2019055078	せみれて
수시하시석 HW#2	

· How to use pointers for memory allocation

C 언어에서 배팅과 포인터는 아주 망명한 관계가 있다.

- 1 자원 배명 선언 방법:
 - alia successives (Toler and Oh
 - a[j] → *((a)+(j)) (포인터 a에서 j만큼 이동해다.) ↓
 - ↓ a[i],a[i]···· a[j-1] (zero-origin)
 - └> 12 시작하고 싶으면 <u>Int b[4],**bb; bb=b-1;</u> 하면 bb는 bb[]~bb[4]가 된다. (unit-offset)
 - 2자원 HH면 선인 방법:
 - ① float a[5][9]: 상수 5,9분 저장하다 하고 정수의 중성이 방생. (= fixed size) 더 빨라진다.
 - ② float **a: a의 주소에 i는 더라고, 새날은 구소에서 다시 j는 더한 값 return. (= pointer to array of pointers)
 .. 정수의 중점×, 배영의 전체 크기가 면산에 관여하지 않는다.

· How to use pointers to function

float ** matrix(····) 같 정희하다

float ** a = matrix(····) 처럼 사용한다.

#3.6

_	×	6	approximate	true	×	e-5	approximate	true
	0		×	- 147	12	0.1504	3 .39	-21.33
	ı	-4	1. 25	594.65	ιδ	-0.0455	4.3	n n6
	2	6.5	ı. 4 7	-1260	14	0.0244	2.86	-2.63
	3	-12.3333	1.69	le 3 I	ls	0.00ll	-20.85	0.83
	4	13.7083	1.9	- 2033.5	lb	0 - 0084	o. 8 n	-0.25
	6	- l2. 3333	5.11	1831.4	ιη	0.0062	-0.34	୦.୭
	6	9.3608	2.32	- I369.3	16	D · POPB	0.087	- o . 166
	ŋ	-6.1329	2.53	911.2	ાવ	D 0061	-0.023	0.0047
	6	3.55 (2.93	-426.6	20	Nd00.0	0.0058	7100.0 ~
	9	- 1.8271	2.95	2/12.2				
	10	o .8640	3.11	-127.2				
	U	-0.3592	3.41	54.31	I		1	

3-digit:
$$\frac{6 \times 0.570^{2}}{(1-3 \times 0.570^{2})^{2}} \approx \frac{3.46}{(1-0.996)^{2}} = 216250$$

4-digit: $\frac{3.462}{(1-0.9987)^{2}} \approx \frac{3.462}{0.0013^{2}} = 2048521$

①
$$\cos(\frac{\pi}{3}) \% |-\frac{(\pi/3)^2}{2} = 0.4516$$
 ② $\cos(\frac{\pi}{3}) \% |-\frac{(\pi/3)^2}{2} + \frac{(\pi/3)^4}{24} = 0.501996$

true:
$$\frac{0.5 - 0.4916}{0.5} \approx 0.0966$$
 true: $\frac{0.5 - 0.501196}{0.5} \approx -0.0035$

approx.: $\frac{0.4516 - 1}{0.4516} \approx -1.2139 > 0.005$ approx.: $\frac{0.501196 - 0.4516}{0.501196} \approx 0.09966 > 0.005$

3
$$\cos(\frac{\pi}{3}) \% \left| -\frac{(\pi/3)^4}{2^2} + \frac{(\pi/3)^4}{2^4} - \frac{(\pi/3)^6}{6!} = 0.499965$$

true: $\frac{0.5 - 0.499965}{0.5} \approx 0.00007087$

$$f'(x) = 75x^{2} - 12x + 7$$

$$f''(x) = 150x - 12$$

$$f'''(x) = 150$$

$$f(1) = 25 - 6 + 7 - 88 = -62$$
true ever: $\frac{554.62}{554} = 1.112$

$$f(1) + f'(1)h = -62 + (75 - 12 + 7) \times (3 - 1) = 78$$

 $f(a) + f'(a)h + \frac{f'(a)}{2!}h^2 = 78 + \frac{1}{2}x(50 - 12)x4 = 354$

 $f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \frac{f'''(a)}{3!}h^3 = 354 + \frac{150}{6} \times 8 = 554$

#4.5 f(3) = 25 x 33-6x32+7x3-88=554

true error: $\frac{554-98}{544} = 0.8592$

true error = $\frac{554-354}{554}$ = 0.361

true error = $\frac{554-554}{554} = 0$

$$g = 9.61, t = 6, c = (2.5 \pm 1.5 \text{ m} = 50 \pm 2)$$

$$c = 11, m = 48 \frac{9.61 \times 48}{11} \times (1 - e^{-\frac{12}{13}}) \approx 31.9838$$

$$c = 14, m = 52 \frac{9.61 \times 52}{14} \times (1 - e^{-\frac{12}{13}}) \approx 29.1929$$

$$c = 12.5, m = 50 \frac{9.61 \times 52}{12.5} \times (1 - e^{-\frac{6}{4}}) \approx 30.4844$$

$$\frac{30.4844 - 31.9838}{30.4844 - 29.1929} = 0.0423$$

9=9.81, t=6, c=12.5 + 1.5 m=50+2

#4.12 $V(t) = \frac{9m}{c} (1 - e^{-c c/m})^{t})$