ECBS 6060: International Trade Winter 2020

Miklós Koren korenm@ceu.edu

Lecture 12: The Melitz model

The Melitz model

- ▶ We first describe the equilibrium of a closed economy.
- ▶ We then turn to the open economy.
- ▶ We conduct two comparative statics:
 - autarky vs open economy
 - change in trade costs

The basics of the model

- Firms differ in their productivity.
- ► There are fixed costs of exporting.

The basics of the model

- Firms differ in their productivity.
- There are fixed costs of exporting.
- ▶ Such a model is *qualitatively* consistent with the two mentioned facts:
 - Fixed costs prevent many firms from exporting.
 - More productive firms are bigger, and bigger firms can recover the fixed cost more easily → they are more likely to export.

Strict sorting property

- ► There is a *strict sorting* property:
 - ▶ all firms below a cutoff are non-exporters
 - ▶ all firms above that cutoff are exporters

Key implications

In the event of a trade liberalization (falling trade costs),

- 1. more firms will export ("extensive margin"),
- 2. labor is reallocated from less productive non-exporters to more productive exporters,
- 3. and least productive non-exporters will exit.

Consumers

Consumers have a CES demand structure:

$$U = \left[\int_{\Omega} (y(\omega))^{\rho} d\omega \right]^{1/\rho}$$

with $\rho \in (0,1)$.

- elasticity of substitution: $\theta = 1/(1-\rho)$
- ightharpoonup set of varieties: Ω (continuum)
- **Demand for good** ω :

$$q(\omega) = Q \left[\frac{p(\omega)}{P} \right]^{-\theta},$$

where

$$P = \left[\int_{\Omega} p(\omega)^{1-\theta} d\omega \right]^{\frac{1}{1-\theta}}.$$

Firms

- ▶ There is a continuum of firms, indexed by $\omega \in \Omega$.
- ▶ They produce differentiated products and compete monopolistically.
- Firms differ in productivity $\varphi(\omega)$.

Technology

- **Each** unit of good ω requires $1/\varphi(\omega)$ units of labor.
- ightharpoonup There is a fixed cost of production, f.

$$l(\omega) = \frac{y(\omega)}{\varphi(\omega)} + f$$

overhead costs of marketing, management, distribution etc.

Pricing and demand

lacktriangle Because demand is isoelastic, firms charge a constant markup 1/
ho,

$$p(\omega) = \frac{w}{\rho \varphi(\omega)}.$$

- More productive firms have lower prices.
- ▶ We normalize the wage rate to 1.
- ightharpoonup Revenue of firm ω is

$$r(\omega) = R \left[\frac{p(\omega)}{P} \right]^{1-\theta} = R \frac{\varphi(\omega)^{\theta-1}}{\int_{\Omega} \varphi(\omega)^{\theta-1} d\omega}$$

More productive firms have higher revenue.

Profits

▶ A constant $1 - \rho$ fraction of revenue is retained as *operating* profits:

$$\pi(\omega) = (1 - \rho)r(\omega) - f = (1 - \rho)R \frac{\varphi(\omega)^{\theta - 1}}{\int_{\Omega} \varphi(\omega)^{\theta - 1} d\omega} - f.$$

ç

Aggregation

► The aggregate price index:

$$P = \left[\int_{\Omega} p(\omega)^{1-\theta} d\omega \right]^{\frac{1}{1-\theta}}.$$

▶ Substituting in $p(\omega) = 1/(\rho\varphi)$:

$$P = \frac{1}{\rho} \left[\int_{\Omega} \varphi(\omega)^{\theta - 1} d\omega \right]^{\frac{1}{1 - \theta}}.$$

 \triangleright Since each firm is fully characterized by φ , let us do a change of variables:

$$P = \frac{1}{\rho} \left[\int_{\Omega} \varphi^{\theta-1} M \mu(\varphi) d\varphi \right]^{\frac{1}{1-\theta}}.$$

- ► M: number ("mass") of firms
- $lackbox{}\mu(\varphi)$: fraction of firms with productivity φ

Average productivity

Introduce a geometric average of productivities,

$$\tilde{\varphi} = \left[\int_{\Omega} \varphi^{\theta-1} \mu(\varphi) d\varphi \right]^{\frac{1}{\theta-1}}.$$

