DESENVOLVIMENTO DE LABORATÓRIO REMOTO NA ÁREA DE CONTROLE INTEGRADO AO SMART CAMPUS

Luis Guilherme de Souza Munhoz ¹, Wânderson de Oliveira Assis ², Alessandra Dutra Coelho², Fernando de Almeida Martins^{2, 3}, Rogério Cassares Pires³

- Aluno de Iniciação Científica da Escola de Engenharia Mauá (EEM-CEUN-IMT);
 Professor da Escola de Engenharia Mauá (EEM-CEUN-IMT).
- ³ Engenheiro do Centro de Pesquisas do Instituto Mauá de Tecnologia (EEM-CEUN-IMT).

Resumo

Este trabalho de iniciação científica apresenta o desenvolvimento de um WebLab, ou seja, uma aplicação constituída de equipamentos e sistemas reais que podem ser acessados remotamente à distância por meio da internet. Trata-se de um sistema de controle de nível com interface amigável, responsiva e interativa que permite a implementação de sistemas de controle do tipo SISO (Single Input e Single Output) podendo ser acessada diretamente por meio de dispositivos móveis. A interface permite o monitoramento das variáveis do sistema por meio de dashboards e gráficos, o monitoramento da imagem do equipamento em tempo real e ajuste de valores de referência para o controle, o qual é implementado computacionalmente por meio de controladores PID (Proporcional, Integral e Derivativo) discretos. Adicionalmente o sistema inclui fácil acesso para usuários sem a utilização de software de terceiros assim como a integração com o Smart Campus do IMT, uma plataforma para integração de diversos projetos de Internet das Coisas.

Introdução

Os WebLab's vêm sendo implantados em diversas instituições desde os anos 90, apresentando soluções para operação remota geralmente utilizando software disponível comercialmente ou redes dedicadas (Fidalgo *et al.*, 2014; Mohammed; *et al.*, 2020; Assis e Coelho, 2020). No Instituto Mauá de Tecnologia diversos laboratórios remotos foram produzidos, sendo alguns deles direcionados para aplicações de controle de processos (Assis *et al.*, 2016; Assis *et al.*, 2013; Assis *et al.*, 2019) enquanto outros mostram aplicações de Internet das Coisas (IoT), aplicações industriais na área petrolífera (Matta *et al.*, 2019), engenharia biomédica e aplicação de robótica (Assis *et al.*, 2014). Todas estas aplicações utilizam software comercial de elevado custo e exigem do usuário a instalação de um *plugin* num procedimento demorado e que consome considerável espaço da memória. Além disso, a interface apresenta algumas limitações tais como dificuldade para controlar o acesso dos usuários bem como obter o cadastro para identificar o perfil dos mesmos.

Nesse sentido este projeto consiste na criação de um WebLab para ensino de controle em cursos de Engenharia, mas que apresente como diferencial a possibilidade de aplicação a qualquer sistema de controle do tipo SISO (*Single Input e Single Output*). Portanto pretende-se desenvolver uma solução que permita o monitoramento e controle de sistemas diversos, mas permita a aplicação de técnicas e estratégias didáticas para

modelagem e controle do sistema. Adicionalmente, a proposta é criar uma interface responsiva, didática e atraente para proporcionar o estímulo para que os alunos utilizem a ferramenta em diversos tipos de sistemas controlados remotamente.

Materiais e Métodos

Hardware

O projeto de iniciação científica foi dividido em duas partes de forma a viabilizar os experimentos no WebLab didaticamente seguindo de um experimento mais simples para outro mais complexo.

- Sistema de Monitoramento e Controle de Luminosidade

Primeiramente o sistema a ser controlado era constituído apenas de um potenciômetro, um LED e um ESP32 como ilustrado na Figura 1. O objetivo do experimento inicial era ler o valor do potenciômetro pelo pino analógico do ESP32, transmitir essa informação por meio de rede *WiFi* e por fim publicar essa informação por meio do Node-RED. O Node-RED trata-se de uma ferramenta de desenvolvimento baseada em fluxo de dados com programação gráfica para Internet das Coisas. Por meio da interface desenvolvida tornou-se possível monitorar a tensão no potenciômetro e retornar esta informação para o ESP32, no qual foi realizada programação visando acender o LED com uma luminosidade proporcional ao valor da tensão medida no potenciômetro, utilizando nesse caso um sinal PWM (*Pulse Width Modulation*).

