E.A.6.12 (Rostering)

Si consideri il seguente problema combinatorio:

- In un ospedale vi è la necessità di definire i turni settimanali del personale infermieristico.
- In particolare, vi sono I infermieri che devono essere assegnati ai diversi turni lavorativi, per tutti i giorni della settimana (dal lunedì alla domenica).
- Ogni giornata è divisa in T turni (ad es., il turno 1 va dalle 8:00 alle 14:00, il secondo dalle 14:00 alle 20:00, ecc.). Alcuni tra i T turni sono "notturni".
- Si può assumere, senza perdita di generalità, che questi siano i turni identificati dagli interi tra 1 e N, per un dato $N \leq T$.
- Si vuole assegnare, ad ogni turno di ogni giorno della settimana, un insieme di infermieri in modo che:
 - 1. Ogni turno sia coperto da almeno C infermieri;
 - 2. Ogni infermiere, dopo aver lavorato per un turno diurno, abbia almeno R turni di riposo, e dopo aver lavorato per un turno notturno, non lavori fino alla fine del giorno successivo;
 - 3. Ogni infermiere deve lavorare per almeno L turni nell'arco della settimana; in caso contrario, deve essere messo completamente a riposo (in altri termini, ogni infermiere deve lavorare per almeno L turni nella settimana, oppure mai).

Si osservi che lo schema di turnazione è periodico.

1.1 Modellazione

Dati i parametri (I, T, N, C, R, L) siano

- lunedì, ..., domenica
 - T turni per giornata
 - i primi N turni sono notturni
- ad ogni turno tdi ogni giorno gva assegnato un insieme $\{i_1,...,i_s\}$ di infermieri
 - in ogni turno ci sono almeno C infermieri

I infermieri

- ogni infermiere, dopo aver lavorato un turno $t \geq N$ ha almeno Rturni di riposo
- se il turno t < N non lavora fino alla fine del giorno dopo
- ogni infermiere lavora per almeno L turni (oppure per 0 turni quella settimana)

voglio un mega tabellone

	lunedì	martedì	mercoledì	giovedì	venerdì	sabato	domenica
t_1	$\{i_1,i_2,i_3\}$						
t_2	$\{i_1,i_2,i_3\}$						
t_3	$\{i_1,i_2,i_3\}$						
t_4	$\{i_1,i_2,i_3\}$						
t_5	$\{i_1,i_2,i_3\}$						
t_6	$\{i_1,i_2,i_3\}$						
t_7	$\{i_1,i_2,i_3\}$						
t_8	$\{i_1,i_2,i_3\}$						