

gPROMS ProcessBuilder

Distillation & absorption

Charles Brand – Consultant

Gas/liquid contacting devices

Models in gPROMS ProcessBuilder

- Representations of phase interactions
 - a. Phase equilibrium
 - Finite rates of mass and heat transfer
 - 1D and 2D models
- Ability to model reactive distillation
 - Including ionic systems
 - 2D rate-based model more appropriate for reactive systems
- Operation modes
 - Steady state
 - Dynamic
 - continuous or batch operation

gPROMS ProcessBuilder Phase equilibrium column mod

Base product & options	Included	Options
Platform		
gPROMS environment (inc. Case file viewer)	✓	
Flowsheet construction & specification	✓	
Custom modelling		✓
Simulation (steady-state & dynamic)	✓	
Optimisation (steady-state & dynamic)	✓	
Parameter estimation		✓
Experiment design		✓
Export to gPROMS Objects		✓
Packaging & licensing of model libraries		✓
Hybrid Multizonal CFD Inteface		✓
Libraries: ProcessBuilder		
gML:Basics, Connectivity, Signal, Flow Transportation, Heat		
Exchange	✓	
gML:Compression		✓
gML:Reaction		✓
gML:Separations - Fluid-Fluid		✓
MLMultipeds (Compression, Desetion, Coperations - Fluid		
Fluid)		✓
gML:Separations - Adsorption		✓
gML:Separations - Membranes		✓
AML:Gas-Liquid Contactors		✓
AML:Fixed-Bed Catalytic Reactors		✓
AML:FBCR - FLUENT interface		✓
AML:FBCR - STAR-CD interface		✓
Physical properties		
gSAFT		✓
gPROMS Properties (MS Windows only)	✓	
gPROMS Properties - DIPPR	✓	

Phase equilibrium column model

- Key assumption: vapour/liquid equilibrium at each stage
 - including reboiler & condenser
 - optional specification of stage efficiencies
- Different calculation modes
 - Rating
 - Design
 - column height
 - column diameter
 - determined from flooding limit
 - Costing
 - standard equipment cost correlations
 (Seider & Seader, 2010)
- Built-in Model Initialisation Procedures

Acetone-methanol separation

Acetone-methanol separation

Results

		Feedstock	Top product	Bottom product	
Temperat	ture (K)	293.1	328.1	328.1	
Pressure	(bar)	1.0	1.0	1.0	
Mass flow	wrate (kg/s)	1.47	0.732	0.737	
Mass fraction					
	Acetone	0.88	0.875	0.885	
	Methanol	0.12	0.125	0.115	

Not much separation is taking place!

Acetone-methanol form an azeotropic mixture

- Acetone bp 56.14°C, Methanol bp 64.53°C
- Mixture minimum boiling point 55.24°C

$$- x_{Acetone} = 0.862, x_{Methanol} = 0.138$$

Add water!

- acts as entrainer
- suggested water injection: 200 kmol/hr at 47°C
 Gil et al., IECR, 2009, 48, 4858-4865

UNIQUAC thermodynamic model – validation

Vapour molar fraction prediction at bubble point

Iglesias et al., J. Chem. Eng. Data, 1999, 44, 661-665

UNIQUAC thermodynamic model – validation

Liquid molar fraction prediction at dew point

Iglesias et al., J. Chem. Eng. Data, 1999, 44, 661-665

Acetone-methanol separation revisited

Extractive distillation

Acetone-methanol separation revisited

Extractive distillation

	Feedstock	Water Entrainer	Top product	Bottom product
Temperature (K)	293.1	320.1	328.9	354.6
Pressure (bar)	1.0	1.0	1.0	1.0
Mass flowrate (kg/s)	1.47	1.001	1.219	1.252
Mass fraction				
Acetone	0.88	0	0.997	0.062
Methanol	0.12	0	4.290 10 ⁻⁷	0.141
Water	0	1	2.657 10 ⁻³	0.797

Can we do better?

