المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدة: ساعتان

لهيئة الأكاديمية المشتركة قسم: الرياضيات

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

Dans l'espace rapporté à un repère orthonormé $(0,\vec{t},\vec{j},\vec{k})$, on considère le plan (P) d'équation: (P): x + y + z - 1 = 0, et les deux droites (d) et (d') d'équations:

$$(d) \begin{cases} x = t - 1 \\ y = t + 1 \\ z = -2t + 1 \end{cases}$$
 et
$$(d') \begin{cases} x = -1 \\ y = m + 1 \text{ Où } m \text{ et } t \text{ sont deux paramètres réels.} \\ z = 2m - 2 \end{cases}$$

- 1- a) Vérifier que (d) est contenue dans (P).
 - b) Calculer les coordonnées de I, le point d'intersection de (d') et (P).
 - c) Montrer que (d) et (d') sont non coplanaires.
- 2- Soit (Q) le plan contenant (d') et perpendiculaire à (P), et soit (Δ) la droite d'intersection de (P) et (Q).
 - a) Montrer que x 2y + z + 5 = 0 est une équation de (Q).
 - b) Ecrire un système d'équations paramétriques de (Δ) .
 - c) Prouver que (d) et (Δ) se coupent en E(0, 2, -1).
- 3- Soit *F* le point de (*d*) tel que \overrightarrow{IE} . $\overrightarrow{IF} = \frac{1}{2}$.
 - a) Calculer les coordonnées de F.
 - b) Prouver que le triangle *IEF* est semi-équilatéral.

II- (4 points)

Dans le plan complexe rapporté au repère $(0; \vec{u}, \vec{v})$, on donne les points M(z), M'(z'), I(1+2i) et E(5). Les deux nombres complexes z et z' sont tels que z' = 2iz + 5.

- 1- a) Si z est imaginaire pur, prouver que z'est réel.
 - b) Si $z' = 5i\sqrt{3}$, écrire z en forme exponentielle.
- 2- a) Prouver que $z_{\overrightarrow{IM'}} = 2iz_{\overrightarrow{IM'}}$.
 - b) Exprimer IM' en fonction de IM. Prouver que $(\overrightarrow{IM}, \overrightarrow{IM'}) = \frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{Z})$.
 - c) Déduire que si M décrit la droite(Δ) d'équation (x=1), alors M' décrit une droite dont on déterminera son équation.
- 3- Soit z = x + i y et z' = x' + i y', où x, y, x', et y' sont des nombre real.
 - a) Exprimer x' et y' en fonction de y et x.
 - b) Si x + 2y = 5, montre que (MM') est parallèle à (y'y), puis utiliser le résultat $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ pour construire M' lorsque x + 2y = 5.
 - c) Si M' décrit le cercle (C') de centre E et de rayon 2, prouver que M décrit le cercle (C) de centre O et de rayon 1.

III- (4 points)

On trouve ci-dessous le résultat d'un sondage sur 500 personnes :

- 70% de ces personnes sont des femmes
- 300 femmes suivent un régime d'alimentation
- 80% de la population du sondage suit un régime d'alimentation.

Partie A

Une personne est choisie au hasard, et on considère les évènements suivants

F: La personne choisie est une femme.

R: La personne choisie suit un régime d'alimentation.

- 1- Prouver que $P(R/F) = \frac{6}{7}$.
- 2- a) Calculer $P(R \cap F)$, puis déduire $P(R \cap \overline{F})$.
 - b) Prouver $P\left(\frac{R}{\bar{F}}\right) = \frac{2}{3}$.
- 3- Sachant que la personne choisie ne suit pas un régime d'alimentation, prouver que la probabilité que cette personne est un homme est 0,5.

Partie B

Dans cette partie, deux personnes sont choisies au hasard et simultanément du groupe des personnes qui **ne suivent pas le régime**. Soit X la variable aléatoire qui est égale au nombre des hommes parmi ces deux personnes.

