Curs VIII

ELEMENTE DE TEORIA GRUPURILOR

§ 7. GRUPURI CICLICE

Am observat anterior că grupurile aditive \mathbf{Z} și \mathbf{Z}_n , $n \ge 1$, sunt ciclice. Următoarea teoremă arată că acestea sunt singurele tipuri de grupuri ciclice.

Teorema 7.1. (<u>Teorema de structură a grupurilor ciclice</u>) Orice grup ciclic G este izomorf fie cu grupul **Z** al numerelor întregi, fie cu un anumit grup \mathbf{Z}_n , $n \ge 1$, de clase de resturi modulo n.

Demonstrație. Dacă G= <a>>, considerăm funcția $\phi\colon \mathbf{Z}\to G,\, \phi(n)=a^n,$ definită mai înainte. Avem

$$\varphi(m+n) = a^{m+n} = a^m a^n = \varphi(m)\varphi(n)$$

și deci ϕ este morfism de grupuri. Mai mult, ϕ este evident morfism surjectiv, deci Im ϕ = G. Considerând nucleul lui ϕ , Ker ϕ , distingem două cazuri:

- 1) Ker $\varphi = \{0\}$;
- 2) Ker $\varphi \neq \{0\}$.

În primul caz, conform teoremei fundamentale de izomorfism, avem

$$\mathbb{Z}/\{0\} \cong \operatorname{Im} \varphi$$
, adică $\mathbb{Z} \cong \mathbb{G}$;

În cazul al doilea, Ker φ este de forma n**Z** cu n \geq 1 un număr întreg și deci

$$\mathbf{Z}/n\mathbf{Z} \cong \text{Im } \phi$$
, adică $\mathbf{Z}_n \cong G$.

Observație. Din teorema de mai înainte rezultă că dacă G este un grup ciclic și *a* un generator al său, atunci:

- 1) Dacă a este de ordin infinit, atunci G este izomorf cu grupul aditiv \mathbf{Z} al numerelor întregi.
- 2) Dacă a este de ordin n (finit), atunci G este izomorf cu grupul aditiv \mathbf{Z}_n al claselor de resturi modulo n.

Propoziția 7.2. Orice subgrup și orice grup factor al unui grup ciclic este ciclic.

Demonstrație. Dacă $G = \langle a \rangle$ este un grup ciclic, iar H un subgrup al său, atunci grupul factor G/H este ciclic generat de [a], clasa lui a modulo H, adică $G/H = \langle [a] \rangle$.

Să arătăm acum că orice subgrup al unui grup ciclic este ciclic. Într-adevăr, dacă G este izomorf cu **Z**, am arătat că subgrupurile lui **Z** sunt de forma n**Z**, adică sunt ciclice; deci și subgrupurile lui G sunt ciclice.

Fie G un grup ciclic finit al cărui generator a este de ordin n și fie H un subgrup al său. Dacă $H = \{e\}$, atunci, evident, H este ciclic generat de elementul e. Dacă $H \neq \{e\}$, atunci există $x \in H$, $x \neq e$. Dar cum $x \in G$, avem că $x = a^k$ cu $k \neq 0$. De asemenea, $x^{-1} \in H$, adică $a^{-k} \in H$, deci există $r \geq 1$ astfel încât $a^r \in H$. Mulțimea de numere naturale $M = \{n \mid a^n \in H, n > 0\}$ este nevidă și cum N este bine ordonată, M are un cel mai mic

element m. Vom arăta că $H = \langle a^m \rangle$, adică H este ciclic generat de a^m . Fie $x \in \langle a^m \rangle$; atunci $x = (a^m)^k$, $k \in \mathbf{Z}$ și cum H este subgrup, iar $a^m \in H$ rezultă că $x \in H$. Reciproc, dacă $y \in H$, atunci $y \in G$, adică $y = a^t$ cu $t \in \mathbf{Z}$. Din teorema împărțirii cu rest pentru numere întregi, t = mq + r cu $q, r \in \mathbf{Z}$ iar $0 \le r < m$ și deci $y = a^t = a^{mq + r} = a^{mq} a^r = (a^m)^q$ a^r , de unde $a^r = (a^m)^{-q} y$. Deci $a^r \in H$ și cum m este cel mai mic element al lui M, rezultă m = 0 și deci m

Observație. Dacă $G = \langle a \rangle$ este un grup ciclic de ordin n, din teorema precedentă rezultă că izomorfismul dintre G și grupul aditiv \mathbf{Z}_n este dat de funcția $\phi: \mathbf{Z}_n \to G$, definită prin $\phi([k]) = a^k$. Așadar, având în vedere caracterizarea generatorilor grupului aditiv \mathbf{Z}_n dată în secțiunea 2, avem că elementul a^k este generator al lui G dacă și numai dacă K este prim cu K1.

Fie acum $n \geq 1$ un număr natural și U_n grupul multiplicativ al rădăcinilor de ordinul n ale unității, adică

$$U_n = \{z \in \mathbb{C} \mid z^n = 1\}.$$

Avem că $U_n = \{\epsilon_0, \epsilon_1, ..., \epsilon_{n-1}\}$, unde

$$\varepsilon_k = \cos(2k\pi/n) + i\sin(2k\pi/n), \ 0 \le k \le n-1.$$

Din formula lui Moivre avem că $\epsilon_k = \epsilon_1{}^k$ și deci U_n este grup ciclic de ordinul n, un generator al său fiind ϵ_1 .

Definiția 7.3. Un generator al grupului U_n se numește *rădăcină primitivă de ordinul n a unității*.

Conform celor de mai înainte rezultă că ϵ_k este rădăcină primitivă de ordinul n a unității dacă și numai dacă k este relativ prim cu n.

Exercițiu. Arătați că grupurile $(\mathbf{Q}, +)$, $(\mathbf{R}, +)$ și $(\mathbf{C}, +)$ nu sunt ciclice.

§ 8. GRUPUL DIEDRAL D4. GRUPUL CUATERNIONILOR.

Exercițiu. Dați un exemplu de grup G care are două subgrupuri H, K cu proprietatea că H \triangleleft K și K \triangleleft G, dar H nu este normal în G.