Αλέξανδρος Πολίτης Σπύρος Φρόνιμος Μαθηματικός Μαθηματικός

ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ Γ΄ ΛΥΚΕΙΟΥ

ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟ ΤΗΝ Α΄ ΚΑΙ Β΄ ΛΥΚΕΙΟΥ

ΕΚΔΟΣΕΙΣ ____ ΚΕΡΚΥΡΑ 2018

Επανάληψη στα μαθηματικά για τη Γ΄ Λυκείου

Αλέξανδρος Πολίτης - Μαθηματικός Σπύρος Φρόνιμος - Μαθηματικός

e-mail : spyrosfronimos@gmail.com $\Sigma \epsilon \lambda i \delta \epsilon \varsigma : ...$

Σελίδες : ... ISBN : ... Εκδόσεις : ... ©Copyright 2018

Φιλολογική Επιμέλεια :

Μαρία Πρεντουλή - e-mail : predouli@yahoo.com

Εξώφυλλο:

Πνευματικά Δικαιώματα : ...

Αφιέρωση.

Πρόλογος

Περιεχόμενα

Πίνακ	τας Συμβόλων	ix
MEPO:	Σ Ι Άλγεβρα	
Κεφά	άλαιο 1	
Εξισώ	οσεις - Ανισώσεις	Σελίδα 3
	Εξισώσεις - Ανισώσεις 1^{ou} βαθμού	
1.2	Εξισώσεις - Ανισώσεις 2^{ov} βαθμού	5
1.3	Εξισώσεις - Ανισώσεις 3^{out} βαθμού	7
	Κλασματικές - Άρρητες εξισώσεις και ανισώσεις	
1.5	Εξισώσεις - Ανισώσεις διαφόρων ειδών	8
MEPO:	Σ ΙΙ Γεωμετρία	

Πίνακας Συμβόλων

Σύμβολο	Όνομα	Περιγραφή
\neq	Διάφορο	Εκφράζει ότι δύο στοιχεία είναι διαφορετικά μεταξύ τους.
>	Μεγαλύτερο	Δ ηλώνει ανισότητα ανάμεσα σε δύο στοιχεία. (Το 1° μεγαλύτερο του $2^{\circ v}$).
<	Μικρότερο	Δ ηλώνει ανισότητα ανάμεσα σε δύο στοιχεία. (Το 1° μικρότερο του $2^{\circ \circ}$).
≥	Μικρότερο ίσο	Συνδυασμός των σχέσεων = και >.
<u>≤</u>	Μικρότερο ίσο	Συνδυασμός των σχέσεων = και <.
≷	Μεγαλύτερο μικρότερο ίσο	Συνδυασμός των σχέσεων > και <.
土	Συν Πλην	Συνδυασμός των προσήμων + και
	Πλην Συν	Έχει την ίδια σημασία με το συμβολισμό \pm και χρησιμοποιείται όταν θέλουμε να αλλάξουμε τη σειρά με την οποία θα εμφανιστούν τα πρόσημα $+$, $-$.
\Rightarrow	Συνεπαγωγή	Συνδέει δύο μαθηματικές προτάσεις, όταν η μια έχει σαν συμπέρασμα την άλλη.
⇐	Αντίστροφη συνεπαγωγή	Συνδέει δύο μαθηματικές προτάσεις με φορά αντίστροφη από το σύνδεσμο \Rightarrow .
\Leftrightarrow	Διπλή συνεπαγωγή	Συνδέει δύο μαθηματικές προτάσεις με διπλή φορά. Δηλώνει ισοδυναμία μεταξύ τους.
%	Ποσοστό τοις εκατό	Μέρος μιας ποσότητας μοιρασμένης σε 100 ίσα κομμάτια.
‰	Ποσοστό τοις χιλίοις	Μέρος μιας ποσότητας μοιρασμένης σε 1000 ίσα κομμάτια.
11	Απόλυτη τιμή	Απόσταση ενός αριθμού από το 0.
$\sqrt{}$	Τετραγωνική ρίζα	Βλ. Ορισμό

