Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» Факультет инноваций и высоких технологий Кафедра анализа данных

Магистерская диссертация

Тема: Сравнительный анализ методов оценивания бикликового покрытия

Направление: 010400 адные математика и информатика	Прикла,
Попов М.В.	Выполнил: студент 093 группы
Ромащенко А.Е.	Научный руководитель: старший научный сотрудник ИППИ

Содержание

Введе	ние
Комм	уникационная сложность
1.1	Постановка задачи
1.2	Одноцветные комбинаторные прямоугольники
1.3	Графовая интерпретация
Оцени	вание $bcc(G)$
2.1	Метод трудного множества
2.2	Метод Куликова-Юкны
2.3	Метод энтропийных неравенств
Геоме	грические конфигурации
3.1	Описание двудольного графа
3.2	Оценки для (p_γ, l_π)
3.3	Сравнение методов оценивания
Teoper	ма Турана и граф четырехсторонников
4.1	Теорема Турана и ее следствие
4.2	Граф четырехсторонников
Случа	йные графы
5.1	Случайные двудольные графы Эрдеша-Реньи
5.2	Неравенство Хефдинга
5.3	Размер максимального паросочетания
5.4	Трудное множество и оценка Куликова-Юкны на случай-
	ных графах
5.5	Количество трудных множеств размера k
Обоби	цение методов оценивания
6.1	т-Мерная коммуникационная сложность
6.2	Одноцветные комбинаторные параллелепипеды
6.3	Метод трудного множества
6.4	Метод энтропийных неравенств
6.5	Предикат DISJOINT (m, k, n)

Заключение		•	•	•				•	•					٠	•			45
Список литературы											•		•			•	•	46

Введение

В данной работе изучаются методы доказательства нижних оценок минимального размера бикликового покрытия bcc(G), то есть покрытия заданного графа G набором полных двудольных подграфов. Сам по себе вопрос бикликового покрытия вполне естественен в теории графов и играет центральную роль во многих вычислительных задачах.

В данной работе поиск bcc(G) рассматривается с точки зрения коммуникационной сложности. Теория коммуникационной сложности интересна как с практической, так и с теоретической точек зрения. Практическая часть включает в себя построение явных конструкций (алгоритмов, протоколов, методов). Теоретическая часть изучает вопрос размера этих конструкций и включает в себя, в частности, доказательство нижних и верхних оценок на сложность таких конструкций. К тому же, теория коммуникационной сложности является важной частью теории сложности — области, лежащей на стыке математики и теоретической информатики (или theoretical computer science) [1].

Решить задачу об оптимальном размере бикликового покрытия в общем виде для произвольного графа очень сложно (задача является PSPACE-трудной). Однако известно несколько методов, которые позволяют для некоторых специальных типов графов получить нижние оценки для размера bcc(G). В работе главным образом сравниваются три разные техники: классический метод трудного множества ("fooling set"), а также, появившиеся в последние годы, метод Куликова-Юкны и метод информационных (энтропийных) неравенств.

В работе полученны следующие результаты:

- 1) Доказано, что для графов, построенных при помощи геометрических конфигурации, классический метод работает всегда лучше, остальных методов. На конфигурации Гессе метод энтропийных неравенств дает оценку лучше, чем оценка Куликова-Юкны, а на конфигурации Шлефли наоборот.
- 2) Придумана конструкция графа четырехсторонников, которая позволяет переформулировать известные оценки хроматического числа в виде оценок минимального бикликового покрытия (Теорема 4.3).

- 3) Используя теорему Турана и сокращенную версию графа четырехсторонников, показано, что метод трудного множества для произвольного графа дает оценки не хуже метода Куликова-Юкны (Теорема 4.2).
- 4) С помощью метода случайных графов показано, что техника трудного множества может давать оценки значительно сильнее, чем метод Куликова-Юкны (Теоремы 5.3 и 5.4). Остался открытым вопрос о выполнимости этого утверждения с вероятностью 1 при $n \longrightarrow \infty$ (Утверждение 5.2).
- 5) Получено обобщение метода информационных неравенств для задачи коммуникационной сложности "number-in-hand" с n>2 участниками (Теорема 6.3).

Для полноты изложения в работе приводится доказательство ряда известных теорем: оценка Куликова-Юкны (Теорема 2.2) и неравенство Хефдинга (Теорема 5.1)

Полученные результаты могут быть интересны специалистам, работающим на стыке теории сложности, теории графов и теории информации, а также стать толчком для дальнейших исследований.

Коммуникационная сложность

1.1 Постановка задачи

Мы будем рассматривать задачи следующего вида: пусть имеются два человека, которые хотят совместно вычислить значение некоторой функции от двух переменных f(x,y). По традиции мы будем называть первого участника игры Алисой, а второго – Бобом. Сложность у этой задачи в том, что Алиса знает только значение аргумента x, а Боб значение аргумента y. Алиса и Боб могут обмениваться сообщениями по каналу связи. Требуется вычислить значение f(x,y), переслав по каналу связи минимальное количество информации.

Мы предполагаем, что Алиса и Боб заранее (до того, как им станут известны значения x и y) договариваются о коммуникационном протоколе — о наборе соглашений, какие именно данные и в каком порядке они будут пересылать друг другу при тех или иных значениях x и y.

Опишем теперь всю задачу более формально. Пусть имеются конечные множества X,Y,Z и задана некоторая функция $f:X\times Y\to Z$.

Определение. Коммуникационным протоколом для вычисления некоторой функции $f: X \times Y \to Z$ называется ориентированное двоичное дерево со следующей разметкой на вершинах и ребрах:

- ullet каждая нелистовая вершина помечена буквой A или B;
 - у вершин с пометкой A определена функция $g_i: X \to \{0,1\};$
 - у вершин с пометкой B определена функция $f_j:Y \to \{0,1\};$
- ullet каждой листовой вершине сопоставлен элемент множеста Z;
- каждое ребро помечено 0 или 1.

Пусть Алиса и Боб договорились, что будут действовать по некоторому протоколу \mathcal{P} . Затем Алиса получила $x \in X$, а Боб получил $y \in Y$. Поместим фишку в корневую вершину нашего протокола \mathcal{P} и будем перемещать ее вниз по дереву, последовательно удаляясь от корня, пока она не попадет в один из листьев. Перемещение фишки выполняется следующим образом. Если текущая вершина помечена буквой A, то это

означает, что сейчас очередь Алисы. Она применяет функцию g_i текущей вершины к своему значению x. Алиса отправляет по каналу связи бит равный $g_i(x)$ и перемещает фишку по ребру, помеченному как $g_i(x)$. Боб получает отправленный бит и понимает куда была сдвинута фишка. Для вершин помеченных буквой B эту же процедуру выполняет Боб. Когда фишка попадает в лист дерева, записанное там значение $z \in Z$, объявляется результатом выполнения протокола.

Мы говорим, что протокол \mathcal{P} вычисляет функцию $f: X \times Y \to Z$, если для любого $x \in X$ и любого $y \in Y$ при движении из корня по пути, соответствующему заданным x и y, мы попадаем в лист, помеченный z = f(x,y).

Определение. Сложностью коммуникационного протокола называется его глубина. Коммуникационной сложностью функции f называется минимальная сложность протокола, вычисляющего f. Мы будем обозначать её CC(f).

1.2 Одноцветные комбинаторные прямоугольники

Определение. Множеество $S \subseteq X \times Y$ называется комбинаторным прямоугольником (или просто прямоугольным множееством), если существуют такие $A \subseteq X$ и $B \subseteq Y$, что $S = A \times B$.

Пусть \mathcal{P} – некоторый коммуникационный протокол для вычисления функции $f: X \times Y \to Z$ и l – один из листьев протокола. Определим S_l как множество пар $(x,y) \in X \times Y$ таких, что на входе (x,y) Алиса и Боб, следуя протоколу \mathcal{P} , приходят в лист l.

Утверждение 1.1. Для всякого коммуникационного протокола \mathcal{P} и для всякого листа l множество S_l является комбинаторным прямоугольником.

Доказательство этого утверждения можно прочитать, например, в [2]. В итоге мы получаем, что коммуникационный протокол для вычисления функции f задаёт разбиение $X \times Y$ - таблицы значений f на прямоугольные множества, соответствующие листьям. Поскольку каждому

Рис. 1: Пример протокола и разбиения таблицы значений.

листу протокола приписано одно значение функции f, эти прямоугольные множества являются одноцветными, то есть во всех точках такого прямоугольного множества функция f принимает одно и то же значение. Например, для $X = Y = \{1, 2, 3, 4\}, Z = \{0, 1\}$ и протокола \mathcal{P} (рис. 1) получаем разбиение на 5 одноцветных прямоугольных множеств.

Подведем промежуточные итоги: всякий протокол с l листьями (вычисляющий функцию f) задаёт разбиение таблицы значений f на l одноцветных прямоугольных множеств. Значит, чтобы доказать, что коммуникационная сложность CC(f) не меньше n, достаточно показать, что таблицу значений невозможно разбить на менее, чем 2^n одноцветных прямоугольных множеств.

1.3 Графовая интерпретация

Давайте теперь посмотрим на другое представление множества значений функции f. Рассмотрим полный двудольный граф G=(X,Y,E), ребра которого раскрашены в |Z| цветов. Вершины левой доли соответствуют элементам множества X, вершины правой доли - элементам множества Y. Ребро $(x,y) \in X \times Y$ имеет цвет $z \in Z$, если f(x,y) = z.

Из определения комбинаторного прямоугольника видно, что в графовой интерпертации он является ничем иным, как полным двудольным

Рис. 2: Графовая интерпретация: синие – 0, красные – 1.

подграфом. А разбиение таблицы значений f на одноцветные прямоугольные множества — это разбиение нашего полного двудольного графа G на одноцветные непересекающиеся биклики (полные двудольные подграфы). Для нашего примера графовую интерпретацию можно посмотреть на рис. 2.

Определение. Бикликовым разбиением bcp(G) двудольного графа G будем называть наименьшее число непересекающихся биклик, которыми можно покрыть все ребра графа G.

Определение. Бикликовым покрытием bcc(G) двудольного графа G будем называть наименьшее число, возможно, пересекающихся биклик, которыми можно покрыть все ребра графа G.

Утверждение 1.2. Для произвольного двудольного графа G верно

$$bcp(G) \ge bcc(G)$$

Для каждого $z \in Z$ определим двудольный граф $G_z = (X,Y,E_z)$, как граф, получающийся из G выкидыванием всех ребер цвета, отличного от z. Иначе говоря $E_z = \{(x,y) \in X \times Y \mid f(x,y) = z\}$.

Величины $bcp(G_z)$ и $bcc(G_z)$ дают некоторую нижнюю оценку на коммуникационную сложность функции f, с которой намного удобнее работать:

$$2^{CC(f)} \ge \sum_{z \in Z} bcp(G_z) \ge \sum_{z \in Z} bcc(G_z)$$

Замечание. На самом деле величины $bcc(G_z)$ тесно связаны с недетерминированной коммуникационной сложностью NCC(f). Для произвольного множества Z верно:

•
$$2^{NCC(f)} \ge \sum_{z \in Z} bcc(G_z),$$

• $NCC(f) \le \lceil \log_2(\sum_{z \in Z} bcc(G_z)) \rceil + 1$

Иначе говоря, величины $bcc(G_z)$ и NCC(f) по существу задают одну и ту же меру "сложности" функции f. Подробнее про это можно прочитать, например, в [1].

В итоге мы получили мощный иструмент для доказательства нижних оценок коммуникационной сложности. К сожалению, задача нахождения величины bcc(G) является PSPACE-полной [3], а точное значение известно только для очень скудного класса графов (например, для "crown graphs" [4]), поэтому напрямую мы не можем использовать эту оценку. В следующей главе я рассмотрю несколько методов, позволяющих для произвольного двудольного графа оценивать снизу величину bcc(G).

