

Raktai

Architektas Timotis sukūrė naują pabėgimo žaidimą. Šiame žaidime yra n kambarių, sunumeruotų nuo 0 iki n-1. Iš pradžių kiekviename kambaryje yra lygiai vienas raktas. Kiekvienas raktas yra tam tikros rūšies, aprašomos sveikuoju skaičiumi nuo 0 iki n-1 imtinai. i-ajame ($0 \le i \le n-1$) kambaryje esančio rakto rūšis yra r[i]. Atkreipkite dėmesį, kad keli kambariai gali turėti tos pačios rūšies raktus, t.y. r[i] reikšmės nebūtinai skiriasi.

Taip pat žaidime yra m **dvikrypčių** koridorių, sunumeruotų nuo 0 iki m-1. j-asis $(0 \le j \le m-1)$ koridorius jungia du skirtingus kambarius – u[j]-ajį ir v[j]-ajį. Tuos pačius du kambarius gali jungti daugiau nei vienas koridorius.

Žaidime dalyvauja vienintelis žaidėjas, kuris renka raktus ir juda tarp kambarių eidamas koridoriais. Sakome, kad žaidėjas **pereina** j-ąjį koridorių, kai jis pasinaudoja šiuo koridoriumi, kad patektų iš u[j]-ojo kambario į v[j]-ąjį kambarį arba atvirkščiai. Žaidėjas gali pereiti j-ąjį koridorių tik jei jis jau turi paėmęs rūšies c[j] raktą.

Bet kuriuo žaidimo momentu žaidėjas yra kažkuriame x-ajame kambaryje ir gali atlikti dviejų rūšių veiksmus:

- paimti x-ajame kambaryje esantį raktą, kurio rūšis yra $\,r[x]\,$ (nebent jis šį raktą jau yra paėmęs),
- pereiti j-uoju koridoriumi, jei u[j]=x arba v[j]=x ir žaidėjas jau yra paėmęs rūšies c[j] raktą. Atkreipkite dėmesį, kad žaidėjas **niekada** nepraranda rakto, kurį jau turi paėmęs.

Žaidėjas **pradeda** žaidimą kuriame nors kambaryje s, neturėdamas nei vieno rakto. t-asis kambarys yra **pasiekiamas** iš s-ojo kambario, jei žaidėjas, pradedantis žaidimą s-ajame kambaryje, gali atlikti seką aukščiau aprašytų veiksmų ir pasiekti t-ąjį kambarį.

Kiekvienam i-ajam kambariui ($0 \le i \le n-1$), pažymėkime skaičių kambarių, pasiekiamų iš i-ojo kambario, simboliu p[i]. Timotis norėtų sužinoti, su kuriais indeksais i yra įgyjama minimali p[i] reikšmė, kai $0 \le i \le n-1$.

Realizacija

Parašykite šią procedūrą:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: n ilgio masyvas. Kiekvienam i ($0 \le i \le n-1$), i-ajame kambaryje esančio rakto rūšis yra r[i].
- u,v: du m ilgio masyvai. Kiekvienam j ($0\leq j\leq m-1$), j-asis koridorius jungia u[j]-ąjį ir v[j]-ąjį kambarius.

- c: m ilgio masyvas. Kiekvienam j ($0 \le j \le m-1$), rakto rūšis, reikalinga norint pereiti j-ąjį koridorių, yra c[j].
- Ši procedūra turi grąžinti n ilgio masyvą a. Kiekvienam $0 \le i \le n-1$, a[i] reikšmė turi būti 1, jei kiekvienam j, tenkinančiam $0 \le j \le n-1$, galioja $p[i] \le p[j]$. Priešingu atveju, a[i] reikšmė turi būti 0.

Pavyzdžiai

Pavyzdys nr. 1

Panagrinėkime tokį iškvietimą:

Jei žaidimas pradedamas 0-iniame kambaryje, žaidėjas gali atlikti šiuos veiksmus:

Dabartinis kambarys	Veiksmas
0	Paimti rūšies 0 raktą
0	Pereiti 0-iniu koridoriumi į 1-ąjį kambarį
1	Paimti rūšies 1 raktą
1	Pereiti 2-uoju koridoriumi į 2-ąjį kambarį
2	Pereiti 2-uoju koridoriumi į 1-ąjį kambarį
1	Pereiti 3-uoju koridoriumi į 3-ąjį kambarį

Todėl 3-iasis kambarys yra pasiekiamas iš 0-inio kambario. Panašiais būdais galime sukonstruoti veiksmų sekas, kuriomis visi kambariai yra pasiekiami iš 0-inio, todėl p[0]=4. Žemiau pateikta lentelė rodo pasiekiamų kambarių sąrašus kiekvienam startiniam kambariui:

Startinio kambario nr. $\it i$	Pasiekiami kambariai	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Mažiausia p[i] reikšmė tarp visų kambarių yra $\,2$, ir ji yra gaunama, kai $\,i=1$ arba $\,i=2$. Taigi, funkcija turi grąžinti $\,[0,1,1,0]$.

Pavyzdys 2

Žemiau pateikta lentelė rodo pasiekiamus kambarius:

Startinio kambario nr. $\it i$	Pasiekiami kambariai	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

Mažiausia p[i] reikšmė tarp visų kambarių yra 2, ir ji yra gaunama, kai $i \in \{1,2,4,6\}$. Taigi, funkcija turi grąžinti [0,1,1,0,1,0,1].

Pavyzdys 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Žemiau pateikta lentelė rodo pasiekiamus kambarius:

Startinio kambario nr. $\it i$	Pasiekiami kambariai	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Mažiausia $\,p[i]\,$ reikšmė tarp visų kambarių yra $\,1$, ir ji yra gaunama, kai $\,i=2.$ Taigi, funkcija turi grąžinti $\,[0,0,1].$

Ribojimai

- $2 \le n \le 300\,000$
- 1 < m < 300000
- $0 \le r[i] \le n-1$ visiems $0 \le i \le n-1$
- $0 \le u[j], v[j] \le n-1$ ir $u[j] \ne v[j]$ visiems $0 \le j \le m-1$

• $0 \le c[j] \le n-1$ visiems $0 \le j \le m-1$

Dalinės užduotys

```
1. (9 taškai) c[j]=0 visiems 0\leq j\leq m-1 ir n,m\leq 200
```

- 2. (11 taškų) $n, m \le 200$
- 3. (17 taškų) $n, m \leq 2000$
- 4. (30 taškų) $c[j] \leq 29$ (visiems $0 \leq j \leq m-1$) ir $r[i] \leq 29$ (visiems $0 \leq i \leq n-1$)
- 5. (33 taškai) Jokių papildomų ribojimų.

Pavyzdinė vertinimo programa

Pavyzdinė vertinimo programa skaito įvestį tokiu formatu:

- 1-oji eilutė: n m
- 2-oji eilutė: r[0] r[1] ... r[n-1]
- (3+j)-oji ($0 \le j \le m-1$) eilutė: u[j] v[j] c[j]

Pavyzdinė vertinimo programa išveda find_reachable grąžintą reikšmę tokiu formatu:

• 1-oji eilutė: a[0] a[1] \ldots a[n-1]