1. Achar a matriz inversa de

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ -2 & -1 & 0 & 1 \end{pmatrix}$$

2. Achar a forma escalonada R reduzida de

$$A = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -2 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

e achar uma sequência de matrizes elementares $E_1 \dots E_6$ (no máximo 6 mas pode ter menos). Tal que $E_6.E_5.E_4.E_3.E_2.E_1.A = R$

- **3.** Uma matriz $L = [l_{ij}]$ de dimensão $n \times n$ será chamada de matriz triangular inferior se $l_{ii} = 1$ (os elementos da diagonal principal é 1) e $l_{ij} = 0$ se i < j ($l_{23} = 0$ mas l_{32} pode ser qualquer número). Mostre que o produto de duas matrizes triangular inferior também é triangular inferior.
- **4.** Se $T: \mathbb{R}^3 \to \mathbb{R}^2$ é uma transformação linear tal que:

$$T \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \text{ e }]T \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} -1\\0 \end{bmatrix}$$

Encontre o valor de $T \begin{bmatrix} 8\\3\\7 \end{bmatrix}$

5. Em \mathbb{R}^2 defino a seguinte operação que faço com os vetores $\mathbf{x} = [x_1, x_2]$: Primeiro projeto na reta r: (0,0)+t(1,1), e o resultado giro de 30°. Escreva a matriz desta transformação.