עתה נעבור לחקירת פונקציות.

נגזרת הפונקציה הלוגריתמית:

$$(\log_a x)' = m$$
 כמו תמיד:

a = e לשם נוחות נתחיל דווקא במקרה

$$(\ln x)' = m$$
 : אז מתקיים

$$\left(\ln x\right)' = \frac{\ln(x+h) - \ln(x)}{h}$$
 אבור $h \to 0$ יובכתיבה מפורשת :

$$\left(\ln x\right)'=rac{\lnrac{x+h}{x}}{h}=rac{\ln\left(1+rac{h}{x}
ight)}{h}$$
ילפי חוקי הלוגריתמים:

כדי לפתח את הלוגריתם הזו עלינו לחזור לרגע להגדרה של e כפי שהוא מופיע בנגזרת

$$\dfrac{{
m e}^{lpha}-{
m e}^{
m o}}{lpha}\!=\!1 \qquad lpha \! o \! 0$$
 הפונקציה המעריכית. שם ראינו

(החלפנו את h ב- α כדי לא להתבלבל בין h של הנגזרת כאן ובין זה המופיע למעלה).

$$\mathrm{e}^{\alpha}-\mathrm{e}^{\mathfrak{o}}=\alpha$$
 : על ידי העברת אגפים

$$e^{\alpha} - 1 = \alpha$$

$$e^{\alpha} = 1 + \alpha$$

$$\ln \mathrm{e}^{\alpha} = \ln(1+\alpha)$$
 : ובהפעלת ובהפעלת ובהפעלת ישני האגפים

$$lpha = \ln(1+lpha)$$
 אבל וא ולכן עבור פ $lpha
ightarrow 0$ ולכן עבור ואכל

 $\alpha = 0.0003$ וואכן זה מתקיים – אתם מוזמנים לנסות במחשבון עבור

כעת נחזור ללוגריתם שקיבלנו.

$$\frac{h}{x} \rightarrow 0$$
 אז ודאי שגם $h \rightarrow 0$ אם h

$$\left(\ln x\right)'=rac{\ln\left(1+rac{h}{x}
ight)}{h}=rac{rac{h}{x}}{h}$$
יעל ידי הצבה $lpha=rac{h}{x}$

$$\left(\ln x\right)' = \frac{\frac{1}{x}}{1} = \frac{1}{x}$$
 : ואחרי צמצום

$$(\ln x)' = \frac{1}{x}$$
 כלומר

ואם רוצים לגזור פונקציה בבסיס אחר?

ובכן האמת היא שכל מספר ניתן להסבה לכתיב חזקות עם בסיס e, אבל הנגזרת היא קלה למציאה :

$$(\log_a x)' = \left(\frac{\log_e x}{\log_e a}\right)' = \left(\frac{1}{\ln a} \cdot \ln x\right)' = \frac{1}{\ln a} \cdot \frac{1}{x} = \frac{1}{x \ln a}$$

$$\left(\log_a x\right)' = \frac{1}{x \ln a}$$
 כלומר

וכפי שכבר למדנו בנושא נגזרות - כל כללי הנגזרת שכבר למדנו מתקיימים גם בפונקציה זו. דוגמאות:

: לג. גזרו את הפונקציות הבאות

1.
$$y = 2 \ln x$$

2.
$$y = x \ln x$$

3.
$$y = \frac{x}{\ln x}$$

4.
$$y = \ln(x^2 - 2x)$$

5.
$$y = 4 \ln \frac{x+2}{x^2-7}$$

6.
$$y = \sqrt{\ln(x^2 - 9)}$$

7.
$$y = \ln \sqrt{\frac{x}{x^2 - 1}}$$

פתרון:

1.
$$y = 2 \ln x$$

$$y' = \frac{2}{x}$$

2.
$$y = x \ln x$$

$$\underline{y' = 1 \cdot \ln x + \frac{x}{x} = \ln x + 1}$$

(פונקצית מכפלה!)

