

BEIJING 2018

深度学习在微博Feed流应用实践

刘博

新浪微博机器学习研发部关系流算法负责人

微博Feed流排序场景介绍

微博Feed流产品介绍—排序场景

- > 微博—社交媒体领跑者
 - DAU: 1.72亿, MAU: 3.92亿
 - 关注流基于关系链接用户与内容
- 〉信息获取方式
 - 主动获取(关注)
 - 被动获取(推荐)
- 〉内容形式
 - 博文/文章/图片/视频/问答/话题/...

微博Feed流特点介绍—排序原因

- ▶产品特点
 - 传播性强
 - 互动性好
- > 存在问题
 - 信息过载
 - 信噪比低
- > 排序目标
 - 提高用户的信息消费效率
 - 提升用户黏性

▶指标量化

- 用户体验
- 内容形式多样、非结构化

> 规模大

- 用户和Feed内容数量大
- 内容更新快,实时性要求高
- 海量计算、超大规模模型优化

微博Feed流排序场景介绍

常规CTR方法排序

深度学习应用与实践

CTR概要介绍

> CTR任务特点

- 大量离散特征、高维稀疏
- 特征关联性挖掘

- > CTR预估常用算法
 - LR
 - GBDT
 - FM

业务目标与模型选择

> 模型选择

- 线性模型LR+特征工程
- · 排序基于pointwise的 learning to rank
- ▶模型优化目标
 - 互动(转发/评论/赞) 点击(图片/视频/文章/链接等) 阅读时长
 - 多目标预估

Score = $m_{interact} * ictr + m_{click} * cctr + m_{read} * rctr$

特征工程

▶特征工程非常重要

- categorical特征
 - one-hot 表示
 - 假设检验方式
- conitnues特征
 - 离散化/归一化处理
 - 相关系数评估
- 特征组合
 - 手动组合——专家知识
 - GBDT+互信息——有效挖掘 非线性特征及组合

皮尔逊相关系数特征评估

标签匹配度特征相关系数特征评估

> 存在问题

- 头部效应
- 正负样本比例严重失衡
- 实时反馈类收集与在线存在差异性

> 解决方案

- 对头部曝光进行降采样,长尾曝光上采样
- 负样本进行下采样
- 后端样本预采样

模型评估

> 离线评估

- AUC / wAUC
- 离线评估与线上效果正相关?

> 在线评估

- A/B test测试
- 分目标人群测试:地域、活跃度...

微博Feed流排序场景介绍

常规CTR方法排序

深度学习应用与实践

为什么选择深度学习

- > 线性CTR模型
 - 优势:简单高效、可解释性强
 - 局限性:特征工程繁琐、无法表达高维抽象特征
- ➤ 深度学习模型(DNN based model)
 - 优势:

表达能力强

泛化能力强

网络结构灵活

深度学习应用实践 —— wide & deep

> 新增特征

• Contextual featues: 用户最近的平均阅读时长、用户最近的互动微博

- Wide输入
 - conitnues特征离散化 + 手动交叉特征
- Deep输入
 - conitnues特征离散化 + 非连续特征embedding

深度学习应用实践 —— wide & deep

> 样本采样

 Negative sampling:依据微博的 平均阅读时间进行划分,将用户曝 光但未阅读的微博作为负样本

> 网络复杂度

- 网络复杂度过高易导致过拟合
- 网络深度达到一定数值AUC反而 小幅降低

网络结构	logloss	wAUC
[1024,512,256]	0.049	0.743
[512,256,128]	0.043	0.753
[256,128,64]	0.039	0.761
[256,128]	0.045	0.749
[128,64]	0.053	0.741

深度学习应用实践 —— DeepFM

- End2End框架
- Deep part 泛化力
- FM—低阶特征组合

➤ 优势

 Deep和FM共享 embedding层

- > 模型算法是手段
 - 业务和数据决定模型算法的应用场景
 - 模型算法殊途同归
 - 计算力和算法架构是保障

> 未来工作

- 多模态—更好的对非结构化内容进行表征
- 用户行为序列embedding
- 更多的融合网络结构适用于CTR预估场景

关注QCon微信公众号, 获得更多干货!

Thanks!

INTERNATIONAL SOFTWARE DEVELOPMENT CONFERENCE