Σύμβολο	Όνομα	Περιγραφή
v	ν-οστή ρίζα	Βλ. Ορισμό
€	Ανήκει	Σύμβολο το οποίο δηλώνει ότι ένα στοιχείο ανήκει σε ένα σύνολο.
∋	Ανήκει	Έχει την ίδια χρησιμότητα με το σύμβολο \in και χρησιμοποιείται όταν το σύνολο γράφεται πριν το στοιχείο.
∉	Δεν ανήκει	Έχει την αντίθετη σημασία από το σύμβολο \in και δηλώνει ότι ένα στοιχείο δεν ανήκει σε ένα σύνολο.
\subseteq	Υποσύνολο	Βλ. Ορισμό
∪,∩	Ένωση, Τομή	Βλ. Ορισμό
Ø	Κενό σύνολο	Βλ. Ορισμό
∞	Άπειρο	
	Κάθετο	

Μέρος Ι

Άλγεβρα

ΚΕΦΑΛΑΙΟ

Εξισώσεις - Ανισώσεις

1.1 Εξισώσεις - Ανισώσεις 1ου βαθμού

ΟΡΙΣΜΟΙ

Ορισμός 1.1: ΕΞΙΣΩΣΗ

Εξίσωση ονομάζεται κάθε ισότητα που περιέχει τουλάχιστον μια μεταβλητή δηλαδή κάθε σχέση της μορφής:

$$P(x, y, \dots, z) = 0$$

όπου P(x, y, ..., z) είναι μια αλγεβρική παράσταση πολλών μεταβλητών.

- Εξίσωση με έναν άγνωστο ονομάζεται μια ισότητα η οποία περιέχει μια μεταβλητή.
- Μια εξίσωση αποτελείται από 2 μέλη, τα οποία είναι τα μέρη της δεξιά και αριστερά του =.
- Άγνωστοι ονομάζονται οι όροι της εξίσωσης οι οποίοι περιέχουν τη μεταβλητή, ενώ γνωστοί ονομάζονται οι αριθμοί δηλαδή οι σταθεροί όροι της εξίσωσης.
- Κάθε αριθμός που επαληθεύει μια εξίσωση ονομάζεται λύση της.
- Η διαδικασία με την οποία βρίσκουμε τη λύση μιας εξίσωσης ονομάζεται επίλυση.
- Εάν μια εξίσωση έχει λύσεις όλους τους πραγματικούς αριθμούς ονομάζεται ταυτότητα ή αόριστη.
- Εάν μια εξίσωση δεν έχει καμία λύση ονομάζεται αδύνατη.
- Εάν σε μια εξίσωση πολλών μεταβλητών, ορίσουμε ένα μέρος των μεταβλητών αυτών ώς κύριες μεταβλητές της εξίσωσης τότε οι επιπλέον μεταβλητές ονομάζονται παράμετροι ενώ η εξίσωση λέγεται παραμετρική.
- Η διαδικασία με την οποία υπολογίζουμε το πλήθος των λύσεων μιας παραμετρικής εξίσωσης ονομάζεται διερεύνηση.

Ορισμός 1.2: ΑΝΙΣΩΣΗ

Ανίσωση ονομάζεται κάθε ανισότητα η οποία περιέχει τουλάχιστον μια μεταβλητή, κάθε σχέση της μορφής:

$$P(x, y, ..., z) > 0$$
, $P(x, y, ..., z) < 0$

όπου P(x, y, ..., z) είναι μια αλγεβρική παράσταση πολλών μεταβλητών.

- Ανισώσεις αποτελούν και οι σχέσεις με σύμβολα ανισοϊσότητας ≤, ≥.
- Κάθε αριθμός που επαληθεύει μια ανίσωση ονομάζεται **λύση** της. Κάθε ανίσωση έχει λύσεις ένα σύνολο αριθμών.
- Αν μια ανίσωση έχει λύσεις όλους τους αριθμούς ονομάζεται αόριστη.
- Αν μια ανίσωση δεν έχει καθόλου λύσεις ονομάζεται αδύνατη.
- Σχέσεις τις μορφής $Q(x) \leq P(x) \leq R(x)$ λέγονται διπλές ανισώσεις όπου P(x), Q(x), R(x) αλγεβρικές παρατάσεις. Αποτελείται από δύο ανισώσεις, με κοινό μέλος την παράσταση P(x), οι οποίες συναληθεύουν.
- Κοινές λύσεις μιας διπλής ανίσωσης ή δύο ή περισσότερων ανισώσεων ονομάζονται οι αριθμοί που επαληθεύουν όλες τις ανισώσεις συγχρόνως.

