ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΡΑΛΛΗΛΑ ΣΥΣΤΗΜΑΤΑ

ΕΡΓΑΣΙΑ 2017-2018 ΣΥΝΕΛΙΞΗ ΕΙΚΟΝΑΣ ΜΡΙ, ΜΡΙ+ΟΡΕΝΜΡ

ΣΥΜΜΕΤΕΧΟΝΤΕΣ ΟΜΑΔΑΣ:

ΡΙΤΣΟΓΙΑΝΝΗ ΑΡΓΥΡΩ 1115201400171 ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΛΕΩΝΙΔΑΣ 1115201400202

ΠΕΡΙΕΧΟΜΕΝΑ

α) Πληροφορίες μεταγλώττισης/εκτέλεσης	3
	3
β) Σχόλια/Παρατήρησεις	4
2. Σχεδιασμός	6
3. Διαγράμματα	
4. Μετρήσεις,Επιδόσεις,Κλιμάκωση1	
5. Συμπεράσματα2	

1. ΓENIKA

Πληροφορίες μεταγλώττισης/εκτέλεσης

- Η εργασία υλοποιήθηκε σε προσωπικούς υπολογιστές και δοκιμάστηκε στους υπολογιστές της σχολής όπου έγιναν οι μετρήσεις που παρατίθενται παρακάτω.
- Στον παραδοτέοο φάκελο υπάρχουν δυο φάκελοι, ένας για το MPI και ένας για το MPI+OPENMP.
- Η μεταγλώττιση των προγραμμάτων γίνεται με τη χρήση της εντολής make.
- Για την εκτέλεση του προγράμματος MPI θα πρέπει να δοθούν όλες οι απαραίτητες παράμετροι, οι οποίες είναι:
 - το όνομα του αρχείου (flag -f)
 - το πλήθος των γραμμών (flag -r)
 - το πλήθος των στηλών (flag -c)
 - τον τύπο του αρχείου grey/rgb (flag -t)
 - την επιλογή φίλτρου (flag -s)
 - τον αριθμό επαναλήψεων εφαρμογής του φίλτρου (flag -i)
- Για την εκτέλεση του προγράμαμτος MPI+OPENMP θα πρέπει να δοθούν όλες οι παραπάνω παράμετροι συν τον αριθμό των νημάτων (flag -d)

 Σε περίπτωση που δεν δοθεί κάποια παράμετρος εμφανίζεται κατάλληλο μήνυμα.

Παραδείγματα εκτέλεσης:

MPI:

mpiexec -n 4 mpi_exe -f waterfall_grey_1920_2520.raw -r 2520 -c 1920 -t grey -s 1 -i 1

MPI+OPENMP:

mpiexec -n 4 openmp_exe -f waterfall_1920_2520.raw -r 2520 -c 1920 -t rgb -s 1 -i 1 -d 1

Σχόλια/Παρατηρήσεις

- Το πλήθος των διεργασιών θα πρέπει να είναι πάντα τετραγωνικό(π.χ. 1, 4, 9, 16, 25, ...) γιατί αλλιώς δεν θα μπορεί να εκτελεστεί σωστά το πρόγραμμα.
- Για την περίπτωση διπλασιασμού, τετραπλασιασμού κ.λπ. της εικόνας έχει γραφτεί κώδικας στην αρχή του προγράμματος, ο οποίος αυξάνει κατάλληλα το μέγεθος της εικόνας(πολλαπλασιάζοντας τις γραμμές ή τις στήλες) για να μπορεί να εκτελεστεί σωστά το πρόγραμμα. Έχει υλοποιηθεί με δύο τρόπους, είτε με το διπλασιασμό κ.λπ. γραμμών, είτε με το διπλασιασμό κ.λπ. στηλών, ξεσχολιάζοντας το αντίστοιχο κομμάτι.

