Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik **SS 2012**

Gruppenübung

Aufgabe G1

Seien φ und ψ AL-Formeln. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Lösungsskizze: Wir bezeichnen mit $K(\varphi)$ die Klauselmenge zu φ , d.h. die Menge der Klauseln einer zu φ äquivalenten Formel in KNF.

- (a) $\square \in \operatorname{Res}^*(K(\varphi))$
- (b) $\square \notin \operatorname{Res}^*(K(\varphi))$
- (c) $\square \in \operatorname{Res}^*(K(\neg \varphi))$
- (d) $\square \notin \operatorname{Res}^*(K(\neg \varphi))$
- (e) $\square \in \operatorname{Res}^*(K(\varphi \wedge \neg \psi))$
- (f) $\square \in \operatorname{Res}^*(K(\bigwedge \Phi))$
- (g) $\square \in \operatorname{Res}^*(K(\bigwedge \Phi_0))$ für ein endliches $\Phi_0 \subseteq \Phi$.

Aufgabe G2

Seien
$$\varphi := (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q)$$

$$\psi := (p \wedge q) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Lösungsskizze:

(a)

$$\operatorname{Res}^{0}(K) = \{ \{p, \neg q, \neg r\}, \{\neg p, q, \neg r\}, \{\neg p, \neg q\} \}$$

$$\operatorname{Res}^{1}(K) = \operatorname{Res}^{0}(K) \cup \{ \{q, \neg q, \neg r\}, \{\neg q, \neg r\}, \{p, \neg p, \neg r\}, \{\neg p, \neg r\} \}$$

$$\operatorname{Res}^{2}(K) = \operatorname{Res}^{1}(K) \cup \{ \{\neg p, \neg q, \neg r\} \}$$

$$\operatorname{Res}^{3}(K) = \operatorname{Res}^{2}(K)$$

(b) $\varphi \wedge \neg \psi \equiv (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q) \wedge (\neg p \vee \neg q) \wedge (p \vee q) \wedge (p \vee \neg q \vee r) \wedge (\neg p \vee q \vee r)$, daher betrachten wir die Klauseln: $\{p, \neg q, \neg r\}, \{\neg p, q, \neg r\}, \{\neg p, \neg q\}, \{p, q\}, \{p, q, r\}\}$

Da \square aus den Klauseln ableitbar ist, gilt $\varphi \models \psi$.

Aufgabe G3

Ein *Dominosystem* $\mathcal{D} = (D, H, V)$ besteht aus einer endlichen Menge D von quadratischen Dominosteinen und zwei Relationen $H \subseteq D \times D$ und $V \subseteq D \times D$, so dass

- $(d, e) \in H$ gdw. e rechts neben d passt,
- $(d, e) \in V$ gdw. e über d passt.

Wir betrachten ein festes Dominosystem $\mathcal{D} = (D, H, V)$.

- (a) Geben Sie zu $n \in \mathbb{N}$ eine AL-Formelmenge Φ_n an, welche genau dann erfüllbar ist, wenn man ein Quadrat der Größe $n \times n$ so mit Dominosteinen aus \mathcal{D} belegen kann, dass nebeneinander liegende Steine zueinander passen. (Wir nehmen an, dass es von jedem Dominostein beliebig viele Exemplare gibt.)
- (b) Beweisen Sie mit Hilfe des Kompaktheitssatzes, daß man die gesamte Ebene $\mathbb{N} \times \mathbb{N}$ korrekt mit Dominosteinen belegen kann, vorausgesetzt dies geht für alle endlichen Quadrate $n \times n$.
- (c) Beweisen Sie die Aussage aus (b) mit Hilfe des Lemmas von König anstatt des Kompaktheitssatzes.

Lösungsskizze:

(a) Wir benutzen Aussagenvariablen p^d_{ik} für $d \in D$ und $1 \le i, k \le n$, die die folgende intuitive Bedeutung haben: "Auf Koordinate (i,k) liegt ein Stein vom Typ d."

$$\bigvee_{d \in D} p_{ik}^d \qquad \text{für alle } i, k$$

$$\bigwedge_{d \neq e} \neg (p_{ik}^d \wedge p_{ik}^e) \qquad \text{für alle } i, k$$

$$\bigvee_{(d,e) \in H} (p_{ik}^d \wedge p_{(i+1)k}^e) \qquad \text{für alle } i, k$$

$$\bigvee_{(d,e) \in V} (p_{ik}^d \wedge p_{i(k+1)}^e) \qquad \text{für alle } i, k$$

- (b) Sei Φ eine Formelmenge wie oben, wobei aber i und k beliebige natürliche Zahlen sind. Φ ist genau dann erfüllbar, wenn sich die Ebene parkettieren lässt.
 - Um zu zeigen, dass Φ erfüllbar ist, verwenden wir den Kompaktheitssatz. Sei $\Psi \subseteq \Phi$ eine endliche Teilmenge. Dann gibt es eine Zahl $m \in \mathbb{N}$, so dass in $\Psi \subseteq \Phi_m$. Da sich das $m \times m$ Quadrat nach Voraussetzung parkettieren läßt, hat Φ_m und damit auch Ψ ein Modell. Also ist jede endliche Teilmenge von Φ erfüllbar. Aufgrund des Kompaktheitssatzes ist dann auch Φ erfüllbar.
- (c) Wir konstruieren einen Baum \mathcal{B} wie folgt:
 - Auf der n-ten Ebene gibt es einen Knoten für jede gültige Belegung von $n \times n$.
 - Von einem Knoten v auf der n-ten Ebene gibt es eine Kante zu einem Knoten v' auf der n+1-ten Ebene genau dann wenn die Belegung von v' die Belegung von v fortsetzt.

