

Nombre:		
Curso:	1º Bachillerato B	Examen extraordinario SEPTIEMBRE
Fecha:	1 de septiembre de 2014	Atención: La no explicación clara y concisa de cada ejercicio implica una penalización del 25% de la nota

1. Resuelve las siguientes ecuaciones y la inecuación: (1'5 puntos)

a)
$$\sqrt{4+x} - \sqrt{6-x} = 2$$
 b) $2\log x - \log(x-16) = 2$ c) $\frac{2x-1}{x^2 - 5x + 6} < 0$

2. Resuelve el triángulo ABC del que conocemos dos lados y el ángulo comprendido:

$$\hat{A} = 40^{\circ}$$
, b = 7 m y c = 10 m (1'5 puntos)

3. Realiza las siguientes operaciones con complejos, expresando el resultado en forma polar y forma binómica:

a)
$$3_{45^{\circ}} \cdot 2_{15^{\circ}}$$
 b) $9_{37^{\circ}} : 3_{97^{\circ}}$ c) $\left(1 - i\right)^{6}$ (1'5 puntos)

4. Dado el triángulo de vértices **A**(1,3), **B**(3,1) y **C**(-1,-1), hallar los ángulos que forma la altura que pasa por **B**, con los lados que concurren en **B**. (1'5 puntos)

5. Calcular los siguientes límites:

a)
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$$
 b)
$$\lim_{x \to +\infty} (\sqrt{(x+2)(x-3)}-x)$$
 (1 punto)

6. Calcular las siguientes derivadas, simplificando el resultado:

a)
$$f(x) = ar \cot g(\cos^2 x)$$

b) $f(x) = \sqrt[3]{acsenx}$
c) $f(x) = \frac{\ln(x^2 + 1)^3}{x^2 + 1}$ (1'5 puntos)

7. Estudia el dominio, cortes con los ejes, asíntotas y ramas infinitas, intervalos de crecimiento y decrecimiento, máximos y mínimos de la siguiente función:

$$f(x) = \frac{x^2}{x^2 + x - 4}$$
 (1'5 puntos)