

CatBoost: unbiased boosting with categorical features

고급심화 차수빈

1. Catboost Overview

#1. CatBoost Overview

Catboost?

famous in 2016

꽁꽁 얼어붙은 강의실 위를 고양이가 걸어갑니다 🤚

* History – Gradient Boosting

- 약한 모델(= base predictors)을 탐욕적으로 반복 결합함으로써 강한 모델을 만들어 나가는 방식
- 다양한 작업에서 SOTA를 달성하였음

#1. CatBoost Overview

그러나, Gradient Boosting의 기존 구현은 두 가지 통계적 문제에 직면함

1. Target Leakage

2. Prediction Shift

범주형(Categorical) 데이터에 특화된 부스팅 알고리즘을 고안해 보자!

CatBoost = Categorical Boosting

2. Background

#2. Background

- GradientBoost의 작동 원리
 - Dataset에 대한 가정
 - $D = (x_k, y_k)_{k=1\cdots n}$: data
 - $-x_k = (x_k^1, \dots, x_k^m)$: r.v of m features
 - $y_k \in \mathbb{R}$: target, binary(분류) / numerical(회귀)
 - $(x_k, y_k) \sim P(\cdot, \cdot)$ (P: unknown distribution)
 - 목표: loss L(F):=EL(y,F(x))를 최소화하는 함수 $F:\mathbb{R}^m\to\mathbb{R}$ 을 훈련시키는 것
 - Gradient Boosting은 greedy한 방법으로 일련의 근사치 F^t : $\mathbb{R}^m \to \mathbb{R}$, $t=0,1,\cdots$ 를 반복적으로 구축해 나가는 알고리즘
 - $F^t = F^{t-1} + \alpha h^t$ (α : step size, h^t : $\mathbb{R}^m \to \mathbb{R}$, 손실을 최소화하기 위한 함수)
 - Catboost는 기본적으로 GradientBoosting 방식을 채택
 - 기본 예측기(base predictor)로 binary decision tree를 활용

Related Work

- 범주형 변수는 비교할 수 없는 범주라 불리는 이산형(discrete) 값의 집합을 가지는 변수들임
 - 이러한 특성을 처리하는 가장 기본적인 접근법이 One-hot Encoding임
 - 그러나 one-hot Encoding은 범주의 개수만큼 새로운 변수를 생성해 냄
 - → high cardinality 특성("user ID" feature 등)의 경우 너무 많은 새로운 feature의 수를 초래

id	color
1	red
2	blue
3	green
4	blue

One Hot Encoding

id	color_red	color_blue	color_green
1	1	Θ	Θ
2	Θ	1	Θ
3	0	Θ	1
4	0	1	Θ

Related Work

- 대안으로, 범주를 제한된 클러스터로 그룹화하고 목표 통계량(Target Statistics, TS)을 사용하여 수치적 특성으로 각 범주의 예상 목표 값을 추정하는 방법이 제안되었음
 - 각 카테고리의 기대되는 타겟 값으로 클러스터링하여 각 카테고리를 새로운 수치 특성으로 변환
 - 정보 손실을 최소화하면서도 효율적인 처리를 가능하게 함

k번째 훈련 예제의 i번째 feature의 범주 값 x_k^i 를 목표 통계량(TS) $\widehat{x_k^i}$ 라는 하나의 수치형 feature로 대체하자.

- 다음과 같이 범주에 의해 조건화 되는 예상 target y를 추정 $\widehat{x_k^i} \approx E(y|x_i=x_k^i)$

Target Statistics

1. Greedy TS

- 동일한 범주 x_k^i 를 가지고 훈련 예제들에 대한 y의 평균값으로 추정하는 방법

	•••	xi	•••	у
I ₁		Α		- 1
l ₂		В		- 1
l ₃		C		1
I ₄		Α		0
I ₅		В		- 1
I ₆		С		1
l ₇		В		0
I ₈		С		1
l ₉		С		1
I ₁₀		C		0

	•••	x ⁱ (TS)	 у
-1_1		0.50	 _
l ₂		0.67	 _
l ₃		0.80	 _
I ₄		0.50	 0
I ₅		0.67	 _
l ₆		0.80	 _
l ₇		0.67	 0
l ₈		0.80	 1
l ₉		0.80	 I
I _{I0}		0.80	 0

