

19th ANNUAL

May 5-8, 2018
Marriott Copley Place, Boston, MA

ASCeXAM/ReASCE REVIEW COURSE

ASEcho.org/LiveCourses

Course Director
Roberto M. Lang
MD, FASE

Course Co-Director
Susan E. Wieggers
MD, FASE

TRICUSPID AND PULMONARY VALVE DISEASE: NEW GUIDELINES

Karima Addetia, M.D.
Assistant Professor of Medicine
University of Chicago

THE NORMAL TRICUSPID VALVE COMPLEX

- I. Three leaflets
 - Anterior
 - Septal
 - Posterior
2. Fibrous annulus
3. Chordae tendinae
4. Papillary muscles
5. RA myocardium
6. RV myocardium

Courtesy Dr. Stephen P. Sanders,
Professor of Pediatrics (Cardiology),
Harvard Medical School

THE NORMAL TRICUSPID VALVE

Ton-Nu *Circulation*. 2006

PRIMARY “ORGANIC” TR

Intrinsic abnormality of TV leaflets and/or support apparatus

Acquired

- Degenerative, myxomatous
- Rheumatic disease
- Endocarditis
- Carcinoid
- Toxins
- Chest wall trauma
- Iatrogenic (leads, RV biopsy)
- Other (e.g. ischemic, PM rupture)

Congenital

- Ebsteins anomaly
- TV dysplasia
- TV tethering
 - Perimembranous VSD
 - Ventricular septal aneurysm
- Repaired tetralogy of Fallot
- Congenitally corrected TGA
- Other (giant RA)

• Other (e.g. ischemic, PM
rupture)

• Other (e.g. giant RA)

FUNCTIONAL TRICUSPID REGURGITATION

Pulmonary hypertension

70-85%* of TR

RV dysfunction

Left heart disease

TA dilatation
RV remodeling
PM displacement
TV tethering

FTR

Atrial fibrillation

RA abnormalities

Normal leaflets

Dreyfus G. J Am Coll Cardiol 2015;65:2331–6

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

I. Leaflets

- Prolapse, flail
- Thickening, restricted
- Adequate coaptation?
- Tethering/tenting
- Perforation/ Trauma

LEAFLETS: PRIMARY “ORGANIC” TR

RA perspective

Prolapse – all 3 leafets

LEAFLETS: PRIMARY “ORGANIC” TR

Traumatic Ruptured TV Leaflet

History of trauma - healed rib fracture

LEAFLETS: PRIMARY “ORGANIC” TR

Iatrogenic: due to lead impingement

Pre-op

Post-op

Addetia K et. al. J Am Soc Echocardiogr 2014;27(11):1164-75

LEAFLETS: PRIMARY “ORGANIC” TR

LEAFLETS: PRIMARY “ORGANIC” TR

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

Annulus diameter

FUNCTIONAL TRICUSPID REGURGITATION

Dreyfus et al. ATS 2005

- TA dilatation occurs mostly along the RV free-wall
- Septal portion of the tricuspid annulus relatively fixed

TRICUSPID REGURGITATION IS LOAD DEPENDENT

Pre/Post Peritoneal Dialysis: Normal Annular Dimension

Annulus diameter may be a better indicator of TV dysfunction than presence/absence of TR

MECHANISMS OF TRICUSPID REGURGITATION

TR is highly dependent on annular dilatation, with significant TR occurring with only 40% dilatation, whereas it was seen at 75% dilatation in vitro MV studies.
i.e. the TV leaks earlier than the MV

Spinner EM. Circulation 2011

IMPORTANCE OF TRICUSPID ANNULUS SIZE IN SECONDARY TR

- N = 311 who had MV repair
- TV annuloplasty performed if TA diameter ≥ 70 mm
- Performing tricuspid annuloplasty based on TA dilatation rather than TR degree results in improved surgical outcome

	MV + TV repair	MV repair only	
Event-free survival @ 10 y	90.5%	93%	p=NS
Grade III-IV TR	<1%	34%	p<0.001
Class III-IV CHF	0%	14%	P < 0.01

Dreyfus et al. Ann Thorac Surg, 2005

FUNCTIONAL TRICUSPID REGURGITATION

A diastolic diameter >40 mm
(or $>21\text{mm}/\text{m}^2$) indicates significant annular dilation

