```
In [1]: import pandas as pd import numpy as np
```

Q.no. 1

a.

```
In [2]: df = pd.read_csv('NCI60_data.csv')
    df = df.set_index('Unnamed: 0')
    df_labels = pd.read_csv('NCI60_labs.csv')
    df_labels = df_labels.set_index('Unnamed: 0')
```

b.

```
In [3]: df.describe()
```

Out[3]:

	1	2	3	4	5	6	7	8	
count	64.000000	64.000000	64.000000	64.000000	64.000000	64.000000	64.000000	64.000000	64.
mean	-0.019063	-0.027813	-0.019923	-0.328673	0.026093	0.006718	0.019687	-0.023126	0.
std	0.441332	0.757433	0.433306	1.091905	0.485073	0.350432	0.370683	0.338629	0.
min	-1.060000	-2.190000	-1.710000	-2.610000	-0.825000	-0.700000	-0.920000	-0.705000	- 0.
25%	-0.372500	-0.404985	-0.192485	-1.322500	-0.225000	-0.156250	-0.246250	-0.204985	- 0.
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
75%	0.310005	0.352500	0.162490	0.692500	0.210000	0.184995	0.247505	0.160015	0.
max	0.940000	2.240000	1.150000	1.500000	1.715000	1.160000	0.940000	0.724961	0.

8 rows × 6830 columns

It's clearly evident from above that the numerical values in the dataset are not standardized as neither the mean is 0 for these columns nor is the standard deviation 1. In, other words, the columns have different means and standard deviations, which means that they are not standardised. So let's standardize them:

```
In [4]: from sklearn import preprocessing
df.loc[:, df.columns!='Unnamed: 0'] = preprocessing.scale(df.loc[:, df.columns!='
```

In [5]: df.describe()

Out[5]:

	1	2	3	4	5	6	
count	6.400000e+01	64.000000	6.400000e+01	6.400000e+01	6.400000e+01	6.400000e+01	6.40
mean	-8.673617e-18	0.000000	-3.014082e-17	3.989864e-17	-2.428613e-17	-5.204170e-18	2.42
std	1.007905e+00	1.007905	1.007905e+00	1.007905e+00	1.007905e+00	1.007905e+00	1.00
min	-2.377270e+00	-2.877193	-3.931262e+00	-2.105826e+00	-1.768435e+00	-2.032645e+00	-2.55
25%	-8.071713e-01	-0.501898	-4.013951e-01	-9.173725e-01	-5.217310e-01	-4.687243e-01	-7.23
50%	4.353664e-02	0.037011	4.634208e-02	3.033881e-01	-5.421676e-02	-1.932168e-02	-5.35
75%	7.515195e-01	0.506077	4.243081e-01	9.426144e-01	3.821298e-01	5.127569e-01	6.19
max	2.190290e+00	3.017748	2.721339e+00	1.687994e+00	3.509280e+00	3.317043e+00	2.50;

8 rows × 6830 columns

→

c. i.

Out[6]:

	P1	P2	P3	P4	P5	P6	P7	1
Unnamed: 0								
V1	-19.838042	-3.555636	-9.812399	-0.824246	12.609984	7.471505	14.190730	-3.1979
V2	-23.089215	-6.441460	-13.478251	5.635308	8.035496	3.715178	10.143225	-7.2927
V3	-27.456114	-2.465143	-3.533054	-1.341673	12.564846	17.344925	10.354857	-2.6712
V4	-42.816801	9.768358	-0.890073	3.445043	42.269904	27.238815	17.520642	-0.5543
V5	-55.418530	5.198897	-21.094558	15.849712	10.443273	12.991051	12.597895	32.5130
V60	-17.996242	47.242414	5.398941	-17.405145	-0.293594	-7.429801	-15.572290	22.2701
V61	-4.415510	42.309563	8.715183	-2.805833	5.716318	-3.375639	-11.918083	6.7072
V62	-22.966988	36.102038	18.116579	-7.579957	5.874271	0.570517	-7.703801	-5.5856
V63	-19.176007	50.398441	4.211153	-3.041732	-8.347417	-3.660122	-2.023234	11.8850
V64	-13.232870	35.125249	3.433554	-2.174010	-1.001003	-4.971377	-10.267870	3.6266

64 rows × 64 columns

c. ii.

Out[7]:

Cancer

Unnamed: 0				
V1	#e6194b	CNS		
V2	#e6194b	CNS		
V3	#e6194b	CNS		
V4	#3cb44b	RENAL		
V5	#ffe119	BREAST		

```
In [8]: import matplotlib.pyplot as plt
fig , ax1 = plt.subplots(figsize=(9,7))

ax1.set_xlim(-75,75)
ax1.set_ylim(-75,75)

# Plot Principal Components 1 and 2
for i in df_plot.index:
        color = df_labels[df_labels.index == i]['x']
        ax1.annotate(i, (df_plot.P1.loc[i], -df_plot.P2.loc[i]), ha='center', color =

# Plot reference Lines
ax1.hlines(0,-75,75, linestyles='dotted', colors='grey')
ax1.vlines(0,-75,75, linestyles='dotted', colors='grey')
ax1.set_xlabel('First Principal Component')
ax1.set_ylabel('Second Principal Component')
```

Out[8]: Text(0, 0.5, 'Second Principal Component')

Out[11]: Text(0, 0.5, 'Third Principal Component')

In both the biplots, the cancers which are of the same type are clustered together which is evident from the labels(eg, V1, V2, etc) of the same color having similar scores in the plots. As such, we can conclude that the principal components in both the biplot appear to have significantly captured the variation in the data. However, the first biplot with the first two principal components is found to be more distinct in separation of groups of cancers of same types because the first two components combined always capture more variation than the first and the third component combined.

c. iii.

```
In [10]: # Instantiate PCA estimator
pca = decomposition.PCA()
# fit : Run PCA
df_PC = pca.fit(df)

# Percentage of Variance Explained (PVE) by each PC:
plt.figure(figsize=(6, 4))
plt.ylim(0, 1.05)

plt.plot(df_PC.explained_variance_ratio_, 'r+-', label='Individual component')
plt.plot(np.cumsum(df_PC.explained_variance_ratio_), 'b+-', label='cumulative PVE

plt.ylabel('Percentage of variance explained')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
```


Q.no. 2

```
In [11]: import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

G=nx.DiGraph(directed=True)

# a list of nodes:
pages = ["A","B","C","D","E","F","G"]
G.add_nodes_from(pages)

G.add_edges_from([('A','D'), ('A', 'C'), ('B','A'),('C','D'), ('D','B'),('D','E'))
nx.draw(G, with_labels = True)
```


In [12]: from IPython import display
display.Image("./link.jpg", width = 400, height = 300)

Out[12]:

	ABCDEFG
A	0100000
В	0001100
C	1000010
D E E	0000110
··· L =	0100000 0001100 1000010 1010110 0001000 0000010

```
In [13]: prank=nx.pagerank(G, alpha=0.85)
    data_items = prank.items()
    data_list = list(data_items)
    df = pd. DataFrame(data_list, columns = ['Page', 'Score'])
    df.head(7)
```

Out[13]:

	Page	Score
0	Α	0.185800
1	В	0.181928
2	С	0.118956
3	D	0.260235
4	Е	0.141762
5	F	0.031162
6	G	0.080157

```
In [14]: df.sort_values(by='Score',ascending=False).plot(kind='bar', x='Page', rot=0)
    plt.ylabel("Page Rank Score")
```

Out[14]: Text(0, 0.5, 'Page Rank Score')

The pages that come to the top four list are D, A, B, and E