Hadamard 多様体上の Poisson 核と重心の幾何学

佐藤 弘康

(日本工業大学 工学部 共通教育系)

伊藤光弘氏(筑波大学数理物質系)との共同研究に基づく

2015 年 9 月 8 日 部分多様体幾何とリー群作用 2015 (東京理科大学 森戸記念館)

§0.1) 概要 (研究の目的)

- Hadamard 多様体 (X, g) と,
 その理想境界 ∂X 上の正値確率測度の空間 (𝒯+(∂X), G) を考える.
- X と $\mathscr{P}^+(\partial X)$ の間の写像を通して、(X,g) の特徴付けを与えたい。
 - 。 調和測度(Poisson 核測度) μ_X を与える写像 $X \to \mathcal{P}^+(\partial X)$
 - **重心写像** $\mathscr{D}^+(\partial X) \to X$

§0.2) 目次

- §1. 正値確率測度の空間の Fisher 情報計量
 - Friedrich [5] **の仕事の紹介**
 - 確率測度の「幾何平均」による Fisher 情報計量の測地線の特徴付け

- §2. Hadamard 多様体の基本事項
- §3. Poisson **核写像** (この研究の動機)
- §4. 重心写像 (問題解決の道具?)

§1.1) 正値確率測度の空間

- 測度空間 $M = (M, \mathfrak{A}, \lambda)$
- M 上の正値確率測度の空間;

$$\mathscr{P}^+(M) = \left\{ \mu : \text{measure}, \int_M d\mu = 1, \ \mu \ll \lambda, \ \frac{d\mu}{d\lambda} > 0 \right\}$$

• 接空間; $T_{\mu}\mathscr{P}^{+}(M)=\left\{ au: \text{ signed measure, } \int_{M} d\tau=0, \ \frac{d\tau}{d\mu}\in L^{2}(M,\mu) \right\}$ $\circ \mathscr{P}^{+}(M)$ 内の曲線 $\mu(t)$ (ただし, $\mu(0)=\mu$) とすると, $\mu'(0)\in T_{\mu}\mathscr{P}^{+}(M).$ $\int d(\mu(t))=1 \text{ であるから, } \text{ この両辺を } t \text{ 微分すると } \int d(\mu'(0))=0$ \circ 逆に, $\int d\tau=0$ を満たす符号付き測度 τ に対して, $\mu(t)=\mu+t\tau,t\in$

 $(-\varepsilon,\varepsilon)$ とおくと、 $\mu(0)=\mu,\mu'(0)=\tau$

§1.2) Fisher 情報計量

• $\tau_1, \tau_2 \in T_\mu \mathscr{P}^+(M)$ に対し,

$$G_{\mu}(\tau_1, \tau_2) := \int_M \frac{d\tau_1}{d\mu} \frac{d\tau_2}{d\mu} d\mu = \int_M \frac{q_1}{p} \frac{q_2}{p} p d\lambda$$

ただし、 $\mu = p \lambda$ 、 $\tau_1 = q_1 \lambda$ 、 $\tau_2 = q_2 \lambda$.

統計モデル上の Fisher 計量・

 $\xi \in \Xi \subset \mathbb{R}^n$ でパラメトライズされた確率分布の族;

$$S = \{ p_{\xi} = p(x; \xi) | \xi = (\xi^{1}, \dots, \xi^{n}) \in \Xi \}$$

 $\xi \in \Xi$ における S の Fisher 情報行列 $g_{\xi} = (g_{ij}(\xi))$;

$$g_{ij}(\xi) = \int \partial_i \log p(x;\xi) \cdot \partial_j \log p(x;\xi) \cdot p(x;\xi) \, dx \quad (\partial_i = \frac{\partial}{\partial \xi^i})$$

§1.2) Fisher 情報計量

• $\tau_1, \tau_2 \in T_\mu \mathscr{P}^+(M)$ に対し,

$$G_{\mu}(\tau_1, \tau_2) := \int_{M} \frac{d\tau_1}{d\mu} \, \frac{d\tau_1}{d\mu} \, d\mu$$

