A Robust Approach for Project Scheduling Problem

Xin Shen, Jubiao Yang Team advisor: John E. Mitchell

Rensselaer Polytechnic Institute Troy, NY 12180

7th AIMMS-MOPTA Optimization Modeling Competition Lehigh University, Bethlehem, PA, 2015 Introduction

2 Simple Case: Modeling without Bad Luck

Robust Scheduling with Bad Luck

4 Conclusions

- Introduction
- Simple Case: Modeling without Bad Luck
- Robust Scheduling with Bad Luck
- Conclusions

Problem Description

Eg: Minimal System Realization

Want to design a Low order Linear Time-Invariant(LTI) system

Denote by H_n the Hankel matrix with parameters $h_1, h_2, \dots, h_{2n-1} \in \mathbb{R}$:

$$H_{n} = \begin{bmatrix} h_{1} & h_{2} & h_{3} & \cdots & h_{n} \\ h_{2} & h_{3} & h_{4} & \cdots & h_{n+1} \\ h_{3} & h_{4} & h_{5} & \cdots & h_{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{n} & h_{n+1} & h_{n+2} & \cdots & h_{2n-1} \end{bmatrix}$$

Fact: Let $h_1, h_2, \dots h_n$ be givien real numbers. Then there exists a minimal Linear Time-Invariant system of order r if and only if

$$r = \min_{h_{n+1}, \cdots, h_{2n-1} \in \mathbb{R}} \operatorname{rank}(H_n)$$

(Fazel)

Eg: Minimal System Realization(Continued)

The problem can be expressed as:

where:

- $s_i = \sum_{k=1}^i h_k$ denote the terms in the step response.
- *I_i* lower bound of step response at the *i*th term.
- *u_i* upper bound of step response at the *i*th term.

(Fazel)

- Introduction
- Simple Case: Modeling without Bad Luck
- Robust Scheduling with Bad Luck
- Conclusions

Shen, Yang (RPI)

SDCMPCC formulation

Want to solve:

$$\min_{X} \{ \operatorname{rank}(X) : X \in \mathcal{C} \text{ and } X \in \mathbb{S}^{n}_{+} \}$$

Equivalently:

$$\min_{X,U}$$
 $n- < I, U >$ subject to $X \in \mathcal{C}$ $0 \le U \le I$ $0 < X \perp U \succeq 0$

When X and U p.s.d, $X \perp U$ is equivalent to:

$$< X, U > = 0$$

Note that if X has the eigenvalue decomposition,

$$X = P^T \Sigma P$$

then we can choose

$$U=P_0\,P_0^T$$

where P_0 is composed of columns in P corresponding to 0 eigenvalue of X.

Thus, it is obvious that $rank(X) = n - \langle I, U \rangle$.

SDCMPCC formulation

We can apply the SDCMPCC formulation to the general case $X \in \mathbb{R}^{m \times n}$ by introducing an auxiliary variable Z:

$$Z = \left[\begin{array}{cc} G & X^T \\ X & B \end{array} \right] \succeq 0$$

For any X, can find matrix G and B such that $Z \succeq 0$ and rank(Z) = rank(X)

In the objective, we want to minimize the rank of Z.

10 / 20

Shen, Yang (RPI) Robust Scheduling MOPTA 2015

Constraint Qualification of SDCMPCC Formulation

Common Constraint qualifications such as LICQ and Robinson CQ are violated for SDCMPCC.

Here we consider Local Calmness.

Definition

Suppose that \bar{x} is a local optimal solution to the problem:

$$\underset{x \in X}{\text{minimize}} \ f(x) \ \text{subject to} \ x \in \mathcal{L} \ \text{and} \ g(x) \in -\mathcal{K} \tag{1}$$

Problem(1) is said to be calm of order $\alpha>0$ at \bar{x} if there exists $M<\infty$ such that, for any sequence $\{z^q\}$ with $0\neq z^q\to 0$ and any sequence $\{x_q\}\subset \mathcal{L}$ satisfying $x^q\to \bar{x}$ and $g(x^q)\in z^q-\mathcal{K}$, there holds

$$\frac{f(x^q) - f(\bar{x})}{||z^q||^{\alpha}} + M \ge 0 \tag{2}$$

(RPI) Robust Scheduling MOPTA 2015 11/20

Constraint Qualification of SDCMPCC Formulation

Huang et.al shows that local calmness or order 1 implies the existence of KKT multipliers:

Theorem

Let \bar{x} be a local optimal solution to Problem(1) and (1) is calm of order 1 at \bar{x} . Then, there exists $\mu \in K^*$ such that the system:

$$0 \in \partial f(\bar{x}) + \mu(\nabla g(\bar{x})) + N_{\mathcal{L}}(\bar{x})$$

$$\mu(g(\bar{x})) = 0$$

is consistent. $N_{\mathcal{L}}(\bar{x})$ is the Clarke normal cone of \mathcal{L} at \bar{x} .

4□ > 4□ > 4 = > 4 = > = 90

MOPTA 2015

12 / 20

Shen, Yang (RPI) Robust Scheduling

Constraint Qualification of SDCMPCC Formulation

Proposition

Calmness of Order 1 holds at each local optimum (\bar{X}, \bar{U}) in the SDCMPCC Formulation.

In the proof, let (X^q, U^q) be a feasible solution to the perturbed SDCMPCC Formulation with perturbation parameter (z^q, r^q, h_1^q, h_2^q) .

