REC'D 1 1 JUL 2003

SHPO

PCT

本 23.05.03 日 **JAPAN PATENT OFFICE**

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 4月26日

出 願 番 Application Number:

特願2002-127305

[JP2002-127305]

出 人 Applicant(s):

[ST.10/C]:

日本特殊陶業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 6月26日

特許庁長官 Commissioner, Japan Patent Office ं सा

【書類名】

特許願

【整理番号】

P2503

【提出日】

平成14年 4月26日

【あて先】

特許庁長官殿

【国際特許分類】

F23Q 7/00

【発明者】

【住所又は居所】

名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式

会社内

【氏名】

松原 桂

【発明者】

【住所又は居所】

名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式

会社内

【氏名】

渡辺 洋紀

【発明者】

【住所又は居所】

名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式

会社内

【氏名】

伊藤 正也

【特許出願入】

【識別番号】

000004547

【氏名又は名称】

日本特殊陶業株式会社

【代理人】

【識別番号】

100094190

【弁理士】

【氏名又は名称】

小島 清路

【電話番号】

052-682-8361

【選任した代理人】

【識別番号】

100111752

【弁理士】

【氏名又は名称】 谷口 直也

【電話番号】 052-682-8361

【手数料の表示】

【予納台帳番号】 019471

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9712311

【包括委任状番号】

0102808

【プルーフの要否】

明細書

【発明の名称】 セラミックヒータ及びそれを備えるグロープラグ

【特許請求の範囲】

【請求項1】 絶縁性セラミック基体、及び該絶縁性セラミック基体内に埋 設され且つ窒化ケイ素及び炭化タングステンを主成分とする発熱抵抗体を備え、

上記発熱抵抗体に含有される希土類元素の酸化物(RE2〇3、REは希土類 元素)換算量のモル数をAとし、上記発熱抵抗体に含有される余剰酸素の二酸化 ケイ素 (SiO₂) 換算量のモル数をBとした場合に、以下の式 (1) から算出 される値Rが0、32以下であることを特徴とするセラミックヒータ。

$$R = A / (A + B) \quad \cdots \quad (1)$$

【請求項2】 上記酸化物は、Er₂〇₃及び/又はYb₂〇₃である請求 項1記載のセラミックヒータ。

【請求項3】 請求項1又は2に記載のセラミックヒータを備えることを特 徴とするグロープラグ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、通電耐久性に優れるセラミックヒータ及びそれを備えるグロープラ グに関する。更に詳しく言えば、通電耐久性に優れディーゼルエンジンの始動等 に好適なセラミックヒータ及びそれを備えるグロープラグに関するものである。

[0002]

【従来の技術】

従来、ディーゼルエンジンの始動、あるいは各種センサの早期活性等において 、金属製シーズに充填された絶縁粉末中に発熱用コイルが埋設されたシーズヒー タが使用されている。しかし、このシーズヒータでは、発熱用コイルが絶縁粉末 に埋設されているため熱伝導性が低く、昇温に長時間を要する。そこで、近年、 発熱用コイルを緻密な絶縁性セラミック焼結体中に埋設することで熱伝導性を向 上させ、急速昇温を可能としたセラミックヒータが開発され、用いられている。

[0003]

また、金属製の発熱用コイルを導電性セラミックからなる発熱抵抗体に置き換えたセラミックヒータも提供されており、特に、1200℃以上にまで昇温させる必要があるセラミックグロープラグ等において使用されている。

このセラミックヒータは図1及び図2に示すように、炭化タングステン、ケイ化モリブデン等の導電性セラミックからなる発熱抵抗体22を、高温での耐食性に優れた絶縁性の窒化ケイ素質セラミックからなる基体21に埋設した構造となっている(例えば特開昭63-88777号公報、特開昭60-86787号公報及び特開平7-135067号公報を参照)。更に、基体21には、発熱抵抗体22に通電するため、タングステン等の高融点金属からなり、一端側が発熱抵抗体22の端部側に固定され、他端側が基体表面に位置している金属製のリード線23、24が埋設されている。

[0004]

【発明が解決しようとする課題】

このようなセラミックヒータには、上述の昇温特性の他、通電及びその停止の繰り返しに対する通電耐久性、並びに十分な強度等が要求される。しかし、発熱抵抗体に様々な材料を無考慮で使用すると、通電電流によって発熱抵抗体中に導通不良が発生し、発熱抵抗体の抵抗値上昇を招いて、所定の温度まで昇温できなくなる問題があった。

