

Neural Networks and Deep Learning Lecture 7

Wei WANG

cs5242@comp.nus.edu.sg

Administrative

- Quiz on Week 9
 - 1 hour: 19:20-20:20
 - Closed book with one page cheat sheet
 - Scope: all materials from week 1 to week 9 (inclusive)
 - Question types: MCQ, True/False, Calculation, Explanation.

Outline

- CNN applications
 - Image classification
 - Object detection
 - Image segmentation
- Hands-on tutorial
 - Transfer learning
 - Real-time object detection
- Goals
 - know simple models for the three applications
 - Apply transfer learning for your own tasks

Recap

- AlexNet
 - Deep architecture over large dataset
 - Dropout
- VGG
 - The same filter size: 3x3 convolution
 - 2 3x3 convolution ~ 5x5 convolution

Recap

- InceptionNet
 - Mix 1x1, 3x3, 5x5 convolutions and max pooling
 - Add 1x1
 convolution before
 others to reduce
 channels → save
 cost

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Recap

ResNet

Identity / skip-connection

Source: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

One convolution layer has stride=2 → feature map area halved → replace the identity connection with a linear transformation to make the feature maps of the same shape as those from the convolution layers

(a) Conventional 3-block residual network

(b) Unraveled view of (a)

Source: A. Veit, M. Wilber and S. Belongie. Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv:1605.06431v2,2016

Applications

Image classification

- Predict the class/label of the image
- Training label
 - ground truth label (index)
- Test output
 - A probability distribution vector, one probability per label; sum up to 1

Source from [13]

Training label: bicycle Prediction output:

bicycle 0.6; people 0.3; mountain 0.05;

Image classification

Approaches

- AlexNet, VGG, InceptionNet, ResNet, DenseNet, etc
- With a Softmax layer as the final output layer
- With cross-entropy as the loss function

Dataset

ImageNet

Evaluation

- Top-1: accuracy = #(top1 prediction is truth label) / # test samples
- Top-5: accuracy = #(one of top5 prediction is truth label) / # test samples

Applications

- Logo classification
- Traffic sign classification
 - notebook
- Ecommerce product classification
- Medical image classification
- Food image classification
- ImageNet classification
- Dogs vs Cats
 - <u>notebook</u>

Image annotation

- Binary classification for each label
 - Training label: (0,1,1,0,1)
 - Prediction prob: (0.2, 0.6, 0.8, 0.1, 0.4)
 - Prediction label
 - One threshold per label, e.g. (0.5, 0.7, 0.6, 0.4, 0.6)
 - Label vector: (0, 0, 1, 0, 0)
- Approaches
 - Same architecture as image classification
 - Logistic function as the output layer
 - Cross-entropy (CE) loss for each label
 - Other output and loss layers [1]
- Evaluation [1]
 - Precision = average over all test samples {|Prediction ∩ Truth| / #Prediction}
 - Recall = average over all test samples {| Prediction ∩ Truth| / #Truth}

Image annotation

- Application
 - Example: satellite image annotation
 - Notebook

Source from: https://www.kaggle.com/c/planet-understanding-the-amazon-from-space

Object detection

- Detect the location of all object instances of all classes
- Training label
 - a list of <class, bounding box of each object instance>
- Prediction output
 - a list of <class, probability, bounding box of each object instance>

Training label:

```
bicycle (10, 100, 110, 110) (200, 200, 180, 80) ...
People (200, 80, 71, 71) (300, 50, 20, 80) ...
```

Prediction output:

```
bicycle 0.9 (9, 93, 100, 111), 0.8 (200, 200, 180, 80), ... people 0.8 (200, 80, 71, 71), ...
```

Object detection

- Applications
 - Face detection
 - Point-and-shoot camera
 - Surveillance
 - Count cars, peoples, animals
 - Indexing
 - Get objects from images for search

Evaluation

- Matched prediction = detected bounding box has enough overlap with truth and its label is correct
- Precision = #matched prediction / #total predictions
- Recall = #matched prediction / #truth instance (bounding box)

Figure 1: Similar Looks: We apply object detection to localize products such as bags and shoes. In this prototype, users click on automatically tagged objects to view similar-looking products.

