· Math 53 Midterm 2 Chapter 14: Partial Dernatres [14.1] Functions of Jeneral Variables -Function f of two varsf(x,y)
-Donain is region in xy-plane, range is Z, f(x,y) - Level curves are curves with equations f(x,y)=k where k is constant [14.2] Limite and Continuity $\lim_{(x,y)\to(a,b)} f(x,y) = L$ -IF f(xiy) > L, as (xiy) > (a,b) slong path C, and f(xy)-7 Lz as (xy)=1a,6) on path Cz where L, # Lz lim DNE Approach from different lines

Ex) y=0 $\lim_{(0,y)} f(x,y) = L$ y=x $\lim_{(x,y)} f(x,y) = L$ y=mx $\lim_{(x,y)} f(x,y) = L$ - further is controls at (a,b) if $\lim_{(x,y) \to (a,b)} f(x,y) = f(a,b)$ continues on D if f is continues at every point (a,b) in D 14.3 Partial Dervatues $t^{x}(x^{1}y) = t^{x} = \frac{9x}{9t} = \frac{9x}{9} + (x^{1}y)$ $t^{y}(x^{1}y) = t^{y} = \frac{9x}{9} + \frac{9x}{9} + (x^{1}y)$ Clairant's Theorem: fxy(a,b) = fyx(a,b) Laplace Equation: Uxx + Uyy = 0 14.4 Tangent Planes and Linear Approximations Eg of targett Place: of surface z=f(x,y) at point P(xo,yo,zo) Z-Zo= Ex(x0140) (x-Xo) + fy(x,140) (4-40) - If partials exist near (a,b) and are continued at (a,b) then f is differentiable at (a,b) L(x,y) = fx(x-x0) + fy(y-y0) + Zo

· dw= Wx dx + Wy dy + Dz dz [14,5] Chain Pulc () z= f(x,y) where x=g(t) y=h(t) 是一年女子·女女 Case 2: z = f(x,y) x = g(s,t) y = h(s,t) $\frac{\partial y}{\partial x} = -\frac{fx}{fy}$ $\frac{\partial z}{\partial x} = -\frac{\partial x}{\partial x}$ $\frac{\partial z}{\partial x} = -\frac{\partial y}{\partial x}$ $\frac{\partial z}{\partial x} = -\frac{\partial y}{\partial x}$ 14.6 | prectional Derivatives and the Grandrent Vector If f is differential function of x and y flows directoral demate in director of unit metor in (a.b) Duflxy) = fx(xy) a + fy(xy) b = Vf. i Gradunt: fastest increase

TE(xiy) = \(\xi_x(xiy) \, \xi_y(xiy) \rangle \delta_x \frac{\partial F}{2F} \) - Max of Directord Donnather Duf(x) is $|\nabla f(x)|$ is when i has some director as gradient $\nabla F(x)$ tangent Plane Fraden + is in of targent plane Plac: Fx (x-X0) + Fy (y-y0) + Fz (z-20)=0 [14.7] Max and Min Values - If I has a local mox or min at (a,b) the from orter purble then fx(a,b)=0 and fy(a,b)=0 - A point (a,b) is a critical point if fxla,b) =0 and fyla,b) or one of partials are DNF

IE (vip) is a current boint.
D= fxx (a,b) fxy (a,b) - [fxy (a,b)]2
0 D>0 and (xx (a1b) >0, f(a1b) is local min
(2) D>O and fxx(a,b) <o, &="" f(a,b)="" local="" max<="" td=""></o,>
3 DKO, fla, b) not local mn or max (saddle point)
(A) D=O, no information, could be any
IF Fix continous on closed, bounded set D in R2 there is
max Elxi, yi) and min E(xz, yz) in D
Steps to End Max, min
Fred vals of Eat critical points of Find
@ Frd extreme values of f on boundary of D
3 largest is max, smallest is min
148 Lagrange Multiplus
To End Januar OF F(x,y,z) constraint g(x,y,z)=k
7 f(x,y,z) = 1 7 g(x,y,z) g(x,y,z)=K
fx=lgx fy=lgy fz=lgz g(x,yz)=k
Two Constraints
VE(x0,1/0,20) = 1 79(x,1/0,120) + M 7h(x0,140,120)
Chapter 15. Multiple Integrals
Chapter 5 mingrains
[15.1] Double Integrals over feetingles
V=SSE(xy)dA
Alog vake = SSx F(xx) dA Yolure total area of B Area of base

[15:2] Double Integrals over General Legions
-Make Suc each (partial or single) integral is double
- If $m \in F(x,y) \leq M$ for all (x,y) in D_1 from $M + M(D) \leq M(D) \leq M(D)$
(15.3) Double Integrale in Polar
12=X2+42 X=10000 Y=151NO
Sf f(x,y)dA = fft(rcost, rsint) rdrdt
[15.4] Applications of Double Integrals
Mass: m= Stacky) dA p(x,y) is laming Anc
Nover: Mx = \(\nabla p(x,y) dA \\ My= \lambda x p(x,y) dA
contr. x= My = I S(xp(x,y)dA J= My = th SS y p(x,y)dA
Moment of Inerta
Ix= SS y2p(x,y) dA Iy=SSox2p(x,y) dA
In (around origin) = $\iint (x^2 + y^2) \rho(x, y) dA = \iint r^2 \rho(x, y) dA$
-Probability isn't regative sole 0-1
· · · · · · · · · · · · · · · · · · ·
f(x,y)≥0 Sf f(x,y) dA = 1
15.6 Triple Integrale
SSS = (x,y,z) dV V(E) = SSS dV

(5.7) Cylindrical Coordinates Triple Integrals $x = r\cos\theta$ $y = r\sin\theta$ z = Z $r^2 = x^2 + y^2$ $tan\theta = \frac{1}{x}$ z = Z(5.8) $f(x, y, z)dv = \int_{-\infty}^{\infty} \int$