Математический анализ, 1 курс, 2 семестр, 2002/2003 г.

Вариант (31)

1.4) df = -dx; $d^2f = 2(dx)^2$; $f(x,y) = 1 - (x-1) + (x-1)^2 + o((x-1)^2 + (y-\pi)^2)$.

2.3)
$$V = \frac{\pi^4}{6}$$
.

- 3.⑤ $f'_x(0,0) = f'_y(0,0) = 0$, дифференцируемая.
- 4.4) Сходится при $\alpha \in \left[1; \frac{7}{6}\right]$.
- 5.(5) Сходится условно.
- 6. (3) Расходится.
- 7.(5) $f(x) = x^3$; сходится равномерно на (0;1); неравномерно на $(1;+\infty)$.
- 8.4 Сходится равномерно на $(1; +\infty)$; неравномерно на (0; 1).

9.3
$$f(x) = \frac{\pi}{4} + \sum_{k=0}^{\infty} C_{-\frac{1}{2}}^{k} (-1)^{k} \frac{x^{4k+2}}{2^{4k+2}(4k+2)}$$
; $R = 2$.

10.7 f(x) — не является равномерно непрерывной; g(x) — равномерно непрерывна.

Математический анализ, 1 курс, 2 семестр, 2002/2003 г. Вариант (32)

1.4
$$df = dx$$
; $d^2f = (dx)^2 - 2dx dy$; $f(x,y) = 1 + x + \frac{1}{2}x^2 - x(y-1) + o(x^2 + (y-1)^2)$.

2.3)
$$S = \left(\frac{3}{16} + \frac{1}{4} \ln 2\right) \sqrt{2}\pi$$
.

- \frown 3.⑤ $f'_x(0,0) = f'_y(0,0) = 0$, дифференцируемая.
- 4.4 Сходится при $\alpha \in \left[-\frac{1}{2}:0\right)$.
 - 5.(5) Сходится условно.
 - 6. 3 Сходится.
 - 7.⑤ $f(x) = \frac{1}{x+1}$; сходится равномерно на $(1:+\infty)$; неравномерно на (0:1) .
 - 8.4) Сходится равномерно на (0;1); неравномерно на $(1;+\infty)$.

9.3)
$$f(x) = \frac{\pi}{2} + \sum_{k=0}^{\infty} C_{-\frac{1}{2}}^{k} (-1)^{k} \frac{\sqrt[3]{2k+1}}{3^{2k+1}(2k+1)}$$
; $R = 3$.

Математический анализ, 1 курс, 2 семестр, 2002/2003 г.

Вариант (33)

1.4)
$$df = -dy$$
; $d^2f = 2(dy)^2$;
 $f(x,y) = 1 - (y-1) + (y-1)^2 + o\left(\left(x + \frac{\pi}{2}\right)^2 + (y-1)^2\right)$.

2.3)
$$L = \ln \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$
.

- 3.(5) $f'_x(0,0) = f'_y(0,0) = 0$, дифференцируемая.
- **4.④** Сходится при $\alpha \in (0; 4]$.
- 5.(5) Сходится условно.
- **6.③** Сходится.
- 7.(5) $f(x) = x^2$; сходится равномерно на (0;1); неравномерно на $(1;+\infty)$.
- 8.④ Сходится равномерно на $(1;+\infty)$; неравномерно на (0;1).

9.3)
$$f(x) = \frac{\pi}{2} - \sum_{k=0}^{\infty} C_{-\frac{1}{2}}^{k} \cdot 6 \cdot 4^k \frac{x^{6k+3}}{6k+3}$$
; $R = \frac{1}{\sqrt[3]{2}}$.

10.(5) f(x) — не является равномерно непрерывной; g(x) — равномерно непрерывна.

Математический анализ, 1 курс. 2 семестр, 2002/2003 г.

Вариант (34)

1. (a)
$$df = dx$$
; $d^2f = -(dy)^2$; $f(x,y) = (x-1) - \frac{1}{2}(y)^2 + o((x-1)^2 + (y)^2)$.

$$2.3) \quad S = \frac{3\pi}{16} + \frac{3}{2} \ .$$

- 3.5) $f'_x(0,0) = f'_y(0,0) = 0$, лифференцируемая.
- 4.**4**) Сходится при $\alpha \in [-2; 0)$.
- 5.(5) Сходится условно.
- 6.(3) Расходится.
- 7.5) $f(x) = \ln x$; сходится разнемерно на $(1; +\infty)$; неравномерно на (0; 1).
- 8.④) Сходится равномерно на (0:1); перавномерно на $(1;+\infty)$.

9.3)
$$f(x) = \frac{\pi}{2}x^2 + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+3}}{4^k(2k+1)}$$
: $R = 2$.

10.7 f(x) — равномерно непрерывна: g(x) — не является равномерно непрерывной.