

MSML610: Advanced Machine Learning

Probabilistic Reinforcement Learning

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

AIMA Chap 17: Making complex decisions

• AIMA Chap 22: Reinforcement Learning

Sequential decision problems

- Sequential decision problems
 - Utilities over time
 - Algorithms for MDPs
- Reinforcement learning

Sequential decision problems

- Agents need to make decisions:
 - In a stochastic environment (observable or partially observable)
 - The environment has randomness or unpredictability
 - E.g., weather conditions affecting a delivery route
 - Where utility depends on a sequence of decisions (not episodic / one-shot)
 - E.g., planning a multi-step journey where each step influences the next

What is involved

- Utility functions
 - Measure the desirability of outcomes by quantifying preferences
 - E.g., assign higher values to outcomes with more profit or lower risk
- Rewards
 - Yielded by the environment as feedback for actions taken
 - E.g., receiving points in a game for completing a level
- Uncertainty
 - Represents the lack of certainty in outcomes, modeled using probabilities
 - E.g., weather forecasts often include uncertainty (70% chance of rain)
- Sensing
 - Involves gathering information about the environment, active (e.g., using sensors) or passive (e.g., observing)
 - E.g., a robot using a camera to detect obstacles in its path
- Search and planning
 - Involves finding a sequence of actions to achieve a goal
 - E.g., a GPS system planning the shortest route to a destination

Markov Decision Process (MDP)

 Markov Decision Processes (MDPs) are a formal model for sequential decision-making

Assumptions

- Fully observable but stochastic environment
- Begin in an initial state s₀
- In each state an agent can take an action $a \in Actions(s)$
- Transition model
 - Pr(s'|s,a) = Probability of reaching state s', if action a is done in state s
 - Markov assumption: probability depends on s, a, not on history
- Reward function
 - For every transition $s \to s'$ via a the agent receives a reward R(s, a, s')
 - It depends on a sequence of states and actions (i.e., "environment history"),
 e.g., additive reward
- Goal states

MDP: solution

- The solution of an MDP is a policy $\pi(s)$ "in state s take action $a \in Actions(s)$ "
 - Because of the stochastic nature of the environment, any execution of the policy leads to a different environment history
 - The policy is measured by the expected utility
- The optimal policy $\pi^*(s)$ is the policy that yields the highest expected utility
 - It is a function of the reward function
- MDP is often solved with dynamic programming
 - 1. Break the problem in smaller pieces recursively
 - 2. Remember optimal solutions of the pieces

MDP: 4 x 3 environment example

Environment

- A 4 x 3 grid layout
- Fully observable: The agent always knows its location
- Non-deterministic: Actions are not reliable
 - Pr(intended action) = 0.8
 - Pr(move right/left angle) = 0.1

Agent

- Begins at the START cell
- Chooses actions Up, Down, Left, Right at each step
- ullet Aims to reach goal states marked +1 or -1

Transition Model

• Result of each action in each state Pr(s'|s, a)

Utility Function

- Rewards for each state transition s → s' via action a is R(s, a, s')
 - -0.04 for all transitions to encourage reaching terminal states swiftly
 - \bullet +1 or -1 upon reaching terminal states
- Total utility is the sum of all received rewards

Valid actions

Example of optimal policy

Utilities over time

- Sequential decision problems
 - Utilities over time
 - Algorithms for MDPs
- Reinforcement learning

Utility function

 The utility function for environment histories (finite or infinite) is expressed as:

$$U_h([s_0, a_0, s_1, a_1, ..., s_n, ...])$$

• A **finite horizon** indicates a fixed time *N* after which nothing matters:

$$U_h([s_0, a_0, s_1, a_1, ..., s_{N+k}]) = U_h([s_0, a_0, s_1, a_1, ..., s_N]) \ \forall k > 0$$

- The optimal policy may vary with time
- Actions are chosen based on the current state and remaining steps
- Leads to non-stationary policies

Infinite Horizon

- No fixed time limit; the process continues indefinitely
- Utility is often defined using a discount factor $\gamma < 1$ for convergence
- The optimal policy can be stationary
 - Same action is chosen whenever the agent visits the same state
 - Policies do not depend on the specific time step

