• FINAL EXAM SCHEDULER

4005-735-01 Parallel Computing I

G2.Team Kyz

Kevin Cheek, Yandong Wang, Ziyan Zhou

http://tinyurl.com/ritkyz

AGENDA

- Problem Description
- Solutions
- Approaches
 - Brute-Force
 - o Sequential/Parallel Design, Performance Metrics, Investigation
 - Simulated Annealing (SA)
 - Paper Summary, Sequential/Parallel Design, Performance Metrics
 - Genetic Algorithm (GA)
 - Paper Summary, Sequential/Parallel Design, Performance Metrics
- Future Work
- o Q&A

FINAL EXAM SCHEDULING PROBLEM

Sections

0101-201-01	FINANCIAL ACCOUNTING	DBIJK	-upen	40	39	PIW	LUUUUAM	ILDUAR	12
0101-301-02	FINANCIAL ACCOUNTING	KEARNS, F		Open	39	38	TR	400P	550
0101-301-03	FINANCIAL ACCOUNTING	KEARNS, F		Close	40	40	TR	1200N	150
0101-301-71	FINANCIAL ACCOUNTING	EVANS,W C	Open	40	38	T	600P	950P	12
0101-301-90	FINANCIAL ACCOUNTING	LEBOWITZ,	, P	Close	25	25	NA	ONLINE	COU
0101-302-01	MANAGEMENT ACCOUNTING	OLIVER, B		Open	40	39	TR	200P	350
0101-302-02	MANAGEMENT ACCOUNTING	DEY,R *	*Open	40	38	MW	800A	950A	12
0101-345-71	ACCOUNTING INFO SYSTEMS	NEELY,M *	*Open	28	17	W	600P	950P	12
0101-409-01	FINAN. REPT. & ANLYS. I	I F	KEARNS, E	?	*Open	40	26	MW	120
0101-494-71	COST ACCTG TECH ORG	MORSE,W *	*Open	15	9	W	600P	950P	12
0101-523-90	ADVANCED TAXATION	KLEIN,R C	Open	25	19	NA	ONLINE	COURSE	NA
0101-540-71	ADVANCED ACCOUNTING	OLIVER, B		*Open	20	12	M	600P	950
0101-554-01	FORENSIC&FRAUD ACCOUNTN	G F	KLEIN,R	Open	12	0	W	400P	550
0101-703-71	ACCTG FOR DECISION MAKE	R M	MORSE, W	*Open	35	31	T	600P	920
0101-703-90	ACCTG FOR DECISION MAKE	R F	KLEIN,R	Open	25	23	NA	ONLINE	COU
0101-704-71	CORP FINANCIAL REPT I	KARIM,K C	Open	35	15	W	600P	920P	12
0101-706-71	COST MANAGEMENT KARIM, K	Open 3	34	16	T	600P	920P	12	110
0101-707-71	ADVANCED ACCOUNTING	OLIVER, B		*Open	1.5	5	M	600P	950

Slots

- MTWRF 8:00-10:00 10:15-12:15p 12:30p-14:30p 14:45p-16:45p
- Students

SOLUTIONS

- Three different experimental approaches
 - Brute-force
 - Simulated Annealing (SA)
 - Genetic Algorithm (GA)

RANKING CRITERIA

- Variant of Exams distributed across exam slots
- Each student has a vote:
 - Exam Conflict: POSITIVE_INFINITY
 - Three or more exam per day: 5.0
 - Consecutive Exams: 2.0
 - Friday Exams: **0.5**

EXAMPLES

Schedule for Student 68997-3266 John Doe I

	MON	TUE	WED	THU	FRI
8:00am	N/A	N/A	N/A	4003-233-70	4003-233-45
10:15am	N/A	N/A	N/A	4003-420-02	N/A
12:30pm	N/A	N/A	4003-232-01	N/A	4003-713-70
2:45pm	N/A	N/A	4003-334-40	N/A	N/A

Schedule for Student 54331-5905 John Doe 2

	MON	TUE	WED	THU	FRI
8:00am	4003-231-01	N/A	N/A	4003-334-02	N/A
10:15am	N/A	4003-232-55	N/A	N/A	N/A
12:30pm	N/A	N/A	4003-233-03	N/A	N/A
2:45pm	N/A	N/A	N/A	4003-410-01	N/A

PACKAGE COMMON

Objects

- Section
- Student
- Schedule

Student

- getld()
- getName()

Section

- getId()
- getTitle()
- getProfessor()
- ..

Schedule

- Map<SectionId, Slot>
- getRank()

Utilities

- Resources
 - Provide data loading, global access to resources
- Random.generateSchedule()
 - Randomly generate a schedule
- Ranker.rank(Schedule)
 - Rank the given schedule
- GenerateData Program

TEST DATA

N	Courses	Students	Student Load
5	5	2,00	4
10	10	4,00	4
20	20	8,00	4
50	50	2,000	4
100	100	4,000	4
200	200	8,000	4

BRUTE-FORCE APPROACH

BRUTE-FORCE: SEQUENTIAL

BRUTE-FORCE: FIRST CLUSTER PARALLEL DESIGN

Master:

- -Schedule []
- -Schedule Generator
- -All the information of courses
- ObjectBuf< Schedule > buf =
 ObjectBuf.sliceBuffer(Schedule[]
 , Range);

Worker:

- Schedule[]
- Optimal Schedule
- All the information of students

Communication Method:

- -world.receive(pro, buf);
- -world.send(pro,tag, buf);
- CommRequest request; world.receive(0, tag, buf, request);