Target Statistics

1. Greedy TS

- smoothing을 적용하지 않는 경우 noisy category 문제가 발생할 수 있음

	y=1	y=0	TS
Α	10	10	0.5
В	40	10	0.8
С	10	40	0.2
D	25	25	0.5
Е	1	0	1

← 매우 <mark>희소</mark>하게 나오는 값의 TS가 매우 커지는 문제

- Target Statistics
- 1. Greedy TS
- Greedy TS With Smoothing

$$\hat{x}_k^i = \frac{\sum_{j=1}^n \mathbbm{1}_{\{x_j^i = x_k^i\}} \cdot y_j + a\,p}{\sum_{j=1}^n \mathbbm{1}_{\{x_j^i = x_k^i\}} + a}$$

- $\sum_{j=1}^{n} 1_{\{x_i^i = x_k^i\}}$: k번째 feature의 category 값이 i인 객체의 총 수
- $\sum_{j=1}^n 1_{\{x_j^i=x_k^i\}}*y_j$: k번째 feature의 category 값이 i인 객체 중 y(target) 값이 1인 객체의 수
- a(>0)와 p는 hyper-parameter
- p는 주로 target의 평균값을 취함
- => 자주 등장하지 않는 noisy category의 부정적 영향을 줄여주는 역할

- Greedy TS with smoothing example
 - \checkmark a = 0.1 (parameter), p = 0.7 (computed from the training dataset)
 - ✓ For category A

	 xi	 у
$-\mathbf{I}_{1}$	 Α	 -
l ₂	 В	 I
l ₃	 С	 I
I ₄	 Α	 0
I _S	 В	 I
I ₆	 С	 I
I ₇	 В	 0
I ₈	 С	 - 1
l ₉	 С	 0
I ₁₀	 C	 1

$$\hat{x}_k^A = \frac{\sum_{j=1}^n \mathbb{1}_{\{x_j^A = x_k^A\}} \cdot y_j + ap}{\sum_{j=1}^n \mathbb{1}_{\{x_j^A = x_k^A\}} + a}$$

$$= \frac{1 + 0.1 \times 0.7}{2 + 0.1} = 0.5095$$

- Greedy TS with smoothing example
 - \checkmark a = 0.1 (parameter), p = 0.7 (computed from the training dataset)
 - √ For category B

	 xi	 у
I ₁	 4	 1
l ₂	 В	 1
l ₃	 С	 - 1
I ₄	 Α	 0
I _S	 В	 - 1
I ₆	 С	 I
l ₇	 В	 0
I ₈	 C	 - 1
l ₉	 С	 0
I ₁₀	 U	 1

$$\hat{x}_k^B = \frac{\sum_{j=1}^n \mathbb{1}_{\{x_j^B = x_k^B\}} \cdot y_j + ap}{\sum_{j=1}^n \mathbb{1}_{\{x_j^B = x_k^B\}} + a}$$

$$= \frac{2 + 0.1 \times 0.7}{3 + 0.1} = 0.6677$$

- Greedy TS with smoothing example
 - \checkmark a = 0.1 (parameter), p = 0.7 (computed from the training dataset)
 - √ For category C

	•••	×	 у
I_1	•••	A	 1
l ₂		В	 ı
l ₃		С	 - 1
I ₄		Α	 0
I ₅		В	 - 1
I ₆		C	 - 1
I ₇		В	 0
I ₈		С	 - 1
l ₉		С	 0
I ₁₀		С	 1

$$\hat{x}_k^C = \frac{\sum_{j=1}^n \mathbb{1}_{\{x_j^C = x_k^C\}} \cdot y_j + ap}{\sum_{j=1}^n \mathbb{1}_{\{x_j^C = x_k^C\}} + a}$$

$$= \frac{4 + 0.1 \times 0.7}{5 + 0.1} = 0.7980$$

- Target Statistics
- 1. Greedy TS
- 문제점: Target Leakage 발생
 - feature $\widehat{x_k^i}$ 의 값을 계산하는 데 target인 y_k 값이 사용되는 현상
 - 이는 conditional shift를 유발
- Conditional Shift
 - 학습용(train) 데이터와 테스트용(test) 데이터에서의 $\widehat{x^i}|y$ 의 분포가 달라지는 문제
 - $-E\left(\widehat{x^{i}}\middle|y\right) \neq E\left(\widehat{x_{k}^{i}}\middle|y_{k}\right)$

