Data Structure Question Bank

PART – A (SHORT ANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Course Outcome
	UNIT – I		
1	Define the term algorithm and state the criteria the algorithm should satisfy?	Remember	5
2	Define recursive algorithm?	Remember	2
3	Differentiate between recursive and iterative algorithms?	Remember	2
4	Define asymptotic notations: big 'Oh', omega and theta?	Remember	5
5	Describe best case, average case and worst case efficiency of an algorithm?	Remember	5
6	How do you measure the algorithm running time?	Understand	5
7	Describe the role of space complexity and time complexity in measuring the performance of a program?	Understand	5
8	Define the term Data abstraction?	Remember	6
9	Define data structure?	Remember	3
10	List linear and nonlinear data structures?	Remember	3
11	List the operations performed in the Linear Data Structure?	Remember	3
12	List out any four applications of data structures?	Understand	4
13	Define Linked List?	Remember	6
14	State the different types of linked lists?	Remember	6
15	List the basic operations carried out in a linked list?	Remember	6
16	List the advantages and disadvantages of linked list?	Remember	6

		Blooms	Course
S. No	Question	Taxonomy	Outcome
		Level	
17	Define Sparse Matrix and its Representation with example?	Remember	6
18	Define Doubly Linked List?	Remember	6
19	List areas where data structures can be applied?	Remember	6
20	Define Circular Linked List?	Remember	6
	UNIT – II		
1	Define Stack?	Remember	1
2	List the applications of stack?	Remember	6
3	Define Queue?	Remember	6
4	List the applications of queue?	Remember	6
5	Differentiate Stack and Queue?	Understand	6
6	List out the basic operations that can be performed on a stack and queue?	Remember	6
7	List the different types of queues?	Remember	6
8	Define Circular Queue?	Remember	6
9	List the operations that can be performed on Circular Queue?	Remember	6
10	Define Circular Queue full condition?	Remember	6
11	Define DEQUEUE?	Remember Remember	6
13	List the operations that can be performed on DEQUEUE?	Remember	6
13	State the different ways of representing expressions? State the rules to be followed during infix to postfix conversions?	Remember	4
15	Convert the infix expression (a+b)-(c*d) into post fix form?		4
16	List how Stacks and Queues are represented in data structure?	Apply Understand	6
17	Discuss which data structure used in recursion?	understand	6
18	Explain the difference between stack implementation using array and	Understand	U
10	linked list?	Officerstand	6
19	Write the necessity of infix to post fix conversion?	Understand	4
20	Write the Dequeue empty condition?	Remember	6
	UNIT – III	1101110111011	
1	Define Tree?	Remember	6
2	List the applications of Trees?	Understand	6
3	Define the terms node, degree, siblings, depth/height, level?	Remember	6
4	Define path in a tree	Remember	6
5	Define Binary Tree?	Remember	6
6	Define full binary tree?	Remember	6
7	Define complete binary tree?	Remember	6
8	Define a right-skewed binary tree and Left-skewed binary tree?	Remember	6
9	State the properties of a Binary Tree?	Remember	6
10	Discuss how to represent Binary Tree?	Remember	6
11	List the different tree traversals?	Remember	10
12	Discuss threaded binary tree?	Remember	6
13	Define heap?	Remember	6
14	Define Priority Queue?	Remember	6
15	Differentiate Max-heap and Min-heap?	Understand	6
16	Define graph?	Remember	6
17	Discuss representation of graph with examples?	Understand	10
18	List the different graph traversals?	Remember	10
19	Differentiate BFS and DFS?	Understand	10
20	Differentiate max priority queue and min priority queue?	Understand	6
	UNIT – IV	T In dance of the	0
1	Differentiate Linear search and binary search?	Understand	8
3	Define Hashing? Fyration Hash Europeign?	Remember	9
4	Explain Hash Function? List different types of popular hash functions?	Remember Remember	9
4	List unferent types of popular hash functions?	Keilleiliber	9

		Blooms	Course
S. No	Question	Taxonomy	Outcome
		Level	
5	Define Collision?	Remember	9
6	State different types of collision resolving techniques?	Remember	9
7	Define Separate Chaining?	Remember	9
8	Define Open Addressing?	Remember	9
9	Define Linear probing?	Remember	9
10	Define Quadratic Probing?	Remember	9
11	Define Double Hashing?	Remember	9
12	Define rehashing?	Remember	9
13	List the uses of hash table?	Understand	9
14	Define sorting and list the different types of sorting techniques?	Remember	8
15	Discuss the advantage of quick sort and its time complexity?	Understand	8
16	State the main idea behind Selection sort?	Remember	8
