Semaine 3 : Groupes, anneaux, corps, espaces vectoriels, algèbres, arithmétique

Questions de cours

Ouestion de cours 1 : Formule du binôme de Newton

Enoncer et prouver la formule du binôme de Newton dans un anneau commutatif \mathcal{A} .

Question de cours 2 : Théorème de Bézout

Enoncer et prouver le théorème de Bézout en arithmétique.

Question de cours 3 : Sous-groupes de $(\mathbb{Z}, +)$

Déterminer les sous-groupes de $(\mathbb{Z}, +)$

Exercices

(*) Exercice 1: Des groupes divers

Montrer que les ensembles suivants (pour les opérations associées) sont des groupes.

- 1. $SL_2(\mathbb{R}) = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid ad bc = 1 \right\}$, muni de la multiplication matricielle.
- 2. $(\mathcal{P}(E), \Delta)$ où E est un ensemble dont on note $\mathcal{P}(E)$ l'ensemble des parties, et où Δ désigne la différence symétrique.
- 3. On pose, pour tout couple $(x, y) \in]-1,1[^2, x \star y = \frac{xy}{1+xy}]$. Montrer que $(]-1,1[,\star)$ est un groupe.

(*) Exercice 2: Un groupe d'ordre pair

Soit G un groupe d'ordre pair dont on note l'élément neutre e. Montrer qu'il existe un nombre impair d'éléments $x_i \in G$ tels que $x_i \neq e$ et $x_i^2 = e$.

(*) Exercice 3: Le dernier chiffre

Trouver le dernier chiffre de 5467⁴²⁹¹⁵⁵²³.

(*) Exercice 4: Les nombres premiers sont rares

Trouver 1000 entiers naturels consécutifs non premiers.

(*) Exercice 5 : Algèbre de matrices

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $\mathcal{C}(A) = \left\{ B \in \mathcal{M}_n(\mathbb{R}) \mid AB = BA \right\}$. Montrer que $\mathcal{C}(A)$ est une algèbre.

(*) Exercice 6: Isomorphes ou non?

Les groupes $\mathbb{Z}/8\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})$ et $(\mathbb{Z}/2\mathbb{Z})^3$ sont-ils isomorphes?

(**) Exercice 1: Le centre d'un groupe

Soit (G,.) un groupe. On définit $Z(G) = \{x \in G \mid \forall y \in G, xy = yx\}$ le centre de G. Montrer que Z(G) est un sous-groupe abélien de G. On suppose de plus que G admet un unique élément x_0 d'ordre 2. Montrer que $x_0 \in Z(G)$.

(**) Exercice 2 : Un peu de densité

Soit θ un réel tel que $\frac{\theta}{\pi}$ est irrationnel.

- 1. Montrer que $H:=\left\{e^{i\,k\theta}\mid k\in\mathbb{Z}\right\}$ est un sous-groupe de $\mathbb{U}.$
- 2. Montrer que $\{x \in \mathbb{R} \mid e^{ix} \in H\}$ est un sous-groupe de \mathbb{R} contenant 0 et 2π .
- 3. En déduire que $(\cos(n\theta))_{n\in\mathbb{N}}$ est dense dans [-1,1].

(**) Exercice 3: Une condition pour être un sous-groupe

A quelle condition la réunion de deux sous-groupes d'un groupe G est-elle un sous-groupe de G?

(**) Exercice 4 : A un coup de peinture près

Les groupes $(\mathbb{Z}/8\mathbb{Z}, +)$, $(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ et $((\mathbb{Z}/2\mathbb{Z})^3, +)$ sont-ils isomorphes?

(**) Exercice 5 : Théorème de Wilson

Montrer qu'un entier p est premier si et seulement si $(p-1)! \equiv -1[p]$.

(**) Exercice 6 : Les carrés de $\mathbb{Z}/p\mathbb{Z}$

Soit *p* un nombre premier impair.

- 1. Montrer que k est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $k^{\frac{p-1}{2}}=1$
- 2. Si $x \in \mathbb{Z}/p\mathbb{Z}$, que peut valoir $x^{\frac{p-1}{2}}$?

(**) Exercice 7: Anneau des rationnels à dénominateur impair

On note $\mathscr{A} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in 2\mathbb{N} + 1 \right\}$. Montrer que $(\mathscr{A}, +, \times)$ est un anneau, et déterminer ses éléments inversibles.

(**) Exercice 8: Plus petit sous-corps de $\mathbb R$

Quel est le plus petit sous-corps (au sens de l'inclusion) de $(\mathbb{R}, +, \times)$?

(**) Exercice 9: Une extension de Q

On note $\mathbb{Q}[\sqrt{3}] = \left\{ a + b\sqrt{3} \mid (a, b) \in \mathbb{Q}^2 \right\}.$

- 1. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un sous-corps de \mathbb{R} .
- 2. Est-il isomorphe à $\mathbb{Q}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2 \right\}$?