- Target Statistics
- 1. Greedy TS
- Conditional Shift Example(in the paper)
 - i번째 feature는 범주형이고, 모든 category가 독립적이라고 가정

	•••	X ⁱ	•••	у
l ₁	•••	Α	•••	1
l ₂	•••	В	•••	1
l ₃	•••	C	•••	1
I ₄	•••	D	•••	0
l ₅	•••	Е	•••	0
16	•••	H	•••	0

	•••	Χ ^I	•••	У	
l ₁	•••	$\frac{1+ap}{1+a}$	•••	1	
l ₂	•••	$\frac{1+ap}{1+a}$	• • •	1	
l ₃	•••	$\frac{1+ap}{1+a}$	• • •	1	
I ₄	•••	$\frac{0+ap}{1+a}$	•••	0	
I ₅	•••	$\frac{0+ap}{1+a}$	•••	0	
I ₆	•••	$\frac{0+ap}{1+a}$	•••	0	

- 이러한 경우, 분할 경계(결정 경계)를 다음과 같이 설정 가능: $\mathbf{x}^{\mathbf{i}} = \frac{0.5 + ap}{1 + a}$

- Target Statistics
- 1. Greedy TS
- Conditional Shift Example(in the paper)

Training Set

> Test Set

	•••	Χ ⁱ	•••	у
l ₁	•••	А	•••	1
l ₂	•••	В	•••	1
l ₃	•••	С	•••	1
I ₄	•••	D	•••	0
l ₅	•••	Е	•••	0
l ₆	•••	F	•••	0
l ₇	•••	G	•••	1
l ₈	•••	Н	•••	1
l ₉	•••	I	•••	0
l ₁₀	•••	J		0

	•••	Xi	•••	У
l ₁		$\frac{1+ap}{1+a}$	•••	1
l ₂		$\frac{1+ap}{1+a}$	•••	1
l ₃		$\frac{1+ap}{1+a}$	•••	1
I ₄		$\frac{0+ap}{1+a}$	•••	0
l ₅	•••	$\frac{0+ap}{1+a}$	•••	0
l ₆		$\frac{0+ap}{1+a}$	•••	0
l ₇		Р	•••	1
l ₈	•••	Р	•••	1
l ₉	•••	Р	•••	0
l ₁₀		Р	•••	0

- 테스트 데이터에서의 TS 값이 모두 p가 되어버림 → 결정 경계로써의 의미가 상실됨

- Conditional shift
- 이러한 문제점에 대해, 논문의 저자들은 TS가 가져야 할 속성으로 두 가지를 제시
- Property 1
 - > target 값이 동일하다면 학습 데이터와 테스트 데이터에서의 TS의 기댓값(expectation)은 동일해야 한다.

$$> E\left(\widehat{x^i}\middle|y=v\right) = E\left(\widehat{x_k^i}\middle|y_k=v\right), (x_k,y_k)$$
: kth training example

- Property 2
 - > 모델 학습 시에는 training data를 최대한 활용할 수 있는 방향으로 진행해야 한다.
 - > 최대한 모든 정보 활용

- Conditional shift 문제를 어떻게 해결해야 할까?
- x_k 의 TS 계산 시 y_k 가 사용되는 것이 문제이니 x_k 만 제외하고 계산해 보자!
 - $\vdash D_k \subset D \backslash \{x_k\}$

$$\hat{x}_{k}^{i} = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + ap}{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

2. Holdout TS

- 학습용 데이터를 두 부분으로 분리하자: $D=\widehat{D_0}\cup\widehat{D_1}$
 - L TS 계산 시에는 D_0 활용
- ⇒ Property 2 위반

3. Leave-one-out TS

- 학습: $D_k \subset D \setminus \{x_k\}$ 활용
- 평가: $D_k = D$ 활용(학습 데이터 전체)
- ⇒ 여전히 target leakage 문제는 발생

