Geometric algebra

August 24, 2015

Outline

- 1 Vectors
- 2 Matrices
- Systems of linear equations

Vectors and spatential interpretation

Properties of a vector

There are 3 properties of a vector \overrightarrow{x} :

- magnitude
- direction
- startpoint

with respect to a referention vector $\overrightarrow{0}$

Multiplication scalar and vector

 $r \in \mathbb{R} \ (r \in \mathbb{C} \ \text{is possible, but hasn't a fysical representation})$

- |r| < 1: shorten
- |r| > 1: increase
- r < 0: reverse the direction

Addition of vectors

Parallellogramrule:

vectorspace

First condition

A vectorspace V over a body L (set of operators) is a set of vectors that satisfy:

1. A vectorsum is defined: $VxV \rightarrow V : (\overrightarrow{x}, \overrightarrow{y}) \rightarrow \overrightarrow{x} + \overrightarrow{y}$

$$\overrightarrow{x}$$
, \overrightarrow{y} , \overrightarrow{z} ϵ V

a)
$$\overrightarrow{x} + \overrightarrow{y} \in V$$

b)
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$

c)
$$\exists ! \overrightarrow{0} : \overrightarrow{x} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{x} = \overrightarrow{x}$$

d)
$$\forall \overrightarrow{x}, \exists (-\overrightarrow{x}) : \overrightarrow{x} + (-\overrightarrow{x}) = (-\overrightarrow{x}) + \overrightarrow{x} = 0$$

e)
$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$

vectorspace

Second condition

2. A outside law is defined: $LxV \rightarrow V: (a, \overrightarrow{x}) \rightarrow a\overrightarrow{x}$

$$\overrightarrow{x}$$
, $\overrightarrow{y} \in V$

a,b ϵ L

a)
$$1\overrightarrow{x} = \overrightarrow{x}$$

b)
$$a(b\overrightarrow{x}) = (ab)\overrightarrow{x}$$

c)
$$(a+b)\overrightarrow{x} = a\overrightarrow{x} + b\overrightarrow{x}$$

d)
$$a(\overrightarrow{x} + \overrightarrow{y}) = a\overrightarrow{x} + a\overrightarrow{y}$$

Numberspaces of n-couples

Subspaces

Defenition

 V_1 is a supspace of vectorspace V if:

- $\mathbf{0}$ $V_1 \subset \mathsf{V}$
- 2 With the same in- and outside law as V, is V_1 a vectorspace

Properties

- $0 \overrightarrow{0} \epsilon$ every subspace
- The intersection of two spaces is always a subspace
- **③** Given: p vectors $x_1, x_2, ..., x_p \in V$. The set vectors $a_1x_1 + a_2x_2 + ... + a_nx_n$ with $a_i \in \mathbb{R}$ is a subspace of V.

Defenition independance

Given: p vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p} \in V$.

Construct the nullvector as a linear combination of those vectors (i.e. search the operators (numbers) $a_1, a_2, ..., a_p$ to form

$$a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + ... + a_n\overrightarrow{x_n} = \overrightarrow{0}$$
).

If the nullvector only can created by $a_1 = a_2 = ... = a_p = 0$, then are the vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ linear independant.

Properties

- If the vectors $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, ..., $\overrightarrow{x_p}$ are linear independent, then can't none of them be writed as a linear combination of the other p-1 vectors.
- ② If the nullvector is one of the p vectors, then is the set $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ linear dependant (if $\overrightarrow{x_1} = 0$ then is $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + ... + a_n\overrightarrow{x_n} = 0$ with $a_1 \neq 0$ and $a_2, a_3, ... a_p = 0$).
- 3 Basis and dimension: p linear independant vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ generate a vectrospace V^p . Every vector in V^p can be writed **in only one way** as a linear combination of the p linear independant vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ using operators $a_1, a_2, ..., a_p$.

Basis, dimension

Given: $\overrightarrow{V} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2} + ... + a_p \overrightarrow{x_p}$.

The set operators $a_1, a_2, ..., a_p$ are called the **coordinates** of the vector \overrightarrow{V} relative to the set vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$. This set vectors is a **basis** of vectorspace V^p , with **dimension** p.

Example

Given:
$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The set $\{\overrightarrow{x_1}, \overrightarrow{x_2}, \overrightarrow{x_3}\}$ is a linear independant combination. There doesn't exist numbers $a_1 \neq 0$, $a_2 \neq 0$, $a_3 \neq 0$ such that $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + a_n\overrightarrow{x_3} = 0$. The set of all vectors

$$\overrightarrow{y} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2} + a_n \overrightarrow{x_3}$$
 is the three dimensional vectrospace V^3 .

If
$$\overrightarrow{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
. Then is $3\overrightarrow{x_1} + 2\overrightarrow{x_2} + \overrightarrow{x_3}$ the only way to write \overrightarrow{y} as a

linear combination of $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$.

Example

The set of vectors $\overrightarrow{y} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2}$ is a **two dimensional** subspace V^2 .

The vectors in this subspace are:

$$\overrightarrow{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}.$$

Important difference

- All vectors of V^2 have 3 coordinates.
- The dimension of the subspace V^2 is 2.

Convention of notation

Given: a n-dimensional vectorspace V^n .

The elements of this vectorspace are the elements: \overrightarrow{x} , \overrightarrow{y} ,... If we choose $\overrightarrow{e_1}$, $\overrightarrow{e_2}$,..., $\overrightarrow{e_n}$ as a basis of V^n . Then we can write every vector of V^n as a linear combination of those basis vectors in only one way: $\overrightarrow{x} = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + ... + x_n \overrightarrow{e_n}$. The numbers x_i are the coordinates of vector \overrightarrow{x} relative to the basis $\overrightarrow{e_1}$, $\overrightarrow{e_2}$,..., $\overrightarrow{e_n}$.

