Following examples showing graphical methods to find different locations of Quartiles, Deciles and Percentiles with appropriate data values.

EXAMPLE 14

The maximum daily temperatures (in °C) in Campbelltown in June were recorded and grouped into the frequency table shown.

- Draw a cumulative frequency histogram and polygon for the data.
- Use the frequency polygon to find the median and calculate the interquartile range.

Temperature (°C)	Frequency	Cumulative frequency
12	1	1
13	2	3
14	6	9
15	2	11
16	6	17
17	3	20
18	6	26
19	1	27
20	2	29
21	1	30

Solution

The ogive (polygon) is always inside the columns.

b Draw a horizontal line from the halfway mark (15) on the cumulative frequency axis to where it meets the ogive. The median is the corresponding value on the 'Temperature' axis.

Median = 16

To find Q_1 , draw a horizontal line from the quarter mark $(\frac{1}{4} \times 30 = 7.5)$ on the cumulative frequency axis to where it meets the ogive, then read the temperature value.

$$Q_1 = 14$$

To find Q_3 , draw a horizontal line from the three-quarter mark $(\frac{3}{4} \times 30 = 22.5)$ on the cumulative frequency axis.

$$Q_3 = 18$$

Interquartile range = $Q_3 - Q_1$ = 18 - 14= 4

EXAMPLE 15

Use the cumulative frequency graph from Example 14 to answer the following questions.

- g Find:
 - i the 4th decile, D_4
 - ii the 7th decile, D_7 .
- b What value cuts off the top 20% of temperatures?
- Between which two deciles would you find a temperature of 14°C?

Solution

-

The deciles are marked at intervals of three units on the cumulative frequency axis.

- $D_4 = 16$
- $D_7 = 18$
- **b** D_8 cuts off the top 20% of temperatures, so the value is 18.
- Between D_1 and D_3 .

EXAMPLE 16

The number of cases of ovarian cancer in women from various age groups is shown below.

Age (years)	Class centre	Frequency	Cumulative frequency
35-<45	40	28	28
45-<55	50	61	89
55-<65	60	65	154
65-<75	70	92	246
75-<85	80	74	320

Draw an ogive for this data and use it to find an estimate for:

- a the median
- b the 3rd quartile
- the 9th decile
- d the interquartile range.

Solution

All these values are estimates because the

- Halfway point on the 'Cumulative frequency' axis = 160 data has into class
 - data has been grouped into class intervals.
- b The three-quarter point on the 'Cumulative frequency' axis = $\frac{3}{4}$ × 320 = 240 $Q_3 \approx 74$
- \circ 90% point on the 'Cumulative frequency' axis = 0.9×320

$$= 288$$

$$D_9 \approx 80$$

d Quarter point on the 'Cumulative frequency' axis = $\frac{1}{4} \times 320$

$$= 80$$

$$Q_1 \approx 53$$

Interquartile range =
$$Q_3 - Q_1 = 74 - 53$$

$$= 21$$

