

BACHARELADO EM MATEMÁTICA

André Yuji Hisatsuga

Partições monocromáticas de grafos completos

São Paulo

 $2^{\underline{\mathrm{o}}}$ Semestre de 2022

André Yuji Hisatsuga

Partições monocromáticas de grafos completos

Monografia apresentada à disciplina MAT-0148 — Introdução ao Trabalho Científico, Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo.

Área de Concentração: MATEMÁTICA DISCRETA E COMBINATÓRIA

Orientador: Guilherme Oliveira Mota – IME-USP

São Paulo

 $2^{\underline{o}}$ Semestre de 2022

O conteúdo deste trabalho é publicado sob a Licença Creative Commons Atribuição 4.0 Internacional – CC BY 4.0

FOLHA DE AVALIAÇÃO

Aluno: André Yuji Hisatsuga

Título: Partições monocromáticas de grafos completos

Data: 2° Semestre de 2022

BANCA EXAMINADORA

Guilherme Oliveira Mota – IME-USP (Orientador) Yoshiharu Kohayakawa – IME-USP Lucas Colucci – IME-USP

AGRADECIMENTOS

Agradeço aos meus pais, por me darem liberdade para ser quem sou e fazer o que gosto. Aos meus colegas, por todos os momentos que vivemos juntos. Ao meu orientador, Guilherme, por todo o conhecimento e atenção. Finalmente, agradeço à FAPESP, por finaciar este projeto.

Aqui o autor apresenta uma citação relacionada com a matéria de seu trabalho, seguida de indicação de autoria. A epígrafe é uma citação direta e, portanto, a fonte deve constar na lista de Referências.

RESUMO

HISATSUGA, A. Partições monocromáticas de grafos completos. 2022. 17 p. Monografia (Bacharelado em Matemática) – Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2º Semestre de 2022.

Este trabalho é baseado no artigo de Luczak, Rödl, Szemerédi [?] sobre o problema de particionar os vértices de um grafo completo, com arestas coloridas em duas cores, em dois circuitos monocromáticos.

Palavras-chave: Combinatória. Teoria de Ramsey. Lema de Regularidade.

ABSTRACT

HISATSUGA, A. Monochromatic partitions of complete graphs. 2022. 17 p. Monografia (Bacharelado em Matemática) – Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2º Semestre de 2022.

Uma tradução do que ficou no resumo.

Keywords: Ramsey theory. Regularity lemma.

Lista de Figuras

Lista de Tabelas

LISTA DE ABREVIATURAS E SIGLAS

CFT	Transformada contínua de Fourier (Continuous Fourier Transform)
	` ,
DFT	Transformada discreta de Fourier (<i>Discrete Fourier Transform</i>)
EIIP	Potencial de interação elétron-íon (Electron-Ion Interaction Potentials)
STFT	Transformada de Fourier de tempo reduzido (Short-Time Fourier Transform)
BNT	Associação Brasileira de Normas Técnicas
URL	Localizador Uniforme de Recursos (Uniform Resource Locator)
IME	Instituto de Matemática e Estatística
USP	Universidade de São Paulo

LISTA DE SÍMBOLOS

- ω Frequência angular ψ Função de análise *wavelet* Ψ Transformada de Fourier de ψ

Sumário

1 Meu Primeiro Capítulo			
	1.1	Introdução	1
	1.2	Lema de Regularidade	1
	1.3	Circuitos e caminhos hamiltonianos em grafos bipartidos regulares	2
	1.4	Colorações com grafos bipartidos completos monocromáticos grandes	5
	1.5	Demonstração do Teorema 1.1.1	8
A	Apê	endice	15

Capítulo 1

Meu Primeiro Capítulo

Teorema 1.0.1 (Ramsey). Toda coloração das arestas de K_n em duas cores admite uma cópia monocromática de um clique K_t de ordem $t = \lfloor \frac{1}{2} \log_2 n \rfloor$.

Teorema 1.0.2 (Gerencsér, Gyárfás). Toda coloração das arestas de K_n em duas cores admite uma cópia monocromática de um caminho P_t de ordem $t = \left\lceil \frac{2(n-1)}{3} \right\rceil$.

1.1 Introdução

Teorema 1.1.1. Existe n_0 natural tal que, para todo $n \ge n_0$, a seguinte afirmação é verdadeira: para qualquer coloração das arestas de K_n em vermelho e azul, existe uma partição do conjunto dos vértices de K_n em dois circuitos monocromáticos, um vermelho e outro azul.

1.2 Lema de Regularidade

Definição 1.2.1. Dado um grafo G e A, $B \subseteq V(G)$ tais que $A \cap B = \emptyset$, dizemos que (A, B) é um par (ε, G) -regular (onde $\varepsilon > 0$), ou simplesmente ε -regular, se para todo $X \subseteq A$, $Y \subseteq B$ com $|X| \ge \varepsilon |A|$, $|Y| \ge \varepsilon |B|$, temos

$$\left|\frac{e(X,Y)}{|X||Y|} - \frac{e(A,B)}{|A||B|}\right| < \varepsilon.$$

Proposição 1.2.2. Se $0 < \varepsilon < 0.2$, e(A, B) é um par ε -regular em um grafo G com |A| = |B| = m, então existem $A' \subseteq A$ e $B' \subseteq B$, com |A'|, $|B'| \ge (1 - \varepsilon)m$, tais que

- (A', B') \acute{e} (4ε) -regular;
- no subgrafo (A',B')-bipartido, todo vértice tem grau maior ou igual a $\left(\frac{e(A,B)}{m^2}-2\varepsilon\right)m$.

Mais ainda, é possível escolher A' e B' de modo que |A'| = |B'|.

Demonstração: Seja $\delta = \frac{e(A,B)}{m^2}$ a densidade do par (A,B) e $X_1 = \{u \in A: |N(u) \cap B| < (\delta - \varepsilon)|B|\}$. Se $|X_1| \ge \varepsilon |A|$, então para $X = X_1$ e Y = B teríamos

$$\left|\frac{e(X,Y)}{|X||Y|} - \frac{e(A,B)}{|A||B|}\right| > \varepsilon,$$

absurdo. Logo $|X_1| < \varepsilon |A|$. Analogamente, se definirmos $Y_1 = \{v \in B : |N(v) \cap A| < (\delta - \varepsilon)|A|\}$, então $|Y_1| < \varepsilon |B|$. Suponha, sem perda de generalidade, que $|X_1| \ge |Y_1|$. Então tome $A' = A \setminus X_1$ e $B' \subseteq B \setminus Y_1$ tal que |A'| = |B'|. A seguir, verificamos as propriedades de (A', B'):

(A', B') É (4ε) -REGULAR:

Sejam $X \subseteq A'$ e $Y \subseteq B'$ tais que $|X| \ge 4\varepsilon |A'|$ e $|Y| \ge 4\varepsilon |B'|$. Queremos provar que

$$\left|\frac{e(X,Y)}{|X||Y|} - \frac{e(A',B')}{|A'||B'|}\right| < 4\varepsilon.$$

Primeiro, como (A, B) é um par ε -regular e $|X| \ge 4\varepsilon |A'| \ge \varepsilon |A|$ e $|Y| \ge \varepsilon |B|$, temos que

$$\left|\frac{e(X,Y)}{|X||Y|} - \frac{e(A,B)}{|A||B|}\right| < \varepsilon.$$

Basta então provar que

$$\left|\frac{e(A,B)}{|A||B|} - \frac{e(A',B')}{|A'||B'|}\right| < 3\varepsilon.$$

Por um lado, temos que

$$\frac{e(A',B')}{|A'||B'|} > \frac{e(A,B) - 2\varepsilon|A||B|}{|A'||B'|} \ge \frac{e(A,B) - 2\varepsilon|A||B|}{|A||B|} = \frac{e(A,B)}{|A||B|} - 2\varepsilon,$$

o que implica que $\frac{e(A',B')}{|A'||B'|} - \frac{e(A,B)}{|A||B|} > -2\varepsilon.$

Por outro lado, temos que

$$\frac{e(A',B')}{|A'||B'|} < \frac{e(A,B)}{|A'||B'|} \le \frac{e(A,B)}{(1-\varepsilon)^2|A||B|} < (1+3\varepsilon)\frac{e(A,B)}{|A||B|} \le \frac{e(A,B)}{|A||B|} + 3\varepsilon,$$

donde $\frac{e(A',B')}{|A'||B'|} - \frac{e(A,B)}{|A||B|} < 3\varepsilon$. Logo $\left|\frac{e(A,B)}{|A||B|} - \frac{e(A',B')}{|A'||B'|}\right| < 3\varepsilon$, como queríamos demonstrar.

Grau mínimo no subgrafo (A', B')-bipartido:

Dado $u \in A'$, temos que

$$|N(u) \cap B'| \ge (\delta - \varepsilon)|B| - \varepsilon|B| = (\delta - 2\varepsilon)|B| = \left(\frac{e(A, B)}{m^2} - 2\varepsilon\right)m.$$

Analogamente, para $v \in B'$ temos que $|N(v) \cap A'| \ge \left(\frac{e(A,B)}{m^2} - 2\varepsilon\right)m$. Logo o subgrafo (A',B')-bipartido tem grau mínimo maior ou igual a $\left(\frac{e(A,B)}{m^2} - 2\varepsilon\right)m$.

