矩阵理论与方法

内容提要 CONTENTS

- □课程信息
- □课程介绍
- □ 矩阵理论与方法

1、矩阵的可逆性条件

2、近似逆矩阵的误差

1、矩阵的可逆性条件

若存在A的某范数,使得||A||<1,则I-A可逆

1、矩阵的可逆性条件

若存在A的某范数,使得||A||<1,则I-A可逆

假设I - A不可逆,则(I - A)x = 0存在非零解即x = Ax

1、矩阵的可逆性条件

若存在A的某范数,使得||A||<1,则I-A可逆

假设I - A不可逆,则(I - A)x = 0存在非零解即x = Ax

$$||x|| = ||Ax|| \le ||A||||x|| < 1 \cdot ||x|| \Rightarrow 1 < 1$$

1、矩阵的可逆性条件

2、近似逆矩阵的误差

$$A^{-1} \approx inv(A)$$

$$A^{-1} \approx inv(A) \approx (A + \delta A)^{-1}$$

$$A^{-1} \approx inv(A) \approx (A + \delta A)^{-1}$$

问题:
$$||A^{-1} - (A + \delta A)^{-1}|| = ?$$

定理 2.6 设 $A \in \mathbb{C}^{n \times n}$,且对 $\mathbb{C}^{n \times n}$ 上的某种矩阵范数 $\| \cdot \|$,有 $\| A \| < 1$,则矩阵 I - A 非奇异,且有

$$\| (I - A)^{-1} \| \leq \frac{\| I \|}{1 - \| A \|}$$
 (2. 3. 1)

定理 2.7 设 $A \in \mathbb{C}^{n \times n}$,且对 $\mathbb{C}^{n \times n}$ 上的某种矩阵范数 $\| \cdot \|$,有 $\| A \| < 1$,则

$$\|I - (I - A)^{-1}\| \leq \frac{\|A\|}{1 - \|A\|}$$
 (2.3.2)

定理: 设 $A,B \in C^{n \times n}, A$ 可逆,且满足 $A^{-1}B$ <1

$$(1)$$
 $A+B$ 可逆

(2)
$$F = I - (I + A^{-1}B)^{-1} : ||F|| \le \frac{||A^{-1}B||}{1 - ||A^{-1}B||}$$

(3)
$$\frac{\left\|A^{-1} - (A+B)^{-1}\right\|}{\left\|A^{-1}\right\|} \le \frac{\left\|A^{-1}B\right\|}{1 - \left\|A^{-1}B\right\|}$$

$$||I - (I - A)^{-1}|| \le \frac{||A||}{1 - ||A||}$$

$$A^{-1} - (A + B)^{-1} = [I - (I + A^{-1}B)^{-1}]A^{-1}$$

范数的应用

令 δ 是个小量,并且令

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\|$$

则当 $||A^{-1}|| ||\delta A|| < 1$ 时,

$$\frac{\parallel \mathbf{A}^{-1} - (\mathbf{A} + \delta \mathbf{A})^{-1} \parallel}{\parallel \mathbf{A}^{-1} \parallel} \leqslant \frac{\operatorname{cond}(\mathbf{A}) \frac{\parallel \delta \mathbf{A} \parallel}{\parallel \mathbf{A} \parallel}}{1 - \operatorname{cond}(\mathbf{A}) \frac{\parallel \delta \mathbf{A} \parallel}{\parallel \mathbf{A} \parallel}}$$

称 cond(A) 为**矩阵 A 的条件数**,它是求矩阵逆的摄动的一个重要量. 一般说来,条件数愈大, $(A+\delta A)^{-1}$ 与 A^{-1} 的相对误差就愈大.

