

Université Internationale de Casablanca

Cours exposé

ELECTRONIQUE NUMERIQUE

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE NUMERIQUE

Sommaire

Chapitre I: Technologies des circuits logiques: TTL et CMOS

Chapitre II : Les bases de numération

Chapitre III: Les portes logiques

Chapitre IV: Les fonctions binaires

Chapitre V : Les circuits combinatoires

ELECTRONIQUE NUMERIQUE

Chapitre. VI

Les circuits séquentiels

- I. Les bascules
- II. Les circuits de comptage : compteurs/décompteurs
- **III.** Les registres
- IV. Les mémoires

III. Les circuits de comptage : Compteurs/Décompteurs

A. Les compteurs / décompteurs synchrones

- 1°) Les diviseurs de fréquence
- 2°) Les compteurs asynchrones (ou compteurs séries)
- 3°) Les décompteurs asynchrones (ou décompteurs séries)
- 4°) Les compteurs asynchrones réversibles (ou compteursdécompteurs asynchrones)
- 5°) Inconvénients des compteurs / décompteurs asynchrones

1°) Les diviseurs de fréquence

► Élément de base du compteur asynchrone ou Q oscille (commute ou bascule) entre 0 et 1 à chaque front actif de l'horloge

► Avec 2 bascules, on réalise une division par 4.

$$f_{QA} = \frac{1}{2} f_H$$

$$f_{QB} = \frac{1}{2} f_{QA} = \frac{1}{4} f_{H}$$

► La fréquence de sortie de la dernière bascule Q_B est égale à la fréquence de l'horloge divisée par le modulo du compteur

$$f_{Qn} = f_H / N$$

N: Modulo

Q_N: Sortie de la dernière bascule

f_H: Fréquence de l'horloge.

2°) Les compteurs asynchrones (ou compteurs séries)

- ► La conception des compteurs asynchrones repose sur les principes suivants :
 - Les bascules doivent être montées en trigger ou en bistable (basculement à chaque front du signal d'horloge).
 - Les bascules considérées ci-dessous doivent réagir au front descendant.
 - L'horloge de comptage est appliquée à la première bascule.
 - La sortie de chaque bascule est reliée à l'entrée d'horloge de la bascule suivante.
 - Les sorties des bascules constituent directement les sorties du compteur.
 - La sortie de la première bascule représente le LSB et celle de la dernière bascule représente le MSB.

■ Bascules trigger

Une bascule trigger ou bistable est une bascule dont la sortie commute à chaque front du signal d'horloge.

1°) bascule JK montée en trigger

2°) bascule D montée en trigger

■ Les compteurs asynchrones à cycle régulier

a°) $N = 2^n$: compteurs asynchrones à cycle de comptage complet.

Exemple n°1:

Compteur asynchrone modulo 16: \rightarrow 16 = 2^4 \rightarrow 4 bascules TH

■ Les compteurs asynchrones à <u>cycle régulier</u>

b°) N < 2ⁿ: compteurs asynchrones à cycle de comptage incomplet.

- ► Nous avons vu jusqu'ici les compteurs de modulo égal 2ⁿ.
- ▶ Il est possible de modifier ces compteurs pour obtenir des compteurs de modulo inférieur 2ⁿ.
- ► La principe consiste à connecter la sortie d'une porte "NON- ET" (pour les bascules dont la remise à zéro est active au niveau bas) aux entrées « Clear » ou « RAZ » de chaque bascule.
- ▶ lorsque la combinaison correspondant au modulo du compteur est atteinte, on relie les entrées de la porte "NON- ET" aux sorties des bascules ayant, le niveau logique "1".
- ► Lorsque la sortie de la porte "NON- ET" devient zéro les entrées RAZ sont activées, les sorties des bascules sont ramenées à zéro et le compteur se remet immédiatement à compter à partir de zéro.
- ► Pour les bascules donc la RAZ est active au niveau haut utilisez la porte "ET" au lieu de la porte "NON-ET"

► Ainsi, pour 2ⁿ⁻¹ < n < 2ⁿ, on réalise un compteur modulo 2ⁿ (avec n bascules), puis on raccourcit le cycle en jouant sur les entrées « Clear » des bascules.

Exemple:

▶ Pour un modulo 3 : 2¹ <</p>

 $2^1 < 3 < 2^2$

→ il faut 2 bascules

▶ Pour un modulo 7 :

 $2^2 < 7 < 2^3$

→ il faut 3 bascules

► Pour un modulo 10 :

 $2^3 < 3 < 2^4$

→ il faut 4 bascules

Un certain nombre d'états ne seront jamais utilisés.

Exemple n°1:

- ► Réalisation d'un compteur modulo 13 avec des bascules JK déclenchés sur front descendant de l'horloge.
- ► Le compteur modulo 13 compte de 0000 à 1100 (de 0 à 12).

- ► On a : 2³ < 13 < 2⁴, on réalise donc un compteur modulo 16, et on ramène le compteur à 0000 quand les sorties des bascules indiquent 1101.
- ► L'état Q_3 Q_2 Q_1 Q_0 = 1 1 0 1 est un état temporaire. Il n'existe que pendant une durée très courte.
- C'est un état indésirable que l'on nomme parfois « glitch ».

1er cas : réalisation avec des bascules JKH

Combinaison	Q_3	Q_2	Q_1	Q_0	forçage à zéro de toutes les JKH par	Q_3	Q_2	Q ₁	Q_0
13	1	1	0	1	Pr = 1 et CI = 0	0	0	0	0

Compteur asynchrone modulo 13: \Rightarrow 2³ < 13 < 2⁴ \Rightarrow 4 bascules JKH

2ème cas : réalisation avec des bascules TH

Combinaison	Q_3	Q ₂	Q ₁	Q_0	forçage à zéro de toutes les TH par	Q_3	Q ₂	Q ₁	Q_0
13	1	1	0	1	Pr = 1 et CI = 0	0	0	0	0

Compteur asynchrone modulo 13: \Rightarrow 2³ < 13 < 2⁴ \Rightarrow 4 bascules TH

Exemple n°2:

- ► Réalisation d'un compteur modulo 10 avec des bascules JK déclenchés sur front descendant de l'horloge.
- ► Le compteur modulo 10 compte de 0000 à 1001 (de 0 à 9).

- ► On a : 2³ < 13 < 2⁴, on réalise donc un compteur modulo 16, et on ramène le compteur à 0000 quand les sorties des bascules indiquent 1010.
- ► L'état Q_3 Q_2 Q_1 Q_0 = 1 0 1 0 est un état temporaire. Il n'existe que pendant une durée très courte.
- ► C'est un état indésirable que l'on nomme parfois 'glitch'.

