1 Основные определения

Стохастической КС-грамматикой [3] называется система $G = \langle V_T, V_N, R, s \rangle$, где V_T и V_N — конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно, $s \in V_N$ — аксиома, R — множество правил. Множество R можно представить в виде $R = \bigcup_{i=1}^n R_i$, где n — мощность алфавита V_N и $R_i = \{r_{i1}, \ldots, r_{in_i}\}$. Каждое правило r_{ij} из R_i имеет вид

$$r_{ij}: A_i \xrightarrow{p_{ij}} \beta_{ij}, \qquad j = 1, \dots, n_i,$$
 (1)

где $A_i \in V_N$, $\beta_{ij} \in (V_N \cup V_T)^*$ и p_{ij} — вероятность применения правила r_{ij} , причём

$$0 < p_{ij} \le 1, \qquad \sum_{j=1}^{n_i} p_{ij} = 1.$$
 (2)

Для $\alpha, \gamma \in (V_N \cup V_T)^*$ будем обозначать $\alpha \Rightarrow \gamma$, если существуют $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$, для которых $\alpha = \alpha_1 A_i \alpha_2$, $\gamma = \alpha_1 \beta_{ij} \alpha_2$ и в грамматике имеется правило $A_i \xrightarrow{p_{ij}} \beta_{ij}$. Через \Rightarrow_* обозначим рефлексивное транзитивное замыкание отношения \Rightarrow . Грамматика G задаёт контекстно-свободный язык $L_G = \{\alpha \in V_T^* : s \Rightarrow_* \alpha\}$.

Выводом слова α назовём последовательность правил $\omega(\alpha)=(r_{i_1j_1},r_{i_2j_2},\ldots,r_{i_qj_q})$, с помощью последовательного применения которых слово α выводится из аксиомы s. Если при этом каждое правило применяется к самому левому нетерминалу в слове, такой вывод называется левым. Для вывода $\omega(\alpha)=(r_{i_1j_1},\ldots,r_{i_qj_q})$ определим величину $p(\omega(\alpha))=p_{i_1j_1}\cdot\ldots\cdot p_{i_qj_q}$.

Важное значение имеет понятие depeaa вывода [4]. Дерево вывода для слова α строится следующим образом. Корень дерева помечается аксиомой s. Далее последовательно рассматриваются правила левого вывода слова α . Пусть на очередном шаге рассматривается правило $A_i \stackrel{p_{ij}}{\longrightarrow} b_{i_1}b_{i_2}\dots b_{i_m}$, где $b_{i_l} \in (V_N \cup V_T)$ $(l=1,\dots,m)$. Тогда из самой левой вершины-листа дерева, помеченной символом A_i , проводится m дуг в вершины следующего яруса, которые помечаются слева направо символами $b_{i1},\dots,b_{i,m}$ соответственно. После построения дуг и вершин для всех правил в выводе листья дерева помечены терминальными символами (либо пустым словом λ , если применяется правило вида $A_i \stackrel{p_{ij}}{\longrightarrow} \lambda$) и само слово получается при обходе листьев дерева слева направо. $Bucomo \tilde{u}$ дерева вывода будем называть максимальную длину пути от корня к листу.

Обозначим $p(\alpha) = \sum \omega(\alpha)$, где сумма берётся по всем левым выводам слова α . Грамматика G называется cornacosanhoŭ, если

$$\lim_{n \to \infty} \sum_{\substack{\alpha \in L_G \\ |\alpha| \le n}} p(\alpha) = 1. \tag{3}$$

Согласованная грамматика G задаёт распределение вероятностей P на множестве L_G , при этом $p(\alpha)$ — вероятность слова α . Пара $\mathcal{L}=(L_G,P)$ называется cmoxacmu-ueckum KC-языком. В дальнейшем будем всюду предполагать, что рассматривается согласованная грамматика.

Для нетерминалов A_i, A_j будем обозначать $A_i \to A_j$, если в грамматике имеется правило $A_i \xrightarrow{p_{ij}} \alpha_1 A_j \alpha_2$, где $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* . Если одновременно $A_i \to_* A_j$ и $A_j \to_* A_i$, будем обозначать $A_i \leftrightarrow_* A_j$. Отношение \leftrightarrow_* разбивает множество нетерминалов грамматики на классы

$$K_1, K_2, \dots, K_m. \tag{4}$$

Множества номеров нетерминалов, входящих в класс K_j обозначим через I_j . При $m\geqslant 2$ грамматика называется разложимой.

