Part 12

殷亚凤

Email: yafeng@nju.edu.cn

Homepage: http://cs.nju.edu.cn/yafeng/

Room 301, Building of Computer Science and Technology

Distributed Web-based systems

- The WWW is a huge client-server system with millions of servers; each server hosting thousands of hyperlinked documents.
 - Documents are often represented in text (plain text, HTML, XML)
 - Alternative types: images, audio, video, applications (PDF, PS)
 - Documents may contain scripts, executed by client-side software

Multi-tiered architectures

• Already very soon, Web sites were organized into three tiers.

Web services

Apache Web server

• The server is internally organized more or less according to the steps needed to process an HTTP request.

Server clusters

• To improve performance and availability, WWW servers are often clustered in a way that is transparent to clients.

Server clusters

- Problem: The front end may easily get overloaded, so that special measures need to be taken.
 - Transport-layer switching: Front end simply passes the TCP request to one of the servers, taking some performance metric into account.
 - Content-aware distribution: Front end reads the content of the HTTP request and then selects the best server.

Server Clusters

• Question: Why can content-aware distribution be so much better?

Web proxy caching

- Sites install a separate proxy server that handles all outgoing requests. Proxies subsequently cache incoming documents. Cache-consistency protocols:
 - Always verify validity by contacting server
 - Age-based consistency:

$$T_{expire} = \alpha \cdot \left(T_{cached} - T_{last_{modified}}\right) + T_{cached}$$

Web proxy caching

• Basic idea(cnt'd): Cooperative caching, by which you first check your neighbors on a cache miss

Replication in Web hosting systems

• By-and-large, Web hosting systems are adopting replication to increase performance. Much research is done to improve their organization. Follows the lines of self-managing systems.

Handling flash crowds

• We need dynamic adjustment to balance resource usage. Flash crowds introduce a serious problem.

Replication of Web applications

• Replication becomes more difficult when dealing with databases and such. No single best solution.

• Assumption: Updates are carried out at origin server, and propagated to edge servers.

Replication of Web applications: normal

Replication Web apps.: full/partial replication

Replication Web apps.: content-aware caching

Replication Web apps.: content-blind caching

Replication of Web applications

- Full replication: high read/write ratio, often in combination with complex queries.
- Partial replication: high read/write ratio, but in combination with simple queries
- Content-aware caching: Check for queries at local database, and subscribe for invalidations at the server. Works good with range queries and complex queries.
- Content-blind caching: Simply cache the result of previous queries. Works great with simple queries that address unique results (e.g., no range queries).
- Question: What can be said about replication vs. performance?