16

QCM 5

lundi 4 décembre

Pour les questions de géométrie, on se place dans l'espace \mathbb{R}^3 muni du repère $(O, \vec{i}, \vec{j}, \vec{k})$.

Question 11 *

Dans \mathbb{R}^3 , l'équation 2x+y-2z+6=0 correspond à l'équation

🗶 🔪 a. d'une droite

>> b. d'un plan

c. d'un cercle

d. Rien de ce qui précède

(A si par de constante pout être plan vectorial)

0

Question 12

Soit \vec{u} un vecteur non nul de \mathbb{R}^3 . L'ensemble $\left\{M \in \mathbb{R}^3, \; \exists \, \alpha \in \mathbb{R}, \; \overrightarrow{OM} = \alpha \vec{u}\right\}$ est

A a. une droite.

b. un plan.

c. un cercle.

d. Aucune des autres réponses

+1

Question 13

Soient $\vec{u}=(1,2,3)$ et $\vec{v}=(-1,4,-2).$ On a

a.
$$2\vec{u} - \vec{v} = (-3, 0, -8)$$

b.
$$2\vec{u} - \vec{v} = (3, 8, -4)$$

$$\sim$$
 c. $2\vec{u} - \vec{v} = (3, 0, 8)$

d. Aucune des autres réponses

+1

Question 14

Soient $\vec{u} = (1, 0, 2), \vec{v} = (1, 3, 0)$ et $\vec{w} = (-4, 0, 8)$ dans \mathbb{R}^3 . On a

Ö

a. \vec{u} et \vec{v} sont colinéaires.

\ b. \vec{u} et \vec{v} ne sont pas colinéaires.

c. \vec{u} et \vec{w} sont colinéaires.

\ d. \vec{u} et \vec{w} ne sont pas colinéaires.

Question 15

On considère les deux nombres complexes $z_1=2-i$ et $z_2=-1+3i$. On a

$$1 a. z_1 - z_2 = 3 - 4i$$

b.
$$z_1 - z_2 = 1 + 2i$$

c.
$$z_1 - z_2 = 3 + 2i$$

Question 16

On considère les deux nombres complexes $z_1=2-i$ et $z_2=-1+3i$. On a

a.
$$z_1 \times z_2 = -5 + 5i$$

b.
$$z_1 \times z_2 = 1 + 5i$$

$$c. z_1 \times z_2 = 1 + 7i$$

Question 17

Le module de z = -4 - 3i vaut

a.
$$|z| = \sqrt{7}$$

b.
$$|z| = 5$$

c.
$$|z| = -5$$

d.
$$|z| = 25$$

Question 18

Un argument du nombre complexe z = -2i est

c.
$$\frac{\pi}{2}$$

Question 19

Le nombre complexe $z=2e^{i\frac{\pi}{3}}$ est égal à

a.
$$\sqrt{3} + i$$

Nb. 1 +
$$i\sqrt{3}$$

c.
$$\sqrt{2} + i\sqrt{2}$$

d. Aucune des autres réponses

+1

Question 20

Le nombre complexe z = -1 + i est égal à

a.
$$z = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$\searrow$$
b. $z=\sqrt{2}e^{i}\frac{3\pi}{4}$

c.
$$z = \sqrt{2}e^{-i\frac{\pi}{4}}$$

d.
$$z = \sqrt{2}e^{-i\frac{5\pi}{4}}$$

e. Aucune des autres réponses

posibilité d'avrir dans les 2 rens