MATH5825 Measure, Integration and Probability

Peter Straka

August 7, 2014

Contents

1	Intr	oduction to Measures	5
	1.1	Lebesgue's Problem of measure	5
	1.2	σ -algebras	6
	1.3	Measures	8
	1.4	Lebesgue Measure	11
	1.5	Completion of Measures	17

Chapter 1

Introduction to Measures

1.1 Lebesgue's Problem of measure

(This section is taken from Hendrik Grundling's 2011 lecture.) Assigning a measure (length, area, volume, . . .) to a subset S of \mathbb{R}^d is necessary in mathematics, e.g. for any type of integral. A reasonable measure m(S) of S should satisfy the following requirements:

- 1. If $S \subset \mathbb{R}^d$ is congruent (after shifts, rotations & reflections) to $T \subset \mathbb{R}^d$, then m(S) = m(T)
- 2. If $S = \bigcup_{i=1}^{\infty} S_i$ where $S_i \cap S_j = \emptyset$ for $i \neq j$, then $m(S) = \sum_{i=1}^{\infty} m(S)$ (countable additivity)
- 3. m(I) = 1 for $I = [0, 1]^d \subset \mathbb{R}^d$ (normedness)
- 4. $m(S) \ge 0$

However this humble attempt is still too much to ask as the following shall show. Below, we construct a set S which cannot satisfy all four requirements.

For $x,y\in[0,1]$ define $x\sim y$ if and only if $x-y\in\mathbb{Q}$. This is an equivalence relation, so [0,1] is partitioned into (disjoint) equivalence classes. Define the "Vitali set" $S\subset[0,1]$ by choosing one point from each equivalence class (this assumes the Axiom of Choice).

Lemma 1.1. If
$$r, q \in \mathbb{Q} \cap [0, 1]$$
, $r \neq q$ then $(S + r) \cap (S + q) = \emptyset$.

Proof. If $x \in (S+r) \cap (S+q)$ then x=p+r=t+q for $p,t \in S$. Then $p-t=q-r \neq 0$ and $q-r \in \mathbb{Q}$. So $p \sim t$, $p \neq t$. Since $p,t \in S$, this violates the definition of S.

Lemma 1.2.
$$[0,1] \subseteq \bigcup \{S+r | r \in \mathbb{Q} \cap [-1,1]\} =: T \subseteq [-1,2].$$

Proof. Let $x \in [0,1)$. Then $x \sim p$ for some $p \in S$. Thus $x - p =: r \in \mathbb{Q}$ and as $x, p \in [0,1]$ it follows that $r \in \mathbb{Q} \cap [-1,1]$. So $x \in S + r$, $r \in \mathbb{Q} \cap [-1,1]$. \square

Proposition 1.3. In \mathbb{R} , Lebesgue's problem of measure has no solution.

Proof. Let S be as above. We show a contradiction to the requirement m(S + r) = m(S) for all r.

$$1 = m([0,1]) = m(T) - m(T \setminus [0,1]) \le m(T)$$

$$= \sum_{r \in \mathbb{Q} \cap [-1,1]} m(S+r) = \sum_{r \in \mathbb{Q} \cap [-1,1]} m(S)$$

m(S) can't be 0, hence the right-hand side must be $+\infty$. But this contradicts

$$\infty = m(T) = m([-1,2]) - m([-1,2) \setminus T) \le m([-1,2])$$

= $m([-1,0]) + m([0,1]) + m([1,2]) - m(\{0,1\}) \le 3m([0,1]) = 3$

In higher dimensions, things are even worse:

Theorem 1.4 (Banach-Tarski). Let $S, T \subset \mathbb{R}^d$ be bounded with non-empty interiors, $d \geq 3$. Then there is a $k \in N$ and partitions $\{E_i, \ldots, E_k\}$, $\{F_i, \ldots, F_k\}$ of S, T respectively such that E_i is congruent to $F_i \forall i$. (That is, S and T are equidecomposable.)

Thus we can take e.g. a unit sphere S, cut it up into finitely many pieces, and reassemble it to a set T of two unit spheres. If Lebesgue's problem of measure had a solution in \mathbb{R}^d , $d \geq 3$, then by congruence m(S) = m(T) which contradicts m(T) = 2m(S) and m(S) > 0.

A way out of this situation is to restrict attention to a smaller set of subsets, on which Lebesgue's problem of measure does have a solution.

1.2 σ -algebras

Definition 1.5. Let X be any non-empty set. A system \mathcal{A} of subsets of X is called an algebra on X if it has the following properties:

- 1. $X \in \mathcal{A}$,
- 2. If $\{A, B\} \subset A$ then $A \cup B \in A$
- 3. If $A \in \mathcal{A}$ then $A^{\complement} \in \mathcal{A}$ (where $A^{\complement} = X \setminus A$).

If additionally the following condition holds, then A is called a σ -algebra:

4. If
$$\{A_1, A_2, \ldots\} \subset \mathcal{A}$$
, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

A measurable space is any pair (X, A) where A is a σ -algebra on X.

