- 23. 利用磁场实现离子偏转是科学仪器中广泛应用的技术。如图所示,Oxy 平面(纸面)的第一象限内有足够长且宽度均为 L、边界均平行 x 轴的区域 I 和 II ,其中区域存在磁感应强度大小为 B_1 的匀强磁场,区域 II 存在磁感应强度大小为 B_2 的磁场,方向均垂直纸面向里,区域 II 的下边界与 x 轴重合。位于 (0,3L) 处的离子源能释放出质量为 m、电荷量为 q、速度方向与 x 轴夹角为 60° 的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。
- (1) 求离子不进入区域 II 的最大速度 v_1 及其在磁场中的运动时间 t_2
- (2) 若 $B_2 = 2B_1$, 求能到达 $y = \frac{L}{2}$ 处的离子的最小速度 v_2 ;
- (3)若 $B_2=\frac{B_1}{L}y$,且离子源射出的离子数按速度大小均匀地分布在 $\frac{B_1qL}{m}\sim\frac{6B_1qL}{m}$ 范围,求进入第四象限的离子数与总离子数之比 η 。

