PRINCIPAL COMPONENT ANALYSIS

Unsupervised Learning

Lê Hồng Phương

Data Science Laboratory
Vietnam National University, Hanoi

phuonglh@hus.edu.vn>

December 13, 2021

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

Overview

- Principal Component Analysis (PCA) is a simple, non-parametric method of *extracting relevant information* from noisy datasets.
- PCA provides a method to reduce a complex dataset to a lower dimension to reveal hidden properties/structures of the dataset.
- PCA is widely used in many forms of analysis: neuroscience, computer graphics, natural language processing, etc.

- We are studying the motion of an ideal spring.
- This system consists of a ball of mass m attached to a massless, frictionless spring.
- The ball is released a small distance away from equilibrium (the spring is stretched).
- The spring oscillates indefinitely along the x-axis about its equilibrium at some frequency.

- This is a standard problem in physics, the motion along the x-axis is solved by an explicit function of time.
 - The underlying dynamics can be expressed as a function of a single variable x.
- However, suppose that we do not know which axes and dimensions are important to measure.
- Thus, we decide to measure the ball's position in a three-dimensional space.
 - We place 3 cameras around our system of interest.

- At 200 Hz, each camera records an image indicating a 2-dimensional position of the ball (a projection).
- Unfortunately, we do not even know what are the real "x", "y" and "z", so we choose 3 camera axes $\{\vec{a}, \vec{b}, \vec{c}\}$ at some arbitrary angles w.r.t. the system.
- The angles between our measurements might not even be 90⁰!
- Now, we record the cameras for 2 minutes.
- How do we get from this dataset to a simple equation of x?

Some common problems:

- We sometimes record more dimensions than we actually need.
- We have to deal with noise (e.g. air, imperfect cameras, friction...)

Some common problems:

- We sometimes record more dimensions than we actually need.
- We have to deal with noise (e.g. air, imperfect cameras, friction...)

Goal: PCA computes the most meaningful *basis* to re-express a noisy, garbled dataset.

 The new basis will filter out the noise and reveal hidden dynamics (e.g. the dynamics are along the x-axis).

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

8/53

A Naive Basis

A naive and simple choice of a basis is the identity matrix:

$$\mathbf{I} = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_D \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- Each row is a basis vector **e**_i with D components.
- Every data point is a vector that lies in a *D*-dimensional vector space spanned by an orthonormal basis.
- All vectors in this space are a linear combination of this set of unit length basis vectors.

PCA question: *Is there another basis, which is a linear combination of the original basis, that best re-expresses our dataset?*

PCA question: *Is there another basis, which is a linear combination of the original basis, that best re-expresses our dataset?*

Note: PCA makes a powerful assumption: linearity.

 The data characterizes/provides an ability to interpolate between the individual data points.

Let **X** and **Z** be $N \times D$ matrices related by a linear transformation θ :

$$\mathbf{X}\,\theta=\mathbf{Z}$$

- X is the original recorded dataset;
- **Z** is a re-representation of that dataset.

$$\mathbf{X}\,\theta=\mathbf{Z}$$

This change of basis has some interpretations:

- \bullet θ is a matrix that transforms **X** to **Z**.
- Geometrically, θ is a rotation and a stretch which transforms **X** into **Z**.
- ullet The columns of heta are a set of new basis vectors for expressing the rows of X:

$$\begin{pmatrix} - & \mathbf{x}_1 & - \\ - & \mathbf{x}_2 & - \\ \dots & \dots & \dots \\ - & \mathbf{x}_N & - \end{pmatrix} \begin{pmatrix} | & | & \vdots & | \\ \theta_1 & \theta_2 & \vdots & \theta_D \\ | & | & \vdots & | \end{pmatrix} = \mathbf{Z}$$

• Each row of **Z** is

$$\mathbf{z}_i = (\mathbf{x}_i \cdot \theta_1, \mathbf{x}_i \cdot \theta_2, \dots, \mathbf{x}_i \cdot \theta_D).$$

- Each element of z_i is a dot product of x_i with the corresponding column in θ .
- That is, the *j*-th element of z_i is a projection of x_i onto the *j*-th column of θ .