Algebras are closed under finite intersections: If $\{A, B\} \subset A$, then

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement} \in \mathcal{A}.$$

Similarly, σ -algebras are closed under countably infinite intersections.

Definition 1.6. Let X be a non-empty set. A system $\mathcal{C} \subset 2^X$ of subsets of X is called a ring if $\emptyset \in \mathcal{C}$ and $A \cup B$, $A \setminus B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.

Every σ -algebra is an algebra; every finite algebra is a σ -algebra.

Example 1.7. Let X be any non-empty set, and consider the following subsets of 2^X :

- 1. $A = \{\emptyset, X\}$. This is the "coarsest", "smallest" or "trivial" σ -algebra on X (and thus also an algebra and a ring).
- 2. $A = \{\emptyset, A, A^{\complement}, X\}$, where $A \subset X$. This is a σ -algebra, an algebra and a ring.
- 3. The power set 2^X , i.e. the family of all subsets of X, where X is any set (the "finest" or "largest" σ -algebra on X).
- 4. Let $X = \mathbb{R}$. Then

$$\mathcal{C}:=\left\{\bigcup_{k=1}^n(a_k,b_k]:n\in\mathbb{N},a_k,b_k\in\mathbb{R},a_k\leq b_k,b_k\leq a_{k+1}\right\}\subset 2^{\mathbb{R}}. \quad (1.8)$$

is a ring, but not an algebra. $\mathcal{C} \cup \mathbb{R}$ is an algebra, but not a σ -algebra. We shall later see that the σ -algebra generated by \mathcal{C} is the Borel- σ -algebra on \mathbb{R} .

If two algebras (or σ -algebras) \mathcal{A}_1 , \mathcal{A}_2 are defined on the same set X, then their intersection (not necessarily their union) is again an algebra (or σ -algebra) (try a simple example). This even holds for *arbitrary* (uncountably infinite) intersections.

Lemma 1.9. Let X be any set, and let \mathcal{E} be a system of subsets of X. Then there exist

- 1. a smallest algebra $\alpha(\mathcal{E}) \supset \mathcal{E}$
- 2. a smallest σ -algebra $\sigma(\mathcal{E}) \supset \mathcal{E}$

Proof. Let S_{α} be the set of algebras which contain \mathcal{E} , and let S_{σ} be the set of σ -algebras which contain \mathcal{E} . Then

$$2^X \in \mathcal{S}_{\sigma} \subset \mathcal{S}_{\sigma}$$

where 2^X is the power set of X (the set of all possible subsets). In particular neither \mathcal{S}_α nor \mathcal{S}_σ are empty. Then

$$\alpha(\mathcal{E}) = \bigcap_{\mathcal{A} \in \mathcal{S}_{\alpha}} \mathcal{A} \qquad \qquad \sigma(\mathcal{E}) = \bigcap_{\mathcal{A} \in \mathcal{S}_{\sigma}} \mathcal{A}$$

are as required.

The algebra and σ -algebra $\alpha(\mathcal{E})$ and $\sigma(\mathcal{E})$ are said to be generated by \mathcal{E} .

1.3 Measures

Definition 1.10. A countably additive function μ from a σ -algebra \mathcal{A} of subsets of X into $[0, \infty]$ is called a measure. Then (X, \mathcal{A}, μ) is called a measure space.

Example 1.11. 1. For a set X with σ -algebra A, define

$$\mu: \mathcal{A} \to [0, \infty]$$

 $A \mapsto \mu(A) =$ number of elements in A

Such μ is called the counting measure.

2. For a σ -algebra \mathcal{A} of X, fix $x \in X$ and define

$$\delta_{x}: \mathcal{A} \to [0, \infty]$$

$$A \mapsto \delta_{x}(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Then δ_x is called the Dirac measure concentrated at x.

3. For a σ -algebra \mathcal{A} on X let $\mu(\emptyset) = 0$ and $\mu(A) = \infty$ if $A \neq \emptyset$, $A \in \mathcal{A}$. Then μ is called the trivial measure.

The aim of this section is to construct a measure on a suitable σ -algebra of \mathbb{R} which solves Lebesgue's problem of measure. Other measurable spaces which are important in probability theory are:

- $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$: This space is used for probabilistic models of experiments with infinitely many steps, that is, stochastic processes in discrete time steps.
- $(D(\mathbb{R}^d),\mathcal{D})$: Here $D(\mathbb{R}^d)$ denotes the set of càdlàg (right-continuous with left limits) paths (mappings from $[0,\infty)$ to \mathbb{R}^d) with countably many jumps. This set can be equipped with a metric and hence a topology. The corresponding Borel- σ -algebra is \mathcal{D} . A probability measure $(\mu(D(\mathbb{R}^d))=1)$ on this measurable space then governs the behaviour of a stochastic process in continuous time.

