SODIUM BICARBONATE CONTAINING PRECIPITATE-FREE DIALYSIS **SOLUTIONS**

Patent Number:

US5211643

Publication date:

1993-05-18

Inventor(s):

REINHARDT BERTOLD (DE); BARTZ VOLKER (DE)

Applicant(s):

FRESENIUS AG (DE)

Requested

Patent:

EP0399549, B1, B2

Application

Number:

US19900528855 19900525

Priority Number

DE19893917251 19890526

IPC Classification: A61B19/00; A61M5/32

EC Classification: A61M1/28D

Equivalents:

AU5581390, AU633917, BR9002474, CA2017531, DE3917251, ES2047757T.

JP2781447B2. T JP3103265, KR163425

Abstract

Dialysis solutions for hemodialysis and the like, are prepared by addition of sufficient acid to lower the pH of a sodium carbonate solution to less than 7.6 under conditions which will retain the carbon dioxide generated by such acid addition and mixing the thus produced solution with a solution of the other ions required in such a dialysis solution, again under conditions which will retain the carbon dioxide, to provide a dialysis solution which, under working conditions, will not cause finely divided precipitates of calcium carbonate to form.

Data supplied from the esp@cenet database - 12

11 Veröffentlichungsnummer:

0 399 549 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90109963.0

(5) Int. Cl.5: A61M 1/14, A61M 1/28

- 2 Anmeldetag: 25.05.90
- (3) Priorität: 26.05.89 DE 3917251
- Veröffentlichungstag der Anmeldung:28.11.90 Patentblatt 90/48
- Benannte Vertragsstaaten:
 BE CH DE ES FR GB IT LI NL SE
- 7) Anmelder: Fresenius AG
 Gluckensteinweg 5
 D-6380 Bad Homburg v.d.H.(DE)
- © Erfinder: Reinhardt, Bertold, Dr.
 Stettiner Strasse 25
 D-6370 Oberursel(DE)
 Erfinder: Bartz, Volker, Dip.-Betriebswirt
 Goethestrasse 44
 D-6307 Linden(DE)
- Vertreter: Dr. Fuchs, Dr. Luderschmidt Dipl.-Phys. Seids, Dr. Mehler Patentanwälte Abraham-Lincoin-Strasse 7 D-6200 Wiesbaden(DE)
- (9) Nattriumbicarbonat enthaltende Lösung und CAPD-Zweikammerbeutelsystem.
- © Es wird eine neue Bicarbonatlösung für die Herstellung von Dialysierflüssigkeiten für die Blutreinigung, insbesondere CAPD, beschrieben, deren pH-Wert durch Zugabe von physiologisch verträglicher Säure unter 7,6 gesenkt ist. Bei einem Vermischen dieser Bicarbonatlösung mit einer Calciumionen enthaltenden Säurelösung fällt auch bei höheren Bicarbonatkonzentrationen kein Calciumcarbonat aus.

EP 0 399 549 A1

Natriumbi arbonat enthaltende Lösung und CAPD-Zweikamm rbeutelsystem

Die Erfindung b trifft ein Natriumbicarbonat enthaltendes Lösung für die Herstellung einer Dialysierflüssigkeit für die Blutreinigung und CAPD-Zweikammerbeutelsystem.

Neben der Entfernung von Stoffwechselprodukten besteht eine der wichtigsten Aufgaben jeder Nierenersatztherapie, wie Hämodialyse, Hämofiltration, Hämodiafiltration, CAVH, CAVHD und der Peritonealdialyse (CAPD), in der Korrektur der metabolischen Acidose. Aus diesem Grunde enthalten die in jedem dieser Verfahren verwendeten Dialysierflüssigkeiten einen Puffer.

In der Hämodialyse wie auch in der CAPD wurde zunächst Bicarbonat in Form des Natriumbicarbonats als Puffer verwendet, aber nach ersten Versuchen durch andere Puffer, wie Lactat (üblicherweise in der CAPD) oder Acetat (üblicherweise in der Hämodialyse) ersetzt. Neben der technisch damals noch nicht beherrschbaren Stabilität der Dialysierflüssigkeiten war insbesondere die Ausfällung von Calciumcarbonat in diesen Lösungen der Grund für den Austausch der Puffersubstanzen. Da zur Therapierung von urämischen Patienten Calciumkonzentrationen von etwa 2 mmol/l und Bicarbonatkonzentrationen bis zu 42 mmol/l verwendet bzw. benötigt werden, kommt es, begünstigt durch die Art der Verwendung bzw. des Einsatzes dieser Lösungen, zu einem Überschreiten des Löslichkeitsproduktes von Calcium und Carbonat und folglich zur Präzipitation von Calciumcarbonat in der Lösung. Verstärkt wird das Problem der Calciumcarbonatausfällung bei CAPD-Lösungen dadurch, daß sie aus Sterilitätsgründen bei etwa 120 °C autoklaviert werden müssen.

