Required Problems

1. Consider the sequence $\{x_n\}_{n=1}^{\infty}$ such that

$$x_n = \frac{n+1}{n}$$

To what does this sequence converge? Prove that this sequence converges to that limit.

This sequence converges to 1, i.e., $x_n \to 1$.

 $\underline{\text{To show}}: \ |\tfrac{n+1}{n} - 1| < \varepsilon.$

Proof:

Let
$$\varepsilon > 0$$
 (by hypothesis)

Let $N > \frac{1}{\varepsilon}$ and $n > N$ (by hypothesis)

$$\left| \frac{n+1}{n} - 1 \right| = \left| \frac{1}{n} \right|$$
 (simplifying)

$$= \frac{1}{n}$$
 (by $n > 0$)

$$< \frac{1}{N}$$
 (by $n > N$)

$$< \frac{1}{1/\varepsilon}$$
 (by $N > 1/\varepsilon$)

$$= \varepsilon$$
 (simplifying)

2. Let S and T be convex sets. Prove that the intersection of S and T is also a convex set.

To show: $t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S \cap T$ Proof:

Let S and T be convex sets,
$$\mathbf{x}_1, \mathbf{x}_2 \in S \cap T$$
, and $t \in [0, 1]$ (by hypothesis)

$$\implies \left(\mathbf{x}_1 \in S \land \mathbf{x}_1 \in T\right) \land \left(\mathbf{x}_2 \in S \land \mathbf{x}_2 \in T\right)$$
 (by def. of \cap)

$$\implies (\mathbf{x}_1 \in S \land \mathbf{x}_2 \in S) \land (\mathbf{x}_1 \in T \land \mathbf{x}_2 \in T)$$
 (by associativity)

$$\implies \left(t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S\right) \land \left(t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in T\right)$$
 (by def. of convex)

$$\implies t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S \cap T$$
 (by def. of \cap)

- 3. The set $S^{n-1} = \{ \mathbf{x} \mid \sum_{i=1}^{n} x_i = 1 \land x_i \ge 0 \ \forall i = 1, \dots, n \}$ is the (n-1)-dimensional unit simplex.
 - (a) Describe in words the set S^{n-1} for n=3

It is the set contained in a closed equilateral triangle with sides of length 1. The triangle connects points (1,0,0), (0,1,0), and (0,0,1) in \mathbb{R}^3 .

(b) Prove that S^{n-1} is a convex set.

To show:
$$t\mathbf{x} + (1-t)\mathbf{y} \in S$$

Proof:

Let
$$\mathbf{x}, \mathbf{y} \in S$$
 and $t \in [0, 1]$ (by hypothesis)
Consider $t\mathbf{x} + (1 - t)\mathbf{y}$ (the convex combo.)
 $0 \le tx_i + (1 - t)y_i < 1 \quad \forall i = 1, \dots, n$ (by $t \in [0, 1]$)

$$\sum_{i=1}^{n} \left(tx_i + (1 - t)y_i\right)$$
 (summing the elements)

$$= \sum_{i=1}^{n} tx_i + \sum_{i=1}^{n} (1 - t)y_i$$
 (by associativity)

$$= t \sum_{i=1}^{n} x_i + (1 - t) \sum_{i=1}^{n} y_i$$
 (by distributivity)

$$= t \cdot 1 + (1 - t) \cdot 1$$
 (by $\mathbf{x}, \mathbf{y} \in S$)

$$= 1$$
 (simplifying)

$$\Rightarrow t\mathbf{x} + (1 - t)\mathbf{y} \in S$$

(c) Prove that S^{n-1} is a compact set.

