Wine Sales Project

FY 2016

Author Eric Lewis

TABLE OF CONTENTS

Contents

Bonus	1
Introduction	
Exploratory Data Analysis	2
Data Exploration	5
Data Preparation	8
Building Models	12
Conclusion	30
Appendix	31

Bonus

Scored File as SAS Data Set

Filename: wine_score_03. sas7bdat

SAS Code on page 32

SAS Macro Use

One of the advantages is using SAS macros is to create clear references towards file and data usage at the beginning of the SAS code, for example &INFILE., &TEMPFILE., and &SCRUBFILE. used in this model. SAS Code on page 38

Develop Logistic / Poisson Model

The Kaggle score using the Logistic and Poisson model combined is 1.30570.

SAS Code on page 33

PROC Logistic

- AIC is 13277.788
- SC is 13285.245
- -2 Log L is 13275.788

PROC Poisson

- AIC is 41169.2589
- AICC is 41169.3529
- BIC is 41348.2224

Introduction

The objective of this data analysis is to build a model to predict the number of cases of wine that will be sold based upon properties of the wine within the given data set. Five models will be compared based upon their highest probability of predicting the target value, cases of wine sold. The characteristics of the wine are measures utilized in Linear, Logistic, and Poisson regressions to provide empirical for model comparison. The final determination will be determined by the lowest score using Kaggle, with the zero as the lowest score possible though not probably. A final model will be selected and a short and long term recommendation will be delivered from this analysis.

Exploratory Data Analysis

There are two main components in developing this predictive model:

- Training data set utilized for exploratory data analysis, data preparation, building and selecting a
 predictive model. This data set contains 12,795 observations with the variables as shown in table 1
 below.
- Test data set utilized to score the model selected in the training phase of this analysis. The model
 results are being scored using Kaggle. This data set contains 3,335 observations less the variable Each
 line item in the data set contains the specific data on the insured.

This analysis will determine which data elements are the highest correlated towards determining the target, the number cases of wine that will be sold.

The following table provides the variable name, type, and definition as the initial step towards understanding the data.

VARIABLE NAME	TYPE	DEFINITION
INDEX		Identification Variable (do not use)
Target		Number of Cases Purchased
AcidIndex	Continuous	Proprietary method of testing total acidity of wine by using a weighted average
Alcohol	Continuous	Alcohol Content
Chlorides	Continuous	Chloride content of wine
CitricAcid	Continuous	Citric Acid Content
Density	Continuous	Density of Wine
FixedAcidity	Continuous	Fixed Acidity of Wine
FreeSulfurDioxide	Continuous	Sulfur Dioxide content of wine
LabelAppeal	Categorical	Marketing Score indicating the appeal of label design for consumers. High numbers suggest customers like the label design. Negative numbers suggest customers don't like the design.
ResidualSugar	Continuous	Residual Sugar of wine
Stars	Categorical	Wine rating by a team of experts. 4 Stars = Excellent, 1 Star = Poor
Sulphates	Continuous	Sulfate content of wine
TotalSulfurDioxide	Continuous	Total Sulfur Dioxide of Wine
VolatileAcidity	Continuous	Volatile Acid content of wine
рН		pH of wine

Table 1: Data Dictionary

The following table provides the variable name, and theoretical effect as an additional step towards understanding the data and how it relates towards building the predictive model.

VARIABLE NAME	THEORETICAL EFFECT
INDEX	None
Target	None
AcidIndex	
Alcohol	
Chlorides	
CitricAcid	
Density	
FixedAcidity	
FreeSulfurDioxide	
LabelAppeal	Many consumers purchase based on the visual appeal of the wine label design. Higher numbers suggest better sales.
ResidualSugar	
Stars	A high number of stars suggests high sales
Sulphates	
Total Sulfur Dioxide	
VolatileAcidity	
pН	

Table 2: Data Dictionary {THEORETICAL EFFECT}

Data Exploration

Missing Data

The training data set contains the following statistical variables with missing data. Depending on the next step, which is correlating the statistical variables with the target, the number cases of wine that will be sold. The key observations from table 3 are the quantity of missing values per statistical variable along with the mean and standard deviation if we choose to impute the missing data elements.

Variable	N	N Missing	Mean	Std Dev
INDEX	12795	0	8069.98	4656.91
TARGET	12795	0	3.0290739	1.9263682
FixedAcidity	12795	0	7.0757171	6.3176435
VolatileAcidity	12795	0	0.3241039	0.7840142
CitricAcid	12795	0	0.3084127	0.8620798
ResidualSugar	12179	616	5.4187331	33.7493790
Chlorides	12157	638	0.0548225	0.3184673
FreeSulfurDioxide	12148	647	30.8455713	148.7145577
TotalSulfurDioxide	12113	682	120.7142326	231.9132105
Density	12795	0	0.9942027	0.0265376
рН	12400	395	3.2076282	0.6796871
Sulphates	11585	1210	0.5271118	0.9321293
Alcohol	12142	653	10.4892363	3.7278190
LabelAppeal	12795	0	-0.0090660	0.8910892
AcidIndex	12795	0	7.7727237	1.3239264
Stars	9436	3359	2.0417550	0.9025400

Table 3: Missing & Mean

We will decide whether to impute or exclude the statistical variable from the predictive model depending on the results from correlating each statistic with the correlation to the target, the number cases of wine that will be sold.

- ResidualSugar
- Chlorides
- FreeSulfurDioxide
- TotalSulfurDioxide
- pH
- Sulphates
- Alcohol
- Stars

Variable Correlation to Target Flag

Key observations from table 4 demonstrates that eleven of the fourteen variables within the wine sales dataset are correlated with the target, the number cases of wine that will be sold.

Variable	Target
TARGET	1.00000
Acidindex	-0.24605 <.0001
Imp_alcohol	0.06043 <.0001
Imp_chlorides	-0.03724 <.0001
Citricacid	0.00868 0.3260
Density	-0.03552 <.0001
Fixedacidity	-0.04901 <.0001
Imp_freesulfurdioxide	0.04269 <.0001
labelappeal	0.35650 <.0001
Imp_residualsugar	0.01607 0.0691
Imp_stars	0.40013 <.0001
Imp_sulphates	-0.03691 <.0001
Imp_totalsulfurdioxide	0.05163 <.0001
Volatileacidity	-0.08879 <.0001
Imp_ph	-0.00928 0.2939

Table 4: Variable Correlation with Target

Visual Representation of Variables

The purpose of the visual or graphical representation of the distribution within the variables is to provide observations toward the predictive model variable selection to complement the correlation with target as shown in figure 1 below. The key observation of the Distribution of Target is that this distribution is that of a histogram of Poisson distribution. This provides an initial indication that when we are comparing the various regression models, the Poisson model may be likely the best method.

Figure 1: Distribution of Target

Data Preparation

The data preparation phase of this analysis encompasses preparing the data for modeling. Various techniques that will be reviewed are: imputing missing values, flagging missing variables, data transformation through combining variables and through the use of mathematical transformations.

Missing Values

The initial testing of the model will include imputing the following variable with missing values based upon their mean shown in table 2. The following variables are imputed using the mean in the case of missing data.

