# 一种基于随机采样的贴片图 像自动生成算法

用户手册

## 1.设计说明

#### 1.1 概述

本算法程序包括多个计算模块,主要用于通过对输入设计样本进行解析统计,使用贴片图片生成新的设计方案,

本算法程序由多个m文件、一个约束txt文件、多个设计样本txt文件和多个贴片jpg文件组成。可使用Matlab程序直接进行运行计算。(如图 1)

| 📗 design            | 文件夹           |        |
|---------------------|---------------|--------|
| 脂 facade            | 文件夹           |        |
| 🃗 newDesigns        | 文件夹           |        |
| 🗹 .gitignore        | GITIGNORE 文件  | 1 KB   |
| analysisFactor.m    | Notepad++ Doc | 4 KB   |
| analysisFactorNS.m  | Notepad++ Doc | 5 KB   |
| 🔤 bestDesign.jpg    | JPEG 图像       | 192 KB |
|                     | Notepad++ Doc | 7 KB   |
|                     | Notepad++ Doc | 7 KB   |
| 🔐 choseBestDesign.m | Notepad++ Doc | 1 KB   |
| onstrain.txt        | Notepad++ Doc | 1 KB   |
| ☑ dataReader.m      | Notepad++ Doc | 1 KB   |
| ifactorFun.m        | Notepad++ Doc | 2 KB   |
| ifactorFunNS.m      | Notepad++ Doc | 2 KB   |
| ifactorsFun.m       | Notepad++ Doc | 1 KB   |
|                     | Notepad++ Doc | 1 KB   |
| 🔐 klDivergence.m    | Notepad++ Doc | 2 KB   |
| klPreprocee.m       | Notepad++ Doc | 2 KB   |
| LICENSE             | 文件            | 18 KB  |
| mergeFact.m         | Notepad++ Doc | 1 KB   |
| 🕍 patReplace.m      | Notepad++ Doc | 1 KB   |
| 🔐 patSymAnaly.m     | Notepad++ Doc | 1 KB   |
|                     | Notepad++ Doc | 1 KB   |
| README.md           | MD 文件         | 1 KB   |
| 📝 rebuildByMat.m    | Notepad++ Doc | 2 KB   |
| 🔐 symAnaly.m        | Notepad++ Doc | 1 KB   |
|                     | Notepad++ Doc | 2 KB   |

图 1 该程序的文件组成(部分)

#### 1.2 编程语言

程序采用 Matlab 编程语言,编程环境是 PC 计算机和 Win7 操作系统,可以在绝大多数版本的 Matlab 上运行。

#### 1.3 运行环境

软件可以运行在大部分普通 PC 计算机上,使用 Windows 系列操作系统。

## 2.操作步骤

#### 2.1 修改默认参数

多数默认参数位于 synTiles.m 文件中(如图 2), iteraN 为迭代次数, 默认为 30次, 迭代次数设置过小可能会导致无法收敛至全局最优解。tileDir 为贴片图片读取目录, 贴片图片须按正整数顺序命名(如图 3)。 designDir 为设计样本的读取目录, newDesignDir 为设计方案输出目录, constrPath 为约束文本文件路径。

在 synBlockSS.m 中可以设置 newDesignDir 参数, 此参数需与 synTiles.m 中的 newDesignDir 保持一致。pWlakOrig 、pFlipOrig 、pSmoothOrig、TOrig 为初始迭代参数, 不建议用户修改(如图 4)。

图 2 参数位置(synTiles.m)



图 3 贴片图片文件

图 4 参数位置(synBlockSS.m)

#### 2.2 约束及设计样本设置。

约東文件由一个数字矩阵构成, 1 表示该位置有填充贴片, 0 表示该位置为空白, 外部由 0 表示边界, 且约東文件应具备可满足性, 对于默认的实验样本可满足性表示为, 约束矩阵横向宽度为偶数,纵向高度为 3n+2 (图 5)。

设计样本文件应命名为 design\*.txt,\*表示设计样本序号。设计样本文件同样由一个数字矩阵构成,非零数字表示填充在该位置的贴片序号,0表示该位置为空白,外部由0表示边界(图6)。

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
         0 0 0 0 0
                  0
                   0 0 1
                           1
                         1
            0
              0 0 0
         0
          0
                   0
                     0
            0 0 0
           1
            0
              0 0 0 1
            0
              0 0
                 0
                            1
   1
     1
         1
           1
            1
              1
                1
                    1
                         1
                           1
                            1
                  1
       1
         1
  1 1 1
           1
            1
              1
                1
                   1
                     1
                       1
                         1
                  1
                           1
                            1
            1
1 1 1 1
         1 1
              1
                1
                  1 1
                     1
                         1 1
                            1 1
1 1 1
         1 1 1 1 1 1 1
                     1
                       1
                         1 1 1 1
```

图 5 约束文件

图 6 设计样本文件

### 2.3 执行算法。

在 Matlab 中将工作目录设置为当前目录,输入 synTiles 运行,即可执行该算法。Matlab 在执行完数据预处理后将显示 preprocessing finished,对于每次迭代将显示迭代序号,并对局部最优解和全局最优解进行提示。执行过程中在设计样本目录下会输出每次迭代产生的设计方案(如图 7),最优结果 bestDesign.jpg 将输出在当前目录。



图 7 每次迭代的中间结果