$12a_{0160} (K12a_{0160})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{51} + u^{50} + \dots + b - u, -u^{51} - u^{50} + \dots + a - 1, u^{52} + 2u^{51} + \dots + 2u + 1 \rangle$$

 $I_2^u = \langle b + u + 2, a - u - 1, u^2 - u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{51} + u^{50} + \dots + b - u, -u^{51} - u^{50} + \dots + a - 1, u^{52} + 2u^{51} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{51} + u^{50} + \dots + 7u + 1 \\ -u^{51} - u^{50} + \dots - 4u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{50} + u^{49} + \dots + 18u^{2} + 5u \\ u^{51} - 32u^{49} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{50} + u^{49} + \dots + 18u^{2} + 5u \\ u^{51} - 32u^{49} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{51} - u^{50} + \dots - 7u - 1 \\ 3u^{51} + 2u^{50} + \dots + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} - 2u \\ -u^{9} + 5u^{7} - 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{12} + 7u^{10} - 17u^{8} + 18u^{6} - 10u^{4} + u^{2} + 1 \\ u^{14} - 8u^{12} + 23u^{10} - 28u^{8} + 12u^{6} + 2u^{4} - 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^{51} + 9u^{50} + \cdots 9u + 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{52} + 29u^{51} + \dots + 29u + 1$
c_2, c_4	$u^{52} - 3u^{51} + \dots - 9u + 1$
c_3, c_9	$u^{52} - u^{51} + \dots - 4u + 4$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$u^{52} - 2u^{51} + \dots - 2u + 1$
c_{8}, c_{10}	$u^{52} - 15u^{51} + \dots - 248u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{52} - 9y^{51} + \dots - 593y + 1$
c_{2}, c_{4}	$y^{52} - 29y^{51} + \dots - 29y + 1$
c_3, c_9	$y^{52} - 15y^{51} + \dots - 248y + 16$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$y^{52} - 66y^{51} + \dots + 6y + 1$
c_8, c_{10}	$y^{52} + 41y^{51} + \dots - 9504y + 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002200 + 0.101685I		
a = 0.620325 + 0.568001I	5.42587 + 0.91536I	15.8250 + 0.I
b = -0.338736 - 0.201694I		
u = 1.002200 - 0.101685I		
a = 0.620325 - 0.568001I	5.42587 - 0.91536I	15.8250 + 0.I
b = -0.338736 + 0.201694I		
u = 0.900408 + 0.415514I		
a = -0.686316 + 0.426160I	-2.89703 + 10.97490I	6.84879 - 9.10557I
b = -1.32817 - 1.98079I		
u = 0.900408 - 0.415514I		
a = -0.686316 - 0.426160I	-2.89703 - 10.97490I	6.84879 + 9.10557I
b = -1.32817 + 1.98079I		
u = 0.993272 + 0.210152I		
a = 0.306112 - 0.310737I	4.36145 + 5.53576I	12.8247 - 7.7042I
b = -1.09437 - 1.05834I		
u = 0.993272 - 0.210152I		
a = 0.306112 + 0.310737I	4.36145 - 5.53576I	12.8247 + 7.7042I
b = -1.09437 + 1.05834I		
u = 0.887221 + 0.376671I		
a = 0.216936 + 0.254530I	0.28073 + 6.02352I	10.12786 - 6.24694I
b = 0.512607 - 0.524064I		
u = 0.887221 - 0.376671I		
a = 0.216936 - 0.254530I	0.28073 - 6.02352I	10.12786 + 6.24694I
b = 0.512607 + 0.524064I		
u = -0.853207 + 0.384206I		
a = 0.903606 + 0.104965I	-3.75080 - 4.74137I	5.53664 + 4.96484I
b = 1.14253 - 1.97773I		
u = -0.853207 - 0.384206I		
a = 0.903606 - 0.104965I	-3.75080 + 4.74137I	5.53664 - 4.96484I
b = 1.14253 + 1.97773I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.825680 + 0.382316I		