- YOJ mean of 10.4992864
- ResidualSugar mean of 5.4187331
- Chlorides mean of 0.0548225
- FreeSulfurDioxide mean of 30.8455713
- TotalSulfurDioxide mean of 120.7142326
- pH mean of 3.2076282
- Sulphates mean of 0.5271118
- Alcohol mean of 10.4892363
- Stars mean of 2.0417550

Transforming Data into Buckets

The following variables are transformed into buckets based partly upon the theoretical effect of increasing wine sold and their analysis of maximum likelihood estimates.

- M Stars using the value of 0, see frequency table 5.
- IMP_Stars using the values of 1, 2, 3, see frequency table 6.
- Label Appeal using the values of -2, -1, 0, 1, see frequency table 7.

Mathematical Data Transformations

Attempts were made to transform variables mathematically for example Logarithm and square root data transformations were attempted; however, the predictive value of the model demonstrated no improvement.

Combining Variables

Attempts were made to combine variables to perform ratio analysis; however, the predictive value of the model demonstrated no improvement.

Frequency Tables

The following three frequency tables provides key percentage to target flag observations on each variable array subscript. These tables are utilized in to determine which variable array subscript to use in the models as shown above.

Table of M_STARS by TARGET_FLAG					
	TARGET_FLAG				
M_Stars	0	0 1 Total			
0	696	8740	9436		
	5.44	68.31	73.75		
	7.38	92.62			
	25.46	86.87			
1	2038	1321	3359		
	15.93	10.32	26.25		
	60.67	39.33			
	74.54	13.13			
Total	2734	10061	12795		
	21.37	78.63	100.00		

Table 5: Frequency Table of M_Stars

Table of IMP_STARS by TARGET_FLAG				
	TARGET_FLAG			
IMP_Stars	0	Total		
1	607	2435	3042	
	4.74	19.03	23.77	
	19.95	80.05		
	22.20	24.20		
2	2127	4802	6929	
	16.62	37.53	54.15	
	30.70	69.30		
	77.80	47.73		
3	0	2212	2212	
	0.00	17.29	17.29	
	0.00	100.00		
	0.00	21.99		
4	0	612	612	
	0.00	4.78	4.78	
	0.00	100.00		
	0.00	6.08		
Total	2734	10061	12795	
	21.37	78.63	100.00	

Table 6: Frequency Table of IMP_Stars

Table of Label Appeal by TARGET_FLAG				
	TARGET_FLAG			
Label Appeal	0	1	Total	
-2	102	402	504	
	0.80	3.14	3.94	
	20.24	79.76		
	3.73	4.00		
-1	671	2465	3136	
	5.24	19.27	24.51	
	21.40	78.60		
	24.54	24.50		
0	1193	4424	5617	
	9.32	34.58	43.90	
	21.24	78.76		
	43.64	43.97		
1	660	2388	3048	
	5.16	18.66	23.82	
	21.65	78.35		
	24.14	23.74		
2	108	382	490	
	0.84	2.99	3.83	
	22.04	77.96		
	3.95	3.80		
Total	2734	10061	12795	
	21.37	78.63	100.00	

Table 7: Frequency Table of Label Appeal

Building Models

Five models were utilized as comparison for this analysis using Linear, Logistic, and Poisson regression analysis.

First Model

This model is known as the base model. It is a model using linear regression with stepwise variable selection. The linear regression model scored using Kaggle 1.35994, which is not the best score of the five models. On the surface linear regression appears to fit based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates the linear regression model has a higher error mean than the selected model, the Zero Inflated Poisson.

The REG Procedure			
Model: MODEL1			
Dependent Variable: TARGET			
Number of Observations Read	12795		
Number of Observations Used	12795		

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	25526	2836.20490	1651.88	<.0001
Error	12785	21951	1.71696		
Corrected Total	12794	47477			
Root M	ISE	1.310)33 R-Square	0.5376	
Depend	dent Mea	n 3.029	907 Adj R-Sq	0.5373	-
Coeff V	'ar	43.258	338		

Table 8: Model Linear Regression

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
Intercept	1	3.46236	0.08655	40.00
AcidIndex	1	-0.20007	0.00894	-22.38
IMP_Alcohol	1	0.01246	0.00320	3.89
IMP_Chlorides	1	-0.11742	0.03736	-3.14
IMP_FreeSulfurDioxide	1	0.00028171	0.00008008	3.52
LabelAppeal	1	0.46626	0.01367	34.10
IMP_STARS	1	0.78030	0.01568	49.77
M_STARS	1	-2.24712	0.02695	-83.39
IMP_TotalSulfurDioxide	1	0.00024441	0.00005634	4.34
VolatileAcidity	1	-0.09693	0.01482	-6.54

Table 9: Model Linear Regression

Second Model

This model is a model using SAS GENMOD with negative binomial distribution. This model demonstrated similar results as the linear regression and appears to fit based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates the linear regression model has a higher error mean than the selected model, the Zero Inflated Poisson.

Model Information			
Data Set	WORK.FIXFILE		
Distribution	Negative Binomial		
Link Function	Log		
Dependent Variable	TARGET		

Criteria for Ass	sessing	Goodness of	Fit
Criterion	DF	Value	Value/DF
Deviance	13E3	13777.2487	1.0776
Scaled Deviance	13E3	13777.2487	1.0776
Pearson Chi-Square	13E3	11306.8800	0.8844
Scaled Pearson X2	13E3	11306.8800	0.8844
Log Likelihood		8737.5361	
Full Log Likelihood		-22859.6352	
AIC (smaller is better)		45741.2704	
AICC (smaller is better)		45741.2910	
BIC (smaller is better)		45823.2953	
Criterion	DF	Value	Value/DF

Table 10: Model GENMOD NB

Analysis of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald 95% Co Limits		Wald Chi- Square	Pr > ChiSq
Intercept	1	1.4480	0.0411	1.3674	1.5285	1240.97	<.0001
AcidIndex	1	-0.0804	0.0045	-0.0892	-0.0716	319.33	<.0001
IMP_Alcohol	1	0.0035	0.0014	0.0007	0.0062	6.14	0.0132
IMP_Chlorides	1	-0.0368	0.0165	-0.0690	-0.0045	4.99	0.0255
IMP_FreeSulfurDioxid	1	0.0001	0.0000	0.0000	0.0002	7.69	0.0056
LabelAppeal	1	0.1587	0.0061	0.1467	0.1707	671.33	<.0001
IMP_STARS	1	0.1882	0.0061	0.1762	0.2001	954.55	<.0001
M_STARS	1	-1.0246	0.0170	-1.0578	-0.9913	3642.43	<.0001
IMP_TotalSulfurDioxi	1	0.0001	0.0000	0.0000	0.0001	11.95	0.0005
VolatileAcidity	1	-0.0312	0.0065	-0.0440	-0.0184	22.95	<.0001
Dispersion	0	0.0000	0.0000	0.0000	0.0000		

Table 11: Model GENMOD Maximum Likelihood

Third Model

This model is a model using SAS Logistic distribution. This model demonstrated similar results as the linear regression and appears to fit based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates the linear regression model has a higher error mean than the selected model, the Zero Inflated Poisson.

