Prof:	Devoir Surveillé 2 P 1	Année scolaire
	Physique et chimie	
	Niveau : 1BAC science	
Physique-1- (8 points)		
On considère un circuit électrique qu	ni contient :	G
G: générateur de force électromo	trice E et de résistance interne $r = 2S$	\mathcal{L} .
➤ M : Un moteur de force contre éle	ectromotrice $E' = 6V$ et de résistance	e interne
$r'=2\Omega$.		(M)
D: un conducteur ohmique de rés		$R \longrightarrow A$
	passage d'un courant d'intensité $I = 0.5$	5A
1. Calculer la puissance utile du mo	oteur. (1.5pt)	
Calculer la puissance dissipée dans le	e moteur et dans le conducteur ohmiqu	ie. (1.5pt)
	-	
2. Déduire la puissance fournie par l	le generateur au circuit. (1pt)	
3. Calculer la puissance totale du cir	recuit, et montre que $E = 12V$.(1.5pt)	
4. On utilisant la loi de Pouillet retro	ouve la valeur de E. (1pt)	
5. On ajoute au circuit un conducte	ur ohmique D' de résistance $R'=1$	0Ω en série avec les autres dipôles
calculer.	•	-
1.1. Rendement du moteur. (0.75p	ot)	
1.2. Rendement du générateur. (0.	75pt)	
Physique-2- (4 points)		
Un moteur électrique transfert 90%	d'énergie électrique reçue en énergie	e mécanique. Le moteur tourne avec
une vitesse angulaire constante. L'énergie mécanique égale $E_m=2,04.10^5J$		
1) Calculer l'énergie électrique reçue par le moteur. (1.25pt)		
2, Caroarer i energie erednique reçui	- par 10 1100001. (1.20pt)	

0) (1 1 12/
2) Calculer l'énergie dissipée par le moteur. (1.25pt)
3) Sachant que l'intensité du courant qui traverse le moteur est $I = 10A$ pendant une minute calculer.
3.1. La force contre électromotrice du moteur. (0.75pt)
2.2 I - w/-i-t
3.2. La résistance interne du moteur. (0.75pt)
Chimie-1- (7 points)
1- A l'aide d'une cellule, on détermine la conductance d'une solution S_1 de chlorure de sodium $NaCl$ de
concentration $C_1 = 5.10^{-3} \text{mol.} L^{-1}$; on trouve $G_1 = 5.45.10^{-3} \text{S}$
1.1- Ecrire l'équation de la réaction de dissociation du chlorure de sodium dans l'eau. (1pt)
1.2- La dissociation de $NaCl$ est totale. Déterminer les concentrations en $mol.L^{-1}$ puis en $mol.m^{-3}$ des ions
Na^+ et Cl^- . (1pt)
1.3-Déterminer la conductivité de la solution. (1pt)
1.5-Determiner la conductivité de la solution. (1pt)
1.3- Déterminer la constante de la cellule <i>K</i> . (1pt)
2- On dilue 10 fois la solution précédente (notée S_1) : On appelle S_2 la solution obtenue.
 2- On dilue 10 fois la solution précédente (notée S₁): On appelle S₂ la solution obtenue. 2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S₂ ? (1pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S_2 ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S_2 .
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la cellule dans ce cas de la solution S ₂ . (1.5pt)
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la cellule dans ce cas de la solution S ₂ . (1.5pt) Donnée :
2.1- Quelles sont alors les concentrations des espèces ioniques présentes dans la solution S ₂ ? (1pt) On utilise la même cellule conductimétrie que précédemment pour mesurer la conductance de la solution S ₂ . 2.2- Déterminer la conductance G ₂ de la solution S ₂ . (1.5pt) 2.3- La tension aux bornes de la cellule est égale est à <i>U</i> =1 <i>V</i> . Calculer l'intensité <i>I</i> du courant qui traverse la cellule dans ce cas de la solution S ₂ . (1.5pt)