The nearest point to a variety problem, near the variety

Diego Cifuentes

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with **Sameer Agarwal** (Google), **Pablo Parrilo** (MIT), **Rekha Thomas** (U. Washington).

SIAM Conference on Applied Algebraic Geometry - 2017

Given a variety $Y \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{y} ||y - \theta||^2$$

s.t. $y \in Y$

Recall that a *variety* is the zero set of polynomial equations $f^{i}(x)$, i = 1, ..., m.

Given a variety $Y \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{y} \quad \|y - \theta\|^2$$

s.t. $y \in Y$

Recall that a *variety* is the zero set of polynomial equations $f^{i}(x)$, i = 1, ..., m.

- This problem is nonconvex, and computationally challenging.
- SDP relaxations have been successful in several applications.

Given a variety $Y \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{y} \quad \|y - \theta\|^2$$

s.t. $y \in Y$

Recall that a *variety* is the zero set of polynomial equations $f^{i}(x)$, i = 1, ..., m.

- This problem is *nonconvex*, and computationally challenging.
- SDP relaxations have been successful in several applications.

Goal

Study the behavior of SDP relaxations in the *low noise* regime: when x is sufficiently close to X.

Many different applications

Nearest point to the twisted cubic

$$\min_{y \in Y} \ \|y - \theta\|^2, \quad \text{where} \quad Y := \{(y_1, y_2, y_3) : y_2 = y_1^2, \ y_3 = y_1 y_2\}$$

The twisted cubic Y can be parametrized as $t \mapsto (t : t^2 : t^3)$.

Its Lagrangian dual is the following SDP:

$$\max_{\gamma,\lambda_1,\lambda_2\in\mathbb{R}} \quad \gamma, \quad \text{ s.t. } \quad \begin{pmatrix} \gamma + \|\theta\|^2 & -\theta_1 & \lambda_1 - \theta_2 & \lambda_2 - \theta_3 \\ -\theta_1 & 1 - 2\lambda_1 & -\lambda_2 & 0 \\ \lambda_1 - \theta_2 & -\lambda_2 & 1 & 0 \\ \lambda_2 - \theta_3 & 0 & 0 & 1 \end{pmatrix} \succeq 0.$$

Nearest point to the twisted cubic

$$\min_{y \in Y} \ \|y - \theta\|^2, \quad \text{where} \quad Y := \{(y_1, y_2, y_3) : y_2 = y_1^2, \ y_3 = y_1 y_2\}$$

Nearest point problem to a quadratic variety

Theorem

Given quadratic equations f_i , consider

$$\min_{y \in Y} \|y - \theta\|^2$$
, where $Y := \{y \in \mathbb{R}^n : f_1(y) = \dots = f_m(y) = 0\}$

Let $\bar{\theta} \in Y$ be such that $\operatorname{rank}(\nabla f(\bar{\theta})) = \operatorname{codim}_{\bar{\theta}} Y$. Then there is zero-duality-gap for any $\theta \in \mathbb{R}^n$ that is sufficiently close to $\bar{\theta}$.

Applications:

- Triangulation problem [Aholt-Agarwal-Thomas]
- Nearest (symmetric) rank one tensor

Parametrized QCQPs

Consider a family of *quadratically constrained programs* (QCQPs):

$$\min_{x \in \mathbb{R}^N} \quad g_{ heta}(x) \ h_{ heta}^i(x) = 0 \quad ext{ for } i = 1, \dots, m$$

where g_{θ} , h_{θ}^{i} are *quadratic*, and the dependence on θ is *continuous*. The Lagrangian dual is an SDP.

Parametrized QCQPs

Consider a family of *quadratically constrained programs* (QCQPs):

$$\min_{x \in \mathbb{R}^N} \quad g_{ heta}(x) \ h_{ heta}^i(x) = 0 \quad \text{ for } i = 1, \dots, m$$

where g_{θ} , h_{θ}^{i} are *quadratic*, and the dependence on θ is *continuous*.

The Lagrangian dual is an SDP.