1er cas : réalisation avec des bascules TH

Combinaison	Q_3	Q_2	Q ₁	Q_0	forçage à zéro de toutes les TH par	Q_3	Q ₂	Q ₁	Q_0
10	1	0	1	0	Pr = 1 et CI = 0	0	0	0	0

Compteur asynchrone modulo 10: \Rightarrow 2³ < 10 < 2⁴ \Rightarrow 4 bascules TH

2ème cas : réalisation avec des bascules DH

Combinaison	Q_4	Q_3	Q_2	Q ₁	forçage à zéro de toutes les DH par	Q_3	Q ₂	Q ₁	Q_0
10	1	0	1	0	Pr = 0 et Cl = 1	0	0	0	0

Compteur asynchrone modulo 10: \Rightarrow 2³ < 10 < 2⁴ \Rightarrow 4 bascules DH

Compteur asynchrone modulo 5: \Rightarrow 2² < 5 < 2³ \Rightarrow 3 bascules JKH

- Les compteurs asynchrones à <u>cycle non régulier</u> (ou dans un ordre quelconque).
- ► On réalise d'abord un compteur de même modulo, ensuite on transcode ses sorties pour obtenir le cycle demandé.

Exemple:

Réalisation d'un compteur ayant pour cycle : 2, 5, 6, 8, 10, 13.

N°	\mathbf{Q}_2	Q_1	Q ₀ Transition	N°	S_3	$\mathbf{S_2}$	$\mathbf{S_1}$	$\mathbf{S_0}$
0	0	0	0	2	0	0	1	0
1	0	0	1	5	0	1	0	1
2	0	1	0	6	0	1	1	0
3	0	1	1	8	1	0	0	0
4	1	0	0	10	1	0	1	0
5	1	0	1	13	1	1	1	0

3°) Les décompteurs asynchrones (ou décompteurs séries)

- ► Le câblage d'un décompteur asynchrone se fait de la manière suivante :
 - Les bascules ci-dessous doivent réagir au front descendant et doivent être montées en trigger.
 - Le signal d'horloge est appliqué à la première bascule.
 - La sortie complémentée de chaque bascule est appliquée à l'entrée d'horloge de la bascule suivante.
 - Les sorties des bascules constituent directement les sorties du décompteur.

■ Les décompteurs asynchrones à cycle régulier

a°) $N = 2^n$: compteurs asynchrones à cycle de comptage complet.

Cas n°1:

Les sorties du décompteur sont les Q_i
Les horloges à partir de la deuxième sont les Q_i

Décompteur asynchrone modulo 16 : → 16 = 2⁴ → 4 bascules JKH

Cas n°2:

Les sorties du décompteur sont les Q_i Les horloges à partir de la deuxième sont les Q_i

Décompteur asynchrone modulo 16 : → 16 = 2⁴ → 4 bascules JKH

Réalisation d'un décompteur asynchrone : Résumé

- ► Il suffit en pratique de faire un compteur binaire et de sortir non sur les Q mais sur les sorties complémentaires Q.
- ► En effet :

N	Q3	Q2	Q1	Q3	Q2	Q1	
0	0	0	0	1	1	1	7
1	0	0	1	1	1	0	6
2	0	1	0	1	0	1	5
3	0	1	1	1	0	0	4
4	1	0	0	0	1	1	3
5	1	0	1	0	1	0	2
6	1	1	0	0	0	1	1
7	1	1	1	0	0	0	0

■ Les décompteurs asynchrones à <u>cycle régulier</u>

b°) N < 2ⁿ : décompteurs asynchrones à cycle de comptage incomplet.

Exemple n°1:

Combinaison	Q_3	Q_2	Q ₁	Q_0	forçage à zéro de JKH (0) et JKH (2) par	Combinaison	Q_3	Q_2	Q ₁	Q_0
15	1	1	1	1	Pr = 1 et Cl = 0	10	1	0	1	0

Décompteur modulo 11 : 2³ < 11 < 2⁴ → 4 bascules JKH

Exemple n°2:

Combinaison	Q_3	Q_2	Q ₁	Q_0	forçage à zéro de JKH (1) et JKH (2) par	Combinaison	Q_3	Q ₂	Q ₁	Q_0
15	1	1	1	1	Pr = 1 et CI = 0	9	1	0	0	1

Décompteur modulo 10 : 2³ < 10 < 2⁴ → 4 bascules JKH

- Les décompteurs asynchrones à cycle régulier (ou dans un ordre quelconque)
- ► On réalise d'abord un compteur de même modulo, ensuite on transcode ses sorties pour obtenir le cycle demandé.

Exemple:

► Réalisation d'un décompteur ayant pour cycle : 13, 10, 8, 6, 5, 2.

N° 0	$egin{array}{c} \mathbf{Q_2} \\ 0 \end{array}$	$\mathbf{Q_1}$	$\mathbf{Q_0}$	Transition	N° 13	S ₃	S ₂	S ₁	S ₀ 0
1	0	0	1		10	1	0	1	0
2	0	1	0	\longrightarrow	8	1	0	0	0
3	0	1	1	\longrightarrow	6	0	1	1	0
4	1	0	0	\longrightarrow	5	0	1	0	1
5	1	0	1	\longrightarrow	2	0	0	1	0

4°) Les compteurs asynchrones réversibles ou (compteurs - décompteurs asynchrones)

X = 0 : décompteur

Horloge: Qi

5°) Inconvénients des compteurs / décompteurs asynchrones

- ► Comme chaque bascule a un temps de réponse, le signal d'horloge ne parvient pas simultanément sur toute les bascules.
- ► Ceci a pour conséquence de provoquer des états transitoires qui peuvent être indésirables.
- ► Supposons le même temps de réponse Dp pour toutes les bascules.
- ► Considérons la chronologie de passage d'un compteur asynchrone 4 bits de 0111 à 1000. Passage de 7₁₀ à 8₁₀
- ▶ Nous constatons que le compteur passe par les états transitoires 6 4 et 0 qui sont faux.
- ► Ceci est un inconvénient rédhibitoire à chaque fois que le compteur est exploité par des organes rapides

Exemple n°1 : transition $7_{10} \rightarrow 8_{10}$

- ► Chaque bascule introduit un retard Dp de l'ordre de 25 ns.
- ► Chaque bascule est déclenchée par la transition de la précédente, les retards s'additionnent : à la nième bascule, on a un retard de n × Dp.
- ► Ainsi, la fréquence maximum de fonctionnement F_H d'un compteur modulo n dépend du nombre de bascules et donc du modulo du compteur :

$$F_{H} = \frac{1}{2 \cdot n \cdot D_{p}}$$

$$D_{p} : d\'{e}lai \ de \ propagation$$

L'accumulation des retards des bascules implique une utilisation du compteur (ou décompteur) limitée en fréquence.

plus
$$n \uparrow \Rightarrow plus F_H \downarrow$$

► Les retards de commutation implique un problème d'interface avec des circuits rapides (temps de lecture inférieur au retard entre plusieurs bits).

B. Les compteurs / décompteurs synchrones

- 1°) Table de transition des bascules
- 2°) Les compteurs synchrones (ou compteurs parallèles)
- 3°) Les décompteurs synchrones (ou décompteurs parallèles)
- 4°) Les compteurs synchrones réversibles (ou compteursdécompteurs synchrones)
- 5°) Les compteurs/décompteurs intégrés

1°) Table de transition des bascules

- ► Cette table indique quelles sont les entrées à imposer à une bascule pour obtenir une variation (ou transition) donnée de la sortie.
- ► Elle sera utile pour comprendre et réaliser certains compteurs, notamment les compteurs synchrones.