1、矩阵的可逆性条件

2、近似逆矩阵的误差

$$1 + x + x^2 + ... + x^n = ?, x \in R$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$\lim_{n \to +\infty} \sum_{k=0}^{n} x^k = ?$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$f(A) = \lim_{n \to +\infty} \sum_{k=0}^{n} A^{k}, (? < 1)$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$\lim_{n \to +\infty} \sum_{k=0}^{n} x^{k} = \frac{1}{1-x} := f(x), |x| < 1$$
 where $x = 1$ is $x = 1$.

$$f(A) = \lim_{n \to +\infty} \sum_{k=0}^{n} A^{k}, (\exists \|\cdot\| \cdot \|A\| < 1)$$

实际操作困难

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

(1)半径(
$$A$$
) ≤|| A ||,(2) || A || < 半径(A) + ε

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$f(A) = \lim_{n \to +\infty} \sum_{k=0}^{n} A^k, \rho(A) < 1$$

$$(1)\rho(A) \le ||A||, (2) \exists ||\cdot||\cdot||A|| < \rho(A) + \varepsilon$$

三、矩阵的谱半径及其性质

矩阵 $\mathbf{A} \in \mathbb{C}^{n \times n}$ 的谱半径在特征值估计、广义逆矩阵、数值分析以及数值代数等理论的建树中,都占有极其重要的地位.现论述如下.

定义 2.5 设
$$A \in \mathbb{C}^{n \times n}$$
 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,称
$$\rho(A) = \max_i |\lambda_i| \qquad (2.3.3)$$

为 A 的谱半径.

定理9:
$$\forall A \in C^{n \times n}, \forall \| \cdot \|_{M}$$
, 有 $\rho(A) \leq \| A \|_{M}$

定理 2.9 设
$$A \in \mathbb{C}^{n \times n}$$
,则对 $\mathbb{C}^{n \times n}$ 上任何一种矩阵范数 $\|\cdot\|$,都有 $\rho(A) \leqslant \|A\|$ (2.3.4)

定理9:
$$\forall A \in C^{n \times n}, \forall \| \bullet \|_{M}$$
 , 有 $\rho(A) \leq \| A \|_{M}$ 证明: 对矩阵范数 $\| \bullet \|_{M}$, 存在向量范数 $\| \bullet \|_{V}$, 使得 $\| Ax \|_{V} \leq \| A \|_{M} \bullet \| x \|_{V}$ 设 $Ax_{i} = \lambda_{i}x_{i} \quad (x_{i} \neq \theta)$, 则有 $\| A \|_{M}$
$$|\lambda_{i}| \bullet \| x_{i} \|_{V} = \| \lambda_{i}x_{i} \|_{V} = \| Ax_{i} \|_{V} \leq \| A \|_{M} \bullet \| x_{i} \|_{V}$$

$$|\lambda_{i}| \leq \| A \|_{M} \quad \Rightarrow \rho(A) \leq \| A \|_{M}$$

定理10: $\forall A \in C^{n \times n}$, 对 $\forall \varepsilon > 0$,3 矩阵范数 $\| \cdot \|_{M}$ 使得 $\| A \|_{M} \leq \rho(A) + \varepsilon$

定理 2.10 设 $A \in \mathbb{C}^{n \times n}$,对任意的正数 ε ,存在某种矩阵范数 $\|\cdot\|_{M}$,使得

$$\|A\|_{M} \leqslant \rho(A) + \varepsilon \tag{2.3.7}$$

定理10: $\forall A \in C^{n \times n}$, 对 $\forall \varepsilon > 0$,3 矩阵范数 $\| \cdot \|_{M}$ 使得 $\| A \|_{M} \leq \rho(A) + \varepsilon$

证明:根据Jordan标准型理论:存在可逆矩阵 $P_{n\times n}$

使得
$$P^{-1}AP = J = \Lambda + \tilde{I}$$

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \tilde{I} = \operatorname{diag}([\delta_1, \dots, \delta_{n-1}], 1)$$

其中 δ , 等于0或1, 于是有

$$D = \operatorname{diag}(1, \varepsilon, \dots, \varepsilon^{n-1})$$

$$(PD)^{-1}APD = D^{-1}JD = \Lambda + \varepsilon \tilde{I}$$

 $\diamondsuit S=PD$ 可逆,那么

$$\|S^{-1}AS\|_{1} = \|\Lambda + \varepsilon \tilde{I}\|_{1} \le \rho(A) + \varepsilon$$

