

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu

Voids in Crystals

Tetrahedral voids: CN - 4

Octahedral void: CN - 6

Cubic void: CN - 8

Voids in crystals

Tetrahedral and Octahedral voids

No of Cubic void – 01

Octahedral

No of O.V. -06 (Face: $6 \times 1/2$, Edge: $12 \times 1/4$)

No. of T.V. $-12(1/2 \times 4 \times 6)$

Distorted Tetrahedral

$\frac{1}{a}\sqrt{3/2}$

Distorted Octahedral

Note: Atoms are coloured differently but are the same

No of O.V. – 4 (Edge: 12 x 1/4, Body:1)

No. of T.V. – 8 (Body diagonal: 4 x 2)

No. of Tetrahedral Voids – 12

No of O.V. -6 (1/2 x 12 at the sharing of edges)

Remember

Crystal structure	Octahedral Voids	Tetrahedral Voids	Cubic Voids
SC			01
BCC	06	12	
FCC	04	08	
НСР	06	12	

- 1. Void is the free/empty space between the atoms.
- 2. Tetrahedral voids have CN-4
- 3. Octahedral voids have CN-6
- 4. Cubic voids have CN-8

<u>Assignments</u>

- 1. In an FCC lattice, the largest interstitial voids occur at positions like (½, 0, 0), (0, ½, 0), (0, 0, ½) etc. γ -iron crystallizes in FCC structure. Find atomic radius of the largest interstitial void in γ -iron.
- 2. Find the diameter of the largest atom that would fit an interstitial void in FCC nickel without distortion.
- 3. Find the size of the largest sphere that will fit an interstitial void in a BCC crystal as a function of the atomic radius r. The void is located at $(0, \frac{1}{2}, \frac{1}{4})$ and the other equivalent positions.

