ALGEBRA I HOMEWORK VII

HOJIN LEE 2021-11045

Problem 1.

Problem 2.

Problem 3.

Problem 4. Let A be a domain. Let $S \subset A - \{0\}$ be a multiplicative subset. Show

- (1) $A PID \Rightarrow A_S PID$
- (2) $A \ UFD \Rightarrow A_S \ UFD$

Proof. (1) Suppose $I \subset A_S$ is an ideal. Then I is generated by elements of the form a/1 where $a/s \in I$ for some $s \in S$. This is because $a/s \in I$ iff $a/1 \in I$. Denote this generating set T. Then $T = \ell_S(T')$ where ℓ_S is the canonical localization map and $T' \subset A$. Clearly $0 \in T'$ since $0/1 \in T$. If $a, b \in T'$, then $a + b \in T'$ since $a/1 + b/1 = (a + b)/1 \in T$. Also, if $a \in A$ and $t \in T'$, then $t/1 \in T \subset I$, and $a/1 \cdot t/1 = at/1 \in I$ so $at/1 \in T$. Hence $at \in T'$, so T' is an ideal of A. Since A is a PID, we may write T' = (t), hence $T = \{at/1 \mid a \in A\}$ so I = (t/1). Therefore every ideal of A_S is principal. A_S is a domain since it is a subring of K(A).

Proof. (2) We use Kaplansky's theorem. Suppose $\mathfrak{p} \subset A_S$ is a nonzero prime ideal. This corresponds to a nonzero prime ideal \mathfrak{p}' of A that does not touch S. Since A is a UFD, \mathfrak{p}' contains a nonzero prime, say p. Then \mathfrak{p} contains p/1. Suppose $\frac{p}{1}|\frac{a}{s}\frac{b}{s'}$. Then we have $\frac{p}{1} \times \frac{c}{d} = \frac{ab}{ss'}$ for some $\frac{c}{d}$, i.e. (pcss'-abd)s''=0 for some $s'' \in S$. Since S does not contain zero and A is a domain, we have pcss'=abd, i.e. p|abd. Note that p|d cannot happen since if so, then pd'=d where $d \in S$ and $pd' \in \mathfrak{p}$. So either p|a or p|b. WLOG p|a, so a=pa', then $\frac{a}{s}=\frac{p}{1}\frac{a'}{s}$, so $\frac{p}{1}|\frac{a}{s}$. Hence p/1 is a prime element. It follows that A_S is a UFD.

Problem 5.

Problem 6. Let $x \in A$.

- (1) Let $S \subset A$ be multiplicatively closed. Show $\ell_S(x) = 0$ iff $\operatorname{Ann}(x) \cap S \neq \emptyset$.
- (2) Show TFAE:
 - (a) x = 0
 - (b) $\ell_{\mathfrak{p}}(x) = 0$ for all primes.
 - (c) $\ell_{\mathfrak{m}}(x) = 0$ for all maximal ideals.

Proof. (1) Suppose sx = 0 for some $s \in S$. Then $s \in \text{Ann}(x) \cap S$. Conversely this also implies x/1 = 0 since xs = 0.

Proof. (2) (a) \Rightarrow (b) \Rightarrow (c) is obvious. To show (c) \Rightarrow (a), we show the contrapositive. If $x \neq 0$, then $\operatorname{Ann}(x)$ is proper. Hence there exists some maximal ideal \mathfrak{m} containing $\operatorname{Ann}(x)$. Then $\operatorname{Ann}(x) \cap (A - \mathfrak{m}) = \emptyset$, so $\ell_{\mathfrak{m}}(x) \neq 0$.

Date: May 8, 2024.

Problem 7. Let $k = \overline{k}$. Show $(x, y) \subset k[x, y]$ is not principal.

Proof. Suppose (x,y)=(f). Then $x\in (f)$, so x=fg for some $g\in k[x,y]$. Since x is irreducible, either f=c or f=cx for $c\in k$. The first case implies (x,y)=k[x,y], which is not the case since $k[x,y]/(x,y)\cong k\neq 0$. The second case implies (x,y)=(x) which is nonsense.

Problem 8.

- (1) Show that a Euclidean domain is a PID.
- (2) Show that $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. (1) Let A be a Euclidean domain, and $I \subset A$ an ideal. Consider the set $f(I) \subset \mathbb{N}$. This has a minimal element, and denote by b an element of $I - \{0\}$ in $f^{-1}(\min(f(I)))$. If $a \in I - \{0\}$, then a = bq + r for either r = 0 or f(r) < f(b). In this case, $r = a - bq \in I$, so by minimality of f(b), the latter cannot happen. Hence a = bq for all $a \in I$, so I = (b).

