ANLP

05 - n-grams (sequences, part I)

David Schlangen
University of Potsdam, MSc Cognitive Systems
Winter 2019 / 2020

Week	Date	Theme	Focus	Readings	Assignment
1	2019-10-16		Intro	E.1	
	2019-10-17		Probability	https://mml-book.github.io; Sharon Goldwater's tutorial	
2	2019-10-23	Words, Representations	words, relations	JM-3.6	A1 released
	2019-10-24		words, embeddings	JM-3.6, E.3.3.4, E.14.5-6	
3	2019-10-30	Sequences I	n-grams	JM-3.3	
	2019-10-31		/	/	/
4	2019-11-06	Tools / Framings: Classification	binary classification	E.2.0-5, E.4.2-4.4.1, JM-3.4, JM-3.5.0-6	A1 due; A2 released
	2019-11-07		multiclass classification	E.4.2, JM-3.5.6	
5	2019-11-13		discussion of A1		
	2019-11-14	Sequences II	HMMs, POS- Tagging	E.7.0-4, JM-3.8	

Week	Date	Theme	Focus	Readings	Assignment
6	2019-11-20		CRFs	E.7.5, E.8.3	A2 due; A3 released
	2019-11-21	Tools / Framings: NNs	NNs I: FF	E.3.0-3, G.1-4	
7	2019-11-27		discussion of A2		
	2019-11-28		NNs II: RNNs	G.10-11	
8	2019-12-04		NNs III: CNNs, Neural CRFs	E.3.4, E.7.6, G9	A3 due; A4 released
	2019-12-05	Structure	CFGs, CKY, PCFG	E.10.0-5, JM-3.12	
9	2019-12-11		discussion of A3		
	2019-12-12		Dependency parsing I	E.11, JM-3.13	
10	2019-12-18		Dependency parsing II		A4 due
	2019-12-19		discussion of A4		

Week	Date	Theme	Focus	Readings	Assignment
11	2020-01-08		pyTorch practical?	TBA	A5 released
	2020-01-09		pyTorch practical?	TBA	
12	2020-01-15	Semantics	Semantics I	E.12	
	2020-01-16		Semantics II, Seq2Seq		
13	2020-01-22		Seq2Seq II: Attentn & Pointers		A5 due; A6 released
	2020-01-23		discussion of A5		
14	2020-01-29	The Real World	Annotation	TBA	
	2020-01-30		Ethics of doing NLP	TBA	
15	2020-02-05		buffer		
	2020-02-06		final projects		

today

• well-formed sequences of words — a statistical approach

Let's play a game

- I will write the start of a sentence on the board.
- Each of you, in turn, gives me a word to continue that sentence, and I will write it down.

Let's play another game

- You write a word on a piece of paper.
- You get to see the piece of paper of your neighbor, but none of the earlier words.
- In the end, I will read the sentence you wrote.

Statistical models in NLP

- Generative statistical model of language: pd P(w) over NL expressions that we can observe.
 - w may be complete sentences or smaller units
 - will later extend this to pd P(w, t) with hidden random variables t
- Assumption: A corpus of observed sentences w is generated by repeatedly sampling from P(w).
- We try to estimate the parameters of the prob dist from the corpus, so we can make predictions about unseen data.

Predictive text models

http://objectdreams.tumblr.com/

Predictive text models

Word-by-word random process

- A language model (LM) is a probability distribution P(w) over sentences.
- Think of it as random process that generates sentences word by word:

Process from our game

- Each of you = a random variable X_t ; event " $X_t = w_t$ " means word at position t is w_t .
- When you chose w_t , you could see the outcomes of the previous variables: $X_1 = w_1, ..., X_{t-1} = w_{t-1}$.
- Thus, X_t followed a pd

$$P(X_t = w_t \mid X_1 = w_1, \dots, X_{t-1} = w_{t-1})$$

Process from our game

Assume that X_t follows some given PD

$$P(X_t = w_t \mid X_1 = w_1, \dots, X_{t-1} = w_{t-1})$$

• Then probability of the entire corpus (or sentence) $w = w_1 \dots w_n$ is joint probability

$$P(w_1 ... w_n) = P(w_1) \cdot P(w_2 \mid w_1) \cdot P(w_3 \mid w_1, w_2) \\ \cdot ... \cdot P(w_n \mid w_1, ..., w_{n-1})$$

How do we estimate these?

Statistical models

- We want to use prob theory to estimate a model of a generating process from observations about its outcomes.
- Simpler case: we flip a coin 100 times and observe H 61 times. Should we believe that it is a fair coin?
 - observation: absolute freq C(H) = 61, C(T) = 39; thus relative freq f(H) = 0.61, f(T) = 0.39
 - ▶ model: assume rv X follows a Bernoulli distribution, i.e. X has two outcomes, and there is a value p such that P(X = H) = p and P(X = T) = 1 p.
 - want to estimate the parameter p of this model

Fit of model and observations

- How do we quantify how well a model fits with the observations we made?
- Out of the many possibilities, easiest is to look at the likelihood: probability P(O; p) of the observations O given the values p for the model parameters.
- Maximum likelihood estimation: find parameter values for which the likelihood of O is maximal.

Likelihood functions

likelihood L(O; p) = $p^{C(H)} * (1-p)^{C(T)} * binom(N, C(H))$

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)

ML Estimation

- Goal: Find value for p that maximizes the likelihood of the observations.
- For Bernoulli models, it is extremely easy to estimate the parameters that maximize the likelihood:
 - P(X = a) = f(a)
 - in the coin example above, just take p = f(H)
- Can prove that relative frequency is an ML estimator for a lot of different statistical models (Bernoulli, multinomial, etc.; see link on course page).

Parameters of the model

- Our model has one parameter for $P(X_t = w_t \mid w_1, ..., w_{t-1})$ for each t and $w_1, ..., w_t$.
- Can use maximum likelihood estimation:

$$P(w_t \mid w_1, \dots, w_{t-1}) = \frac{C(w_1 \dots w_{t-1} w_t)}{C(w_1 \dots w_{t-1})}$$

- Let's say a natural language has 10^5 different words. How many tuples $w_1, \dots w_t$ of length t?
 - $t = 1: 10^5$
 - $t = 2: 10^{10}$ different contexts
 - $t = 3: 10^{15}$; etc.

Sparse data problem

- Typical corpus sizes:
 - ▶ Brown corpus: about 10⁶ tokens
 - ▶ Gigaword corpus: about 10⁹ tokens
- Problem exacerbated by Zipf's Law:
 - Order all words by their absolute frequency in corpus (rank 1 = most frequent word).
 - ▶ Then log(absolute frequency) falls linearly with log(rank); i.e., most words are really rare.
 - Zipf's Law is very robust across languages and corpora.

Independence assumptions

- Let's pretend that word at position t depends only on the words at positions t-1, t-2, ..., t-k for some fixed k (Markov assumption of degree k).
- Then we get an n-gram model, with n = k+1:

$$P(X_t \mid X_1, \dots, X_{t-1}) = P(X_t \mid X_{t-k}, \dots, X_{t-1})$$
 for all t.

- Special names for unigram models (n = 1), bigram models (n = 2), trigram models (n = 3).
 - ▶ Thus our second game was a bigram model.

Independence assumptions

- We assume statistical independence of X_t from events that are too far in the past, although we know that this assumption is incorrect.
- Typical tradeoff in statistical NLP:
 - if model is too shallow, it won't represent important linguistic dependencies
 - ▶ if model is too complex, its parameters can't be estimated accurately from the available data

low n

→
modeling errors

high n

estimation errors

Bigrams: an example

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

$$= p(\mathsf{JOHN}|\bullet) \ p(\mathsf{READ}|\mathsf{JOHN}) \ p(\mathsf{A}|\mathsf{READ}) \ p(\mathsf{BOOK}|\mathsf{A}) \ p(\bullet|\mathsf{BOOK})$$

$$= \frac{c(\bullet \; \mathsf{JOHN})}{\sum_{w} c(\bullet \; w)} \ \frac{c(\mathsf{JOHN} \; \mathsf{READ})}{\sum_{w} c(\mathsf{JOHN} \; w)} \ \frac{c(\mathsf{READ} \; \mathsf{A})}{\sum_{w} c(\mathsf{READ} \; w)} \ \frac{c(\mathsf{A} \; \mathsf{BOOK})}{\sum_{w} c(\mathsf{A} \; w)} \ \frac{c(\mathsf{BOOK} \; \bullet)}{\sum_{w} c(\mathsf{BOOK} \; w)}$$

$$= \frac{1}{3} \qquad \frac{1}{1} \qquad \frac{2}{3} \qquad \frac{1}{2} \qquad \frac{1}{2}$$

$$\approx 0.06$$

(. is special sentence start and end token)

n-grams: Evaluation

- Measure quality of n-gram model using perplexity $PP(w) = P(w_1 ... w_N)^{-1/N}$ of test data $w = w_1 ... w_N$.
- To get honest picture of model's performance, evaluate it on test data that was not used for training.

• Maximum likelihood model for training corpus is not necessarily good for test corpus (overfitting).

Bigrams: a problem

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

$$= p(\mathsf{CHER}|\bullet) \ p(\mathsf{READ}|\mathsf{CHER}) \ p(\mathsf{A}|\mathsf{READ}) \ p(\mathsf{BOOK}|\mathsf{A}) \ p(\bullet|\mathsf{BOOK})$$

$$= \frac{c(\bullet \ \mathsf{CHER})}{\sum_{w} c(\bullet \ w)} \ \frac{c(\mathsf{CHER} \ \mathsf{READ})}{\sum_{w} c(\mathsf{CHER} \ w)} \ \frac{c(\mathsf{READ} \ \mathsf{A})}{\sum_{w} c(\mathsf{READ} \ w)} \ \frac{c(\mathsf{A} \ \mathsf{BOOK})}{\sum_{w} c(\mathsf{A} \ w)} \ \frac{c(\mathsf{BOOK} \ \bullet)}{\sum_{w} c(\mathsf{BOOK} \ w)}$$

$$= \frac{0}{3} \qquad \frac{0}{1} \qquad \frac{2}{3} \qquad \frac{1}{2} \qquad \frac{1}{2}$$

$$= 0$$

Unseen data

- ML estimate is "optimal" only for the corpus from which we computed it.
- Usually does not generalize directly to new data.
 - ▶ Ok for unigrams, but there are so many bigrams.
- ML estimate predicts probability of 0 for n-grams that were not observed in training. This is a disaster because product with 0 is always 0.

Smoothing techniques

• Basic idea: Replace ML estimate

$$P_{\text{ML}}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

by estimate with adjusted bigram count

$$P^*(w_i \mid w_{i-1}) = \frac{C^*(w_{i-1}w_i)}{C(w_{i-1})}$$

- Redistribute counts from seen to unseen bigrams.
- Generalizes easily to n-gram models with n > 2.

Smoothing

C(eat X) in Brown corpus

Add-one Smoothing

Add-one Smoothing

• Count every bigram (seen or unseen) one more time than in corpus and normalize:

$$P_{\text{lap}}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{\sum_{w} (C(w_{i-1}w) + 1)} = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |V|}$$

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

|V| = 11, |seen bigram types| = 11 \Rightarrow 110 unseen bigrams $p(\mathsf{JOHN}\ \mathsf{READ}\ \mathsf{A}\ \mathsf{BOOK})$

$$=$$
 $\frac{1+1}{11+3}$ $\frac{1+1}{11+1}$ $\frac{1+2}{11+3}$ $\frac{1+1}{11+2}$ $\frac{1+1}{11+2}$

$$\approx 0.0001$$

p(CHER READ A BOOK)

$$=$$
 $\frac{1+0}{11+3}$ $\frac{1+0}{11+1}$ $\frac{1+2}{11+3}$ $\frac{1+1}{11+2}$ $\frac{1+1}{11+2}$

$$\approx 0.00003$$

Add-one Smoothing

- Easy to implement, but dramatically overestimates probability of unseen events.
 - In the Cher example: $P_{lap}(unseen \mid w_{i-1}) \ge 1/14$; thus "count" $(w_{i-1} unseen) \approx 110 * 1/14 = 7.8$.
 - ▶ Compare against 12 bigram tokens in training corpus.
- This has been a very (<u>very</u>) active area of research for many years, and many very sophisticated solutions have been proposed, e.g. using second-order information about the corpus (how expectable are rare events).
- Importance of this reduced thanks to recent different methods for estimating pd. (neural networks).

why do language modelling?

- predictive text input
- important component of many applications:
 - machine translation
 - speech recognition
- common structure: generate many candidates, rank them according to "plausibility" as sentence

Conclusion

- Statistical models of natural language.
- Language models with n-grams.
- The problem of data sparseness.
- Smoothing.

Collaboration on Assignments

Acceptable:

- discussing alternatives on how to do something
- asking someone for a description on how their algorithm works
- explaining on a conceptual level how you overcame an error message
- using a blog post/website for info on how an algorithm works/making your code more efficient

Unacceptable:

- working together on code
- dividing the assignment into parts
- using previous or existing solutions as a starting point
- copying source code from the web (& editing it)
- copying definitions/answers to discussion questions from a textbook or the web

slide credits

slides that look like this

come from

Question 2: Tagging

- Given observations y₁, ..., y_T, what is the most probable sequence x₁, ..., x_T of hidden states?
- Maximum probability:

$$\max_{x_1} P(x_1, \dots, x_T \mid y_1, \dots, y_T)$$

• We are primarily interested in arg max:

$$\arg \max_{x_1, \dots, x_T} P(x_1, \dots, x_T \mid y_1, \dots, y_T)
= \arg \max_{x_1, \dots, x_T} \frac{P(x_1, \dots, x_T, y_1, \dots, y_T)}{P(y_1, \dots, y_T)}
= \arg \max_{x_1, \dots, x_T} P(x_1, \dots, x_T, y_1, \dots, y_T)$$

earlier editions of this class (ANLP), given by Alexander Koller

and their use is gratefully acknowledged. I try to make any modifications obvious, but if there are errors on a slide, assume that I added them.