INTRODUCTION TO NILP

What is Natural Language Processing?

QUESTION ANSWERING: IBM'S WATSON

• Won Jeopardy on February 16, 2011!

WILLIAM WILKINSON'S

"AN ACCOUNT OF THE PRINCIPALITIES OF
WALLACHIA AND MOLDOVIA"

INSPIRED THIS AUTHOR'S

MOST FAMOUS NOVEL

INFORMATION EXTRACTION

Subject: meeting

Date: January 15, 2016

To: Me

Event: Meeting

Date: Jan-16-2016

Start: 10:00am

End: 11:30am

Where: Office 101

Hi Sr, we've now scheduled the meeting.

It will be in Office 101 tomorrow from 10:00-11:30.

-Chris

INFORMATION EXTRACTION & SENTIMENT ANALYSIS

Attributes:

zoom
affordability
size and weigh
flash
ease of use

Size and weight

• nice and compact to carry!

since the camera is small and light, I won't need to carr professional cameras either!

• the camera feels flimsy, is plastic and very light in weight you have to be very delicate in the handling of this camera

MACHINE TRANSLATION

•Fully automatic

Enter Source Text:

这不过是一个时间的问题.

Translation from Stanford's Phrasal:

This is only a matter of time.

Helping human translators

LANGUAGE TECHNOLOGY

making good progress

mostly solved

Part-of-speech (POS) tagging

ADJ ADJ NOUN VERB ADV

Colorless green ideas sleep furiously.

Named entity recognition (NER)

PERSON ORG LOC

Finstein met with UN officials in Princeton

still really hard

Where is Citizen Kane playing in SF?

Castro Theatre at 7:30. Do you want a ticket?

Dialog

AMBIGUITY MAKES NLP HA "CRASH BLOSSOMS"

Violinist Linked to JAL Crash Blossoms
Teacher Strikes Idle Kids
Red Tape Holds Up New Bridges
Hospitals Are Sued by 7 Foot Doctors
Juvenile Court to Try Shooting Defendant
Local High School Dropouts Cut in Half

AMBIGUITY IS PERVASIVE

New York Times headline (17 May 2000)

Fed raises interest rates

Fed raises interest rates

Fed raises interest rates 0.5%

WHY ELSE IS NATURAL LANGUAGE UNDERSTANDING DIFFICULT?

non-standard English

Great job @justinbieber! Were SOO PROUD of what youve accomplished! U taught us 2 #neversaynever & you yourself should never give up either

neologisms

unfriend Retweet bromance

segmentation issues

the New York-New Haven Railroad the New York-New Haven Railroad

world knowledge

Mary and Sue are sisters.

Mary and Sue are mothers.

idioms

dark horse get cold feet lose face throw in the towel

tricky entity names

Where is A Bug's Life playing ...

Let It Be was recorded ...

... a mutation on the for gene ...

But that's what makes it fun!

MAKING PROGRESS ON THIS PROBLEM...

- The task is difficult! What tools do we need?
 - Knowledge about language
 - Knowledge about the world
 - A way to combine knowledge sources
- How we generally do this:
 - probabilistic models built from language data
 - P("maison" → "house") high
 - P("L'avocat général" → "the general avocado") low
 - Luckily, rough text features can often do half the job.

INTRODUCTION TO NILP

What is Natural Language Processing?

BASIC TEXT PROCESSING

Regular Expressions

REGULAR EXPRESSIONS

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

REGULAR EXPRESSIONS: DISJUNCTIONS

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter $1:$ Down the Rabbit Hole

REGULAR EXPRESSIONS: NEGATION IN DISJUNCTION

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <u>y</u> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason"</pre>
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

REGULAR EXPRESSIONS: MORE DISJUNCTION

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

REGULAR EXPRESSIONS: ?

X	
• •	

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	l or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa baaaaa
beg.n		begin begun began

Stephen C Kleene

Kleene *, Kleene +

REGULAR EXPRESSIONS: ANCHORS ^

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<pre>1 "Hello"</pre>
\.\$	The end.
.\$	The end? The end!

EXAMPLE

• Find me all instances of the word "the" in a text.

```
the \label{eq:Misses capitalized examples} $$ [tT] he $$ Incorrectly returns other or theology $$ [^a-zA-Z] [tT] he [^a-zA-Z] $$
```


ERRORS

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

ERRORS CONT.

- In NLP we are always dealing with these kinds of errors.
- •Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

SUMMARY

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

BASIC TEXT PROCESSING

Regular Expressions

BASIC TEXT PROCESSING

Word tokenization

TEXT NORMALIZATION

- •Every NLP task needs to do text normalization:
 - Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

HOW MANY WORDS?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - •Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

HOW MANY WORDS?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

HOW MANY WORDS?

N =number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

Church and Gale (1990): $|V| > O(N^{\frac{1}{2}})$

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	l trillion	13 million

SIMPLE TOKENIZATION IN UNIX

• (Inspired by Ken Church's UNIX for Poets.)