In der Hämodialyse und den mit ihr verwandten Verfahren werden daher schon seit einigen Jahren Bicarbonat als Puffer enthaltende Dialysierflüssigkeiten in der Weise hergestellt, daß einerseits ein basisches Bicarbonatkonzentrat und andererseits ein Calciumionen enthaltendes saures Elektrolytkonzentrat in getrennten Behältern gehalten werden. Diese Behälter werden an die Dialysemaschine angeschlossen, die erst unmittelbar vor dem Gebrauch die beiden Konzentrate zusammen mit Wasser zu der endgültigen Dialysierflüssigkeit mischt. Selbst bei dieser Art der Herstellung und des unmittelbaren Einsatzes erfolgt noch eine Calciumcarbonatausfällung in den Dialysemaschinen, was durchaus zu Störungen des Dialysebetriebes führen kann. Infolgedessen werden zur Vermeidung von Langzeitkomplikationen sämtliche Rohrleitungen der Dialysemaschine in regelmäßigen Abständen mit Säure, wie Essigsäure oder anderen verdünnten Säuren, gespült, um das Calciumcarbonat zu entfernen.

Aus dem Stand der Technik sind eine Reihe von Patentschriften bekannt, die sich mit der Herstellung von Bicarbonat enthaltenden Dialysierflüssigkeiten für die Blutreinigung beschäftigen. In sämtlichen Druckschriften ist jeweils der Einsatz eines sauren Konzentrats und einer basischen Bicarbonatlösung vorgeschlagen worden, wobei sich die pH-Werte beider Konzentrate jeweils durch die pH-Werte der eingesetzten dissoziierbaren Salze (Calciumchlorid, Natriumbicarbonat oder Natriumcarbonat) zwangsläufig ergeben. Dabei kann zusätzliche Säure zum sauren Konzentrat hinzugegeben werden, um den Säuregrad anzuheben, d.h. den gemessenen pH-Wert zu senken, um nach Vermischen mit dem basischen Konzentrat den physiologischen pH-Wert von etwa 7,3 zu erhalten.

Vorrichtungen zur Herstellung einer Bicarbonat enthaltenden Dialysierflüssigkeit, Konzentrate und die Dialysierflüssigkeiten selbst sind beispielsweise in der DE-OS 31 46 425, der EP-OS 022 922 und der EP-OS 086 553 sowie den in der letztgenannten Druckschrift zitierten Patentschriften beschrieben. Sämtlichen Patentschriften ist gemein, daß sie keinerlei Korrektur des pH-Wertes für das Bicarbonat enthaltende Konzentrat vorschlagen, um hierdurch die Calciumcarbonatausfällung nach dem Vermischen mit dem calciumhaltigen Konzentrat zu beschränken bzw. sogar aufzuheben. Dies ist insofern erkiärlich, als durch Zugabe von Säure bekanntlich das Bicarbonat-CO₂-Gleichgewicht auf die Seite des CO₂ verschoben, d.h. gasförmiges CO₂ freigesetzt wird. Dies macht besondere Maßnahmen zur Stabilisierung der Behälter notwendig, da ansonsten CO₂ entweicht und hierdurch wieder der pH-Wert angehoben, d.h. in den basischen Bereich verschoben wird.

Insofern wurde aus chemischen Gründen die bereits saure Calciumionen enthaltende Lösung weiter mit Säure angesäuert, um nach dem Vermischen mit dem Bicarbonat-Konzentrat die gewünschte Dialysierflüssigkeitszusammensetzung zu erhalten.

Ähnlich wie bei der Hämodialyse wurde nach einem Vorschlag von Feriani und La Greca in der CAPD zur Wiedereinführung des Bicarbonats anstelle des weniger physiologischen Lactats als Puffer die Bicarbonatlösung von der Calcium enthaltenden Elektrolytlösung in einem Zweikammerbeutel getrennt, der in der EP-OS 161 471 beschrieben ist. Weitere Veröffentlichungen dieser Autoren finden sich in Int.J.Art.Organs (1985), S.57-58 und in der Monographie "PERITONEAL DIALYSIS"-Proc.2nd Int.Course (1986), S.143-148.