Transition désirée	Comma applique	r pour la	Commande à appliquer pour la JKH		Commande à appliquer pour la DH	Commande à appliquer pour la TH
$Q_t \rightarrow Q_{t+1}$	S	R	J	K	D	Т
0 -> 0	0	X	0	X	0	0
0 -> 1	1	0	1	X	1	1
1 → 0	0	1	X	1	0	1
1 -> 1	Х	0	X	0	1	0

Principe de construction : Bascules RS, JK, D et T.

S	R	Q _t	Q _{t+1}	$\overline{\mathbf{Q}_{t+1}}$	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	-0 _	X	X	interdit
1	1	1	X	X	Interdit

D = S = R J = K = R	Q _t	Q _{t+1}	$\overline{\mathbf{Q}_{t+1}}$	Etat de la sortie
0	0	0	1	Recopie 0
0	1	0	1	Recopie 0
1	0	1	0	Recopie 1
1	1	1	0	Recopie 1

J	К	Q _t	Q _{t+1}	$\overline{\mathbf{Q}_{t+1}}$	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	0	1	0	Toggle
1	1	1	0	1	Toggle

J = K = T	Q _t	Q _{t+1}	$\overline{\mathbf{Q}_{t+1}}$	Etat de la sortie
0	0	0	1	Mémoire
0	1	1	0	Mémoire
1	0	1	0	Toggle
1	1	0	1	Toggle

Principe de construction : Bascules RS

S	R	Q _t	Q _{t+1}	Q _{t+1}	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	-0	X	X	interdit
1	_1_	1	X	X	Interdit

Transition désirée			applique	ande à er pour la SH
Qt	\rightarrow	Q _{t+1}	S	R
0	\rightarrow	0	0	X
0	\rightarrow	1	1	0
1	\rightarrow	0	0	1
1	\rightarrow	1	X	0

Principe de construction : Bascules JK

Transition désirée			appliqu	ande à ler pour IKH
Q_t	\rightarrow	Q _{t+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

J	K	Q _t	Q _{t+1}	Q _{t+1}	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	0	1	0	Toggle
1	1	1	0	1	Toggle

Principe de construction : Bascules D

Transition désirée			Commande à appliquer pour la DH
Q_t	\rightarrow	Q _{t+1}	D
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

D = S = R J = K = R	Q _t	Q _{t+1}	$\overline{\mathbf{Q}_{t+1}}$	Etat de la sortie
0	0	0	1	Recopie 0
0	1	0	1	Recopie 0
1	0	1	0	Recopie 1
1	1	1	0	Recopie 1

Principe de construction : Bascules RS, JK, D et T.

J = K = T	Q _t	Q _{t+1}	Q _{t+1}	Etat de la sortie
0	0	0	1	Mémoire
0	1	1	0	Mémoire
1	0	1	0	Toggle
1	1	0	1	Toggle

Transition désirée	Commande à appliquer pour la TH
$Q_t \rightarrow Q_{t+1}$	Т
0 -> 0	0
0 -> 1	1
1 → 0	1
1 → 1	0

2°) Les compteurs synchrones (ou compteurs parallèles)

- ► Pour résoudre le problème de retard de propagation des compteurs asynchrones, on utilise les compteurs synchrones.
- ► Dans les compteurs synchrones toutes les bascules sont déclenchées par l'horloge au même moment.
- ► Avant chaque impulsion d'horloge les entrées J et K des bascules JK (ou l'entrée D de la bascule D) doivent se trouver dans le niveau approprié pour assurer le passage de chaque bascule dans le bon état.

■ Les compteurs synchrones à cycle régulier

a°) $N = 2^n$: compteurs synchrones à cycle de comptage complet.

Exemple n°1:

Compteur synchrone modulo 4: \rightarrow 4 = 2^2 \rightarrow 2 bascules JKH

Table de vérité inversée de la bascule JK

Q _n	Q _{n+1}	J	K
0	0	0	0
U	U	0	1
0	1	1	0
U	1	1	1
4	0	0	1
l	0	1	1
4	4	0	0
	l	1	0

Table de transition d'une bascule JK

Q_n	Q _{n+1}	J	K
0	0	0	X
0	1	1	Χ
1	0	X	1
1	1	Χ	0

▶ Pour réaliser ce compteur il faut 2 bascules JK.

Transition désirée	Comma applique la Jl	er pour
$Q_t \rightarrow Q_{t+1}$	J	K
$0 \rightarrow 0$	0	X
0 → 1	1	X
1 → 0	X	1
1 → 1	X	0

Table de transition du compteur modulo 4

États	Q_{B}	Q _A	J _B	K _B	J _A	K _A
0	10	10	0	X	1	X
1	10	1/1	_1	X	X	1
2	1	0	X	0	_ 1	X
3	√1 ←	√1∠	X	1	_ X	1
0	↓0 ←	10				

- ▶ On remplit les états de JK d'une ligne en considérant la sortie de cette ligne comme Q_n et les sorties de la ligne suivante comme Q_{n+1}
- Pour un compteur modulo 4 pour quitter de 1 à 2 les entrées des bascules J_A K_A et J_B K_B doivent se trouver au bon niveau logique pour que la sortie de la bascule A passe de 1 à 0 et la sortie de la bascule B passe de 0 à 1.

Simplification par tableau de Karnaugh

États	\mathbf{Q}_{B}	Q _A	J_{B}	K _B	J _A	K _A
0	0	0	0	Х	1	X
1	0	1	1	Х	х	1
2	1	0	Х	0	1	Х
3	1	1	Х	1	Х	1
0	0	0				

N	_	
QB/	0	1
0	X	1)
0 1	X	1
<u>K</u> /	<u> </u>	1
KB	OA	
δB /	QA 0	1
0 1	X	X
1	0	
K	B =	= 0

QA.			
5 B /			
0	0		
1	X		

JB = QA

JA = KA = I	
JB = KB = QA	١

CASABLANCA

Chapitre VI: Les circuits séquentiels

Exemple n°2:

Compteur synchrone modulo 4: 2 bascules DH

Table de transition de la bascule D

Transition désirée	Commande à appliquer pour la DH
$\mathbf{Q_t} \rightarrow \mathbf{Q_{t+1}}$	D
0 → 0	0
0 → 1	1
1 → 0	0
1 → 1	1

Table de transition du compteur

États	Q_{B}	Q_A	D _B	D _A
0	١٥	0	0	1
1	[↓] 0 ←	14	1	0
2	√1 <u></u>	VO.	1	_ 1
3	1_	11_	0	_ 0
0	↓0 ←	102		

