Eine Einführung in R: Lineare Regression

Katja Nowick, Lydia Müller und Markus Kreuz

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE),
Universität Leipzig
http://www.bioinf.uni-leipzig.de/teaching/currentClasses/class211.html

15. Dezember 2015

1. Ergänzungen zu Übung 3

Weitere Tests in R

- ullet chisq.test: χ^2 -Test
- fisher.test: Fisher-Test
- binom.test: Binomial-Test
- cor.test: Korrelationstest
- kruskal.test: Kruskal-Wallis-Test
- ks.test: Kolmogorov-Smirnov-Test
- shapiro.test: Shapiro-Wilk-Test

Bootstrap Verfahren

Wenn die theoretische Verteilung der interessierenden Statistik nicht bekannt ist, können Bootstrapverfahren eingesetzt werden. Mögliche Anwendungen:

- Bootstrap Konfidenzintervalle
- Bootstrap Tests

Vorgehen:

Aus der Originalstichprobe werden B Bootstrap-Stichproben der gleichen Größe mit zurücklegen gezogen: $x_b = (x_1^*, ..., x_n^*), b = 1, ...B$. Dies entspricht einer Ziehung aus der empirischen Verteilungsfunktion. Für jede der B Stichproben kann die interessierende Statistik T berechnet werden. Dies ermöglicht die Abschätzung der Verteilung von T und damit die Schätzung von Quantilen und p-Werten.

Bootstrap Beispiel: Konfidenzintervall

```
x < -rnorm(100)
mean(x)
Fragestellung: Bestimme das 95% Konfidenzintervall für die Schätzung des
Mittelwertes t<-rep(NA,N)
for (i in 1:N){
t[i] <-mean(sample(x,length(x),replace=T))
quantile(t,c(0.05,0.95))
```

Lineare Einfachregression

Einleitung

Ziel der Regressionsanalyse:

Welchen Einfluss hat eine Größe X auf eine andere Zufallsvariable Y?

- Y: metrische Zielvariable, zu erklärende Variable, Regressand
- X : erklärende Variable, Regressor (zufällig oder deterministisch)
- Daten:
 - n Realisierungen $(y_1, x_1), \ldots, (y_n, x_n)$

Ziel der linearen Regression

Die Lineare Regression untersucht, ob ein linearer Zusammenhang zwischen X und Y besteht.

Modell der Linearen Regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y: Zielvariable, zu erklärende Variable, Regressand
- X : erklärende Variable, Regressor
- ε : unbeobachtbare Fehlervariable, unabhängig und identisch verteilt (in der Regel als $N(0,\sigma)$)
- ullet zu schätzende Koeffizienten des Models: eta_0,eta_1
- β_0 : Intercept
- ullet eta_1 : Regressionskoeffizient der Variable X

Für i = 1, ..., n Beobachtungen:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 $i = 1, ..., n$

- (ロ)(ap)(ap)(ap)(ap) を (2)

Annahmen: Lineare Regression

- Es besteht ein linearer Zusammenhang zwischen X und Y
- Y ist metrisch und normalverteilt (Kategorial: Logit Regression; Allgemeinere Verteilungen: GLM's)
 - $E(y_i) = \beta_0 + \beta_1 x_i$
 - $Var(y_i) = \sigma^2$
- Homoskedastizität, d.h. die Fehler ε_i haben die gleiche Varianz: $Var(\varepsilon_i) = \sigma^2$ für alle i = 1, ..., n
- Die Fehler ε_i , mit i = 1, ..., n, sind unabhängig (GegenBsp: Zeitreihendaten)
- ullet Die Fehler arepsilon sind unabhängig vom Wert der Zielvariable Y

Beispiel: Simulierte Daten

```
X<-seq(1,6,0.01)
epsilon<-rnorm(length(X), mean=0, sd=1)
Y<-X+epsilon</pre>
```


Schätzung der β_i

 eta_0 und eta_1 können durch Minimierung der Summe des Quadratischen Fehlers geschätzt werden Kleinste Quadrate Schätzer:

MLQ

$$\mathsf{MLQ} = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 \to \mathsf{min}!$$

Dies führt zu folgenden Schätzungen für β_0 , β_1 und der gefitteten Wert \hat{Y} (Regressionsgerade):

Schätzungen

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{cov(X, Y)}{var(X)}$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Testen des β -Koeffizienten

Der Regressionskoeffizient β_1 der Variable X ist ein Indikator für den linearen Zusammenhang von X und Y. Es gilt:

Zusammenhang zwischen β_1 und cor(X, Y)

$$\beta_1 = cor(X, Y) \frac{\sigma_Y}{\sigma_X}$$

Daraus folgt:

- $\beta_1 < 0$: negativer (linearer) Zusammenhang
- $\beta_1 = 0$: kein (linearer) Zusammenhang
- $\beta_1 > 0$: positiver (linearer) Zusammenhang

Es gibt einen einfachen Test, der angibt, ob β_1 signifikant ungleich Null ist, d.h. ob ein signifikanter Zusammenhang zwischen X und Y besteht.

