PROBLEMAS VIERNES 18 DE OCTUBRE

Jorge Andrés Silva Serrano Jeyss Código: 2160411

Jeysson Guillermo González Rondon Código: 2210704

October 18, 2024

1 PROBLEMA 1

1.1 Definicion del sistema

Tenemos dos masas, m1 y m2, conectadas por tres resortes con constantes k y 3k, de tal que el resorte de constante 3k conecta a las dos masas (está entre ellas). Las masas están conectadas a otros dos resortes de constante k en los extremos, uno a cada masa. Consideramos pequeñas oscilaciones alrededor de las posiciones de equilibrio, lo que nos permite usar las ecuaciones de movimiento linealizadas.

1.2 Coordenadas empleadas

Definimos las desviaciones de las masas m1 y m2 respecto a sus posiciones de equilibrio como x1 y x2, respectivamente. Para este sistema, las ecuaciones de movimiento se pueden obtener usando la segunda ley de Newton o el formalismo de Lagrange.

1.3 Ecuaciones de movimiento

El sistema está acoplado, por lo que cada ecuación de movimiento involucra las coordenadas x1 y x2. Las ecuaciones de movimiento para las dos masas se pueden escribir como:

$$m\ddot{x}_1 = -kx_1 + 3k(x_2 - x_1)$$

$$m\ddot{x}_2 = -kx_2 + 3k(x_1 - x_2)$$

1.4 Solucion simple, o pequeñas oscilaciones

Para resolver este sistema, asumimos soluciones de la forma:

$$X_1 = A_1 e^{i\omega t}$$

$$X_2 = A_2 e^{i\omega t}$$

Donde A son las amplitudes de las oscilaciones y es la frecuencia angular de las oscilaciones. Sustituyendo estas soluciones en las ecuaciones de movimiento, obtenemos el sistema de ecuaciones:

$$\begin{pmatrix} 4k & -3k \\ -3k & 4k \end{pmatrix} = m\omega^2 \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

Este es un problema típico de autovalores y autovectores. Las soluciones para se obtienen resolviendo el determinante de la matriz:

$$\det\left(\begin{pmatrix} 4k & -3k \\ -3k & 4k \end{pmatrix} - m\omega^2 I\right) = 0$$

Resolviendo el determinante tenemos que:

$$4k - m\omega^2 = 3k$$

1.5 Frecuencias

Resolviendo para, obtenemos dos soluciones:

$$\omega_1 = \sqrt{\frac{k}{m}}$$

$$\omega_2 = \sqrt{\frac{7k}{m}}$$

1.6 Modos Normales de Oscilacion

Para ω_1 el sistema de ecuaciones nos da las relaciones de amplitud entre A1 y A2. Se obtiene que A1=A2, lo que corresponde a un modo en el que ambas masas oscilan en fase.

Para ω_2 obtenemos A1 = -A2 , lo que corresponde a un modo en el que las masas oscilan en oposición de fase.

Problema 2

Paso 1: Definición de las coordenadas del sistema

Se definieron x_1 y x_2 como las desviaciones transversales de las masas m respecto a sus posiciones de equilibrio, de la siguiente manera:

- x_1 : desplazamiento de la primera masa m.
- x_2 : desplazamiento de la segunda masa m.

Paso 2: Identificación de las fuerzas

Dado que todas las constantes de los resortes eran iguales a k, se determinaron las fuerzas restauradoras sobre cada masa:

Para la masa 1:

$$F_1 = -kx_1 + k(x_2 - x_1) = -2kx_1 + kx_2$$

Para la masa 2:

$$F_2 = -k(x_2 - x_1) - kx_2 = kx_1 - 2kx_2$$

Paso 3: Ecuaciones de movimiento

Utilizando la ecuación $F=m\ddot{x}$, se obtuvieron las ecuaciones de movimiento para cada masa:

Para x_1 :

$$m\ddot{x}_1 = -2kx_1 + kx_2 \implies \ddot{x}_1 = -\frac{2k}{m}x_1 + \frac{k}{m}x_2$$

Para x_2 :

$$m\ddot{x}_2 = kx_1 - 2kx_2 \implies \ddot{x}_2 = \frac{k}{m}x_1 - \frac{2k}{m}x_2$$

