Policy Gradients

Some Slides from DeepMind x UCL RL Lecture Series

John Tan Chong Min 12 Oct 2022

Is Policy-Gradient that good?

Proximal Policy Optimisation Success Cases

MuJoCo Atari

Proximal Policy Optimisation Success Cases

Proximal Policy Optimisation Success Cases

Recap on Reinforcement Learning

Reinforcement Learning Framework

Previously in Reinforcement Learning (Value-based)

- Train the neural network to give the value of each state/state-action
- Can be trained using supervised learning approach
- Input: State space, Output: Value V(s) or Q(s, a)

Previously in Reinforcement Learning (Value-based)

DQN 3rd hidden output 1st hidden 2nd hidden input layer layer fully. connected connected 8x8x4 filter stride 4 4x4x16 filter . stride 2 256 4~18 84x84x4 20x20x16 9x9x32 Reward $loss = \left(r + \gamma \max_{a} \widehat{\mathbf{Q}}(s, a) - \mathbf{Q}(s, a) \right)$ Prediction **Target**

$$a = \max_a Q(s, a; \theta)$$

AlphaZero

What is the limitation?

- Optimal action is chosen by maximum Q-value or maximum probability / visit counts in Monte Carlo Tree Search
- Only suitable for discrete action space
- Also, may not perform well in a stochastic environment!

What if we have a continuous state space?

Aliased Gridworld

- You cannot differentiate between the two grey squares
- Value-based policies are deterministic, may get stuck
- Though this can be mitigated by incorporating memory

Deterministic

Stochastic

Policy Gradients

A method which works on continuous action spaces

A method which works on stochastic environments (but takes so long to train!!!)

Policy Gradient Framework

- Train the neural network to give the action output directly
- Can be trained using supervised learning approach
- Input: State space, Output: Optimal action

Advantages / Disadvantages of Policy-Based method

Advantages:

- Better convergence properties
- Effective in high-dimension or continuous action spaces
- Can learn stochastic policies

• Disadvantages:

- Typically converges to local rather than global optimum
- Evaluating a policy is inefficient and has high variance

How to train policy?

- ► Goal: given policy $\pi_{\theta}(s, a)$, find best parameters θ
- How do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the average total return per episode
- In continuing environments we can use the average reward per step

Episodic return objective

Episodic-return objective:

$$J_{G}(\boldsymbol{\theta}) = \mathbb{E}_{S_{0} \sim d_{0}, \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} \right]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}, \pi_{\boldsymbol{\theta}}} [G_{0}]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}} [\mathbb{E}_{\pi_{\boldsymbol{\theta}}} [G_{t} \mid S_{t} = S_{0}]]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}} [v_{\pi_{\boldsymbol{\theta}}}(S_{0})]$$

where d_0 is the start-state distribution

Average reward objective

Average-reward objective

$$J_{R}(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} [R_{t+1}]$$

$$= \mathbb{E}_{S_{t} \sim d_{\pi_{\boldsymbol{\theta}}}} [\mathbb{E}_{A_{t} \sim \pi_{\boldsymbol{\theta}}(S_{t})} [R_{t+1} \mid S_{t}]]$$

$$= \sum_{s} d_{\pi_{\boldsymbol{\theta}}}(s) \sum_{a} \pi_{\boldsymbol{\theta}}(s, a) \sum_{r} p(r \mid s, a)r$$

where $d_{\pi}(s) = p(S_t = s \mid \pi)$ is the probability of being in state s in the long run Think of it as the ratio of time spent in s under policy π

Policy Optimisation

- Policy based reinforcement learning is an optimization problem
- Find θ that maximises $J(\theta)$
- We will focus on stochastic gradient ascent, which is often quite efficient (and easy to use with deep nets)
- Some approaches do not use gradient
 - Hill climbing / simulated annealing
 - Genetic algorithms / evolutionary strategies

Gradient Ascent

▶ Idea: ascent the gradient of the objective $J(\theta)$

$$\Delta \boldsymbol{\theta} = \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

▶ Where $\nabla_{\theta} J(\theta)$ is the policy gradient

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{\perp}} \\ \vdots \\ \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{n}} \end{pmatrix}$$

- ightharpoonup and α is a step-size parameter
- Stochastic policies help ensure $J(\theta)$ is smooth (typically/mostly)

Score Function Trick

Let
$$r_{sa} = \mathbb{E}[R(S, A) \mid S = s, A = s]$$

$$\nabla_{\theta} \mathbb{E}_{\pi_{\theta}}[R(S, A)] = \nabla_{\theta} \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) r_{sa}$$

$$= \sum_{s} d(s) \sum_{a} r_{sa} \nabla_{\theta} \pi_{\theta}(a|s)$$

$$= \sum_{s} d(s) \sum_{a} r_{sa} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$$

$$= \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) r_{sa} \nabla_{\theta} \log \pi_{\theta}(a|s)$$

$$= \mathbb{E}_{d,\pi_{\theta}}[R(S, A) \nabla_{\theta} \log \pi_{\theta}(A|S)]$$

