

UNIVERSITY

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

22CSH202: PRINCIPLES OF DATA SCIENCE

SUBMITTED

BY

II SEMESTER MSC

Computer Science Students

SUBMITTED

TO

Chairperson

The Department of Computer Science

Examiner:

1.

2.

Mangalore University

Dept. of Post-Graduate Studies and Research in Computer Science

Mangalagangothri – 574199

INDEX

SL.NO	CONTENT	Page. No
1	Write a program to perform central tendency (mean, median, mode) with and without using built-in function on the data	3-4
2	Write a program to perform measure of dispersion (range, variance, standard deviation, IQR) with and without using built-in function on the data	5-6
3	Implement Naive Bayes Classifier with suitable dataset and Modify the hyper parameter values.	7-10
4	Implement Support Vector Machine(SVM) Classifier with Suitable dataset.	11-14
5	Implement Decision Tree Clustering.	15-17
6	Implement K-means Clustering.	18-20
7	Implement Hierarchical clustering with suitable dataset.	21-22
8	Implement Density Based Clustering.	23-24
9	Implement Grid Based Clustering.	25-26
10	Implement K-Nearest Neighbour.	27-30
11	Write a python program to perform chi square test	31-32
12	Write a python program to perform T-test	33-34
13	Write a python program to perform Anova test	35-36

1. Write a program to perform central tendency (mean, median, mode) with and without using built-in function on the data

data=[] n=int(input("enter the number of elements")) for i in range(0,n): ele=int(input("ent5er the elements :")) data.append(ele) print("the created list is",data) enter the number of elements8 enter the elements:1 enter the elements:1 enter the elements:9 enter the elements:5 enter the elements:8 enter the elements:7 enter the elements:9 enter the elements:9 the created list is [1, 1, 9, 5, 8, 7, 9, 9] #finding mean without using built in function sum=0 for i in data: sum=sum+i mean=sum/len(data) print("mean (without using built in function) :",str(mean)) #finding mean using built in function import numpy as np print ("mean (using built in function): %s "%np.mean(data)) mean (without using built in function): 6.125 mean (using built in function): 6.125 #finding median withou using built in function # let us find the median sorted data=sorted(data) print("the sorted data is :",sorted_data) if n%2==0: mid_index1=n//2 mid index2=mid index1-1 median=(sorted_data[mid_index1]+sorted_data[mid_index2])/2 else:

FIRST LET US CREATE AN LIST USING PROMPT

```
mid_index=n//2
median=sorted_data[mid_index]
print("the median is :",median)
#finding median using function
import numpy as np
print('median(with using functions): %s'%np.median(data))
the sorted data is: [1, 1, 5, 7, 8, 9, 9, 9]
the median is: 7.5
median(with using functions): 7.5
# now let us find the mode
count={}
for element in data:
if element in count:
  count[element] +=1
 else:
  count[element] =1
max_counts=max(count.values())
mode=[element for element,c in count.items() if c==max_counts]
print("mode without using builtin ",mode)
#finding mode using function
import statistics as stat
print('mode(with using functions): %s'%stat.mode(data))
mode without using builtin [9]
mode(with using functions): 9
```

2. Write a program to perform measure of dispersion (range, variance, standard deviation, IQR) with and without using built-in function on the data

data=[] n=int(input("enter the number of elements")) for i in range(0,n): ele=int(input("enter t1he elements :")) data.append(ele) print("the created list is",data) enter the number of elements5 enter t1he elements:3 enter t1he elements:2 enter t1he elements:8 enter t1he elements:9 enter t1he elements:1 the created list is [3, 2, 8, 9, 1] minimum = maximum = data[0] for num in data: if num <= minimum: minimum = num if num >= maximum: maximum = num range_value = maximum - minimum print("range (without function):", range_value) #range with function import numpy as np min=np.min(data) max=np.max(data) range1=max-min print('range(with function)',range1) range (without function): 8 range(with function) 8 sum1=0 for i in data: sum1=sum1+i mean=sum1/len(data) # Calculating the variance variance = sum((item - mean) ** 2 for item in data) / (len(data)) print("The variance of the set without functions:", variance)