Обозначим $K_i \prec K_j$, если $i \neq j$ и существуют такие $A_1 \in K_i$ и $A_2 \in K_j$, что $A_1 \to A_2$. Будем говорить, что грамматика имеет вид «цепочки», если она разложима, и для множества классов выполняется соотношение $K_1 \prec K_2 \prec \ldots \prec K_m$. При этом граф, построенный на множестве классов по отношению \prec , имеет вид:

Назовём класс K особым, если он содержит ровно один нетерминал A_i , и в грамматике отсутствует правило вида $A_i \xrightarrow{p_{ij}} \alpha_1 A_i \alpha_2$, где $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$. Не уменьшая общности, будем считать, что грамматика не имеет особых классов.

2 Производящие функции. Моменты

Определим многомерные производящие функции [3]:

$$F_i(s_1, s_2, \dots, s_k) = \sum_{j=1}^{n_i} p_{ij} s_1^{l_1} s_2^{l_2} \dots s_k^{l_k} \quad (1 \leqslant i \leqslant k),$$

где n_i — число правил вывода в R_i , и $l_m = l_m(i,j)$ — число вхождений нетермина A_m в правую часть правила $A_i \xrightarrow{p_{ij}} \beta_{ij}$.

Для краткости будем обозначать

$$\mathbf{s} = (s_1, s_2, \dots s_n)^T$$

$$F_i(\mathbf{s}) = F_i(s_1, s_2, \dots, s_n)$$

$$\mathbf{F}(\mathbf{s}) = (F_1(\mathbf{s}), F_2(\mathbf{s}), \dots, F_n(\mathbf{s}))^T$$

Производящую функцию $F_i(\mathbf{s})$ можно интерпретировать следующим образом. Выберем нетерминал A_i в качестве аксиомы грамматики. Затем применим к нему случайным образом какое-нибудь правило из множетсва R_i согласно распределению вероятностей на этом множестве. В полученной строке подсчитаем количество нетерминалов каждого вида и запишем в виде характеристического вектора $L = (l_1, l_2, \ldots, l_n)$, где l_j — количество нетерминалов A_j в полученной строке. Каждому характеристическому вектору, который мы можем таким образом получить, функция $F_i(\mathbf{s})$ ставит в соответствие его вероятность p_{ij} .

Степень производящей функции $(F_i(\mathbf{s}))^k$ соответствует ситуации, когда мы строим одновременно k деревьев вывода из нетерминала A_i , в каждом дереве применяя случайным образом одно из правил вывода, и затем подсчитываем количество нетерминалов разных типов в листьях всех деревьев. В самом деле,

$$(F_i(\mathbf{s}))^k = \left(\sum_j p_{ij} s_1^{l_1^{ij}} \dots s_n^{l_n^{ij}}\right)^k = \sum_j p_{ij_1} p_{ij_2} \dots p_{ij_k} s_1^{l_1^{ij_1} + \dots + l_1^{ij_k}} \dots s_n^{l_n^{ij_1} + \dots + l_n^{ij_k}}$$
(5)

Каждое слагаемое с коэффициентом $p_{ij_1} \dots p_{ij_k}$ соответствует случаю, когда к дереву вывода с индексом l было применено правило r_{ij_l} ($1 \le l \le k$). При этом в каждой компоненте характеристического вектора суммируется количество нетерминалов соответствующего типа в каждом из деревьев.

Аналогично, выражение $F_1^{k_1}(\mathbf{s}) \cdot \dots \cdot F_n^{k_n}(\mathbf{s})$ соответствует случаю, когда одновременно строятся деревья вывода из нетерминалов разных типов, причём деревьев с корнем A_l имеется ровно k_l штук.

Величина

$$\left. \frac{\partial^n F_i(\mathbf{s})}{\partial s_{k_1} \partial s_{k_2} \cdots \partial s_{k_n}} \right|_{\mathbf{s}=1}$$

где $\mathbf{1} = (1, 1, \dots, 1)^T$, называется n-м моментом. Поскольку $F_i(\mathbf{s})$ является полиномом, порядок дифференцирования не имеет значения.

Первые и вторые моменты будем обозначать следующим образом.

$$a_{j}^{i} = \frac{\partial F_{i}(s_{1}, s_{2}, \dots, s_{k})}{\partial s_{j}} \bigg|_{s_{1} = \dots = s_{k} = 1}$$

$$b_{jl}^{i} = \frac{\partial^{2} F_{i}(s_{1}, s_{2}, \dots, s_{k})}{\partial s_{l} \partial s_{j}} \bigg|_{s_{1} = \dots = s_{k} = 1}$$

$$(6)$$

Определим многомерные производящие функции $F(t, \mathbf{s})$, где $t \geqslant 1$, следующим образом.

$$F_i(t, \mathbf{s}) = \begin{cases} F_i(\mathbf{s}), & t = 1\\ F_i(t - 1, \mathbf{F}(\mathbf{s})), & t > 1 \end{cases}$$