Oценивание bcc(G)

В этом разделе я опишу три различных метода оценивания бикликового покрытия:

- метод трудного множества ("fooling set");
- метод Куликова-Юкны;
- метод энтропийных неравенств.

Первые два метода работают для произвольных графов (необязательно двудольных), а третий применим к большому классу двудольных графов.

2.1 Метод трудного множества

Данный метод тесно связан с одноцветными прямоугольными множествами. Классическое определение трудного множества выглядит следующим образом:

Определение. Для функции $f: X \times Y \to Z$ и элемента $z \in Z$ будем называть множество $S_z \subset X \times Y$ трудным (в англоязычной литературе fooling set), если верно:

- для всякой пары $(x,y) \in S_z$ имеем f(x,y) = z;
- для любых двух несовпадающих пар $(x,y) \in S_z$ и $(x',y') \in S_z$ имеем $f(x,y') \neq z$ или $f(x',y) \neq z$.

Нас будет интересовать немного более общее определение трудного множества (графовая интерпретация):

Определение. Пусть G = (V, E) произвольный неориентированный граф. Будем называть подмножество ребер $S \subseteq E$ трудным, если для любых двух различных ребер $(x,y) \in S$ и $(x',y') \in S$ имеем $(x,y') \notin E$ или $(x',y) \notin E$. Обозначение fool(G) - размер максимального по мощности трудного множества.

Замечание. Классическое определение получается из графового, применением к двудольному графу $G_z = (X, Y, E_z)$, который строится по функции $f: X \times Y \to Z$.

Теорема 2.1. Для произвольного неориентированного графа G = (V, E), если подмножество ребер $S \subseteq E$ является трудным, то $bcc(G) \ge |S|$.

Доказательство. Достаточно доказать, что два ребра, лежащие одновременно в одном трудном множестве, не могут попасть в одну биклику. Пусть не так, значит существуют два ребра $(x,y) \in B \cap S$ и $(x',y') \in B \cap S$, где B - биклика, а S - трудное подмножество ребер. Но тогда ребра (x,y') и (x',y) также принадлежат биклике B, а значит лежат и в нашем множестве ребер E. Противоречие.

2.2 Метод Куликова-Юкны

Следующий метод был впервые описан в статье [5], и работает он для произвольного неориентированного графа.

Теорема 2.2. Для произвольного неориентированного графа G = (V, E) верно:

$$bcc(G) \ge \left\lceil \frac{\nu(G)^2}{|E|} \right\rceil$$

 $\operatorname{rde} \nu(G)$ – размер максимального паросочетания графа G.

Доказательство. Пусть $M \subseteq E$ - это максимальное паросочетание, тогда рассмотрим бикликовое покрытие, на котором достигается минимум $E = B_1 \cup B_2 \cup \ldots \cup B_{bcc(G)}$. Определим отображение $g: M \to \{1, \ldots, bcc(G)\}$, как $g(e) = min\{i \mid e \in B_i\}$ и пусть $M_i = \{e \in M \mid g(e) = i\}$. Иначе говоря M_i содержит только те ребра максимального паросочетания M, которые покрываются бикликой B_i впервый раз.

Пусть $F_i \subseteq B_i$ биклика, индуцированная вершинами ребер из M_i . Пусть $F = F_1 \sqcup F_2 \sqcup \ldots \sqcup F_{bcc(G)}$ (биклики F_i не пересекаются по построению).

Очевидно, что F_i - биклика размера $r_i \times r_i$, где $r_i = |M_i|$. Получаем следующие соотношения:

$$r_1 + r_2 + \ldots + r_{bcc(G)} = |M| = \nu(G)$$

u

$$r_1^2 + r_2^2 + \ldots + r_{bcc(G)}^2 = |F|$$

Из неравенства Коши-Буняковского получаем

$$\nu(G)^2 = (r_1 + r_2 + \ldots + r_{bcc(G)})^2 \le bcc(G) \cdot (r_1^2 + r_2^2 + \ldots + r_{bcc(G)}^2) = bcc(G) \cdot |F|$$

A так как $F \subseteq E$, то

$$\nu(G)^2 \le bcc(G) \cdot |F| \le bcc(G) \cdot |E| \blacksquare$$

В этой же статье [5] этот метод сравнивался с другой оценкой: пусть $bcl(G) = \max_{K_{r,r} \subseteq G} \{r\}$, тогда

$$bcc(G) \ge \left\lceil \frac{\nu(G)}{bcl(G)} \right\rceil$$
 (*)

Данная оценка очевидным образом следует из того, что любая биклика $K_{r,s}$ содержит как максимум $min\{r,s\}$ ребер максимального паросочетания.

Приведем примеры графов, на которых метод Куликова-Юкны работает намного лучше, чем оценка (*), и наоборот:

• пусть двудольный граф G = (L, R, E) состоит из совершенного паросочетания размера n = |L| = |R| и еще некоторого константного числа непересекающихся биклик $K_{r,r}$. К тому же, пусть $r = \Theta(\sqrt{n})$, тогда

$$\left\lceil \frac{\nu(G)^2}{|E|} \right\rceil = \left\lceil \frac{n^2}{cr^2 + n} \right\rceil = \Theta(n) \gg \Theta(\sqrt{n}) = \left\lceil \frac{n}{r} \right\rceil = \left\lceil \frac{\nu(G)}{bcl(G)} \right\rceil$$

• рассмотрим двудольный граф Леви, построенный при помощи конечной проективной плоскости порядка $p \in \mathbb{P}$. В каждой доле этого графа содержится $n = p^2 + p + 1$ вершин, причем степень каждой p + 1. Этот граф не содержит $K_{2,2}$ (любые две прямые пересекаются максимум в одной точке). А так как в регулярных двудольных графах обязательно найдется совершенное паросочетание, то

$$\left\lceil \frac{\nu(G)^2}{|E|} \right\rceil = \left\lceil \frac{(p^2 + p + 1)^2}{(p^2 + p + 1)(p + 1)} \right\rceil = \Theta(\sqrt{n}) \ll$$

$$\ll \Theta(n) = \left\lceil \frac{p^2 + p + 1}{1} \right\rceil = \left\lceil \frac{\nu(G)}{bcl(G)} \right\rceil$$

2.3 Метод энтропийных неравенств

Следующий метод оценивания бикликового покрытия был описан в статье [6], как результат применения энтропийного неравенства:

$$H(A|B,X) + H(A|B,Y) < H(A|B)$$

К сожалению, это неравенство выполняется не для произвольного совместного распределения случайных величин A, B, X, Y, и соответственно на двудольный граф будет накладываться дополнительное условие (**).

Теорема 2.3. Пусть ребра двудольного графа G = (L, R, E) раскрашены следующим образом:

(**) для произвольной биклики $C\subseteq G$ и для произвольной пары ребер

(x,y') и (x',y) из C, покрашеных в цвет a, цвет ребер (x,y) и (x',y') тоже a.

Пусть также на ребрах этого графа задано произвольное вероятностное распределение. Определим случайные величины (X,Y,A) следующим образом:

- X = [левый конец ребра],
- Y = [npaвый конец peбpa],
- $A = [u eem \ pe \delta pa].$

Тогда выполняется неравенство:

$$bcc(G) \geq 2^{\frac{1}{2}(H(A|X) + H(A|Y) - H(A))}$$

Пример. Определим двудольный граф $G_{n,k} = (L, R, E)$ следующим образом:

- ullet L u R всевозможные k-элементные подмножества $\{1,\ 2,\ \dots,\ n\},$
- ullet $E\subseteq L imes R$ cocmoum из пар непересекающихся множеств.

Определим цвет ребра $(x,y) \in E$, как $x \sqcup y$, и пусть на ребрах задано равномерное распределение. Условие (**) выполнено, потому что любые два одноцветных ребра не могут лежать в одной биклике. А так как $H(A|X) = H(A|Y) = \log_2 \binom{n-k}{k}$ и $H(A) = \log_2 \binom{n}{2k}$, то

$$bcc(G_{n,k}) \ge \sqrt{\binom{n-k}{k}^2 / \binom{n}{2k}}$$

 $Ecnu\ n \gg k,\ mo\ {n-k\choose k}^2/{n\choose 2k}$ близко к ${2k\choose k} \approx 2^{2k}$ и мы получаем нижнюю оценку $bcc(G_{n,k}) \geq 2^k.$

Геометрические конфигурации

В этом разделе мы приведем класс двудольных графов, построенных при помощи некоторой геометрической конфигурации Г. Мы увидим, что к этим двудольным графам применимы все наши оценки, и поэтому, изменяя Г, мы можем сравнить какие методы работают лучше, а какие хуже.

3.1 Описание двудольного графа

Определение. Геометрической конфигурацией Γ (Partial Linear Space) будем называть конечное множество прямых A и конечное множество точек V на них, что выполняются следующие две аксиомы:

- Любые две точки лежат как максимум на одной прямой.
- На каждой прямой лежит хотя бы две точки.

Определение. Геометрической конфигурацией с параметрами (p_{γ}, l_{π}) будем называть такую конфигурацию, которая состоит из р точек и l прямых, причем через каждую точку проходит ровно γ прямых и на каждой прямой лежит ровно π точек.

Пусть у нас имеется некоторая геометрическая конфигурация $\Gamma = (V, A)$, тогда определим двудольный граф $G_{n,\Gamma} = (L, R, E)$ следующим образом:

- $L = R = V^n$
- $E = \{(x,y) \in L \times R \mid \forall i : x_i \neq y_i$ и лежат на одной прямой из $A\}$

3.2 Оценки для (p_{γ}, l_{π})

Для геометрической конфигурации Γ с параметрами (p_{γ}, l_{π}) (предполагаем, что $l \geq 3$) найдем какие оценки на $bcc(G_{n,\Gamma})$ дают наши методы:

– Метод трудного множества:

Лемма 3.1. Если в Γ имеется цикл нечетной длины, то в $G_{1,\Gamma}$ можно найти трудное множество размера 3.

Доказательство. Рассмотрим нечетный цикл минимальной длины $\{v_1, v_2, \ldots, v_{2k+1}\}$, где $k \geq 1$. Заметим, что прямые могут проходить только через соседние точки этого цикла, иначе бы мы нашли нечетный цикл меньшей длины. Тогда, если k > 1, то множество ребер $\{(v_1, v_2), (v_2, v_3), (v_3, v_4)\}$ образует трудное множество, а если k = 1, то $\{(v_1, v_2), (v_2, v_3), (v_3, v_4)\}$ образует трудное множество. \square

Замечание. Если на какой-нибудь прямой лежит по крайне мере три точки v_1, v_2, v_3 , то мы можем найти трудное множество $\{(v_1, v_2), (v_2, v_3), (v_3, v_1)\}$ размера 3.

Если в Γ нет нечетных циклов и на каждой прямой лежит ровно 2 точки, то мы получаем геометрическую конфигурацию, аналогичную двудольному графу. Если этот двудольный граф полный, то наибольшее трудное множество имеет размер 2, а если неполный, то рассмотрим два случая:

- 1) Если $\gamma = 1$, то Γ является паросочетанием, а значит все ребра графа $G_{1,\Gamma}$ образуют трудное множество (ребер ровно $l \geq 3$).
- 2) Если $\gamma \geq 2$ и нет прямой проходящей через точки v_1 и v_2 из разных долей, то существуют точки v_3, v_4, v_5, v_6 такие, что прямые проходят через пары точек $(v_1, v_4), (v_2, v_3)$ и (v_2, v_5) . Но тогда множество ребер $\{(v_1, v_4), (v_3, v_2), (v_2, v_5)\}$ образуют трудное множество размера 3.

Иначе говоря, мы показали, что если Γ аналог не полного двудольного графа, то мы можем найти трудное множество размера 3.

