Position du problème

Problème général pour une modulation quelconque à ${\cal M}$ états

- ▶ modulation à $M=2^k$ états : M symboles possibles $\{\alpha_j\}_{j=1,...,M}$ constitué chacun de k bits
- lacktriangle à chaque symbole $lpha_j$ correspond un signal émis $s_j(t)$ sur une période symbole de durée T_s
- canal gaussien :

$$r(t) = s(t) + n(t), t \in [0; T_s]$$

- ightharpoonup r(t) est le signal reçu
- ightharpoonup s(t) est le signal émis, choisi parmi les signaux $(s_j(t))_{j=1,...,M}$
- ightharpoonup n(t) un bruit blanc gaussien.
- pas d'interférence inter-symbole

Problème

Comment retrouver de façon optimale le symbole transmis à partir du signal r(t) reçu sur une période symbole ?

Probabilité d'erreur

Erreur : si le symbole choisi a_i n'est pas le symbole émis a_j .

$$\begin{split} P(\text{erreur}) &= P\left(\bigcup_{j=1}^{M}\bigcup_{i\neq j}\{\text{d\'ecider }\alpha_i \text{ et }\alpha_j \text{ est \'emis}\}\right) \\ &= \sum_{j=1}^{M}P(\alpha_j)P(\text{erreur}|\alpha_j \text{ est \'emis}) \\ &= \sum_{j=1}^{M}\sum_{i\neq j}P(\alpha_j)P(\text{d\'ecider }\alpha_i|\alpha_j \text{ est \'emis}) \end{split}$$

exemple: 2 symboles +1 et -1.

$$P(\mathsf{erreur}) = P(+1)P(-1|+1) + P(-1)P(+1|-1)$$

2 types de probabilité conditionnelle

- Probabilité a posteriori $P(\alpha_j|r)$: probabilité de choisir le symbole α_j connaissant le signal reçu r.
- Probabilité a **priori** ou vraisemblance $P(r|\alpha_j)$: probabilité de recevoir le signal r quand on émet symbole le symbole α_j .

Lien entre les 2 probabilités (règle de Bayes)

$$P(\alpha_j|r) = \frac{P(\alpha_j)P(r|\alpha_j)}{P(r)}$$

2 règles de décision :

1. règle du Maximum A Posteriori (MAP) :

$$\widehat{\alpha}_{\text{MAP}} = \arg \max_{\alpha_i} P(\alpha_i | r)$$

2. règle du Maximum de Vraisemblance (Maximum Likelihood)

$$\widehat{\alpha}_{\mathrm{MV}} = \arg\max_{\alpha_i} P(r|\alpha_i)$$

Si les symboles sont équiprobables, alors $\widehat{\alpha}_{MAP} = \widehat{\alpha}_{MV}$.

1ère étape : cas du canal discret mono-dimensionnel

On considère que pour transmettre le symbole α_j , on émet le scalaire a_j , et le signal reçu est une variable réelle r qui s'écrit sous la forme :

$$r = a + n$$

où $a \in \{a_1, \dots, a_M\}$ est la variable codant le symbole émis, et n est une variable gaussienne $\mathcal{N}(0, \sigma^2)$ représentant le bruit.

Donc $r|a=a_j \sim \mathcal{N}(a_j, \sigma^2)$.

Récepteur ML

On détecte le symbole α_j si $P(r|a=a_j) > P(r|a=a_i) \ \forall i \neq j$:

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(r-a_j)^2} > \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(r-a_i)^2} \quad \forall i \neq j$$

$$\Leftrightarrow (r-a_i)^2 < (r-a_i)^2 \quad \forall i \neq j$$

Interprétation : on choisit le symbole le plus proche (en distance euclidienne) du signal reçu $\it r$.

