MesoNH environment

MesoNH Tutorial Class 12-15 November 2024

MESONH simulation = succession of elementary steps

Elementary steps :

- 1. Preparation of physiographic file (PGD)
 - ► PREP PGD
 - PREP_NEST_PGD
- 2. Preparation of the simulation
 - ► PREP IDEAL CASE
 - PREP REAL CASE
 - SPAWNING
- 3. Run
 - MODEL or MESONH
- 4. Diagnostics
 - DIAG
 - SPECTRE

Diagnostics

Diagnostics

IDEAL CASE PREP PGD physiographic data (if realistic surface) Simulation initialization PREP_IDEAL_CASE initializes an uniform atmosphere **MODEL** temporal Simulation integration DIAG SPECTRA Diagnostics

REAL CASE

Initial + Coupling files

ARPEGE / AROME / IFS / GFS (GRIB1 or GRIB2)

IDEAL CASE PREP PGD physiographic data (if realistic surface) Simulation initialization PREP_IDEAL_CASE initializes an uniform atmosphere **MODEL** temporal Simulation integration DIAG SPECTRA Diagnostics

IDEAL CASE PREP PGD physiographic data (if realistic surface) Simulation initialization PREP_IDEAL_CASE initializes an uniform atmosphere **MODEL** temporal Simulation integration SPECTRA Diagnostics DIAG

IDEAL CASE PREP PGD physiographic data (if realistic surface) Simulation initialization PREP IDEAL CASE initializes an uniform atmosphere MODEL temporal Simulation integration SPECTRA Diagnostics DIAG

two-domain simulation

IDEAL CASE	REAL CASE
1 domain	1 domain 12h simulations with 4 couplings file / 3h

IDEAL CASE	REAL CASE	
1 domain 001 prep ideal case	1 domain 001 prep pgd	12h simulations with 4 couplings file / 3h
001_prep_ideal_case 002_run_mesonh	002_prep_real_case 003_run_mesonh	

ĺ

IDEAL CASE	REAL CASE	
1 domain		12h simulations with 4 couplings
002 run mesonh		file / 3h
2 domains	2 domains	

IDEAL CASE	REAL CASE
1 domain	1 domain 12h simulations with 4 couplings 001_prep_pgd file / 3h
001_prep_ideal_case 002_run_mesonh	002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains	2 domains
001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	

IDEAL CASE	REAL CASE
1 domain	1 domain 12h simulations with 4 couplings
001_prep_ideal_case 002_run_mesonh	001_prep_pgd file / 3h 002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains	2 domains
001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	001_prep_pgd_D1 002_prep_pgd_D2 003_prep_nest_pgd

IDEAL CASE	REAL CASE
1 domain 001_prep_ideal_case 002_run_mesonh	1 domain 12h simulations with 4 couplings 001_prep_pgd file / 3h 002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	2 domains 001_prep_pgd_D1 002_prep_pgd_D2 003_prep_nest_pgd 004_prep_real_case_D1 x5 (1 init + 4 cpl) 005_spawning_D1_to_D2 006_prep_real_case_D2 007_run_mesonh

IDEAL CASE	REAL CASE
1 domain 001_prep_ideal_case 002_run_mesonh	1 domain 12h simulations with 4 couplings 001_prep_pgd file / 3h 002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	2 domains 001_prep_pgd_D1 002_prep_pgd_D2 003_prep_nest_pgd 004_prep_real_case_D1 x5 (1 init + 4 cpl) 005_spawning_D1_to_D2 006_prep_real_case_D2 007_run_mesonh
3 domains 001_prep_ideal_case 002_spawning_D1_to_D2	

IDEAL CASE	REAL CASE
1 domain 001_prep_ideal_case 002_run_mesonh	1 domain 12h simulations with 4 couplings file / 3h 002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	2 domains 001_prep_pgd_D1 002_prep_pgd_D2 003_prep_nest_pgd 004_prep_real_case_D1 x5 (1 init + 4 cpl) 005_spawning_D1_to_D2 006_prep_real_case_D2 007_run_mesonh
3 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_spawning_D2_to_D3 004_run_mesonh	3 domains

IDEAL CASE	REAL CASE
1 domain 001_prep_ideal_case 002_run_mesonh	1 domain 12h simulation with 4 coupling 001_prep_pgd file / 3h 002_prep_real_case x5 (1 init + 4 cpl) 003_run_mesonh
2 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_run_mesonh	2 domains 001_prep_pgd_D1 002_prep_pgd_D2 003_prep_nest_pgd 004_prep_real_case_D1 x5 (1 init + 4 cpl) 005_spawning_D1_to_D2 006_prep_real_case_D2 007_run_mesonh
3 domains 001_prep_ideal_case 002_spawning_D1_to_D2 003_spawning_D2_to_D3 004_run_mesonh	3 domains 001_prep_pgd_D1 002_prep_pgd_D2 003_prep_pgd_D3 004_prep_nest_pgd 005_prep_real_case_D1 x5 (1 init + 4 cpl) 006_spawning_D1_to_D2 007_prep_real_case_D2 008_spawning_D2_to_D3 009_prep_real_case_D3 010_run_mesonh

Program and Namelists

Namelists

Definition

- Input file for each program
- ▶ Use : set the parameters of the program
- Specific format

Format (Méso-NH)

