Performance Evaluation of Post-Quantum TLS 1.3 on Resource-Constrained Embedded Systems 논문 리뷰

https://youtu.be/50Lz8DmpwCA

서론

- TLS는 PQC(post-quantum cryptography)를 지원하도록 변형되어야 함
 - 하지만, 아직 post-quantum TLS는 표준화되지 않았음.
 - 특히, 리소스 제한이 있는 IoT 기기에서 post-quantum TLS의 전체적인 성능은 많이 알려져 있지 않음.
- 따라서, 본 논문은 TLS1.3 아키텍쳐 수정하여 TLS 1.3을 quantum-safe 하게 마이그레 이션 하는 방법 소개
- NIST PQC 프로세서에서 표준화를 위해
- → 대부분의 post-quantum 알고리즘의 pqm4와 PQClean library implementation과 Round 4 후보군 알고리즘을 통합
- →제안된 솔루션과 성능 평가는 ARM Cortex-M4에서 측정
 - 실행 시간, 메모리 사용량, 네트워크 트래픽에 대한 체계적이고 철저한 평가 수행
- 저자가 아는 한, 최초로 임베디드 상에서 NIST PQC 프로세스 알고리즘에 대해 PQ TLS 1.3의 실행시간, 메모리 사용량, 네트워크 트래픽 성능 측정(2022년 기준)

- WolfSSL은 Mbed TLS와 함께 임베디드 시스템용 오픈소스 TLS 솔루션에서 가장 유명하고 널리 사용
- 최신 버전에서는 Liboqs와 통합하여 CRYSTALS-Kyber, SABER, NTRU, Falcon 지원
 - 하지만, 2021년 기준 pqm4의 Kyber512만 사용하는 실험 설정을 제외하고 Cortex-M4용 최적화 코드가 포함되어 있지 않음
- 본 논문은, ARM Cortex-M4상에서 최적화된 PQC 알고리즘을 모두 지원하기 위해 WolfSSL 라이브러리 수정

- WolfSSL의 주요 구성요소
 - WolfCrypt
 - 모든 암호 알고리즘, 인증서, 키 파일을 처리하는 프로그램 포함
 - 다양한 아키텍처에 **최적화 코드**와 선택한 플랫폼에 대한 하드웨어 지원을 제공
 - WolfSSL
 - DTLS(Datagram Transport Layer Security)와 같은 **다른 프로토콜을 구현하는 모든 프로토콜** 관련 코드 포함
 - TLS의 모든 설정과 환경, TCP와 같은 하위 수준 프로토콜이나 운영체제(e.g. FreeRTOS)와 같은 상위 수준과 통신하기 위한 인터페이스 제공
 - 유틸리티
 - 테스트용 벤치마크나 프로그램과 같은 non-essential 유틸리티 포함
 - 본 논문에서는 성능 측정을 위해 2개의 벤치마크 프로그램 사용
 - Wolfcrypt-benchmark: 모든 암호 알고리즘의 성능 측정과 통계 제공
 - → 기존 알고리즘과 비교하기 위해 PQC 알고리즘의 시간 측정에 사용
 - Wolfssl-tls-bench: TLS 세션과 관련한 metrics 측정
 - → 기존 알고리즘을 사용하는 TLS 성능과 PQC 알고리즘을 사용하는 TLS 성능 측정에 사용

- WolfSSL 라이브러리와 TLS 1.3 표준 수정
 - 2개의 TLS Extension fields 수정
 - → "Support Group", "Signature Algorithms"

Fig. 1. Post-quantum TLS 1.3 handshake messages.

https://www.davidwong.fr/tls13/#section-4.2

Support Group

- 키교환 알고리즘을 선택할 수 있도록 선호 순서대로 인코딩 된 식별자인 코드포인트 목록 전송
- * 코드포인트는 "Named Groups"로 불리고, 프로토콜 자체에서 각 지원되는 알고리즘에 대해 정의됨.

