Trabajo Práctico Final Probabilidad y Estadística

Alumna:

Sullivan, Katherine

Universidad Nacional de Rosario

Problema 1

Tenemos un suceso cuya probabilidad de éxito es p. Realizamos intentos independientes de este suceso hasta obtener k éxitos consecutivos. Definimos el proceso N_k , que denota el número de ensayos necesarios para obtener k éxitos consecutivos.

a) Se nos solicita simular un cierto número de trayectorias del proceso N_k (para el cual elegimos k=4) considerando un valor de p<0.5 (para el cual consideramos p=0.49)

Simulamos 1000 realizaciones del proceso N_4 con p=0.49.

Para visualizar cuántas realizaciones fueron necesarias en cada caso para obtener 4 éxitos consecutivos de manera más ordenada presentamos una tabla de frecuencias que indica cuántas veces se necesitaron x cantidad de sucesos para obtener 4 éxitos consecutivos.

Cantidad de sucesos hasta obtener 4 éxitos consecutivos

Cantidad de	Frecuencia	Frecuencia
sucesos	${\it absoluta}$	relativa
4	64	0.064
5	23	0.023
6	29	0.029
7	29	0.029
8	31	0.031
9	33	0.033
10	27	0.027
11	18	0.018
12	33	0.033
13	26	0.026

14	28	0.028
15	11	0.011
16	19	0.019
17	25	0.025
18	20	0.020
19	20	0.020
20	10	0.010
21	20	0.020
22	14	0.014
23	14	0.014
24	10	0.010
25	9	0.009
26	23	0.023
27	12	0.012
28	14	0.014
29	12	0.012
30	13	0.013
31	12	0.012
32	16	0.016
33	11	0.011
34	14	0.014
35	18	0.018
36	10	0.010
37	11	0.011
38	6	0.006
39	13	0.013
40	7	0.007
41	9	0.009
42	9	0.009
43	5	0.005
44	8	0.008
45	9	0.009
46	9	0.009

		1
47	12	0.012
48	6	0.006
49	7	0.007
50	8	0.008
51	5	0.005
52	6	0.006
53	9	0.009
54	7	0.007
55	7	0.007
56	7	0.007
57	3	0.003
58	10	0.010
59	3	0.003
60	5	0.005
61	3	0.003
62	1	0.001
63	2	0.002
64	4	0.004
65	12	0.012
66	3	0.003
67	4	0.004
68	3	0.003
69	3	0.003
70	9	0.009
71	4	0.004
72	6	0.006
73	5	0.005
74	2	0.002
76	2	0.002
77	3	0.003
78	4	0.004
79	4	0.004
80	7	0.007
	1	1

81	4	0.004
82	4	0.004
83	2	0.004
84	2	0.002
85	6	0.006
87	2	0.002
88	2	0.002
89	3	0.003
90	1	0.001
91	2	0.002
93	4	0.004
94	2	0.002
95	1	0.001
96	2	0.002
98	1	0.001
99	1	0.001
100	1	0.001
101	1	0.001
102	2	0.002
103	2	0.002
104	1	0.001
107	2	0.002
108	2	0.002
112	1	0.001
117	2	0.002
119	1	0.001
121	2	0.002
126	1	0.001
132	2	0.002
135	1	0.001
138	1	0.001
139	1	0.001
145	1	0.001
110	1	0.001

147	1	0.001
160	1	0.001
169	1	0.001
176	1	0.001
189	1	0.001
191	1	0.001
200	1	0.001
Total:	1000	1

Podemos ver entonces que la mínima cantidad de sucesos es 4 y la máxima 200. Que la mínima cantidad de sucesos sea 4 se mantendrá para cualquier realización del proceso, mientras que no hay un máximo fijo que se pueda establecer.

También se puede apreciar que la mínima cantidad es la que presenta mayor frecuencia.

Para visualizar la infromación presentada en la tabla de manera más sintetizada e incluyendo medidas resúmenes relevantes como lo son la mediana y los cuartiles presentamos un boxplot con sus respectivas medidas resúmenes.