- $\mu \mapsto G_{\mu}$ を Fisher 情報計量とよぶ.
- ullet M 上の全単射な可測変換は、 $(\mathcal{P}^+(M),G)$ に等長的に作用する.
- G の Levi-Civita 接続; $\tau_1, \tau_2 \in T_\mu \mathscr{P}^+(M)$ に対し、

$$\nabla_{\tau_1} \tau_2 = -\frac{1}{2} \left(\frac{d\tau_1}{d\mu} \frac{d\tau_2}{d\mu} - G_{\mu}(\tau_1, \tau_2) \right) \mu$$

ただし、 τ_2 を定ベクトル場と見ている.

$$\circ \ 2G(\nabla_{\tau_1}\tau_2,\tau_3) = \tau_1 G(\tau_2,\tau_3) + \tau_2 G(\tau_1,\tau_3) - \tau_3 G(\tau_1,\tau_2)$$

$$\circ G(\nabla_{\tau_1}\tau_2, \tau_3) = -\frac{1}{2} \int_M \frac{d\tau_1}{d\mu} \frac{d\tau_2}{d\mu} \frac{d\tau_3}{d\mu} d\mu$$

§1.3) Fisher 情報計量の曲率

- ullet $(\mathscr{P}^+(M),G)$ は断面曲率 $\dfrac{1}{4}$ の定曲率空間
- $\Phi: \mathscr{P}^+(M,\lambda) \to L^2(M,\lambda)$; $\mu = p \lambda \mapsto 2\sqrt{p}$
- $L^2(M,\lambda)$ 上の内積 $\langle f_1,f_2\rangle = \int_M f_1 f_2 d\lambda$ を Φ で引き戻すと, $\Phi^*\langle \cdot,\cdot \rangle = G$ つまり、 Φ は等長的な埋め込みである.
- \bullet $\mathscr{P}^+(M,\lambda)$ は $L^2(M,\lambda)$ 内の半径 2 の球面(ただし第 1 象限の部分)。

 $M = \{x_1, x_2, x_3\}$ のとき,

- $\mathscr{P}^+(M) = \{(p_1, p_2, p_3) | p_1 + p_2 + p_3 = 1, p_1, p_2, p_3 > 0\}$
- $\Phi: \mathscr{P}^+(M) \to \mathbb{R}^3 \; ; \; (p_1, p_2, p_3) \mapsto (2\sqrt{p_1}, 2\sqrt{p_2}, 2\sqrt{p_3})$

§1.4) Fisher 情報計量の測地線

•
$$\begin{cases} \mu(0) = \mu \in \mathscr{P}^+(M) \\ \mu'(0) = \tau \in T_\mu \mathscr{P}^+(M) \end{cases}$$
 を満たす測地線;

$$\mu(t) = \left(\cos\frac{t}{2} + \sin\frac{t}{2} \cdot \frac{d\tau}{d\mu}\right)^2 \mu \tag{1}$$

• $(\mathscr{P}^+(M),G)$ は測地的に完備ではない. $\mu(\pi) = \left(\frac{d\tau}{d\mu}\right)^2 \mu \notin \mathscr{P}^+(M)$

§1.5) 確率測度の幾何平均と測地線 (1)

• $\mu_0 = p_0 \lambda$, $\mu_1 = p_1 \lambda \in \mathscr{P}^+(M)$ に対して,

$$l(\mu_0, \mu_1) = 2\cos^{-1}\left(\int_M \sqrt{\frac{d\mu_1}{d\mu_0}} d\mu_0\right) = 2\cos^{-1}\left(\int_M \sqrt{p_1 p_0} d\lambda\right)$$

- l は $(\mathscr{P}^+(M), G)$ の距離を与える。 $0 \le l < \pi$.
- $\mu_0, \mu_1 \in \mathscr{P}^+(M)$ の正規化幾何平均測度 $\sigma(\mu_0, \mu_1)$ を以下で定義;

$$\sigma(\mu_0, \mu_1) := \frac{1}{\cos \frac{l(\mu_0, \mu_1)}{2}} \sqrt{\frac{d\mu_1}{d\mu_0}} \, \mu_0$$

§1.5) 確率測度の幾何平均と測地線 (2)

• μ_0 , $\mu_1 \in \mathcal{P}^+(M)$ に対し,この 2 点を結ぶ測地線 $\mu(t)$ が存在したとする. $\mu(0) = \mu_0$, $\mu(l) = \mu_1$ ならば,

$$\mu'(0) = \frac{1}{\tan \frac{l}{2}} \left(\sigma(\mu_0, \, \mu_1) - \mu_0 \right), \qquad l = l(\mu_0, \, \mu_1)$$
 (2)

(2) を (1) に代入することにより、...

