fixas. Isto leva ao conceito de uma derivada parcial. Inicialmente definiremos a derivada parcial de uma função de duas variáveis.

17.4.1 Definição

Seja f uma função de duas variáveis x e y. A derivada parcial de f em relação a x é a função denotada por $D_1 f$, tal que seu valor funcional em um ponto qualquer (x, y) no domínio de f seja dado por

$$D_1 f(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
 (1)

se este limite existir. Analogamente, a derivada parcial de f em relação a y é a função, denotada por $D_2 f$, tal que seu valor funcional em um ponto qualquer (x, y) no domínio de f seja dado por

$$D_2 f(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$
(2)

se este limite existir.

O processo através do qual encontramos uma derivada parcial é chamado derivação parcial.

 D_1f é lido como "D sub 1 de f", e isto denota a função derivada parcial. $D_1f(x,y)$ é lido como "D sub 1 de f de x e y" e isto denota o valor da função derivada parcial no ponto (x,y). Outras notações para a função derivada parcial D_1f são f_1, f_x , e $\partial f/\partial x$. Outras notações para o valor da função derivada parcial $D_1f(x,y)$ são $f_1(x,y)$, $f_x(x,y)$, e $\partial f(x,y)/\partial x$. Analogamente, outras notações para D_2f são f_2 , f_y e $\partial f/\partial y$; outras notações para $D_2f(x,y)$ são $f_2(x,y)$, $f_y(x,y)$ e $\partial f(x,y)/\partial y$. Se z=f(x,y), podemos escrever $\partial z/\partial x$ para $D_1f(x,y)$. Uma derivada parcial não pode ser tratada como a razão de ∂z e ∂x , pois nenhum destes símbolos tem um significado em si. A notação dy/dx pode ser vista como o quociente de duas diferenciais quando y for uma função de uma só variável x, mas não existe uma interpretação análoga para $\partial z/\partial x$.

EXEMPLO 1: Dada

 $f(x, y) = 3x^2 - 2xy + y^2$ encontre $D_1 f(x, y)$ e $D_2 f(x, y)$ aplicando a Definição 17.4.1.

SOLUÇÃO:

$$D_{1}f(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3(x + \Delta x)^{2} - 2(x + \Delta x)y + y^{2} - (3x^{2} - 2xy + y^{2})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3x^{2} + 6x \Delta x + 3(\Delta x)^{2} - 2xy - 2y \Delta x + y^{2} - 3x^{2} + 2xy - y^{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{6x \Delta x + 3(\Delta x)^{2} - 2y \Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (6x + 3 \Delta x - 2y)$$

$$= 6x - 2y$$

$$D_{2}f(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{3x^{2} - 2x(y + \Delta y) + (y + \Delta y)^{2} - (3x^{2} - 2xy + y^{2})}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{3x^{2} - 2xy - 2x \Delta y + y^{2} + 2y \Delta y + (\Delta y)^{2} - 3x^{2} + 2xy - y^{2}}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{3x^{2} - 2xy - 2x \Delta y + y^{2} + 2y \Delta y + (\Delta y)^{2} - 3x^{2} + 2xy - y^{2}}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{-2x \Delta y + 2y \Delta y + (\Delta y)^{2}}{\Delta y}$$

$$=-2x+2y$$

Se (x_0, y_0) é um ponto particular no domínio de f, então

$$D_1 f(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
 (3)

se este limite existir, e

$$D_2 f(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
 (4)

se este limite existir

Fórmulas alternativas para (3) e (4) de $D_1f(x_0, y_0)$ e $D_2f(x_0, y_0)$ são dadas por

$$D_1 f(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$
 (5)

se este limite existir, e

$$D_2 f(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$
 (6)

se este limite existir.

EXEMPLO 2: Para a função f do Exemplo 1, encontre $D_1f(3, -2)$ nos três casos: (a) aplicando (3); (b) aplicando (5); (c) substituindo (3, -2) por (x, y) na expressão para $D_1f(x, y)$ encontrada no Exemplo 1.