Ορισμός 1.3: ΕΞΙΣΩΣΗ 1 ου ΒΑΘΜΟΥ

Εξίσωση 1^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική εξίσωση της οποίας η αλγεβρική παράσταση είναι πολυώνυμο 1^{ov} βαθμού. Είναι της μορφής :

$$ax + \beta = 0$$

όπου $a, β ∈ \mathbb{R}$.

Ορισμός 1.4: ΑΝΙΣΩΣΗ 1ου ΒΑΘΜΟΥ

Ανίσωση 1^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική ανίσωση της οποίας η αλγεβρική παράσταση είναι πολυώνυμο 1^{ov} βαθμού. Είναι της μορφής :

$$ax + \beta > 0$$
, $ax + \beta < 0$

με πραγματικούς συντελεστές $a, \beta \in \mathbb{R}$.

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

Θεώρημα 1.1: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 1ου ΒΑΘΜΟΥ

Έστω $ax + \beta = 0$ μια εξίσωση 1^{ov} βαθμού με $a, \beta \in \mathbb{R}$ τότε διακρίνουμε τις παρακάτω περιπτώσεις για τις λύσεις της ανάλογα με την τιμή των συντελεστών της a, β :

- 1. Αν $a \neq 0$ τότε η εξίσωση έχει **μοναδική λύση** την $x = -\frac{\beta}{a}$.
- 2. Αν a = 0 τότε παίρνουμε τις εξής υποπεριπτώσεις:
 - i. Αν $\beta=0$ τότε η εξίσωση παίρνει τη μορφή 0x=0 η οποία έχει λύσεις όλους τους αριθμούς οπότε είναι **αόριστη**.
 - ii. Αν $\beta \neq 0$ τότε η εξίσωση παίρνει τη μορφή $0x = \beta$ η οποία δεν έχει καμία λύση άρα είναι **αδύνατη**.

Συντελεστές		Λύσεις
,	≠ 0	$x=-rac{eta}{a}$ μοναδική λύση
- O	$\beta = 0$	0x = 0 αόριστη - άπειρες λύσεις
a = 0	$\beta \neq 0$	0x=eta αδύνατη - καμία λύση

Πίνακας 1.1: Λύσεις εξίσωσης 1^{ου} βαθμού

Θεώρημα 1.2: ΛΥΣΕΙΣ ΑΝΙΣΩΣΗΣ 1 ου ΒΑΘΜΟΥ

Οι λύσεις της ανίσωσης $ax + \beta > 0$ (ή $ax + \beta < 0$) φαίνονται στις παρακάτω περιπτώσεις.

- 1. Αν a>0 τότε οι ανίσωση έχει λύσεις τις $x>-\frac{\beta}{a}$ (ή $x<-\frac{\beta}{a}$ αντίστοιχα).
- 2. Αν a<0 τότε οι ανίσωση έχει λύσεις τις $x<-\frac{\beta}{a}$ (ή $x>-\frac{\beta}{a}$ αντίστοιχα).
- 3. Av a=0 τότε
 - i. Αν $\beta > 0$ τότε η ανίσωση $0x > \beta$ είναι αδύνατη ενώ η $0x < \beta$ είναι αόριστη.
 - ii. Αν $\beta < 0$ τότε η ανίσωση $0x > \beta$ είναι αόριστη ενώ η $0x < \beta$ είναι αδύνατη.
 - iii. Αν $\beta = 0$ τότε οι ανισώσεις 0x > 0 και 0x < 0 είναι αδύνατες.

1.2 Εξισώσεις - Ανισώσεις 200 βαθμού

ΟΡΙΣΜΟΙ

Ορισμός 1.5: ΕΞΙΣΩΣΗ 200 ΒΑΘΜΟΥ

Εξίσωση 2^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική εξίσωση της οποίας η αλγεβρική παράσταση είναι πολυώνυμο 2^{ov} βαθμού. Είναι της μορφής :

$$ax^2 + \beta x + \gamma = 0$$
, $a \neq 0$

- Οι πραγματικοί αριθμοί $a, \beta, \gamma \in \mathbb{R}$ ονομάζονται συντελεστές της εξίσωσης.
- Ο συντελεστής $\gamma \in \mathbb{R}$ ονομάζεται σταθερός όρος.
- Ο πραγματικός αριθμός $\Delta = \beta^2 4a\gamma$ ονομάζεται διακρίνουσα του τριωνύμου. Το πρόσημό της μας επιτρέπει να διακρίνουμε το πλήθος των ριζών του τριωνύμου.