Goal: Given $\bar{\theta}$ for which the SDP relaxation is tight, analyze the behavior as $\theta \to \bar{\theta}$.

Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):

$$\min_{x \in \mathbb{R}^N} \quad g_{ heta}(x) \ h_{ heta}^i(x) = 0 \quad \text{ for } i = 1, \dots, m$$

where $g_{\theta}, h_{\theta}^{i}$ are *quadratic*, and the dependence on θ is *continuous*.

The Lagrangian dual is an SDP.

Goal: Given $\bar{\theta}$ for which the SDP relaxation is tight, analyze the behavior as $\theta \to \bar{\theta}$.

Example: For a nearest point problem

$$g_{\theta}(x) := \|x - \theta\|^2$$
, $h^i(x)$ independent of θ

The problem is trivial for any $\bar{\theta} \in X$.

SDP relaxation of a (homogeneous) QCQP

Primal problem

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} x^{T} G_{\theta} \mathbf{x}
x^{T} H_{\theta}^{i} \mathbf{x} = b_{i} \quad i = 1, \dots, m$$

$$(P_{\theta})$$

Dual problem

$$egin{array}{ll} \max_{\lambda \in \mathbb{R}^m} & d(\lambda) := -\sum_i \lambda_i b_i \ & \mathcal{Q}_{ heta}(\lambda) \succeq 0 \end{array}$$

where $Q_{\theta}(\lambda)$ is the Hessian of the Lagrangian

$$Q_{\theta}(\lambda) := G_{\theta} + \sum_{i} \lambda_{i} H_{\theta}^{i} \in \mathbb{S}^{N}.$$

SDP relaxation of a (homogeneous) QCQP

Primal problem

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \mathbf{x}^{T} G_{\theta} \mathbf{x}
\mathbf{x}^{T} H_{\theta}^{i} \mathbf{x} = b_{i} \quad i = 1, \dots, m$$

$$(P_{\theta})$$

Dual problem

$$egin{array}{ll} \max_{\lambda \in \mathbb{R}^m} & d(\lambda) := -\sum_i \lambda_i b_i \ & \mathcal{Q}_{ heta}(\lambda) \succeq 0 \end{array}$$

Problem statement

Assume that $\operatorname{val}(P_{\bar{\theta}}) = \operatorname{val}(D_{\bar{\theta}})$, i.e., $\bar{\theta}$ is a zero-duality-gap parameter. Find conditions under which $\operatorname{val}(P_{\theta}) = \operatorname{val}(D_{\theta})$ when θ is close to $\bar{\theta}$.

Given x_{θ} primal feasible, its *Lagrange multipliers* are:

$$\lambda \in \Lambda_{\theta}(x_{\theta}) \iff \lambda^{T} \nabla h_{\theta}(x_{\theta}) = -\nabla g_{\theta}(x_{\theta}) \iff \mathcal{Q}_{\theta}(\lambda) x_{\theta} = 0.$$

Lemma

Let $x_{\theta} \in \mathbb{R}^{N}$, $\lambda \in \mathbb{R}^{m}$. Then x_{θ} is optimal to (P_{θ}) and λ is optimal to (D_{θ}) with $val(P_{\theta}) = val(D_{\theta})$ iff:

- $h_{\theta}(x_{\theta}) = 0$ (primal feasibility).
- $Q_{\theta}(\lambda) \succeq 0$ (dual feasibility).
- **3** $\lambda \in \Lambda_{\theta}(x_{\theta})$ (complementarity).

Given x_{θ} primal feasible, its *Lagrange multipliers* are:

$$\lambda \in \Lambda_{\theta}(x_{\theta}) \iff \lambda^{T} \nabla h_{\theta}(x_{\theta}) = -\nabla g_{\theta}(x_{\theta}) \iff \mathcal{Q}_{\theta}(\lambda) x_{\theta} = 0.$$

Lemma

Let $x_{\theta} \in \mathbb{R}^{N}$, $\lambda \in \mathbb{R}^{m}$. Then x_{θ} is optimal to (P_{θ}) and λ is optimal to (D_{θ}) with $val(P_{\theta}) = val(D_{\theta})$ iff:

- $h_{\theta}(x_{\theta}) = 0$ (primal feasibility).
- $Q_{\theta}(\lambda) \succeq 0$ (dual feasibility).

