שיעור 6 אי-כריעות

לא כריעות $L_{ m d}$, $L_{ m halt}$, $L_{ m acc}$ השפות 6.1

 $L_{
m acc}$ 6.1 הגדרה

 $L_{\text{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \in RE \backslash R$

 $L_{
m halt}$ 6.2 הגדרה

 $L_{ ext{halt}} = \{\langle M, w
angle \mid w$ עוצרת על א $M \} \in RE \backslash R$

 $L_{
m d}$ 6.3 הגדרה

 $L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \} \notin RE$

 $L_{
m acc} \in RE$ 6.1 משפט

 $L_{\rm acc} \in RE$.

 $L_{
m acc}\in$ לכן לכן , $L_{
m acc}$ את מכיוון ש- מכיוון ש- , $L(U)=L_{
m acc}$, לכן מכיוון ש- הוכחה: מכיוון ש- .RE

 $L_{
m halt} \in RE$ 6.2 משפט

 $L_{\text{halt}} \in RE$.

. תעצור ותקבל עצרה ודחתה, U' שהיא למעשה שבו U פרט למקום שבו U עצרה ודחתה, U' שהיא למעשה למעשה שבו ותקבל.

 $:\!L_{
m halt}$ את מקבלת U' נוכיח כי

 $x \in L_{\mathrm{halt}}$ אם

w עוצרת על הי ו- $x=\langle M,w \rangle \Leftarrow$

x עוצרת ומקבלת את $U' \Leftarrow$

אם מקרים: $x \notin L_{\text{halt}}$ אם

- .x את דוחה $U' \Leftarrow x \neq \langle M, w \rangle$
- x א עוצרת על $U' \Leftarrow w$ אוצרת על M -ו $x = \langle M, w \rangle$

$L_{ m d} otin RE$ 6.3 משפט

 $L_{\rm d} \notin RE$.

הוכחה:

 $.L_{ extsf{d}} \in RE$ נניח בשלילה כי

 $.L_{ ext{d}}$ מ"ט $M_{ ext{d}}$ המקבלת את $\exists \ \Leftarrow$

$$L(M_d) = L_d \Leftarrow$$

 $:\!\!\langle M_d
angle$ על איל על פבדוק ריצה של

$$L(M_{
m d})
eq L_{
m d} \quad \Leftarrow \quad \langle M_{
m d}
angle
eq L_{
m d} \quad \Leftarrow \quad \langle M_{
m d}
angle
eq L(M_{
m d})$$
 אם •

$$L(M_{\mathrm{d}})
eq L_{\mathrm{d}} \quad \Longleftarrow \quad \langle M_{\mathrm{d}} \rangle \in L_{\mathrm{d}} \quad \Longleftarrow \quad \langle M_{\mathrm{d}} \rangle \notin L(M_{\mathrm{d}})$$
 אם •

 $L_{
m d} \notin RE$ ולכן וולכן המקרים ש- לכך ש- מתירה לכך חיבלנו סתירה בשני המקרים המקרים

משפט 6.4 לא כריעה $L_{ m acc}$

$$L_{\mathrm{acc}} = \{\langle M, w \rangle \mid w \in L(M)\} \notin R$$
.

הוכחה:

 $L_{
m acc}$ את המכריעה המ"ט המכריעה ותהי ותהי $L_{
m acc} \in R$ נניח בשלילה כי

.(6.3 כפי שהוכחנו במשפט בי לכך ש- $L_{
m d}$ לבסתירה מ"ט $M_{
m d}$ המכריעה את לבנות מ"ט $M_{
m d}$ כפי שהוכחנו במשפט אונ

$$L_{\mathsf{d}} = \{ \langle M, w \rangle \mid \langle M \rangle \notin L(M) \}$$
.

$M_{ m d}$ התאור של

:x על קלט $=M_{\mathrm{d}}$

. דוחה.
$$\langle M \rangle$$
 דוחה. בודקת האם $\langle x = \langle M \rangle$

$$\langle x \rangle = \langle \langle M \rangle \rangle$$
 מחשבת מחשבת (2

$$:\langle M,\langle M
angle
angle$$
 על הזוג $M_{
m acc}$ את מריצה (3

. דוחה
$$M_{
m d} \Leftarrow M_{
m acc}$$
 אם $M_{
m acc}$

. אם
$$M_{
m d} \Leftarrow M_{
m acc}$$
 אם $M_{
m acc}$

 $:\!L_{
m d}$ את מכריעה את מכריעה לע

 $x \in L_{\mathrm{d}}$ אם

$$\langle M \rangle \not\in L(M) \text{ -1 } x = \langle M \rangle \Leftarrow$$

$$\langle M, \langle M
angle
angle$$
 דוחה את הזוג $M_{
m acc} \Leftarrow$

.x מקבלת את $M_{
m d}$

:שני מקרים $x \notin L_{\mathrm{d}}$ אם

x את את דוחה את $M_{
m d} \quad \Leftarrow \quad x
eq \langle M \rangle$ דוחה את

$$\langle M
angle \in L(M)$$
 -1 $x = \langle M
angle$:(2) מקרה

$$\langle M, \langle M \rangle
angle$$
 מקבלת את מקבל $M_{
m acc} \Leftarrow$

.x דוחה את $M_{
m d}$

משפט 6.5 לא כריעה $L_{ m halt}$

$$L_{ ext{halt}} = ig\{\langle M, w
angle \mid w$$
 עוצרת על $M ig\}
otin R$.

הוכחה:

 $L_{
m halt}$ את מ"ט המכריעה את נניח בשלילה כי $L_{
m halt} \in R$ ותהי

. (המפט במשפט שהוכחנו במשפט בי לבנות ע"ט ביי לבנות את המכריעה את המכריעה $M_{
m acc}$ כפי שהוכחנו במשפט $M_{
m halt}$

$M_{ m acc}$ של התאור של

:x על קלט $=M_{\mathrm{acc}}$

- .x על $M_{
 m acc}$ מריצה את (1
- דוחה. $M_{
 m acc} \Leftarrow T$ דוחה אם $M_{
 m halt}$
- . מריצה על U את מריצה $M_{\mathrm{acc}} \Leftarrow m$ ועונה מקבלת \bullet

<u>אבחנה</u>

 $:\!\!L_{
m acc}$ את מכריעה $M_{
m acc}$

 $x \in L_{\mathrm{acc}}$ אם

$$\langle w \rangle \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

x את מקבלת את מקבלת את מקבלת $M_{\mathrm{halt}} \Leftarrow$

.x מקבלת את מקבלת $M_{\mathrm{acc}} \Leftarrow$

אם מקרים: $x \notin L_{\mathrm{acc}}$ אם

 $x \neq \langle M, w \rangle$:(1) מקרה

x דוחה את $M_{\mathrm{halt}} \Leftarrow$

.x דוחה את $M_{\mathrm{acc}} \leftarrow$

"מקרים: שני מקרים: - עני מקרים: $x=\langle M,w \rangle$ שני מקרים:

x את אחת דוחה את את דוחה את את אוצרת על אוצרת על אוצרת את אוצרת את מקרה (א): M

 $M_{\mathrm{acc}} \leftarrow x$ דוחה את $M_{\mathrm{acc}} \leftarrow x$ דוחה את אבל $M_{\mathrm{halt}} \leftarrow w$ אבל דוחה את מקרה (ב):

 $L_{
m acc} \notin R$ -ש בסתירה לכך בסתירה את מכריעה את הראנו כי $M_{
m acc}$ לכן $L_{
m halt} \notin R$

משפט 6.6

$$\begin{array}{ccc} L_{\rm acc} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm acc} \notin RE \ , \\ L_{\rm halt} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm halt} \notin RE \ , \\ L_{\rm d} \notin RE \backslash R \ . \end{array}$$

לא כריעה L_E השפה 6.2

 L_E השפה 6.4

$$L_E = \{ \langle M \rangle \mid L(M) = \emptyset \}$$
.

$L_E otin R$ משפט

 $L_E \notin R$.

 L_E כלומר לא כריעה.

הוכחה:

. באופן באופן באר את המכריעה $M_{
m acc}$ מ"ט בינה מ"ט כריעה. אז באופן הבא נניח בשלילה כי

M_w בנייה של

 $:M_w$ ראשית נגדיר את המ"ט

x על כל קלט $=M_w$

- . אם $x \neq w$ אם (1
- על w ועונה כמוה. M אז מריצה x=w אם (2

אבחנה

 $L(M_w) = \Sigma^*$ אם M -ו x = w אם M

 $L(M_w)=arnothing$ אז w אז m דוחה את m או $x\neq w$ אם $x\neq w$

$M_{ m acc}$ בנייה של

 $:L_{
m acc}$ את המכריעה את המכריעה מ"ט אז נבנה מ"ט המכריעה את המכריעה את המכריעה את מ"ט אוניח כי קיימת מ

:x על כל קלט $=M_{\mathrm{acc}}$

- דוחה. $\langle M,w \rangle$ אם (1
- M_w בונה מ"ט, $\langle M,w \rangle$ אם געזרת בעזרת גע $x=\langle M,w \rangle$ אם (2
 - $:\!\!\langle M_w
 angle$ על M_E מריצה (3
 - אם M_E אם אם (4
 - אם M_E אם M_E אם •

<u>נכונות</u>

 $\langle M_w \rangle$ דוחה $M_E \Leftarrow L(M_w) = \Sigma^* \neq \varnothing \Leftarrow w \in L(M)$ -ו $x = \langle M, w \rangle \Leftarrow x \in L_{\mathrm{acc}}$ אם $M_{\mathrm{acc}} \Leftarrow M_{\mathrm{acc}}$

אם אפני מקרים: $x \notin L_{\mathrm{acc}}$ אם

. דוחה $M_{
m acc} \ \Leftarrow \ \langle M_w \rangle$ מקבלת $M_E \ \Leftarrow \ L(M_w) = arnothing \ \Leftrightarrow \ x
eq \langle M, w
angle$ בחחה.

. דוחה. $M_{
m acc} \Leftarrow \langle M_w \rangle$ מקבלת $M_E \Leftarrow L(M_w) = arnothing \Leftrightarrow w \notin L(M)$ דוחה. $x = \langle M, w \rangle$

לסיכום:

 $L_{
m acc} \notin R$ -ש בסתירה לכך בסתירה את המכריעה $M_{
m acc}$ מ"ט אפשר לבנות כריעה אז אפשר לבנות המכריעה $L_E \notin R$ לכן לכן $L_E \notin R$

$L_E otin RE$ 6.8 משפט

$L_E \notin RE$

הוכחה:

הרעיון

נבנה מ"ט א"ד N המקבלת את

$$\bar{L}_E = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

:x על קלט =N

- . אם $\langle M \rangle$ אם (1
- . באופן א"ד. $w \in \Sigma^*$ אז N בוחרת אי"ד. אם ער גא אם אם ער אז אי
 - .w על M מריצה (3
 - אם M מקבלת M מקבלת.
 - . אם M דוחה $M \Leftarrow$

הוכחת הנכונות

 $x\in \bar{L}_E$ אם

$$L(M) \neq \emptyset$$
 -1 $x = \langle M \rangle \Leftarrow$

- $w \in L(M)$ -פיימת מילה $w \in \Sigma^*$ כך ש
- wאת מקבלת מקבל ע $w \in \Sigma^*$ ניחוש $\exists \ \Leftarrow$
- $x = \langle M \rangle$ את המקל של של + קיים חישוב של +
 - $.x \in L(N) \Leftarrow$

 $ar{L}_E \in RE$ לכן קיימת מ"ט א"ד N המקבלת את השפה לכן קיימת

 $.L_{E}
otin RE$ כעת נוכיח כי

 $L_E\in R$,5.1 לכם לפי משפט. $\bar{L}_E\in RE$ - הוכחנו למעלה ש. $L_E\in RE$ הוכחנו למעלה. $L_E\notin R$ או בסתירה לכך ש- $L_E\notin R$

לא כריעה L_{EQ} השפה 6.3

L_{EQ} 6.5 הגדרה

$$L_{EQ} = \left\{ \left\langle M_1, M_2 \right\rangle \mid L\left(M_1\right) = L\left(M_2\right) \right\}$$

$L_{EQ} otin R$ משפט 6.9 משפט

$L_{EQ} \notin R$

.השפה L_{EQ} לא כריעה

הוכחה:

נניח בשלילה כי M_E כריעה את מ"ט המכריעה את מ"ט המכריעה את M_{EQ} המכריעה את כייעה. תהי L_{EQ} באופן הבא.

M_E בנייה של

$$:x$$
 על כל קלט $=M_E$

דוחה.
$$\langle M \rangle$$
 אם (1

. כל קלט. אדוחה
$$M_{arnothing}$$
 כאשר $M_{arnothing}$ על על M_{EQ} מריצה $x=\langle M \rangle$ אם (2

. אם
$$M_{EQ}$$
 מקבלת \bullet (3

. אם
$$M_{EQ}$$
 דוחה $+$

נכונות

$$x \in L_E$$
 אם

$$L(M) = \varnothing - 1 \ x = \langle M \rangle \Leftarrow$$

$$L(M) = L(M_{\varnothing}) \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle \in L_{EQ} \Leftarrow$$

$$\langle M, M_{\varnothing}
angle$$
 מקבלת $M_{EQ} \Leftarrow$

.מקבל
$$M_E \Leftarrow$$

:שני מקרים
$$\Leftarrow x \notin L_E$$
 אם

מקרה
$$M_E \leftarrow x \neq \langle M \rangle$$
 דוחה.