本発明は、上記の従来の問題を解決するものであり、通電電流による発熱抵抗 体の導通不良を抑え、通電耐久性に優れるセラミックヒータ及びそれを備えるグ ロープラグを提供することを目的とする。

[0005]

【課題を解決するための手段】

本発明のセラミックヒータは、絶縁性セラミック基体、及び該絶縁性セラミック基体内に埋設され且つ窒化ケイ素及び炭化タングステンを主成分とする発熱抵抗体を備え、上記発熱抵抗体に含有される希土類元素の酸化物(RE $_2$ O $_3$ 、REは希土類元素)換算量のモル数をAとし、上記発熱抵抗体に含有される余剰酸素の二酸化ケイ素(SiO $_2$)換算量のモル数をBとした場合に、以下の式(1)から算出される値RがO、32以下であることを特徴とする。

また、上記酸化物は、 $\operatorname{Er}_2 \circ_3$ 及び/又は $\operatorname{Y}_b \circ_2 \circ_3$ とすることができる。 更に、本発明のグロープラグは、本発明のセラミックヒータを備えることを特徴とする。

[0006]

【発明の効果】

本発明のセラミックヒータによれば、発熱抵抗体に含有される希土類元素及び 余剰酸素のモル数を、それぞれの酸化物換算量で規定することにより、通電電流 による発熱抵抗体の導通不良を抑え、通電耐久性に優れたものとすることができ る。また、本発明のグロープラグによれば上記セラミックヒータを備えることで 通電耐久性に優れたものとすることができる。

[0007]

【発明の実施の形態】

上記「基体」は目的により種々の絶縁性セラミック焼結体を選択することができるが、代表的なものとして、窒化ケイ素を主成分として形成され、焼成により窒化ケイ素質焼結体となるものが挙げられる。この窒化ケイ素質焼結体は、窒化ケイ素粒子及び粒界ガラス相からなるものであってもよいし、これに加えて粒界に結晶相(例えば、ダイシリケート相)が析出していてもよい。更に、窒化ケイ素質焼結体は、窒化アルミニウム、アルミナ及びサイアロン等を含有していてもよい。

[0008]

上記「発熱抵抗体」は、窒化ケイ素及び炭化タングステンに、希土類元素を含む焼結助剤を添加した混合物を焼成して得られる導電性セラミックである。この発熱抵抗体は、含有される希土類元素の酸化物(RE2O3)換算量のモル数Aと、余剰酸素の二酸化ケイ素(SiO2)換算量のモル数Bとを前記式(1)に代入して得られる値RをO.32以下(好ましくは、O.315以下、更に好ましくはO.31以下)とすることができる。この値RがO.32を超えると、発熱抵抗体の通電電流によって発熱抵抗体の局所的な絶縁破壊が発生することで空隙等が形成され、発熱抵抗体の抵抗値上昇を招いて、所定の温度まで昇温できな

[0009]

更に、上記「希土類元素の酸化物換算量」とは、発熱抵抗体22中に含まれる 希土類元素の量を酸化物(RE₂O₃)に換算した量である。

上記「余剰酸素」とは焼結体中に含まれる全酸素量から、希土類元素を酸化物 換算した際の酸素を差し引いた残りの酸素である。更に、上記「余剰酸素の二酸 化ケイ素換算量」とは、余剰酸素の量を二酸化ケイ素(SiO₂)に換算した量 をあらわす。

また、本セラミックヒータは、絶縁性セラミック基体中の発熱抵抗体に電流を流すためのリード線等を備えることができる。更に、本セラミックヒータの製造方法は特に限定されず、任意の方法を選択することができる。

[0010]

【実施例】

本発明のセラミックヒータ及びグロープラグを図1~3に基づき詳しく説明する。

1. セラミックヒータ及びグロープラグの構成

図1及び図2に示すように、本発明のセラミックヒータ2を備えるグロープラグ1は、外筒12と、外筒12の後部を保持する金具11と、外筒12内に貫装されるセラミックヒータ2と、金具11に絶縁状態で配設される端子電極15とを備える。

[0011]

外筒12は耐熱性を有する金属であり、その後部が金具11の先端内周にロウ付けされている。金具11は炭素鋼製であり、レンチ嵌合用の六角部14を後端に形成し、ディーゼルエンジンの燃焼室に螺着するためのねじ13を六角部14

の前部外周に形成している。

[0012]

