Q# 0.10 Language Quick Reference

Primitive Types	
64-bit integers	Int
Double-precision floats	Double
Booleans	Bool
	e.g.: true or false
Qubits	Qubit
Pauli basis	Pauli
	e.g.: PauliI, PauliX, PauliY, or PauliZ
Measurement	Result
results	e.g.: Zero or One
Sequences of	Range
integers	e.g.: 110 or 510
Strings	String
	e.g.: "Hello Quantum!"
"Return no	Unit
information" type	e.g.: ()

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.: (Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Ty	pes
Declare UDT with anonymous items	newtype <i>Name</i> = (Type, Type); e.g.: newtype <i>Pair</i> = (Int, Int);
Define UDT literal	<pre>Name(baseTupleLiteral) e.g.: let origin = Pair(0, 0);</pre>
Unwrap operator ! (convert UDT to underlying type) Declare UDT with named items	<pre>VarName! e.g.: let originTuple = origin!; (now originTuple = (0, 0)) newtype Name = (Name1: Type, Name2: Type);</pre>
	<pre>e.g.: newtype Complex = (Re : Double, Im : Double);</pre>
Accessing named items of UDTs	<pre>VarName::ItemName e.g.: complexVariable::Re</pre>
Update-and- reassign for named UDT items	<pre>set VarName w/= ItemName <- val; e.g.: mutable p = Complex(0., 0.); set p w/= Re <- 1.0;</pre>

```
Symbols and Variables

Declare immutable symbol

Declare mutable symbol (variable)

Update mutable symbol (variable)

Update mutable symbol (variable)

Apply-and-reassign set varName operator= expression e.g.: set counter += 1;
```

```
Functions and Operations
Define function
                    function Name(in0 : type0, ...)
(classical routine)
                    : returnType {
                         // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
                    operation Name(in0 : type0, ...)
Define operation
(quantum routine)
                    : returnType {
with explicitly
                         body { ... }
specified body,
                         adjoint { ... }
controlled and
                         controlled { ... }
adjoint variants
                         adjoint controlled { ... }
                    operation Name(in0 : type0, ...)
Define operation
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                         parameters)
                    e.g.: Controlled Ry(controls,
                         (0.5 * PI(), target));
```

```
Control Flow
Iterate over
                    for (index in range) {
a range of numbers
                         // Use integer index
                    e.g.: for (i in 0..N-1) { ... }
While loop
                    while (condition) {
(within functions)
Iterate over
                    for (val in array) {
an array
                         // Use value val
                    e.g.: for (q in register) { ... }
Repeat-until-
                    repeat { ... }
success loop
                    until (condition)
                    fixup { ... }
Conditional
                    if (cond1) { ... }
statement
                    elif (cond2) { ... }
                    else { ... }
Ternary operator
                    condition ? caseTrue | caseFalse
Return a value
                     return value
Stop with an error
                    fail "Error message"
Conjugations
                     within { ... }
(ABA^{\dagger} \text{ pattern})
                    apply { ... }
```

Arrays					
Allocate array	<pre>mutable name = new Type[length]</pre>				
	e.g.: mutable b = new Bool[2];				
Get array length	Length(<i>name</i>)				
Access k-th element	name[k]				
	NB: indices are 0-based				
Assign k-th element	set name w/= k <- value				
(copy-and-update)	e.g.: set b w/= 0 <- true;				
Array literal	[value0, value1,]				
	e.g.: let b = [true, false, true];				
Array concatenation	array1 + array2				
	e.g.: let t = [1, 2, 3] + [4, 5];				
Slicing (subarray)	name[sliceRange]				
	e.g.: if t = [1, 2, 3, 4, 5], then				
	t[1 3] is [2, 3, 4]				
	t[3] is [4, 5]				
	t[1] is [1, 2]				
	t[0 2] is [1, 3, 5]				
	t[1] is [5, 4, 3, 2, 1]				

Debugging (classical)			
Print a string	Message("Hello Quantum!")		
Print an	<pre>Message(\$"Value = {val}")</pre>		
interpolated string			

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Reposit	tories
QDK Samples	https://github.com/microsoft/ quantum
QDK Libraries	<pre>https://github.com/microsoft/ QuantumLibraries</pre>
Quantum Katas (tutorials)	https://github.com/microsoft/ QuantumKatas
Q# compiler and extensions	<pre>https://github.com/microsoft/ qsharp-compiler</pre>
Simulation framework	<pre>https://github.com/microsoft/ qsharp-runtime</pre>
Jupyter kernel and Python host	<pre>https://github.com/microsoft/ iqsharp</pre>
Source code for the documentation	https://github.com/ MicrosoftDocs/quantum-docs-pr