Between the vectorspace of dimension n and the number space of dimension n exists a isomorphism.

Vectorspace V^p

Given: a p-dimensional vectorspace V^p where the vectors are n-couples (with $n \ge p$).

- In V^p you can choose a basis with p linear independent vectors.
- 2 Every vector $\overrightarrow{x} \in V^p$ can be writed in only one way as a linear combination of the p basis vectors using coordinates.

Example 1

Given: n=5, p=2,
$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \\ 5 \end{bmatrix}$$
, $\overrightarrow{x_2} = \begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.

Example 1

The vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ are linear independant, so they span a two dimensional subspace: $\overrightarrow{y} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2}$ with $a_1, a_2 \in \mathbb{R}$.

The coordinates of the vector
$$y_1 = \begin{bmatrix} 5 \\ -6 \\ 1 \\ 2 \\ 5 \end{bmatrix}$$
, relative to the basis

$$\left\{\overrightarrow{x_1},\overrightarrow{x_2}\right\}$$
, are $a_1=1$ and $a_2=2$.

Example 1

The vector
$$\overrightarrow{y_2} = \begin{bmatrix} 5 \\ -7 \\ 1 \\ 2 \\ 5 \end{bmatrix}$$
 can't be writen as a linear combination of

the vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$. So y_2 doesn't belong to the subspace spanned by $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

This implies that $\overrightarrow{y_2}$ is linear independant of $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$. Thus the subspace spanned by $\overrightarrow{y_2}$, $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ is a 3 dimensional subspace.

In general

When the set vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ is linear independant, then lays $\overrightarrow{x_i}$ not totally in the subspace spanned by the vectors $\overrightarrow{x_1}, ..., \overrightarrow{x_{j-1}}, \overrightarrow{x_{j+1}}, ..., \overrightarrow{x_p}$.

The vector $\overrightarrow{x_i}$ can be writen as a sum of 2 components: $\overrightarrow{x}_{i\alpha}$ and $\overrightarrow{x}_{i\beta}$.

- $\textcircled{1} \overrightarrow{x}_{i\alpha} \ \epsilon \ \text{subspace spanned by} \ \overrightarrow{x_1},...,\overrightarrow{x}_{i-1},\overrightarrow{x}_{i+1},...,\overrightarrow{x_p}.$
- ② $\overrightarrow{x}_{i\beta} \perp$ subspace spanned by $\overrightarrow{x_1}, ..., \overrightarrow{x}_{i-1}, \overrightarrow{x}_{i+1}, ..., \overrightarrow{x_p}$.

Defenition

The inproduct of two vectors \overrightarrow{x} and \overrightarrow{y} ϵ E^n (n-couples) is defined as the image: $E^n \times E^n \to \mathbb{R} : \{\overrightarrow{x}, \overrightarrow{y}\} \to \overrightarrow{x}. \overrightarrow{y} \in \mathbb{R}$. This image is:

Bilinear:

$$(\overrightarrow{x} + \overrightarrow{v}).\overrightarrow{y} = \overrightarrow{x}.\overrightarrow{y} + \overrightarrow{v}.\overrightarrow{y}$$

$$\overrightarrow{x} + (\overrightarrow{v}).\overrightarrow{y}) = \overrightarrow{x}.\overrightarrow{v} + \overrightarrow{x}.\overrightarrow{y}$$

$$(a\overrightarrow{x})\overrightarrow{y} = a(\overrightarrow{x}.\overrightarrow{y})$$

$$\overrightarrow{x}(a\overrightarrow{y}) = a(\overrightarrow{x}.\overrightarrow{y})$$

Symetric:

$$\overrightarrow{x}.\overrightarrow{y} = \overrightarrow{y}.\overrightarrow{x}$$

Positive definite:

$$\forall \overrightarrow{x} \neq \overrightarrow{0} : \overrightarrow{x} . \overrightarrow{x} > 0$$

Matricial notation

The inproduct is a **scalar**. If \overrightarrow{x} , \overrightarrow{y} and the basis ϵ E^n then can the inproduct be noted matricial:

$$\overrightarrow{x}.\overrightarrow{y} = y^t A x = x^t A y = (x_1...x_n) A \begin{pmatrix} y_1 \\ ... \\ y_n \end{pmatrix}$$

with A positive definite and symetric $(A = A^t)$.

Norm of a vector

 $\|\overrightarrow{x}\|^2 = \overrightarrow{x}.\overrightarrow{x}$ and because $\overrightarrow{x}.\overrightarrow{x} > 0$ applies:

 $\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x} \cdot \overrightarrow{x}}$ where $\|\overrightarrow{x}\|$ is called the norm of \overrightarrow{x} .

Normalizing is dividing a vector by its norm. The result is a vector

with norm = 1. $\|\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\| = \sqrt{\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}} = \sqrt{\frac{\|\overrightarrow{x}\|^2}{\|\overrightarrow{x}\|\|\overrightarrow{x}\|}} = 1.$

CauchySchwarz inequality

$$\begin{split} |\overrightarrow{x}.\overrightarrow{y}| &\leq \|\overrightarrow{x}\| \|\overrightarrow{y}\| \text{ or } \\ -\|\overrightarrow{x}\| \|\overrightarrow{y}\| &\leq \overrightarrow{x}.\overrightarrow{y} \leq \|\overrightarrow{x}\| \|\overrightarrow{y}\| \text{ from wich follows: } \\ -1 &\leq \frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|} \leq 1 \end{split}$$
 By defenition follows:

By defenition follows:

$$\cos(\theta) = \cos(\angle(\overrightarrow{x}, \overrightarrow{y})) = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|}$$

Therefor: the angle between the vectors \overrightarrow{x} and \overrightarrow{y} =

Bgcos(inproduct of $\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ and $\frac{\overrightarrow{y}}{\|\overrightarrow{y}\|}$).

