

Bases de l'IA

Traitement d'image (cont.)

Elena CABRIO

elena.cabrio@univ-cotedazur.fr

Plan pour cette séance

- Classification des images
 - K-plus proches voisins (cont.)
 - Classificateurs linéaires

k plus proches voisins (cont.)

- Exemple de validation croisée
 5-folder pour la valeur de K.
- Chaque point : résultat unique.
- La ligne passe par la moyenne, les barres indiquent l'écarttype.
- Il semble que k~=7 fonctionne le mieux pour ces données.

Récap : Comment choisir les hyperparamètres ?

- Méthodologie
 - Entraînement et test
 - Entraînement, validation, test
- Entraînement pour apprendre le modèle
- Valider pour définir les hyperparamètres
- Tester pour comprendre la « généralisabilité »

kNN -- Complexité et stockage

UNIVERSITÉ CÔTE D'AZUR

- N images d'apprentissage, M images de test
- Entraînement : O(1)
- Test : O(MN)
- Hmm...
 - Normalement, c'est l'inverse qu'il faut faire
 - Entraînement lent (ok), test rapide (nécessaire)

kNN

- kNN sur des images jamais vues
- Très mauvaises performances dans la phase de test
- Les mesures de distance au niveau des images entières peuvent être très peu intuitives

 Les trois images ont la même distance L2 par rapport à l'image de gauche.

Problèmes avec KNN : La « malédiction » de la dimensionnalité

- Au fur et à mesure que le nombre de dimensions augmente, la même quantité de données devient plus éparse.
- La quantité de données dont nous avons besoin finit par être exponentielle dans le nombre de dimensions.

UNIVERSITÉ CÔTE D'AZUR

K les plus proches voisins: Résumé

- En classification d'images, nous partons d'un ensemble d'images et d'étiquettes, et nous devons prédire les étiquettes sur l'ensemble de test
- Le classificateur des K-voisins les plus proches prédit les étiquettes sur la base des exemples d'apprentissage les plus proches
- La métrique de distance et K sont des hyperparamètres.
- Choisir les hyperparamètres à l'aide de l'ensemble de validation et ne l'exécuter sur l'ensemble de test qu'une seule fois, à la fin !

Neural Network

Bases de l'IA

Classification linéaire vs. K le plus proches voisins

- Voisins les plus proches
 - Stocker chaque image
 - Recherche les plus proches voisins au moment du test et attribution de la même classe

Classification linéaire vs. K le plus proches voisins

UNIVERSITÉ CÔTE D'AZUR

- K-Voisins les plus proches
 - Stocker chaque image
 - Recherche les plus proches voisins au moment du test et attribution de la même classe
- Classificateur linéaire
 - Stocker les hyperplans qui séparent le mieux les différentes classes
 - Nous pouvons calculer le score d'une classe continue en calculant la distance par rapport à l'hyperplan.

Fonction de score

class scores

Fonction de score: f

Parametric approach

image parameters f(x, W)

[32x32x3] array of numbers 0...1 (3072 numbers total) 10 numbers, indicating class scores

Classification paramétrique: classificateur linéaire

Bases de l'IA

Classification paramétrique: classificateur linéaire

Bases de l'IA

Classificateur linéaire

Classificateur linéaire

Exemple avec une image de 4 pixels et trois classes : (chat/chien/navire)

Interprétation : Correspondance des modèles

Interprétation géométrique

Classificateurs linéaires

Trouver une fonction linéaire (hyperplan) pour séparer les exemples positifs et négatifs

Cas difficiles pour un classificateur linéaire UNIVERSITÉ CÔTE D'AZUR

Classification linéaire: trois points de vue CÔTE D'AZU

Point de vue algébrique

$$f(x,W) = Wx$$

Point de vue visuel

un modèle par classe

Point de vue géométrique

hyperplans découpant l'espace

Jusqu'à présent : définition d'une fonction de score (linéaire) f(x,W) = Wx + b

UNIVERSITÉ :::

- Exemple de scores de classe pour 3 images pour certaines valeurs de W.
- Comment savoir si ce W est bon ou mauvais ?

