Lógica

	exame de recurso — 17 de junho de 2022 —		— duração: 2 horas
nome:		número:	

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Dê exemplo de uma fórmula φ do Cálculo Proposicional que tenha exatamente três subfórmulas e tal que $var((p_0 \vee p_1)[\varphi/p_1]) = \{p_0\}.$

Resposta:

2. Seja $\Gamma = \{p_1, p_1 \leftrightarrow \neg p_2, p_2 \leftrightarrow \neg p_3\}$. Dê exemplo de uma valoração v tal que $v \models \Gamma$.

Resposta:

3. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que φ não seja uma contradição mas $\varphi \wedge (p_0 \to \neg p_1)$ seja uma contradição.

Resposta:

4. Considere a fórmula $\varphi = p_0 \wedge (p_1 \to \neg p_0)$. Dê exemplo de uma fórmula ψ do Cálculo Proposicional tal que $\psi \Leftrightarrow \varphi$ e cujos conetivos estão no conjunto $\{\neg, \lor\}$

Resposta:

Nas questões 5. e 6. deste grupo, considere o tipo de linguagem $L = (\{c, f, g\}, \{R\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 2$, $\mathcal{N}(g) = 1$ e $\mathcal{N}(R) = 3$, e considere a L-estrutura $E = (\mathbb{Z}, \overline{})$ tal que:

$$\begin{split} \overline{\mathsf{c}} &= 2 \\ \overline{\mathsf{g}} &: \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{f}}(i,j) = i \times j \\ \overline{\mathsf{R}} &: \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{g}}(i) = -i \end{split}$$

5. Dê exemplo de uma atribuição a em E tal que $f(c, x_2)[a]_E = g(c)[a]_E$.

Resposta:

6. Indique uma L-fórmula válida em E que represente a afirmação: Todo o inteiro subtraído do seu simétrico é igual ao seu dobro.

Resposta:

7. Considere o tipo de linguagem $L = (\{c\}, \{P, Q\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(Q) = 2$. Indique o número de L-estruturas cujo domínio é $\{0\}$.

Resposta:

8. Considere o tipo de linguagem $L = L_{\text{Arit}}$. Seja $\psi = \forall x_1 \exists x_2 \neg (x_0 \times x_1 < x_2)$. Dê exemplo de um L-termo t tal que x_0 não seja livre para t em ψ .

Resposta:

Grupo II

Responda às 7 questões deste grupo na folha de exame, **justificando** convenientemente as respostas.

- 1. Seja $f: \mathcal{F}^{CP} \to \mathbb{N}_0$ a função que a cada $\varphi \in \mathcal{F}^{CP}$ faz corresponder o número de ocorrências da variável proposicional p_0 em φ . Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $f(\varphi[p_0 \land p_1/p_0]) = f(\varphi)$.
- 2. Verifique se $p_0 \to \perp$, $p_1 \to p_0 \models \neg p_1$. Justifique.
- 3. Indique, justificando, uma forma normal conjuntiva logicamente equivalente à fórmula $(p_0 \leftrightarrow p_1) \lor (p_1 \land p_2)$.
- 4. Apresente uma demonstração em DNP de $(p_0 \land \neg (p_1 \land p_2)) \rightarrow (p_1 \rightarrow \neg p_2)$.
- 5. Considere de novo o tipo de linguagem $L = (\{c, f, g\}, \{R\}, \mathcal{N})$ e a L-estrutura $E = (\mathbb{Z}, \overline{\ })$ das perguntas 5. e 6. do Grupo I. Seja φ a L-fórmula: $\forall x_1 (R(f(x_1, x_1), c, g(c)) \rightarrow R(x_1, c, g(c)))$. Mostre que φ é válida em E.
- 6. Sejam L um tipo de linguagem, φ e ψ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\varphi)$. Mostre que: $\neg \exists x (\psi \land \neg \varphi), \exists x \psi \models \varphi$.
- 7. Considere o tipo de linguagem $L = (\{c\}, \{P, Q\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, e $\mathcal{N}(P) = \mathcal{N}(Q) = 1$. Mostre que: $\Gamma = \{ \forall x_0(P(x_0) \to \neg Q(x_0)), P(c) \land Q(c) \}$ é sintaticamente inconsistente.

Cotogoo	I (8 valores)	II (12 valores)	
Cotações	1+1+1+1+1+1+1+1	1,5+1,75+1,75+2+1,75+1,5+1,75	