SPDM Broker

Julian Pritzi
Chair of Distributed Systems & Operating Systems

Outline

- Intel TDX TEE-I/O
 - Motivation
 - Overview
- SPDM Broker
 - Design
 - Attestation
 - Secure MMIO and DMA

Intel TDX

- Isolated TEE VMs (TVMs)
- Untrusted VMM and devices
- How to securely use untrusted devices?
 - Encrypt data in shared buffer
 - Not possible for all types of devices

Intel TDX TEE I/O

- Remove shared buffers
- Remove device specific proprietary protocol
- Using the following protocols:
 - SPDM
 - TDISP
 - PCIe IDE

Intel TDX TEE I/O - Protocols

- Security Protocol and Data Model (SPDM)
 - Authentication and provisioning of hardware identities
 - Measurements for firmware identities
 - Secure session key exchange protocol
 - In TEE I/O: Software channel for configuration of the device
- Integrity & Data Encryption (IDE)
 - Confidentiality
 - Integrity
 - Replay protection
- TEE Device Interface Security Protocol (TDISP)
 - Manages TVM to TEE Device Interface (TDI) assignment

Intel TDX TEE I/O - In detail

Intel TDX TEE I/O

- Requires TEE I/O compatible devices
 - At least one TDI
 - Device Security Manager
 - support for selective IDE on the PCIe link
- What about devices without TEE I/O support?

SPDM Broker: mix of PCIe switch and TEE I/O compatible device

SPDM Broker

- Sits between legacy device and host SOC
- Transparent to device
- Security guarantees for TVM ⇔ SPDM Broker
- No protection for SPDM Broker ⇔ device

SPDM Broker design

SPDM Broker requirements

- support for SPDM protocol
- support for TDISP
- support for IDE_KM
- PCIe port supporting IDE and DOE

Is Opentitan a good fit for these requirements?

Functionality required for the protocols

- asymmetric cryptography algorithms
 - ECC with the NIST P256 curve ⇒ Opentitan Big Number Accelerator
- hash & measurement algorithm
 - SHA256 ⇒ Opentitan HMAC accelerator
- symmetric encryption using AES GCM
 - extend Opentitan aes accelerator's CTR mode
- compatibility with Device Identifier Composition Engine (DICE)
 - provided by Opentitan Key Manager & identities and root keys strategy

Attestation

- Certificates and keys stored in opentitan
- Keys protected using Opentitan's Key Manager
- SPDM Measurements include hash of some standard device registers
 - Device ID
 - Vendor ID
 - Subsystem (Vendor) ID

Secure MMIO and DMA

- One TDI for entire device
- Opentitan manages the TDI structure in memory according to the TDISP
- MMIO and DMA are validated against the TDI before forwarding to the device

SPDM Broker Overview

Communication Module

- Similar to PCIe Switch

- Upstream port
- Multiple downstream ports
- Switching logic

Communication Module

- Filter for determining destination
 - Data Object Exchange for SPDM ⇒ TL-UL
 - Trusted MMIO & DMA access checked against filter configuration registers

Performance Estimates

- Opentitan is a potential bottleneck
 - Certificate verification: ~7ms
 - Measurement generation & signing: ~10ms
 - Encryption/Decryption of 1 KB: ~24ms ⇒ ~43kB/s
- Opentitan is only needed for configuration (SPDM, TDISP, IDE_KM)
- Performance critical MMIO and DMA access is handled by the communication module
 - Only forwarded to Opentitan if filter logic detects an invalid access

Summary

Providing TEE I/O support for legacy devices using a transparent hardware module.

