



# Heterogeneous Graph Neural Network

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, Nitesh V. Chawla

KDD 2019





- Background
- 2 HetGNN
- 3 Experiments
- 4 Conclusions





- 1 Background
- 2 HetGNN
- 3 Experiments
- 4 Conclusions





- Graph-structured data are ubiquitous.
- Graph-structured data are flexible to model complex interactions.







## **Graph Neural Network**

- Neural networks for processing graph-structured inputs.
- Flexible to characterize non-Euclidean data.
- For example, graph convolutional network and graph attention network.







### **Heterogeneous Graph**

Multiple types of nodes or links







- Rich semantic information
  - Meta-path: a relation sequence connecting two objects (e.g., Movie-Actor-Movie).



**Movie-Director-Moive** 

Two movies directed by the same director.

Two movies are starred by

the same actor.



### Existing Graph Neural Networks focus on homogeneous graph

- incorporate heterogeneous structural (graph) information
- considering heterogeneous attributes or contents (e.g., text or image)



Few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively.





- Background
- 2 HetGNN
- 3 Experiments
- 4 Conclusions







### HetGNN



- C1 sampling heterogeneous neighbors;
- C2 encoding heterogeneous contents;
- C3 aggregating heterogeneous neighbors.











# C1 - sampling heterogeneous neighbors;

A heterogeneous neighbors sampling strategy based on random walk with restart (RWR):

Step-1: Sampling fixed length RWR, denoted as RWR(v)

Step-2: Grouping different types of neighbors. For each node type t, we select top kt nodes from RWR(v) according to frequency





C2 - encoding heterogeneous contents;



$$f_1(v) = \frac{\sum_{i \in C_v} \left[ \overrightarrow{LSTM} \left\{ \mathcal{F}C_{\theta_x}(\mathbf{x}_i) \right\} \bigoplus \overrightarrow{LSTM} \left\{ \mathcal{F}C_{\theta_x}(\mathbf{x}_i) \right\} \right]}{|C_v|}$$
(1)

where  $f_1(v) \in \mathbb{R}^{d \times 1}$  (d: content embedding dimension),  $\mathcal{FC}_{\theta_{r}}$ denotes feature transformer which can be identity (no transformation), fully connected neural network with parameter  $\theta_x$ , etc. The





# C2 - encoding heterogeneous contents;

#### The LSTM is formulated as:

$$\mathbf{z}_{i} = \sigma(\mathcal{U}_{z}\mathcal{F}C_{\theta_{x}}(\mathbf{x}_{i}) + \mathcal{W}_{z}\mathbf{h}_{i-1} + \mathbf{b}_{z})$$

$$\mathbf{f}_{i} = \sigma(\mathcal{U}_{f}\mathcal{F}C_{\theta_{x}}(\mathbf{x}_{i}) + \mathcal{W}_{f}\mathbf{h}_{i-1} + \mathbf{b}_{f})$$

$$\mathbf{o}_{i} = \sigma(\mathcal{U}_{o}\mathcal{F}C_{\theta_{x}}(\mathbf{x}_{i}) + \mathcal{W}_{o}\mathbf{h}_{i-1} + \mathbf{b}_{o})$$

$$\hat{\mathbf{c}}_{i} = \tanh(\mathcal{U}_{c}\mathcal{F}C_{\theta_{x}}(\mathbf{x}_{i}) + \mathcal{W}_{c}\mathbf{h}_{i-1} + \mathbf{b}_{c})$$

$$\mathbf{c}_{i} = \mathbf{f}_{i} \circ \mathbf{c}_{i-1} + \mathbf{z}_{i} \circ \hat{\mathbf{c}}_{i}$$

$$\mathbf{h}_{i} = \tanh(\mathbf{c}_{i}) \circ \mathbf{o}_{i}$$

$$(2)$$







C3 - aggregating heterogeneous neighbors.

A type-based neural network:

- (1) same type neighbors aggregation;
- (2) types combination.





C3 - aggregating heterogeneous neighbors.

(1) same type neighbors aggregation;



$$f_2^t(v) = \frac{\sum_{v' \in N_t(v)} \left[ \overrightarrow{LSTM} \left\{ f_1(v') \right\} \bigoplus \overleftarrow{LSTM} \left\{ f_1(v') \right\} \right]}{|N_t(v)|} \tag{4}$$







C3 - aggregating heterogeneous neighbors.