Orthogonality

$$\overrightarrow{x}$$
 and \overrightarrow{y} are orthogonal \Leftrightarrow $\theta = \angle(\overrightarrow{x}, \overrightarrow{y}) = 90^{\circ} = \frac{\Pi}{2} rad \Leftrightarrow cos(\theta) = 0 \Leftrightarrow \overrightarrow{x}. \overrightarrow{y} = 0$

Hence, if
$$\overrightarrow{x}$$
, $\overrightarrow{y} \neq 0$: $\overrightarrow{x} \perp \overrightarrow{y} \Leftrightarrow \overrightarrow{x} \cdot \overrightarrow{y} = 0$.

Parallellism

$$\overrightarrow{x} \parallel \overrightarrow{y} \Leftrightarrow \theta = 0^{\circ} \text{ or } 180^{\circ} \Leftrightarrow cos(\theta) = \pm 1 \Leftrightarrow |\overrightarrow{x} \overrightarrow{y}| = ||\overrightarrow{x}|| ||\overrightarrow{y}||$$

Distance between two vectors

Distance
$$= \|\overrightarrow{x} - \overrightarrow{y}\| = \|\overrightarrow{z}\|$$
 with $\overrightarrow{z} = \overrightarrow{x} - \overrightarrow{y}$. $\|\overrightarrow{x} - \overrightarrow{y}\|^2 = (\overrightarrow{x} - \overrightarrow{y})(\overrightarrow{x} - \overrightarrow{y})$ $= \overrightarrow{x}\overrightarrow{x} - \overrightarrow{x}\overrightarrow{y} - \overrightarrow{y}\overrightarrow{x} + \overrightarrow{y}\overrightarrow{y}$ $= \overrightarrow{x}\overrightarrow{x} + \overrightarrow{y}\overrightarrow{y} - 2\overrightarrow{x}\overrightarrow{y}$ $= \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2 - 2\|\overrightarrow{x}\|\|\overrightarrow{y}\|\cos(\theta)$ with θ the angle between \overrightarrow{x} and \overrightarrow{y} .

Pythagorean theorem

If
$$\overrightarrow{x} \perp \overrightarrow{y}$$
 then $cos(\theta) = 0$ and thus: $\|\overrightarrow{x} - \overrightarrow{y}\|^2 = \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2$.

The 'simple' inproduct

If in the definition $\overrightarrow{x}.\overrightarrow{y} = y^tAx = x^tAy$ (with A positive definite and symetric) A=I, then the inproduct becomes the simple

inproduct:
$$\overrightarrow{x}.\overrightarrow{y} = y^t Ix = x^t Iy = (x_1...x_n) \begin{pmatrix} y_1 \\ ... \\ y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i.$$

This simple inproduct can always be found by a basis transformation: x=Rx' and y=Ry', then $\overrightarrow{x}.\overrightarrow{y}=y'^t(R^tAR)x'$. Now, R must be taken such that $R^tAR=I$. This can be done by converting A to its normal form by a congruent transformation (e.g. the method of kwadratic forms).

In what follows we mean by 'inproduct' always 'simple inproduct'.

Making two independent vectors orthogonal

Geometric derivation:

Figure 1: decomposition of vector \overrightarrow{y} in a component parallel $(\overrightarrow{y_1})$ and a component orthogonal $(\overrightarrow{y_2})$ to \overrightarrow{x} .

Making two indepentent vectors orthogonal

- ① Project \overrightarrow{y} orthogonal on \overrightarrow{x} , this generates the vector $\overrightarrow{y_1}$, the component parallel with \overrightarrow{x} .
- ② Subtract \overrightarrow{y} by $\overrightarrow{y_1}$, the result is $\overrightarrow{y_2}$ wich is orthogonal to \overrightarrow{x} .

 $\overrightarrow{y_1}$ is a specific multiple of the normilised vector \overrightarrow{x} : $\overrightarrow{y_1} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$. $\overrightarrow{y_1} \| \overrightarrow{x}$: $\overrightarrow{y_1} \overrightarrow{x} = \pm \|\overrightarrow{y_1}\| \|\overrightarrow{x}\|$ (+ if $\theta \le 90^\circ$ and - if $\theta > 90^\circ$).

From fig. 1: $\|\overrightarrow{y_1}\| = cos(\theta) \|\overrightarrow{y}\|$. From the inproduct: $cos(\theta) = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|}$. So

$$\overrightarrow{y_1}\overrightarrow{x} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\overrightarrow{x} = \alpha \|\overrightarrow{x}\| = \|\overrightarrow{y_1}\| \|\overrightarrow{x}\| = \cos(\theta) \|\overrightarrow{y}\| \|\overrightarrow{x}\| = \overrightarrow{x}\overrightarrow{y}.$$

So we get: $\alpha = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\|}$.

Conclusion

$$\overrightarrow{y_1} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|} = (\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2})\overrightarrow{x}$$
 with $\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2}$ a scalar.

And
$$\overrightarrow{y_2} = \overrightarrow{y} - \overrightarrow{y_1} = \overrightarrow{y} - (\overrightarrow{x} \overrightarrow{y}) \overrightarrow{y}$$
.

Hence:

The vector \overrightarrow{y} gets orthogonalised on the vector \overrightarrow{x} by subtract \overrightarrow{y} by the component of \overrightarrow{y} parallel with \overrightarrow{x} .

Control of
$$\overrightarrow{y_2} \perp \overrightarrow{x}$$
:

$$\overrightarrow{y_2}\overrightarrow{x} = (\overrightarrow{y} - (\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2})\overrightarrow{x})\overrightarrow{x} = \overrightarrow{y}\overrightarrow{x} - (\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2})\|\overrightarrow{x}\|^2 = 0.$$

Generalization to multiple vectors

Given: 3 vectors: 2 orthogonal unit vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$

$$(\|\overrightarrow{x_1}\| = 1 = \|\overrightarrow{x_2}\|, \overrightarrow{x_1}\overrightarrow{x_2} = 0)$$
 and a vector \overrightarrow{y} .

