

从 i->j 的流记为 xij

对于 NL 模型 or-1:

输入 (需求从1到9为800):

```
model:
min=z;
x12-x21+x13-x31+x14-x41+x15-x51=800;
x21-x12+x23-x32+x210-x102+x211-x112=0;
x31-x13+x32-x23+x34-x43+x36-x63+x311-x113=0;
x41-x14+x43-x34+x45-x54+x46-x64+x48-x84=0;
x51-x15+x54-x45+x56-x65+x57-x75+x58-x85+x511-x115=0;
x63+x65+x67+x610+x64-x36-x56-x76-x106-x46=0;
x75+x76+x78+x79+x710-x57-x67-x87-x97-x107=0;
x84+x85+x87+x89-x48-x58-x78-x98=0;
x97+x98+x910+x911-x79-x89-x109-x119=-800;
x102+x106+x107+x109+x1011-x210-x610-x710-x910-x1110=0;
```

```
x112+x113+x115+x119+x1110-x211+x311+x511+x911+x1011=0;
x21 <= z*1300; x12 <= z*1300;
x13 \le z*550; x31 \le z*550;
x14 \le z * 300; x41 \le z * 300;
x15 \le z * 400; x51 \le z * 400;
x23 \le z \times 200; x32 \le z \times 200;
x210 \le z * 200; x102 \le z * 200;
x211 \le z*300; x112 \le z*300;
x34 \le z * 400; x43 \le z * 400;
x311 <= z*200; x113 <= z*200;
x36 <= z*200; x63 <= z*200;
x45 <= z*300; x54 <= z*300;
x46 \le z*200; x64 \le z*200;
x48 <= z*400; x84 <= z*400;
x56 \le z * 400; x65 \le z * 400;
x511 \le z*900; x115 \le z*900;
x58 \le z*800; x85 \le z*800;
x57 \le z*600; x75 \le z*600;
x67 <= z * 400; x76 <= z * 400;
x610 \le z*730; x106 \le z*730;
x78 \le z*300; x87 \le z*300;
x79 \le z*700; x97 \le z*700;
x710 \le z*500; x107 \le z*500;
x89 \le z*800; x98 \le z*800;
x910 \le z*300; x109 \le z*300;
x911 <= z*600; x119 <= z*600;
x1011 \le z *300; x1110 \le 300;
end
```

输出结果:

Global optimal solution found.

Objective value:

0.4444444

Infeasibilities:

0.000000

23

Total solver iterations:

Variable Value Reduced Cost Z 0.444444 0.000000 X12 311.1111 0.000000 0.000000 0.000000 X21 X13 177.7778 0.000000 X31 0.000000 0.000000 X14 133.3333 0.000000 0.000000 0.5555556E-03 X41 X15 177.7778 0.000000 X51 0.000000 0.5555556E-03 X23 88.88889 0.000000 X32 0.000000 0.000000 X210 88.8889 0.000000 X102 0.000000 0.5555556E-03 X211 133.3333 0.000000 X112 0.000000 0.5555556E-03 177.7778 0.000000 X34 X43 0.000000 0.5555556E-03 X36 88.8889 0.000000 X63 0.000000 0.5555556E-03 X311 0.000000 0.000000 0.5555556E-03 X113 0.000000 44.4444 0.000000 X45 X54 0.000000 0.000000 X46 88.8889 0.000000 X64 0.000000 0.000000 X48 177.7778 0.000000 0.000000 X84 0.000000 44.4444 X56 0.000000 X65 0.000000 0.000000 X57 133.3333 0.000000 X75 0.000000 0.000000 44.4444 0.000000 X58 X85 0.000000 0.000000 0.000000 X511 0.555555E-03 X115 0.000000 0.000000 X67 177.7778 0.000000 X610 44.4444 0.000000

X76	0.000000	0.00000
X106	0.00000	0.00000
X78	0.000000	0.000000
X79	311.1111	0.000000
X710	0.00000	0.00000
X87	0.00000	0.000000
X97	0.00000	0.000000
X107	0.00000	0.00000
X89	222.2222	0.000000
X98	0.000000	0.000000
X910	0.00000	0.00000
X911	0.00000	0.555556E-03
X109	133.3333	0.00000
X119	133.3333	0.00000
X1011	0.00000	0.5555556E-03
X1110	0.00000	0.00000
Row	Slack or Surplus	Dual Price
1	0.4444444	-1.000000
2	0.000000	-0.2777778E-03
3	0.000000	-0.2777778E-03
4	0.000000	-0.2777778E-03
5	0.000000	0.2777778E-03
6	0.000000	0.2777778E-03
7	0.000000	0.2777778E-03
8	0.000000	0.2777778E-03
9	0.000000	0.2777778E-03
10	0.000000	0.2777778E-03
11	0.000000	0.2777778E-03
12	0.000000	0.2777778E-03
13	577.7778	0.000000
14	266.6667	0.000000
15	66.66667	0.000000
16	244.4444	0.000000
17	0.000000	0.5555556E-03
18	133.3333	0.000000
19	0.000000	0.5555556E-03
20	177.7778	0.000000
21	0.000000	0.000000
22	88.88889	0.000000
23	0.000000	0.5555556E-03
24	88.88889	0.000000
25	0.000000	0.5555556E-03
26	133.3333	0.000000

27	0.000000	0.555556E-03
28	177.7778	0.000000
29	88.88889	0.000000
30	88.88889	0.000000
31	0.000000	0.555556E-03
32	88.88889	0.000000
33	88.88889	0.000000
34	133.3333	0.000000
35	0.000000	0.000000
36	88.88889	0.000000
37	0.000000	0.000000
38	177.7778	0.000000
39	133.3333	0.000000
40	177.7778	0.000000
41	400.0000	0.000000
42	400.0000	0.000000
43	311.1111	0.000000
44	355.5556	0.000000
45	133.3333	0.000000
46	266.6667	0.000000
47	0.000000	0.000000
48	177.7778	0.000000
49	280.0000	0.000000
50	324.4444	0.000000
51	133.3333	0.000000
52	133.3333	0.000000
53	0.000000	0.000000
54	311.1111	0.000000
55	222.2222	0.000000
56	222.2222	0.000000
57	133.3333	0.000000
58	355.5556	0.000000
59	133.3333	0.000000
60	0.000000	0.000000
61	266.6667	0.000000
62	133.3333	0.000000
63	133.3333	0.000000
64	300.0000	0.000000

求解结果在上方结果中使用红字标注

使用 LP 模型(Link-Path):

给定需求路径:

```
从 1->9 的线路,需求为 150
1[1,2,11,9] (12) (211) (119)
2[1,4,6,7,9] (14) (46) (67) (79)
3[1,5,8,9] (15) (58) (89)
4[1,3,4,6,10,9] (13) (34) (46) (610) (109)
5[1,2,3,11,9] (12) (23) (311) (119)
6[1,3,11,9] (13) (311) (119)
7[1,5,7,10,9] (15) (57) (710) (109)
```

若需求路径为前三条(没有相同的路径时):

输入:

```
model:
```

```
min=300*y1+200*y2+400*y3;
x11+x12+x13=150;
x11<=y1;
x12<=y2;
x13<=y3;
end</pre>
```

结果:

Global optimal solution found.

Objective value: 30000.00
Infeasibilities: 0.000000
Total solver iterations: 0

Variable	Value	Reduced Cost
Y1	0.00000	0.00000
Y2	150.0000	0.00000
Y3	0.00000	0.00000
X11	0.000000	100.0000
X12	150.0000	0.000000
X13	0.000000	200.0000

Row Slack or Surplus Dual Price

1	30000.00	-1.000000
2	0.00000	-200.0000
3	0.00000	300.0000
4	0.00000	200.0000
5	0.00000	400.0000

当路径为5条时:

```
输入:
model:
min=1300*y1+600*y2+200*y3;
x11+x12+x13+x14+x15=800;
x11 <= 300;
x12<=200;
x13 <= 400;
x14 <= 200;
x15 <= 200;
x11+x15 \le y1;
x11+x15 <= y2;
x12+x14 \le y3;
end
结果:
 Global optimal solution found.
                                             80000.00
 Objective value:
  Infeasibilities:
                                             0.000000
  Total solver iterations:
```

Variable	Value	Reduced Cost
Y1	0.00000	0.000000
Y2	0.00000	0.00000
Y 3	400.0000	0.00000
X11	0.00000	0.000000
X12	200.0000	0.000000
X13	400.0000	0.000000
X14	200.0000	0.000000
X15	0.000000	0.000000
Row	Slack or Surplus	Dual Price
1	80000.00	-1.000000
2	0.00000	-1900.000
3	300.0000	0.000000
4	0.00000	1700.000
5	0.000000	1900.000

6	0.000000	1700.000
7	200.0000	0.000000
8	0.00000	1300.000
9	0.000000	600.0000
10	0.00000	200.0000

备选路径为7条时:

```
输入:
model:
min=1300*y1+600*y2+200*y3+200*y4+550*y5+400*y6+300*y7;
x11+x12+x13+x14+x15=800;
x11 <= 300;
x12 <= 200;
x13 <= 400;
x14 <= 200;
x15 <= 200;
x16 <= 200;
x17 <= 300;
x11+x15 \le y1;
x11+x15+x16 \le y2;
x12+x14 \le y3;
x15+x16 <= y4;
x14+x16 \le y5;
x13+x17 <= y6;
x14+x17 <= y7;
end
输出:
  Global optimal solution found.
  Objective value:
                                               410000.0
  Infeasibilities:
                                               0.000000
  Total solver iterations:
                                                       1
```

Variable	Value	Reduced Cost
Y1	0.000000	0.000000
Y2	0.000000	0.000000
Y 3	400.0000	0.000000
Y4	0.000000	0.000000
Y5	200.0000	0.000000
Y6	400.0000	0.000000
¥7	200.0000	0.000000
X11	0.000000	850.0000

X12	200.0000	0.000000
X13	400.0000	0.00000
X14	200.0000	0.000000
X15	0.000000	1050.000
X16	0.000000	1350.000
X17	0.000000	700.0000
Row	Slack or Surplus	Dual Price
1	410000.0	-1.000000
2	0.000000	-1050.000
3	300.0000	0.000000
4	0.000000	850.0000
5	0.000000	650.0000
6	0.000000	0.000000
7	200.0000	0.000000
8	200.0000	0.000000
9	300.0000	0.000000
10	0.000000	1300.000
11	0.000000	600.0000
12	0.000000	200.0000
13	0.000000	200.0000
14	0.000000	550.0000
15	0.000000	400.0000
16	0.00000	300.0000

分析结果:

当备选路为 3 条与备选路径为 5 条的结果差别比较大。备选路径为 3 条时有限选择最合适路径。当备选路径为 5 条时合适路径的范围增大,所以在满足流量的前提下,流量会分配到其他的备选路径,当备选路径为 7 条时,如果新增路径有更优化路径,挑选三条最优路径就可以完成流量的传输,若新增路径没有更优化的路径,则结果与 5 条基本一致。本实验属于后者情况。

Link-path 与 node-link 模型对比:

根据题意显然结果是不相同的。原因 Nodelink 模型作为全局最优化模型来处理,整个网络的所有边的组合成的路径都需要进行考虑。最后流量路由分配也是基于全局最优给出的解。

但是 LinkPath 仅仅是针对已经给出的路径以及路径本身的约束进行优化选路。本身有较大的局限性,但是因为已知路径必须是给定的,所以可控性比较好。

模型求解时间说明:

从给出的输入的未知量,网络复杂度综合考虑,Node-Link 的复杂度要高一些,求解时间更长。但实际上两个模型的约束都是线性约束,Node-link 的维度比 Link-Path 的维度更高,很显然 Node-link 的全局最优结果也是相对更优化于 linkPath 模型。