ИІТМО

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ N2

По дисциплине "Теория автоматического управления"

"Модальные регуляторы и наблюдатели"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	Mo	дальный регулятор	3
	1.1.	Управляемость собственных чисел	3
	1.2.	Модальный регулятор	3
		1.2.1. Подбор спектра модального регулятора	4
		1.2.2. Моделирование	6
		1.2.3. Выводы	10
2.	Наб	блюдатель полного порядка	10
	2.1.	Наблюдаемость собственных чисел	10
	2.2.	Наблюдатель полного порядка	11
		2.2.1. Подбор спектра нааблюдателя	11
	2.3.	Моделирование	13
3.	Вы	волы	19

1. Модальный регулятор

Рассмотрим систему:

$$\dot{x} = Ax + Bu \tag{1}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
 (2)

1.1. Управляемость собственных чисел

Для определения управляемости собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \tag{3}$$

Где P – матрица собственных векторов матрицы A, а $\hat{x} = P^{-1}x$.

$$A_{j} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 2 & 2 \end{bmatrix} \quad P = \begin{bmatrix} -1 & -2.12 & 0.71 \\ 0 & -1.41 & 0 \\ 1 & 1.41 & 0 \end{bmatrix} \quad B_{j} = \begin{bmatrix} 0 \\ 2.12 \\ 4.95 \end{bmatrix}$$
(4)

Таким образом, последнее собственное число $\lambda_3 = -3$ не является управляемым. Соответственно, система не является полностью управляемой. Но, так как данное собственное число располагается в левой полуплоскости, то есть является устойчивым, то система является стабилизируемой.

1.2. Модальный регулятор

Замкнем систему обратной связью с модальным регулятором u = -Kx. Тогда уравнение состояния системы примет вид:

$$\dot{x} = Ax - BKx = (A - BK)x \tag{5}$$

Моделировать данную данную систему будем с помощью среды моделирования Simulink. Схема моделирования представлена на рисунке 1.

Рис. 1: Схема моделирования системы с модальным регулятором

1.2.1. Подбор спектра модального регулятора

Рассмотрим следующие варианты спектра модального регулятора:

- 1. $\sigma_1 = \{-1, -1, -1\}$
- 2. $\sigma_2 = \{-3, -3, -3\}$
- 3. $\sigma_3 = \{-1, -10, -100\}$
- 4. $\sigma_4 = \{-3, -30, -300\}$
- 5. $\sigma_5 = \{-1, -1 \pm 3i\}$
- 6. $\sigma_6 = \{-3, -3 \pm 9i\}$

Так как одно из собственных чисел матрицы A не является управляемым, то есть ни одно входное воздействие, а значит и ни один регулятор не может управлять данным собственным числом, то спектр замкнутой системы не может не содержать данное собственное число. Следовательно, спектры σ_1 , σ_3 , σ_5 не являются допустимыми.

Для того, чтобы проверить, может ли спектр системы, замкнутой модальным

регулятором, быть равен заданному спектру σ_i , нужно проверить, подобна ли матрица A+BK матрице Γ_i с заданным спектром σ_i . Матрицу Γ_i можно называть эталонной системой.

Для упрощения задачи подбора регулятора можно $co\kappa pamum b$ систему, убрав из нее неуправляемые собственные числа. Для этого уберем строку и столбец в диагональной форме, соответствующие неуправляемому собственному числу $\lambda_1 = -3$:

$$\dot{\hat{x}}' = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} \hat{x}' + \begin{bmatrix} 2.12 \\ 4.95 \end{bmatrix} u \tag{6}$$

Найдем вектор управления в Жордановой форме K_j с помощью метода Аккермана (с помощью одноименной функции в Matlab) для эталонной системы Γ_i :

$$K_j = \begin{bmatrix} -1.06 & 2.47 \end{bmatrix} \tag{7}$$

Теперь вернемся к полной системе, поставив в векторе K нулевое значение для неуправляемого собственного числа:

$$K_j = \begin{bmatrix} 0 & -1.06 & 2.47 \end{bmatrix} \tag{8}$$

Вернемся к исходному базису:

$$K = K_j P^{-1} = \begin{bmatrix} 3.48 & -1 & 3.48 \end{bmatrix} \tag{9}$$

В итоге получим систему:

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 11.48 & 0 & 14.48 \\ 14.44 & -3 & 14.44 \\ -14.44 & 0 & -17.44 \end{bmatrix} x \tag{10}$$

Можно проверить, найдя ее собственные числа. Спектр системы: $\sigma_2 = \{-3, -3, -3\}$.