Récepteur MAP

On détecte le symbole α_j si $P(a=a_j|r)>P(a=a_i|r) \ \forall i\neq j$

$$\begin{array}{cccc} \frac{P(a_j)P(r|a=a_j)}{P(r)} & > & \frac{P(a_i)P(r|a=a_i)}{P(r)} & \forall i \neq j \\ \Leftrightarrow & P(a_j)e^{-\frac{1}{2\sigma^2}(r-a_j)^2} & > & P(a_i)e^{-\frac{1}{2\sigma^2}(r-a_i)^2} & \forall i \neq j \\ \Leftrightarrow & (r-a_j)^2 - 2\sigma^2\ln P(a_j) & < & (r-a_i)^2 - 2\sigma^2\ln P(a_i) & \forall i \neq j \\ \Leftrightarrow & & (r-a_j)^2 & < & (r-a_i)^2 - 2\sigma^2\ln\frac{P(a_i)}{P(a_j)} & \forall i \neq j \end{array}$$

2ème étape : cas discret multidimensionnel

On considère que sur chaque période, on reçoit un vecteur de dimension ${\cal N}$ et non un scalaire. Le modèle précédent devient :

$$\mathbf{r} = \mathbf{a} + \mathbf{n} \tag{1}$$

où $\mathbf{a} \in \{\mathbf{a}_1, \dots, \mathbf{a}_M\}$ représente le symbole émis, et \mathbf{n} est un vecteur gaussien $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_N)$. Donc $\mathbf{r} | \mathbf{a} = \mathbf{a}_j \sim \mathcal{N}(a_j, \sigma^2)$.

Récepteur ML

On détecte le symbole α_j si $P(\mathbf{r}|\mathbf{a}=\mathbf{a}_j)>P(\mathbf{r}|\mathbf{a}=\mathbf{a}_i) \ \forall i\neq j$

$$(2\pi\sigma^2)^{-N/2} e^{-\frac{1}{2\sigma^2} \|\mathbf{r} - \mathbf{a}_j\|^2} > (2\pi\sigma^2)^{-N/2} e^{-\frac{1}{2\sigma^2} \|\mathbf{r} - \mathbf{a}_i\|^2} \quad \forall i \neq j$$

$$\Leftrightarrow \quad \|\mathbf{r} - \mathbf{a}_j\|^2 < \|\mathbf{r} - \mathbf{a}_i\|^2 \quad \forall i \neq j$$

Interprétation : on choisit de nouveau le symbole le plus proche (en distance euclidienne) du signal reçu \mathbf{r} .

Récepteur MAP

On détecte le symbole α_j si $P(\mathbf{a} = \mathbf{a}_j | \mathbf{r}) > P(\mathbf{a} = \mathbf{a}_i | \mathbf{r}) \ \forall i \neq j$

$$\begin{array}{cccc} \frac{P(\mathbf{a}_{j})P(\mathbf{r}|\mathbf{a}=\mathbf{a}_{j})}{P(\mathbf{r})} & > & \frac{P(\mathbf{a}_{i})P(\mathbf{a}|\mathbf{a}=\mathbf{a}_{i})}{P(\mathbf{r})} & \forall i \neq j \\ \Leftrightarrow & P(\mathbf{a}_{j})e^{-\frac{1}{2\sigma^{2}}\|\mathbf{r}-\mathbf{a}_{j}\|^{2}} & > & P(a_{i})e^{-\frac{1}{2\sigma^{2}}\|r-a_{i}\|^{2}} & \forall i \neq j \\ \Leftrightarrow & \|r-\mathbf{a}_{j}\|^{2} - 2\sigma^{2}\ln P(a_{j}) & < & \|\mathbf{r}-\mathbf{a}_{i}\|^{2} - 2\sigma^{2}\ln P(\mathbf{a}_{i}) & \forall i \neq j \\ \Leftrightarrow & & \|r-\mathbf{a}_{j}\|^{2} & < & \|\mathbf{r}-\mathbf{a}_{i}\|^{2} - 2\sigma^{2}\ln \frac{P(\mathbf{a}_{i})}{P(\mathbf{a}_{j})} & \forall i \neq j \end{array}$$

3ème étape : retour au cas continu

Signal continu reçu

$$r(t) = s(t) + n(t) , t \in [0, T_s]$$

où $s(t)=s_j(t)$ pour émettre le symbole α_j , et n(t) est un bruit blanc gaussien de DSP $S_n(f)=\frac{N_0}{2}$.