- 1- Prouver que $P(X=2) = \frac{49}{198}$
- 2- Déterminer la loi de probabilité de X.
- 3- Si X désigne le nombre de femmes parmi les deux personnes choisies, la loi de probabilité doit changer ? Justifier.

IV- (8 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2 - \frac{4e^x}{1+e^x}$.

Soit (C) sa courbe représentative dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1- a) Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. Déduire que (C) admet deux asymptotes.
 - b) Prouver que f est une fonction impaire, puis donner une interprétation graphique au résultat.
- 2- a) Calculer f'(x) et dresser le tableau de variations de f.
 - b) Ecrire une équation de (T), la tangente en O à (C).
 - c) Tracer (T) et (C).
- 3- a) Prouver que f admet une fonction réciproque g.
 - b) Déterminer le domaine de définition de g. Exprimer g(x) en fonction de x.
 - c) Prouver que la courbe (C') de g est tangente en O à (C). Tracer (C') dans le même repère que (C).
- 4- Soit (D) le domaine limité par (C'), y'y et la droite d'équation (y = a) avec a > 0.
 - a) Calculer l'aire de (D) en fonction de a.
 - b) Trouver a pour que cette aire soit égale à 4ln2 unité d'aire.

المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

سس التصحيح

1-a Substituer les équations paramétriques de (d) dans (P) , $t-1+t+l-2t+l-1=0 \Rightarrow (d) \subset (P)$ 0,25 Substituer les équations paramétriques de (d') dans (P) , $t-1+m+l+2m-2t-1=0 \Rightarrow m-1$, Alors (d') 0,5 coupe (P) en $I(-1,2,0)$. 0,5 dons (d) & (d') sont non coplanaires ou concourantes , mais I appartient à (d') et n'appartient pas à (d) 3 alors (d) & (d') sont non coplanaires. Ou résoudre le système de 3 équations deux inconnues (d') &	QI	Eléments de réponses	Note
coupe (P) en I(-I,2,0). 1-c $\overrightarrow{V}_d \neq \alpha \overrightarrow{V}_d$ non coplanaires ou concourantes , mais I appartient à (d') et n'appartient pas à (d) alors (d) & (d') sont non coplanaires. Ou résoudre le système de 3 équations deux inconnues 2-a $\overrightarrow{N}_{(O)}$. $\overrightarrow{N}_{r} = 0$ donc ils ne sont pas perpendiculaires. Ou \overrightarrow{IM} . $(\overrightarrow{V}_d \times \overrightarrow{\pi}_{(P)}) = 0$ 2-b $\overrightarrow{V}_{(A)} = \overrightarrow{N}_{(P)} \times \overrightarrow{N}_{(Q)} = \begin{vmatrix} 1 & j & k \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\vec{i} - 3\vec{k}$ et $I \in (\Delta)$ alors $\overrightarrow{IM} = \alpha \overrightarrow{V}_{(\Delta)}$. (Δ): $\begin{cases} x = 3\alpha - 1 \\ y = 2 \\ z = -3\alpha \end{cases}$ 2-c Substituer les coordonnées de \overrightarrow{E} dans (d) . $\Rightarrow t=1 \Rightarrow E \in (d)$, et pour $\alpha = \frac{1}{3}E \in (\Delta)$. 3-a $\overrightarrow{F} \in (d) \Rightarrow F(t-I, t+I, -2t+I)$, $\overrightarrow{IF}(t, t-I, -2t+I)$, $\overrightarrow{IE}(1, 0, -1)$ \overrightarrow{IF} , $\overrightarrow{IE} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(\frac{1}{2}, \frac{3}{2}, 0)$, 3-b $\overrightarrow{IF} \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$ et \overrightarrow{IF} . $\overrightarrow{IE} = \frac{1}{2}$ alors \overrightarrow{IE} . Fixe $\overrightarrow{IE} = \frac{1}{2}$ alors \overrightarrow{IE} feet un triangle semi équilatéral en at F. QII SEMENTAL SUMS SUMS SUMS SUMS SUMS SUMS SUMS SUM	1-a		0,25
