2 Metóda najmenších štvorcov

Príklad 2.1. Uvažujme priamkový model $y_i = \beta_0 + x_i\beta_1 + \varepsilon_i$ (i = 1, ..., n). Určte **a)** odhad β metódou najmenších štvorcov pomocou klasického vzorca, **b)** S^2 , **c)** súčet rezíduí, **d)** MNŠ odhad β pomocou derivovania $\sum_i (y_i - \beta_0 - \beta_1 x_i)^2$.

Príklad 2.2. Nech

$$y_1 = \beta_1 + \varepsilon_1$$

$$y_2 = \beta_1 - 2\beta_2 + \varepsilon_2$$

$$y_3 = 2\beta_1 + \beta_2 + \varepsilon_3.$$

Nájdite MNŠ odhady parametrov β_1 a β_2 .

Príklad 2.3. Pre model $y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \varepsilon_i \ (i = 1, ..., n)$ máme nasledovné výsledky:

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} 33 & 0 & 0 \\ 0 & 40 & 20 \\ 0 & 20 & 60 \end{pmatrix}, \quad \mathbf{X}^T \mathbf{Y} = \begin{pmatrix} 132 \\ 24 \\ 92 \end{pmatrix}.$$

Nájdite **a)** rozsah výberu n, **b)** MNŠ odhady parametrov β_0 , β_1 , β_2 .

Príklad 2.4. Ukážte, že ak sú v modeli $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$ chyby normálne ($\varepsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$, tak odhad β metódou najmenších štvorcov je taký istý ako odhad β metódou maximálnej vierohodnosti (ML). Porovnajte tiež ML odhad σ^2 s S^2 .

Príklad 2.5. Predpokladajme, že pre lineárny model $y_i = \beta_0 + x_{i,1}\beta_1 + \ldots + x_{i,k-1}\beta_{k-1} + \varepsilon_i \ (i=1,\ldots,n)$ má **X** plnú hodnosť. Zvyčajne sa tiež predpokladá, že n > k. Čo sa stane s MNŠ odhadmi, ak tento predpoklad porušíme? Uvažujte **a)** n = k, **b)** n < k.