Asked: orthogonilise \overrightarrow{y} on $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

Solution:

We first search the component of \overrightarrow{y} parallel with $\overrightarrow{x_1}$ and subtract \overrightarrow{y} by this component. This gives $\overrightarrow{y_1}$.

$$\overrightarrow{y_1} = \overrightarrow{y} - (\frac{\overrightarrow{x_1} \overrightarrow{y}}{\|\overrightarrow{x_1}\|^2}) \overrightarrow{x_1} = \overrightarrow{y} - (\overrightarrow{x_1} \overrightarrow{y}) \overrightarrow{x_1} (\|\overrightarrow{x_1}\|^2 = 1)$$
 $\overrightarrow{y_1} \perp \overrightarrow{x_1}$.

Generalization to multiple vectors

Next, we subtract $\overrightarrow{y_1}$ by the component of $\overrightarrow{y_1}$ that is parallel with $\overrightarrow{x_2}$, to get \overrightarrow{Z} (wich is perpendicular to both $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$). $\overrightarrow{Z} = \overrightarrow{y_1} - \overrightarrow{x_2}(\overrightarrow{y_1}\overrightarrow{x_2})$. We can write \overrightarrow{Z} in another way: $\overrightarrow{Z} = \overrightarrow{y_1} - \overrightarrow{x_2}(\overrightarrow{y_1}\overrightarrow{x_2}) = \overrightarrow{y} - (\overrightarrow{x_1}\overrightarrow{y})\overrightarrow{x_1} - \overrightarrow{x_2}([\overrightarrow{y} - (\overrightarrow{x_1}\overrightarrow{y})\overrightarrow{x_1}]\overrightarrow{x_2})$ $\overrightarrow{Z} = \overrightarrow{y} - \overrightarrow{x_1}(\overrightarrow{x_1}\overrightarrow{y}) - \overrightarrow{x_2}(\overrightarrow{x_2}\overrightarrow{y})$

Conclusion

The vector \overrightarrow{y} becomes orthogonilised on two orthogonal unit vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ by subtracting \overrightarrow{y} by the components of \overrightarrow{y} parallel with $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

Complementary subspace

Defenition

Given: a n dimensional vector space V^n , with p < n linear independent vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$. This vectors create a p dimensional subspace V^p and can be orthogonilised via the Gram schidt method to a orthonormal basis $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_p}$ with $\overrightarrow{e_i} \overrightarrow{e_j} = \delta_{ij}$ (with $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$).

This p vectors can be complemented by n-p linear independent vectors $\overrightarrow{f_1}, \overrightarrow{f_2}, ..., \overrightarrow{f_{n-p}}$ that are linear independent with $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_p}$ and orthonormal.

These vectors $\overrightarrow{f_1}$, $\overrightarrow{f_2}$, ..., $\overrightarrow{f_{n-p}}$ generate the orthogonal complement of the subspace created by $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_p}$.

The orthogonal complement of the p-dimensional subspace V^p of V^n (p < n), has dimension n - p.

Complementary subspace

Example

Given:
$$n = 5, p = 3, \overrightarrow{e_1} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{e_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \\ 0 \end{bmatrix}, \overrightarrow{e_3} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Asked: The orthogonal complement

Solution: The orthogonal complement has dimension n-p=5-3=2 and consists of the set vectors that are

perpendicular to the vectors $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_p}$.

$$\begin{cases} \overrightarrow{e_1} \overrightarrow{x} = 0 \\ \overrightarrow{e_2} \overrightarrow{x} = 0 \\ \overrightarrow{e_3} \overrightarrow{x} = 0 \end{cases}$$

Complementary subspace

Example

$$\begin{cases}
 \begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 1 & 0 & 0 & 4 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 1 & 3 & 1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 \begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 \begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 \begin{bmatrix}
 3 & 1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

This is a homogenous system of equetions. The solution of this system is the orthogonal complement.

Outline

- 1 Vectors
- 2 Matrices
- Systems of linear equations

Row- and column vectors

Example

The rows of a $m \times n$ matrix A can be considered as m row vectors with n components.

$$A^{m \times n} = egin{bmatrix} rac{r_1}{r_2} \\ rac{r_2}{r_m} \end{bmatrix}$$

The columns of a mxn matrix A can be considered as n column vectors with m components.

$$A^{m\times n} = \begin{bmatrix} \overrightarrow{r_1} & \overrightarrow{r_2} & \dots & \overrightarrow{r_m} \end{bmatrix}$$

Row- and column space, rank

Column space

We consider the columns of A^{mxn} as vectors with m components and difine the vectors \overrightarrow{x} as every possible linear combination of the column vectors $\overrightarrow{k_i}$: $\overrightarrow{x} = a_1 \overrightarrow{k_1} + a_2 \overrightarrow{k_2} + ... + a_n \overrightarrow{k_n}$ with $a_i \in \mathbb{R}$ and i means the i^{th}

column of A.

The set of all the vectors \overrightarrow{x} is called the column space of A. The column space = all possible linear combinations of columns of Α.

Column space

if only r of the n vectors are linear independent, that means

- None of this r vectors can be written as a linear combination of the other r-1 vectors
- all others n r column vectors can be written as linear combinations of the r linear independant vectors

then r is called:

- 1 the rank of (column) matrix A
- 2 the dimension of the column space of matrix A

Row space

The concept row space and row rank can be derived in the same way as the column space is derived.

Rank

It is a fundamental matrix property that:

row rank A = column rank A

That means: the number linear independant columns in a matrix is equal to the number linear independant rows. Thus:

rank A = row rank A = column rank A

= dimension row space A = dimension column space A

Example

$$A^{4\times3} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ 2 & 4 & -2 \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

We determine the rank of A by converting it to his echlon form by elementary row operations (explaned in the appendix).

