Recuperación Ranqueada

Rubén Francisco Manrique rf.manrique@uniandes.edu.co

Modelos de recuperación ranqueada

- En lugar de un conjunto de documentos que satisfacen una expresión de consulta, en la recuperación ranqueada, el sistema devuelve un orden para los documentos (top) recuperados de la colección.
 - El tamaño del set resultante no es un problema
 - Se muestran los top k resultados.
 - No se sobrecarga a el usuario con resultados

• Consultas de texto libre: en lugar de un lenguaje de consulta de operadores y expresiones, la consulta del usuario es solo una o más palabras en un lenguaje humano.

Modelos de recuperación ranqueada

- En lugar de un conjunto de documentos que satisfacen una expresión de consulta, en la recuperación ranqueada, el sistema devuelve un orden para los documentos (top) recuperados de la colección.
 - El tamaño del set resultante no es un problema
 - Se muestran los top k resultados.
 - No se sobrecarga a el usuario con resultados

• Consultas de texto libre: en lugar de un lenguaje de consulta de operadores y expresiones, la consulta del usuario es solo una o más palabras en un lenguaje humano.

Todo se resumen a un puntaje de similitud...

Consulta

?

Documento 2

Documento 1

.

Documento N....

Ranquear de acuerdo a un score de similitud entre la consulta y los documentos.

¿Pero como calcular esa similitud?

Empecemos con algo básico: Coeficiente de Jaccard

- Sobrelapamiento de términos como indicativo de similitud.
 - $jaccard(A,B) = |A \cap B| / |A \cup B|$
 - jaccard(A,A) = 1
 - $jaccard(A,B) = 0 \text{ if } A \cap B = 0$

- A y B no tienen que ser del mismo tamaño.
- La disparidad en el número de términos en los documentos puede se un problema.
- Siempre asigna un score entre 0 y 1.

Problemas con el Coeficiente de Jaccard

- Necesitamos una forma más sofisticada de normalizar la longitud.
- No tiene en cuenta la frecuencia de los términos (cuántas veces aparece un término en un documento).
- Los términos raros en una colección son más informativos que los términos frecuentes. Jaccard no considera esta información - PODER DISCRIMINATIVO.

Matrices termino-documento

- Considere el número de ocurrencias de un término en un documento:
 - Cada documento es un vector columna en \mathbb{N}^V

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Modelo Bolsa de Palabras (Bag of Words) BOW

- La representación vectorial no considera el orden de las palabras en un documento.
- Las siguientes oraciones tienen la misma representación.
 - El perro es más rápido que el caballo.
 - El caballo es más rápido que el perro.
- Se denomina modelo BOW.

Modelo Bolsa de Palabras (Bag of Words) BOW

- La frecuencia del término t en el documento d se define como $tf_{t,d}$
 - Frecuencia = Contar
- Queremos usar tf al calcular las puntuaciones de coincidencia/similitud entre los documentos de la colección y la consulta. ¿Cómo lo podemos realizar?
- La frecuencia del término sin procesar no es lo que queremos:
 - Un documento con 10 ocurrencias del término es más relevante que un documento con 1 ocurrencia del término.
 - Pero no 10 veces más relevante.
- La relevancia no aumenta proporcionalmente con la frecuencia del término.

Modelo Bolsa de Palabras: Ponderación logarítmica

• La frecuencia log del termino t en el documento d es:

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Puntué un documento para una consulta dada según la formula:

$$score = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

- La puntuación es 0 si ninguno de los términos de consulta está presente en el documento.
- Nota: A veces se prefiere una normalización básica por el número total de términos.

Frecuencia documental

- La frecuencia documental del término t es el número de documentos en la colección donde t ocurre.
- Ejemplo suponga N=10000.

Término	Frecuencia Documental	
agua		3997
intentar		8760

• ¿Qué palabra es para una mejor búsqueda (obtiene mayor peso)?

Los términos raros son mas informativos

- Los términos raros son más informativos que los términos frecuentes.
 - Recuerden las palabras de parada.
- Considere un término en la consulta que es raro en la colección (por ejemplo, electroencefalografía).
- Es muy probable que un documento que contenga este término sea relevante para la consulta *electroencefalografía*.
- Queremos un peso alto para términos raros en la colección como electroencefalografía. Mayor poder discriminatorio.

