Floer theory: Homework 6

Paramjit Singh

Problem 1. Let $f: X \to \mathbb{R}$ be a Morse function on a compact manifold X. Let g_{ν} be a sequence of metrics on X that converge to g_{∞} in \mathscr{C}^{∞} . Suppose a sequence of g_{ν} -trajectories $\gamma_{\nu} \in \mathcal{M}(x,y)$ converge to a g_{∞} -trajectory $\gamma_{\infty} \in \mathcal{M}(x,y)$. If the operator $D_{\gamma_{\infty}}$ is surjective, prove that $D_{\gamma_{\nu}}$ is surjective for large ν .

Solution. We use the argument outlined in class.

Since the convergence is in $\mathscr{C}^{\infty}(X)$ (global \mathscr{C}^{∞}), the limit trajectory γ_{∞} is between the same pair of critical points as γ_{ν} . Fix a metric \bar{g} on X which is flat in a neighborhood of those critical points, and let $\nabla^{\bar{g}}$ denote the Levi-Civita connection of this metric.

Recall that D_{γ} for a trajectory γ was defined as

$$D_{\gamma} = D\mathscr{F}_{\gamma}(0): W^{1,2}(\gamma^*TX) \to L^2(\gamma^*TX), \qquad \xi \mapsto \nabla_{\partial/\partial t}\xi + \nabla_{\xi} \operatorname{grad} f(\gamma(t))$$

We shall consider the above operator for γ_{ν} . Trivializing $\gamma_{\nu}^*TX \simeq \mathbb{R} \times \mathbb{R}^n$ using (parallel transport by) $\nabla^{\bar{g}}$, we obtain parametric formulations of $D_{\gamma_{\nu}}$, that is, for $\xi : \mathbb{R} \to \mathbb{R}^n$

$$D_{\gamma_{\nu}}(\xi) = \frac{\mathrm{d}}{\mathrm{d}t}\xi + \nabla_{\xi} \operatorname{grad}^{g_{\nu}} f(\gamma_{\nu}), \quad \text{or more succinctly,} \quad D_{\gamma_{\nu}} = \frac{\mathrm{d}}{\mathrm{d}t} + \nabla_{-} \operatorname{grad}^{g_{\nu}} f(\gamma_{\nu})$$

The above expression is of the form $d/dt + A_{\nu}$, where $A_{\nu} : W^{1,2}(\mathbb{R}, \mathbb{R}^n) \to L^2(\mathbb{R}, \mathbb{R}^n)$, given by $A_{\nu}(\xi) = \nabla_{\xi}^{g_{\nu}} \operatorname{grad}^{g_{\nu}} f(\gamma_{\nu})$. We want to say that since $\gamma_{\nu} \to \gamma_{\infty}$ and $g_{\nu} \to g_{\infty}$ (both in $\mathscr{C}^{\infty}(X)$), we have that $A_{\nu} \to A_{\infty}$ (with the appropriate A_{∞} defined as above). To see this, note that

$$(A_{\nu} - A_{\infty})(\xi) = (\nabla_{\xi}^{g_{\nu}} - \nabla_{\xi}^{g_{\infty}}) \operatorname{grad}^{g_{\nu}} f(\gamma_{\nu}) + \nabla_{\xi}^{g_{\infty}} (\operatorname{grad}^{g_{\nu}} - \operatorname{grad}^{g_{\infty}}) f(\gamma_{\nu}) + \nabla^{g_{\infty}} \operatorname{grad}^{g_{\infty}} (f(\gamma_{\nu}) - f(\gamma_{\infty}))$$

Now as $\gamma_{\nu} \to \gamma_{\infty}$, we have $f(\gamma_{\nu}) \to f(\gamma_{\infty})$ as functions on \mathbb{R} and hence each of the above terms can be made arbitrarily small by taking sufficiently large ν . The first term can be made small by considering the differences between the Christoffel symbols of the Levi-Civita connections for g_{ν} and g_{∞} , and from the definition of the Levi-Civita connections in terms of the metrics. For the second term, note that $g_{\nu}(\operatorname{grad}^{g_{\nu}} f, X) = \operatorname{d} f(X) = g_{\infty}(\operatorname{grad}^{g_{\infty}} f, X)$ for any functional f. Thus, $(g_{\infty} - g_{\nu})(\operatorname{grad}^{g_{\nu}} f, X) = g_{\infty}((\operatorname{grad}^{g_{\nu}} - \operatorname{grad}^{g_{\infty}})f, X)$, which shows that the second term can be made small. The final term can clearly be made small, as $\nabla^{g_{\infty}}$ and $\operatorname{grad}^{g_{\infty}}$ are \mathbb{R} -linear operators.

Thus, with the above trivializations, we have expressed $D_{\gamma_{\nu}}$ and $D_{\gamma_{\infty}}$ as maps $W^{1,2}(\mathbb{R},\mathbb{R}^n) \to L^2(\mathbb{R},\mathbb{R}^n)$. Now since $D_{\gamma_{\infty}}$ is surjective and surjective operators between Banach spaces are open in the operator norm topology¹, it follows that $D_{\gamma_{\nu}}$ is surjective for large ν .

 $^{^{1}\}mathrm{See}$ https://math.stackexchange.com/questions/17087/why-is-the-space-of-surjective-operators-open.