- Για την περίπτωση του υποδιπλασιασμού κ.λπ. χρειάζεται απλά να δοθούν οι κατάλληλες γραμμές και στήλες.
- Χρησιμοποιούμε μονοδιάστατο πίνακα για την αποθήκευση του αντίστοιχου κομματιού της εικόνας από κάθε διεργασία, αφού η ιδιότητα του μονοδιάστατου πίνακα με τη χρήση συνεχόμενων θέσεων byte είναι πιο ασφαλής και αποδοτική.
- Οι παράμετροι που δίνονται διαβάζονται από τη διεργασία master, η οποία με τη σειρά της τις κάνει broadcast στις υπόλοιπες διεργασίες, έτσι ώστε να μην χρειάζεται να τις διαβάζουν όλες οι διεργασίες.
- Ανάλογα με τον τύπο της εικόνας(rgb/grey) υπάρχει μια μεταβλητή pix που βοηθά στην σωστή εφαρμογή του φίλτρου και τη γενίκευση του κώδικα ώστε να μην υπάρχουν περιττές διακλαδώσεις.
- Για τον υπολογισμό της συνέλιξης σε οριακά σημεία της εικόνας που δεν υπάρχουν γείτονες χρησιμοποιείται μία σταθερή τιμή 0 για τους γείτονες που δεν υπάρχουν.
- Για την εφαρμογή του φίλτρου αντικαταστάθηκε η επαναληπτική διαδικασία (χρήση διπλού for)με την εισαγωγή μιας μόνο εντολής, με αποτέλεσμα σημαντική μείωση του χρόνου εκτέλεσης του προγράμματος αφού αποφεύγονται έτσι οι πολλές και χρονοβόρες αναθέσεις.
- Στην εντολή pragma, στην περίπτωση OPENMP του προγράμματος, έχει γίνει χρήση του όρου collapse() (μετατροπή διπλού for σε ένα ενιαίο) για τη βελτίωση του χρόνου.

ΣΧΕΔΙΑΣΜΟΣ

Ο σχεδιασμός της άσκησης κινήθηκε στην κατεύθυνση της μεθοδολογίας του Foster, η οποία ορίζει τέσσερα στάδια σχεδιασμού. Τα στάδια αυτά είναι: partitioning(διαμερισμός), communication(επικοινωνία), agglomeration(συσσώρευση) και mapping(αντιστοίχιση).

1.Partitioning

Σε αυτό το στάδιο προσπαθούμε να διαμερίσουμε σε μικρά κομμάτια τόσο τους υπολογισμούς όσο και τα δεδομένα του προβλήματος. Έτσι χωρίζουμε την εικόνα σε πιο μικρές εικόνες ανάλογα με τον πλήθος διεργασιών που δίνονται. Με το διαχωρισμό αυτό επιτυγχάνεται η σωστή κατανομή δεδομένων. Ο φόρτος εργασίας μοιράζεται ισόποσα στις διεργασίες. Χρησιμοποιήθηκε Parallel I/O για ανάγνωση και εγγραφή πινάκων με διαστάσεις που προκύπτουν από τη διαίρεση του αρχικού μεγέθους της εικόνας δια το πλήθος των διεργασιών. Κάθε διεργασία έχει ένα μέρος της εικόνας πάνω στο οποίο εκτελεί το φίλτρο και διάφορες ενέργειες, με αποτέλεσμα οι διάφορες διεργασίες να εκτελούνται παράλληλα και αυτόνομα.

