SEMANA 1: Espacio vectorial, Subespacio vectorial, Independecia lineal, Base, Dimensión

(LABORATORIO CALIFICADO)

ALUMNOS:

- Escriba Flores, Daniel Agustin
- Palma Gongora, Yllari Fiorella

```
In [1]: #Importamos las Librerias necesarias para el trabajo
      # Tratamiento de datos
      # =========
      import pandas as pd
      import numpy as np
      # Preprocesado y modelado
      # -----
      from sklearn.decomposition import PCA
      from sklearn.pipeline import make_pipeline
      from sklearn.preprocessing import StandardScaler
      # Gráficos
      # -----
      import matplotlib.pyplot as plt
      # Configuración warnings
      import warnings
      warnings.filterwarnings('ignore')
```

PARTE A:

```
In [2]: #Leemos la base de datos
    data = pd.read_csv('comprar_alquilar.csv')
In [3]: #Verificamos que no cuente con valores nulos
    data.isnull().sum()
```

```
Out[3]: ingresos
         gastos_comunes
        pago_coche
                           0
        gastos_otros
                           0
         ahorros
                           0
        vivienda
                           0
         estado_civil
        hijos
                           0
        trabajo
                           0
         comprar
                           0
        dtype: int64
In [4]: #creamos las variables gastos y financiar
        data['gastos'] = data['gastos_comunes'] + data['gastos_otros']+data['pago_coche']
        data['financiar'] = data['vivienda'] - data['ahorros']
        data
Out[4]:
             ingresos gastos_comunes pago_coche gastos_otros ahorros vivienda estado_civil
```

202 rows × 12 columns

```
In [5]: #Eliminamos las 3 variables pedidas

data = data.drop(['gastos_comunes','gastos_otros','pago_coche'],axis=1)
    data
```

Out[5]:		ingresos	ahorros	vivienda	estado_civil	hijos	trabajo	comprar	gastos	financiar
	0	6000	50000	400000	0	2	2	1	1600	350000
	1	6745	43240	636897	1	3	6	0	1496	593657
	2	6455	57463	321779	2	1	8	1	1926	264316
	3	7098	54506	660933	0	0	3	0	1547	606427
	4	6167	41512	348932	0	0	3	1	1606	307420
	•••									
	197	3831	10723	363120	0	0	2	0	1530	352397
	198	3961	21880	280421	2	3	8	0	1775	258541
	199	3184	35565	388025	1	3	8	0	1915	352460
	200	3334	19985	376892	1	2	5	0	1888	356907
	201	3988	11980	257580	0	0	4	0	1644	245600

202 rows × 9 columns

PARTE B

```
In [6]: #Seleccionamos las variables a analizar
  data1 = data[['ingresos','ahorros','vivienda','gastos','financiar']]
  data1
```

Out[6]:		ingresos	ahorros	vivienda	gastos	financiar
	0	6000	50000	400000	1600	350000
	1	6745	43240	636897	1496	593657
	2	6455	57463	321779	1926	264316
	3	7098	54506	660933	1547	606427
	4	6167	41512	348932	1606	307420
	•••					
	197	3831	10723	363120	1530	352397
	198	3961	21880	280421	1775	258541
	199	3184	35565	388025	1915	352460
	200	3334	19985	376892	1888	356907
	201	3988	11980	257580	1644	245600

