Kvantummechanika gyorstalpaló

2017. december 12.

1. Bevezetés

A kvantummechanika formalizmusának az alapja a \mathcal{H} komplex Hilbert tér. A kvantummechanikai állapotok a \mathcal{H} Hilbert tér elemei, vektorai.

1.1. Dirac-jelölés

A \mathcal{H} Hilbert tér elemei a $|\psi\rangle$ vektorok. A \mathcal{H}^* duális térben a vektorokat $\langle\phi|$ -vel jelöljük. A vektorok skalárszorzására a következő igaz:

- $\langle \phi | \psi \rangle \in \mathbb{C}$
- $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$
- $||\psi||^2 = \langle \psi | \psi \rangle \ge 0$

További azonosságok:

• $(c|\psi\rangle)^* = c^* \langle \psi|$

Ortonormált bázisról beszélünk, ha $\langle e_i|e_j\rangle=\delta_{ij}$

1.1.1. Reprezentáció

Számolások során a Hilbert-tér általában az \mathcal{L}^2 -tér.

$$\psi : \mathbb{R} \to \mathbb{C} \in \mathcal{L}^2 \iff ||\psi||^2 = \int_{-\infty}^{\infty} |\psi(x)|^2 dx < \infty$$

1.2. Kvantumállapot és Born-féle értelmezés

A kvantummechanikában minden állapothoz rendelhető egy $|\psi\rangle$ vektor. Az ilyen állapotok 1-re normált állapotok kell hogy legyenek, vagyis $||\psi|| = \langle \psi | \psi \rangle = 1$. Abban az esetben ha adott egy $|k\rangle$ bázis, és $|\psi\rangle$ felírható ezen a bázison:

$$|\psi\rangle = \sum_{k=0}^{n} c_k |k\rangle$$

ahol $c_k = \langle k | \psi \rangle$ és ez alapján

$$|\psi\rangle = \sum_{k=0}^{n} \langle k|\psi\rangle |k\rangle$$

Ekkor a normálásból következik, hogy

$$\langle \psi | \psi \rangle = \sum_{k=0}^{n} c_k^* \sum_{j=0}^{n} c_j \langle k | j \rangle = \sum_{k=0}^{n} |c_k|^2 = 1$$

továbbá

$$\sum_{k=0}^{n} |k\rangle \langle k| = \hat{1}$$

Fent $|c_k|^2$ annak a valószínűsége, hogy a $|\psi\rangle$ állapotban levő rendszer éppen $|k\rangle$ állapotban található. Ez a valószínűség nem feltétlenül 0, mert a $|\psi\rangle$ egy szuperponált állapot. Tehát ha egy rendszer a $|a\rangle$ állapotban van preparálva és arra vagyok kíváncsi, hogy mi a

valószínűsége annak, hogy $|b\rangle$ állapotban találom, akkor a $p = |\langle b|a\rangle|^2$ értéket kell kiszámolni.

1.3. Fiziaki mennyiségek és operátorok

A \mathcal{H} Hilbert téren értelmezhetők az $\hat{A}: \mathcal{H} \to \mathcal{H}$ típusú operátorok. Értelmezhető az \hat{A} operátor hermitikus adjungáltja a követkző képpen :

$$\langle \phi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi \rangle$$

Itt \hat{A}^{\dagger} -ot az \hat{A} hermitikus adjungáltjának nevezzük és igaz, hogy ha

$$|w\rangle = \hat{A} |v\rangle \implies \langle w| = \langle v| \hat{A}^{\dagger}$$

Definíció. A \hat{H} operátort hermitikusnak nevezzük ha $\hat{H}^{\dagger} = \hat{H}$.

Tétel. A kvantummechanikában minden fizikai állapothoz rendelhető egy hermitikus operátor.

Példa. Az impulzus operátora $\hat{p} = -i\hbar\nabla$, az energia operátora $\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}$.

Definíció. Egy \hat{U} operátort unitérnek nevezünk, ha $\hat{U}^{-1} = \hat{U}^{\dagger}$

Példa. Az időfejlődés operátora $\hat{U}(t) = e^{-\frac{i}{\hbar}\hat{H}t}$ unitér operátor.

A hermitikus operátorok sajátértékei mindig valósak. Ha egy operátor sajátvektorai ortonormált bázist alkotnak, akkor:

$$\hat{A} = \sum_{n} a_n |n\rangle \langle n|$$
, ahol $\hat{A} |n\rangle = a_n |n\rangle$

Tétel. Egy hermitikus operátor sajátvektorai mindig ortgonálisak.

Illetve, ha egy \hat{A} operátor sajátvektorai ortonormált bázist alkotnak, akkor egy tetszőleges $|\psi\rangle$ vektor kifejthető ezen a bázison:

$$\hat{A}|n\rangle = a_n|n\rangle$$
, és $\langle n|m\rangle = \delta_{mn} \implies |\psi\rangle = \sum_n \langle n|\psi\rangle |n\rangle \equiv \sum_n c_n|n\rangle$

Legyen most \hat{A} hermitikus, $|\psi\rangle$ egy állapot, úgy, hogy $\hat{A}|n\rangle = a_n |n\rangle$ és $|\psi\rangle = \sum_n c_n |n\rangle$. Ekkor az $\hat{A}|\psi\rangle$ vektor b_m együtthatói az $|n\rangle$ bázison:

$$b_{m} = \left\langle m \middle| \hat{A}\psi \right\rangle = \sum_{n} \left\langle m \middle| \hat{A} \middle| n \right\rangle \left\langle n \middle| \psi \right\rangle = \sum_{n} A_{mn} c_{n}$$

Ezért

$$A_{mn} = \langle m | \hat{A} | n \rangle$$

 $|\langle \phi | \hat{A} | \psi \rangle|^2$ az minek a valószínűsége?

1.4. Kommutátorok

Tétel. $Az \ \hat{A} \ \acute{e}s \ \hat{B} \ kommut\'{a}tora \ \left[\hat{A}, \hat{B} \right] = \hat{A}\hat{B} - \hat{B}\hat{A}.$

- $\bullet \ [\hat{x}_i, \hat{x}_j] = 0$
- $\bullet \ [\hat{p}_i, \hat{p}_j] = 0$
- $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$
- $\bullet \left[\hat{L}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{L}_k$
- $\bullet \left[\hat{S}_i, \hat{S}_j\right] = i\hbar \varepsilon_{ijk} \hat{S}_k$
- $\bullet \left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k$
- $\bullet \ \left[\hat{J}^2, \hat{J}_i\right] = \left[\hat{S}^2, \hat{S}_i\right] = \left[\hat{L}^2, \hat{L}_i\right] = 0$
- $\bullet \left[\hat{L}_i, \hat{S}_j\right] = 0$
- $\bullet \left[\hat{x}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{x}_k$
- $\bullet \left[\hat{p}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{p}_k$
- Ha \hat{A} hermitikus $\implies \hat{A}^\dagger = \hat{A} \implies \left[\hat{A}^\dagger, \hat{A}\right] = 0$

2. Impulzusmomentumok

2.1. Pálya-impulzusmomentum

A kvantummechanikai impulzusmomentum operátora $\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}} = -i\hbar(\vec{r} \times \nabla)$. Gömbi koordinátarendszerben felírva:

$$\bullet \ \hat{L}^2 = -\hbar^2 \left(\tfrac{1}{\sin\theta} \tfrac{\partial}{\partial \theta} \left(\sin\theta \tfrac{\partial}{\partial \theta} \right) + \tfrac{1}{\sin^2\theta} \tfrac{\partial^2}{\partial \varphi^2} \right)$$

•
$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi}$$

$$\bullet \ \hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$$

•
$$\hat{L}_{+} = \hbar e^{i\varphi} \left(\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right)$$

•
$$\hat{L}_{-} = \hbar e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right)$$

$$\bullet \ \left[\hat{L}_+, \hat{L}_-\right] = 2\hbar L_z$$

•
$$\hat{L}^2 = \hat{L}_+ \hat{L}_- + \hat{L}_z^2 - \hbar \hat{L}_z$$

Az \hat{L} operátor sajátállapotait két kvantumszám határozza meg , l és m_l , a sajátvektorokat ezért $|l,m_l\rangle$ jelöli. A sajátértékek a következők lehetnek: $l\in\{0,1,2,...\}$, $m_l\in\{-l,...0,...,l\}$. A továbbiakban lusta fizikus módon m_l helyett m-et írunk. Ezzel a jelöléssel igazak a következő azonosságok:

•
$$\hat{L}^2 |l,m\rangle = \hbar^2 l(l+1) |l,m\rangle$$

•
$$\hat{L}_z |l, m\rangle = \hbar m |l, m\rangle$$

•
$$\hat{L}_{\pm} |l, m\rangle = \hbar \sqrt{l(l+1) - m(m\pm 1)} |l, m\pm 1\rangle$$

•
$$\hat{L}_{+}|l,m=l\rangle=0$$
 és $\hat{L}_{-}|l,m=-l\rangle=0$

Ha $|l,m\rangle$ -eket az \mathcal{L}^2 téren akarjuk ábrázolni, akkor:

$$\langle \theta, \varphi | l, m \rangle = Y_l^m(\theta, \varphi)$$

$$\langle l', m' | l, m \rangle = \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\varphi (Y_{l'}^{m'})^* Y_{l}^{m} = \delta_{ll'} \delta_{mm'}$$

2.2. Spin

A spin-operátort \hat{S} jelöli, sajátállapotait két kvantumszám adja meg, s és m_s , úgy, hogy $s\in\{0,\frac12,1,\frac32,\ldots\}$ és $m_s\in\{-s,...0,...,s\}$

2.2.1. Feles spin

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

2.3. Teljes impulzusmomentum