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

- 1. Tricuspid valve dysfunction**
 - Regurgitation: Jet area, VC, PISA, Jet density, Hepatic veins
 - Stenosis
- 2. Systolic PA pressure + IVC**
- 3. Associated left-sided heart disease**

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

A Report from the American Society of Echocardiography
Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

William A. Zoghbi, MD, FASE (Chair), David Adams, RCS, RDCS, FASE, Robert O. Bonow, MD, Maurice Enriquez-Sarano, MD, Elyse Foster, MD, FASE, Paul A. Grayburn, MD, FASE, Rebecca T. Hahn, MD, FASE, Yuchi Han, MD, MMSc,* Judy Hung, MD, FASE, Roberto M. Lang, MD, FASE, Stephen H. Little, MD, FASE, Dipan J. Shah, MD, MMSc,* Stanton Shernan, MD, FASE, Paaladinesh Thavendiranathan, MD, MSc, FASE,* James D. Thomas, MD, FASE, and Neil J. Weissman, MD, FASE, *Houston and Dallas, Texas; Durham, North Carolina; Chicago, Illinois; Rochester, Minnesota; San Francisco, California; New York, New York; Philadelphia, Pennsylvania; Boston, Massachusetts; Toronto, Ontario, Canada; and Washington, DC*

JASE 2017

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

Color Doppler Imaging

1. Jet area
2. Vena contracta
3. Proximal flow convergence

TR QUANTIFICATION: JET AREA

Pitfalls:

- Dependent on driving pressure, jet direction
 - May over-estimate central jets and underestimate eccentric jets

Zoghbi W. et. al. JASE 2017

TR QUANTIFICATION: VENA CONTRACTA

Pro

- Independent of flow rate and driving pressure for a fixed orifice
 - Less dependent on technical factors
 - Good for severe TR

Con

- Problematic in multiple jets
 - Convergence zone needs to be seen

Nyquist 50-60 cm/s

Zoghbi W. et. al. JASE 2017

TR QUANTIFICATION: 3D VENA CONTRACTA AREA

- 3D CD dataset
- Align orthogonal planes along jet
- Use mid-systole
- Limited spatial resolution may lead to overestimation

Zoghbi W. et al. JASE 2017

TR QUANTIFICATION: REGURGITANT VOLUME

Table 2 Diagnostic value for severe regurgitation of various thresholds of ERO area and RVol*

Parameter	Mitral regurgitation				Tricuspid regurgitation			
	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
ERO area								
$\geq 20 \text{ mm}^2$	96	37	35	96	97	36	45	96
$\geq 30 \text{ mm}^2$	92	61	46	96	97	70	65	98
$\geq 40 \text{ mm}^2$	88	76	56	95	94	89	82	96
RVol								
$\geq 30 \text{ mL}$	100	27	33	100	94	67	62	95
$\geq 45 \text{ mL}$	92	47	38	94	74	95	80	87
$\geq 60 \text{ mL}$	88	67	49	94	41	100	100	75

ERO, Effective regurgitant orifice; RVol, regurgitant volume; PPV, positive predictive value; NPV, negative predictive value.

*Thresholds written in boldface are those with the highest sum of sensitivity and specificity.

Tribouilloy et al. Journal of the American Society of Echocardiography Volume 15 Number 9

TR QUANTIFICATION: REGURGITANT VOLUME

Parameters	Mild	Moderate	Severe
Structural			
TV morphology	Normal or mildly abnormal leaflets	Moderately abnormal leaflets	Severe valve lesions (e.g., flail leaflet, severe retraction, large perforation)
RV and RA size	Usually normal	Normal or mild dilatation	Usually dilated*
Inferior vena cava diameter	Normal < 2 cm	Normal or mildly dilated 2.1- 2.5 cm	Dilated > 2.5 cm
Qualitative Doppler			
Color flow jet area [†]	Small, narrow, central	Moderate central	Large central jet or eccentric wall-impinging jet of variable size
Flow convergence zone	Not visible, transient or small	Intermediate in size and duration	Large throughout systole
CWD jet	Faint/partial/parabolic	Dense, parabolic or triangular	Dense, often triangular
Semiquantitative			
Color flow jet area (cm^2) [†]	Not defined	Not defined	>10
VCW (cm) [†]	<0.3	0.3-0.69	≥0.7
PISA radius (cm) [‡]	≤0.5	0.6-0.9	>0.9
Hepatic vein flow [§]	Systolic dominance	Systolic blunting	Systolic flow reversal
Tricuspid inflow [§]	A-wave dominant	Variable	E-wave >1.0 m/sec
Quantitative			
EROA (cm^2)	<0.20	0.20-0.39	≥0.40
RVol (2D PISA) (mL)	<30	30-44	≥45