Diese Konstruktion beschreibt einen Baum, weil jeder Knoten einen eindeutigen Vorgängerknoten hat. Den Vorgängerknoten eines Knotens auf der n-ten findet man, indem man nur die Teilbelegung auf $(n-1)\times (n-1)$ betrachtet.

Der Baum $\mathcal B$ ist endlich verzweigt, weil es nur endlich viele Belegung von $n \times n$ gibt. Nach Voraussetzung gibt es für jedes n eine Belegung von $n \times n$, d.h. auf jeder Ebene gibt es einen Knoten. Damit ist $\mathcal B$ unendlich. Nach Lemma von König gibt es nun einen unendlichen Pfad in $\mathcal B$. Dieser Pfad beschreibt eine Belegung von $\mathbb N \times \mathbb N$, da sich längs eines Pfades die Belegungen fortsetzen stets fortsetzen lässt.

Aufgabe G4

Für – möglicherweise unendliche – Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Lösungsskizze:

Wenn $\bigwedge \Phi \models \bigvee \Psi$ gilt, dann hat die Menge $\Phi \cup \neg \Psi$ keine Modelle, wobei $\neg \Psi = \{ \neg \psi : \psi \in \Psi \}$. Der Kompaktheitssatz impliziert dann, dass schon eine endliche Teilmenge $\Gamma_0 \subseteq \Phi \cup \neg \Psi$ keine Modelle hat. Setzen wir $\Phi_0 = \{ \varphi \in \Phi : \varphi \in \Gamma_0 \}$ und $\Psi_0 = \{ \psi \in \Psi : \neg \psi \in \Gamma_0 \}$, dann heißt das, dass $\Gamma_0 = \Phi_0 \cup \neg \Psi_0$ keine Modelle hat, also $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Hausübung

Aufgabe H1 (2+2 Punkte)

(a) Beweisen Sie mit Hilfe von aussagenlogischer Resolution, dass die folgende Formelmenge nicht erfüllbar ist.

$$\neg r$$
, $p \lor q \lor r$, $q \to \neg p$, $(q \land r) \lor (q \land p)$

(b) Finden Sie das minimale Modell der folgende Horn-Formelmenge.

$$(p \land s) \rightarrow q$$
, r , $q \rightarrow s$, $r \rightarrow p$

Lösungsskizze:

(a) Es gelten $q \to \neg p \equiv \neg q \lor \neg p$ und $(q \land r) \lor (p \land q) \equiv q \land (p \lor r)$.

Damit ist die gegebene Formelmenge nicht erfüllbar.

(b) Wir erhalten $\mathcal{X}_0 = \emptyset$, $\mathcal{X}_1 = \mathcal{X}_0 \cup \{r\}$, $\mathcal{X}_2 = \mathcal{X}_\infty = \mathcal{X}_1 \cup \{p\}$. Ein Modell ist $\mathcal{I}(p) = \mathcal{I}(r) = 1$, $\mathcal{I}(q) = \mathcal{I}(s) = 0$.

Aufgabe H2 (4 Punkte)

Entscheiden Sie mit Hilfe des AL-Sequenzenkalküls \mathcal{SK} , ob die folgenden Sequenz allgemeingültig ist oder nicht.

$$p \rightarrow q, p \rightarrow \neg q \vdash \neg p$$

Falls diese Sequenz nicht allgemeingültig ist, so geben Sie eine nicht erfüllende Belegung an. *Hinweis:* "→" ist hier wie üblich zu ersetzen.

Lösungsskizze: Die Sequenz ist allgemeingültig, denn es gilt:

$$\frac{\frac{\overline{p} \vdash p, p}{(Ax)}}{\frac{p, \neg p, \neg p \vdash \emptyset}{(\neg L)}} \frac{\overline{p} \vdash p, q}{\frac{p, \neg p, \neg q \vdash \emptyset}{(\lor L)}} \frac{(Ax)}{\frac{p, q \vdash p}{(\neg L)}} \frac{\overline{p, q \vdash p}}{(\neg L)} \frac{(Ax)}{\frac{p, q \vdash p}{(\neg L)}} \frac{\overline{p, q \vdash q}}{(\neg L)} \frac{(Ax)}{p, q, \neg q \vdash \emptyset} \frac{(\lor L)}{(\lor L)}$$

$$\frac{p, \neg p, \neg p \lor \neg q \vdash \emptyset}{(p \to q), (p \to \neg q) \vdash \neg p} (\neg R)$$

Nach der Korrektheit des Sequenzkalküls ist die obige ableitbare Sequenz damit auch allgemeingültig.