This listing of claims presented below replaces all prior versions and listings of claims in this application.

Listing of Claims

1. (Currently Amended) A compound represented by the following general formula (I)

$$R_{6}$$
 R_{7}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}

wherein R³ is selected from the group consisting of H, carboxyl, alkyloxycarbonyl, 5'(phenyloxadiazol-2'-yl), 5'-(pyridyl-4" oxadizol-2'-yl),
wherein R9 is selected from the group consisting of C2-C8 fatty acid, benzoxamido,
isonicotinamido, and un-substituted or mono- or multi-substituted phenyl wherein the
substituent is selected from the group consisting of hydroxyl, C1-C8 alkoxyl, CF3, carboxyl,
alkyloxycarbonyl, OCH2CO2H, NO2, halogen, SO3H, SO2NHR11, wherein R11 is selected
from the group consisting of hydrogen, amidino, 2"-thiazolyl, 3"-(5"-methylisooxazolyl), 2"pyrimidinyl, 2"-(4", 6"-dimethylpyrimidinyl), and 4"-(5", 6"-dimethoxypyrimidinyl);

 R_4 is selected from the group consisting of hydrogen, CONHR₁₀, wherein R_{10} is selected from the group consisting of C_2 - C_8 fatty acid, benzoxamido, isonicotiniamido, <u>and</u> un-substituted, mono- or multi-substituted phenyl wherein the substituent may be hydroxyl, C_1 - C_8 alkoxyl, CF_3 , carboxyl, alkoxycarbonyl, OCH_2CO_2H , NO_2 , halogen, SO_3H , SO_2NHR_{12} , wherein R_{12} is selected from the group consisting of H, amidino, 2"-thiazolyl, 3"-

(5"-methylisooxazolyl), 2"-pyrimidinyl, 2"-(4", 6"-dimethyl- pyrimidinyl), and 4"-(5", 6"-dimethoxy pyrimidinyl);

R₅ is selected from the group consisting of H, and C₁-C₄ alkyl;

 R_6 is selected from the group consisting of H, C_1 - C_{12} alkyl, halogen, NO_2 , and $CONHR_{13}$, wherein R_{13} is substituted phenyl;

R₇ is selected from the group consisting of H, hydroxyl, C₁-C₄ alkyl or alkoxyl, carboxylalkylenoxyl, and OCH₂CONHR₁₄, wherein R₁₄ is selected from the group consisting of un-substituted, mono- or multi- substituted phenyl wherein the substituent is selected from the group consisting of hydroxyl, OCH₃, CF₃, CO₂H, CO₂C₂H₅, and NO₂;

 R_8 is selected from the group consisting of H, C_1 - C_4 alkyl or alkoxyl, and NO_2 ; provided that, wherein R_3 , R_5 and R_5 are H and R_7 is OH, R_4 and R_7 are not groups selected from H, C_{1-6} alkyl or C_{1-6} alkoxy

or a pharmaceutically acceptable salt or hydrate thereof.

 R_4 is selected from the group consisting of H, <u>and CONHR</u>₁₀, wherein R_{10} is selected from the group consisting of H, 4'-CO₂H-phenyl, 4'-CO₂C₂H₅phenyl, and 3'-CF₃-phenyl;

R₅ is selected from the group consisting of H, and CH₃;

 R_6 is selected from the group consisting of H, C_2H_5 , n- C_6H_{13} , NO₂, NH₂, Cl, Br, and CONHR₁₃, wherein R₁₃ is selected from the group consisting of 4-benzoic acid and ethyl 4-benzoate;

 R_7 is selected from the group consisting of H, OH, CH₃, OCH₃, and OCH₂CONHR₁₄, wherein R_{14} is selected from the group consisting of phenyl, o-, m- and p-hydroxyphenol, o-, m- and p-carboxylphenyl, m- and p-ethoxycarbonylphenyl, m-CF₃-phenyl, m-CF₃-p-NO₂-phenyl, p-CH₃O-phenyl, 4-salicylyl, and 3-salicylyl; and

 R_8 is selected from the group consisting of H, CH₃, OCH₃, and NO₂; provided that, when R_3 , R_5 and R_5 are H and R_7 is OH, R_4 and R_7 are not groups selected from H, C_{1-6} alkyl or C_{1-6} alkoxy.

