

Gergely Csaba LFE Bioinformatik Institut für Informatik Ludwig-Maximilians-Universität München

Gene Set Enrichment

GoBi WS 2019/20

gene 1

gene 2

gene N

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Result of gene-based DE tests

RNAseq → mapping → feature counting → differential expression / splicing →

condition 1 (phenotype 1)

rep₁ rep₂ ... rep_{n1}

counts

(or other signals

if not RNA-seq)

condition 2 (phenotype 2)

rep₁ rep₂ ... rep_{n2}

counts

(or other signals if not RNA-seq)

FC 1 FDR 1 FDR 2 FC N FDR N

Result of gene-based DE tests

RNAseq → mapping → feature counting → differential expression / splicing →

Result of gene-based DE tests

Beyond single gene analysis: what is the "drive" of the changes?

Input: long list of DEG-s

OFFICIAL_GENE_SYMBOL	Gene Name
AANAT	aralkylamine N-acetyltransferase(AANAT)
ABCB4	ATP binding cassette subfamily B member 4(ABCB4)
ABCC2	ATP binding cassette subfamily C member 2(ABCC2)
ABHD2	abhydrolase domain containing 2(ABHD2)
ABR	active BCR-related(ABR)
ACVR1C	activin A receptor type 1C(ACVR1C)
ACVRL1	activin A receptor like type 1(ACVRL1)
ADA	adenosine deaminase(ADA)
ADAM15	ADAM metallopeptidase domain 15(ADAM15)
ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif 1(ADAMTS1)
ADCYAP1	adenylate cyclase activating polypeptide 1(ADCYAP1)
ADGRG1	adhesion G protein-coupled receptor G1(ADGRG1)
ADGRL1	adhesion G protein-coupled receptor L1(ADGRL1)
ADIPOQ	adiponectin, C1Q and collagen domain containing(ADIPOQ)
ADIPOR1	adiponectin receptor 1(ADIPOR1)
ADNP	activity dependent neuroprotector homeobox(ADNP)
ADORA1	adenosine A1 receptor(ADORA1)
ADORA2A	adenosine A2a receptor(ADORA2A)
AFP	alpha fetoprotein(AFP)
AGER	advanced glycosylation end-product specific receptor(AGER)
AGO4	argonaute 4, RISC catalytic component(AGO4)
AGRP	agouti related neuropeptide(AGRP)
AGTR2	angiotensin II receptor type 2(AGTR2)
AHCY	adenosylhomocysteinase(AHCY)
AHR	aryl hydrocarbon receptor(AHR)
AIF1	allograft inflammatory factor 1(AIF1)
ALB	albumin(ALB)
ALOX15B	arachidonate 15-lipoxygenase, type B(ALOX15B)
ALOVEAD	arachidenate E linewgopase activating protein(ALOVEAD)

Result of gene-based DE tests

Beyond single gene analysis: what is the "drive" of the changes?

Input: long list of DEG-s

OFFICIAL_GENE_SYMBOL	Gene Name
AANAT	aralkylamine N-acetyltransferase(AANAT)
ABCB4	ATP binding cassette subfamily B member 4(ABCB4)
ABCC2	ATP binding cassette subfamily C member 2(ABCC2)
ABHD2	abhydrolase domain containing 2(ABHD2)
ABR	active BCR-related(ABR)
ACVR1C	activin A receptor type 1C(ACVR1C)
ACVRL1	activin A receptor like type 1(ACVRL1)
ADA	adenosine deaminase(ADA)
ADAM15	ADAM metallopeptidase domain 15(ADAM15)
ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif 1(ADAMTS1)
ADCYAP1	adenylate cyclase activating polypeptide 1(ADCYAP1)
ADGRG1	adhesion G protein-coupled receptor G1(ADGRG1)
ADGRL1	adhesion G protein-coupled receptor L1(ADGRL1)
ADIPOQ	adiponectin, C1Q and collagen domain containing(ADIPOQ)
ADIPOR1	adiponectin receptor 1(ADIPOR1)
ADNP	activity dependent neuroprotector homeobox(ADNP)
ADORA1	adenosine A1 receptor(ADORA1)
ADORA2A	adenosine A2a receptor(ADORA2A)
AFP	alpha fetoprotein(AFP)
AGER	advanced glycosylation end-product specific receptor(AGER)
AG04	argonaute 4, RISC catalytic component(AGO4)
AGRP	agouti related neuropeptide(AGRP)
AGTR2	angiotensin II receptor type 2(AGTR2)
AHCY	adenosylhomocysteinase(AHCY)
AHR	aryl hydrocarbon receptor(AHR)

molecular function?

e.g.:

GTPase activator activity

Binds to and increases the activity of a GTPase, an enzyme that catalyzes the hydrolysis of GTP.

Result of gene-based DE tests

Beyond single gene analysis: what is the "drive" of the changes?