Figura 1 – Esquema elétrico do primeiro experimento

PWM (*Pulse Width modulation*) é uma técnica para reduzir a potência média de um sinal elétrico, o deixando em máxima tensão por uma parte de tempo e em mínima tensão por uma outra parte de tempo. A frequência do sinal resultante é relativamente elevada de forma que a potência média desse sinal seja dada a partir da porcentagem de tempo em "on" multiplicado pela potência máxima do sinal. Essa porcentagem de tempo é denominada de *duty cicle*.

Numa segunda etapa foi removido o potenciômetro, e o controle da luminosidade do LED passou a ser controlado por meio de um *slider* do pacote de *dashboards* do Node-RED. Assim, controlado o *slider* com valores de 0 a 255 o usuário pode definir o valor a ser transmitido para o ESP32 visando controlar a luminosidade do LED. Assim, o

esquema de conexões do circuito eletrônico foi simplificado, obtendo-se o mostrado na Figura 2.

Figura 2 – Esquema elétrico do segundo experimento

- Sistema de Controle de Nível

O sistema de controle de nível da Figura 3 trata-se de uma planta de controle de fluidos da Festo, sendo constituído de um kit didático (bancada de vazão) para simulação de controle de processos. A bancada de vazão permite implementar o controle do nível, vazão e da temperatura do fluido de trabalho.

Figura 3 - Planta de controle de nível PCS Festo

A bancada é composta por dois tanques por onde circula água destilada através de dutos e válvulas, sensores de nível, vazão e temperatura, dois atuadores que regulam a temperatura e o fluxo e uma unidade de controle onde é realizado o controle de todas as variáveis do sistema. Nessa aplicação o foco é apenas no controle de nível do tanque superior.

Para desenvolver a aplicação de controle de nível foi utilizado um sensor de proximidade ultrassônico com alcance de 100 a 600 mm que produz corrente de 4 a 20mA em sua saída.

O atuador para controle de nível é uma bomba centrífuga controlada por tensão que permite bombear água do tanque inferior ao superior.

Em (Assis *et al.*, 2019) para o desenvolvimento do WebLab no sistema de controle de nível, foi utilizada uma placa Arduino que permitia que o controle fosse realizado por computador a partir de uma interface desenvolvida utilizando o software LabVIEWTM, onde o controle era realizado computacionalmente. Nesse caso a interface para monitoramento e controle foi desenvolvida utilizando LabVIEWTM, o qual facilita a implementação dos algoritmos de controle e sobretudo a criação de páginas de acesso remoto utilizando a função *WebServer*. Porém, além de ser um software com licença de custo elevado, para que os usuários acessem o experimento é exigido a instalação de um *plugin* em um procedimento demorado e que consome considerável espaço de memória da máquina do usuário. Esse procedimento costuma desencorajar os usuários, especialmente aqueles que não têm muito tempo para se dedicar durante o acesso aos experimentos. Adicionalmente, a placa Arduino utilizada é muito mais limitada em relação à placa ESP32 adotada neste projeto, possuindo maior espaço de memória RAM, maior velocidade de CPU, além de permitir a comunicação *wireless* com *Bluetooth* e *WiFi* em seu sistema.

- Desenvolvimento do Novo Sistema de Controle de Nível

Para solucionar essas limitações, a placa Arduino Uno foi substituída por um ESP32, no qual foram conectados o sensor de nível e o controle para acionamento da bomba (utilizando um circuito amplificador com ponte H) diretamente nos mesmos pontos do sistema com o LED e o potenciômetro. Assim, o diagrama de blocos do sistema, incluindo bancada de vazão, conversor de nível de tensão, ponte H para acionamento da bomba utilizando sinal PWM e fonte de alimentação para energizar o ESP32 é ilustrado na Figura 4.