17	Discuss the time complexity of Heap sort?	Understand	8
18	Discuss the main idea behind Insertion sort?	Understand	8
19	Discuss is the space complexity of Radix sort?	Understand	8
20	Compare efficiencies of quick sort and heap sort	Understand	8
	UNIT – V		
1	Define balanced search tree?	Remember	6
2	Define binary search tree with example?	Remember	6
3	State the operations on binary search tree?	Remember	6
4	Compare binary tree and binary search tree?	Understand	6
5	Define balance factor and what is the height of an AVL tree?	Understand	6
6	Define AVL tree with example?	Remember	6
7	List the different AVL tree rotations to insert a node?	Remember	6
8	Discuss the drawbacks of AVL trees?	Understand	6
9	Define splay tree?	Remember	6
10	Define B-tree with example?	Remember	6
11	Discuss the different operation's on B-Trees?	Remember	6
12	Write the properties of B-Trees?	Remember	6
13	Explain the procedure to insert a node into B-Tree?	Apply	6
14	State the properties of red black tree?	Remember	6
15	Define and discuss the properties of tries?	Remember	6
16	List some pattern matching algorithms?	Remember	6
17	Discuss the time and space needed by Knuth Morris Pratt algorithm?	Understand	6
18	List types of Tries?	Remember	6
19	Define Prefixes and Suffixes?	Remember	6
20	Define failure function in KMP algorithm?	Understand	6

PART – B (LONGANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Course Outcome
	UNIT – I		
1	Discuss various the asymptotic notations used for best case average case	Understand	5
	and worst case analysis of algorithms.		
2	Explain Performance Analysis in Detail.	Understand	5
3	Define recursion. Explain with it Fibonacci series and factorial of a	Apply	5
	number.		
4	Explain time and space complexities in detail	Understand	5
5	Explain the different operations on singly liked list	Remember	6

6	Explain concatenation of singly linked lists	Apply	6
7	Explain circular linked list operations	Remember	6
8	Explain doubly linked list operations	Remember	6
9	List the advantages and disadvantages of doubly linked list over singly	Understand	6
	linked list?	Chacistana	O
10	Explain the applications of doubly linked lists	Understand	6
11	Explain the following operations in a doubly linked list.	Remember	6
11	(i) Insert an element	Kemember	, 0
	(ii) Delete an element		
	(iii) Reverse the list		
12	Write an algorithm to insert and delete a key in a circular queue	Remember	6
13	Explain Array and Linked representation of Sparse Matrix	Understand	6
14	Write a program to insert an element in between two nodes in a double	Apply	6
1.	linked list	Пррпу	
15	Explain how to create circular linked list and insert nodes at end	Apply	6
13	UNIT - II	710013	
1	Write an algorithm for basic operations on Stack	Remember	1
2	Explain the procedure to evaluate postfix expression	Remember	4
3	Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 3 +	Apply	4
4	Explain the procedure to convert infix expression into postfix expression	Remember	4
5	Convert the following expression $A + (B * C) - ((D * E + F) / G)$ into post	Apply	4
	form.	Apply	7
6	Explain the operations on simple Queue	Remember	6
7	Write an algorithm for basic operations on circular queue	Remember	6
8	Explain DEQUEUE ADT and its operations	Remember	6
9	Implement a queue using two stacks.	Apply	6
10		Understand	
10	Implement a Circular queue of integer of user specified size and write	Understand	6
	the functions for intilize () enque () and deque()		
1	UNIT - III	D b	-
1	Explain Binary tree ADT.	Remember	6
2	Discuss representation of binary tree	Remember	6
3	Explain tree traversals with example	Understand	10
4	Discuss max priority queue ADT with examples	Remember	6
5	List the advantages of priority queue? Explain the implementation of	Understand	6
	Priority Queue.?	TT 1 . 1	
6	Define threaded binary tree? Explain the impact of such a representation	Understand	6
7	on the tree traversal procedure?	D 1	10
7	Explain graph ADT.	Remember	10
8	Explain different ways representation of graphs.	Remember	6
9	Explain BFS graphs traversal algorithms with suitable example.	Understand	10
10	Explain DFS graphs traversal algorithms with suitable example.	Understand	10
11	Differentiate BFS and DFS	Understand	6
12	Explain with an example how to insert an element to max heap	Apply	6
13	Explain with an example how to delete an element from max heap	Apply	6
14	Define Graph and explain how graphs can be represented in adjacency	Understand	6
1.5	matrix and adjacency list	** .	4.0
15	Write the advantages of using BFS over DFS or using DFS over BFS?	Understand	10
	What are the applications and downsides of each?		