3.
$$y = \frac{x}{\ln x}$$

$$y' = \frac{1 \cdot \ln x - \frac{x}{x}}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x}$$

(פונקצית מנה)

4.
$$y = \ln(x^2 - 2x)$$

$$y' = \frac{1}{x^2 - 2x} \cdot (2x - 2) = \frac{2x - 2}{x^2 - 2x}$$

(פונקציה מורכבת)

5.
$$y = 4 \ln \frac{x+2}{x^2-7}$$

: תחילה גוזרים את ה-ln ואחייכ נגזרת מנה

$$y' = 4 \cdot \frac{x^2 - 7}{x + 2} \cdot \frac{1 \cdot (x^2 - 7) - 2x(x + 2)}{(x^2 - 7)^2}$$

$$y' = \frac{4}{x + 2} \cdot \frac{x^2 - 7 - 2x(x + 2)}{x^2 - 7}$$

$$y' = \frac{-4x^2 - 16x - 28}{(x + 2)(x^2 - 7)}$$
6.
$$y = \sqrt{\ln(x^2 - 9)}$$

$$y' = \frac{1}{\chi \sqrt{\ln(x^2 - 9)}} \cdot \frac{1}{x^2 - 9} \cdot \chi$$

$$y' = \frac{x}{(x^2 - 9)\sqrt{\ln(x^2 - 9)}}$$
7.
$$y = \ln \sqrt{\frac{x}{x^2 - 1}}$$

$$y' = \frac{1}{\sqrt{\frac{x}{x^2 - 1}}} \cdot \frac{1 \cdot (x^2 - 1) - 2x \cdot x}{(x^2 - 1)^2}$$

$$y' = \frac{-x^2 - 1}{2(\frac{x}{x^2 - 1}) \cdot (x^2 - 1)^2}$$

$$y' = \frac{-x^2 - 1}{2x(x^2 - 1)}$$

בדיקת הבנה 105

חקירת פונקציה לוגריתמית

בהנחה שעד כה רכשתם מיומנות רבה בנושא חקירת הפונקציות בכלל אביא רק כמה דוגמאות על מנת לראות כיצד חקירה זו מיושמת בפונקציות לוגריתמיות.

נתחיל בתיאור הפונקציה הבסיסית:

. שרטטו סקיצה שלה $y = \ln x$ לב. חקרו את הפונקציה

פתרון:

x>0 : תחום הגדרה

נקודות קיצון: אין

x = 0 - אסימפטוטות: אנכית

אופקית - אין

תחומי עליה וירידה:

(1,0) : חיתוך צירים

שרטוט

x>0 תחום הגדרה: לפי הגדרת הפונקציה הלוגריתמית

$$y = \ln x$$

$$y' = \frac{1}{x}$$

$$x$$
 לכל $\frac{1}{x} \neq 0$

: אבל

לכן אין נקודות קיצון.

<u>אסימפטוטות:</u>

נקודות קיצון:

 ${f x}={f 0}$ מימין אנכית: הפונקציה הלוגריתמית מיוחדת בכך שככל שמתקרבים ל

. היא אסימפטוטה אנכית בפונקציה עשית ולכן ויותר שלילית אלית שלילית ב $\underline{\mathbf{x}=\mathbf{0}}$

. אופקית מתבדרת וואין הפונקציה וו $\lim_{x\to\infty}\ln x=\infty$, $x\to\infty$ עבור אופקית: אופקית

: תחומי עליה וירידה

$$y' = \frac{1}{x}$$

$$y'(1) = \frac{1}{1} > 0$$

הפונקציה עולה בכל תחום הגדרתה.

