Genuine equivariant operads

Peter Bonventre, Luís A. Pereira

June 13, 2017

Abstract

We build new algebraic structures, which we call genuine equivariant operads, which can be thought of as a hybrid between equivariant operads and coefficient systems. We then prove an Elmendorf type theorem stating that equivariant operads, with their graph model structure, are equivalent to genuine equivariant operads with their projective model structure.

As an application, we build explicit models for the N_{∞} -operads of Blumberg and Hill.

Contents

1	Intr	oduction			
	1.1	Main results			
	1.2	Outline			
	1.3	Future Work			
2	Preliminaries 1				
	2.1	Grothendieck fibrations			
	2.2	Wreath product over finite sets			
	2.3	Monads and adjunctions			
3	Planar and tall maps				
	3.1	Planar structures			
	3.2	Outer faces, tall maps, and substitution			
	3.3	Equivariant leaf-root and vertex functors			
	3.4	Planar strings			
4	Genuine equivariant operads 3				
	4.1	A monad on spans			
	4.2	The genuine equivariant operad monad			
	4.3	Comparison with (regular) equivariant operads			
	4.4	Indexing systems and \mathcal{F} -genuine G -operads			
5	Free extensions 4				
	5.1	Labeled planar strings			
	5.2	The category of extension trees			
6	Existence of model structures 5				
	6.1	Filtration pieces			
	6.2	Projective model structures			
	6.3	Model structures on G-operads			
	6.4	Genuine F-operads			

7	Cof	ibrancy and Quillen equivalences	64
	7.1	Families of subgroups	64
	7.2	Pushout powers	67
	7.3	G-graph families and G -trees	70
	7.4	Indexing systems and \mathcal{F} -genuine G -operado III	74
	7.5	Cofibrancy and the proof of Theorem III	74
	7.6	N_{∞} -operads	77
Α	Tra	nsferring Kan extensions	78

1 Introduction

A surprising feature of topological algebra is that the category of (connected) topological commutative monoids is quite small, only consisting of products of Eilenberg-MacLane spaces (e.g. [9, 4K.6]). Instead, the more interesting structures are those monoids which are commutative and associative only up to homotopy, or more so up to "all higher" homotopies. To capture these more complex algebraic notions, Boardman-Vogt [4] and May [14] developed the theory of operads. Informally, an operad \mathcal{O} encodes a "generalized multiplication", and consist of sets (or spaces) $\mathcal{O}(n)$ of "n-ary operations" carrying a Σ_n -action recording "reordering the inputs of the operations", and a suitable notion of "composition of operations." The structures of monoids, commutative monoids, Lie algebras malgebras with a module, and many more, can be all captured using operads. Moreover, in [14], May introduced E_{∞} -operads, "homotopical replacements" for the commutative operad, which encode the above monoids up to higher homotopies; in particular, an E_{∞} -algebra structure on X doesn't give unique maps $X^n \to X$, but instead "homotopy unique" such maps.

 E_{∞} -operads are characterized by the homotopy type of their levels $\mathcal{O}(n)$: \mathcal{O} is E_{∞} iff each $\mathcal{O}(n)$ is Σ_n -free and contractible; that is, for each subgroup $\Gamma \leq \Sigma_n$,

$$\mathcal{O}(n)^{\Gamma} \sim \begin{cases} * & \Gamma = * \\ \emptyset & \Gamma \neq * \end{cases}$$

Notably, when studying the homotopy theory of operads (in, say, spaces) the preferred notion of weak equivalence is usually that of "naive equivalences", i.e. a map of operads $\mathcal{O} \to \mathcal{O}'$ is called a weak equivalence if each of the maps $\mathcal{O}(n) \to \mathcal{O}'(n)$ is a weak equivalence of spaces after forgetting the Σ_n -actions. Using this theory, any cofibrant replacement of Comm is in fact an E_{∞} -operad, providing a context for the notion of a "homotopical replacement". This is in contrast with so called "genuine equivariant homotopy theory", where a map of G-spaces $X \to Y$ is considered a G-weak equivalence only if all the induced fix point maps $X^H \to Y^H$ are weak equivalences for all $H \leq G$. This contrast hints at a number of novel subtleties that appear when studying equivariant operads, which we now discuss.

Firstly, noting that for a G-operad \mathcal{O} (i.e. an operad \mathcal{O} together with a G-action commuting with all the structure) the n-th level $\mathcal{O}(n)$ has a $G \times \Sigma_n$ -action, one might guess that a map of G-operads $\mathcal{O} \to \mathcal{O}'$ should be called a weak equivalence if each of the maps $\mathcal{O}(n) \to \mathcal{O}'(n)$ is a G-equivalence after forgetting the Σ_n -actions, i.e. if the maps

$$\mathcal{O}(n)^H \stackrel{\sim}{\to} \mathcal{O}'(n)^H$$
, $H \le G \le G \times \Sigma_n$, (1.1) NAIVEOPEQ EQ

are weak equivalences of spaces. However, the notion of equivalence suggested in $(\overline{\mathbb{I}.1})$ turns out to not be "genuine enough". To see why, we first consider a homotopical replacement for Comm using this theory: if one simply equips an E_{∞} -operad \mathcal{O} with a trivial G-action, the resulting G-operad has fixed points for each subgroup $\Gamma \leq G \times \Sigma_n$ determined by

$$\mathcal{O}(n)^{\Gamma} \sim \begin{cases} * & \text{if } \Gamma \leq G \\ \emptyset & \text{otherwise.} \end{cases}$$
 (1.2) NAIVEGEINFTY EQ

However, as first noted by Costenoble Wang in [0] their study of equivariant infinite loop spaces, the G-trivial E_{∞} -operads of (0.2) do not provide the correct replacement in the Gequivariant context. Instead, the correct notion, dubbed $G-E_{\infty}$ -operads, are characterized by the fixed point conditions

$$\mathcal{O}(n)^{\Gamma} \sim \begin{cases} * & \text{if } \Gamma \cap \Sigma_n = \{*\} \\ \emptyset & \text{otherwise.} \end{cases}$$
 (1.3) GENGEINFTY EQ

In contrasting (II.2) and (II.3), we note the easy, but subtle, observation that the subgroups such that $\Gamma \cap \Sigma_n = \{*\}$ are precisely the graphs of partial homomorphisms $G \geq H \to \Sigma_n$, and that $\Gamma \leq G$ iff Γ is the graph of such a trivial homomorphism. Howevery the notion of weak equivalence described in (II.1) fails to distinguish (II.2) and (II.3) and indeed it is possible to build maps C = C' where C is a C-trivial C-operad (as in (II.2)) and C' is a C-C-operad (as in (II.3)). Therefore, in order to distinguish such operads, one needs to replace the notion of weak equivalence in (II.1) with the notion of graph equivalence, so that $\mathcal{O} \to \mathcal{O}'$ is considered a weak equivalence only if

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \leq G \times \Sigma_n, \Gamma \cap \Sigma_n = \{*\}. \tag{1.4}$$

are weak equivalences.

As mentioned above, the original evidence (cf. [6]) that (H.3), rather than (H.2), provides the best up-to-homotopy replacement for Comm in the equivariant context comes from the study of equivariant infinite loop spaces $_{\rm BH}$ for our purposes, however, we will instead focus on the perspective of Blumberg-Hill in [3], which concerns the $_{\rm HIR}$ -Hopkins-Ravenel norm maps featured in the solution of the Kervaire invariant problem [TT].

Given a G-spectrum R and finite G-set X with n elements, the corresponding norm is a G-spectrum N^XR whose underlying spetrum is $R^{\wedge X} \simeq R^{\wedge n}$ but equipped with a mixed G-action that combines the actions on R and X in the natural way. Moreover, for any Commalgebra R, i.e. strictly commutative ring G-spectrum, ring multiplication then induces so called norm maps

$$N^X R \to R.$$
 (1.5) NORMMAPS EQ

Furthermore, by reducing structure on R the maps (I.5) then satisfy a number of natural H-set for some subgroup $H \leq G$, and the maps (I.5) then satisfy a number of natural equivariance and associativity conditions. Crucially, we note that the more interesting of these associativity conditions involve H-sets for varying H (for an example packaged in operadic language, see (II.10) below). Furthermore, there is an analogous story for G-spaces.

The key observation at the source of the work in Berger than, operadically, norm maps are encoded by the graph fixed points as in ($\overline{\text{II.4}}$). More explicitly, noting that a H-set X with n elements is encoded by a partial homomorphism $G \geq H \rightarrow \Sigma_n$, one obtains an associated graph subgroup $\Gamma_X \leq G \times \Sigma_n$, $\Gamma_X \cap \Sigma_n = \{*\}$, well defined up to conjugation. It then follows that for R an \mathcal{O} -algebra, maps of the form (I.5) are parametrized by the fixed of the first of the fixed of t point space $\mathcal{O}(n)^{\Gamma_X}$. The flaw with the G-trivial E_{∞} -operad described in (1.2) is then that it lacks all norms maps other than those for H-trivial X, missing data encoded by Comm. Further from this perspective one may regard the more naive notion of weak equivalence in (II.1), according to which (II.2) and (II.3) are equivalent, as studying "operads with the period of the control of the contro maps" (in the sense that equivalences ignore norm maps), while the equivalences (11.4) study "operads with norm maps".

Our first main result, Theorem HAINEXIST1 THM

Our first main result, Theorem I, establishes the existence of a model structure on CENEOPEQ and a model structure on the control of the co operads with weak equivalences the graph equivalences of (1.4), though our analysis here goes significantly further again guided by Blumberg-Hill's analysis in [3].

The main novelty of [3] is the definition, for each finite group G, of a finite lattice of

specialized operads, which they dub N_{∞} operads. The minimum type of N_{∞} -operads is that of the G-trivial E_{∞} -operads in ([I.2) while the maximal type is that of the G- E_{∞} -operads in (1.3). The remaining partially genuine types, which interpolate between G-trivial E_{∞}

and G- E_{∞} , can be thought of as encoding varying degrees of up-to-homotopy "equivariant commutativity".

More concretely, each type of N_{∞} -operad is determined by a collection $\mathcal{F} = \{\mathcal{F}_n\}_{n\geq 0}$ where each \mathcal{F}_n is itself a collection of graph subgroups of $G \times \Sigma_n$, with an operad \mathcal{O} being called a $N\mathcal{F}$ -operad if it satisfies the fixed point condition

$$\mathcal{O}(n)^{\Gamma} \sim \begin{cases} * & \text{if } \Gamma \in \mathcal{F}_n \\ \emptyset & \text{otherwise.} \end{cases}$$
 (1.6) NFINFTY EQ

Such collections \mathcal{F} are, however, far from arbitrary, with much of the work in $[3, \S 3]$ spent cataloging a number of closure conditions that such \mathcal{F} must satisfy. The simplest of these conditions, that each \mathcal{F}_n be closed under subgroups and conjugation (so that each \mathcal{F}_n is an example of a family), are simply consequences of the fact that each $\mathcal{O}(n)$ is a space, and are routinely found in equivariant theory. However, the remaining conditions, all of which involve \mathcal{F}_n for varying n simultaneously and are a consequence of operadic multiplication, are both novel and subtle. In loose terms, these conditions, which are more easily described in terms of the H-sets X associated to graph subgroups, concern closure of those under disjoint union, cartesian product, subobjects, and a key entirely novel condition called self-induction. The precise conditions are collected in [3, Def. 3.22], which also introducts the term indexing system for a \mathcal{F} satisfying all such conditions. The main result of $[3, \S 4]$ is then that whenever an $N\mathcal{F}$ -operad \mathcal{O} as in ([1.6] exists, the associated collection \mathcal{F} must be an indexing system; however, the converse statement, that given any indexing system \mathcal{F} such an \mathcal{O} can be produced, is left as a conjecture.

One of the key motivating goals of the present work was to verify this conjecture of Blumberg-Hill, which we obtain in Corollary $\frac{NTNFTY_REAL_COR_MAIN}{V_1}$ produce models of $N\mathcal{F}$ -operads that are as explicit as possible.

To motivate our approach, we first recall the solution of a closely related but simpler problem: that of building universal spaces for families of subgroups. Given a family \mathcal{F} of subgroups of G (i.e. a collection closed under conjugation and subgroups), a universal space $X_{\mathbf{F}}$ for \mathcal{F} , also called a $E\mathcal{F}$ -space, is a space with fixed points X^H are defined just as in (II.6). In particular, whenever \mathcal{O} is a $N\mathcal{F}$ -operad, each $\mathcal{O}(n)$ is necessarily a $E\mathcal{F}_n$ -space. The existence of $E\mathcal{F}$ -spaces for any family is best understood in light Elmendorf's classical result from [7] stating that there is a Quillen equivalence 2 (where O_G is the orbit category, formed by the G-sets G/H)

where the weak equivalences (and fibrations) on Top^G are detected on all fixed points and the weak equivalences (and fibrations) on the category $\mathsf{Top}^{\mathsf{O}_G^{op}}$ of *coefficient systems* are detected at each presheaf level. Noting that the fixed point characterization of $E\mathcal{F}$ -spaces define an obvious object $\delta_{\mathcal{F}} \in \mathsf{Top}^{\mathsf{O}_G^{op}}$ by $\delta_{\mathcal{F}}(G/H) = *$ if $H \in \mathcal{F}$ and $\delta_{\mathcal{F}}(G/H) = \emptyset$ otherwise, $E\mathcal{F}$ -spaces can then be built as $\iota^*(C\delta_{\mathcal{F}}) = C\delta_{\mathcal{F}}(G)$, where C denotes cofibrant replacement in

This conjecture has been independently verified in [19] and announced by Gutierrez-White. However, their methods differ from ours: Rubin builds each NF-operad explicitly using a free operad construction and verifies in the properties directly while Gutierrez-White use a "cofibrant replacement" technique similar to our first proof of V; neither approach is as controlled or direct as Theorem [7.83.]

W; neither approach is as controlled or direct as Theorem 7.83.

2While Elmendorf did not use this language, the main result of [7] is the essential non-trivial step needed in such a proof. The first complete writeup to use the language of model structures is found in [18], though the proof is by another method.

 $\mathsf{Top}^{\mathsf{O}_G^{op}}$. Moreover, we note that in [7], cofibrant replacements are built via explicit simplicial realizations.

The overarching goal of this paper is then that of proving the analogue of Elmendorf's Theorem ($\frac{1}{10}$ 7) in the context of operads with norm many (i.e. with remivalences as in ($\frac{1}{10}$ 4)), which we state as our main result, Theorem III. However, in trying to formulate such a result one immediately runs into a fundamental issue: it is unclear which category should take the role of the coefficient systems $\text{Top}^{O_G^{op}}$ in that context. This last remark likely requires justification. Indeed, it may at first seem tempting to simply employ one of the known formal generalizations of Elmendorf's result (see, e.g. [22, Thm. 3.17]) which simply replace Top on either side of ($\frac{1}{11}$ 7) with a more general model category \mathcal{V} . However, if one applies such a result when $\mathcal{V} = \text{Op } \text{to establish a Quillen equivalence } \text{Op}^{O_G^{op}} \rightleftarrows \text{Op}^G$, the levels of each object $\mathcal{P} \in \text{Op}^{O_G^{op}}$ correspond only to those fixed-point spaces appearing in ($\frac{1}{11}$ 1), and hence this requires working in the context of operads without norm maps, forgoing the ability to distinguish the many types of \mathcal{NF} -operads.

In order to work in the context of operads with norm maps we will need to replace $\mathsf{Top}^{\mathsf{O}_G^{op}}$ with a category Op_G of new algebraic objects we dub *genuine equivariant operads* (as opposed to (regular) equivariant operads Op^G). Each genuine equivariant operad $\mathcal{P} \in \mathsf{Op}_G$ will consist of a list of spaces indexed by those appearing in (I.4) along with obvious restriction maps and, more importantly, suitable *composition maps*. Precisely identifying the required composition maps is one of the main challenges of this theory, and again we turn to [3] for motivation.

When analyzing the proofs of the results in $[3, \S 4]$ concerning the closure properties for indexing systems \mathcal{F} a common motif emerges: when performing an operadic composition

$$\mathcal{O}(n) \times \mathcal{O}(m_1) \times \dots \times \mathcal{O}(m_n) \longrightarrow \mathcal{O}(m_1 + \dots + m_n)$$

$$(f, g_1, \dots, g_n) \longmapsto f(g_1, \dots, g_n)$$

$$(1.8)$$

a careful choice of fixed point conditions on the operations f, g_1, \dots, g_n yield a fixed point condition on the composite operation $f(g_1, \dots, g_n)$. The desired multiplication maps for a genuine equivariant operad $\mathcal{P} \in \mathsf{Op}_G$ will then abstract such interactions between multiplication and fixed points for a equivariant operad $\mathcal{O} \in \mathsf{Op}^G$. However, such interactions can be quite challenging to write down explicitly and, indeed, the arguments in $[3, \frac{1}{5}4]$ do not quite provide the sort of unified conceptual approach to these needed for our purposes. The cornerstone of the current work was then the joint discovery by the authors of such a conceptual framework: equivariant trees.

Non-equivariantly, it has long been known that the combinatorics of operadic composition is best visualized by means of trees diagrams. For instance, the tree

encodes the operadic composition

$$\mathcal{O}(3) \times \mathcal{O}(2) \times \mathcal{O}(3) \times \mathcal{O}(0) \to \mathcal{O}(5)$$

where the inputs $\mathcal{O}(3)$, $\mathcal{O}(2)$, $\mathcal{O}(3)$, $\mathcal{O}(0)$ correspond to the nodes (i.e. circles) in the tree, with arity given by number of incoming edges (i.e. edges immediately above) and the output $\mathcal{O}(5)$ has arity given by counting leaves (i.e. edges at the top, not capped by a node). Similarly, the role of equivariant trees is, in the context of equivariant operads, to encode such operadic compositions together with fixed point compatibilities. A detailed introduction to equivariant trees can be found in [17, §4], where the second author develops the theory of

equivariant dendroidal sets (which is a parallel approach to equivariant operads), though here we include a single representative example. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ denote the group of quaternionic units and $G \ge H \ge K \ge L$ denote the subgroups $H = \langle j \rangle$, $K = \langle -1 \rangle$, $L = \{1\}$. There is then a G-tree T with expanded representation given by the two trees on the left below and orbital representation given by the (single) tree on the right.

(1.9)

D6SMALLER EQ

We note that G acts on the expanded representation of T as indicated by the edge labels (so that the edges a,b,c,d have stabilizers L,K,K,H respectively), and the orbital representation is obtained by collapsing the edge orbits of the expanded representation. As explained in 17, Example 4.9, T then encodes the fact that for any equivariant operad $\mathcal{O} \in \mathsf{Op}^G$ the composition $\mathcal{O}(2) \times \mathcal{O}(3)^{\times 2} \to \mathcal{O}(6)$ restricts to a fixed point composition

$$\mathcal{O}(H/K)^{H} \times \mathcal{O}(K/L \coprod K/K)^{K} \to \mathcal{O}(H/L \coprod H/K)^{H}$$
(1.10)

INTFIXPTCOMP EQ

where $\mathcal{O}(X)$ for an H-set (resp. K-set) X denotes $\mathcal{O}(|X|)$ together with a suitably intertwined H-action (K-action). We note that the inputs $\mathcal{O}(H/K)^H$ $\mathcal{O}(K/L)^H$ $\sqcup K/K)^K$ in ($\Vert .10 \rangle$) correspond to the nodes of the orbital representation in ($\Vert .9 \rangle$), though in contrast to the non-equivariant case arity is now determined by both incoming and outgoing edge orbits , while the output $\mathcal{O}(H/L \sqcup H/K)^H$ is similarly determined by both the leaf and root edge orbits . The existence of maps of the form ($\Vert .10 \rangle$) is essentially tantamount to the subtlest closure property for indexing systems \mathcal{F} , self-induction (cf. $\Vert .3 \rangle$, Def. 3.20]), and similar tree descriptions exist for all other closure properties, as detailed by the second author in $\Vert .7 \rangle$, §9].

We can now finally give a complete informal description of the category Op_G featured in our main result Theorem III. A genuine equivariant operad $\mathcal{P} \in \operatorname{Op}_G$ has levels $\mathcal{P}(X)$ for each H-set $X, H \leq G$, that mimick the role of the fixed points $\mathcal{O}(X)^H \simeq \mathcal{O}(|X|)^{\Gamma_X}$ for $\mathcal{O} \in \operatorname{Op}^G$. More explicitly, there are restriction maps $\mathcal{P}(X) \to \mathcal{P}(X|K)$ for $K \leq L$, isomorphisms $\mathcal{P}(X) \simeq \mathcal{P}(gX)$ where gX denotes the conjugate gHg^{-1} -set, and composition mapsk e.g.

$$\mathcal{P}(H/K_1 \sqcup \cdots \sqcup H/K_n) \times \mathcal{P}(K_1/L_{11} \sqcup \cdots \sqcup K_1/L_{1m_1}) \times \cdots \times \mathcal{P}(K_n/L_{n1} \sqcup \cdots \sqcup K_n/L_{nm_n})$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\mathcal{P}(H/L_{11} \sqcup \cdots \sqcup H/L_{1m_1} \sqcup \cdots \sqcup H/L_{n1} \sqcup \cdots \sqcup H/L_{nm_n})$$

Lastly, these composition maps must satisfy associativity, unitality, compatibility with restriction maps (noting that this will often change the orbit structure, radically altering the form of the given composition map), and equivariance conditions, as encoded by the theory of G-trees. Rather than making such compatibilities explicit, it will be more convenient and effective for our purposes to simply define genuine equivariant operads intrinsically in terms of G-trees.

1.1 Main results

We now present the highlights of this paper. For much of the discussion, our base model category will need to been sufficiently nice, either strongly cellular or underlying strongly

V = sSet.

Our first result, proved in Section 6.3, shows that G-operads can be endowed with a (semi) model structure encoding the theory of operads with norm maps. In fact, it shows more, in particular that the partially-genuine (semi) model structures also exist.

Theorem I. Let V be a strongly cellular model category.

Then there exists a semi model structure on $\operatorname{Op}^G(\mathcal{V})$ where week equivalences and fibrations are determined by graph subgroup fixed points as in 1.4; that is, by the forgetful functor

$$\mathsf{Op}^G(\mathcal{V}) \xrightarrow{\mathsf{fgt}} \mathsf{Sym}^G(\mathcal{V}) \cong \prod_n \mathcal{V}_{\Gamma_n}^{G \times \Sigma_n}.$$

More generally, for any collection $\mathcal{F} = \{\mathcal{F}_n\}_{n\geq 0}$ of sets \mathcal{F}_n of arbitrary subgroups of $G \times \Sigma_n$ closed under conjugation, there exists an \mathcal{F} semi model structure on $\mathsf{Op}^G(\mathcal{V})$, where weak equivalences and fibrations determined as in [1.6; that is, by the forgetful functor

$$\mathsf{Op}_{\mathcal{F}}^G(\mathcal{V}) \xrightarrow{\quad \mathsf{fgt} \quad } \mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V}) \cong \prod_n \mathcal{V}_{\mathcal{F}_n}^{G \times \Sigma_n}.$$

If moreover V is underlying strongly cellular, these are actual model structures.

One important remark to make after this existence result is that these model structures need not be "well-behaved", specifically with respect to the forgetful functors preserving cofibrancy unless the collections \mathcal{F} are highly structured. The necessary condition, found in Section \mathcal{F} the high structure \mathcal{F} indexing system, is also precisely the necessary condition from Section \mathcal{F} to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? to high the necessary condition from Section \mathcal{F} ? The necessary condition from Section \mathcal{F} ?

Theorem II. Let V be a strongly cellular model category with diagonals. Then there exists a projective semi model structure on $Op_G(\mathcal{V})$, determined by the forgetful functor

$$\mathsf{Op}_G(\mathcal{V}) \xrightarrow{\mathsf{fgt}} \mathsf{Sym}_G(\mathcal{V}).$$

More generally, for any weak indexing system $\Sigma_{\mathcal{F}} \subseteq \Sigma_{G}$, there exists a projective semi model structure on $Op_{\mathcal{F}}(\mathcal{V})$, determined by the forgetful functor

$$\mathsf{Op}_{\mathcal{F}}(\mathcal{V}) \xrightarrow{\mathsf{fgt}} \mathsf{Sym}_{\mathcal{F}}(\mathcal{V}).$$

If additionally $\mathcal V$ is underlying strongly cellular, these are both actual model structures. Our main result, proved in Section 7.5, says both notions of equivariant operads are Quillen equivalent.

Theorem III. Let V be a underlying strongly cellular model category with diagonals.

Then the adjunction

$$\operatorname{Op}_{G}(\mathcal{V}) \xrightarrow{\iota^{*}} \overset{\iota^{*}}{\longleftarrow} \operatorname{Op}^{G}(\mathcal{V}). \tag{1.11}$$

is a Quillen equivalence.

More generally, for \mathcal{F} a weak indexing system, the analogue adjunction

$$\mathsf{Op}_{\mathcal{F}}(\mathcal{V}) \xrightarrow{\iota^*} \mathsf{Op}_{\mathcal{F}}^G(\mathcal{V}). \tag{1.12}$$

are also Quillen equivalences.

If \mathcal{V} is strongly cellular but not underlying, then the above equivalences are of semi model categories.

We lastly return to the conjecture of 131, which we resolve in the affirmative using two different methods in Section 7.6. In fact, we show the existence of a larger class of operads, realizing any weak indexing system.

MAINEXIST2 THM

MAINEXIST1 THM

QUILLENEQUIV THM

TY_REAL_COR_MAIN

Corollary V. For $V = \mathsf{sSet}$ and $\mathcal{F} = \{\mathcal{F}_n\}_{n\geq 0}$ any weak indexing system, $N\mathcal{F}$ -operads exist. That is, there exist explicit operads \mathcal{O} such that

$$\mathcal{O}(n)^{\Gamma} \sim \begin{cases} * & \text{if } \Gamma \in \mathcal{F}_n \\ \varnothing & \text{otherwise.} \end{cases}$$
 (1.13)

In particular, $\operatorname{Ho}(N_{\infty}\operatorname{\mathsf{-Op}}) \to \mathbb{I}$ is an equivalence of categories.

1.2 Outline

come back here

There are multiple distinct steps along the path to proving our main result. Specifically, we need better understanding and control of the interplay between the subtle equivariant structures and the combinatorics which underly operads. To that end, we rebuild operads in a way which allows us to exploit the equivariant generalization Ω_G of the dendroidal category Ω discussed in Γ .

We begin by observing that the free operad $\mathbb{F}X$ generated by a symmetric sequence $X \in \mathsf{Sym}(\mathcal{V})$, discussed in [21, 1, 19] etc., can be repackaged as a left Kan extension out of Ω .

$$\begin{array}{cccc} \Omega^{op} & \xrightarrow{N_X} & \mathcal{V} & & & \Omega^{op}_G & \xrightarrow{N_Y} & \mathcal{V} \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

Here, Ir is the "leaf-root" or "valence" functor, and N_X sends T to $\prod_{v \in V(T)} X(v)$.

This can be equivariantly generalized, replacing Ω and Σ with Ω_G and Σ_G , as seen on the right-hand-side. This yields our "genuine G-operad" monad \mathbb{F}_G , acting on the new category of G-sequences $Y \in \mathsf{Sym}_G(\mathcal{V}) = \mathcal{V}^{\Sigma_G^{op}}$. Now, having defined our notion of "coefficient systems", we can begin further analysis. As is often the case, we desire a clear understanding of free \mathbb{F}_G -extensions (5.1).

First, we produce multiple categorical manipulations of this functor. We modify both Ω_G and \mathbb{F}_G to construct a description of coproducts of \mathbb{F}_G -algebras as a similar looking left Kan extension. Then, we "add in relations" found in our free \mathbb{F}_G -extension by inserting new maps into this modified Ω_G , via a realization of a simplicial category of strings of such maps. Finally, using this description, we can build a filtration of such free extensions.

Secondly, we consider the homotopical characteristics of \mathbb{F}_G , in particular a detailed study of the interactions of cofibrancy with composition. We also compare \mathbb{F} and \mathbb{F}_G , categorically and homotopically, in order to display the Quillen equivalence.

We now sive and sief remaining sections.

Section 2: Preliminaries. Here, we identify the major constructions we will be using throughout the major constructions we will be using throughout the major construction and background material.

Section 3: Planar and tall maps. Our machery requires our trees to record an additional structure, namely a planarization. In this section, we define this notion for G-trees, and explore the notion of "substitution", a second operad-like structure on the class of trees, whigh was observed in the class of trees, which was not provided in the class of trees.

Section 4: The genuine equivariant operad monad. Defining \mathbb{F}_G as an endofunctor is fairly straightforward, as is defining composition and unit maps. However, showing that this data forms a monad requires a more subtle analysis. We define a more general monad N on the category of weak spans $\mathsf{WSpan}(\Sigma_G, \mathcal{V})$, and simplify the discussion through the flexibility of this more general category. It is also here that the concept of "planar strings" of maps are introduced as a second of the strings".

of maps are interdevisions_section Section 5: Free extensions. In this section, we develop the technology to produce free T-extensions for a particular class of monads T, utilizing the realizations of simplicial categories of planar strings.

the previous section, we produce a filtration of free extensions, and exploit this to transfer model structures from the categories of sequences Sym^G and Sym_G onto our categories of operads $Op^{G}_{\underline{COFFB}}Q_{\underline{PC}}$.

Section 7: Cofibrancy and Quillen equivalences. This section contains the bulk of

the homotopical analysis. It is here that we show that weak indexing systems \mathcal{F} provide sufficient structure so that their associated F-model structures are well-behaved, in particular proving the desired Quillen equivalences. We end this section, and this paper, by providing

two proofs of the N_{∞} realization conjecture. Much of the machinery in Sections 4 and 5 are built in large categorical generality, designed such that the intuitive descriptions of, for example, the free operad monad and operations on forests, are verified with strict categorical rigor; as such, they may be of broader interest.

1.3 **Future Work**

come back here

While this paper focuses soley on *single coloured* operads, we expect the theory to extend immediately to the coloured setting. One key difference is that coloured genuine G-operads will have a coefficient system of colours: evaluation at a G-corolla will include the additional data of a colour for each G-orbit of edges, and the isotropy of the colours must match that of its associated edge. This feature is inspired by those seen in other models for G-operads, on which we now elaborate.

As stated earlier, the main goal of the authors' current project is to detail the full story of the homotopy theory of equivariant operads. This paper and [17] form the basis of a generalization of the work of Cisinski-Moerdijk-Weiss, describing the homotopy theory of non-equivariant operads, into the G-equivariant context. Importantly, the notion of "multicoloured genuine G-operads" will provide the natural (and most highly structured) target for the strictification, or "homotopy operad" construction, on the G- ∞ -operads of |T|.

Moreover, sequels will extend the definitions of "dendroidal complete Segal spaces" and egal pre-operads", as well as the comparison Diagram (*) of Quillen equivalences from [5], reproduced here below, to the G-equivariant context.

We note that, as in [17], there are both multiple possible categorical generalizations (i.e. dSet^G verses dSet_G , or Op^G verses Op_G) and multiple possible model categorical generalizations (i.e $\mathsf{dSet}_\mathcal{F}^G$ for varying weak indexing systems \mathcal{F}) for each corner of (*). Analogous to the main result of this paper, we expect all compatible notions at each corner to be Quillen equivalent (i.e. $\mathsf{dSet}^G_{\mathcal{F}} \simeq_Q \mathsf{dSet}^{\mathcal{F}}_{\mathcal{F}}$). In future papers, we will study this precise question, as well as comparisons between the different models.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$ "weakly defined", and similarly G-coefficient systems as spaces with a "relaxed" fixed-point condition. In this fashion, genuine G-operads can be thought of as G-operads where composition is still rigidly defined, but with relaxed fixed-point conditions. Comparitively, the G- ∞ -operads of |T| have rigid fixed-point conditions but weak composition. The remaining missing link is then the suitable notion of G- ∞ -operad (that is, a suitable model structure) in the true pre-sheaf category dSet_G , in which both composition and fixed-point conditions

are weak. This would yield an expanded equivariant right half of $\frac{CM_EQ}{*}$, given by the following.

We expect that all solid arrows are Quillen equivalences. However, analogous to the work of Cisinski-Moerdijk, direct vertical comparisons between G-operads and G-dendroidal sets will be challenging, inspiring futher need to explore other notions of G- ∞ -operads in the previous paragraph.

We also record our finding of an unexpected complication, that G- ∞ -operads in dSet^G themselves satisfy a rigid fixed point condition, but their *genuine* homotopy operad does not, in particular that

$$\operatorname{Ho}_G(X) \notin \operatorname{Ho}_G i_*(X) \notin i_* \operatorname{Ho}^G(X)$$

for G- ∞ -operads X.

A full exploration of this and the other above topics will be discussed in sequels.

Mention colored operad versions, equivalence with dendroidal sets

2 Preliminaries

This section lists some elementary concepts and results that will be used throughout the paper, but may not be entirely standard.

2.1 Grothendieck fibrations

Recall that a functor $\pi: \mathcal{E} \to \mathcal{B}$ is called a *Grothendieck fibration* if for every arrow $f: b' \to b$ in \mathcal{B} and $e \in \mathcal{E}$ such that $\pi(e) = b$, there exists a cartesian arrow $f^*e \to e$ lifting f, meaning that for any choice of solid arrows

$$e'' \xrightarrow{\exists !} f^* e \qquad b'' \xrightarrow{b'} b$$

such that the rightmost diagram commutes and $e'' \to e$ lifts $b'' \to b$ there exists a unique dashed arrow $e'' \to f^*e$ lifting $b'' \to b'$ and making the leftmost diagram commute.

In most contexts the cartesian arrows $f^*e \to e$ are assumed to be defined only up to unique isomorphism, but in all examples considered in this paper we will in fact be able so identify preferred choices of cartesian arrows to which we will refer to as *pullbacks*. Moreover, pullbacks will be compatible with composition and units in the obvious way, i.e. $g^*f^*e = (fg)^*e$ and $id_b^*e = e$. As a terminological note, one sometimes encounters the term *split fibration* to refer to a Grothendieck fibration together with such a choice of pullbacks, though we will rarely have need to make the distinction outside of the present discussion.

A map of Grothendieck fibrations (resp. split fibrations) is then a commutative diagram

$$\mathcal{E} \xrightarrow{\delta} \bar{\mathcal{E}}$$

$$(2.1) \qquad \boxed{\text{GROTHFIBMAP EQ}}$$

such that δ preserves cartesian arrows (pullbacks).

PRELIM_SECTION

There is a well known equivalence between Grothendieck fibrations over \mathcal{B} and contravariant pseudo-functors $\mathcal{B}^{op} \to \mathsf{Cat}$ with split fibrations corresponding to (regular) contravariant functors. We now recall how this works in the (covariant) split case.

GROTHCONS DEF

Definition 2.2. Given a diagram category \mathcal{B} and functor \mathcal{E}_{\bullet}

$$\mathcal{B} \xrightarrow{\mathcal{E}_{\bullet}} \mathsf{Cat}
b \longmapsto \mathcal{E}_{b}$$
(2.3)

the (covariant) Grothendieck construction $\mathcal{B} \ltimes \mathcal{E}_{\bullet}$ has objects pairs (b, e) with $b \in \mathcal{B}, e \in \mathcal{E}_d$ and arrows $(b, e) \rightarrow (b', e')$ given by pairs

$$(f:b \rightarrow b', g:g_*(e) \rightarrow e'),$$

where $f_*: \mathcal{E}_b \to \mathcal{E}_{b'}$ is a shorthand for the functor $\mathcal{E}_{\bullet}(f)$.

Note that the chosen pushforward of (b, e) along $: b \to b'$ is then (b', f_*e) .

One useful property of Grothendieck constructions is that right Kan extensions can be computed using fibers, i.e., given a functor $F: \mathcal{E} \to \mathcal{V}$ into a complete category \mathcal{V} one has

$$Ran_{\pi}F(b) \simeq \lim F|_{b\downarrow\mathcal{E}} \simeq \lim F|_{\mathcal{E}_b} \tag{2.4}$$

FIBERKAN EQ

where the first identification is the usual pointwise formula for Kan extensions (cf. X.3.1]) and the second identification follows by noting that due to the existence of cartesian arrows the fibers \mathcal{E}_b are initial (in the sense of $\overline{13}$, IX.3]) in the undercategories $b \downarrow \mathcal{E}$. In fact, a little more is true: a choice of cartesian arrows yields a right adjoint to the inclusion $\mathcal{E}_b \hookrightarrow b \downarrow \mathcal{E}$, so that \mathcal{E}_b is a coreflexive subcategory of $b \downarrow \mathcal{E}$, a well known sufficient condition for initiality. In practice, we will also need a generalization of the Kan extension formula (2.4) for maps of Grothendieck fibrations as in (2.1). Keeping the notation therein, given an $e \in \bar{\mathcal{E}}$ we will write $\bar{e} \downarrow_{\pi} \mathcal{E} \hookrightarrow \bar{e} \downarrow \mathcal{E}$ for the full subcategory of those pairs $(e, f : \bar{e} \to \delta(e))$ such that $\bar{\pi}(f) = \bar{\pi}(\bar{e})$.

Proposition 2.5. Given a map of Grothendieck fibrations each subcategory $\bar{e} \downarrow_{\pi} \mathcal{E}$ is an initial subcategory of $\bar{e} \downarrow \mathcal{E}$ so that for each functor $\mathcal{E} \to \mathcal{V}$ with \mathcal{V} complete one has

$$\operatorname{\mathsf{Ran}}_{\delta} F(\bar{e}) \simeq \operatorname{\mathsf{lim}} F|_{\bar{e}\downarrow\mathcal{E}} \simeq \operatorname{\mathsf{lim}} F|_{\bar{e}\downarrow\pi\mathcal{E}}. \tag{2.6}$$

FIBERKANMAP EQ

Proof. One readily checks that the assignment $(e, f: \bar{e} \to \delta(e)) \mapsto ((\pi(f)^* e, \bar{e} \to \delta\pi(f)^*(e)))$ (where $\delta \pi(f)^* = \bar{\pi}^*(f)\delta$) is right adjoint to the inclusion $\bar{e} \downarrow_{\pi} \mathcal{E} \hookrightarrow \bar{e} \downarrow \mathcal{E}$, so that the claim follows by coreflexivity (note that if not in the split case pullbacks may be chosen arbitrarily).

We also record the following, the proof of which is straightforward.

Proposition 2.7. Suppose that $\mathcal{E} \to \mathcal{B}$ is a (split) Grothendieck fibration. Then so is the map of functor categories $\mathcal{E}^{\mathcal{C}} \to \mathcal{B}^{\mathcal{C}}$ for any category \mathcal{C} as well as the map $\bar{\mathcal{E}} \to \bar{\mathcal{B}}$ in any pullback of categories

$$\begin{array}{ccc}
\bar{\mathcal{E}} & \longrightarrow & \mathcal{E} \\
\downarrow & & \downarrow \\
\bar{\mathcal{B}} & \longrightarrow & \mathcal{B}.
\end{array}$$

2.2Wreath product over finite sets

Throughout we will let F denote the usual skeleton of the category of (ordered) finite sets and all set maps. Explicitly, its objects are the finite sets $\{1, 2, \dots, n\}$ for $n \ge 0$.

FIBERKANMAP PROP

Definition 2.8. For a category \mathcal{C} , we write $E \wr \mathcal{C}_s = \underbrace{(E^{op} \ltimes \mathcal{C}^{\times \bullet})^{op}}_{CF}$ for the opposite of the Grothendieck construction (cf. Definition 2.2) of the functor

$$\mathsf{F}^{op} \longrightarrow \mathsf{Cat}$$
 $I \longmapsto \mathcal{C}^{ imes I}$

Explicitly, the objects of $F \wr C$ are tuples $(c_i)_{i \in I}$ and a map $(c_i)_{i \in I} \to (d_j)_{j \in J}$ consists of a pair

$$(\phi: I \to J, (f_i: c_i \to d_{\phi(i)})_{i \in I}),$$

henceforth abbreviated as $(\phi, (f_i))$.

Notation 2.9. Using the coproduct functor $\mathsf{F}^{\wr 2} = \mathsf{F}^{\wr \{0,1\}} = \mathsf{F} \wr \mathsf{F} \xrightarrow{\coprod} \mathsf{F}$ (where $\coprod_{i \in I} J_i$ is ordered lexicographically) and the simpleton $\{1\} \in \mathsf{F}$ one can regard the collection of categories $\mathsf{F}^{\imath n+1} \wr \mathcal{C} = \mathsf{F}^{\imath \{0,\cdots,n\}} \wr \mathcal{C}$ for $n \geq -1$ as a coaugmented cosimplicial object in Cat. As such, we will denote by

$$\delta^i : \mathsf{F}^{in} \wr \mathcal{C} \to \mathsf{F}^{n+1} \wr \mathcal{C}, \qquad 0 \le i \le n$$

the cofaces obtained by inserting simple tons $\{1\} \in \mathsf{F}$ and by

$$\sigma^i : \mathsf{F}^{n+2} \wr \mathcal{C} \to \mathsf{F}^{n+1} \wr \mathcal{C}, \qquad 0 \le i \le n$$

the code generacies obtained by applying the coproduct $\mathsf{F}^{\wr 2} \xrightarrow{\Pi} \mathsf{F}$ to adjacent F coordinates. Further, note that there are identifications $\mathsf{F} \wr \delta^i = \delta^{i+1}, \ \mathsf{F} \wr \sigma^i = \sigma^{i+1}.$

Remark 2.10. If \mathcal{V} has all finite coproducts then injections and fold maps assemble into a functor as on the left below. Dually, if \mathcal{V} has all finite products then projections and diagonals assemble into a functor as on the right.

Moreover, these functors satisfy a number of additional coherence conditions. Firstly, there is a natural isomorphism α as on the left below

that encodes both changes in parenthesizing of coproducts and removal of initial objects (note that the empty tuple ()_{$i\in\emptyset$} \in $\mathbb{R}\wr\mathcal{V}$ maps under \coprod to an initial object of \mathcal{V}). Additionally, we are free to assume that the triangle on the right of (2.12) strictly commutes, i.e. that "unary coproducts" of simpletons (v) are given simply by v itself. α is then associative in the sense that the composite natural isomorphisms between the two functors $\mathbb{R}^{23}\wr\mathcal{V}\to\mathcal{V}$ in the diagrams below coincide.

Similarly, α is also unital in the sense that both of the following diagrams strictly commute or, more precisely, if the composite natural transformation in either diagram is the identify for the functor $\coprod : F \wr \mathcal{V} \to \mathcal{V}$.

Remark 2.15. More generally, if \mathcal{V} is an arbitrary symmetric monoidal category, one instead has a functor $\Sigma \wr \mathcal{V} \xrightarrow{\otimes} \mathcal{V}$ (where as usual $\Sigma \hookrightarrow F$ denotes finite sets and isomorphisms) satisfying the obvious analogues of (2.12), (2.13), (2.14), as is readily shown using the standard coherence results for symmetric monoidal categories (moreover, we note that α itself encodes all associativity, unital and symmetry isomorphisms, with the right side of (2.12) and (2.14) being mere common sense desiderata for "unary products").

It is likely no surprise that the converse is also true, i.e. that a functor $\Sigma \wr \mathcal{V} \xrightarrow{\otimes} \mathcal{V}$ satisfying the analogues of (2.12), (2.13), (2.14) endows \mathcal{V} with a symmetric monoidal structure. We will however have no direct need to use this fact, and as such include only a few pointers concerning the associativity pentagon axiom (the hardest condition to check) that the interested reader may find useful. Firstly, it becomes convenient to write expressions such as $(A \otimes B) \otimes C$ instead as $(A \otimes B) \otimes (C)$, so as to encode notationally the fact that this is the image of $((A,B),(C)) \in \mathsf{F}^{2} \wr \mathcal{V}$ under the top map in (2.12). The associativity isomorphisms are hence given by the composites $(A \otimes B) \otimes (C) \xrightarrow{\tilde{}} A \otimes B \otimes C \xleftarrow{\tilde{}} (A) \otimes (B \otimes C)$ obtained by combining $\alpha_{((A,B),(C))}$ and $\alpha_{((A),(B,C))}$. The pentagon axiom is then checked by combining six instances of each of the squares in (2.13) (i.e. twelve squares total), most of which are obvious except for the fact that the $(A \otimes B) \otimes (C \otimes D)$ vertex of the pentagon contributes two pairs of squares rather than just one, with each pair corresponding to the two alternate expressions $((A \otimes B)) \otimes ((C) \otimes (D))$ and $((A) \otimes (B)) \otimes ((C \otimes D))$.

Remark 2.16. In lieu of the two previous remarks, and writing $F_s \hookrightarrow F$ for the subcategory of surjections, we define a symmetric monoidal category with fold maps as a category \mathcal{V} together with a functor $\mathsf{F}_s \wr \mathcal{V} \xrightarrow{\otimes} \mathcal{V}$ satisfying the analogues of (2.12), (2.13), (2.14). Further, the dual of such \mathcal{V} is called a symmetric monoidal category with diagonals.

Maybe mention that if both folds and inclusions then cocartesian

Remark 2.17. Replacing F_s in the previous remark with the subcategory $F_i \hookrightarrow F$ of injections yields the notion of a symmetric monoidal category with injection maps or, dually, symmetric monoidal category with diagonals.

maybe mention that "cat with diagonals" is the same as semi-cartesian

We end this section by collecting some straightforward lemmas that will be used in §4.

Lemma 2.18. If $\mathcal{E} \to \mathcal{B}$ a (split) Grothendieck fibration then so is $F \wr \mathcal{E} \to F \wr \mathcal{B}$.

Moreover, if $\mathcal{E} \to \bar{\mathcal{E}}$ is a map of (split) Grothendieck fibrations over \mathcal{B} then $F \wr \mathcal{E} \to F \wr \bar{\mathcal{E}}$ is a map of (split) Grothendieck fibrations over $F \wr \mathcal{B}$.

Proof. Given a map $(\phi, (f_i)): (b'_i)_{i \in I} \to (b_j)_{j \in J}$ in $F \wr \mathcal{B}$ and object $(e_j)_{j \in J}$ one readily checks that its pullback can be defined by $(f_{\phi(i)}^* e_{\phi(i)})_{i \in I}$.

FWRGROTH LEM

WREATPRODLIM LEM

Lemma 2.19. Suppose that V is a bicomplete category such that coproducts commute with limits in each variable. If the leftmost diagram

is a right Kan extension diagram then so is the composite of the rightmost diagram. Dually, if in \mathcal{E} products commute with colimits in each variable, and the leftmost diagram

is a left Kan extension diagram then so is the composite of the rightmost diagram.

Proof. Unpacking definitions using the pointwise formula for Kan extensions ($\begin{bmatrix} \text{MCL} \\ 13 \end{bmatrix}$, X.3.1]), the claim concerning (2.20) amounts to showing that for each $(d_i) \in \mathsf{F} \wr \mathcal{D}$ one has natural isomorphisms

$$\lim_{((d_i)\to(kc_j))\in((d_i)\downarrow\mathsf{F}\wr\mathcal{C})} \left(\coprod_j G(c_j)\right) \simeq \coprod_i \lim_{(d_i\to kc_i)\in d_i\downarrow\mathcal{C}} \left(G(c_i)\right). \tag{2.22}$$

Proposition FIBERKANMAP PROP Proposition 2.5 now applies to the map $F \wr C \to F \wr D$ of Grothendieck fibrations over F and one readily checks that $(d_i) \downarrow_{\pi} F \wr C \simeq \prod_i (d_i \downarrow C)$ so that

$$\lim_{((d_i) \to (kc_j)) \in ((d_i) \downarrow \mathsf{FiC})} \left(\coprod_j G(c_j) \right) \simeq \lim_{((d_i) \to (kc_i)) \in \Pi_i(d_i \downarrow \mathcal{D})} \left(\coprod_i G(c_i) \right)$$

and the isomorphisms (2.22) now follow from the assumption that coproducts commute with limits in each variable. \Box

2.3 Monads and adjunctions

In $\S 4$ we will make use of the following straightforward results concerning the transfer of monads along adjunctions (note that L (resp. R) denotes the left (right) adjoint).

Proposition 2.23. Let $L: \mathcal{C} \rightleftarrows \mathcal{D}: R$ be an adjunction and T a monad on \mathcal{D} . Then

- (i) RTL is a monad and R induces a functor $R: Alg_T(\mathcal{D}) \to Alg_{RTL}(\mathcal{C})$;
- (ii) if $LRTL \xrightarrow{\epsilon} TL$ is an isomorphism one further has an induced adjunction

$$L: \mathsf{Alg}_{RTL}(\mathcal{C}) \rightleftarrows \mathsf{Alg}_{T}(\mathcal{D}): R.$$

MONADADJ PROP

MONADADJ1 PROP

Proposition 2.24. Let $L: \mathcal{C} \rightleftarrows \mathcal{D}: R$ be an adjunction, T a monad on \mathcal{C} , and suppose further that

$$LR \xrightarrow{\epsilon} id_{\mathcal{D}}, \qquad LT \xrightarrow{\eta} LTRL$$

are natural isomorphisms (so that in particular $\mathcal D$ is a reflexive subcategory of $\mathcal C$).

(i) LTR is a monad, with multiplication and unit given by

$$LTRLTR \xrightarrow{\eta^{-1}} LTTR \to LTR, \qquad id_{\mathcal{D}} \xrightarrow{\epsilon^{-1}} LR \to LTR;$$

- (ii) $d \in \mathcal{D}$ is a LTR-algebra iff Rd is a T-algebra;
- (iii) there is an induced adjunction

$$L: \mathsf{Alg}_T(\mathcal{C}) \rightleftarrows \mathsf{Alg}_{LTR}(\mathcal{D}): R.$$

Any monad T on $\mathcal C$ induces obvious monads $T^{\times l}$ on $\mathcal C^{\times l}$. More generally, and letting I denote the identity monad, a partition $\{1,\cdots,l\} = \lambda_a \amalg \lambda_i$, which we denote by λ , determines a monad $T^{\times \lambda} = T^{\times \lambda_a} \times I^{\times \lambda_i}$ on $\mathcal C$. Here "a" stands for "active" and "i" for "inert".

Such monads satisfy a number of compatibility conditions. Firstly, if $\lambda'_a \subset \lambda_a$ there is a monad map $T^{\times \lambda'} \Rightarrow T^{\times \lambda}$, and we write $\lambda' \leq \lambda$. Moreover, writing $\alpha^* : \mathcal{C}^{\times m} \to \mathcal{C}^{\times l}$ for the forgetful functor induced by a map $\alpha : \{1, \dots, l\} \to \{1, \dots, m\}$, one has an equality $T^{\times \alpha^* \lambda} \alpha^* = \alpha^* T^{\times \lambda}$, where $\alpha^* \lambda$ is the pullback partition. The following is straightforward.

Proposition 2.25. Suppose C has finite coproducts and write $\alpha_!: C^{\times l} \to C^{\times m}$ for the left adjoint of α^* . Then the map

$$T^{\times \alpha^* \lambda} \Rightarrow \alpha^* T^{\times \lambda} \alpha_! \tag{2.26}$$

MONADFUNCTORALPHA EQ

MONADFUNCTORALPHADOU

RIGHTMODULETMAPAUX EQ

adjoint to the identity $T^{\times \alpha^* \lambda} \alpha^* = \alpha^* T^{\times \lambda}$ is a map of monads on $\mathcal{C}^{\times l}$.

Hence, since $T^{\times \lambda}\alpha_!$ is a right $\alpha^*T^{\times \lambda}\alpha_!$ -module, it is also a right $T^{\times \lambda'}$ whenever $\lambda' \leq \alpha^*\lambda$. Finally, the natural map

$$\alpha_! T^{\times \alpha^* \lambda} \Rightarrow T^{\times \lambda} \alpha_! \tag{2.27}$$

is a map of right $T^{\times \alpha^* \lambda}$ -modules, and thus also a map of right $T^{\times \lambda'}$ -modules whenever $\lambda' \leq \alpha^* \lambda$.

Remark 2.28. We unpack the content of (2.27) when $\alpha: \{1, \dots, l\} \rightarrow *$ is the unique map to the simpleton *, in which case we write $\alpha_! = \coprod$. We thus have commutative diagrams

$$\coprod_{j \in \lambda_{a}} TTA_{j} \coprod_{j \in \lambda_{i}} A_{j} \longrightarrow T\left(\coprod_{j \in \lambda_{a}} TA_{j} \coprod_{j \in \lambda_{i}} A_{j}\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{j \in \lambda_{a}} TA_{j} \coprod_{j \in \lambda_{i}} A_{j} \longrightarrow T\left(\coprod_{j \in \lambda_{a}} A_{j} \coprod_{j \in \lambda_{i}} A_{j}\right)$$

$$(2.29)$$

for each collection $(A_j)_{j\in\underline{l}}$ in \mathcal{C} , where the vertical maps come from the right $T^{\times\lambda}$ -module structure. Writing $\check{\mathbf{l}}$ for the coproduct of T-algebras and recalling the canonical identifications $\check{\mathbf{l}}_{k\in K}(TA_k) \simeq T(\coprod_{k\in K}A_k)$, (2.29) shows that the right $T^{\times\lambda}$ -module structure on $T \circ \coprod$ codifies the multiplication maps

$$\check{\coprod}_{j \in \lambda_a} TTA_j \, \check{\text{u}} \, \check{\coprod}_{j \in \lambda_i} TA_j \to \check{\coprod}_{j \in \lambda_a} TA_j \, \check{\text{u}} \, \check{\coprod}_{j \in \lambda_i} TA_j.$$

3 Planar and tall maps

Throughout we will assume that the reader is familiar with the category Ω of trees. A good introduction to Ω is given by $[T5, \S3]$, where arrows are described both via the "colored operad generated by a tree" and by identifying explicit generating arrows, called faces and degeneracies. Alternatively, Ω can also be described using the algebraic model of broad posets introduced by Weiss in [23] and further worked out by the second author in $[17, \S5]$. This latter will be our "official" model, though a detailed understanding of broad posets is needed only to follow our formal discussion of planar structures in $\S3.1$, and the reader willing to accept the results therein should be able to read the remainder of the paper.

Given a finite group G, there is also a category Ω_{G} of G-trees, jointly discovered by the authors and first discussed by the second author in [17, §4.3,§5.3], which we now recall. Firstly, we let Φ denote the category of forests, i.e. "formal coproducts of trees". A broad poset description of Φ is found in [17, §5.2], but here we prefer the alternative definition

MONADICFUN PROP

COMPPOSTCOMP REM

PLANAR SECTION

 $\Phi = \mathsf{F} \wr \Omega$. The category of G-forests is then Φ^G , i.e. the category of G-objects in Φ . Identifying the G-orbit category as the subcategory $\mathsf{O}_G \hookrightarrow \mathsf{F}^G$ of those sets with transitive actions, Ω_G can then be described as given by the pullback of categories

$$\Omega_{G} \longrightarrow \Phi^{G}$$

$$\downarrow \qquad \qquad \downarrow$$

$$O_{G} \longrightarrow \mathsf{F}^{G},$$

$$(3.1) \quad \boxed{\mathsf{OGDEF} \ \mathsf{EQ}}$$

which is a repackaging of [77, Prop. 5.46]. Explicitly, a G-tree T is then a tuple $T = (T_x)_{x \in X}$ with $X \in O_G$ together with isomorphisms $T_x \to T_{gx}$ that are suitably associative and unital.

PLASTR SEC

PLANARIZE DEF

3.1 Planar structures

The specific model for the orbit category O_G used in (5.1) has extra structure not found in the usual model (i.e. that of the G-sets G/H for $H \leq G$), namely the fact that each $X \in O_G$ comes with a canonical total order (the underlying set of X being one of the sets $\{1, \dots, n\}$).

We will find it convenient to use a model of Ω with similar extra structure, given by planar structures on trees. Intuitively, a planar structure on a tree is the data of a planar representation of the tree, and definitions of planar trees along those lines are found throughout the literature. However, to allow for precise proofs of some key results concerning the interaction of planar structures with the maps in Ω (namely Propositions 3.28 and 3.47) we will instead use a combinatorial definition of planar structure in the context of broad posets.

will instead use a combinatorial definition of planar structure in the context of broad posets. In what follows a tree will be a dendroidally ordered broad poset as in [23], [17, Def. 5.9].

Definition 3.2. Let $T \in \Omega$ be a tree. A *planar structure* of T is an extension of the descendancy partial order \leq_d to a total order \leq_p such that:

• Planar: if $e \leq_p f$ and $e \nleq_d f$ then $g \leq_d f$ implies $e \leq_p g$.

Example 3.3. An example of a planar structure on a tree T follows, with \leq_p encoded by the number labels.

(3.4) PLANAREX EQ

Intuitively, given a planar depiction of a tree T, $e \le_d f$ holds when the downward path from e passes through f and $e \le_p f$ holds if either $e \le_d f$ or if the downward path from e is to the left of the downward path from f (as measured at the node where the paths intersect).

It is visually clear that a planar depiction of a tree amounts to choosing a total order for each of the sets of *input edges* of each node (i.e. those edges immediately above that node).

While we will not need to make this last statement precise, we will nonetheless find it convenient to show that Definition 3.2 is equivalent to such choices of total orders for each of the sets of input edges. To do so, we first introduce some notation.

INPUTPATH NOT

Notation 3.5. Let $T \in \Omega$ be a tree and $e \in T$ an edge. We will denote

$$I(e) = \{ f \in T : e \leq_d f \}$$

and refer to this poset as the input path of e.

We will repeatedly use the following, which is a consequence of [T7, Cor. 5.26].

INCOMPNOTOP

Lemma 3.6. If $e \leq_d f$, $e \leq_d f'$, then f, f' are \leq_d -comparable.

INPUTPATHS PROP

ECESSORPROP PROP

Proposition 3.7. Let $T \in \Omega$ be a tree. Then

- (a) for any $e \in T$ the finite poset I(e) is totally ordered;
- (b) the poset (T, \leq_d) has all joins, denoted \vee . In fact, $\bigvee_i e_i = \min(\bigcap_i I(e_i))$.

Proof. (a) is immediate from Lemma 3.6. To prove (b) we note that $\min(\bigcap_i I(e_i))$ exists by (a), and that this is clearly the join $\bigvee_i e_i$.

Notation 3.8. Let $T \in \Omega$ be a tree and suppose that $e <_d b$. We will denote by $b_e^{\uparrow} \in T$ the predecessor of b in I(e).

Proposition 3.9. Suppose e, f are \leq_d -incomparable edges of T and write $b = e \vee f$. Then

- (a) $e <_d b$, $f <_d b$ and $b_e^{\uparrow} \neq b_f^{\uparrow}$;
- (b) $b_e^{\uparrow}, b_f^{\uparrow} \in b^{\uparrow}$. In fact $\{b_e^{\uparrow}\} = I(e) \cap b^{\uparrow}, \{b_f^{\uparrow}\} = I(f) \cap b^{\uparrow}$;
- (c) if $e' \leq_d e$, $f' \leq_d f$ then $b = e' \vee f'$ and $b_{e'}^{\uparrow} = b_e^{\uparrow}$, $b_{f'}^{\uparrow} = b_f^{\uparrow}$

Proof. (a) is immediate: the condition e = b (resp. f = b) would imply $f \le_d e$ (resp. $e \le_d f$) while the condition $b_e^{\dagger} = b_f^{\dagger}$ would provide a predecessor of b in $I(e) \cap I(f)$.

For (b), note that any relation $a <_d$ h factors as $a \le_d b_a^* <_d b$ for some unique $b_a^* \in b^{\uparrow}$, where uniqueness follows from Lemma 3.6. Choosing a = e implies $I(e) \cap b^{\uparrow} = \{b_e^*\}$ and letting a range over edges such that $e \le_d a <_d b$ shows that b_e^* is in fact the predecessor of b.

To prove (c) one reduces to the case e' = e, in which case it suffices to check $I(e) \cap I(f') = I(e) \cap I(f)$. But if it were otherwise there would exist an edge a satisfying $f' \leq_d a <_d f$ and $e \leq_d a$, and this would imply $e \leq_d f$, contradicting our hypothesis.

Proposition 3.10. Let $c = e_1 \lor e_2 \lor e_3$. Then $c = e_i \lor e_j$ iff $c_{e_i}^{\dagger} \neq c_{e_j}^{\dagger}$. Therefore, all ternary joins in (T, \leq_d) are binary, i.e.

$$c = e_1 \lor e_2 \lor e_3 = e_i \lor e_j \tag{3.11}$$
 TERNJOIN EQ

 $for \ some \ 1 \leq i < j \leq 3, \ and \ (3.11) \ fails \ for \ at \ most \ one \ choice \ of \ 1 \leq i < j \leq 3.$

Proof. If $c_{e_i}^{\uparrow}$ in the properties of C_{e_i} in C_{e_i}

The "therefore" part follows by noting that $c_{e_1}^{\uparrow}$, $c_{e_2}^{\uparrow}$, $c_{e_3}^{\uparrow}$ can not all coincide, or else c would not be the minimum of $I(e_1) \cap I(e_2) \cap I(e_3)$.

Example 3.12. In the following example $b = e \lor f$, $c = e \lor f \lor g$, $c_e^{\uparrow} = c_f^{\uparrow} = b$.

Notation 3.13. Given a set S of size n we write $Ord(S) \simeq Iso(S, \{1, \dots, n\})$. We will freely abuse notation by regarding its objects as pairs (S, \leq) where \leq is a total order in S.

Proposition 3.14. Let $T \in \Omega$ be a tree. There is a bijection

$$\{planar\ structures\ (T, \leq_p)\} \xrightarrow{\simeq} \prod_{(a^{\uparrow} \leq a) \in V(T)} \operatorname{Ord}(a^{\uparrow})$$

$$\leq_p \longmapsto (\leq_p \mid_{a^{\uparrow}})$$

$$(3.15) \quad \boxed{PLANAR\ EQ}$$

TERNARYJOIN PROP

IZATIONCHAR PROP

Proof. We will keep the notation of Proposition B.9 throughout: e, f are \leq_d -incomparable

edges and we write $b = e_p Y_a f_{NAR} EQ$ We first show that (3.15) is injective, i.e. that the restrictions $\leq_p |_{a_p f_a NAR PZE} DEF e <_p f$ holds or not. If $b_e^{\uparrow} <_p b_f^{\uparrow}$, the relations $e \leq_d b_e^{\uparrow} <_p b_f^{\uparrow} \geq_d f$ and Definition 3.2 imply it must be $e <_p f$. Dually, if $b_f^{\uparrow} <_p b_e^{\uparrow}$ then $f <_p e$. Thus $b_e^{\uparrow} <_p b_f^{\uparrow} \Leftrightarrow e <_p f$ and hence (3.15) is indeed injective.

To check that (B.15) is surjective, it suffices (recall that e, f are assumed \leq_d -incomparable) to check that defining $e \leq_p f$ to hold iff $b_e^{\dagger} < b_f^{\dagger}$ holds in b^{\dagger} yields a planar structure.

Antisymmetry and the total order conditions are immediate, and it thus remains to check the transitivity and planar conditions. Transitivity of \leq_p in the case $e'_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c$

It remains to check transitivity in the hardest case, that of $e <_p f <_p g$ with incomparable f,g. We write $c = e \lor f \lor g$. By the "therefore" part of Proposition 3.10, either (i) $e \lor f <_d c$, in which case Proposition 3.10 implies $c = e \lor g$, $c_e^{\dagger} = c_f^{\dagger}$ and transitivity follows; (ii) $f \lor g <_d c$, which follows just as (i); (iii) $e \lor f = f \lor g = c$, in which case $c_e^{\dagger} < c_f^{\dagger} < c_g^{\dagger}$ in c^{\dagger} so that $c_e^{\dagger} \neq c_g^{\dagger}$ and by Proposition 3.10 it is also $c = e \lor g$ and transitivity follows. \Box

Remark 3.16. Proposition 3.14 states in particular that \leq_p is the closure of the relations in \leq_d and on the vertices a^{\uparrow} under the planar condition in Definition 3.2.

The discussion of the substitution procedure in §8.2 will be significantly simplified by working with a model for the category Ω possessing exactly one representative of each possible planar structure on each tree or, more precisely, if the only isomorphisms preserving the planar structure are the identities. On the other hand, exclusively using such a model for Ω throughout would, among other issues, make the discussion of faces in §8.2 rather awkward. We now outline our conventions to address such issues.

Let Ω^p , the category of planarized trees, denote the category with objects pairs $T_{\leq p} = (T, \leq_p)$ of trees together with a planar structure and morphisms the underlying maps of trees (so that the planar structures are ignored). There is a full subcategory $\Omega^s \hookrightarrow \Omega^p$, whose objects we call standard models, of those $T_{\leq p}$ whose underlying set is one of the sets $\underline{n} = \{1, 2, \dots, n\}$ and for which \leq_p coincides with the canonical order.

Example 3.17. Some examples of standard models, i.e. objects of Ω^s , follow (further, (B.4) can also be interpreted as such an example).

PLANAROMEGAEX1 EQ

Here T_1 and T_2 are isomorphic to each other but not isomorphic to any other standard model in Ω^s while both C and U are the unique objects in their isomorphism classes.

Given $T_{\leq_p} \in \Omega^p$ there is an obvious standard model $T_{\leq_p}^s \in \Omega^s$ given by replacing each edge by its order following \leq_p . Indeed, this defines a retraction $(-)^s : \Omega^p \to \Omega^s$ and a natural transformation $\sigma : id \Rightarrow (-)^s$ given by isomorphisms preserving the planar structure (in fact, the pair $((-)^s, \sigma)$ is unique characterized by this property).

Remark 3.19. Definition 3.2 readily extends to the broad poset definition of forests $F \in \Phi$ in [17, Def. 5.27], with the analogue of Proposition 3.14 then stating that a planar structure is equivalent to total orderings of the nodes of F together with a total ordering of its set of roots. There are thus two competing notions of standard forests: the [17, Def. 5.27] model Φ^s whose objects are planar forest structures on one of the standard sets $\{1, \dots, n\}$

CLOSURE REM

STANDMODEL EX

FORESTPLAN REM

and (following the discussion at the start of §B) the model $F \wr \Omega^s$, whose objects are tuples, indexed by a standard set, of planar tree structures on standard sets. An illustration follows.

TWOPLAFORCONV EQ

It is however clear that there is a canonical isomorphism $\Phi^s \simeq \mathsf{F} \wr \Omega^s$ (with the two side of (8.20) representing the same planar forest). Moreover, while the similarly defined categories Φ^p and $F \wr \Omega^p$ are only equivalent (rather than isomorphic), their retractions onto $\Phi^s \simeq F \wr \Omega^s$ are compatible, and we will thus henceforth not distinguish between Φ^s and $\mathsf{F} \wr \Omega^s$.

Convention 3.21. From now on we write simply Ω , Ω_G to denote the categories Ω^s , Ω_G^s of standard models (where planar structures are defined in the underlying forest as in Remark B.19). Therefore, whenever a construction produces an object/diagram in Ω^p , Ω^p_G (of trees, G-trees) we always implicitly reinterpret it by using the standardization functor $(-)^s$.

Similarly, any finite set or orbital finite G-set together with a total order is implicitly reinterpreted as an object in $\mathsf{F}, \mathsf{O}_G^p$.

Example 3.22. To illustrate our convention, consider the trees in Example 3.17.

There are subtrees $F_1 \subset F_2 \subset U$ where F_1 is the subtree with edge set $\{1, 2, 6, 7\}$ and F_2 is the subtree with edge set $\{1, 2, 3, 6, 7\}$, both with inherited tree and planar structures. Applying $(-)^s$ to the inclusion diagram on the left below then yields a diagram as on the right.

Similarly, let $\leq_{(12)}$ and $\leq_{(45)}$ denote alternate planar structures for U exchanging the orders of the pairs 1,2 and 4,5, so that one has objects $U_{\leq_{(12)}}$, $U_{\leq_{(45)}}$ in Ω^p . Applying (-)^s to the diagram of underlying identities on the left yields the permutation diagram on the right.

$$U \xrightarrow{id} U_{\leq_{(45)}} \qquad \qquad U \xrightarrow{(45)} U$$

$$U_{\leq_{(12)}} \downarrow U$$

$$U \downarrow (12)(45)$$

Example 3.23. An additional reason to leave the use of $(-)^s$ implicit as detailed in Convention $\overline{3.21}$ is that when depicting G-trees it is preferable to choose edge labels that describe the action rather than the planarization (which is already implicit anyway).

For example, when $G = \mathbb{Z}_{/4}$, $\tilde{G} = \mathbb{Z}_{/3}$, in both diagrams below the orbital representation on the left represents the isomorphism class consisting only of the two trees $T_1, T_2 \in \Omega_G$ on the right.

PLANARCONV CON

In general, isomorphism classes are of course far bigger. The interested reader may show EQ that there are 3 · 3! · 2 · 3! · 1 trees in the isomorphism class of the tree depicted in (1.9)

The attentive reader may have noted that it follows from Proposition 2.7 that both vertical maps in (B.1) are split Grothendieck fibrations. We now introduce some terminology.

Definition 3.24. The map $r: \Omega_G \to O_G$ in (B.1) is called the *root functor*. Further, fiber maps (i.e. maps inducing identities, i.e. ordered bijections, on r(-)) are called rooted maps and pullbacks with respect to r are called root pullbacks.

To motivate the terminology, note first that unpacking definitions shows that r(T) is the ordered set of tree components of $T \in \Omega_G$, which coincides with the ordered set of roots.

The exact choice of name is further meant to accented the connection with another key functor which we call the leaf-root functor, described in §3.3.

Further, unpacking the construction in (3.1), one sees that the pullback of the G-tree $T = (T_x)_{x \in X}$ with structure maps $T_x \to T_{gx}$ along the map $\varphi \colon Y \to X$ is simply the G-tree $(T_{\varphi(y)})_{y \in Y}$ with structure maps $T_{\varphi(y)} \to T_{g\varphi(y)} = T_{\varphi(gy)}$.

Example 3.25. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$, $H = \langle j \rangle$ and $K = \langle -1 \rangle$. Figure Figure pullbacks of two G-trees T and S along the twist map $\tau:G/H\to G/H$ and the unique map $\pi:G/H\to G/G$ (or, more precisely, noting that in our model the underlying set of G/His actually $\{1,2\}$, τ is the permutation (12)). We note that the stabilizers of a,b,c are $\{1\}, K, H$ for T and K, H, G for S. The top depictions of $\tau^*T, \pi^*(S)$ then use the edge orbit generators suggested by T, S while the bottom depictions choose generators that are minimal with regard to the planar structure, so that in τ^*T it is d = ic, e = ib, f = ia and in π^*S it is e = ib', d = ia'.

Figure 1: Root pullbacks

FIGURE

Definition 3.26. A map $S \xrightarrow{\varphi} T$ in Ω preserving the planar structure \leq_p is called a *planar* map.

20

ROOTPULL DEF

ROOTPULL EX

More generally, a map $F \to G$ in one of the categories Φ , $\Phi^G_{\tt Pè17}$ of forests, G-forests, G-trees is called a *planar map* if it is an independent map (cf. [17, Def. 5.28]) compatible with the planar structures \leq_p .

Remark 3.27. The need for the independence condition is justified by 17, Lemma 5.33 and its converse, since non independent maps do not reflect \leq_d -comparability.

However, we note that in the case of Ω_G independence admits simpler characterizations: φ is independent iff φ is injective on each edge orbit iff φ is injective on the root orbit.

Proposition 3.28. Let $F \xrightarrow{\varphi} G$ be an independent map in Φ (or Ω , Ω_G , Φ_G). Then there is a unique factorization

$$F \xrightarrow{\simeq} \bar{F} \to G$$

such that $F \xrightarrow{\cong} \bar{F}$ is an isomorphism and $\bar{F} \to G$ is planar.

Proof. We need to show that there is a unique planar structure \leq_p^F on the underlying forest of F making the underlying map a planar map. Simplicity of the broad poset G ensures that for any vertex $e^{\uparrow} \leq e$ of F the edges in $\varphi(e^{\uparrow})$ are all distinct while independence of φ likewise ensures that the edges in $\varphi(\underline{r}_F)$ are distinct. By (the forest version of) Proposition PLANARIZATIONCHAR PROP **PLANARIZATIONCHAR PROP**3.14 the only possible planar structure $\leq_p^{\bar{F}}$ is the one which orders each set e^{\uparrow} and the root tuple \bar{F} range according to their images. The claim that φ is then planar follows from Remark 3.16 together with the fact ([17, Lemma 5.33]) that φ reflects \leq_d -comparability.

Remark 3.29. Proposition 3.28 says that planar structures can be pulled back along independent maps. However, they can not always be pushed forward. As an example, in the notation of (3.18), consider the map $C \to T_1$ defined by $1 \mapsto 1, \ 2 \mapsto 4, \ 3 \mapsto 2, \ 4 \mapsto 5$.

Outer faces, tall maps, and substitution

One of the key ideas needed for our description of operads is the notion of substitution of tree nodes, a process that we will prefer to repackage in terms of maps of trees.

In preparation for that discussion, we first recall some basic definitions and results concerning outer subtrees and tree grafting, as in [17, §5].

Definition 3.30. Let $T \in \Omega$ be a tree and $e_1 \cdots e_n = \underline{e} \leq e$ a broad relation in T.

We define the planar outer face $T_{e\leq e}$ to be the subtree with underlying set those edges $f \in T$ such that

$$f \leq_d e, \quad \forall_i f \not \leq_d e_i,$$
 (3.31)

 $f \leq d \ e, \quad \forall_i f \not <_d e_i,$ generating broad relations the relations $f^{\uparrow} \leq f$ for those $f \in T$ satisfying the pulled back from $f \in T$ (in the sense of Remark 3.32). Remark 3.32. If one foreses the

Remark 3.32. If one forgoes the requirement that $T_{\underline{e} \leq e}$ be equipped with the pullback planar structure, the inclusion $T_{e \le e} \hookrightarrow T$ is usually called simply an outer face.

We now recap some basic results.

Proposition 3.33. Let $T \in \Omega$ be a tree.

- (a) $T_{e \le e}$ is a tree with root e and edge tuple \underline{e} ;
- (b) there is a bijection

 $\{planar \ outer \ faces \ of \ T\} \leftrightarrow \{broad \ relations \ of \ T\};$

- (c) if $R \to S$ and $S \to T$ are outer face maps then so is $R \to T$;
- (d) any pair of broad relations $g \le v$, $fv \le e$ induces a grafting pushout diagram

OUTERFACE EQ

PLANARPULL PROP

PULLPLANAR REM

OUTSWBE SEC

OUTFACE DEF

Further, $T_{\underline{fg} \leq e}$ is the unique choice of pushout that makes the maps in (3.34) planar.

Proof. We first show (a). That $T_{e \le e}$ is indeed a tree is the content of [Pe17, Prop. 5.20]: more precisely, $T_{\underline{e} \leq e} = (T^{\leq e})_{\leq \underline{e}}$ in the potation therein. That the root of $T_{\underline{e} \leq e}$ is e is clear and that the root tuple is \underline{e} follows from [17, Remark 5.23].

(b) follows from (a), which shows that $\underline{e} \leq e$ can be recovered from $T_{\underline{e} \leq e}$.

(c) follows from the definition of outer face together with [177, Lemma 5.33], which states that the \leq_d relations on S, T coincide.

Since by (b) and (c) both $T_{\underline{g} \leq v}$ and $T_{\underline{f} v \leq e}$ are outer faces of $T_{\underline{f} \underline{g} \leq e}$, the first part of (d) is a restatement of the property of the property

Definition 3.35. A map $S \xrightarrow{\varphi} T$ in Ω is called a *tall map* if

$$\varphi(\underline{l}_S) = \underline{l}_T, \qquad \varphi(r_S) = r_T,$$

where $l_{(-)}$ denotes the (unordered) leaf tuple and $r_{(-)}$ the root.

The following is a restatement of [17, Cor. 5.24]

Proposition 3.36. Any map $S \xrightarrow{\varphi} T$ in Ω has a factorization, unique up to unique isomorphism.

$$S \xrightarrow{\varphi^t} U \xrightarrow{\varphi^u} T$$

as a tall map followed by an outer face (in fact, $U = T_{\varphi(l_{\alpha}) \leq r_{\alpha}}$).

We recall that a face $F \to T$ is called inner if is obtained by iteratively removing inner edges, i.e. edges other than the root or the leaves. In particular, it follows that a face is inner iff it is tall proper in the combines with Proposition thus combines with Proposition

Corollary 3.37. Any map $S \xrightarrow{\varphi} T$ in Ω has a factorization, unique up to unique isomorphisms,

$$S \xrightarrow{\varphi^{-}} U \xrightarrow{\varphi^{i}} V \xrightarrow{\varphi^{u}} T \tag{3.38}$$

TRIPLEFACT EQ

as a degeneracy followed by an inner face followed by an outer face.

Proof. The factorization (3.38) can be built by first performing the degeneracy-face decomposition and then performing the tall-outer decomposition on the face map.

We will find it convenient throughout to regard the groupoid Σ of finite sets as the subcategory $\Sigma \to \Omega$ consisting of *corollas* (i.e. trees with a single vertex) and isomorphisms.

Notation 3.39. Given a tree $T \in \Omega$ there is a unique corolla $Ir(T) \in \Sigma$ and planar tall map $lr(T) \to T$, which we call the *leaf-root* of T (this name is motivated by the equivariant analogue, discussed in §3.3). Explicitly, the number of leaves of lr(T) matches that of T, together with the inherited order.

We now turn to discussing the substitution operation. We start with an example focused on the closely related notion of iterated graftings of trees (as described in (3.34)).

Example 3.40. The trees U_1, U_2, \dots, U_6 on the left below can be grafted to obtain the tree U in the middle. More precisely (among other possible grafting orders), one has

22

$$U = (((((U_6 \coprod_a U_2)) \coprod_a U_1) \coprod_b U_3) \coprod_d U_5) \coprod_c U_4$$
 (3.41) UFORMULA EQ

ALLOUTERDEC PROP

UNIQCOR NOT

(3.42)

SUBSDATUMTREES EQ

We now consider the tree T, which is built by converting each U_i into the corolla $lr(U_i)$, and then performing the same grafting operations as in (3.41), with alternative ways to reorder operations in (3.41) in bijection with ways to assembly of its nodes.

One can now therefore think of the iterated grafting (3.41) as being instead encoded by

the tree T together with the (unique) planar tall maps φ_i below.

(3.43)

SUBSDATUMTREES2 EQ

From this perspective, U can then be thought of as obtained from T by substituting each of its nodes with the corresponding U_i . Moreover, the φ_i assemble to a planar tall map $\varphi: T \to U$ (such that $a_i \mapsto a, b \mapsto b, \dots, e \mapsto e$), which likewise encodes the same information.

One of the fundamental ideas that shape our perspective on operads is then that data for substitution of nodes as in (8.43) can equivalently be repackaged using planar tall maps.

Definition 3.44. Let $T \in \Omega$ be a tree.

UBSTITUTIONDATUM

A T-substitution datum is a tuple $(U_{e^{\uparrow} \leq e})_{(e^{\uparrow} \leq e) \in V(T)}$ together with tall maps $T_{e^{\uparrow} \leq e} \rightarrow U_{e^{\uparrow} \leq e}$. Further, a map of T-substitution data $(U_{e^{\uparrow} \leq e}) \rightarrow (V_{e^{\uparrow} \leq e})$ is a tuple of tall maps $(U_{e^{\uparrow} \leq e} \to V_{e^{\uparrow} \leq e})$ compatible with the substitution maps.

Lastly, a substitution datum is called a planar T-substitution datum if the chosen maps are planar (so that $lr(U_{e^{\uparrow} \leq e}) = T_{e^{\uparrow} \leq e}$) and a morphism of planar data is called a planar morphism if it consists of a tuple of planar maps.

We denote the category of (resp. planar) T-substitution data by Sub(T) (resp. $Sub_p(T)$).

Definition 3.45. Let $T \in \Omega$ be a tree. The Segal core poset Sc(T) is the poset with objects the single edge subtrees η_e and vertex subtrees $T_{e^{\uparrow} \leq e}$, ordered by inclusion.

Remark 3.46. Note that the only maps in Sc(T) are inclusions of the form $\eta_a \in T_{e^{\dagger} \leq e}$. In particular, there are no pairs of composable non-identity relations in Sc(T).

Given a T-substitution datum $\{U_{\{e^{\uparrow} \leq e\}}\}$ we abuse notation by writing

$$U_{(-)}$$
: $Sc(T) \to \Omega$

for the functor $\eta_a \mapsto \eta$, $T_{e^{\dagger} \leq e} \mapsto U_{e^{\dagger} \leq e}$ and sending the inclusions $\eta_a \subset T_{e^{\dagger} \leq e}$ to the composites

$$\eta \xrightarrow{a} T_{e^{\uparrow} \leq e} \to U_{e^{\uparrow} \leq e}.$$

Proposition 3.47. Let $T \in \Omega$ be a tree. There is an isomorphism of categories

$$\operatorname{Sub}_{\mathsf{p}}(T) & \longrightarrow T \downarrow \Omega^{\mathsf{pt}}$$

$$(U_{e^{\dagger} \leq e}) & \longmapsto \left(T \to \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)} \right)$$

$$\left(U_{\omega(e^{\dagger}) \leq \omega(e)} \right) & \longleftarrow \left(T \xrightarrow{\varphi} U \right)$$

$$(3.48)$$

SUBDATAUNDERPLAN EQ

SUBDATAUNDERNONPL EQ

where $T\downarrow \Omega^{\mathsf{pt}}$ denotes the category of planar tall maps under T and $\mathrm{colim}_{\mathsf{Sc}(T)}U_{(-)}$ is chosen in the unique way that makes the inclusions of the $U_{e^{\uparrow}\leq e}$ planar.

Proof. We first show in parallel that: (i) $\operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$, which we denote U_T , exists; (ii) for the datum $(T_{e^{\dagger} \leq e})$, it is $T = \operatorname{colim}_{\mathsf{Sc}(T)} T_{(-)}$; (iii) $V(U_T) = \coprod_{V(T)} V(U_{e^{\dagger} \leq e})$; (iv) the induced map $T \to U_T$ is planar tall.

The argument is by induction on the number of vertices of T, with the base cases of T with 0 or 1 vertices being immediate, since then T is the terminal object of $\mathsf{Sc}(T)$. Otherwise, one can choose a non trivial grafting decomposition so as to write $T = R \amalg_e S$, resulting in identifications $\mathsf{Sc}(R) \subset \mathsf{Sc}(T)$, $\mathsf{Sc}(S) \subset \mathsf{Sc}(T)$ so that $\mathsf{Sc}(R) \cup \mathsf{Sc}(S) = \mathsf{Sc}(T)$ and $\mathsf{Sc}(R) \cap \mathsf{Sc}(S) = \{\eta_e\}$. The existence of $U_T = \mathsf{colim}_{\mathsf{Sc}(T)} U_{(-)}$ is thus equivalent to the existence of the pushout below (where the rightmost diagram merely simplifies notation).

By induction, U_R and U_S exist for any $U_{(-)}$, equal R and S in the case $U_{(-)} = T_{(-)}$, $V(U_R) = \coprod_{V(R)} V(U_{e^{\dagger} \leq e})$ and likewise for S (so that there are unique choices of U_R , U_S making the inclusions of $U_{e^{\dagger} \leq e}$ planar), and the matrix $U_{(-)}$, $U_{(-$

that $T \to \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$ is planar tall follow. The fact that the two functors in (3.48) are inverse to each other is clear from the same inductive argument. \Box

Corollary 3.50. Let $T \in \Omega$ be a tree. The formulas in (3.48) give an isomorphism of categories

where $T \downarrow \Omega^{t}$ denotes the category of tall maps under T.

Proof. This is a consequence of Proposition 3.28 together with the previous result. Indeed, Proposition 3.14 can be restated as saying that isomorphisms $T \to T'$ are in bijection with substitution data consisting of isomorphisms, and thus bijectiveness of $\mathsf{Sub}(T) \to T \downarrow \Omega^t$ reduces to that in the previous result.

ATAUNDERPLAN COR

TAUNDERPLAN PROP

24

VERTEXDECOMP REM

INPPATH REM

Remark 3.52. As noted in the proof of Proposition 3.47, writing $U = \text{colim}_{Sc(T)} U_{(-)}$, one

$$V(U) = \coprod_{(e^{\dagger} \le e) \in V(T)} V(U_{e^{\dagger} \le e}). \tag{3.53}$$

Alternatively, (3.53) can be regarded as a map $\varphi^*:V(U)\to V(T)$ induced by the planar tall map $\varphi:T\to U$. Explicitly, $\varphi^*(U_{u^\dagger\leq u})$ is the unique $T_{t^\dagger\leq t}$ such that there is an inclusion of outer faces $U_{u^{\dagger} \leq u} \hookrightarrow U_{t^{\dagger} \leq t}$, so that φ^* indeed depends contravariantly on the tall map φ .