alors(d) & (d') sont non coplanaires. Ou résoudre le système de 3 équations deux inconnues Substituer les équations paramétriques de (d')dans (Q). $-1 - 2m - 2 + 2m - 2 + 5 = 0$ alors $(d') \subset (Q)$ $\vec{N}(Q)$. $\vec{N}_F = 0$ donc ils ne sont pas perpendiculaires. Ou \vec{IM} . $(\vec{V}_{d'} \times \vec{n}_{(P)}) = 0$ 2-b $\vec{V}_{(A)} = \vec{N}_{(P)} \times \vec{N}_{(Q)} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\vec{l} - 3\vec{k}$ et $l \in (\Delta)$ alors $\vec{IM} = \alpha \vec{V}_{(\Delta)}$. (Δ) : $\begin{cases} x = 3\alpha - 1 \\ y = 2 \\ z = -3\alpha \end{cases}$ 2-c Substituer les coordonnées de E de dans (d) . $\Rightarrow t = l \Rightarrow E \in (d)$, et pour $\alpha = \frac{1}{3}E \in (\Delta)$. 3-a $\vec{IF} \cdot (\vec{l}_{-1}, l + l, -2t + 1)$. $\vec{IF}(t, t - l, -2t + 1)$. $\vec{IE}(1, 0, -1)$ $\vec{IF} \cdot (\vec{l}_{-2} - \vec{l}_{-2})$ et $\vec{IF} \cdot \vec{IE} = \frac{1}{2}$ alors $\vec{IE} \cdot \vec{IE} = \frac{1}{2}$ alors $\vec{IE} \cdot \vec{IE} = \frac{1}{2}$ alors $\vec{IF} \cdot \vec{IE} \cdot \vec{IE} \cdot \vec{IE} \cdot \vec{IE} \cdot \vec{IE} \cdot \vec{IE} \cdot I$	1-b		0,5
2-a $\overline{N}_{(Q)}$. $\overline{N}_F = 0$ donc ils ne sont pas perpendiculaires. Ou \overline{M} . $(\overline{V}_{d'} \times \overline{n}_{(p)}) = 0$ 2-b $\overline{V}_{(\Delta)} = \overline{N}_{(P)} \times \overline{N}_{(Q)} = \begin{vmatrix} \overline{l} & \overline{l} & \overline{l} \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\overline{l} - 3\overline{k}$ et $l \in (\Delta)$ alors $\overline{M} = \alpha \overline{V}_{(\Delta)}$. (Δ) : $\begin{cases} x = 3\alpha - 1 \\ y = 2 \\ z = -3\alpha \end{cases}$ 2-c Substituer les coordonnées de E dans (d) . $\Rightarrow t - 1 \Rightarrow E \in (d)$, et pour $\alpha = \frac{1}{3}E \in (\Delta)$. 0,5 3-a $\overline{F} \in (d) \Rightarrow F(t-l,t+l,-2t+l)$, $\overline{IF}(t,t-l,-2t+l)$, $\overline{IE}(1,0,-1)$ \overline{IF} , $\overline{IE} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(\frac{1}{2}, \frac{3}{2}, 0)$. 3-b $\overline{IF} \left(\frac{1}{2}, \frac{1}{2}, 0\right)$ et \overline{IF} . $\overline{IE} = \frac{1}{2}$ alors IE . $IE = \frac{1}{2}$ alors IE . IE	1-c		0,5
2-b $ \vec{V}_{(\Delta)} = \vec{N}_{(P)} \times \vec{N}_{(Q)} = \begin{vmatrix} \vec{l} & \vec{J} & \vec{k} \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\vec{i} - 3\vec{k}$ et $l \in (\Delta)$ alors $ \vec{lM} = \alpha \vec{V}_{(\Delta)} $. (Δ) : $\begin{cases} x = 3\alpha - 1 \\ y = 2 \\ z = -3\alpha \end{cases}$ 0.5 2-c Substituer les coordonnées de \vec{E} dans $(d) \Rightarrow t = 1 \Rightarrow \vec{E} \in (d)$, et pour $\alpha = \frac{1}{3}\vec{E} \in (\Delta)$. 