

Fruit CD2

BMEATT BML

[10

[10

Ser Cass Vo.

B.Tech.

Programme

Course Title

Faculty

: Calculus

	Dr. Karan Kumar Pradhan, Dr. Manoj Kumar Singh. Dr. Pankaj Shukla, Dr. Abhishek Kumar Singh. Dr Dhansekhar, Dr Berin Alan, Dr. Kirti Aarya, Dr Kalyan Manna, Dr Vijay Kumar Poshala, Dr. Sandeep Saha	CH202 CH202 CH202 CH202 CH202 CH202 CH202 CH202 CH202 CH202
Duration	: 1 1/2 Hours Max Marks	50
	Answer all the Questions (50 marks)	
f(2	Question Description Let $f(x)$ be twice differentiable on [0,2]. Show that if $f(0) = 0$, $f(1) = 2$ and $f(x) = 0$, then there exists $f(x) = 0$ and $f(x) = 0$.	Ma
loca	Show that $f(x) = \sin x (1 + \cos x)$ has a local maximum at $x = \frac{\pi}{3}$, and then find a maximum value.	
3/ Find incre	If the critical points of $f(x) = x^{\frac{1}{3}}(x^2 - 4)$. Identify the intervals on which $f(x)$ easing and decreasing. Further, find the function's local extreme values.) is [1
3. Find y =	the volume of the solid generated by revolving the region bounded by the graphs \sqrt{x} , $y = 2 - x$ and $y = 0$ about the x-axis. Sketch the region under consideration	s of n = [

Using $\mathcal{E} - \delta$ definition the limit of the function $f(x, y) = \frac{4xy^2}{x^2 + y^2}$ exits or not?

If u = 3x + 2y - z, v = x - 2y + z and w = x(x + 2y - z), show that they are