Model Information						
Data Set		WORK.FIXFILE				

Response Variable TARGET_FLAG

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	13277.788	7675.111					
SC	13285.245	7749.679					
-2 Log L	13275.788	7655.111					

Analysis of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	1.9599	0.2347	69.7334	<.0001		
AcidIndex	1	-0.3836	0.0213	325.2904	<.0001		
IMP_Alcohol	1	-0.0208	0.00788	6.9604	0.0083		
IMP_Chlorides	1	-0.1497	0.0917	2.6662	0.1025		
IMP_FreeSulfurDioxid	1	0.000592	0.000200	8.7965	0.0030		
LabelAppeal	1	-0.4644	0.0332	195.3493	<.0001		
IMP_STARS	1	2.5553	0.1118	522.7085	<.0001		
M_STARS	1	-4.3686	0.1113	1541.4447	<.0001		
IMP_TotalSulfurDioxi	1	0.000972	0.000139	48.5400	<.0001		
VolatileAcidity	1	-0.1822	0.0364	25.0431	<.0001		

Table(s) 12: Model Logistic Maximum Likelihood

Fourth Model

This model is a model using SAS GENMOD with negative binomial distribution, also known as Hurdle model 1.

This model demonstrated less results than the previous model based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates this model has a higher error mean than all the other models with the

exception of hurdle model 2.

Model Information							
Data Set	WORK.FIXFILE						
Distribution	Negative Binomial						
Link Function	Log						
Dependent Variable	TARGET						

Criteria for Assessing Goodness of Fit								
Criterion	DF	Value	Value/DF					
Deviance	13E3	13777.2487	1.0776					
Scaled Deviance	13E3	13777.2487	1.0776					
Pearson Chi-Square	13E3	11306.8800	0.8844					
Scaled Pearson X2	13E3	11306.8800	0.8844					
Log Likelihood		8737.5361						
Full Log Likelihood		-22859.6352						
AIC (smaller is better)		45741.2704						
AICC (smaller is better)		45741.2910						
BIC (smaller is better)		45823.2953						

Table(s) 13: Model GENMOD NB

Analysis of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald 95% (Lim		Wald Chi- Square	Pr > ChiSq
Intercept	1	1.4480	0.0411	1.3674	1.5285	1240.97	<.0001
AcidIndex	1	-0.0804	0.0045	-0.0892	-0.0716	319.33	<.0001
IMP_Alcohol	1	0.0035	0.0014	0.0007	0.0062	6.14	0.0132
IMP_Chlorides	1	-0.0368	0.0165	-0.0690	-0.0045	4.99	0.0255
IMP_FreeSulfurDioxid	1	0.0001	0.0000	0.0000	0.0002	7.69	0.0056
LabelAppeal	1	0.1587	0.0061	0.1467	0.1707	671.33	<.0001
IMP_STARS	1	0.1882	0.0061	0.1762	0.2001	954.55	<.0001
M_STARS	1	-1.0246	0.0170	-1.0578	-0.9913	3642.43	<.0001
IMP_TotalSulfurDioxi	1	0.0001	0.0000	0.0000	0.0001	11.95	0.0005
VolatileAcidity	1	-0.0312	0.0065	-0.0440	-0.0184	22.95	<.0001
Dispersion	0	0.0000	0.0000	0.0000	0.0000		

Table(s) 14: Model GENMOD NB Maximum Likelihood

Fifth Model

This model is a model using SAS GENMOD with negative binomial distribution and using a class of imp_stars, also known as hurdle model 2. This model demonstrated less results than the previous models based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates this model has the highest error mean than all the other models.

-								
Model Information								
Data Set	WORK.FIXFILE							
Distribution	Negative Binomial							
Link Function	Log							
Dependent Variable	TARGET							

Criteria for Assessing Goodness of Fit								
Criterion	DF	Value	Value/DF					
Deviance	13E3	13662.0427	1.0688					
Scaled Deviance	13E3	13662.0427	1.0688					
Pearson Chi-Square	13E3	11303.1231	0.8842					
Scaled Pearson X2	13E3	11303.1231	0.8842					
Log Likelihood		8795.1391						
Full Log Likelihood		-22802.0322						
AIC (smaller is better)		45630.0644						
AICC (smaller is better)		45630.0929						
BIC (smaller is better)		45727.0029						

Table(s) 15: Model GENMOD NB, Class IMP_Stars

		Analysis of Maximum Likelihood Parameter Estimates						
Parameter		DF	Estimate	Standard Error		Confidence mits	Wald Chi- Square	Pr > ChiSq
Intercept		1	1.5568	0.0401	1.4783	1.6354	1510.34	<.0001
AcidIndex		1	-0.0795	0.0045	-0.0883	-0.0706	311.50	<.0001
IMP_Alcohol		1	0.0038	0.0014	0.0011	0.0066	7.34	0.0067
IMP_Chlorides		1	-0.0386	0.0165	-0.0709	-0.0064	5.51	0.0189
IMP_FreeSulfurDioxid		1	0.0001	0.0000	0.0000	0.0002	6.81	0.0090
LabelAppeal		1	0.1591	0.0061	0.1471	0.1711	675.15	<.0001
IMP_STARS	2	1	0.3227	0.0143	0.2946	0.3508	506.66	<.0001
IMP_STARS	3	1	0.4417	0.0156	0.4111	0.4723	800.48	<.0001
IMP_STARS	4	1	0.5567	0.0217	0.5143	0.5992	660.30	<.0001
IMP_STARS	1	0	0.0000	0.0000	0.0000	0.0000		
M_STARS		1	-1.0904	0.0182	-1.1261	-1.0547	3587.05	<.0001
IMP_TotalSulfurDioxi		1	0.0001	0.0000	0.0000	0.0001	11.63	0.0007
VolatileAcidity		1	-0.0307	0.0065	-0.0435	-0.0179	22.09	<.0001
Dispersion		1	0.0000	0.0001	0.0000	5.77E144		

Table(s) 16: Model GENMOD NB Maximum Likelihood, Class IMP_Stars

Selected Final Model

This model is a model using SAS GENMOD with zero inflated Poisson distribution and using a class of Label Appeal, IMP_Stars, M_Stars. This model demonstrated the best results than the previous models based upon the means comparison in table 21; however, the means error procedure in table 22 demonstrates this model has the lowest error mean than all the other models. An important improvement is using the class level information of Label Appeal, IMP Stars, and M Stars within this model. The specific values of Label Appeal, IMP_Stars, and M_Stars were chosen based upon frequency table procedure results shown in section Model Comparisons.

