MATHM5195 EXERCISE SHEET 5 - THE LAST ONE! SOLUTIONS

DUE: MAY 1, 2020 (ELECTRONICALLY)

Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be two algebraic sets, and let

$$X \times Y = \{(x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{A}^{n+m} : (x_1, \dots, x_n) \in X (y_1, \dots, y_m) \in Y\}$$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.

(b) Show that if both *X* and *Y* are irreducible, then also $X \times Y$ is irreducible.

Solution. (a) We may assume that $X \subset \mathbb{A}^n$ is $V(f_1,\ldots,f_k)$ where $f_i \in K[x_1,\ldots,x_n]$ for $i=1,\ldots,k$ and $Y \subset \mathbb{A}^m$ is $V(g_1,\ldots,g_l)$ for $g_i \in K[y_1,\ldots,y_m]$, $i=1,\ldots,l$. Note that we can regard the f_i and g_i as elements in $K[x_1,\ldots,x_n,y_1,\ldots,y_m]$, e.g., via defining $\tilde{f}_i(x_1,\ldots,x_n,y_1,\ldots,y_m):=f_i(x_1,\ldots,x_n)$ and $\tilde{g}_i(x_1,\ldots,x_n,y_1,\ldots,y_m):=g_i(y_1,\ldots,y_m)$. Then $W:=V(\tilde{f}_1,\ldots,\tilde{f}_k,\tilde{g}_1,\ldots,\tilde{g}_l)\subseteq \mathbb{A}^{n+m}$ is an algebraic set. In the following write shorthand (x,y) for $(x_1,\ldots,x_n,y_1,\ldots,y_m)$. Then

$$W = \{(x,y) \in \mathbb{A}^{n+m} : \tilde{f}_1(x,y) = \dots = \tilde{f}_k(x,y) = \tilde{g}_1(x,y) = \dots = \tilde{g}_l(x,y) = 0\}$$

$$= \{(x,y) \in \mathbb{A}^{n+m} : f_1(x) = \dots = f_k(x) = 0 \text{ and } g_1(y) = \dots = g_l(y) = 0\}$$

$$= \{(x,y) \in \mathbb{A}^{n+m} : x \in X \text{ and } y \in Y\}.$$

This shows that $W = X \times Y$.

(b) We assume that $X \times Y = Z_1 \cup Z_2$ for some algebraic sets Z_i and $Z_i \subsetneq X \times Y$. We show that this implies that X is reducible, a contradition: first, for $x \in X$ the set $\{x\} \times Y$ is irreducible (it is in fact, isomorphic to Y). We can write

$$\{x\}\times Y=(Z_1\cap (\{x\}\times Y))\cup (Z_2\cap (\{x\}\times Y)).$$

Since $\{x\} \times Y$ is irreducible, it is either contained in Z_1 or in Z_2 . Now define $X_i := \{x \in X : \{x\} \times Y \subseteq Z_i\}$ for i = 1, 2. Clearly, $X = X_1 \cup X_2$ and $X_i \subsetneq X$, since the Z_i are irreducible. It remains to show that the X_i are closed. Note that the set $X \times \{y\}$ either lies entirely in Z_1 or in Z_2 for any $y \in Y$ (see this like above, or alternatively, by showing that $X \times \{y\} = Z_i \cap (\mathbb{A}^n \times \{y\})$ for i = 1 or i = 2). So the set $Z_i \cap (X \times \{y\}) = \{x \in X : (x,y) \subset Z_i\}$ is closed for any $y \in Y$. Consider the isomorphism $\varphi : X \to X \times \{y\}$. This is a morphism of affine algebraic varieties and one can show that it is continuous (see e.g., Ravi Vakil's lecture notes: https://math.stanford.edu/~vaki1/725/class4.pdf). Then $\varphi^{-1}(Z_i \cap (X \times \{y\})) = X_i$ is closed in X (as the preimage of a closed set is closed).

- **Problem 2.** (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
- (b) Give an example of a maximal ideal J in $\mathbb{R}[x_1, \dots, x_n]$ such that $V(J) = \emptyset$. Why does this not contradict the Nullstellensatz?

Solution. (a) Consider $\mathbb{A}^1_{\mathbb{R}}$. Then each $z \in \mathbb{Z}$ is an algebraic subset of $\mathbb{A}^1_{\mathbb{R}}$: $\{z\} = V(x-z)$, where $x-z \in \mathbb{R}[x]$. But $\mathbb{Z} = \bigcup_{z \in \mathbb{Z}} V(x-z)$ is not an algebraic subset of $\mathbb{A}^1_{\mathbb{R}}$, since if there was a polynomial $f \in \mathbb{R}[x]$ vanishing on every integer, it would have $\deg(f) = \infty$. Contradiction.