Méthode

- 1. convertir le signal continu r(t) en un vecteur $\mathbf{r} \in \mathbb{R}^N$, où N est la dimension du signal transmis ;
- 2. estimer le symbole α émis à partir du vecteur ${f r}$.

Hypothèse

On considère dans la suite le cas où les symboles sont équiprobables, et donc $\widehat{\alpha}_{MV}=\widehat{\alpha}_{MAP}.$

Décomposition

Décomposition du signal reçu r(t) sur une base orthonormale de fonctions $\{\Phi_n(t)\}_n$ de $L^2([0;T_s])$:

$$r(t) = \sum_k r_k \Phi_k(t) \text{ avec } r_k = \int_0^{T_s} r(t) \Phi_k(t) dt$$

Les signaux $s_1(t),\ldots,s_M(t)$ (et donc s(t)) se trouvent dans un espace de dimension N. Donc s(t) est engendré par la base $\{\Phi_k(t)\}_{k=1,\ldots,N}$. Les composantes r_k de r(t) dans cette base s'écrivent donc sous la forme :

$$r_k = s_{mk} + n_k$$

avec

$$\begin{array}{rcl} r_k & = & \int_0^{T_s} r(t) \Phi_k(t) dt, & k = 1, \dots, N \\ s_{mk} & = & \int_0^{T_s} s_m(t) \Phi_k(t) dt, & k = 1, \dots, N \\ n_k & = & \int_0^{T_s} n(t) \Phi_k(t) dt, & k = 1, \dots, N \end{array}$$

 $\Rightarrow r(t)$, $s_m(t)$, et n(t) sont représentés respectivement par $\mathbf{r} = [r_1, \dots, r_N]^{\mathrm{T}}$, $\mathbf{s}_m = [s_{m1}, \dots, s_{mN}]^{\mathrm{T}}$, et $\mathbf{n} = [n_1, \dots, n_N]^{\mathrm{T}}$.

Remarque

- les composantes de n(t) dans $\{\Phi_k(t)\}_{k\geq N+1}$ sont inutiles pour la décision.
- les composantes $(r_k)_{k\geq N+1}$ ne contiennent pas d'information sur le signal $s_m(t)$.

la décision peut se faire entièrement à partir de r.

Modèle

On obtient donc le modèle

$$r = s + n$$

avec $\mathbf{s} \in \{\mathbf{s}_1, \dots, \mathbf{s}_M\}$ et $\mathbf{n} \sim \mathcal{N}\left(\mathbf{0}, \frac{N_0}{2} I_N\right)$.

on retombe sur le problème de détection multi-dimensionnel (1).

Modèle

D'après (1), le symbole détecté est celui pour lequel le vecteur \mathbf{s}_m correspondant minimise la distance

$$d(\mathbf{r}, \mathbf{s}_m) = \|\mathbf{r} - \mathbf{s}_m\|^2 = \langle \mathbf{r} - \mathbf{s}_m, \mathbf{r} - \mathbf{s}_m \rangle_{\mathbb{R}^N}$$

ce qui équivaut à maximiser la fonction

$$2\langle \mathbf{r}, \mathbf{s}_m \rangle_{\mathbb{R}^N} - \|\mathbf{s}_m\|^2$$

Or, on a:

$$\langle \mathbf{r}, \mathbf{s}_m \rangle_{\mathbb{R}^N} = \langle r, s \rangle_{L^2([0, T_s])} = \int_0^{T_s} r(t) s_m(t) dt$$

et

$$\langle \mathbf{s}_m, \mathbf{s}_m \rangle_{\mathbb{R}^N} = \langle s_m, s_m \rangle_{L^2([0, T_s])} = \int_0^{T_s} |s_m(t)|^2 dt = \mathcal{E}_m$$

où \mathcal{E}_m est l'énergie du signal s_m sur $[0,T_s]$.

