MATERIALS DATA INFRASTRUCTURE

Logan Ward Asst. Computational Scientist Argonne National Laboratory

6 March 2021

Good Data is Hard to Find

Even well-curated data can require effort to use with AI

Good Data

Long Commute

Usable Data

	1		_				_		
Entry 🔻	Diagram -	Comp_1	Frac_1 🔻	Comp_2 ~	Frac_2 🔻	Comp_3 -	Frac_3 🔻	Class -	Check_Fra
1	1	Ag	20		25	La			Check
2	2	Ag	15	Al	10	Mg	75	AM	Check
3	2	Ag	25	Al	10	Mg	65	AM	Check
4	2	Ag	25	Al	20	Mg	55	AM	Check
5	2	Ag	35	Al	10	Mg	55	AM	Check
6	2	Ag	35	Al	20	Mg	45	AM	Check
7	2	Ag	45	Al	20	Mg	35	AM	Check
8	3	Ag	10	Ce	6	Cu	84	AM	Check
9	3	Ag	10	Ce	10	Cu	80	AM	Check
10	3	Ag	15	Ce	6	Cu	79	AM	Check
11	3	Ag	20	Ce	6	Cu	74	AM	Check
12	3	Ag	20	Ce	10	Cu	70	AM	Check
13	3	Ag	25	Ce	6	Cu	69	AM	Check
14	3	Ag	30	Ce	6	Cu	64	AM	Check
15	3	Ag	30	Ce	10	Cu	60	AM	Check
16	3	Ag	35	Ce	4	Cu	61	AM	Check
17	3	Ag	35	Ce	5	Cu	60	AM	Check
18	3	Ag	35	Ce	6	Cu	59	AM	Check
19	3	Ag	40	Ce	3	Cu	57	AM	Check
20	3	Ag	40	Ce	4	Cu	56	AM	Check
21	3	Ag	40	Ce	5	Cu	55	AM	Check
22	3	Ag	40	Ce	8	Cu	52	AM	Check
23	3	Ag	40	Ce	10	Cu	50	AM	Check
24	3	Ag	45	Ce	3	Cu	52	AM	Check
25		Ag	45			Cu	51	AM	Check
20	•	١.		_	-	_			CI I

No single solution to data management

Working Data: Close to the Scientist

[Data] scientists need...

- Unrestricted access to data
- 2. Portability
- 3. Easy use from other tools
- 4. Ability to share with collaborators

Everyone has their own workflow

Key challenge is achieving flexibility while also limiting chaos

Creating usable data management systems is a huge, and well-studied problem

Laboratory Inventory Management (US)

"Sharable" Data and Publication

Need: "Publish and Forget"

Requirements:

- Provenance Information
- 2. Archival Storage
- 3. Detailed Descriptions
- 4. Rewards for Data Publication

Common Features of All Services

There are Plenty of publication services

Many services, some better for different kinds of data

What Does Published Data Look Like?

Data is Available (!), But Only Usable by Humans

Reference Data: What People Want

Smallest fraction of data. Typically...

- Extensively curated
- Composed of many experiments
- Specific goal of collection
- Consistent format (schema)

Accordingly, reference data are most widely used and usable


```
Web APIs
a.get_in_chemsys(
    ['Ca', 'O']
)
```

What is special about "reference data"?

What defines "structured" data and a web APIs?

Structured Data

What makes data "structured?"

A defined "data model"

```
"number": 5735, "direction": "S"
"street": "Ellis Ave.", "zip": 60637
```

Why is this good?

- Predictability: Write simpler code
- Documentation: Understand what you write

Web APIs

Common Approach: REST API

Key features:

- Access a website via HTTP requests
- Send/receive structured data

Illustrative Example: Materials API (MAPI)

```
GET .../rest/v1/materials/24972/vasp
Response: {"valid_response": true,
"response": [{
    "formation_energy_per_atom": -1.833,
    "elements": ["O", "Fe"],
```

