#### Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2023-24

## Λειτουργικά Συστήματα (διαχείριση επεξεργαστή, μνήμης και Ε/Ε)

http://mixstef.github.io/courses/csintro/



Μ.Στεφανιδάκης

#### Τι είναι ένα λειτουργικό σύστημα (ΛΣ);

- Operating System (OS)
- Λογισμικό ο «γενικός επιβλέπων» ενός υπολογιστικού συστήματος
  - Εκτέλεση προγραμμάτων εφαρμογών
  - Διαχείριση υπολογιστικών πόρων
    - Επεξεργαστής
    - Μνήμη
    - Συσκευές Ε/Ε
  - Ενδιάμεσο μεταξύ χρήστη και υπολογιστή
  - Παρέχει κοινές/συχνά χρησιμοποιούμενες λειτουργίες εφαρμογών
    - · «Βιβλιοθήκες» (libraries) λειτουργικού συστήματος

# Το Λειτουργικό Σύστημα ως μέρος του υπολογιστή



#### Μια άλλη απεικόνιση



- Το Λειτουργικό Σύστημα ως κέλυφος (shell) μεταξύ των εφαρμογών χρήστη και του υλικού
- Οι εφαρμογές χρήστη δεν έχουν δικαιώματα διαχείρισης του υλικού

#### Διαχείριση πόρων



#### Η εξέλιξη των Λειτουργικών Συστημάτων

- Αντίστοιχη με την εξέλιξη των υπολογιστών:
- Τα πρώτα μεγάλα συστήματα (mainframes)
  - ΛΣ δέσμης (batch operating systems)
- Συστήματα με πολυπρογραμματισμό (multiprogramming)
  - ΛΣ με δυνατότητες χρονοπρογραμματισμού
- Προσωπικοί Υπολογιστές
  - ΛΣ ενός χρήστη (single user operating system)
- Παράλληλα συστήματα (πολλές ΚΜΕ)
  - Σύνθετα ΛΣ για κατανομή εργασίας
- Κατανεμημένα συστήματα (μέσω δικτύου)
  - ΛΣ με πρόσθετες ικανότητες (συντονισμός, μηνύματα, ασφάλεια δεδομένων..)

#### Μονοπρογραμματισμός

- Τα πρώτα χρόνια των υπολογιστών...
- Στη μνήμη βρίσκονται
  - Ενα μοναδικό πρόγραμμα
  - Το λειτουργικό σύστημα
- Απλή διαχείριση μνήμης
  - Τι θα συμβεί αν το μέγεθος του προγράμματος είναι μεγαλύτερο από τον διαθέσιμο χώρο;
  - Πότε μπορεί να εκτελεστεί άλλο πρόγραμμα;

Λειτουργικό Σύστημα

Πρόγραμμα: κώδικας και δεδομένα

μνήμη

#### Πολυπρογραμματισμός

- Πολλά προγράμματα στη μνήμη
- «Ταυτόχρονη» εκτέλεση
  - Στην πραγματικότητα εναλλαγή εκτέλεσης εντολών από κάθε πρόγραμμα (υπήρχε μόνο μια ΚΜΕ)
  - Φαινομενικά τα προγράμματα εκτελούνται «παράλληλα»
- Οι υπολογιστικοί πόροι πρέπει να μοιράζονται μεταξύ των προγραμμάτων
  - Μνήμη, ΚΜΕ, συσκευές...
  - Αναγκαία η διαιτησία
  - Ρόλος του Λειτουργικού Συστήματος

Λειτουργικό Σύστημα

Πρόγραμμα1

Πρόγραμμα2

Πρόγραμμα3

Πρόγραμμα4

μνήμη

#### Πολυπρογραμματισμός (συνέχεια)

- Το Λειτουργικό Σύστημα διατηρεί πληροφορία για κάθε εκτελούμενο πρόγραμμα (διεργασία)
  - Process Control Block (PCB) ή Task Control Block (TCB)
- Όταν διακόπτεται η εκτέλεση:
  - Αποθήκευση τιμής program counter (PC)
    - Τρέχουσα διεύθυνση εκτελούμενης εντολής
  - Αποθήκευση τιμών καταχωρητών
- Όταν ξεκινά πάλι η εκτέλεση:
  - Αποκατάσταση αποθηκευμένων τιμών
    - Το πρόγραμμα συνεχίζει την εκτέλεση από το σημείο που διακόπηκε