0.5 3-a $ \vec{F} \in (d) \Rightarrow F(t-l, t+l, -2t+l), \vec{F} (t, t-l, -2t+l), \vec{E} (1, 0, -1)$ 0.5 3-b $ \vec{F} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(-\frac{1}{2}, \frac{3}{2}, 0)$ 0.5 3-b $ \vec{F} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(-\frac{1}{2}, \frac{3}{2}, 0)$ 0.75 P(I) $ \vec{F} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(-\frac{1}{2}, \frac{3}{2}, 0)$ 0.75 P(I) $ \vec{F} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(-\frac{1}{2}, \frac{3}{2}, 0)$ 1.76 1-a $ \vec{F} = \frac{1}{2} \Rightarrow t \Rightarrow f(-\frac{1}{2}, \frac{3}{2}, 0)$ 1.77 1-a $ \vec{F} = \frac{1}{2} \Rightarrow t \Rightarrow f(-\frac{1}{2}, \frac{3}{2}, 0)$ 1.75 1-b $ \vec{F} = \frac{1}{2} \Rightarrow t \Rightarrow f(-\frac{1}{2}, \frac{3}{2}, 0)$ 2.75 2-a $ \vec{F} = \frac{1}{2} \Rightarrow t \Rightarrow f(-\frac{1}{2}, \frac{3}{2}, 0)$ 2.75 2-b $ \vec{F} = \frac{1}{2} \Rightarrow t \Rightarrow f(-\frac{1}{2}, \frac{3}{2}, \frac{3}{2}) \Rightarrow f(-\frac{1}{2}, \frac{3}{2}) \Rightarrow f(-\frac{1}$	2-a		0,5
3-a	2-b		0,5
3-a $\overline{IF}, \overline{IE} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(\frac{1}{2}, \frac{3}{2}, 0),$ $\overline{IF}(\frac{1}{2}, \frac{1}{2}, 0) \text{ et } \overline{IF}, \overline{IE} = \frac{1}{2} \text{ alors } IE.IFccs(\overline{IF}, \overline{IE}) = \frac{1}{2} \text{ alors } cos(\overline{IF}, \overline{IE}) = \frac{1}{2} \text{ alors } E\overline{IF} = \frac{\pi}{3} \text{ et}$ $\overline{FE}(\frac{1}{2}, \frac{1}{2}, -1), \overline{FI}, \overline{FE} = 0 \text{ alors } I\overline{FE} = \frac{\pi}{2} \text{ donc } IEF \text{ est un triangle semi équilatéral en at F.}$ O,75 $\overline{FE}(\frac{1}{2}, \frac{1}{2}, -1), \overline{FI}, \overline{FE} = 0 \text{ alors } I\overline{FE} = \frac{\pi}{2} \text{ donc } IEF \text{ est un triangle semi équilatéral en at F.}$ Note Si Z est imaginaire pur, alors $Z = yi$ où y est un réel non nul. $Z' = 2i(yi) + 5 = 5 - 2y$ qui est un réel. 1-a $Z' = 5i\sqrt{3} \text{ alors } Z = \frac{5i\sqrt{3} - 5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$ 0,5 2-a $Z_{\overline{IMI}} = Z' - Z_{\overline{I}} = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overline{IM}}$ 0,25 2-b $Z_{\overline{IMI}} = 2i \text{ alors } IM' = 2IM \text{ et } (\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 0,5 2-c $M \text{ varies sur une droite } (\Delta) \text{ passant par I, et comme } (\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi \text{ donc } M' \text{ décrit la droite passant par I et } \perp (\Delta) \text{ d'équation } y = 2.$ 3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$ alors $x' = 5 - 2y \text{ et } y' = 2x$. Si $x + 2y = 5$, alors $x = 5 - 2y = x' \text{ donc } (MM') \nearrow P(y'y) \text{ comme } M \text{ est sur la droite } (d) \text{ d'équation } x + 2y = 5, \text{ qui passe par } I \text{ alors } M' \text{ est le point d'intersection de la droite } \perp \text{ en } I \text{ al } \text{ d) avec la } \nearrow P \text{ en } M \text{ a } (y'y).}$ O,75 Q \overline{IM} Eléments de Réponses Le nombre des femmes est $0.7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300, donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ O,5 A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$	2-c	Substituer les coordonnées de E dans (d) . $\Rightarrow t=1 \Rightarrow E \in (d)$, et pour $\alpha = \frac{1}{3}E \in (\Delta)$.	0,5