: חיתוך צירים

עבור x = 0 הפונקציה לא מוגדרת!

$$x = e^{0}$$

 $0 = \ln x$

$$\underline{x} = 1$$

נקודת החיתוך: (1,0)

<u>: שרטוט</u>

. $y = 2x \ln(3x)$ לה. חקרו את הפונקציה

: פתרון

x > 0 : תחום הגדרה

נקודות קיצון: (0.12, -0.25) מינימום

אסימפטוטות: אין

:תחומי עליה וירידה

 $(\frac{1}{3},0)$: חיתוך צירים

שרטוט

 $\underline{x>0} \leftarrow 3x>0$ הגדרה: לפי הגדרת הפונקציה הלוגריתמית

$$y = 2x \ln(3x)$$
 נקודות קיצון:

$$y' = 2\ln(3x) + 2x \cdot \frac{3}{3x}$$
 (פונקצית מכפלה)

$$y' = 2\ln(3x) + 2$$

$$0 = 2 \ln(3x) + 2$$

$$\ln(3x) = -1$$

$$3x = e^{-1}$$

$$x = 0.12$$

$$y(0.12) = 2 \cdot 0.12 \cdot \ln(3 \cdot 0.12) = -0.25$$

: y מציאת

נקודת קיצון : (0.12, -0.25)

<u>אסימפטוטות:</u>

xאנכית אולם המכפלה ב- $-\infty$ אולפת ה-חוש אמנס פונקצית אמנס אמנס אולפר ב- $x\to 0$ אולם אוכית. במקרה לכל הפונקציה לשאוף ל-0. לכן: 0 און אסימפטוטה לכל הפונקציה לשאוף ל-0. לכן: 0 אורמת לכל הפונקציה לשאוף ל-0.

. אופקית: גם אין כי עבור $\mathbf{x} \to \infty$, הפונקציה מתבדרת

לכן אין אסימפטוטות.

תחומי עליה וירידה:

$$y' = 2\ln(3x) + 2$$

$$y'(0.1) = 2 \ln 0.3 + 2 < 0$$

$$y'(1) = 2 \ln 1 + 2 > 0$$

יורדת פונקציה 0 < x < 0.12 יבור והתחומים: עבור

עבור x>0.12 חפונקציה עולה

(0.12,-0.25) נקודת מינימום

חיתוך צירים:

עבור $\mathbf{x} = \mathbf{0}$ גם כאן הפונקציה אינה מוגדרת.

$$3x = e^0 = 1$$

$$x = \frac{1}{3}$$

. נקודת החיתוך: $(\frac{1}{3},0)$

<u>: שרטוט</u>

ולדוגמה מורכבת יותר:

. ושרטטו סקיצה
$$y\!=\!rac{\sqrt{x}}{\ln x\!+\!1}$$
 ושרטטו סקיצה לו. חקרו את הפונקציה

: פתרון

 $x \neq 0.37$, x > 0 : תחום הגדרה

נקודות קיצון : (e, $\frac{\sqrt{\mathrm{e}}}{2}$) מינימום

x = 0.37 - אסימפטוטות:

:תחומי עליה וירידה

חיתוך צירים: אין

תחום הגדרה:

: כאן ישנן 3 הגבלות שונות

$${
m x} \geq$$
 ס בגלל השורש:

$$x > 0$$
 : ln-בגלל

$$\ln x + 1 \neq 0$$
 בגלל החילוק:

 $\ln x \neq -1$

$$x \neq e^{-1} = 0.37$$

 $.\,\mathrm{x}\neq0.37$, $\mathrm{x}>0$ ולכן התחום הוא

$$y = \frac{\sqrt{x}}{\ln x + 1}$$
 נקודות קיצון:

$$\mathbf{u}' = \frac{1}{2\sqrt{\mathbf{x}}} \leftarrow \mathbf{u} = \sqrt{\mathbf{x}}$$

$$v' = \frac{1}{x} \leftarrow v = \ln x + 1$$

$$y' = \frac{\frac{1}{2\sqrt{x}}(\ln x + 1) - \sqrt{x} \cdot \frac{1}{x}}{(\ln x + 1)^2}$$

$$y' = \frac{\frac{\ln x + 1}{2\sqrt{x}} - \frac{\sqrt{x}}{x}}{(\ln x + 1)^2} = \frac{\frac{\ln x + 1}{2\sqrt{x}} - \frac{1}{\sqrt{x}}}{(\ln x + 1)^2}$$

$$0 = \frac{\ln x + 1}{2\sqrt{x}} - \frac{1}{\sqrt{x}}$$

$$0 = \ln x + 1 - 2$$
 : $2\sqrt{x} - 2$

 $\ln x = 1$

 $\underline{\mathbf{x}} = \mathbf{e}$

$$y(e) = \frac{\sqrt{e}}{\ln e + 1} = \frac{\sqrt{e}}{2}$$
 : y מציאת

 $(e,\frac{\sqrt{e}}{2})$: נקודת קיצון

אסימפטוטות:

אנכית: ככל ש- 0 עם $x \to 0$ גם גם אלא התכנסות אין אסימפטוטה אלא גם בכל אנכית: $x \to 0$ גם גם אנכית: בגלל המכנה אנו יודעים שקיימת אסימפטוטה אנכית ב- 0.37.

ולכן אין ln-אופקית מפונקצית מהר השורש אדלה מהר פונקצית אופקית אופקית בור אופקית אלא התבדרות.

. x = 0.37 - לסיכום אסימפטוטה אנכית

תחומי עליה וירידה:

$$y' = \frac{\frac{\ln x + 1}{2\sqrt{x}} - \frac{1}{\sqrt{x}}}{(\ln x + 1)^2}$$

$$y'(0.1) = \frac{\frac{\ln 0.1 + 1}{2\sqrt{0.1}} - \frac{1}{\sqrt{0.1}}}{(\ln 0.1 + 1)^{2}} < 0$$

$$y'(1) = \frac{\ln 1 + 1}{2 \cdot 1} - \frac{1}{1} < 0$$

עם שורשים כדאי להציב מספרים ״נוחים״ במקרה שלנו 1,4

<u>טיפ:</u> כאשר עובדים

$$y'(4) = \frac{\frac{\ln 4 + 1}{2 \cdot 2} - \frac{1}{2}}{(\ln 4 + 1)^{2}} > 0$$

יורדת 0.37 < x < 2.72, 0 < x < 0.37 יורדת והתחומים : עבור

עבור x>2.72 הפונקציה עולה

נקודת מינימום (e, $\frac{\sqrt{e}}{2}$)

: חיתוך צירים

עבור x = 0 הפונקציה לא מוגדרת

$$0 = \frac{\sqrt{x}}{\ln x + 1}$$

$$\sqrt{x} = 0$$
 $x \neq 0$

: אבל

אין נקודות חיתוך עם הצירים!

<u>: שרטוט</u>

כפי שאתם רואים אין הבדל בין חקירת פונקציות רציונאליות או לוגריתמיות; כולן נפתרות על פי אותם עקרונות. לכן נעבור ישר לתרגול עצמי.

<u>בדיקת הבנה: תרגיל 106</u>

גם שאר שימושי הנגזרת נפתרים כמו בכל פונקציה אחרת.

x=3 העובר בנקודה שבה $y=\log_3 x$ לז. מצאו את משוואת המשיק לפונקציה

פתרון:

$$y'=rac{1}{x\ln 3}$$
 במציאת שיפוע:
$$y'(3)=rac{1}{3\ln 3}=0.3$$

$$y(3)=\log_3 3=1 \qquad \qquad :y$$
 מציאת $y-1=0.3(x-3)$: יהמשוואה:
$$y-1=0.3x-0.9$$

לח. מצאו את משוואת המשיק לפונקציה $\frac{1}{\ln x}$ ששיפועו לבטא את התשובות לח. מצאו את את משוואת באמצעות (e באמצעות

$$y' = \frac{\ln x - \frac{x}{x}}{(\ln x)^2} = \frac{\ln x - 1}{\ln^2 x} = \frac{1}{4}$$
 : פתרון

 $4 \ln x - 4 = \ln^2 x$

y = 0.3x + 0.1

$$t^2 - 4t + 4 = 0$$
 : $t = \ln x$ הצבה

t = 2

 $\ln x = 2$

 $x = e^2$

$$y = \frac{e^2}{\ln e^2} = \frac{e^2}{2}$$
 מציאת :y מציאת

$$y - \frac{e^2}{2} = \frac{1}{4}(x - e^2)$$
 : והמשוואה:

$$y = \frac{1}{4}x - \frac{e^2}{2}$$

. מצאו את משוואת המשיק פונקציה . $y = \ln x$ מצאו את המשיק המשיק. מהנקודה (0,1) העבירו ישר המשיק פתרון פתרון פתרון

. ברור שהנקודה הנתונה $x \neq 0$ ברור שהנקודה הנתונה היא נקודה שאיננה על הפונקציה.