Ορισμός 1.6: ΑΝΙΣΩΣΗ 2ου ΒΑΘΜΟΥ

Ανίσωση 2^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική ανίσωση της οποίας η αλγεβρική παράσταση είναι πολυώνυμο 2^{ov} βαθμού. Είναι της μορφής :

$$ax^{2} + \beta x + \gamma > 0$$
. $ax^{2} + \beta x + \gamma < 0$

με πραγματικούς συντελεστές $a, \beta, \gamma \in \mathbb{R}$ και $a \neq 0$.

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

Θεώρημα 1.3: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Αν $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού τότε με βάση το πρόσημο της διακρίνουσας έχουμε τις παρακάτω περιπτώσεις για το πλήθος των λύσεων της :

- i. Αν $\Delta>0$ τότε η εξίσωση έχει δύο άνισες λύσεις οι οποίες είναι: $x_{1,2}=\frac{-\beta\pm\sqrt{\Delta}}{2a}$
- ii. Αν $\varDelta=0$ τότε η εξίσωση έχει μια διπλή λύση την $x=-\frac{\beta}{2a}.$
- iii. Αν $\Delta < 0$ τότε η εξίσωση είναι αδύνατη στο σύνολο \mathbb{R} .

Οι περιπτώσεις αυτές φαίνονται επίσης στον πίνακα:

Διακρίνουσα	Πλήθος λύσεων	Λύσεις
$\Delta > 0$	2 πραγματικές άνισες λύσεις	$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2a}$
$\Delta = 0$	1 διπλή πραγματική λύση	$x = -\frac{\beta}{2a}$
$\Delta < 0$	Καμία πραγματική λύση -	Αδύνατη στο $\mathbb R$

Θεώρημα 1.4: ΤΥΠΟΙ VIETA

Έστω $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού. Αν x_1, x_2 είναι οι λύσεις της εξίσωση τότε το άθροισμα S και το γινομενό τους P δίνονται από τους τύπους :

$$S = x_1 + x_2 = -\frac{\beta}{a}$$
, $P = x_1 \cdot x_2 = \frac{\gamma}{a}$

οι οποίοι ονομάζονται τύποι του Vieta.

Θεώρημα 1.5: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

Για τη μετατροπή ενός τριωνύμου $ax^2+\beta x+\gamma$ με $a\neq 0$ σε γινόμενο παραγόντων διακρίνουμε τις εξής περιπτώσεις :

1. Αν η διακρίνουσα του τριωνύμου είναι θετική ($\Delta > 0$) τότε το τριώνυμο παραγοντοποιείται ως εξής

$$ax^{2} + \beta x + \gamma = a(x - x_{1})(x - x_{2})$$

όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.

2. Αν η διακρίνουσα είναι μηδενική ($\Delta=0$) τότε το τριώνυμο παραγοντοποιείται ως εξής:

$$ax^{2} + \beta x + \gamma = a(x - x_{0})^{2} = a\left(x + \frac{\beta}{2a}\right)^{2}$$

όπου x_0 είναι η διπλή ρίζα του τριωνύμου.

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο δεν γράφεται ως γινόμενο πρώτων παραγόντων. Εναλλακτικά όμως μπορεί να γραφεί :

$$ax^{2} + \beta x + \gamma = a \left[\left(x + \frac{\beta}{2a} \right)^{2} + \frac{|\Delta|}{4a^{2}} \right]$$

Θεώρημα 1.6: ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

Για το πρόσημο των τιμών ενός τριωνύμου $ax^2 + \beta x + \gamma$ ισχύουν οι παρακάτω κανόνες.

- 1. Αν η διακρίνουσα είναι θετική ($\Delta>0$) τότε το τριώνυμο είναι
 - i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται έξω από τις ρίζες x_1, x_2 .
 - ii. ετερόσημο του a στο διάστημα ανάμεσα στις ρίζες.
 - iii. ίσο με το μηδέν στις ρίζες.