Theorem 1.12 (Basic properties of measures). Let (X, \mathcal{A}, μ) be a measure space. Then

- 1. $\mu(\emptyset) = 0$
- 2. $A \subset B \Rightarrow \mu(A) < \mu(B)$
- 3. If $A_1 \subset A_2 \subset A_3 \subset \ldots$, then

$$\lim_{n\to\infty}\mu(A_n)=\mu\left(\bigcup_{n=1}^\infty A_n\right)$$

4. If $A_1 \supset A_2 \supset A_3 \supset \dots$ where $\mu(A_1) < \infty$, then

$$\lim_{n\to\infty}\mu(A_n)=\mu\left(\bigcap_{n=1}^\infty A_n\right)$$

Outer Measure

Definition 1.13. Let X be a non-empty set. Let $\mathcal{A} \subset 2^X$, $\emptyset \in \mathcal{A}$, and for any $E \in 2^X$, there exists a covering $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ so that $E \subset \bigcup_{n=1}^{\infty} A_n$. Let $\mu : \mathcal{A} \to [0, \infty]$ be any map such that $\mu(\emptyset) = 0$. Then

$$\mu^*: 2^X \to [0, \infty]$$

$$E \mapsto \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) | A_n \in \mathcal{A}, E \subset \bigcup_{n=1}^{\infty} A_n \right\}$$

is called the outer measure defined by μ and A. (A μ as above is called a pre-measure.)

If $A \in 2^{\hat{X}}$ satisfies

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A) \quad \forall B \in 2^X$$

then A is called μ^* -measurable.

Lemma 1.14 (Subadditivity of μ^*). For any sets E and $E_n \subset X$, if $E \subset \bigcup_n E_n$, then $\mu^*(E) \leq \sum_n \mu^*(E_n)$.

Proof. WLOG assume the right-hand side is not $+\infty$. Let $\varepsilon > 0$, and suppose $A_{nm} \in \mathcal{A}$ are such that $\bigcup_m A_{nm} \supset E_n$, and

$$\sum_{m} \mu(A_{nm}) < \mu^*(E_n) + \frac{\varepsilon}{2^n}.$$

Then $E \subset \bigcup_n \bigcup_m A_{nm}$, and

$$\mu^*(E) \leq \sum_n \sum_m \mu(A_{nm}) < \sum_n \left(\mu^*(E_n) + \frac{\varepsilon}{2^n}\right) = \sum_n \mu^*(E_n) + \varepsilon$$

Since the above holds for arbitrarily small ε , the statement follows.

Theorem 1.15 (Carathéodory). The μ^* -measurable sets $\mathcal{M}(\mu^*)$ form a σ -algebra on X, and μ^* is a measure on $\mathcal{M}(\mu^*)$.

Proof. Check that $F \in \mathcal{M}(\mu^*)$ iff $F^{\complement} \in \mathcal{M}(\mu^*)$. Suppose that $A, B \in \mathcal{M}(\mu^*)$. For any $E \in 2^X$, we have

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$$

= $\mu^*(E \cap A \cap B) + \mu^*(E \cap A \setminus B) + \mu^*(E \setminus A)$
= $\mu^*(E \cap (A \cap B)) + \mu^*(E \setminus (A \cap B)),$

using that $A \in \mathcal{M}(\mu^*)$ in equality 1 & 3 and that $B \in \mathcal{M}(\mu^*)$ in equality 2. Thus $\mathcal{M}(\mu^*)$ is an algebra (right?). Now let $E_n \in \mathcal{M}(\mu^*)$ for $n = 1, 2, ..., F := \bigcup_{j=1}^{\infty} E_j$, and $F_n := \bigcup_{j=1}^n E_j \in \mathcal{M}(\mu^*)$. Since $E_n \setminus \bigcup_{j < n} E_j \in \mathcal{M}(\mu^*)$ for all n, we may assume E_n disjoint in proving F measurable. For any $E \subset X$ we have

$$\mu^*(E) = \mu^*(E \setminus F_n) + \mu^*(E \cap F_n)$$

$$= \mu^*(E \setminus F_n) + \mu^*(E \cap F_n \cap E_n) + \mu^*(E \cap F_n \setminus E_n)$$

$$= \mu^*(E \setminus F_n) + \mu^*(E \cap E_n) + \mu^*(E \cap F_{n-1})$$

by μ^* -measurability of F_n and E_n . We have shown

$$\mu^*(E \cap F_n) = \mu^*(E \cap E_n) + \mu^*(E \cap F_{n-1})$$

which inductively means $\mu^*(E \cap F_n) = \sum_{j=1}^n \mu^*(E \cap E_j)$. Thus

$$\mu^*(E) = \mu^*(E \setminus F_n) + \sum_{j=1}^n \mu^*(E \cap E_j) \ge \mu^*(E \setminus F) + \sum_{j=1}^n \mu^*(E \cap E_j).$$

As this holds for every n, we have

$$\mu^*(E) \ge \mu^*(E \setminus F) + \sum_{j=1}^{\infty} \mu^*(E \cap E_j) \ge \mu^*(E \setminus F) + \mu^*(E \cap F)$$
 (1.16)

using Lemma 1.14. Again using Lemma 1.14, we have $\mu^*(E) = \mu^*(E \setminus F) + \mu^*(E \cap F)$, and thus $F \in \mathcal{M}(\mu^*)$. Hence $\mathcal{M}(\mu^*)$ is a σ -algebra. Setting E = F in (1.16) shows $\mu^*(F) = \sum_{j=1}^n \mu^*(F \cap E_j)$ and hence that μ^* is a measure on F.

