Zeit-Masse-Dualitätstheorie (T0-Modell) Herleitung der Parameter κ , α und β

Johann Pascher

30. März 2025

Zusammenfassung

Dieses Dokument präsentiert eine vollständige theoretische Analyse der zentralen Parameter des T0-Modells:

- 1. Fundamentale Herleitungen in natürlichen Einheiten ($\hbar=c=G=1$)
- 2. Konvertierung in SI-Einheiten für experimentelle Vorhersagen
- 3. Mikroskopische Begründung der Korrelationslänge L_T
- 4. Störungstheoretische Ableitung von β via Feynman-Diagrammen

Inhaltsverzeichnis

1	Einleitung	2	
2	Herleitung von κ	2	
3	Herleitung von α	2 2 2 2 2 2 2 2 3 3 3 3 6 6 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3	
5	Kosmologische Implikationen		
6	Zusammenfassung 6.1 Mikroskopische Begründung von L_T	_	

1 Einleitung

Das T0-Modell postuliert eine Dualität zwischen zeitlicher und massenbezogener Beschreibung physikalischer Prozesse. Zentrale Parameter sind:

- κ : Modifikation des Gravitationspotentials $\Phi(r) = -\frac{GM}{r} + \kappa r$
- α : Photonen-Energieverlustrate $(1 + z = e^{\alpha r})$
- β : Wellenlängenabhängigkeit der Rotverschiebung $(z(\lambda)=z_0(1+\beta\ln(\lambda/\lambda_0)))$

2 Herleitung von κ

Theorem 2.1 (Herleitung von κ). In natürlichen Einheiten ($\hbar = c = G = 1$):

$$\kappa = \beta \frac{yv}{r_g}, \quad r_g = \sqrt{\frac{M}{a_0}} \tag{1}$$

In SI-Einheiten:

$$\kappa_{SI} = \beta \frac{yvc^2}{r_q^2} \approx 4.8 \times 10^{-11} \ m/s^2$$
(2)

3 Herleitung von α

Theorem 3.1 (Herleitung von α). In natürlichen Einheiten ($\hbar = c = G = 1$):

$$\alpha = \frac{\lambda_h^2 v}{L_T}, \quad L_T \sim \frac{M_{Pl}}{m_h^2 v} \tag{3}$$

In SI-Einheiten:

$$\alpha_{SI} = \frac{\lambda_h^2 vc^2}{L_T} \approx 2.3 \times 10^{-18} \ m^{-1}$$
 (4)

4 Herleitung von β

Theorem 4.1 (Herleitung von β). In natürlichen Einheiten ($\hbar = c = G = 1$):

$$\beta = \frac{\lambda_h^2 v^2}{4\pi^2 \lambda_0 \alpha_0} \tag{5}$$

Störungstheoretisches Ergebnis:

$$\beta = \frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{Pl}^2 \lambda_0^4 \alpha_0} \approx 0.008 \tag{6}$$

4.1 Feynman-Diagramm-Analyse

4.2 Experimentelle Konsequenzen

$$z(\lambda) = z_0 \left(1 + 0.008 \ln \frac{\lambda}{\lambda_0} \right) \tag{7}$$

5 Kosmologische Implikationen

- κ erklärt Rotationskurven ohne Dunkle Materie.
- α beschreibt kosmische Expansion ohne Dunkle Energie.
- β führt zu wellenlängenabhängiger Rotverschiebung, testbar mit JWST.

Abbildung 1: Rotationskurven im T0-Modell.

Parameter	Natürliche Form	SI-Wert
κ	$\beta \frac{yv}{r_q}$	$4.8 \times 10^{-11} \text{ m/s}^2$
α	$rac{\lambda_h^2 v}{L_T}$	$2.3\times 10^{-18}~{\rm m}^{-1}$
β	$\frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0}$	0.008

6 Zusammenfassung

Anhang: Vertiefende Erklärungen

- 6.1 Mikroskopische Begründung von L_T
 - Higgs-Fluktuationen:

$$\langle \delta \Phi(x) \delta \Phi(0) \rangle \sim \frac{m_h}{16\pi^2 M_{\rm Pl}} e^{-m_h|x|}$$
 (8)

• Kosmische Skala:

$$L_T \sim \frac{M_{\rm Pl}}{m_h^2 v} \approx 6.3 \times 10^{27} \text{ m}$$
 (9)

Literatur

[1] Beispielreferenz.