- Conditional shift 문제를 어떻게 해결해야 할까?
- 4. Ordered TS
 - L Catboost에서 Target Leakage 문제를 해결하기 위해 제안하는 방식
- 임의로 시간 개념을 도입해 보자. ⇒ artificial time

- 학습 예제에 대해 random permutation 수행
 - 각각의 예제에 대해 접근 가능한 모든 "history"(이전 정보) 활용

$$D_k = \{x_j : \sigma(j) < \sigma(k)\}$$

- high variance 문제를 피하기 위해 permutation을 여러 번 수행

Ordered TS - Example

∟ 출처: 고려대학교 DSBA 연구실 – 강필성 교수님 강의자료

lacktriangleright a random permutation σ of the training examples

$$\mathcal{D}_k = \{ \mathbf{x}_j : \sigma(j) < \sigma(k) \}$$

• a = 0.1 (parameter), p = 0.667 (computed from the training dataset)

		x ⁱ	 TS	у
I_1	•••	Α	 0.000	I
I_2		В	 1.000	I
l ₃		С	 1.000	ı
I ₄		Α	 1.000	0
I ₅		В	 0.977	ı
I ₆		С	 0.982	ı
I ₇		В	 0.992	0
I ₈		С	 0.986	l
l ₉		С	 0.992	0
I ₁₀		С	 0.748	ı

$$\hat{x}_{k}^{i} = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} \cdot y_{j} + ap}{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{k}} \mathbb{1}_{\{x_{j}^{i} = x_{k}^{i}\}} + a}$$

$$= \frac{3 + 0.1 \times 0.667}{4 + 0.1} = 0.748$$

4. Prediction Shift

#4. Prediction Shift

Gradient Boosting Procedure

$$h^{t} = \arg\min_{h \in H} \mathbb{E}\left(-g^{t}(\mathbf{x}, y) - h(\mathbf{x})\right)^{2}$$

$$h^{t} = \arg\min_{h \in H} \frac{1}{n} \sum_{k=1}^{n} \left(-g^{t}(\mathbf{x}, y) - h(\mathbf{x})\right)^{2}$$

- 보통 기댓값은 알려져 있기 않기에, 기존에 가지고 있는 (유한한) 데이터셋 D를 활용하여 평균 loss를 계산
- 이때, 학습 데이터인 x_k 가 주어졌을 때의 gradient의 조건부 분포인 $g^t(x_k,y_k)|x_k$ 와 일반적인 테스트 데이터인 x가 주어졌을 때의 gradient의 조건부 분포인 $g^t(x,y)|x$ 가 다름(→ shift)
 - \Rightarrow base predictor인 h^t 는 원래 solution과 달라지게 됨(\rightarrow biased)
 - \Rightarrow 학습된 모델 F^t (= F^{t-1} + $\alpha * h^t$)의 일반화 성능에 영향

Prediction Shift 발생!

#4. Prediction Shift

- Analysis of Prediction Shift
- prediction shift는 근본적으로 target leakage로부터 발생
- 이를 방지하기 위해 Catboost는 트리의 매 학습 step마다 다른 데이터셋(independent samples)을 활용해야 한다고 주장

Theorem 1 1. If two independent samples \mathcal{D}_1 and \mathcal{D}_2 of size n are used to estimate h^1 and h^2 , respectively, using Equation (6), then $\mathbb{E}_{\mathcal{D}_1,\mathcal{D}_2}F^2(\mathbf{x}) = f^*(\mathbf{x}) + O(1/2^n)$ for any $\mathbf{x} \in \{0,1\}^2$.

2. If the same dataset $\mathcal{D} = \mathcal{D}_1 = \mathcal{D}_2$ is used in Equation (6) for both h^1 and h^2 , then $\mathbb{E}_{\mathcal{D}_1 = \mathcal{D}_2}F^2(\mathbf{x}) = f^*(\mathbf{x}) - \frac{1}{n-1}c_2(x^2 - \frac{1}{2}) + O(1/2^n)$.

$$h^{t} = \arg\min_{h \in H} \quad \frac{1}{n} \sum_{k=1}^{n} \left(-g^{t}(\mathbf{x}, y) - h(\mathbf{x}) \right)^{2}$$

⇒ 독립된 데이터셋을 활용할 때에 비해 같은 데이터셋을 사용하는 경우 추가적인 bias가 발생하게 된다.