SOLUÇÃO:

(a)
$$D_1 f(3, -2) = \lim_{\Delta x \to 0} \frac{f(3 + \Delta x, -2) - f(3, -2)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3(3 + \Delta x)^2 - 2(3 + \Delta x)(-2) + (-2)^2 - (27 + 12 + 4)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{27 + 18 \Delta x + 3(\Delta x)^2 + 12 + 4 \Delta x + 4 - 43}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (18 + 3 \Delta x + 4)$$

$$= 22$$

(b)
$$D_1 f(3, -2) = \lim_{x \to 3} \frac{f(x, -2) - f(3, -2)}{x - 3}$$

$$= \lim_{x \to 3} \frac{3x^2 + 4x + 4 - 43}{x - 3}$$

$$= \lim_{x \to 3} \frac{3x^2 + 4x - 39}{x - 3}$$

$$= \lim_{x \to 3} \frac{(3x + 13)(x - 3)}{x - 3}$$

$$= \lim_{x \to 3} (3x + 13)$$

$$= 22$$

$$D_1 f(x, y) = 6x - 2y$$
Logo,

$$D_1 f(3, -2) = 18 + 4 = 22$$

Para distinguir derivadas de funções de mais de uma variável das derivadas de funções de uma variável, chamamos as últimas derivadas de derivadas ordinárias.

Comparando a definição 17.4.1 com a definição de uma derivada ordinária (3.3.1), vemos que $D_1f(x, y)$ é uma derivada ordinária de f se f for considerada como uma função de uma variável x (i.e, se y for considerada constante), e $D_2f(x, y)$ é a derivada ordinária de f se f for considerada como uma função de uma variável y (se x for considerada constante). Assim os resultados no Exemplo 1 poderiam ser obtidos mais facilmente aplicando os teoremas para derivação ordinária se nós considerarmos y constante quando encontramos $D_1f(x, y)$ e se considerarmos x constante quando encontramos x0 próximo exemplo ilustra isto.

EXEMPLO 3: Dada $f(x, y) = 3x^3 - 4x^2y + 3xy^2 + 7x - 8y$, encontre $D_1 f(x, y)$ e $D_2 f(x, y)$.

SOLUÇÃO: Considerando f como uma função de x e tomando y constante, temos

$$D_1 f(x, y) = 9x^2 - 8xy + 3y^2 + 7$$

Considerando f como uma função de y e tomando y constante, temos $D_2 f(x, y) = -4x^2 + 6xy - 8$

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{se}(x, y) \neq (0, 0) \\ 0 & \text{se}(x, y) = (0, 0) \end{cases}$$

 $SOLUÇ\bar{A}O$: (a) Se $y \neq 0$, de (5) temos

$$f_{1}(0, y) = \lim_{x \to 0} \frac{f(x, y) - f(0, y)}{x - 0}$$

$$= \lim_{x \to 0} \frac{\frac{xy(x^{2} - y^{2})}{x^{2} + y^{2}} - 0}{x}$$

$$= \lim_{x \to 0} \frac{y(x^{2} - y^{2})}{x^{2} + y^{2}}$$

$$= -\frac{y^{3}}{y^{2}}$$

$$= -y$$

Se y = 0, temos

$$f_1(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

Como $f_1(0, y) = -y$ se $y \neq 0$ e $f_1(0, 0) = 0$, podemos concluir que $f_1(0, y) = -y$ para todo y.

(b) Se
$$x \neq 0$$
, de (6) temos

$$f_2(x, 0) = \lim_{y \to 0} \frac{f(x, y) - f(x, 0)}{y - 0}$$

$$= \lim_{y \to 0} \frac{\frac{xy(x^2 - y^2)}{x^2 + y^2} - 0}{y}$$

$$= \lim_{y \to 0} \frac{x(x^2 - y^2)}{x^2 + y^2}$$

$$= \frac{x^3}{x^2}$$

$$= x$$

Se x = 0, temos

$$f_2(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

Como $f_2(x, 0) = x$, se $x \neq 0$ e $f_2(0, 0) = 0$, concluímos que $f_2(x, 0) = x$ para todo x.