Bilan

Le symbole α_m détecté est celui pour lequel le signal associé $s_m(t)$ maximise

$$\rho_m = 2 \int_0^{T_s} r(t) s_m(t) dt - \mathcal{E}_m , m = 1, \dots, M$$

Modulation à énergie constante

Si tous les signaux ont la même énergie, le symbole α_m détecté est celui pour lequel le signal associé $s_m(t)$ maximise

$$\int_0^{T_s} r(t)s_m(t)dt , m = 1, \dots, M$$

Interprétation

 $\int_0^{T_s} r(t) s_m(t) dt$ est la **corrélation** entre les signaux r(t) et $s_m(t)$ sur la période symbole.

resoluire le symbole détecté est donc celui pour lequel le signal reçu r(t) ressemble le plus au signal émis $s_m(t)$ sur la période symbole.

Schéma de la détection par corrélation

Interprétation en termes de filtrage

Filtre adapté

Si on pose:

$$h_m(t) = \left\{ \begin{array}{ll} s_m(T_s - t) & , \ t \in [0, T_s] \\ 0 & , \ \mathrm{sinon} \end{array} \right.$$

Alors on a:

$$\int_0^T r(t)s_m(t)dt = \int_{\mathbb{R}} r(t)h_m(T_s - t)dt = r * h_m(T_s)$$

Ainsi on peut voir le terme de corrélation $\int_0^{T_s} r(t) s_m(t) dt$ comme la sortie échantillonnée à l'instant T_s du filtre de réponse impulsionnelle $h_m(t)$, d'entrée r(t).

Ce filtre est appelé **filtre adapté** au signal de mise en forme $s_m(t)$.

Schéma de la détection par filtrage adapté

Cas particulier: modulations PAM

Signaux émis

Pour les modulations Pulse Amplitude Modulation, on a :

$$s_m(t) = a_m h(t) , m = 1, \dots, M$$

Donc

$$\rho_m = 2a_m \int_0^{T_s} r(t)h(t)dt - a_m^2 \mathcal{E}_h = 2a_m \rho - a_m^2 \mathcal{E}_h$$

avec
$$\mathcal{E}_h = \int_0^{T_s} h^2(t) dt$$
 et $\rho = \int_0^{T_s} r(t) h(t) dt$.

Détection

On détecte le symbole α_j si $\rho_j > \rho_i$, $\forall i \neq j$.

$$\Leftrightarrow 2a_{j}\rho - a_{j}^{2}\mathcal{E}_{h} > 2a_{i}\rho - a_{i}^{2}\mathcal{E}_{h}$$

$$\Leftrightarrow 2(a_{j} - a_{i})\rho > (a_{j} - a_{i})^{2}\mathcal{E}_{h}$$

$$\Leftrightarrow \begin{cases} \rho > \mathcal{E}_{h} \frac{a_{j} + a_{i}}{2} & \text{si } a_{j} > a_{i} \\ \rho < \mathcal{E}_{h} \frac{a_{j} + a_{i}}{2} & \text{si } a_{j} < a_{i} \end{cases}$$

Filtrage unique

On peut écrire :

$$\rho = r * h_r(T_s)$$

où $h_r(t)=h(T_s-t)$ est le filtre de réception adapté à l'unique filtre d'émission h(t).

 \blacksquare on fait ainsi passer le signal reçu r(t) à travers **un seul filtre** \blacksquare on compare la sortie de ce filtre calculée à l'instant T_s aux seuils

$$\lambda_i = \mathcal{E}_h \frac{a_i + a_{i+1}}{2}$$

Seuillage

Si les amplitudes a_i sont rangées par ordre croissant, on a donc :

$$\widehat{\alpha}_{\text{MV}} = \begin{cases} \alpha_1 & \text{si } \rho < \lambda_1 \\ \alpha_j & \text{si } \rho \in]\lambda_{j-1}; \lambda_j[\\ \alpha_M & \text{si } \rho > \lambda_{M-1} \end{cases}$$