Mit der in diesen Druckschriften beschriebenen Anordnung, in der die beiden Konzentrate in zwei miteinander verbindbaren Kammern gehalten werden, läßt sich ohne Schwierigkeiten eine Autoklavierung

durchführen. Dennoch kann eine Calciumcarbonatausfällung nach dem Mischen oder während dir Behandlung im Peritonealraum nicht ausgeschlossen werden, da unmittelbar nach dem Vermischen in relativ kurzen Zeiten (höchstens zwei Stunden) Calciumcarbonat ausfällt, was bei der Durchführung der Peritonealdialyse nicht akzeptiert werden kann.

Zur Vermeidung der Calciumcarbonatausfällung verwendeten die Autoren daher verdünnte Lösungen von Natriumbicarbonat, d.h. einem Bicarbonatgehalt unter 30 mmol/l und einer Calciumkonzentration von 1,5 mmol/l in der fertigen Flüssigkeit. Abgesehen davon, daß hierdurch die Ausfällungsgefahr immer noch nicht beseitigt war, reichten diese Bicarbonatkonzentrationen nicht aus, um die Acidose der Patienten ausreichend zu korrigieren. So stiegen die Bicarbonatplasmaspiegel der Patienten nicht über 22 mmol/l an und lagen meist deutlich darunter, wobei auf einen normalen Bicarbonatplasmaspiegel von etwa 25 mmol/l bezogen wurde.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Bicarbonatlösung zur Herstellung einer bicarbonathaltigen Dialysierflüssigkeit zur Verfügung zu stellen, bei der nicht die Gefahr besteht, daß beim Mischen oder innerhalb der Dialysebehandlungsdauer Calciumcarbonat ausfällt.

Die Lösung der Aufgabe erfolgt dadurch, daß die Natriumbicarbonatlösung so viel zugesetzte physiologisch verträgliche Säure aufweist, daß der pH-Wert des Konzentrats unter 7,6 bei Raumtemperatur liegt.

Vorzugsweise stellt man den pH-Wert der Natriumbicarbonatlösung mit der Säure auf einen pH-Wert von 7,2 - 7,4, insbesondere etwa 7,3 - 7,35 bei Raumtemperatur ein.

Die Einstellung des pH-Werts auf 7,4 hat den Vorteil, daß der Carbonatgehalt in dieser Lösung etwa tausendmal niedriger ist als in Bicarbonatlösungen mit einem pH-Wert um 8. Letztere Lösungen werden nach dem Stand der Technik mit einem solchen pH-Wert und darüber (bis 8,8) in den Handel gebracht, so daß die Bildung von Mikrokristallen bzw. Präkeimen von Calciumcarbonat in den bekannten Lösungen begünstigt wird. Es kam daher bei den bekannten Lösungen zu einer Ausfällung von Calciumcarbonat, selbst wenn zu den von Feriani et al vorgeschlagenen Bicarbonatkonzentrationen unter 30 mmol/l in der fertigen Dialysierflüssigkeit weiteres Bicarbonat zugeführt wurde, um die Bicarbonatkonzentration über 32 mmol/l anzuheben.

Erfindungsgemäß wurde zusätzlich festgestellt, daß es beim Mischen der bekannten Konzentrate zu lokalen Überschreitungen des Löslichkeitsprodukts von Calciumcarbonat für solche übersättigten Lösungen kommt, vor allem, wenn beim Durchmischen das Calcium im alkalischen Bereich mit dem dort vorhandenen Carbonat zusammentrifft, obwohl das Säurekonzentrat, also die Calcium enthaltende Elektrolytlösung, in der Regel so angesäuert ist, daß das Gemisch aus Elektrolytlösung und Bicarbonatlösung nach dem Vermischen einen pH-Wert im physiologischen Bereich von 7,2 - 7,4 erreicht. Bei dieser Vorgehensweise hat es die Fachwelt unberücksichtigt gelassen, daß es bei der Mischung der beiden Lösungen zu kurzfristigen signifikanten Überschreitungen des Löslichkeitsproduktes von Calciumcarbonat im alkalischen Bereich kommt. Diese kurze Zeit ist jedoch ausreichend für die Bildung von üblicherweise mit dem Auge noch nicht erkennbaren Calciumcarbonatkeimen, die je nach den physikalischen Umständen zu einer verzögerten Calciumcarbonatausfällung führen. Insofern ist also die bekannte Lösung als metastabil zu betrachten, selbst wenn sie unmittelbar nach dem Vermischen noch klar erscheint, d.h. die Stabilität einer solchen Lösung ist hinsichtlich des Nichtauftretens einer Calciumcarbonatausfällung erheblich vermindert. Dies läßt sich bereits nach wenigen Minuten, manchmal auch nach einigen Stunden, feststellen, wenn es zu der gefürchteten Calciumcarbonatausfällung kommt. Dabei sind Zeitpunkt und Ausmaß der Ausfällung abhängig von der Konzentration beider Komponenten (Calcium und Carbonat), dem "lokalen" pH-Wert, der Ionenstärke der Lösung sowie der Temperatur und dem Druck.