	UNIT – IV		C
1	Explain linear search with example	Understand	8
2	Explain Binary search with example	Understand	8
3	Differentiate linear search algorithm with binary search algorithm.	Understand	8
4	Define hashing and discuss the different hashing functions with an	Understand	9
	example.		
5	Define collision and discuss any two collision resolution techniques	Understand	9

6	Explain Chaining with an example	Understand	9
7	Compare different sorting techniques	Understand	8
8	Write C programs for implementing Quick sort to arrange a list of	Apply	8
	integers in ascending order		
9	Write C programs for implementing Merge sort to arrange a list of integers	Apply	8
	in ascending order		
10	State and explain insertion sort with an example	Apply	8
11	State and explain selection sort with an example	Apply	8
12	State and explain radix sort with an example	Apply	8
13	State and explain heap sort with an example	Apply	8
14	State and explain quick sort with an example	Apply	8
15	Explain quick sort algorithm and simulate it for the following data 20, 35,	Apply	8
	10, 16, 54, 21, 25		
	UNIT – V		
1	Describe the insertion, deletion ,searching operations on binary search	Understand	6
	trees		
2	Explain the insertion operation on AVL trees	Understand	6
3	Describe the insertion, searching operations on B-Trees	Understand	6
4	Explain knuth-Morris-pratt algorithm with example	Understand	6
5	Define binary search tree. Construct the binary search Tree for the below	Apply	6
	given data. P, F, B, H, G, S, R, Y, T, W, Z		
6	State the properties of Red-Black trees with example.	Understand	6
7	Write a short note on tries	Understand	6
8	Compare different search trees with their time complexities	Understand	6
9	Explain various rotations of AVL Trees maintaining balance factor while	Understand	6
	insertion takes place.		
10	Explain Splay trees with example.	Understand	6

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Course Outcome
	UNIT – I		
1	$F(n)=3n^2-n+4$ show that $f(n)=O(n^2)$	Apply	5
2	$F(n)=5n^2+10n$ convert this to $\Omega()$ notation	Apply	5
3	$F(n)=\sqrt{n}$ and $g(n)=\log n$, show that $f(n)+g(n)=O(\sqrt{n})$	Apply	5
4	List out few of the applications that make use of Multilinked Structures?	Understand	2
5	Write a C program that uses functions to perform the following: a) Create a singly linked list of integers. b) Delete a given integer from the above linked list. c) Display the contents of the above list after deletion.	Apply	7
6	Write a C program that uses functions to perform the following: a) Create a doubly linked list of integers. b) Delete a given integer from the above doubly linked list. c) Display the contents of the above list after deletion.	Apply	7
7	Given a Singly linked list with each node containing either 0, 1 or 2. Write code to sort the list. Input: $1 -> 1 -> 2 -> 0 -> 1 -> 0$ Output: $0 -> 0 -> 1 -> 1 -> 1 -> 2 -> 2$	Apply	7
8	Given a linked list and two integers M and N. Traverse the linked list such that you retain M nodes then delete next N nodes, continue the same until end of the linked list. Input: $M = 2$, $N = 2$ Linked List: $1-2-3-4-5-6-7-8$ Output: Linked List: $1-2-5-6$ The main part of the problem is	Apply	7

S. No	Question	Blooms Taxonomy Level	Course Outcome
9	Given two linked lists in a way such that the resultant must contain the	Apply	7
	elements alternatively from one list to other list.		
