Alternating Minimization (and Friends)

Lecture 7: 6.883, Spring 2016

Suvrit Sra Massachusetts Institute of Technology

Feb 29, 2016

Background: Coordinate Descent

For
$$x \in \mathbb{R}^n$$
 consider $\min f(x) = f(x_1, x_2, \dots, x_n)$

Ancient idea: optimize over individual coordinates

- For k = 0, 1, ...
 - Pick an index i from $\{1, ..., n\}$

- For k = 0, 1, ...
 - Pick an index i from $\{1, \ldots, n\}$
 - Optimize the *i*th coordinate

$$x_i^{k+1} \leftarrow \underset{\xi \in \mathbb{R}}{\operatorname{argmin}} f(\underbrace{x_1^{k+1}, \dots, x_{i-1}^{k+1}}, \underbrace{\xi}_{\text{current}}, \underbrace{x_{i+1}^{k}, \dots, x_{n}^{k}})$$

Coordinate descent

- For k = 0, 1, ...
 - Pick an index i from $\{1, ..., n\}$
 - Optimize the *i*th coordinate

$$x_i^{k+1} \leftarrow \underset{\xi \in \mathbb{R}}{\operatorname{argmin}} f(\underbrace{x_1^{k+1}, \dots, x_{i-1}^{k+1}}, \underbrace{\xi}_{\text{current}}, \underbrace{x_{i+1}^{k}, \dots, x_{n}^{k}})$$

■ Decide when/how to stop; return x^k

 \mathbf{x}_{i}^{k+1} overwrites value in x_{i}^{k} (implementation)

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b
- A Can be "slow"; sometimes very competitive

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b
- A Can be "slow"; sometimes very competitive
- Gradient, stochastic gradient also "slow"

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b
- A Can be "slow"; sometimes very competitive
- Gradient, stochastic gradient also "slow"
- But scalable (eg: libsvm)

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b
- A Can be "slow"; sometimes very competitive
- Gradient, stochastic gradient also "slow"
- But scalable (eg: libsvm)
- Renewed interest; esp. stochastic CD

- One of the simplest optimization methods
- Various ideas for next coordinate to optimize
- \clubsuit Old idea: Gauss-Seidel, Jacobi methods for Ax = b
- A Can be "slow"; sometimes very competitive
- Gradient, stochastic gradient also "slow"
- But scalable (eg: libsvm)
- Renewed interest; esp. stochastic CD
- A Notice: in general CD is "derivative free"

Example: Least-squares

Assume
$$A \in \mathbb{R}^{m \times n}$$

min $||Ax - b||_2^2$

Example: Least-squares

Assume
$$A \in \mathbb{R}^{m \times n}$$

min $||Ax - b||_2^2$

Coordinate descent update

$$x_j \leftarrow \frac{\sum_{i=1}^m a_{ij} \left(b_i - \sum_{l \neq j} a_{il} x_l\right)}{\sum_{i=1}^m a_{ij}^2}$$

(dropped superscripts, since we overwrite)

Coordinate descent remarks

Advantages

- ♦ Each iteration usually cheap (single variable optimization)
- ♦ No extra storage vectors needed
- ♦ No stepsize tuning
- No other pesky parameters that must be tuned
- ♦ Simple to implement
- ♦ Works well for large-scale problems
- ♦ Currently quite popular; parallel versions exist

Coordinate descent remarks

Advantages

- ♦ Each iteration usually cheap (single variable optimization)
- No extra storage vectors needed
- ♦ No stepsize tuning
- No other pesky parameters that must be tuned
- ♦ Simple to implement
- Works well for large-scale problems
- Currently quite popular; parallel versions exist

Disadvantages

- Tricky if single variable optimization is hard
- Convergence theory can be complicated
- ♠ Can slow down near optimum
- Non-differentiable case more tricky

Block coordinate descent (BCD)

min
$$f(x) := f(x_1, ..., x_n)$$

 $x \in \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_m.$

Block coordinate descent (BCD)

min
$$f(x) := f(x_1, ..., x_n)$$

 $x \in \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_m.$

Gauss-Seidel update

$$x_i^{k+1} \leftarrow \underset{\boldsymbol{\xi} \in \mathcal{X}_i}{\operatorname{argmin}} f(\underbrace{x_1^{k+1}, \dots, x_{i-1}^{k+1}}, \underbrace{\boldsymbol{\xi}}_{\text{current}}, \underbrace{x_{i+1}^{k}, \dots, x_{m}^{k}}_{\text{todo}})$$

