

Einschaltvorgänge

Datum	Uhrzeit	Versuchsleiter		
Name	Vorname	MatrNr.	Teilnahmetestat	Protokollabnahme
Name	Vorname	MatrNr.	Teilnahmetestat	
Name	Vorname	MatrNr.	Teilnahmetestat	

Ziel des Versuchs:

Registrieren von Einschaltvorgängen verschiedener R-, L-, und C-Glieder mithilfe eines digitalen Speicheroszilloskops mit nachgeschaltetem X-Y-Schreiber und Auswertung der registrierten Kurven.

Vorbemerkungen:

Zur Vorbereitung der Laborversuche sind unbedingt im Vorlesungsscript "Grundlagen der Elektrotechnik" von Prof. Dr.-Ing. R. Wambach die Seiten 239-253 und 258-263 durchzuarbeiten!

Aufgabenstellung, Durchführung des Versuchs:

Es werden verschiedene R-L-C-Kreise an Gleichspannung eingeschaltet und der Einschaltvorgang bzw. der Einschwingvorgang mit einem digitalen Speicheroszillographen aufgezeichnet. Die registrierten Zeitverläufe werden ausgewertet (Zeitkonstanten, Frequenzen).

Einschalten eines R-C-Kreises an Gleichspannung (Bestimmung der Kapazitätswerte C₁ und C₂)

Nach Schaltung 1 wird ein R-C-Kreis aufgebaut. Zunächst wird der Widerstandswert R eingestellt. Dann wird der Einschaltvorgang registriert (e-Funktion) und die Zeitkonstante τ ermittelt. Aus R und τ wird C ermittelt.

Die Zeitkonstante τ ist die Zeit, nach der die Funktion $U_C(t)$ den 0,632-fachen Endwert erreicht hat.

a) für Reihenschaltung mit C_1 : $R = 1 k\Omega$ einstellen

b) für Reihenschaltung mit C_2 : $R = 40 \text{ k}\Omega$ einstellen

Ermittelte Zeitkonstanten τ und C-Werte im Messprotokoll 1 eintragen. Für jeden Kondensator ist ein Diagramm mit dem X-Y-Schreiber darzustellen.

$$\tau = R \bullet C$$

Schaltung 1:

Messprotokoll 1:

	R [Ω]	τ [ms]	C [μF]
für C ₁ :			
für C ₂ :			

Einschalten eines R-L-Kreises an Gleichspannung (Bestimmung der Induktivitäten L₁ ... L₄)

Nach Schaltung 2 wird ein R-L-Kreis aufgebaut. (Die Freilaufdiode nicht vergessen). Zunächst wird der jeweilige Widerstandswert R eingestellt. Dann wird der Einschaltvorgang registriert (e-Funktion) und die Zeitkonstante τ ermittelt.

Die Zeitkonstante τ ist die Zeit, nach der $U_R(t) = R \cdot i(t)$ den 0,632-fachen Endwert erreicht hat.

a) für L_1 (Spule mit geschlossenem Eisenkern): $R_{ges} = 250 \ \Omega$ einstellen b) für L_2 (Spule mit Luftspalt, Pappe): $R_{ges} = 150 \ \Omega$ einstellen c) für L_3 (Spule mit offenem U-Kern): $R_{ges} = 100 \ \Omega$ einstellen

d) für L_4 (Spule ohne Eisenkern): $R_{qes} = 20 \Omega$ einstellen ($R_{qes} = R + R_{Cu}$)

Ermittelte Zeitkonstanten τ und L-Werte im Messprotokoll 2 eintragen. Für jede Spule ist ein Diagramm mit dem X-Y-Schreiber darzustellen.

$$\tau = \frac{L}{R_{\rm ges}}$$

Schaltung 2:

Messprotokoll 2:

	R _{ges} [Ω]	τ [ms]	L [mH]
für L ₁ :			
für L ₂ :			
für L ₃ :			
für L ₄ :			

3. Einschalten eines R-L-C-Kreises an Gleichspannung (Ermittlung der Schwingungstypen und der Schwingfrequenzen)

Nach Schaltung 3 wird ein R-L-C-Kreis aufgebaut. Es ergibt sich ein Einschwingvorgang, der je nach der Relation der Werte

Fall 1) schwach gedämpft ist, wenn $\delta < \omega_0$ ist,

Fall 2) ein aperiodischer Grenzfall ist, wenn $\delta = \omega_0$ ist,

 $\text{Fall 3) stark gedämpft ist,} \qquad \qquad \text{wenn} \quad \delta > \omega_0 \, \text{ist,} \qquad \text{mit} \quad \delta = \frac{R}{2L} \ \, \text{und} \quad \omega_0 = \frac{1}{\sqrt{LC}} \, .$

Für die L-C-Kombination L_4 (Spule ohne Eisenkern) und C_1 wird zunächst der zugehörige Grenzwiderstand $R_{\hbox{Grenz}}$ berechnet und in die entsprechende Spalte des Messprotokolls 3 eingetragen.

Als Werte für R werden 10·R_{Grenz}, R_{Grenz}, 0,5·R_{Grenz}, 0,1·R_{Grenz} in das Messprotokoll eingetragen.

Für die beiden Fälle der periodischen Dämpfung werden dann die Schwingfrequenzen f_0 und die Periodendauer T_0 errechnet.

Nun werden nacheinander die Schaltungen mit den unterschiedlichen Werten für R nach Schaltung 3 realisiert und die sich einstellenden Schwingvorgänge registriert. Mithilfe der Auswerthilfen des Messgerätes werden die gemessenen Periodendauern ermittelt und mit den errechneten verglichen (Abweichungen bis 3% zulässig). Für jeden Schwingungstyp ist ein Diagramm mit dem X-Y-Schreiber darzustellen.

Schaltung 3:

Messprotokoll 3:

	L ₄ [mH]	C ₁ [μF]	R [Ω]	T ₀ [ms]*	f ₀ [Hz]*	f ₀ [Hz]	Schwingungstyp (a, b oder c)
0,1 R _{Grenz}	s.u.	s.u.					
0,5 R _{Grenz}	s.u.	s.u.					
R _{Grenz}							
10 R _{Grenz}	S.O.	S.O.					

^{*} zu messende Werte

$$T = \frac{1}{f}$$

$$R_{Grenz} = 2L\omega_0$$

$$f = \frac{1}{2\pi} \sqrt{\omega_0^2 - \delta^2}$$