal Husain	CRC Press	3rd Edition, 2021			
2	Advanced Engine Performance Diagnosis	James D. Halderman	Pearson	6th Edition, 2020			
3	Automotive Embedded Systems Handbook	Nicolas Navet, Francoise Simonot- Lion	CRC Press	1st Edition, 2017			
4	Automotive Handbook	Bosch	Robert Bosch GmbH	10th Edition, 2018			

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Electric Vehicle Engineering	Perry MacMullen	McGraw-Hill	1st Edition,	
1			Education	2021	
	Build Your Own Electric	Bob Brant, Seth Leitman	McGraw-Hill	3rd	
2	Vehicle			Edition,	
-				2013	
	Modern Electric, Hybrid	Mehrdad Ehsani, Yimin	CRC Press	3rd	
	Electric, and Fuel Cell Vehicles	Gao, Stefano Longo,		Edition,	
3	Dicetto, and I del Cell Vellieles	Kambiz Ebrahimi		2018	

4	Electric and Hybrid Vehicles: Technologies, Modeling, and Control - A Mechatronic Approach	Amir Khajepour, M. Saber Fallah, Avesta Goodarzi	Wiley	1st Edition, 2014
5	Automotive Control Systems: For Engine, Driveline, and Vehicle	Uwe Kiencke, Lars Nielsen	Springer	2nd Edition, 2020
6	Understanding Automotive Electronics	William B. Ribbens	Butterworth- Heinemann	8th Edition, 2017
7	Automotive Electrical and Electronic Systems	Tom Denton	Routledge	5th Edition, 2019
8	Automotive Mechatronics: Operational and Practical Issues	Bosch (Editor)	Springer	1st Edition, 2018
9	Connected and Autonomous Vehicles: Technologies, Applications, and Challenges	Rajkumar Buyya, Amir Vahid Dastjerdi	Springer	1st Edition, 2021
10	Autonomous Driving: Technical, Legal and Social Aspects	Markus Maurer, J. Christian Gerdes, Barbara Lenz, Hermann Winner	Springer	1st Edition, 2016
11	Automotive Electricity, Electronics and Computer Controls	Barry Hollembeak	Cengage Learning	6th Edition, 2018
12	Fuel Cell Fundamentals	Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz	Wiley	3rd Edition, 2016

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	http://nptel.ac.in/courses/108103009/ https://onlinecourses.nptel.ac.in/noc23_ee01/preview				
2	https://archive.nptel.ac.in/courses/108/106/108106170/ https://archive.nptel.ac.in/courses/106/106/106106139/ https://onlinecourses.nptel.ac.in/noc21_ee32/preview https://archive.nptel.ac.in/courses/108/108/108108123/				
3	https://archive.nptel.ac.in/courses/108/108/108108098/ http://www.digimat.in/nptel/courses/video/108108123/L18.html https://onlinecourses.nptel.ac.in/noc23_ee61/preview				
4	https://archive.nptel.ac.in/courses/108/106/108106170/ https://archive.nptel.ac.in/courses/103/102/103102015/ https://onlinecourses.nptel.ac.in/noc21_mm34/preview https://nptel.ac.in/courses/108106182				

SEMESTER S4
COMPUTER AIDED DESIGN AND ANALYSIS

Course Code	PEIET415	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To initiate ideas for innovative designs and design modifications.
- 2. To use computer aided 3D modelling packages for demonstrating new designs.
- 3. To familiarize Engineering analysis of systems using software.

SYLLABUS

Module No.	Syllabus Description				
1	Introduction to Design: Introduction to various stages of the design process: Formulation of problem, Generation of alternatives, Evaluation, Guided Redesign. Component design, product design and system design approaches and examples. Structural, thermal, flow kinematic and dynamic design considerations and software packages. Preliminary design and detailed design Practicing sessions for creating primary designs of components, products, and systems.	9			

