Distribuições de Probabilidade e os Retornos do Ibovespa: Aplicação em Python

Marcelo Otavio Milani

August 5, 2022

1 Bibliotecas necessárias

```
#Biblioteca para analises e manipulacoes de dados
import pandas as pd

#Biblioteca para extracao de dados do Mercado Financeiro do Yahoo Finance
import yfinance as yf

#Biblioteca para trabalhar com datas
from datetime import date
from datetime import timedelta

#Biblioteca para utilizacao de Distribuicoes de Probabilidade (derivada da Scipy)
from fitter import Fitter, get_common_distributions, get_distributions

#Biblioteca para criar graficos
import matplotlib.pyplot as plt
```

2 Breve fundamentação teórica

Referências utilizadas para a breve fundamentação teórica: [Referência 1], [Referência 2], [Referência 3], [Referência 4], [Referência 5].

2.1 Variáveis aleatórias e Processos estocásticos

Processo estocástico pode ser definido como uma variável que se comportam de maneira aleatória (parcial ou total). Essa sequência de aleatoriedade está associada ao tempo e/ou a ocorrência de determinados eventos.

Um processo estocástico pode ser categorizado como um processo em tempo discreto ou em tempo contínuo. Tempo discreto é composto por variáveis discretas onde os valores de tais variáveis se alteram em um determinado instante de tempo. Já o tempo contínuo é composto de variáveis contínuas onde os valores de tais variáveis se alteram a qualquer instante de tempo.

Alguns exemplos de processos estocásticos:

- Variação da temperatura de uma determinada cidade ao longo do tempo.
- Preço de uma ação listada na B3 (Bolsa de valores do Brasil) ao longo do tempo.
- Quantidade de pessoas que vão ao supermercado por dia.

2.2 Distribuições de Probabilidade

Sabendo da existência de processos estocásticos, as distribuições de probabilidade por sua vez descrevem o comportamento aleatório desses processos. Sendo assim, a distribuição de probabilidade que melhor se ajusta a uma variável aleatória "X" é, portanto, uma descrição das probabilidades relacionadas com os possíveis valores de "X".

Como existem variáveis do tipo discreta e do tipo contínua, também existem distribuições de probabilidade para quando as variáveis são discretas e distribuições de probabilidade para quando as variáveis são contínuas. Seguem alguns exemplos:

Distribuições de probabilidade para variáveis do tipo discreta:

- Distribuição de Bernoulli.
- Distribuição Binomial.
- Distribuição de Poisson.
- Distribuição Geométrica.

Distribuições de probabilidade para variáveis do tipo contínua:

- Distribuição Uniforme.
- Distribuição Exponencial.
- Distribuição Normal.
- Distribuição Lognormal.
- Distribuição Gama.
- Distribuição Beta.
- Distribuição Weibull.
- Distribuição Triangular.

3 Aplicação prática: Distribuições de Probabilidade e os Retornos do Ibovespa

3.1 Objetivo

• Encontrar a distribuição de probabilidade que **melhor se ajusta ao comportamento dos retornos diários do Ibovespa** em diferentes períodos de tempo.

3.2 Considerações e Premissas

- O estudo é feito usando a linguagem de programação Python.
- É usado o **retorno diário** do Ibovespa, representado pela seguinte equação:

$$Retorno_{diario} = \left(\frac{Cotacao_d}{Cotacao_{d-1}} - 1\right) * 100 \tag{1}$$

- As janelas temporais consideradas são os últimos: 6 meses, 12 meses, 2 anos, 5 anos, 10 anos e 20 anos.
- O retorno diário do Ibovespa é uma variável contínua.
- As distribuições de probabilidade consideradas são: Uniforme, Exponencial, Normal, Lognormal, Gama, Beta e Triangular.
- É usado o método SSE Sum of squared errors na determinação de qual distribuição de probabilidade melhor se ajusta ao comportamento do retorno diário do Ibovespa, em diferentes janelas temporais.

3.3 Coletar dados do Ibovespa e calcular o Retorno diário

Passo 1: Definir as datas para os períodos desejados.

```
#Data ultimos 6 meses (180 dias)
data_ult_6meses = date.today()-timedelta(180)
#Data ultimos 12 meses (365 dias)
data_ult_12meses = date.today()-timedelta(365)
#Data ultimos 2 anos (730 dias)
data_ult_2anos = date.today()-timedelta(730)
#Data ultimos 5 anos (1825 dias)
data_ult_5anos = date.today()-timedelta(1825)
#Data ultimos 10 anos (3650 dias)
data_ult_10anos = date.today()-timedelta(3650)
#Data ultimos 20 anos (7300 dias)
data_ult_20anos = date.today()-timedelta(7300)
```

Passo 2: Função para coletar dados do Ibovespa e calcular o Retorno diário do período desejado.

```
def f_retorno_diario(ativo, data_periodo):
    #Coletar a Cotacao do Ibovespa
    df_IBOV = yf.download(ativo, start=data_periodo, end=date.today(), progress=False)
    #Calcular o retorno diario do Ibovespa com base nos fechamentos diarios
    df_IBOV["Retorno_Diario"] = df_IBOV["Close"].pct_change(periods=1)
    #Excluir valores NaN
    df_IBOV.dropna(subset=["Retorno_Diario"], inplace=True)
    #Armazenar retornos diarios do periodo em um vetor
    vetor_retorno = df_IBOV["Retorno_Diario"].values
    #Retornar vetor com os retornos diarios
    return vetor_retorno
```

