# Natural Language Processing

Section One: Overview & Representation

#### NLP definition

- Natural language processing (NLP) is a subfield of computer science and artificial intelligence (AI) that uses machine learning to enable computers to understand and communicate with human language. [1]
- Natural language processing (NLP) is the discipline of building machines that can manipulate human language — or data that resembles human language — in the way that it is written, spoken, and organized. [2]

### **NLP History**

- 1- 1964 EIIZA was created, designed to imitate a psychiatrist using **reflection techniques** (no computer understanding)
- 2- 1980s Several complicated statistical models were created, this was led by IBM
- 3- 1990 **N-Grams** have become useful, recognizing and tracking clumps of linguistic data, numerically.
- 4- In 1997, LSTM **recurrent neural net (RNN) models** were introduced, and found their niche in 2007 for voice and text processing. [3]

String Representation: Machine Representation



| Letter | ASCII Code | Binary   |
|--------|------------|----------|
| a      | 097        | 01100001 |
| C      |            | 00/910   |

# String Representation: one-hot encoding

#### Assume a sentence:

- I love cats not dogs
- I agree

| Word  | Encoding      |
|-------|---------------|
| 1     | [1,0,0,0,0,0] |
| love  | [0,1,0,0,0,0] |
| cats  | [0,0,1,0,0,0] |
| not   | [0,0,0,1,0,0] |
| dogs  | [0,0,0,0,1,0] |
| 1     | [1,0,0,0,0,0] |
| agree | [0,0,0,0,0,1] |

### String Representation: one-hot encoding cont.

In a dataset for text classification:

| f1  | f2 | f3 | f4 | f5 | f6 | f7 | Label | Text Represented        |
|-----|----|----|----|----|----|----|-------|-------------------------|
| 1   | 1  | 0  | 0  | 0  | 0  | 0  | 1 .   | [I, love]               |
| 0   | 1  | 1  | 1  | 1  | 0  | 0  | 0 ?   | [love, cats, not]       |
| (1) | 1  | 0  | 0  | 0  | 1  | 0  | 1     | [I, love, I, dogs]      |
| 1   | 0  | 0  | 0  | 0  | 0  | 1  | 1     | [I, dogs, agree, agree] |

### String Representation: Bag of Words

It's just one-hot encoding but with an extra step. Which is counting how much each word is repeated.

| f1 | f2 | f3 | f4 | f5 | f6 | f7 | Label      | Text Represented        |
|----|----|----|----|----|----|----|------------|-------------------------|
| 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1          | [I, love]               |
| 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0          | [love, cats, not]       |
| 2  | 1  | 0  | 0  | 0  | 1  | 0  | 1          | → [I, love, I, dogs]    |
| 1  | 0  | 0  | 0  | 0  | 0  |    | <b>(5)</b> | [I, dogs, agree, agree] |

#### String Representation: Embedding Space

[0,0,0]

- An <u>embedding</u> is a vector representation
  of data, in our case it's words/tokens. This
  representation is reflection of its meaning.
- The "meaning" is its relative position of it in the embedding space (vector space of embeddings) to similarly semantic words.



### String Representation: Embedding Space

#### Assume a sentence:

- I love cats not dogs
- I agree

| Word  | Encoding                         |
|-------|----------------------------------|
| I     | [0.1, -0.2, 0.4, 0.8, -0.1, 0.3] |
| love  | [0.5, 0.7, -0.3, 1.1, 0.4, -0.2] |
| cats  | [0.8, -0.5, 0.6, 0.3, -0.7, 0.9] |
| not   | [0.2, -0.4, 0.1, 0.5, 0.3, -0.6] |
| dogs  | [0.7, -0.8, 0.2, 0.9, -0.3, 0.6] |
| I     | [0.1, -0.2, 0.4, 0.8, -0.1, 0.3] |
| agree | [0.6, 0.9, -0.1, 1.3, 0.2, -0.4] |

#### String Representation: Embedding Space cont.

#### In a dataset for text classification:

- We represent a sentence by pooling the embedding.
- Pooling is summing the vectors then dividing it by the number of vectors.

| f1   | f2     | f3    | f4    | f5     | f6    | Label | Text Represented        |
|------|--------|-------|-------|--------|-------|-------|-------------------------|
| 0.3  | 0.25   | 0.05  | 0.95  | 0.15   | 0.05  | 1     | [I, love]               |
| 0.5  | -0.067 | 0.13  | 0.63  | 0      | 0.03  | 0     | [love, cats, not]       |
| 0.35 | -0.125 | 0.175 | 0.9   | -0.025 | 0.25  | 1     | [I, love, I, dogs]      |
| 0.5  | 0.2    | 0.1   | 1.075 | 0      | 0.025 | 1     | [I, dogs, agree, agree] |

## Comparing representation methods

| Aspect                    | One-Hot Encoding      | Bag of Words            | Embedding Vectors         |
|---------------------------|-----------------------|-------------------------|---------------------------|
| Vector size               | Large (vocab size)    | Large (vocab size)      | Small (50-300 dims)       |
| Semantic<br>understanding | None                  | None                    | High                      |
| Memory usage              | Poor                  | Poor                    | Good                      |
| Word relationships        | No                    | No                      | Yes (similar words close) |
| Training needed           | No                    | No                      | Yes                       |
| Best for                  | Simple classification | Document classification | Modern NLP tasks          |

# Coding

cherword icher word

- 1- Create one-hot encoding from scratch
- 2- Create Bag of Words embedding from scratch
- 3- Use and explore Embedding Space in Word2Vec and Glove
- 4- Bonus: plotting the vectors representing words after processing them using PCA.

c study of lang