$$I_{B} = \frac{P}{U \times \cos \varphi \times \sqrt{3}}$$

2) Schutzorgan aufgrund von IB bestimmen!

3) Strombelastbarkeit ermitteln:

Reduktionsfaktoren

 f_{θ} = Umgebungstemperatur f_{h} = Häufung

f_n= Mehradrigkeit

 f_{λ} = Oberwellen

4) 1. Bedingung Überlastschutz:

$$I_B \le I_N \le I_Z$$
 Bedingung erfüllt?

 I_2 oder $I_f \le I_z \times 1,45$ Bedingung erfüllt?

5) 2. Bedingung Überlastschutz:

$$I_2 = fs_i \times I_N$$
 Faktoren für Sicherungen (fsi)

Leitungsschutzschalter: 1,45 Schmelzsicherung: 1,6 SLS-Schalter: 1,2 MSR/MSS:

6) Spannungsfall ermitteln:
$$\Delta U = \frac{1 \times 1 \times 1 \times 100\%}{6 \times 100\%}$$

 $\Delta U \leq \Delta U_{\text{max}}$ Bedingung erfüllt?

7) 1. Bedingung Kurzschlussschutz:

 $t_{va} \le 5s$ Bedingung erfüllt?

8) 2. Bedingung Kurzschlussschutz:

 $t_{va} \le t_a$ Bedingung erfüllt?

$$f_{IN} \le f_{XIN}$$
 Bedingung erfüllt?

$$f_{XIN} = \frac{I_{K2}}{I_{N}}$$

10) Bedingung Schutz durch automatisches Abschalten im TN-Netz: t_{va} ≤ t_{TN} Bedingung erfüllt?

t_{TN} 0,4s in Endstromkreisen ≤ 32A

5s in Verteilerstromkreisen