- By assuming linearity, the problem reduces to finding the appropriate change of basis.
- The column vectors $\theta_1, \theta_2, \dots, \theta_D$ will become the **principal** components of X.

- By assuming linearity, the problem reduces to finding the appropriate change of basis.
- The column vectors $\theta_1, \theta_2, \dots, \theta_D$ will become the **principal** components of X.

Questions:

- What is the best way to re-express **X**?
- What is a good choice of basis θ ?

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

- Noise in any dataset must be low, otherwise, no useful information of a system can be extracted.
- All noise is measure relative to the measurement. A common measure is the *signal-to-noise ratio* (SNR), or a ratio of variance σ^2 :

$$\mathsf{SNR} = \frac{\sigma_{\mathsf{signal}}^2}{\sigma_{\mathsf{noise}}^2}$$

• A high SNR (SNR \gg 1) indicates high precision data, while a low SNR indicates noise contaminated data.

Noise

The SNR measures how "fat" the oval is.

Noise

- In our example, any individual camera should record motion in a straitght line.
- Therefore, any spread deviating from straight-line motion must be noise.

- Redundancy is more tricky issue. Multiple sensors record the same dynamics information.
- A simple way to quantify the redundancy between measurements is to calculate the their **covariance**.
- Covariance is a measure of how much two random variables change together:
 - If the variables tend to show similar behavior (greater/greater, smaller/smaller), the covariance is positive.
 - If the variables tend to show opposite behavior (greater/smaller, smaller/greater), the covariance is negative.
- The sign of the covariance therefore shows the tendency in the *linear* relationship between the variables.

The covariance between two jointly distributed real-valued random variables X and Y is defined as:

$$\sigma_{XY}^2 = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

= $\mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$

Two important facts about covariance:

- $\sigma_{XY}^2 = 0$ iff X and Y are entirely uncorrelated.
- $\sigma_{YY}^2 = \sigma_Y^2$ iff X = Y.

• For random vectors **X** and **Y**, both of dimension D, their $D \times D$ covariance matrix is

$$\sigma_{\mathbf{X}\mathbf{Y}}^2 = \mathbb{E}[\mathbf{X}\mathbf{Y}^T] - \mathbb{E}[\mathbf{X}]\mathbb{E}[\mathbf{Y}^T].$$

• For a vector X of D jointly distributed real-valued random variables, its covariance matrix is

$$\Sigma(\mathbf{X}) = \sigma_{\mathbf{X}\,\mathbf{X}}^2.$$

The Iris dataset:

$$\Sigma(\mathbf{X}) = \begin{pmatrix} 0.665822 & -0.026056 & 1.235005 & 0.500998 \\ -0.026056 & 0.190509 & -0.308566 & -0.111119 \\ 1.235005 & -0.308566 & 3.071335 & 1.279612 \\ 0.500998 & -0.111119 & 1.279612 & 0.576284 \end{pmatrix}$$

Note that the diagonal elements of $\Sigma(\mathbf{X})$ are the variances of particular features.

If **X** is a dataset containing N examples, each example x_i has D features with zero mean. Then:

$$\Sigma(\mathbf{X}) = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}.$$

 $\Sigma(\mathbf{X})$ is a square symmetric $D \times D$ matrix.

Diagonalize the Covariance Matrix

- Our goal is to reduce redundancy, then we want each feature to co-vary as little as possible with other features.
- In order to remove redundancy, we want that all the covariances between separate features to be zero.
- That is, we want to transform from ${\bf X}$ to ${\bf Z}$ such that $\Sigma({\bf Z})$ is a diagonal matrix.

Diagonalize the Covariance Matrix

- There are many methods for diagonalizing $\Sigma(\mathbf{Z})$. PCA uses the easiest method.
- First, PCA assumes that all basis vectors are orthonormal, that is

$$\theta_i \cdot \theta_j \equiv \delta(i=j).$$

In other words, θ is an orthonormal matrix.