セラミックヒータ2は、窒化ケイ素質セラミック製の基体21中に発熱抵抗体 22及びリード線23、24を埋設している。発熱抵抗体22はU字形状に曲げ られた棒状体であり、通電発熱時には1400℃に昇温する。

リード線23、24は、直径0.3mmのタングステン線であり、それぞれ一端を発熱抵抗体22の端部に接続し、他端を基体21の中間周面及び後部でセラミック表面に露出させている。尚、このリード線23、24の材質は、タングステンに限られず発熱抵抗体より低抵抗であればよく、窒化ケイ素と炭化タングステンとの複合物、炭化タングステン及びケイ化モリブデン等を主成分とするもの等、材料は特に問わない。

[0013]

2. セラミックヒータの製造方法

本実施例及び比較例のセラミックヒータ2の製造方法を説明する。

(1) 未焼成発熱抵抗体の作製

平均粒径 0.5μ mの炭化タングステン、平均粒径 1.0μ mの窒化ケイ素及び焼結助剤を表 1 に示す割合となるように秤量し、ボールミル中で4 0 時間湿式混合して混合物を得た。焼結助剤としては Er_2O_3 及び Y b_2O_3 を選択使用した。また、焼結助剤は Er_2O_3 及び Y b_2O_3 に限られるものではなく、他の希土類酸化物も同様に使用することができる。

[0014]

次いで、混合物をスプレードライ法により乾燥させ、造粒粉末を作製した。

また、得られた粉末にバインダを40~60体積%の割合で添加し、混練ニーダ中で10時間混練した。尚、使用するバインダは、例えばアタクチックポリプロピレン、マイクロクリスタリンワックス及びエチレン酢酸ビニル共重合体等を使用することができる。また、可塑剤や潤滑剤を適宜添加することができる。

[0015]

その後、得られた混練物をペレタイザで約3mmの大きさに造粒した。

更に、リード線23、24を射出成形用金型の所定の位置に配置し、射出成形

機に造粒物を入れて射出し、リード線23、24の一端が接続された未焼成発熱 抵抗体を形成した。

[0016]

(2) セラミックヒータの作製

平均粒径0.6μmの窒化ケイ素と、焼結助剤と、添加物とを表1に示す割合となるように秤量し、ボールミル中で湿式混合して、バインダを加えた後、スプレードライ法により混合粉末を得た。

尚、焼結助剤は、 Er_2O_3 、 V_2O_5 、 WO_3 、 Yb_2O_3 、 SiO_2 及び Cr_2O_3 を組み合わせて使用した。また、添加物は、 $MoSi_2$ 、 $CrSi_2$ 及びSiCを組み合わせて使用した。

[0017]

次いで、未焼成発熱抵抗体を上記混合粉末中に埋設してプレス成形を行い、焼成基体となる成形体を得た。その後、この成形体を800℃窒素雰囲気中で1時間かけて脱脂した後、ホットプレス法で1750℃、24MPaの窒素加圧雰囲気下で90分間かけて焼結し、焼結体を得た。

得られた焼結体を直径3.5mmの略円筒状に研磨することで、形状を整えるとともにリード線23、24の他端を露出させてセラミックヒータを得た。

[0018]

(3) グロープラグの作製

作製したセラミックヒータに外筒12をロウ付けした後、金具11に嵌め込み 銀口ウ付けを行った。更に、インシュレータ及びナットによって端子電極15を 金具11に固定し、グロープラグ1を得た。

[0019]

3. 通電耐久試験

下記表1に示す実験例 $1\sim5$ のセラミックヒータ2及びそれを備えるグロープラグ1を用い、通電耐久試験を行った。

この通電耐久試験は、室温且つ解放状態の室内でセラミックヒータ2の最高温度が1350℃になるように印加電圧を調整し、1分間通電、30秒間非通電を1サイクルとして、5万サイクル繰り返した。このときセラミックヒータの抵抗

[0020]

即ち、セラミックヒータ2の耐久性が不十分であれば、発熱抵抗体22に導通不良や割れが発生し、発熱抵抗体22に空隙が形成されて抵抗値が増加する。このため、発熱抵抗体22が切断面に現れる平面でセラミックヒータ2を長手方向に切断し、研磨した切断面を光学式顕微鏡で観察することにより、空隙の有無、つまり導通不良の発生の有無を判別した。所定の抵抗値を超えるまでの通電サイクル数及び導通不良発生の有無を表1に示す。

[0021]

