CSCI E-29 Week 2 Section

Agenda

- Concepts
 - Word vector representation
 - Word2Vec
 - Visualization / t-SNE
 - Distance metrics
- Pset 1
 - overview
 - o q&a

Mapping words to vectors

"cat" [0.13 0.62 0.98 ... 0.71]

"dog" [0.53 0.61 0.53 ... 0.90]

"octopus" [0.81 0.62 0.98 ... 0.04]

Word vector representations

Key aspects:

- Number of dimensions, D
- Vocabulary size (number of words), V

Word2vec

Efficient Estimation of Word Representations in Vector Space (Mikolov et al, 2013)

Context "windows": Target word vs context words

CBOW (Continuous bag of words) vs Skip-gram

Predict target from context vs. predict context from target

Word2vec network architecture

Middle layer has size D, each neuron has V weights = weight matrix W for layer is [D x W]

Network weights from the trained network are vector representations

Concepts represented by vector difference: "man is to woman as king is to queen"

Concepts represented by vector difference

https://nlp.stanford.edu/projects/glove/

Dimensionality reduction methods

- Visualization requires reducing a 300-dimensional vector into 2-3 dimensions
- PCA principal component analysis
 - deterministic
 - linear transform
 - optimize for variance explained
- t-SNE t-distributed stochastic neighbor embedding
 - probabilistic
 - non-linear transform
 - prioritizes keeping neighboring points close

Dimensionality reduction - visualization

https://projector.tensorflow.org/

Visualizing word vector representations with t-SNE

https://colah.github.io/posts/2015-01-Visualizing-Representations/

A Word Embedding Visualized with t-SNE

(Hover over a point to see the word.)
(See this with 50,000 points!)

Visualizing word vector representations with t-SNE

https://colah.github.io/posts/2015-01-Visualizing-Representations/

"Distance" as a metric for word similarity

Applications of word embeddings

San Francisco

Word	Cosine distance
tor appalar	0.666175
los_angeles	
golden_gate	0.571522
oakland	0.557521
california	0.554623
san_diego	0.534939
pasadena	0.519115
seattle	0.512098
taiko	0.507570
houston	0.499762
chicago_illinois	0.491598

France

Mond	Cosine distance
spain	0.678515
belgium	0.665923
netherlands	0.652428
italy	0.633130
switzerland	0.622323
luxenbourg	0.610033
portugal	0.577154
russia	0.571507
germany	0.563291
catalonia	0.534176

Applications of word embeddings

Auto Embedding Weight Matrix

Applications of word embeddings

Embedding with Pre-Trained word2vec Weight Matrix

https://medium.com/@JMangia/coreml-with-glove-word-embedding-and-recursive-neural-network-part-2-ab238ca90970

pset1 overview

- Templating:
 - Customize template config for
 - project structure/naming
 - environment pipenv and docker
 - testing pytest and travisCI
- Render the template
 - o provide overrides for template values or use default
- Implement packages
 - Atomic writes
 - Hashing strings

Templating

- Templating with cookiecutter
 - Adjust the template
 - Defaults are defined
 - Render the template, all instances of {{cookiecutter.VARIABLE}} get replaced with variable defined at runtime
- Design pattern: separating configuration from code.
 - Key for reusability not just a one-off script

Package structure

```
Rendered package:
pset_utils_kunanit/
  pset_utils/
     io/
       ___init___.py
       [io.py]
     hashing/
       init___.py
       [hashing.py]
```

Package structure affects import API:

from pset_utils.io import atomic_write

from pset_utils.io.io import atomic_write

Atomic writes

- Thanksgiving bug
- Multi-stage data pipelines need to know whether a step completed successfully or not

Hashing

Some ways hashing can be useful

- File contents checksum only download and reprocess file if MD5 checksum changes
- Converting URLs to a filename friendly name
- Representing user ids to remote systems
- Authentication without sending sensitive key both parties know the key and compute hash (with other user info added as salt)