

PO-202 - Programação Linear

Atividade 1

Grupo:

Gabriel Telles Missailidis Rafael Silva de Oliveira Samir Nunes da Silva

Professor:

Luiz Leduino Salles Neto

17/08/2022

Instituto Tecnológico de Aeronáutica – ITA

1 Questão 1

Figura 1

Sendo x a quantidade em kg de milho e y a quantidade em kg de farelo de soja, deve-se minimizar a função P dada por:

$$P(x,y) = 0.26x + 0.32y$$

sujeito às condições:

$$0,34 \le 0,07x + 0,21y$$
 (em kg de proteínas)
 $2,64 \le 0,82x + 0,79y$ (em kg de carboidratos)

as quais são mostradas na Figura 1.

Pelo método gráfico, é preciso construir uma reta c=0.26x+0.32y de tal forma que ela passe pelo ponto de intersecção A, conforme a Figura 2.

Figura 2

Assim, é possível identificar que c
 que faz a reta passar pelo ponto requisitado é aproximadamente c
 = 0,893, utilizando 2,445 kg de milho e 0,804 kg de farelo, totalizando aproximadamente 3,249 kg de ração e custando aproximadamente R\$ 0,89. Logo, o custo mínimo do kg de ração é $\frac{0,89}{3,249}=0,27\,\frac{R\$}{kg}.$

2 Questão 2

Sendo $x_i \in \mathbb{Z}$ a quantidade de depósitos de i ano feitos, para i=1,2,3, deve-se maximizar a função lucro f dada por:

$$f(x_1, x_2, x_3) = (1, 08^{x_1} \cdot 1, 17^{x_2} \cdot 1, 27^{x_3} - 1) \cdot 22000$$

sujeito às restrições:

$$x_1 + 2x_2 + 3x_3 = 5$$
 (em anos)
 $x_i \ge 0, i = 1, 2, 3$

Note que a formulação utiliza do fato de porcentagens serem comutativas, isto é, aplicar primeiro no investimento em x_1 e depois reinvestir o montante em x_2 é exatamente igual a investir primeiro em x_2 e depois em x_1 . Ademais, a restrição de só poder investir nos título de 3 anos a partir do segundo ano é irrelevante, pois devido à restrição da quantidade de anos, não é possível investir duas vezes no título de x_3 , assim se este for usado basta apenas deixá-lo para o final. Note também que a restrição de anos é uma igualdade estrita, pois sempre é vantajoso investir por mais tempo, mesmo que no depósito de apenas 1 ano.

A igualdade em questão possui uma quantidade finita de soluções, que estão enumeradas abaixo.

$\overline{x_1}$	x_2	x_3	$f(x_1, x_2, x_3)$
5	0	0	R\$ 10.325,21
3	1	0	R\$ 10.424,98
1	2	0	R\$ 10.525,06
2	0	1	R\$ 10.589,21
0	1	1	R\$ 10.689,80

Portanto, a combinação de investimentos que dará o maior lucro ao final de 5 anos consiste em investir todo o montante inicial em um depósito de 2 anos, com retorno de 17%, e depois reinvestir todo o dinheiro no título de 3 anos, com retorno de 27%, totalizando um lucro de R\$ 10.689,80.

Para resolver este problema pelo método gráfico, seria necessário um gráfico tridimensional, e as regiões de interesse seriam apenas pontos, de modo que tal análise não é vantajosa para o problema em questão.

3 Questão 3

Seja x a fração empregada da liga 1 e y, da liga 2, ambas variáveis contínuas que devem ser maiores ou iguais a 0 e, ao mesmo tempo, menores ou iguais a 1.