FIRST LET US CREATE AN LIST USING PROMPT

Using the numpy function
import numpy as np
print("Variance (with function):", np.var(data))

The variance of the set without functions: 10.64

Variance (with function): 10.64

Calculating the standard deviation std = variance ** 0.5 print("The standard deviation without using function is:", std)

Using the numpy function import numpy as np print("standard deviation (with function):", np.std(data))

The standard deviation without using function is: 3.2619012860600183 standard deviation (with function): 3.2619012860600183

import numpy as np from scipy import stats

Calculate IQR without using function
q3, q1 = np.percentile(data, [75, 25], interpolation='midpoint')
iqr = q3 - q1
print("IQR without using function:", iqr)

Calculate IQR using function

IQR = stats.iqr(data, interpolation='midpoint')
print("IQR using function:", IQR)

IQR without using function: 6.0

IQR using function: 6.0

3.Implement Naive Bayes Classifier with suitable dataset and Modify the hyper parameter values

Classification template

Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd

Importing the dataset

dataset = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Social_Network_Ads.csv')
dataset

Purchased	EstimatedSalary	Age	Gender	User ID	
0	19000	19	Male	15624510	0
0	33000	36	Male	15755018	398
1	36000	49	Female	15594041	399

400 rows × 5 columns

X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

Feature Scaling from sklearn.prepre

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

```
# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB(priors=[0.4,0.6],var_smoothing=1e-9) #added hyper-parameters
classifier.fit(X_train, y_train)
GaussianNB(priors=[0.4, 0.6])
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred
array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
    0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
    0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
    1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1])
# Making the Confusion Matrix
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, y_pred)
cm
array([[60, 8],
    [ 2, 30]])
# Visualizing the Training set results
from matplotlib.colors import ListedColormap
# Create a meshgrid to plot the decision boundary
X1, X2 = np.meshgrid(np.arange(start=X_train[:, 0].min() - 1, stop=X_train[:, 0].max() + 1,
step=0.01),
            np.arange(start=X_train[:, 1].min() - 1, stop=X_train[:, 1].max() + 1, step=0.01))
# Use the classifier to predict the class labels for each point in the meshgrid
Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)
Z = Z.reshape(X1.shape)
# Create a color map for the plot
cmap = ListedColormap(('red', 'green'))
# Plot the training set data points
plt.figure(figsize=(8, 6))
plt.contourf(X1, X2, Z, alpha=0.5, cmap=cmap)
plt.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], color='red', label='0')
plt.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], color='green', label='1')
```

```
plt.title(' NaiveBayes- Training Set')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
```



```
# Visualizing the Testing set results from matplotlib.colors import ListedColormap
```

Use the trained classifier to make predictions on the meshgrid points

Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)

Z = Z.reshape(X1.shape)

Create a colormap for the two classes
cmap = ListedColormap(('red', 'green'))

Plot the contour filled by the predictions
plt.contourf(X1, X2, Z, alpha = 0.5, cmap = cmap)

Scatter plot the actual data points

```
plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], color = 'red', label = '0')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], color = 'green', label = '1')
```

Add labels and legend

plt.title('NaiveBayes - Testing Set')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')

plt.legend()

Show the plot plt.show()

from sklearn.metrics import accuracy_score
print("the accuracy score is :",accuracy_score(y_pred,y_test))

the accuracy score is: 0.9

4. Implement Support Vector Machine(SVM) Classifier with Suitable dataset.

Support Vector Machine (SVM)

Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd

Importing the dataset

dataset = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Social_Network_Ads.csv')
dataset

User ID	Gender	Age	Estimated Salary	Purchased	
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
					•••
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0

400 rows × 5 columns

```
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# Splitting the dataset into training and test set.
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Fitting SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, y_train)
SVC(kernel='linear', random_state=0)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
    0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
    0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1])
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm
array([[66, 2],
    [8, 24]])
```

```
# Visualizing the Training set results from matplotlib.colors import ListedColormap
```

Use the classifier to predict the class labels for each point in the meshgrid Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T) Z = Z.reshape(X1.shape)

