

Goal of Sampling Methods

Fundamental problem: find the expectation of some function $f(\mathbf{z})$ with respect to a probability distribution $p(\mathbf{z})$

$$\mathbb{E}(f) = \int p(\mathbf{z}) f(\mathbf{z}) d\mathbf{z}$$

ldea: If we obtain a set of samples $\mathbf{z}^{(l)}$, $l=1,\ldots,L$ drawn independently from $p(\mathbf{z})$, the expectation may be approximated by

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)})$$

New problem: How can we obtain independent samples from a distribution $p(\mathbf{z})$ we do not know how to sample from?

Basic Sampling: The Transformation Method

- We aim at sampling from $p(\cdot)$
- Suppose that we have available samples z uniformly distributed over the interval (0,1) (i.e., p(z)=1, for $z\in(0,1)$)
- Let y = f(z), then the PDF of y: $p(y) = p(z) \left| \frac{dz}{dy} \right|$
- Transforming z into y using $y = h^{-1}(z)$ where h is defined as the cumulative distribution function of $p(\cdot)$:

$$z = h(y) \equiv \int_{-\infty}^{y} p(\hat{y}) d\hat{y}$$

- Then $y = h^{-1}(z)$ are independent samples drawn from $p(\cdot)$
 - e.g., exponential distribution: $p(y) = \lambda e^{-\lambda y}$, $z = h(y) = 1 e^{-\lambda y} \Rightarrow y = -\lambda^{-1} \ln(1-z)$
- The success of the transformation method depends on the ability to calculate and then invert the CDF (only feasible for simple functions)

Basic Sampling: The Transformation Method

Rejection Sampling

- Rejection sampling allows us to sample from relatively complex distributions, subject to certain constraints
- Assumption 1: Sampling directly from $p(\mathbf{z})$ is difficult but we are able to evaluate $p(\mathbf{z})$ for any value of \mathbf{z} up to an unknown normalizing constant Z_p

$$p(z) = \frac{1}{Z_p} \tilde{p}(z)$$

- Assumption 2: We know how to sample from a proposal distribution q(z), and there exists a constant k such that $kq(z) \ge \tilde{p}(z)$
- Then we know how to obtain independent samples from $p(\cdot)$ from samples drawn from q(z) based on kq(z) (comparison function)

Rejection Sampling

- Generate a number z_0 from $q(\cdot)$
- Generate a number u_0 from the uniform distribution over $[0, kq(z_0)]$
- If $u_0 > \tilde{p}(z_0)$ then the sample is rejected, otherwise z_0 is kept (with a probability of $\tilde{p}(z)/kq(z)$)
- The set of kept z are distributed according to $p(\cdot)$

$$p(\text{accept}) = \int {\{\tilde{p}(z)/kq(z)\} \, q(z) dz}$$
$$= \frac{1}{k} \int \tilde{p}(z) dz$$

Efficiency of the method depends on the ratio between the grey area and the white area \rightarrow the proposal distribution $q(\cdot)$ should be as close as possible to $p(\cdot)$

Rejection Sampling: Example

$$p(z) = \operatorname{Gam}(z|a,b) = \frac{b^a z^{a-1} \exp(-bz)}{\Gamma(a)}$$

Proposal (envelop) distribution:

$$q(z) = \frac{k}{1 + (z - c)^2/b^2}$$

Adaptive Rejection sampling

- The proposal distribution $q(\cdot)$ may be constructed on the fly
- If p is log-concave (i.e., $\ln p(z)$ is concave), use of the derivative of $\ln p(z)$ at some given grid points

In any cases, rejection sampling methods are inefficient if sampling in high dimension (exponential decrease of acceptance rate with dimensionality)

5/30/2022

Importance Sampling

- Provides a framework for approximating expectations $\mathbb{E}(f) = \int p(\mathbf{z}) f(\mathbf{z}) d\mathbf{z} \approx \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)})$ directly (but not for drawing samples from $p(\mathbf{z})$)
- \rightarrow Technique again based on the use of a proposal distribution $q(\cdot)$

$$\mathbb{E}(f) = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z} \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)})$$

