Examenul de bacalaureat național 2016

Proba E. c)

Matematică M_tehnologic

Clasa a XI-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră progresia geometrică $(b_n)_{n\geq 1}$ cu $b_1=2$ și $b_2=8$. Calculați $b_1+b_2+b_3$
- **5p** 2. Determinați numerele reale a pentru care f(a-5) = f(5), unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 1$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2 \cdot 2^x = 4^{x-2}$.
- **5p** | **4.** Determinați câte numere naturale de trei cifre se pot forma cu cifrele din mulțimea $A = \{0, 2, 4, 5\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,-2) și B(-1,4). Determinați coordonatele punctului M, știind că $\overline{AM} = \overline{MB}$.
- **5p 6.** Se consideră triunghiul ABC cu $m(\angle ABC) = 30^{\circ}$, AB = 8 și BC = 12. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $d(x) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & x+1 \\ 3 & 3 & x^2+2 \end{vmatrix}$, unde x este număr real.
- **5p** a) Calculați d(0).
- **5p b**) Demonstrați că d(x) = -2(x-1)(x+1), pentru orice număr real x.
- **5p** c) Arătați că, dacă x și y sunt două numere reale diferite astfel încât d(x) = d(y), atunci x + y = 0.
 - **2.** Se consideră matricele $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p a**) Calculați $A + I_2$.
- **5p b)** Arătați că inversa matricei $M = A + I_2 + A \cdot A$ este matricea -A.
- **5p** c) Determinați numărul real x, pentru care avem $(A + I_2)(B + I_2) = 2I_2$, unde $B = \begin{pmatrix} 0 & x \\ x^2 & 0 \end{pmatrix}$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^2 + 3x + 5}}{x+2}$.
- **5p** a) Calculați $\lim_{x \to 1} f(x)$.
- **5p** \mid **b**) Determinați ecuația asimptotei verticale la graficul funcției f.
- **5p** $| \mathbf{c} |$ Determinați ecuația asimptotei orizontale la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x+1, & x \in (-\infty, 0] \\ 1-x^3, & x \in (0, +\infty) \end{cases}$.
- **5p a**) Calculați f(-1) + f(1).
- **5p** | **b**) Demonstrați că funcția f este continuă în punctul x = 0.
- **5p** c) Rezolvați în mulțimea numerelor reale inecuația $f(x) \ge 0$.