→ 다른 라이브러리와의 상호운용성을 위해 OQS의

OpenSSL fork와 동일한 codepoints 사용

0x0241

Fig. 1. Post-quantum TLS 1.3 handshake messages.

- Signature Algorithms
 - 지원하는 서명 알고리즘에 대한 선호도를 제공
- → PQ TLS1.3 설계의 quantum 전자서명 알고리즘에 대한 새로운 codepoints 도입
- → OQS의 OpenSSL fork와 동일한 codepoints 사용

```
/* RSASSA-PKCS1-v1_5 algorithms */
 rsa pkcs1 sha256(0x0401),
  rsa_pkcs1_sha384(0x0501),
  rsa_pkcs1_sha512(0x0601),
  /* ECDSA algorithms */
 ecdsa secp256r1 sha256(0x0403),
  ecdsa_secp384r1_sha384(0x0503),
  ecdsa_secp521r1_sha512(0x0603),
  /* RSASSA-PSS algorithms with public key OID rsaEncryption */
  rsa_pss_rsae_sha256(0x0804),
  rsa_pss_rsae_sha384(0x0805),
  rsa_pss_rsae_sha512(0x0806),
  /* EdDSA algorithms */
  ed25519(0x0807),
  ed448(0x0808).
  /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
  rsa_pss_pss_sha256(0x0809),
  rsa_pss_pss_sha384(0x080a),
  rsa_pss_pss_sha512(0x080b),
  /* Legacy algorithms */
  rsa_pkcs1_sha1(0x0201),
  ecdsa sha1(0x0203).
  /* Reserved Code Points */
  private_use(0xFE00..0xFFFF),
} SignatureScheme;
 SignatureScheme supported_signature_algorithms<2..2^16-2>;
```


Fig. 1. Post-quantum TLS 1.3 handshake messages.

- WolfSSL 라이브러리와 TLS 1.3 표준 수정
 - Key Encapsulation Mechanism Support/Adaption
 - TLS 1.3 표준에서는 타원곡선 Diffie-Hellman 키 교환만 지원
 - → 따라서, 키 교환 메커니즘을 KEM 스킴으로 변경
 - CRYSTALS-Kyber KEM 기반 키 교환 체계에서 제안된 방식 채택
 - Digital Certificates Support
 - OQS의 OpenSSL API를 통해 본 논문에서 평가되는 PQC 알고리즘 을 지원하는 디지털 인증서 생성
 - 서버와 클라이언트에 대해 상호 인증되는 디지털 인증서 생성 목표
 - → 따라서, PQ CA(Certificate Authority) 도입하여 PQ CA에서 확인 가능한 서버용과 클라이언트용 인증서 생성
 - 단순화를 위해 체인의 모든 인증서는 동일한 서명 알고리즘 (Dilithium2 등) 사용

Fig. 1. Post-quantum TLS 1.3 handshake messages.

- NIST PQC Round 4 알고리즘과 Round3의 일부 알고리즘 채택
 - KEM: CRYSTALS-Kyber, SABER, NTRU, SIKE, BIKE, HQC, NTRU LPRime, FrodoKEM
 - 전자서명: CRYSTALS-Dilithium, Falcon, SPHINCS+, Picnic3
- pqm4 구현을 WolfSSL 코드에 통합
- 네트워크 통신을 위해 TCP/IP 프로토콜 제품군의 경량 구현인 IwIP(lightweight IP) 라이브러리 활용
- 실험 장치
 - 임베디드 장치: Nucleo-F439ZI 보드
 - 32비트 ARM Cortex-M4, 180 MHz, 192 KB SRAM, 2MB 플래시 메모리
 - 클라우드 서버 역할 장치 : Ubuntu 20.04, x86_64 아키텍처, Intel i7-1165G7 processor, 2.8 GHz
- 실험 장치는 RTT이 0.493ms인 Ethernet interface를 통해 동일한 액세스 포인트 에 연결

각 알고리즘의 공개 키 크기 및 암호문/서명, 측정된 실행 시간

• Kyber가 가장 높은 종합적 성능을 보임

Table 1. Summary of Traditional and Post-quantum Primitives.