Schéma de la détection par filtrage adapté pour PAM

Maximisation du rapport signal sur bruit en sortie pour modulation PAM

Filtrage du signal reçu

Soit $h_r(t)$ le filtre de réception. On obtient en sortie du filtre :

$$z(t) = r * h_r(t)$$

avec

$$r(t) = \sum_{k} a_k h_e(t - kT_s) + n(t)$$

où $h_e(t)=h*h_c(t)$ est le filtre équivalent au filtre de mise en forme h(t) et au filtre canal $h_c(t)$. Si on échantillonne à l'instant $t=t_0+mT_s$, on obtient la variable

$$z_m = z(t0 + mT_s) = \sum_k a_k h_r * h_e(t_0 + (m - k)T_s) + h_r * n(t0 + mT_s)$$

Soit $g=h_r*h_e.$ Si g vérifie le critère de Nyquist, alors z_m s'écrit sous la forme

$$z_m = a_m g(t_0) + w_m$$

où $w_m = h_r * n(t0 + mT_s)$, représentant le bruit, est une variable $\mathcal{N}(0, \sigma^2)$. Le rapport signal-sur-bruit est alors :

$$SNR = \frac{a_m^2 |g(t_0)|^2}{\sigma^2}$$

Problème

Déterminer le filtre $h_c(t)$ en fonction de $h_e(t)$ qui maximise ${\rm SNR}$ (pour a_m fixé).

Passage par le domaine fréquentiel

On a : $g(t_0) = \mathrm{TF}^{-1}(G)(t_0)$, où $G(f) = H_c(f)H_e(f)$. D'autre part, $\sigma^2 = \int_{\mathbb{R}} S_w(f)df$, avec $S_w(f) = |H_c(f)|^2 S_n(f) = |H_c(f)|^2 \frac{N_0}{2}$. Donc :

$$SNR = \frac{a_m^2 |\int_{\mathbb{R}} H_c(f) H_e(f) e^{2j\pi f t_0} df|^2}{\int_{\mathbb{R}} |H_c(f)|^2 \frac{N_0}{2} df}$$

Maximisation par rapport à $H_c(f)$

Par l'inégalité de Cauchy-Schwarz, on a

$$SNR \le \frac{a_m^2 \left(\int_{\mathbb{R}} |H_c(f)|^2 df \right) \left(\int_{\mathbb{R}} |H_e(f)e^{2j\pi f t_0}|^2 df \right)}{\frac{N_0}{2} \int_{\mathbb{R}} |H_c(f)|^2 df}$$

avec égalité si et seulement si il existe $\mu \in \mathbb{C}$ tel que

$$H_c(f) = \mu \overline{H_e(f)} e^{2j\pi f t_0}$$

Conclusion

SNR est donc maximisé pour

$$h_c(t) = \mu \overline{h_e(t_0 - t)}$$

et on a

$$SNR_{max} = \frac{2a_m^2 \mathcal{E}_{h_e}}{N_0} = \frac{2\mathcal{E}_m}{N_0}$$

avec $\mathcal{E}_{h_e}=\int_{\mathbb{R}}|h_e(t)|^2dt=\int_{\mathbb{R}}|H_e(f)|^2df$, et $\mathcal{E}_m=a_m^2\mathcal{E}_{h_e}$ est l'énergie reçue pour le symbole α_m .

Remarque

Si le canal est gaussien ($h_c = \delta$), on a $\mathcal{E}_m = a_m^2 \mathcal{E}_h$, qui est l'énergie **émise** pour le symbole α_m .

Conclusion générale

Conclusion générale

- sur un canal gaussien, et sans interférence inter-symbole, détecter de façon optimale les symboles émis revient à maximiser le rapport signal-sur-bruit, donc à filtrer le maximum de bruit ;
- résultat intuitif puisque le bruit est alors la seule source de perturbation aléatoire :
- conclusion non valable en présence d'autres perturbations aléatoires (interférences inter-symbole, interférences multi-utilisateurs, présence d'autres types de bruit,...).