Let $p(z) = \tilde{p}(z)/Z_p$ where Z_p is unknown, Similarly, $q(z) = \tilde{q}(z)/Z_q$,

$$\mathbb{E}(f) = \frac{Z_q}{Z_p} \int f(\mathbf{z}) \frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})} q(\mathbf{z}) d\mathbf{z} \approx \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_l f(\mathbf{z}^{(l)}) \approx \sum_{l=1}^{L} w_l f(\mathbf{z}^{(l)})$$

where
$$w_l = \frac{\tilde{r}_l}{\sum_m \tilde{r}_m} = \frac{\tilde{p}(\mathbf{z}^{(l)})/q(\mathbf{z}^{(l)})}{\sum_m \tilde{p}(\mathbf{z}^{(m)})/q(\mathbf{z}^{(m)})}$$
, and $\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(\mathbf{z}) d\mathbf{z} = \int \frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})} q(\mathbf{z}) d\mathbf{z} \approx \frac{1}{L} \sum_m \tilde{r}_m$

- The importance weights $\frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$ correct the bias introduced by sampling from a wrong distribution. w_l are the normalized importance weights
- All the generated samples are retained

Importance Sampling

Again, the success of the method depend on how well the proposal $q(\cdot)$ fits the desired distribution $p(\cdot)$. In particular, q(z) should not be small or zero in regions where p(z) may be significant.

Sampling-Importance-Resampling (SIR)

- Importance sampling is an alternative to rejection sampling
- Technique based on the use of a proposal distribution $q(\cdot)$ the assumption on the existence of a constant k is relaxed
- 1. Draw L samples $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \cdots, \mathbf{z}^{(L)}$ from $q(\mathbf{z})$
- 2. Calculate the importance weights $\frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$, $\forall l=1,\cdots,L$
- 3. Normalize the weights to obtain w_1, \dots, w_L $w_l = \frac{\tilde{p}(\mathbf{z}^{(l)})/q(\mathbf{z}^{(l)})}{\sum_m \tilde{p}(\mathbf{z}^{(m)})/q(\mathbf{z}^{(m)})}$
- 4. Draw a second set of L samples from the discrete distribution $(\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \cdots, \mathbf{z}^{(L)})$ with probabilities (w_1, \cdots, w_L)
- ▶ The resulting L samples are distributed according to $p(\mathbf{z})$ if $L \to \infty$

Sampling and the EM algorithm

Monte Carlo EM algorithm

- Use some Monte Carlo methods to approximate the expectation of the E step
- The expected complete-data log likelihood, given by (Z hidden; X observed; θ parameters):

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{Z}, \mathbf{X}|\boldsymbol{\theta}) d\mathbf{Z}$$

may be approximate by (where $\mathbf{Z}^{(l)}$ are drawn from $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$)

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \approx \frac{1}{L} \sum_{l=1}^{L} \ln p(\mathbf{Z}^{(l)}, \mathbf{X} | \boldsymbol{\theta})$$

Stochastic EM algorithm

Considering a finite mixture model, only one sample Z may be drawn at each E step (meaning a hard assignment of each data point to one of the 5/30/2022 components in the mixture)

Markov Chain Monte Carlo (MCMC)

- MCMC: general strategy which allows sampling from a large class of distributions
- MCMC scales well with the dimensionality of the sample space ≠ importance sampling / rejection sampling
- MCMC uses the mechanism of Markov chains
- Goal: to generate a set of samples from $p(\mathbf{z})$
- Assumption: we know how to evaluate $\tilde{p}(\mathbf{z})$ $\tilde{p}(\mathbf{z}) = Z_p p(\mathbf{z})$

