BÀI TẬP TỔNG HỢP HÌNH HỌC PHẮNG

BT1. Cho đường thẳng d không cắt đường tròn (C) tâm I và bán kính R.

- a) Tìm điểm $M \in (C)$ sao cho khoảng cách từ M đến đường thẳng d là nhỏ nhất
- b) Tìm điểm $N \in (C)$ sao cho khoảng cách từ N đến đường thẳng d là lớn nhất
- c) Tìm điểm E∈ d sao cho khoảng cách EI là nhỏ nhất.
- d) Viết phương trình đường thẳng Δ sao cho Δ vuông góc với d và Δ cắt (C) tại hai điểm A, B sao cho AB lớn nhất.
- e) Viết phương trình đường thẳng Δ sao cho Δ song song với d và Δ cắt (C) tại hai điểm A, B sao cho AB lớn nhất.
- f) Gọi H là hình chiếu vuông góc của điểm I lên đường thẳng d. Tọa độ điểm H?
- g) Gọi M là điểm thuộc d. Hai tiếp tuyến qua M tiếp xúc với (C) tại hai điểm A, B. Tìm tọa độ của M để tứ giác MAIB là hình vuông.
- h) Gọi M là điểm thuộc d. Hai tiếp tuyến qua M tiếp xúc với (C) tại hai điểm A, B. Tìm tọa độ của M để tam giác ABM là tam giác đều.
- i) Gọi M là điểm thuộc d. Hai tiếp tuyến qua M tiếp xúc với (C) tại hai điểm A, B. Tìm tọa độ của M để tứ giác MAIB có diện tích bằng ...
- j) Gọi M là điểm thuộc d. Hai tiếp tuyến qua M tiếp xúc với (C) tại hai điểm A, B. Tìm tọa độ của M để tứ giác MAIB có chu vi bằng ...

BT2. Trong mặt phẳng tọa độ Oxy, cho đường thẳng $\Delta: x + y + 2 = 0$ và đường tròn

(C): $x^2 + y^2 - 4x - 2y = 0$. Gọi I là tâm của (C), M là điểm thuộc Δ . Qua M kẻ các tiếp tuyến MA và MB đến (C) (A và B là các tiếp điểm).

- a) Tìm tọa độ của điểm M để tứ giác MAIB có diện tích bằng 10.
- b) Tìm tọa độ của điểm M để tam giác MAB là tam giác đều.
- c) Tìm tọa độ của điểm M để tam giác MAB là tam giác vuông.
- d) Tìm tọa độ của điểm M để tứ giác MAIB có chu vi bằng $6\sqrt{5}$.
- e) Tìm tọa độ của điểm M để tam giác IAB là tam giác đều.
- f) Tìm tọa độ của điểm M để tam giác IAB là tam giác vuông.
- g) Tìm tọa độ của điểm M để tam giác IAB có diện tích lớn nhất.

BT3. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 6y + 6 = 0$ và điểm M(-3;1). Qua M kẻ các tiếp tuyến MA và MB đến (C) (A và B là các tiếp điểm). Viết phương trình đường thẳng

AB.

BT4. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 6y + 6 = 0$ có tâm là I và điểm M(-3;1). Viết phương trình đường thẳng d vuông góc với IM và cắt đường tròn tại hai điểm A, B sao cho $AB = 2\sqrt{3}$.

? Nêu PP viết phương trình đường tròn đi qua ba điểm không thẳng hàng (đường tròn ngoại tiếp tam giác)

BT5. Trong mặt phẳng Oxy, cho đường hai đường thẳng $d_1: x+y-2=0$ và $d_2: x+y-8=0$, điểm M(2;2). Tìm tọa độ điểm $A \in d_1$ và $B \in d_2$ sao cho tam giác MAB vuông cân tại M.

BT6. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết hình chiếu vuông góc của điểm C trên đường thẳng AB là điểm H(-1;-1), đường phân giác trong của góc A có phương trình x-y+2=0 và đường cao kẻ từ B có phương trình 4x+3y-1=0. Tìm tọa độ các đỉnh của tam giác A, B, C.

BT7. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 + 4x + 4y + 6 = 0$ có tâm là I và đường thẳng Δ : x + my - 2m + 3 = 0. Tìm m để đường thẳng Δ cắt (C) tại hai điểm A và B sao cho diện tích tam giác IAB lớn nhất.

