Digital Image Fundamentals

Course Leader

Dr. Aruna Kumar S V

Assistant Professor

FET- Computer Science and Engineering
Ramaiah University of Applied Sciences, Bengaluru

Digital Image Fundamentals

- At the end of these lectures, students will be able to:
 - Understand Image sensing and Acquisition.

Distinguish between various Image Acquisition techniques.

Describe Image Formation Model.

Distinguish between Spatial and Gray-Level Resolution.

Describe a basic relationships between the pixels.

Digital Image

- A digital image is an image composed of picture elements, also known as pixels.
- Each pixel has a finite, discrete value which represents the intensity or gray level at the position defined by spatial co-ordinates (x and y).

112 30 26 68 75 90 98 100 102 108 130 110 29 67 70 61 98 100 102 101 200 140 100 110 68 28 23 56 82 89 40 110 140 200 80 70 28 57 83 89 36 56 120 140 190 200 89 23 60 89 60 56 23 56 56 56 85 90 91 91 82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82 90 75 80 80 81 92 81 85 82 93
200 140 100 110 68 28 23 56 82 89 40 110 140 200 80 70 28 57 83 89 36 56 120 140 190 200 89 23 60 89 60 56 23 56 56 56 85 90 91 91 82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82
40 110 140 200 80 70 28 57 83 89 36 56 120 140 190 200 89 23 60 89 60 56 23 56 56 56 85 90 91 91 82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82
36 56 120 140 190 200 89 23 60 89 60 56 23 56 56 56 85 90 91 91 82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82
60 56 23 56 56 56 85 90 91 91 82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82
82 56 26 56 56 56 69 82 82 82 91 56 85 92 92 92 90 82 82 82
91 56 85 92 92 92 90 82 82 82

Image Sensing and Digital Image Acquisition

Single imaging sensor

Image Sensing & Acquisition

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Simple Image Formation Model

- Simple image formation
 - f(x,y) = i(x,y)r(x,y)
 - i(x,y): illumination (determined by ill. Source)
 - $0 < i(x,y) < \infty$
 - i(x,y) = 90,000 lm/m2 (clear day), 0.1lm/m2 (evening)
 - i(x,y) = 10,000 lm/m2 (cloudy day),
 - r(x,y) reflectance (determined by imaged object)
 - 0 < r(x,y) < 1
 - 0.01 for black velvet
 - 0.65 for stainless steel
- In real situation
 - $L_{min} \le L = f(x, y) \le L_{max}$
 - $L_{min} = i_{min} * r_{min}$
 - $L_{max} = i_{max} * r_{max}$
- Faculty of Engineering & Technolog Gray level

Image Digitization

Why do we need Digitization?

What is Image Digitization?

How to Digitize an Image

Why Digitization

No of pixel along x axis $0 \le x \le H$ No of pixel along y axis $0 \le y \le L$ Intensity at f(x,y) $I_{min} \le f(x,y) \le I_{max}$ $I_{min} \rightarrow minimum$ intensity value $I_{max} \rightarrow maximum$ intensity value

Digitization

- Digitization means Sampling & Quantization
- An image can be represented by a 2D matrix which has finite no. of values in rows and columns.

Digitization

Sampling

- Image representation by a 2D matrix
- A 1D analog signal can be represented as

Ruther by taking value at every point we are taking value at some interval Δ

Sampling frequency fs = $1/\Delta t_s$

Sampling

Problem is some information can be missed when we taking value at interval Δt

Solution is increasing the sampling frequency or decreasing the sampling interval Δt

Here we take interval $\Delta t'_s = \Delta t / 2$

Sampling frequency $f's = 1/\Delta t'_s = 2/\Delta t = 2fs$

Sampling

Quantization

• Digitizing the Amplitude values called image quantization.

 Sampling limits established by no. of sensors, but quantization limits by color levels.

