Лекция 4. Нелинейные уравнения и системы

Вычислительная математика,

Весенний семестр 2022

Ольга Вячеславовна Перл

План лекции

- Решение нелинейных уравнений
- Решение нелинейных систем

Нелинейные и трансцендентальное уравнение Non-linear and Transcendental equation

• **Трансцендентное** уравнение — уравнение, не являющееся алгебраическим. Обычно это уравнения, содержащие показательные, логарифмические, тригонометрические, обратные тригонометрические функции, например:

$$x = e^{-x}$$

$$x = \cos(x)$$

$$2^x = x^2$$

•
$$\lg(x) = x - 5$$

$$2^x = \lg(x) + x^5 + 40$$

- Более строгое определение:
- Трансцендентное уравнение это уравнение вида f(x) = g(x), где функции f и g являются аналитическими функциями, и по крайней мере одна из них не является алгебраической.

Метод половинного деления Bisection method

- Пусть имеем уравнение f(x) = 0 и функция f(x) непрерывна на [a,b] и f(a)*f(b)<0.
- Чтобы найти корень, мы будем делить отрезок пополам. Если f((a+b)/2)=0, тогда $\xi=\frac{a+b}{2}$ это корень, иначе выбираем ту половину, которая удовлетворяет условию $f(a_1)*f(b_1)<0$.
- В терминах пределов: $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, тогда:

$$0 \le \xi - a_n \le \frac{1}{2^n} (b - a)$$

Mетод хорд Secant method

- Пусть имеем уравнение f(x) = 0 и функция f(x) непрерывна на [a,b] и f(a)*f(b)<0.
- Положим f(a) < 0 и f(b) > 0. Тогда вместо деления пополам интервал [a,b] более естественно делить пополам отношение f(a): f(b). Оно возвращает приближенное значение корня $x_1 = a + h_1$, где:

$$h_1 = \frac{-f(a)}{-f(a) + f(b)}(b - a) = -\frac{f(a)}{f(b) - f(a)}(b - a)$$

■ Тогда:

$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a)$$

• Если $|x_n-x_{n-1}|<\varepsilon$, где ε заданная предельная абсолютная погрешность, тогда $|\xi-x_n|<\varepsilon$

Метод хорд Secant method

Метод Ньютона (касательных) Newton's method (tangent)

- Полезен для повышения точности приближённых корней.
- Геометрически, метод Ньютона эквивалентен замене небольшой дуги кривой y = f(x) касательной линией, проведённой к точке на кривой. Действительно, предположим для определённости, что f''(x) > 0 для $a \le x \le b$ и f(b) > 0.
- Выберем, например, $x_0 = b$ для которого $f(x_0)f''(x_0) > 0$. Проведём касательную к кривой y = f(x) в точке $B_0[x_0, f(x_0)]$.
- Для первого приближения x_1 корня ξ возьмём абсциссу точки пересечения этой касательной с осью X.
- Полагая y = 0, $x = x_{n+1}$:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Если точка x_1 лежит за пределами интервала [a, b], то тогда метод Ньютона не практичный для выбора на заданных начальных условиях. Таким образом, "хорошее" начальное приближение x_0 это такое, для которого неравенство справедливо с пределом:

$$f(x_0)f''(x_0) > 0$$

(2)

Метод простой итерации Fixed-point iteration

Пусть имеем уравнение f(x) = 0 и функция f(x) непрерывна на [a,b] и требуется найти вещественные корни. Заменим на эквивалентное уравнение:

$$x = \varphi(x)$$

• Каким-то образом выберем начальное приблизительное значение корня x_0 и заменим его в правой части уравнения (1).

$$x_1 = \varphi(x_0) \tag{1}$$

• Теперь вставляем x_1 в правую часть уравнения (1). Повторяя этот процесс, получаем последовательность чисел:

$$x_n = \varphi(x_{n-1}), (n = 1, 2, ...)$$

Если итерационный процесс (последовательность) сходится, то есть, если существует предел $\xi = \lim_{n \to \infty} x_n$, то затем перейдя к пределу (2) и предполагая, что функция $\varphi(x)$ непрерывна, мы найдём:

$$\lim_{n\to\infty} x_n = \varphi(\lim_{n\to\infty} x_{n-1})$$

Функции многих переменных Multivariable functions

Общий вид:

$$\begin{cases} F_1(x_1, x_2, ..., x_n) = 0 \\ F_2(x_1, x_2, ..., x_n) = 0 \\ ... \\ F_n(x_1, x_2, ..., x_n) = 0 \end{cases}$$

Векторная запись:

$$F = (F_1, F_2, ..., F_n), x = (x_1, x_2, ..., x_n)$$

- Системы могут быть записаны как F(x) = 0
- $\tilde{F} = Jx + c$, где J это матрица размера $n \times n$ и c это некоторый вектор длины n и $\lim |x_{i+1} - x_i|^2 \to 0$.

$$F(x_{i+1}) \approx F(x_i) + \nabla F(x_i)(x_{i+1} - x_i)$$
.

Выражение ∇F это матрица частных производных F. Компонент (i,j) в ∇F есть $\frac{\partial F_i}{\partial x_i}$. Матрица ∇F называется Якобианом (матрицей Якоби) F и обозначается J.

$$\nabla F = \begin{vmatrix} \frac{\partial F_0}{\partial x_0} & \frac{\partial F_0}{\partial x_1} \\ \frac{\partial F_1}{\partial x_0} & \frac{\partial F_1}{\partial x_1} \end{vmatrix}$$

02,03.2022

Иетод Ньютона и метод итераций Newton's method and fixed-point iteration

•
$$F(x_i) + J(x_i)(x_{i+1} - x_i) = 0$$

• Equivalent if $\lambda \neq 0$

02,03.2022

Градиентный спуск Gradient descent

Градиентный спуск Gradient descent

Градиентный спуск Gradient descent

- Пусть $f(x) = (f_1(x), f_2(x), ..., f_n(x)), x = (x_1, x_2, ..., x_n)$
- Система уравнений с $n \ge 2$ эквивалентна: $\Psi(x) = 0$, где: $\Psi(x) = f_1^2(x) + f_2^2(x) + \dots + f_n^2(x)$
- Тогда корни таких уравнений это минимальные значения функции $\Psi(x) = \Psi(x_1, x_2, ..., x_n)$.
- Пусть функция $\Psi(x)$ это дважды дифференцируемая область, где содержится изолированное решение x^* . Если начальное значение x^0 мы можем найти минимум функции $\Psi(x^0 \lambda \operatorname{grad}\Psi(x^0))$. Таким образом мы находим минимальный неотрицательный корень $\lambda = \lambda_0$ уравнения посредством следующего метода:

$$\frac{d}{d\lambda}\Psi(x^0 - \lambda \operatorname{grad}\Psi(x^0)) = 0$$

 Сходимость не гарантируется, потому что мы можем получить только локальный минимум.

В случае вопросов по лекции задавайте их через форму:

https://forms.yandex.ru/u/61ffab0425b437e0e3410e9b/

Мы обязательно обсудим их на следующем занятии.