COLLE 13 = ESPACES VECTORIELS, APPLICATIONS LINÉAIRES ET REPRÉSENTATIONS MATRICIELLE

Espaces vectoriels et applications linéaires :

Exercice 1.

Soit E un espace vectoriel et soient E_1 et E_2 deux sous-espaces vectoriels de dimension finie de E, on définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$.

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. Que donne le théorème du rang?

Exercice 2.

Soit E un espace vectoriel de dimension n et ϕ une application linéaire de E dans lui-même telle que $\phi^n=0$ et $\phi^{n-1}\neq 0$. Soit $x\in E$ tel que $\phi^{n-1}(x)\neq 0$. Montrer que la famille $\{x,\phi(x),\phi^2(x),\ldots,\phi^{n-1}(x)\}$ est une base de E.

Exercice 3.

Soient f et g deux endomorphismes de E tels que $f \circ g = g \circ f$. Montrer que Kerf et Imf sont stables par g.

Exercice 4.

Soit E l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. Soient P le sous-espace des fonctions paires et I le sous-espace des fonctions impaires. Montrer que $E = P \bigoplus I$. Donner l'expression du projecteur sur P de direction I.

Exercice 5.

Pour les applications linéaires suivantes, déterminer $Kerf_i$ et Imf_i . En déduire si f_i est injective, surjective, bijective.

$$f_2: \mathbb{R}^3 \to \mathbb{R}^3 \qquad f_2(x, y, z) = (2x + y + z, y - z, x + y)$$

$$f_3: \mathbb{R}^2 \to \mathbb{R}^4 \qquad f_3(x, y) = (y, 0, x - 7y, x + y)$$

$$f_4: \mathbb{R}_3[X] \to \mathbb{R}^3 \qquad f_4(P) = (P(-1), P(0), P(1))$$

Niveau: Première année de PCSI

Exercice 6.

Soit E un espace vectoriel de dimension 3, $\{e_1, e_2, e_3\}$ une base de E, et t un paramètre réel.

Démontrer que la donnée de
$$\begin{cases} \phi(e_1) &= e_1 + e_2 \\ \phi(e_2) &= e_1 - e_2 \\ \phi(e_3) &= e_1 + te_3 \end{cases}$$

définit une application linéaire ϕ de E dans E. Écrire le transformé du vecteur $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. Comment choisir t pour que ϕ soit injective? surjective?

Exercice 7.

Soit $E=\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n,$ et $f:E\to E$ définie par :

$$f(P) = P + (1 - X)P'$$
.

Montrer que f est une application linéaire et donner une base de Imf et de Kerf.

Niveau: Première année de PCSI

Espaces vectoriels et applications linéaires :

Exercice 8.

Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice par rapport à la base canonique (e_1, e_2) est

$$A = \left(\begin{array}{cc} 11 & -6 \\ 12 & -6 \end{array}\right).$$

Montrer que les vecteurs

$$e_1' = 2e_1 + 3e_2, \quad e_2' = 3e_1 + 4e_2,$$

forment une base de \mathbb{R}^2 et calculer la matrice de f par rapport à cette base.

Exercice 9.

Soit \mathbb{R}^2 muni de la base canonique $\mathcal{B} = (\vec{i}, \vec{j})$. Soit $f : \mathbb{R}^2 \to \mathbb{R}^2$ la projection sur l'axe des abscisses $\mathbb{R}\vec{i}$ parallèlement à $\mathbb{R}(\vec{i} + \vec{j})$. Déterminer $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$, la matrice de f dans la base (\vec{i}, \vec{j}) .

Même question avec $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(f)$ où \mathcal{B}' est la base $(\vec{i}-\vec{j},-2\vec{i}+3\vec{j})$ de \mathbb{R}^2 . Même question avec $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$.

Exercice 10.

Soit f l'endomorphisme de \mathbb{R}^2 de matrice

$$A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$$
 dans la base canonique. Soient

$$e_1 = \begin{pmatrix} -2\\3 \end{pmatrix}$$
 et $e_2 = \begin{pmatrix} -2\\5 \end{pmatrix}$.

- 1. Montrer que $\mathcal{B}' = (e_1, e_2)$ est une base de \mathbb{R}^2 et déterminer $\operatorname{Mat}_{\mathcal{B}'}(f)$.
- 2. Calculer A^n pour $n \in \mathbb{N}$.
- 3. Déterminer l'ensemble des suites réelles qui

vérifient
$$\forall n \in \mathbb{N}$$

$$\begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n - \frac{2}{3}y_n \end{cases}$$

Exercice 11.

Trouver toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui vérifient

- 1. $M^2 = 0$;
- 2. $M^2 = M$;
- 3. $M^2 = I$.