 Second, PCA assumes the directions with the largest variances are the most "important", or most "principal".

Diagonalize the Covariance Matrix

How PCA works:

- First, it selects a normalized direction in D-dimensional space along which the variance in \mathbf{Z} is maximized. It saves this as θ_1 .
- Then, it find another direction θ_2 along which the variance is maximized. Because of the orthonormality condition, it restricts the search to all directions perpindicular to all previous selected directions $(\theta_2 \cdot \theta_1 = 0)$.
- This continues until *D* directions are selected.
- The resulting ordered set of θ_i are the **principal components**.

PCA Problem

Problem

Find some orthonormal matrix θ where $\mathbf{Z} = \mathbf{X} \theta$ such that $\Sigma(\mathbf{Z}) = \frac{1}{N-1} \mathbf{Z}^T \mathbf{Z}$ is diagonalized.

The columns of θ are the principal components of **X**.

Content

- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- - Toy Dataset
 - Iris Dataset
 - Face Image Dataset

We have

$$\Sigma(\mathbf{Z}) = \frac{1}{N-1} \mathbf{Z}^T \mathbf{Z}$$

$$= \frac{1}{N-1} (\mathbf{X} \theta)^T (\mathbf{X} \theta)$$

$$= \frac{1}{N-1} \theta^T \mathbf{X}^T \mathbf{X} \theta$$

$$= \frac{1}{N-1} \theta^T \mathbf{A} \theta,$$

where we define $\mathbf{A} = \mathbf{X}^T \mathbf{X}$, which is a *symmetric* matrix.

Theorem

A symmetric matrix is diagonalized by a matrix of its orthonormal eigenvectors.

Because of this theorem, there exists a diagonal matrix **D** such that

$$\mathbf{A} = \mathbf{E} \mathbf{D} \mathbf{E}^T$$

where **E** is a matrix of eigenvectors of **A** arranged as columns.

- The matrix **A** has $L \leq D$ orthonormal eigenvectors where L is the rank of the matrix.
- The rank of $\bf A$ is less than D when $\bf A$ degenerate, or all data occupy a subspace of dimension L < D.
- So, we select the matrix θ to be a matrix where each column θ_j is an eigenvector of $\mathbf{X}^T \mathbf{X}$.
- By this selection, we have $\theta = \mathbf{E}$. So,

$$\mathbf{A} = \theta \mathbf{D} \theta^T.$$

Therefore.

$$\Sigma(\mathbf{Z}) = \frac{1}{N-1} \theta^T \mathbf{A} \theta$$

$$= \frac{1}{N-1} \theta^T (\theta \mathbf{D} \theta^T) \theta$$

$$= \frac{1}{N-1} (\theta^T \theta) \mathbf{D} (\theta^T \theta)$$

$$= \frac{1}{N-1} (\theta^{-1} \theta) \mathbf{D} (\theta^{-1} \theta)$$

$$= \frac{1}{N-1} \mathbf{D}.$$

That is, the choice of θ diagonalizes $\Sigma(\mathbf{Z})$.

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

Theoretical Basis

Theorem

The inverse of an orthogonal matrix is its transpose.

Theorem

If X is any matrix, the matrices $X^T X$ and $X X^T$ are both symmetric.

Theorem

A matrix is symmetric if and only if it is orthogonally diagonalizable.

Theoretical Basis

Theorem

A symmetric matrix is diagonalized by a matrix of its orthonormal eigenvectors.

Theorem

For any arbitrary $N \times D$ matrix \mathbf{X} , the symmetric matrix $\mathbf{X}^T \mathbf{X}$ has a set of orthonormal eigenvectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D\}$ and a set of associated eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_D\}$. The set of vectors $\{\mathbf{X} \mathbf{v}_1, \mathbf{X} \mathbf{v}_2, \dots, \mathbf{X} \mathbf{v}_D\}$ form an orthogonal basis, where each vector $\mathbf{X} \mathbf{v}_j$ is of length $\sqrt{\lambda_j}$.

