



02/05/2017



#### Sockets en IPv6: estructuras

• Estructura de direcciones de sockets en IPv6 ( definidas en <netinet/in.h>)

```
/* IPv6 address */
struct in6_addr {
  union {
    uint8_t u6_addr8[16];
    uint16_t u6_addr16[8];
    uint32_t u6_addr32[4];
  } in6_u;
};
struct sockaddr_in6 {
  uint8_t sin6_len;
                              /* Longitud de esta estructura*/
  sa_family_t sin6_family; /* AF_INET6*/
  in_port_t sin6_port;
uint32_t sin6_flowinfo;
                              /* Transport layer port # */
                              /* IPv6 flow information */
  struct in6_addr sin6_addr; /* IPv6 address */
  uint32_t sin6_scope_id;
                              /* IPv6 scope-id */
};
```





## Sockets en IPv6: crear y asociar

```
/* Declaración */
int s;
struct sockaddr_in6 myaddr_in6;

/* Creación */
s = socket(AF_INET6, SOCK_STREAM, 0);

/* Inicialización */
myaddr_in6.sin6_family = AF_INET6;
myaddr_in6.sin6_addr = in6addr_any;
myaddr_in6.sin6_port = htons(13);

/* Asociación */
bind(s, (struct sockaddr *) &myaddr_in6, sizeof(myaddr_in6));
```

Redes de Computadores II - Grado en Ingeniería Informática





#### Sockets en IPv6: cambios de formato

- Cambios de formato en direcciones (<arpa/inet.h>)
  - o int inet\_pton(int af, const char \*src, void \*dst);
    - Convierte direcciones IPv4 (AF\_INET) e IPv6 (AF\_INET6) de texto a formato binario (estructura de dirección de red)
  - o const char \*inet\_ntop(int af, const void \*src, char \*dst, socklen\_t size);
    - Convierte direcciones IPv4 e IPv6 de formato binario a texto
- Ejemplo:

```
char equipo[INET6_ADDRSTRLEN];
unsigned char cliaddr[sizeof(struct in6_addr)];
inet_ntop (AF_INET6, cliaddr, equipo, sizeof(equipo));
```

• Ejemplo de sockets IPv6 de fecha y hora disponible en Diaweb

(



# Otras familias y tipos de sockets (I)

| Familia            | Descripción                    |
|--------------------|--------------------------------|
| AF_INET            | Protocolos IPv4                |
| AF_INET6           | Protocolos IPv6                |
| AF_LOCAL (AF_UNIX) | Protocolos de dominios de UNIX |
| AF_ROUTE           | Sockets de encaminamiento      |
| AF_KEY             | Sockets de clave               |
| AF_NS              | Protocolos Xerox NS (XNS)      |
| AF_ISO             | Protocolos de OSI              |

| Tipo           | Descripción                                |  |  |
|----------------|--------------------------------------------|--|--|
| SOCK_STREAM    | Sockets stream                             |  |  |
| SOCK_DGRAM     | Sockets datagrama                          |  |  |
| SOCK_RAW       | Procesado propio                           |  |  |
| SOCK_PACKET    | Acceso a nivel de enlace (sólo para LINUX) |  |  |
| SOCK_SEQPACKET | Sockets de paquetes en secuencia           |  |  |

Redes de Computadores II - Grado en Ingeniería Informática





# VNIVERSIDAD Otras familias y tipos de sockets (y II)

|                | AF_INET | AF_INET6 | AF_LOCAL | AF_ROUTE | AF_KEY | AF_OSI | AF_NS |
|----------------|---------|----------|----------|----------|--------|--------|-------|
| SOCK_STREAM    | TCP     | TCP      | SI       |          |        |        |       |
| SOCK_DGRAM     | UDP     | UDP      | SI       |          |        |        |       |
| SOCK_RAW       | IPv4    | IPv6     |          | SI       | SI     |        |       |
| SOCK_SEQPACKET |         |          |          |          |        | SI     | SI    |



#### Escenario 1: Cliente IPv4, Servidor IPv6

- Un servidor IPv6 con pila dual puede atender clientes IPv4 e IPv6
- Lo hace utilizando direcciones IPv6 obtenidas de la correspondiente IPv4
- El servidor crea un socket IPv6 que escucha en la dirección comodín de IPv6









#### Escenario 2: Cliente IPv6, Servidor IPv4

- El servidor IPv4 se inicia en un nodo que sólo tiene IPv4 y crea un sockets IPv4 de escucha
- El cliente IPv6 se inicia y antes del connect o sendto llama a getaddrinfo para obtener la dirección IP del servidor. La pila dual del cliente detecta la dirección IPv4 del servidor y retorna la dirección IPv6 de la correspondiente IPv4
- Por tanto, se hace utilizando datagramas IPv4





Peticiones de clientes, dependiendo del tipo de dirección y tipo de socket



### Ejemplo

• Servidor y cliente de fecha y hora TCP y UDP disponible en la plataforma de la asignatura



#### Aplicaciones multicast con Sockets

#### Multicast

 Mediante las funciones setsockopt y getsockopt con las siguientes opciones

| Orden                                   | Tipo de dato                       | Descripción                                       |  |  |
|-----------------------------------------|------------------------------------|---------------------------------------------------|--|--|
| IP_ADD_MEMBERSHIP IPV6_ADD_MEMBERSHIP   | struct ip_mreq<br>struct ipv6_mreq | Unirse a un grupo multicast                       |  |  |
| IP_DROP_MEMBERSHIP IPV6_DROP_MEMBERSHIP | struct ip_mreq<br>struct ipv6_mreq | Abandonar un grupo multicast                      |  |  |
| IP_MULTICAST_IF IPV6_MULTICAST_IF       | struct in_addr                     | Especificar el interfaz por defecto               |  |  |
| IP_MULTICAST_TTL IPV6_MULTICAST_HOPS    | u_char                             | Especificar el TTL en IPv4 y el alcance para IPv6 |  |  |
| IP_MULTICAST_LOOP IPV6_MULTICAST_LOOP   | u_char                             | Habilitar o deshabilitar<br>loopback              |  |  |

Redes de Computadores II - Grado en Ingeniería Informática





#### Aplicaciones multicast con Sockets (I)

- Emisor multicast (Cliente)
  - Crear el socket AF\_INET (ó AF\_INET6) y del tipo SOCK\_DGRAM
  - Inicializar la estructura sockaddr\_in (ó sockaddr\_in6) con nuestra propia IP y número de puerto efímero
  - Activar IP\_MULTICAST\_LOOP (ó IPV6\_MULTICAST\_LOOP) en el socket si se desea recibir también copia de los datagramas enviados al grupo multicast
  - Configurar si fuera necesario la interfaz por la que se enviarán los datagramas con la opción IP\_MULTICAST\_IF (ó IPV6\_MULTICAST\_IF)
  - Enviar el datagrama a la IP multicast y número de puerto de nuestra aplicación (conocido por nuestros clientes) rellenando una estructura sockaddr\_in (ó sockaddr\_in6)

- Suscriptor multicast (Servidor)
  - Crear el socket AF\_INET (ó AF\_INET6) y del tipo SOCK\_DGRAM
  - Activar la opción SO\_REUSEADDR para permitir varios suscriptores en la misma máquina
    - De esta forma se pueden recibir datagramas destinados al mismo numero de puerto
  - Usar bind para especificar el número de puerto de nuestra aplicación e INADDR\_ANY (ó in6addr\_any) para recibir datagramas
  - Utilizar IP\_ADD\_MEMBERSHIP (6
     IPV6\_ADD\_MEMBERSHIP) para

     especificar el grupo multicast del que se
     desean recibir datagramas y
     opcionalmente por qué interfaz si el
     equipo tiene varias (estructura
     pv6\_mreq)
  - Recibir los datagramas





### Aplicaciones multicast con Sockets (II)

• Extracto de código de unión al grupo multicast en una determinada interfaz

```
#define GRUPOMULTICASTV6 "ff15::33"
#define INTERFAZ "eth0"
...
struct ipv6_mreq ipv6mreq;
...
ipv6mreq.ipv6mr_interface=if_nametoindex(INTERFAZ);

/* Convierte la dirección multicast a binario */
if(inet_pton(familia,GRUPOMULTICASTV6,&ipv6mreq.ipv6mr_multiaddr)==-1)
    {
        perror("Llamada inet_pton\n");
        exit(1);
    }

/* Unirse al grupo multicast */
if(setsockopt(s,IPPROTO_IPV6,IPV6_ADD_MEMBERSHIP,&ipv6mreq,sizeof(ipv6mreq))==-1)
    {
        perror("Llamada setsockopt para multicast\n");
        exit(1);
    }

    Redes de Computadores II - Grado en Ingenieria Informática
```





#### Aplicaciones multicast con Sockets (y III)

Extracto de código para especificar la interfaz por la que difundir

```
#define INTERFAZ "eth0"
...
int interfaz;
...
interfaz=if_nametoindex(INTERFAZ);

/* Difundir por una interfaz determinada */
if(setsockopt(s,IPPROTO_IPV6,IPV6_MULTICAST_IF,(char *)&interfaz, sizeof(interfaz)))==-1)
    {
        perror("Llamada setsockopt para especificar interfaz de difusión");
        exit(1);
    }
}
```





# Aplicaciones multicast con Sockets (y III)

• Extracto de código para especificar el número de saltos