#### Τεχνικές διαχείρισης μνήμης

- Πώς θα εξασφαλιστεί η διαθεσιμότητα της μνήμης για τα προγράμματα που εκτελούνται «ταυτόχρονα»
- Που βρίσκεται ένα πρόγραμμα (εντολές και δεδομένα)
  στη μνήμη;
  - 1. Χωρίς δυνατότητα εναλλαγής
    - Το πρόγραμμα παραμένει συνεχώς στη μνήμη
  - 2. Mε εναλλαγή (swapping)
    - Μέρος του προγράμματος μπορεί να εναλλάσσει θέση μεταξύ μνήμης και δίσκου κατά την εκτέλεση
    - Ελευθερώνοντας χώρο μνήμης για άλλα προγράμματα

### Χωρίς εναλλαγή: διαμέριση (partitioning)

- Κάθε πρόγραμμα έχει τον δικό του χώρο (διαμέριση)
  στη μνήμη
  - Ολο το πρόγραμμα σε συνεχόμενες θέσεις μνήμης
  - Αντικατάσταση προγραμμάτων μετά τον τερματισμό
  - Εισαγωγή νέων
  - Πιθανή δημιουργία κενών τμημάτων
  - Το Λ.Σ. διατηρεί λίστα χρησιμοποιούμενων τμημάτων μνήμης
  - Αντιμετώπιση κενών με συμπύκνωση (compaction)
    - Αργή διαδικασία!

## Με εναλλαγή: Σελιδοποίηση (1)



- Κάθε πρόγραμμα χωρίζεται σε σελίδες (pages)
- Η μνήμη χωρίζεται σε πλαίσια (frames)
  - Σελίδες και πλαίσια: ίδιο μέγεθος
  - Αποδοτικότερη χρήση μνήμης (λιγότερα κενά)
  - Πώς λύνεται το πρόβλημα της ανεπαρκούς μνήμης;

#### Σελιδοποίηση (2)

- Οι σελίδες έχουν προκαθορισμένο μέγεθος
  - $\pi$ .χ. 4KBytes
- Μπορούν να τοποθετηθούν σε οποιοδήποτε πλαίσιο μνήμης
- Ενδεχομένως να μην βρίσκονται όλες στη μνήμη
  - Ανάκληση από δίσκο όταν τις χρειαστεί το πρόγραμμα
  - Σελιδοποίηση κατ' απαίτηση (demand paging)
- Πρακτικά...
  - Το πρόγραμμα βλέπει διαφορετική διεύθυνση μνήμης από την πραγματική (φυσική) του πλαισίου
  - Εικονική μνήμη (virtual memory)
  - Απαιτείται η τήρηση πινάκων αντιστοίχισης διευθύνσεων
  - Για τη λειτουργία της εικονικής μνήμης είναι απαραίτητη η συνδυασμένη υποστήριξη από το υλικό (ΚΜΕ) και το λειτουργικό σύστημα

### Εικονική μνήμη: τι παρέχει το υλικό



- Ένα πρόγραμμα «βλέπει» λογικές διευθύνσεις
  - Εικονική Μνήμη (virtual memory)
  - Μετάφραση σε φυσικές διευθύνσεις μνήμης
  - Από το σύστημα διαχείρισης μνήμης (memory management unit MMU) που συνοδεύει την ΚΜΕ
    - Για τη μετάφραση: αναζήτηση φυσικής διεύθυνσης σε πίνακες
      σελίδων (βρίσκονται στη μνήμη)
    - Αποθήκευση των πιο πρόσφατων μεταφράσεων στην ΚΜΕ