KEM	NIST	Public Key	Ciphertext	Key Generate	Encap sulate	Decapsulate	Notation
Algorithm	level	(bytes)	(bytes)	(ms)	(ms)	(ms)	Notation
FFDHE ¹	0	256	256	203.920	204.080 4	-	FFDHE
ECDHE 2	0	32	32	8.428	17.687 4	-	ECDHE
Kyber512	1	800	768	8.133	6.239	3.419	Kyb1
BIKE-L1	1	1541	1573	200.620	25.969	411.308	Bike1
HQC128	1	2249	4481	30.202	50.682	72.775	Hqc1
SIKEp434	1	330	346	309.235	498.227	530.200	Sike1
SIKEp503	2	378	402	423.708	690.188	733.071	Sike2
SIKEp610	3	462	486	732.786	1341.125	1346.500	Sike3
Kyber768	3	1184	1088	12.224	11.412	7.924	Kyb3
SIKEp751	5	564	596	1262.750	2036.000	2183.000	Sike5
Kyber1024	5	1568	1568	12.918	11.623	8.539	Kyb5
$\overline{Auth.}$	NIST	Public Key	Signature	Key Generate	Sign	Verify	Notation
Algorithm	level	(bytes)	(bytes)	(ms)	(ms)	(ms)	Notation
RSA ³	0	256	256	$12.853/450^5$	448.250	12.500	RSA
ECDSA 2	0	32	32	8.428	12.305	25.193	ECDSA
Sphincs128s	1	32	7856	8674.000	66239.000	61.588	Sphi1s
Sphincs128f	1	32	17088	137.750	3361.000	190.167	Sphi1f
Falcon512	1	897	666	1266.667	243.881	3.275	Falc 1
Dilithium2	2	1312	2420	12.063	25.404^{-6}	9.569	Dil2
Dilithium3	3	1952	3293	19.438	39.309 7	16.244	Dil3
Falcon1024	5	1793	1280	4802.667	527.789	6.852	Falc 5

¹ 3072-bit, ² secp256r1 curve, ³ 2048-bit, ⁴ key agreement time, ⁵ public / private key generation time, ⁶ (11/114) (min/max), ⁷ (15/138) (min/max) of execution time over 1000 signatures

각 알고리즘의 공개 키 크기 및 암호문/서명, 측정된 실행 시간

• Dilithium이 가장 균형 잡힌 성능 제공

• 공개키와 서명의 크기가 중간 크기에 해당되지만, 실행 시간 측면에서 뛰어난 성능 제공

Table 1. Summary of Traditional and Post-quantum Primitives.

KEM	NICT	D. H. V.	C: 1 1	V C	E	D l-4-		
	NIST	Public Key	Ciphertext	Key Generate	Encapsulate	Decapsulate	Notation	
Algorithm	level	(bytes)	(bytes)	(ms)	(ms)	(ms)		
FFDHE 1	0	256	256	203.920	204.080^{-4}	-	FFDHE	
ECDHE ²	0	32	32	8.428	17.687^{-4}	-	ECDHE	
Kyber512	1	800	768	8.133	6.239	3.419	Kyb1	
BIKE-L1	1	1541	1573	200.620	25.969	411.308	Bike1	
HQC128	1	2249	4481	30.202	50.682	72.775	Hqc	
SIKEp434	1	330	346	309.235	498.227	530.200	Sike 1	
SIKEp503	2	378	402	423.708	690.188	733.071	Sike 2	
SIKEp610	3	462	486	732.786	1341.125	1346.500	Sike 3	
Kyber768	3	1184	1088	12.224	11.412	7.924	Kyb3	
SIKEp751	5	564	596	1262.750	2036.000	2183.000	Sike 5	
Kyber1024	5	1568	1568	12.918	11.623	8.539	$Kyb\delta$	
Auth.	NIST	Public Key	Signature	Key Generate	Sign	Verify	Notation	
Algorithm	level	(bytes)	(bytes)	(ms)	$(ms) \hspace{1cm} (ms)$		ivotation	
RSA ³	0	256	256	$12.853/450^5$	448.250	12.500	RSA	
ECDSA ²	0	32	32	8.428	12.305	25.193	ECDSA	
Sphincs128s	1	32	7856	8674.000	66239.000	61.588	Sphi1	
Sphincs128f	1	32	17088	137.750	3361.000	190.167	Sphi1	
Falcon512	1	897	666	1266.667	243.881	3.275	Falc	
Dilithium2	2	1312	2420	12.063	25.404 6	9.569	Dil_{z}^{z}	
Dilithium3	3	1952	3293	19.438	39.309 7	16.244	Dils	
Falcon1024	5	1793	1280	4802.667	527.789	6.852	Falc s	

