Bài 14. VECTO TRONG MẠT PHẨNG VÀ KHÔNG GIAN

Giảng viên: Nguyễn Lê Thi Bộ Môn Toán – Khoa Khoa học ứng dụng

MỤC TIÊU BÀI HỌC

- Biểu diễn được vectơ trong mặt phẳng và không gian.
- Áp dụng được các tính toán về vectơ trong mặt phẳng và không gian
- Úng dụng được vectơ vào giải một số bài toán thực tê

NỘI DUNG CHÍNH

14.1> Vecto trong mặt phẳng R²

14.2> Vecto trong không gian R³

14.3>Tích vô hướng, tích có hướng

14.4 Dường thẳng trong R³

1. VECTO TRONG MẠT PHẨNG

1. Khái niệm

- Vectơ là đại lượng có hướng và độ lớn, thường được biểu diễn dưới dạng một mũi tên.
- ightharpoonup Ký hiệu: \overrightarrow{PQ}
- ightharpoonup Độ dài vector $\overrightarrow{PQ}: \|PQ\|$

2. Các phép toán trên vecto

a. Nhân vectơ với một số

Vector av $\stackrel{1}{\longrightarrow}$ có độ lớn gấp |a| lần vector v. $\stackrel{1}{\longrightarrow}$ $\frac{1}{2}u$ $\stackrel{1}{\longrightarrow}$ cùng hướng với v nếu a>0. $\stackrel{1}{\longrightarrow}$ ngược hướng với v nếu a<0. $\stackrel{1}{\longrightarrow}$ $\stackrel{1}$

$$\overrightarrow{PQ} = -\overrightarrow{QP}, \quad \overrightarrow{a0} = \overrightarrow{0}, \ a \in \mathbb{R}$$

b. Cộng vectơ

- Vector u + vlà tổng của u, v
- Vector u v là vecto thỏa v + u - v = u

c. Biểu diễn vecto

Nếu P(a,b) và Q(c,d) thì vector PQ có biểu diễn dạng thành phần chuẩn là: $PQ = \langle c - a, d - b \rangle$

$$\langle a_1,b_1\rangle = \langle a_2,b_2\rangle \Leftrightarrow a_1 = a_2,b_1 = b_2$$
 Các phép toán vecto:
$$\langle a,b\rangle = \langle ka,kb\rangle \text{, với } k \text{ tùy } \text{\acute{y}}.$$

$$\langle a,b\rangle + \langle c,d\rangle = \langle a+c,b+d\rangle$$

$$\langle a,b\rangle - \langle c,d\rangle = \langle a-c,b-d\rangle$$

d. Tổ hợp tuyến tính của các vectơ

Tổ hợp tuyến tính của 2 vectơ u, v là a.u + b.v, trong đó a, b là các hằng sô.

Cho các vecto

$$u = \langle 3, 2 \rangle, v = \langle -1, 4 \rangle$$

Tìm tọa độ của các

vecto sau:

$$\frac{2}{3}u, u-v, 2u+5v$$

3. Vector định hướng

- * Nếu $u = \langle u_1, u_2 \rangle$ thì $||u|| = \sqrt{u_1^2 + u_2^2}$
- ❖ Vector có độ dài bằng 1 gọi là vector đơn vị.
- Vecto định hướng của vecto $v \neq 0$ là vecto đơn vị cùng hướng với v: $u = \frac{v}{\|v\|}$

Ví dụ 9.3

Tìm vecto định hướng của vecto

$$u = \langle 7, -2 \rangle$$

4. Biểu diễn chính tắc của vectơ trong mặt phẳng

$$v = \langle v_1, v_2 \rangle = v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle = v_1 i + v_2 j$$

Ví dụ. Cho
$$u = \langle 9, -4 \rangle \Rightarrow u = 9i - 4j$$

Hai lực F_1 và F_2 cùng tác động lên một vật thế. Giả sử lực F_1 có độ lớn là 3N và cùng hướng vecto -i, lực F_2 có độ lớn là 2N và cùng hướng với vecto

$$u = \frac{3}{5}i - \frac{4}{5}j$$

Tìm lực tác động thêm F_3 vào vật để vật đứng yên.

2. VECTO TRONG KHÔNG GIAN

1. Tọa độ điểm trong không gian

Trong không gian, một điểm được xác định bởi bộ (a,b,c) lần lượt được gọi là hoành độ, tung độ và cao độ.

