This is a very basic problem arising in the exercise 5.1-5.3 in chapter 3 of GTM52 about generalization of arithmetic genus to abstract variety

- 5.2 (a). Let X be a projective. scheme over field k, let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X over k. Let \mathcal{F} be a coherent sheaf on X. Show that there is a polynomial $P(z) \in Q[z]$, such that $\chi(\mathcal{F}(n)) = P(n)$ for all $n \in Z$. We call P the Hilbert polynomial of sheaf \mathcal{F} with respect to the sheaf $\mathcal{O}(1)$.
- (b). Now let $X = P_k^r$, and let $M = \Gamma_*(\mathcal{F})$, considered as graded $S = k[x_0, \dots, x_r]$ module. Show that the Hilbert polynomial of sheaf \mathcal{F} is exactly the Hilbert polynomial of M defined in chapter 1.

Solution: By the hint given in the book, we can construct an exact sequence suitable for induction on dimension of $Supp \mathcal{F}$. First of all, we can transfer the **projective scheme over k** to **projective space** P^n .

Indeed, If X is a closed subscheme of P^n , by the lemma 2.10 in [1], there is an isomorphism $H^i(X,\mathcal{F})\cong H^i(P^n,j_*\mathcal{F})$ where j is the closed embedding (for the closed subset it can be seen as extension by zero). So, $\chi(\mathcal{F})=\sum (-1)^i dim_k H^i(X,\mathcal{F})=\chi(j_*\mathcal{F})$, and by the definition of direct image sheaf, $\Gamma_*(X,\mathcal{F})=\Gamma_*(P^n,j_*\mathcal{F})=M$. Here I also want to emphasize that $j_*\mathcal{F}$ is coherent so the Euler characteristic $\chi(P^n,j_*\mathcal{F})$ makes sense.

Indeed, $j_*\mathcal{F}$ is quasicoherent by proposition 5.8 in [1], but in the general case $j_*(\mathcal{F})$ may not be coherent when \mathcal{F} is coherent. But it is assured that when morphism $j: X \to Y$ is projective and X with Y are of finite type over k this is true by corollary 5.20, chapter 2 in [1] (see **Remark 1** for more thoughts on this topic).

So from now on, we only consider projective space and coherent sheaf \mathcal{F} on it.

In P^n , any closed subset Z as a noetherian scheme has only finite irreducible components by proposition 4.9, chapter 2 in [2]. Pick one closed point from each component, f_1, \dots, f_m (see **Remark 2** for choice of such closed points). Now we view the projective space as $P^n = k^{n+1}/k^*$, and the closed point has its place in such coordinate system. And the hyperplanes in P^n can be parametrized by the 'dual projective space' $(P^n)^*$, which is isomorphic to P^n . In such context, the set of hyperplanes avoiding certain point $f_i = (a_0, a_1 \dots, a_n)$ is the open subset $U_i = \{(x_0, x_1 \dots, x_n) | \sum a_i x_i \neq 0\}$, which is a dense subset of projective space. So $\cap U_i \neq \emptyset$, and there is always a hyperplane H avoiding all these points so that H not contains any irreducible components of closed set Z. Write H as the zero set $\sum b_i x_i = 0$ and (b_0, \dots, b_n) in $k [x_0 \dots, x_n]_1$ actually serves as a global section s of the twisted sheaf $\mathcal{O}(1)$. It is obvious that the zero locus of the global section s - V(s) contains no irreducible components of closed projective

subvariety Z.

We also should see that the $M = \Gamma(\mathcal{F})$ is finitely generated module over $k[x_0 \cdots, x_n]$ so the Hilbert polynomianl of M makes sense (see **Remark 3** for more information on the local property of 'finitely generated'). For the finitely generated graded $S_k[x_0, \cdots, x_n]$ -module M, by (Hilbert-Serre) theorem 7.5, chapter 1 in [1], the Hilbert function $\psi_M(n) = \dim_k M_n$ can be extended to a unique numerical polynomial $P_M(z) \in Q[z]$ such that $P_M(n) = \psi_M(n) = \dim_k(M_n)$ (see **Remark 4** for more information on the Hilbert regularity of finitely generated $k[x_0, \cdots, x_n]$ -module M).

