UNIVERSITE DE BATNA2 FACULTE DES SCIENCES MEDICALES DEPARTEMENT DE MEDECINE ANNEE UNIVERSITAIRE 2022-2023

MECANISMES DE LA CARCINOGENESE

Cours présenté par Dr <u>OUMEDDOUR,L</u> SERVICE DE CYTOLOGIE ET D'ANATOMIE PATHOLOGIQUE CAC BATNA

<u>objectifs</u>

 Connaître au mieux les mécanismes de la carcinogenèse.

Comprendre le développement des cancers

 Connaître les principaux facteurs de risque génétiques et environnementaux des cancers.

Chromosome et brins d'ADN. Adapté du National Human Genome Research Institute

CHROMOSOME

ProjetEcolo

RAPPEL

- <u>Génome</u>: Ensemble des chromosomes et des gènes (d'une espèce, d'un individu).
- <u>Chromosome</u>: Elément du noyau de la cellule composé d'ADN dont des fragments forment les gènes. Les chromosomes renferment l'information génétique qui définit chaque individu et est transmise à sa descendance.
- <u>Géne</u>: Elément d'information héréditaire situé sur un chromosome en un locus donné. Chaque gène correspond à un caractère héréditaire particulier et constitue donc une unité d'information génétique.

- ADN: Abréviation d'acide désoxyribonucléique.
 Longue double chaîne de molécules en spirale qui compose les chromosomes. On parle aussi d'hélice d'ADN. Des segments d'ADN forment les gènes.
- <u>Nucléotide</u> combinaison de trois substances : une base purique (adénine ou guanine) ou pyrimidique (cytosine, thymine ou uracile), un sucre (ribose ou désoxyribose) et un acide phosphorique.
- <u>Nucléoside</u>: Élément constitutif des acides nucléiques, constitué d'une base azotée associée à un sucre (ribose pour l'ARN et désoxyribose pour l'ADN).

Mutation. Adapté de Wikimedia Commons

L'AI

Dat

sa

Qù

D'c

.

gè

D'o

CYCLE CELLULAIRE

CELLULES PROLIFERANTES

Les cellules qui sont dans le cycle cellulaire

DIVISION CELLULAIRE

- ☐ Sous l'effet de <u>signaux mitogènes</u>, les cellules entament un cycle de division.
- ☐ Le cycle cellulaire est classiquement divisé en quatre phases, G1, S, G2, M.
- ☐ Lorsqu'elles ne se divisent pas les cellules sont dites en quiescence ou aussi en phase G0.

Les quatre phases du cycle cellulaire sont :

- phase G₁: phase de croissance cytoplasmique;
- phase S: phase de <u>duplication</u> de l'<u>ADN</u>, qui représente la *synthèse* dans laquelle intervient la <u>réplication</u> de l'ADN.
- phase G₂: phase de préparation à la division cellulaire.
- phase M: mitose ou méiose (distribution du matériel génétique nucléaire) et la cytokinèse (division du cytoplasme).

RAPPEL (2)

REGULATION DU CYCLE CELLULAIRE

SIGNAUX
ANTI-MITOGENES OU
DISPPARITION DES
SIGNAUX MITOGENES

GENES SUPPRESSEURS DE TUMEURS /ANTI-ONCOGENES

anomalie est détectée au cours du cycle (endommagement de l'ADN, ADN non complètement répliqué, chromosomes non attachés au fuseau mitotique).

GENES REPARATEURS DE L'ADN

assurent une sorte de «contrôle qualité» à chaque étape et bloquent le déroulement du cycle lorsqu'une anomalie est détectée

Apoptose:

- mort cellulaire programmée
- génétiquement déterminée
- par un mécanisme enzymatique actif
- réprimée par certains gènes dits anti apoptotiques, exple:

BCL2.

☐ favorisée par d'autres gènes dit apoptotique, exple: BAX.