§1.5) 確率測度の幾何平均と測地線 (3)

2点 μ_0,μ_1 を結ぶ測地線は

$$\mu(t) = a_0(t)\mu_0 + a_1(t)\mu_1 + a_2(t)\sigma(\mu_0, \mu_1)$$
(3)

ただし,
$$a_0(t) = \left(\frac{\sin\frac{l-t}{2}}{\sin\frac{l}{2}}\right)^2$$
, $a_1(t) = \left(\frac{\sin\frac{t}{2}}{\sin\frac{l}{2}}\right)^2$, $a_2(t) = 2\cos\frac{l}{2}\left(\frac{\sin\frac{l-t}{2}}{\sin\frac{l}{2}}\right)\left(\frac{\sin\frac{t}{2}}{\sin\frac{l}{2}}\right)$.

- 逆に、任意の $\mu_0, \mu_1 \in \mathcal{P}^+(M)$ に対し、(3) 式によって表される曲線は
 - \circ $(\mathscr{D}^+(M),G)$ の測地線の方程式を満たす.
 - $\circ \ \mu(0) = \mu_0, \ \mu(l) = \mu_1. \ \text{tib.} \ l = l(\mu_0, \mu_1).$
 - \circ 任意の $t \in [0, l]$ で $a_0(t) + a_1(t) + a_2(t) = 1$ かつ $a_i(t) \ge 0, i = 0, 1, 2$. であるから, $\mu(t) \in \mathcal{P}^+(M)$, $t \in [0, l]$.
- よって, $\mathscr{D}^+(M)$ の任意の 2 点は $\mathscr{D}^+(M)$ 上の測地線で結ぶことができる.

§1.5) 確率測度の幾何平均と測地線 (4)

• 2 点 μ_0 , $\mu_1 \in \mathscr{P}^+(M)$ を結ぶ測地線を $\mu(t)$ とする. $\mu(0) = \mu_0$, $\mu(l) = \mu_1$ ならば,

$$\mu'(0) = \frac{1}{\tan \frac{l}{2}} \left(\sigma(\mu_0, \, \mu_1) - \mu_0 \right), \qquad l = l(\mu_0, \, \mu_1)$$

§1.5) 確率測度の幾何平均と測地線 (5)

• $\mu(t)$ の逆向きの曲線 $\mu_{-}(t) = \mu(l-t)$ も測地線. $\mu_{-}(0) = \mu_{1}, \ \mu_{-}(l) = \mu_{0}$ だから,

$$\mu'_{-}(0) = \frac{1}{\tan \frac{l}{2}} \left(\sigma(\mu_0, \, \mu_1) - \mu_1 \right), \qquad l = l(\mu_0, \, \mu_1)$$

§1.5) 確率測度の幾何平均と測地線 (6)

- 以上のことから,正規化幾何平均 $\sigma(\mu_0, \mu_1)$ は以下のように特徴付けられる;
 - \circ μ_0, μ_1 を通る測地線を $\mu(t)$ とする. $\mu_0 = \mu(0), \mu_1 = \mu(l)$.
 - \circ μ_0, μ_1 における $\mu(t)$ の接線 を $L_i, i = 0, 1$ とする;

$$L_0: l_0(s) = \mu(0) + s\mu'(0), \quad L_1: l_1(s) = \mu(l) + s\mu'(l)$$

 \circ このとき, L_0 と L_1 は交点をもち,その交点が $\sigma(\mu_0, \mu_1)$ である.

§1.5) 確率測度の幾何平均と測地線 (7)

以上のことをまとめると ...

定理 1. (伊藤-S)

- $l: \mathscr{P}^+(M) \times \mathscr{P}^+(M) \to \mathbb{R}$ は $\mathscr{P}^+(M)$ の距離を与える.
- 任意の測地線 µ(t) に対し,

$$\mu'(t) = \frac{1}{\tan\frac{r}{2}} \left(\sigma(\mu(t), \ \mu(t+r)) - \mu(t) \right)$$

- $\mathscr{P}^+(M)$ の任意の 2 点 μ_0, μ_1 は測地線で結べる。 さらに、その測地線は、 μ_0, μ_1 および、 $\sigma(\mu_0, \mu_1)$ を用いて表すことができる。
- 測地線上の任意の 2 点 μ_0, μ_1 に対し、それぞれの点における測地線の接線は交点をもち、その交点は $\sigma(\mu_0, \mu_1)$ である.