When dim $Supp(\mathcal{F})=0$, by the Grothendieck vanishing theorem, all cohomology group is zero except $H^0(X,\mathcal{F}(n))=\Gamma(X,\mathcal{F}(n))$. So $\chi(\mathcal{F}(n))=dim(\Gamma_*(\mathcal{F})_n)=P_{\Gamma_*(\mathcal{F})}(n)$ for n>>0, where $P_{\Gamma_*(\mathcal{F})}(n)$ is Hilbert polynomial of module $M=\Gamma_*(\mathcal{F})$. Thus, for dimension 0 case, there is a numerical polynomial P(z) restricting to $\chi(\mathcal{F}(n))$ when $z\in Z$, and this polynomial is exactly the Hilbert polynomial defined in chapter 1 in [1]. So (a) and (b) for case when dim $Supp(\mathcal{F})=0$ is done (at least for n>>0).

Now all preliminary work has been done for the induction steps. For coherent sheaf \mathcal{F} , by the choice of $s \in \mathcal{O}(1)$ as above such that the zero locus of s will not contain any component of $Supp(\mathcal{F})$, there is a sheaf morphism $\mathcal{F}(-1) \stackrel{s}{\to} \mathcal{F}$ which is an isomorphism when we restrict to the open set $P^n \setminus V(s)$. And correspondingly, we have a long exact sequence of sheaf $0 \to \mathcal{K} \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{C} \to 0$ where \mathcal{K} and \mathcal{C} are kernel and cokernel of the sheaf morphism. By the choice of s, $Supp(\mathcal{K}) \subset Supp(\mathcal{F}) \cap V(s)$ whose dimension is strictly less than $Supp(\mathcal{F})$. By induction, we can find rational coefficient polynomials $P_{\mathcal{K}}(n) = \chi(\mathcal{K}(n))$ and $Q_{\mathcal{C}}(n) = \chi(\mathcal{C}(n))$. The Euler characteristics χ is **additive** (see exercise 5.1, chapter 3 in [1]), i.e, for short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$, there is $\sum_{i=1}^{i=3} (-1)^i \chi(F_i) = 0$. And by category theory, any additive function χ also has the same additive property for exact sequence of arbitrary length, i.e, $\chi(F_n) - \chi(F_{n-1}) = P_{\mathcal{K}}(n) - P_{\mathcal{K}}(n)$. The right hand is a polynomial $R(z) = (P_{\mathcal{K}}(z) - P_{\mathcal{C}}(z))$ in Q[z] such that $R(n) \in \mathbb{Z}$ when $n \in \mathbb{Z}$, by proposition 7.3, chapter 1 in [1], we can write R(z)in the form of binomial coefficient function $R(z) = c_0 {z \choose r} + c_1 {z \choose r-1} + \cdots + c_r$, and by the equality $\binom{z+1}{r} - \binom{z}{r} = \binom{z}{r-1}$, we can construct such a numerical polynomial $P_{\mathcal{F}}(z) = c_0\binom{z}{r+1} + \cdots + c_r\binom{z}{1} + c_{r+1}$ where difference $\triangle P_{\mathcal{F}}(z) = c_0\binom{z}{r+1}$ $P_{\mathcal{F}}(z+1) - P_{\mathcal{F}}(z) = R(z) = P_{\mathcal{K}}(z) - P_{\mathcal{C}}(z)$ and c_{r+1} is rightly chosen so that the constant term is $\chi(\mathcal{F})$. So far, (a) has been done because such a numerical polynomial has been found. Now we need to prove (b)—this Hilbert polynomial of sheaf \mathcal{F} is exactly the Hilbert polynomial of the module $\Gamma_*(\mathcal{F})$. This is simple, because when n >> 0, cohomology group $H^i(P^n, \mathcal{F}(n)) = 0$ for i > 0, so $P_{\mathcal{F}}(n) = \chi(\mathcal{F}(n)) = dim_k(H^0(P^n, \mathcal{F}(n))) = dim_k(\Gamma(\mathcal{F}(n))) =$ $dim_k(\Gamma_*(\mathcal{F})_n) = P_{\Gamma_*(\mathcal{F})}(n)$ for n >> 0. The right hand side and left hand side

are all polynomial functions so they are actually the same so (b) is done.

