Google's Neural Machine Translation System:

Bridging the Gap between Human and Machine Translation

October 2016

Daria Walter November 13, 2017

Old: phrase-based translation

- Lots of individual pieces
- Optimized somewhat independently

New: Neural Machine translation

- End-to-end learning
- Simpler architecture
- Results are much better (-60% translation errors on production data)

Neural Machine translation: general approach

- Encoder + decoder RNNs (LSTMs)
- Encoder maps the source sequence to the hidden vector S.
- Given **S**, decoder predicts output sequence, using Softmax activation.

Neural Machine translation: closer look

$$p(y_1, \dots, y_J | x_1, \dots, x_I) = \prod_{j=1}^J p(y_j | S, y_1, \dots, y_{j-1}) \to \max$$

Encoder LSTM: $s_i = f(x_i, s_{i-1})$

$$S = s_I - \text{context vector}$$

Decoder LSTM: $h_{i} = g(h_{i-1}, S, y_{i-1})$

$$K$$
 – vocabulary size

Softmax prediction:

$$p(y_{j} = k | S, y_{1}, \dots, y_{j-1}) = \frac{e^{w_{k}h_{j}}}{\sum_{i=1}^{K} e^{w_{i}h_{j}}}$$

$$y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{5} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{6} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{7} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{8} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4} < /s >$$

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4} < /s >$$

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4} < /s >$$

$$y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

$$y_{1} \quad y_{2} \quad y_{3} \quad y_{4} < /s >$$

Standart Neural Machine translation

- + End-to-end approach
- Universal for different language pairs
- + Robust for languages with different base word order

- Inefficiency of standart RNN architectures
- Computationally expensive during training
- Slow inference speed
- Fixed-size vocabulary: how to deal with rare words?
- Bad coverage

Model Architecture

How GNMT addresses these problems:

Deep Sequence 2 Sequence model

- 8 layers
- Bi-directional bottom layer
- Attention mechanism
- Residual connections
- Parallelism:8 GPU

Attention mechanism

Idea: for a new element in decoder, assign "significance" weights to each encoded element

Attention mechanism: Decoder i-th step

 s_1, \ldots, s_M – encoder output

 h_{i-1} – decoder output from i-1 step

 $a_t = AttentionFunction(h_{i-1}, s_t)$ AttentionFunction - single-layer NN

$$p_t = \frac{exp(a_t)}{\sum_{t=1}^{M} exp(a_t)}$$
$$c_i = \sum_{t=1}^{M} p_t s_t$$

Decoder new hidden state:

$$h_i = g(h_{i-1}, [y_{i-1}, \mathbf{c_i}])$$

Towards open vocabulary:

How GNMT deals with rare words

First approach: wordpiece model (WPM)

Example:

- Word: Jet makers feud over seat width with big orders at stake
- Wordpiece: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

Given:

- 1) training corpus
- 2) desired number **D** of wordpieces

Select **D** unique wordpieces, so that the total number of wordpieces in resulting corpus, segmented according to this WPM, was minimal.

D is between 8k and 32k

Translation of names, numbers, rare entities

Sometimes it makes sense to copy rare entities from source to target:

- To support direct copy mechanism, use shared wordpiece model for source and target language.
- Same string in source and target language will be segmented in the same way -> model learns to copy.

Second approach: mixed word/character model

- Vocabulary: words + characters
- Out-of-vocabulary words are splitted into characters before encoding.
- Special prefixes are prepended to single characters:

```
<B> - beginning of the word
<M> - middle of the word
<E> - end of the word
```

• Example:

```
Miki --> <B>M <M>i <M>k <E>i
```

Training

Maximum-likelihood training criteria

Parallel training dataset: $\mathcal{D} = \{(X^{(i)}, Y^{*(i)})\}$

$$\mathcal{O}_{ML}(\Theta) = \sum_{i=1}^{N} \log P_{\Theta}(Y^{*(i)}|X^{(i)}) \to \max_{\Theta}$$

Drawbacks of this training criteria:

- Incorrect output sequences are never observed during training
- Does not incorporate BLEU score (main quality metrics in translation)

Idea: explicitly rank all possible output sequences by BLEU score

Translation quality: BLEU score

- N-gram overlap between machine translation output and reference translation
- Compute precision for n-grams of size 1 to 4
- Add brevity penalty (for too short translations)

BLEU = min(1,
$$\frac{\text{output length}}{\text{reference length}}$$
)($\prod_{i=1}^{4} precision_i$)^{1/4}×100

- Typically computed over the entire corpus, not single sentences
- The authors use corrected GLEU score, better on single sentences:

GLEU = min(1,
$$\frac{\text{output length}}{\text{reference length}}$$
)($\prod_{i=1}^{4} min(precision_i, recall_i)$)^{1/4}