Clearly,

$$P = \frac{1}{\rho \tilde{\varphi}} M^{1/(1-\theta)}.$$

- ▶ In fact, $\tilde{\varphi}$ completely summarizes the productivity distribution of firms.
- ▶ All aggregate variables are as if the economy were populated by
 - ▶ *M* identical firms
 - lacktriangle with productivity $ilde{arphi}$

Average profits

Recall

$$\pi(\tilde{\varphi}) = (1 - \rho)r(\tilde{\varphi}) - f.$$

► Aggregate revenue is *R*:

$$R = Mr(\tilde{\varphi}).$$

► So the profit of the average firm is

$$\pi(\tilde{\varphi}) = \frac{(1-\rho)R}{M} - f.$$

Firm-level variables

- Firm-level variables depend on $\varphi/\tilde{\varphi}$.
- ightharpoonup Revenue of firm φ is

$$r(\varphi) = r(\tilde{\varphi}) \left(\frac{\varphi}{\tilde{\varphi}}\right)^{\theta-1}$$

Profits:

$$\pi(\varphi) = (1 - \rho)r(\tilde{\varphi}) \left(\frac{\varphi}{\tilde{\varphi}}\right)^{\theta - 1} - f$$

ightharpoonup All else equal, if the average firm (the competition) is better, firm i makes less revenue and less profits.

Firm entry

- Before entering, the firm doesn't know its true productivity. (Otherwise only the best firms would enter.)
- (Everything we say about productivity can be understood as "product appeal". Why?)
- ▶ They pay a fixed cost, f_e .
 - setting up a plant
 - hiring workers
 - producing the first prototype
- lacktriangle After entry, they draw a productivity from a continuous distribution $G(\varphi)$.
- lacktriangle Clearly, if $\pi(\varphi) < 0$ (remember the overhead costs), the firm exits right away.

Zero-profit cutoff

There exists a cutoff probability below which firms make negative profit:

$$\varphi^* : \frac{(1-\rho)R}{M} \left(\frac{\varphi^*}{\tilde{\varphi}}\right)^{\theta-1} - f = 0$$

- lacktriangle This clearly depends on average productivity, $ilde{arphi}$.
 - ightharpoonup Higher $\tilde{\varphi}$ reduces the profit of each firm.
 - ▶ Even more productive firms cannot recover their fixed cost.
 - $ightharpoonup \varphi^*$ rises.

Average productivity

- Average productivity depends on the distribution of firms.
- Firms below φ^* exit right away, $\mu(\varphi) = 0$ for all $\varphi < \varphi^*$.
- lacktriangle Firms above φ^* are drawn from a *truncated distribution*:

$$\mu(\varphi) = \frac{g(\varphi)}{1 - G(\varphi^*)}$$

Substitute into average productivity:

$$\tilde{\varphi} = \left[\int_{\Omega} \varphi^{\theta-1} \mu(\varphi) d\varphi \right]^{\frac{1}{\theta-1}}.$$

Expected profit

► The expected profit of a new entrant is

$$G(\varphi^*) \cdot 0 + (1 - G(\varphi^*)) \cdot \pi(\tilde{\varphi}).$$

If there is free entry, this should equal the entry cost:

$$(1 - G(\varphi^*))\pi(\tilde{\varphi}) = f_e.$$

$$(1 - G(\varphi^*)) \left\lceil \frac{(1 - \rho)R}{M} - f \right\rceil = f_e.$$

Equilibrium

- In equlibrium, both the zero-profit-cutoff and the free-entry conditions hold.
- ▶ We also have labor market clearing.
- ▶ Because in expectation firms make zero profit,

$$L=R$$
.

▶ This pins down the *number of firms*, *M*.

Equilibrium production cutoff

Pareto example

Suppose the distribution of firms is Pareto:

$$G(\varphi) = 1 - \left(\frac{\varphi}{\varphi_{\min}}\right)^{-k}$$
.