2.Communication

Για την επικοινωνία των διεργασιών χρησιμοποιήθηκαν Cartesian Topologies, οι οποίες δίνουν τη δυνατότητα στις διεργασίες να είναι τοποθετημένες και να επικοινωνούν βάση των καρτεσιανών συντεταγμένων. Κάθε διεργασία που έχει έναν υποπίνακα της

αρχικής εικόνας χρειάζεται να επικοινωνεί με τις υπόλοιπες γειτονικές διεργασίες (South, North, West, East, South-West, South-East, North-West, North-East) για να εκτελεστεί το φίλτρο με επιτυχία στο περίγραμμα του υποπίνακα. Για το εσωτερικό μέρος του υποπίνακα εφαρμόζεται το φίλτρο ώστε να γίνεται επικάλυψη επικοινωνίας και να μην μείνει αδρανής η διεργασία κατά την non-blocking αποστολή και λήψη των γειτονικών τμημάτων για το περίγραμμα του υποπίνακα.

Οι Cartesian Topologies χάρη στις διάφορες συναρτήσεις που παρέχουν συμβάλουν στην καλύτερη, ευκολότερη και πιο αποδοτική επικοινωνία μεταξύ των διεργασιών.

Για την αποστολή και την λήψη των τμημάτων του υποπίνακα χρησιμοποιήθηκαν τα κατάλληλα Datatypes (vector, contiguous) δεδομένων για την αποφυγή διάφορων κινδύνων επικοινώνιας και την καλύτερη αποτελεσματικότητα αυτών.

3.Agglomeration

Στη συσσώρευση διεργασιών, διεργασίες που εξαρτούνται η μια μετά την άλλη συννενόνται και δημιουργούν μια διεργασία που έχει την ολοκληρωμένη δουλεία και τον δύο. Στην περίπτωση μας, οι εργασίες που ενώνονται ειναι η εφαρμογή του φίλτρου στο εσωτερικό του πίνακα και η εφαρμογή του φίλτρου στα εξωτερικά τμηματα του πίνακα. Με αυτό τον τρόπο γίνεται πιο αποδοτικός ο αλγόριθμος και δεν υπάρχουν περιττές επικοινώνιες που θα αυξάναν το συνολικό χρόνο εκτέλεσης.

4.Mapping

Στο κομμάτι αυτό αναθέσαμε σε διεργασιές/νήματα τις σύνθετες διεργασίες που καθορίστηκαν απο τα προηγούμενα βήματα. Έτσι ώστε οι επικοινωνίες να ελαχιστοποιύνται και κάθε διεργασία/νήμα να έχει τελικά το ίδο φόρτο διεργασίας.

Γενικά χρησιμοποιήσαμε τον παρακάτω αλγόριθμο που ειπώθηκε και στο μάθημα και είναι ο εξής:

```
Hallo Points (Rows-Columns) Set Neighbours
  while() {
     Isend x 8
     Irecv x 8
        Application of the filter in the inside elements of the array(Inner Data)
        Wait(recv)
        Application of the filter in the outside elements of the array(Outer Data)
        Wait(send)
}
```

MPI vs MPI+OPENMP(4 threads), RGB, 1 iteration

MPI vs MPI+OPENMP(4 threads), RGB, 20 iterations

Συμπέρασμα

Από τα τρία παραπάνω διαγράμματα παρατηρούμε ότι στην περίπτωση του MPI+OPENMP με μία διεργασία και 4 threads, ο συνολικός χρόνος του προγράμματος μειώνεται σημαντικά σε σχέση με την περίπτωση του MPI με μία διεργασία επειδή γίνεται καλύτερη εκμετάλλευση πόρων του συστήματος, ενώ για μεγαλύτερο πλήθος διεργασιών συμβαίνει το αντίθετο. Αυτό συμβαίνει γιατί καθώς αυξάνεται το πλήθος των διεργασιών αυξάνει και το πλήθος των νημάτων, γεγονός που απαιτεί κατανάλωση χρόνου για το συντονισμό και την επικοινωνία μεταξύ των νημάτων αυξάνοντας έτσι το χρόνο του προγράμματος.

MPI+OPENMP, 1 process

Συμπέρασμα

Παρατηρούμε ότι με την αύξηση του αριθμού των νημάτων σε μια διεργασία ο χρόνος εκτέλεσης του προγράμματος μειώνεται και οι τιμές τις επιτάχυνσης αυξάνονται.

Συμπέρασμα

Στο διάγραμμα αυτό βλέπουμε ότι όταν αυξάνεται το μέγεθος των διεργασιών/πυρήνων η επιτάχυνση αυξάνεται γιατί γίνεται καλύτερη παραλληλοποίηση του προγράμματος.

Συμπέρασμα

Παρατηρούμε ότι όσο αυξάνεται το πλήθος των διεργασιών, η αποδοτικότητα μειώνεται, αφού όσο αυξάνεται το p (πλήθος διεργασιών/πυρήνων) το κλάσμα S/p (αποδοτικότητα) μειώνεται.

Comparison MPI Allreduce vs no MPI Allreduce

Συμπέρασμα

Με τη χρήση MPI_Allreduce ο χρόνος του προγράμματος αυξάνεται κατά ένα ποσοστό σε σχέση με το χρόνο της εκτέλεσης του προγράμματος χωρίς αυτό, λόγω της επιβάρυνσης του προγράμματος που υπάρχει κατά την εκτέλεση του MPI_Allreduce σε μεγάλο πλήθος διεργασιών. Αυτός ο χρόνος επιβάρυνσης προκαλείται από την ανάγκη συλλογικής επικοινωνίας μεταξύ των διεργασιών για την εκτέλεση μιας καθολικής πράξης.

Σύγκριση/Παράθεση επιτάχυνσης και αποδοτικότητας βάση του μέγεθους δεδομένων(ασπρόμαυρης εικόνας):

	1	4	9	16	25	36
S(half size)	1	1.42	1.11	1.42	10	5
E(half size)	1	0.35	0.12	0.08	0.4	0.14
S(standard)	1	3.5	1.75	7	7	15.83
E(standard)	1	0.88	0.14	0.44	0.28	0.44
S(double size)	1	3.63	2.23	9.6	9.6	32.22
E(double size)	1	0.91	0.25	0.6	0.38	0.89

Σύγκριση/Παράθεση επιτάχυνσης και αποδοτικότητας βάση του μέγεθους δεδομένων(έγχρωμης εικόνας):

	1	4	9	16	25	36
S(half size)	1	2	3.14	3.14	3.66	3.14
E(half size)	1	0.5	0.35	0.2	0.15	0.09
S(standard)	1	3.81	8.4	14	21	42
E(standard)	1	0.95	0.93	0.88	0.84	1.16
S(double size)	1	3.69	5.31	7.08	9.44	8.5
E(double size)	1	0.92	0.59	0.44	0.38	0.24

Μετρήσεις, επιδόσεις, κλιμάκωση (δεδομένων και επεξεργαστών).

ΕΓΧΡΩΜΗ

MPI

2520x1920, χωρίς MPI_Allreduce, rgb σε ενα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.42	0.11	0.10	0.12	0.11
20 iterations	8.46	2.30	1.55	1.49	1.65
50 iterations	21.15	5.76	3.93	3.67	4.10

2520x1920, με MPI_Allreduce, rgb σε ένα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.42	0.11	0.14	0.23	0.21
20 iterations	8.52	2.32	1.80	1.88	2.10
50 iterations	21.29	5.80	4.32	4.43	4.73

2520x1920, χωρίς MPI_Allreduce, rgb σε πολλά pc

Διεργασίες	9	16	25	36
1 iteration	0.05	0.03	0.02	0.01
20 iterations	0.68	0.38	0.25	0.17
50 iterations	1.65	0.93	0.60	0.42

2520x1920, με MPI_Allreduce, rgb σε πολλά pc

Διεργασίες	9	16	25	36
1 iteration	0.05	0.03	0.02	0.01
20 iterations	0.68	0.39	0.25	0.17
50 iterations	1.64	1.71	0.61	0.42

MPI+OPENMP

2520X1920, με MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.44	0.12	0.16	0.19	0.21
2	0.22	0.16	0.22	0.33	0.39
4	0.12	0.19	0.33	0.53	0.79
8	0.12	0.12	0.21	0.21	0.22

2520X1920, με MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.05	0.03	0.02	0.01
2	0.11	0.09	0.07	0.08
4	0.19	0.16	0.17	0.16
8	0.06	0.04	0.03	0.03

2520X1920, με MPI_Allreduce, rgb σε ενα pc

20 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	8.83	2.41	2.44	2.35	2.46
2	4.57	2.87	3.18	3.73	4.74
4	2.42	3.72	4.79	6.23	9.54
8	2.50	2.48	2.83	2.80	3.10

2520X1920, με MPI_Allreduce, rgb σε πολλά pc

20 iterations

Νήματα\Διεργασίες	9	16	25	36
1	0.89	0.50	0.32	0.23
2	1.75	1.44	1.00	1.03
4	2.57	2.00	1.98	1.95
8	1.13	0.67	0.45	0.34

2520X1920, με MPI_Allreduce, rgb σε ενα pc 50 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	22.08	6.05	5.53	5.81	6.33
2	11.40	7.43	8.13	9.04	11.73
4	6.27	7.71	11.66	15.22	23.22
8	6.26	6.21	6.90	7.23	8.01

2520X1920, με MPI_Allreduce, rgb σε πολλά pc 50 iterations

Νήματα\Διεργασίες	9	16	25	36
1	2.20	1.25	0.80	0.75
2	4.56	3.53	2.61	2.58
4	6.42	4.85	4.76	4.83
8	2.84	1.64	1.11	0.85

2520X1920, χωρίς MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.44	0.12	0.13	0.10	0.11
2	0.22	0.15	0.17	0.19	0.27
4	0.12	0.16	0.29	0.35	0.54
8	0.12	0.12	0.17	0.13	0.13

2520X1920, χωρίς MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.11	0.09	0.07	0.07
2	0.12	0.13	0.13	0.14
4	0.16	0.21	0.13	0.19
8	0.12	0.12	0.03	0.07

2520X1920, χωρίς MPI_Allreduce, rgb σε ενα pc 20 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	8.82	2.40	2.14	2.00	2.21
2	4.55	2.72	2.99	3.45	4.21
4	2.40	3.63	4.37	5.37	8.47
8	2.52	2.44	2.69	2.63	2.54

2520X1920, χωρίς MPI_Allreduce, rgb σε πολλά pc 20 iterations

Νήματα\Διεργασίες	9	16	25	36
1	1.31	0.82	0.54	0.44
2	1.60	1.41	1.39	0.97
4	2.52	1.79	1.88	1.77
8	1.34	0.89	0.61	0.50

2520X1920, χωρίς MPI_Allreduce, rgb σε ενα pc 50 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	22.08	6.02	5.33	4.94	5.54
2	11.40	7.24	7.44	8.06	10.25
4	6.03	9.06	10.88	13.74	20.16
8	6.24	6.08	6.24	6.35	6.57

2520X1920, χωρίς MPI_Allreduce, rgb σε πολλά pc 50 iterations

Νήματα\Διεργασίες	9	16	25	36
1	6.61	3.72	2.39	1.66
2	7.94	4.81	4.57	3.17
4	7.18	4.70	4.74	4.81
8	3.51	2.79	1.76	1.05

1260x1920, με MPI_Allreduce, rgb σε ενα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.22	0.11	0.09	0.16	0.14

2520x3840, με MPI Allreduce, rgb σε ενα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.85	0.23	0.30	0.36	0.35

1260x1920, χωρίς MPI_Allreduce, rgb σε ενα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.07	0.01	0.02	0.04	0.05