Remark 3.54. Suppose that $e \in T$ has input path $I_T(e) = (e = e_n < e_{n-1} < \dots < e_0)$. It is intuitively clear that for a tall map $\varphi:T\to U$ the input path of $\varphi(e)$ is built by gluing input paths in the $U_{t^{\uparrow} \leq t}$. More precisely (and omitting φ for readability), one has

$$I_U(e_n) \simeq I_{n-1}(e_n) \coprod_{e_{n-1}} I_{n-2}(e_{n-1}) \coprod_{e_{n-2}} \cdots \coprod_{e_1} I_1(e_0).$$

where $I_k(-)$ denotes the input path in U_{\uparrow} . More formally, this follows from the characterization of predecessors in Proposition 3.9(b).

We end this section with a comple of lemmas that will allow us to reverse the substitution procedure of Proposition 3.47 and will be needed in §5.2.

Proposition 3.55. Let $U \in \Omega$ be a tree. Then:

- (i) given non stick outer subtrees U_i such that $V(U) = \coprod_i V(U_i)$ there is a unique tree T and planar tall map $T \to U$ such that the sets $\{U_i\}$, $\{U_{e^{\uparrow} \leq e}\}$ coincide;
- (ii) given multiplicities $m_e \ge 1$ for each edge $e \in U$, there is a unique planar degeneracy $\rho: T \to U \text{ such that } \rho^{-1}(e) \text{ has } m_e \text{ elements};$
- (iii) planar tall maps $T \to U$ are in bijection with collections $\{U_i\}$ of outer subtrees such that $V(U) = \coprod_i V(U_i)$ and U_j is not an inner edge of any U_i whenever $U_j \simeq \eta$ is a

Proof. We first show (i) by induction on the number of subtrees U_i . The base case $\{U_i\}$ $\{U\}$ is immediate, setting $T = \operatorname{Ir}(U)$. Otherwise, U must not be a corolla and letting e be an edge that is both an inner edge of U and a root of some U_i , and one can form a grafting pushout diagram

$$\eta \xrightarrow{e} U^{\leq e} \\
\downarrow \\
U_{\leqslant e} \longrightarrow U$$
(3.56)

DECOMPPROOF EQ

VERTEXDECOMP EQ

where $U^{\leq e}$ (resp. $U_{\nleq e}$) are the outer faces consisting of the edges $u \leq_d e$ (resp. $u \nleq_d e$). Since there is a unique U_i containing the vertex $e^{\uparrow} \leq e$, it follows from the definition of outer face that there is a nontrivial partition $\{U_i\} = \{U_i|U_i \hookrightarrow V\} \coprod \{U_i|U_i \hookrightarrow W\}$. Existence of $T \rightarrow U$ now follows from the induction hypothesis. For uniqueness, the condition that no U_i is a stick guarantees that T possesses a single inner edge mapping to e, and thus admits a compatible decomposition as in (8.56), so that uniqueness too follows from the induction hypothesis.

For (ii), we argue existence by nested induction on the number of vertices |V(U)| and the sum of the multiplicities m_e . The base case |V(U)| = 0 pie of |V| =the pre-image of the non-identity relations in U, showing that underlying broad poset of the tree T is unique up to isomorphism. Strict uniqueness is then Proposition 3.28.

(iii) follows by combining (i) and (ii). Indeed, any planar tall map $T \to U$ has a unique decomposition $T \to \overline{T} \hookrightarrow U$ as a planar degeneracy followed by a planar inner face, and each of these maps is classified by the data in (b) and (a).

BUILDABLE PROP

TERFACEUNION LEM

Lemma 3.57. Suppose $T_1, T_2 \rightarrow T$ are two outer faces with at least one common edge e. Then there exists an unique outer face $T_1 \cup T_2$ such that $V(T_1 \cup T_2) = V(T_1) \cup V(T_2)$.

Proof. If either T is a corolla or one of T_1, T_2 consists only of the root or a leaf stick subtrees the result is obvious. Otherwise, one can necessarily choose e to be an inner edge of T in EQ which case all of three of T_1, T_2, T admit compatible decompositions as in (3.56) and the result follows by induction on |V(T)|.

LRVERT SEC

QUOT DEF

Equivariant leaf-root and vertex functors 3.3

This section introduces two functors that are the very center of our definition of the category Op_G of genuine equivariant operads: the leaf-root and vertex functors.

We start by recalling a key class of maps of G-trees.

Definition 3.58. Let $S = (S_y)_{y \in Y}$ and $T = (T_x)_{x \in X}$ be G-trees. A map of G-trees

$$\varphi = (\phi, (\varphi_y)): S \to T$$

is called a quotient if each of the constituent tree maps

$$\varphi_y: S_y \to T_{\phi(y)}$$

is an isomorphism of trees.

The category of G-trees and quotients is denoted Ω_G^0 (this notation is justified in §3.4). Remark 3.59. Quotients can alternatively be described as the cartesian arrows for the Grothendieck fibration $\Omega_G \xrightarrow{r} \mathsf{O}_G$. We note that this differs from the notion of root pullbacks, which are the chosen cartesian arrows, and include only those quotients such that each $\varphi_y : S_y \to T_{\phi(y)}$ is a planar isomorphism, i.e., an identity.

Definition 3.60. The *G-symmetric category*, whose objects we call *G-corollas*, is the full subcategory $\Sigma_G \to \Omega_G^0$ of those $G_{\overline{\text{UNICON}}} = C_{\overline{\text{NOT}}} = C_x$ such that some (and thus all) C_x is a corolla $C_x \in \Sigma \to \Omega$ (cf. Notation 3.39).

Definition 3.61. The *leaf-root functor* is the functor $\Omega_G^0 \xrightarrow{\operatorname{lr}} \Sigma_G$ defined by

$$\operatorname{lr}\left((T_x)_{x\in X}\right) = \left(\operatorname{lr}(T_x)\right)_{x\in X}.$$

Remark 3.62. The leaf-root functor extends to a functor $\Pr_{\mathbf{DEF}} \Omega_G^{\mathbf{t}} \to \Sigma_G$, where $\Omega_G^{\mathbf{t}}$ is the category of tall maps, defined exactly as in Definition 3.58, but not to a functor defined on all arrows in Ω_G . However, we will mostly be concerned with the restriction $\Omega_G^0 \xrightarrow{\operatorname{lr}} \Sigma_G$.

Remark 3.63. Generalizing the remark in Notation 3.39, $\operatorname{lr}(T)$ can alternatively be charac-

terized as being the unique G-corolla which admits an also unique tall planar map $lr(T) \rightarrow T$. Moreover, Ir(T) can usually be regarded as the "smallest inner face" of T, obtained by removing all the inner edges, although this characterization fails when $T = (\eta_x)_{x \in X}$ is a stick *G*-tree. Some examples with $G = \mathbb{Z}_{/4}$ follow.

EAFROOTEXAMP REM

LRROOTMAP REM

VG DEF

ERTEXDECOMPG REM

Remark 3.64 Since planarizations can not be pushed forward along tree maps (cf. Remark 3.29) the leaf-root functor $\operatorname{Ir}:\Omega_G^0\to\Sigma_G$ is not a Grothendieck fibration, but instead only a map of Grothendieck fibrations over O_G (for the obvious root functor $\operatorname{r}:\Sigma_G\to\mathsf{O}_G$).

Definition 3.65. Given $T = (T_x)_{x \in X} \in \Omega_G$ we define its set of *vertices* to be $V(T) = \coprod_{x \in X} V(T_x)$ and its set of *G-vertices* to be the orbit set V(T)/G.

Furthermore, we will regard V(T) as an object of F by using the induced planar order (with $e^{\uparrow} \leq e$ ordered according to e) and likewise $V_G(T)$ will be regarded as an object of F by using the lexicographic order: i.e. vertex equivalence classes $[e^{\uparrow} \leq e]$ are ordered according to the planar order \leq_p of the smallest representative $ge, g \in G$.

to the planar order \leq_p of the smallest representative $ge, g \in G$. **Remark 3.66.** Following Remark 3.52, a tall map $\varphi:T \to U$ of G-trees induces a G-equivariant map $\varphi^*:V(U) \to V(T)$ and thus also a map of orbits $\varphi^*:V_G(U) \to V_G(T)$. We note, however, that φ^* is not in general compatible with the order on $V_G(-)$ even if φ is planar, as is indeed the case even in the non-equivariant setting.

A minimal example follows.

In V(T) the vertices are ordered as a < c < d while in V(U) they are ordered as a < e < c < d but the map $\varphi^*: V(U) \to V(T)$ is given by $a \mapsto a, c \mapsto c, d \mapsto d, e \mapsto d$.

Notation 3.67. Given $T = (T_x)_{x \in X} \in \Omega_G$ and $(e^{\uparrow} \leq e) \in V(T)$ we write $T_{e^{\uparrow} \leq e}$ as a shorthand for $T_{x,e^{\uparrow} \leq e}$, where $e \in T_x$.

Further, each element $V_G(T)$ corresponds to an unique edge orbit Ge for e not a leaf. We will prefer to write G-vertices as v_{Ge} , and write

$$T_{v_{Ge}} = (T_{f\uparrow < f})_{f \in Ge}$$
 (3.68) TVGE DEF

where Ge inherits the planar order.

We note that $T_{v_{Ge}}$ is always a G-corolla, leading to the following definition.

Definition 3.69. The *G-vertex functor* is the functor

$$\Omega_G^0 \xrightarrow{V_G} \mathsf{F}_s \wr \Sigma_G
T \longmapsto (T_{v_{Ge}})_{v_{Ge} \in V_G(T)},$$
(3.70) VFUNCTOR EQ

where F_s is the category of finite sets and surjections of Remark 2.16.

Remark 3.71. In the non-equivariant case the vertex functor can be defined to land instead in $\Sigma \wr \Sigma$. The need to introduce the $F \wr (-)$ construction comes from the fact that in general quotient maps do not preserve the number of G-vertices. For a simple let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ and consider the pullback map $\varphi : \pi^* S \to S$ of Example 3.25 determined by the assignments $a \mapsto a, b \mapsto b, c \mapsto c, d \mapsto ia, e \mapsto ib$, and presented below in orbital notation.

ED_WREATH_REMARK

We note that $T = \pi^* S$ has three G-vertices v_{Gc} , v_{Gb} , v_{Ge} while S has only two G-vertices v_{Gc} and v_{Gb} . $V_G(\varphi)$ then maps the two G-corollas $T_{v_{Gb}}$ and $T_{v_{Ge}}$ isomorphically onto $S_{v_{Gb}}$ and the G-corolla $T_{v_{Gc}}$ by a non-isomorphism quotient onto $S_{v_{Gc}}$.

The following elementary statement will play an important auxiliary role.

VGPULL LEM Lemma 3.72. The G-vertex functor

$$\Omega_G^0 \xrightarrow{V_G} \mathsf{F}_s \wr \Sigma_G$$

sends pullbacks over O_G (i.e. root pullbacks) to pullbacks over $F_s \wr O_G$ (cf. Lemma 2.18).

Proof. Note first that an arrow $(\phi, (\varphi_i)): (C_i)_{i \in I} \to (C'_j)_{j \in J}$ is a pullback for the split fibration $\mathsf{F}_s \wr \Sigma_G \to \mathsf{F}_s \wr \mathsf{O}_G$ iff each of the constituent arrows $\varphi_i: C_i \to C'_{\phi(i)}$ are pullbacks for the split fibration $\Sigma_G \to \mathsf{O}_G$.

The pullback $\psi^*T \xrightarrow{\psi} T$ of $T = (T_x)_{x \in X} \in \Omega_{G,0}$ over $\psi: Y \to X$ has the form $(T_{\psi(y)})_{y \in Y} \to (T_x)_{x \in X}$ and it now suffices to check that each of the vertex maps $(\psi^*T)_{v_{Ge}} \to T_{v_{G\bar{\psi}(e)}}$ is itself a pullback. By (3.68), this is the statement that for $f \in Ge$ the induced map

$$(\psi^*T)_{f^{\uparrow} \le f} \to T_{\bar{\psi}(f^{\dagger}) \le \bar{\psi}(f)} \tag{3.73}$$

is an identity (i.e. planar isomorphism), and letting y be such that $f \in T_{\psi(y)}$ one sees that (3.73) is the identity $T_{\psi(y),f^{\uparrow} \leq f} = T_{x,\bar{\psi}(f)^{\uparrow} \leq \bar{\psi}(f)}$, where $x = \psi(y)$, finishing the proof.

Example 3.74. The following depicts one of the maps (8.73) for the pullback $\tau^*T \to T$ appearing in Example 3.25.

$$d \bigvee -d -jd \bigvee jd -id \bigvee id \quad kd \bigvee -kd \underbrace{\qquad \qquad \qquad \qquad }_{d \mapsto ia} a \bigvee -ja \quad ia \bigvee -ia \quad ka \bigvee -ka \underbrace{\qquad \qquad \qquad }_{b} b \qquad jb \qquad ib \qquad kb$$

$$(\tau^*T)_{v_{Ge}}$$

Note that $(\tau^*T)_{v_{Ge}} = \rho^*T_{v_{Gb}}$ for ρ the map $\{e, je, ie, ke\} \rightarrow \{b, jb, ib, kb\}$ defined by $e \mapsto ib$ so that, accounting for orders, ρ is the block permutation $\rho = (13)(24)$.

We are now in a position to generalize Definition 3.44.

Definition 3.75. Let $T \in \Omega_G$ be a G-tree.

A (resp. planar) T-substitution datum is a tuple $(U_{f^{\uparrow} \leq f})_{V(T)}$ of G-trees together with

- (i) associative and unital G-action maps $U_{f^{\uparrow}\leq f} \to U_{gf^{\uparrow}\leq gf};$
- (ii) (resp. planar) tall maps $T_{f^{\uparrow} \leq f} \to U_{f^{\uparrow} \leq f}$ compatible with the G-action maps.

Further, a map of (resp. planar) T-substitution data $(U_{f^{\uparrow} \leq f}) \rightarrow (V_{f^{\uparrow} \leq f})$ is a compatible tuple of (resp. planar) tall maps $(U_{f^{\uparrow} \leq f} \rightarrow V_{f^{\uparrow} \leq f})$.

We denote the category of (resp. planar) T-substitution data by Sub(T) (resp. $Sub_p(T)$).

Recall that a map of G trees is called rooted if it induces an ordered isomorphism on the root orbit (cf. Definition 3.24).

Remark 3.76. Writing $U^{\mathsf{r}}_{v_{Ge}} = (U_{f^{\dagger} \leq f})_{f \in Ge}$ a T-substitution datum can equivalently be encoded by the tuple $(U^{\mathsf{r}}_{v_{Ge}})_{V_G(T)}$ together with rooted tall maps $T_{v_{Ge}} \to U^{\mathsf{r}}_{v_{Ge}}$. The need to include r (which stands for "rooted") in the notation is explained by Remark 3.81.

Further, the T-substitution datum is planar iff the so are the maps $T_{v_{Ge}} \to U_{v_{Ge}}^{\mathsf{r}}$.

SUBSGREF DEF

UBSDATUMCONV REM

Remark 3.77. Writing $T = (T_x)_{x \in X}$ as usual one obtains (non-equivariant) T_x -substitution data $U_{x,(-)}$ for each T_x . We again write $U_{x,(-)}:\mathsf{Sc}(T_x)\to\Omega$ and note that these are compatible with the G-action in the sense that the obvious diagram

$$\operatorname{Sc}(T_x) \xrightarrow{U_{x,(-)}} \Omega$$

$$\operatorname{Sc}(T_{gx}) \xrightarrow{U_{gx,(-)}} \Omega$$

$$(3.78) \quad \boxed{\text{EQUIVSCMAP EQ}}$$

SUBDATAUNDERPLANG EQ

commutes. Writing $Sc(T) = \coprod_x Sc(T_x)$, (3.78) is then equivalent to a functor $G \ltimes Sc(T) \to \Omega$, where $G \ltimes Sc(T)$ is the Grothendieck construction for the G-action (which, explicitly, adds arrows $\eta_a \to \eta_{ga}$, $T_{e^{\uparrow} \le e} \to T_{ge^{\uparrow} \le ge}$ to Sc(T) that satisfy obvious compatibilities).

In the following we write $\operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$ to mean $(\operatorname{colim}_{\mathsf{Sc}(T_x)} U_{x,(-)})_{x \in X}$ or, in other words, we take the colimit in $\Phi = \mathsf{F} \wr \Omega$ rather than in Ω (as is needed since Ω lacks coproducts).

Corollary 3.79. Let $T \in \Omega_G$ be a G-tree. There are isomorphisms of categories

$$\operatorname{Sub}_{\mathsf{p}}(T) \longleftarrow T \downarrow \Omega_G^{\mathsf{pt}} \qquad \qquad \operatorname{Sub}(T) \longleftarrow T \downarrow \Omega_G^{\mathsf{rt}}$$

$$\left(U_{f^{\dagger} \leq f} \right)_{V(T)} \longmapsto \left(T \to \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)} \right) \qquad \qquad \left(U_{f^{\dagger} \leq f} \right)_{V(T)} \longmapsto \left(T \to \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)} \right)$$

where $T\downarrow\Omega_G^{\mathsf{pt}}$ (resp. $T\downarrow\Omega_G^{\mathsf{rt}}$) is the category of planar tall (resp. rooted tall) maps under T.

Proof. This is a direct consequence of the non-equivariant analogues Proposition 3.47 and Corollary UBSDATUNCON REM each individual T_x together with the equivariance analysis in Remark 5.77.

Remark 3.81 Noticing $U_{A\overline{b}}$ results Proposition 3.47 and Corollary 3.50 that each inclusion map $U_{f^{\uparrow} \leq f} \to U$ is planar, so that there is no conflict with Notation 3.67.

However, some care is needed concerning the $U^{\mathsf{r}}_{v_{Ge}}$ appearing in the reformulation of substitution data given in Remark 3.76. Letting $\varphi: T \to U$ be the induced map, one sees that while $U_{v_{G\varphi(e)}}^{r}$ have the same constituent trees (with the latter defined by Notation 3.67), the roots of $U_{v_{Ge}}^{r}$ are ordered by Ge while those of $U_{v_{G\varphi(e)}}$ are ordered by $G\varphi(e)$. More succinctly, it is then $U_{v_{Ge}}^{r} = \varphi_{Ge}^{*}U_{v_{G\varphi(e)}}$ for $\varphi_{Ge} : Ge \to G\varphi(e)$ the induced

Lastly, we note that such distinctions are unnecessary for planar data, since then the

 φ_{Ge} are ordered isomorphisms (i.e. identities), so that $U_{v,G}^v = U_{v,G,e}^v$.

Remark 3.82. The isomorphisms in Corollary Kernelland Corollary Webuller Compatible with root pullbacks of trees. More concretely, as in the proof of Lemma 5.72 each pullback $\bar{\psi}: \psi^*T \to T$ determines pullback maps $\bar{\psi}_{Ge}: (\psi^*T)_{v_{Ge}} \to T_{v_{G\bar{\psi}(e)}}$, which we now note are pullbacks over the maps $\bar{\psi}_{Ge}:Ge \to G\bar{\psi}(e)$ in O_G . The definition of pullback then allows us to uniquely fill any diagram (where we reformulate substitution data as in Remark 3.76)

$$(\psi^*T)_{v_{Ge}} \xrightarrow{-\cdots} \bar{\psi}_{Ge}^* U_{v_{G\bar{\psi}(e)}}^r$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_{v_{G\bar{\psi}(e)}} \xrightarrow{-\cdots} U_{v_{G\bar{\psi}(e)}}^r$$

defining the left vertical functors (with the right functors defined analogously) in the commutative diagrams below.

$$\begin{array}{lll} \operatorname{Sub}_{\mathsf{p}}(\psi^*T) & \longrightarrow \psi^*T \downarrow \Omega_G^{\mathsf{pt}} & \operatorname{Sub}(\psi^*T) & \longrightarrow \psi^*T \downarrow \Omega_G^{\mathsf{rt}} \\ (\bar{\psi}_{Ge}^*) & \uparrow \psi^* & (\bar{\psi}_{Ge}^*) & \uparrow \psi^* & (3.83) & \\ \operatorname{Sub}_{\mathsf{p}}(T) & \longmapsto T \downarrow \Omega_G^{\mathsf{pt}} & \operatorname{Sub}(T) & \longmapsto T \downarrow \Omega_G^{\mathsf{rt}} & \end{array}$$

TAUNDERPLANG COR

WHYR REM

PULLCOMP REM

PLANARSTRING SEC

PLANSTR DEF

Planar strings 3.4

We now use the leaf-root and vertex functors to repackage our substitution results in a genuine of monde section format that will be more convenient for our discussion of operads in §

Definition 3.84. The category Ω_G^n of planar n-strings is the category whose objects are strings

$$T_0 \xrightarrow{\varphi_1} T_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_n} T_n$$
 (3.85) STRINGOBJ EQ

where $T_i \in \Omega_G$ and the φ_i are tall planar maps, while arrows are commutative diagrams

$$T_{0} \xrightarrow{\varphi_{1}} T_{1} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{n}} T_{n}$$

$$\pi_{0} \downarrow \qquad \pi_{1} \downarrow \qquad \qquad \pi_{n} \downarrow$$

$$T'_{0} \xrightarrow{\varphi'_{1}} T'_{1} \xrightarrow{\varphi'_{2}} \cdots \xrightarrow{\varphi'_{n}} T'_{n}$$

$$(3.86) \quad \boxed{\text{PTNARROW EQ}}$$

where each π_i is a quotient map.

Notation 3.87. Since compositions of planar tall arrows are planar tall and identity arrows are planar tall it follows that Ω_G^{\bullet} forms a simplicial object in Cat, with faces given by composing and degeneracies by inserting identities.

Further setting $\Omega_G^{-1} = \Sigma_G$, the leaf-root functor $\Omega_G^0 \xrightarrow{\operatorname{lr}} \Sigma_G$ makes Ω_G^{\bullet} into an augmented simplicial object and, furthermore, the maps $s_{-1}: \Omega_G^n \to \Omega_G^{n+1}$ sending $T_0 \to T_1 \to \cdots \to T_n$ to $lr(T_0) \to T_0 \to T_1 \to \cdots \to T_n$ equip it with extra degeneracies.

Remark 3.88. The identification $\Omega_G^{-1} = \Sigma_G$ can be understood by noting that a string (B.85) is equivalent to a string

$$T_{-1} \xrightarrow{\varphi_0} T_0 \xrightarrow{\varphi_1} T_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_n} T_n$$
 (3.89) STRINGOBJALT EQ

where $T_{-1} = lr(T_0) = \cdots = lr(T_n)$.

Remark 3.90. Since for any planar n-string it is $r(T_i) = r(T_j)$ for any $1 \le i, j \le n$, one has a well defined functor $\mathbf{r}: \Omega_G^n \to \mathsf{O}_G$, which is readily seen to be a split Grothendieck fibration. Furthermore, generalizing Remark 3.64, all operators d_i , s_j are maps of split Grothendieck fibrations.

Notation 3.91. We extend the vertex functor to a functor $V_G: \Omega_G^{n+1} \to \mathsf{F}_s \wr \Omega_G^n$ by

$$V_G(T_0 \to T_1 \to \cdots \to T_n) = (T_{1,v_{Ge}} \to \cdots \to T_{n,v_{Ge}})_{v_{Ge} \in V_G(T_0)}$$

$$(3.92) \quad \boxed{\text{VGDEF EQ}}$$

where we abuse notation by writing $T_{i,v_{Ge}}$ for $(T_{i,\bar{\varphi}_i(f)})_{f \in v_{Ge}}$, where $\bar{\varphi}_i = \varphi_i \circ \cdots \circ \varphi_1$. Alternatively, regarding $T_0 \to \cdots \to T_n$ as a string of n-1 arrows in $T_0 \downarrow \Omega_G^{\rm pt}$, the object $V_G(T_0 \to \cdots \to T_n)$ can be thought of as the image of the inverse functor in Corollary 3.79, written according to the reformulation in Remark 3.76 (where since we are in the planar case we need not distinguish between $U_{(-)}^r$ and $U_{(-)}$ notation (cf. Remark 3.81)). Note however that from this perspective functoriality needs to be checked separately.

We now obtain a key reinterpretation (and slight strengthening) of Corollary 3.79.

Proposition 3.93. For any $n \ge 0$ the commutative diagram

$$\Omega_{G}^{n} \xrightarrow{V_{G}} \mathsf{F}_{s} \wr \Omega_{G}^{n-1}$$

$$\downarrow_{\mathsf{F}:d_{0,\cdots,n-1}} \qquad \qquad \downarrow_{\mathsf{F}:d_{0,\cdots,n-1}}$$

$$\Omega_{G}^{0} \xrightarrow{V_{G}} \mathsf{F}_{s} \wr \Sigma_{G}$$
(3.94) PTPULL EQ

is a pullback diagram in Cat.

IMPOPERATORS NOT

ALLSPLITMAPS REM

VGDEF NOT

SUBSASPULL PROP

Proof. Let us write $P = \Omega_G^0 \times_{\mathsf{F}_s \wr \Sigma_G} \mathsf{F}_s \wr \Omega_G^{n-1}$ for the pullback, so that our goal is to show that the canonical map $\Omega_G^n \to P$ is an isomorphism.

That $\Omega_G^n \to P$ is an isomorphism on objects follows by combining the alternative description of V_G in Notation 3.91 with the planar half of Corollary 3.79 (in fact, this yields isomorphisms of the fibers over Ω_G^0 , but we will not directly use this fact). We will hence write $T_0 \to \cdots \to T_n$ to denote an object of P as well.

An arrow in P from $T_0 \to \cdots \to T_n$ to $T_0' \to \cdots \to T_n'$ then consists of a quotient $\pi_0 \colon T_0 \to T_0'$ together with a $V_G(T_0)$ indexed tuple of quotients of strings (where we write $e' = \pi_0(e)$)

$$T_{0,v_{Ge}} \longrightarrow T_{1,v_{Ge}} \longrightarrow \cdots \longrightarrow T_{n,v_{Ge}}$$

$$\pi_{0,e} \downarrow \qquad \pi_{1,e} \downarrow \qquad \qquad \downarrow^{\pi_{n,e}}$$

$$T'_{0,v_{Ge'}} \longrightarrow T'_{1,v_{Ge'}} \longrightarrow \cdots \longrightarrow T'_{n,v_{Ge'}}.$$

$$(3.95) \quad \boxed{\text{PTNARROWLOC EQ}}$$

That $\Omega_G^n \to P$ is injective on arrows is then clear For surjectivity, note first that by Lemma 3.72 the composite $P \to \Omega_G^0 \to O_G$ is a split Grothendieck fibration and $P \to \Omega_G^0$ is a map of split Grothendieck fibrations. PINGLEG EQ pullbacks in P can be built explicitly as those arrows such that π_0 and all $\pi_{i,e}$ in (3.95) are pullbacks (alternatively an abstract argument also works). The alternative description of V_G in Notation 3.91 combined with (8.83) then show that $\Omega_G^n \to P$ preserves pullbacks, so that injectivity needs only be checked for maps in the fibers over O_G , i.e. on rooted maps. Tautologically, a map in P is rooted iff $\pi_0: T_0 \to T_0'$ is. But since a quotient is an isomorphism iff it is so on roots, we further have that a map in P is rooted iff $\pi_0: T_0 \to T'$ is a rooted isomorphism and each $\pi_{i,e}$ in (8.95) is an isomorphism. But now rewriting 8.95 as a tuple of diagrams indexed by $f \in Ge$ one obtains a diagram in Sub (T_0) of the same shape which after converted to a diagram $T_0 \downarrow \Omega_G^{\text{rt}}$ using the rooted half of Corollary 3.79, yields the desired rooted map (8.86) in Ω_G^{rt} lifting the rooted map in P.

INDVNG NOT

Notation 3.96. For $0 \le k \le n$ we will let

$$V_G^k : \Omega_G^n \to \mathsf{F}_s \wr \Omega_G^{n-k-1}$$

be inductively defined by $V_G^0 = V_G$ and $V_G^{n+1} = \sigma^0 \circ (\mathsf{F}_s \wr V_G^n) \circ V_G$.

VGN REM **Remark 3.97.** When n = 2, V_G^2 is thus the composite

$$\Omega_G^2 \xrightarrow{V_G} \mathsf{F}_s \wr \Omega_G^1 \xrightarrow{V_G} \mathsf{F}_s \wr \mathsf{F}_s \wr \mathsf{G}_G \xrightarrow{V_G} \mathsf{F}_s \wr \mathsf{F}_s \wr \mathsf{F}_s \wr \mathsf{F}_s \wr \mathsf{F}_G \xrightarrow{\sigma^0} \mathsf{F}_s \wr \mathsf{F}_s \wr \Sigma_G \xrightarrow{\sigma^0} \mathsf{F}_s \wr \Sigma_G$$

while for n = 4, V_G^1 is the composite

$$\Omega_G^4 \xrightarrow{V_G} \mathsf{F}_s \wr \Omega_G^3 \xrightarrow{V_G} \mathsf{F}_s \wr \mathsf{F}_s \wr \Omega_G^2 \xrightarrow{\sigma^0} \mathsf{F}_s \wr \Omega_G^2.$$

In light of Remarks 3.52 and 3.66, $V_G^*(T_0 \to \cdots \to T_n)$ is identified with the tuple

$$(T_{k,v_{Ge}} \rightarrow \cdots \rightarrow T_{n,v_{Ge}})_{v_{Ge} \in V_G(T_k)},$$
 (3.98) VGNISO EQ

where we note that strings are written in prepended notation as in (3.89), so that $T_{i,v_{Ge}}$ is superfluous unless k=n. Further, note that this requires changing the order of $V_G(T_k)$. Rather than using the order induced by T_k , one instead equips $V_G(T_k)$ with the order induced lexicographically from the maps $V_G(T_k) \to V_G(T_{k-1}) \to \cdots \to V_G(T_0)$ of Remark 3.52. I.e., for $v, w \in V_G(T_k)$ the condition v < w is determined by the lowest l such that the images of $v, w \in V_G(T_l)$ are distinct.

Therefore, for each d_i with i < k there are natural isomorphisms as on the left below which interchange the lexicographical order on the indexing set $V_G(T_k)$ induced by the string $V_G(T_k) \to V_G(T_{k-1}) \to \cdots \to V_G(T_0)$ with the one induced by the string that omits $V_G(T_i)$.

For d_i with i > k one has a commutative diagram as on the right below. Note that no such diagram is defined for d_k .

$$\Omega_{G}^{n} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1} \qquad \Omega_{G}^{n} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1}
\downarrow_{d_{i}} \qquad \downarrow_{d_{i-k-1}} \qquad \qquad \downarrow_{d_{i-k-1}}
\Omega_{G}^{n-1} \xrightarrow{V_{G}^{k-1}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1} \qquad \Omega_{G}^{n-1} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-2}$$
(3.99) PIIDEFDI EQ

Similarly, for s_j with j < k (resp. $j \ge k$) one has commutative diagrams as on the left (resp. right) below. Note that for s_k one uses the extra degeneracy $s_{k-k-1} = s_{-1}$.

The functors V_G^k and isomorphisms π_i satisfy a number of useful conditions that we now catalog.

PIIPROP PROP

Proposition 3.101. (a) The composite

$$\Omega_G^n \xrightarrow{V_G^k} \mathsf{F}_s \wr \Omega_G^{n-k-1} \xrightarrow{V_G^l} \mathsf{F}_s^{\wr 2} \wr \Omega_G^{n-k-l-2} \xrightarrow{\sigma^0} \mathsf{F}_s \wr \Omega_G^{n-k-l-2}$$

equals the functor V_G^{k+l+1} .

- (b) The functors V_G^k send pullbacks for the split Grothendieck fibration $\Omega_G^k \to \mathsf{O}_G$ to pullbacks for $\mathsf{F}_s \wr \Omega_G^{n-k-1} \to \mathsf{F}_s$.
- (c) The isomorphisms $\pi_i(T_0 \to \cdots \to T_n)$ are pullbacks for the split Grothendieck fibration $\mathsf{F}_s \wr \Omega_G^{n-k-1} \to \mathsf{F}_s$. Moreover, the projection of $\pi_i(T_0 \to \cdots \to T_n)$ onto F_s depends only on $T_0 \to \cdots \to T_s$
- (d) The rightmost diagrams in both (3.99) and (3.100) are pullbacks diagrams in Cat.
- (e) For i < k the composite natural transformation in the diagram below is π_i .

For k < i < k+l+1 the composite natural transformation in the diagram below is π_{i+1} .

(f) Restricting to the case k = n, the pairs (d_i, π_i) and $(s_j, id_{V_G^n})$ satisfy all possible simplicial identities (i.e. those with $i \neq n$). Explicitly, for $0 \leq i' < i < n$ the composite

natural transformations in the diagrams

coincide, and similarly for the face-degeneracy relations.

Proof. (a) follows by induction on k, with k=0 being the definition. More generally (and writing F for F_s) one has

$$\begin{split} \sigma^0 (\mathsf{F} \wr V_G^l) V_G^{k+1} &= \sigma^0 (\mathsf{F} \wr V_G^l) \sigma^0 (\mathsf{F} \wr V_G^k) V_G = \sigma^0 \sigma^0 (\mathsf{F}^{\wr 2} \wr V_G^l) (\mathsf{F} \wr V_G^k) V_G \\ &= \sigma^0 \sigma^1 (\mathsf{F}^{\wr 2} \wr V_G^l) (\mathsf{F} \wr V_G^k) V_G = \sigma^0 (\mathsf{F} \wr \sigma^0) (\mathsf{F}^{\wr 2} \wr V_G^l) (\mathsf{F} \wr V_G^k) V_G \\ &= \sigma^0 \left(\mathsf{F} \wr \left(\sigma^0 (\mathsf{F} \wr V_G^l) V_G^k \right) \right) V_G = \sigma^0 \left(\mathsf{F} \wr V_G^{k+l-1} \right) V_G = V_G^{k+l}. \end{split}$$

(b) generalizes Lemma 3.72, and follows by induction using that result, Lemma 2.18, and the obvious claim that $F \wr F \wr A \xrightarrow{\sigma^0} F \wr A$ sends pullbacks over $F \wr F$ to pullbacks over F.

(c) is clear. Also, (e) and (f) are easy consequences of (b) and (c): since all natural transformations involved consist of pullbacks, one needs only check each claim after forgetting to the F_s coordinate, which is straightforward.

FIDER OF A graph of the property of the prope

(3.105)

The claim for the rightmost diagram in (3.100) follows by the analogous diagrams with the d_i (but not $d_{1,\dots,n}$, $d_{0,\dots,n-1}$) replaced by s_j .

4 Genuine equivariant operads

In this section we now build the category $\operatorname{Op}_G(\mathcal{V})$ of genuine equivariant operads. We will do so by building a monad \mathbb{F}_G on the category $\operatorname{Sym}_G(\mathcal{V}) = \operatorname{Fun}(\Sigma_G^{op}, \mathcal{V})$, that we refer to as the category of G-symmetric sequences on \mathcal{V} . The underlying endofunctor of \mathbb{F}_G is easy enough to describe. Given $X \in \operatorname{Sym}_G(\mathcal{V})$, $\mathbb{F}_G X$ is given by the left Kan extension diagram

$$(\Omega_{G}^{0})^{op} \xrightarrow{V_{G}^{op}} (\mathsf{F} \wr \Sigma_{G})^{op} \xrightarrow{(\mathsf{F} \wr X^{op})^{op}} (\mathsf{F} \wr \mathcal{V}^{op})^{op} \xrightarrow{\Pi} \mathcal{V}$$

$$\downarrow_{\mathsf{F}} \downarrow_{G}$$

$$\Sigma_{G}^{op} \xrightarrow{V_{G}^{op}} (\mathsf{F} \wr \Sigma_{G})^{op} \xrightarrow{(\mathsf{F} \wr X^{op})^{op}} (\mathsf{F} \wr \mathcal{V}^{op})^{op} \xrightarrow{\Pi} \mathcal{V}$$

$$(4.1) \quad \boxed{\mathsf{FGXDEF} \; \mathsf{EQ}}$$

OP_MONAD_SECTION

To describe the monad structure on \mathbb{F}_G , however, we will find it preferable to separate the left Kan extension step from the remaining construction. As such, we will first build a monad N on a larger category WSpan $(\Sigma_G^{op}, \mathcal{V})$ which we then transfer via the (Lan, ι) adjunction in Remark 4.6.

4.1 A monad on spans

WSPAN DEF

Definition 4.2. We will write $\mathsf{WSpan}^l(\mathcal{C}, \mathcal{D})$ (resp. $\mathsf{WSpan}^r(\mathcal{C}, \mathcal{D})$), which we call the category of *left weak spans* (resp. *right weak spans*), to denote the category with objects the spans

$$\mathcal{C} \stackrel{k}{\longleftarrow} A \stackrel{X}{\longrightarrow} \mathcal{D},$$

arrows the diagrams as on the left (resp. right) below

which we write as (i, φ) : $(k_1, X_1) \to (k_2, X_2)$, and composition given in the obvious way.

Remark 4.4. There are canonical natural isomorphisms

$$\mathsf{WSpan}^r(\mathcal{C}, \mathcal{D}) \simeq \mathsf{WSpan}^l(\mathcal{C}^{op}, \mathcal{D}^{op}). \tag{4.5}$$

RANLANADJ REM

OMEGAGNA NOT

Remark 4.6. The terms $left/right_{LRSPANTSU}$ are seen to be equivalent by using (4.5)

$$\mathsf{Lan} : \mathsf{WSpan}^l(\mathcal{C}, \mathcal{D}) \rightleftarrows \mathsf{Fun}(\mathcal{C}, \mathcal{D}) : \iota$$

$$\iota$$
: Fun $(\mathcal{C}, \mathcal{D}) \rightleftarrows \mathsf{WSpan}^r(\mathcal{C}, \mathcal{D})^{op}$: Ran

where the functors ι denote the obvious inclusions (note the need for the $(-)^{op}$ in the second adjunction) and Lan/Ran denote the left/right Kan extension functors.

We will mainly be interested in the span categories WSpan^l($\Sigma_G^{op}, \mathcal{V}$) \simeq WSpan^r($\Sigma_G, \mathcal{V}^{op}$).

Notation 4.7. Given a functor $\rho: A \to \Sigma_G$, $n \ge 0$, we let $\Omega_G^n \wr A$ denote the pullback in Cat

$$\Omega_{G}^{n} \wr A \xrightarrow{V_{G}^{n}} \mathsf{F}_{s} \wr A$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_{G}^{n} \xrightarrow{V_{G}^{n}} \mathsf{F}_{s} \wr \Sigma_{G}$$

$$(4.8) \quad \boxed{\mathsf{OMGGNA}}$$

We will write the top V_G^n functor as $V_G^n \wr A$ whenever we need to distinguish such functors. Explicitly, by Remark 3.97 the objects of $\Omega_G^n \wr A$ are pairs

$$(T_0 \to \cdots \to T_n, (a_{v_{Ge}})_{v_{Ge} \in V_G(T_n)})$$
 (4.9) OMEGAGNA EQ

such that $\rho(a_{v_{Ge}}) = T_{n,v_{Ge}}$, and where $V_G(T_n)$ is ordered lexicographically according to the string $T_0 \to \cdots \to T_n$.

Remark 4.10. Generalizing the notation $\Omega_G^{-1} = \Sigma_G$, we will also write $\Omega_G^{-1} \wr A = A$, in which case $V_G^{-1} \wr A \colon \Omega_G^{-1} \wr A \to \mathsf{F}_s \wr A$ is the obvious "simpleton map" $\delta^0 \colon A \to \mathsf{F}_s \wr A$.

Remark 4.11. An alternative, and arguably more suggestive, notation for $\Omega_G^n \wr A$ would be $\Omega_G^n \wr_{\Sigma_G} A$, since we are really defining a "relative" analogue of the wreath product (so that in particular $\Omega_G^n \wr_{\Sigma_G} \Sigma_G \simeq \Omega_G^n$). However, we will prefer $\Omega_G^n \wr A$ due to space concerns.

Remark 4.12. The definition of $\Omega_G^n \wr A$ in (4.8) is unchanged by replacing F_s with F . As such, to avoid cluttering the diagrams in this section we will from now on abuse notation by writing simply F instead of F_s .

Expand on if necessary

Our primary interest here will be in the $\Omega_G^0 \wr (-)$ construction, which can be iterated thanks to the existence of the composite maps $\Omega_G^0 : A \to \Omega_G^0 \to \Sigma_G$. The role of the higher strings $\Omega_G^n \wr A1$ will then be to provide more convenient models for iterated $\Omega_G^0 \wr (-)$ constructions. Indeed, Proposition 3.93 can be reinterpreted as providing a canonical identification tions. Indeed, Proposition 5.35 can be reinterpreted as Proposition $\Omega_G^0 \wr \Omega_G^n = \Omega_G^{n+1}$ with the functor $V_G^0 \wr \Omega_G^n$ identified with the functor V_G as defined in Notation $\Omega_G^0 \wr \Omega_G^n = \Omega_G^{n+1}$ with the functor $U_G^0 \wr \Omega_G^n = \Omega_G^{n+1}$ in $U_G^0 = U_G^0 = U_G^0$ with $V_G^k \wr \Omega_G^n$ identified with V_G^k as defined by Notation 3.96.

Our first task is now to produce analogous identifications between $\Omega_G^k \wr \Omega_G^n \wr A = \Omega_G^k \wr (\Omega_G^n \wr A)$ and $\Omega_G^{n+k+1} \wr A$ (note that iterated wreath expressions should always be read as bracketed on the right, i.e. we do not define the expression $(\Omega_G^k \wr \Omega_G^n) \wr A$). We start by generalizing the key functors from §3.4.

Proposition 4.13. There are functors

$$\Omega_G^n \wr A \xrightarrow{-V_G^k} \mathsf{F}_s \wr \Omega_G^{n-k-1} \wr A \qquad \qquad \Omega_G^n \wr A \xrightarrow{-d_i} \Omega_G^{n-1} \wr A \qquad \qquad \Omega_G^n \wr A \xrightarrow{-s_j} \Omega_G^{n+1} \wr A$$

where i < n, and natural isomorphisms

$$\pi_i: V_G^k \Rightarrow V_G^{k-1} \circ d_i$$

for i < k. Further, all of these pare natural in A and they satisfy all the analogues of the properties listed in Proposition 3.101.

