

```
(https://databricks.com)
  # To import mlflow and autolog machine learning runs
  import mlflow
  mlflow.pyspark.ml.autolog()
  # The FaultDataset in DBFS
  dbutils.fs.ls("/FileStore/tables/")
  Out[2]: [FileInfo(path='dbfs:/FileStore/tables/FaultDataset.csv', name='FaultDataset.csv', size=1703184, modificationTime
   =1678589742000),
     FileInfo(path='dbfs:/FileStore/tables/Occupancy_Detection_Data.csv', name='Occupancy_Detection_Data.csv', size=50968, mo
   dificationTime=1677673883000),
     FileInfo(path='dbfs:/FileStore/tables/account-models/', name='account-models/', size=0, modificationTime=0),
     FileInfo(path='dbfs:/FileStore/tables/accounts/', name='accounts/', size=0, modificationTime=0),
     FileInfo(path='dbfs:/FileStore/tables/accounts.zip', name='accounts.zip', size=5297592, modificationTime=1675260543000),
     FileInfo(path='dbfs:/FileStore/tables/activations/', name='activations/', size=0, modificationTime=0),
     FileInfo(path='dbfs:/FileStore/tables/activations.zip', name='activations.zip', size=8411369, modificationTime=167525765
   4000),
     FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2019/', name='clinicaltrial_2019/', size=0, modificationTime=0),
     File Info (path='dbfs:/File Store/tables/clinical trial\_2019.csv', name='clinical trial\_2019.csv', size=42400056, modification for the contraction of the contracti
   nTime=1679426915000),
    FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2019.zip', name='clinicaltrial_2019.zip', size=9707871, modification
   Time=1678924265000),
     FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2020/', name='clinicaltrial_2020/', size=0, modificationTime=0),
     FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2020.csv', name='clinicaltrial_2020.csv', size=46318151, modificatio
   nTime=1679431882000),
    FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2020.zip', name='clinicaltrial_2020.zip', size=10599182, modificatio
   nTime=1678915950000).
    FileInfo(path='dbfs:/FileStore/tables/clinicaltrial_2021/', name='clinicaltrial_2021/', size=0, modificationTime=0),
  # To read the data we want to work with into spark DataFrame
  FaultsDF = spark.read.csv("/FileStore/tables/FaultDataset.csv",
                                                  header = "true",
                                                  inferSchema = "true")
```

To have an overview of what the data looks like FaultsDF.display()

	1	2	3	4	5 📥	6	7 🔷	8	9
1	0.3503125	0.3496875	0.35	0.3459375	0.3475	0.3459375	0.341875	0.3434375	0.355
2	0.5090625	0.484375	0.046875	0.071875	0.06	0.0634375	0.0575	0.0546875	0.0559375
3	0.0928125	0.0975	0.1096875	0.1025	0.09625	0.1053125	0.09875	0.098125	0.091875
4	0.09375	0.089375	0.091875	0.0996875	0.0909375	0.096875	0.0940625	0.096875	0.096875
5	0.036875	0.0440625	0.038125	0.0428125	0.0353125	0.0340625	0.033125	0.0403125	0.0346875
6	0.135625	0.3034375	0.13875	0.140625	0.126875	0.130625	0.139375	0.143125	0.1290625
7	0.3446875	0.35125	0.3353125	0.3471875	0.34625	0.348125	0.3478125	0.3521875	0.3525

#To convert to pandas dataframe so that we can perform some EDA and visualisations

import matplotlib.pyplot as plt

import seaborn as sns
import pandas as pd

To convert FaultsDF To pandas dataframe
FaultPandasFrame = FaultsDF.toPandas()

To see the first five rows in the data FaultPandasFrame.head()

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0.350313	0.349687	0.350000	0.345938	0.347500	0.345938	0.341875	0.343438	0.355000	0.355312	0.345938	0.352500	0.357500	0.359063	0.358750
1	0.509062	0.484375	0.046875	0.071875	0.060000	0.063437	0.057500	0.054688	0.055938	0.058125	0.062812	0.065625	0.064062	0.063437	0.053437
2	0.092813	0.097500	0.109687	0.102500	0.096250	0.105313	0.098750	0.098125	0.091875	0.090938	0.098750	0.103125	0.100000	0.103438	0.101562
3	0.093750	0.089375	0.091875	0.099687	0.090938	0.096875	0.094062	0.096875	0.096875	0.099375	0.099375	0.095937	0.095937	0.094062	0.091250
4	0.036875	0.044062	0.038125	0.042813	0.035312	0.034063	0.033125	0.040313	0.034688	0.036875	0.035625	0.036250	0.040938	0.039375	0.035000

[#] To see the class balance using a histogram plot.