Proof.

If $\mathcal{Q}_{\theta}(\lambda)x_{\theta}=0$ and $h_{\theta}(x_{\theta})=0$, then

$$0 = x_{\theta}^{T} \mathcal{Q}_{\theta}(\lambda) x_{\theta} = x_{\theta}^{T} G_{\theta} x_{\theta} + \sum_{i} \lambda_{i} x_{\theta}^{T} H_{i} x_{\theta} = g_{\theta}(x_{\theta}) - d(\lambda).$$

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x},\bar{\lambda})$ primal/dual optimal. Assume that

- $\qquad \qquad \mathbf{0} \ \ \mathcal{Q}_{\bar{\theta}}(\bar{\lambda}) \ \textit{has corank-one (strict-complementarity)}$
- ② $\exists x_{\theta}$ feasible for $(P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta})$ s.t. $(x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \bar{\theta}} (\bar{x}, \bar{\lambda})$.

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x},\bar{\lambda})$ primal/dual optimal. Assume that

- $\qquad \qquad \mathbf{0} \ \ \mathcal{Q}_{\bar{\theta}}(\bar{\lambda}) \ \textit{has corank-one (strict-complementarity)}$

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

Proof.

• $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta}=0)$.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x},\bar{\lambda})$ primal/dual optimal. Assume that

- $\qquad \qquad \mathbf{0} \ \ \mathcal{Q}_{\bar{\theta}}(\bar{\lambda}) \ \textit{has corank-one (strict-complementarity)}$

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta}=0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ (the dependence on θ is continuous).

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **1** $\mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- $rianglerightarrow \exists x_{\theta} ext{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) ext{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \bar{\theta}} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta}=0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) o \mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ (the dependence on θ is continuous).
- $Q_{\bar{a}}(\bar{\lambda})$ has N-1 positive eigenvalues.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **1** $\mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- $\exists x_{\theta} \text{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) \text{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \bar{\theta}} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta}=0)$.
- $Q_{\theta}(\lambda_{\theta}) \to Q_{\bar{\theta}}(\bar{\lambda})$ (the dependence on θ is continuous).
- $\mathcal{Q}_{ar{ heta}}(ar{\lambda})$ has N-1 positive eigenvalues.
- $Q_{\theta}(\lambda_{\theta})$ also has N-1 positive eigenvalues (continuity of eigenvalues).

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **1** $\mathcal{Q}_{ar{ heta}}(ar{\lambda})$ has corank-one (strict-complementarity)
- $rianglerightarrow \exists x_{\theta} ext{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) ext{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \bar{\theta}} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\bar{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta}=0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ (the dependence on θ is continuous).
- $\mathcal{Q}_{ar{ heta}}(ar{\lambda})$ has N-1 positive eigenvalues.
- $Q_{\theta}(\lambda_{\theta})$ also has N-1 positive eigenvalues (continuity of eigenvalues).
- $Q_{\theta}(\lambda_{\theta}) \succeq 0$, so there is zero-duality-gap.

Nearest point to a quadratic variety

$$\min_{y \in Y} \ \|y - \theta\|^2, \quad \text{where} \quad Y := \{y \in \mathbb{R}^n : f_1(y) = \dots = f_m(y) = 0\}$$

Regularity: ACQ holds at $y \in Y$ if $rank(\nabla f(\bar{\theta})) = codim_{\bar{\theta}} Y$.

Theorem

Let $\bar{\theta} \in Y$ and assume that ACQ holds at $\bar{\theta}$. Then there is zero-duality-gap for θ close to $\bar{\theta}$.