Simplification par Karnaugh

$$D_A = \overline{Q}_A$$

$$\mathbf{D}_{\mathbf{B}} = \mathbf{Q}_{\mathbf{B}} \mathbf{\overline{Q}_{A}} + \overline{\mathbf{Q}_{\mathbf{B}}} \mathbf{Q_{A}}$$

$$\mathbf{D}_{\mathbf{B}} = \mathbf{Q}_{\mathbf{B}} \mathbf{\overline{Q}_{A}} + \overline{\mathbf{Q}_{\mathbf{B}}} \mathbf{Q_{A}}$$

$$\mathbf{D_B} = \mathbf{Q_B} \oplus \mathbf{Q_A}$$

Logigramme

Chronogramme

Exemple n°3:

Table de transition du compteur synchrone modulo 8

Transition désirée	Commande à appliquer pour la TH
$Q_t \rightarrow Q_{t+1}$	Т
0 → 0	0
0 → 1	1
1 → 0	1
1 → 1	0

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_2	Q_1	Q_0	→	T ₂	T ₁	T ₀
CI	0	0	0		_0_	0	– 1
1	0√←	0	14		0	1	1
2	0	1	0		0	0	1
3	0	1	1		1	1	1
4	1	0	0		0	0	1
5	1	0	1		0	1	1
6	1	1	0		0	0	1
7	1	1	1		1	1	1
8	0	0	0				

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

Table de transition du compteur synchrone modulo 8

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suivant de T ₂	Etat suivant de T ₁	Etat suivant de T ₀		Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_2	Q_1	Q_0	→	Q ₂ '	Q_1	$\stackrel{>}{\sim}$ Q_0'	→	T ₂	T ₁	T_0
1	0	0	0	→	0	0	1		0	0	1
2	0	0	1	→	0	1	0		0	1	1
3	0	1	0	→	0	1	1		0	0	1
4	0	1	1	→	1	0	0		1	1	1
5	1	0	0	→	1	0	1		0	0	1
6	1	0	1	→	1	1	0		0	1	1
7	1	1	0	→	1	1	1		0	0	1
8	1	1	1	→	0	0	0		1	1	1
9	0	0	0	→	0	0	1		0	0	1

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

Compteur synchrone modulo 8: \rightarrow 8 = 2^3 \rightarrow 3 bascules JKH

Bascule JKH montée en bascule T	$J_i = K_i = T_i$
Relations générales de récurrence	J ₀ = K ₀ = T ₀ = 1 J _i = K _i = T _i = Q ₀ . Q ₁ . Q ₂ Q _{i-1} ou autrement : J _i = K _i = T _i = T _{i-1} . Q _{i-1}
Dans le cas du compteur synchrone modulo 8	$J_0 = K_0 = T_0 = 1$ $J_1 = K_1 = T_1 = Q_0$ $J_2 = K_2 = T_2 = Q_0 \cdot Q_1$

 $T_0 = 1$ $T_1 = Q_0$ $T_2 = Q_0 \cdot Q_1$

Exercice:

Établir la table de transition de ce compteur et par karnaugh les expressions logiques

Compteur synchrone modulo 8: → 3 bascules DH

|--|

Transition désirée	Commande à appliquer pour la TH
$Q_t \rightarrow Q_{t+1}$	T
0 → 0	0
0 → 1	1
1 → 0	1
1 → 1	0

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \cdot Q_1$$

$$T_3 = Q_0 \cdot Q_1 \cdot Q_2$$

		Etat Initial de T ₃	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T3	Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
	Тор	Q_3	Q_2	Q_1	Q_0	→	T ₃	T ₂	T ₁	T ₀
	CI	10	۱ 0	\ 0	0		0	0	0	<u>——1</u>
	1	↓ 0 ←	√0 ←	V 0 ←	1		0	0	1	1
à	2	0	0	1	0		0	0	0	1
а	3	0	0	1	1		0	1	1	1
I	4	0	1	0	0		0	0	0	1
	5	0	1	0	1		0	0	1	1
	6	0	1	1	0		0	0	0	1
	7	0	1	1	1		1	1	1	1
	8	1	0	0	0		0	0	0	1
	9	1	0	0	1		0	0	1	1
	10	1	0	1	0		0	0	0	1
	11	1	0	1	1		0	1	1	1
	12	1	1	0	0		0	0	0	1
	13	1	1	0	1		0	0	1	1
	14	1	1	1	0		0	0	0	1
	15	1	1	1	1		1	1	1	1
	16	0	0	0	0					

Table de transition du compteur synchrone modulo 16

$T_0 = 1$ $T_1 = 0$				Table o	de tran	sition	du cor	npteur	synch	rone r	noc	dulo 16			
$T_2 = Q_0$ $T_3 = Q_0 \cdot Q_0$. Q ₁	Etat Initial de T ₃	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suivant de T ₃	Etat suivant de T ₂	Etat suivant de T ₁	Etat suivant de T ₀		Action à l'entrée de T3	Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
	Тор	Q_3	Q_2	Q_1	Q_0	→	Q_3 '	Q ₂ '	Q ₁ '	Q_0	→	T ₃	T ₂	T ₁	T ₀
	1	0	0	0	0	→	0	0	0	1		0	0	0	1
	2	0	0	0	1	→	0	0	1	0		0	0	1	1
	3	0	0	1	0	→	0	0	1	1		0	0	0	1
	4	0	0	1	1	→	0	1	0	0		0	1	1	1
	5	0	1	0	0	→	0	1	0	1		0	0	0	1
	6	0	1	0	1	→	0	1	1	0		0	0	1	1
	7	0	1	1	0	→	0	1	1	1		0	0	0	1
	8	0	1	1	1	→	1	0	0	0		1	1	1	1
	9	1	0	0	0	→	1	0	0	1		0	0	0	1
	10	1	0	0	1	→	1	0	1	0		0	0	1	1
	11	1	0	1	0	→	1	0	1	1		0	0	0	1
	12	1	0	1	1	→	1	1	0	0		0	1	1	1
	13	1	1	0	0	→	1	1	0	1		0	0	0	1
	14	1	1	0	1	→	1	1	1	0		0	0	1	1
	15	1	1	1	0	→	1	1	1	1		0	0	0	1
	16	1	1	1	1	→	0	0	0	0		1	1	1	1

Compteur synchrone modulo 16: \rightarrow 16 = 2^4 \rightarrow 4 bascules JKH

H

$T_0 = 1$
$\mathbf{T}_1 = \mathbf{Q}_0$
$\mathbf{T}_2 = \mathbf{Q}_0 \cdot \mathbf{Q}_1$
$\mathbf{T}_3 = \mathbf{Q}_0 \cdot \mathbf{Q}_1 \cdot \mathbf{Q}_2$

Bascule JKH montée en bascule T

Relations générales de récurrence

Dans le cas du compteur synchrone modulo 16

 $J_i = K_i = T_i$

 $J_0 = K_0 = 1$ $J_i = K_i = Q_0 \cdot Q_1 \cdot Q_2 \cdot ... Q_{i-1}$ ou autrement : $J_i = K_i = J_{i-1} \cdot Q_{i-1}$

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = Q_0$$

$$J_2 = K_2 = Q_0 \cdot Q_1$$

$$J_3 = K_3 = Q_0 \cdot Q_1 \cdot Q_2$$

Exercice:

Établir la table de transition de ce compteur et par karnaugh les expressions logiques

Compteur synchrone modulo 16 : → 4 bascules DH

■ Les compteurs synchrones à cycle régulier

b°) N < 2ⁿ : compteurs asynchrones à cycle de comptage incomplet.