Remark 1: direct image of coherent is in general not coherent, but by corollary 5.20, chapter 2 in [1], we have projective morphism between schemes of finite type over k pushing forward the coherent sheaf \mathcal{F} to the coherent sheaf $f_*\mathcal{F}$. Here the condition on the scheme is strong—finite type over k. However this condition on schemes can be weakened by putting a stronger condition on morphism. By proposition 1.14, chapter 5 in [2], for morphism $f: X \to Y$ with X noetherian and f finite, coherent sheaf \mathcal{F} is pushed forward to coherent sheaf $f_*(\mathcal{F})$.

However, better version is provided in theorem 8.8, chapter 3 in [1] where we can see that projective morphism between noetherian schemes preserves coherence.

Remark 2: In quasi-comapct scheme, every point has a closed point in its closure. So every irreducible component as a closed irreducible subset must contain a closed point.

Remark 3: It is known that $\Gamma_*(\mathcal{F})^{\sim} \cong \mathcal{F}$ for quasicoherent sheaf \mathcal{F} , It is clear that when $\Gamma_*(\mathcal{F})^{\sim}$ is finitely generated, \mathcal{F} is coherent, and when \mathcal{F} is coherent, by lemma 34.13.1(d) in the stack project, $\Gamma_*(\mathcal{F})$ is finitely generated.

Remark 4: This is indeed very confusing: in all the textbooks, the Hilbert polynomial of graded module M is defined as a polynomial $P_M(z)$ equal to the Hilbert function $\psi_M(n) = \dim_k(M_n)$ when z = n >> 0. And the definition of Hilbert polynomial of sheaf \mathcal{F} in rising sea by Vakli also is defined as a polynomial equal to $\chi(\mathcal{F}(n))$ when n >> 0. However, in the Hartshone, this exercise (exercise 5.2 in chapter 3) says the polynomial should equal to the $\chi(\mathcal{F}(n))$ for all $n \in \mathbb{Z}$. So is it a little mistake of Hartshone?

Remark 5: Following the case when $Supp(\mathcal{F}) = 0$, I am wondering the Hilbert function $\psi_{\Gamma_*(\mathcal{F})}(n)$ may equal to characteristics $\chi(\mathcal{F}(n))$. Anyway, we have shown that they are the same polynomial function when n >> 0, but what is the relationship between the $\psi_{\Gamma_*(\mathcal{F})}(n)$ and $\chi(\mathcal{F}(n))$ as function from Z to Z? Do we have $\psi(\mathcal{F}(n)) = dim_k(\Gamma_*(\mathcal{F})_n)$?

By induction, for sheaf \mathcal{C} and \mathcal{K} , the Hilbert polynomials of sheaf $P_{\mathcal{C}}$ and $P_{\mathcal{K}}$ equal to their corresponding Hilbert polynomials of Γ_* module. We know that in usual, global section functor Γ is not exact unless the scheme where sheaf lies on is affine. However, for quasicoherent sheaf \mathcal{F} on $ProjS = Projk[x_0, \dots, x_n]$, there is isomorphism $\Gamma_*(\mathcal{F})^{\sim} \cong \mathcal{F}$. So from the sheaf exact sequence: $0 \to \mathcal{K} \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{C} \to 0$, we have the exact sheaf sequence $0 \to \Gamma_*(\mathcal{K})^{\sim} \to \Gamma_*(\mathcal{F}(-1))^{\sim} \to \Gamma_*(\mathcal{F})^{\sim} \to \Gamma_*(\mathcal{C})^{\sim} \to 0$, so at stalk level we have exact sequence of localization at homogeneous prime ideal not containing S_+ , \mathfrak{p} : $0 \to \Gamma_*(\mathcal{K})_{\mathfrak{p}} \to \Gamma_*(\mathcal{F}(-1))_{\mathfrak{p}} \to \Gamma_*(\mathcal{F})_{\mathfrak{p}} \to \Gamma_*(\mathcal{C})_{\mathfrak{p}} \to 0$, so we have an exact sequence of graded S module $0 \to \Gamma_*(\mathcal{K}) \to \Gamma_*(\mathcal{F}(-1)) \to \Gamma_*(\mathcal{F}) \to \Gamma_*(\mathcal{C}) \to 0$. Hilbert polynomials

