# Algoritmusminták intervallumon (programozási tételek)

# Összegzés

#### Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u] $\rightarrow$ H függvény. A H halmaz elemein értelmezett egy asszociatív, baloldali nulla elemmel rendelkező művelet (nevezzük összeadásnak és jelölje ezt a +). Határozzuk meg az f függvény [e..u]-on felvett értékeinek az összegét, azaz a  $\sum_{i=e}^{u} f(i)$  kifejezés értékét! (e>u esetén ennek az értéke definíció szerint a nulla elem)

# Specifikáció

Def:  $f: [e..u] \rightarrow H$ Be:  $e, u: Eg\'{e}sz$ Ki: s: HEf:  $e = e' \'{e}s u = u'$ Uf:

$$Ef \text{ \'es } s = \sum_{i=e}^{u} f(i)$$

| s:=0 |           |  |  |  |
|------|-----------|--|--|--|
| i=eu |           |  |  |  |
|      | s:=s+f(i) |  |  |  |

# Feltételes összegzés

#### Feladat

Adott az egész számok egy [e..u] intervalluma, egy T:[e..u]->Logikai és egy f:[e..u]→H függvény. A H halmaz elemein értelmezett egy asszociatív, baloldali nulla elemmel rendelkező művelet (nevezzük összeadásnak és jelölje ezt a +). Határozzuk meg az f függvény [e..u] intervallum azon elemeire felvett értékeinek az összegét, amelyekre a T feltétel teljesül.

#### Specifikáció

$$\mathsf{Def:}\, f\colon [e\mathinner{\ldotp\ldotp} u]\to H, T\colon [e\mathinner{\ldotp\ldotp} u]\to Logikai$$

Be: *e,u*: *Egész* 

Ki: *s*: *H* 

Ef: e = e' és u = u'

Uf:

$$Ef \text{ \'es } s = \sum_{\substack{i=e\\T(i)}}^{u} f(i)$$



# Megszámolás

# Feladat

Adott az egész számok egy [e..u] intervalluma és egy T:[e..u]→Logikai feltétel. Határozzuk meg, hogy az [e..u] intervallumon a T feltétel hányszor veszi fel az igaz értéket!

# Specifikáció

Def:  $T: [e..u] \rightarrow Logikai$ 

Be: e,u: Egész Ki: db: Egész

Ef: e = e' és u = u'

Uf:  $Ef \ \text{\'es} \ db = \sum_{i=e}^{u} \begin{cases} 1 & ha \ T(i) \\ 0 & k\"{u}l\"{o}nben \end{cases} =$ 

$$Ef \text{ \'es } \frac{db}{dt} = \sum_{\substack{i=e\\T(i)}}^{u} 1$$



#### Maximumkiválasztás

#### Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u] → H függvény. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az f függvény hol veszi fel az [e..u] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték!

## Specifikáció

Def:  $f: [e..u] \rightarrow H, \geq : HxH \rightarrow Logikai$ 

Be: e, u: Egész

Ki:  $max\acute{e}rt: H$ ,  $maxind: Eg\acute{e}sz$ Ef:  $e = e' \acute{e}s \ u = u' \acute{e}s \ u \ge e$ 

Uf: Ef és  $e \le maxind \le u$  és  $\forall i (e \le i \le u)$ :  $max \acute{e}rt \ge f(i)$  és  $max \acute{e}rt = f(maxind)$ 

Ef és  $(maxért, maxind) = Max_{i=e}^{u} f(i)$ 



#### Feltételes maximumkeresés

#### Feladat

Adott az egész számok egy [e..u] intervalluma, egy f:[e..u] → H függvény és egy T:[e..u] → Logikai feltétel. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az [e..u] intervallum T feltételt kielégítő elemei közül az f függvény hol veszi fel a legnagyobb értéket, és mondjuk meg, mekkora ez az érték!

#### Specifikáció

Def: 
$$f:[e..u] \rightarrow H, \geq: HxH \rightarrow Logikai, T:[e..u] \rightarrow Logikai$$
  
Be:  $e, u: Eg\'esz$   
Ki:  $van: Logikai, max\'ert: H, maxind: Eg\'esz$   
Ef:  $e = e'\'es u = u'$   
Uf:  $Ef\'es van = \exists i(e \leq i \leq u): T(i)\'es$   
 $van \rightarrow (e \leq maxind \leq u\'es T(maxind)\'es$   
 $\forall i(e \leq i \leq u): T(i) \rightarrow max\'ert \geq f(i)\'es max\'ert = f(maxind))$ 

Ef és 
$$(van, maxért, maxind) = Max_{i=e}^{u} f(i)$$



#### Keresés

#### Feladat

Adott az egész számok egy [e..u] intervalluma és egy T:[e..u]→Logikai feltétel. Határozzuk meg az [e..u] intervallum-ban balról az első olyan számot, amely kielégíti a T feltételt!

