STRait Razor Shiny Manual

Contents Landing Page4 Final Profile Bar Plot......7 Contact 8 Appendix A: DatabasePath.csv9 Appendix B: STRaitRazorConfig.csv9 Appendix C: HaplotypeDatabase.csv9 Appendix G: RepeatRegion_MM.csv11

Purpose

STRait Razor Shiny (SRS) serves as the user-interface (UI) for analyzing sequencing data with STRait Razor. Using the SRS, converts STRait Razor* sequence-based allele calls into genotype tables for and/or bar plots for downstream analysis. STRait Razor Shiny also allows the user to control the genotype calls using several thresholds (e.g., heterozygous balance, strand balance, etc.). Read strands are merged and reported as single strand (Default = Forward) in Genotype Tables.

*STRait Razor use is detailed in separate manual. Use of this workbook assumes a degree of STRait Razor knowledge prior to use.

Installation (Beta Test)

Congrats on joining on us this beta journey. It will be painful [in comparison to typing install.packages(STRaitRazor)]. But I sincerely thank you for your bravery. The final version will be much easier to bring online.

Note to <u>macOS</u> users: Please install Xquartz from <u>https://www.xquartz.org/</u> and then logout and log back in

- 1) Download the package at the attached link.
- 2) Unzip and place folder on Desktop. For this beta and all the discussion below, this will be your home and ~\\STRaitRazorClosedBeta\\STRaitRazor\\ will contain all your toys.
- 3) Update path listings in the following file
 - a. Change jlk0260 → euid*
 - i. DatabasePath.csv (Appendix A)
 - ii. STRaitRazorConfig.csv (Appendix B)

- * Note: If you did not place your file on the desktop or if you are using a personal computer, please update path accordingly.
 - 4) If you don't have R installed, install R from your mirror of choice https://www.r-project.org/
 - 5) A number of "Imports" will be installed automatically when the package releases on GitHub; however, at this point, you can install these individually using the included STRait_RazoR_Installation.Rmd found in the ~\\STRaitRazorClosedBeta\\STRaitRazor\\ directory. These packages are Imports not Suggests. So, make sure you get them all.
 - 6) Once all the packages are installed, it is time to roll. Open 'app.R' script from the same directory as the installation.Rmd.

Landing Page

1. Select the path ~\\STRaitRazorClosedBeta\\STRaitRazor\\db\\db\\ using the 'Choose Directory' Button.

Note: This dialog box sometimes launches behind the app...

2. In sidebar, use the dropdown under 'Select Kit' based on the amplification primers used.

3. Select 'Single' or 'Batch' Tab for analysis of one "sample" or >= 2 "samples".

Note: the processing of compiling the list of files can occur recursively or not (default = TRUE). If you have subdirectories with the same sample name, results may be overwritten. See 'Settings' tab on sidebar to change.

4. STRait Razor Shiny accepts both fastq/fastq.gz and allsequnces.txt files from previous analyses to reduce analysis time of "reprocessing" fastq files. If processing allsequences.txt, please select 'v2s' or 'v3' format.

Data Analysis

- 1. Raw plot above threshold
- 2. Thresholds
 - a. per locus
 - b. editable via input in sidebar (dynamically for UI only) or STRaitRazorAnalysis.config (static within an analysis; haplotypes passing conditionals create data frame for analysis; Appendix A)
- 3. Table of alleles > threshold
 - a. "Checking" the 'Status' of an allele will pass the result to the "Called Alleles" plot
- 4. Called Alleles bar plot
 - a. Final set of alleles
- 5. Autosave Data
 - a. "Checking" this will push called alleles to final data frame when you press 'Next Locus'
- 6. Status Bar
 - a. In current version, status bar reflects loci with high Relative Allele Proportion (RAP) (e.g., Orange < AutoRAP). Release version will include more optimized elements. (See settings page for more info)
- 7. Other buttons
 - a. Most other buttons are self-explanatory

All Loci Bar Plot

- 1. Bar plots for all STR loci are shown for profile-level view of haplotype counts.
- 2. This plot maybe scaled using the controls at the top.

Final Profile Bar Plot

- 1. Bar plots for STR loci after analyst's interpretation are shown for profile-level view of haplotype counts read for export.
- 2. This plot maybe scaled using the controls at the top.

Manual

Have you ever seen Inception? It is not quite the same. But it does launch a pdf of this doc.

Contact

Bat signal, but for data analysis.

Settings

While this page will look significantly different with the final batch of settings added, this implementation controls a few different functions.