MCMC: Idea

- Goal: to generate a set of samples from $p(\mathbf{z})$
- Idea: to generate samples from a Markov Chain whose invariant distribution is $p(\mathbf{z})$
 - 1. Knowing the current sample is $\mathbf{z}^{(\tau)}$, generate a candidate sample \mathbf{z}^* from a proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$ we know how to sample from
 - 2. Accept the sample according to an appropriate criterion
 - 3. If the candidate sample is accepted then $\mathbf{z}^{(\tau+1)} = \mathbf{z}^*$; otherwise $\mathbf{z}^{(\tau+1)} = \mathbf{z}^{(\tau)}$
 - The proposal distribution depends on the current state
 - Samples $\mathbf{z}^{(1)}$, $\mathbf{z}^{(2)}$, ... form a Markov chain

Metropolis Algorithm

- the proposal distribution is symmetric: $q(\mathbf{z}_A|\mathbf{z}_B) = q(\mathbf{z}_B|\mathbf{z}_A)$
- The candidate sample is accepted with probability

$$A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\widetilde{p}(\mathbf{z}^*)}{\widetilde{p}(\mathbf{z}^{(\tau)})}\right)$$

Use of Metropolis algorithm to sample from a Gaussian distribution. The proposal distribution is an isotropic Gaussian whose $\sigma = 0.2$. Accepted steps in green, rejected steps in red. 150 candidate samples, 43 rejected.

MCMC: Why Is It Working?

- Idea: to generate samples from a Markov Chain whose invariant distribution is $p(\mathbf{z})$
- Why is it working? Under what circumstances will a Markov chain converge to the desired distribution
 - First order Markov chain: series of random variables $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \cdots, \mathbf{z}^{(M)}$ such that for $m \in \{1, \cdots, M-1\}$ $p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(m)})$
 - A Markov chain is specified by $p(\mathbf{z}^{(0)})$ and the transition probabilities

$$T_m(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}) \equiv p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$$

MCMC: Why Is It Working?

- lacktriangle A Markov chain is called homogeneous is the transition probabilities are the same for all m
- A distribution $p^*(\mathbf{z})$ is said to be invariant/stationary w.r.t a Markov chain if each transition leaves the distribution invariant

$$p^*(\mathbf{z}) = \sum_{\mathbf{z}'} T(\mathbf{z}', \mathbf{z}) p^*(\mathbf{z}')$$

A sufficient condition for ensuring $p^*(\mathbf{z})$ to be invariant is to choose the transition probabilities to satisfy the property of detailed balance: $p^*(\mathbf{z})T(\mathbf{z},\mathbf{z}') = T(\mathbf{z}',\mathbf{z})p^*(\mathbf{z}')$

- A Markov chain that respects the detailed balance is said to be reversible
- A Markov chain is said ergodic if it converges to the invariant distribution irrespective of the choice of the initial distribution

MCMC: Why Is It Working?

- Goal: to generate a set of samples from $p(\mathbf{z})$
- Idea: to generate samples from a Markov Chain whose invariant distribution is $p(\mathbf{z})$
- Now: choose the transition probability $T(\mathbf{z}, \mathbf{z}^*)$ to satisfy the property of detailed balance for $p(\mathbf{z})$
- Remark: $T(\mathbf{z}, \mathbf{z}^*)$ can be a mixture distribution

$$T(\mathbf{z}, \mathbf{z}^*) = \sum_{k=1}^K \alpha_k B_k(\mathbf{z}, \mathbf{z}^*)$$

- Generalization of the Metropolis algorithm
- \blacksquare The proposal distribution q is no longer symmetric
- Nowing the current sample is $\mathbf{z}^{(\tau)}$, generate a candidate sample \mathbf{z}^* from a proposal distribution $q_k(\mathbf{z}|\mathbf{z}^{(\tau)})$ (k: the members of the set of possible transitions being considered)
- Accept it with probability

$$A_k(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min \left(1, \frac{\tilde{p}(\mathbf{z}^*) q_k(\mathbf{z}^{(\tau)} | \mathbf{z}^*)}{\tilde{p}(\mathbf{z}^{(\tau)}) q_k(\mathbf{z}^* | \mathbf{z}^{(\tau)})} \right)$$

