Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹ Under supervision of Prof. Maria Andrea Mroginski²

> ¹Freie Universität Berlin ²Techniche Universität Berlin

February 14, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Potential

Force constants

Distance function

Solvent accesible

Evenly distributed points

Integration

Outline

Introduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Potential

General form

Force constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

Gonoral fo

Force constants

Distance function

Surface

Solvent accesible surface

ntegration

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[\begin{array}{c|c} f_i \end{array} \cdot \left[D\left(\mathbf{x} - \mathbf{x}'\right) \end{array} \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log I

Molecular

Potential

General form

Force constants

Surface

Solvent accesible surface Evenly distributed points

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[\begin{array}{c|c} f_i \end{array} \cdot \left[D\left(\mathbf{x} - \mathbf{x}'\right) \end{array} \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

General form

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[\begin{array}{c|c} f_i \end{array} \cdot \left[D\left(\mathbf{x} - \mathbf{x}'\right) \end{array} \right]$$

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log I

Molecular

Potential

General form

orce constants

Distance function

Surface

Evenly distributed points

Evenly distributed point: ntegration

$$\mathsf{MHP}\left(\mathbf{x}'
ight) = \sum_{i=1}^{k} \left[egin{array}{c} f_i \end{array} \cdot \left[D\left(\mathbf{x} - \mathbf{x}'
ight) \end{array}
ight]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log I

Molecular

Potential

General form

orce constants

Distance func

Solvent accesible surface

Evenly distributed points Integration

◆母 ▶ ◆重 ▶ ◆重 ● 夕♀◎

Force constants

Type	Description	f_i value	1
	C in:		- Int
3	$\overline{\mathrm{CHR}}_3$	-0.6681	Ну
15	$=CH_2$	-0.7866	Mo Hy
36	R-CH-X	-0.2405	Hy Por
			G
	H attached to:		Di
45	$\overline{\mathrm{C}_{\mathrm{sp^3}}}$ having no X attached to next carbon	0.7341	Si
46	$\mathrm{C_{sp^3}, C_{sp^2}}$	0.6301	In
50	Heteroatom	-0.1036	
52	$\mathrm{C}_{\mathrm{sp}^3}$ having 1 X attached to next carbon	0.6666	
	Sp C		
	O in:		
56		-0.3567	
	0-		
56 58 62	Alcohol Ketone O ⁻	-0.3567 -0.0233 -0.7941	

Pelg Bar Sapir

troduction ydrophobicity a

olecular

ropnoblential

ial eral form

Force constants

tance function

olvent accesible surface venly distributed points

nly distributed points gration

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

ydrophobicity otential

otential

orce constants

Distance function

Solvent accesible surface

Solvent accesible surface

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

General form Force constant

urface

Solvent accesible surface

Evenly distributed point ntegration

Evenly distributed points

How to distribute N points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log I

Molecular Hydrophobicity

Potential

General for

stance function

Sunace

Solvent acces

Evenly distributed points

Integration

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log

Molecular Jydrophobicity

Potential

Potential

General form Force constants

istance funct

Solvent accesible surface

Integration