Qubit Allocation Allocate a register of N qubits using (reg = Qubit[N]) { \[\left(// Qubits in reg start in |0\rangle. \\ \left(// Qubits must be returned to |0\rangle. \\ \right) \] Allocate one qubit using (one = Qubit()) { \ldots in g (incomplete in the context of the context of qubit registers and individual qubits in the context of the context of

Debugging (quantum)

Print amplitudes of wave function Assert that a qubit is in $|0\rangle$ or $|1\rangle$ state DumpMachine("dump.txt") AssertQubit(Zero, zeroQubit) AssertQubit(One, oneQubit)

Measurements

Measure qubit in Pauli Z basis yields a Result (Zero or One) Reset qubit to $|0\rangle$ Reset an array of qubits to $|0.0\rangle$ ResetAll(register)

Working with Q# from command line

Command Line Basics

Change directory cd dirname
Go to home cd ~

Go up one directory cd ..

Make new directory mkdir dirname
Open current code .

directory in VS Code

Working with Q# Projects

Create new project	dotnet new console -lang Q# output <i>project-dir</i>
Change directory to project directory	cd project-dir
Build project	dotnet build
Run all unit tests	dotnet test

Math reference

Complex Arithmetic			
i^2	-1		
(a+bi) + (c+di)	(a+c) + (b+d)i		
(a+bi)(c+di)	$a \cdot c + a \cdot di + b \cdot ci + (b \cdot d)i^2 =$		
	$= (a \cdot c - b \cdot d) + (a \cdot d + b \cdot c)i$		
Complex conjugate	$\overline{a+bi} = a - bi$		
Division $\frac{a+bi}{c+di}$	$\frac{a+bi}{c+di} \cdot 1 = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi)(c+di)}{c^2+d^2}$		
Modulus $ a+bi $	$\sqrt{a^2+b^2}$		
$e^{i\theta}$	$\cos \theta + i \sin \theta$		
e^{a+bi}	$e^a \cdot e^{bi} = e^a \cos b + ie^a \sin b$		
r^{a+bi}	$r^a \cdot r^{bi} = r^a \cdot e^{bi \ln r} =$		
	$= r^a \cos(b \ln r) + i \cdot r^a \sin(b \ln r)$		
Polar form $re^{i heta}$ to	$a = r \cos \theta$		
Cartesian form $a+bi$	$b = r \sin \theta$		
Cartesian form $a+bi$	$r = \sqrt{a^2 + b^2}$		
to polar form $re^{i heta}$	$\theta = \arctan(\frac{b}{a})$		

Adjoint
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}^{\dagger} \qquad \begin{bmatrix} \overline{a} & \overline{e} \\ \overline{b} & \overline{d} \\ \overline{c} & \overline{f} \end{bmatrix}$$
Inner product
$$\left\langle \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right\rangle \qquad \begin{bmatrix} a \\ b \end{bmatrix}^{\dagger} \begin{bmatrix} c \\ d \end{bmatrix} = [\overline{a} \quad \overline{b}] \begin{bmatrix} c \\ d \end{bmatrix} = \overline{a}c + \overline{b}d$$
Outer product
$$\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\dagger} = \begin{bmatrix} a \\ b \end{bmatrix} [\overline{x} \quad \overline{y} \quad \overline{z}] = \begin{bmatrix} a \cdot \overline{x} \quad a \cdot \overline{y} \quad a \cdot \overline{z} \\ b \cdot \overline{x} \quad b \cdot \overline{y} \quad b \cdot \overline{z} \end{bmatrix}$$