Additive (discounted) rewards

- Additive Rewards:
 - Rewards for each transition $s_i \xrightarrow{a_i} s_{i+1}$ are summed:

$$U_h([s_0, a_0, s_1, a_1, \ldots]) = \sum_{i=0} R(s_i, a_i, s_{i+1})$$

- Additive Discounted Rewards:
 - Includes a discount factor $\gamma \in [0, 1]$:

$$egin{aligned} U_h([s_0,a_0,s_1,a_1,\ldots]) &= R(s_0,a_0,s_1) + \gamma R(s_1,a_1,s_2) + \gamma^2 R(s_2,a_2,s_3) + \ldots \ &= \sum_{i=0} \gamma^i R(s_i,a_i,s_{i+1}) \end{aligned}$$

- $\gamma \to 0$: Future rewards negligible
- $\gamma \rightarrow 1$: Future rewards significant
- $\gamma = 1$: Purely additive rewards
- Pros of Additive Discounted Rewards:
 - Reflects human tendency to prioritize near-term rewards
 - In economics, early rewards can be reinvested, compounding further rewards
 - Supports infinite horizons, preventing infinite rewards from bounded returns

Expected utility of a policy

• The expected utility for executing policy π from state s:

$$U^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t}, \pi(S_{t}), S_{t+1})\right]$$

where the expectation $\mathbb{E}[\cdot]$ is over state sequences determined by s, π , and the environment's transition model

• The agent should choose the optimal policy:

$$\pi_s^* = \operatorname{argmax}_{\pi} U^{\pi}(s)$$

- With discounted utilities and infinite horizons, the optimal policy is independent of the starting state: $\pi_s^* = \pi^*$
- This is not true for finite-horizon policies or other reward combinations

Principle of Maximum Expected Utility (MEU)

 MEU posits "A rational agent should choose the action that maximizes its expected utility based on its beliefs"

Formal Definition:

- Possible actions: a ∈ A
- Possible outcomes: s'
- Probability distribution: Pr(s'|a) for each action
- Utility function: U(s') assigning a numerical value to each outcome
- The expected utility of action a is:

$$EU(a) = \mathbb{E}[U(a)] = \sum_{s'} U(s') \operatorname{Pr}(s'|a)$$

- Note that it is recursive
- Choose the action a* such that:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Example:

- E.g., an agent must choose between:
- Action A: 80% chance of reward 10: 20% chance of reward 0 • D. MELL -Land Astinu A Street FULA) 00 10 10 00 0 0 0
 - Action B: 100% chance of reward 6

MDP: Tetris example

• States S

Current board configuration and falling piece

Actions A

- Valid final placements of the piece
 - Rotation (0–3 positions)
 - Horizontal movement (left, right)
 - Hard drop (instant placement)
- Transition Model T(s, a, s')
 - Deterministic or stochastic based on next piece modeling
 - Piece generation often random (uniform or "bag" system)
- Reward R(s, a, s')
 - · Reward schemes:
 - +1 for each cleared line
 - Negative reward for new block addition or height increase
 - Game over may have large negative reward
- Discount Factor γ
 - Close to 1 (e.g., 0.99) for valuing long-term survival and line-clearing

Utility of a state

- The utility of a state s, U(s), reflects the long-term desirability of a state under optimal behavior
 - To remove the dependency from the policy, we use the optimal policy
 - E.g., the expected sum of discounted rewards under an optimal policy from s: U(s) = U^{π*}(s)
 - It is calculated based on the expected rewards and the discount factor
- In a 4x3 environment, the utility of a state is:
 - Higher closer to the +1 state, as fewer steps are needed to reach it
 - Lower for the one close to the -1 state, since the agent needs to go around it
 - ullet E.g., if the agent is two steps away from the +1 state, the utility will be higher compared to being four steps away
 - This assumes $\gamma = 1$ and r = -0.04 for non-terminal transitions

Bellman equation

 The utility of a state s is the expected reward for the next transition plus the discounted utility of the next state, assuming the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) [R(s, a, s') + \gamma U(s')]$$

where:

- A(s): set of actions available in state s
- Pr(s'|s, a): probability of transitioning to state s' from state s by action a
- R(s, a, s'): reward after transitioning from state s to s' using a
- γ : discount factor, where $0 \le \gamma < 1$
- Writing Bellman equations for all states gives a system of equations
 - Each state has its own equation based on its possible actions and transitions
 - Each equation is recursive: utility of s depends on utilities of its successor states
- Under certain conditions (e.g., finite state/action spaces, $\gamma < 1$):
 - This system has a unique solution
 - The utility function is well-defined
 - E.g., in a grid world with a finite number of cells and actions