(2) types combination.

$$\mathcal{E}_{v} = \alpha^{v,v} f_{1}(v) + \sum_{t \in O_{v}} \alpha^{v,t} f_{2}^{t}(v)$$

$$\mathcal{E}_{v} = \sum_{f_{i} \in \mathcal{F}(v)} \alpha^{v,i} f_{i}$$

$$\alpha^{v,i} = \frac{exp \left\{ LeakyReLU(u^{T}[f_{i} \bigoplus f_{1}(v)]) \right\}}{\sum_{f_{i} \in \mathcal{F}(v)} exp \left\{ LeakyReLU(u^{T}[f_{j} \bigoplus f_{1}(v)]) \right\}}$$



(5)

(6)











- Background
- 2 HetGNN
- 3 Experiments
- 4 Conclusions





Link prediction results. Split notation in data denotes train/test data split years or ratios.

Tasks: link prediction, recommendation, node classification & clustering and inductive node classification & clustering

| Data <sub>split</sub> | Metric    | MP2V<br>[4] | ASNE [15]      | SHNE<br>[34]   | GSAGE<br>[7]   | GAT [31]       | HetGNN         |
|-----------------------|-----------|-------------|----------------|----------------|----------------|----------------|----------------|
| A-I <sub>2003</sub>   | AUC       | 0.636       | 0.683          | 0.696          | 0.694          | 0.701          | 0.714          |
| (type-1)              | F1        | 0.435       | 0.584          | 0.597          | 0.586          | 0.606          | 0.620          |
| A-I <sub>2003</sub>   | AUC       | 0.790       | 0.794          | 0.781          | 0.790          | 0.821          | 0.837          |
| (type-2)              | F1        | 0.743       | 0.774          | 0.755          | 0.746          | 0.792          | 0.815          |
| A-I <sub>2002</sub>   | AUC       | 0.626       | 0.667          | 0.688          | 0.681          | 0.691          | 0.710          |
| (type-1)              | F1        |             | 0.554          | 0.590          | 0.567          | 0.589          | 0.615          |
| A-I <sub>2002</sub>   | AUC       | 0.808       | 0.782          | 0.795          | 0.806          | 0.837          | 0.851          |
| (type-2)              | F1        | 0.770       | 0.753          | 0.761          | 0.772          | 0.816          | 0.828          |
| A-II <sub>2013</sub>  | AUC       | 0.596       | 0.689          | 0.683          | 0.695          | 0.678          | 0.717          |
| (type-1)              | F1        | 0.348       | 0.643          | 0.639          | 0.615          | 0.613          | 0.669          |
| A-II <sub>2013</sub>  | AUC       | 0.712       | 0.721          | 0.695          | 0.714          | 0.732          | 0.767          |
| (type-2)              | F1        | 0.647       | 0.713          | 0.674          | 0.664          | 0.705          | 0.754          |
| A-II <sub>2012</sub>  | AUC       | 0.586       | 0.671          | 0.672          | 0.676          | 0.655          | 0.701          |
| (type-1)              | F1        | 0.318       | 0.615          | 0.612          | 0.573          | 0.560          | 0.642          |
| A-II <sub>2012</sub>  | AUC       | 0.724       | 0.726          | 0.706          | 0.739          | 0.750          | 0.775          |
| (type-2)              | F1        | 0.664       | 0.737          | 0.692          | 0.706          | 0.715          | 0.757          |
| R-I <sub>5:5</sub>    | AUC<br>F1 | 0.634 0.445 | 0.623<br>0.551 | 0.651<br>0.586 | 0.661<br>0.542 | 0.683<br>0.665 | 0.749<br>0.735 |
| R-I <sub>7:3</sub>    | AUC       | 0.701       | 0.656          | 0.695          | 0.716          | 0.706          | 0.787          |
|                       | F1        | 0.595       | 0.613          | 0.660          | 0.688          | 0.702          | 0.776          |
| R-II <sub>5:5</sub>   | AUC<br>F1 | 0.678       | 0.655<br>0.582 | 0.685<br>0.593 | 0.677<br>0.565 | 0.712<br>0.659 | 0.736<br>0.701 |
| R-II <sub>7:3</sub>   | AUC       | 0.737       | 0.695          | 0.728          | 0.721          | 0.742          | 0.772          |
|                       | F1        | 0.660       | 0.648          | 0.685          | 0.653          | 0.713          | 0 749          |