of module is additive, so $P_{\Gamma_*(\mathcal{K})}(z) - P_{\Gamma_*(\mathcal{C})}(z) = P_{\Gamma_*(\mathcal{F})}(z) - P_{\Gamma_*(\mathcal{F})}(z-1)$ where $P_{\mathcal{C}} = P_{\Gamma_*(\mathcal{C})}$ and $P_{\mathcal{K}} = P_{\Gamma_*(\mathcal{K})}$, so we have $P_{\mathcal{F}}(z) - P_{\mathcal{F}}(z-1) = P_{\Gamma_*(\mathcal{F})}(z) - P_{\Gamma_*(\mathcal{F})}(z-1)$.

However, this is a totally wrong way because we exclude the prime ideal containing the S_+ so we can not conclude that $0 \to \Gamma_*(\mathcal{K}) \to \Gamma_*(\mathcal{F}(-1)) \to \Gamma_*(\mathcal{F}) \to \Gamma_*(\mathcal{C}) \to 0$ is an exact sequence from the condition (\mathfrak{p} not containg S_+): $0 \to \Gamma_*(\mathcal{K})_{\mathfrak{p}} \to \Gamma_*(\mathcal{F}(-1))_{\mathfrak{p}} \to \Gamma_*(\mathcal{F})_{\mathfrak{p}} \to \Gamma_*(\mathcal{C})_{\mathfrak{p}} \to 0$. So I think it may be wrong about the conjecture that $\psi_{\Gamma_*(\mathcal{F})}(n) = \chi(\mathcal{F}(n))$.

- 5.3 Let X be a projective scheme of dimension r over a field k. We define the arithmetic genus p_a of X by $p_a(X) = (-1)^r (\chi(\mathcal{O}_X) 1)$. the $\chi(X)$ is the Euler characteristics. Note that it depends only on X, not on any projective embedding.
- (a). If X is integral, and k algebraically closed, show that $H^0(X, \mathcal{O}_X) \cong k$, so that $p_a(X) = \sum_{i=0}^{r-1} (-1)^i dim_k H^{r-i}(X, \mathcal{O}_X)$. In particular, if X is curve, we have $p_a(X) = dim_k H^1(X, \mathcal{O}_X)$.
- (b). If X is a closed subvariety of P_r^k . Show that p_a coincides with the one defined in chapter 1, exercise 7.2 by Hilbert polynomial, which depends on the projective embedding.
- (c). If X is a nonsingular projective curve over an algebraically closed field k, show that $p_a(X)$ is in fact a birational invariant. Conclude that a nonsingular plane curve of degree $d \geq 3$ is not rational.

Solution: To prove (a), we only need to show that $\Gamma(X, \mathcal{O}_X) \cong k$.

As integral closed subscheme of P^n , $X = Proj(k[x_0, \cdots, x_n]/I_X)$, I_X must be prime ideal. Indeed, in the noetherian ring $k[x_0, \cdots, x_n]/I_X$, zero ideal (0) has the primary decomposition into $(0) = \cap Q_i$ where $\sqrt{Q_i} = P_i$ is prime ideal. From the irreducibility of X, we have there is a unique minimal ideal \mathfrak{p}_0 containing (0). X is reduced, so $\sqrt{I_X} = I_X = \sqrt{\cap Q_i} = \cap \sqrt{Q_i} = \cap \mathfrak{p}_i$, due to the minimality of \mathfrak{p}_0 , we have $I_X = \mathfrak{p}_o$. So $S(X) = k[x_0, \cdots, x_n]/I_X$ is integral domain. So (0) is minimal homogeneous prime ideal and the function field K(X) of X is $S_{(0)} = (k[x_0, \cdots, x_n]/I_X)_{(0)}$.