O problema pode ser modelado segundo as seguintes restrições:

$$x+y=1$$
 (percentual utilizado)
 $3, 2 \le 3x + 4y \le 3, 5$ (porcentagem de Carbono)
 $1, 8 \le 2x + 2, 5y \le 2, 5$ (porcentagem de Silicone)
 $0, 9 \le x + 1.5y \le 1, 2$ (porcentagem de Níquel)

Veja que, para x e y menores ou iguais a 1, as restrições $1,8 \le 2x+2,5y \le 2,5$ e $0,9 \le x+1.5y$ são sempre satisfeitas. Logo, o problema deve ser submetido apenas a:

$$x + y = 1 3, 2 \le 3x + 4y \le 3, 5 x + 1.5y \le 1, 2$$

Construindo os gráficos apenas com as restrições, temos:

Figura 3

Finalmente, a reta x+y=1 intersecta uma das extremidades do gráfico em $(0.8,\,0.2)$, representando que o ponto ótimo é para 80% da liga 1 misturado com 20% da liga 2, vide:

Figura 4

4 Questão 4

O problema pode ser modelado ao se considerar as variáveis c e m como, respectivamente, o número de tortas de chocolate e o número de tortas de morango produzidas e vendidas pela Quitutaço. Assim, as restrições dadas pelo problema em termos de número de ovos e números de horas de forno são dadas pelas inequações:

$$\begin{array}{c} \frac{20}{60}c + \frac{40}{60}m \leq 8 \\ 4c + m \leq 30 \\ c, m \in Z_{+} \end{array}$$

as quais podem ser simplificadas para se obter:

$$m \le 12 - \frac{c}{2}$$

$$m \le 30 - 4c$$

$$c, m \in Z_+$$

Por sua vez, a função objetivo R(c,m), que representa a receita que se deseja maximizar, é dada pela equação:

$$R(c,m) = 4c + 2m$$

cujo gradiente é dado por:

$$\nabla R(c,m) = (4,2)$$

Pode-se resolver o problema por meio do método gráfico. Ao se representar as restrições graficamente, obtém-se a região superposta pelas cores azul e vermelha no primeiro quadrante da Figura 5 como a região de interesse, sendo que x representa c e y representa m. A reta destacada no gráfico é aquela que é perpendicular ao gradiente $\nabla R(c,m)$, o qual revela a direção de maior crescimento da função R(c,m). Assim, variando-se o coeficiente do lado direito da equação normal da reta, chega-se no valor limite de $\frac{276}{7}$ para ele, gerando o ponto ótimo (c,m) = (5,143 , 9,429). Porém, como c e m são inteiros positivos, toma-se como solução o par de inteiros mais próximos, ou seja, (c,m) = (5,9), o qual também satisfaz as condições de contorno do problema, por inspeção.

: Resposta: (c,m) = (5,9).

Figura 5

5 Questão 5

Consideraremos que tudo que é aplicado a um alto forno é correspondentemente aplicado ao forno aberto. Assim, sendo x_i a porcentagem da medida i a ser implementada, i = 1, 2, 3, queremos minimizar a função custo dada por:

$$f(x_1, x_2, x_3) = 18x_1 + 13x_2 + 20x_3$$

Sujeita às restrições:

$$21x_1 + 45x_2 + 30x_3 \ge 60$$
 (contaminante A)
 $77x_1 + 49x_2 + 105x_3 \ge 150$ (contaminante B)
 $90x_1 + 62x_2 + 49x_3 \ge 125$ (contaminante C)
 $x_i \ge 0, i \in \{1, 2, 3\}$ (não-negatividade)
 $x_i \le 1, i \in \{1, 2, 3\}$ (porcentagem)

6 Questão 6

a) Queremos maximizar a função $z(x_1,x_2)=x_1+x_2$, sujeita às condições:

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \ge 5$$

$$x_1, x_2 \ge 0$$

Chamemos x_1 de x e x_2 de y. Graficamente, tais restrições geram a Figura 6. No entanto, nota-se, por meio dela, que nenhuma região do primeiro quadrante (i.e. $x \ge 0$ e $y \ge 0$) satisfaz as condições de contorno do problema. Dessa forma, não há solução para o problema.

