Q1 (교과서 6.3의 Exercises 23)

Let A be an $m \times n$ matrix. Prove that every vector \mathbf{x} in \mathbb{R}^n can be written in the form $\mathbf{x} = \mathbf{p} + \mathbf{u}$, where \mathbf{p} is in Row A and \mathbf{u} is in Nul A. Also, show that if the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then there is a unique \mathbf{p} in Row A such that $A\mathbf{p} = \mathbf{b}$.

Proof

Each \mathbf{x} in \mathbb{R}^n can be written uniquely as $\mathbf{x} = \mathbf{p} + \mathbf{u}$ where \mathbf{p} in Row A and \mathbf{u} in $(\operatorname{Row} A)^{\perp}$ by the Orthogonal Decomposition Theorem. $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$, so \mathbf{u} is in $\operatorname{Nul} A$. Suppose $A\mathbf{x} = \mathbf{b}$ is consistent. Let \mathbf{x} be a solution and write $\mathbf{x} = \mathbf{p} + \mathbf{u}$ as above. Then $A\mathbf{p} = \mathbf{b}$ because $A\mathbf{x} = A\mathbf{p} + A\mathbf{u} = A\mathbf{p} + \mathbf{0} = \mathbf{b}$. Therefore, the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{p} in Row A. Suppose there are \mathbf{p} and \mathbf{p}_1 both in Row A satisfying $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{p} - \mathbf{p}_1$ in Nul A, since $A(\mathbf{p} - \mathbf{p}_1) = \mathbf{b} - \mathbf{b} = \mathbf{0}$. By the Orthogonal Decomposition Theorem, $\mathbf{p} = \mathbf{p}_1$ because $\mathbf{p} = \mathbf{p} + \mathbf{0}$ and $\mathbf{p} = \mathbf{p}_1 + (\mathbf{p} - \mathbf{p}_1)$ both decompose \mathbf{p} as the sum of a vector in Row A and a vector in Nul A. Therefore, \mathbf{p} is unique.

Q2 (교과서 7 Supplementary Excises 12)

Verify the properties of A^+ :

- a. For each y in \mathbb{R}^m , $AA^{\dagger}y$ is the orthogonal projection of y onto Col A.
- b. For each \mathbf{x} in \mathbb{R}^n , $A^+A\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto Row A.
- c. $AA^{+}A = A$ and $A^{+}AA^{+} = A^{+}$.

Proof

a.
$$AA^{\dagger}\mathbf{y} = U_r D V_r^T V_r D^{-1} U_r^T \mathbf{y} = U_r U_r^T \mathbf{y}$$

b.
$$A^{+}A\mathbf{x} = V_{r}D^{-1}U_{r}^{T}U_{r}DV_{r}^{T}\mathbf{x} = V_{r}V_{r}^{T}\mathbf{x}$$

c.
$$AA^{+}A = U_{r}DV_{r}^{T}V_{r}D^{-1}U_{r}^{T}U_{r}DV_{r}^{T} = U_{r}DV_{r}^{T} = A$$
 and
$$A^{+}AA^{+} = V_{r}D^{-1}U_{r}^{T}U_{r}DV_{r}^{T}V_{r}D^{-1}U_{r}^{T} = V_{r}D^{-1}U_{r}^{T} = A^{+}$$

Q3(교과서 7 Supplementary Excises 13)

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent, and let $\mathbf{x}^+ = A^+ \mathbf{b}$. By the proof of Q1, there is exactly one vector \mathbf{p} in Row A such that $A\mathbf{p} = \mathbf{b}$. The following steps prove that $\mathbf{x}^+ = \mathbf{p}$ and \mathbf{x}^+ is the minimum length solution of $A\mathbf{x} = \mathbf{b}$.

- a. Show that \mathbf{x}^+ is in Row A.
- b. Show that \mathbf{x}^+ is a solution of $A\mathbf{x} = \mathbf{b}$.
- c. Show that if **u** is any solution of $A\mathbf{x} = \mathbf{b}$, then $\|\mathbf{x}^+\| \le \|\mathbf{u}\|$, with equality only if $\mathbf{u} = \mathbf{x}^+$.

Proof

- a. $\mathbf{x}^+ = A^+ \mathbf{b} = A^+ A \mathbf{x} = V_r V_r^T \mathbf{x}$. Proven already by the proof of Q2. b.
- b. $A\mathbf{x}^+ = AA^+A\mathbf{x} = A\mathbf{x} = \mathbf{b}$ by the proof of Q2. c.
- c. Uniquely decompose \mathbf{u} as $\mathbf{u} = \mathbf{x}^+ + (\mathbf{u} \mathbf{x}^+)$ with \mathbf{x}^+ in Row A and $(\mathbf{u} \mathbf{x}^+)$ in (Row A) $^{\perp}$. Then, $\|\mathbf{u}\|^2 = \|\mathbf{x}^+\|^2 + \|\mathbf{u} \mathbf{x}^+\|^2 \ge \|\mathbf{x}^+\|^2$ with equality only if $\mathbf{u} = \mathbf{x}^+$.

Q4(교과서 7 Supplementary Excises 14)

Given any **b** in \mathbb{R}^m , show that $A^+\mathbf{b}$ is the least-squares solution of minimum length.

Proof

The least-squares solutions of $A\mathbf{x} = \mathbf{b}$ are the solutions of $A\mathbf{x} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}A}\mathbf{b}$. From the proof of Q3, the minimum length solution of $A\mathbf{x} = \hat{\mathbf{b}}$ is $A^+\hat{\mathbf{b}}$. Therefore, $A^+\hat{\mathbf{b}}$ is the minimum length least-squares solution of $A\mathbf{x} = \mathbf{b}$. From the proof of Q2. a, $\hat{\mathbf{b}} = AA^+\mathbf{b}$ so $A^+\hat{\mathbf{b}} = A^+AA^+\mathbf{b} = A^+\mathbf{b}$ by the proof of Q2. c. Thus $A^+\mathbf{b}$ is the least-squares solution of minimum length of $A\mathbf{x} = \mathbf{b}$.