- 1. A. True False If A is a 5×5 matrix and the rank of A is 4 then det(A) = 0.
 - B. True False There exists an isomorphism from P_{17} to \mathbb{R}^{17} .
 - C. True False \mathbb{R}^4 has a basis X such that each vector in \mathbb{R}^4 can be written in more than one way as a linear combination of the elements of X.
 - D. True False P_4 has a basis X such that each polynomial (vector) in P_4 can be written in more than one way as a linear combination of the elements of X.
 - E. True False The set of functions $\{c_2x^2 + c_3x^3 + c_4x^4 \mid c_2, c_3, c_4 \in \mathbb{R}\}$ is a subspace of P_4 .
 - F. True False If X is a collection of vectors in a vector space W, then $\mathrm{Span}(X)$ is a subspace of W.
 - G. True False Span $\left\{ \begin{bmatrix} 4 \\ 8 \\ -2 \end{bmatrix} \right\}$ is a subspace of \mathbb{R}^3 .
 - H. True False $Span(\{1, 1 x^2\})$ is a subspace of P_2 .
 - I. True False If the set S is linearly independent in P_4 then $S \cup \{1+x\}$ is always linearly independent.
 - J. True False If S is a spanning set of P_4 then S always contains the vector (polynomial) x^3 .
 - K. True False If S is a spanning set of P_4 then Span(S) always contains the vector (polynomial) x^3 .
 - L. True False The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with associated matrix $\begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$ is an isomorphism.
- 2. Suppose A and B are both 5×5 matrices where $\det(A) = 5$ and $\det(B) = 3$. Evaluate $\det(B^{-1}AB^{T}AB^{2})$.
- 3. (a) Show that the set $B = (1 + 2x^2, 1 + x, 1 + x + x^2)$ is a basis of P_2 .
 - (b) There is a polynomial p(x) in P_2 which has the coordinate vector $K_B(p(x)) = \begin{bmatrix} -1\\1\\5 \end{bmatrix}$ with repect to the basis B from part (a). Find p(x).
 - (c) Find $K_B(7+3x-x^2)$ where B is the basis from part (a).
- 4. Show the set $Y = \{a_0 + a_1x + a_2x^2 \in P_2 \mid a_0 + a_1 + a_2 = 0\}$ is a subspace of P_2 .
- 5. Let $S = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ be the standard basis of \mathbb{R}^2 . Let $X = \begin{pmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ be a basis of \mathbb{R}^2 (you do not need to show this). Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by the matrix (with respect to the basis S)

$$_{S}T_{S} = \left[\begin{array}{cc} 1 & 4 \\ -2 & 3 \end{array} \right]$$

- (a) Find $_{S}I_{X}$.
- (b) Find $_XI_S$.
- (c) Using parts (a) and (b) find $_XT_X$.
- (d) Show that T is an isomorphism.