#### Specifikáció

Def:  $T: [e..u] \rightarrow Logikai$ 

Be: *e, u*: *Egész* 

Ki: van: Logikai, ind: Egész

Ef: e = e' és u = u'

Uf:  $Ef \text{ \'es } van = \exists i (e \le i \le u) : T(i) \text{ \'es } van \rightarrow (e \le ind \le u \text{ \'es } T(ind))$ 

 $Ef ext{ és } (van, ind) = Keres_{i=e}^{u} T(i)$ 

#### Algoritmus





```
van:=hamis;i:=e

nem van és i≤u

van:=T(i)

ind:=i

i:=i+1
```

#### Optimista keresés

#### Feladat

Adott az egész számok egy [e..u] intervalluma és egy T:[e..u] → Logikai feltétel. Határozzuk meg, hogy az [e..u] intervallum-ban mindegyik szám teljesíti-e a T feltételt! Ha nem, adjuk meg balról az első olyan számot, amelyikre nem igaz a T feltétel!

## Specifikáció

 $\mathsf{Def:} \, T \mathpunct{:} [e \ldotp\ldotp u] \to Logikai$ 

Be:  $e, u: Eg \acute{e}sz$ 

Ki: mind: Logikai, ind: Egész

Ef: e = e' és u = u'

Uf:  $Ef \ és \ mind = \forall i (e \le i \le u) : T(i) \ és \ \neg mind \rightarrow (e \le ind \le u \ és \ \neg T(ind))$ 

# $Ef ext{ \'es } (mind, ind) = Mind_{i=e}^{u} T(i)$



# Kiválasztás

#### Feladat

Adott egy e egész szám és egy e-től jobbra értelmezett T:Egész→Logikai feltétel. Határozzuk meg az e-től jobbra eső első olyan számot, amely kielégíti a T feltételt, ha tudjuk, hogy ilyen szám biztosan van!

## Specifikáció

 $\mathsf{Def:} \, T \mathpunct{:} Eg \'esz \to Logikai$ 

Be: *e:Egész* Ki: *ind:Egész* 

Ef: e = e' és  $\exists i (i \ge e) : T(i)$ Uf: Ef és  $e \le ind$  és T(ind)

 $Ef \text{ \'es } ind = Kiv\'alaszt_{i \ge e}T(i)$ 

| i:=e     |  |
|----------|--|
| nem T(i) |  |
| i:=i+1   |  |
| ind:=i   |  |

| ind:=e |            |  |  |  |
|--------|------------|--|--|--|
| ne     | m T(ind)   |  |  |  |
|        | ind:=ind+1 |  |  |  |

```
i:=e; van:=hamis

nem van

van:=T(ind)

ind:=i

i:=i+1
```

# Másolás

#### Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]→H függvény. Rendeljük az [e..u] intervallum minden értékéhez az f függvény értékét!

# Specifikáció

Def:  $f: [e..u] \rightarrow H$ Be:  $e, u: Eg \notin sz$ 

Ki:  $y: T\ddot{o}mb(1..u - e + 1: H)$ 

Ef: e = e' és u = u'

Uf:  $Ef \text{ \'es } \forall i (e \leq i \leq u) : y_i = f(i)$ 

$$Ef \text{ \'es } y = M \text{\'asol}_{i=e}^{u} f(i)$$

```
y:=()
i=e..u

Végére(y,f(i))
```

# Kiválogatás

#### Feladat

Adott az egész számok egy [e..u] intervalluma, egy f:[e..u]→H függvény és egy T:[e..u]→Logikai feltétel. Határozzuk meg az f függvény értékét az [e..u] intervallum azon értékeire, amelyekre a T feltétel teljesül!

# Specifikáció

Def: 
$$f: [e..u] \rightarrow H, T: [e..u] \rightarrow Logikai$$
  
Be:  $e, u: Eg\'esz$   
Ki:  $db: Eg\'esz, y: T\"omb(1..db: H)$   
Ef:  $e = e'\'es u = u'$   
Uf:  $Ef\'es db = \sum_{i=e}^{u} 1\'es$   
 $ind: T\"omb(1..db: Eg\'esz) \'es ind  $\subseteq [e..u]\'es$   
 $\forall i (1 \le i \le db): (T(ind_i)\'es y_i = f(ind_i))$$ 

$$Ef \text{ \'es } \frac{(db, y) = Kiv\'alogat^u_{i=e}f(i)}{T(i)}$$





#### Szétválogatás

#### Feladat

Adott az egész számok egy [e..u] intervalluma, egy f:[e..u] → H függvény és egy T:[e..u] → Logikai feltétel. Határozzuk meg az f függvény értékét az [e..u] intervallum azon értékeire, amelyekre a T feltétel teljesül, és azokra is, amelyekre nem!

## Specifikáció

```
Def: f: [e..u] \rightarrow H, T: [e..u] \rightarrow Logikai

Be: e, u: Eg\'esz

Ki: db: Eg\'esz, y: T\"omb(1..db: H), z: T\"omb(1..u - e + 1 - db: H)

Ef: e = e'\'es u = u'

Uf: Ef\'es db = \sum_{i=e}^{u} 1\'es

T(i)

indy: T\"omb(1..db: Eg\'esz) \'es indy \subseteq [e..u] \'es

indz: T\"omb(1..u - e + 1 - db: Eg\'esz \'es indz \subseteq [e..u] \'es

\forall i(1 \le i \le db): (T(indy_i) \'es y_i = f(indy_i)) \'es

\forall i(1 \le i \le u - e \mp 1 - db): (\neg T(indz_i) \'es z_i = f(indz_i))
```

# $Ef \text{ \'es } \frac{(db, y, z) = Sz\acute{e}tv\acute{a}logat^u_{i=e}f(i)}{T(i)}$