1.4 Lebesgue Measure

Consider the ring of subsets

$$C = \{(a, b] : a, b \in \mathbb{R}, a \le b\}$$

$$(1.17)$$

and the pre-measure $\gamma: \mathcal{C} \to [0, \infty)$ given by

$$\gamma((a,b]) = b - a. \tag{1.18}$$

Then $\mathcal C$ and γ define an outer measure λ^* on $X=\mathbb R$. This outer measure is called the Lebesgue outer measure. The Lebesgue measure can then be defined as the measure λ on the measurable space $(\mathbb R,\mathcal M(\lambda^*))$, which is constructed as in Theorem 1.15. The elements of $\mathcal M(\lambda^*)$ are called the Lebesgue-measurable sets.

Below we define the Borel σ -algebra $\mathcal{B}(\mathbb{R})$, the "standard" σ -algebra on \mathbb{R} . Its elements are the Borel-measurable sets, or Borel sets, or simply "measurable" sets. It is possible to develop an intuition for the Borel- σ -algebra, since it is generated by the open intervals: We can construct Borel sets through countable unions and intersections of open and closed intervals. As it turns out (in this section and the next), $\mathcal{M}(\lambda^*)$ is almost equal to $\mathcal{B}(\mathbb{R})$.

Definition 1.19 (Topology). Let X be a non-empty set, and let $\mathcal{T} \subset 2^X$ be a system of subsets of X with the following properties:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- 2. If $A, B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$.
- 3. If $A_i \in \mathcal{T}$ for all $i \in I$ (I is not necessarily countable), then $\bigcup_{i \in I} A_i \in \mathcal{T}$

Then \mathcal{T} is called a topology on X. The pair (X,\mathcal{T}) is called a topological space, and the elements of \mathcal{T} are called the open sets in X. A set $A \subset X$ is called closed if $A^{\mathbb{C}}$ is open. The σ -algebra $\sigma(\mathcal{T})$ is called the Borel σ -field on X. The elements of $\sigma(\mathcal{T})$ are called Borel sets.

Example 1.20. Let $X = \mathbb{R}$, and let \mathcal{T} be the system of countably infinite unions of intervals $\{(a, b) : a, b \in \mathbb{R} \cup \{-\infty, +\infty\}\}$. Then $(\mathbb{R}, \mathcal{T})$ is a topological space, and $\sigma(\mathcal{T})$ is the Borel σ -field $\mathcal{B}(\mathbb{R})$ on \mathbb{R} . The Borel σ -algebra is generated by any of the following systems:

$$\mathcal{E}_1 = \{(a, b) : a, b \in \mathbb{R}\}, \quad \mathcal{E}_2 = \{[a, b] : a, b \in \mathbb{R}\},$$

 $\mathcal{E}_3 = \{(a, b] : a, b \in \mathbb{R}\}, \quad \mathcal{E}_4 = \{[a, b) : a, b \in \mathbb{R}\}$

Theorem 1.21. Borel sets are Lebesgue-measurable: $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}(\lambda^*)$.

Proof. Since we know that $\mathcal{M}(\mu^*)$ is a σ -algebra, it suffices to show that it contains a generator of $\mathcal{B}(\mathbb{R})$, such as the ring \mathcal{C} of half-open intervals (a, b] (1.17). That is, we show

$$\mu^*(B) \ge \mu^*(B \cap I) + \mu^*(B \setminus I)$$

for any interval $I = (a, b] \in \mathcal{C}$ and any subset $B \in 2^X$.

Let $\{I_k\}_{k\in\mathbb{N}}\subset\mathcal{C}$ be a covering of B such that $\sum_k\gamma(I_k)\leq\mu^*(B)+\varepsilon$, where γ is the pre-measure (1.18) and ε is any positive small number. For each k, let $\{E_{k\ell}\}_{\ell\in\mathbb{N}}\subset\mathcal{C}$ and $\{F_{k\ell}\}_{\ell\in\mathbb{N}}\subset\mathcal{C}$ be a covering of $B\cap I$ and $B\setminus I$, respectively, such that

$$\sum_{\ell} \gamma(F_{k\ell}) \leq \mu^*(B \cap I_k) + 2^{-k}\varepsilon \qquad \sum_{\ell} \gamma(F_{k\ell}) \leq \mu^*(B \setminus I_k) + 2^{-k}\varepsilon.$$

Then

$$\mu^*(B \cap I) + \mu^*(B \setminus I) \leq \sum_{k} \sum_{\ell} \left[\gamma(E_{k\ell}) + \gamma(F_{k\ell}) \right]$$

$$\leq \sum_{k} \left[\gamma(I_k \cap I) + 2^{-k} \varepsilon + \gamma(I_k \setminus I) + 2^{-k} \varepsilon \right]$$

$$= \sum_{k} \left[\gamma(I_k) + 2^{-k+1} \right] \leq \mu^*(B) + 2\varepsilon.$$

and as the above inequality holds for arbitrary $\varepsilon > 0$, the result follows.

