JAPANESE PATENT OFFICE -- Patent Abstracts of Japan

Publication Number: 02187025 A

Date of Publication: 1990.07.23

Int.Class: H01L 21/302

Date of Filing: 1989.01.13

Applicant: SANYO ELECTRIC CO LTD

Inventor: KOBAYASHI SHUNICHI

ETCHING AND MANUFACTURE OF X-RAY

LITHOGRAPHY MASK

Abstract:

PURPOSE: To shorten etching period and improve operability by using a chlorine trifluoride gas or a xenon difluoride gas as an etching gas when a silicon substrate is etched by the gas.

CONSTITUTION: After a prescribed vacuum is obtained in the inside of a reaction chamber 10 consisting of quartz and substances to be etched attain a prescribed temperature, a mixed gas of CIF

COPYRIGHT: (C)1990,JPO & Japio

®日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 平2-187025

nt. Cl. 5

識別記号 庁内整理番号

④公開 平成2年(1990)7月23日

H 01 L 21/302 G 03 F 1/16 H 01 L 21/027 F 8223-5F A 7428-2H

> 7376-5F H 01 L 21/30 3 3 1 M 審査請求 未請求 請求項の数 2 (全4頁)

公発明の名称

エツチング方法及びX線リソグラフイ用マスクの製造方法

②特 顕 平1-6539

②出 願 平1(1989)1月13日

②発明者 小林 俊

大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

印出 顋 人 三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

砂代 理 人 弁理士 西野 卓嗣 外2名

用 細 書

1. 発明の名称

エッチング方法及びX線リソグラフィ用 マスクの製造方法

- 2. 特許請求の範囲
- (1) シリコンをガスエッチングする際に、エッチングガスとして3 弗化塩素ガスまたは2 弗化キセノンガスを用いることを特徴とするエッチング方法。
- (2) 枠状の基盤と、この基盤に張られた支持 膜と、この支持膜上に形成されたX線吸収用金属 パターンとからなるマスクの製造に際し、上記基 盤の枠状形成を3 弟化塩素ガス又は2 弗化キセノ ンガスを用いたガスエッチングにより行うことを 特徴とする X 線リソグラフィ用マスクの製造方 法。
- 3. 発明の詳細な説明
 - (イ) 産業上の利用分野

本発明は新規なエッチング方法及びそれを利用 した X 繰りソグラフィ用マスクの製造方法に関 し、半導体装置の製造に適用される。

(ロ) 従来の技術

半導体装置の製造に用いられるエッチングプロセスには、ウェットプロセスとドライプロセスとがある。ウェットプロセスは洗浄、乾燥の工程を必要とし、又制御性に劣る。これに対し、ドライプロセスの典型例としてのプラズマエッチングは、ウェットプロセスの欠点を持たないが、複雑なエッチング装置を必要とする。

(ハ) 発明が解決しょうとする課題

本発明は、シリコンに対するエッチングを、より簡単な装置でドライブロセスにより実施でき、 且つエッチング速度が非常に大きな方法を提供するものである。

本発明は、更に、斯るエッチング方法をX線リソグラフィ用マスクの製造に適用しょうとするものである。第3図は、特開昭62-244131 号公報にも開示されている、この種マスクの典型例を示す。同図にて、(1)はシリコンからなる特状の基盤、(2)は、この基盤に張られ、窒化シリ コン等からなる支持膜、(3)は支持膜(2)上に形成された、タンタル等からなるX線吸収用金属パターン、(4)は、ポリイミド等からなり、金属パターン(3)を覆う保護膜、(5)は基盤(1)の底面に被着され、支持膜(2)と同材料からなるエッチングマスクである。

斯るマスクの製造において、特に基盤(1)を枠状に形成する際には、当初、板状の基盤(1)の表面側の支持膜(2)上に金属パターン(3)や保護膜(4)を設けることなくあるいは支持膜(2)上に金属パターン(3)及び保護膜(4)を形成した状態で、基盤(1)の裏面側からエッチングマスク(5)を利用してパックエッチングを行い、基盤(1)に貫通孔(6)を形成することにより基盤(1)を枠状と成すものである。

このための従来のパックエッチングは水酸化カリウム (ΚΟΗ) 水溶液をエッチャントとするウェットプロセスであり、従って、洗浄、乾燥といった頃雑な工程を必要とするばかりか、そのウェットプロセスでは 2 ~ 3 μ m / 分のエッチン

は、 枠状の基盤と、この基盤に張られた支持膜と、 この支持膜上に形成された X 線吸収用金属 パターンとからなるマスクの製造に際し、上記基盤の 枠状形成を 3 角化塩素ガス又は 2 角化キセノンガス を用いたガスエッチングにより行うことを特徴とする。

(ホ)作用

本発明によるエッチングはドライブロセスであり、しかもプラズマ反応によらない。

本発明によるガスエッチングのエッチレート(エッチング速度)を下表に示す。同表においてエッチング条件としての過度は3 弗化塩素(C ℓ F₁)とアルゴン(A r)の混合ガスにおけるC ℓ F₁ 過度(体摂止)を意味する。又温度は基盤温度である。

以下余白

ア遠度しかとれず、400-1000µmの厚本を有する基盤(1)のエッチングに及時間を要する。更に、支持膜(2)は1µm程度の薄い膜であるが、斯る薄膜が洗浄、乾燥の環境に曝されるとは、支持膜(2)が損傷を受けやすい点で、作まれるに困難にする。更には、上記パックエッチング時、非エッチング部分をエッチャントから自体もかなり煩雑である。更には、エッチャントの清点近くで及時間のエッチングを要するため、エッチャント供給システムも複雑となる。