Zoghbi W. et. al. JASE 2017

TR QUANTIFICATION: CONTINUOUS WAVE DOPPLER

Pro

- Simple
- Density is proportional to the number of RBCs reflecting the signal

Con

- Overlap between moderate and severe
- Pattern seen in severe TR may be present in patients with severely elevated RA pressure

Zoghbi W. et. al. JASE 2017

TR QUANTIFICATION: HEPATIC VEIN PULSE WAVE DOPPLER

Pro

- Simple
- Can be obtained with both TTE and TEE

Con

- Depends on compliance of the RA and RV
- Affected by respiration, preload, pacemaker rhythm, CHB and atrial fibrillation/flutter

Reversal of flow in the hepatic vein with severe TR

Feigenbaum's Echocardiography and Zoghbi W. et. al. JASE 2017

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

Systolic PA pressure + IVC

ECHOCARDIOGRAPHIC ASSESSMENT OF THE TV

$$\begin{aligned} P_1 - P_2 &= 4v^2 \\ P_1 &= 4v^2 \times P_2 \\ \text{RVSP} &= 4v^2 + P_{RA} \\ V &= \text{Peak velocity of TR jet} \\ P_{RA} &= \text{Jugular venous pulse} \\ &\quad (\text{estimated using IVC collapsibility}) \end{aligned}$$

Feigenbaum's Echocardiography 7th Edition

Parameters	Mild	Moderate	Severe
Structural			
TV morphology	Normal or mildly abnormal leaflets	Moderately abnormal leaflets	Severe valve lesions (e.g., flail leaflet, severe retraction, large perforation)
RV and RA size	Usually normal	Normal or mild dilatation	Usually dilated*
Inferior vena cava diameter	Normal < 2 cm	Normal or mildly dilated 2.1- 2.5 cm	Dilated > 2.5 cm
Qualitative Doppler			
Color flow jet area [†]	Small, narrow, central	Moderate central	Large central jet or eccentric wall-impinging jet of variable size
Flow convergence zone	Not visible, transient or small	Intermediate in size and duration	Large throughout systole
CWD jet	Faint/partial/parabolic	Dense, parabolic or triangular	Dense, often triangular
Semiquantitative			
Color flow jet area (cm^2) [†]	Not defined	Not defined	>10
VCW (cm) [†]	<0.3	0.3-0.69	≥0.7
PISA radius (cm) [‡]	≤0.5	0.6-0.9	>0.9
Hepatic vein flow [§]	Systolic dominance	Systolic blunting	Systolic flow reversal
Tricuspid inflow [§]	A-wave dominant	Variable	E-wave >1.0 m/sec
Quantitative			
EROA (cm^2)	<0.20	0.20-0.39	≥0.40
RVol (2D PISA) (mL)	<30	30-44	≥45

JASE 2017

NEW DIRECTIONS: EVALUATION OF FTR A MORE COMPREHENSIVE APPROACH

TABLE 1 Stages of Functional Tricuspid Regurgitation

	Stage 1	Stage 2	Stage 3
TR severity	None or mild	Mild or moderate	Severe
Annular diameter, mm	<40	>40	>40
Leaflet coaptation mode	Normal*	Edge-to-edge*	Absent†

*No leaflet tethering (<8 mm). †Leaflet tethering may be present (≥ 8 mm). ‡If leaflet tethering is present.
TR = tricuspid regurgitation.

Dreyfus, GD. et. al. J Am Coll Cardiol 2015

MECHANISMS OF TRICUSPID STENOSIS

Rheumatic

Infiltration

Rare

Carcinoid

Congenital, valvular or
pacemaker IE,
mechanical obstruction,
Lupus valvulitis

Consequence of TS

Tricuspid
stenosis

Elevation of
RA pressure

Right-sided
heart failure

TRICUSPID STENOSIS

Findings indicative of hemodynamically significant TS*

Specific findings

Mean pressure gradient	≥ 5 mmHg
Inflow time-velocity integral	>60 cm
$T_{1/2}$	≥ 190 ms
Valve area by continuity equation ^a	$\leq 1 \text{ cm}^2$ ^a

Supportive findings

- Enlarged right atrium \geq moderate
- Dilated inferior vena cava

^aStroke volume derived from left or right ventricular outflow. In the presence of more than mild TR, the derived valve area will be underestimated. Nevertheless, a value $\leq 1 \text{ cm}^2$ implies a significant haemodynamic burden imposed by the combined lesion.