כדי למצוא את נקודת ההשקה:

$$y' = \frac{y_1 - y_2}{\Delta x}$$

$$y' = \frac{\Delta y}{\Delta x}$$

$$\frac{1}{x} = \frac{\ln x - 1}{x - 0}$$

$$1 = \ln x - 1$$

$$\ln x = 2$$

$$x = e^2$$

$$y = \ln e^2 = 2$$
 מציאת : y מציאת

$$y' = \frac{1}{e^2}$$
 : והשיפוע

$$y-2=\frac{1}{e^2}(x-e^2)$$
 : והמשוואה

$$y-2 = \frac{1}{e^2}x-1$$

$$y = \frac{x}{e^2} + 1$$

<u>בקית הבנה : תרגיל 107</u>

תרגול עצמי

אינטגרל של פונקציה לוגריתמית

. $\int \frac{1}{x} dx = \ln x + C$ - מכיוון שהאינטגרל הוא ייפעולה הפוכהיי לנגזרת קל

כמו תמיד כל שאר כללי האינטגרציה מתקיימים גם בפונקציה זו.

: דוגמאות

$$\int rac{3}{x} dx = 3 \ln x + C$$
 הזכורת:
$$\int rac{7}{2x+15} dx = 7 rac{\ln(2x+15)}{2} + C$$

בפונקציה זו קל להביא לידי ביטוי אינטגרל הדורש חלוקת רב-איבר ברב-איבר כפי שכבר למדנו.

$$\int rac{x+10}{x-3} \mathrm{d}x$$
 כדי למצוא את : $rac{1}{x+10|x-3}$ יש צורך תחילה בחילוק: $rac{x-3}{13}$

אחרי החילוק אנו מקבלים:

$$\int \frac{x+10}{x-3} dx = \int 1 + \frac{13}{x-3} dx = x + 13 \ln(x-3) + C$$

$$\int \left(\frac{2x^3+5x^2-4x+1}{2x+8}\right) dx$$
 : כך גם במקרה של:

תחילה נבצע חלוקה:

$$\frac{x^2-1.5x+4}{2x^3+5x^2-4x+1} = \frac{2x^3+8x^2}{2x^3+8x^2}$$

$$-\frac{2x^3+8x^2}{3x^2-4x}$$

$$-\frac{3x^2-12x}{8x+1}$$

$$-\frac{8x+32}{-31}$$

$$\int \left(\frac{2x^3+5x^2-4x+1}{2x+8}\right) dx = \int \left(x^2-1.5x+4-\frac{31}{2x+8}\right) dx = \vdots$$

$$=\frac{x^3}{3}-\frac{1.5x^2}{2}+4x-\frac{31\ln(2x+8)}{2}+C$$

$$\int \left(\frac{3x^2-14x+5}{x^3-7x^2+5x}\right) dx = \vdots$$

$$=\frac{x^3}{3}-\frac{1.5x^2}{3} + \frac{31\ln(2x+8)}{2} + C$$

$$\int \left(\frac{3x^2-14x+5}{x^3-7x^2+5x}\right) dx = \frac{1}{x^3-7x^2+5x} + C$$

$$\int \left(\frac{3x^2-14x+5}{x^3-7x^2+5x}\right) dx = \ln \frac{1}{x^3-7x^2+5x} + C$$

$$\int \frac{3x^2-14x+5}{x^3-7x^2+5x} dx = \ln \frac{1}{x^3-7x^2+5x} + C$$

במקרים יותר סבוכים נשתמש בטכניקה שכבר למדנו:

$$\int \left(\frac{3x^3 - x}{3x^4 - 2x^2 + 8}\right) dx$$

$$u = 3x^4 - 2x^2 + 8$$

$$\frac{du}{dx} = 12x^3 - 4x = 4\left(3x^3 - x\right)$$
: ואז

 $\frac{1}{4}du = \left(3x^3 - x\right)dx$

: נציב בחזרה באינטגרל הנתון

$$\int \left(\frac{3x^3 - x}{3x^4 - 2x^2 + 8}\right) dx = \int \frac{\frac{1}{4} du}{u} = \frac{1}{4} \ln u + C = \frac{1}{4} \ln(3x^4 - 2x^2 + 8) + C$$

<u>בדיקת הבנה :</u>

: גם כאן עקרונות הפתרון אינם שונים מאלה שלמדנו ולכן נביא מספר מצומצם של דוגמאות

. (2,ln 5) ועוברת דרך הנקודה $f'(x) = \frac{1}{2x+1}$ המקיימת המקודה (2,ln 5).

$$f(x) = \int \frac{1}{2x+1} dx = \frac{\ln(2x+1)}{2} + C$$
 : פתרון

$$f(2) = \ln 5$$
 : ונתון

$$\frac{\ln(2\cdot 2+1)}{2} + C = \ln 5$$
 : לכך

$$\frac{\ln 5}{2} + C = \ln 5$$

$$C = \frac{\ln 5}{2}$$

$$f(x) = \frac{\ln(2x+1)}{2} + \frac{\ln 5}{2}$$
 : הפונקציה

 $f'(z) = \ln s + 10$ ומקיימת $f'(x) = \frac{2x+3}{x^2+3x-2} + 5$ שנגזרתה שנגזרתה לא פונקציה ($f(x) = \frac{2x+3}{x^2+3x-2}$

$$f(x) = \int \left(\frac{2x+3}{x^2+3x-2}+5\right) dx$$
 : פתרון

$$\mathbf{u} = \mathbf{x}^2 + 3\mathbf{x} - 2 \tag{Exercise 2}$$

$$du = (2x + 3)dx$$
 : ואז

$$f(x) = \int \frac{du}{u} + 5dx$$
 כלומר:

: היא רק עבור האיבר השמאלי כלומר du-ו u

$$\frac{2x+3}{x^2+3x-2} = \frac{du}{u}$$

: ולכן אינטגרלים לבצע שני אינטגרלים 5 $\underline{\mathrm{dx}}$ ולכן אנו אריכים לבצע שני אינטגרלים

$${f u}$$
 זוהי אינטגרציה לפי המשתנה ${f \int} {{
m d} {f u} \over {f u}}$ עבור.

x זוהי אינטגרציה לפי חמשתנה $\int 5 dx$.2

$$f(x) = \int \frac{du}{u} + \int 5dx = \ln u + 5x + C$$
 לכך:

$$f(x) = \ln(x^2 + 3x - 2) + 5x + C$$
 : ולכן $u = x^2 + 3x - 2$

$$f(2) = \ln 8 + 10$$
 : ונתון

$$ln(4+6-2)+10+C=ln +10$$
 : לכך

C = 0

$$f(x) = \ln(x^2 + 3x - 2) + 5x$$
 : והפונקציה

. $f(6) = 48 - \ln 3$ -ו $f'(x) = \frac{x^3 - 4x^2 + 2x - 5}{x - 3}$ על פי הנתונים: f(x) ו- f(x) ו- f(x)

יחרוו י

נתחיל בחילוק הנגזרת:

$$= \frac{x^3}{3} - \frac{x^2}{2} - x - 8\ln(x - 3) + C$$

$$f(6) = 72 - 18 - 6 - 8 \ln 3 + C = 48 - \ln 3$$

$$C = 7 \ln 3$$

$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} - x - 8\ln(x - 3) + 7\ln 3$$

והפונקציה

תרגול עצמי:

מציאת שטחים:

גם כאן נסתמך על ידע קודם ונביא רק מספר דוגמאות מצומצם.