Lema 1.2.3. Para todo $\varepsilon > 0$ e para todo inteiro positivo k_0 , existe $K_0 = K_0(\varepsilon, k_0)$ tal que a seguinte afirmação é verdadeira: Para todo grafo G, existe uma partição $V(G) = V_0 \cup V_1 \cup \cdots \cup V_k$ tal que

- 1. $k_0 \le k \le K_0$;
- 2. $|V_0| < K_0$;
- 3. $|V_1| = |V_2| = \cdots = |V_k|$;
- 4. dentre os $\binom{k}{2}$ pares (V_i, V_j) com $1 \leq i < j$, há menos de $\varepsilon \binom{k}{2}$ deles que não são ε -regulares.

1.3 Circuitos e caminhos hamiltonianos em grafos bipartidos regulares

Um clássico teorema que garante a existência de circuitos hamiltonianos em grafos simples é o teorema de Dirac.

П

Teorema 1.3.1 (Dirac). *Seja* $n \ge 3$ *um inteiro. Se* G *é um grafo com n vértices e grau mínimo* $\delta(G) \ge n/2$, *então* G *é hamiltoniano, isto é,* G *possui um circuito hamiltoniano.*

No entanto, para grafos bipartidos, o teorema de Dirac não pode ser aplicado sequer para o grafo $K_{m,m}$ com uma aresta a menos. Vamos precisar, então, de um resultado específico que garante, por exemplo, que grafos bipartidos balanceados quase completos são hamiltonianos, desde que suas arestas estejam razoavelmente distribuídas.

Lema 1.3.2 (Haxell [?]). Seja $0 < \varepsilon < 1/7$. Seja ainda G um grafo (V_1, V_2) -bipartido tal que $|V_1| = |V_2| = m \ge 1/\varepsilon$. Suponha que G tem grau mínimo maior ou igual a 7 ε m, e que para qualquer par de subconjuntos $A \subseteq V_1$ e $B \subseteq V_2$ tal que $|A|, |B| \ge \varepsilon$ m, existe uma aresta ligando A a B (isto ε , $e(A, B) \ge 1$). Então G ε hamiltoniano.

Definição 1.3.3. Se K é um grafo (X, Y)-bipartido, dizemos que K é (b, f)-expanding se, para todo $S \subseteq X$ com $|S| \le b$ vale que $|N(S)| \ge f|S|$, e, simetricamente, para todo $S \subseteq Y$ com $|S| \le b$, vale $|N(S)| \ge f|S|$.

Proposição 1.3.4. Seja t um inteiro positivo. Se K \acute{e} um grafo bipartido não-vazio e K \acute{e} (t,2)-expanding, então K contém um caminho com 4t vértices.

Demonstração: A ideia é que, dado um caminho em K com $k \le 4t-1$ vértices, conseguimos usar a condição de K ser (t,2)-expanding exaustivamente para garantir a existência de um caminho de k+1 vértices em K. Partindo de uma aresta e aplicando esse fato repetidas vezes, obtemos um caminho de 4t vértices.

Primeiro, note que, se temos um caminho $Q=v_1v_2\dots v_k$ em K e uma aresta $v_1v_i\in E(K)$, então $\tilde{Q}=v_{i-1}v_{i-2}\dots v_1v_iv_{i+1}\dots v_{k-1}v_k$ é um caminho em K. Mais ainda, quase todos os vértices em \tilde{Q} tem como vizinhos os mesmos que em Q, possivelmente em ordem reversa. Diremos que \tilde{Q} é uma transformação simples de Q relativa a v_k . Se um caminho pode ser obtido de Q a partir de uma sequência de transformações simples relativas a v_k , diremos que tal caminho é uma transformação de Q (relativa a v_k). Note que qualquer transformação de Q mantém x_k como extremidade do caminho. Vamos dizer que um vértice v é um endpoint de Q relativo a v_k se existe um caminho R transformação de Q tal que R tem v e v_k como extremidades.

Lema 1.3.5. Seja G um grafo que contém exatamente:

- 1. um grafo G_0 bipartido com bipartição (V',V'') tal que cada $v' \in V'$ tem pelo menos 0.15|V''| vizinhos em V'', cada $v'' \in V''$ tem pelo menos 0.15|V'| vizinhos em V' e, para quaisquer $W' \subseteq V'$, $W'' \subseteq V''$ tais que $|W'| \ge 10^{-6}|V'|$, $|W''| \ge 10^{-6}|V''|$, existe pelo menos uma aresta entre W' e W'';
- 2. uma família \mathcal{P}' de r' caminhos vértice-disjuntos, cada um com as duas extremidades em V', tal que nenhum vértice do interior do caminho pertence a $V' \cup V''$;

3. uma família \mathcal{P}'' de r'' caminhos vértice-disjuntos, cada um com as duas extremidades em V'', tal que nenhum vértice do interior do caminho pertence a $V' \cup V'' \cup \bigcup_{P' \in \mathcal{P}'} V(P')$;

Sejam x' um vértice de $V' \setminus \bigcup_{P' \in \mathcal{P}'} V(P')$ e y'' um vértice de $V'' \setminus \bigcup_{P'' \in \mathcal{P}''} V(P'')$. Suponha que

$$r' + r'' \le 0.01m = 0.01 \min\{|V'|, |V''|\}$$

е

$$r'' - r' = |V''| - |V'|$$
.

Então existe um caminho em G que começa em x', termina em y'', passa por todos os vértices de V' e V'' e percorre completamente todos os caminhos de P' e P''.

Demonstração: Dados $x' \in V' \setminus \bigcup_{P' \in \mathcal{P}'} V(P')$ e $y'' \in V'' \setminus \bigcup_{P'' \in \mathcal{P}''} V(P'')$, queremos construir um caminho $P_{x'y''}$ passando por todos os vértices de V' e V'' e todas as arestas de caminhos em \mathcal{P}' e \mathcal{P}'' . Faremos isso em três partes: primeiro, um caminho $P_{x'z''}$ saindo de x' e cobrindo todos os caminhos de \mathcal{P}' e \mathcal{P}'' ; segundo, um caminho $P_{z'y''}$ que termina em y'', com uma certa condição para que $P_{z'y''}$ tenha vários "endpoints" além de z'; e finalmente aplicaremos o Lema 1.3.2 nos vértices que sobraram para obter um caminho $P_{z''z'}$, de modo que o caminho final $P_{x'y''}$ consiste apenas de juntar $P_{x'z''}$, $P_{z''z''}$ e $P_{z'y''}$.

Para o caminho $P_{x'z''}$, note que, dado um vértice $v' \in V'$ e outro vértice $v'' \in V''$, podemos construir um caminho de tamanho três de v' para v'' evitando qualquer subconjunto $A' \subset V' \setminus \{v\}$ com $|A'| \leq 0.1m$ e qualquer subconjunto $B'' \subset V'' \setminus \{v''\}$ com $|B''| \leq 0.1m$: basta considerar as vizinhanças de v' e v'' e aplicar o item 1 para $(N(v') \cap V'') \setminus B''$ e $(N(v'') \cap V') \setminus A'$.

Com isso, basta construir $P_{x'z''}$ de forma gulosa, saindo de x' e percorrendo os caminhos em \mathcal{P}' e \mathcal{P}'' , utilizando caminhos de tamanho três para conectar uma ponta de um caminho de \mathcal{P}' com a ponta de um caminho de \mathcal{P}'' , e utilizando caminhos de tamanho quatro para conectar pontas de dois caminhos em \mathcal{P}' ou dois caminhos de \mathcal{P}'' (é só primeiro ir para o outro lado e então usar um caminho de tamanho três). Desse modo, conseguimos obter um caminho $P_{x'z''}$ que começa em x', termina em $z'' \in V''$, passa por todas as arestas dos caminhos de \mathcal{P}' e \mathcal{P}'' , e que satisfaz

$$|V(P_{x'z''}) \cap V'| \le 1 + 3(r' + r'') \le 0.04m$$
,
 $|V(P_{x'z''}) \cap V'| \le 1 + 3(r' + r'') \le 0.04m$.

Para $P_{z'y''}$, comece de y'' e percorra um caminho até um $z'_0 \in V'$, digamos $P_{z'_0y''}$, de modo que $|V(P_{z'_0y''})| = 2\lfloor 0.03m \rfloor - 2$. Daí sejam $P = V' \setminus (V(P_{x'z''}) \cup V(P_{z'_0y''}))$ e $Q = V'' \cap V(P_{z'_0y''})$.

