732A97 Multivariate Statistics Lab 1

Raymond Sseguya 2019-11-19

Question 1: Describing individual variables

Consider the data set in the T1-9.dat file, National track records for women. For 55 different countries we have the national records for 7 variables (100, 200, 400, 800, 1500, 3000m and marathon). Use R to do the following analyses.

input

```
trackrcs <- read.table("T1-9.dat")
colnames(trackrcs) <- c("countries", "x100m", "x200m", "x400m", "x800m", "x1500m", "x3000m", "marathon"
trackrcs2 <- (trackrcs)[,-1]
rownames(trackrcs2) <- trackrcs[,1]</pre>
```

a) Describe the 7 variables with mean values, standard deviations e.t.c

mean values

##

##

x100m

marathon ## 16.43989508 x200m

```
colMeans((trackrcs)[,-1])
##
        x100m
                   x200m
                               x400m
                                          x800m
                                                     x1500m
                                                                x3000m
##
    11.357778
               23.118519 51.989074
                                       2.022407
                                                   4.189444
                                                              9.080741
    marathon
## 153.619259
median
apply((trackrcs)[,-1], 2, median)
##
      x100m
               x200m
                         x400m
                                  x800m
                                          x1500m
                                                    x3000m marathon
     11.325
              22.980
                        51.645
                                  2.005
                                           4.100
                                                     8.845 148.430
standard deviation
apply((trackrcs)[,-1], 2, sd)
```

x800m

x1500m

x3000m

x400m

maximum

21.34

```
apply((trackrcs)[,-1], 2, max)
##
      x100m
               x200m
                         x400m
                                  x800m
                                           x1500m
                                                    x3000m marathon
                                             5.42
##
      12.52
               25.91
                         61.65
                                   2.29
                                                     13.12
                                                              221.14
minimum
apply((trackrcs)[,-1], 2, min)
##
      x100m
               x200m
                         x400m
                                  x800m
                                           x1500m
                                                    x3000m marathon
##
      10.49
                         47.60
                                                              135.25
```

b) Illustrate the variables with different graphs (explore what plotting possibilities R has). Make sure that the graphs look attractive (it is absolutely necessary to look at the labels, font sizes, point types). Are there any apparent extreme values? Do the variables seem normally distributed? Plot the best fitting (match the mean and standard deviation, i.e. method of moments) Gaussian density curve on the datas histogram. For the last part you may be interested in the hist() and density() functions.

3.84

8.10

1.89

Question 2: Relationships between the variables

a) Compute the covariance and correlation matrices for the 7 variables. Is there any apparent structure in them? Save these matrices for future use.

```
cov_m <- cov((trackrcs)[,-1])</pre>
corr_m <- cor((trackrcs)[,-1])</pre>
cov m
                         x200m
                                   x400m
                                              x800m
                                                        x1500m
##
               x100m
## x100m
          0.15531572  0.3445608  0.8912960  0.027703564  0.08389119
## x200m
          0.34456080
                     0.8630883 2.1928363 0.066165898 0.20276331
           0.89129602
                     2.1928363 6.7454576 0.181807932 0.50917683
## x400m
## x800m
          ## x1500m
          ## x3000m
           ## marathon 4.33417757 10.3849876 28.9037314 1.219654647 3.53983732
##
               x3000m
                       marathon
## x100m
           0.23388281
                       4.334178
## x200m
           0.55435017
                      10.384988
## x400m
           1.42681579
                      28.903731
## x800m
           0.06137932
                       1.219655
## x1500m
           0.21615514
                       3.539837
           0.66475793 10.706091
## x3000m
## marathon 10.70609113 270.270150
corr_m
##
              x100m
                       x200m
                                 x400m
                                          x800m
                                                  x1500m
                                                           x3000m
           1.0000000 0.9410886 0.8707802 0.8091758 0.7815510 0.7278784
## x100m
## x200m
           0.9410886 1.0000000 0.9088096 0.8198258 0.8013282 0.7318546
## x400m
          0.8707802 0.9088096 1.0000000 0.8057904 0.7197996 0.6737991
## x800m
          0.8091758 0.8198258 0.8057904 1.0000000 0.9050509 0.8665732
           0.7815510 0.8013282 0.7197996 0.9050509 1.0000000 0.9733801
## x1500m
## x3000m
           0.7278784 0.7318546 0.6737991 0.8665732 0.9733801 1.0000000
## marathon 0.6689597 0.6799537 0.6769384 0.8539900 0.7905565 0.7987302
##
           marathon
## x100m
           0.6689597
## x200m
          0.6799537
## x400m
          0.6769384
## x800m
          0.8539900
## x1500m
           0.7905565
## x3000m
           0.7987302
## marathon 1.0000000
```

Both matrices are symmetric. The correlation matrix has ones on the main diagonal.

b) Generate and study the scatterplots between each pair of variables. Any extreme values?

```
pairs(trackrcs[,-1], pch = ".", cex = 1.5, panel = function(x, y, ...){
    points(x, y, ...)
    abline(lm(y ~ x), col = "grey") })
```


The scatterplot matrix tells us that "marathon" is quite an outlier.

c) Explore what other plotting possibilities R offers for multivariate data. Present other (at least two) graphs that you find interesting with respect to this data set.

stars plot

```
stars(trackrcs[,-1], cex = 0.55)
```


A stars plot is not very useful. We can tell from literature that it is also outdated.

heatmaps

heatmap(x=as.matrix(trackrcs2))

Question 3: Examining for extreme values

a) Look at the plots (esp. scatterplots) generated in the previous question. Which 3-4 countries appear most extreme? Why do you consider them extreme?

The 3 countries that seem most extreme are Brazil, Russia and the United States.

b) Compute the squared Euclidean distance (i.e. r=2) of the observation from the sample mean for all 55 countries using R's matrix operations. First center the raw data by the means to get (x arrow - x bar) for each country. Then do a calculation with matrices that will result in a matrix that has on its diagonal the requested squared distance for each country. Copy this diagonal to a vector and report on the five most extreme countries. In this questions you MAY NOT use any loops.

```
x_bar = apply(trackrcs2,1,mean)
d0 = as.matrix(trackrcs2-x_bar)
deviation = sqrt(d0%*%t(d0))
diagonal_vector <- diag(deviation)
deviation_countries <-
    cbind.data.frame(countries = as.vector(trackrcs[,1]),diagonal_vector)
deviation_countries_ordered <-
    deviation_countries[order(-deviation_countries$diagonal_vector),]

deviation_countries_ordered[1:5,]</pre>
```

```
countries diagonal_vector
##
## PNG
             PNG
                        193.0557
## COK
             COK
                         185.0669
## SAM
             SAM
                         165.7015
## BER
             BER
                         151.3534
## GUA
             GUA
                         148.7706
```

The five most extreme countries are PNG, COK, SAM, BER, GUA.