Current KPIs

- acetone purity = 99.7% wt
 - Better than required spec of 99.5%
- acetone recovery = 94%
 - Should be increased to 95%
- energy consumption: 2.755MW

Improve via rigorous optimisation

- '- Eliminate purity give-away
- Improve recovery
- Minimise energy

Column optimisation - demos

Column optimisation - demos

Acetone-methanol separation optimal conditions

Extractive distillation

	Before	After
Water entrainer feed stage	22	29
Water entrainer flowrate (kmol/h)	200	143
Reflux ratio	3.00	1.73
Liquid bottom flowrate (kmol/h)	224	165

Original KPIs

- acetone purity = 99.7% wt
- acetone recovery = 94%
- energy consumption = 2.755MW

Optimised KPIs

- acetone purity = 99.5% wt
- acetone recovery = 95%
- energy consumption = 1.971MW

Energy consumption reduction: 28% V

gPROMS ProcessBuilder Rate-based column models

Base product & options	Included	Options
Platform		
gPROMS environment (inc. Case file viewer)	✓	
Flowsheet construction & specification	✓	
Custom modelling		✓
Simulation (steady-state & dynamic)	✓	
Optimisation (steady-state & dynamic)	✓	
Parameter estimation		✓
Experiment design		✓
Export to gPROMS Objects		✓
Packaging & licensing of model libraries		✓
Hybrid Multizonal CFD Inteface		✓
Libraries: ProcessBuilder		
gML:Basics, Connectivity, Signal, Flow Transportation, Heat		
Exchange	✓	
gML:Compression		✓
gML:Reaction		✓
gML:Separations - Fluid-Fluid		✓
gML:Multipack (Compression, Reaction, Separations - Fluid-		
Fluid)		✓
gML:Separations - Adsorption		✓
gMI ·Senarations - Membranes		
AML:Gas-Liquid Contactors		✓
Alvit:Fixed-bed Catalytic Reactors		v
AML:FBCR - FLUENT interface		✓
AML:FBCR - STAR-CD interface		✓
Physical properties		
gSAFT		✓
gPROMS Properties (MS Windows only)	✓	
gPROMS Properties - DIPPR	✓	

2D rate-based column model

- Dynamic mass and energy balances in fluid **bulks**
- Mass and heat transfer in the **films**
- Energy balance and phase equilibrium at the interface

- Chemical reaction in both phases
 - bulk & films

2D rate-based column models Generality

2nd-generation rate-based approach

- mass/heat transfer limitations on both sides of gas-liquid interface
- Maxwell-Stefan formulation used throughout
 - including electrostatic field term
- full spatial discretisation across films
- handling of non-condensible & non-volatile species

Handling of general reaction systems

- irreversible & reversible kinetic reactions
- equilibrium reactions

Fully dynamic models

continuous & batch operations

Engineering-oriented content

- build-in packing database
- well-established correlations for hydrodynamics and heat and mass transfer
- standard reaction kinetics

© Koch-Glitsch Inc.

Customisable via user-defined

- hydrodynamics correlations
- heat and mass transfer correlations
- kinetics reaction schemes

(standard templates provided)

```
22 EQUATION
24 FOR y := 0 to 1 D0
25 interfacial_area(y) / surface_area =
26 1 - EXP(-1.45 * (Surf_tens_crit/Surface_tension(y))^0
27 * (ABS(superficial_liquid_mass_velocity(y) + 0.1) / (;
28 * (ABS(superficial_liquid_mass_velocity(y) + 0.1)^2 *
29 END
```


Rate-based distillation column

Summary

 A powerful modelling capability for gas/liquid contactors in the gPROMS ProcessBuilder

- Ability to integrate separation section with reaction section
 - capitalise on gPROMS' well-established modelling capability for complex reactors
 - → whole-plant modelling & optimisation
- Applications across the process industry
 - chem/petrochem, oil & gas, refining, specialties, pharma, ...
 - batch distillation case studies ongoing
 - capitalise on gPROMS dynamic optimisation capability

