AlexNet

Computer Vision & Augmented Reality 연구실 학부연구생 강 준 구

Why do we use the padding in CNN?

- zero-padding
 - It conserves the pixel information on the edge side
 - It can preserve the input's spatial size

AlexNet(2012)

▶ ILSVRC

3

Contents

- ▶ 1. DataSet
- ▶ 2. Activation Function
- ▶ 3. Training on Multiple GPUs
- ▶ 4. Reducing Overfitting
- ▶ 5. AlexNet Architecture
- ▶ 6. Future work

DataSet

- ▶ An RGB image of size 256 x 256
 - If the input image is not 256 x 256 or 3-channel RGB
 - It needs to be converted to 256 x 256 before using it for training the network
 - ▶ It needs to be converted to an RGB image

Activation Function

▶ ReLU

ReLUs train several times faster than their equivalents with tanh units.

Activation function

Vanishing gradient (NN winter2: 1986-2006)

Activation functions on CIFAR-10

maxout	ReLU	VLReLU	tanh	Sigmoid
93.94	92.11	92.97	89.28	n/c
93.78	91.74	92.40	89.48	n/c
_	91.93	93.09	-	n/c
91.75	90.63	92.27	89.82	n/c
n/c†	90.91	92.43	89.54	n/c

Training on Multiple GPUs

- ▶ GTX 580 3GB GPU
 - ▶ 5~6 days
 - > 90 epochs
 - ☐ The results can be improved

Reducing Overfitting

- Data Augmentation by Random crops
 - AlexNet input images are of size 227 by 227, which are randomly sampled from ImageNet's 256 by 256
 - ▶ The paper mentions the network inputs to be 224, but that is a mistake

Reducing Overfitting

Dropout

AlexNet Architecture

- ▶ First large scale convolutional neural network
- ▶ 5 Convolution layers
- ▶ 3 Fully connected layers

▶ 1st Convolutional Layer

1 x 25 x 25 x 96

▶ 2nd Convolutional Layer

▶ 3rd Convolutional Layer

▶ 4th Convolutional Layer

> 5th Convolutional Layer

Classifier

▶ 1st Fully Connected Layer

▶ 2nd Fully Connected Layer

Output Layer

AlexNet

Model

```
model = keras.models.Sequential([
  keras.layers.Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(227,227,3)),
  keras.layers.BatchNormalization(),
  keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)),
  keras.layers.Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"),
  keras.layers.BatchNormalization(),
  keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)),
  keras.layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
  keras.layers.BatchNormalization(),
  keras.layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
  keras.layers.BatchNormalization(),
  keras.layers.Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
  keras.layers.BatchNormalization(),
  keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)),
  keras.layers.Flatten(),
  keras.layers.Dense(4096, activation='relu'),
  keras.layers.Dropout(0.5),
  keras.layers.Dense(4096, activation='relu'),
  keras.layers.Dropout(0.5),
  keras.layers.Dense(10, activation='softmax')
])
```


Future work

- Data Augmentation
 - Principal component Analysis (PCA)

Future Work

- Local Response Normalization
 - ~: Batch Normalization

20

Local Response Normalization

- ReLUs do not require input normalization to prevent them from saturating
- However, Local Response Normalization aids generalization

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-\frac{n}{2})}^{\min(N-1,i+\frac{n}{2})} (a_{x,y}^{j})^{2} \right)^{\beta}$$

k=2 $\alpha = 10^{-4}$ $\beta = 0.75$

- Improvement:
 - top-1 error rate by 1.4%
 - top-5 error rate by 1.2%

sum runs over n "adjacent" kernel maps at the same spatial position

Architecture

Local Response Normalization

- No need to input normalization with ReLUs.
- But still the following local normalization scheme helps generalization.

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2\right)^{\beta}$$
 Serviced Activity of a neuron computed by applying kernel I at position

Responsenormalized activity

Response normalization reduces top-1 and top-5 error rates by 1.4% and 1.2%, respectively.

nonlinearity

(x,y) and then applying the ReLU