2. Khoảng cách trong không gian R³

Khoảng cách giữa $P_1(x_1,y_1,z_1)$ và $P_2(x_2,y_2,z_2)$ là

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Ví dụ 14.5

Tìm khoảng cách giữa 2 điểm

P(1,4,-6); Q(-3,0,8)

3. Vecto không gian R³

• Cho $P_1(x_1, y_1, z_1)$; $P_2(x_2, y_2, z_2)$, ta có

$$P_1P_2 = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

 \bullet Ba vecto $i = \langle 1, 0, 0 \rangle; j = \langle 0, 1, 0 \rangle; k = \langle 0, 0, 1 \rangle$ được gọi là

các vecto cơ sở của ${\bf R}^3$. Dạng chính tắc của P_1P_2 là:

$$P_1 P_2 = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k$$

Ví dụ. Cho vectơ PQ biết P(1,-2,-2) và Q(3,-2,1). Biểu diễn chính tắc của PQ: PQ = 2i + 3k

3. TÍCH VÔ HƯỚNG – TÍCH CÓ HƯỚNG

1. Định nghĩa tích vô hướng

Tích vô hướng của hai vecto

$$v = a_1 i + a_2 j + a_3 k$$
$$w = b_1 i + b_2 j + b_3 k$$

là một số xác định bởi

$$v.w = a_1b_1 + a_2b_2 + a_3b_3$$

Ví dụ 14.7

Tìm tích vô hướng của

$$v = -5i + 4k$$
; $w = 2j + 3k$

2. Góc giữa hai vectơ

Góc θ giữa hai vector v, w

$$(0 \le \theta \le \pi)$$

khác 0 xác định bởi

$$\cos \theta = \frac{v.w}{\|v\| \|w\|}$$

$$\downarrow \downarrow$$

$$v.w = \|v\| \|w\| \cos \theta$$

 $v.w = 0 \implies v$, w trực giao hay vuông góc

Cho \(\Delta ABC \) c\(\text{co} \) 3

đỉnh A(1,1,8),

$$B(4,-3,-4)$$
 và

C(-3,1,5). Tính

góc A.

Xác định xem cặp vectơ nào sau đây trực giao với nhau?

$$u=3i+7j-2k,$$

$$v = 5i - 3j - 3k$$

$$w = j - k$$

3. Cosin chỉ hướng

$$v = \langle v_1, v_2, v_3 \rangle$$

$$\cos \alpha = \frac{v \cdot i}{\|v\|} = \frac{v_1}{\|v\|}$$

$$\cos \beta = \frac{v \cdot j}{\|v\|} = \frac{v_2}{\|v\|}$$

$$\cos \gamma = \frac{v \cdot k}{\|v\|} = \frac{v_3}{\|v\|}$$

cosin chỉ hướng của v

Có thể biểu diễn v dưới dạng:

$$v = ||v|| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

Tìm cosin chỉ

hướng của vecto

$$v = -2i + 3j + 5k$$

3. Định nghĩa tích có hướng

Tích có hướng của 2 vecto $v = (a_1, a_2, a_3); w = (b_1, b_2, b_3)$

là vecto

$$v \times w = (a_2b_3 - a_3b_2)i + (a_3b_1 - a_1b_3)j + (a_1b_2 - a_2b_1)k$$

$$v \times w = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Chú ý:

$$v \times w = -(w \times v)$$

 $v \times w$ và $w \times v$ trực giao với v, w

Tìm vecto khác

0 trực giao với

hai vecto

$$v = -2i + 3j - 7k$$

$$va w = 5i + 9k$$
.

7. Độ dài của tích có hướng

$$||v \times w|| = ||v|| ||w|| \sin \theta$$

 θ là góc giữa v và w

Ứng dụng

 $||v \times w|| = \text{diện tích hình bình hành tạo bởi 2 cạnh kề } v, w$

$$\frac{1}{2} \|v \times w\| = \text{diện tích hình tam giác tạo bởi 2 cạnh } v, w$$

Tính diện tích

tam giác có 3

đỉnh

$$P(-2,4,5),$$

$$R(-1,5,0)$$
.

8. Tích hỗn tạp

Tích hỗn tạp của 3 vecto

$$u = (a_1, a_2, a_3); v = (b_1, b_2, b_3); w = (c_1, c_2, c_3)$$

xác định bởi

$$(u \times v).w = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Nếu $(u \times v).w = 0$ thì u, v, w cùng nằm trên một mặt phẳng.

Chứng minh rằng các vectơ

$$u = \langle 1, 4, -7 \rangle$$

$$v = \langle 2, -1, 4 \rangle$$

$$w = \langle 0, -9, 18 \rangle$$

cùng nằm trên một mặt phẳng

4. ĐƯỜNG THẮNG TRONG KHÔNG GIAN

1. Dạng tham số của đường thẳng

Phương trình tham số của đường thẳng L đi qua điểm (x_0, y_0, z_0) có vecto chỉ phương (vector cùng phương với đường thắng) là

v = Ai + Bj + Ck thì có dạng:

$$x = x_0 + At$$

$$y = y_0 + Bt$$
 t: tham số
$$z = z_0 + Ct$$

Ví dụ 14.16

Tìm phương trình tham số của đường thẳng (d) đi qua hai điểm (3,1,4) và (1,-2,5)