	Input: LL1:1 \rightarrow 2 \rightarrow 3 \rightarrow 4		
	LL2: 5→ 6→7		
10	Output: $1 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 4$		
10	Write a program to remove duplicate vales from a double linked list		
1	UNIT - II Convert the expression $((A + B) * C - (D - E) ^ (F + G))$ into equivalent		1
1	Postfix notation.	Apply	
2	Transform the following expression to postfix expression using stacks. $(a+b)*((d-e)+f)$	Apply	1
3	Convert infix expression into its equivalent post fix expression A*(B+D)/E-F*(G+H/K)	Apply	1
4	Transform the following expression to postfix expression using stacks. $(A+B)*(C*(D-E)+F)-G$	Apply	1
5	Write a C program that uses stack operations to convert a given infix expression into its postfix Equivalent.	Apply	1
6	Evaluate the postfix expression 6 2 3 + - 3 8 2 / + * 2 \$ 3 +	Apply	1
7	Evaluate the postfix expression 12+3*6+23+	Apply	1
8	Evaluate the postfix expression 10 2 8 * + 3 - 1 2 3 * + -	Apply	1
9	Write C programs to implement stack ADT using Arrays	Apply	7
10	Write C programs to implement stack ADT using Linked List	Apply	7
11	Write C programs to implement queue ADT using Arrays	Apply	7
12	Write C programs to implement queue ADT using Linked List	Apply	7
13	Write an algorithm for basic operations on simple queue	Apply	7
14	Write C programs to implement a double ended queue ADT using arrays	Apply	7
15	Write C programs to implement a double ended queue ADT using doubly linked list	Apply	7
	UNIT – III		
1	Write inorder, preoreder, post order traversal of the following tree	Apply	10
	(2)		
	(5)		
	2 6 9		
	(5) (11) (4)		

S. No	Question	Blooms Taxonomy Level	Course Outcome
2	Write inorder, preoreder, post order traversal of the following tree	Apply	10
	9 7 11		
3	Illustrate BFS and DFS traversals of following graph	Apply	10
	3 2 5	5	
4	Illustrate DFS traversal of following graph 3 4 5 8	Apply	10
5	Illustrate DFS and BFS traversals of following graph B C B C	Apply	10
	Illustrate BFS and DFS traversals of following graph A B C F	Apply	10

Given In order traversal of a binary tree is D.G.B.E.A.H.F.I.C and pre order traversal is A.B.D.G.E.C.F.H.I construct binary tree?	S. No	Question	Blooms Taxonomy Level	Course Outcome
traversal is F.A.E.K.C.D.H.G.B find the post order traversal? Given a queue of elements with priorities: 21, 13, 17, 10, 7, 11 do the following: a Build the binary heap (draw the tree at each step) and show the corresponding array b)Delete the element with the highest priority, drawing the tree at each step of the deleting procedure c)Insert a new element with priority 15 and draw the tree at each step of the insertion procedure 10 Construct max heap for 150, 80, 40,30,10, 70, 110, 100, 20, 90, 60, 50, 120,140,130 UNIT – IV 1. Apply binary search and find the average number of comparisons required to find an element 11,15,17,19,21,25,27,29,31 2. Using linear search, delete the number 26 from the following list of numbers and give the steps 10 6 3 7 17 25 65 32 87 3. Apply insertion sort on the following elements 3, 1,47,5,92,6,5,10 4. Apply the selection sort on the following elements 21,11,578,49,54,72,88 5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. Apply 80,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. Apply 40,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. Apply 40,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. Apply 40,77,60,99,55,88,66 7. Rearrange the following is not of elements 45,70,50,90,61,11,8,27 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply and 14,18,18,18,19,18,18,18,19,18,18,18,18,18,18,18,18,		traversal is A,B,D,G,E,C,F,H,I construct binary tree?		6
a)Build the binary heap (draw the tree at each step) and show the corresponding array b)Delete the element with the highest priority, drawing the tree at each step of the deleting procedure c)Insert a new element with priority 15 and draw the tree at each step of the insertion procedure 10 Construct max heap for 150, 80, 40,30,10, 70, 110, 100, 20, 90, 60, 50,120,140,130 UNIT – IV 1. Apply binary search and find the average number of comparisons required to find an element 11.15.17,19.21,25.27,29.31 2. Using linear search, delete the number 26 from the following list of numbers and give the steps 10 6 3 71 72 56 53 28 7. 3. Apply insertion sort on the following elements 3, 1, 47,59,2,65,10 4. Apply the selection sort on the following elements 31, 14,75,9,2,65,10 4. Apply the selection sort on the following elements 21, 11, 57,849, 54,72,88 Apply 38, 67, 83, 8, 10, 71 5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. Apply 39,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply 69 Apply heap sort on list of elements (4,12,9,87,10,18,20,30) 10. Explain the heap sort of list of elements (4,12,9,87,10,18,20,30) 21. Use quadratic robing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,89,01,01,4. 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaising, linear probing 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		traversal is F,A,E,K,C,D,H,G,B find the post order traversal?	Apply	6
