Exercice 4. Soit $\beta: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ l'application définie par $\beta(A, B) = \text{Tr}(A^T B), \ \forall A, B \in M_n(\mathbb{R}).$

- (i) Montrer que β est une forme bilinéaire symétrique.
- (ii) Déterminer si β est définie positive.

Exercice 5. Soit $Q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique donnée par $Q(x) = x_3^2 + 2x_1x_2$ pour tout $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$.

- (i) Donner la matrice A telle que la forme quadratique Q puisse s'écrire sous la forme $Q(x) = x^T A x$
- (ii) Déterminer également le changement de variable y = Ux tel que $Q(x) = y^T Dy$ où D est diagonale.
- (iii) Donner les axes principaux de Q et déterminer si Q est définie positive, définie négative, positive, négative ou non-définie.

Exercice 6. Soit $Q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique donnée par $Q(x) = 3x_1^2 + 3x_2^2 + 2x_1x_2$ pour tout $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$.

- (i) Donner la matrice A telle que la forme quadratique Q puisse s'écrire sous la forme $Q(x) = x^T A x$
- (ii) Déterminer également le changement de variable y = Ux tel que $Q(x) = y^T Dy$ où D est diagonale.
- (iii) Donner les axes principaux de Q et déterminer si Q est définie positive, définie négative, positive, négative ou non-définie.

Exercice 7. Soit $Q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique donnée par $Q(x) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$ pour tout $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$.

- (i) Donner la matrice A telle que la forme quadratique Q puisse s'écrire sous la forme $Q(x) = x^T A x$.
- (ii) Déterminer également le changement de variable y = Ux tel que $Q(x) = y^T Dy$ où D est diagonale.
- (iii) Donner les axes principaux de Q et déterminer si Q est définie positive, définie négative, positive, négative ou non-définie.

Exercice 8. Soit $Q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique donnée par $Q(x) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$ pour tout $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$.

- (i) Donner la matrice A telle que la forme quadratique Q puisse s'écrire sous la forme $Q(x) = x^T A x$.
- (ii) Déterminer également le changement de variable y = Ux tel que $Q(x) = y^T Dy$ où D est diagonale.
- (iii) Donner les axes principaux de Q et déterminer si Q est définie positive, définie négative, positive, négative ou non-définie.

Exercice 9. Soit $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$. Trouver la décomposition de A en valeurs singulières.