BRUTE-FORCE: FIRST DESIGN EXPECTED SIZEUP

BRUTE-FORCE: RELENTLESS REALITY **Efficiency** 0.7 (I): 10000 msc, 10 0.6 0.5 pieces size 50 8 0.4 6 CPU 0.3 Efficiency 4 Sizeup 0.2 0.1 2 0 1 2 3 1 2 3 4 5 6 7 8 9 10 **Efficiency** 12 10 (2): 10000 msc, 8 8.0 Pieces size 150 6 CPU 0.6 4 Sizeup 0.4 Efficiency 0.2 1 2 3 4 5 6 7 8 9 10 2 3 **Efficiency** 12 10 1.2 8 o (3): 10000 msc 0.8 6 CPU 0.6 Sizeup Pieces size 1000 Efficiency 0.4 0.2

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

BRUTE-FORCE: REDESIGN

Master

BRUTE-FORCE: SECOND DESIGN RESULT

o (1): 10000 msc

o (2): 20000 msc

o (3): 30000 msc

2

1 2 3 4 5 6 7 8 9 10

1.02

1.015

12345678910

Efficiency

SIMULATED ANNEALING (SA)

PAPER #1: STOCHASTIC SEARCH ALGORITHMS FOR EXAM SCHEDULING

By Mansour and Timany, published in International Journal of Computational Intelligence Research in 2007

- Exam scheduling as a modified weighted graph coloring problem
- Objective Functions
- Simulated Annealing Algorithm (SA)
- Results Reference

SA: SEQUENTIAL

```
Initial configuration = random;
Initial temperature T(0) = 0.93; //high initial acceptance
Freezing temperature \mathbf{Tf} = 2^{-30}; //uphill moves impossible
while (T(i) > Tf \text{ and not converged}) {
  repeat (# of slots) * (# of exams) times
   generate function();
  save best so far(); //smallest OF1
  T(i) = phi * T(i); //phi = 0.95
function generate function() {
  perturb(); //randomly change one exam's slot to another slot
  if (\Delta OF1 \le 0)
   accept();
  else if (ramdon() < e^{(-\Delta OF1/T(i))})
   accept(); //accept with a probability
```

SA: RESULT COMPARISON

• Problem Size:

• Exams: 336

• Students 2456

Enrolments: 9550

• Slots: 20

ONotations:

SE: Simultaneous Exam (conflict)

CE: Consecutive Exams

ME: Multiple Exam (3 or more on the same day)

	SE	CE	ME	Rank
Our	0	24	351	2594.66
Their	3	336	572	N/A

SA: PARALLEL

SA: REDUCTION

```
final ObjectItemBuf<Schedule> buf =
   ObjectItemBuf.buffer(sa.getBest());

Comm.world().allReduce(0, buf, new ObjectOp<Schedule>() {
    @Override
   public Schedule op(final Schedule x, final Schedule y) {
     if(x.getRank() < y.getRank())
        return x;
   return y;
   }
});
sa.setBest(buf.item);</pre>
```

SA: PERFORMANCE METRICS

SA: PERFORMANCE METRICS

SA: INVESTIGATION

Bottlenecks

- Barrier makes it hard to load balance
- Communication overhead
- Better efficiency as N becomes larger
 - # of temperature fixed
 - Amount of communication fixed
 - Perturb and ranking takes significantly longer, $O(N^2)$

Limitation

- When N=100, sequential program takes more than an hour to run on a cluster node, K=16 takes 613,783 ms
- When N=200, K=16, it takes 2530,561 ms to finish

GA: GENETIC ALGORITHM

```
Randomly generate initial population size POP;
Evaluate fitness of individuals:
repeat {
  rank individuals and allocate reproduction trials;
  for i=1 to POP step 2 {
   randomly select two parents from list;
   apply crossover and mutation;
  apply hill-climbing to offspring //hybridization
  evaluate fitness of offspring;
  save best so far();
} until converge
```

GA: PAPERS

• Used 3 Papers:

- Genetic Algorithm Taxonomy by Mariusz Nowostawski and Riccardo Poli
- Stochastic Search Algorithms for Exam Scheduling by Nashat Massour and Mazen Timany
- Parallel Genetic Algorithms for the Hybrid Flow shop Scheduling Problem by K. Belkadi, M. Gourgand, and M. Benyettou

GA: PAPER FINDINGS

Findings

- Cross-over rate
- Mutation rate
- Number of mutations
- Selection of individuals for reproduction
- Replacement strategies
- Convergence Detection
- Population size
- Migration Topologies

GA: SEQUENTIAL AND PARALLEL DESIGN

GA: RESULT COMPARISON

• Problem Size:

• Exams: 336

• Students 2456

Enrolments: 9550

• Slots: 20

	SE	CE	ME	Rank
Our GA	0	19	275	2283.26
Their GA	4	308	537	N/A
Our SA	0	24	351	2594.66
Their SA	3	336	572	N/A

ONotations:

SE: Simultaneous Exam (conflict)

CE: Consecutive Exams

• ME: Multiple Exam (3 or more on the same day)

GA: Performance

GA: Performance

GA: PERFORMANCE

GA: Performance

GA: INVESTIGATION

- Investigation Results and Problems:
 - It works!
 - Convergence Problems
 - Parameter Issues

FUTURE WORK

- Increased Problem Complexity
 - RIT: 2500 courses, 16,000 students
- More parameter for Ranker
- Minimize the schedule structure
 - Use only 32-bit integers instead of Section ID String
- Focus on Genetic Algorithm (GA)
 - True Migration
 - Better Convergence Detection
 - Solution Detection
 - Load Balancing with Convergence

THANK YOU FOR LISTENING

- o G2. Team Kyz
 - Kevin Cheek
 - Yandong Wang
 - Ziyan Zhou
- Visit us at: http://tinyurl.com/ritkyz