In the above proof, the decisive step was the equality $\gamma(I_k) = \gamma(I_k \cap I) + \gamma(I_k \setminus I)$, which relies on the assumption that \mathcal{C} is a ring; the remaining steps work for any system \mathcal{C} and any pre-measure γ .

The Lebesgue measure $\lambda(A)$ is defined for all Lebesgue sets $A \in \mathcal{M}(\mu^*)$; by restricting the domain of λ from $\mathcal{M}(\mu^*)$ to $\mathcal{B}(\mathbb{R})$, we define the Lebesgue measure for the Borel sets. This is a different measure (since the domains are different), but we still denote it by λ .

Uniqueness of Lebesgue Measure

To uniquely determine a measure μ on a measurable space (X, \mathcal{A}) , it is not necessary to know all values $\{\mu(A): A \in \mathcal{A}\}$. As it turns out, it suffices to determine $\mu(A)$ only for A from a much smaller subset of \mathcal{A} . This result is proved using the *monotone class theorem* due to Dynkin. It is a powerful tool for the characterisation of measures, and we will use it to prove the uniqueness of Lebesgue measure λ .

Definition 1.22. Let X be a non-empty set. A d-class on X is a system of subsets of X, $\mathcal{D} \subset 2^X$, which satisfies the following:

- 1. $X \in \mathcal{D}$
- 2. If $A, B \in \mathcal{D}$ such that $B \subset A$, then $A \setminus B \in \mathcal{D}$
- 3. For any increasing sequence $A_1\subset A_2\subset \dots$ where $A_j\in \mathcal{D}$, one has $\bigcup_{j=1}^\infty A_j\in \mathcal{D}$

A π -class on X is a system of subsets of X, $\pi \subset 2^X$, which is closed with respect to finite intersections. That is, it satisfies $A, B \in \pi \Rightarrow A \cap B \in \pi$.

Any σ -algebra is a d-class. Similarly to algebras and σ -algebras, the intersection of arbitrarily many d-classs on X is again a d-class. Hence we can say that a d-class $\mathcal{D}=d(\mathcal{C})$ is generated by $\mathcal{C}\subset 2^X$ if \mathcal{D} is the smallest d-class containing \mathcal{C} .

Theorem 1.23 (Monotone Class Theorem, Dynkin). Let X be a non-empty set, and let \mathcal{C} be a π -class on X. Then $\sigma(\mathcal{C}) = d(\mathcal{C})$.

Proof. Since $\sigma(\mathcal{C})$ is a d-class, we have $\sigma(\mathcal{C})\supset d(\mathcal{C})$. It remains to show $\sigma(\mathcal{C})\subset d(\mathcal{C})$, which follows if we can show that $d(\mathcal{C})$ is a σ -algebra. We check that $d(\mathcal{C})$ indeed satisfies the first two properties required of a σ -algebra. For the last property, let E_1, E_2, \ldots be a sequence (not necessarily increasing) of sets in $d(\mathcal{C})$. Since

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{k=1}^{\infty} F_k$$

where $F_k = \bigcup_{j=1}^k E_j$, we can write the countable union of E_j as an *increasing* countable union of F_j . Since $d(\mathcal{C})$ is a d-class, $\bigcup_{k=1}^{\infty} F_k$ will lie in $d(\mathcal{C})$; but we need to check that $F_k \in d(\mathcal{C})$. Since $F_k^{\complement} = \bigcap_{j=1}^k E_j^{\complement}$, it hence suffices to show that $d(\mathcal{C})$ is closed under *finite* intersections. First, define

$$\mathcal{D}_1 := \{ E \in \textit{d}(\mathcal{C}) : E \cap \textit{C} \in \textit{d}(\mathcal{C}) \, \forall \textit{C} \in \mathcal{C} \}$$

By definition of C, we have $C \subset \mathcal{D}_1$. The identities

$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$
$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap C = \bigcup_{n=1}^{\infty} (A_n \cap C)$$

show that \mathcal{D}_1 is closed with respect to proper set differences and countable unions of increasing sets, that is, \mathcal{D}_1 is a d-class containing \mathcal{C} and $\mathcal{D}_1 \supset d(\mathcal{C})$. By definition, $\mathcal{D}_1 \subset d(\mathcal{C})$, and so $\mathcal{D}_1 = d(\mathcal{C})$. Next, define

$$\mathcal{D}_2 := \{ E \in d(\mathcal{C}) : E \cap F \in d(\mathcal{C}) \, \forall F \in d(\mathcal{C}) \}$$

We see that $C \subset D_2$ and $X \in D_2$. By the same arguments as above, $D_2 = d(C)$. This shows that d(C) is closed with respect to finite intersections.