Out[8]: <AxesSubplot:xlabel='fault_detected', ylabel='Count'>

FaultPandasFrame.shape

Out[9]: (9292, 21)

To get a summary of the data FaultPandasFrame.describe()

	1	2	3	4	5	6	7	8	9	10	11
count	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000
mean	0.341623	0.342631	0.342121	0.342139	0.342843	0.342828	0.342715	0.343066	0.343173	0.343925	0.344108
std	0.289195	0.289088	0.289164	0.289164	0.288965	0.289089	0.289195	0.289192	0.289340	0.289012	0.289200
min	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375
25%	0.064062	0.064609	0.064375	0.064375	0.065000	0.065000	0.064687	0.065312	0.065000	0.065937	0.066172
50%	0.342187	0.343750	0.342813	0.342031	0.343594	0.343750	0.342813	0.343125	0.342813	0.345000	0.345313
75%	0.618437	0.619062	0.619062	0.619062	0.619062	0.619062	0.619141	0.619687	0.619766	0.620000	0.620313
max	1.080938	1.213437	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938

#Histogram plot of the various features in the data to see how the vibration sensor readings from the data are distributed.

FaultPandasFrame.hist()

plt.gcf().set_size_inches(20,20)

plt.show()

[#] The result shows that we have a balance class between fault detected or not sns.histplot(FaultPandasFrame, x ='fault_detected')

Using a box and whisker plot to check if there are outliers in the virbration readings
FaultPandasFrame.plot(kind='box', subplots=True, layout=(4,6))
plt.gcf().set_size_inches(20,20)
plt.show()

FaultPandasFrame.corr()

	1	2	3	4	5	6	7	8	9	10	11	12	13	
1	1.000000	0.843847	0.815780	0.826661	0.819727	0.806820	0.800609	0.800667	0.785560	0.781098	0.781228	0.772658	0.773191	0.77880
2	0.843847	1.000000	0.843153	0.813794	0.824917	0.818478	0.806115	0.799769	0.798175	0.785856	0.778867	0.780272	0.771881	0.77278
3	0.815780	0.843153	1.000000	0.844225	0.815464	0.826045	0.818762	0.806707	0.799662	0.801067	0.785955	0.780895	0.780712	0.77426
4	0.826661	0.813794	0.844225	1.000000	0.844152	0.815404	0.825898	0.821163	0.807515	0.801069	0.799968	0.786714	0.783222	0.7832
5	0.819727	0.824917	0.815464	0.844152	1.000000	0.843323	0.814768	0.827324	0.820063	0.807351	0.800829	0.801012	0.786438	0.78320
6	0.806820	0.818478	0.826045	0.815404	0.843323	1.000000	0.842480	0.813768	0.824977	0.821148	0.807483	0.799901	0.800890	0.7876
7	0.800609	0.806115	0.818762	0.825898	0.814768	0.842480	1.000000	0.844601	0.814972	0.826524	0.819826	0.807104	0.801846	0.80210
8	0.800667	0.799769	0.806707	0.821163	0.827324	0.813768	0.844601	1.000000	0.843669	0.813676	0.824552	0.819180	0.807114	0.80199
9	0.785560	0.798175	0.799662	0.807515	0.820063	0.824977	0.814972	0.843669	1.000000	0.843174	0.813524	0.825630	0.820179	0.8075
10	0.781098	0.785856	0.801067	0.801069	0.807351	0.821148	0.826524	0.813676	0.843174	1.000000	0.842913	0.812985	0.825341	0.8195
11	0.781228	0.778867	0.785955	0.799968	0.800829	0.807483	0.819826	0.824552	0.813524	0.842913	1.000000	0.842194	0.813314	0.82460
12	0.772658	0.780272	0.780895	0.786714	0.801012	0.799901	0.807104	0.819180	0.825630	0.812985	0.842194	1.000000	0.843725	0.81350
13	0.773191	0.771881	0.780712	0.783222	0.786438	0.800890	0.801846	0.807114	0.820179	0.825341	0.813314	0.843725	1.000000	0.8426
14	0.778808	0.772782	0.774265	0.783219	0.783206	0.787682	0.802103	0.801997	0.807529	0.819571	0.824605	0.813560	0.842642	1.00000
15	0.770734	0.777026	0.772514	0.774887	0.782338	0.782074	0.788105	0.800667	0.801262	0.807342	0.818214	0.825275	0.813118	0.84250
16	0.758679	0.769570	0.777459	0.774451	0.774300	0.781673	0.782957	0.788960	0.801438	0.801288	0.806279	0.819909	0.826241	0.8125
17	0.765337	0.757522	0.770544	0.780225	0.775226	0.775094	0.783322	0.782572	0.789297	0.801063	0.800629	0.807568	0.821294	0.82569
18	0.757268	0.764096	0.759063	0.771988	0.779908	0.774694	0.775707	0.783127	0.782368	0.788638	0.800450	0.801630	0.807897	0.82024
19	0.752535	0.758217	0.766772	0.761376	0.772765	0.780398	0.776955	0.777520	0.784443	0.782847	0.789137	0.802929	0.802816	0.80799
20	0.751781	0.751194	0.757990	0.766829	0.760875	0.771479	0.780377	0.776530	0.776484	0.783898	0.781167	0.788763	0.801218	0.8020
fault_detected	0.667028	0.666130	0.668463	0.670146	0.669696	0.669190	0.671794	0.673588	0.674972	0.675330	0.675667	0.677753	0.681194	0.6817

