# Tomographic Reconstruction from Projections with Unknown View Angles Exploiting Moment-Based Relationships

Eeshan Malhotra, Ajit Rajwade Indian Institute of Technology Bombay

#### Introduction

- View-angles for tomographic projections are often noisy/unknown
- We recover view-angles in scenario when they are completely unknown, with no assumption on angle distribution

Utilize the Helgasson-Ludwig Consistency Conditions (HLCC) - relationship between the geometric moments of the image and projections from a given angle

$$m_{\theta_i}^{(n)} = \sum_{j=0}^n \binom{n}{j} (\cos \theta_i)^{n-j} (\sin \theta_i)^j \upsilon_{n-j,j}$$

To obtain consistent estimates for  $\theta$ , we minimize

$$E(\boldsymbol{\theta}, \boldsymbol{v}) = \sum_{n=0}^{k} \sum_{i=1}^{p} \left( m_{\theta_i}^{(n)} - \sum_{j=0}^{n} \mathbf{A^{(n)}}_{i,j} v_{n-j,j} \right)^{2}$$

Coordinate descent strategy used - iteratively minimized each  $\theta_i$  to converge at best estimate

### Algorithm - Denoising

- Patch-based PCA denoising method
- Fixed size patches considered in a moving window along each projection
- For set of L 'most similar' patches to patch p eigen-coefficients obtained using PCA
- For denoising, Wiener-like updates performed on each patch
- Patch based approach captures similarity even in non-analogous parts of two projections
- Works well even when total number of projections is very low

## Recovery Algorithm

#### Coordinate Descent Algorithm for Angle Recovery

- 1: Randomly initialize  $\theta$  estimates, by picking each  $\theta_i$  uniformly from  $-\pi$  to  $\pi$
- **2:** Calculate projection moments,  $m_{\theta_i}^{(j)}$  with orders  $1 \le j \le k$
- **3:** Estimate image moments of the first k orders,  $v^{(i)}$ ,  $1 \le j \le j$ k. (We only need k + 1 view angles for this, but we set k to a much lower value than the number of available views, to introduce redundancy into the system)
- 4: Calculate E using equation in Box 1.

**5:** Set  $\Delta E = \infty$ 

6: while  $\Delta E > \varepsilon$  do:

for each  $\theta_i$  do:

for each angle in  $-\pi$  to  $\pi$ , with apt resolution do:

Assume this value for  $\theta_i$ 

Recalculate image moments using this value

Calculate E again, using updated values of  $\theta_i$  and 11:

image moments

if (E calculated is lower than previous best

estimate) then:

Update the best estimate for  $\theta_i$ 

 $\Delta E$  = Old value of E – new value of E

15: Update the value of *E* 

16: end if

end for

end for

19: end while

# Results - Angle Recovery Accuracy



#### Results - Reconstruction

FBP reconstruction using non-uniform distribution of original angles



#### Conclusions

- Proposed a general, robust method for image reconstruction from projections from unknown views
- Empirically demonstrated efficiency in a variety of scenarios:
  - With varying number of view angles
  - With different distributions for generation of the view angles
  - At multiple noise levels
- Key idea: Iteratively improve angle estimates to reduce residuals
- in HLCC, using coordinate descent.
- Applications in CryoEM, insect tomography, adjusting for patient motion in medical tomography