Функцию $F_i(t, \mathbf{s})$ можно интерпретировать следующим образом. Выберем в качестве аксиомы грамматики нетерминал A_i и будем строить дерево вывода. На каждом шаге в уже построенном дереве выберем какой-нибудь нетерминал A_k , находящийся на ярусе выше t, применим к нему какое-нибудь правило r_{kj} из R_k в соответствии с распределением вероятностей и добавим символы β_{kj} в качестве потомков A_k . Будем продолжать этот процесс до тех пор, пока в дереве вывода не останется нетерминалов на ярусах выше t. Количество нетерминалов различного типа в полученном слове вновь обозначим характеристическим вектором $L = (l_1, l_2, \ldots, l_n)$. Тогда функция $F(t, \mathbf{s})$ ставит в соответствие каждому из возможных векторов L его вероятность.

Это можно показать индукцией по t. При t=1 это верно в силу определения $F_i(\mathbf{s})$. Пусть это верно для $F_i(t-1,\mathbf{s}) = \sum_k p_k s_1^{l_1} s_2^{l_2} \dots s_n^{l_n}$, где сумма берётся по всем возможным характеристическим векторам $(l_1,\dots l_n)$, и p_k — вероятность соответствующего

вектора. При переходе от $F_i(t-1,\mathbf{s})$ к $F_i(t,\mathbf{s})$ каждое произведение вида $p_k s_1^{l_1} \dots s_n^{l_n}$ приобретает вид $p_k \cdot F_1^{l_1}(\mathbf{s}) \dots F_n^{l_n}(\mathbf{s})$. Принимая во внимание представление (5), получаем сумму, каждый компонент которой соответствует возможному характеристическому вектору.

Матрица A, состваленная из первых моментов a_j^i , называется матрицей первых моментов. Для разложимой грамматики она имеет следующий блочно-ленточный вид.

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 & \cdots & 0 & 0 \\ 0 & A_{22} & A_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{m-1,m-1} & A_{m-1,m} \\ 0 & 0 & 0 & \cdots & 0 & A_{m,m} \end{pmatrix}.$$
 (7)

Блок A_{ii} соответствует классу K_i и является неразложимой неотрицательной матрицей. По определению (6), матрицы $A_{11}, A_{22}, \ldots, A_{m,m}$ неотрицательны. Они также неразложимы, так как любой нетерминал может быть с ненулевой вероятностью выведен из любого нетерминала того же класса. Обозначим перронов корень [6] матрицы A_{ii} через r_i . Тогда $r = \max\{r_1, \ldots, r_m\}$ — перронов корень всей матрицы A. В данной работе рассматривается случай r = 1. По аналогии с теорией ветвящихся процессов [5] будем называть этот случай критическим.

Обозначим через J множество индексов i, таких что классы K_i имеют перронов корень $r_i=1$. Будем также обозначать через \overline{J} дополнение к J.

Обозначим s_{lh} (при $l\leqslant h$) — число критических классов среди подцепочки K_l,K_{l+1},\ldots,K_h . Разобьём последовательность классов K_1,K_2,\ldots,K_m на группы $\mathcal{M}_1,\mathcal{M}_2,\ldots,\mathcal{M}_w$, где $w=s_{1m}$. Класс K_l отнесём к группе \mathcal{M}_w при $s_{lw}<=1$ и к группе M_{w-j+1} при $s_{lw}=j$ $(j=2,\ldots,w)$.

Тогда матрицу A можно представить в виде:

$$A = \begin{pmatrix} B_{11} & B_{12} & 0 & \cdots & 0 & 0 \\ 0 & B_{22} & B_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & B_{w-1,w-1} & B_{w-1,w} \\ 0 & 0 & 0 & \cdots & 0 & B_{w,w} \end{pmatrix},$$

где матрица B_{lh} находится на пересечении строк для классов из группы \mathcal{M}_l и столбцов для классов из группы \mathcal{M}_h . Матрицы B_{lh} , в свою очередь, имеют вид

$$B_{lh} = \begin{pmatrix} C_{11} & C_{12} & 0\\ 0 & C_{22} & C_{23}\\ 0 & 0 & C_{33} \end{pmatrix},$$

где C_{22} — блок, стоящий на пересечении строк для l-го критического класса и столбцов для h-го критического класса. При l=h этот блок является неразложимой матрицей. Блоки C_{11} и C_{33} стоят на пересечении строк и столбцов, соответствующих докритическим классам. При l,h < w блок B_{lh} имеет вид

$$B_{lh} = \begin{pmatrix} C_{11} & C_{12} \\ 0 & C_{22} \end{pmatrix}.$$

Блок, находящийся на позиции блока B_{lh} в матрице A^t , обозначим $B_{lh}^{(t)}$. В [7] доказана следующая теорема.

