TODO(you should know).

TODO(motivation)

1 Sobolev spaces

Definice 1.1 (Multiindex)

 α je multi-index $\equiv \alpha = (\alpha_1, \dots, \alpha_d), \ \alpha_i \in \mathbb{N}$. Length of multi-index α is $|\alpha| := \alpha_1 + \dots + \alpha_d$. If $u \in C^k(\Omega)$ then $D^{\alpha} := \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}, \ \alpha \leqslant k$.

Definice 1.2 (Weak derivative)

Let $u, v_{\alpha} \in L^{1}_{loc}(\Omega)$ and α be a multi-index. We say that v_{α} is the α -th weak derivative of u in Ω iff $\forall \varphi \in C_{0}^{\infty}(\Omega) : \int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int v_{\alpha} \varphi$.

Lemma 1.1

Weak derivative is unique. If the classical derivative exists then it is also the weak derivative.

 $D\mathring{u}kaz$

Let v_{α}^{1} and v_{α}^{2} be two weak derivatives. Then

$$\int_{\Omega} (v_{\alpha}^{1} - v_{\alpha}^{2})\varphi = 0 \qquad \forall \varphi \in C_{0}^{\infty}(\Omega)$$

 $\implies v_{\alpha}^1 = v_{\alpha}^2$ almost everywhere in Ω .

If classical $D^{\alpha}u$ exists, then

$$\int_{\Omega} \underbrace{D^{\alpha} u}_{v_{-}} \varphi \stackrel{\mathrm{BP}}{=} (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi.$$

Poznámka (Notation for this course)

 D^{α} always means the weak derivative.

Definice 1.3 (Sobolev space)

Let $\Omega \subseteq \mathbb{R}^d$ be open, $k \in \mathbb{N}$, $p \in [1, \infty]$. We define $W^{k,p}(\Omega) = \{u \in L^p(\Omega) | \forall \alpha, |\alpha| \leqslant k : D^{\alpha}u \in L^p(\Omega) \}$.

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{\alpha,|\alpha| \leqslant k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}$$

$$\|u\|_{W^{k,\infty}(\Omega)} = \sup_{\alpha, |\alpha| \leqslant k} \|D^{\alpha}u\|_{L^{\infty}(\Omega)}$$

Lemma 1.2 (Base properties of Sobolev spaces)

Let $u, v \in W^{k,p}(\Omega)$, $k \in \mathbb{N}$ and α is multi-index. Then

- $D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$, if $|\alpha| \leq k$;
- $\lambda u + \mu v \in W^{k,p}(\Omega) \ \forall \lambda, \mu \in \mathbb{R} \ (D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha} u + \mu D^{\alpha} v);$
- $\tilde{\Omega} \subset \Omega$ open, $u \in W^{k,p}(\tilde{\Omega})$;
- $\forall \eta \in C^{\infty}(\Omega) : \eta \cdot u \in W^{k,p}(\Omega)$.