

Example							
Show that the equation is Be	nouli	and solv	e the in	itial val	ue mob	lem.	
$\mathcal{L} du Su = 2n^2u^4$		y (1)		# (1.5.12 \ \ \ \ \ \ \			
$\frac{\chi}{dx} = \frac{2x^2y^4}{dx}$							
dy + 5 y = 2xy4							
dy + 5 y = 2ny4							
$y^{-4} \frac{dy}{dx} + \frac{5}{x} y^{-3} = 2x$							
dù n							
u = y - 3							
$\frac{du = y^{-3}}{dx}$ $\frac{du = -3y^{-4}}{dx}$							
$y^{-u} \frac{dy}{dn} = \frac{-1}{3} \frac{du}{dn}$							
on 3 on							
$\frac{du}{dx} = \frac{15}{x}u = -6u$							
IF = e = e = =	n 15						
IF = e = e = =	N						
u= 1 (n-15 (-6n) dn							
$U = \left(\begin{array}{c} 1 \\ x^{-15} \end{array} \right) $ $1 \cdot (-6x) \cdot dx$							
-6x15 (x-14 dx							
= f6x15 x x-13 x x15 c							
f 13							
= 6x ² + x ¹⁵ c							
13							
u - y - 3							
$\frac{1}{2} = \frac{6x^2 + x^{15}c}{6x^2 + x^{15}c}$							
y ³ 13							

L sample	
Find the first 4 terms of the sequence	,
an = log (n)	
N+1	
a, = log(1) 0	
1-11	
Ω ₂ - log 2	
(13 - log 3 4	
9	
α ₄ - log ε ₁	
5	
Example	
	3,5,7,9,11
	3 , 5 , 7 , 9 , 11 2 , 4 , 6 , 8 , 10
1 2 .	
1+2n 2n	
Asithmetic Sequences	
A sequence an is said to be anithmeti	c if anti - an = d is constant.
d Ps called the common difference.	
If an is authoretic with first term as	and common difference d then
an = a, + (n-1)d	
Complete Same	
Geometric Seguences	
A sequence an is called geometric if	
anti e e is constant	
Ot n	
r is called the common latio of the q	rométric sequence.

I an is a geometric sequence with first term as and common ratio , then
its n-th turn is given by an = ay en-1
Example
Find the nth term of the sequence 1,3,9,27
5 25 125
$\frac{a_1}{a_1} = \frac{315}{1}$ $\frac{a_2}{a_1} = \frac{3}{315}$ $\frac{a_1}{315} = \frac{3}{5}$
ai 1 ai 315 5
$Cin = 1 \left(\frac{3}{5}\right)^{n-1}$
Recursive Representation of Sequences
A recursive representation is a representation that gives the first term(s) of the
sequence along with a relationship between the remaining terms.
Example
α, = 2
anti = 3an- ant = 1
Find a6
a2 = 3a, - a1 + 1
$= 3(1) - 2^{1} + 1$
, 3
a3 - 3a2 - až + 1
3(8) - 32 + 1
$a_4 = 8a_3 - a_3^2 + 1$

2 3-1+1
- 3
$a_5 - 3a_4 - a_4^3 + 1$
2 3(3) - 32 4 (
. 1
96 = 305 - as + 1
- 3-1-1
3
Limit of Sequences
Because sequences au junctions défined on set of natural numbers 1,2,3,4,
we will be interested in finding limit of an when n -> + a
Lim an
N->+00
All properties for limit of functions are valid for limit of sequences.
Enample
Evaluate the following limits.
$\frac{1. \lim_{n\to\infty} 5n^3 + 4n - 6}{7 - 3n^3}$
n^{-3} n^{-3} n^{-3}
1im 5 y/s n-700 -3y/s
n-700 -31/s
= -5
3
2. lim nsin (4)
n->00 (")
lim sin 4/h
lim sin 4/h h->00 1/h

n-		4/n											
= li	in qx1												
	r→ 0 0												
: 1	4												
3- lin		L											
36 C	an=f(n)	and	lin f) (x)	= L ₁	the	n (йм > 00	an =	L			
			1 60				Ĭ						
10	3												
	$\frac{91^2}{2^9-1}$												
_ ให้พ - พ->	$\frac{1}{2}$												
. lim n-s 00	$(\ln e)^2$	2 x											
0													
a /v													
4 . [in	m nl												
	-> 00 Nn												