§1.5) 関連する話題 (1)

- 一般化平均(α 冪平均);a,b に対して, $\left(\frac{a^{\alpha}+b^{\alpha}}{2}\right)^{1/\alpha}$.(α が 1 のとき算術平均,0 のとき幾何平均,-1 のとき調和平均)
- 正規化 α- 冪平均測度;

$$\sigma^{(\alpha)}(\mu_0, \mu_1) = \frac{1}{C} \left\{ 1 + \left(\frac{d\mu_1}{d\mu_0} \right)^{\alpha} \right\}^{1/\alpha} \mu_0$$

定理 2. (伊藤-S)

2点 μ_0,μ_1 を結ぶ測地線を $\mu(t)$ とする ($\mu(0)=\mu_0,\mu(l)=\mu_1$). このとき, μ_0 と μ_1 の中点 $\mu(l/2)$ は,正規化 $\frac{1}{2}$ - 冪平均 $\sigma^{(1/2)}(\mu_0,\mu_1)$ である.

§1.5) 関連する話題 (2)

- Ohara, Integr. equ. oper. theory **50** (2004), 537-548.
 - \circ 対称錐 Ω 上のある特別なポテンシャル関数に関する Hesse 計量,および双対接続構造 $(\nabla^{(\alpha)}, \nabla^{(-\alpha)})$ を定義(統計多様体の構造).
 - \circ $\nabla^{(\alpha)}$ に関する測地線を α -測地線とよぶ.
 - \circ Ω 上の α -冪平均を定義(作用素平均).

定理 (Ohara) -

 $x,y \in \Omega$ を結ぶ α -測地線の中点は,x と y の α -冪平均である.

§2.1) Hadamard 多様体と理想境界

- (X, g): n 次元 Hadamard 多様体(つまり、単連結、完備、非正曲率)
- X の理想境界 $\partial X = \{X \ \textbf{上の半開測地線} \}/\sim$ ただし、 $\gamma_1 \sim \gamma_2 \iff d(\gamma_1(t), \gamma_2(t)) < \infty, \quad t>0$
- ∂X は (n-1) 次元球面に同相; $\partial X \simeq U_o X \subset T_o X$

§2.2) Buseman 関数 (1)

- 測地線 γ に対して定まる X 上の関数; $B_{\gamma}(x) = \lim_{t \to \infty} \{d(\gamma(t), x) t\}$
- $\gamma_1 \sim \gamma$ **ts**if, $B_{\gamma_1}(x) = B_{\gamma}(x) + B_{\gamma_1}(\gamma(0))$.
- $o \in X$ を固定すると, $\theta \in \partial X$ に対し, $\gamma_o(0) = o$, $\gamma_o(\infty) = \theta$ を満たす測地線が唯一つ定まる.これによって, $B_{\theta}(x) = B_{\gamma_o}(x)$ と定める.
- $B_{\theta}(x) = \text{Length}(\gamma) \text{Length}(\gamma_o)$. つまり、 $B_{\theta}(x)$ の値は「o から θ までの距離」を原点としたときの、「x から θ までの距離」を測っている。

§2.2) Buseman 関数 (2)

● Busemann 関数の性質

$$\circ$$
 $\nabla B_{\theta}(x) = -\gamma'(0)$ ($\gamma(t)$ は、 $\gamma(0) = x$, $\gamma(\infty) = \theta$ を満たす測地線).

- 。特に、 $|\nabla B_{\theta}|^2 = 1$
- \circ (X,g) の等長変換 φ に対し, $B_{\theta}(\varphi x) = B_{\varphi^{-1}\theta}(x) + B_{\theta}(\varphi o)$
- $\circ \nabla dB_{\theta} \geq 0$
- B_{θ} の等位超曲面をホロ球面とよぶ.