Proof. While not hard to explicitly write formulas for V_G^k , d_i , s_j , π_i (which we list in Remark 4.16), and then verify the desired properties, we here instead argue that the desired properties themselves can be used to uniquely, and coherently, define those functors.

Firstly, the functors V_G are defined from the following diagram

by noting that the center and right squares are pullbacks, and choosing V_G to be the unique functors such that the top composite is V_G^{n+1} . The higher functors V_G^k are defined exactly as in (3.92), and the analogue of Proposition 3.101(b) is tautological, as pullback arrows for $\Omega_G^n \wr A \to \mathsf{O}_G$

are defined as compatible pairs of pullbacks in Ω_G^n and $\mathsf{F} \wr A$.

To define d_i we consider the diagram below (for some i < k).

The desiderata that the top π_i consist of pullback arrows lifting the lower π_i implies that it is uniquely defined by the top V_G^k functor, and hence so is the top composite $V_G^{k-1}d_i$. But since the front face is a pullback square (by arguing by induction on k), there is a unique choice for d_i . The fact that this definition of $d_i \wr A$ is not dependent on k is ensured by natural transformation in (3.102) is π_i . Similarly, that the analogues of the left diagrams in (3.100) hold follows by an identical argument from the fact that the composites of (3.103) are π_{i+1} .

The definitions of the s_j are similar except easier since there are no π_i to contend with. The analogue of Proposition $\overline{B.101(c)}$, $\overline{(c)}$, $\overline{(c)}$, are then tautological, and the analogue of Proposition $\overline{B.101(d)}$ follows by an identical argument.

Remark 4.16. Explicitly, $V_G^k: \Omega_G^n \wr A \to \mathsf{F} \wr \Omega_G^{n-k-1} \wr A$ is defined by sending (4.9) to

$$\left(\left(T_{k,v_{Gf}} \to \cdots \to T_{n,v_{Gf}}, \left(a_{v_{Ge}}\right)_{v_{Ge} \in V_G\left(T_{n,v_{Gf}}\right)}\right)\right)_{v_{Gf} \in V_G\left(T_k\right)} \tag{4.17}$$

where both $V_G(T_k)$ and $T_{n,v_{Gf}}$ are ordered lexicographically according to the obvious strings. Similarly, functors $O(T_k) \cap O(T_k) \cap O($

coordinate and, in the d_i case suitably reordering $V_G(T_n)$.

Remark 4.18. One upshot of Proposition 4.13 is that formally applying the symbol (-) a to the diagrams in Proposition 3.101 yields sensible statements. As such, we will simply refer to the corresponding part of Proposition 3.101 when using one of the generalized claims.

Corollary 4.19. One has identifications $\Omega_G^k \wr \Omega_G^n \wr A \simeq \Omega_G^{n+k+1} \wr A$ which identify $V_G^k \wr \Omega_G^n \wr A$ with $V_G^k \wr A$. Further, these are associative in the sense that the identifications

$$\begin{split} &\Omega_G^k \wr \Omega_G^l \wr \Omega_G^n \wr A \simeq \Omega_G^{k+l+1} \wr \Omega_G^n \wr A \simeq \Omega_G^{k+l+n+2} \wr A \\ &\Omega_G^k \wr \Omega_G^l \wr \Omega_G^n \wr A \simeq \Omega_G^k \wr \Omega_G^{l+n+1} \wr A \simeq \Omega_G^{k+l+n+2} \wr A \end{split}$$

coincide. Lastly, one obtains identifications

Associativity follows similarly. The remaining identifications are obvious.

We now have all the necessary ingredients to define our monad on spans.

Definition 4.20. Suppose \mathcal{V} has finite products or, more generally that it is a symmetric monoidal category with diagonals in the sense of Remark 2.16.

We define an endofunctor N of $\mathsf{Wspan}^r(\Sigma_G, \mathcal{V}^{op})$ by letting $N(\Sigma_G \leftarrow A \rightarrow \mathcal{V}^{op})$ be the span $\Sigma_G \leftarrow \Omega_G^0 \wr A \rightarrow \mathcal{V}^{op}$ given composition along the diagram

VGDEFA REM

MONAD_DEFINITION

and defined on maps of spans in the obvious way.

One has a multiplication $\mu: N \circ N \Rightarrow N$ given by the natural isomorphism

$$\Sigma_{G} \longleftarrow \Omega_{G}^{1} \wr A \xrightarrow{V_{G}} \mathsf{F} \wr \Omega_{G}^{0} \wr A \xrightarrow{\mathsf{F} \wr V_{G}} \mathsf{F}^{\imath 2} \wr A \longrightarrow \mathsf{F}^{\imath 2} \wr \mathcal{V}^{op} \xrightarrow{\Pi^{op}} \mathsf{F} \wr \mathcal{V}^{op} \xrightarrow{\Pi^{op}} \mathcal{V}^{op}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

MULTDEFSPAN EQ

where we note that the top right composite in the Thomas Square is indeed V_G^1 using the inductive description in (the $(-) \wr A$ analogue of) Notation 3.96.

Lastly, there is a unit $\eta:id \Rightarrow N$ given by the strictly commutative diagrams (where to see that the second square commutes we recall that $V_G^{-1} = \delta^0$)

$$\Sigma_{G} \longleftarrow A = \longrightarrow \mathcal{V}^{op} = \longrightarrow \mathcal{V}^{op}$$

$$\parallel \qquad \qquad \downarrow_{\delta^{0}} \qquad \qquad \downarrow_{\delta^{0}} \qquad \parallel$$

$$\Sigma_{G} \longleftarrow \Omega_{G}^{0} \wr A \xrightarrow{V_{G}} \mathsf{F} \wr A \longrightarrow \mathsf{F} \wr \mathcal{V}^{op} \xrightarrow{\Pi^{op}} \mathcal{V}^{op}.$$

$$(4.22) \quad \boxed{\mathsf{UNITSPAN} \; \mathsf{EQ}}$$

MONSPAN PROP

Proposition 4.23. (N, μ, η) form a monad on Wspan^r $(\Sigma_G, \mathcal{V}^{op})$.

Proof. The natural transformation component of $\mu \circ (N\mu)$ is given by the composite diagram

whereas the natural transformation component of $\mu \circ (\mu N)$ is given by

ASSOCSPAN2 EQ

ASSOCSPAN1 EQ

That the rightmost sections of (4.25) (4.25) That the rightmost sections of (4.25) and (4.25) coincide follows from the associativity of the isomorphisms α in (2.13). On the other hand, the left poet sections coincide since they are instances of the "simplicial relation" diagrams in (3.104), as is seen by using (3.102) and (3.103) to reinterpret the top left sections.

As for unit conditions, $\mu \circ (N\eta)$ is represented by

while $\mu \circ (\eta N)$ is represented by

That (H.27) and (H.27) coincide follows analogous by the unital condition for α and the face degeneracy relations in Proposition 3.101(f).

4.2 The genuine equivariant operad monad

Since $\mathsf{Wspan}^r(\Sigma_G, \mathcal{V}^{op}) \simeq \mathsf{Wspan}^l(\Sigma_G^{op}, \mathcal{V})$, Proposition $\overset{\mathsf{MONSPAN}}{4.23} \overset{\mathsf{PROP}}{\text{and }} \overset{\mathsf{RANLANADJ}}{4.6} \overset{\mathsf{REM}}{\text{give an adjuntion}}$

$$\mathsf{Lan:WSpan}^l(\Sigma_G^{op},\mathcal{V}) \rightleftarrows \mathsf{Fun}(\Sigma_G^{op},\mathcal{V}) \colon \iota \tag{4.28}$$

together with a monad N in the leftmost category $\mathsf{WSpan}^l(\Sigma_G^{op}, \mathcal{V})$.

We will now show that independs sonable conditions on $\mathcal V$ this monad can be transferred by using Proposition 2.24, i.e. we will show that the natural transformations $\mathsf{Lan} \circ N \Rightarrow \mathsf{Lan} \circ N \circ \iota \circ \mathsf{Lan}$ and $\mathsf{Lan} \circ \iota \Rightarrow id$ are isomorphisms.

This will require us to introduce a slight modification of the category of spans. For motivation, note that iterations $N^{\circ n+1} \circ \iota$ produce spans of the form $\Sigma_G \cap \Omega_G^n \cap \Sigma_G \cap \Omega_G^n \cap \Omega_G^n \cap \Sigma_G \cap \Omega_G^n \cap$

Definition 4.29. The category $\mathsf{Wspan}^l_\mathsf{r}(\Sigma_G^{op}, \mathcal{V})$ of rooted (left) spans has as objects spans $\Sigma_G^{op} \leftarrow A^{op} \to \mathcal{V}$ together with a split Grothendieck fibration $\mathsf{r} : A \to \mathsf{O}_G$ such that $A \to \Sigma_G$ is a map of split fibrations.

Similarly, arrows are maps of spans that induce maps of split fibrations.

We refer split fibrations $A \to O_G$ as root fibrations and to maps between them as root fibration maps.

Remark 4.30. The condition that $A \to \mathsf{O}_G$ be a root fibration requires additional *choices* of root pullbacks. Therefore, the forgetful functor $\mathsf{Wspan}^l_\mathsf{r}(\Sigma_G^{op}, \mathcal{V}) \to \mathsf{Wspan}^l(\Sigma_G^{op}, \mathcal{V})$ is not quite injective on objects.

The relevance of rooted spans is given by the following couple of lemmas.

Lemma 4.31. If $A \to \Sigma_G$ is a root fibration map then so is $\Omega_G^0 \wr A \to \Omega_G^0$, naturally in A.

Proof. The hypothesis that $A \to \Sigma_G$ is root fibration map implies that the rightmost map below in is a map of split fibrations over $\mathsf{F} \wr \mathsf{O}_G$.

Since by Lemma 5.72 the map V_G sends pullback arrows in Ω_G^0 (over O_G) to pullback arrows of $\mathsf{F} \wr \Sigma_G$ (over $\mathsf{F} \wr O_G$), the root pullback arrows in $\Omega_G^0 \wr A$ can be defined as compatible pairs of pullback arrows in Ω_G^0 and $\mathsf{F} \wr A$, and the result follows.

FGMON SEC

ROOTFIBPULL LEM

Remark 4.33. Explicitly, if $\psi: Y \to X$ is a map in O_G , and $\tilde{T} = (T, (A_{v_{Ge}})_{V_G(T)}) \in \Omega_G^0 \wr A$, the pullback $\psi^* \tilde{T}$ is given by

$$\left(\psi^*T, (\bar{\psi}_{Ge}^*A_{v_{Ge}})_{V_G(\psi^*T)}\right)$$

where $\bar{\psi}_{\underline{\text{poll_COMP REM}}}$ $\bar{\psi}:\psi^*T \to T$ and $\bar{\psi}_{Ge}$ denote the restrictions $\bar{\psi}:Ge \to G\bar{\psi}(e)$, as in Remark 3.82.

Lemma 4.34. Suppose that V is complete and that $\rho: A \to \Sigma_G$ is a root fibration map. If the rightmost triangle in

$$\Omega_{G}^{0} \wr A \xrightarrow{V_{G}} \mathsf{F} \wr A \xrightarrow{} \mathcal{V}^{op}
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
\Omega_{G}^{0} \xrightarrow{}_{V_{G}} \mathsf{F} \wr \Sigma_{G}$$
(4.35)

is a right Kan extension diagram then so is the composite diagram.

LANPULLCOMA LEM

Proof. Unpacking definitions using the pointwise formula for right Kan extensions (173, X.3.1]), it suffices to check that for each $T \in \Omega_G^0$ the induced functor

$$T \downarrow \Omega_G^0 \wr A \xrightarrow{V_G} V_G(T) \downarrow \mathsf{F} \wr A \tag{4.36}$$
 LANPULLCOMA EQ

is initial. We will slightly abuse notation by writing $(T \to U, (A_{v_{Gf}})_{V_G(U)})$ for the objects

of $T\downarrow\Omega^0_G$, as well as $\left((T_{v_{Ge}}\to U_{\phi(v_{Ge})})_{v_{Ge}\in V_G(T)},(A_v)_{v\in V}\right)$ for the objects of $V_G(T)\downarrow \mathsf{F}\wr A$, with the map $\phi\colon V_G(T)\to V$ and the condition $\rho(A_v)=U_v$ left implicit. By Proposition 2.5, $T\downarrow\Omega^0_G\wr A$ has an initial subcategory $T\downarrow_{\mathsf{F}}\Omega^0_G\wr A$ of those such that $T\to U$ is the identity on roots. Similarly, again by Proposition 2.5, $V_G(T)\downarrow \mathsf{F}\wr A$ has an initial subcategory

$$\prod_{v_{Ge} \in V_G(T)} T_{v_{Ge}} \downarrow_{\mathsf{r}} A \tag{4.37} \quad \boxed{\mathsf{INITCAT}} \; \mathsf{EQ}$$

of those objects inducing an identity on $F \wr O_G$. Moreover, (4.37) comes together with a right retraction r, i.e. a right adjoint to the inclusion i into $V_G(T) \downarrow F \wr A$, which is built using pullbacks. We now compute the following composite (where we abbreviate expressions $T_{v_{Ge}}$ as T_{v_Ge} and implicitly assume that tuples with index Ge (resp. Gf) run over $V_G(T)$ (resp.

$$T \downarrow_{\mathsf{r}} \Omega^0_G \wr A \xrightarrow{V_G} V_G(T) \downarrow \mathsf{F} \wr A \xrightarrow{r} \prod_{v_{Ge} \in V_G(T)} T_{v_{Ge}} \downarrow_{\mathsf{r}} A$$

$$(T \xrightarrow{\psi} U, (A_{Gf})) \longmapsto ((T_{Ge} \to U_{G\psi(e)}), (A_{Gf})) \longmapsto ((T_{Ge} \to \psi_{Ge}^* U_{G\psi(e)}), (\psi_{Ge}^* A_{G\psi(e)}))$$

Since rooted quotients are isomorphisms, the ψ and ψ_{Ge} appearing above are isomorphisms, and hence the natural transformation $i \circ r \circ V_G \Rightarrow V_G$ is a natural isomorphism. Therefore, to check that V_G is initial it suffices to verify that $r \circ V_G$ is an isomorphism.

But now note that an arbitrary choice of rooted isomorphisms $T_{v_{G_e}} \to U_{v_{G_e}}^{\mathsf{r}}$ uniquely determines a compatible planar structure on T, and thus a unique isomorphism $\psi : U$. Therefore, arbitrary choices of $\psi_{Ge}^*U_{G\psi(e)}$, $\psi_{Ge}^*A_{G\psi(e)}$ uniquely determine U, A_{Gf} , finishing the proof.

ROOTFIBPULL LEM
Lemmas 4.31 implies that copying Definition 4.20 yields a monad N_r on Wspan $_r^l(\Sigma_G^{op}, \mathcal{V})$ lifting the monad N.

Corollary 4.38. Suppose that finite products in V commute with colimits in each variable or, more generally, that $\mathcal V$ is a monoidal category with diagonals such that \otimes preserves colimits in each variable. Then the functors

$$\mathsf{Lan} \circ N_{\mathsf{r}} \Rightarrow \mathsf{Lan} \circ N_{\mathsf{r}} \circ \iota \circ \mathsf{Lan}, \qquad \mathsf{Lan} \circ \iota \Rightarrow id$$

are natural isomorphisms.

Proof. This follows by combining Lemma 4.34 with Lemma 2.19.

THEMONAD DEF **Definition 4.39.** The genuine equivariant operad monad is the monad \mathbb{F}_G on $\mathsf{Fun}(\Sigma_G^{op}, \mathcal{V})$ given by

$$\mathbb{F}_G$$
 = Lan $\circ N_r \circ \iota$

and with multiplication and unit given by the composites

$$\mathsf{Lan} \circ N_{\mathsf{r}} \circ \iota \circ \mathsf{Lan} \circ N_{\mathsf{r}} \circ \iota \stackrel{\cong}{\Leftarrow} \mathsf{Lan} \circ N_{\mathsf{r}} \circ N_{\mathsf{r}} \circ \iota \Rightarrow \mathsf{Lan} \circ N_{\mathsf{r}} \circ \iota$$

$$id \stackrel{\sim}{\Leftarrow} \operatorname{Lan} \circ \iota \Rightarrow \operatorname{Lan} \circ N_{\mathsf{r}} \circ \iota.$$

We will write $\mathsf{Op}_G(\mathcal{V})$ for the category $\mathsf{Alg}_{\mathbb{F}_G}(\mathcal{V})$ of genuine equivariant operads.

Remark 4.40. The functor $\mathsf{Lan} \circ N_r \circ \iota$ is isomorphic to $\mathsf{Lan} \circ N_r \circ \iota$ this isomorphism is compatible with the multiplication and unit in Definition 4.39, and hence we will henceforth simply write N rather than N_r .

From this point of view, the role of root fibrations is to guarantee that Lan $\circ N \circ \iota$ is indeed a monad, though unnecessary to describe the monad structure itself.

Remark 4.41. Since a map

$$\mathbb{F}_G X = \mathsf{Lan} \circ N \circ \iota X \to X$$

is adjoint to a map

$$N \circ \iota X \to \iota X$$

one easily verifies that X is a genuine equivariant operad, i.e. a \mathbb{F}_G -algebra, iff ιX is a N-algebra.

Moreover, the bar resolution $\mathbb{F}_G^{\circ n+1}X$ is isomorphic to Lan $(N^{\circ n+1}\iota X)$.

Comparison with (regular) equivariant operads 4.3

We start by noting that in the case G = *, genuine operads simply recover the usual notion of symmetric operads, i.e. $\operatorname{\mathsf{Sym}}_*(\mathcal{V}) \simeq \operatorname{\mathsf{Sym}}(\mathcal{V})$ and $\operatorname{\mathsf{Op}}_*(\mathcal{V}) \simeq \operatorname{\mathsf{Op}}(\mathcal{V})$, and in what follows we will adopt the notations $\operatorname{Sym}^G(\mathcal{V})$ and $\operatorname{Op}^G(\mathcal{V})$ for the corresponding categories of Gobjects. Our goal will be to relate these to the categories $\mathsf{Sym}_G(\mathcal{V})$ and $\mathsf{Op}_G(\mathcal{V})$ of genuine equivariant sequences and genuine operads.

We will throughout this section fix a total order of G such that the identity e is the first element, though we note that the exact order is unimportant, as any other such choice would lead to unique isomorphisms between the constructions in this section.

We thus have an inclusion functor

$$\iota: G \times \Sigma \longrightarrow \Sigma_G$$

$$C \longmapsto G \cdot C$$

where $G \cdot C$ is the constant tuple $(C)_{g \in G}$, which we think of as |G| copies of C, planarized according to C and the order on G. Moreover, letting $\Sigma_G^{\mathrm{fr}} \hookrightarrow \Sigma_G$ denote the full subcategory of G-free corollas, there is an induced retraction $\rho: \Sigma_G^{\mathrm{fr}} \to G \times \Sigma$ defined by $\rho\left((C_i)_{1 \le i \le |G|}\right) = G \cdot C_1$ together with isomorphisms $C \simeq \rho(C)$ uniquely determined by the condition that they are the identity on the first tree component C_1 .

We now consider the associated adjunctions.

REPACKAGERES REM

REGULAR_SECTION

Explicitly, we have the formulas (where we write G-corollas as $(C_i)_I$ for $I \in O_G$)

$$\iota_! Y \left((C_i)_I \right) = \begin{cases} Y(C_1), & (C_i)_I \in \Sigma_G^{\mathrm{fr}} \\ \varnothing, & (C_i)_I \notin \Sigma_G^{\mathrm{fr}} \end{cases}, \quad \iota^* X(C) = X(G \cdot C), \quad \iota_* Y \left((C_i)_I \right) = \left(\prod_I Y(C_i) \right)^G,$$

where in the formula for ι_* (-) the action of G interchanges factors according to the action on the indexing set I. As a side note, note that the formulas for $\iota_!$ and ι_* are independent of the chosen order of G.

Remark 4.43. $\iota_!$ essentially identifies $\mathsf{Sym}^G(\mathcal{V})$ as the coreflexive subcategory of sequences $X \in \mathsf{Sym}_G(\mathcal{V})$ such that $X(C) = \emptyset$ whenever C is not a free corolla.

By contrast, ι_* identifies $\mathsf{Sym}^G(\mathcal{V})$ with a far more interesting reflexive subcategory of sequences $X \in \mathsf{Sym}_G(\mathcal{V})$ such that X(C) for each C not a free corolla must satisfy a fixed point condition. Concretely, letting $\varphi \colon G \to \mathsf{r}(C)$ denote the unique map preserving the minimal element, one has

$$X(C) \xrightarrow{\simeq} X(\varphi^*C)^{\Gamma}$$

for $\Gamma \leq \mathsf{Aut}(\varphi^*C)$ the subgroup preserving the quotient map $\varphi^*C \to C$ under precomposition (note that $\varphi^*C \in \Sigma_G^{\mathrm{fr}}$).

There is an obvious natural transformation $\beta: \iota_! \Rightarrow \iota_*$ which for $(C_i)_I \in \Sigma_G^{\text{fr}}$ sends $Y(C_1)$ to the "G-twisted diagonal" of $\prod_I Y(C_i)$. Moreover, letting $\eta_!, \epsilon_!$ (resp. η_*, ϵ_*) denote the unit and counit of the $(\iota_!, \iota^*)$ adjunction (resp. (ι^*, ι_*) adjunction) it is straightforward to check that the following diagram commutes.

Remark 4.45. An exercise in adjunctions shows that any outer square as in the provided at least one of the adjunctions in 4.42 is (co)reflexive, so that (4.44) can be regarded as an alternative definition of β .

Proposition 4.46. One has the following:

REFLCOREFL REM

COMPARISON_PROP

- (i) the map $\iota^*\mathbb{F}_G \xrightarrow{\eta_*} \iota^*\mathbb{F}_G \iota_* \iota^*$ is an isomorphism, and thus (cf. Prop. 2.24) $\iota^*\mathbb{F}_G \iota_*$ is a monad:
- (ii) the map $\iota^*\mathbb{F}_{G\iota_!} \xrightarrow{\beta} \iota^*\mathbb{F}_{G\iota_*}$ is an isomorphism of monads;
- (iii) the map $\iota_!\iota^*\mathbb{F}_{G}\iota_!\xrightarrow{\epsilon_!}\mathbb{F}_{G}\iota_!$ is an isomorphism;
- (iv) there is a natural isomorphism of monads $\alpha: \mathbb{F} \to \iota^* \mathbb{F}_{G\iota_!}$.

Proof. We first show (i), starting with some notation. In analogy with Σ_G^{fr} , we write $\Omega_G^{0,\mathrm{fr}}$ for the subcategory of free trees and note that the leaf-root and vertex functors then restrict to functors $\mathrm{Ir}:\Omega_G^{0,\mathrm{fr}}\to \Sigma_G^{\mathrm{fr}},\ V_G:\Omega_G^{0,\mathrm{fr}}\to \mathsf{F}\wr \Sigma_G^{\mathrm{fr}}$. Moreover, for each $C\in \Sigma_G^{\mathrm{fr}}$ one has an equality of rooted undercategories between $C\downarrow_{\mathsf{r}}\Omega_G^0$ and $C\downarrow_{\mathsf{r}}\Omega_G^{0,\mathrm{fr}}$, and thus $\iota^*\mathbb{F}_GX$ is computed by the Kan extension of the following diagram.

the following diagram.
$$\Omega_G^{0,\text{fr}} \longrightarrow \mathsf{F} \wr \Sigma_G^{\text{fr}} \xrightarrow{\mathsf{F} \wr X} \mathsf{F} \wr \mathcal{V}^{op} \longrightarrow \mathcal{V}^{op}$$

$$\downarrow \qquad \qquad (4.47) \qquad \boxed{\mathsf{IFGI} \ \mathsf{EQ}}$$

(i) now follows by noting that $X \to \iota_* \iota^* X$ is an isomorphism when restricted to Σ_G^{fr} .

For (ii), to show that $\iota^* \mathbb{F}_G \iota_! \to \iota^* \mathbb{F}_G \iota_*$ is an isomorphism one just repeats the argument in the previous paragraph by noting that $\iota_! \to \iota_*$ is an isomorphism when restricted to

 Σ_G^{fr} . To check that this is a map of monads we recall first that the monad structure on $\iota^*\mathbb{F}_G\iota_*$ is given as described in Proposition 2.24. Unpacking definitions, compatibility with multiplication reduces to showing that the composite $\iota_!\iota^* \xrightarrow{\epsilon_!} id \xrightarrow{\eta_*} \iota_*\iota^*$ coincides with $\beta\iota^*$ while compatibility with units reduces to showing that the composite $id \xrightarrow{\eta_!} \iota^*\iota_! \xrightarrow{\iota^*\beta} \iota^*\iota_! \xrightarrow{\epsilon_!} id$ is the identity. Both of these are a consequence of (4.44), following from the diagrams below (where the top composites are identities).

(iii) amounts to showing that if $X(C) = \emptyset$ whenever $C \notin \Sigma_G^{\text{fr}}$ then it is also $\mathbb{F}_G X(C) = \emptyset$. But since for such $C \notin \Sigma_G^{\text{fr}}$ the undercategory $C \downarrow \Omega_G^0$ consists of trees with at least one non-free vertex (namely the root vertex), the composite

$$C\downarrow\Omega^0_G\stackrel{V_G}{\longrightarrow}\mathsf{F}\wr\Sigma_G\stackrel{\mathsf{F}\wr X}{\longrightarrow}\mathsf{F}\wr\mathcal{V}^{op}\stackrel{\Pi}{\longrightarrow}\mathcal{V}^{op}$$

is constant equal to \emptyset , and (iii) follows.

Finally, we show (iv). We will slightly abuse notation by writing $G \times \Sigma \to \Sigma_G$ for the image of ι and similarly $G \times \Omega^0 \to \Omega^0_G$ for the image of the obvious analogous functor $\iota \colon G \times \Omega^0 \to \Omega^0_G$. The map $\alpha \colon \mathbb{F} \to \iota^* \mathbb{F}_{G} \iota_!$ is the adjoint to the map $\tilde{\alpha} \colon \mathbb{F} \iota^* \to \iota^* \mathbb{F}_G$ encoded on spans by the following diagram.

That α is a natural isomorphism follows by the previous identifications $C \downarrow_{\mathsf{r}} \Omega^0_G \cong C \downarrow_{\mathsf{r}} \Omega^{0,\mathrm{fr}}_G$ for $C \in G \times \Sigma$ together with the fact that the retraction $\rho \colon \Omega^{0,\mathrm{fr}}_G \to G \times \Omega^0$ (built just as the retraction $\rho \colon \Sigma^{\mathrm{fr}}_G \to G \times \Sigma$) retracts $C \downarrow_{\mathsf{r}} \Omega^{0,\mathrm{fr}}_G$ to the undercategory $C \downarrow_{\mathsf{r}} G \times \Omega^0$, which is thus initial (as well as final).

Intuitively, the final claim that α is a map of monads follows from the fact that the composite $\mathbb{FF} \to \iota^*\mathbb{F}_G \iota_! \iota^*\mathbb{F}_G \iota_! \to \iota^*\mathbb{F}_G \mathbb{F}_G \iota_!$ is encoded by the analogous natural transformation of diagrams for strings $G \times \Omega^1 \to \Omega_G^{1,\mathrm{fr}}$. However, since the presence of left Kan extensions in the definitions of \mathbb{F} , \mathbb{F}_G can make a rigorous direct proof of this last claim fairly cumbersome, we sketch here a workaround argument. We first consider the adjunction $\iota_! : \mathsf{WSpan}^l((G \times \Sigma)^{op}, \mathcal{V}) \rightleftarrows \mathsf{WSpan}^l(\Sigma_G^{op}, \mathcal{V}) : \iota^*$ where $\iota_!$ is composition with ι and ι^* is the nullback of spans. Writing N, N_G for the monads on the span categories, mimicking (4.49) yields a map $\tilde{\alpha}: N \to \iota^* N_G \iota_!$ encoded by the diagram (where the front and back squares are pullbacks).

The claim that $\tilde{\alpha}$ is a map of monads is then straightforward. Writing

$$\mathsf{Lan} : \mathsf{WSpan}^l((G \times \Sigma)^{op}, \mathcal{V}) \rightleftarrows \mathsf{Fun}((G \times \Sigma)^{op}, \mathcal{V}) : j \quad \mathsf{Lan}_G : \mathsf{WSpan}^l(\Omega_G^{op}, \mathcal{V}) \rightleftarrows \mathsf{Fun}(\Omega_G^{op}, \mathcal{V}) : j_G : \mathsf{Lan}_G : \mathsf{WSpan}^l(\Omega_G^{op}, \mathcal{V}) \rightleftarrows \mathsf{Fun}(\Omega_G^{op}, \mathcal{V}) : j_G : \mathsf{Lan}_G : \mathsf{WSpan}^l(\Omega_G^{op}, \mathcal{V}) : j_G : \mathsf{Lan}_G :$$

for the span functor adjunctions, $\alpha: \mathbb{F} \to \iota^* \mathbb{F}_G \iota_!$ can then be written as the composite

$$\operatorname{Lan} Nj \to \operatorname{Lan} \iota^* N_G \iota_! j \to \iota^* \operatorname{Lan}_G N_G j_G \iota_!$$

where the first map is the isomorphism of monads induced by $\tilde{\alpha}$ and the second map can be PROPADADJ1 PROP shown directly to be a monad map by unpacking the monad structures in Propositions 2.23 and 2.24.

Combining the previous result with Propositions 2.23 and 2.24 now gives the following.

Corollary 4.50. The adjunctions (4.42) extends to adjunctions

$$\operatorname{Op}_G(\mathcal{V}) \xrightarrow{\iota^*} \operatorname{Op}^G(\mathcal{V}). \tag{4.51}$$

In particular, ι_* identifies $\operatorname{Op}^G(\mathcal{V})$ as a reflexive subcategory of $\operatorname{Op}_G(\mathcal{V})$. Remark 4.52. Remark 4.43 extends to operads mutatis mutandis.

Moreover, the isomorphism $\iota_!\iota^*\mathbb{F}_G\iota_!\xrightarrow{\epsilon_!}\mathbb{F}_G\iota_!$ then shows that \mathbb{F}_G essentially preserves the image of ι_1 , and can thus be identified with \mathbb{F} over it.

However, the analogous statement fails for ι_* , i.e., one does not always have that

$$\mathbb{F}_{G}\iota_{*} \xrightarrow{\eta_{*}} \iota_{*}\iota^{*}\mathbb{F}_{G}\iota_{*} \tag{4.53}$$

is an isomorphism. In fact, showing that (4.53) does become an isomorphism when restricted to suitably cofibrant objects is one of the key technical ingredients for our proof of the Quillen equivalence between $\mathsf{Op}_G(\mathcal{V})$ and $\mathsf{Op}^G(\mathcal{V})$, and will be the subject of §7.

For now, we end this section with a minimal counterexample to the more general claim. Let $G = \mathbb{Z}_{/2}$ and $Y = * \in \mathsf{Sym}^G(\mathcal{V})$ be the simpleton.

When evaluating $\mathbb{F}_G Y$ at the G-fixed stump corolla $G/G \cdot C_0$, the two G-trees T_1 and T_2 below encode two distinct points (since T_1 , T_2 are not isomorphic as objects under $G/G \cdot T_0$).

However, when pulling these points back to the G-free stump corolla $G \cdot C_0$ one obtains the same point, namely that encoded by the G-tree T below.

$$b+G \qquad c+G \\ r+G \\ G\cdot C_0 \qquad T$$

Moreover, it is not hard to modify the example above to produce similar examples when evaluating $\mathbb{F}_G Y$ at non-empty corollas.

However, such counter-examples all require the use of trees with stumps. Indeed, it can be shown that (4.53) is an isomorphism whenever evaluated at a Y such that $Y(C_0) = \emptyset$.

INDEXING_SECTION

ROLLA_FAMILY_DEF

_COROLLAS_REMARK

FTREE DEF

VACUOUSNESS REM

INDEXSYS DEF

4.4 Indexing systems and \mathcal{F} -genuine G-operads

Recalling N_{∞} -operads from the introduction, we observe that they arose from an insight, that the fully genuine G- E_{∞} -operads of [6] and the G-trivial E_{∞} -operads were not the only options for equivariant commutativity, but instead they were the maximum and minimum respectively of an entire lattice of "partially genuine" options.

Similarly, the genuine G-operad monad \mathbb{F}_G and the regular G-operad monad $\mathbb{F} \simeq \iota^* \mathbb{F}_G \iota_!$ are not the only options for equivariant operads, but instead there is an additional lattice of "partially genuine operads".

In this subsection, we will explore this second lattice. We begin by identifying certain useful subcategories of Σ_G .

Definition 4.54. A family $\Sigma_{\mathcal{F}}$ of G-corollas is a sieve $\Sigma_{\mathcal{F}} \hookrightarrow \Sigma_{G}$, i.e., a full subcategory such that for any quotient morphism $C \to C'$ with $C' \in \Sigma_{\mathcal{F}}$ it is also $C \in \Sigma_{\mathcal{F}}$.

Remark 4.55. Equivalenty, a family of corollas $\Sigma_{\mathcal{F}}$ can be encoded by a collection $\mathcal{F} = \{\mathcal{F}_n\}$ of G-graph families \mathcal{F}_n of $G \times \Sigma_n$ for each $n \geq 0$ so that $C \in \Sigma_{\mathcal{F}}$ if

$$C \simeq G \cdot_H C_e$$

for C_e a H-equivariant corolla (i.e. $C_e \in \Sigma^H$) encoded by a partial homomorphism $G \ge H \to \Sigma_n$ corresponding to a subgroup in \mathcal{F}_n (cf. Remark 7.43).

Since $\Sigma_{\mathcal{F}}$ is determined by the families $\{\mathcal{F}_n\}_{n\geq 0}$, we will abuse notation and abbreviate either set of data simply as \mathcal{F} (alternatively, the reader can think of \mathcal{F} as a "family in the groupoid Σ of finite sets").

Definition 4.56. Let \mathcal{F} be a family of G-corollas.

We say that a G-tree T is an \mathcal{F} -tree if all of its G-vertices T_v , $v \in V_G(T)$ are in $\Sigma_{\mathcal{F}}$. Denote the full subcategory spanned by the \mathcal{F} -trees by $\Omega_{\mathcal{F}}$.

Remark 4.57. By vacuousness the stick G-trees $G \cdot_H \eta \simeq G/H \cdot \eta$ are always \mathcal{F} -trees.

Now, given a family \mathcal{F} of G-corollas and writing $\operatorname{Sym}_{\mathcal{F}}(\mathcal{V}) = \mathcal{V}^{\Sigma_{\mathcal{F}}^{op}}$ for the partial G-symmetric sequences determined by \mathcal{F} , one may then ask under which conditions the construction of the monad \mathbb{F}_G on $\operatorname{Sym}_G(\mathcal{V})$ of $\S^{4.2}$ can be adapted to build a monad $\mathbb{F}_{\mathcal{F}}$ on $\operatorname{Sym}_{\mathcal{F}}(\mathcal{V})$.

Writing $\Omega_{\mathcal{F}}^0 \hookrightarrow \Omega_G^0$ for the full subcategory of $\mathcal{F}_{\underline{\mathsf{LRVERT}}}$ sec and quotients, this amounts to asking whether the leaf-root and vertex functors of §3.3 restrict to the \mathcal{F} context. That the vertex functor restricts to a functor $V_G: \Omega_{\mathcal{F},0} \to \mathsf{F} \wr \Sigma_{\mathcal{F}}$ is in fact tautological: indeed, $\Omega_{\mathcal{F}}$ can be defined to be the pre-image $(V_G)^{-1}(\mathsf{F} \wr \Sigma_{\mathcal{F}})$. Compatibility with the leaf-root functor, however, requires an additional closure condition on \mathcal{F} , which we now formally introduce.

Definition 4.58. A family \mathcal{F} of G-corollas is called a *weak indexing system* if for any \mathcal{F} -tree $T \in \Omega_{\mathcal{F},0}$ it is $\operatorname{Ir}(T) \in \Sigma_{\mathcal{F}}$, i.e., if the leaf-root functor restricts to a functor $\operatorname{Ir}: \Omega_{\mathcal{F},0} \to \Sigma_{\mathcal{F}}$.

Additionally, \mathcal{F} is called simply an *indexing system* if all trivial corollas $(G/H) \cdot C_n$ are in $\Sigma_{\mathcal{F}}$.

Remark 4.59. In light of Remark 4.57 any weak coefficient system must contain the 1-corollas $(G/H) \cdot C_1$.

Remark 4.60. The notion and terminology of indexing system was first introduced in [3,]

Def. 3.22], though packaged quite differently. Moreover, an alternate third definition being indexing systems, also in terms of G-trees but differing slightly from Definition [4.58, was presented by the second author in [17, §9]. The equivalence between the definitions in [3] and [17] was addressed in [17] Bmk. 9.7], hence here we address only the easier equivalence between Definition [4.58] and the description in [17, §9].

In Fe17 Def. 9.5], \mathcal{F} was defined to be an indexing system if \mathcal{F} -trees form a sieve $\Omega_{\mathcal{F}} \hookrightarrow \Omega_{e17}$ (cf. 7.2). The existence of canonical maps $T(T) \to T$ then imply that the condition in [17, Def. 9.5] implies that in Definition 4.58. Conversely, as discussed immediately preceding

Pe17 [17, Def. 9.5], the sieve condition needs only be checked for inner faces and degeneracies, i.e. tall maps, and thus follows from Definition [INDEXSYS DEF] [1.50] [\mathcal{F} -trees can be defined as the pullback of $\Omega^0_{\mathcal{F}} \to \mathsf{F} \wr \Sigma_{\mathcal{F}} \leftarrow \hat{\mathsf{F}} \wr \Omega^0_{\mathcal{F}}$.

We may now build a monad on $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$.

For any family of corollas \mathcal{F} , let $\gamma: \Sigma_{\mathcal{F}} \hookrightarrow \Sigma_{\mathcal{G}}$ denote the inclusion. We then have a pair of adjunctions

$$\mathsf{Sym}_{\mathcal{F}}(\mathcal{V}) \xleftarrow{\gamma^*} \mathsf{Sym}_{\mathcal{F}}(\mathcal{V}) \tag{4.61} \qquad \boxed{\mathsf{F_TWOADJOINTS_EQ}}$$

UPGAMMA_REM

_COMPARISON_PROP

Remark 4.62. For any \mathcal{F} , γ^* is easy to describe explicitly. However, only when $\Sigma_{\mathcal{F}}$ is a sieve subcategory of Σ_G (which holds in particular if \mathcal{F} is a weak indexing system) do we have a handle on $\gamma_!$. In this case, for $Y \in \operatorname{Sym}_{\mathcal{F}}(\mathcal{V})$, we have

$$\gamma_! Y(C) = \begin{cases} Y(C) & C \in \Sigma_{\mathcal{F}} \\ \emptyset & C \notin \Sigma_{\mathcal{F}}. \end{cases}$$

However, γ_* remains mysterious.

Definition 4.63. Let $\mathbb{F}_{\mathcal{F}}$ denote the endofunctor $\gamma^* \mathbb{F}_{G} \gamma_!$ on $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$. It is immediate from Proposition 2.23 that $\mathbb{F}_{\mathcal{F}}$ is a monad for any full subcategory $\Sigma_{\mathcal{F}} \subseteq \Sigma_{G}$. However, in order to have a nice comparison with \mathbb{F}_{G} (and later, to have nice homotopical properties), we will need to require that $\Sigma_{\mathcal{F}}$ has the proper closure conditions.

Definition 4.64. Let $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ denote the category $\mathsf{Alg}_{\mathbb{F}_{-}}(\mathcal{V})$ of \mathcal{F} -genuine G-operads. We have the following adjustments of Proposition $\frac{\mathsf{MONAD}_{-}\mathsf{COMPRICEOUP}}{4.46}$ and (4.51).

Lemma 4.65. Let \mathcal{F} be a weak indexing system.

- (i) the map $\gamma^* \mathbb{F}_G \xrightarrow{\eta_*} \gamma^* \mathbb{F}_G \gamma_* \gamma^*$ is an isomorphism, and thus (cf. Prop. 2.24) $\gamma^* \mathbb{F}_G \gamma_*$ is
- (ii) the map $\gamma^* \mathbb{F}_G \gamma_! \xrightarrow{\beta} \gamma^* \mathbb{F}_G \gamma_*$ is an isomorphism of monads;
- (iii) the map $\gamma_! \gamma^* \mathbb{F}_G \gamma_! \xrightarrow{\epsilon_!} \mathbb{F}_G \gamma_!$ is an isomorphism.

Proof. This follows identically as in the proof of Proposition 4.46, by replacing the use of $\operatorname{Ir}: \Omega_G^{0,\operatorname{fr}} \to \Sigma_G^{\operatorname{fr}}$ with $\operatorname{Ir}: \Omega_F^0 \to \Sigma_F$. For example, using the description of Ω_F as a sieve of Ω_G , it is immediate that for each $C \in \Sigma_{\mathcal{F}}$ one has an equality of rooted undercategories between $C \downarrow_{\mathsf{r}} \Omega^0_G$ and $C \downarrow_{\mathsf{r}} \Omega^0_{\mathcal{F}}$. Thus for $X \in \mathsf{Sym}_G(\mathcal{V})$, $\gamma^* \mathbb{F}_G X$ is computed by the Kan extension of the following diagram,

$$\Omega_{\mathcal{F}}^{0} \longrightarrow \mathsf{F} \wr \Sigma_{\mathcal{F}} \xrightarrow{\mathsf{F} \wr X} \mathsf{F} \wr \mathcal{V}^{op} \longrightarrow \mathcal{V}^{op}
\downarrow \qquad (4.66) \quad \boxed{\mathsf{F}_{\mathsf{F}}\mathsf{LAN}_{\mathsf{EQ}}}$$

and the result follows since $X \to \gamma_* \gamma^* X$ is a isomorphism when restricted to $\Sigma_{\mathcal{F}}$.

The remaining results follow from similarly analogous proofs.