Insertion procedure	9	a)Build the binary heap (draw the tree at each step) and show the corresponding array b)Delete the element with the highest priority, drawing the tree at each step of the deleting procedure	Apply	6
100, 20, 90, 60, 50, 120, 140, 130 LINIT – IV Apply binary search and find the average number of comparisons required to find an element 11, 15, 17, 19, 21, 25, 27, 29, 31 Lising linear search, delete the number 26 from the following list of numbers and give the steps 10 6 3 7 17 26 56 32 87 Apply insertion sort on the following elements 3, 1, 4, 7, 5, 9, 2, 6, 5, 10 Apply the selection sort on the following elements 21, 11, 5, 78, 49, 54, 72, 88 Apply 98, 67, 83, 8, 10, 71 Trace the quick sort algorithm for the following list of numbers. 90, 77, 60, 99, 55, 88, 66 Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 99, 77, 60, 99, 55, 88, 66 Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45, 37, 05, 99, 06, 11, 18, 27 Apply apply heap sort on list of elements 14, 12, 9, 87, 10, 18, 20, 30 Despite the passor of algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 Lise quadratic probing to fill the Hash table of size 11. Data elements are 23, 0, 52, 61, 78, 33, 100, 8, 90, 10, 14. Lise quadratic probing to fill the Hash table of size 11. Data elements are 23, 0, 52, 61, 78, 33, 100, 8, 90, 10, 14. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result separate Chaining, linear probing Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using quadratic probing, and double hashing h(x)=7 · (x mod 7). Apply quadratic hashing to fill the hash table of size 11 elements 20, 51, 0, 22, 33, 40, 50, 30, 51, 31 Show the each step of hash table entries for the given data set using linear probing 12, 45, 67, 88, 27, 78, 20, 62, 36, 55 (size=10) UNIT – V Livite a C program that uses functions to perform the following: Apply a Create a binary search tree recursively in Postorder. Give an algorithm for constructing a binary search tree while constructin	10	insertion procedure		
1. Apply binary search and find the average number of comparisons required to find an element 11,15,17,19,21,25,27,29,31 2. Using linear search, delete the number 26 from the following list of numbers and give the steps 10 6 3 7 17 26 56 32 87 3. Apply insertion sort on the following elements 3, 1, 4,7,5,9,2,6,5,10 4. Apply the selection sort on the following elements 21,11,5,78,49,54,72,88 Apply 5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, Apply 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply 10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,34,05,03,051,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) 16. Write a C program that uses functions to perform the following: a) Create a binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100,50,200,25,90,80,150	10	100, 20, 90, 60, 50,120,140,130	Apply	6
find an element 11,15,17,19,21,25,27,29,31 2. Using linear search, delete the number 26 from the following list of numbers and give the steps 10 6 3 7 17 25 56 32 87 3. Apply insertion sort on the following elements 3, 1, 4,7,5,9,2,6,5,10 4. Apply the selection sort on the following elements 3, 1, 4,7,5,9,2,6,5,10 5. Rearrange the following numbers using Quick sort procedure, 42, 12, 18, Apply 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. Apply 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. Apply 8, 3, 3, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply apply apply apply apply 10, 18, 20, 30 10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,103,890,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result separate Chairing, linear probing Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to-fill the hash table of size 11 elements Apply 9, 20, 5, 10, 22, 33, 40, 50, 30, 51, 31 15. Show the each step of hash table entries for the given data set using linear probing 12, 45, 67, 88, 27, 78, 20, 62, 36, 55 (size=10) UNIT - V 10. Write a C program that uses functions to perform the following: Apply 9, 25, 9, 6, 12, 10, 13, 8 3. Construct a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2, 5, 9, 6, 12, 10, 13, 8 3. Construct a binary search tree for the following 40, 40, 75, 30, 20, 90, 50 4. Constr	4			· 0
and give the steps 10 6 3 7 17 26 56 32 87 3. Apply insertion sort on the following elements 3, 1, 4,7,5,9,2,6,5,10 4. Apply the selection sort on the following elements 21,11,5,78,49, 54,72,88 Apply 5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply apply the dependent of fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14 2. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result susing quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 Create a binary search tree for the given data set using linear pro		find an element 11,15,17,19,21,25,27,29,31		8
4. Apply the selection sort on the following elements 21,11,5,78,49, 54,72,88 Apply 5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply 8, Apply heap sort on list of elements 14,12,9,87,10,18,20,30 Apply 8, 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result spearae Chairing, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80,475, 30, 20,9,50 4. Construct a binary search tree for the following 100,50,200,25,90,80,150		and give the steps 10 6 3 7 17 26 56 32 87	Apply	8
5. Rearrange the following numbers using Quick sort procedure. 42, 12, 18, 98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 9. Apply heap sort on list of elements 14,12,98,7,10,18,20,30 Apply 8 10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	3.		Apply	8
98, 67, 83, 8, 10, 71 6. Trace the quick sort algorithm for the following list of numbers. 90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 9. Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	4.	Apply the selection sort on the following elements21,11,5,78,49, 54,72,88	Apply	8
90,77,60,99,55,88,66 7. Rearrange the following numbers using radix sort. 77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 9. Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14. 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 · (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT – V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2, 5, 9, 6, 12, 10, 13, 8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	5.	98, 67, 83, 8, 10, 71	Apply	8
77, 12, 8, 39, 27, 21, 44, 18, 6, 427, 117, 237, 5671 and 600 8. Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 Apply heap sort algorithm by tracing the following elements stepwise 3,5,9,7,1,4,6,8,2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	6.		Apply	8
9. Apply heap sort on list of elements 14,12,9,8,7,10,18,20,30 10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14. 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80,40,75,30,20,90,50 4. Construct a binary search tree for the following 100,50,200,25,90,80,150	7.		Apply	8
10. Explain the heap sort algorithm by tracing the following elements stepwise 3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 21. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x 22 mod 10. Show the result Separate Chaining, linear probing 21. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x 22 mod 10. Show the result using quadratic probing, and double hashing 32 h ₂ (x)=7 - (x mod 7). Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear 20,5,10,22,33,40,50,30,51,31 15. Write a C program that uses functions to perform the following: 30 Create a binary search tree of characters. 31 Create a binary search tree of characters. 32 Create a binary search tree of characters. 33 Create a binary search tree of characters. 34 Create a binary search tree of characters. 35 Create a binary search tree of characters. 36 Create a binary search tree for the following and the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 2. Construct a binary search tree for the following 30,40,75,30,20,90,50 4. Construct a binary search tree for the following 42,5,90,80,150	8.	Apply radix sort on the following list of elements 45,37,05,09,06,11,18,27	Apply	8