3-b $\overrightarrow{FE}\left(\frac{1}{2}, \frac{1}{2}, -1\right)$, $\overrightarrow{Fl}.\overrightarrow{FE}=0$ alors $\widehat{IFE}=\frac{\pi}{2}$ donc IEF est un triangle semi équilatéral en at F. QII Eléments de réponses Note Si Z est imaginaire pur, alors $Z=yi$ où y est un réel non nul. $Z'=2i(yi)+5=5-2y$ qui est un réel. 0,5 1-b $Z'=5i\sqrt{3}$ alors $Z=\frac{5i\sqrt{3}-5}{2i}=\frac{5\sqrt{3}}{2}+\frac{5}{2}i=5e^{\frac{\pi}{6}i}$ 0,5 2-a $Z_{\overrightarrow{IMi}}=Z'-Z_1=2iZ+4-2i=2i(Z-1-2i)=2iZ_{\overrightarrow{IM}}$ 0,22 2-b $\frac{Z_{\overrightarrow{IMi}}}{Z_{\overrightarrow{IM}}}=2i$ alors $IM=2IM$ et $(\overrightarrow{IM},\overrightarrow{IM'})=\frac{\pi}{2}+2k\pi$ 0,5 3-a $X'+iy'=2i(x+iy)+5=5-2y+2xi$. alors $X'=5-2y$ et $Y'=2x$. Si $X=2y=5$, alors $X=5-2y=X'$ donc $(MM')\nearrow Y(y'y)$ comme M est sur la droite (A) d'équation $X=2$ en $X=2$ de la droite $X=2$ en $X=$	3-a		0,5
Q IIEléments de réponsesNote1-aSi Z est imaginaire pur, alors $Z = yi$ où y est un réel non nul.0,51-b $Z' = 2i(yi) + 5 = 5 - 2y$ qui est un réel.0,51-b $Z' = 5i\sqrt{3}$ alors $Z = \frac{5i\sqrt{3}-5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$ 0,52-a $Z_{\overline{IMi}} = Z' - Z_I = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overline{IM}}$ 0,252-b $\frac{Z_{\overline{IM}}}{Z_{\overline{IM}}} = 2i$ alors $IM' = 2IM$ et $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 0,52-c M varies sur une droite (Δ) passant par I, et comme $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ donc M' décrit la droite passant par I et \bot (Δ) d'équation $y=2$.0,53-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$ alors $x' = 5 - 2y$ et $y' = 2x$.0,5Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow \nearrow (y'y)$ comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \bot en I à (d) avec la $\nearrow \nearrow$ en M à $(y'y)$.0,753-c $EM' = 2 \Rightarrow (x' - 5)^2 + y'^2 = 4 \Rightarrow x^2 + y^2 = 1 \Rightarrow M$ varie sur le cercle (C) de centre O et de rayon 1.0,5Q IIIEléments de RéponsesNoteA-1Le nombre des femmes est $0,7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300, donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ 0,5A-2a $P(R \cap F) = P(F) \times P(R/F) = 0,7 \times \frac{6}{7} = 0,6$ 0,75	3-b		0,75
1-a Si Z est imaginaire pur, alors $Z = yi$ où y est un réel non nul. $Z' = 2i(yi) + 5 = 5 - 2y$ qui est un réel. 1-b $Z' = 5i\sqrt{3}$ alors $Z = \frac{5i\sqrt{3}-5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$ 2-a $Z_{\overline{IM'}} = Z' - Z_I = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overline{IM}}$ 2-b $\frac{Z_{\overline{IM'}}}{Z_{\overline{IM}}} = 2i$ alors $IM' = 2IM$ et $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 2-c M varies sur une droite (Δ) passant par I, et comme $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ donc M' décrit la droite passant par I et \bot (\bot (\bot d'équation \bot y=2. 3-a \bot	Q II	Eléments de réponses	Note
