HNCO Influence of the learning rate on the performance of PBIL

December 28, 2017

Abstract

PBIL is applied many times to the same collection of fitness functions (bit vector size n = 100), each time with a different learning rate taken from a finite set of values. All learning rates are ranked according to their median fitness over 20 independent runs, first for each fitness function, then across the entire collection of fitness functions. The mean and standard deviation of fitness are also plotted as a function of the learning rate.

Contents

1	Rankings	1
2	Function one-max	2
3	Function leading-ones	3
4	Function jmp-5	4
5	Function nk	5
6	Function max-sat	6
7	Function labs	7
8	Function ep	8
9	Function cancel	9
10	Function walsh2	10
A	Plan	11
В	Default parameters	12

1 Rankings

$\overline{ m algorithm}$	learning-rate	ra	nk d	listri	ibut	ion		
		1	2	3	4	5	6	7
pbil	0.01	5	1	1	0	0	1	1
pbil	1	5	1	1	0	0	1	1
pbil	0.02	4	1	0	2	1	1	0
pbil	0.05	3	0	1	1	2	0	2
pbil	0.5	2	3	1	0	1	2	0
pbil	0.1	2	0	1	3	0	1	2
pbil	0.2	2	0	1	1	3	2	0

2 Function one-max

algorithm	learning-rate	funct	ion va	lue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	100	100	100	100	100	
pbil	0.02	100	100	100	100	100	1
pbil	0.05	100	100	100	100	100	1
pbil	0.1	100	100	100	100	100	1
pbil	0.2	100	100	100	100	100	1
pbil	0.5	100	100	100	100	100	1
pbil	1	100	100	100	100	100	1

one-max: Standard deviation of value as a function of learning-rate

3 Function leading-ones

$\operatorname{algorithm}$	learning-rate	funct	ion va	lue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	100	100	100	100	100	1
pbil	0.02	100	100	100	100	100	1
pbil	0.05	100	100	100	100	100	1
pbil	0.1	100	100	100	100	100	1
pbil	0.2	100	100	100	100	100	1
pbil	0.5	100	100	100	100	100	1
pbil	1	100	100	100	100	100	1

leading-ones: Standard deviation of value as a function of learning-rate

pbil on leading-ones

4 Function jmp-5

algorithm	learning-rate	function value						
		min	Q_1	med .	Q_3	max	rk	
pbil	0.01	100	100	100	100	100	1	
pbil	0.02	100	100	100	100	100	1	
pbil	0.05	100	100	100	100	100	1	
pbil	0.1	95	95	100	100	100	4	
pbil	0.2	95	95	95	95	100	5	
pbil	0.5	95	95	95	95	95	6	
pbil	1	95	95	95	95	95	6	

jmp-5: Mean value as a function of learning-rate

jmp-5: Standard deviation of value as a function of learning-rate

pbil on jmp-5

100

99

98

96

95

10-2

10-1

100

learning-rate

5 Function nk

algorithm	learning-rate	funct	function value						
		min	Q_1	med .	Q_3	max	rk		
pbil	0.01	0.85	0.89	0.91	0.93	0.96	2		
pbil	0.02	0.83	0.87	0.89	0.92	0.96	6		
pbil	0.05	0.77	0.87	0.90	0.92	0.95	3		
pbil	0.1	0.77	0.84	0.87	0.89	0.97	7		
pbil	0.2	0.82	0.88	0.89	0.91	0.99	4		
pbil	0.5	0.79	0.83	0.89	0.91	0.96	5		
pbil	1	0.87	0.91	0.95	0.98	1.02	1		

6 Function max-sat

$\overline{ m algorithm}$	learning-rate	funct	function value						
		min	Q_1	med .	Q_3	max	rk		
pbil	0.01	964	966	967	967	967	6		
pbil	0.02	965	966	967	967	967	1		
pbil	0.05	963	966	967	967	968	7		
pbil	0.1	961	965	967	967	967	4		
pbil	0.2	959	965	967	967	967	5		
pbil	0.5	962	966	967	967	968	2		
pbil	1	964	966	967	967	967	3		

max-sat: Mean value as a function of learning-rate

max-sat: Standard deviation of value as a function of learning-rate

pbil on max-sat

7 Function labs

algorithm	learning-rate	funct	function value						
		min	Q_1	med .	Q_3	max	rk		
pbil	0.01	3.36	3.66	3.79	4.12	4.99	7		
pbil	0.02	3.56	3.79	3.91	4.07	4.29	4		
pbil	0.05	3.49	3.64	3.86	4.05	4.30	5		
pbil	0.1	3.33	3.75	3.85	4.15	4.39	6		
pbil	0.2	3.36	3.88	4.17	4.35	4.71	3		
pbil	0.5	3.88	4.04	4.24	4.37	5.07	2		
pbil	1	4.39	4.67	4.76	4.93	5.57	1		