- ▶ Then $\varphi^{\theta-1}$ is also pareto with exponent $K = k/(\theta-1)$.
- ▶ The Pareto distribution has a simple truncated mean

$$\tilde{\varphi}^{\theta-1} = \frac{K}{K-1} \varphi_*^{\theta-1}$$

► This simplifies many of the formulas.

Pareto example

Zero-profit cutoff:

$$\frac{(1-\rho)R}{M}\frac{K-1}{K} - f = 0,$$

so that

$$\frac{(1-\rho)R}{M} = \frac{K}{K-1}f.$$

Free entry:

$$\left(\frac{\varphi^*}{\varphi_{\min}}\right)^{-k} \left[\frac{(1-\rho)R}{M} - f\right]$$
$$= \left(\frac{\varphi^*}{\varphi_{\min}}\right)^{-k} \frac{1}{K-1} f = f_e.$$

The open economy

- We take a small open economy with trade costs τ .
- ▶ (We would have similar conclusions with GE of large economies.)
- Opening up to trade basically amounts to increasing the size of the market.

Foreign demand

► Foreign demand is a similarly isoelastic,

$$q_x(\varphi) = Ap_x(\varphi)^{-\theta}.$$

- ightharpoonup Because we are in a small open economy, we treat A as a *constant* demand shifter.
- ► (It would move around in GE.)

Exports vs domestic sales

- **Exporting has a marginal,** "iceberg" cost $\tau > 1$.
 - ▶ This includes tariffs as well as transportation costs.
- \blacktriangleright We can conduct comparative statics wrt τ .

Export pricing

► Foreigners have to pay the shipping cost,

$$p_x(\varphi) = \frac{\tau}{\rho \varphi},$$

- (again, wage is normalized to 1).
- ▶ Foreign price depends on τ .

Revenues

Foreign revenues are

$$r_x(\varphi) = A\rho^{\theta-1}\tau^{-\theta}\varphi^{\theta-1}$$

- More productive firms are bigger both at home and abroad.
- Foreign revenue decreases in τ .
- Total revenue of an exporter:

$$r(\varphi) = r_x(\varphi) + r_d(\varphi) = \varphi^{\theta-1} \left[A \rho^{\theta-1} \tau^{-\theta} + \frac{R_d}{M} \tilde{\varphi}^{1-\theta} \right]$$

- ▶ Total revenue is proportional to $\varphi^{\theta-1}$, just like before.
- ▶ In fact, export / domestic sales is constant across all exporters.

The decision to export

- ightharpoonup To send any positive exports, a firm also has to pay a fixed cost f_x .
 - setting up distribution networks
 - conforming to regulation
 - catering to foreign tastes
- ▶ This can deter some firms from exporting.
- lacktriangle To proceed step by step, we first assume $f_x=0$ so that everybody exports.

Everybody exports

Profits

▶ Recall that operating profits are $(1 - \rho)$ fraction of revenue:

$$\pi(\varphi) = (1 - \rho)r(\varphi) = (1 - \rho)\varphi^{\theta - 1} \left[A\rho^{\theta - 1}\tau^{-\theta} + \frac{R_d}{M}\tilde{\varphi}^{1 - \theta} \right] - f$$

Importantly,

$$\frac{\pi(\varphi) + f}{\pi(\varphi') + f} = \left(\frac{\varphi}{\varphi'}\right)^{\theta - 1}$$

for any φ and φ' so that

$$\pi(\varphi) = [\pi(\varphi') + f] \left(\frac{\varphi}{\varphi'}\right)^{\theta - 1} - f.$$

- \triangleright Using this relationship for the representative firm $(\tilde{\varphi})$, we can write down
 - 1. the zero-profit cutoff
 - 2. and the free entry condition.

Zero-profit cutoff

▶ The firm at the margin makes zero profit:

$$0 = \pi(\varphi^*) = [\pi(\tilde{\varphi}) + f] \left(\frac{\varphi^*}{\tilde{\varphi}}\right)^{\theta - 1} - f.$$

Average profit:

$$\pi(\tilde{\varphi}) = f\left[\left(\frac{\varphi^*}{\tilde{\varphi}}\right)^{1-\theta} - 1\right]$$

Expressing average productivity

▶ Again, average productivity depends on the cutoff:

$$\tilde{\varphi} = \tilde{\varphi}(\varphi^*).$$

- ▶ This function only depends on the distribution of φ , G().
- For the Pareto distribution, it is

$$\tilde{\varphi}(\varphi^*) = k\varphi^*$$

where k>1 is related to the shape parameter of the distribution.