Figura 4 - Diagrama de Blocos da Aplicação

Softwares

O desenvolvimento do WebLab, de modo geral, foi dividido em duas partes, o back-end e o front-end (Silva et al., 2019)

O *back-end* é responsável pelas comunicações entre a interface e o hardware e também é responsável pelo código implementado no próprio *hardware*, enquanto o *front-end* é responsável pela UX/UI (experiência do usuário e interface do usuário)

Para desenvolver o *front-end* foi utilizado o Node-RED, uma ferramenta interessante desenvolvida originalmente pela IBM para conectar dispositivos de hardware, APIs e serviços *online* como parte da Internet das Coisas.

Desenvolvimento

Conforme descrito anteriormente, o projeto pode ser dividido nas duas partes descritas a seguir.

- Desenvolvimento do back-end do sistema de controle de nível

Para mandar o sinal *PWM* e ligar a bomba, foi utilizada a mesma lógica do experimento de controlar a luminosidade do *LED*, porém, ao invés de utilizar um *slider* do pacote de *dashboards* do *Node-RED*, foi utilizado um *input* numérico do mesmo pacote onde o usuário digitava o *SetPoint* e o sinal *PWM* de 0 a 255 era enviado para a ponte H de forma a produzir uma tensão média correspondente na bomba.

As bibliotecas mais importantes utilizadas no ESP32 são mostradas a seguir na Figura 5:

Figura 5 – Bibliotecas importantes na aplicação com ESP32

```
#include <WiFiManager.h> // https://github.com/tzapu/WiFiManager
#include <WiFiUdp.h>
#include <ArduinoOTA.h>
#include <PubSubClient.h> // MQTT
#include "time.h"
```

A lógica do funcionamento da interface foi desenvolvida por meio de blocos de funções do *Node-RED* programados em *java-script*. Diversos blocos foram utilizados, dentre eles o *trigger*, que permite habilitar um tempo de espera para garantir que as mesmas sejam enviadas evitando sobrecarregar o hardware, *switches*, os quais são basicamente funções condicionais que definem a direção do fluxo de mensagens, *setters* que permitem realizar o ajuste de mensagens para valores definidos pelo programador e blocos *MQTT IN* e *MQTT OUT*, onde o *MQTT IN* recebe uma mensagem do ESP32 com os valores atuais de nível analógico e esforço de controle e o *MQTT OUT* permite o envio de mensagens para o ESP32 como por exemplo, o esforço de controle. A Figura 5 ilustra o funcionamento do *flow* do *Node-RED*.

Figura 6 – Flow de funcionamento do WebLab com front-end e back-end

- Desenvolvimento do front-end do sistema de controle de nível

A interface, mostrada na Figura 6, foi pensada para que funcionasse de forma imersiva, responsiva e interativa, onde o usuário digita valores das variáveis de controle e pode realizar diversos experimentos, como ensaio para identificar a relação linear entre nível x tensão medida no sensor, modelagem do sistema em resposta a degrau e sintonização de controladores PID discretos, por meio do pacote do *Node-RED* de *dashboards*. A maior vantagem de utilizar o *Node-RED* foi, com certeza, seu pacote de *dashboards*, o qual permitiu o desenvolvimento de uma interface do usuário com muitas funcionalidades, botões, *inputs* e templates, além da criação de um esboço dos dois tanques com animação onde conforme a água enche nos tanques reais a interface reproduz esse funcionamento. Nos *templates* foram utilizadas funções do *Javascript*, *HTML e CSS* para a implementação do esboço dos tanques além da implementação do *dashboard* com a imagem recebida da câmera em tempo real.

Resultados e Discussão

O projeto do laboratório remoto foi desenvolvido e pode ser acessado remotamente pelo link: https://weblab.maua.br/#!/9?socketid=h1STPbvscn7SOhESAATF.

Utilizando a interface apresentada na Figura 6, é possível desenvolver diversos experimentos tais como: ajuste dos parâmetros para calibração do sensor, modelagem do sistema de controle de nível por meio de ensaio de resposta a degrau, sintonia e avaliação de desempenho de controladores PID, etc.

