Projekt 2 Damian Guzek s167911

1.

CREATE VIEW widok1 AS

SELECT nazwa, 100-stan AS 'zamowienie' FROM karma

WHERE stan<100;


```
db.zoo.update({id:"karma"},{$inc: {"hedera":-100}})
db.zoo.update({id:"karma"},{$inc: {"allium":-100}})
db.zoo.update({id:"karma"},{$inc: {"canna":-100}})
db.zoo.update({id:"karma"},{$inc: {"dolichos":-100}})
db.zoo.update({id:"karma"},{$inc: {"lobelia":-100}})
db.zoo.update({id:"karma"},{$inc: {"pinus":-100}})
db.zoo.update({id:"karma"},{$inc: {"vinica":-100}})
db.zoo.update({id:"karma"},{$inc: {"phormium":-100}})
db.zoo.update({id:"karma"},{$inc: {"lupinus":-100}})
db.zoo.update({id:"karma"},{$inc: {"lupinus":-100}})
```

```
db.zoo.find({$and:[{"hedera":{$lt:0}},{"id":"karma"}]},{hedera:1, _id:0})
db.zoo.find({$and:[{"allium":{$lt:0}},{"id":"karma"}]},{allium:1, _id:0})
db.zoo.find({$and:[{"canna":{$lt:0}},{"id":"karma"}]},{canna:1, _id:0})
db.zoo.find({$and:[{"dolichos":{$lt:0}},{"id":"karma"}]},{dolichos:1, _id:0})
db.zoo.find({$and:[{"lobelia":{$lt:0}},{"id":"karma"}]},{lobelia:1, _id:0})
db.zoo.find({$and:[{"pinus":{$lt:0}},{"id":"karma"}]},{pinus:1, _id:0})
db.zoo.find({$and:[{"vinica":{$lt:0}},{"id":"karma"}]},{vinica:1, _id:0})
db.zoo.find({$and:[{"phormium":{$lt:0}},{"id":"karma"}]},{phormium:1, _id:0})
db.zoo.find({$and:[{"lupinus":{$lt:0}},{"id":"karma"}]},{lupinus:1, _id:0})
db.zoo.find({$and:[{"lupinus":{$lt:0}},{"id":"karma"}]},{vinica:1, _id:0})
```

```
/* 1 */
{
    "hedera" : -16.0
}
```

CREATE VIEW widok2 AS

SELECT id_zwierze, data_szczepienie FROM szczepienia

WHERE data szczepienie

BETWEEN '2019-09-01' AND '2019-12-31'

	id_zwierze	data_szczepienie
	20018	2019-09-13
į	20013	2019-09-24
N	20007	2019-10-30
7	20001	2019-12-16

db.zoo.find({

\$or:[{

szczepienie1: {

\$gte: ISODate("2019-09-01T00:00:00.000Z")

\$It: ISODate("2019-12-31T00:00:00.000Z")}}

{

szczepienie2: {

\$gte: ISODate("2019-09-01T00:00:00.000Z")

\$It: ISODate("2019-12-31T00:00:00.000Z")}}]

})

```
/* 1 */
{
    "_id" : ObjectId("5e9f74b255170ab887f9d268"),
    "id" : 20001.0,
    "gatunek" : "alpaka",
    "rok_urodzenia" : 1979.0,
    "weterynarz" : 10001.0,
    "opiekun" : 10004.0,
    "szczepieniel" : ISODate("2019-12-16T00:00:00.000Z"),
    "klatka" : 30001.0,
    "darownizna" : 1109.0,
    "kontrola" : ISODate("2019-05-31T00:00:00.000Z")
}
```

```
Key Value
(1) Objectld("5e9f74b255170ab887f9d... { 10 fields }
(2) Objectld("5e9f74b255170ab887f9d... { 10 fields }
(3) Objectld("5e9f74b255170ab887f9d... { 11 fields }
(4) Objectld("5e9f74b255170ab887f9d... { 11 fields }
```

CREATE VIEW widok3 AS

SELECT pracownicy.id_pracownik, imie, nazwisko, telefon

FROM pracownicy JOIN rodo ON pracownicy.id_pracownik=rodo.id_pracownik

WHERE pracownicy.id pracownik=10002:

	id_pracownik	imie	nazwisko	telefon	
▶	10002	Karol	Piasecki	116997913	
1/2		100	W		16

db.zoo.find({"id":10002},{imie:1,nazwisko:1,telefon:1, _id:0, id:1})

```
Key Value Type

→ (1) {4 fields } Object
```

```
/* 1 */
{
    "id" : 10002.0,
    "imie" : "Karol",
    "nazwisko" : "Piasecki",
    "telefon" : 116997913.0
}
```

4.

CREATE VIEW widok4 AS

SELECT klatki.id_klatka, nazwa, star

FROM klatki JOIN karma_klatki ON klatki.id_klatka=karma_klatki.id_klatka

JOIN karma ON karma_klatki.id_karma=karma.id_karma

WHERE klatki.id klatka=30001;

	id_klatka	nazwa	stan	
1	30001	lobelia	58	
	30001	vinica	22	

db.zoo.find({"id":"karma"},{lobelia:1,vinica:1, _id:0})

```
Ney value lype

> (1) { 2 fields } Object
```

```
/* 1 */
{
    "lobelia" : 58.0,
    "vinica" : 22.0
}
```

