1 Preliminaries

Let \mathcal{X} and \mathcal{Y} be two sets such that \mathcal{X} is finite. Given a distribution D over \mathcal{Y} , we use $D^{\mathcal{X}}$ do denote the distribution over $\mathcal{X} \mapsto \mathcal{Y}$, where the values associated to each $x \in \mathcal{X}$ are sampled independently following the distribution D. We use $x \leftarrow D$ for sampling a value x according to distribution D. We denote by \mathbb{B}_{λ} the Bernoulli distribution over a single bit $\{0,1\}$; sampling a bit from \mathbb{B}_{λ} returns 1 with fixed probability λ . Observe that sampling a function f from $\mathbb{B}_{\lambda}^{\mathcal{X}}$ fixes a set $X_f := \{x \in X : O(x) = 1\} \subseteq \mathcal{X}$. We will overload notation and denote this by $X \leftarrow \mathbb{B}_{\lambda}^{\mathcal{X}}$. When A is a quantum algorithm with access to an oracle H, we write $r \leftarrow A^H$ to denote the measurement of classical output r after a quantum interaction with H, possibly involving many queries.

2 Finding collisions in a random function

Theorem 2.1. [4, Theorem 4.9] Any algorithm making q quantum queries to a random function $f:[M] \to [N]$ outputs a collision for f with probability at most $27(q+2)^3/N$.

3 Adversary's output distribution

Theorem 3.1. [4, Theorem 3.1] Let A be a quantum algorithm making q quantum queries to an oracle $H: \mathcal{X} \mapsto \mathcal{Y}$ and z a constant bit string. There exists a function $C: \mathcal{X}^{2q} \times \mathcal{Y}^{2q} \times \{0,1\}^* \mapsto \mathbb{R}$ such that, for all distributions D:

$$\Pr[r = z : H \hookleftarrow D^{\mathcal{X}}; r \hookleftarrow A^{H}] = \sum_{\substack{\vec{x} \in \mathcal{X}^{2q} \\ \vec{y} \in \mathcal{Y}^{2q}}} C(\vec{x}, \vec{y}, z) \cdot \Pr[\forall i, H(x_i) = y_i : H \hookleftarrow D]$$

4 Semi-Constant Distributions

Definition 4.1 (Semi-Constant Distribution). Fix a function $H : \mathcal{X} \mapsto \mathcal{Y}$, a set $X \subseteq \mathcal{X}$, and a constant $y \in \mathcal{Y}$. We denote by $SC_{X,y,H}(x)$ the function returning y if $x \in X$ and H(x) otherwise.

For any λ and distribution D, the semi-constant distribution over $\mathcal{X} \leftarrow \mathcal{Y}$ samples $X \leftarrow \mathbb{B}_{\lambda}^{\mathcal{X}}$, $y \leftarrow D$, and $H \leftarrow D^{\mathcal{X}}$ and returns SC(X, y, H). We abbreviate this to SC_X , to highlight the conditioning on a pre-sampled set X.

Fix λ and distribution D over \mathcal{Y} . We will consider two games G_i , for $i \in \{0, 1\}$, where we restrict our attention to quantum algorithms A placing at most q queries to their oracle and that output a bit c, together with some additional information $x \in \mathcal{X}$, $l \in \mathcal{X}^*$. The games are defined as

$$G_i := X \hookleftarrow \mathbb{B}^{\mathcal{X}}_{\lambda}; H \hookleftarrow F_i(X); (c, x, l) \hookleftarrow A^H$$

where $F_0(X) := D^{\mathcal{X}}$, which ignores X, and $F_1(X) := SC_X$. We are interested in *good* executions, which we capture via the following predicate parameterized by an integer k

$$good_k(X, x, l) := |l| \leq k \land x \in X \land l \cap X = \emptyset$$

and we define $P_i := \Pr[c \land \mathsf{good}_k(X, x, l) : G_i].$

The following theorem, which extends [4, Corollary 4.8], is proved in [2].

Theorem 4.1. Let A be a quantum algorithm making q quantum queries to an oracle $H: \mathcal{X} \mapsto \mathcal{Y}$ returning (c, x, l) where c is a boolean, $x \in \mathcal{X}$ and l is a list of at most k elements in \mathcal{X} . We have:

$$|P_1 - P_0| \le \frac{(2q+k+1)^4}{6}\lambda^2$$

5 Small-Range Distributions

Given a distribution D on \mathcal{Y} , define the small range distribution $\mathsf{SR}_r^D(\mathcal{X})$ as the following distribution on functions $H: \mathcal{X} \to \mathcal{Y}$:

- For each $i \in [r]$, chose a random value $y_i \in \mathcal{Y}$ according to the distribution D.
- For each $x \in \mathcal{X}$, pick a random $i \in [r]$ and set $H(x) = y_i$.