Definition 1.24. Let (X, \mathcal{A}, μ) be a measure space. If there is a sequence $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $X=\bigcup_n E_n$ and $\mu(E_n)<\infty$ for all n, then the measure μ is said to be σ -finite.

For instance, Lebesgue measure is σ -finite on the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$; See this by setting $E_n = (-n, n]$. Moreover, any finite measure space with $\mu(X) < \infty$ is σ -finite.

Theorem 1.25. Let (X, A) be a measurable space, and let C be a π -system on X such that $A = \sigma(C)$. If μ and ν are measures on (X, A) that agree on C and if there is an increasing sequence $\{C_n\}$ of sets that belong to C, have finite measure under μ and ν , and satisfy $\bigcup_n C_n = X$, then $\mu = \nu$.

Proof. First, let's assume that μ and ν are finite measures, that is, $\mu(X) < \infty$ and $\nu(X) < \infty$. Define $\mathcal{D} = \{A \in \mathcal{A} : \mu(A) = \nu(A)\}$. We see $\mathcal{C} \subset \mathcal{D}$. Then \mathcal{D} is a d-class because:

- 1. $\mu(X) = \nu(X) \Rightarrow X \in \mathcal{D}$
- 2. Let $A, B \in \mathcal{D}$ such that $A \subset B$. Then $\mu(A \setminus B) = \mu(A) \mu(B) = \nu(A) \nu(B) = \nu(A \setminus B)$, and thus $A \setminus B \in \mathcal{D}$. (This step assumes that the measures are finite, since $\infty \infty$ is to be avoided.)
- 3. Let $E_n \in \mathcal{D}$ be an increasing sequence in \mathcal{D} . By Theorem 1.12,

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n) = \lim_{n \to \infty} \nu(E_n) = \nu\left(\bigcup_{n=1}^{\infty} E_n\right)$$

and hence $\bigcup_{n=1}^{\infty} E_n \in \mathcal{D}$.

By Theorem 1.23, A = D, thus $\mu = \nu$.

Now assume that μ and ν are σ -finite with respect to the sequences $\{E_n\}_{n\in\mathbb{N}}$ and $\{F_n\}_{n\in\mathbb{N}}$; then both are σ -finite with respect to the the sequence $\{C_n\}_{n\in\mathbb{N}}$ where $C_n=E_n\cap F_n$. For each n, define measures μ_n and ν_n on (X,\mathcal{A}) by $\mu_n(A)=\mu(A\cap C_n)$ and $\nu_n(A)=\nu(A\cap C_n)$. From the first part of the proof, we have $\mu_n=\nu_n$, and thus using Th 1.12

$$\mu(A) = \lim_{n} \mu_n(A) = \lim_{n} \nu_n(A) = \nu(A)$$

for every $A \in \mathcal{A}$.

Theorem 1.26. The Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is the unique measure which satisfies $\lambda((a, b]) = b - a$ for all $a, b \in \mathbb{R}$, $a \leq b$.

Proof. First, we show $\lambda((a,b]) = b-a$. Indeed, consider an interval I=(a,b]. It is covered by the sequence $I\cup\emptyset\cup\emptyset\cup\ldots$ of elements in the ring $\mathcal C$, which shows $\lambda^*(I) \leq \gamma(I) = b-a$. It is intuitively clear (but technically requires a proof) that this covering is optimal. That is: any countable covering of I with sets $\{C_n\}_{n\in\mathbb N}\subset\mathcal C$ is such that $\sum_n\gamma(C_n)\geq b-a$. But this means $\lambda^*(I)\geq b-a$, and so $\lambda^*(I)=b-a$. I is a Borel set, and thus also a Lebesgue set, hence $\lambda(I)=\lambda^*(I)=b-a$. We know that λ is σ -finite; any other measure which maps (a,b] to b-a is also σ -finite. Th 1.25 completes the proof.

Since the pre-measure γ and thus the outer Lebesgue-measure λ^* are translation invariant, it follows that Lebesgue measure is translation invariant. In fact, up to a multiplicative constant, Lebesgue measure is the only translation invariant measure on \mathbb{R} :

Theorem 1.27. Let ν be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which is finite on bounded sets and translation invariant (that is, $\nu(A + x) = \nu(A) \, \forall A \in \mathcal{B}(\mathbb{R}), x \in \mathbb{R}$). Then ν is a multiple of the Lebesgue measure.

Proof. The interval I=(0,1] is the pairwise disjoint union of n intervals ((k-1)/n,k/n], $k=1,\ldots,n$. These are all translates of each other and hence all have the same measure as any fixed one, say B. Set $c:=\nu(I)$, then

$$n\nu(B) = c = c \times 1 = c\lambda(I) = c \, n \, \lambda(B),$$

and $\nu(B) = c \lambda(B)$. Any $C \in \mathcal{C}$ can be represented as a countable union of intervals of length 1/n $(n \in \mathbb{N})$. The family of such intervals hence generates $\mathcal{B}(\mathbb{R})$. Hence by Th 1.25, $\nu = c\lambda$.

