FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 07. Context-free grammar

Eunjung Kim

EXPRESSING PALINDROMES

- A string w is a palindrome if and only if $w = w^R$.
- The set of palindromes (e.g. over {0,1}) is not regular, so one cannot use a regular expression or NFA to describe the language.
- Recursive definition:
 - **1** Base case: ϵ , 0 and 1 are palindromes.
 - 2 Induction: if w is a palindrome, then 0w0 and 1w1 are palindromes.
- Any word generated in this way is a palindrome.
- Conversely, any palindrome can be generated in this way: a word of the form $x \cdot w \cdot y$ is a palindrome (if and) only if x = y and w is a palindrome.

EXPRESSING PALINDROMES

- A string w is a palindrome if and only if $w = w^R$.
- The set of palindromes (e.g. over {0,1}) is not regular, so one cannot use a regular expression or NFA to describe the language.
- Definition by rules.
 - $S \rightarrow \epsilon$.
 - $S \rightarrow 0.$
 - $3 S \rightarrow 1.$
 - 4 S → 0S0.
 - **5** S → 1S1.
- Any word generated using the above rules is a palindrome.
- Conversely, any palindrome can be generated using the above rules.

CONTEXT-FREE GRAMMARS (CFG)

DEFINITION OF CONTEXT-FREE GRAMMAR

There are four component of CFG.

- A finite set of nonterminal]s, often called the variables and denoted by V.
- 2 A finite set of terminals (equivalently, alphabet) Σ .
- A finite set of rules R (often called substitution rules/ production rules) in the form

$$X \rightarrow \gamma$$
,

where

- X is a variable; $X \in V$.
- γ is a string of terminal and nonterminal symbols; $\gamma \in (\Sigma \cup V)^*$.
- 4 A unique nonterminal symbol, denoted as *S*, called the start symbol.

A quadruple $G = (V, \Sigma, R, S)$ is a context-free grammar (CFG) if the four components are as above.

SOME REMARKS ON CFG

- In general, the rule of a grammar has the form u → v with both u and v are strings of terminals and nonterminals.
- A grammar is context-free if the head *u* is a nonterminal (variable) in all the rules; we do not need to consider the context.
- Different restrictions on the grammar define the hierarchy of formal languages.

Class	Languages	Automaton	Rules	Word Problem	Example
type-0	recursively enumerable	Turing machine	no restriction	undecidable	Post's corresp. problem
type-1	context sensitive	linear-bounded TM	$\begin{array}{c} \alpha \to \gamma \\ \alpha \le \gamma \end{array}$	PSPACE- complete	$a^nb^nc^n$
type-2	context free	pushdown automaton	$A ightarrow \gamma$	cubic	a^nb^n
type-3	regular	NFA / DFA	$A \rightarrow a \text{ or}$ $A \rightarrow aB$	linear time	a^*b^*

Figure 1: Chomsky Hierarchy

Figure 1, Lecture note on 15-411; Compiler Design, CMU, 2023

EXPRESSING PALINDROMES

- Consider the grammar $G_{pal} = (\{S, \}, \{0, 1\}, R, S)$, where R is the five production rules below.
 - \mathbf{I} $S \rightarrow \epsilon$.
 - $S \rightarrow 0$.
 - $S \rightarrow 1.$
 - 4 $S \rightarrow 0S0$.
 - **5** S → 1S1.
 - (or equivalently, we write all the <u>bodies</u> of rules sharing the same <u>head</u>) $S \rightarrow \epsilon |0|1|0S0|1S1$.
- Observe: a word over {0,1} is a palindrome if and only if it can be derived from S, that is, by a recursively substituting a variable using one of the substitution rules.
- In other words, the language of palindromes over $\{0,1\}$ is precisely the language of the grammar G_{pal} , denoted as $L(G_{pal})$.

DERIVATION

Consider a CFG $G = (V, \Sigma, R, S)$, $u, v, w \in (\Sigma \cup V)^*$ (a string of terminals and nonterminals) and a variable (nonterminal) $A \in V$.

YIELD, DERIVE, DERIVATION

- We say that uAv yields uwv, written uAv ⇒_G uwv, if G has the rule
 A → w; put another way, uwv is obtained by substituting a variable in
 the string uAv by the body of a rule whose head is the said variable.
- We say that u derives v, written $u \Rightarrow_G^* v$. if u = v or there is a sequence u_1, \ldots, u_k for some $k \ge 1$ such that

$$U \Rightarrow_G U_1 \Rightarrow_G \cdots \Rightarrow_G U_k \Rightarrow_G V$$

and the sequence is called a derivation.

We omit the subscript G in \rightarrow_G and \Rightarrow_G if the CFG under consideration is clear in the context.

