Loading the data from cloud

In []: from google.colab import drive drive.mount('/content/drive') Mounted at /content/drive In []: import pandas as pd df=pd.read_csv('/content/drive/MyDrive/CarPrice_Assignment.csv') df.shape (205, 26) Out[]: df.head() In []: Out[]: car_ID symboling CarName fueltype aspiration doornumber carbody drivewheel alfa-romero 0 1 3 two convertible rwd gas std giulia alfa-romero std two convertible 1 2 3 gas rwd stelvio alfa-romero 2 gas 3 hatchback std two rwd Quadrifoglio 3 2 audi 100 ls fwd four sedan gas std 5 2 audi 100ls gas std four sedan 4wd 5 rows × 26 columns

In []: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
                      Non-Null Count Dtype
```

#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
dtyp	es: float64(8), in	nt64(8), object(1	0)

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

```
df.describe()
In [ ]:
```

Out[]:	car_ID		symboling	wheelbase	carlength	carwidth	carheight	curbweight	engir
	count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.00
	mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.90
	std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.64
	min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.00
	25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.00
	50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.00
	75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.00
	max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.00

```
In [ ]: #Splitting company name from CarName column
        CompanyName = df['CarName'].apply(lambda x : x.split(' ')[0])
        df.insert(3,"CompanyName",CompanyName)
        df.drop(['CarName'],axis=1,inplace=True)
        df.head()
```

	car_ID	symboling	CompanyName	fueltype	aspiration	doornumber	carbody	drivewheel	(
0	1	3	alfa-romero	gas	std	two	convertible	rwd	
1	2	3	alfa-romero	gas	std	two	convertible	rwd	
2	3	1	alfa-romero	gas	std	two	hatchback	rwd	
3	4	2	audi	gas	std	four	sedan	fwd	
4	5	2	audi	gas	std	four	sedan	4wd	
	0 1 2 3	0 1 1 2 2 3 3 4	 1 3 1 2 3 2 3 1 3 4 2 	 1 3 alfa-romero 1 2 3 alfa-romero 2 3 1 alfa-romero 3 4 2 audi 	0 1 3 alfa-romero gas 1 2 3 alfa-romero gas 2 3 1 alfa-romero gas 3 4 2 audi gas	0 1 3 alfa-romero gas std 1 2 3 alfa-romero gas std 2 3 1 alfa-romero gas std 3 4 2 audi gas std	1 2 3 alfa-romero gas std two 2 3 1 alfa-romero gas std two 3 4 2 audi gas std four	0 1 3 alfa-romero gas std two convertible 1 2 3 alfa-romero gas std two convertible 2 3 1 alfa-romero gas std two hatchback 3 4 2 audi gas std four sedan	0 1 3 alfa-romero gas std two convertible rwd 1 2 3 alfa-romero gas std two hatchback rwd 2 3 1 alfa-romero gas std two hatchback rwd 3 4 2 audi gas std four sedan fwd

5 rows × 26 columns

```
In [ ]: df.CompanyName = df.CompanyName.str.lower()
        def replace_name(a,b):
            df.CompanyName.replace(a,b,inplace=True)
        replace_name('maxda','mazda')
        replace_name('porcshce','porsche')
        replace_name('toyouta','toyota')
        replace_name('vokswagen','volkswagen')
        replace_name('vw','volkswagen')
        print(df.CompanyName.unique())
        df.CompanyName.value_counts()
        ['alfa-romero' 'audi' 'bmw' 'chevrolet' 'dodge' 'honda' 'isuzu' 'jaguar'
         'mazda' 'buick' 'mercury' 'mitsubishi' 'nissan' 'peugeot' 'plymouth'
         'porsche' 'renault' 'saab' 'subaru' 'toyota' 'volkswagen' 'volvo']
                      32
        toyota
Out[]:
        nissan
                       18
        mazda
                      17
        mitsubishi
                      13
        honda
                       13
        volkswagen
                      12
                      12
        subaru
        peugeot
                     11
        volvo
                      11
                      9
        dodge
                       8
        buick
        bmw
                        8
        audi
        plymouth
        saab
                        6
                        5
        porsche
        isuzu
                        4
        jaguar
                        3
        chevrolet
                        3
        alfa-romero
        renault
                        2
                        1
        mercury
        Name: CompanyName, dtype: int64
```

Exploratory data analysis

Histogram analysis for numerical variables

In []: #Histogram for car price

import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(df.price)

<ipython-input-8-3501d61547f0>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.price)

Out[]: <Axes: xlabel='price', ylabel='Density'>

In []: sns.distplot(df.horsepower)

<ipython-input-18-fe36dc2a0d7c>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.horsepower)

<Axes: xlabel='horsepower', ylabel='Density'>

Out[]:

Barplot analysis for categorical variables

