Доклад по теме:Сети с маркерным доступом: Token Bus, Token Ring, FDDI

Шубина София Антоновна

Содержание

1			серным доступом: Token Bus, Token Ring, FDDI	4				
	1.1		работы	4				
	1.2	1.2 Задачи работы						
	1.3		ние	5				
	1.4	Обще	е представление о сетях с маркерным доступом	5				
		1.4.1	Что такое маркерный доступ?	5				
		1.4.2	r - r - r - r - r - r - r - r - r - r -	6				
		1.4.3	Принцип работы	6				
		1.4.4		6				
	1.5	Техно	логия Token Bus (IEEE 802.4)	7				
		1.5.1	Архитектура	7				
		1.5.2	Принцип работы	7				
		1.5.3	Особенности	7				
		1.5.4	Преимущества и недостатки	8				
		1.5.5	Область применения	8				
	1.6	Техно	логия Token Ring (IEEE 802.5)	8				
		1.6.1	Архитектура	8				
		1.6.2	Принцип работы	9				
		1.6.3	Особенности	9				
		1.6.4	Преимущества и недостатки	9				
		1.6.5	Область применения	9				
	1.7	Техно	логия FDDI (ANSI X3T9.5)	9				
		1.7.1	Основные характеристики	9				
		1.7.2		10				
		1.7.3		10				
		1.7.4		11				
		1.7.5		11				
	1.8	Сравн	<u>-</u>	12				
	1.9	_		12				
		1.9.1		12				
		1.9.2		13				
		1.9.3	U U	13				
	1.10	Вывол		13				
			•	1 <i>1</i>				

Список иллюстраций

1.1	Общее представление о сетях с маркерным доступом	5
1.2	Token Bus	7
1.3	Token Ring	8
1.4	FDDI 1	0
1.5	Сравнение технологий	2

1 Сети с маркерным доступом: Token Bus, Token Ring, FDDI

1.1 Цель работы

Изучить принципы функционирования сетей с маркерным доступом, рассмотреть особенности и отличия технологий Token Bus, Token Ring и FDDI, а также оценить их применение в локальных и корпоративных сетях.

1.2 Задачи работы

- 1. Дать общее представление о сетях с маркерным доступом и принципах их работы
- 2. Рассмотреть архитектуру и особенности технологии Token Bus
- 3. Изучить устройство и принципы работы технологии Token Ring
- 4. Проанализировать характеристики и область применения технологии FDDI
- 5. Сравнить рассмотренные технологии между собой и определить их актуальность

1.3 Введение

Сети с маркерным доступом — это разновидность локальных сетей, в которых управление доступом к среде передачи данных осуществляется с помощью специального элемента — маркера (token).

Преимущества перед сетями с соревновательным доступом (Ethernet): - Упорядоченный и коллизийно-свободный доступ - Предсказуемое время доступа к среде - Эффективность при высоких нагрузках - Гарантированная доставка данных

1.4 Общее представление о сетях с маркерным доступом

1.4.1 Что такое маркерный доступ?

Маркерный доступ — это метод управления сетевым доступом, при котором право передачи данных получает только тот узел, который владеет специальным служебным кадром — маркером.

Рис. 1.1: Общее представление о сетях с маркерным доступом

1.4.2 Ключевые преимущества

- Отсутствие коллизий одновременно передает только один узел
- **Детерминированность** можно рассчитать максимальное время ожидания доступа
- **Стабильность при нагрузке** производительность не падает при увеличении трафика

1.4.3 Принцип работы

- 1. Инициализация узлы образуют логическое кольцо передачи
- 2. **Циркуляция маркера** маркер последовательно передается между узлами
- 3. **Передача данных** узел с маркером может передавать данные в течение ограниченного времени (Token Holding Time)
- 4. **Освобождение маркера** после передачи маркер передается следующему узлу
- 5. **Восстановление** при потере маркера запускаются процедуры восстановления

1.4.4 Важные механизмы

- Token Holding Time (THT) ограничение времени удержания маркера
- **Приоритеты трафика** поддержка различных уровней важности данных
- Мониторинг выделенный узел следит за состоянием сети

1.5 Технология Token Bus (IEEE 802.4)

1.5.1 Архитектура

- Физическая топология: шина (коаксиальный кабель)
- Логическая топология: кольцо
- **Все узлы** подключены к общей шине, но маркер передается в логическом порядке

Рис. 1.2: Token Bus

1.5.2 Принцип работы

- 1. Формирование логического кольца на основе адресов узлов
- 2. Циркуляция маркера в установленном порядке
- 3. Передача данных владельцем маркера
- 4. Динамическое добавление/удаление узлов

1.5.3 Особенности

- Детерминированный доступ предсказуемое время передачи
- Поддержка приоритетов приоритизация критического трафика
- Автоматическое восстановление при потере маркера

1.5.4 Преимущества и недостатки

+ Гарантированное время доступа + Эффективность при высокой нагрузке - Сложность настройки и управления - Устаревшая технология

1.5.5 Область применения

- Промышленные автоматизированные системы
- Сети управления технологическими процессами

1.6 Технология Token Ring (IEEE 802.5)

