Tidy Data with

Open 03-Tidy-Data.Rmd

What are the variables in this data set?

				a
country <cn></cn>	y ar <===	cases <nt></nt>	population <int></int>	
Afg	1999	45	19987071	
Afglanistan	2000	2866	205)5360	
Brazil	1999	37'37	1720)6362	
Brazil	2000	80-88	1745)4898	
Chira	1999	212 58	12729.5272	
Chica	2000	213 66	12804 8583	

What are the variables in this data set?

able2			
			\ \
country	year type <i <chr=""></i>	count <int></int>	
Af	1999 cases	745	
Afhanistan	1909 population	199870 1	
Afhanistan	2000 cases	2666	
Afhanistan	2000 population	2(59534)	
Brazil	1999 cases	7737	
Brazil	1999 population	172006342	
Brazil	2000 cases	3488	
Brazil	2000 population	1745043	
China	1909 cases	2258	
China	1979 population	1272915242	

table3

				Æ.	\wedge	\times
	country <chr></chr>	year <int></int>	rate <chr></chr>			
1	Afghanistan	1999	745/19987071			
2	Afghanistan	2000	2666/20595360			
3	Brazil	1999	37737/172006362			
4	Brazil	2000	80488/174504898			
5	China	1999	212258/1272915272			
6	China	2000	213766/1280428583			

table4a table4b

	country <chr></chr>	1999 <int></int>	2000 <int></int>
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766

	country <chr></chr>	1999 <int></int>	2000 <int></int>
1	Afghanistan	19987071	20595360
2	Brazil	172006362	174504898
3	China	1272915272	1280428583

table5

	country <chr></chr>	century <chr></chr>	year <chr></chr>	rate <chr></chr>
1	Afghanistan	19	99	745/19987071
2	Afghanistan	20	00	2666/20595360
3	Brazil	19	99	37737/172006362
4	Brazil	20	00	80488/174504898
5	China	19	99	212258/1272915272
6	China	20	00	213766/1280428583

"Data comes in many formats, but R prefers just one: tidy data."

- Garrett Grolemund

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each case is in its own row
- 3. Each value is in its own cell

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	
Afghanistan	1999	745	19987071	
Afghanistan	2000	2666	20595360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174504898	
China	1999	212258	1272915272	
China	2000	213766	1280428583	

6 rows

table1\$country
table1\$year
table1\$cases
table1\$population

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	rate <dbl></dbl>
Afghanistan	1999	745	19987071	0.0000372741
Afghanistan	2000	2666	20595360	0.0001294466
Brazil	1999	37737	172006362	0.0002193930
Brazil	2000	80488	174504898	0.0004612363
China	1999	212258	1272915272	0.0001667495
China	2000	213766	1280428583	0.0001669488

"Tidy data sets are all alike; but every messy data set is messy in its own way."

- Hadley Wickham

tidyr

tidyr

A package that reshapes the layout of tabular data.

gather()

Toy data

```
=\Box
2 03-Tidy-Data.Rmd *
    2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
                             cases <- tribble(</pre>
  7 library(tidyverse)
  8 library(babynames)
                                 ~Country, ~"2011", ~"2012", ~"2013",
 10 # Toy data
    cases <- tribble(</pre>
      ~Country, ~"2011", ~"2012", ~'
                                        "FR",
                                                        7000,
                                                                         6900,
                                                                                         7000,
  13
         "FR", 7000,
                     6900,
         "DE", 5800,
 14
                     6000,
                                        "DE",
                                                                                         6200,
                                                        5800,
                                                                         6000,
 15
         "US", 15000, 14000,
  16
                                        "US",
                                                      15000,
                                                                       14000,
                                                                                        13000
    pollution <- tribble(</pre>
         ~city, ~size, ~amount,
  19
      "New York", "large",
                        23,
      "New York", "small",
                         22,
      "London", "large",
       "London", "small",
                        16,
       "Beijing", "large",
                        121,
       "Beijing", "small",
  25
                        121
 26
  27
 28 x <- tribble(
      ~x1, ~x2,
      "A", 1,
    "B", NA,
 35 )
 1:1 Garage Tidy Data $
                                            R Markdown $
```


What are the variables in cases?

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

What are the variables in cases?

