Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal beserta hasilnya, ya, semangat!

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	Х2	Х3	α	Threshold	Y _{d,6}
0.7	0.8	0.9	0.1	-1	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ ₅	θ_6
0.5	0.6	0.3	1.1	-1	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$\begin{array}{lll} Y_4 & = sigmoid(X1W14 + X2W24 + X3W34 - \theta 4) \\ & = 1/[1 + e - (0.7 \times 0.5 + 0.8 \times 0.3 + 0.9 \times -1.0 - (-1) \times 0.2)] \\ & = 0.3751 \\ Y_5 & = sigmoid(X1W15 + X2W25 + X3W35 - \theta 5) \\ & = 1/[1 + e - (0.7 \times 0.6 + 0.8 \times 1.1 + 0.9 \times 0.1 - (-1) \times 0.3)] \\ & = 0.7483 \\ Y_6 & = sigmoid(Y4W46 + Y5W56 - \theta 6) \\ & = 1/[1 + e - (0.37 \times -1.1 + 0.74 \times -0.7 - 1 \times 0.4)] \\ & = 0.2080 \\ e & = Yd,6 - Y6 \\ & = 0 - 0.2080 \end{array}$$

=-0.2080

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	е	
0.3751	0.7483	0.2080	-0.2080	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	$ abla_{46}$	$ abla_{56}$	∇θ ₆	
-0.034	-0.0012864	-0.0025659	0.0034286	

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Layer/Hidden Layer

$$\delta_4$$
 =Y4(1-Y4) x δ 6xW46 =0.3751x(1-0.3751)x-0,034x-1.1

$$\delta_5 = Y5(1-Y5) \times \delta6xW56$$

=0.7483x(1-0.7483)x-0.034x-0.7

=0.00451939

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ4	δ ₅		
0.00884118	0.00451939		

Langkah 4: Hitung weight corrections

 $\nabla w_{14} = \alpha \times X1 \times \delta4$

=0.1x0.7x0.00884118

=0.00061888

 $\nabla w_{24} = \alpha \times X2 \times \delta4$

=0.1x0.8x0.00884118

=0.00070729

 $\nabla w_{34} = \alpha \times X3 \times \delta4$

=0.1x0.9x0.00884118

=0.00079571

 $\nabla \theta_4 = \alpha \times (-1) \times \delta 4$

=0.1x(-1)x0.00884118

=-0.0008841

 $\nabla w_{15} = \alpha \times X1 \times \delta5$

=0.1x0.7x0.00451939

=0.00031636

 $\nabla w_{25} = \alpha \times X2 \times \delta5$

=0.1x0.8x0.00451939

=0.00036155

 $\nabla w_{35} = \alpha \times X3 \times \delta5$

=0.1x0.9x0.00451939

=0.00040675

 $\nabla \theta_5 = \alpha \times (-1) \times \delta 5$

=0.1x(-1)x0.00451939

=-0.0004519

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇w ₁₄	∇w ₂₄	∇w ₃₄	∇θ ₄	∇w ₁₅	∇ w ₂₅	∇w ₃₅	∇θ₅
0.0006188	0.0007072	0.0007957	-	0.0003163	0.0003615	0.0004067	-
8	9	1	0.0008841	6	5	5	0.0004519

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 8

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

 $w_{14} = w14 + \nabla w14$

=0.5+0.00061888

=0.50061888

 $w_{15} = w15 + \nabla w15$

=0.6+0.00031636

=0.60031636

 $w_{24} = w24 + \nabla w24$

=0.3+0.00070729

=0.30070729

 $w_{25} = w25 + \nabla w25$

=1.1+0.00036155

=1.10036155

$$w_{34} = w34 + \nabla w34$$

=-1+0.00079571

=-0.9992043

 $w_{35} = w35 + \nabla w35$

=0.1+0.00040675

=0.10040675

 $\theta_4 = \theta_4 + \nabla \theta_4$

=0.2+(-0.0008841)

=0.19911588

 $\theta_5 = \theta_5 + \nabla \theta_5$

=0.3+(-0.0004519)

=0.29954806

 $\theta_6 = \theta_6 + \nabla \theta_6$

=0.4+0.0034286

=0.4034286

Lalu isi rangkuman hasilnya di tabel ini ya ...

W 14	W 15	W ₂₄	W ₂₅	W 34	W 35	Θ4	Θ ₅	Θ ₆
0.500618	0.600316	0.300707	1.100361	-	0.100406	0.199115	0.299548	0.403428
88	36	29	55	0.999204	75	88	06	6
				3				

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~