Лемма 3.2. Если в $G_{1,\Gamma}$ существует трудное множество размера k, то в $G_{n,\Gamma}$ существует трудное множество размера k^n

Доказательство. Докажем вначале, что если в графе G_1 имеется трудное множество размера n_1 , а в графе G_2 – трудное множество размера n_2 , тогда в $G_1 \otimes G_2$ можно найти трудное множество размера $n_1 \cdot n_2$ (где \otimes - произведение Кронекера). Пусть $\{v_{i,j}\}$ трудное множество в графе G_1 , тогда в каждой подматрице $v_{i,j} \cdot G_2$ матрицы графа $G_1 \otimes G_2$ рассмотрим клетки, соответствующие трудному множеству графа G_2 . Всего мы получили $n_1 \cdot n_2$ клеток, образующих трудное множество графа $G_1 \otimes G_2$ по построению. Вернемся к доказательству леммы. Так как матрица графа $G_{n,\Gamma}$ есть не что иное, как Кронекерово произведение п матриц графа $G_{1,\Gamma}$, то мы можем найти трудное множество размера k^n . \square

В итоге мы получили, что если Γ является аналогом полного двудольного графа, то

$$bcc(G_{n,\Gamma}) \ge 2^n$$

иначе

$$bcc(G_{n,\Gamma}) \ge 3^n$$

– Метод Куликова-Юкны:

Так как Γ имеет параметры (p_{γ}, l_{π}) , то каждая вершина графа $G_{1,\Gamma}$ соединена с $\gamma \cdot (\pi - 1)$ другими, а значит всего ребер $\gamma \cdot (\pi - 1) \cdot p$. Тогда в графе $G_{n,\Gamma}$ всего ребер $\gamma^n \cdot (\pi - 1)^n \cdot p^n$. Так как у нас однородный двудольный граф, то имеется совершенное паросочетание, а значит $v(G_{n,\Gamma}) = p^n$. В итоге получаем оченку:

$$bcc(G_{n,\Gamma}) \ge \frac{p^{2n}}{\gamma^n \cdot (\pi - 1)^n \cdot p^n} = \left(\frac{p}{\gamma \cdot (\pi - 1)}\right)^n$$

– Метод энтропийных неравенств:

Определим раскраску ребер нашего графа $G_{n,\Gamma} = (L, R, E)$: сопоставим каждой прямой из конфигурации Γ свой цвет, тогда цвет ребра $(x,y) \in E$ равен n-мерному вектору цветов прямых, проходящих через x_i и y_i .

Проверим свойство (**): пусть (x, y') и (x', y) одного цвета и лежат в одной биклике C, значит для любого i точки x_i, y_i', x_i', y_i лежат на одной прямой (некоторые точки могут совпадать), но тогда очевидно, что ребро (x, y) такого же цвета.

Пусть на ребрах графа задано равномерное распределение, тогда $H(A) = \log_2 l^n = n \cdot \log_2 l$ и $H(A|X) = H(A|Y) = \log_2 \gamma^n = n \cdot \log_2 \gamma$. В итоге получаем оценку:

$$bcc(G_{n,\Gamma}) \ge 2^{n \cdot \log_2 \gamma - \frac{n}{2} \cdot \log_2 l} = \left(\frac{\gamma}{\sqrt{l}}\right)^n$$

3.3 Сравнение методов оценивания

Рассмотрим какие оценки получаются на известных геометрических конфигурациях. Симметричные конфигурации $(p = l \text{ и } \gamma = \pi)$ будем обозначать сокращенно (p_{γ}) .

Название	FS	KJ	EI	Результат
T реугольник (3_2)	$\geq 3^n$	$\left(\frac{3}{2}\right)^n$	$\left(\frac{2}{\sqrt{3}}\right)^n$	FS > KJ > EI
Полный четырех- сторонник $(4_3, 6_2)$	$\geq 3^n$	$\left(\frac{4}{3}\right)^n$	$\left(\frac{3}{\sqrt{6}}\right)^n$	FS > KJ > EI
K_m при $m > 4$ $\binom{m}{m-1}, \binom{m}{2}_2$	$\geq 3^n$	$\left(\frac{m}{m-1}\right)^n$	$\left(\sqrt{\frac{2(m-1)}{m}}\right)^n$	FS > EI > KJ
$K_{m,m}$ при $m > 0$ $(2m_m, m_2^2)$	$\geq 2^n$	2^n	1^n	FS = KJ > EI
Плоскость Фано (7_3)	$\geq 3^n$	$\left(\frac{7}{6}\right)^n$	$\left(\frac{3}{\sqrt{7}}\right)^n$	FS > KJ > EI
Конфигурация Мёбиуса-Кантора (8 ₃)	$\geq 3^n$	$\left(\frac{4}{3}\right)^n$	$\left(\frac{3}{\sqrt{8}}\right)^n$	FS > KJ > EI
Конфигурация Дезарга (10 ₃)	$\geq 3^n$	$\left(\frac{5}{3}\right)^n$	$\left(\frac{3}{\sqrt{10}}\right)^n$	FS > KJ > EI
Конфигурация Гессе (9 ₄ , 12 ₃)	$\geq 3^n$	$\left(\frac{9}{8}\right)^n$	$\left(\frac{2}{\sqrt{3}}\right)^n$	FS > EI > KJ
Конфигурация Шлефли (12 ₅ , 30 ₂)	$\geq 3^n$	$\left(\frac{12}{5}\right)^n$	$\left(\frac{5}{\sqrt{30}}\right)^n$	FS > KJ > EI
Проективная плоскость $((m^2 + m + 1)_{m+1})$	$\geq 3^n$	$\left(\frac{m^2+m+1}{m(m+1)}\right)^n$	$\left(\frac{m+1}{\sqrt{m^2+m+1}}\right)^n$	FS > EI > KJ
Конфигурация Кокса $((2^{m-1})_m)$	$\geq 3^n$	$\left(\frac{2^{m-1}}{m(m-1)}\right)^n$	$\left(\frac{m}{\sqrt{2^{m-1}}}\right)^n$	FS > KJ > EI

Из таблицы видно, что метод трудного множества всегда работает лучше, чем остальные. Почти во всех примерах мы нашли трудное множество размера 3^n , но максимальное трудное множество может иметь очень большой размер. Оценки 3^n не достаточно, чтобы доказать, что на геометрических конфигурациях метод трудного множества всегда работает лучше, чем оценка Куликова-Юкны, но зато достаточно для метода энтропийных неравенств:

Утверждение 3.1. Для произвольной геометрической конфигурации (p_{γ}, l_{π}) оценка, получаемая по методу трудного множества, превосхо-

дит оценку метода энтропийных неравенств. Иначе говоря

$$2 \ge \frac{\gamma}{\sqrt{l}}$$

Доказательство. Условия

$$\begin{cases} p \cdot \gamma = l \cdot \pi, \\ p \ge \gamma \cdot (\pi - 1) + 1. \end{cases}$$

должны обязательно выполняться для того, чтобы геометрическая конфигурация была корректно определена.

Используя эти ограничения, получаем

$$\frac{\gamma^2}{l} = \frac{\pi \cdot \gamma}{p} \le \frac{p + \gamma - 1}{p} = 1 + \frac{\gamma - 1}{p} < 4$$

Что и требовалось доказать. 🗆

Теперь давайте сравним метод Куликова-Юкны и метод энтропийных неравенств. Рассмотрим два случая:

• Пусть выполняется условие $l \geq \gamma^2$, тогда

$$\gamma^2 \cdot (\pi - 1) \le l \cdot (\pi - 1)$$

То есть получаем, что KJ > EI.

ullet Пусть теперь верно $l \leq \gamma^2$, тогда

$$\gamma^2 \cdot (\pi - 1) \ge l \cdot (\pi - 1) = p \cdot \gamma - l \ge p \cdot \sqrt{l} - l$$

Поделив обе части на $\sqrt{l} \cdot \gamma \cdot (\pi - 1)$, получаем

$$\frac{\gamma}{\sqrt{l}} \ge \frac{p}{\gamma \cdot (\pi - 1)} - \frac{\sqrt{l}}{\gamma \cdot (\pi - 1)}$$

В итоге получаем, что с небольшой погрешностью $EI\gtrsim KJ$

Теорема Турана и граф четырехсторонников

В этом разделе мы докажем, что метод трудного множества всегда дает оценку лучше, чем метод Куликова-Юкны. Также мы сведем задачу нахождения bcc(G) к задаче поиска хроматического числа графа, что позволит нам получить переформулированный метод трудного множества и обобщение оценки (*).

4.1 Теорема Турана и ее следствие

Как уже видно из названия, для дальнейших изысканий нам потребуется классическая теорема Турана:

Теорема 4.1. (**Туран**) Пусть дан неориентированный граф G = (V, E), где |V| = n и число независимости равно α . Тогда в графе выполняется следующая оценка

$$|E| \ge n \cdot \left[\frac{n}{\alpha}\right] - \alpha \cdot \frac{\left[\frac{n}{\alpha}\right] \cdot \left(\left[\frac{n}{\alpha}\right] + 1\right)}{2}$$

Доказательство этой теоремы можно найти в книге [7]. Используя эту теорему, мы можем доказать следующее:

Теорема 4.2. Пусть имеется неориентированный граф G = (V, E), тогда среди ребер максимального паросочетания можно найти трудное множество размера

$$\left\lceil \frac{\nu(G)^2}{|E|} \right\rceil$$

Доказательство. Давайте вместо графа G=(V,E) рассмотрим граф $\widehat{G}=(\widehat{V},\widehat{E})$, в котором останутся только вершины из максимального паросочетания. Так как $|E|\geq |\widehat{E}|$, то достаточно найти трудное множество размера

$$\left| \frac{\nu(G)^2}{|\widehat{E}|} \right|$$

Пусть $(v_1, v_1'), (v_2, v_2'), \ldots, (v_m, v_m')$ – ребра максимального паросочетания. Построим граф $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ такой, что вершин в нем ровно т.

Обозначим вершины $\{\widetilde{v}_1, \ \widetilde{v}_2, \ \ldots, \ \widetilde{v}_m\}$, причем $\widetilde{v}_i \leftrightarrow (v_i, v_i')$. Определим множество ребер \widetilde{E} следующим образом

$$(\widetilde{v}_i,\widetilde{v}_j) \in \widetilde{E} \ ecnu \ (v_i,v_i') \notin \widehat{E} \ unu \ (v_j,v_j') \notin \widehat{E}$$

Очевидно, что трудное множество на ребрах максимального паросочетания соответствует клике в \widetilde{G} такого же размера. Пусть число независимости дополнения графа \widetilde{G} равно α , тогда мы можем предъявить трудное множество размера α . Используя теорему Турана для дополнения графа \widetilde{G} , получаем

$$|\overline{\widetilde{E}}| \ge m \cdot \left[\frac{m}{\alpha}\right] - \alpha \cdot \frac{\left[\frac{m}{\alpha}\right] \cdot \left(\left[\frac{m}{\alpha}\right] + 1\right)}{2} =$$

Пусть $m = k \cdot \alpha + r$, где $r < \alpha$

$$= (k \cdot \alpha + r) \cdot k - \alpha \cdot \frac{k \cdot (k+1)}{2} = \frac{\alpha \cdot k^2}{2} + r \cdot k - \frac{\alpha \cdot k}{2}$$

Так как каждое ребро из дополнения графа \widetilde{G} порождает два ребра в \widehat{G} , а также еще имеется т ребер самого паросочетания, то получаем

$$|\widehat{E}| \ge m + 2 \cdot \left(\frac{\alpha \cdot k^2}{2} + r \cdot k - \frac{\alpha \cdot k}{2}\right) = \frac{r^2}{2} = \frac{r^2}{2} = \frac{r^2}{2}$$

$$= \alpha \cdot k^2 + 2r \cdot k + r \ge \alpha \cdot k^2 + 2r \cdot k + \left\lceil \frac{r^2}{\alpha} \right\rceil = \left\lceil \frac{m^2}{\alpha} \right\rceil$$

В итоге получили, что

$$|\widehat{E}| \ge \left\lceil \frac{m^2}{\alpha} \right\rceil \Longleftrightarrow \alpha \ge \left\lceil \frac{m^2}{|\widehat{E}|} \right\rceil = \left\lceil \frac{\nu(G)^2}{|\widehat{E}|} \right\rceil \blacksquare$$

Эта теорема говорит нам о том, что на любом неориентированном графе точная оценка по методу трудного множества лучше, чем оценка Куликова-Юкны.

