Графічне диференціювання

Суть графічного диференціювання полягає в тому, що за графіком функції, заданому на деякому відрізку [a;b], будується приблизно графік її похідної. Ця побудова заснована на геометричному змісті похідній і формулі Лагранжа скінчених різниць.

Нехай на деякому відрізку $[x_0; x_0 + \Delta x]$ заданий графік функції y=f(x) (рис. 1). З формули скінчених різниць випливає, що

$$f'(\xi) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$
 $\text{de } x_0 < \xi < x_0 + \Delta x.$

Геометрично вираз, що розміщений праворуч, це тангенс кута нахилу хорди AB, а вираз розміщений ліворуч — кутовий коефіцієнт дотичної в деякій точці $\xi \in [x_0; x_0 + \Delta x]$. Якщо Δx мале, то в якості ξ можна взяти точку, що лежить посередині $[x_0; x_0 + \Delta x]$, тобто, $\xi = x_0 + \frac{\Delta x}{2}$, тоді отримаємо наближену рівність

$$f'\left(x_0 + \frac{\Delta x}{2}\right) \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

Рис. 1

Для відшукання похідної в точці $x_0+\Delta x$ потрібно знайти тангенс кута нахилу хорди AB. Для цього проведемо наступну побудову (див. рис. 1). Від точки О (або від будь-якої іншої точки поза відрізком $[x_0; x_0 + \Delta x]$) вліво відкладемо одиничний відрізок OK і проведемо $KD \parallel AB$. Величина відрізка OD = OKtg $\phi = \text{tg}\phi$, де $\phi = \angle DKO = \angle BAC$. Отже, $OD = f'\left(x_0 + \frac{\Delta x}{2}\right)$. Проведемо DN паралельно осі Ox. Тоді точка N, y0 відповідає абсцисі $x_0 + \frac{\Delta x}{2}$, буде мати ординатою $f'\left(x_0 + \frac{\Delta x}{2}\right)$, тобто це точка графіка похідної f'(x) функції f(x).

Нехай тепер функція f(x) задана на відрізку [a; b]. Відрізок [a; b] розіб'ємо на n частинних відрізків, не обов'язково рівних між собою, але так, щоб на кожному з них функція поводилася монотонно. На кожному частковому відрізку проводимо побудову, аналогічну описаній вище для відрізка $[x_0, x + \Delta x]$ (див. рис. 1). По закінченні побудови точки, аналогічні точці N, з'єднуємо ламаною, котра приблизно представляє графік похідної f'(x) заданої функції f(x).

Приклад. Функція задана графічно на відрізка [0;b] кривою $A_0A_1...A_6$ (рис. 2). Побудувати графік її похідної.

<u>Рис</u>. 2

Розв'язання

Розіб'ємо відрізок [0; b] на 6 частин точками

$$x_0 = 0$$
, x_1 , x_2 , x_3 , x_4 , x_5 , $x_6 = b$,

як зазначено на, мал. 2, і вліво від точки O відкладемо відрізок OK=1.

Розглядаємо перший відрізок $[0; x_1]$ і проводимо хорду A_0A_1 . Потім із точки K проводимо пряму $KD_1 \parallel A_0A_1$ до перетину в точці D_1 з віссю Oy. З D_1 проводимо пряму D_1N_1 , паралельну осі Ox, до перетинання в точці N_1 із прямої, паралельною осі Oy і проведеної із середини відрізка $[0; x_1]$. Розглядаємо відрізок $[x_1; x_2]$. Будуємо хорду A_1A_2 і пряму KD_2 , паралельну хорді. Далі проводимо $D_2N_2 \parallel Ox$ і відмічаємо точку N_2 , що відповідає середині відрізка $[x_1; x_2]$. Проводимо аналогічні побудови на відрізках $[x_2; x_3]$, $[x_3; x_4]$, $[x_4; x_5]$, $[x_5; x_6]$. Одержуємо точки N_3 , ..., N_6 .

З'єднуємо точки N_1 , N_2 , N_3 , N_4 , N_5 , N_6 ламаної (див. рис. 2), що приблизно дають собою уявлення про графік похідної заданої функції.

Завдання для самостійної роботи

Функція задана графічно на відрізку [0; b]. Побудувати графік її похідної. Значення b варто взяти з таб. 1.

Таблиця 1

Варіан т	b	Варіант	b	Варіант	b
1	4,4	13	9,2	25	6,8
2	4,8	14	9,6	26	7,2
3	5,2	15	10,0	27	7,6
4	5,6	16	10,4	28	8,0
5	6,0	17	10,8	29	8,4
6	6,4	18	11,2	30	8,8
7	6,8	19	11,6	31	10,4
8	7,2	20	12,0	32	10,8
9	7,6	21	12,4	33	11,2
10	8,0	22	12,8	34	11,6
11	8,4	23	13,2	35	12,0
12	8,8	24	13,6	36	12,4