Machine Learning, 2024 Fall Homework 4

Notice

Due 23:59 (CST), Dec 26, 2024 Plagiarizer will get 0 points.

LATEX is highly recommended. Otherwise you should write as legibly as possible.

1 Support Vector Machine [30pts]

1. Recall the hard-margin SVM objective:

$$\text{minimize } \frac{1}{2}\|\mathbf{w}\|^2$$

subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 \quad \forall i$$

The constraints specify that the (functional) margin of each example is at least 1. If we change the constraint to require the margin to be at least c (c > 0), i.e., solving:

$$\text{minimize } \frac{1}{2}\|\mathbf{w}\|^2$$

subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge c \quad \forall i$$

(1) Would it change the separating hyperplane? Why or why not?

Solution: No. It would only scale w and b.

(2) Let \mathbf{w}^* be the solution of the original hard-margin SVM, and \mathbf{w}_0 be the solution of the modified problem with margin at least c. Write an expression for \mathbf{w}_0 in terms of \mathbf{w}^* :

Solution:

$$\mathbf{w}_0 = c \cdot \mathbf{w}^*$$

2. Suppose we are using a linear SVM (i.e., no kernel), with some large ${\cal C}$ value, and are given the following data set.

(1) Draw the decision boundary of linear SVM. Give a brief explanation.

Solution:

(2) In the above image, circle the points such that removing that example from the training set and retraining SVM, we would get a different decision boundary than training on the full sample. You need to offer a brief explanation.

Solution:

2 Kernel Function [20pts]

(a) Let $k_1(u,v)$ be a valid kernel. Consider the new kernel function $k(u,v) = \exp(k_1(u,v))$, where $\exp(x)$ is the standard exponential function. Prove that k(u,v) is also a valid kernel, i.e., show that it is positive semi-definite.

Solution: Let $k_1(u,v)$ be a valid kernel. We show that $k(u,v) = \exp(k_1(u,v))$ is also a valid kernel.

(1) Symmetry: Since $k_1(u, v)$ is symmetric, we have:

$$k(u, v) = \exp(k_1(u, v)) = \exp(k_1(v, u)) = k(v, u).$$

Thus, k(u, v) is symmetric.

(2) Positive Semi-Definiteness: For any $\mathbf{z} \in \mathbb{R}^n$, we need to show:

$$\mathbf{z}^T K \mathbf{z} = \sum_{i,j} z_i z_j \exp(k_1(u_i, u_j)) \ge 0.$$

Since $k_1(u, v)$ is positive semi-definite, $\mathbf{z}^T K_1 \mathbf{z} \geq 0$. The exponential function preserves positive semi-definiteness, so K is also positive semi-definite:

$$\mathbf{z}^T K \mathbf{z} > 0$$
.

Since k(u, v) is symmetric and positive semi-definite, it is a valid kernel.

(b) Let $K_1(x,z)$ and $K_2(x,z)$ be valid kernels. Proving that for non-negative constants c_1 and c_2 , $K_0(x,z)=c_1K_1(x,z)+c_2K_2(x,z)$ is a valid kernel function.

Solution: Let $K_1(x,z) = \langle \varphi_1(x), \varphi_1(z) \rangle$ and $K_2(x,z) = \langle \varphi_2(x), \varphi_2(z) \rangle$.

Then,

$$K_0(x,z) = c_1 K_1(x,z) + c_2 K_2(x,z) = c_1 \langle \varphi_1(x), \varphi_1(z) \rangle + c_2 \langle \varphi_2(x), \varphi_2(z) \rangle.$$

Rewriting:

$$K_0(x,z) = \langle \sqrt{c_1}\varphi_1(x), \sqrt{c_1}\varphi_1(z) \rangle + \langle \sqrt{c_2}\varphi_2(x), \sqrt{c_2}\varphi_2(z) \rangle.$$

Define the new feature map $\varphi_0(x)$ as:

$$\varphi_0(x) = (\sqrt{c_1}\varphi_1(x), \sqrt{c_2}\varphi_2(x)).$$

Thus,

$$K_0(x,z) = \langle \varphi_0(x), \varphi_0(z) \rangle.$$

Since $K_0(x, z)$ is the inner product of $\varphi_0(x)$ and $\varphi_0(z)$, $K_0(x, z)$ is a valid kernel.