Input: long list of DEG-s

Result of gene-based DE tests

Beyond single gene analysis: what is the "drive" of the changes?

Input: long list of DEG-s

OFFICIAL_GENE_SYMBOL	Gene Name
AANAT	aralkylamine N-acetyltransferase(AANAT)
ABCB4	ATP binding cassette subfamily B member 4(ABCB4)
ABCC2	ATP binding cassette subfamily C member 2(ABCC2)
ABHD2	abhydrolase domain containing 2(ABHD2)
ABR	active BCR-related(ABR)
ACVR1C	activin A receptor type 1C(ACVR1C)
ACVRL1	activin A receptor like type 1(ACVRL1)
ADA	adenosine deaminase(ADA)
ADAM15	ADAM metallopeptidase domain 15(ADAM15)
ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif 1(ADAMTS1)
ADCYAP1	adenylate cyclase activating polypeptide 1(ADCYAP1)
ADGRG1	adhesion G protein-coupled receptor G1(ADGRG1)
ADGRL1	adhesion G protein-coupled receptor L1(ADGRL1)
ADIPOQ	adiponectin, C1Q and collagen domain containing(ADIPOQ)
ADIPOR1	adiponectin receptor 1(ADIPOR1)
ADNP	activity dependent neuroprotector homeobox(ADNP)
ADORA1	adenosine A1 receptor(ADORA1)
ADORA2A	adenosine A2a receptor(ADORA2A)
AFP	alpha fetoprotein(AFP)
AGER	advanced glycosylation end-product specific receptor(AGER)
AGO4	argonaute 4, RISC catalytic component(AGO4)
AGRP	agouti related neuropeptide(AGRP)
AGTR2	angiotensin II receptor type 2(AGTR2)
AHCY	adenosylhomocysteinase(AHCY)
AHR	aryl hydrocarbon receptor(AHR)

molecular function? biological process? pathway? targets of TF / microRNA / lincRNA? disease?

most common definition:

knowledge associated with a set of genes

Gene Ontology started in 2007

Joint effort of model organism annotators with the goal:

to produce a **structured**, **precisely defined**, **common**, **controlled vocabulary** for describing the roles of **genes** and **gene products** in **any organism**

GO is organized as directed acyclic graph (**DAG**)

annotations associated to a DAG node → but imply association to all parent nodes as well (upward propagation)

GO: constantly updated, extended

report from 2016

Aspect	Terms (classes)	Relationships
Molecular function (MF)	10 417	14 039
Cellular component (CC)	4022	7854
Biological process (BP)	29 146	71 372

Organism	Biological process EXP	Biological process IBA
Human	38 819	14 596
Mouse	59 517	18 128
Rat	27 591	16 810
Zebrafish	18 004	17 001
Fruit fly	30 560	5913
Nematode (C. elegans)	11 679	7683
Slime mold (D.	3630	4637
discoideum)		
Budding yeast	17 646	3608

novel extensions:

- additional links to other databases
- traceable curations (pmids)
- negative (NOT) annotations
- towards LEGO (Linked Expressions using the Gene Ontology)

Gene set enrichment general input

set to gene associations

x sets where set i is associated with p_i genes

set 1
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p1})$

set 2
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p2})$

set 3
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p3})$

set 4
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p4})$

set 5
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p5})$

set 6
$$(g_1, g_2, g_3, ..., g_{p6})$$

set 7
$$\longrightarrow$$
 $(g_1, g_2, g_3, ..., g_{p7})$

experimental outcome

g_i: a subset of following information

- is target of the enrichment
- (e.g. significantly differentially expressed)
- phenotype information X, Y with
 n₁, n₂ replicates

$$\bullet X = (X_1, ..., X_{n1})$$

$$\bullet Y = (Y_1, ..., Y_{n2})$$

 some derived measure(s) for the gene – phenotype association (e.g. p-value, log₂(FC))

Gene set enrichment general input

set to gene associations + ontology

x sets where set i is associated with p_i genes

experimental outcome

g_i: a subset of following information

- is target of the enrichment
- (e.g. significantly differentially expressed)
- phenotype information X, Y with
 n₁, n₂ replicates

$$\bullet X = (X_1, ..., X_{n1})$$

$$\bullet Y = (Y_1, ..., Y_{n2})$$

 some derived measure for the gene – phenotype association (e.g. p-value, log₂(FC))

