CSE4203: Computer Graphics Chapter – 6 (part - C) Transformation Matrices

Mohammad Imrul Jubair

Outline

- 3D Transformation
- Rotation about an arbitrary line

References

- http://ami.ektf.hu/uploads/papers/finalpdf/AMI 40 from175 to186.pdf
- http://web.iitd.ac.in/~hegde/cad/lecture/L6_3dtrans.pdf

Rotation about an arbitrary line (1/1)

The basic idea is to make the arbitrary rotation axis coincide with one of the principle axis. Assume an arbitrary axis in space passing through the point **PO** (x0, y0, z0) and **P1** (x1, y1, z1).

In 2D case (1/1)

Reflecting about an arbitrary line

Steps (1/1)

 $Credit: http://ami.ektf.hu/uploads/papers/finalpdf/AMI_40_from 175 to 186.pdf \mid http://web.iitd.ac.in/~hegde/cad/lecture/L6_3 dtrans.pdf$

M. I. Jubair

6

Direction Cosine (1/1)

 Direction cosines of a vector are the cosines of the angles between the vector and the three coordinate axes.

$$\mathbf{u} = P_1 - P_0$$

$$\mathbf{u_e} := \frac{\mathbf{u}}{|\mathbf{u}|} = (c_x, c_y, c_z)$$

Equivalently, they are the contributions of each component of the basis to a unit vector in that direction.

Coinciding the line with Principal axis (1/5)

Coinciding the line with Principal axis (2/5)

Coinciding the arbitrary axis with any axis the rotations are needed about other two axes

 $Source: http://ami.ektf.hu/uploads/papers/finalpdf/AMI_40_from 175 to 186.pdf \mid http://web.iitd.ac.in/~hegde/cad/lecture/L6_3 dtrans.pdf$

Coinciding the line with Principal axis (3/5)

$$d = \sqrt{c_x^2 + c_y^2} \quad \cos \alpha = \frac{c_y}{d}$$

$$\sin \alpha = \frac{d}{d}$$

Source: http://web.iitd.ac.in/~hegde/cad/lecture/L6 3dtrans.pdf

Coinciding the line with Principal axis (4/5)

What is the rotation matrix?

Coinciding the line with Principal axis (5/5)

$$\cos \beta = d$$
 $\sin \beta =$?

Source: http://web.iitd.ac.in/~hegde/cad/lecture/L6_3dtrans.pdf

Rotating about the principal axis (1/2)

What is the rotation matrix?

Rotating about the principal axis (2/2)

What is the rotation matrix?

Undoing the steps (1/1)

Q: What are the undoing steps?

Composite Transformation (1/1)

•
$$M = T^{-1} * R_{x}^{-1} (-\beta) *$$

Practice Problem

Reflect a point about an arbitrary plane