3. (Currently Amended) The compound according to claim 1, wherein the compound of formula I is represented by formula (Ia)

$$R_6$$
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8

wherein R₄, R₅, R₆, R₇, and R₈ are as defined in claim 1, and

 $R=(CH_2)_3CO_2H$,

R is selected from the group consisting of

4NHCO
NHCO
N

4

4. (Currently Amended) The compound according to claim 1, wherein the compound of formula I is represented by formula (Ib)

$$R_{6}$$
 R_{7}
 R_{8}
 R_{14}
 R_{14}
 R_{15}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

wherein R₄, R₅, R₆, R₇, R₈, are as defined in claim 1,

R'2 is selected from the group consisting of H, OH, and CO2H,

R'₃ is selected from the group consisting of H, OH, CO₂H, CF₃, and OCH₂CO₂H,

R'₄ is selected from the group consisting of H, OH, CO₂H, CO₂Et, iodo, NO₂, OCH₃,

$$SO_3H, SO_2NH_2, SONH(C=NH)NH_2, \\ CH_3O OCH_3 OCH_3 OCH_3 \\ 4'-SO_2NH OCH_3, A'-SO_2NH OCH_3, and$$

R'5, R'6 are each H.

5. (Currently Amended) The compound according to claim 2, wherein R_3 , R_4 , R_5 , R_6 , R_7 , and R_8 are respectively selected from one of the combinations in the group consisting of:

 $R_3=p-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

 R_3 =m-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_6 = R_8 =H, R_7 =OCH₃;

R₃=0-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 $R_3 = \text{o-OH-phenylamidocarbonyl}, \ R_4 = R_5 = R_6 = R_8 = H, \ R_7 = OCH_3;$

 $R_3 \!\!=\!\! m\text{-}OH\text{-}phenylamidocarbonyl,} \ R_4 \!\!=\!\! R_5 \!\!=\!\! R_6 \!\!=\!\! R_8 \!\!=\!\! H, \ R_7 \!\!=\!\! OCH_3;$

```
R_3=p-OH-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3=m-OH-p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5= R_6=R_8=H, R_7=OCH<sub>3</sub>;
R_3=m-CO<sub>2</sub>H-p-OH-phenylamidocarbonyl, R_4=R_5= R_6=R_8=H, R_7=OCH<sub>3</sub>;
R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3=4'-ethoxycarbonylphenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3=m-CF<sub>3</sub>-phenylamidocarbonyl, R_4=R_5= R_6=R_8=H, R_7=OCH<sub>3</sub>;
R_3=m-CF_3-p-NO_2-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3=4'-amidosulfonylphenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3=4'-guanidinosulfonylphenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R<sub>3</sub>=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>6</sub>=R<sub>8</sub>=H, R<sub>7</sub>=OCH<sub>3</sub>;
R_3=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R<sub>3</sub>=4'-[2"-(4", 6"-dimethylpyrimidinylamidosulfonyl)]phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=
    R_6 = R_8 = H, R_7 = OCH_3;
R_3=4'-(5",6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4=R_5=
    R_6=R_8=H, R_7=OCH_3;
R_3=4'-(5"-methyl-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl, R_4=R_5=R_6=R_8=H,
    R_7 = OCH_3;
R_3=p-OCH<sub>3</sub>-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH<sub>3</sub>;
R_3=p-SO_3H-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;
R_3 = p - CO_2H-phenylamidocarbonyl, R_4 = R_5 = R_8 = H, R_6 = C_2H_5, R_7 = OCH_3;
R_3=m-CO_2H-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H_5, R_7=OCH_3;
R_3=0-CO_2H-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H_5, R_7=OCH_3;
R_3=p-OH-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H_5, R_7=OCH_3;
R_3=m-OH-p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H<sub>5</sub>, R_7=OCH<sub>3</sub>;
R_3=m-CO_2H-p-OH-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H_5, R_7=OCH_3;
```

 $R_3=4$ '-ethoxycarbonylphenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 R_3 =m-CF₃- phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

```
R_3=m-CF<sub>3</sub>-4-NO<sub>2</sub>- phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=C_2H_5, R_7=OCH_3;
```

 $R_3=4$ '-amidosulfonylphenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=4$ '-guanidinosulfonylphenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=4$ '-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 R_3 =4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

