Дата: 296.04. 2021

Клас 11-А алгебра і початки аналізу

Тема: Повторення. Підготовка до ЗНО. Тригонометрична функція. Тригонометричні рівняння.

			косину	С РІЗНИЦІ	ТА СУМИ			
$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$					$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$			
			СИНУС	СУМИ ТА І	РІЗНИЦІ		722	
$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$					$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$			
			ТАНГЕН	С СУМИ ТА	РІЗНИЦІ		200000000000000000000000000000000000000	
3.00	tg (α+	$\beta) = \frac{\operatorname{tg} \alpha + \operatorname{tg}}{1 - \operatorname{tg} \alpha \operatorname{tg}}$	<u>β</u>		tg	$f(\alpha - \beta) = \frac{tg}{1 + \alpha}$	$\frac{\alpha - \operatorname{tg} \beta}{\operatorname{tg} \alpha \operatorname{tg} \beta}$	
			ФОРМ	иули звед	ДЕННЯ			
	Аргумент t					-		
Функція	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	π – α	π+α	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	2π – α	$2\pi + \alpha$
sin t	cosα	cosα	sinα	-sinα	-cosα	-cosα	-sinα	sinα
cos t	$\sin \alpha$	-sin α	-cosα	-cosα	-sinα	$\sin \alpha$	cosα	cosα
tg t	ctgα	-ctg a	-tgα	tgα	ctgα	-ctgα	−tgα	tgα
ctg t	tgα	-tgα	-ctg a	ctga	tgα	−tgα	-ctg a	ctg a

ФОРМУЛИ СУМИ ТА РІЗНИЦІ ТРИГОНОМЕТРИЧНИХ ФУНКЦІЙ

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$tg \alpha + tg \beta = \frac{\sin(\alpha + \beta)}{\cos\alpha\cos\beta}$$

$$tg \alpha - tg \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

ПЕРЕТВОРЕННЯ ДОБУТКУ ТРИГОНОМЕТРИЧНИХ ФУНКЦІЙ НА СУМУ

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos (\alpha - \beta) - \cos (\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos (\alpha - \beta) + \cos (\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin (\alpha - \beta) + \sin (\alpha + \beta))$$

ФОРМУЛА ПЕРЕТВОРЕННЯ ВИРАЗУ $a\sin \alpha + b\cos \alpha$

$$a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi),$$

де аргумент ф визначають із співвідношень:

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

1. Обчисліть $\sin \frac{5\pi}{2} + \cos 5\pi$. [T. 2008.]

A	В	В	r	Д
-2	-1	0	1	2

Розв'язання

I спосіб

Оскільки
$$P_{5\pi}(0;1)$$
, $P_{5\pi}(-1;0)$, то $\sin \frac{5\pi}{2} = 1$, $\cos 5\pi = -1$,

To
$$\sin \frac{5\pi}{2} + \cos 5\pi = 1 - 1 = 0$$
.

II cnocio

Оскільки періоди функцій $\sin t$ і $\cos t$ дорівнюють 2π , то виділимо ціле число періодів. Тоді

$$\sin\frac{5\pi}{2} + \cos 5\pi = \sin\left(2\pi + \frac{\pi}{2}\right) + \cos\left(4\pi + \pi\right) = \sin\frac{\pi}{2} + \cos\pi = 1 - 1 = 0.$$

Відповідь: В.

2. Знайдіть значення виразу $\frac{4\sin\alpha-\cos\alpha}{\cos\alpha+4\sin\alpha}$, якщо $\cot\alpha=\frac{1}{3}$.

$3 -\frac{1}{2}$	4.
1000	$3 -\frac{1}{3}$

Розв'язання

$$\frac{4\sin\alpha-\cos\alpha}{\cos\alpha+4\sin\alpha} = \frac{\sin\alpha\left(4-\frac{\cos\alpha}{\sin\alpha}\right)}{\sin\alpha\left(\frac{\cos\alpha}{\sin\alpha}+4\right)} = \frac{4-\cot\alpha}{\cot\alpha+4} = \frac{4-\frac{1}{3}}{\frac{1}{3}+4} = 3\frac{2}{3}:4\frac{1}{3} = \frac{11}{3}\cdot\frac{3}{13} = \frac{11}{13}.$$

Відповідь: Б.

ЗАВДАННЯ ВІДКРИТОЇ ФОРМИ З РОЗГОРНУТОЮ ВІДПОВІДДЮ

Доведіть рівність
$$\cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \dots + \cos \frac{17\pi}{19} = \frac{1}{2}$$
.

$$\cos\frac{\pi}{19} + \cos\frac{3\pi}{19} + \cos\frac{5\pi}{19} + \ldots + \cos\frac{17\pi}{19} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19} + \cos\frac{3\pi}{19} + \cos\frac{5\pi}{19} + \ldots + \cos\frac{17\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19} + \cos\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19} + \cos\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19} + \cos\frac{\pi}{19} + \cos\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19} + \cos\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}} = \frac{2\sin\frac{\pi}{19}\left(\cos\frac{$$

$$=\frac{2\sin\frac{\pi}{19}\cos\frac{\pi}{19}+2\sin\frac{\pi}{19}\cos\frac{3\pi}{19}+2\sin\frac{\pi}{19}\cos\frac{5\pi}{19}+\ldots+2\sin\frac{\pi}{19}\cos\frac{17\pi}{19}}{2\sin\frac{\pi}{19}}=$$

$$=\frac{\sin\frac{2\pi}{19}+\sin\frac{4\pi}{19}-\sin\frac{2\pi}{19}+\sin\frac{6\pi}{19}-\sin\frac{4\pi}{19}+\ldots+\sin\frac{18\pi}{19}-\sin\frac{16\pi}{19}}{2\sin\frac{\pi}{19}}=\frac{\sin\frac{18\pi}{19}}{2\sin\frac{\pi}{19}}=\frac{\sin\left(\pi-\frac{\pi}{19}\right)}{2\sin\frac{\pi}{19}}=\frac{\sin\frac{\pi}{19}}{2\sin\frac{\pi}{19}}=\frac{1}{2}.$$

