02.02.2007.

PRVA SKUPINA ZADATAKA

1.

- 1-1. Na diferencijsko pojačalo na slici priključeni su naponi $u_{g1}=-5\sin \omega t$ mV i $u_{g2}=15\sin \omega t$ mV . Koliki su zajednički napon u_z i iznos diferencijskog napona u_d ? (1bod):
 - a. $u_z = 0 \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - b. $u_z = 5 \sin \alpha t \text{ mV}, |u_d| = 10 \sin \omega t \text{ mV}$
 - c. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - d. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 20 \sin \omega t \text{ mV}$
 - e. $u_z = 5 \sin \omega t \text{ mV}$, $|u_d| = 20 \sin \omega t \text{ mV}$
- 1-2. U diferencijskom pojačalu A_{Vd} je pojačanje za diferencijski signal, a A_{Vz} je pojačanje za zajednički signal. Dobro diferencijsko pojačalo mora imati (1bod):
 - a. veliki iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$,
 - b. mali iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$,
 - c. pojačanja nisu bitna,
 - d. veliki iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$,
 - e. mali iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$.

2.

- 2-1. Na slici je prikazan sklop u kojem bipolarni tranzistor T_1 radi kao sklopka. Zadani su: struja $I_C=9,8~{\rm mA}$, $R_C=1~{\rm k}\Omega$ i $U_{CC}=10~{\rm V}$. Tranzistor T_1 radi u (1bod):
 - a. zasićenju,
 - b. normalnom radnom području,
 - c. zapornom području,
 - d. ne može se odrediti bez vrijednosti otpora R_B ,
 - e. ne može se odrediti bez vrijednosti ulaznog napona U_{UL} .
- 2-2. Ukoliko se na izlaz sklopa iz prethodnog pitanja, tj. na izlazni napon $U_{IZ}(T_1)$, spoji isti takav sklop, izlazni napon na tom dodanom sklopu $U_{IZ}(T_2)$ bit će (1bod):

a.
$$U_{IZ}(T_2) = U_{CEzaz}$$
,

b.
$$U_{IZ}(T_2) = U_{CC}$$
,

c.
$$U_{IZ}(T_2) = U_{CC}/2$$
,

- d. ne može se odrediti,
- e. $U_{IZ}(T_2) = U_{\gamma}$.

3-1. Na kojem dijelu I-U karakteristike se može nalaziti radna točka Zenerove diode u stabilizatoru? (1bod):

3-2. Koliki moraju biti prijenosna funkcija u_{iz}/u_{ul} i izlazni otpor R_{iz} stabilizatora? (1bod):

a.
$$u_{iz}/u_{ul} >>$$
, $R_{iz} <<$,

b.
$$u_{iz}/u_{ul} << , R_{iz} << ,$$

c.
$$u_{iz}/u_{ul} \ll R_{iz} \gg$$
,

d.
$$u_{iz}/u_{ul} \approx 1$$
, $R_{iz} \gg$,

e. navedeni parametri nisu bitni za rad stabilizatora.

4

4-1. Odrediti otpore otpornika R_1 i R_2 tako da iznos naponskog pojačanja bude $\left|A_V\right| = \left|u_{iz}/u_{ul}\right| = 50$, a ulazni otpor $R_{ul} = 10~\mathrm{k}\Omega$. Operacijsko pojačalo je idealno. (1bod)

Odgovor:

a.
$$R_{ul} = 5 \text{ k}\Omega$$
, $R_{ul} = 100 \Omega$

b.
$$R_{ul} = 10 \text{ k}\Omega$$
, $R_{ul} = 500 \text{ k}\Omega$

c. ne može se odrediti iz zadanih parametara

d.
$$R_{ul} = 5 \text{ k}\Omega$$
, $R_{ul} = 250 \text{ k}\Omega$

e.
$$R_{ul} = 10 \text{ k}\Omega$$
, $R_{ul} = 200 \Omega$,

4-2. Za sklopove sa slika a i b usporediti iznose naponskih pojačanja $A_{V1} = u_{iz1}/u_{ul1}$ i $A_{V2} = u_{iz2}/u_{ul2}$, te ulazne otpore R_{ul1} i R_{ul2} . Operacijska pojačala su idealna. (1bod)

a.
$$|A_{V2}| > |A_{V1}|, R_{ul2} > R_{ul1},$$

b.
$$|A_{V2}| < |A_{V1}|, R_{ul2} > R_{ul1},$$

c.
$$|A_{V2}| = |A_{V1}|, R_{ul2} < R_{ul1},$$

d.
$$|A_{V2}| > |A_{V1}|, R_{ul2} < R_{ul1},$$

e.
$$|A_{V2}| < |A_{V1}|, R_{ul2} < R_{ul1}$$
.

5.

5-1. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -1V? (1bod):

a.
$$-1,4 \text{ V}$$
,

b.
$$-1 \text{ V}$$
,

c.
$$+ 1,4 V$$
,

$$d. + 1 V$$

5-2. Ako se napon poveća sa -1V na +0,5V koliko će iznositi izlazni napon nakon promjene? (1bod):

a.
$$-1,4 \text{ V}$$
,

b.
$$-1 V$$
,

c.
$$+ 1,4 \text{ V}$$
,

$$d. + 1 V$$

DRUGA SKUPINA ZADATAKA

ZADATAK.1.