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Résumé

- Méthodes d'apprentissage
 - K-voisins les plus proches (k-Nearest Neighbors)
 - Classification linéaire
- Le classificateur produit une fonction de score donnant un score à chaque classe
- Comment définir la qualité d'un classificateur sur la base des données d'apprentissage ? (Spoiler : définir une fonction de « perte », loss function)

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Catimans by Mikita is licensed under CC-BY 2.0 Carimans is CCO 1.0 public domain. From image is in the public domain

Output scores

À FAIRE:

- Définir une fonction de perte qui quantifie notre mécontentement à l'égard des scores sur l'ensemble des données d'apprentissage.
- Trouver un moyen efficace de calculer les paramètres qui minimisent la fonction de perte (optimisation)

Classification linéaire

Supposons:

3 exemples de training, 3 classes.

Avec certains W, les scores f(x, W) = Wx sont:

		1	77	9	ı
2		-	1	3	
,	A				ı
1	藍	X	-	1	ı

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Une fonction de perte (**loss function**) indique la qualité de notre classificateur.

Étant donné un ensemble de données d'exemples, où

 x_i est une image et

 y_i une étiquette (entier)

la perte (loss) sur l'ensemble de données est la somme des pertes sur les exemples :

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Fonction de perte, fonction de coût/objectif

- Étant donné les étiquettes du golstandard (y_i), les scores f(x_i, W)
 - dans quelle mesure sommes-nous mécontents des scores ?
- La fonction de perte ou la fonction objectif/coût mesure le mécontentement.
- Au cours de l'apprentissage, nous voulons trouver les paramètres
 W qui minimisent la fonction de perte.

Exemple plus simple : classification binaire

- Deux classes (par exemple, "chat" et "pas chat")
 - Classes "positives" et "négatives".

cat

Classificateurs linéaires

Trouver une fonction linéaire (hyperplan) pour séparer les exemples positifs et négatifs

Quel est le meilleur hyperplan ? Bases de l'IA

Quelle est une bonne fonction de perte?^{co}

Une possibilité:

Nombre d'exemples mal classés

- Problèmes : discret, ne peut pas briser les égalités
- Nous voulons que la perte conduise à une bonne généralisation
- Nous voulons que la perte fonctionne pour plus de 2 classes

29/03/3023

Classificateur Softmax

$$f(x_i, W) = Wx_i$$
 (score function)

softmax function

Exemple avec trois classes

$$[1,-2,0] o [e^1,e^{-2},e^0] = [2.71,0.14,1] o [0.7,0.04,0.26]$$

• Interprétation : écrasement des valeurs en probabilités comprises entre 0 et 1 $P(y_i \mid x_i; W)$

Perte d'entropie croisée (cross entropy loss)

$$f(x_i, W) = Wx_i$$
 (score function)

Perte d'entropie croisée (cross entropy loss)

$$f(x_i, W) = Wx_i$$
 (score function)

$$L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)^{f_{y_i}: ext{ score of correct class}} L_i = -f_{y_i} + \log\sum_j e^{f_j} \quad egin{array}{c} ext{We call L_i cross-entropy loss} \end{cases}$$

Perte d'entropie croisée (cross entropy loss)

$$f(x_i, W) = Wx_i$$
 (score function)

Perte

- La perte d'entropie croisée n'est qu'une des pertes possibles
 - Une propriété intéressante est qu'elle réinterprète les scores comme des probabilités, qui ont un sens naturel
- Les fonctions de perte SVM (marge maximale) étaient également populaires
 - Mais actuellement, l'entropie croisée est la fonction de perte de classification la plus courante.

Résumé

- Disposer d'une fonction de score et d'une fonction de perte
- Actuellement, la fonction de score est basée sur un classificateur linéaire
- Ensuite, elle sera généralisée aux réseaux neuronaux convolutifs
- Trouver W et b pour minimiser la perte

$$L = rac{1}{N} \sum_i -\log \left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight) + \lambda \sum_k \sum_l W_{k,l}^2$$