Aufgrund des eingestellten pH-Wertes bei der erfindungsgemäßen Lösung kommt es jedoch nicht zum Überschreiten des Löslichkeitsprodukts bei der Vermischung der beiden Konzentrate und somit nicht zu einer Calciumcarbonatausfällung, sofern das zwangsläufig aus physikalisch-chemischen Gründen vorliegende CO₂ in der Lösung gehalten wird. Nur wenn man die Lösung offen stehen läßt, d.h. das CO₂ entweichen kann, kommt es durch die hierdurch zwangsläufige Erhöhung des pH-Wertes auf 8 und darüber, wiederum zu einem Überschreiten des Löslichkeitsproduktes nach Stunden und damit zu einer beginnenden Ausfällung von Calciumcarbonat. Dies hat jedoch für die Dialyse, insbesondere die Peritonealdialyse, keine Bedeutung, da bei der Hämodialyse die Dialysierflüssigkeit längst den Dialysefilter durchlaufen hat und bei der Peritonealdialyse längst sich das physiologische Gleichgewicht innerhalb des Peritonealraums eingestellt hat.

Es muß jedoch festgestellt werden, daß es sich bei den hier beschriebenen Lösungen um hochkonzentrierte Lösungen handelt, deren ch misches Verhalten, insbesondere das Ausfällungsverhalten, nicht vorausgesagt werden kann. Insofern sind die vorstehenden Erläuterungen im Lichte der Erfindung zu sehen, die darin besteht, daß der pH-Wert der Bicarbonatlösung zunächst unter 7,6 abgesenkt wird, und die so eingestellte Konzentratlösung anschließend mit der sauren, Calciumionen enthaltenden Lösung vermischt

wird.

Wie festgestellt, wird bei der Vermischung mit der erfindungsgemäß n Lösung eine Mikrokristallisation bzw. die Bildung von Präkeimen von Calciumcarbonat vermieden. In so hergestellten, übersättigten Lösungen ist die Einstellung der Gleichgewicht zwischen Calcium und den für eine Komplexbildung mit Calcium in Frage kommenden Reaktionspartnern sowie den bereits zwischen den beiden Partnern gebildeten Komplexen gegenüber idealen Lösungen erheblich verzögert. Soweit ersichtlich, kommt es selbst bei einer Überschreitung des Löslichkeitsproduktes erst nach Stunden zu einer Calciumcarbonatausfällung. Insofern sind nach dem erfindungsgemäßen Verfahren hergestellte Lösungen eher stabil noch bis zu Bicarbonatkonzentrationen von etwa 60 mmol/l und bis zu Calciumkonzentrationen von etwa 5 mmol/l.

Die für die Anwendung solcher Lösungen in der CAPD notwendige Stabilität von 12 Std. (dwelltime over night) wird bei der für den Ausgleich der Acidose notwendigen Bicarbonatkonzentration um das Doppelte überschritten. Erste Untersuchungen an Tier und Mensch haben dies bewiesen.

Die erfindungsgemäßen Lösungen, also die saure Lösung (A) und die basische Bicarbonatlösung (B) können auf die übliche Weise, also gemäß dem Stand der Technik, wie er in der Einleitung beschrieben ist, hergestellt werden. Erfindungswesentlich ist es dabei, daß die Bicarbonatlösung durch Zugabe von physiologisch verträglicher Säure auf einen pH-Wert von höchstens 7,6 eingestellt wird.

Einsetzbare Säuren sind beispielsweise Salzsäure oder organische verstoffwechselbare Säuren, wie Essigsäure oder Milchsäure, wobei allerdings festzustellen ist, daß die letztgenannten Säuren weniger bevorzugt sind, da die Fachwelt von der Acetat/Lactat-Lösung wegkommen will. Darüber hinaus kann natürlich auch das "Anhydrid" der Kohlensäure, also CO₂, soweit zugefügt werden, daß der pH-Wert der Dialysierflüssigkeit unter 7,6 gesenkt wird. Hieraus ist bereits ersichtlich, daß das fertige Konzentrat durch eine geeignete Wahl von Behältern davor geschützt werden muß, daß das in freien Gasblasen oder gelöster Form vorliegende CO₂ aus dem Konzentrat sich herauslöst und der pH-Wert wieder ansteigt.

