```
from google.colab import files
uploaded = files.upload()
```

C→ 选择文件 big_data.csv

• **big_data.csv**(application/vnd.ms-excel) - 139769656 bytes, last modified: 2020/4/28 - 100% done Saving big_data.csv to big_data.csv

```
import pandas as pd
data = pd.read_csv('big_data.csv')
pd.DataFrame.from records(data)
```

₽		arr_delay	distance	presidents_day	easter	memorial_day	independence_day	labor_d
	0	-7	270	0	0	0	0	
	1	5	1995	0	0	0	0	
	2	7	621	0	0	0	0	
	3	-33	2065	0	0	0	0	
	4	-19	1771	0	0	0	0	
	•••							
	177507	8	337	0	0	0	0	
	177508	10	1024	0	1	0	0	
	177509	44	1585	0	1	0	0	
	177510	-15	337	0	0	0	0	
	177511	-10	624	0	0	0	0	

177512 rows × 382 columns

Predictions for Arrival Delay

```
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np

data.dropna(axis=0, subset=['arr_delay'], inplace=True)

y = data.arr_delay
X = data.drop(['arr_delay'], axis=1).select_dtypes(exclude=['object'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
```

Mean Absolute Error results

```
data_dmatrix = xgb.DMatrix(data=X, label=y)
```

```
max depth = 5, alpha = 10, n estimators = 10)
```

```
xg_reg.fit(X_train, y_train)
preds = xg_reg.predict(X_test)

[18:01:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor
rmse = np. sqrt(mean_squared_error(y_test, preds))
print("RMSE: %f" % (rmse))

[> RMSE: 31.686198
```

Using k-fold Cross Validation for model tuning

₽	train-rmse-mean		train-rmse-std	test-rmse-mean	test-rmse-std	
	0	41.508718	0.103943	41.521145	0.207252	
	1	39.282958	1.427370	39.298312	1.723997	
	2	38.255065	2.349752	38.284343	2.695878	
	3	38.171123	2.361523	38.239312	2.694978	
	4	37.278604	3.411559	37.357897	3.752378	

▼ Better RMSE

cv_results.head()

Visualizations

```
from numpy import loadtxt
from xgboost import XGBClassifier
from xgboost import plot tree
```

```
import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = 20,20
plot_tree(xg_reg, num_trees=0, rankdir='LR')
# xgb.plot_tree(xg_reg, num_trees=0)
# xgb.plot_tree(xg_reg, num_trees=0, rankdir='LR')
# plt.show()
```


▼ Top Features

```
xgb.plot_importance(xg_reg)
plt.rcParams["figure.figsize"] = 20,20
plt.show()
```

С→

Predictions for Departure Delay

```
import pandas as pd
data = pd.read_csv('big_data.csv')
```

pd. DataFrame. from records (data)

₽		arr_delay	distance	presidents_day	easter	memorial_day	independence_day	labor_d
	0	-7	270	0	0	0	0	
	1	5	1995	0	0	0	0	
	2	7	621	0	0	0	0	
	3	-33	2065	0	0	0	0	
	4	-19	1771	0	0	0	0	
	•••							
	177507	8	337	0	0	0	0	
	177508	10	1024	0	1	0	0	
	177509	44	1585	0	1	0	0	
	177510	-15	337	0	0	0	0	
	177511	-10	624	0	0	0	0	

177512 rows × 382 columns

```
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np

data.dropna(axis=0, subset=['total_dep_delay'], inplace=True)

y = data.total_dep_delay
X = data.drop(['total_dep_delay'], axis=1).select_dtypes(exclude=['object'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
```

Mean Absolute Error results

Using k-fold Cross Validation for model tuning

₽		train-rmse-mean	train-rmse-std	test-rmse-mean	test-rmse-std
	0	38.656838	0.041707	38.663035	0.085181
	1	37.358302	0.049064	37.371316	0.079493
	2	36.254335	0.051466	36.275592	0.077880
	3	35.338801	0.054763	35.367652	0.076687
	4	34.576529	0.050749	34.611799	0.078184

Better RMSE

Visualizations

```
from numpy import loadtxt

from xgboost import XGBClassifier

from xgboost import plot_tree

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = 20,20

plot_tree(xg_reg, num_trees=0, rankdir='LR')

# xgb.plot_tree(xg_reg, num_trees=0)

# xgb.plot_tree(xg_reg, num_trees=0, rankdir='LR')

# plt.show()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c30aca208>