Gates reference

Single	Single Qubit gates					
Gate	Matrix representation	Ket-bra representation	Applying to $ \psi\rangle=\alpha 0\rangle+\beta 1\rangle$	Applying to basis states:	$ 0\rangle, 1\rangle, +\rangle, -\rangle$ and	$ \pm i\rangle = \frac{1}{\sqrt{2}}(0\rangle \pm i 1\rangle)$
Χ	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle \langle 1 + 1\rangle \langle 0 $	$ \psi\rangle = \alpha 1\rangle + \beta 0\rangle$	$X 0\rangle = 1\rangle X 1\rangle = 0\rangle$	$\begin{array}{l} X\mid +\rangle =\mid +\rangle \\ X\mid -\rangle =-\mid -\rangle \end{array}$	$egin{aligned} X \left i ight angle &= i \left -i ight angle \ X \left -i ight angle &= -i \left i ight angle \end{aligned}$
Υ	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(\left 1\right\rangle \left\langle 0\right -\left 0\right\rangle \left\langle 1\right)$	$Y \psi\rangle = i(\alpha 1\rangle - \beta 0\rangle)$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$	$Y \left + \right\rangle = -i \left - \right\rangle$ $Y \left - \right\rangle = i \left + \right\rangle$	$egin{aligned} Y\ket{i} &= \ket{i} \ Y\ket{-i} &= -\ket{-i} \end{aligned}$
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle \langle 0 - 1\rangle \langle 1 $	$Z \psi\rangle = \alpha 0\rangle - \beta 1\rangle$	$Z 0\rangle = 0\rangle Z 1\rangle = - 1\rangle$	$Z \mid + \rangle = \mid - \rangle$ $Z \mid - \rangle = \mid + \rangle$	$Z\ket{i} = \ket{-i}$ $Z\ket{-i} = \ket{i}$
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +\left 1\right\rangle \left\langle 1\right $	$I\ket{\psi}=\ket{\psi}$			
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	$ 0\rangle \langle + + 1\rangle \langle - $	$H \psi\rangle = \alpha +\rangle + \beta -\rangle =$ $= \frac{\alpha + \beta}{\sqrt{2}} 0\rangle + \frac{\alpha - \beta}{\sqrt{2}} 1\rangle$	$H 0\rangle = +\rangle$ $H 1\rangle = -\rangle$	$\begin{array}{l} H \left + \right\rangle = \left 0 \right\rangle \\ H \left - \right\rangle = \left 1 \right\rangle \end{array}$	$\begin{array}{l} H\left i\right\rangle = e^{i\pi/4}\left -i\right\rangle \\ H\left -i\right\rangle = e^{-i\pi/4}\left i\right\rangle \end{array}$
S	$egin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix}$	$ 0\rangle \left<0\right + i \left 1\right> \left<1\right $	$S\ket{\psi} = \alpha\ket{0} + i\beta\ket{1}$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S \mid + \rangle = \mid i \rangle$ $S \mid - \rangle = \mid -i \rangle$	$S i\rangle = -\rangle$ $S -i\rangle = +\rangle$
Т	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +e^{i\pi/4}\left 1\right\rangle \left\langle 1\right $	$T \left \psi \right\rangle = \alpha \left 0 \right\rangle + e^{i\pi/4} \beta \left 1 \right\rangle$	$T 0\rangle = 0\rangle T 1\rangle = e^{i\pi/4} 1\rangle$		
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right -i\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right -\\ -i\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$\begin{array}{l} R_x(\theta) \left \psi \right> = \ (\alpha \cos \frac{\theta}{2} - i\beta \sin \frac{\theta}{2}) \left 0 \right> + \\ + \left(\beta \cos \frac{\theta}{2} - i\alpha \sin \frac{\theta}{2}\right) \left 1 \right> \end{array}$	$\begin{array}{l} R_x(\theta) \left 0 \right\rangle = \\ = \cos \frac{\theta}{2} \left 0 \right\rangle - i \sin \frac{\theta}{2} \left 1 \right\rangle \end{array}$	$\begin{array}{l} R_x(\theta) \left 1 \right\rangle = \\ = \cos \frac{\theta}{2} \left 1 \right\rangle - i \sin \frac{\theta}{2} \left 0 \right\rangle \end{array}$	
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right +\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right -\\ -\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$\begin{split} R_y(\theta) \left \psi \right\rangle &= (\alpha \cos \frac{\theta}{2} - \beta \sin \frac{\theta}{2}) \left 0 \right\rangle + \\ &+ (\beta \cos \frac{\theta}{2} + \alpha \sin \frac{\theta}{2}) \left 1 \right\rangle \end{split}$	$egin{aligned} R_y(heta) & 0 angle = \cosrac{ heta}{2} & 0 angle + \sinrac{ heta}{2} & 1 angle \end{aligned}$	$egin{aligned} R_y(heta) & 1 angle = & \cosrac{ heta}{2} & 1 angle - \sinrac{ heta}{2} & 0 angle \end{aligned}$	
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$	$e^{-i\theta/2} 0\rangle \langle 0 + e^{i\theta/2} 1\rangle \langle 1 $	$R_z(\theta) \psi\rangle = \\ = \alpha e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$	
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	$ 0\rangle \langle 0 + e^{i\theta} 1\rangle \langle 1 $	$R_1(\theta) \psi\rangle = \alpha 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$	