Ministère de l'Éducation Nationale

Inspection Académique de Kédougou Lycée Dindéfelo Cellule de Mathématiques

Année scolaire 2024-2025

Date: 03/01/2025Classe: Terminale S2 Professeur: M. BA

Nombres Complexes

Exercice 1:

- 1. Déterminer le module et un argument des nombres complexes suivants :
 - (a) 2i;
 - (b) $\sqrt{3} + 3i$;
 - (c) $\sqrt{6} + i\sqrt{2}$;
 - (d) 5;
 - (e) $\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)^3$;
 - (f) $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$;
 - $(g) \frac{-1+i\sqrt{3}}{\sqrt{3}+i}$.
- 2. Écrire sous forme trigonométrique les nombres complexes suivants :
 - (a) (2+2i)(1-i);
 - (b) $\frac{-1+i\sqrt{3}}{1+i}$;

 - (c) $\frac{\sqrt{2}}{1+i}$; (d) $\frac{-2i}{1+i\sqrt{3}}$;

 - (e) $(-1-i)^4$; (f) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^2$.
- 3. Soit $z_1 = 1 + i$ et $z_2 = 1 + i\sqrt{3}$.
 - (a) Déterminer le module et un argument de z_1 et z_2 .
 - (b) Écrire sous forme algébrique et sous forme trigonométrique le produit z_1z_2 .

1

(c) En déduire les valeurs de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Exercice 2:

- 1. Mettre sous forme algébrique les nombres complexes suivants :
 - (a) $z_1 = (1-i)(5+i)$
 - (b) $z_2 = (2 3i)^2$

- (c) $z_3 = \frac{1}{3+2i}$ (d) $z_4 = \frac{4-5i}{3+2i}$
- 2. Ècrire en fonction de \overline{z} les conjugués des nombres complexes suivants :
 - (a) $z_1 = 1 + iz$
 - (b) $z_2 = i(z+3)$

 - (c) $z_3 = \frac{1-z}{1+iz}$ (d) $z_4 = \frac{1+3z}{i+2z}$
- 3. Déterminer un argument de z dans chacun des cas suivants :
 - (a) z = -1 + i
 - (b) $z = \sqrt{6} + i\sqrt{6}$
 - (c) $z = \frac{1}{2} i\frac{\sqrt{3}}{2}$
 - (d) z = (2+2i)(1-i)
 - (e) $z = \frac{-1+i\sqrt{3}}{1+i}$ (f) $z = (-1-i)^4$

Exercice 3:

Le plan est muni d'un repère orthonormé direct.

- 1. Déterminer puis construire l'ensemble des points M du plan d'affixe z vérifiant :
 - (a) |z-3| = |z+i|
 - (b) |iz + 3| = |z + 4 + i|
 - (c) $|\bar{z} + \frac{1}{3}i| = 3$
 - (d) $|z \overline{z} + i| = 2$
 - (e) $|\overline{z} 2 + i| = |z + 5 2i|$
 - (f) $|\overline{z} 2 + i| = |z + 5 2i|$
- 2. Pour tout nombre complexe $z \neq -1 + 2i$, on pose $Z = \frac{z-2+4i}{z+1-2i}$.

Déterminer l'ensemble des points M du plan tels que :

- (a) |Z| = 1
- (b) |Z| = 2
- (c) Z soit un réel.
- (d) Z soit un imaginaire pur.
- 3. Pour tout complexe $z \neq i$, on pose $U = \frac{z+i}{z-i}$.

Déterminer l'ensemble des points M d'affixe z tels que :

- (a) $U \in \mathbb{R}^*$
- (b) $U \in \mathbb{R}_+^*$
- (c) $U \in i\mathbb{R}$

Correction Exercice 3:

Pour tout complexe $z \neq i$, on pose $U = \frac{z+i}{z-i}$.

1. Déterminons l'ensemble des points M d'affixe z tels que :

Nous cherchons l'ensemble des points M d'affixe z = x + iy tels que :

$$U = \frac{x^2 + y^2 - 1 + 2ix}{x^2 + (y - 1)^2}$$

(a) $U \in \mathbb{R}^*$

$$U \in \mathbb{R}_{-}^{*} \implies \operatorname{Im}(U) < 0$$

$$\implies \frac{2x}{x^{2} + (y-1)^{2}}$$

Le dénominateur $x^2 + (y-1)^2$ étant toujours strictement positif sauf en (0,1), le signe de Im(U) dépend uniquement du numérateur 2x.

Ainsi, on doit avoir : $2x < 0 \implies x < 0$

Conclusion

L'ensemble des points M(x,y) tels que Im(U) < 0 est donné par :

$$\{(x,y) \in \mathbb{R}^2 \mid x < 0\}.$$

Autrement dit, il s'agit du demi-plan strictement à gauche de l'axe des ordonnées x=0.

