令和 6 年度 修士学位論文

論文用テンプレート

- ○○所属
- ○○課程○○専攻
 - ○○分野

指導教員 〇〇 〇〇教授

令和〇年入学

学籍番号 82313206 氏名 八木颯仁

目次

第1章	緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
第2章	Introduction · · · · · · · · · · · · · · · · · · ·	2
2.1	セクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
第3章	本論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.1	セクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	۷
3.1.1	サブセクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	۷
参考文献		5

第1章 緒言

ここに諸元を書く [1]

第2章 Introduction

2.1 セクション

Theorem 2.1.1. (Shioda-Tate formula)

$$\rho(S) = 2 + \sum_{v \in R} (m_v - 1) + \text{rank}(E(K))$$
(2.1)

である.

$$E_{1,s}: y^2 = x(x - 4 * s^2)(x + (s^2 - 1)^2)$$
(2.2)

$$\Delta_{E_{1,s}} = 256s^4(s+1)^4(s-1)^4(s^2+1)^4 \tag{2.3}$$

Table 2.1 Sample Table

s	type	m_v
s = 0	I_4	4
$s = \pm 1$	I_4	4
$s = \pm i$	I_4	4
$s = \infty$	I_4	4

$$e(\mathcal{E}_{1,s}) = 24 \tag{2.4}$$

したがって $\mathcal{E}_{1,s}$ は K3 曲面であり. $\rho(\mathcal{E}_{1,s}) \leq 24$ である. 2.1.1 より

$$rank(E_{1,s}) = 0 (2.5)$$

$$E_{4,t}: y^2 = x(x-4*s^2)(x+(s^2-1)^2), s = \frac{2t}{t^2-3}$$
 (2.6)

は

$$\left(s^2 - 1, \sqrt{-1}s(s^2 - 1)\frac{t^2 + 3}{t^2 - 3}\right) \tag{2.7}$$

を通る.

第3章 本論

3.1 セクション

ここに本論を書く[2][3][4]. Fig. 3.1 と Eq. 3.1 はに示すように, hoge である.

3.1.1 サブセクション

Dummy Image

Fig. 3.1 caption

3.1.1.1 サブサブセクション

色は匂へど散りぬるを 我が世誰ぞ常ならむ 有為の奥山今日越えて 浅き夢見じ酔ひもせず A quick brown fox jumps over the lazy dog.

$$\left(\int_0^\infty \frac{\sin x}{\sqrt{x}} dx\right)^2 = \sum_{k=0}^\infty \frac{(2k)!}{2^{2k} (k!)^2} \frac{1}{2k+1} = \prod_{k=1}^\infty \frac{4k^2}{4k^2 - 1} = \frac{\pi}{2}$$
 (3.1)

参考文献

- [1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, (2013).
- [2] L. Yao, Y.-W. A. Wu, L. Yao, and Z. Z. Liao. An integrated IMU and UWB sensor based indoor positioning system. 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE. 2017, pp. 1–8.
- [3] D. Ugarte. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359.6397, pp. 707–709, (1992).
- [4] 野村篤史, 須ヶ崎聖人, 坪内孝太, 西尾信彦, 下坂正倫, et al. UWB の測定距離と直接波の減衰度を利用したデバイスフリー複数人屋内測位. 研究報告ユビキタスコンピューティングシステム (UBI) 2022.1, pp. 1–8, (2022).