Gene set enrichment general workflow

Depends on **what** and **how** we use from the experimental data

Combine p-values of genes (Gamma, Fischer, Stouffer) → one p-value per set

set i
$$\longrightarrow (g_1, g_2, g_3, ..., g_{pi})$$

$$\stackrel{D_1}{D_1} \stackrel{D_2}{\partial_1} \stackrel{D_3}{\partial_2} \stackrel{D_4}{\partial_1} \stackrel{D_4}{\partial_1} \stackrel{D_4}{\partial_1} \stackrel{D_5}{\partial_2} \stackrel{D_6}{\partial_3} \stackrel{D_7}{\partial_4} \stackrel{D_7}{\partial_5} \stackrel{D_7}{\partial_5$$

e.g. Fischer:

$$X_{2k}^2 \sim -2\sum_{i=1}^k \ln(p_i)$$

problem: genes are not independent

Depends on **what** and **how** we use from the experimental data

Hypothesis: Multivariate tests on gene set with p genes:

 phenotype information X, Y with n₁, n₂ replicates

• $X = (X_1, ..., X_{n1}) \sim distrib F mean \mu_x$

• Y = $(Y_1, ..., Y_{n2})$ ~ distrib G mean μ_v

General:

 H_0 : F = G H_1 : $F \neq G$

Restricted:

 H_0 : $\mu_x = \mu_v$ H_1 : $\mu_x \neq \mu_v$

example: N-statistics

$$N_{n_{1}n_{2}} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} \left[\frac{1}{n_{1}n_{2}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} L(X_{i}, Y_{j}) - \frac{1}{2n_{1}^{2}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{1}} L(X_{i}, X_{j}) \right]$$

$$-\frac{1}{2n_{2}^{2}} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$-\frac{1}{2n_{2}^{2}} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$= \frac{1}{2n_{2}^{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$= \frac{1}{2n_{2}^{2}} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$= \frac{1}{2n_{2}^{2}} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$= \frac{1}{2n_{2}^{2}} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

$$= \frac{1}{2n_{2}^{2}} \sum_{j=1}^{n_{2}} L(Y_{i}, Y_{j})$$

L: e.g. euclidean distance on some (e.g. RPKM) X_i , Y_i have length p

$$L(X,Y) = |X-Y|$$

Depends on **what** and **how** we use from the experimental data

List-based:

reduce the experimental outcome to a simple list of targets:

"is target of the enrichment (e.g. DEG-s) "

typical: DE-genes with:

→ input: a list of gene-ids of interest

Depends on **what** and **how** we use from the experimental data

Distribution-based:

"some derived measure for the gene – phenotype association (e.g. p-value, log₂(FC))"

example: compare the **fold change** distribution of the **genes within the set against** the fold change distribution of **all other** measured genes

List based Set Enrichment: Over-representation analysis (ORA)

input:

- list of gene-ids of interest (e.g. **DEG-s**)
- a pre-defined **set** of genes to test (e.g. a biological process)
- \rightarrow contingency table. hypothesis: H_0 : a/b = c/d

	in set	not in set
significant DE	a	b
non-significant DE	С	d

Over-representation analysis (ORA)

Fischer's Exact

	in set	not in set	row total
significant DE	a	b	a+b
non- significant DE	С	d	c+d
column total	a+c	b+d	a + b + c + d (=n)

Hypergeometric

N: total genes

K: DEG-s

n: set size

k: overlap (DE genes, set genes)

$$P(X=k)=rac{{K\choose k}{N-K\choose n-k}}{{N\choose n}}$$
 ,

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}}$$
 Hypergeometric N = a+b+c+d K = a+b n = a+c

Fischer's exact = Hypergeometric with:

$$N = a+b+c+d$$

 $K = a+b$

$$n = a+c$$

$$K = a$$

Hypergeometric =

Fischer's exact with:

$$a = k$$

$$b = K - k$$

$$c = N - k$$

$$d = N - n - K + k$$

Distribution based set enrichment

input: "some derived measure for the gene – phenotype association"

example: compare the fold change distribution of the genes within the set against the fold change distribution of all other measured genes

Kolmogorov-Smirnov statistics

compares the cumulative distributions:

- statistic value: Dm, n: maximum distance between the empirical distribution
- basically a running-sum difference test between two lists of length n and m,
- no need to know the type and parameter of the underlying distributions

$$\lim_{m,n\to\infty} \Pr\left\{\sqrt{mn/(m+n)}D_{m,n} \le z\right\} = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp\left(-2i^2z^2\right)$$

Widely used web-based ORA since 2003 (Lempicki group (for ref see last slides))

Easy to use as:

- provides a solution for the gene name-mapping problem (many possible input gene identifier types, results depend on how one handles ambiguities, version of mappings etc...)
- integrates many resources (many organisms, but also multiple annotation repositories)
- web-based (no installation needed but if version changes on the web implications might be also affected)
- provides a convenient clustering of the long output lists (see next slides)

Widely used web-based ORA since 2003 (Lempicki group)

Enrichment score: Fischer's exact test with jackknifing

Jackknifing: a single data point is removed and the statistic is recalculated many times \rightarrow a distribution of probabilities that is broad if the result is highly variable and tight if the result is robust.

In case of Fischer's exact: simply use a-1 instead of a.

