Financial Mathematics 33000

Lecture 7

Roger Lee

2022 November 30

Pricing and hedging

The ingredients of a derivatives pricing/hedging problem/solution:

- ► Contract to be priced/hedged
- **▶ Dynamics** of underlying
- Solution approach
 - ► Replication or Expectation
 - ► Analytical or Computational

Replication or Expectation

Other Pavoffs

Other Dynamics: Forward prices

Other Dynamics: Dividend-paying stocks

Analytical or Computational

Replication and Expectation paths to solutions

Same formula, multiple interpretations of $k_{\text{prow}} = \Gamma$

Black-Scholes $N(d_2)$ at time t, where $d_2 = \frac{\log(S_t e^{r(T-t)}/K)}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2}$:

- $N(d_2)$ is the risk-neutral probability of $S_T > K$.
- $e^{-r(T-t)}N(d_2)$ is the value of a binary call.
- $ightharpoonup e^{-r(T-t)}N(d_2)$ is $-\partial C/\partial K$, where C is vanilla call value.
- $-Ke^{-r(T-t)}N(d_2)$ is value of vanilla-call replicator's B holdings.

Black-Scholes $N(d_1)$ at time t, where $d_1 = \frac{\log(S_t e^{r(T-t)}/K)}{\sigma\sqrt{T-t}} + \frac{\sigma\sqrt{T-t}}{2}$:

$$N(d_1)$$
 is the *share-measure* probability of $S_T > K$. It's the time- t price, in shares, of an asset that pays 1 share if $S_T > K$.

- \triangleright $S_t N(d_1)$ is the value of an asset-or-nothing call.
- ▶ $N(d_1)$ is $\partial C/\partial S$, the delta of a vanilla call.
- \triangleright $S_t N(d_1)$ is value of vanilla-call replicator's share holdings.

PDE can come from probabilistic approach too

Recall: under \mathbb{P} , "every tradeable asset's proportional drift rate is r".

▶ Apply this to S (where $dS_t = \mu S_t dt + \sigma S_t dW_t$) to get

$$dS_t = rS_t dt + \sigma S_t d\tilde{W}_t$$

where \tilde{W} is a P-BM with $d\tilde{W}_t = dW_t + \lambda_t dt$.

The drift changes (to rS_t), but the volatility does not.

▶ Apply this to the option price C, assuming $C_t = C(S_t, t)$. By Itô

$$dC_t = \frac{\partial C}{\partial t}dt + \frac{\partial C}{\partial S}dS + \frac{1}{2}\frac{\partial^2 C}{\partial S^2}(dS)^2.$$

Equate the drift of C to rC:

$$\frac{\partial C}{\partial t} + rS \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC$$

This is the B-S PDE. Terminal condition: $C(S,T) = (S-K)^+$

Replication or Expectation

Other Payoffs

Other Dynamics: Forward prices

Other Dynamics: Dividend-paying stocks

Analytical or Computational

Pricing general payoff functions of S_T

To find time-t price:

- ▶ PDE approach: To price instead an option paying $f(S_T)$, use the PDE that comes from the dynamics, changing only the terminal condition to C(S,T) = f(S).
- ► Expectations approach: Calculate

$$e^{-r(T-t)} \int_0^\infty f(s)p(s)\mathrm{d}s$$

where p is the time-t conditional probability density of S_T . Or,

$$e^{-r(T-t)} \int_{-\infty}^{\infty} f(e^x) p_L(x) dx$$

where p_L is the time-t conditional probability density of $\log S_T$.

Hedging general payoff functions of S_T

- ▶ The replication argument showed: if C(S,t) is a function that satisfies the B-S PDE with terminal condition C(S,T) = f(S), then a portfolio of $\partial C/\partial S$ shares and $(C S_t \cdot \partial C/\partial S)/B_t$ units of the bank account replicates a $f(S_T)$ payoff, and self-finances.
- So to hedge a contract on $f(S_T)$, we can use PDE or risk-neutral \mathbb{E} , to find the option pricing function C which satisfies the B-S PDE. We can then calculate $\partial C/\partial S$ to find the delta hedge.