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ 2 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Canonical form: the first element of every row is 1. Above and below this ones is every number 0.

Conclusion

Rank = the number of rows that differs from zero. So the rank is 2. In other words: there are only 2 linear independent rows and columns in A.

Hence:

The column space of A is a 2 dimensional subspace of the 4 dimensional vectorspace.

The row space is a 2 dimensional subspace of the 3 dimensional space.

Link between determinant and rank by square matrices

Determinant-rank

If all the columns of a square matrix are linear dependent, then the determinant is 0. If $A^{m\times m}$:

det $A=0 \Leftrightarrow \text{rank } A=0 \Leftrightarrow \text{columns dependent} \Leftrightarrow \text{rows dependent}.$ If det $A \neq 0$ then rank A=m and A is of **full rank**. A matrix can be inverted is his determinant when different from 0 (when its of full rank).

Link between determinant and rank by square matrices

Determinant-rank

If $rank(B^{n\times n})=r$ with $r\leq n$ and $rank(A^{n\times n})=n$ (A is of full rank) then is:

rank(AB) = rank(BA) = rank(B).

Elementary row- and column operations are always of full rank (appendix). When there is a multiplication between a matrix and a elementary row- or column matrix, then has the product always the rank of the matrix.

Belongs the vector to the column space?

Given: n vectors with m components relative to a basis in V^m :

$$\begin{bmatrix} x_{11} \\ x_{21} \\ \dots \\ x_{m1} \end{bmatrix}, \dots, \begin{bmatrix} x_{1n} \\ x_{2n} \\ \dots \\ x_{nn} \end{bmatrix}.$$

If r of this n vectors are linear independent then has the matrix

$$X^{m\times n} = \begin{bmatrix} \overrightarrow{x_1}, ..., \overrightarrow{x_n} \end{bmatrix} = \begin{bmatrix} x_{11} & ... & x_{1n} \\ ... & ... \\ x_{m1} & ... & x_{mn} \end{bmatrix}$$

rank r. The column space of X has dimension r.

Belongs the vector to the column space?

How can you determine of a given vector \overrightarrow{y} with m components belongs to the column space of X?

If \overrightarrow{y} is a element of the column space of X, then can \overrightarrow{y} be written as a linear combination of the vectors $\overrightarrow{x_1},...,\overrightarrow{x_n}$. By adding \overrightarrow{y} to this vectors, the spanned space will be the same and the rank will still be r.

In other words, if \overrightarrow{y} belongs to the column space of X, then will the rank of the expanded matrix $[\overrightarrow{x_1},...,\overrightarrow{x_n},\overrightarrow{y}]$ be the same as the rank of the normal matrix X.

$$\overrightarrow{y} \in \text{column space} \Leftrightarrow rank \begin{bmatrix} X & \overrightarrow{y} \end{bmatrix} = rank \begin{bmatrix} X \end{bmatrix} = r$$

Vector \overrightarrow{y} not in column space

If \overrightarrow{y} doesn't belong to the column space of X, then can't \overrightarrow{y} be written as a linear combination of the vectors $\overrightarrow{x_1},...,\overrightarrow{x_n}$, in other words: \overrightarrow{y} can be splitted in two vectors $\overrightarrow{y}=\overrightarrow{z_1}+\overrightarrow{z_2}$ with $\overrightarrow{z_1}$ in the column space of X and $\overrightarrow{z_2}$ not in the column space of X. By adding \overrightarrow{y} to the vectors $\overrightarrow{x_1},...,\overrightarrow{x_n}$ increases the dimension of the spannend space.

$$\overrightarrow{y} \not\in \text{column space} \Leftrightarrow rank \begin{bmatrix} X & \overrightarrow{y} \end{bmatrix} = r + 1$$

Remark: rank $\begin{bmatrix} X & \overrightarrow{z_1} \end{bmatrix} = r$ and rank $\begin{bmatrix} X & \overrightarrow{z_2} \end{bmatrix} = r + 1$.

Resume

- **1** n vectors with m components $\overrightarrow{x_1}, ..., \overrightarrow{x_n}$
- ② Belongs \overrightarrow{y} to the space spanned by $\overrightarrow{x_1}, ..., \overrightarrow{x_n}$?
- Solution:
- a) Determine $r_1 = rank [X] = rank [\overrightarrow{x_1} \dots \overrightarrow{x_n}]$
- b) Determine

$$r_2 = rank \begin{bmatrix} X & \overrightarrow{y} \end{bmatrix} = rank \begin{bmatrix} \overrightarrow{x_1} & ... & \overrightarrow{x_n} & \overrightarrow{y} \end{bmatrix}$$

c) Is $r_1 = r_2 \Rightarrow y \in \text{column space or}$ $r_1 + 1 = r_2 \Rightarrow y \notin \text{column space}$

Remark: analogous for the row space test.

Example

Given:
$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
, $\overrightarrow{x_2} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 5 \\ 7 \end{bmatrix}$, $\overrightarrow{x_3} = \begin{bmatrix} 0 \\ 4 \\ 3 \\ 9 \\ 12 \end{bmatrix}$, $\overrightarrow{y} = \begin{bmatrix} -1 \\ -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$

Asked: Belongs \overrightarrow{y} to the space spanned by $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$? Solution: 1) find the rang of X:

$$X = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 4 \\ 3 & 0 & 3 \\ 4 & 5 & 9 \\ 5 & 7 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ 3 & 0 & 0 \\ 4 & 5 & 0 \\ 5 & 7 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{3}{2} & \frac{3}{4} & 0 \\ -\frac{1}{2} & \frac{9}{4} & 0 \\ -1 & \frac{12}{4} & 0 \end{bmatrix}$$

Hence, rank(X) = 2.

