Zadanie 1. Decydent z awersją do ryzyka narażony jest na szkodę *X*. W tabeli podane są możliwe wartości *x* szkody *X*, prawdopodobieństwa ich wystąpienia oraz wysokości odszkodowań wynikające z trzech zaoferowanych decydentowi kontraktów ubezpieczeniowych:

szkoda x	0	1	2	3
$\Pr(X=x)$	0.8	0.08	0.08	0.04
$I^{(1)}(x)$	0	1	2	3
$I^{(2)}(x)$	0	0.4	1.4	2.4
$I^{(3)}(x)$	0	$\frac{2}{2}$	$\frac{4}{2}$	2
		3	3	

Jeśli wszystkie kontrakty oferowane są po cenach równych odpowiadającym im składkom netto, to decydent wybierze kontrakt:

- $(A) \qquad I^{(1)}$
- (B) $I^{(2)}$
- (C) $I^{(3)}$
- (C) zależnie od postaci funkcji użyteczności $I^{(1)}$ lub $I^{(2)}$
- (E) zależnie od postaci funkcji użyteczności $I^{(1)}$ lub $I^{(3)}$

Zadanie 2. Dla pewnego ryzyka ilość szkód na rozkład Poissona z wartością oczekiwaną 0.2, a wartość szkody *Y* ma rozkład podany w tabeli:

у	1	2	3	4
Pr(Y = y)	0.5	0.3	0.1	0.1

Ubezpieczyciel pokrywa szkody w pełni, dopóki łączna ich wartość nie przekroczy limitu odpowiedzialności równego 3 (nadwyżkę łącznej wartości szkód ponad 3 pokrywa ktoś inny). Prawdopodobieństwo, iż łączna wartość wypłaconych odszkodowań wyniesie 3 jest równe:

- (A) $1 1.125e^{-0.2}$
- (B) $1 1.025e^{-0.2}$
- (C) $0.125e^{-0.2}$

- (D) $1 1.165e^{-0.2}$
- (E) $0.165e^{-0.2}$

Zadanie 3. Ryzyko ma ten sam rozkład ilości szkód i wartości szkody co w zadaniu numer 2. Ubezpieczyciel pokrywa nadwyżkę każdej szkody ponad 1 (bez limitu odpowiedzialności na łączną wartość szkód). Prawdopodobieństwo, iż łączna wartość odszkodowań wyniesie 2 jest równe:

- (A) $0.0228e^{-0.1}$
- (B) $0.0114e^{-0.1}$
- (C) $0.0114e^{-0.2}$
- (D) $0.0218e^{-0.1}$
- (E) $0.0109e^{-0.2}$

Zadanie 4. Rozkład wartości szkody *Y* dany jest gęstością:

$$f_{Y}(y) = \begin{cases} \frac{3}{(1+y)^{4}} & dla & y > 0\\ 0 & dla & y \le 0 \end{cases}$$

Jeśli ilość szkód ma rozkład Poissona z wartością oczekiwaną 0.1, a ubezpieczyciel pokrywa nadwyżkę każdej szkody ponad 2, to składka netto wynosi:

- (A) $\frac{1}{90}$
- (B) $\frac{1}{180}$
- (C) $\frac{1}{270}$
- (D) $\frac{1}{360}$
- (E) $\frac{1}{450}$

Zadanie 5. Niech $S = Y_1 + ... + Y_N$, $N = M_1 + ... + M_K$, oraz wszystkie zmienne $Y_1, Y_2, ..., M_1, M_2, ...$ oraz K są nawzajem niezależne. Jeśli teraz $M_1, M_2, ...$ mają identyczny rozkład Poissona z parametrem częstotliwości 0.5, zmienna K ma także rozkład Poissona z parametrem częstotliwości 0.3, a zmienna Y ma wartość oczekiwaną p_1 i wariancję $p_2 - p_1^2$, to wariancja zmiennej S wynosi:

- (A) $0.15p_2$
- (B) $0.15(p_2 + 0.15p_1^2)$
- (C) $0.15(p_2 + 0.3p_1^2)$
- (D) $0.15(p_2 + 0.5p_1^2)$
- (E) $0.15(p_2 + 0.8p_1^2)$

Zadanie 6. Dwa nieobciążone estymatory $\hat{\Theta}_1$ i $\hat{\Theta}_2$ parametru Θ mają wariancje odpowiednio 2 i 4 oraz kowariancję 2. Estymator $\hat{\Theta}_3(z) = z \cdot \hat{\Theta}_1 + (1-z) \cdot \hat{\Theta}_2$ osiąga najmniejszą wariancję jeśli współczynnik z równy jest:

- (A) $\frac{1}{2}$
- (B) $\frac{2}{3}$
- (C) $\frac{3}{4}$
- (D) $\frac{5}{6}$
- (E) 1

Zadanie 7. Ryzyko X ma rozkład z atomami: Pr(X = 0) = 0.8

$$\Pr(X=1) = 0.1$$

i gęstością: $f_X(x) = 0.1$ dla $x \in (0; 1)$.