1.2.2. Моделирование

Проведем моделирование системы с модальным регулятором, спектр которого равен σ_2 и начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Результаты моделирования представлены на рисунке 2 и 3.

Рис. 2: Управление системы со спектром σ_2

Аналогично найдем регулятор для спектра σ_4 :

$$K = \begin{bmatrix} 580.28 & 275.52 & 580.28 \end{bmatrix} \tag{11}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 588.28 & 276.52 & 591.28 \\ 1744.83 & 826.55 & 1744.83 \\ -1744.83 & -829.55 & -1747.83 \end{bmatrix} x \tag{12}$$

Спектр системы: $\sigma_4 = \{-3, -30, -300\}$. Результаты моделирования представлены на рисунках 4 и 5.

Рис. 3: Состояние системы со спектром σ_2

И для спектра σ_6 :

$$K = \begin{bmatrix} 7.69 & 1.79 & 7.69 \end{bmatrix} \tag{13}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 15.69 & 2.79 & 18.69 \\ 27.07 & 5.38 & 27.07 \\ -27.07 & -8.38 & -30.07 \end{bmatrix} x \tag{14}$$

Спектр системы: $\sigma_6 = \{-3, -3 \pm 9i\}$. Результаты моделирования представлены на рисунках 6 и 7.

Рис. 4: Управление системы со спектром σ_4

Рис. 5: Состояние системы со спектром σ_4

Рис. 6: Управление системы со спектром σ_6

Рис. 7: Состояние системы со спектром σ_6

1.2.3. Выводы

В задании было показано, что для всех достижимых спектров эталонной системы можно найти модальный регулятор, При этом, как и ожидалось на основании анализа спектра замкнутой системы, чем больше модуль собственного числа, тем быстрее система приходит в устойчивое состояние, но при этом управление становится более интенсивным. Комплексная составляющая собственного числа вносит колебательный характер в систему.

2. Наблюдатель полного порядка

Рассмотрим систему:

$$\dot{x} = Ax
y = Cx$$
(15)

где

$$A = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} -3 \\ 2 \\ -2 \\ 1 \end{bmatrix}^{T}$$

$$(16)$$

2.1. Наблюдаемость собственных чисел

Для определения наблюдаемости собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x}
\hat{y} = C\hat{x}$$
(17)

Где P – матрица собственных векторов матрицы A, а $\hat{x} = P^{-1}x$.

$$\begin{bmatrix} -0.00 & -2.00 & 0.00 & 0.00 \\ 2.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -0.00 & -3.00 \\ 0.00 & 0.00 & 3.00 & 0.00 \end{bmatrix}, P = \begin{bmatrix} 1.14 & -0.05 & 1.13 & 0.14 \\ 1.74 & -0.22 & 1.84 & 0.14 \\ 0.87 & -0.11 & 0.71 & 0.00 \\ 1.41 & 0.00 & 1.41 & 0.00 \end{bmatrix}, C_j = \begin{bmatrix} -0.27 \\ -0.05 \\ 0.28 \\ -0.14 \end{bmatrix}^T$$
(18)

Таким образом, система является полностью наблюдаемой.

2.2. Наблюдатель полного порядка

Рассмотрим наблюдатель полного порядка:

$$\dot{\hat{x}} = A\hat{x} + L(\hat{y} - y)
\hat{y} = C\hat{x}$$
(19)

И схему его моделирования в среде Simulink. Схема моделирования представлена на рисунке 8.