СХЕМА РОЗВ'ЯЗУВАННЯ БІЛЬШ СКЛАДНИХ ТРИГОНОМЕТРИЧНИХ РІВНЯНЬ

- 1. Пробуємо всі тригонометричні функції звести до одного аргументу.
- Якщо вдалося звести до одного аргументу, то пробуємо всі тригонометричні вирази звести до однієї функції.
- 3. Якщо до одного аргументу вдалося звести, а до однієї функції ні, то пробуємо рівняння звести до однорідного.
- 4. В інших випадках переносимо всі члени рівняння в одну частину і пробуємо одержати добуток або використовуємо спеціальні прийоми розв'язування.

1. Розв'яжіть рівняння $\cos(-2x) = \operatorname{tg} \frac{\pi}{4}$. [Т. 2008.]

A	Б	В	r	Д
$-\frac{\pi}{8}$	$-2\pi n, n \in \mathbf{Z}$	$2\pi n, n \in \mathbf{Z}$	$\pi n, n \in \mathbf{Z}$	$-\pi + 2\pi n, n \in \mathbf{Z}$

Розв'язання

Оскільки $\cos(-2x) = \cos 2x$, а $\lg \frac{\pi}{4} = 1$, то маємо $\cos 2x = 1$. Звідси $2x = \pm \arccos 1 + 2\pi n$, $n \in \mathbb{Z}$; $2x = \pm 0 + 2\pi n$, $n \in \mathbb{Z}$; $2x = 2\pi n$, $n \in \mathbb{Z}$; $x = \pi n$, $x \in \mathbb{Z}$. Відповідь: $x \in \mathbb{Z}$.

ІІ. ЗАВДАННЯ ВІДКРИТОЇ ФОРМИ З КОРОТКОЮ ВІДПОВІДДЮ

Укажіть кількість коренів рівняння $(\sin x - \lg \frac{\pi}{6})(\sin x - \lg \frac{\pi}{3}) = 0$ на відрізку $\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$. [T. 2005.]

Розв'язання

Оскільки $(\sin x - \operatorname{tg} \frac{\pi}{6})(\sin x - \operatorname{tg} \frac{\pi}{3}) = 0$, то $\sin x - \operatorname{tg} \frac{\pi}{6} = 0$ або $\sin x - \operatorname{tg} \frac{\pi}{3} = 0$; $\sin x - \frac{1}{\sqrt{3}} = 0$ або $\sin x - \sqrt{3} = 0$; $\sin x = \frac{1}{\sqrt{3}}$ або $\sin x = \sqrt{3}$. (Останне рівняння коренів не має, оскільки $\sin x < 1$.)

$$\sin x = \frac{1}{\sqrt{3}}; \ x = (-1)^n \arcsin \frac{1}{\sqrt{3}} + \pi n, \ n \in \mathbb{Z}.$$

Нанесемо розв'язки на одиничне коло. Проміжку $\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$ належать три корені рівняння, а саме: $\arcsin\frac{1}{\sqrt{3}}, \ \pi - \arcsin\frac{1}{\sqrt{3}}, \ \arcsin\frac{1}{\sqrt{3}} + 2\pi.$

Домашне завдання

1. Обчисліть $\sin \frac{7\pi}{2} + \cos 3\pi$. [T. 2008.]

A	Б	В	Γ	Д
-2	-1	0	1	2

2. Знайдіть значення виразу $5\cos^2 x - 1$, якщо $\sin^2 x = 0.4$. [Т. 2006.]

A	Б	В	Γ	д
2	-0,2	-2	1	Інша відповідь

7. Розв'яжіть рівняння $\sin x - \frac{\sqrt{2}}{2} = 0$. [Т. 2005.]

A	В	В	Γ	д
$(-1)^k\frac{\pi}{4}+\pi k,k\in\mathbf{Z}$	$\frac{\pi}{4} + 2\pi k, k \in \mathbf{Z}$	$(-1)^k \frac{\pi}{4} + 2\pi k, k \in \mathbf{Z}$	$\frac{\pi}{4} + \pi k, k \in \mathbf{Z}$	$\frac{\pi}{2}k, k \in \mathbf{Z}$

8. Розв'яжіть рівняння $\cos x = \operatorname{tg} \frac{\pi}{4}$. [Т. 2003.]

A	Б	В	Γ	Д
$-\frac{\pi}{2}+2\pi n, n\in \mathbf{Z}$	$\pi + 2\pi n, n \in \mathbf{Z}$	$\frac{\pi}{2} + 2\pi n, n \in \mathbf{Z}$	$\pi n, n \in \mathbf{Z}$	$2\pi n, n \in \mathbf{Z}$