# Transformer for Vision

山世光 中科院计算所 sgshan@ict.ac.cn



# 本课件内容参考了多篇知乎文章



- https://zhuanlan.zhihu.com/p/308301901
- https://zhuanlan.zhihu.com/p/82312421
- https://zhuanlan.zhihu.com/p/336352895
- https://zhuanlan.zhihu.com/p/266069794

# 概述



- Transformer是一个Sequence to Sequence model
  - □特别之处在于它大量用到self-attention
  - □相比CNN, 它便捷实现长程依赖关系学习
  - □相比RNN/LSTM,它可以并行处理





■问题描述





■问题描述



- Sequence to sequence models
  - □ RNN
  - □ LSTM
  - $\square$  GRU



i am a student



■问题描述



- Sequence to sequence models
  - □ RNN
  - □ LSTM
  - $\square \mathsf{GRU}$





- RNN等: **难以并行** 
  - □单向
    - B1输出时没见过后续输入
  - □双向
- 用CNN取代RNN
  - □层叠可以实现长程依赖





- 特点: 每个输出都看过了整个输入sequence
  - □与bi-directional RNN相同
  - □它的每一个输出可以并行化计算





■ Transformer架构





- Transformer架构
  - □Encoder架构





- Transformer架构
  - More details





Scaled Dot-product Attention





q: query (to match others)

$$q^i = W^q a^i$$

k: key (to be matched)

$$k^i = W^k a^i$$

v: information to be extracted

$$v^i = W^v a^i$$





Scaled Dot-product Attention

$$\alpha_{1,i} = \underbrace{q^1 \cdot k^i} / \sqrt{d}$$

$$\text{dot product}$$









■ 输出*b*<sup>1</sup>, *b*<sup>2</sup>, ...





■ 输出*b*<sup>1</sup>, *b*<sup>2</sup>, ...





- ■矩阵形式
  - □并行计算







- 什么效果?
  - Attention
  - □通过上下文来表示每个token



## **Multi-head Self-Attention**



- ■多套SA模块
  - □輸出Concat.
  - □传入一个Linear层 得到最终的输出





### **Multi-head Self-Attention**



- ■多套SA模块
  - □輸出Concat.
  - □传入一个Linear层 得到最终的输出

- Why?
  - □不同head关注不同信息
  - □右例
    - 上关注global信息
    - ■下关注local信息



# Self-Attention: 位置信息



#### ■ 序列中Token的位置信息不能丢!

#### Positional Encoding

- No position information in self-attention.
- Original paper: each position has a unique positional vector  $e^i$  (not learned from data)
- In other words: each  $x^i$  appends a one-hot vector  $p^i$





# 再看Transformer



- 左侧为 Encoder block,右侧为 Decoder block
- 黄色圈中的部分为Multi-Head Attention,是由多个 Self-Attention组成的
- Encoder block 包含一个 Multi-Head Attention;
  Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)
- Multi-Head Attention 上方还包括一个 Add & Norm 层 , Add 表示残差连接 (Residual Connection) , Norm 表示 Layer Normalization
- 比如说在Encoder Input处的输入是机器学习,在 Decoder Input处的输入是<BOS>,输出是machine。 再下一个时刻在Decoder Input处的输入是machine,输出是learning。不断重复直到输出是句点(.)代表翻译结束。



## 再看Transformer

- 左侧为 Encoder block,右侧为 Decoder block
- 黄色圈中的部分为Multi-Head Attention,是由多个 Self-Attention组成的
- Encoder block 包含一个 Multi-Head Attention;
  Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)
- Multi-Head Attention 上方还包括一个 Add & Norm 层 , Add 表示残差连接 (Residual Connection), Norm 表示 Layer Normalization
- 比如说在Encoder Input处的输入是机器学习,在Decoder Input处的输入是<BOS>,输出是machine。再下一个时刻在Decoder Input处的输入是machine,输出是learning。不断重复直到输出是句点(.)代表翻译结束。



#### **Vision Transformer**



- Vision is language!
  - □ ViT for Image Classification





#### **Vision Transformer**



- Vision is language!
  - DETR for Object Detection



## **Vision Transformer**



**Bounding Box** 

Class

- Vision is language!
  - DETR for Object Detection





# · 排 引