#### MULTI-PERIOD OPTIMAL POWER FLOW

#### Ву

#### ARYAN RITWAJEET JHA

A dissertation submitted in partial fulfillment of the requirements for the degree of

#### DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science

 $MAY\ 2023$ 

© Copyright by ARYAN RITWAJEET JHA, 2023 All Rights Reserved

| То | the | Faculty | of | Washington | State | University | : |
|----|-----|---------|----|------------|-------|------------|---|
|    |     |         |    |            |       |            |   |

The members of the Committee appointed to examine the dissertation of ARYAN RIT-WAJEET JHA find it satisfactory and recommend that it be accepted.

| Anamika Dubey, Ph.D., Chair |
|-----------------------------|
|                             |
|                             |
|                             |
| Committee Member A, Ph.D.   |
|                             |
|                             |
|                             |
| Committee Member C, Ph.D.   |

### ACKNOWLEDGMENT

TBA

### MULTI-PERIOD OPTIMAL POWER FLOW

### Abstract

by Aryan Ritwajeet Jha, Ph.D. Washington State University May 2023

: Anamika Dubey

TBA

## TABLE OF CONTENTS

|                                                             |   | Pag | zе  |
|-------------------------------------------------------------|---|-----|-----|
| ACKNOWLEDGMENT                                              | • |     | iii |
| ABSTRACT                                                    | • |     | iv  |
| LIST OF TABLES                                              | • |     | vi  |
| LIST OF FIGURES                                             |   | . 1 | ⁄ii |
| CHAPTER                                                     |   |     |     |
| 1 SOME FORMATTING EXAMPLES                                  |   |     | 1   |
| 1.1 Chapter one tittle section                              |   |     | 1   |
| 1.1.1 Another subsection of section - citations             | • |     | 1   |
| 2 LINKS                                                     |   | •   | 2   |
| 2.1 Chapter one tittle section - links examples             |   |     | 2   |
| 2.1.1 Subsection title - more links examples                |   |     | 2   |
| 3 FIGURES AND TABLES                                        | • |     | 3   |
| 3.1 Examples of a figure                                    | • | •   | 3   |
| REFERENCES                                                  |   |     | 4   |
| APPENDIX                                                    |   |     |     |
| A Branch Flow Model: Relaxations and Convexification        |   | •   | 6   |
| B Abstracts: Optimization-based Methods for solving MP-OPF  |   | •   | 8   |
| C Abstracts: Dynamic Programming Methods for solving MP-OPF |   | •   | 9   |

## LIST OF TABLES

| A.1 Table describing the Branch Flow Model equations |  | 7 |
|------------------------------------------------------|--|---|
|------------------------------------------------------|--|---|

## LIST OF FIGURES

| 3.1  | hehe   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |  | 3 |
|------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|---|
| O. I | 110110 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  |  | _ |

### Dedication

TBA

## Chapter One

### SOME FORMATTING EXAMPLES

### 1.1 Chapter one tittle section

TBA

#### 1.1.1 Another subsection of section - citations

Example of citation altschul1997gapped. TBA

Example of multiple citations altschul1997gapped; baker2007novel.TBA.

Subsubsection of section - italic text

## Chapter Two

### LINKS

2.1 Chapter one tittle section - links examples

- 2.1.1 Subsection title more links examples
- . Another example of hyperlink Wikibooks home.

### Chapter Three

## FIGURES AND TABLES

### 3.1 Examples of a figure

Example of a figure.



Figure 3.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from wetterstrand2016

Example of reference to a figure in the text (Fig. 3.1).



# Appendix A

Branch Flow Model: Relaxations and

Convexification

 ${\bf Table\ A.1\ Table\ describing\ the\ Branch\ Flow\ Model\ equations}.$ 

| Equation $\#$ | Equation                                                                   | Unknowns          | Knowns             | No. of Equations |
|---------------|----------------------------------------------------------------------------|-------------------|--------------------|------------------|
|               |                                                                            | $1 \times p_0$    | $n \times p_j$     |                  |
| 13            | $p_j = \sum P_{jk} + \sum (P_{ij} - r_{ij}l_{ij}) + g_j v_j$               | $m \times P_{ij}$ | $m \times r_{ij}$  | (n+1)            |
| 10            | $p_j = \angle F_{jk} + \angle (F_{ij} - T_{ij}v_{ij}) + g_jv_j$            | $m \times l_{ij}$ | $(n+1) \times g_j$ | (n+1)            |
|               |                                                                            | $n \times v_j$    | $1 \times v_0$     |                  |
|               |                                                                            | $1 \times q_0$    | $n \times q_j$     |                  |
| 1.4           | $\alpha = \Sigma O + \Sigma (O - m \cdot l) + b \cdot m$                   | $m \times Q_{ij}$ | $m \times x_{ij}$  | (n+1)            |
| 14            | $q_j = \Sigma Q_{jk} + \Sigma (Q_{ij} - x_{ij}l_{ij}) + b_j v_j$           | $m \times l_{ij}$ | $(n+1) \times b_j$ | (n+1)            |
|               |                                                                            | $n \times v_j$    | $1 \times v_0$     |                  |
|               |                                                                            | $m \times P_{ij}$ |                    |                  |
| 15            | (2 + 2)1                                                                   | $m \times Q_{ij}$ | $b \times r_{ij}$  |                  |
| 15            | $v_j = v_i + (r_{ij}^2 + x_{ij}^2)l_{ij} - 2(r_{ij}P_{ij} + x_{ij}Q_{ij})$ | $m \times l_{ij}$ | $m \times x_{ij}$  | m                |
|               |                                                                            | $n \times v_j$    | $1 \times v_0$     |                  |
|               |                                                                            | $m \times P_{ij}$ |                    |                  |
| 16            | $l_{ij}=rac{P_{ij}^2+Q_{ij}^2}{v_i}$                                      | $m \times Q_{ij}$ | _                  | 200              |
| 16            | $t_{ij} = \frac{1}{v_j}$                                                   | $m \times l_{ij}$ | $1 \times v_0$     | m                |
|               |                                                                            | $n \times v_j$    |                    |                  |
|               |                                                                            | 1                 | $n \times p_j$     |                  |
|               |                                                                            | $1 \times p_0$    | $n \times q_j$     |                  |
|               |                                                                            | $1 \times q_0$    | $m \times r_{ij}$  |                  |
| 13 to 16      |                                                                            | $m \times P_{ij}$ | $m \times x_{ij}$  | 2(n+1+m)         |
|               |                                                                            | $m \times Q_{ij}$ | $(n+1) \times g_j$ |                  |
|               |                                                                            | $m \times l_{ij}$ | $(n+1) \times b_j$ |                  |
|               |                                                                            | $n \times v_j$    | $1 \times v_0$     |                  |
|               |                                                                            | 2(n+1+m)          | 4n + 2m + 3        | 2(n+1+m)         |

# Appendix B

Abstracts: Optimization-based Methods for solving MP-OPF

# Appendix C

Abstracts: Dynamic Programming
Methods for solving MP-OPF