2520x3840, χωρίς MPI_Allreduce, rgb σε ενα pc

Διεργασίες	1	4	9	16	25
1 iteration	0.84	0.22	0.23	0.28	0.28

1260x1920, με MPI_Allreduce, rgb σε πολλά pc

Διεργασίες	9	16	25	36
1 iteration	0.07	0.07	0.06	0.07

2520x3840, με MPI_Allreduce, rgb σε πολλά pc

Διεργασίες	9	16	25	36
1 iteration	0.16	0.12	0.09	0.10

1260x1920, χωρίς MPI_Allreduce, rgb σε ενα pc

Διεργασίες	9	16	25	36
1 iteration	0.02	0.00	0.01	0.01

2520x3840, χωρίς MPI_Allreduce, rgb σε ενα pc

Διεργασίες	9	16	25	36
1 iteration	0.31	0.10	0.08	0.06

MPI+OPENMP

1260x1920, χωρίς MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.22	0.12	0.07	0.06	0.06
2	0.11	0.08	0.12	0.13	0.24
4	0.06	0.11	0.19	0.28	0.47
8	0.06	0.07	0.08	0.08	0.09

1260X1920, με MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.22	0.06	0.10	0.16	0.14
2	0.11	0.11	0.15	0.22	4.74
4	0.06	0.15	0.29	0.48	0.77
8	0.06	0.07	0.18	0.19	0.23

1260X1920, χωρίς MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.10	0.07	0.03	0.07
2	0.13	0.06	0.23	0.11
4	0.15	0.12	0.15	0.65
8	0.04	0.02	0.09	0.14

1260X1920, με MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.06	0.06	0.03	0.02
2	0.09	0.11	0.10	0.09
4	0.17	0.15	0.16	0.19
8	0.04	0.04	0.05	0.03

2520x3840, χωρίς MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.88	0.24	0.25	0.25	0.25
2	0.45	0.28	0.31	0.32	0.40
4	0.24	0.30	0.39	0.52	0.72
8	0.24	0.25	0.26	0.26	0.36

2520X3840, με MPI_Allreduce, rgb σε ενα pc

1 iteration

Νήματα\Διεργασίες	1	4	9	16	25
1	0.88	0.24	0.31	0.31	0.33
2	0.46	0.28	0.34	0.43	0.52
4	0.24	0.33	0.46	0.70	0.97
8	0.25	0.24	0.31	0.35	0.44

2520X3840, χωρίς MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.21	0.12	0.08	0.06
2	0.21	0.13	0.12	0.09
4	0.21	0.18	0.15	0.15
8	0.12	0.08	0.06	0.05

2520X3840, με MPI_Allreduce, rgb σε πολλά pc

1 iteration

Νήματα\Διεργασίες	9	16	25	36
1	0.22	0.14	0.09	0.07
2	0.23	0.13	0.14	0.10
4	0.28	0.21	0.20	0.19
8	0.17	0.09	0.05	0.07

ΑΣΠΡΟΜΑΥΡΗ

2520x1920, με MPI_Allreduce, grey σε ενα pc

Νήματα\Διεργασίες	1	4	9	16	25
1	0.1465	0.046	0.084	0.1399	0.1439
2	0.076	0.089	0.156	0.2599	0.4079
4	0.0401	0.156	0.301	0.5119	0.76
8	0.0434	0.058	0.117	0.1579	0.1719

2520x1920, με MPI_Allreduce, grey πολλα pc

Νήματα\Διεργασίες	16	25	36	64	100
1	0.0288	0.02722	0.009253	0.06109	0.07315
2	0.0186	0.01831	0.03814	0.13197	0.14397
4	0.0507	0.04599	0.11179	0.2428	0.25711
8	0.0127	0.0108	0.02406	0.06797	0.0874

2520x1920, με MPI_Allreduce ανα 5, grey ενα pc, 20 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	2.946	0.69	0.8703	1.1288	1.088
2	1.5244	1.4639	1.972	2.40	2.9639
4	0.8039	2.4556	3.2239	4.8199	7.7119
8	0.8584	0.8496	1.2559	1.6028	1.8120