- Theorem (T1): $\mathbf{x}_k \to \mathbf{c} \iff x_{ik} \to c_i$ for all i (each element of the vector converges)
- Theorem (T2): $a_k \to a$ and $b_k \to b$ implies $a_k + b_k \to a + b$
- Theorem (T3): Weak inequalities are preserved in in the limit
- Lemma (L1): Constant sequences converge, i.e., $\{d, d, d...\} \rightarrow d$

To show: $\mathbf{c} \in S$

Proof:

Let
$$\{\mathbf{x}_k\}_{k=0}^{\infty}$$
 be a sequence in $S \ni (\mathbf{x}_k \to \mathbf{c}) \land (\mathbf{x}_k \in S \ \forall \ k)$ (by hypothesis)
$$\Rightarrow \left(x_{ik} \to c_i, c_i \ge 0 \ \forall \ i\right) \land \left(\sum_{i=1}^n x_{ik} = 1 \ \forall \ k\right) \land \left(x_{ik} \ge 0 \ \forall \ i, k\right) \text{ (by T1, T3, and } \mathbf{x}_k \in S)$$

$$\Rightarrow \left(\sum_{i=1}^n x_{ik} \to \sum_{i=1}^n c_i\right) \land \left(\sum_{i=1}^n x_{ik} \to 1\right) \text{ (by T2 and L1)}$$

$$\Rightarrow \sum_{i=1}^n c_i = 1 \text{ (limits are unique)}$$

$$\Rightarrow \mathbf{c} \in S \text{ (by def. of } S)$$

Because the convergent sequence and limit were arbitrary, it must be the case that the limit point of every convergent sequence is in S. Thus, S is closed.

To show: S is bounded

Proof:

Let
$$\mathbf{x} \in S$$
 (by hypothesis)

Let $M = 2$ (by hypothesis)

$$\Rightarrow \sum_{i=1}^{n} x_i = 1 \land x_i \ge 0 \ \forall i$$
 (def of S)

$$\Rightarrow 0 \le x_i \le 1 \ \forall i$$
 (algebra)

$$\Rightarrow -M \le x_i \le M \ \forall i$$
 (algebra)

$$\Rightarrow S \text{ is bounded}$$
 (def of bounded)

Thus, S is closed and bounded, implying it is compact.

- 4. Let D be a convex subset of \mathbb{R}^n and $f: D \to \mathbb{R}$. For the following two statements, if it is true provide a proof. If it is false, provide a counterexample.
 - (a) f is strictly concave $\Longrightarrow f$ is strictly quasiconcave $\underline{\text{To show}}$: $f(t\mathbf{y} + (1-t)\mathbf{z}) > \min\{f(\mathbf{y}), f(\mathbf{z})\}$ Proof:

Let
$$\mathbf{y}, \mathbf{z} \in D \land t \in (0,1)$$
 (by hyp)
Consider $f(t\mathbf{y} + (1-t)\mathbf{z})$ (by hyp)
 $> tf(\mathbf{y}) + (1-t)f(\mathbf{z})$ (def of strictly concave)
Case 1: $f(\mathbf{y}) \geq f(\mathbf{z})$ (algebra)
 $\geq f(\mathbf{z})$ ($f(\mathbf{y}) \geq f(\mathbf{z})$)
 $= \min\{f(\mathbf{y}), f(\mathbf{z})\}$ ($f(\mathbf{y}) \geq f(\mathbf{z})$)
Case 2: $f(\mathbf{y}) \leq f(\mathbf{z})$
Let $s = 1 - t$ (by hyp)
 $= (1 - s)f(\mathbf{y}) + sf(\mathbf{z})$ (def of s)
 $= f(\mathbf{y}) + s[f(\mathbf{z}) - f(\mathbf{y})]$ (algebra)
 $\geq f(\mathbf{y})$ ($f(\mathbf{y}) \leq f(\mathbf{z})$)
 $= \min\{f(\mathbf{y}), f(\mathbf{z})\}$ ($f(\mathbf{y}) \leq f(\mathbf{z})$)
 $\geq \min\{f(\mathbf{y}), f(\mathbf{z})\}$ (logic)

(b) f is strictly quasiconcave $\implies f$ is strictly concave

False. Consider f(x) = x where $f : \mathbb{R} \to \mathbb{R}$. <u>To show</u>: $f(ty + (1 - t)z) > \min(y, z)$ Proof:

Let
$$y, z \in \mathbb{R} \ni y \neq z \land t \in (0,1)$$
 (by hyp)
Consider $f(ty + (1-t)z)$ (by hyp)
 $= ty + (1-t)z$ (def of f)
Case 1: $y > z$ (algebra)
 $> z$ ($t(y-z) > 0$)
 $= \min(y, z)$ ($y > z$)
Case 2: $y < z$
Let $s = 1 - t$ (by hyp)
 $= (1-s)y + sz$ (def of s)
 $= y + s(z - y)$ (algebra)
 $> y$ ($s(z - y) > 0$)
 $= \min(y, z)$ ($s(z - y) > 0$)
 $= \min(y, z)$ ($s(z - y) > 0$)
 $\Rightarrow > \min(y, z)$ (logic)

But f(x) = x is not strictly concave. Consider y = 1 and z = 3 and t = 0.5:

$$f(ty + (1-t)z) = f(0.5 + 1.5) = f(2) = 2$$

$$tf(y) + (1-t)f(y) = 0.5 * 1 + 0.5 * 3 = 2$$

Additional Practice Problems (I will provide solutions for these but not feedback)

- 5. Give a relation r from $A = \{5, 6, 7\}$ to $B = \{3, 4, 5\}$ such that
 - (a) r is not a function

This is not a function, as one of the points in the domain is not mapped to the range; further, 5 is mapped to two different elements in the range.

(b) r is a function from A to B with the range $\mathcal{R}(r) = B$

This relation is a function; every element in the codomain has a corresponding element in the domain, so $\mathcal{R}(r) = B$.

(c) r is a function from A to B with the range $\mathcal{R}(r) \neq B$

This relation is a function, but one element in the codomain does not have a corresponding element in the domain, so $\mathcal{R}(r) \neq B$.

6. Identify the domain and range of each of the following mappings:

(a)
$$\{(x,y) \in \mathbb{R}^2 | y = \frac{1}{x+1} \}$$

- Domain: $D = \mathbb{R} \{-1\}$
- Range: $R = \mathbb{R} \{0\}$
- (b) $\{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 5 \}$
 - Domain: $D = \mathbb{N}$
 - Range: $R = \mathbb{N} \{1, 2, 3, 4, 5\}$
- (c) $\left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} \middle| y = \frac{x^2 4}{x 2} \right\}$
 - Domain: $D = \mathbb{Z} \{2\}$
 - Range: $R = \mathbb{Z} \{4\}$
- 7. For each of the following sequences, list the first three terms:
 - (a) $a_n = \frac{n+1}{2n+3}$

$$\left\{\frac{2}{5}, \quad \frac{3}{7}, \quad \frac{4}{11}, \dots\right\}$$

(b) $b_n = \frac{1}{n!}$

$$\left\{1, \quad \frac{1}{2}, \quad \frac{1}{6}, \dots\right\}$$

(c) $c_n = 1 - 2^{-n}$

$$\left\{\frac{1}{2}, \quad \frac{3}{4}, \quad \frac{7}{8}, \dots\right\}$$

8. Prove that if $x_n \to L$ and $y_n \to M$, then $x_n + y_n \to L + M$.

To show:
$$|(x_n + y_n) - (L + M)| < \varepsilon$$

Proof:

Let
$$\varepsilon > 0$$
 (by hypothesis)

$$\implies \left(\exists N_x \ni n > N_x \Rightarrow |x_n - L| < \frac{\varepsilon}{2}\right) \land \left(\exists N_y \ni n > N_x \Rightarrow |y_n - M| < \frac{\varepsilon}{2}\right) \quad \text{(by def. of convergence)}$$

Let
$$n > \max\{N_x, N_y\}$$
 (defining n)

Consider
$$|(x_n + y_n) - (L + M)|$$
 (summing the sequences & limits)

$$= |(x_n - L) + (y_n - M)|$$
 (by associativity)

$$\leq |x_n - L| + |y_n - M|$$
 (by the triangle inequality)

