CS 5173/4173 Computer Security

Midterm review

Covered Topics

- Lectures 1 5
 - Basic Security Concepts
 - Introduction to Cryptography
 - DES, AES
 - Modes of Block Cipher Operations
 - Double DES and Triple DES
 - Cryptographic Hash Functions

Type of Questions

- Multiple choices (single-select)
- Short answer questions (about important concepts mentioned in the class)
- Open-ended questions

Introduction to Cryptography

- Basic Security Concepts
 - Confidentiality, integrity, availability
- Introduction to Cryptography
 - Secret key cryptography
 - Sender and receiver share the same key
 - Applications
 - Communication over insecure channel, Secure storage,
 Authentication, Integrity check

Introduction to Cryptography

- Introduction to Cryptography
 - Public key cryptography
 - Public key: publicly known
 - Private key: kept secret by owner
 - Encryption/decryption mode
 - How the keys are used?
 - Digital signature mode
 - How the keys are used?
 - Application: Secure communication, secure storage, authentication, digital signature, key exchange

Introduction to Cryptography

- Introduction to Cryptography
 - Hash function
 - Map a message of arbitrary length to a fixed-length short message
 - Desirable properties
 - Performance, one-way, weak collision free, strong collision free

DES

DES

- Parameters
 - Block size (input/output 64 bits)
 - key size (56 bits)
 - number of rounds (16 rounds)
 - subkey generalization algorithm
 - round function

DES Round: f (Mangler) Function

Modes of Block Cipher Operations

- ECB (Electronic Code Book)
- CBC (Cipher Block Chaining Mode)
- OFB (Output Feedback Mode)
- CFB (Cipher Feedback Mode)
- CTR (Counter Mode)

Modes of Block Cipher Operations

- Properties of Each Mode
 - Chaining dependencies
 - Error propagation
 - Error recovery

Double DES and Triple DES

- You need to understand how double and triple DES works
 - Double DES C=Ek2(Ek1(P))
 - Triple DES C = Ek1(Dk2(Ek1(P))
 - Meet-in-the-middle attacks
 - Operation modes using Triple DES

The Meet-in-the-Middle Attack

- 1. Choose a plaintext P and generate ciphertext C, using double-DES with $\mathcal{K}1+\mathcal{K}2$
- 2. Then...
 - a. encrypt P using single-DES for all possible 2^{56} values K_1 to generate all possible single-DES ciphertexts for P: $X_1, X_2, ..., X_2^{56}$; store these in a table indexed by ciphertex values
 - b. decrypt C using single-DES for all possible 2^{56} values K_2 to generate all possible single-DES plaintexts for C: $Y_1,Y_2,...,Y_2^{56}$; for each value, check the table

Steps ... (Cont'd)

- 3. Meet-in-the-middle:
 - Each match (X_i = Y_j) reveals a candidate key pair K_i+K_j
 - There are 2^{112} pairs but there are only 2^{64} X's
- 4. On average, how many pairs have identical X and Y?
 - For any pair (X, Y), the probability that X = Y is $1/2^{64}$
 - There are 2^{112} pairs.
 - The average number of pairs that result in identical X and Y is $2^{112} / 2^{64} = 2^{48}$

Steps ... (Cont'd)

- 5. The attacker uses a second pair of plaintext and ciphertext to try the 2⁴⁸ Key pairs
- There are 2⁴⁸ pairs and there are 2⁶⁴ X's (Y's)
- The average number of pairs that result in identical X and Y is $2^{48}/2^{64} = 2^{-16}$
- The expected number of survived candidate key pairs is less than 1. Tfter examine two pairs of plaintext and ciphtertext, the attacker identifies the key

Hash Function

- Also known as
 - Message digest
 - One-way transformation
 - One-way function
 - Hash
- Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Desirable Properties of Hash Functions

- Consider a hash function H
 - Performance: Easy to compute H(m)
 - One-way property: Given H(m) but not m, it's computationally infeasible to find m
 - Weak collision resistance (free): Given H(m), it's computationally infeasible to find m' such that H(m') = H(m).
 - Strong collision resistance (free): Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Length of Hash Image

- Question
 - Why do we have 128 bits or 160 bits in the output of a hash function?
 - If it is too long
 - Unnecessary overhead
 - If it is too short
 - Loss of strong collision free property
 - Birthday paradox

Birthday Paradox (Cont'd)

- Implication for hash function H of length m
 - The hash value of an arbitrary input message is randomly distributed between 1 and 2^m
 - What is the least value of k such that
 - If we hash k messages, the probability that at least two of them have the same hash is larger than 0.5?

$$k \approx \sqrt{n} = \sqrt{2^m} = 2^{m/2}$$

- Birthday attack
 - Choose m ≥ 128

Application: File Authentication

- Want to detect if a file has been changed by someone after it was stored
- Method
 - Compute a hash H(F) of file F
 - Store H(F) separately from F
 - Can tell at any later time if F has been changed by computing H(F') and comparing to stored H(F)

Why not just store a duplicate copy of F???

Application: User Authentication

- Alice wants to authenticate herself to Bob
 - assuming they already share a secret key K
- Protocol:

Application: Message Integrity

 A wishes to authenticate (but not encrypt) a message M (and A, B share secret key K)

- Why is R needed?
- Why is K needed?

Application: Digital Signatures

Only one party (Bob) knows the private key

Is Encryption a Good Hash Function?

- Building hash using block chaining techniques
 - Encryption block size may be too short (DES=64)
 - Birthday attack
 - Expensive in terms of computation time

Modern Hash Functions

MD5

- Previous versions (i.e., MD2, MD4) have weaknesses.
- Broken; collisions published in August 2004
- Previous versions are too weak to be used for serious applications
- SHA (Secure Hash Algorithm)
 - Weaknesses were found
- SHA-1
 - Collisions in 2^{69} hash operations, much less than the birthday attack of 2^{80} operations
- SHA-256, SHA-384, ...

MD5: Message Digest Version 5

MD5 at a glance

Processing of A Single Block

Called a compression function

MD5: A High-Level View

Padding

- There is always padding for MD5, and padded messages must be multiples of 512 bits
- To original message M, add padding bits "10...0"
 - enough 0's so that resulting total length is 64 bits less than a multiple of 512 bits
- Append L (original length of M), represented in 64 bits, to the padded message

 Footnote: the bytes of each 32-bit word are stored in little-endian order (LSB to MSB)

Secure Hash Algorithm (SHA)

- Developed by NIST, specified in the Secure Hash Standard, 1993
- SHA is specified as the hash algorithm in the Digital Signature Standard (DSS)
- SHA-1: revised (1995) version of SHA

SHA-1 Parameters

- Input message must be < 2⁶⁴ bits
- Input message is processed in 512-bit blocks, with the same padding as MD5
- Message digest output is 160 bits long
 - Referred to as five 32-bit words A, B, C, D, E
 - IV: $\mathbf{A} = 0x67452301$, $\mathbf{B} = 0xEFCDAB89$, $\mathbf{C} = 0x98BADCFE$, $\mathbf{D} = 0x10325476$, $\mathbf{E} = 0xC3D2E1F0$