Como $k := |P| \ge |V'| - 0.07m$ e cada vértice de Q manda 0.15m arestas para V', então cada vértice de Q manda pelo menos 0.08m arestas em P, logo

$$e(P,Q) \geq 0.08m|Q| \geq 0.08m \cdot 0.02m = 0.0016m^2.$$
 Seja $\tilde{x} = \#\{v \in P : |N(v) \cap Q| > 0.001m\}$. Então
$$0.0016m^2 \leq e(P,Q) \leq (k-\tilde{x})0.001m + \tilde{x} \cdot 0.03m \Longrightarrow 0.0016m \leq (k-\tilde{x})0.001 + \tilde{x} \cdot 0.03m \Longleftrightarrow \longleftrightarrow 16m \leq 10(k-\tilde{x}) + 300\tilde{x} = 10k + 290\tilde{x} \Longrightarrow 290\tilde{x} \geq 16m - 10k.$$

Note que $|V'|=|V''|+r'+r''\le |V''|+0.01m$, donde $|V'|\le 1.01m$, e daí $k=|P|\le |V'|-|V(P_{Z'_nV''})|\le 1.01m-0.02m< m$. Logo ficamos com

$$290\tilde{x} \ge 16m - 10k \ge 16m - 10m = 6m$$
$$\Longrightarrow \tilde{x} \ge \frac{6m}{290} > 0.02m.$$

1.4. COLORAÇÕES COM GRAFOS BIPARTIDOS COMPLETOS MONOCROMÁTICOS CAPÍTULO 1. MEU PRIMEIRO CAPÍTULO GRANDES

Assim, pelo item 1, existe uma aresta entre $\{v \in P : |N(v) \cap Q| > 0.001m\}$ e $(N(z'_0) \cap V'') \setminus (V(P_{x'z''}) \cup V(P_{z'_0y''}))$, logo o caminho $P_{z'_0y''}$ pode ser estendido para um caminho $P_{z'_1y''}$ tal que $|V(P_{z'_1y''})| = 2\lfloor 0.03m \rfloor$ e z' tem pelo menos 0.001m vizinhos em $V(P_{z'_1y''}) \cap V''$. Cada vizinho desses dá um "endpoint", isto é, existe $S' \subset V(P_{z'_1y''})$, $|S'| \geq 0.001m$, tal que para todo $s' \in S'$ existe um caminho começando em y'' e terminando em s', e que percorre os mesmos vértices de $P_{z'_1y''}$.

Agora, basta notar que o subgrafo bipartido induzido por $V' \setminus (V(P_{x'z''}) \cup V(P_{z'y''}))$ e $V'' \setminus (V(P_{x'z''}) \cup V(P_{z'y''}))$ é $(10^{-5}, 0.07)$ -uniforme, logo pelo Lema 1.3.2, existe um circuito hamiltoniano C percorrendo tais vértices.

Para cada vizinho de z'' em C, existe um caminho $P_{z''t''}$ que percorre exatamente os vértices de C além de z''. Em outras palavras, existe um conjunto $T'' \subset V''$ tal que $|T''| \geq 0.07m$ e para cada $t'' \in T''$ existe um caminho $P_{z''t''}$ de z'' a t'' com $V(P_{z''t''}) = \{z''\} \cup V(C)$.

Por 1, existe pelo menos uma aresta entre S' e T'', digamos $\{s',t''\}$. Para tal s', existe um caminho $P_{s'y''}$ de s' a y'' que percorre os mesmos vértices de $P_{z'y''}$. Concatenando os caminhos $P_{x'z''}$, $P_{z''t''}$, a aresta $\{t'',s'\}$ e o caminho $P_{s'y''}$, obtemos o caminho desejado.

1.4 Colorações com grafos bipartidos completos monocromáticos grandes

Lema 1.4.1. Dada qualquer coloração das arestas do grafo completo K_n em vermelho e azul, existem dois circuitos C^r e C^b em K_n , tais que as arestas de C^r são vermelhas, as arestas de C^b são azuis, $V(C^r) \cup V(C^b) = V(K_n)$ e $|V(C^r) \cap V(C^b)| \le 1$.

Demonstração. Tome um maior caminho $P=u_1\dots u_kv_1\dots v_l$ tal que cada aresta u_iu_{i+1} é azul e as arestas $u_kv_1,v_1v_2,\dots,v_{l-1}v_l$ são vermelhas. Vamos provar que P é um caminho hamiltoniano. De fato, se $w\notin V(P)$, então considere a aresta wu_k . Suponha, sem perda de generalidade, que wu_k é azul. Então o caminho $\tilde{P}=u_1\dots u_kwv_1\dots v_l$ é maior que P e é composto de um caminho azul seguido de um caminho vermelho, absurdo. Logo P é caminho hamiltoniano.

Suponha, sem perda de generalidade, que v_lu_1 é vermelho (se $P=u_1\dots u_k$, troque v_l por u_k). Suponha também, sem perda de generalidade, que u_1u_k é azul. Se l=0, isto é, $P=u_1\dots u_k$ com u_1u_k azul, então P é um circuito hamiltoniano azul, e temos partição tomando C^r vazio. Se l=1, então temos partição de $V(K_n)$ em um circuito azul e um único vértice como circuito vermelho. Suponha então $l\geq 2$. Caso v_1v_l seja vermelho, temos partição com $C^b=u_1\dots u_k$ e $C^r=v_1\dots v_l$. Caso v_1u_1 seja vermelho, tome $C^b=u_1\dots u_k$ e $C^r=v_1\dots v_lu_1$. Caso u_kv_l seja vermelho, tome $C^b=u_1\dots u_k$ e $C^r=u_kv_1\dots v_l$. Podemos supor, então, que u_kv_l , v_lv_1 e v_1u_1 são azuis. Mas então $Q=u_kv_lv_1u_1\dots u_k$ é um circuito azul. Troque P por $v_1u_1\dots u_kv_l\dots v_2$ e repita o argumento. Como l diminui de dois em dois a cada passo, eventualmente caímos em l=0 ou l=1, o que encerra a prova.

Lema 1.4.2. Dada uma coloração das arestas de K_n em vermelho e azul, suponha que exista uma partição dos vértices de K_n em três conjuntos V_1 , V_2 e V_3 tal que:

- (i) todas as arestas entre V_1 e V_2 são azuis;
- (ii) $\min\{|V_1|, |V_2|\} \ge 5 + 2|V_3|$.

Então o conjunto de vértices de K_n pode ser particionado como $V(K_n) = V(C^r) \cup V(C^b)$, onde C^r é um circuito com todas as arestas vermelhas e C^b é um circuito com todas as arestas azuis.

Demonstração. Primeiramente, vamos construir subconjuntos $V_1' \subseteq V_1$, $V_2' \subseteq V_2$ e $V_3' \subseteq V_3$ de modo que qualquer vértice de V_3' manda apenas arestas vermelhas para $V_1' \cup V_2'$, e de modo que $V_4' := V(K_n) \setminus (V_1' \cup V_2' \cup V_3')$ contém um caminho hamiltoniano azul $x_1 \dots x_m$ com $x_1 \in V_2$ e $x_m \in V_1$. Conseguiremos fazer isso de modo que min $\{|V_1'|, |V_2'|\} \ge 5 + |V_3'|$.

1.4. COLORAÇÕES COM GRAFOS BIPARTIDOS COMPLETOS MONOCROMÁTICOS GRANDES CAPÍTULO 1. MEU PRIMEIRO CAPÍTULO

Começando com $V_1(0) = V_1$, $V_2(0) = V_2$ e $V_3(0) = V_3$, vamos definir recursivamente cadeias descendentes de conjuntos $V_1(k)$, $V_2(k)$ e $V_3(k)$ para k de zero até l tal que $(V_1', V_2', V_3', V_4') = (V_1(l), V_2(l), V_3(l), V(K_n) \setminus (V_1(l) \cup V_2(l) \cup V_3(l)))$ satisfaça as condições do parágrafo anterior.

Suponha construídos $V_1(k)$, $V_2(k)$ e $V_3(k)$ para um $k \ge 0$, e que ainda existe pelo menos uma aresta azul entre $V_3(k)$ e $V_1(k) \cup V_2(k)$. Então definimos $V_i(k+1)$ da seguinte forma:

Caso 1: Se existe $w \in V_3(k)$ tal que w tem pelo menos dois vizinhos azuis u_1 e u_2 em $V_1(k)$, tome $v \in V_2(k)$ arbitrário e faça $V_1(k+1) = V_1(k) \setminus \{u_1, u_2\}$, $V_2(k+1) = V_2(k) \setminus \{v\}$ e $V_3(k+1) = V_3(k) \setminus \{w\}$.

Note que, se $x_{1k}x_{2k} \dots x_{m_kk}$ é um caminho azul com $x_{1k} \in V_2$ e $x_{m_kk} \in V_1$, então $x_{1k} \dots x_{m_kk}vu_1wu_2$ é um caminho azul terminando em $u_2 \in V_1$.

Caso 2: Se existe $w \in V_3(k)$ tal que w tem pelo menos dois vizinhos azuis v_1 e v_2 em $V_2(k)$, tome, analogamente ao caso anterior, $u \in V_1(k)$ arbitrário e faça $V_1(k+1) = V_1(k) \setminus \{u\}$, $V_2(k+1) = V_2(k) \setminus \{v_1, v_2\}$ e $V_3(k+1) = V_3(k) \setminus \{w\}$.

Note que, se $x_{1k}x_{2k}...x_{m_kk}$ é um caminho azul com $x_{1k} \in V_2$ e $x_{m_kk} \in V_1$, então $x_{1k}...x_{m_kk}v_2wv_1u$ é um caminho azul terminando em $u \in V_1$.

Se nenhum dos dois casos acima se aplica, então todo vértice $w \in V_3(k)$ tem no máximo um vizinho azul em $V_1(k)$ e no máximo um vizinho azul em $V_2(k)$. Nesse último caso, tiramos os vizinhos azuis ao invés do vértice em $V_3(k)$:

Caso 3: Se existe $w \in V_3(k)$ tal que w tem um único vizinho azul em $V_1(k)$ e/ou um único vizinho azul em $V_2(k)$, tome $u \in V_1(k)$ e $v \in V_2(k)$ de modo que $\{u,v\}$ contém esses possíveis dois vizinhos azuis, e faça $V_1(k+1) = V_1(k) \setminus \{u\}$, $V_2(k+1) = V_2(k+1) \setminus \{v\}$ e $V_3(k+1) = V_3(k)$.