¹ 3072-bit, ² secp256r1 curve, ³ 2048-bit, ⁴ key agreement time, ⁵ public / private key generation time, ⁶ (11/114) (min/max), ⁷ (15/138) (min/max) of execution time over 1000 signatures

각 알고리즘의 공개 키 크기 및 암호문/서명, 측정된 실행 시간

- 서버 전용 인증을 사용하는 시나리오(임베디드 보드가 클라이언트 역할)
- → Falcon을 사용할 때, 실행 시간 크게 향상

Table 1. Summary of Traditional and Post-quantum Primitives.

$KEM \ Algorithm$	NIST $level$	$PublicKey \ (bytes)$	$Ciphertext \ (bytes)$	$Key\ Generate \ (ms)$	$Encapsulate \ (ms)$	$Decapsulate \ (ms)$	Notation
${ m FFDHE}^{\ 1}$	0	256	256	203.920	204.080^{-4}	-	FFDHE
ECDHE ²	0	32	32	8.428	17.687^{-4}	-	ECDHE
Kyber512	1	800	768	8.133	6.239	3.419	Kyb1
BIKE-L1	1	1541	1573	200.620	25.969	411.308	Bike1
HQC128	1	2249	4481	30.202	50.682	72.775	Hqc1
SIKEp434	1	330	346	309.235	498.227	530.200	Sike1
${ m SIKEp}503$	2	378	402	423.708	690.188	733.071	Sike2
SIKEp610	3	462	486	732.786	1341.125	1346.500	Sike3
Kyber768	3	1184	1088	12.224	11.412	7.924	Kyb3
SIKEp751	5	564	596	1262.750	2036.000	2183.000	Sike 5
Kyber1024	5	1568	1568	12.918	11.623	8.539	Kyb5
Auth.	NIST	Public Key	Signature	Key Generate	Sign	Verify	Notation
Algorithm	level	(bytes)	(bytes)	(ms)	$(ms) \hspace{1cm} (ms)$		woiaitor
RSA ³	0	256	256	$12.853/450^5$	448.250	12.500	RSA
ECDSA ²	0	32	32	8.428	12.305	25.193	ECDSA
Sphincs128s	1	32	7856	8674.000	66239.000	61.588	Sphi1s
Sphincs128f	1	32	17088	137.750	3361.000	190.167	Sphi1f
Falcon 512	1	897	666	1266.667	243.881	3.275	Falc 1
Dilithium2	2	1312	2420	12.063	25.404 6	9.569	Dil2
Dilithium3	3	1952	3293	19.438	39.309^{-7}	16.244	Dil3
Falcon1024	5	1793	1280	4802.667	527.789	6.852	Falc 5

¹ 3072-bit, ² secp256r1 curve, ³ 2048-bit, ⁴ key agreement time, ⁵ public / private key generation time, ⁶ (11/114) (min/max), ⁷ (15/138) (min/max) of execution time over 1000 signatures

Handshake 측정

- 클라이언트에서 수집한 측정값 : Key Generate, Decapsulation
- 서버에서 수집한 측정값 : Encapsulation
- 따라서, 보드가 클라이언트와 서버로 동작할 때, TLS Handshake의 비대칭적인 실행 시간 발생