Eine einsetzbare wäßrige Natriumbicarbonatlösung, die mit einer sauren, Calciumcarbonat enthaltenden Lösung vermischt wird, kann folgende Zusammensetzung aufweisen:

72 mmol/l NaHCO₃, wobei der pH-Wert mit Hilfe von HCl auf 7,35 - 7,4 bei Raumtemperatur (25°C) eingestellt worden ist.

Diese Lösung kann auf die übliche Weise sterilisiert werden, beispielsweise durch Autoklavierung bei 121°C oder aber durch Sterilisation durch ein Sterilfilter (mittlere Porengröße 0,2 um), wobei der Filtrationsdruck nicht _ 1 bar sein soll.

Diese basische Lösung (B) kann mit einem sauren wäßrigen Konzentrat (A) im Verhältnis von 1:1 vermischt werden, das folgende Zusammensetzung aufweist:

196 mmol/l NaCl

3,6 mmol/l CaCl₂

5 1 mmol/l MgCl₂.

Diese Lösung (A) wird in gleicher Weise sterilisiert und im Bedarfsfall dann mit dem Konzentrat (B) unter sterilen Bedingungen vermischt, beispielsweise unter Zuhilfenahme des Doppelkammerbeutels, der in der EP-OS 161 471 beschrieben ist, auf deren Inhalt aus Offenbarungsgründen bezug genommen wird.

Als Material für solche Kunststoffbeutel werden die üblichen polymeren Laminate eingesetzt. Bei Kunststoffmaterialien sind jedoch deren Gasdurchlässigkeiten zu beachten. Insbesondere soll der geschlossene Beutel aus dem bicarbonathaltigen Bereich während einer etwa halbjährlichen Lagerung nicht mehr als 5% des urprünglichen CO₂-Gehalts verlieren, d.h. der Beutel soll im wesentlichen für Gase, insbesondere CO₂ undurchlässig sein. Für diese Zwecke weist daher ein derartiges Laminat eine Gassperrschicht, insbesondere eine Aluminiumschicht auf. Diese Anforderungen lassen sich auch durch Parameterwerte ausdrücken. So sollen derartige Beutelmaterialien eine Wasserdampfdurchlässigkeit von weniger als 1g/m²/Tag/bar bei 20°C, gemessen nach DIN 53122 und eine CO₂-Durchlässigkeit von weniger als 1cm³/100µm/m²/Tag/bar bei 20°C, gemessen nach DIN 53380 aufweisen. In jedem Fall sollte der pH-Wert der Lösung innerhalb einer Bandbreite von höchstens 0,15 Einheiten zwischen den Anfangs- und Endwerten schwanken.

Andererseits können auch voneinander getrennte Gefäße (Beutel, Flaschen), die somit mehrere Kammern aufweisen, eingesetzt werden. Diese Gefäße werden zum Mischen der jeweiligen Lösungen miteinander durch ein geeignetes Verbindungssystem (Schlauchsystem) verbunden.

Des weiteren werden die jeweiligen Lösungen vorzugsweise in einem Verhältnis von etwa 3:1 bis 1:3, insbesondere etwa 1:1, miteinander vermischt. Die Mengen der Elektrolyte bzw. des osmotischen Agens sind entsprechend d m gewählten Verdünnungsverhältnis und der einzustellenden Endkonzentrationen vorzuwählen.

And rerseits können derartige Lösungen natürlich auch unmittelbar in der Dialysemaschine zur Herstellung einer Dialysierflüssigkeit für die Hämodialyse gemischt werden.

Die erhaltene Lösung weist dann 134 mmol/l Natriumionen, 1;8 mmol/l Calciumionen, 0,5 mmol/l Magnesiumion n sowie ca. 34 mmol/l Natriumhydrogencarbonat (Rest CO₂ und Carbonat-Ionen) sowie Rest Chloridionen auf.