Source from [10]

Object detection

Solution

- Find some candidate regions with objects
- Extract CNN feature from this region
- Refine the region boundary (bounding box) using a regressor
 - Generate 4 values (x, y, h, w)
- Predict the class label using Softmax

R-CNN [7]

- Generate region proposal

 - Using existing methods

• Generate region proposal
• Candidate object **

- - Using existing methods
- Extract CNN feature
 - For each region
 - Forward-propagate each region via CNN
 - Using popular CNN architecture
 - VGG/ResNet/etc

R-CNN

- Generate region proposal
 - Candidate object regions
 - Using existing methods
- Extract CNN feature
 - For each region
 - Forward-propagate each region via CNN
- Predict label for each region
 - Like image classification
 - Linear layer + softmax

Lbbox = 11 x1 - x1 12 + 11y1 - y,15

R-CNN

- Generate region proposal
 - Candidate object regions
 - Using existing methods
- Extract CNN feature
 - For each region
 - Forward-propagate each region via CNN

2000

- Predict label for each region
 - Like image classification
 - Linear layer + softmax
- Regress bounding box for each region
 - Linear regression (L2 loss) for each value
 - There are 4 values
 - Coordinates for the left top corner: x, y
 - Height and width: h, w

R-CNN

- Slow
 - Too many region proposals~2000
 - Each has to go through the CNN
- Training is ad-hoc
 - Fine tune the CNN for the target dataset for image classification
 - Train label classifier for regions
 - Train SVM regressor for bounding box

- Label each pixel with a class
- Training label
 - A class (index) per pixel
- Prediction output
 - For each pixel, a probability vector (one per class)

Training label:

(0, 0) bicycle ... (200, 80) people (200, 81) people

Prediction output:

(0, 0) background 0.9; mountain: 0.1 **200** 3 ...

(200, 80) people 0.8; bicycle 0.1; tree: 0.1

- Applications
 - Medical image analysis
 - Self-driving car
- Evaluation [1]
 - Matched pixels = the predicted class of a pixel is the truth class
 - Mean IoU = average over all classes{#matched pixels/(truth pixels U predicted pixels)}

- Solution
 - Encoder to extract a semantic-rich representation
 - For label prediction
 - Subsampling by (pooling or convolution with stride > 1)
 - Decoder to incorporate location information
 - To generate a final feature map as the same size as the input
 - Upsampling
 - Loss
 - Softmax loss for each pixel

- Upsampling
 - Nearest neighbour

3	2
0	1

3	3	2	2
3	3	2	2
0	0	1	1
0	0	1	1

Bilinear upsampling

- Copy the values to the big matrix
- Fill in the empty cells with 0
- Do convolution with manually set kernel values (e.g. all 1)
- 4. Rescale the output to match the norm of the input (like Dropout)

Original image: 🌉 x 10

- The empty pixels are initially set to 0
- Convolve with a (Gaussian, or another) filter
- If the filter sums to 1, multiply the result by 4
 - ¾ of the new image was initially 0

Nearest-neighbor interpolation

Bilinear interpolation

Max unpooling

U-Net[5]

- Prototxt visualization
- Input and output
 - Different size
 - Due to valid padding
- 3x3 convolution
- Final convolution
 - # filters/channels = # classes
- Softmax over the channel dimension
- Examples
 - <u>1</u>, <u>2</u>

Hands-on Tutorial

Transfer ConvNets trained on ImageNet

Notebook is on IVLE

Tips for transfer learning

- Use ConvNets as feature extractor
 - Train another simple model (e.g. SVM) to do classification
- Fine-tune some layers of the ConvNets for your own tasks

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

From cs231n

Real-time object detection:YOLO [3]

- Slides
- Notebook

Reference

- [1]Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, Sergey Ioffe. Deep convolutional ranking for multilabel image annotation. https://arxiv.org/pdf/1312.4894.pdf
- [2]Ross Girshick. Fast R-CNN. https://arxiv.org/abs/1504.08083
- [3]Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. You Only Look Once: Unified, Real-Time Object Detection. https://arxiv.org/abs/1506.02640
- [4]SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla. 2016
- [5]U-Net: Convolutional Networks for Biomedical Image Segmentation. Olaf Ronneberger, Philipp Fischer, Thomas Brox. 2015
- [7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014