Replication or Expectation

Other Payoffs

Other Dynamics: Forward prices

Other Dynamics: Dividend-paying stocks

Analytical or Computational

Forward prices

The time-t forward price for time-T delivery of some underlying X_T (not necessarily a tradeable asset) is defined to be the particular level of K^* such that the forward contract on X_T with delivery price K^* and delivery date T has time-t value 0. The strike Assuming only frictionless markets, no arbitrage, and non-random interest rates, the time-t forward price F_t

▶ satisfies $F_t = K^*$ where $e^{-r(T-t)}\mathbb{E}_t(X_T - K^*) = 0$, therefore

$$F_t = \mathbb{E}_t X_T$$

and F is a martingale. In particular, $F_T = X_T$. Therefore, if F follows GBM, can price options on F_T , and therefore options on X_T , using C^{BS} formula with underlying $= F_t$ and $R_{arow} = 0$.

Forward prices

- ▶ F_t also equals the time-t futures price for time-T delivery of X.
 (A futures contract is not the same thing as a forward contract.
 However, futures prices = forward prices, when interest rates are non-random. You are not required to learn about futures contracts/prices for this class.)
- \triangleright F_t satisfies a generalized put-call parity that does not assume the underlying X is tradeable:

$$C_t - P_t = e^{-r(T-t)}(F_t - K)$$

if the call, put, and forward contract all have strike (delivery price) K and expiry T. Proof: replicate the K-strike forward contract with the F_t -strike forward plus $F_t - K$ bonds.

Replication or Expectation

Other Payoffs

Other Dynamics: Forward prices

Other Dynamics: Dividend-paying stocks

Analytical or Computational

What is a tradeable asset?

Common language standpoint: something you can buy/sell.

Mathematical standpoint: We have already defined tradeable assets.

- ▶ A tradeable asset is just a member of the vector **X** of adapted stochastic processes (representing the market's tradeable assets).
- Each trading/portfolio strategy Θ in the assets \mathbf{X} is allowed to change at any times in some designated set of trading times. At all t, the portfolio's time-t value is defined to be $V_t := \Theta_t \cdot \mathbf{X}_t$.
- ightharpoonup The strategy Θ in assets X is defined to be self-financing if

$$dV_t = \mathbf{\Theta}_t \cdot d\mathbf{X}_t$$

as you recall. These definitions already incorporate "tradeability".

What is a tradeable asset?

Embedded within these mathematical definitions are requirements that can be labelled as [frictionless] "tradeability":

- ► The ability to buy and hold arbitrary quantities at prices X.

 This includes negative quantities.
- ▶ The definition that declares "self-financing (no deposits / no withdrawals)" to be equivalent to "value changes are fully attributable to asset price changes" assumes that portfolio values
 - ▶ Are not allowed to change due to transaction costs.
 - ▶ Are not allowed to change due to dividends or storage costs.

What is a tradeable asset?

Financial modeling standpoint:

▶ A tradeable asset is an object which satisfies [to whatever extent the financial modeler demands] the "tradeability" requirements implicit in our mathematical definitions about trading strategies.

In particular, a tradeable asset X has the following properties (or at least can be modelled as having the following properties):

- ▶ Is available to be bought or sold frictionlessly at all designated times t, at price X_t
- ► Can be held in arbitrary quantities (including negative), without receiving any dividends, nor incurring any costs.

Examples

X is not the price process of a tradeable asset for $t \in [0,T]$ if: (ignoring trivial/exceptional circumstances)

- \triangleright X_t is the time-t price of a dividend paying stock
- \triangleright X_t is the forward price of a stock (dividend-paying or not)
- ▶ $X_t = S_t^2$ where S_t is a stock that follows B-S dynamics
- $ightharpoonup X_t = (S_t K)^+$ where S_t is a stock that follows B-S dynamics
- \triangleright X_t is an interest rate
- \triangleright X_t is the S&P 500 index
- \triangleright X_t is the time-t temperature in this room

Examples

X is the price process of a tradeable asset for $t \in [0,T]$ if

- \triangleright X_t is the time-t price of a non-dividend paying stock
- \blacktriangleright X_t is the time-t price of a dividend-paying stock, together with all of its re-invested dividend payments since time 0.

X could be the price process of a tradeable asset for $t \in [0,T]$ if

▶ X_t is the time-t value of contract which pays (only) at time T the quantity V_T , where V_T is any random variable (not necessarily an asset price) revealed at time T > t.

Ex: X_t is the time-t value of an option on a time-T interest rate.

Ex: X_t is the time-t value of a contract paying S_T^2 at time T.