§2.3) 可視公理

- (X,g) が「可視公理を満たす」とは、理想境界上の任意の 2 点 θ_0,θ_1 が、 X 上の測地線で結ぶことができるときをいう。
- つまり、 $\gamma(\infty) = \theta_1$ 、 $\gamma(-\infty) = \theta_0$ を満たす測地線 γ が存在する.

§2.3) 可視公理

- (X,g) が「可視公理を満たす」とは、理想境界上の任意の 2 点 θ_0,θ_1 が、 X 上の測地線で結ぶことができるときをいう。
- つまり、 $\gamma(\infty) = \theta_1$ 、 $\gamma(-\infty) = \theta_0$ を満たす測地線 γ が存在する.

• 同値条件: $\lim_{x\to\theta'\neq\theta}B_{\theta}(x)=\infty$ ([1] を参照)

§3.1) Poisson 核

• 無限遠 Dirichlet 問題: $f \in C^0(\partial X)$ に対し、以下を満たす u を求める;

$$u = f \text{ on } \partial X$$
 and $\Delta u = 0 \text{ on } X$

• この微分方程式の基本解 $P(x,\theta)$ を X 上の Poisson 核という;

$$u(x) = \int_{\theta \in \partial X} f(\theta) P(x, \theta) d\lambda_0(\theta)$$

ここで、 λ_0 は基点 $o \in X$ を固定し、 ∂X を $U_oX \subset T_oX$ と同一視したとき の標準体積要素(確率測度)、 $P(o,\theta)=1$ も要請する.

- Poisson 核のかわりに測度 $\mu_x = P(x, \theta) \lambda_0$ 考えてもよい(これを調和測度という).
- 曲率が負で有界(または、このような空間に quasi-isometric) ならば、 Poisson 核(調和測度)の存在性が保証される。

§3.2) Poisson 核写像

• Poisson 核が存在するとき、次の写像が定義可能;

 $\Theta: X \to \mathscr{P}^+(\partial X); x \mapsto P(x,\theta) \lambda_0(\theta)$. これをを Poisson 核写像とよぶ.

定理 3. (伊藤-S[8], 伊藤-宍戸 Diff. Geom. Appl. **26** (2008))

(X, q) が n 次元 Damek-Ricci 空間とき, Poisson 核写像は相似的;

$$\Theta^*G = \frac{\rho^2}{n}g,$$

かつ調和的(Θ がエネルギー汎関数 $\Theta \mapsto \frac{1}{2} \int_X \operatorname{tr}_g(\Theta^*G) \, dv_g$ の臨界点)である。ここで, ρ は (X,g) の体積エントロピー;

$$\rho = \lim_{r \to \infty} \frac{\log \text{Vol}B(x; r)}{r}$$

§3.2) Poisson 核写像

定理 3. (伊藤-S[8], 伊藤-宍戸 Diff. Geom. Appl. **26** (2008)) -

(X,g) が n 次元 Damek-Ricci 空間とき,Poisson 核写像は相似的; $\Theta^*G = \frac{\rho^2}{n}g$,かつ調和的である.ここで, ρ は (X,g) の体積エントロピー.

- Damek-Ricci 空間とは、H-type 群を 1 次元拡張した可解 Lie 群.
- 階数 1 非コンパクト型対称空間を含む Hadamard 多様体のクラス.
- 上の定理の本質は、
 - Damek-Ricci 空間が等質空間であること,
 - Damek-Ricci 空間上の Poisson 核が、Busemann 関数の指数関数

$$P(x, \theta) = \exp\{-\rho B_{\theta}(x)\}\$$

と表すことができることである.

定理 4. (伊藤-S[9]) -

(X,g) が 等質 Hadamard 多様体で、Poisson 核が

$$P(x,\theta) = \exp\{-\rho B_{\theta}(x)\}\tag{4}$$

と表されるならば、Poisson 核写像は相似的; $\Theta^*G = \frac{\rho^2}{n}g$ 、かつ調和的である。ここで、 ρ は (X,g) の体積エントロピー。

定理 5. (伊藤-S[9]) -

(X, g) 上の Poisson 核写像が相似的かつ調和的ならば、Poisson 核は (4) の形で表される。

 Poisson 核が (4) の形で表されるとき、「(X, g) は Busemann-Poisson 核を もつ」という。

§3.3) 問題

問題

(X,g) 上の Poisson 核写像が相似的かつ調和的な空間は Damek-Ricci 空間に限るのか。

● 「(X, g) 上の Poisson 核写像が相似的かつ調和的」ならば, ...