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
 (by $n > \max\{N_x, N_y\}$)

9. Prove that if $a_n \to a$ and $a_n \le b$ for all n, then $a \le b$.

Proof by contradiction to show: $a_n \leq b \ \forall \ n \text{ and } \exists a_n > b$ Proof:

Let
$$(a_n \to a) \land (a_n \le b \forall n)$$
 (by hypothesis)
Suppose $a > b$ (towards a contradiction)
Let $\varepsilon = a - b$ (defining ε)
 $\Rightarrow \exists N \ni n > N \Rightarrow |a_n - a| < \varepsilon$ (by def. of convergence)
Consider $|a_n - a| < \varepsilon$ (by def. of convergence)
 $\Rightarrow -\varepsilon < a_n - a < \varepsilon$ (by the absolute value)
 $\Rightarrow a - \varepsilon < a_n < a + \varepsilon$ (rearranging)
 $\Rightarrow a - (a - b) < a_n$ (by def. of ε)
 $\Rightarrow b < a_n$ (simplifying)
Buy $a_n \le b$ by assumption; thus, a contradiction
 $\Rightarrow a \le b$

10. Consider the following intervals in \mathbb{R} . For each, determine if it is closed. If so, give a proof:

(a) $(-\infty, b]$

This interval is closed. To show: $B_{\varepsilon}(x) \subseteq (b, \infty)$.

Proof:

Let
$$[x \in (b, \infty)] \land [\varepsilon = x - b]$$
 (by hypothesis)
Consider $B_{\varepsilon}(x)$ (defining an ε -ball)
Let $y \in B_{\varepsilon}(x)$ (picking a point in $B_{\varepsilon}(x)$)
 $\Rightarrow x - \varepsilon < y < x + \varepsilon$ (by def. of $B_{\varepsilon}(x)$)
 $\Rightarrow x - (x - b) < y < x + (x - b)$ (by def. of ε)
 $\Rightarrow b < y < 2x + b$ (simplifying)
 $\Rightarrow b < y < \infty$ ($2x + b$ is finite)
 $\Rightarrow y \in (b, \infty)$ (by def. of (b, ∞))
 $\Rightarrow B_{\varepsilon}(x) \subseteq (b, \infty)$ (by def. of subset)

Because x was an arbitrary point and $B_{\varepsilon}(x) \subseteq (b, \infty)$, the interval is open. Thus, its complement $(-\infty, b]$ is closed.

(b) (a, b]

This interval is neither open nor closed. Consider a sequence $a_n = a + \frac{1}{kn}$, where k is a constant large enough such that $a_n \in (a, b]$ for all n. This sequence converges to a, but a is not in the set. Thus, the set is not closed.

(c) $[a, \infty)$

This interval is closed.

• Theorem (T1): weak inequalities are preserved in the limit (see problem 10)

To show: $x \in [a, \infty)$.

Proof:

Let
$$\{x_n\}_{n=1}^{\infty}$$
 be a sequence $\ni (x_n \to x) \land (x_n \in [a, \infty) \forall n)$ (by hypothesis)
 $\implies x_n \ge a \forall n$ (by $x_n \in [a, \infty)$)
 $\implies x \ge a$ (by T1)

Because the convergent sequence and the limit point were arbitrary, it must be the case that the limit point of every convergent sequence is in $[a, \infty)$.

(d) [a, b)

As in part (b), this interval is neither open nor closed. Consider a sequence $b_n = b - \frac{1}{kn}$, where k is a constant large enough such that $b_n \in [a, b)$ for all n. This sequence converges to b, but b is not in the set. Thus, the set is not closed.

- 11. Consider the following sets. If the set is bounded, provide an M and a x such that $B_M(\mathbf{x})$ contains the set.
 - (a) $A = \{x | x \in \mathbb{R} \land x^2 < 10\}$

This set is bounded above and below by $\sqrt{10}$ and $-\sqrt{10}$, respectively. Thus, let x=0 and M=4. Then $B_M(0)$ contains the entire set.

