14 Zusammenfassungen

Sitzung 2: Einführung

Sitzung 3: Syntaktische Kategorien

Sitzung 4: Syntaktische Relationen: Konstituenz

Sitzung 5: Syntaktische Relationen: Dependenz

Sitzung 6: Morphologische Form syntaktischer Funktionen

Sitzung 7: Unifikationsgrammatiken

Sitzung 8: Komplexe Satzkonstruktionen und Wortstellung

Sitzung 9: Parsing-Algorithmen

Sitzung 10: Unifikation

Sitzung 11: Statistische Syntaxmodelle

11.1 Probabilistische kontextfreie Grammatiken (PCFGs) 11.2 Statistische Dependenzmodelle

Sitzung 12: Datengestützte Syntaxmodelle

12.1 Induzierte PCFG-Modelle

Sitzung 13: Partielles Parsing

13.1 Partielles Parsing 13.1 Komplexität natürlicher Sprachen

Zusatz: Parsing mit neuronalen Netzen

14 Zusammenfassungen

Sitzung 2: Einführung

- Syntax-, Grammatik- und Satzbegriff
- Syntax natürlicher Sprachen
 - → Regeln der Kombination von Wörtern zu Sätzen (Satzlehre)
- Konstituentenstruktur
 - → Analyse der Hierarchie **syntaktischer Einheiten** (Phrasenstrukturgrammatik im weiteren Sinne)
 - → Strukturinformationen in Knoten des Syntaxbaums (Konstituenten = phrasale Einheiten)

Dependenzstruktur

- → Analyse der hierarchischen syntaktischen Abhängigkeitsrelationen zwischen Wörtern (Wortgrammatik)
- → Strukturinformationen in Kanten des Syntaxbaums (grammatische Relationen als funktionale Kategorien)

formale Grammatik

- → mathematische Struktur zur Modellierung natürlichsprachlicher Satzstruktur
- → kontextfreie Grammatik (CFG) als Phrasenstrukturgrammatik im engeren Sinne (PSG)

Parsing

- → algorithmische Verarbeitung von formalen Grammatiken zur automatischen Satzstrukturanalyse
- → Erkennung der Wohlgeformtheit (Grammatikalität) einer Eingabe
- → Wiedergabe der syntaktischen Struktur (Syntaxbaum)

Sitzung 3: Syntaktische Kategorien

- Syntaktische Einheiten = Konstituenten
 - → Wörter Phrasen Sätze
 - \rightarrow Wörter = elementare Finheiten
 - \rightarrow Phrasen = Gruppen von Wörtern, **Erweiterung um Phrasen**kopf
 - → Feststellbar durch Konstituententests

Kategorisierungen syntaktischer Einheiten

- \rightarrow **syntaktische Kategorie** = Menge von syntaktischen Einheiten mit gleichen morphosyntaktischen Eigenschaften (Abstraktionsklasse)
- → Klassen primär definiert über **Austauschbarkeit im gleichen** Kontext
- \rightarrow sprachabhängig!

- Wortarten = Lexikalische Kategorien (Wortklassen)
 - \rightarrow im gleichen Kontext austauschbare Wörter
 - \rightarrow Hauptkategorien: **Nomen, Verb**
 - → Modifikatoren: **Adjektiv, Adverb**
 - → Nominale Begleiter und Proformen: **Pronomen, Determinativ**
 - \rightarrow Weitere Kategorien: **Adposition**, **Konjunktion**, **Partikel**

Phrasenkategorien (Konstituentenklasse)

- \rightarrow im gleichen Kontext austauschbare Konstituenten (Wortfolgen)
- → definiert durch **Wortart des Phrasenkopfs**
- → nur bestimmte Wortarten sind **phrasenbildend**
- ightarrow Phrasen können **komplex** sein, d. h. andere Phrasen enthalten

$$(PP = P + NP; NP = NP + PP)$$

ightarrow Nominal-, Verbal-, Adjektiv-, Adverb-, Adpositional-Phrase

Sitzung 4: Syntaktische Relationen: Konstituenz

- Konstituentenstruktur (auch: Phrasenstruktur)
 - → Konstituenz = **Teil-Ganzes-Beziehung** zwischen sprachlichen Einheiten (Konstituenten)
 - → Relation der **unmittelbaren Dominanz** zwischen Einheit und ihren unmittelbaren Konstituenten
 - → in phrasalen Einheiten können neben lexikalischen auch phrasale Einheiten anderer oder gleicher Kategorie vorkommen
 - ⇒ hierarchischer, rekursiver Strukturaufbau
 - → Merkmalsvererbung vom Kopf als Phrasenkern an Phrase
 - \rightarrow Köpfe werden im Syntaxbaum nach oben weitergereicht (**Per**kolation)
 - → Analyse **diskontinuierlicher Phrasen** über *traces* (Spuren)

