## Uppsala Universitet Matematiska Institutionen Ernst Dieterich, Thomas Erlandsson

## 2012-06-05 LINJÄR ALGEBRA II LINJÄR ALGEBRA 1MA722

Skrivtid: 8.00–13.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

- 1. (a) Låt  $T: \mathbb{R}^3 \to \mathbb{R}^3$  vara den linjära avbildning som definieras som spegling med avseende på planet  $x_2 = 0$ . Bestäm T:s matris i standardbasen.
  - (b)  $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \end{bmatrix}$  definierar en linjär avbildning  $T : \mathbb{R}^3 \to \mathbb{R}^2$  genom  $T(\mathbf{x}) = A\mathbf{x}$ . Bestäm dimensionen av nollrummet Nul A samt ange en bas i Nul A.
- 2. (a) För vilka värden på konstanten a är  $A = \begin{bmatrix} a & 2 \\ 2 & 0 \end{bmatrix}$  ortogonalt diagonaliserbar? Motivera Ditt svar!
  - (b)  $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$ . Bestäm en diagonalmatris D och en inverterbar matris P så att  $A = PDP^{-1}$ .
- 3.  $\mathcal{P}_n$  är rummet av polynom av grad högst n.
  - (a) Visa att polynomen  $p_1(t) = 1 at$ ,  $p_2(t) = a + t$  är en bas i  $\mathcal{P}_1$  för alla värden på konstanten a samt bestäm koordinaterna för polynomet p(t) = 1 med avseende på denna bas.
  - (b) För p och q i  $\mathcal{P}_n$  kan man t ex definiera den inre produkten

$$\langle p, q \rangle = \int_0^1 p(t)q(t) dt \tag{1}$$

Låt W vara det delrum av  $\mathcal{P}_2$  som genereras av  $p_1(t)=1$  och  $p_2(t)=t$ , dvs låt  $W=\operatorname{Span}\{p_1,p_2\}$ . Bestäm den ortogonala projektionen av polynomet p på W med avseende på den inre produkten (1) samt beräkna avståndet från p till W där  $p(t)=t^2$ .

- 4. (a) Bevisa att  $x_1^2 + 4ax_1x_2 + x_2^2 = 1$  är en ellips då  $|a| < \frac{1}{2}$ .
  - (b) Bestäm största avståndet från ellipsen  $x_1^2 + x_1x_2 + x_2^2 = 1$  till origo.

V.G.V!

- 5. (a) Alla vektorer x och y i ett inre produktrum uppfyller triangelolikheten. Återge detta påstående!
  - (b) Är det sant att olikheten

$$\sqrt{(x_1+y_1)^2+2(x_2+y_2)^2+3(x_3+y_3)^2} \le \sqrt{x_1^2+2x_2^2+3x_3^2}+\sqrt{y_1^2+2y_2^2+3y_3^2}$$

gäller för alla  $x=(x_1,x_2,x_3)$  och  $y=(y_1,y_2,y_3)$  i  $\mathbb{R}^3$ ? Motivera ditt svar!

6. Ytan Y i  $\mathbb{E}^3$  består av alla punkter (x,y,z) som uppfyller ekvationen

$$-x^2 + 2y^2 + z^2 - \sqrt{12}xz = 2.$$

Bestäm ytans typ, ytans minsta avstånd från origo, samt de punkter på ytan där det minsta avståndet antas. (Punkternas koordinater skall anges i standardbasen.)

- 7. Avbildningen  $F: \mathcal{P}_2 \to \mathcal{P}_3$  ges av  $F(p(x)) = x^2 p'(x)$ .
  - (a) Visa att F är linjär.
  - (b) Finn F:s matris med avseende på standardbaserna i  $\mathcal{P}_2$  och  $\mathcal{P}_3$ .
  - (c) Finn en bas i F:s nollrum.
  - (d) Finn en bas i F:s värderum.
  - (e) Redovisa huruvida dina svar på (c) och (d) stämmer överens med dimensionssatsens påstående.
- 8. Lös differentialekvationssystemet

$$\begin{cases} y_1' = y_1 - 2y_2 \\ y_2' = -2y_1 + y_2 \end{cases}$$

med begynnelsevillkoren  $y_1(0) = 7$  och  $y_2(0) = 3$ .

De som tenterar den gamla kursen 1MA722 kan byta ut uppgift 8 mot uppgift 8' nedan.

8'. Beräkna  $A^n$  för alla udda naturliga tal n, då  $A=\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$ .







4. (a)  $q(x) = x^2 + 4axx + x^2 = x + x + dar A = \begin{pmatrix} 1 & 2a \\ 2a & 1 \end{pmatrix}$  $\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 \\ -2a \\ \lambda - 1 \end{vmatrix} = (\lambda - 1) - 4a = (\lambda - 1) + 2a (\lambda - 1) - 2a$  $= (\lambda + (1-2a))(\lambda - (1+2a))$  $\lambda_{1,2} = 1 \pm 2a$  år A:s egenvarden.  $a \leq \frac{1}{2} \Rightarrow \lambda > 0 \Rightarrow q(x) = 1 \text{ ar en ellips.}$ (b) Ifall a = 1 ar \(\lambda = \frac{3}{2}\), \(\lambda = \frac{1}{2}\), \(\lambda = \frac{1}\), \(\lambda = \frac{1}{2}\), \(\lambda = \frac{1}{2}\), \(\la ekvotobn blir 3 y + 1 y = 1. Störra avstandet till origo av darmed V2 5. (a)  $|x+y| \le |x| + |y|$ (6)  $\langle x, y \rangle = x_1 y_1 + 2x y_1 + 3x y_2$  ar en inre produkt på  $\mathbb{R}^3$ . Triangelolikheten har då formen  $\sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 2(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y_1)^2 + 3(x_1 + y_1)^2 + 3(x_1 + y_1)^2} = \sqrt{(x_1 + y$  $= \sqrt{\langle x, x \rangle} + \langle y, y \rangle =$  $= |x_1^2 + 2x_2^2 + 3x_3^2| + |y_1^2 + 2y_2^2 + 3y_3^2|$ Svar (b). Den påstådda olikheten gåller för alla  $x,y \in \mathbb{R}^3$ 

6. 
$$Y = g(x) = x A \times y A = A = \begin{cases} x \circ x = y \\ y \circ x = x A \times y A = A = \begin{cases} x \circ x = y \\ y \circ x = x A = A \end{cases}$$

$$g(x) = x A \times y A = A = \begin{cases} x \circ x = y \\ y \circ x = x A \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = y \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = y \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = y \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = y \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ y \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \\ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x \circ x = x \end{cases}$$

$$g(x) = x A \times y A = \begin{cases} x$$

S. 
$$y' = Ay$$
, die  $A = \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix}$ . Mod  $S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$  and  $D = \begin{bmatrix} 1 & 4 \\ 0 & 4 \end{bmatrix}$  where  $S'AS = D$ . We have  $y = Sz$  and  $y' = Sz'$ .  $Dz$  for  $y' = Ay$ .  $Sz$   $Sz' = ASz$ .

$$S'AS = D = S'ASz = Dz$$

$$S'ASz = Dz$$

