Mesh Data Structures

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Attributes
 - e.g. normal, color, texture coordinate
 - Per vertex, per face, per edge
 - Connectivity
 - Adjacency relationships

Data Structures

- What should it support?
 - Rendering
 - Geometry queries
 - What are the vertices of face #2?
 - Is vertex A adjacent to vertex H?
 - Which faces are adjacent to face #1?
 - Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Data Structures

- How good is a data structure?
 - Time to construct (preprocessing)
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy

Mesh Data Structures

- Shared Vertex
- Face Set
- Adjacency Matrix
- Half Edge
- Face Based Connectivity
- Edge Based Connectivity
- Corner Table

TRIANGLES						
Vertex Index	Vertex Index	Vertex Index				
2	1	3	\			
	•		7			
	•					

	VERTICES
	Vertex Coord.
	[40 5 20]
	[10 20 30]
ı	[10 4 3]
	•
	•

- Connectivity
- No neighborhood
- Oriented triangles

- What are the vertices of face f₁?
 - O(1) first triplet from face list

- What are the one-ring neighbors of v₃?
 - Requires a full pass over all faces O(nf)

- Are vertices v_1 and v_5 adjacent?
 - Requires a full pass over all faces $O(n_f)$

Face Set

TRIANGLES								
Vertex coord.	Vertex coord.	Vertex coord.						
[10 20 30]	[40 5 20]	[10 4 3]						
	•							
	•							

- Simple
- STL File
- No connectivity
- Redundancy

- Adjacency Matrix "A"
- If there is an edge between $v_i \& v_j$ then $A_{ij} = 1$

	v ₁	V ₂	V ₃	V ₄	V ₅	v ₆
V ₁		1	1			
V ₂	1		1	1		
V ₃	1	1		1		1
V ₄		1	1		1	1
V ₅				1		1
V ₆			1	1	1	

- Adjacency Matrix "A"
- If there is an edge between $v_i \& v_j$ then $A_{ij} = 1$

- Symmetric for undirected simple graphs
- (Aⁿ)_{ij} = # paths of length n from v_i to v_j
- Pros:
 - Can represent non-manifold meshes
- Cons:
 - No connection between a vertex and its adjacent faces

- How can it be constructed using shared vertex?
- What about faces?
- Vertex-face?

- Vertex stores
 - Position
 - 1 outgoing halfedge

- Halfedge stores
 - 1 origin vertex index
 - 1 incident face index (counter-clockwise orientation)
 - next, prev, twin halfedge indices

- Face stores
 - 1 adjacent halfedge index

Neighborhood Traversal

- How can it be constructed using shared vertex?
 - How can we construct "edges"?

Corner is a vertex with one of its incident triangles

Corner is a vertex with one of its incident

triangles

Corner – c

Corner is a vertex with one of its incident

triangles

Corner – c

Triangle – c.t

Corner is a vertex with one of its incident

triangles

Corner – c

Triangle – c.t

Vertex - c.v

Corner is a vertex with one of its incident

triangles

Corner – c Triangle – c.t Vertex – c.v Next corner in c.t (ccw) – c.n


```
triangles
Corner - c
Triangle - c.t
Vertex - c.v
Next corner in c.t (ccw) - c.n
Previous corner - c.p (== c.n.n)
```



```
triangles

Corner – c

Triangle – c.t

Vertex – c.v

Next corner in c.t (ccw) – c.n

Previous corner – c.p (== c.n.n)

Corner opposite c – c.o

Edge E opposite c not incident on c.v

Triangle T adjacent to c.t across E

c.o.v vertex of T that is not incident on E

Right corner – c.r – corner opposite c.n (== c.n.o)
```

```
triangles
                                                                        V_6
Corner – c
Triangle – c.t
Vertex - c.v
Next corner in c.t (ccw) - c.n
                                                      f_2
Previous corner – c.p (== c.n.n)
Corner opposite c – c.o
     Edge E opposite c not incident on c.v
     Triangle T adjacent to c.t across E
     c.o.v vertex of T that is not incident on E
Right corner – c.r – corner opposite c.n (== c.n.o)
Left corner – c.l (== c.p.o == c.n.n.o)
```

```
triangles

Corner – c

Triangle – c.t

Vertex – c.v

Next corner in c.t (ccw) – c.n

Previous corner – c.p (== c.n.n)

Corner opposite c – c.o

Edge E opposite c not incident on c.v

Triangle T adjacent to c.t across E

c.o.v vertex of T that is not incident on E

Right corner – c.r – corner opposite c.n (== c.n.o)

Left corner – c.l (== c.p.o == c.n.n.o)
```


Corner is a vertex with one of its indicent triangles

corner	C.V	c.t	c.n	c.p	c.o	c.r	c.l
c_{1}	V_1	f_1	c ₂	c ₃	c ₆		

Corner is a vertex with one of its incident triangles

corner	C.V	c.t	c.n	c.p	c.o	c.r	c.l
$c_{\scriptscriptstyle 1}$	V_1	f ₁	c ₂	c ₃	c ₆		
c ₂							
c ₃							
C ₄							
C ₅							
c ₆							

Corner is a vertex with one of its incident triangles

corner	C.V	c.t	c.n	c.p	c.o	c.r	c.l
c_{1}	v_1	f_1	c ₂	c ₃	c ₆		
c ₂	v ₂	f_1	c ₃	c ₁			c ₆
c ₃	V ₃	f_1	c ₁	c ₂		c ₆	
C ₄	V ₃	f ₂	c ₅	c ₆		C ₇	c ₁
c ₅	v ₂	f ₂	c ₆	C ₄	C ₇	c ₁	
c ₆	V ₄	f ₂	C ₄	c ₅	c ₁		C ₇

- Store:
 - Corner table
 - For each vertex a list of all its corners
- Corner number j*3-2, j*3-1 and j*3 match face number j

- What are the vertices of face #3?
 - Check c.v of corners 9, 8, 7

- Are vertices 2 and 6 adjacent (assuming we store the corners of each vertex)?
 - Scan all corners of vertex 2, check if c.p.v or c.n.v are 6

- Which faces are adjacent to vertex 3?
 - Check c.t of all corners of vertex 3

- One ring neighbors of vertex v₄?
 - Get the corners $c_6 c_8 c_{10}$ of this vertex
 - Go to c_i .n.v and c_i .p.v for i = 6, 8, 10.
 - Remove duplicates

• Pros:

- All queries in O(1) time
- Most operations are O(1)
- Convenient for rendering

• Cons:

- Only triangular, manifold meshes
- Redundancy

In Practice?

- Also depends on the framework
 - In MATLAB, most existing code uses the "shared vertex" structure
 - Sparse adjacency matrices can be helpful in addition, in case there are many adjacency queries (simple to construct and store)