Block coordinate descent (BCD)

min
$$f(x) := f(x_1, ..., x_n)$$

 $x \in \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_m.$

Gauss-Seidel update

$$x_i^{k+1} \leftarrow \underset{\boldsymbol{\xi} \in \mathcal{X}_i}{\operatorname{argmin}} \, f(\underbrace{x_1^{k+1}, \dots, x_{i-1}^{k+1}}, \underbrace{\boldsymbol{\xi}}_{\text{current}}, \underbrace{x_{i+1}^{k}, \dots, x_{m}^{k}}_{\text{todo}})$$

Jacobi update (easy to parallelize)

$$x_i^{k+1} \leftarrow \underset{\xi \in \mathcal{X}_i}{\operatorname{argmin}} f(\underbrace{x_1^k, \dots, x_{i-1}^k}, \underbrace{\xi}_{\underset{\text{current}}{\text{current}}}, \underbrace{x_{i+1}^k, \dots, x_m^k})$$

Two block BCD

min f(x, y), s.t. $x \in \mathcal{X}, y \in \mathcal{Y}$.

Theorem (Grippo & Sciandrone (2000)). Let f be continuously differentiable; and \mathcal{X} , \mathcal{Y} be closed and convex sets. Assuming both subproblems have solutions, and that the sequence $\{(x^k, y^k)\}$ has limit points. Then, every limit point is stationary.

Two block BCD

 $\min \ f(x,y), \quad \text{s.t. } x \in \mathcal{X}, y \in \mathcal{Y}.$

Theorem (Grippo & Sciandrone (2000)). Let f be continuously differentiable; and \mathcal{X} , \mathcal{Y} be closed and convex sets. Assuming both subproblems have solutions, and that the sequence $\{(x^k, y^k)\}$ has limit points. Then, every limit point is stationary.

- ► Subproblems need not have unique solutions
- ▶ BCD for 2 blocks aka Alternating Minimization

AltMin

Original matrix

Clustered matrix

OldStored Hidthx						
а	+	+	+			
Z	0	0	0			
а	+	+	+			
_	*	*	*			
_	*	*	*			
Z	0	0	0			
	z a - -	z 0 a + - * - *	a + + z · · · a + + - * *	a + + + z 0 0 0 a + + + - * * *		

After clustering and permutation

Co-clustered matrix

OU GIGOTOG ITIGUTA						
а	а	+	+	+		
а	а	+	+	+		
Z	Z	0	0	0		
Z	Z	0	0	0		
_	_	*	*	*		
_	_	*	*	*		

After co-clustering and permutation

- ▶ Let $X \in \mathbb{R}^{m \times n}$ be the input matrix
- ► Cluster columns of X
- ▶ Well-known k-means clustering problem can be written as

$$\min_{B,C} \quad \frac{1}{2} \|X - BC\|_{\mathsf{F}}^2 \quad \text{s.t. } C^{\mathsf{T}}C = \mathsf{Diag}(\mathsf{sizes})$$

where $B \in \mathbb{R}^{m \times k}$, and $C \in \{0, 1\}^{k \times n}$.

▶ Optimization problem with 2 blocks; min F(B, C)

- ▶ Let $X \in \mathbb{R}^{m \times n}$ be the input matrix
- ► Cluster columns of X
- ▶ Well-known k-means clustering problem can be written as

$$\min_{B,C} \quad \frac{1}{2} \|X - BC\|_{\mathsf{F}}^2 \quad \text{s.t. } C^{\mathsf{T}}C = \mathsf{Diag}(\mathsf{sizes})$$

where $B \in \mathbb{R}^{m \times k}$, and $C \in \{0, 1\}^{k \times n}$.

