LING439/539 - Statistical NLP Probabilistic context-free grammars

Monday, September 29 2016

Probabilistic context-free grammars

Tree drawing...


```
[ [S

[NP-SBJ [DT The] [NN luxury] [NN auto] [NN maker] ]

[NP-TMP [JJ last] [NN year] ]

[VP [VBD sold]

[NP [CD 1,214] [NNS cars] ]

[PP-LOC [IN in]

[NP [DT the] [NNP U.S.] ]]]]] http://ironcreek.net/phpsyntaxtree
```

Treebanks as grammars

 $S \rightarrow NP-SBJ NP-TMP VP$

 $\text{NP-SBJ} \quad \rightarrow \quad \text{DT NN NN NN}$

 $NP-TMP \rightarrow JJ NN$

 $VP \rightarrow VBD NP PP-LOC$

 $NP \rightarrow CD NNS$

 $PP-LOC \rightarrow IN NP$

 $\text{NP} \quad \rightarrow \quad \text{DT NNP}$

...

Treebanks as grammars

```
S \rightarrow NP-SBJ NP-TMP VP
 NP-SBJ \rightarrow DT NN NN NN
NP-TMP \rightarrow JJNN
      VP \rightarrow VBD NP PP-LOC
      NP \rightarrow CD NNS
PP-LOC \rightarrow IN NP
      NP \rightarrow DT NNP
      DT \rightarrow The
     NN \rightarrow luxury
     NN \rightarrow auto
      NN \rightarrow maker
```

Context-free grammar

$$A \rightarrow \gamma$$

where $A \in V$, and $\gamma \in (V \cup \Sigma)^*$

Context-free grammar: $S \to aSa$

 $S \to bSb$

 $S \to \epsilon$

Context-free language: $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Chomsky normal form (CNF)

A grammar where every production is either of the form

$$\begin{array}{ll} A \to BC \\ \text{or} & \text{where } A,B,C \in V \text{ and } c \in \Sigma. \\ A \to c \end{array}$$

Converting a CFG to the Chomsky normal form

- 1. START: Eliminate the start symbol from right-hand sides
 - ▶ Introduce a new start symbol S_0 , and a new rule $S_0 \to S$
 - where S is the previous start symbol. This doesn't change the grammar's produced language, and S_0 won't occur on any rule's right-hand side.

2. TERM: Eliminate rules with nonsolitary terminals

- ▶ To eliminate each rule $A \to X_1... \ a ... X_n$ with a terminal symbol a being not the only symbol on the right-hand side,
- ▶ introduce a new nonterminal symbol N_a for every such terminal, $A \to X_1...N_a...X_n$
- and a new rule $N_a \to a$

- 3. BIN: Eliminate right-hand sides with more than 2 nonterminals
 - ▶ Replace each rule $A \to X_1 X_2 ... X_n$ with more than 2 nonterminals $X_1, ..., X_n$ by rules
 - $A \rightarrow X_1A_1$
 - $A_1 \to X_2 A_2,$
 - **...** ,
 - ▶ $A_{n-2} \to X_{n-1}X_n$ where A_i are new nonterminal symbols.

4. UNIT: Eliminate unit rules

- ▶ A unit rule is a rule of the form $A \to B$ where A, B are nonterminal symbols, and
- ▶ $B \to X_1...X_n$ where $X_1...X_n$ is a string of nonterminals and terminals,
- remove them and add rule $A \to X_1...X_n$ unless this is a unit rule which has already been removed.

5. DEL: Eliminate ϵ -rules

- ▶ An ϵ -rule is a rule of the form $A \to \epsilon$, where A is not the grammar's start symbol.
- ▶ To eliminate all rules of this form, first determine the set of all nonterminals that derive ϵ (nonterminals nullable).
 - If a rule $A \to \epsilon$ exists, then A is nullable.
 - ▶ If a rule $A \to X_1...X_n$ exists, and each X_i is nullable, then A is nullable, too.
- Obtain an intermediate grammar by replacing each rule $A \to X_1...X_n$ by all versions with some nullable X_i omitted. By deleting in this grammar each ϵ -rule, unless its left-hand side is the start symbol, the transformed grammar is obtained.

For example, in the following grammar, with start symbol S_0 ,

- $ightharpoonup S_0 o AbB|C$
- ightharpoonup B o AA|AC
- ightharpoonup C o b|c
- $ightharpoonup A
 ightharpoonup a |\epsilon|$

where the nonterminal A, and hence also B, is nullable, while neither C nor S_0 is.

$$ightharpoonup S_0 o AbB|C$$

$$\triangleright B \to AA|AC$$

$$ightharpoonup B o AA|AA|AA|AA|AA|AC|AC$$

$$ightharpoonup A o a | \epsilon$$

$$ightharpoonup A
ightharpoonup a|_{\not \in}$$

where the nonterminal A, and hence also B, is nullable, while neither C nor S_0 is.

$$ightharpoonup S_0 o AbB|Ab|bB|b|C$$

$$\triangleright B \to AA|A|AC|C$$

Exercise

Consider the CFG:

- ightharpoonup S
 ightharpoonup aXbX
- $ightharpoonup X
 ightarrow aY|bY|\epsilon$
- ightharpoonup Y
 ightharpoonup X|c

Which one is nullable?

DEL:

- \triangleright $S \rightarrow aXbX$
 - ightharpoonup S
 ightarrow aXbX|aXbX|aXbX|aXbX|
- $ightharpoonup X o aY|bY|\epsilon$
 - $X \to aY|aY|bY|bY|\not\in$
- ightharpoonup Y
 ightharpoonup X|c

Remove Unit $Y \to X$ (UNIT)

- ightharpoonup S
 ightarrow aXbX|abX|aXb|ab
- ightharpoonup X
 ightharpoonup aY|a|bY|b
- ightharpoonup Y
 ightharpoonup X|c
 - $\blacktriangleright \ Y \to aY|a|bY|b|c$

Add $A \to a$, $B \to b$, $C \to c$ (TERM)

- $\blacktriangleright \ S \to aXbX|abX|aXb|ab$
 - ightharpoonup S o AXBX|ABX|AXB|AB
- ightharpoonup X o aY|a|bY|b
 - ightharpoonup X o AY|A|BY|B
- ightharpoonup Y
 ightarrow aY|a|bY|b|c
 - ightharpoonup Y o AY|A|BY|B|C
- ightharpoonup A
 ightharpoonup a
- ightharpoonup B o b
- ightharpoonup C
 ightharpoonup c

BIN:

- $\triangleright S \rightarrow AXMBXN|ABXN|AXMB|AB$
 - $M \to AX$
 - ightharpoonup N o BX
- $X \to AY|A|BY|B$
- ightharpoonup Y o AY|A|BY|B|C
- ightharpoonup A
 ightharpoonup a
- ightharpoonup B o b
- ightharpoonup C
 ightharpoonup c

- ightharpoonup S o MN|AN|MB|AB
- ightharpoonup M o AX
- ightharpoonup N o BX
- ightharpoonup X o AY|A|BY|B
- ightharpoonup Y
 ightarrow AY|A|BY|B|C
- ightharpoonup A
 ightharpoonup a
- $\triangleright B \rightarrow b$
- ightharpoonup C
 ightharpoonup c

Head and dependencies

Head percolation

Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD Dissertation, University of Pennsylvania, 1999.

Dependencies

Chunking: Shallow parsing

Abney, Steven (1991), Parsing By Chunks. Principle-Based Parsing Kluwer Academic Publishers, pp. 257-278.