

# Involutions in Coxeter Groups

Anna Boatwright, Emily Gunawan, Jennifer Koonz

Faculty Advisor: Ruth Haas, Smith College Department of Mathematics and Statistics

# The Center for Women in Mathematics at Smith College



#### Abstract

A Coxeter group is a group which is generated by involutions. They are often used to study geometrical symmetries. Two finite Coxeter groups were studied, those of type  $B_n$  and those of type  $D_n$ . The research group, led by Professor Ruth Haas, was primarily interested in the conjugacy classes of the involutions of each group and the relationships between these conjugacy classes. The elements of each involution conjugacy class of  $B_n$  were explicitly determined. Formulae were found to count the order of each involution conjugacy class of  $B_n$  and to count the number of involution conjugacy classes in  $B_n$ . A relationship between the involution conjugacy classes of  $B_n$  was determined. The involution conjugacy classes in the subgroup  $D_n$  were studied.

## The Coxeter Group $B_n$

For any  $n \in \mathbb{N}$ , consider the set  $\{1, 2, \dots, n, -1, -2, \dots, -n\}$ . The Coxeter group  $B_n$  is the group generated by the permutations  $s_1, s_2, \dots, s_n$  where

$$s_1 = (12)(-1-2)$$
  
 $s_2 = (23)(-2-3)$   
:  
 $s_{n-1} = ((n-1)n)(-(n-1)-n)$   
 $s_n = (1-1)$ 

#### Properties of $B_n$ :

- Note that each generator  $s_i$  is an involution.
- A defining characteristic of  $B_n$  is that for any element  $\sigma$  of  $B_n$  and any  $i, j \in \{1, \ldots, n, -1, \ldots, -n\}$ , if  $\sigma(i) = j$ , then  $\sigma(-i) = -j$ .

# Properties of Involutions

**Lemma 1:** If w is an involution and s is any element in a group G, then  $sws^{-1}$  is an involution. *Proof.* Then  $(sws^{-1})(sws^{-1}) = sws^{-1}sws^{-1} = swws^{-1} = ss^{-1} = e$ .

**Lemma 2:** Suppose w and s are involutions in a group G. If  $sws^{-1} = w$ , then sw is an involution. *Proof.* Then  $swsw = (sws^{-1})w = ww = e$ .

**Theorem:** For a group G with generating set S, all involutions of G can be generated by repeated application of Lemma 1 and Lemma 2 using S, starting with the identity.

# Involution Posets of $B_n$



Figure 1: (From left to right) The involution posets for  $B_2$ ,  $B_3$ ,  $B_4$ , and  $B_5$ .

# The Conjugacy Classes of $B_n$

**Definition:** Elements of  $B_n$  of the form (a-a) will be called  $\alpha$ -cycles, and elements of the form  $(a\,b)(-a-b)$  (where  $b\neq \pm a$ ) will be called  $\beta$ -cycles. We say that two involutions  $\sigma$  and  $\tau$  of  $B_n$  have the same *cycle type* if they consist of the same number of  $\alpha$ -cycles and the same number of  $\beta$ - cycles.

**Theorem 1:** Let  $\sigma$  and  $\tau$  be involutions in  $B_n$ . Then  $\sigma$  is conjugate to  $\tau$  if and only if  $\sigma$  and  $\tau$  have the same cycle type.

**Notation:** Let C be a conjugacy class in  $B_n$ . Then every element of C is composed of s  $\alpha$ -cycles and t  $\beta$ -cycles, and we can denote the class C by [s, t].

**Theorem 2:** In  $B_n$ , the number of elements in each conjugacy class [s, t] is given by

$$\frac{n!}{(n-2t)!t!} \binom{n-t}{s}.$$

**Theorem 3:** For each n, the number of conjugacy classes in  $B_n$  is given by

$$\sum_{k=0}^{n} \left( \left\lfloor \frac{k}{2} \right\rfloor + 1 \right).$$

# $B_n$ Supergraphs

Define the Supergraph of  $B_n$  to be the graph where each conjugacy class [s,t] of  $B_n$  is a vertex, and an edge between two vertices, [s,t] and [s',t'], indicates that there exists some  $\sigma \in [s,t]$  and a generator  $s_i$  of  $B_n$  such that  $s_i \sigma s_i^{-1} = \sigma$  and  $s_i \sigma \in [s',t']$ .



Figure 2: The Supergraphs of for  $B_2$  and  $B_3$ .



Figure 3: The Supergraph of for  $B_7$ , also shown mapped onto the Cartesian plane.

## Properties of the $B_n$ Supergraphs

Notice that the Supergraph of  $B_n$  always contains the Supergraphs of  $B_k$  for all  $k \le n$  as subgraphs.

**Theorem 4:** The conjugacy class [s, t] is adjacent to the conjugacy class [s', t'] in the Supergraph of  $B_n$  iff one of the following hold:

1. 
$$s + 1 = s'$$
 and  $t = t'$  (or  $s = s' + 1$  and  $t = t'$ )
2.  $s = s'$  and  $t + 1 = t'$  (or  $s = s'$  and  $t = t' + 1$ )
3.  $s + 2 = s'$  and  $t - 1 = t'$  (or  $s = s' + 2$  and  $t = t' - 1$ )

## The Coxeter Group $D_n$

Coxeter Groups of type  $D_n$  are generated by the elements

$$s_1 = (12)(-1-2)$$
  
 $s_2 = (23)(-2-3)$   
:  
 $s_{n-1} = ((n-1)n)(-(n-1)-n)$   
 $s_n = (1-2)(-12)$ 

#### Properties of $D_n$ :

- $D_n$  is a subgroup of  $B_n$
- Every element of  $D_n$ , when written in bottom row notation, must have an even amount of negative signs. For example [3-42-15] is an element of  $D_5$  but [1-2345] is not.

# Involution Posets for $D_n$





Figure 4: The involution poset for  $D_2$  (left) and the involution poset for  $D_3$  (right).

#### Future Work

In the future, we plan to study the conjugacy classes of  $D_n$  by:

- Examining the involution posets for  $D_n$
- Determining the Supergraphs for  $D_n$
- Determining which properties of the conjugacy classes of  $B_n$  hold in  $D_n$

#### Acknowledgements

We would like to thank Ruth Haas, the Smith College Department of Mathematics and Statistics, the Center for Women in Math at Smith College, and the National Science Foundation (NSF Grant DMS-0602110).