Im Bedarfsfall kann natürlich die Hydrogencarbonatkonzentration in der endgültigen Dialysierflüssigkeit entsprechend den Bedürfnissen der Patienten gewählt werden, was eine weitere unabhängige bevorzugte Ausführungsform der Erfindung ist. So lassen sich aus den Blutwerten eines urämischen Patienten das Gesamt-CO₂, also tCO₂, der Bicarbonatgehalt des Blutes und daraus der Gesamt-Bicarbonatgehalt des Patienten ermitteln und berechnen. Hieraus kann die dem Patienten bei einer Behandlung zur Verfügung zu stellende Hydrogencarbonat-Menge individuell errechnet und durch eine entsprechende Wahl einer bestimmten Lösung zur Verfügung gestellt werden. Insofern ist es mit dem Einsatz einer erfindungsgemäßen Lösung möglich, Patienten von ihrer Acidose dadurch zu befreien, daß der Bicarbonat-Pool während einer Dialysebehandlung stets aufgefüllt wird, so daß sich keinerlei Acidose-Zustände mehr ausbilden können.

Darüber hinaus hat die Einführung einer Bicarbonatdialysierflüssigkeit mit physiologischem pH-Wert in den Peritonealraum den Vorteil, daß nicht die natürliche Immunabwehr im Peritonealraum beseitigt wird, sondern sich vielmehr entfalten kann. Neuere Erkenntnisse haben nämlich gezeigt, daß die derzeit üblichen CAPD-Dialysierflüssigkeiten mit einem pH-Wert von 5,1 - 5,4 praktisch die gesamte Immunabwehr von Makrophagen im Peritonealraum lahmlegen, somit also stets die Gefahr einer Entstehung einer Peritonitis durch Einschleppen von Keimen entsteht. Dies kann durch die Zurverfügungstellung einer Dialysierflüssigkeit mit physiologischem pH wirksam verhindert werden.

Wie bereits festgestellt, können Dialysierflüssigkeiten unterschiedlichen Bicarbonatgehalts aus entsprechend formulierten Lösungen hergestellt werden, wobei üblicherweise von einem Bicarbonatgehalt von wenigstens 20 mmol/l ausgegangen wird. Vorzugsweise sollte der Bicarbonatgehalt in der fertigen Flüssigkeit zwischen 25 und 40 mmol/l liegen. Es versteht sich von selbst, daß die tatsächlich eingewogene Bicarbonat-Menge etwas höher liegt, da - wie vorstehend festgestellt - das Bicarbonat mit CO₂ im Gleichgewicht liegt und sich bei einer Erniedrigung des pH-Werts von ursprünglich ca. 8 -8,8 auf 7,3 - 7,4 CO₂ aus Hydrogencarbonat bildet. Diese CO₂-Menge hängt natürlich ab vom pH-Wert und liegt üblicherweise bei 5 - 10 % des ursprünglich eingewogenen Hydrogencarbonats, so daß die einzuwiegende Hydrogencarbonatmenge entsprechend zu korrigieren ist.

Anstelle von zwei Lösungen (A) und (B) können natürlich auch drei Lösungen in Form der sauren Lösung (A) und einer Natriumcarbonat- (B1) und einer Säurelösung (B2) eingesetzt werden. Dabei werden die beiden Lösungen (B1) und (B2) zuerst gemischt, wobei (B2) einen derartigen Säuregrad aufweist, daß die endgültige Lösung einen pH-Wert von höchstens 7,6 besitzt, wie dies vorstehend erläutert ist. Diese Hydrogencarbonatlösung entspricht dann dem vorstehend beschriebenen Konzentrat (B), das sich anschließend mit dem Konzentrat (A) vermischen läßt.

Fertige Dialysierflüssigkeiten können folgende Zusammensetzung in mval/l aufweisen:

 $Ca^{2^{+}} = 0.5 - 5$ bevorzugt 1 - 2 $Mg^{2^{+}} = 0 - 3$ bevorzugt 0.5 - 1.5 $Ci^{-} = 90.5 - 121$ bevorzugt 105 - 115 $Na^{+} = 128 - 145$ bevorzugt 135 - 140 $K^{+} = 0 - 4$ bevorzugt 1 - 3 $HCO_{3}^{-} = 25 - 40$ bevorzugt 28 - 35

20

Wie festgestellt, wird durch die Säure aus dem Hydrogencarbonat ca. 2 - 5 mmol/l CO₂ freigesetzt, das in dem Gemisch physikalisch gelöst ist und mit gasförmigem CO₂ im Gleichgewicht steht. Insofern kann die fertige Lösung einen Partialdruck pCO₂ von etwa 50 - 90 mm/Hg aufweisen.

Insgesamt ist festzustellen, daß die fertige Dialysierflüssigkeit im wesentlichen einen physiologischen Elektrolytgehalt aufweisen soll, der von Fall zu Fall patientenspezifisch angepaßt sein kann. Es bestehen daher innerhalb dieses physiolgischen Bereichs bestimmte Formulierungsmöglichkeiten.