BT8. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng $\Delta: x + y - 5 = 0$. Viết phương trình đường thẳng AB.

BT9. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 4x + \frac{16}{5} = 0$ và hai đường thẳng $\Delta_1: x - y = 0$, $\Delta_2: x - 7y = 0$. Đường tròn (C_1) tiếp xúc với hai đường thẳng Δ_1, Δ_2 và có tâm thuộc đường tròn (C). Viết phương trình đường tròn (C_1) .

BT10. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A biết A(-1;4) và hai đỉnh còn lại thuộc đường thẳng $\Delta: x-y-4=0$, diện tích tam giác ABC bằng 18. Tìm độ các đỉnh B và C.

BT11. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2;0) là trung điểm của cạnh AB. Đường trung tuyến qua đỉnh A có phương trình 7x-2y-3=0 và đường cao qua đỉnh A có phương trình là 6x-y-4=0. Viết phương trình đường thẳng AC.

BT12. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x = 0$ có tâm là I. Tìm tọa độ điểm M thuộc (C) sao cho $\widehat{IMO} = 30^{\circ}$ (O là gốc tọa độ)

BT13. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại A, đường thẳng BC có phương trình là $\sqrt{3}.x - y - \sqrt{3} = 0$, đỉnh A và B thuộc trục hoành, bán kính đường tròn nội tiếp tam giác ABC bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC.

BT14. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm $I\left(\frac{1}{2};0\right)$ là giao điểm của hai đường chéo AC và BD, phương trình đường thẳng AB: x-2y+2=0 và AB=2AD. Tìm tọa độ các đỉnh của hình chữ nhật biết rằng đỉnh A có hoành độ âm.

BT15. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5.

BT16. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng $d_1: x-y=0$ và $d_2: 2x+y-1=0$. Tìm tọa độ các đỉnh của hình vuông ABCD biết đỉnh A thuộc d_1 , đỉnh C thuộc d_2 và các đỉnh B, D thuộc trục hoành.

BT17. Trong mặt phẳng tọa độ Oxy, cho điểm C(2;0) và elip $(E): \frac{x^2}{4} + \frac{y^2}{1} = 1$. Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A và B đối xứng với nhau qua trục hoành, tam giác ABC đều.

BT18. Giải hệ phương trình
$$\begin{cases} (a-2)(b-2) + a(b+6) = 0\\ (a-2)^2 + a^2 = (b-2)^2 + (b+6)^2 \end{cases}$$

BT19. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x + 4y - 4 = 0$ và d: 3x - 4y + m = 0. Tìm m để trên d có duy nhất điểm P mà từ đó có thể kẻ được hai tiếp tuyến PA, PB tới C A, B là các tiếp điểm) sao cho tam giác ABC đều.

BT20. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trọng tâm $G\left(\frac{4}{3};1\right)$ và M(1;1) là trung điểm của cạnh BC, đường cao BH: x + y - 7 = 0. Tìm tọa độ các đính A, B, C.

BT21. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đường cao AH: x + y - 6 = 0 và G là trọng tâm của tam giác biết rằng BG: x - 2y + 1 = 0 và CG: x - 1 = 0. Tìm tọa độ các đỉnh A, B, C.

BT22. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x + 4y + 2 = 0$. Đường tròn (C') có tâm I'(5;1) cắt đường tròn (C) tại hai điểm M, N sao cho $MN = \sqrt{5}$. Viết phương trình đường tròn (C').

BT23. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A, biết rằng các đỉnh B và C thuộc đường thẳng d: x+7y-31=0, điểm $N\left(1;\frac{5}{2}\right)$ thuộc đường thẳng AC, điểm $M\left(2;-3\right)$ thuộc đường thẳng AB. Tìm tọa độ trọng tâm G của tam giác ABC.

BT1. Trong mặt phẳng với hệ toạ độ Oxy, gọi A, B là các giao điểm của đường thẳng (d): 2x - y - 5 = 0 và đường tròn (C'): $x^2 + y^2 - 20x + 50 = 0$. Hãy viết phương trình đường tròn (C) đi qua ba điểm A, B, C(1; 1).

BT2. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng $\frac{3}{2}$, A(2; -3), B(3; -2), trọng tâm của \triangle ABC nằm trên đường thẳng (d): 3x - y - 8 = 0. Viết phương trình đường tròn đi qua 3 điểm A, B, C.