- Country
- Year
- Count

Your Turn 1

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: country, year, n

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Yar	
FR	2011	7000
DE	2011	58)0
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14(00
FR	2013	7000
DE	2013	6200
	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

1 2

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key (former column names)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key value (former cells)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000


```
cases %>% gather(key = "year", value = "n", 2:4)
```

data frame to reshape

name of the new key column (a character string)

name of the new value column (a character string)

numeric indexes of columns to collapse (or names)


```
cases %>% gather("year", "n", 2:4)
                            numeric
                            indexes
                          2011
                                        2012
                                                       2013
Country
                                                      <dbl>
<chr>
                          <dbl>
                                        <dbl>
FR
                          7000
                                         6900
                                                       7000
DE
                          5800
                                         6000
                                                       6200
US
                         15000
                                        14000
                                                      13000
```



```
cases %>% gather("year","n", "2011", "2012", "2013")
                                       names
                         2011
                                       2012
                                                    2013
                                       2012
                                                     2013
Country
                         2011
                                                    <dbl>
<chr>
                         <dbl>
                                       <dbl>
FR
                         7000
                                       6900
                                                     7000
DE
                         5800
                                       6000
                                                     6200
US
                         15000
                                                    13000
                                      14000
```



```
cases %>% gather("year","n", -Country)
```

Everything except...

Not Country Not Country Not Country

Country <chr></chr>	2011 <dbl></dbl>	2012 <dbl></dbl>	2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Your Turn 2

Use **gather()** to reorganize **table4a** into three columns: country, year, and cases.

	country <chr></chr>	1999 <int></int>	2000 <int></int>
L	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766


```
table4a %>%
  gather(key = "year", value = "n", 2:3)
```

country <chr></chr>	year <chr></chr>	n <int></int>
Afghanistan	1999	745
Brazil	1999	37737
China	1999	212258
Afghanistan	2000	2666
Brazil	2000	80488
China	2000	213766

6 rows

table4a %>% gather(key = "year", value = "n", 2:3, convert = TRUE)

_	-5-		
	200		700
Gr.	300		100

country <chr></chr>	year <int></int>	n <int></int>
Afghanistan	1999	745
Brazil	1999	37737
China	1999	212258
Afghanistan	2000	2666
Brazil	2000	80488
China	2000	213766

6 rows

spread()

Toy data

```
2 03-Tidy-Data.Rmd *
    2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
  7 library(tidyverse)
  8 library(babynames)
                       pollution <- tribble(</pre>
 10 # Toy data
                                  ~city, ~size, ~amount,
 11 cases <- tribble(</pre>
      ~Country, ~"2011",
         "FR", 7000,
                          "New York", "large",
                                                                    23,
         "DE", 5800,
 14
        "US", 15000,
                          "New York", "small",
                                                                    14,
 16
 17
                             "London", "large",
    pollution <- tribble(
                                                                    22,
 19
         ~city, ~size,
      "New York", "large",
                             "London", "small",
                                                                    16,
      "New York", "small",
       "London", "large",
                            "Beijing", "large",
                                                                    121,
       "London", "small",
       "Beijing", "large",
 25
       "Beijing", "small",
                            "Beijing", "small",
                                                                    56
 26
 28 x <- tribble(
      ~x1, ~x2,
 35
 1:1 Garage Tidy Data $
                                          R Markdown $
```


Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	> 23 \
New York	small	14
Lordon	large	>22
Lordon	small	16
Beling	large	121
Beling	small	56

- City
- Amount of large particulate
- Amount of small particulate

Your Turn 3

On a sheet of paper, draw how this data set would look if it had the same values grouped into three columns: *city*, *large*, *small*

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city large small

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

1 2

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New Yor	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread()

```
pollution %>% spread(key = size, value = amount)
```

data frame to reshape

column to use for keys
(becomes new
column names)

column to use for values (becomes new column cells)

pollution %>% spread(size, amount)

	city	size	amount		city	large	small
1	New York	large	23	1	Beijing	121	56
2	New York	small	14	2	London	22	16
3	London	large	22	3	New York	23	14
4	London	small	16				
5	Beijing	large	121				
6	Beijing	small	56				

Your Turn 4

Use **spread()** to reorganize **table2** into four columns: country, year, cases, and population.

			a 众 ×
country <chr></chr>	year type <int> <chr></chr></int>	count <int></int>	
Afghanistan	1999 cases	745	
Afghanistan	1999 population	19987071	
Afghanistan	2000 cases	2666	
Afghanistan	2000 population	20595360	
Brazil	1999 cases	37737	
Brazil	1999 population	172006362	

table2 %>%

spread(key = type, value = count)

	country	Waar	62666	nonulation
	country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

6 rows

WOO

(Untidy Data)

who

Tuberculosis (TB) cases broken down by year, country, age, gender, and diagnosis method from the 2014 World Health Organization Global Tuberculosis Report

View(who)

who variables

country, iso2, iso3 - country identifiers year - year

other columns names - encode type of TB case, sex, and age

who codes

Type of TB case

- rel relapse
- ep extra-pulmonary
- sn- pulmonary, smear negative
- sp -pulmonary, smear positive

Gender

- m male
- f female

Age group

- **014** 0 to 14 years old
- 1524 15 to 24 years old
- 2534 25 to 34 years old
- 3544 35 to 44 years old
- 4554 45 to 54 years old
- 5564 55 to 64 years old
- 65 65 and older

Your Turn 5

Gather the **5th through 60th** columns of who into a pair of key:value columns named *codes* and *n*.

Then select just the county, year, codes and n variables.


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3)
```

country <chr></chr>	year <int></int>	codes <chr></chr>	n <int></int>
Afghanistan	1980	new_sp_m014	NA
Afghanistan	1981	new_sp_m014	NA
Afghanistan	1982	new_sp_m014	NA
Afghanistan	1983	new_sp_m014	NA
Afghanistan	1984	new_sp_m014	NA
Afghanistan	1985	new_sp_m014	NA
Afghanistan	1986	new_sp_m014	NA
Afghanistan	1987	new_sp_m014	NA
Afghanistan	1988	new_sp_m014	NA
Afghanistan	1989	new_sp_m014	NA

separate()

separate()

Splits a column by dividing values at a specific character.

```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, into = c("new", "type", "sexage"), sep = "_")
                    names of new
                                                 string to split on
     a column to
                     columns to
                                                (Defaults to any non_alpha-
         split
                        make
                                                   numeric character)
```

country <chr></chr>	year <int></int>	codes <chr></chr>	n <int></int>
Afghanistan	1980	new_sp_m014	NA
Afghanistan	1981	new_sp_m014	NA
Afghanistan	1982	new_sp_m014	NA
Afghanistan	1983	new_sp_m014	NA
Afghanistan	1984	new_sp_m014	NA
Afghanistan	1985	new_sp_m014	NA
Afghanistan	1986	new_sp_m014	NA
Afghanistan	1987	new_sp_m014	NA
Afghanistan	1988	new_sp_m014	NA
Afghanistan	1989	new_sp_m014	NA


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes
```

country <chr></chr>	year <int></int>	codes <chr></chr>	n <int></int>
Afghanistan	1980	new_sp_m014	NA
Afghanistan	1981	new_sp_m014	NA
Afghanistan	1982	new_sp_m014	NA
Afghanistan	1983	new_sp_m014	NA
Afghanistan	1984	new_sp_m014	NA
Afghanistan	1985	new_sp_m014	NA
Afghanistan	1986	new_sp_m014	NA
Afghanistan	1987	new_sp_m014	NA
Afghanistan	1988	new_sp_m014	NA
Afghanistan	1989	new_sp_m014	NA


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, into = c("new", "type", "sexage") )
```

country <chr></chr>	year <int></int>	codes <chr></chr>	new type <chr> <chr></chr></chr>	sexage <chr></chr>	n <int></int>
Afghanistan	1980	new_sp_m014			NA
Afghanistan	1981	new_sp_m014			NA
Afghanistan	1982	new_sp_m014			NA
Afghanistan	1983	new_sp_m014			NA
Afghanistan	1984	new_sp_m014			NA
Afghanistan	1985	new_sp_m014			NA
Afghanistan	1986	new_sp_m014		NA	
Afghanistan	1987	new_sp_m014			NA
Afghanistan	1988	new_sp_m014			NA
Afghanistan	1989	new_sp_m014			NA


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, into = c("new", "type", "sexage"), sep = "_")
```

country <chr></chr>	year <int></int>	codes <chr></chr>	new <chr></chr>	type <chr></chr>	sexage <chr></chr>	n <int></int>
Afghanistan	1980	new_sp_m014	new	sp	m014	NA
Afghanistan	1981	new_sp_m014	new	sp	m014	NA
Afghanistan	1982	new_sp_m014	new	sp	m014	NA
Afghanistan	1983	new_sp_m014	new	sp	m014	NA
Afghanistan	1984	new_sp_m014	new	sp	m014	NA
Afghanistan	1985	new_sp_m014	new	sp	m014	NA
Afghanistan	1986	new_sp_m014	new	sp	m014	NA
Afghanistan	1987	new_sp_m014	new	sp	m014	NA
Afghanistan	1988	new_sp_m014	new	sp	m014	NA
Afghanistan	1989	new_sp_m014	new	sp	m014	NA


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new)
```

country <chr></chr>	year <int></int>	type <chr></chr>	sexage <chr></chr>	<int></int>
Afghanistan	1980	sp	m014	NA
Afghanistan	1981	sp	m014	NA
Afghanistan	1982	sp	m014	NA
Afghanistan	1983	sp	m014	NA
Afghanistan	1984	sp	m014	NA
Afghanistan	1985	sp	m014	NA
Afghanistan	1986	sp	m014	NA
Afghanistan	1987	sp	m014	NA

separate()

Splits a column by dividing values at a specific character.

```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, c("new", "type", "sexage"), sep = c(4, 7))
```

locations to split at (Split after 4th and 7th characters)

Your Turn 6

Separate the sexage column into sex and age columns.


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new) %>%
  separate(sexage, into = c("sex", "age"), sep = 1)
```

					100	
	country <chr></chr>	year <int></int>	type <chr></chr>	sex <chr></chr>	age <chr></chr>	n <int></int>
1	Afghanistan	1980	sp	m0	14	NA
2	Afghanistan	1981	sp	m0	14	NA
3	Afghanistan	1982	sp	m0	14	NA
4	Afghanistan	1983	sp	m0	14	NA
5	Afghanistan	1984	sp	m0	14	NA
6	Afghanistan	1985	sp	m0	14	NA
7	Afghanistan	1986	sp	m0	14	NA

20. A X

unite()

unite()

Unites columns into single column by combining cells.

Missing Values

drop_na()

Drops rows that contain NA's in the specified columns.

drop_na()

Drops rows that contain NA's in the specified columns.


```
who %>%
  gather("codes", "n", 5:60) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new, -iso2, -iso3) %>%
  separate(sexage, c("sex", "age"), sep = 2) %>%
  drop_na(n)
```

	country	year [‡]	type [‡]	sex [‡]	age [‡]	n [‡]
1	Afghanistan	1997	sp	m0	14	0
2	Afghanistan	1998	sp	m0	14	30
3	Afghanistan	1999	sp	m0	14	8
4	Afghanistan	2000	sp	m0	14	52
5	Afghanistan	2001	sp	m0	14	129
6	Afghanistan	2002	sp	m0	14	90
7	Afghanistan	2003	sp	m0	14	127
8	Afghanistan	2004	sp	m0	14	139
9	Afghanistan	2005	sp	m0	14	151

Recap

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

Tidy Data with

Reshaping Final Exam

Number of children by year and gender

Can we calculate the ratio of boys to girls?

```
babynames %>%
  group_by(year, sex) %>%
  summarise(n = sum(n))
```

```
year
       sex
  <dbl> <chr> <int>
   1880 F 90993
   1880
       M 110491
   1881 F 91954
           M 100745
   1882
             107850
   1882
           M 113688
6
```


Can we calculate the ratio of boys to girls?

```
babynames %>%
  group_by(year, sex) %>%
  summarise(n = sum(n))
```

```
year
        sex
  <dbl> <chr> <int>
   1880 F 90993
           M 110491
   1880
   1881 F 91954
   1881
            M 100745
   1882
              107850
   1882
            M 113688
6
```

Now what?

Can we calculate the ratio of boys to girls?

```
better_layout %>%
mutate(percent_male = M / (M + F) * 100)
```


Your Turn 7

Reshape the layout of this data. Calculate the percent of male (or female) children by year. Then plot the percent over time.

```
babynames %>%
  group_by(year, sex) %>%
  summarise(n = sum(n))
```



```
babynames %>%
  group_by(year, sex) %>%
  summarise(n = sum(n)) %>%
  spread(sex, n) %>%
  mutate(percent_male = M / (M + F) * 100) %>%
  ggplot(aes(year, percent_male)) + geom_line()
```


Percent of children that are male by year

General advice

Describe what you want to do in an **equation**. Each variable in the equation should correspond to a variable in your data:

- "color by sex"color = sex
- "calculate the proportion of males"
 prop male = number of males / number of females + number of males

Tidy Data with