Замечание. В тот момент когда работа была практически закончена, была обнаружена статья [8]. В этой статье описывается практически такая же конструкция для двудольных графов, использующая

также теорему Турана. Однако, судя по всему, в доказательстве главной теоремы содержится ошибка (часть 1).

4.2 Граф четырехсторонников

При доказательстве предыдущей теоремы мы использовали некоторый модифицированный граф $\widetilde{G}=(\widetilde{V},\widetilde{E})$. По аналогии можно рассмотреть более общую конструкцию, которую мы будем называть графом четырехсторонников.

Определение. Пусть имеется двудольный неориентированный граф G=(L,R,E). Определим граф четырехсторонников $\widetilde{G}=(\widetilde{V},\widetilde{E})$ следующим образом:

- $e_{i,j} \in E \leftrightarrow v_{i,j} \in \widetilde{V}$, значит $|E| = |\widetilde{V}|$.
- $(v_{i,j},v_{k,l}) \in \widetilde{E}$ тогда и только тогда, когда $v_{i,l} \notin \widetilde{E}$ или $v_{k,j} \notin \widetilde{E}$

Введем также понятия хроматического, кликового и антикликового чисел:

Определение. Хроматическое число графа G – минимальное число k такое, что множество вершин графа можно покрасить в k цветов, причем любое ребро графа соединяет разноцветные вершины. Обозначение $\chi(G)$.

Определение. Кликовое число графа G – максимальное число k такое, что в нашем графе содержится полный граф на k вершинах (k-клика). Обозначение $\omega(G)$.

Определение. Антикликовое число графа G — максимальное число k такое, что в графе дополнения содержится полный граф на k вершинах (k-антиклика). Обозначение $\alpha(G)$.

Используя конструкцию графа четырехсторонников, мы можем сформулировать следующую теорему:

Теорема 4.3. Для любого двудольного графа G = (L, R, E) верно:

1)
$$fool(G) = \omega(\widetilde{G})$$

2)
$$\max_{K_r, \varsigma \subseteq G} \{r \cdot s\} = \alpha(\widetilde{G})$$

3)
$$bcc(G) = \chi(\widetilde{G})$$

Доказательство. Так как каждому трудному множеству размера k в G соответствует k-клика в \widetilde{G} и наоборот, то $fool(G) = \omega(\widetilde{G})$.

Очевидно, что биклике $K_{r,s}$ в G, соответствует антиклика размера $r \cdot s$ в \widetilde{G} . Обратно, если $(v_{i,j}, v_{k,l}) \notin \widetilde{E}$, то вершины $v_{i,l}$ и $v_{k,j}$ определены, и между ними нет ребра. И следовательно, если рассмотреть какую-нибудь антиклику в \widetilde{G} , то ее можно расширить до "прямоугольной" антиклики, которой будет соответствовать биклика в G.

Последняя часть теоремы сразу следует из того, что все вершины антиклики мы можем красить в один цвет. Имея произвольное покрытие bcc(G), мы получаем покрытие вершин графа \widetilde{G} антикликами. Пусть каждой биклике из bcc(G) сопоставлен свой цвет. Красим вершину в тот цвет, который соответствует покрывающей ее биклике (если таких биклик несколько, то в любой из них). В итоге получаем правильную раскраску графа в bcc(G) цветов. Обратно, правильная покраска графа \widetilde{G} порождает покрытие антикликами, которые мы расширяем до "прямоугольных". А так как эти антиклики соответствуют бикликам в G, то мы получили покрытие бикликами (возможно пересекающимися) размера $\chi(\widetilde{G})$.

Эта теорема позволяет нам переформулировать известные оценки для хроматического числа нового графа \widetilde{G} в виде оценок для величины минимального бикликового покрытия исходного графа G

$$\chi(\widetilde{G}) \ge \omega(\widetilde{G}) \Longleftrightarrow bcc(G) \ge fool(G)$$

И

$$\chi(\widetilde{G}) \ge \left\lceil \max_{U \subseteq \widetilde{V}} \frac{|U|}{\alpha(\widetilde{G}(U))} \right\rceil \Longleftrightarrow bcc(G) \ge \left\lceil \max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right\rceil$$

где $G(\mathcal{E})$ наименьший подграф G, содержащий все ребра \mathcal{E} .

Если в качестве \mathcal{E} рассмотреть максимальное паросочетание, тогда $\max_{K_{r,s}\subseteq G(\mathcal{E})}|K_{r,s}\cap\mathcal{E}|=\max_{K_{r,r}\subseteq G(\mathcal{E})}|K_{r,r}\cap\mathcal{E}|=\max_{K_{r,r}\subseteq G(\mathcal{E})}\{r\}\leq \max_{K_{r,r}\subseteq G}\{r\}=bcl(G).$

В итоге получаем оценку, которую мы уже раньше встречали:

$$bcc(G) \ge \left[\max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right] \ge \left\lceil \frac{\nu(G)}{bcl(G)} \right\rceil$$

Если же в качестве ${\mathcal E}$ взять вообще все ребра, то

$$bcc(G) \ge \left[\max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right] \ge \left[\frac{|E|}{\max_{K_{r,s} \subseteq G} \{r \cdot s\}} \right]$$

Случайные графы

В этом разделе мы докажем существование двудольных графов, у которых оценки по методу трудного множества и по методу Куликова-Юкны очень сильно отличаются. Доказывать этот факт мы будем вероятностным методом, используя модель Эрдеша-Реньи.

5.1 Случайные двудольные графы Эрдеша-Реньи

Пусть у нас имеются два n-элементных множества L и R, элементы которого будем называть вершинами левой и правой долей графа. Понятно, что случайным будет множество ребер графа. Мы рассматриваем неориентированные графы без петель и кратных рёбер, поэтому потенциальных ребер не больше, чем n^2 штук. Будем соединять любые две вершины $i \in L$ и $j \in R$ ребром с некоторой вероятностью $p \in [0,1]$ независимо от всех остальных n^2-1 пар вершин. Иными словами, ребра появляются в соответствии со стандартной схемой Бернулли, в которой n^2 испытаний и "вероятность успеха" p. Обозначим через E случайное множество ребер, которое возникает в результате реализации такой схемы. Положим G = (L, R, E). Это и есть случайный двудольный граф в модели Эрдеша – Реньи.

Если записывать приведенное только что определение в формате аксиоматики Колмогорова, то мы имеем вероятностное пространство

$$G(n,p) = (\Omega_n, \mathcal{F}_n, P_{n,p})$$

в котором

$$\Omega_n = \{G = (L, R, E)\}, \ \mathcal{F}_n = 2^{\Omega_n}, \ P_{n,p}(G) = p^{|E|} \cdot (1 - p)^{n^2 - |E|}$$

Если нам хочется найти вероятность, с которой двудольный граф на 2n вершинах обладает данным свойством A, то мы просто берем множество $A \in \mathcal{F}_n$, состоящее из всех графов, для которых выполнено свойство A, и вычисляем

$$P_{n,p}(\mathcal{A}) = \sum_{G \in \mathcal{A}} P_{n,p}(G)$$

Далее будем рассматривать не фиксированное p, а некоторую функцию p(n), заключенную между нулем и единицей. Скажем, наконец, что свойство выполнено почти всегда, если его вероятность стремится к единице при $n \to \infty$.

5.2 Неравенство Хефдинга

Пусть $\xi_1,\ \xi_2,\ \dots,\ \xi_n$ — последовательность независимых случайных величин таких, что для любого $i=1,\ 2,\ \dots,\ n$ верно $\xi_i\in[a_i,b_i]$ с вероятностью 1 для некоторых $a_i,b_i\in\mathbb{R}$. Введем обозначение $S_n=\sum_{i=1}^n\xi_i$. Мы хотим изучать отклонение случайной величины S_n от ее среднего значения $\mathbb{E}[S_n]$. Иначе говоря, получить неравенство концентрации для $\xi=S_n-\mathbb{E}[S_n]$. Воспользовавшись для этого неравенством Чернова получим, что для любого $\lambda>0$ верно

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} = P\{e^{\lambda(S_n - \mathbb{E}[S_n])} \ge e^{\lambda\varepsilon}\} \le \frac{\mathbb{E}[e^{\lambda(S_n - \mathbb{E}[S_n])}]}{e^{\lambda\varepsilon}} = \frac{\mathbb{E}[e^{\lambda\sum_{i=1}^{n}(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}} = \frac{\mathbb{E}[\prod_{i=1}^{n}e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}} = \frac{\prod_{i=1}^{n}\mathbb{E}[e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}}$$

Нам остается построить верхние оценки для производящих функций $\varphi_{\xi_i}(\lambda)$. Следующий результат дает нам такие оценки в тех случаях, когда случайные величины ξ_i принимают значения из ограниченных интервалов.

Лемма 5.1. (Хефдинг) Для произвольной случайной величины ξ та-

кой, что $\mathbb{E}[\xi] = 0$ и $\xi \in [a,b]$ с вероятностью 1 для любого $\lambda > 0$ справедливо

 $\mathbb{E}[e^{\lambda \xi}] \le e^{\frac{\lambda^2 (b-a)^2}{8}}$

Доказательство основано на выпуклости экспоненты.

Применив эту лемму к нашей цепочке неравенств для случайных величин $\xi_i - \mathbb{E}[\xi_i]$, которые почти наверное лежат в интервалах $[a_i - \mathbb{E}[\xi_i], b_i - \mathbb{E}[\xi_i]]$, мы получаем

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le \frac{\prod_{i=1}^n \mathbb{E}[e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda \varepsilon}} \le \frac{\prod_{i=1}^n e^{\lambda^2(b_i - a_i)^2/8}}{e^{\lambda \varepsilon}} = \frac{e^{\lambda^2 \sum_{i=1}^n (b_i - a_i)^2/8}}{e^{\lambda \varepsilon}}$$

Остается минимизировать правую часть по $\lambda \geq 0$. Выбирая

$$\lambda = \frac{4\varepsilon}{\sum_{i=1}^{n} (b_i - a_i)^2}$$

мы получаем следующий результат

Теорема 5.1. (**Неравенство Хефдинга**) Пусть $\xi_1, \xi_2, \ldots, \xi_n$ – последовательность независимых случайных величин, таких что для любого $i=1,\ 2,\ \ldots,\ n$ верно $\xi_i\in[a_i,b_i]$ с вероятностью 1 для некоторых $a_i,b_i\in\mathbb{R}$. Тогда для любого $\varepsilon>0$ верно

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le exp\left(\frac{-2\varepsilon^2}{\sum\limits_{i=1}^n (b_i - a_i)^2}\right)$$

Аналогичное неравенство верно для $P\{\mathbb{E}[S_n] - S_n \geq \varepsilon\}$, поскольку условия теоремы инвариантны относительно замены знака слагаемых. Применив дважды неравенство Хефдинга, мы получаем

$$P\{|S_n - \mathbb{E}[S_n]| \ge \varepsilon\} \le P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} + P\{\mathbb{E}[S_n] - S_n \ge \varepsilon\} \le P\{S_n - \mathbb{E}[S_n] \ge P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le P\{S_n - \mathbb{E}[S_n] \ge P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le P\{S_n - \mathbb{E}[S_n] \ge P\{$$

$$\leq 2 \cdot exp\left(\frac{-2\varepsilon^2}{\sum\limits_{i=1}^n (b_i - a_i)^2}\right)$$

Воспользуемся этим неравенством для того, чтобы изучить отклонение числа ребер в случайном двудольном графе Эрдеша-Реньи. Определим индикаторные случайные величины $X_{i,j} = I\{e_{i,j} \in E\}$. Так как случайная величина $|E| = \sum_{i,j} X_{i,j}$, то получаем

$$\mathbb{E}[|E|] = \sum_{i,j} \mathbb{E}[X_{i,j}] = \sum_{i,j} P\{e_{i,j} \in E\} = n^2 \cdot p$$

Наконец, воспользуемся неравенством Хефдинга для $\varepsilon=n^{1+\delta}$

$$P\{||E| - \mathbb{E}[|E|]| \ge n^{1+\delta}\} \le 2 \cdot e^{-\frac{2n^{2+2\delta}}{n^2}} = 2 \cdot e^{-2n^{2\delta}} \xrightarrow[n \to \infty]{} 0$$

В итоге мы получили, что почти наверное число ребер в графе не сильно отличается от его матожидания:

$$n^2 \cdot p - n^{1+\delta} \le |E| \le n^2 \cdot p + n^{1+\delta}$$

.

