These problems will not be turned in nor graded. However, a non-empty subset of these problems will appear on the final skills check/takehome. The numbers may change when they appear on the exam, but it behooves you to have a thorough understanding of every problem on this homework.

1. Suppose the matrix equation $A\vec{x} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$ has the general solution

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

- (a) How many rows and how many columns does A have?
- (b) Find null(A).
- (c) Find rank(A).
- (d) Find col(A).
- (e) Find row(A).

2. Let

$$\vec{b}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \vec{b}_2 = egin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \qquad \vec{b}_3 = egin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \vec{c} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

and let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ and $\mathcal{S} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation and $T(\vec{b}_1) = 2\vec{b}_1$, $T(\vec{b}_2) = 3\vec{b}_2$, and $T(\vec{b}_3) = -\vec{b}_3$.

- (a) Compute $[\vec{c}]_{\mathcal{B}}$.
- (b) Compute $[T\vec{c}]_{\mathcal{B}}$ and $[T\vec{c}]_{\mathcal{S}}$.
- (c) Find a matrix for T in the \mathcal{B} basis and a matrix for T in the \mathcal{S} basis. (In class, we might have said, "A matrix for T in the \mathcal{B} coordinate system." This is another way of saying, "A matrix for T in the \mathcal{B} basis.")

3. Read section 3.1 and 3.2 in your textbook about computing the determinant of a matrix. Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & x \end{bmatrix}.$$

- (a) Compute det(A).
- (b) Compute det(B). For what values of x is B not invertible?

4. Let $A = \begin{bmatrix} 1 & 2 \\ 5 & 9 \end{bmatrix}$.

- (a) Find an equation for the function $p(x) = \det(A xI)$ (this is called the *characteristic polynomial* of A).
- (b) For what values of x is A xI non-invertible?
- (c) Compute p(A), the polynomial p with the matrix A plugged into it. When you plug a matrix into a polynomial, replace any constant terms k with the matrix kI. Can you guess why p is called an *annihilating* polynomial for A?
- 5. For each of the following, either give an example or a reason why it is impossible.
 - (a) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that is invertible.
 - (b) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that is not invertible.

- (c) A non-linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$.
- (d) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ whose null space equals its range.
- (e) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that when represented as a matrix in the standard basis has a column space equal to its row space.
- (f) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ so that T^2 is the identity, but T is not invertible.
- (g) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ so that T^3 is the identity, but T^2 is not the identity.
- (h) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with exactly *one* eigenvector.
- (i) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with exactly *one* eigen direction (i.e., all eigenvectors lie on a single line).
- (j) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with exactly *two* eigen directions (i.e., all eigenvectors lie on one of two lines).
- (k) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with infinitely many eigen directions.
- (1) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with no real eigenvectors.
- (m) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with eigenvalues 3 and -2.
- (n) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ where $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue 2 and $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is an eigenvector with eigenvalue 0.
- 6. This problem will not be on the exam but is included for you to stress-test your mathematical thinking.

Let $T: \mathbb{R}^n \to \mathbb{R}^n$. A subspace $X \subseteq \mathbb{R}^n$ is called invariant with respect to T if T(X) = X. That is, $\{\vec{v}: \vec{v} = T\vec{x} \text{ for some } \vec{x} \in X\} = X$. Note, this is different than saying $T\vec{x} = \vec{x}$ for all $\vec{x} \in X$.

- (a) Describe all invariant subspaces of the linear transformation given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.
- (b) Describe all invariant subspaces of the linear transformation given by the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
- (c) Describe all invariant subspaces of the sheer given by the matrix $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ where $a \neq 0$.
- (d) Your friend from another university proposes the following addition to the invertible matrix theorem:

An $n \times n$ matrix A is invertible if and only if \mathbb{R}^n is an invariant subspace of the transformation given by A.

Is he right? If so, prove it is correct. If not, give a counterexample.

(e) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ has $\{\vec{0}\}, \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : y = 2x \right\}$, and \mathbb{R}^2 as its *only* invariant subspaces. Give an example of a vector \vec{v} that is an eigenvector for T and a vector \vec{w} that is *not* an eigenvector for T. Explain how you know.