Digital Signal Processing for Music

Part 24: Redundancy Coding

alexander lerch

Georgia Center for Music Tech Technology

redundancy coding introduction

■ goals

- minimize bitrate
- ensure that content can be reconstructed without error/loss

objective

- aim for a symbol pdf is as non-uniform as possible
- ⇒ minimize variance of signal to encode
- from a user perspective like zipping a file

redundancy coding introduction

■ goals

- minimize bitrate
- ensure that content can be reconstructed without error/loss

objective

- aim for a symbol pdf is as non-uniform as possible
- \Rightarrow minimize variance of signal to encode
- from a user perspective like zipping a file

redundancy coding introduction

■ goals

- minimize bitrate
- ensure that content can be reconstructed without error/loss

objective

- aim for a symbol pdf is as non-uniform as possible
- \Rightarrow minimize variance of signal to encode
- from a user perspective like zipping a file

overview

properties

- lossless: perfect signal reconstruction
- bitrate (reduction) depends on input signal
 - ▶ typical ballpark gain (stereo, 48k): factor 2
- ullet no constant bitrate o streaming only practical with large buffers and constraints on content

common applications/algorithms

name	sampling rates	channels	word length
Shorten		2	8/16
FLAC	1-1048k		4-32
MLP	44.1k-192k	63	1-24
ALS		65536	1-32 (int), 32(float)

Part 24: Redundancy Coding 4 /

properties

- lossless: perfect signal reconstruction
- bitrate (reduction) depends on input signal
 - ▶ typical ballpark gain (stereo, 48k): factor 2
- ullet no constant bitrate o streaming only practical with large buffers and constraints on content

■ common applications/algorithms

name	sampling rates	channels	word length
Shorten	all	2	8/16
FLAC	1-1048k	8	4-32
MLP	44.1k-192k	63	1-24
ALS	all	65536	1-32 (int), 32(float)