1-b $Z' = 5i\sqrt{3}$ alors $Z = \frac{5i\sqrt{3}-5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$ 0,5 2-a $Z_{\overline{IM'}} = Z' - Z_I = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overline{IM}}$ 0,25 2-b $\frac{Z_{\overline{IM'}}}{Z_{\overline{IM'}}} = 2i$ alors $IM' = 2IM$ et $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 0,5 2-c M varies sur une droite (Δ) passant par I, et comme $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ donc M' décrit la droite passant par I et \bot (Δ) d'équation $y = 2$. 3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$. alors $x' = 5 - 2y$ et $y' = 2x$. 0,5 Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow \nearrow (y'y)$ comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \bot en \bot à (\bot) alors \bot en \bot warie sur le cercle (\bot) de centre \bot et de rayon 1. 0,75 Q III \bot Eléments de Réponses \bot Note Le nombre des femmes est $0,7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300, donc $D(R/F) = \frac{300}{350} = \frac{6}{7}$ 0,5 A-2a $D(R/F) = D(F) \times D(R/F) = 0,7 \times \frac{6}{7} = 0,6$ 0,75		Si Z est imaginaire pur, alors $Z = yi$ où y est un réel non nul. $Z' = 2i(yi) + 5 = 5 - 2y$ qui est un réel.	0,5
2-b $\frac{2\overline{M}i}{Z_{\overline{IM}}} = 2i$ alors $IM' = 2IM$ et $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 0,5 2-c M varies sur une droite (Δ) passant par I, et comme ($\overline{IM}, \overline{IM'}$) = $\frac{\pi}{2} + 2k\pi$ donc M' décrit la droite passant par I et \perp (Δ) d'équation y=2. 3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$. alors $x' = 5 - 2y$ et $y' = 2x$. 0,5 Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc (MM') \nearrow (y' y) comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \perp en I à (I) avec la \nearrow en I à (I) avec la \nearrow en I à (I) avec la I en I and I expression I expression I . QIII Eléments de Réponses Note Le nombre des femmes est I 0,7 × 500 = 350. Le nombre des femmes qui font un régime alimentaire est 300, donc I 0,75 A-2a I 1 en I 2 et I 3 et I 3 en I 4 en I 5 en I 6 en I 7 en I 7 en I 8 en I 9 en	1-b	$Z' = 5i\sqrt{3} \text{ alors } Z = \frac{5i\sqrt{3}-5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$	0,5
2-b $\frac{2\overline{M}i}{Z_{\overline{IM}}} = 2i$ alors $IM' = 2IM$ et $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ 0,5 2-c M varies sur une droite (Δ) passant par I, et comme ($\overline{IM}, \overline{IM'}$) = $\frac{\pi}{2} + 2k\pi$ donc M' décrit la droite passant par I et \perp (Δ) d'équation y=2. 3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$. alors $x' = 5 - 2y$ et $y' = 2x$. 0,5 Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc (MM') \nearrow (y' y) comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \perp en I à (I) avec la \nearrow en I à (I) avec la \nearrow en I à (I) avec la I en I and I expression I expression I . QIII Eléments de Réponses Note Le nombre des femmes est I 0,7 × 500 = 350. Le nombre des femmes qui font un régime alimentaire est 300, donc I 0,75 A-2a I 1 en I 2 et I 3 et I 3 en I 4 en I 5 en I 6 en I 7 en I 7 en I 8 en I 9 en	2-a	$Z_{\overrightarrow{IM'}} = Z' - Z_I = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overrightarrow{IM}}$	0,25
