FGC Lecture 11

Theorem 0.1. If Circuit-SAT \in P, then EXP has hard functions (Size(f) $\ge 2^n/n$).

Proof. If Circuit-SAT(which is NP-complete) is in P, then PH collapses to P. Therefore EH collapses to EXP. Then EXP = Σ_3^{EXP} , which contains hard problems (by Kannan's Theorem).

Theorem 0.2. If Circuit-SAT \in TIME[$2^{n^{o(1)}}$], then NEXP $\not\subseteq$ P/poly.

Proof. If EXP \nsubseteq P/poly, then we've done.

If $\mathsf{EXP} \subseteq \mathsf{P/poly}$, by Meyer's Theorem, $\mathsf{EXP} = \Sigma_2^\mathsf{P}$.

For $L \in \mathsf{EXP}, x \in L \iff \exists y_1 \forall y_2 R(x, y_1, y_2).$

By assumption, $\exists y_1 \forall y_2 R(x, y_1, y_2)$ is in time $2^{n^{o(1)}}$. So $L \in \mathsf{NTIME}[2^{n^{o(1)}}]$. So $\Sigma_3^\mathsf{P} \subseteq \mathsf{EXP} \subseteq \mathsf{NTIME}[2^{n^{o(1)}}]$.

Scaling up, $\exists T(n) = n^{\omega(1)}$, s.t. $\Sigma_3^{T(n)} \subseteq \mathsf{NEXP}$.

$$\Sigma_3^{T(n)} \nsubseteq P/\text{poly}$$
, thus NEXP $\nsubseteq P/\text{poly}$.

ea ea ea

Theorem 0.3 (Williams). If Circuit-SAT ∈ TIME[$|C| \cdot 2^n/n^{\omega(1)}$], then NEXP \nsubseteq P/poly.

We prove the nondeterministic version of this theorem: If Circuit-TAUT \in NTIME[$|C| \cdot 2^n/n^{\omega(1)}$], then NEXP $\not\subseteq$ P/poly.

Proof. Assume $NEXP \subseteq P/poly$, and $Circuit-TAUT \in NTIME[|C| \cdot 2^n/n^{\omega(1)}]$.

Let $L \in \mathsf{NTIME}[2^n]$. We are going to save time in solving L, thus contradicting the nondeterministic time hierarchy theorem.

 $x \in L \iff \exists y, |y| = 2^n, R(x, y)$. R is computable in time 2^n .

FGC Notes Lecture 11

Let C_R be a locally computable circuit that computes R. By Fischer-Pippenger's Theorem, $|C_R| = O(2^n \cdot n)$. Then,

 $x \in L \iff \exists (y, g_1, \dots, g_{2^n \cdot n})$, each gate is correct from its inputs, and output is 1.

This new relation has succinct witness if $x \in L$:

 $x \in L \iff \exists C'' \forall i, [(op_i(C''(x, j(i)), C''(x, k(i))) = C''(x, i)) \land (C''(x, \text{output}) = \text{True})]$ Circuit C'' is a succinct witness.

Let $T_{C''}(i)$ be the problem to check C'' on i. Then

 $x \in L \iff \exists C'', T_{C''}(i)$ is a tautology.

By assumption, " $T_{C''}(i)$ is a tautology" is in NTIME[$2^{n'}/n'^{\omega(1)}$], where $n' = n + \log n$, equals NTIME[$2^n/n^{\omega(1)}$].

So $L \in \mathsf{NTIME}[2^n/n^{\omega(1)}]$. Thus $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[2^n/n^{\omega(1)}]$, contradicting Time Hierarchy Theorem.

es es es

Theorem 0.4 (Williams). \forall depth d, $\exists \epsilon$, s.t. ACC_6 -SAT \in TIME[$2^{n-n^{\epsilon}}$].

Lemma 0.5. If $\mathscr C$ is a class of circuits so that $\mathscr C$ -TAUT $\in \mathsf{NTIME}[2^n/n^{\omega(1)}]$ and $\mathsf P \subseteq \mathscr C$, then Circuit-TAUT $\in \mathsf{NTIME}[2^n/n^{\omega(1)}]$.

If we have a circuit class $\mathscr C$ so that $P \subseteq \mathscr C$, then it's not so easy, so it's good.

If $P \nsubseteq \mathscr{C}$, then the result for Circuit-TAUT applies to \mathscr{C} -TAUT.

Corollary. If \mathscr{C} -TAUT \in NTIME[$2^n/n^{\omega(1)}$], then NEXP $\not\subseteq \mathscr{C}$.

Corollary. NEXP $\not\subseteq$ ACC₆.

Proof of Lemma 0.5. If $P \subseteq \mathcal{C}$, then $P/poly \subseteq \mathcal{C}$.

Let *D* be an instance of Circuit-TAUT, and let g_1, \ldots, g_m be its gates. Each g_i defines a subcircuit of *D*, i.e. for each g_i , $\exists C_i \in \mathscr{C}$ s.t. $\forall x, g_i(x) = C_i(x)$.

Our algorithm first non-deterministically guesses each C_i for i = 1, ..., m. Then, it verifies

$$\forall x, \left[C_i(x) = op_i(C_{j(i)}(x), C_{k(i)}(x)) \right]$$

Because C_i , $C_{j(i)}$ and $C_{k(i)}$ are all in \mathscr{C} (\mathscr{C} is closed), the verification can be done by \mathscr{C} -TAUT.

We do the verification once per gate i, thus it is polynomial in input size.

Finally we verify $C_{\text{output}}(x)$ is tautology.