This reduces to the standard Metropolis criterion if $q_k(\mathbf{z}^{(\tau)}|\mathbf{z}^*) = q_k(\mathbf{z}^*|\mathbf{z}^{(\tau)})$ (i.e., symmetric)

- Transition probability of this chain: $T(\mathbf{z}, \mathbf{z}') = q(\mathbf{z}'|\mathbf{z})A(\mathbf{z}', \mathbf{z})$
- To prove that $p(\mathbf{z})$ is the invariant distribution of the chain, it is sufficient to prove the property of detailed balance

$$p(\mathbf{z})T(\mathbf{z},\mathbf{z}') = T(\mathbf{z}',\mathbf{z})p(\mathbf{z}')$$

- Transition probability of this chain: $T(\mathbf{z}, \mathbf{z}') = q(\mathbf{z}'|\mathbf{z})A(\mathbf{z}', \mathbf{z})$
- To prove that $p(\mathbf{z})$ is the invariant distribution of the chain, it is sufficient to prove the property of detailed balance

$$p(\mathbf{z})T(\mathbf{z},\mathbf{z}') = T(\mathbf{z}',\mathbf{z})p(\mathbf{z}')$$

$$p(\mathbf{z})q(\mathbf{z}'|\mathbf{z})A(\mathbf{z}',\mathbf{z}) \qquad A(\mathbf{z}',\mathbf{z}) = \min\left(1,\frac{p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}')}{p(\mathbf{z})q(\mathbf{z}'|\mathbf{z})}\right)$$

$$= \min\left(p(\mathbf{z})q(\mathbf{z}'|\mathbf{z}),p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}')\right)$$

$$= \min\left(p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}'),p(\mathbf{z})q(\mathbf{z}'|\mathbf{z})\right)$$

$$= p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}')\min\left(1,\frac{p(\mathbf{z})q(\mathbf{z}'|\mathbf{z})}{p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}')}\right)$$

$$= p(\mathbf{z}')q(\mathbf{z}|\mathbf{z}')A(\mathbf{z},\mathbf{z}')$$
5/30/2022

- Common choice for q: Gaussian centered on the current state
 - Small variance → high rate of acceptation but slow exploration of the state space + non independent samples
 - Large variance → high rate of rejection

Use of an isotropic Gaussian proposal (blue circle), to sample from a Gaussian distribution (red). The scale ρ of the proposal should be on the order of σ_{\min} , but the algorithm may have low convergence (low to explore the state space in the other direction)

Gibbs Sampling

- Special case of the Metropolis-Hasting algorithm
- Objective law: $p(\mathbf{z}) = p(z_1, \dots, z_M)$
- $-p(z_i|\mathbf{z}_{\setminus i})$ known

Josiah Willard Gibbs

Gibbs Sampling — Example

- The objective law is $p\left(z_1^{(i)}, z_2^{(i)}, z_3^{(i)}\right)$
- At step i, we have selected values $z_1^{(i)}$, $z_2^{(i)}$, $z_3^{(i)}$
- Then we obtain $z_1^{(i+1)}$, $z_2^{(i+1)}$, $z_3^{(i+1)}$ with $z_1^{(i+1)} \sim p\left(z_1 \middle| z_2^{(i)}, z_3^{(i)}\right)$ $z_2^{(i+1)} \sim p\left(z_2 \middle| z_1^{(i+1)}, z_3^{(i)}\right)$ $z_3^{(i+1)} \sim p\left(z_3 \middle| z_1^{(i+1)}, z_2^{(i+1)}\right)$
- If, instead of drawing a sample from the conditional distribution, we replace the variable by the maximum of the conditional distribution, we obtain the iterated conditional modes (ICM) algorithm

Gibbs Sampling

Illustration of Gibbs sampling, by alternate updates of two variables (blue steps) whose distribution is a correlated Gaussian (red). The conditional distributions are Gaussian (green curve).