BT3. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): $\frac{x^2}{25} + \frac{y^2}{16} = 1$. A, B là các điểm trên (E) sao cho: $AF_1 + BF_2 = 8$, với $F_1 : F_2$ là các tiêu điểm. Tính $AF_2 + BF_1$.

BT4. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường tròn đi qua A(2;-1) và tiếp xúc với các trục toạ độ.

BT5. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng $\frac{3}{2}$, A(2;-3), B(3;-2). Tìm toạ độ điểm C, biết điểm C nằm trên đường thẳng (d): 3x - y - 4 = 0.

BT6. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có trọng tâm G(-2, 0) và phương trình các cạnh AB, AC theo thứ tự là: 4x + y + 14 = 0; 2x + 5y - 2 = 0. Tìm tọa độ các đỉnh A, B, C.

BT7. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có tâm $I(\frac{1}{2};0)$. Đường thẳng chứa cạnh

- AB có phương trình x 2y + 2 = 0, AB = 2AD. Tìm toạ độ các đỉnh A, B, C, D, biết đỉnh A có hoành độ âm.
- **BT8.** Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD biết M(2;1); N(4;-2); P(2;0); Q(1;2) lần lượt thuộc cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông.
- **BT9.** Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(0; 2) và đường thẳng d: x 2y + 2 = 0. Tìm trên d hai điểm B, C sao cho tam giác ABC vuông tại B và AB = 2BC.
- **BT10.** Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 6x + 5 = 0$. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 60^0 .
- **BT11.** Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình $(x-1)^2 + (y+2)^2 = 9$ và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông.
- **BT12.** Trong mặt phẳng với hệ toạ độ Oxy, **c**ho điểm A(2;-3), B(3;-2), tam giác ABC có diện tích bằng $\frac{3}{2}$;
- trọng tâm G của \triangle ABC nằm trên đường thẳng (d): 3x y 8 = 0. Tìm bán kính đường tròn nội tiếp \triangle ABC.
- **BT13.** Trong mặt phẳng với hệ toạ độ Oxy, **c**ho tam giác ABC cân, cạnh đáy BC có phương trình d_1 : x+y+1=0. Phương trình đường cao vẽ từ B là d_2 : x-2y-2=0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình
- BT14. Trong mặt phẳng với hệ toạ độ Oxy, cho Elip (E): $x^2 + 5y^2 = 5$, Parabol (P): $x = 10y^2$. Hãy viết phương trình đường tròn có tâm thuộc đường thẳng (Δ): x + 3y 6 = 0, đồng thời tiếp xúc với trục hoành Ox và cát tuyến chung của Elip (E) với Parabol (P).
- **BT15.** Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x 4y 2 = 0, cạnh BC song song với d, phương trình đường cao BH: x + y + 3 = 0 và trung điểm của cạnh AC là M(1; 1). Tìm tọa độ các đỉnh A, B, C.
- **BT16.** Trong mặt phẳng với hệ tọa độ Oxy cho $\triangle ABC$ có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, phương trình đường phân giác trong AD: x y = 0, phương trình đường cao CH: 2x + y + 3 = 0. Tìm tọa độ các đính của $\triangle ABC$.
- **BT17.** Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng (d_1) : x-7y+17=0, (d_2) : x+y-5=0. Viết phương trình đường thẳng (d) qua điểm M(0;1) tao với (d_1) , (d_2) một tam giác cân tai giao điểm của (d_1) , (d_2) .
- **BT18.** Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(1; 0). Lập phương trình đường thẳng (d) đi qua M và cắt hai đường thẳng (d₁): x + y + 1 = 0, (d₂): x 2y + 2 = 0 lần lượt tại A, B sao cho MB = 3MA.
- **BT19.** Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M(3;1). Viết phương trình đường thẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất.
- **BT20.** Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(-2;4), C(-1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng $(\Delta): 3x y 5 = 0$ sao cho hai tam giác MAB, MCD có diện tích bằng nhau.
- **BT21.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng Δ_1 : 3x + 4y + 5 = 0; Δ_2 : 4x 3y 5 = 0. Viết phương trình đường tròn có tâm nằm trên đường thẳng d: x 6y 10 = 0 và tiếp xúc với Δ_1 , Δ_2 .
- **BT22.** Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm $M_1(155; 48)$, $M_2(159; 50)$, $M_3(163; 54)$, $M_4(167; 58)$, $M_5(171; 60)$. Lập phương trình đường thẳng d đi qua điểm M(163; 50) sao cho đường thẳng đó gần các điểm đã

các canh bên của tam giác ABC.

cho nhất.