Create a color map for the plot cmap = ListedColormap(('red', 'green'))

Plot the training set data points
plt.figure(figsize=(8, 6))
plt.contourf(X1, X2, Z, alpha=0.5, cmap=cmap)
plt.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], color='red', label='Not Purchased')
plt.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], color='green', label='Purchased')
plt.title('Decision Tree Classifier - Training Set')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

Visualizing the Testing set results from matplotlib.colors import ListedColormap

Create a meshgrid of feature values

```
X1, X2 = np.meshgrid(np.arange(start = X_test[:, 0].min() - 1, stop = X_test[:, 0].max() + 1, step =
0.01),
            np.arange(start = X_test[:, 1].min() - 1, stop = X_test[:, 1].max() + 1, step = 0.01))
# Use the trained classifier to make predictions on the meshgrid points
Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)
Z = Z.reshape(X1.shape)
# Create a colormap for the two classes
cmap = ListedColormap(('red', 'green'))
# Plot the contour filled by the predictions
plt.contourf(X1, X2, Z, alpha = 0.5, cmap = cmap)
# Scatter plot the actual data points
plt.scatter(X test[y test == 0, 0], X test[y test == 0, 1], color = 'red', label = 'Not Purchased')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], color = 'green', label = 'Purchased')
# Add labels and legend
plt.title('SVM - Testing Set')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
```

Show the plot plt.show()

plt.legend()

from sklearn.metrics import accuracy_score
print ('Accuracy : ', accuracy_score(y_test, y_pred))

Accuracy: 0.9

5. Implement Decision Tree Clustering.

Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree

Importing the dataset/content/drive/MyDrive/DATA SCIENCE LAB/Social_Network_Ads.csv dataset = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Social_Network_Ads.csv') dataset

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

X=dataset.iloc[:,[2,3]] y=dataset.iloc[:,4]

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

from sklearn.preprocessing import StandardScaler sts=StandardScaler()
X_train=sts.fit_transform(X_train)
X_test=sts.transform(X_test)

from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)

DecisionTreeClassifier(criterion='entropy', random_state=0)

Predicting the Test set results
y_pred = classifier.predict(X_test)

```
y_pred
```

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

array([[62, 6], [3, 29]])

Plotting the Decision Tree graph

plt.figure(figsize=(10, 8))

plot_tree(classifier, feature_names=['Age', 'EstimatedSalary'], class_names=['0', '1'], filled=True)
plt.show()

Visualizing the Testing set results

from matplotlib.colors import ListedColormap

Create a meshgrid of feature values

X1, X2 = np.meshgrid(np.arange(start = X_test[:, 0].min() - 1, stop = X_test[:, 0].max() + 1, step = 0.01),

np.arange(start = X_test[:, 1].min() - 1, stop = X_test[:, 1].max() + 1, step = 0.01))

Use the trained classifier to make predictions on the meshgrid points

Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)

Z = Z.reshape(X1.shape)

Create a colormap for the two classes
cmap = ListedColormap(('blue',"red"))

Plot the contour filled by the predictions
plt.contourf(X1, X2, Z, alpha = 0.5, cmap = cmap)

```
# Scatter plot the actual data points
plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], color = 'red', label = 'Not Purchased')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], color = 'green', label = 'Purchased')
```

Add labels and legend
plt.title('SVM - Testing Set')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()

Show the plot plt.show()

from sklearn.metrics import accuracy_score
print("the accuracy score is :",accuracy_score(y_pred,y_test))

the accuracy score is: 0.91

6.Implement K-means Clustering.

Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd

Importing the dataset

dataset = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Mall_Customers.csv')
dataset

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

import matplotlib.pyplot as plt

Example data points
spending_scores =dataset.iloc[:,3].values
annual_incomes = dataset.iloc[:, 4].values

Plotting the scatter plot
plt.scatter(spending_scores,annual_incomes)
plt.title('Spending Score vs. Annual Income')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()

X = dataset.iloc[:, [3, 4]].values

```
# Fitting K-Means to the dataset
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(X)
```

```
# Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


7.Implement Hierarchical clustering with suitable dataset.

import numpy as np import matplotlib.pyplot as plt import pandas as pd

Importing the dataset

dataset = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Mall_Customers.csv')
X = dataset.iloc[:, [3, 4]].values
dataset

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	
0	1	Male	19	15	39	
1	2	Male	21	15	81	
199	200	Male	30	137	83	

200 rows × 5 columns

Using the dendrogram to find the optimal number of clusters
import scipy.cluster.hierarchy as sch
dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()

Fitting Hierarchical Clustering to the dataset

from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'ward')
y_hc = hc.fit_predict(X)

```
# Visualising the clusters
plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```



```
8.Implement Density Based Clustering.
```

import pandas as pd

```
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
# Read data from CSV file
data = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/blobs.csv')
data
# Generate synthetic data
# data, _ = make_blobs(n_samples=300, centers=4, cluster_std=.60, random_state=0)
               0
                           1
   0 8.622185
                  1.935796
   1 -4.736710 -7.970958
 999
        6.120559
                    0.968963
1000 rows × 2 columns
# Extract the features (assuming your CSV file has columns 'Feature1' and 'Feature2')
X = data.iloc[:,[0,1]].values
Х
array([[ 8.62218539, 1.93579579]
   [-4.73670958, -7.97095765],
   [ 9.62122205, 0.92542315],
   [-6.2522678, -8.412482],
   [-5.479154,-10.53695547],
   [ 6.12055883, 0.96896287]])
# DBSCAN clustering
db = DBSCAN(eps=0.5, min_samples=5)
y_db = db.fit_predict(X)
# Number of clusters in labels, ignoring noise if present (-1)
n_clusters_ = len(set(y_db)) - (1 if -1 in y_db else 0)
```

```
# Plot the clusters
plt.figure(figsize=(8, 6))
plt.scatter(X[y_db == 0][:, 0], X[y_db == 0][:, 1], c='blue', marker='o', label='Cluster 1')
plt.scatter(X[y_db == 1][:, 0], X[y_db == 1][:, 1], c='green', marker='s', label='Cluster 2')
plt.scatter(X[y_db == 2][:, 0], X[y_db == 2][:, 1], c='red', marker='^', label='Cluster 3')
plt.scatter(X[y_db == -1][:, 0], X[y_db == -1][:, 1], c='gray', marker='x', label='Noise')
plt.legend(loc='best')
plt.title(f"DBSCAN Clustering (Number of Clusters: {n_clusters_})")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()
```



```
9. Implement Grid Based Clustering.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
# Generate synthetic data
data, _ = make_blobs(n_samples=300, centers=4, cluster_std=.60, random_state=0)
# Set the grid size (you can adjust this based on your data distribution)
grid size = 1.0
# Get the minimum and maximum values for x and y coordinates
x_min, x_max = data[:, 0].min(), data[:, 0].max()
y_min, y_max = data[:, 1].min(), data[:, 1].max()
# Create a grid by defining intervals using the minimum and maximum values
x_grid = np.arange(x_min, x_max + grid_size, grid_size)
y_grid = np.arange(y_min, y_max + grid_size, grid_size)
# Initialize labels array with zeros
labels = np.zeros(data.shape[0], dtype=int)
# Assign each data point to a grid cell based on its coordinates
for i, point in enumerate(data):
  x, y = point
  x_label = np.searchsorted(x_grid, x) - 1
  y_label = np.searchsorted(y_grid, y) - 1
  labels[i] = x_label * len(y_grid) + y_label
# Visualize the clusters
plt.scatter(data[:, 0], data[:, 1], c=labels, cmap='viridis')
plt.title('Grid-based Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
```

plt.show()

10. Implement K-Nearest Neighbour.

import numpy as nm import matplotlib.pyplot as plt import pandas as pd

data_set= pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/Social_Network_Ads.csv') data_set

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

#Extracting Independent and dependent Variable x= data_set.iloc[:, [2,3]].values

y= data_set.iloc[:, 4].values

Splitting the dataset into training and test set.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)