Interpretações geométricas de derivadas parciais de uma função de duas variáveis são análogas àquelas de funções de uma variável. O gráfico de uma função f de duas variáveis é uma superfície tendo por equação z = f(x, y). Se y é considerada constante (digamos, $y = y_0$), então $z = f(x, y_0)$ é a equação do traço desta superfície no plano $y = y_0$. A curva pode ser representada por duas equações

$$y = y_0 \quad \text{e} \quad z = f(x, y) \tag{7}$$

uma vez que a curva é a intersecção destas duas superfícies.

Então, $D_1 f(x_0, y_0)$ é a declividade da reta tangente à curva dada pelas Eqs. (7) no ponto $P_0(x_0, y_0, f(x_0, y_0))$ no plano $y = y_0$. De modo análogo, $D_2 f(x_0, y_0)$ representa a declividade da reta tangente à curva, tendo equações

$$x = x_0$$
 e $z = f(x, y)$

no ponto P_0 no plano $x=x_0$. A Figura 17.4.1a e b mostra as porções das curvas e as retas tangentes.

Figura 17.4.1

EXEMPLO 5: Encontre a declividade da reta tangente à curva de intersecção da superfície $z = \frac{1}{2}\sqrt{24 - x^2 - 2y^2}$ com o plano y = 2 no ponto $(2, 2, \sqrt{3})$.

SOLUÇÃO: A declividade requerida será o valor de $\partial z/\partial x$ no ponto (2, 2, $\sqrt{3}$).

$$\frac{\partial z}{\partial x} = \frac{-x}{2\sqrt{24 - x^2 - 2y^2}}$$

Assim, em $(2, 2, \sqrt{3})$,

$$\frac{\partial z}{\partial x} = \frac{-2}{2\sqrt{12}} = -\frac{1}{2\sqrt{3}}$$

Uma derivada parcial pode ser interpretada como uma taxa de variação. De fato, toda derivada é uma medida de uma taxa de variação. Se f é uma função de duas variáveis x e y, a derivada parcial de f em relação a x no ponto $P_0(x_0, y_0)$ dá a taxa instantânea de variação em P_0 , de f(x, y) por unidade de variação em x (apenas x varia e y é considerada fixa em y_0). Analogamente, a derivada parcial de f em relação a y em P_0 dá a taxa instantânea de variação em P_0 , de f(x, y) por unidade de variação em y.

EXEMPLO 6: De acordo com a lei do gás ideal para um gás confinado, se P newtons por unidade quadrada é a pressão, V unidades cúbicas é o volume, e T graus a temperatura, temos a fórmula

$$PV = kT \tag{8}$$

onde k é uma constante de proporcionalidade. Suponha que o volume de gás em um certo recipiente seja 100 cm^3 e a temperatura seja 90° e k = 8.

(a) Encontre a taxa de variação instantânea de P por unidade de variação em T se V permanecer fixo em 100. (b) Use o resultado da parte (a) para aproximar a variação de pressão se a temperatura aumentar para 92°C. (c) Encontre a taxa de variação instantânea de V por unidade de variação em P se T permanecer fixo em 90. (d) Suponha que a temperatura permaneça constante. Use o resultado da parte (c) para encontrar a variação aproximada no volume para produzir a mesma variação na pressão, obtida na parte (b).

SOLUÇÃO: Substituindo V=100, T=90 e k=8 na Eq. (8), obtemos P=7,2. Resolvendo a Eq. (8) para P quando k=8, temos

$$P = \frac{8T}{V}$$

Portanto,

$$\frac{\partial P}{\partial T} = \frac{8}{V}$$

Quando T=90 e V=100, $\partial P/\partial T=0.08$, que é a resposta desejada.

- (b) Do resultado da parte (a) quando T aumenta de 2 (e V permanece fixo), um aumento aproximado em P é 2(0,08) = 0,16. Concluímos então, que se a temperatura aumenta de 90° a 92° , o acréscimo na pressão é de aproximadamente $0,16 \, \mathrm{N/m^2}$.
 - (c) Resolvendo a Eq. (8) para V quando k = 8, obtemos

$$V = \frac{8T}{P}$$

Portanto,

$$\frac{\partial V}{\partial P} = -\frac{8T}{P^2}$$

Quando T = 90 e P = 7.2,

$$\frac{\partial V}{\partial P} = -\frac{8(90)}{(7,2)^2} = -\frac{125}{9}$$

que é a taxa de variação instantânea de V por unidade de variação em P quando T=90 e P=7,2, se T permanecer fixo em 90.

(d) Se P é acrescido de 0,16 e T permanece fixo, então do resultado da parte (c), a variação em V será aproximadamente $(0,16)\left(-\frac{125}{9}\right) = -\frac{20}{9}$. Logo, o volume sofrerá um decréscimo de aproximadamente $\frac{20}{9}$ m³ se a pressão aumentar de 7.2 N/m^2 a 7.36 N/m^2 .

Agora aplicamos o conceito de derivada parcial à função de n variáveis.

17.4.2 Definição

Seja $P(x_1, x_2, \ldots, x_n)$ um ponto em R_n , e seja f uma função de n variáveis (x_1, x_2, \ldots, x_n) . Então, a derivada parcial de f em relação a x_k é a função, denotada por $D_k f$, tal que seu valor funcional em um ponto qualquer P no domínio de f seja dado por

$$D_{k}f(x_{1}, x_{2}, \ldots, x_{n}) = \lim_{\Delta x_{k} \to 0} \frac{f(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k} + \Delta x_{k}, x_{k+1}, \ldots, x_{n}) - f(x_{1}, x_{2}, \ldots, x_{n})}{\Delta x_{k}}$$

se este limite existir.

Em particular, se f é uma função de três variáveis x; y, e z, então as derivadas parciais de f serão dadas por

$$D_1 f(x, y, z) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}$$

$$D_2 f(x, y, z) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y, z) - f(x, y, z)}{\Delta y}$$

 $D_3 f(x, y, z) = \lim_{\Delta z \to 0} \frac{f(x, y, z + \Delta z) - f(x, y, z)}{\Delta z}$

se esses limites existirem.

e

EXEMPLO 7: Dada

$$f(x, y, z) = x^2y + yz^2 + z^3$$

verifique que

$$xf_1(x, y, z) + yf_2(x, y, z) + zf_3(x, y, z) = 3f(x, y, z).$$

SOLUÇÃO: Considerando y e z constantes, obtemos

$$f_1(x, y, z) = 2xy$$

considerando x e z constantes, obtemos

$$f_2(x, y, z) = x^2 + z^2$$

Considerando x e y constantes, obtemos

$$f_3(x, y, z) = 2yz + 3z^2$$

Assim.

Assim,

$$xf_1(x, y, z) + yf_2(x, y, z) + zf_3(x, y, z) = x(2xy) + y(x^2 + z^2) + z(2yz + 3z^2)$$

$$= 2x^2y + x^2y + yz^2 + 2yz^2 + 3z^3$$

$$= 3(x^2y + yz^2 + z^3)$$

$$= 3f(x, y, z)$$

Exercícios 17.4

Nos Exercícios de 1 a 6, aplique a Definição 17.4.1 para encontrar cada uma das derivadas parciais.

1.
$$f(x, y) = 6x + 3y - 7$$
; $D_1 f(x, y)$

2.
$$f(x, y) = 4x^2 - 3xy$$
; $D_1 f(x, y)$

3.
$$f(x, y) = 3xy + 6x - y^2$$
; $D_2 f(x, y)$

4.
$$f(x, y) = xy^2 - 5y + 6$$
; $D_2 f(x, y)$

5.
$$f(x, y) = \sqrt{x^2 + y^2}; D_1 f(x, y)$$

6.
$$f(x, y) = \frac{x + 2y}{x^2 - y}$$
; $D_2 f(x, y)$

Nos Exercícios de 7 a 10, aplique a Definição 17.4.2 para encontrar cada uma das derivadas parciais.

7.
$$f(x, y, z) = x^2y - 3xy^2 + 2yz$$
; $D_2 f(x, y, z)$

8.
$$f(x, y, z) = x^2 + 4y^2 + 9z^2$$
; $D_1 f(x, y, z)$

7.
$$f(x, y, z) = xy$$
 only
9. $f(x, y, z, r, t) = xyr + yzt + yrt + zrt; D_4 f(x, y, z, r, t)$

9.
$$f(x, y, z, r, t) = xyr + yzt + yrt + zvy - 2tuv^2 - tvw + 3uw^2$$
; $D_5 f(r, s, t, u, v, w)$
10. $f(r, s, t, u, v, w) = 3r^2st + st^2v - 2tuv^2 - tvw + 3uw^2$; $D_5 f(r, s, t, u, v, w)$

- 11. Dada $f(x, y) = x^2 9y^2$. Encontre $D_1f(2, 1)$ (a) aplicando a fórmula (3); (b) aplicando a fórmula (5); (c) aplicando a fórmula (5); mula (1) e depois substitua x e y por 2 e 1, respectivamente.
- 12. Para a função no Exercício 11, encontre $D_2f(2, 1)$; (a) aplicando a fórmula (4); (b) aplicando a fórmula (6); (c) aplicando a fórmula (2) e então substitua x e y por 2 e 1, respectivamente.

Nos Exercícios de 13 a 24, encontre as derivadas parciais indicadas considerando constantes todas menos uma das variáveis e aplicando teoremas para derivação ordinária.

13.
$$f(x, y) = 4y^3 + \sqrt{x^2 + y^2}; D_1 f(x, y)$$

14.
$$f(x, y) = \frac{x+y}{\sqrt{y^2 - x^2}}; D_2 f(x, y)$$

15.
$$f(\theta, \phi) = \text{sen } 3\theta \cos 2\phi; D_2 f(\theta, \phi)$$

16.
$$f(r, \theta) = r^2 \cos \theta - 2r \operatorname{tg} \theta; D_2 f(r, \theta)$$

15.
$$f(\theta, \phi) = \sec 3\theta \cos 2\phi$$
; $D_2 f(\theta, \phi)$
16. $f(\theta, \phi) = \sec 3\theta \cos 2\phi$; $D_2 f(\theta, \phi)$
17. $z = e^{u/x} \ln \frac{x^2}{y}$; $\frac{\partial z}{\partial y}$
18. $r = e^{-\theta} \cos(\theta + \phi)$; $\frac{\partial r}{\partial \theta}$
19. $u = (x^2 + y^2 + z^2)^{-1/2}$; $\frac{\partial u}{\partial z}$
20. $u = \arctan(xyzw)$; $\frac{\partial u}{\partial w}$

19.
$$u = (x^2 + y^2 + z^2)^{-1/2}$$
; $\frac{\partial u}{\partial z}$ 20. $u = \text{arc tg}(xyzw)$; $\frac{\partial u}{\partial w}$

21.
$$f(x, y, z) = 4xyz + \ln(2xyz); f_3(x, y, z)$$

22.
$$f(x, y, z) = e^{xy} \operatorname{senh} 2z - e^{xy} \cosh 2z$$
; $f_3(x, y, z)$

23.
$$f(x, y, z) = e^{xyz} + \arctan \frac{3xy}{z^2}$$
; $f_2(x, y, z)$

24.
$$f(r, \theta, \phi) = 4r^2 \sin \theta + 5e^r \cos \theta \sin \phi - 2 \cos \phi; f_2(r, \theta, \phi)$$

Nos Exercícios 25 e 26, encontre $f_X(x, y)$ e $f_Y(x, y)$.

25.
$$f(x,y) = \int_{x}^{y} \ln \sin t \, dt$$

$$26. \ f(x,y) = \int_x^y e^{\cos t} dt$$

25.
$$f(x, y) = \int_{x} \ln \sin t \, dt$$

27. Dada $u = \sin \frac{r}{t} + \ln \frac{t}{r}$. Verifique $t \frac{\partial u}{\partial t} + r \frac{\partial u}{\partial r} = 0$. 28. Dada $w = x^2y + y^2z + z^2x$. Verifique $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = (x, y, z)^2$.

29. Dada
$$f(x, y) =\begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$$

30. Dada $f(x, y) =\begin{cases} \frac{x^2 - xy}{x + y} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$

Encontre (a) $f_1(0, 0)$; (b) $f_2(0, 0)$.