Model Information								
Data Set	WORK.FIXFILE							
Distribution	Zero Inflated Poisson							
Link Function	Log							
Dependent Variable	TARGET							

Class Level Information					
Class	Levels	Values			
LabelAppeal	5	-2 -1 0 1 2			
IMP_STARS	4	1234			
M_STARS	2	01			

Table(s) 17: Model GENMOD Zero Inflated Poisson

Criteria for Assessing Goodness of Fit					
Criterion	DF	Value	Value/DF		
Deviance		41121.2589			
Scaled Deviance		41121.2589			
Pearson Chi-Square	13E3	5851.5101	0.4582		
Scaled Pearson X2	13E3	5851.5101	0.4582		
Log Likelihood		11036.5418			
Full Log Likelihood		-20560.6295			
AIC (smaller is better)		41169.2589			
AICC (smaller is better)		41169.3529			
BIC (smaller is better)		41348.2224			

Table 18: Model GENMOD Zero Inflated Poisson

Analysis of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% C Limi		Wald Chi- Square	Pr > ChiSq
Intercept		1	1.8884	0.0523	1.7859	1.9910	1302.49	<.0001
AcidIndex		1	-0.0324	0.0049	-0.0420	-0.0228	43.56	<.0001
IMP_Alcohol		1	0.0067	0.0014	0.0038	0.0095	21.56	<.0001
IMP_Chlorides		1	-0.0268	0.0168	-0.0598	0.0063	2.52	0.1122
IMP_FreeSulfurDioxid		1	0.0000	0.0000	-0.0000	0.0001	1.13	0.2876
LabelAppeal	-2	1	-1.0895	0.0462	-1.1801	-0.9989	555.17	<.0001
LabelAppeal	-1	1	-0.6396	0.0256	-0.6899	-0.5894	622.47	<.0001
LabelAppeal	0	1	-0.3501	0.0232	-0.3955	-0.3047	228.32	<.0001
LabelAppeal	1	1	-0.1597	0.0234	-0.2055	-0.1139	46.68	<.0001
LabelAppeal	2	0	0.0000	0.0000	0.0000	0.0000		
IMP_STARS	1	1	-0.3197	0.0222	-0.3631	-0.2762	207.69	<.0001
IMP_STARS	2	1	-0.1958	0.0200	-0.2350	-0.1566	95.72	<.0001
IMP_STARS	3	1	-0.0979	0.0202	-0.1375	-0.0583	23.46	<.0001
IMP_STARS	4	0	0.0000	0.0000	0.0000	0.0000		
M_STARS	0	1	0.1840	0.0198	0.1452	0.2229	86.10	<.0001
M_STARS	1	0	0.0000	0.0000	0.0000	0.0000		
IMP_TotalSulfurDioxi		1	-0.0000	0.0000	-0.0001	0.0000	0.01	0.9192
VolatileAcidity		1	-0.0156	0.0067	-0.0287	-0.0025	5.42	0.0199
Scale		0	1.0000	0.0000	1.0000	1.0000		

Table 19: Model GENMOD Zero Inflated Poisson

Analysis of Maximum Likelihood Zero Inflation Parameter Estimates								
Parameter		DF	Estimate	Standard Wald 95% Confidence Limits Wald Chi-Square Error		Wald 95% Confidence Limits		Pr > ChiSq
Intercept		1	-17.4014	0.2061	-17.8053	-16.9975	7130.57	<.0001
IMP_STARS	1	1	23.1841	0.4262	22.3488	24.0194	2959.32	<.0001
IMP_STARS	2	0	19.1728	0.0000	19.1728	19.1728		
IMP_STARS	3	1	0.2419	3761.504	-7372.17	7372.655	0.00	0.9999
IMP_STARS	4	0	0.0000	0.0000	0.0000	0.0000		
LabelAppeal	-2	1	-3.7128	0.4431	-4.5813	-2.8442	70.20	<.0001
LabelAppeal	-1	1	-2.0514	0.2148	-2.4725	-1.6303	91.17	<.0001
LabelAppeal	0	1	-1.2912	0.2086	-1.6999	-0.8824	38.32	<.0001
LabelAppeal	1	1	-0.5541	0.2148	-0.9750	-0.1331	6.66	0.0099
LabelAppeal	2	0	0.0000	0.0000	0.0000	0.0000		
M_STARS	0	1	-6.1129	0.4245	-6.9449	-5.2809	207.36	<.0001
M_STARS	1	0	0.0000	0.0000	0.0000	0.0000		

Table 20: Model GENMOD Zero Inflated Poisson

Model Comparisons

The preceding models were scored and compared against the mean of the target value in order to compare performance to the actual target. This comparison using the Means procedure, table 21 may not be utilized as a sole determinate for comparison. It must be utilized in conjunction with the error means procedure in table 22. Based upon those combined results the Zero Inflated Poisson model demonstrates the best combined results based upon using both means procedures in tables 21 and 22. These results are further confirmed having a Kaggle score of 1.30570. The criteria for assessing goodness of fit values of AIC, AICC, and BIC are not being utilized as model comparisons because the values are not useful for comparing non-like models. An example where using goodness of fit values is within the same model, shifting variables in and out of the model.

The MEANS Procedure						
Variable	Mean	Delta				
TARGET	3.0290739	0.0000				
P_REGRESSION	3.0341540	0.0051				
P_GENMOD_NB	3.0084408	0.0206				
P_HURDLE_v01	3.4725283	0.4435				
P_HURDLE_v02	3.4788589	0.4498				
P_GENMOD_ZIP	<mark>2.9991403</mark>	<mark>0.0299</mark>				
P_ENSEMBLE	3.1992184	0.1701				

Table 21: Means Procedure Comparison

The MEANS Procedure					
Variable	Mean				
E_REGRESSION	1.0010942				
E_GENMOD_NB	1.0017976				
E_HURDLE_V01	1.1335678				
E_HURDLE_V02	1.1516217				
E_GENMOD_ZIP	0.9568581				
E_ENSEMBLE	0.9976553				

Table 22: Error Means Procedure Comparison

Class Variables

Adding class variables to modeling using SAS provides further opportunity for model improvement. We have chosen the following variables and corresponding values for the selected model, Zero Inflated Poisson.

Class Level Information					
Class	Levels	Values			
LabelAppeal	5	-2 -1 0 1 2			
IMP_STARS	4	1234			
M_STARS	2	0			

One method for choosing which class variable values is to create a frequency table of the variable based upon the target value. This methodology provides an opportunity to measure which values provide the greatest percentage of impact in determining the target value as shown in tables 22, 23, and 24.

Table of M_STARS by TARGET_FLAG					
M_Stars	Target Flag				
	0	1	Total		
0	696	8740	9436		
	5.44	68.31	73.75		
	<mark>7.38</mark>	<mark>92.62</mark>			
	25.46	86.87			
1	2038	1321	3359		
	15.93	10.32	26.25		
	60.67	39.33			
	74.54	13.13			
Total	2734	10061	12795		
	21.37	78.63	100.00		

Table 22: Frequency table of M_Stars

Table of IMP_STARS by TARGET_FLAG					
IMP_Stars]	Target Fla	ag		
	0	1	Total		
1	607	2435	3042		
	4.74	19.03	23.77		
	<mark>19.95</mark>	80.05			
	22.20	24.20			
2	2127	4802	6929		
	16.62	37.53	54.15		
	<mark>30.70</mark>	69.30			
	77.80	47.73			
3	0	2212	2212		
	0.00	17.29	17.29		
	0.00	<mark>100.00</mark>			
	0.00	21.99			
4	0	612	612		
	0.00	4.78	4.78		
	0.00	100.00			
	0.00	6.08			
Total	2734	10061	12795		
	21.37	78.63	100.00		