Paso 4: Forma matricial

Estas ecuaciones se expresaron en forma matricial:

$$\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = \begin{pmatrix} -\frac{2k}{m} & \frac{k}{m} \\ \frac{k}{m} & -\frac{2k}{m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Se definió $\omega_0^2 = \frac{k}{m}$ para simplificar la notación:

$$\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = \omega_0^2 \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Paso 5: Propuesta de solución

Se propusieron soluciones del tipo $x_1 = A_1 \cos(\omega t)$ y $x_2 = A_2 \cos(\omega t)$, con lo cual se obtuvo:

$$-\omega^2 \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \omega_0^2 \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

Paso 6: Cálculo de autovalores y autovectores

Para encontrar las frecuencias, se resolvió el determinante

$$\det\left(\begin{pmatrix} -2\omega_0^2 + \omega^2 & \omega_0^2\\ \omega_0^2 & -2\omega_0^2 + \omega^2 \end{pmatrix}\right) = 0$$
$$(\omega^2 - \omega_0^2)(\omega^2 - 3\omega_0^2) = 0$$

Las soluciones fueron:

$$\omega_1 = \omega_0 \quad \text{y} \quad \omega_2 = \sqrt{3}\,\omega_0$$

Paso 7: Determinación de los autovectores

Para cada frecuencia, se encontraron los autovectores:

Para $\omega_1 = \omega_0$:

$$\begin{pmatrix} -\omega_0^2 & \omega_0^2 \\ \omega_0^2 & -\omega_0^2 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = 0 \implies A_1 = A_2$$

Para $\omega_2 = \sqrt{3}\,\omega_0$:

$$\begin{pmatrix} \omega_0^2 & \omega_0^2 \\ \omega_0^2 & \omega_0^2 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = 0 \implies A_1 = -A_2$$

Paso 8: Resumen de soluciones

Se encontraron las siguientes frecuencias de los modos normales:

•
$$\omega_1 = \omega_0 = \sqrt{\frac{k}{m}}$$

•
$$\omega_2 = \sqrt{3}\,\omega_0 = \sqrt{\frac{3k}{m}}$$

Las configuraciones de los modos normales fueron:

- Modo 1: Las masas oscilaron en fase $(A_1 = A_2)$.
- Modo 2: Las masas oscilaron en oposición de fase $(A_1 = -A_2)$.

Problema 2

Paso 1: Definición de las coordenadas generalizadas

Se definieron η_1 y η_2 como las perturbaciones de las masas m respecto a sus posiciones de equilibrio:

$$\eta_1 = x_1 - x_1^0, \quad \eta_2 = x_2 - x_2^0$$

donde x_1^0 y x_2^0 representan las posiciones de equilibrio de las masas, tales que $x_2^0 - x_1^0 = l$.

Paso 2: Cálculo del potencial efectivo

El potencial total del sistema incluye la energía potencial de los resortes y la energía potencial debida a la repulsión electrostática. Se tiene:

$$V_{\rm el} = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k(\eta_2 - \eta_1)^2 + \frac{1}{2}k\eta_2^2$$

Expandiendo y simplificando:

$$V_{\text{el}} = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k(\eta_2^2 - 2\eta_1\eta_2 + \eta_1^2) + \frac{1}{2}k\eta_2^2$$
$$V_{\text{el}} = k\eta_1^2 + k\eta_2^2 - k\eta_1\eta_2$$

Para la energía potencial electrostática:

$$V_{\rm e} = \frac{k_e q^2}{l + \eta_2 - \eta_1}$$

Expandiendo en serie de Taylor y considerando solo el término cuadrático:

$$V_{\rm e} \approx \frac{k_e q^2}{2l^3} (\eta_2 - \eta_1)^2 = \frac{k_e q^2}{2l^3} (\eta_2^2 - 2\eta_1 \eta_2 + \eta_1^2)$$

Sumando $V_{\rm el}$ y $V_{\rm e}$, se obtiene el potencial total:

$$V = k\eta_1^2 + k\eta_2^2 - k\eta_1\eta_2 + \frac{k_e q^2}{2l^3}(\eta_2^2 - 2\eta_1\eta_2 + \eta_1^2)$$
$$V = \left(k + \frac{k_e q^2}{2l^3}\right)\eta_1^2 + \left(k + \frac{k_e q^2}{2l^3}\right)\eta_2^2 - \left(k + \frac{k_e q^2}{l^3}\right)\eta_1\eta_2$$

