Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. 16. marca

Zadania

- 1. Czy prawdą jest, że 13. dzień miesiąca powiązany jest z piątkiem? (1 stycznia 1601-31 grudnia 2000)
 - ZAŁOŻENIA: rok numer n jest jest przestępny jeżeli $n \equiv_4 0$, pod warunkiem, że $n \not\equiv_{100} 0$; dodatkowo jeżeli $n \equiv_{400} 0$ (czyli rok 2000), to wcześniejszy warunek jest nieważny. Ile razy w 400-letnim cyklu 13-tym dniem miesiąca był poniedziałek, wtorek, ..., niedziela?
 - Mówimy, że zmienne X,Y są niezależne, wtedy gdy w wypadku dyskretnym spełniony jest warunek $P(X=x_i,Y=y_k)=P(X=x_i)\cdot P(Y=y_k)$.
- 2. Zmienna X ma rozkład $B(n_1,p)$ a zmienna Y rozkład $B(n_2,p)$. Zmienne są niezależne. Wykazać, że zmienna Z=X+Y ma rozkład $B(n_1+n_2,p)$.
- 3. Niezależne zmienne losowe X, Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z = X + Y ma rozkład Poissona z parametrem $\lambda_1 + \lambda_2$.
- 4. Zmienna losowa X ma gęstość $f(x) = 1.5 \cdot \sqrt{x}$ dla $x \in [0, 1]$. Wyznaczyć dystrybuantę F(x) tej zmiennej oraz gestość zmiennej $Y = X^2$.
 - Gęstość 2-wymiarowej zmiennej losowej (X,Y) to f(x,y)=3xy na obszarze ograniczonym prostymi $y=0,\ y=x,\ y=2-x.$
- 5. Wyznaczyć gestości brzegowe $f_1(x), f_2(y)$.
- 6. Zmienna losowa (X,Y) ma gęstość postaci f(x,y)=15 x^2y na obszarze ograniczonym prostymi y=0, x=0, y=2-2x. Wyznaczyć gęstość brzegową $f_1(x)$ oraz wartość oczekiwaną EX.
- 7. Czytelnie i starannie bez korzystania z notatek napisać wielkie i małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ , fi ϕ , rho ρ .
- 8. (a) Niech $X \sim U[-2,2]$. Znaleźć rozkład zmiennej Y = |X|.
 - (b) Dla $X \sim U[-1,1]$ wyznaczyć rozkłady zmiennych $Y = X^3, \ Z = X^2.$
- 9. Niech X będzie zmienną o rozkładzie geometrycznym $(X \sim \text{Geom}(p))$. Udowodnić, że $V(X) = \frac{1-p}{p^2}$.
- 10. Dwuwymiarowa gęstość zmiennej (X,Y) to f(x,y) = 6xy, dla 0 < x < 2, $0 < y < 1 \frac{1}{2}x$. Znaleźć gęstości brzegowe $f_1(x), f_2(y)$ zmiennych X, Y.
- 11. Zbiory A_1, \ldots, A_4 mają moc odpowiednio 40, 32, 20, 50. Losowo wybieramy pewien element (z całości). Wartością zmiennej losowej X jest moc zbioru z którego pochodzi wybrany element. Następnie losowo wybieramy jeden ze zbiorów. Wartością zmiennej losowej Y jest moc wybranego zbioru. Obliczyć E(X) i E(Y).
 - [Z12-Z13] Obowiązkowa wskazówka: $\mathrm{V}(X) = \mathrm{E}(X^2) (\mathrm{E}X)^2$
- 12. Niech $X \sim \text{Poisson}(\lambda)$. Wykazać że $V(X) = \lambda$.
- 13. Niech $X \sim B(n, p)$. Wykazać że V(X) = np(1 p).