	Introduction to computer Aided 3D Modelling: Historical Development,					
	Industrial Look at CAD/CAM, Application of computers in design, Benefits					
	of CAD. CAD Environment, Packages, and Architectures. Basics of					
	geometric and solid modelling. Geometric Features. Two dimensional and					
2	Three-Dimensional Operations. Degree of freedom and assembly constraints.					
	Comparison of commercial packages advantageous and limitations. (Pro-E,					
	Fusion 360, Catia, AutoCAD inventor, Solid works). Open-source packages.					
	Practicing sessions for creating 3D models using any 3D modelling software					
	package.					
	Introduction to Structural Analysis: Engineering Analysis, History,					
	Advantages, Classification, Basic steps, 3D modelling and mesh generation.					
	Role of finite element analysis in computer-aided design. Material properties	3				
_	for structural analysis. Boundary conditions and initial conditions. Analysis	9				
3	methods and convergence criteria. Post processing: representation,					
	interpretation, and evaluation methods. Practicing sessions for structural					
	analysis using any FEM package. Comparison of analytical solutions in the					
	text books with simulation results.					
	Heat Transfer and Fluid Flow Analysis: Material properties for thermal					
	and fluid analysis, Different types of boundary conditions and initial values					
	for thermal and fluid flow problems. Solution methods and convergence					
	criteria. Examples for Multiphysics problems and solution strategies.	structure interaction id flow analysis using				
4	Solution procedure for thermo- mechanical and fluid structure interaction					
	problems. Practicing sessions on heat transfer and fluid flow analysis using					
	any FEM package. Comparison of analytical solutions in the text books with					
	simulation results.					

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Examination	Analyse	Evaluate	Total
5	15	10	10	40

Criteria for Assessment (Analyse and Evaluate): 20 marks

Phases	Assessment Criteria	Marks
	Problem Definition a. Clearly defines the real-world quality issue. b. Examine and identify relevant contextual factors.	5
Analyse	Problem Analysis a. Present a structured realistic solution methodology. b. Compare and justify the proposed solutions with evidence and logical reasoning	5
Evaluate	 Validation of Results a. Thoroughly evaluate the proposed solutions. b. Compares trade-offs, advantages, and disadvantages. c. Considers feasibility, scalability, and practical implications. 	5
	Conclusion and Report Writing 1. Summarizes procedure, findings and insights, limitation, and scope for future work. 2. Preparation of Report with all components of project report.	5

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes			
CO1	Develop preliminary designs with understanding of structural, thermal, kinematic and dynamics engineering concepts.	К3		
CO2				
CO3	Analyse engineering designs using fundamental concepts of Engineering.	K4		
CO4	Evaluate engineering designs using fundamental concepts of solid mechanics, fluid mechanics and heat transfer.	K5		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	3	2	3	-	-	-	2	-	-	-
CO2	3	-	3	2	3	-	-	-	2	-	-	3
CO3	3	-	3	2	3	-	-	-	2	-	-	3
CO4	3	-	3	3	3	-	-	-	2	3	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Design and Engineering	Jayasree P. K.	CBS Publishers	2 nd Edition, 2020						
2	CAD/ CAM Theory and Practice	Ibrahim Zeid	McGraw Hill	2 nd Edition, 2007						
3	Introduction to Finite Elements in Engineering	T. R. Chandrupatla and A. D. Belegundu,	Pearson Education	3 rd Edition, 2001						
4	Computer Aided Design and Manufacturing,	M.P. Groover	Prentice Hall of India	2 nd Edition, 2016						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Design a project Based Approach	Dym C. L.	Wiley	4 th Edition, 2013					
2	A First course in Finite Element Method	Daryl Logan	Thomson Learning	6th Edition, 2016					
3	Strength of Materials	Rattan	McGraw Hills	3 rd Edition, 2017					
4	Fluid Mechanics: Fundamentals and Applications	John. M. Cimbala	SIE Publishers	4th Edition, 2019					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/107/101/107101087/						
2	https://archive.nptel.ac.in/courses/112/102/112102101/						
3	https://archive.nptel.ac.in/courses/112/107/112107214/						
4	https://archive.nptel.ac.in/courses/103/107/103107096/						