```
In [ ]: sns.barplot(data=df,x='carbody',y='price')
Out[ ]: <Axes: xlabel='carbody', ylabel='price'>
```



```
In [ ]: sns.barplot(data=df,x='drivewheel',y='price')
```



```
In [ ]: sns.barplot(data=df,x='fuelsystem',y='price')
Out[ ]: <Axes: xlabel='fuelsystem', ylabel='price'>
```



```
In [ ]: sns.barplot(data=df,y='CompanyName',x='price',orient='h')
Out[ ]: <Axes: xlabel='price', ylabel='CompanyName'>
```



```
In [ ]: plt01 = df.CompanyName.value_counts().plot(kind='bar')
    plt.title('Companies Histogram')
    plt01.set(xlabel = 'Car company', ylabel='Frequency of company')
```

Out[]: [Text(0.5, 0, 'Car company'), Text(0, 0.5, 'Frequency of company')]


```
In [ ]: sns.barplot(data=df,x='fueltype',y='price')
Out[ ]: <Axes: xlabel='fueltype', ylabel='price'>
```


fueltype

diesel

Correlation analysis using heatmap

2500

0

gas


```
In [ ]: selected_cols=df[['wheelbase','carlength','carwidth','carheight','curbweight','engi
#sns.pairplot(selected_cols)
```

Checking multicollinearity using VIF

```
#Defining model and checking multicollinearity of variables
In [ ]:
        from statsmodels.stats.outliers_influence import variance_inflation_factor
         import statsmodels.api as sm
         def build model(X,y):
            X = sm.add_constant(X) #Adding the constant
            lm = sm.OLS(y,X).fit() # fitting the model
             print(lm.summary()) # model summary
            return X
        def checkVIF(X):
            vif = pd.DataFrame()
            vif['Features'] = X.columns
            vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])
            vif['VIF'] = round(vif['VIF'], 2)
            vif = vif.sort_values(by = "VIF", ascending = False)
             return(vif)
        checkVIF(selected cols)
```

```
Out[]:
                                   VIF
                      Features
           2
                      carwidth 2350.90
           0
                    wheelbase 1903.66
           1
                     carlength 1893.74
           3
                     carheight
                                917.20
          12
                  highwaympg
                                 508.20
          11
                      citympg
                                429.21
           4
                    curbweight
                                 403.02
           6
                     boreratio
                                 290.28
          10
                      peakrpm
                                 217.66
           7
                        stroke
                                 125.83
           5
                                 68.77
                    enginesize
           9
                   horsepower
                                 65.53
           8 compression ratio
                                  15.75
```

```
In [ ]: #Dividing data into X and y variables
    from sklearn.model_selection import train_test_split
    y = selected_cols.pop('price')
    X = selected_cols
    X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=104, train_s)
In [ ]: #Model1
    md1=build_model(X_train,y_train)
```

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas Wed, 13	price OLS t Squares Sep 2023 17:08:29 164 150 13	F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0.870 0.859 77.19 1.52e-59 -1540.5 3109.	
== 5]	coef	std err	t	P> t	[0.025	0.97
const	-3.894e+04	1.6e+04	-2.441	0.016	-7.05e+04	-7420.1
wheelbase 06	105.2326	105.964	0.993	0.322	-104.141	314.6
carlength 79	-64.6334	59.625	-1.084	0.280	-182.446	53.1
carwidth 86	412.0404	245.177	1.681	0.095	-72.406	896.4
carheight 49	214.9141	149.468	1.438	0.153	-80.421	510.2
curbweight 68	0.3725	1.820	0.205	0.838	-3.223	3.9
enginesize 00	152.3401	15.820	9.629	0.000	121.081	183.6
boreratio 06	-2627.9343	1382.323	-1.901	0.059	-5359.274	103.4
stroke 29	-4037.9994	904.330	-4.465	0.000	-5824.869	-2251.1
compressionratio 34	323.4195	87.106	3.713	0.000	151.305	495.5
horsepower 79	32.3381	16.266	1.988	0.049	0.197	64.4
peakrpm 00	2.3312	0.693	3.365	0.001	0.962	3.7
citympg 97	-330.7249	184.534	-1.792	0.075	-695.347	33.8
highwaympg 36	189.2060	161.815	1.169	0.244	-130.524	508.9
Omnibus: Prob(Omnibus): Skew: Kurtosis:		17.839 0.000 0.068 6.201	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	on:	7 5.8	===== 2.084 0.158 3e-16 7e+05 =====

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

^[2] The condition number is large, 3.87e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[]:		Features	VIF
	0	const	4524.13
	12	citympg	24.15
	13	highwaympg	20.92
	5	curbweight	15.42
	2	carlength	9.44
	10	horsepower	7.21
	1	wheelbase	7.19
	6	enginesize	6.71
	3	carwidth	4.84
	7	boreratio	2.47
	4	carheight	2.29
	9	compressionratio	2.24
	11	peakrpm	2.04
	8	stroke	1.43

Feature engineering