▶ Optimization problem with 2 blocks; min F(B, C)

Exercise: Write co-clustering in matrix form

Hint: Write using 3 blocks

- Given matrix with missing entries, fill in the rest
- Recall Netflix million-\$ prize problem
- Given User-Movie ratings, recommend movies to users

- Input: matrix A with missing entries
- "Predict" missing entries to "complete" the matrix
- Netflix: movies x users matrix; available entries were ratings given to movies by users
- Task: predict missing entries
- Winning methods based on low-rank matrix completion

- Input: matrix A with missing entries
- "Predict" missing entries to "complete" the matrix
- Netflix: movies x users matrix; available entries were ratings given to movies by users
- Task: predict missing entries
- Winning methods based on low-rank matrix completion

Task: Recover matrix A given a sampling of its entries

Theorem: Can recover most low-rank matrices!

min
$$\operatorname{rank}(X)$$

s.t. $X_{ij} = A_{ij}, \quad \forall (i,j) \in \Omega = \operatorname{Rating pairs}$

another formulation

min
$$\sum_{(i,j)\in\Omega} (X_{ij} - A_{ij})^2$$

s.t. rank $(X) \le k$.

Both are NP-Hard problems

$$\begin{aligned} & \text{min} \quad & \text{rank}(X) \\ & \text{s.t.} \ X_{ij} = A_{ij}, \quad \forall (i,j) \in \Omega = \text{Rating pairs} \end{aligned}$$

another formulation

$$\min \quad \sum_{(i,j)\in\Omega} (X_{ij} - A_{ij})^2$$

s.t. $\operatorname{rank}(X) \leq k$.

Both are **NP-Hard** problems

convex relaxation

$$\operatorname{rank}(X) \le k \mapsto \left(\|X\|_* := \sum_{j=1}^m \sigma_j(X) \right) \le k$$

Candes and Recht prove that convex relaxation solves matrix completion (under assumptions on Ω and A)

- convex relaxation does not scale well
- ► commonly used heuristic is Alternating Minimization
- ▶ Write X = BC where B is $m \times k$, C is $k \times n$

$$\min_{B,C} F(B,C) := \|P_{\Omega}(A) - P_{\Omega}(BC)\|_{\mathsf{F}}^2,$$

where $[P_{\Omega}(X)]_{ij} = X_{ij}$ for $(i, j) \in \Omega$, and 0 otherwise.

Result:

- ▶ Initialize B, C using SVD of $P_{\Omega}(A)$
- ► AltMin iterations to compute B and C
- ▶ Can be shown (Jain, Netrapalli, Sanghavi 2012) under assumptions on Ω (uniform sampling) and A (incoherence, most entries similar in magnitude) that AltMin generates B and C such that $\|A BC\|_F \le \epsilon$ after $O(\log(1/\epsilon))$ steps.

$$p(x) := \sum_{k=1}^{K} \pi_k p_{\mathcal{N}}(x; \Sigma_k, \mu_k)$$

Gaussian Mixture Model

$$\frac{1}{2}||a*x-y||^2 + \lambda\Omega(x)$$

Image deblurring

$$\frac{1}{2}||a*x-y||^2 + \lambda\Omega(x)$$

Image deblurring

(Mairal et al., 2010)

$$\sum_{i=1}^{n} \frac{1}{2} || \mathbf{y}_i - \mathbf{D} \mathbf{c}_i ||^2 + \Omega_1(\mathbf{c}_i) + \Omega_2(\mathbf{D})$$
 Dict. learning, matrix factorization

time t	y _t	=	\boldsymbol{a}_t	*	<u> </u>	+	n t
0	e it	=	it.	*		+	n ₀
1	* *	=	X	*		+	n ₁
2	**	=	4	*	. •	+	n ₂
k	3. 9	=	À	*		+	n _k

Non-online formulation

$$\begin{bmatrix} | & \vdots & | \\ y_1 & | & y_n \\ | & \vdots & | \end{bmatrix} \approx \begin{bmatrix} | & \vdots & | \\ a_1 & | & a_t \\ | & \vdots & | \end{bmatrix} * X$$

Rewrite: a * x = Ax = Xa

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_t \end{bmatrix} \approx X \begin{bmatrix} a_1 & a_2 & \cdots & a_t \end{bmatrix}$$

$$Y \approx XA$$

Why online?

Example, 5000 frames of size 512×512

 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure \approx 70 billion parameters! With structure, \approx 4.8 million parameters!

Why online?

Example, 5000 frames of size 512 \times 512 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure \approx 70 billion parameters! With structure, \approx 4.8 million parameters!

Despite structure, alternating minimization **impractical** Fix X, solve for A, requires updating ≈ 4.5 million params

$$\min_{A_t, x} \quad \sum_{t=1}^T \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

$$\min_{A_t, x} \quad \sum_{t=1}^T \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess x_0 For t = 1, 2, ...