Widely used web-based ORA since 2003 (Lempicki group)

Integrated resources:

GO, KEGG, Biocarta Pathways, Swiss-Prot keywords, UniProt Sequence features ... (many more)

DAVID

Widely used web-based ORA since 2003 (Lempicki group)

Integrate resources: GO, KEGG, Biocarta Pathways, Swiss-Prot keywords, UniProt Sequence Features ... (many more)

Widely used web-based ORA since 2003 (Lempicki group) Enrichment score: Fischer's exact test with **jackknifing**

DAVID

Widely used web-based ORA since 2003 (Lempicki group)

Strategy to make the long output list more interpretable: cluster genes by their annotations

each gene is a binary vector of length of all available annotation categories:

	Cell death	Apoptosis	Ph domain	Sh2 domain	Apoptosis pathway	Membrane
Gene a	1	1	0	0	1	0
Gene b	1	1	0	1	1	0
Gene c	1	0	0	1	1	1
Gene d	1	1	0	0	1	1
Gene e	0	1	1	1	1	1
Gene f	0	0	1	1	0	1
Gene g	0	0	1	1	0	1

DAVID

Widely used web-based ORA since 2003 (Lempicki group)

Strategy to make the long output list more interpretable: cluster genes by their annotations

each gene is a binary vector of length of all available annotation categories:

	Cell death	Apoptosis	Ph domain	Sh2 domain	Apoptosis pathway	Membrane
Gene a	1	1	0	0	1	0
Gene b	1	1	0	1	1	0
Gene c	1	0	0	1	1	1
Gene d	1	1	0	0	1	1
Gene e	0	1	1	1	1	1
Gene f	0	0	1	1	0	1
Gene g	0	0	1	1	0	1

- similarity is measured by the correlation of the annotation vectors
- as vector binary use the Kappa (K) statistic

$$K_{ab} = \frac{O_{ab} - A_{ab}}{1 - A_{ab}}$$

 O_{mn} num co-occurrence A_{mn} chance co-occurrence

DAVID

 similarity of genes is measured by the Kappa statistic on the co-occurrences of the binary annotation vectors

	Cell death	Apoptosis	Ph domain	Sh2 domain	Apoptosis pathway	Membrane
Gene a	1	1	0	0	1	0
Gene b	1	1	0	1	1	0
Gene c	1	0	0	1	1	1
Gene d	1	1	0	0	1	1
Gene e	0	1	1	1	1	1
Gene f	0	0	1	1	0	1
Gene g	0	0	1	1	0	1

		G	Gene a				
		1 0 Row total					
Gene b	1	3 (C _{1,1})	1 (C _{1,0})	4 (C _{1,*})			
Gene b	0	0 (C _{0,1})	2 (C _{0,0})	2 (C _{0,*})			
Column total		3 (C _{∗,1})	3 (C _{*,0})	6 (T _{ab})			

$$O_{ab} = \frac{O_{1,1} + O_{0,0}}{T_{ab}} = \frac{O + 2}{6} = 0.83$$

$$A_{ab} = \frac{C_{*,1} \cdot C_{1,*} + C_{*,0} \cdot C_{0,*}}{T_{*,0} \cdot T_{*,0}} = \frac{3 \cdot 4 + 3 \cdot 2}{6 \cdot 6} = 0.5$$

$$K_{ab} = \frac{O_{ab} - A_{ab}}{1 - A_{ab}} = \frac{0.83 - 0.5}{1 - 0.5} = 0.66$$

- strategy to make the long output list more interpretable: cluster genes by their annotations
- similarity of genes is measured by the Kappa statistic on the co-occurrences of the binary annotation vectors
- clustering: how? normal strategies (hierarchical clustering, k-means, SOM) would assign exactly one cluster per gene does not reflect the situation:
 - gene to cluster relationship may be weak better not to assign
 - gene may belong to multiple clusters
 - need fuzzy multi-linkage clustering

DAVID

 strategy to make the long output list more interpretable: cluster genes by their annotations: fuzzy multi-linkage: 3 steps:

points: genes, distance: kappa

initializing multiple seeds

multi-linkage merging (based on fraction shared group members)

iterate until no more merging

• strategy to make the long output list more interpretable: cluster genes by their

 strategy to make the long output list more interpretable: cluster genes by their annotations

- allows for combining multiple resources for enrichment
- take care what you select: by default
- BP_direct is used, no BP_all → less (and other) clusters found

