

RUS0300 - Algoritmos em Grafos Aula 06: Representação Computacional

Professor Pablo Soares

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"

- E se quisermos <u>armazenar</u> um grafo no computador?
- Precisamos armazenar dados essências da definição do grafo
- Dessa informação...
 - Construir a representação visual;
 - Aplicar algoritmos para otimizar tarefas;
 - Determinar se alguma tarefa é possível de ser realizada

- Diversas formas
- Estruturas comumente utilizadas:
 - 1. Matriz de Adjacência;
 - 1. Matriz de Pesos
 - 2. Matriz de Incidência;
 - 3. Lista de Adjacência

Matriz de Adjacência

Matriz de Adjacência

• Uma matriz $A = [a_{ij}]$ é dita matriz de adjacência de G = (V, E) quando:

$$a_{ij} = \begin{cases} 1, sei\ \'e\ adjacente\ a\ j \\ 0, em\ caso\ contr\'ario \end{cases}$$

- Adjacência
 - −a é adjacente a b se a está conectado a b

Matriz de Adjacência

$$a_{ij} = \begin{cases} 1, sei \, \acute{e} \, adjacente \, a \, j \\ 0, em \, caso \, contr\'{a}rio \end{cases}$$

	1	2	3	4	5	6
1	0	0	0	1	0	0
2	0	0	1	1	0	0
3	0	1	0	1	0	0
4	1	1	1	0	1	1
5	0	0	0	1	0	1
6	0	0	0	1	1	0

Matriz de Adjacência com pesos

$$a_{ij} = \begin{cases} a_{ij}, sei\ \'e\ adjacente\ a\ j\\ 0, em\ caso\ contr\'ario \end{cases}$$

	A	В	C	D	E	F	G
A	0	7	0	5	0	0	0
В	7	0	8	9	7	0	0
C	0	8	0	0	5	0	0
D	5	9	0	0	15	6	0
E	0	7	5	15	0	8	9
F	0	0	0	6	8	0	11
G	0	0	0	0	9	11	0

Matriz de Adjacência

- Como seria em a matriz de um grafo K_4 ?
- E a do seu complemento?
- Vantagens
 - -Acesso: $\Theta(1)$
- Desvantagens
 - -Memória: $\Theta(|V|^2)$

Matriz de Adjacência

• É possível representar grafos direcionados usando matriz de adjacência?

	a	b	c	d
a	0	+1	-1	0
b	-1	0	+1	+1
c	+1	-1	0	-1
d	0	-1	+1	0

Matriz de Adjacência

• É possível representar grafos direcionados usando matriz de adjacência?

	a	b	c	d
a	0	0	1	0
b	1	0	0	0
c	0	1	0	1
d	0	1	0	0

Matriz de Adjacência

• Como seria representar grafo com arestas de <u>laço</u>?

	A	В	C	D	E
A	0	1	1	0	1
В	1	0	0	0	0
C	1	0	0	0	1
D	0	0	0	0	1
E	1	0	1	1	1

Matriz de Adjacência

• Como seria representar grafo com arestas paralelas?

	A	В	C	D	E
A	0	1	1	0	1
В	1	0	0	2	0
C	1	0	0	0	1
D	0	2	0	0	1
E	1	0	1	1	1

Matriz de Adjacência

• É possível representar grafos com <u>arestas</u> valoradas utilizando matriz de adjacência?

	a	b	c	d	e
a	∞	0	∞	∞	∞
b	∞	∞	0	∞	∞
c	∞	∞	∞	1	∞
d	∞	∞	1	∞	1
e	∞	∞	∞	∞	∞

e com arestas <u>paralelas</u>??

Matriz de Adjacência

- 1. Dada a sua matriz de adjacência, construa um algoritmo para verificar se um grafo é regular.
- 2. Desenvolva um algoritmo para verificar se um grafo é completo.

Matriz de Incidência

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"

Matriz de Incidência

• A matriz de incidência possui a seguinte dimensão $|V| \times |E|$

$$m_{ij} = \begin{cases} 1, & se\ a\ aresta\ j\ incide\ no\ v\'ertice\ i \\ 0, & em\ caso\ contr\'ario \end{cases}$$

Matriz de Incidência

• Grafos Orientados

$$m_{ij} = \begin{cases} -1, & se \, a \, aresta \, j \, tem \, como \, origem \, o \, v\'ertice \, i \\ +1, & se \, a \, aresta \, j \, tem \, como \, destino \, o \, v\'ertice \, i \\ 0, & em \, caso \, contr\'ario \end{cases}$$

	e1	e2	e 3
a	-1	0	+1
b	+1	-1	0
c	0	+1	-1

e6

Matriz de Incidência

• É possível representar grafos com arestas de laço? e orientados com arestas paralelas?

Lista de Adjacência

Lista de Adjacência

- Estrutura de dados:
 - Vetor de Listas

e6

Α

В

D

20

Lista de Adjacência

- Vantagem $\Theta(|V| + |E|)$
 - Memória
- Desvantagem $\Theta(|E|)$
 - Acesso

Exercício

• Para o grafo abaixo, determine:

Fim/ Dúvidas?

RUS0300 - Algoritmos em Grafos Aula 06: Representação Computacional

Professor Pablo Soares 2019.1

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"