SỞ GIÁO DỤC VÀ ĐÀO TẠO CAO BẰNG

ĐỀ THI CHỌN HỌC SINH GIỚI CẤP HUYỆN LỚP 12 THPT NĂM HỌC 2017 – 2018

MÔN: TOÁN

ĐỀ CHÍNH THỰC

Thời gian: 180 phút (không kể thời gian giao đề) (Đề gồm 01 trang)

Câu 1: (4,0 điểm)

a. Tìm các giá trị của tham số m để hàm số $y = \frac{x^3}{3} - 2x^2 + mx - 1$ có hai điểm cực trị x_1 , x_2 thỏa mãn: $|x_1 - x_2| = 2$.

b. Cho hàm số $y = \frac{x+3}{x+1}$ có đồ thị (C). Tìm các giá trị của tham số m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho AB = 5. **Câu 2**: (4,0 điểm)

a. Giải phương trình: $\sqrt{x} + \sqrt{x+1} - \sqrt{x^2 + x} = 1$
b. Giải hệ phương trình: $\begin{cases} y^3 + y - 2 = x(x^2 + 3x + 4) \\ x^2 + y^2 = 5 \end{cases}$

Câu 3: (2,0 điểm)

Giải phương trình: $\cos x(4\sin x + \sqrt{3}) = \sin x$

Câu 4: (2,0 điểm)

Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn.

Câu 5: (4,0 điểm)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60° .

a. Tính thể tích khối chóp S.ABCD.

b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC).

Câu 6: (2,0 điểm)

Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M(-3;0) là trung điểm của cạnh AB, điểm H(0;-1) là hình chiếu vuông góc của B

trên AD và điểm $G\left(\frac{4}{3};3\right)$ là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.

Câu 7: (2,0 điểm)

Cho x, y, z là các số thực dương thỏa mãn $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le 3$. Chứng minh rằng:

$$\frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le \frac{3}{4}.$$

Hết ______Hết ______ (Thí sinh không được sử dụng tài liệu, giám thị không giải thích gì thêm)

Họ và tên thí sinh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo danh: Số báo danh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo danh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo danh: Số báo danh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo danh: Số báo danh: Số báo danh: Họ tên, chữ ký của giám thị 1: Số báo danh: Số báo

SỞ GIÁO DỤC VÀ ĐÀO TẠO CAO BẰNG

HƯỚNG DẪN CHẨM ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN LỚP 12 THPT NĂM HỌC 2017 - 2018

ĐỀ CHÍNH THỰC

Môn: TOÁN (Hướng dẫn chấm có 05 trang)

I. Hướng dẫn chung:

- 1. Điểm của bài thi theo thang điểm 20, phần lẻ được tính đến 0,25 điểm. Giám khảo giữ nguyên điểm lẻ, không được làm tròn điểm.
- 2. Việc chi tiết hóa (nếu có) thang điểm trong hướng dẫn chấm phải đảm bảo không làm sai lệch hướng dẫn chấm.
- 3. Nếu thí sinh làm bài không theo cách nêu trong hướng dẫn chấm nhưng giải theo cách khác mà lập luận chặt chẽ, tính toán chính xác thì vẫn cho đủ số điểm từng phần như hướng dẫn quy định.

II. Đáp án và thang điểm:

Câu	ý	Đáp án	Điểm
1	a	Tập xác định: $D = \mathbb{R}$.	0,25
(4,0 đ)		$y' = x^2 - 4x + m$; $y' = 0 \Leftrightarrow x^2 - 4x + m = 0$ (*)	0,25
		Hàm số đã cho có hai điểm cực trị x_1 , x_2	
		⇔ Phương trình (*) có hai nghiệm phân biệt	0,5
		$\Leftrightarrow \Delta' > 0 \Leftrightarrow 4 - m > 0 \Leftrightarrow m < 4.$	
		Ta có:	
		$\left x_{1}-x_{2}\right =2 \Leftrightarrow \left(x_{1}-x_{2}\right)^{2}=4$	0,5
		$\Leftrightarrow (x_1 + x_2)^2 - 4x_1x_2 - 4 = 0$	
		\Leftrightarrow 12 – 4 $m = 0 \Leftrightarrow m = 3$ (thỏa mãn điều kiện).	0,5
		Vậy giá trị cần tìm là $m=3$.	0,5
	b	Phương trình hoành độ giao điểm:	
		$\frac{x+3}{x+1} = 2x + m$	
		x+1	0,5
		$\left[-2x^2 - (m+1)x + 3 - m = 0\right]$	0,5
		$\Leftrightarrow \begin{cases} -2x^2 - (m+1)x + 3 - m = 0 \\ x \neq -1 \end{cases} $ (*)	
		Đường thẳng (d) cắt đồ thị (C) tại hai điểm phân biệt \Leftrightarrow $(*)$ có hai	
		nghiệm phân biệt.	
		Ta có: $\begin{cases} \Delta = m^2 - 6m + 25 > 0 \\ -2.(-1)^2 - (m+1).(-1) + 3 - m \neq 0 \end{cases} \Leftrightarrow \forall m \in \mathbb{R}.$	0,5
		Suy ra (d) và (C) luôn cắt nhau tại 2 điểm phân biệt A, B .	