Figura 7 – Imagem da interface do sistema de controle de nível

A solução pode ser acessada por qualquer usuário na interface integrada ao *Smart Campus* do IMT. Essa plataforma trata-se de uma iniciativa do IMT visando transformar o seu Campus de São Caetano do Sul, no ABC paulista, num *Smart Campus* em que dados sobre diversas aplicações de Internet das Coisas desenvolvidas pudessem ser publicados, monitorados e controlados. O acesso e monitoramento em tempo real do sistema pode ser feito pelo link http://smartcampus.maua.br/dash onde diversas variáveis monitoradas por meio de sensores nos trabalhos desenvolvidos encontram-se disponíveis.

- Experimentos

Para testar o funcionamento do WebLab foram realizados diversos experimentos, entre eles, foi feito um ensaio para ver o comportamento do nível do tanque superior em relação a tensão medida analogicamente. A Figura 7 ilustra esse funcionamento. A partir desse resultado foi definida a relação linear da Figura 8, a qual foi implementada no sistema. Observa-se que o gráfico decresce de forma praticamente linear. Adicionalmente pode-se perceber que para valores entre 0 e 44mm e entre 250 e 300mm ocorrem discrepâncias nas medidas limitando a operação do sistema a uma faixa entre 45 mm e 250 mm de altura.

Figura 8 – Imagem do ensaio realizado de nível x tensão

Figura 9 – Escala de trabalho do sistema de controle de nível

Um segundo experimento consiste na modelagem experimental do sistema, a partir do ensaio de resposta a degrau. Para isso o sistema foi submetido a variações na entrada do sistema (*Set Point*) monitorando o sinal do sensor (*SensorData*) como ilustrado na Figura 9.

Figura 10 – Comportamento do sistema em resposta a degrau

Por fim, a partir da modelagem matemática do sistema foi realizada a sintonia de controladores PID por meio de diversos métodos. O resultado do controle desenvolvido utilizando o método do cancelamento de polos produziu o resultado apresentado na Figura 9. Observa-se que por meio do projeto foi possível obter um controle eficiente, com praticamente total eliminação do erro estacionário e com redução do tempo de resposta até a estabilização. Uma exceção é para condições de *Set Point* mais elevados em que observou-se erro estacionário devido à saturação do sinal de controle.

Mais detalhes sobre o projeto do controlador PID discreto e os resultados experimentais e de simulação serão apresentados em trabalhos futuros.

Figura 11 – Ensaio do projeto de controlador com resposta 30x mais rápida no *WebLab*

Conclusões

O laboratório remoto, após a criação da nova interface, ilustrada na Figura 6, mostrou-se como uma ferramenta didática interativa, imersiva e responsiva de fácil acesso, tendo sido utilizado em vários experimentos didáticos e testes, inclusive por alunos da pós-graduação do Instituto Mauá de Tecnologia. O sistema inclui imagem da bancada em tempo real e a possibilidade de ajuste dos parâmetros do controlador PID, o qual teve seu algoritmo implementado no Node-RED. Gráficos mostram o *SetPoint*, ajustado pelo usuário e as medidas do sensor em tempo real. Os resultados obtidos são coerentes e demonstram a facilidade de utilizar a interface, podendo ser implementados diversos métodos de sintonia de controladores PID.

O maior benefício desse projeto é, devido a utilização do *Node-RED* como *back-end* e *front-end*, a possibilidade de implementar futuros *WebLab's* de diferentes áreas com o máximo de aproveitamento da interface utilizada e também do programa Arduino implementado no ESP32, com mínimas mudanças em algumas linhas de código a depender do novo sistema. Em conclusão, é mais uma ferramenta de pesquisa em prol do progresso da tecnologia integrada ao *SmartCampus* do Instituto Mauá de Tecnologia com muitas possibilidades de uso em futuros projetos na área de controle de processos.