 $\implies P(x, \theta) = \exp\{-\rho B_{\theta}(x)\}$

⇒ 漸近的調和多様体 かつ 可視公理を満たす.

ここで,

- すべてのホロ球面が平均曲率一定かつ、共通値をとるような Riemann 多様体を漸近的調和多様体とよぶ。
- すべての測地球面が平均曲率一定で、その値が半径にのみ依存するような Riemann 多様体を調和多様体とよぶ。

§3.4) 関連する話題 (1)

- 調和多様体 ⇒ 漸近的調和多様体(逆は?)
- 調和多様体の分類問題
 - Lichnerowicz conjecture (1944)
 - Szabó, J. Differential Geom. 31 (1990), 1-28.
 「コンパクトな調和多様体は階数 1 対称空間に限る」
 - Ranjan-Shah, J. Geom. Anal. 12 (2002), 683-694.
 「非コンパクトで polynomial volume growth をもつ調和多様体は Euclid 空間に限る」
 - Heber, Geom. Funct. Anal. 16 (2006), 869-890.
 「等質な調和多様体は, Euclid 空間か, 階数 1 対称空間か, Damek-Ricci 空間に限る」
 - 「非コンパクト,単連結,等質な漸近的調和かつ Einstein であるような空間は, Euclid 空間, 階数 1 対称空間, Damek-Ricci 空間に限る」

§3.4) 関連する話題(2)

定理 (Knieper, Comment. Math. Helv. 87 (2012))

Let *X* be a simply connected noncompact harmonic manifold. Then the following assertion are equivalent;

- (i) *X* is Gromov hyperbolic.
- (ii) X has purely exponential volume growth.
- (iii) X has rank one.
- (iv) X has an Anosov geodesic flow with respect to the Sasaki metric.

§3.4) 関連する話題 (3)

定理 (Knieper-Peyerimhoff [11])

Let (X, g) be an asymptotically harmonic manifold such that $|R| \le R_0$ and $|\nabla R| \le R'_0$ with suitable constants R_0 , $R'_0 > 0$. Then the following properties are equivalent;

- (i) *X* is Gromov hyperbolic.
- (ii) X has purely exponential volume growth.
- (iii) X has rank one.
- (iv) X has an Anosov geodesic flow with respect to the Sasaki metric.

§4.1) 正値確率測度の重心

- Hadamard 多様体 (X, g) を考える.
- $\mu \in \mathcal{P}^+(\partial X)$ に対し、次の関数を定義する;

$$\mathbb{B}_{\mu}: X \to \mathbb{R} \; ; \; \mathbb{B}_{\mu}(x) = \int_{\theta \in \partial X} B_{\theta}(x) \, d\mu(\theta)$$

- \mathbb{B}_{μ} の臨界点を, μ の重心とよぶ。つまり,x が μ の重心 \Longleftrightarrow 任意の $V \in T_x X$ に対して, $\int_{\partial X} \langle \nabla B_{\theta}(x), V \rangle d\mu = 0$.
- (X,g) が Busemann-Poisson 核をもつとき, x は $\Theta(x) = \mu_x$ の重心である.
- 任意の $\mu \in \mathscr{P}^+(\partial X)$ に対する重心の存在性;
 - (i) 可視公理を満たすこと.
 - (ii) 任意の $x \in X$ に対し、 ∂X 上の関数 $\theta \mapsto B_{\theta}(x)$ が連続
- $\mu \in \mathscr{P}^+(\partial X)$ の重心の一意性;

$$\circ$$
 X 上の 2 形式 $\int_{\theta \in \partial X} \nabla dB_{\theta}(\cdot, \cdot) d\mu(\theta)$ が正定値であればよい.

