Lecture 16 Shell Sort

October 18, 2021 Monday

MOTIVATION

- The $O(n^2)$ limit for sorting n elements is much too large.
- The time required for ordering an array, grows larger than the size of the array.
- We want to do Better!

MOTIVATION

- It can be effective to sort parts of the original array first.
- And then, if they are partially sorted, sort the entire array.
- This way we are much closer to the best case scenario.

PSEUDOCODE

```
divide data into h subarrays;
for i = 1 to h
     sort subarray data;
sort array data;
```

SUBARRAYS

- If h is too small, then the subarrays data; of data could be too large.
 - The algorithm may prove inefficient.
- If h is too large, then too many small subarrays data, are created.
 - Although the subarrays are sorted.
 - It might not substantially change the overall order of data.
- Many techniques have been presented to find the best partition scheme.
 - The heart of **Shell Sort** is this ingenious division of the array into several subarrays.
 - Name after **Donald L. Shell** who designed this technique

PSEUDOCODE

```
determine numbers h_t \dots h_1 of ways of dividing array data into subarrays; for (h = h_t; t > 1; t--, h = h_t)

divide data into h subarrays; for i = 1 to h sort subarray data; sort array data;
```

SUBARRAYS

- The original array is divided into subarrays logically
 - Every h₊ th element as part of one subarray.
- Therefore, array is divided into h_{t} subarrays for every $h = 1, ..., h_{t}$

```
\circ data<sub>h +</sub> [i] = data [h<sub>+</sub> × i + (h - 1)]
```

- o data₃₁[0] = data [0], data [3], ...
- o data₃₁ [i] = data [3 * i + 1 1]

SUBARRA	4YS	PIC		RIA	LR	EPF	RESI	EN ⁻	ГАТ		
data before 5-sort	10	8	6	20	4	3	22	1	0	15	16
Five subarrays before sorting	10	_ 8	_	_	_	3	_ 22	-	-	_	16
			6	_ 20	_ _ 4	_ _ _	_	1 -	0	15	
Five subarrays after sorting	3	_ 8	_	_	_	10	_ 22	-	_	_	16

SLIBARRAYS PICTORIAL REPRESENTATION

JODANNATOTI CTONIAL NET NESENTATION											
data after 5-sort and before 3-sort	3	8	1	0	4	10	22	6	20	15	1
Three subarrays before sorting	3	_ 8	_	0	_ 4	_	22 —	_ 6	_	15 —	1

Three subarrays after

sorting

0

SUBARRAYS PICTORIAL REPRESENTATION

data after 3-sort and before 1-sort	0	4	1	3	6	10	15	8	20	22	16
data after 1-sort	0	1	3	4	6	8	10	15	16	20	22

PARTITIONING

- No formal proof indicating which sequence of increments is optimal.
- Good idea to Choose:

$$h_1 = 1$$
 $h_{i+1} = 3h_i + 1$
Stop for h_t if $h_t \ge n$
For $n = 10,000$
1, 4, 13, 40, 121, 364, 1093, 3280

PARTITIONING

```
void ShellSort(int data[], int n) {
     int i, j,
```

FEATURES

- The sequence of Increments.
- A simple sorting algorithm applied in all passes except the last.
- A simple sorting algorithm applied only in the last pass, for 1-sort.

TIME COMPLEXITY

- The number of comparisons are same in each case
 - Best Case Comparisons: n (n 1) / 2 = 0 (n log n)
 - Average Case Comparisons: = O (n log n)
 - Worst Case Comparisons: **O** (n²)

Space Complexity O (1).

LIMITATIONS

- One problem which remains open is the optimal value of the increment.
- Donald Knuth have shown even with two increments (16 n / π)^{1/3} and 1.
 - Shell sort is more efficient than insertion sort
 - Because it takes $O(n^{5/3})$ instead of $O(n^2)$
- The efficiency can be further improved by using a larger number of increments.
- We have to just consider one situation
 - The items in the even and odd positions of the array do not interact until the last pass, when the increment equals 1.

VISUALIZATION

