ΛΥΣΗ

- α) i. Επειδή $P(0) = 2 \neq 0$, το πολυώνυμο δεν έχει λύση τον αριθμό 0.
- ii. Αν ο αριθμός ρ είναι ρίζα του πολυωνύμου, τότε ισχύει P(p) = 0 δηλαδή

$$2\rho^4 - 5\rho^3 + 4\rho^2 - 5\rho + 2 = 0$$
, (1).

Για να αποδείξουμε ότι ο αριθμός $\frac{1}{\rho}$ είναι επίσης ρίζα του, αρκεί να δείξουμε ότι $P\left(\frac{1}{\rho}\right)=0$.

Πραγματικά, είναι:

$$P\left(\frac{1}{\rho}\right) = \frac{2}{\rho^4} - \frac{5}{\rho^3} + \frac{4}{\rho^2} - \frac{5}{\rho} + 2 = \frac{1}{\rho^4} \left(2 - 5\rho + 4\rho^2 - 5\rho^3 + 2\rho^4\right) = 0$$

λόγω της (1).

β) Επειδή οι μοναδικοί θετικοί ακέραιοι αριθμοί που μπορεί να είναι ρίζες του είναι οι θετικοί διαιρέτες του 2, με x = 2 έχουμε:

$$P(2) = 2 \cdot 16 - 5 \cdot 8 + 4 \cdot 4 - 5 \cdot 2 + 2 = 50 - 50 = 0$$

οπότε ο αριθμός 2 είναι θετική ακέραια ρίζα του πολυωνύμου.

γ) Η εξίσωση P(x) = 0 έχει ρίζα τον αριθμό 2 και λόγω του ερωτήματος α) έχει ρίζα

και τον αριθμό $\frac{1}{2}$.

Έτσι, με τη βοήθεια του σχήματος

Horner έχουμε:

και αν επαναλάβουμε τη διαδικασία για το

πολυώνυμο
$$2x^3 - x^2 + 2x - 1$$
 με το $\frac{1}{2}$

2	-1	2	-1	$\frac{1}{2}$
	1	0	1	
	_	2	0	

συμπεραίνουμε ότι

$$P(x) = (x-2)\left(x-\frac{1}{2}\right)(2x^2+2) = (x-2)(2x-1)(x^2+1)$$

οπότε

$$P(x) = 0 \Leftrightarrow x = 2 \acute{\eta} x = \frac{1}{2}$$
.

δ) Επειδή για κάθε $x \in \mathbb{R}$ ισχύει $x^2 + 1 > 0$, το πρόσημο του πολυωνύμου είναι ίδιο με το πρόσημο του τριωνύμου (x-2)(2x-1). Έτσι έχουμε τον παρακάτω πίνακα προσήμων.

Х	∞		1/2		2		+∞
(x-2)(2x-1)		+	0	_	0	+	

Από τον πίνακα προκύπτει ότι λύση της ανίσωσης P(x) < 0 είναι κάθε αριθμός του διαστήματος $\left(\frac{1}{2}, 2\right)$.