a = -0.111743 - 0.969230I	-3.92292 + 1.91465I	5.33907 - 3.86780I
b = 1.57224 + 1.67207I		
u = 0.825680 - 0.382316I		
a = -0.111743 + 0.969230I	-3.92292 - 1.91465I	5.33907 + 3.86780I
b = 1.57224 - 1.67207I		
u = -0.768059 + 0.439344I		
a = -0.195399 - 0.893583I	-3.69972 + 3.78870I	5.61035 - 2.00055I
b = -1.17619 + 1.70576I		
u = -0.768059 - 0.439344I		
a = -0.195399 + 0.893583I	-3.69972 - 3.78870I	5.61035 + 2.00055I
b = -1.17619 - 1.70576I		
u = -0.869138 + 0.090566I		
a = -0.624942 - 0.906814I	1.28982 - 1.61982I	10.04112 + 4.38556I
b = 0.124670 - 0.964759I		
u = -0.869138 - 0.090566I		
a = -0.624942 + 0.906814I	1.28982 + 1.61982I	10.04112 - 4.38556I
b = 0.124670 + 0.964759I		
u = -0.778648 + 0.361263I		
a = -0.381137 + 0.106397I	-0.394378 - 0.492969I	9.04055 + 1.45710I
b = -0.541900 - 0.279638I		
u = -0.778648 - 0.361263I		
a = -0.381137 - 0.106397I	-0.394378 + 0.492969I	9.04055 - 1.45710I
b = -0.541900 + 0.279638I		
u = 0.803120		
a = -0.675162	0.0369555	14.8580
b = 2.05557		
u = -0.062250 + 0.639708I		
a = -3.04229 + 0.33326I	-5.82794 - 7.41916I	2.02402 + 6.23213I
b = 0.028753 - 0.273837I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.062250 - 0.639708I		
a = -3.04229 - 0.33326I	-5.82794 + 7.41916I	2.02402 - 6.23213I
b = 0.028753 + 0.273837I		
u = 0.013286 + 0.599769I		
a = 3.16045 + 0.60539I	-6.37556 + 1.41175I	0.512224 - 0.772694I
b = 0.050264 - 0.426280I		
u = 0.013286 - 0.599769I		
a = 3.16045 - 0.60539I	-6.37556 - 1.41175I	0.512224 + 0.772694I
b = 0.050264 + 0.426280I		
u = -0.051648 + 0.589699I		
a = -0.118187 + 0.761845I	-2.57484 - 2.75018I	4.73313 + 3.20106I
b = 0.019107 + 0.393978I		
u = -0.051648 - 0.589699I		
a = -0.118187 - 0.761845I	-2.57484 + 2.75018I	4.73313 - 3.20106I
b = 0.019107 - 0.393978I		
u = -0.429505 + 0.363992I		
a = -0.283846 + 0.092161I	0.985801 + 0.373941I	10.64681 + 0.40187I
b = -0.501430 + 0.658806I		
u = -0.429505 - 0.363992I		
a = -0.283846 - 0.092161I	0.985801 - 0.373941I	10.64681 - 0.40187I
b = -0.501430 - 0.658806I		
u = -0.260485 + 0.467225I		
a = -1.65751 + 0.54880I	0.44749 - 3.27943I	7.33672 + 8.28421I
b = -0.417669 - 0.022465I		
u = -0.260485 - 0.467225I		
a = -1.65751 - 0.54880I	0.44749 + 3.27943I	7.33672 - 8.28421I
b = -0.417669 + 0.022465I		
u = -0.449135		
a = -0.461577	0.706606	14.1070
b = -0.372331		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.58988		
a = 2.20327	7.80979	0
b = -3.13699		
u = 1.62815 + 0.10007I		
a = 2.77026 + 1.09581I	4.49371 - 1.83490I	0
b = -3.78872 - 1.31091I		
u = 1.62815 - 0.10007I		
a = 2.77026 - 1.09581I	4.49371 + 1.83490I	0
b = -3.78872 + 1.31091I		
u = 1.65492 + 0.07803I		
a = 0.986803 - 0.272171I	8.08427 + 2.03863I	0
b = -1.64509 + 0.11104I		
u = 1.65492 - 0.07803I		
a = 0.986803 + 0.272171I	8.08427 - 2.03863I	0
b = -1.64509 - 0.11104I		
u = -1.66220 + 0.09221I		
a = -3.12446 + 1.04099I	4.73033 - 3.67102I	0
b = 4.21717 - 1.24397I		
u = -1.66220 - 0.09221I		
a = -3.12446 - 1.04099I	4.73033 + 3.67102I	0
b = 4.21717 + 1.24397I		
u = -1.67125		