Bellman equation: intuition

- The **Bellman equation**:
 - Says "Current utility = Best immediate action + Future potential"
 - Balances short-term gain and long-term value where outcomes are partly under the control of a decision-maker and partly random
- E.g., to find the fastest path to the goal in a maze, the Bellman equation prescribes:
 - "Your current position is only as valuable as the best path out of it"
 - Best path combines current proximity (reward now) and future position quality (reward later)
 - Value backs up from future to present—similar to tracing a route from finish to start
- E.g., in a chess game, the optimal strategy involves making the best move at each turn while considering future moves and potential outcomes

Action-utility function (Q-function)

- The Q-function Q(s, a):
 - Is the expected utility of taking an action in a given state
 - Gives the expected value of choosing action a in state s, and then acting
 optimally afterward
- Utility of actions Q(s, a) is the "dual" view of utility of states U(s)
 - Express the utility of a state in terms of utility of actions:

$$U(s) = \max_a Q(s, a)$$

Bellman equation for Q-functions

$$Q(s,a) = \sum_{s'} \Pr(s'|s,a) [R(s,a,s') + \gamma \textit{max}_{a'} Q(s',a')]$$

• An optimal policy picks the "best" action

$$\pi^*(s) = \operatorname{argmax}_a Q(s, a)$$

Shaping theorem

- For discounted sums of rewards, the scale of utilities is arbitrary:
 - An affine transformation $U'(s) = m \cdot U(s) + b$ does not change the optimal policy $\pi^*(s)$
 - The relative ordering of utilities is preserved and this is what matters for decision-making
- More generally, a **potential-based reward shaping**, i.e., using a function of the state s, $\Phi(s)$, doesn't change the optimal policy

$$R'(s, a, s') = R(s, a, s') + \gamma \Phi(s') - \Phi(s)$$

• It ensures the difference in value between states remains consistent

Pros

- Speed: Can significantly speed up learning by guiding the agent
 - By shaping rewards, the agent can focus on more promising actions
 - E.g., adding a potential function that increases with proximity to a goal can encourage faster convergence
 - E.g., animal trainers provide a small treat to the animal for each step in the target sequence
- Safety: Prevents misleading the agent into a suboptimal policy
 - E.g., without proper shaping, an agent might prioritize short-term rewards over long-term gains

Representing MDP

- The transition model $\Pr(s'|s,a)$ and the reward function R(s,a,a') can be represented with:
 - Three-dimensional tables of size $|S|^2 \cdot |A|$
 - For sparse MDPs (i.e., each s transitions to only a few states s'), the table size is $O(|S| \cdot |A|)$
- MDPs can be represented using Dynamic Decision Networks (DDNs):
 - DDNs are a type of probabilistic graphical model extending Bayesian networks for sequential decision problems
 - DDNs offer a factored representation, compactly encoding state variables and dependencies
 - They are more scalable and expressive than atomic (flat) representations
 - E.g., in a large MDP with many states, a DDN can efficiently represent the problem without explicitly listing every possible state transition

Dynamic decision networks: Tetris example

- A Dynamic Decision Network (DDN) model Tetris in terms of time slices with the game's state, actions, and rewards
 - State variables:
 - Board_t: Grid configuration at time t
 - Piece_t: Current piece falling
 - NextPiece_t: Upcoming piece (optional, based on rules)
 - Decision variable:
 - Action_t: Placement of Piece_t (rotation and position)
 - Chance nodes (transition):
 - Board_{t+1}: Board after action
 - Piece_{t+1}: Next piece, depending on NextPiece_t or random selection
 - Utility node:
 - Reward_t: Derived from Board_{t+1} (e.g., lines cleared, holes created)

Dynamic decision networks example: Tetris

Algorithms for MDPs

- Sequential decision problems
 - Utilities over time
 - Algorithms for MDPs
- Reinforcement learning

Value iteration (1/2)

- Value iteration solves MDPs using 2 steps:
 - Compute optimal utility for each state U(s)
 - Extract optimal policy π^* from utilities U(s)
- Step 1: compute optimal utility for each state
 - There are n possible states, so n Bellman equations, one per state

$$U(s) = \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) [R(s, a, s') + \gamma U(s')]$$

- Each equation relates the utility of a state to the utilities of its successors
- The state utilities U(s) are n unknowns
- Solve these equations n equations with n unknowns simultaneously
 - Problem: equations are non-linear due to max operator
 - Solution: use an iterative approach