Note que, se $x_{1k}x_{2k} \dots x_{m_kk}$ é um caminho azul com $x_{1k} \in V_2$ e $x_{m_kk} \in V_1$, então $x_{1k} \dots x_{m_kk}vu$ é um caminho azul terminando em $u \in V_1$.

Como, a cada passo da construção, o número de vértices em $V_3(k)$ que tem algum vizinho azul em $V_1(k) \cup V_2(k)$ diminui em pelo menos um, o roteiro acima para em $l \leq |V_3|$ passos. Sejam então $V_1' = V_1(l), \ V_2' = V_2(l), \ V_3' = V_3(l)$ e $V_4' = V(K_n) \setminus (V_1(l) \cup V_2(l) \cup V_3(l))$, com V_3' e V_4' possivelmente vazios. Como o processo parou, todas as arestas entre V_3' e $V_1' \cup V_2'$ são vermelhas. Como $V_1' \subseteq V_1$ e $V_2' \subseteq V_2$, temos que todas as arestas entre V_1' e V_2' são azuis. Como $|V_1(k+1)| - |V_3(k+1)| \geq |V_1(k)| - |V_3(k)| - 1$, temos que

$$|V_1'| - |V_3'| \ge |V_1| - |V_3| - l \ge |V_1| - 2|V_3| \ge 5$$

donde $|V_1'| \ge 5 + |V_3'|$ (e, analogamente, $|V_2'| \ge 5 + |V_3'|$). Note, também, que foi construído ao longo do processo um caminho $x_1 \dots x_m$ azul passando por todos os vértices de V_4' , tal que todas as arestas de x_1 a V_1' e todas as arestas de x_m a V_2' são azuis (em particular, $x_1 \in V_2$ pois, em todos os casos, o primeiro vértice adicionado ao caminho é um vértice de V_2).

Seja $n_i = |V_i'|$ para i = 1, 2, 3, e suponha, sem perda de generalidade, que $n_1 \ge n_2$. A partir daqui, o argumento se separa de acordo com os casos abaixo. Por exemplo, se $n_1 - n_2 = n_3$, então podemos separar $W_1' \subseteq V_1'$ com $|W_i'| = n_1 - n_2$ e tomar C^r como sendo um circuito hamiltoniano vermelho no subgrafo bipartido completo entre V_3' e W_1' , e C^b como um circuito azul percorrendo primeiro o caminho $x_1 \dots x_m$ e alternando entre vértices de V_2' e $V_1' \setminus W_1'$. De forma geral, temos:

Caso 1. $n_1 - n_2 \le n_3$.

Se $n_3 - n_1 + n_2$ é par, então tome $W_1' \subseteq V_1'$ e $W_2' \subseteq V_2'$ com $|W_1'| = n_1 - n_2 + \frac{n_3 - n_1 + n_2}{2}$ e $|W_2'| = \frac{n_3 - n_1 + n_2}{2}$. Como $|W_1' \cup W_2'| = n_3 = |V_3'|$, existe um circuito vermelho no subgrafo bipartido completo vermelho entre V_3' e $W_1' \cup W_2'$, e um circuito azul cobrindo o restante dos vértices (percorra o caminho $x_1 \dots x_m$ primeiro e alterne entre vértices de $V_2' \setminus W_2'$ e $V_1' \setminus W_1'$).

Por outro lado, se $n_3-n_1+n_2$ é ímpar, então consideramos o seguinte argumento. Tome uma aresta $e=\{u_1,u_2\}\subseteq V_1'$ qualquer (note que $n_1\geq 5>2$, logo e existe). Se e é azul, então fazemos o argumento anterior para n_1-1 no lugar de n_1 (tomando $W_1'\subseteq V_1'\setminus\{u_1,u_2\}$) e, para o circuito azul, começamos pela aresta u_1u_2 e então percorremos o caminho $x_1\dots x_m$ e alternamos entre V_2' e V_1' . Caso contrário, se e é vermelha, então, para $n_3\geq 2$, tome $e\subseteq W_1'\subseteq V_1'$ e $W_2'\subseteq V_2'$ com $|W_1'|=(n_1+1)-n_2+\frac{n_3-(n_1+1)+n_2}{2}$ e $|W_2'|=\frac{n_3-n_1+n_2+1}{2}$ (é possível tomar $e\subseteq W_1'$ pois $|W_1'|=\frac{n_1-n_2+n_3+1}{2}\geq \frac{n_3+1}{2}>1$). Note que $|V_1'\setminus W_1'|=|V_2'\setminus W_2'|=\frac{n_1+n_2-n_3-1}{2}$. Logo existe um circuito azul cobrindo $(V_1'\setminus W_1')\cup (V_2'\setminus W_2')\cup V_4'$. Para construir um circuito vermelho C^r com $V(C^r)=V_3'\cup W_1'\cup W_2'$, basta começar por u_1u_2 e alternar entre V_3' e $W_1'\cup W_2'$. Se $n_3=1$, então $n_1=n_2$ e faça C^r como o único vértice em V_3' e C^b começando pelo caminho $x_1\dots x_m$ e alternando entre V_2' e V_1' .

Caso 2. $n_1 - n_2 > n_3$.

Aqui, vamos considerar os tamanhos dos circuitos vermelhos contidos em V'_1 .

Primeiro, suponha que V_1' contém um circuito vermelho C_1' de tamanho $n_1 - n_2$. Então note que podemos tomar C^b como sendo um circuito com $V(C^b) = (V_1' \setminus V(C_1')) \cup V_2' \cup V_4'$, e C^r como um circuito começando de um vértice de C_1' , alternando entre $V(C_1')$ e V_3' até percorrer todos os vértices de V_3' , e terminando de percorrer os vértices de C_1' até fechar o circuito.

Agora, suponha que todos os circuitos vermelhos em V_1' têm tamanho menor que n_1-n_2 . Pelo Lema 1.4.1 aplicado no grafo completo nos vértices em V_1' , existem um circuito vermelho \tilde{C}^r e um caminho azul P^b tal que $V_1' = V(\tilde{C}^r) \cup V(P^b)$ é uma partição.

Fato 1.4.3. Seja k inteiro positivo, e $n \ge 120k^3$. Considere uma coloração arbitrária das arestas de K_n em vermelho e azul. Suponha que não existe partição de $V(K_n)$ em V_1 , V_2 e V_3 satisfazendo as condições do Lema 1.4.2. Então, se S_1, \ldots, S_l , $T_1, \ldots, T_l \subseteq V(K_n)$ são conjuntos disjuntos com $l \ge 2$, onde $|S_i|, |T_i| \ge n/2k$ para $i \in \{1, \ldots, l\}$, existem caminhos vermelhos P_1, \ldots, P_l , vértice-disjuntos, cada um de comprimento no máximo 10k, tal que cada P_i tem um extremo em S_i e outro em T_i .

Demonstração: Vamos provar que os caminhos P_i existem mostrando que podemos escolhêlos um por um, começando por P_1 , e a cada passo exibindo um P_j que é vértice-disjunto aos anteriores, P_1, \ldots, P_{i-1} .

Seja então $j \in \{1, ..., l\}$ e suponha já construídos os caminhos P_i , $1 \le i < j$. Seja R o subgrafo de K_n com $V(R) = V(K_n) \setminus W$, onde $W = \bigcup_{i=1}^{j-1} V(P_i)$, dado pelas arestas vermelhas. Para cada $r \in \{0, ..., 5k\}$, defina

$$N_r = \{ v \in V(K_n) \setminus W : d_R(v, S_j \setminus W) = r \},$$

$$N'_r = \{ v \in V(K_n) \setminus W : d_R(v, T_i \setminus W) = r \}.$$

Se $(\bigcup_{r=0}^{5k} N_r) \cap (\bigcup_{r=0}^{5k} N_r') \neq \emptyset$, então temos um caminho de tamanho no máximo 10k ligando S_j a T_j , e tomamos P_j para ser esse caminho. Suponha então que $(\bigcup_{r=0}^{5k} N_r) \cap (\bigcup_{r=0}^{5k} N_r') = \emptyset$. Portanto, $|\bigcup_{r=1}^{5k} N_r| \leq n/2$ ou $|\bigcup_{r=1}^{5k} N_r'| \leq n/2$. Suponha, sem perda de generalidade, que $|\bigcup_{r=1}^{5k} N_r| \leq n/2$. Como os N_r são disjuntos, então existe r_0 tal que $|N_{r_0}| \leq n/10k$. Agora, sejam $V_3 = N_{r_0} \cup W$, $V_1 = (S_j \setminus W) \cup \bigcup_{r=1}^{r_0-1} N_r$ e $V_2 = V(K_n) \setminus (V_1 \cup V_2)$. Vamos provar que V_1 , V_2 e V_3 satisfazem as condições do Lema 1.4.2. Note que o par (V_1, V_2) induz um grafo bipartido azul completo. Vamos verificar agora que $|V_1| \geq 5 + 2|V_3|$. Primeiro,

$$|V_1| \ge |S_j \setminus W| \ge |S_j| - |W| \ge \frac{n}{2k} - (l-1)(10k+1).$$

Por outro lado, temos que

$$5 + 2|V_3| = 5 + 2|N_{r_0} \cup W| \le 5 + 2\left(\frac{n}{10k} + (l-1)(10k+1)\right).$$

1.5. DEMONSTRAÇÃO DO TEOREMA ??

Daí,

$$\frac{n}{2k} - (l-1)(10k+1) \ge 5 + 2\left(\frac{n}{10k} + (l-1)(10k+1)\right) \iff \frac{n}{2k} - \frac{n}{5k} \ge 5 + 3(l-1)(10k+1) \iff \frac{3n}{10k} \ge 5 + 3(l-1)(10k+1).$$
(1.1)

Como $(l-1)(10k+1) \le l \cdot 10k \le 10k^2$ e $\frac{3n}{10k} \ge 5+3\cdot 10k^2 \Leftrightarrow 3n \ge 50k+300k^3 \Leftrightarrow n \ge 10k^2$ $\frac{50k}{3}+100k^3$ vale quando $n\geq 120k^3$, temos que $|V_1|\geq 5+2|V_3|$. Como $|V_2|\geq |T_j\setminus W|$, temos também que $|V_2| \ge 5 + 2|V_3|$. Logo V_1, V_2 e V_3 particionam $V(K_n)$ satisfazendo as condições do Lema 1.4.2, contradição.