labs: Mean value as a function of learning-rate

labs: Standard deviation of value as a function of learning-rate

90 pbil on labs

5.5

4.5

4.5

10-2

10-1

1000

learning-rate

8 Function ep

algorithm	${\it learning-rate}$	function valu	ıe				
		min	Q_1	med.	Q_3	max	rk
pbil	0.01	4.5×10^{-28}	2.3×10^{-27}	4.0×10^{-27}	1.2×10^{-26}	2.1×10^{-26}	<u> </u>
pbil	0.02	1.9×10^{-27}	1.1×10^{-26}	2.2×10^{-26}	3.7×10^{-26}	1.6×10^{-25}	4
pbil	0.05	1.8×10^{-27}	1.6×10^{-26}	2.5×10^{-26}	3.6×10^{-26}	1.0×10^{-25}	5
pbil	0.1	7.1×10^{-29}	1.3×10^{-26}	4.0×10^{-26}	7.9×10^{-26}	1.9×10^{-25}	7
pbil	0.2	6.3×10^{-28}	2.4×10^{-26}	3.6×10^{-26}	7.5×10^{-26}	1.6×10^{-25}	6
pbil	0.5	2.4×10^{-27}	8.1×10^{-27}	1.4×10^{-26}	2.0×10^{-26}	7.1×10^{-26}	3
pbil	1	2.4×10^{-29}	2.8×10^{-27}	5.6×10^{-27}	1.6×10^{-26}	4.9×10^{-26}	2

ep: Mean value as a function of learning-rate

ep: Standard deviation of value as a function of learning-rate

9 Function cancel

algorithm	learning-rate	funct	function value							
		min	Q_1	med .	Q_3	max	rk			
pbil	0.01	0.05	0.10	0.22	0.65	1.40	1			
pbil	0.02	0.17	0.36	0.52	1.04	1.60	2			
pbil	0.05	0.31	0.78	1.27	1.88	2.33	4			
pbil	0.1	0.32	0.94	1.23	2.16	3.64	3			
pbil	0.2	0.63	0.82	1.29	1.51	1.69	5			
pbil	0.5	0.07	0.69	1.35	1.73	2.59	6			
pbil	1	0.07	0.74	1.43	1.95	2.15	7			

cancel: Mean value as a function of learning-rate

cancel: Standard deviation of value as a function of learning-rate

10 Function walsh2

algorithm	learning-rate	function	ı value				
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	612.44	670.75	694.95	711.54	731.88	3
pbil	0.02	612.68	671.71	692.25	705.79	729.92	5
pbil	0.05	605.50	659.02	671.91	697.03	720.10	7
pbil	0.1	647.39	668.15	693.37	708.07	723.16	4
pbil	0.2	640.62	656.18	678.91	697.09	722.99	6
pbil	0.5	674.52	705.96	721.42	727.67	729.08	2
pbil	1	669.16	713.04	729.08	732.02	740.55	1

walsh2: Mean value as a function of learning-rate

walsh2: Standard deviation of value as a function of learning-rate

pbil on walsh2

740

720

680

640

640

620

10-2

10-1

100

learning-rate

A Plan

```
"exec": "hnco",
"opt": "-s 100 --map 1 --map-random -i 0 -b 200000 --print-performance",
"num_runs": 20,
"parallel": false,
"results": "results",
"graphics": "graphics",
"report": "report",
"parameter": {
    "id": "learning-rate",
    "values": [ 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1, 1 ],
    "logscale": true,
    "boxwidth": "$1 * 0.3"
},
"functions": [
    {
        "id": "one-max",
        "opt": "-F 0 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "leading-ones",
        "opt": "-F 10 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-5",
        "opt": "-F 30 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "nk",
        "opt": "-F 60 -p instances/nk.100.4",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.100.3.1000 --cache",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "labs",
        "opt": "-F 80",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "ep",
        "opt": "-F 90 -p instances/ep.100",
        "reverse": true,
        "logscale": true,
        "col": ">{{\\nprounddigits{1}}}N{1}{1}"
    },
        "id": "cancel",
        "opt": "-F 100 -s 99",
        "reverse": true,
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
   },
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100 --cache",
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
\# ea_lambda = 100
\# ea_mu = 10
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
\# map = 0
# map_input_size = 100
# map_path = nopath
# mutation = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
# sa_rate = 1.2
\# seed = 0
```

```
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
# version = 0.7
# Generated from hnco.json
```