Image Quantization

Example

71	61	51	49	40	35	53	86	99
74	53	56	48	46	48	72	85	102
69	57	53	54	52	64	82	88	101
82	64	63	59	60	81	90	93	100
93	76	69	72	85	94	99	95	99
108	94	92	97	101	100	108	105	99
114	109	106	105	108	108	102	107	110
113	109	114	111	111	113	108	111	115
113	111	109	106	108	110	115	120	122
107	106	108	109	114	120	124	124	132
	69 82 93 108 114 113	69 57 82 64 93 76 108 94 114 109 113 109	69 57 53 82 64 63 93 76 69 108 94 92 114 109 106 113 109 114 113 111 109	69 57 53 54 82 64 63 59 93 76 69 72 108 94 92 97 114 109 106 105 113 109 114 111 113 111 109 106	69 57 53 54 52 82 64 63 59 60 93 76 69 72 85 108 94 92 97 101 114 109 106 105 108 113 109 114 111 111 113 111 109 106 108	69 57 53 54 52 64 82 64 63 59 60 81 93 76 69 72 85 94 108 94 92 97 101 100 114 109 106 105 108 108 113 109 114 111 111 113 113 111 109 106 108 110	69 57 53 54 52 64 82 82 64 63 59 60 81 90 93 76 69 72 85 94 99 108 94 92 97 101 100 108 114 109 106 105 108 108 102 113 109 114 111 111 113 108 113 111 109 106 108 110 115	69 57 53 54 52 64 82 88 82 64 63 59 60 81 90 93 93 76 69 72 85 94 99 95 108 94 92 97 101 100 108 105 114 109 106 105 108 108 102 107 113 109 114 111 111 113 108 111 113 111 109 106 108 110 115 120

CAMERA

DIGITIZER

Samples the analog data and digitizes it.

31

Consider an image which has:

M * N : size of the image

L: Number of discrete gray levels in this image

L= 2^k Where k is any positive integer

The total number of bits needed to store this image b :

$$b = M * N * K,$$

If M = N, then $b = N^2 * K$

- The dynamic range is the ratio of the maximum (determined by saturation) measurable intensity to the minimum (limited by noise) detectable intensity.
- Contrast is defined as the difference in intensity between the highest and the lowest intensity levels in an image.

Spatial resolution:

- # of samples per unit length or area.
- Lines and distance: Line pairs per unit distance
- Dpi- dots per inch

Gray level resolution:

- Number of bits per pixel.
- Usually 8 bits.
- Color image has 3 image planes to yield $8 \times 3 = 24$ bits/pixel.

256

512

The subsampling was accomplished by deleting the appropriate number of rows and columns from the original image.

1024

Spatial Image Resolutions

No. of gray levels (K) is constant(8-bits images).

No. of samples (N) is reduced (No. of sensors)

Comparison between all image sizes

a b

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

Gray Level Image Resolutions

No. of samples (N) is constant, but gray levels (K) decreases.

Sampling and Quantization

- How many samples to take?
 - Number of pixels (samples) in the image
 - Nyquist rate

- How many gray-levels to store?
 - At a pixel position (sample), number of levels of color/intensity to be represented

Sampling and Quantization

- How many samples to take?
 - The Nyquist Rate
 - -Samples must be taken at a rate that is twice the frequency of the highest frequency component to be reconstructed.
 - Under-sampling: sampling at a rate that is too coarse, i.e., is below the Nyquist rate.
 - Aliasing: artefacts that result from under-sampling.

• The pixel values of the following 5x5 image are represented by 8-bit integers:

$$f = \begin{bmatrix} 123 & 162 & 200 & 147 & 93 \\ 137 & 157 & 165 & 232 & 189 \\ 151 & 155 & 152 & 141 & 130 \\ 205 & 101 & 100 & 193 & 115 \\ 250 & 50 & 75 & 88 & 100 \end{bmatrix}$$

- Determine (f) with gray level resolution of 2^k , when
 - 1. K = 5
 - 2. K = 3

- Dividing the image by 2 will reduce its gray level resolution by one bit.
- Hence to reduce the gray level resolution from 8-bit to 5-bit, we have to reduce 3-bits.
- 8bits 5bits = 3 bits will be reduced

• Thus, we divide the 8-bit image by 8 (2^3) to get the following 5-bit image: [15, 20, 25, 18, 11]

• Similarly, to obtain 3-bit image, we divide the 8-bit image by (32) 2^5

$$f = \begin{bmatrix} 3 & 5 & 6 & 4 & 2 \\ 4 & 4 & 5 & 7 & 5 \\ 4 & 4 & 4 & 4 \\ 6 & 3 & 3 & 6 & 3 \\ 7 & 1 & 2 & 2 & 3 \end{bmatrix}$$

Original Image

New Image

Process of using known data to estimate unknown values

- e.g., zooming, shrinking, rotating, and geometric correction
- Interpolation (sometimes called resampling) an imaging method to increase (or decrease) the number

of pixels in a digital image.