(b) Let $J=\langle x^2+1\rangle$. Then J is maximal because $\mathbb{R}[x]/J\cong\mathbb{C}$ is a field. But $f(x)=x^2+1>0$ for any $x\in\mathbb{R}$. This does not contradict the Nullstellensatz because \mathbb{R} is not an algebraically closed field.

Problem 3. (a) Show that the set $\{(x,0): x \neq 0, x \in \mathbb{R}\} \subset \mathbb{A}^2_{\mathbb{R}}$ is not an affine variety.

- (b) Give an example to show that the set theoretic difference $X \setminus Y$ of two affine algebraic sets does not need to be an algebraic set.
- **Solution.** (a) Let $X = \{(x,0) : x \neq 0, x \in \mathbb{R}\}$ and suppose that $X = V(f_1, \ldots, f_r)$ for some $f_i \in \mathbb{R}[x,y]$. Fix i and define a polynomial $g \in \mathbb{R}[x]$ by $g(x) = f_i(x,0)$. Then for all $x \neq 0$, $f_i(x,0) = 0$ and hence g(x) = 0 for all $x \neq 0$. Therefore g is a polynomial with an infinite number of zeros, so must be the zero polynomial. Hence also g(0) = 0 and so $f_i(0,0) = 0$, and X cannot be an algebraic set.
- (b) Let X = V(y) in $\mathbb{A}^2_{\mathbb{R}}$ and Y = V(x,y). Then $X \setminus Y = \{(x,0) : x \neq 0, x \in \mathbb{R}\}$. We have seen in (a) that this is not an algebraic set.
- **Problem 4.** (a) Determine the cardinality of V(f) where $f(z) = z^5 z^4 + z^3 1$ is in $\mathbb{C}[z]$ and compare it to $\dim_{\mathbb{C}}(\mathbb{C}[z]/\langle z^5 z^4 + z^3 1 \rangle)$ (dimension here means vector space dimension).
- (b) Same question for $V(x-2y,y^2-x^3+x^2+x)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x,y]/\langle x-2y,y^2-x^3+x^2+x\rangle$. Geometric interpretation?
- (c) Same question for $V(x^3 yz, y^2 xz, z^2 x^2y)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x, y, z]/\langle x^3 yz, y^2 xz, z^2 x^2y\rangle$. (Hint: Recall that $\dim_{\mathbb{C}}(\mathbb{C}[t]) = \infty$ and so also for any \mathbb{C} -module containing $\mathbb{C}[t]$)

Solution. (a) Since f is a complex polynomial, it has exactly 5 zeros. A computation (e.g. in Maple) shows that all five zeros are different. On the other hand $(\mathbb{C}[z]/\langle z^5-z^4+z^3-1\rangle\cong\mathbb{C}z^4\oplus\mathbb{C}z^3\oplus\mathbb{C}z^2\oplus\mathbb{C}z\oplus\mathbb{C}$, so its vector space dimension is also 5.

(b) In order to get $V(x-2y, y^2-x^3+x^2+x)$, we solve the system of equations x=2y and $y^2-x^3+x^2+x=0$. Substituting the first equation into the second one, we see that x is one of the three values: $x_1=0$, $x_2=5/2+\frac{\sqrt{29}}{2}$ or $x_3=5/2-\frac{\sqrt{29}}{2}$. So we get that

$$V(x-2y,y^2-x^3+x^2+x) = \left\{ (0,0) \cup \left\{ (5/2 + \frac{\sqrt{29}}{2}, 5/4 + \frac{\sqrt{29}}{4}) \right\} \cup \left\{ (5/2 - \frac{\sqrt{29}}{2}, 5/4 - \frac{\sqrt{29}}{4}) \right\}.$$

Similarly as above we see that $\mathbb{C}[x,y]/\langle x-2y,y^2-x^3+x^2+x\rangle\cong\mathbb{C}[x]/\langle x^3-5x^2-x\rangle\cong\mathbb{C}x^2\oplus\mathbb{C}x\oplus\mathbb{C}$. So again the two numbers are equal.

(c) For $V(x^3-yz,y^2-xz,z^2-x^2y)$ we can easily check that all points of the form (t^3,t^4,t^5) for any $t\in\mathbb{C}$ are contained in this algebraic set. We can find the surjective ring homomorphism $\varphi:\mathbb{C}[x,y,z]\to\mathbb{C}[t^3,t^4,t^5]$ that sends $x\mapsto t^3,y\mapsto t^4,z\mapsto t^5$. A computation shows that $I=\langle x^3-yz,y^2-xz,z^2-x^2y\rangle$ is contained in the ideal $\ker\varphi$ (one can show that the two ideals are equal!). This means that $\mathbb{C}[x,y,z]/\ker\varphi\subseteq\mathbb{C}[x,y,z]/I$. But by the homomorphism theorem one has $\mathbb{C}[x,y,z]/\ker\varphi\cong\mathbb{C}[t^3,t^4,t^5]$, thus $\mathbb{C}[x,y,z]/I$ contains the ring $\mathbb{C}[t^3,t^4,t^5]$. But this ring contains the ring $\mathbb{C}[t^3]$, which has infinite dimension as a \mathbb{C} -vector space. So the cardinality of $V(x^3-yz,y^2-xz,z^2-x^2y)$ is infinity.

Problem 5. (a) Fix a monomial order on \mathbb{N}^3 and let $K = \mathbb{C}$. Are the polynomials $P_1 = x^3 - yz$, $P_2 = x^2y - z^3$ and $P_3 = y^2 - z^2$ a Gröbner basis with respect to this order?

- (b) If not, then complete the polynomials to a Gröbner basis.
- (c) Does the system of equations $P_1(x,y,z) = P_2(x,y,z) = P_3(x,y,z) = 0$ have a solution? (Try to answer this question without actaully calculating one!)

Solution. (a) Define a linear order by $\lambda=(\frac{\sqrt{3}}{2},\sqrt{2},1)$. This is a linear order because the components $\frac{\sqrt{3}}{2}$, $\sqrt{2}$, 1 are in \mathbb{R}_+ and they are \mathbb{Q} -linearly independent (see this by assuming that there exists a dependence relation

$$q_1\frac{\sqrt{3}}{2} + q_2\sqrt{2} + q_3 = 0 ,$$

with $q_i \in \mathbb{Q}$. Clearing denominators, we may assume that $q_i \in \mathbb{Z}$. Assume that $q_2 \neq 0$ (the argument goes similar for q_1, q_3), then we may write $\sqrt{2} = \frac{-2q_3 - \sqrt{3}q_1}{2q_2}$. Squaring this equation yields $2 = \frac{4q_3^2 + 3q_1^2 + 4\sqrt{3}q_1q_3}{4q_2^2}$. Now rewrite this equation in the form $4q_1q_3\sqrt{3} = \ldots \in \mathbb{Q}$. This can only hold if either $q_1 = 0$ or $q_3 = 0$. Plugging $q_1 = 0$ into the original equation yields $\sqrt{2} \in \mathbb{Q}$, which is a contradiction. Similarly, $q_3 = 0$ would mean that $\sqrt{\frac{2}{3}} \in \mathbb{Q}$, also a contradiction. This shows that λ defines a linear order.)

Then $\operatorname{Im}_{\lambda}(P_1)=x^3$, $\operatorname{Im}_{\lambda}(P_2)=z^3$, and $\operatorname{Im}_{\lambda}(P_3)=y^2$. Then $S_{12}=x^5y-yz^4=x^2yP_1-yzP_2$, thus $\overline{S_{12}}^{(P_1,P_2,P_3)}=0$. Similarly: $S_{23}=x^2y^3-z^5=z^2P_2+x^2yP_3$ and $S_{13}=-y^3z+x^3+x^3z^2=z^2P_1-yzP_2$. Thus by Buchberger's criterion, the P_i form a Gröbner basis with respect to λ .

Note: One can show that if the leading monomials (with respect to a chosen monomial order) of a collection of polynomials P_1, \ldots, P_k do not have any nontrivial factors in common, then the P_1, \ldots, P_k already form a Gröbner basis with respect to the chosen monomial order.

- (b) If we had chosen another monomial order, e.g. lex with z > y > x, then we see that $lm_{lex}(P_1) = yz$, $lm_{lex}(P_2) = z^3$ and $lm_{lex}(P_3) = z^2$. Using the notation from the lecture, we have $F_0 = \{P_1, P_2, P_3\}$. Then we get the S-polynomials: $S_{12} = x^3y^2 x^2y^2$, $S_{13} = x^3z y^3$ and $S_{23} = x^2y x^3y$. One immediately sees that $S_{12} = yS_{23}$. Thus $F_1 = \{P_1, P_2, P_3, P_4 = S_{13}, P_5 = S_{23}\}$. Calculating S-polynomials again, we only get one new one: $S_{15} = x^6 x^5$. Calculating S-polynomials again, we find that all of them reduce to 0 by division through F_1 . Thus F_1 is a Gröbner basis with respect to lex.
- (c) For this we have to determine whether $1 \in \langle P_1, P_2, P_3 \rangle$. Using the monomial order from (a), we easily see that 1 is not contained in this ideal and thus there is a solution of the system of polynomial equations. (One easily sees that (0,0,0) is one of the solutions!)