Oplossingen Oefeningen Grondslagen 1: Propositielogica: Syntax en Semantiek

Oefening 1

- $\Sigma^0 = \{\epsilon\}$
- $\Sigma^1 = \{a, b\}$
- $\Sigma^2 = \{aa, ab, ba, bb\}$
- $\Sigma^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$

Oefening 2

- a) $\cdot^r: \Sigma^* \to \Sigma^*$ gedefinieerd door
 - (a) $\epsilon^r = \epsilon$
 - (b) $a^r = a \text{ voor } a \in \Sigma$
 - (c) $(aw)^r = w^r a \text{ voor } a \in \Sigma, w \in \Sigma^*$
- b) $(abcd)^r = (bcd)^r a = (cd)^r ba = d^r cba = dcba = dcba$
- c) Te bewijzen $(wa)^r = aw^r$. Per inductie op w
 - Basisstappen

Als
$$|w| = 0$$
 dan is $w = \epsilon$. Dan is ook $(wa)^r = (\epsilon a)^r = a^r = a = a\epsilon = aw^r$
Als $|w| = 1$ dan is $w = b \in \Sigma$. Dus $(wa)^r = (ba)^r = a^rb = ab = aw^r$

• Inductiestappen

Als
$$|w| = n > 1$$
 dan geldt voor w' met $|w'| = n - 1$ en $w = bw'$ met $b \in \Sigma$: $(wa)^r = (bw'a)^r = (w'a)^r b$ per inductie hebben we dan ook $aw'^r b$. Dit komt overeen met $a(bw')^r$ ofte aw^r

- d) Te bewijzen $w^{rr} = w$. Per inductie op w
 - Basisstappen

Als
$$|w|=0$$
, dan is $w=\epsilon$. Dus $\epsilon^{rr}=\epsilon^r=\epsilon=w$
Als $|w|=1$, dan is $w=a$, met $a\in \Sigma$. Dus $a^{rr}=a^r=a=w$

• Inductiestappen

Als
$$|w| = n > 1$$
, dan $w = aw'$ met $a \in \Sigma$ en $w' \in \Sigma^*$.
Dan $w^{rr} = (aw')^{rr} = (w'^r a)^r$
Uit c) weten we dat $(w'^r a)^r = aw^{rr}$ en per inductie hebben we dan aw' wat gelijk is met w

Zie cursus Lambda-calculus.

- 1. Een verzameling variabelen $a, b, c, ... \in V$
- 2. Het symbool voor functiedefinities λ
- 3. Aanroep symbolen (en)

Oefening 4

- 1. Een verzameling propositieletters a, b, c, ...
- 2. Logische symbolen $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- 3. Hulpsymbolen (en)

Oefening 5

- 1. d verwijdert alle voorkomens van een letter a in een woord w
- 2. Te bewijzen per inductie op w: voor alle $\forall w \in \Sigma^*, \forall a \in \Sigma : d(w,a)^r = d(w^r,a)$
 - Basisstappen

Als |w| = 0 dan is $w = \epsilon$, dus

$$-LHS = d(w, a)^r = d(\epsilon, a)^r = \epsilon^r = \epsilon$$

$$-RHS = d(w^r, a) = d(\epsilon^r, a) = d(\epsilon, a) = \epsilon$$

Als |w|=1 dan is w gelijk aan een letter ofwel gelijk aan, ofwel verschillend van a.

Stel w = a, dan

$$-LHS = d(w, a)^r = d(a, a)^r = \epsilon^r = \epsilon$$

$$-RHS = d(w^r, a) = d(a^r, a) = d(\epsilon, a) = \epsilon$$

Stel w = b en $b \in \Sigma$ en $b \neq a$

$$-LHS = d(w, a)^r = d(b, a)^r = b^r = b$$

$$-RHS = d(w^r, a) = d(b^r, a) = d(b, a) = b$$

• Inductiestap

Als |w| > 1, dan w = cw' met $c \in \Sigma$ en $w \in \Sigma^*$

$$-LHS = d(w, a)^{r} = d(cw', a)^{r} = (d(c, a)d(w', a))^{r} = d(w', a)^{r}d(c, a)$$

$$-RHS = d(w^r, a) = d((cw)^r, a) = d(w^r, a) = d(w^r, a)d(c, a)$$

vanwege de basisstap weten we dat het laatste letter dus gelijk is en per inductie hebben we dan ook dat $d(w',a)^r = d(w'^r,a)$

- 3. Te bewijzen per inductie op w: voor alle $\forall w \in \Sigma^*, \forall a, b \in \Sigma : d(d(w, a), b) = d(d(w, b), a)$
 - Basisstappen

Als |w| = 0 dan is $w = \epsilon$, dus

$$-LHS = d(d(w, a), b) = d(d(\epsilon, a), b) = d(\epsilon, b) = \epsilon$$

$$-RHS = d(d(w,b),a) = d(d(\epsilon,b),a) = d(\epsilon,a) = \epsilon$$

Als |w| = 1 dan is w gelijk aan een letter ofwel gelijk aan, ofwel verschillend van a en/of b. Gezien = symmetrisch is, hoeven we het maar voor één letter te bekijken. We nemen a.