*with or without regurgitation

Zoghbi W. et. al. JASE 2017

THE NORMAL PULMONIC VALVE

The PV is a semilunar valve with 3 cusps

Aims of imaging

- Inspection of valve and leaflets
- Quantify stenosis/regurgitation
- Assess the RVOT
- Pulmonary annulus
- Main PA
- Proximal PA branches
- RV size and function

PR QUANTIFICATION: VENA CONTRACTA AND JET WIDTH: PV ANNULUS RATIO

Pro

- VC is a surrogate for ERO, is independent of flow rate and driving pressure for a fixed orifice
- Less dependent on technical factors

Con

- Problematic in multiple jets
- No cut-offs

Vena contracta width

Jet:Annulus ratio

1. Vena contracta width
2. Jet : PV annulus ratio >0.5 correlates with severe PR on CMR
3. Jet length (<10 mm = mild PR)
4. Jet area

Use: Parasternal SAX or subcostal views, zoomed in diastole

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: PULSE WAVE DOPPLER

Pro

- Simple supportive sign of severe PR

Con

- Depends on compliance of the PA
- Brief velocity reversal is normal

PW Doppler flow reversal in branch PA

Align ultrasound beam with the flow in the RPA and LPA. Obtain PWD from both branch PAs

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: CONTINUOUS WAVE DOPPLER

Pro

- Simple
- Density is proportional to the number of red blood cell reflecting the signal
- Faint/incomplete jet is compatible with mild PR
- Values of PHT <100 msec are consistent with severe PR

Con

- Poor alignment of Doppler may occur in eccentric jets
- Affected by RV and PA pressure

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: CONTINUOUS WAVE DOPPLER

N=34; Repaired TOF. Echo/CMR within 3 months

RF = Regurgitant fraction measured on CMR. RV end-diastolic volumes also measured on CMR

Silversides CK et. al. J Am Soc Echocardiogr 2003;16:1057-62

PR QUANTIFICATION: REGURGITANT VOLUME AND FRACTION

Pro

- Simple
- Density is proportional to the number of red blood cell reflecting the signal
- Faint/incomplete jet is compatible with mild PR
- Values of PHT <100 msec are consistent with severe PR

Con

- Poor alignment of Doppler may occur in eccentric jets
- Affected by RV and PA pressure

The top row shows a color Doppler image of a regurgitant jet labeled "Mild PR" and a corresponding pulsed-wave Doppler waveform labeled "Faint signal". The bottom row shows a color Doppler image of a more intense regurgitant jet labeled "Severe PR" and a corresponding pulsed-wave Doppler waveform labeled "Dense signal".

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: REGURGITANT VOLUME AND FRACTION

A RVOT Diam = 3.0 cm
B RVOT VTI = 18.5 cm
C LVOT Diam = 2.1 cm
D LVOT VTI = 20.59 cm

RVOT diameter **RVOT VTI**
LVOT diameter **LVOT VTI**

$$\text{RVol} = \text{SV}_{\text{RVOT}} - \text{SV}_{\text{LVOT}}$$

$$\text{SV}_{\text{LVOT}} = \text{CSA}_{\text{LVOT}} * \text{VTI}_{\text{LVOT}}$$

$$\text{SV}_{\text{RVOT}} = \text{CSA}_{\text{RVOT}} * \text{VTI}_{\text{RVOT}}$$

$$\text{CSA}_{\text{LVOT}} = 0.785 * d_{\text{LVOT}}^2 * \text{VTI}_{\text{LVOT}}$$

$$\text{CSA}_{\text{RVOT}} = 0.785 * d_{\text{RVOT}}^2 * \text{VTI}_{\text{RVOT}}$$

$$\text{RVol} = (0.785 * 3^2 * 18.5) - 0.785 * 2.1^2 * 20.59$$

$$\text{RVol} = 131 - 71$$

$$\text{RVol} = 60 \text{ mL}$$

$$\text{RF} = \text{RVol}/\text{SV}_{\text{RVOT}}$$

$$\text{RF} = 60/131 = 46\%$$

$\text{CSA}_{\text{LVOT}} = \pi r_{\text{LVOT}}^2 \text{ with } r = \text{LVOT}/2$