Kontextfreie Grammatik

- → formale Grammatik mit kontextfreien Regeln
- → verwendet zur **Modellierung der Konstituentenstruktur na**türlicher Sprache
- → Phrasenstrukturgrammatik (**PSG**) im engeren Sinne
- → beschreibt Regeln der Kombination von lexikalischen und phrasalen Kategorien (nichtterminale Symbole) zu phrasalen Kategorien und Sätzen (Startysmbol S)
- → Eine syntaktische Struktur (**Syntaxbaum**) wird von einer Grammatik erfüllt, wenn eine **Ableitung aus den als Produktionsre**geln aufgefassten Regeln der Grammatik existiert

X-Bar-Schema

- \rightarrow Beschränkung der Struktur: **binäre Verzweigung**: $A \rightarrow BC$
- → Einführung phrasaler Analyseebene zwischen Phrase und Kopf (X')
- \rightarrow gleichartiges Schema für alle Phrasen:

- → **Komplement**: Schwester von Kopf, Tochter von X'
- → Adjunkt: Schwester von X', Tochter von X'
- \rightarrow **Spezifizierer**: Schwester von X', Tochter von XP

CFGs als Konstituentenstrukturmodell

- → Modellierung des hierarchischen, rekursiven Aufbaus natürlicher Sprache aus lexikalischen und phrasalen Kategorien
- → X-Bar: Differenzierung Argument-Adjunkt-Spezifizierer
- → Nichtberücksichtigung von Morphosyntax und Subkategorisierung → **Übergenerierung**

Erweiterungen von CFGs

- → Einführung **komplexerer atomarer Kategorien**
- → **Merkmalsstrukturen** (Unifikationsgrammatiken)
- → Auswahl durch **probabilistisches Modell** (PCFG)

Sitzung 5: Syntaktische Relationen: Dependenz

Dependenzstruktur

- → Untersuchung der **Abhängigkeit von Vorkommen und Form** von Wörtern im Satz
- → **Dependenzrelation** = binare asymmetrische Relation zwischen Wörtern (Kopf und Dependent)
- \rightarrow 2 Typen von Abhängigkeiten:
 - \rightarrow **Rektion** (bilaterale Abhängigkeit): \rightarrow **Komplemente**
 - \rightarrow **Modifikation** (unilaterale Abhängigkeit): \rightarrow **Modifikato**-

ren

→ **Valenzgrammatik**: Untersuchung ausgehend vom Verb

- Komplement (valenzgrammatisch: Ergänzung / Aktant)
 - → **obligatorischer Dependent** (gefordert vom Kopf)
 - → aber: kann **fakultativ** sein
- Modifikator
 - \rightarrow optionaler Dependent
 - \rightarrow hängt ab von Kopf, aber wird nicht vom Kopf gefordert
 - → verbal: Adjunkt (valenzgrammatisch: Angabe / Zirkumstant)
 - \rightarrow nominal: **Attribut**

- Dependenzrelationen als syntaktische Funktionen
 - → Kategorisierung der Dependenzrelationen nach syntaktischem Verhalten der Dependenten
 - → Feststellung der **syntaktischen Funktion** einer Einheit, die sie in Bezug auf ihren Kopf einnimmt (z.B. Objekt-Komplement)
- Grammatische Relationen → syntaktische Funktion verbaler **Dependenten** (= Satzglieder)
 - → **Subjekt**: Kernargument intransitiver Satz, Kongruenz mit Verb
 - → **Objekt:** passivierbares Patiens-Argument transitiver Satz
 - → **indirektes Objekt:** Recipient-Argument ditransitiver Satz
 - → **Adverbial:** nicht-zentrales, peripheres Argument

Attributfunktionen → Syntaktische Funktion nominaler Modifikatoren

- Adjektiv-/Partizipial-Atribut
- Präpositionales Attribut
- Genitiv-Attribut
- Determinativ
- Apposition
- Attributsatz