- Primer cuartil: 11
- Mediana: 24
- Tercer cuartil: 46
- Rango intercuarti: 35

Cantidad de sucesos hasta obtener 4 éxitos consecutivos

b) A partir de la simulación realizada, estimamos la esperanza de N_4 sumando cada cantidad de sucesos multiplicado por su frecuencia relativa, resultando $E(N_4)=32.752$.

Problema 2

Consideramos el proceso $D_n=2\cdot I_n-1$, donde D_n representa el cambio de posición de una partícula que se mueve a lo largo de una línea recta con saltos de magnitud 1 en cada momento, ya que el mismo depende del proceso Bernoulli I_n : "la señal emitida en el momento n es correcta".

Definimos I_n tal que $I_n = 1$ si la señal emitida en el momento n es correcta mientras que $I_n = 0$ en caso contrario, y definimos el estado inicial del proceso como $N_0 = 0$.

a) Se nos solicita simular 50 pasos de una trayectoria de D_n para el proceso Bernoulli I_n con un p>0.7.

Para ello, elegimos p=0.8 y realizamos la simulación en R, obteniendo:

b) Se nos solicita simular una realización del proceso S_n : "posición de la partícula en el momento n".

Observamos que el proceso S_n : "posición de una particula en el momento n" es la suma acumulada del proceso D_n .

Por lo tanto, una realización del proceso es:

$$S_n = [1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 7, 8, 9, 10, 11, 12, 11, 12, 13, 12, 13, 14, 15, 16, 17, 18, 19, 18, 17, 18, 19, 20, 21, 22, 23, 24, 25, 24, 25, 24, 25, 26, 27, 26, 27, 26, 27, 26, 25, 24]$$

Para obtener una mejor idea del proceso y poder observar visualmente como la trayectoria tiene a infinito positivo (dado que p es cercano a 1) realizamos un gráfico con la trayectoria.

Simulación del proceso Sn

Problema 3

Tenemos un jugador que tiene una apuesta inicial de k dólares y repetidamente apuesta 1 dólar en un juego en el cual la probabilidad de ganar es p y la probabilidad de perder es 1-p. El estado inicial del proceso es $X_0 = k$. Suponemos que el jugador decide detenerse cuando su fortuna alcanza S dólares (S > k), o cae a 0 dólar, lo que ocurra primero.

Consideramos, entonces, un proceso estocástico N_n que representa el estado actual de la apuesta de un jugador luego de n juegos. El estado inicial del proceso es $N_0=k$, la apuesta inicial. Por cada juego, el jugador puede perder 1 o ganar 1 de su apuesta. Por lo tanto podemos definir el proceso X_n como $X_n=2\cdot J_n-1$, donde J_n es el proceso de Bernoulli que representa: "el n-ésimo juego se ganó", siendo $J_n=1$ cuando se ganó y $J_n=0$ en caso contrario.

a) Se nos solicita simular y visulizar la evolución del capital del jugador para un valor de k y S pero para distintos valores de p (p < 0.5, p = 0.5 y p > 0.5).

Para eso elegimos k = 10 y S = 30 y realizamos la simulación con R.

Caso p < 0.5:

Para visualizar el caso p < 0.5 elegimos p = 0.25.

Observamos la siguiente evolución:

$$[10, 11, 10, 9, 8, 9, 8, 9, 8, 7, 6, 5, 4, 3, 2, 3, 2, 1, 0]$$

que podemos apreciar mejor en el siguiente gráfico:

Caso p = 0.5:

Observamos la siguiente evolución:

$$[10, 11, 10, 11, 12, 13, 14, 13, 12, 11, 10, 9, 8, 9, 8, 9, 8, 9, 8, 7, 6, 5, 6, 7, 6, 5, 4, 5, 4, 3, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 2, 3, 2, 3, 2, 3, 2, 1, 0]$$

que podemos apreciar mejor en el siguiente gráfico:

Simulación del proceso con p=0.5

Caso p > 0.5:

Para visualizar el caso p > 0.5 elegimos p = 0.75.

Observamos la siguiente evolución:

[10, 11, 12, 13, 14, 15, 14, 15, 14, 13, 14, 15, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 26, 27, 28, 29, 30]

que podemos apreciar mejor en el siguiente gráfico:

Simulación del proceso con p=0.75

b) Se nos solicita estimar, mediante la simulación de un número adecuado de trayectorias del capital del jugador, la probabilidad de ruina de dicho jugador para los distintos escenarios planteados en a).

