EE6367: Topics in Data Storage and Communications

2023

Lecture 16: 16 October 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

16.1 Randomized Correlated Quantization

Suppose that each of m users has k bits to transmit, that is, $Y_i \in \{0,1\}^k$. Let $K \triangleq 2^k$. We first generate $c_1 \sim \text{Unif}\left[-\frac{1}{k}, 0\right]$, and define

$$c_i = c_1 + (i-1)\beta,$$
 (16.1)

where $\beta = \frac{K+1}{K(K-1)}$. Note that from (16.1),

$$c_K = c_1 + 1 + \frac{1}{K} \sim \text{Unif}\left[1, 1 + \frac{1}{K}\right].$$
 (16.2)

Again, let π be a random permutation as before. Now, c_1 and π constitute the shared randomness among the users. At each user U_i , define

$$z_i \triangleq \frac{x_i}{\beta}$$

$$c'_i \triangleq \max_{c_j < z_i} c_j$$

$$(16.3)$$

$$c_i' \triangleq \max_{c_i < z_i} c_j \tag{16.4}$$

$$\hat{x_i} = Q_i(x_i) \triangleq c_i' + \beta \mathbb{1}_{\left\{\frac{\pi}{m} + \gamma_i < z_i\right\}}$$

$$(16.5)$$

The estimate of the empirical mean at the server is

$$\hat{\bar{x}} = \frac{1}{m} \sum_{i=1}^{m} \hat{x_i} \tag{16.6}$$

For the multidimensional case $\mathbf{x} \in \mathbb{R}^d$, then we first apply the random rotation followed by the above scheme. The amount of shared randomness is $\mathcal{O}(dm \log m) + \mathcal{O}(d) + \mathcal{O}(dm) = \mathcal{O}(dm \log m)$ bits, assuming that a structured random rotation matrix is used. It is an open problem to reduce the amount of shared randomness while keeping the same MSE (asymptotically).

Parameter	Datacenter Learning	Cross-Silo	Cross-Device
		Federated Learning	Federated Learning
Dataset	Not private, iid	Private, not iid	Private, not iid
	Same amount per node	Different amount per user	Different amount per silo
Number of Users	10-100	10-100	Millions
Communication	Yes, but not at the	Yes	Yes
Constraints	cost of communication.		
Client	Yes, at all times	Yes, at all times	Not always, only subsets
Availability			
Client Reliability	Reliable	Reliable	Unreliable, dropouts
			common, susceptible
			to attacks

Table 16.1: Methods of distributed learning

16.2 Learning in a Distributed Setting

16.2.1 The FL Process

The steps in federated learning (FL) are as follows.

- 1. Client Selection: Clients sampled at random.
- 2. Broadcast:
- 3. Client Computation:
- 4. Aggregation:
- 5. Model Update: Results sent to server