(19)日本国特許庁(JP)

(12) 実用新案公報(Y2)

(11)実用新案出願公告番号

実公平7-20933

(24) (44)公告日 平成7年(1995) 5月15日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H01S 3/10

U

Z

G 0 2 B 26/02 H 0 1 S 3/104 A 9226-2K

請求項の数1(全 6 頁)

(21)出願番号

実願平1-91044

(22)出願日

平成1年(1989)8月2日

(65)公開番号

実開平3-30451

(43)公開日

平成3年(1991)3月26日

(71)出願人 999999999

三菱電機株式会社

東京都千代田区丸の内2丁目2番3号

(72)考案者 福島 司

愛知県名古屋市東区矢田南5丁目1番14号

三菱電機株式会社名古屋製作所内

(72)考案者 佐藤 清

爱知県名古屋市東区矢田南5丁目1番14号

三菱電機株式会社名古屋製作所内

(74)代理人 弁理士 高田 守 (外1名)

審査官 恩田 春香

(54) 【考案の名称】 レーザ発振器

【実用新案登録請求の範囲】

【請求項1】レーザヘッドから出射されたレーザ光を遮断する部材、及びこのレーザ光を遮断する部材を、レーザ光を遮断する位置及びレーザ光を遮断しない位置に移動させる手段を有するレーザピーム用シャッターと、可視光線を出射する可視光線出射手段と、前記レーザピられ、前記可視光線出射手段より出射された可視光線がレーザペッドから出射されたレーザ光により重量されるよーサインドから出射されたせる反射ミラーと、前記レーザ光の出射、停止を制御する電源装置とを備えてなるレーザ光を遮断する部材が、レーザ光を遮断するのレーザ光を遮断する部材が、レーザ光を遮断する位置との出りを無効とする信号を前記電源装置に指令する制御手段

2

を備えたことを特徴とするレーザ発振器。

【考案の詳細な説明】

〔産業上の利用分野〕

この考案はレーザビーム用シャッターの制御に関するものである。

〔従来の技術〕

第3図は、例えば CO_2 レーザ発振器の概略構成図であり、図において、(1)はレーザ媒質,レーザ媒質励起装置及び光共振器を含む筐体(レーザヘッド)、(2)は電源装置、(3)は筐体(1)から出射する CO_2 レーザビームのオン,オフを行うレーザビーム用シャッター(以下、ビームシャッターと略す)、(4)は筐体

(1)及びピームシャッター(3)から発生する熱を水 冷により冷却するための冷却装置である。この冷却装置 (4)は一般的にチラーが用いられる。

また、第4図はレーザビーム用シャッター(3)を示 し、第4図(a)は正面断面図、第4図(b)は側面断 面図であり、図において、(5)はフレーム、(6)は CO₂レーザ光(13a)を吸収するダンパー、(7)はダン パー(6)を保持するケーシング、(8)はフレーム (5) に固定されたシャフト、(9) はギャ(10) を回 動するモーター、(11)は冷却水(12)を通水する冷却 水配管、(13) はHe-Ne (ヘリウムーネオン) レーザ 光、(14) はHe-Neレーザ光 (13) を反射するミラーで あり、ケーシング(7)に固定されている。(15)はケ10 ーシング (7) が第4図 (a) に実線で示すAの位置に あることを検出するリミットスイッチ(以下、リミット スイッチAと呼ぶ)、(16)はケーシング(7)が第4 図(a)に点線で示すBの位置にあることを検出するリ ミットスイッチ(以下、リミットスイッチBと呼ぶ)で あり、それぞれフレーム (5) に固定されている。 次に動作について説明する。CO2レーザ光 (13a) を吸収 するダンパー(6)はケーシング(7)に設置され、ケ ーシング(7)とダンパー(6)の間には CO_2 レーザ光 (13a)を吸収する際に発生する熱を冷却するための冷 20 却水(12)の通路が形成されている。ケーシング(7) はフレーム (5) に固定されたシャフト (8) にスライ ド可能に設置されており、モータ(9)及びギャ(10) で移動される。モータ(9)が回転し、ケーシング (7) が第4図(a) に示したAの位置に移動するとケ ーシング (7) がリミットスイッチA (15) を押し、リ ミットスイッチA (15) が動作することにより、モータ (9)の回転が停止し、ケーシング(7)はAの位置で 停止する。モータ(9)を逆に回転させるとケーシング (7)がBの位置に移動し、リミットスイッチB(16)30 が動作し、ケーシング (7) はBの位置で停止する。以 上の制御によりケーシング (7) はA及びBの位置に設 定される。ケーシング (7) が A の位置に設定された時 には、筐体 (1) より出射した CO_2 レーザ光 (13a) はダ ンパー(6)に入射する為、吸収されてビームシャッタ ー(3)の外へは通過しない。