BT23. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm C(2; 0) và elip (E): $\frac{x^2}{4} + \frac{y^2}{1} = 1$. Tìm toạ độ các điểm A, B

thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều.

BT24. Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P): $y^2 = 8x$. Giả sử đường thẳng d đi qua tiêu điểm của (P) và cắt (P) tại hai điểm phân biệt A, B có hoành độ tương ứng là x_1 , x_2 . Chứng minh: $AB = x_1 + x_2 + 4$.

BT25. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $(x-1)^2 + (y+1)^2 = 25$ và điểm M(7; 3). Lập phương trình đường thẳng (d) đi qua M cắt (C) tại hai điểm A, B phân biệt sao cho MA = 3MB.

BT26. Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ các đỉnh C và D.

BT27. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác có phương trình hai cạnh là 5x - 2y + 6 = 0 và 4x + 7y - 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O.

BT28. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x - 3y - 4 = 0 và đường tròn (C): $x^2 + y^2 - 4y = 0$. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua điểm A(3;1).

BT29. Trong mặt phẳng với hệ toạ độ Oxy, lập phương trình đường thẳng d đi qua điểm A(1; 2) và cắt đường tròn (C) có phương trình $(x-2)^2 + (y+1)^2 = 25$ theo một dây cung có độ dài bằng 8.

BT30. Trong mặt phẳng với hệ toạ độ Oxy, cho ΔABC biết: B(2; -1), đường cao qua A có phương trình d₁: 3x - 4y + 27 = 0, phân giác trong góc C có phương trình d₂: x + 2y - 5 = 0. Tìm toạ độ điểm A.

BT31. Trong mặt phẳng với hệ trục toạ độ Oxy, cho cho hai đường thẳng $d_1: 2x - y + 5 = 0$. $d_2: 3x + 6y - 7 = 0$. Lập phương trình đường thẳng đi qua điểm P(2; -1) sao cho đường thẳng đó cắt hai đường thẳng d_1 và d_2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d_1 , d_2 .

BT32. Trong mặt phẳng với hệ trục toạ độ Oxy, cho Hypebol (H) có phương trình: $\frac{x^2}{16} - \frac{y^2}{9} = 1$. Viết phương trình

chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H).

BT33. Trong mặt phẳng với hệ toạ độ Oxy, cho \triangle ABC có đỉnh A(1;2), phương trình đường trung tuyến BM: 2x + y + 1 = 0 và phân giác trong CD: x + y - 1 = 0. Viết phương trình đường thẳng BC.

BT34. Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d_1 : x + y + 5 = 0, d_2 : x + 2y - 7 = 0 và tam giác ABC có A(2; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d_1 và điểm C thuộc d_2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC.

BT35. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường tròn nội tiếp tam giác *ABC* với các đỉnh:

A(-2;3), $B\left(\frac{1}{4};0\right)$, C(2;0).

BT36. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình elip với các tiêu điểm $F_1(-1;1), F_2(5;1)$ và tâm sai e = 0,6.

BT37. Trong mặt phẳng với hệ toạ độ Oxy, **c**ho điểm A(2;–3), B(3;–2), \triangle ABC có diện tích bằng $\frac{3}{2}$; trọng tâm

G của Δ ABC thuộc đường thẳng (d): 3x - y - 8 = 0. Tìm bán kính đường tròn nội tiếp Δ ABC.

BT38. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình tiếp tuyến chung của hai đường tròn (C_1) : $x^2 + y^2 - 2x - 2y - 2 = 0$, (C_2) : $x^2 + y^2 - 8x - 2y + 16 = 0$.

BT40. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc đường thẳng (d): x-y-3=0 và có hoành độ $x_I = \frac{9}{2}$, trung điểm của một cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật.

BT41. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 4y - 5 = 0$. Hãy viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua điểm $M\left(\frac{4}{5}; \frac{2}{5}\right)$

BT42. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng Δ định bởi:

(C): $x^2 + y^2 - 4x - 2y = 0$; Δ : x + 2y - 12 = 0. Tìm điểm M trên Δ sao cho từ M vẽ được với (C) hai tiếp tuyến lập với nhau một góc 60^0 .

BT43. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là 4x + 3y - 4 = 0; x - y - 1 = 0. Phân giác trong của góc A nằm trên đường thẳng x + 2y - 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC.

BT44. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x - 5y - 2 = 0 và đường tròn (C):

 $x^2 + y^2 + 2x - 4y - 8 = 0$. Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B.

BT45. Trong mặt phẳng với hệ toạ độ Oxy, cho phương trình hai cạnh của một tam giác là 5x - 2y + 6 = 0 và 4x + 7y - 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O.

BT46. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 6x + 5 = 0$. Tìm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 60° .

BT47. Trong mặt phẳng với hệ trục toạ độ Oxy, cho hai đường thẳng (d_1) : x+y+1=0, (d_2) : 2x-y-1=0.

Lập phương trình đường thẳng (d) đi qua M(1;-1) cắt (d_1) và (d_2) tương ứng tại A và B sao cho $2\overrightarrow{MA} + \overrightarrow{MB} = \vec{0}$

BT48. Trong mặt phẳng với hệ trục toạ độ Oxy, cho hypebol (H) có phương trình $\frac{x^2}{9} - \frac{y^2}{4} = 1$. Giả sử (d) là một

tiếp tuyến thay đổi và F là một trong hai tiêu điểm của (H), kẻ FM \perp (d). Chứng minh rằng M luôn nằm trên một đường tròn cố định, viết phương trình đường tròn đó

BT49. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng Δ đi qua điểm M(3;1) và cắt các trục Ox, Oy lần lượt tại B và C sao cho tam giác ABC cân tại A với A(2;-2).

BT50. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng Δ đi qua điểm M(4;1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho giá trị của tồng OA + OB nhỏ nhất.

BT51. Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết toạ độ các đỉnh A(2; 0), B(3; 0) và giao điểm I của hai đường chéo AC và BD nằm trên đường thẳng y = x. Xác định toạ độ các điểm C, D.

BT52. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 4y - 5 = 0$ và A(0; -1) \in (C). Tìm toạ độ các điểm B, C thuộc đường tròn (C) sao cho \triangle ABC đều.

BT53. Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P): $y^2 = x$ và điểm I(0; 2). Tìm toạ độ hai điểm M, N \in (P) sao cho $\overrightarrow{IM} = 4\overrightarrow{IN}$.

BT54. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là (d_1) : x + y + 2 = 0, phương trình đường cao vẽ từ B là (d_2) : 2x - y + 1 = 0, cạnh AB đi qua M(1; -1). Tìm phương trình cạnh AC.

BT55. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): $4x^2 + 9y^2 = 36$ và điểm M(1; 1). Viết phương trình đường thẳng qua M và cắt (E) tại hai điểm C, D sao cho MC = MD.

BT56. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): $5x^2 + 16y^2 = 80$ và hai điểm A(-5; -1), B(-1; 1). Một điểm M di động trên (E). Tìm giá trị lớn nhất của diện tích Δ MAB.

BT57. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2; -1) và đường thẳng d có phương trình 2x - y + 3 = 0.

Lập phương trình đường thẳng (Δ) qua A và tạo với d một góc α có $\cos \alpha = \frac{1}{\sqrt{10}}$.

BT58. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(-1;1) và B(3;3), đường thẳng (Δ): 3x - 4y + 8 = 0. Lập phương trình đường tròn qua A, B và tiếp xúc với đường thẳng (Δ).

BT59. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I (6; 2) là giao điểm của 2 đường chéo AC và BD. Điểm M (1; 5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng Δ : x + y - 5 = 0. Viết phương trình đường thẳng AB.

BT60. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 + 4x + 4y + 6 = 0$ và đường thẳng Δ : x + my - 2m + 3 = 0 với m là tham số thực. Gọi I là tâm của đường tròn (C). Tìm m để Δ cắt (C) tại 2 điểm phân biệt A và B sao cho diên tích Δ IAB lớn nhất.

BT61. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC với A(3; -7), B(9; -5), C(-5; 9), M(-2; -7). Viết phương trình đường thẳng đi qua M và tiếp xúc với đường tròn ngoại tiếp Δ ABC.

BT62. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A(1; 3) và hai đường trung tuyến của nó có phương trình là: x - 2y + 1 = 0 và y - 1 = 0. Hãy viết phương trình các cạnh của \triangle ABC.

BT63. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $(x-1)^2 + (y+1)^2 = 25$ và điểm M(7; 3). Lập phương trình đường thẳng (d) đi qua M cắt (C) tại A, B phân biệt sao cho MA = 3MB.

BT64. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; 3), B(2; -1), C(11; 2). Viết phương trình đường thẳng đi qua A và chia \triangle ABC thành hai phần có tỉ số diện tích bằng 2.

BT65. Trong mặt phẳng với hệ toạ độ Oxy, cho hình thoi ABCD có cạnh bằng 5 đơn vị, biết toạ độ đỉnh A(1; 5), hai đỉnh B, D nằm trên đường thẳng (d): x-2y+4=0. Tìm toạ độ các đỉnh B, C, D.

BT66. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 6x - 2y + 5 = 0$ và đường thẳng (d): 3x + y - 3 = 0. Lập phương trình tiếp tuyến với đường tròn (C), biết tiếp tuyến không đi qua gốc toạ độ và hợp với đường thẳng (d) một góc 45^0 .

BT67. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $(x-1)^2 + (y+2)^2 = 9$ và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) sao cho tam giác ABC vuông (B, C là hai tiếp điểm).

BT68. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng d: x-y-1=0 và hai đường tròn có phương trình:

 (C_1) : $(x-3)^2 + (y+4)^2 = 8$, (C_2) : $(x+5)^2 + (y-4)^2 = 32$. Viết phương trình đường tròn (C) có tâm I thuộc d và tiếp xúc ngoài với (C_1) và (C_2) .

BT69. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có điểm M(-1; 1) là trung điểm của cạnh BC, hai cạnh AB, AC lần lượt nằm trên hai đường thẳng d_1 : x+y-2=0 và d_2 : 2x+6y+3=0. Tìm toạ độ các đỉnh A, B, C.

BT70. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; -3), B(3; -2), diện tích tam giác bằng 1,5 và trọng tâm I nằm trên đường thẳng d: 3x - y - 8 = 0. Tìm toạ độ điểm C.

BT71. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh $A\left(\frac{4}{5};\frac{7}{5}\right)$ và phương trình hai đường phân

giác trong BB': x-2y-1=0 và CC': x+3y-1=0. Chứng minh tam giác ABC vuông.

BT72. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC vuông cân tại A, biết các đỉnh A, B, C lần lượt nằm trên các đường thẳng d: x+y-5=0, d_1 : x+1=0, d_2 : y+2=0. Tìm toạ độ các đỉnh A, B, C, biết BC = $5\sqrt{2}$.

BT73. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường tròn (C_1) : $x^2 + y^2 = 13$ và (C_2) : $(x-6)^2 + y^2 = 25$. Gọi A là một giao điểm của (C_1) và (C_2) với $y_A > 0$. Viết phương trình đường thẳng d đi qua A và cắt (C_1) , (C_2) theo hai dây cung có độ dài bằng nhau.

BT74. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm $I\left(\frac{9}{2};\frac{3}{2}\right)$ và trung

điểm M của cạnh AD là giao điểm của đường thẳng d: x-y-3=0 với trục Ox. Xác định toạ độ của các điểm A, B, C, D biết $y_A > 0$.

BT75. Trong mặt phẳng với hệ toạ độ Oxy, cho phương trình hai cạnh của một tam giác là 5x - 2y + 6 = 0 và 4x + 7y - 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O.

BT76. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 6x + 5 = 0$. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 60^0 .

BT77. Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng d_1 : x+y+1=0 và d_2 : 2x-y-1=0. Lập phương trình đường thẳng d đi qua M(1;1) và cắt d_1 , d_2 tương ứng tại A, B sao cho $2\overrightarrow{MA} + \overrightarrow{MB} = \vec{0}$.

BT78. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x - 2y - 3 = 0$ và điểm M(0; 2). Viết phương trình đường thẳng d qua M và cắt (C) tại hai điểm A, B sao cho AB có độ dài ngắn nhất.

BT79. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có tâm O, bán kính R = 5 và điểm M(2; 6). Viết phương trình đường thẳng d qua M, cắt (C) tại 2 điểm A, B sao cho Δ OAB có diện tích lớn nhất.

BT80. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh C(4; 3). Biết phương trình đường phân giác trong (AD): x + 2y - 5 = 0, đường trung tuyến (AM): 4x + 13y - 10 = 0. Tìm toạ độ đỉnh B.

BT81. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): $\frac{x^2}{100} + \frac{y^2}{25} = 1$. Tìm các điểm M \in (E) sao cho $\widehat{F_1MF_2} = 120^0$ (F₁, F₂ là hai tiêu điểm của (E)).

BT82. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $(x-3)^2 + (y-4)^2 = 35$ và điểm A(5; 5). Tìm trên (C) hai điểm B, C sao cho tam giác ABC vuông cân tại A.

BT83. Trong mặt phẳng với hệ toạ độ *Oxy*, cho hình chữ nhật ABCD có giao điểm hai đường chéo AC và BD là điểm

I(6; 2). Điểm M(1; 5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng Δ : x+y-5=0. Viết phương trình đường thẳng AB.

BT84. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 + 4x + 4y + 6 = 0$ và đường thẳng Δ có phương trình: x + my - 2m + 3 = 0. Gọi I là tâm đường tròn (C). Tìm m để Δ cắt (C) tại hai điểm phân biệt A và B sao cho diện tích tam giác IAB lớn nhất.

BT85. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 + 2x = 0$. Viết phương trình tiếp tuyến của (C), biết góc giữa tiếp tuyến này và trục tung bằng 30° .

BT86. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng (d): 2x-y-4=0. Lập phương trình đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng (d).

BT87. Trong mặt phẳng với hệ tọa độ (Oxy). Lập phương trình đường thẳng qua M(2;1) và tạo với các trục tọa độ một tam giác có diện tích bằng 4.

BT88. Trong mặt phẳng với hệ tọa độ (Oxy), cho điểm $M\left(\sqrt{3};\frac{1}{2}\right)$. Viết phương trình chính tắc của elip đi qua điểm M và nhận $F_1\left(-\sqrt{3};0\right)$ làm tiêu điểm.

BT89. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(-3;6), trực tâm H(2;1), trọng tâm $G\left(\frac{4}{3};\frac{7}{3}\right)$. Xác định toạ độ các đỉnh B và C.

BT90. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x - 4y - 2 = 0, cạnh BC song song với d, phương trình đường cao BH: x + y + 3 = 0 và trung điểm của cạnh AC là M(1; 1). Tìm toạ độ các đỉnh A, B, C.

BT91. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm P(-7;8) và hai đường thẳng $d_1:2x+5y+3=0$; $d_2:5x-2y-7=0$ cắt nhau tại A . Viết phương trình đường thẳng d_3 đi qua P tạo với d_1 , d_2 thành tam giác cân tại A và có diện tích bằng $\frac{29}{2}$.

BT92. Trong mặt phẳng với hệ toạ độ Oxy, lập phương trình đường thẳng (Δ) đi qua gốc tọa độ và cắt đường tròn (C) có phương trình : $x^2 + y^2 - 2x + 6y - 15 = 0$ thành một dây cung có độ dài bằng 8.

BT93. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC' lần lượt là x + y - 6 = 0 và 2x - y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. **BT94.** Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường thẳng Δ : x + 3y + 8 = 0, $\Delta':3x - 4y + 10 = 0$ và điểm A(-2; 1). Viết phương trình đường tròn tâm thuộc đường thẳng Δ , đi qua điểm A và tiếp xúc với đường thẳng Δ' **BT95.** Trong mặt phẳng với hệ toạ độ Oxy, cho ba đường thẳng: $d_1:2x + y - 3 = 0$, $d_2:3x + 4y + 5 = 0$,

BT96. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng (d): $\sqrt{2}x + my + 1 - \sqrt{2} = 0$ và đường tròn có phương trình (C): $x^2 + y^2 - 2x + 4y - 4 = 0$. Gọi I là tâm đường tròn (C). Tìm m sao cho (d) cắt (C) tại hai điểm phân biệt A và B. Với giá trị nào của m thì diện tích tam giác IAB lớn nhất và tính giá trị đó.

 d_3 : 4x + 3y + 2 = 0. Viết phương trình đường tròn có tâm thuộc d_1 và tiếp xúc với d_2 và d_3 .

BT97. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm E(-1; 0) và đường tròn (C): $x^2 + y^2 - 8x - 4y - 16 = 0$. Viết phương trình đường thẳng đi qua điểm E cắt (C) theo dây cung MN có độ dài ngắn nhất.

BT98. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân tại A, biết phương trình đường thẳng AB, BC lần lượt là: x + 2y - 5 = 0 và 3x - y + 7 = 0. Viết phương trình đường thẳng AC, biết rằng AC đi qua điểm F(1;-3).

BT99. Trong mặt phẳng với hệ toạ độ Oxy, cho elíp (E) có tiêu điểm thứ nhất là $\left(-\sqrt{3};0\right)$ và đi qua điểm $M\left(1;\frac{4\sqrt{33}}{5}\right)$. Hãy xác định tọa độ các đỉnh của (E).

BT100. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; 7) và đường thẳng AB cắt trục Oy tại E sao cho $\overrightarrow{AE} = 2\overrightarrow{EB}$. Biết rằng tam giác AEC cân tại A và có trọng tâm là $G\left(2;\frac{13}{3}\right)$. Viết phương trình cạnh BC.

BT101. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC với A(1; -2), đường cao CH: x-y+1=0, phân giác trong BN: 2x+y+5=0. Tìm toạ độ các đỉnh B, C và tính diện tích tam giác ABC.

BT102. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng $d_1: x-y-3=0$ và $d_2: x+y-6=0$. Trung điểm của một cạnh là giao điểm của d_1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật.

BT103. Trong mặt phẳng với hệ toạ độ *Oxy*, cho điểm A(2;-2). Viết phương trình đường thẳng d đi qua A và cắt hai trục Ox, Oy tại B và C sao cho tam giác ABC cân.

BT104. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(-1;-3); đường cao BH:5x+3y-25=0, đường cao CH:3x+8y-5=0. Viết phương trình đường thẳng BC.

BT105. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(-1;-3); trung trực của cạnh AB có phương trình 3x+2y-4=0 và G(4;-2) là trọng tâm giác ABC. Xác định tọa độ của B và C.

BT106. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có $B \in d_1: x + y + 5 = 0$ và $C \in d_2: x + 2y - 7 = 0$, trọng tâm G(2;0) và A(2;3). Tìm tọa độ các đỉnh B, C của tam giác ABC.

BT107. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường thẳng $d_1: x-y+1=0$ và $d_2: 2x+y+1=0$, điểm M(2;1). Viết phương trình đường thẳng d cắt d_1, d_2 tại A và B sao cho M là trung điểm của đoạn thẳng AB.

BT108. Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường thẳng $d_1: x-y+1=0$ và $d_2: 2x+y+1=0$, điểm M(2;1). Viết phương trình đường thẳng d cắt d_1, d_2 tại A và B sao cho $\overrightarrow{MA} = 2.\overrightarrow{MB}$.

BT109. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2;-7) và trung tuyến BM: 3x + y + 11 = 0, đương cao CH: x + 2y + 7 = 0. Viết phương trình các cạnh của tam giác ABC.

BT110. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(1;2) và trung tuyến BM: 2x + y + 1 = 0, phân giác trong của góc \widehat{C} có phương trình x + y - 1 = 0. Viết phương trình đường thẳng BC.

BT111. Viết phương trình của đường thẳng d đi qua M(2;1) và tạo với đường thẳng 2x + 3y + 4 = 0 một góc 45° .

BT112. Viết phương trình của đường thẳng d đi qua M(4;1) và cắt hai trục Ox, Oy tại A và B sao cho diện tích tam giác OAB nhỏ nhất.

BT113. Cho hai điểm A(0;6) và B(2;5). Tìm điểm M thuộc đường thẳng x-2y+2=0 sao cho MA+MB nhỏ nhất.

BT114. Viết phương trình đường tròn đi qua A(1;2) và tiếp xúc với đường thẳng 3x - 4y + 2 = 0 tại điểm M(-2;-1)

BT115. Viết phương trình đường tròn qua hai điểm A(2;3), B(-1;1) và có tâm thuộc đường thẳng x - 3y - 11 = 0.

BT116. Viết phương trình đường tròn có bán kính bằng $\sqrt{10}$ và tâm thuộc đường thẳng 4x + 3y + 2 = 0, tiếp xúc với đường thẳng 3x + y - 3 = 0.

BT117. Viết phương trình đường tròn có tâm thuộc đường thẳng 4x + 3y - 2 = 0 và tiếp xúc với hai đường thẳng x + y + 4 = 0, 2x - y + 2 = 0.

BT118. Viết phương trình đường tròn có tâm I(3;1) và cắt đường thẳng x - 2y + 4 = 0 tại hai điểm A, B sao cho AB = 4.