- Name is fixed (except the number if grid-nesting)
- Avoid tabulating
- Contains sub-namelists (groups)
- Groups start by &NAM and end with /
- ▶ If a group is not mentionned ⇒ default values

Lists of groups and options: user's guide (Méso-NH + SURFEX)

```
Namelists: example
    &NAM CONFIO LCDF4=T,
                  LLFIOUT=F.
                  LLFIREAD=F/
    &NAM LUNITh CINIFILE = "GABL4.1.ECH13.001".
                  CINIFILEPGD='GABL4.1.ECH00.001PGD' /
    &NAM CONFn LUSERV=F/
    &NAM DYNn XTSTEP=0.75.XT4DIFU = 100. /
    &NAM ADVn CUVW ADV SCHEME = "WENO K".NWENO ORDER=4.CTEMP SCHEME='RKC4'.
               CMET ADV SCHEME = "PPM 01", CSV ADV SCHEME = "PPM 01",/
    &NAM PARAMn CTURB='TKEL', CRAD='NONE', CCLOUD='NONE', CSCONV='NONE',
                 CDCONV='NONE' /
    &NAM LBCn CLBCX = 2*"CYCL", CLBCY = 2*"CYCL",
                 XCPHASF = 10.0 /
    &NAM TURBn XIMPL=1., CTURBLEN='DEAR', CTURBDIM='3DIM',
               LTURB FLX=T. LTURB DIAG=T. LSUBG COND=F.
               XKEMIN=1E-10,
               LSIGMAS=F, LSIG CONV=F, LRMC01=T /
    &NAM CONF CCONF="RESTA", CEONSYS ='DUR', LFLAT=T,
              NMODEL=1. NVERB=6. CEXP="GABL4". CSEG="ECH14".
              LFORCING=T, CSPLIT = 'BSPLITTING',
              NHALO=1. JPHEXT=1 /
    &NAM CONFZ MPI BUFFER SIZE=800 /
```

Meso-NH files

MesoNH files format

NC (Netcdf)

format highly recommended

lfi

historical format

3 types of output files:

- synchronous backup
- synchronous on-demand output
- time series

with 2 parts:

- .des : descriptive ascii file (namelists used)
- .nc or .lfi : data + metadata

Backup files

Backup file = Synchronous file

- contains all the variables that describe the atmosphere at a given time on the whole domain
- allows communication between the different programs
- domain dimensions and time are identical for all the fields.

In the simulation, a synchronous file allows to (re)start the model in several segments (RESTART)

Segments

A MESONH simulation can be divided in 1 or several **SEGMENTS**.

Why?

- ▶ subdivide jobs (computing time limit ⇒ supercomputer)
 - example : Instead of 1 segment of 24 hours, we can do 4 segments of 6 hours
- have a different number of domain in the segments
 - example : we can have a first segment of 6 hours with 1 domain and a second segment of 12 hours with 2 nested-domains

Backup files : NAM_BACKUP

Fortran name	Fortran type	default value
XBAK_TIME	real(:,:)	8*192* - 999.
NBAK_STEP	integer(:,:)	8*192* -999
XBAK_TIME_FREQ	real(:)	-999.
XBAK_TIME_FREQ_FIRST	real(:)	0.
NBAK_STEP_FREQ	integer(:)	-999
NBAK_STEP_FREQ_FIRST	integer(:)	1
LBAK_BEG	logical	.FALSE.
LBAK_END	logical	.FALSE.
CBAK_DIR	character(len=512)	,,

Time series

Time series

- contains some chosen variables (flux, tendency, mean) stored at differents times during simulation in a part of the domain
- activation of "on-line" diagnostics
- ▶ file name ends by .000

Available variables (refer to Diagnostics presentation)

- Budgets
- ► LES
- Aircrafts and balloons
- Stations and profilers

Examples of output files from the run

6 hours run with outputs every 2 hours

1 segment (no RESTART)

Synchronous files (backup) CTRL0.1.SEG01.001 CTRL0.1.SEG01.002 CTRL0.1.SEG01.003

Time-series file CTRLO.1.SEG01.000

3 segments (RESTART)

1st segment CTRL0.1.SEG01.000 CTRL0.1.SEG01.001

2nd segment CTRLO.1.SEG02.000 CTRLO.1.SEG02.001

3rd segment
CTRLO.1.SEG03.000
CTRLO.1.SEG03.001

Highly-frequent and smaller output

On demand smaller output files (optional)

- ► The user selects a few variables only ⇒ smaller files
- NetCDF compression, single precision possible
- Use : huge domain and/or very frequent output (ex : 3D animation)
- Restart not possible from these files
- Available variables : same as in backup files

On-demand outputs : NAM_OUTPUT

Fortran name	Fortran type	default value
COUT_VAR	character(len=32)(:,:)	"
XOUT_TIME	real(:,:)	8*999* -999.
NOUT_STEP	integer(:,:)	8*999* -999
XOUT_TIME_FREQ	real(:)	-999.
XOUT_TIME_FREQ_FIRST	real(:)	0.
NOUT_STEP_FREQ	integer(:)	-999
NOUT_STEP_FREQ_FIRST	integer(:)	1
LOUT_BEG	logical	.FALSE.
LOUT_END	logical	.FALSE.
LOUT_REDUCE_FLOAT_PRECISION	logical	.FALSE.
LOUT_COMPRESS	logical	.FALSE.
NOUT_COMPRESS_LEVEL	integer	4
COUT_DIR	character(len=512)	"