Mikromechanische Modellierung des Bruchverhaltens von Siliziumnitrid

- SN ist Werkzeuge-Werkstoff für anspruchsvolle Metallumformung.
- Makro-Verhalten kann nur auf der Mikroebene verstanden werden.
- Interaktion zw. Gefüge, thermoelastischen Eigs. & Bruchverhalten bietet anspruchsvolle und spannende Betätigungsfelder.

Schwerpunkt	Numerische Simulation
Vorkenntnisse	HTF, FEM, MMF oder MMS
Ansprechpartner	DiplIng. J. Wippler
	wippler@itm.uni-karlsruhe.de

Teil 1: 3D-Gefügemodellierung und Vernetzung

- Erzeugung von von silizumnitridartigen Mikrostrukturen
- Statistische Charakterisierung der Modellparameter mit Design of Experiments
- Netzerzeugung und -bewertung

Ziel: Abb. von μ -Strukturen zur Berechnung des eff. Verhaltens

Schwerpunkt	Numerische Gefügegenerierung
Vorkenntnisse	HTF, FEM, MMF oder MMS
Ansprechpartner	DiplIng. J. Wippler
	wippler@itm.uni-karlsruhe.de

Bachelor-Themen

Teil 2: Materialdefekte und Bruchverhalten

- Geometrische Modellierung von Fehlstellen in Siliziumnirid
- Bruchsimulationen unter Verwendung der erzeugten Geometrien
- Bewertung der Einflusses von verschiedenen Fehlstellen

Ziel: Best. Einfluss von Mat.-Defekten auf Bruchfestigkeit

Schwerpunkt	Geometrische Modellierung und numerische Simulation
Vorkenntnisse	HTF, FEM, MMF oder MMS
Ansprechpartner	DiplIng. J. Wippler
	wippler@itm.uni-karlsruhe.de

Bachelor-Themen

Teil 3: Bruch bei mehrachs. Belastungen mit therm. Eigenspannung

- Sim. unter mehrachsigen Belastungen mit therm. Eigenspannungen
- Mehrachsigkeitseinflusses mit verschschiedenen Materialmodellen
- Korrelation mit verschiedenen Dreiachsigkeitsmaßen und Bruchkriterien

Ziel: Verständnis d. Einflusses von Mehrachsigkeit auf Versagen

Schwerpunkt	Thermoelastische Bruch-Simulation
Vorkenntnisse	HTF, FEM, MMF oder MMS
Ansprechpartner	DiplIng. J. Wippler
	wippler@itm.uni-karlsruhe.de