- Three types
 - Nearest Neighbor Interpolation
 - Bi-linear Interpolation
 - Bi-cubic Interpolation

Nearest Neighbor Interpolation

Is performed by repeating pixel values

Nearest Neighbor Interpolation

The example below shows 8-bit image zooming by 2x (2 times) using nearest neighbor interpolation.

$$\begin{bmatrix} 69 & 50 & 80 \\ 45 & 60 & 66 \\ 30 & 55 & 80 \end{bmatrix} = \begin{bmatrix} 69 & 69 & 50 & 50 & 80 & 80 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 30 & 30 & 55 & 55 & 80 & 80 \end{bmatrix} = \begin{bmatrix} 69 & 69 & 50 & 50 & 80 & 80 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 30 & 30 & 55 & 55 & 80 & 80 \end{bmatrix}$$

Original image

image with rows expanded

image with rows and columns expanded

69 50 50 80 801

How to make color appear smoother

How to make color appear smoother

• Each output takes the weighted average of 4 input pixels

Linear Interpolation

Brightness

Linear Interpolation

Linear: Change between each successive square is same

 Linear Interpolation: An interpolation in which rate of change is constant

- Bi-linear Interpolation: Perform linear interpolation twice
 - Once in each direction

• 8-bit image zooming by 2 (2 times) using bi-linear interpolation

$$\begin{bmatrix} 69 & 50 & 80 \\ 45 & 60 & 66 \\ 30 & 55 & 80 \end{bmatrix} = \begin{bmatrix} 69 & 59 & 50 & 65 & 80 \\ 45 & 52 & 60 & 63 & 66 \\ 30 & 42 & 55 & 67 & 80 \end{bmatrix} = \begin{bmatrix} 57 & 55 & 55 & 64 & 73 \\ 45 & 52 & 60 & 63 & 66 \\ 37 & 47 & 57 & 65 & 73 \\ 30 & 42 & 55 & 67 & 80 \end{bmatrix}$$

Original image image with rows expanded

image with rows and columns expanded

a b c d e f Top row: images zoomed from 128 × 128, 64 × 64, and 32 × 32 pixels to 1024 × 1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Bi-cubic interpolation

Bi-cubic interpolation (16 coefficeints)

$$v(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

- Better job of preserving finer details
- Standard in commercial image editing programs

Shrinking

- Shrinking may be viewed as under sampling
- Performed by row deletion

$$\begin{bmatrix} 69 & 69 & 50 & 50 & 80 & 80 \\ 69 & 69 & 50 & 50 & 80 & 80 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 30 & 30 & 55 & 55 & 80 & 80 \\ 30 & 30 & 55 & 55 & 80 & 80 \end{bmatrix} = \begin{bmatrix} 69 & 69 & 50 & 50 & 80 & 80 \\ 45 & 45 & 60 & 60 & 66 & 66 \\ 30 & 30 & 55 & 55 & 80 & 80 \end{bmatrix} = \begin{bmatrix} 69 & 50 & 80 & 80 \\ 45 & 45 & 60 & 66 & 66 \\ 30 & 30 & 55 & 55 & 80 & 80 \end{bmatrix}$$
Original image image with rows deleted image with rows and columns deleted

Pixel Relationships

Image Representation

 An image can be represented by a 2D matrix which has finite no. of values in rows and columns.

112	110	109	0	0	0	0	0	0
116	114	108	0	0	0	0	0	0
107	115	110	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	200	215	214
0	0	0	0	0	0	201	212	204
0	0	0	0	0	0	208	210	207

Relationship Between Pixels

- Neighborhood
- Adjacency
- Paths
- Connectivity
- Regions and boundaries

- Any pixel p(x, y) has two vertical and two horizontal neighbors,
 given by (x-1, y), (x+1, y), (x,y-1), and (x, y+1)
- This set of pixels are called the 4-neighbors of P, and is denoted by $N_4(p)$

- The four diagonal neighbors of p(x, y) are given by (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- This set is denoted by $N_D(p)$

• The points $N_4(p)$ and $N_D(p)$ are together known as 8-neighbors of the point P, denoted by $N_8(p)$

$$N_8(p) = N_4(p) \cup N_D(p)$$

Adjacency

- Let V be the set of intensity used to define adjacency; e.g.
 V={1} if we are referring to adjacency of pixels with value 1 in a binary image with 0 and 1.
- In a gray-scale image, for the adjacency of pixels with a range of intensity values of say, 100 to 120, it follows that V={100,101,102,...,120}.