Para eso, por cada escenario (p = 0.25, p = 0.5 y p = 0.75) simulamos 10000 trayectorias del capital del jugador y observamos cuántas terminan en ruina para poder determinar la probabilidad indicada.

• Para p = 0.25 la probabilidad de ruina es aproximadamente 1.

- Para p = 0.5 la probabilidad de ruina es aproximadamente 0.6658.
- Para p = 0.75 la probabilidad de ruina es aproximadamente 0.

Problema 4

Buscamos medir la efectividad del algoritmo Quicksort que opera sobre conjuntos, midiendo la cantidad de comparaciones que realiza. Denominamos M_n al número esperado de comparaciones que realiza el algoritmo para un conjunto de n elementos.

a) Se nos solicita simular el algoritmo Quick-Sort para ordenar un conjunto de 7 números y calcular el número promedio de comparaciones.

Para lograr esto, simulamos 10000 veces el algoritmo Quick-Sort con distintas listas de 7 elementos y calculamos la cantidad de comparaciones en cada caso.

Presentamos a continuación la tabla y un gráfico de barras que presentan con qué frecuencia se realizan x comparaciones dentro de nuestras 10000 simulaciones.

Cantidad de	Frecuencia absoluta
comparaciones	
10	141
11	2114
12	2019
13	1700
14	903
15	1318
16	548
17	644
18	239
19	175
20	85
21	114
Total:	10000

Vemos aquí que el espacio muestral de M_7 resulta

$$\{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$$

Calculando el promedio entre estas simulaciones obtenemos que es 13.4841.

b) Se nos solicita explicitar cómo podríamos obtener el promedio de forma analítica, así que eso es lo que haremos a continuación.

Sea una lista $l = [x_1, x_2, x_3, x_4, x_5, x_6, x_7]$. Se tiene la misma probabilidad de elegir cualquier $x_i, i = 1, ..., 7$, por lo tanto esta probabilidad es $\frac{1}{n} = \frac{1}{7}$.

Luego de elegir un x_i , se realizan n-1 comparaciones, en este caso, 7. Dependiendo la elección de x_i , se pueden generar diferentes listas a ordenar en el llamado recursivo:

- 0 elementos menores a x_i y 6 elementos mayores a x_i
- 1 elemento menor a x_i y 5 elementos mayores a x_i
- 2 elementos menores a x_i y 4 elementos mayores a x_i
- \blacksquare 3 elementos menores a x_i y 3 elementos mayores a x_i
- lacksquare 4 elementos menores a x_i y 2 elementos mayores a i
- 5 elementos menores a x_i y 1 elemento mayor a x_i
- 6 elementos menores a x_i y 0 elementos mayores a x_i

Sabemos que ordenar una lista vacía o con un elemento no requiere comparaciones, y que para ordenar una lista de 2 elementos se realiza 1 comparación. Además, ordenar una lista de m elementos tiene el mismo costo, independientemente de sus elementos.

Por lo tanto, llegamos a que hay:

- ${\color{red} \bullet}$ $\frac{2}{7}$ de probabilidad de ordenar una lista de 6 elementos
- \blacksquare $\frac{2}{7}$ de probabilidad de ordenar una lista de 5 elementos
- \bullet $\frac{2}{7}$ de probabilidad de ordenar una lista de 4 elementos y hacer una comparación más
- $\frac{1}{7}$ de probabilidad de ordenar dos listas de 3 elementos

Vemos que es necesario conocer la cantidad de comparaciones que se realizan sobre listas de 3, 4, 5 y 6 elementos.

Para listas de 3 elementos, luego de elegir un elemento al azar y realizar 2 comparaciones, hay $\frac{2}{3}$ de probabilidad de que se seleccione el menor o mayor elemento de la lista y por eso realizar 3 comparaciones en total (se le suma solo una comparación a las 2 iniciales), y hay $\frac{1}{3}$ de probabilidad de que se seleccione el elemento central, en cuyo caso no se deberan realizar más comparaciones, debiendo realizar 2 comparaciones en total.