3, 5, 9, 7, 1, 4, 6, 8, 2 11. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) 18. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. 19. Traverse the above Binary search tree recursively in Postorder. 20. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2, 5, 9, 6, 12, 10, 13, 8 21. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 22. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 23. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50	9.		Apply	8
23,0,52,61,78,33,100,8,90,10,14, 12. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10. Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80,40,75,30,20,90,50 4. Construct a binary search tree for the following Apply 100,50,200,25,90,80,150	10.	3, 5, 9, 7, 1, 4, 6, 8, 2	Apply	8
mod 10, Show the result Separate Chaining, linear probing 13. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following Apply 60, 50, 200, 25, 90, 80, 150	11.	23,0,52,61,78,33,100,8,90,10,14,	Apply	9
mod 10, Show the result using quadratic probing, and double hashing h ₂ (x)=7 - (x mod 7). 14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80,40,75,30,20,90,50 4. Construct a binary search tree for the following Apply 60,50,200,25,90,80,150	12.	mod 10, Show the result Separate Chaining, linear probing	Apply	9
14. Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31 15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following Apply 60, 50, 200, 25, 90, 80, 150	13.	mod 10, Show the result using quadratic probing, and double hashing	Apply	9
15. Show the each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10) UNIT - V 1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	14.	Apply quadratic hashing to fill the hash table of size 11 elements	Apply	9
1. Write a C program that uses functions to perform the following: a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following Apply 60, 50, 200, 25, 90, 80, 150	15.	Show the each step of hash table entries for the given data set using linear	Apply	9
a) Create a binary search tree of characters. b) Traverse the above Binary search tree recursively in Postorder. 2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following Apply 60, 50, 200, 25, 90, 80, 150				
2. Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on 2,5,9,6,12,10,13,8 3. Construct a binary search tree for the following 80, 40, 75, 30, 20, 90, 50 4. Construct a binary search tree for the following Apply 60, 50, 200, 25, 90, 80, 150	I.	a) Create a binary search tree of characters.	Apply	7
3.	2.	Give an algorithm for constructing a binary search tree. While constructing the tree, take care that duplicate values are not added. Trace the algorithm on	Apply	6
4. Construct a binary search tree for the following 100, 50, 200, 25, 90, 80, 150	3.	Construct a binary search tree for the following	Apply	6
	4.	Construct a binary search tree for the following	Apply	6
5. meet the following elements into an empty A v L freezo, 15, 5, 10, 12, 17, 25, 19 Apply (5.	Insert the following elements into an empty AVL Tree20,15,5,10,12,17,25,19	Apply	6

S. No	Question	Blooms Taxonomy Level	Course Outcome
6.	Construct an AVL Tree for following elements: 10,20,15,3,2,16,18,26	Apply	6
7.	Construct AVL Tree for the following elements C,O,M,P,U,T,I,N,G	Apply	6
8.	Construct an AVL Tree for following elements: 10,9,8,7,6,5,4,3,2,1	Apply	6
9.	Construct a B-tree of order 3 with the following elements 10,20,15,3,2,16,21,25,30,40	Apply	6
10.	Insert the following elements into an empty B-tree of order 5 3,14,7,1,8,5,11,17,13,6,23,12,20,4,16,18,24,25,19	Apply	6
11.	Construct a B-tree of order 3 with the following elements 25,10,20,30,80,40,50,60,82,70,90,85,93	Apply	6
12.	Construct a B-tree of order 7 with the following elements 4,40,23,50,11,34,62,78,66,22,90,59,25,72,64,77,39,12	Apply	6
13.	Write a C program that uses functions to perform the following:a) Create a binary search tree of integers.b) Traverse the above Binary search tree non recursively in inorder.	Apply	6
14.	Write a C program to perform the following operation: a)Insertion into a B-tree.	Apply	6
15.	Find the failure function for the pattern "abacbba"	Apply	6
16.	Define failure function of KMP for the pattern "sisis"	Apply	6
17.	Find the failure function for the pattern "abacab"	Apply	6
18.	Apply KMP algorithm on pattern "abacab" and text "abacaabaccabacabaabb"	Apply	6
19.	Apply KMP algorithm on pattern "abaa" and text "abbbaababaab"	Apply	6
20.	Write a C program for implementing Knuth-Morris- Pratt pattern matching algorithm to determine the index of the string S1 of length m in string S2 of length n where m <n< td=""><td>Apply</td><td>6</td></n<>	Apply	6

