

非线性方程的数值解法

温丹苹

邮箱: dpwen@nju.edu.cn

办公室:工管院协鑫楼306

2.3 牛顿法

例 编写程序, 用 Newton 法求 $f(x) = xe^x - 1$ 的零点. Demo_3_1_NLS_Newton.m

解. 迭代格式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k e^{x_k} - 1}{e^{x_k}(x_k + 1)}.$$

取初值 $x_0 = 0.5$, 迭代结果见下表.

k	x	f(x)
	0.50000000	1.76e-01
1	0.57102044	1.07e-02
2	0.56715557	3.39e-05
3	0.56714329	3.41e-10
4	0.56714329	2.22e-16

从表中数据可以看出, Newton 法迭代 4 步就达到机器精度了, 收敛速度非常快. □

2.3.6 牛顿法

作业:

用Newton法求方程 $f(x) = x^2 - 115 = 0$ 的解。

2.3 牛顿法

上机作业:

用Newton法求方程

$$f(x) = e^{(2x-1)}(2-x) + 1 = 0$$
的解。

2.3.7 牛顿法重根情形

◆ 解决重根问题-例子

例 已知 $\sqrt{2}$ 是方程 $x^4 - 4x^2 + 4 = 0$ 的多重根,分别用牛顿法和求重根的牛顿法求其近似根。

作业(以1.5作为初值,采用三种方法,包括牛顿法、已知其是二重根的牛顿法、不知道其是二重根的牛顿法;每个方法迭代5次,记录每一次迭代得到的近似值,并说明三种方法的表现)。

* 编写程序,分别用以上三种方法计算。

Demo_3_2_NLS_Newton.m

