CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL IPN UNIDAD TAMAULIPAS

Assignment #1

Student: Luis Alberto Ballado Aradias Course: Introducción al Análisis de Fourier (Sep - Dec 2022) Professor: Dr. Wilfrido Gómez-Flores November 6, 2022

......Serie trigonométrica de Fourier

Toda función periódica se puede descomponer en un conjunto de funciones más sencillas.

La **Serie de Fourier** es una serie matemática que converge en una función periódica continua y a trozos.

La **Serie de Fourier** nos permite encontrar funciones más sencillas en una suma infinita. Las condiciones de convergencia:

La función debe ser periódica, continua a trozos, acotada y en un período cualquiera debe tener un número finito de máximos y mínimos locales y un número finito de discontinuidades. Si cumple, podrá ser representada como una **Serie de Fourier**.

Sea *f* una función periódica. Los coeficientes de fourier son aquellos expresiones de la forma:

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n * cos(w_n t) + b_n * sen(w_n t))$$

*Notar que hay una suma infinita, entre más terminos tenga, mejor será la aproximación.

Los coeficientes se pueden calcular:

$$w_n = \frac{2n\pi}{T}$$

$$a_0 = \frac{1}{p} \int_{-p}^{p} f(t) dt$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(t) * cos(\frac{n\pi t}{p}) dt$$

$$b_n = \frac{1}{p} \int_{-p}^{p} f(t) * sen(\frac{n\pi t}{p}t) dt$$

donde: $p = \frac{T}{2}$

La simetria de las funciones nos ayudan a encontrar ciertas caracteristicas de las series de fourier y para ahorrar trabajo cuando reconocemos si una función es par ó impar

¿Qué es una función par?

Una función par cumple la propiedad que si se sustituye la variable independiente por -t obtendremos la misma función sin cambio de signo.

Una función par gráficamente se puede reconocer si es simetrico al eje y.

¿Qué es una función impar?

Las funciones impares cumplen lo opuesto que las funciones pares, es decir. Si se sustituye $f(-t) \implies -f(t)$

En una retrospectiva de la definición de integreción una función par como comentamos, es simetrica en el eje y y se ve lo mismo en el cuadrante I y II. Si integramos el área bajo la curva será 2 veces la integral en un intervalo definido.

En una función impar, un área saldrá negativa y la otra positiva. Por lo tanto el resultado de la integral será 0.

Si una función es par $b_n = 0$. Si una función es impar $a_n = 0$; $a_0 = 0$

1. Función 1:

$$f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & 1 < t < 2 \end{cases}$$

$$p = \frac{T}{2} = \frac{2}{2} = 1$$

$$a_0 = \frac{1}{p} \int_{-p}^{p} f(t) dt = 1 \int_{-1}^{0} 0 dt + \int_{0}^{1} t dt = \frac{t^2}{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(t) \cos(\frac{nt\pi}{p}) dt =$$

$$= 1 \left[\int_{-1}^{0} 0 * \cos(\frac{nt\pi}{1}) dt + \int_{0}^{1} t * \cos(\frac{nt\pi}{1}) dt \right] =$$

$$1 \left[\int_{0}^{1} t * \cos(nt\pi) dt \right] =$$

resolviendo la integral por partes: u=t ; du=dt ; $dv=cos(nt\pi)$; $v=\frac{1}{n\pi}sen(nt\pi)$

$$\frac{t * sen(nt\pi)}{n\pi} \Big|_0^1 - \int \frac{1}{n\pi} * sen(nt\pi) dt =$$

$$\frac{1}{(n\pi)^2} \left[nt\pi * sen(n\pi) + cos(n\pi) - 1 \right] =$$

$$\frac{cos(n\pi) - 1}{(n\pi)^2} =$$

$$a_n = \frac{(-1)^n - 1}{(n\pi)^2}$$

.....