2520x1920, με MPI_Allreduce ανα 5, grey πολλα pc, 20 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.2261	0.1524	0.1187	0.3646	0.3722
2	0.2136	0.1478	0.3811	1.2541	1.2438
4	0.9525	0.9359	1.5060	2.5799	2.5644
8	0.2033	0.1378	0.1668	0.3736	0.3882

1260x1920, με MPI_Allreduce, grey ενα pc

Νήματα\Διεργασίες	1	4	9	16	25
1	0.1055	0.0719	0.0919	0.1	0.1399
2	0.0976	0.0722	0.1519	0.2519	0.3919
4	0.1083	0.1357	0.2967	0.5040	0.8399
8	0.0411	0.0488	0.0999	0.1447	0.1920

1260x1920, με MPI_Allreduce, grey πολλα pc

Νήματα\Διεργασίες	16	25	36	100
1	0.0794	0.0157	0.0204	0.0315
2	0.0932	0.0354	0.0282	0.0958
4	0.1283	0.0487	0.0977	0.1877
8	0.0599	0.0081	0.0237	0.0478

2520x1920, με MPI_Allreduce ανα 5, grey ενα pc, 50 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	15.3725	6.6119	3.6382	3.7328	3.7443
2	11.7809	4.5839	5.8279	8.2959	9.2559
4	10.0154	5.3287	10.6563	14.4919	21.90
8	6.5158	3.3750	3.8370	4.2280	4.9283

2520x1920, με MPI_Allreduce ανα 5, grey πολλα pc, 50 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.7436	0.4517	1.5603	1.7309	0.7539
2	1.5409	2.0898	3.6457	4.6839	2.8959
4	3.3873	4.1711	5.5216	6.9599	5.8789
8	0.6768	0.7808	2.0039	0.8117	1.4498

5040x1920, με MPI_Allreduce, grey ενα pc

Νήματα\Διεργασίες	1	4	9	16	25
1	0.2931	0.0801	0.1359	0.1639	0.1680
2	0.1516	0.1193	0.2160	0.2639	0.3999
4	0.0802	0.1825	0.3334	0.5668	0.7760
8	0.0878	0.0918	0.1319	0.1999	0.2285

5040x1920, με MPI_Allreduce, grey πολλα pc

Νήματα\Διεργασίες	16	25	36	64	100
1	0.0359	0.033	0.0099	0.0239	0.0243
2	0.0111	0.0084	0.0464	0.0889	0.0934
4	0.047	0.0469	0.0757	0.1749	0.1897
8	0.0117	0.0093	0.0179	0.0359	0.0308

2520x1920, χωρίς MPI_Allreduce , grey ενα pc, 50 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	7.3155	1.6292	1.8847	1.6681	1.8496
2	3.7745	2.7841	4.0381	4.8799	5.2999
4	1.9925	5.5465	7.2397	10.3479	15.9679
8	2.1105	2.0036	2.2995	2.2428	2.5243

2520x1920, χωρίς MPI_Allreduce , grey πολλα pc, 50 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.4779	0.3250	0.2049	0.3203	0.6042
2	0.2799	0.2011	0.5350	2.5276	3.2278
4	0.7301	0.9197	2.6021	4.7105	4.8919
8	0.3318	0.2555	0.2859	0.4401	0.6151

2520x1920, χωρίς MPI_Allreduce , grey ενα pc

Νήματα\Διεργασίες	1	4	9	16	25
1	0.1579	0.0638	0.05	0.0422	0.0485
2	0.1068	0.0723	0.1007	0.1444	0.1775
4	0.1240	0.1760	0.2520	0.3999	0.5320
8	0.0927	0.0659	0.0696	0.0649	0.0863