(b) $B = \{x | x \in \mathbb{R} \land x + \frac{1}{x} < 5\}$

The function is bounded above by $\frac{5+\sqrt{21}}{2}$, but is not bounded below—x can take on any value in the real numbers less than zero.

(c) $C = \{(x, y) | (x, y) \in \mathbb{R}^2_+ \land xy < 1\}$

This set is not bounded. No matter how large x gets, there exists a y such that xy < 1 (and vice versa).

(d) $D = \{(x, y) | (x, y) \in \mathbb{R} \land |x| + |y| < 10\}$

Both x and y must fall between -10 and 10. Thus, let x = 0 and M = 11. Then $B_M(0)$ contains the entire set.

- 12. Prove that the following functions are continuous using epsilon-delta proofs.
 - (a) f(x) = x + 3

$$\underline{\text{To show}}: |(x+3) - (x_0) + 3| < \varepsilon \\ \underline{\text{Proof:}}$$

Let
$$\varepsilon > 0$$
 and $x_0 \in \mathcal{D}(f)$ (by hypothesis)
Let $\delta = \varepsilon$ (defining δ)
Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$
 $\implies |x - x_0| < \varepsilon$ (by def. of δ)
 $\implies |x - x_0 + 3 - 3| < \varepsilon$ (adding zero)

 $\implies |(x-3)-(x_0-3)| < \varepsilon$ (by associativity)

This is the basic format of a simple continuity proof: pick an arbitrary ε and an arbitrary point in the domain; pick a specific δ (typically a function of ε); show that if x is within δ of x_0 , then f(x) must be within ε of $f(x_0)$.

(b) $g(x) = x^2$

To show:
$$|x^2 - x_0^2| < \varepsilon$$

Proof:

Let
$$\varepsilon > 0$$
 and $x_0 \in \mathcal{D}(g)$ (by hypothesis)
Let $\delta \le \min \left\{ 1, \frac{\varepsilon}{2 + 2|x_0|} \right\}$

Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{2 + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + \delta + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x - x_0| + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x - x_0 + 2x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x + x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x + x_0|}$$
(by the triangle inequality)
$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x + x_0|}$$
(simplifying)
$$\Rightarrow |x - x_0||x + x_0| < \varepsilon$$
(by $|x + x_0| \ge 0$)
$$\Rightarrow |(x - x_0)(x + x_0)| < \varepsilon$$
(by $|ab| = |a||b|$)
$$\Rightarrow |x^2 - x_0^2| < \varepsilon$$
(simplifying)

Note that throughout, the denominator is slightly more complicated than seems necessary (e.g., there's always a " $1 + \dots$ " on the bottom of a fraction). This is to handle the case where $x_0 = x = 0$.

(c) h(x) = |x|

 $\frac{\text{To show}}{\text{Proof:}} ||x| - |x_0|| < \varepsilon$

Let
$$\varepsilon > 0$$
 and $x_0 \in \mathcal{D}(h)$ (by hypothesis)
Let $\delta = \varepsilon$ (defining δ)
Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$

$$\implies |x - x_0| < \varepsilon$$
 (by def. of δ)
$$\implies ||x| - |x_0|| < \varepsilon$$
 (by the reverse triangle ineq.)

This relies on the "reverse triangle inequality," which is easy to show:

$$\begin{aligned} |y| &= |x+y-x| \leq |x| + |y-x| \\ \implies |y| - |x| \leq |y-x| \end{aligned} \qquad \text{(by the triangle inequalit)} \\ |x| &= |y+x-y| \leq |y| + |x-y| \\ \implies |x| - |y| \leq |x-y| \end{aligned} \qquad \text{(by the triangle inequality)}$$

Noting that |x-y| = |y-x|, and |y| - |x| = -(|x| - |y|) we then have two conditions:

$$(|x| - |y| \le |x - y|) \land (-(|x| - |y|) \le |x - y|)$$
 (restating inequalities)
$$\implies ||x| - |y|| \le |x - y|$$
 (combining)