CS 5000: Theory of Computability Assignment 10

Vladimir Kulyukin Department of Computer Science Utah State University

November 11, 2017

1 Learning Objectives

- 1. Primitive recursive functions
- 2. Computable functions

Problem 1 (2 points)

Let f(x) be a function of one argument. Let the n-th iteration of f be defined as

$$f^{n}(x) = f(...f(x)...).$$
 (1)

For example, $f^0(x) = f(x) = x$, $f^1(x) = f(x)$, $f^2(x) = f(f(x))$, $f^3(x) = f(f(f(x)))$, etc. Let $i_f(n, x) = f^n(x)$. Show that if f is primitive recursive, then so is $i_f(n, x)$.

Problem 2 (2 points)

Let COMP be the class of functions obtained from the initial functions by a finite sequence of compositions.

- 1. Show that for every function $f(x_1,...,x_n) \in \text{COMP}$, either $f(x_1,...,x_n) = k$, for some constant k, or $f(x_1,...,x_n) = x_i + k$, for $1 \le i \le n$ and some constant k.
- 2. An *n*-ary function f is *monotone* if for all *n*-tuples $(x_1,...,x_n), (y_1,...,y_n)$ such that $x_i \leq y_i, 1 \leq i \leq n, f(x_1,...,x_n) \leq f(y_1,...,y_n)$. Show that every function in COMP is monotone.

Problem 3 (1 point)

Let $\pi(x)$ be the number of primes that are $\leq x$. Show that $\pi(x)$ is primitive recursive.

What to Submit?

Save your solutions in hw10.pdf and submit it in Canvas.