Exemple n°1:

Compteur synchrone modulo 7: \rightarrow 2² < 7 < 2³ \rightarrow 3 bascules JKH

Table de transition du compteur

Transition désirée		ande à r pour la (H
$Q_t \rightarrow Q_{t+1}$	J	K
0 → 0	0	X
0 → 1	1	X
1 → 0	X	1
1 → 1	X	0

État	Q_{C}	Q_B	Q_A	J _C	K _C	J_{B}	K _B	J _A	K _A
0	۱ 0	10	0	0	X	0	X	1	X
1	√ ₀ ←	VO_	V1_	0	X	1	Х	X	1
2	0	1	0	0	Х	Х	0	1	X
3	0	1	1	1	Χ	X	1	X	1
4	1	0	0	X	0	0	X	1	X
5	1	0	1	X	0	1	Х	X	1
6	1	1	0	Х	1	Х	1	0	X
	0	0	0						

Simplification par Karnaugh

$$\begin{aligned} \mathbf{Jc} &= \mathbf{Q_A} \mathbf{Q_B} \\ \mathbf{Kc} &= \mathbf{Q_B} \\ \mathbf{J_B} &= \mathbf{Q_A} \end{aligned}$$

$$\begin{aligned} \mathbf{J}\mathbf{A} &= \overline{\mathbf{Q}}\mathbf{c} + \overline{\mathbf{Q}}_{\mathbf{B}} \\ \mathbf{K}_{\mathbf{A}} &= \mathbf{1} \\ \mathbf{K}_{\mathbf{B}} &= \mathbf{Q}\mathbf{c} + \mathbf{Q}_{\mathbf{A}} \end{aligned}$$

Logigramme

Exemple n°2:

Compteur synchrone modulo 6: \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules TH

Transition désirée	Commande à appliquer pour la TH
$\boldsymbol{Q}_t \ \rightarrow \ \boldsymbol{Q}_{t+1}$	Т
0 → 0	0
0 → 1	1
1 → 0	1
1 → 1	0

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_2	Q ₁	Q_0	→	T ₂	T ₁	T_0
CI	10	10	۱ 0		0	0	_1
1	[↓] 0 ←	0 ←	1<		0	1	1
2	0	1	0		0	0	1
3	0	1	1		1	1	1
4	1	0	0		0	0	1
5	1	0	1		1	0	1
6	0	0	0				

Table de transition du compteur synchrone modulo 6

Compteur synchrone modulo 6: \rightarrow 2² < 6 < 2³ \rightarrow 3 bascules TH

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suiva nt de T ₂	Etat suiva nt de T ₁	Etat suiva nt de T ₀		Actio n à l'entré e de T2	Actio n à l'entré e de T1	Actio n à l'entré e de T0
Тор	Q_2	\mathbf{Q}_1	Q_0	→	Q ₂ '	Q ₁ '	Q_0	→	T ₂	T ₁	T _o
0	0	0	0	→	0	0	1		0	0	1
1	0	0	1	→	0	1	0		0	1	1
2	0	1	0	→	0	1	1		0	0	1
3	0	1	1	→	1	0	0		1	1	1
4	1	0	0	→	1	0	1		0	0	1
5	1	0	1	→	0	0	0		1	0	1

Table de transition du compteur synchrone modulo 6

Simplification par Karnaugh

$Q_1 Q_0$ Q_2	00	0 1	11	10
0	1	1	1	1
1	1	1	1	1

$Q_1 Q_0$ Q_2	0 0	01	11	10
0	0 (1	$\left\langle \begin{array}{c} \\ \end{array} \right\rangle$	0
1	0	0	Х	X

$$T_0 = 1$$

T_1	$=O_0\overline{O_2}$
1	$\mathfrak{L}_0\mathfrak{L}_2$

		U
0	0	1
0	1	1
0	0	1
1	1	1
0	0	1
1	0	1

$Q_1 Q_0$ Q_2	0 0	0 1	11	10
0	0	0	1	0
1	0	(1	x	Х

$$T_2 = Q_0 \left(Q_1 + Q_2 \right)$$

Compteur synchrone modulo 6: \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules TH

Exemple n°3:

Compteur synchrone modulo 6: \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules JKH

	Etat Initial de JKH ₂	Etat Initial de JKH ₁	Etat Initial de JKH ₀		Etat suiva nt de JKH ₂	Etat suiva nt de JKH ₁	Etat suiva nt de JKH ₀		Actio n à l'entré e de J2	Actio n à l'entré e de K2	Actio n à l'entré e de J1	Actio n à l'entré e de K1	Actio n à l'entré e de J0	Actio n à l'entré e de K0
Тор	Q_2	Q ₁	Q_0	→	Q ₂ '	Q ₁ '	Q_0	→	J ₂	K ₂	J ₁	K ₁	J_0	K_0
0	0	0	0	→	0	0	1		0	X	0	X	1	X
1	0	0	1	→	0	1	0		0	X	1	X	X	1
2	0	1	0	→	0	1	1		0	X	X	0	1	X
3	0	1	1	→	1	0	0		1	X	X	1	X	1
4	1	0	0	→	1	0	1		X	0	0	X	1	X
5	1	0	1	→	0	0	0		X	1	0	X	X	1

$$J_0 = K_0 = 1$$

Simplification par Karnaugh

K_2	J_1	K ₁
X	0	X
X	1	X
X	X	0
X	X	1
0	0	X
1	0	X
	x x x x	x 0 x 1 x x x x 0 0

$Q_1 Q_0$ Q_2	0 0	01	11	10
0	0 (1	X	x
1	0	0	Х	х

$$J_1 = Q_0 \ \overline{Q_2}$$

$Q_1 Q_0$ Q_2	0 0	01	11	10
0	0	0	(1)	0
1	X	X	x	X

$$J_2 = Q_0 Q_1$$

$Q_1 Q_0$ Q_2	0 0	0 1	11	10
0	X /	X	1	0
1	X	Х	x	X

$$K_1 = Q_0$$

$$K_2 = Q_0$$

Compteur synchrone modulo 6: \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules JKH

$J_i = K_i = T_i$	i
-------------------	---

Relations générales de récurrence compteur synchrone modulo 2ⁿ

 $J_0 = K_0 = 1$ $J_i = K_i = Q_0 \cdot Q_1 \cdot Q_2 \cdot ... Q_{i-1}$ ou autrement : $J_i = K_i = J_{i-1} \cdot Q_{i-1}$

Dans le cas du compteur synchrone modulo 6

$$\begin{aligned} & \underline{J_0} = K_0 = 1 \\ J_1 = Q_0 \ Q_2 & \text{et } K_1 = Q_0 \\ J_2 = Q_0 \ . \ Q_1 & \text{et } K_2 = Q_0 \end{aligned}$$

- Les compteurs synchrones à cycle <u>non régulier</u> (ou dans un ordre quelconque).
- ► On réalise d'abord un compteur de même modulo, ensuite on transcode ses sorties pour obtenir le cycle demandé.

