2008 CE 52-68

1

[Gate 2017]

AI24BTECH11019-KOTHA PRATHEEK REDDY

1) The wavefunction of which orbital is spherically symmetric: [Gate 2017]

a) p_x	b) p_y	c) s	d) d_{xy}	
 2) The contour integral ∮ dz/(1+z²) evaluated along a contour going from -∞ to ∞ along the real axis and closed in the lower-half plane by a half circle is equal to(up to two decimal places). [Gate 2017] 3) The compton wavelength of a proton is fm.(up to two decimal places). (mp = 1.67 × 10⁻²⁷kg, h = 6.626 × 10⁻³⁴Js, e = 1.602 × 10⁻¹⁹C, c = 3 × 10⁸ms⁻¹) [Gate 2017] 4) Which one of the following conservation laws is violated in the decay τ⁺ → μ⁺μ⁺μ⁻ 				
a) Angular mb) Total Lepte		c) Electric chard) Tau numebe	•	
5) Electromagne	etic interactions are:		[Gate 2	017]
b) C conservi	serving but <i>CP</i> conserving but <i>CPT</i> conserving bu	d) CPT non-co	nserving	
6) A one dimensional simple harmonic oscillator with Hamiltonian $H_0 = \frac{p^2}{2m} + \frac{1}{2}kx^2$ is unjected to a small perturbation. $H_1 = \alpha x + \beta x^2 + \gamma x^4$. The first order correction to the ground state energy is dependent on [Gate 2017]				
a) only β	b) α and γ	c) α and β	d) only γ	
7) For the Hamiltonian $H = a_0 I + \overrightarrow{b} \cdot \overrightarrow{\sigma}$ where $a_0 \in \mathbb{R}$, \overrightarrow{b} is a real vector, I is the 2×2 identity matrix, and $\overrightarrow{\sigma}$ are the Pauli matrices, the ground state energy is [Gate 2017]				
a) <i>b</i>	b) $2a_0 - b $	c) $a_0 - b $	d) a ₀	
8) The cofficient of e^{ikx} in the Fourier expansion of $u(x) = A \sin^2(\alpha x)$ for $k = -2\alpha$ is [Gate 2017]				

a) A/4 b) -A/4 c) A/2 d) -A/2

harmonic oscillator is

9) The degeneracy of the third energy level of a 3-dimensional isotropic quantum

a) 6

b) 12

c) 8

- d) 10
- 10) The electronic ground state energy of the Hydrogen aton is -13.6eV. The highest possible electronic energy eigenstate has an energy equal to [Gate 2017]
 - a) 0

- b) 1eV
- c) +13.6eV
- d) inf
- 11) A reversible Carnot engine is operated between temperatures T_1 and T_2 ($T_2 > T_1$) with a photon gas as the working substance. The efficiency of the engine is [Gate 2017]
- a) $1 \frac{3T_1}{4T_2}$ b) $1 \frac{T_1}{T_2}$ c) $1 \left(\frac{T_1}{T_2}\right)^{\frac{3}{4}}$ d) $1 \left(\frac{T_1}{T_2}\right)^{\frac{3}{4}}$
- 12) In the nuclear reaction ${}^{13}C_6 + \nu_e \rightarrow {}^{13}N_7 + X$, the particle X is

[Gate 2017]

- a) an electron
- b) an anti-electron c) a muon
- d) a pion
- 13) Three charges (2C, -1C, -1C) are placed at the vertices of an equilateral triangle of side 1m as shown in the figure. The component of the electric dipole moment about the marked origin along the \hat{y} direction is Cm. [Gate 2017]