1.5 Demonstração do Teorema 1.1.1

Sejam $\varepsilon=10^{-60}$ e $k_0=2/\varepsilon$. Seja $K_0=K_0(\varepsilon,k_0)$ a constante garantida pelo Lema da Regularidade de Szemerédi. Iremos provar que o Teorema 1.1.1 é verdade para $n_0 = 120K_0^3$.

Seja $n \ge n_0$ e considere uma coloração arbitrária das arestas de K_n em vermelho e azul. Queremos provar que existe uma partição de $V(K_n)$ em dois circuitos monocromáticos, um vermelho e outro azul.

Seja R o grafo induzido pelas arestas vermelhas e B o induzido pelas arestas azuis. Vamos supor, sem perda de generalidade, que o número de arestas vermelhas é maior ou igual ao número de arestas azuis, ou seja, que pelo menos metade das arestas são vermelhas, i.e., $e(R) \ge \frac{1}{2} \binom{n}{2}$. Se a coloração das arestas de K_n satisfaz as hipóteses do Lema 1.4.2, então existe a partição desejada e não há mais nada o que provar. Logo, podemos supor que isso não ocorre, de modo que podemos usar o Fato 1.4.3 para $k \leq K_0$.

Começamos aplicando o Lema da Regularidade de Szemerédi para G = R, obtendo uma partição $(\varepsilon, \hat{k}, R)$ -regular $\hat{\Pi} = (\hat{V}_0, \hat{V}_1, \dots, \hat{V}_{\hat{k}})$, com $k_0 \leq \hat{k} \leq K_0$. Lembre que um par (ε, R) regular é também (ε, B) -regular; vamos dizer que tais pares são *regulares*. Sobre $\hat{\Pi}$, temos que:

$$|\hat{V}_0| < K_0 \le \frac{n}{120K_0^2} < \varepsilon n;$$

$$\left|\left\{\{i,j\} \in {\hat{k} \choose 2} : (\hat{V}_i,\hat{V}_j) \text{ não \'e regular}\right\}\right| \le \varepsilon {\hat{k} \choose 2} \le \varepsilon \frac{\hat{k}^2}{2}.$$

Apesar de $\hat{\Pi}$ ter poucos pares não-regulares, podem haver \hat{V}_i 's que são não-regulares com, por exemplo, todos os outros \hat{V}_i 's. Vamos tirar esses \hat{V}_i 's que são não-regulares com muitos outros \hat{V}_i 's da partição e colocá-los em \hat{V}_0 . Mais especificamente, seja \bar{V}_0 o conjunto formado pela união de \hat{V}_0 com os \hat{V}_i que são não-regulares com mais de $2\varepsilon^{1/2}(1-\varepsilon^{1/2})\hat{k}$ outros \hat{V}_i , e sejam $\bar{V}_1,\ldots,\bar{V}_k$ os \hat{V}_i que sobraram. Temos então uma partição $\bar{\Pi}=(\bar{V}_0,\bar{V}_1,\ldots,\bar{V}_k)$ com $k\leq\hat{k}$. Como a quantidade de pares não-regulares é menor que $arepsilon \hat{k}^2/2$, a quantidade de \hat{V}_i 's que entraram em \bar{V}_0 é no máximo

$$\frac{\varepsilon \hat{k}^2}{2\varepsilon^{1/2}(1-\varepsilon^{1/2})\hat{k}} = \frac{\varepsilon^{1/2}\hat{k}}{2(1-\varepsilon^{1/2})} < \varepsilon^{1/2}\hat{k}.$$

Logo $k \geq (1 - \varepsilon^{1/2})\hat{k} > \frac{\hat{k}}{2} \geq 1/\varepsilon$, e cada \bar{V}_i é não-regular com no máximo $2\varepsilon^{1/2}(1 - \varepsilon^{1/2})\hat{k} < 2\varepsilon^{1/2}k$ outros \bar{V}_i . Por fim, $|\bar{V}_0| \leq \varepsilon n + \varepsilon^{1/2} \hat{k} \frac{n}{\hat{\iota}} < 2\varepsilon^{1/2} n$.

Vamos colorir os pares $\{i, j\}$, $1 \le i < j \le k$ em três cores de acordo com o par (\bar{V}_i, \bar{V}_i) . Diremos que $\{i, j\}$ é:

• preto, se (\bar{V}_i, \bar{V}_i) é não-regular;

- vermelho, se (\bar{V}_i, \bar{V}_j) é regular com $e_R(\bar{V}_i, \bar{V}_j) \ge 0.2|\bar{V}_i||\bar{V}_j|$;
- azul, se (\bar{V}_i, \bar{V}_j) é regular com $e_B(\bar{V}_i, \bar{V}_j) > 0.8|\bar{V}_i||\bar{V}_j|$.

Seja Γ_R o grafo reduzido dado pelos pares vermelhos, isto é, $V(\Gamma_R) = \{1, \ldots, k\}$ e $E(\Gamma_R) = \{\{i,j\} \in \binom{[k]}{2} : \{i,j\}$ é vermelho $\}$. Vamos provar que $e(\Gamma_R) \geq 0.185k^2$. Como estamos supondo $e(R) \geq \frac{1}{2}\binom{n}{2}$, limitaremos por cima a quantidade de arestas em R de acordo com a partição $\bar{\Pi}$. Contando arestas vermelhas, temos então:

Dentro de
$$\bar{V}_1, \ldots, \bar{V}_k$$
: $\leq k \binom{n/k}{2} < \frac{n^2}{2k} < \frac{\varepsilon}{2} n^2$;

Dentro de
$$\bar{V}_0$$
: $\leq {|\bar{V}_0| \choose 2} \leq {2\epsilon^{1/2}n \choose 2} < 2\epsilon n^2$;

Entre
$$\bar{V}_0$$
 e $\bar{V}_1, \ldots, \bar{V}_k$: $\leq |\bar{V}_0| |\bar{V}_1 \cup \cdots \cup \bar{V}_k| \leq 2\varepsilon^{1/2} n \cdot n = 2\varepsilon^{1/2} n^2$;

Em pares não-regulares: $\leq 2\varepsilon k^2 \cdot \left(\frac{n}{k}\right)^2 = 2\varepsilon n^2$;

Em pares azuis:
$$\leq \left[\binom{k}{2} - e(\Gamma_R) \right] \cdot 0.2 \cdot \left(\frac{n}{k} \right)^2 < 0.2 \frac{n^2}{2} - \frac{e(\Gamma_R)}{5} \left(\frac{n}{k} \right)^2 = \frac{n^2}{10} - \frac{e(\Gamma_R)}{5} \left(\frac{n}{k} \right)^2$$
;

Em pares vermelhos: $\leq e(\Gamma_R) \left(\frac{n}{k}\right)^2$.

Logo

$$\begin{split} &\left(\frac{\varepsilon}{2} + 2\varepsilon + 2\varepsilon^{1/2} + 2\varepsilon\right)n^2 + \frac{n^2}{10} + \frac{4}{5}e(\Gamma_R)\left(\frac{n}{k}\right)^2 \ge \frac{1}{2}\binom{n}{2} \\ &\Longrightarrow \frac{4}{5}e(\Gamma_R)\left(\frac{n}{k}\right)^2 \ge n^2\left(\frac{1}{4} - \frac{1}{10} - 3\varepsilon^{1/2}\right) \,. \end{split}$$

Portanto, $e(\Gamma_R) \ge \frac{5}{4} \left(\frac{1}{4} - \frac{1}{10} - 3\epsilon^{1/2} \right) k^2 > 0.185 k^2$.

Vamos provar que Γ_R contém um casamento cobrindo mais de 0.2k vértices. Tome um casamento maximal de Γ_R e suponha, por absurdo, que tal casamento cobre não mais de 0.2k vértices. Então temos pelo menos $\binom{0.8k}{2} > 0.63k^2/2 > \binom{k}{2} - 0.185k^2$ arestas no complementar de Γ_R , absurdo. Vamos supor, daqui em diante, que $\{\{1,2\},\ldots,\{2s-1,2s\}\}$ é um casamento *máximo* de Γ_R , com s>0.1k.

