# Math 220 Section 108 Lecture 21

#### 22nd November 2022

Sources: https://personal.math.ubc.ca/~PLP/auxiliary.html https://secure.math.ubc.ca/Ugrad/pastExams

## Recall – Bijections

### Definition (Definition 10.4.10 of PLP)

Let  $f: A \to B$  be a function. If f is both injective and surjective then we say that f is **bijective**, or a one-to-one correspondence.

#### Example

The function  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^3$  is bijective.

The function  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^4$  is <u>not</u> bijective, since it is not injective (nor surjective).

# Bijections - Old Final Question

6. Prove that the function  $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$  given by  $f(x) = \frac{2x}{x-1}$  is  $\frac{2u_1}{y_1-1} = \frac{2u_2}{y_2-1}$ bijective.  $n_1(n_2-1) = n_2(n_1-1)$ N1 12-71 = N2N, - N2 (s) - M1 = - N2 M1 = M2 So, F := injective

# (Continued)

(Continued) 6. Prove that 
$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$$
,  $f(x) = \frac{2x}{x-1}$  is bijective. Let  $n = \frac{2}{y-2} + 1$ 

Then  $\frac{n-1}{2} = \frac{1}{y-2}$ 

Note  $n \neq 1$ 
 $y = \frac{1}{y-1} = \frac{1}{y-1}$ 
 $y = \frac{1}{y-1} + 1$ 
 $y = \frac{1}{y-1} = \frac{1}{y-1}$ 

So  $f$  is surjective.

Fig. Lighter  $\mathbb{R}$ 

## Final Question 2, 2014 WT1

- 7. (a) Let  $f: A \to B$  be a surjection and let  $D_1, D_2 \subseteq B$ . Show that if  $f^{-1}(D_1) \subseteq f^{-1}(D_2)$ , then  $D_1 \subseteq D_2$ .
- (b) Construct an example that shows the above is not true when f is not a surjection.



## (Continued)

(Continued) 7. (a) Let  $f: A \to B$  be a surjection and let  $D_1, D_2 \subseteq B$ . Show that if  $f^{-1}(D_1) \subseteq f^{-1}(D_2)$ , then  $D_1 \subseteq D_2$ .

(b) Construct an example that shows the above is not true when f is not a surjection.

# Compositions

### Definition (Definition 10.5.1 in PLP)

Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$  be functions. The **composition** of f and g is

$$g \circ f : A \to C$$
  
where  $(g \circ f)(a) = g(f(a)) \quad \forall a \in A$ 

#### Example

Let  $f(x) = x^3$  and g(x) = 2x both be functions on  $\mathbb{R}$ . Then

$$(g \circ f)(x) = 2x^3.$$

In contrast, we have

$$(f\circ g)(x)=8x^3.$$

Usually,

$$g \circ f \neq f \circ g$$
.

## Left, Right, and Two-sided Inverses

### Definition (Definition 10.6.1 of PLP)

Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$  be functions.

- If  $g \circ f = i_A$  then we say that g is a **left-inverse** of f.
- If  $f \circ g = i_B$  then we say that g is a **right-inverse** of f.

#### Definition (Definition 10.6.6 of PLP)

If g is both a left-inverse and a right-inverse of f, then we say it is **the inverse** of f.

Note that the inverse, if it exists, is unique.

### Theorem (From Theorem 10.6.8 of PLP)

A function has an inverse if and only if it is bijective.

### Final Question 8, 2016 WT1

- 8. Let  $f: A \rightarrow B$  be a function. Prove:
- (a) If there is a function  $g: B \to A$  such that  $g \circ f(x) = x$ , for all  $x \in A$ , then f is injective.
- (b) If f is injective, then there is a function  $g: B \to A$  such that  $g \circ f(x) = x$ , for all  $x \in A$ .

# Final Question 8, 2016 WT1 (Continued)

(Continued) 8. Let  $f: A \rightarrow B$  be a function. Prove:

- (a) If there is a function  $g: B \to A$  such that  $g \circ f(x) = x$ , for all  $x \in A$ , then f is injective.
- (b) If f is injective, then there is a function  $g: B \to A$  such that  $g \circ f(x) = x$ , for all  $x \in A$ .

# Injective (if time)

9. Suppose that  $f: A \to B$  and  $C_1, C_2$  are subsets of A. Show that if f is injective, then  $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$ .

### (Continued)

(Continued) 9. Suppose that  $f: A \to B$  and  $C_1, C_2$  are subsets of A. Show that if f is injective, then  $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$ .