§4.2) 重心写像 (1)

- 以上のことから、(X,g)が
 - (i) 可視公理を満たし,
 - (ii) 任意の $x \in X$ に対し、 ∂X 上の関数 $\theta \mapsto B_{\theta}(x)$ が連続かつ
 - (iii) X 上の 2 形式 $\int_{\theta \in \partial X} \nabla dB_{\theta}(\cdot, \cdot) d\mu_{0}(\theta)$ が正定値となるような $\mu_{0} \in \mathscr{P}^{+}(\partial X)$ が少なくとも 1 つ存在 すれば,任意の $\mu \in \mathscr{P}^{+}(\partial X)$ に対してその重心はただ 1 つ定まる.
- (X,g) が上の条件を満たすとき, $\mu\in \mathscr{P}^+(\partial X)$ に対してその重心 $\mathrm{bar}(\mu)$ を対応させる写像

bar :
$$\mathscr{P}^+(\partial X) \to X$$

を重心写像とよぶ.

§4.2) 重心写像 (2)

- (X, g) が Busemann-Poisson 核をもつとき,
 - (i) (可視公理) 満たす.
 - (ii) ($\forall x \in X$ に対する関数 $\partial X \ni \theta \mapsto B_{\theta}(x) \in \mathbb{R}$ の連続性) ?

(iii) (
$$\exists \mu_0$$
 s.t. $\int_{\theta \in \partial X} \nabla dB_{\theta}(\cdot, \cdot) d\mu_0(\theta)$ が正定値) $\leftarrow \mu_0 = \Theta(o)$

• 以後, (X,g) は Busemann-Poisson 核をもち, (ii) を満たすと仮定する.

事実

 $bar(\mu)$ は,関数 \mathbb{B}_{μ} の最小値を与える点である.

§4.3) ファイバー空間 bar : $\mathcal{P}^+(\partial X) \to X$

- (X, g) は Busemann-Poisson 核をもち, (ii) を満たすと仮定.
- bar は全射。
- bar ∘ Θ = Id_X (Poisson 核写像は bar の切断).
- ファイバー $bar^{-1}(x) \subset \mathscr{P}^+(\partial X)$ は凸集合; $\mu_0, \mu_1 \in bar^{-1}(x) \Longrightarrow (1-s)\mu_0 + s\mu_1 \in bar^{-1}(x), \quad s \in [0,1]$
- 局所自明性については、まだ明らかに成っていない、
- 接空間の分解はわかっている.

§4.4) 接空間の分解 (1)

- $bar(\mu) = x とする.$
- $\tau \in T_{\mu} \text{bar}^{-1}(x) \subset T_{\mu} \mathscr{P}^{+}(\partial X)$

$$\iff$$
 任意の $V \in T_x X$ に対して、
$$\int_{\partial X} \langle \nabla B_{\theta}(x), V \rangle d\tau(\theta) = 0 \cdots (*)$$

- \circ $V \in T_x X$ に対し、 $v^x_\mu(V) := \langle \nabla B_\theta(x), V \rangle \mu$ とおく.
- \circ bar $(\mu)=x$ であるから、 $\forall V\in T_xX$ に対し $\int_{\partial X}\langle \nabla B_{\theta}(x),V\rangle\,d\mu=0$. つまり、 $\nu_u^x(V)\in T_\mu\mathscr{P}^+(\partial X)$

$$\circ \ 0 = \int_{\partial X} \langle \nabla B_{\theta}(x), V \rangle \, d\tau = \int_{\partial X} \frac{d \left(v_{\mu}^{x}(V) \right)}{d\mu} \, \frac{d\tau}{d\mu} \, d\mu = G_{\mu}(v_{\mu}^{x}(V), \tau)$$

- \iff 任意の $V \in T_x X$ に対して, $G_{\mu}(\nu_{\mu}^x(V), \tau) = 0$ ····(**)
- (**) は µ に依っているが、(*) は µ と無関係であることに注意.
- $\mu = \Theta(x) = \mu_x$ **tsi**, (**) \iff $G(d\Theta_x(V), \tau) = 0$

§4.4) 接空間の分解 (2)

- $\operatorname{bar}(\mu) = x \operatorname{\mathfrak{abd}}, \ v_{\mu}^{x} : T_{x}X \to T_{\mu}\mathscr{P}^{+}(\partial X)$
- $\tau \in T_{\mu} \operatorname{bar}^{-1}(x) \subset T_{\mu} \mathscr{P}^{+}(\partial X)$ \iff 任意の $V \in T_{x}X$ に対して, $G_{\mu}(v_{\mu}^{x}(V), \tau) = 0$
- $T_{\mu}\mathcal{P}^{+}(\partial X)$ は, T_{μ} bar $^{-1}(x)$ の方向と, $Im(\nu_{\mu}^{x})$ の方向に分解できる;

$$T_{\mu} \mathscr{P}^{+}(\partial X) = T_{\mu} \text{bar}^{-1}(x) \oplus \text{Im}(\nu_{\mu}^{x})$$
 (直交分解)