- 1-1. Uz napon na diodi U=-5 V kroz diodu teče struja iznosa I=1 pA. Kolika struja teče uz U=0.5 V. Uzeti mU_T =25 mV. (1bod)
- 1-2. Struja zasićenja diode iznosi I_s =1 nA. Koliki je dinamički otpor uz struju I=5 nA. Uzeti mU_T =25 mV. (1bod)
- 1-3. Uz napon na vanjskim priključcima U=0,55 V kroz diodu teče struja I=10 mA. Koliki je serijski otpor diode R_s , ako je struja zasićenja I_s =100 pA. Uzeti mU_T =25 mV. (1bod)

Odgovori:

- 1-1. (1bod) 1-2. (1bod) a. I_D =0,253 mA, a. r_d =4,31 M Ω , b. I_D =0,179 mA, b. r_d =5 M Ω , c. $I_D=1$ mA, c. r_d =4,17 M Ω , d. I_D =0,485 mA, d. $r_d=10 \Omega$, e. $I_D = 93 \, \mu A$. e. r_d =15 Ω .
- 1-3. (1bod) a. R_S =8,95 Ω , b. $R_S=55 \Omega$, c. R_S =2,5 Ω , d. R_S =250 M Ω , e. R_S =12,5 Ω .

ZADATAK.2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Strujna konstanta MOSFET-a iznosi $|K| = 0.5 \text{ mA/V}^2$. Odrediti:

- 2-1. tip MOSFET-a (1bod)
- 2-2. struju i strminu u točki A (1bod)
- 2-3. struju i strminu u točki B (1bod)

Odgovori:

2-1. (1bod) 2-2. (1bod) 2-3. (1 bod) a. n-kanalni, obogaćeni tip, a. I_{DA} =0,25 mA, g_{mA} =0,75 mA/V a. I_{DB} =2 mA, g_{mB} =2 mA/V b. n-kanalni, osiromašeni tip, b. I_{DA} =0,25 mA, g_{mA} =0,5 mA/V b. I_{DB} =0,9375 mA, g_{mB} =0,75 mA/V c. p-kanalni obogaćeno-osiromašeni tip, c. I_{DA} =0,1875 mA, g_{mA} =0,75 mA/V c. I_{DB} =0,9375 mA, g_{mB} =1 mA/V d. p-kanalni, osiromašeni tip, d. I_{DA} =0,1875 mA, g_{mA} =0,5 mA/V d. I_{DB} =1 mA, g_{mB} =1 mA/V e. I_{DA} =0,125 mA, g_{mA} =0,625 mA/V e. p-kanalni, obogaćeni tip. e. $I_{DB}=1$ mA, $g_{mB}=0.75$ mA/V

ZADATAK.3. Za pojačalu sa slike zadano je: $U_{CC}=15$ V, $R_{o}=500$ Ω , $R_{I}=180$ k Ω , $R_{2}=27$ k Ω , $R_{C}=5.6$ k Ω i $R_{T}=4.7$ k Ω . Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe}=100$ i $U_v=0.7$ V. Naponski ekvivalent temperature $U_T=25$ mV.

- 3-2. Odrediti vrijednost otpornika R_E , ako je poznata struja I_{CO} =1,01 mA.. (1 bod)
- 3-3. Odrediti dinamičke parametre g_m i r_{be} , ako je poznato I_{CO} =0,934 mA, U_{CEO} =8,744 V i R_E =1,1 k Ω . (1 bod)
- 3-4. Odrediti naponsko pojačanje $A_V=u_{iz}/u_{ul}$, ako su poznati dinamički parametri g_m =47,28 mA/V i r_{be} =2115 Ω , te R_E =820 Ω . (1 bod)
- 3-5. Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri g_m =47,28 mA/V i r_{be} =2115 Ω , te R_E =820 Ω . (1 bod)
- Odrediti izlazni otpor R_{iz} , ako su poznati dinamički 3-6. parametri g_m =47,28 mA/V i r_{be} =2115 Ω , te R_E =820 Ω . (1 bod)

Odgovori:

3-1. (1 bod) 3-2. (1 bod) a. $R_E=1,1 \text{ k}\Omega$, r_{be} =2678 Ω a. $g_m = 37,35 \text{ mA/V}$, b. $R_E=1 \text{ k}\Omega$, b. $g_m = 37,35 \text{ mA/V}$, r_{be} =6782 Ω c. R_E =560 Ω , c. $g_m = 73,53 \text{ mA/V}$, r_{be} =2678 Ω d. R_E =680 Ω , $g_m = 73,53 \text{ mA/V},$ r_{be} =6782 Ω d. $R_E=820 \Omega$, $g_m = 53,73 \text{ mA/V},$ r_{be} =2678 Ω 3-3. (1 bod)

 $A_V = -120,82,$

 $A_V = -82,12,$

 $A_V = -63,15,$ c. d. $A_{V}=82,12,$

 $A_V = 120,82.$

3-4. (1 bod)

> $R_{ul} = 82,02 \Omega$ a.

