DCP 1206: Probability Lecture 26 — Parameter Estimation

Ping-Chun Hsieh

December 20, 2019

Announcements

- HW6 is now on E3
 - Part I: Due on 12/27 (Friday)
 - Part II: Due on 1/3 (Friday)

Classic Example of MAP: Spam Filter

- Goal: Determine if a message is spam given the text
- Technique: MAP or also called "naive Bayes classification"

This Lecture

1. Maximum Likelihood Estimation (MLE)

2. Maximum A Posteriori Estimation (MAP)

Reading material: N/A

Review: Find a Good Estimator Under Small *n*?

- 2 possible outcomes: Yes / No-Laughing
- p = P(outcome is "Yes") is unknown
- Each toss is <u>independent</u> from other tosses
- Question: Suppose we observe "Yes, No-L, Yes, Yes, No-L"
 - How to estimate p in a principled way?
 - Is "sample mean" a good estimator?

Maximum Likelihood Estimation

Review: Maximum Likelihood for Bernoulli

- Example: Let X_1, \dots, X_n be a sequence of i.i.d. Bernoulli random variables with unknown mean
 - Suppose we observe $X_1 = x_1, \dots, X_n = x_n \ (x_i \in \{0,1\})$
 - Question: Under a guess of mean = θ , $P(X_1 = x_1, \dots, X_n = x_n; \theta) \neq ?$
 - Question: Under what θ is $P(X_1 = x_1, \dots, X_n = x_n; \theta)$ maximized?

$$P(X_1=X_1,X_2=X_1,...,X_n=X_1,\overline{\theta}) \in Likethood$$

$$= \begin{cases} x_1+x_2+...+x_n \\ y_1-y_2+...+y_n \end{cases} = \begin{cases} x_1+x_2+...+x_n \\ y_2-y_3+y_4 \end{cases} = \begin{cases} x_1+x_2+...+x_n \\ y_3-y_4 \end{cases} = \begin{cases} x_1+x_2+...+x_n \end{cases} = \begin{cases} x_1+x_2+...+x_n \end{cases} = \begin{cases} x_1+x_2+...+x_n \end{cases} = \begin{cases} x_1+x_2+...+x_n \end{cases} = \begin{cases} x_$$

1. Maximum Likelihood Estimation

Maximum Likelihood Estimation (Formally)

• Maximum Likelihood Estimation (MLE): Given observed data D, choose θ that maximizes the probability of observed data:

$$\theta_{\text{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg max}} P(D; \theta) = \underset{\theta \in \Theta}{\operatorname{arg max}} \log P(D; \theta)$$

• Question: What if $D = \{X_i\}_{i=1}^N$ and the data samples are independent?

dependent?

$$\theta_{\text{MLE}} = \underset{\theta \in \Theta}{\text{argmax}} \underset{c=1}{\overset{N}{\text{T}}} P(X_{\hat{c}}; \theta) = \underset{\theta \in \Theta}{\text{argmax}} \underset{c=1}{\overset{N}{\text{T}}} \log^{3}(X_{\hat{c}}; \theta)$$

• Question: What if $D = \{X_i\}_{i=1}^N$ and the data samples are i.i.d. Bernoulli?

$$\theta_{\text{MLE}} = Sample Mean.$$

What about continuous random variables?

Use density for MLE!

Example: MLE for Normal RVs

- Example: Let X_1, \dots, X_n be a sequence of i.i.d. <u>normal</u> random variables with <u>unknown</u> mean and variance
 - Suppose we observe $X_1 = x_1, \dots, X_n = x_n$ ($\chi_i \in \mathbb{R}$)
 - Question: Under a guess of mean $=\emptyset$, $p(X_1=x_1,\cdots,X_n=x_n;\emptyset)=0$

$$P(X_{1}=X_{1},...,X_{n}=X_{n};M,\sigma^{2}) = \prod_{i=1}^{N} P(X_{i}=X_{i};M,\sigma^{2}) \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \frac{(X_{i}-M)^{2}}{\sqrt{2\sigma^{2}}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \frac{(X_{i}-M)^{2}}{\sqrt{2\sigma^{2}}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\sigma}} \frac{(X_{i}-M)^{2}}{\sqrt{2\sigma^{2}}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\sigma}} \frac{(X_{i}-M)^{2}}{\sqrt{2\sigma}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\sigma}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\sigma}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma} \frac{\partial L(M,\sigma^{2})}{\partial \sigma} \frac{\partial L(M,\sigma^{2})}{\partial \sigma}$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\sigma}} \frac{\partial L(M,\sigma^{2})}{\partial \sigma} \frac{\partial$$

Example: MLE for Normal RVs (Cont.)

- Example: Let X_1, \dots, X_n be a sequence of i.i.d. <u>normal</u> random variables with <u>unknown</u> mean and variance
 - Suppose we observe $X_1 = x_1, \dots, X_n = x_n$
 - Question: Under what θ is $p(X_1 = x_1, \dots, X_n = x_n; \theta)$ maximized?

MLE for Normal Random Variables (Formally)

MLE for Normal : Given observed data $D=\{X_i\}_{i=1}^n$ of i.i.d. normal random variables , the MLE estimators $\theta_{\text{MLE}}=(\mu_{\text{MLE}},\sigma_{\text{MLE}}^2)$ are:

$$\mu_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \text{Sample mean}$$

$$\sigma_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_{\text{MLE}})^2$$

Is MLE always the same as the sample mean?

Check HW6 Problem 5!

Why is MLE a Good Estimator?

Question: What kind of property do we want for MLE?

► Consistency of MLE: Let X_1, \dots, X_n be a sequence of i.i.d. random variables with model parameters $\theta \in \Theta$ (where the model is <u>identifiable</u> and Θ is assumed to be finite). Then, MLE converges to the true θ in probability:

$$\theta_{\text{MLE}} \xrightarrow{p} \theta$$

Remark: For the proof, please see the material on E3

Application: MLE for Linear Regression

MLE is widely used in machine learning problems.

Example: Linear regression

 $\{(x_i, y_i)\}_{i=1}^n$ are i.i.d. samples and assume $y_i \sim \mathcal{N}(\theta^T x_i, \sigma^2)$

Question: Likelihood $p(\{y_1, \dots, y_n\} \mid \{x_1, \dots, x_n\}, \theta, \sigma) = ?$

unknown

MLE for Linear Regression (Cont.)

- Example: Linear regression
 - $\{(x_i, y_i)\}_{i=1}^n$ are i.i.d. samples and assume $y_i \sim \mathcal{N}(\theta^T x_i, \sigma^2)$
 - Question: What is the MLE θ_{MLE} ?

MLE for Linear Regression (Formally)

• MLE for Linear Regression : Given i.i.d. data samples $\{(x_i, y_i)\}_{i=1}^n$ with $y_i \sim \mathcal{N}(\theta^T x_i, \sigma^2)$, the MLE is

$$\theta_{\mathsf{MLE}} = (X^T X)^{-1} X^T y$$

where
$$y = [y_1, y_2, \dots, y_n]^T$$

 $X = [x_1, x_2, \dots, x_n]^T$

What if we have some prior knowledge about the possible value of θ ?

Maximum a Posteriori Estimation

What if We Have Some Prior Knowledge?

- 2 possible outcomes: Yes / No-Laughing
- $\theta_* = P(\text{outcome is "Yes"})$ is unknown
- Each toss is independent from other tosses
- Prior knowledge: Suppose we know θ_* is "close" to 0.6

Idea: Instead of estimating a single θ , obtain a <u>distribution</u> over possible values of θ

How to Obtain Posterior Distribution?

Recall: Maximum a Posteriori for Bernoulli

Recall: HW1, Problem 6

Problem 6 (Inference via Bayes' Rule)

(6+6+6=18 points)

Suppose we are given a coin with an unknown head probability $\theta \in \{0.3, 0.5, 0.7\}$. In order to infer the value θ , we experiment with the coin and consider Bayesian inference as follows: Define events $A_1 = \{\theta = 0.3\}$, $A_2 = \{\theta = 0.5\}$, $A_3 = \{\theta = 0.7\}$. Since initially we have no further information about θ , we simply consider the prior probability assignment to be $P(A_1) = P(A_2) = P(A_3) = 1/3$.