【表1】

表1

		-			
試料	1	*2	3	*4	5
Si ₃ N ₄	85			66	
Er ₂ O ₃		9			_
V_2O_5	1			_	_
基 WO ₃		2			-
体 MoSi ₂ 重 Yb ₂ O ₃	. 3			_	
Yb_2O_3	_ _ _		21.5		
比 $\frac{SIO_2}{Cr_2O_3}$	_	_	-	1.5	
	1	_	_	1	
CrSi ₂		-	_	8	
SiC	-	-	-	. 2	
WC	55	60.75	63.35	58.03	65.09
Si ₃ N ₄	40.05	32.71	31.21	31.25	29.25
Er ₂ O ₃	4	-	3.94	_	-
	-	5.61	_	8.93	4.72
	0.95	0.93	1.5	1.79	0.94
	0.29	0.33	0.21	0.35	0.31
	>50000	4300	>50000	.10000	>50000
通不良の発生の有無	無し	あり	無し	あり	無し
	Si_3N_4 Er_2O_3 V_2O_5 WO_3 $MoSi_2$ Yb_2O_3 SiO_2 Cr_2O_3 $CrSi_2$ SiC WC Si_3N_4	試料 1 Si ₃ N ₄ Er ₂ O ₃ V ₂ O ₅ WO ₃ MoSi ₂ Yb ₂ O ₃ - Cr ₂ O ₃ 40.05 Er ₂ O ₃ 4 40.05 Er ₂ O ₃ - Cr ₂ O ₃ Cr ₂ O ₃ O ₃ O ₃ O ₃ Cr ₂ O ₃ O ₃ O ₃ O ₃ Cr ₂ O ₃ O ₃ O ₃ O ₃ Cr ₂ O ₃	Si ₃ N ₄ 85 Er ₂ O ₃ 9 V ₂ O ₅ 1 WO ₃ 2 MoSi ₂ 3 Yb ₂ O ₃ - SiO ₂ - Cr ₂ O ₃ - CrSi ₂ - SiC - WC 55 60.75 Si ₃ N ₄ 40.05 32.71 Er ₂ O ₃ 4 - Yb ₂ O ₃ - 5.61 SiO ₂ 0.95 0.93 比RE ₂ O ₃ /(RE ₂ O ₃ +SiO ₂) 0.29 0.33 直電サイクル数(回) >50000 4300	試料 1 *2 3 Si ₃ N ₄ 85 Er ₂ O ₃ 9 V ₂ O ₅ 1 WO ₃ 2 MoSi ₂ 3 Yb ₂ O ₃ - - - SiO ₂ - - - - Cr ₂ O ₃ - - - - SiC - - - - WC 55 60.75 63.35 Si ₃ N ₄ 40.05 32.71 31.21 Er ₂ O ₃ 4 - 3.94 Yb ₂ O ₃ - 5.61 - SiO ₂ 0.95 0.93 1.5 比RE ₂ O ₃ /(RE ₂ O ₃ +SiO ₂) 0.29 0.33 0.21 直電サイクル数(回) >50000 4300 >50000	試料

^{※ *2,*4} は比較例

[0022]

4. モル数の比の測定

また、上記表 1 に示す実験例 $1\sim5$ のセラミックヒータ 2 における発熱抵抗体 2 2 のモル数の比 $\left[\text{RE}_{2}\text{O}_{3} / \left(\text{RE}_{2}\text{O}_{3} + \text{SiO}_{2}\right)\right]$ を測定し、結果を

^{※ &}gt;n は n回の時点で範囲内である

この比の測定に用いる発熱抵抗体22の希土類元素の酸化物(RE₂O₃)換算量のモル数、及び余剰酸素の二酸化ケイ素(SiO₂)換算量のモル数は次に示す方法で求めた。初めに、セラミックヒータ2から発熱抵抗体22のみを削り出して粉砕したものを酸素窒素分析装置によって分析し、発熱抵抗体22中の酸素量を求めた。また、上記酸素量を求めたセラミックヒータと同一組成・同一条件で作製した別のセラミックヒータ2を発熱抵抗体22が切断面に現れる平面で2分割し、現れた発熱抵抗体22の表面をエネルギー分散型X線分析装置を用いて分析することにより、発熱抵抗体22中の希土類元素の質量割合を求めた。