Value iteration (2/2)

Solve system of Bellman equations

- Start with arbitrary values for utilities U(s) = 0
- Perform Bellman updates:

$$\textit{U}_{\textit{i}+1}(\textit{s}) \leftarrow \mathsf{max}_{\textit{a}} \sum_{\textit{s}'} \mathsf{Pr}(\textit{s}'|\textit{s},\textit{a})[\textit{R}(\textit{s},\textit{a},\textit{s}') + \gamma \textit{U}_{\textit{i}}(\textit{s}')]$$

- Calculate the right-hand side and plug it into the left-hand side
- No strict update order required for convergence, but intelligent ordering can improve speed, especially in large or structured MDPs
- Repeat until equilibrium or close to convergence $||U_{i+1} U_i|| < \epsilon$
- Guaranteed to converge to the unique fixed point (optimal policy) for additive discounted rewards and $\gamma < 1$
- Step 2: compute optimal policy
 - Derive optimal policy by choosing action a that maximizes expected utility for each state s:

$$\pi^*(s) = \operatorname{argmax}_a \sum_{s'} \Pr(s'|s,a)[R(s,a,s') + \gamma U(s')]$$

Policy Iteration

- Policy iteration solves MDPs by iteratively improving a policy
 - Alternates between evaluating the current policy and improving it
 - Uses the simplified Bellman equation with a fixed action per state

Algorithm steps

- Start with an initial (random) policy π
- Policy Evaluation: compute $U^{\pi}(s)$ by solving:

$$U^{\pi}(s) = \sum_{s'} \mathsf{Pr}(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma U^{\pi}(s')]$$

• Policy Improvement: for each state, find:

$$\pi'(s) = \operatorname{argmax}_{a} \sum_{s'} \Pr(s'|s,a) [R(s,a,s') + \gamma U^{\pi}(s')]$$

· Repeat until policy is unchanged or close to convergence

Convergence Guarantee

- · Each iteration strictly improves or maintains policy performance
- Guaranteed to terminate with an optimal policy for finite MDPs

Efficiency Considerations

- Policy evaluation involves solving linear equations
- Typically converges in fewer iterations than value iteration

Off-line vs on-line solution of MDPs

- Offline methods (e.g., value iteration, policy iteration) precompute full solutions
 - Pros:
 - Compute the entire optimal policy $\pi^* \forall s$ before taking any action
 - Cons:
 - Assumes full knowledge of transition probabilities Pr(s'|s,a) and reward function R(s,a,s')
 - Not feasible for large MDPs (e.g., Tetris with 10⁶² states)
- Online methods compute actions at runtime, using only reachable parts of the state space
 - Interleave planning and acting
 - Agent explores the environment and updates estimates (e.g., Q-learning)
 - Pros:
 - Focuses computation only on relevant parts of the state space
 - Scales to large problems with appropriate heuristics and approximations
 - Allows adaptive, real-time decision-making
 - No need for full model of the MDP
 - Cons
 - Requires fast and accurate state evaluation functions
 - May require significant computation at each decision point
 - Needs exploration and careful tradeoff with exploitation
 - Sensitive to model accuracy and search depth

The *n*-Bandit Problem

- A simplified reinforcement learning scenario
 - There are n different actions (arms)
 - Each arm a_i yields a reward drawn from an unknown probability distribution R_i
 - At each timestep t, agent selects an arm a_t and receives reward $r_t \sim R_{a_t}$
 - No state transitions: the environment is static and memoryless
 - Goal: maximize total reward over a sequence of pulls

Exploration vs. Exploitation

- Exploration: try different arms to learn their rewards
- Exploitation: choose the best-known arm to maximize immediate reward

Applications

- Online advertising (choosing ads to show)
- Clinical trials (testing treatments)
- A/B testing in web development

Partially Observable MDPs (POMDPs)

Motivation

- Traditional MDPs assume full observability of the environment
- The agent knows in which state it is in
- In real-world situations, agents often lack precise knowledge of the current state
- POMDPs (read "pom-dee-pees") extend MDPs to handle uncertainty in state perception

Definition

- A POMDP is defined by:
 - States S
 - Actions A
 - Transition model Pr(s'|s, a)
 - Reward function R(s, a, s')
 - Sensor model Pr(e|s): probability of observing evidence e in state s

Belief States

- A belief state b(s) is a probability distribution over possible actual states s (i.e., the probability of being in s)
- The agent maintains b(s) as its internal representation of the environment
- Optimal policies depend on belief states: $\pi^*(b)$