Com o que temos até agora, conseguimos definir uma "primeira tentativa" de encontrar os dois circuitos monocromáticos desejados. Mais especificamente, teremos uma partição de $V(K_n)$ em três conjuntos, \tilde{V}^r , \tilde{V}^b e \tilde{V}_0 , de modo que existe um circuito vermelho cobrindo exatamente \tilde{V}^r , um circuito azul cobrindo \tilde{V}^b e o conjunto de sobra \tilde{V}_0 é pequeno. Mais do que apenas os circuitos, \tilde{V}^r e \tilde{V}^b terão estrutura suficiente de modo a ser possível adicionar vértices de \tilde{V}_0 um por um neles mantendo a existência de circuitos monocromáticos que cobrem \tilde{V}^r e \tilde{V}^b . Em \tilde{V}^r , a estrutura será dada por s pares de conjuntos de vértices satisfazendo as condições do Lema 1.3.5, e \tilde{V}^b será tal que o subgrafo de s induzido por s0 tem grau mínimo 0.7 $|\tilde{V}^b|$. Sem mais delongas, vamos às definições precisas.

Para cada $i \in [s]$, como o par $(\bar{V}_{2i-1}, \bar{V}_{2i})$ é regular, temos pela Proposição 1.2.2 que existem $V'_{2i-1} \subseteq \bar{V}_{2i-1}, V'_{2i} \subseteq \bar{V}_{2i}$ tais que $|V'_{2i-1}| = |V'_{2i}| \ge (1-\varepsilon)|\bar{V}_{2i-1}|$, o par (V'_{2i-1}, V'_{2i}) é $(4\varepsilon, R)$ -regular, e todo vértice em V'_{2i-1} tem pelo menos $(0.2-2\varepsilon)|\bar{V}_{2i-1}|$ vizinhos vermelhos em V'_{2i} , e vice-versa. Pelo Fato 1.4.3, existem caminhos vermelhos P_1, \ldots, P_s vértice-disjuntos, cada um de comprimento no máximo 10k, tal que P_1 tem um extremo em V'_2 e outro em V'_3 , P_2 tem um extremo em V'_4 e outro em V'_5 , e assim por diante, P_{s-1} tem um extremo em V'_{2s-2} e outro em V'_{2s-1} , e P_s tem um extremo em V'_2 e outro em V'_3 . Para fechar um circuito vermelho, vamos usar o Lema 1.3.5 dentro de cada par (V'_{2i-1}, V'_{2i}) , mas, como os caminhos P_i podem ter usado vértices dos V'_i , precisamos balancear cada par (V'_{2i-1}, V'_{2i}) para aplicar tal lema. Vamos denominar então os vértices de $\bigcup_{i=1}^s V(P_i)$ de *inativos*, e vamos nos referir aos vértices que ainda não

foram "inativados" como os vértices ativos (ao longo do argumento, mais vértices serão "inativados"; os vértices ativos são aqueles que não foram "inativados" em nenhum momento anterior). Escolhemos então subconjuntos $V_j \subseteq V_j' \setminus \bigcup_{i=1}^s V(P_i)$, com $|V_j| \ge |V_j'| - 5k^2$ tais que, para cada $i \in [s]$, os conjuntos V_{2i-1} e V_{2i} têm o mesmo número de vértices ativos. Agora sim, aplicamos o Lema 1.3.5 em cada par $(V_{2i-1} \setminus \bigcup_{i=1}^{2s} V(P_i), V_{2i} \setminus \bigcup_{i=1}^{2s} V(P_i))$, para r' = r'' = 0, garantindo a existência de caminhos ligando extremos dos caminhos P_1, \ldots, P_s , de modo que todos esses caminhos juntos formam um circuito vermelho que cobre $\tilde{V}^r \coloneqq (\bigcup_{i=1}^{2s} V_i) \cup (\bigcup_{i=1}^s V(P_i))$.

Para definir \tilde{V}^b , separamos em dois casos. Se k-2s é pequeno, i.e., se os conjuntos $\bar{V}_{2s+1},\ldots,\bar{V}_k$ que sobraram são poucos, então não temos muita estrutura entre eles (podem ser todos pares pretos no grafo reduzido). Nesse caso, colocamos tudo em \tilde{V}_0 . Mais precisamente, se $k-2s \leq \varepsilon^{1/3}k$, definimos $\tilde{V}^b = \emptyset$ e $\tilde{V}_0 = V(K_n) \setminus \tilde{V}^r$. Para $k-2s > \varepsilon^{1/3}k$, defina $W = \bar{V}_{2s+1} \cup \cdots \cup \bar{V}_k$ e $W' \subseteq W$ como o conjunto dos vértices de W que têm menos de 0.75|W| vizinhos azuis em W. Como $\{\{1,2\},\ldots,\{2s-1,2s\}\}$ é casamento máximo de Γ_R , temos que todos os pares $\{i,j\}$ com $2s+1 \leq i < j \leq k$ são pretos ou azuis, e cada $i \in \{2s+1,\ldots,k\}$ está em no máximo $2\varepsilon^{1/2}k$ pares pretos. Vamos provar que, para todo $i \in \{2s+1,\ldots,k\}$, $|\bar{V}_i \cap W'| \leq \varepsilon |\bar{V}_i|$. Suponha, por absurdo, que $|\bar{V}_i \cap W'| > \varepsilon |\bar{V}_i|$. Então, para cada $j \in \{2s+1,\ldots,k\}$ tal que $\{i,j\}$ é azul, temos por regularidade que:

$$\left|\frac{e_B(\bar{V}_i\cap W',\bar{V}_j)}{|\bar{V}_i\cap W'||\bar{V}_j|} - \frac{e_B(\bar{V}_i,\bar{V}_j)}{|\bar{V}_i||\bar{V}_j|}\right| < \varepsilon \implies \frac{e_B(\bar{V}_i\cap W',\bar{V}_j)}{|\bar{V}_i\cap W'||\bar{V}_j|} > 0.8 - \varepsilon.$$

Logo $e_B(\bar{V}_i \cap W', \bar{V}_j) > (0.8 - \varepsilon)|\bar{V}_i \cap W'||\bar{V}_j| = (0.8 - \varepsilon)|\bar{V}_i \cap W'|\frac{|W|}{k-2s}$. Como há pelo menos $k-2s-1-2\varepsilon^{1/2}k$ pares azuis contendo i, temos que

$$e(\bar{V}_i \cap W', W \setminus \bar{V}_i) \ge (k - 2s - 1 - 2\varepsilon^{1/2}k)(0.8 - \varepsilon)|\bar{V}_i \cap W'|\frac{|W|}{k - 2s}$$

$$> \left(1 - \frac{3\varepsilon^{1/2}k}{\varepsilon^{1/3}k}\right)(0.8 - \varepsilon)|\bar{V}_i \cap W'||W|$$

$$> 0.75|\bar{V}_i \cap W'||W|.$$

Logo algum vértice de $\bar{V}_i \cap W'$ tem mais de 0.75|W| vizinhos azuis em W, absurdo. Portanto, $|W'| = \sum_{i=2s+1}^k |\bar{V}_i \cap W'| \leq \sum_{i=2s+1}^k \varepsilon |\bar{V}_i| = \varepsilon |W|$. Sejam $V_i = \bar{V}_i \setminus W'$, para $i \in \{2s+1,\ldots,k\}$, e $\tilde{V}^b = \bigcup_{i=2s+1}^k V_i = W \setminus W'$. Então todo vértice de \tilde{V}^b tem pelo menos $0.75|W| - |W'| > 0.7|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b . Em particular, pelo teorema de Dirac, existe um circuito azul cobrindo exatamente \tilde{V}^b . E, finalmente, defina $\tilde{V}_0 = V(K_n) \setminus (\tilde{V}^r \cup \tilde{V}^b)$.

Temos então uma partição $V(K_n) = \tilde{V}^r \cup \tilde{V}^b \cup \tilde{V}_0$, com

$$|\tilde{V}_0| \leq egin{cases} 2arepsilon^{1/3} n \,, & ext{se} & ilde{V}^b = arnothing, \ 4arepsilon^{1/2} n \,, & ext{se} & ilde{V}^b
eq arnothing. \end{cases}$$

A partir de agora, vamos para a parte mais delicada da prova, que consiste em incluir cada vértice de \tilde{V}_0 em \tilde{V}^r ou \tilde{V}^b , mantendo estrutura suficiente em cada parte de modo a garantir os circuitos monocromáticos ao final. Por isso, vamos sempre tomar cuidado em não "gastar" muitos vértices de um mesmo V_i , e também não incorporar muitos vértices de \tilde{V}_0 em um mesmo par (V_{2i-1}, V_{2i}) , por exemplo. Como o argumento terá várias etapas, vamos colorir um vértice de *rosa* como indicativo de que tal vértice foi reservado para o circuito vermelho, e *ciano* se tal vértice foi reservado para o circuito azul. Qualquer vértice colorido em rosa ou ciano é automaticamente declarado como inativo, se juntando aos $V(P_i)$ considerados anteriormente.

Para cada vértice v de \tilde{V}_0 , vamos inativar no máximo 4 vértices de um mesmo V_i , e não mais do que 8 vértices ao todo, sem contar o próprio v. Em vista do Lema 1.3.5, vamos criar não mais do que $0.005|V_i|$ caminhos vermelhos para cada V_i . Como cada caminho vermelho inclui dois vértices em V_i que ficam inativados, vamos permitir no máximo $0.01|V_i|$ vértices inativos em V_i .