Paso 3: Matriz de fuerzas restauradoras V_{ij}

La matriz de fuerzas restauradoras V_{ij} se obtiene derivando V:

$$V_{11} = \frac{\partial^2 V}{\partial \eta_1^2} = 2\left(k + \frac{k_e q^2}{2l^3}\right) = 2k + \frac{k_e q^2}{l^3}$$

$$V_{22} = \frac{\partial^2 V}{\partial \eta_2^2} = 2\left(k + \frac{k_e q^2}{2l^3}\right) = 2k + \frac{k_e q^2}{l^3}$$

$$V_{12} = V_{21} = -\frac{\partial^2 V}{\partial \eta_1 \partial \eta_2} = -\left(k + \frac{k_e q^2}{l^3}\right)$$

La matriz V resultante es:

$$V = \begin{pmatrix} 2k + \frac{k_e q^2}{l^3} & -\left(k + \frac{k_e q^2}{l^3}\right) \\ -\left(k + \frac{k_e q^2}{l^3}\right) & 2k + \frac{k_e q^2}{l^3} \end{pmatrix}$$

Paso 4: Matriz de masas

La matriz de masas T es:

$$T = m \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Paso 5: Ecuación característica para las frecuencias de los modos normales

La ecuación característica se forma a partir de:

$$\det\left(V - \omega^2 T\right) = 0$$

Sustituyendo V y T:

$$\det \left(\begin{pmatrix} 2k + \frac{k_e q^2}{l^3} - m\omega^2 & -\left(k + \frac{k_e q^2}{l^3}\right) \\ -\left(k + \frac{k_e q^2}{l^3}\right) & 2k + \frac{k_e q^2}{l^3} - m\omega^2 \end{pmatrix} \right) = 0$$

Calculando el determinante:

$$\left(2k + \frac{k_e q^2}{l^3} - m\omega^2\right)^2 - \left(k + \frac{k_e q^2}{l^3}\right)^2 = 0$$

Expandiendo y simplificando:

$$\left[\omega^2 - \left(\frac{k}{m} + \frac{3k_e q^2}{ml^3}\right)\right] \left[\omega^2 - \left(\frac{3k}{m} + \frac{k_e q^2}{ml^3}\right)\right] = 0$$

Paso 6: Solución para las frecuencias de los modos normales

Las soluciones para ω^2 son:

$$\omega_1^2 = \frac{k}{m} + \frac{3k_e q^2}{ml^3}, \quad \omega_2^2 = \frac{3k}{m} + \frac{k_e q^2}{ml^3}$$

Paso 7: Configuraciones de los modos normales

Para encontrar las configuraciones, se resuelven las ecuaciones para cada frecuencia:

Para ω_1 :

$$\left(2k + \frac{k_e q^2}{l^3} - m\omega_1^2\right)\eta_1 - \left(k + \frac{k_e q^2}{l^3}\right)\eta_2 = 0$$

 $\Rightarrow \eta_1 = \eta_2 \implies$ Las masas oscilan en fase.

Para ω_2 :

$$\left(2k + \frac{k_e q^2}{l^3} - m\omega_2^2\right)\eta_1 - \left(k + \frac{k_e q^2}{l^3}\right)\eta_2 = 0$$

 $\Rightarrow \eta_1 = -\eta_2 \implies$ Las masas oscilan en oposición de fase.

Paso 8: Resumen de las soluciones

Las frecuencias de los modos normales fueron:

$$\bullet \ \omega_1 = \sqrt{\frac{k}{m} + \frac{3k_e q^2}{ml^3}}$$

$$\bullet \ \omega_2 = \sqrt{\frac{3k}{m} + \frac{k_e q^2}{ml^3}}$$

Las configuraciones de los modos normales fueron:

- Modo 1: Las masas oscilaron en fase $(\eta_1 = \eta_2)$.
- Modo 2: Las masas oscilaron en oposición de fase $(\eta_1 = -\eta_2)$.