Zero-profit cutoff

▶ Under the Pareto distribution, average profit is independent of the cutoff:

$$\pi(\tilde{\varphi}) = [k^{\theta - 1} - 1]f.$$

- ▶ This is in fact the same equation as under closed economy.
- ► (This latter would also hold for other distributions.)

Free entry

Free entry equates *expected profits* with entry costs:

$$[1 - G(\varphi^*)]\pi(\tilde{\varphi}) = f_e.$$

Or, writing in average profits from the ZCF:

$$[1 - G(\varphi^*)][k^{\theta - 1} - 1]f = f_e.$$

- ▶ This pins down φ^* .
- ▶ This is the same φ^* as before.

Labor demand

▶ Given zero profits (in expectation), wages still equal revenue

$$L = R_d + R_x.$$

- ▶ Total revenue is also the same as before.
- Because average profits are the same, so are average revenues.
- \blacktriangleright But then the number of firms, M, is also the same.
- Nothing changed. Why?

Fixed cost of exporting

Fixed cost of exporting

- lacktriangle To send any positive exports, a firm also has to pay a fixed cost f_x .
 - setting up distribution networks
 - conforming to regulation
 - catering to foreign tastes

Fixed cost of exporting

- ▶ Now only some firms export.
- ▶ These are not a random selection: they are the better ones.
- ► There is a *strict sorting* property:
 - all firms below a cutoff are non-exporters
 - all firms above that cutoff are exporters
- Importantly,

$$\frac{\pi(\varphi) + f}{\pi(\varphi') + f} = \left(\frac{\varphi}{\varphi'}\right)^{\theta - 1}$$

no longer holds.

Exporters vs nonexporters

Revenue:

$$r(\varphi) = \begin{cases} r_d(\varphi) & \text{if not an exporter} \\ r_d(\varphi) + r_x(\varphi) & \text{if an exporter} \end{cases}$$

Employment:

$$l(\varphi) = \begin{cases} \rho r_d(\varphi) & \text{if not an exporter} \\ \rho [r_d(\varphi) + r_x(\varphi)] & \text{if an exporter} \end{cases}$$

Exporters are bigger in both respect (reallocation!).

The decision to export

ightharpoonup A firm with productivity φ exports if export profits exceed fixed costs,

$$(1 - \rho)r_x(\varphi) = A\rho^{\theta - 1}\tau^{-\theta}\varphi^{\theta - 1} \ge f_x.$$

Firms above a threshold φ_x^* will export, others will not.

Aggregation

 $ightharpoonup ilde{\varphi}_x$ is the average productivity of *exporters*:

$$\tilde{\varphi}_{x} = \left[\frac{1}{M_{x}} \int_{\Omega_{x}} (\varphi(\omega))^{\theta-1} d\omega\right]^{\frac{1}{\theta-1}}$$

Relative export sales:

$$\frac{r_x(\varphi)}{r_x(\tilde{\varphi}_x)} = \left(\frac{\varphi}{\tilde{\varphi}_x}\right)^{\theta - 1}$$

► This implies for *export profits* (but not for total profits)

$$\frac{\pi_x(\varphi) + f_x}{\pi_x(\tilde{\varphi}_x) + f_x} = \left(\frac{\varphi}{\tilde{\varphi}_x}\right)^{\theta - 1}$$

Zero-profit cutoffs

Now we have two zero-profit cutoffs: one for operation, one for exports.

$$\pi(\varphi^*) = \pi_d(\varphi^*) = 0$$
$$\pi_x(\varphi_x^*) = 0$$

- ▶ (The first equation follows from the fact the the smallest firm does not export.)
- Using the previous methods, these pin down average export and domestic profits:

$$\pi_d(\tilde{\varphi}) = [k^{\theta-1} - 1]f,$$

$$\pi_x(\tilde{\varphi}) = [k^{\theta-1} - 1]f_x.$$

- ▶ Up till now, profits from the two markets could be treated more or less independent from one another.
- However, not all firms receive π_x .