POMDP: 4x3 world with noisy four-bit sensor

- The world is the 4x3 grid with partial and probabilistic information about the environment
- Use a noisy four-bit sensor, instead of knowing where the agent is
 - Detect obstacles in four directions: North, East, South, West
 - Produces a four-bit string (e.g., 1010), each bit indicating presence (1) or absence (0) of a wall in one direction

Error Model

- Each bit is correct with probability $1-\epsilon$, incorrect with probability ϵ
- Errors are assumed to be independent across bits
- Example: true config is 1100, observed is 1110

Localization Rule

- Helps infer the robot's position by comparing sensor output with map-based expectations (integrated into belief state updates)
- Localization is achievable with high error rate by aggregating observations over time
- E.g., if the robot believes to be in (3, 2), moves left

Belief State Transitions and Value of Information

Belief Update

• After action a and observation e, belief state b is updated:

$$b'(s') = \alpha \Pr(e|s') \sum_{s} \Pr(s'|s, a)b(s)$$

where α normalizes the distribution

• Same equation as the filtering task to calculate the new belief state b'(s) from the previous belief state b(s) and the new evidence e

Belief space

- Everything (policy, transition and reward models) is now function of belief state
- It can't be function of the actual state the agent is in, since the agent doesn't know the actual state
- Intermediate belief states have lower utility due to uncertainty
- Information-gathering actions can improve future decision quality

Transition and Reward Models in Belief Space

• Transition: Pr(b'|b, a) defined using:

$$\Pr(b'|b,a) = \sum_{a} \Pr(b'|e,a,b) \Pr(e|a,b)$$

• Expected reward in belief state:

Solving POMDPs

Observable MDP over Belief Space

 A POMDP on an actual state space can be converted into an MDP on the belief space

Value Iteration for POMDPs

- Maintains a set of conditional plans p with associated utility vectors α_p
- Expected utility of a plan in belief state b is $b \cdot \alpha_p$
- Optimal utility is piecewise linear and convex over belief space

Recursive Plan Evaluation

$$lpha_{
ho}(s) = \sum_{s'} \Pr(s'|s,a) \left[R(s,a,s') + \gamma \sum_{e} \Pr(e|s') lpha_{
ho.e}(s') \right]$$

Challenges

- Number of plans grows exponentially with depth
- Even small problems generate many plans (e.g., 2²⁵⁵ plans for a two-state POMDP at depth 8)
- Approximation Techniques

Reinforcement learning

- Sequential decision problems
- Reinforcement learning
 - Passive reinforcement learning
 - Active reinforcement learning
 - Generalization in reinforcement learning
 - Policy search

Problem with supervised learning

- In supervised learning
 - An agent learns by observing examples of input / outputs
 - It's hard to find labeled data for all situations
- E.g., apply supervised learning to play chess
 - Take a board position as input \underline{x} and return a move m
 - Build a DB of grandmaster games with positions and winner (assuming moves by winner are good)
 - Problems
 - In a new game, positions differ from DB, as we have few examples compared to possible positions (10⁴⁰)
 - The agent doesn't understand the game's goal (i.e., checkmate) or valid moves of each piece
- "The AI revolution will not be supervised" (Yann LeCun)

Reinforcement learning

Reinforcement Learning (RL) Paradigm

- Agent learns from direct interaction with the environment
- Periodically receives reward signals indicating success or failure ("reinforcements")
- Learns a policy to maximize cumulative future rewards
- Goal: maximize expected sum of rewards

RL vs supervised learning

- Providing a reward signal to the agent is easier than providing inputs / outputs
- RL is active since the agent explores the environment and learn from actions and consequences

RL vs MDP

- The goal of both is to maximize the expected sum of rewards
- In RL the agent:
 - Doesn't know the transition model or the reward function (doesn't know the rules)
 - Needs to act to learn more

Sparse vs immediate rewards

- Sparse rewards = in the vast majority of states the agent is not given informative reward
 - E.g., win/lose at the end of a chess game
 - The agent must explore many states to find the few that provide rewards
 - Often requires more sophisticated exploration strategies
- Immediate / intermediate rewards help guide learning
 - E.g.,
 - In tennis, you can get rewards for every point scored
 - · Learning to crawl, any forward motion is a reward
 - In a video game, collecting coins or power-ups can serve as intermediate rewards
 - Provides continuous feedback to the agent

