Supplementary Materials

Compressed Sensing for Characterization of Tinnitus

Alec Hoyland, Nelson Barnett, Benjamin W. Roop, Adam C. Lammert

This document contains a description of additional experiments to find a performant stimulus generation method and a discussion of sparsity in tinnitus signals. The code for all experiments is freely available at https://github.com/alec-hoyland/tinnitus-project and the data are available upon request.

I. STIMULUS GENERATION

In the context of this paper, a stimulus generation method is a process that generates a random waveform that is:

- 1) auditorally-distinguishable
- 2) statistically uncorrelated, and
- 3) similar to tinnitus percepts.

Additionally, compressed sensing requires that the matrix of stimuli should satisfy the restricted isometry property, which many random matrices do with high probability (*e.g.* Gaussian random matrices) [1], [2].

A. Auditorally-Distinguishable Stimuli

We used mel-frequency binning to ensure that our stimuli were auditorally-distinguishable. The mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from one to another (Fig. 1) [3].

The formula

$$m = 2595 \log_1 0 \left(1 + \frac{f}{700} \right) \tag{1}$$

converts f Hz to m mels.

REFERENCES

- E. J. Candès, "The restricted isometry property and its implications for compressed sensing," *Comptes Rendus Mathematique*, vol. 346, no. 9, pp. 589–592, May 2008.
- [2] E. J. Candes and M. B. Wakin, "An Introduction To Compressive Sampling," *IEEE Signal Processing Magazine*, vol. 25, no. 2, pp. 21–30, Mar. 2008.
- [3] L. S. Hamilton, Y. Oganian, and E. F. Chang, "Topography of speech-related acoustic and phonological feature encoding throughout the human core and parabelt auditory cortex," p. 2020.06.08.121624, Jun. 2020.

Fig. 1. The relationship between Hz and mels is logarithmic.