\therefore Resposta: $\nexists (x_1,x_2)$.

Figura 6

b) Queremos maximizar a função $z(x_1,x_2) = 4x_1 + x_2$, sujeita às condições:

$$8x_1 + 2x_2 \le 16$$

$$5x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

Chamemos x_1 de x e x_2 de y. Graficamente, tais restrições geram a Figura 7, com a região de interesse sendo aquela do primeiro quadrante onde há superposição das regiões coloridas. Temos, ainda, que:

$$\nabla z(x,y) = (4,1).$$

As retas perpendiculares à direção do gradiente de z são dadas, então, por:

$$4x + y = a$$

onde a é uma constante real arbitrária.

Observa-se que aumentando o valor de a, a reta desliza na direção de $\nabla z(x,y)$, encontrando o limite da região de interesse para a=8, conforme a Figura 7. Nota-se que essa reta é justamente uma das retas utilizada nas condições. Nesse caso, para maximizar z deve-se então satisfazer as condições:

$$4x + y = 8$$
$$5x + 2y \le 12$$
$$x, y > 0$$

que gera infinitas soluções ótimas (x,y).

Uma possível solução (x,y) é dada pela interseção das retas:

$$8x + 2y = 16$$

 $5x + 2y = 12$

a qual é dada pelo ponto: $(\frac{4}{3}, \frac{8}{3})$, onde z = $z_{max} = 8$.

 \therefore Resposta: Há infinitas soluções ótimas (x_1,x_2) . Uma delas é $(x_1,x_2)=(\frac{4}{3},\frac{8}{3})$.

Figura 7

c) Queremos maximizar a função $z(x_1,x_2) = -x_1 + 3x_2$, sujeita às condições:

$$\begin{aligned}
 x_1 - x_2 &\le 4 \\
 x_1 + 2x_2 &\ge 4 \\
 x_1, x_2 &\ge 0
 \end{aligned}$$

Chamemos x_1 de x e x_2 de y. Graficamente, tais restrições geram a Figura 8, com a região de interesse sendo aquela do primeiro quadrante onde há superposição das regiões coloridas. Temos, ainda, que:

$$\nabla z(x,y) = (-1,3).$$

As retas perpendiculares à direção do gradiente de z são dadas, então, por:

$$-x + 3y = a$$

onde a é uma constante real arbitrária.

Observa-se que aumentando o valor de a, a reta desliza na direção de $\nabla z(x,y)$, não encontrando nenhum limite na região de interesse, conforme a Figura 7. Assim, o ponto que maximiza z na verdade não existe, pois, à medida que se aumenta $y = x_2$, respeitando-se as condições de contorno do problema, z aumenta indefinidamente.

 \therefore Resposta: $\nexists (x_1,x_2)$, pois pode-se fazer $x_2 \to \infty$.

Figura 8

d) Queremos maximizar a função $z(x_1,x_2)=3x_1+x_2$, sujeita às condições:

$$2x_1 + x_2 \le 6
x_1 + 3x_2 \le 9
x_1, x_2 \ge 0$$

Chamemos x_1 de x e x_2 de y. Graficamente, tais restrições geram a Figura 7, com a região de interesse sendo aquela do primeiro quadrante onde há superposição das regiões coloridas. Temos, ainda, que:

$$\nabla z(x,y) = (3,1).$$

As retas perpendiculares à direção do gradiente de z são dadas, então, por:

$$3x + y = a$$

onde a é uma constante real arbitrária.

Observa-se que aumentando o valor de a, a reta desliza na direção de $\nabla z(x,y)$, encontrando o limite da região de interesse para a = 9, conforme a Figura 9. Assim, o ponto que maximiza z é justamente o ponto limite da região interceptado pela reta 3x + y = 9, isto é, (x,y) = (3,0).

:. **Resposta:** $(x_1,x_2) = (3, 0)$.

Figura 9