Corollary 4.67. The adjunction (4.61) extends to an adjunction on algebras

Remark 4.68. As a consequence of the proof above, we have that $\mathbb{F}_{\mathcal{F}}$ is isomorphic to the (possibly more natural) endofunctor given by the left Kan extension from (\mathbb{F}_{0}) . While we could have defined it as this endofunctor, and just repeated Section ?? mutatis mutandis, the gynmastics with adjoints required to compare it with \mathbb{F}_{G} and analyze it homotopically is required anyway, and will be cleaner with this definition.

Remark 4.69. We observe that regular G-operads are a type of partially genuine G-operads. Indeed, the family of free G-corollas $\Sigma_G^{\rm fr} = \Sigma_{\mathcal{F}_{\rm fr}}$ is an indexing system, and the proof of Proposition 4.46 yields that $\mathbb{F} \cong \mathbb{F}_{\mathcal{F}_{\rm fr}}$.

Comparison between different classes of partially-genuine operads can be difficult. As hinted at in Remark the adjunction maps become less tractible. However, combining (4.42) with (4.61) as below

$$\operatorname{\mathsf{Sym}}_{\mathcal{F}}(\mathcal{V}) \xleftarrow{\gamma^*} \operatorname{\mathsf{Sym}}_{G}(\mathcal{V}) \xrightarrow{\iota_{!}} \operatorname{\mathsf{Sym}}^{G}(\mathcal{V})$$

allows us to compare all partially-genuine operads with regular G-operads.

5 Free extensions

TENSIONS_SECTION

In order to prove all of our main theorems we will need to homotopically analyze free extensions of genuine equivariant operads, i.e. pushouts of the form

$$\begin{array}{cccc}
\mathbb{F}_G X & \longrightarrow \mathcal{P} \\
\mathbb{F}_G u & & \downarrow \\
\mathbb{F}_G Y & \longrightarrow \mathcal{P}[u]
\end{array} (5.1) \quad \boxed{\text{FREE_FG_EXT_EQ}}$$

in the category Op_G . The key technical ingredient will be the identification of a suitable filtration

$$\mathcal{P} = \mathcal{P}_0 \to \mathcal{P}_1 \to \mathcal{P}_2 \to \dots \to \mathcal{P}_{\infty} = \mathcal{P}[u] \tag{5.2}$$

of the map $\mathcal{P} \to \mathcal{P}[u]$ in the underlying category Sym_G . To explain how this filtration is obtained, and abbreviating \mathbb{F}_G as \mathbb{F} , note first that $\mathcal{P}[u]$ is given by a coequalizer

$$\mathcal{P} \ \text{\'i} \ \mathbb{F} X \ \text{\'i} \ \mathbb{F} Y \ \ \overline{\longleftarrow} \ \mathcal{P} \ \text{\'i} \ \mathbb{F} Y \tag{5.3}$$

show that it is hence also an underlying coequalizer in Sym_G . In practice, we will need to enlarge (5.3) somewhat. Firstly, note that (5.3) corresponds to the two bottom levels of the bar construction $B_l(\mathcal{P}, \mathbb{F}X, \mathbb{F}Y) = \mathcal{P} \ \ \mathbb{I} \ (\mathbb{F}X)^{\mathbb{I}l} \ \ \mathbb{I} \ \mathbb{F}Y$, whose colimit (over Δ^{op}) is again $\mathcal{P}[u]$. For technical reasons, we prefer the double bar construction

$$B_{l}(\mathcal{P}, \mathbb{F}X, \mathbb{F}X, \mathbb{F}X, \mathbb{F}Y) = \mathcal{P} \, \, \text{\'i} \, (\mathbb{F}X)^{\tilde{1}l} \, \, \text{\'i} \, \mathbb{F}X \, \, \text{\'i} \, (\mathbb{F}X)^{\tilde{1}l} \, \, \text{\'i} \, \mathbb{F}Y = \mathcal{P} \, \, \text{\'i} \, (\mathbb{F}X)^{\tilde{1}2l+1} \, \, \text{\'i} \, \mathbb{F}Y. \tag{5.4}$$

To actually describe the individual levels of (5.4) one further resolves \mathcal{P} so as to obtain the bisimplicial object

$$B_{l}(\mathbb{F}^{n+1}\mathcal{P}, \mathbb{F}X, \mathbb{F}X, \mathbb{F}X, \mathbb{F}Y) = \mathbb{F}^{n+1}\mathcal{P} \ \text{\'ii} \ (\mathbb{F}X)^{\text{\'i}2l+1} \ \text{\'ii} \ \mathbb{F}Y \simeq \mathbb{F}\left(\mathbb{F}^{n}\mathcal{P} \ \text{\'ii} \ X^{\text{\'i}2l+1} \ \text{\'ii} \ Y\right), \tag{5.5}$$

where $\mbox{\sc u}$ denotes the coproduct in Sym_G . As in Remark 4.41, each level of (5.5) can then be described as

$$\mathsf{Lan}N(N^n\iota\mathcal{P}\sqcup\iota X^{\sqcup 2l+1}\sqcup\iota Y),\tag{5.6}$$

each level of (ABELSTRITH) left Kan extension over some category Ω_G^{n,λ_l} , which we explicitly identify in §5.1, giving the first identification below.

$$\mathcal{P} \stackrel{\circ}{\coprod}_{\mathbb{F}X} \mathbb{F}Y \simeq \operatorname{colim}_{(\Delta \times \Delta)^{op}} \left(\operatorname{Lan}_{\left(\Omega_G^{n,\lambda_l} \to \Sigma_G\right)^{op}} N_{n,l}^{(\mathcal{P},X,Y)} \right) \simeq \operatorname{Lan}_{\left(\Omega_G^e \to \Sigma_G\right)^{op}} \tilde{N}^{(\mathcal{P},X,Y)} \tag{5.7}$$

The second identification, which reduces the calculation to a single left Kan extension, is an instance of Proposition 5.40, a result whose proof is straightforward but lengthy, and thus postponed to the appendix. The category Ω_G^e of extension trees appearing on the right side is obtained as a sectorical realization $\Omega_G^e = |\Omega_G^{n,\lambda_l}|$, which we explicitly describe and analyze in §5.2

HERE

In particular, we identify a smaller subcategory $\bar{\Omega}_G^e \hookrightarrow \Omega_G^e$ that is Lan-final, so that Ω_G^e can be replaced with $\bar{\Omega}_G^e$ in (5.7).

Labeled planar strings 5.1

In this section we explicitly identify the categories underlying the left Kan extensions in (5.6).

In the notation of Remark 2.28, letting $(\langle l \rangle) = \{\frac{1}{LANLEVEL}, \frac{1}{LO}, \dots, l, \infty\}$ and writing λ_l for the partition $\lambda_{l,a} = \{-\infty\}$, $\lambda_{l,i} = \langle \langle l \rangle \rangle - \{-\infty\}$, (5.6) can be repackaged as an instance of the functor Lan $\circ N \circ \coprod \circ (N^{\times \lambda_l})^{\circ n} \circ \iota^{\times \langle l \rangle}$. Our goal is thus to understand the underlying categories of the spans in the image of the functor $N \circ \coprod \circ (N^{\times \lambda_l})^{\circ n}$, though we will find it preferable and no harder to tackle the more general case of the functors $N^{s+1} \circ \coprod \circ (N^{\times \lambda})^{\circ n-s}$.

Definition 5.8. A l-node labeled G-tree (or just l-labeled G-tree) is a pair $(T, V_G(T) \rightarrow T_G(T))$ $\{1,\dots,l\}$) with $T\in\Omega_G$, which we think of as a G-tree together with G-vertices labels in

Further, a tall map $\varphi:T\to S$ between l-labeled trees is called a label map if for each G-vertex v_{Ge} of T with label j, the vertices of the subtree $S_{v_{Ge}}$ are all labeled by j.

Lastly, given a subset $J \subset l$, a planar label map $\varphi: T \to S$ is said to be J-inert if for every G-vertex v_{Ge} of T with label $j \in J$ it is $S_{v_{Ge}} = T_{v_{Ge}}$.

Example 5.9. Consider the 2-labeled trees below (for G = * the trivial group), with black nodes (\bullet) denoting labels by the number 1 and white nodes (\circ) labels by the number 2. The planar map φ (sending $a_i \mapsto a, b \mapsto b, c \mapsto c, d \mapsto d, e \mapsto e$) is a label map which is {1}-inert.

SUBSDATUMTREESLAB EQ (5.10)

LANLEVELFOR EQ

Definition 5.11. Let $-1 \le s \le n$ and $\lambda = \lambda_a \coprod \lambda_i$ a partition of $\{1, 2, \dots, l\}$. We define $\Omega_G^{n,s,\lambda}$ to have as objects n-planar strings (where $T_{-1} = \operatorname{lr}(T_0)$ as in (3.89))

$$T_{-1} \xrightarrow{\varphi_0} T_0 \xrightarrow{\varphi_1} T_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_s} T_s \xrightarrow{\varphi_{s+1}} T_{s+1} \xrightarrow{\varphi_{s+2}} \cdots \xrightarrow{\varphi_n} T_n$$

$$(5.12) \quad \boxed{\text{NSTRINGLAB EQ}}$$

LABELSTRI SEC

LABMAP DEF

LABELEDTREES EX

together with l-labelings of T_s, T_{s+1}, \dots, T_n such that the $\varphi_r, r > s$ are λ_i -inert label maps. Arrows in $\Omega_G^{n,s,\lambda}$ are quotients of strings $(\pi_r:T_r\to T_r')$ such that $\pi_r,r\geq s$ are label maps. Further, for any s < 0 or n < s' we write

$$\Omega_G^{n,s,\lambda} = \Omega_G^{n,-1,\lambda}, \qquad \Omega_G^{n,s',\lambda} = \Omega_G^n.$$
 (5.13) EXTRACASES EQ

Intuitively $C_{n,s,\lambda}^{n,s,\lambda}$ consists of strings that are labeled in the range $s \leq r \leq n$, with the extra cases $C_{n,s,\lambda}$ interpreted by infinitely prepending and postpending copies of T_{-1} and T_n to (5.12).

The main case of interest is that of s = 0, which we abbreviate as $\Omega_G^{n,\lambda} = \Omega_G^{n,0,\lambda}$, with the remaining $\Omega_G^{n,s,\lambda}$ playing an auxiliary role. The s=-1 case also deserves special attention.

Remark 5.14. For s < 0 there are identifications

$$\Omega_G^{n,s,\lambda} = \Omega_G^{n,-1,\lambda} \simeq \coprod_{\lambda_a} \Omega_G^n \coprod_{\lambda_i} \Sigma_G. \tag{5.15}$$

Indeed, since T_{-1} is a G-corolla, the label of its unique G-vertex determines all other labels.

Notation 5.16. We will write $(\Omega_G^n)_{\mathbf{DMEGANMINUSONE}}^{\lambda\lambda}$ to denote the l-tuple with $(\Omega_G^n)_j^{\lambda\lambda} = \Omega_G^n$ if $j \in \lambda_a$ and $(\Omega_G^n)_j^{\lambda\lambda} = \Sigma_G$ if $j \in \lambda_i$. As such, (b.15) is abbreviated as $\Omega_G^{n,-1,\lambda} = \coprod (\Omega_G^n)^{\lambda\lambda}$.

The $\Omega_G^{n,s,\lambda}$ categories are related by a number of obvious functors, which we now catalog. Firstly, if $s \le s'$ there are forgetful functors

$$\Omega_G^{n,s,\lambda} \to \Omega_G^{n,s',\lambda}$$
 (5.17) NKNFGT EQ

and the simplicial operators in Notation 3.87 generalize to operators (for $0 \le i \le n, -1 \le j \le n$)

ORDLABEL REM

which are compatible with the forcetful functors in the obvious way. We will prefer to reorganize (5.17) and (5.18) somewhat. Defining functions $d_i: \mathbb{Z} \to \mathbb{Z}$ and $s_j: \mathbb{Z} \to \mathbb{Z}$ by

$$d_i(s) = \begin{cases} s - 1, & i < s \\ s, & s \le i \end{cases} \qquad s_j(s) = \begin{cases} s + 1, & j < s \\ s, & s \le j \end{cases}$$
 (5.19) INTERMAPDEF EQ

(EABSTSIM EQ (b.18) is rewritten as maps $d_i \colon \Omega_G^{n,s,\lambda} \to \Omega_G^{n-1,d_i(s),\lambda}$ and $s_j \colon \Omega_G^{n,s,\lambda} \to \Omega_G^{n+1,s_j(s),\lambda}$. Therefore, we henceforth write simply $\Omega_G^{n,s,\lambda}$ to denote the string of categories $\Omega_G^{n,s,\lambda}$ and forgetful functors, and abbreviate (b.18) as

$$d_i: \Omega_G^{n, \bullet, \lambda} \to \Omega_G^{n-1, \bullet, \lambda} \qquad \qquad s_j: \Omega_G^{n, \bullet, \lambda} \to \Omega_G^{n+1, \bullet, \lambda}$$
 (5.20) LABSTSIM2 EQ

Remark 5.21 Considering the ordered sets $\langle n \rangle = \{0 < 1 < \dots < n < +\infty\}$, the formulas (5.19) define functions $d_i : \langle n \rangle \to \langle n-1 \rangle$, $s_j : \langle n \rangle \to \langle n+1 \rangle$ which preserve 0 and $+\infty$, except for s_{-1} which preserves only $+\infty$. This recovers the description of Δ^{op} as the category of

intervals (i.e. ordered finite sets with a minimum and maximum and maps preserving them). Next, the vertex functors V_G^k of (B.98) generalize to functors $V_G^k: \Omega_G^{n,s,\lambda} \to \mathsf{F}_s \wr \Omega_G^{n-k-1,s-k-1,\lambda}$ given by the same formula

$$(T_{k,v_{Ge}} \rightarrow \cdots \rightarrow T_{n,v_{Ge}})_{v_{Ge} \in V_G(T_k)},$$
 (5.22)

as in (3.98), except now with the T_m, v_{Ge} inheriting the node labels from T_m (if any).

The diagrams in (3.99) for i < k and i > k now generalize to diagrams

$$\Omega_{G}^{n,\bullet,\lambda} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1,\bullet,\lambda} \qquad \Omega_{G}^{n,\bullet,\lambda} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1,\bullet,\lambda} \\
\downarrow d_{i} \qquad \qquad \downarrow d_{i-k-1} \qquad \qquad \downarrow d_{i-k-1} \\
\Omega_{G}^{n-1,\bullet,\lambda} \xrightarrow{V_{G}^{k-1}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-1,\bullet,\lambda} \qquad \Omega_{G}^{n-1,\bullet,\lambda} \xrightarrow{V_{G}^{k}} \mathsf{F}_{s} \wr \Omega_{G}^{n-k-2,\bullet,\lambda}$$
(5.23) PIIDEFDILAB EQ

while the diagrams in (3.100) for j < k and j > k generalize to diagrams

where we note that in all cases the s-index • varies according to (5.18).

Lastly, the $\Omega_G^{n,s,\lambda}$ are also functorial in λ . Explicitly, given $\alpha:\{1,\cdots,l\}\to\{1,\cdots,m\}$ and partitions such that $\lambda'\leq\alpha^*\lambda$ one has forgetful functors

$$\Omega_G^{n,s,\lambda'} \to \Omega_G^{n,s,\lambda}$$
 (5.25) LAMBINC EQ

compatible with the forgeful functors (5.17), the simplicial operators d_i , s_j and the isomorphisms π_i .

Remark 5.26. When α is the identity and $\lambda' \leq \lambda$ the forgetful functors (5.25) are fully faithful inclusions. However, this is not the case for the (5.17) forgetful functors. Indeed, regarding the map $T \to U$ in (5.10) as an object in $\Omega_G^{1,0,\lambda}$ for $\lambda = \lambda_a \, \text{ll} \, \lambda_i = \{2\} \, \text{ll} \, \{1\} = \{\bullet\} \, \text{ll} \, \{\circ\}$, changing the label of $a_1 \leq a_2$ to a \bullet -label produces a non isomorphic object $\bar{T} \to U$ of $\Omega_G^{1,0,\lambda}$ that forgets to the same object of $\Omega_G^{2,1,\lambda}$.

We now extend Notation 4.7.

Notation 5.27. Let $(A_j) = (A_j \to \Sigma_G)_{1 \le j \le l}$ be a l-tuple of maps over Σ_G . We define $\Omega_G^{n,s,\lambda} \wr (A_j)$ as the pullback

$$\Omega_{G}^{n,s,\lambda} \circ (A_{j}) \xrightarrow{V_{G}^{n}} \mathsf{F} \circ \coprod_{I} A_{j}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{F} \circ \coprod_{I} \Sigma_{G} \qquad \qquad \downarrow$$

$$\Omega_{G}^{n,s,\lambda} \xrightarrow{V_{G}^{n}} \mathsf{F} \circ \Omega_{G}^{-1,s-n-1,\lambda}$$

$$(5.28) \quad \boxed{\mathsf{OMEGAWRTUP EQ}}$$

Remark 5.29. To unpack 5.28, note first that by (DB) = 0 is simply either Σ_G^{ul} if r < 0 or Σ_G for $r \ge 0$. We can thus break down (5.28) into the three cases s < 0, $0 \le s \le n$ and n < s, depicted below.

Therefore, for s > n (5.28) coincides with $\Omega_G^n \wr (\coprod_j A_j)$ as defined in Notation 4.7. Moreover, for s < 0 both squares in the diagram below are pullbacks and the bottom composites is V_G^n ,

$$\coprod (\Omega_{G}^{n})^{\times \lambda} \wr (A_{j}) \xrightarrow{\coprod (V_{G}^{n})^{\times \lambda}} \coprod F \wr A_{j} \longrightarrow F \wr \coprod_{j} A_{j}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod (\Omega_{G}^{n})^{\times \lambda} \xrightarrow{\coprod (V_{G}^{n})^{\times \lambda}} \coprod_{l} F \wr \Sigma_{G} \longrightarrow F \wr \coprod_{l} \Sigma_{G}$$

$$(5.31) \quad \boxed{\text{BOTTOM EQ}}$$

so that there is an identification $\Omega_G^{n,s,\lambda} \wr (A_j) \simeq \coprod (\Omega_G^n)^{\times \lambda} \wr (A_j)$, where in the right side $(-) \wr (-)$ is computed entry-wise.

ORDLABEL REM

Remark 5.32. The naturality of the $\Omega_G^{n,s,\lambda} \wr (A_j)$ constructions with regards to λ interacts with the tuple (A_j) in the obvious way, i.e., given $\alpha \colon \{1, \dots, l\} \to \{1, \dots, m\}, \ \lambda' \le \alpha^* \lambda$ and a map $(B_k) \to \alpha^* (A_j)$ one obtains a natural map

$$\Omega_G^{n,s,\lambda'} \wr (B_k) \to \Omega_G^{n,s,\lambda} \wr (A_j).$$

Proposition 5.33. The analogue statements of Proposition 3.101 hold for the $\Omega_G^{n,s,\lambda}$ and the $\Omega_G^{n,s,\lambda} \wr (A_j)$ constructions, where in the latter case we exclude the statements involving d_n .

Additionally, the natural squares (for $n \ge -1$)

$$\Omega_G^{n,n,\lambda} \xrightarrow{V_G^n} \operatorname{F} \wr \coprod_l \Sigma_G
\downarrow \qquad \qquad \downarrow \qquad \qquad (5.34) \quad \boxed{\text{ADDSQUARE EQ}}
\Omega_G^n \xrightarrow{V_G^n} \operatorname{F} \wr \Sigma_G$$

are also pullback squares.

Proof. Firstly, we note that the $\Omega_G^{n,s,\lambda}$ analogues, as well as the claim for (5.34), all follow by keeping track of the labels on the strings, with the only part worth of note being the analogue of (d), stating that the right squares in (5.23) and (5.24) are pullbacks. Since in these diagrams the s-coordinate \bullet is determined by the top left corner, a direct analysis shows that compatible choices of labels for strings on the top right and bottom left corners do assemble to the correct labels on the top left corner, so that the claim follows by the unlabeled one.

For the more general $\Omega_G^{n,s,\lambda} \wr (A_j)$ constructions, one can either build the general V_G^k , d_i , s_j , π_i explicitly, or simply mimic the argument in Proposition 4.13, thereby reducing to the $\Omega_G^{n,s,\lambda}$ case.

LABIDEN COR

Corollary 5.35. For $-1 \le s \le n$ there are natural identifications

$$\Omega_G^k \wr \Omega_G^{n,s,\lambda} \wr (A_j) \simeq \Omega_G^{n+k+1,s+k+1,\lambda} \wr (A_j) \qquad \Omega_G^{n,s,\lambda} \wr (\Omega_G^k)^{\times \lambda} \wr (A_j) \simeq \Omega_G^{n+k+1,s,\lambda} \wr (A_j)$$

which identify $V_G^k \wr \Omega_G^{n,s,\lambda} \wr (A_j)$ with $V_G^k \wr (A_j)$ and $V_G^n \wr (\Omega_G^k)^{\times \lambda} \wr (A_j)$ with $V_G^n \wr (A_j)$.

Further, these identifications are compatible with each other and associative in the obvious ways, and they induce identifications

$$d_i \wr (\Omega_G^n)^{\times \lambda} \simeq d_i \qquad \pi_i \wr (\Omega_G^n)^{\times \lambda} \simeq \pi_i \qquad s_j \wr (\Omega_G^n)^{\times \lambda} \simeq s_j$$

$$\Omega_G^k \wr d_i \simeq d_{i+k+1} \qquad \Omega_G^k \wr \pi_i \simeq \pi_{i+k+1} \qquad \Omega_G^k \wr s_j \simeq s_{j+k+1}$$

as well as obvious identifications of forgeful functors.

Proof. This is analogous to Corollary 4.19. For the first identification, the case $s \ge 0$ follows from the diagram below, where we note that the bottom arrow is $V_G^k : \Omega_G^k \to \mathsf{F} \wr \Sigma_G$.

$$\begin{array}{c} \bullet \xrightarrow{} & \bullet \xrightarrow{} & \bullet & \bullet & \bullet \\ \downarrow & & \downarrow & \downarrow \\ \Omega_G^{n+k+1,s+k+1,\lambda} & \xrightarrow{} & \bigvee_{V_G^k} & \mathsf{F} \wr \Omega_G^{n,s,\lambda} & \xrightarrow{} & \mathsf{F}^{\wr 2} \wr \coprod_l \Sigma_G \xrightarrow{} & \mathsf{F} \wr \coprod_l \Sigma_G \\ \downarrow & & \downarrow & \downarrow \\ \Omega_G^{k,k+1,\lambda} & \xrightarrow{} & \bigvee_{V_G^k} & \mathsf{F} \wr \Omega_G^{-1,0,\lambda} \end{array}$$

In the s=-1 case, the bottom arrow is instead $V_G^k\colon \Omega_G^{k,k,\lambda}\to \mathsf{F}\wr\Omega_G^{-1,-1,\lambda}=\mathsf{F}\wr \coprod_l \Sigma_G$, in which case one further attaches (5.34) to the diagram.

The second identification is analogous, using the pullback diagram below, with the composite of the central horizontal arrows reinterpreted using ($\stackrel{\text{BOTTOM EQ}}{5.31}$).

$$\begin{array}{c} \bullet \\ & \longrightarrow \\ \downarrow \\ & \downarrow$$

The additional claims are straightforward.

Remark 5.36. The identifications in Corollary 5.35 allow for the case n = -1, which is non-trivial due to the existence of $\Omega_G^{-1,-1,\lambda} = \coprod_l \Sigma_G$, in which case $\Omega_G^{-1,-1,\lambda} \wr (A_j) \simeq \coprod A_j$. For $-1 \leq s \leq n$ the identifications

NATCOP EQ

$$\Omega_G^{n,s,\lambda} = \Omega_G^s \wr \Omega_G^{-1,-1} \wr \left(\Omega_G^{n-s-1}\right)^{\times \lambda}$$

then show that $\Omega_G^{n,s,\lambda}$?(-) encodes (the underlying category of) the functor $N^{\circ s+1} \coprod (N^{\times \lambda})^{\circ n-s}$. Furthermore, the left commutative square below, where vertical arrows are forgetful functors (and the right diagram merely unpacks notation)

shows that the forgetful functor $\Omega_G^{0,-1,\lambda} \wr (A_j) \to \Omega_G^{0,0,\lambda} \wr (A_j)$ encodes the natural map $\coprod \circ N \Rightarrow N \circ \coprod$.

5.2 The category of extension trees

EXTTREE SEC

REAL DEF

The purpose of this section is to make (5.7) explicit. We start by discussing realizations of simplicial objects in Cat.

Recalling the standard cosimplicial object $[\bullet] \in \mathsf{Cat}^{\Delta}$ given by $[n] = (0 \to 1 \to \cdots \to n)$ yields the following definition.

Definition 5.38. The left adjoint below is called the *realization* functor.

$$|-|: \mathsf{Cat}^{\Delta^{op}} \rightleftarrows \mathsf{Cat}: (-)^{[\bullet]}$$

REALEX REM

Remark 5.39. Suppose that $C \in \mathsf{Cat}$ contains subcategories \mathcal{C}_h , \mathcal{C}^v whose arrows span those of \mathcal{C} . Defining $\mathcal{C}^v_{h,\bullet} \in \mathsf{Cat}^{\Delta^{op}}$ so that the objects of $\mathcal{C}^v_{h,n}$ are n-strings in \mathcal{C}_h and the arrows

are compatible *n*-tuples of arrows in \mathcal{C}^v , it is straightforward to show that it is $|\mathcal{C}^v| = \mathcal{C}$. An immediate example is given by the planar strings in Definition 3.84. Writing $\mathcal{C} = \Omega^t_G$

the category of tall maps, $C_h = \Omega_G^{\rm pt}$ the category of planar tall maps and $C^v = \Omega_G^0$ the category of quotients, one has $C_{h,\bullet}^v = \Omega_G^n$ and thus $|\Omega_G^n| = \Omega_G^n$.

Similarly, noting that the $\Omega_G^{n,\lambda} = \Omega_G^{n,0,\lambda}$ form a simplicial object, we have that the $|\Omega_G^{n,\lambda}| = \Omega_G^{t,\lambda}$ is the category of tall maps between l-labeled trees that induce quotients on reduce with λ in set labels. nodes with λ -inert labels.

In the following statement, we note that it is shown in Lemma $A.2 \text{ that } ob(|A_{\bullet}|) \simeq ob(A_0)$ and that arrows in $|A_{\bullet}|$ are generated by the arrows in A_0 together with arrows $d_1(a) \to d_0(a)$

Proposition 5.40. Given a simplicial object $\Sigma_G \leftarrow A_{\bullet} \xrightarrow{N_{\bullet}} \mathcal{V}^{op}$ in WSpan^r $(\Sigma_G, \mathcal{V}^{op})$ such that the natural transformation components of the differential operators d_i , $0 \le i < n$ and s_i , $0 \le j \le n$ are isomorphisms, there is an identification

$$\lim_{\Delta} \left(\mathsf{Ran}_{A_n \to \Sigma_G} N_n \right) \simeq \mathsf{Ran}_{|A_{\bullet}| \to \Sigma_G} \tilde{N}$$

where $\tilde{N}: |A_{\bullet}| \to \mathcal{V}^{op}$ is given by N_0 on objects and generating arrows in A_0 , and on generating arrows $d_1(a) \rightarrow d_0(a)$ for $a \in A_1$ as the composite

Y) in (5.6). Indeed, in the n direction all d_i with 0 < i < n are induced by the multiplication $NN \to N$ defined in (4.21) while d_0 is induced by the composite $N \circ \coprod \circ N \to NN \circ \coprod \to N \circ \coprod$, with the second map again given by composition and the first induced by the natural map $\coprod \circ N \to N \circ \coprod$, which is encoded by a strictly commutative diagram of spans, as seen using the top part of (5.37) (or, more abstractly, it also suffices to note that N preserves arrows in $\mathsf{WSpan}^l(\Sigma_G^{op}, \mathcal{V})$ given by strictly commutative diagrams). Degeneracies are similar.

As for the l direction, we note that our convention on the double bar construction $B_l(\mathcal{P}, \mathbb{F}X, \mathbb{F}X, \mathbb{F}X, \mathbb{F}X)$, is symmetric, with d_l encoding both of the maps $\mathbb{F}X \to \mathbb{F}Y$ and $\mathbb{F}X \to \mathbb{F}\mathcal{P}$ and the remaining differentials given by fold maps. Or, more precisely, the action of the differential operators on the sets of labels $(\langle l \rangle) = \{-\infty, -l, \dots -1, 0, 1, \dots, l, +\infty\}$ is given by extending the functions in Remark 5.32 anti-symmetrically. But then the differential operators of the naturality in Remark 5.32 when $(B_k) = \alpha^*(A_j)$, and are hence given by strictly commutative maps of

Our next task is thus that of identifying the category of extension trees Ω_G^e appearing in (Fig. 1). The produce an explicit model for the double realization $|\Omega_G^{n,\lambda_l}|$. By Remark D.39 we can first perform the realization in the second of the s $\frac{\text{SABLY REAL}}{39 \text{ we can}}$ first perform the realization in the *n* direction, so as to obtain $|\Omega_G^{n,\lambda_l}| = |\Omega_G^{t,\lambda_l}|$, where we recall that Ω_G^{t,λ_l} consists of (l)-labelled trees together with tall maps that induce quotients on all nodes not labeled by $-\infty$.

We now identify Ω_G^e directly.

Definition 5.41. The extension tree category Ω_G^e is the category whose objects are $\{\mathcal{P}, X, Y\}$ labeled trees and whose maps $\varphi: T \to S$ are tall maps of trees such that

- (i) if $T_{v_{Ge}}$ has a X-label, then $S_{v_{Ge}} = T_{v_{Ge}}$ and $S_{v_{Ge}}$ has a X-label;
- (ii) if $T_{v_{Ge}}$ has a Y-label, then $S_{v_{Ge}} = T_{v_{Ge}}$ and $S_{v_{Ge}}$ has either an X-label or a Y-label;

RANTRANS PROP

EXTTREECAT DEF

(iii) if $T_{v_{Ge}}$ has a \mathcal{P} -label, then $S_{v_{Ge}}$ has only X and \mathcal{P} -labels.

Example 5.42. The following is an example of a planar map in Ω_G^e for G = *, where black nodes represent \mathcal{P} -labeled nodes, grey nodes represent Y-labeled nodes and white nodes represent X-labeled nodes.

Remark 5.44. By changing any X-labels in $S_{v_{Ge}}$ into Y-labels (resp. \mathcal{P} -labels) whenever T_{v_G} has a Y-label (resp. \mathcal{P} -label), one obtains a factorization

$$T \to \bar{S} \to S$$
 (5.45) LABRE EQ

REGALTERNMAP EQ

such that $T \to \bar{S}$ is a label map (cf. Definition 5.8) and $S \to S$ is an underlying identity of trees that merely changes some if the Y and \mathcal{P} labels into X labels. We refer to the latter kind of map as a relabel map. It is clear that the label-relabel factorization (5.45) is unique.

Proposition 5.46. There is an identification

$$\Omega_G^e \simeq |\Omega_G^{\mathsf{t},\lambda_l}|.$$

Proof. We will show that Remark 5.39 applies to $\mathcal{C} = \Omega_G^e$, with \mathcal{C}_h and \mathcal{C}^v the categories of relabel and label maps. More precisely, we claim that there is an isomorphism $\mathcal{C}_{h,l}^v \simeq \Omega_G^{\mathsf{t},\lambda_l}$ of objects in $\mathsf{Cat}^{\Delta^{op}}$. Unpacking notation, one must first show that strings

$$T_0 \to T_1 \to \cdots \to T_l$$
 (5.47) RELABSTR EQ

of relabel arrows in Ω_G^e are in bijection with objects of $\Omega_G^{\mathsf{t},\lambda_l}$ i.e. with trees labeled by $\langle l \rangle = \{-\infty, -l, \cdots, -1, 0, 1, \cdots, l, +\infty\}$. Noting that the maps in (b.47) are simply underlying identities on some fixed tree T that convert some of the \mathcal{P}, Y labels, X labels, we label a vertex $T_{v_{Ge}}$ by (i) $0 < j \le +\infty$ if the last j labels of $T_{v_{Ge}}$ in (b.47) are \mathcal{P} labels (where $+\infty = l + 1$); (ii) X labels in (b.47) are X labels. This process clearly established the desired bijection on objects.

The compatibilities with arrows and with the simplicial structure are straightforward. \Box

Our next task will be that of identifying a convenient Lan-final subcategory $\bar{\Omega}_G^e \to \Omega_G^e$. We first introduce the auxiliary notion of alternating trees. Recall the notion of input path (Notation 3.5) $I(e) = \{f \in T : e \leq_d f\}$ for an edge $e \in T$, which naturally extends to T in any of $\in \Omega, \Phi, \Omega_G, \Phi_G$.

Definition 5.48. A G-tree $T \in \Omega_G$ is called *alternating* if, for all leafs $l \in T$ one has that the input path I(l) has an even number of elements.

Further, a vertex $e^{\uparrow} \leq e$ is called *active* if |I(e)| is odd and *inert* otherwise.

Finally, a tall map $T \xrightarrow{\varphi} S$ between alternating G-trees is called a tall alternating map if for any inert vertex $e^{\uparrow} \leq e$ of T one has that $S_{e^{\uparrow} \leq e}$ is an inert vertex of S.

We will denote the category of alternating G-trees and tall alternating maps by Ω_G^a .

Remark 5.49. A G-tree (resp. map of G-trees) is alternating (resp. an alternating map) iff each component is.

Example 5.50. Two alternating trees (for G = * the trivial group) and a planar tall alternating map between them follow, with active nodes in black (ullet) and white nodes in white (\circ) .

REGALTERNMAPLR EQ

The term "alternating" reflects the fact that adjacent nodes have different colors, though there is an additional restriction: the "outer vertices", i.e. those immediately below a leaf

or above the root, are necessarily black/active (this does not, however, apply to stumps). **Remark 5.52.** If $T \in \Omega$ is alternating, it follows from Remark 5.54 that a tall map $\varphi : T \to I$ is an alternating map iff the corresponding substitution datum under Proposition 3.47 is given by the identity $U_{e^{\uparrow} \leq e} = T_{e^{\uparrow} \leq e}$ when $e^{\uparrow} \leq e$ is inert and by an alternating tree $U_{e^{\uparrow} \leq e}$ when $e^{\uparrow} \leq e$ is active.

Definition 5.53. $\bar{\Omega}_G^e \hookrightarrow \Omega_G^e$ is the full subcategory of (\mathcal{P}, X, Y) -labeled trees whose underlying tree is alternating, active nodes are labeled by \mathcal{P} , and passive nodes are labeled by Xor Y.

Note that conditions (i) and (ii) in Definition 5.41 imply that for any map in $\bar{\Omega}_G^e$ the underlying map is an alternating map.

The following establishes the required finality of $\bar{\Omega}_G^e$ in Ω_G^e .

Proposition 5.54. For each $U \in \Omega_G^e$ there exists a unique $\operatorname{Ir}_{\mathcal{P}}(U) \in \bar{\Omega}_G^e$ together with a unique planar label map in Ω_G^e

$$Ir_{\mathcal{P}}(U) \to U.$$

Furthermore, $\operatorname{Ir}_{\mathcal{P}}$ extends to a right retraction $\operatorname{Ir}_{\mathcal{P}}: \Omega_G^e \to \bar{\Omega}_G^e$.

Proof. We first address the non-equivariant case $U \in \Omega^e$.

To build $\operatorname{Ir}_{\mathcal{D}}(U)$, consider the collection of outer faces $\{U_i^X\} \sqcup \{U_j^Y\} \sqcup \{U_k^{\mathcal{P}}\}$ where the U_i^X, U_j^Y are simply the X, Y-labeled nodes and the $\{U_k^{\mathcal{P}}\}$ are the maxima butter subtrees whose nodes have only \mathcal{P} -labels (these may possibly be sticks). Lemma 3.57 guarantees that each edge and each \mathcal{P}_{ROP} labeled node belong to exactly one of the $V_G(U_k^X)$, and applying Proposition 3.55(iii) yields a planar tall map

$$T = \operatorname{Ir}_{\mathcal{P}}(U) \to U$$
 (5.55) LRXDEF EQ

such that $\{U_i, V_i\}_{i \in P}$ and $\{U_i, V_i\}$ is an obvious $\{U_i, V_i\}$ is an obvious $\{U_i, V_i\}$. Thus an obvious $\{U_i, V_i\}$ is alternating making (5.55) into a label map, but we must still check $T \in \bar{\Omega}_G^e$, i.e. that T is alternating with active vertices precisely those labeled by \mathcal{P} . But since the image of each $e \in T$ belongs to precisely one $U_k^{\mathcal{P}}$, e belongs to precisely one of the \mathcal{P} -labeled nodes of T, so that any leaf input path $I(l) = (l = e_n \le e_{n-1} \le \cdots \le e_1 \le e_0)$ must start with, end with, and alternate between \mathcal{P} -nodes, and thus have even length.

To check uniqueness, note that for any other planar label map $S \to U$ with S alternating and $e^{\uparrow} \leq e$ a \mathcal{P} vertex of S the outer face $U_{e^{\uparrow} \leq e}$ must be a maximal \mathcal{P} -labeled outer face since the vertices adjacent to its root and leaves are labeled by either X or Y. The condition

LXP PROP

 $V(U) = \coprod_{V(S)} V(U_{e^{\dagger} \leq e})$ thus guarantees that the collection of outer faces determined by S matches that determined by T except perhaps in the number of stick faces, so that the degeneracy-face factorizations $S \to F \to U, T \to F \to U$ factor through the same planar inner face F, with the unique labeling that makes the inclusion a label map. S, T are thus both trees in $\bar{\Omega}_G^e$ obtained from F by adding degenerate \mathcal{P} vertices, and since this can be done in at most one way, we conclude S = T.

To check functoriality, consider the diagram below, where $T \to U$ is the map defined above and $\varphi: U \to V$ any map in Ω_G^e .

$$T \longrightarrow U$$

$$\downarrow \qquad \qquad \downarrow \varphi$$

$$S \xrightarrow{} V$$

$$(5.56) \quad \boxed{\text{LRPFUN EQ}}$$

The composite $T \to V$ is encoded by a substitution datum $\{T_{e^{\dagger} \le e} \to V_{e^{\dagger} \le e}\}$ which is given by an isomorphism if $e^{\dagger} \le e$ has label X or Y (possibly changing a Y label to a X label), and by some $X, \underbrace{\mathcal{P}_{\mathbf{r}}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}}}_{\mathbf{r}, \mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}}_{\mathbf{r}}_{\mathbf{r}, \mathbf{r}}_{\mathbf{r}, \mathbf{r}}_{\mathbf{$

In the case of $T = (T_x)_{x \in X}$ in Ω_G^e for a general group G, one sets $\operatorname{Ir}_{\mathcal{P}}(T) = (\operatorname{Ir}_{\mathcal{P}}(T_x))_{x \in X}$.

Example 5.75 The following illustrates the $|\mathbf{r}_{\mathcal{P}}|$ construction when applied to the map φ in (5.43). Intuitively, the functor $|\mathbf{r}_{\mathcal{P}}|$ replaces each of the maximal mathcalP-labeled subtrees $T_k^{\mathcal{P}}$, $S_k^{\mathcal{P}}$ with the corresponding leaf-root $|\mathbf{r}(T_k^{\mathcal{P}})|$, $|\mathbf{r}(S_k^{\mathcal{P}})|$, which is then \mathcal{P} -labeled.

HERE

RUCTURES SECTION

LTRATION_SECTION

IECES_DEFINITION

6 Existence of model structures

In order to encode the homotopical information inspired by N_{∞} -operads dicussed in the introduction, we will introduce and transfer several associated (semi) model structures on the categories $\operatorname{Op}_G(\mathcal{V})$ and $\operatorname{Op}^G(\mathcal{V})$ for a wide range of \mathcal{V} . As identified in, for example, [20], analysis of free extensions is paramount when transferring model structures. Summarizing the results in the previous section, we have that the free \mathbb{F}_G -extension $\mathcal{P}[u]$ defined by the pushout

$$\mathbb{F}_G X \longrightarrow \mathcal{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_G Y \longrightarrow \mathcal{P}[u]$$

$$(6.1) \quad \boxed{\text{CELLEXTPUSH EQ}}$$

Whi14, WY15, HP15, Pe16

is given by a left Kan extension along $(\bar{\Omega}_G^e)^{op} \xrightarrow{\text{lr}} \Sigma_G^{op}$. Now, so as to study the homotopical properties of the map $\mathcal{P} \to \mathcal{P}[u]$, we follow standard practice (e.g. [20, 21, 1, 8, 24, 25, 10, 16]) and identity a suitable filtration of this map, which will in turn be induced by a suitable filtration of the extension tree category $\bar{\Omega}_G^e$.

6.1 Filtration pieces

First, given $T \in \Omega_G^e$, we write $V_X(T)$ (resp. $V_Y(T)$) to denote the sets of X-labeled and Y-labeled (non-equivariant) vertices of T. The degree of $T \in \overline{\Omega}_G^e$, denoted |T|, is defined to be the sum $|T|_X + |T|_Y$, where $|T|_X$, $|T|_Y$ are defined by

$$|T|_X = \frac{|V_X(T)|}{|Gr|} = \sum_{Gv \in V_{G,X}(T)} \frac{|Gv|}{|Gr|}, \qquad |T|_Y = \frac{|V_Y(T)|}{|Gr|} = \sum_{Gv \in V_{G,Y}(T)} \frac{|Gv|}{|Gr|}$$

for Gr the root orbit of T.

Intuitively, $|T|_X$ counts the number of X-labeled vertices in a single tree component of T.

Remark 6.2. One of the key properties of the degrees |T|, $|T|_X$, $|T|_Y$ just defined is that they are invariant under root pullback.

Definition 6.3. We define rooted subcategories of $\bar{\Omega}_G^e$:

- (i) $\bar{\Omega}_G^e[\leq k]$ (resp. $\Omega_G^e[k]$) is the full subcategory of trees $T \in \bar{\Omega}_G^e$ with $|T| \leq k$ (resp. |T| = k);
- (ii) $\bar{\Omega}_G^e[\leq k, -]$ (resp. $\bar{\Omega}_G^e[k, -]$) is the full subcategory of $\bar{\Omega}_G^e[\leq k]$ (resp. $\bar{\Omega}_G^e[k]$) of trees T with $|T|_Y \neq k$;
- (iii) $\bar{\Omega}_G^e[k,0]$ is the full subcategory of $\bar{\Omega}_G^e[k]$ of trees T with $|T|_X = 0$ (or, equivalently, $|T|_Y = k$).