2. Vị trí tương đối của hai đường thắng trong R³

Xét hai đường thẳng L_1, L_2 trong R^3 với $P \in L_1, Q \in L_2$

- L_1, L_2 vuông góc $\Leftrightarrow u_{L_1}.u_{L_2} = 0$
- L_1, L_2 chéo nhau $\Leftrightarrow (u_{L_1} \times u_{L_2}).PQ \neq 0$

Xác định xem hai đường thẳng sau cắt nhau, song song hay chéo nhau

$$L_{1}: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{4}$$

$$L_{2}: \frac{x+2}{4} = \frac{y}{-3} = \frac{z+1}{1}$$

KÉT BÀI

Sinh viên cần lưu ý:

- Áp dụng được các tính toán về vectơ trong mặt phẳng và không gian
- Giải được các bài toán liên quan đến tích vô hướng,
 tích có hướng
- Ứng dụng được vectơ vào giải các bài toán thực tế

THANKS FOR WATCHING!

Chứng minh rằng Ta có điểm 2 cạnh của tam giác song song và bằng ½ độ dài cạnh thứ 3.

Bài giải

đường nối trung
$$AB = AP + PQ + QB = \frac{1}{2}AC + PQ - BQ$$

điểm 2 cạnh của tam giác song song và bằng ½ độ dài cạnh $= \frac{1}{2}(AB + BC) + PQ - \frac{1}{2}BC$
 $= \frac{1}{2}AB + PQ \Rightarrow PQ = \frac{1}{2}AB$

Vậy *PQ* song song với *AB* và có độ dài

băng một nửa độ dài AB

Ví du 14.3

rộng 4 dặm chảy về hướng nam với tốc độ dòng chảy 5 dặm/ giờ. Trong một cuộc triển lãm, con tàu phải qua một điểm phút. Hỏi hướng Ta có đi cần đạt được của con tàu?

Bài giải

Một con sông Gọi B là vectơ vận tốc con tàu theo hướng hợp với phương ngang một góc θ

Vận tốc dòng chảy là C và $\|C\| = 5$ dặm/giờ

Vận tốc hữu dụng của tàu là V (chỉ hướng tây)

chạy thẳng từ và
$$||V|| = \frac{4}{1/3} = 12 \text{ dặm/giờ}$$
 đông sang tây,

qua mot diem quan sát trong 20
$$\Rightarrow ||B|| = \sqrt{||V||^2 + ||C||^2} = 13$$

$$\tan \theta = \frac{5}{12} \Rightarrow \theta = \tan^{-1} \left(\frac{5}{12}\right) \approx 0.3948$$

3. Đồ thị trong không gian R³

1. Mặt phẳng

$$ax + by + cz = d$$

2. Mặt cầu

Phương trình mặt cầu

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Ví dụ 14.6

Tìm tâm và bán kính của mặt cầu

$$x^2 + y^2 + z^2 - 4x + 6y = 20$$

Bài giải

$$(x-2)^2 + (y+3)^2 + z^2 = 33$$

Đường tròn có tâm I(2,-3,0) và bán kính bằng $\sqrt{33}$

3. Mặt trụ

C: đường chuẩn

L: đường sinh

$$x^2 + y^2 = 4$$

$$y^2 - z^2 = 9$$

$$x^2 + 2z^2 = 25$$

4. Phép chiếu

❖ Phép chiếu vectơ của *v* trên *w*:

$$proj_{w}v = \left(\frac{v.w}{w.w}\right)w$$

❖ Phép chiếu vô hướng của v trên w:

$$comp_{w}v = \frac{v.w}{\|w\|}$$

Tìm phép chiếu vectơ và phép chiếu vô hướng của vectơ

$$v = -i + 3j + 2k$$

trên vecto

$$w = 2i - j - k$$
.

Bài giải

Phép chiếu vectơ của v lên w là

$$proj_{w}v = \left(\frac{v.w}{w.w}\right)w$$

$$=\frac{-7}{6}\langle 2,-1,-1\rangle = \left\langle \frac{-7}{3},\frac{7}{6},\frac{7}{6}\right\rangle$$

Phép chiếu vô hướng của v lên w là

$$comp_{w}v = \frac{v.w}{\|w\|} = \frac{-7}{\sqrt{6}}$$

5. Ứng dụng tích vô hướng

Nếu một vật di chuyển dọc theo hướng vector PQ dưới tác dụng của lực F thì công sinh ra là

$$W = F.PQ$$

Bài giải

$$\begin{cases} PQ = kj \\ \|PQ\| = \sqrt{k^2} = 100 \end{cases} \Rightarrow k = 100 \Rightarrow \overrightarrow{PQ} = 100j$$

Vì
$$||F|| = 500 \text{ lb}$$
 và theo hướng 30° ĐB nên:

$$\vec{F} = 500\cos 60^{0}i + 500\sin 60^{0}j$$

$$=250i + 250\sqrt{3}j$$

Công cơn gió thực hiện là:

$$W = \overrightarrow{F}.\overrightarrow{PQ}$$

$$= 100(250\sqrt{3})$$

$$= 25000\sqrt{3} \approx 43301(ft - lb)$$