

Quick-Sort (§ 11.2)

- Quick-sort è un algoritmo di ordinamento randomizzato basato sul paradigma divide-etimpera:
 - Divide: scegli un elemento casuale x (chiamato pivot) e partiziona S in
 - L: elementi minori di x
 - E: elementi uguali a x
 - G: elementi maggiori di x
 - Ricorri: ordina L e G
 - Impera: unisci *L*, *E* e *G*

Partizione

- Partizioniamo la sequenza di input come segue:
 - rimuoviamo ogni elemento v da S e
 - inseriamo y in L, E or G, sulla base del risultato del confronto con il pivot x
- Ogni inserimento e rimozione è all'inizio o alla fine della sequenza e quindi richiede tempo O(1)
- Quindi, il passo di partizione del quick-sort richiede tempo O(n)

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
   E.insertLast(x)
    while \neg S.isEmpty()
       y \leftarrow S.remove(S.first())
       if y < x
           L.insertLast(y)
        else if y = x
            E.insertLast(y)
        else \{y > x\}
            G.insertLast(y)
```

Albero di Quick-Sort

- Un esecuzione del quick-sort è decritta da un albero binario
 - Ogni nodo rappresenta una chiamata ricorsiva di quick-sort e memorizza
 - sequenza non ordinata prima dell'esecuzione e il suo pivot
 - sequenza ordinata alla fine dell'esecuzione
 - La radice è la chiamata iniziale
 - Le foglie sono chiamate su sottosequenze di dimensione 0 o 1

Esempio di esecuzione

Selezione del pivot

© 2004 Goodrich, Tamassia

Partizione, chiamata ricorsiva, selez.
pivot

Partizione, chiamata ricorsiva, caso base

Chiamata ricorsiva, ..., caso base, unione

unione 7 2 9 4 3 7 6 1 $2 4 3 1 \rightarrow 1 \underline{2} 3 4$

Chiamata ricorsiva, selez. pivot

© 2004 Goodrich, Tamassia

Partizione, ..., chiamata ricorsiva, caso base

© 2004 Goodrich, Tamassia

◆Unione, unione

© 2004 Goodrich, Tamassia

Tempo di esecuzione nel caso peggiore

- Il caso peggiore per il quick-sort si presenta quando il pivot è l'unico minimo o massimo elemento
- Uno di L e G ha dimensione n-1 e l'altro ha dimensione 0
- Il tempo di esecuzione è proporzionale alla somma

$$n + (n-1) + \ldots + 2 + 1$$

• Quindi, il tempo di esecuzione nel caso peggiore è $O(n^2)$

Tempo medio di esecuzione

- Considera una chiamata ricorsiva di quick-sort su una sequenza di dimensione s
 - **Buona chiamata:** le dimensioni di L e G sono ognuna meno di 3s/4
 - **Cattiva chiamata:** uno di L e G ha maggiore di 3s/4

Buona chiamata

Cattiva chiamata

- ♦ Una chiamata è buona con prob. 1/2
 - 1/2 dei possibili pivots determina buone chiamate:

Tempo medio di esecuzione, parte 2

- Fatto probabilistico: Il numero atteso di lanci di monete necessari per ottenere k volte testa è 2k
- Per un nodo di profondità i, attendiamo
 - i/2 antenati con chiamate buone
 - La dimensione della sequenza di input per la chiamata corrente al piu' (3/4)^{i/2}n
- Quindi, abbiamo
 - Per un nodo di profondità 2log_{4/3}n, la dimensione attesa dell'input è 1
 - Il valore atteso dell'altezza dell'albero di quick-sort tree è O(log n)
- La quantità di lavoro ai nodi di uguale profondità è O(n)
- ♦ Il tempo di esecuzione atteso del quick-sort è $O(n \log n)$

total expected time: $O(n \log n)$

Quick-Sort sul posto

- Quick-sort può essere implementato sul posto
- Nella fase di partizione, usiamo operazioni di riordino degli elementi della sequenza di input in modo tale che
 - gli elementi minori del pivot hanno rank minore di h
 - gli elementi uguali al pivot hanno rank tra h e k
 - gli elementi maggiori del pivot hanno rank maggiore di k
- Le chiamate ricorsive considerano
 - elementi con rank minori di h
 - elementi con rank maggiore di

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r
Output sequence S with the elements of rank between l and r rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1) inPlaceQuickSort(S, k + 1, r)

Partizionamento sul posto

Realizza la partizione usando due indici per dividere S in L e E \cup G (un metodo simile può dividere E \cup G in E e G).

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

(pivot = 6)

- Ripeti finché j e k si incontrano:
 - Muovi j alla destra finché si trova un elemento ≥ x.
 - Muovi k alla sinistra finché si trova un elemento < x.
 - Scambia gli elementi con indici j e k

Riepilogo degli Algoritmi di Ordinamento

Algoritmo	Tempo	Proprietà
selection-sort	$O(n^2)$	sul postolento (buono per input piccoli)
insertion-sort	$O(n^2)$	sul postolento (buono per input piccoli)
quick-sort	$O(n \log n)$ atteso	sul posto, randomizzatopiù veloce (buono per input grandi)
heap-sort	$O(n \log n)$	sul postoveloce(buono per input grandi)
merge-sort	$O(n \log n)$	accesso sequenziale ai dativeloce (buono per input enormi)

Java Implementation

funziona solo per elementi distinti

```
public static void quickSort (Object[] S, Comparator c) {
  if (S.length < 2) return; // the array is already sorted in this case
  quickSortStep(S, c, 0, S.length-1); // recursive sort method
private static void quickSortStep (Object[] S, Comparator c,
                     int leftBound, int rightBound ) {
  if (leftBound >= rightBound) return; // the indices have crossed
  Object temp; // temp object used for swapping
  Object pivot = S[rightBound];
  int leftIndex = leftBound; // will scan rightward
  int rightIndex = rightBound-1; // will scan leftward
  while (leftIndex <= rightIndex) { // scan right until larger than the pivot
    while ( (leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0) )</pre>
     leftIndex++;
    // scan leftward to find an element smaller than the pivot
    while ( (rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))
     rightIndex--:
   if (leftIndex < rightIndex) { // both elements were found
     temp = S[rightIndex];
    S[rightIndex] = S[leftIndex]; // swap these elements
    S[leftIndex] = temp;
  } // the loop continues until the indices cross
  temp = S[rightBound]; // swap pivot with the element at leftIndex
  S[rightBound] = S[leftIndex];
  S[leftIndex] = temp; // the pivot is now at leftIndex, so recurse
  quickSortStep(S, c, leftBound, leftIndex-1);
  quickSortStep(S, c, leftIndex+1, rightBound);
```