Overview

출처: 고려대학교 DSBA 연구실

⇒ 모델(트리)를 계속 생성해 가며 다음 데이터의 잔차를 계산해 나가는 방식

Overview

- 임의의 permutation(σ)을 만들고, 순차적으로 잔차를 계산하여 트리를 학습하면서 target leakage를 방지하는 방식
 - 이때 TS 계산에 사용되는 permutation(σ_{cat})과 ordered boosting 시 사용되는 permutation(σ_{boost})은 동일하게 설정
 - ⇒ for prediction shift 방지
- 그러나 이러한 방식은 데이터 개수만큼의 서로 다른 학습모델을 필요로 하고, 이는 복잡도와 메모리 요구량을 상승시킴
 - ⇒ 이를 방지하기 위해 그래디언트 부스팅 알고리즘을 일부 수정

Practical Implementation

Figure 1: Ordered boosting principle, examples are ordered according to σ .

```
Algorithm 1: Ordered boosting

input: \{(\mathbf{x}_k, y_k)\}_{k=1}^n, I;

\sigma \leftarrow \text{random permutation of } [1, n];

M_i \leftarrow 0 \text{ for } i = 1..n;

for t \leftarrow 1 \text{ to } I \text{ do}

for i \leftarrow 1 \text{ to } n \text{ do}

\Gamma_i \leftarrow y_i - M_{\sigma(i)-1}(\mathbf{x}_i);

for i \leftarrow 1 \text{ to } n \text{ do}

\Delta M \leftarrow LearnModel((\mathbf{x}_j, r_j) : \sigma(j) \leq i);

M_i \leftarrow M_i + \Delta M;

return M_n
```

```
Algorithm 2: Building a tree in CatBoost
   input: M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
\bigcirc grad \leftarrow CalcGradient(L, M, y);
\otimes r \leftarrow random(1, s);
   if Mode = Plain then
       G \leftarrow (grad_r(i) \text{ for } i = 1..n);
3 if Mode = Ordered then
        G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i = 1..n);
   T \leftarrow \text{empty tree};

    foreach step of top-down procedure do

        foreach candidate split c do
              T_c \leftarrow \text{add split } c \text{ to } T;
              if Mode = Plain then
                   \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_r(p)) for
                    p: leaf_r(p) = leaf_r(i)) for i = 1..n;
             if Mode = Ordered then
                   \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                    p : leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                    for i = 1..n;
             loss(T_c) \leftarrow cos(\Delta, G)
        T \leftarrow \arg \min_{T_c} (loss(T_c))
   if Mode = Plain then
        M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r'}(p)) for
         p: leaf_{r'}(p) = leaf_{r'}(i)) \text{ for } r' = 1..s, i = 1..n;
   if Mode = Ordered then
        M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
          p : leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j) for r' = 1...s,
          i = 1..n, j > \sigma_{r'}(i) - 1;
```

return T, M

Practical Implementation

1. Initialization

- 학습 데이터셋으로부터 s+1개의 독립적인 random permutation을 생성
 - s개의 permutation $(\sigma_1, \dots, \sigma_s)$ 은 split을 계산하는 데 사용
 - 1개의 permutation(σ_0)은 s개의 permutation을 통해 얻어진 트리로부터 leaf value(b_j)를 계산하기 위해 사용
- 하나의 permutation만 사용하는 경우 최종 모델 예측에서 분산이 증가하는 문제가 발생
 - 여러 permutation을 적용하여 분산이 커지는 것을 방지

- Practical Implementation
 - 2. Ordered Boosting 작동 방식
 - L Ordered 위주로..
- base predictors: oblivious decision tree
 - L oblivious decision tree: 트리의 level 마다 동일한 조건(same splitting critetion)을 부여하여