 R_{ul} =42,1 Ω , h.

 R_{ul} =202,8 Ω , c. $R_{ul} = 20,42 \Omega$, d.

 $R_{ul} = 132,2 \ \Omega.$ e.

3-5. (1 bod)

> $R_{iz}=8,2 \text{ k}\Omega$, a.

b. R_{iz} =3,9 k Ω ,

 $R_{iz}=4.7 \text{ k}\Omega$, c.

d. R_{iz} =6,8 k Ω ,

 R_{iz} =5,6 k Ω . e.

ZADATAK.4. Parametri Zenerove diode su U_Z =6,7 V, I_{Zmin} =2 mA, P_{Zmax} =0,5 W i r_z =5 Ω. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe}$ =150 i U_{BE} =0,7 V. Ulazni napon kreće se u granicama od 11 V do 19 V, a trošila otpor ima minimalni iznos od 270 Ω .

- 4-1. Odrediti izlazni napon U_{IZ} . (1 bod)
- 4-2. Odrediti minimalnu vrijednost otpora R_{1min} . (1 bod)
- 4-3. Odrediti maksimalnu vrijednost otpora R_{Imax} . (1 bod)
- 4-4. Odrediti naponski faktor stabilizacije S_U . (1 bod)
- 4-5. Odrediti izlazni otpor stabilizatora R_{IZ} . (1bod)

4-5.

Odgovori:

4-1. (1 bod) U_{IZ} =7,4 V, a. $U_{IZ}=6 \text{ V},$ b. U_{IZ} =6,7 V, c. U_{IZ} =11 V, d.

 U_{IZ} =10,3 V.

4-2. (1 bod) $R_{1min}=1,6 \text{ k}\Omega$, b. R_{1min} =661 Ω ,

 R_{1min} =616 Ω ,

 $R_{1min}=266 \Omega$.

d. $R_{1min}=166 \Omega$,

4-3. (1 bod) R_{1max} =2892 Ω , a. b.

 $R_{1max}=1112 \Omega$,

 R_{1max} =8192 Ω .

c.

d.

 $S_U = 0.00289$, a. R_{1max} =1892 Ω , $S_U = 0.00209$, b. $R_{1max}=1392 \Omega$,

4-4.

 S_U =0,00149, c. S_U =0,00129, d.

(1 bod)

 $S_U = 0.00249$.

 R_{IZ} =2,844 Ω , a. R_{IZ} =2,844 k Ω , b.

(1 bod)

 $R_{IZ}=8,4 \Omega,$ c. R_{IZ} =8,4 k Ω , d. R_{IZ} =266 Ω .

c.

- 5-1. Odrediti vrijednost otpornika R_1 , ako je izlazni napon U_{IZ2} = 2,9 V. Zadano je U_{UL} =2 V, R_2 =68 k Ω , R_3 =20 k Ω i R_4 =47 k Ω . (1 bod)
- 5-2. Odrediti vrijednost otpornika R_4 , ako je izlazni napon U_{IZI} 8,28 V. Zadano je U_{UL} = 1,5 V, R_I = 27 k Ω , R_2 =68 k Ω i R_3 =47 k Ω . (1 bod)
- 5-3. Odrediti vrijednost ulazno napona U_{UL} , ako je izlazni napon U_{IZI} =10 V. Zadano je R_1 =33 k Ω , R_2 =68 k Ω , R_3 =33 k Ω , R_4 =56 k Ω . (1 bod)
- 5-4. Odrediti vrijednost napona U_{IZI} i U_{IZZ} . Zadano je U_{UL} = 2,1 V, R_1 =27 k Ω , R_2 =56 k Ω , R_3 =39 k Ω i R_4 =82 k Ω . (1

Odgovori:

5-1. (1 bod) a. $R_1=68 \text{ k}\Omega$, 5-2. (1 bod) a. $R_4=68 \text{ k}\Omega$, 5-3. (1 bod) a. $U_{UL} = -1.8 \text{ V}$, 5-4. (1 bod) a. U_{IZI} = - 13,51 V, U_{IZ2} = - 4,36 V

b. $R_1=33 \text{ k}\Omega$,

b. $R_4=33 \text{ k}\Omega$,

b. U_{UL} = - 18 V, U_{UL} =1,8 V,

b. U_{IZI} =13,51 V, U_{IZ2} =4,36 V

c. R_1 =39 k Ω , d. R_1 =56 k Ω ,

c. R_4 =39 k Ω , d. R_4 =56 k Ω ,

c. d. $U_{UL}=18 \text{ V}$, c. U_{IZI} = - 4,36 V, U_{IZ2} = - 13,51 V d. U_{IZI} =4,36 V, U_{IZ2} =13,51 V

e. R_1 =47 k Ω .

 R_4 =47 k Ω . e.

e. U_{UL} = - 1,5 V.

e. U_{IZI} = - 13,51 V, U_{IZ2} =4,36 V