Assignment 8

Naman Mishra

23 Dec 2022

Problem 1. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on $(a,c) \cup (c,b)$. Show that if $\lim_{x \to c} f'(x) = L$, then f'(c) exists and equals L.

Proof. For all $\varepsilon > 0$ there exists a $\delta > 0$ such that $x \in N_{\delta}(c) \setminus \{c\} \implies |f'(x) - L| < \varepsilon$.

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L$$

Problem 7

We define a function $f: \mathbb{R} \to \mathbb{R}$ to be 'close' at a point $c \in \mathbb{R}$ if for every $\varepsilon > 0$, there exists an $L \in \mathbb{R}$ and a $\delta > 0$ such that for every $x \in N_{\delta}(c) \setminus \{c\}$, we have that

$$|f(x) - L| < \varepsilon.$$

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is close at $c \in \mathbb{R}$. Then for every $\varepsilon > 0$, there exists an $L \in \mathbb{R}$ and a $\delta_{\varepsilon} > 0$ such that for every $x \in N_{\delta_{\varepsilon}}(c) \setminus \{c\}$, we have

$$|f(x) - L| < \varepsilon/2.$$

Consider a sequence $\{a_n\} \subset \mathbb{R} \setminus \{c\}$ converging to c. Then there exists an n_0 such that for every $n \geq n_0$, we have

$$|a_n - c| < \delta_{\varepsilon} \implies |f(a_n) - L| < \varepsilon/2$$

By the triangle inequality,

$$|f(a_n) - f(a_m)| \le |f(a_n) - L| + |L - f(a_m)| < \varepsilon \ \forall \ m, n \ge n_0$$

Thus $\{f(a_n)\}\$ is a Cauchy sequence, and therefore convergent.

Suppose sequences $\{a_n\}$ and $\{b_n\}$ both converge to (but never equal) c, with $\{f(a_n)\}$ and $\{f(b_n)\}$ having different limits L_1 and L_2 . Consider the sequence

$$c_n = \begin{cases} a_n & \text{if } n \text{ is even} \\ b_n & \text{if } n \text{ is odd} \end{cases}$$

Clearly $\{c_n\}$ converges to c, but $\{f(c_n)\}$ diverges. This is a contradiction.

Thus there exists a unique $L_0 \in \mathbb{R}$ such that given any sequence $\{a_n\}$ converging to c, we have that

$$\lim_{n\to\infty} f(a_n) = L_0.$$

By the sequential characterization of limits, the limit of f at c exists and equals L_0 .

On the other hand, if it is known that f has a limit L_0 at c, setting $L = L_0 \,\forall \, \varepsilon$ proves that f is close at c.

Thus the two definitions are equivalent.