#feature Scaling

from sklearn.preprocessing import StandardScaler st_x= StandardScaler()
X_train= st_x.fit_transform(X_train)
X_test= st_x.transform(X_test)

#Fitting K-NN classifier to the training set

from sklearn.neighbors import KNeighborsClassifier

```
classifier= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(X_train, y_train)
KNeighborsClassifier()
#Predicting the test set result
y_pred= classifier.predict(X_test)
y_pred
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
    0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
    0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,
    1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1])
#Creating the Confusion matrix
from sklearn.metrics import confusion_matrix
cm= confusion_matrix(y_test, y_pred)
print('Confusion Matrix : \n',cm)
Confusion Matrix:
[[64 4]
[ 3 29]]
# Visualizing the Training set results
import numpy as np
from matplotlib.colors import ListedColormap
# Create a meshgrid to plot the decision boundary
X1, X2 = np.meshgrid(np.arange(start=X_train[:, 0].min() - 1, stop=X_train[:, 0].max() + 1,
step=0.01),
            np.arange(start=X_train[:, 1].min() - 1, stop=X_train[:, 1].max() + 1, step=0.01))
# Use the classifier to predict the class labels for each point in the meshgrid
Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)
Z = Z.reshape(X1.shape)
# Create a color map for the plot
cmap = ListedColormap(('red', 'green'))
# Plot the training set data points
plt.figure(figsize=(8, 6))
plt.contourf(X1, X2, Z, alpha=0.5, cmap=cmap)
plt.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], color='red', label='0')
plt.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], color='green', label='1')
plt.title(' KNN-training set')
plt.xlabel('Age')
```

plt.ylabel('Estimated Salary')
plt.legend()
plt.show()


```
# Visualizing the Training set results
import numpy as np
from matplotlib.colors import ListedColormap
# Create a meshgrid to plot the decision boundary
X1, X2 = np.meshgrid(np.arange(start=X_test[:, 0].min() - 1, stop=X_test[:, 0].max() + 1, step=0.01),
            np.arange(start=X_test[:, 1].min() - 1, stop=X_test[:, 1].max() + 1, step=0.01))
# Use the classifier to predict the class labels for each point in the meshgrid
Z = classifier.predict(np.array([X1.ravel(), X2.ravel()]).T)
Z = Z.reshape(X1.shape)
# Create a color map for the plot
cmap = ListedColormap(('red', 'green'))
# Plot the training set data points
plt.figure(figsize=(8, 6))
plt.contourf(X1, X2, Z, alpha=0.5, cmap=cmap)
plt.scatter(X_test[y_test == 0, 0], X_test[y_test== 0, 1], color='red', label='0')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], color='green', label='1')
plt.title(' KNN-testing set')
```

plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()

11. Write a python program to perform chi square test

import pandas as pd

Load your data into a pandas DataFrame

data = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/fruit_data_with_colours.csv')
data.head(5)

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79

Separate the target variable from features

dff = data.drop('fruit_label', axis=1)

df = dff.drop('fruit_subtype', axis=1)

X = df.drop('fruit_name', axis=1)

y = data['fruit_label']

from sklearn.feature_selection import SelectKBest, chi2

Step 1: Feature selection using chi-square test

k_selected_features = 4 # Adjust this value based on how many top features you want to select
chi2_selector = SelectKBest(chi2, k=k_selected_features)
X_selected = chi2_selector.fit_transform(X, y)

Step 2: Split the data into training and testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.2, random_state=42)

Step 3: Train the SVM classifier from sklearn.svm import SVC svm_classifier = SVC(kernel='linear') svm_classifier.fit(X_train, y_train)

SVC(kernel='linear')

```
# Step 4: Evaluate the SVM classifier
from sklearn.metrics import accuracy_score, classification_report
y_pred = svm_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
# Print results
print("Accuracy:", accuracy)
print("Classification Report:")
print(report)
```