Ponderación idf

- df_t es la frecuencia documental del termino t (número de documentos que contienen t).
 - df_t es una medida inversa del grado de "informatividad" de t
 - $df_t \leq N$
- Se define la *frecuencia inversa documental* del termino *t* como:

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

• Se usa el logaritmo para amortiguar la división.

Ejemplo idf

• Suponga N = 1.000.000

termino	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

Ponderación tf-idf

• $tf - id_t$ pondera un término como el producto de su peso tf y su peso idf.

$$w_{t,d} = tf.idf_{t,d} = \log(1 + tf_{t,d}) \times \log_{10}\left(\frac{N}{df_t}\right)$$

- Nótese:
 - tf información del término intra-documento.
 - *idf* información del término en la colección.
- Esquema de ponderación más conocido en recuperación de información.

¿Como puntuó una consulta dado un documento?

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Documentos como vectores

Nuestra primera representación vectorial

Pasamos de una matriz binaria, a una de conteo y finalmente llegamos a una ponderada.

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Cada documento ahora está representado por un vector de valor real de pesos tf-idf $\in \mathbb{R}^{|V|}$

Documentos como vectores

- Tenemos un espacio V-dimensional.
- Los términos de nuestro vocabularios son los ejes en dicho espacio.
- Los documentos son puntos o vectores en este espacio.
- Espacio altamente dimensional: decenas de millones de dimensiones cuando aplica esto a un motor de búsqueda web.
- Estos son vectores muy dispersos: la mayoría de las entradas son cero.
- Idea clave: Si tengo documentos representados como vectores ranquéelos de acuerdo con su proximidad en este espacio vectorial.
 - Proximidad=Similaridad

Proximidad en términos de distancia?, mala idea

La distancia Euclidiana entre q y d_2 es mayor a las distancias con d_3 y d_1 , a pesar que la distribución de palabras entre q y d_2 es muy similar.

En aplicaciones de NLP es mejor ranquear documentos de acuerdo con el ángulo con la consulta.

De ángulos a cosenos

- Las dos nociones siguientes son equivalentes.
 - Clasifique los documentos en orden decreciente del ángulo entre la consulta y el documento
 - Clasifique los documentos en orden creciente de coseno (consulta, documento)
- El coseno es una función monótonamente decreciente para el intervalo [0, 180]

Norma L_2 y producto punto

• Un vector puede ser normalizado dividiendo cada uno de sus componente por la norma.

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividir un vector por su norma L_2 lo convierte en un vector unitario (de longitud) (en la superficie de la hiperesfera unitaria).
- El product punto de dos vectores por otro lado se define.

$$\vec{q} \cdot \vec{d} = \|\vec{q}\| \|\vec{d}\| \cos \theta$$

Coseno(consulta, documento)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\vec{q}}{\|\vec{q}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i es el peso del término i en la consulta
- d_i es el peso del término i en el documento

 $\cos(\vec{q},\vec{d})$ es la **similitud coseno** entre \vec{q} **y** \vec{d}

Ejemplo con tres documentos

3 documentos:

CAS: Cien años de soledad

CMA: Crónica de una muerte

anunciada

ATC: El amor en los tiempos de

colera.

Término	CAS	CMA	ATC
pueblo	115	58	20
celos	10	7	11
altanero	2	0	6
colera	0	0	38

Frecuencia de los términos

Para simplificar este ejemplo, no se realizo ponderación idf.

Ejemplo con tres documentos

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

Término	CAS	CMA	ATC
pueblo	3.06	2.76	2.30
celos	2.00	1.85	2.04
altanero	1.30	0	1.78
colera	0	0	2.58

Normalización

Término	CAS	CMA	ATC
pueblo	0.789	0.832	0.524
celos	0.515	0.555	0.465
altanero	0.335	0	0.405
colera	0	0	0.588

 $cos(CAS,CMA) \approx 0.94$ $cos(CAS,ATC) \approx 0.79$ $cos(PAP,WH) \approx 0.69$

Para simplificar este ejemplo, no se realizo ponderación idf.

Referencias

- Introduction to information retrieval https://nlp.stanford.edu/IR-book/
- Jurafsky D. and Martin J. (2021) Speech and Language Processing (3rd ed. draft). Online: https://web.stanford.edu/~jurafsky/slp3/
- Yoav Goldberg (2017). Neural Network Methods in Natural Language Processing.
- In Deng, L., & In Liu, Y. (2018). Deep learning in natural language processing.