מג. מצאו את השטח המוגבל בין

,
$$y = \frac{2}{2x+1}$$
 בין גרף הפונקציה

x=5 , x=1 בין ציר ה-x=1 והישרים

1 5

: פתרון

$$S = \int_{1}^{5} \frac{2}{2x+1} dx = \frac{2 \ln(2x+1)}{2} \bigg|_{1}^{5} = \ln(2x+1) \bigg|_{1}^{5}$$

$$S = \ln 11 - \ln 3 = 1.3$$

. y =
$$\frac{4x+4}{x^2+2x+1}$$
 מד. נתונה הפונקציה

דרך הנקודה שבה x=1 משיק לגרף הפונקציה.

.B בנקודה x-המשיק חותך את ציר ה

א. מצאו את משוואת המשיק.

 ${f x}={f B}$ ב. מצאו את השטח המוגבל בין הפונקציה, המשיק והישר

: פתרון

$$y = \frac{4x + 4}{x^2 + 2x + 1}$$

$$y = \frac{x + y}{x^2 + 2x + 1}$$
 א. מציאת משוואת המשיק:

$$y' = \frac{4(x^2 + 2x + 1) - (4x + 4)(2x + 2)}{(x^2 + 2x + 1)^2}$$

$$y' = \frac{-4x^2 - 8x - 4}{(x^2 + 2x + 1)^2}$$
 : לאחר פתיחת סוגריים וכינוס איברים

$$y'(1) = \frac{-16}{16} = \underline{-1 = m}$$
 : x = 1 הצבה

$$y(1) = \frac{4 \cdot 1 + 4}{1 + 2 + 1} = 2$$
 מציאת ערך y: y מציאת ערך

$$y-2 = -1(x-1)$$
 : והמשוואה

$$y = -x + 3$$

ב. מציאת גבולות:

$$X_{1} = 1$$

$$0 = -x + 3 \qquad \leftarrow \qquad x_2 = F$$

$${
m x_2}=3$$
 (x-היא נקודת החיתוך של המשיק עם איר B)

והשטח:

$$S = \int_{1}^{3} \left[\frac{4x+4}{x^{2}+2x+1} - (-x+3) \right] dx$$

לשם נוחות נפרק את האינטגרל לשניים:

$$S = \int_{1}^{3} \frac{4x+4}{x^{2}+2x+1} dx - \int_{1}^{3} (-x+3) dx$$

האינטגרל השמאלי כפי שכבר ראינו מביא לפונקציה מורכבת

$$\mathbf{u} = \mathbf{x}^2 + 2\mathbf{x} + \mathbf{1}$$
ולכן:

$$du = (2x + 2)dx$$

$$\begin{split} &\int_{1}^{3} \frac{4x+4}{x^{2}+2x+1} dx = \int_{1}^{3} \frac{2}{u} du = 2 \ln(x^{2}+2x+1) \Big|_{1}^{3} = \\ &= 2 \ln 16 - 2 \ln 4 = 5.54 - 2.77 = 2.77 \\ &\int_{1}^{3} (-x+3) dx = -\frac{x^{2}}{2} + 3x \Big|_{1}^{3} = (-4.5+9) - (-0.5+3) = 2 \\ &S = 2.77 - 2 = \underline{0.77} \\ \end{split}$$

מה. מצאו את השטח המוגבל בין גרף

$$y=3-4x$$
 הישר , $y=\frac{1}{1-2x}$ הפונקציה

וצירי השיעורים ברביע הראשון.