Applications of Reinforcement Learning

Games and Simulations

- RL has achieved superhuman performance in games like Go, Chess, and Dota2
- Algorithms learn strategies through self-play and reward-driven improvement

Robotics

- RL enables learning of complex control policies for walking, grasping, and manipulation
- Applications include robotic arms, quadrupeds, and autonomous drones

Autonomous Vehicles

- RL used for decision-making and control in self-driving cars
- Handles tasks like lane merging, navigation, and obstacle avoidance

Recommendation Systems

 Adaptive recommendation based on user interactions (e.g., Netflix, YouTube) to optimize long-term engagement and satisfaction

Finance and Trading

- Portfolio management and trading strategies learned through market simulations
- Agents aim to maximize returns under uncertainty and risk constraints

Healthcare

• Personalized treatment policies learned from patient data

Model-Based Reinforcement Learning

Definition

- Learns an explicit model of the environment's dynamics and uses it to make a decision about how to act
- Transition model: estimates Pr(s'|s, a), i.e., probability of reaching state s' from s after action a
- Reward model: estimates R(s, a), i.e., expected reward after taking action a in state s
- Intuition: learn to drive by studying the manual and physics

Learning Process

- Collects experience tuples (s, a, r, s')
- Updates the model of the environment (transition and reward)
- Plans using the model to improve policy (e.g., via value iteration or policy iteration)
- Dyna-Q algorithm: combines model-free updates with simulated planning steps

Advantages

- Efficient sample usage: fewer real-world interactions required
- Enables planning by simulating outcomes

Disadvantages

- · Learning an accurate model is challenging
- Errors in the model can propagate and lead to poor decisions

Model-Free Reinforcement Learning

Definition

- Learns directly from interactions with the environment without building a model of dynamics
- Agent observes (s, a, r, s') and updates value or policy estimates based on observed outcomes
- No attempt to predict P(s'|s, a) or R(s, a)
- Intuition: learn to drive by trial and error

Learning Process

- Value-based methods: Learn state or state-action values (e.g., Q(s, a)) e.g., Q-learning
- Policy-based methods: Learn the policy directly (e.g., REINFORCE, actor-critic)

Advantages

- Simpler to implement when environment model is unknown or too complex
- · Robust to model inaccuracies since no model is used

Disadvantages

- Requires more environment interactions (sample inefficient)
- Harder to incorporate planning or long-term reasoning

Model-Based vs Model-Free Reinforcement Learning

Core Distinction

- Model-Based RL: Learns a model of environment dynamics P(s'|s,a) and R(s,a) and uses it for planning
- Model-Free RL: Learns value functions Q(s,a) or policies $\pi(a|s)$ directly from experience

Sample Efficiency

- Model-Based: Generally more sample efficient due to simulated planning
- Model-Free: Typically needs more environment interactions

Computation

- Model-Based: Higher planning overhead; simulations required
- Model-Free: Simpler computations per step; often more scalable

Flexibility and Robustness

- Model-Based: Sensitive to model inaccuracies
- Model-Free: More robust to model errors (since it doesn't learn one)

Typical Use Cases

- Model-Based: Robotics, planning tasks, known environments
- Model-Free: Games, large-scale unknown or stochastic environments

Examples

• Model-Based: Dyna-Q, PILCO

Active vs Passive Reinforcement Learning

Basic Distinction

- Passive RL: Learns value of a fixed policy; does not choose actions
- Active RL: Learns both the value function and the optimal policy through exploration

Policy Handling

- Passive: Follows a given policy $\pi(s)$ and estimates $V^{\pi}(s)$ or $Q^{\pi}(s,a)$
- Active: Improves policy over time, aiming for $\pi^*(s)$ that maximizes reward

Exploration

- Passive: No exploration strictly evaluates the given policy
- Active: Explores actions to improve the policy (e.g., ϵ -greedy, softmax)

Learning Goal

- Passive: Accurate value function for a known policy
- Active: Optimal policy and value function via interaction

Algorithms

- Passive: Temporal Difference Learning (TD), Adaptive Dynamic Programming for a fixed policy
- Active: Q-learning, SARSA, policy iteration methods

Use Cases

- Passive: Evaluation of policies from human demonstrations or expert systems
- Active: Autonomous agents discovering optimal strategies from scratch 39/52

Passive reinforcement learning

- Sequential decision problems
- Reinforcement learning
 - Passive reinforcement learning
 - Active reinforcement learning
 - Generalization in reinforcement learning
 - Policy search

