Doğrusal Regresyon ve Kuzenleri

by Sefa Isci

Doğrusal Regresyon ve Kuzealeri

- Basit Doğrusal Regresyon
- Çoklu Doğrusal Regresyon
- Temel Bileşen Regresyonu
- Kısmı En Küçük Kareler Regresyonu

Ridge Regresyon

- Lasso Regresyon
- Elastic Net Regresyonu
- Her Model İçin:
 - Model
 - Tahmin
 - Model Optimizasyonu

Basit Doğrusal Regresyon

Temel amaç, bağımlı ve bağımsız değişken arasındaki ilişkiyi ifade eden doğrusal fonksiyonu bulmaktır.

Basit Doğrusal Regresyon

Anakitle teorik gösterim: $Y = \beta_O + \beta_1 X + \varepsilon$

Örneklem gerçek değerler: $y_i = b_0 + b_1 x_i + e_i$

Tahmin modeli: $\widehat{y}_i = b_0 + b_1 x_i$

 β_0 = Doğrunun y eksenini kestiği nokta

 β_1 = Doğrunun eğimi

 ε = Hata terimi

Basit Doğrusal Regresyon

Örneklem teorik gösterim:

$$y_i = b_0 + b_1 x_i + e_i$$

Tahmin modeli:

$$\widehat{y_i} = b_0 + b_1 x_i$$

Hatalar/artıklar:

$$e_i = y_i - \widehat{y}_i$$

$$e_i = y_i - b_0 + b_1 x_i$$

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Basit Doğrusal Regresyon

$$SSE = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$
 Bağımsız değişkenin ortalaması

Bağımlı değişkenin ortalaması

Basit Doğrusal Regresyon Geometrik Gösterim

Tahmin fonksiyonu ve tahmin edilen değerler

Basit Doğrusal Regresyon Geometrik Gösterim

 $y_i = b_0 + b_1 x_i + e_i$ Gerçek y değerleri

Tahmin fonksiyonu ve tahmin edilen değerler

Basit Doğrusal Regresyon Geometrik Gösterim

Çoklu Doğrusal Regresyon

Temel amaç, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi ifade eden doğrusal fonksiyonu bulmaktır.

Çoklu Doğrusal Regresyon

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_j X_{ij} + \dots + \beta_p X_{ip} + \varepsilon_i$$

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{\beta} = (X^T.X)^{-1}X^T.Y$$

