

Direction Générale des Etudes Technologiques Institut Supérieur des
Etudes Technologiques
de Mahdia

Code du projet : 222307

PROJET DE FIN D'ETUDES

PRESENTE POUR OBTENIR LE TITRE:

DIPLÔME NATIONAL DE LICENCE

En Génie Mécanique

Parcours: construction et fabrication mécanique

Thème du projet

Étude Conception et réalisation Cintreuse à 3 galets

Réalisé par : Chouk Achraf

Jandoubi Ahmed

SOUTENU LE 17/06/2023 DEVANT LE JURY D'EXAMEN :

M./Mme Chouchene Houda Président
M./Mme Grine Asma Rapporteur

M./Mme Bouzid Fethi Encadrant-ISET
M./Mme Halabia Najet Encadrant-ISET
M./Mme Bahri Fares Encadrant-Entreprise

A.U.: 2022-2023

<u>Dédicace</u>

Eⁿ exprimant ma gratitude, je dédie cet humble travail à ceux à qui je ne peux pas exprimer mon véritable amour, peu importe les moyens.

À l'homme, mon précieux offert du dieu, qui doit vie, ma réussite et tout mon respect : mon père **Naoufel**.

À la femme qui souffre mais ne me laisse pas souffrir, qui ne refuse jamais mes demandes et qui ne ménage aucun effort pour me rendre heureux : ma charmante mère *Naziha*.

À mon très cher frère **Youness** et belle-sœur **Molka**. Que Dieu vous donne santé, bonheur, courage et surtout.

À mes chers amis, CHOUK MONTASSAR, OTHMAN SATT et HAJJEM RAYEN. Pour leurs aides et Supports dans les moments difficiles.

À mon binôme de PFE *JANDOUS* AAMED pour son soutien moral, sa patience et sa compréhension tout au long de ce projet.

Sans oublier ma deuxième famille de **Bernabéu Play** qui m'avez toujours soutenu et encouragé durant ces années d'études.

A tous ceux que j'aime et ceux qui m'aiment.

Chouk Achraf

Dédicace

 $\boldsymbol{E}n$ exprimant ma gratitude, je dédie cet humble travail à ceux à qui je ne peuxpas exprimer mon véritable amour, peu importe les moyens.

À l'homme, mon précieux offert du dieu, qui doit vie, ma réussite et tout monrespect : mon père ALI.

À la femme qui souffre mais ne me laisse pas souffrir, qui ne refuse jamais mes demandes et qui ne ménage aucun effort pour me rendre heureux : ma charmantemère **BASMA**.

À ma belle-sœur CHAMMA. Que Dieu vous donnesanté, bonheur, courage et surtout.

À mes chers amis, CHAOUCH MAJDI, JEMAI JIHEN et JANDOUBI RUHEM. Pour leurs aides et Supports dans les moments difficiles.

À mon binôme de PFE *CHOUX ACHRA7* pour son soutien moral, sa patienceet sa compréhension tout au long de ce projet.

A tous ceux que j'aime et ceux qui m'aiment.

Jandoubi Ahmed

Remerciements

Au terme de notre travail de fin d'études, nous tenons à adresser nos vifs remerciements et nos sincères gratitudes à toutes les personnes qui ont contribué de près ou de loin à sa réussite.

Nous tenons à présenter nos plus vifs remerciements s'adressent à nos encadreurs, Monsieur **Bouzid Fathi et** Madame **Hallabia Najet** pour toutes les informations que nous ont fournies, les conseils que nous ont donnés, pour leurs suivis, leurs patiences et leurs intérêts portés sur notre travail.

Nous tenons également à remercier les professeurs qui nous ont enseigné durant cette période de nos recherches à l'institut supérieur des études technologiques de Mahdia pour leur disponibilité, effort et soutien inconditionnel. Nous voulons à cette occasion, leur exprimer notre gratitude et notre reconnaissance.

Nous tenons à remercier **Mr Bahri Fares**, le directeur de **MECATECH INDUSTRIE** MAHDIA. Une personne qui nous offert l'opportunité de passer notre stage de projet de fin d'études au sein de sa société.

Nous tenons à exprimer nos plus sincères remerciements aux membres du jury qui nous ont apporté un grand honneur d'évaluer ce travail.

Enfin, nous tenons à remercier tous les membres du personnel qui nous ont accueillis et guidés, malgré leurs nombreux métiers, à tous ceux qui ont contribué, de près ou de loin, à faire ce travail.

SOMMAIRE

Table des matières

INTRODUCTION GENERALE	
Chapitre 1 : Présentation générale de la société	, 2
Introduction	
1.Présentation de l'entreprise :	
2.Organigramme de l'entreprise :	, 4
3.Cycle de fabrication de Mecatech:	, 4
4.Les différentes machines de l'atelier mécanique :	
4.1. Définition du tournage	4
4.2. Tour conventionnelle	4
4.3. Les machines du tour CNC	4
4.4. Définition de fraisage	. (
Chapitre 2 : Etude bibliographique	
Introduction:	. 8
1.Définition de la cintreuse :	. 8
2.Les différentes méthodes de cintrage :	(
2.1. Cintrage à la main:	(
2.2. Cintrage par flexion:	(
2.3. Cintrage par appui en porte à faux :	(
2.4. Cintrage à vide:	(
3.Les différentes machines à cintrer :	
3.1. Machine à cintrer à vérin :	1 1
3.2. Presse à cintrer :	2
3.3. Presse à cintrer à trois galets :	2
3.4. Cintrage par enroulement et étirage :	1
3.5. Cintrage par enroulement et compression :	۷ _
3.6. Cintreuse électrique :	
3.7 Cintreuse multifonctions pro pliage volute:	4

Chapitre 3 : Analyse fonctionnelle	16
Introduction:	17
1.Analyse fonctionnelle	17
1.1. Analyse fonctionnelle externe Besoin	17
1.2. Diagramme bête à corne	17
1.3. Validation du besoin :	18
1.4. Diagramme de pieuvre :	18
1.5. Fonctions principales (FP):	19
1.6. Fonctions contraintes (FC):	19
1.7. Identification des fonctions de services :	19
1.8. Valorisation des fonctions de service :	19
1.9. Hiérarchisation des fonctions de service :	21
1.10. Elaboration d'un cahier des charges fonctionnel :	21
Tableau : Cahier des charges fonctionnels	22
2. Analyse fonctionnelle interne :	22
2.1 Analyse descendante:	23
2.2. Diagramme FAST et choix des solutions :	25
2.2.1. Diagramme FAST:	25
L'outil d'analyse FAST (Fonctionnel Analyses System Technique) permet le développement d'un diagramme de traduction des fonctions de service en fonctions techniques, puis matériellement en solutions constructives	25
2.2.2. Choix des solutions :	
2.2.3. Choix du système de transmission :	
2.2.4. Choix du moteur :	
2.2.5. Analyse S2.1 : Moteur alternatif	
2.2.6. Choix du système d'entrainement a mouvement linaire :	
2.2.7. Diagramme F.A.S.T. Corrigé :	
Conclusion	
Chapitre 4 : Calcul et dimensionnement	
Introduction:	
1.Schéma cinématique :	
2.Bilan des actions mécaniques :	
2.1. Effort de cintrage sur les tubes :	

ISET MAHDIA

3.1. Tronçon AC :	6
3.2. Tronçon CB :3	7
4.Traçage des diagrammes :	7
4.1. Diagramme des efforts tranchants :	7
4.2. Diagramme des moments fléchissant :	8
5.Calcul	8
5.1. Calcul de la flèche:	8
5.2. Calcul de l'effort de cintrage :	8
5.2. Calcul de l'effort tangentiel :	9
5.3. Calcul du couple à vide:	9
5.4. Calcul du rapport global d'engrenage:	9
5.5. Calcul du couple de sortie :	9
5.6. Calcul du puissance de sortie :	9
5.7.Calcul du puissance moteur :	9
6. Dimensionnement de l'arbre du petit galet :	-0
6.1. Les torseurs des liaisons mécanique :	1
6.2. Transfert des torseurs au point D:4	1
6.3. P.F.S au point D:	-2
6.4. Tronçon [BC] :	4
6.5. Tronçon [DC] :	-5
7. Caractéristique de différents pignons :	-7
8.Arbre des roues 2:	0
Conclusion5	6
Chapitre 5 : Réalisation5	7
Conclusion générale6	<u>i1</u>

LISTE DE FIGURES

Figure 1 : logo de société	
Figure 2 : organigramme de société	4
Figure 3: tour conventionnelle	5
Figure 4: Tours à commande numérique	5
Figure 5; Centre d'usinage	6
Figure 6 : Rayon intérieur et le rayon extérieur après cintrage	8
Figure 7: Cintrage par flexion	9
Figure 8 : Cintrage par appui en porte à faux	9
Figure 9 : Cintrage à froid	10
Figure 10 : Cintrage à chaud	10
Figure 11 : Cintrage par machine à vérin	
Figure 12: Machine de cintrage par vérin	
Figure 13: Cintrage par presse	12
Figure 14: Cintrage sur presse à trois galets	
Figure 16: Cintrage par enroulement et étirage	
Figure 17 : Machine de Cintrage par enroulement et étirage	13
Figure 18: Cintrage par enroulement et compression	14
Figure 19 : Cintreuse électrique	
Figure 20: Cintreuse multifonctions pro pliage volute	15
Figure 21 : bête à cornes	17
Figure 22: diagramme pieuvre	
Figure 23: Historique de souhait	21
Figure 24: Actigramme A-0	22
Figure 25 : Diagramme A-0	24
Figure 26: Diagramme FAST	
Figure 27 : Analyse FT1	
Figure 28 : Analyse de FT2	
Figure 29 : Analyse de S2.1	
Figure 30 : Analyse de S2.1	
Figure 31: Diagramme Fast corrigé	31
Figure 32 : Schéma cinématique du système	33
Figure 33: Modélisation sur RDM6	46
Figure 34 : Modélisation sur RDM6	
Figure 35 · modélisation sur SolidWorks	

Figure 36: Modélisation sur SolidWorks	48
Figure 37: Modélisation sur SolidWorks	48
Figure 38: modélisation sur SolidWorks	49
Figure 39: Modélisation sur SolidWorks	49
Figure 40: Modélisation sur SolidWorks	50
Figure 41: Modélisation sur RDM6	55
Figure 42: Modélisation sur RDM6	56

LISTE DE TABLEAUX

Tableau I: Tri croisée	
Tableau 2 : Cahier des charges fonctionnels	22
Tableau 3 : Barème de notation de comparaison	26
Tableau 4 : Barème de pondération	
Tableau 5: Valorisation par critère FT1	27
Tableau6: Valorisation globale FT1	27
Tableau 7: Valorisation par critère FT2	28
Tableau 8: Valorisation globale FT2	28
Tableau 9: Valorisation par critère S2.1	29
Tableau 10: Valorisation globale S2.1	29
Tableau 11: Valorisation par critère S3	30
Tableau 12: Valorisation globale S3	
Tableau 14 : Repère de système	34
Tableau 13 : Repère de liaison	34
Tableau 15 : Caractéristique de pignon	47
Tableau 16 : caractéristiques de pignon	
Tableau 17 : caractéristiques de pignon	
Tableau 18 : caractéristiques de pignon	49
Tableau 19 : Caractéristiques de pignon	
Tableau 20 : caractéristiques de pignon	50

INTRODUCTION GENERALE

Depuis longtemps la mécanique permet de trouver des solutions pour plusieurs problèmes des systèmes industriels. Pour cela, elle est toujours en évolution rapide car elle joue un rôle très important dans l'industrie en assurant la bonne qualité de produit fini pour satisfaire le consommateur et garantir le temps, l'argent et la rapidité.

Ainsi la mécanique reste le miracle qui sauve l'humanité car elle sert à faire des taches en toute sécurité et rapidité qui sont presque impossible de les faire par l'homme.

Dans nos jours, on sait l'importance de cintrage dans l'industrie et dans ce cadre s'inscrit notre projet de fin d'études qui consiste à réaliser une machine de cintrage « Cintreuse à 3 galets » capable de cintrer des profils de formes ronds et carrés. Ce rapport se répartie sur cinq chapitres comme suit :

- Le premier chapitre présente la société d'accueil
- Le deuxième chapitre présente une étude bibliographique.
- Le troisième chapitre présente l'analyse fonctionnelle du système et le choix des solutions technologiques.
- Le quatrième chapitre présente le calcul, le dimensionnement et la vérification de la résistance des différentes pièces les plus sollicitées de la machine.
- Le cinquième chapitre est consacré à la conception de la machine
- Le dernier chapitre présente le dossier de fabrication contenant les gammes d'usinage.

Chapitre 1 : Présentation générale de la société

Introduction

Ce premier chapitre est consacré à une présentation de l'entreprise d'accueil au sein de laquelle on a effectué notre stage de fin d'études.

1. Présentation de l'entreprise :

Meca-tech-industrie est une société fondée en 2008 crée par M. Fares Bahri, situé à Mahdia.

Elle s'occupe de la construction et la fabrication mécanique sous plusieurs secteurs : la conception mécanique, le moulage en coquille pour la fonderie, l'usinage conventionnel, l'usinage à commande numérique.

Elle est occupée par un groupe des ingénieurs et des techniciens sous un régime de travail de 45 heures par semaine.

Figure 1 : logo de société

Nom d'entreprise : Meca-tech- industrie

Nom et prénom du responsable : Fares Bahri

Tél: 97791336 **Fax**: 73682109

Site web: https://mecatech-industrie.com/

E-mail: info@mecatech-industrie.com

Localisation: Hiboun,511

2.Organigramme de l'entreprise :

L'entreprise Meca-tech- suit l'organigramme suivant :

Figure 2 : organigramme de société

3. Cycle de fabrication de Mecatech :

4.Les différentes machines de l'atelier mécanique :

4.1. Définition du tournage

Le tournage consiste à réaliser des pièces dont les formes sont issues d'une révolution d'un profil autour d'un axe. C'est un procédé d'usinage par enlèvement de matière à partir d'un brut.

4.2. Tour conventionnelle

Figure 3: tour conventionnelle

4.3. Les machines du tour CNC

Figure 4 : Tours à commande numérique

4.4. Définition de fraisage

Le fraisage est un procédé de fabrication où l'enlèvement de matière sous forme de copeaux résulte de la combinaison de deux mouvements : la rotation de l'outil de coupe, d'une part et l'avance de la pièce d'autre part.

Figure 5; Centre d'usinage

Chapitre 2 : Etude bibliographique

Introduction:

Les techniques de mise en forme des matériaux ont pour objectif de donner une frædéterminée au matériau tout en lui imposant une certaine microstructure, afin d'obtenir un objet ayant les propriétés souhaitées.

C'est un travail qui nécessite de maîtriser parfaitement les paramètres expérimentaux (composition du matériau, température, pression, vitesse de refroidissement, etc.). Les techniques diffèrent selon les matériaux, et parmi ces tehiteson s'intéresse au cintrage.

1. Définition de la cintreuse :

Le cintrage est un façonnage sans enlèvement de copeaux, à l'aide ou sans l'aide de chaleur, dans lequel une partie de la matière d'œuvre est définitivement portée, tout en conservant autant que possible sa section, de sa position originelle dans un autre sens.

Figure 6 : Rayon intérieur et le rayon extérieur après cintrage

2.Les différentes méthodes de cintrage :

2.1. Cintrage à la main:

Le cintrage à la main donne, généralement, des résultats peu satisfaisants, car iln'est pas guidé et les actions appliquées ne sont pas toujours proportionnelles, ni localisées en fonction de la déformation désirée. De plus, la déformation de la section est libre car aucun support ne permet de la réduire au cours du cintrage.

2.2. Cintrage par flexion:

Figure 7: Cintrage par flexion

2.3. Cintrage par appui en porte à faux :

Figure 8 : Cintrage par appui en porte à faux

2.4. Cintrage à vide :

Le cintrage à vide convient pour les tubes épais sur de grands rayons du fait que le risque d'aplatissement de la section est très élevé. Il se fait à chaud ou àfroid selon le matériau utilisée le genre de cintrage à exécuter. Le cintrage à froid s'applique aux tubes inoxydables et aux matériaux non ferreux notamment le cuivre, l'aluminium et le plomb. La zone à cintrer doit être portée sur tasseau avant l'application de la force de cintrage. (Figure 9)

A chaud, on cintre surtout les tubes d'acier, vu leur grande résistance à la traction. La zone à cintrer doit être dégagée des tasseaux d'appui. (**Figure 10**)

Le chauffage se fait au chalumeau ou dans un four, lorsque la températuredésirée est jugée atteinte le cintrage

Figure 9 : Cintrage à froid

Figure 10 : Cintrage à chaud

3.Les différentes machines à cintrer :

Il existe plusieurs types de machines à cintrer qui différent par leurs modes opératoires.

3.1. Machine à cintrer à vérin :

Le tube ou la tige prenant appui sur deux butées pivotantes est cintré par flexion sus l'action d'un sabot actionné par un piston. (Figure 11).

Le sabot cintreur présente une gorge torique qui maintient le tube sur la moitié de la section et s'oppose à l'élargissement du diamètre. L'application des axes butés pivotantes est réglable en fonction des rayons de cintrage à obtenir.

Figure 11 : Cintrage par machine à vérin

Figure 12 : Machine de cintrage par vérin

3.2. Presse à cintrer :

Le principe de la base est le même que celui des machines à vérin. Les matrices d'appui formant les butés, accompagnent la pièce pendant le cintrage enexerçant une pression contre le sabot. Ces machines présentent l'avantage d'êtrerapides et sont utilisées pour les travaux de série. (**Figure 13**)

Figure 13: Cintrage par presse

3.3. Presse à cintrer à trois galets :

La presse à cintrer à trois galets permet de réaliser un cintrage par flexion entre deux appuis. La rotation des galets permet de cintrer en continu sur une longueurillimitée. La pièce est portée dans la gorge des galets juste au point de tangence. Ce procédé convient pour les grands rayons de cintrage, sur de grandes longueurs. Dans la plupart des machines les trois galets sont moteurs. (**Figure 14**)

Figure 14: Cintrage sur presse à trois galets

Figure 15: Machine de cintrage par trois galets

3.4. Cintrage par enroulement et étirage :

Cette méthode est la plus répandue. Elle permet d'exécuter des coudes das les conditions les plus difficiles. Ces machines sont équipées de trois outils à savoir :

- Une forme tournante.
- Une mâchoire ou sabot de blocage.
- Une glissière.

La pièce bloquée énergiquement par un galet central qui comporte une gorge semi torique, alors que la glissière peut être fixe ou mobile. Pour les pièces tubulaires, la glissière fixe provoque un amincissement plus marqué à l'extérieur (Extrados). Inversement, la glissière coulissante augmente les risques de plissage de l'intrados en diminuant l'amincissement de l'extrados. Pour remédier à cela, il convient d'introduire un mandrin à l'intérieur du tube pour qu'il s'oppose à la déformation. (**Figure 16**)

Figure 16 : Cintrage par enroulement et étirage

Figure 17 : Machine de Cintrage par enroulement et étirage

3.5. Cintrage par enroulement et compression:

Le principe de ces machines est différent de celui des machines précédentes. En effet, le cintrage n'est pas obtenu par flexion entre deux appuis, le tube est bloquéénergiquement contre une forme fixe qui porte une gorge semi torique dont les dimensions sont identiques à celles du tube à cintrer, et un galet cintreur cylindrique qui enroule le tube dans la gorge de la forme.

Figure 18: Cintrage par enroulement et compression

3.6. Cintreuse électrique :

Cintreuse entièrement électrique nouvelle génération (9 axes) pour tubes avecprogrammation graphique visuelle en 3D (VGP3D).

La machine est configurable librement et rapidement par l'utilisateur avec sens de travaildroit ou gauche.

Le VGP3D est un logiciel de programmation graphique tridimensionnel, convivial et interactif, grâce à son mode d'introduction des données de type conversationnel complété par un écran tactile. Il fonctionne sous environnement WINDOWS et, grâce à sa cléd'encodage, il est possible de l'installer sur un poste de programmation déporté qui peut êtremis en réseau avec la machine via une carte ETHERNET déjà intégrée dans cette dernière. Le VGP3D permet un contrôle visuel instantané de la géométrie de la pièce lors de l'élaboration du programme.

Il vérifie la faisabilité des pièces, calcule les temps de cycle, détecte les éventuelles collisions avec la machine ou son environnement et les résout grâce à la simulation automatique de tous les cycles de travail possibles.

Les programmes ainsi édités sont automatiquement optimisés mais peuvent l'êtreégalement manuellement grâce à la fonction « drag and drop » qui permet par simple pression digitale, de déplacer chaque élément mobile de la machine.

Toutes ces fonctions permettent un chiffrage rapide et précis des pièces à réaliser sans engager aucun frais (outillages, mise au point ...).

La machine est aussi équipée d'un logiciel de télé assistance qui permet, via modem, une aide immédiate de nos techniciens pour l'assistance et le dépannage.

Figure 19 : Cintreuse électrique

3.7. Cintreuse multifonctions pro pliage volute :

Cintreuse à volute multifonction, gamme professionnelle développée par PRP Machines, destinée à la ferronnerie d'art, créateur ou métallerie. Elle travaille des profils à chaud ou à froid. La machine est livrée avec plusieurs accessoires et permet de réaliser des volutes de différentes tailles, des cintrages sur du fer plat, carré, rond.

Des brides et un étau permettent de réaliser des pliages à angles droit. Les pièces sont coupées au laser.

Figure 20: Cintreuse multifonctions pro pliage volute

Chapitre 3 : Analyse fonctionnelle

Introduction:

Ce troisième chapitre est consacré à la phase de conception d'une machine automatique pour cintrer les tubes.

En effet, avant de choisir et d'élaborer une solution, il faut demander au constructeur de faire ses propositions afin d'arriver à une solution qui lui convienne et réponde à ses exigences. Pour cela, nous effectuons une analyse fonctionnelle, résumant la fonctionnalité globale du système et de ses composants, puis nous détaillons les solutions techniques afin de choisir la bonne.

1. Analyse fonctionnelle

L'analyse fonctionnelle est une méthode de création et d'amélioration d'un produit en effectuant une analyse externe du produit pour répondre aux questions suivantes :

- A qui sert le produit ?
- Quelles sont les actions qu'il doit faire ?
- Comment ces fonctions sont réalisées ?

1.1. Analyse fonctionnelle externe Besoin

Notre besoin consiste à étudier, concevoir et réaliser un système de cintrage permettant la réalisation des opérations de cintrage

1.2. Diagramme bête à corne

Figure 21 : bête à cornes

1.3. Validation du besoin :

Pourquoi le besoin existe-il?

Pour permettre à l'opérateur de faire cintrer les tubes.

Qu'est ce qui pourrait le faire évaluer?

Machine automatique sans intervention de l'homme.

Qu'est ce qui pourrait le faire disparaitre?

Rien

Pensez-vous que les risques d'évolution ou de disparition de ce besoin sont réels dans un proche avenir ?

Non

Conclusion: Le besoin est validé.

1.4. Diagramme de pieuvre :

Figure 22 : diagramme pieuvre

1.5. Fonctions principales (FP):

Elles justifient la création du produit. Elles représentent les relations entre deux éléments du milieu extérieur.

1.6. Fonctions contraintes (FC):

Elles rassemblent toutes les fonctions complémentaires aux fonctions principales du produit en leur imposant ou non des limites.

1.7. Identification des fonctions de services :

FP1 : Permettre à l'opérateur d'effectuer des opérations de cintrage des tubes.

FC1 : S'adapter aux différentes dimensions des tubes.

FC2 : S'adapter à l'énergie disponible.

FC3: Permettre à l'opérateur d'extraire le tube après l'opération.

FC4: Avoir un prix adorable.

FC5 : Être maintenable.

FC6: Respecter les normes de sécurité.

1.8. Valorisation des fonctions de service :

Le tri croisé consiste à comparer les fonctions de services une à une et attribuer à chaque fois une supériorité allant de 1 à 3 :

1 : légèrement supérieur

2 : moyennement supérieur

3 : nettement supérieur

FP1	FC1	FC2	FC3	FC4	FC5	FC6	Total	Souhaits	Souhaits
							(points)	réel (%)	corrigés (%)
FP1	FP1	FP1	FP1	FP1	FP1	FP1	14	37.85	36.85
	(2)	(2)	(3)	(3)	(2)	(2)			
	Fc1	Fc1	Fc1	Fc1	Fc1	Fc1			
	rci	(1)	(2)	(2)	(1)	(1)	7	18.91	18.91
			Fc2	Fc2	Fc2	Fc2	6	16.22	16.22
		Fc2	(2)	(2)	(1)	(1)			
			E. 2	Fc3	Fc5	Fc6	1	2.70	2.70
			Fc3	(1)	(2)	(2)			
				Fc4	Fc5	Fc6	0	0	1
				rc4	(2)	(2)			
					T	Fc5	5	13.51	13.51
					Fc5	(1)			
						Fc6	4	10.81	10.81
						Totale	37	100	100

Tableau 1 : Tri croisée

1.9. Hiérarchisation des fonctions de service :

Il s'agit de rendre significatifs les résultats de la hiérarchisation des fonctions. Pour cela, on distingue les différentes fonctions dans un histogramme de souhait décroissant selon les priorités.

Figure 23 : Historique de souhait

1.10. Elaboration d'un cahier des charges fonctionnel :

La caractérisation des fonctions se traduit sous la forme d'un tableau récapitulatif qui permet derecenser et définir l'ensemble des critères d'appréciations à retenir pour chacune des fonctions. A chaque critère, on a associé un niveau de flexibilité.

Fonction de service	Expression de la fonction de service	Critère d'appréciation	Niveau	Flexibilité
FP1	Permettre à l'opérateur d'effectuer des opérations de cintrage des tubes.	Matière	Acier S335	
FC1	S'adapter aux différentes dimensions des tubes	Géométrie du profilé : Diamètre	De ø15 jusqu'à ø30	
FC2	S'adapter à la source d'énergie disponible.	Energie électrique3PH Courant continue	220V/380V 12A	±10 V ±1 A
FC3	Permettre à l'opérateur d'extraire les tubes après les opérations			
FC4	Avoir un cout de la modification des pièces raisonnable.	Prix		
FC5	Avoir un système maintenable	Faciliter le montage etle démontage Assemblage boulonné	Pièces standards	-
FC6	Respecter les normes de sécurités	Norme de sécurité	ISO 9001	-

Tableau 2 : Cahier des charges fonctionnels

2. Analyse fonctionnelle interne :

Modalisation globale a trigramme:

Figure 24 : Actigramme A-0

2.1 Analyse descendante:

En deco	omposant le niveau A-0 de l'analyse fonctionnelle du système, on obtient 6 fonctions principales
qui sont	::
	Générer une énergie mécanique de rotation.
	Transmettre le mouvement.
	Mettre en position le tube sur le galet.
	Régler l'entraxe entre les deux galets inferieurs et serrer la deuxième partie de galet.
	Mettre le galet supérieur en position.
	Cintrer le tube.

Figure 25 : Diagramme A-0

2.2. Diagramme FAST et choix des solutions :

2.2.1. Diagramme FAST:

L'outil d'analyse FAST (Fonctionnel Analyses System Technique) permet le développement d'un diagramme de traduction des fonctions de service en fonctions techniques, puis matériellement en solutions constructives.

Figure 26 : Diagramme FAST

2.2.2. Choix des solutions :

Les intérêts adaptés sont les suivant :

Note	Intérêt de la solution
0	Douteux
1	Moyenne
2	Bien adapte
3	Très important /Très bien

Tableau 3 : Barème de notation de comparaison

La valorisation globale tient compte de la qualité d'une solution vis-à-vis d'un critère et l'importance de chacune de ces critères.

K	Intérêt de la solution
0	Utile
1	Nécessaires
2	Important
3	Très important
4	Vitale

Tableau 4 : Barème de pondération

2.2.3. Choix du système de transmission :

Figure 27: Analyse FT1

Les critères des choix :

C1: prix.

C2 : rendement.

C3 : durée de vie.

Le tableau suivant représente la valorisation par critère pour FT1

Ci	S1.1	S1.2
C1	2	3
C2	3	2
C3	3	2

Tableau 5 : Valorisation par critère FT1

Le tableau suivant représente la valorisation globale pour FT1.

Ci	K	S1.1	S1.2
C1	2	2×2=4	2×3=6
C2	4	4×3=12	4×2=8
C3	3	3×3=9	3×2=6
Totale		25	20

Tableau6: Valorisation globale FT1

La solution S1.1 c'est globalement la plus intéressante pour notre système pour cela la solution optimale sera par chaine Pignon.

2.2.4. Choix du moteur :

Figure 28 : Analyse de FT2

Les critères des choix :

• C1 : Prix.

• C2 : Puissance.

• C3: Variation de vitesse.

• C4 : Disponibilité de la source.

Ci	FT2.1	FT2.2	FT2.3
C1	3	2	2
C2	2	3	2
C3	3	1	1
C4	2	2	2

Tableau 7 : Valorisation par critère FT2

Critère	K	FT2.1	FT2.2	FT2.3
C1	3	3×3 = 9	3×2 = 6	3×2 = 6
C2	2	$2 \times 2 = 4$	$2 \times 3 = 6$	$2 \times 2 = 4$
C3	4	4×3 = 12	$4 \times 1 = 4$	4×1 = 4
C4	2	2×2 = 4	$2\times2=4$	2×2 = 4
Totale		29	20	16

<u>Tableau 8 : Valorisation globale FT2</u>

➤ Alors, on admet FT2.1 comme solution finale

2.2.5. Analyse S2.1 : Moteur alternatif

Figure 29 : Analyse de S2.1

Critère de choix:

• C1 : Cout

• C2: Puissance

• C3: variation de la vitesse.

• C4 : Maintenabilité

Ci	S2.1.1	S2.1.2
C1	2	3
C2	2	3
C3	3	2
C4	2	3

Tableau 9 : Valorisation par critère S2.1

Critère	K	S2.1.1	S2.1.2
C1	2	$2 \times 2 = 4$	2×3 = 6
C2	4	$4 \times 2 = 8$	$4 \times 3 = 12$
C3	3	$3 \times 3 = 9$	$3\times2=6$
C4	2	$2\times2=4$	2×3 = 6
Totale		25	30

Tableau 10: Valorisation globale S2.1

>

[➤] Alors, on admet la fonction S2.1.2 comme solution finale.

2.2.6. Choix du système d'entrainement a mouvement linaire :

Figure 30 : Analyse de S2.1

Critère de choix:

• C1 : Cout

• C2 : Maintenabilité

Ci	S3.1	S3.2
C1	1	3
C2	2	2

Tableau 11 : Valorisation par critère S3

Le tableau suivant représente la valorisation globale pour S3.

Ci	K	S3.1	S3.2
C1	3	3×1=3	3×3=9
C2	2	2×2=4	2×2=4
Total		7	13

<u>Tableau 12: Valorisation globale S3</u>

➤ La solution FT3.2 c'est globalement la plus intéressante pour notre système pour cela la solution optimale sera par le système d'entrainement à mouvement de rotation.

2.2.7. Diagramme F.A.S.T. Corrigé:

Figure 31: Diagramme Fast corrigé

Conclusion

Dans ce chapitre, on prend les mieux solutions technologiques suivant le cahier des charges fourni et la disponibilité des matériels. Certains éléments des solutions présentés seront dimensionnés au chapitre suivant.

Chapitre 4 : Calcul et dimensionnement

Introduction:

Dans ce chapitre on va faire tous les calculs nécessaires pour le dimensionnement de notre système. A la fin de ce chapitre on va faire la simulation, de quelques pièces.

1. Schéma cinématique :

Le schéma cinématique du système est défini sur la figure ci-dessous. Les composants du système sont décrits dans le tableau suivant :

Figure 32 : Schéma cinématique du système

Repéré	Liaison
L1	Pivot (A, x)
L2	Pivot (B, x)
L3	Pivot (C, x)
L4	Pivot (E, x
L5	Pivot (F, x)
L6	Pivot (G, x)
L7	Pivot (H, y)
L8	Hélicoïdale (I, y)
L9	Glissière (K, y)
L10	Pivot (L, x)
L11	Pivot (D, x)

Repéré	Désignation
0	Bati
1	Bloc
2	Arbre moteur
3	Arbre de roue1
4	Arbre de roue pignon
5	Arbre de grand galet
6	Arbre de petit galet1
7	Arbre de roue intermédiaire
8	Arbre de galet 2
9	Poigne supérieur

Tableau 14 : Repère de système

Tableau 13 : Repère de liaison

La machine que nous sommes chargeés de concevoir est une cintreuse à 3 galets avec presseur manuel capable de cintrer des profilés de type fer rond de diamètre 20 mm jusqu' à 60mm et types forme carrée a=20mm jusqu' à a=40mm . Cette machine a deux galets inférieurs entraînés électriquement avec un écartement de 400 mm jusqu' à 800 mm. La position du galet presseur se fait manuellement à l'aide de la poigné.

$$\left\{ \begin{array}{c} \zeta_A \\ \end{array} \right\} \ = \ \left\{ \begin{array}{c} 0 & 0 \\ F_A & 0 \\ 0 & 0 \end{array} \right\} \ ; \quad \left\{ \begin{array}{c} \zeta_B \\ \end{array} \right\} \ = \ \left\{ \begin{array}{c} 0 & 0 \\ F_B & 0 \\ 0 & 0 \end{array} \right\} \ ; \quad \left\{ \begin{array}{c} \zeta_C \\ \end{array} \right\} \ = \left\{ \begin{array}{c} 0 & 0 \\ -Y_c & 0 \\ 0 & 0 \end{array} \right\}$$

2.2. Transfert tous les torseurs au point C :

$$\left\{ \begin{array}{c} \zeta_A \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ F_A & 0 \\ 0 & 0 \end{array} \right\} \qquad \begin{array}{c} \mathbf{En C} \\ \end{array} \qquad \left\{ \begin{array}{c} 0 & 0 \\ F_A & 0 \\ 0 & F_A \times \frac{L}{2} \end{array} \right\}$$

$$Mc = Ma + CA^{Ra} = 0 + \begin{pmatrix} \frac{L}{2} \\ 0 \\ 0 \end{pmatrix}^{A} \begin{pmatrix} 0 \\ F_{A} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ F_{A} \times \frac{L}{2} \end{pmatrix}$$

$$\left\{ \begin{array}{c} \zeta_B \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ F_B & 0 \\ 0 & 0 \end{array} \right\} \quad \begin{array}{c} \mathbf{en} \ \mathbf{C} \\ \end{array} \quad \left\{ \begin{array}{c} 0 & 0 \\ F_B & 0 \\ 0 & F_B \times \frac{L}{2} \end{array} \right\}$$

$$\mathbf{Mc} = \mathbf{Mb} + \mathbf{CB}^{\mathsf{A}}\mathbf{Ra} = 0 + \begin{pmatrix} \frac{L}{2} \\ 0 \\ 0 \end{pmatrix}^{\mathsf{A}} \begin{pmatrix} 0 \\ F_B \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ F_B \times \frac{L}{2} \end{pmatrix}$$

2.3. P.F.S au point C:

$$\Sigma\left\{\zeta\right\} = 0$$

$$\begin{bmatrix} F_A + F_B = 0 \\ F_A \times \frac{L}{2} + F_B \times \frac{L}{2} = 0 \end{bmatrix}$$

$$Y_C = F_A \times \frac{L}{2} = F_B \times \frac{L}{2}$$

3. Torseur de cohésion :

$$\{\zeta_{coh}\} = -\sum \{\zeta\} \ (\grave{a} \ gauche) = +\sum \{\zeta\} \ (\grave{a} \ droite)$$

$$\left\{ \begin{array}{c} \boldsymbol{\zeta} \text{coh} \\ \end{array} \right\} = - \left\{ \begin{array}{c} 0 & 0 \\ F_A & 0 \\ 0 & F_A.x \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ -F_A & 0 \\ 0 & -F_A.x \end{array} \right\}$$

Conditions aux limites : $(0 \le x \le L/2)$

Si x=0
$$\int_{Mfz=0}^{Ty=-F_A}$$

$$Ty = -F_A$$
Si x=L/2
$$Mfz = F_A \times \frac{L}{2}$$

$$\left\{ \begin{array}{c} \zeta_{B} \\ \end{array} \right\} \; = \; \left\{ \begin{matrix} 0 \\ F_{B} \\ 0 \end{matrix} \right| \begin{matrix} 0 \\ 0 \\ F_{B} \times \frac{L}{2} \end{matrix} \right\} = \; \left\{ \begin{array}{c} 0 \\ F_{B} \\ 0 \\ 0 \end{matrix} \right| \begin{matrix} 0 \\ F_{B} \times \frac{L}{2} \end{matrix} \right\}$$

Conditions aux limites : (L/2 < x < L)

Si
$$x = \frac{L}{2}$$

$$Ty = F_B$$

$$Mfz = F_B \times \frac{L}{2}$$
Si $x = L$

$$Mfz = 0$$

4.Traçage des diagrammes :

Les diagrammes des efforts intérieurs désignent le tracé des efforts subis en fonctions de la position le long de la poutre.

Les principaux diagrammes des efforts intérieurs sont ceux de l'effort tranchant (Ty) :

Ty Maxi = Fb

4.1. Diagramme des efforts tranchants :

4.2. Diagramme des moments fléchissant :

X

L/2

5.Calcul

5.1. Calcul de la flèche :

On a
$$f = Rc - x$$

Or
$$Rc = x^2 + (L/2)^2$$

$$X^2 = Rc^2 - (L/2)^2$$

$$x = \sqrt{Rc^2 - \left(\frac{L}{2}\right)^2} = \sqrt{300^2 - \left(\frac{200}{2}\right)^2}$$

$$x = 282.84$$
mm

$$f = Rc - x = 300 - 282.84 = 17.16mm$$

5.2. Calcul de l'effort de cintrage :

$$\frac{\mathit{Mfz}}{\mathit{Igz}}*\frac{\mathit{D-d}}{2} \geq \mathsf{Rm}$$

$$\frac{\frac{Fc*L}{4}*\frac{D-d}{2}}{Igz} \geq Rm$$

$$\frac{\textit{Fc*L*}(\textit{D}-\textit{d})}{8*\textit{Igz}} \geq \text{Rm}$$

$$Fc \ge \frac{8*Rm*Igz}{L*(D-d)}$$
 avec $Igz = \frac{\pi \times (D-d)}{2}$

$$Fc = \frac{8 \times Rm \times \pi(D^4 - d^4)}{64 \times L(D - d)} = \frac{Rm \times \pi \times (D^4 - d^4)}{8 \times L \times (D - d)}$$

AP: Fc =
$$\frac{560 \times \pi (60^4 - 58^4)}{8 \times 200 \times (60 - 58)} = 100037$$
N

$$Fc = 100KN$$

5.2. Calcul de l'effort tangentiel :

Ft = f * Fc; avec **f**: force de frottement

$$Ft = 0.2*100037 = 20007.4N$$

5.3. Calcul du couple à vide :

C = Ft * Rg ; avec**Rg : Rayon du galet**

AP:
$$C = 20007.4 * 65*10^{-3} = 1300,481$$
N.m

$$C = 1300.481$$
N.m

5.4. Calcul du rapport global d'engrenage :

$$rg = 0.413 * 0.1410 * 0.16 = 0.00931$$
; **rg**; **rapport global**

5.5. Calcul du couple de sortie :

$$Cs = C * rg = 1300.481 * 0.00931 = 12.11N.m$$

5.6. Calcul du puissance de sortie :

$$Ps = Cs * Ws = \frac{12.11 \times \pi \times 1410}{30} = 1788 \text{ w}$$

$$Ps = 1788 W$$

5.7. Calcul du puissance moteur :

 $\mu = 0.85$; μ : Rendement de l'engrenage

$$Pm = \frac{1788}{0.85} = 2.2KW$$

$$Pm = 2.2KW$$

$$r_1 = \frac{de}{ds} = \frac{60}{145} = 0.413$$

$$C_1 = C^* r_1 = 1300.481*0413 = 537.1$$
N.m

$$Rpg = 112Mpa$$

$$dp \ge \sqrt[3]{\frac{16 \times 537.1 \times 10^3}{\pi \times 112}} = 29mm$$

$$dp = 29mm$$

Arbre 2:

$$r_2 = \frac{36}{254} = 0.141$$

$$C2 = C \times r_2 \times r_1 = 1300,481 * 0.141 * 0.413 = 75.73$$
N.m

$$Rpg = 112Mpa$$

$$dp \ge \sqrt[3]{\frac{16 \times 75.73 \times 10^3}{\pi \times 112}} = 15.1mm$$

Arbre 1:

$$r_3 = \frac{40}{256} = 0.16$$

$$C3 = C \times r_3 \times r_2 \times r_1 = 1300,481 * 0.16 * 0.141 * 0.413 = 12.11N.m$$

$$dp \geq \sqrt[3]{\frac{16 \times 12.11 \times 10^3}{\pi \times 112}} = 8.2mm$$

$$dp = 8.2mm$$

Pour la sécurité du système, on prend **dp = 29mm** pour l'engrenage.

560 < Re < 620

 $Reg = 0.8*Re = 08*560 = 448N/mm^2$; s = 4

S : coefficient de sécurité

$$Rpg = \frac{Reg}{s} = \frac{448}{4} = 112Mpa$$

$$dp \ge \sqrt[3]{\frac{16 \times 1300.481 \times 10^3}{\pi \times Rpg}} = 39mm$$

L3 = 15 mm; b5 = 0.8 *Dr = 0.8 * 145 = 116 mm; L4 = 10 mm;

$$L2 = 0.8*dp = 0.8*39 = 31.2mm$$
; $L5 = 20mm$

$$F_t = \frac{2 \times C_F}{d_G} = \frac{2 \times 1300.481 \times 10^3}{145 \times 10^{-3}} = 17937,66N$$

$$F_R = F_t \times \tan(20^\circ) = 6528.77N$$

$$F_t = 17937,66$$
N

 $F_R = 6528.77N$

6.1. Les torseurs des liaisons mécanique :

$$\left\{ \begin{array}{c} \zeta_E \\ \zeta_E \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ F_R & 0 \\ F_T & 0 \end{array} \right\} \quad ; \left\{ \begin{array}{c} \zeta_B \\ \zeta_B \end{array} \right\} = \left\{ \begin{array}{c} x_B \\ y_B \\ z_R & 0 \end{array} \right\} \quad ; \left\{ \begin{array}{c} \zeta_C \\ \zeta_C \end{array} \right\} \quad \left\{ \begin{array}{c} 0 & 0 \\ y_C & 0 \\ z_C & 0 \end{array} \right\}$$

$$\left\{ \begin{array}{c} \zeta_D \\ \end{array} \right\} \quad \left\{ \begin{array}{c|c} 0 & 0 \\ -F_c & 0 \\ 0 & 0 \end{array} \right\}$$

6.2. Transfert des torseurs au point D :

$$\begin{cases}
\zeta_E
\end{cases}
\xrightarrow{\mathbf{en D}}
\begin{cases}
0 & -72,5F_T \\
F_R & -LF_T
\end{cases}$$

$$LF_R & \downarrow
\end{cases}$$

$$M_D = M_E + DE \wedge R_E = 0 + \begin{pmatrix}
-72,5 & F_T \\
-72,5 & A
\end{pmatrix}$$

$$\uparrow \qquad F_R \qquad \downarrow = \begin{pmatrix}
-72,5F_T \\
-LF_R
\end{pmatrix}$$

$$\left\{\begin{array}{c|c} \zeta_B \end{array}\right\} \quad \begin{array}{c} \mathbf{en} \ \mathbf{D} \\ \hline \end{array} \quad \left\{\begin{array}{c|c} x_B & 0 \\ y_B & (c+b) \ z_B \\ \hline \end{array}\right\} \quad \begin{array}{c} (c+b) \ y_B \end{array}$$

$$M_D = M_B + DB \wedge R_B = 0 + \begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix} \wedge \begin{pmatrix} -(c+b) \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ (c+b) z_B \\ -(c+b) y_B \end{pmatrix}$$

$$\left\{\begin{array}{c} \boldsymbol{\zeta}_{C} \end{array}\right\} \quad \stackrel{\textbf{en D}}{\longrightarrow} \quad \left\{\begin{array}{c|c} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{y}_{C} & \boldsymbol{c.z}_{C} \\ \boldsymbol{z}_{C} & -\boldsymbol{c.y}_{C} \end{array}\right\}$$

$$M_D = M_C + DC \wedge R_C = 0 + \begin{pmatrix} -c \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} y_C \\ z_C \end{pmatrix} = \begin{pmatrix} 0 \\ cz_C \\ -c.y_C \end{pmatrix}$$

6.3. P.F.S au point D:

$$\left\{ \zeta \right\} = 0$$

$$\begin{cases}
0 & 72.5F_T \\
F_R & LF_T \\
F_T & -LF_R
\end{cases}
+
\begin{cases}
x_B & 0 \\
y_B & (c+b)z_B \\
z_B & -(c+b)y_B
\end{cases}
+
\begin{cases}
0 & 0 \\
y_C & cz_C \\
z_C & -cy_C
\end{cases}
+
\begin{cases}
0 & 0 \\
-F_c & 0 \\
0 & 0
\end{cases}
=
\begin{cases}
0 & 0
\end{cases}$$

$$\begin{cases}
x_B = 0 & (1) \\
F_R + y_B + y_C - F_C = 0 & (2) \\
F_T + z_B + z_C = 0 & (3) \\
-72.5F_T = 0 & (4) \\
LF_T + (c+b)z_B + cy_C = 0 & (5) \\
-LF_R - (c+b)y_B - cy_C = 0 & (6)
\end{cases}$$

$$(6) \longrightarrow y_C = \frac{-(LF_R + (c+b)y_B)}{c}$$

(2)
$$F_R + y_B + \frac{-(LF_R + (c+b)y_B)}{c} - F_c = 0$$

$$y_B = \frac{F_c + 63399.5}{-0.33} = -163436,5N$$

 $y_B = -163436,5N$

(2)
$$F_R + y_B + y_C - F_C = 0 \implies y_C = F_C - F_R - y_B$$

$$y_C = -223344N$$

$$(5) \longrightarrow z_c = \frac{-LF_T - (c+b)z_B}{c}$$

(3)
$$F_T + z_B + \frac{-LF_T - (c+b)z_B}{c} = 0$$

$$z_B = -85876$$
N

$$z_C = -67938,8N$$

Torseur de cohésion : (0 < x < a)

$$\left\{\begin{array}{c|c} 0 & 0 \\ F_R & 0 \\ F_T & 0 \end{array}\right\} \qquad \underbrace{\operatorname{En} A} \qquad \left\{\begin{array}{c|c} 0 & -72,5F_T \\ F_R & 0 \\ F_T & 0 \end{array}\right\}$$

$$M_A = M_E + AE \wedge R_E = 0 + \begin{pmatrix} 0 \\ -72.5 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_R \\ F_T \end{pmatrix} \begin{pmatrix} -72.5F_T \\ 0 \\ 0 \end{pmatrix}$$

$$\left\{ \begin{array}{c|c}
0 & -72.5F_T \\
F_R & 0 \\
F_T & 0
\end{array} \right\} = \left\{ \begin{array}{c|c}
0 & -72.5F_T \\
F_R & F_T.x \\
F_T & -F_R.x
\end{array} \right\} = \left\{ \begin{array}{c|c}
0 & 72.5F_T \\
-F_R & -F_T.x \\
F_R.x
\end{array} \right\}$$

$$M_G = M_A + GA \wedge R_A = \begin{pmatrix} -72,5F_T \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -x \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_R \\ F_T \end{pmatrix} = \begin{pmatrix} -72,5F_T \\ F_T.x \\ -F_R.x \end{pmatrix}$$

Condition aux limites:

Si x=0
$$\begin{cases} Ty = -F_R \\ Mfz = 0 \end{cases}$$
Si x=a
$$\begin{cases} Ty = -F_R \\ Mfz = F_R, a \end{cases}$$

6.4. Tronçon [BC]:

$$\begin{cases}
0 & 72.5F_T \\
-F_R & -F_T.x \\
-F_T & F_R.x
\end{cases} - \begin{cases}
x_B & 0 \\
y_B & (x-a)z_B \\
z_B & (a-x)y_B
\end{cases} = \begin{cases}
-x_B & -72.5-F_T \\
-F_R - y_B & (a-x)z_B - F_T.x \\
-F_T - z_B & (x-a)y_B + F_R.x
\end{cases}$$

$$M_G = M_B + GB \wedge R_B = 0 + \begin{pmatrix} -(x-a) \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix} = \begin{pmatrix} 0 \\ (x-a) z_B \\ (a-x) y_B \end{pmatrix}$$

Conditions aux limites : (a < x < (a+b))

Si x=a
$$\begin{cases} Ty = -F_R - y_B \\ Mfz = F_R. a \end{cases}$$

Si x=(a+b)
$$\begin{cases} Ty = -F_R - y_B \\ Mfz = b. y_B + F_R. (a+b) \end{cases}$$

6.5. Tronçon [DC]:

$$\left\{
\begin{array}{c|c}
0 & 0 \\
-F_C & 0 \\
0 & -F_C.x
\end{array}
\right\}$$

$$\begin{vmatrix}
A & C \\
0 & -F_C \cdot x
\end{vmatrix}$$

$$M_G = M_D + GD \wedge R_D = 0 + \begin{pmatrix} X \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ -F_C \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -F_C \cdot x \end{pmatrix}$$

Conditions aux limites : (0 < x < c)

Si x=0
$$\begin{cases} Ty = -F_C \\ Mfz = 0 \end{cases}$$

Si x=c
$$Ty = -F_C$$

$$Mfz = -F_C. c$$

Diagramme des effort tranchants :

Figure 33 : Modélisation sur RDM6

Diagramme des moments fléchissant :

Figure 34: Modélisation sur RDM6

7. Caractéristique de différents pignons :

Figure 35: modélisation sur SolidWorks

Module	m	m = 1,5
Nombre de dents	Z	Z = 168dents
Pas	p	$P = m. \pi = 5mm$
Saillie	ha	ha = m = 1,5mm
Creux	hf	hf = 1,25.m = 1,875mm
Hauteur de dent	h	h = ha + hf = 3,375mm
Diamètre primitif	d	d = m.z = 252mm
Diamètre de tête	da	da = d + 2.m = 255mm
Diamètre de pied	df	df = d - 2.5.m = 248,25mm

Tableau 15 : Caractéristique de pignon

Figure 36 : Modélisation sur SolidWorks

Module	m	m = 3
Nombre de dents	Z	Z = 83 dents
Pas	p	$P = m. \pi = 10mm$
saillie	ha	ha = m = 3mm
Creux	hf	hf = 1,25.m = 3,75mm
Hauteur de dent	h	h = ha + hf = 6,75mm
Diamètre primitif	d	d = m.z = 249mm
Diamètre de tête	da	da = d + 2.m = 255mm
Diamètre de pied	df	df = d - 2.5.m = 241.5mm

Tableau 16 : caractéristiques de pignon

Figure 37 : Modélisation sur SolidWorks

Module	m	m = 3
Nombre de dents	Z	Z = 45 dents
Pas	p	$P = m. \pi = 10mm$
saillie	ha	ha = m = 3mm
Creux	hf	hf = 1,25.m = 3,75mm
Hauteur de dent	h	h = ha + hf = 6,75mm
Diamètre primitif	d	d = m.z = 135mm
Diamètre de tête	da	da = d + 2.m = 141mm
Diamètre de pied	df	df = d - 2.5.m = 127.5mm

Tableau 17 : caractéristiques de pignon

Figure 38: modélisation sur SolidWorks

Module	m	m = 1,5mm
Nombre de dents	Z	Z = 24dents
Pas	p	$P = m. \pi = 4,71 mm$
saillie	ha	ha = m = 1,5mm
Creux	hf	hf = 1,25.m = 1,87mm
Hauteur de dent	h	h = ha + hf = 3,37mm
Diamètre primitif	d	d = m.z = 36mm
Diamètre de tête	da	da = d + 2.m = 39mm
Diamètre de pied	df	df = d - 2.5.m = 28.14mm

Tableau 18 : caractéristiques de pignon

Figure 39 : Modélisation sur SolidWorks

Module	m	m = 3
Nombre de dents	Z	Z = 20dents
Pas	p	$P = m. \pi = 10mm$
saillie	ha	ha = m = 3mm
Creux	hf	hf = 1,25.m = 3,75mm
Hauteur de dent	h	h = ha + hf = 6,75mm
Diamètre primitif	d	d = m.z = 60mm
Diamètre de tête	da	da = d + 2.m = 66mm
Diamètre de pied	df	df = d - 2,5.m = 52,5mm

Tableau 19 : Caractéristiques de pignon

Figure 40: Modélisation sur SolidWorks

Module	m	m = 3
Nombre de dents	Z	Z = 11dents
Pas	p	$P = m. \pi = 10mm$
saillie	ha ha = $m = 3mm$	
Creux	hf	hf = 1,25.m = 3,75mm
Hauteur de dent	h	h = ha + hf = 6,75mm
Diamètre primitif	d	d = m.z = 33mm
Diamètre de tête	da	da = d + 2.m = 39mm
Diamètre de pied	df	df = d - 2.5.m = 31.5mm

Tableau 20 : caractéristiques de pignon

8. Arbre des roues 2:

$$F_T = \frac{2 \times C}{d} = \frac{2 \times 537}{66 \times 10^{-3}} = 16272.7N$$

$$F_R = F_T \times \tan(20^\circ) = 5922.8N$$

$$F_{T1} = \frac{2 \times C}{D} = \frac{2 \times 537}{241.5 \times 10^{-3}} = 4228.3N$$

$$F_{R1} = F_{T1} \times \tan(20^\circ) = 1539N$$

Les torseurs des actions mécaniques :

$$\left\{ \begin{array}{c} \zeta_A \\ \zeta_A \end{array} \right\} \ = \left\{ \begin{array}{c} x_A \\ y_A \\ z_A \end{array} \right. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} \quad ; \left\{ \begin{array}{c} \zeta_E \\ \zeta_E \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ F_R \\ F_T \end{array} \right. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\}$$

$$\left\{ egin{array}{c} \zeta_{F} \end{array}
ight\} \left\{ egin{array}{c} 0 & 0 \ F_{R1} & 0 \ F_{T1} & 0 \end{array}
ight\} \left\{ egin{array}{c} 0 & 0 \ J_{D} \ J_{D} & 0 \end{array}
ight\}$$

Transfert des torseur F au point B

$$\left\{ \begin{array}{c|c} \zeta_B \end{array} \right\} \left\{ \begin{array}{c|c} 0 & -33 F_T \\ F_R & 0 \\ F_T & 0 \end{array} \right\}$$

$$M_B = M_E + BE \wedge R_E = 0 + \begin{pmatrix} 0 \\ -33 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_R \\ F_T \end{pmatrix} = \begin{pmatrix} -33F_T \\ 0 \\ 0 \end{pmatrix}$$

Transfert de torseur Fau point C:

$$\left\{ \begin{array}{c} \zeta_{C} \\ \end{array} \right\} = \left\{ \begin{array}{c|c} 0 & -127.F_{T1} \\ F_{R1} & 0 \\ F_{T1} & 0 \end{array} \right\}$$

$$M_C = M_F + CF \wedge R_C = 0 + \begin{pmatrix} 0 \\ -127 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_{R1} \\ F_{T1} \end{pmatrix} = \begin{pmatrix} -127.F_{T1} \\ 0 \\ 0 \end{pmatrix}$$

Transfert des torseurs au point D :

$$\left\{ \begin{array}{c} \zeta_A \\ \end{array} \right\} \qquad \left\{ \begin{array}{c|c} x_A & 0 \\ y_A & 241,5 \ z_A \\ \end{array} \right\}$$

$$M_D = M_A + DA \wedge R_A = 0 + \begin{pmatrix} -241.5 \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix} = \begin{pmatrix} 0 \\ 241.5 z_A \\ -241.5.y_A \end{pmatrix}$$

$$\left\{ \begin{array}{c|c} \zeta_B \end{array} \right\} \left\{ \begin{array}{c|c} 0 & -33F_T \\ F_R & \text{(c+b). } F_T \\ F_T & \text{-(c+b). } F_R \end{array} \right\}$$

$$M_D = M_B + DB \wedge R_B = \begin{pmatrix} -33F_T \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -(c+b) \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_R \\ F_T \end{pmatrix} = \begin{pmatrix} -33F_T \\ (c+b) F_T \\ -(c+b) F_B \end{pmatrix}$$

$$\left\{ \begin{array}{c} \zeta_{C} \\ \end{array} \right\} \left\{ \begin{array}{c|c} 0 & -127, 5. F_{T1} \\ F_{R1} & F_{T1}. c \\ F_{T1} & -F_{R1}. c \end{array} \right\}$$

$$M_{D} = M_{C} + DC \wedge R_{C} = \begin{pmatrix} -127, 5. F_{T1} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -c \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_{R1} \\ F_{T1} \end{pmatrix} = \begin{pmatrix} -127, 5. F_{T1} \\ F_{T1}. c \\ -F_{R1}. c \end{pmatrix}$$

P.F.S au point D:

$$x_{B} = 0 \quad (1)$$

$$y_{A} + F_{R} + F_{R1} + y_{D} = 0 \quad (2)$$

$$z_{A} + F_{T} + F_{T1} + z_{D} = 0 \quad (3)$$

$$241,5. z_{A} + (c+b).F_{T} + F_{T1}.c = 0 \quad (4)$$

$$-241.5y_{A} - (c+b)F_{R} - F_{R1}.c = 0 \quad (5)$$

(4)
$$\Rightarrow z_A = \frac{-(c+b).F_T - F_{T1}.c}{241.5} = -9608.5N$$

(5)
$$\Rightarrow y_A = \frac{-(c+b)F_R - F_{R1}.c}{241,5} = -3497,2N$$

$$z_A = -9608,5N$$

$$y_A = -3497,2N$$

(3)
$$\implies z_D = -z_A - F_T - F_{T1} = -10892,5N$$

(2)
$$\Rightarrow y_D = -y_A - F_R - F_{R1} = -3964,6N$$

$$z_D = -10892,5N$$
$$y_D = -3964,6N$$

Torseurs de cohésion :

Tronçon [AB]: (à gauche)

$$\left\{ \begin{array}{c} \zeta_A \end{array} \right\} \stackrel{\mathbf{En G}}{\longrightarrow} \left\{ \begin{array}{c|c} -x_A & 0 \\ -y_A & -z_A \cdot x \\ -z_A & y_A \cdot x \end{array} \right\}$$

$$M_G = M_A + GA \wedge R_A = 0 + \begin{pmatrix} -x \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix} = \begin{pmatrix} 0 \\ z_A \cdot x \\ -y_A \cdot x \end{pmatrix}$$

Conditions aux limites : (0 < x < a)

Tronçon [BC]:

$$\left\{ \begin{array}{c} \zeta_B \end{array} \right\} \stackrel{\mathbf{En G}}{\longrightarrow} \left\{ \begin{array}{c|c} 0 & -33F_T \\ F_R & (x-a)F_T \\ F_T & (a-x)F_R \end{array} \right\}$$

$$M_{G} = M_{B} + GB \wedge R_{B} = \begin{pmatrix} -33F_{T} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -(x-a) \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ F_{T} \\ F_{R} \end{pmatrix} = \begin{pmatrix} -33F_{T} \\ (x-a)F_{T} \\ (x-a)F_{T} \end{pmatrix}$$

$$\left\{\begin{array}{c} \zeta_B \\ \end{array}\right\} = \left\{\begin{array}{ccc} -x_A & 0 \\ -y_A & -z_A \cdot x \\ -z_A & y_A \cdot x \end{array}\right\} + \left\{\begin{array}{ccc} 0 & 33F_T \\ -F_R & (a-x)F_T \\ -F_T & (x-a)F_R \end{array}\right\}$$

Condition aux limites : (a < x < (a+b))

Si
$$\mathbf{x} = (\mathbf{a} + \mathbf{b})$$
 $\mathbf{T} \mathbf{y} = -y_A - F_R$ $\mathbf{M} \mathbf{f} \mathbf{z} = (a + b)y_A + b.F_R$

Tronçon [CD]:

$$\left\{ \begin{array}{c|c} \zeta_D \end{array} \right\} \xrightarrow{\operatorname{En G}} \left\{ \begin{array}{c|c} 0 & 0 \\ y_D & -z_A.x \\ z_D & y_A.x \end{array} \right\}$$

$$M_{G} = M_{B} + GB \wedge R_{B} = 0 + \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ y_{D} \\ z_{D} \end{pmatrix} = \begin{pmatrix} 0 \\ -z_{A}.x \\ y_{A}.x \end{pmatrix}$$

Condition aux limites:

Si x=c
$$Ty = y_D$$

$$Mfz = y_A. x$$

Diagramme des efforts tronchant :

Figure 41 : Modélisation sur RDM6

Diagramme des moments fléchissant :

Figure 42 : Modélisation sur RDM6

Conclusion

Cette partie est destinée à la détermination de la taille, la sélection et la vérification de résistances différent composant du support. Cette étude garantit sa fiabilité et durable.

Chapitre 5 : Réalisation

Phases	Opération	M.O	Machines / Outils	Croquis
	Débitage		Scie	
	Contrôle de brute		Pied à coulisse	В1
Ph10	B1=300mm			
	B2=50mm			B2
P20	Tournage:		Outil à dresser	
	Le référentiel de mise		Outil à charioter	
	en position est défini		Outil à	CO1
	par:		chanfreiner	
	Centrage long		Outil à	5 3 3 - 4 5 4 5 ()
	(1,2,3,4)		tronçonner	A A
	Butée (5)	Tou r par allè	Foret à centrer	1 2 1
	a) Dressage		Outil à fileter	Cf2
	Cf1 = 292mm		Vc = 250 m/min	SR Cf3
	Cf2 = 222,2mm		f = 0.3mm/dent	Cf4
	Cf3 = 247,2mm			Cf1
	Cf4 = 277,2mm			**E
	b) Chariotage			
	2Cf5 = 45mm			
	2Cf6 = 40mm			
	c) Chanfreinage			
	d) Centrage de			
	trou \$\phi 8			
	e) Gorge			
	CO1 = 1,5mm			

ISE I	MAHDIA			AU 2022 / 2023
Ph3	Tournage:			
0	Le référentiel de		Outil à	
	mise en position est		charioter	
	défini par un		Outil à	P2 10
	montage entre	u r	dresser	→ CO2 OF
	pointe	Tou r par allè le	Vc =	5
	a) Dressage	_	250m/min	Cf7
	Cf7 = 25mm		f =	Cf8
	Cf8 = 125mm		0.3mm/dent	A Cf9
	Cf9 = 201,5mm			
	b) Chariotag			
	e			
	2Cf10 = 40mm			
	c) Gorge			
	Cf10 = 1.5mm			
	d) Filetage			
	M30P2			
Ph40	Fraisage :	u i	Fraise 2	
	Le référentiel de	Fraiseu se numéri que	taille d'un	Cm1
	mise en position est	Fra s nui q	plat φ10	
	défini par un		Vc =	4 3 5
	montage mixte		120m/min	
	Rainurage		F =	11 2
	Cm1 = 62mm;		0.035m/den	
	profondeur = 3mm		t	
Ph50	Fraisage :		Fraise 2	
	Le référentiel de	eu śri	taille d'un	Cm2
	mise en position est	Fraiseu se numéri que	plat φ10	
	défini par un	Fr m	Vc =	4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	montage mixte		120m/min	
	Rainurage		F =	
	Cm2 = 8mm;		0.035m/den	2♠
	profondeur = 3mm		t	

Phases	Opération	M.O	Machines / Outils	Croquis
	Débitage		Scie	
	Contrôle de brute		Pied à	B1
Ph10	B1=260mm		coulisse	
	B2=50mm			▶ B2
P20	Tournage:		Outil à	
	Le référentiel de		dresser	CO1
	mise en position		Outil à	
	est défini par :		charioter	5
	Centrage long		Outil à	
	(1,2,3,4)	Tou r par allè le	chanfreiner	1 1
	Butée (5)	T gg la	Outil à	
	a) Dressage		tronçonner	SR Cf2
	Cf1 = 250mm		Foret à	Cf3
	Cf2 = 211,7mm		centrer	Cf4
	Cf3 = 214,7mm		Outil à	Cf1
	Cf4 = 244,7mm		fileter	<u> </u>
	b) Chariotage		Vc = 250	
	2Cf5 = 45mm		m/min	
	2Cf6 = 40mm		f =	
	c) Chanfreinage		0.3mm/dent	
	d) Centrage de			
	trou \$\phi 8			
	e) Gorge			
	CO1 = 1.5mm			

Ph30	Tournage:			
FIISU	Le référentiel de		Outil à	
			charioter	CC
	mise en position est			00 00 / 4
	défini par un		Outil à	5
	montage entre	Tou r par allè le	dresser	
	pointe	T D D D	Vc =	1 Cf7
	a) Dressage		250m/min	Cf8
	Cf7 = 3mm		f =	
	Cf8 = 87,5mm		0.3mm/dent	A Cf9
	Cf9 = 169mm			
	b) Chariotage			
	2Cf10 = 40mm			
	c) Gorge			
	Cf10 = 1.5mm			
	d) Filetage			
	M30P2			
Ph40	Fraisage :	u i	Fraise 2	
	Le référentiel de	Fraiseu se numéri que	taille d'un	Cm1
	mise en position est	Fra S nur q	plat φ10	
	défini par un		Vc =	
	montage mixte		120m/min	
	Rainurage		F =	1 2
	Cm1 = 62mm;		0.035m/dent	
	profondeur = 3mm			
Ph50	Fraisage :		Fraise 2	<u> </u>
	Le référentiel de	ne :i	taille d'un	0.000
	mise en position est	Fraiseu se numéri que	plat φ10	<u></u>
	défini par un	Fran	Vc =	4 1 2 1 2 1 2 1
	montage mixte		120m/min	
	Rainurage		F =	
	Cm2 = 8mm;		0.035m/dent	1↑ 2↑
	profondeur = 3mm			

Phases	Opération	M.O	Machines / Outils	Croquis
Ph10	Contrôle de brute B1=65mm B2=160mm		Pied à coulisse (1/50)	B2 B1
P20	Tournage: Le référentiel de mise en position est défini par : Centrage court (1,2,3,4) Butée (5) a) Dressage Cf1 = 60mm b) Centrage	Tou r par allè	Outil à dresser Foret à centrerφ8 Foret φ10 Foret φ20 Alésoir φ30 Alésoir φ40	SR Cf1

Ph30	Tournage:		Fraise 2	
	Le référentiel de		taille	SR —
	mise en position			Cf2 Cf3
	est défini par :	ם. ב		
	Centrage court	isei ie méi ue		
	(1,2,3,4)	Faiseu se numéri que		
	Butée (5)			
	a) Fraisage			4 5 1
	Cf2 = 10mm			
	Cf3 = 50mm			2
	R = 20mm			3
Ph40	Etau limeur	• . =	Etau limeur	
	hydraulique	au eur rav ue	e=8mm	
	Le référentiel de	Etau limeur hydrau lique		
	mise en position	Li h		
	est défini par :			
				1
	a) Clavetage			2 4
	CO1 = 8mm			

Phase	Opération	M.O	Machine s / Outils	Croquis
S	Contrôle de brute AHDIA		Pied à	
ISET M	AHDIA B1=65mm		coulisse	B2 ◀ B1
Ph10	B2=130mm		(1/50)	B2 B1
				† -†
P20	Tournage:		Outil à	
120	Le référentiel de		dresser	
				SR Cf1
	mise en position	Tou r par allè le	Foret à	3K
	est défini par :	TC 1 pg	centrer	
	Centrage court		φ8	1
	(1,2,3,4)		Foret $\phi 10$	
	Butée (5)		Foret \$\phi20\$	
	g) Dressage		Alésoir	
	Cf1 = 60mm		φ30	
	h) Centrage \$\phi 8\$		Alésoir	2 4
	i) Perçage \$10		φ40	
	j) Perçage \$20			3
	k) Alésage \$430			
	l) Alésage			
	CO1 = 40mm			1

Ph30	Fraisage Le référentiel de mise en position est défini par : Centrage court (1,2,3,4) Butée (5) a) Fraisage Cf2 = 10mm Cf3 = 50mm R = 20mm	Faiseu se numéri que	Fraise 2 taille \$\phi 20\$	1 Cf2 Cf3 4 5
Ph40	Clavetage Le référentiel de mise en position est défini par : CO1 =20mm Profondeur=3mm ;	Etau limeur hydrau lique	Etau limeur	

Phases	Opération	M.O	Machines / Outils	Croquis
	Contrôle de		Pied à	
	brute		coulisse	B1 B2
Ph10	B1=70mm		(1/50)	
	B2=80mm			
P20	Тоштодо		Outil à	
P20	Tournage Le référentiel		dresser	
			Foret à	
	de mise en position est			Cf1 SR
	défini par :		centrer $\phi 8$ Outil à	Cf2
	Centrage long		tronçonner	
	(1,2,3,4)		Foret ϕ 10	5 4 3
	Butée (5)	.	Foret \$\phi20	
	a) Dressage	Tou r par allè le	Alésoir	
	en ébauche		φ30	col
	Cf1 = 30mm		Alésoir	
	Cf2 = 5mm		φ40	$\overline{2}$ $\overline{1}$
	b) Chariotage			
	2Cf4 = 52,5mm			
	c) Gorge			
	CO1 = 2mm			
	d) Centrage			
	φ8			
	e) Perçage			
	φ10			
	f) Perçage			
	φ20			
	g) Alésage			
	2Cf3			
	=ф42Н7р6			

	T #5	T	- ·	T
Ph30	Tournage		Fraise	
	Le référentiel de		2 taille	► SR
	mise en position		φ20	Cf5
	est défini par :	Tou r par allè le		
	Centrage long	T p aj		<u>~~~~</u>
	(1,2,3,4)			
	Butée (5)			5 4 3 5
	a) Dressage			
	Cf5= 75mm			
	b) Chariotage			↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
	en ébauche			
	puis en			2 1
	finition			
	2Cf6 = 66mm			
Ph40	Taillage en			
	ébauche puis en	¬ • •		
	finition	leu 1921 1932		
	Le référentiel de	Tailleu se d'engr enage		r
	mise en position	T d		
	est défini par :			5 4 3
	Centrage long			1-2
	(1,2,3,4)			
	Butée (5)			Lov
	2Cf7 = 61,2mm;			2 1
	pas = 10mm			

Ph50	Rainurage Le référentiel de mise en position est défini par : Cm1 = 20mm e = 12mm; profondeur = 3mm	Faiseu se numéri que	1 2 3 4 4 5 5
------	--	-------------------------------	---------------

Phases	Opération	M.O	Machines / Outils	Croquis
ISET I	Contrôle de IAHDIA brute B1=40mm B2=50mm		Pied à coulisse (1/50)	B1 B2
P20	Tournage Le référentiel de mise en position est défini par : Centrage long (1,2,3,4) Butée (5) a) Dressage en ébauche Cf1 = 12mm b) Chariotage 2Cf2 = 32,25mm c) Centrage \$\phi 8\$ d) Perçage \$\phi 10\$ e) Perçage 2Cf3 = 16mm	Tou r par allè le	Outil à dresser Outil à charioter Foret à centrer \$\phi 10\$ Foret \$\phi 10\$ Foret \$\phi 16\$	SR SR 22 2 1

Ph30	Tournage		Outil à	▶ cp
	Le référentiel		dresser	Cf4
	de mise en		Outil à	C14
	position est	Tou r par allè le	charioter	
	défini par :	T T D D		
	Centrage long			
	(1,2,3,4)			
	Butée (5)			73
	a) Dressage			2
	Cf4= 35mm			$\frac{2}{3}$
	b) Chariotage			
	en ébauche			
	puis en			
	finition			
	2Cf5 =39mm			
Ph50	Clavetage	1 .	Etau	
	Le référentiel	Eta u lim eur	limeur	2 1
	de mise en			
	position est			
	défini par :			
	Un centrage			
	court (1,2,3,4)			
	Butée (5)			
	Cm1 =12mm			4 7 3
	Profondeur =			
	3mm			

Ph40	Taillage en ébauche puis en finition Le référentiel de mise en position est défini par : Centrage long (1,2,3,4) Butée (5) 2Cf7 = 61,2mm; pas = 10mm	Tailleu se d'engr enage		1 4 5 9JOZ 2 3 • • • • • • • • • • • • • • • • • •
------	--	----------------------------------	--	--

Phase	Opération	M.O	Machine s / Outils	Croquis
S ISET M Ph10	Contrôle de AHDIA brute B1=40mm		Pied à coulisse (1/50)	B1 B2
THIO	B2=55mm		(1/30)	
P20	Tournage Le référentiel de mise en position est défini par : Centrage long (1,2,3,4) Butée (5) a) Centrage \$\phi 8\$ b) Perçage \$\phi 10\$	Tou r par allè	Outil à dresser Outil à charioter Foret à centrer \$\phi 8\$ Foret \$\phi 10\$ Foret \$\phi 16\$	
	c) Perçage \$\phi 20\$ d) Alésage CO1 = 30mm			

	1		T	
Ph30	Tournage		Outil à	L [22]
	Le référentiel		dresser	Cf1 SR
	de mise en		Outil à	
	position est	Tou r par allè le	charioter	
	défini par :	T T D D		<u> </u>
	a) Dressage			3 2
	en			
	ébauche			
	Cf1 = 30mm			
	b) Chariotag			
	e en			
	ébauche			
	puis en			
	finition			
	2Cf2 = 51mm			
Ph40	Taillage en			
	ébauche puis			
	en finition	Tailleu se d'engr enage		
	Le référentiel	aill se 'er na		
	de mise en	T d e		1
	position est			\$\frac{7}{2}\ \frac{9}{2}\ \left 3 2
	défini par :			
	2Cf4 =			
	50,8mm ; pas			
	= 10mm;			
	z=15dents			
L	1		1	1

І ŞЕТ М	Contrôle de brute B1=141mm AHDIAmm		Pied à coulisse (1/50)	B B
P20	Tournage Le référentiel de mise en position est défini par : a) Centrage \$\phi 8\$ b) Perçage \$\phi 10\$ c) Perçage \$\phi 20\$ d) Alésage \$\phi 30\$ e) Alésage CO1 = 30mm	Tou r par allè le	Outil à dresser Outil à charioter Foret à centrer \$\phi 10\$ Foret \$\phi 20\$ Alésoir \$\phi 30\$	4 3 5 5 2 1
	Clavetage Le référentiel de mise en position est défini par : Cm1 = 4,5mm e = 12mm	Eta u lim eur	Etau limeur	4 3 5 2 1

Ph30	Taillage en		
	ébauche puis en	e e e	T
	finition	Tailleu se d'engr enage	
	Le référentiel de	Ta d'e	
	mise en position est		- S
	défini par :		$\begin{array}{c c} & & \hline \\ \hline \\$
	2Cf4 = 140,4mm;		
	pas = 10mm;		
	2Cf3 = 133,5mm		
	Z = 45 dents		

_					
	Contrôle de brute			Pied à	
ISET M	AHDIA AHDIA			coulisse	B
Ph10	B2=25mm			(1/50)	
1110					
					+
P20	Tournage			Outil à	
	Le référentiel de			dresser	4 ■ 3
	mise en position est	_	45	Outil à	L
		ou'ou'	par allè le	charioter	
	défini par :		F a		
				Foret à	
	f) Centrage φ8			centrer $\phi 10$	
	g) Perçage $\phi 10$			Foret \$\phi20\$	5
	h) Perçage \$20			Alésoir	
	i) Alésage \$\phi 30\$			φ30	† ///
				Ψ30	
	j) Alésage \$40				
	k) Alésage				•
	CO1 = 52.5mm				2 1
					·
	Clavetage			Etau	4 ■3
	Le référentiel de			limeur	7
	mise en position est	ţ a	n nr		
		Eta	u lim eur		
	défini par :				=
					5
	Cm1 = 4,5mm				
	e = 12mm				
					2 1
					2 ■ 1