Passive learning agent

 Consider a fully observable environment with a small number of actions and states

• The agent:

- Has a fixed policy $\pi(s)$ to determine its action
- Needs to learn $U^{\pi}(s)$, the expected discounted reward if policy π is executed starting in state s
- Doesn't know the transition model $\Pr(s'|s,a)$ and the reward function R(s,a,s')
- The agent executes a set of trials using the policy π :
 - Starts from an initial state and experiences state transitions until reaching terminal states
 - Stores actions and rewards at each state $(s_0, a_0, r_1, s_1, ..., s_n)$
 - Estimates:

$$U^{\pi}(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})]$$

Direct utility estimation

vici+od.

ullet For each state s, average the returns from all episodes in which s was

Adaptive Dynamic Programming

Objective

• Learn utility estimates $U^{\pi}(s)$ for a fixed policy π using an estimated model of the environment

Key Components

- Model learning: Estimate transition probabilities Pr(s'|s,a) and reward function R(s,a) from experience
- Utility update: Solve the Bellman equations for the fixed policy:

$$U^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} \Pr(s'|s,\pi(s)) U^{\pi}(s')$$

Learning Process

- Collect transitions $(s, \pi(s), r, s')$ during execution
- Update model estimates:
 - $Pr(s'|s, a) \approx empirical frequency$
 - $R(s, a) \approx$ average observed reward
- Use dynamic programming to compute $U^{\pi}(s)$

Advantages

- More sample-efficient than direct utility estimation
- Leverages structure of the MDP to generalize better

Limitations

- Requires accurate model estimation
- Computational cost of solving Bellman equations repeatedly.

Temporal-Difference Learning

Objective

• Estimate utility values $U^{\pi}(s)$ for a fixed policy π using experience without a model

Key Idea

- · Combine benefits of Monte Carlo methods and Dynamic Programming
- Update estimates after every transition using bootstrapping

• TD(0) Update Rule

• When a transition occurs from state s to state s' via action $\pi(s)$, we apply the update:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha[r + \gamma U^{\pi}(s') - U^{\pi}(s)]$$

where:

- s is the current state
- r is the immediate reward
- s' is the next state
- α is the learning rate
- ullet γ is the discount factor

Characteristics

- Online and incremental: updates occur after each step
- Does not require knowledge of model P(s'|s, a) or R(s, a)

Advantages

• More efficient and lower variance than Monte Carlo methods

Active reinforcement learning

- Sequential decision problems
- Reinforcement learning
 - Passive reinforcement learning
 - Active reinforcement learning
 - Generalization in reinforcement learning
 - Policy search

Active Reinforcement Learning

- Passive RL assumes agent has a fixed policy and passively receives reward signals
 - In many real-world cases, agent needs to decide what actions to take and rewards must be actively sought or queried
- Active RL includes cost-sensitive decisions about when to query for rewards
 - Useful when querying is expensive or limited (e.g., human feedback)
- Key problem: balancing cost of querying against benefit of accurate reward
- Formal model:
 - Agent observes state s and selects action a
 - Decides whether to query for reward r
 - Cost c incurred if query is made
- Objective:
 - Maximize cumulative reward minus query costs
 - $\sum (r_t c_t)$ where $c_t = c$ if query made, 0 otherwise
- Optimal policy needs to learn both:
 - What actions to take
 - When it is worth querying for reward
- Applications:
 - Robotics with costly sensors

Greedy Agent in Reinforcement Learning

 A greedy agent always selects the action with the highest estimated value based on current knowledge or Q-values

$$a = \operatorname{argmax}_a Q(s, a)$$

for state s

- No exploration: purely exploits known information
- An agent must make a tradeoff between
 - Exploitation of current best action to maximize its short-term reward
 - Exploration of unknown states to gain information that can lead to a change in policy (and greater rewards in the future)
 - E.g., in life you need to decide continuing a comfortable existence, or try something unknown in the hopes of a better life
- Goal: efficient learning with minimal queries to maximize information gain per unit cost
- Strategies include:
 - Random follow greedy policy or explore
 - Cost-aware exploration: modify exploration bonus based on query cost
 Confidence-based querying: only query when uncertain about reward

