

Faktorisering av andregradsuttrykk

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

Faktorisering av andregradsuttrykk

Faktorisere ved hoderegning

Faktorisere via andregradsformelen

andregradsformelen

Faktorisere via

Nullpunkter og faktorisering

- Vi har lært to måter å løse andregradslikninger på.
- Den ene var ved å faktorisere likningen.
- Den andre var ved hjelp av andregradsformelen.
- Vi kan kombinere dette til å faktorisere en andregradslikning på en lettere måte.

Eksempel

Andregradslikningen (x - 7)(x - 2) = 0 gir oss at x = 7 eller x = 2. Andregradsformelen brukt på

$$(x-7)(x-2) = x^2 - 9x + 14 = 0$$

vil derfor også gi svarene x = 7 eller x = 2.

Faktorisere via andregradsformelen

- Vi ser at svarene fra andregradsformelen er de samme tallene som skal inni parentesene i faktoriseringen.
- Dette er alltid sant!

Regel

Om x₁ og x₂ er løsningene av andregradslikningen

$$ax^2 + bx + c = 0$$

så kan venstresiden faktoriseres som

$$a(x-x_1)(x-x_2)$$
.

NB! Legg merke til minustegnene!

Faktorisere via andregradsformelen

Oppgave

Faktoriser $3x^2 - 3x - 18$.

Andregradsformelen gir:

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 3 \cdot (-18)}}{2 \cdot 3} = \frac{3 \pm \sqrt{9 + 216}}{6}$$
$$= \frac{3 \pm \sqrt{225}}{6} = \frac{3 \pm 15}{6}.$$

- Dette gir $x = \frac{18}{6} = 3$ eller $x = -\frac{12}{6} = -2$.
- Faktoriseringen blir derfor

$$3x^2 - 3x - 18 = 3(x - 3)(x - (-2)) = 3(x - 3)(x + 2)$$

Andregradslikninger med ett nullpunkt

- Likningen $2x^2 16x + 32$ har kun én løsning.
- Andregradsformelen gir

$$x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4 \cdot 2 \cdot 32}}{2 \cdot 2} = \frac{16 \pm \sqrt{0}}{4} = 4$$

Vi bruker da denne løsningen for begge verdiene i faktoriseringen, og får

$$2(x-4)(x-4) = 2(x-4)^2$$
.

Faktorisere ved hoderegning

Faktorisering ved hoderegning

La oss gange ut (x+2)(x+7):

$$(x+2)(x+7) = x^2 + x \cdot 7 + 2 \cdot x + 2 \cdot 7$$
$$= x^2 + (2+7)x + 2 \cdot 7$$
$$= x^2 + 9x + 14$$

- Merk at førstegradsleddet er summen av 2 og 7, og konstantleddet er produktet av 2 og 7.
- Dette vil alltid stemme, så vi kan prøve å «gjette» på hva faktoriseringen skal være ved hjelp av dette.
- Vi vil finne to tall slik at summen er tallet foran x og produktet er konstantledded.

Faktorisering ved hoderegning, eksempel

Oppgave

Faktoriser $x^2 + 3x - 4$.

Vi vil finne to tall y_1 og y_2 slik at

$$y_1 + y_2 = 3$$
 og $y_1 \cdot y_2 = -4$.

- Vi satser på at svaret er heltall, og kan da få 4 ved hjelp av 2 ⋅ 2 eller 4 ⋅ 1.
- Vi skal få −4, så en av tallene vi ganger må være negativt.
- Vi ser da at $4 \cdot (-1) = -4$ og 4 1 = 3.
- Faktoriseringen blir derfor (x + 4)(x 1).

Faktorisering ved hoderegning

- Dette trikset er ofte nyttig siden folk som lager prøver ofte velger «pene» svar.
- Men fungerer dårlig om svarene ikke er heltall!

NB! Vi kan kun bruke dette trikset om tallet foran x^2 er 1.

Eksempel

- Vi skal faktorisere $2x^2 + 10x + 12$.
- Siden vi har 2 foran x^2 , deler vi hele uttrykket på 2 og får $x^2 + 5x + 6$.
- Vi ser at 2+3=5 og $2\cdot 3=6$, så $x^2+5x+6=(x+2)(x+3)$.
- Siden vi delte på 2 må vi gange dette tilbake og får

$$2x^2 + 10x + 12 = 2(x+2)(x+3)$$
.

Å løse andregradslikninger i hodet

Siden vi kan faktorisere andregradsuttrykk ved hoderegning, og vi kan løse en faktorisert andregradslikning, så kan vi også løse andregradslikninger.

Eksempel

- Vi skal løse likningen $x^2 4x + 3$.
- Vi ser at (-1) + (-3) = -4 og $(-1) \cdot (-3) = 3$, så

$$x^2 - 4x + 3 = (x - 1)(x - 3).$$

For at det faktoriserte uttrykket skal være 0 må vi da ha x = 1 eller x = 3.

Da vi faktoriserte i hodet brukte vi $(x + y_1)(x + y_2)$, og da vi faktoriserte ved hjelp av andregradsformelen brukte vi $(x - x_1)(x - x_2)$. Tallene vi bruker til det ene er derfor alltid det negative av tallene til det andre.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET