Organizacija datoteka

Datoteke sa više ključeva

multilista, invertovana datoteka, upiti na interval vrednosti ključa

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

- Fizička struktura sekvencijalne i spregnute datoteke
 - poseduje informaciju o vezama između slogova u logičkoj strukturi podataka datoteke
 - pogodne za traženje logički narednog sloga
- Fizička struktura rasute datoteke
 - poseduje informaciju o funkcionalnoj vezi između vrednosti ključa sloga i adrese lokacije u koju je slog (verovatno) smešten
 - pogodna za traženje slučajno odabranog sloga

- Indeksne datoteke poseduju obe opisane osobine
 - efikasno traženje slogova u datoteci na osnovu poznate vrednosti primarnog ključa

 Pretraživanje datoteke predstavlja algoritam AP, koji definiše preslikavanje:

$$AP: dom(X) \rightarrow \mathcal{G}(S)$$

- dom(X) je skup vrednosti sekundarnog ključa X
- 9(S) partitivni skup skupa pojava S tipa sloga datoteke
- Vrednost sekundarnog ključa se naziva argumentom pretraživanja
 - iz skupa S izdvaja podskup S' slogova sa istom vrednošću

it

Pretraživanje datoteke

- Dva karakteristična slučaja pretraživanja datoteke
 - $-\{A_1,...,A_n\}$ skup obeležja tipa sloga datoteke
 - $X_1,...,X_p, p \ge 1$ članovi skupa $\{A_1,...,A_n\}$, koji predstavljaju sekundarne ključeve tipa sloga
 - x_i ∈ dom(X_i) za i = 1,..., p
 - na osnovu konjunkcije zadatih vrednosti sekundarnih ključeva $X_1,...,X_l$

upit tipa: ?
$$(x_1 \wedge x_2 \wedge ... \wedge x_l)$$

– na osnovu disjunkcije zadatih vrednosti sekundarnih ključeva $X_1,...,X_m$

upit tipa: ?
$$(x_1 \lor x_2 \lor ... \lor x_m)$$

- Datoteke sa više ključeva sadrže stabla traženja za svaki sekundarni ključ
 - stablo traženja je jedna od varijanti B-stabla
 - pretraživanje podrazumeva traženje adresa slogova
 - sa zadatim vrednostima sekundarnih ključeva u svakom od / stabala pristupa
 - / jednako broju sekundarnih ključeva navedenih u upitu
 - sa aspekta primarnog ključa, datoteka najčešće predstavlja indeksnu datoteku sa jednom od varijanti B-stabla

it

Pretraživanje datoteke

- Potreban broj pristupa R_k primarnoj zoni datoteke sa više ključeva,
 - pri pretraživanju konjunktivnog tipa, uzima celobrojne vrednosti iz intervala

$$[d(x_1 \wedge x_2 \wedge \ldots \wedge x_l) / f, d(x_1 \wedge x_2 \wedge \ldots \wedge x_l)]$$

• $d(x_1 \wedge x_2 \wedge ... \wedge x_l)$ je kardinalni broj skupa S_k , podskupa skupa slogova datoteke

it

Pretraživanje datoteke

- Potreban broj pristupa R_d primarnoj zoni datoteke sa više ključeva,
 - pri pretraživanju disjunktivnog tipa, uzima celobrojne vrednosti iz intervala

$$[d(x_1 \lor x_2 \lor ... \lor x_l) / f, d(x_1 \lor x_2 \lor ... \lor x_l)]$$

• $d(x_1 \lor x_2 \lor ... \lor x_l)$ je kardinalni broj skupa S_d , podskupa skupa slogova datoteke

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

Metoda pristupa datoteka sa više ključeva

- Indeksna metoda pristupa
 - operativni sistemi mainframe računara
 - poseduje metode pristupa za formiranje, korišćenje i ažuriranje indeksnih datoteka sa B-stablima
 - omogućeno definisanje alternativnih ključeva u programu za formiranje datoteke
 - programski jezici
 - korisnici sami pišu svoje metode

- SUBP

- poseduju sopstvene indeksne metode pristupa
- koriste ih u izgradnji fizičkih struktura baza podataka
- za izgradnju B-stabala sekundarnih ključeva potrebno je napraviti eksplicitan zahtev SUBP

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

- Struktura primarne zone datoteke odgovara strukturi spregnuto organizovane datoteke, sa aspekta sekundarnih ključeva
 - svi slogovi sa istom vrednošću sekundarnog ključa obrazuju jedan lanac
 - broj lanaca odgovara zbiru različitih aktuelnih vrednosti tih obeležja – sekundarnih ključeva

- Svakom lancu odgovara jedan indeks početka
 - sadrži uređenu trojku $(x_i, A_i, d(x_i))$
 - x_i vrednost sekundarnog ključa
 - A_i adresa prvog sloga u primarnoj zoni sa vrednošću sekundarnog ključa x_i
 - d(x_i) dužina lanca slogova sa vrednošću sekundarnog ključa
 x_i

- Indeks početka lanca
 - elemenat stabla traženja sekundarnog ključa X_i
 - služi za pronalaženje adrese prvog sloga u lancu
 - slogova sa određenom vrednošću sekundarnog ključa
- Primarna zona multiliste, sadrži (dvostruko) spregnute (ciklične) lance slogova sa istom vrednošću sekundarnog ključa

- Tip sloga datoteke je VOZILO (<u>REBR</u>, PROI, BOJA)
 - REB je registarski broj vozila
 - PROI je naziv proizvođača
 - BOJA je boja automobila
 - dva sekundarna ključa
 - PROI i BOJA
 - dom(PROI) = {Citroen, Folksvagen, Isuzu, Opel, Zastava}
 - dom(BOJA) = {bela, crvena, oker, plava, zelena}

Format lokacije za smeštaj sloga VOZILO

- k sadrži vrednost primarnog ključa REBR
- p sadrži vrednost sekundarnog ključa PROI
- up sadrži adresu lokacije narednog sloga sa istom vrednošću obeležja PROI
- b sadrži vrednost obeležja BOJA
- ub sadrži adresu lokacije narednog sloga sa istom vrednošću obeležja BOJA

Zona indeksa sekundarnog ključa PROI

Zona indeksa sekundarnog ključa BOJA

A_1	A ₁ ¹					A ₁ ²					A ₁ ³						
	33 - 0 ⁻	l C	;	*	b	*	18 -	21	Z	*	С	*	71-13	0	*	р	*
A_2	A ₂ ¹					A_2^2					A_2^3						
	01 - 03	3 C)	A ₁ ³	b	A ₁ ¹	13 -	19	Z	A ₁ ²	b	A ₂ ¹	22 - 00	I	*	р	A ₁ ³
A_3	A ₃ ¹					A_3^2					A ₃ ³						
	43 - 1	5 C	;	A ₁ ¹	0	*	55 -	16	Z	A_2^2	b	A_2^2	55 - 17	Z	A_3^2	С	A_1^2
A_4	A ₄ ¹	A ₄ ¹					A_4^2					A_4^3					
	02 - 1	5 F	•	*	0	A ₃ ¹	43 -	81	Z	A_3^3	С	A_3^3	13 - 68	0	A ₂ ¹	b	A_3^2
A ₅	A ₅ ¹				A_5^2					A ₅ ³							
	33 - 14	1 Z	<u>, </u>	A ₄ ²	С	A ₄ ²	21 -	29	F	A ₄ ¹	Z	*	17 - 19	Z	A ₅ ¹	b	A ₄ ³
A_6	A ₆ ¹	A ₆ ¹				A ₆ ²					A ₆ ³						
	19 - 00) F	-	A_5^2	b	A ₅ ³	43 -	83	Z	A_5^3	р	A_2^3	01 - 01	I	A_2^3	0	A ₄ ¹

Formiranje multiliste

- putem indeksne metode pristupa
- u režimu redosledne ili režimu direktne obrade

- Postupak formiranja datoteke
 - smeštanje slogova u sukcesivne lokacije primarne zone datoteke
 - istovremeno formiranje i stabla traženja primarnog i svih sekundarnih ključeva
 - ako slog sadrži novu vrednost sekundarnog ključa,
 - formira se novi element u odgovarajućem stablu traženja
 - ako slog ne sadrži novu vrednost sekundarnog ključa,
 - postojeći element se modifikuje
 - u element se upisuje adresa lokacije novog sloga i modifikuje se podatak o dužini lanca
 - adresa lokacije, do tada prvog sloga u lancu, upisuje se u polje pokazivača novog sloga

Pretraživanje multiliste

- upit konjunktivnog tipa: ? $(x_1 \wedge x_2 \wedge ... \wedge x_l)$
 - u stablu traženja svakog od I sekundarnih ključeva pronađe se odgovarajući elemenat $(x_i, A_i, d(x_i))$
 - pristupanje slogovima najkraćeg lanca u primarnoj zoni
 - nakon pristupa slogu, proverava se da li zadovoljava kompletan uslov $(x_1 \wedge x_2 \wedge ... \wedge x_l)$
 - nedostatak: pristupa se i slogovima koji ne zadovoljavaju kompletan uslov
 - broj pristupa može biti veći od $d(x_1 \wedge x_2 \wedge ... \wedge x_l)$

- upit disjunktivnog tipa: ? $(x_1 \lor x_2 \lor ... \lor x_m)$
 - u stablu traženja svakog od sekundarnih ključeva pronađe se odgovarajući elemenat $(x_i, A_i, d(x_i))$
 - pristupanje slogovima svih / lanaca
 - pretraživanje je uspešno ako postoji barem jedan elemenat (x_i, A_i, d(x_i)) u barem jednom od stabala traženja sekundarnog ključa, gde je i∈{1,..., m}
 - nedostatak: višestruko se pristupa slogovima koji zadovoljavaju uslov traženja po više od jednom literalu
 - broj pristupa može biti veći od $d(x_1 \vee x_2 \vee ... \vee x_l)$

- Ažuriranje multiliste
 - upis novog sloga isti je kao i u slučaju formiranja multiliste
 - kod brisanja se pronalaze i hronološki prethodni i naredni slogovi u svakom od lanaca
 - čiji elemenat je predstavljao brisani slog, da bi se ažurirali pokazivači
 - modifikacija vrednosti sekundarnog ključa u nekom slogu zahteva
 - da se taj slog isključi iz jednog i uključi u drugi lanac,
 - kao i da se na odgovarajući način ažurira stablo traženja odgovarajućeg sekundarnog ključa

Ocena karakteristika multiliste

Prednosti

- pretraživanje po upitima konjunktivnog i disjunktivnog tipa
- za broj sekundarnih ključeva l = 1, broj pristupa primarnoj zoni multiliste zadovoljava uslov minimalno potrebnog broja pristupa
- stabla traženja sekundarnih ključeva sadrže manje elemenata nego stablo traženja primarnog ključa

Nedostaci

- za broj sekundarnih ključeva I >1, broj pristupa primarnoj zoni multiliste ne zadovoljava uslov minimalno potrebnog broja pristupa
- povećanje potrebnog prostora za memorisanje sloga
- generisanje unije podskupova slogova dobijenih pri realizaciji odgovora na upite disjunktivnog tipa

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

- Modifikovana struktura multiliste,
 - da bi se stvorili uslovi za efikasnije pretraživanje po upitima konjunktivnog i disjunktivnog tipa
- Invertovana organizacija datoteke nastaje tako što se ukone pokazivači iz primarne zone multiliste i
 - priključe adresi prvog sloga u odgovarajućim elementima stabala traženja sekundarnih ključeva

Zona indeksa sekundarnog ključa PROI

Zona indeksa sekundarnog ključa BOJA

A_1	A ₁ ¹			A ₁ ²			A ₁ ³			
	33 - 01	С	b	18 - 21	Ζ	С	71-13	0	р	

$$A_3$$
 A_3 A_3

$$A_4 = A_4^{-1}$$
 A_4^{-2} A_4^{-2} A_4^{-3} A_4^{-3} A_4^{-2} A_4^{-3} A_4^{-3} A_4^{-2} A_4^{-3} A_4

$$A_6 = \begin{bmatrix} A_6^{-1} & A_6^{-2} & A_6^{-3} \\ 19 - 00 & F & b & 43 - 83 & Z & p & 01 - 01 & I & o \end{bmatrix}$$

- Formiranje invertovane datoteke
 - slično postupku formiranja multiliste
 - u primarnoj zoni se ne formiraju lanci slogova sa istim vrednostima sekundarnih ključeva
 - u elemente stabala traženja sekundarnih ključeva se upisuju adrese lokacija slogova sa istim vrednostima sekundarnih ključeva

- Pretraživanje invertovane datoteke
 - na osnovu vrednosti jednog sekundarnog ključa
 - izvršava se u invertovanoj datoteci sa istom efikasnošću kao i u multilisti
 - na osnovu vrednosti više sekundarnih ključeva
 - bolja efikasnost u odnosu na multilistu

- upit konjunktivnog tipa ? $(x_1 \land x_2 \land ... \land x_l)$
 - u odgovarajućim stablima, pronalaze se elementi sa zadatim vrednostima sekundarnih ključeva
 - uslove upita zadovoljavaju samo slogovi čije adrese se nalaze u preseku svih / nizova adresa
 - traženje preseka adresa odvija se u operativnoj memoriji putem algoritama
 - pronađena adresa koristi se za pristup primarnoj zoni
 - broj pristupa R_k^i primarnoj zoni invertovane datoteke pri uspešnom pretraživanju konjunktivnog tipa, uzima celobrojne vrednosti iz intervala

$$[d(x_1 \wedge x_2 \wedge \ldots \wedge x_l) / f, d(x_1 \wedge x_2 \wedge \ldots \wedge x_l)]$$

- upit disjunktivnog tipa ? $(x_1 \lor x_2 \lor ... \lor x_l)$
 - u operativnu memoriju učitava se / nizova adresa i upoređuju adrese iz svakog od / nizova
 - uvek se pristupa primarnoj zoni na adresi sa najmanjom vrednošću iz svih / nizova
 - kada se dođe do kraja jednog niza, nastavlja se upoređivanje adresa iz preostalih I - 1 nizova
 - pristup primarnoj zoni završava se kad se obrade svi elementi svih / nizova
 - broj pristupa R_d primarnoj zoni invertovane datoteke pri uspešnom pretraživanju disjunktivnog tipa, uzima celobrojne vrednosti iz intervala

$$[d(x_1 \lor x_2 \lor ... \lor x_l) / f, d(x_1 \lor x_2 \lor ... \lor x_l)]$$

- upis novog sloga u invertovanu datoteku vrši se kao i pri njenom formiranju
 - ažuriraju se stabla traženja svih ključeva datoteke
- brisanje sloga iz primarne zone dovodi do brisanja adrese njegove lokacije iz stabala traženja svakog od sekundarnih ključeva
 - pomeranje svih adresa sa većom vrednošću, unutar elementa, za jedno polje ulevo
- Modifikacija vrednosti sekundarnog ključa u slogu
 - dovodi do brisanja adrese njegove lokacije u jednom elementu i
 - njenog upisa u drugi elemenat stabla traženja istog sekundarnog ključa

- Ocena karakteristika invertovane datoteke
 - smanjen broj pristupa pri realizaciji konjunktivnih i disjunktivnih upita u odnosu na multilistu
 - promenljiva dužina čini nizove sa adresama lokacija veoma nepogodnim za smeštaj u elemente stabla traženja

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

Oblasti primena datoteka sa više ključeva

- Metode pristupa OS mainframe računara za izgradnju indeksnih datoteka
- Intenzivno se koriste u sistemima baza podataka
 - automatsko formiranje B-stabla za svaki primarni ključ
 - na osnovu deklarativnog zahteva korisnika, formiranje
 B-stabla sekundarnih ključeva
 - SQL dozvoljava definisanje svake kombinacije operacija konjunkcije, disjunkcije i negacije sekundarnih ključeva u upitima
 - ako stabla traženja ne postoje, pretraživanje se vrši metodom linearnog traženja
 - optimizator upita detektuje i koristi B-stabla sekundarnih ključeva automatski

- Pretraživanje datoteke
- Metoda pristupa datoteka sa više ključeva
- Multilista
- Invertovana datoteka
- Oblasti primena datoteka sa više ključeva

Literatura

- Pavle Mogin: Strukture podataka i organizacija datoteka
 - Glava 15

Pitanja i komentari

Datoteke sa više ključeva

multilista, invertovana datoteka, upiti na interval vrednosti ključa