1	82 Clu	ster(s)					Dow	nload File
		Annotation Cluster 1	Enrichment Score: 25.11	G	The state of the s	Count	P_Value	Benjami
		GOTERM_BP_DIRECT	cellular oxidant detoxification	<u>RT</u>	=	60	6.0E-65	1.1E-61
		UP_KEYWORDS	<u>Oxidoreductase</u>	<u>RT</u>	=	52	1.1E-6	1.4E-5
		GOTERM_BP_DIRECT	oxidation-reduction process	<u>RT</u>	=	58	7.1E-6	2.1E-4
7		Annotation Cluster 2	Enrichment Score: 21.86	G		Count	P_Value	Benjami
		GOTERM_CC_DIRECT	extracellular space	<u>RT</u>		179	4.8E-37	1.5E-34
		UP_SEQ_FEATURE	signal peptide	<u>RT</u>		260	5.7E-23	6.9E-20
		UP_KEYWORDS	Secreted	<u>RT</u>	_	174	5.8E-21	5.1E-19
		GOTERM_CC_DIRECT	<u>extracellular region</u>	<u>RT</u>	_	152	4.8E-16	2.3E-14
		UP_KEYWORDS	Signal	<u>RT</u>		278	6.5E-16	2.3E-14
		Annotation Cluster 3	Enrichment Score: 21.48	G		Count	P_Value	Benjami
		GOTERM_BP_DIRECT	calcium ion-regulated exocytosis of neurotransmitter	<u>RT</u>	■	33	7.0E-35	4.1E-32
		GOTERM_MF_DIRECT	syntaxin binding	<u>RT</u>	=	41	1.3E-31	1.4E-28
JC		GOTERM_BP_DIRECT	regulation of calcium ion-dependent exocytosis	<u>RT</u>	=	29	4.6E-30	2.4E-27
		GOTERM_BP_DIRECT	vesicle fusion	<u>RT</u>	=	32	1.7E-24	5.8E-22
		GOTERM_MF_DIRECT	clathrin binding	<u>RT</u>	=	29	4.5E-23	1.2E-20
		UP_SEQ_FEATURE	domain:C2 1	<u>RT</u>	=	29	7.1E-23	5.6E-20
		UP_SEQ_FEATURE	domain:C2 2	<u>RT</u>	=	29	7.1E-23	5.6E-20
		GOTERM_MF_DIRECT	calcium-dependent phospholipid binding	<u>RT</u>	=	30	1.2E-22	2.6E-20
		INTERPRO	C2 calcium-dependent membrane targeting	<u>RT</u>	=	44	4.7E-21	3.2E-18
		INTERPRO	Synaptotagmin	<u>RT</u>	*	18	1.6E-20	7.4E-18
		SMART	<u>C2</u>	<u>RT</u>	=	40	2.2E-19	6.2E-17
		UP_SEQ_FEATURE	topological domain:Vesicular	<u>RT</u>	*	14	1.0E-8	4.1E-6
		GOTERM_MF_DIRECT	calcium ion binding	<u>RT</u>	=	67	1.8E-6	4.8E-5
		Annotation Cluster 4	Enrichment Score: 19	G	~	Count	P_Value	Benjami
		UP_KEYWORDS	Disulfide bond	<u>RT</u>		287	4.0E-32	8.8E-30
M		UP_SEQ_FEATURE	disulfide bond	<u>RT</u>		253	2.5E-29	6.0E-26

GSEA (Subramanian et al. 2005)

GSEA – (gene set enrichment analysis) – widely used distribution based method - based on the idea of Kolmogorov-Smirnov

input: "some derived measure for the gene – phenotype association (e.g. p-value, $log_2(FC)$)" \rightarrow in GSEA correlation with phenotype

LUDWIG-

GSEA (Subramanian et al. 2005)

GSEA – derived value: correlation with phenotype

$$\rho_{X,Y} = \frac{\mathrm{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

encoded phenotype gene counts

condition 1 (phenotype 1)

condition 2 (phenotype 2)

 $rep_1 rep_2 ... rep_{n1} rep_1 rep_2 ... rep_{n2}$

DE-seq p-value **VS** Phenotype correlation

GSEA

GSEA: weighted KS:

- r_i: correlation of gene j
- statistic value: P_{hit} − P_{miss}.
- p:
 - if 0 standard KS
 - if 1 weighted KS by correlation

$$P_{\text{hit}}(S, i) = \sum_{\substack{g_j \in S \ j \le i}} \frac{|r_j|^p}{N_R}, \text{ where } N_R = \sum_{g_j \in S} |r_j|^p$$

$$P_{\text{miss}}(S, i) = \sum_{\substack{g_j \notin S \\ j \le i}} \frac{1}{(N - N_H)}.$$

N = |genes| $N_h = |genes|$

GSEA

GSEA: weighted KS → standard KS distribution does not apply

→ how to estimate significance?

General solution for such cases (unknown distribution): calculate the background distribution for the score / statistic value

How?

- calculate score s for query gene set
- permute phenotype labels x times
- calculate for each permutation the score $ps_i \rightarrow BG = [ps_1, ps_2, ..., ps_x]$ significance estimation: p-value = (1+(|{ps_i | ps_i < s}|)) / (x+1)

GSEA

GSEA: weighted KS → standard KS distribution does not apply

→ how to estimate significance?

permute phenotype labels x times

for a minimal p-value of 0.001 we need ~ 1000 permutations

how many replicates are required to make 1000 different permutations possible?