Correlation matrix of the readings from the vibration sensors and the fault detection
data = FaultPandasFrame
plt.figure(figsize=(20,8))
sns.heatmap(data.corr(), annot = True)

Out[14]: <AxesSubplot:>

#Scatter plot matrix to show the realtionship between two variables of the parameters being read by the vibration sensor from pandas.plotting import scatter_matrix

scatter_matrix(FaultPandasFrame)

plt.gcf().set_size_inches(20,20)

plt.show()

df2 = FaultPandasFrame

#import pandas as pd

[#] We want to visualise the fault detection based on the vibration readings from each features

[#] To get a better visualisation, the vibration readings will be put into bins such that we capture from the minimum reading and the maximum reading

[#] First we can introduce a variable to hold the pandas dataframe create earlier df = FaultPandasFrame

	1	2	3	4	5	6	7	8	9	10	11
count	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000	9292.000000
mean	0.341623	0.342631	0.342121	0.342139	0.342843	0.342828	0.342715	0.343066	0.343173	0.343925	0.344108
std	0.289195	0.289088	0.289164	0.289164	0.288965	0.289089	0.289195	0.289192	0.289340	0.289012	0.289200
min	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375	0.024375
25%	0.064062	0.064609	0.064375	0.064375	0.065000	0.065000	0.064687	0.065312	0.065000	0.065937	0.066172
50%	0.342187	0.343750	0.342813	0.342031	0.343594	0.343750	0.342813	0.343125	0.342813	0.345000	0.345313
75%	0.618437	0.619062	0.619062	0.619062	0.619062	0.619062	0.619141	0.619687	0.619766	0.620000	0.620313
max	1.080938	1.213437	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938	1.080938

```
# Putting sensor readings into bins
bin_sensor_1 = [0, 0.2, 0.4, 0.6, 0.8, 1.0]
labels =['0-0.2', '0.2-0.4', '0.4-0.6', '0.6-0.8', '0.8-1.0']
df['binned_1'] = pd.cut(df['1'], bins=bin_sensor_1 , labels =labels)
plt.figure(figsize=(8,7))
sns.countplot(x='binned_1',hue='fault_detected', data = df)
plt.title(" Fault detected based on vibration readings from sensor 1", fontsize = 12)
plt.xlabel('vibration readings from sensor')
```

Out[20]: Text(0.5, 0, 'vibration readings from sensor')


```
# Cut vibration readings inti bin and show the percenatge of fault detected within each bin
bin_sen_1 = pd.cut(df['1'], bins=5, ordered=True)
sen1\_labels = [f'(\{interval.left\}, \{interval.right\}]' \ for \ interval \ in \ bin\_sen\_1.cat.categories]
df['bins_sen_1'] = bin_sen_1.cat.rename_categories(sen1_labels )
# Create countplot
plt.figure(figsize=(18, 6))
sns.set(font_scale=1.2)
ax = sns.countplot(x='bins_sen_1',hue='fault_detected', data= df)
ax.set_title('Percentage of fault detected by vibrations from sensor 1', fontsize=15)
plt.xlabel('Vibration', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation='horizontal')
# Annotate plot with percentages
total_counts = df.groupby('bins_sen_1')['fault_detected'].count().reset_index(name='count')
fault_counts = df.groupby(['bins_sen_1', 'fault_detected']).size().reset_index(name='fault_count')
for p, label in zip(ax.patches, ax.get_xticklabels()):
   height = p.get_height()
   bin_label = label.get_text()
   bin_counts = fault_counts[fault_counts['bins_sen_1'] == bin_label]['fault_count']
   total_count = total_counts[total_counts['bins_sen_1'] == bin_label]['count'].iloc[0]
   percentages = [count / total_count * 100 for count in bin_counts]
   percentage_str = ', '.join([f'{percentage:.2f}%' for percentage in percentages])
   ax.annotate(percentage_str, (p.get_x() + p.get_width() / 2, height),
                ha='center', va='bottom', color='black', size=12,
                xytext=(28, 0), textcoords='offset points')
plt.show()
```



```
# The percentage of fault within each bins
bins = [0, 0.2, 0.4, 0.6, 0.8, 1.0]
labels = ['0-0.2', '0.2-0.4', '0.4-0.6', '0.6-0.8', '0.8-1.0']
df['binned'] = pd.cut(df['1'], bins=bins, labels =labels)

# group by binned and calculate percentage of each fault_detected
grouped = df.groupby('binned')['fault_detected'].value_counts(normalize=True).reset_index(name='percentage')
plt.figure(figsize=(18, 6))

sns.barplot(x='binned',y ='percentage', hue='fault_detected', data = grouped)
plt.title("The percentage of fault detected within each bins in sensor 1", fontsize = 12)
plt.xlabel('vibration readings from sensor')
```

