به نام خدا

تمرین سری پنجم درس نظریه و الگوریتم های گراف دکتر فرزانه غیور باغبانی

فرزان رحمانی ۹۹۵۲۱۲۷۱

Subject: Year. Month. Date. ()	
$A - \lambda I \mu = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & -\lambda & 1 & = \end{vmatrix} dot(A - 1)$	λT _{al} (
	(ابا برمع)سا
$\det(A-\lambda I_{r})=(1-\lambda)^{r}(-\lambda)-(1-\lambda)-(1-\lambda)$	λ)
$\int -\lambda z \longrightarrow \lambda z $	2-1,+1,+7
$(\lambda(1-\lambda)+\gamma_2)$ $(\lambda_2-1,\lambda_2\gamma)$	į.
[91,7] 19 mas	$(\lambda)z\lambda^*z+V$
$\mathcal{H}_{2} \begin{bmatrix} \mathcal{H}_{1} \\ \mathcal{H}_{2} \end{bmatrix} \longrightarrow A_{\mathcal{H}} = Y_{\mathcal{H}} \longrightarrow \begin{cases} \mathcal{H}_{1} + \mathcal{H}_{2} \\ \mathcal{H}_{3} \end{bmatrix}$. 1
	484 2 4
1911 = JT = N2 1 E 91,2	91 2 91 20
ا الا الا عرب الله عرب الله الله الله الله الله الله الله الل	
برای هونه مقدار برای ایند زمال شود. به دست سی ورس و سس آن را براندار های تعسیم می کیم.	***
F.7 517 [1 2,0VV
U6) & x 2 1 1 2 TP	7 C C
NF [1] (NF) 2	₩ 200/2VV
	m] [0,000
مربوط به بزرگترین مقدارو رزه ما ترس A	ک بردارویژه
EM4N	

Notation: Any shortest path between nodes *s* and *t* will be called an *s*-*t* shortest path.

- Let σ_{st} denote the number of all s-t shortest paths.
- Let $\sigma_{st}(v)$ denote the number of all s-t shortest paths that pass through node v. $\sigma_{st}(v)=2$

Definition: The **betweenness centrality** of a node v, denoted by $\beta(v)$, is defined by

$$\beta(v) = \sum_{\substack{s,t\\s\neq v,t\neq v}} \left[\frac{\sigma_{st}(v)}{\sigma_{st}}\right]$$

Definition: The farness centrality f_i of node v_i is given by

 f_i = Sum of the distances between v_i and the other nodes

$$= \sum_{v_j \in V - \{v_i\}} d_{ij}$$

Definition: The closeness centrality (or nearness centrality) η_i of node v_i is given by $\eta_i = 1/f_i$.

ابتدا (B(E) عاسبه می کینم. برای معاسبه آن عور (Jost استاسی کینم. AB - = > O BC- CF- FG-AC++++ BD+ CG+ FH+0 AD - O BF- CH- GH- $AF \rightarrow 0$ BG-1. DF-1. AG - . 13H-> 106-) B(E) 20 CD→+→· DH→· AH -) o حال (B(F) راحاسیهی کسم. $AB \rightarrow \psi \rightarrow 1 BC \rightarrow 0$ CE - O EG - O $CG \rightarrow I \quad EH \rightarrow 0$ $BE \rightarrow 0 \quad CH \rightarrow I \quad GH \rightarrow \frac{1}{P} \rightarrow 0$ $BG \rightarrow \frac{1}{P} \rightarrow 0 \quad DE \rightarrow 0$ $BH \rightarrow \frac{1}{P} \rightarrow 0 \quad DG \rightarrow - \quad B(F) = Y$ $CD \rightarrow \frac{1}{P} \rightarrow 0 \quad DH \rightarrow 0$ AC > b > BD >. AD - SE - , AE->. AG-9º AH -9. fA=Y+Y+1+1+1+1+Y --> fA =10 fc=Y+1+Y+1+1+Y+Y=11 fc=11

ear.	Month.		<u> </u>	B	<u>C</u>	()	E	
		A	0	\	4	∞	8	(W) 1(ii)
ورت	س مجا ر	ا :ماتره		0	00)	1	∞	
) D	2	∞ \	٥	l	∞ v	
			8	00	00	°	٥	
	······	.	<u></u>	-/	_	-	Š.	
, 0	0 1	W	00	∞			0	1 4 A D (C)
2/1	110	(4)	4 1	∞		ما ۔	1	o * 1 00
	1,	(5)	0	∞	-	93	1	F 0 1 00
	$ \infty $	200	٥	4			4) 1 1 0
		s mulder					$L\infty$	[4 & & 1
	0 1	٣	٢	007			ſ'a	1 4 4 1
ا ا ا ا	1 0	۴	1	00			١	c P 1 W
	N K	0	1	2	<u> </u>	12	۳	0014
	7 1	()	9	۲)		J	14	1104
	02 00	00	ŕ	0	in and in the second		3	@ R Y .]
						<u></u>		1
	TO 1	٣	4	47				01446]
		, 4	1	۳	7	1		10717
45	ψ,	۲ ,	1	4	=	> 7	2	4 4 . 14
0 0	٧	1 1	9	41				4 1 1 0 4
	4	m m	4	0				K m m 4 +]
		11					ĵ.	ماترس نهابي اللوريد
						1	15	33 63 03

f3=1+++++2V fA=1+++++=10 (ci fc = ++++++==9 fp27+1+1+124 f=24+4+44214 MAZ 10 MBZ 1 Z V MZ 1 Z 1 (二 1 = 2 1 2 1 1 1 2 1 2 1 2 4 ت رأس D بالاترین claseness سرکزی رادارد. جراکم از نظر عدد بزرگترین argmax {n, n, n, n, n, n, n, n, n, min f $f_E > f_A > f_C > f_B > f_D \rightarrow \eta_E < \eta_A < \eta_C < \eta_B < \eta_D$ 客 ج) رأس های E و A کمترین closeness صرکزی را دارند. یک راهکاری توانو ایجادیال AE یاوزن ل باشر. درمان کی افزودن بال های جریدباوزن كمتى ازكرتاه ترين مسيرهاى و موجود مللًا ايجاديال ١٥٠ ياوزن كمتر از ۳ یا یال BEباوزن کمتراز ۳ میتواند مرکزیت بالی رأس هار بهبور يىخشد. وروك المجادم عنوان نفونه المجاديال BC يا AD يا وزن له نهدد

- 1 Expected degree of any node = p(n-1).
- 2 Expected number of edges = n(n-1)p/2.
- 3 Let $\pi_k(v)$ denote the probability that node v has degree $= k \ (0 \le k \le n-1)$. Then,

$$\pi_k(v) = \binom{n-1}{k} p^k (1-p)^{n-1-k}.$$

	G(nz1,pz0,0d) (
DiaTh A Hobsel	1 1- 11- 411
n(n-1) xp = 1 x99 x 0/10 -	2 0×99 =4KNB (C
A (C)	2.1.0×9924,90 (
$\pi_{L}(v) = {n-1 \choose 2} e^{k} (1-p)$	= (1-1)(-1-2)(11-2)
K. (K)	

- 1 Expected degree of any node = p(n-1).
- **2** Expected number of edges = n(n-1)p/2.
- 3 Let $\pi_k(v)$ denote the probability that node v has degree $= k \ (0 \le k \le n-1)$. Then,

$$\pi_k(v) = \binom{n-1}{k} p^k (1-p)^{n-1-k}.$$

$$G(nz1..., pzo, oY) \bigcirc$$

$$\rho(n-1) = o_{1}o_{1}Y \times (1...-1) = o_{1}V \times (1...-1) = o_{1}V$$