Homéostasie cellulaire

Etat d'équilibre

⇒ Homéostasie cellulaire

Activer Windows

Accédez aux paramètres pour

Cancérogenèse

Déséquilibres

⇒ gain cellulaire ⇒ cancérogenèse

MECANISMES DE LA CARCINOGENESE

I/GENERALITES/DEFINITION

- Cancer: prolifération cellulaire, anarchique, illimitée, échappant aux lois de l'homéostasie
- □ Capacité d'envahissement===>métastases
- □ Cellule cancéreuse: cellule anormale, autonome, anarchique ayant les caractéristiques suivantes:
 - Multiplication illimitée
 - Destruction des tissus avoisinants
 - □ Capacité d'engendrer des Métastases+++

La carcinogenèse: processus complexe qui

aboutit à la transformation d'une cellule

normale en une cellule maligne suite à des

événements génétiques aléatoires

1 : Gènes impliqués dans la carcinogenèse :

- 1-proto oncogène :
- ✓ gène présent à l'état normal .
- régulateurs positifs de la prolifération cellulaire (les « accélérateurs »),
- ✓ il suffit qu'un des deux <u>allèles</u> soit muté; pour qu'ils deviennent hyperactifs _____ deviennent ONCOGENES

2- oncogène :

- ✓ une catégorie de gènes dont l'expression favorise la survenue de cancers.
- ✓ Ce sont des gènes qui commandent la synthèse d'oncoprotéines, protéines stimulant la division cellulaire ou inhibant la mort cellulaire programmée (apoptose), ce qui déclenche une prolifération désordonnée des cellules.

□ 3-Oncoprotéine:

✔ protéine dont la synthèse dans l'organisme est commandée par un oncogène.

✓ c'est-à-dire par un gène altéré, susceptible d'être impliqué dans l'apparition d'une tumeur.

- 4-anti-oncogéne /gènes suppresseurs de tumeurs :
- ✓ sont des régulateurs négatifs de la prolifération cellulaire (les « freins ») avec notamment la protéine p53.

Son inactivation est l'initiation la plus fréquente de la cancérogenèse.

c'est une mutation de type récessif.

- ☐ 5-gènes de réparation de l'ADN:
- ✓ capables de détecter et de réparer les <u>lésions de</u>

 <u>l'ADN</u> qui ont modifié les oncogènes ou les gènes suppresseurs de tumeur.

III/BASES MOLECULAIRES DE LA CARCINOGENESE

Les mécanismes génétiques de <u>la carcinogenèse</u> impliquée dans les cancers humains sont :

ACTIVATION DES GENES ONCOGENES

INHIBITION DES GENES
ANTIAPOPTOTIQUES ET DES
GENES DE REPARATION DE
L'ADN

Mécanismes d'activation des oncogènes :

- ☐ Réarrangement génique par:
 - translocation
 - Amplification
 - Mutation

- Modification de la régulation du gène :
- modifications de l'ADN (par exemple méthylation des cytosines) ou des protéines liées à l'ADN (par exemple acétylation des histones)

mutations:

changer l'une des bases de l'ADN du gène

amplifications géniques:

augmentation du nombre de copies d'un protooncogène.

<u>Les translocations</u> <u>chromosomiques:</u>

_un fragment de l'un de nos chromosomes est transféré sur un autre <u>chromosome</u> et vice-versa.

MECANISMES EPIGENETIQUES

L'hypo- ou l'hyper-méthylation de gènes ou de leurs séquences régulatrices peut moduler leur transcription, alors que la séquence d'ADN est normale. On parle de mécanismes épigénétiques par opposition aux mécanismes génétiques