 R_3 =4'-(4", 6"-dimethylpyrimidinyl-2'-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

 R_3 =4'-(5"-CH₃-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 =OCH₃;

 $R_3 = p - OCH_3 - phenylamidocarbonyl, R_4 = R_5 = R_8 = H, R_6 = C_2H_5, R_7 = OCH_3;$

 R_3 =p-SO₃H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

 R_3 =m-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

 $R_3=0$ -CO₂H-phenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=OCH_3$, $R_8=CH_3$;

 $R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3;$

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

 $R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3;$

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

 R_3 =m-CF₃-4-NO₂-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

```
R_3=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3;
```

 R_3 =4'-(4", 6"-dimethylpyrimidinyl-2"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

 R_3 =4'-(5"-CH₃-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 = CH_3 ;

 R_3 =p-SO₃H-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 = CH₃;

 $R_3 = p-CO_2H$ -phenylamidocarbonyl, $R_4 = R_5 = R_6 = H$, $R_7 = R_8 = OCH_3$;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = R_8 =OCH₃;

 R_3 =m- CO_2H -p-OH- phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = R_8 =OC H_3 ;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = R_8 = OCH_3 ;

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=R₈=OCH₃;

 $R_3 = m - CF_3 - p - NO_2 - phenylamidocarbonyl, \ R_4 = R_5 = R_6 = H, \ R_7 = R_8 = OCH_3;$

 $R_3 = m - HO_2CCH_2O - phenylamidocarbonyl, \ R_4 = R_5 = R_6 = H, \ R_7 = R_8 = OCH_3;$

 $R_3 = 4 \text{'-amidosulfonylphenylamidocarbonyl}, \ R_4 = R_5 = R_6 = H, \ R_7 = R_8 = OCH_3;$

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₆=H, R₇=R₈=OCH₃;

 $R_3 = p - CO_2H - phenylamidocarbonyl, \ R_4 = R_6 = R_8 = H, \ R_5 = CH_3, \ R_7 = OCH_3;$

 R_3 =m-CO₂H-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 =CH₃, R_7 = OCH₃;

 R_3 =0- CO_2 H-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =0-OH-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =m-OH-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 =CH₃, R_7 =OCH₃;

 $R_3 = m - CO_2H - p - OH - phenylamidocarbonyl, R_4 = R_6 = R_8 = H, R_5 = CH_3, R_7 = OCH_3;$

```
R<sub>3</sub>=p-ethoxycarbophenylamidocarbonyl, R<sub>4</sub>=R<sub>6</sub>=R<sub>8</sub>=H, R<sub>5</sub>=CH<sub>3</sub>, R<sub>7</sub>=OCH<sub>3</sub>;
```

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇=OCH₃;

 R_3 =m-CF₃-p-NO₂-phenylamidocarbonyl, R_4 =R₆=R₈=H, R_5 =CH₃, R_7 = OCH₃;

 R_3 =4'-amidosulfonylphenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₆= R₈=H, R₅=CH₃, R₇= OCH₃;

 $R_3=4$ '-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;

 R_3 =4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =4'-(4", 6"-dimethylpyrimidinyl-2"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 R_3 =4'-(5"-CH₃-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇=OCH₃;

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇= OCH₃;

 $R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=Cl, R_7=OCH_3;$

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

 $R_3=m-CF_3$ -phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;

R₃=4'-amidosufonylphenylamidocarbonyl, R₄=R₅= R₈=H, R₆=Cl, R₇=OCH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

 R_3 =4'-(5",6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Cl, R_7 = OCH_3 ;

 $R_3=p-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;