Referências Bibliográficas

- Assis, W. O.; Coelho, A. D. Uso de Tecnologias de Acesso Remoto e WebLabs como Estratégia de Ensino-Aprendizagem no Contexto da Pandemia do Corona Vírus. *In*: CONGRESSO BRASILEIRO DE EDUCAÇÃO EM ENGENHARIA (COBENGE 2020), 47., 2019, **Anais...** ABENGE, 2020. Disponível em: http://dx.doi.org/10.37702/COBENGE.2020.3133. Acesso em: 02 mar. 2022.
- Assis, W. O.; Coelho, A. D.; Gedraite, R.; Matta, E. N.; Kunigk, L. An educational tool with remote access for teaching modelling control systems for Engineering courses. *In*: IASTED INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND IDENTIFICATION (MSI 2016), 6., Campinas, 2016. **Proceedings....** Campinas, 2016.
- Assis, W. O.; Coelho, A. D.; Pacheco, V. G.; Gedraite, R.; Pires, R. C. Applying the concept of WebLab in a playful way: the Electronic Engineering hands on. *In*: INTERNATIONAL CONGRESS OF SCIENCE EDUCATION (ICSE 2014), 2., 2014, Foz do Iguaçu. **Proceedings...** Foz do Iguaçu, 2014.
- Assis, W. O.; Coelho, A. D.; Souza Júnior, J. C.; Kunigk, L.; Morais, A. S.; Lemos, G. M.; Gedraite, E. S.; Takahashi, E. K.; Gedraite, R. WebLab for control applications in Engineering Education. *In*: IASTED INTERNATIONAL CONFERENCE ON WEB-BASED EDUCATION (WBE 2013), 10., 2013, Innsbruck, 2013. **Proceedings...** Innsbruck, 2013.
- Assis, W. O.; Gonçalves, H. S. B.; Silva, G. T.; Coelho, A. D. Uma aplicação de controle de nível com acesso remoto pela web (Weblab). *In*: CONGRESSO BRASILEIRO DE EDUCAÇÃO EM ENGENHARIA (COBENGE 2019), 47., 2019, Fortaleza. **Anais...** ABENGE: Fortaleza, 2019. Disponível

 em:

 http://www.abenge.org.br/sis_submetidos.php?acao=abrir&evento=COBENGE19&codigo=COBENGE19_00094_00002088.pdf. Acesso em: 02 mar. 2022.
- Fidalgo, A. V.; Alves, G. R.; Marques, M.A.; Viegas, M. C.; Costa-Lobo, M. C.; Hernandez-Javo, U.; Garcia-Zubia, J.; Gustavsson, I. Adapting remote labs to learning scenarios: case studies using VISIR and RemotElectLab. **IEEE Revista Iberoamericana de Tecnologias del Aprendizage**, v. 9, n. 1, p. 33-39, 2014. DOI: https://doi.org/10.1109/RITA.2014.2302071.
- Matta, E. N.; Assis, W. O.; Gomes, M. M.; Barbosa, V. P.; Gedraite, R.; Ataíde, C. H. Contribuição para o melhor aproveitamento de fluído de perfuração de poços de petróleo: uma abordagem utilizando processamento de imagem. **Brazilian Journal of Development**, Curitiba, v. 5, n. 4, p. 3645-3659, 2019. DOI: https://doi.org/10.34117/bjdv5n5-1528.
- Mohammed, A. K.; El Zoghby, H. M.; Elmesalawy, M. M. Remote controlled laboratory experiments for Engineering Education in the post-COVID-19 era: concept and example. *In*: *NOVEL INTELLIGENT AND LEADING EMERGING SCIENCES CONFERENCE (NILES)*, 2., 2020, Giza. **Proceedings...** IEEE: Giza, 2020, p. 629-634. DOI: https://doi.org/10.1109/NILES50944.2020.9257888.
- Silva, G. T.; Assis, W. O.; Coelho, A. D. Uma Nova Concepção de Laboratório Remoto e sua Utilização como Ferramenta Didática na Implementação de Sistema de Controle de Nível. *In: SEMINÁRIO MAUÁ DE INICIAÇÃO CIENTÍFICA*, São Caetano do Sul, SP, 2019.