Bases de datos difusas

Pedro Manuel Gómez-Portillo

Resumen

Elevator pitch

En esta presentación se expondrá una visión general de las bases de datos difusas y cómo funcionan, se explicarán los cimientos en los que se apoyan y por último se presenta el lenguaje de consultas difusas FSQL.

Índice

- Introducción
- Bases de datos relacionales (y sus problemas)
- Teoría de bases de datos difusas
- Implementación de las bases de datos difusas
- Fuzzy SQL

Introducción

De dónde salen

El lenguaje es vago

- Si llueve mucho cogeré el paraguas
- Sácalo del horno antes de que esté muy caliente
- No le des tan fuerte o lo romperás

Lofti Zadeh (1964)

The concept of a linguistic variable and its applications to approximate reasoning.

3130/₀

Aumento del número de artículos publicados de 2000 a 2010¹

¹Patel, A. et al (2013) Application of Fuzzy Logic in Biomedical Informatics.

Bases de datos relacionales

Y sus problemas

ENCUENTRA A LAS PERSONAS CON EDAD IGUAL A 20 AÑOS

Se obtendrá las personas que pertenecen al grupo

tener 20 años

¿Y si busco las de 19? ¿O las de 21?

ENCUENTRA A LAS PERSONAS JÓVENES

Cadenas Lucero, T. (2015) Sistemas de bases de datos difusas sensibles al contexto.

Teoría de bases de datos difusas

Conjuntos difusos I

- Un conjunto es una colección de elementos con una propiedad común
- Sin embargo, para un conjunto difuso hay distintos grados de pertenencia

Conjuntos difusos II

$$A = \{ (x, \mu_A) | x \in X \}$$

- Sea X una colección de objetos cuyos elementos se denominan x
- Sea A un conjunto difuso en X
- Sea μ_{Δ} la función de pertenencia del conjunto difuso **A**

Funciones de pertenencia

$$\mu_{\Delta}(x): X \rightarrow [0,1]$$

• μ_A es la función de pertenencia del conjunto difuso A, que asocia cada elemento x del conjunto X un grado de pertenencia al conjunto difuso en el intervalo [0,1]

Variables lingüísticas l

Quíntupla (N, T(N), X, G, M)

- N es el nombre de la variable lingüística
- T(N) es el conjunto de términos o valores de N
- X es el Universo de Discurso donde se define T(N)
- G es una regla sintáctica que genera los valores de T(N)
- M es una regla semántica que asocia cada valor L su significado M(L)

Variables lingüísticas II

- Variable lingüística N = Edad
- Conjunto X = [0, 100] años
- Conjunto de términos T(N) = {joven, maduro, viejo}
- Cada término definido por un intervalo difuso en X
- Regla sintáctica G = {muy, poco}

Implementación de las bases de datos difusas

Tipos de datos

- Datos precisos
- Datos imprecisos
 - Sobre dominios ordenados
 - Sobre dominios discretos
 - Indefinidos, desconocidos y nulos

Principales modelos

- Modelo relacional difuso básico
- Modelos relacional mediante distribuciones de posibilidad
- Modelo de unificación mediante relaciones de similitud

M. unificación por relaciones de simil.

	Rubio	Pelirrojo	Castaño	Moreno
Rubio	1	0.5	0.25	0
Pelirrojo		1	0.5	0.25
Castaño			1	0.5
Moreno				1

Nombre	Color de pelo	
Álvaro	Castaño	
Jaime	Moreno	
Marta	Pelirroja	
Ana	Rubia	

ENCUENTRA LAS PERSONAS CASTAÑAS CON GRADO 0.5

M. unificación por relaciones de simil.

	Rubio	Pelirrojo	Castaño	Moreno
Rubio	1	0.5	0.25	0
Pelirrojo		1	0.5	0.25
Castaño			1	0.5
Moreno				1

Nombre	Color de pelo
Álvaro	Castaño
Jaime	Moreno
Marta	Pelirroja
Ana	Rubia

ENCUENTRA LAS PERSONAS CASTAÑAS CON GRADO 0.5

Lenguajes lógicos FSQL

Fuzzy Structured Query Language

- Extensión de SQL
- Diseñado por el Dr. Juan Medina de la UGR en 1998
- Continuado por el Dr. José Galindo de la UMA
- Alternativas como SQLf

Valores lingüísticos

Variable lingüística

- Llamada con \$alto, \$medio, \$bαjo
- Funciones de pertenencia trapezoidales

Comparadores difusos

Comparado	r FSQL	Equivalente SQL		Significado
FEQ	F=	EQ	=	Igual que
FDIF	F<>	DIF	<>	Diferente que
FGT	F>	GT	>	Mayor que
FGEQ	F>=	GEQ	>=	Mayor o igual que
MGT	F>>	,	X	Mucho mayor que
FLT	F<	LT	<	Menor que
FLEQ	F<=	LEQ	<=	Menor o igual que
MLT	F<<	X		Mucho menor que
INCL		X		Incluido en
FINCL		X		DIfusamente incluido en

Umbrales I

Palabra reservada THOLD x

```
SELECT nombre FROM Personas

WHERE color_pelo F= $rubio THOLD 0.8

AND altura FGEQ $alto THOLD 0.8
```

Umbrales II

- [n, m] permite definir un intervalo
- **\$[a, b, c, d]** permite construir un trapecio
- #n funciona como aproximadamente n

¿Preguntas?

gomezportillo@correo.ugr.es

/gomezportillo/fuzzy_databases