Przedział ufności

(rozkład normalny, mała próba, nieznane parametry)

Dla odchylenia standardowego σ w populacji

$$\sqrt{\frac{(n-1)\hat{s}^2}{\chi^2(1-\frac{\alpha}{2},n-1)}} < \sigma < \sqrt{\frac{(n-1)\hat{s}^2}{\chi^2(\frac{\alpha}{2},n-1)}}$$

gdzie: n – liczebność próby, $1-\alpha$ - współczynnik ufności,

$$\chi^2\left(\frac{\alpha}{2},n-1\right)$$
, $\chi^2\left(1-\frac{\alpha}{2},n-1\right)$ - kwantyle rzędów $\frac{\alpha}{2}$ i $1-\frac{\alpha}{2}$ rozkładu χ^2 z $n-1$ stopniami swobody, \hat{s}^2 - wariancja.

Wybrane testy istotności

weryfikacja hipotezy nieparametrycznej o normalności rozkładu	shapiro.test
weryfikacja hipotezy parametrycznej: dla średniej w populacji	t.test

Funkcja *shapiro.test*, której argumentem jest wektor zaobserwowanych wartości cechy, zwraca wartość statystyki oznaczoną literą *W* oraz *p-value* (najniższy poziom istotności, przy którym odrzucamy hipotezę zerową).

Składnia funkcji *t.test*:

x - wektor wartości cechy,

alternative - obszar krytyczny ("two.sided" - obustronny gdy H_1 : $m \neq mu$, "less" lewostronny, H_1 :m < mu, "greater" - prawostronny dla H_1 :m > mu),

mu - hipotetyczna wartość średniej,

conf.level - poziom ufności.

Funkcja zwraca wartość statystyki testowej oznaczoną literą *t* oraz *p.value* (najniższy poziom istotności, przy którym odrzucamy hipoteze zerowa).

Dla podanego poziomu ufności conf.level zwraca przedział ufności dla wartości średniej z populacji (confidence interval).

Decyzje w teście istotności:

 $\alpha \ge p$ - odrzucamy H_0 i przyjmujemy H_1 ,

 $\alpha < p$ - brak podstaw do odrzucenia H_0

Hipoteza statystyczna – dowolne przypuszczenie dotyczące nieznanego rozkładu badanej cechy w populacji generalnej, o prawdziwości lub fałszywości którego wnioskuje się na podstawie próbki. Może dotyczyć parametru populacji lub postaci rozkładu.

Test statystyczny – metoda podstępowania, które każdej realizacji próby losowej z ustalonym prawdopodobieństwem przyporządkowuje decyzję, czy należy odrzucić weryfikowaną hipotezę, czy nie.

Etapy testu

- 1. Sformułowanie hipotez:
 - H_0 hipoteza podstawowa, w której zakłada się brak jakichkolwiek różnic i uznaje za słuszną do momentu weryfikacji,
 - H_1 hipoteza alternatywna, którą przyjmujemy, gdy H_0 okaże się fałszywa.
- 2. Wybór statystyki testowej, zwanej sprawdzianem, która mierzy różnice między wynikami próby losowej a postacią hipotetyczną rozkładu.
- 3. Wyznaczenie przedziału liczbowego, zwanego obszarem krytycznym, który zawiera wszystkie wartości statystyki testowej, przeczące hipotezie H_0 i potwierdzające hipoteze H_1 .
- 4. Podjęcie decyzji poprzez porównanie wartości statystyki testowej z obszarem krytycznym, czy hipoteza H_0 jest fałszywa czy nie.

Rodzaje błędów:

Bląd I rodzaju – polega na odrzuceniu hipotezy H_0 , gdy jest ona prawdziwa. Prawdopodobieństwo tego błędu nazywa się poziomem istotności i oznacza α .

Bląd II rodzaju – polega na przyjęciu hipotezy H_0 , gdy jest ona fałszywa. Prawdopodobieństwo tego błędu oznaczamy β i $1-\beta$ nazywa się moca testu.

W programach komputerowych nie jest wyznaczany obszar krytyczny lecz graniczny poziom istotności, tzn. najniższy poziom istotności (p-value), przy którym odrzuca się hipotezę H_0 . Decyzje podejmuje się porównując poziom istotności z p-value.

Testy istotności – nie uwzględniają prawdopodobieństwa popełnienia błędu II rodzaju, dlatego decyzje są następujące:

 $\alpha \ge p$ - odrzucamy H_0 i przyjmujemy H_1 ,

 $\alpha < p$ - brak podstaw do odrzucenia H_0