$$\langle M, M_{\varnothing}
angle$$
 דוחה $M_{EQ} \Leftarrow$

.דוחה
$$M_E \Leftarrow$$

לסיכום:

 $L_E \notin R$ -שומר ש- 6.7 בסתירה למשפט המכריעה את המכריעה M_E מ"ט מ"ט לבנות כריעה אז L_{EQ} לכן $L_{EQ} \notin R$ לכן לבנות המכריעה לבנות מ"ט המכריעה לבנות המכריעה לבנות המכריעה לבנות המכריעה לבנות המכריעה לבנות המכריעה המכריעה לבנות המכריעה המכריעה

$L_{EQ} otin RE$ 6.10 משפט

$L_{EQ} \notin RE$

לא קבילה. L_{EQ}

הוכחה:

נניח בשלילה כי M_E קבילה. תהי M_{EQ} מ"ט המקבלת את מ"ט M_{EQ} אז נבנה מ"ט קבילה. תהי M_{EQ} קבילה. תהי M_{EQ} המקבלת את באופן הבא.

M_E בנייה של

x על כל קלט $=M_E$

- דוחה. $\langle M \rangle$ אם (1
- על קלט. איז המ"ט אדוחה $M_{m{\varnothing}}$ כאשר $M_{m{\varnothing}}$ על אדוחה כל קלט. $x=\langle M
 angle$ אם $x=\langle M
 angle$
 - מקבלת \leftarrow מקבלת M_{EQ} (3

נכונות

 $x \in L_E$ אם

$$L(M) = \varnothing$$
 -1 $x = \langle M \rangle \Leftarrow$

$$L(M) = L\left(M_{\varnothing}\right) \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle \in L_{EQ} \Leftarrow$$

$$\langle M, M_{\varnothing}
angle$$
 מקבלת $M_{EQ} \Leftarrow$

.מקבל מקבל
$$M_E \Leftarrow$$

לסיכום:

 $L_E
otin RE$ אם L_{EQ} קבילה אז אפשר לבנות מ"ט M_E המקבלת את בסתירה למשפט 6.8 האומר ש $L_{EQ}
otin RE$ לכן

$ar{L}_{EQ} otin RE$ 6.11 משפט

$$\bar{L}_{EQ} \notin RE$$
.

הוכחה:

 $ar{L}_{
m acc}$ את המקבלת מ"ט $M_{ar{acc}}$ אז נבנה מ"ט בשלילה כי המקבלת מ"ט המקבלת מ"ט המקבלת מ"ט המקבלת המקבלת בשלילה כי באופן הבא.

M_1 בנייה של

ראשית נגדיר מ"ט M_1 באופן הבא:

$$x$$
 על קלט $= M_1$

. על w ועונה כמוה M מריצה (1

$M_{\overline{ m acc}}$ בנייה של

x על כל קלט $=M_{\overline{\mathrm{acc}}}$

. אם
$$\langle M,w \rangle$$
 אם (1

$$M_1$$
 אז בונה $x=\langle M,w
angle$ (2

. כל קלט שמקבלת המ"ט המ"ט על
$$\langle M_1, M^*
angle$$
 על $M_{\overline{EQ}}$ מריצה (3

. אם
$$M_{\overline{EQ}}$$
 מקבלת $ullet$ מקבלת.

נכונות

 $x \in L_{\overline{\mathrm{acc}}}$ אם

$$w$$
 לא מקבלת $M \Leftarrow$

$$L(M_1) = \emptyset \Leftarrow$$

$$\langle M_1, M^* \rangle \in L_{\overline{EQ}} \Leftarrow$$

$$\langle M_1, M^*
angle$$
 מקבלת $M_{\overline{EQ}} \Leftarrow$

.מקבל מקבל
$$M_{\overline{\mathrm{acc}}} \Leftarrow$$

לסיכום:

 $L_{\overline{acc}} \notin RE$ -שם 6.6 בסתירה למשפט $L_{\overline{acc}}$ את המקבלת את המקבלת מ"ט $M_{\overline{acc}}$ האומר ש $L_{\overline{EQ}} \notin RE$ לכן $L_{\overline{EQ}} \notin RE$