Лабораторная работа №5

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5	
2	Выполнение лабораторной работы	6	
3	Выводы	27	
Сг	Список литературы		

Список иллюстраций

2.1	Задаю переменные окружения	6
2.2	Модель SIR в xcos	7
2.3	Задаю начальные значения в блоках интегрирования	8
2.4	Задаю начальные значения в блоках интегрирования	9
2.5	Изменяю параметры блока суммирования	9
2.6	Изменяяю конечное время интегрирования	10
2.7	Результат программы	11
2.8	Модель SIR в xcos с применением блока Modelica	12
2.9	Параметры блока Modelica для модели	13
2.10	Параметры блока Modelica для модели	14
2.11	Результат программы	15
2.12	Реализация SIR в OpenModelica	16
2.13	Изменяяю конечное время интегрирования	17
2.14	Результат программы	18
2.15	Задаю переменные окружения	19
2.16	Результат программы	20
2.17	Модель SIR в xcos с применением блока Modelica	21
2.18	Параметры блока Modelica для модели	22
2.19	Параметры блока Modelica для модели	23
2.20	Результат программы	24
2.21	Реализация SIR в OpenModelica	25
2.22	Результат программы	26

Список таблиц

1 Цель работы

Ознакомиться с Моделью эпидемии (SIR). Выполнить задания на эту тему.

2 Выполнение лабораторной работы

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick). С описанием модели можно ознакомиться, например в [1]. Предполагается, что особи популяции размера N могут находиться в трёх различ- ных состояниях: – S (susceptible, уязвимые) — здоровые особи, которые находятся в группе риска и могут подхватить инфекцию; – I (infective, заражённые, распространяющие заболевание) — заразившиеся пере- носчики болезни; – R (recovered/removed, вылечившиеся) — те, кто выздоровел и перестал распро- странять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших).

Зафиксируем начальные данные: $\square = 1$, $\square = 0$, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0. В меню Моделирование, Задать переменные окружения задаю значения переменных \square и \square (рис.2.1).

Рис. 2.1: Задаю переменные окружения

Строю модель по аналогии с инструкцией(рис.2.2).

Рис. 2.2: Модель SIR в хсоѕ

Выходы трёх блоков интегрирования соединяем с мультиплексором. В параметрах верхнего и среднего блока интегрирования задаю начальные значения s(0) = 0, 999 и i(0) = 0, 001(рис.2.3). (рис.2.4).

Рис. 2.3: Задаю начальные значения в блоках интегрирования

Рис. 2.4: Задаю начальные значения в блоках интегрирования

Изменяю параметры блока суммирования(рис.2.5).

Рис. 2.5: Изменяю параметры блока суммирования

изменяю параметры моделирования и ставлю конечное время интегрирования

на 30(рис.2.6).

Рис. 2.6: Изменяяю конечное время интегрирования

Результат прпограммы - график(рис.2.7).

Рис. 2.7: Результат программы

Реализация модели с помощью блока Modelica в хсоз. Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных □ и □. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). реализую модель SIR в хсоз с применением блока Modelica(рис.2.8).

Рис. 2.8: Модель SIR в xcos с применением блока Modelica

Настраиваю Параметры блока Modelica для модели. Пишу Код на языке Modelica(рис.2.9), (рис.2.10).

Рис. 2.9: Параметры блока Modelica для модели

Рис. 2.10: Параметры блока Modelica для модели

Результат программы - график(рис.2.11).

Рис. 2.11: Результат программы

Реализую модель SIR в OpenModelica(рис.2.12).

```
🕨 🊜 🧧 🕕 Доступный на запись
                                Вид Текст
                          Model
     model lab05
 1
       parameter Real S 0 = 0.999;
       parameter Real I 0 = 0.001;
       parameter Real R \theta = 0;
 5
 6
       parameter Real N = 1;
 7
       parameter Real b = 1;
 8
       parameter Real c = 0.3;
 9
10
       Real S(start=S 0);
11
       Real I(start=I 0);
12
       Real R(start=R 0);
13
                               I
14
     equation
15
       der(S)=-(b*S*I)/N;
16
       der(I)=(b*S*I)/N-c*I;
17
       der(R)=c*I;
18
19
     end lab05;
```

Рис. 2.12: Реализация SIR в OpenModelica

Изменяю параметры моделирования и ставлю конечное время интегрирова-

ния на 30(рис.2.13).

Рис. 2.13: Изменяяю конечное время интегрирования

Результат прпограммы - график(рис.2.14).

Рис. 2.14: Результат программы

Требуется: – реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica; – построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр □); – сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Зафиксируем начальные данные: $\square = 1$, $\square = 0$, 3, mu = 0.1, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0. В меню Моделирование, Задать переменные окружения задаю значения переменных \square и \square . строю модель, подходящую под заданное уравнение(рис.2.15).

Рис. 2.15: Задаю переменные окружения

Результат прпограммы - график(рис.2.16).

Рис. 2.16: Результат программы

Реализация модели с помощью блока Modelica в хсоз. Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных □ и □. Переменные на входе ("beta", "nu". mu) и выходе ("s", "i", "r") блока заданы как внешние ("E"). реализую модель SIR в хсоз с применением блока Modelica(рис.2.17).

Рис. 2.17: Модель SIR в хсоs с применением блока Modelica

Настраиваю Параметры блока Modelica для модели. Пишу Код на языке Modelica(рис.2.18), (рис.2.19).

Ввод значений Set Modelica generic block pa	+ ×
Input variables:	["beta";"mu";"nu"]
Input variables types:	["E";"E";"E"]
Output variables:	["s";"i";"r"]
Output variables types:	["E";"E";"E"]
Parameters in Modelica:	
Parameters properties:	
Function name:	generic
	ОК Отменить

Рис. 2.18: Параметры блока Modelica для модели

Рис. 2.19: Параметры блока Modelica для модели

Результат прпограммы - график(рис.2.20).

Рис. 2.20: Результат программы

Реализую модель SIR в OpenModelica. Изменяю параметры моделирования и ставлю конечное время интегрирования на 30(рис.2.21).

```
lab05_2*
of ■ 0
          Доступный на запись
                          Model
                                Вид Текст
                                        lab05 2
     model lab05 2
 1
 2
       parameter Real S 0 = 0.999;
       parameter Real I 0 = 0.001;
 3
       parameter Real R 0 = 0;
 4
 5
 6
       parameter Real N = 1;
 7
       parameter Real b = 1;
 8
       parameter Real nu = 0.3;
       parameter Real mu = 0.5;
 9
10
       Real s(start=S 0);
11
       Real i(start=I 0);
12
       Real r(start=R 0); I
13
14
     equation
15
       der(s)=-b*s*i+mu*i+mu*r;
       der(i)=b*s*i-nu*i-mu*i;
16
       der(r)=mu*r;
17
     and labos 2.
10
waan Caahuusuuii
```

Рис. 2.21: Реализация SIR в OpenModelica

Результат прпограммы - график(рис.2.22).

Рис. 2.22: Результат программы

3 Выводы

Ознакомилась с Моделью эпидемии (SIR). Выполнила задания на эту тему.

Список литературы