Master Theorem

If $T(n) = aT([n/2] + O(n^d)$ for constant a > 0, b > 1 and d >= 0

O(n ^d)	If d > log _b ^a
O(n ^d logn)	If $d = log_b^a$
O(n ^{log} _b ^a)	If d < log _b ^a

Application of master theorem:

1.
$$T(n) = 4T(n/2) + O(n)$$

Here,
$$a = 4$$
, $b = 2$, $d = 1$

$$Log_{2}^{4} = 2$$

Since d <
$$\log_{b}^{a}$$
, T(n) = O($n^{\log_{b}^{a}}$) = O(n^{3})

2.
$$T(n) = 3T(n/2) + O(n)$$
 [karatsuba algorithm]

Here,
$$a = 3$$
, $b = 2$, $d = 1$

Log3 = 1.58 which is larger then d(1)

So
$$T(n) = O(n^{\log_a b})$$

$$= O(n^{1.58})$$

3.
$$T(n) = 2T(n/2) + O(n)$$

Here,
$$a = 2$$
, $b = 2$, $d = 1$

Log2 = 1 which is equal to d

So,
$$T(n) = O(n^1 \log n)$$

4.
$$T(n) = T(n/2) + O(1)$$
 [Binary Search]

Here,
$$a = 1$$
, $b = 2$, $d = 0$

Log1 = 0 which is equal to d

So
$$T(n) = O(n^0 \log n)$$

= $O(\log n)$
5. $T(n) = 8T(n/2) + O(1)$
Here, $a = 1$, $b = 2$, $d = 0$
Log1 = 0 which is equal to $d(1)$
So $T(n) = O(n^0 \log n)$
= $O(\log n)$