Accuracy: 0.75
Classification Report:

precision		reca	all f	1-sc	ore	supp	oort
0.0	67	0.67	7	0.67	7	3	
1.0	00	1.00)	1.00)	2	
0.	33	3 0.50		0.40)	2	
1.0	00	0.80		0.89)	5	
racy			(0.75		12	
o avg	0.	75	0.7	4	0.74	1	12
ed avg	(0.81	0.	.75	0.7	77	12
	0.0 1.0 0.0 1.0 racy	0.67 1.00 0.33 1.00	0.67 0.67 1.00 1.00 0.33 0.50 1.00 0.80	0.67 0.67 1.00 1.00 0.33 0.50 1.00 0.80 racy 0	0.67 0.67 0.67 1.00 1.00 1.00 0.33 0.50 0.40 1.00 0.80 0.89 Facy 0.75 0 avg 0.75 0.74	0.67 0.67 0.67 1.00 1.00 1.00 0.33 0.50 0.40 1.00 0.80 0.89 Facy 0.75 0 avg 0.75 0.74 0.74	1.00 1.00 1.00 2 0.33 0.50 0.40 2 1.00 0.80 0.89 5 racy 0.75 12 0 avg 0.75 0.74 0.74

12. Write a python program to perform T-test

```
import pandas as pd
# Load your data into a pandas DataFrame
data = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/fruit_data_with_colours.csv')
# Separate the target variable from features
dff = data.drop('fruit_label', axis=1)
df = dff.drop('fruit_subtype', axis=1)
X = df.drop('fruit_name', axis=1)
y = data['fruit_label']
from sklearn.feature_selection import SelectKBest, f_classif
# Step 1: Feature selection using t-test (f classif)
k_selected_features = 3 # Adjust this value based on how many top features you want to select
f_classif_selector = SelectKBest(f_classif, k=k_selected_features)
X_selected = f_classif_selector.fit_transform(X, y)
# Step 2: Split the data into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.2, random_state=42)
# Step 3: Train the SVM classifier
from sklearn.svm import SVC
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train, y_train)
SVC(kernel='linear')
# Step 4: Evaluate the SVM classifier
from sklearn.metrics import accuracy_score, classification_report
y_pred = svm_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
# Print results
print("Accuracy:", accuracy)
print("Classification Report:")
```

print(report)

Accuracy: 0.75

Classification Report:											
	pre	cisio	n	recall f1-score			su	port			
1		0.67		0.67	7	0.6	7	3			
2		1.00		1.00)	1.0	0	2			
3		0.33		0.50		0.40		2			
4		1.00		0.80		0.89		5			
accui	accuracy 0.75 12										
macro	o av	g	0.7	'5	0.	74	0.	74	12		
weighted avg			0	.81	(0.75	C).77	12		

13. Write a python program to perform Anova test

import pandas as pd

Load your data into a pandas DataFrame

data = pd.read_csv('/content/drive/MyDrive/DATA SCIENCE LAB/fruit_data_with_colours.csv')
data.head(5)

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79

Separate the target variable from features

dff = data.drop('fruit_label', axis=1)

df = dff.drop('fruit_subtype', axis=1)

X = df.drop('fruit_name', axis=1)

y = data['fruit_label']

from sklearn.feature_selection import SelectKBest,f_regression

Step 1: Feature selection using chi-square test

k_selected_features = 4 # Adjust this value based on how many top features you want to select anova_selector = SelectKBest(f_regression, k=k_selected_features)

X_selected = anova_selector.fit_transform(X, y)

Step 2: Split the data into training and testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.2, random_state=42)

Step 3: Train the SVM classifier

```
from sklearn.svm import SVC
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train, y_train)
```

SVC(kernel='linear')

Step 4: Evaluate the SVM classifier
from sklearn.metrics import accuracy_score, classification_report
y_pred = svm_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
Print results
print("Accuracy:", accuracy)
print("Classification Report:")
print(report)

Accuracy: 0.75
Classification Report:

precision recall f1-score support 1 0.67 0.67 0.67 3 2 1.00 1.00 1.00 2 0.50 0.40 2 3 0.33 4 1.00 0.80 0.89 5 accuracy 0.75 12 macro avg 0.75 0.74 0.74 12 0.75 weighted avg 0.77 12 0.81