Exemple n°1:

► Réalisation d'un compteur ayant pour cycle : 2, 5, 6, 8, 10, 13.

N 0	$egin{pmatrix} \mathbf{Q}_2 \ 0 \end{bmatrix}$	$egin{array}{c} Q_1 \\ 0 \end{array}$	$egin{pmatrix} \mathbf{Q_0} \\ 0 \end{bmatrix}$	Transition	N° 2	S ₃ 0	S ₂ 0	S ₁	S ₀ 0
1	0	0	1	\longrightarrow	5	0	1	0	1
2	0	1	0	\longrightarrow	6	0	1	1	0
3	0	1	1	\longrightarrow	8	1	0	0	0
4	1	0	0	\longrightarrow	10	1	0	1	0
5	1	0	1	\longrightarrow	13	1	1	0	1

Exemple n°2:

Compteur synchrone modulo 6 à cycle irrégulier : → 2² < 6 < 2³ → 3 bascules JKH

► Soit à construire un compteur synchrone modulo 6 décrivant le cycle suivant et utilisant des JK

Тор	Α	В	С	Cycle irrégulier
0	0	0	0	0
1	1	0	0	4
2	0	1	0	2
3	1	1	0	6
4	0	1	1	3
5	1	1	1	7

► <u>Attention ce cycle n'est pas binaire régulier</u>: on peut déduire du tableau les états que doivent prendre à chaque instant les entrées J et K pour que le compteur décrive le cycle désiré.

- ► Ainsi <u>par exemple</u> :
 - lorsque QA = QB = QC = 0 pour qu'au top suivant QA passe à 1 il faut JA =1 et KA indifférent,
 - pour que QB reste à 0 il faut JB = 0 et KB indifférent,
 - pour que QCreste à 0 il faut JC = 0 et KC indifférent, etc.
- ► On aboutit alors au tableau de transition suivant :

Тор	Α	В	С	J _A	K _A	J _B	K _B	J _C	K _C
0	0	0	0	1	Х	0	Х	0	Х
1	1	0	0	Х	1	1	X	0	Х
2	0	1	0	1	X	X	0	0	Х
3	1	1	0	Х	1	X	0	1	Х
4	0	1	1	1	Х	X	0	x	0
5	1	1	1	Х	1	Х	1	х	1

- ► En utilisant le diagramme de Karnaugh on va déterminer les équations et donc la circuiterie à réaliser.
- ► On note les 1 de la sortie A B C, ainsi la première ligne pour Top = 0 donne A B C = 1 et dans le tableau on note la valeur correspondante de JA soit 1 ici.
- ► Sur le diagramme de Karnaugh on a figuré en rouge dans les cases correspondantes les différentes valeurs de Top, ainsi la case en haut à droite correspond à Top = 1

N	QA	QB	QC	J_A	K _A	J _B	K _B	J _C	K _C
0	0	0	0	1	Х	0	х	0	Х
1	1	0	0	х	1	1	Х	0	х
2	0	1	0	1	X	х	0	0	Х
3	1	1	0	Х	1	х	0	1	Х
4	0	1	1	1	X	х	0	х	0
5	1	1	1	х	1	х	1	х	1

J_A	$\overline{Q}_{\!A}\overline{Q}_{\!B}$	$\overline{Q}_{A}Q_{B}$	$Q_A Q_B$	$Q_A \overline{Q_B}$
Q C	10	1 2	x 3	x ₁
$_{_{\mathbf{C}}}^{\mathbf{Q}}$	x	1 4	X 5	x

► Dans ce cas précis il n'y a que des 1 ou des cases indifférentes dans le diagramme donc JA = 1, on trouvera la même chose pour KA.

► Par contre le diagramme pour JB contient un 0 dans la case 0, on ne pourra donc avoir que 4 cases remplies de 1 contigus

Тор	Α	В	С	JA	K _A	J _B	K _B	J _c	K _C
0	0	0	0	1	X	0	X	0	X
1	1	0	0	X	1	1	X	0	X
2	0	1	0	1	X	X	0	0	X
3	1	1	0	X	1	x	0	1	X
4	0	1	1	1	X	x	0	X	0
5	1	1	1	X	1	x	1	X	1

Donc	ID _	\cap	~ +	VD _	$\sim \Lambda$	
DONG	JD =	WA	eι	ND =	WA.	. UU

▶ De même on trouvera JC = QA . QB et KC = QA . QB.

J _B	Ĺ.,	2 9		
	0	x	x	1
	x	х	x	x
ζ _B	Î			
	x	0	0	x
	x	0.	1	x
$\mathbf{J_C}$				
	0	0	1	0
	0	x	X	0
$\mathbf{K}_{\mathbf{C}}$				
	X	X	X	X
	0	0	1	0

- ► On prendra par exemple pour KC la simplification la moins performante soit QA . QB parce que c'est la même chose pour JC.
- ▶ D'où la réalisation avec deux portes ET. Mais l'autre solution implique les deux mêmes portes ET et n'est guère plus complexe à réaliser.

JA = KA = 1 $JB = QA \text{ et } KB = QA \cdot QC$ $JC = KC = QA \cdot QB$

- 3°) Les décompteurs synchrones (ou décompteurs parallèles)
 - Les décompteurs synchrones à <u>cycle régulier</u>
 - a°) $N = 2^n$: décompteurs synchrones à cycle de comptage complet.
- > Le principe de construction des décompteurs synchrones est le même que celui des compteurs synchrones.
- ➤ Il suffit d'établir la table de transition, sortir les équations et faire le logigramme à l'aide des bascules et portes logiques.

Exemple n°1:

décompteur synchrone modulo 4 : \rightarrow 4 = 2^2 \rightarrow 2 bascules DH

$\begin{array}{c|cccc} \textbf{Transition d\'esir\'ee} & \textbf{Commande \`a} \\ \textbf{Q}_t & \rightarrow \textbf{Q}_{t+1} & \textbf{D} \\ \textbf{0} & \rightarrow \textbf{0} & \textbf{0} \\ \textbf{0} & \rightarrow \textbf{1} & \textbf{1} \\ \textbf{1} & \rightarrow \textbf{0} & \textbf{0} \\ \textbf{1} & \rightarrow \textbf{1} & \textbf{1} \end{array}$

1°) Table de transition du décompteur

États	Q_B	Q_A	D _B	D _A
3	_\ 1	1	1	— 0
2	√1←	0 <	0	_ 1
1	0←	1 <	0	_ 0
0	0<	0 <	<u> 1</u>	_1
3	1 ←	1 *		