 $R_3=0$ -CO₂H-phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH₃;

```
R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=Br, R_7=OCH_3;
R<sub>3</sub>=p-ethoxycarbophenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>8</sub>=H, R<sub>6</sub>=Br, R<sub>7</sub>=OCH<sub>3</sub>;
R_3=m-CF_3-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=Br, R_7=OCH_3;
R_3=4'-amidosufonylphenylamidocarbonyl, R_4=R_5=R_8=H, R_6=Br, R_7=OCH_3;
R<sub>3</sub>=p-OCH<sub>3</sub>-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>8</sub>=H, R<sub>6</sub>=Br, R<sub>7</sub>=OCH<sub>3</sub>;
R<sub>3</sub>=p-CO<sub>2</sub>H-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>= R<sub>8</sub>=H, R<sub>6</sub>=n-Hex, R<sub>7</sub>=OCH<sub>3</sub>;
R_3=0-CO_2H-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=n-Hex, R_7=OCH_3;
R<sub>3</sub>=m-OH-p-CO<sub>2</sub>H-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>8</sub>=H, R=Hex, R<sub>7</sub>= OCH<sub>3</sub>;
R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=R_8=H, R_6=n-Hex, R_7=OCH_3;
R<sub>3</sub>=p-ethoxycarbophenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>8</sub>=H, R<sub>6</sub>=Hex, R<sub>7</sub>=OCH<sub>3</sub>;
R_3 = m-CF<sub>3</sub>-phenylamidocarbonyl, R_4 = R_5 = R_8 = H, R_6 = Hexyl, R_7 = OCH_3;
R_3=4'-amidosulfonylphenylamidocarbonyl, R_4=R_5=R_8=H, R_6=Hex, R_7=OCH_3;
R<sub>3</sub>=p-OCH<sub>3</sub>-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=R<sub>8</sub>=H, R<sub>6</sub>=Hex, R<sub>7</sub>=OCH<sub>3</sub>;
R_3=p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO<sub>2</sub>, R_7=R_8=OCH<sub>3</sub>;
R_3=m-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=p-OCH<sub>3</sub>-phenylamidocarbonyl, R_4=R_5=H, R_6=NO<sub>2</sub>, R_7=R_8=OCH<sub>3</sub>;
R_3=m-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=NO<sub>2</sub>, R_7=R_8= OCH<sub>3</sub>;
R_3=0-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=p-ethoxycarbophenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R<sub>3</sub>=m-CO<sub>2</sub>H-p-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=R<sub>8</sub>=OCH<sub>3</sub>;
R_3=m-CF_3-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=m-CF_3-p-NO_2-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=4'-amidosufonylphenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=4'-guanidinosulfonylphenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;
R_3=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=
     R_8=OCH<sub>3</sub>;
```

```
R<sub>3</sub>=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H,
     R_6=NO_2, R_7=R_8=OCH_3;
R<sub>3</sub>=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=R<sub>8</sub>=OCH<sub>3</sub>;
R_3=p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=p-OCH<sub>3</sub>-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H<sub>5</sub>, R_7=OH, R_8=NO<sub>2</sub>;
R_3=m-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H<sub>5</sub>, R_7=OH, R_8=NO<sub>2</sub>;
R_3=0-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=p-ethoxycarbophenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=m-CO<sub>2</sub>H-p-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C<sub>2</sub>H<sub>5</sub>, R_7=OH, R_8=NO<sub>2</sub>;
R_3=m-CF_3- phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=4'-amidosulfonylphenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R<sub>3</sub>=4'-guanidinosulfonylphenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=NO<sub>2</sub>;
R<sub>3</sub>=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OH,
      R_8=NO_2;
R_3=p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5=H, R_6=C<sub>2</sub>H<sub>5</sub>, R_7=OCH<sub>3</sub>, R_8=NO<sub>2</sub>;
R_3=p-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H<sub>5</sub>, R_7=OCH<sub>3</sub>, R_8=NO<sub>2</sub>;
R_3=p-OCH<sub>3</sub>-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OCH_3, R_8=NO_2;
R_3=p-ethoxycarbophenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=4'-guanidinosulfonylphenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OCH_3, R_8=NO_2;
R_3=p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OH, R_8=CH_3;
R_3=0-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OH, R_8=CH_3;
R_3=p-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=NO<sub>2</sub>, R_7=OH, R_8=CH<sub>3</sub>;
R<sub>3</sub>=m-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
R<sub>3</sub>=0-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
```

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃;

```
R<sub>3</sub>=m-OH-p-CO<sub>2</sub>H-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
```

$$R_3$$
=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = H , R_6 = NO_2 , R_7 = OH , R_8 = CH_3 ;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = H, R_6 = NO_2 , R_7 =OH, R_8 = CH_3 ;

 R_3 =4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 =OH, R_8 = CH_3 ;

 $R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OH, R_8=CH_3;$

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=m-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=0-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=p-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=m-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=0-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = OCH_3 , R_8 = CH_3 ;