• $au\in T_{\mu}\mathscr{P}^+(\partial X)$ の $\operatorname{Im}(\nu_{\mu}^x)$ の方向: $\nu_{\mu}^x(V_{\tau}),\,V_{\tau}=\sum_{i=1}^n G_{\mu}(\tau,\nu_{\mu}^x(e_i^G))\,e_i^G$ ただし, $\{e_i^G\}_{i=1,\dots n}$ は T_xX の内積

$$G_{\mu}(\nu_{\mu}^{x}(\,\cdot\,),\nu_{\mu}^{x}(\,\cdot\,)) = \int_{\theta \in \partial X} \langle \nabla B_{\theta}(x),\,\cdot\,\rangle \, \langle \nabla B_{\theta}(x),\,\cdot\,\rangle \, d\mu(\theta)$$

に関する正規直交基底

§4.5) ファイバーと測地線 (1)

定理 6. (伊藤-S)

2 点 μ_0 , $\mu_1 \in \text{bar}^{-1}(x)$ を結ぶ測地線 $\mu(t)$ がファイバー $\text{bar}^{-1}(x)$ に含まれる ための必要十分条件は

$$\sigma(\mu_0, \mu_1) \in \text{bar}^{-1}(x)$$

定理 7. (伊藤-S)

 $\mu(0) = \mu$, $\mu'(0) = \tau$ である測地線 $\mu(t)$ が ファイバー $\mathrm{bar}^{-1}(x)$ に含まれる ための条件は

(i)
$$bar(\mu) = x$$
 (ii) $\tau \in T_{\mu}bar^{-1}(x)$

(iii) 任意の
$$V \in T_x X$$
 に対し, $\int_{\partial X} \langle \nabla B_{\theta}(x), V \rangle \left(\frac{d\tau}{d\mu} \right)^2 d\mu = 0$

§4.5) ファイバーと測地線 (2)

定理 7. (伊藤-S)-

 $\mu(0) = \mu, \ \mu'(0) = \tau$ である測地線 $\mu(t)$ が ファイバー $bar^{-1}(x)$ に含まれる ための条件は

(i)
$$bar(\mu) = x$$

(i)
$$bar(\mu) = x$$
 (ii) $\tau \in T_{\mu}bar^{-1}(x)$

(iii) 任意の
$$V \in T_x X$$
 に対し, $\int_{\partial X} \langle \nabla B_{\theta}(x), V \rangle \left(\frac{d\tau}{d\mu} \right)^2 d\mu = 0$

(iii) の条件は、次のように解釈できる;

- $\operatorname{bar}^{-1}(x) \subset \mathscr{P}^+(\partial X)$ の第 2 基本形式に関する条件: $H_{\mu}(\tau,\tau)=0$
- 確率測度 $\mu_{\tau} := \left(\frac{d\tau}{d\mu}\right)^2 \mu \in \mathscr{P}(\partial X)$ の重心が x である.

§4.6) 関連する話題

- Douady-Earle [4]
 - 。 円周 S^1 の同相写像を円板 D 内の同相写像に拡張する際に重心写像を用いている.
- Besson-Courtois-Gallot [3] (井関, 数学 49 (1997) も参照)
 - 階数 1 非コンパクト型対称空間の剛性定理.
 - 「 (X, g_0) と (Y, g) はいずれもコンパクトな同じタイプの負曲率局所対称空間で $\dim X = \dim Y > 3$ とする。このとき, $\pi_1(X) \simeq \pi_1(Y)$ ならば, (X, g_0) と (Y, g) は計量を適当に定数倍すれば等長的である。」
 - \circ ホモトピー同値写像 $f:Y\to X$ から得られる理想境界間の写像 $\bar{f}:\partial \tilde{Y}\to\partial \tilde{X}$ と,重心写像を用いて, $F:\tilde{Y}\to \tilde{X}$ 構成し,F が等長 写像であることを示している.