Dependenzgrammatik

- → formale Repräsentation als **gerichteter Graph**
- → Wortgrammatik
- → Strukturinformation in den Kanten (Relationen)
- → Transformation Konstituenten- in Dependenzstruktur möglich
- → Hauptvorteil gegenüber PSGs: **Grammatische Funktionen** direkt kodiert

• Übersicht: Adverbial, Angabe, Ergänzung, Präpositionalobjekt

Dependenztyp	syntaktische Funktion	Auftreten	Form	Beispiel
Komplement/Ergänzung	Subjekt / Objekt	valenzgefordert	valenzgefordert	jemandes gedenken
	auch Präpositionalobjekt:			an jmd. denken
Komplement/Ergänzung	Adverbial	valenzgefordert	<i>nicht</i> valenzgefordert	auf den Tisch / ins Wasser stellen
Adjunkt/Angabe	Adverbial	nicht valenzgefordert	nicht valenzgefordert	Es regnet (im Park / auf den Tisch)
	auch Kasusadverbial:			Es geschieht dieser Tage

- adverbiale Angabe vs. Präpositionalobjekt:
 - * Er wartet auf dem Berg auf die Sonne.
 - adverbiale Angabe (auf dem Berg; wo?, Dativ) ist optional (weder Auftreten noch Form valenzgefordert):
 - · Er wartet ... auf die Sonne.
 - Er wartet im Park auf die Sonne.
 - * Die Form des präpositionalen Komplements von warten (auf die Sonne) ist valenzgefordert (worauf?, Akk.):
 - · *Er wartet zur Sonne.
 - · das Auftreten ist aber fakultativ: Er wartet

adverbiales Komplement:

- Auftreten der PP ist valenzgefordert:
 - · *Fr stellt die Blumen.
- aber: Verb verlangt keine Formeigenschaft:
 - Er stellt die Blumen auf den Tisch.
 - · Fr stellt die Blumen ins Wasser.

Sitzung 6: Morphologische Form syntaktischer Funktionen

- Sprachliche Ausdrucksmittel syntaktischer Funktionen
 - → strukturell über Wortstellung
 - → morphologisch über Flexionsmorphologie
- morphologische Kodierung grammatischer Relationen über:
 - → **Kasus:** Markierung der Funktion der Relation zwischen Verb und Dependent durch **Marker am Dependent** (Rektion)
 - → **Agreement:** Markierung der Funktion der Relation zwischen Verb und Dependent durch Merkmalskongruenz

Merkmalsstrukturen

- \rightarrow formale Repräsentation von grammatischen Kategorien
- → atomare oder komplexe Werte (Merkmalsstruktur als Wert, z.B. für Bündelung von Agreementmerkmale)
- → **Beschreibung** von lexikalischen Einheiten und Kategorien als komplexe Objekte, die über Merkmale definiert sind:

Wortformen:
$$Hund\begin{bmatrix} CAT & N & & \\ AGR & \begin{bmatrix} NUM & SG \\ GEN & MASK \end{bmatrix} \end{bmatrix}$$
, $der\begin{bmatrix} CAT & DET \\ AGR & \begin{bmatrix} NUM & SG \\ GEN & MASK \\ CASE & NOM \end{bmatrix} \end{bmatrix}$

lexikalische Kategorien: [CAT N] [CAT DET] (unterspezifiziert)

Verwendung in Syntaxanalyse

→ Verwendung in **PSG-Regeln zusammen mit Constraintre**geln zum Ausdruck von Abhängigkeiten zwischen durch unterspezifizierte Merkmalsstrukturen repräsentierten Kategorien → nominales Agreement: **Beschränkung** der durch die PSG-Regel repräsentierten Kombination von Determinativ und Nomen auf Übereinstimmung im AGR-Merkmal:

$$\begin{bmatrix} \mathsf{CAT} & \mathit{NP} \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{CAT} & \mathit{DET} \\ \mathsf{AGR} & \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathsf{CAT} & \mathit{N} \\ \mathsf{AGR} & \mathbb{I} \end{bmatrix}$$