Free entry

Ex ante expected profit is now the sum of two terms:

$$E(\pi) = E(\pi_d) + E(\pi_x) = [1 - G(\varphi^*)]\pi_d(\tilde{\varphi}) + [1 - G(\varphi_x^*)]\pi_x(\tilde{\varphi}_x)$$

- ightharpoonup This has to equal entry costs, f_e .
- Or, writing in average profits from the ZCF:

$$[k^{\theta-1}-1]\{[1-G(\varphi^*)]f+[1-G(\varphi_x^*)]f_x\}=f_e.$$

▶ This now pins down a *combination* of φ^* and φ_x^* .

Export and exit

- ▶ Lower φ_x^* implies higher φ^* .
- ▶ If more firms export, this is because export profits are greater.
- ▶ This encourages more new firms to enter the industry.
- ► The least productive firms cannot compete with these new entrants and hence they exit.

Closing the model

- ▶ We still have 2 unknowns for 1 equation.
- \blacktriangleright We introduce 1 more unknown: M, the number of firms.
- ▶ We then use 2 market clearings: domestic and foreign.

Export demand

For the marginal exporter,

$$\pi_x(\varphi_x^*) = 0.$$

▶ But we can actually use *export demand* to express its profits:

$$(1-\rho)A\rho^{\theta-1}\tau^{-\theta}\varphi_x^{*\theta-1} = f_x.$$

This pins down the cutoff as

$$\varphi_x^* = \left(\frac{f_x}{(1-\rho)A}\right)^{1/(\theta-1)} \frac{\tau}{\rho}.$$

- ▶ This is increasing τ ,
- ightharpoonup decreasing in A.

Domestic cutoff

- ► The domestic cutoff is then
 - ightharpoonup decreasing au,
 - ightharpoonup increasing in A.

Labor demand

▶ Because *in expectation* firms make zero profit,

$$L = R_d + R_x$$
.

▶ Total revenues are average times number of firms:

$$L = R_d + R_x = Mr_d(\tilde{\varphi}) + M_x r_x(\tilde{\varphi}_x)$$

Conditional on the total number of firms, the number of exporters:

$$\frac{M_x}{M} = \frac{1 - G(\varphi_x^*)}{1 - G(\varphi^*)}.$$

lacktriangle The labor market clearing then pins down M.

The three effects

In the event of a trade liberalization (falling trade costs),

- 1. more firms will export ("extensive margin"),
- 2. labor is reallocated from less productive non-exporters to more productive exporters,
- 3. and least productive non-exporters will exit.

The three effects

In the event of a trade liberalization (falling trade costs),

- 1. more firms will export ("extensive margin"),
- 2. labor is reallocated from less productive non-exporters to more productive exporters,
- 3. and least productive non-exporters will exit. We conduct comparative statics wrt τ .

Extensive margin

- ▶ The fraction of exporters M_x/M is decreasing in the export cutoff.
- Recall that export cutoff,

$$\varphi_x^* = \left(\frac{f_x}{(1-\rho)A}\right)^{1/(\theta-1)} \frac{\tau}{\rho},$$

is increasing in τ .

▶ Hence M_x/M increases with trade liberalization.

Labor reallocation

ightharpoonup A constant ρ fraction of revenue goes to labor:

$$l(\varphi) = \rho r(\varphi).$$

Relative employment for an exporter and a non-exporter:

$$\frac{l(\varphi|\varphi > \varphi_x^*)}{l(\varphi'|\varphi' < \varphi_x^*)} = \frac{r_d(\varphi) + r_x(\varphi)}{r_d(\varphi')} = \left(\frac{\varphi}{\varphi'}\right)^{\theta - 1} \frac{A\rho^{\theta - 1}\tau^{-\theta} + \frac{R_d}{M}\tilde{\varphi}^{1 - \theta}}{\frac{R_d}{M}\tilde{\varphi}^{1 - \theta}}$$

- ▶ This is clearly decreasing in τ .
- After trade liberalization, exporters expand relative to non-exporters.

Exit

- As discussed before, export profit opportunities generate more entry.
- ▶ New entrants squeeze out less productive firms.