#### Σελιδοποίηση κατ' απαίτηση

- Οι σελίδες των προγραμμάτων (κώδικας-δεδομένα) βρίσκονται αρχικά μόνο στον δίσκο
- Το ΛΣ τις σημειώνει ως «απούσες» από τη μνήμη
- Όταν προσπελαστεί μια «απούσα» σελίδα, δημιουργείται ένα σφάλμα εκτέλεσης (page fault)...
- ...και το ΛΣ τη φορτώνει σε ένα πλαίσιο στη μνήμη
- Ενδεχομένως εκτοπίζοντας πίσω στον δίσκο μια άλλη σελίδα από τη μνήμη
  - Η τελευταία σημειώνεται ως «απούσα»
- Page faults: μεγάλο κόστος σε κύκλους αναμονής
  - 1-10Μκύκλοι ρολογιού

### Εικονική μνήμη: τι παρέχει το Λ.Σ.

Κάθε πρόγραμμα έχει τους δικούς του πίνακες σελίδων

Κατά την εναλλαγή εκτέλεσης των προγραμμάτων αλλάζει και ποιος πίνακας θα χρησιμοποιηθεί για τη μετάφραση



#### Προγράμματα, εργασίες και διεργασίες

- Πρόγραμμα (program)
  - Ανενεργό σύνολο εντολών (στον δίσκο)
- Εργασία (job)
  - Πρόγραμμα που έχει επιλεγεί για εκτέλεση
  - Στον δίσκο ή στη μνήμη
- Διεργασία (process)
  - Πρόγραμμα υπό εκτέλεση
  - Στη μνήμη
  - Εκτελείται ή αναμένει για χρήση πόρων
  - Μπορεί να διακοπεί οποιαδήποτε στιγμή «παρά τη θέλησή της» από το Λ.Σ. (προεκτοπισμός preemption)

#### Χρονοδρομολόγηση (scheduling)

- Καταστάσεις διεργασίας
  - Έτοιμη προς εκτέλεση (ready)
  - Εκτελούμενη (running)
  - Σε αναμονή (waiting/blocked)
    - Για τη χρήση υπολογιστικών πόρων
- Όταν πολλές διεργασίες είναι έτοιμες, ποια θα εκτελεστεί;
  - Απόφαση χρονοδρομολογητή (scheduler)
    - Μέρος του Λειτουργικού Συστήματος
  - Κριτήρια Επιλογής
    - «Όποιος ήρθε πρώτος» (first-in first-out FIFO)
    - Χρησιμοποιώντας προτεραιότητες
    - Ανάλογα με προθεσμίες (συστήματα real-time)

#### Ουρές διαχείρισης διεργασιών



#### Συγχρονισμός διεργασιών

- Στη χρήση διαμοιραζόμενων πόρων
  - Οι κοινοί πόροι μπορούν να χρησιμοποιούνται μόνο από μία διεργασία κάθε στιγμή
- Αναμονή υπολοίπων διεργασιών
- Εμφάνιση καταστάσεων σύγκρουσης
  - Αδιέξοδο
  - Λιμοκτονία

#### Αδιέξοδο



#### Αδιέξοδο (συνέχεια)

- Συνθήκες εμφάνισης
  - Αμοιβαίος αποκλεισμός στη χρήση των πόρων
  - Παρακράτηση περισσότερων από έναν πόρο
  - Κυκλική αναμονή
- Αν επιτρέψουμε την εκτέλεση διεργασίας μόνο εάν όλοι οι πόροι που ζητά είναι ελεύθεροι;
  - Κίνδυνος «λιμοκτονίας»
    - Η διεργασία μπορεί να μην εκτελεστεί «ποτέ»

#### Διαχείριση συσκευών

- Συσκευές εισόδου-εξόδου (Ε/Ε)
  - Διαχείριση από ΛΣ μόνο
    - Η απευθείας προσπέλαση των συσκευών Ε/Ε είναι απαγορευμένη στις εφαρμογές χρήστη
  - Ρύθμιση χρήσης από διεργασίες
    - Οι συσκευές Ε/Ε είναι ένα τυπικό παράδειγμα διαμοιραζόμενων (κοινόχρηστων) πόρων
  - Παρακολούθηση ολοκλήρωσης αιτήσεων Ε/Ε
    - Και επανεκκίνηση των διεργασιών που αναμένουν τα δεδομένα
      Ε/Ε
  - Το εξειδικευμένο πρόγραμμα συστήματος που «συνομιλεί» με τη συσκευή Ε/Ε ονομάζεται «οδηγός» της συσκευής (device driver)