Теорема 1 $\Pi pu \ t \to \infty$

$$B_{lh}^{(t)} = \begin{pmatrix} 0 & b \cdot U_I^{(l)} V_{II}^{(h)} & b \cdot U_I^{(l)} V_{III}^{(h)} \\ 0 & b \cdot U_{II}^{(l)} V_{II}^{(h)} & b \cdot U_{II}^{(l)} V_{III}^{(h)} \\ 0 & 0 & 0 \end{pmatrix} = b \cdot U^{(l)} V^{(h)} t^{s_{lh} - 1} r^t \cdot (1 + o(1)),$$

 $v\partial e\ U^{(q)}\ u\ V^{(q)}\ -\ npaвый\ u\ левый\ coбственные\ векторы\ матрицы\ B_{qq},\ u\ b\ =\ V^{(l)}B_{lb}U^{(h)}.$

3 Вероятности продолжения

Вероятностью продолжения $Q_i(t)$ будем называть функцию

$$Q_i(t) = 1 - F_i(t, \mathbf{0})$$

По смыслу функции $F_i(t, \mathbf{s})$ вероятность продолжения $Q_i(t)$ есть вероятность того, что при построении дерева вывода из нетерминала A_i случайным образом это дерево будет иметь высоту более t. Будем обозначать $\mathbf{Q}(t) = (Q_1(t), Q_2(t), \dots Q_n(t))^T$.

В силу согласованности грамматики $Q_i(t) \to 0$ при $t \to \infty$. В самом деле, по смыслу $F_i(t, \mathbf{s})$

$$F_i(t, \mathbf{0}) = \sum_{d \in D^{\leqslant t}} p(d) \xrightarrow[t \to \infty]{} 1$$

Раскладывая $F_i(\mathbf{s})$ в ряд Тейлора в окрестности $\mathbf{s}=(1,\ldots,1)$, и учитывая равенство $F_i(1,1,\ldots,1)=1$, получаем:

$$1 - F_i(\mathbf{s}) = \sum_{j=1}^{n_i} a_j^i (1 - s_j) - \frac{1}{2} \sum_{1 \le j, l \le n_i} b_{jl}^i (1 - s_j) (1 - s_l) + O(\|\mathbf{s} - \mathbf{1}\|^3)$$
 (8)

Подставляя в качестве **s** вектор $\mathbf{F}(t,s) = (F_1(t,s), F_2(t,s), \dots, F_k(t,s))$, получаем:

$$1 - F_i(t+1,s) = \sum_{i=1}^k a_j^i (1 - F_j(t,s)) - \frac{1}{2} \sum_{1 \le j,l \le k} b_{jl}^i (1 - F_j(t,s)) (1 - F_l(t,s)) + O(\|\mathbf{1} - \mathbf{F}(t,s)\|^3)$$
(9)

Переходя от $1 - F_i(t, \mathbf{s})$ к $Q_i(t)$, получаем

$$Q_{i}(t+1) = \sum_{i=1}^{k} a_{j}^{i} Q_{i}(t) - \frac{1}{2} \sum_{1 \leq j, l \leq k} b_{jl}^{i} Q_{j}(t) Q_{l}(t) + O\left(\|\mathbf{Q}_{j}(t)\|^{3}\right)$$
(10)

Для каждого из классов K_n будем рассматривать вектор $Q^{(n)}(t)$ — вектор-столбец, содержащий вероятности продолжения для нетерминалов из класса K_n в порядке их нумерации. Тогда

$$Q(t) = \begin{pmatrix} Q^{(1)}(t) \\ Q^{(2)}(t) \\ \vdots \\ Q^{(m)}(t) \end{pmatrix}, \quad Q^{(j)}(t) \in \mathbb{R}^{k_j}, \tag{11}$$

где $k_j = |K_j|$. Обозначим через I_n иножество индексов нетерминалов, входящих в класс K_n . Используя это обозначение, уравнение (10) можно записать в виде

$$Q_i(t+1) = \sum_{j \in I_n} a_j^i Q_j(t) + \sum_{i \in I_{n+1}} a_j^i Q_j(t) \cdot (1 + o(1)) \qquad (i \in I_n, n < m)$$
 (12)

$$Q_i(t+1) = \sum_{j \in I_m} a_j^i Q_j(t) \cdot (1 + o(1)) \qquad (i \in I_m)$$
 (13)

или, используя вид (7) матрицы первых моментов,

$$Q^{(n)}(t+1) = A_{n,n}Q^{(n)}(t) + A_{n,n+1}Q^{(n+1)}(t)(1+o(1))$$
(14)

Для всего вектора Q(t) верно равенство

$$Q(t+1) = (A - A(t))Q(t), (15)$$

где A(t) — матрица, составленная из элементов $a_{ij}=\frac{1}{2}\sum_{l=1}^k b^i_{jl}Q_l(t)~(1\leqslant i,j\leqslant k)$. В силу согласованности грамматики $Q(t)\to 0$ и, следовательно, $A(t)\to 0$ при $t\to \infty$.

