Chapter 2

Differentiation

2.1 Notes

1/10: • Since manifolds look like Euclidean spaces locally, we basically only need to study differentiation on Euclidean spaces.

• Set up: Let $U \subset \mathbb{R}^n$ be open, and $f: U \to \mathbb{R}^n$ be a function.

• Idea: The derivative of f at some point $\mathbf{a} \in U$ is "the best linear approximation" to f at \mathbf{a} .

• Differentiable (function f at \mathbf{a}): A function f for which there exists a linear transformation A: $\mathbb{R}^n \to \mathbb{R}^m$ such that

 $\lim_{\mathbf{h}\to\mathbf{0}}\frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-A\mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0}$

• Total derivative (of f at a): The linear transformation A corresponding to a differentiable function f. Denoted by Df(a).

• Questions to ask:

1. When does the total derivative exist?

2. When it does exist, can there be multiple?

3. When it exists and is unique, how do I calculate it?

• Proposition: If A, B are linear transformations that both satisfy the definition, then A = B.

- We have

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - A\mathbf{h}}{\|\mathbf{h}\|} = \mathbf{0} \qquad \qquad \lim_{\mathbf{h} \to \mathbf{0}} \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - B\mathbf{h}}{\|\mathbf{h}\|} = \mathbf{0}$$

- It follows by subtracting the right equation above from the left one that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{A\mathbf{h}-B\mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0}$$

- Apply linearity: For $\mathbf{v} \in \mathbb{R}^n$ and $t \in \mathbb{R}$, t > 0, we have

$$\frac{A(t\mathbf{v}) - B(t\mathbf{v})}{t} = A\mathbf{v} - B\mathbf{v}$$

- Therefore, since $t\mathbf{v} \to 0$ as $t \to 0$, we have by the above that

$$\mathbf{0} = \lim_{t \to 0} \frac{A(t\mathbf{v}) - B(t\mathbf{v})}{\|t\mathbf{v}\|}$$

$$= \lim_{t \to 0} \frac{A\mathbf{v} - B\mathbf{v}}{\|\mathbf{v}\|}$$

$$\mathbf{0} \cdot \|\mathbf{v}\| = \lim_{t \to 0} (A\mathbf{v} - B\mathbf{v})$$

$$\mathbf{0} = A\mathbf{v} - B\mathbf{v}$$

$$B\mathbf{v} = A\mathbf{v}$$

- Example: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be linear, i.e., $f(\mathbf{v}) = A\mathbf{v}$ for some linear transformation A. Then for all $\mathbf{a} \in \mathbb{R}^n$, $Df(\mathbf{a}) = A$ is constant.
 - We have from the definition that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - A\mathbf{h}}{\|\mathbf{h}\|} = \lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{a}) + f(\mathbf{h}) - f(\mathbf{a}) - f(\mathbf{h})}{\|\mathbf{h}\|}$$
$$= \lim_{\mathbf{h}\to\mathbf{0}} \frac{\mathbf{0}}{\|\mathbf{h}\|}$$
$$= \mathbf{0}$$

- Theorem: If f is differentiable at \mathbf{a} , then f is continuous at \mathbf{a} .
 - By definition, there exists a linear transformation A such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-A\mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0}$$

- Additionally, we have that

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + A\mathbf{h} + \|\mathbf{h}\| \left(\frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - A\mathbf{h}}{\|\mathbf{h}\|} \right)$$

- As $\mathbf{h} \to \mathbf{0}$, the right-hand side of the above equation goes to $f(\mathbf{a})$.
 - As a linear transformation, $A\mathbf{h} \to \mathbf{0}$ as $\mathbf{h} \to \mathbf{0}$.
 - Clearly $\|\mathbf{h}\| \to \mathbf{0}$ as $\mathbf{h} \to \mathbf{0}$.
 - And we have by definition that the last term goes to 0 as $h \to 0$.
- Therefore, f is continuous at \mathbf{a} .
- Observation: A function $f: U \to \mathbb{R}^m$ is given by an m-tuple of functions $f_1: U \to \mathbb{R}$ known as components. $f = (f_1, \dots, f_m)$.
- Proposition: f is differentiable at $\mathbf{a} \in U$ iff each component function f_i is differentiable at \mathbf{a} . In this case,

$$Df(\mathbf{a}) = (Df_1(\mathbf{a}), \dots, Df_m(\mathbf{a}))$$

- We know that

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - A\mathbf{h}}{\|\mathbf{h}\|} \in \mathbb{R}^m$$

- Thus, the limit is zero iff the limit of each component is zero.
- We have that the i^{th} component of the vector on the left below is equal to the number on the right; we call the common value $L_i(\mathbf{h})$.

$$\left(\frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - A\mathbf{h}}{\|\mathbf{h}\|}\right)_i = \frac{f_i(\mathbf{a} + \mathbf{h}) - f_i(\mathbf{a}) - (A\mathbf{h})_i}{\|\mathbf{h}\|}$$

- The upshot is that f is differentiable at \mathbf{a} iff $\lim_{\mathbf{h}\to\mathbf{0}} L_i(\mathbf{h}) = \mathbf{0}$ iff the linear transformation $\mathbf{h}\mapsto (A\mathbf{h})_i:\mathbb{R}^m\to\mathbb{R}$ is the total derivative of f_i .
- Now, each f_i is a function of n variables, i.e., $f_i(x_1,\ldots,x_n)$ where x_1,\ldots,x_n are coordinates on \mathbb{R}^n .