Reference Data: A Bright Future

Commercial/Industrial

Bulk Metallic Glasses Polymer Genome ID: 156839 - Version 1 - Create new version - Edit - Delete Description: Dataset Summary ML Performance Sign-in Dataset associated with "A Machine Learning Approach for Engineering Bulk Metallic Glass Alloys." Contains the glassforming ability (either bulk, ribbon, or none), critical casting diameter, supercooled liquid range, and glass transition This dataset has not been used in any views temperature for many metallic alloys. Show Less Polymer name, repeat unit, SMILES ... Predict Properties **Predict Solvent Draw Polymer** Reference Databases are Proliferating Rapidly! Search this dataset Material Name or Chemical Formula Advanced Search Options ChemAxon Showing results 1 to 24 of 7093 **ChemSpider** B₁₂Fe₇₈Mn₁₀ Chemical formula: B19 Fe78 Mn10 Materials Platform

for Data Science

Academic/National Laboratory

UHCSDB microstructure explorer

12

What Are the Trends?

• Data is Getting Published!

Repositories are Digital

• Efforts are Community Driven

What Are the Major Trends?

- 1. Data is Getting Published Deluge of Data
 - Data Management Systems seldom used
 - Publication repositories lack metadata
- 2. Repositories are Digital APIs are Uncommon
 - Tools Do Not Work with Databases
- 3. Efforts are Community Driven Many Silos
 - Finding Best Dataset Difficult

Current State: Data and Tools are Available What would make things better?

WHAT IS THE PATH FORWARD?

PSA: I work with the Materials Data Facility

A Seamless Data Infrastructure

The Materials Data Facility (MDF)

- relevant metadata /
 transform the data
- Publish: Built to handle big data (many TB, millions of files), provides persistent identifier for data, distributed storage enabled
- Discover: Programmatic search index to aggregate and retrieve data across hundreds of indexed data sources

https://www.materialsdatafacility.org

DLHub – A Data and Learning Hub for Science

Describe

- Specify the model files
- Mark up the model with information to make it discoverable and usable

from dlhub_sdk.models.servables.keras import KerasModel m = KerasModel.create_model("plb1-example.h5")

- m.set_title("CANDLE Pilot 1 Benchmark 1") m.set_name("candle_plb1")
- m.set_domains("genomics","biology","HPC")

Publish

- · Register with DLHub for containerization as a servable
- DLHub service creates unique endpoint for servable

from dlhub sdk.client import DLHubClient dl = DLHubClient() dl.publish(m)

Discover

Discover servables with advanced search capabilities through Python SDK or web UI

Run

Make predictions by sending data to DLHub and specifying the servable to use

from dlhub_sdk.client import DLHubClient dl = DLHubClient() pred = dl.run("candle_p1b1", data)

Exascale Cancer Research

CANDLE

X-Ray Science

- Predict structure and phase of a material given coherent diffraction intensity
- Data available from Github

from dlhub_sdk.client import DLHubClient dl = DLHubClient() struct = dl.run("cherukara_structure", X)

Cherukara et al., 2018

Energy Storage

- Predict molecular energies with G₄MP₂ accuracy at B3LYP cost
- Data available in MDF

Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations

Logan Ward^{1,2}, Ben Blaiszik^{1,3}, Ian Foster^{1,2,3}, Rajeev S. Assary^{4,5}, Badri Narayanan^{5,6}, Larry

Tomography

- Enhance tomographic scans and remove noise using generative adversarial model
- Example data available on Petrel

TomoGAN: Low-Dose X-Ray Tomography with Generative **Adversarial Networks**

Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, Doga Gursoy, Francesco De Carlo, Ian Foster

Growing communities to link resources

About v

Governance Council

Working Groups

News and Events v

Join MaRDA

Contact Us

Who are we?

MaRDA is a community network focused on developing the open, accessible, and interoperable materials data that fuels the Materials Genome Initiative (MGI).

MaRDA is a convergence of people and ideas working together to connect materials data infrastructure to accelerate discovery, enable new insights into materials mechanisms, and lay a foundation for both human-centered and artificial intelligence-assisted approaches to materials design.

LEARN MORE →

Conclusions

What should I know about materials databases?

- What are the challenges? Depends on the type of data
 - Working data: Laboratory Inventory Management Systems (LIMS)
 - Published data: "Publish and Forget" data systems
 - Reference data: Structured data and web APIs
- How are people trying to solve them? Community of database software
- What is still broken? Linking databases together and to compute