Theorem 5.1. [4, Corollary 4.15] The output distributions of a quantum algorithm making q quantum queries to an oracle either drawn from $SR_r^D(\mathcal{X})$ or $D^{\mathcal{X}}$ are $27q^3/r$ -close.

Theorem 5.2. [4, Theorem 4.16] Consider two distributions D_1 and D_2 on oracles from \mathcal{X} into $[r] \times \mathcal{Y}$:

- D_1 : generate a random oracle $f: \mathcal{X} \to [r]$ and a random oracle $h: \mathcal{X} \to \mathcal{Y}$, and output the oracle that maps x to (f(x), h(x)).
- D_2 : generate a random oracle $f: \mathcal{X} \to [r]$ and a random oracle $g: [r] \to \mathcal{Y}$, and output the oracle that maps x to (f(x), g(f(x))).

Then the probability that any q-quantum query algorithm distinguishes D_1 from D_2 is at most $54(q+2)^3/r$.

6 Distinct outputs

Theorem 6.1. (Specialized version of [4, Theorem 3.8]) Fix sets \mathcal{X} and \mathcal{Y} , and distribution D on \mathcal{Y} . Then any quantum algorithm making q quantum queries to H drawn from $D^{\mathcal{X}}$ can only produce q+1 input/output pairs of H with probability at most $(q+1)/2^{H_{\infty}(D)}$.

7 One-Way to Hiding (OW2H)

7.1 Semi-Classical OW2H

Definition 7.1. [3, Definition 1][1] Let $H: \mathcal{X} \to \mathcal{Y}$ be any function, and $S \subseteq \mathcal{X}$ be a set. The oracle $H \setminus S$ ("H punctured on S") takes as input a value X. It first computes whether $x \in S$ into an auxilliary qubit p, and measures p. Then it runs H(X) and returns the result. Let Find be the event that any of the measurements of p returns 1.

Lemma 7.1. [1, Lemma 1][3, Lemma 2] Let (S, G, H, z) have arbitrary joint distribution satisfying the following conditions: $S \subseteq \mathcal{X}$ is a set, $G, H : \mathcal{X} \to \mathcal{Y}$ are functions such that $\forall X \notin S, G(X) = H(X)$, and z is a bit string. Let \mathcal{A} be a quantum oracle algorithm and Ev an arbitrary classical event. Then

$$\Pr[\mathsf{Ev} \land \neg \mathsf{Find} : \mathcal{A}^{H \setminus S}(z)] = \Pr[\mathsf{Ev} \land \neg \mathsf{Find} : \mathcal{A}^{G \setminus S}(z)] \tag{1}$$

Theorem 7.1. [1, Theorem 1][3, Lemma 3] Let (S,G,H,z) have arbitrary joint distribution satisfying the following conditions: $S \subseteq \mathcal{X}$ is a set, $G,H:\mathcal{X} \to \mathcal{Y}$ are functions such that $\forall x \notin S, G(x) = H(x)$, and z is a bit string. Let \mathcal{A} be a quantum oracle algorithm of query depth at most d and Ev an arbitrary classical event. Let

$$\begin{array}{lll} P_{\mathrm{left}} & := & \Pr \big[\, \mathsf{Ev} : \, \mathcal{A}^H(z) \, \big] \\ P_{\mathrm{right}} & := & \Pr \big[\, \mathsf{Ev} : \, \mathcal{A}^G(z) \, \big] \\ P_{\mathrm{find}} & := & \Pr \big[\, \mathsf{Find} : \, \mathcal{A}^{H \setminus S}(z) \, \big] = \Pr \big[\, \mathsf{Find} : \, \mathcal{A}^{G \setminus S}(z) \, \big] \end{array} \tag{2}$$

Then,

$$|\,P_{\rm left} - P_{\rm right}\,| \leqslant 2\sqrt{d\cdot P_{\rm find}} \qquad \left|\,\sqrt{P_{\rm left}} - \sqrt{P_{\rm right}}\,\right| \leqslant 2\sqrt{d\cdot P_{\rm find}}$$

The theorem also holds with bound $\sqrt{(d+1)\cdot P_{\mathrm{find}}}$ for the following alternative definitions of P_{right} :

$$P_{\text{right}} := \Pr[\mathsf{Ev} : \mathcal{A}^{H \setminus S}(z)]$$
 (3)

$$P_{\text{right}} := \Pr[\mathsf{Ev} \land \neg \mathsf{Find} : \mathcal{A}^{H \setminus S}(z)] = \Pr[\mathsf{Ev} \land \neg \mathsf{Find} : \mathcal{A}^{G \setminus S}(z)]$$
 (4)

$$P_{\text{right}} := \Pr[\mathsf{Ev} \land \mathsf{Find} : \mathcal{A}^{H \setminus S}(z)] = \Pr[\mathsf{Ev} \land \mathsf{Find} : \mathcal{A}^{G \setminus S}(z)]$$
 (5)