droite passant par I et \bot (\triangle) d'équation $y=2$. 3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$. alors $x' = 5 - 2y$ et $y' = 2x$. Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow (y'y)$ comme M est sur la droite (A) d'équation $x + 2y = 5$, qui passe par A alors A en A and A en A and A en A and A en A and A en A are A en A and A en A are A en A and A en A en A and A en A e	2-b	$\frac{Z_{\overrightarrow{IM'}}}{Z_{\overrightarrow{IM}}} = 2i \text{ alors } IM' = 2IM \text{ et } (\overrightarrow{IM'}, \overrightarrow{IM'}) = \frac{\pi}{2} + 2k\pi$	0,5
3-a $x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi$. alors $x' = 5 - 2y$ et $y' = 2x$. Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow (y'y)$ comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \bot en I à (d) avec la $\nearrow \nearrow$ en M à $(y'y)$. 3-c $EM' = 2 \Rightarrow (x' - 5)^2 + y'^2 = 4 \Rightarrow x^2 + y^2 = 1 \Rightarrow M$ varie sur le cercle (C) de centre O et de rayon 1. Q III E Eléments de Réponses Note A-1 Le nombre des femmes est $0.7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300 , donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ $O.75$ A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$	2-с	<u> </u>	0,5
Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow (y'y)$ comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \bot en I à (d) avec la $\nearrow \nearrow$ en M à $(y'y)$. 3-c $EM' = 2 \Rightarrow (x' - 5)^2 + y'^2 = 4 \Rightarrow x^2 + y^2 = 1 \Rightarrow M$ varie sur le cercle (C) de centre O et de rayon 1. Q III E Eléments de Réponses E Note Le nombre des femmes est $0,7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300 , donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ A-2a $P(R \cap F) = P(F) \times P(R/F) = 0,7 \times \frac{6}{7} = 0,6$	3-a	x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi. alors $x' = 5 - 2y$ et $y' = 2x$.	0,5
de rayon 1. Q III Eléments de Réponses Note A-1 Le nombre des femmes est $0.7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300 , donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ 0.75 A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$ 0.75	3-b	Si $x + 2y = 5$, alors $x = 5 - 2y = x'$ donc $(MM') \nearrow \nearrow (y'y)$ comme M est sur la droite (d) d'équation $x + 2y = 5$, qui passe par I alors M' est le point d'intersection de la droite \bot en I à (d) avec la $\nearrow \nearrow$ en M à $(y'y)$.	0,75
Le nombre des femmes est $0.7 \times 500 = 350$. Le nombre des femmes qui font un régime alimentaire est 300, donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$ 0.75	3-с		0,5
A-1 Le nombre des femmes qui font un régime alimentaire est 300, donc $P(R/F) = \frac{300}{350} = \frac{6}{7}$ A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$ 0,5	QIII	Eléments de Réponses	Note
A-2a $P(R \cap F) = P(F) \times P(R/F) = 0.7 \times \frac{6}{7} = 0.6$ 0.75	A-1	· ·	0,5
		Le nombre des femmes qui font un regime affinentaire est 300, donc $I(K/I) = \frac{1}{250} = \frac{1}{7}$	