 $R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OCH_3, R_8=CH_3;$

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

 R_3 =m-CF₃-p-NO₂-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 =OCH₃, R_8 =CH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl,

 $R_4=R_5=H$, $R_6=NO_2$, $R_7=OCH_3$, $R_8=CH_3$;

R₃=4'-amidosufonylphenylamidocarbonyl,

```
R_4=R_5=H, R_6=NO_2, R_7=OCH_3, R_8=CH_3;
```

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = OCH_3 , R_8 = CH_3 ;

 R_3 =4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = OCH_3 , R_8 = CH_3 ;

 R_3 =4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = OCH_3 , R_8 = CH_3 ;

 $R_3=p-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH;

R₃=m-OH-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

 R_3 =0-OH-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 = NO_2 , R_7 =OH;

R₃=CF₃-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆=R₈=NO₂, R₇=OH;

R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=R₈=NO₂, R₇=OH;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 = NO_2 , R_7 =OH;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=R₈=NO₂, R₇=OH;

 $R_3=0$ - CO_2H -phenylamidocarbonyl, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;

R₃=p-OH-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OCH₃;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 = NO_2 , R_7 = OCH_3 ;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OCH₃;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆=Cl, R₇=OH, R₈=NO₂;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆=Cl, R₇=OH, R₈=NO₂;

R₃=m-OH-pCO₂H-phenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=Cl, R₈=NO₂;

```
R_3= p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=H, R_5=CH<sub>3</sub>, R_7=OH, R_6=R<sub>8</sub>=NO<sub>2</sub>;
```

$$R_3$$
= 4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 =H, R_5 =CH₃, R_7 =OH, R_6 = R_8 =NO₂;

$$R_3$$
=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R_4 =H, R_5 =CH₃, R_7 =OH, R_6 = R_8 =NO₂;

$$R_3$$
=4'-(4",6"-dimethylpyrimidinyl-2"-amidosulfonyl)phenylamidocarbonyl, R_4 =H, R_5 =CH₃, R_7 =OH, R_6 = R_8 =NO₂;

$$R_3 = \frac{\text{CONH-}}{\text{CONH-}}, R_4 = R_5 = R_6 = R_8 = H, R_7 = OCH_3;$$

$$R_3 = 0 \times N^{-C_6H_5}, R_4 = R_5 = R_6 = R_8 = H, R_7 = OCH_3; and$$

$$R_3 = \frac{1}{8} + \frac{1}{8}$$

$$R_3 = CONH(CH)_3COOH, \ R_4 = R_5 = R_8 = H, \ R_6 = C_2H_5, \ R_7 = OCH_3; \ \underline{.}$$

$$R_3 = {}^{\text{CONHNHCO}}$$
, $R_4 = R_5 = R_8 = H$, $R_6 = C_2H_5$, $R_7 = OCH_3$;

$$R_3 = \frac{1}{3}$$
, $R_4 = R_5 = R_8 = H$, $R_6 = C_2H_5$, $R_7 = OCH_3$;

$$R_3 = {}^{\text{continuo}}, R_4 = R_6 = R_8 = H, R_5 = CH_3, R_7 = OCH_3;$$

$$R_3 = \frac{1}{R_4 + R_6 + R_8 + H_7 + R_5 + CH_3 + R_7 + OCH_3}$$

$$R_3 = \frac{\text{CONTINUICO}}{R_4 = R_6 = R_8 = H, R_5 = CH_3, R_7 = OCH_3}$$

$$R_3 = {}^{\text{CONHNHCO}} \longrightarrow {}_{,} R_4 = R_5 = R_6 = H, R_7 = OCH_3, R_8 = CH_3;$$

$$R_{2} = \frac{1}{R_{2} - R_{3} - R_{4} - R_{5} - R_{6} - H_{5} - R_{5} - R_{6} - H_{5}}$$