Unifikation

- → Constraintregel: entspricht Anweisung auf Durchführung von Unifikation zur Feststellung der Vereinbarkeit
- → nominales Agreement: Feststellung der Vereinbarkeit dieser AGR-Teil-Merkmalsstrukturen:

$$\begin{bmatrix} NUM & SG \\ GEN & MASK \\ CASE & NOM \end{bmatrix} \sqcup \begin{bmatrix} NUM & SG \\ GEN & MASK \end{bmatrix} = \begin{bmatrix} NUM & SG \\ GEN & MASK \\ CASE & NOM \end{bmatrix}$$

Funktionale Kategorien und sprachtypologische Varianz syntaktischer Kodierung (Zusatz)

Funktionale Kategorien

- → Funktionale Syntax: Untersuchung der **systematischen Varia**tion von morphosyntaktischer Kodierung mit semantischer und pragmatischer Rolle
- → **Diathesen:** syntaktische Operation der **Manipulation der Abbildung semantischer Rollen** auf Grammatische Relationen
- → **Passivierung: Promotion des Patiens**-Arguments in Subjektposition
- → **Topik-Fokus-Struktur: kontextabhängige**, pragmatische **Struk**tur der Äußerung, die u. a. über syntaktische Operationen wie Links**versetzung** oder **Cleftsätze** angezeigt werden kann

Morphosyntaktische Typologien

- → *Varianz* in der Kodierung syntaktischer Funktionen im *Sprach*vergleich
- → Systematische **Differenz in der Abbildung semantischer Rol**len auf Grammatische Relationen: Akkusativ-vs. Ergativsprachen
- → **Aktiv-Sprachen** wie das Georgische kodieren primär die **seman**tische Rolle
- → **Topik-prominente Systeme** wie das Japanische kodieren primär die **pragmatische Rolle**

Sitzung 7: Unifikationsgrammatiken

- Unifikationsbasierte Erweiterungen von CFGs
 - → Modellierung von **Agreement-, Rektions- und Subkategorisierungs-Constraints**
 - → Modellierung von wortstellungsbezogenen Abhängigkeiten wie Subjekt-Verb-Inversion und long distance dependencies

Subkategorisierung

- → Differenzierung der Klasse der Verben **nach Anzahl und Art ihrer Argumente** (z. B. auch nach abhängigen Sätzen)
- → Subkategorisierungsprinzip: Verb kann nur in Umgebung auftreten, die seinem Subkategorisierungsrahmen entspricht
 → mit kontextsensitiven Regeln oder als Merkmalsconstraint modellierbar

Sitzung 8: Komplexe Satzkonstruktionen und Wortstellung

- Wortstellung
 - → **strukturelle** Kodierung syntaktischer Funktion
 - → **Positionierung** syntaktischer Einheiten
- Wortstellungssyntax des Deutschen
 - → Verbstellungstypen: V1, V2, VE
 - → **Verbstellungs-Split** kodiert Satzfunktion:

- V2 (Verbzweitstellung): Aussagesatz
- V1 (Verberststellung): Aufforderungs-/Wunsch-/Fragesatz
- VE (Verbendstellung): Nebensatz

Stellungsfeldermodell

- → **Lineares Modell** der Wortstellung des Deutschen, Analyse der Stellungsmöglichkeiten der Satzglieder
- → **Einteilung in Felder**, ausgehend vom flektiertem Verbalkomplex als **Satzklammer**
- → **diskontinuierliche Verbalphrase** kennzeichnend für Neuhochdeutsch
- → bei Verbzweitstellung kann **ein** beliebiges Satzglied ins Vorfeld gestellt werden (Topikalisierung bzw. Fokussierung
- → **Topik-Es** als Platzhalter wenn Vorfeld-Position unbesetzt
- → Wortstellungsregeln der Anordnung von Satzgliedern im Mittelfeld, insbesondere 'Thema-vor Rhema' (pragmatische Wortstellung) 36

Komplexe Satzkonstruktionen

- → Einfache Sätze als Konstituenten von komplexen Sätzen
- \rightarrow **Koordination** = **gleichrangige** Verbindung: Sätze bilden als **Ko-Konstituenten** einen komplexen Satz
- \rightarrow Subordination = Einbettung eines Satzes als Satzglied des **übergeordneten Satzes** (Matrixsatz)
- \rightarrow in Dependenzanalyse: Verb des eingebetteten Satzes ist **Dependent** von Verb des übergeordneten Satzes
- \rightarrow in Konstituentenanalyse: je nach Typ andere Position im **Syntaxbaum**: z.B. Objektsatz als Subkonstituente von VP
- \rightarrow rekursive Einbettung

- Typen von eingebetteten Sätzen
 - → **Komplementsatz**: Subjekt- und Objektsatz
 - → Adverbialsatz
 - → **Attributsatz**: Relativsatz, adnominaler Substantivsatz
 - → Prädikativsatz
- Infinite Satzkonstruktionen
 - \rightarrow können wie finite Sätze als Satzglied auftreten
 - → **nicht-flektiert**, kein Subjekt
 - → Kontrolle durch Subjekt oder Objekt des Matrixsatzes

Verbale Konstruktionen des Deutschen

- → Hilfs-und Modalverben (Auxiliare) bilden mit infiniter Verbform einen Verbalkomplex
- → Auxiliar als linker Teil der Satzklammer
- \rightarrow **Satzklammer:** Aufteilung Satz in Felder \rightarrow Vorfeld, Mittelfeld, Nachfeld
- → **Kopula** als **prädikatives Hilfsverb**, das mit einem Nomen, Adjektiv oder Satz eine **Eigenschaft** über das Subjekt oder Objekt prädiziert

Sitzung 9: Parsing-Algorithmen

- 2 Klassen von Parsing-Algorithmen: top-down / bottom-up
 - top-down: PREDICT + SCAN (Regelanwendung + Abgleich)
 - \rightarrow probiert jede anwendbare Ersetzungsregel aus
 - → im Problemfall: *Backtracking* notwendig
 - bottom-up: SHIFT + REDUCE (Einlesen + Regelanw. rückwärts)
 - → verschiebt Token auf **Stapel** u. führt sie auf Regeln zurück

- Vergleich top-down vs. bottom-up:
 - Start der Analyse:
 - → Startsymbol vs. 1. Wort der Eingabe
 - Schwäche:
 - → **strukturelle** vs. **lexikalische** Ambiguität
 - im Extremfall für beide exponentielle Laufzeit

- Earley Parser: Top-Down-Parsing mit Extras
 - 3 Operationen: PREDICTION + SCANNING + COMPLETION
 - \rightarrow *Voraussage*: wenn . vor Nichtterminal
 - $ightarrow \ddot{\textit{U}} berpr\ddot{\textit{u}} funq$: wenn . vor Terminal
 - \rightarrow *Vervollständigung*: wenn . letzte Position
 - **Zwischenergebnisse** werden in Datenstruktur (**Chart**) gespeichert (**Dynamische Programmierung**)
 - → auch für ambige Grammatiken maximal polynomielle Laufzeit
 - erweiterbar zu merkmalsbasiertem Parsing
 - → aber: Unifikation ist sehr **rechenaufwändig**

- Statistisches Parsing:
 - → **nicht alle möglichen Ableitungen** werden ausprobiert, die **wahrscheinlichste** soll bestimmt werden
- per Hand geparste Sätze dienen als Trainingsdaten
- Eingabe wird in Merkmale umgewandelt (*Feature Extraction*)
- Merkmalsvektoren werden durch gelernte Gewichte auf eine Wahrscheinlichkeitsverteilung abgebildet
- die Likelihood der Trainingsdaten soll maximiert werden

Sitzung 10: Unifikation

Subsumption:

- \rightarrow für Typen definiert durch die \square -Relation
- → bei Merkmalstrukturen muss es **alle Knoten der "allgemei**neren" Merkmalstruktur auch in der spezifischeren geben (+ kompatible Typen)

Unifikation:

- → sowohl für Typen als auch Merkmalstrukturen kleinste obere Schranke in der Subsumptionsbeziehung
- → für **Merkmale** zweischrittig:
- 1. Identifikation äquivalenter Knoten
- 2. Unifikation ihrer Typen

Bedingungen:

- → Pfade sind **Ketten von Merkmalen**
- → Beschreibungen legen die **Menge von Merkmalstrukturen**, die sie erfüllen, eindeutig fest
- → **Beschreibungen** werden im NLTK durch ihren **allgemeins**ten Erfüller ausgedrückt

Sitzung 11: Statistische **Syntaxmodelle**

11.1 Probabilistische kontextfreie **Grammatiken (PCFGs)**

- Statistische Erweiterungen von CFGs
 - → mit Abdeckung (coverage) steigt Anzahl an Ableitungen
 - → statistische Modelle zur Disambiguierung
 - → **PCFG** (Probabilistische Kontextfreie Grammatik):
 - Gewichtung der CFG-Regeln mit Wahrscheinlichkeiten
 - → Ranking der Ableitungen nach ihrer Wahrscheinlichkeit

Eigenschaften von PCFGs

- → Wahrscheinlichkeiten der Regeln zur Expansion von einem Nonterminal addieren sich zu 1
- → Annahme Unabhängigkeit der Regel-Auswahl
- → Wahrscheinlichkeit einer Ableitung: Multiplikation der Wahrscheinlichkeiten der in der Ableitung verwendeten Regeln
- → Wahrscheinlichkeit einer Satzes: Summe der Wahrscheinlichkeiten seiner Ableitungen

- Abschätzung der Regelwahrscheinlichkeiten aus Trainingsdaten
 - → *supervised*: aus syntaktisch annotiertem Korpus (Treebank) über relative Häufigkeiten der Expansionen eines Nonterminals (Maximum-Likelihood-Estimation)
 - → unsupervised, ohne Treebank: Abschätzung durch wiederholtes Parsen eines Korpus und Anwendung von Expectation-**Maximation-Algorithmus** zur iterativen Verbesserung des statistischen Modells (Inside-Outside-Algorithmus)

Probabilistisches Parsing

- \rightarrow Suche der wahrscheinlichste Ableitung (T) eines Satzes (S): arg max P(T|S)
- → PCFG-Version des Viterbi-Algorithmus zum effizienten Finden der wahrscheinlichsten Ableitung mit dynamischer Programmierung

11.2 Statistische Dependenzmodelle

- Statistische Dependenzmodelle
 - → Induktion von dependenzbasierten Syntaxmodellen aus Dependency-Treebanks
 - → Dependency-Treebanks = relationsannotiertes Korpus
 - → Dependenzbäume können aus Konstituentenbäumen abgeleitet werden über Kopfannotations- und Labeling-Regeln
 - → entspechend können auch Dependency-Treebanks (als Sammlungen von Dependenzbäumen) aus CFG-Treebanks wie der Penn-Treebank gewonnen werden
 - → Übergangsbasiertes und Graph-basiertes Dependenz-Parsing

- Übergangsbasiertes Dependenz-Parsing
 - → Stack-basierter Shift-Reduce-Parser
 - → **Auswahl des Übergangs** von einem Zustand (**Konfiguration** von Stack, Buffer und erkannten Relationen) zum nächsten **über** Klassifikator
 - \rightarrow Klassifikator: bildet Konfigurationen auf Übergänge ab
 - → trainiert anhand von Dependency-Treebank
 - → Merkmale: POS, Lemma, Token von obersten Elemente auf Stack, Buffer und den **Relationen** zwischen diesen Elementen

Sitzung 12: Datengestützte **Syntaxmodelle**

12.1 Induzierte PCFG-Modelle

- Induktion von PCFG-Grammatiken
 - → Modell trainieren anhand von Treebank-Daten (supervised)
 - → Extraktion von Regeln und Berechnung von Regelwahrscheinlichkeiten
 - → Aufbau von **empirischem Modell**
 - → Form der induzierten Grammatik **abhängig vom Annotati**onsschema der Treebank (viele Regeln bei flachen Bäumen)

Normalisierung von CFGs

- → Chomsky Normalform: u. a. zur Reduktion der Regelmen**ge** von induzierten PCFGs
- → *Parent Annotation*: u. a. für *history-based* PCFGs

Evaluation von PCFGs

- → Übereinstimmung von Konstituenten (PARSEVAL)
- → korrekte Konstituente: gleiche Kategorie, gleiche Spanne
- → **Recall**, **Precision**, *cross-brackets*

Lexikalisierte PCFGs

- → statistische **Modellierung lexikalischer Abhängigkeiten** wie PP-Attachment oder Subkategorisierung
- → Rücknahme von PCFG-Annahme der Unabhängigkeit einer Expansion von lexikalischer Information
- → **Annotation** syntaktischer Kategorie **mit lexikalischem Kopf**
- → lexikalisiertes **Grammatikmodell** wird **sehr groß** (**Regelver**vielfachung)
- → *sparse data* Problem mit ungesehenen Köpfen: **großes Trai**ningskorpus und Smoothing notwendig

history-based PCFGs

- → statistische Modellierung von Abhängigkeiten bzgl. des strukturellen Kontexts
- → Rücknahme von PCFG-Annahme der Unabhängigkeit der Regelauswahl
- → **Annotation** syntaktischer Kategorie mit **Kategorie des Mutterknotens** (parent annotation)
- → **Beispiel:** Subjekt-NP (**NP^S**) erweitert häufiger zu Pronomen als Objekt-NP (**NP^VP**)

Sitzung 13: Partielles Parsing

13.1 Partielles Parsing

- Partielles Parsing = Chunking
 - → Anwendungen wie Informationsextraktion oder *informati*on retrieval benötigen keine syntaktischen Vollanalyse
 - → unvollständige Analyse: Finden nur der wichtigsten Konstituenten im Satz, primär NP-, VP- und PP-Chunks
 - → **flache, nicht-hierarchische Analyse:** keine Verschachtelung
 - → Chunk = kleinere Einheit als vollständige Phrase

- Chunking mit regulärer Grammatik
 - → Beschreibung von **Muster von POS-Folgen** mit **regulären** Ausdrücken
 - → Chunking-, Chinking- und Split-Regeln
- kaskadierende Chunker
 - → Loopen und Hintereinanderschalten von Chunk-Parsern
 - → sukzessive Erzeugung hierarchisch aufgebauter Strukturen

Lernbasiertes Chunking

- → Klassifikation von Token-Sequenz analog zu POS-Tagging ('parsing as tagging')
- → Lernen der Zuordnung von IOB-Tag zu Wort-POS-Tupel aus IOB-Chunk-getaggtem Korpus (supervised)
- → mögliche **Merkmale für** *feature-extractor*:
- POS-Tag und Wortform des zu taggenden Tokens
- POS-Tag und Wortform der vorhergehenden und folgenden Tokens
- die bereits zugewiesenen **Chunk-Tags** der vorhergehenden Tokens

Evaluation von Chunkern

- → Abgleich von Chunker-Output mit annotiertem Testkorpus
- → Precision, Recall und F-score
- → conl12000-Korpus im NLTK als Chunk-getaggtes Korpus zum Testen und Trainieren

13.1 Komplexität natürlicher Sprachen

- Chomsky-Hierarchie: Klassifizierung formaler Sprachen nach Stärke der Regeleinschränkung der sie erzeugenden Grammatik
- **kontextfreie Grammatik:** geeignet für Beschreibung der Phrasenstruktur natürlicher Sprache
- einige Syntaxformalismen sind kontextsensitiv (TAG,CCG) bzw. rekursiv aufzählbar (HPSG, LFG)

- nicht-reguläre Konstruktionen in natürlicher Sprache: center*embedding*-Rekursion: $X \rightarrow \alpha X \beta$
- auch nicht-kontextfreie Konstruktionen: cross-serial dependencies im Schweizerdeutschen
- solche nicht-regulären Konstruktionen sind aber für die menschliche Sprachverarbeitung schwer zu verarbeiten (aufgrund von memory limitations)
- Hinweise auf Berücksichtigung statistischer Informationen beim Parsing durch den Menschen: garden-path-Sätze

Zusatz: Parsing mit neuronalen Netzen

- Feed-Forward-Netzwerke (FFNs):
 - FFNs sind eine Folge von linearen Abbildungen und nichtlinearen Aktivierungsfunktionen
 - Nichtlineare Transformationen (untere Schichten) machen die Daten zugänglich für einen linearen Klassifizierer (oberste Schicht)

- Features f
 ür den linearen Klassifizierer werden von den unteren Schichten gelernt (kein Feature Engineering nötig)
- nichtlineare Abbildungen ermöglichen das Erlernen von nichtlinearen Zusammenhängen in den Daten
- Softmax-Regression ist typisches Modell für einen neuronalen Klassifizierer

Nachteile:

- benötigen tendenziell sehr große Datenmengen
- haben viele Hyperparameter (schwierig zu optimieren)

Word Embeddings:

- Alternative Wortrepräsentation zu One-Hot-Vektoren mit weniger Dimensionen
- Ähnlichkeit zwischen Wörtern wird berücksichtigt
- Kookkurrenz in unannotierten Texten ist Basis der meisten Embeddingmodelle (Distributional Hypothesis)