31. Para a função do Exercício 30 encontre (a) $f_2(x, 0)$ se $x \neq 0$; (b) $f_2(0, 0)$.

- 32. Encontre a declividade da reta tangente à curva de intersecção da superfície $36x^2 9y^2 + 4z^2 + 36 = 0$ com o plano x = 1 no ponto $(1, \sqrt{12} 3)$. Interprete essa declividade como uma derivada parcial.
- 33. Encontre a declividade da reta tangente à curva de intersecção da superfície $z = x^2 + y^2$ com o plano y = 1 no ponto (2, 1, 5). Trace um esboço. Interprete essa declividade como uma derivada parcial.
- 34. Encontre as equações da reta tangente à curva de intersecção da superfície $x^2 + y^2 + z^2 = 9$ com o plano y = 2 no ponto (1, 2, 2).
- 35. A temperatura em qualquer ponto (x, y) de uma chapa plana é T graus e $T = 54 \frac{2}{3}x^2 4y^2$. Se a distância for medida em metros, encontre a taxa de variação da temperatura em relação à distância percorrida ao longo da placa nos sentidos positivos dos eixos x e y, respectivamente, no ponto (3, 1).
- 36. Usando a lei do gás ideal (veja o Exemplo 6) para um gás confinado, mostre que

$$\frac{\partial V}{\partial T} \cdot \frac{\partial T}{\partial P} \cdot \frac{\partial P}{\partial V} = -1$$

37. Se V cruzeiros é o valor atual de uma anuidade ordinária de pagamentos iguais de Cr\$ 100,00 por ano durante t anos a uma taxas de juros de 100i por cento por ano, então

$$V = 100 \left\lceil \frac{1 - (1+i)^{-t}}{i} \right\rceil$$

(a) Encontre a taxa de variação instantânea de V por unidade de variação em i se t permanecer fixo em 8. (b) Use o resultado da parte (a) para encontrar a variação aproximada no valor presente se a taxa de juros varia de 6% a 7%, e o tempo permanece fixo em 8 anos. (c) Encontre a taxa de variação instantânea de V por unidade de variação em t se t permanecer fixo em 0,06. (d) Use o resultado da parte (c) para encontrar a variação aproximada no valor presente se o tempo decresce de 8 para 7 anos e a taxa de juros permanece fixa em 6%.

17.5 DIFERENCIABILIDADE E A DIFERENCIAL TOTAL

Na Sec. 3.6, na demonstração da regra da cadeia mostramos que se f for uma função diferenciável de uma só variável x e y = f(x), então o incremento Δy da variável dependente poderá ser expresso por

$$\Delta y = f'(x) \Delta x + \eta \Delta x$$

onde η é uma função de Δx e $\eta \to 0$ quando $\Delta x \to 0$.

Daí, segue que se uma função f for diferenciável em x_0 , o incremento de f em x_0 denotado por $\Delta f(x_0)$, será dado por

$$\Delta f(x_0) = f'(x_0) \, \Delta x + \eta \, \Delta x \tag{1}$$

onde $\lim_{\Delta x \to 0} \eta = 0$.

Para funções de duas ou mais variáveis usamos uma equação correspondente à Eq. (1) para definir diferenciabilidade de uma função. E a partir da definição determinamos critérios para uma função ser diferenciável em um ponto. Daremos os detalhes para uma função de duas variáveis e começaremos definindo o incremento de tal função.

17.5.1 Definição

Se f for uma função de duas variáveis x e y, então o incremento de f no ponto (x_0, y_0) , denotado por $\Delta f(x_0, y_0)$, será dado por

$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$
 (2)

A Figura 17.5.1 ilustra a Eq. (2) para uma função que é contínua em um disco aberto contendo os pontos (x_0, y_0) e $(x_0 + \Delta x, y_0 + \Delta y)$. A figura mostra uma porção da superfície z = f(x, y). $\Delta f(x_0, y_0) = \overline{QR}$ onde Q é o ponto $(x_0 + \Delta x, y_0 + \Delta y, f(x_0, y_0))$ e R é o ponto $(x_0 + \Delta x, y_0 + \Delta y)$.