Stel w = a, dan

$$-LHS = d(d(w,a),b) = d(d(a,a),b) = d(\epsilon,b) = \epsilon$$

$$- RHS = d(d(w, b), a) = d(d(a, b), a) = d(a, a) = \epsilon$$

Stel w=c en $c\in \Sigma$ en $c\neq a$ en $c\neq b$

$$-LHS = d(d(w, a), b) = d(d(c, a), b) = d(c, b) = c$$

$$-RHS = d(d(w,b),a) = d(d(c,b),a) = d(c,a) = c$$

• Inductiestap Als |w| > 1, dan w = cw' met $c \in \Sigma$ en $w \in \Sigma^*$

$$-LHS = d(d(w, a), b) = d(d(cw', a), b) = d(d(c, a)d(w', a), b) = d(d(c, a), b)d(d(w', a), b)$$

$$-RHS = d(d(w,b),a) = d(d(cw',b),a) = d(d(c,b)d(w',b),a) = d(d(c,b),a)d(d(w',b),a)$$

vanwege de basisstap weten we dat d(d(c,a),b) = d(d(c,b),a) en per inductie hebben we ook dat d(d(w',a),b) = d(d(w',b),a)

Oefening 6

- a) De afsluitende stap zorgt ervoor dat "woorden" die niet gevormd kunnen worden via stap 1 of 2 niet beschouwd kunnen worden als een formule. Bijvoorbeeld: $\neg pq$ en $p \to \rightarrow q$ zijn geen formules.
- b) i) ja
 - ii) neen: er staan geen haakjes, de constructieboom zou ambigu zijn
 - iii) ja

Oefening 7

b = "de bus komt", a = "de tram komt", e = "de trein komt"

- a) $(\neg b \to (a \land e))$
- b) $((\neg e \rightarrow a) \rightarrow \neg (e \land b))$

Oefening 8

$$((p \land \neg q) \to r), (p \land \neg (q \to r)), (p \land (\neg q \to r))$$

Vermits de propositiesymbolen telkens herhaald worden, zouden we deze kunnen weglaten en ze enkel onderaan in de bladeren van de boom schrijven.

Oefening 10

Gebalanceerde haakjes

- Basisstap: () is een rij gebalanceerde haakjes
- Opbouwstappen:
 - Als H een rij gebalanceerde haakjes is, dan is ook (H) een rij gebalanceerde haakjes.
 - Als H_1 en H_2 rij gebalanceerde haakjes zijn, dan is ook H_1H_2 een rij gebalanceerde haakjes.
- Afsluitende stap: niets anders is een rij gebalanceerde haakjes

Let op: bovenstaande oplossing kan tot ambigue bomen leiden. Bijvoorbeeld ()()() heeft twee constructiebomen. Men kan dit oplossen met volgende inductieve definitie:

- Basisstap: () is een rij gebalanceerde haakjes
- Opbouwstappen:
 - Als H een rij gebalanceerde haakjes is, dan is ook (H) een rij gebalanceerde haakjes.
 - Als H een rij gebalanceerde haakjes is, dan is ook ()H een rij gebalanceerde haakjes.
 - Als H_1 en H_2 rij gebalanceerde haakjes zijn, dan is ook $(H_1)H_2$ een rij gebalanceerde haakjes.
- Afsluitende stap: niets anders is een rij gebalanceerde haakjes

Natuurlijke Expressies (NE)

- Basisstap: elke $n \in \mathbb{N}$ is een natuurlijke expressie
- Opbouwstappen:
 - Als N_1 en N_2 natuurlijke expressies zijn, dan zijn ook (N_1+N_2) , (N_1-N_2) , (N_1*N_2) en (N_1/N_2) natuurlijke expressies.
- Afsluitende stap: niets anders is een natuurlijke expressie