CREATE VIEW widok5 AS

SELECT imie, nazwisko, telefon FROM rodo WHERE id_pracownik IN

(SELECT id_pracownik FROM klatki WHERE id_klatka IN

(SELECT id klatka FROM zwierzeta WHERE

rok_urodzenia>2013));

	imie	nazwisko	telefon
•	Karolina	Kleina	229333986
	Martyna	Waras	466637069
	Aleksandra	Warmbier	316374202

db.zoo.find({rok_urodzenia:{\$gt: 2013}},{ _id:0,opiekun:1}).sort({"opiekun":-1}) db.zoo.find({"id":{\$in:[10004, 10005, 10008]}},{_id:0,imie:1,nazwisko:1,telefon:1})

```
      Key
      Value
      Type

      > ♥ (1)
      { 3 fields }
      Object

      > ♥ (2)
      { 3 fields }
      Object

      > ♥ (3)
      { 3 fields }
      Object
```

```
/* 1 */
{
    "imie" : "Karolina",
    "nazwisko" : "Kleina ",
    "telefon" : 229333986.0
}
```

CREATE VIEW widok6 AS

SELECT

sum(darowizna)

avg(darowizna).

max(darowizna)

min(darowizna),

(SELECT Count(*) FROM klatki WHERE darowizna<3000) as '<3000',

(SELECT count(*) FROM klatki WHERE darowizna>3000) as '>3000

FROM klatki;

	sum(darowizna)	avg(darowizna)	max(darowizna)	min(darowizna)	<3000	>3000
▶	69846	4656.4	23347	5	10	5

db.zoo.find({darownizna:{\$gt: 5}},{_id:0,darownizna:1}).sort({darownizna:-1}).limit(1)

db.zoo.find({darownizna:{\$gt: 5}},{_id:0,darownizna:1}).sort({darownizna:1}).limit(1)

db.zoo.find({darownizna:{\$gt: 3000}}).count()

db.zoo.find({darownizna:{\$lt: 3000}}).count()

#warto zwrócić uwagę, że dane są lekko inne ponieważ

- 1. wyeliminowaliśmy pustą klatkę
- 2. Na potrzeby dokumentowej bazy danych datki rozumiemy, jako datki na zwierzę w dokumentowej bazie danych, a w relacyjnej bazie danych jako datki na klatki.

CREATE VIEW widok7 AS

SELECT sekcja,count(*) FROM pracownicy

GROUP BY sekcja:

	sekcja	count(*)	
•	ssaki	4	Γ
	ptaki	3	
	gady	3	
			Γ

db.zoo.find({"sekcja":"ptaki"}).count()
db.zoo.find({"sekcja":"gady"}).count()
db.zoo.find({"sekcja":"ssaki"}).count()

CREATE VIEW widok8 AS

SELECT imie, nazwisko FROM rodo WHERE id_pracownik IN

(SELECT id_pracownik FROM wycieczki GROUP BY id_pracownik HAVING

count(*)>3);

	imie	nazwisko	
•	Cezary	Centkowski	
227	9 31	(0) (0)	

db.zoo.find({"wycieczka4":{\$exists:1}}, {_id:0,imie:1,nazwisko:1})

```
    Key
    Value
    Type

    ➤ (1)
    { 2 fields }
    Object
```

```
/* 1 */
{
    "imie" : "Cezary",
    "nazwisko" : "Centkowski"
}
```

Porównanie

MognoDB zdaje się dawać więcej swobody swoim użytkownikom. Jeżeli zarządzał bym małą firmą, która intensywnie się rozwija i ciągle szuka swojego miejsca na rynku, to MongoDB zdaje się być wygodniejszym rozwiązaniem przez swoją elastyczność. W moim odczuciu, również składnia NoSQL jest łatwiejsza do przyswojenia niż w SQL. Również zauważyłem spory potencjał dokumentowych baz danych w data science, ponieważ struktura dokumentowej bazy danych jest bardziej podobna do ramek danych niż w relacyjnych bazach danych.

Gdyby jednak była taka możliwość, to najszybciej jak to tylko możliwe przerzuciłbym się na relacyjną bazę danych. Mimo, że moim zdaniem jest ona sztywna oraz znacząco cięższa w zaprojektowaniu w porównaniu do dokumentowej bazy danych, to jednak łatwiej się w niej odnaleźć przy bardziej skomplikowanych zapytaniach.

Mówiąc już bardziej konkretnie MongoDB:

- nie ma odgórnie ustalonej struktury
- nie łączy kolekcji za pomocą kluczy głównych i kluczy obcych jak w przypadku relacji z MySQL
- nie mamy dedykowanego języka zapytań (w przypadku relacyjnych baz danych jest różnica w zapytaniach na przykład w Oraclu i MySQL)
- umożliwiają rozproszoną dystrybucję, a zatem łatwo jest zwiększyć efektywność pracy serwera poprzez dodanie kolejnego, co nie jest możliwe w relacyjnych bazach danych

Przechodząc do konkretnych przykładów z mojego raportu można zauważyć, że zapytanie numer 1, które było bardzo krótkie w MySQL, przeobraziło się w ogromne zapytanie w MongoDB. Bardzo duży plus dla MySQL. Z kolei 3,4 podpunkt był łatwiejszy do realizacji w MongoDB, co widać po długości zapytania. Pierwszy duży problem napotkałem w 5 podpunkcie, gdy miałem problem z odtworzeniem podzapytania - duży plus dla SQL. Podpunkt 6 mógł wydawać się na korzyść SQL, jednak zauważyłem w dokumentacji MongoDB, że można wykorzystać bardzo dużo fajnych funkcji agregujących, których nie widziałem wcześniej wykorzystanych w MySQL. Być może jest to kwestia dokumentacji. Podpunkt 8 moim zdaniem pokazuje wyższość baz relacyjnych nad dokumentowymi. Przy tworzeniu tej dokumentowej bazy, w celu zachowania jej prostoty byłem zmuszony do stworzenia "wycieczka1", "wycieczka2", "wycieczka3"... co mogłoby być bardzo uciążliwe przy pracy przy takiej bazie danych.