(**) Exercice 10: Un anneau d'entiers

On pose $\mathbb{Z}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Z}^2 \right\}.$

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau.
 - 2. On note, pour $(a,b) \in \mathbb{Z}^2$, $N(a+b\sqrt{2})=a^2-2b^2$. Montrer que pour tout $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$, N(xy)=N(x)N(y)
 - 3. En déduire que les éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ sont de la forme $a+b\sqrt{2}$, où $a^2-2b^2=\pm 1$

(**) Exercice 11: Produit dans un corps fini

Soit K un corps fini. Calculer $\prod_{x \in K^*} x$

(**) Exercice 12: Suite d'anneaux

Soit \mathcal{A} un anneau principal.

- 1. On suppose que toute suite décroissante (pour l'inclusion) d'idéaux de $\mathscr A$ est stationnaire. Montrer que $\mathscr A$ est un corps.
- 2. Montrer que toute suite croissante (pour l'inclusion) d'idéaux de \mathscr{A} est stationnaire.

(**) Exercice 13: Des factorielles!

Soit $n \in \mathbb{N}^*$. Montrer que n! + 1 et (n + 1)! + 1 sont premiers entre eux.

(**) Exercice 14: Un reste

Quel est le reste dans la division euclidienne de $(2222)^{3333}$ par $(3333)^{2222}$?

(**) Exercice 15: Des combinaisons

Montrer que si $(k, n) \in \mathbb{N}^2$, alors :

$$k \wedge n = 1 \implies n \left| \binom{n}{k} \right|$$

(**) Exercice 16: Des divisions

Montrer que, pour tout $n \in \mathbb{N}$:

- 1. 9 divise $2^{2n} + 15n 1$
- 2. 17 divise $3 \times 5^{2n-1} + 2^{3n-2}$
- 3. 9 divise $n^3 + (n+1)^3 + (n+2)^3$
- 4. n^2 divise $(n+1)^n 1$

(**) Exercice 17: Une division par 30

Montrer que pour tout $(m, n) \in \mathbb{Z}^2$, 30 divise $mn(m^4 - n^4)$.

(**) Exercice 18: Les nombres de Fermat

On pose, pour $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$. Montrer que si $n \neq p$, F_n et F_p sont premiers entre eux.

(***) Exercice 1 : Sous-groupes additifs de $\mathbb R$

Soit G un sous-groupe de $(\mathbb{R},+)$. Montrer que G est de la forme $\alpha\mathbb{Z}$ ou dense. (On pourra considérer $\alpha=\inf G\cap\mathbb{R}_+^*$) En déduire une caractérisation des fonctions continues sur \mathbb{R} admettant 1 et $\sqrt{2}$ comme périodes.

(***) Exercice 2: Des sous-groupes distincts

Soit (G,.) un groupe fini d'ordre 2n $(n \in \mathbb{N}^*)$, d'élément neutre e. On suppose qu'il existe deux sous-groupes distincts H et H' de (G,.), d'ordre n, tels que $H \cap H' = \{e\}$. Montrer que n = 2 et dresser la table de (G,.).

(***) Exercice 3: L'indicatrice d'Euler

On définit l'indicatrice d'Euler sur \mathbb{N}^* , notée φ , de la façon suivante. Si $n \in \mathbb{N}^*$, $\varphi(n)$ est égal au nombre d'entiers de [1, n] premiers avec n. Soit $n \in \mathbb{N}^*$. Montrer que :

$$\varphi(n) = \sum_{d \mid n} \varphi(d)$$

(***) Exercice 4: Racine d'un idéal

Soient $(\mathcal{A}, +, \times)$ un anneau commutatif et \mathcal{I} un idéal de \mathcal{A} . On appelle racine de \mathcal{I} l'ensemble :

$$\sqrt{\mathcal{I}} = \left\{ x \in \mathcal{A} \mid \exists n \in \mathbb{N}^*, x^n \in \mathcal{I} \right\}$$

- 1. Montrer que $\sqrt{\mathscr{I}}$ est un idéal de \mathscr{A} .
- 2. Montrer que $\sqrt{\sqrt{\mathcal{I}}} = \sqrt{\mathcal{I}}$.
- 3. Soient ${\mathscr I}$ et ${\mathscr J}$ deux idéaux de ${\mathscr A}$. Montrer que :

(a)
$$\sqrt{\mathcal{I}} \cap \sqrt{\mathcal{J}} = \sqrt{\mathcal{I} \cap \mathcal{J}}$$

(b)
$$\sqrt{\mathcal{I}} + \sqrt{\mathcal{J}} \subset \sqrt{\mathcal{I} + \mathcal{J}}$$

(c)
$$\sqrt{\mathcal{I} + \mathcal{J}} = \sqrt{\sqrt{\mathcal{I}} + \sqrt{\mathcal{J}}}$$

(***) Exercice 5: Le carré d'un entier

- 1. Soit $(a, b) \in (\mathbb{N}^*)^2$. On suppose que a et b sont premiers entre eux et que ab est le carré d'un entier. Montrer que a et b sont des carrés d'entiers.
- 2. Montrer que le produit de trois entiers naturels non nuls consécutifs n'est jamais le carré d'un entier.

(***) Exercice 6 : Un peu de probabilités

- 1. Soit N un entier positif à 100 chiffres. Déterminer la probabilité que N^3 se termine par 11.
- 2. Déterminer tous les entiers positifs à 100 chiffres dont le cube se termine par 11.
- 3. Montrer que le résultat persiste pour un entier à p chiffres, où $p \ge 3$.