2°) Équations simplifiées

$$\mathbf{D_B} = \overline{\mathbf{Q_A}} \overline{\mathbf{Q_B}} + \mathbf{Q_A} \mathbf{Q_B}$$
$$\mathbf{D_B} = \overline{\mathbf{Q_B} \oplus \mathbf{Q_A}}$$

$$\mathbf{p}_{\mathbf{A}} = \overline{\mathbf{Q}}_{\mathbf{A}}$$

3°) <u>Logigramme</u>

Exemple n°2:

décompteur synchrone modulo 8 : \rightarrow 8 = 2^3 \rightarrow 3 bascules TH

Transition désirée	Commande à appliquer pour la TH				
$Q_t \rightarrow Q_{t+1}$	Т				
0 → 0	0				
0 → 1	1				
1 → 0	1				
1 → 1	0				

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suiva nt de T ₂	Etat suiva nt de T ₁	Etat suiva nt de T ₀		Actio n à l'entré e de T2	Actio n à l'entré e de T1	Actio n à l'entré e de T0
Тор	Q_2	Q_1	Q_0	→	Q_2	Q ₁ '	Q_0	→	T_2	T ₁	T_0
1	0	0	0	→	1	1	1		1	1	1
2	1	1	1	→	1	1	0		0	0	1
3	1	1	0	→	1	0	1		0	1	1
4	1	0	1	→	1	0	0		0	0	1
5	1	0	0	→	0	1	1		1	1	1
6	0	1	1	→	0	1	0		0	0	1
7	0	1	0	→	0	0	1		0	1	1
8	0	0	1	→	0	0	0		0	0	1

$$T_0 = \underline{1}$$

$$T_1 = \underline{Q_0}$$

$$T_2 = \underline{Q_0} \cdot \underline{Q_1}$$

décompteur synchrone modulo 8 : \rightarrow 8 = 2^3 \rightarrow 3 bascules

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_2	Q_1	Q_0	→	T ₂	T ₁	T ₀
CI	10	0	0		1	1	1
1	√ 1 ←	1 <	1 <		0	0	1
2	1	1	0		0	1	1
3	1	0	1		0	0	1
4	1	0	0		1	1	1
5	0	1	1		0	0	1
6	0	1	0		0	1	1
7	0	0	1		0	0	1
8	0	0	0		1	1	1
9	1	1	1				

décompteur synchrone modulo 8 : \rightarrow 8 = 2^3 \rightarrow 3 bascules JK

Bascule JKH montée en bascule T	$J_i = K_i = T_i$
Relations générales de récurrence	$J_0 = \underbrace{K_0}_{1} = \underbrace{1}_{1}$ $J_i = K_i = Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_{i-1}$ ou autrement: $J_i = K_i = J_{i-1} \cdot Q_{i-1}$
Dans le cas du décompteur synchrone modulo 8	$J_0 = K_0 = T_0 = 1$ $J_1 = K_1 = T_1 = Q_0$ $J_2 = K_2 = T_2 = Q_0 \cdot Q_1$

Exercice: Établir la table de transition de ce décompteur et par karnaugh les expressions logiques

décompteur synchrone modulo 8 : \rightarrow 8 = 2^3 \rightarrow 3 bascules DH

Exemple n°3:

décompteur synchrone modulo 16 :

 $16 = 2^4 \rightarrow$

4 bascules TH

Transition désirée	Commande à appliquer pour la TH
$\mathbf{Q}_{t} \rightarrow \mathbf{Q}_{t+1}$	T
0 → 0	0
0 → 1	1
1 → 0	1
1 → 1	0

$$T_0 = 1$$

$$T_1 = \overline{Q_0}$$

$$T_2 = \overline{Q_0} \cdot \overline{Q_1}$$

$$T_3 = \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{Q_2}$$

	Etat Initial de T ₃	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T3	Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_3	$\mathbf{Q_2}$	Q_1	$\mathbf{Q_0}$	→	T ₃	T ₂	T ₁	T ₀
CI	\ 0	\ 0	0	0		1_	1_	 1	 1
1	√ 1←	√1<	V1<	V 1<		0	0	0	1
2	1	1	1	0		0	0	1	1
3	1	1	0	1		0	0	0	1
4	1	1	0	0		0	1	1	1
5	1	0	1	1		0	0	0	1
6	1	0	1	0		0	0	1	1
7	1	0	0	1		0	0	0	1
8	1	0	0	0		1	1	1	1
9	0	1	1	1		0	0	0	1
10	0	1	1	0		0	0	1	1
11	0	1	0	1		0	0	0	1
12	0	1	0	0		0	1	1	1
13	0	0	1	1		0	0	0	1
14	0	0	1	0		0	0	1	1
15	0	0	0	1		0	0	0	1
16	0	0	0	0					

$T_0 = 1$
_
$T_1 = Q_0$
$\mathbf{T}_2 = \mathbf{Q}_0 \cdot \mathbf{Q}_1$
$T_3 = \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{Q_2}$

	Etat Initial de T ₃	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suiva nt de T ₃	Etat suiva nt de T ₂	Etat suiva nt de T ₁	Etat suiva nt de T ₀		Actio n à l'entr ée de T3	Actio n à l'entr ée de T2	Actio n à l'entr ée de T1	Actio n à l'entr ée de T0
To p	Q_3	Q_2	Q ₁	Q_0	→	Q ₃ '	Q ₂ '	Q ₁ '	Q ₀ '	→	T ₃	T ₂	T ₁	T ₀
1	0	0	0	0	→	1	1	1	1		1	1	1	1
2	1	1	1	1	→	1	1	1	0		0	0	0	1
3	1	1	1	0	→	1	1	0	1		0	0	1	1
4	1	1	0	1	→	1	1	0	0		0	0	0	1
5	1	1	0	0	→	1	0	1	1		0	1	1	1
6	1	0	1	1	→	1	0	1	0		0	0	0	1
7	1	0	1	0	→	1	0	0	1		0	0	1	1
8	1	0	0	1	→	1	0	0	0		0	0	0	1
9	1	0	0	0	→	0	1	1	1		1	1	1	1
10	0	1	1	1	→	0	1	1	0		0	0	0	1
11	0	1	1	0	→	0	1	0	1		0	0	1	1
12	0	1	0	1	→	0	1	0	0		0	0	0	1
13	0	1	0	0	→	0	0	1	1		0	1	1	1
14	0	0	1	1	→	0	0	1	0		0	0	0	1
15	0	0	1	0	→	0	0	0	1		0	0	1	1
16	0	0	0	1	→	0	0	0	0		0	0	0	1

Bascule JKH montée en bascule T	$J_i = K_i = T_i$
Relations générales de récurrence	$J_0 = \underline{K_0} = \underline{1}$ $J_i = K_i = \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{Q_2} \dots \overline{Q_{i-1}}$ ou autrement : $J_i = K_i = J_{i-1} \cdot \overline{Q_{i-1}}$
Dans le cas du compteur synchrone modulo 16	$J_{0} = K_{0} = \underline{1}$ $J_{1} = K_{1} = \underline{Q_{0}}$ $J_{2} = K_{2} = \underline{Q_{0}} \cdot \underline{Q_{1}}$ $J_{3} = K_{3} = \underline{Q_{0}} \cdot \underline{Q_{1}} \cdot \underline{Q_{2}}$

■ Les décompteurs synchrones à cycle régulier

b°) N < 2ⁿ : décompteurs synchrones à cycle de comptage incomplet.