Theorem 7.2. [1, Theorem 2][3, Lemma 4] Let \mathcal{A} be any quantum oracle algorithm of query depth at most d. Let $\mathcal{H}: \mathcal{X} \to \mathcal{Y}$ be a function, $S \subset \mathcal{X}$ be a set and z a bit string with an arbitrary joint distribution. Then, there exists an algorithm \mathcal{B} that runs in essentially the same time, has the same query depth as \mathcal{A} and outputs a set $T \subseteq \mathcal{X}$ such that

$$\Pr[\mathsf{Find}: \mathcal{A}^{H \setminus S}(z)] \leq 4d \cdot \Pr[S \cap T \neq \emptyset: T \hookleftarrow B^{H}(z)] \tag{6}$$

Let $H: \mathcal{X} \to \mathcal{Y}$ be a function and C_H denote the classical oracle that provides access to H. Let also $L \subseteq \mathcal{X}$ denote the list of queries placed to C_H .

Theorem 7.3. Let (S, G, H, z) have arbitrary joint distribution satisfying the following conditions: $S \subseteq \mathcal{X}$ is a set, $G, H : \mathcal{X} \to \mathcal{Y}$ are functions such that $\forall x \notin S, G(x) = H(x)$, and z is a bit string. Let \mathcal{A} be a quantum oracle algorithm with classical output w, of query depth at most d (we count the aggregate number of queries to both oracles) and $\mathsf{Ev}(w)$ an arbitrary classical event computed over the output of \mathcal{A} . Let

$$P_{\text{left}} := \Pr[\mathsf{Ev}(w) : w \longleftrightarrow \mathcal{A}^{H,C_H}(z)]$$

$$P_{\text{right}} := \Pr[\mathsf{Ev}(w) \land S \cap L = \varnothing : w \longleftrightarrow \mathcal{A}^{G,C_G}(z)]$$

$$(7)$$

Then, there exists an algorithm \mathcal{B} that runs in essentially the same time, has the same query depth as \mathcal{A} and outputs a set $T \subseteq \mathcal{X}$ such that

$$\left| \sqrt{P_{\text{left}}} - \sqrt{P_{\text{right}}} \right| \leqslant 4(d+1) \cdot \sqrt{\Pr[S \cap T \neq \emptyset : T \hookleftarrow B^{G,C_G}(z)]}$$

Proof. For any oracle H, let \mathcal{A}'^H be the algorithm that runs \mathcal{A} internally and simulates C_H trivially by querying H and performing the required measurements. Let also \mathcal{A}' output the list L of queries placed by \mathcal{A} to C_H along with the output of \mathcal{A} . Then, we have that \mathcal{A}' has query depth at most d and

$$P_{\mathrm{left}} = \Pr[\, \mathsf{Ev}(w) \, : \, (w, L) \longleftrightarrow \mathcal{A}'^H(z) \,]$$

$$\Pr[\mathsf{Ev}(w) : w \hookleftarrow \mathcal{A}^{G,C_G}(z)] = \Pr[\mathsf{Ev}(w) : (w,L) \hookleftarrow \mathcal{A}'^G(z)]$$

Now, setting $\epsilon := \sqrt{(d+1) \cdot \Pr[\mathsf{Find} : \mathcal{A}'^{G \setminus S}(z)]}$ we can apply Theorem 7.1 and derive that

$$\left| \sqrt{\Pr[\, \mathsf{Ev}(w) \, : \, (w,L) \hookleftarrow \mathcal{A}'^H(z) \,]} - \sqrt{\Pr[\, \mathsf{Ev}(w) \, \land \, \neg \mathsf{Find} \, : \, (w,L) \hookleftarrow \mathcal{A}'^{G \backslash S}(z) \,]} \, \right| \leqslant \epsilon \qquad (8)$$