次いで、希土類元素の酸化物(RE $_2$ O $_3$)換算の質量割合を、上記で求めた 発熱抵抗体 $_2$ 2 中の希土類元素の質量割合から、希土類元素を酸化物(RE $_2$ O $_3$)換算した値として算出した。また、余剰酸素の二酸化ケイ素(SiO $_2$)換算の質量割合を、発熱抵抗体 $_2$ 2 中の酸素の質量割合から、希土類元素の酸化物(RE $_2$ O $_3$)換算量に相当する酸素量を引き、残りの酸素量を二酸化ケイ素(SiO $_2$)換算した値として算出した。

[0023]

以上より、焼結体中の希土類元素の酸化物(RE $_2$ O $_3$)換算量、及び二酸化ケイ素(SiO $_2$)換算量が質量割合として算出することができ、この算出結果によって発熱抵抗体におけるRE $_2$ O $_3$ 及びSiO $_2$ のモル数A、Bを計算することができる。そして、得られたRE $_2$ O $_3$ 及びSiO $_2$ のモル数A、Bから上記式(1)における値Rを求めた。

[0024]

5. 通電耐久試験等の結果

表1に示すように、モル数の比 [RE₂O₃/(RE₂O₃+SiO₂)]となる値RがO.32以下となる実験例1、3及び5のセラミックヒータにおいては、通電サイクルを5万回行っても発熱抵抗体22の抵抗値が許容範囲内であり、空隙等についても確認されなかった。このことからグロープラグの通常の使用期間において、導通不良が発生せず、通電耐久性に優れることがわかる。

[0025]

一方、実験例2及び4のセラミックヒータにおいては、通電サイクルが5万回 に至る前に断線状態となった。また、発熱抵抗体22の切断面を確認したところ 、空隙等が確認され導通不良が発生していたことがわかった。

[0026]

このことから窒化ケイ素質の基体に、窒化ケイ素と炭化タングステンとの複合 材料からなる導電性能が付与された発熱抵抗体22が埋設されたセラミックヒー タ1としては、上記値Rを所定範囲以下に制御することが重要であると考えられ る。

[0027]

このように上記値Rが所定範囲以下であると通電耐久性に優れるのは、次のように考えられる。

希土類イオンは網目構造の粒界ガラス相に存在しており、通電により発熱抵抗体が高温になると希土類イオンが粒界ガラス相中を電界方向に移動できる状態となる。希土類イオン数が多いと、粒界ガラス相の結合が途切れ、局所的に希土類イオンが凝集して電気的中性が保てなくなる箇所が多くなるために、局所的絶縁破壊が起きて異常電流が流れる。この異常電流によって発熱抵抗体が破損し、導通不良が起きてしまう。

一方、希土類イオン数が少なければ、粒界ガラス相の結合が途切れる箇所が少ないために、通電高温時に希土類イオンが過度に凝集することがない。ゆえに、 局所的絶縁破壊も発生せず、通電耐久性能に優れたものとなる。

【図面の簡単な説明】

【図1】

セラミックヒータを備えるグロープラグを説明するための模式断面図である。

【図2】

グロープラグのセラミックヒータ部分を説明するための部分拡大断面図である

【図3】

セラミックヒータを説明するための模式断面図である。

【符号の説明】

1;グロープラグ、11;金具、12;外筒、2;セラミックヒータ、21; 基体、22;発熱抵抗体、23、24;リード線。

【書類名】

要約書

【要約】

【課題】 通電電流による発熱抵抗体の導通不良を抑え、通電耐久性に優れるセラミックヒータ及びそれを備えるグロープラグを提供する。

【解決手段】 本セラミックヒータ及びそれを備えるグロープラグは、絶縁性セラミック基体及び該絶縁性セラミック基体内に埋設され窒化ケイ素及び炭化タングステンを主原料とする導電性セラミックからなる発熱抵抗体を備え、該発熱抵抗体に含有する希土類元素の酸化物(RE $_2$ O $_3$)換算量のモル数と、該モル数及び余剰酸素の二酸化ケイ素(SiO $_2$)換算量のモル数の合計とのモル比〔RE $_2$ O $_3$ /(RE $_2$ O $_3$ +SiO $_2$)〕を所定値以下にすることで、発熱抵抗体の導通不良を抑え、通電耐久性に優れたものとすることができる。

【選択図】

図 1

出 願 人 履 歴 情 報

識別番号

[000004547]

1. 変更年月日 1990年 8月 8日

[変更理由] 新規登録

25 7 Cett

住 所 愛知県名古屋市瑞穂区高辻町14番18号

氏 名 日本特殊陶業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.