Proof. (2) Obviously a domain since it is a subring of $\mathbb C$. Define $f:\mathbb Z[i]-\{0\}\to\mathbb N$ by $f(a+bi)=a^2+b^2$. WTS if $z,w\in\mathbb Z[i]$ with $w\neq 0$, then there exists $q,r\in\mathbb Z[i]$ such that z=wq+r where either r=0 or f(r)< f(b). WMA $r\neq 0$. Then $z/w=(z_1+z_2i)/(w_1+w_2i)=\frac{z_1w_1+z_2w_2+(z_2w_1-z_1w_2)i}{f(w)}$. By the Euclidean algorithm on $\mathbb Z$ (plus some obvious observations), we may write $z_1w_1+z_2w_2=f(w)q_1+r_1$ and $z_2w_1-z_1w_2=f(w)q_2+r_2$ for $|r_i|\leq \frac{1}{2}f(w)$. Thus, $\frac{z}{w}=\frac{f(w)(q_1+q_2i)+r_1+r_2i}{f(w)}=q_1+q_2i+\frac{r_1+r_2i}{f(w)}$. Hence $z=(q_1+q_2i)w+\frac{r_1+r_2i}{w_1-w_2i}$, where $f(\frac{r_1+r_2i}{w_1-w_2i})=\frac{r_1^2+r_2^2}{w_1^2+w_2^2}$, omitting tedious calculations. (Trust me, I have done all the calculations.) This is just $f(r_1+r_2i)/f(w)$, and we want to show this is < f(w), i.e. $f(r_1+r_2i)< f(w)^2$. Since $r_1^2+r_2^2\leq 2\times\frac{f(w)^2}{4}=\frac{f(w)^2}{2}$, we have $f(r_1+r_2i)\leq \frac{f(w)^2}{2}< f(w)^2$. Take $q=q_1+q_2i$ and $r=z-(q_1+q_2i)w=\frac{r_1+r_2i}{w_1-w_2i}\in\mathbb Z[i]$.

Problem 9.

Problem 10.

Problem 11. Is it irreducible?

Proof. (1) $x^4 + 1$ does not have a linear factor since it does not have a root in \mathbb{Q} (let alone \mathbb{R}). Hence if it did factorize, then each factor would have to be at least of degree 2. Thus the only possible case is $x^4 + 1 = (x^2 + ax + 1)(x^2 + bx + 1)$ for $a, b \in \mathbb{Q}$. By expanding, the conditions become a + b = 0 and ab + 2 = 0, i.e. a = -b and $a^2 = 2$. This does not have any solution in \mathbb{Q} . Hence it is irreducible over \mathbb{Q} .

Proof. (2) Substitute $x \mapsto x+1$. We get $(x+1)^6 + (x+1)^3 + 1 = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3$. Eisenstein's criterion for p=3 is applicable. Hence $x^6 + x^3 + 1$ is irreducible over \mathbb{Q} .

Proof. (3) The polynomial $x^3 - 5x^2 + 1$ has no roots in \mathbb{F}_2 , hence is irreducible over \mathbb{F}_2 since it is of degree 3. Thus it is irreducible over \mathbb{Q} .

Proof. (4) The polynomial $5x^5 - 5x + 1 = 2x^5 + x + 1$ has no roots in $\mathbb{F}_3[x]$. Thus if it did factor in $\mathbb{F}_3[x]$, then it would contain an irreducible factor of degree 2. The degree 2 irreducible polynomials of $\mathbb{F}_3[x]$ are precisely the following:

$$x^{2}+1$$
, $x^{2}+x+2$, $x^{2}+2x+2$, $2x^{2}+x+1$, $2x^{2}+2x+1$, $2x^{2}+2$.

Note that the last 3 polynomials are just -1 times the first three, so it suffices to

show that $2x^5 + x + 1$ does not have as factors the first three polynomials. First, suppose $2x^5 + x + 1 = (x^2 + 1)(2x^3 + ax^2 + bx + 1)$. This cannot happen

since the degree 4 coefficient is a = 0, but the degree 2 coefficient is $a + 1 \neq 0$. Next suppose $2x^5 + x + 1 = (x^2 + x + 2)(2x^3 + ax^2 + bx + 1) = 2x^5 + (2 + a)x^4 + (1 + a + b)x^3 + (2a + b + 2)x^2 + (2b + 2)x + 1$. Then a = b = 1, but then

 $2a + b + 2 = 2 \neq 0.$ Suppose $2x^5 + x + 1 = (x^2 + 2x + 2)(2x^3 + ax^2 + bx + 1) = 2x^5 + (1 + a)x^4 + (1 + 2a + b)x^3 + (2a + 2b + 2)x^2 + (2b + 1)x + 1$. Then a = 2, b = 1 but $2a + 2b + 2 = 2 \neq 0$. Therefore it is irreducible over \mathbb{F}_3 , hence irreducible over \mathbb{Q} .