1. Observe image \mathbf{y}_t ;

$$\min_{A_t, x} \quad \sum_{t=1}^T \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess x₀

For
$$t = 1, 2, ...$$

- 1. Observe image \mathbf{y}_t ;
- 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t

$$\min_{A_t, x} \quad \sum_{t=1}^T \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess x₀

For t = 1, 2, ...

- 1. Observe image \mathbf{y}_t ;
- 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t
- 3. Solve optimization subproblem to obtain x_t

$$\min_{A_t, x} \quad \sum_{t=1}^T \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess x₀

For t = 1, 2, ...

- 1. Observe image \mathbf{y}_t ;
- 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t
- 3. Solve optimization subproblem to obtain x_t

Video

Step 2. Model, estimate blur A_t — separate lecture

Step 3. convex subproblem — reuse convex subroutines

Do Steps 2, 3 online ⇒ realtime processing!

Some math: NMF

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

- SVD yields dense *B* and *C*
- B and C contain negative entries, even if $A \ge 0$
- SVD factors may not be that easy to interpret

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

- SVD yields dense *B* and *C*
- B and C contain negative entries, even if $A \ge 0$
- SVD factors may not be that easy to interpret

NMF imposes
$$B \ge 0$$
, $C \ge 0$

Algorithms

$$A \approx BC$$
 s.t. $B, C \geq 0$

Least-squares NMF

min
$$\frac{1}{2} ||A - BC||_F^2$$
 s.t. $B, C \ge 0$.

KL-Divergence NMF

$$\min \quad \sum\nolimits_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij} \quad \text{s.t. } B,C \geq 0.$$

Algorithms

$$A \approx BC$$
 s.t. $B, C \geq 0$

Least-squares NMF

$$\label{eq:min_def} \text{min} \quad \tfrac{1}{2}\|\textbf{\textit{A}}-\textbf{\textit{BC}}\|_F^2 \quad \text{s.t. } \textbf{\textit{B}}, \textbf{\textit{C}} \geq 0.$$

KL-Divergence NMF

$$\min \quad \sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij} \quad \text{s.t. } B, C \geq 0.$$

- NP-Hard (Vavasis 2007) no surprise
- Recently, Arora et al. showed that if the matrix A has a special "separable" structure, then actually globally optimal NMF is approximately solvable. More recent progress too!
- We look at only basic methods in this lecture

NMF Algorithms

- Hack: Compute TSVD; "zero-out" negative entries
- Alternating minimization (AM)
- Majorize-Minimize (MM)
- Global optimization (not covered)
- "Online" algorithms (not covered)

AltMin / AltDesc

min
$$F(B, C)$$

Alternating Descent

- Initialize B^0 , $k \leftarrow 0$
- 2 Compute C^{k+1} s.t. $F(A, B^k C^{k+1}) \leq F(A, B^k C^k)$
- 3 Compute B^{k+1} s.t. $F(A, B^{k+1}C^{k+1}) \leq F(A, B^kC^{k+1})$
- 4 $k \leftarrow k + 1$, and repeat until stopping criteria met.

AltMin / AltDesc

min
$$F(B, C)$$

Alternating Descent

- Initialize B^0 , $k \leftarrow 0$
- 2 Compute C^{k+1} s.t. $F(A, B^k C^{k+1}) \leq F(A, B^k C^k)$
- 3 Compute B^{k+1} s.t. $F(A, B^{k+1}C^{k+1}) \leq F(A, B^kC^{k+1})$
- 4 $k \leftarrow k + 1$, and repeat until stopping criteria met.

$$F(B^{k+1}, C^{k+1}) \le F(B^k, C^{k+1}) \le F(B^k, C^k)$$

Alternating Least Squares

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2;$$

Alternating Least Squares

$$C = \underset{\sim}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2; \qquad \qquad C^{k+1} \leftarrow \max(0, C)$$

Alternating Least Squares

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2; \qquad \qquad C^{k+1} \leftarrow \max(0, C)$$

$$B = \underset{D}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathsf{F}}^2; \qquad \qquad B^{k+1} \leftarrow \max(0, B)$$

Alternating Least Squares

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2; \qquad \qquad C^{k+1} \leftarrow \max(0, C)$$

$$B = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathsf{F}}^2; \qquad \qquad B^{k+1} \leftarrow \max(0, B)$$

ALS is fast, simple, often effective, but ...