Nearest point to a quadratic variety

$$\min_{y \in Y} \|y - \theta\|^2$$
, where $Y := \{ y \in \mathbb{R}^n : f_1(y) = \dots = f_m(y) = 0 \}$

Regularity: ACQ holds at $y \in Y$ if $rank(\nabla f(\bar{\theta})) = codim_{\bar{\theta}} Y$.

Theorem

Let $\bar{\theta} \in Y$ and assume that ACQ holds at $\bar{\theta}$. Then there is zero-duality-gap for θ close to $\bar{\theta}$.

- Since $\bar{\theta} \in Y$, then $\bar{y} = \bar{\theta}$, and $\bar{\lambda} = 0$.
- Need to find $\lambda_{\theta} \in \Lambda_{\theta}(y_{\theta})$ s.t. $\lambda_{\theta} \xrightarrow{\theta \to \bar{\theta}} 0$.
- ACQ implies $\|\lambda_{\theta}\| \leq \frac{2}{\sigma(\nabla f)} \|y_{\theta} \theta\| \xrightarrow{\theta \to \bar{\theta}} 0$.

Nearest point to a quadratic variety

$$\min_{y \in Y} \|y - \theta\|^2$$
, where $Y := \{y \in \mathbb{R}^n : f_1(y) = \dots = f_m(y) = 0\}$

Regularity: ACQ holds at $y \in Y$ if $rank(\nabla f(\bar{\theta})) = codim_{\bar{\theta}} Y$.

Theorem

Let $\bar{\theta} \in Y$ and assume that ACQ holds at $\bar{\theta}$. Then there is zero-duality-gap for θ close to $\bar{\theta}$.

Proof.

- Since $\bar{\theta} \in Y$, then $\bar{y} = \bar{\theta}$, and $\bar{\lambda} = 0$.
- Need to find $\lambda_{\theta} \in \Lambda_{\theta}(y_{\theta})$ s.t. $\lambda_{\theta} \xrightarrow{\theta \to \bar{\theta}} 0$.
- ACQ implies $\|\lambda_{\theta}\| \leq \frac{2}{\sigma(\nabla f)} \|y_{\theta} \theta\| \xrightarrow{\theta \to \bar{\theta}} 0$.

Remark: The theorem generalizes to the case of *strictly convex* objective.

Guaranteed region of zero-duality-gap

$$\min_{y \in Y} \ \|y - \theta\|^2, \quad \text{where} \quad Y := \{y \in \mathbb{R}^3 : y_2 = y_1^2, \, y_3 = y_1 y_2 \}$$

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u \in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u \in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.

• If either n = 2, or $n \ge 4$ and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u \in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.

- If either n = 2, or $n \ge 4$ and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.
- The regularity condition (ACQ) is easy to check.

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u \in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.

- If either n = 2, or $n \ge 4$ and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.
- The regularity condition (ACQ) is easy to check.
- Under low noise the SDP relaxation is tight.

Application: Rank one approximation

Problem

Given a *tensor* $\hat{y} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{y \in Y} \|y - \hat{y}\|^2$$

where Y is the *Segre* variety.

Application: Rank one approximation

Problem

Given a *tensor* $\hat{y} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{y \in Y} \|y - \hat{y}\|^2$$

where Y is the *Segre* variety.

• The Segre variety is defined by quadratics $(2 \times 2 \text{ minors})$.

Application: Rank one approximation

Problem

Given a *tensor* $\hat{y} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{y \in Y} \|y - \hat{y}\|^2$$

where Y is the *Segre* variety.

- The Segre variety is defined by quadratics $(2 \times 2 \text{ minors})$.
- Thus, the SDP relaxation is tight under low noise.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$

• The objective function is strictly convex.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} ||R_j - \hat{R}_{ij}R_i||_F^2$$

- The objective function is strictly convex.
- Thus, the SDP relaxation is tight under low noise.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} ||R_j - \hat{R}_{ij}R_i||_F^2$$

- The objective function is strictly convex.
- Thus, the SDP relaxation is tight under low noise.
- Similar tightness results have been shown [Fredriksson-Olsson], [Rosen-Carlone-Bandeira-Leonard], [Wang-Singer].

