固有免疫的细胞和功能

- 一、参与固有免疫的组织、细胞和效应分子
- 二、固有免疫应答的作用时相
- 三、固有免疫应答的特点及其与适应性免疫应答的关系

第一节 参与固有免疫的组织、细胞和效应分子

固有免疫

(Innate Immunity)

先天免疫

(Native Immunity)

非特异性免疫

(Nonspecific Immunity)

获得性免疫

(Acquired Immunity)

适应性免疫

(Adaptive Immunity)

特异性免疫

(Specific Immunity)

种系发育,进化形成生来具备,应答迅速 非特异性抗感染免疫 也参与特异性免疫

一、组织屏障及其作用

(一) 皮肤粘膜及其附属成分的屏障作用

物理屏障 上皮细胞、纤毛、分泌液

化学屏障 分泌液:乳酸、不饱和脂肪酸、胃酸

生物学屏障 微生物屏障

(二) 血一脑屏障

(三) 血一胎屏障

二、固有免疫细胞及其主要作用

- > 吞噬细胞
- > 自然杀伤细胞
- γδ T细胞
- **▶ NKT细胞**
- ➤ B1细胞

1、吞噬细胞 phagocytes

小胶质细胞、库普弗细胞、破骨细胞

巨噬细胞

寿命长,达数月 体大多形性 胞浆富含溶酶体 MHC-I/II和多种粘附分子 多种受体

中性粒细胞

寿命短

体小圆形

量大更新迅速

胞质富含嗜天青颗粒和 中性颗粒

MHC-I和粘附分子受体

吞噬细胞

生物学功能主要机制

分子识别

吞噬细胞表面受体

甘露糖、岩藻糖、磷脂受体

CR3、CR4、CD14

C3bR

FcγR

Toll样受体

清道夫受体

识别分子

相应的糖类和磷脂

LPS

C3b包裹的抗原

IgG特异性结合的抗原

PAMP

吞噬细胞

生物学功能主要机制

杀菌溶菌

氧依赖、氧非依赖

分泌因子

细胞因子、炎性介质

抗原提呈

内源性、外源性

抗肿瘤

吞噬细胞的吞噬杀伤过程示意图

杀菌溶菌

氧依赖性杀菌系统

反应性氧中间物 (ROIs系统)

中性粒细胞MPO杀菌系统

反应性氮中间物 (RNIs系统)

氧非依赖杀菌系统

酸性pH、溶菌酶、乳铁蛋白、阳离子蛋白、弹性蛋白酶

分泌因子

适量、大量释放

细胞因子: TNF-α、IL-1、IL-6、IL-8、IL-12、MCP-1

炎性介质:前列腺素E、LTB4、PAF、磷脂酶、过氧化物

- → 局部炎症反应(TNF-α、IL-1、LTB4)
- → 发热和急性期反应(CRP、MBL)
- → 免疫调节 (IL-1、IL-6、IL-12)

吞噬细胞

生物学功能

抗感染

抗肿瘤: 直接接触膜融合

细胞毒物质 蛋白水解酶、溶细胞素、TNF-α

肿瘤特异性抗体介导的ADCC

抗原加工提呈

免疫调节

2、NK细胞

外周血、脾 胞质内有大量嗜天青颗粒 无需预先作用,直接杀靶细胞 表面标志 CD3-、CD56+、CD16+

ADCC (Antibody-Dependent Cell-Mediated Cytotoxicity)

Anti-tumor antibodies

NK细胞

分子识别: 杀伤细胞活化受体 (killer activatory receptor)

杀伤细胞抑制受体(killer inhibitory receptor)

KAR杀伤细胞活化受体

KAR识别细胞糖类配体→胞内段有ITAM(免疫受体酪氨酸活化基序)结构→转导活化信号

KIR杀伤细胞抑制性受体

KIR的胞外区→识别自身细胞MHC-I→KIR有ITIM结构 →介导抑制信号

两种受体对NK细胞杀伤作用的调节

NK细胞

生物学功能

抗感染:溶解、IFN-γ和TNF-β

抗肿瘤: 直接接触膜融合

肿瘤特异性抗体介导的ADCC

免疫调节

3、γδ T细胞

分布 上皮、粘膜

表面标志 γδTCR、CD2/3/16/25/45、LFA-1, DN

分子识别

抗原识别谱窄: HSP、CD1复合物、病毒蛋白

同一群体表达一种γδTCR:抗原识别特异性相同一对共同抗原应答

生物功能

皮肤黏膜抗感染、抗肿瘤、免疫调节

4、NKT细胞

分布 肝、骨髓、胸腺

表面标志 NK1.1、TCR-CD3复合体的T细胞

分子识别

抗原识别谱窄: CD1复合物,不受MHC限制

生物功能

抗感染、抗肿瘤、分泌细胞因子参与免疫调节

5、B1细胞

分布 腹、胸腔,肠壁固有层

特点 个体发育出现早,具自我更新能力。

表面标志 CD5+、CD11+、mIgM+, CD23-

分子识别

抗原识别谱窄: TI-2多糖抗原、TI-1多糖抗原(LPS)、自身抗原

应答特点

其他一些参与固有免疫的细胞

树突状细胞

嗜酸性粒细胞

嗜碱性粒细胞

肥大细胞

三、固有效应分子及其主要作用

(一) 补体系统

- (二)细胞因子
- 1、诱导产生抗病毒作用的细胞因子
- 2、诱导和促进炎症反应的细胞因子
- 3、诱导和增强抗肿瘤作用的细胞因子

- (三)防御素 (defensin)
- (四)溶菌酶
- (五) 乙型溶素

第二节 固有免疫应答的作用时相

- □ 瞬时固有免疫应答阶段
- □ 早期固有免疫应答阶段
- □ 适应性免疫应答诱导阶段

第三节 固有免疫应答的特点及其与适应性免疫应答的关系

一、固有免疫应答的特点

- (一) 固有免疫细胞的识别特点
- 1、模式识别受体和病原相关分子模式

(1) 模式识别受体

(pattern-recognition receptors, PRR)

表达于天然免疫细胞表面、可识别一种或多种PAMP的识别分子

较少多样性、非克隆性表达、介导快速的生物学反应 主要有甘露糖、清道夫、Tol1样受体

生物学功能

调理作用、活化补体、吞噬作用、启动细胞活化和炎性信号转导、诱导凋亡

(2) 病原相关分子模式

(pathogen associated molecular pattern, PAMP)

一类或一群特定的微生物病原体共有的某些非特异性、高度保守的分子结构,可被非特异性免疫细胞所识别如脂多糖、磷壁酸、肽聚糖、甘露糖、细菌DNA/RNA等

特征

通常为病原微生物所特有 为微生物生存和致病性所必需 宿主泛特异识别的分子基础

2、模式识别受体(Toll样受体) 介导的信号传导途径

(二) 固有免疫细胞的应答特点

表面具有多种趋化因子的受体 在感染部位直接被激活 寿命较短,不产生记忆

二、固有免疫应答与适应性免疫应答的关系

- (一)固有免疫应答启动适应性 免疫应答
- (二)固有免疫应答影响特异性 免疫应答的类型
- (三)固有免疫应答协助适应性 免疫应答发挥免疫效应

非特异性免疫

特异性免疫

细胞组成

粘膜上皮细胞、吞噬细胞、NK、NK1.1+T、B-1B、γδT

T, B, APC

作用时相

即刻~96h

96h后

作用特点

非特异,抗原识别谱 广,无需克隆扩增分 化即可发挥免疫反应 特异,抗原识别专一,需克隆扩增和 分化为效应细胞而 发挥效应

作用时间

无免疫记忆,作用 时间短 有免疫记忆,作用 时间长

固有免疫的生物学意义

参与并调控特异性免疫应答的启动

影响特异性免疫应答的强度

影响特异性免疫应答的类型

影响B细胞记忆、阴性选择、自身耐受