The above definitions still hold if we replace $\bar{\Omega}_G^e$ with Ω_G^a ; in particular, we have vertical forgetful functors

LIMMOR REM

Remark 6.4. The categories $\bar{\Omega}_G^e[k]$ and $\bar{\Omega}_G^e[k, -]$ have rather limited morphisms. In fact, all maps in these categories must be underlying quotients of trees. Indeed, it is clear from Definition 5.41 that maps never lower degree and, moreover, degree is preserved iff \mathcal{P} -vertices are substituted by \mathcal{P} -vertices (rather than larger trees in $\bar{\Omega}_G^e$, which would necessarily possess X-vertices).

Moreover, we have a clear rooted isomorphism of categories $\bar{\Omega}_G^e[k,0] \simeq \Omega_G^a[k]$.

_LAN_FINAL_LEMMA

YINERT REM

Lemma 6.5. $\bar{\Omega}_G^e[\leq k-1]$ is Ran-initial in $\bar{\Omega}_G^e[\leq k,-]$ over Σ_G .

In the proof we will make use of the following construction on Ω_G^e : given $T \in \Omega_G^e$ we will let $T_{\mathcal{P}}$ denote the result of replacing all X-labeled nodes of T with \mathcal{P} -labeled nodes.

Remark 6.6. Unlike the $Ir_{\mathcal{P}}$ construction of Proposition 5.54, which defines a functor $Ir_{\mathcal{P}}: \Omega_G^e \to \bar{\Omega}_G^e$, the construction (-) $_{\mathcal{P}}$ does not define a full functor $\Omega_G^e \to \Omega_G^e$, instead being functorial, and the obvious maps $T_{\mathcal{P}} \to T$ natural, only with respect to the Y-inert maps of Ω_G^e .

Example 6.7. Combining the $(-)_{\mathcal{P}}$ and $\operatorname{Ir}_{\mathcal{P}}$ constructions one obtains a construction sending trees in $\bar{\Omega}_G^e$ to trees in $\bar{\Omega}_G^e$. We illustrate this for the tree $T \in \bar{\Omega}_G^e$ below, where black nodes are \mathcal{P} -labeled, white nodes are X-labeled, and grey nodes are Y-labeled.

Proof of Lemma [6.5]. Just as in the proof of Lemma [4.34, for each $C \in \Sigma_G$, the under categories $C \downarrow \bar{\Omega}_G^e [\leq k-1], C \downarrow \bar{\Omega}_G^e [\leq k,-]$ have initial subcategories $C \downarrow_{\mathsf{r},\simeq} \bar{\Omega}_G^e [\leq k-1]$. $C \downarrow_{\mathsf{r},\simeq} \bar{\Omega}_G^e [\leq k,-]$ of those objects $(S,q:C \to \mathsf{lr}(S))$ such that q is an ordered isomorphism on roots, and thus an isomorphism Σ_G .

It now suffices to show (cf. (13, X.3.1)) that for each $(S, q: C \to \mathsf{lr}(S))$ in $C \downarrow_{\mathsf{r}, \simeq} \bar{\Omega}_G^e [\leq k, -]$ the undercategory

$$(S,q) \downarrow (C \downarrow_{r,\simeq} \bar{\Omega}_G^e [\leq k-1])$$
 (6.8) UNDERCATPR EQ

is non-empty and connected. Moreover, we note that an object in (6.8) is uniquely encoded by a map $T \to S$ inducing a rooted isomorphism on Ir.

The case $S \in \Omega_G^e[\leq k-1]$ is immediate. Otherwise, since $|S|_Y \neq k$ we have $||\mathbf{r}_{\mathcal{D}}(S_{\mathcal{D}})||_{\mathcal{S}} \leq k$ and the map $|\mathbf{r}_{\mathcal{D}}(S_{\mathcal{D}})| \to S$, which is a rooted isomorphism on $|\mathbf{r}|$, shows that (6.8) is indeed non-empty.

Now, suppose we are given any rooted tall map $T \to S$ with $T \to S$ with $T \to S$ which gives a rooted isomorphism on Ir and thus encodes a unique object of (6.8). One can then form a diagram

$$S \longleftarrow \operatorname{Ir}_{\mathcal{P}}(S_{\mathcal{P}})$$

$$\uparrow_{Y-\text{inert}} \uparrow \qquad (6.9) \quad \boxed{\text{K-1LANFINAL EQ}}$$

$$T \longrightarrow T' \longleftarrow \operatorname{Ir}_{\mathcal{P}}(T'_{\mathcal{P}})$$

where $T \to T' \to S$ is the natural factorization such that the second map is Y-inert, i.e., T' is obtained from T by simply relabeling to X those Y-labeled vertices of T that become T-vertices in T. Note that the existence of the right square in T belows from the map $T' \to S$ being Y-inert together with Remark 6.6. Since (6.9) becomes a diagram of rooted isomorphism on Ir, it produces the necessary zigzag connecting the objects $T \to S$ and T below T in the category (6.8), finishing the proof.

Similarly to the $(-)_{\mathcal{P}}$ construction, there is also a construction T_Y which replaces all X-labels of $T \in \Omega_G^e$ with Y-labels. Moreover, in this case the construction restricts directly to a construction on $\bar{\Omega}_G^e$, which is easily seen to be functorial (and the $T_Y \to T$ maps natural)

N_FINALITY_LEMMA

PK_DEFN

with regards to \mathcal{P} -inert maps. Remark 6.4 thus implies that $(-)_Y:\bar{\Omega}_G^e[k]\to\bar{\Omega}_G^e[k,0]$ is a left retraction, resulting in the following.

Lemma 6.10. $\bar{\Omega}_G^e[k,0]$ is Ran-initial in $\bar{\Omega}_G^e[k]$ over Σ_G .

In what follows we write $N^e:\Omega_G^{e,op}\to\mathcal{V}$ for the functor in (??), and abuse notative likewise writing N^e for any of its restrictions to the subcategories in Definition 6.3. ion_by FILTRAT<u>ION_PIECES_DEFINITION</u> We are now in a position to produce the desired filtration of the map $\mathcal{P} \to \mathcal{P}[u]$ in (6.1).

Definition 6.11. Let \mathcal{P}_k denote the left Kan extension

$$\bar{\Omega}^e_G[\le k]^{op} \xrightarrow{N^e} \mathcal{V}$$

$$\downarrow^{\mathsf{lr}} \qquad \qquad \downarrow^{\mathcal{P}_k}$$

$$\Sigma^{op}_G$$

Noting that $\bar{\Omega}_G^e[\leq 0] \simeq \Sigma_G$ (since |T| = 0 only if T is a G-corolla with \mathcal{P} -labeled vertex) and that $\bar{\Omega}_G^e$ is the union of (the nerves of) the $\bar{\Omega}_G^e[\leq k]$, one has a filtration

$$\mathcal{P} = \mathcal{P}_0 \to \mathcal{P}_1 \to \mathcal{P}_2 \to \cdots \to \operatorname{colim}_k \mathcal{P}_k = \mathcal{P}[u]. \tag{6.12}$$

To analyze (6.12) homotopically we will further make use of a pushout description of each individual map $\mathcal{P}_{k-1} \to \mathcal{P}_k$. To do so, we note that the diagram of inclusions

$$\bar{\Omega}_{G}^{e}[k,-] \longrightarrow \bar{\Omega}_{G}^{e}[\leq k,-]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bar{\Omega}_{G}^{e}[k] \longrightarrow \bar{\Omega}_{G}^{e}[\leq k]$$
(6.13) INCDIAG EQ

is a pushout of at the level of nerves. Indeed, this follows since

$$\bar{\Omega}^e_G[k] \cap \bar{\Omega}^e_G[\leq k, -] = \bar{\Omega}^e_G[k, -], \qquad \bar{\Omega}^e_G[k] \cup \bar{\Omega}^e_G[\leq k, -] = \bar{\Omega}^e_G[\leq k],$$

and since a map $T_{\underline{\mathsf{MTNUS}}}$ in $\bar{Q}^e [\leqslant k]$ will be in one of subcategories in (6.13) iff T is. Since Lemma 5.5 provides an identification $\mathrm{Lan}_{\bar{\Omega}_{G,e}}[\not \preceq_{k,-}]^{op} N^e \simeq \mathrm{Lan}_{\bar{\Omega}_{G,e}}[\not \preceq_{k-1}]^{op} N^e = \mathcal{P}_{k-1}$, applying left Kan extensions to (6.13) yields the pushout diagram below.

$$\operatorname{Lan}_{\bar{\Omega}_{G}^{e}[k,-]^{op}} N^{e} \longrightarrow \mathcal{P}_{k-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Lan}_{\bar{\Omega}_{G}^{e}[k]^{op}} N^{e} \longrightarrow \mathcal{P}_{k}$$

$$(6.14) \quad \boxed{\text{FILTRATION_LAN_SQUARE}}$$

We will find it convenient for our purposes to have explicit levelwise descriptions for (5.14), which we now describe.

Proposition 6.15. For each G-corolla $C \in \Sigma_G$, (6.14) is given by the following pushout in

$$\coprod_{[T] \in \mathsf{Iso}\left(C \downarrow_{r} \Omega_{G}^{a}[k]\right)} \left(\underset{v \in V_{G}^{ac}(T)}{\otimes} \mathcal{P}(T_{v}) \otimes Q_{T}^{in}[u] \right) \underset{\mathsf{Aut}(T)}{\otimes} \mathsf{Aut}(C) \longrightarrow \mathcal{P}_{k-1}(C)$$

$$\qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\qquad \qquad \downarrow \qquad \qquad$$

where $\Omega_G^a[k]$ denotes alternating trees with exactly k passive vertices, $V_G^{ac}(T)$, $V_G^{in}(T)$ denote the active and passive vertices of T, and $Q_T^{in}[u]$ is the domain of the iterated pushout product

$$\bigsqcup_{v \in V_G^{in}(T)} u(T_v) : Q_T^{in}[u] \to \bigotimes_{v \in V_G^{in}(T)} Y(T_v).$$

Proof. We first note that, following Definition $\overline{0.4}$, both $\Omega_G^e[k]^{op}$ and $\overline{\Omega}_G^e[k,-]^{op}$ are split Grothendieck constructions over $\Omega_G^a[k]^{op}$. The fibers of these Grothendieck constructions are the cube and punctured cube categories

$$(X \to Y)^{\times V_G^{in}(T)}, \qquad (X \to Y)^{\times V_G^{in}(T)} - Y^{\times V_G^{in}(T)}$$

and thus by computing the left Kan extensions on the leftmost map in (6.14) iteratively by first left Kan extending to Ω_G^a , we can rewrite that map as

$$\operatorname{Lan}_{\Omega_{G}^{a}[k]^{op}}\left(\bigotimes_{v\in V_{G}^{ac}(T)}\mathcal{P}(T_{v})\otimes \underset{v\in V_{G}^{in}(T)}{\square}u(T_{v})\right). \tag{6.17}$$

The desired description of the leftmost map given in (6.16) now follows by noting that the root undercategories $C \downarrow_{\tau} \Omega_{G}^{a}[k]$ are groupoids.

Proposition 6.18. For any $\mathbb{F}_{\mathbb{F}}$ -free extension

LEVEL_FILTRATION

in $Op_{\mathbb{F}}(\mathcal{V})$, the map $\mathcal{P} \to \mathcal{P}[u]$ has a filtration

$$\mathcal{P} = \mathcal{P}_0 \to \mathcal{P}_1 \to \mathcal{P}_2 \to \cdots \to \operatorname{colim}_k \mathcal{P}_k = \mathcal{P}[u].$$

Moreover, for each \mathbb{F}_{COP} corolly $C \in \Sigma_{\mathbb{F}}$, the map $\mathcal{P}_{k-1}(C) \to \mathcal{P}_k(C)$ is given by a pushout in $\mathcal{V}^{\text{Aut}(C)}$ as in (b.16), replacing all instances of Ω_G^a with $\Omega_{\mathbb{F}}^a$, where $\Omega_{\mathbb{F}}^a[k]$ denotes alternating \mathbb{F} -trees with exactly k passive vertices.

Proof. Any span defining the pushout in (6.19) is equivalent to the data of the solid span in the following pushout diagram in $Op_G(\mathcal{V})$.

$$\mathbb{F}_{G}\gamma_{!}X \longrightarrow \gamma_{*}\mathcal{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_{G}\gamma_{!}Y \longrightarrow (\gamma_{*}\mathcal{P})[u]$$

Since γ^* is a left adjoint into $\mathsf{Op}_{\mathbb{F}}(\mathcal{V})$, the filtration and its pushout description from (6.16) induce a filtration and pushout description on the map

$$\mathcal{P} \to \mathcal{P}[u] = \gamma^*((\gamma_*\mathcal{P})[u]).$$

Thus, we see that for any $C_{\mathbf{F}1LT\mathbf{INTALT}} \in \mathbb{R}^{\mathbf{T}}$ the map $\mathcal{P}_{k-1}(C) \to \mathcal{P}_k(C)$ is given by the pushout in $\mathsf{Sym}_{\mathbb{F}}(\mathcal{V})$ over the map (cf. (b.17))

$$\gamma^* \operatorname{Lan}_{\Omega_G^a[k]^{op}} \left(\bigotimes_{v \in V_G^{ac}(T)} \gamma_* \mathcal{P}(T_v) \otimes \underset{v \in V_G^{in}(T)}{\square} \gamma_! u(T_v) \right)$$
(6.20) \[\begin{align*} \mathbf{F_FILTINTALT_EQ} \end{align*}

However, since $\Omega_{\mathbb{F}}$ is a seive of Ω_G , for any $C \in \Sigma_{\mathbb{F}}$ we again have an equality of undercategories between $C \downarrow \Omega_G^a[k]$ and $C \downarrow \Omega_{\mathbb{F}}^a[k]$, and thus (6.20) is isomorphic to the left Kan extension over $\Omega_{\mathbb{F}}^a[k]^{op}$ of the same functor, yielding the desired filtration.

XISTENCE_SECTION

F_MODEL_DEFN

FGTRIGHT_REMARK

VEL_COFIB_REMARK

6.2 Projective model structures

We begin our homotopical analysis by describing general notions of projective model structures on diagram categories, starting with a categorically simple case.

Definition 6.21 ([22]). Let Π be a finite group, and \mathcal{F} a collection of subgroups. A map $f \in \mathcal{V}^{\Pi}$ is called an

- (i) \mathcal{F} -weak equivalence (resp. \mathcal{F} -fibration) if f^H is so in \mathcal{V} for all $H \in \mathcal{F}$.
- (ii) \mathcal{F} -cofibration if it has lifts against all maps which are both \mathcal{F} -fibrations and \mathcal{F} -weak equivalences.

The \mathcal{F} -model structure on \mathcal{V}^{Π} , if it exists, is the unique model structure with \mathcal{F} -fibrations, \mathcal{F} -weak equivalences, and \mathcal{F} -cofibrations.

If \mathcal{F} is the set of all subgroups of Π , this is called the *genuine* model structure, and denoted \mathcal{V}_{gen}^{Π} .

Definition 6.22. We say \mathcal{V} is admissible for finite groups if, for any finite group Π and any collection of subgroups \mathcal{F} , the \mathcal{F} model structure $\mathcal{V}_{\mathcal{F}}^{\Pi}$ exists. In this case, the generating (trivial) cofibrations for $\mathcal{V}_{\mathcal{F}}^{\Pi}$ are given by $\Pi/H \cdot i$ for $H \in \mathcal{F}$ and i a generating (trivial) cofibration of \mathcal{V} .

In particular, if \mathcal{V} has *cellular fixed points* (see Definition [7.4], then [22, 2.6] says preicely that \mathcal{V} is admissible for finite groups.

Remark 6.23. We record the following standard facts (generalized in 7.9, 7.11, and 7.23):

(i) If $\phi: \Pi \to \overline{\Pi}$ is a group homomorphism, then both the induction map $\phi_! = \overline{\Pi} \cdot_{\Pi}$ (-) and the forgetful functor ϕ^* in the adjunction

$$\phi_! : \mathcal{V}_{gen}^{\Pi} \leftrightharpoons \mathcal{V}_{gen}^{\overline{\Pi}} : \phi^*$$

are left Quillen for the genuine model structures (where ϕ^* is left Quillen against the coinduction map ϕ_*).

(ii) The symmetric monoidal product on \mathcal{V} extends to a left Quillen functor

$$\mathcal{V}_{gen}^{\Pi} \times \mathcal{V}_{gen}^{\overline{\Pi}} \to \mathcal{V}_{gen}^{\Pi \times \overline{\Pi}}.$$

Definition 6.24. Now, let \mathcal{D} be any small category, and let $\mathcal{F} = \{\mathcal{F}_d\}_{d\in\mathcal{D}}$ be a collection of sets \mathcal{F}_d of subgroups of $\mathsf{Aut}(d)$. The *projective* \mathcal{F} model structure on $\mathcal{V}^{\mathcal{D}}$, if it exists, is the model structure denoted $\mathcal{V}^{\mathcal{D}}_{\mathcal{F}}$, where a map f is a weak equivalence (resp. fibration) iff each level f(d) is an \mathcal{F}_d -weak equivalence (resp. \mathcal{F}_d -fibration). Equivalently, this is the model structure transferred, via the technology of Kan [12, 11.3.2] or Schwede-Shipley [20, 2.3] along the adjunction

$$\mathcal{V}_{\mathcal{F}}^{\mathcal{D}} \leftrightarrows \mathcal{V}_{\mathcal{F}}^{\mathrm{Ob}(\mathcal{D})} = \prod_{d \in \mathcal{D}} \mathcal{V}_{\mathcal{F}_d}^{\mathsf{Aut}(d)}.$$

We will let $\mathcal{V}^{\mathcal{D}}$ denote the usual projective model structure, (where each \mathcal{F}_d just contains the trivial subgroup), and $\mathcal{V}_{gen}^{\mathcal{D}}$ denote the *genuine* projective model structure, where each \mathcal{F}_d is the complete set of subgroups of $\mathsf{Aut}(d)$.

If $\mathcal V$ is admissible for finite groups, then generating (trivial) cofibrations of $\mathcal V_{\mathcal F}^{\mathcal D}$ are of the form

$$\mathcal{D}(d, {\mathord{\text{--}}})/H \cdot i, \qquad d \in \mathcal{D}, \ H \in \mathcal{F}_d, \ i \ \text{a generating (trivial) cofibration of } \mathcal{V}.$$

Remark 6.25. We record that for any cofibration f in $\mathcal{V}_{\text{gen}}^{\mathcal{D}}$ (and hence any in $\mathcal{V}_{\mathcal{F}}^{\mathcal{D}}$ for any \mathcal{F}), f(d) is a cofibration in $\mathcal{V}_{\text{gen}}^{\text{Aut}(d)}$ for all $d \in \mathcal{D}$. Indeed, pushouts are levelwise, and $D(d',d)/H' \cdot i$, as a map in $\mathcal{V}_{\text{gen}}^{\text{Aut}(d)}$, is a coproduct of generating cofibrations.

In what follows, we will need our base model category \mathcal{V} to be sufficiently well-behaved such that all of the above projective model structures exist. In fact, we will need stronger assumptions than just admissible for finite groups or even having cellular fixed points: we will require \mathcal{V} to be either

(i) strongly cellular (from Definition 7.8), or

(ii) underlying strongly cellular (from Definition 6.35).

6.3 Model structures on G-operads

We begin by analyzing the homotopy theory of regular G-operads, which will be more flexible than their genuine G-operad counterparts on the part of theorem is will be split into two parts, Corollary 6.34 and Theorem 6.36.

For the remainder of this subsection, fix a collection $\mathcal{F} = \{\mathcal{F}_n\}$ of sets \mathcal{F}_n of subgroups, closed under conjugation, of $G \times \Sigma_n$.

Definition 6.26. The \mathcal{F} -model structure on $Sym^G(\mathcal{V})$, if it exists, is the model structure

$$\mathsf{Sym}^G_{\mathcal{F}}(\mathcal{V})\coloneqq\prod_n\mathcal{V}^{G imes\Sigma_n}_{\mathcal{F}_n}.$$

Lemma 6.27. If \mathcal{V} is admissible for finite groups, the model category $\mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V})$ exists. \square We identify the following maps in $\mathsf{Op}^G(\mathcal{V})$ (cf. Definition 6.21).

Definition 6.28. We say a map $f: \mathcal{O} \to \mathcal{P}$ in $\mathsf{Op}^G(\mathcal{V})$ is a

- (i) \mathcal{F} -weak equivalence (resp. \mathcal{F} -fibration) if for all $n, f(n) : \mathcal{O}(n) \to \mathcal{P}(n)$ is one in $\mathcal{V}_{\mathcal{F}_n}^{G \times \Sigma_n}$; that is, $f(n)^{\Gamma}$ is a weak equivalence (resp. fibration) in \mathcal{V} for all $\Gamma \in \mathcal{F}_n$.
- (ii) \mathcal{F} -cofibration if it has the left lifting property against all map which are both \mathcal{F} fibrations and \mathcal{F} -weak equivalences.
- (iii) level \mathcal{F} -cofibration if f(n) is a cofibration in $\mathcal{V}_{\mathcal{F}_n}^{G \times \Sigma_n}$ for all n.

Definition 6.29. The \mathcal{F} (semi) model structure is the unique (semi) model structure on $\mathsf{Op}^G(\mathcal{V})$, if it exists, with \mathcal{F} -fibrations, \mathcal{F} -cofibrations, and \mathcal{F} -weak equivalences, and will be denoted $\mathsf{Op}_{\mathcal{F}}^G(\mathcal{V})$.

If each \mathcal{F}_n is the complete lattice of subgroups of $G \times \Sigma_n$, we call the above the *complete* model structure.

Equivalently, the \mathcal{F} -model structure is the (semi) model structure transferred across the adjunction

$$\mathsf{Op}^G_{\mathcal{F}}(\mathcal{V}) \stackrel{\mathbb{F}_G}{\longleftrightarrow} \mathsf{Sym}^G_{\mathcal{F}}(\mathcal{V})$$

Theorem 6.30. For V strongly cellular with diagonals, the complete semi model structure on $\mathsf{Op}^G(V)$ exists.

The key technical step in the proof follows as an easy particular case, which we now state, of the stronger Proposition 7.65.

Proposition 6.31. Suppose V is strongly cellular with diagonals, $T \in \Omega^a$, and we are given level genuine cofibrations $f_{ac}: Q \to \mathcal{P}$ and $f_{in}: X \to Y$ in $\mathsf{Sym}^G(\mathcal{V})$. Then the iterated box product

$$f^{\square V(T)} = \underset{v \in V_{ac}(T)}{\square} f_{ac}(v) \square \underset{v \in V_{in}(T)}{\square} f_{in}(v)$$

is a cofibration in $\mathcal{V}_{gen}^{G \times \Sigma_T}$

F_MAPS_DEFN

P EXISTS SECTION

P_SEMI_MODEL_THM

COFPUSH_GEN_PROP

EVEL_COFIB_PROP2

Corollary 6.32. For V strongly cellular with diagonals, and for any free \mathbb{F} -extension

$$\begin{array}{ccc}
\mathbb{F}X & \longrightarrow \mathcal{P} \\
\downarrow & & \downarrow \\
\mathbb{F}Y & \longrightarrow \mathcal{P}[u]
\end{array}$$

where $u: X \to Y$ is a level genuine cofibration and \mathcal{P} is level genuine cofibrant in $\mathsf{Sym}^G(\mathcal{V})$, $\mathcal{P} \to \mathcal{P}[u]$ is a level cofibration, trivial if u is so.

Proof. As $\mathsf{Op}(\mathcal{V}^G) = \mathsf{Op}^G(V)$, we consider the filtration in (5,16) with $(7,\overline{2})$ and (7,10). Then the result follows from Corollary (6,31) and Remark (6,23) .

Proof of Theorem [6.30. Using [20, Lemma 2.3], the fact that weak equivalences and transferent finite compositions are levelwise implies that Proposition [6.32] and Remark [6.23(i)] are sufficient.

Remark 6.33. The "with diagonals" condition can be dropped from the above theorem. Indeed, when restricting the machinery of Section 4 to G = * and $V = V^G$, Remark $\frac{\text{NED} \text{ WREATH REMARK}}{\text{WSPAN MONAD DEFINITION}}$ longer applies, and hence we may reformulate the monad on spans from Definition 4.20 by replacing F_s with Σ and using the natural map $\Sigma \wr V^{op} \xrightarrow{\otimes} V^{op}$ which exists for any symmetric monoidal product \otimes on V.

Somewhat surprisingly, the existence of \mathcal{F}_{PRIP} also follow analogously from 6.32, as level (trivial) \mathcal{F} -cofibrations are also level (trivial) genuine cofibrations.

Corollary 6.34. If V is strongly cellular, then the F semi model structure on $\operatorname{Op}^G(V)$ exists.

Finally, if our base category $\mathcal V$ is even nicer, these semi model structures are in fact Quillen.

Definition 6.35. We say a category V is underlying strongly cellular if V is strongly cellular and additionally

- (i) genuine cofibrations in \mathcal{V}^{Π} are underlying cofibrations in \mathcal{V} for all finite groups Π , and
- (ii) every object in \mathcal{V} is cofibrant.

Theorem 6.36. If V is underlying strongly cellular, then the \mathcal{F} -model structure exists on $\mathsf{Op}^G(V)$.

Proof. The definition of underlying strongly cellular is designed precisely so that the technical hypotheses on \mathcal{P} needed for Corollary 6.47 are always satisfied.

Example 6.37 Our most important case is that of $\mathcal{V} = \mathsf{sSet}$, denoting $\mathsf{Op}^G(\mathsf{sSet})$ by sOp^G . By the work of [22], we have that sSet is underlying strongly cellular, and thus the \mathcal{F} -model structure exists on sOp^G for any such \mathcal{F} .

6.4 Genuine \mathcal{F} -operads

We now turn our sensideration to the homotopy theory of genuine G-operads from Section HM Theorem II in two parts: Corollary 6.48 and Theorem 6.49.

Throughout this subsection, fix a weak indexing system $\Sigma_{\mathcal{F}} \subseteq \Sigma_G$ (see Definition 4.58). COME BACK HERE

P SEMI MODEL THM

TRONGLY_CELLULAR

F_OP_Q_MODEL_THM

G_EXISTS_SECTION

Notation 6.38. In this subsection, we will let $\Sigma_{\mathcal{F}}$ denote a fixed family of corollas, i.e. a sieve subcategory of Σ_G

and we let $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$ denote the model category $\mathcal{V}_{\mathsf{gen}}^{\Sigma_{\mathcal{F}}^{op}}$, if it exists.

Additionally, we write $\mathsf{Sym}_{G/\mathcal{F}}(\mathcal{V})$ for the category $\mathsf{Sym}_{G}(\mathcal{V})$ endowed with the $\Sigma_{\mathcal{F}}$ -projective genuine model structure from Definition ??. Equivalently, if we let $\gamma: \Sigma_{\mathcal{F}} \to \Sigma_{G}$ denote the inclusion, this is the model structure transferred from the adjunction

$$\operatorname{Sym}_{G/\mathcal{F}}(\mathcal{V}) \xrightarrow{\stackrel{\gamma_1}{\smile}} \operatorname{Sym}_{\mathcal{F}}(\mathcal{V}). \tag{6.39}$$

SYM_F_ADJ_EQ1

As $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V}) \simeq \prod_{n \geq 0} \mathcal{V}^{O^{op}_{\mathcal{F}_n}}$, Proposition PBAR_PROJ_MODEL_PROP. Proposition ?? immediately implies the following.

Corollary 6.40. If V is admissible for finite groups, then both $\operatorname{Sym}_{\mathcal{F}}(V)$ and $\operatorname{Sym}_{G/\mathcal{F}}(V)$ exist and are Quillen equivalent.

Remark 6.41. More generally, the above holds for any two nested sieve subcategories $\Sigma_{\overline{F}} \subseteq \Sigma_{\mathcal{F}}$ of Σ_G , not just $\Sigma_{\mathcal{F}}$ with Σ_G itself.

We identify the following maps in $\mathsf{Op}_G(\mathcal{V})$ (cf. Definitions 6.21, 6.28).

Definition 6.42. We say a map $f: \mathcal{O} \to \mathcal{P}$ in $\mathsf{Op}_G(\mathcal{V})$ is an

- (i) \mathcal{F} -weak equivalence (resp. \mathcal{F} -fibration) if $f(C): \mathcal{O}(C) \to \mathcal{P}(C)$ is one in $\mathcal{V}_{gen}^{\mathrm{Aut}(C)}$ for all \mathcal{F} -corollas $C \in \Sigma_{\mathcal{F}}$.
- (ii) \mathcal{F} -cofibration if it has the left lifting property against all maps which are both \mathcal{F} fibrations and \mathcal{F} -weak equivalences.
- (iv) level genuine cofibration if f(C) is a cofibration in $\mathcal{V}_{gen}^{\mathrm{Aut}(C)}$ for all $C \in \Sigma_{\mathcal{G}}$.

Definition 6.43. The \mathcal{F} (semi) model structure on $\mathsf{Op}_G(\mathcal{V})$, if it exists, is the unique (semi) model structure with \mathcal{F} -fibrations, \mathcal{F} -weak equivalences, and \mathcal{F} -cofibrations, denoted $\mathsf{Op}_{G/\mathcal{F}}(\mathcal{V})$. Equivalently, it is the (semi) model structure transferred along the adjunction below

$$\mathsf{Op}_G(\mathcal{V}) \overset{\mathbb{F}_G}{\overset{\mathsf{fgt}}{\longleftrightarrow}} \mathsf{Sym}_{G/\mathcal{F}}(\mathcal{V})$$

Notation 6.44. If $\Sigma_{\mathcal{F}} = \Sigma_G$, we refer to the \mathcal{F} model structure as the *genuine* model structure, and denote it simply $\mathsf{Op}_G(\mathcal{V})$.

We can now state the first part of our main result for this section.

Theorem 6.45. For V strongly cellular with diagonals, the genuine semi model structure on $Op_G(V)$ exists.

Again, the key technical step written out below follows from the simple case of a result from Section 7.

Proposition 6.46. Suppose V is strongly cellular with diagonals, $T \in \Omega_G^a$, and we are given level genuine cofibrations $f_{ac} : \mathcal{Q} \to \mathcal{P}$ and $f_{in} : X \to Y$ in $\mathsf{Sym}_G(V)$. Then the iterated box product

$$f^{\square V_G(T)} = \mathop{\square}_{[v] \in V_G^{ac}(T)} f_{ac}([v]) \, \mathop{\square}_{[v] \in V_G^{in}(T)} f_{in}([v])$$

is a cofibration in $\mathcal{V}_{qen}^{\operatorname{Aut}(T)}$.

SYM_F_Q_COR

G_SEMI_MODEL_THM

X_COFIBRANT_PROP

Proof. Given $[v] \in V_G(T)$, let [v] denote the orbit in $V_G(T)/\text{Aut}(T)$. Then we have a natural group homomorphism

$$\beta: \operatorname{Aut}(T) \to \prod_{\llbracket v \rrbracket} \Sigma_{|\llbracket v \rrbracket|} \wr \operatorname{Aut}(T_{\llbracket v \rrbracket}),$$

and the forgetful functor

$$\beta^*: V_{\mathrm{gen}}^{\Pi\Sigma_{\llbracket v \rrbracket} \wr \mathsf{Aut}(T_{\llbracket v \rrbracket})} \to \mathcal{V}_{\mathrm{gen}}^{\mathsf{Aut}(T)}$$

 $eta^*:V_{f g}^{f i}$

preserves genuine cofibrations by Remark 6.23(i). Thus, it suffices to show that $f_{\text{POP}}^{\square V_G(T)}$ is cofibrant on the left hand side. This follows immediately by Proposition 7.34 and Remark 6.23(ii).

LEVEL_COFIB_PROP

F_SEMI_MODEL_THM

OP_F_Q_MODEL_THM

Corollary 6.47. For V strongly cellular with diagonals, and for any free \mathbb{F}_G -extension

$$\begin{array}{ccc} \mathbb{F}_G X & \longrightarrow & \mathcal{P} \\ \downarrow & & \downarrow \\ \mathbb{F}_G Y & \longrightarrow & \mathcal{P}[u] \end{array}$$

where $u: X \to Y$ is a level genuine cofibration and \mathcal{P} is level genuine cofibrant in $\mathsf{Sym}_G(\mathcal{V})$, $\mathcal{P} \to \mathcal{P}[u]$ is a level genuine cofibration, trivial if u is so.

 $Proof_{\begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subarray}{c}{\bf ENV} \ \mbox{using the levelwise filtration from } \\ \begin{subar$

Proof of Theorem 6.75. This follows precisely as the proof of Theorem 6.30, replacing the use of Corollary 6.32 with Corollary 6.47.

Again, we find that the existence of the $\mathcal F$ semi model structures follows identically as the genuine. Indeed, 6.25 also implies that cofibrations in $\mathsf{Sym}_{G/\mathcal F}(\mathcal V)$ are in fact level genuine cofibrations, which suffices.

Corollary 6.48. If V is strongly cellular with diagonals, the \mathcal{F} semi model structure on $\mathsf{Op}_G(V)$ exists for any sieve subcategory $\Sigma_{\mathcal{F}} \subseteq \Sigma_G$.

Precisely as for Theorem 6.36, if our base category \mathcal{V} is even nicer, these semi model structures are in fact Quillen model structures.

Theorem 6.49. For V underlying strongly cellular with diagonals, then the \mathcal{F} -model structure $\mathsf{Op}_{G/\mathcal{F}}(V)$ exists for any sieve subcategory $\Sigma_{\mathcal{F}} \subseteq \Sigma_{G}$.

Example 6.50. The \mathcal{F} -model structure exists on $\mathsf{sOp}_G \coloneqq \mathsf{Op}_G(\mathsf{sSet})$ for any sieve subcategory $\Sigma_{\mathcal{F}} \subseteq \Sigma_G$.

7 Cofibrancy and Quillen equivalences

COFIB SEC

FAMILY DEF

SIEVE REM

The key ingredient required to prove our desired Quillen equivalence

$$\iota^* : \mathsf{Op}_G \rightleftarrows \mathsf{Op}^G : \iota_*$$

will be an analysis of cofibrant objects in Op_G , which we now provide.

7.1 Families of subgroups

This section establishes some useful properties of the model structures associated to families of subgroups. Throughout all groups will be assumed finite.

Definition 7.1. A family \mathcal{F} of subgroups of G is a collection of subgroups $H \leq G$ such that

- if $H \in \mathcal{F}$ then $H^g = gHg^{-1} \in \mathcal{F}$ for all $g \in G$;
- if $K \le H$ and $H \in \mathcal{F}$ then $K \in \mathcal{F}$.

• If $K \leq H$ and $H \in \mathcal{F}$ then $K \in \mathcal{F}$

Remark 7.2. Any family determines a full subcategory $O_{\mathcal{F}} \hookrightarrow O_G$ of those orbital G-sets G/H for $H \in \mathcal{F}$.

Moreover, $O_{\mathcal{F}}$ is a sieve, i.e., for any map $G/K \to G/H$ in O_G such that $G/H \in O_{\mathcal{F}}$ it is also $G/K \in O_{\mathcal{F}}$. In fact, it is easy to check that families are in bijection with sieves.

Remark 7.3. For fixed G families form a lattice, ordered by inclusion, with meet and join given by intersection and union.

We now recall the following basic notion and result concerning model structures induced by families (cf. [22, Prop. 2.6]).

Definition 7.4. We say a model category V has *cellular fixed points* if for all finite groups G and subgroups $H, K \leq G$ one has that:

- (i) fixed points $(-)^H: \mathcal{V}^G \to \mathcal{V}$ preserve direct colimits;
- (ii) fixed points $(-)^H$ preserve pushouts where one leg is $(G/K) \cdot f$, for f a cofibration;
- (iii) for each object $X \in \mathcal{V}$, the natural map $(G/K)^H \cdot X \to ((G/K) \cdot X)^H$ is an isomorphism.

Proposition 7.5. If V is a cofibrantly generated model category with cellular fixed points, then for any finite group G and family \mathcal{F} , there is a model structure $\mathcal{V}_{\mathcal{F}}^G$ on the category \mathcal{V}^G , called the \mathcal{F} -model structure such that both weak equivalences and fibrations are determined by the fixed points $(-)^H$ for $H \in \mathcal{F}$.

When \mathcal{F} is the family of all subgroups the model structure in Proposition 7.5 is called simply the G-genuine model structure.

We will find it convenient to strengthen the cellularity conditions in Definition 7.4.

Proposition 7.6. Suppose that V is a cofibrantly generated model category with cellular

Proposition 7.6. Suppose that V is a cofibrantly generated model category with cellular fixed points. Then:

- (i) $(-)^H: \mathcal{V}^G \to \mathcal{V}$ preserves cofibrations and pushouts where one leg is a genuine cofibration;
- (ii) if X is G-genuine cofibrant the map $(G/K)^H \cdot X^H \to (G \cdot_K X)^H$ is an isomorphism. Suppose additionally that \mathcal{V} is a closed monoidal model category as well as strongly cofibrantly generated (i.e. that the domains of the generating (trivial) cofibrations are cofibrant). Then:
- (iii) for f, g genuine cofibrations between genuine cofibrant objects the natural map

$$f^H \square g^H \xrightarrow{\simeq} (f \square g)^H$$

is an isomorphism. In particular, $X^H \otimes Y^H \xrightarrow{\simeq} (X \otimes Y)^H$ is an isomorphism when X, Y are genuine cofibrant.

Proof. Since all conditions are compatible with retracts, we are free to assume each cofibration $f: X \to Y$ (or, for Y cofibrant, the map $\emptyset \to Y$) is a transfinite composition

$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \dots \to Y = X_\beta = \operatorname{colim}_{\alpha < \beta} X_\alpha$$
 (7.7)

TRANSFCOMP EQ

where each $f_{\alpha}\colon X_{\alpha}\to X_{\alpha+1}$ is the pushout of a generating cofibration $(G/H)\cdot i_{\alpha}$. Both (i) and (ii) now follow by transfinite induction on α in the partial composite map $X_0\to X_{\alpha}$, with the successor ordinal case following by Def. 7.4 (ii), (iii) and the limit ordinal case by Def. 7.4 (i). We note that (ii) also includes an obvious base case $X_0=\emptyset$. To prove (iii), we consider first the case of $q_{\text{TRANSPCOMP}}$ cofibration. The exact same induction argument now applies to any f as in (7.7), contingently on a base case $f=(\emptyset\to X)$. But this base case now follows by the exact same argument, now contingent on the base case $f=(\emptyset\to\emptyset)$, which is obvious. The general case now follows by repeating the same argument, now using the analogous filtration (7.7) for g.

As property (iii) above (and the related Proposition 7.34) will be of increasing importance, we give a name to such categories where it is true.

Definition 7.8. We say a category V is *strongly cellular* if the following hold:

- (i) \mathcal{V} is a strongly cofibrantly-generated closed monoidal model category,
- (ii) V has cellular fixed points,

TRONGLY_CELLULAR

CELL DEF

FMODELEXIST PROP

STRONGCELL PROP

65

(iii) $\mathcal V$ has cofibrant symmetric pushout powers (see Definition 7.24).

We end this section by cataloging some straightforward interactions of \mathcal{F} -model structures with regards to change of group and pushout products.

FGTRIGHT PROP

Proposition 7.9. Let $\phi: G \to \overline{G}$ be a homomorphism and V be cofibrantly generated with cellular fixed points. Then the adjunction

$$\bar{G} \cdot_{G} (-): \mathcal{V}_{\mathcal{F}}^{G} \longleftrightarrow \mathcal{V}_{\bar{\mathcal{F}}}^{\bar{G}}: \mathsf{fgt}$$
 (7.10)

is a Quillen adjunction if for any $H \in \mathcal{F}$ it is $\phi(H) \in \bar{\mathcal{F}}$.

Proof. Since one has a canonical isomorphism of fixed points $(fgt(X))^H \simeq X^{\phi(H)}$, it is immediate that the right adjoint preserves fibrations and trivial fibrations.

FGTLEFT PROP

BIQUILLENG PROP

Proposition 7.11. Let $\phi: G \to \overline{G}$ be a homomorphism and V be cofibrantly generated with cellular fixed points. Then the adjunction

$$\operatorname{fgt}: \mathcal{V}_{\bar{\mathcal{F}}}^{\bar{G}} \longleftrightarrow \mathcal{V}_{\mathcal{F}}^{G} : \operatorname{Hom}_{G}(\bar{G}, -) : \tag{7.12}$$

is a Quillen adjunction if for any $H \in \bar{\mathcal{F}}$ it is $\phi^{-1}(H) \in \mathcal{F}$.

Proof. Since the double coset formula yields that that

$$\operatorname{\mathsf{fgt}}\left(\bar{G}/H\cdot f\right)\simeq\operatorname{\mathsf{fgt}}\left(\bar{G}/H\right)\cdot f\simeq\left(\coprod_{[a]\in\phi(G)\backslash\bar{G}/H}G/\phi^{-1}(H^a)\right)\cdot f$$

it is immediate that the left adjoint fgt preserves cofibrations and trivial cofibrations.

FGTRIGHT@RUEFT PROP
Propositions 7.9 and 7.11 motivate the following definition.

Definition 7.13. Let $\phi: G \to \overline{G}$ be a homomorphism and \mathcal{F} and $\overline{\mathcal{F}}$ families in G and \overline{G} . We

$$\phi^*(\bar{\mathcal{F}}) = \{ H \le G : \phi(H) \in \bar{\mathcal{F}} \}$$
 (7.14) PHISTARDEF EQ

PHISTARDEF3 EQ

$$\phi_!(\mathcal{F}) = \{\phi(H)^{\bar{g}} \le \bar{G} : \bar{g} \in \bar{G}, H \in \mathcal{F}\}$$

$$(7.15)$$

$$\phi_*(\mathcal{F}) = \{ \bar{H} \le \bar{G} : \forall_{\bar{a} \in \bar{G}} \left(\phi^{-1} \left(\bar{H}^{\bar{g}} \right) \in \mathcal{F} \right) \}$$

$$(7.16)$$

Lemma 7.17. The $\phi^*(\bar{\mathcal{F}})$, $\phi_!(\mathcal{F})$, $\phi_*(\mathcal{F})$ just defined are themselves families. Furthermore

(i) The "if" condition in Proposition 7.9 holds iff $\mathcal{F} \subset \phi^*(\bar{\mathcal{F}})$ iff $\phi_!(\mathcal{F}) \subset \bar{\mathcal{F}}$.