Table 23: Frequency table of IMP_Stars

Table of Label Appeal by TARGET_FLAG				
Label Appeal	Target Flag			
	0	1	Total	
-2	102	402	504	
	0.80	3.14	3.94	
	20.24	79.76		
	3.73	4.00		
-1	671	2465	3136	
	5.24	19.27	24.51	
	<mark>21.40</mark>	78.60		
	24.54	24.50		
0	1193	4424	5617	
	9.32	34.58	43.90	
	<mark>21.24</mark>	78.76		
	43.64	43.97		
1	660	2388	3048	
	5.16	18.66	23.82	
	<mark>21.65</mark>	78.35		
	24.14	23.74		
2	108	382	490	
	0.84	2.99	3.83	
	22.04	<mark>77.96</mark>		
	3.95	3.80		
Total	2734	10061	12795	
	21.37	78.63	100.00	

Table 24: Frequency table of Label Appeal

Conclusion

This analysis is a comparison five identified models, including multiple scoring attempts utilized for model testing, and optimization. Based upon comparisons how the means performed against the target value, error means procedure, and an Ensemble soring, the best model is the Zero Inflated Poisson model for predicting the target value wine case sales. The Zero Inflated Poisson model scored 1.30570 which is considered a good score based upon beating the benchmark scoring of the Ensemble model of 1.42774, and the benchmark Poisson model of 1.64638. The score does fall short of the Neural Net Model of 1.27465; although it is not a requirement for this project, it does point out opportunity for model improvement.

Near Term Recommendation

We should begin assessing wine case sales based upon using the following 9 variables:

- AcidIndex
- IMP Alcohol
- IMP Chlorides
- IMP FreeSulfurDioxid
- LabelAppeal
- IMP STARS
- M STARS
- IMP TotalSulfurDioxi
- VolatileAcidity

Long Term Recommendation

There is room for improvement upon this predictive model, with the long term goal to reach a model Kaggle score of less than 1.27465, thus improving the predictive accuracy of the model. The methodology utilized to build a long term model will conduct variable selection based upon decision tree analysis using either R, Angoss, or SAS Enterprise Miner. _{1, 2}

Appendix

- **1.** Decision Trees for Decision Making, HBR, https://hbr.org/1964/07/decision-trees-for-decision-making
- **2.** Decision Tree, Wikipedia, https://en.wikipedia.org/wiki/Decision-tree

SAS Utilized for Output of Scored File as SAS Data Set

SAS Utilized for Logistic / Poisson Models

```
* PROC LOGISTIC
proc logistic data=&FIXFILE.;
model TARGET_FLAG(ref="0") =
           acidindex
         imp alcohol
         imp_chlorides
    imp_freesulfurdioxide
         labelappeal
         imp_stars
                   M STARS
         imp_totalsulfurdioxide
         volatileacidity;
output out=&FIXFILE. p=X_LOGIT_PROB;
run;
* PROC GENMOD 5 {Poisson}
**************************
data &FIXFILE.;
set &TEMPFILE.;
run;
proc genmod data=&FIXFILE.;
class labelappeal imp stars M stars;
model TARGET =
           acidindex
         imp alcohol
         imp_chlorides
    imp_freesulfurdioxide
         labelappeal
         imp_stars
                   M STARS
         imp_totalsulfurdioxide
         volatileacidity
              /link=log dist=zip;
zeromodel IMP_STARS LabelAppeal M_STARS / link=logit;
output out=&FIXFILE. pred=X_GENMOD_ZIP pzero=X_GENMOD_PZERO;
run;
```

```
    Scoring Logistic

P_LOGIT_PROB =
                  1.9599
                                                *(-0.3836)
                        AcidIndex
                        IMP Alcohol
                                                     *(-0.0208)
                        IMP Chlorides
                                                     *(-0.1497)
                        IMP_FreeSulfurDioxide
                                                *(0.000592)
                        LabelAppeal
                                                     *(-0.4644)
                        IMP_STARS
                                                     *(2.5553)
                        M_STARS
                                                            *(-4.3686)
                                                                              +
                                                *(0.000972)
                        IMP_TotalSulfurDioxide
                        VolatileAcidity
                                                     *(-0.1822);
if P_LOGIT_PROB > 1000 then P_LOGIT_PROB = 1000;
if P_LOGIT_PROB < -1000 then P_LOGIT_PROB = -1000;
P_LOGIT_PROB = exp(P_LOGIT_PROB) / (1+exp(P_LOGIT_PROB));
 Scoring {Poisson}
*******************************
P_ZERO_PROB =
                 -17.4014
                        (imp_stars in (1))
                                                *(23.1841)
                        (imp_stars in (2))
                                                *(19.1728)
                        (imp stars in (3))
                                                *(0.2419)
                        (LabelAppeal in (-2))
                                                *(-3.7128)
                        (LabelAppeal in (-1))
                                                *(-2.0514)
                        (LabelAppeal in (0))
                                                *(-1.2912)
                        (LabelAppeal in (1))
                                                *(-0.5541)
                        (M_{stars in}(0))
                                                      *(-6.1129);
if P_ZERO_PROB > 1000 then P_ZERO_PROB = 1000;
if P_ZERO_PROB < -1000 then P_ZERO_PROB = -1000;
P ZERO PROB = exp(P ZERO PROB) / (1+exp(P ZERO PROB));
```

```
* Scoring {Poisson}
************************
P_GENMOD_ZIP =
                   1.8884
                                                  *(-0.0324)
                         AcidIndex
                         IMP_Alcohol
                                                        *(0.0067)
                         IMP Chlorides
                                                        *(-0.0268)
                         IMP_FreeSulfurDioxide
                                                  *(0.0000)
                         (LabelAppeal in (-2))
                                                  *(-1.0895)
                         (LabelAppeal in (-1))
                                                  *(-0.6396)
                         (LabelAppeal in (0))
                                                  *(-0.3501)
                         (LabelAppeal in (1))
                                                  *(-0.1597)
                         (imp_stars in (1))
                                                  *(-0.3197)
                         (imp_stars in (2))
                                                  *(-0.1958)
                         (imp_stars in (3))
                                                  *(-0.0979)
                                                        *(0.1840)
                         (M_{stars in}(0))
                                                  *(-0.0000)
                         IMP_TotalSulfurDioxide
                         VolatileAcidity
                                                        *(-0.0156);
P_GENMOD_ZIP
                   = exp(P_GENMOD_ZIP);
P_GENMOD_ZIP
                   = P_GENMOD_ZIP*(1-P_ZERO_PROB);
P_GENMOD_ZIP = round( P_GENMOD_ZIP, 0.01 );
X_GENMOD_ZIP = round( X_GENMOD_ZIP, 0.01 );
```