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

Example 1: Toy Dataset

<i>x</i> ₁	<i>x</i> ₂
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2.0	1.6
1.0	1.1
1.5	1.6
1.1	0.9

Example 1: Toy Dataset

<i>x</i> ₁	<i>x</i> ₂	
0.69	0.49	
-1.31	-1.21	
0.39	0.99	
0.09	0.29	
1.29	1.09	
0.49	0.79	
0.19	-0.31	
-0.81	-0.81	
-0.31	-0.31	
-0.71	-1.01	
$\mu = (1.81, 1.91)$		

Example 1: Toy Dataset

$$\theta = \begin{pmatrix} 0.67787 & -0.73518 \\ 0.73518 & 0.67787 \end{pmatrix}$$

$$\mathbf{Z} = \begin{pmatrix} 0.827970 & -0.175115 \\ -1.777580 & 0.142857 \\ 0.992197 & 0.384375 \\ 0.274210 & 0.130417 \\ 1.675801 & -0.209498 \\ 0.912949 & 0.175282 \\ -0.099109 & -0.349825 \\ -1.144572 & 0.046417 \\ -0.438046 & 0.017765 \\ -1.223821 & -0.162675 \end{pmatrix}$$

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

Four features, reorder features as "Sepal Length", "Petal Length", "Sepal Width", "Petal Width".

$$\theta = \begin{pmatrix} 0.356687 & 0.657221 & 0.578737 & 0.325419 \\ 0.858455 & -0.176179 & -0.060299 & -0.477891 \\ -0.079358 & 0.729440 & -0.589941 & -0.337032 \\ 0.359904 & -0.070280 & -0.559819 & 0.743056 \end{pmatrix}$$

First and second principal component:

$$\theta_1 = \begin{pmatrix} 0.356687 \\ 0.858455 \\ -0.079358 \\ 0.359904 \end{pmatrix}; \quad \theta_2 = \begin{pmatrix} 0.657221 \\ -0.176179 \\ 0.729440 \\ -0.070280 \end{pmatrix}$$

Projection of **X** into 2 two-dimensional space:

$$\mathbf{Z} = \mathbf{X} * [\theta_1, \theta_2]$$

This can be viewed as a "data compression" technique (dimensionality reduction).

- In practice, if we were using a learning algorithm (linear regression, neural networks,...), we could now use the projected data instead of the original data.
- By using the projected data, we can train our model faster as there are less dimensions in the input.

Data Reconstruction

 After projecting the data onto the lower dimensional space, we can approximately recover the data by projecting them back to the original high dimensional space:

$$\mathbf{X}' = \mathbf{Z} \, \boldsymbol{\theta}^T$$

where $\theta = [\theta_1, \theta_2, \dots, \theta_K]$ contains K principal components.

- The recovered data X' is generally a coarsed-grained version of the original data X:
 - Some information is lost, some hidden semantics/structures are retained.
- Reconstruction error:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \| \mathbf{x}_i - \mathbf{x}'_i \|^2.$$

Data Reconstruction - Iris Dataset

Content

- Introduction
- Principal Component Analysis
 - Change of Basis
 - Noise and Redundancy
 - Solving PCA: Eigenvectors of Covariance
 - Theoretical Basis
- 3 Examples
 - Toy Dataset
 - Iris Dataset
 - Face Image Dataset
- 4 Exercises

Face Image Dataset

- We run PCA on face images to see how it can be used in practice for dimension reduction.
- The face image dataset contains 5000 face images, each of size 32×32 in grayscale.¹
- Each row of **X** corresponds to one face image (a row vector of length 1024).

¹A subset of the <u>Labeled Face in the Wild Home</u>.

Face Image Dataset – 100 Original Faces

Face Image Dataset – 36 Principal Components

Face Image Dataset – 100 Principal Components

Exercises

- Implement the PCA algorithm.
- Test the algorithm on different datasets.
- Run a classification algorithm on the projected Iris dataset (using first two principal components) and report the classification accuracy.