a = -3.25510	8.84251	0
b = 4.37303		
u = 1.67019 + 0.09664I		
a = -2.99043 - 2.84568I	5.04044 + 6.55656I	0
b = 4.30768 + 4.47913I		
u = 1.67019 - 0.09664I		
a = -2.99043 + 2.84568I	5.04044 - 6.55656I	0
b = 4.30768 - 4.47913I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.68080 + 0.01746I		
a = 0.01213 - 2.15798I	10.32590 + 1.99807I	0
b = -0.39566 + 3.61473I		
u = 1.68080 - 0.01746I		
a = 0.01213 + 2.15798I	10.32590 - 1.99807I	0
b = -0.39566 - 3.61473I		
u = -1.68130 + 0.09775I		
a = -0.765995 - 0.522974I	9.25802 - 7.84981I	0
b = 1.297310 + 0.421881I		
u = -1.68130 - 0.09775I		
a = -0.765995 + 0.522974I	9.25802 + 7.84981I	0
b = 1.297310 - 0.421881I		
u = -1.68310 + 0.11088I		
a = 3.15694 - 2.48000I	6.1040 - 13.0204I	0
b = -4.50686 + 3.86266I		
u = -1.68310 - 0.11088I		
a = 3.15694 + 2.48000I	6.1040 + 13.0204I	0
b = -4.50686 - 3.86266I		
u = -1.70835 + 0.02404I		
a = 0.042019 + 0.436305I	15.0483 - 1.4053I	0
b = 0.256089 - 1.030400I		
u = -1.70835 - 0.02404I		
a = 0.042019 - 0.436305I	15.0483 + 1.4053I	0
b = 0.256089 + 1.030400I		
u = -1.70818 + 0.04745I		
a = 1.55667 - 1.83823I	13.9392 - 6.5232I	0
b = -1.98030 + 3.09035I		
u = -1.70818 - 0.04745I		
a = 1.55667 + 1.83823I	13.9392 + 6.5232I	0
b = -1.98030 - 3.09035I		

S	solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0	.123626 + 0.224585I		
a = 0	.84430 + 2.89252I	-1.62775 + 0.54260I	-3.36212 - 1.40035I
b = 0	.727029 - 0.150879I		
u = 0	.123626 - 0.224585I		
a = 0	.84430 - 2.89252I	-1.62775 - 0.54260I	-3.36212 + 1.40035I
b = 0	.727029 + 0.150879I		

II.
$$I_2^u = \langle b + u + 2, \ a - u - 1, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u + 1 \\ -u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ \end{pmatrix}$$

- $a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- $a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- $a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$
- $a_9 = \begin{pmatrix} -u \\ u \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
$c_3, c_8, c_9 \ c_{10}$	u^2
c_4	$(u+1)^2$
c_5, c_6, c_7	$u^2 - u - 1$
c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_8, c_9 c_{10}	y^2
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0.381966	-0.657974	3.00000
b = -1.38197		
u = 1.61803		
a = 2.61803	7.23771	3.00000
b = -3.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^{52} + 29u^{51} + \dots + 29u + 1)$
c_2	$((u-1)^2)(u^{52} - 3u^{51} + \dots - 9u + 1)$
c_3,c_9	$u^2(u^{52} - u^{51} + \dots - 4u + 4)$
c_4	$((u+1)^2)(u^{52} - 3u^{51} + \dots - 9u + 1)$
c_5, c_6, c_7	$(u^2 - u - 1)(u^{52} - 2u^{51} + \dots - 2u + 1)$
c_8, c_{10}	$u^2(u^{52} - 15u^{51} + \dots - 248u + 16)$
c_{11}, c_{12}	$(u^2 + u - 1)(u^{52} - 2u^{51} + \dots - 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^2)(y^{52} - 9y^{51} + \dots - 593y + 1)$
c_2, c_4	$((y-1)^2)(y^{52} - 29y^{51} + \dots - 29y + 1)$
c_3,c_9	$y^2(y^{52} - 15y^{51} + \dots - 248y + 16)$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)(y^{52} - 66y^{51} + \dots + 6y + 1)$
c_8, c_{10}	$y^2(y^{52} + 41y^{51} + \dots - 9504y + 256)$