Докажем, что компоненты вектора $Q^{(n)}(t)$ пропорциональны некоторому вектору $U^{(n)}$. Доказательство аналогичного факта для случая двух классов принадлежит А. Борисову. Здесь мы проведём похожие рассуждения.

Зафиксируем некоторое $\tau \ge 0$. Тогда из (15) получаем

$$Q(t+1) = (A - A(t)) \cdot \dots \cdot (A - A(\tau))Q(\tau)$$
(16)

Обозначим

$$A^{*}(t) = (A - A(t)) \cdot (A - A(t - 1)) \cdot \dots \cdot (A - A(\tau + 1))$$

$$\tilde{A}_{ij}^{*} = \frac{A_{ij}^{*}(t)}{t^{s_{ij}}}$$

$$\tilde{A}_{ij} = \frac{A_{ij}^{(t)}}{t^{s_{ij}}},$$
(17)

где $A_{ij}^{(t)}$ — блоки, расположенные на месте блоков A_{ij} в матрице A^t и s_{ij} — число критических классов в подцепочке $K_i, K_{i+1}, \ldots, K_j$.

Из исследования асимптотики матрицы A^t известно [7], что $\tilde{A}_{ij}(t) \to \tilde{a}_{ij}U^{(i)}V^{(j)}$, где \tilde{a}_{ij} — некоторые константы, $U^{(i)}$ — вектор-строка длины k_i , а $V^{(j)}$ — вектор-столбец длины k_j .

Выберем произвольные $\varepsilon_1, \varepsilon_2$, такие что $0 < \varepsilon_1, \varepsilon_2 < 1$. Тогда существуют функции $l(\varepsilon_1)$ и $n(\varepsilon_2)$, такие что

$$\left| \tilde{A}_{ij}(l(\varepsilon_1)) - \tilde{a}_{ij}U^{(i)}V^{(j)} \right| < \varepsilon_1 E$$

$$\forall t \geqslant n(\varepsilon_2) \quad A(t) < \varepsilon_2 A$$
(18)

Рассмотрим произвольный вектор-столбец x > 0 длины k. Тогда выполняется оценка

$$(1 - \varepsilon_2)^l A^l x^{(\tau)} \leqslant A^*(t) x^{(\tau)} \leqslant A^l x^{(\tau)}, \tag{19}$$

где $x^{(\tau)} = (A - A(\tau))x$. Записывая это неравенство отдельно для блоков A_{ij} , получаем

$$(1 - \varepsilon_2)^l A_{ij}^l x_j^{(\tau)} \leqslant A_{ij}^*(l) x_j^{(\tau)} \leqslant A_{ij}^{(l)} x_j^{(\tau)}, \tag{20}$$

откуда

$$(1 - \varepsilon_2)^l \tilde{A}_{ij}(l) x^{(\tau)} \leqslant \tilde{A}_{ij}^*(l) x_j^{(\tau)} \leqslant \tilde{A}_{ij}(l) x^{(\tau)}$$
(21)

Вычитая из всех частей неравенства $\tilde{A}_{ij}(l)x_j^{(au)}$, получаем оценку

$$\left| \left(\tilde{A}_{ij}^*(l) - \tilde{A}_{ij}(l) \right) x_j^{(\tau)} \right| \leqslant (1 - (1 - \varepsilon_2)^l) \tilde{A}_{ij}(l) x^{(\tau)}$$
(22)

Используя эту оценку, можем записать

$$\left| \tilde{A}_{ij}^{*}(t) - \tilde{a}_{ij} U^{(i)} V^{(j)} x_{j}^{(\tau)} \right| \leq \left| \left(\tilde{A}_{ij}^{*}(t) - \tilde{A}_{ij}(t) \right) x^{(\tau)} \right| +
+ \left| \left(\tilde{A}_{ij}(l) - \tilde{a}_{ij} U^{(i)} V^{(j)} \right) x_{j}^{(\tau)} \right| \leq (1 - (1 - \varepsilon_{2})^{l}) \tilde{A}_{ij}(l) x_{j}^{(\tau)} + \varepsilon_{1} x_{j}^{(\tau)} \leq
\leq (1 - (1 - \varepsilon_{2})^{l}) h k_{j} x_{j}^{(\tau)} + \varepsilon_{1} x_{j}^{(\tau)} \leq \left((1 - 1 - \varepsilon_{2})^{l} \right) h k_{j} + \varepsilon_{1} \right) x_{j}^{*}(\tau), \quad (23)$$

где $h = \max_{i,j,l} \left\{ \tilde{A}_{ij}(l) \right\}$ и $x_j^*(\tau) = \max_i (x_j^{(\tau)})_i$.