Passo 3: Calcular o vetor com os retornos diários do Ibovespa nos períodos desejados.

```
# "^BVSP" eh a sigla do ndice Ibovespa no Yahoo Finance
Retorno_6meses = f_retorno_diario("^BVSP", data_ult_6meses)
Retorno_12meses = f_retorno_diario("^BVSP", data_ult_12meses)
Retorno_2anos = f_retorno_diario("^BVSP", data_ult_2anos)
Retorno_5anos = f_retorno_diario("^BVSP", data_ult_5anos)
Retorno_10anos = f_retorno_diario("^BVSP", data_ult_10anos)
Retorno_20anos = f_retorno_diario("^BVSP", data_ult_20anos)
```

3.4 Estatística Descritiva do Retorno diário do Ibovespa para cada período analisado

#Exibir estatisticas
df_Estatisticas

	Tamanho_Amostra	Média	Desvio_padrão	Mínimo	1°_Quartil	Mediana	3°_Quartil	Máximo
Retorno_Últimos_6_meses	122.0	-0.000556	0.011764	-0.029006	-0.006842	-0.000039	0.007451	0.024253
Retorno_Últimos_12_meses	249.0	-0.000563	0.012669	-0.037805	-0.008129	-0.000410	0.007842	0.036626
Retorno_Últimos_2_anos	495.0	0.000134	0.012938	-0.051201	-0.007668	0.000428	0.008776	0.036626
Retorno_Últimos_5_anos	1234.0	0.000486	0.016811	-0.147797	-0.007462	0.000604	0.009401	0.139082
Retorno_Últimos_10_anos	2471.0	0.000358	0.015755	-0.147797	-0.008141	0.000333	0.009037	0.139082
Retorno_Últimos_20_anos	4946.0	0.000625	0.017376	-0.147797	-0.008500	0.000851	0.010199	0.146560

3.5 Lista das Distribuições de Probabilidade utilizadas

Passo 1: Criar a lista com as distribuições. Usar o comando "get_distributions()" da biblioteca "fitter" para encontrar o nome correto das distribuições.

```
Lista_Distribuicoes = ["uniform", "expon", "norm", "lognorm", "gamma", "beta", "triang"]
```

3.6 Distribuição de Probabilidade do Retorno Diário do Ibovespa

Passo 1: Calcular e Comparar os valores teóricos das distribuições de probabilidade com os valores reais. OBS: a função "Fitter" ordena as distribuições da que mais se ajusta para a que menos se ajusta, com base no "sumsquare_error".

```
distribuicao = Fitter(data=Retorno, distributions=Lista_Distribuicoes)
distribuicao.fit()
distribuicao.summary(Nbest=7)
```

Passo 2: Encontrar a distribuição de probabilidade que melhor se ajusta aos valores reais.

```
distribuicao.get_best(method='sumsquare_error')
```

3.6.1 Calcular e Comparar os valores teóricos das distribuições de probabilidade com os valores reais

Resultados para o período dos últimos 6 meses:

Resultados para o período dos últimos 12 meses:

Resultados para o período dos últimos 2 anos:

Resultados para o período dos últimos 5 anos:

Resultados para o período dos últimos 10 anos:

Resultados para o período dos últimos 20 anos:

3.6.2 Encontrar a distribuição de probabilidade que melhor se ajusta aos valores reais Resultados da melhor distribuição para cada período analisado:

Períodos	Distribuição de melhor ajuste e seus parâmetros
Últimos 6 meses	(norm: (loc: -0.000385, scale: 0.011818))
Últimos 12 meses	(beta: (a: 198.347, b: 27.639, loc: -0.5127, scale: 0.5836))
Últimos 2 anos	(beta: (a: 3672692.722, b: 33.5037, loc: -8200.8164, scale: 8200.8914))
Últimos 5 anos	(beta: (a: 117231.007, b: 450.6372, loc: -92.9045, scale: 93.2622))
Últimos 10 anos	(beta: (a: 8484.880, b: 789.8121, loc: -4.9615, scale: 5.4237))
Últimos 20 anos	(beta: (a: 44458.980, b: 10724.9507, loc: -8.3087, scale: 10.3138))

4 Considerações finais

4.1 Relação entre o tamanho da amostra e o ajuste das distribuições aos dados reais

Para essa comparação considerou-se a distribuição que melhor se ajustou em cada período analisado. É possível observar a existência de uma relação inversamente proporcional entre o tamanho da amostra e o erro de ajuste da distribuição aos valores reais.

A distribuição de probabilidade que melhor se ajustou ao comportamento dos retornos diários do Ibovespa nos últimos 6 meses obteve um alto índice de erro entre os valores teóricos da distribuição e os valores reais. Por outro lado, nos períodos de 5 anos ou mais, o erro de ajuste dos valores teóricos frente aos valores reais obteve um valor bem menor.

O fato do erro de ajuste diminuir com o aumento do tamanho da amostra, evidencia o seguinte ponto: quanto menos amostras se tem, maior a incerteza em relação ao comportamento das variáveis ao longo do tempo e/ou ocorrência de eventos.

4.2 Resultados das distribuições encontradas para os períodos analisados

De forma geral, podemos observar que das distribuições de probabilidade testadas, a Exponencial e a Uniforme são as que possuem os piores ajustes em relação aos valores reais nos diferentes períodos analisados.

Por outro lado, as distribuições Beta, Normal e Lognormal são as que possuem os melhores ajustes em relação aos valores reais nos diferentes períodos analisados. Dos 6 períodos analisados, a distribuição Beta obteve o melhor ajuste em 5.

Por que encontrar a distribuição de probabilidade que melhor se ajusta ao comportamento de variáveis de comportamento aleatório/estocástico? Respondendo com um viés no campo das finanças, essas distribuições de probabilidade podem servir como inputs para modelos (matemáticos, de simulação, entre outros) que possuem o objetivo de suportar um processo de tomada de decisão mais inteligente.