Policy-gradient Update

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}[R(S, A)] = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S)R(S, A)]$$

- ► This is something we can sample
- Our stochastic policy-gradient update is then

$$\theta_{t+1} = \theta_t + \alpha R_{t+1} \nabla_{\theta} \log \pi_{\theta_t} (A_t | S_t)$$

- In expectation, this is the following the actual gradient
- So this is a pure (unbiased) stochastic gradient algorithm
- Intuition: increase probability for actions with high rewards

Gaussian Policy

- As example, consider a Gaussian policy
- **E.g.**, mean is some function of state $\mu_{\theta}(s)$
- For simplicity, lets consider fixed variance of σ^2 (can be parametrized as well)
- Policy is Gaussian, $A_t \sim \mathcal{N}(\mu_{\theta}(S_t), \sigma^2)$ (here μ_{θ} is the mean not to be confused with the behaviour policy!)
- The gradient of the log of the policy is then

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{A_t - \mu_{\theta}(S_t)}{\sigma^2} \nabla \mu_{\theta}(s)$$

▶ Intuition: if return was high, move $\mu_{\theta}(S_t)$ toward A_t

Puck-World Environment

Monte Carlo is sample inefficient!

- Continuous actions exert small force on puck
- Puck is rewarded for getting close to target
- Target location is reset every 30 seconds
- Policy is trained using variant of Monte-Carlo policy gradient

Reduce Variance

- Updates can be very "jumpy" based on value of action
- Let's reduce the variance by subtracting a baseline independent of action
 - A good baseline is the TD-error
- Note that, in general

$$\mathbb{E}\left[b\nabla_{\theta}\log\pi(A_t|S_t)\right] = \mathbb{E}\left[\sum_{a}\pi(a|S_t)b\nabla_{\theta}\log\pi(a|S_t)\right]$$
$$= \mathbb{E}\left[b\nabla_{\theta}\sum_{a}\pi(a|S_t)\right]$$
$$= \mathbb{E}\left[b\nabla_{\theta}1\right] = 0$$

- This is true if b does not depend on the action (but it can depend on the state)
- Implies we can subtract a baseline to reduce variance

$$\theta_{t+1} = \theta_t + \alpha (R_{t+1} - b(S_t)) \nabla_{\theta} \log \pi_{\theta_t} (A_t | S_t).$$

Actor-Critic Framework

Actor-Critic

- Actor learns policy $\pi(a|s)$
- Critic learns value function V(s)
- Actor updates policy using guidance from critic

Actor-Critic Update

```
Critic Update parameters w of v_w by TD (e.g., one-step) or MC
```

Actor Update θ by policy gradient

function One-step Actor Critic

```
for t = 0, 1, 2, ... do
Sample A_t \sim \pi_{\theta}(S_t)
```

Initialise s, θ

Sample R_{t+1} and S_{t+1}

$$\delta_t = R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_t)$$

$$\mathbf{w} \leftarrow \mathbf{w} + \beta \, \delta_t \, \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$

$$\theta \leftarrow \theta + \alpha \ \delta_t \ \nabla_{\theta} \log \pi_{\theta}(A_t \mid S_t)$$

[one-step TD-error, or advantage]

[TD(0)]

[Policy gradient update (ignoring γ^t term)]

low to prevent drastic policy update	es?

Trust Region Policy Optimisation (TRPO)

2.1 Policy Gradient Methods

Policy gradient methods work by computing an estimator of the policy gradient and plugging it into a stochastic gradient ascent algorithm. The most commonly used gradient estimator has the form

$$\hat{g} = \hat{\mathbb{E}}_t \Big[\nabla_\theta \log \pi_\theta(a_t \mid s_t) \hat{A}_t \Big]$$
 (1)

In TRPO [Sch+15b], an objective function (the "surrogate" objective) is maximized subject to a constraint on the size of the policy update. Specifically,

$$\underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] \tag{3}$$

subject to
$$\hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta.$$
 (4)

Here, θ_{old} is the vector of policy parameters before the update. This problem can efficiently be approximately solved using the conjugate gradient algorithm, after making a linear approximation to the objective and a quadratic approximation to the constraint.

If the action was good...

If the action was bad...

... and it became a lot more probable after the last gradient step, don't keep updating too much or else it might get worse!

... and it just became a lot less probable, don't keep reducing it's likelihood too much for now!

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

Overall PPO Loss

Combining these terms, we obtain the following objective, which is (approximately) maximized each iteration:

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right], \tag{9}$$

where c_1, c_2 are coefficients, and S denotes an entropy bonus, and L_t^{VF} is a squared-error loss $(V_{\theta}(s_t) - V_t^{\text{targ}})^2$.

Discussion