Safe Exploration in Reinforcement Learning

- In idealized settings, agents can explore freely and learn from negative outcomes (e.g., losing in chess or simulations)
 - E.g., a self-driving car in simulation can crash without consequences
- In the real world, exploration has risks:
 - Irreversible actions may lead to states that cannot be recovered from
 - Agents can enter "absorbing states" where no further rewards or actions are possible
 - E.g., a crash that destroys a self-driving car permanently limits its future learning
- Safer Policy Approaches
 - Bayesian Reinforcement Learning: Maintain a probability distribution over possible models
 - Compute a policy that maximizes expected utility across all plausible models
 - In complex cases, leads to an "exploration POMDP" which is computationally intractable but conceptually useful
 - Robust Control Theory: Optimize for the worst-case scenario among all plausible models
 - Resulting policies are conservative but safe
 - E.g., agent avoids any action that could possibly lead to death
 - Impose constraints to prevent the agent from taking dangerous actions
 - E.g., safety controllers can intervene in risky states for autonomous helicopters

Temporal-Difference Q-Learning

- Q-learning is a model-free reinforcement learning algorithm
 - Learns the value of taking an action in a given state, denoted Q(s, a)
 - Does not require a model of the environment
- Temporal-difference (TD) learning updates estimates based on other learned estimates
 - Unlike Monte Carlo methods, it updates after every step using bootstrapping

Q-learning update rule:

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

- α : learning rate
- r: reward received after action a
- γ : discount factor for future rewards
- s': next state
- a': next action
- The update aims to reduce "the TD error" $r + \gamma \max_{a'} Q(s', a') Q(s, a)$, i.e., the difference between current estimate and observed return

Generalization in reinforcement learning

- Sequential decision problems
- Reinforcement learning
 - Passive reinforcement learning
 - Active reinforcement learning
 - Generalization in reinforcement learning
 - Policy search

Generalization in Reinforcement Learning (1/2)

- Tabular representations become infeasible for large state spaces
 - Real-world problems often have millions or more distinct states
 - \bullet Example: Backgammon has $\sim \! 10^{20}$ states, but successful agents visit only a small fraction
- Function approximation enables scalability and generalization
 - Replace large tables with parameterized functions: $\hat{U}_{\theta}(s)$ or $\hat{Q}_{\theta}(s,a)$
 - Linear example: $\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \cdots + \theta_n f_n(s)$
- Benefit: Generalizes from visited states to unvisited ones
 - Allows efficient learning with fewer examples
- Temporal-Difference (TD) and Q-learning adapt to function approximation
 - TD update:

$$\theta_i \leftarrow \theta_i + \alpha [r + \gamma \hat{U}_{\theta}(s') - \hat{U}_{\theta}(s)] \frac{\partial \hat{U}_{\theta}(s)}{\partial \theta_i}$$

Q-learning update:

$$\theta_i \leftarrow \theta_i + \alpha [r + \gamma \max_{a'} \hat{Q}_{\theta}(s', a') - \hat{Q}_{\theta}(s, a)] \frac{\partial \hat{Q}_{\theta}(s, a)}{\partial \theta_i}$$

- Issues and solutions:
 - Divergence: parameters can grow uncontrollably
 - Catastrophic forgetting: important knowledge can be lost
 - Solution: experience replay reuses old data to stabilize learning

Policy search

- Sequential decision problems
- Reinforcement learning
 - Passive reinforcement learning
 - Active reinforcement learning
 - Generalization in reinforcement learning
 - Policy search

Policy Search in Reinforcement Learning

- A policy $\pi(s)$ maps states to actions
 - Use a parameterized representation with fewer parameters than states (e.g., linear, deep neural network): $\pi_{\theta}(s)$
 - Directly optimizes parameters θ of the policy $\pi_{\theta}(s)$ rather than value functions
 - Pick the value with highest predicted value

$$\pi_{\theta}(s) = \operatorname{argmax}_{a} \hat{Q}_{\theta}(s, a)$$

- Useful in high-dimensional or continuous action spaces
- Even if learning a function replaces the Q-function, it is not an approximation of Q-function (i.e., Q learning)
 - Seek a function that gives good performance and might differ from the optimal Q-function Q*
- To avoid jittery policy for discrete actions, use stochastic policies for smoother optimization:
 - E.g., softmax over Q-values

$$\pi_{ heta}(s,a) = rac{e^{eta \hat{Q}_{ heta}(s,a)}}{\sum_{a'} e^{eta \hat{Q}_{ heta}(s,a')}}$$

where β controls exploration vs exploitation

If everything is continuous and differentiable, use gradient descent to find_{52/52}