

4 MACHINE LEARNING ALGORITHMS

- 1. What is machine learning?
- 2. Types of machine learning
- 3. How to choose the best algorithm in each case?
- 4. Supervised learning
 - 1. K-Nearest Neighbours
 - 2. Decision trees
 - 3. Linear Regression
 - 4. Decision trees for regression

4 MACHINE LEARNING ALGORITHMS

Supervised learning

4 MACHINE LEARNING ALGORITHMS

Example

4 MACHINE LEA

I can't stop laughing..

Traducir Tweet

15:17 - 11 feb. 2019

100 Retweets 253 Me gusta

4 MACHINE LEARNING ALGORITHMS

https://freecontent.manning.com/real-world-machine-learning-model-evaluation-optimization/

4 MACHINE LEARNING ALGORITHMS

Definition

Learning a target function (f) that best maps input variables (X) to an output variable (Y): Y = f(X)

K-nearest neighbours
Decision trees

Linear regression

4.4. Supervised learning

4 MACHINE LEARNING ALGORITHMS

K-nearest neighbours

k-Nearest Neighbors identifies the k number of observations that are most proximate to the test sample, as defined by some distance metric

If k=3, the neighbors are {blue, blue, green} so we would classify the test sample as blue. If k=5, the neighbors are {blue, blue, green, green, green} and we would select green.

4 MACHINE LEARNING ALGORITHMS

K-nearest neighbours. Characteristics

KNN searches the memorized training observations for the K instances that most closely resemble the new instance and assigns to it the their most common class.

Non-parametric: The model structure is determined from the data

Lazy: No explicit training phase

Therefore, it is computationally expensive and it has a high memory requirement

Based on feature similarity: different functions can be used

4 MACHINE LEARNING ALGORITHMS

K-nearest neighbours. Elements to consider

Number of neighbours k

- When K is small, we are restraining the region of a given prediction and forcing our classifier to be "more blind" to the overall distribution
- A higher K averages more voters in each prediction and hence is more resilient to outliers, but prediction is more computationally costly

Distance

- Euclidean distance
- Cosine similarity
- Minkowski distance
- Haversine (for coordinates)
- ...

4 MACHINE LEARNING ALGORITHMS

K-nearest neighbours. Exercise

Given the following dataset, where X1 and X2 are two input variables and Y is the variable to predict. Which class would predict the k-NN algorithm, with k=3 using Euclidean distance, for the

following input: X1=6, X2=2?

X1	X2	Υ
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good
4	2	Good
6	6	Bad

4 MACHINE LEARNING ALGORITHMS

Confusion matrix

By definition a confusion matrix C is such that $C_{i,j}$ is equal to the number of observations known to be in group i but predicted to be in group j.

	Pred	ays))				
Actual (what the data says)	CLASSES	● A	В	c	Row totals	Diagonal
he data	● A	₩ 5	2	3	10	numbers ar rightly classified observation
(what t	∨ _B	2	HHTI	0	8	Total number
Actual	⊘ c	3	2	₂	7	of observations/ records
	Column Totals	10	10	5	25	

4 MACHINE LEARNING ALGORITHMS

Evaluation measures

Accuracy: percentage of correctly classified elements

Precision: number of times where the algorithm was correct out of all times where the algorithm predicted that category.

Recall: number of times where the algorithm was correct out of all of the cases where that category was the correct one.

F-beta score: weighted harmonic mean of the precision and recall; best score=1, worst score= 0.

Support: number of occurrences of each class.

4 MACHINE LEARNING ALGORITHMS

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$

Recall =
$$\frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$$

F1 Score =
$$2*\frac{Precision*Recall}{Precision+Recall}$$

Prediction

True Positive False Negative

False Positive

True Negative

Actual

4 MACHINE LEARNING ALGORITHMS

Exercise: compute the confusion matrix of the following result, if the algorithm must classify these fruits into "Apple" or "No Apple". From this confusion matrix, compute accuracy, precision and recall.

https://opensourceconnections.com/blog/2016/03/30/search-precision-and-recall-by-example/