Dizemos que V_i está *saturado* se V_i possui mais de $0.009|V_i|-4$ vértices inativos. Caso contrário, dizemos que V_i está *insaturado*.

Se $\tilde{V}^b = \emptyset$, então o número total de vértices inativos sempre estará limitado superiormente por

$$8|\tilde{V}_0| + 6k^2 \le 16\varepsilon^{1/3}n + \frac{\varepsilon n}{20} \le 17\varepsilon^{1/3}n < 0.0001k(n/k)$$
,

de modo que é impossível termos mais do que 0.02k conjuntos V_i com mais do que $0.008n/k < 0.009|V_i|-4$ vértices inativos, e portanto, nunca teremos mais do que 0.02k conjuntos V_i saturados.

Se $\tilde{V}^b \neq \emptyset$, então o número total de vértices inativos é limitado superiormente por

$$8|\tilde{V}_0| + 6k^2 \le 32\varepsilon^{1/2}n + \frac{\varepsilon n}{20} < 33\varepsilon^{1/2}n < \varepsilon^{2/5}n/250$$
,

de modo que, nesse caso, nunca teremos mais do que $\varepsilon^{2/5}k/2$ conjuntos V_i saturados.

Vamos, a partir de agora, tratar e resolver completamente o caso $\tilde{V}^b \neq \emptyset$. Temos $|\tilde{V}^b| = |W \setminus W'| \geq (1-\varepsilon)^2 (1-2\varepsilon^{1/2})\varepsilon^{1/3}n > \varepsilon^{1/3}n/2$. Como vamos explorar a relação dos conjuntos V_1, \ldots, V_{2s} com os conjuntos V_{2s+1}, \ldots, V_k , vamos dizer que um conjunto V_i , $1 \leq i \leq 2s$, é *vermelho-dominado* se o número de pares vermelhos $\{i,j\}$, com $2s+1 \leq j \leq k$, é maior ou igual a $\varepsilon^{2/5}k$. Caso contrário, diremos que V_i é *azul-dominado*.

Neste parágrafo, uma lista de observações será feita, que justificam os argumentos seguintes e os casos considerados. Recomendo ao leitor que faça apenas uma primeira leitura do que está aqui e vá para os próximos parágrafos, voltando quando estiver mais claro quais são os usos de cada afirmação. Primeiramente, como tomamos $\{\{1,2\},\ldots,\{2s-1,2s\}\}$ um casamento máximo de Γ_R , então, para todo $i \in [s]$, não podem existir $j_1, j_2 \in \{2s+1,\ldots,k\}$ distintos tais que $\{2i-1,j_1\}$ e $\{2i,j_2\}$ sejam ambos pares vermelhos. Por conta disso, no máximo um dos conjuntos V_{2i-1} e V_{2i} é vermelho-dominado. Em segundo lugar, se V_i é vermelho-dominado, então existe V_j insaturado, com $j \in \{2s+1,\ldots,k\}$ tal que $\{i,j\}$ é vermelho (pois temos $\varepsilon^{2/5}k$ pares vermelhos contendo i, e no máximo $\varepsilon^{2/5}k/2$ deles envolvem um V_j saturado). Para tal V_j , existem $x_1, x_2 \in V_j$ vértices ativos, e existem $y_1, y_2, z_1, z_2 \in V_i$ também ativos tais que $y_1x_1z_1$ e $y_2x_2z_2$ são caminhos vermelhos vértice-disjuntos (pois, como $\frac{e(V_i, V_j)}{|V_i||V_j|} > 0.15$, há no máximo $0.95|V_j|$ vértices de V_j com menos de $0.1|V_i|$ vizinhos vermelhos em V_i , logo há pelo menos $0.04|V_j|$ vértices ativos de V_j com pelo menos $0.1|V_i|$ vizinhos vermelhos em V_i , e então basta tomar x_1 e x_2 como sendo dois desses vértices de V_j , e quaisquer vizinhos vermelhos ativos y_1, z_1 de x_1 e y_2, z_2 de x_2). Por último, se V_i é azul-dominado, então

$$|\{j \in \{2s+1,\ldots,k\} : \{i,j\} \text{ n\~ao\'e azul}\}| < \varepsilon^{2/5}k + 2\varepsilon^{1/2}k < 2\varepsilon^{2/5}k \le 2\varepsilon^{1/15}(k-2s) \,.$$

Logo, se $j_1, \ldots, j_t \in \{2s+1, \ldots, k\}$ são os índices j tais que $\{i, j\}$ é azul, então

$$e(V_i, V_{2s+1} \cup \dots \cup V_k) \ge 0.75 |V_i| |V_{j_1} \cup \dots \cup V_{j_t}|$$

$$\ge 0.75 |V_i| (1 - \varepsilon)^2 (1 - 2\varepsilon^{1/15}) |V_{2s+1} \cup \dots \cup V_k|$$

$$\ge 0.7 |V_i| |V_{2s+1} \cup \dots \cup V_k|.$$

Isso nos permite garantir que há pelo menos $\frac{1}{7}|V_i|$ vértices em V_i com pelo menos $0.65|V_{2s+1} \cup \cdots \cup V_k| = 0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b .

Agora, vamos descrever como lidar com cada vértice de \tilde{V}_0 . Dado $v \in \tilde{V}_0$, nosso objetivo é marcar v de rosa ou ciano, inativando no máximo 8 outros vértices de K_n , e repetir tal processo para cada vértice de \tilde{V}_0 . Vamos tomar um par (V_{2i-1}, V_{2i}) , com $i \in [s]$, tal que ambos V_{2i-1} e V_{2i} estão insaturados, e assuma que v possui dois vizinhos vermelhos ativos w e w' em um dentre V_{2i-1} e V_{2i} , digamos $w, w' \in V_{2i-1}$. Então consideramos apenas dois casos.

Caso 1. V_{2i} é vermelho-dominado.

Dado V_j insaturado, $j \in \{2s + 1, ..., k\}$, tome $x \in V_j$ ativo, e $y, z \in V_{2i}$ vizinhos vermelhos ativos de x.

Marque de rosa os seis vértices v, w, w', x, y, z.

Caso 2. V_{2i} é azul-dominado.

Tome $x \in V_{2i}$ tal que x tem pelo menos $0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b .

Marque os vértices v, w, w' de rosa e x de ciano.

Suponha agora que v tem no máximo um vizinho vermelho ativo tanto em V_{2i-1} quanto em V_{2i} . Como no máximo um dentre os conjuntos V_{2i-1} e V_{2i} é vermelho-dominado, podemos supor, por exemplo, que V_{2i} é azul-dominado, e então temos novamente dois casos.

Caso 1. V_{2i-1} e V_{2i} são azul-dominados.

Tome $w \in V_{2i-1}$ e $w' \in V_{2i}$ vizinhos azuis ativos de v tais que w e w' possuem cada um pelo menos $0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b .

Marque de ciano os vértices v, w, w'.

Caso 2. V_{2i-1} é vermelho-dominado e V_{2i} é azul-dominado.

Tome $w,w'\in V_{2i}$ vizinhos azuis ativos de v tais que w e w' possuem cada um pelo menos $0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b . Seja $j\in\{2s+1,\ldots,k\}$ tal que V_j está insaturado, e tome $x_1,x_2\in V_j$ vértices ativos tais que existem vértices ativos $y_1,y_2,z_1,z_2\in V_{2i-1}$ tais que $y_1x_1z_1$ e $y_2x_2z_2$ são caminhos vermelhos vértice-disjuntos.

Marque os vértices $x_1, y_1, z_1, x_2, y_2, z_2$ de rosa e v, w, w' de ciano.

Ao realizar tal processo para cada $v \in \tilde{V}_0$, alguns vértices de \tilde{V}^r terão sido marcados de ciano, assim como alguns vértices de \tilde{V}^b terão sido marcados de rosa. O circuito vermelho que gueremos será formado pelos vértices de \tilde{V}^r que não foram marcados de ciano e por todos os outros vértices rosas. Em contrapartida, o circuito azul será formado pelos vértices de \tilde{V}^b que não foram marcados de rosa e por todos os outros vértices cianos. De fato, a existência do circuito vermelho segue do Lema 1.3.5 aplicado dentro de cada par (V_{2i-1}, V_{2i}) removendo os vértices cianos e adicionando os caminhos formados pelos vértices rosas relativos a esse par. Os s caminhos formados, concatenados alternadamente com os P_i 's, formam um circuito vermelho \tilde{C}^r . Por outro lado, como o número de vértices rosas em \tilde{V}^b é no máximo $2|\tilde{V}_0| < 0.01|\tilde{V}^b|$, todo vértice $v \in \tilde{V}^b$ tem mais de $0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b . Logo o conjunto \tilde{W}^b formado pelos vértices de \tilde{V}^b que não foram marcados de rosa e os vértices cianos do primeiro Caso 2, é tal que todo $w \in \tilde{W}^b$ possui pelo menos $0.6|\tilde{W}^b|$ vizinhos azuis em \tilde{W}^b . Pelo teorema de Dirac, existe um circuito \tilde{C}^b azul que percorre exatamente os vértices de \tilde{W}^b . Para concluir, basta notar que os caminhos azuis de um ou três vértices que foram criados nos outros casos, com extremos com pelo menos $0.65|\tilde{V}^b|$ vizinhos azuis em \tilde{V}^b , podem ser adicionados um por um ao circuito \tilde{C}^b , de forma que terminamos com um circuito azul que completa a partição de $V(K_n)$. Isso encerra a prova do caso $\tilde{V}^b \neq \emptyset$.