Zerlegung der Gesamtstreuung

Die Maßzahl \mathbb{R}^2 dient als Hinweis darauf, wie gut ein Regressionsmodell zu den Daten passt. Die Idee hinter diesem Maß ist die sogenannte Streuungszerlegung:

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SQR} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{SQE}$$

- SQT: Sum of Squares Total, die Gesamtstreuung (Var(Y))
- SQE: Sum of Squares Explained, die durch das Modell erklärte Streuung
- SQR: Sum of Squares Residuals, die Rest- oder Residualstreuung

Nowick , Müller , Kreuz Grundlagen || 15. Dezember 2015 13 / 29

Bestimmtheitsmaß R^2

Liegen die Punkte $(y_1, x_1), \ldots, (y_n, x_n)$ alle auf einer Geraden, so ist $\mathbf{SQR} = 0$ und die Gesamtstreuung wäre gleich der erklärten Streuung. Das Bestimmtheitsmaß R^2 ist gegeben durch:

Zerlegung des R²

$$R^2 = \frac{\mathsf{SQE}}{\mathsf{SQT}} = 1 - \frac{\mathsf{SQR}}{\mathsf{SQT}} \quad \in [0, 1]$$

Je größer also das \mathbb{R}^2 ist, desto besser passt das Modell zu den Daten. Dabei bedeuten:

- $R^2 = 0$: Die erklärte Streuung ist 0, d.h. das Modell ist extrem schlecht; X und Y sind nicht linear abhängig
- $R^2 = 1$: Die erklärte Streuung entspricht der Gesamtstreuung, das Modell passt perfekt

Multiple Regression

Mehrere erklärende Variablen

- Fragestellung: Wie ist der Einfluss mehrerer Variablen $X_1, ..., X_p$ auf eine Zielgröße Y?
- Realisierungen: $(y_1, x_{11}, ..., x_{1p}), ..., (y_n, x_{n1}, ..., x_{np})$
- Modell der multiplen linearen Regression mit p erklärenden Größen $X=X_1,...,X_p$:

Modell der multiplen linearen Regression

$$Y = X\beta + \varepsilon$$

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i \quad i = 1, ..., n, j = 1, ..., p$$

Dabei ist $X = (x_{ij})$ die sogenannte Designmatrix.

• Vorteil zur einfachen Regression:

 eta_j beschreibt den Zusammenhang der j.ten Variable zu Y bedingt auf alle übrigen j-1 Variablen (Kontrolle von ungewollten oder Scheineffekten)

Nowick, Müller, Kreuz Grundlagen III 15. Dezember 2015 16 / 29

Least-Squares Schätzer

 $\beta_0, \beta_1, ..., \beta_p$ können (analog zur einfachen linearen Regression) durch Minimierung der Summe des Quadratischen Fehlers geschätzt werden (Kleinste Quadrate oder Least-Squares):

$$MLQ = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{1i} + ... + \beta_p x_{pi}))^2 \to min!$$

Der Least-Squares Schätzer ergibt sich nach Umformen zu:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Nowick, Müller, Kreuz

Residuenanalyse

Da die Residuen alle unterschiedliche Varianz besitzen, skaliert man sie auf einheitliche Varianz:

$$r_{i,\text{stud}} = \frac{r_i}{\hat{\sigma} \cdot \sqrt{1 - h_{ii}}} \sim N(0, \sigma)$$

Frage: Sind die Voraussetzungen für das lineare Modell erfüllt? Zu untersuchen sind:

- Anpassung des Modells an die Daten:
 - ightarrow Residuen gegen gefittete Wert \hat{Y}
- Normalverteilung des Fehlers:
 - → QQ-Plot: Quantile der Residuen gegen die theoretische NV
- 4 Homoskedastizität des Fehlers:
 - ightarrow Standardisierte Residuen gegen gefittete Wert \hat{Y} , wenn die geeignet mit H standardisierten Residuen abhängig von \hat{Y} sind, deutet dies auf ungleiche Varianzen der Fehler hin

Umsetzung in R

Beispieldaten: "airquality"

- Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
- Solar .R: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from 0800 to 1200 hours at Central Park
- Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
- Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport

Mit diesen Daten kann untersucht werden, welchen Einfluss Sonneneinstrahlung, Wind und Temperatur auf die Ozonwerte haben.