Model refinement using expected reward objective

$$r(Y, Y^{*(i)})$$
 – per-sentence GLEU score

• Expected reward objective:

$$\mathcal{O}_{RL}(\Theta) = \sum_{i=1}^{N} \sum_{Y \in \mathcal{Y}} P_{\Theta}(Y|X^{(i)}) r(Y, Y^{*(i)})$$

Optimize linear combination of ML and RL objectives:

$$\mathcal{O}_{Mixed}(\Theta) = \alpha \mathcal{O}_{ML}(\Theta) + \mathcal{O}_{RL}(\Theta)$$

$$\alpha = 0.017$$

Prediction

Generating predictions

Maximize probability of the total output sequence:

$$P(Y|X) = P(Y|\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

$$= \prod_{i=1}^{N} P(y_i|y_0, y_1, y_2, ..., y_{i-1}; \mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

$$\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_M} = EncoderRNN(x_1, x_2, x_3, ..., x_M)$$

Need to use beam search to select best prediction

Beam search refinements

Empirically designed penalty functions:

coverage penalty

$$cp(X,Y) = \beta * \sum_{i=1}^{|X|} \log(\min(\sum_{j=1}^{|Y|} p_{i,j}, 1.0))$$

lenght normalization

$$lp(Y) = \frac{(5+|Y|)^{\alpha}}{(5+1)^{\alpha}}$$

Maximize scoring function with beam search:

$$s(Y,X) = \frac{\log(P(Y|X))}{lp(Y)} + cp(X,Y)$$

Results

Comparison against state-of-the-art NMT

Table 4: Single	model re	esults on	WMT	$En \rightarrow Fr$ (newstest2014)	

Table 5:	Single	model	results of	on WM'	$T E_{n} \rightarrow D$	e (news	test2014	,
Table 0.	DILIBIE	moder	resums (e mews	16864014	

Model BLI Word 37. Character 38.	per sentence (s) 90 0.2226 01 1.0530
Character 38.	90 0.2226 01 1.0530
Character 38.	01 1.0530
TITE I F OTT	27 0 1919
WPM-8K 38.	21 0.1010
WPM-16K 37.	60 0.1874
WPM-32K 38.	95 0.2118
Mixed Word/Character 38.	39 0.2774
PBMT [15] 37	.0
LSTM (6 layers) [31] 31	.5
LSTM (6 layers $+$ PosUnk) [31] 33	.1
Deep-Att [45] 37	.7
* Deep-Att + PosUnk $[45]$ 39	.2

ble 5: Single model results	on WM	$\Gamma \to De (newstest2014)$
Model	BLEU	CPU decoding time
		per sentence (s)
Word	23.12	0.2972
Character (512 nodes)	22.62	0.8011
WPM-8K	23.50	0.2079
WPM-16K	24.36	0.1931
WPM-32K	24.61	0.1882
Mixed Word/Character	24.17	0.3268
PBMT [6]	20.7	
RNNSearch [37]	16.5	
RNNSearch-LV [37]	16.9	
RNNSearch-LV [37]	16.9	
Deep-Att [45]	20.6	

Table 6: Single model test BLEU scores, averaged over 8 runs, on WMT En→Fr and En→De

Dataset	Trained with log-likelihood	Refined with RL
En→Fr	38.95	39.92
En→De	24.67	24.60

^{*} Use external alignment models

Model ensemble

Model ensemble results on WMT En→Fr (newstest2014)

Model	BLEU
WPM-32K (8 models)	40.35
RL-refined WPM-32K (8 models)	41.16
LSTM (6 layers) [31]	35.6
LSTM (6 layers $+$ PosUnk) $\boxed{31}$	37.5
Deep-Att + PosUnk (8 models) [45]	40.4

Model ensemble results on WMT	En→De
Model	BLEU
WPM-32K (8 models)	26.20
RL-refined WPM-32K (8 models)	26.30

- Ensemble 8 RL-refined models
- BLEU scores are better (+ 2), compared to single-model

Results on production data: human evaluation

Table 10: Mean of side-by-side scores on production data					
	PBMT	GNMT	Human	Relative	
				Improvement	
English \rightarrow Spanish	4.885	5.428	5.504	87%	
English \rightarrow French	4.932	5.295	5.496	64%	
English \rightarrow Chinese	4.035	4.594	4.987	58%	
Spanish \rightarrow English	4.872	5.187	5.372	63%	
French \rightarrow English	5.046	5.343	5.404	83%	
Chinese \rightarrow English	3.694	4.263	4.636	60%	

Relative improvement > 60% on major pairs of languages

References

- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", 2016 [link]
- Stanford Seminar: Google's Multilingual Neural Machine Translation System [link]

Questions?