

CLAIMS

Having thus described my invention, I claim:

- 1 1. A method of processing colloidal size polytetrafluoroethylene resin
2 particles to produce biaxially-oriented structures comprising the steps of:
3 a. taking a uniaxially-oriented paste extrusion extrudate in the
4 hydrostatic pressure coalescible state; and
5 b. applying a means of stress on the uniaxially-oriented paste
6 extrusion extrudate at approximately 90 degrees to the original
7 extrusion direction.

- 1 2. The method claimed in claim 1 wherein the means of applying stress is
2 rolling.

- 1 3. The method claimed in claim 1 wherein the means of applying stress is
2 calendering.

- 1 4. The method claimed in claim 1 wherein the means of applying stress is
2 blowing.

- 1 5. A biaxially-oriented polytetrafluoroethylene sheet made from uniaxially-
2 oriented past extrusion extrudate in the hydrostatic pressure coalescible
3 state produced by applying a means of stress in that extrudate 90 degrees
4 to the original extrusion direction.

- 1 6. The sheet of claim 5 wherein the means of applying stress is rolling.

- 1 7. The sheet of claim **5** wherein the means of applying stress is calendering.
- 1 8. The sheet of claim **5** wherein the means of applying stress is blowing.
- 1 9. The sheet of claim **5** wherein the sheet contains particulate filler less than
2 25 microns in size.
- 1 10. The sheet of claim **5** wherein the sheet contains particulate additive less
2 than 25 microns in size.
- 1 11. The sheet of claim **9** wherein the sheet contains particulate additive less
2 than 25 microns in size.
- 1 12. The sheet of claim **5** wherein the sheet is in tubular form.
- 1 13. The sheet of claim **9** wherein the sheet is in tubular form.
- 1 14. The sheet of claim **10** wherein the sheet is in tubular form.
- 1 15. The sheet of claim **11** wherein the sheet is in tubular form.
- 1 16. The sheet of claim **5** wherein the sheet is in laminate form.
- 1 17. The sheet of claim **9** wherein the sheet is in laminate form.

- 1 **18.** The sheet of claim **10** wherein the sheet is in laminate form.
- 1 **19.** The sheet of claim **11** wherein the sheet is in laminate form.
- 1 **20.** The sheet of claim **9** wherein a tensile strength based on original dimensions divided by the volume fraction of polytetrafluoroethylene resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **21.** The sheet of claim **10** wherein a tensile strength based on original dimensions divided by the volume fraction of polytetrafluoroethylene resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **22.** The sheet of claim **11** wherein a tensile strength based on original dimensions divided by the volume fraction of polytetrafluoroethylene resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **23.** The sheet of claim **12** wherein a tensile strength based on original dimensions divided by the volume fraction of polytetrafluoroethylene resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **24.** The sheet of claim **13** wherein a tensile strength based on original dimensions divided by the volume fraction of polytetrafluoroethylene resin present in the sheet exceeds 5,000 psi in the finished form.

- 1 **25.** The sheet of claim **14** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **26.** The sheet of claim **15** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **27.** The sheet of claim **16** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **28.** The sheet of claim **17** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **29.** The sheet of claim **18** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.
- 1 **30.** The sheet of claim **19** wherein a tensile strength based on original
2 dimensions divided by the volume fraction of polytetrafluoroethylene
3 resin present in the sheet exceeds 5,000 psi in the finished form.

- 1 **38.** A biaxially-oriented tube containing fillers.
- 1 **39.** A biaxially-oriented sintered tube containing fillers.
- 1 **40.** A biaxially-oriented tube containing additives.
- 1 **41.** A biaxially-oriented sintered tube containing additives.
- 1 **42.** The biaxially-oriented tube of claim **40** further containing fillers.
- 1 **43.** The biaxially-oriented sintered tube of claim **41** further containing fillers.
- 1 **44.** A process for reducing the macro-size of commercial polytetrafluoroethylene coagulated dispersion resin to the colloidal size of the particles contained within the coagulate comprising the steps of:
 - 2 a. suspending the colloidal size polytetrafluoroethylene particles are suspended in a wetting liquid wherein the colloidal size polytetrafluoroethylene resin in the hydrostatic pressure coalescible condition is in biaxially-oriented form; and
 - 3 b. producing blends of the colloidal particles.
- 1 **45.** The process claim of claim **44** wherein:
 - 2 the blends of the colloidal particles contain fillers less than 25 microns in size.

1 **46.** The process claim of claim 44 wherein:
2 the blends of the colloidal particles contain additives less than 25 microns in
3 size.

1 **47.** The process claim of claim 45 wherein:
2 the blends of the colloidal particles contain additives less than 25 microns in
3 size.

1 **48.** The process claim of claim 44 wherein:
2 the colloidal size polytetrafluoroethylene resin is blended with at least one
3 polymeric material in particulate form;
4 the polymeric particles are below 20 microns in size; and
5 the polymeric particles have never been melted.

1 **49.** A method of preparing a porous biaxially-oriented
2 polytetrafluoroethylene composition comprising the steps of:
3 a. adding fugitive materials as fillers; and
4 b. sintering the composition.

1 **50.** The method claim of claim 49 wherein the size of the fugitive additive
2 particle determines the resulting pore size.

1 **51.** The method claim of claim 49 further comprising the step of removing
2 the pore former.

1 60. The asymmetric porous structure of biaxially-oriented
2 polytetrafluoroethylene of claim 58 having a tensile strength based on the
3 original sheet dimensions when divided by the volume fraction for
4 polytetrafluoroethylene resin present, which exceed 5,000 psi.

1 61. The asymmetric porous structure of biaxially-oriented
2 polytetrafluoroethylene of claim 59 having a tensile strength based on the
3 original sheet dimensions when divided by the volume fraction for
4 polytetrafluoroethylene resin present, which exceed 5,000 psi.