Oncogènes cellulaires et cancer humain

Nom	Cancer (*)	Type d'altération (**)	
HRAS / KRAS et NRAS	Pratiquement tous les cancers humains	Mutations ponctuelles au niveau des codons 12 et 13	
Her2 (ErbB2 ou neu)	Cancer du sein (30 %)	Amplification du gène	
Hdm2	Sarcomes	Amplification du gène	
N-Myc	Neuroblastomes (20 %)	Amplification du gène	
TAL1	Leucémie a cellules T (30 % des ALL-T)	Réarrangement du gène	
Fli-1	Sarcome d'Ewing (80 %)	Translocation chromosomique	
MLL	Leucémies d'origines diverses	Translocation chromosomique	
CCND1 (cycline D1)	Cancers du sein (15 %), Tête et cou (30 %)	Amplification du gène	
RET	Cancer médullaire de la thyroïde (35 %)	Translocation chromosomique	
PML	Leucémie aigües promyélocitaires	Translocation chromosomique	
Beta caténine	Cancer du côlon	Mutations ponctuelles	
Abl	Leucémie Myéloïde Chronique (95 %)	Translocation chromosomique	
c-myc	Pratiquement tous les cancers humains	Translocation chromosomique, amplification du gène	

Mécanismes d'inhibition des gènes suppresseurs de tumeurs

☐ Contrairement aux oncogènes qui deviennent hyperactifs dans les cellules cancéreuses, les gènes suppresseurs de tumeurs perdent leur(s) fonction(s) dans les cancers humains.

soit de délétions d'une région du <u>chromosome</u> conte nant le gène

soit
de <u>mutations</u> ponctuel
les qui détruisent (ou
altèrent) sa fonction.

Pour que la fonction d'un gène suppresseur soit perdue, il est nécessaire que les deux copies du gène soient inactivées

Gènes suppresseurs de tumeurs et cancers *

Genes suppresseurs de tumeurs et ouncers			
Gène suppresseur de tumeur	Cancers associés à une mutation germinale (germinale = Cellule formant des gametes spermatozoide/ovcyte)	Cancers associés à une altération somatique	
p53	Syndrome de Li-Fraumeni (nombreux types de cancers)	Pratiquement tous les types de cancers humains	
PTEN		Nombreux cancers	
BRCA1	Cancers du sein et de l'ovaire familiaux	Cancers du sein (rare)	
BRCA2	Cancers du sein familiaux	tres peu fréquent	
APC	Polypose recto-colique familiale	Cancer du côlon (80 %)	
MLH1, MSH2, (MSH6 rare)	Cancer colorectal héréditaire sans polypose	Cancer du côlon	
RB1	Rétinoblastomes familiaux	Rétinoblastomes sporadiques, sarcomes, cancers bronchiques	
VHL	Maladie de Von Hippel Lindau (tumeur du rein)	Cancer du rein	
WT1	Syndromes de WAGR ou Denys-Brash associés à des tumeurs uro-génitales chez le jeune enfant (tumeurs de Wilms)	Tumeurs de Wilms sporadiques (rare)	
PTCH	Syndrome de Gorlin (prédiposition aux cancers de la peau)	Cancers de la peau de type baso-cellulaires	
NF1	Neurofibromatose de type I	Peu courant, melanomes, neuroblastomes	

Mécanismes d'inhibition des gènes réparateurs d'ADN

- □ La recherche d'anomalies des mécanismes de réparation de l'ADN est entrée dans la pratique courante et permet de diagnostiquer des cancers d'origine génétique :
- ✓ les mutations des gènes <u>BRCA1</u> et <u>BRCA2</u>, molécules intervenant dans les réparations par recombinaison homologue pour le <u>cancer du sein</u> d'origine génétique .
- ✓ les mutations des enzymes intervenant dans la réparation des mésappariements (<u>mismatch repair</u> ou MMR) dans le <u>cancer du côlon</u> lié au syndrome <u>HNPCC</u>;

Le processus de cancérogenèse comporte trois étapes

Initiation

Promotion

Progression

- □ exposition à un agent Toxique
 (agent cancérigéne)
 □ entraine des lésions génétiques cellulaires irréversibles mais insuffisantes pour entrainer la transformation
- Stade réversible caractérisé par une expression anormale des gènes, la cellule a acquis un avantage prolifératif donnant naissance à un clone, cette cellule se développe rapidement tout en acquérant une instabilité génomique

- aboutit à la formation de la première cellule cancéreuse.
- Stade irréversible au cours duquel le cancer devient apparent.