Beispiel in R

Wir laden den Datensatz "airquality"

- data("airquality")
- Wir untersuchen das Modell:
- Ozone_i = $\beta_0 + \beta_1 \cdot \text{Temp}_i + \varepsilon_i$
- ... also die Abhängigkeit des Ozons von der Temperatur
- Aufruf der Funktion lm()
- ullet test <- lm(formula= Ozone \sim Temp, data= airquality)
- test ist ein Objekt der Klasse 1m

Ausgabe in R:

```
Coefficients:
```

(Intercept) Temp

-146.995 2.429

Scatterplot: Ozone ∼ Temp

```
plot(Temp,Ozone)
abline(test$coefficients, col="red")
```


Modelldiagnose

• R² und andere Maße des Modells : summary(test)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-146.9955	18.2872	-8.038	9.37e-13
Temp	2.4287	0.2331	10.418	< 2e-16

Multiple R-squared: 0.4877, Adjusted R-squared: 0.4832

- Koeffizienten: test\$coefficients
- Gefittete Werte \hat{Y} : test\fitted.values
- Studentisierte Residuen: ls.diag(test)\$std.res
- Hat-Matrix: ls.diag(test)\$hat
- Verschiedene Diagnoseplots: plot(test)
 oder plot.lm(test) (u.a. Residuenanalyse)

Modelldiagnose in R I: Residuen gegen gefittete Werte

- Residuen gegen gefittete Werte \hat{Y} zur Untersuchung der Anpassung des Modells an die Daten
- Keine systematische Abweichung, z.B. Trend oder U-Form

Modelldiagnose in R II: Residuen-QQ

- Plot der studentisierten (besondere Standardisierung) gegen die theoretischen (NV) Residuen zur Untersuchung der Normalverteilung des Fehlers
- Wenn die Residuen normalverteilt sind, sollten sie auf der gestrichelten Geraden liegen

Modelldiagnose in R III: Standardisierte Residuen gegen \hat{Y}

- ullet Standardisierte, absolute Residuen gegen gefittete Werte \hat{Y} zur Untersuchung der Homoskedastizität des Fehlers
- Keine systematische Abweichung, z.B. ansteigende Varianz

Multiple Regression in R

- Wir untersuchen nun das Modell:
- Ozone_i = $\beta_0 + \beta_1 \cdot \text{Temp}_i + \beta_2 \cdot \text{Solar.R}_i + \varepsilon_i$
- ... also die Abhängigkeit des Ozons von der Temperatur und der Sonneneinstrahlung
- Aufruf der Funktion lm()
- model2 <- lm(formula= Ozone \sim Temp + Solar.R, data= airquality)

Ausgabe in R:

```
Coefficients:
```

(Intercept) Temp Solar.R -145.70316 2.27847 0.05711

Ausgabe von summary(model2):

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-145.70316	18.44672	-7.899	2.53e-12
Temp	2.27847	0.24600	9.262	2.22e-15
Solar.R	0.05711	0.02572	2.221	0.0285

Multiple R-squared: 0.5103, Adjusted R-squared: 0.5012

Interpretation:

- Solar.R besitzt ein β , das signifikant von Null verschieden ist (p Wert 0.0285 < 0.05)
- Das β der Variable Temp verändert sich nur leicht durch die Aufnahme von Solar.R: von 2.4287 zu 2.27847
- Das R² wird durch die Aufnahme von Solar. R nur noch leicht verbessert: von 0.4832 zu 0.5012
- Durch die beiden Variablen Solar.R und Temp kann die Hälfte der Streuung der Ozonmessungen erklärt werden.

Spezifikation der Regressionsvariablen

```
lm(formula, ...)
```

- formula: Hier muss das Modell bzw die Variablen des Modelles spezifiziert werden.
- Allgemeiner Aufbau der linearen Einfachregression formula= Y∼X
- ullet Beispiel: formula= Ozone \sim Temp
- Allgemeiner Aufbau der multiplen linearen Regression formula= $Y \sim X_1 + X_2 + ... + X_p$
- ullet Beispiel: formula= Ozone \sim Temp + Solar.R