		Khi đó: $A(x_A; 2x_A + m), B(x_B; 2x_B + m)$.	
		2 2	
		Ta có:	0.25
		AB = 5	0,25
		$\Leftrightarrow \sqrt{(x_B - x_A)^2 + 4(x_B - x_A)^2} = 5$	
		$\Leftrightarrow (x_B - x_A)^2 + 4(x_B - x_A)^2 = 25$	
		$\iff (x_B - x_A)^2 = 5$	0,25
		$\Leftrightarrow (x_A + x_B)^2 - 4x_A x_B - 5 = 0$	
		$\Leftrightarrow \frac{(m+1)^2}{4} + 2(3-m) - 5 = 0$	
		$\Leftrightarrow m^2 - 6m + 5 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = 5 \end{bmatrix}$	0,5
		Vậy giá trị cần tìm là $m=1$; $m=5$.	
2	a	Điều kiện: $x \ge 0$.	0,25
(4,0 đ)		Ta có:	
		$\sqrt{x} + \sqrt{x+1} - \sqrt{x^2 + x} = 1$	0,5
		$\Leftrightarrow (\sqrt{x} - 1)(1 - \sqrt{x + 1}) = 0$	
		$\sqrt{x} = 1$	
		$\Leftrightarrow \begin{bmatrix} \sqrt{x} = 1 \\ \sqrt{x+1} = 1 \end{bmatrix}$	0,5
		$\Leftrightarrow \begin{bmatrix} x=1 \\ x=0 \end{bmatrix}$	0.7
		$\Leftrightarrow x = 0$	0,5
		Kết hợp với điều kiện ta có nghiệm của phương trình đã cho là $x = 0$; $x = 1$.	0,25
	b	Ta có:	
		$y^3 + y - 2 = x(x^2 + 3x + 4) \Leftrightarrow y^3 + y = (x+1)^3 + (x+1)$	0,5
		Xét hàm số $f(t) = t^3 + t$ trên \mathbb{R} . Với mọi $t \in \mathbb{R}$, $f'(t) = 3t^2 + 1 > 0$.	0.25
		Suy ra $f(t)$ đồng biến trên \mathbb{R} .	0,25
		Do đó $y^3 + y = (x+1)^3 + (x+1) \Leftrightarrow f(y) = f(x+1) \Leftrightarrow y = x+1$.	0,25
		Thế $y = x + 1$ vào phương trình thứ hai của hệ ta được:	
		$x^{2} + (x+1)^{2} = 5 \Leftrightarrow 2x^{2} + 2x - 4 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -2 \end{bmatrix}$	0,5
		Với $x=1 \Rightarrow y=2$	
		Với $x = -2 \Rightarrow y = -1$	0,5
		Vậy hệ đã cho có nghiệm là (1;2); (-2;-1).	

3	Ta có:	
(2,0đ)	$\cos x(4\sin x + \sqrt{3}) = \sin x$	0.5
		0,5
	$\Leftrightarrow 2\sin 2x = \sin x - \sqrt{3}\cos x$	
	$\Leftrightarrow \sin 2x = \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x$	0,25
	$\Leftrightarrow \sin 2x = \cos \frac{\pi}{3} \sin x - \sin \frac{\pi}{3} \cos x$	
	$\Leftrightarrow \sin 2x = \sin \left(x - \frac{\pi}{3} \right)$	0,25
	$\Leftrightarrow 2x = \left(x - \frac{\pi}{3}\right) + k2\pi$ $2x = \pi - \left(x - \frac{\pi}{3}\right) + k2\pi$	0,5
	$2x = \pi - \left(x - \frac{\pi}{3}\right) + k2\pi$	
	$\Leftrightarrow \begin{cases} x = -\frac{\pi}{3} + k2\pi \\ x = \frac{4\pi}{3} + k\frac{2\pi}{3} \end{cases} (k \in \mathbb{Z}).$	0,5
	$x = \frac{4\pi}{9} + k\frac{2\pi}{3}$	0,5
4	Chọn 6 học sinh giỏi bất kì có C_{12}^6 cách $\Rightarrow n(\Omega) = C_{12}^6$.	0,5
(2,0đ)	Số cách chọn 6 học sinh giỏi mà trong đó không có học sinh khối 10	
	là C_9^6 .	
	Số cách chọn 6 học sinh giỏi mà trong đó không có học sinh khối 11 là C_8^6 .	0,5
	Số cách chọn 6 học sinh giỏi mà trong đó không có học sinh khối 12 là C_7^6 .	
	Gọi A:"Cả ba khối đều có học sinh được chọn"	
	$\Rightarrow n(A) = C_{12}^6 - (C_9^6 + C_8^6 + C_7^6)$	0,5
	Vậy $P(A) = \frac{n(A)}{n(\Omega)} = \frac{C_{12}^6 - (C_9^6 + C_8^6 + C_7^6)}{C_{12}^6} = \frac{115}{132}.$	0,5
5	a s	
(4,0đ)		
	H A D	0,25
	B C	