х	$-\infty$	x_1	x_2	$+\infty$
$ax^2 + \beta x + \gamma$	Ομός τοι	σημο Ετερό ο α τοι	U	οσημο ου <i>a</i>

Πίνακας 1.3: Πρόσημα τριωνύμου με $\Delta>0$

- 2. Αν η διακρίνουσα είναι μηδενική ($\Delta=0$) τότε το τριώνυμο είναι
 - i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται δεξιά και αριστερά της ρίζας x_0 .
 - ίσο με το μηδέν στη ρίζα.

X	$-\infty$	x_0	$+\infty$
$ax^2 + \beta x + \gamma$	Ομόση του <i>ι</i>	μο Ομόσ ι τοι	

Πίνακας 1.4: Πρόσημα τριωνύμου με $\Delta = 0$

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο είναι ομόσημο του συντελεστή a για κάθε $x \in \mathbb{R}$.

x	$-\infty$	$+\infty$
$ax^2 + \beta x + \gamma$	Ομόσημο	
	auov a	

Πίνακας 1.5: Πρόσημα τριωνύμου με $\Delta < 0$

1.3 Εξισώσεις - Ανισώσεις 3^{ου+} βαθμού

ΟΡΙΣΜΟΙ

Ορισμός 1.7: ΠΟΛΥΩΝΥΜΙΚΗ ΕΞΙΣΩΣΗ - ΑΝΙΣΩΣΗ

Πολυωνυμική εξίσωση ν-οστού βαθμού ονομάζεται κάθε πολυωνυμική εξίσωση της οποίας η αλγεβρική παράσταση είναι πολυώνυμο ν-οστού βαθμού.

$$a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0} = 0$$

όπου $a_{\kappa} \in \mathbb{R}$, $\kappa = 0, 1, 2, \ldots, \nu$. **Ρίζα** μιας πολυωνυμικής εξίσωσης ονομάζεται η ρίζα του πολυωνύμου της εξίσωσης. Ομοίως, μια πολυωνυμική ανίσωση θα είναι της μορφής:

$$a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0} \ge 0$$

1.4 Κλασματικές - Άρρητες εξισώσεις και ανισώσεις

ΟΡΙΣΜΟΙ

Ορισμός 1.8: ΚΛΑΣΜΑΤΙΚΗ ΕΞΙΣΩΣΗ - ΑΝΙΣΩΣΗ

Κλασματική ονομάζεται μια εξίσωση η οποία περιέχει τουλάχιστον μια ρητή αλγεβρική παράσταση. Γενικά έχει τη μορφή :

$$\frac{P(x)}{Q(x)} + R(x) = 0$$

όπου P(x), Q(x), R(x) πολυώνυμα με $Q(x) \neq 0$. Παρόμοια, μια κλασματική ανίσωση θα έχει την παρακάτω μορφή:

$$\frac{P(x)}{O(x)} + R(x) \ge 0$$

Ορισμός 1.9: ΑΡΡΗΤΗ ΕΞΙΣΩΣΗ - ΑΝΙΣΩΣΗ

Άρρητη ονομάζεται κάθε εξίσωση που περιέχει τουλάχιστον μια άρρητη αλγεβρική παράσταση. Θα είναι

$$\sqrt[\nu]{P(x)} + Q(x) = 0$$

όπου P(x), Q(x) πολυώνυμα με $P(x) \geq 0$. Όμοια, μια άρρητη ανίσωση θα είναι:

$$\sqrt[\nu]{P(x)} + Q(x) \gtrless 0$$

1.5 Εξισώσεις - Ανισώσεις διαφόρων ειδών

ΟΡΙΣΜΟΙ

Ορισμός 1.10: ΔΙΩΝΥΜΗ ΕΞΙΣΩΣΗ

Διώνυμη εξίσωση ονομάζεται κάθε πολυωνυμική εξίσωση η οποία περιέχει πολυώνυμο με 2 όρους. Θα είναι της μορφής:

$$x^{\nu} = a$$
 $\dot{\eta}$ $x^{\nu} = a^{\nu}$

όπου $ν ∈ \mathbb{N}$ και $a ∈ \mathbb{R}$.