$$b_n = \frac{1}{p} \int_{-p}^{p} f(t) sen(\frac{nt\pi}{p}) dt =$$

$$= 1 \left[\int_{-1}^{0} 0 * sen(\frac{nt\pi}{1}) dt + \int_{0}^{1} t * sen(\frac{nt\pi}{1}) dt \right] =$$

$$1 \left[\int_{0}^{1} t * sen(nt\pi) dt \right] =$$

resolviendo la integral por partes: u = t; du = dt; $dv = sen(nt\pi)$; $v = \frac{-1}{n\pi}cos(nt\pi)$

$$\frac{-t*\cos(nt\pi)}{n\pi}\Big|_0^1 - \int \frac{-1}{n\pi}*\cos(nt\pi)dt = \frac{sen(n\pi) - n\pi*\cos(n\pi)}{(n\pi)^2} = \frac{(-1)^n*-n\pi}{(n\pi)^2}$$

......Serie trigonométrica de Fourier

3. Función 3:

$$f(t) = \begin{cases} 1, & 0 < t < 1 \\ 0, & 1 < t < 3 \\ -1, & 3 < t < 4 \end{cases}$$

$$p = \frac{T}{2} = \frac{4}{2} = 2$$

$$a_0 = \frac{1}{p} \int_{-p}^{p} f(t) dt = \frac{1}{2} \int_{-2}^{-1} 0 dt + \int_{-1}^{0} -1 dt + \int_{0}^{1} 1 dt + \int_{1}^{2} 0 dt = -1 + 1 = 0$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(t) \cos(\frac{nt\pi}{p}) dt =$$

$$\frac{1}{2} \int_{-2}^{2} f(t) \cos(\frac{nt\pi}{2}) dt =$$

$$\frac{1}{2} \int_{-2}^{1} 0 * \cos(\frac{nt\pi}{2}) dt + \int_{1}^{0} -1 * \cos(\frac{nt\pi}{2}) dt + \int_{1}^{1} 1 * \cos(\frac{nt\pi}{2}) dt + \int_{1}^{2} 0 * \cos(\frac{nt\pi}{2}) dt =$$

$$\frac{2 * sen(\frac{nt\pi}{2})}{n\pi} - \frac{2 * sen(\frac{n\pi}{2})}{n\pi} = 0$$

.....

$$b_{n} = \frac{1}{p} \int_{-p}^{p} f(t) sen(\frac{nt\pi}{p}) dt =$$

$$\frac{1}{2} \int_{-2}^{2} f(t) sen(\frac{nt\pi}{2}) dt =$$

$$\frac{1}{2} \int_{-2}^{1} 0 * sen(\frac{nt\pi}{2}) dt + \int_{-1}^{0} -1 * sen(\frac{nt\pi}{2}) dt + \int_{0}^{1} 1 * sen(\frac{nt\pi}{2}) dt + \int_{1}^{2} 0 * sen(\frac{nt\pi}{2}) dt =$$

$$b_{n} = \frac{4 * sen^{2}(\frac{n\pi}{4})}{n\pi}$$

......Serie trigonométrica de Fourier


```
Con uso de las librerias
import numpy as np
import math
import matplotlib.pyplot as plt
  Coeficiente a_n
def an(n):
   n=int(n)
   return (pow(-1,n)-1)/pow(n*np.pi,2) #funcion1
   #return 0 #funcion3
  Coeficiente b_n
def bn(n):
   n = int(n)
   return ((-n*np.pi)*pow(-1,n))/pow(n*np.pi,2) #funcion1
   #return (4*((math.sin((np.pi*n)/4))**2))/(np.pi*n)#funcion3
  Coeficiente w_n
def wn(n):
   global T
   wn = (2*np.pi*n)/T
   return wn
  Serie de Fourier
def serie_fourier(armonico,x):
    a0 = 1/2 \#funcion1
    \#a0 = 0 \#funcion3
    sumas = a0
   for n in range(1,armonico):
       try:
           sumas = sumas + an(n)*np.cos(wn(n)*x) + bn(n)*np.sin(wn(n)*x)
       except Exception as e:
           print(e)
           pass
   return sumas
```