GSEA: weighted KS → standard KS distribution does not apply

→ how to estimate significance?

permute phenotype labels x times

for a minimal p-value of 0.001 we need ~ 1000 permutations

how many replicates are required to make 1000 different permutations possible?

Example: 3 replicates = 10 permutations

cond1 cond2
$$(x_1, x_2, x_3)$$
 (y_1, y_2, y_3)

$$(x_1, x_2, y_1)$$
 (x_3, y_2, y_3) (x_1, x_2, y_2) (x_3, y_1, y_3)

$$(x_1, x_2, y_3) (x_3, y_1, y_2)$$

$$(x_1, x_3, y_1)$$
 (x_2, y_2, y_3)

$$(X_1, X_3, Y_2)$$
 (X_2, Y_1, Y_3)

$$(X_1, X_3, Y_3)$$
 (X_2, Y_1, Y_2)

$$(X_2, X_3, Y_1)$$
 (X_1, Y_2, Y_3)

$$(X_2, X_3, Y_2)$$
 (X_1, Y_1, Y_3)

$$(X_2, X_3, Y_3)$$
 (X_1, Y_1, Y_2)

GSEA: weighted KS → standard KS distribution does not apply → how to estimate significance?

permute phenotype labels x times

for a minimal p-value of 0.001 we need ~ 1000 permutations

how many replicates are required to make 1000 different permutations possible?

For:
$$n = n_1 = n_2$$
 $\binom{2n}{n}/2$

replicates	num perm.
3	10
4	35
5	126
6	462
7	1716

GSEA: weighted KS → standard KS distribution does not apply

→ how to estimate significance?

permute phenotype labels 1000 times → need >= 7 replicates

in most cases not available... →

fallback solution: permute gene sets:

for significance estimation of the gene set with p:

- calculate score s for query gene set
- select randomly **p genes** x times
- calculate for each the score ps_i→ BG = [ps1, ps2, ..., ps_x]
- significance estimation: (1+(|ps_i<s|)) / (x+1)

GSEA: weighted KS → standard KS distribution does not apply

permute phenotype labels or genes makes a big difference!

permute phenotype labels (subject sampling):

p-value gives confidence that the associations found between DE-genes and the outcome will be found for a new sample of subjects

→ **self-contained hypothesis** (tests if gene set diff. exp. between **phenotypes**)

permute genes (gene sampling):

p-value gives confidence that a for a new set of genes from the same subjects (replicates), there will be a similar association being in the set and being called "significant"

→ competitive hypothesis → compares set versus background (standard KS is also competitive)

Dealing with the overlaps /DAG structure

some **overlaps inherently implicated** by the DAG structure: **parent** categories contain all genes from the **child** categories

one can address this with different strategies:

- eliminate categories on same path (Grossmann 2007)
- down-weight genes contained in significantly enriched terms while evaluating related terms (Alexa 2006)

Dealing with the overlaps /DAG structure

some **overlaps inherently implicated** by the DAG structure: **parent** categories contain all genes from the **child** categories

there are **many other overlaps** as well...

→ try to address the initial goal: find a small set of categories explaining the observed changes

GenGo (Lu 2008) → generatives model maximum likelihood

MGSA (Bauer 2010) → bayesian network

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dealing with the overlaps /DAG structure

GenGo (Lu 2008) → generatives model, maximum likelihood

$$L(C | p, q, G) = |A_g| \log p + |A_n| \log q + |S_g| \log(1 - p) + |S_n| \log(1 - q) - \alpha |C|$$

GO Nodes (Gene Nodes (Noisy Observations)

ABCDE

B C D

C D

Activation Graph

Active GO node

Activation edge

p: false negative rate

q: false positive rate

C: set of selected GO terms (generating the observed gene changes)

 α : penalty to use as few terms as possible

optimization (p,q,C) is NP-hard

→ use greedy heuristic

 A_g —active gene nodes connected to at least one active GO node

 A_n —active gene nodes not connected to any active GO nodes

I—inactive gene nodes

 S_q —edges connecting nodes in I with active GO nodes

 S_n —edges connecting nodes in I with inactive GO nodes

Active gene node

Inactive gene node

Dealing with the overlaps /DAG structure

MGSA (Bauer 2010) → bayesian network

p: prior for T (~ penalty to use few)

T_i: terms

H_i: hidden (gene-GO associations)

0_i: observed (genes)

α: false positive rate

β: false negative rate

distributions: Bernoulli, optimization via MCMC (Markov Chain Monte Carlo)

How to evaluate / benchmark?

For real data: no gold standard available:

- **simulation:** (problem: how to simulate realistically?)
 - (+ where to start: from counts / expression signals or sets?)
- **check FP-s**: compare replicates of same condition
- "cherry picking": show that some enriched categories might make sense (i.e. show that the method is usable, but it does not allow for comparing methods or benchmark)
- annotate "quasi gold standard" trues and falses based on external knowledge (e.g. experiment was on cancer versus healthy, categories should link to cancer)
 limited by how appropriate the trues and falses are selected
- evaluate robustness (different aspects) example: take a data-set with many replicates, create subsets from the replicates, run enrichment, define found ones from the full as "true"-s and evaluate how well the subsets agree with these

How to evaluate / benchmark?