Устремляем ε_2 к нулю, затем ε_1 к нулю таким образом, чтобы выполнялось условие

$$l(\varepsilon_1)\log(1-\varepsilon_2) \to -\infty$$
 (24)

Тогда

$$\left| \tilde{A}_{ij}^*(t) - \tilde{a}_{ij} U^{(i)} V^{(j)} x_j^{(\tau)} \right| \leqslant \varepsilon x_j^*(\tau) \quad (\varepsilon \to 0).$$
 (25)

Домножая слева на $V^{(i)}$, имеем

$$\left| V^{(i)} \tilde{A}_{ij}^*(t) x_j^{(\tau)} - \tilde{a}_{ij} V^{(j)} x_j^{(\tau)} \right| \leqslant \varepsilon k_i \max\left\{ (V^{(i)}) \right\} x_j^*(\tau) \leqslant \varepsilon^* V^{(j)} x_j^{(\tau)}. \tag{26}$$

Отсюда,

$$\left| \frac{\tilde{A}_{ij}^{*}(t)x_{j}^{(\tau)}}{V^{(i)}\tilde{A}_{ij}^{*}(t)x_{j}^{(\tau)}} - \frac{\tilde{a}_{ij}U^{(i)}V^{(i)}x_{j}^{(\tau)}}{\tilde{a}_{ij}V^{(j)}x_{j}^{(\tau)}} \right| = \left| \frac{\tilde{A}_{ij}^{*}(t)x_{j}^{(\tau)}}{V^{(i)}\tilde{A}_{ij}^{*}(t)x_{j}^{(\tau)}} - U^{(i)} \right| \to 0$$
 (27)

или же

$$\left| \frac{A_{ij}^*(t)x_j^{(\tau)}}{V^{(i)}A_{ij}^*(t)x_j^{(\tau)}} - U^{(i)} \right| \to 0, \tag{28}$$

откуда

$$(A - A(t)) \cdot \dots \cdot (A - A(\tau)) \cdot x_j = U^{(i)} V^{(i)} (A - A(t)) \cdot \dots \cdot (A - A(\tau)) \cdot x_j \cdot (1 + o(1))$$
 (29)

Ввиду полученного выражения и (16) компоненты каждого из векторов $Q^{(n)}(t)$ пропорциональны компонентам вектора $U^{(n)}$.

Оценим теперь асимптотику элементов вектора $Q^{(n)}(t)$ при $t \to \infty$.

Положим $V^{(n)}Q^{(n)}(t)=Q_*^{(n)}(t),$ и домножим уравнение (10) скалярно на $V^{(n)}.$ Заметим, что

$$Q^{(n)}(t) = U^{(n)}Q_*^{(n)}(t)(1+o(1)).$$
(30)

$$Q_*^{(n)}(t+1) = Q(n)_*(t) + V^{(n)}B_{n,n+1}U^{(n+1)}Q_*^{(n+1)}(t) - \frac{1}{2} \sum_{1 \le i,j,l \le k_n} V_i^{(n)}b_{jl}^i(n)U_j^{(n)}U_l^{(n)}\left(Q_*^{(n)}(t)\right)^2 (1 + o(1)).$$
(31)

Обозначим $\delta Q_*^{(n)}(t) = Q_*^{(n)}(t+1) - Q_*^{(n)}(t)$, а также

$$b_n = V^{(n)} B_{n,n+1} U^{(n+1)}$$

$$B_n = \sum_{1 \le i,j,l \le k_n} V_i^{(n)} b_{jl}^i(n) U_j^{(n)} U_l^{(n)}$$

Тогда уравнение (31) перепишется как

$$\delta Q_*^{(n)}(t) = b_n Q_*^{(n+1)}(t) - \frac{1}{2} B_n (Q_*^{(n)}(t))^2 (1 + o(1))$$
(32)