	+ Diện tích hình vuông $ABCD$ là $S_{ABCD} = a^2$.	0,25
	+ Gọi I là giao điểm của AC và $BD \Rightarrow \begin{cases} AI \perp BD \\ SI \perp BD \end{cases} \Rightarrow \widehat{SIA} = 60^{\circ}$	0,5
	Suy ra $SA = AI \cdot \tan \widehat{SIA} = \frac{a\sqrt{6}}{2}$.	0,5
	Vậy $V_{S.ABCD} = \frac{1}{3} S_{ABCD}.SA = \frac{a^3 \sqrt{6}}{6}.$	0,5
	b Ta có: $AD / (SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))$.	0,5
	Gọi H là hình chiếu vuông góc của A trên SB , suy ra $ \begin{cases} AH \perp SB \\ AH \perp BC \end{cases} \Rightarrow AH \perp (SBC) \Rightarrow AH = d(A, (SBC)). $	0,5
	Trong tam giác vuông SAB có: $\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AB^2} = \frac{5}{3a^2} \Rightarrow AH^2 = \frac{3a^2}{5}.$	0,5
	Vậy $d(D,(SBC)) = d(A,(SBC)) = AH = \frac{a\sqrt{15}}{5}$.	0,5
6 (2,0đ)	$ \frac{E}{A} = \frac{B}{H} = B$	0,5
	Đường thẳng BC đi qua E và nhận \overrightarrow{EF} làm vectơ chỉ phương, nên phương trình đường thẳng BC là $x-2y+8=0$. Đường thẳng BH đi qua H và nhận \overrightarrow{EF} làm vectơ pháp tuyến, nên phương trình đường thẳng BH là $2x+y+1=0$.	0.25
	Do <i>B</i> là giao điểm của <i>BH</i> và <i>BC</i> nên tọa độ điểm <i>B</i> thỏa mãn hợphương trình $\begin{cases} x - 2y + 8 = 0 \\ 2x + y + 1 = 0 \end{cases} \Rightarrow B(-2;3).$	0,25
	Do M là trung điểm của AB nên $A(-4;-3)$. Gọi I là giao điểm của AC và BD , suy ra $\overrightarrow{GA} = 4\overrightarrow{GI}$. Do đó $I\left(0;\frac{3}{2}\right)$.	a 0,5
	Do I là trung điểm của đoạn BD , nên $D(2;0)$.	0,5

7 (2,0đ)	Với $a,b > 0$ ta có: $4ab \le (a+b)^2 \Leftrightarrow \frac{1}{a+b} \le \frac{a+b}{4ab} \Leftrightarrow \frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b}\right).$ Dấu "=" xảy ra khi và chỉ khi $a = b$.	0,5
	Áp dụng kết quả trên ta có:	
	$\left \frac{1}{2x+y+z} \le \frac{1}{4} \left(\frac{1}{2x} + \frac{1}{y+z} \right) \le \frac{1}{4} \left[\frac{1}{2x} + \frac{1}{4} \left(\frac{1}{y} + \frac{1}{z} \right) \right] = \frac{1}{8} \left(\frac{1}{x} + \frac{1}{2y} + \frac{1}{2z} \right).$	
	$\Leftrightarrow \frac{1}{2x+y+z} \le \frac{1}{8} \left(\frac{1}{x} + \frac{1}{2y} + \frac{1}{2z} \right) \tag{1}$	0,5
	Dấu "=" xảy ra khi $\begin{cases} 2x = y + z \\ y = z \end{cases} \Leftrightarrow x = y = z.$	
	Tương tự:	
	$\frac{1}{x+2y+z} \le \frac{1}{8} \left(\frac{1}{y} + \frac{1}{2z} + \frac{1}{2x} \right) $ (2) Dấu "=" xảy ra khi $x = y = z$.	0,5
	$\frac{1}{x+y+2z} \le \frac{1}{8} \left(\frac{1}{z} + \frac{1}{2x} + \frac{1}{2y} \right) $ (3) Dấu "=" xảy ra khi $x = y = z$.	
	Từ (1), (2) và (3) ta có:	
	$\left \frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le \frac{1}{4} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) \le \frac{3}{4}.\right $	
	$\int x = y = z$	
	Dấu "=" xảy ra khi $\left\{ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3 \right\} \Leftrightarrow x = y = z = 1.$	0,5
	Vậy với x , y , z là các số thực dương thỏa mãn $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le 3$ ta luôn có:	
	$\frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le \frac{3}{4}.$	
	Đẳng thức xảy ra khi $x = y = z = 1$.	

Hết