5.5 - Substitution Method

The Substitution Rule (Indefinite Integrals)

If $\,u=g(x)\,$ is a differentiable function whose range is an interval $\,I\,$ and $\,f\,$ is continuous on $\,I\,$, then

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

$$U = g(x)$$

$$\int du = g'(x) dx$$

Evaluate.

Ex) $\int 3y\sqrt{7-3y^2}\,dy$

$$= -\frac{1}{2} \int_{-6}^{-6} y \int_{-3-3}^{2} y^{2} dy$$

$$= -\frac{1}{2} \int_{-6}^{3/2} \int_{-3}^{4} du$$

$$= -\frac{1}{2} \int_{-3}^{3/2} \int_{-3}^{4} du$$

$$= -\frac{1}{3} \int_{-3}^{3/2} \int_{-3}^{4} du$$

$$= -\frac{1}{3} \int_{-3}^{2} \int_{-3}^{4} du$$

$$= -\frac{1}{3} \int_{-3}^{4} \int_{-3}^{4} du$$

$$= -\frac{1}{3} \int_{-3}^{4} \int_{-3}^{4} du$$

(Hint: use log rules)

Ex)
$$\int \frac{\sec^2(\ln\sqrt{t})}{t} dt$$

Let
$$u = \frac{1}{2} \ln t$$

$$v du = \frac{1}{2} \frac{1}{4} dt$$

Ex)
$$\int 3x^5 \sqrt{x^3 + 1} dx$$

$$\begin{array}{lll}
& = & \int \int_{x^{3}+1}^{3+1} \cdot 3x^{2} \cdot x^{3} dx \\
& = & \int \int_{x^{3}+1}^{3+1} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3+1} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{2}+1-1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot (x^{3}+1) \cdot 3x^{2} dx \\
& = & \int \int_{x^{3}+1}^{3} \cdot$$

Ex)
$$\int \frac{w^2 \cos(w^3+1)}{\sin^2(w^3+1)} dw$$

Let
$$u = Sin(\omega^3 + i)$$

 $\Rightarrow du = cos(\omega^3 + i)_- 3\omega^2 d\omega$

$$= \int \left[Sin \left(\omega^2 + I \right) \right]^{-1} \left[\omega^2 \cos \left(\omega^3 + I \right) \right] d\omega$$

$$=\frac{1}{3}\int_{0}^{2}\omega^{-2}d\omega$$

$$=\frac{1}{3}\cdot\frac{\omega^{-3}}{3}+C$$

Ex)
$$\int \frac{\tan^{-1}(2x)}{1+4x^2} dx$$

= - $\frac{1}{9(l)^3}$

$$= \frac{u^2}{y} + C$$

$$= \frac{(t \text{ an}^{-1}(2\kappa))^{\frac{1}{2}}}{y} + C$$

Let
$$u = \tan^{-1}(2x)$$
=> $du = \frac{1}{1+(2x)^2} \cdot 2 \cdot dx$
=> $du = \frac{2}{1+9x^2} dx$

The Substitution Rule for Definite Integrals

If g' is continuous on [a, b] and f is continuous on the range of u = g(x), then

$$\int_a^b f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u)du$$

This rule says that when using a substitution in a definite integral, we must put everything in terms of the new variable $\,u\,$, not only $\,x\,$ and $\,dx\,$ but also the limits of integration. The new limits of integration are the values of $\,u\,$ that correspond to $\,x=a\,$ and $\,x=b\,$.

Evaluate using the Substitution Rule for Definite Integrals.

Ex)
$$\int_{0}^{1} \frac{y^{2}+4y-4}{\sqrt{y^{3}+6y^{2}-12y+9}} dy$$

$$= \int_{3}^{1} \int_{4}^{2} \int_{4}^$$

Let
$$u = y^{3} + 6y^{2} - 12y + 9$$

=> $du = (3y^{2} + 12y - 12) dx$

=> $du = 3(y^{2} + 9y - 9) dx$

When,

 $y = 0$
 $u = 0^{3} + 6(0)^{2} - (1(0) + 9) = 9$

when,

 $y = 1$
 $u = 1 + 6 - (2 + 9)$

= $\frac{1}{2}$

Evaluate using the Substitution Rule for Definite Integrals.

Ex)
$$\int_{0}^{1} x^{4}e^{9x^{5}} dx$$

= $\frac{1}{45} \int_{0}^{4} e^{9x^{5}} dx$

= $\frac{1}{45} \int_{0}^{4} e^{9x^{5}} dx$

= $\frac{1}{45} \int_{0}^{4} e^{9x^{5}} dx$

Let
$$\alpha=4x^5$$

$$=5 du=45 x^9 dx$$
when,
$$X=0 \quad \text{when,}$$

$$\alpha=0 \quad \alpha=4$$

Ex) $\int_0^{\frac{\pi}{4}} \tan x \, dx$

Let
$$u = \cos x$$

 $\Rightarrow du = -\sin x dx$
When,
 $x = 0$, $u = 1$
 $x = \frac{1}{4}$, $u = \frac{1}{\sqrt{2}}$