Handshake 측정

- 실험 측정 결과와 정적 메모리 소비, Handshake의 통신 바이트 크기
 - Bike의 경우, 클라이언트 handshake 시간이 서버보다 5.6배 느림
 - Bike1과 Hqc2를 제외하였을 때, <mark>일반적으로 평균 6.25ms 더 작음 Table 2. PQ TLS 1.3 Handshake Measurements.</mark>

Notation	Static Usage	.bss Usage	Communication	Avg Handshake Time (ms)	
	(bytes)	(bytes)	$Sizes \ (bytes)$	client	server
	Selected .	Algorithms fo	r Standardisation		
Dil2-Kyb1	49 648	0	14748	96.318	91.062
$Falc1 ext{-}Kyb1$	3680	39936	6833	288.305	285.951
Dil3- $Kyb3$	69072	0	20224	157.126	153.492
Falc 5- $Kyb 3$	4200	79872	11789	594.495	589.058
Dil3- $Kyb5$	69104	0	21088	165.590	152.537
Falc 5- $Kyb 5$	4712	79872	12647	601.827	592.302
$Sph1s ext{-}Kyb1$	800	0	33892	66977.000	66 776.000
	4	rth Round A	lgorithms		
Dil2-Bike1	81 528	49	16 292	690.000	121.756
$Dil2 ext{-}Hqc1$	71672	0	19910	198.603	145.989
$Dil2 ext{-}Sike1$	49648	0	13858	886.359	566.125
$Dil2 ext{-}Sike2$	49648	0	13962	1196.510	760.265
$Dil2 ext{-}Sike3$	49648	0	14130	2089.690	1416.368
$Dil2 ext{-}Sike5$	49648	0	14342	3403.222	2149.923
Dil3- $Sike3$	69232	0	18902	2246.077	1529.143
Dil3- $Sike5$	69104	0	19114	3450.167	2170.840
		Traditional A	lgorithms		
RSA-ECDHE	2368	0	3742	540.220	538.158
ECDSA-ECDHE	2368	0	2353	109.171	106.927

Handshake 측정

- 상호인증의 경우, KEM+Dilithium의 조합은 KEM+Falcon 보다 성능이 뛰어남
 - Falon이 "Verify"는 매우 빠르지만, "Sign"은 느리기 때문

	Table 2. PQ	TLS 1.3 Hand	dshake Measuremen	nts.	
Notation	Static Usage (bytes)	.bss Usage (bytes)	Communication Sizes (bytes)	Avg Handshake Time (ms) client server	
	Selected .	$Algorithms\ fo$	$r\ Standardisation$		
Dil2-Kyb1	49648	0	14 748	96.318	91.062
$Falc1 ext{-}Kyb1$	3680	39936	6833	288.305	285.951
Dil3- $Kyb3$	69072	0	20224	157.126	153.492
$Falc 5 ext{-}Kyb 3$	4200	79872	11 789	594.495	589.058
Dil3- $Kyb5$	69104	0	21088	165.590	152.537
$Falc 5 ext{-}Kyb 5$	4712	79872	12647	601.827	592.302
$Sph1s ext{-}Kyb1$	800	0	33892	66 977.000	66 776.000
	lgorithms				
Dil2-Bike1	81 528	49	16 292	690.000	121.756
$Dil2 ext{-}Hqc1$	71672	0	19910	198.603	145.989
$Dil2 ext{-}Sike1$	49648	0	13858	886.359	566.128
$Dil2 ext{-}Sike2$	49648	0	13962	1196.510	760.26
$Dil2 ext{-}Sike3$	49648	0	14130	2089.690	1416.368
$Dil2 ext{-}Sike5$	49648	0	14342	3403.222	2149.92
Dil3- $Sike3$	69232	0	18902	2246.077	1529.143
$Dil3 ext{-}Sike5$	69104	0	19114	3450.167	2170.840
		Traditional A	lgorithms		
RSA-ECDHE	2368	0	3742	540.220	538.158
ECDSA-ECDHE	2368	0	2353	109.171	106.927

Q&A