We consider three types of adjacency:

4- adjacency

- Let V be set of binary values used to define adjacency.
- Two pixels p and q with values from V are 4- adjacency if q is in the set $N_4(p)$.

p in RED color q can be any value in GREEN color

8- adjacency

• Two pixels p and q with values from $V=\{1\}$ are 8- adjacency if q is in the set $N_8(p)$.

p in RED color q can be any value in GREEN color

m- adjacency (mixed adjacency)

Two pixels p and q with values from V are m- adjacency if

(i) q is in $N_4(p)$

OR

(ii) q is in $N_D(p)$ and $N_4(p) \cap N_4(q)$ is empty

m- adjacency (mixed adjacency)

Two pixels p and q with the values from set 'V' are m-adjacent if

(i) q is in
$$N_4(p)$$

e.g.
$$V = \{1\}$$

i. b & c

ii. b & e

m- adjacency (mixed adjacency)

(ii) q is in $N_D(p)$ and the set

$$[N_4(p) \cap N_4(q)]$$
 is empty

e.g.
$$V = \{1\}$$

iii. e & i

m-adjacent

iv. e & c

Not m-adjacent

Not m-connected. They have a common 4-connected neighbor.

m-adjacency

m-connected. They do not have any common 4-connected neighbor.

• Two image subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2

 A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates:

Where

- (x₀, y₀), (x₁, y₁), (x₂, y₂) ... (x_n, y_n),
- $(x_0, y_0) = (x, y)$ and $(x_n, y_n) = (s, t)$ and
- (x_i, y_i) is adjacent to (x_{i-1}, y_{i-1}) $1 \le i \le n$
- (x₀, y₀)

• If $(x_0, y_0) = (x_n, y_n)$, the path is **closed path**.

• We can define 4-, 8-, and m-paths based on type of adjacency used.

0 1 1 0 2 0 0 0 1 0 1 1 0 2 0 0 0 1

8 - adjacent

$$V = \{1, 2\}$$

m - adjacent

0 1 1 0 2 0 0 0 1 0 1 1 0 2 0 0 0 1 0 1 1 0 2 0 0 0 1

8 – adjacent

m - adjacent

The 8-path from (1,3) to (3,3)

- (i) (1,3), (1,2), (2,2), (3,3)
- (ii) (1,3), (2,2), (3,3)

The m-path from (1,3) to (3,3)

(1,3), (1,2), (2,2), (3,3)

Example # 1: Consider the image segment shown in figure.
 Compute length of the shortest-4, shortest-8 & shortest-m
 paths between pixels p & q where, V = {1, 2}.

Shortest 4-path

• $V = \{1, 2\}$

Shortest 8-path

• $V = \{1, 2\}$

So, shortest 8-path = 4

Shortest m-path

•
$$V = \{1, 2\}$$

So, shortest m-path = 5

Connected Components

- Let S be a subset of pixels in an image.
 - Two pixels p and q are said to be connected in S if there exists a path between them consisting entirely of pixels in S
 - For any pixel p in S, the set of pixels that are connected to it in S is called a connected component of S.
 - If it only has one connected component, then set S is called a connected set.

Regions

- Let R be a subset of pixels in an image. We call R a region of the image if R is a connected set
- Two regions are said to be adjacent if their union forms a connected set.

Boundary (or border)

- The boundary of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.

Distance Measures

Given pixels p, q and z with coordinates (x, y), (s, t), (u, v)
 respectively, the distance function D has following properties:

a. D (p, q)
$$\geq$$
 0 [D (p, q) = 0, iff p = q] \longrightarrow reflexivity

b. D (p, q) = D (q, p)
$$\longrightarrow$$
 symmetry

c. D (p, z)
$$\leq$$
 D (p, q) + D(q, z) \longrightarrow transmitivity

Euclidean Distance

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$$

The Euclidean distance is the straight-line distance between two pixels.

City Block Distance

The City Block distance metric measures the path between the pixels based on a 4-connected neighborhood. Pixels whose edges touch are 1 unit apart; pixels diagonally touching are 2 units apart q(s,t)

Chess Board Distance

 The Chessboard distance metric measures the path between the pixels based on an 8- connected neighborhood. Pixels whose edges or corners touch are 1 unit apart.

$$D_8(p, q) = \max(|x - s|, |y - t|).$$

$$D_8 = \max(D_{8(a)}, D_{8(b)})$$

Summary

- Image sensing and Acquisition.
- Image Formation Model.
- Image Digitization
- Basic relationships between the pixels.
- Distance Measures