- a. Number of cores for v3: Allocate system resources for fastq processing using str8rzr program
- b. Global Read Depth Thresh: Filter out haplotypes with fewer than X reads
- c. <u>Recursive Directories</u>: When processing a batch of files (either fastq or allsequences), process chosen directory or directory plus subdirectories
- d. <u>AutoCall Alleles (Batch Mode)</u>: Filter out unchecked alleles when processing multiple files. Feels ugly (might delete later)
- e. <u>AutoPass Loci</u>: When processing single files, "passing" green loci are automatically moved to final data frame and "warning" orange loci are passed to 'Data Analysis' tab for interpretation (with some more optimization, will likely move this from Default = False → True)
- f. <u>Save Bar Plots</u>: To save a .png of all loci bar plot to sample folder additionally a conditional setting for separating STR and SNP loci into separate image files

Appendix A: DatabasePath.csv

DBFile/Directory	Path
STRaitRazorProgram	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/bin/str8rzr
Analysis	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/db/db/STRaitRazorAnalysisConfig.csv
Haplotypes	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/db/db/HaplotypeDatabase.csv
ResultsParent	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/data/AnalysisOutput/
ResultsAnalysisChild	STRaitRazoR_AnalysisResults
Diplotypes	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/db/db/DiplotypeDatabase.csv
ResultsStutterChild	STRaitRazoR_StutterResults
Results_str8rzrChild	STRaitRazoR_FASTQ2TXT_Results
str8rzrConfig	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/db/db/STRaitRazorConfig.csv
DatabasePath	C:/Users/jlk0260/Desktop/STRaitRazorClosedBeta/STRaitRazor/db/db/DatabasePath.csv

Paths to database files, directory for fastq processing program and analysis

Appendix B: STRaitRazorConfig.csv

Kitid	Path
ForenSeq	C:\Users\jlk0260\Desktop\STRaitRazorClosedBeta\STRaitRazor\db\configs\ForenSeqv1.2.config
GlobalFilerNGSv2	C:\Users\jlk0260\Desktop\STRaitRazorClosedBeta\STRaitRazor\db\configs\GFNGSv2_v5.config
mtDNA	C:\Users\jlk0260\Desktop\STRaitRazorClosedBeta\STRaitRazor\db\configs\mitoCstretcherv1.config
PowerSeq	C:\Users\jlk0260\Desktop\STRaitRazorClosedBeta\STRaitRazor\db\configs\PowerSeqv2.config

Paths to configuration files for str8rzr application to analyze fastq/fast.gz files

Appendix C: HaplotypeDatabase.csv

Kitid	Locus	Haplotype RepeatRegion	Flank	Motif	Nomenclature
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	TC	[ATCT]7	-GRCh38-chr5:123775543-123775606 [ATCT]7
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]8	-GRCh38-chr5:123775543-123775606 [ATCT]8 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]8	-GRCh38-chr5:123775543-123775606 [ATCT]8
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]9	-GRCh38-chr5:123775543-123775606 [ATCT]9 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]9	-GRCh38-chr5:123775543-123775606 [ATCT]9
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]10	-GRCh38-chr5:123775543-123775606 [ATCT]10 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]10	-GRCh38-chr5:123775543-123775606 [ATCT]10
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]11	-GRCh38-chr5:123775543-123775606 [ATCT]11 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	го	[ATCT]11	-GRCh38-chr5:123775543-123775606 [ATCT]11
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]12	-GRCh38-chr5:123775543-123775606 [ATCT]12 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]12	-GRCh38-chr5:123775543-123775606 [ATCT]12
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	го	[ATCT]3 ATGT [ATCT]9	-GRCh38-chr5:123775543-123775606 [ATCT]3 ATGT [ATCT]9
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]13	-GRCh38-chr5:123775543-123775606 [ATCT]13 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]13	-GRCh38-chr5:123775543-123775606 [ATCT]13
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	ге	[ATCT]3 ATGT [ATCT]10	-GRCh38-chr5:123775543-123775606 [ATCT]3 ATGT [ATCT]10
ForenSeq	D5S818	TATTTATACATCTA ATCTATCTATCTA	TC 123775552-A	[ATCT]14	-GRCh38-chr5:123775543-123775606 [ATCT]14 123775552-A
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гс	[ATCT]14	-GRCh38-chr5:123775543-123775606 [ATCT]14
ForenSeq	D5S818	TATTTATACCTCTA ATCTATCTATCTA	гф	[ATCT]15	-GRCh38-chr5:123775543-123775606 [ATCT]15

This database file contains haplotypes with associated metadata (i.e., flanking region SNPs, repeat region motif, and region bounds).

Note: The SNPs are

largely annotated by position. Prior to release, I plan on migrating all these to rs#.