A-2b	$P\left(\frac{R}{W}\right) = \frac{P(\overline{W} \cap R)}{P(\overline{W})} = \frac{0.2}{0.3} = \frac{2}{3}$	0,5
A-3	$P(R/\bar{F}) = \frac{2}{3} \text{ et } P(\bar{R}/\bar{F}) = \frac{1}{3} \text{ ; alors } P(\bar{F}/\bar{R}) = \frac{P(\bar{F} \cap \bar{R})}{P(\bar{R})} = \frac{0.3 \times \frac{1}{3}}{0.2} = \frac{1}{2}$	0,75
B-1	$P(X=2) = \frac{C_{50}^2}{C_{100}^2} = \frac{49}{198}$	0,5
B-2	$P(X=0) = \frac{C_{50}^2}{C_{100}^2} = \frac{49}{198}; P(X=I) = \frac{C_{50}^1 \times C_{50}^1}{C_{100}^2} = \frac{50}{99}$	0,75
B-3	La loi de probabilité de <i>X</i> ne changera pas car le nombre de femmes qui ne suivent pas le régime est le même que celui des hommes.	0,25

Q IV	Eléments de Réponses	Note
1-a	$\lim_{x \to -\infty} f(x) = 2 \ donc \ y = 2 \ A. H.$	1
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 - \frac{4e^x}{1 + e^x} \frac{R.H}{e} = \lim_{x \to +\infty} 2 - \frac{4e^x}{e^x} = -2 \text{ alors } y = -2 \text{ A.H.}$	1
1-b	Le domaine est centré en 0 et $f(-x) = 2 - \frac{4e^{-x}}{1+e^{-x}} = 2 - \frac{4}{1+e^x} = \frac{2e^x - 2}{1+e^x}$	0,75
1-0	$-f(x) = -2 + \frac{4e^x}{1+e^x} = \frac{2e^x-2}{1+e^x} = f(-x)$; alors O est centre de symétrie de (C).	0,73
	$-f(x) = -2 + \frac{4e^x}{1+e^x} = \frac{2e^x - 2}{1+e^x} = f(-x) \text{ ; alors O est centre de symétrie de (C).}$ $f'^{(x)} = \frac{-4[e^x(e^x + 1) - e^x e^x)]}{(1+e^x)^2} = \frac{-4e^x}{(1+e^x)^2} < 0$ $x = -\infty$ $f' = -\infty$ $f(x) = -\infty$	
2-a	f(x) +2	0,75
	-2	
2-b	y - f(0) = f'(0)(x - 0) alors $y = -x$.	0,25
2-c	(C) 3 y=x (C) 1 1 2 3 4 5 6 7 8 6 10 4 -3 -2 -1 1 2 3 4 5 6 7 8 6 10	1
3-a	f est continue et strictement décroissante sur $\mathbb R$ donc elle admet une fonction réciproque g .	0,25
3-b	$D_g = R_f =]-2, 2[; y = 2 - \frac{4e^x}{1+e^x} \Rightarrow y + ye^x = 2 + 2e^x - 4e^x \Rightarrow e^x(y+2) = 2 - y$ Alors $e^x = \frac{2-y}{2+y} \Rightarrow x = Ln(\frac{2-y}{2+y}) \Rightarrow g(x) = Ln(\frac{2-x}{2+x})$	1,25
3-с	Le symétrique de(T) par rapport à $y=x$ est elle même, donc elle est tangente à (C'), ce qui veut dire que (C') est tangente à (C) en O .(C') sur la figure.	0,75
4-a	$A = \int_0^a \left(-2 + \frac{4e^x}{1+e^x} \right) dx = 4Ln(1+e^x) - 2x \Big]_0^a = 4Ln(1+e^a) - 4Ln2 - 2a \text{ unit\'es de aire.}$	1
4-b	$4Ln(1+e^a) - 4Ln2 - 2a = 4Ln2 \Rightarrow 2Ln\left(\frac{1+e^a}{4}\right) = a \text{ then } e^{2a} - 14e^a + 1 = 0$ $a = Ln(7+4\sqrt{3})$	1