

Disciplina: Tópicos Especiais: **Python** para Modelagem Baseada em Agentes ¹

Professor: Bernardo Alves Furtado **Período:** 13/5/2020 a 23/7/2020

Dias das Aulas: 13/5, 20/5, 27/5, 3/6, 10/6, 17/6, 24/6, 30/6, 2/7, 21/7, 23/7

Horário: 18:30 as 20:30 Carga Horária: 44 horas

Objetivo de Aprendizagem

Ao final da disciplina, o aluno deverá ser capaz de realizar algoritmos simples em linguagem **Python**, conhecendo seus conceitos e estruturas centrais, tais como listas e dicionários, utilização de funções, *scripts* e módulos, no paradigma de programação orientada a objeto. Conhecerá também noções básicas e implementação de modelo baseado em agentes com desenho simples.

Ementa

Apresentar conceitos centrais e operacionalização da linguagem de programação **Python**. Noções de classes. Algoritmos simples de modelagem baseada em agentes. Desenvolver modelo baseado em agentes.

Metodologia

Realização de aulas (possivelmente por meio de videoconferência) com explicação de conceitos e realização de exercícios concomitantes — professor e alunos. Entendimento prático (hands-on). Realização de listas de exercícios e entrega de trabalho final composto de memorial simples e código, disponibilizado em repositório.

Avaliação da Aprendizagem

Exercícios ('1 e 2').**format**(25pts, 35pts) e entrega algoritmo e código final modelagem 'OOP'.**format**(40pts).

¹ Será necessário instalar o programa gratuito de acesso aberto Python. Para isso, o(a) aluno(a) deverá ter dispositivo compatível para realização de exercícios e acompanhamento das aulas.

ipea Instituto de Proquisa

PLANO DE AULA

O plano consiste em III partes, com aproximadamente 8 aulas para as duas primeiras partes e 3 aulas para a parte final. São 14 temas divididos nas 11 aulas listadas acima.

Parte I: Conforto em Python

0	Instalação. Anaconda. IDE: PyCharm. Console. Terminal. Hello World.py Desafio . Referências. Estruturas básicas: string, int, float. Debug. Floor division and modulus.
1	Funções. Import. Format. <u>main</u> . Print. Return . Namespaces.
2	Help. Dir(). Strings. For loops . Indentation. Iterators, iterables. Noções de Objeto . Documentation
3	Noções de agentes. Turtle . Instâncias. DRY (don't repeat yourself), encapsulation, generalization.
4	Listas. append(). pop(). len(). Listas and loops. Slicing . Index. Sort(), sum(), max(). Dicionários . Key, value pairs. Exercícios. d.get(key, default value)
5	Operadores. Lógica. Condicionantes. If. Else, elif. While True . Break, continue.
6	Exercícios. Desafios. Lista Exercícios 1

Parte II: Python um pouco +	
7	Persistência. Files. TXT, CSV, Pickle, JSON .
8	Git (super) básico. Teste (git). Git no terminal. Git PyCharm.
9	Classes. Conceito. Basics. Exemplos. Card, Deck, Hand!
10	Mais exemplos. Class template

11	Exercício 2. Transactions.	
Parte III: Python Modelagem Baseada em Agentes		
12	Agent-based Modeling (ABM). Conceitos.	
13	Exemplos. ABMs clássicos. Schelling. Sugarscape. PolicySpace	
14	Projeto: Modelagem baseada em agentes	
Bibliografia Básica		

- 1. B. Downey, *Think Python*. 2 edition. United States of America: O'Reilly Media, 2012.
- 2. A. B. Downey, *Think Complexity: Complexity Science and Computational Modeling*, 2 edition. Sebastopol, CA: O'Reilly Media, 2012.

Bibliografia Complementar

- 3. U. Wilensky and W. Rand, *An introduction to Agent-Based Modeling*. Cambridge, Massachusetts: The MIT Press, 2015.
- 4. Masad, David, and Jacqueline Kazil. 2015. "MESA: An Agent-Based Modeling Framework." In *14th PYTHON in Science Conference*, 53–60.
- 5. W. McKinney, *Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython*, 1 edition. Beijing: O'Reilly Media, 2012.
- 6. M. Lutz, *Programming Python: Powerful Object-Oriented Programming*. O'Reilly Media, Inc., 2010.
- 7. M. Lutz, Learning Python: Powerful Object-Oriented Programming. O'Reilly Media, Inc., 2013.
- 8. Furtado, Bernardo Alves. 2018. *PolicySpace: modelagem baseada em agentes*. Brasília: IPEA.

Docente (mini-currículo)

Bernardo Alves Furtado é pesquisador do Ipea e do CNPq, estudando políticas públicas urbanas e regionais. Sua atuação recente envolve contribuições nas áreas de sistemas complexos e construção de modelos baseados em agentes. Foi co-editor da revista Complexity e desenvolveu PolicySpace - um modelo para análise empírica das metrópoles brasileiras. Fez período pós-doc (visiting scholar) na Universidade de Oxford (2018), Ph.D em Geociências pela Utrecht University (2009), realizado em regime de co-tutela com Doutorado em Economia pelo CEDEPLAR/UFMG (2009), Mestre em Geografia especialista em Urbanismo e bacharel em Arquitetura e Urbanismo. É professor permanente no Mestrado em Políticas Públicas e Desenvolvimento do Ipea. Atuou como professor, coordenador e Diretor-Adjunto.