従って本発明は、この様な従来技術の欠点を一撮し得る新規なX線リソグラフィ用マスクの製造方法を提供するものである。

(二) 課題を解決するための手段

本発明のエッチング方法は、シリコンをガスエッチングする際に、エッチングガスとして 3 免化塩素ガスまたは 2 免化キセノンガスを用いることを特徴とする。

本発明のX線リソグラフィ用マスクの製造方法

4 > 7 %	(%)	E h (Torr)	(0)	x, fν-} (#m/min)
Si(100)	10	500	27	1.7
	10	100	27	2.0
	50	95	27	6.5
	50	100	150	8.2
Si(111)	10	500	27	1.7
	10	100	27	2.0
	50	95	27	6.6
	50	100	150	7.4
SiN	10	500	27	0.006
	· 10	100	27 -	0.004
	50	95	27	0.007
	50	100	150	0.010
SiC	10	500	27	0.0003AT
	10	100	27	0.0003ДТ
	50	95	27	0. 0003AF
	50	100	150	0.0003AT

L表から明らかな知く、シリコン (Si) に対す a エッチング速度は、(100)や(111)の各結晶面に おいて、窒化シリコン (SiN)や炭化シリコン (SiC)、特に後者に対するエッチング速度に 比し苦しく大きい。

本発明によりエッチングされたSiは揮発性 (沸点-95℃) の4弗化シリコン (SiF゚) の形で排気されるので、彼エッチング物へ再付着 したりする等、残存することはない。

2 弗化キセノンガス (XeFi) もClFi ガ スと同様の効果が得られる。

特にCLF。ガスを用いたエッチングでは、エ ッチングと同時にドライ洗浄が行われることにな ъ.

(へ) 実施例

第1図に本発明を実施するためのエッチング装 **眾を示す。 闻図にて、(10)は石英からなる反応** 室、(11)(11)…は彼エッチング物を加熱するため のランプヒータ、(12)はガス供給管、(13)は排気 管、(14)は反応室内の載置台、(15)は載置台上に

スク(15a)は支持リング(20)を介して設置台(14) (第1図)上に置かれ、支持膜(2a)に傷がつかな いように載置台(14)から浮かされている。(21)は リング状の錘であり、エッチング時に、Si基盤 (la)に反りが発生しない様にエッチングマスク (5a)トに用かれる。

エッチング条件を、圧力500Torr、 C ℓ F, とArとの混合止1:1、被エッチング 物温度27℃として、65分間エッチングを行 い、第2図中、点線で示す如く、Si基盤(la)の 中央部がエッチングされ、基盤(1a)は枠状とな る。この時、SiCからなる支持膜(2a)やエッチ ングマスク(5a)は全くエッチングされない。尚、 Si苺盤(12)の側面は保護されていないためエッ チングされるが、 通常Si基盤(la)の厚みに比 し、その直径が十分大きい(例えば2インチ程 、 ば140分かかる。 度)ので、側面からのエッチングは問題にならな い。もし必要なら、適当なレジストで側面を被獲 すればよい。

斯るエッチング後、従来手法により、支持膜

置かれた彼エッチング物である。尚敬置台(14)は メッシュ状にしてガス流をできるだけ妨げないこ とが好ましい。

上記装置において、反応室(10)内が所定真空度 に逞し、かつ被エッチング物が所定温度に達した 後、ガス供給管(12)よりCℓF,及びArの混合 ガスを反応窒(10)内に導入する。エッチング状況 はエッチング面にレーザを照射し、反射光をモニ タすることによって観察できる。

上記装置によるX線リソグラフィ用マスクの製 法を以下に説明する。

第1図における被エッチング物(15)は、完成前 の X 線 リソグラフィ用マスク(15a)として第2 図 に示されている。即ち、完成前のマスク(15a)に おいて、(1a)は、(100)面を持つ 4 0 0 μ m 厚さ のSi基盤、(2a)はこの基盤の一主面に抜着され た、 0 . 5 μ m 厚 さの S i C からなる支持膜、 (5a)は基盤(1a)の他主面の周縁に被着された 0. 5μm厚さのSiCからなるエッチングマス クである。(20)は支持リングであり、完成前のマ

(2a)上に、第3図に示す如く、タンタルからな る、例えば 0。 6 μ m 厚みの X 線吸収用金属パ ターン(3)及びポリイミドからなる、例えば0.9 μm厚みの保護膜(4)が形成され、Χ線リソグラ フィ用マスクが完成される。

尚、支持膜(2a)上に、子め金属パターン(3)及 び保護膜(4)を形成した状態で、Si基盤(la)の エッチングを上記と同様に行っても良い。この場 合、ポリイミドからなる保護膜(4)は全くエッチ ングされない。

(ト) 発明の効果

本発明によれば、従来のウェットプロセスに比 し、者しいエッチング時間の短縮を図れる。例え ば、実施例におけるエッチング時間は65分であ るところ、従来のウェットプロセスでこれを行え、

本発明によれば、プラズマ反応を要しないため エッチング装置が簡易なものですむ。

本発明方法は、ウェットプロセスの如き洗浄や 乾燥工程を要さず筋便であり、特にX線リソグラ フィ用マスクの製造時のSi基盤のエッチング 後、薄い支持膜あるいはその上の金属パターンが 従来の洗浄や乾燥時における如き不所望な外力を 受けて損傷を受けるといったことがないので、作 葉性に富む。

本発明によれば、エッチングされたSiは揮発 性物質となり即座に排気され、残留しない。

4. 図面の簡単な説明

第1図は本発明を実施するためのエッチング装置の模式的断面図、第2図は完成前のX線リソグラフィ用マスクの断面図、第3図は典型的なX線リソグラフィ用マスクの断面図である。

出顧人 三洋電機株式会社 代理人 弁理士 西野卓嗣(外2名)

第1図

1.

2.

方i

第2図

第3図

-124-