5.3 Размер максимального паросочетания

Для изучения отклонения величины максимального паросочетания нам потребуется теорема Холла.

Теорема 5.2. (Холл) Пусть имеется неориентированный двудольный граф G = (L, R, E). Для произвольного $A \subseteq L$ определим множество соседей

$$N(A) = \{ y \in R \mid (x, y) \in E, \ x \in A \}$$

В двудольном графе существует совершенное паросочетание тогда и только тогда, когда для любого $A \subseteq L$ выполнено $|A| \le |N(A)|$.

Пусть имеется двудольный граф Эрдеша-Реньи G=(L,R,E), где |L|=|R|=n. Множество $S\subseteq L$ не удовлетворяет условию теоремы Холла, если существует множество $T\subseteq R$ такое, что |S|+|T|=n+1 и $N(S)\cap T=\varnothing$ (нет ребер между множествами S и T).

Очевидно, что

$$P\{N(S) \cap T = \varnothing\} = (1-p)^{|S| \cdot |T|}$$

тогда

$$P\{$$
нет совершенного паросочетания $\} \leq \sum_{S} \sum_{T} (1-p)^{|S|\cdot|T|} =$

$$= \sum_{k=1}^{n} \binom{n}{k} \binom{n}{n-k+1} (1-p)^{k(n-k+1)} \le \sum_{k=1}^{(n+1)/2} \binom{n}{k} \binom{n}{k-1} (1-p)^{kn/2} \le \sum_{k=1}^{(n+1)/2} n^{2k} (1-p)^{kn/2}$$

Если предположить, что $p=p(n)=n^{-\alpha}$ при $\alpha<1$, то получаем

$$P\{$$
нет совершенного паросочетания $\} \leq \sum_{k=1}^{(n+1)/2} n^{2k} (1-p)^{kn/2} =$

$$=\sum_{k=1}^{(n+1)/2} n^{2k} e^{-\frac{kn}{2} \cdot n^{-\alpha} + O(n^{1-2\alpha}) \cdot k} = \sum_{k=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2} n^{1-\alpha} + O(n^{1-2\alpha})} \right)^k \xrightarrow[n \to \infty]{} 0$$

Последнее утверждение верно потому, что с некоторого момента величина стоящая под степенью будет меньше 1, а значит первое слагаемое будет больше всех остальных

$$\sum_{k=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right)^k \le \frac{n+1}{2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right) \xrightarrow[n \to \infty]{} 0$$

В итоге мы получили, что почти наверное (при $n \to \infty$) в нашем графе будет совершенное паросочетание.

5.4 Трудное множество и оценка Куликова-Юкны на случайных графах

Если предположить, что $p=p(n)=n^{-\alpha}$ (0 < α < 1), то можно доказать следующее утверждение:

Утверждение 5.1. Для произвольного δ такого, что $0 < \delta < 1 - \alpha$ верно:

$$n^{\alpha} - O(n^{2\alpha + \delta - 1}) \le \frac{\nu(G)^2}{|E|} \le n^{\alpha} + O(n^{2\alpha + \delta - 1})$$

Доказательство. Рассмотрим вероятность

$$P\left\{\frac{n^2}{n^{2-\alpha} + n^{1+\delta}} \le \frac{\nu(G)^2}{|E|} \le \frac{n^2}{n^{2-\alpha} - n^{1+\delta}}\right\} \ge$$

$$\ge 1 - P\left\{\nu(G) \ne n\right\} - P\left\{||E| - n^{2-\alpha}| \ge n^{1+\delta}\right\} \xrightarrow[n \to \infty]{} 1$$

В параграфах 4.4 и 4.5 мы доказали, что соответствующие вероятности стремятся к 0 при $n \to \infty$, поэтому итоговая вероятность стремится к 1. Поделив числители и знаменатели на $n^{2-\alpha}$, получаем

$$\frac{n^{\alpha}}{1 + n^{\alpha + \delta - 1}} \le \frac{\nu(G)^2}{|E|} \le \frac{n^{\alpha}}{1 - n^{\alpha + \delta - 1}}$$

а так как $\alpha + \delta < 1$, то можно применить разложение в ряд Тейлора

$$n^{\alpha} \left(1 - O(n^{\alpha + \delta - 1}) \right) \le \frac{\nu(G)^2}{|E|} \le n^{\alpha} \left(1 + O(n^{\alpha + \delta - 1}) \right) \square$$

Теперь посчитаем вероятность того, что в случайном графе найдется трудное множество размера k. Обозначим $f_k(G)$ - число различных трудных множеств размера k в графе G. Нас интересует вероятность $P\{f_k(G)>0\}$, которая превосходит вероятность того, что фиксированные k пар вершин образуют трудное множество. Иначе говоря

$$P\{f_k(G) > 0\} \ge p^k (1 - p^2)^{\binom{k}{2}}$$

Предположим теперь, что $p=p(n)=n^{-lpha}\;(0<lpha<1)$ и величина

$$k = k(n) = n^{\beta} \ (0 < \beta < 2)$$
, тогда

$$P\{f_k(G) > 0\} \ge n^{-\alpha k} e^{\binom{k}{2} \cdot (-n^{-2\alpha} + O(n^{-4\alpha}))} = n^{-\alpha n^{\beta}} e^{-\frac{1}{2}n^{2\beta - 2\alpha} + \frac{1}{2}n^{\beta - 2\alpha} + O(n^{2\beta - 4\alpha})}$$

К тому же, если $0 < \delta < 1 - \alpha$ и мы докажем, что при $n \to \infty$

$$P\{f_k(G) > 0\} > P\{\nu(G) \neq n\} + P\{||E| - n^{2-\alpha}| \ge n^{1+\delta}\}$$

то получим, что существует граф, у которого имеется трудное множество размера n^{β} и оценка Куликова-Юкны не превосходит $n^{\alpha} + O(n^{2\alpha+\delta-1})$. Чтобы это было верно, достаточно показать, что

$$n^{-\alpha n^{\beta}} e^{-\frac{1}{2}n^{2\beta-2\alpha} + \frac{1}{2}n^{\beta-2\alpha} + O(n^{2\beta-4\alpha})} > 2 \cdot e^{-2n^{2\delta}} + \sum_{i=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right)^i$$

Сравним левую часть с каждым слагаемым из правой части по отдельности:

1) Если $2\delta > \beta > \alpha$ и $2\delta > 2\beta - 2\alpha$, то

$$-\alpha \cdot \ln n \cdot n^{\beta} - \frac{1}{2} \cdot n^{2\beta - 2\alpha} \gg -2\ln 2 \cdot n^{2\delta}$$

2) Поделим левую часть на n и сравним с первым членом суммы, заранее прологарифмировав. При $1-\alpha>\beta>\alpha$ и $1+\alpha>2\beta$ верно

$$-\alpha \cdot \ln n \cdot n^{\beta} - 1 - \frac{1}{2} \cdot n^{2\beta - 2\alpha} \gg 2 \ln n - \frac{1}{2} n^{1 - \alpha}$$

что верно, так как

$$n^{1-\alpha} \gg \ln n$$
, $n^{1-\alpha} \gg \ln n \cdot n^{\beta}$, $n^{1-\alpha} \gg n^{2\beta-2\alpha}$

Пример. Если взять $\alpha = 0.05$, $\beta = 0.5$ и $\delta = 0.5$, тогда все требуемые неравенства выпоняются. А значит существует двудольный граф, на котором метод трудного множества дает оценку хотя бы $n^{0.5}$, а оценка Куликова-Юкны не превосходит $n^{0.05} + O(n^{-0.4})$.

Ограничение, которое накладываются только на α и β имеет вид

 $\min\left\{\frac{1+\alpha}{2},1-\alpha\right\}>\beta>\alpha$, а значит $\alpha\in[0,\,\frac{1}{2})$. Далее рассмотрим два случая:

1) Пусть $0 \le \alpha < \frac{1}{3}$, тогда $\frac{1+\alpha}{2} < 1-\alpha$. А значит можно доказать следующую теорему:

Теорема 5.3. Для произвольных $\alpha \in [0, \frac{1}{3})$ и $\beta \in (\alpha, \frac{1+\alpha}{2})$ существует двудольный граф G = (L, R, E) (|L| = |R| = n), на котором метод трудного множества дает оценку хотя бы n^{β} , а оценка Куликова-Юкны не превосходит $n^{\alpha} + o(1)$.

Доказательство. Пусть $\delta = \frac{1-\alpha}{2}$, тогда все неравенства, в которых участвует δ , выполняются:

$$\bullet \ \delta + \alpha = \frac{1-\alpha}{2} + \alpha = \frac{1+\alpha}{2} < 1$$

•
$$2\delta = 1 - \alpha > \frac{1+\alpha}{2} > \beta > \alpha$$

•
$$\delta = \frac{1-\alpha}{2} = \frac{1+\alpha}{2} - \alpha > \beta - \alpha$$

а значит существует граф, у которого метод трудного множества дает оценку n^{β} , а оценка по методу Куликова-Юкны не превосходит $n^{\alpha}+O(n^{2\alpha+\delta-1})=n^{\alpha}+O(n^{2\alpha+\frac{1-\alpha}{2}-1})=n^{\alpha}+O(n^{\frac{3\alpha-1}{2}})=n^{\alpha}+o(1)$.

2) Пусть $\frac{1}{3} \leq \alpha < \frac{1}{2}$, тогда $\frac{1+\alpha}{2} \geq 1-\alpha$. А значит можно доказать следующую теорему:

Теорема 5.4. Для произвольных $\alpha \in [\frac{1}{3}, \frac{1}{2})$ и $\beta \in (\alpha, 1-\alpha)$ существует двудольный граф G = (L, R, E) (|L| = |R| = n), на котором метод трудного множества дает оценку хотя бы n^{β} , а оценка Куликова-Юкны не превосходит $n^{\alpha} + o(n^{\frac{\alpha}{2}})$.

Доказательство. Пусть $\delta = \frac{1-\alpha}{2}$, тогда все неравенства, в которых участвует δ , выполняются:

$$\bullet \ \delta + \alpha = \frac{1-\alpha}{2} + \alpha = \frac{1+\alpha}{2} < 1$$

•
$$2\delta = 1 - \alpha > \beta > \alpha$$

•
$$\delta = \frac{1-\alpha}{2} = \frac{1+\alpha}{2} - \alpha > (1-\alpha) - \alpha > \beta - \alpha$$

а значит существует граф, у которого метод трудного множества дает оценку n^{β} , а оценка по методу Куликова-Юкны не превосходит $n^{\alpha} + O(n^{2\alpha+\delta-1}) = n^{\alpha} + O(n^{2\alpha+\frac{1-\alpha}{2}-1}) = n^{\alpha} + o(n^{\frac{\alpha}{2}})$.

K сожалению, мы смогли показать лишь существование такого графа, но не смогли доказать, что это верно для почти всех графов. Чтобы преодолеть эту трудность, нужно исследовать отклонение числа трудных множеств размера k.

