

Machine Translation: Decoding

Jordan Boyd-Graber University of Colorado Boulder

Adapted from material by Philipp Koehn

Decoding

We have a mathematical model for translation

$$p(\mathbf{e}|\mathbf{f})$$

Task of decoding: find the translation e_{best} with highest probability

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \ p(\mathbf{e}|\mathbf{f})$$

- Two types of error
 - the most probable translation is bad \rightarrow fix the model
 - search does not find the most probably translation \rightarrow fix the search
- Decoding is evaluated by search error, not quality of translations (although these are often correlated)

Translation Process

Task: translate this sentence from German into English

er geht ja nicht nach hause

Jordan Boyd-Graber | Boulder Machine Tra

Translation Process

Task: translate this sentence from German into English

Pick phrase in input, translate

Jordan Boyd-Graber

Task: translate this sentence from German into English

- Pick phrase in input, translate
 - o it is allowed to pick words out of sequence reordering
 - o phrases may have multiple words: many-to-many translation

Translation Process

Task: translate this sentence from German into English

Pick phrase in input, translate

Jordan Boyd-Graber | Boulder Machine

Task: translate this sentence from German into English

• Pick phrase in input, translate

Jordan Boyd-Graber | Boulder Machine Tr

Computing Translation Probability

Probabilistic model for phrase-based translation:

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \ \prod_{i=1}^{l} \phi(\bar{f}_i | \bar{\mathbf{e}}_i) \ d(\mathit{start}_i - \mathit{end}_{i-1} - 1) \ p_{\scriptscriptstyle \mathrm{LM}}(\mathbf{e})$$

- Score is computed incrementally for each partial hypothesis
- Components

```
Phrase translation Picking phrase \bar{f_i} to be translated as a phrase \bar{e_i} \rightarrow look up score \phi(\bar{f_i}|\bar{e_i}) from phrase translation table Reordering Previous phrase ended in end_{i-1}, current phrase starts at start_i
```

 \rightarrow compute $d(start_i - end_{i-1} - 1)$

Language model For n-gram model, need to keep track of last n-1 words

 \rightarrow compute score $p_{\text{LM}}(w_i|w_{i-(n-1)},...,w_{i-1})$ for added words w_i

Translation Options

- Many translation options to choose from
 - o in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- → Search problem solved by heuristic beam search

Jordan Boyd-Graber | Boulder Machine Translation: Decoding

Decoding: Precompute Translation Options

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced

Jordan Boyd-Graber | Boulder Machine Translation: Decoding

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

13 of 34

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

Worse hypothesis is dropped

Recombination

- Two paths lead to hypotheses subsequently indistinguishable
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

Worse hypothesis is dropped

- Translation model: Phrase translation independent from each other
 - ightarrow no restriction to hypothesis recombination
- Language model: Last n-1 words used as history in n-gram language model
 - \rightarrow recombined hypotheses must match in their last n-1 words
- Reordering model: Distance-based reordering model based on distance to end position of previous input phrase
 - ightarrow recombined hypotheses must have that same end position
- Other feature function may introduce additional restrictions

Pruning

- Recombination reduces search space, but not enough
 - (we still have a NP complete problem on our hands)
- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack

- · Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down

Stack Decoding Algorithm

```
1: place empty hypothesis into stack 0
2: for all stacks 0...n-1 do
3:
     for all hypotheses in stack do
       for all translation options do
4:
          if applicable then
5
            create new hypothesis
6:
            place in stack
7:
            recombine with existing hypothesis if possible
8:
            prune stack if too big
9:
```

Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
 - o stack pruning: keep hypothesis with score $\alpha \times$ best score $(\alpha < 1)$
- Computational time complexity of decoding with histogram pruning

 $O(\max \text{ stack size} \times \text{translation options} \times \text{sentence length})$

 Number of translation options is linear with sentence length, hence:

 $O(\text{max stack size} \times \text{sentence length}^2)$

Quadratic complexity

Reordering Limits

- Limiting reordering to maximum reordering distance
- Typical reordering distance 5–8 words
 - depending on language pair
 - larger reordering limit hurts translation quality
- Reduces complexity to linear

 $O(\max \text{ stack size} \times \text{ sentence length})$

Speed / quality trade-off by setting maximum stack size

the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - o language model: output words known, but not context
 - \rightarrow estimate without context
 - reordering model: unknown, ignored for future cost estimation

Cost Estimates from Translation Options

cost of cheapest translation options for each input span (log-probabilities)

28 of 34

Cost Estimates for all Spans

Cost estimate for all contiguous spans (cheapest options)

first	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1		,	
this	-1.4	-2.4	-2.7	-3.7	-3.7				
for	-1.0	-1.3	-2.3	-2.3		•			
the	-1.0	-2.2	-2.3		,				
first	-1.9	-2.4		-					
time	-1.6		•						

- Function words cheap (the: -1.0) vs. content (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) vs. unusual (tourism initiative addresses: -5.9)

Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative score: -5.88. future cost: -6.1 \rightarrow total cost -11.98
 - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 \rightarrow total cost -13.41
 - right hypothesis picks easy parts: this for ... time score: -4.86. future cost: $-9.1 \rightarrow \text{total cost } -13.96$

Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

Jordan Boyd-Graber | Boulder Machine Translation: Decoding |

Greedy Hill-Climbing

- Create one complete hypothesis with depth-first search (or other means)
- Search for better hypotheses by applying change operators
 - change the translation of a word or phrase
 - o combine the translation of two words into a phrase
 - split up the translation of a phrase into two smaller phrase translations
 - move parts of the output into a different position
 - swap parts of the output with the output at a different part of the sentence
- Terminates if no operator application produces a better translation

Summary

- Translation process: produce output left to right
- Translation options
- Decoding by hypothesis expansion
- Reducing search space
 - recombination
 - pruning (requires future cost estimate)
- Other decoding algorithms