WHAT IS CLAIMED IS:

. . . .

1	1. A magnetoresistive sensor comprising:		
2	a stack of magnetoresistive layers including an anti-ferromagnetic layer, a pinned		
3	layer, a non-magnetic layer, and a free layer;		
4	an underlayer of said stack of magnetoresistive layers;		
5	a magnetic domain control film; and		
6	a pair of electrode films for supplying current to said stack of magnetoresistive		
7	layers;		
8	wherein a center position of an upper surface and a lower surface of said magnetic		
9	domain control film is positioned within a range of an upper surface and a lower surface of said		
10	free layer; and		
11	further comprising:		
12	an underlayer formed below said magnetic domain control film; and		
13	an amorphous metal film layer formed below said underlayer for controlling		
14	crystallization of said underlayer.		
1	2. A magnetoresistive sensor according to claim 1, wherein		
2	said stack of magnetoresistive layers comprises said underlayer, said anti-		
3	ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer and a protection		
4	layer formed in this order from the lower layer to the upper layer.		
7	layer formed in this order from the lower layer to the apper layer.		
1	3. A magnetoresistive sensor according to claim 1, wherein		
2	said stack of magnetoresistive layers comprises said underlayer, said anti-		
3	ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer, said upper non-		
4	magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a protection		
5	layer formed in this order from the lower layer to the upper layer.		
1	4. A magnetoresistive sensor according to claim 1, wherein		
2	said stack of magnetoresistive layers comprises said underlayer, said free layer,		
3	said upper non-magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a		
<i>3</i>	protection layer formed in this order from the lower layer to the upper layer.		
4	protection rayer formed in this order from the lower rayer to the upper rayer.		

45

1	5. A magnetoresistive sensor according to claim 1, wherein			
2	said amorphous metal film layer is formed on any one of surfaces within a range			
3	from a lower surface of said underlayer to an upper surface of said non-magnetic layer of said			
4	stack of magnetoresistive layers.			
1				
1	6. A magnetoresistive sensor according to claim 1, wherein			
2	said magnetoresistive sensor has a structure in which a lower surface of said free			
3	layer is flush with a lower surface of said magnetic domain control film, and a bias magnetic			
4	field of said magnetic domain control film is mainly applied to said free layer.			
1	7. A magnetoresistive sensor according to claim 6, wherein			
2	said underlayer is formed of Cr or Cr alloy and comprise a body-centered cubic			
3	lattice (BCC) polycrystal thin film, and polycrystal orientation to formed plane is isometric			
4	random crystal orientation having no particular crystal orientation.			
1	8. A magnetoresistive sensor according to claim 1, wherein			
2	said magnetic domain control film is formed of a Co alloy film, said underlayer			
3	disposed below said magnetic control film controls a crystallization state of said magnetic			
4	domain control film, and said amorphous metal film layer controls a crystallization state of said			
5	underlayer.			
1	9. A magnetoresistive sensor according to claim 1, wherein			
2	said magnetic domain control film is formed of a Co alloy film, said underlayer is			
3	formed of a Cr or Cr alloy film, and said amorphous metal film layer is formed of an Ni series			
4	alloy or Co series alloy film.			
1	10. A magnetoresistive head constituted by using a magnetoresistive sensor			
2	according to claim 1.			
1	11. A magnetoresistive sensor comprising:			
2	a stack of magnetoresistive layers including an anti-ferromagnetic layer, a pinned			
3	layer, a non-magnetic layer, and a free layer;			
4	an underlayer of said stack of magnetoresistive layers:			

a magnetic domain control film, and			
a pair of electrode films for supplying current to said stack of magnetoresistive			
layers;			
wherein a center position of an upper surface and a lower surface of said free			
layer is positioned within range of an upper surface and a lower surface at a position near an end			
of said magnetic domain control film; and			
further comprising:			
an underlayer formed below said magnetic domain control film and			
an amorphous metal film layer formed below said underlayer for controlling			
crystallization state of said underlayer.			
12. A magnetoresistive sensor according to claim 11, wherein			
said stack of magnetoresistive layers comprises said underlayer, said anti-			
ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer and a protection			
layer formed in this order from the lower layer to the upper layer.			
13. A magnetoresistive sensor according to claim 11, wherein			
said stack of magnetoresistive layers comprises said underlayer, said anti-			
ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer, said upper non-			
magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a protection			
layer formed in this order from the lower layer to the upper layer.			
layer formed in this order from the lower layer to the apper layer.			
14. A magnetoresistive sensor according to claim 11, wherein			
said stack of magnetoresistive layers comprises said underlayer, said free layer,			
said upper non-magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a			
protection layer formed in this order from the lower layer to the upper layer.			
15. A magnetoresistive sensor according to claim 11, wherein			
said amorphous metal film layer is formed on any one of surfaces within a range			
from a lower surface of said underlayer to an upper surface of said non-magnetic layer of said			

ı	10. A magnetoresistive sensor according to craim 11, wherein		
2	said magnetoresistive sensor has a structure in which a lower surface of said free		
3	layer is flush with a lower surface of said magnetic domain control film, and a bias magnetic		
4	field of said magnetic domain control film is mainly applied to said free layer.		
1	17. A magnetoresistive sensor according to claim 16, wherein		
2	said underlayer is formed of Cr or Cr alloy and comprise a body-centered cubic		
3	lattice (BCC) polycrystal thin film, and polycrystal orientation to formed plane is isometric		
4	random crystal orientation having no particular crystal orientation.		
1	18. A magnetoresistive sensor according to claim 11, wherein		
2	said magnetic domain control film is formed of a Co alloy film, said underlayer		
3	disposed below said magnetic control film controls a crystallization state of said magnetic		
4	domain control film, and said amorphous metal film layer controls a crystallization state of said		
5	underlayer.		
1	19. A magnetoresistive sensor according to claim 11, wherein		
2	said magnetic domain control film is formed of a Co alloy film, said underlayer is		
3	formed of a Cr or Cr alloy film, and said amorphous metal film layer is formed of an Ni series		
4	alloy or Co series alloy film.		
1	20. A magnetoresistive head constituted by using a magnetoresistive sensor		
2	according to claim 11.		
1	21. A method of manufacturing a magnetoresistive sensor comprising:		
2	(1) forming a multi-layered film containing an anti-ferromagnetic layer, a pinned		
3	layer, a non-magnetic layer and a free layer continuously and collectively in a vacuum on a		
4	substrate;		
5	(2) applying a lift-off resist to form a track width on said continuous film;		
6	(3) removing a region not applied with said lift-off resist to said non-magnetic		
7	layer, to said pinned layer, to said anti-ferromagnetic layer, or to an intermediate layer of said		
8	anti-ferromagnetic layer by utilizing ion beams or the like with a good reproducibility;		

9		(4) forming an amorphous layer, an underlayer, a magnetic domain control layer	
10	and an electrode film layer at a region in which a portion of said multi-layered film is removed		
11	and		
12		(5) removing said resist for lift-off.	
1		22. A method of manufacturing a magnetoresistive sensor according to claim	
2	21, wherein		
3		forming said amorphous metal film layer, a surface oxidation layer of said	
4	amorphous metal film layer, said underlayer, said magnetic domain control film and said		
5	electrode film are conducted continuously in one identical vacuum vessel.		