

- Subject Physical Chemistry
- Chapter Ionic Equilibrium

DPP No.- 01

The concept that acid is proton donor and base is proton acceptor was given by

Lowry-Bronsted
$$HA + H_{QO} \Rightarrow H^{\dagger} + A^{-}$$
Lewis

- Lewis
- Faraday

Conjugate base of HCO₃⁻ is

1 H_2CO_3

 $C \cdot A \cdot \frac{-H'}{+H^+} C \cdot B$

(2) CO_2

 HCO_3 $-H^{\dagger}$ CO_3^2

(3) H₂O

The conjugate acid of NH₂⁻ is

- 2 NH₄⁺
- \bigcirc N_2H_4
- (4) NH₂OH

Which one of the following can act as Bronsted acid as well as Bronsted base?

1)
$$\times \text{CH}_{3}\text{COO}^{-} + \text{H}^{+} \Rightarrow \text{CH}_{3}\text{COOH}$$
2) $\times \text{CO}_{3}^{2-} + \text{H}^{+} \Rightarrow \text{HCO}_{3}^{-}$
HPO₄²⁻ + H⁺ $\Rightarrow \text{H}_{2}\text{PO}_{4}^{-}$
1) $\times \text{CO}_{3}^{2-} + \text{H}^{+} \Rightarrow \text{H}_{2}\text{PO}_{4}^{-}$

Which of the following can act both as Bronsted acid and Bronsted Base?

$$(1)^{\times}Cl^{-}+H^{+} \rightarrow HCL$$

In the following reaction

$$HC_2O_4^- + PO_4^{-3} = HPO_4^{-2} + C_2O_4^{-2}$$

Which are the two Bronsted bases?

- $\left(1\right)$ HC₂O₄⁻ and PO₄⁻³

$$PO_4^{-3}$$
 and $C_2O_4^{-2}$

 $4 \quad HC_2O_4^- \text{ and } HPO_4^{-2}$

Observe the following equilibrium and choose the correct statement.

$$HClO_4 + H_2O \leftrightharpoons H_3O^+ + ClO_4^-$$

- 1 HClO₄ is conjugate acid of H₂O
- $(2)^{\times}$ H₃O⁺ is conjugate base of H₂O
- 3 H_2O is conjugate acid of H_3O^+

$$ClO_4^-$$
 is conjugate base of $HClO_4$

$$\frac{H_{20}}{H_{20}} \stackrel{+}{\longrightarrow} \frac{H_{30}}{C \cdot A}$$

Dissociation constant for a weak acid HA may be given as

$$1 K_a = \frac{\alpha \cdot c}{(1-\alpha)c}$$

$$(2) \quad K_a = \left(\frac{\alpha^2}{(1-\alpha)}, c\right)^2$$

$$K_a = \frac{\alpha^2 \cdot c}{(1 - \alpha)}$$

$$4 K_a = \frac{\alpha^2 \cdot c}{1 - \alpha^2}$$

$$K_a = \frac{C\alpha}{1-\alpha}$$

$$Ka = \frac{C\alpha^2}{1-\alpha}$$

$$if \propto <<<1 | Ka = C\alpha^2$$

$$1-\alpha \approx 1$$

A monoprotic acid in a 0.1 M solution ionizes to 0.001 %. Its ionization constant is

- it can loose only IMTion 1.0×10^{-3}
- 1.0×10^{-6} Jage ionisation = 0.00 | 1/1 = α × 100
- 1.0×10^{-8}

$$2 = 0.001 = 0.00001 = 10$$

$$2 = 0.0001 = 10$$

$$1.0 \times 10^{-11}$$
 1.0×10^{-11}
 $1.0 \times 10^{$

$$K_{a} = C_{a}$$
 $= C_{a}$
 $= C_{a}$