Elise Arnaud,

Slice Sampling

- Problem of Metropolis algorithm (proposal $q(\mathbf{z}|\mathbf{z}') = q(\mathbf{z}'|\mathbf{z})$)
 - Step size too small, slow convergence (random walk behavior)
 - Step size too large, high estimator variance (high rejection rate)
- Idea: adapt the step size automatically to a suitable value
- $\stackrel{\blacktriangleright}{}$ Technique: introduce variable u and sample (u,z) jointly
 - Ignoring u leads to the desired samples of p(z)

Slice Sampling

- \blacksquare Sample z and u uniformly from area under the distribution
 - Fix z, sample u uniform from $[0, \tilde{p}(z)]$
 - Fix u, sample z uniform from slice : $\{z: \tilde{p}(z) > u\}$
- How to sample z from the slice? [Neal, 2003]
 - Start with region of width w containing $z^{(\tau)}$
 - If end point in slice, then extend region by w in that direction
 - \blacksquare Sample z' uniform from region
 - If z' in slice, then accept as $z^{(\tau+1)}$
 - If not: make z' new end point of the region, and resample z'
- Multivariate distributions: slice sampling within Gibbs sampler

Hybrid Monte Carlo

- Problem of Metropolis algorithm is the step size trade-off
- Hybrid Monte Carlo suitable in continuous state spaces
 - able to make large jumps in state space
 - low rejection rate
 - based on dynamical systems
 - need to evaluate gradient of log-prob. w.r.t. state z
 - based on Hamiltonian Dynamics
- Goal is to sample from

$$p(\mathbf{z}) = \frac{1}{Z_p} \exp(-E(\mathbf{z}))$$

where $E(\mathbf{z})$ is interpreted as potential energy of system in \mathbf{z}

 \blacksquare Hamiltonian dynamical system over energy landscape $E(\mathbf{z})$

Hybrid Monte Carlo: Hamiltonian Dynamics

- ightharpoonup Evolution of state variable $\mathbf{z} = \{z_i\}$ under continuous time
- Momentum variables correspond to rate of change of state

$$r_i = \frac{dz_i}{d\tau}$$

- ► Joint (z, r) space is called phase space
- Rate of change of momentum (acceleration, applied force):

$$\frac{dr_i}{d\tau} = -\frac{dE(\mathbf{z})}{dz_i}$$

Hamiltonian is constant under dynamical system evolution

$$H(\mathbf{z}, \mathbf{r}) = E(\mathbf{z}) + K(\mathbf{r}), \text{ with } K(\mathbf{r}) = \frac{1}{2} \sum_{i} r_i^2$$

Hybrid Monte Carlo: Distribution over Phase Space

- Let Hamiltonian define a distribution over phase space:
- Momentum variables correspond to rate of change of state

$$p_H(\mathbf{z}, \mathbf{r}) = \frac{1}{Z_H} \exp(-H(\mathbf{z}, \mathbf{r})) = \frac{1}{Z_H} \exp(-E(\mathbf{z}) - K(\mathbf{r}))$$

- Sate z and momentum r are independently distributed
- Hamiltonian dynamics leave this distribution invariant!
 - If $(\mathbf{z}, \mathbf{r}) \sim p_H$, and evolve in time τ to $(\mathbf{z}^*, \mathbf{r}^*)$, then also $(\mathbf{z}^*, \mathbf{r}^*) \sim p_H$
 - volume and H are constant under Hamiltonian dynamics
- lacktriangle Hamiltonian evolution is not an ergodic sampler of p_H
 - Resampling of r using $p_H(\mathbf{r}|\mathbf{z}) = p_H(\mathbf{r})$
 - Gibbs sampling step