좌우 대칭 형태로 만든 decision tree

- supporting models $M_{r,j}$ 를 유지
 - $M_{r,j}$: permutation σ_r 에서 처음 j개의(처음 ~ j번째) 데이터로 학습된 모델의 i번째 데이터에 대한 현재 예측값
 - gradient는 다음과 같이 계산됨 $\left. grad_{r,j}(i) = \left. rac{\partial L(y_i,s)}{\partial s} \right|_{s=M_{r,i}(s)} \right|_{s=M_{r,i}(s)}$

- Practical Implementation
 - 2. Ordered Boosting 작동 방식
 - L Ordered 위주로..
 - 1) 주어진 L(손실함수), M(모델), y(target value)를 활용하여 계산
 - 2) 각 반복(t)마다 { $\sigma_1, \dots, \sigma_s$ } 중에서 permutation σ_r sampling
 - 범주형 변수들에 대한 TS는 σ_r 을 통해 계산됨
 - permutation은 학습 과정에 영향

```
Algorithm 2: Building a tree in CatBoost
input: M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
  G \leftarrow (grad_r(i) \text{ for } i = 1..n);
if Mode = Ordered then
  G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i = 1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
          T_c \leftarrow \text{add split } c \text{ to } T;
          if Mode = Plain then
               \Delta(i) \leftarrow \operatorname{avg}(grad_r(p)) for
                p: leaf_r(p) = leaf_r(i)) for i = 1..n;
          if Mode = Ordered then
               \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                 for i = 1..n;
          loss(T_c) \leftarrow cos(\Delta, G)
    T \leftarrow \arg\min_{T_c}(loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(grad_{r'}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i)) \text{ for } r' = 1..s, i = 1..n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j) \text{ for } r' = 1..s,
      i = 1..n, j \ge \sigma_{r'}(i) - 1;
return T, M
```


- Practical Implementation
 - 2. Ordered Boosting 작동 방식
 - L Ordered 위주로..
 - 3) σ_r 에 따라 각 예제(i)마다 gradient($grad_{r,\sigma_r(i)-1}(i)$) 계산

```
Algorithm 2: Building a tree in CatBoost
input: M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
    G \leftarrow (grad_r(i) \text{ for } i = 1..n);
if Mode = Ordered then
    G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i = 1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
           T_c \leftarrow \text{add split } c \text{ to } T;
          if Mode = Plain then
               \Delta(i) \leftarrow \operatorname{avg}(grad_r(p)) for
                 p: leaf_r(p) = leaf_r(i)) for i = 1..n;
          if Mode = Ordered then
               \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
          loss(T_c) \leftarrow cos(\Delta, G)
     T \leftarrow \arg\min_{T_c}(loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(grad_{r'}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i)) \text{ for } r' = 1..s, i = 1..n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
       p : leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j for r' = 1..s,
      i = 1..n, j \ge \sigma_{r'}(i) - 1;
return T, M
```


- Practical Implementation
 - 2. Ordered Boosting 작동 방식
 - L Ordered 위주로...
 - 4) 트리 T_t 생성
 - candidate split c 계산
 - 각 예제에 대해 leaf value와 gradient 간의 코사인 유사도를 기반으로 계산됨
 - 각 candidate split c마다..
 - i와 동일한 leaf node에 있는 이전의 p개의 예제의 average gradient를 i번째 예제에 대한 leaf value($\Delta(i)$)로 할당
 - 사전에 계산한 그래디언트와 새로 할당한 Δ 사이의 cosine similarity($\cos(\Delta, G)$)가 가장 적은 split point c 선정
 - 5) 1 ~ 4 반복

```
Algorithm 2: Building a tree in CatBoost
input: M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
 G \leftarrow (grad_r(i) \text{ for } i = 1..n);
if Mode = Ordered then
     G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i = 1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
          T_c \leftarrow \text{add split } c \text{ to } T;
          if Mode = Plain then
               \Delta(i) \leftarrow \operatorname{avg}(grad_r(p)) for
                p: leaf_r(p) = leaf_r(i)) for i = 1..n;
          if Mode = Ordered then
               \Delta(i) \leftarrow \operatorname{avg}(grad_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                 for i = 1..n;
         loss(T_c) \leftarrow cos(\Delta, G)
     T \leftarrow \arg\min_{T_c}(loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(grad_{r'}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i)) \text{ for } r' = 1..s, i = 1..n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
```

