Edge-exchangeable random graph models

Xiaoyu Ouyang

2021/03/10

Outline

Chinese Restaurant Process (single and two paratmeters) Edge-Exchangeable Extension Network Models The Hollywood Bayesian Inference Model

Chinese Restaurant Process

Chinese Restaurant Process: a generative process for a certain class of exchangeable partitions which satisfies the following two properties:

Exchangeable random partition
 For any n, the distribution is invariant w.r.t. any permutation of [n]

 The probability of creating a new cluster only depends on the sample size n

$$P(C^{n+1} = \text{new} \mid C^1, C^2, ..., C^n) = f(n)$$

One-Parameter Chinese Restaurant Process

Imagine a restaurant with countably infinitely many tables, labelled 1, 2, Customers walk in and sit down at some table.

- The 1st customer always chooses the first table.
- Customer n + 1
 - > Joins an existing table j = 1, ..., K, w.p. $\frac{m_{n,j}}{n+\vartheta}$
 - ightharpoonup Sits at a new table w.p. $\frac{\vartheta}{n+\vartheta}$

One-Parameter Chinese Restaurant Process

Two-Parameter Chinese Restaurant Process

- CRP (a, θ, n)
 - > The 1st customer always chooses the first table
 - Customer n+1:
 - ► Join an existing table k=1,..., K_n , w.p. $\frac{m_{h,k}-a}{n+\theta}$
 - ➤ Sits at a new table w.p. $\frac{K_n * \alpha + \theta}{n + \theta}$
- Two parameters: $0 \le a < 1$ $\theta > -a$
- a = 0: One parameter CRP
- Simulated data e.g. (θ =2, α =0.5, n=20)
 - > CRP2(2,0.5,20)
 [1] 1 2 3 4 5 6 3 5 5 4 3 3 3 3 5 3 3 5 3 7

Edge-exchangeable Network Models

- Y: a random edge-labeled network
- S: edges labeled in a coutable set
- σ : a permutation from S to S
- Y^{σ} : the edge-labeled network induced by $I^{\sigma}: S \rightarrow fin(P)$ with
- $I^{\sigma}(i) = I(\sigma^{-1}(i))$ for each $i \in S$.
- A random edge-labeled network Y is edge-exchangeable if $Y^{\sigma} = Y$ for all permutations σ, where = denotes equality in distribution.
- Edge exchangeable models assign the same probability to all edge-labeled networks that are isomorphic up to relabeling.

The Hollywood Model

- A process for sampling the end-points of the edges
- Table/cluster = nodes; Customer = half-edge
- For n edges, 2n steps of a Chinese restaurant process
- Here only consider the binary Hollywood Process
- Based on the 2-parameter Chinese Restaurant process
 - \succ K number of nodes with at least one connection, with degree $m \ge 1$
 - \triangleright Pick a node as starting/end node with probability prop. to $\eta \alpha$
 - \triangleright Choose a new node with probability prop. to $\theta + \alpha K$

Interpretation of parameters

- $0 \le a < 1$; $\theta > -a$
- I. Sparsity $\alpha \in (1/2, 1)$; Power-law degree distribution
- II. (a > 0) $a \uparrow$: prob of observing unseen vertices \uparrow prob of seeing a vertex again \downarrow
- III. $0 \uparrow$: prob of observing unseen vertices \uparrow effect of $0 \neq 0$ diminishes as n tends to infinity

- $\alpha < 0$; $\theta = -k\alpha$ for k = 1,2,3... (finite number of vertices)
- I. Opposite effects
- II. $v(\varepsilon) \to k \text{ as } n \to \infty$

Inference

Oriented network likelihood calculated as the product of conditional densities:

$$P(Y_n = \varepsilon; \alpha, \theta) = a^{V(\varepsilon)} \frac{(\theta/a)^{TV(\varepsilon)}}{\theta^{Tm(\varepsilon)}} \prod_{k=2}^{\infty} (exp(N_k(\varepsilon))(1-a)^{T(k-1)})$$

- v(ε): number of non-isolated vertices
- N_k(ε): number of vertices with degree k>=1
- m(ε): total degree of ε
- $x^{\uparrow j} = x(x+1)(x+2)...(x+j-1)$

Log-likelihood is calculated as the following:

Maximum Likelihood Estimate

Partial derivatices are set to 0

$$\frac{\partial I(\alpha, \emptyset, ; \varepsilon)}{\partial \alpha} = \frac{v(\varepsilon)}{\alpha} + \sum_{j=0}^{v(\varepsilon)-1} \frac{-\theta/\alpha^2}{\theta/\alpha + j} - \sum_{k=2}^{\infty} \sum_{j=0}^{k-2} \frac{N_k(\varepsilon)}{1 - \alpha + j}$$

$$\frac{\partial I\left(\alpha, \theta, ; \epsilon\right)}{\partial \theta} = \sum_{j=0}^{v(\epsilon)-1} \frac{1/a}{\theta/a+j} - \sum_{j=0}^{m(\epsilon)-1} \frac{1}{\theta+j}$$

- Confidence intervals
- \triangleright Quasi-Newton Method: confine to 0 < a < 1 or a < 0
- ho a = 0: $\theta_{mle} = \frac{v(\varepsilon)}{l og(m(\varepsilon))}$
- ightharpoonup CLT: $\sqrt{log(2n)} (\mathcal{O}_{mle} \mathcal{O}) \rightarrow N(0,1) \text{ as } n \rightarrow \infty$

Comparison With Other Estimates

- Estimate minimising the Bayes risk (square error): posterior mean
- ightharpoonup Prior $a \sim U[0,1]; \, \theta \sim Gamma(10,0.5) \, independent$

Likelihood $P(Y_n = \varepsilon; \alpha, \theta)$

Posterior $Q \propto \pi(a)\pi(\theta)P(Y_n = \varepsilon; \alpha, \theta)$ (Target Distribution)

- Metropolis-Hastings Algorithm with proposal distribution q(. |): Start with $a^{(0)}$, $\theta^{(0)}$, for t=1,2,3:
- 1. Sample $(a^*, \theta^*) \sim q(\cdot | a^{t-1}, \theta^{t-1})$
- 2. Compute acceptance probability:

$$P(a^*, \theta^* | a^{t-1}, \theta^{t-1}) = m n(1, \frac{Q(a^*, \theta^*) q(a^{t-1}, \theta^{t-1} | a^*, \theta^*)}{Q(a^{t-1}, \theta^{t-1}) q(a^*, \theta^* | a^{t-1}, \theta^{t-1})})$$

- 3. Sample $U \sim U[0,1]$. If $U \leq P(a^*, \theta^* | a^{t-1}, \theta^{t-1})$, set $a^{(t)} = a^*, \theta^{(t)} = \theta^*$; otherwise set $a^{(t)} = a^{(t-1)}, \theta^{(t)} = \theta^{(t-1)}$
- Calculate posterior mean and compare with MI F and other estimates using

More Structured Models (Extension)

Relax the the exchangeability assumption

➤ The Hollywood model:

$$e_n = (e_{n1}, e_{n2}) = (st arting hal f - edge, ending hal f - edge)$$

Given $v_1, v_2, ..., v_{2n-1}, v_{2n}$, we are able to consturct a graph with n edges. Generative process:

$$P(v_k = j) = \frac{m - a}{k - 1 + i9}$$

$$P(v_k = new) = \frac{K_k * \alpha + \theta}{k - 1 + \theta}$$

ightharpoonup Change $m_i = \sum_{j=1}^{k-1} I\{v_i = j\}$ to break the exchangeability assumption:

$$m = \sum_{i=k-1-t}^{k-1} I\{v_i = j\}$$

The probability $P(v_k = j)$ is now dependent on the last t vertices

Inference of the extended model

 Log-likelihoods, Maximum Likelihood Estimates, Confidence Intervals

Other properties

Conclusion

The Hollywood model

- computationally tractable
- performs well in many real-data examples
- nice properties such as sparsity and power-law degree distribution

The extended model

- •better fit to real-life data?
- •nice properties?

Thanks for listening!