Выражение для $\delta Q_*^{(n)}(t)$ также можно получить из (10), вычитая это уравнение из себя с заменой $t \to t+1$:

$$\delta Q_*^{(n)}(t+1) = \sum_{j=1}^{k_n} a_j^i(n) \delta Q_j^{(n)}(t) + \sum_{j=1}^{k_{n+1}} a_j^i(n) \delta Q_j^{(n+1)}(t) - \frac{1}{2} \sum_{1 \le j,l \le k_n} b_{jl}^i(n) \left(Q_j^{(n)}(t+1) Q_l^{(n)}(t+1) - Q_j^{(n)}(t) Q_l^{(n)}(t) \right) (1 + o(1))$$

Скалярно домножая на $V^{(n)}$, получим

$$\delta Q_*^{(n)}(t+1) = \delta Q_*^{(n)}(t) + b_n \delta Q_*^{(n+1)}(t) - \frac{1}{2} B_n \delta Q_*^{(n)}(t) \left(Q_*^{(n)}(t+1) + Q_*^{(n)}(t) \right) (1 + o(1))$$
(33)

Для последнего класса

$$Q_*^{(w)}(t) = c_w t^{-1}(1 + o(1)), (34)$$

что следует из неразложимого случая. Проведём рассуждение по индукции. Пусть для группы с номером n+1 верно

$$Q_*^{(n+1)}(t) = c_{n+1}t^{-\alpha}(1+o(1)),$$

где $0 < \alpha \leqslant 1$. Положим

$$z(t) = t^{\alpha} \delta Q_*^{(n)}(t)$$

Произведя замену в уравнении (33), и имея в виду, что $Q_*^{(n)}(t+1) = O(Q_*^{(n)}(t))$, получаем

$$\frac{z(t+1)}{(t+1)^{\alpha}} - \frac{z(t)}{t^{\alpha}} = b_n \delta Q_*^{(n+1)}(t)(1+o(1)) - \frac{1}{2} B_n \frac{z(t)}{t^{\alpha}} \cdot 2Q_*^{(n)}(t)(1+o(1))$$

Преобразуем выражение в левой части уравнения:

$$\frac{z(t+1)}{(t+1)^{\alpha}} - \frac{z(t)}{t^{\alpha}} = \frac{t^{\alpha}z(t+1) - (t+1)^{\alpha}z(t)}{t^{\alpha}(t+1)^{\alpha}} =$$

$$= \frac{t^{\alpha}z(t+1) - t^{\alpha}\left(1 + \frac{\alpha}{t} + o\left(\frac{1}{t}\right)\right)z(t)}{t^{\alpha}(t+1)^{\alpha}} = \frac{\delta z(t)}{(t+1)^{\alpha}} - \frac{\alpha z(t)(1+o(1))}{t(t+1)^{\alpha}}$$

Тогда

$$\frac{\delta z(t)}{(t+1)^{\alpha}} - \frac{\alpha z(t)(1+o(1))}{t(t+1)^{\alpha}} = b_n \delta Q_*^{(n)}(t) - \frac{B_n}{t^{\alpha}} Q_*^{(n)}(t) z(t)(1+o(1))$$

По предположению индукции, $\delta Q_*^{(n+1)}(t) = -\frac{c_{n+1}\alpha}{t(t+1)^\alpha}(1+o(1))$, и тогда

$$\frac{\delta z(t)}{(t+1)^{\alpha}} - \frac{\alpha z(t)(1+o(1))}{t(t+1)^{\alpha}} = -\frac{b_n \alpha c_{n+1}}{t(t+1)^{\alpha}} - \frac{B_n}{t^{\alpha}} Q_*^{(n)}(t) z(t)(1+o(1))$$

Домножая на $(t+1)^{\alpha}$, получаем

$$\delta z(t) - \frac{\alpha z(t)}{t} = -\frac{b_n \alpha c_{n+1}}{t} - B_n Q_*^{(n)}(t) z(t) (1 + o(1))$$

Заметим, что, в силу предположения индукции, $\frac{1}{t} \leqslant Q_*^{(n+1)}(t) = o(Q_*^{(n)}(t))$, поэтому можно записать

$$\delta z(t) = -\frac{b_n \alpha c_{n+1}}{t} - B_n Q_*^{(n)}(t) (1 + o(1)) \tag{35}$$

Известна следующая лемма (доказательство леммы принадлежит А. Борисову).

Лемма 1 Пусть последовательность z(t) (t = 1, 2, ...) удовлетворяет рекуррентному соотношению

$$\delta z(t) = f(t) - g(t)z(t),$$

 $\epsilon de \ npu \ t \to \infty \ выполняются условия$

$$g(t) \to 0, \frac{f(t)}{g(t)} \to 0, \sum_{k=1}^{t} g(k) \to \infty.$$

Пусть также g(t) > 0 при любом $t > t_0$. Тогда $z(t) \to 0$ при $t \to \infty$.

