COMPUTATIONAL ACTIVITY 2

September 13, 2018

CODE FROM ACTIVITY #1

name_of_dataset <- read.table("Dataset", header = TRUE, sep = "\t")

library(adegenet)

 genind <- df2genind(name_of_dataset, ploidy = 2, sep = "/", pop=population, NA.char="0")

POPULATION GENETICS

Objectives:

- I. Analyze F-statistics
- 2. Cluster individuals based on allele frequencies
 - I. DAPC
 - 2. STRUCTURE

PREPARATION

• git pull while in your GEN_462_2018 folder using git (Windows) or your terminal (Mac)

Open R Studio

 Open the in-class exercise, Basic_Population_Genetics.Rmd in the Computational_2 folder, in R Studio

Set working directory to Example_Data in Computational_2

Observed Heterozygosity \$overall

Ho Hs Ht Dst Htp Dstp Fst Fstp Fis Dest
0.6299 0.7083 0.7717 0.0634 0.7757 0.0674 0.0821 0.0869 0.1108 0.2310

- FST measures the proportional reduction in heterozygosity of the total population due to differentiation among subpopulations
- FST (fixation index) often used as a measure of population differentiation
- 0 0.05: Little genetic differentiation
- 0.05 0.15: Moderate genetic differentiation
- 0.15 0.25: Great genetic differentiation
- > 0.25: Very great genetic differentiation

\$overall

Ho Hs Ht Dst Htp Dstp Fst Fstp Fis Dest
0.6299 0.7083 0.7717 0.0634 0.7757 0.0674 0.0821 0.0869 0.1108 0.2310

FIS measures the average proportional reduction in heterozygosity within subpopulations due to inbreeding

STRUCTURE

• "Bayesian iterative algorithm by placing samples into groups whose members share similar patterns of variation. STRUCTURE both identifies populations from the data and assigns individuals to that population representing the best fit for the variation patterns found."

Sampling location (assumed population)

Porras-Hurtado, Liliana et al. "An Overview of STRUCTURE: Applications, Parameter Settings, and Supporting Software." Frontiers in Genetics 4 (2013): 98. PMC. Web. 10 Sept. 2017.

STRUCTURE

STRUCTURE

