Finite Automata Homework 8

Due: Thursday, Nov 5
Alexander Powell

1. Let $Y = \{w | w = t_1 \# t_2 \# \dots \# t_k \text{ for } k \ge 0, \text{ each } t_i \in 1^*, \text{ and } t_i \ne t_j, \text{ whenever } i \ne j\}$. Here, $\Sigma = \{1, \#\}$. Prove Y is not context free.

Solution:

Proof. We will use a proof by contradiction. Begin by assuming *Y* is context free. Then the pumping lemma for CFLs applies. If we define *s* to be

$$s = 1^{P+1} # 1^{P+2} # \dots # 1^{3P},$$

then we can clearly see that |s| > P. Also, via the pumping lemma we have that s = uvxyz, $|vxy| \le P$ and |vy| > 0. Because $|vxy| \le P$, then we have three cases:

(a) Either v or y contains the # symbol.

If v contains the # symbol then v will look something like $v = 1^m # 1^n$. By fixing i = 3 (or really any positive integer greater than 1) then v will look like

$$v = 1^m \# 1^n 1^m \# 1^n 1^m \# 1^n = 1^m \# 1^{n+m} \# 1^{n+m} \# 1^n$$

which is clearly not an element of the langage Y. The case for if y contains the # is practically identical.

- (b) In the second case both v and y are contained within the same string of 1s of length j. In the case where j > 2P then we set i = 1. In the case where $j \le 2P$ then we set i = 0. In both of these cases we arrive at a contradiction.
- (c) If the # symbol is contained within x. This case needs to be split into three subcases:
 - i. v is contained in 1^j in such a way that j < 2P. In this case, if |v| = 1, then we can set i = 2 and if |v| > 1 we can set i = 1, which will result in a case where $t_i = t_j$, which is a contradiction to our assumption.
 - ii. In this case, y is contained in 1^j in such a way that $j \ge 2P$. In this case, if |y| = 1 then we can set i = 2 and if |y| > 1 we can set i = 1, which will result in a contradiction.
 - iii. In the third subcase, if |v| = 0 or |y| = 0 then we set i = 1 (or really any positive integer) which will result in a contradiction because there will exist an interval in s between one of the # symbols that doesn't have the correct number of 1s.

Therefore, because we reach a contradiction in all possible cases, we have proven that Y is not a context free language.

- 2. Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet {0,1}.
 - (b) $\{w|w \text{ contains twice as many } 0s \text{ as } 1s\}$

Solution: We can describe the Turing machine as a set of sequential steps to decide a language.

- (1) Go through the tape and mark the first 1 we see that is not marked. If there are no unmarked 1s to be found then we go to step 5. If we do encounter a 1 that is unmarked, we move the pointer back to the beginning of the tape.
- (2) Go through the tape until the first unmarked 0 is found and mark that 0. If none are found, then reject.
- (3) Go through the tape until the first unmarked 0 is found and mark that 0. If none are found, then reject. (Repetition of step 2)
- (4) Go back to Step 1 and follow the sequence of instructions.
- (5) We go through the tape to see if there are any unmarked 0s remaining. We reject if we find any. Otherwise, accept.
- 3. Show that the collection of decidable languages is closed under the operation of:
 - (b) Concatenation

Solution:

Proof. Let M, N be decidable languages. Then the concatenation of M and N is the language MN, where

$$MN = \{mn | m \in M, n \in N\}$$

Since M and N are decidable then there exist Turing machines T_M and T_N that decide the languages M and N. We need to construct a turing machine T_{MN} that decides MN. The machine will use both T_M and T_N . It will take in the input string w. To determine if w can be written in the form mn, where $m \in M$ and $n \in N$ the machine will iterate through all possible paritions of the string w (because w has a finite length and thus there are a finite number of ways to partition w). For each of these partitions we will pass the m component into T_M and the n component into T_N . If for any of these iterations we find that T_M and T_N both accepted their respective inputs, we say T_{MN} accepts the string w. If none of the iterations give us a partition whose components are accepted, then T_{MN} rejects the string. Therefore, because a Turing machine, T_{MN} could be created to decide MN, we can conclude that the collection of decidable languages is closed under concatenation.

(c) Star

Solution:

Proof. The star of a language Y can be defined as $Y^* = \{x \in Y \cup YY \cup YYY \cup ...\}$. This can be thought of as a string being concatenated with itself any number of times. Let's take a Turing machine M_Y that decides Y and M_{Y^*} that decides Y^* . Then, for any input x into that machine M_{Y^*} , we partition x into all possible partitions $x_1x_2...x_n$. Now, we can run each x_i through the machine M_L for i = 1, ..., n. If M_L accepts each x_i , then the machine M_{Y^*} accepts. If M_L rejects at least one x_i , then M_{Y^*} rejects. This can be drawn as a repeating loop back to the M_L machine inside the larger M_{Y^*} machine. Therefore, we have proven that decidable languages are closed under the star operation.

(e) Intersection

Solution:

Proof. We begin by taking two Turing decidable languages, L_1 and L_2 as well as Turing machines M_1 and M_2 that decide L_1 and L_2 respectively. Then we can construct a new Turing machine M that decides $L_1 \cap L_2$. For any input string x:

- (a) We run x through M_1 . If M_1 rejects then we say M rejects and we're done. If M_1 accepts we continue to step 2.
- (b) Next we run x through M_2 . If M_2 rejects then M rejects and we're done. If M_2 accepts (and M_1 has already accepted) then we say that M accepts.

Therefore, it is clear that $L(M) = L_1 \cap L_2$ and therefore we can conclude that the collection of decidable languages is closed under intersection.