5.5 Количество трудных множеств размера k

Вспомним, что $f_k(G)$ – число трудных множеств размера k в графе G. Давайте оценим матожидание этой случайной величины

$$\mathbb{E}[f_k(G)] = \binom{n}{k}^2 \cdot k! \cdot \mathbb{E}[I_k(G)] = \binom{n}{k}^2 \cdot k! \cdot p^k (1 - p^2)^{\binom{k}{2}}$$

Лемма 5.2. Если $k = o(\sqrt{n})$, то $\binom{n}{k} \sim \frac{n^k}{k!}$, к тому же, если $k \to \infty$ при $n \to \infty$, то $\binom{n}{k} \sim n^k k^{-k-\frac{1}{2}} e^k$.

Доказательство. Применим неравенство $\ln(1-x) < -x$

$$\binom{n}{k} = \frac{n^k}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) =$$

$$= \frac{n^k}{k!} e^{\ln\left(1 - \frac{1}{n}\right) + \ln\left(1 - \frac{2}{n}\right) + \dots + \ln\left(1 - \frac{k-1}{n}\right)} < \frac{n^k}{k!} e^{-\frac{1}{n} - \frac{2}{n} - \dots - \frac{k-1}{n}} =$$

$$= \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n}} = \frac{n^k}{k!} e^{-O\left(\frac{k^2}{n}\right)}$$

Eсли использовать неравенство $\ln(1-x)>-x-rac{1}{2}x^2$, то получаем

$$\binom{n}{k} > \frac{n^k}{k!} e^{-\frac{1}{n} - \frac{1}{2} \cdot \frac{1^2}{n^2} - \frac{2}{n} - \frac{1}{2} \cdot \frac{2^2}{n^2} - \dots - \frac{1}{n} - \frac{k-1}{2} \cdot \frac{(k-1)^2}{n^2}} =$$

$$= \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n} - \frac{1}{2n} \sum_{i < k} i^2} > \frac{n^k}{k!} e^{-\frac{k^2}{2n} - O\left(\frac{k^3}{n^2}\right)}$$

В итоге мы получили, что

$$\frac{n^k}{k!}e^{-\frac{k^2}{2n}-O\left(\frac{k^3}{n^2}\right)} < \binom{n}{k} < \frac{n^k}{k!}e^{-O\left(\frac{k^2}{n}\right)}$$

При $k = o(\sqrt{n})$ мы получаем $\binom{n}{k} \sim \frac{n^k}{k!}$. Применяя формулу Стирлинга κ k!, получаем второе утверждение леммы. \square

Эта лемма позволяет найти точный порядок величины $\mathbb{E}[f_k(G)]$ в предположении, что $p=n^{\alpha}$.

$$\mathbb{E}[I_k(G)] = p^k (1 - p^2)^{\binom{k}{2}} = n^{-\alpha k} e^{\binom{k}{2} \cdot \ln\left(1 - \frac{1}{n^{2\alpha}}\right)} =$$

$$= n^{-\alpha k} e^{-\binom{k}{2} \cdot \frac{1}{n^{2\alpha}} + \binom{k}{2} \cdot \frac{1}{2n^{4\alpha}} + O\left(\frac{k^2}{n^{6\alpha}}\right)} = n^{-\alpha k} e^{-\frac{k^2}{2n^{2\alpha}} + \frac{k^2}{4n^{4\alpha}} + O\left(\frac{k}{n^{2\alpha}}\right)}$$

Если предположить, что $k=n^{2\alpha+\varepsilon}$, то

$$\mathbb{E}[f_k(G)] \sim n^{2n^{2\alpha+\varepsilon} - (2\alpha+\varepsilon)(n^{2\alpha+\varepsilon} + \frac{1}{2})} \cdot e^{n^{2\alpha+\varepsilon}} \cdot n^{-\alpha n^{2\alpha+\varepsilon}} \cdot e^{-\frac{1}{2}n^{2\alpha+2\varepsilon} + O(n^{2\varepsilon})} =$$

$$= n^{n^{2\alpha+\varepsilon}(2-3\alpha-\varepsilon) - \alpha - \frac{\varepsilon}{2}} \cdot e^{-\frac{1}{2}n^{2\alpha+2\varepsilon} + O(n^{2\alpha+\varepsilon})} \xrightarrow[n \to +\infty]{} 0$$

A если $k=n^{2\alpha-\varepsilon}$, то

$$\mathbb{E}[f_k(G)] \sim n^{2n^{2\alpha-\varepsilon} - (2\alpha-\varepsilon)(n^{2\alpha-\varepsilon} + \frac{1}{2})} \cdot e^{n^{2\alpha-\varepsilon}} \cdot n^{-\alpha n^{2\alpha-\varepsilon}} \cdot e^{-\frac{1}{2}n^{2\alpha-2\varepsilon} + O(n^{-\varepsilon})} =$$

$$= n^{n^{2\alpha-\varepsilon}(2-3\alpha+\varepsilon) - \alpha + \frac{\varepsilon}{2}} \cdot e^{n^{2\alpha-\varepsilon} + O(n^{2\alpha-2\varepsilon})} \xrightarrow[n \to +\infty]{} + \infty$$

В итоге мы доказали следующую теорему:

Теорема 5.5. Пусть $p = n^{-\alpha}$, тогда

•
$$k = n^{2\alpha - \varepsilon} \ u \ 2\alpha - \varepsilon < \frac{1}{2} \Longrightarrow \mathbb{E}[f_k(G)] \xrightarrow{n \to +\infty} +\infty$$

•
$$k = n^{2\alpha + \varepsilon} \ u \ 2\alpha + \varepsilon < \frac{1}{2} \Longrightarrow \mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{n \to +\infty} 0$$

Используя теорему при $k=n^{2\alpha+arepsilon}$ и неравенство Маркова мы получаем

$$P\{f_k(G) > 0\} = P\{f_k(G) \ge 1\} \le \mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{} 0$$

Иначе говоря, размер максимального трудного множества почти наверное меньше $k=n^{2\alpha+\varepsilon}$. Обратно, для того чтобы доказать, что мы почти наверное найдем трудное множество размера $k=n^{2\alpha-\varepsilon}$ рассматривают неравенство Чебышева:

$$P\{f_k(G) = 0\} \le P\{|f_k(G) - \mathbb{E}[f_k(G)]| \ge \mathbb{E}[f_k(G)]\} \le \frac{\mathbb{D}[f_k(G)]}{\mathbb{E}[f_k(G)]^2} \xrightarrow[n \to +\infty]{} 0$$

Для того, чтобы доказать сходимость к 0 обычно рассматривают ин-

дикаторные случайные величины:

$$I_k(S) = \begin{cases} 1, & \text{если } S \text{ - образует трудное множество;} \\ 0, & \text{если } S \text{ - не образует трудное множество.} \end{cases}$$

где S – фиксированные k-пар вершин. Далее используя $f_k(G) = \sum_S I_k(S),$ получают

$$\mathbb{D}[f_k(G)] = \mathbb{D}[\sum_{S} I_k(S)] = \sum_{S} \mathbb{D}[I_k(S)] + \sum_{S \neq T} cov(I_k(S), I_k(T))$$

Далее мы будем писать $S \sim T$, если $I_k(S)$ и $I_k(T)$ зависимы, то есть $S \neq T$ и эти два множества имеют хотя бы одной совпадающей вершине из каждой доли.

$$\mathbb{D}[f_k(G)] = \sum_{S} \mathbb{D}[I_k(S)] + \sum_{S \sim T} cov(I_k(S), I_k(T)) \le$$

$$\le \sum_{S} \mathbb{E}[I_k(S)^2] + \sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)] =$$

$$= \sum_{S} \mathbb{E}[I_k(S)] + \sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)] =$$

$$= \mathbb{E}[f_k(G)] + \sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)]$$

В цепочке равенств мы использовали $I_k(S) = I_k(S)^2$ и в итоге получили

$$\frac{\mathbb{D}[f_k(G)]}{\mathbb{E}[f_k(G)]^2} \le \frac{1}{\mathbb{E}[f_k(G)]} + \frac{1}{\mathbb{E}[f_k(G)]^2} \cdot \sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)]$$

а так как $\mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{} +\infty$, то достаточно показать

$$\sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)] = o(\mathbb{E}[f_k(G)]^2)$$

На самом деле используя тот факт, что все множества S симметричны

друг относительно друга, можно показать

$$\sum_{S \sim T} \mathbb{E}[I_k(S) \cdot I_k(T)] = \sum_{S \sim T} P\{I_k(S) = 1 \land I_k(T) = 1\} =$$

$$= \sum_{S \sim T} P\{I_k(S) = 1\} \cdot P\{I_k(T) = 1 \mid I_k(S) = 1\} =$$

$$= \sum_{S \sim T} \left(P\{I_k(S) = 1\} \sum_{T:T \sim S} P\{I_k(T) = 1 \mid I_k(S) = 1\} \right) =$$

$$= \sum_{T:T \sim S_0} P\{I_k(T) = 1 \mid I_k(S_0) = 1\} \sum_{S} P\{I_k(S) = 1\} =$$

$$= \mathbb{E}[f_k(G)] \sum_{T:T \sim S_0} P\{I_k(T) = 1 \mid I_k(S_0) = 1\}$$

А значит мы получили

$$\frac{\mathbb{D}[f_k(G)]}{\mathbb{E}[f_k(G)]^2} \le \frac{1}{\mathbb{E}[f_k(G)]} + \frac{1}{\mathbb{E}[f_k(G)]} \cdot \sum_{T: T \sim S_0} P\{I_k(T) = 1 \mid I_k(S_0) = 1\}$$

а так как $\mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{} +\infty$, то достаточно показать

$$\sum_{T:T\sim S_0} P\{I_k(T) = 1 \mid I_k(S_0) = 1\} = o(\mathbb{E}[f_k(G)]) \tag{***}$$

К сожалению, для fool(G) данное утверждение не столь тривиально, как, например, для кликового числа $\omega(G)$. И если бы мы смогли показать это, то было бы верно

Утверждение 5.2. Пусть $\alpha \leq \frac{1}{4}$ и $\varepsilon > 0$, тогда почти наверное метод трудного множества дает оценку хотя бы $n^{2\alpha-\varepsilon}$, а оценка Куликова-Юкны не превосходит $n^{\alpha} + o(1)$.

Доказательство. Так как $\alpha \leq \frac{1}{4}$, то $k = n^{2\alpha - \varepsilon} = o(\sqrt{n})$. Следовательно, из теоремы 5.5 и выполнимости условия (***) мы получаем

$$P\{f_k(G) > 0\} = 1 - P\{f_k(G) = 0\} \xrightarrow[n \to +\infty]{} 1$$

Оценка Куликова-Юкны следует из утверждения 5.1 при $\delta = \frac{1}{2}$:

$$\frac{\nu(G)^2}{|E|} \le n^\alpha + o(1) \ \Box$$

Обобщение методов оценивания

Существует несколько классических обобщений коммуникационной задачи с двумя игроками. Одним из самых популярных обобщений является модель "number-in-hand": имеется m игроков, которые хотят вычислить некоторую функцию $f(x_1, x_2, \ldots, x_m)$, причем i-ый игрок знает только аргумент x_i . В данной модели общение будет происходить по принципу широковещания: каждое пересылаемое сообщение видно всем игрокам.

В этом разделе мы формализуем модель "number-in-hand", определим коммуникационную сложность, а также обощим метод трудного множества и метод энтропийных неравенств.

6.1 т-Мерная коммуникационная сложность

Опишем модель более формально. Пусть имеются конечные множества X_1, X_2, \ldots, X_m, Z и задана некоторая функция от m переменных $f: X_1 \times X_2 \times \ldots \times X_m \to Z$.

Определение. m-Мерным коммуникационным протоколом для вычисления некоторой функции $f: X_1 \times X_2 \times \ldots \times X_m \to Z$ называется ориентированное двоичное дерево со следующей разметкой на вершинах и ребрах:

- каждая нелистовая вершина помечена индексом игрока i;
- ullet в j-ой вершине (в произвольной нумерации) с меткой i записана функция $g_{i,j}: X_i o \{0,1\}$
- ullet каждой листовой вершине сопоставлен элемент множеста Z;
- каждое ребро помечено 0 или 1.