Für den Fall, daß die bicarbonathaltige Lösung osmotische Eigenschaften aufweisen soll, was bei dem Einsatz für die CAPD notwendig ist, weist sie ein osmotisch wirksames Agene in entsprechenden Mengan auf. Hierzu wird derzeit insbesondere Glucose eingesetzt. Im vorliegenden Fall enthält die saure Lösung ca. 26 - 90 g Glucose/l, was bei der 1:1-Verdünnung zu einer Osmolarität der Lösung von etwa 350 - 550 mosm/l führt. Vorteilhafterweise hält man den pH-Wert des Säurekonzentrats, das auch die Glucose enthält, bei 5,5 - 6,2. Hierdurch wird beim Sterilisieren bei erhöhten Temperaturen (121 °C) gewährleistet, daß eine Karamelisierung der Glucose vermieden wird. Dieser geringe Säuregrad der Säurelösung verändert im übrigen kaum den pH-Wert der Mischung gegenüber dem pH-Wert des basischen Konzentrats (B), da die Pufferkapazität des Natriumbicarbonat-Puffers eine derartige geringe Menge an Protonen ohne weiteres wegpuffert.

Wie bereits vorstehend erwähnt, sind in den beiden Lösungen (A) und (B) nur solche Ionen getrennt zu

halten, die miteinander unter Bildung von schwerlöslichen Carbonaten ausgefällt werden können. Ansonsten sind nur praktisch Erwägungen maßgebend, in welchem der Konzentrat die übrigen Bestandteil vorgelegt werden. Insofern werden also die Lösung (A) die Calcium- und Magnesiumsalze und die Lösung (B) das Natriumhydrogencarbonat aufweisen. Ansonsten entscheiden andere Gesichtspunkte (beispielsweise der Säuregrad für die Karamelisierung der Glucose), in welchem der Lösungen die übrigen Bestandteile, wie Kaliumchlorid, Natriumchlorid u.dgl., vorgelegt werden.

Das Beispiel erläutert die Erfindung.

10

Beispiel

Lösung (B)

15

Es werden 76 mmol/l Natriumhydrogencarbonat in 1 Liter Wasser eingewogen. Anschließend wird die erhaltene Lösung mit 1 n HCl auf einen pH-Wert von 7,35 - 7,4 eingestellt. Dabei wird die gesamte Lösung pyrogenfrei filtriert und danach bei 121 °C sterilisiert, wobei - wie üblich - die in dem geschlossenen Gefäß auftretenden Überdrücke bzw. Partialdrücke kompensiert werden.

20

Lösung (A)

Es werden 196 mmol/l NaCl,

25 3,0 mmol CaCl₂ x 2 H₂O,

1 mmoi/l MgCl₂ x 6 H₂O,

1,66 mmol/I Glucosemonohydrat eingewogen, wobei dieses Gemisch mit Wasser auf ein Volumen von 1 Liter aufgefüllt wird. Der pH-Wert wird mit 1 n HCl auf einen Wert von 5,5 (einige Tropfen) eingestellt.

Die so hergestellte Lösung wird ebenfalls pyrogenfrei filtriert und danach, wie die Lösung (B), hitzesterilisiert.

Vorteilhafterweise werden beide Konzentrate vor dem Sterilisieren in einen 2-Kammerbeutel abgefüllt, dessen Kammern durch eine aufbrechbare Verbindungseinrichtung miteinander in Fluidverbindung gebracht werden können.

Dabei wird die Lösung (B) in der Kammer vorgelegt, die mit der Ausflußöffnung in Verbindug steht. Um die beiden Konzentrate zu vermischen, wird dann die aufzubrechende Verbindungseinrichtung aufgebrochen, wobei die Lösung (A) in die Bicarbonatlösung (B) durch Druck auf den Beutel überführt wird. Die Durchmischung der beiden Lösungen erfolgt dadurch, daß die fertigen Mischungen wechselweise von der einen Kammer in die andere Kammer und zurück gepumpt werden.

Danach ist die Bicarbonatiösung für die CAPD einsetzbar und weist folgende Zusammensetzung auf:

40

Natrium	136 mmol/i	
Calcium	1,5 mmol/l	
Magnesium	0,5 mmol/i	
Glucose	0,83 mmol/l	
Hydrogencarbonat	38 mmol/l	
Chlorid	102 mmol/l	
pH-Wert	7,3	

50

45

Diese Lösung weist nach 6-stündigem Stehen keine Trübung durch Ausfällen von Calciumcarbonat auf und kann auf die übliche Weise für die CAPD eingesetzt werden.