Ορισμός 1.11: ΔΙΤΕΤΡΑΓΩΝΗ ΕΞΙΣΩΣΗ

Διτετράγωνη ονομάζεται κάθε εξίσωση 4^{ou} βαθμού της μορφής:

$$ax^4 + \beta x^2 + \gamma = 0$$

με $a, \beta, \gamma \in \mathbb{R}$, $a \neq 0$ η οποία έχει μόνο άρτιες δυνάμεις του x. Οι εκθέτες του τριωνύμου είναι διπλάσιοι απ' αυτούς της εξίσωσης 2^{ov} βαθμού.

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

Θεώρημα 1.7 : ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ

Οι βασικές μορφές των εξισώσεων με απόλυτες τιμές είναι οι ακόλουθες:

- 1. Για κάθε εξίσωση της μορφής |x| = a διακρίνουμε τις παρακάτω περιπτώσεις για τις λύσεις της :
 - i. Αν a>0 τότε η εξίσωση έχει 2 αντίθετες λύσεις : $|x|=a \Leftrightarrow x=\pm a$
 - ii. Αν a=0 τότε η εξίσωση έχει λύση το $0:|x|=0 \Leftrightarrow x=0$
 - iii. Αν a < 0 τότε η εξίσωση είναι αδύνατη.
- 2. Για τις εξισώσεις της μορφής |x| = |a| ισχύει : $|x| = |a| \Leftrightarrow x = \pm a$
- 3. Με τη βοήθεια των παραπάνω, μπορούμε να λύσουμε και εξισώσεις της μορφής |f(x)| = g(x) και |f(x)| = |g(x)| όπου |f(x)| αλγεβρικές παραστάσεις:
 - i. $|f(x)| = g(x) \Leftrightarrow f(x) = \pm g(x)$ όπου θα πρέπει να ισχύει $g(x) \ge 0$.
 - ii. $|f(x)| = |g(x)| \Leftrightarrow f(x) = \pm g(x)$.

Θεώρημα 1.8 : ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ $x^{\nu} = a$

Για τις λύσεις των εξισώσεων της μορφής $x^{\nu}=a$ διακρίνουμε τις παρακάτω περιπτώσεις για το είδος του εκθέτη ν και του πραγματικού αριθμού a.

- 1. Για ν άρτιο έχουμε:
 - i. Αν $a \ge 0$ τότε η εξίσωση έχει 2 λύσεις αντίθετες : $x^{\nu} = a \Leftrightarrow x = \pm \sqrt[\nu]{a}$
 - ii. Αν a < 0 τότε η εξίσωση είναι αδύνατη.
- 2. Για ν περιττό έχουμε:
 - i. Αν $a \ge 0$ τότε η εξίσωση έχει 1 θετική λύση : $x^{\nu} = a \Leftrightarrow x = \sqrt[\nu]{a}$
 - ii. Αν a < 0 τότε η εξίσωση έχει 1 αρνητική λύση : $x^{\nu} = a \Leftrightarrow x = -\frac{\nu}{\sqrt{|a|}}$

Οι λύσεις των εξισώσεων της μορφής $x^{\nu}=a$ φαίνονται στο παρακάτω διάγραμμα για κάθε μια από τις περιπτώσεις που αναφέραμε :

Θεώρημα 1.9 : ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ $x^{\nu} = a^{\nu}$

Για τις λύσεις των εξισώσεων της μορφής $x^{\nu}=a^{\nu}$ όπου $\nu\in\mathbb{N}^*$ θα ισχύουν τα παρακάτω :

- i. Αν ν άρτιος τότε η εξίσωση έχει δύο αντίθετες λύσεις : $x^{\nu}=a^{\nu}\Leftrightarrow x=\pm a$
- ii. Αν ν περιττός τότε η εξίσωση έχει μια λύση : $x^{\nu} = a^{\nu} \Leftrightarrow x = a$

Οι λύσεις των εξισώσεων αυτών φαίνονται στο αντίστοιχο διάγραμμα:

ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

Μέθοδος 1.1 : Εξισώσεις 1^{ου} βαθμού

Βήματα

Μέρος ΙΙ

Γεωμετρία

Κατάλογος σχημάτων

Κατάλογος πινάκων

1.1	Λύσεις εξίσωσης 1^{ov} βαθμού
1.2	Λύσεις εξίσωσης 2^{ou} βαθμού
1.3	Πρόσημα τριωνύμου με $\Delta>0$
1.4	Πρόσημα τριωνύμου με $\Delta=0$
1.5	Πρόσημα τριωνύμου με $\Delta < 0$