What measures (if applicable):

- FP-rate
- AUROC but if number of trues / falses imbalanced, not appropriate
- → area under precision recall curve: AUPRC (see example next slides)
- robustness: dependence on chosen parameter
- tailored robustness measure e.g.:
 - commonly detecting gene sets in subsets
 - cumulative common detection per subset (CCDS)

simulation results

 α : false positive rate β : false negative rate MGSA', GenGo' true α , β is given, MGSA: α , β estimated from data

TfT: term form term Fischer's Exact PCU: parent child union TopW: topological weight

simulation results

 α : false positive rate β : false negative rate MGSA', GenGo' true α , β is given, MGSA: α , β estimated from data

TfT: term form term Fischer's Exact PCU: parent child union TopW: topological weight

Real data example

,Nigerian data-set' (Pickrell 2010) tests: (Rahmatallah 2014, 2016)

- lymphoblastoid cell lines (LCL)
- 69 Nigerian individuals (use 58 unrelated, **29 male, 29 female**)

- within same gender allows for FP-check
- "natural"-FP-s: X-linked genes that are not escaping inactivation (Xi)
- "natural"-TP-s: genes that are escaping X-chromosome inactivation and are therefore over-expressed in females (XiE: 387 genes), and genes that are located on male-specific region of Y chromosome and are therefore overexpressed in males (msY).
- TP: MsigDB: C2 pathway: DISTECHE_ESCAPED_FROM_X_INACTIVATION
 (DEX)
 - three TP gene-sets: XiE, msY, DEX, one FP: (Xi)
 - (task is too easy, all tested methods find all TP-s and miss the one FP)

robustness (Nigerian data-set)

p-value combination methods: Gamma (GM), Fischer (FM), Stouffer (SM)

N-statistics with different normalizations

Sample-size robustness (Nigerian data-set)

Gene set definitions: C2 from MsigDB (various sources, curated, 3890)

define TP/TN gene-sets from full data-set (58 = 29 + 29 individuals)

create random sub-data-sets for sample sizes [48, 38, 28, 18] (100 data-set each)

• commonly detecting gene sets in subsets (b).

sample size = 18

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Sample-size robustness (Nigerian data-set)

Gene set definitions: C2 from MsigDB (various sources, curated, 3890)

define TP/TN gene-sets from full data-set (58 = 29 + 29 individuals)

create random sub-data-sets for sample sizes [48, 38, 28, 18] (100 data-set each)

• CCDS: cumulative common detection per subset

Q is the sum of the numbers of detected gene sets in all b (100)

b between 1 and 100

$$CCDS(b) = \frac{1}{Q} \sum_{k=1}^{b} k \ s_k$$

sample size = 18

among the 26.844 gene sets detected by N-statistic in all 100 subsets, 43.5% of them were commonly detected in at least 95% of all subsets

Sample-size robustness (Nigerian data-set)

Gene set definitions: C2 from MsigDB (various sources, curated, 3890)

define TP/TN gene-sets from full data-set (58 = 29 + 29 individuals)

create random sub-data-sets for sample sizes [48, 38, 28, 18] (100 data-set each)

• CCDS: cumulative common detection per subset

Q is the sum of the numbers of detected gene sets in all b (100)

b is between 1 and 100

$$CCDS(b) = \frac{1}{Q} \sum_{k=1}^{b} k \ s_k$$

sample size = 28

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Sample-size robustness (Nigerian data-set)

Gene set definitions: C2 from MsigDB (various sources, curated, 3890)

define TP/TN gene-sets from full data-set (58 = 29 + 29 individuals)

create random sub-data-sets for sample sizes [48, 38, 28, 18] (100 data-set each)

 CCDS: cumulative common detection per subset

Q is the sum of the numbers of detected gene sets in all b (100) b is between 1 and 100

$$CCDS(b) = \frac{1}{Q} \sum_{k=1}^{b} k \ s_k$$

issues

Things to have in mind if performing / reading about set enrichment

what about genes without any signal (read-count)?

issues

Things to have in mind if performing / reading about set enrichment

what about genes **without any signal** (count)?
not-measured → might be DE or not DE → one should not consider them

what about genes **not DE** (e.g. pval >= $0.05 \mid \mid abs(log_2(FC)) < 1)$?

