CS 181 Spring 2017 Homework Week 4

Due Mon 5/30, by 3:00, online submission preferred

From last week:

five. Prove that the following language over alphabet $\Sigma = \{0, 1\}$ is <u>not</u> finite state using the pumping lemma:

$$\{0^i 1^j 0^k \mid i, j, k \ge 0 \text{ and } k = |i-j|\}$$

"|i-j|" denotes the absolute value of (i-j)

1: Let alphabet $\Sigma = \{a, b, c\}$. Consider the following languages over Σ such that:

L_f is a finite language, i.e. a set consisting of a finite *number* of strings

L_{fs} is a finite state language

 $L_{=} = \{ xcy \mid x, y \in \{ a, b \}^* \text{ and } |x| = |y| \}$ (as discussed in class, this is *not* a finite state language)

L_{nfs} is not finite state language

Answer each question below about the given combinations of languages.

The possible answers are "always", "sometimes", or "never".

Explain your answer by providing a <u>brief</u> justification, example, or counterexample, as appropriate. Note that if your answer is "sometimes", then to justify your answer you need to provide two different examples: one where the combination is a finite state language and one where the combination is not a finite state language. Briefly explain why the language is or isn't finite state, but you do not need to prove it.

- a. Is $L_f \cap L_{nfs}$ a finite state language?
- b. Is $L_{fs} \cup L_{=}$ a finite state language?
- c. Is $L_f \cup L_{nfs}$ a finite state language?
- 2: Let $\Sigma = \{0, 1\}$. Convert the following Regular Expression to an NFA via the compositional construction in the proof of Sipser Lemma 1.55:

$$(0^* + 1^*)^*$$

3: Let $\sum = \{ a, b \}$. Prove that the following is finite state:

 $L_3 = \{ \text{ w | for some string, } x \in \ \Sigma^* \text{ of length 3, w contains a substring } x,$

and w also contains a non-overlapping substring x^R }

Here, "non-overlapping" means that in string w, the occurrence of x^R do not overlap each other.

4: Let $\Sigma = \{a, b\}$, and let $G = (V, \Sigma, R, S)$ be the context free grammar where:

$$V = \{ S, A, B \}, and$$
 $R = S -> A \mid B \mid \varepsilon$
 $A -> aC \mid Ca$
 $C -> bS \mid Sb$
 $B -> bD \mid Db$
 $D -> aS \mid Sa$

- (a) Show a derivation tree in G of the string "aabb".
- (b) Show the left-most derivation of the string "aabb" corresponding to your tree in part (a).
- (c) Show a different derivation tree in G of the string "aabb".
- (d) Show the left-most derivation of the string "aabb" corresponding to your tree in part (c).

5: Give a CFG for the following language over $\Sigma = \{ a, b, c \}$:

$$L_5 = \{ a^i b^j c^k \mid i, j, k \ge 0, \text{ and } j = i + k \}$$

eof