SEMESTER S3/S4

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6

2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators-SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost-Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B		
•	Minimum 1 and Maximum 2	• 2 questions will be given from each module,		
	Questions from each module.	out of which 1 question should be answered.		
•	Total of 6 Questions, each	Each question can have a maximum of 2 sub	50	
	carrying 3 marks	divisions. Each question carries 8 marks.		
	(6x3 =18marks)	(4x8 = 32 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	К3
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	_	-	2	-

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015						
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966						
3	Engineering Economics	R. Paneerselvam	PHI	2012						

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description				
	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue,				
	Respect for others, Profession and Professionalism, Ingenuity, diligence				
	and responsibility, Integrity in design, development, and research domains,				
	Plagiarism, a balanced outlook on law - challenges - case studies,				
	Technology and digital revolution-Data, information, and knowledge,				
	Cybertrust and cybersecurity, Data collection & management, High				
1	technologies: connecting people and places-accessibility and social	6			
	impacts, Managing conflict, Collective bargaining, Confidentiality, Role				
	of confidentiality in moral integrity, Codes of Ethics.				
	Basic concepts in Gender Studies - sex, gender, sexuality, gender				
	spectrum: beyond the binary, gender identity, gender expression, gender				
	stereotypes, Gender disparity and discrimination in education,				

	employment and everyday life, History of women in Science & Technology,				
	Gendered technologies & innovations, Ethical values and practices in				
	connection with gender - equity, diversity & gender justice, Gender policy				
	and women/transgender empowerment initiatives.				
	Introduction to Environmental Ethics: Definition, importance and				
	historical development of environmental ethics, key philosophical theories				
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering				
	Principles: Definition and scope, triple bottom line (economic, social and				
	environmental sustainability), life cycle analysis and sustainability metrics.				
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6			
	Importance of biodiversity and its conservation, Human impact on				
	ecosystems and biodiversity loss, An overview of various ecosystems in				
	Kerala/India, and its significance. Landscape and Urban Ecology:				
	Principles of landscape ecology, Urbanization and its environmental impact,				
	Sustainable urban planning and green infrastructure.				
	Hydrology and Water Management: Basics of hydrology and water cycle,				
	Water scarcity and pollution issues, Sustainable water management practices,				
	Environmental flow, disruptions and disasters. Zero Waste Concepts and				
	Practices: Definition of zero waste and its principles, Strategies for waste				
	reduction, reuse, reduce and recycling, Case studies of successful zero waste				
	initiatives. Circular Economy and Degrowth: Introduction to the circular				
3	economy model, Differences between linear and circular economies,	6			
	degrowth principles, Strategies for implementing circular economy practices				
	and degrowth principles in engineering. Mobility and Sustainable				
	Transportation: Impacts of transportation on the environment and climate,				
	Basic tenets of a Sustainable Transportation design, Sustainable urban				
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and				
	upcoming models of sustainable mobility solutions.				
	Renewable Energy and Sustainable Technologies: Overview of renewable				
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in				
	energy production and consumption, Challenges and opportunities in				
4	renewable energy adoption. Climate Change and Engineering Solutions:	6			
	Basics of climate change science, Impact of climate change on natural and				
	human systems, Kerala/India and the Climate crisis, Engineering solutions to				

mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report	G	8
	(Detailed documentation of	1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics		
	the project, including methodologies, findings, and	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

^{*}Can be taken from the given sample activities/projects

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011				
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006				
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023				
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019				
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012				
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.				
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014				

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and

outcomes.

- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER S4

MACHINE TOOLS LAB

Course Code	PCIEL407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To impart hands-on training on conventional and advanced machine tools.
- 2. To provide training in conventional and advanced welding technologies.