2520x1920, χωρίς MPI_Allreduce , grey πολλα pc

Νήματα\Διεργασίες	16	25	36	64	100
1	0.0148	0.0260	0.0191	0.0307	0.0136
2	0.0191	0.0347	0.0326	0.0711	0.1046
4	0.0468	0.0478	0.0867	0.1509	0.1555
8	0.0223	0.0167	0.0146	0.0118	0.0378

2520x1920, χωρίς MPI_Allreduce , grey ενα pc, 20 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	2.9231	0.6562	0.8561	0.6908	0.7565
2	1.5093	1.1290	1.7719	1.98	2.2719
4	0.7971	1.9623	2.9519	4.2359	6.4799
8	0.8378	1.0151	1.0150	0.9121	0.9360

2520x1920, χωρίς MPI_Allreduce , grey πολλα pc, 20 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.1816	0.1106	0.0772	0.1226	0.1456
2	0.1579	0.0897	0.3235	0.9679	1.0768
4	0.9452	0.9598	1.0578	1.9690	1.8904
8	0.1689	0.0942	0.0918	0.1573	0.1678

2520x1920, με MPI_Allreduce , grey ενα pc, 20 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	2.9516	0.6567	1.4719	2.2159	2.8919
2	1.5106	1.3927	2.5439	4.2239	5.7959
4	0.7972	2.5919	4.2679	7.7542	13.9039
8	0.8827	0.9554	1.6919	2.4367	3.1239

2520x1920, με MPI_Allreduce , grey πολλα pc, 20 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.2220	0.1377	0.1172	0.5481	0.1690
2	0.2093	0.1403	0.3978	1.4759	1.61
4	0.2589	0.4266	1.6030	2.6199	2.7288
8	0.1504	0.1033	0.3463	0.6439	0.5348

2520x1920, με MPI_Allreduce , grey ενα pc, 50 iterations

Νήματα\Διεργασίες	1	4	9	16	25
1	7.3007	1.6295	3.7799	6.6999	6.6639
2	3.7704	3.3382	6.4879	10.1120	14.3879
4	1.9923	6.0425	12.7519	20.6319	33.3039
8	2.1283	2.2920	4.9450	6.6419	7.8160

2520x1920, με MPI_Allreduce , grey πολλα pc, 50 iterations

Νήματα\Διεργασίες	16	25	36	64	100
1	0.4461	0.3018	0.22	1.3029	1.8719
2	0.3233	0.2080	1.4621	4.1629	4.1682
4	2.3321	0.3860	4.0887	7.5653	7.1399
8	0.4569	0.3729	0.7632	1.6782	1.6570

2520x1920, MPI_Allreduce (while (1))

Νήματα\Διεργασίες	1	16	100
1	120.7643	104.5759	7.7927
2	70.8746	190.5199	55.5803
4	56.3512	333.1871	115.077

Συμπεράσματα από τις μετρήσεις

Από τους παραπάνω πίνακες βλέπουμε τις διαφορές που υπάρχουν όταν αλλάζουμε τα δεδομένα της άσκησης(τύπος εικόνας, μέγεθος εικόνας, επαναλήψεις, αριθμό διεργασιών και αριθμό νημάτων). Παρατηρούμε ότι καθώς αυξάνονται οι διεργασίες σε έναν υπολογιστή, ο χρόνος εκτέλεσης του προγράμματος αυξάνει, ενώ όταν αυξάνουμε τις διεργασίες χρησιμοποιώντας πολλούς υπολογιστές ο χρόνος σχετικά μειώνεται. Αυτό συμβαίνει γιατί με τη χρήση πολλαπλών υπολογιστών ισομοιράζεται ο φόρτος εργασίας, με αποτέλεσμα να έχουμε μεγαλύτερη επιτάχυνση. Τέλος, βλέπουμε ότι όταν αυξάνουμε το μέγεθος της εικόνας οι τιμές τις αποδοτικότητας και της επιτάχυνσης αυξάνονται, ενώ μειώνονται όταν μειώνουμε το μέγεθος της εικόνας.