Hybrid Monte Carlo

- Combination of Metropolis algorithm & Hamitonian Dynamics
- Markov chain that alternates
 - stochastic update of the momentum variables r
 - Hamiltonian dynamical updates with acceptance probability $\min(1, \exp\{H(\mathbf{z}, \mathbf{r}) H(\mathbf{z}^*, \mathbf{r}^*)\})$

to compensate for numerical errors: if $H(\mathbf{z}, \mathbf{r}) \neq H(\mathbf{z}^*, \mathbf{r}^*)$

- Direction of time is chosen randomly to have detailed balance
- Hybrid Monte Carlo generates independent samples faster
 - the use of gradient information causes this difference

Estimating the Partition Function

Most sampling algorithms require distribution up to the constant partition function Z_E :

$$p_E(\mathbf{z}) = \frac{1}{Z_E} \exp(-E(\mathbf{z}))$$

$$Z_E = \sum_{\mathbf{z}} \exp(-E(\mathbf{z}))$$

- Partition function is useful for model comparison
 - it expresses the probability of observed data in

$$p(\text{hidden}|\text{observed}) = \frac{1}{p(\text{observed})}p(\text{hidden},\text{observed})$$

- For model comparison we need the ratio of partition functions
- Often intractable to compute due to sum over many terms

Estimating the Partition Function: Strategy 1

■ Use importance sampling from proposal p_G with energy G(z)

$$\frac{Z_E}{Z_G} = \frac{\sum_{\mathbf{z}} \exp(-E(\mathbf{z}))}{\sum_{\mathbf{z}} \exp(-G(\mathbf{z}))} = \frac{\sum_{\mathbf{z}} \exp(-E(\mathbf{z}) + G(\mathbf{z})) \exp(-G(\mathbf{z}))}{\sum_{\mathbf{z}} \exp(-G(\mathbf{z}))}$$

$$= \mathbb{E}_{PG} \left[\exp \left(-E(\mathbf{z}) + G(\mathbf{z}) \right) \right] \approx \frac{1}{L} \sum_{l=1}^{L} \exp \left(-E(\mathbf{z}^{(l)}) + G(\mathbf{z}^{(l)}) \right)$$

- $ightharpoonup z^{(l)}$ are sampled from p_G
- lacktriangle If Z_G is easy to compute we can estimate Z_E
- For this approach to work p_E needs to match p_G well.

Estimating the Partition Function: Strategy 1

- Problem: how to come up with a p_G that matches p_E ?
- Idea: we can use samples $z^{(l)}$ from p_E from a Markov chain:

$$p_G(\mathbf{z}) = \frac{1}{L} \sum_{l=1}^{L} T(\mathbf{z}^{(l)}, \mathbf{z})$$

where T gives the transition probabilities of the chain

- lacktriangle If Z_G is easy to compute we can estimate Z_E
- We now define $G(\mathbf{z}) = -\log p_G(\mathbf{z})$

$$\frac{Z_E}{Z_G} \approx \frac{1}{L} \sum_{l=1}^{L} \exp\left(-E(\mathbf{z}^{(l)}) - \log p_G(\mathbf{z}^{(l)})\right)$$

Estimating the Partition Function: Chaining

- Partition function ratio estimation requires matching distributions
- Problematic when estimating absolute value of part. Function
 - \blacksquare Partition function Z_G needs to be evaluated exactly
 - Only simple, poor matching, distributions allow this
- \not Use set of distributions between simple p_1 and complex p_M

$$\frac{Z_M}{Z_1} = \frac{Z_2}{Z_1} \frac{Z_3}{Z_2} \cdots \frac{Z_M}{Z_{M-1}}$$

The intermediate distributions interpolate from E_1 to E_M

$$E_{\alpha}(\mathbf{z}) = (1 - \alpha)E_{1}(\mathbf{z}) + \alpha E_{M}(\mathbf{z})$$

Now each term can be reasonably approximated