Рис. 8: Схема моделирования системы с наблюдателем полного порядка

2.2.1. Подбор спектра нааблюдателя

Рассмотрим следующие варианты спектра наблюдателя:

1.
$$\sigma_1 = \{-1, -1, -1, -1\}$$

2.
$$\sigma_2 = \{-1, -10, -100, -100\}$$

3.
$$\sigma_3 = \{-1 \pm 2j, -1 \pm 3j\}$$

Для каждого из спектров найдем вектор L_i такой, чтобы спектр наблюдателя $\sigma(A+L_iC)=\sigma_i$. Если такой вектор существует, то существует и матрица перехода V такая, что $A+L_iC=V^{-1}\Gamma_iV$, где Γ_i — матрица с нужным спектром. Зададимся матрицей Γ_1 со спектром σ_1 :

$$\Gamma_{1} = \begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{bmatrix} \quad \sigma(\Gamma_{1}) = \{-1, -1, -1, -1\} \tag{20}$$

Запишем и решим уравнение Сильвестра с помощью покета сvx:

$$\Gamma_1 V - VA = YC$$

$$Y = VL_1$$
(21)

где Y – такая матрица, чтобы пара (Γ_1,Y) была наблюдаемой. Решив, получим матрицу L:

$$L_{1} = \begin{bmatrix} -33.23 \\ -53.40 \\ -22.57 \\ -42.03 \end{bmatrix}$$
 (22)

Спектр системы $A+L_1C$ при этом оказывается $\{-1.023, -1\pm0.0023j, -0.997\}$, что практически полностью совпадает с требуемым спектром.

Те же самые вычисления проведем для спектра σ_2 :

$$L_2 = \begin{bmatrix} 161410.88 \\ 255685.22 \\ 116505.54 \\ 205662.28 \end{bmatrix} \tag{23}$$

Спектр системы $A+L_2C$ при этом оказывается $\{-1, -10, -99.99, -100.0057\}$, что практически полностью совпадает с требуемым спектром.

И для спектра σ_3 :

$$L_3 = \begin{bmatrix} 11.93 \\ 16.80 \\ 7.67 \\ 13.53 \end{bmatrix} \tag{24}$$

Спектр системы $A + L_3C$ при этом оказывается полностью равен требуемому спектру σ_3 .

Таким образом, для всех трех спектров существует такая матрица L, что спектр системы A+LC совпадает с требуемым.

2.3. Моделирование

Проведем моделирование каждой из систем с наблюдателем полного порядка с начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ для самой системы и $\hat{x}(0) = \begin{bmatrix} 2 & 0 & 0 & -1 \end{bmatrix}^T$ для наблюдателя.

Результаты моделирования для первого спектра σ_1 представлены на рисунке 9 (состояние системы), 10 (состояние наблюдателя) и 11 (ошибка наблюдателя).

Результаты моделирования для второго спектра σ_2 представлены на рисунке 12 (состояние системы), 13 (состояние наблюдателя) и 14 (ошибка наблюдателя).

Результаты моделирования для третьего спектра σ_3 представлены на рисунке 15 (состояние системы), 16 (состояние наблюдателя) и 17 (ошибка наблюдателя).

Рис. 9: Состояние системы с наблюдателем полного порядка для спектра σ_1

Рис. 10: Состояние наблюдателя полного порядка для спектра σ_1

Рис. 11: Ошибка наблюдателя полного порядка для спектра σ_1

Рис. 12: Состояние системы с наблюдателем полного порядка для спектра σ_2

Рис. 13: Состояние наблюдателя полного порядка для спектра σ_2

Рис. 14: Ошибка наблюдателя полного порядка для спектра σ_2

Рис. 15: Состояние системы с наблюдателем полного порядка для спектра σ_3

Рис. 16: Состояние наблюдателя полного порядка для спектра σ_3

Рис. 17: Ошибка наблюдателя полного порядка для спектра σ_3

3. Выводы

Во всех случаях коррекция наблюдателя помогла устремить ошибку к нулю. При этом, как и в прошлом задании, можно заметить закономерность. При больших значениях спектра наблюдателя ошибка устремляется к нулю быстрее, чем при малых, а при наличии комплексных собственных чисел ошибка наблюдателя приобретает колебательный характер.