Ph30	Taillage en		
	ébauche puis en	en en	
	finition	Failleu se d'engr enage	
	Le référentiel de	Tailleu se d'engr enage	
	mise en position est		
	défini par :		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2Cf1 = 255mm;		
	pas = 10mm;		
	Z = 83 dents		* * *
	2Cf2 = 241,5mm		

işet m	Contrôle de brute B1=260mm AHDLAmm		Pied à coulisse (1/50)	A
P20	Tournage Le référentiel de mise en position est défini par : l) Centrage \$\phi 8\$ m) Perçage \$\phi 10\$ n) Perçage \$\phi 20\$ o) Alésage \$\phi 30\$ p) Alésage CO1 = 40mm	Tou r par allè le	Outil à dresser Outil à charioter Foret à centrer \$\phi 10\$ Foret \$\phi 20\$ Alésoir \$\phi 30\$	4 3 5 5 2 1
	finition Le référentiel de mise en position est défini par : 2Cf1 = 255mm; pas = 10mm; Z = 163dents 2Cf2 = 255mm	Tailleu se d'engr	a a min	2Cf2 3-1-1-2

Ph30	Taillage en				
	ébauche puis en	45	· .		and the second s
	finition	ise	še Jér	ıe	1 mmmm
	Le référentiel de	Fraise	use numéri	dne	1 (1)
	mise en position est	1	Ω		MANANA
	défini par :				TONO TO TONOMINA
					4 Q Z X 2 X
	2Cf1 = 255mm;				A TO TO TO THE T
	pas = 10mm;				Examination 3
	Z = 163dents				Tananan 3
	2Cf2 = 252mm				EE LA LEAR AND MAN AND

Conclusion générale

Le stage de projet de fin d'études est une étape primordiale dans la vie professionnelle. Nous avons appris aussi qu'un projet est une tache qui pourra être indéfinie dans le temps à cause des critiques personnelles et extérieures du travail exécuté. Pour le déroulement du travail, nous pouvons dire que malgré la courte période dédiée à ce projet, nous avons effectué une bonne conception satisfaisante à **Mr Bahri Fares** responsable de l'entreprise **Mecatech.**

Commençant par le choix de la solution technologique satisfaisant au cahier des charges imposé; passant par une étape d'étude et de dimensionnement de cette solution et finissant par la préparation d'un dossier technique. La conception de la cintreuse, conformément au cahier des charges, nous a permis de prendre des responsabilités et a éveillé en nous un esprit créatif.

Ce projet, est notre première expérience professionnelle dans le domaine de construction mécanique ; notre appartenance à ce domaine a évolué après avoir passée cette belle expérience, dont nous avons consolidé les compétences acquis durant les trois années d'études et nous sommes maintenant très motivés d'aller jusqu'au bout dans ce domaine.

Liste d'annexes

Annexe 1: Caractéristique de roue droit

Annexe 2 : choix de moteur

Annexe 3 : choix de clavette

Annexe 4 : choix de roue

Annexe 5 : choix des anneaux

Annexe 6 : caractéristiques de roulement à aiguilles

Annexe 7 : choix de goupille

Annexe 8 : choix d'alliage aluminium

Annexe 9 : tableau d'élastique au glissant

Module	m	Déterminé par un calcul de résistance des matériaux (§ 73.12)**
Nombre de dents	z	Déterminé à partir des rapports des vitesses angulaires : $\frac{\omega_A}{\omega_B} = \frac{n_A}{n_B} = \frac{z_B}{z_A}$
Pas	р	$p = m.\pi$
Saillie	ha	$h_a = m$
Creux	h	h _f = 1,25 m
Hauteur de dent	h	$h = h_a + h_f = 2,25 \text{ m}$
Diamètre primitif	d	d = m.z
Diamètre de tête	da	$d_a = d + 2 m$
Diamètre de pied	de	$d_f = d - 2.5 \text{ m}$

Annexe 1: Caractéristique de roue droit

				no ne		.,,			Prince		ermé	21 0 1	Oton	CII CO	A I I I	- Cant					
Type LS !			5 56 1	2	LS	63 E			LS 71	P			LS 8		LS 90 L			LS 1001			
	3 0	00 tr/r	min	0,0	9 0	12	0,18	0,2	5	0,37	0,55	0,	75	0,75	1,1	1	,5	1,8	2	,2	3
Puissance	15	00 tr/r	nin	-	0	,09	0,12	0,1	8	0,25	0,37	0,	55	0,55	0,7	5 0	9,9	1,5	1	,8	2,2
kW	1 0	00 tr/r	nin	7		-	-	0,0	19	0,12	0,18	0,	25	0,25	0,3	7 0),55	1,1			1,5
	750 tr/min				-	e (e)			- 0,09		0,12		0,18	0,2	5	-	0,55		-	0,75	
Type n°	a	b	c	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	5	t	u
56	71	89	36	9	90	104	7	56	141	6	24	156	5	2,5	80	120	100	M6	7	85	110
63	80	96	40	11	100	115	8	63	154	7	24,5	172	10	3	95	140	115	M8	10	95	124
71	90	104	45	14	112	126	9	71	173	7	23	183	10	3,5	110	160	130	M8	10	102	140
80	100	120	50	19	125	157	10	80	203	9	29	215	10	3,5	130	200	165	M8	12	123	160
90	125	162	56	24	140	172	11	90	223	10	37	245	12	4	130	200	165	M10	12	133	180
100	140	165	63	28	160	196	13	100	238	12	40	290	14	4	180	250	215	M12	15	138	198

Annexe 2 : choix de moteur

d	a	b	5	j	k	d	a	b	S	j	k
de 6 à 8 inclus	2	2	0,16	d - 1,2	d + 1	58 à 65	18	11	0,6	d - 7	d + 4,4
8 à 10	3	3	0,16	d - 1,8	d + 1,4	65 à 75	20	12	0,6	d - 7,5	d + 4,9
10 à 12	4	4	0,16	d - 2,5	d+1,8	75 à 85	22	14	1	d-9	d + 5,4
12 à 17	5	5	0,25	d - 3	d + 2,3	85 à 95	25	14	1	d-9	d + 5,4
17 à 22	6	6	0,25	d - 3,5	d + 2,8	95 à 110	28	16	1	d - 10	d + 6,4
22 à 30	8	7	0,25	d - 4	d + 3,3	110 à 130	32	18	1	d - 11	d + 7,4
30 à 38	10	8	0,4	d - 5	d + 3,3	130 à 150	36	20	1,6	d - 12	d + 8,4
38 à 44	12	8	0,4	d - 5	d + 3,3	150 à 170	40	22	1,6	d - 13	d+9,4
44 à 50	14	9	0,4	d - 5,5	d + 3,8	170 à 200	45	25	1,6	d - 15	d + 10,4
50 à 58	16	10	0,6	d - 6	d + 4,3	200 à 230	50	28	1,6	d - 17	d+11,4

Annexe 3 : choix de clavette

Annexe 4 : choix de roue

d	е	C	f	g	Tol. g	k	Fa*	d	е	C	f	g	Tol. g	k	Fa*
3	0,4	6,8	0,5	2,8	0 - 0,04	0,3	0,47	28	1,5	38,4	1,6	26,6	0	2,1	32,1
4	0,4	8,4	0,5	3,8	0	0,3	0,60	30	1,5	41	1,6	28,6	-0,21	2,1	32,1
5	0,6	10,7	0,7	4,8	- 0,048	0,3	1	32	1,5	43,4	1,6	30,3		2,55	31,2
6	0,7	12,2	0,8	5,7		0,45	1,45	35	1,5	47,2	1,6	33	0	3	30,8
7	0,8	13,2	0,9	6,7	0	0,45	2,6	40	1,75	53	1,85	37,5	0	3,75	51
8	0,8	15,2	0,9	7,6	5000	0,6	3	45	1,75	59,4	1,85	42,5	- 0,25	3,75	49
9	1	15,4	1,1	8,6	- 0,058	0,6	3,5	50	2	64,8	2,15	47		4,5	73,3
10	1	17,6	1,1	9,6		0,6	4	55	2	70,4	2,15	52		4,5	71,4
12	1	19,6	1,1	11,5		0,75	5	60	2	75,8	2,15	57		4,5	69,2
14	1	22	1,1	13,4	0	0,9	6,4	65	2,5	81,6	2,65	62	0	4,5	135,6
15	1	23,2	1,1	14,3	- 0,11	1,05	6,9	70	2,5	87,2	2,65	67	- 0,30	4,5	134,2
17	1	25,6	1,1	16,2		1,2	8	75	2,5	92,8	2,65	72		4,5	130
20	1,2	29	1,3	19	0 - 0,13	1,5	17,1	80	2,5	98,2	2,65	76,5		5,25	128,4
22	1,2	31,4	1,3	21	0	1,5	16,9	85	3	104	3,15	81,5	0	5,25	215,4
25	1,2	34,8	1,3	23,9	- 0,21	1,65	16,2	90	3	109	3,15	86,5	- 0,35	5,25	217

Annexe 5 : choix des anneaux

Annexe 6 : caractéristiques de roulement à aiguilles

D	d	L**
2	-	6-8-10-12-14-16-18-20
2,5		6-8-10-12-14-16-18-20-24
3	-	8-10-12-14-16-18-20-24-28-32-36
4	-	8-10-12-14-16-18-20-24-28-32-36-40-45-50
5		10-12-14-16-18-20-24-28-32-36-40-45-50-55-60
6	M4	10-12-14-16-18-20-24-28-32-36-40-45-50-55-60
8	M5	16-18-20-24-28-32-36-40-45-50-55-60-70-80-90
10	M6	24-28-32-36-40-45-50-55-60-70-80-90-100-120
12	M6	28-32-36-40-45-50-55-60-70-80-90-100-120
16	M8	40-45-50-55-60-70-80-90-100-120-140-150

Annexe 7 : choix de goupille

Nuances usuelles	R min.*	Re min.*	Emplois
EN AW-1050 [AI 99,5]	80	35	Appareils ménagers. Matériels électriques.
EN AB-21 000 [Al Cu 4 Mg Ti]	330	200	Se moule bien. S'usine très bien. Ne pas utiliser en air salin.
EN AB-43 000 [Al Si 10 Mg]	250	180	Se moule très bien. S'usine et se soude bien. Convient en air salin.
EN AB-44 200 [Al Si 12]	170	80	Se moule et se soude très bien. La forte teneur en silicium rend l'usinage difficile.
EN AB-51 300 [Al Mg 5]	180	100	Excellentes aptitudes à l'usinage, au soudage, au polissage. Résiste très bien à l'air salin.

Annexe 8 : choix d'alliage aluminium

Relation entre la résistance élastique à l'extension Re et La résistance élastique au glissement Reg							
Matériaux	Relation entre Re et Reg						
Acier doux, alliages d'aluminium (Re≤ 270	Reg =0.5*Re						
MPa)							
Aciers mi-durs (320MPa≤Re≤520MPa)	Reg =0.7*Re						
Aciers durs (Re≤600MPa)	Reg = 0.8*Re						

Annexe 9 : tableau d'élastique au glissant