Homogeneous Linear Equations with Constant Coefficients Section 3.2 (Noonburg)

We will now discuss how the general solution x_h can always be found. For simplicity, we will only study second order linear DEs with constant coefficients.

Consider the second order homogeneous linear equation;

$$ax''(t) + bx'(t) + cx(t) = 0,$$

where $a \neq 0, b$ and c are constants.

 $x(t) = e^{rt}$ is a reasonable guess for a solution. With $x(t) = e^{rt}$, $x'(t) = re^{rt}$ and $x''(t) = r^2e^{rt}$, we get

$$ar^{2}e^{rt} + bre^{rt} + ce^{rt} = e^{rt}(ar^{2} + br + c) = 0.$$

Thus, r is a root of the quadratic polynomial $P(r) = ar^2 + br + c$. This polynomial is called the characteristic polynomial of the DE.

Here, $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. The format of the general solution depends on the value of $b^2 - 4ac$.

• When $b^2 - 4ac > 0$:

In this situation we will have two distinct real roots r_1, r_2 . Thus, $x_1(t) = e^{r_1 t}$ and $x_2(t) = e^{r_2 t}$ are solutions of the DE.

Further,
$$W(x_1, x_2) = (r_2 - r_1)e^{(r_1 + r_2)t}$$

Check:

$$x'_{1}(t) = r_{1}e^{r_{1}t}$$

 $x'_{2}(t) = r_{2}e^{r_{2}t}$
 $W(x_{1,1}x_{2}) = e^{r_{1}t}(r_{2}e^{r_{2}t}) - e^{r_{2}t}(r_{1}e^{r_{1}t}) = (r_{2}-r_{1})e^{(r_{1}+r_{2})t}$

And this is never zero. $r_1 \neq r_2$

Thus, the general solution is $x(t) = Ae^{r_1t} + Be^{r_2t}$, where A and B are constants.

• When $b^2 - 4ac = 0$:

In this situation we will have a single real root \bar{r} . Thus, $x_1(t) = e^{\bar{r}t}$ is a solution of the DE. $t - \frac{b}{2\alpha} \Rightarrow 2\alpha \bar{r} + b = 0$

In this case $x_2(t) = te^{\bar{r}t}$ is also a solution.

Check:

$$X_{2}(t) = e^{rt} + rte^{rt} = e^{rt}(1 + rt)$$

 $X_{2}(t) = re^{rt}(1 + rt) + re^{rt} = re^{rt}(2 + rt)$
 $are^{rt}(2 + rt) + be^{rt}(1 + rt) + cte^{rt} = 0$
 $e^{rt}(ar(2 + rt) + b(1 + rt) + ct) = 0$
 $e^{rt}(t(ar^{2} + br + c) + 2ar + b) = 0$
 $0 = 0$

Further, $W(x_1,x_2)=e^{2\bar{r}t}$ (check: HW). And this is never zero.

Thus, the general solution is $x(t) = Ae^{\bar{r}t} + Bte^{\bar{r}t}$, where A and B are constants.

• When $b^2 - 4ac < 0$:

In this situation we will have two complex roots given by $r_1 = \alpha + \beta i$, $r_2 = \alpha - \beta i$. Thus, the two complex functions $z_1(t) = e^{(\alpha+\beta i)t}$ and $z_2(t) = e^{(\alpha-\beta i)t}$ are solutions of the DE. Note that.

$$z_1(t) = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t)), \quad z_2(t) = e^{\alpha t}(\cos(\beta t) - i\sin(\beta t)),$$

and

$$\frac{z_1 + z_2}{2} = e^{\alpha t}(\cos(\beta t)), \quad \frac{z_1 - z_2}{2i} = e^{\alpha t}(\sin(\beta t))$$

Since linear combinations of solutions are again solutions of the DE, now we have two distinct solutions which are real (no more complex involved!).

Set
$$x_1(t) = e^{\alpha t}(\cos(\beta t)), \quad x_2(t) = e^{\alpha t}(\sin(\beta t)).$$

Further, $W(x_1, x_2) = \beta e^{2\alpha t}$ and this is never zero (check: HW).

Thus, the general solution is $x(t) = Ae^{\alpha t}(\cos(\beta t)) + Be^{\alpha t}(\sin(\beta t))$, where A and B are constants.

Example #1: Solve the IVP
$$x'' + 2x' + 5x = 0$$
, $x(0) = 1$, $x'(0) = 3$.
 $x(t) = e^{-t}$
 $x' = -e^{-t}$
 $x' = e^{-t}$
 $x'' = e^{-t}$
 $e^{-t} + 2e^{-t} = 0$
 $e^{-t} = \frac{-2 + \sqrt{2^2 - 4(5)}}{1} = -1 \pm 2i$
 $\frac{1}{2}(t) = -1 + 2i$, $\frac{1}{2}(t) = -1 - 2i$
 $\alpha = -1$, $\beta = 2$
 $x(t) = e^{-t} \cos(2t) + e^{-t} \sin(2t)$
 $x''(t) = -1 + e^{-t} \cos(2t) + 2e^{-t} \sin(2t)$
 $x''(t) = -1 + e^{-t} \cos(2t) + 2e^{-t} \sin(2t)$
 $x''(t) = -1 + e^{-t} \cos(2t) + 2e^{-t} \sin(2t)$
 $x''(t) = -1 + e^{-t} \cos(2t) + 2e^{-t} \sin(2t)$
 $x''(t) = -1 + e^{-t} \cos(2t) + 2e^{-t} \sin(2t)$