1.6.1 Архитектура

- Топология: физическое и логическое кольцо
- **Реализация:** часто через концентраторы (MAU)
- Активный монитор контроль целостности сети

Рис. 12.11. Сеть Token Ring

Рис. 1.3: Token Ring

1.6.2 Принцип работы

- 1. Активный монитор генерирует маркер
- 2. Маркер циркулирует по кольцу
- 3. Узел с маркером передает данные
- 4. Кадр проходит полный круг и удаляется отправителем
- 5. Формирование нового маркера

1.6.3 Особенности

- Полное отсутствие коллизий
- Строгий порядок доступа
- Встроенные механизмы восстановления

1.6.4 Преимущества и недостатки

+ Гарантированное время доступа + Высокая эффективность при нагрузке - Сложная архитектура - Высокая стоимость оборудования

1.6.5 Область применения

- Корпоративные сети ІВМ
- Банковские и промышленные сети
- Системы с требованием детерминированности

1.7 Технология FDDI (ANSI X3T9.5)

1.7.1 Основные характеристики

• **Скорость:** 100 Мбит/с

• Топология: двойное кольцо (primary и secondary)

• Среда: оптоволоконный кабель

• **Дальность:** до 200 км

• Узлы: до 1000 устройств

Рис. 1.4: FDDI

1.7.2 Архитектура

- Двойное кольцо основное и резервное для отказоустойчивости
- Автоматическое переключение при повреждениях
- Высокая пропускная способность

1.7.3 Принцип работы

1. Циркуляция маркера по основному кольцу

- 2. Передача данных в пределах установленного времени
- 3. Автоматическое использование резервного кольца при авариях
- 4. Поддержка синхронного и асинхронного трафика

1.7.4 Преимущества

- Высокая скорость передачи
- Большая дальность и покрытие
- Отказоустойчивость благодаря двойному кольцу
- Поддержка большого количества узлов

1.7.5 Область применения

- Магистральные сети предприятий
- Объединение локальных сетей
- Критически важные системы
- Промышленные сети с высокими требованиями

1.8 Сравнительный анализ технологий

Характеристика	Token Bus	Token Ring	FDDI
Топология	Физическая шина Логическое кольцо	Физическое и логическое кольцо	Физическое и логическое кольцо
Среда передачи	Коаксиальный кабель	Витая пара / Коаксиальный кабель	Оптоволокно
Скорость передачи	1–10 Мбит/с	4–16 Мбит/с	100 Мбит/с
Длина сети	До 1–2 км	До 1 км	До 200 км
Количество узлов	До 100 устройств	До 260 устройств	До 1000 устройств
Коллизии	Отсутствуют	Отсутствуют	Отсутствуют
Приоритеты	Поддерживаются	Поддерживаются	Поддерживаются
Отказоустойчивость	Средняя	Средняя	Высокая
Применение	Промышленные сети с небольшой скоростью	Корпоративные сети прошлого поколения	Высокоскоростные магистральные сети

Рис. 1.5: Сравнение технологий

Параметр	Token Bus	Token Ring	FDDI
Стандарт	IEEE 802.4	IEEE 802.5	ANSI X3T9.5
Топология	Шина/кольцо	Кольцо	Двойное кольцо
Среда передачи	Коаксиал	Витая пара	Оптоволокно
Скорость	1-10 Мбит/с	4-16 Мбит/с	100 Мбит/с
Длина сети	1-2 км	до 1 км	до 200 км
Количество узлов	до 100	до 260	до 1000
Коллизии	Отсутствуют	Отсутствуют	Отсутствуют
Отказоустойчивость	Средняя	Средняя	Высокая

1.9 Актуальность в современных условиях

1.9.1 Token Bus

• Текущий статус: Практически не используется

• Причины: Низкая скорость, сложность управления

• Преемники: Промышленные протоколы (ProfiBus, CAN)

1.9.2 Token Ring

• Текущий статус: Вытеснен Ethernet

• Причины: Дорогое оборудование, сложность

• Наследие: Принципы используются в промышленных сетях

1.9.3 FDDI

• Текущий статус: Заменен гигабитным Ethernet

• Причины: Развитие Ethernet технологий

• Наследие: Принципы отказоустойчивости в современных сетях

1.10 Вывод

Сети с маркерным доступом сыграли ключевую роль в развитии сетевых технологий, предложив решения для задач, где требовались:

- Детерминированный доступ к среде передачи
- Гарантированное время отклика
- Отсутствие коллизий при высокой нагрузке
- Надежность и отказоустойчивость

Хотя сегодня эти технологии в основном вытеснены Ethernet, их принципы и архитектурные решения продолжают влиять на современные сетевые технологии, особенно в специализированных областях:

- Промышленные сети управления
- Системы реального времени
- Критически важные инфраструктуры

Изучение маркерных сетей остается важным для понимания эволюции сетевых технологий и принципов организации гарантированного доступа к среде передачи данных.

1.11 Источники

- 1. IEEE 802.4, 802.5 стандарты
- 2. ANSI X3T9.5 (FDDI)
- 3. GeeksforGeeks: Token Bus и Token Ring
- 4. Wikipedia: FDDI, Token Ring
- 5. Datapro communications standards