Statistical Inference - Homework 2

Nov. 18, 2021

NOTE: Homework 2 is due Nov. 26, 2021.

1. Let X_1, \dots, X_m $i.i.d. \sim N(a, \sigma^2), Y_1, \dots, Y_n$ $i.i.d. \sim N(b, \sigma^2)$ and X_i 's and Y_j 's are independent. Let $\bar{X} = \sum_{i=1}^m X_i/m, \ \bar{Y} = \sum_{j=1}^n Y_j/n, \ \text{and}$

$$S^{2} = \frac{1}{n+m-2} \left[\sum_{i=1}^{m} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{n} (Y_{j} - \bar{Y})^{2} \right].$$

Show that (\bar{X}, \bar{Y}, S^2) is a sufficient and complete statistic of (a, b, σ^2) .

2. Let X_1, \dots, X_n be a random sample from the distribution with p.d.f.

$$f(x; \theta) = \frac{1}{2\theta} \exp\left\{-\frac{|x|}{\theta}\right\}, \quad -\infty < x < +\infty, \ \theta > 0.$$

Show that $T = \sum_{i=1}^{n} |X_i|$ is a sufficient and complete statistic of θ .

- 3. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim N(\theta, \theta^2)$, is \bar{X} a sufficient statistic of θ ?
- 4. Let X_1, \dots, X_n be a random sample from two parameter exponential distribution with p.d.f.

$$f(x; \lambda, \mu) = \lambda^{-1} \exp\left\{-\frac{x-\mu}{\lambda}\right\} I_{\{x>\mu\}},$$

where $0<\lambda<+\infty,\,-\infty<\mu<+\infty$ are two unknown parameters. Show that

- (i) $(X_{(1)}, \sum_{i=1}^{n} X_{(i)})$ is sufficient for (λ, μ) ;
- (ii) $X_{(1)}$ is independent of $\sum_{i=1}^{n} (X_i X_{(1)})$.
- 5. Let X_1, \dots, X_n be a random sample from $U(\theta_1, \theta_2)$. Prove $(X_{(1)}, X_{(n)})$ are sufficient and complete statistics.
- 6. Let $X = (X_1, \dots, X_n)$ be a random sample from exponential distribution with p.d.f.

$$f(x;\theta) = \exp\{-(x-\theta)\} I_{\{x>\theta\}}, \quad -\infty < \theta < +\infty$$

- (1) Derive the moment estimate of θ and show that it is unbiased.
- (2) Calculate the variance of the moment estimate.
- 7. Let $X = (X_1, \dots, X_n)$ be a random sample from Gamma distribution with parameters α, β and p.d.f.

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \quad x > 0, \ \alpha > 0, \ \beta > 0.$$

Derive the moment estimates of α and β .

8. Let $X = (X_1, \dots, X_n)$ be a random sample be a random sample from a population with the pmf

$$P_{\theta}(X=x) = \theta^{x}(1-\theta)^{1-x}, \quad x = 0, 1, 0 \le \theta \le 0.5.$$

Find the method of moments estimator of θ . Find the mean squared errors of the estimator.