Alternating Least Squares

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2; \qquad \qquad C^{k+1} \leftarrow \max(0, C)$$

$$B = \underset{C}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathsf{F}}^2; \qquad \qquad B^{k+1} \leftarrow \max(0, B)$$

ALS is fast, simple, often effective, but ...

$$\|A - B^{k+1}C^{k+1}\|_F^2 \le \|A - B^kC^{k+1}\|_F^2 \le \|A - B^kC^k\|_F^2$$

descent need not hold

Alternating Minimization: correctly

Use alternating nonnegative least-squares

$$C^{k+1} = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathsf{F}}^2 \quad \text{s.t.} \quad C \ge 0$$
 $B^{k+1} = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathsf{F}}^2 \quad \text{s.t.} \quad B \ge 0$

Advantages: Guaranteed descent. Theory of block-coordinate descent guarantees convergence to *stationary point*.

Disadvantages: more complex; slower than ALS

Just Descent

Majorize-Minimize (MM)

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in B and C. We use F(C) to denote function restricted to C.

Since F(C) separable (over cols of C), we just illustrate

$$\min_{c>0} f(c) = \frac{1}{2} ||a - Bc||_2^2$$

Recall, our aim is: find C_{k+1} such that $F(B_k, C_{k+1}) \leq F(B_k, C_k)$

Majorize-Minimize (MM)

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c,c) = f(c)$$
, for all c ,
 $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

11 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

- 2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$
- Then we have descent

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

- 2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$
- Then we have descent

$$f(c^{t+1})$$

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

- 2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$
- Then we have descent

$$f(c^{t+1}) \stackrel{\mathsf{def}}{\leq} g(c^{t+1}, c^t)$$

Descent technique

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

- 2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$
- 3 Then we have descent

$$f(c^{t+1}) \stackrel{\mathsf{def}}{\leq} g(c^{t+1}, c^t) \stackrel{\mathsf{argmin}}{\leq} g(c^t, c^t)$$

Descent technique

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c)$$
, for all c , $g(c,\tilde{c}) \ge f(c)$, for all c,\tilde{c} .

- 2 Compute $c^{t+1} = \operatorname{argmin}_{c>0} g(c, c^t)$
- Then we have descent

$$f(c^{t+1}) \stackrel{\mathsf{def}}{\leq} g(c^{t+1}, c^t) \stackrel{\mathsf{argmin}}{\leq} g(c^t, c^t) \stackrel{\mathsf{def}}{=} f(c^t).$$

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i)$$
, where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_i - b_i^T c)^2 =$$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_i - b_i^T c)^2 = \frac{1}{2} \sum_{i} a_i^2 - 2a_i b_i^T c + (b_i^T c)^2$$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T} c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + (b_{i}^{T} c)^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T} c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + (b_{i}^{T} c)^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c$$

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i)$$
, where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T} c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + (b_{i}^{T} c)^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2}$$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$\begin{split} f(c) &= \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T} c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + (b_{i}^{T} c)^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2} \\ &\leq \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_{j} / \lambda_{ij})^{2} \end{split}$$

$$h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$$
, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$\begin{split} f(c) &= \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T} c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + (b_{i}^{T} c)^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2} \\ &\stackrel{\mathsf{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} b_{i}^{T} c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_{j} / \lambda_{ij})^{2} \\ &=: g(c, \tilde{c}), \quad \text{where} \quad \lambda_{ij} \quad \text{are convex coeffts} \end{split}$$

$$\begin{split} f(c) &= \frac{1}{2} \|a - Bc\|_2^2 \\ g(c, \tilde{c}) &= \frac{1}{2} \|a\|_2^2 - \sum_{i} a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} \big(b_{ij} c_j / \lambda_{ij} \big)^2. \end{split}$$

Only remains to pick λ_{ij} as functions of \tilde{c}

$$f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c, \tilde{c}) = \frac{1}{2} ||a||_2^2 - \sum_{i} a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.$$

Only remains to pick λ_{ij} as functions of \tilde{c}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{b_i^T\tilde{c}}$$

$$f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c, \tilde{c}) = \frac{1}{2} ||a||_2^2 - \sum_{i} a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.$$

Only remains to pick λ_{ij} as functions of \tilde{c}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{b_i^T\tilde{c}}$$

Exercise: Verify that g(c,c) = f(c);

Exercise: Let $f(c) = \sum_{i} a_i \log(a_i/(Bc)_i) - a_i + (Bc)_i$. Derive an

auxiliary function $g(c, \tilde{c})$ for this f(c).