SAS Utilized for Scoring

```
********************************
* Unit 03: WINE PROJECT {Score}
* Eric Lewis Section 55 Spring 2016
%let PATH = /folders/myfolders/Pred411/Data;
%let NAME = WINE:
%let LIB = &NAME..;
libname &NAME. "&PATH.";
%let INFILE = &LIB.WINE TEST;
%let TEMPFILE = TEMPFILE;
data &TEMPFILE.;
set &INFILE.;
data validate:
 set &TEMPFILE.;
      IMP ResidualSugar = ResidualSugar;
      IMP_Chlorides = Chlorides;
      IMP FreeSulfurDioxide = FreeSulfurDioxide:
      IMP_TotalSulfurDioxide = TotalSulfurDioxide;
      IMP pH = pH;
      IMP_Sulphates = Sulphates;
      IMP_Alcohol = Alcohol;
      IMP STARS = STARS:
      M STARS = 0;
      if missing(ResidualSugar) then IMP_ResidualSugar = 5.4187331;
      if missing(Chlorides) then IMP Chlorides = 0.0548225;
      if missing(FreeSulfurDioxide) then IMP_FreeSulfurDioxide = 30.8455713;
      if missing(TotalSulfurDioxide) then IMP TotalSulfurDioxide = 120.7142326;
      if missing(pH) then IMP_pH = 3.2076282;
      if missing(Sulphates) then IMP_Sulphates = 0.5271118;
      if missing(Alcohol) then IMP Alcohol = 10.4892363;
      if missing(STARS) then do; IMP STARS = 2; M STARS = 1; end;
      if IMP_TotalSulfurDioxide < -330 then IMP_TotalSulfurDioxide = -330;
      if IMP TotalSulfurDioxide > 630 then IMP TotalSulfurDioxide = 630;
data score;
 set validate:
```

```
P_ZERO_PROB =
                    -17.4014
                           (imp stars in (1))
                                                      *(23.1841)
                           (imp_stars in (2))
                                                      *(19.1728)
                           (imp_stars in (3))
                                                      *(0.2419)
                           (LabelAppeal in (-2))
                                                      *(-3.7128)
                           (LabelAppeal in (-1))
                                                      *(-2.0514)
                           (LabelAppeal in (0))
                                                      *(-1.2912)
                           (LabelAppeal in (1))
                                                      *(-0.5541)
                           (M_{stars in}(0))
                                                             *(-6.1129);
if P_ZERO_PROB > 1000 then P_ZERO_PROB = 1000;
if P_ZERO_PROB < -1000 then P_ZERO_PROB = -1000;
P_ZERO_PROB = exp(P_ZERO_PROB) / (1+exp(P_ZERO_PROB));
P GENMOD ZIP =
                    1.8884
                                                      *(-0.0324)
                           AcidIndex
                                                             *(0.0067)
                           IMP_Alcohol
                           IMP Chlorides
                                                             *(-0.0268)
                           IMP FreeSulfurDioxide
                                                      *(0.0000)
                           (LabelAppeal in (-2))
                                                      *(-1.0895)
                                                                          +
                           (LabelAppeal in (-1))
                                                      *(-0.6396)
                           (LabelAppeal in (0))
                                                      *(-0.3501)
                           (LabelAppeal in (1))
                                                      *(-0.1597)
                                                                          +
                           (imp_stars in (1))
                                                      *(-0.3197)
                           (imp_stars in (2))
                                                      *(-0.1958)
                           (imp_stars in (3))
                                                      *(-0.0979)
                                                             *(0.1840)
                           (M stars in (0))
                           IMP_TotalSulfurDioxide
                                                      *(-0.0000)
                           VolatileAcidity
                                                             *(-0.0156);
P GENMOD ZIP
                    = exp(P GENMOD ZIP);
                    = P_GENMOD_ZIP*(1-P_ZERO_PROB);
P GENMOD ZIP
P_TARGET = round( P_GENMOD_ZIP, 1 );
keep index P_TARGET;
proc print data=score;
proc export data=score
  outfile='/folders/wine score 03.csv'
  dbms=csv
 replace;
run;
```