$$\begin{array}{c} R_3 = CO_2H, \quad R_4 = R_5 = H, \quad R_6 = CI, \quad R_7 = OH, \quad R_8 = NO_2; \\ R_3 = CO_2H, \quad R_4 = H, \quad R_5 = CH_3, \quad R_6 = R_8 = NO_2, \quad R_7 = OH; \\ R_3 = CO_2C_2H_5, \quad R_4 = H, \quad R_5 = CH_3, \quad R_6 = R_8 = NO_2, \quad R_7 = OH; \\ COOH & COOET \\ R_4 = & R_3 = R_5 = R_6 = R_8 = H, \quad R_7 = CH_3; \\ R_4 = & R_5 = R_6 = R_8 = H, \quad R_7 = CH_3; \\ R_4 = & R_8 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = R_8 = R_8 = H, \quad R_7 = CH_3; \\ R_4 = & R_8 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = R_8 = R_8 = R_8 = H, \quad R_8 = CH_8 = CONH = COOH; \\ R_5 = R_5 = R_6 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_5 = R_5 = R_6 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_7 = R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_6 = R_8 = H, \quad R_4 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_6 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad R_7 = & CCH_8 = CONH = COOH; \\ R_8 = R_8 = R_8 = H, \quad R_8 = CH_3, \quad$$

$$R_3 = R_5 = R_6 = H$$
, $R_4 = R_8 = CH_3$, $R_7 = R_3 = R_4 = R_5 = R_7 = R_8 = H$, $R_6 = R_7 = R_8 = H$, $R_6 = R_7 = R_8 = H$.

- 6. (Currently Amended) The compound according to claim 1, <u>further comprising an ester or prodrug</u> wherein the compound include the pharmaceutically acceptable salts and hydrates, esters, or pro-drugs thereof.
- 7. (Currently Amended) A method for preparing a compound according to any one of claim 1, comprising the steps of condensing the substituted 3-carboxy-, 4-carboxy-, 6-carboxy-coumarin, or 7-carboxy-methylenoxy-coumarin derivative with a corresponding substituted amine or hydrazine.

Claim 8 (cancel)

9. (Currently Amended) The method according to claim 7, wherein the reactants for the amidation reaction are selected from the group consisting of phosphorus trichloride, phosphorus oxychloride, phosphorus pentachloride, thionyl chloride, 1,3-dichyclohexylcarbodiimide, dipyridylcarbonate (2-DPC), 1,3-diisopropylcarbodiimide (DIPC), and 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide (EDC1) and the catalytic agent used is selected from the group consisting of tert-amines, pyridine, 4-dimethylaminopyridine and pyrrolalkylpyridine; and the organic solvents used emprising comprise dimethylsulfoxide, dichloromethane, toluene, ethylene glycol dimethyl ether, 1,2-dichloroethane, tetrahydrofuran and N,N-dimethylformamide.

- 10. (Previously Presented) A pharmaceutical comprising a pharmaceutically effective dosage of a compound according to claim 1 and a pharmaceutically acceptable carrier.
- 11. (Previously Presented) The pharmaceutical composition according to claim 10 wherein the pharmaceutical composition is a tablet, capsule, pH, injection, sustained-release, controlled-release or targeted preparation; and fine particle delivery systems.

Claims 12 – 18 (Cancelled).

- 19. (Previously Presented) A method for inhibiting transforming growth factor β1 comprising administering an effective amount of a compound according to claim 1.
- 20. (Previously Presented) A method for inhibiting angiotensin II (AngII) receptor converting enzyme comprising administering an effective amount of a compound according to claim 1.
- 21. (Previously Presented) A method for treating chronic renal disorders comprising administering an effective amount of a compound according to claim 1.
- 22. (Previously Presented) A method for treating cardio-cerebrovascular diseases comprising administering an effective amount of a compound according to claim 1.
- 23. (Previously Presented) A method for treating non-insulin dependent diabetes comprising administering an effective amount of a compound according to claim 1.

- 24. (Previously Presented) The method according to claim 22, wherein the cardiocerebrovascular diseases is hypertension, cerebral embolism, coronary embolism, myocardial infarction, cerebrovascular accidents, or stroke or a sequelae thereof.
- 25. (Previously Presented) A method for treating a tumor and pre-cancerous lesion comprising administering an effective amount of a compound according to claim 1.
- 26. (Previously Presented) A method for prophylaxis of a tumor and pre-cancerous lesion comprising administering an effective amount of a compound according to claim 1.
- 27. (New) A pharmaceutical comprising a pharmaceutically effective dosage of a compound according to claim 5 and a pharmaceutically acceptable carrier.