Finally, here are a few properties of Lebesgue measure:

Theorem 1.28. Lebesgue measure on \mathbb{R} has the following properties:

- 1. If $A \in 2^X$ is countable, then it is a Borel set, and $\lambda(A) = 0$
- 2. If $A \in \mathcal{M}(\lambda^*)$ is bounded, then $\lambda(A) < \infty$
- 3. For every $A \in \mathcal{M}(\lambda^*)$ we have $\lambda(A) = \inf\{\lambda(U) : U \text{ open }, U \supset A\}$
- 4. For every $A \in \mathcal{M}(\lambda^*)$ we have $\lambda(A) = \sup\{\lambda(K) : K \text{ compact }, K \subset A\}$. (Recall that a set $K \in 2^X$ is compact iff it is both closed and bounded.)

Proof. Properties 1. and 2. are left as an exercise. For 3. and 4, note that monotonicity of measures $(A \subset B \Rightarrow \lambda(A) \leq \lambda(B))$ implies

$$\lambda(A) \leq \inf\{\lambda(U) : U \text{ open }, U \supset A\},\$$

 $\lambda(A) \geq \sup\{\lambda(K) : K \text{ compact }, K \subset A\}$

and it remains to show the reverse inequalities. For part 3, we may assume $\lambda(A) < \infty$. Let $\varepsilon > 0$, and find a covering $\bigcup C_k$ of A where $C_k \in \mathcal{C}$ are half open intervals, such that

$$\sum_{k} \gamma(C_{k}) < \lambda(A) + \varepsilon.$$

Replace $C_k = (a_k, b_k]$ by $R_k = (a_k, b_k + 2^{-k}\varepsilon]$ to get a covering such that

$$\sum_{k} \gamma(R_k) < \lambda(A) + 2\varepsilon.$$

The open set $U = \bigcup_k (a_k, b_k + 2^{-k}\varepsilon)$ contains A, and $\lambda(U) \leq \lambda(A) + 2\varepsilon$. As ε was arbitrary, 3. is proved.

For part 4., assume first that A is bounded. Let C be a closed and bounded set that includes A, and let ε be an arbitrary positive number. Use part 3. to choose an open set U that includes $C \setminus A$ and satisfies

$$\lambda(U) < \lambda(C \setminus A) + \varepsilon$$
.

Let $K = C \setminus U$. (Draw a picture!) Then K is a closed and bounded (and hence compact) subset of A; it satisfies $C \subset K \cup U$, and so satisfies

$$\lambda(C) \leq \lambda(K) + \lambda(U)$$

The two inequalities (together with $\lambda(C \setminus A) = \lambda(C) - \lambda(A)$ now imply that $\lambda(A) - \varepsilon < \lambda(K)$. Since ε was arbitrary, part 4 is proved in the case where A is bounded. Finally, consider the case where A is not bounded. Suppose that

b is a real number that satisfies $b < \lambda(A)$; we shall produce a compact subset K of A such that $b < \lambda(K)$. Let $\{A_j\}$ be an increasing sequence of bounded measurable subsets of A such that $A = \bigcup_j A_j$ (for example, A_j could be defined to be $A \cap [-j, +j]$. By Th 1.12, $\lambda(A) = \lim_j \lambda(A_j)$, and so we can choose j_0 so that $\lambda(A_{j_0}) > b$. Now apply to A_{j_0} what was shown above for bounded A, obtaining a compact subset of A_{j_0} such that $\lambda(K) > b$. Since $K \subset A$ and since b was an arbitrary number less than $\lambda(A)$, the proof is complete.

1.5 Completion of Measures

In this section, we establish a result which shows that Lebesgue sets can be very well approximated by Borel sets: For every Lebesgue set, there is a Borel subset and a Borel superset of the same measure. We show that the Lebesgue σ -algebra results from the Borel σ -algebra by completion. Completed probability spaces are of interest in probability theory.

Definition 1.29. Let (X, A, μ) be a measure space.

- 1. A subset $B \in 2^X$ is called μ -null if there is $A \in \mathcal{A}$ such that $B \subset A$ and $\mu(A) = 0$.
- 2. If A contains all μ -null sets, then μ and (X, A, μ) are called complete.
- 3. A property holds μ -almost everywhere if the set of $x \in X$ for which it doesn't hold is a μ -null set.

A measure space (X, \mathcal{A}, μ) which is not complete can be completed, in a unique well-defined way. First, define the completion of \mathcal{A} under μ as the system \mathcal{A}_{μ} of all subsets $A \subset X$ for which there exist $E, F \in \mathcal{A}$ such that $E \subset A \subset F$ and $\mu(F \setminus E) = 0$. Members of \mathcal{A}_{μ} are sometimes called μ -measurable.