DERIVATION BY EXAMPLE

We want to describe, as CFG,

- ullet all arithmetic expressions with + and imes
- over the variables of the form $(a \cup b)(a \cup b \cup 0 \cup 1)^*$.

Consider the following CFG $G_{ari} = (\{E, I\}, \{a, b, 0, 1, +, \times, (,)\}, R, E)$, where R consists of the following rules

- \mathbf{I} $E \rightarrow I$
- $E \rightarrow E + E$
- $E \rightarrow E \times E$
- $E \rightarrow (E)$
- $I \rightarrow a$
- 6 $l \rightarrow b$
- **7** *I* → *I*a
- $8 I \rightarrow Ib$
- 9 I → I0
- $I \rightarrow I1$

CONTEXT-FREE LANGUAGE

For a CFG $G = (V, \Sigma, R, S)$, the language of G, denoted by L(G) is the set of all strings consisting of terminals (only) that have derivations from the start symbol, i.e.

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}.$$

A language is said to be context-free if it is the language of a context-free grammar. A context-free languages is often abbreviated as CFL.

GRAMMAR AND MEANING OF THE LANGUAGE

Let us show that $L(G_{pal})$ is precisely the set of palindromes consisting of 0's and 1's.

- (\rightarrow) We want to show that if $S \Rightarrow^* w$, then w is a palindrome. Induction on the length of derivation.
 - **1** Base: if length at most 1, then $w = \epsilon$, 0 or 1, which is trivially a palindrome.
 - 2 Induction: if the derivation has length n + 1, then it is of the form

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

(or 0 replaced by 1) where $S \Rightarrow^* x$ is a derivation of length n. By I.H. x is a palindrome, and thus 0x0 is.

GRAMMAR AND MEANING OF THE

LANGUAGE

Let us show that $L(G_{pal})$ is precisely the set of palindromes consisting of 0's and 1's.

- (\rightarrow) We want to show that if $S \Rightarrow^* w$, then w is a palindrome. Induction on the length of derivation.
 - **1** Base: if length at most 1, then $w = \epsilon$, 0 or 1, which is trivially a palindrome.
 - 2 Induction: if the derivation has length n + 1, then it is of the form

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

(or 0 replaced by 1) where $S \Rightarrow^* x$ is a derivation of length n. By I.H. x is a palindrome, and thus 0x0 is.

- (\leftarrow) We want to show that if w is a palindrome, then $S \Rightarrow^* w$. Induction on |w|.
 - Base: $|w| \le 1$, then $S \Rightarrow w$ by a single application of one of the rules $S \rightarrow \epsilon |0|1$.
 - 2 Induction: if w is a palindrome of length ≥ 2 , it is of the form 0x0 or 1x1 for some palindrome x. By I.H., $S \Rightarrow^* x$. Therefore,

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

GRAMMAR AND MEANING OF THE

LANGUAGE

Consider CFG *G* with the following rules.

- ullet $S \rightarrow XSX \mid R$
- $R \rightarrow aTb \mid bTa$
- $lacktriangledown T
 ightarrow XTX \mid X \mid \epsilon$
- \bullet $X \rightarrow a \mid b$
- Variables? Terminals? Start Variable?
- $T \Rightarrow^* T$?
- $T \Rightarrow^* XXX?$
- 4 $XXX \Rightarrow^* aba$?
- $R \Rightarrow^* \epsilon$?
- **6** S ⇒* abaababbaaba?
- \blacksquare Can you describe L(G) in simple English?

GRAMMAR AND MEANING OF THE LANGUAGE

Consider CFG G with the following rules. Describe the language L(G) in English.

- lacksquare S o aSb|bY|Ya
- 2 $Y \rightarrow bY|aY|\epsilon$

DESIGNING A CONTEXT-FREE GRAMMAR

- 2 $L = \{0^n 1^n : n \ge 1\} \cup \{0^n 1^n : n \ge 1\}.$
- $L = \{a^i b^j : i > j\}.$
- 4 $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}.$
- **5** $L = \{ \text{the set of all well-formed parentheses} \}.$
- **6** $L = \{$ all strings with the same number of 0's and 1's $\}$.

How to design CFG

The design of CFG requires some ingenuity. Some useful tips here.

- Many CFLs are the union of simpler CFLs.
- It is convenient to think of a variable as something that represents a set of strings; those which can be derived from that variable.
- A CFG for a regular language is easy to construct.
- Sometimes you use some nice combinatorial property of the language.

 $L = \{0^n 1^n : n \ge 1\}.$

$$L = \{0^n 1^n : n \ge 1\} \cup \{1^n 0^n : n \ge 1\}.$$

 $L = \{a^i b^j : i > j\}.$

 $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}.$

 $L = \{ \text{THE SET OF ALL WELL-FORMED PARENTHESES} \}.$

$L = \{ \text{THE SAME } \# \text{ of O's AND 1's} \}.$