DE LA RECHERCHE À L'INDUSTRIE

9TH ABINIT INTERNATIONAL WORKSHOP

AB INITIO RANDOM STRUCTURE SEARCHING METHOD (AIRSS) AND ABINIT

<u>Jean-Baptiste Charraud,</u> Grégory Geneste, Marc Torrent, Jean-Bernard Maillet

CEA, DAM, DIF, F-91297 Arpajon France

www.cea.fr

- **■** New Materials' Prediction: Global challenges
- Random Searching Principles
- Random Searching implementation
- Machine Learning Improvements

NEW MATERIALS' PREDICTION GLOBAL CHALLENGES

MATERIAL PREDICTION 'S CHALLENGES

Materials Specifications

More efficient, Environemental friendly, Production Costs

Materials' Prediction Algorithms

Materials Šimulation Software

Big Data and Artificial Intelligence

Candidate testing, Experimental Synthesis

THE POTENTIAL ENERGY SURFACE

Explore a multidimentional surface to find the global minimum

Challenging :

- 3N+6 dimensions for a given atom number N
- Exponential increase of the local minima number

C J Pickard, R J Needs, Journal of Physics-Condensed Matter, 23, 053201 (2011) « Ab initio random structure searching »

POTENTIAL ENERGY SURFACE EXPLORATION

Sampling Methods

Structures Generation

Local Exploration

DFT Optimization

Machine Learning Potentials

. . .

Structure Selection

Genetic Approach

Best candidates taken into account

Random Searching

independant generated structures

RANDOM SEARCHING IMPLEMENTATION

ABINIT IMPLEMENTATION

BIASED STRUCTURE GENERATION

APPLICATION TO THE SUPERHYDRIDES

- **■** High density storage of Hydrogen
- Superconductivity

FeH5 (100 GPa)

C. M. Pepin, G. Geneste, A. Dewaele, M. Mezouar, P. Loubeyre, Science **357**, 382 (2017).

VALIDATION: YTTRIUM HYDRIDES AND SUPERHYDRIDES

Published Reference Structures

Structure Found by AIRSS

100 structures each More required for repetition

H. Liu, I. Naumov, R. Hoffmann, N. W. Ashcroft, and Russel J. Hemley, PNAS **114**, 6990-6995 (2017)

F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, and Y. Ma, PRL **119**, 107001 (2017)

Lu-Lu Liu, Hui-Juan Sun, C Z Wang and Wen-Cai Lu, J.Phys. Condens. Matter 29 (2017)

PREDICTIONS: MANGANESE HYDRIDES AND SUPERHYDRIDES

New MnHx structures found with high stability under pressure

RANDOM SEARCHING IMPROVEMENT MACHINE LEARNING POTENTIAL

RANDOM SEARCH AND MACHINE LEARNING

PROOF OF CONCEPT: SN (PRELIMINARY RESULTS)

Spectral Neighbourg Analysis Potential SNAP (Thomson 2017)

Two ways to use AIRSS with ABINIT:

- Internal implementation (available in v8.12)
- External scripts

Ongoing improvements:

- Machine Learning
- AbiPy?

Thank you for your attention