(ii) The "if" condition in Proposition 7.11 holds iff $\phi^*(\bar{\mathcal{F}}) \subset \mathcal{F}$ iff $\bar{\mathcal{F}} \subset \phi_*(\mathcal{F})$.

Proof. Since the result is elementary, we include only the proof of the second iff in (ii), which is the hardest step and illustrates the necessary arguments. This follows by the following

$$\phi^{*}(\bar{\mathcal{F}}) \subset \mathcal{F} \Leftrightarrow \left(\bigvee_{\substack{H \leq G \\ \phi(H) \in \bar{\mathcal{F}}}} H \in \mathcal{F}\right) \Leftrightarrow \left(\bigvee_{\bar{H} \in \bar{\mathcal{F}}} \phi^{-1}(\bar{H}) \in \mathcal{F}\right) \Leftrightarrow \left(\bigvee_{\bar{H} \in \bar{\mathcal{F}}} \phi^{-1}(\bar{H}^{\bar{g}}) \in \mathcal{F}\right) \Leftrightarrow \bar{\mathcal{F}} \subset \phi_{*}(\mathcal{F})$$

Note that the second equivalence follows since $H \leq \phi^{-1}(\phi(H))$ and \mathcal{F} is closed under subgroups while the third equivalence follows since $\bar{\mathcal{F}}$ is closed under conjugation.

Proposition 7.18. Suppose that V is cofibrantly generated, has cellular fixed points, and is also a closed monoidal model category. Then the bifunctor

$$\mathcal{V}_{\mathcal{F}}^{G} \times \mathcal{V}_{\bar{\mathcal{F}}}^{G} \xrightarrow{\otimes} \mathcal{V}_{\mathcal{F} \cap \bar{\mathcal{F}}}^{G} \tag{7.19}$$

is a left Quillen bifunctor.

Proof. The double coset formula now yields

$$(G/H \cdot f) \square (G/\bar{H} \cdot g) \simeq (G/H \times G/\bar{H}) \cdot (f \square g) \simeq \left(\coprod_{[a] \in H \setminus G/\bar{H}} G/H \cap \bar{H}^a \cdot (f \square g) \right)$$
(7.20)

and hence the result follows since families are closed under conjugation and subgroups. \Box

Definition 7.21. Let \mathcal{F} and $\overline{\mathcal{F}}$ be families in G and G, respectively.

We define their external intersection to be the family of $G \times \bar{G}$ given by

$$\mathcal{F} \sqcap \bar{\mathcal{F}} = (\pi_G)^*(\mathcal{F}) \cap (\pi_{\bar{G}})^*(\bar{\mathcal{F}})$$

for $\pi_G: G \times \bar{G} \to G$, $\pi_{\bar{G}}: G \times \bar{G} \to \bar{G}$ the projections.

Remark 7.22. Combining Proposition 7.11 with Proposition 7.18 yields that the following composite is a left Quillen bifunctor.

$$\mathcal{V}_{\mathcal{F}}^{G} \times \mathcal{V}_{\bar{\mathcal{F}}}^{\bar{G}} \xrightarrow{\text{fgt}} \mathcal{V}_{(\pi_{\bar{G}})^{*}(\mathcal{F})}^{G \times \bar{G}} \times \mathcal{V}_{(\pi_{\bar{G}})^{*}(\bar{\mathcal{F}})}^{G \times \bar{G}} \xrightarrow{\otimes} \mathcal{V}_{\mathcal{F} \sqcap \bar{\mathcal{F}}}^{G \times \bar{G}}$$

$$(7.23) \quad \boxed{\text{EXTERINTADJ EQ}}$$

7.2Pushout powers

That (7.23) is a left Quillen bifunctor (and its obvious higher order analogues) is one of the key properties of pushout products of \mathcal{F} cofibrations when those cofibrations (and the group) are allowed to change. However, when those cofibrations (and hence G) coincide there is an additional symmetric group action that we will need to consider.

To handle such actions we introduce the following notion.

Definition 7.24. We say a monoidal model category \mathcal{V} has cofibrant symmetric pushout powers if for each cofibration (resp. trivial cofibration) f the pushout product $f^{\square n}$ is a genuine Σ_n -cofibration (resp. trivial cofibration).

Remark 7.25. When $\mathcal V$ is cofibrantly generated the condition in Definition 7.24 needs only be checked for generating cofibrations. However, the argument needed is somewhat harder than usual due to $(-)^{\square n}$ not preserving composition of maps: one instead follows the argument in the proof of Proposition 7.34 below when G = *.

We now turn to describing the symmetric power analogue of Definition $\frac{\texttt{EXTERINT DEF}}{7.21}$.

We start with some notation. Letting λ be a partition $E = \lambda_1 \coprod \cdots \coprod \lambda_k$ of a finite set E, we write $\Sigma_{\lambda} = \Sigma_{\lambda_1} \times \cdots \times \Sigma_{\lambda_k} \leq \Sigma_E$ for the subgroup of permutations preserving λ . In addition, given any $e \in E$ we write λ_e for the partition $E = \{e\} \coprod (E - e)$, so that Σ_{λ_e} is then the isotropy of e.

Definition 7.26. Let \mathcal{F} be a family of G, E a finite set and $e \in E$ any fixed element.

We define the *n*-th semidirect power of \mathcal{F} to be the family of $\Sigma_E \wr G = \Sigma_E \ltimes G^{\times E}$ given by

$$\mathcal{F}^{\mathsf{K}E} = \left(\iota_{\Sigma_{\lambda_e}\wr G}\right)_* \left(\left(\pi_G\right)^* \left(\mathcal{F}\right)\right)\right),\tag{7.27}$$

where ι is the inclusion $\Sigma_{\lambda_e} \wr G = \Sigma_{\{e\}} \Sigma_{E} \wr G$ and π the projection $\Sigma_{\lambda_e} \wr G = \Sigma_{\{e\}} \times G \times \Sigma_{E-e} \wr G \to G$.

More explicitly, since in (7.16) one needs only consider conjugates by coset representatives of $\bar{G}/\phi(G)$, when computing $(\iota_{\Sigma_{\lambda_e}\wr G})_*$ one needs only conjugate by coset representatives of $\Sigma_E \wr G/\Sigma_{\lambda_e} \wr G \simeq \Sigma_E/\Sigma_{\lambda_e}$, so that

$$K \in \mathcal{F}^{\ltimes E} \text{ iff } \forall \pi_G \left(K \cap \left(\Sigma_{\lambda_e} \wr G \right) \right) \in \mathcal{F}, \tag{7.28}$$
 showing that in particular (7.27) is independent of the choice of $e \in E$.

COFSYMPUSHPOW

EXTERINT DEF

Remark 7.29. The previous definition is likely to seem mysterious at first sight. Ultimately, the origin of this definition is best understood by working through this section backwards: the study of the interactions between equivariant trees and graph families, namely Lemma [7.60, requires the study of the families $\mathcal{F}^{\kappa_G n}$ in Notation [7.45, which are variants of the $\mathcal{F}^{\kappa n}$ construction for graph families. It then suffices, and is notationally far more convenient, to establish the required results first for the $\mathcal{F}^{\kappa n}$ families and then translate them to the $\mathcal{F}^{\kappa_G n}$

IMESPRODINC PROP

Proposition 7.30. Writing $\iota: \Sigma_E \times \Sigma_{\bar{E}} \to \Sigma_{E \sqcup \bar{E}}$ for the inclusion, one has

$$\mathcal{F}^{\mathsf{K}E} \sqcap \mathcal{F}^{\mathsf{K}\bar{E}} \subset \iota^* \left(\mathcal{F}^{\mathsf{K}E} \mathsf{L}\bar{E} \right). \tag{7.31}$$

Hence, the following is a left Quillen bifunctor.

$$\Sigma_{E \amalg \bar{E}} :_{\Sigma_{E} \times \Sigma_{\bar{E}}} (- \otimes -) : \mathcal{V}^{\Sigma_{E} \wr G} \times \mathcal{V}^{\Sigma_{\bar{E}} \wr G} \to \mathcal{V}^{\Sigma_{E \amalg \bar{E}} \wr G}$$

$$(7.32) \quad \boxed{\text{LTIMESPRODQUI EQ}}$$

Proof. Let $K \in \mathcal{F}^{\times E} \cap \mathcal{F}^{\times \bar{E}}$ and $e \in E$. We write λ_e for the partition of $E \coprod \bar{E}$ and λ_e^E for the partition of E. One then has

$$\pi_G\left(K \cap (\Sigma_{\lambda_e} \wr G)\right) = \pi_G\left(\pi_{\Sigma_E \wr G}(K) \cap (\Sigma_{\lambda_e^E} \wr G)\right),\tag{7.33}$$

where on the right we write $\pi_{\Sigma_E \wr G} \colon \Sigma_E \wr G \times \Sigma_{\bar{E}} \wr G \to \Sigma_E \wr G$ and $\pi_G \colon \Sigma_{\lambda_e^E} \wr G = \Sigma_{\{e\}} \times G \times \Sigma_{E-e} \wr G \to G$. Therefore K satisfies (7.28) for $\mathcal{F}^{\times E} \sqcup \bar{E}$ since $\pi_{\Sigma_E \wr G}(K)$ does so for $\mathcal{F}^{\times E}$. The case of $e \in \bar{F}$ is identical. Exterintadj eq [FGTRIGHT PROP (7.32) simply combines the left Quillen bifunctor (7.23) with Proposition 7.9.

POWERF PROP

Proposition 7.34. Suppose that V is a cofibrantly generated closed monoidal model cate $gory\ with\ cellular\ fixed\ points\ and\ with\ cofibrant\ symmetric\ pushout\ powers.$

Then, for all n and cofibration (resp. trivial cofibration) f of $\mathcal{V}_{\mathcal{F}}^G$ one has that $f^{\square n}$ is a

Then, for all n and cofibration (resp. trivial cofibration) of $\mathcal{V}_{\mathcal{F}}^{\Sigma_n \wr G}$ one has that f^{Ξ_n} is a cofibration (resp. trivial cofibration) of $\mathcal{V}_{\mathcal{F}}^{\Sigma_n \wr G}$.

POWERF PROP

Perform

Our proof of Proposition 7.34 will essentially repeat the main argument in the proof of [16, Thm. 1.2]. However, both for the sake of completeness and to stress that the argument is independent of the (fairly technical) model structures in [17] we include an abridged version of the proof below, the key ingredient of which is that (7.32) is a left Quillen bifunctor.

Proof. We first note that in the case of $i = (G/H) \cdot \bar{\imath}$, $H \in \mathcal{F}$, a generating (trivial) cofibration it is

$$i^{\square n} = (G/H)^{\times n} \cdot \overline{\imath}^{\square n} \simeq \Sigma_n \wr G \underset{\Sigma_m \wr H}{\cdot} \overline{\imath}^{\square n}.$$

 $\bar{\imath}^{\Box n}$ is thus a $\Sigma_n \imath - H$ -genuine (trivial) cofibration by the cofibrant symmetric pushout powers hypothesis contined with Proposition 7.11 and hence $i^{\Box n}$ is a $\mathcal{F}^{\kappa n}$ (trivial) cofibration by Proposition 7.9 since $\Sigma_n \wr H \in \mathcal{F}^{\ltimes n}$.

For the general case, we start by making the key observation that for composable arrows $\bullet \xrightarrow{g} \bullet \xrightarrow{h} \bullet$ the *n*-fold pushout product $(hg)^{\square n}$ has a factorization

$$\bullet \xrightarrow{k_0} \bullet \xrightarrow{k_1} \cdots \xrightarrow{k_n} \bullet \tag{7.35}$$

where each k_i , $0 \le i \le n$, fits into a pushout product

$$\Sigma_{n} = \sum_{n-i} \times \Sigma_{i} \left(g^{\square n-i} \square h^{\square i}\right) \downarrow \qquad \qquad \downarrow k_{i}$$
 (7.36) COMPNFOLDFACTPUSH EQ

Briefly, (7.35) follows from suitable Σ_n -symmetric convex subposets $P_0 \subset P_1 \subset \cdots \subset P_n$ of the poset $P_n = (0 \to 1 \to 2)^{\times n}$ where P_0 consists of "tuples with at least one 0-coordinate" and

 P_i is obtained from P_{i-1} by adding the "tuples with n-i 1-coordinates and i 2-coordinates". Additional details concerning this filtration appear in the proof of [16, Lemma 4.8].

The general proof now follows by writing f as a retract of a transfinite composition of pushouts of generating (trivial) cofibrations as in (7.7). As usual, retracts can be ignored, and we can hence assume that there is an ordinal κ and $X_{\bullet}: \kappa \to \mathcal{V}^G$ such that (i) $f_{\beta}: X_{\beta} \to X_{\beta+1}$ is the pushout of a (trivial) cofibration i_{β} ; (ii) $\operatorname{colim}_{\alpha < \beta} X_{\alpha} \xrightarrow{\sim} X_{\beta}$ for limit ordinals $\beta < \kappa$; (iii) setting $X_{\kappa} = \operatorname{colim}_{\beta < \kappa} X_{\beta}$, f equals the transfinite composite $X_0 \to X_{\kappa}$.

We argue by transfinite induction on κ . Writing $\bar{f}_{\beta}: X_0 \to X_{\beta}$ for the partial composites, it suffices to check that the natural transformation of κ -diagrams (rightmost map not included)

is κ -cofibrant, i.e. that the maps $Q^n(\bar{f}_\beta) \coprod_{\operatorname{colim}_{\alpha < \beta}} Q^n(\bar{f}_\alpha)$ colim $_{\alpha < \beta} X_\alpha^{\otimes n} \to X_\beta^{\otimes n}$ are cofibrations in $\mathcal{V}_{\mathcal{F}^{\kappa n}}^{\Sigma_n \wr G}$. Condition (ii) above implies that this map is an isomorphism for β a limit ordinal while for $\beta+1$ a successor ordinal it is the map $Q^n(\bar{f}_{\beta+1}) \coprod_{Q^n(\bar{f}_{\beta})} X_\beta^{\otimes n} \to X_\beta^{\otimes n}$. But since $Q^n(\bar{f}_{\beta+1}) \to Q^n(\bar{f}_{\beta+1}) \coprod_{Q^n(\bar{f}_{\beta})} X_\beta^{\otimes n}$ is precisely the map k_0 of (\bar{f}_{β}) for g compressibly g is the composite $k_n k_{n-1} \cdots k_1$ so that the result now follows from (\bar{f}_{β}) combined with (\bar{f}_{β}) , the induction hypothesis applied to \bar{f}_β , the fact that $f_\beta^{\square k}$ is a pushout of $i_\beta^{\square k}$ (cf. [16, Lemma 4.11]) and the cofibrancy of $i_\beta^{\square k}$ proven at the beginning.

We will also need to understand the fixed points of $f^{\square n}$ for general subgroups $K \leq \Sigma_n \wr G$. To do so recall first that $f^{\square n}$ can be built from the composite

$$f^{\otimes n}: (0 \to 1)^{\times n} \xrightarrow{f^{\times n}} \mathcal{V}^{\times n} \xrightarrow{\otimes} \mathcal{V}$$

as the map

$$\operatorname{colim}_{(0\to 1)^{\times n} - (1,\dots,1)} f^{\otimes n} \to Y^{\otimes n},$$

where Y is the target of f. Any $K \leq \Sigma_n \wr G$ acts on the poset $(0 \to 1)^{\times n}$ itself (via $K \to \Sigma_n \wr G \to \Sigma_n$). Moreover, the fixed subposet $((0 \to 1)^{\times n})^K$ then consists of those tuples in $\{0,1\}^{\times n}$ whose coordinates coincide if their indexes are in the same coset of n/K, i.e. there is an identification $((0 \to 1)^{\times n})^K \simeq (0 \to 1)^{\times n/K}$.

Example 7.37. When n=3 and $n/K=\{\{1,2\},\{3\}\}$ the fixed subposet $(0 \to 1)^{n/K}$ is displayed on the right below.

It will be key for our purposes to know that fixed points $(f^{\square n})^K$ can be computed by first restricting to the smaller cube $(0 \to 1)^{\times n/K}$, resulting in a cube of objects with K-actions, and then computing a pushout over that smaller cube. The formula result follows.

Proposition 7.38. Suppose that V is as in Proposition 7.34 and that it is also strongly cofibrantly generated (cf. Prop. 7.6(m)). Let $K \leq \Sigma_n \wr G$ be a subgroup, $f: X \to Y$ a map in \mathcal{V}^G and consider the natural maps (in the arrow category)

$$\Box_{[i]\in n/K} \left(f^{\otimes [i]} \right)^K \to \left(f^{\Box n} \right)^K.$$
(7.39) FIXEDPUSH EQ

FIXEDPUSH PROP

If f is a cofibration between cofibrant objects then (7.39) is an isomorphism.

Proof. The result will follow by induction on n. The base case n = 1 is obvious.

Moreover, it is obvious that (7.39), which is a map of arrows, is an isomorphism on the

target objects, hence the real claim is that this map of alrows, is an isomorphism on the target objects, hence the real claim is that this map is also an isomorphism on sources. We now note that by considering (7.35) for $g = \emptyset \to X$, h = f and removing the last map in (7.36) one has isomorphisms

$$\begin{split} \left(\Sigma_{n} & \underset{\Sigma_{n-i} \times \Sigma_{i}}{\cdot} X^{\otimes n-i} \otimes f^{\square i} \right)^{K} \simeq \coprod_{\substack{\underline{n}/K = A/K \sqcup B/K \\ |A| = n-i, |B| = i}} \left(X^{\otimes A} \otimes f^{\square B} \right)^{K} \simeq \coprod_{\substack{\underline{n}/K = A/K \sqcup B/K \\ |A| = n-i, |B| = i}} \left(X^{\otimes A} \right)^{K} \otimes \left(f^{\square B} \right)^{K} \\ & \simeq \coprod_{\substack{\underline{n}/K = A/K \sqcup B/K \\ |A| = n-i, |B| = i}} \left(\bigotimes_{[j] \in A/K} \left(X^{\otimes [j]} \right)^{K} \right) \otimes \left(\bigsqcup_{[k] \in B/K} \left(f^{\otimes [k]} \right)^{K} \right) \end{split}$$

where the first step is an instance of Prop. [7.6(ii), the second step follows from Prop. [8.1] PROP (with the required cofibrancy of the objects following from Propositions [7.18 and [7.34), and the last step follows by Prop. [7.6(iii) together with the induction hypothesis (which applies since $|B| \le i < n$).

We have thus shown that the leftmost map in the pushouts (7.36) for $(f^{\square n})$ is isomorphic to the leftmost map in the pushouts for the corresponding filtration of \Box $(f^{\otimes[i]})^K$, and since $(-)^K$ preserves such pushouts (cf. Prop. [7.6(i)), the result now follows.

Corollary 7.40. Given a partition λ given by $\{1, 2, \dots, n\} = \lambda_1 \sqcup \dots \sqcup \lambda_k$, cofibrations between cofibrant objects f_i in \mathcal{V}^{G_i} , $1 \le i \le k$ and a subgroup $K \le \Sigma_{\lambda_1} \wr G_1 \times \cdots \times \Sigma_{\lambda_k} \wr G_k$, the natural

is an isomorphism.

Proof. This simply combines Propositions 7.6(iii) and 7.38.

G-graph families and G-trees 7.3

We will now convert the results in the previous sections to the context of the type of families we are mainly interested in: graph families. We note that in this section we use Σ to denote a general group (usually meant to be some type of permutation group).

Definition 7.42. A subgroup $\Gamma \leq G \times \Sigma$ is called a *G-graph subgroup* if $\Gamma \cap \Sigma = *$. Further, a family \mathcal{F} of $G \times \Sigma$ is called a G-graph family if it consists of G-graph subgroups.

Remark 7.43. Γ is a G-graph subgroup iff it can be written as

$$\Gamma = \{(k, \varphi(k)) : k \in K \le G\}$$

for some partial homomorphism $G \geq K \xrightarrow{\varphi} \Sigma$, thus motivating the terminology.

Remark 7.44. The collection of all G-graph subgroups is itself a family. Indeed, it coincides with $(\iota_{\Sigma})_*(\{*\})$ for the inclusion homomorphism $\iota_{\Sigma}: \Sigma \to G \times \Sigma$.

Notation 7.45. Letting \mathcal{F} , $\bar{\mathcal{F}}$ be G-graph families of $G \times \Sigma$ and $G \times \bar{\Sigma}$ we will write

$$\mathcal{F} \sqcap_G \bar{\mathcal{F}} = \Delta^* (\mathcal{F} \sqcap \bar{\mathcal{F}})$$
 $\mathcal{F}^{\ltimes_G n} = \Delta^* (\mathcal{F}^{\ltimes n})$

where Δ denotes either of the diagonal inclusions $\Delta: G \times \Sigma \times \overline{\Sigma} \to G \times \Sigma \times G \times \overline{\Sigma}$ or $\Delta: G \times \Sigma_n \wr \Sigma \to G \times \Sigma_n \wr \Sigma$ $\Sigma_n \wr (G \times \Sigma).$

GRAPH REM

SEMIDIRG NOT

PACKINGSQCAP REM

Remark 7.46. Unpacking Definition $\overline{\mathcal{I}}_{C21}$ one has that $\Gamma \in \mathcal{F} \sqcap_G \overline{\mathcal{F}}$ iff $\pi_{G \times \Sigma}(\Gamma) \in \mathcal{F}$, $\pi_{G \times \bar{\Sigma}}(\Gamma) \in \bar{\mathcal{F}}$.

ACKINGLTIMES REM

Remark 7.47. Unpacking (7.28) and noting that

$$(G \times \Sigma_E \wr \Sigma) \cap (\Sigma_{\lambda_e} \wr (G \times \Sigma)) = G \times \Sigma_{\lambda_e} \wr \Sigma$$

one has

$$K \in \mathcal{F}^{\kappa_G E} \text{ iff } \forall \pi_{G \times \Sigma} \left(K \cap \left(G \times \Sigma_{\lambda_e} \wr \Sigma \right) \right) \in \mathcal{F}. \tag{7.48}$$

 $K \in \mathcal{F}^{\ltimes_G E} \text{ iff } \bigvee_{e \in E} \pi_{G \times \Sigma} \left(K \cap \left(G \times \Sigma_{\lambda_e} \wr \Sigma \right) \right) \in \mathcal{F}. \tag{7.48}$ Combining either the left Quillen bifunctor (7.23) or Proposition 7.34 with Proposition 7.11 yields the following results.

Proposition 7.49. Suppose that V is a cofibrantly generated closed monoidal model category with cellular fixed points. Let \mathcal{F} , $\bar{\mathcal{F}}$ be G-graph families of $G \times \Sigma$ and $G \times \bar{\Sigma}$. Then the following (with diagonal G-action on the images) is a left Quillen bifunctor.

$$\mathcal{V}_{\mathcal{F}}^{G \times \Sigma} \times \mathcal{V}_{\bar{\mathcal{F}}}^{G \times \bar{\Sigma}} \xrightarrow{\otimes} \mathcal{V}_{\mathcal{F} \sqcap_{G} \bar{\mathcal{F}}}^{G \times \Sigma \times \bar{\Sigma}}$$
 (7.50) EXTERINTADJG EQ

POWERFG PROP

UNPACKFTYPE REM

REEINDUCDESC REM

XTERINTADJG PROP

Proposition 7.51. Suppose that V is a cofibrantly generated closed monoidal model category with cellular fixed points and with cofibrant symmetric pushout powers.

Let \mathcal{F} be a G-graph family of $G \times \Sigma$. If f is a cofibration (resp. trivial cofibration) in $\mathcal{V}_{\mathcal{F}}^{G \times \Sigma}$ then so is $f^{\Box n}$ a cofibration (resp. trivial cofibration) in $\mathcal{V}_{\mathcal{F}}^{G \times \Sigma_{n} \wr \Sigma}$.

Remark 7.52. It is straightforward to check that $\mathcal{F} \sqcap_G \bar{\mathcal{F}}$ is in fact also a G-graph family of $G \times \Sigma \times \overline{\Sigma}$. However, $\mathcal{F}^{\kappa_{G}n}$ is not a G-graph family of $G \times \Sigma_n \wr \Sigma$, due to the need to consider the power Σ_n -action.

The G-graph families we will be interested in encode certain families of G-trees. We start with the case of families of corollas (see Definition 4.54)

Proposition 7.53. Let \mathcal{F} be a family of G-corollas and $T \in \Omega$ a tree with automorphism group Σ_T . Write \mathcal{F}_T for the collection of G-graph subgroups of $G \times \Sigma_T$ encoded by partial homomorphisms $G \geq H \rightarrow \Sigma_T$ such that the associated G-tree $G \cdot_H T$ is a \mathcal{F} -tree.

Then \mathcal{F}_T is a G-graph family.

Proof. Closure under conjugation follows since conjugate graph subgroups produce isomorphic G-trees. As for subgroups, they correspond to restrictions $K \leq H \to \Sigma_T$, which induce quotient maps $G \cdot_K T \to G \cdot_H T$. \mathcal{F}_T is thus closed under subgroups since the G-vertices of G _H T are quotients of those of G _K T.

Remark 7.54. come back

The closure condition required of weak indexing systems from Definition 4.58 can be translated in terms of families as saying that for any tree $T \in \Omega$ and letting $\phi: \Sigma_T \to \Sigma_{\text{lr}_{\text{fGTRIGHT}}}$ PROP be the natural homomorphism, one has $(G \times \phi)(\Gamma) \in \mathcal{F}_{lr(T)}$ for any $\Gamma \in \mathcal{F}_T$. Proposition 7.9 then says that

$$\phi_!: \mathcal{V}_{\mathcal{F}_T}^{G \times \Sigma_T} \to \mathcal{V}_{\mathcal{F}_{|r(T)}}^{G \times |r(T)|}$$
(7.55) LRLEFTQUILLEN EQ

is a left Quillen functor.

Remark 7.56. Unpacking definitions, a partial homomorphism $G \geq H \rightarrow \Sigma_T$ encodes a subgroup in \mathcal{F}_T iff, for each vertex $v = e^{\uparrow} \leq e$ of T with $H_e \leq H$ the H-isotropy of the edge e, the induced homomorphism

$$H_e \to \Sigma_{T_v} \simeq \Sigma_{|v|}$$
 (7.57) PARTIALHOMEDGE EQ

encodes a subgroup in $\mathcal{F}_{|v|}$, where $|v| = |e^{\uparrow}|$.

Remark 7.58. Recall that any tree $T \in \Omega$ other than the stick η has an essentially unique grafting decomposition $T = C_n \coprod_{n \to n} (T_1 \coprod_{n \to n} (T_1 \coprod_{n \to n} T_n))$ where C_n is the root corolla and the leaves of C_n are identified with the roots of the T_i . We now let λ be the partition $\{1, \dots, n\} = \lambda_1 \sqcup \dots \sqcup \lambda_k$ such that $1 \le i_1, i_2 \le n$ are in the same class iff $T_{i_1}, T_{i_2} \in \Omega$ are isomorphic.

Writing $\Sigma_{\lambda} = \Sigma_{\lambda_1} \times \cdots \times \Sigma_{\lambda_k}$ and picking representatives $i_j \in \lambda_j$ one then has isomorphisms

$$\Sigma_{T} \simeq \Sigma_{\lambda} \wr \prod \Sigma_{T_{i}} \simeq \Sigma_{|\lambda_{1}|} \wr \Sigma_{T_{i_{1}}} \times \cdots \times \Sigma_{|\lambda_{k}|} \wr \Sigma_{T_{i_{k}}} \tag{7.59}$$

where the second isomorphism, while not canonical (it depends on choices of isomorphisms $T_{i_j} \simeq T_l$ for each $i_j \neq l \in \lambda_j$) is nonetheless well defined up to conjugation.

The following, which is the core result in this section, is a reinterpretation of Remark |7.56| in light of the inductive description of trees in Remarks |7.58|.

Lemma 7.60. Let $\Sigma_{\mathcal{F}}$ be a family of G-corollas and $T \in \Omega$ a tree other than η . Then

$$\mathcal{F}_{T} = \left(\pi_{G \times \Sigma_{n}}\right)^{*} \left(\mathcal{F}_{n}\right) \cap \left(\mathcal{F}_{T_{i_{1}}}^{\mathsf{K}_{G}|\lambda_{1}|} \sqcap_{G} \cdots \sqcap_{G} \mathcal{F}_{T_{i_{k}}}^{\mathsf{K}_{G}|\lambda_{k}|}\right), \tag{7.61}$$

where $\pi_{G \times \Sigma_n}$ denotes the composite $G \times \Sigma_T \to G \times \Sigma_\lambda \to G \times \Sigma_n$.

KEYLEMMAGECO LEM

Proof. The argument is by induction on the decomposition $T = C_n \coprod_{n \in \eta} (T_1 \coprod \cdots \coprod T_n)$ with the base case, that of a corolla, being immediate.

Consider now a partial homomorphism $G \ge H \to \Sigma_T$ encoding a G-graph subgroup

For example the condition of the condition that $\Gamma \in (\pi_{G \times \Sigma_n})^*$ at a test that the composite $H \to \Sigma_T \to \Sigma_n$ is in \mathcal{F}_n , and this is precisely the condition (7.57) in Remark 7.56 for e = r the root of T.

As for the condition $\Gamma \in (\mathcal{F}_{T_{i_k}}^{\kappa G|\lambda_1|} \sqcap_G \cdots \sqcap_G \mathcal{F}_{T_{i_k}}^{\kappa G|\lambda_k|})$, by unpacking it by combining Remarks 7.46 and 7.47, this translates to the condition that, for each $i \in \{1, \cdots, n\}$, one has

$$\pi_{G \times \Sigma_{T_i}} \left(\Gamma \cap \left(G \times \Sigma_{\{i\}} \times \Sigma_{T_i} \times \Sigma_{\lambda - \{i\}} \wr \prod_{j \neq i} \Sigma_{T_j} \right) \right) \in \mathcal{F}_{T_i} \tag{7.62}$$

where $\lambda - \{i\}$ denotes the induced partition of $\{1, \dots, n\} - \{i\}$. Noting that the intersection subgroup inside $\pi_{G \times \Sigma_{T_i}}$ in (7.62) can be rewritten as $\Gamma \cap \pi_{\Sigma_n}^{-1}(\Sigma_{\{i\}} \times \Sigma_{\{1,\dots,n\}-\{i\}})$, we see that this is the graph subgroup encoded by the restriction $H_i \leq H \to \Sigma_T$, where H_i is the isotropy subgroup of the root r_i of T_i (equivalently, this is also the subgroup sending T_i to itself). But since for any edge $e \in \mathbb{R}^{r_i}$ its isotropy H_e (cf. [7.57] is partial number H_i to induction hypothesis implies that (7.62) is equivalent to condition (7.57) across all vertices other than the root vertex.

then the root vertex.

KEYLEMMAGECO EQ

The previous paragraphs show that (7.61) indeed holds when restricted to G-graph subKEYLEMMAGECO EQ groups. However, it still remains to show that any group Γ in the right family in (7.61)is indeed a G-graph subgroup, i.e. $\Gamma \cap \Sigma_T = *$ or, in other words, that any element $\gamma \in \Gamma \cap \Sigma_T = G \times \Sigma_\lambda \wr \prod_i \Sigma_{T_i}$ with G-coordinate $\gamma_G = e$ is indeed the identity. But the condition $\mathcal{T}_{\Sigma_i}(\Gamma) \in \mathcal{F}_n$ now implies that for such γ the Σ_{λ} -coordinate is $\gamma_{\Sigma_{\lambda}} = e$ and thus (7.62) in turn implies that the Σ_{T_i} -coordinates are $\gamma_{\Sigma_{T_i}} = e$, finishing the proof.

The results just developed will allow us to analyze cofibrancy properties of the left maps in the key pushouts (6.16). The first part of the analysis concerns the maps

$$\bigotimes_{v \in V_G^{ac}(T)} \mathcal{P}(T_v) \otimes \underset{v \in V_G^{in}(T)}{\square} u(T_v) \tag{7.63}$$

that constitute the inner part of (6.17), where we recall that $T \in \Omega^a$ is an alternating tree. We will in turn subdivide the cofibrancy analysis of (7.63) itself into two parts: (i) showing a \mathcal{F}_{T_e} -cofibrancy claim when $T_{\overline{REFLCOREFL}} = T_{\overline{REM}}$ is free and; (ii) showing a fixed point claim for non free trees, as in Remark 4.43.

It will find it convenine to slightly reinterpret (7.63): writing $p(T_v): \varnothing \to \mathcal{P}(T_v)$ for the unique map, we can rewrite (7.63) as

$$\bigsqcup_{v \in V_G^{ac}(T)} p(T_v) \sqcap \bigsqcup_{v \in V_G^{in}(T)} u(T_v).$$

For both the sake of generality and to simply notation in the proof, we extend the context of the following results to the l-labeled trees Ω^l_G of §5.1.

Remark 7.64. l-labeled \mathcal{F} -trees can be defined exactly as in Definition 4.56. Moreover, it is then clear that a labeled G tree T is an \mathcal{F} tree iff the underlying G-tree is.

Remarks 7.56, 7.58 and Lemma 7.60 then extend to the l-labeled context, by now writing Σ_T for the group of label isomorphisms (a subgroup of the isomorphisms of the underlying tree) and defining the partition λ in Remark 7.58 by using label isomorphism classes.

Proposition 7.65. Suppose that V is a cofibrantly generated closed monoidal model category with cellular fixed points and with cofibrant symmetric pushout powers.

Let \mathcal{F} be a family of corollar and suppose that $f_i: A \to B$, $1 \le i \le l$ are \mathcal{F} -cofibrations (resp. trivial cofibrations) in $\operatorname{Sym}^G(\mathcal{V})$, i.e. that $f_i(r):A(r)\to B(r)$ are cofibrations (resp. trivial cofibrations) in $\mathcal{V}_{\mathcal{F}_n}^{G\times\Sigma_n}$. Then for any l-labeled tree $T\in\Omega^{\underline{l}}$ the map

$$f^{\square V(T)} = \underset{1 \le i \le l, v \in V_i(T)}{\square} f_i(v)$$

(where $V_i(T)$ denotes vertices with label i) is a cofibration (resp. trivial cofibration) in $\mathcal{V}_{\mathcal{F}_T}^{G imes \Sigma_T}$.

Proof. This follows by induction on the decomposition $T = C_n \coprod_{n,\eta} (T_1 \coprod \cdots \coprod_{n \in T})$ with the base cases of corollas and η being immediate The description of T from (7.61) combined with the left Quillen functors in Propositions (7.49, 7.18 and 7.11 then yield that

$$\mathcal{V}_{\mathcal{F}_n}^{G \times \Sigma_n} \times \mathcal{V}_{\mathcal{F}_{T_{i_1}}^{\mathsf{K}_{G} | \lambda_1|}}^{G \times \Sigma_{|\lambda_1|} \wr \Sigma_{T_{i_1}}} \times \cdots \times \mathcal{V}_{\mathcal{F}_{T_{i_k}}^{\mathsf{K}_{G} | \lambda_k|}}^{G \times \Sigma_{|\lambda_k|} \wr \Sigma_{T_{i_k}}} \xrightarrow{\otimes} \mathcal{V}_{\mathcal{F}_T}^{G \times \Sigma_T}$$

is a left Quillen multifunctor. The result now follows by Proposition $\frac{POWERFG\ PROP}{7.51\ together}$ with the induction hypothesis.

Remark 7.66. come back

when G = *, Proposition 7.65 coincides with [2, Lemma 5.9]. Moreover, it is not hard PROP to adapt the proof of that non-equivariant result to provide a proof of Proposition $\overline{7.65}$ in the case of the universal family Σ_G of all G-corollas. However, the reader of $\overline{[2]}$ may note that the proof therein is technically less involved, using no analogue of the rather subtle $\mathcal{F}^{\kappa_G n}$ families. Indeed, this is reflected on the last paragraph of our proof of Lemma 7.60, which effectively uses the subtle condition (7.62) to deduce the much simpler condition $\Gamma \cap \prod \Sigma_{T_i} = *$ that would suffice for the direct generalization of [2, Lemma 5.9] mentioned above One may thus wonder if the $\mathcal{F}^{\kappa_G n}$ families are indeed required to prove Proposition 7.65, or whether a more direct adaptation of the proof of [2, Lemma 5.9] is possible. Reverse engineering our proofs, the most natural "simplification" would be to replace the condition (7.62) with the condition

$$\pi_{G \times \Sigma_{T_i}} (\Gamma \cap \prod \Sigma_{T_i}) \in \mathcal{F},$$
 (7.67) WRONGCONJ

 $\pi_{G \times \Sigma_{T_i}} \left(\Gamma \cap \prod_{i} \Sigma_{T_i} \right) \in \mathcal{F}, \tag{7.67}$ thus replacing the families $\mathcal{F}^{\ltimes n}$ of (7.27) with the families $(\iota_{G^{\times n}})_* (\mathcal{F} \sqcap \cdots \sqcap \mathcal{F})$. However, it is not hard to build indexing systems \mathcal{F} (other than the universal one) for which these simpler families do not satisfy the analogue of Lemma [7.60, and thus for which (7.55) fails.

Proposition 7.68. Let \mathcal{V} be as in Proposition [7.65, and suppose additionally that \mathcal{V} is

strongly cofibrantly generated and that the monoidal structure on $\mathcal V$ is cartesian.

Let $f_i: A \to B$, $1 \le i \le l$ be genuine cofibrations between genuine cofibrant objects in $\operatorname{Sym}^G(\mathcal{V})$. For each $T \in \Omega^{\underline{l}}_{G,0}$ define

$$f^{\square V_G(T)} = \underset{1 \le i \le l, v \in V_{G,i}(T)}{\square} \iota_* f_i(v). \tag{7.69}$$

Then the canonical map

$$f^{\square V_G(T)} \to \iota_* \iota^* f^{\square V_G(T)}$$
 (7.70) FIXEDPOINT1 EQ

is an isomorphism.

73

FIXPT PROP

AUTTCOFPUSH PROP

Proof. Note first that there is a coproduct decomposition

$$\Omega_{G,0}^{\underline{l}} \simeq \coprod_{U \in \mathsf{Iso}\left(\Omega_{\overline{0}}^{\underline{l}}\right)} \Omega_{G,0}^{\underline{l}}[U]$$

where $\Omega_{G,0}^l[U]$ is the full subcategory formed by the quotients of $G \cdot U$. It suffices to establish $\Gamma(T,T_0)$ for each subcategory $\Omega_{G,0}^l[U]$.

Moreover, writing T as $T \simeq G \cdot_H T_e$ for $T_e \in \Omega^H$, we are free by induction on |G| to assume H = G. Indeed, otherwise there are identifications $V_G(T) \simeq V_H(T_e)$ and $f^{\square V_G(T)} \simeq (\operatorname{res}_H^G f)^{\square V_H(T_e)}$ from which the desired isomorphism follows.

We thus reduce to the case where there is a quotient map $G \cdot U \to U_G$ where U_G denotes the underlying tree U together a G-action. Moreover, the automorphisms of $G \cdot U$ compatible with the quotient map $G \cdot U \to U_G$ are the subgroup $K \leq G \times \Sigma_U$ encoding the action $G \to \Sigma_U$ of G on U_G . One then has identifications

$$\left(\bigsqcup_{[v] \in V_G(G \cup U)} \iota_* f_{\bullet}([v]) \right)^K \simeq \left(\bigsqcup_{v \in V(U)} f_{\bullet}(v) \right)^G \simeq \bigsqcup_{[v] \in V(U)/G} \left(\prod_{v \in [v]} f_{\bullet}(v) \right)^G \simeq \bigsqcup_{[v] \in V_G(U_G)} \iota_* f_{\bullet}([v])$$

where the middle step is Corollary 7.40 establishing the desired isomorphim (7.70). \Box

7.4 Indexing systems and \mathcal{F} -genuine G-operads

We can now build model structures onto this new category of algebras.

Definition 7.71. Let $\Sigma_{\overline{\mathcal{F}}} \subseteq \Sigma_{\mathcal{F}}$ be a sieve subcategory, i.e. $\overline{\mathcal{F}} \subseteq \mathcal{F}$ a subfamily of corollas. We say a map $f: \mathcal{O} \to \mathcal{P}$ in $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ is a

- (i) $\overline{\mathcal{F}}$ -weak equivalence (resp. $\overline{\mathcal{F}}$ -fibration) if $f(C): \mathcal{O}(C) \to \mathcal{P}(C)$ is one in $\mathcal{V}^{\mathsf{Aut}(C)}_{\mathrm{gen}}$ for all $\overline{\mathcal{F}}$ -corollas $C \in \Sigma_{\overline{\mathcal{F}}}$.
- (ii) $\overline{\mathcal{F}}$ -level genuine cofibration iff f(C) is a cofibration in $\mathcal{V}_{\mathrm{gen}}^{\mathsf{Aut}(C)}$ for all $C \in \Sigma_{\overline{\mathcal{F}}}$.

The $\overline{\mathcal{F}}$ (semi) model structure on $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$, if it exists, is the (semi) model structure denoted $\mathsf{Op}_{\mathcal{F}/\overline{\mathcal{F}}}(\mathcal{V})$ with the above $\overline{\mathcal{F}}$ -weak equivalences and $\overline{\mathcal{F}}$ -fibrations. Equivalently, this is the model structure transferred across either composition of free-forgetful adjunctions

$$\begin{array}{c} \mathsf{Op}_{\mathcal{F}/\overline{\mathcal{F}}}(\mathcal{V}) \xleftarrow{\nu_!} \mathsf{Op}_{\overline{\mathcal{F}}}(\mathcal{V}) \\ \downarrow \uparrow_{\mathcal{F}_{\mathcal{F}}} & \downarrow \uparrow_{\overline{\mathcal{F}}_{\mathcal{F}}} \\ \mathsf{Sym}_{\mathcal{F}/\overline{\mathcal{F}}}(\mathcal{V}) \xleftarrow{\nu_!} \mathsf{Sym}_{\overline{\mathcal{F}}}(\mathcal{V}) \end{array}$$

If $\overline{\mathcal{F}} = \mathcal{F}$, this is referred to as the projective (semi) model structure on $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})_{\coloredge{CELLULAR_LEVEL_COFIB_PROP}$ Replacing (6.16) with (6.18), we have that the statement analogous to $\mathsf{Corollary}_{\coloredge{EMT_MODEL_THM}}$ for free $\overline{\mathcal{F}}_{\coloredge{EMT_MODEL_THM}}$ Thus, mimicking the proofs of Theorem 6.45, Corollary 6.48, and Theorem 6.49 together yields the following result.