```
In []: #Dropping the columns with high multicollinearity
X_train_2 = X_train.drop(['citympg','highwaympg','curbweight'],axis=1)
In []: #Model2
md2=build_model(X_train_2,y_train)
checkVIF(md2)
```

		Sep 2023	R-squared: Adj. R-squared: F-statistic Prob (F-statistic Log-Likeliho	: tistic):			
Df Residuals:		153	BIC:			3142.	
Df Model:		10					
Covariance Type:		nonrobust					
=======================================		=======		=======	=======	=======	
==	coef	std err	t	P> t	[0.025	0.97	
5]	coei	Stu en	C	F> L	[0.023	0.57	
const	-4.827e+04	1.43e+04	-3.367	0.001	-7.66e+04	-1.99e+	
04							
wheelbase	75.7243	101.550	0.746	0.457	-124.896	276.3	
45	16 2200	F2 224	0.205	0.761	121 270	00 0	
carlength 28	-16.2208	53.224	-0.305	0.761	-121.370	88.9	
carwidth	421.2682	243.569	1.730	0.086	-59.925	902.4	
61	421.2002	243.303	1.750	0.000	33.323	302.4	
carheight	193.3858	149.489	1.294	0.198	-101.942	488.7	
14							
enginesize 74	149.8949	14.264	10.509	0.000	121.716	178.0	
boreratio 09	-2226.0409	1371.615	-1.623	0.107	-4935.791	483.7	
stroke 10	-3887.6179	900.697	-4.316	0.000	-5667.026	-2108.2	
compressionratio	269.7576	71.262	3.785	0.000	128.973	410.5	
horsepower 09	46.2314	14.465	3.196	0.002	17.654	74.8	
peakrpm 56	2.4048	0.684	3.517	0.001	1.054	3.7	
	========				========		
Omnibus: Prob(Omnibus):		16.333 0.000	Durbin-Watso Jarque-Bera			2.113 6.493	
Skew:			Prob(JB):	(30).		0.493 0e-13	
Kurtosis:		5.866	Cond. No.			0e-13 0e+05	
===========	========				 		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

^[2] The condition number is large, 3.1e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
Out[]:
                                    VIF
                      Features
           0
                         const 3625.19
           2
                     carlength
                                   7.46
           1
                     wheelbase
                                   6.55
           9
                   horsepower
                                   5.66
           5
                    enginesize
                                   5.41
           3
                      carwidth
                                   4.74
           6
                     boreratio
                                   2.41
                     carheight
                                   2.27
          10
                                   1.97
                      peakrpm
           8 compressionratio
                                   1.49
           7
                        stroke
                                   1.40
```

```
In [ ]: X_train_3 =X_train_2.drop(['carlength'],axis=1)
In [ ]: #Model3
md3=build_model(X_train_3,y_train)
checkVIF(md3)
```

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Wed, 13	price OLS t Squares Sep 2023 17:09:04 164 154 9	R-squared: Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	istic):	0.866 0.858 110.8 1.24e-62 -1542.8 3106.	
== 5]	coef	std err	t	P> t	[0.025	0.97
const	-4.701e+04	1.37e+04	-3.433	0.001	-7.41e+04	-2e+
wheelbase	58.9255	85.037	0.693	0.489	-109.063	226.9
14 carwidth 98	404.4800	236.558	1.710	0.089	-62.838	871.7
carheight	179.2757	141.719	1.265	0.208	-100.689	459.2
40 enginesize 65	149.6247	14.194	10.541	0.000	121.584	177.6
boreratio 54	-2320.6541	1332.080	-1.742	0.083	-4952.162	310.8
stroke 15	-3923.4789	890.344	-4.407	0.000	-5682.343	-2164.6
compressionratio	271.3247	70.867	3.829	0.000	131.329	411.3
horsepower 41	45.5711	14.260	3.196	0.002	17.401	73.7
peakrpm 45	2.3988	0.681	3.520	0.001	1.053	3.7
Omnibus: Prob(Omnibus): Skew: Kurtosis:		15.997 0.000 0.092 5.828	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	on: (JB):	54 1.23 2.93	2.107 4.874 Le-12 7e+05

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

^[2] The condition number is large, 2.97e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[]:		Features	VIF
	0	const	3327.46
	8	horsepower	5.53
	4	enginesize	5.39
	1	wheelbase	4.62
	2	carwidth	4.50
	5	boreratio	2.29
	3	carheight	2.05
	9	peakrpm	1.97
	7	compressionratio	1.48
	6	stroke	1.38