Example

2) Determine the rank
$$\begin{bmatrix} X & \overrightarrow{y} \end{bmatrix}$$

$$\begin{bmatrix} X & \overrightarrow{y} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 2 & 2 & 4 & -1 \\ 3 & 0 & 3 & 2 \\ 4 & 5 & 9 & 1 \\ 5 & 7 & 12 & 0 \end{bmatrix}$$

$$\operatorname{rank}\left[X \quad \overrightarrow{y}\right] = 3.$$

Hence,
$$rank[X \mid \overrightarrow{y}] = rank[X] + 1$$
.

That means: \overrightarrow{y} can **not** be written as a linear combination of the vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, \overrightarrow{x_3}$ and doesn't belong to the space spanned by this vectors. Because rank(X)= 2 is the dimension of the space 2. Hence $\overrightarrow{x_3}$ can be written as a linear combination of $\overrightarrow{x_1}, \overrightarrow{x_2}$. Rank(X \overrightarrow{y})=3, so the space spanned by $\overrightarrow{x_1}, \overrightarrow{x_2}, \overrightarrow{x_3}$ and \overrightarrow{y} has dimension 3.

Orthonormal matrices

Definition

The set vectors $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ is orthonormal if:

- $\bullet \|\overrightarrow{e_i}\| = 1$ with i = 1, ..., n
- \bullet $\overrightarrow{e_i} \perp \overrightarrow{e_i}$ or $\overrightarrow{e_i} \cdot \overrightarrow{e_i} = 0$ with $i \neq j$

This is noted as:

$$\overrightarrow{e_i}$$
, $\overrightarrow{e_j} = \delta_{ij}$ with $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if $i = j$ (δ_{ij} is called 'kronecker delta').

If
$$\overrightarrow{e_{1i}}$$
 has the components $\begin{vmatrix} \overrightarrow{e_{1i}} \\ ... \\ \overrightarrow{e_{ni}} \end{vmatrix}$ relative to some basis, then

applies for the inproduct:

$$\overrightarrow{e_{1i}}.\overrightarrow{e_{1j}} = \begin{bmatrix} e_{1i} & \dots & e_{ni} \end{bmatrix} \begin{bmatrix} e_{1i} \\ \dots \\ e_{ni} \end{bmatrix} = e_{1i}e_{1j} + \dots + e_{ni}e_{nj} = \delta_{ij}$$

Orthonormal matrices

Defenition

If we create from $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ the matrix

$$E = \left[\overrightarrow{e_1}, ..., \overrightarrow{e_n}\right] = \begin{bmatrix} e_{11} & ... & e_{1n} \\ ... & ... \\ e_{n1} & ... & e_{nn} \end{bmatrix}$$

then applies

$$E^{t}E = \begin{bmatrix} e_{11} & \dots & e_{n1} \\ \dots & & \dots \\ e_{1n} & \dots & e_{nn} \end{bmatrix} \begin{bmatrix} e_{11} & \dots & e_{1n} \\ \dots & & \dots \\ e_{n1} & \dots & e_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix} =$$

Inxn

Hence, if the columns and rows of a matrix form a orthonomal system then is the matrix onthonormal: $E^tE = I = EE^t$.

Orthonormal matrices

Properties

- **1** The inverse of a orthonormal matrix is his transform: $E^tE = I = EE^t \Rightarrow E^{-1}EE^t = E^{-1}I \Rightarrow IE^t = E^{-1} \Rightarrow E^t = E^{-1}$
- ② Maintaining the norm of a vector: \overrightarrow{x} is a vector with norm $\|\overrightarrow{x}\|$ and E an orthonormal matrix then applies $\|E\overrightarrow{x}\| = \|\overrightarrow{x}\|$.

When there is a 'fault' Δx on x, then is $||E(\overrightarrow{x} + \Delta \overrightarrow{x})|| = ||\overrightarrow{x} + \Delta \overrightarrow{x}||$.

Hence, an orthogonal matrix doesn't change the magnitude of a fault. This is important in numerical applications.

3 The determinant of an orthonormal matrix is ± 1 , when it is 1 the matrix represent a rotation matrix.

Change of basis

In a n dimension vectorspace V^n are two different bases given:

'old basis':
$$\overrightarrow{e_1},....,\overrightarrow{e_n}$$
'new basis': $\overrightarrow{f_1},...,\overrightarrow{f_n}$

A vector x has coordinates $\begin{bmatrix} a_1 \\ ... \\ a_n \end{bmatrix}$ relative to the old basis and

coordinates
$$\begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}$$
 relative to the new basis.

Change of basis

Every basisvector $\overrightarrow{f_i}$ can be expressed as a linear combination of the old basis vectors: $\overrightarrow{f_i} = f_{1i} \overrightarrow{e_1} + ... + f_{ni} \overrightarrow{e_n}$. So $\overrightarrow{f_i}$ has coordinates

$$\begin{bmatrix} f_{1i} \\ \dots \\ f_{ni} \end{bmatrix}$$
 relative to the old basis.