(b) $U \in \mathbb{R}_+^*$

$$\begin{cases}
\mathbb{R}_{+}^{*} \\
U \in \mathbb{R}_{+}^{*} \implies \operatorname{Im}(U) > 0 \\
\implies \frac{2x}{x^{2} + (y - 1)^{2}}
\end{cases}$$

Le dénominateur $x^2 + (y-1)^2$ étant toujours strictement positif sauf en (0,1), le signe de Im(U) dépend uniquement du numérateur 2x.

Ainsi, on doit avoir : $2x > 0 \implies x > 0$

Conclusion

L'ensemble des points M(x,y) tels que ${\rm Im}(U)>0$ est donné par :

$$\{(x,y) \in \mathbb{R}^2 \mid x > 0\}.$$

Autrement dit, il s'agit du demi-plan strictement à droite de l'axe des ordonnées x=0.

(c) $U \in i\mathbb{R}$

$$U \in i\mathbb{R} \implies \operatorname{Re}(U) = 0$$

$$\implies \frac{x^2 + y^2 - 1}{x^2 + (y - 1)^2}$$

Conclusion

L'ensemble des points M(x,y) tels que $\mathrm{Re}(U)=0$ est donné par :

3

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

Autrement dit, il s'agit du cercle de centre (0,0) et de rayon 1.

Exercice 4:

Soit le nombre complexe $z = \frac{2(-1+i\sqrt{3})}{1+i\sqrt{3}}$.

- 1. Déterminer Re(z) et Im(z).
- 2. Déterminer le module et un argument de z.
- 3. En déduire le module et un argument de : $\frac{1}{z}$, $\frac{i}{z}$ et $\frac{1+i}{z}$.

Exercice 5:

- 1. On pose $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$; $z_2 = 1 i$ et $z_3 = \frac{z_1}{z_2}$.
 - (a) Déterminer un argument de z_1 , z_2 et z_3 .
 - (b) En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$.
- 2. On considère les nombres complexes : a=1-i, $b=1-i\sqrt{3}$ et $Z=\frac{a^5}{b^4}$.
 - (a) Déterminer une écriture trigonométrique de Z.
 - (b) Déterminer une écriture cartésienne de Z. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et de $\sin\left(\frac{\pi}{12}\right)$.
 - (c) Calculer Z^{12} et Z^{2024} .
 - (d) Pour quelles valeurs de l'entier naturel n:

 \mathbb{Z}^n est un réel.

 \mathbb{Z}^n est un imaginaire pur.

Exercice 6:

On donne $u = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$.

- 1. Calculer u^2 et u^4 sous forme algébrique.
- 2. En déduire le module et un argument de u.
- 3. Soit M le point d'affixe $z \in \mathbb{C}$. Déterminer l'ensemble des points M tels que |uz|=8.

4

Exercice 7:

Soit dans le plan complexe les points A, B et C d'affixes respectives a, b et c avec a = -1 - i, b = 2 + i et c = 4i.

- 1. Représenter les points A, B et C.
- 2. Déterminer la forme trigonométrique de $\frac{a-b}{c-b}$. En déduire que le triangle ABC est rectangle isocèle.
- 3. Déterminer l'affixe du point D tel que ABCD soit un carré.

Exercice 8:

- 1. Résoudre dans $\mathbb C$ les équations suivantes :
 - (a) $\overline{z} = i z$
 - (b) $2z + \overline{z} = i z$
 - (c) $2z^2 6z + 5 = 0$
 - (d) $z^2 + z + 1 = 0$
 - (e) $z^2 (1+2i)z + i 1 = 0$
 - (f) $z \sqrt{3}z i = 0$
 - (g) $z^2 (3+4i)z 1 + 5i = 0$
 - (h) $4z^2 2z + 1 = 0$
- 2. Résoudre dans C chacune des équations suivantes sachant qu'elles admettent une solution réelle:

 - (a) $z^3 (1+i)z^2 2(1+i)z + 8 = 0$ (b) $iz^3 + (3-5i)z^2 + (16-2i)z + 30i = 0$
- 3. Résoudre chacune des équations suivantes sachant qu'elles admettent une solution imaginaire pure:
 - (a) $z^3 (3+4i)z^2 6(3-2i)z + 72i = 0$
 - (b) $z^3 + (5i 1)z^2 (4i + 7)z + 3 3i = 0$

Exercice 9:

1. (a) Résoudre dans \mathbb{C} l'équation

$$Z^2 - 6Z + 13 = 0.$$

(b) En déduire les solutions de l'équation :

$$\left(\frac{z-3i}{z+2i}\right)^2 - 6\left(\frac{z-3i}{z+2i}\right) + 13 = 0.$$

- 2. Soit $\theta \in [0; \pi]$, donner sous forme trigonométrique les solutions dans \mathbb{C} des équations suivantes:
 - (a) $Z^2 + 2(1 \cos \theta)Z + 2(1 \cos \theta) = 0.$
 - (b) $Z^2 (2^{\theta+1}\cos\theta)Z + 2^{2\theta} = 0.$

Exercice 10:

- 1. Résoudre dans \mathbb{C} , $z^3 = 1$.
- 2. (a) Développer $(\sqrt{2} i\sqrt{2})^3$.
 - (b) Soit l'équation $(E): z^3 = 4\sqrt{2}(-1-i)$.