Oefening 11

- a) prefix: +(1, -(*(2,7), 5)) en postfix:(1, ((2,7)*, 5)-)+
- b) prefix: *(+(3,4),/(8,2)) en postfix: ((3,4)+,(8,2)/)*
- c) prefix: $\land(\rightarrow(\leftrightarrow(q,r),p),\neg(p))$ en postfix: $(((q,r)\leftrightarrow,p)\rightarrow,(p)\neg)\land$

a)

$$\begin{split} [(q \leftrightarrow r)/p] \neg p &= \neg [(q \leftrightarrow r)/p] p & \neg - regel \\ &= \neg (q \leftrightarrow r) & prop.letter - regel \end{split}$$

b)

$$\begin{split} [(q \to s)/p](p \to q) &= ([(q \to s)/p]p \to [(q \to s)/p]q) & \to -regel \\ &= ((q \to s) \to [(q \to s)/p]q) & prop.letter - regel \\ &= ((q \to s) \to q) & prop.letter - regel \end{split}$$

c)

$$\begin{split} [((q \wedge s) \rightarrow \neg p)/r](p \rightarrow p) &= ([((q \wedge s) \rightarrow \neg p)/r]p \rightarrow [((q \wedge s) \rightarrow \neg p)/r]p) & \neg - regel \\ &= (p \rightarrow [((q \wedge s) \rightarrow \neg p)/r]p) & prop.letter - regel \\ &= (p \rightarrow p) & prop.letter - regel \end{split}$$

Oefening 13

Deze oplossingen zijn opgesteld in de veronderstelling dat x een natuurlijk getal is!

a)

$$\begin{aligned} (\neg(p \land q) \land r) &\simeq \neg(x \le 1 \land x \le 3) \land x \ge 2 \\ &\simeq (\neg(x \le 1) \land x \ge 2) \\ &\simeq (x > 1 \land x \ge 2) \\ &\simeq x \ge 2 \end{aligned}$$

b)

$$\begin{split} ((\neg p \land q) \land r) &\simeq (\neg (x \le 1) \land x \le 3) \land x \ge 2 \\ &\simeq ((x > 1 \land x \le 3) \land x \ge 2) \\ &\simeq ((x = 2 \lor x = 3) \land x \ge 2) \\ &\simeq (x = 2 \lor x = 3) \end{split}$$

c)

$$\neg (p \land (q \land r)) \simeq \neg (x \le 1 \land (x \le 3 \land x \ge 2))$$
$$\simeq \neg (x \le 1 \land (x = 2 \lor x = 3))$$
$$\simeq alle \ natuurlijke \ getallen$$

Oefening 14

a) $V(p \wedge q) = 0$, dit kan je aflezen in de waarheidstabel van $p \wedge q$, bekijk de lijn waar p = 0 en q = 1. $V(p \uparrow q) =?$, dit is afhankelijk van de betekenis van \uparrow

- b) Het boek geeft een precieze definitie voor $V(p), V(q), \dots$ met p, q, \dots propositieletters. Het geeft echter niet de definitie va $V(\varphi)$ met φ een willekeurig propositieformule. Hiervoor zijn nodig: een definitie voor de waarderingen van de connectieven en hoe deze gecombineerd kunnen worden.
- c) Definitie: de waardering van een k-plaatsige connectief \circ is een functie $f_{\circ}: \{0,1\}^k \to \{0,1\} = V(\circ)$ Definitie: zij V een waardering. De waardering van een formule φ is gedefinieerd door:
 - Als $\varphi = p$, met p een propositieletter, dan is $V(\varphi) = V(p)$
 - Als \circ een k-plaatsige connectief is, en $\sigma_1,...,\sigma_r$ zijn formules en $\varphi=\circ(\sigma_1,...,\sigma_r)$ dan is $V(\varphi)=V(\circ)(V(\sigma_1),...,V(\sigma_r))$

Let op: er zijn nu 3 V's in het spel: V voor propositieletters, V voor connectieven, en V voor formules, die de semantiek van formules berekent door middel van d).

- d) $V(\rightarrow) = f_{\rightarrow}$ met $f_{\rightarrow} = 1$ als x = 0 of y = 1 en $f_{\rightarrow} = 0$ anders.
 - $V(\leftrightarrow) = f_{\leftrightarrow} \text{ met } f_{\leftrightarrow} = 1 \Leftrightarrow x = y$
 - $V(\wedge) = f_{\wedge} \text{ met } f_{\wedge}(x,y) = min(x,y)$
 - $V(\vee) = f_{\vee} \text{ met } f_{\vee}(x,y) = max(x,y)$
 - $V(\neg) = f_{\neg} \text{ met } f_{\neg}(x) = 1 x$

e)

$$\begin{split} V((p \wedge q) \rightarrow r) &= f_{\rightarrow}(V((p \wedge q)), V(r)) \\ &= f_{\rightarrow}(f_{\wedge}(V(p), V(q)), 0) \\ &= f_{\rightarrow}(f_{\wedge}(0, 1), 0) \\ &= f_{\rightarrow}(0, 0) \\ &= 1 \end{split}$$