Thinking of $\Gamma(X, \mathcal{O}_X)$, K(X) and S(X) are all subrings of quotient field L of S(X) (natural morphism from $\Gamma(X, \mathcal{O}_X)$ to function field $\mathcal{O}_{X,\mathfrak{p}_0}$ is injective for integral scheme), this means that $x_i^{N_i} f \in S(X)_{N_i}$ for each i and $f \in \Gamma(X, \mathcal{O}_X)$. Now chose $N \geq \sum N_i$. Then $S(X)_N$ is spanned as a k-vector space by monomials of degree N in x_0, \dots, x_n , so we have $S(X)_N f \subset S(X)_N$. Iterating, we have $S(X)_N f^q \subset S(X)_N$. Thus, $x_0^N f^q \in S(X)$ and S(X)[f] of L is a finitely generated S(X)-module, and therefore f is integral over S(X) since S(X) is noetherian ring. This means that there are elements $a_1, \dots, a_m \in S(X)$ such that $f^m + a_1 f^{m-1}, \dots + a_m = 0$. Since deg(f) = 0, we can replace the a_i by their homogeneous conponents of degree 0, and still have a valid equation. But

 $S(X)_0 = k$, so $a_i \in k$ and f is algebraic over k. But k is algebraically closed, so $f \in k$ which completes the proof.

- (b). Back in chapter 1, the arithmetic genus of a projective variety X is defined as $(-1)^r(P_X(0)-1)$ where $P_X(z)$ is the Hilbert polynomial of S(X) and r is the dimension of X. By pushing forward, $j_*(\mathcal{O}_X)$ on P^n is coherent sheaf with $\dim(Supp(j_*\mathcal{F})) = \dim(X)$ where $j: X \to P^n$ is closed embedding. From the above exercise, we have seen that this Hilbert polynomial P_X is exactly the Hilbert polynomial of sheaf $j_*\mathcal{F}$. So take value at 0, (b) is done.
- (c). For nonsingular projective curves, birational is equivalent to isomorphism, so $p_a(X)$ is definitely a birational invariant. As for the singular curve birational to X, I have no clue proving the arithmetic genus invariance. By exercise 7.2(b), chapter 1 in [1], $p_a(X) = \frac{1}{2}(d-1)(d-2)$ for plane curve of degree d in P^2 , if $d \geq 3$, then $p_a \neq 0 = p_a(P^1)$, so it is not rational becasue p_a is birational invariant.

My question 1: Just like Remark 4 in the exercise 5.2 saying, What I actually prove is that when n >> 0, there is a polynomial $P(z) \in Q[z]$ satisfying $P(n) = \chi(\mathcal{F}(n))$. Even in the zero dimensional case, $\chi(\mathcal{F}(n)) = \dim_k(\Gamma_*(\mathcal{F})_n)$, but we only have a polynomial function P equal to $\dim_k(\Gamma_*(\mathcal{F})_n)$ when n >> 0, so this polynomial P is equal to $\chi(\mathcal{F}(n))$ when n >> 0. There is no evidence that when n is small, like n = 0 case where we need to prove the equivalence of arithmetic genus (take z = 0 in Hilbert polynomial), we can't make sure that $P(0) = \chi(\mathcal{F}(0))$ so actually the solution to exercise 5.3 (b) is not solid. I don't know what's wrong with this solution?

My question 2: how to prove that arithmetic genus of curves is birational invariant when curves may have singular points like exercise 5.3(c)?

- [1]:Harsthone, GTM 52
- [2]: Liu Qing, algebraic geometry and arithmetic curves.
- [3]: Vakil, the rising sea foundation of algebraic geometry.