פתרון:

: מציאת גבולות

$$\dfrac{1}{1-2\mathrm{x}}=3-4\mathrm{x}$$
 : x_1 מציאת x_2 : x_3 : x_4 : x_4 : x_4 : x_4 : x_5 : x_4 : x_5 : \mathrm

$$x=1$$
 או $x=\frac{1}{4}$

: (אפשר להציב בשתי הפונקציות)

$$y(1) = 3 - 4 = -1$$
 לא מתאים

$$y(\frac{1}{4})=3-4\cdot\frac{1}{4}=3-1=2$$
 מתאים
$$3-4x=0$$
 : x_2 מציאת מציאת מציאת מאר

$$X_2 = \frac{3}{4}$$

: מציאת שטחים

$$S_{1} = \int_{0}^{\frac{1}{4}} \frac{1}{1 - 2x} dx = \frac{\ln(1 - 2x)}{-2} \Big|_{0}^{\frac{1}{4}} = \frac{\ln\frac{1}{2}}{-2} - \frac{\ln 1}{-2} = 0.35$$

$$S_{2} = \int_{\frac{1}{4}}^{\frac{3}{4}} (3 - 4x) dx = 3x - \frac{4x^{2}}{2} \Big|_{\frac{1}{4}}^{\frac{3}{4}} = 3x - 2x^{2} \Big|_{\frac{1}{4}}^{\frac{3}{4}} =$$

$$= \left(\frac{9}{4} - 2 \cdot \frac{9}{16}\right) - \left(\frac{3}{4} - 2 \cdot \frac{1}{16}\right) = \frac{1}{2}$$

$$S = S_1 + S_2 = \frac{1}{2} + 0.35 = \underline{0.85}$$
 : השטח

.9y – 3x = 8 מו. לפונקציה $y = \frac{1}{ax}$ העבירו נורמל שמשוואתו

.a א. מצאו את הפרמטר

ב. חשבו את השטח המוגבל על ידי הפונקציה, הנורמל וצירי השיעורים.

פתרון:

: a א. מציאת הפרמטר

: בעזרת בעזרת שיפוע שיפוע בעזרת הנגזרת בעזרת מצוא את a בעזרת מחילה ננסה למצוא את

$$9y - 3x = 8$$

$$y = \frac{3}{9}x + \frac{8}{9}$$

נורמל
$$m=\frac{1}{3}$$

: ומכאן

משיק m=-3

$$y' = -3 = -\frac{1}{(ax)^2} \cdot a$$

: נגזרת הפונקציה

$$-3 = -\frac{a}{(ax)^2}$$

(1) $3ax^2 = 1$

מכיוון שקיבלנו משוואה עם שני נעלמים נחפש עוד משוואה.

אנו יודעים שבנקודת החיתוך של הנורמל עם הפונקציה מתקיים:

$$\frac{1}{ax} = \frac{3}{9}x + \frac{8}{9}$$

(2)
$$9 = 3ax^2 + 8ax$$

$$9 = 1 + 8ax$$

: (2)-ב (1) נציב את

$$1 = ax$$

$$3ax \cdot x = 1$$

הצבה חוזרת ב-(1):

$$3 \cdot 1 \cdot x = 1$$

$$x = \frac{1}{3}$$

$$=$$
 3 ולכן:

יתוד! אל נקודת במהלך הפתרון את השיעור ביש את השיעור אל נקודת החיתוך! נשים לב שבמהלך הפתרון או לישוח את החיתוך או מישור לישוח או החיתוך החיתוך!

ב. מציאת השטח:

: נתחיל בשרטוט

$$\begin{split} S_1 &= \int_0^{\frac{1}{3}} \frac{3}{9} x + \frac{8}{9} dx = \frac{3x^2}{18} + \frac{8}{9} x \bigg|_0^{\frac{1}{3}} = \left(\frac{\frac{1}{3}}{18} + \frac{8}{27}\right) - 0 = \frac{17}{54} \\ S_2 &= \int_{\frac{1}{3}}^{5} \frac{1}{3x} dx = \frac{\ln(3x)}{3} \bigg|_{\frac{1}{3}}^{5} = \frac{\ln 15}{3} - \frac{\ln 1}{3} = 0.9 \\ S &= S_1 + S_2 = \frac{17}{54} + 0.9 = \underline{1.21} \end{split} : \text{nowm}$$

בדוגמה זו אנו רואים שכאשר אסטרטגית הפתרון ברורה ועושים שימוש במיומנויות הפתרון שכבר נלמדו ניתן לפתור גם תרגילים מורכבים.

> <u>תרגול עצמי:</u> תרגול כללי