$\text{CSA}_{\text{LVOT}} = 0.785 * d_{\text{LVOT}}^2$

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: REGURGITANT VOLUME AND FRACTION

Pro

- Valid with multiple jets
- Quantitative

Con

- RVOT probably most difficult site to measure SV
- In case of AR would need to use mitral annulus site
- Scant experience

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: REGURGITANT VOLUME AND FRACTION BY CMR

Forward SV by phase contrast was 129 mL, and reverse (regurgitant) volume was 78 mL, yielding an RF of 60%

Zoghbi W. et. al. JASE 2017

PR QUANTIFICATION: SUMMARY

Table 16 Echocardiographic and Doppler parameters useful in grading PR severity

Parameter	Mild	Moderate	Severe
Pulmonic valve	Normal	Normal or abnormal	Abnormal and may not be visible
RV size	Normal*	Normal or dilated	Dilated†
Jet size, color Doppler‡	Thin (usually <10 mm in length) with a narrow origin	Intermediate	Broad origin; variable depth of penetration
Ratio of PR jet width/pulmonary annulus			>0.7§
Jet density and contour (CW)	Soft	Dense	Dense; early termination of diastolic flow
Deceleration time of the PR spectral Doppler signal			Short, <260 msec
Pressure half-time of PR jet			<100 msec
PR index¶		<0.77	<0.77
Diastolic flow reversal in the main or branch PAs (PW)			Prominent
Pulmonic systolic flow (VTI) compared to systemic flow (LVOT VTI) by PW	Slightly increased	Intermediate	Greatly increased
RF**	<20%	20%-40%	>40%

Zoghbi W. et. al. JASE 2017

MECHANISMS OF PULMONARY STENOSIS

Congenital

The valve can be tri-leaflet, bicuspid, unicuspid, dysplastic

Associated with TOF, DORV, complete AV canal defect

Peripheral PS may co-exist with PS (Noonanss, Williams)

Most common

Acquired

Rheumatic, Carcinoid (combined stenosis and regurgitation)

Functional pulmonary stenosis (external compression of RVOT)

Proximal (RVOT) stenosis
Supra-valvular stenosis

PS QUANTIFICATION

RV
RA
AV
LA
PA

CW Doppler

Peak Gradient = 35 mmHg

Bernoulli equation $P=4V^2$

	Mild	Moderate	Severe
Peak velocity (m/s)	<3	3–4	>4
Peak gradient (mmHg)	<36	36–64	>64

Feigenbaum's Echocardiography and Hung J. et. al. JASE 2009

PS QUANTIFICATION

RA
branch stenosis (5%)
supravalvular (1-2%)
valvular (80-90%)
subvalvular (±5%)
RV

CW Doppler

Peak Gradient = 35 mmHg

Bernoulli equation $P=4V^2$

	Mild	Moderate	Severe
Peak velocity (m/s)	<3	3–4	>4
Peak gradient (mmHg)	<36	36–64	>64

Cuypers JAAE, et al Heart 2013
Feigenbaum's Echocardiography and Hung J. et. al. JASE 2009

PS QUANTIFICATION

$sPAP = RVSP - PV$
pressure gradient

CW Doppler
Peak Gradient = 35 mmHg

Bernoulli equation $P = \frac{1}{2} \rho V^2$

	Mild	Moderate	Severe
Peak velocity (m/s)	<3	3–4	>4
Peak gradient (mmHg)	<36	36–64	>64

Cuypers JAAE, et al Heart 2013
Feigenbaum's Echocardiography and Hung J. et. al. JASE 2009

PS QUANTIFICATION

CW Doppler
Peak Gradient = 35 mmHg

CW Doppler
Peak Gradient = 35 mmHg

Bernoulli equation $P = \frac{1}{2} \rho V^2$

	Mild	Moderate	Severe
Peak velocity (m/s)	<3	3–4	>4
Peak gradient (mmHg)	<36	36–64	>64

Feigenbaum's Echocardiography and Hung J. et. al. JASE 2009