5 Abbess 6 Abbey 3 Abbot

5 ABBOT

• Given a text file, output the word tokens and their frequencies

Merge and count each type

1945 A

72 AARON 25 Aaron

19 ABBESS 6 Abate
1 Abates

THE FIRST STEP: TOKENIZING

```
tr -sc 'A-Za-z' '\n' < shakes.txt | head
```

THE

SONNETS

bу

William

Shakespeare

From

fairest

creatures

We

. . .

THE SECOND STEP: SORTING

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
Α
Α
```

MORE COUNTING

Merging upper and lower case

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c
```

Sorting the counts

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c | sort -n -r
```

```
23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954 d
```

What happened here?

ISSUES IN TOKENIZATION

- •Finland's capital
- Hewlett-Packard
- state-of-the-art
- Lowercase
- San Francisco
- m.p.h., PhD.

- → Finland Finlands Finland's ?
- •what're, I'm, isn't \rightarrow What are, I am, is not
 - \rightarrow Hewlett Packard?
 - \rightarrow state of the art?
 - → lower-case lowercase lower case ?
 - \rightarrow one token or two?
 - \rightarrow ??

TOKENIZATION: LANGUAGE ISSUES

- French
 - *L'ensemble* → one token or two?
 - L? L'? Le?
 - Want l'ensemble to match with un ensemble
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

TOKENIZATION: LANGUAGE ISSUES

- Chinese and Japanese no spaces between words:
 - **莎拉波娃**现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在居住在 美国东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

WORD TOKENIZATION IN CHINESE

- Also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

MAXIMUM MATCHING WORD SEGMENTATION ALGORITHM

- Given a wordlist of Chinese, and a string.
- 1) Start a pointer at the beginning of the string
- 2) Find the longest word in dictionary that matches the string starting at pointer
- 3) Move the pointer over the word in string
- 4) Go to 2

MAX-MATCH SEGMENTATION ILLUSTRATION

Thecatinthehat

Thetabledownthere

the cat in the hat

the table down there

theta bled own there

- Doesn't generally work in English!
- But works astonishingly well in Chinese
 - **莎拉波娃**现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Word tokenization

Word Normalization and Stemming

NORMALIZATION

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match U.S.A. and USA
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: window Search: window, windows
 - Enter: windows Search: Windows, windows, window
 - Enter: Windows Search: Windows
- Potentially more powerful, but less efficient

CASE FOLDING

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

LEMMATIZATION

- Reduce inflections or variant forms to base form
 - •am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors → the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

MORPHOLOGY

•Morphemes:

- •The small meaningful units that make up words
- •Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

STEMMING

- Reduce terms to their stems in information retrieval
- Stemming is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

PORTER'S ALGORITHM THE MOST COMMON ENGLISH STEMMER

Step la

```
sses \rightarrow sscaresses \rightarrow caressies \rightarrow iponies \rightarrow poniss \rightarrow sscaress \rightarrow caresss \rightarrow \emptysetcats \rightarrow cat
```

Step 2 (for long stems)

```
ational\rightarrow ate relational\rightarrow relate izer\rightarrow ize digitizer \rightarrow digitize ator\rightarrow ate operator \rightarrow operate
```

Step 1b

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing \rightarrow sing (*v*)ed \rightarrow \emptyset plastered \rightarrow plaster
```

Step 3 (for longer stems)

```
al \rightarrow \emptyset revival \rightarrow reviv
able \rightarrow \emptyset adjustable \rightarrow adjust
ate \rightarrow \emptyset activate \rightarrow activ
```

•••

VIEWING MORPHOLOGY IN A CORPUS WHY ONLY STRIP —ING IF THERE IS A VOWEL?

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing
```

VIEWING MORPHOLOGY IN A CORPUS WHY ONLY STRIP —ING IF THERE IS A VOWEL?

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing
```

tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing\$' | sort | uniq -c | sort -nr

DEALING WITH COMPLEX MORPHOLOGY IS SOMETIMES NECESSARY

- Some languages requires complex morpheme segmentation
 - Turkish
 - Uygarlastiramadiklarimizdanmissinizcasina
 - `(behaving) as if you are among those whom we could not civilize'
 - Uygar `civilized' + las `become'
 - + tir 'cause' + ama 'not able'
 - + dik 'past' + lar 'plural'
 - + imiz 'plpl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Word Normalization and Stemming

Sentence Segmention and Decision Trees

SENTENCE SEGMENTATION

- !,? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

DETERMINING IF A WORD IS END-OF-SENTENCE: A DECISION TREE

MORE SOPHISTICATED DECISION TREE FEATURES

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number

- Numeric features
 - •Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

IMPLEMENTING DECISION TREES

- A decision tree is just an if-then-else statement
- The interesting research is choosing the features
- Setting up the structure is often too hard to do by hand
 - Hand-building only possible for very simple features, domains
 - For numeric features, it's too hard to pick each threshold
 - Instead, structure usually learned by machine learning from a training corpus

DECISION TREES AND OTHER CLASSIFIERS

- We can think of the questions in a decision tree
- As features that could be exploited by any kind of classifier
 - Logistic regression
 - SVM
 - Neural Nets
 - etc.

Sentence Segmention and Decision Trees