Çoklu Doğrusal Regresyon

```
call:
lm(formula = Sales ~ TV + Radio, data = caseStudyData)
Residuals:
    Min
            10 Median
                            3Q
                                   Max
-8.7977 -0.8752 0.2422 1.1708 2.8328
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.92110
                       0.29449 9.919
                                       <2e-16 ***
            0.04575
                       0.00139 32.909
                                        <2e-16 ***
TV
                       0.00804 23.382
Radio
            0.18799
                                        <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.681 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

Doğrusal Regresyonun Varsayımları

Çoklu Doğrusal Regresyon

- Hatalar normal dağılır.
- Hatalar birbirinden bağımsızdır ve aralarında otokorelasyon yoktur.
- Her bir gözlem için hata terimleri varyansları sabittir.
- Değişkenler ile hata terimi arasında ilişki yoktur.
- Bağımsız değişkenler arasında çoklu doğrusal ilişki problemi yoktur.

Regresyon Modellerinin Avantaj ve Dezavantajları

Çoklu Doğrusal Regresyon

✓ İyi anlaşılırsa diğer tüm ML ve DL konuları çok rahat kavranır.

- ✓ Doğrusallık nedensellik yorumları yapılabilmesini sağlar, bu durum aksiyoner ve stratejik modelleme imkanı verir.
- ✓ Değişkenlerin etki düzeyleri ve anlamlılıkları değerlendirilebilir.
- ✓ Bağımlı değişkendeki değişkenliğin açıklanma başarısı ölçülebilir.
- ✓ Model anlamlılığı değerlendirilebilir.
- Varsayımları vardır.
- Aykırı gözlemlere duyarlıdır.

PCR – Temel Bileşen Regresyonu

Değişkenlere boyut indirgeme uygulandıktan sonra çıkan bileşenlere regresyon modeli kurulması fikrine dayanır.

(Massy 1965)

PCR -Temel Bileşen Regresyonu

Multiple linear regression $X \xrightarrow{\text{MLR}} y$

PLS - Kısmi En Küçük Kareler Regresyonu

Değişkenlerin daha az sayıda ve aralarında çoklu doğ. bağlantı problemi olmayan bileşenlere indirgenip regresyon modeli kurulması fikrine dayanır.

Herman Wold (1966, 1982)

PLS - Kısmi En Küçük Kareler Regresyonu

PLS - Kısmi En Küçük Kareler Regresyonu

- Çok boyutluluk laneti p > n
- Çoklu doğrusal bağlantı problemi
- PLS de PCR gibi bağımsız değişkenlerin doğrusal kombinasyonlarını bulur. Bu doğrusal kombinasyonlar bileşen ya da latent değişken olarak adlandırılır.
- PLS NIPALS'in özel bir halidir, iteratif olarak bağımlı değişken ile yüksek korelasyona sahip değişenler arasındaki gizil (latent) ilişkiyi bulmaya çalışır.

PCR vs PLS

- PCR'da doğrusal kombinasyonlar yani bileşenler bağımsız değişken uzağındaki değişkenliği maksimum şekilde özetleyecek şekilde oluşturulur.
- Bu durum bağımlı değişkeni açıklama yeteneği olmamasına sebep olmakta.
- PLS'te ise bileşenler bağımlı değişken ile olan kovaryansı maksimum şekilde özetleyecek şekilde oluşturulur.
- Değişkenler atılmak istenmiyorsa ve açıklanabilirlik aranıyorsa: PLS
- PLS, gözetimli boyut indirgeme prosedürü, PCR gözetimsiz boyut indirgeme prosedürü olarak görülebilir.
- İki yönteminde bir tunning parametresi vardır o da bileşen sayısıdır.
- Optimum bileşen sayısını belirlemek için CV yöntemi kullanılır.

Ridge Regresyon

Amaç hata kareler toplamını minimize eden katsayıları bu katsayılara bir ceza uygulayarak bulmaktır

Hoerl & Kennard 1970

Ridge Regresyon

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Ridge Regresyon

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

$$SSE_{L_2} = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2 + \lambda \sum_{j=1}^{P} \beta_j^2$$
Ayar Parametresi Lambda

Ceza Terimi

Ridge Regresyon

- Aşırı öğrenmeye karşı dirençli.
- Yanlıdır fakat varyansı düşüktür. (Bazen yanlı modelleri daha çok tercih ederiz.)
- Çok fazla paremetre olduğunda EKK'ya göre daha iyidir.
- Çok boyutluluk lanetine karşı çözüm sunar.
- Çoklu doğrusal bağlantı problemi olduğunda etkilidir.
- Tüm değişkenler ile model kurar. İlgisiz değişkenleri modelden çıkarmaz, katsayılarını sıfıra yaklaştırır.
- λ kritik roldedir. İki terimin (formüldeki) göreceli etkilerini kontrol etmeyi sağlar.
- λ için iyi bir değer bulunması Ökemlidir. Bunun için CV yöntemi kullanılır.

Lasso Regresyon

Amaç hata kareler toplamını minimize eden katsayıları bu katsayılara bir ceza uygulayarak bulmaktır

Tibshirani 1996

Lasso Regresyon

$$SSE_{L_1} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{P} |\beta_j|$$
Ayar Parametresi Lambda Ceza Terimi

Lasso Regresyon

- Ridge regresyonun ilgili-ilgisiz tüm değişkenleri modelde bırakma dezavantajını gidermek için önerilmiştir.
- Lasso'da katsayıları sıfıra yaklaştırır.
- Fakat L1 normu λ yeteri kadar büyük olduğunda bazı katsayıları sıfır yapar. Böylece değişken seçimi yapmış olur.
- λ'nın doğru seçilmesi çok önemlidir, burada da CV kullanılır.
- Ridge ve Lasso yöntemleri birbirinden üstün değildir.

λ Ayar Parametresinin Belirlenmesi

Lasso Regresyon

- λ'nın sıfır olduğu yer EKK'dır. HKT'yi minimum yapan λ'yı arıyoruz
- λ için belirli değerleri içeren bir küme seçilir ve her birisi için cross validation test hatası hesaplanır.
- En küçük cross validation'ı veren λ ayar parametresi olarak seçilir.
- Son olarak seçilen bu λ ile model yeniden tüm gözlemlere fit edilir.

ElasticNet Regresyonu

Amaç hata kareler toplamını minimize eden katsayıları bu katsayılara bir ceza uygulayarak bulmaktır. ElasticNet L1 ve L2 yaklaşımlarını birleştirir.

Zou & Hastie 2005

ElasticNet Regresyonu

$$SSE_{Enet} = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda_1 \sum_{j=1}^{P} \beta_j^2 + \lambda_2 \sum_{j=1}^{P} |\beta_j|$$

ElasticNet Regresyonu

L2 ve L1 Ayar Parametleri

$$SSE_{Enet} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 \sum_{j=1}^{P} \beta_j^2 + \lambda_2 \sum_{j=1}^{P} |\beta_j|$$

