

ISOP: Machine Learning-Assisted Inverse Stack-Up Optimization for Advanced Package Design

Hyunsu Chae¹, Bhyrav Mutnury³, Keren Zhu¹, Douglas Wallace³, Douglas Winterberg³, Daniel de Araujo⁴, Jay Reddy³, Adam Klivans² and David Z. Pan¹

¹ECE Department, The University of Texas at Austin

²CS Department, The University of Texas at Austin

³Dell Infrastructure Solutions Group

⁴Electronic Board Systems, Siemens EDA

CAGR 6.1%

Motivation

- The marking demand is increasing for advanced package design, such as high-density interconnect printed circuit boards (HDI PCBs).
- Regardless of their purpose, the key function of PCB is to ensure component connectivity and communication.
- Stack-up design is critical to a PCB's construction and performance, as it determines the quality of board signals and the performance of transmission lines.

- The current manual design process for stack-up is time-consuming, tedious, and sub-optimal.
- An automated solution for stack-up design could save time and improve the quality of PCB designs.

Problem Formulation

ISOP Framework

ISOP could be extended to other scenarios of interconnect optimization

1) HPO process -> Harmonica algorithm

Discrete domain HPO + Parallelized design parameter sampling

- → avoid explorations with invalid design parameters
- → fast and efficient batched evaluation of samples

2) ML surrogate model

Fast query of evaluation metrics

→ observe more samples in large search space with reduced runtime
 Regression problem with tabular features
 90k unique stack-up designs, preprocessing, MAPE/sMAPE

3) Efficient objective function

 $g(\mathbf{x})$ $\widehat{g}(\mathbf{x})$ $\sum_{i} w_{i}^{FoM} \cdot f_{i}^{FoM}(\mathbf{x}) + \sum_{j} w_{j}^{C} \cdot f_{j}^{C}(\mathbf{x})$ $\int_{i} w_{i}^{FoM} \cdot f_{i}^{FoM}(\mathbf{x}) + \sum_{j} w_{j}^{C} \cdot \widehat{f}_{j}^{C}(\mathbf{x})$ $\int_{i} w_{i}^{FoM} \cdot f_{i}^{FoM}(\mathbf{x}) + \sum_{j} w_{j}^{C} \cdot \widehat{f}_{j}^{C}(\mathbf{x})$ $f_{j}^{C}(\mathbf{x}) = \max(M_{j}(\mathbf{x}) - f_{j\pm}, 0)$ $f_{j}^{C}(\mathbf{x}) = S(\gamma \cdot \widehat{M}_{j}(\mathbf{x}) - f_{j\pm}) + S(-\gamma \cdot \widehat{M}_{j}(\mathbf{x}) - f_{j\pm})$

Ultimate objective function (non-differentiable)

Smooth objective function Enables more searches at the border

Used for later roll-out stage, with actual simulation

Used for search stage, with ML surrogate model

Experimental Results

 $NEXT_{o}$, $NEXT_{+}$ [mV]

0, 0.05

0

 Z_o , Z_{\pm} $[\Omega]$

85, 1

100, 2

85, 1

85, 1

- Experiment setting
 - 15 Design parameters,
 - ML training dataset space $> 10^{29}$ Experiment search space $> 10^{19}$
 - 4 Different tasks
- Result under similar runtime

Success Rate (%)	T1	T2	Т3	T4
SA-1	1	1	0.1	0.1
BO-1	1	1	1	1
ISOP	1	1	1	1

Z

Z, NEXT

Z

 f^{FoM}

 $L + 2 \cdot NEXT$

Tasks

T1

T2

T3

T4

Result under similar number of samples seen

Success Rate (%)	T1	T2	T3	T4
SA-2	1	1	0.2	0.1
BO-2	1	1	1	1
ISOP	1	1	1	1

Evaluation of trained models

Conclusion

- ISOP is a novel framework for automated stack-up design in advanced package design, leveraging HPO and ML-based surrogate models.
- Experimental results show excellent design solutions in minutes.
- ISOP can be extended to other interconnect optimization scenarios, and the advantages of our flexible framework will continue to expand to enable global optimization over different performance metrics.
- Hyunsu Chae (<u>hyunsu.chae@utexas.edu</u>)
- Acknowledgement: This work is supported in part by NSF under grants 1718570, 2019844, and 2112665, and by the NSF Al Institute for Foundations of Machine Learning (IFML).