Collaborated with Ivan Lin

Similar to part a, the professors start by agreeing on a number L that has a value much larger than one trillion. The first professor picks a random number R_1 between 0 and L-1 inclusive. However, instead of the first professor adding his salary to the random number, he splits it into n smaller random numbers that add up to the initial random number r_1 to r_n . He then randomly picks a number between r_1 to r_n inclusive before distributing the rest to the other professors. After the other n-1 professors repeat the same process, each professor should have two random numbers: the random number they chose between 0 and L -1 (R_n) and the sum of all the random pieces they were given $(\sum_{i=1}^n r_i)$. The first professor then adds either R_1 or $\sum_{i=1}^n r_i$ to his salary (for the sake of this explanation, I'll say he uses R_1) and mods it by L to maintain a uniform distribution.

Current Total =
$$(S_1 + R_1) \mod L$$

Rather than telling the professor next to him, the first professor says his number aloud for all professors to hear. The next professor volunteers and then adds his salary (S_2) plus his random number (R_2) modded by L to the current total.

Current Total =
$$(S_1 + R_1 + S_2 + R_2) \mod L$$

The remaining professors do the same resulting in:

Total = (Total Professor Salaries
$$(\sum_{i=1}^{n} S_i)$$
 + Total Random Numbers $(\sum_{i=1}^{n} R_i)$) mod L

To figure out the total professor salaries, the professors all subtract the sum of their random pieces $(\sum_{i=1}^{n} r_i)$ then mod by L

$$\sum_{i=1}^{n} R_i = \sum_{i=1}^{n} \sum_{i=1}^{n} r_i$$

Total Professor Salaries $(\sum_{i=1}^n S_i) = (\text{Total - Total Random Pieces } (\sum_{i=1}^n \sum_{i=1}^n r_i)) \mod L$

To find the average of their salaries, the professors divide their total by n.

Average Professor Salary = Total Professor Salaries / n