3 Support Vector Machine with Kernel [20pts]

Suppose we use a Support Vector Machine (SVM) with a custom kernel defined as:

$$K(x, x') = \begin{cases} 1 & \text{if } x = x', \\ -1 & \text{if } x \neq x'. \end{cases}$$

This corresponds to mapping each x to a vector $\psi(x)$ in some high-dimensional space (that need not be specified) so that

$$K(x, x') = \psi(x)^T \psi(x').$$

As in the original setup, we are given m training samples $(x_1, y_1), \ldots, (x_m, y_m)$, where $y_i \in \{-1, +1\}$, and all the data points x_i are distinct (i.e., $x_i \neq x_j$ for $i \neq j$).

Based on the standard SVM optimization problem, derive the expression of α_i when using the kernel defined above. Recall that the weight vector w used in SVMs has the form

$$\mathbf{w} = \sum_{i} \alpha_i y_i \psi(x_i)$$

Solution:

$$\mathcal{L}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

$$K(x_i, x_j) = \begin{cases} 1 & \text{if } x_i = x_j, \\ -1 & \text{if } x_i \neq x_j. \end{cases}$$

$$\mathcal{L}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \alpha_i^2 + \frac{1}{2} \sum_{i \neq j} \alpha_i \alpha_j y_i y_j$$

$$\frac{\partial \mathcal{L}(\alpha)}{\partial \alpha_i} = 1 - \alpha_i + \sum_{j=1}^{m} \alpha_j y_i y_j$$

$$1 - \alpha_i + \sum_{j=1}^{m} \alpha_j y_i y_j = 0$$

$$\alpha_i = 1 + \sum_{i=1}^{m} \alpha_j y_i y_j$$

4 K-Means [30pts]

Recalling the K-means, we iteratively find the cluster centers μ_t^k and upadte the class C_t^k for all data. Given a clusters number K, our goal is to minimize SSE

$$SSE = \sum_{k=1}^{K} \sum_{i \in C_{+}^{k}} \left\| x_{i} - \mu_{t}^{k} \right\|_{2}^{2}$$

- (1) Please prove that the K-means algorithm converges.
- (2) Implement the K-means algorithm on the dataset we provide in Zip. Your answer should include: embedded code, comment on your code and visual screenshot of your clustering results of K=2,5,10. Hint: Implement the K-means algorithm by hand (Dont use the sklearn implementation)

Solution: For K-means, there are two steps (I) finding the closest cluster (II) setting each cluster to the mean of all assigned data. We need to prove both steps decrease SSE

- (I) SSE calculate the sum of distances between each data point and the assigned cluster. For arbitrary data point, let the origin assigned cluster be μ_t and the updated cluster μ_{t+1} . The updated distance $\|x_i \mu_{t+1}\| \le \|x_i \mu_t\|$, therefore the overall $SSE_{t+1} \le SSE_t$.
- (II) Let us consider one cluster k and the corresponding part of $SSE \sum_{i \in C_t} ||x_i \mu_t||_2^2$. Let \bar{x}_i denotes the new cluster center for this cluster. The proof is as follows:

$$\begin{split} \sum_{i \in C_t} \|x_i - \mu_t\|_2^2 &= \sum_{i \in C_t} \|x_i - \bar{x}_i + \bar{x}_i - \mu_t\|_2^2 \\ &= \sum_{i \in C_t} \|x_i - \bar{x}_i\|_2^2 + \sum_{i \in C_t} \|\bar{x}_i - \mu_t\|_2^2 + 2 \sum_{i \in C_t} \|x_i \bar{x}_i - x_i \mu_t - \bar{x}_i^2 + \bar{x}_i \mu_t\| \\ &= \sum_{i \in C_t} \|x_i - \bar{x}_i\|_2^2 + \sum_{i \in C_t} \|\bar{x}_i - \mu_t\|_2^2 + 2 |C_t| * \|\bar{x}_i \bar{x}_i - \bar{x}_i \mu_t - \bar{x}_i^2 + \bar{x}_i \mu_t\| \\ &= \sum_{i \in C_t} \|x_i - \bar{x}_i\|_2^2 + \sum_{i \in C_t} \|\bar{x}_i - \mu_t\|_2^2 = \sum_{i \in C_t} \|x_i - \bar{x}_i\|_2^2 + 2 |C_t| * \|\bar{x}_i - \mu_t\|_2^2 \\ &\geq \sum_{i \in C_t} \|x_i - \bar{x}_i\|_2^2 \end{split}$$

All clusters follow the above proof, then we prove that step (II) decrease SSE.