1 Counting Cartesian Products

For two sets *A* and *B*, define the cartesian product as $A \times B = \{(a,b) : a \in A, b \in B\}$.

- (a) Given two countable sets A and B, prove that $A \times B$ is countable.
- (b) Given a finite number of countable sets A_1, A_2, \dots, A_n , prove that

$$A_1 \times A_2 \times \cdots \times A_n$$

is countable.

2 Counting Functions

Are the following sets countable or uncountable? Prove your claims.

(a) The set of all functions f from $\mathbb N$ to $\mathbb N$ such that f is non-decreasing. That is, $f(x) \leq f(y)$ whenever $x \leq y$.

CS 70, Fall 2021, DIS 7A

(b) The set of all functions f from \mathbb{N} to \mathbb{N} such that f is non-increasing. That is, $f(x) \ge f(y)$ whenever $x \le y$.

3 Undecided?

Let us think of a computer as a machine which can be in any of n states $\{s_1, \ldots, s_n\}$. The state of a 10 bit computer might for instance be specified by a bit string of length 10, making for a total of 2^{10} states that this computer could be in at any given point in time. An algorithm \mathscr{A} then is a list of k instructions $(i_0, i_2, \ldots, i_{k-1})$, where each i_l is a function of a state c that returns another state u and a number j. Executing $\mathscr{A}(x)$ means computing

$$(c_1, j_1) = i_0(x),$$
 $(c_2, j_2) = i_{j_1}(c_1),$ $(c_3, j_3) = i_{j_2}(c_2),$...

until $j_{\ell} \geq k$ for some ℓ , at which point the algorithm halts and returns $c_{\ell-1}$.

(a) How many iterations can an algorithm of *k* instructions perform on an *n*-state machine (at most) without repeating any computation?

CS 70, Fall 2021, DIS 7A 2

- (b) Show that if the algorithm is still running after $2n^2k^2$ iterations, it will loop forever.
- (c) Give an algorithm that decides whether an algorithm \mathscr{A} halts on input x or not. Does your contruction contradict the undecidability of the halting problem?

4 Code Reachability

Consider triplets (M, x, L) where

```
M is a Java program x is some input L is an integer
```

and the question of: if we execute M(x), do we ever hit line L? Prove this problem is undecidable.

CS 70, Fall 2021, DIS 7A 3