一、填空:			
1. 通信双方 A 和 B 通信,则可能发生哪两种形式的抵赖或欺骗	∄?		
2. 数字签名能够抵抗不可否认性攻击的原因是			-
3. 基于公钥加密的数字签名方式中,加密的消息应该是			_
4. 直接方式的数字签名的公共弱点是			
5. 在具有仲裁方式的数字签名中,以下方式可以提供消息的保	密性、_	,	
① $X \rightarrow A$: $ID_X \parallel E_{SKX}[ID_X \parallel E_{PKY}[E_{SKX}[M]]]$			
② $A \rightarrow Y$: $E_{SKA}[ID_X \parallel E_{PKY}[E_{SKX}[M]] \parallel T]$			
6. 在如下有仲裁签名过程中如下: 消息①中的两个 IDx 的作用]		
① $X \rightarrow A$: $ID_X \parallel E_{SKX}[ID_X \parallel E_{PKY}[E_{SKX}[M]]]$			
② $A \rightarrow Y$: $E_{SKA}[ID_X \parallel E_{PKY}[E_{SKX}[M]] \parallel T]$			
二、选择:每一项有1个或多个选项是正确的 1. 为防止通信双方之间互相抵赖,可采用以下哪种技术进行认A. MAC B. HMAC C. 先 hash 再加密, D. 数字签名 2. 数字签名可以提供的安全属性有)	
 A. 保密性 B. 认证性 C. 完整性 D.不可否认 3. DSA 使用的散列算法是: A. MD4 B. SHA-1 4. 假设发方 A 的密钥对为(<i>pka</i>, <i>ska</i>), 收方 B 的密钥对为(<i>pkb</i>, san) A. m Sig_{ska}(H(m)) B. m ID_B Sig_{ska}(H(m)) C. E_{pkb}(m Sig_{ska}(H 	C. M	下面哪一种签定	名能够防止签
三、判断: (正确的划"√",错误的划"×",以下同)			
1. 数字签名的验证可由第三方来完成	()	
2. 基于对称加密算法可以实现对消息的数字签名	()	
3. GQ 签名体制是基于有限域上离散对数困难问题构建的的)	
四、简答与计算:			

- 1. 试描述 RSA 签名算法的体制参数、签名算法和验证算法?
- 2. 试述 DSA 数字签名算法,包括密钥产生、签名算法和验证算法,并给出验证过程正确性证明
- 3. 已知一离散对数签名的密钥产生和签名算法,试给出验证方程,并证明其正确性。
- 4. 已知 schnorr 签名的密钥产生和签名算法,试给出验证方程,并证明其正确性。
- 5. 已知 Guillou-Quisquater 签名体制的密钥产生和签名算法,试给出验证方程,并证明其正确性。

五、证明题:

- 1.试证 DSA 签名中两次使用相同的会话密钥 k, 是不安全的
- 2.试分析以下构造完成了 ElGamal 签名的一个伪造

伪造 1: 随机选择 e,令 $r=g^ey \mod p$, s=-r,则(r,s)是消息 m=es 的签名,其中(x,y)是签名者的公私钥对;

伪造 2: 随机选择 e,v,令 $r=g^ey^v \mod p$, $s=-rv^{-1} \mod p-1$,则(r,s)是消息 m=es 的签名,其中(x,y) 是签名者的公私钥对。

3 试证 ElGamal 签名中两次使用相同的会话密钥 k,则不安全的。