

Lecture 2: Working with pedigrees in R

Pedigree analysis in R

ISFG Summer School - Virtual Edition 2021 Magnus Dehli Vigeland & Thore Egeland

The ped suite: A collection of packages for pedigree analysis in R

Home page:

https://magnusdv.github.io/pedsuite

Source code available on GitHub:

https://github.com/magnusdv

The ped suite: A collection of packages for pedigree analysis in R

pedtools: Tools for working with pedigrees in R

How do I load my pedigree into R?

Either:

- ✓ Build with pedtools
- ✓ Read from file:
 - readPed()
 - readFam()

Building pedigrees

```
> library(pedtools)
> x = nuclearPed()
> plot(x)
```

```
1 2
```


Names and sex:

Many ways to tweak the plot!

Some useful functions

Create: basic

- singleton
- nuclearPed
- linearPed
- halfSibPed
- cousinPed
- halfCousinPed

Member subsets

- founders
- nonfounders
- leaves
- males
- females
- typedMembers
- untypedMembers

Create: complex

- ancestralPed
- doubleCousins
- quadHalfFirstCousins
- fullSibMating
- randomPed

Relatives

- father
- mother
- children
- siblings
- grandparents
- spouses
- ancestors
- descendants
- unrelated

Manipulate

- addSon
- addDaugher
- addParents
- addChildren
- swapSex
- relabel
- removeIndividuals
- branch
- subset
- mergePed
- breakLoops

Another example

```
pedtools
```

```
> x = cousinPed(2)
> plot(x)
```

Change gender:

- > x = swapSex(x, 12)
 > plot(x)
- Add inbred child

Remember

- Store the result after each change!
- It is OK to use the same name (if you don't need the previous object)

Shortcut command for this pedigree

> x = cousinPed(2, child = TRUE)

List of pedigrees

Alternative pedigree creation: ped file

A text file describing a pedigree structure.

In pedtools:

- > x = readPed("example.ped")
- > plot(x)

famid	id	fid	_ mid	sex
1	1	0 "	0	1
1	2	0	0	2
1	3	0	0	1
1	4	1	2	2
1	5	3	4	2
1	6	3	4	1

0 if founder

Contents of example.ped

Columns

famid = family ID (optional)

id = individual ID

fid = ID of father

mid = ID of mother

sex = 1 (male), 2 (female) or 0 (unknown)

Free online tool: QuickPed¹

¹https://magnusdv.shinyapps.io/quickped

Quick demo of QuickPed

https://magnusdv.shinyapps.io/quickped

Ok, I've got my pedigree in R now.
But what about marker data?

- ✓ Include in
 - ped file
 - fam file

Marker data 1

```
> x = nuclearPed(2)
> m = marker(x, geno = c(NA, NA, "a/b", "a/a"))
> plot(x, marker = m)
```


Print information about m:

```
> m
```

3 a/b

4 a/a

* * * * *

Position: NA

Mutation: none

Frequencies:

a b

0.5 0.5

Plot options for markers:

Marker data 2

```
> x = nuclearPed(2)
> m = marker(x, geno = c(NA, NA, "a/b", "a/a"))
> plot(x, marker = m)
```


It is often useful to attach m to x

```
> x = setMarkers(x, m)
> x

id fid mid sex <1>
    1    *    *    1    -/-
    2    *    *    2    -/-
    3    1    2    1    a/b
    4    1    2    1    a/a
```

new column!

Now we may write:

```
> plot(x, marker = 1)
```

```
Changing allele frequencies
> fr = c(a = 0.1, b = 0.9)
> afreq(x, marker = 1) = fr

Inspect the result
> afreq(x, marker = 1)
    a    b
0.1 0.9
```


Functions for manipulating marker data

Get/set attributes

- alleles
- afreq
- mutmod
- genotype
- chrom
- posMb
- name

Attach/remove

- setMarkers
- addMarkers
- selectMarkers
- removeMarkers
- transferMarkers

Frequency database

- getFreqDatabase
- setFreqDatabase
- readFreqDatabase
- writeFreqDatase

pedprobr: Pedigree probabilities in R

What it does
Compute the probability

P(genotypes | pedigree; params)

Features

- arbitrary inbreeding
- autosomal & X-linked
- linked markers
- mutation models
- Elston-Stewart algorithm

A simple likelihood

```
> library(pedprobr) # or library(pedsuite)
```

Create a pedigree with a SNP marker

```
> x = nuclearPed(1)
```

$$>$$
 m = marker(x, geno = c("a/b", NA, NA))

> plot(x, m)

Compute the pedigree likelihood

> likelihood(x, m)

[1] 0.5

Control

- By default, P(a) = P(b) = 0.5
- Thus HWE implies

$$P(a/b) = 2pq = 2 \cdot 0.5 \cdot 0.5$$

= 0.5

An example on X

```
Add X-marker to the pedigree
```

Compute the pedigree likelihood

> likelihood(x)

[1] 0.125

By default, **likelihood**(**x**) returns the likelihood for each attached markers.

oneMarkerDistribution

Computes the genotype distribution for one or several pedigree members, conditional on the observed genotypes

```
> x = nuclearPed(2)
> m = marker(x, geno = c(NA, NA, "A/B", "A/B"))
> plot(x,m)
```


> oneMarkerDistribution(x, partial = m, ids = 1:2)

Joint genotype probability distribution for individuals 1 and 2:

```
A/A B/B A/B
```

A/A 0.0 0.2 0.1

B/B 0.2 0.0 0.1

A/B 0.1 0.1 0.2

Now: Exercises!