Facteurs étiologiques des cancers

FACTEURS EXOGENES

- GENETIQUES
- ☐ IMMUNITAIRES
- ☐ HORMONAUX

- **☐** INFECTIEUSES
 - PHYSIQUES
 - CHIMIQUES

1/Facteurs endogènes

a:/Facteurs génétiques:

- -Les facteurs génétiques ont un rôle variable selon le type de cancer:
- -MINEUR: certains cancers induits par des carcinogènes chimiques exp: véssie/exposition aux amines aromatiques
- <u>-rôle prépondérant</u>: dans certains cancers familiaux transmis sur un mode dominant exp:Polypose familiale; rétinoblastome

RETINOBLASTOME

- Le premier gène suppresseur de tumeur, Rb1,
 a été découvert dans le rétinoblastome.
- un cancer de l'œil chez l'enfant.
- ☐ le plus souvent avant l'âge de quatre ans.
- Dans la très grande majorité de ces cas (90%), il s'agit de l'altération des deux exemplaires du gène RB au niveau d'une cellule de la rétine acquise au cours de la petite enfance.

Colon gènes de prédisposition; Hmsh.hMLH1

Rôle intermédiaire probable:

-interaction complexe entre les facteurs

d'environnement et les facteurs génétiques

exp: cancers cutanés après exposition aux

uv; plus fréquents chez la race blanche

Facteurs endogènes

Facteurs hormonaux

- favorisent la croissance et la différenciation de certains cancers
- ✓ Cancer de l'endomètre et œstrogène : plus fréquent chez les femmes diabétiques, obèses et nullipares. dus à une augmentation des œstrogènes circulants

Cancer du sein et hormones: due a une

exposition prolongée aux œstrogènes /puberté

précoce ; ménopause tardive

Facteurs endogènes

Facteurs immunitaires

- Des déficiences immunitaires accroissent la fréquence de cancers spontanés ou induits par des virus ou des agents chimiques.
- carences immunitaires acquises: chez les sujets transplantes et subissant a traitement immunosuppresseur.

FACTEURS EXOGENES

INFECTIEUX: VIRUS +++++

-Des altérations génétiques des cellules cancéreuses peuvent être secondaires a l incorporation du génome viral dans le génome cellulaire:

Virus du groupe herpes

• Virus d epstein-Barre:lymphome de Burkitt

LYMPHOME DE BURKITT BUCCAL

HUMAIN PAPILLOMA VIRUS

• HPV 16;18 impliques dans le cancer du col

Facteurs exogènes

Agents chimiques:

- Les agents alkylants : cancer du poumon, du larynx,
- Arsenic : cancers de la peau, et du poumon
- Amiante : mésothéliome pleural
- Les hydrocarbures aromatiques polycycliques :
- Le tabac : cancer du poumon , larynx, la vessie

Facteurs exogènes

Agents physiques:

- Radiations ionisantes
- Traumatisme et inflammation :

CONCLUSION

- Le cancer constitue la deuxième cause de mortalité, après les maladies cardio vasculaires.
- Divers facteurs sont impliqués dans la carcinogenèse
- la connaissance de leur mode d'action, constitue une étape importante pour la prévention et le traitement des cancers.

BIBLIOGRAPHIE

- Collège Français des Pathologistes (CoPath)
- Charles Duyckaerts Pierre Fouret
 Jean-Jacques Hauw, Cours d'Anatomie
 Pathologiques, Université Pierre et Marie
 Curie, janvier 2003
- La cellule cancéreuse et le tissu cancéreux, association Française des Enseignants en Cytologie et anatomie Pathologiques (AFECAP)
- Cotran RS, Kumar V, Collins T. Robbins.
 Anatomie pathologique. Bases
 morphologiques et physiopathologiques des
 maladies Troisième édition française