A partir de agora, consideramos o outro caso $\tilde{V}^b = \emptyset$. Nesse caso, não temos um conjunto para aplicar o teorema de Dirac para construir o circuito azul, e teremos que recorrer ao Lema 1.3.2 para formar o circuito azul a partir de um grafo bipartido azul.

Vamos começar supondo que o número de vértices de \tilde{V}_0 é par. Dividiremos o processo, inicialmente, em quatro fases.

Fase 1. *Incorporando vértices de* \tilde{V}_0 *em pares.*

Nessa primeira parte, vamos considerar uma situação simples que também poderia ter sido considerada no caso \tilde{V}^b , mas que não foi necessária lá. Se existem um par (V_{2i-1}, V_{2i}) de conjuntos insaturados, com $i \in [s]$, e $v_1, v_2 \in \tilde{V}_0$ vértices ativos distintos de modo que v_1 tem dois vizinhos vermelhos ativos $w_1, z_1 \in V_{2i-1}$ distintos, e v_2 tem dois vizinhos vermelhos ativos $w_2, z_2 \in V_{2i}$

distintos, então marque de rosa todos esses vértices $v_1, w_1, z_1, v_2, w_2, z_2$. Repita esse processo enquanto possível para os vértices de \tilde{V}_0 que ainda não foram usados.

A fase 1 se encerra então quando não existem $v_1, v_2 \in V_0$ vértices ativos distintos e um par de conjuntos insaturados (V_{2i-1}, V_{2i}) em que podemos encontrar tais vértices w_1, z_1, w_2, z_2 . Seja $V_0' \subseteq \tilde{V}_0$ o conjunto dos vértices de \tilde{V}_0 ainda ativos (ou seja, que não foram marcados de rosa). Como marcamos vértices de \tilde{V}_0 de rosa de dois em dois, as cardinalidades dos conjuntos V_0' e \tilde{V}_0 têm a mesma paridade. Denote então $|V_0'| = 2\ell$, com ℓ inteiro não-negativo.

Fase 2. Criando pares não-balanceados de vértices rosas.

Se existem um vértice $v \in V_0'$ e um conjunto V_i insaturado, $i \in [2s]$, tal que v tem dois vizinhos vermelhos ativos $w, w' \in V_i$, então marque os vértices v, w, w' de rosa. Para distinguir esse caso da fase anterior, vamos dizer que $\{w, w'\}$ é um par não-balanceado. Repita esse processo no máximo ℓ vezes, e enquanto possível. Vamos dizer que $\ell' \leq \ell$ vértices de V_0' foram marcados de rosa nessa fase, e ℓ' pares não-balanceados foram criados. Ademais, encerramos a fase 2 com $2\ell - \ell'$ vértices ativos em V_0' , cada um com no máximo um vizinho vermelho ativo em cada V_i insaturado, com $i \in [2s]$.

Fase 3. Balanceando pares não-balanceados.

Seja V_0'' o conjunto dos $2\ell-\ell'$ vértices ativos de V_0' . Mais ainda, podemos supor que todos os pares não-balanceados estão contidos nos conjuntos $V_1, V_3, \ldots, V_{2s'-1}$, para algum $s' \leq s$, e vamos dizer que temos r_i pares não-balanceados em V_{2i-1} , para cada $i \in [s']$ (donde $\ell' = r_1 + \cdots + r_{s'}$). Note que, como cada $v \in V_0''$ tem no máximo um vizinho vermelho em cada V_i insaturado, então para cada $i \in [s']$ temos que há no máximo $1/\varepsilon$ vértices em V_{2i} com pelo menos $\varepsilon |V_0''|$ vizinhos vermelhos em V_0'' . Seja $W_{2i} \subseteq V_{2i}$ o subconjunto de vértices ativos de V_{2i} com menos de $\varepsilon |V_0''|$ vizinhos vermelhos em V_0'' . Agora, escolha r_i vértices $w_1^{(i)}, \ldots, w_{r_i}^{(i)}$ em cada W_{2i} de modo que valha a seguinte propriedade: nenhum $v \in V_0''$ possui mais do que 0.02s' vizinhos vermelhos no conjunto $\mathcal{W} = \{w_i^{(i)} : 1 \leq i \leq s', 1 \leq j \leq r_i\}$. Marque de ciano todos os vértices em \mathcal{W} .

Fase 4. Completando o grafo bipartido azul para um grafo bipartido balanceado.

Uma vez que iremos aplicar o Lema 1.3.2 para uma das partes sendo o conjunto V_0'' , temos que completar o outro lado do grafo bipartido até atingirmos $|V_0''|=2\ell-\ell'$ elementos. Como criamos ℓ' elementos na fase 3, faltam $2\ell-2\ell'$ vértices, que é um número par. Vamos então selecionar $\ell-\ell'$ pares de vértices (z_j,z_j') , que juntaremos aos $w_j^{(i)}$'s. Assim como o caso anterior, podemos escolher tais pares satisfazendo as condições abaixo:

- cada par (z_j, z_j') é tal que existe $i \in [s']$ de forma que $z_j \in V_{2i-1}$ e $z_j' \in V_{2i}$;
- z_j e z'_j são vértices ativos;
- cada vértice z_i e z_i' tem no máximo $\varepsilon |V_0'|$ vizinhos vermelhos em $|V_0'|$;
- qualquer vértice $v \in V_0''$ tem no máximo 0.02|Z| vizinhos vermelhos em $Z = \bigcup_{j=1}^{s'} \{z_j, z_j'\};$
- ao inativar todos os vértices z_j e z_j' , nenhum V_i ($i \in [2s']$) possui mais de $0.009|V_i|-3$ vértices inativos (i.e., se inativamos os vértices um por um, nunca inativamos um vértice em um conjunto já saturado).

Marque, então, os vértices z_j e z_j' de ciano, para $j \in [\ell - \ell']$.

Feito isso, temos finalmente os circuitos que queremos: o circuito vermelho tem como vértices os vértices de $\bigcup_{i=1}^{2s}$ que não foram marcados de ciano, e todos os outros vértices marcados de rosa. De fato, a existência de tal circuito segue do Lema 1.3.5 aplicado a cada par (V_{2i-1}, V_{2i}) com os vértices cianos removidos, e considerando os caminhos de vértices rosas relativos a esse par; ao concatenar os caminhos obtidos com os caminhos P_1, \ldots, P_s , temos o circuito vermelho. Os

outros vértices induzem um grafo que contém um grafo azul $(V_0'', \mathcal{W} \cup Z)$ -bipartido balanceado \mathcal{B} , tal que \mathcal{B} tem grau mínimo $0.9|V_0''|$ e todo vértice em $\mathcal{W} \cup Z$ tem no mínimo $(1-\varepsilon)|V_0''|$ vizinhos em V_0'' . Pelo Lema 1.3.2, \mathcal{B} possui circuito hamiltoniano. Isso conclui a prova do Teorema 1.1.1 no caso $\tilde{V}^b = \emptyset$ e $|\tilde{V}_0|$ par.

Agora, nos resta considerar o caso em que $|\tilde{V}_0|$ é ímpar, digamos $|\tilde{V}_0|=2\tilde{\ell}-1$. A ideia é passar pelas mesmas quatro fases, fazendo alguma modificação que troque a paridade de $|\tilde{V}_0|$. Por exemplo, se algum conjunto insaturado V_{2i-1} (ou V_{2i}), $i\in[s]$, contiver dois vértices ativos v,v' conectados por uma aresta vermelha, então basta marcar v e v' de rosa e mover qualquer vértice ativo de V_{2i} (respectivamente, V_{2i-1}) para \tilde{V}_0 , e proceder como anteriormente. Então podemos supor que qualquer aresta entre dois vértices ativos de um conjunto $V_i, i\in[s]$, é azul. Dessa forma, podemos garantir que pelo menos uma das seguintes duas coisas acontecem enquanto repetimos o argumento anterior:

- (1) durante a fase 3, balanceamos os pares não-balanceados da fase 2 tomando dois vértices ligados em azul em um mesmo V_{2i} ;
- (2) durante a fase 4, tomamos dois pares $\{z_j, z_j'\}$, $\{\tilde{z}_j, \tilde{z}_j'\}$ no mesmo par (V_{2i-1}, V_{2i}) , de modo que $z_j'\tilde{z}_j'$ é uma aresta azul contida em V_{2i} .

Em ambos os casos, terminamos com um grafo $(V_0'', \mathcal{W} \cup \mathcal{B})$ -bipartido azul quase balanceado, com $|V_0''| = 2\ell - 1 - \ell'$ e $|\mathcal{W} \cup \mathcal{B}| = \ell' + (2\ell - 2\ell') = |V_0''| + 1$. Usando o Lema 1.3.5 com r' = 1, r'' = 0 e x' e y'' sendo os extremos da aresta azul garantida em ambos os casos, tal grafo possui um circuito hamiltoniano. Isso conclui a prova do Teorema 1.1.1.

Para mais detalhes veja [1, p. nn] e [2]

Apêndice A

Apêndice

Referências Bibliográficas

Livros

[1] Sobrenome, Nome. Título de Livro, Editora, Edição, Ano.

Artigos e periódicos

[2] Sobrenome, Nome. Título de Artigo referência, Revista, volume (ano), pagini-pagfin.