If we group the old basis vectors in a matrix: $E = \left[\overrightarrow{e_1} \quad ... \quad \overrightarrow{e_n}\right]$

then you can write:
$$\overrightarrow{x} = \begin{bmatrix} \overrightarrow{e_1} & \dots & \overrightarrow{e_n} \end{bmatrix} \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix} = E \overrightarrow{x}_{old}$$
 and

$$\overrightarrow{f_i} = \begin{bmatrix} \overrightarrow{e_1} & \dots & \overrightarrow{e_n} \end{bmatrix} \begin{bmatrix} f_{1i} \\ \dots \\ f_{ni} \end{bmatrix} = E \begin{bmatrix} f_{1i} \\ \dots \\ f_{ni} \end{bmatrix}.$$

Change of basis

If we now consider x as a linear combination of the 'new' basis

vectors
$$\overrightarrow{x} = b_1 \overrightarrow{f_1} + ... + b_n \overrightarrow{f_n} = \begin{bmatrix} \overrightarrow{f_1} & ... & \overrightarrow{f_n} \end{bmatrix} \begin{bmatrix} b_1 \\ ... \\ b_n \end{bmatrix} =$$

$$\begin{bmatrix} \overrightarrow{f_1} & \dots & \overrightarrow{f_n} \end{bmatrix} \overrightarrow{\times}_{new} = \begin{bmatrix} E \begin{bmatrix} f_{11} \\ \dots \\ f_{n1} \end{bmatrix} & \dots & E \begin{bmatrix} f_{1n} \\ \dots \\ f_{nn} \end{bmatrix} \end{bmatrix} \overrightarrow{\times}_{new} = EF \overrightarrow{\times}_{new}$$

with
$$F = \begin{bmatrix} f_{11} & \dots & f_{1n} \\ \dots & & \dots \\ f_{n1} & \dots & f_{nn} \end{bmatrix}$$
 . The columns of F contains the

coordinates of the new basis vectors relative to the old basis vectors $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$.

Change of basis

So we get: $\overrightarrow{x} = E\overrightarrow{x}_{old} = EF\overrightarrow{x}_{new}$.

From wich follows:

$$\overrightarrow{x}_{old} = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix} = F \overrightarrow{x}_{new} = F \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix} \text{ with the columns of F the }$$

coordinates of the new basis vectors relative to the old basis.

So,
$$\overrightarrow{x}_{old} = F\overrightarrow{x}_{new}$$

from wich:

$$\overrightarrow{x}_{new} = F^{-1} \overrightarrow{x}_{old}$$

Example

Given: the 3 dimensional vector space V^3 with basis vectors:

$$\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \overrightarrow{e_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } \overrightarrow{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

The 'new' basis vectors are defined as:

$$\overrightarrow{f_1} = \overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3}$$

$$\overrightarrow{f_2} = 2\overrightarrow{e_1} + 3\overrightarrow{e_2} + 0\overrightarrow{e_3}$$

$$\overrightarrow{f_3} = -\overrightarrow{e_1} + \overrightarrow{e_2} + 2\overrightarrow{e_3}.$$

And there is a vector \overrightarrow{x} :

$$\overrightarrow{x} = 2\overrightarrow{e_1} + \overrightarrow{e_2} - \overrightarrow{e_3}$$
.

Asked: The coordinates of \overrightarrow{x} relative to the basis $\overrightarrow{f_1}$, $\overrightarrow{f_2}$, $\overrightarrow{f_3}$.

Example

Solution: The components of $\overrightarrow{f_1}$ relative to the other basis are:

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

The components of $\overrightarrow{f_2}$ relative to the other basis are: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

$$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

The components of $\overrightarrow{f_3}$ relative to the other basis are: $\begin{bmatrix} -1\\1\\ \end{bmatrix}$.

$$\begin{bmatrix} -1\\1\\2 \end{bmatrix}$$
.

The components of \overrightarrow{x} relative to the other basis are: $\begin{bmatrix} 2\\1 \end{bmatrix}$.

$$\begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}$$
.

Example

So,
$$\overrightarrow{x}_o Id = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
. We know that $\overrightarrow{x}_{old} = F\overrightarrow{x}_{new}$ with $F = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 1 \end{bmatrix}$

$$F = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 1 \\ -1 & 1 & 2 \end{bmatrix}.$$

Now is
$$\overrightarrow{x}_{new} = F^{-1} \overrightarrow{x}_{old} = \frac{1}{15} \begin{bmatrix} 6 & -4 & 5 \\ 3 & 3 & 0 \\ -3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
.

So
$$\overrightarrow{x}_{new} = \frac{1}{15} \begin{bmatrix} 3 \\ 9 \\ -9 \end{bmatrix} = \frac{1}{5} \overrightarrow{f_1} + \frac{3}{5} \overrightarrow{f_2} - \frac{3}{5} \overrightarrow{f_3}.$$

Remarks

- If the old basis is orthonormal and the new basis too, then is the transition matrix orthonormal as well $(F^{-1} = F^T)$.
- If the old basis is from dimension n, then the new basis has the same dimension n too, because they span the same space. So F has to be of full rank: rank(F)=n.

Outline

- 1 Vectors
- 2 Matrices
- 3 Systems of linear equations

Systems of linear equations

Defenitions

In general, a system of linear equations is described in a matrix-vector identity: Ax=y. If $y\neq 0$ then the system is called not homogeneous, if y=0 then the system is called homogeneous. It will turn out that in all the possible cases, the rank r of the matrix A is important for the existance of a solution and the number of solutions.

A good geometric view in the properties and solutions of homogeneous and not homogeneous systems is essential for an understanding of linear images, eigenvalues, etc.

Existance of a solution

In general, a system of m equations in n variables $x_1, x_2, ..., x_n$ has the form: $A^{mxn}x^{nx1} = y^{mx1}$. The problem is: search the variables $x_1, x_2, ..., x_n$ wich statisfy this relationship (A and y are known).

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix} \text{ or }$$

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = y_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = y_m \end{cases}$$

Existance of a solution

If we think of A as column vectors with m components \overrightarrow{A}

$$A = \begin{bmatrix} \overrightarrow{a_1} & \dots & \overrightarrow{a_n} \end{bmatrix}$$
, then we can write the system in antother way:

$$x_1 \begin{bmatrix} a_{11} \\ \dots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \dots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix} \text{ or } x_1 \overrightarrow{a_1} + \dots + x_n \overrightarrow{a_n} = \overrightarrow{y}.$$

The geometric interpretation:

Given a vector \overrightarrow{y} of m components and n vectors $\overrightarrow{a_i}$ of m components, search **all** numbers x_i , i=1,n, so that vector \overrightarrow{y} can be written as a linear combination of the vectors $\overrightarrow{a_i}$.

