Cvičení 14: Proč studovat analýzu

Parciální derivace

Spočtěte parciální derivace

- (a) $\frac{\partial f}{\partial x}$ pro $f(x) = x^2$,
- (b) $\frac{\partial f}{\partial x}$ pro $f(x,y) = x^2 + y^2$,

Gradient

Určete gradient fcí

- (a) $f(x,y) = x^2 y^2$,
- (b) $f(x, y) = \sin(x)\sin(y)$.

Jaká je podmínka na to, aby měla f lokální extrém?

Diferenciální rovnice

- (a) Uvažujte nakažlivou nemoc, která nejde vyléčit a "dnes" jí má N lidí. Zdrojem další nákazy jsou právě nemocní lidé, tedy počet nově nakažených za nějaké časové období bude úměrný počtu právě nakažených. Určete průběh počtu nakažených v čase, tedy N(t).
- (b) Modifikujme předchozí model nechť má naše populace konečně mnoho lidí $N_{\rm tot}$. Definujme precento nakažených jako

$$n = \frac{N}{N_{\rm tot}}.$$

Počet nově nakažených lidí bude klesat, pokud nemoc mají téměř všichni, tedy bude úměrný n(1-n). Určete v téhle situaci průběh počtu nakažených jako fci času, tedy n(t).

- (c) Rozdělme populaci na tři kategorie
 - S: susceptible, tedy ti co nemoc ještě neměli,
 - I: infected, tedy ti co nemoc mají teď,
 - ullet R: removed, tedy uzdravení a umrtví.

Opět můžeme definovat procentuální hodnoty jako např. $s=\frac{S}{N}.$

Zformulujte soustavu diferenciálních rovnic pro tyto proměnné, pokud

- $\bullet \ s$ klesá rychlostí úměrnou si, což je analogické minulému bodu,
- r roste úměrně počtu nakažených, neboli každý den se uzdraví nějaké procento nakažených,
- ullet i roste úměrně si a zároveň klesá úměrně počtu nakažených.

Užitečné vztahy

Gradient

Pro fci více proměnných $f=f(x_1,\ldots,x_n)$ můžeme studovat změnu její velikosti vzhledem ke každé z proměnných. Pokud budeme fixovat všechny proměnné až na k-tou, můžeme definovat parciální derivaci vzhledem ke k-té proměnné

$$\frac{\partial f}{\partial x_k} = \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n) - f(x_1, \dots, x_n)}{h},$$

kterou můžeme též značit $\partial_k f$. Taková derivace nám říká velikost změny f, pokud změníme pouze x_k . Můžeme uvažovat vektor všech takových možných změn, kterému se říká gradient

$$\nabla f = (\partial_1 f, \dots, \partial_n f),$$

který nám říká takovou změnu v prostoru parametrů x_i , která způsobí největší lokální změnu f, neboli je to směr nejstrměnšího růstu f v daném bodě.

Diferenciální rovnice

Rovnice, která dává do souvislosti funkci a její derivace se označuje jako diferenciální rovnice. Danou diferenciální rovnici jde klasifikovat na základě mnoha faktorů, např.

- nejvyšší řád derivace (mluvíme o diferenciální rovnici nějakého řádu),
- pokud se zde vyskytují derivace podle jedné proměnné (tkz. obyčejné diferenciální rovnice), nebo jsou v ní parciální derivace podle více proměnných (tkz. parciální diferenciální rovnice),
- zda je hledaná fce násobená jejími proměnnými (tkz. nelineární diferenciální rovnice), nebo ne (lineární),
- ...

Řešením některých typů se dá strávit celý život.