 $p: leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j$ for r' = 1..s,

 $i = 1..n, j \ge \sigma_{r'}(i) - 1;$

return T, M

Ordered Boosting - Example

∟ 출처: 고려대학교 DSBA 연구실 – 강필성 교수님 강의자료

Ordered Boosting Example

- \checkmark Assumption: squared loss (gradient: f(x) y)
- √ random permutation is conducted

	•••	χi		TS	у	G	Δ
l_1		Α		0.000	1	0	0
l ₂		В		1.000	1	0	0
l ₃		С		1.000	1	-1	0
I ₄		Α		1.000	0	0	-0.5
I ₅	•••	В	•••	0.977	I	-1	0
I ₆		С	•••	0.982	1	-1	-0.5
I ₇		В		0.992	0	-0.5	-0.33
l ₈		С		0.986	1	-1.5	-0.67
l ₉		С		0.992	0	-0.33	-0.38
I ₁₀		С		0.748	1	-1.67	-0.58

- Practical Implementation
 - 3. Choosing leaf values
 - 구성된 모든 tree가 주어지면, 최종 모델 F의 leaf value들은 표준 gradient boosting 과정에 의해 계산됨
 - 학습 예제 i는 $leaf_0(i)$ 에 대응됨
 - TS 계산을 위해 permutation σ_0 활용
 - 테스트 시에 새로운 예제에 대해 최종 모델 F가 적용되면, TS는 전체 training data에 대해 계산되게 됨
 - ⇒ Property 2 만족

Settings

- 모든 학습 알고리즘에 대해 범주형 특성을 ordered TS 방법을 사용하여 전처리 하였음
- 약 80%의 데이터로 매개변수 튜닝 및 훈련을 하고, 나머지 20% 데이터로 테스트 수행
- 성능 평가 지표: logloss, zero-one loss

Comparison with baseline

Table 8: Comparison with baselines: logloss / zero-one loss, relative increase is presented in the brackets.

	CatBoost	LightGBM	XGBoost	
Adult	0.2695 / 0.1267	0.2760 (+2.4%) / 0.1291 (+1.9%)	0.2754 (+2.2%) / 0.1280 (+1.0%)	
Amazon	0.1394 / 0.0442	0.1636 (+17%) / 0.0533 (+21%)	0.1633 (+17%) / 0.0532 (+21%)	
Click	0.3917 / 0.1561	0.3963 (+1.2%) / 0.1580 (+1.2%)	0.3962 (+1.2%) / 0.1581 (+1.2%)	
Epsilon	0.2647 / 0.1086	0.2703 (+1.5%) / 0.114 (+4.1%)	0.2993 (+11%) / 0.1276 (+12%)	
Appetency	0.0715 / 0.01768	0.0718 (+0.4%) / 0.01772 (+0.2%)	0.0718 (+0.4%) / 0.01780 (+0.7%)	
Churn	0.2319 / 0.0719	0.2320 (+0.1%) / 0.0723 (+0.6%)	0.2331 (+0.5%) / 0.0730 (+1.6%)	
Internet	0.2089 / 0.0937	0.2231 (+6.8%) / 0.1017 (+8.6%)	0.2253 (+7.9%) / 0.1012 (+8.0%)	
Upselling	0.1662 / 0.0490	0.1668 (+0.3%) / 0.0491 (+0.1%)	0.1663 (+0.04%) / 0.0492 (+0.3%)	
Kick	0.2855 / 0.0949	0.2957 (+3.5%) / 0.0991 (+4.4%)	0.2946 (+3.2%) / 0.0988 (+4.1%)	

- LightGBM과 XGBoost 모두 CatBoost에 비해 더 큰 loss를 가짐
- CatBoost에서 개선된 loss에 대해 Paired one-tail t-test를 진행한 결과 Appetency, Churn, Upselling 데이터셋을 제외하고 모두 유의수준 0.01 하에서 통계적 유의성이 입증됨

- Ordered and Plain modes
- CatBoost의 두 가지 필수적인 boosting 모드를 비교함
 - Plain
 - Ordered
- 작은 dataset일수록 ordered mode의 성능이 plain mode보다 좋음
 - Adult, Internet 데이터셋

Table 3: Plain boosting mode: logloss, zeroone loss and their change relative to Ordered boosting mode.