$$P(A_1 | \text{observe HTT}) =$$

$$P(A_2 | \text{observe HTT}) =$$

$$P(A_3 | \text{observe HTT}) =$$

MLE vs MAP (Formally)

• Maximum Likelihood Estimation (MLE): Given observed data D, choose θ that maximizes the probability of observed data:

$$\theta_{\text{MLE}} = \arg \max_{\theta \in \Theta} P(D; \theta) = \arg \max_{\theta \in \Theta} \log P(D; \theta)$$

• Maximum a Posteriori Estimation (MAP): Given observed data D and prior distribution $P(\theta)$ choose θ that maximizes the posterior probability:

$$\theta_{\mathsf{MAP}} = \arg\max_{\theta \in \Theta} P(\theta \mid D) = \arg\max_{\theta \in \Theta} \log P(D \mid \theta) P(\theta)$$

Question: When is MAP the same as MLE?

 $P(\Phi) = \omega ns \epsilon$

How to Choose a Prior Distribution?

- Question: What's the principle of choosing a prior?
- 1. Captures expert knowledge (if available)
- 2. Simple posterior update (most often)

Example: Widely-used priors for simple posterior updates

non-informative / Jeffrey prior 1. Uniform prior $(p(\theta))$ is constant)

- 2, Conjugate prior (prior and posterior have the same form)

Review: Beta Distribution

uniform phor

Beta Random Variables (Beta(α, β)): A random variable

X is Beta with parameters $\alpha(\beta)(\alpha > 0, \beta > 0)$ if its PDF is

$$f_X(x) = \begin{cases} \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

24

where
$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

Question: Beta distribution is the conjugate prior for Bernoulli experiments. Why?

$$\alpha = 7, \beta = 3$$
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75
0.75
0.75

Example: Beta Prior for Bernoulli Experiments

• Example: After tossing a coin with unknown head probability for 3 times, we observe "HTT". Consider a $Beta(\alpha, \beta)$ prior. What is the posterior?

$$P(\theta|D) \propto p(D|\theta)p(\theta)$$

$$P(\theta|HTT) \propto \frac{1}{B(x,\beta)} \cdot \frac{\alpha-1}{\beta-1} \cdot \frac{\beta-1}{\beta-1}$$

$$= \frac{1}{B(x,\beta)} \cdot \frac{(\alpha-1)+1}{\beta-1} \cdot \frac{(\beta-1)+2}{\beta-1}$$

$$= \frac{1}{B(x,\beta)} \cdot \frac{(\alpha-1)+1}{\beta-1} \cdot \frac{(\beta-1)+2}{\beta-1}$$
Beta posterior

List of Conjugate Priors

	Likelihood	Model parameters	Conjugate prior distribution
(Bernoulli	p (probability)	Beta
	Binomial	p (probability)	Beta
	Negative binomial with known failure number, <i>r</i>	p (probability)	Beta
	Poisson	λ (rate)	Gamma
	Categorical	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet
	Multinomial	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet
	Hypergeometric with known total population size, N	M (number of target members)	Beta-binomial ^[4]
	Geometric	p_0 (probability)	Beta

	Likelihood	Model parameters	Conjugate prior distribution
	Normal with known variance σ^2	μ (mean)	Normal
\	Normal with known precision t	μ (mean)	Normal
	Normal with known mean μ	σ^2 (variance)	Inverse gamma
	Normal with known mean μ	σ^2 (variance)	Scaled inverse chi-squared
	Normal with known mean μ	τ (precision)	Gamma
	Normal ^[note 6]	μ and σ^2 Assuming exchangeability	Normal-inverse gamma

Next Lecture

Markov Chain

1-Minute Summary

1. Maximum Likelihood Estimation (MLE)

- . MLE: $\theta_{\text{MLE}} = \underset{\theta \in \Theta}{\arg\max} P(D; \theta) = \underset{\theta \in \Theta}{\arg\max} \log P(D; \theta)$
- Bernoulli / Normal / Linear Regression

2. Maximum A Posteriori Estimation (MAP)

- . MAP: $\theta_{\mathsf{MAP}} = \arg\max_{\theta \in \Theta} P(\theta \mid D) = \arg\max_{\theta \in \Theta} P(D \mid \theta) P(\theta)$
- Conjugate priors