Ryzyko *Y* ma rozkład z atomami: Pr(Y = 0) = 0.7

$$\Pr(Y=2)=0.1$$

i gęstością:
$$f_{Y}(x) = 0.1$$
 dla $x \in (0; 2)$.

Jeśli X i Y są niezależne, to ile wynosi $Pr(X + Y \in \langle 1; 2 \rangle)$?

- (A) 0.19
- (B) 0.21
- (C) 0.23
- (D) 0.25
- (E) 0.27

Zadanie 8. Mamy 900 podmiotów, każdy z nich narażony na pewne ryzyko. Ryzyka te są niezależne i mają identyczne rozkłady ze średnią 1 i wariancją 4. Podmioty te utworzyły towarzystwo koasekuracyjne I. Mamy też grupę 800 innych podmiotów, każdy z nich narażony na ryzyko. Ryzyka w tej grupie są niezależne (nawzajem i od ryzyk z pierwszej grupy) i mają identyczne rozkłady ze średnią 2 i wariancją 8. Podmioty drugiej grupy utworzyły towarzystwo koasekuracyjne II. W obu towarzystwach ustalono równe składki (Π_1 i Π_2 odpowiednio) dla członków tak, aby prawdopodobieństwo iż suma szkód przekroczy sumę składek wyniosło 0.0013 (w obu towarzystwach uznano aproksymację rozkładem normalnym łącznej sumy szkód za wystarczającą, a wartość standaryzowanej zmiennej normalnej przekracza liczbę 3 z prawdopodobieństwem 0.0013).

Między towarzystwami toczą się pertraktacje o ustalenie nowych składek Π_1^* i Π_2^* tak, aby po utworzeniu wspólnego towarzystwa zachować ten sam standard bezpieczeństwa w odniesieniu do połączonego portfela ryzyk. Jaki jest zbiór dopuszczalnych (spełniających warunek obustronnych korzyści) wartości Π_2^* ?

- (A) (2.10; 2.30)
- (B) (2.15; 2.30)
- (C) (2.24; 2.30)
- (D) (2.275; 2.30)
- (E) inny

Zadanie 9. Nadwyżka jest złożonym procesem Poissona, w którym θ to stosunkowy narzut bezpieczeństwa na składkę netto, L to maksymalna całkowita strata a L_1 to wartość o którą nadwyżka spada po raz pierwszy poniżej poziomu wyjściowego (o ile do takiego spadku dochodzi). Jeśli L_1 ma rozkład jednostajny na przedziale (0; 2), to $M_L(r)$ dla r nierównego zeru wynosi:

(A)
$$\frac{2r\theta}{1+2r(1+\theta)-e^{2r}}$$

(B)
$$\frac{r\theta}{1+r(1+\theta)-e^r}$$

(C)
$$\frac{2r\theta}{2r(1+\theta)-e^{2r}}$$

(D)
$$\frac{r\theta}{r(1+\theta)-e^r}$$

(E)
$$\frac{r}{1+r(1+\theta)-e^r}$$

Zadanie 10. Ubezpieczyciel otrzymuje corocznie składkę 2 i wypłaca odszkodowania za rok i-ty w wysokości W_i . W_i są niezależne i mają jednakowy rozkład:

$$Pr(W_i = 1) = \frac{6}{7} \text{ oraz } Pr(W_i = 4) = \frac{1}{7}.$$

Współczynnik dostosowania R (adjustment coefficient) wynosi:

- (A) $\frac{1}{2}$
- (B) ln2
- (C) 1
- (D) ln3
- (E) 2ln2

Egzamin dla Aktuariuszy z 26 października 1996 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	A	
2	D	
3	D	
4	В	
5	D	
6	Е	
7	D	
8	В	
9	A	
10	В	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.