

# École d'ingénierie

Contrôle d'algèbre linéaire N° = 1, Semestre 2 (Rattrapage)

Durée (2 h)

Prof. A.Ramadane, Ph.D.

### Exercice 1: (4 points)

Soit  $\overrightarrow{U_1} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ ,  $\overrightarrow{U_2} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$  et  $\overrightarrow{U_3} = \overrightarrow{5i} - 4\overrightarrow{j} + \overrightarrow{k}$  des vecteurs de  $V^3$ 

- a) Montrer que S =  $\{\overrightarrow{U_1}, \overrightarrow{U_2}, \overrightarrow{U_3}\}$  est un ensemble orthogonal.
- b) Justifier le fait que S est une base de V<sup>3</sup>.
- c) Soit W=[ $\overrightarrow{U_1}$ ,  $\overrightarrow{U_2}$ ] et soit  $\overrightarrow{U}$  = $\overrightarrow{i}$   $\overrightarrow{j}$   $3\overrightarrow{k}$ . Ecrire  $\overrightarrow{U}$  sous la forme  $\overrightarrow{U}$  =  $\overrightarrow{W_1}$ + $\overrightarrow{W_2}$  où  $\overrightarrow{W_1}$   $\in$  W et  $\overrightarrow{W_2}$   $\in$  W
- d) Donner une description algébrique de W.

#### **Exercice 2: (4 points)**

Soit B=( $\overrightarrow{b_1}$ ,  $\overrightarrow{b_2}$ ,  $\overrightarrow{b_3}$ ) une base de V<sup>3</sup> telle que

Soit  $\overrightarrow{b_1} = 2 \vec{i} + 2 \vec{j} + \vec{k}$ ,  $\overrightarrow{b_2} = -\vec{i} - 4 \vec{j} + \vec{k}$  et  $\overrightarrow{b_3} = \vec{i} + \vec{j} + 2 \vec{k}$  des vecteurs de  $V^3$ 

- a) Trouver la base orthonormale B", obtenue à partir de B par le procédé de Gram-Schmidt
- b) Donner la matrice de transition de B à B",  $_{B''}\mathbf{P}_{B}$
- c) Donner la matrice de transition de C à B",  $\mathbf{B}$ ",  $\mathbf{P}_{C.}$  Avec  $\mathbf{C} = (\vec{\imath}, \vec{\jmath}, \vec{k})$
- d) Soit  $\vec{U} = \vec{i} + \vec{j} 4\vec{k}$ , Donner [  $\vec{U}$  ]<sub>B".</sub>
- e) Soit W =  $[\overrightarrow{b_1}, \overrightarrow{b_2}]$ . Exprimer  $\overrightarrow{U}$  sous la forme  $\overrightarrow{U} = \overrightarrow{W_1} + \overrightarrow{W_2}$  où  $\overrightarrow{W_1} \in W$  et  $\overrightarrow{W_2} \in W$

#### **Exercice 3: (5points)**

Soit  $V^3$  et sa base usuelle  $C = (\vec{i}, \vec{j}, \vec{k})$ , soit une application linéaire

$$T: V^3 \longrightarrow V^3$$
 telle que

$$T(x\ \vec{\imath}\ + y\vec{\jmath} + z\vec{k}) = (x+az)\ \vec{\imath} + (x+z)\ \vec{\jmath} + (ax+z)\ \vec{k}$$
, où a est un réel fixé

- a) Donner [T]<sub>C</sub> la matrice représentative de T dans la base de C
- b) Donner une base de Im(T).
- c) Y'a-t il un noyau autre que  $\{\vec{0}\}$ ? Si oui donner une base.
- d) Quelles sont les valeurs propres de T?
- e) Pour chaque valeur propre  $\lambda$  donner une base  $E_{\lambda}$ .
- f) Peut-on diagonaliser T? Justifier
- g) Donner une base de Im(T) et le rang de T.

#### **Exercice 4:( 4 points)**

Soit la matrice 
$$A = \begin{bmatrix} 3 & -1 & a \\ -1 & 2 & -1 \\ a & -1 & 3 \end{bmatrix}$$
, a est un réel

- a) Discuter, selon les valeurs a, du rang de A.
- b) Lorsque a =-2, le vecteur [1 0 -1]<sup>t</sup> est un vecteur propre de A.

  Diagonaliser la matrice A, donne la matrice orthogonale P qui diagonalise
  A et expliquer le lien entre A et la matrice D.

## **Exercice 5 (3 points)**

a) Soit A =  $(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$  et B=  $(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$  deux bases orthonormées d'un espace vectoriel V.

Montrer que  ${}_{A}\mathbf{P}_{B} = ({}_{B}\mathbf{P}_{A})^{t} = ({}_{B}\mathbf{P}_{A})^{-1}$ 

b) Définir la projection orthogonale de  $\vec{U}$  sur  $\vec{a}$  , montrer que c'est une application linéaire, donner sa matrice et la diagonaliser.

