- **5. b** (DeMorgan's is done incorrectly)
- **6. a** This is material implication.

7.						
	p	q	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$	$\neg q$	$p \leftrightarrow \neg q$
	Т	Τ	Т	F	F	F
	T	T.	TC	T	Т	Т

8.						
Step	Statement	Rule				
5	$p \rightarrow r$	contrapositive of 2.				
6	p	disjunctive syllogism (4. and 1.)				
7	r	modus ponens (6. and 5.)				
8	s	modus ponens (3. and 7.)				

 \therefore Using the rules of inference and premises, we have shown s.

9.
$$\forall y \exists x_1 \exists x_2 (M(y) \to ((T(x_1, y) \land C(x_1)) \land (T(x_2, y) \land F(x_2))))$$

10.
$$\forall x \exists y (F(x) \rightarrow (T(x,y) \land M(y)))$$

11.
$$\exists x (F(x) \land C(x))$$

12.
$$\exists x_1 \exists x_2 \forall x_3 (C(x_1) \land C(x_2) \land (x_1 \neq x_2) \land ((x_1 \neq x_3) \land (x_2 \neq x_3)) \rightarrow \neg C(x_3))$$