このとき、 CO_2 レーザ光 (13a) の出射すべき光路には、ミラー (14) によって反射されたHe-Neレーザ光 (13) が重畳され、図示してはいないが、レーザ加工機のミラー調整、加工レンズの焦点位置合わせ等に利用される。40 つぎに、ケーシング (7) がBの位置に設定された場合、 CO_2 レーザ光 (13a) はダンバー (6) に吸収されることなくビームシャッター (3) の外へ出射される。〔考案が解決しようとする課題〕

従来のレーザ発振器は以上の様に構成されているので、 切断、溶接、表面処理等のレーザ加工を行う場合、以下 に説明する課題があった。第5図を用いて説明する。 第5図は、従来のレーザ発振器でレーザ加工を行う構成 を示し、(17)はレーザ光(13a)の方向を変えるペン ドミラー、(18)はレーザ光(13a)を集光するレン 5 ズ、(19) は金属板等の被加工物であり、レーザ光(13 a) を、レンズ(18) で集光し、被加工物(19) に照射して切断等の加工を行う。(20) は反射光であり、被加工物(19) に入射したレーザ光(13a) の一部が、被加工物(19) の表面又は熱エネルギーで溶融した部分で反射し、レーザ光(13a) と逆方向に伝搬する。加工中は、通常レーザ光(13a) の出射、停止を、電源装置の出力電圧、電流を入、切して筐体(1) のレーザ発振を動作、停止させて行い、ビームシャッターでのレーザ光(13a) の出射、停止は行わない。

しかし、誤操作等により、レーザ光 (13a) が筐体 (1) から出射された状態でケーシング(7) を閉じる 動作(ケーシング(7)が第4図(a)に示す位置Bか らAへ移動する)が起こった場合、ケーシング(7) が、筐体(1)から出射されたレーザ光をしゃ断する、 過渡状態(ケーシング(7)によりレーザ光(13a)の 一部がしゃ断され、残りが被加工物に入射する)で、被 加工物 (19) に入射したレーザ光 (13a) の反射光 (2 0) が第5図の点線で示す様に、レンズ (18) 及びベン ドミラー(17)で構成された光路を逆行し、第5図のし ゃ線で示したケーシング (7)及びミラー (16) の端部 (21) に入射し、さらにそこで反射して最終的にHe-Ne レーザ (22) のしゃ線で示した部分 (23) に照射し、He -Neレーザ(22)が焼損する等の課題があった。また、 第5図には示していないが、反射光 (20) はHe-Neレー ザ(22)以外のビームシャッター構成部材にも照射する 場合があり、それらも焼損する等の課題があった。 この考案は上記の様な課題を解決するためになされたも のであり、ビームシャッター動作時はレーザ光の出射を 停止し、被加工物からの反射光により可視光線出射手段 であるHe-Neレーザ等が焼損しないレーザ発振器を得る ことを目的とする。

〔課題を解決するための手段〕

この考案に係るレーザ発振器は、レーザビーム用シャッターのレーザ光を遮断する部材が、レーザ光を遮断する 位置とレーザ光を遮断しない位置との間の移動期間はレーザ光の出射を無効とする信号を電源装置に指令する制 御手段を設けたものである。

[作用]:

この考案における制御手段は、レーザビーム用シャッターのレーザ光を遮断する部材が、レーザ光を遮断する位置とレーザ光を遮断しない位置との間の移動期間はレーザ光の出射を無効とする信号を電源装置に指令する。 〔考案の実施例〕

以下、この考案の一実施例を図について説明する。第1 図は、この考案のレーザ発振器の制御回路の構成図であ り、第4図及び第5図の構成に相当する部分には同一符 号を付してその詳しい説明は省略する。

図において、(24) はレーザ光出射指令信号源、(250 5), (27) はリミットスイッチA(15) の接点(以下

5

接点Aと呼ぶ)、(26), (28)はリミットスイッチB(16)の接点(以下接点Bと呼ぶ)である。

第4図に示した従来装置では、リミットスイッチA (15)及びリミットスイッチB (16)の接点は、モータ

(9) を制御する接点(接点A(25)及び接点B(26) としてのみ使用されていたが、この発明の実施例では、 リミットスイッチA(15)及びB(16)をそれぞれ同一 場所に追加する等して接点A(27)及び接点B(28)が 設けられ、この接点A(27)及び接点B(28)を並列に 接続し、レーザ光出射指令信号源(24)と電源装置 (2)の間に接続されている。