 ${\tt Out[23]: Text(0.5, \ 0, \ 'vibration \ readings \ from \ sensor')}$


```
#Let's visualise for some other sensors. We can choose sensor 8
bins = [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2]
labels =['0-0.2', '0.2-0.4', '0.4-0.6', '0.6-0.8', '0.8-1.0', '1.0-1.2']

df['binned'] = pd.cut(df['8'], bins=bins, labels =labels)
plt.figure(figsize=(18,6))
sns.countplot(x='binned',hue='fault_detected', data = df)
plt.title(" Fault detected based on vibration readings from sensor 8", fontsize = 12)
plt.xlabel('vibration readings from sensor')
```

Out[24]: Text(0.5, 0, 'vibration readings from sensor')


```
# The percentage of fault within each bins
#bins = [0, 0.25, 0.5, 0.75, 1.0, 1.25]
#labels = ['0-0.25', '0.25-0.50', '0.50-0.75', '0.75-1.0', '1.0-1.25']
bins = [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2]
labels = ['0-0.2', '0.2-0.4', '0.4-0.6', '0.6-0.8', '0.8-1.0', '1.0-1.2']
df['binned'] = pd.cut(df['8'], bins=bins, labels = labels)
# group by binned and calculate percentage of each fault_detected
grouped = df.groupby('binned')['fault_detected'].value_counts(normalize=True).reset_index(name='percentage')
plt.figure(figsize=(18,6))
sns.barplot(x='binned',y ='percentage', hue='fault_detected', data = grouped)
plt.title(" The percentage of fault within each bins in sensor 8 ", fontsize = 12)
plt.xlabel('vibration readings from sensor 8')
```

Out[26]: Text(0.5, 0, 'vibration readings from sensor 8')


```
# Cut vibration readings inti bin and show the percenatge of fault detected within each bin
bin_sen_8 = pd.cut(df['8'], bins=5, ordered=True)
sen8_labels = [f'({interval.left}, {interval.right}]' for interval in bin_sen_8.cat.categories]
df['bins_sen_8'] = bin_sen_8.cat.rename_categories(sen8_labels )
# Create countplot
plt.figure(figsize=(18, 6))
sns.set(font_scale=1.2)
ax = sns.countplot(x='bins_sen_8',hue='fault_detected', data= df)
ax.set_title('Percentage of fault detected by vibrations from sensor 8', fontsize=15)
plt.xlabel('Vibration', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation='horizontal')
# Annotate plot with percentages
total_counts = df.groupby('bins_sen_8')['fault_detected'].count().reset_index(name='count')
fault_counts = df.groupby(['bins_sen_8', 'fault_detected']).size().reset_index(name='fault_count')
for p, label in zip(ax.patches, ax.get_xticklabels()):
   height = p.get_height()
   bin_label = label.get_text()
   bin_counts = fault_counts[fault_counts['bins_sen_8'] == bin_label]['fault_count']
   total_count = total_counts[total_counts['bins_sen_8'] == bin_label]['count'].iloc[0]
   percentages = [count / total_count * 100 for count in bin_counts]
   percentage_str = ', '.join([f'{percentage:.2f}%' for percentage in percentages])
   ax.annotate(percentage_str, (p.get_x() + p.get_width() / 2, height),
               ha='center', va='bottom', color='black', size=12,
               xytext=(28, 0), textcoords='offset points')
```

plt.show()


```
bins = [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4]
labels =['0-0.2', '0.2-0.4', '0.4-0.6', '0.6-0.8', '0.8-1.0', '1.0-1.2', '1.2-1.4']
df['binned_14'] = pd.cut(df['14'], bins=bins, labels =labels)
plt.figure(figsize=(16,7))
sns.countplot(x='binned_14',hue='fault_detected', data = df)
plt.title(" Fault detected based on vibration readings from sensor 14", fontsize = 12)
plt.xlabel('vibration readings from sensor')
Out[28]: Text(0.5, 0, 'vibration readings from sensor')
```



```
# Cut vibration readings inti bin and show the percenatge of fault detected within each bin
bin_sen_14 = pd.cut(df['14'], bins=6, ordered=True)
sen14_labels = [f'({interval.left}, {interval.right}]' for interval in bin_sen_14.cat.categories]
df['bins_sen_14'] = bin_sen_14.cat.rename_categories(sen14_labels )
# Create countplot
plt.figure(figsize=(18, 6))
sns.set(font_scale=1.2)
ax = sns.countplot(x='bins_sen_14',hue='fault_detected', data= df)
ax.set_title('Percentage of fault detected by vibrations from sensor 14', fontsize=15)
plt.xlabel('Vibration', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation='horizontal')
# Annotate plot with percentages
total_counts = df.groupby('bins_sen_14')['fault_detected'].count().reset_index(name='count')
fault_counts = df.groupby(['bins_sen_14', 'fault_detected']).size().reset_index(name='fault_count')
for p, label in zip(ax.patches, ax.get_xticklabels()):
   height = p.get_height()
    bin_label = label.get_text()
   bin_counts = fault_counts[fault_counts['bins_sen_14'] == bin_label]['fault_count']
    total_count = total_counts[total_counts['bins_sen_14'] == bin_label]['count'].iloc[0]
   percentages = [count / total_count * 100 for count in bin_counts]
    percentage_str = ', '.join([f'{percentage:.2f}%' for percentage in percentages])
    ax.annotate(percentage_str, (p.get_x() + p.get_width() / 2, height),
                ha='center', va='bottom', color='black', size=12,
                xytext=(28, 0), textcoords='offset points')
```