Want to show the existence of $M < \infty$ that satisfies:

$$(n- < I, U^q >) - (n- < I, \bar{U} >) \ge -M||(z^q, r^q, h_1^q, h_2^q)||$$

for any $(X^q,U^q) o (\bar X,\bar U)$.

An upper bound of $n-\langle I, \bar{U} \rangle$ is $rank(\bar{X})$.

◄□▶
□▶
□▶
▼□▶
▼□▶
▼□▶
▼□
▼□
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥</p

13 / 20

Shen, Yang (RPI) Robust Scheduling MOPTA 2015

Want to get a lower bound for $n-\langle I,U^q\rangle$. (X^q,U^q) is feasible to the perturbed problem:

minimize
$$n-$$
 subject to $X+z^q\in \widetilde{\mathcal{C}}\cap \mathcal{S}^n_+$ $-\leq r^q$ $< X,\ U>\leq r^q$ $I-U\succeq -h_1^q I$ $U\succeq -h_2^q I$

The lower bound can be acquired by fixing $X = X^q$ in the perturbed problem.

- <ロ> <倒> <き> <き> <き> <き < の<0

14/20

By fixing $X = X^q$ we can get the following problem:

minimize
$$n- < I, U>$$
 subject to $- < X^q, U> \le r^q, y$ $< X^q, U> \le r^q, y_2$ $I-U\succeq -h_1^q I, \Omega_1$ $U\succeq -h_2^q I, \Omega_2$

where $y_1, y_2, \Omega_1, \Omega_2$ are the Lagrangian multipliers for the corresponding constraints.

 U^q is feasible to the above problem.

Slater condion holds for the above problem. Can find a lower bound the objective by Strong Duality

Shen, Yang (RPI) Robust Scheduling MOPTA 2015 15 / 20

The dual problem is:

$$\begin{array}{ll} \underset{y_1,y_2\in\mathbb{R},\,\Omega_1,\Omega_2\in\mathbb{S}^n}{\text{maximize}} & n+r^q\,y_1+r^q\,y_2-(1+h_1^q)\textit{trace}(\Omega_1)-h_2^q\,\textit{trace}(\Omega_2)\\ \text{subject to} & -y_1\,X^q\,+\,y_2\,X^q\,-\,\Omega_1\,+\,\Omega_2\,=\,-I\\ & y_1,\,y_2\,\leq\,0\\ & \Omega_1,\,\Omega_2\,\succ\,0 \end{array}$$

By diagonalizing X^q we can get a tightened problem:

$$\begin{array}{ll} \underset{y_1,y_2\in\mathbb{R},\,f,\,g\in\mathbb{R}^n}{\text{maximize}} & n+r^q\,y_1+r^q\,y_2-(1+h_1^q)\sum_i f_i-h_2^q\,\sum_i g_i\\ \text{subject to} & -y_1\,\lambda_i^q\,+\,y_2\,\lambda_i^q\,-\,f_i+g_i=-1,\,\forall i=1\cdots n\\ & y_1,\,y_2\,\leq\,0\\ & f_i,\,g_i\,\geq\,0,\,\forall i=1\cdots n \end{array}$$

Since $X^q \to \bar{X}$, $\lambda_i^q \to \lambda_i$. Can get a lower bound for the objective of the dual problem, which is:

$$\operatorname{rank}(X) - \frac{2r^q}{\tilde{\lambda}} - (n - \operatorname{rank}(X))(h_1^q + (1 + h_1^q)\frac{2}{\tilde{\lambda}}||z^q||) - \frac{h_2^q}{\tilde{\lambda}}||\bar{X}||^*$$

where $\tilde{\lambda}$ is the smallest positive eigenvalue of \bar{X} . We can take

$$M = \frac{2}{\tilde{\lambda}} + \frac{1}{\tilde{\lambda}} ||\bar{X}||^* + (n - rank(X))(1 + \frac{4}{\tilde{\lambda}})$$

Shen, Yang (RPI) Robust Scheduling MOPTA 2015 17 / 20

KKT Condition of SDCMPCC Formulation

Given $C = \{X \mid \langle A_i, X \rangle \geq b_i, \forall i = 1 \cdots p\}$ The KKT condition is:

$$0 \leq U \quad \perp -I + \mu X + Y \geq 0$$

$$0 \leq X \quad \perp -\sum \lambda_i A_i + \mu U \geq 0$$

$$0 \leq Y \quad \perp I - U \geq 0$$

$$0 \leq \lambda_i \quad \perp b_i - \langle A_i, X_i \rangle > 0, \forall i = 1 \dots, p$$

$$(3)$$

Where λ, μ and Y are lagrangian multipliers corresponding to the constraints A(X) = b, $\langle X, U \rangle = 0$ and $I - U \succeq 0$ respectively.

Any feasible pair (X, U) with U given by $P_0P_0^T$ with columns of P_0 to be the eigenvectors in the null space of X, is a KKT stationary point of the SDCMPCC Formulation.

Shen, Yang (RPI) Robust Scheduling MOPTA 2015 18 / 20

- Introduction
- 2 Simple Case: Modeling without Bad Luck
- Robust Scheduling with Bad Luck
- Conclusions

- Introduction
- Simple Case: Modeling without Bad Luck
- Robust Scheduling with Bad Luck
- 4 Conclusions