接点A(27)は、ケーシング(7)がリミットスイッチ(15)を押すと導通し、接点B(28)は、ケーシング

(7)がリミットスイッチB(16)を押すと導通する。次に第1図で示した実施例の動作を第2図を用いて説明する。第2図(a)はケーシング(7)がレーザ光(13a)を完全にしゃ断する位置Aにある場合を示し、ケーシンク(7)がリミットスイッチA(15)を押しているため、接点A(27)が導通し、レーザ光(13a)の出射指令を電源装置(2)に伝達することができ、レーザ光20(13a)を筐体(1)から出射、停止する制御を行うことができる。

第2図(b)はケーシング(7)が位置Aから位置Bに移動する過渡状態(第5図に示した状態)にある場合を示し、ケーシング(7)がリミットスイッチA(15)及びB(16)のいずれも押していないため、接点A(27)及びB(28)のいずれも導通せず、レーザ光(13a)の出射指令を電源装置(2)に伝達することが無効となり、レーザ光(13a)の出射が常に停止した状態になる

第2図(c)はケーシング(7)がレーザ光(13a)と接触しない位置B、すなわちレーザ光(13a)がビームシャッターから通過する位置を示し、リミットスイッチB(16)の接点B(28)が導通し、第2図(a)と同様、レーザ光(13a)を筐体(1)から出射、停止する制御を行うことができる。

以上の動作により、ケーシング (7) が位置 A から位置 B に移動する間はレーザ光 (13aが筐体 (1) から出射 されることはなく、第5図で示した様な、被加工物から の反射光によりHe-Neレーザ等のビームシャッター構成 40

6

部材が焼損する不具合を防止することができる。 ケーシング (7) が位置 A 及び位置 B にある場合はレー ザ光 (13a) の出射, 停止の制御が従来通り可能でレー ザ加工に支障をきたすことはない。

上記実施例では、制御手段としてリミットスイッチを用いたが、タイマー等の遅延回路を設け、ケーシングを移動開始させると同時にレーザ光出射を無効とする信号を電源装置に伝達し、また、遅延回路を動作させ、ケーシングが移動開始して停止するまでに要する時間以上経た10 後、遅延回路からレーザ光出射を有効とする信号を伝達する制御手段を用いてもよい。

また、上記実施例ではレーザ発振器を CO_2 レーザの場合について説明したが、YAGレーザ等のレーザ熱加工に使用される大出力レーザであれば特にレーザの種類に限定されるものではない。

また、 CO_2 レーザ光 (13a) と重畳する可視光レーザはHe -Neレーザ光 (13) として説明したが、他の可視光レーザでも良いことはいうまでもない。

〔考案の効果〕

以上のようにこの考案によれば、レーザビーム用シャッターのレーザ光を遮断する部材が、レーザ光を遮断する位置とレーザ光を遮断しない位置との間の移動期間はレーザ光の出射を無効とする信号を電源装置に指令する制御手段を設けたので、可視光線出射手段であるHe-Neレーザ等の焼損がなく、信頼性の高いものが得られる効果がある。

【図面の簡単な説明】

第1図はこの考案の一実施例によるレーザ発振器の制御 回路の構成図であり、第2図(a)(b)(c)は第1 図の動作を示す構成図であり、第3図は、一般的なレー ザ発振器のレーザビーム用シャッターの構成図であり、 第4図(a)はその正面断面図、第4図(b)はその側 面断面図であり、第5図は従来装置の課題を示す構成図 である。

図において、(2)は電源装置、(6)はダンパー、(7)はケーシング、(9)はモーター、(15), (16)はリミットスイッチA及びB、(24)はレーザ光出射指令信号源、(27), (28)は接点A及びBである。なお、図中、同一符号は同一、又は相当部分を示す。

【第1図】

13a レーザ光

15: リミットスイッチA

16: リミットスイッチB

24: レーザ光出射

指令信号源

27:接点A

28: 接点 B

1:筐体

(レーザヘッド)

2:電源装置

5: フレーム

7:ケーシング

9:モーター

【第4図】

【第5図】

