Introduction to ML (CS771), 2024-2025-Sem-I		Total Mark	s 25	
Quiz 2. September 7, 2024		Duration	45 minutes	
Nar	me	Roll No.	'	
Instr	ructions:	L		
2. 3. Ques	Clearly write your name (in block letters) and roll number Write your final answers concisely in the provided space. We won't be able to provide clarifications during the quappears ambiguous/unclear to you, please state your assuration 1: Write T or F for True/False in the box next to easentences at most) explanation in the provided space in the	You may use niz. If any aspectation(s) and character the character of the	blue/black pen. bect of some question I answer accordingly. iven below, with a brief	
be awarded only when the answer (T/F) and explanation <u>both</u> are correct. (3 x 2 = 6 marks)				
1.1	In any iteration $t = 1,2,,T$ of gradient descent (G gradient expression is more highly influenced by those twhich the current $\mathbf{w}^{(t)}$ has a small error (i.e., difference by	raining exam	ples (x_n, y_n) on	
1.2	The absolute value loss function $ y_n - \mathbf{w}^{T} \mathbf{x}_n $ for linear rusing first-order optimality to get a closed form solution			
1.3	The Perceptron loss function defined as $\max\{0, -y_n w\}$ the Hinge loss function defined as $\max\{0, 1 - y_n w^{T} x_n\}$			
Question 2: Answer the following questions concisely in the space provided below the question.				
2.1	Mention two advantages of Newton's method for opt descent, and also one disadvantage of the former. (4 max		compared to gradient	

2.2	Given the confusion matrix for the test data in a multi-class classification problem, can you compute the accuracy? If yes, how? If not, why not? (3 marks)		
	compute the accuracy: If yes, now: If not, why not: (5 marks)		
2.3	The soft-margin SVM problem for binary classification minimizes the following loss function: $ \frac{\ \mathbf{w}\ ^2}{\ \mathbf{w}\ ^2} = \mathbf{a} \mathbf{x} \mathbf{w} $		
	$L(w,b) = \frac{ w ^2}{2} + C\sum_{n=1}^{N} \xi_n \text{ where } \xi_n > 0 \text{ denotes the slack on the } n^{th} \text{ training example.}$ What would be the effect of using a very-very large value of C ? Would the model tend to		
	overfit or underfit? Also, what about the margin of the classifier? Will we get a large margin or small margin? Briefly justify your answer. (4 marks)		
2.4	Assuming multi-class classification given N training examples and a total of C classes, write down the expression of the multi-class cross-entropy loss function, clearly and succinctly defining the terms/notation involved in the expression, and briefly explain why this is a suitable loss function for multi-class classification problems. (4 marks)		
2.5	Given a linear regression problem with non-negativity constraints on each entry of the weight vector w , which of these two approaches would you prefer and why: (1) Projected Gradient Descent, and (2) Lagrangian based Optimization? (4 marks)		