NMF updates

Key step

$$c^{t+1} = \operatorname*{argmin}_{c \geq 0} g(c, c^t).$$

Exercise: Solve $\partial g(c, c^t)/\partial c_p = 0$ to obtain

$$c_{
ho} = c_{
ho}^t rac{[B^T a]_{
ho}}{[B^T B c^t]_{
ho}}$$

This yields the "multiplicative update" algorithm of Lee/Seung (1999).

MM algorithms

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of — log x
- Other choices possible, e.g., by varying λ_{ij}
- Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms
- gradient-descent also an MM algorithm
- Related to d.c. programming
- MM algorithms subject of a separate lecture!

Assume $p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$ is mixture density.

Assume $p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$ is mixture density.

$$\ell(\mathcal{X};\Theta) := \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} \pi_{j} p(x_{i};\theta_{j}) \right).$$

Assume $p(x) = \sum_{i=1}^{K} \pi_i p(x; \theta_i)$ is mixture density.

$$\ell(\mathcal{X};\Theta) := \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} \pi_{j} p(x_{i};\theta_{j}) \right).$$

Use convexity of $-\log t$ to compute lower-bound

$$\ell(\mathcal{X};\Theta) \geq \sum_{ii} \beta_{ij} \ln \left(\pi_j p(x_i;\theta_j) / \beta_{ij} \right).$$

Assume $p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$ is mixture density.

$$\ell(\mathcal{X};\Theta) := \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} \pi_{j} p(x_{i};\theta_{j}) \right).$$

Use convexity of $-\log t$ to compute lower-bound

$$\ell(\mathcal{X};\Theta) \geq \sum_{ij} \beta_{ij} \ln \left(\pi_j p(x_i;\theta_j) / \beta_{ij} \right).$$

E-Step: Optimize over β_{ij} , to set them to *posterior* probabilities:

$$\beta_{ij} := \frac{\pi_j p(x_i; \theta_j)}{\sum_I \pi_I p(x_i; \theta_I)}.$$

M-Step optimizes the bound over Θ , using above β values

Other Alternating methods

- Alternating Projections
- Alternating Reflections
- (Nonconvex) ADMM (e.g., arXiv:1410.1390)
- (Nonconvex) Douglas-Rachford (e.g., Borwein's webpage!)
- AltMin for global optimization (we saw)
- BCD with more than 2 blocks
- ADMM with more than 2 blocks
- Several others...

Alternating Proximal Method

min
$$L(x, y) := f(x, y) + g(x) + h(y)$$
.

Assume: ∇f Lipschitz cont. on bounded subsets of $\mathbb{R}^m \times \mathbb{R}^n$

g: lower semicontinuous on \mathbb{R}^m *h*: lower semicontinuous on \mathbb{R}^n .

Example: $f(x, y) = \frac{1}{2}||x - y||^2$

Alternating Proximal Method

min
$$L(x, y) := f(x, y) + g(x) + h(y)$$
.

Assume: ∇f Lipschitz cont. on bounded subsets of $\mathbb{R}^m \times \mathbb{R}^n$

g: lower semicontinuous on \mathbb{R}^m *h*: lower semicontinuous on \mathbb{R}^n . **Example**: $f(x,y) = \frac{1}{2}||x-y||^2$

Alternating Proximal Method

$$egin{aligned} x_{k+1} &\in \operatorname{argmin}\left\{L(x,y_k) + rac{1}{2}c_k\|x - x_k\|^2
ight\} \ y_{k+1} &\in \operatorname{argmin}\left\{L(x_{k+1},y) + rac{1}{2}c_k'\|y - y_k\|^2
ight\}, \end{aligned}$$

here c_k, c'_k are suitable sequences of positive scalars.

[arXiv:0801.1780. Attouch, Bolte, Redont, Soubeyran. *Proximal alternating minimization and projection methods for nonconvex problems.*]