Para listas de 4 elementos, luego de elegir un elemento al azar y realizar 3 comparaciones, hay $\frac{1}{2}$ de probabilidad de que se seleccione el menor o mayor elemento de la lista y que reste ordenar una lista de 3 elementos, y hay $\frac{1}{2}$ de probabilidad de que se haga 1 comparación más por haber elegido alguno de los elementos centrales.

Multiplicando estas probabilidades con lo obtenido para listas de 3 elementos, se obtiene que para listas de 4 elementos hay:

- $\frac{1}{2}$ de probabilidad de que se realicen 4 comparaciones
- $-\frac{1}{6}$ de probabilidad de que se realicen 5 comparaciones

• $\frac{1}{3}$ de probabilidad de que se realicen 6 comparaciones

Para **listas de 5 elementos**, tenemos que hacer un análisis un poco más preciso:

En una primer instacia tenemos que para una lista de 5 elementos hay:

- \blacksquare $\frac{2}{5}$ de probabilidad de ordenar una lista de 4 elementos
- \bullet $\frac{2}{5}$ de probabilidad de ordenar una lista de 3 elementos
- \bullet $\frac{1}{5}$ de probabilidad de realizar 2 comparaciones

y, por lo que analizamos anteriormente para las listas de 3 y 4 elementos, obtenemos entonces que para listas de 5 elementos hay:

- \blacksquare $\frac{1}{3}$ de probabilidad de que se realicen 6 comparaciones
- \blacksquare $\frac{4}{15}$ de probabilidad de que se realicen 7 comparaciones
- \blacksquare $\frac{1}{5}$ de probabilidad de que se realicen 8 comparaciones
- \bullet $\frac{1}{15}$ de probabilidad de que se realicen 9 comparaciones
- \blacksquare $\frac{2}{15}$ de probabilidad de que se realicen 10 comparaciones

Y por último, para **listas de 6 elementos** en una primera instancia tenemos que:

- $-\frac{2}{6}$ de probabilidad de ordenar una lista de 5 elementos
- \blacksquare $\frac{2}{6}$ de probabilidad de ordenar una lista de 4 elementos

 \blacksquare $\frac{2}{6}$ de probabilidad de ordenar una lista de 3 elementos y tener que hacer una comparación más

y por lo que analizamos anteriormente para las listas de 3, 4 y 5 elementos tenemos que para listas de 6 elementos hay:

- $-\frac{2}{9}$ de probabilidad de que se realicen 11 comparaciones
- \bullet $\frac{4}{45}$ de probabilidad de que se realicen 12 comparaciones
- \blacksquare $\frac{1}{15}$ de probabilidad de que se realicen 13 comparaciones
- \blacksquare $\frac{1}{45}$ de probabilidad de que se realicen 14 comparaciones
- \bullet $\frac{2}{45}$ de probabilidad de que se realicen 15 comparaciones
- \blacksquare $\frac{7}{18}$ de probabilidad de que se realicen 9 comparaciones
- \bullet $\frac{1}{18}$ de probabilidad de que se realicen 10 comparaciones
- \blacksquare $\frac{1}{9}$ de probabilidad de que se realicen 8 comparaciones

Entonces, volviendo a nuestro análisis principal de las comparaciones necesarias para ordenar nuestro conjunto de 7 elementos.

Dividiremos según los casos expuestos anteriormente, para hacer el análisis más llevadero.

Habíamos establecido que tenemos $\frac{2}{7}$ de probabilidad de ordenar una lista de 6 elementos. Esto quiere decir que tenemos:

- $\frac{4}{63}$ de probabilidad de que se realicen 17 comparaciones
- \blacksquare $\frac{8}{315}$ de probabilidad de que se realicen 18 comparaciones

- $\frac{2}{105}$ de probabilidad de que se realicen 19 comparaciones
- \blacksquare $\frac{2}{315}$ de probabilidad de que se realicen 20 comparaciones
- \bullet $\frac{4}{315}$ de probabilidad de que se realicen 21 comparaciones
- \blacksquare $\frac{1}{9}$ de probabilidad de que se realicen 15 comparaciones
- $\frac{1}{63}$ de probabilidad de que se realicen 16 comparaciones
- \blacksquare $\frac{2}{63}$ de probabilidad de que se realicen 14 comparaciones