202 rows × 5 columns

```
In [7]: # Entrenando y escalando los datos
    pca_pipe = make_pipeline(StandardScaler(),PCA())
    pca_pipe.fit(data1)
    modelo_pca = pca_pipe.named_steps['pca']
```

```
In [8]: # convirtiendo el array a dataframe
pd.DataFrame(data = modelo_pca.components_,columns = data1.columns,index = ['CP1','
```

```
Out[8]:
                  ingresos
                            ahorros vivienda
                                                      gastos financiar
         CP1 4.809684e-01
                            0.454024
                                      0.529774 1.531049e-01
                                                              0.508359
         CP2 2.656730e-01
                           -0.068416 -0.223026
                                                9.064812e-01 -0.230843
         CP3 3.730215e-01
                           0.653946 -0.361315 -2.708149e-01 -0.478875
         CP4 7.476244e-01
                           -0.594056 -0.081290 -2.854996e-01
                                                             -0.006080
        CP5 3.705110e-16 -0.092917 0.729686 -1.734723e-16 -0.677440
```

```
In [9]: # Porcentaje de varianza explicada acumulada
por_var_acum = modelo_pca.explained_variance_ratio_.cumsum()
print('Porcentaje de varianza explicada acumulada')
print(por_var_acum)

fig, ax = plt.subplots(nrows=1,ncols=1,figsize=(6,4))
ax.plot(np.arange(len(data1.columns)) + 1,por_var_acum, marker='o')

for x, y in zip(np.arange(len(data1.columns)) + 1, por_var_acum):
    label = round(y,2)
    ax.annotate(label,(x,y),textcoords="offset points",xytext=(0,10),ha='center')
```

```
ax.set_ylim(0,1.1)
ax.set_xticks(np.arange(modelo_pca.n_components_) + 1)
ax.set_title('Porcentaje de varianza explicada acumulada')
ax.set_xlabel('Componente principal')
ax.set_ylabel('Porcentaje de varianza acumulada');
```

Porcentaje de varianza explicada acumulada [0.61240781 0.82200126 0.95528763 1. 1.]

Porcentaje de varianza explicada acumulada

Tomamos 3 componentes pues muestra un porcentaje de 96%

PARTE C

```
In [10]: # Realizamos el PCA Con los 3 componentes

pca_pipe_final = make_pipeline(StandardScaler(),PCA(n_components = 3))
pca_pipe_final.fit(data1)
modelo_pca_final = pca_pipe_final.named_steps['pca']

In [11]: # convirtiendo el array a dataframe
data2 = pd.DataFrame(data = modelo_pca_final.components_,columns = data1.columns,in data2
```

```
Out[11]:
               ingresos
                         ahorros
                                   vivienda
                                              gastos
                                                      financiar
         CP1 0.480968
                        0.454024
                                  0.529774 0.153105
                                                      0.508359
         CP2 0.265673 -0.068416 -0.223026
                                            0.906481 -0.230843
         CP3 0.373021 0.653946 -0.361315 -0.270815 -0.478875
In [12]:
         #Obtenemos la combinacion para cada componente en funcion de las variables
         n=len(data2)
         for i in range(n):
             print("CP{:.0f} = {:.6f}(ingresos) + {:.6f}(ahorros) + {:.6f}(vivienda) + {:.6f}
                  format(i+1,data2['ingresos'][i],data2['ahorros'][i],data2['vivienda'][i],d
        CP1 = 0.480968(ingresos) + 0.454024(ahorros) + 0.529774(vivienda) + 0.153105(gastos)
        + 0.508359(financiar)
        CP2 = 0.265673(ingresos) + -0.068416(ahorros) + -0.223026(vivienda) + 0.906481(gasto)
        s) + -0.230843(financiar)
        CP3 = 0.373021(ingresos) + 0.653946(ahorros) + -0.361315(vivienda) + -0.270815(gasto)
        s) + -0.478875(financiar)
In [13]: # Finalmente, para actualizar los valores de las componentes principales extraemos
         componentes_principales = pd.DataFrame(data = modelo_pca_final.transform(data1.valu
         componentes_principales
Out[13]:
                       CP1
                                      CP2
                                                     CP3
            0 415667.530576 -170381.718668 -277629.919090
            1 662308.006563 -278896.190348 -484020.071651
            2 334326.920556 -133251.075558 -203373.784666
            3 686826.041473 -287835.465676 -491334.644298
            4 363194.551824 -148532.425636 -244277.836221
          197 378461.336161 -160662.371780 -291927.648611
```

202 rows × 3 columns

198 292102.533391 -121059.069655 -209823.803238

199 402714.025752 -167753.863454 -285056.649172

200 392071.033607 -165216.174604 -293288.897706

201 268921.366297 -112411.855355 -201802.410856