SAS Utilized for Analysis

```
********************************
* Unit 03: Wine Sales PROJECT {Analysis}
* Eric Lewis
%let PATH = /folders/myfolders/Pred411/Data;
%let NAME = P411;
%let LIB = &NAME..;
libname &NAME. "&PATH.";
%let INFILE = &LIB.WINE;
%let TEMPFILE = TEMPFILE;
%let FIXFILE = FIXFILE;
*proc print data=&INFILE.(obs=5);
*proc contents data=&INFILE.;
*run;
**********************************
* Find means, missing data
*proc means data=&INFILE. n nmiss mean std;
*var_numeric_;
*run;
**********************************
* Data Exploration: Visual Analysis
* proc univariate data=&INFILE. normal;
 var Target;
 histogram;
* Impute missing data w/means
data &TEMPFILE.;
 set &INFILE.;
 TARGET_FLAG = ( TARGET > 0 );
 TARGET_AMT = TARGET - 1;
```

```
if TARGET_FLAG = 0 then TARGET_AMT = .;
      IMP ResidualSugar = ResidualSugar;
      IMP_Chlorides = Chlorides;
      IMP FreeSulfurDioxide = FreeSulfurDioxide:
      IMP TotalSulfurDioxide = TotalSulfurDioxide:
      IMP pH = pH;
      IMP_Sulphates = Sulphates;
      IMP_Alcohol = Alcohol;
      IMP STARS = STARS;
      M STARS = 0;
      if missing(ResidualSugar) then IMP_ResidualSugar = 5.4187331;
      if missing(Chlorides) then IMP_Chlorides = 0.0548225;
      if missing(FreeSulfurDioxide) then IMP FreeSulfurDioxide = 30.8455713;
      if missing(TotalSulfurDioxide) then IMP_TotalSulfurDioxide = 120.7142326;
      if missing(pH) then IMP_pH = 3.2076282;
      if missing(Sulphates) then IMP_Sulphates = 0.5271118;
      if missing(Alcohol) then IMP Alcohol = 10.4892363;
      if missing(STARS) then do; IMP_STARS = 2; M_STARS = 1; end;
      if IMP_TotalSulfurDioxide < -330 then IMP_TotalSulfurDioxide = -330;
      if IMP TotalSulfurDioxide > 630 then IMP TotalSulfurDioxide = 630;
keep
      TARGET
             TARGET_FLAG
             TARGET_AMT
    acidindex
    citricacid
    density
    fixedacidity
    IMP ResidualSugar
    IMP_Sulphates
    IMP_pH
    imp alcohol
    imp_chlorides
    imp freesulfurdioxide
    labelappeal
    IMP_STARS
             M STARS
    imp totalsulfurdioxide
    volatileacidity;
run;
*proc freq data=&TEMPFILE.;
```

```
*table (M_STARS IMP_STARS)*TARGET_FLAG /missing;
*run:
*proc freq data=&TEMPFILE.;
*Table (labelappeal)*TARGET_FLAG /missing;
*run;
* proc univariate data=&TEMPFILE. normal;
  var IMP_TotalSulfurDioxide;
  histogram;
  proc means data=&TEMPFILE. n nmiss mean var;
  var acidindex
   imp alcohol
   imp_chlorides
   citricacid
   density
   fixedacidity
   imp_freesulfurdioxide
   labelappeal
   imp_residualsugar
   imp_stars
   imp_sulphates
   imp_totalsulfurdioxide
   volatileacidity
   imp_ph;
* Data Preparation: Variable Selection
*proc reg data=&TEMPFILE.;
*model TARGET =
   acidindex
   imp_alcohol
   imp chlorides
   citricacid
   density
   fixedacidity
   imp_freesulfurdioxide
   labelappeal
   imp_residualsugar
   imp_stars
   imp_sulphates
   imp_totalsulfurdioxide
   volatileacidity
   imp_ph;
```

```
*/selection=forward;
*/selection=backward;
*/selection=stepwise;
*run;
*quit;
* Correlation of all numeric values
*proc corr data=&TEMPFILE.;
  var TARGET
   acidindex
   imp_alcohol
   imp_chlorides
   citricacid
   density
   fixedacidity
   imp_freesulfurdioxide
   labelappeal
   imp_residualsugar
   imp_stars
   imp_sulphates
   imp_totalsulfurdioxide
   volatileacidity
   imp_ph;
********************************
*proc freq data=&TEMPFILE.;
 tables target*M_stars;
*proc freq data=&TEMPFILE.;
 tables target*imp_stars;
*proc freq data=&TEMPFILE.;
* tables target*labelappeal;
***************************
* Model Building {} *;
data &FIXFILE.;
```

```
set &TEMPFILE.;
run;
proc reg data=&FIXFILE.;
model TARGET =
         acidindex
         imp_alcohol
         imp_chlorides
    imp_freesulfurdioxide
         labelappeal
         imp_stars
                  M STARS
         imp_totalsulfurdioxide
         volatileacidity;
                  /selection = stepwise;
    output out=&FIXFILE. p=X_REGRESSION;
run;
quit;
********************************
* PROC GENMOD 1
proc genmod data=&FIXFILE.;
model TARGET =
         acidindex
         imp_alcohol
         imp_chlorides
    imp_freesulfurdioxide
         labelappeal
         imp_stars
                  M STARS
         imp_totalsulfurdioxide
         volatileacidity
                  /link=log dist=nb;
output out=&FIXFILE. p=X_GENMOD_NB;
run;
**********************************
* PROC LOGISTIC
proc logistic data=&FIXFILE.;
```

```
model TARGET_FLAG(ref="0") =
            acidindex
          imp alcohol
          imp_chlorides
     imp_freesulfurdioxide
           labelappeal
           imp_stars
                      M STARS
           imp_totalsulfurdioxide
           volatileacidity;
output out=&FIXFILE. p=X_LOGIT_PROB;
run;
********************************
* PROC GENMOD 2 {Hurdle Model 1}
******************************
proc genmod data=&FIXFILE.;
model TARGET =
            acidindex
          imp_alcohol
           imp_chlorides
     imp freesulfurdioxide
          labelappeal
           imp_stars
                      M_STARS
           imp_totalsulfurdioxide
           volatileacidity
                      /link=log dist=nb;
output out=&FIXFILE. p=X_GENMOD_HURDLE_v01;
run;
proc genmod data=&FIXFILE.;
class imp_stars(ref="1");
model TARGET =
            acidindex
          imp_alcohol
           imp_chlorides
     imp\_freesulfurdioxide
           labelappeal
          imp_stars
                      M_STARS
           imp_totalsulfurdioxide
```

```
volatileacidity
                    /link=log dist=nb;
output out=&FIXFILE. p=X_GENMOD_HURDLE_v02;
run;
* PROC GENMOD 4
*proc genmod data=&FIXFILE.;
*model TARGET =
           acidindex
          imp_alcohol
          imp_chlorides
     imp freesulfurdioxide
          labelappeal
          imp_stars
                    M_STARS
          imp totalsulfurdioxide
          volatileacidity
               /link=log dist=zip;
*zeromodel IMP_STARS LabelAppeal M_STARS / link=logit;
*output out=&FIXFILE. pred=X GENMOD ZIP pzero=X GENMOD PZERO;
*run:
* PROC GENMOD 5 {Poisson}
**************************
data &FIXFILE.;
set &TEMPFILE.;
proc genmod data=&FIXFILE.;
class labelappeal imp_stars M_stars;
model TARGET =
           acidindex
          imp alcohol
          imp_chlorides
     imp_freesulfurdioxide
          labelappeal
          imp_stars
                    M_STARS
          imp_totalsulfurdioxide
          volatileacidity
               /link=log dist=zip;
zeromodel IMP_STARS LabelAppeal M_STARS / link=logit;
output out=&FIXFILE. pred=X_GENMOD_ZIP pzero=X_GENMOD_PZERO;
run;
```

```
* SCORE MODELS
data SCOREFILE;
set &FIXFILE.;
                               *;
* Regression
P_REGRESSION =
                  3.46236
                        AcidIndex
                                                *(-0.20007)
                        IMP Alcohol
                                                      *(0.01246)
                        IMP_Chlorides
                                                      *(-0.11742)
                        IMP_FreeSulfurDioxide
                                                *(0.00028171)
                        LabelAppeal
                                                      *(0.46626)
                        IMP_STARS
                                                      *(0.78030)
                        M_STARS
                                                            *(-2.24712)
                                                                               +
                        IMP\_Total Sulfur Dioxide
                                                *(0.00024441)
                        VolatileAcidity
                                                      *(-0.09693);
  GENMOD 1
P_GENMOD_NB =
                  1.4480
                                                *(-0.0804)
                        AcidIndex
                                                      *(0.0035)
                        IMP_Alcohol
                        IMP_Chlorides
                                                      *(-0.0368)
                        IMP_FreeSulfurDioxide
                                                *(0.0001)
                        LabelAppeal
                                                      *(0.1587)
                        IMP_STARS
                                                      *(0.1882)
                        M_STARS
                                                            *(-1.0246)
                        IMP_TotalSulfurDioxide
                                                *(0.0001)
                        VolatileAcidity
                                                      *(-0.0312);
P_GENMOD_NB = exp(P_GENMOD_NB);
* Logistic
P_LOGIT_PROB =
                  1.9599
                        AcidIndex
                                                *(-0.3836)
                                                      *(-0.0208)
                        IMP Alcohol
                        IMP_Chlorides
                                                      *(-0.1497)
                        IMP_FreeSulfurDioxide
                                                *(0.000592)
                        LabelAppeal
                                                      *(-0.4644)
                                                                         +
                        IMP_STARS
                                                      *(2.5553)
                                                                         +
```

```
M STARS
                                                               *(-4.3686)
                         IMP_TotalSulfurDioxide
                                                  *(0.000972)
                         VolatileAcidity