Ansprüche

1. Natriumbicarbonat enthaltende Lösung zur Herstellung einer Dialysierflüssigkeit für die Blutreinigung durch Mischen mit einem Calciumionen enthaltenden zweiten Konzentrat, dadurch gekennzeichnet, daß das

Natriumbicarbonatkonzentrat soviel zugesetzte physiologisch verträgliche Säure aufweist, daß der pH-Wert unterhalb 7,6 liegt.

- 2. Lösung nach Anspruch 1, dadurch gekennzeichnet, daß der pH-Wert im physiologischen Bereich von 7,2 7,4 liegt.
- 3. Lösung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es soviel Natriumbicarbonat aufweist, daß der Hydrogencarbonatgehalt der fertigen Dialysierflüssigkeit wenigstens 20 mmol/l beträgt.
- 4. Lösung nach Anspruch 3, dadurch gekennzeichnet, daß der Hydrogencarbonatgehalt so groß ist, daß die fertige Dialysierflüssigkeit 25 40 mmol/l Bicarbonationen aufweist.
- 5. Lösung nach einem der Ansprüche 1 4, dadurch gekennzeichnet, daß der pH-Wert durch eine physiologisch verträgliche Säure, insbesondere HCl eingestellt worden ist.
 - 6. Dialysierflüssigkeit für die Blutreinigung, herstellbar durch Mischen
 - a) der Bicarbonatlösung gemäß Anspruch 1-5 und
 - b) einer solche Mengen an Calciumionen und Natriumchlorid enthaltenden Säurelösung, daß nach dem Mischen der beiden Lösungen eine Dialysierflüssigkeit erhalten wird, die physiologische Mengen an Natrium- und Calciumionen sowie wenigstens 20 mmol/l Bicarbonationen enthält.
 - 7. Geschlossenes Zweikammersystem zur Herstellung einer für die CAPD eingesetzbaren Dialysierflüssigkeit, die physiologisch verträgliche Menge an Natrium-, Calcium-, Chlorid- und Bicarbonationen sowie eines osmotisch wirksamen Agens aufweist, wobei die eine Kammer eine saure konzentrierte, wenigstens Calciumionen enthaltende Lösung und die andere Kammer eine basische, wenigstens Bicarbonationen aufweisende zweite konzentrierte Lösung aufweist und beide Lösungen nach Beseitigung der Kammertrennmittel miteinander unter Bildung der Dialysierflüssigkeit vermischbar sind, dadurch gekennzeichnet, daß der basischen Lösung soviel physiologisch verträgliche Säure zugesetzt ist, daß der pH-Wert unterhalb 7,6 liegt.
 - 8. Zweikammersystem nach Anspruch 7, dadurch gekennzeichnet, daß die beiden Lösungen in einem Mischungsverhältnis von 3:1 bis 1:3, insbesondere etwa 1:1, vorliegen.

50

30

35

55

EUROPÄISCHER RECHERCHENBERICHT

EP 90109963.0

Kategorie				
VERBOUND	Kennzeichnung des Dokumen der maßgi	ts mit Angabe, sowert erforderlich, sblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG IM CI.Y
D,A	Seite 1, Zeile 30;	iehe besonders Zeile 1 - Seite 2, Seite 5, Zeile 31 , Zeile 5 *	1,6	A 61 M 1/14 A 61 M 1/28
D,A	(GAMBRO DIALYS CO. KG.) * Gesamt; s	ATOREN GMBH & iehe besonders Zeile 17 - Seite 3,		
D,A	Anspruch	iehe besonders 1 *	7	-
A	EP - A2 - 0 27 (PIERRE FABRE * Gesamt; s Seite 2, 3, Zeilen	MEDICAMENT) iehe besonders Zeilen 3-43; Seite		RECHERCHIERTE SACHGEBIETE (IN CIT) A 61 J 1/00 A 61 M 1/00
Der	rorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt.		
	WIEN	08-08-1990		Prüler VELINSKY-HUB

KATEGORIE DER GENANNTEN DOKUMENTEN

X: von besonderer Bedeutung allein betrachtet

Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derseiben Kategorie

A: technologischer Hintergrund

O: nichtschriftliche Offenbarung

P: Zwischenliteratur

T: der Erfindung zugrunde liegende Theorien oder Grundsätze

E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

& : Mitglied der gleichen Patentlamilie, überein-stimmendes Dokument