A su vez, establecimos que tenemos $\frac{2}{7}$ de probabilidad de tener que ordenar una lista de 5 elementos. Esto quiere decir que tenemos:

- $-\frac{2}{21}$ de probabilidad de que se realicen 12 comparaciones
- \blacksquare $\frac{8}{105}$ de probabilidad de que se realicen 13 comparaciones
- \blacksquare $\frac{2}{35}$ de probabilidad de que se realicen 14 comparaciones
- \blacksquare $\frac{2}{105}$ de probabilidad de que se realicen 15 comparaciones
- \blacksquare $\frac{4}{105}$ de probabilidad de que se realicen 16 comparaciones

También, establecimos que tenemos $\frac{2}{7}$ de probabilidad de tener que ordenar una lista de 4 elementos y hacer una comparación más. Esto quiere decir que tenemos:

- $\frac{1}{7}$ de probabilidad de que se realicen 11 comparaciones
- \bullet $\frac{1}{21}$ de probabilidad de que se realicen 12 comparaciones
- \bullet $\frac{2}{21}$ de probabilidad de que se realicen 13 comparaciones

Y, por último, establecimos que tenemos $\frac{1}{7}$ de probabilidad de ordenar dos listas de 3 elementos. Esto quiere decir que tenemos:

- $\frac{4}{63}$ de probabilidad de que se realicen 11 comparaciones (2 posibilidades de 1 lista con 3 comparaciones y la otra con 2)
- $\frac{4}{63}$ de probabilidad de que se realicen 12 comparaciones (2 listas con 3 comparaciones)
- $\frac{1}{63}$ de probabilidad de que se realicen 10 comparaciones (2 listas con 2 comparaciones)

Ahora unamos estos análisis parciales y veamos que para ordenar una lista de 7 elementos tenemos:

- $\frac{1}{63}$ de probabilidad de que se realicen 10 comparaciones
- \bullet $\frac{13}{63}$ de probabilidad de que se realicen 11 comparaciones
- ${\color{red} \bullet}$ $\frac{13}{63}$ de probabilidad de que se realicen 12 comparaciones
- $-\frac{6}{35}$ de probabilidad de que se realicen 13 comparaciones
- $\bullet \ \frac{4}{45}$ de probabilidad de que se realicen 14 comparaciones
- $\bullet \ \frac{41}{315}$ de probabilidad de que se realicen 15 comparaciones
- $\bullet \ \frac{17}{315}$ de probabilidad de que se realicen 16 comparaciones
- $-\frac{4}{63}$ de probabilidad de que se realicen 17 comparaciones
- \blacksquare $\frac{8}{315}$ de probabilidad de que se realicen 18 comparaciones
- \blacksquare $\frac{2}{105}$ de probabilidad de que se realicen 19 comparaciones
- \blacksquare $\frac{2}{315}$ de probabilidad de que se realicen 20 comparaciones

• $\frac{4}{315}$ de probabilidad de que se realicen 21 comparaciones

Calculando el promedio, obtenemos entonces que este es 13.4857. Con lo que vemos que la aproximación generada por la simulación en a) resulta bastante precisa.

Problema 5

Tenemos una red con 7 páginas. Por el algoritmo Page-Rank la ïmportancia" de cada página está determinada por la probabilidad de que un usuario se encuentre en la página luego de un tiempo navegando entre páginas accediendo a las siguientes mediantes los enlaces de hipertexto que tiene la página dónde se encontraba. Si una página cuenta con más de 1 enlace de hipertexto se distribuye la importancia de la página entre todas para las cuales tiene un enlace.

a) Se nos solicita modelar el comportamiento de visitas a las páginas como una cadena de Markov.

Tomando la Figura 1, armamos la siguiente cadena de Markov con su respectiva matriz de transición en un paso.

$$P = \begin{pmatrix} a & b & c & d & e & f & g \\ a & 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ b & 1/3 & 0 & 1/3 & 0 & 0 & 1/3 & 0 \\ c & 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 \\ d & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ e & 1/4 & 0 & 0 & 1/4 & 0 & 1/4 & 1/4 \\ f & 1/2 & 1/2 & 0 & 0 & 0 & 0 & 0 \\ g & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 0 \end{pmatrix}$$
 (1)

b) Se nos solicita simular 100 pasos para visualizar una trayectoria de este proceso.