                                                         *(-0.1822);
if P_LOGIT_PROB > 1000 then P_LOGIT_PROB = 1000;
if P LOGIT PROB < -1000 then P LOGIT PROB = -1000;
P_LOGIT_PROB = exp(P_LOGIT_PROB) / (1+exp(P_LOGIT_PROB));
                                       *:
* GENMOD 2
P_GENMOD_HURDLE_v01 =
                               1.4480
                                                  *(-0.0804)
                         AcidIndex
                         IMP_Alcohol
                                                         *(0.0035)
                         IMP Chlorides
                                                         *(-0.0368)
                         IMP FreeSulfurDioxide
                                                  *(0.0001)
                         LabelAppeal
                                                         *(0.1587)
                         IMP_STARS
                                                         *(0.1882)
                         M STARS
                                                               *(-1.0246)
                         IMP TotalSulfurDioxide
                                                  *(0.0001)
                         VolatileAcidity
                                                         *(-0.0312);
P_GENMOD_HURDLE_v01 = exp(P_GENMOD_HURDLE_v01);
* GENMOD 3
P_GENMOD_HURDLE_v02 =
                               1.5568
                         AcidIndex
                                                   *(-0.0795)
                                                         *(0.0038)
                         IMP Alcohol
                         IMP_Chlorides
                                                         *(-0.0386)
                         IMP_FreeSulfurDioxide
                                                  *(0.0001)
                         LabelAppeal
                                                         *(0.1591)
                         (IMP STARS=2)
                                                         *(0.3227)
                         (IMP_STARS=3)
                                                         *(0.4417)
                         (IMP_STARS=4)
                                                         *(0.5567)
                         M STARS
                                                         *(-1.0904)
                         IMP_TotalSulfurDioxide
                                                  *(0.0001)
                         VolatileAcidity
                                                         *(-0.0307);
P_GENMOD_HURDLE_v02 = exp(P_GENMOD_HURDLE_v02);
P HURDLE v01 = P LOGIT PROB * (P GENMOD HURDLE v01+1);
P_HURDLE_v02 = P_LOGIT_PROB * (P_GENMOD_HURDLE_v02+1);
  GENMOD 4 {Bottom Parameter Estimates Chart
                                                              *;
*P_ZERO_PROB =
                   2.5001
                         LabelAppeal
                                                         *(0.7497)
```

```
IMP_STARS
                                                          *(-4.1348)
                          M STARS
                                                                 *(6.2279);
*if P_ZERO_PROB > 1000 then P_ZERO_PROB = 1000;
*if P_ZERO_PROB < -1000 then P_ZERO_PROB = -1000;
*P_ZERO_PROB = exp(P_ZERO_PROB) / (1+exp(P_ZERO_PROB));
                                                              *:
  GENMOD 4 {Top Parameter Estimates Chart
*P GENMOD ZIP = 1.2780
                          AcidIndex
                                                    *(-0.0329)
                                                          *(0.0065)
                          IMP_Alcohol
                          IMP_Chlorides
                                                          *(-0.0262)
                          IMP_FreeSulfurDioxide
                                                    *(0.0000)
                          LabelAppeal
                                                          *(0.2331)
                                                                              +
                          IMP STARS
                                                          *(0.1057)
                          M STARS
                                                                 *(-0.1816)
                          IMP_TotalSulfurDioxide
                                                    *(-0.0000)
                          VolatileAcidity
                                                          *(-0.0157);
*P_GENMOD_ZIP
                   = \exp(P_GENMOD_ZIP);
                   = P_GENMOD_ZIP*(1-P_ZERO_PROB);
*P GENMOD ZIP
*P GENMOD ZIP = round( P GENMOD ZIP, 0.01);
*X_GENMOD_ZIP = round( X_GENMOD_ZIP, 0.01 );
                                       *;
  GENMOD 5 {Poisson}
P_ZERO_PROB =
                   -17.4014
                          (imp stars in (1))
                                                    *(23.1841)
                          (imp stars in (2))
                                                    *(19.1728)
                          (imp_stars in (3))
                                                    *(0.2419)
                          (LabelAppeal in (-2))
                                                    *(-3.7128)
                          (LabelAppeal in (-1))
                                                    *(-2.0514)
                          (LabelAppeal in (0))
                                                    *(-1.2912)
                          (LabelAppeal in (1))
                                                    *(-0.5541)
                          (M_{stars in}(0))
                                                          *(-6.1129);
if P ZERO PROB > 1000 then P ZERO PROB = 1000;
if P ZERO PROB < -1000 then P ZERO PROB = -1000;
P_ZERO_PROB = exp(P_ZERO_PROB) / (1+exp(P_ZERO_PROB));
  GENMOD 5 {Top Parameter Estimates Chart
P_GENMOD_ZIP =
                   1.8884
                          AcidIndex
                                                    *(-0.0324)
                          IMP Alcohol
                                                          *(0.0067)
                                                                              +
```

```
IMP Chlorides
                                                        *(-0.0268)
                                                  *(0.0000)
                         IMP FreeSulfurDioxide
                                                                     +
                         (LabelAppeal in (-2))
                                                  *(-1.0895)
                                                                     +
                         (LabelAppeal in (-1))
                                                  *(-0.6396)
                                                                     +
                         (LabelAppeal in (0))
                                                  *(-0.3501)
                                                                     +
                         (LabelAppeal in (1))
                                                  *(-0.1597)
                         (imp stars in (1))
                                                  *(-0.3197)
                         (imp_stars in (2))
                                                  *(-0.1958)
                         (imp_stars in (3))
                                                  *(-0.0979)
                                                        *(0.1840)
                         (M stars in (0))
                         IMP TotalSulfurDioxide
                                                  *(-0.0000)
                                                        *(-0.0156);
                         VolatileAcidity
                  = exp(P_GENMOD_ZIP);
P GENMOD ZIP
P GENMOD ZIP
                   = P GENMOD ZIP*(1-P ZERO PROB);
P_GENMOD_ZIP = round( P_GENMOD_ZIP, 0.01 );
X_GENMOD_ZIP = round( X_GENMOD_ZIP, 0.01 );
P_ENSEMBLE = (P_REGRESSION + P_GENMOD_NB + P_HURDLE_v01 + P_HURDLE_v02 +
P_GENMOD_ZIP)/5;
P REGRESSION
                  = round(P REGRESSION
                                           , 1);
P GENMOD NB
                  = round(P GENMOD NB
                                                  , 1);
P_HURDLE_v01
                  = round(P_HURDLE_v01
                                            , 1);
                  = round(P HURDLE v02
P HURDLE v02
                                            , 1);
P_ENSEMBLE
                  = round(P_ENSEMBLE
                                                  , 1);
                  = round(P GENMOD ZIP
P GENMOD ZIP
                                            , 1);
run;
*proc print data=SCOREFILE(obs=25);
*var P_ZERO_PROB X_GENMOD_PZERO;
*run;
*proc print data=SCOREFILE(obs=25);
*var P GENMOD ZIP X GENMOD ZIP P ZERO PROB X GENMOD PZERO;
*run;
*proc print data=SCOREFILE(obs=25);
*var TARGET P REGRESSION P GENMOD NB P HURDLE V01 P HURDLE V02 P GENMOD ZIP
P ENSEMBLE:
*run;
proc means data=SCOREFILE mean;
var TARGET P_REGRESSION P_GENMOD_NB P_HURDLE_V01 P_HURDLE_V02 P_GENMOD_ZIP
P_ENSEMBLE;
run;
```

```
data SCOREFILE;
set SCOREFILE;
if TEST_FLAG = 0 then delete;
     E_REGRESSION
                     = abs(TARGET - P_REGRESSION);
                     = abs(TARGET - P_GENMOD_NB);
     E_GENMOD_NB
                     = abs(TARGET - P_HURDLE_V01);
     E_HURDLE_V01
     E_HURDLE_V02
                     = abs(TARGET - P_HURDLE_V02);
     E_GENMOD_ZIP
                     = abs(TARGET - P_GENMOD_ZIP);
     E_ENSEMBLE
                     = abs(TARGET - P_ENSEMBLE);
run;
proc means data=SCOREFILE mean;
var E_REGRESSION E_GENMOD_NB E_HURDLE_v01 E_HURDLE_v02 E_GENMOD_ZIP E_ENSEMBLE;
run;
proc univariate data=SCOREFILE;
var E_ENSEMBLE;
histogram;
run;
```