CVSD HW6 Report

**LMFE.v from b03901142

Basic (75%)

- 1. Topic & timing/delay information.
 - A. Pre-CTS timing report

Setup mode	+ all	+ reg2	?reg defaul	+ t
TNS (Violating Pa	ns): 1.766 ns): 0.000 ths: 0 ths: 746		000 0.000	
DRVs -	+ 	+ Total		
	Nr nets(terms)		Worst Vio	Nr nets(terms)
max_cap max_tran max_fanout max_length	0 (0) 0 (0) 0 (0) 0 (0)		0.000 0.000 0	0 (0) 0 (0) 1 (1) 0 (0)
sity: 43.852% ting Overflow: orted timing to al CPU time: 2 al Real time: al Memory Usago	o dir timingRe .57 sec 3.0 sec	ports		

B. Post-route timing report

- C. Design constraints:
 - i. func_mode: (LMFE_DC.sdc)

```
# You can only modify clock period
set cycle 10.0

#don't modify the following part
create_clock -period $cycle [get_ports clk]
set_dont_touch_network [get_clocks clk]
set_clock_uncertainty 0.1 [get_clocks clk]
set_clock_latency 2 [get_clocks clk]
set_tin_[expr $cycle/2]
set_in_[expr $cycle/2]
set_in_put_delay 1 -clock clk [remove_from_collection [all_inputs] [get_ports clk]]
set_output_delay 3 -clock clk [all_outputs]
set_load 1 [all_outputs]
set_drive 1 [all_inputs]

set_operating_conditions -max_library slow -max slow
set_wire_load_model -name tsmc13_wl10 -library slow

set_max_fanout 20 [all_inputs]
```

ii. scan_mode: (CHIP_scan_ideal.sdc)

```
# You can only modify clock period
set cycle 100.0

#don't modify the following part
create_clock -period $cycle [get_ports clk]
set_clock_latency 2 [get_clocks clk]
set_input_delay 1 -clock clk [remove from_collection [all_inputs] [get_ports clk]]
set_output_delay 3 -clock clk [all_outputs]
```

2. Synthesis reports & DFT-related reports (summarized).

***由於後來助教說明不一定需要插入scan chains,以下只附上synthesis後的timing, area, power report。

Timing report: (LMFE_syn_timing.rpt)

<pre>clock clk (rise edge) clock network delay (ideal) clock uncertainty PE24/state_reg/CK (DFFRX1) library setup time data required time</pre>	10.00 2.00 -0.10 0.00 -0.27	10.00 12.00 11.90 11.90 r 11.63 11.63
data required time data arrival time		11.63 -11.63
slack (MET)		0.01

Area report: (LMFE_syn_area.rpt)

Combinational area:	18735.901210
Buf/Inv area:	1800.941380
Noncombinational area:	23237.405247
Macro/Black Box area:	69557.296875
Net Interconnect area:	390695.345673
	111520 60222
Total cell area:	111530.603332
Total area:	502225.949004

3. Final chip layout figure (big & clear enough to see) & chip size (um x um).

A. Chip layout figure

B. Chip size

984.869*1000.105=984972.411 um^2

- 4. Pre-layout & post-layout simulation results (summarized).
 - A. Pre-layout Simulation

```
clock = 10ns
```

B. Post-layout Simulation

clock = 100ns (somehow influenced by scan.sdc)

```
Output pixel: 0 ~ 16000 are correct!

Congratulations! All data have been generated successfully!

PASS-----

Simulation complete via $finish(1) at time 29312501 NS + 0

//testfixturel.v:136 #(`CYCLE/2); $finish;
ncsim> exit
[b03095@cad29 HW6_ref]$
```

Advanced (25%)

- Complete power planning (VDD/VSS/IOVDD/IOVSS number, power ring/strips width, voltage drop & electron migration figures...).
 - A. Figure

Power Analysis:

```
Total Power

Total Internal Power: 17.28671642 93.9270%

Total Switching Power: 1.05695994 5.7430%

Total Leakage Power: 0.06074363 0.3300%

Total Power: 18.40441993
```

B. VDD/VSS/IOVDD/IOVSS number:

VDD: 2 VSS: 1 IOVDD: 2 IOVSS: 2

C. Power ring/strips width

Power ring width: 1.2 Power strips width: 1

6. Better I/O & modules' placement (explanations, amoeba view...).

Explanation:

將data input ports集中放在左邊,data output ports集中放在右下,control input在上,dataflow由左到右、由上到下,主要是參考Lab6的CHIP.ioc pad 擺放方式。除了I/O之外,也加入幾個dummy pad(沒有連接到任何i/o, power) 讓chip的面積增加,P&R的時候比較容易符合design constraints。

7. Other related discussions.

None.