

Anotações 2ª Aula

Resolução de Problemas

Antes de solucionar um problema
 Quais são os dados?
 Quais são as soluções possíveis?
 O que caracteriza uma solução satisfatória?

- Um problema é um objeto matemático $P = \{D,R,q\}$

D = dados

R = resultados possíveis

q C D X R = relação binária

Exemplo:

Diagnóstico Médico (exames)

Conjunto de doenças possíveis

A condição que caracteriza uma solução satisfatória consiste em encontrar o par (dados, doença)

Um problema pode ser representado matematicamente por uma função. Resolver o problema será então encontrar um modo de implementar esta função ou de aproximá-la com o conhecimento que se dispõe.

- A Solução de um problema pode ser definida como uma busca no <u>espaço de estados</u> deste problema.
- Espaço de Estados é o conjunto de configurações possíveis deste problema.

Não existe um único método de resolução para todos os problemas.

- São conhecidos os passos para achar a solução?
 - O problema é suficientemente bem definido?
 - Jogo do 8
 - Identificação de assinaturas
- O problema é decomponível?

 A solução para o problema inicial pode ser obtida pela composição da solução de alguns problemas mais elementares.

Os passos para as soluções podem ser desfeitos?

Na solução de um problema retroceder é voltar a trajetória no espaço de soluções (backtrack). É um dos mecanismos básicos utilizados pelo PROLOG.

O Universo é previsível?

- É possível planejar uma sequência de passos e o estado resultante será sempre o mesmo.
- Existem problemas onde um fator de chance está envolvido (p.ex.: jogo de cartas)

Uma boa solução é relativa ou absoluta?

 Para dizermos que uma boa solução encontrada é absoluta, devemos estar certos de que se começarmos com condições iniciais diferentes, obteremos a mesma solução.

• O conhecimento disponível é consistente?

- Uma base de conhecimento é dita consistente se n\u00e3o existe incompatibilidade entre as pe\u00e7as elementares de conhecimento dentro dela.
 - O estado A é verdadeiro.
 - O estado C é verdadeiro.
 - Se C então D. Se D então A ou-exclusivo C.

Duas Abordagens

- Se a solução do problema for uma função, se for possível implementar esta função, tem-se a solução do problema. Este fato leva à PROGRAMAÇÃO FUNCIONAL. (estática)
- A pesquisa da solução pode ser vista como uma pesquisa dentro do espaço de possíveis soluções (generate and test). (dinâmica)
- Utilizando um método para aproximar a função, solução do problema.
- Utilizar um método de busca em que por passos sucessivos se aproxima da solução, usando, algumas vezes passos sem grande justificativa teórica.

Problema das jarras de água

2 jarras, uma de 4 litros e uma de 3 litros. Nenhuma delas tem qualquer marcação de medidas. Há uma bomba que pode ser usada para encher as jarras. Como colocar exatamente 2 litros de água na jarra de 4 litros?

Espaço de estados = conjunto de pares ordenados inteiros (x,y)

X= 0,1,2,3 ou 4 (jarra de 4 litros)

Y=0,1,2 ou 3 (jarra de 3 litros)

Estado inicial = (0,0) / estado meta (2,n)

- 1. $(x,y) \rightarrow (4,y)$ / encher a jarra de 4 litros se x < 4
- 2. $(x,y) \rightarrow (x,3)$ / encher a jarra de 3 litros se y < 3
- 3. $(x,y) \rightarrow (x-d,y)$ / despejar parte da água de jarra de 4 litros se x > 0
- 4. $(x,y) \rightarrow (x,y-d)$ / despejar parte da água de jarra de 3 litros se y > 0
- 5. $(x,y) \rightarrow (0,y)$ / esvaziar a jarra de 4 litros se x > 0
- 6. $(x,y) \rightarrow (x,0)$ / esvaziar a jarra de 3 litros se y > 0
- 7. $(x,y) \rightarrow (4,y-(4-x))$ / despejar a água da jarra 3L na jarra 4L até a jarra de 4L encher se $x+y \ge 4$ e y > 0
- 8. $(x,y) \rightarrow (x (3 y), 3)$ / despejar a água da jarra 4L na jarra 3L até a jarra de 3L encher se $x+y \ge 3$ e x > 0
- 9. $(x,y) \rightarrow (x+y,0)$ / despejar toda a água da jarra de 3 litros na jarra de 4 litros se $x+y \le 4$ e y > 0
- 10. $(x,y) \rightarrow (0,x+y)$ / despejar toda a água da jarra de litros na jarra de 3 litros se $x+y \le 3$ e x > 0
- 11. $(0,2) \rightarrow (2,0)$ / despejar 2 litros de água da jarra de 3 litros na jarra de 4 litros
- 12. $(2,y) \rightarrow (0,y)$ / esvaziar no chão os 2 litros que estão na jarra de 4 liros

Solução para o problema das jarras de água

Regra aplicada: 2,9,2,7,5,9 (6 passos)

- Solução absoluta ou relativa
- 1. Marcos é um homem
- 2. Marcos nasceu em Pompéia
- 3. Marcos nasceu em 40 dc

- 4. Todos os homens são mortais
- 5. Todos os habitantes de Pompéia morreram quando o vulção entrou em erupção em 79 de
- 6. Nenhum mortal vive mais que 150 anos
- 7. Estamos agora em 2001 dc

Pergunda: Marcos ainda vive?

Solução: axioma 1

axioma 4

 $8 \rightarrow 1.4$ (Marcos é mortal)

axioma 3 axioma 7

 $9 \rightarrow 3.7$ (Marcos tem 1961 anos)

axioma 6

 $10 \rightarrow 8,6,9$ (Marcos está morto)

Computabilidade e Complexidade

<u>computabilidade</u>: diz respeito a se um problema, modelado como função pode ou não ser resolvido.

complexidade: diz respeito a quantidade de recursos necessários para resolver um problema.

Uma função é dita computável se é possível calcular seu valor dado qualquer elemento do seu domínio.

```
Programa Teste
read(x);
while x ≠ 10 do
x:=x+1;
print(x);
end;
```

O algoritmo acima possui computabilidade parcial, pois calcula o valor para apenas alguns elementos do seu domínio de definição.