Theorem 7.72. For V strongly cellular with diagonals, the $\overline{\mathcal{F}}$ semi model category $\mathsf{Op}_{\mathcal{F}/\overline{\mathcal{F}}}(V)$ exists for any subfamily $\overline{\mathcal{F}} \subseteq \mathcal{F}$.

If V is additionally underlying strongly cellular, this is an actual model structure. \Box

7.5 Cofibrancy and the proof of Theorem III

One of the last steps to completing the proof of our Elmendorf-type result is the following refinement of the key argument in the proof of [22, Thm. 2.10].

COFESSIM PROP

Proposition 7.73. Let V be a cofibrantly generated model category with cellular fixed points, \mathcal{F} a family of subgroups of G, and consider the reflexive adjunction

$$\mathcal{V}^{\mathsf{O}_{\mathcal{F}}^{op}} \xleftarrow{\iota^*} \mathcal{V}_{\mathcal{F}}^{G}. \tag{7.74}$$

Then the cofibrant objects of $\mathcal{V}_{\mathcal{F}}^{O_{\mathcal{F}}^{O}}$ are precisely the essential image under ι_* of the cofibrant objects of $\mathcal{V}_{\mathcal{F}}^{G}$. Moreover, the analogous statement for cofibrations between cofibrant objects also holds.

Proof. Note first that since ι_* identifies $\mathcal{V}^G(\mathcal{F})$ as a reflexive subcategory of $\mathcal{V}^{O_{\mathcal{F}}^{op}}$, it is $X \simeq \iota^* Y$ for some $Y \in \mathcal{V}^G(\mathcal{F})$ (i.e. $X \in \mathcal{V}^{O_{\mathcal{F}}^{op}}$ is in the essential image of ι^*) iff both $\iota_* X \simeq Y$ and the unit map $X \stackrel{\simeq}{\to} \iota_* \iota^* X$ is an isomorphism.

Letting $C_{\mathcal{F}}$ (resp. $C^{\mathcal{F}}$) denote the classes of cofibrant objects in $\mathcal{V}^{O_{\mathcal{F}}^{op}}$ (resp. $\mathcal{V}_{\mathcal{F}}^{G}$) we need to show $C_{\mathcal{F}} = \iota_*(C^{\mathcal{F}})$, where we slightly abuse notation by writing $\iota_*(-)$ for the essential image rather than the image. Since $C_{\mathcal{F}}$ is characterized as being the smallest class closed under retracts and transfinite composition of cellular extensions that contains the initial presheaf \emptyset , it suffices to show that $\iota_*(C^{\mathcal{F}})$ satisfies this same characterization.

It is immediate that $\iota_*(\emptyset) = \emptyset$. Further, the characterization in the first paragraph yields that $X \in \iota_*(C^{\mathcal{F}})$ iff $\iota^*(X) \in C^{\mathcal{F}}$ and $X \xrightarrow{\simeq} \iota_*\iota^*X$ is an isomorphism, showing that $\iota_*(C^{\mathcal{F}})$ is closed under retracts.

The crux of the proof will be to compare cellular extensions in $C_{\mathcal{F}}$ with the images under ι_* of the cellular extensions in $C^{\mathcal{F}}$. Firstly, note that the generating cofibrations in $C^{\mathcal{F}}$ have the form $\mathsf{Hom}(-,G/H) \cdot f$, and that by the cellularity axiom (iii) in Definition 7.4 this map is isomorphic to the map $\iota_*(G/H \cdot f)$. We now claim that the cellular extensions of objects in $\iota_*(C^{\mathcal{F}})$, i.e. pushforward diagrams as on the left below

are precisely the essential image under ι_* of the cellular extensions of objects in $C^{\mathcal{F}}$, i.e., purply and diagrams as on the right above. That the solid subdiagrams in either side of (7.75) are indeed in bijection up isomorphism is simply the claim that ι^* is fully faithful, hence the real claim is that $\tilde{W} \simeq \iota_* W$. But this follows since by the cellularity axiom (ii) in Definition 7.4 the map ι_* preserves the rightmost pushforward in (7.75) (note that $u: X \to Y$ is assumed to be a generating cofibration of $\mathcal{V}_{\mathcal{F}}^{\mathcal{F}}$).

Noting that the cellularity axiom (i) in Definition 7.4 implies that ι_* preserves filtered colimits finishes the proof that $C_{\mathcal{F}} = \iota_*(C^{\mathcal{F}})$.

The additional claim concerning cofibrations between cofibrant objects follows by the same argument. \Box

Corollary 7.76. Let V be as above, $\phi: G \to \bar{G}$ a homomorphism, and \mathcal{F} , $\bar{\mathcal{F}}$ families of G, \bar{G} such that $\phi_! \mathcal{F} \subset \mathcal{F}$. Then the diagram

$$\begin{array}{cccc} \mathcal{V}^{O_{\mathcal{F}}^{op}} & \stackrel{\iota_{*}}{\longleftarrow} & \mathcal{V}_{\mathcal{F}}^{G} \\ \downarrow^{\phi_{!}} & & & \downarrow^{\phi_{!}} \\ \mathcal{V}^{O_{\mathcal{F}}^{op}} & \longleftarrow_{\iota_{*}} & \mathcal{V}_{\bar{\mathcal{F}}}^{\bar{G}} \end{array}$$

commutes up to isomorphism when restricted to cofibrant objects of $\mathcal{V}_{\mathcal{F}}^G$.

FINALCOR COR

Proof. It is straightforward to check that the left adjoints commute, i.e. that there is a natural isomorphism $\iota^*\phi_! \simeq \phi_!\iota^*$ which by adjunction induces a natural transformation $\phi_!\iota_* \to \iota_*\phi_!$. More explicitly, this natural transformation is the composite

$$\phi_! \iota_* \to \iota_* \iota^* \phi_! \iota_* \xrightarrow{\simeq} \iota_* \phi_! \iota^* \iota_* \xrightarrow{\simeq} \iota_* \phi_!$$

where the last two maps are always isomorphisms. But when restricting to cofibrant objects the previous result guarantees both that $\phi_! \iota_*$ lands in cofibrant objects and that cofibrant objects are in the essential image of ι_* . The result follows.

We now possess all the technical ingredients needed to prove Theorem III.

Lemma 7.77. Let V be strongly cellular with diagonals, and let F be a weak indexing system.

Then in both of the adjunctions

$$\operatorname{Op}_{\mathcal{F}}(\mathcal{V}) \xleftarrow{\iota^*} \operatorname{Op}_{\mathcal{F}}^G(\mathcal{V}) \qquad \qquad \operatorname{Sym}_{\mathcal{F}}(\mathcal{V}) \xleftarrow{\iota^*} \operatorname{Sym}_{\mathcal{F}}^G(\mathcal{V}) \qquad (7.78) \qquad \boxed{\operatorname{COFADJ2 EQ}}$$

the cofibrant objects in the leftmost category are the essential image under ι_* of the cofibrant objects in the rightmost category.

Moreover, both forgetful functors

$$\mathsf{Op}_{\mathcal{F}}(\mathcal{V}) \xrightarrow{\quad \mathsf{fgt} \quad} \mathsf{Sym}_{\mathcal{F}}(\mathcal{V}) \qquad \qquad \mathsf{Op}_{\mathcal{F}}^G(\mathcal{V}) \xrightarrow{\quad \mathsf{fgt} \quad} \mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V}) \qquad (7.79) \quad \boxed{\mathsf{FGTFUNC} \ \mathsf{EQ}}$$

preserve cofibrant objects.

MAINLEM LEM

Proof. We note first that the claim concerning the symmetric sequence adjunction of (7.78) is not really new. Indeed, as there are equivalences of categories $\operatorname{Sym}_{\mathcal{F}}(\mathcal{V}) \simeq \prod_{n\geq 0} \mathcal{V}_{\mathcal{F}_n}^{O^{\circ p}}$, $\operatorname{Sym}_{\mathcal{F}}^G(\mathcal{V}) \simeq \prod_{n\geq 0} \mathcal{V}_{\mathcal{F}_n}^{G\times\Sigma_n}$, compatible with both the model structures and the concerning formula of the symmetric sequence statement merely repackages Proposition [7.73].

COFESSIM PROPERATE adjunction in (7.78), most of the argument in the proof of Proposition (7.73 applies mutatis mutandis except for the claim that $\mathbb{F}_{\mathcal{F}}(\emptyset) \simeq \iota_* \mathbb{F}(\emptyset)$, which is readily checked directly, and the comparison of cellular extensions, which is the key claim.

come back: fix, and fix notation

Explicitly, and borrowing the notation $C_{\mathcal{F}}$ (resp. $C^{\mathcal{F}}$) used in Proposition 7.73 for the classes of cofibrant objects in $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ (resp. $\mathsf{Op}_{\mathcal{F}}^{G}(\mathcal{V})$), we need to show that cellular extensions of objects in $\iota_{*}(C^{\mathcal{F}})$, such as on the left below

are precisely the essential image under ι_* of cellular extensions of objects in $C^{\mathcal{F}}$, as on the right above.

Noting that $\gamma \iota = \iota_G$ (where we now let ι_G denote the composite injection $G \times \Sigma \to \Sigma_{\mathcal{F}} \to \Sigma_G$) and recalling that there are natural isomorphisms

$$(\iota_G)^*\mathbb{F}_G(\iota_G)_* \simeq \mathbb{F}(\iota_G)^*(\iota_G)_* \simeq \mathbb{F} \qquad \gamma^*\mathbb{F}_G\gamma_* \simeq \gamma^*\mathbb{F}_G\gamma_!,$$

we see that the two solid subdiagrams in (7.80) are in fact adjoint up to isomorphism, so that there is a bijection between such data. We claim that it now suffices to check that all four objects in the leftmost diagram of (7.80) are in the essential image of ι_* . Indeed, if that is the case then

$$\gamma^* \mathbb{F}_G \gamma_! \iota_* Z \simeq \gamma^* \mathbb{F}_G \gamma_* \iota_* Z \simeq \iota_* \iota_*^* \gamma^* \mathbb{F}_G \gamma_* \iota_* Z \simeq \iota_* \iota_G^* \mathbb{F}_G \iota_G, *Z \simeq \iota_* \mathbb{F}_Z$$

for Z = X, Y (where the last isomorphism can be checked directly) and since ι_* reflects colimits³, it must then indeed be that $(\iota_*\mathcal{O})[\iota_*u] \simeq \iota_*(\mathcal{O}[u])$.

To establish the remaining claim that the objects in the leftmost diagram in ([7.80] are in the essential image of ι_* , we claim it suffices to show this for the bottom right corner $(\iota_*\mathcal{O})[\iota_*u]$ when $u:X\to Y$ is a general cofibration between cofibrant objects in $\mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V})$. Indeed, setting $X=\varnothing$ and $\mathcal{O}=\mathbb{F}(\varnothing)$, one has $(\iota_*\mathcal{O})[\iota_*u]=\gamma^*\mathbb{F}_G\gamma_*\iota_*Y$, and similarly for $\gamma^*\mathbb{F}_G\gamma_*\iota_*X$.

Writing $\mathcal{P} = \iota_* \mathcal{O}$, so that $(\iota_* \mathcal{O})[\iota_* u] = \mathcal{P}[\iota_* u]$, the required condition that $\mathcal{P}[\iota_* u] \to \iota_* \iota^* \mathcal{P}[\iota_* u]$ is an isomorphism can be checked by forgetting to $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$, and $\mathsf{FF} = \mathsf{Can}$ thus appeal to the filtration (6.12) of the map $\mathcal{P} \to \mathcal{P}[\iota_* u]$ (modified by Proposition 6.18). It thus suffices to verify by induction on k that each \mathcal{P}_k is in the essential image of $\iota_* : \mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$. Using the iterative description of the \mathcal{P}_k is in the essential image of $\iota_* : \mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$. Sym $_{\mathcal{F}}(\mathcal{V})$. Using the iterative description of the \mathcal{P}_k is in the essential image of $\iota_* : \mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$. We now recall that that map can also be described (cf. (??)) as

$$\operatorname{Lan}_{\Omega_{\mathcal{F}}^{a}[k]^{op} \to \Sigma_{G}^{op}} \left(\bigotimes_{v \in V_{G}^{ac}(T)} \mathcal{P}(T_{v}) \otimes \bigsqcup_{v \in V_{G}^{in}(T)} u(T_{v}) \right). \tag{7.81}$$

Noting that there is an equivalence $\mathcal{V}^{\Omega_{\mathcal{F}}^a[k]^{op}} \simeq \prod_{T \in \mathsf{lso}(\Omega_{\mathcal{F}}^a[k])} \mathcal{V}^{O_{\mathcal{F}}^{op}}$. Propositions [7.65] and [FILTINTALTAGEQ] [7.68] show that the inner map inside the left Kan extension in ([7.81]) is in the essential image of the cofibrations between cofibrant objects of $\mathcal{V}^{G \times \Omega^a[k]^{op}}_{\mathcal{F}}$ under the functor $\iota_* : \mathcal{V}^{G \times \Omega^a[k]^{op}}_{\mathcal{F}} \to \mathcal{V}^{\Omega_{\mathcal{F}}^a[k]^{op}}$. Since the Lan in ([7.81]) can now be identified with an instance of the functor $\phi_!$ in Corollary [7.76] one has (using the further identification of the functor of that the main claim now follows by Corollary [7.76].

As for the additional claim concerning the forgetful functors in (7.79), that $\mathsf{fgt}: \mathsf{Op}_{\mathcal{F}}(\mathcal{V}) \to \mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$ preserves cofibrant objects is precisely what was argued in the previous paragraph. But since the forgetful functors commute with ι_* , the claim that $\mathsf{fgt}: \mathsf{Op}_{\mathcal{F}}^G(\mathcal{V}) \to \mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V})$ also preserves cofibrant objects follows from the "essential image characterization" of cofibrant objects in (7.78).

Remark 7.82. A slightly more careful analysis of the argument in the previous proof shows that we have in fact shown the slightly more general claim that operads (in either $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ or $\mathsf{Op}_{\mathcal{F}}^G(\mathcal{V})$) that forget to cofibrant symmetric sequences (in either $\mathsf{Sym}_{\mathcal{F}}(\mathcal{V})$ or $\mathsf{Sym}_{\mathcal{F}}^G(\mathcal{V})$) are closed under cellular extensions of operads.

proof of Theorem III. It suffices to show that both the derived unit and derived counit for the adjunction are given by weak equivalences.

For the counit, it is immediate from Lemma 7.77 that if $X \in \operatorname{Op}^G(\mathcal{V})$ is bifibrant the functor $\iota^*\iota_*X$ is already derived, and hence the derived counit is identified with the counit isomorphism $\iota^*\iota_*X \xrightarrow{\simeq} X$.

For the unit, note first that it is immediate from the definitions that $\iota_*: \mathsf{Op}_{\overline{M}}^G(\mathcal{V}) \longrightarrow \mathsf{LEM}$ $\mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ detects fibrations (as well as weak equivalences), and thus by Lemma 7.77 $Y \in \mathsf{Op}_{\mathcal{F}}(\mathcal{V})$ is bifibrant iff $Y \simeq \iota_* X$ for $X \in \mathsf{Op}_{\mathcal{F}}^G(\mathcal{V})$ bifibrant. But then the functor $\iota_* \iota^* Y$ is also already derived (since $\iota^* Y \simeq \iota^* \iota_* X \simeq X$ is fibrant) and the derived unit is thus the isomorphism $Y \xrightarrow{\simeq} \iota_* \iota^* Y$.

7.6 N_{∞} -operads

HERE

NINFTY_SECTION

Combining the existence of \mathcal{F} -model structures and the above cofibrancy result, we give our first proof of the following conjecture of Blumberg-Hill in $\boxed{3}$.

 $^{^3 \}mathrm{I.e.}$ any diagram that becomes a colimit upon applying ι_* must have already been a colimit diagram.

Proof of Corollary V, version one. Recall that Comm(n) = * for all n. Consider the functorial factorization

$$\varnothing \longmapsto N\mathcal{F} \stackrel{\sim}{\longrightarrow} \mathsf{Comm}$$

in $\mathsf{Op}_{\mathcal{F}}^G(\mathsf{sSet})$ of the unique map into a cofibration and trivial fibration. Since the initial operad is cofibrant, Theorem 7.77 implies that $\varnothing \to N\mathcal{F}$ is a level \mathcal{F} -cofibration, and hence each $N\mathcal{F}(n)$ is cofibrant in $\mathsf{sSet}_{\mathcal{F}_n}^{G\times\Sigma_n}$; thus, for all $\Gamma\notin\mathcal{F}_n$, $N\mathcal{F}(n)^\Gamma=\varnothing$. Further, since $N\mathcal{F}$ is \mathcal{F} -equivalent to *, $N\mathcal{F}(n)^\Gamma\simeq *$ for all $\Gamma\in\mathcal{F}_n$. Hence, each $N\mathcal{F}(n)$ is a universal space for \mathcal{F}_n , as desired.

come back

N_INFINITY_BAR

OBJGENREL LEMMA

Theorem 7.83. $B(\mathbb{F}_G, \mathbb{F}_G, \delta_{\mathcal{F}})$ is

- in the image of i_*
- weakly equivalent to $\delta_{\mathcal{F}}$.

Hence, $i^*(B(\mathbb{F}_G, \mathbb{F}_G, \delta_{\mathcal{F}})$ is an $N\mathcal{F}$ -operad.

A Transferring Kan extensions

The purpose of this appendix is to provide the somewhat long proof of Proposition EXTREEFOR EQ which is needed when repackaging free extensions of genuine equivariant operads in (5.7).

We start with a more detailed discussion of the realization functor |-| defined by the adjunction

$$|-|$$
: $\mathsf{Cat}^{\Delta^{op}} \rightleftarrows \mathsf{Cat}$: $(-)^{[\bullet]}$

in Definition 5.38. More explicitly, one has

$$|\mathcal{I}_{\bullet}| = coeq \left(\coprod_{[n] \to [m]} [n] \times \mathcal{I}_m \Rightarrow \coprod_{[n]} [n] \times \mathcal{I}_n \right). \tag{A.1}$$

Lemma A.2. Given $\mathcal{I}_{\bullet} \in \mathsf{Cat}^{\Delta^{op}}$ one has an identification $ob(|\mathcal{I}_{\bullet}|) \simeq ob(\mathcal{I}_{0})$. Furthermore, the arrows of $|\mathcal{I}_{\bullet}|$ are generated by the image of the arrows in $\mathcal{I}_{0} \simeq \mathcal{I}_{0} \times [0]$ and the image of the arrows in $[1] \times ob(\mathcal{I}_{1})$.

For each $i_1 \in \mathcal{I}_1$, we will denote the arrow of $|\mathcal{I}_{\bullet}|$ induced by the arrow in [1] $\times \{i_1\}$ by

$$d_1(i_1) \xrightarrow{i_1} d_0(i_1).$$

Proof. We write $d_{\hat{k}}$, $d_{\hat{k},\hat{l}}$ for the simplicial operators induced by the maps $[0] \xrightarrow{0 \mapsto k} [n]$, $[1] \xrightarrow{0 \mapsto k, 1 \mapsto l} [n]$ which can informally be thought of as the "composite of all faces other than d_k , d_l ". Using (A.1) one has equivalence relations of objects

$$[n] \times \mathcal{I}_n \ni (k, i_n) \sim (0, d_{\hat{k}}(i_n)) \in [0] \times \mathcal{I}_0$$

and since for any generating relation $(k, i_n) \sim (l, i'_m)$ it is $d_{\hat{k}}(i_n) = d_{\hat{l}}(i'_m)$ the identification $ob(|\mathcal{I}_{\bullet}|) \simeq ob(\mathcal{I}_0)$ follows.

To verify the claim about generating arrows, note that any arrow of $[n] \times \mathcal{I}_n$ factors as

$$(k, i_n) \rightarrow (l, i_n) \xrightarrow{I_n} (l, i'_n)$$
 (A.3) FACTORIZATIONREAL EQ

for $I_n:i_n\to i'_n$ an arrow of \mathcal{I}_n . The $d_{\hat{l}}$ relation identifies the right arrow in (A.3) with $(0,d_{\hat{l}}(i_n))\xrightarrow{d_{\hat{l}}(I_n)} (0,d_{\hat{l}}(i'_n))$ in $[0]\times\mathcal{I}_0$ while (if k< l) the $d_{\hat{k},\hat{l}}$ relation identifies the left arrow with $(0,d_{\hat{k},\hat{l}}(i_n))\to (1,d_{\hat{k},\hat{l}}(i_n))$ in $[1]\times\mathcal{I}_1$. The result follows.

Remark A.4. Given $\mathcal{I}_{\bullet} \in \mathsf{Cat}^{\Delta^{op}}$, $\mathcal{C} \in \mathsf{Cat}$, the isomorphisms

$$\operatorname{Hom}_{\mathsf{Cat}}\left(|\mathcal{I}_{\bullet}|,\mathcal{C}\right) \simeq \operatorname{Hom}_{\mathsf{Cat}^{\Delta^{op}}}\left(\mathcal{I}_{\bullet},\mathcal{C}^{\left[\bullet\right]}\right)$$

together with the fact that $\mathcal{C}^{[\bullet]}$ is always 2-coskeletal show that $|\mathcal{I}_{\bullet}|$ is determined by the categories $\mathcal{I}_0, \mathcal{I}_1, \mathcal{I}_2$ and maps between them, i.e. by the truncated version of formula (A.1) with $n, m \leq 2$.

Indeed, one can show that a sufficient set of generating relations in $|\mathcal{I}_{\bullet}|$ is given by (i) the relations in \mathcal{I}_0 relations relations stating that identities of \mathcal{I}_0 are identities of $|\mathcal{I}_{\bullet}|$);

(ii) relations stating that for each $i_0 \in \mathcal{I}_0$ the arrow $i_0 = d_1(s_0(i_0)) \xrightarrow{s_0(i_0)} d_1(s_0(i_0)) = i_0$ is an identity; (iii) for each arrow $I_1: i_1 \to i'_1$ in \mathcal{I}_1 the relation that the square below commutes

$$d_1(i_1) \xrightarrow{i_1} d_0(i_1)$$

$$d_1(I_1) \downarrow \qquad \qquad \downarrow d_0(I_1)$$

$$d_1(i'_1) \xrightarrow{i'_1} d_0(i'_1)$$

and (iv) for each object $i_2 \in \mathcal{I}_2$ the relation that the following triangle commutes.

$$d_{1,2}(i_2) \xrightarrow[d_2(i_2)]{} d_{1,2}(i_2) \xrightarrow[d_0(i_2)]{} d_{0,1}(i_2)$$

We now relate diagrams in the span categories with the Grothendieck constructions in Definition 2.2.

Lemma A.5. Functors $F: \mathcal{D} \ltimes \mathcal{I}_{\bullet} \to \mathcal{C}$ are in bijection with lifts

 $\mathcal{D} \xrightarrow{\mathcal{I}_{\bullet}^{F}} \mathsf{Cat}.$ $\mathsf{WSpan}^{l}(*,\mathcal{C})$ $\downarrow^{\mathsf{fgt}}$ $\mathsf{Cat}.$

where fgt is the functor forgetting the maps to * and C.

Proof. This is a matter of unpacking notation. The restrictions $F|_{\mathcal{I}_d}$ to the fibers $\mathcal{I}_d \subset \mathcal{D} \ltimes \mathcal{I}_{\bullet}$ are precisely the functors $\mathcal{I}_d^F : \mathcal{I}_d \to \mathcal{C}$ describing $\mathcal{I}_{\bullet}^F (d)$.

Furthermore, the images $F((d,i) \to (d',f_*(i)))$ of the pushout arrows over a fixed arrow $f:d\to d'$ of \mathcal{D} assemble to a natural transformation

$$\begin{array}{c|c}
\mathcal{I}_d & I_d^F \\
f_* \downarrow & \swarrow & \mathcal{C} \\
\mathcal{I}_{d'} & I_{d'}^F
\end{array} \tag{A.6}$$

which describes $\mathcal{I}_{\bullet}^{F}(f)$. One readily checks that the associativity and unitality conditions coincide.

In the cases of interest we have $\mathcal{D} = \Delta^{op}$. The following is the key result in this section. **Proposition A.7.** Let $\mathcal{I}_{\bullet} \in \mathsf{Cat}^{\Delta^{op}}$. Then there is a natural functor

$$\Delta^{op} \ltimes \mathcal{I}_{\bullet} \xrightarrow{s} |\mathcal{I}_{\bullet}|. \tag{A.8}$$

Further, s is final.

SOURCEFINAL PROP

Remark A.9. The s in the result above stands for source. This is because, for $\mathcal{I} \in \mathsf{Cat}$, the map $\Delta^{op} \ltimes \mathcal{I}^{[\bullet]} \to |\mathcal{I}^{[\bullet]}| \simeq \mathcal{I}$ is given by $s(i_0 \to \cdots \to i_n) = i_0$.

Proof. Recall that $|\mathcal{I}_{\bullet}|$ is the coequalizer (A.1). Given $(k, g_m) \in [n] \times \mathcal{I}_m$, we write $[k, g_m]$ for the corresponding object in $|\mathcal{I}_{\bullet}|$. To simplify notation, we write objects of \mathcal{I}_n as i_n and implicitly assume that $[k, i_n]$ refers to the class of the object $(k, i_n) \in [n] \times \mathcal{I}_n$.

We define s on objects by $s([n], i_n) = [0, i_n]$ and on an arrow $(\phi, I_m): (n, i_n) \to (m, i'_m)$ as the composite (note that $\phi: [m] \to [n]$ and $I_m: \phi^* i_n \to i_m$)

$$[0, i_n] \to [\phi(0), i_n] = [0, \phi^* i_n] \xrightarrow{I_m} [0, i'_m].$$
 (A.10)

TARGETDEFINITON EQ

To check compatibility with composition, the cases of a pair of either two fiber arrows (i.e. arrows where ϕ is the identity) or two pushforward arrows (i.e. arrows where I_m is the identity) are immediate from (A.10), hence we are left with the case $([n], i_n) \xrightarrow{I_n} ([n], i'_n) \rightarrow ([m], \phi^* i'_n)$ of a fiber arrow followed by a pushforward arrow. Noting that in $\Delta^{op} \ltimes \mathcal{I}_{\bullet}$ this composite can be rewritten as $([n], i_n) \rightarrow ([m], \phi^* i_n) \xrightarrow{\phi^* I_n} ([m], \phi^* i'_n)$ this amounts to checking that

$$[0, i_n] \longrightarrow [\phi(0), i_n)] = [0, \phi^* i_n]$$

$$I_n \downarrow \qquad \qquad \downarrow_{\phi^* I_n} \qquad (A.11)$$

$$[0, i'_n] \longrightarrow [\phi(0), i'_n] = [0, \phi^* i_n]$$

commutes in $|\mathcal{I}_{\bullet}|$, which is the case since the left square is encoded by a square in $[n] \times \mathcal{I}_n$ and the right square is encoded by an arrow in $[m] \times \mathcal{I}_n$.

We now show that s is final. Fix $h \in \mathcal{I}_0$. We must check that $[0,h] \downarrow \Delta^{op} \ltimes \mathcal{I}_{\bullet}$ is connected. By Lemma A.2 any object in this undercategory has a description (not necessarily unique) as a pair

$$\left(\left(\left[n \right], i_n \right), \left[0, h \right] \xrightarrow{f_1} \cdots \xrightarrow{f_r} s\left(\left[n \right], i_n \right) \right) \tag{A.12}$$

UNDERCATOB EQ

where each f_i is a generating arrow of $|\mathcal{I}_{\bullet}|$ induced by either an arrow I_0 of \mathcal{I}_0 or object $i_1 \in \mathcal{I}_1$. We will connect (A.12) to the canonical object (([0], h), [0, h] = [0, h]), arguing by induction on r. If $n \neq 0$, the map $d_{\hat{0}} : ([n], i_n) \to ([0], d_{\hat{0}}^*(i_n))$ and the fact that $s\left(d_{\hat{0}}^*\right) = id_{[0, d_{\hat{0}}^*(i_n)]}$ provides an arrow to an object with n = 0 without changing r. If n = 0, one can apply the induction hypothesis by lifting f_r to $\Delta^{op} \ltimes \mathcal{I}_{\bullet}$ according to one of two cases: (i) if f_r is induced by an arrow I_0 of \mathcal{I}_0 , the lift of f_r is simply $([0], i_0') \xrightarrow{I_0} ([0], i_0)$; (ii) if f_r is induced by $i_1 \in \mathcal{I}_1$ the lift is provided by the map $([1], i_1) \to ([0], d_0(i_1))$.

Remark A.13. The involution

DUALRESULTS REM

$$\Delta \xrightarrow{\tau} \Delta$$

which sends [n] to itself and d_i, s_i to d_{n-i}, s_{n-i} induces vertical isomorphisms

$$\begin{array}{ccc} \Delta^{op} \ltimes (\mathcal{I}_{\bullet} \circ \tau) & \stackrel{s}{\longrightarrow} |\mathcal{I}_{\bullet} \circ \tau| \\ & \downarrow^{\omega} & \downarrow^{\omega} \\ \Delta^{op} \ltimes \mathcal{I}_{\bullet} & \stackrel{t}{\longrightarrow} |\mathcal{I}_{\bullet}^{op}|^{op} \end{array}$$

which reinterpret the "source" functor as what one might call the "target" functor, with $t([n], i_n) = [n, i_n]$ rather than $s([n], i_n) = [0, i_n]$. The target functor is thus also final.

Moreover, the source/target formulations of all the results that follow are equivalent.

In practice, we will need to know that the source s and target t satisfy a stronger finality condition with respect to left Kan extensions.

UNDERLEFTADJ LEM

Lemma A.14. Let $\mathcal{J} \in \mathsf{Cat}$ be a small category and $j \in \mathcal{J}$. Then the under and over category functors

$$\mathsf{Cat} \downarrow \mathcal{J} \xrightarrow{(-) \downarrow j} \mathsf{Cat}, \qquad \mathsf{Cat} \downarrow \mathcal{J} \xrightarrow{j \downarrow (-)} \mathsf{Cat} \qquad \qquad (A.15) \qquad \boxed{\mathsf{UNDEROVER} \ \mathsf{EQ}}$$

preserve colimits.

Proof. The result can easily be shown directly, so here we note instead that one can in fact write explicit formulas for the right adjoints of $(-) \downarrow j, j \downarrow (-)$. Moreover, since $j \downarrow \mathcal{I} = (\mathcal{I}^{op} \downarrow j)^{op}$ it suffices to do so for $(-) \downarrow j$. The right adjoint $(-)^{\downarrow j} : \mathsf{Cat} \to \mathsf{Cat} \downarrow \mathcal{J}$ is then defined on objects by the Grothendieck constructions $\mathcal{C}^{\downarrow j} = \mathcal{J} \ltimes \mathcal{C}^{\mathcal{J}(-,j)}$ for the functors

$$\mathcal{J} \longrightarrow \mathsf{Cat}$$

$$i \longmapsto \mathcal{C}^{\mathcal{J}(i,j)} .$$

URCELANFINAL COR

TWISTING LEMMA

Corollary A.16. Consider a map $\mathcal{I}_{\bullet} \to \mathcal{J}$ between $\mathcal{I}_{\bullet} \in \mathsf{Cat}^{\Delta^{op}}$ and a constant object $\mathcal{J} =$ $\mathcal{J}_{\bullet} \in \mathsf{Cat}^{\Delta^{op}}$. Then the source and target maps

are Lan-final over \mathcal{J} , i.e. the functors $s\downarrow j$: $(\Delta^{op}\ltimes\mathcal{I}_{\bullet})\downarrow j\to |\mathcal{I}_{\bullet}|\downarrow j$ are final for all $j\in\mathcal{J}$, and similarly for t.

Proof. It is clear that $(\Delta^{op} \ltimes \mathcal{I}_{\bullet}) \downarrow j \simeq \Delta^{op} \ltimes (\mathcal{I}_{\bullet} \downarrow j)$ while Lemma A.14 guarantees that properties (-) $\downarrow j$ is a left adjoint, $|\mathcal{I}_{\bullet}| \downarrow j \simeq |\mathcal{I}_{\bullet} \downarrow j|$. One thus reduces to Proposition A.7.

We will require two additional straightforward lemmas.

Lemma A.17. Let $\mathcal{I}_{\bullet}^F \in \mathsf{Span}(*,\mathcal{C})^{\Delta^{op}}$ be such that the diagrams

are given by natural isomorphisms for $0 < i \le n, \ 0 \le j \le n$. Then the functors $\tilde{F}_n: \mathcal{I}_n \to \mathcal{C}$ given by the composites

$$\mathcal{I}_n \xrightarrow{d_{1,\cdots,n}} \mathcal{I}_0 \xrightarrow{F_0} \mathcal{C}$$

assemble to an object $\mathcal{I}_{\bullet}^{\tilde{F}} \in \operatorname{Span}(*\mathcal{L})^{\Delta^{op}}_{1DENTSIMPRELSISO}$ which is isomorphic to $\mathcal{I}_{\bullet}^{F}$ and such that the corresponding diagrams A^{1} A^{1} B^{1} G^{i} G^{i}

Proof. This follows by a straightforward verification.

SOURCEFACT LEM

Lemma A.19. A (necessarily unique) factorization

$$\Delta^{op} \ltimes \mathcal{I}_{\bullet} \xrightarrow{F_{\bullet}} \mathcal{C}$$

$$\downarrow_{\mathcal{I}_{\bullet}} \mid_{\mathcal{I}_{\bullet}} \mid_{\mathcal{I}_$$

exists iff for the associated object $\mathcal{I}_{\bullet} \in \mathsf{Span}(*,\mathcal{C})^{\Delta^{op}}$ (cf. Lemma A.5) all faces d_i for $0 < i \le n$ and degeneracies s_j for $0 \le j \le n$ are strictly commutative, i.e. they are given by diagrams

Dually, a factorization through the target $t: \Delta^{op} \ltimes \mathcal{I}_{\bullet} \to |\mathcal{I}_{\bullet}^{op}|^{op}$ exists iff the faces d_i and degeneracies s_i are strictly commutative for $0 \le i < n$, $0 \le j \le n$.

Proof. For the "only if" direction, it suffices to note that s sends all pushout arrows of $\Delta^{op} \ltimes \mathcal{I}_{\bullet}$ for faces d_i , $0 < i \le n$ and degeneracies s_i , $0 \le j \le n$ to identities, yielding the required commutative diagrams in (A.21).

For the "if" direction, this will follow by building a functor $\mathcal{I}_{\bullet} \xrightarrow{\bar{F}_{\bullet}} \mathcal{C}^{[\bullet]}$ together with the naturality of the source map s (recall that $|\mathcal{C}^{[\bullet]}| \simeq \mathcal{C}$). We define $\bar{F}_{n|_{k\to k+1}}$ as the map

$$F_{n-k}d_{0,\cdots,k-1} \xrightarrow{\varphi_{n-k}d_{0,\cdots,k-1}} F_{n-k-1}d_{0,\cdots,k}. \tag{A.22}$$

EQUIVALENCEDEF EQ

The claim that $s \circ (\Delta^{op} \ltimes \bar{F})$ recovers the horizontal map in (A.20) is straightforward, hence the real task is to prove that (A.22) defines a map of simplicial objects. First, functoriality of the original F_{\bullet} yields identities

$$\varphi_{n-1}d_i = \varphi_n, \quad 1 < i \qquad \varphi_{n-1}d_1 = (\varphi_{n-1}d_0) \circ \varphi_n, \qquad \varphi_{n+1}s_i = \varphi_n, \quad 0 < i, \qquad \varphi_{n+1}s_0 = id_{F_n}$$
(A.23)

Next note that there is no ambiguity in writing simply $\varphi_{n-k}d_{0,\cdots,k-1}$ to denote the map (A.22). We now check that $\bar{F}_{n-1}d_i=d_i\bar{F}_n,\ 0\leq i\leq n$, which must be verified after restricting to each $k\to k+1,\ 0\leq k\leq n-2$. There are three cases, depending on i and k:

 $(i < k+1) \ \varphi_{n-k-1} d_{0,\cdots,k-1} d_i = \varphi_{n-k-1} d_{0,\cdots,k};$

$$\begin{array}{lll} (i=k+1) & \varphi_{n-k-1}d_{0,\cdots,k-1}d_i &= \varphi_{n-k-1}d_1d_{0,\cdots,k-1} &= (\varphi_{n-k-1}d_0 \circ \varphi_{n-k})d_{0,\cdots,k-1} &= (\varphi_{n-k-1}d_{0,\cdots,k}) \circ (\varphi_{n-k}d_{0,\cdots,k-1}); \end{array}$$

$$(i>k+1) \ \varphi_{n-k-1}d_{0,\cdots,k-1}d_i = \varphi_{n-k-1}d_{i-k}d_{0,\cdots,k-1} = \varphi_{n-k}d_{0,\cdots,k-1}.$$

The case of degeneracies is similar.

proof of Proposition 5.40. The result follows from the following string of identifications.

$$\begin{split} &\lim_{\Delta} \left(\mathsf{Ran}_{A_n \to \Sigma_G} N_n \right) \simeq \mathsf{Ran}_{\Delta \times \Sigma_G \to \Sigma_G} \left(\mathsf{Ran}_{A_n \to \Sigma_G} N_n \right) \simeq \\ &\qquad \qquad \simeq \mathsf{Ran}_{\Delta \times \Sigma_G \to \Sigma_G} \left(\mathsf{Ran}_{(\Delta^{op} \ltimes A^{op}_{\bullet})^{op} \to \Delta \times \Sigma_G} N_{\bullet} \right) \simeq \\ &\qquad \qquad \simeq \mathsf{Ran}_{(\Delta^{op} \ltimes A^{op}_{\bullet})^{op} \to \Sigma_G} N_{\bullet} \simeq \mathsf{Ran}_{(\Delta^{op} \ltimes A^{op}_{\bullet})^{op} \to \Sigma_G} \tilde{N}_{\bullet} \simeq \mathsf{Ran}_{|A_{\bullet}| \to \Sigma_G} \tilde{N} \end{split}$$

The first step simply rewrites \lim_{Δ} . The second step follows from Proposition 2.5 applied to the map $(\Delta^{op} \times A^{op}_{\bullet})^{op} \to \Delta \times \Sigma_G$ of Grothendieck fibrations over Δ . The third step follows since iterated Kan extensions are again Kan extensions. The fourth step twists N_{\bullet} as in Lemma A.17 to obtain \tilde{N}_{\bullet} such that the d_i , s_j are given by strictly commutative diagrams for $0 \le i < n$, $0 \le j \le n$. Lastly, the final step uses Lemma A.19 to consider that \tilde{N}_{\bullet} factors through the target functor t, obtaining \tilde{N}_{\bullet} , and then uses Corollary A.16 to conclude that the Kan extensions indeed coincide.

References

BM03 [1] C.

BH15

BV73

CM13b

CW91

Elm83

Har09

Hatcher

HP15

HHR

Hi03

McL

May72

MW07

Pe16

Pe17

Pia91

Rub17

SS00

Spitz01

Ste16

We12

[1] C. Berger and I. Moerdijk. Axiomatic homotopy theory for operads. *Commentarii Mathematici Helvetici*, 78:805–831, 2003.

BM08 [2] C. Berger and I. Moerdijk. On an extension of the notion of Reedy category. Math. Z., 269(3-4):977–1004, 2011.

[3] A. J. Blumberg and M. A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. Adv. Math., 285:658-708, 2015.

[4] M. Boardman and R. Vogt. Homotopy invariant algebraic structures on topological spaces, volume 347 of Lecture Notes in Mathematics. Springer-Verlag, 1973.

[5] D.-C. Cisinski and I. Moerdijk. Dendroidal sets and simplicial operads. J. Topol., 6(3):705-756, 2013.

[6] S. R. Costenoble and S. Waner. Fixed set systems of equivariant infinite loop spaces. Trans. Amer. Math. Soc., 326(2):485–505, 1991.

[7] A. D. Elmendorf. Systems of fixed point sets. Transactions of the American Mathematical Society, 277:275–284, 1983.

[8] J. E. Harper. Homotopy theory of modules over operads in symmetric spectra. *Algebr. Geom. Topol.*, 9(3):1637–1680, 2009.

[9] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[10] M. Hausmann and L. A. Pereira. Graph stable equivalences and operadic constructions in equivariant spectra. Available at: http://www.faculty.virginia.edu/luisalex/, 2015.

[11] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the non-existence of elements of kervaire invariant one. *Annals of Mathematics*, 184:1–262, 2016.

[12] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

[13] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[14] J. P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271.

[15] I. Moerdijk and I. Weiss. Dendroidal sets. Algebr. Geom. Topol., 7:1441–1470, 2007.

[16] L. A. Pereira. Cofibrancy of operadic constructions in positive symmetric spectra. Homology Homotopy Appl., 18(2):133–168, 2016.

[17] L. A. Pereira. Equivariant dendroidal sets. arXiv preprint: 1702.08119, 2017.

[18] R. J. Piacenza. Homotopy theory of diagrams and cw-complexes over a category. *Canadian Journal of Mathematics*, 43:814–824, 1991.

[19] J. Rubin. On the realization problem for n_{∞} operads. arXiv preprint: 1705.03585,

[20] S. Schwede and B. E. Shipley. Algebras and modules in monoidal model categories. *Proc. London Math. Soc.* (3), 80(2):491–511, 2000.

[21] M. Spitzweck. Operads, algebras and modules in general model categories. arXiv preprint: 0101102, 2001.

[22] M. Stephan. On equivariant homotopy theory for model categories. Homology Homotopy Appl., 18(2):183–208, 2016.

[23] I. Weiss. Broad posets, trees, and the dendroidal category. Available at: https://arxiv.org/abs/1201.3987, 2012.

Whi14

 $[24]\,$ D. White. Monoidal bousfield localizations and algebras over operads. arXiv preprint: $1404.5197v1,\,2014.$

WY15

 $[25]\,$ D. White and D. Yau. Bousfield localization and algebras over colored operads. arXiv preprint: $1503.06720v2,\,2015.$