Application: Stability of unconstrained SOS

Consider a family of polynomial optimization problems

$$\min_{z \in \mathbb{R}^n} p_{\theta}(z), \quad \text{where } p_{\theta} \in \mathbb{R}[z]_{2d}$$

and its sum-of-squares (SOS) relaxation.

Theorem

Let $\bar{\theta}$ be such that the relaxation is tight, and there is a unique minimizer \bar{z} . Consider the face of cone $\Sigma_{n,2d}$:

$$K_{\bar{z}}:=\{f\in\Sigma_{n,2d}:f(\bar{z})=0\}.$$

If $p_{\bar{\theta}} - \gamma_{\bar{\theta}} \in \text{int } K_{\bar{z}}$, then the SOS relaxation is tight when θ is close to $\bar{\theta}$.

Nearest point to non-quadratic varieties

Any variety can be described by quadratics by using auxiliary variables.

Example: The nearest point problem to the cuspidal curve $y_2^2=y_1^3$ can be phrased as

$$\min_{y \in \mathbb{R}^2, z \in \mathbb{R}} \|y - \theta\|^2, \quad \text{s.t.} \quad y_2 = y_1 z, \quad y_1 = z^2, \quad y_2 z = y_1^2.$$

The nearest point problem to a variety can be phrased as

$$\min_{\mathbf{y} \in \mathbb{R}^n, \mathbf{z} \in \mathbb{R}^k} \|\mathbf{y} - \mathbf{\theta}\|^2, \quad \text{s.t.} \quad f_i(\mathbf{y}, \mathbf{z}) = 0, \quad 1 \leq i \leq m$$

with f_i quadratic.

The nearest point problem to a variety can be phrased as

$$\min_{\mathbf{y} \in \mathbb{R}^n, \mathbf{z} \in \mathbb{R}^k} \|\mathbf{y} - \mathbf{\theta}\|^2, \quad \text{s.t.} \quad f_i(\mathbf{y}, \mathbf{z}) = 0, \quad 1 \leq i \leq m$$

with f_i quadratic.

• The objective is *not* strictly convex in (y, z), so previous theorem does not apply.

The nearest point problem to a variety can be phrased as

$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^k} \|y - \theta\|^2$$
, s.t. $f_i(y, z) = 0$, $1 \le i \le m$

with f_i quadratic.

- The objective is *not* strictly convex in (y, z), so previous theorem does not apply.
- There are varieties for which the SDP relaxation is non-informative.

The nearest point problem to a variety can be phrased as

$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^k} \|y - \theta\|^2, \quad \text{ s.t. } \quad f_i(y, z) = 0, \quad 1 \leq i \leq m$$

with f_i quadratic.

- The objective is *not* strictly convex in (y, z), so previous theorem does not apply.
- There are varieties for which the SDP relaxation is non-informative.
- Under "Slater-type" condition we can guarantee zero-duality-gap.

The nearest point problem to a variety can be phrased as

$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^k} \|y - \theta\|^2, \quad \text{ s.t. } \quad f_i(y, z) = 0, \quad 1 \le i \le m$$

with f_i quadratic.

- The objective is *not* strictly convex in (y, z), so previous theorem does not apply.
- There are varieties for which the SDP relaxation is non-informative.
- Under "Slater-type" condition we can guarantee zero-duality-gap.

Applications (ongoing): Triangulation problem (n = 3), camera resectioning, approximate GCD.

Summary

- We analyzed the local stability of SDP relaxations.
- ullet Found sufficient conditions for zero-duality-gap nearby $ar{ heta}.$
- Many applications (triangulation, rank one approximation, rotation synchronization).

Summary

- We analyzed the local stability of SDP relaxations.
- ullet Found sufficient conditions for zero-duality-gap nearby $ar{ heta}.$
- Many applications (triangulation, rank one approximation, rotation synchronization).

If you want to know more:

 D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas, On the local stability of semidefinite relaxations, arXiv:1708.?????.

Thanks for your attention!