	Logloss	Zero-one loss	
Adult	0.272 (+1.1%)	0.127 (-0.1%)	
Amazon	0.139 (-0.6%)	0.044 (-1.5%)	
Click	0.392 (-0.05%)	0.156 (+0.19%)	
Epsilon	0.266 (+0.6%)	0.110 (+0.9%)	
Appetency	0.072 (+0.5%)	0.018 (+1.5%)	
Churn	0.232 (-0.06%)	0.072 (-0.17%)	
Internet	0.217 (+3.9%)	0.099 (+5.4%)	
Upselling	0.166 (+0.1%)	0.049 (+0.4%)	
Kick	0.285 (-0.2%)	0.095 (-0.1%)	

- 데이터셋의 일부분만을 가지고 학습할수록(= 데이터셋의 크기가 작아질수록) ordered mode에 비해 plain mode의 error가 더 큰 것을 확인할 수 있음

- Analysis of target statistics
- Ordered TS가 모든 데이터셋에서 가장 좋은 성능을 보임
- Ordered TS를 제외한 나머지 3개 방법 중에서는 Holdout 방식의 성능이 가장 좋았음
- 거의 모든 경우에서 Leave-one-out TS가 Greedy TS에 비해 좋은 성능을 보였으나, categorical feature의 각 category의 빈도가 높은 Adult dataset의 경우 반대 결과가 도출됨

Table 4: Comparison of target statistics, relative change in logloss / zero-one loss compared to ordered TS.

	Greedy	Holdout	Leave-one-out
Adult	+1.1% / +0.8%	+2.1% / +2.0%	+5.5% / +3.7%
Amazon	+40% / +32%	+8.3% / +8.3%	+4.5% / +5.6%
Click	+13% / +6.7%	+1.5% / +0.5%	+2.7% / +0.9%
Appetency	+24% / +0.7%	+1.6% / -0.5%	+8.5% / +0.7%
Churn	+12% / +2.1%	+0.9% / +1.3%	+1.6% / +1.8%
Internet	+33% / +22%	+2.6% / +1.8%	+27% / +19% +3.9% / +2.9%
Upselling	+57% / +50%	+1.6% / +0.9%	+3.7% / +2.9%
Kick	+22% / +28%	+1.3% / +0.32%	

Feature combinations

- 조합할 수 있는 최대 feature의 수인 c_{max} 에 대해..
 - $1 < c_{max} \le 2$: feature combination을 수행하지 않았을 때에 비해 평균적으로 logloss가 1.86% 개선되었음
 - 1 < c_{max} ≤ 3: 평균적으로 logloss가 2.04% 개선되었음
 - c_{max} > 3: 유의미한 성능 향상을 보이지 않았음

Number of permutations

- model 학습 시 사용되는 random permutation σ_r 의 개수 s에 대해..
 - s = 1일 때보다 s = 3일 때 logloss 0.19% 개선됨
 - s = 1일 때보다 s = 9일 때 logloss 0.38% 개선됨
 - ⇒ s가 증가할수록 성능이 개선되는 경향을 보임

7. Conclusion

#7. Conclusion

- Gradient Boosting이 가지고 있던 두 가지 Statistical Issue를 해결
- 1. Target Leakage → Ordered Target Statistics
 - feature $\widehat{x_k^i}$ 의 값을 계산하는 데 target인 y_k 값이 사용되는 현상
 - training 시점에 알 수 없는 target 값을 활용

⇒ 해결

2. Prediction Shift → Ordered Boosting

$$h^t = argmin_{h \in H} \mathbb{E}(-g^t(x,y) - h(x))^2 pprox argmin_{h \in H} rac{1}{n} \sum_{k=1}^n (-g^t(x_k,y_k) - h(x_k))^2$$

⇒ 해결

#7. Conclusion

• CatBoost는...

- 여러 benchmark data에 대해 SOTA 달성
- High Cardinality(범주가 많은) categorical feature를 다루는 데 용이
- model tuning 간소화, 높은 예측 성능
- ⇒ 많은 예측 task에서 널리 사용됨

THANK YOU