Appendix D: STRaitRazorAnalysisConfig.csv

Kitid	Order Locus	RefSeq R	epeat_Size	Motif_Spacer	HG38_Allele	chr	FRStart	FRStop	RRStart	RRStop	RRStart	RRStop	Repeat_Region_Start	Repeat_Region_Stop	HBT F	RDT	SBT	RAPT AutoR	APT MV_AlignAdjust	InternalMotif1	InternalMotif2	: InternalMotif	3 Marker_Type
PowerSeq	0 Amelogenin		6												0.4	2	0	0.001	0.6	TCAAGT	-	-	Indel
PowerSeq	8 D1S1656	GAAATA	4	TCTACATC	17	chr1	230769561	230769704	230769616	230769683			230769616	230769683	0.4	2	0.01	0.001	0.6 TCA:TCA;	TCTATCTATCTA	-	-	STR
PowerSeq	11 D2S1338	CTAGCA	4	GGCAAGGC	23	chr2	218014794	218014998	218014859	218014950			218014859	218014950	0.4	2	0	0.001	0.6 TGAT:TGAT;	GGAAGGAAGGAA	-	-	STR
PowerSeq	12 D2S441	TGCACC	4	TCTATATC	12	ohr2	68011866	68011999	68011947	68011994			68011947	68011994	0.4	2	0.01	0.001	0.6 TCA:TCA;	TCTATCTATCTA	-	-	STR
PowerSeq	21 TPOX	CACTGG	4	AATGTTTG	8	chr2	1489529	1489698	1489653	1489684			1489653	1489684	0.4	2	0.01	0.001	0.6	AATGAATG	-	-	STR
PowerSeq	13 D3S1358	TGCCCA	4	TCTATGAG	16	chr3	45540639	45540824	45540739	45540802			45540739	45540802	0.4	2	0.01	0.001	0.6	ATCTATCTATCT	-	-	STR
PowerSeq	17 FGA	GTCTGA	4	XXXXXXXX	22	chr4	154587656	154587823	154587736	154587823			154587736	154587823	0.4	2	0	0.001	O.6 AAAGAAAAAAGA	AAAGAAAG	-	-	STR
PowerSeq	1 CSF1PO	CTAAGT,	4	ATCTAATC	13	chr5	150076311	150076487	150076324	150076375			150076324	150076375	0.4	2	0.01	0.001	0.6	ATCTATCTATCT	-	-	STR
PowerSeq	14 D5S818	AACATT*	4	ATCTTCAA	11	chr5	123775517	123775680	123775556	123775599			123775556	123775599	0.4	2	0.01	0.001	0.6	ATCTATCTATCT	-	-	STR
PowerSeq	15 D7S820	AGAATTI	4	TATCGTTA	13	chr7	84160149	84160346	84160226	84160277			84160226	84160277	0.4	2	0.01	0.001	0.6	TATCTATC	-	-	STR
PowerSeq	16 D8S1179	TTTCATC	4	TCTATTCC	13	chr8	124894846	124895024	124894865	124894916			124894865	124894916	0.4	2	0.01	0.001	0.6	TCTATCTATCTA	-	-	STR
PowerSeq	2 D10S1248	CCCCAG	4	XXXXXXXX	13	chr10	129294190	129294295	129294244	129294295			129294244	129294295	0.4	2	0	0.001	0.6	GGAAGGAAGGAA	-	-	STR
PowerSeq	20 TH01	CTCCAT(4	AATGAGGG	7	chr11	2171078	2171277	2171088	2171115			2171088	2171115	0.4	2	0.01	0.001	0.6 TGAT:TG AT;	ATGAATGA	-	-	STR

For this beta, we will be focusing on the vectors currently implemented [graphite shaded].

<u>Kit</u>: Amplification kit(s) used for target enrichment

Locus: Full list of markers in each kit

Repeat Size: Period of the repeat (e.g., CSF1PO: ATCT; 4 base repeat)

HBT: Heterozygote Balance Threshold on a per marker & per kit basis. This is used for assignment of second allele prior to data frame passing to UI

Danger_math_ahead: The threshold is calculated by dividing the second largest, in terms of coverage or read depth, by the largest allele (e.g., the allele 12 has 932 reads associated with it and allele 17.3 has 950 reads. Thus, the heterozygote balance is 0.98). However, the heterozygote balance output in the genotype tables (Appendix XXXXX) is calculated by dividing the largest (by length) allele by the second largest allele

RDT: Read Depth Threshold on a per marker & per kit basis filter prior to data frame passing to UI

SBT: Strand Balance Threshold on a per marker & per kit basis filter prior to data frame passing to UI

RAPT: Relative Allele Proportion Threshold on a per marker & per kit basis filter prior to data frame passing to UI

<u>AutoRAPT</u>: Locus flagging variable. In this beta, loci with a proportion of called alleles above this value will be flagged "green" (e.g., CSF1PO; 1000 reads aligned to the locus, 12: 450, 14: 450, AutoRAPT = 0.857; 900/1000 == 0.90; 0.9 > 0.857, CSF1PO = "green")

<u>Marker_Type</u>: Categories of marker type (e.g., SNP, microhaplotype, STR) used for parsing markers

Appendix E: DiplotypeDatabase.csv

Under Construction

Check Back Soon

Appendix F: RepeatRegion.csv

Under Construction

Check Back Soon

Appendix G: RepeatRegion_MM.csv

Under Construction

Check Back Soon

Changelog

v 0.1.2- **07/20/2020**-Launch Day!!