Lazily Looking at pandas DataFrames

Eric_A_Moore@yahoo.com 8/21/18

"The Problem"

- See what's in a DataFrame, toward identifying interesting relationships among variables
 - Concisely
 - Clearly
 - Don't overwhelm
 - Don't lie
- Code in order to learn: pandas, Altair, Vega
- Initial application: how much do athlete's bodies predict their position? (baseball, football, Olympics)

Key Ideas

Phases of analyses, series of views

Simple schema – permute over

Simple invocation

Embody visual judgment

Two modes:

- Explore: Design for screen first (over paper) sequence, scroll, page, gesture
- Explain: Legible static image, highlight the "tell"

Phases of Analyses

- 1. Data: Quality, Quantity, Qualify.
 - Formats; gaps, causes for gaps; need for transformation.
- 2. Variables: what is potentially informative similar, different, distinct?
 - See Variables distribution of values
 - See Variable Variable relationships
- 3. Model: what is predictive?; what are useful abstractions?
 - See relationships in context of a Target Variable
 - Measures on Measures toward statistical inference
 - "Fit" or abstract variable distributions and relationships
 - "Focus" a predictive model to most essential form

Simple Schema

Statistics

- Compare effects of a process across subpopulations
- Effects are measured, estimated given samples of a population
- Category divides population
- Measure -- describes population

Data

- Symbolic -- Categorical, Nominal, Ordinal, Key
- Numeric -- Quantitative, Temporal
- Set collection of records ~ Sample ~ Population
- Field ~ Variable ~ Feature

Embody visual judgment – describe, compare

Subject	Chart	Comments
Categorical 1D	Horizontal Histogram	Group by category.
Scalar 1D	Vertical Histogram	Binned X. Fit later w/ parametric Distribution
Category vs Category	Crosstab Table	Counts
Measure vs Measure	Scatter Plot	Fit later w/ Loess or regression.
Measure over Category	Hozo Bar Chart	Measure, conditioned on each category.
Measures on Measure over Category	Hozo Box Chart	Using mean, std deviation vs median and quartiles. "Separation" in 1D, with one measure.
Category over Measures	Scatter Plot with Category	Separation in 2D, with two joint measures. Only compare 2 or 3 categories at once.
Category over Category differences	Crosstab Table with residual density	Highlight non uniformity in joint distribution
Set of Correlations	Hozo Bar Chart (Correlations)	Highlight strong or weak correlations

Simple Schema

```
view_phases = [ 'Data', 'Variables', 'Model' ]
view_schema = {
    'Data' : [] ,
    'Variables' : [ '1D', '2D' ],
    'Model' : [ 'CategoryCategory', 'CategoryMeasure', 'Correlations' ] }
schema = {
    'Collection' : 'Baseball',
    'Measures' : [ 'Age', 'BMI', 'Height', 'Weight' ],
    'Categories' : ['Position' , 'Team'],
    'Target' : [ 'Position' ]
```

Simple invocation

```
schema['Sport'] = 'Baseball'

df_baseball = load_baseball('./baseball2016.csv')

df_baseball_summary = make_summary_df(df_baseball, schema)

view_all(df_baseball, df_baseball_summary, schema, phases, view_schema)
```

```
def load_baseball(file):
    df = pd.read_csv(file)
    # format df.
    baseball_columns_map = {
        'Position': 'Position',
        'Height(inches)': 'Height',
        'Weight(pounds)': 'Weight',
        'Age' : 'Age'
    }

    df = df.drop('Name', axis=1)
    df.rename(columns=baseball_columns_map,inplace=True)

    df['BMI'] = calculate_BMI(df['Height'], df['Weight'])
    return df
```


Baseball...

Football ...

Swimmers vs Runners, Gagnon, et al (2018)

Correlations ... not enough by themselves


```
def calculate_BMI(h, w):
    # inches => meters, pounds => kg
    w = w / 2.205
    h = h * 0.0254
    bmi = w / (h * h)
    return bmi
```

Charts in Altair

(DataFrame + field) + (axis + encoding + mark) = chart

- Tidy data preferred
- Composition of chart by layers
- Peered charts cross select
- Data transformation binning, sort, grouping
- Stack of Altair, Vega Lite, Vega. Backed by visionaries ... UW IDL.

Challenges (for me)

- Composition of scenes (working outside Notebooks)
- Navigation events handled outside the chart (how to "click through") **
- Resolution of conflicting attributes in scope hierarchy axes, domains
- Should know how Vega Lite, Vega work

References

<u>altair-viz.github.io</u> <u>github.com/jakevdp/altair-examples</u> <u>vallandingham.me/altair_intro.html</u>

U Washington Interactive Data Lab https://idl.cs.washington.edu/ Making Data Visual A Practical Guide to Using Visualization for Insight By Miriah Meyer, Danyel Fisher

<u>How Body Type May Determine Runners' and Swimmers' Destinies</u> – NYTimes 08-14-18

Development Observations

- Libraries ... as collective works, and as works in progress
 - Many Channels: docs, git issues (open & closed), project google group/slack, project contributor blogs, user blogs, contributor presentations
 - Different ways to do the same thing ... bushy interfaces
- Library as a lever, vs utility
 - Great to copy from Examples gallery
 - "Why did that break?" Value in knowing what it really does, and how.
- VS Code
 - Code folding, Vim plugin support, a lot of "push".

DataViz design issues

What am I looking at?

→ clearly display clear labels for fields

Is this "a thing"? (is there an 'effect' here?)

→ visualize statistical measures too

Scale # fields

- → groups, hierarchies in schema
- > rank and trim display via measures over measures

Scale # records

→ measure, aggregate, bin *before* handing off to display substrate

Analyses – humans in the loop

```
To Judge –
   to test a hypothesis,
   to ask and answer a question in some medium
Operations toward judgment:
   Describe, Compare, Abstract, Infer.
Visual "medium":
   Person, through DataViz.
   Look → Judge
Computational "medium":
   System, through Algorithms.
   Compute \rightarrow Look \rightarrow Judge.
```