Oefening 15

Zie volgende pagina

a) (¬pv¬q)

Eerste manier:

р	q	¬р	¬q	¬pv¬q
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Tweede manier

р	q	¬pv¬q
0	0	111
0	1	110
1	0	0 1 1
1	1	000

b) (p^(q^p))

Eerste manier:

р	q	q^p	(p^(q^p))
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Tweede manier:

р	q	(p^(q^p))
0	0	0 0
0	1	0 0
1	0	0 0
1	1	1 1

c) $(\neg p^(\neg q^r))v((q^r)v(p^r))$

Eerste manier

р	q	r	(q^r)	(p^r)	¬q	¬p	¬q^r	¬p^(¬q^r)	(q^r)v(p^r)	(¬p^(¬q^r))v ((q^r)v(p^r))
0	0	0	0	0	1	1	0	0	0	0
0	0	1	0	0	1	1	1	1	0	1
0	1	0	0	0	0	1	0	0	0	0
0	1	1	1	0	0	1	0	0	1	1
1	0	0	0	0	1	0	0	0	0	0
1	0	1	0	1	1	0	1	0	1	1
1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	1	1

- 1. $(p \land \neg q) \lor (\neg p \land q)$
- 2. Exclusive OR (XOR, $\underline{\vee}$)
- 3. $p \to q$ is equivalent met $\neg p \lor q$ $p \leftrightarrow q$ is equivalent met $(p \land q) \lor (\neg p \land \neg q)$

Oefening 17

- 1. XOR
- 2. ^
- 3. c_1 is hier de carry. Voor elke $p_i, q_i, i = 1..8$:
 - (a) $r_i = (c_i \underline{\vee} (p_i \underline{\vee} q_i))$
 - (b) $c_{i+1} = (p_i \wedge q_i) \vee ((p_i \underline{\vee} q_i) \wedge c_i)$

Oefening 18

a) $\varphi = ((\neg p \lor q) \leftrightarrow (p \to q))$

	p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	$ ((\neg p \lor q) \leftrightarrow (p \to q)) $
v1	0	0	1	1	1	1
v2	0	1	1	1	1	1
v3	1	0	0	0	0	1
v4	1	1	0	1	1	1

$$Mod(\varphi) = \{v1, v2, v3, v4\}$$

Merk op: tautologie $(\neg p \lor q) \Leftrightarrow (p \to q)$

b) $\varphi = (q \wedge (\neg p \vee p))$

	p	q	$\neg p$	$\neg p \lor p$	$ (q \land (\neg p \lor p))$
v1	0	0	1	1	0
v2	0	1	1	1	1
v3	1	0	0	1	0
v4	1	1	1 1 0 0	1	1

$$Mod(\varphi) = \{v2, v4\}$$

Merk op: $q \Leftrightarrow (q \land (\neg p \lor p))$

c) $\varphi = (q \wedge (\neg p \wedge p))$

	p	q	$\neg p$	$\neg p \land p$	$(q \wedge (\neg p \wedge p))$
v1	0	0	1	0	0
v2	0	1	1	0	0
v3	1	0	0	0	0
v4	1	1	0	0 0 0 0	0
	'	'	'	'	•

$$Mod(\varphi) = \{\}$$

Merk op: $(p \wedge \neg p) = vals$

a)
$$\Sigma = \{((p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p)))\}$$

			$((p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \to p)))$
v1	0	0	1
v2	0	1	1
v3	1	0	1
$ \begin{array}{c} v1 \\ v2 \\ v3 \\ v4 \end{array} $	1	1	1

$$Mod(\Sigma) = \{v1, v2, v3, v4\}$$

b)
$$\Sigma = \{((p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))), (p \lor q)\}$$

		q	$((p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \to p)))$	$(p \lor q)$
v1	0	0	1	0
v2	0	1	1	1
$ \begin{array}{c} v1 \\ v2 \\ v3 \\ v4 \end{array} $	1	0	1	1
v4	1	1	1	1

$$Mod(\Sigma) = \{v2, v3, v4\}$$

Opmerking: $Mod(\Sigma \cup \{\varphi\}) \subseteq Mod(\Sigma)$ ten opzichte van alle waarderingen die je kan maken met de propositieletters in zowel Σ en φ .