可证
$$\|A\|_{M} = \|S^{-1}AS\|_{1} \quad (A \in C^{n \times n})$$
 是 $C^{n \times n}$ 中的矩阵范数于是有

$$||A||_{M} = ||S^{-1}AS||_{1} \le \rho(A) + \varepsilon$$

定理10: $\forall A \in C^{n \times n}$, 对 $\forall \varepsilon > 0$,3 矩阵范数 $\| \cdot \|_{M}$ 使得 $\| A \|_{M} \leq \rho(A) + \varepsilon$

定理 2.10 设 $A \in \mathbb{C}^{n \times n}$,对任意的正数 ε ,存在某种矩阵范数 $\|\cdot\|_{M}$,使得

$$\|A\|_{M} \leqslant \rho(A) + \varepsilon \tag{2.3.7}$$

例 2.10 试用矩阵

$$\mathbf{A} = \begin{bmatrix} 1 - \mathbf{j} & 3 \\ 2 & 1 + \mathbf{j} \end{bmatrix} \quad (\mathbf{j} = \sqrt{-1})$$

验证式(2.3.4) 对三种常用范数的正确性.

例 2.10 试用矩阵

$$\mathbf{A} = \begin{bmatrix} 1-\mathbf{j} & 3\\ 2 & 1+\mathbf{j} \end{bmatrix} \quad (\mathbf{j} = \sqrt{-1})$$

验证式(2.3.4) 对三种常用范数的正确性.

解 因为
$$\det(\lambda I - A) = (\lambda - 1)^2 - 5$$
,所以 $\lambda_1(A) = 1 + \sqrt{5}$, $\lambda_2(A) = 1 - \sqrt{5}$,从而
$$\rho(A) = 1 + \sqrt{5}$$

例 2.10 试用矩阵

$$\mathbf{A} = \begin{bmatrix} 1 - \mathbf{j} & 3 \\ 2 & 1 + \mathbf{j} \end{bmatrix} \quad (\mathbf{j} = \sqrt{-1})$$

验证式(2.3.4) 对三种常用范数的正确性.

$$\rho(A) = 1 + \sqrt{5}$$
又 $\|A\|_1 = \|A\|_{\infty} = 3 + \sqrt{2}$,而
$$A^{H}A = \begin{bmatrix} 6 & 5 + 5j \\ 5 - 5j & 11 \end{bmatrix}$$

$$\det(\lambda I - A^{H}A) = \lambda^2 - 17\lambda + 16$$
由此得 $\lambda_1(A^{H}A) = 16$, $\lambda_2(A^{H}A) = 1$. 于是有
$$\|A\|_2 = \sqrt{\lambda_1(A^{H}A)} = 4$$

谱半径不是范数,不满足

$$\rho(A+B) \le \rho(A) + \rho(B)$$

谱半径不是范数,不满足

$$\rho(A+B) \le \rho(A) + \rho(B)$$

例 2.11 设 $A \in \mathbb{C}^{n \times n}$,则 $\rho(A^k) = [\rho(A)]^k (k = 1, 2, \cdots)$.

例 2.11 设 $A \in \mathbb{C}^{n \times n}$,则 $\rho(A^k) = [\rho(A)]^k (k = 1, 2, \cdots)$.

证 设 A 的 n 个特征值为 λ_1 , λ_2 , …, λ_n , 根据定理 1.29 可得, A^k 的 n 个特征值为 λ_1^k , λ_2^k , …, λ_n^k . 于是有 $\rho(A^k) = \max_i |\lambda_i^k| = (\max_i |\lambda_i|)^k = [\rho(A)]^k$

定理 1.29 设 A 是 n 阶复矩阵,且其特征多项式的某种分解式是(1.2.32),则存在 n 阶复非奇异矩阵 P,使

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J} \tag{1.2.34}$$

作业 (第五版)

- 1、定义: P₉₄条件数、2.5
- 2、定理: 2.9、2.10
- 3、例题: 2.10

作业 (第三版)

- 1、定义: P₁₃₅条件数、2.5
- 2、定理: 2.9、2.10
- 3、例题: 2.10

下课, 谢谢大家!