To define a candidate for a measure $\bar{\mu}$ on \mathcal{A}_{μ} , let $A \in \mathcal{A}_{\mu}$, where $E, F \in \mathcal{A}$ are such that $E \subset A \subset F$, and set $\bar{\mu}(A) := \mu(E)$. This does not depend on the choice of E of F, hence $\bar{\mu}$ is well defined.

Proposition 1.30. Let (X, \mathcal{A}, μ) be a measure space. Then \mathcal{A}_{μ} is a σ -algebra on X, and $\bar{\mu}$ is a measure on (X, \mathcal{A}_{μ}) . The restriction of $\bar{\mu}$ from \mathcal{A}_{μ} to \mathcal{A} is μ .

Proof. This is left as an exercise. \Box

Proposition 1.31. Suppose $(X, \mathcal{M}(\mu^*), \mu)$ is the measure space obtained from an outer measure by the Carathéodory construction (Th 1.15). That is, μ is the restriction of μ^* from 2^X to $\mathcal{M}(\mu^*)$. Then the measure μ is complete.

Proof. If $B \in 2^X$ is μ -null, then $B \subset A$ for some $A \in \mathcal{M}(\mu^*)$ with $\mu^*(A) = 0$. Outer measures are monotone, thus $\mu^*(B) = 0$. For arbitrary $C \in 2^X$,

$$\mu^*(C) \leq \mu^*(C \cap B) + \mu^*(C \setminus B) \leq \mu^*(C \setminus B) \leq \mu^*(C);$$

the first inequality follows from subadditivity of outer measures, the second from $\mu^*(C \cap B) \leq \mu^*(B) = 0$ and the third from $C \setminus B \subset C$. It follows that $B \in \mathcal{M}(\mu^*)$.

Lemma 1.32. Let A be a Lebesgue set in \mathbb{R} . Then there exist Borel subsets E and F such that $E \subset A \subset F$ and $\lambda(F \setminus E) = 0$.

Proof. First suppose that A is a Lebesgue set such that $\lambda(A) < \infty$. For each positive integer n use Th 1.28 to choose a compact set K_n that satisfies $K_n \subset A$ and $\lambda(A) - 1/n < \lambda(K_n)$ and an open set U_n that satisfies $A \subset U_n$ and $\lambda(U_n) \leq \lambda(A) + 1/n$. Let $E = \bigcup_n K_n$ and $F = \bigcap_n U_n$. Then E and F belong to $\mathcal{B}(\mathbb{R})$ and satisfy $E \subset A \subset F$. The relation

$$\lambda(F \setminus E) \leq \lambda(U_n \setminus K_n) = \lambda(U_n \setminus A) + \lambda(A \setminus K_n) \leq 2/n$$

holds for each n, and so $\lambda(F \setminus E) = 0$. Thus the lemma is proved in the case where $\lambda(A) < \infty$. If A is an arbitrary Lebesgue set, then A is the union of a sequence $\{A_n\}$ of Lebesgue measurable sets each of which satisfies $\lambda(A_n) < \infty$. For each n we can choose Borel sets E_n and F_n such that $F_n \subset A_n \subset F_n$ and $F_n \subset A_n \subset F_n$ an

Theorem 1.33. The measure space $(\mathbb{R}, \mathcal{M}(\lambda^*), \lambda)$ is the completion of the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

Proof. Let λ be Lebesgue measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, let $\bar{\lambda}$ be the completion of λ , and let λ_m be Lebesgue measure on $(\mathbb{R},\mathcal{M}(\lambda^*))$. Lemma 1.32 implies that $\mathcal{M}(\lambda^*)$ is included in the completion of $\mathcal{B}(\mathbb{R})$ under λ and that λ_m is the restriction of λ to $\mathcal{M}(\lambda^*)$. Thus we need only check that each set A that belongs to the completion of $\mathcal{B}(\mathbb{R})$ under λ is Lebesgue measurable. For such a set A there exist Borel sets E and E such that $E \subset A \subset E$ and $E \subset E \setminus E$ and $E \subset E$ an

Remark 1.34. This completes our discussion of Lebesgue measure. We have only constructed and studied it on \mathbb{R}^d for d=1, to keep notation simple. The entire theory above remains correct if the ring C of half-open intervals (a, b] in \mathbb{R}

is replaced by the ring of "blocks" $(a_1,b_1]\times(a_2,b_2]\times\ldots\times(a_d,b_d]$ in \mathbb{R}^d , and the function $\gamma((a,b])=b-a$ is replaced by $\gamma((a_1,b_1]\times(a_2,b_2]\times\ldots\times(a_d,b_d])=\prod_{k=1}^d(b_k-a_k)$. This results in Lebesgue measure on \mathbb{R}^d , Lebesgue sets $\mathcal{M}(\lambda^*)$ in \mathbb{R}^d and Borel sets $\mathcal{B}(\mathbb{R}^d)$ in \mathbb{R}^d . The same results regarding completeness remain true.