Tema 1

Introducción al control electrónico

Javier Valls

Dpto. Ingeniería Electrónica

Contenidos

- 1. Objetivos
- 2. Sistemas de control
- 3. Configuraciones de los sistemas de control
- 4. Control digital de sistemas
- 5. Prestaciones de los sistemas de control
- 6. Proceso de diseño de un sistema de control
- 7. Bibliografía

Objetivos

Objetivos

Al finalizar este tema el alumno será capaz de

- · entender la necesidad de disponer de sistemas de control
- · distinguir los componentes de un sistema de control
- reconocer las configuraciones típicas y sus ventajas e inconvenientes
- · reconocer las especificaciones básicas de un sistema de control
- · entender su proceso de diseño

Sistemas de control

Sistemas de control: aplicaciones

Los sistemas de control están presentes en muchísimos ámbitos:

- · Robótica, automatización industrial, instrumentación médica
- · Automoción, aeronáutica, sector espacial
- Comunicaciones
- · Defensa
- · Industria química y nuclear
- . . .

Sistemas de control: aplicaciones

Sistemas de control de posición

Sistemas de control de velocidad

Sistemas de control

- Los subsistemas a controlar (PLANTAS o PROCESOS) tienen su propia dinámica
 - La respuesta a un estímulo en la entrada depende
 - · de su naturaleza física
 - · del propio estímulo
- Respuesta transitoria → solo depende de la naturaleza física del sistema
- Respuesta permanente → depende del estímulo aplicado (si el sistema es estable)

Sistemas de control

- Los SISTEMAS DE CONTROL tienen como objetivo modificar la respuestas de las plantas para que alcancen el comportamiento deseado
 - · con precisión
 - en presencia de perturbaciones o cambios en el entorno

Respuestas de sistemas: Velocidad de un motor de DC

Velocidad vs. voltaje aplicado (ver video)

Respuestas de sistemas: Brazo con hélice propulsora

Ángulo vs. voltaje aplicado (ver video)

Configuraciones de los Sistemas de control

Configuraciones típicas de los sistemas de control

Sistema no realimentado: lazo abierto

Sistema realimentado: lazo cerrado

Control de velocidad de motor con sistema no realimentado

Control de velocidad de motor con sistema realimentado

Configuraciones típicas de los sistemas de control

Los sistemas de control no realimentados

- · Sensibles a las perturbaciones
- · No pueden corregirlas

Los sistemas de control realimentados

- Miden la variable controlada, la comparan con la señal de referencia y utilizan el error para modificar el comportamiento de la planta
- · Mayor precisión en la respuesta
- · Menos sensible al ruido, perturbaciones o cambios del entorno
- Mayor flexibilidad para modificar la respuesta transitoria del sistema
- Más complejo de diseñar y más costosos que los sistemas no realimentados

Control digital de sistemas

Control digital de sistemas

Ventajas del control digital frente al analógico

- · Exactitud en los cálculos
 - · acotada por la precisión del sistema de cómputo
 - · no depende de tolerancias de componentes analógicos
- · Flexibilidad: facilidad de modificar el software
 - · depurar
 - · actualizar el sistema
- · Bajo coste debido al desarrollo de la tecnología VLSI
 - · microcontroladores económicos
 - incluyen los periféricos necesarios para implementar el sistema (ej. ADCs y DACs)

Sistema realimentado con control digital

Prestaciones de los sistemas de control

Prestaciones del sistema de control

- · Forma y duración de la respuesta transitoria del sistema
- · Error en el estado estacionario de la respuesta del sistema
- El ascensor (sistema de posicionamiento)

Prestaciones del sistema de control

- Respuesta del sistema ante un estímulo = respuesta natural + respuesta forzada
 - Respuesta natural: respuesta propia del sistema (independiente del estímulo aplicado)
 - Respuesta forzada: respuesta del sistema forzada por el estímulo aplicado
- El sistema de control debe diseñarse para que sea estable
 - Su respuesta natural debe tender a cero (anularse)
 - Solo debe quedar la respuesta forzada por la entrada

Prestaciones del sistema de control

- En los **SISTEMAS DE CONTROL** se busca
 - · una respuesta transitoria de determinada forma y duración
 - que su respuesta estacionaria siga a la respuesta deseada con un error acotado o sin error
 - que el sistema no se haga inestable ante posible cambios del entorno, perturbaciones o de sus propios componentes
 - también, que su coste sea razonable, los componentes que lo forman tangan determinadas dimensiones, ...

Proceso de diseño de un sistema

de control

Proceso de diseño

Bibliografía

- · Norman S. Nise, **Control systems engineering**, Wiley 2017
- Se recomienda la lectura del capítulo 1: secciones 1.1, 1.3 y 1.4