Полагая в уравнении (35) $f(t) = -\frac{b_n \alpha c_{n+1}}{t}(1+o(1)), g(t) = B_n Q_*^{(n)}(t)(1+o(1)),$ замечаем, что для z(t) выполняются все условия леммы (1), и соответственно, $z(t) \to 0$ при $t \to \infty$. Из определения z(t) получаем:

$$\delta Q_*^{(n)}(t) = o\left(\frac{1}{t^\alpha}\right).$$

Подставляя эту оценку в (32), получаем

$$o\left(\frac{1}{t^{\alpha}}\right) = \frac{b_n c_{n+1}}{t^{\alpha}} (1 + o(1)) - \frac{B_n}{2} \left(Q_*^{(n)}(t)\right)^2 (1 + o(1))$$

Отсюда

$$\frac{b_n c_{n+1}}{t^{\alpha}} (1 + o(1)) = \frac{B_n}{2} \left(Q_*^{(n)}(t) \right)^2 (1 + o(1))$$

Тогда для $Q_*^{(n)}(t)$ получаем оценку

$$Q_*^{(n)}(t) = \sqrt{\frac{2b_n}{B_n}c_{n+1}\frac{1}{t^{\alpha}}}(1+o(1)) = \sqrt{\frac{2b_n}{B_n}k_{n+1}} \cdot t^{-\frac{\alpha}{2}}(1+o(1))$$

При этом, полагая $c_n = \sqrt{\frac{2b_n}{B_n}} c_{n+1}$, мы остаёмся в рамках предположения индукции. Учитывая (34), можем записать асимптотику $Q_*^{(n)}(t)$ для произвольной группы n:

$$Q_*^{(n)}(t) = \sqrt{\frac{2b_n}{B_n}} \sqrt{\frac{2b_{n+1}}{B_{n+1}} \cdots \sqrt{\frac{2b_{w-1}}{B_{w-1}B_w} \cdot t^{-\left(\frac{1}{2}\right)^{w-n}}}} =$$

$$= \prod_{k=n}^{w-1} \left(\frac{2b_n}{B_n}\right)^{\left(\frac{1}{2}\right)^{w-n+1}} \cdot \left(\frac{1}{B_w}\right)^{\left(\frac{1}{2}\right)^{w-n}} \cdot t^{-\left(\frac{1}{2}\right)^{w-n}}$$

Учитывая (30), получаем

$$Q_i(t) = c_n U_j^{(n)} t^{-\left(\frac{1}{2}\right)^{w-n}} \cdot (1 + o(1))$$

$$P_i(t) = \tilde{c}_n U_j^{(n)} t^{-1 - \left(\frac{1}{2}\right)^{w-n}} \cdot (1 + o(1))$$

где нетерминал A_i находится в последнем критическом классе цепочки или в одном из предшествующих классов, n — номер группы, в которую входит класс, содержащий A_i, w — число групп, и

$$c_n = \prod_{k=n}^{w-1} \left(\frac{2b_n}{B_n}\right)^{\left(\frac{1}{2}\right)^{w-n+1}} \cdot \left(\frac{1}{B_w}\right)^{\left(\frac{1}{2}\right)^{w-n}}$$

Список литературы

- [1] Шеннон К. Математическая теория связи. М.: ИЛ, 1963
- [2] Марков А. А. Введение в теорию кодирования. М.: Наука, 1982
- [3] Фу К. Структурные методы в распознавании образов. М.: Мир, 1977
- [4] **Ахо А., Ульман** Дж. Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978
- [5] **Севастьянов Б. А.** Ветвящиеся процессы. М.: Наука, 1971 436 с.
- [6] **Гантмахер Ф. Р.** Теория матриц. 5-е изд., М.: ФИЗМАТЛИТ, 2010
- [7] Жильцова Л. П. О матрице первых моментов разложимой стохастической КС-грамматики. УЧЁНЫЕ ЗАПИСКИ КАЗАНСКОГО ГОСУДАРСТВЕННО-ГО УНИВЕРСИТЕТА, Том 151, кн. 2, 2009
- [8] Жильцова Л. П. Закономерности применения правил грамматики в выводах слов стохастического контекстно-свободного языка // Математические вопросы кибернетики. Выр. 9. М.: Наука, 2000. С. 100-126.
- [9] **Жильцова** Л. П. О нижней оценке стоимости кодирования и асимптотически оптимальном кодировании стохастического контекстно-свободного языка // Дискретный анализ и исследование операций. Серия 1, т. 8, №3. Новосибирск: Издательство Института математики СО РАН, 2001. С. 26-45.
- [10] **Борисов А. Е.** Закономерности в словах стохастических контекстно-свободных языков, порождённых грамматиками с двумя классами нетерминальных символов. Вопросы экономного кодирования.