Examples

X could be the price process of a tradeable asset for $t \in [0,T]$ if

 \blacktriangleright X_t is the time-t value of contract which pays (only) at time T the quantity V_T , where V_T is any random variable revealed at time T.

Ex: X_t is the time-t value of an option on a time-T interest rate.

Ex: X_t is the time-t value of a contract paying S_T^2 at time T.

Why "could be"?

Maybe X is not available in the particular market, and cannot be synthesized from what is available. (But note that in derivatives pricing the typical question is: If the contract that pays V_T would be made available, what price would it have? So we typically treat as tradeable the derivative that we propose to introduce.)

Contrast two examples

Let S the price process of a tradeable asset.

Can the process X_t be the price process of a tradeable asset ...

- ▶ If $X_T = S_T^2$?
 - Yes (if that contract is available, or if you make it available).

But you cannot dictate that $X_t = S_t^2$ at earlier times t.

- $\blacktriangleright \text{ If } X_t = S_t^2 \text{ for all } t \in [0, T]?$
 - No. Because arbitrage would arise (except in trivial cases).

Including dividend-paying stocks in our portfolios

Two approaches:

- ▶ Enlarge the mathematical theory to allow assets to have dividend/consumption streams. Need to (re)define concepts, such as "self-financing portfolio".
- ▶ Keep the mathematical theory as it is. But to apply it to some object, you must bundle the object together with whatever dividend/consumption stream it generates. This bundle/package can be considered a tradeable asset.

We take the second approach.

Stock paying continuous dividends

Let's price an option which pays $f(S_T)$ at time T, where S is the price of a stock that pays dividends to stockholders at a constant yield q.

This means that if Q_t denotes the total dollar amount of dividend paid during [0,t] by one share, then $dQ_t = qS_t dt$.

So S is not tradeable, but it makes sense to consider as tradeable:

- ▶ A contract which pays S_T at time T.
- \triangleright Equivalently, this is a zero-delivery-price forward contract on S_T .
- Equivalently, this is a bundle/package, starting at time 0 with $A_0 := e^{-qT}$ shares, pooled with all reinvested dividends. Thus

$$dA_t = A_t dQ_t / S_t = A_t (qS_t dt) / S_t = qA_t dt$$

So at time t the bundle has $A_t = e^{-q(T-t)}$ shares. Note $A_T = 1$.

Dynamics

 \triangleright Let X_t be the value of this bundle/package. We have

$$X_t = e^{-q(T-t)} S_t.$$

Note that $X_T = S_T$; so the payoff $f(S_T)$ is identical to $f(X_T)$.

 \triangleright Now assume Black-Scholes dynamics for S:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

where W is P-BM. Then $\log X_t = -q(T-t) + \log S_t$, hence

$$d \log X_t = q dt + d \log S_t = (\mu + q - \sigma^2/2) dt + \sigma dW_t$$

hence

$$dX_t = (\mu + q)X_t dt + \sigma X_t dW_t.$$

The replication approach

By the same replication arguments that we have already seen (L5), the option price must be $\tilde{C}(X_t, t)$ where \tilde{C} satisfies the B-S PDE

$$\frac{\partial \tilde{C}}{\partial t} + rX\frac{\partial \tilde{C}}{\partial X} + \frac{1}{2}\sigma^2X^2\frac{\partial^2 \tilde{C}}{\partial X^2} = r\tilde{C}$$

with $\tilde{C}(X,T) = f(X)$. Let $C(S,t) := \tilde{C}(e^{-q(T-t)}S, t)$. Then

$$\frac{\partial C}{\partial S} = e^{-q(T-t)} \frac{\partial \tilde{C}}{\partial X}$$

$$\frac{\partial^2 C}{\partial S^2} = e^{-2q(T-t)} \frac{\partial^2 \tilde{C}}{\partial X^2}$$

$$\frac{\partial C}{\partial t} = \frac{\partial \tilde{C}}{\partial t} + qe^{-q(T-t)} S \frac{\partial \tilde{C}}{\partial X}$$

so $X \frac{\partial \tilde{C}}{\partial X} = S \frac{\partial C}{\partial S}$, and $X^2 \frac{\partial^2 \tilde{C}}{\partial X^2} = S^2 \frac{\partial^2 C}{\partial S^2}$, and $\frac{\partial \tilde{C}}{\partial t} = \frac{\partial C}{\partial t} - qS \frac{\partial C}{\partial S}$, where

the LHS of these three equations are evaluated at $X = e^{-q(T-t)}S$.