Now define $\mathsf{Ev}'(w,L) := \mathsf{Ev}(w) \wedge S \cap L = \emptyset$. We have

$$\Pr\big[\operatorname{Ev}(w) \, \wedge \, \neg \mathsf{Find} \, : \, (w,L) \hookleftarrow \mathcal{A}'^{G \, \backslash \, S}(z) \,\big] = \Pr\big[\operatorname{Ev}'(w,L) \, \wedge \, \neg \mathsf{Find} \, : \, (w,L) \hookleftarrow \mathcal{A}'^{G \, \backslash \, S}(z) \,\big]$$

since, by construction, $\neg \mathsf{Find} \Rightarrow S \cap L = \emptyset$. We now apply Theorem 7.1 again, but this time using H = G and $\mathsf{Ev} = \mathsf{Ev'}$, to obtain

$$\left| \sqrt{\Pr[\operatorname{Ev}'(w,L) : (w,L) \hookleftarrow \mathcal{A}'^G(z)]} - \sqrt{\Pr[\operatorname{Ev}'(w,L) \land \neg \operatorname{Find} : (w,L) \hookleftarrow \mathcal{A}'^{G \setminus S}(z)]} \right| \leqslant \epsilon \quad (9)$$

Adding Equations 8 and 9 and applying the triangular inequality, we obtain:

$$\left| \sqrt{\Pr[\, \mathsf{Ev}(w) \, : \, (w,L) \hookleftarrow \mathcal{A}'^H(z) \,]} - \sqrt{\Pr[\, \mathsf{Ev}'(w,L) \, : \, (w,L) \hookleftarrow \mathcal{A}'^G(z) \,]} \, \right| \leqslant 2\epsilon$$

Applying the definitions of \mathcal{A}' and Ev' we get

$$\left| \sqrt{\Pr[\, \mathsf{Ev}(w) \, : \, w \hookleftarrow \mathcal{A}^{H,C_H}(z) \,]} - \sqrt{\Pr[\, \mathsf{Ev}(w) \, \land \, S \cap L = \varnothing \, : \, w \hookleftarrow \mathcal{A}^{G,C_G}(z) \,]} \, \right| \leqslant 2\epsilon$$

Finally, plugging in Theorem 7.2 we know there exists an algorithm \mathcal{B} that runs in essentially the same time, has the same query depth as \mathcal{A} and outputs a set $T \subseteq \mathcal{X}$ such that

$$2\epsilon = 2\sqrt{(d+1)\cdot\Pr[\operatorname{Find}\,:\,\mathcal{A}'^{G\backslash S}(z)\,]} \leqslant 2\sqrt{(d+1)\cdot 4d\cdot\Pr[\,S\cap T\neq\varnothing\,:\,T\hookleftarrow\mathcal{B}^G(z)]}$$

$$2\epsilon \leqslant 4(d+1)\cdot\sqrt{\Pr[\,S\cap T\neq\varnothing\,:\,T\hookleftarrow\mathcal{B}^G(z)]}$$

Finally, observe that any \mathcal{B} that satisfies the equation above implies an algorithm \mathcal{B} that is also provided access to C_G and simply does not use it, which completes the proof.

Theorem 7.4. [3, Lemma 5] Let (S, G, H, z) have arbitrary joint distribution satisfying the following conditions: $S = \{X^*\} \subseteq \mathcal{X}$ is a singleton set, $G, H : \mathcal{X} \to \mathcal{Y}$ are functions such that $\forall x \notin S, G(x) = H(x)$, and z is a bit string. Let \mathcal{A} be a quantum oracle algorithm of query depth at most d and Ev an arbitrary classical event. Let

$$P_{\text{left}} := \Pr[\mathsf{Ev} : \mathcal{A}^{H}(z)]$$

$$P_{\text{right}} := \Pr[\mathsf{Ev} : \mathcal{A}^{G}(z)]$$

$$(10)$$

Then, there exists an algorithm $\mathcal B$ that runs in essentially the same time, has the same query depth as $\mathcal A$ in queries both to H and G and outputs a value $X \in \mathcal X$ such that

$$|P_{\text{left}} - P_{\text{right}}| \leq 2\sqrt{\Pr[X = X^{\star} : X \leftarrow \mathcal{B}^{H,G}(z)]}$$
$$\left|\sqrt{P_{\text{left}}} - \sqrt{P_{\text{right}}}\right| \leq 2\sqrt{\Pr[X = X^{\star} : X \leftarrow \mathcal{B}^{H,G}(z)]}$$

References

- [1] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semiclassical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, *Advances in Cryp*tology – CRYPTO 2019, pages 269–295, Cham, 2019. Springer International Publishing.
- [2] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han Hung, Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. EasyPQC: Verifying post-quantum cryptography. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS '21, page 2564–2586, New York, NY, USA, 2021. Association for Computing Machinery.
- [3] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter proofs of cca security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, *Theory of Cryptography*, pages 61–90, Cham, 2019. Springer International Publishing.
- [4] Mark Zhandry. Cryptography in the Age of Quantum Computers (PhD Thesis). PhD thesis, Stanford University, 2015.