plt.show()


```
plt.figure(figsize=(7,7))
sns.countplot(x='fault_detected', data = df2)
plt.title('Count of the outcome of detection', fontsize = 12)
```

Out[31]: Text(0.5, 1.0, 'Count of the outcome of detection')

#To check if their are duplicated values
#set(FaultPandasFrame.duplicated())

A box plot to show the outcome of fault detection based on the readings for each sensor
Readings from few sensors were checked: sensor 1, sensor 8 and sensor 14
plt.figure(figsize=(10,7))
sns.boxplot(y='1', x='fault_detected', data=df2)
plt.title('fault detection from sensor 1', fontsize = 12)

Out[33]: Text(0.5, 1.0, 'fault detection from sensor 1')

plt.figure(figsize=(10,7))
sns.boxplot(y='8', x='fault_detected', data=df2)
plt.title('fault detection from sensor 8', fontsize = 12)

Out[34]: Text(0.5, 1.0, 'fault detection from sensor 8')


```
plt.figure(figsize=(10,7))
sns.boxplot(y='14', x='fault_detected', data=df2)
plt.title('fault detection from sensor 14', fontsize = 12)
```

Out[35]: Text(0.5, 1.0, 'fault detection from sensor 14')

Using the DataFrame created intiallly for further EDA
FaultsDF.printSchema()

```
root
|-- 1: double (nullable = true)
|-- 2: double (nullable = true)
|-- 3: double (nullable = true)
|-- 4: double (nullable = true)
|-- 5: double (nullable = true)
|-- 6: double (nullable = true)
|-- 7: double (nullable = true)
|-- 8: double (nullable = true)
|-- 9: double (nullable = true)
|-- 10: double (nullable = true)
|-- 11: double (nullable = true)
```

```
|-- 12: double (nullable = true)
|-- 13: double (nullable = true)
|-- 14: double (nullable = true)
|-- 15: double (nullable = true)
|-- 16: double (nullable = true)
|-- 17: double (nullable = true)
|-- 18: double (nullable = true)
|-- 19: double (nullable = true)
```

FaultsDF.describe().display()

	summary	1	2	3	4	5
1	count	9292	9292	9292	9292	9292
2	mean	0.34162330499354226	0.34263116121394677	0.3421213812957383	0.34213907124407966	0.34284344059405
3	stddev	0.28919489486260785	0.2890875372793958	0.28916422490616933	0.28916356333107296	0.28896465544038
4	min	0.024375	0.024375	0.024375	0.024375	0.024375
5	max	1.0809375	1.2134375	1.0809375	1.0809375	1.0809375

- # Let's also see the distribution of the result from the fault detected if the class is balance or not
- # here the count function will be imported so that we can use it to count to outcome of each class of result from pyspark.sql.functions import count as _count
- # To check Class balance
 FaultsDF.groupBy("fault_detected").agg(_count("*")).display()

Table		
	fault_detected	count(1)
1	1	4646
2	0	4646
2 rows		

- # Importing some functions to help with further EDA from pyspark.sql.functions import isnan, when, count, col
- # Checking if there are missing values in each column
 FaultsDF.select([_count(when(isnan(c), c)).alias(c) for c in FaultsDF.columns]).display()

Table																	
	1	2	_	3	_	4	_	5	_	6	_	7	_	8	_	9	_
1	0	0		0		0		0		0		0		0		0	
1 row																	

Checking if there are missing values in each column
FaultsDF.select([_count(when(isnan(c), c)).alias(c) for c in FaultsDF.columns]).show()

+-	+-	+-	+-	+-	+-	+-	+-	+-	+	+	+	+	+	+	+	+	+	+	+	+	+
																					nult_detected
+-	+-	+-	+-	+-	+-	+-	+-	+-	+	+	+-	+	+	+-	+	+	+	+	+	+	+
	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+-	+-	+-	+-	+-	+-	+-	+-	+-	+	+	+	+	+	+	+	+	+	+	+	+	+

```
duplicates_ = FaultsDF.groupBy(FaultsDF.columns).count().filter(col("count") > 1)
print("Duplicates based on all columns:")
duplicates_.display()
```

Duplicates based on all columns:

	1 ^	2	3	4	5 📤	6	7 📤	8	9
1	0.035625	0.0359375	0.0315625	0.035625	0.0365625	0.03625	0.040625	0.0409375	0.0421875
2	0.09875	0.09875	0.0978125	0.1028125	0.1003125	0.09625	0.1015625	0.10125	0.096875
3	0.0346875	0.036875	0.0353125	0.03875	0.0334375	0.0359375	0.0390625	0.0334375	0.03625
4	0.10625	0.10625	0.1021875	0.0971875	0.101875	0.1065625	0.1040625	0.101875	0.104375
5	0.1009375	0.1040625	0.101875	0.1078125	0.10875	0.1059375	0.1096875	0.111875	0.110625
6	0.035625	0.0334375	0.034375	0.03875	0.03875	0.0359375	0.03375	0.0346875	0.0375
7	0.4028125	0.3915625	0.3915625	0.384375	0.3859375	0.3871875	0.3975	0.398125	0.3896875

To confirm the number of rows and the distinct number of rows so we can identify if there is duplicated rows and see how many they are row_count = FaultsDF.count()

distinct_count = FaultsDF.distinct().count()

print(row_count)

print(distinct_count)

9292 8968

print(row_count - distinct_count)

324

To remove duplicated rows and keep only distinct rows

FaultsDF_drop = FaultsDF.distinct()

 \sharp To confirm that we now have 8968 rows since we have dropped the duplicated rows FaultsDF_drop_count = FaultsDF_drop.distinct().count() FaultsDF_drop_count

Out[47]: 8968

FaultsDF_drop.display()

	1	2	3	4	5	6	7	8	9	
1	0.3634375	0.3665625	0.370625	0.369375	0.368125	0.3678125	0.3803125	0.37625	0.3809375	
2	0.03875	0.03	0.0321875	0.0396875	0.0384375	0.031875	0.0384375	0.0384375	0.034375	
3	0.1428125	0.1459375	0.1346875	0.1315625	0.130625	0.1346875	0.155	0.12625	0.1765625	
4	0.033125	0.025	0.0303125	0.026875	0.033125	0.0328125	0.025	0.0290625	0.0328125	
5	0.03375	0.0390625	0.03125	0.0390625	0.0384375	0.0390625	0.0325	0.03875	0.03625	
6	0.0328125	0.0340625	0.031875	0.03625	0.0378125	0.038125	0.0359375	0.035625	0.034375	
7	0.033125	0.0378125	0.0340625	0.03875	0.0325	0.0325	0.035	0.03375	0.03125	

	summary 📤	1 📤	2	3	4	5
1	count	8968	8968	8968	8968	8968
2	mean	0.3487404870093662	0.3496980932203395	0.34913992807760935	0.3491733455062442	0.350025402821142
3	stddev	0.29091106336065264	0.2907930998830016	0.29090468940487874	0.29089397507061654	0.2906356318628472
4	min	0.024375	0.024375	0.024375	0.024375	0.024375
5	max	1.0809375	1.2134375	1.0809375	1.0809375	1.0809375

from pyspark.ml.feature import RFormula
Process = RFormula(formula= "fault_detected ~ .")
FaultDF = Process.fit(FaultsDF_drop).transform(FaultsDF_drop)

2023/05/29 12:47:09 INFO mlflow.utils.autologging_utils: Created MLflow autologging run with ID '59347b1de50248eab25fecf8 5513b4a4', which will track hyperparameters, performance metrics, model artifacts, and lineage information for the curren t pyspark.ml workflow

#FaultDF.display(10)

To split the data into training and testing data

(trainingDF, testingDF) = FaultDF.randomSplit([0.75, 0.25], seed =50)

Training the model

Using DecisionTreeClassifier

from pyspark.ml.classification import DecisionTreeClassifier

dt = DecisionTreeClassifier(labelCol="label", featuresCol="features")

model = dt.fit(trainingDF)

2023/05/29 12:47:11 INFO mlflow.utils.autologging_utils: Created MLflow autologging run with ID '4e74d60dd047452c9a348bba df204f86', which will track hyperparameters, performance metrics, model artifacts, and lineage information for the curren t pyspark.ml workflow

2023/05/29 12:48:25 WARNING mlflow.pyspark.ml: Model inputs contain unsupported Spark data types: [StructField('feature s', VectorUDT(), True)]. Model signature is not logged.

2023/05/29 12:48:29 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model().

2023/05/29 12:49:28 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: "/databricks/pytho n/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils."

To make predictions with the trained model
predictions = model.transform(testingDF)
predictions.show()

+	+										+	+
+ 13 edict	1 14 ion	2 15 probabil	3 16 Lity predi	-+	+ 5 18	6 19	7 20 fa	8 ault_dete	9 cted	10 fea		,
+ 0.030 3151 0.02 0.033 [315 0.0 0.033 [315 0.025	+		00625 0.026 00625 0.026 03484848 02625 0 0875 0. 08875 0. 03125 0.03 03175 0.029 034848488 02875 0.034	+	+ 53125 0.0284 0 96875 0.033 4375 0.025 .0 15625 0.03 .0 29375 0.028	59375 0.03 375 0.03 53125 0.03 9375 0.6 02875 0.02 1875 0.031	28125 0.0 125 0.027 28125 0.0 3125 0.0 78125 0.0 5625 0.03	340625 1875 265625 02875 034375 15625	0.03375 0 (0.03125 0 0.03125	.0309375 0 0 [0.02625 .0328125 (1 [0.0265(0.0375 (0 [0.0268'	.0309375 0 ,0.025625 0.029375 0.0 625,0.0284 0.030625 0.0 75,0.03468 .0265625 0.0	0.034375 0.09 1.00 1.00 0.03625 0.00
+	tions.show	+									+	+
 13 ction	1 14 p	2 15 robability	3 16 / predicti	+ 4 17 on	5 18	6 19	7 20 faul ⁻	8 t_detecte	9 d	10 featur	11 res label r	12 rawPredi
0.0 0.0300 51.0,1 0.020 03343 1.0,14		5625 0.029 75 0.0293 5484848484 4375 0.6 5 0.029687 4848484848		-++ 65625 0.031 75 0.0306; 0.0 .0325 0.025 5 0.0284373 0.0	53125 0.029 53125 0.02843 96875 0.039 5 0.025937	-++ 59375 0.03 75 0.03125 53125 0.03 5 0.03125	28125 0.03 0.027187 28125 0.03 0.02875	+ 340625 0. 5 265625 0. 	03375 0.03 0 [0 03125 0.03 1 [0.	309375 0.03 0.02625,0.6 328125 0.6 0265625,0.	309375 0.03 025625 029375 0.028 .0284	34375 0.0 [31 34375 0.

predictions.display()

Tabl	Table										
	1 4	2	3	4	5 📤	6	7 📤	8 📤	9		
1	0.02625	0.025625	0.0290625	0.0265625	0.0353125	0.0259375	0.0328125	0.0340625	0.03375		
2	0.0265625	0.0284375	0.02625	0.0325	0.0296875	0.0353125	0.0328125	0.0265625	0.03125		
3	0.026875	0.0346875	0.03125	0.0303125	0.0315625	0.02875	0.0278125	0.034375	0.0325		
4	0.0278125	0.0275	0.02875	0.035	0.029375	0.0284375	0.028125	0.0340625	0.030625		
5	0.0278125	0.0284375	0.0271875	0.0284375	0.0309375	0.0309375	0.02875	0.0340625	0.0296875		
6	0.0278125	0.03	0.0284375	0.029375	0.02875	0.03125	0.0325	0.0290625	0.02625		
7	0.0278125	0.038125	0.036875	0.1553125	0.1696875	0.1809375	0.189375	0.176875	0.1646875		

```
# To evaluate the accuracy of predictiosn made by the model, we can use the multiclass classificationevaluator
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = \texttt{MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")}
accuracy = evaluator.evaluate(predictions)
print("Accuracy score: %g " %(accuracy))
Accuracy score: 0.968071
# Using MLflow to track experiment
from pyspark.ml.tuning import ParamGridBuilder, TrainValidationSplit
from\ pyspark.ml.evaluation\ import\ Multiclass Classification Evaluator
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.sql.functions import col
# start an MLflow run and giving it a name for easy identification in the logs
with mlflow.start_run(run_name="decision_tree_classification") as run:
    # create an instance of decision tree classifier
   dt = DecisionTreeClassifier(featuresCol="features", labelCol="label")
    # creating a parameter grid of different values
    paramGrid = (ParamGridBuilder()
                 .addGrid(dt.maxDepth, [7,9])
                 .addGrid(dt.maxBins, [12,32])
                 .addGrid(dt.impurity, ['gini', 'entropy'])
                 .build())
    # creating a TrainValidationSplit object
    tvs = TrainValidationSplit(estimator=dt,
                               estimatorParamMaps=paramGrid,
                               evaluator=MulticlassClassificationEvaluator()
    # fit the model
    model = tvs.fit(trainingDF)
    # retrieving a dictionary of the hyperparameters and values of the best model
    best_parameters = model.bestModel.extractParamMap()
    # log the best model parameters
    for param, value in best_parameters.items():
       with mlflow.start_run(nested=True):
           mlflow.log_param("depth", 7)
       with mlflow.start_run(nested=True):
           mlflow.log_param("depth", 9)
    # The best trained model
    best_model_1=model.bestModel
    # using the best model on the testing data and evaluating the accuracy
    evaluator = MulticlassClassificationEvaluator(labelCol="label",
                                                  predictionCol="prediction",
                                                  metricName="accuracy")
    accuracy_1 = evaluator.evaluate(best_model_1.transform(testingDF))
    # log the accuracy of the best model
    mlflow.log_metric("accuracy", accuracy_1)
    # end the MLflow run
    mlflow.end_run()
```

2023/05/29 13:10:07 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log model().

2023/05/29 13:11:19 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model().

print(accuracy_1)

0.98181818181818

To get the best parameters
print("Tuned parameters for the best model: ")
print("MaxDepth: %g" %best_model_1.getMaxDepth())
print("MaxBins: %g" %best_model_1.getMaxBins())
print("Impurity: %s" %best_model_1.getImpurity())

Tuned parameters for the best model:

MaxDepth: 9
MaxBins: 32
Impurity: entropy

RandomForest Classifier

Splitting data for RandomForest classification models
(trainingDF2, testingDF2) = FaultDF.randomSplit([0.75, 0.25], seed =20)

from pyspark.ml.classification import RandomForestClassifier

creating an instance of random forest classifier and fitting it into the training data
rf = RandomForestClassifier(labelCol="label", featuresCol="features")
model2=rf.fit(trainingDF2)

2023/05/29 13:12:35 INFO mlflow.utils.autologging_utils: Created MLflow autologging run with ID '35931319b9124ed586990c55 76539974', which will track hyperparameters, performance metrics, model artifacts, and lineage information for the curren t pyspark.ml workflow

2023/05/29 13:14:38 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model().

Making predictions with the Random Forest classifer model
predictions2 = model2.transform(testingDF2)
predictions2.show()

```
 \left| 0.0265625 \right| 0.0296875 \left| 0.0278125 \right| \quad 0.0275 \left| \quad 0.02875 \right| \quad 0.035 \left| \quad 0.029375 \right| 0.0284375 \left| \quad 0.028125 \right| 0.0340625 \left| \quad 0.030625 \right| 0.0315625 \left| \quad 0.02875 \right| 0.028125 \left| \quad 0.028125 \right|
0.0265625|0.0253125|0.0259375|0.0284375|0.0296875|0.0340625|0.0328125|0.0328125|
                                                                                                                                                                                                                                                                                                                               1|[0.0265625,0.0296...| 1.0
|[19.0147178961624...|[0.95073589480812...|
                                                                                                                                                                      0.01
  \left| 0.0265625 \right| 0.0296875 \right| 0.0278125 \right| 0.0284375 \right| 0.0271875 \right| 0.0284375 \\ \left| 0.0284375 \right| 0.0309375 \\ \left| 0.0309375 \right| 0.02875 \\ \left| 0.0340625 \right| 0.0296875 \\ \left| 0.03125 \right| 0.03125 \\ \left| 0.0312
0.0359375| 0.671875|0.0640625| 0.07|0.0603125|0.0778125|0.0984375| 0.07875|
                                                                                                                                                                                                                                                                                                                          1|[0.0265625,0.0296...| 1.0
#predictions2.display()
# Evaluating accuracy of the randomForestClassifier without hyperparameter tuning
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")
accuracyRF = evaluator.evaluate(predictions2)
print("Accuracy score: ", accuracyRF)
Accuracy score: 0.9777979157227005
# Random Forest classifier model using several hyperparameters and getting the best model
with mlflow.start_run(run_name="random_forest_classification") as run:
              # create an instance of Random Forest classifier
             rf = RandomForestClassifier(labelCol="label", featuresCol="features")
              # parameter grid with different values
             RFParamGrid = (ParamGridBuilder()
                                                          .addGrid(rf.numTrees, [10,15])
                                                          .addGrid(rf.maxDepth, [9,13])
                                                          .build())
             # create a TrainValidationSplit object
             RFtvs = TrainValidationSplit(estimator=rf,
                                                                                                          estimatorParamMaps=RFParamGrid,
                                                                                                          evaluator=MulticlassClassificationEvaluator()
             # fit the model and retrieve the best model
             model = RFtvs.fit(trainingDF2)
             # retrieving a dictionary of hyperparameters and values of the best model
             best_parameters = model.bestModel.extractParamMap()
             # log the best model parameters
             for param, value in best_parameters.items():
                           with mlflow.start_run(nested=True):
                                        mlflow.log_param("depth", 9)
                           with mlflow.start run(nested=True):
                                        mlflow.log_param("depth", 13)
                # The best trained model
             best_model_2 =model.bestModel
             # using the best model on the testing data
             evaluator = MulticlassClassificationEvaluator(labelCol="label",
                                                                                                                                                                           predictionCol="prediction",
                                                                                                                                                                           metricName="accuracy")
             accuracy_2 = evaluator.evaluate(best_model_2.transform(testingDF2))
             # log the accuracy of the best model
             mlflow.log_metric("accuracy", accuracy_2)
             # end the MLflow run
             mlflow.end_run()
```

2023/05/29 13:41:23 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model().

```
2023/05/29 13:42:36 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artif act repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model().

# Accuracy using the best model
print(accuracy_2)

0.9841413683733575
```

Parameters of best model from Random forest classifier
print("Tuned parameters for the best model: ")
print("MaxDepth: ", best_model_2.getMaxDepth())
print("numTrees: ", best_model_2.getNumTrees)

Tuned parameters for the best model:
MaxDepth: 9
numTrees: 15