Expt. No.	Experiments (Minimum 10 experiments should be completed)
1	Exercises on lathe: - Plain and step turning.
2	Exercises on lathe: Ball & curve, and Taper turning.
3	Exercises on lathe: - Thread cutting.
4	Exercises on shaping machine: machining of flat surfaces.
5	Exercises on shaping machine: machining of grooves and key ways.
6	Exercises on drilling machine: drilling, boring, reaming, tapping and countersinking etc.
7	Exercises on cylindrical grinding machine: Grinding of a plain cylindrical surface.
8	Exercises on surface grinding machine: Grinding of a flat surface.
9	Exercises on tool and cutter grinding machine: Grinding of a single-point cutting tool.
10	Exercises on milling machine: Plane and pocket milling operations.
11	Exercises on milling machine: Spur gear cutting operation.
12	Study and preparation of program, simulation and exercise on CNC lathe: turning, step
	turning, taper turning, thread cutting, ball and cup turning etc.
13	Study and preparation of program, simulation and exercise on CNC milling machine:
	surface milling, pocket milling, contour milling etc.
14	Exercises on arc welding: butt welding and lap welding of M.S. plates.

15	Exercises on gas welding: butt welding and lap welding of M.S. plates.
16	Exercises on TIG welding: butt welding and lap welding of M.S. plates.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcomes	Bloom's Knowledge Level (KL)
	Understand and recall the fundamental operations, processes, and safety	K2
CO1	practices of various machining tools such as lathes, shaping machines,	
	drilling machines, and grinding machines.	
	Apply their knowledge to perform practical machining tasks, such as turning,	К3
CO2	thread cutting, grinding, milling, and welding on different machines as per	
	manufacturing drawings.	
CO3	Analyze machining processes to identify and troubleshoot potential issues,	K4
COS	ensuring precision and efficiency in operations.	
	Apply their skills to set up and operate CNC lathe and CNC machining	К3
CO4	centre, preparing programs, and conducting simulations for precise	
	machining operations.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	-	-	1	-	-	-	-	-	-	-	2
CO2	3	-	-	3	-	-	-	-	-	-	-	2
CO3	3	-	-	2	-	-	-	-	-	-	-	2
CO4	3	-	-	1	-	-	-	-	-	-	-	2
CO5	3	-	-	1	-	-	-	-	-	-	-	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Production Technology	НМТ	Tata McGraw Hill	1st Edition, 2017					
2	Workshop Technology Part I	W. A. J. Chapman	ELBS & Edward Arnold Publishers	5th Edition, 1972					
3	Numerical Control of Machine Tools	Yoram Koren	McGraw-Hill	1st Edition, 2014					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S4

WORK SYSTEM DESIGN LAB

Course Code	PCIEL408	CIE Marks	50
Teaching Hours/Week (L:T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To equip students to carry out method study and work measurement in organisations.
- 2. To enable students to gain practical knowledge to improve productivity by optimising the attributes of the workplace and work environment.

Expt. No.	Experiments (Minimum 10 experiments should be completed)
1	Method analysis on assembly tasks.
2	Micromotion study on recorded tasks.
3	Determination of standard time with time study.
4	Work sampling on recorded tasks.
5	Determination of standard time with methods time measurement.
6	Application of principles of motion economy in the workplace.
7	Determination of eye fatigue after tasks.
8	Determination of visual reaction time for various tasks.
9	Determination of auditory reaction time for various tasks.
10	Determination of energy expenditure for different activities.
11	Determination of performance with variation in workplace lighting.
12	Determination of static anthropometry in standing postures.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply method and motion study concepts in organizations	К3
CO2	Apply work measurement concepts in organizations	К3
CO3	Evaluate workers cognitive and physiological responses	K4
CO4	Analyse working environment and its effects in work places	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	-	-	-	-	-	2	2	-	2
CO2	3	2	3	-	-	-	-	-	2	2	-	2
CO3	3	2	3	-	-	-	-	-	2	2	-	2
CO4	3	2	3	-	-	-	-	-	2	2	-	2

^{1:} Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to work study	ILO	Oxford and IBH	3rd Edition 2015				

	Reference Books									
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year						
1	Motion and time study design	Ralph M.Barnes	Wiley India Private	7 th Edition						
	and measurement of work		Limited	2013						
2	Work systems: The Methods,	Mikell P. Groover	Pearson International	1 st Edition						
	Measurements and			2013						
	Management of works									
3	Niebel's Methods, Standards	Andris Freivalds,	McGraw Hill	13 th Edition						
	and Work Design	Benjamin Niebel	THE STUTT THIS	2013						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted