Assignment-2

AI24BTECH11019-PRATHEEK

A.FILL IN THE BLANKS

1) If
$$y = f\left(\frac{2x+1}{x^2+1}\right)$$
 and $f'(x) = \sin x^2$, then $\frac{dy}{dx} = \dots$ (1982 – 2*Marks*)
2) If $f_r(x), g_r(x), h_r(x)$, $r = 1, 2, 3$ are polynomials in x such that $f_r(a) = g_r(a) = h_r(a), r = 1, 2, 3$ and $F(x) = \begin{cases} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{cases}$ then $F'(x)$ at $x = a$ is ... (1985 – 2*Marks*)
3) If $f(x) = \log_x(\ln x)$, then $f'(x)$ at $x = e$ is ... (1982 – 2*Marks*)
4) The derivative of $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ with respect to $\sqrt{1-x^2}$ at $x = \frac{1}{e}$ is ... (1986 – 2*Marks*)
5) If $f(x) = |x-2|$ and $g(x) = f[f(x)]$, then $g'(x) = \dots$ for $x > 20$ (1990 – 2*Marks*)
6) if $xe^{xy} = y + \sin^2 x$, then at $x = 0, \frac{dy}{dx} = \dots$

B.TRUE/FALSE

1) The derivative of an even function is always an odd function

(1983 - 1Mark)

C.MCQs with One Correct Answer

1) If
$$y = P(x)$$
, a polynomial of degree 3,then $2\frac{d}{dx}\left(y^3\frac{d^2y}{dx^2}\right)$ equals (1988 – 2*Marks*)

a) P''(x) + P'(x)

c) P(x)P''(x)

b) P'(x)P''(x)

- d) a constant
- 2) Let f(x) be a quadratic expression which is positive for all the real values of x. If g(x) = f(x) + f(x)f'(x) + f''(x), then for any real x,

a)
$$g(x) < 0$$

c) g(x) = 0

b) g(x) > 0

- d) $g(x) \ge 0$
- 3) If $y = (\sin x)^{\tan x}$ then $\frac{dy}{dx}$ is equal to

a) $(\sin x)^{\tan x} \left(1 + \sec^2 \log \sin x\right)$ b) $\tan x (\sin x)^{\tan x - 1} \cdot \cos x$

c) $(\sin x)^{\tan x} \sec^2 \log \sin x$ d) $\tan x (\sin x)^{\tan x-1}$

4) If
$$x^2 + y^2 = 1$$
 then (2000)

a)
$$yy'' - 2(y')^2 + 1 = 0$$

b) $yy'' + (y')^2 + 1 = 0$
c) $yy'' - (y')^2 + 1 = 0$
d) $yy'' + 2(y')^2 + 1 = 0$

5) Let
$$f(x):(0,\infty)\to\mathbb{R}$$
 and $F(x)=\int_0^x f(t)\,dt$. If $F(x^2)=x^2\,(1+x)$, then $f(4)$ equals (2001S)

a) $\frac{5}{4}$

b) 7

c) 4

d) 2

6) If y is a function of x and $\log(x + y) - 2xy = 0$, then the value of y'(0) is equal to

(2004S)

a) 1

b) -1

c) 2

d) 0