Elimination based on multicollinearity,p-value and the correlation

===========		========	========	=======		====	
Dep. Variable:		price	R-squared:			0.860	
Model:	OLS		Adj. R-squared:		0.855		
Method:	Leas	t Squares	F-statistic	:		161.3	
Date:	Wed, 13	Sep 2023	Prob (F-sta	tistic):	1.7	5e-64	
Time:		17:09:18	Log-Likelih	ood:	-1	546.3	
No. Observations:	:	164	AIC:			3107.	
Df Residuals:		157	BIC:			3128.	
Df Model:		6					
Covariance Type:		nonrobust					
=======================================		=======				=======	
==	_						
	coef	std err	t	P> t	[0.025	0.97	
5]							
const	-5.116e+04	1.13e+04	-4.527	0.000	-7.35e+04	-2.88e+	
04	3.1100104	1.150104	7.527	0.000	7.550104	2.0001	
carwidth	583.7287	171.050	3.413	0.001	245.873	921.5	
85							
enginesize	149.4891	14.145	10.568	0.000	121.550	177.4	
28							
stroke	-3707.1353	826.909	-4.483	0.000	-5340.437	-2073.8	
34							
compressionratio	283.2975	71.006	3.990	0.000	143.046	423.5	
49							
horsepower	32.0878	13.130	2.444	0.016	6.154	58.0	
21							
peakrpm	2.5228	0.650	3.880	0.000	1.239	3.8	
07							
0		42 272			=======	2 120	
Omnibus:		12.372 0.002	Durbin-Wats			2.129	
Prob(Omnibus):			•	(36):		0.644	
Skew: Kurtosis:		0.162 5.093	Prob(JB): Cond. No.			2e-07 2e+05	
Kurtosis:			Cona. No.		_,		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.42e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[]:		Features	VIF
	0	const	2214.36
	2	enginesize	5.23
	5	horsepower	4.58
	1	carwidth	2.30
	6	peakrpm	1.75
	4	compressionratio	1.45
	3	stroke	1.16

```
In [ ]: col=X_train_4.columns
X_test_1=X_test[['carwidth', 'enginesize', 'stroke', 'compressionratio', 'horsepowe
```

In []: # Predict using the trained model on the test set
Making predictions

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
fitted=lm.fit(X_train_4,y_train)
y_pred = lm.predict(X_test_1)
# You can also calculate metrics to evaluate the predictions, for example, Mean Squ
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
```

Mean Squared Error: 17045747.076587398

```
from sklearn.metrics import r2_score
In [ ]:
        r2_score(y_test, y_pred)
```

0.704915490316405 Out[]:

```
In [ ]:
        # Compute residuals
        residuals = y_test - y_pred
        # Compute Mean Squared Error (MSE) to assess model fit
        mse = mean_squared_error(y_test, y_pred)
        print(f"Mean Squared Error: {mse}")
        # Plot residuals vs. predicted values
        plt.scatter(y_pred, residuals)
        plt.xlabel("Predicted Values")
        plt.ylabel("Residuals")
        plt.title("Residuals vs. Predicted Values")
        plt.show()
```

Mean Squared Error: 17045747.076587398

Residuals vs. Predicted Values


```
import statsmodels.api as sm
import scipy.stats as stats

model = sm.OLS(y_train, X_train_4).fit()

# Get the residuals from the model
residuals = model.resid

# Create a Normal Q-Q plot for the residuals
plt.figure(figsize=(8, 6))
stats.probplot(residuals, dist="norm", plot=plt)
plt.title("Normal Q-Q Plot for Residuals")
plt.xlabel("Theoretical Quantiles")
plt.ylabel("Sample Quantiles")
plt.grid(True)
plt.show()
```

Normal Q-Q Plot for Residuals 10000 5000 -5000 -10000 Theoretical Quantiles

```
import numpy as np
user_input = []
for col in range(X_train_4.shape[1]): # Iterate over the number of columns
    value = float(input(f"Enter value for {X_train_4.columns[col]}: "))
    user_input.append(value)

# Predict using the trained model
user_input_array = np.array(user_input).reshape(1, -1) # Reshape for prediction
user_input_array_with_constant = sm.add_constant(user_input_array) # Add constant
predicted_value = model.predict(user_input_array_with_constant)

print("Predicted car price:", predicted_value[0])
```

Enter value for carwidth: 64
Enter value for enginesize: 130
Enter value for stroke: 2.2

Enter value for compressionratio: 8 Enter value for horsepower: 100 Enter value for peakrpm: 4500

Predicted car price: 16873.61509462775

In []: