Проверочная работа по ФИЗИКЕ

8 класс

Вариант 1

Инструкция по выполнению работы

На выполнение работы по физике даётся 45 минут. Работа содержит 11 заданий.

Ответом на каждое из заданий 1, 3-7, 9 является число или несколько чисел. В заданиях 2 и 8 нужно написать текстовый ответ. В заданиях 10 и 11 нужно написать решение задач полностью. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы можно пользоваться непрограммируемым калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	Сумма баллов	Отметка за работу
Баллы													

Петя пошёл в канцелярский магазин, чтобы купить новый стержень для своей шариковой ручки. Старый стержень, который был в ручке, имел длину 12,5 см. Продавец предложил Пете стержень, который был у него в наличии. Петя приложил к стержню линейку. На сколько предложенный стержень короче старого?

Ответ: На______ см.

2 Если весной или осенью ожидается ясная холодная ночь, то садовники разводят костры, дающие мало тепла, но много густого дыма, который обволакивает растения и защищает их от заморозков. Объясните, как действует этот способ защиты растений?

Ответ: _____

3 Чтобы не простудить горло, Андрей решил подогреть 0,9 кг кефира с начальной температурой +5 °C до комфортной температуры +25 °C. Какое количество теплоты нужно для этого подвести к кефиру? Удельная теплоёмкость кефира 3800 Дж/(кг·°C).

Ответ: _____ Дж.

4 На рисунке изображена схема участка цепи ёлочной гирлянды. Известно, что сила тока, текущего через этот участок, равна 0,5 А. Чему равно напряжение на лампе с наибольшим сопротивлением? Значения сопротивлений ламп указаны на схеме.

Ответ: ______ В.

Выполняя лабораторную работу по физике, Яша собрал электрическую цепь, изображённую на рисунке. Он заметил, что при движении ползунка реостата справа налево показания амперметра уменьшаются: при крайнем правом положении ползунка реостата амперметр показывал 5 A, а при крайнем левом – 2 A. Считая, что сопротивление лампочки в процессе этого эксперимента не меняется, определите отношение максимального сопротивления реостата к сопротивлению лампочки.

	Ответ:
6	Когда Саша катался на теплоходе по Москве-реке, он заметил, что от Северного речного вокзала до причала «Коломенское» теплоход доплыл в 1,2 раз быстрее, чем обратно. Скорость движения теплохода относительно воды не менялась. Определите отношение скорости теплохода относительно воды к скорости течения реки.
	Ответ:

На заводе при обработке цветных металлов в двух тигельных печах плавились одинаковые массы меди и серебра. Используя таблицу, найдите отношение времени плавления меди ко времени плавления серебра, если мощности печей одинаковы. Ответ округлите до десятых долей.

	Удельная теплота плавления металлов λ (при нормальном атмосферном давлении)												
Металл	Металл λ, κДж/кг Металл λ, κДж/кг												
Железо	270	Свинец	24,3										
Золото	67	Серебро	87										
Магний	370	Сталь	84										
Медь	213	Тантал	174										
Натрий	113	Цинк	112,2										
Олово	59	Чугун(разные марки)	96–140										

8

На рисунке изображена картина линий магнитного поля двух постоянных магнитов, полученная с помощью железных опилок. Рядом с правым магнитом, но при этом довольно далеко от левого магнита установлена магнитная стрелка, которая находится в равновесии. Каким полюсам магнитов соответствуют области 1 и 2? Кратко объясните свой ответ.

Ответ и объяснение:	

9

На графике показана зависимость массы от объёма для двух смешивающихся жидкостей «1» и «2». В сосуд налили жидкость «1», объём которой составлял 0,6 объёма сосуда, затем добавили жидкость «2», объём которой был равен 0,4 объёма сосуда.

- 1) Определите плотность жидкости «2».
- 2) Найдите плотность смеси, если известно, что её объём равен сумме объёмов компонентов.

Ответ: 1) ______ г/см; 2) ______ г/см³ (10)

В чайник налили 1 л холодной воды при температуре 20 °C и поставили его на плиту. Когда через 5 мин вода закипела, в чайник добавили ещё некоторое количество холодной воды, также имевшей начальную температуру 20 °C. После этого вода закипела вновь через 3 мин. Считайте, что всё выделяемое плитой количество теплоты сообщается нагреваемой воде. Плотность воды 1000 кг/м^3 , её удельная теплоёмкость 4200 Дж/(кг·°C).

- 1) Какое количество теплоты потребовалось для закипания первой порции воды в чайнике?
- 2) Какова мощность плиты, если она не меняется?
- 3) Какой объём воды добавили в чайник? Ответ дать в литрах. Напишите полное решение этой задачи.

Решени														
								_	_				_	L
														Г
														Г
														Г
														Γ
														Γ
														Г
														Г
														Γ
														Γ
														Γ
														Γ
Ответ:														Ī
														Γ

(11)

Женя изготовил самодельный фонарик. В качестве источника света он использовал миниатюрную лампу накаливания, сопротивление которой равно r=1 Ом и может считаться постоянным. Для ограничения силы тока через лампу к ней последовательно подключался резистор, на котором было написано, что его сопротивление равно R=3 Ом. Затем эта цепь подключалась к четырём последовательно соединённым батарейкам с напряжением по U=1,5 В каждая. Женя узнал, что резистор, купленный в магазине, имеет точность номинала \pm 5%. Школьнику стало интересно, какая мощность будет выделяться в лампочке фонарика.

- 1) В каких пределах может лежать сопротивление резистора, включенного последовательно с лампочкой?
- 2) Укажите диапазон значений силы тока, который может протекать через лампу.
- 3) Рассчитайте минимальную и максимальную возможную мощность, выделяющуюся в пампе

Напишите полное решение этой задачи.

Система оценивания проверочной работы

Правильный ответ на каждое из заданий 1, 3-7 оценивается 1 баллом. Полный правильный ответ на задание 9 оценивается 2 баллами. Если в ответе допущена одна ошибка (одно из чисел не записано или записано неправильно), выставляется 1 балл; если оба числа записаны неправильно или не записаны – 0 баллов.

№ задания	Ответ
1	0,5
3	68400
4	10
5	1,5
6	11
7	2,5
9	2; 1,1

Решения и указания к оцениванию заданий 2, 8, 10 и 11

Решение	
«Шуба» из дыма не даёт растениям замерзнуть. Дым тёплый и обладает очень низкой	
теплопроводностью. При этом он тяжелее воздуха. Поэтому он не да ет холодному в	оздуху
проникнуть снаружи к растению.	
Указания к оцениванию	Баллы
Приведено полностью правильное объяснение явления.	2
В решении имеется один или несколько из следующих недостатков.	1
Приведен только правильный ответ без его объяснения.	
И (ИЛИ)	
В решении имеется неточность в объяснении явления.	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1 или 2 балла.	
Максимальный балл	2

Решение

По картине линий магнитного поля видно, что магниты отталкиваются друг от друга. Это означает, что полюса 1 и 2 одинаковые. Полюс 2 — северный, так как к нему притягивается южный полюс магнитной стрелки. Значит, и полюс 1 также северный. Ответ: оба полюса 1 и 2 северные

Указания к оцениванию	Баллы
Приведён полностью правильный ответ на вопрос и дано правильное объяснение.	2
В решении имеется один или несколько из следующих недостатков.	1
Приведён только правильный ответ на вопрос без объяснения.	
ИЛИ	
Приведено правильное объяснение, но правильный ответ на вопрос дан лишь	
частично.	
И (ИЛИ)	
В решении дан правильный ответ на вопрос, но в объяснении имеется неточность.	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1 или 2 балла.	0
Максимальный балл	2

(10)

Решение

- 1) Количество теплоты, требуемое для нагревания воды до температуры кипения +100 °C, равно $Q_1 = c\rho V_1 \Delta t = 336000$ Дж.
- 2) Определим мощность плиты: $P = \frac{Q_1}{\tau_1} = 1120 \text{ Bt}$
- 3) Для нагревания до кипения долитой воды объёмом V_2 требуется количество теплоты $Q_2 = c\rho V_2 \Delta t$.

Так как мощность плиты не меняется, то $\frac{Q_1}{\tau_1} = \frac{Q_2}{\tau_2}$, а значит $\frac{V_1}{t_1} = \frac{V_2}{t_2}$. Тогда $V_2 = \frac{t_2}{t_1} V_1 = 0$, б.л.

Ответ: 1) 336000 Дж; 2) 1120 Вт; 3) 0,6 л.

Указания к оцениванию	Баллы
Приведено полное решение, включающее следующие элементы:	3
І) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным способом	
(связь массы, объёма и плотности; выражения для мощности нагревателя и для	
количества теплоты при нагревании);	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлены правильные численные ответы на все три вопроса задачи	
с указанием единиц измерения искомых величин	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

(11)

Решение

- 1) Сопротивление резистора может лежать в пределах от 0,95 R до 1,05 R, т.е. от 2,85 Ом до 3,15 Ом.
- 2) Ток, текущий в цепи, определяется суммарным напряжением батареек и полным сопротивлением цепи: I=4U/(R+r). Отсюда максимальный ток через лампу составит $\approx 1,56$ A, а минимальный $\approx 1,45$ A.
- 3) Для расчёта мощности, выделяющейся в лампе, воспользуемся законом Джоуля-Ленца: $N = I^2 r$. Тогда диапазон мощностей составит: 2090 мBт < N < 2429 мВт.

Ответ: 1) 2,85 Om < R < 3,15 Om;

2) 1,45 A < I < 1,56 A.

3)2090 MBT < N < 2429 MBT

Указания к оцениванию	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным способом;	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлен правильный численный ответ на все три вопроса задачи	
с указанием единиц измерения искомой величины	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -18.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–4	5–7	8–10	11–18