En posant $u = \frac{z}{\sqrt{2} - i\sqrt{2}}$, déterminer sous forme algébrique puis sous forme trigonométrique les racines de l'équation (E).

3. En déduire les valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.

Exercice 11:

- 1. Montrer que $(1+i)^6 = -8i$.
- 2. On considère l'équation $(E): z^2 = -8i$.
 - (a) Déduire de la question 1 une résolution de l'équation (E).
 - (b) Donner sous forme algébrique les solutions de (E).
- 3. (a) Déduire également de 1 une solution notée t de l'équation $(E'): z^3 = -8i$.
 - (b) On pose $j = e^{i\left(\frac{2\pi}{3}\right)}$. Montrer que jt et j^2t sont aussi des solutions de (E').

Exercice 12:

- 1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes les équations suivantes :
 - (a) $z^2 2z + 5 = 0$
 - (b) $z^2 2(1+\sqrt{3})z + 5 + 2\sqrt{3} = 0$
- 2. On considère dans le plan complexe rapporté à un repère orthonormal $(O; \vec{u}, \vec{v})$ d'unité graphique 2 cm, les points A, B, C et D d'affixes respectives $1 + 2i, 1 + \sqrt{3} + i, 1 + \sqrt{3} i$ et 1 2i.
 - (a) Placer les points $A,\,B,\,C$ et D et préciser la nature du quadrilatère ABCD.
 - (b) Vérifier que

$$\frac{Z_D - Z_B}{Z_A - Z_B} = i\sqrt{3}.$$

Que peut-on en déduire pour les droites (AB) et (BD)?

- (c) Prouver que les points A, B, C et D appartiennent à un même cercle Γ dont on précisera le rayon et le centre. Tracer Γ .
- 3. On considère l'équation :

$$z^2 - 2(1 + 2\cos\theta)z + 5 + 4\cos\theta = 0,$$

- où θ est un nombre réel quelconque.
- (a) Résoudre l'équation dans \mathbb{C} .
- (b) Montrer que les points ayant pour affixe les solutions de l'équation appartiennent à Γ .

6

Exercice 13:

On considère l'équation

$$(E): z^3 + 9iz^2 + 2(6i - 11)z - 3(4i + 12) = 0.$$

- 1. Démontrer que l'équation (E) admet une solution réelle z_1 et une solution imaginaire pure z_2 .
- 2. Résoudre dans \mathbb{C} l'équation (E).
- 3. Démontrer que les points images des solutions de (E) sont alignés.

Exercice 14:

Soit la suite (z_n) définie par :

$$\begin{cases} z_0 = i \\ z_{n+1} = (1+i)z_n + 2i \end{cases}$$

- 1. Calculer z_1 et z_2 .
- 2. On considère la suite (U_n) définie par $U_n \neq z_n + 2$.
 - (a) Montrer que $U_n = (2+i)(1+i)^n$ (b) Exprimer z_n en fonction de n.
- 3. Soit M_{n+1} , M_n , A et B les points d'affixes respectives : z_{n+1} , z_n , i et $-\frac{1}{2} \frac{1}{2}i$.
 - (a) Démontrer que $\frac{AM_{n+1}}{BM_n} = \sqrt{2}$.
 - (b) Démontrer que

$$(\overrightarrow{BM_n}; \overrightarrow{AM_{n+1}}) = \frac{\pi}{4} [2\pi].$$

Exercice 15:

On considère la suite (z_n) de nombres complexes telle que $z_0=0,\,z_1=i$ et pour tout entier $n \geq 2$:

$$z_n - z_{n-1} = i(z_{n-1} - z_{n-2}) (1)$$

- 1. (a) On pose $v_n = z_n z_{n-1}$ pour tout entier $n \ge 1$. Exprimer v_n en fonction de n.
 - (b) En déduire que $z_n = \frac{1-i}{2}(i^n 1)$.
 - (c) Démontrer que la suite (z_n) est périodique.
- 2. On note M_n l'image dans le plan du complexe z_n .
 - (a) Marquer les points M_0 , M_1 , M_2 et M_3 .
 - (b) Que peut-on dire des points M_0 , M_1 , M_2 et M_3 ?
 - (c) Interpréter en module et argument la relation (1), puis déterminer la nature du polygone $M_n M_{n+1} M_{n+2} M_{n+3}$ pour tout entier naturel n.

Exercice 16 BAC 2023 : (04 pts)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Soit le nombre complexe a défini par

$$a = \sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}.$$

- 1. Montrer que $a^2 = -2\sqrt{3} 2i$, puis en déduire le module de a. 0,5 + 0,5 pt
- 2. Écrire a^2 sous forme trigonométrique puis vérifier qu'une des mesures de l'argument de a est $\frac{19\pi}{12}$. 0,5+0,5 pt
- 3. En déduire les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$, puis de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$. **01 pt**
- 4. Représenter sur le même graphique les points images de a, -a et a^2 . **01 pt**