Hacemos la simulación en R, eligiendo aleatoriamente la página inicial y a continuación presentamos un gráfico que simula la trayectoria

Resulta interesante también analizar la frecuencia con la cuál se visitaron las distintas páginas, para tener una idea de su importancia. Por lo tanto, realizamos un gráfico de barras que presenta las veces que se visitó cada una de las páginas.

c) Se nos solicita determinar el rango de cada página.

Para lograrlo debemos calcular la distribución invariante π , la cual podemos asegurar que existe y es única puesto que la cadena es cerrada, finita, irreducible y aperiódica.

Para calcular π debemos plantear las ecuaciones de equilibrio y la ecuación normalizadora y resolver el sistema de ecuaciones formado por ellas.

El sistema de ecuaciones es, entonces el siguiente:

$$\begin{cases} \pi_a = \frac{1}{3} \cdot \pi_b + \frac{1}{4} \cdot \pi_e + \frac{1}{2} \cdot \pi_f + \frac{1}{6} \cdot \pi_g \\ \pi_b = \frac{1}{2} \cdot \pi_f + \frac{1}{6} \cdot \pi_g \\ \pi_c = \frac{1}{3} \cdot \pi_b + \frac{1}{6} \cdot \pi_g \\ \pi_d = \frac{1}{2} \cdot \pi_c + \frac{1}{4} \cdot \pi_e + \frac{1}{6} \cdot \pi_g \\ \pi_e = \frac{1}{2} \cdot \pi_a + \frac{1}{6} \cdot \pi_g \\ \pi_f = \frac{1}{2} \cdot \pi_a + \frac{1}{3} \cdot \pi_b + \frac{1}{2} \cdot \pi_c + \pi_d + \frac{1}{4} \cdot \pi_e + \frac{1}{6} \cdot \pi_g \\ \pi_g = \frac{1}{4} \cdot \pi_e \\ \pi_a + \pi_b + \pi_c + \pi_d + \pi_e + \pi_f + \pi_g = 1 \end{cases}$$

Resolviéndolo obtenemos entonces que:

$$\pi = \begin{pmatrix} 0.2453 & 0.16 & 0.0587 & 0.0667 & 0.128 & 0.3093 & 0.032 \end{pmatrix}$$

Y por lo tanto:

- \blacksquare el rango de a es 0.2453
- el rando de b es 0.16
- \bullet el rango de c es 0.0587

- \blacksquare el rango de d es 0.0667
- \blacksquare el rango de e es 0.128
- el rango de f es 0.3093
- el rango de g es 0.032

Problema 6

Tenemos bajo estudio el número de vuelos que recibe un aeropuerto a una tasa λ (aterrizajes/hora).

a) Se nos plantea que el aeropuerto recibe vuelos comenzando a las 2 am a una tasa de 3 aterrizajes por hora, de acuerdo a un Proceso Poisson y se nos solicita simular el comportamiento de dicho proceso durante 24 horas y graficar la trayectoria obtenida.

Para realizar una simulación primero generamos un número aleatorio n de la distribución de Poisson con parámetro $\lambda \cdot t$ (donde t es el tiempo total). Este va a representar la cantidad de eventos que ocurren en el tiempo t en un Proceso de Poisson a una tasa λ . Luego generamos n valores de la distribución uniforme (pues, la probabilidad de que un evento ocurra a un momento determinado es la misma para cada evento) entre el t inicial y el final. Estos son los instantes donde ocurre un evento.

Realizamos la simulación planteada en R y obtuvimos el siguiente gráfico.

b) Ahora se nos solicita simular una trayectoria muestral durante un intervalo de tiempo suficientemente largo [0,T] y calcular los tiempos entre llegadas para luego representarlos gráficamente a través de un histograma y comentar cuál es el modelo apropiado para para describir esa variable.

Para ello elegimos $T=4000~{\rm y}$ realizamos la simulación. Una vez obtenidos los instantes en los que ocurre cada evento, calculamos las diferencias entre cada par de instantes consecutivos, obteniendo así los tiempos entre-arribos. Presentamos la información en el siguiente histograma.