All the linear combinations of the vectors $\overrightarrow{a_i}$ can be written as: $x_1\overrightarrow{a_1} + ... + x_n\overrightarrow{a_n} = \overrightarrow{y}$ and is called the column space of A.

Existance of a solution

If rank(A)=r, then has the colums space dimension r. In other words: there are r linear independent columns in A and the other n-r columns in A can be written as a linear combination of the r linear independent columns.

Since \overrightarrow{y} has to be a linear combination of the columns of A, \overrightarrow{y} has to be in the columns space of A.

If \overrightarrow{y} doesn't exist of the column space of A, then \overrightarrow{y} can't be written as a linear combination of the columns of A, then the system **doesn't have** a solution.

Existance of a solution

The condition for the existence of a solution is that \overrightarrow{y} belongs to the column space of A. Now, the column space test beccomes the solution test.

The system Ax=y with rank(A)=r, has a solution only if rank(A)=rank(Ay)=r with Ay = mx(n+1) matrix.

Example 1

$$\begin{cases} -x_1 + 2x_2 = 0 \\ x_1 + 3x_2 = 1 \\ 0x_1 + x_2 = 2 \end{cases} \text{ or } \underbrace{\begin{bmatrix} -1 & 2 \\ 1 & 3 \\ 0 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}}_{y}$$

Rank(A)=2, rank(Ay)=3

 $Rank(A) \neq rank(Ay)$, so there **isn't** a solution.

Example 2

$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ -x_1 + 2x_2 + 3x_3 = -1 \end{cases} \text{ or } \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 3 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} 2 \\ -1 \end{bmatrix}}_{y}$$

Rank(A)=2=rank(Ay)=2, so this system can be solved.

In the next we suppose that there is always a solution, thus: rank(A)=rank(Ay).

Defenitions

$$A^{m \times n} x^{n \times 1} = y^{m \times 1}$$

There are three cases:

m>n: overdetermined system (more equations than variables)

m=n: square system

m < n: underdetermined system</p>

m>n: overdetermined system

There is a solution if $\operatorname{rang}(A) = \operatorname{rang}(Ay) = r$. If this condition is statisfied, we can write: $x_1 \overrightarrow{a_1} + ... + x_n \overrightarrow{a_n} = \overrightarrow{y}$ with a_i the i^{th} column of A. As $\operatorname{rank}(A) = r$, there are r linear independent columns $\overrightarrow{a_1}, ..., \overrightarrow{a_r}$. Now we can write:

$$x_1\overrightarrow{a_1} + ... + x_r\overrightarrow{a_r} = \overrightarrow{y} - x_{r+1}\overrightarrow{a}_{r+1} - ... - x_n\overrightarrow{a_n}$$

If:
$$\overrightarrow{y'} = \overrightarrow{y} - x_{r+1} \overrightarrow{a}_{r+1} - \dots - x_n \overrightarrow{a}_n$$
 then $\begin{bmatrix} \overrightarrow{a}_1 & \dots & \overrightarrow{a}_r \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_r \end{bmatrix} = \overrightarrow{y'}$.

From the columntest follows that \overrightarrow{y} belongs to the columnspace of A. The vectors $\overrightarrow{a}_{r+1},...,\overrightarrow{a}_n$ belong to the same space. The vectors $\overrightarrow{a}_1,...,\overrightarrow{a}_r$ create the **basis** of this space.

m>n: overdetermined system

For every choice of the vector $\overrightarrow{y'}$, there exist a **unique** set (only one solution) of numbers $x_1, ..., x_r$: this are the coordinates of the vector $\overrightarrow{y'}$ in the basis $\overrightarrow{a_1}, ..., \overrightarrow{a_r}$. There is only one solution because every vector in only one way can be descibed as a linear combination of basis vectors.

Now is: $\overrightarrow{y'} = \overrightarrow{y} - x_{r+1} \overrightarrow{a}_{r+1} - ... - x_n \overrightarrow{a}_n$. For each set $[x_{r+1}, ..., x_n]$ there is a vector $\overrightarrow{y'}$, and for every vector $\overrightarrow{y'}$ exist just one solution $[x_1,...,x_r]$. For the choise of the set $[x_{r+1},...,x_n]$, there are ∞^{n-r} possibilities.

m>n: overdetermined system

If m>n and rank(Ay)=rank(A)=r, then has the system Ax=y ∞^{n-r} solutions.

The variables $x_1, x_2, ..., x_r$ are the main variables and $x_{r+1}, x_{r+2}, ..., x_n$ are the help variables. For each set help variables exist only one set main variables.

If rank(A)=rank(Ay)=r and if n=r, then has the system Ax=y exact **one** solution $(\infty^0=1)$.

m>n: overdetermined system

How do you determine the solution for a certain set help variables

$$[x_{r+1}, x_{r+2}, ..., x_n].$$
If $[\overrightarrow{a_1} \quad ... \quad \overrightarrow{a_r}] \begin{bmatrix} x_1 \\ ... \\ x_r \end{bmatrix} = \overrightarrow{y} - x_{r+1} \overrightarrow{a}_{r+1} - ... - x_n \overrightarrow{a_n} \Rightarrow A'x' = y'$
with $A' = [\overrightarrow{a_1} \quad ... \quad \overrightarrow{a_r}]$ and

$$\overrightarrow{y'} = \overrightarrow{y} - x_{r+1} \overrightarrow{a}_{r+1} - \dots - x_n \overrightarrow{a}_n = \begin{bmatrix} y'_1 \\ \dots \\ v'_n \end{bmatrix}.$$

We know that rang(A')=r. This means that r rows of A' are linear independent. The other rows of A' can be created by linear combinations of the linear independent rows.