Все игроки договориваются, что будут действовать по некоторому протоколу \mathcal{P} , после чего они получают по аргументу $x_i \in X_i$. Поместим

фишку в корневую вершину нашего протокола \mathcal{P} и будем перемещать ее вниз по дереву, последовательно удаляясь от корня, пока она не попадет в один из листьев. Перемещение фишки выполняется следующим образом. Если текущая вершина помечена индексом i, то это означает, что сейчас очередь i-ого игрока. Он применяет функцию $g_{i,j}$ текущей вершины к своему значению x_i , отправляет по каналу связи бит равный $g_{i,j}(x_i)$ и перемещает фишку по ребру, помеченному как $g_{i,j}(x_i)$. Все остальные игроки видят отправленный бит и понимают куда была сдвинута фишка по дереву протокола. Данная процедура заканчивается в тот момент, когда фишка попадает в лист дерева, а записанное там значение $z \in Z$, объявляется результатом выполнения протокола.

Мы говорим, что протокол \mathcal{P} вычисляет $f: X_1 \times X_2 \times \ldots \times X_m \to Z$, если для любого набора $(x_1, x_2, \ldots, x_m) \in X_1 \times X_2 \times \ldots \times X_m$ при движении из корня по пути, соответствующему заданным x_1, x_2, \ldots, x_m , мы попадаем в лист, помеченный $z = f(x_1, x_2, \ldots, x_m)$.

Определение. Сложностью т-мерного коммуникационного протокола называется его глубина. Коммуникационной сложностью функции f называется минимальная сложность протокола, вычисляющего f. Как и для случая с двумя игроками мы будем обозначать её CC(f).

6.2 Одноцветные комбинаторные параллелепипеды

Определение. Множесство $S \subseteq X_1 \times X_2 \times ... \times X_m$ называется комбинаторным параллелепипедом (или просто параллелепипедальным множесством), если существуют такие $Y_1 \subseteq X_1, Y_2 \subseteq X_2, ..., Y_m \subseteq X_m$, что $S = Y_1 \times Y_2 \times ... \times Y_m$.

Пусть \mathcal{P} – некоторый коммуникационный протокол для вычисления функции $f: X_1 \times X_2 \times \ldots \times X_m \to Z$ и l – один из листьев протокола. Определим S_l как множество $(x_1, x_2, \ldots, x_m) \in X_1 \times X_2 \times \ldots \times X_m$ таких, что на входе (x_1, x_2, \ldots, x_m) игроки, следуя протоколу \mathcal{P} , приходят в l.

Утверждение 6.1. Для всякого m-мерного коммуникационного протокола \mathcal{P} и для всякого листа l множество S_l является комбинаторным параллелепипедом. Доказательство. Докажем, что это верно не только для листьев, но и для произвольной вершины протокола. Будем доказывать при помощи математической индукции по глубине вершины v. Для корня это очевидно $S_{root} = X_1 \times X_2 \times \ldots \times X_m$. Пусть у нас в дереве протокола имеется переход $w \to v$ по биту b и вершина w помечена индексом i. Тогда верно

$$S_v = S_w \cap \{(x_1, \dots, x_i, \dots, x_m) \mid f_{i,w}(x_i) = b\}$$

По предположению индукции $S_w=Y_{1,w}\times Y_{2,w}\times\ldots\times Y_{m,w},$ а значит верно

$$S_v = Y_{1,w} \times \ldots \times (Y_{i,w} \cap \{x_i \mid f_{i,w}(x_i) = b\}) \times \ldots \times Y_{m,w}$$

 Π ереход доказан. \square

6.3 Метод трудного множества

Данный метод тесно связан с одноцветными параллелепипедальными множествами.

Определение. Для функции $f: X_1 \times X_2 \times \ldots \times X_m \to Z$ и элемента $z \in Z$ будем называть множество $S_z \subset X_1 \times X_2 \times \ldots \times X_m$ трудным (в англоязычной литературе fooling set), если верно:

- для всякого $(x_1, x_2, \dots, x_m) \in S_z$ имеем $f(x_1, x_2, \dots, x_m) = z;$
- для любых двух несовпадающих векторов $(x_1, x_2, ..., x_m) \in S_z$ и $(x'_1, x'_2, ..., x'_m) \in S_z$ существует вектор $(y_1, y_2, ..., y_m)$ такой, что $f(y_1, y_2, ..., y_m) \neq z$ и для любого i верно $y_i \in \{x_i, x'_i\}$.

По аналогии с коммуникационным протоколом для двух игроков можно определить гиперграф $G_z = (X_1 \sqcup \ldots \sqcup X_m, E_z)$, ребрами которого являются вектора $(x_1, x_2, \ldots, x_m) \in X_1 \times X_2 \times \ldots \times X_m$ такие, что $f(x_1, x_2, \ldots, x_m) = z$. Из определения комбинаторного параллелепипеда видно, что в гиперграфовой интерпретации он является полным m-дольным гиперграфом. Понятия m-мерных bcp(G) и bcc(G) определяются естественным образом, а трудное множество есть не что иное, как

множество ребер гиперграфа такое, что любые два ребра не могут лежать в одном полном m-дольном гиперграфе.

Теорема 6.1. Для произвольного неориентированного m-дольного гиперграфа $G = (X_1 \sqcup X_2 \sqcup \ldots \sqcup X_m, E)$, если подмножество ребер $S \subseteq E$ является трудным, то $bcc(G) \geq |S|$.

6.4 Метод энтропийных неравенств

Далее везде мы будем случайные величины обозначать заглавными буквами, а их значение строчными. Для упрощения формул мы будем использовать следующие обозначения маргинальных распределений (как обычных, так и условных):

$$p(a,b) = P\{A = a, B = b\}, \ p(a|b) = P\{A = a|B = b\}$$

Для начала докажем следующую лемму:

Лемма 6.1. Для произвольных случайных величин X_1, X_2, \dots, X_m и F, G выполняется неравенство:

$$H(F|X_1,G) + H(F|X_1,G) + \ldots + H(F|X_m,G) \le (m-1)H(F|G) + \Delta$$

e

$$\Delta = \log_2 \left(\sum_{\substack{(f, x_1, \dots, x_m, g) \\ \forall i: \ p(f, x_i, g) > 0}} \frac{p(x_1, g) \cdot \dots \cdot p(x_m, g)}{p(g)^{m-1}} \right)$$

Доказательство. Рассмотрим распределение

$$p'(f, x_1, \dots, x_m, g) = \begin{cases} \frac{p(f, x_1, g) \cdot \dots \cdot p(f, x_m, g)}{p(f, g)^{m-1}} & ecnu \ p(f, g) > 0, \\ 0 & uhave. \end{cases}$$

Если p(f,g) = 0, то $p(f,x_i,g) = p'(f,x_i,g) = 0$. А если $p(f,g) \neq 0$, то

$$p'(f, x_i, g) = \sum_{(x_1, \dots, x_{i-1}, x_{i+1}, \dots x_m)} \frac{p(f, x_1, g) \cdot \dots \cdot p(f, x_m, g)}{p(f, g)^{m-1}} =$$

$$= \left(\sum_{x_1} \frac{p(f, x_1, g)}{p(f, g)}\right) \cdot \dots \cdot \left(\sum_{x_{i-1}} \frac{p(f, x_{i-1}, g)}{p(f, g)}\right) \cdot p(f, x_i, g) \cdot \left(\sum_{x_{i+1}} \frac{p(f, x_{i+1}, g)}{p(f, g)}\right) \cdot \dots \cdot \left(\sum_{x_m} \frac{p(f, x_m, g)}{p(f, g)}\right) = p(f, x_i, g)$$

В итоге мы получили, что для любого натурального $i \in \{1, ..., m\}$ выполняется $p'(f, x_i, g) = p(f, x_i, g)$, а значит и p'(f, g) = p(f, g). Но тогда сумма

$$H(F|X_{1},G) + H(F|X_{1},G) + \dots + H(F|X_{m},G) - (m-1)H(F|G) =$$

$$= \sum_{(f,x_{1},\dots,x_{m},g)} p(f,x_{1},\dots,x_{m},g) \cdot \log_{2} \left(\frac{p(f|g)^{m-1}}{p(f|x_{1},g) \cdot \dots \cdot p(f|x_{m},g)} \right) =$$

$$= (m-1) \cdot \sum_{(f,g)} p(f,g) \log_{2} \frac{p(f,g)}{p(g)} + \sum_{i=1}^{m} \sum_{(f,x_{i},g)} p(f,x_{i},g) \log_{2} \frac{p(f,x_{i},g)}{p(f,g)} =$$

$$= (m-1) \cdot \sum_{(f,g)} p'(f,g) \log_{2} \frac{p(f,g)}{p(g)} + \sum_{i=1}^{m} \sum_{(f,x_{i},g)} p'(f,x_{i},g) \log_{2} \frac{p(f,x_{i},g)}{p(f,g)} =$$

$$= \sum_{(f,x_{1},\dots,x_{m},g)} p'(f,x_{1},\dots,x_{m},g) \cdot \log_{2} \left(\frac{p(f|g)^{m-1}}{p(f|x_{1},g) \cdot \dots \cdot p(f|x_{m},g)} \right) \leq$$

Далее мы применяем неравенство Йенсена:

$$\alpha_1 \log_2 \beta_1 + \dots + \alpha_k \log_2 \beta_k \le \log_2 (\alpha_1 \beta_1 + \dots + \alpha_k \beta_k)$$

и получаем

$$\leq \log_2 \left(\sum_{\substack{(f, x_1, \dots, x_m, g) \\ p'(f, x_1, \dots, x_m, g) > 0}} \frac{p(x_1, g) \cdot \dots \cdot p(x_m, g)}{p(g)^{m-1}} \right) = \\
= \log_2 \left(\sum_{\substack{(f, x_1, \dots, x_m, g) \\ \forall i: \ p(f, x_i, g) > 0}} \frac{p(x_1, g) \cdot \dots \cdot p(x_m, g)}{p(g)^{m-1}} \right)$$

Лемма доказана. 🗆

Определение. Будем говорить, что случайные величины X_1, \ldots, X_m и F удовлетворяют условию регулярности (R), если для любого набора $(f, f', x_1, \ldots, x_m)$ верно:

$$\begin{cases} p(f, x_1) > 0, \dots, p(f, x_m) > 0 \\ p(f', x_1) > 0, \dots, p(f', x_m) > 0 \end{cases} \implies f = f'$$

Утверждение 6.2. Если F – детерминированная функция от $X_1, \ldots X_m$ (п.н.) и X_1, X_2, \ldots, X_m независимы в совокупности относительно F, тогда выполняется условию регулярности (R).

