浙江大学 2010-2011 学年 秋冬 学期

《计算理论》课程期末考试试卷

课程号: 21120520 开课学院: 计算机学院

考试试卷: A卷

考试形式: 闭卷, 允许带 _____入场

考试日期: 2011 年 1 月 13 日, 考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生姓名			学 -	号	所属院系				
	题序	1	2	3	4	5	6	总分	
	得分								
	评卷人								

Zhejiang University Theory of Computation, Fall-Winter 2010 Final Exam

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a T otherwise a F in the bracket before the statement.
 - (a) () Let L be a language, then $(L^+)^+ = L^+ \circ L^+$, where $L^+ = L \circ L^*$.
 - (b) () Let L be a regular language, so is $\{w|w\in L \text{ and } w \text{ with even length}\}$.
 - (c) () For languages L_1, L_2 and L_3 , if $L_1 \subseteq L_2 \subseteq L_3$ and both L_1 and L_3 are regular, then L_2 is also regular.
 - (d) () Just as Turing Machine's encoding, DFAs M can also be encoded as strings "M", then the language $\{$ "M"| DFA M rejects "M" $\}$ is not regular but recursive.
 - (e) () Language $\{a^mb^nca^{2n}b^{2m}|m,n\in\mathbb{N}\}$ is context-free.
 - (f) () Let L be a context-free language, so is $\{w|w\in L \text{ and } |w|=3k \text{ for some } k\in\mathbb{N}\}.$
 - (g) () Every recursive function is primitive recursive.
 - (h) () Language $\{$ "M" : Turing machine M accepts at least 2011 distinct strings $\}$ is recursively enumerable.
 - (i) () A language is recursive if and only if it is Turing-enumerable.
 - (j) () Let L be a language, if there is a Turing machine M halts on x for every $x \in L$, then L is recursive.
 - (k) () To simulate a computation of n steps for the nondeterministic Turing machine, it requires exponentially many steps in n for a deterministic Turing machine.
 - (l) () If there is reduction τ from language A to {"M" | Turing machine M halts on empty string}, where τ is a recursive function, then A is undecidable.

2. (16%) Decide whether the following languages are regular or not and provide a formal proof for your answer.

(a)
$$L_1 = \{xcycz | x, y, z \in \{a, b\}^* \text{ and } y = y^R\}.$$

(b)
$$L_2 = \{xyz | x, y, z \in \{a, b\}^* \text{ and } y = y^R\}.$$

- 3. (20%) On Context-free Languages
 - (a) Construct a context-free grammar that generates the language

$$L_3 = \{xcycz|x, y, z \in \{a, b\}^* \text{ and } |x| = |z|\}.$$

(b) Construct a pushdown automata that accepts L_3 .

Solution:

(a)

(b) The PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is defined below:

	(q, σ, β)	(p, γ)
$K = \underline{\{}$		
$\Sigma = \{a, b, c\}$		
$\Gamma = \{$		
s =		
$F = \{$		

4. (14%) On Turing machines

Design a single tape Turing machine M that decides the language L_4 on $\{a,b,c\}$:

$$L_4 = \{xcycz | x, y, z \in \{a, b\}^* \text{ and } z = z^R\}.$$

When describing the Turing machines above, you can use the elementary Turing machines described in textbook. Always assume that your Turing machine starts from the configuration $\triangleright \underline{\sqcup} w$.

5. (12%) On Primitive Recursive Functions

Show that the following function:

$$\varphi(x,y) = \begin{cases} |x-y|, & \text{if } x \equiv y \pmod{3} \\ x+y, & \text{otherwise.} \end{cases}$$

is primitive recursive.

6. (14%) On Undecidability

Let $ODD_{TM} = \{ "M" | M \text{ is a TM that does not accept any string of odd length} \}.$

(a) Show that $\overline{ODD_{TM}}$ is recursively enumerable.

(b) Show that ODD_{TM} is undecidable using a reduction from Halting Problem : $H = \{ M'''w'' | \text{ Turing machine } M \text{ halts on input string } w \}.$