Homework 4: Due Tuesday, June 4, at 11:59pm, on Gradescope

- (1) Do Challenge Problem (14) from HW 2: if (a_n) is a sequence in \mathbb{R} and $\lim(a_{n+1}-a_n)=0$, must (a_n) converge? Justify your answer.
- (2) Let (a_n) be a sequence in \mathbb{R} , and let $S \subseteq \mathbb{R}$ be its set of real subsequential limits. Prove that S is closed.
- (3) Given $A \subseteq \mathbb{R}$, write A' for the set of all limit points of A and define the closure of A to be the set $cl(A) = A \cup A'$.
 - (a) Prove that A' is closed.
 - (b) Prove that cl(A) is closed.
 - (c) Prove that cl(A) is the "smallest" closed set containing A, in the sense that $cl(A) \subseteq F$ for every closed set F containing A.
- (4) (a) Prove explicitly using the ϵ/δ definition that $\lim_{x\to 2} x^3 = 8$. (b) Given $\epsilon > 0$, find the largest $\delta > 0$ such that $|x^3 8| < \epsilon$ whenever $|x 2| < \delta$.

 - (c) Prove explicitly using the ϵ/δ definition that $\lim_{x\to 4} \sqrt{x} = 2$. (d) Given $\epsilon>0$, find the largest $\delta>0$ such that $|\sqrt{x}-2|<\epsilon$ whenever $|x-4|<\delta$.
- (5) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, suppose that $a \in \mathbb{R}$ is a limit point of $A \cap (a, \infty)$, and suppose $\lim_{x\to a^+} f(x) = \infty$. Also let $c \in \mathbb{R}$, let $g:(c,\infty) \to \mathbb{R}$ be a function, and suppose that $\lim_{x\to a} g(x) = L \in \mathbb{R}$. Prove that $\lim_{x\to a^+} (g\circ f)(x) = L$.

 (6) Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions, let $a\in\mathbb{R}$, and suppose $\lim_{x\to a} f(x) = b$ and $\lim_{x\to b} g(x) = L$. Show
- by example that L need not be the limit of $g \circ f$ as $x \to a$.
- (7) Prove that for any sequence (a_n) of nonzero real numbers, $\limsup |a_n|^{1/n} \leq \limsup \left|\frac{a_{n+1}}{a_n}\right|$.

Hint: Let $L > \limsup \left| \frac{a_{n+1}}{a_n} \right|$ be arbitrary; then there is N such that $\left| \frac{a_{n+1}}{a_n} \right| < L$ for all $n \geq N$; now use the fact that for any n > N,

$$|a_n| = \left| \frac{a_n}{a_{n-1}} \right| \cdot \left| \frac{a_{n-1}}{a_{n-2}} \right| \cdot \cdot \cdot \left| \frac{a_{N+1}}{a_N} \right| \cdot |a_N|$$

as a first step towards showing that $\limsup |a_n|^{1/n} \leq L$.

- (8) Let $A \subseteq \mathbb{R}$, suppose $a \in A \cap A'$, and let $f: A \to \mathbb{R}$ be a function. Prove that if f(a) > 0 and f is continuous at a, then there is $\epsilon > 0$ such that f is positive and bounded on $A \cap V_{\epsilon}(a)$.
- (9) Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuous. Prove that if f(x) = g(x) for all $x \in \mathbb{Q}$, then f = g.
- (10) Prove that if $A \subseteq \mathbb{R}$ is not closed, then there is an unbounded continuous function $f: A \to \mathbb{R}$.
- (11) Using only the definitions of continuity and open set, prove that for any function $f:\mathbb{R}\to\mathbb{R}$, f is continuous if and only if $f^{-1}[V]$ is open for every open set $V \subseteq \mathbb{R}$.

Optional Challenge Problems:

- (12) Suppose $A \subseteq \mathbb{R}$ is closed, and let $f: A \to \mathbb{R}$ be a continuous function. Prove that there is a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that $g \upharpoonright A = f$.
- (13) Suppose $\{U_i : i \in I\}$ is a family of nonempty open sets in \mathbb{R} such that $U_i \cap U_j = \emptyset$ whenever $i \neq j$. Prove that I is countable.
- (14) Let d(x,y) = |x-y| be the usual metric on \mathbb{R} , and let \mathcal{T} be the metric topology on \mathbb{R} generated by d, so \mathcal{T} consists of all open subsets of \mathbb{R}^3 .
 - (a) Prove that for any subset $A \subseteq \mathbb{R}$, A is open if and only if A can be expressed as a union of countably many open intervals in \mathbb{R} .
 - (b) Is it true that every open set A in \mathbb{R} can be expressed as a union of open intervals with rational endpoints? Either give a counterexample if not, or else briefly explain how your proof in (a) could be modified in order to prove this stronger result.

³Recall that, by definition, the set $U \subseteq \mathbb{R}$ belongs to \mathcal{T} (ie, is open) if for all $x \in U$ there is $\epsilon > 0$ such that $V_{\epsilon}(x) \subseteq U$.