Доказательство. Пусть условие регулярности (R) не выполняется, значит существуют f, f', x_1, \ldots, x_m такие, что

$$\begin{cases} p(f, x_1) > 0, \dots, p(f, x_m) > 0 \\ p(f', x_1) > 0, \dots, p(f', x_m) > 0 \end{cases} \quad u \ f \neq f'$$

Так как $p(f, x_1) > 0$ и $p(f', x_1) > 0$, то p(f) > 0 и p(f') > 0. Но тогда используя независимость случайных величин, мы получаем

$$p(x_1, \dots, x_m | f) = p(x_1 | f) \cdot \dots \cdot p(x_m | f) \Longrightarrow$$
$$\Longrightarrow p(f)^{m-1} \cdot p(f, x_1, \dots, x_m) = p(f, x_1) \cdot \dots \cdot p(f, x_m) > 0$$

То есть получаем, что $p(f, x_1, \ldots, x_m) > 0$. Аналогично доказываем, что $p(f', x_1, \ldots, x_m) > 0$. В итоге приходим к противоречию с тем, что F – детерминированная функция от $X_1, \ldots X_m$ (n.н.). \square

Посмотрим какие значения может принимать Δ , если выполняется условие регулярности (R). В Δ суммирование ведется по таким наборам (f, x_1, \ldots, x_m, g) , что $\forall i : p(f, x_i, g) > 0$, а значит и $\forall i : p(f, x_i) > 0$. В данном случае условие регулярности говорит нам о том, что не существует двух различных наборов (f, x_1, \ldots, x_m, g) и $(f', x_1, \ldots, x_m, g)$,

дающих ненулевой вклад в суммирование, а значит

$$\Delta = \log_2 \left(\sum_{\substack{(f, x_1, \dots, x_m, g) \\ \forall i: \ p(f, x_i, g) > 0}} \frac{p(x_1, g) \cdot \dots \cdot p(x_m, g)}{p(g)^{m-1}} \right) =$$

$$= \log_2 \left(\sum_{\substack{(x_1, \dots, x_m, g) \\ \forall i: \ p(x_i, g) > 0}} \frac{p(x_1, g) \cdot \dots \cdot p(x_m, g)}{p(g)^{m-1}} \right) =$$

$$= \log_2 \left(\sum_{g: \ p(g) > 0} p(g) \cdot \left(\sum_{x_1: \ p(x_1, g) > 0} \frac{p(x_1, g)}{p(g)} \right) \cdot \dots \cdot \left(\sum_{x_m: \ p(x_m, g) > 0} \frac{p(x_m, g)}{p(g)} \right) \right) =$$

$$= \log_2 \left(\sum_{g: \ p(g) > 0} p(g) \right) = \log_2 1 = 0$$

А значит мы доказали следующую теорему:

Теорема 6.2. Если случайные величины X_1, X_2, \ldots, X_m и F удовлетворяют условию регулярности (R), тогда

$$H(F|X_1,G) + H(F|X_2,G) + \ldots + H(F|X_m,G) \le (m-1) \cdot H(F|G)$$

 $a\ ecnu\ G=g\ normu\ нaверное,\ morda$

$$H(F|X_1) + H(F|X_2) + \ldots + H(F|X_m) \le (m-1) \cdot H(F)$$

Последнее неравенство позволяет нам получить нижнюю оценку m-мерной величины bcc(G).

Теорема 6.3. Пусть ребра гиперграфа $G = (X_1 \sqcup X_2 \sqcup \ldots \sqcup X_m, E)$ раскрашены следующим образом:

(**) для произвольного полного m-дольного гиперграфа $C \subseteq G$ и для произвольного набора ребер $(x_{1,1},\ldots,x_{1,m})$ $(x_{2,1},\ldots,x_{2,m})$ \ldots $(x_{m,1},\ldots,x_{m,m})$ из C, покрашеных в цвет a, цвет ребра $(x_{1,1},x_{2,2},\ldots,x_{m,m})$ тоже a. Пусть также на ребрах этого графа задано произвольное вероятностное распределение. Определим случайные величины (X_1,\ldots,X_m,A) следующим образом:

- $X_i = [i$ -ая вершина ребра],
- $A = [usem \ pebpa].$

Тогда выполняется неравенство:

$$bcc(G) \ge 2^{\frac{1}{m}(H(A|X_1) + \dots + H(A|X_m) - (m-1) \cdot H(A))}$$

Доказательство. Пусть все ребра нашего гиперграфа G покрываются параллелепипедальными множествами $C_1, C_2, \ldots C_t$. Расширим наше распределение (X_1, \ldots, X_m, A) добавив еще одну случайную величину: мы определяем T как индекс параллелепипедального множества C_i , покрывающего ребро $(X_1, X_2, \ldots X_m)$ (если это ребро покрывается несколькими параллелепипедальными множествами, то мы выбираем любое из ним равновероятно). А так как T принимает значения из множества $\{1, 2, \ldots, t\}$, то $H(T) \leq \log_2 t$.

Рассмотрим распределение $(X_1, X_2, \ldots, X_m, A \mid T = i)$. Очевидно, что A детерминированная функция от X_1, X_2, \ldots, X_m (цвет ребра однозначно определяется ребром). И если

$$p(a, x_1 \mid T = i) > 0, \ldots, p(a, x_m \mid T = i) > 0$$

то в множестве C_i найдутся ребра $(x_1, x_{1,2}, \ldots, x_{1,m})$ $(x_{2,1}, x_2, \ldots, x_{2,m})$ \ldots $(x_{m,1}, \ldots, x_{m,m-1}x_m)$ цвета а. Но тогда из (**) ребро (x_1, x_2, \ldots, x_m) тоже цвета а. Отсюда мы делаем вывод, что значение а уникально, следовательно, выполняется условие регулярности (R). Из теоремы 6.2 мы получаем

$$H(A|X_1, T = i) + \ldots + H(A|X_m, T = i) \le (m-1) \cdot H(A|T = i)$$

 $Tenepь\ ecnu\ paccмompemь\ матожидание\ npaвой\ u\ левой\ чacmu\ no\ pacnpedeлeнию\ величины\ T,\ mo\ мы\ noлучим$

$$H(A|X_1,T) + \ldots + H(A|X_m,T) \le (m-1) \cdot H(A|T)$$

 $A \max \kappa a \kappa H(A|T) \le H(A) u$

$$H(A|X_i, T) = H(A, T|X_i) - H(T) \ge H(A|X_i) - H(T)$$

mo

$$H(T) \ge \frac{1}{m}(H(A|X_1) + \ldots + H(A|X_m) - (m-1) \cdot H(A))$$

В итоге мы получили

$$t \ge 2^{H(T)} \ge 2^{\frac{1}{m}(H(A|X_1) + \dots + H(A|X_m) - (m-1) \cdot H(A))}$$

6.5 Предикат DISJOINT(m, k, n)

Пусть имеется m участников и каждому выдается по k-элементному подмножеству множества $\{1,2,\ldots,n\}$. Участники хотят выяснить пересекаются ли у кого-нибудь из них эти множества. Если n < mk, то ответ на задачу всегда положителен, поэтому нас будет интересовать только случай $n \geq mk$.

В данном случае вершинами каждой доли гиперграфа G будут являться все возможные k-элементные подмножества. Так как ответ на предикат либо положительный, либо отрицательный, то все ребра красятся в два цвета 0 и 1. Мы рассмотрим только граф G_1 , ребра которого покрашены в цвет 1.

Посмотрим какие оценки мы можем получить, используя методы трудного множества и энтропийных неравенств:

1) Метод трудного множетсва: так как $n \geq mk$, то можно рассмотреть множество $\{1, 2, \ldots, mk\}$. Используя его, мы можем построить всего $\frac{(mk)!}{(k!)^m}$ различных ребер графа G_1 .

Теперь докажем, что эти ребра образуют трудное множество. Пусть это не так, а значит существуют два разбиения множества $\{1,2,\ldots,mk\}$ на k-элементные подмножества, которые лежат в одном комбинаторном параллелепипеде графа G_1 . Обозначим эти разбиения $\{U_1,U_2,\ldots,U_m\}$ и $\{V_1,V_2,\ldots V_m\}$. Из-за того, что эти разбиения различны, то $U_i\neq V_i$ для некоторого i. Так как эти два разбиения лежат в одном комбинаторном параллелепипеде, то и ребро $\{U_1,\ldots,U_{i-1},V_i,U_{i+1},\ldots,U_m\}$ ему

принадлежит. Следовательно, должно выполняться

$$V_i \cap (U_1 \sqcup \ldots \sqcup U_{i-1} \sqcup U_{i+1} \sqcup \ldots \sqcup U_m) = \varnothing$$

Но такого не может быть, так как $U_i \neq V_i$. Противоречие.

В итоге мы доказали, что в графе G_1 можно найти трудное множество размера $\frac{(mk)!}{(k!)^m}$, следовательно, получили оценку

$$\log_2(bcc(G_1)) \ge \log_2(mk)! - m\log_2 k!$$

2) Метод энтропийных неравенств: пусть на ребрах графа G_1 задано равномерное распределение. Зададим раскраску ребер: $\{U_1, U_2, \ldots, U_m\}$ красим в цвет, соответствующий множеству $U_1 \sqcup U_2 \sqcup \ldots \sqcup U_m$. По аналогии с рассуждение про трудное множество легко показать, что в нашей раскраске все одноцветные ребра лежат в разных параллелепипедальных множествах. Иначе говоря, для нашей раскраски свойство (**) тривиально.

Так как на ребрах задано равномерное распределение, то $H(A) = \log_2\binom{n}{mk}$ и $H(A|X_i) = \log_2\binom{n-k}{mk-k}$. В итоге получаем оценку

$$\log_2(bcc(G_1)) \ge \log_2\binom{n-k}{mk-k} - \frac{m-1}{m}\log_2\binom{n}{mk} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk-k}^m}{\binom{n}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^m}{\binom{n}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^m}{\binom{n-k}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^m}{\binom{n-k}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^m}{\binom{n-k}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^{m-1}}{\binom{n-k}{mk}^{m-1}} = \frac{1}{m}\log_2\frac{\binom{n-k}{mk}^{m-1}}{\binom{n-k}{mk}^{m-1}}$$

$$= \frac{1}{m} \log_2 \left(\frac{((n-k)!)^m}{(n!)^{m-1}(n-mk)!} \right) + \frac{1}{m} \log_2 \left(\frac{((mk)!)^{m-1}}{((mk-k)!)^m} \right)$$

Если $n \gg mk$, то первое слагаемое близко к 0, следовательно

$$\log_2(bcc(G_1)) \gtrsim \frac{m-1}{m} \log_2(mk)! - \log_2((m-1)k)!$$

Сравним эти две оценки: так как $(lk)! \ge (k!)^l$ для любого натурального l, то

$$\log_2(mk)! - m\log_2 k! = \frac{m-1}{m}\log_2(mk)! + \frac{1}{m}\log_2(mk)! - m\log_2 k! \ge$$

$$\geq \frac{m-1}{m} \log_2(mk)! + \log_2 k! - m \log_2 k! = \frac{m-1}{m} \log_2(mk)! - (m-1) \log_2 k! \geq$$

$$\geq \frac{m-1}{m}\log_2(mk)! - \log_2((m-1)k)!$$

Предикат DISJOINT(m, k, n) демонстрирует, что обобщенные методы трудного множества и энтропийных неравенств применимы, причем в данном случае первый метод работает лучше.

Заключение

В данной работе были изучены методы доказательства нижних оценок минимального размера бикликового покрытия. Главным образом сравнивались три метода: метод трудного множества, метод Куликова-Юкны и метод информационных неравенств. Некоторые утверждения оказались довольно неожиданными, например, сравнение оценки трудного множества и оценки Куликова-Юкны.

Следующие вопросы могут послужить основой для дальнейших исследований:

- 1) Верно ли, что метод трудных множеств работает почти наверное намного лучше, чем оценка Куликова-Юкны.
- 2) Сравнить в общем случае метод трудных множеств с методом информационных неравенств.
- 3) Попытаться улучшить метод информационных неравенств. Предполагается, что можно избавиться от $\frac{1}{2}$ в показателе.

Список литературы

- [1] Razborov Alexander. Communication Complexity. In: An Invitation to Mathematics: from Competitions to Research. Springer, 2011.
- [2] Kushilevitz Eyal, Nisan Noam. Communication Complexity. Cambridge University press, 2006.
- [3] Gruber H., Holzer M. Finding lower bounds for nondeterministic state complexity is hard. Springer, 2006.
- [4] D. Caen D. A. Gregory, Pullman N. J. The Boolean rank of zero-one matrices. Department of Mathematics, University of the West Indies, 1981.
- [5] Jukna S., Kulikov A. S. On covering graphs by complete bipartite subgraphs. Discrete Math, 2009.
- [6] Kaced Tarik, Romashchenko A. E., Vereshchagin N. K. Conditional Information Inequalities and Combinatorial Applications. CoRR, 2015.
- [7] Оре Ойстин. Теория графов. Наука, 1968.
- [8] D.O. Theis. On some lower bounds on the number of bicliques needed to cover a bipartite graph. ArXiv e-prints, 2011.