Exemple n°1:

décompteur synchrone modulo 6 : \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules TH

	ansi désir		Commande à appliquer pour la TH
\mathbf{Q}_{t}	\rightarrow	Q _{t+1}	Т
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	1
1	\rightarrow	1	0

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Etat suivan t de T ₂	Etat suivan t de T ₁	Etat suivan t de T ₀		Action à l'entré e de T2	Action à l'entré e de T1	Action à l'entré e de T0
Тор	Q_2	Q_1	Q_0	→	Q_2	Q ₁ '	Q_0	→	T_2	T ₁	T_0
1	0	0	0	→	1	0	1		1	0	1
2	1	0	1	→	1	0	0		0	0	1
3	1	0	0	→	0	1	1		1	1	1
4	0	1	1	→	0	1	0		0	0	1
5	0	1	0	→	0	0	1		0	1	1
6	0	0	1	→	0	0	0	_	0	0	1
7	0	0	0	→	1	0	1		1	0	1

décompteur synchrone modulo 6 : → 2² < 6 < 2³ → 3 bascules TH

	Etat Initial de T ₂	Etat Initial de T ₁	Etat Initial de T ₀		Action à l'entrée de T3	Action à l'entrée de T2	Action à l'entrée de T1	Action à l'entrée de T0
Тор	Q_2	Q_1	Q_0	→		T ₂	T ₁	T_0
CI	0	o ,	o ′			1	0	1
1	1 1	0	1 1			0	0	1
2	1	o \	o \			1	1	1
3	o \(\frac{1}{1}\)	1 1	1 🗸			0	0	1
4	o 1	1	o \			0	1	1
5	o ↓	o [↓]	1 🗸			0	0	1
6	o 1	o 1	• \			1	0	1
7	1	o ^V	1 ↓					

Q_2	Q_1	Q_0	→	Q ₂ '	Q ₁ '	Q_0	→	T ₂	T ₁	T _o	
0	0	0	→	1	0	1		1	0	1	
1	0	1	→	1	0	0		0	0	1	
1	0	0	→	0	1	1		1	1	1	
0	1	1	→	0	1	0		0	0	1	,
0	1	0	→	0	0	1		0	1	1	
0	0	1	→	0	0	0		0	0	1	
0	0	0	→	1	0	1		1	0	1	

 T_0

_	
Ί	1

 T_2

\mathbf{Q}_1 \mathbf{Q}_0 \mathbf{Q}_2	0	0 1	1	1 0
0	1	1	1	کم
1	¥	1	X	X

$$T_{\rm o}=1$$

$\begin{array}{c} \mathbf{Q_1} \\ \mathbf{Q_0} \\ \mathbf{Q_2} \end{array}$	0	0	1	1 0
0	0	0	0	1
1	1	0	x(x

$$T_1 = \overline{Q_0} \ Q_1 + \overline{Q_0} \ Q_2$$
 $T_1 = \overline{Q_0} \left(Q_1 + \overline{Q_2} \right)$

$$T_2 = \overline{Q_0} \ \overline{Q_1}$$

Exercice:

Réaliser le logigramme de ce décompteur

Décompteur synchrone modulo 6 : \Rightarrow 2² < 6 < 2³ \Rightarrow 3 bascules TH

Expressions de transition

$$T_0 = 1$$

$$T_1 = \overline{Q_0} \ Q_1 + \overline{Q_0} \ Q_2$$
 $T_1 = \overline{Q_0} \ (Q_1 + Q_2)$

$$T_2 = \overline{Q_0} \ \overline{Q_1}$$

■ Les décompteurs synchrones à cycle non régulier (ou dans un ordre quelconque).

 $\mathbf{Q_0}$

On réalise d'abord un compteur ou décompteur de même modulo, ensuite on transcode ses sorties pour obtenir le cycle demandé.

Exemple:

Réalisation d'un compteur ayant pour cycle : 2, 5, 6, 8, 10, 13.

 S_0

4°) Les compteurs synchrones réversibles (ou compteurs-décompteurs synchrones)

 $X = 0 \rightarrow$ Compteur synchrone modulo 8

X = 1 → Décompteur synchrone modulo 8

5°) Les compteurs/décompteurs à circuits intégrés

CI 74 293

► Ce C.I intègre 4 bascules JK et une porte NAND connectée de la manière suivante.

Symbole simplifié:

CP: Entrée de l'horloge active au front descendant

Q: Sortie de bascule

MR: Remise à zero (Master Reset)

Q3: MSB Q0: LSB

ECOLE D'INGENIERIE - 1ÈRE ANNÉE

Chapitre VI: Les circuits séquentiels

HEF 4520 B

GÉNIE INFORMATIQUE ECOLE D'INGENIERIE - 1^{ère} Année

Chapitre VI: Les circuits séquentiels

CI - TTL: 7490

Input A 14	NC 13	Q0 12	Q3 11	GND 10	Q1 9	Q2 8
) TTL 7490						
1 Input B	2 R0 (1	3) R0 (2	4) NC	5 Vcc	6 R9 (1)	7 R9 (2)

	R0 (1)	R0 (2)	R9 (1)	R9 (2)	Q3	Q2	Q1	QO	
	1	1	0	X	0	0	0	0	
	1	1	Х	0	0	0	0	0	
	Χ	Χ	1	1	1	0	0	1	
ŀ									
l	Χ	0	Χ	0	Comptage				
	0	Χ	0	Х	Comptage				
	0	Χ	Х	0	Comptage				
	Χ	0	0	Χ	Comptage				

Table de vérité relative au fonctionnement du compteur 7490.

Compteur programmable: CTRDIV16

► Il existe des circuits intégrés réalisant la fonction « comptage » ou/et « décomptage».

On peut distinguer dans la série TTL :

- les compteurs binaires [modulo 16];
- les compteurs décimaux(ou BCD) [modulo 10];
- les compteurs/décompteurs décimaux avec entrées de préchargement;
- les compteurs/décompteurs binaires avec entrées de préchargement;
- les compteurs/décompteurs décimaux avec registre;
- les diviseurs de fréquence (taux de division fixe ou programmable)

Exemple de compteur/décompteur décimal synchrone programmable : 74192

Principales caractéristiques :

- Mode réversible : Compteur / décompteur
- Déclenchement simultané de toutes les bascules (mode synchrone).
- 4 entrées de pré-chargement (ou préréglage) (1 à 8)
- Entrée de commande /LOAD (ou C3)
- Entrée d'horloge pour le comptage (UP) ou (2+/G1)
- Entrée d'horloge pour le décomptage (DOWN) ou (1-/G2)
- Entrée de RAZ ou CLR ou (CT = 0).

Symbole de circuit du composant.