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

issues

what about genes **not DE** (e.g. pval >= $0.05 \mid \mid abs(log_2(FC)) < 1)$?

the p-val only says something about the H_0 (gene is unchanged between phenotypes) if rejected, if not it might be for example:

- clearly not changing (would be ok as non-signif-DE, FC for KS-test would be appropriate (note: this is not tested by default at all!)
- too low signals to make a clear difference → not appropriate for b, c, d (FC for KS would be also invalid)
- high variance within replicates, unclear what happens → not appropriate for b, c, d (FC for KS would be also invalid)

issues

Things to have in mind if performing / reading about set enrichment

especially problem with the **users** of DAVID:

- DAVID enables loading background but works with defaults in many cases background inappropriate
- ID-mapping affects results
- many possible enrichment/clustering possibilities, default is appropriate?

pro & contra

List based enrichment (ORA):

- (+) easy to use, even for complex set of "genes of interest" (e.g. upregulated in expression, targets of TF X, and in chromatin state Y…) → but what is the appropriate background?
- (+) quick (simple calculations) (but only if no permutation tests)
- (-) cutoff thresholds to define significants ad-hoc, can be very unstable
- (-) misses systematic but small effects

Distribution based (e.g. KS):

- (+) uses the experimental values more information
- (+) no cutoff
- (-) slower
- (-) not possible for non genome-wide data (no background distribution to compare) or in a complex integrated study
- (-) big changes driving the statistic → assumption more changing more important (not necessarily true)

many methods

- in a review from 2009 from the DAVID authors 68 methods are discussed
 - (see literature slides)
- there are methods exploiting the gene networks for enrichment e.g.:
 - SPIA (Tarca, 2009)
 - GGEA (2011)
 - NEA (Alexeyenko, 2012)
 - RelExplain (Berchtold, 2017)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Questions?

Gene ontology

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock.

Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25(1):25-29, May 2000.

No authors listed.

Expansion of the Gene Ontology knowledgebase and resources.

Nucleic Acids Res., 45(D1):D331-D338, Jan 2017.

DAVID

B. T. Sherman, d. a. W. Huang, Q. Tan, Y. Guo, S. Bour, D. Liu, R. Stephens, M. W. Baseler, H. C. Lane, and R. A. Lempicki.

DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics, 8:426, Nov 2007.

DAVID

D. W. Huang, B. T. Sherman, Q. Tan, J. R. Collins, W. G. Alvord, J. Roayaei, R. Stephens, M. W. Baseler, H. C. Lane, and R. A. Lempicki.

The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists.

Genome Biol., 8(9):R183, 2007.

Review of (68!) methods from the DAVID authors:

d. a. W. Huang, B. T. Sherman, and R. A. Lempicki.

Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res., 37(1):1-13, Jan 2009.

GSEA

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Davier, G. L. Bernarov, T. D. Colub. F. S. Lander, and J. D. Masirov.

Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov.

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

Proc. Natl. Acad. Sci. U.S.A., 102(43):15545-15550, Oct 2005.

Methods using the GO-structure / overlaps

A. Alexa, J. Rahnenfuhrer, and T. Lengauer.

Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.

Bioinformatics, 22(13):1600-1607, Jul 2006.

S. Grossmann, S. Bauer, P. N. Robinson, and M. Vingron.

Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis.

Bioinformatics, 23(22):3024-3031, Nov 2007.

Y. Lu, R. Rosenfeld, I. Simon, G. J. Nau, and Z. Bar-Joseph.

A probabilistic generative model for GO enrichment analysis.

Nucleic Acids Res., 36(17):e109, Oct 2008.

S. Bauer, J. Gagneur, and P. N. Robinson.

GOing Bayesian: model-based gene set analysis of genome-scale data.

Nucleic Acids Res., 38(11):3523-3532, Jun 2010.

Comparative Analysis / Evaluation of Methods for RNA-seq

Y. Rahmatallah, F. Emmert-Streib, and G. Glazko.

Comparative evaluation of gene set analysis approaches for RNA-Seq data.

BMC Bioinformatics, 15:397, 2014.

Y. Rahmatallah, F. Emmert-Streib, and G. Glazko.

Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline.

Brief. Bioinformatics, Sep 2015.

Network based enrichment methods

A. L. Tarca, S. Draghici, P. Khatri, S. S. Hassan, P. Mittal, J. S. Kim, C. J. Kim, J. P. Kusanovic, and R. Romero.

A novel signaling pathway impact analysis.

Bioinformatics, 25(1):75-82, Jan 2009.

L. Geistlinger, G. Csaba, R. Kuffner, N. Mulder, and R. Zimmer.

From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics, 27(13):i366-373, Jul 2011.

A. Alexeyenko, W. Lee, M. Pernemalm, J. Guegan, P. Dessen, V. Lazar, J. Lehtio, and Y. Pawitan.

Network enrichment analysis: extension of gene-set enrichment analysis to gene networks.

BMC Bioinformatics, 13:226, Sep 2012.

E. Berchtold, G. Csaba, and R. Zimmer.

RelExplain-integrating data and networks to explain biological processes.

Bioinformatics, 33(12):1837-1844, Jun 2017.