Solution

Hence

$$\frac{\partial C}{\partial t} + (r - q)S\frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC$$

with terminal condition C(S,T) = f(S).

▶ Suppose we have a call, $f(S) := (S - K)^+$.

The PDE solution is

$$C(S,t) = C^{BS}(S,t,K,T,r-q,r,\sigma) = e^{-r(T-t)}[FN(d_1) - KN(d_2)],$$

where $F := Se^{(r-q)(T-t)}$ and

$$d_{1,2} := d_{\pm} := \frac{\log(F/K)}{\sigma\sqrt{T-t}} \pm \frac{\sigma\sqrt{T-t}}{2}.$$

The risk-neutral pricing / martingale approach

Now we can do either

- ▶ Write the PDE by setting the risk-neutral drift of $C(S_t, t)$ equal to rC, and solve the PDE.
- ▶ Or find the \mathbb{P}_t -distribution, and solve for \mathbb{E}_t of discounted payout. At time t,

$$\log S_T \sim \text{Normal}(\log S_t + (r - q - \sigma^2/2)(T - t), \ \sigma^2(T - t)).$$

Therefore, for a call option, by L&4,

$$C_t = e^{-r(T-t)} \mathbb{E}_t(S_T - K)^+ = C^{BS}(S_t, t, K, T, r - q, r, \sigma)$$

which agrees with the PDE solution.

The risk-neutral pricing / expectations approach

Need to change to risk-neutral measure. X is tradeable.

And under physical measure, X is GBM with volatility sigma.

Now we can do either So, under risk-neutral measure, X is GBM but with drift rXdt.

Volatility is still sigma.

- Write the PDE by setting the risk-neutral drift of $C(S_t, t)$ equal to rC, recovering L6.21; and solve the PDE.
- Or find the \mathbb{P}_t -distribution, and solve for \mathbb{E}_t of discounted payout.

 At time t,

$$\log S_T \sim \text{Normal}(\log S_t + (r - q - \sigma^2/2)(T - t), \ \sigma^2(T - t)).$$

Therefore, for a call option, by L6.4,

$$C_t = e^{-r(T-t)} \mathbb{E}_t(S_T - K)^+ = C^{BS}(S_t, t, K, T, r - q, r, \sigma)$$

which agrees with the PDE solution.

Reasonable to assume continuously-paid div yields?

Depends on the underlying.

- FX: Yes usually.
 - When the underlying is a foreign currency, the "dividend yield" is the interest rate paid by the foreign-currency-denominated bank account. Can model these interest payments as a continuous dividend.
- ► Single stocks: No.
 - Dividend payments are discrete, not continuous. If a stock has ex-dividend dates on the 15th of Feb, May, Aug, Nov, with a dividend yield of 4% annual, then taking q=0.04 is wrong if the pricing date = Mar 1 and expiry = Apr 20. No dividends!

Reasonable to assume continuously-paid div yields?

- Single stocks: No.

 Moreover, if we want to account for early exercise (single-stock options are usually "American-style"), then dividend timing matters (e.g., to determine whether to exercise an American call, necessary to check the day immediately before ex-div date).
- Stock index: Maybe. ~ 400 companies, each making up to 4 div payments annually, could be modeled as a continuous (but time-varying) yield. But rather than forecasting q to compute $F_t = S_t e^{(r-q)(T-t)}$, consider estimating $F_t = \mathbb{E}_t S_T$ directly, using put-call parity, or futures.

How to model discrete dividends?

A simple approach:

- ▶ European option on S_T is a European option on forward price F_T because $F_T = S_T$
- ▶ Model the forward price as GBM with drift 0.
- Solve for time-0 option price in terms of F_0 . Can rewrite in terms of S_0 .

Replication or Expectation

Other Payoffs

Other Dynamics: Forward prices

Other Dynamics: Dividend-paying stocks

Analytical or Computational

A look ahead

This quarter has focused on analytic solutions. But we do not have simple exact formulas

- when the dynamics of the risk factors are too complicated.
 - For example, simple exact formulas are less common:
 - ... when working with higher-dimensional models,
 - ... or when outside the class of Gaussian models (BM/GBM)
- ▶ when the contract to be priced/hedged is too complicated. For example, due to early-exercise or path dependency.

Then we use numerical methods (trees, finite differences, Monte Carlo, Fourier, and reinforcement learning) to evaluate \mathbb{E} or solve PDE.

