DIFERENCIJALNI RAČUN FUNKCIJA JEDNE PROMENLJIVE

23. decembar 2020

Definicija izvoda

Neka je funkcija y = f(x) definisana na intervalu (a, b).

- Za $x \in (a, b)$ se broj $\Delta x \neq 0$ za koji je $x + \Delta x \in (a, b)$ naziva priraštaj argumenta funkcije f(x) u tački $x \in (a, b)$
- Za dati priraštaj Δx se veličina $\Delta y = f(x + \Delta x) f(x)$ naziva priraštaj funkcije f(x) u tački $x \in (a, b), x + \Delta x \in (a, b)$

Definicija

Ako postoji granična vrednost

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

onda se ta granična vrednost zove **izvod funkcije** f(x) u tački x i označava se sa f'(x) ili y'.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

Izvod i neprekidnost

Teorema

Ako funkcija ima izvod u nekoj tački x, ona je u toj tački i neprekidna.

Primer

Funkicja
$$f(x) = |x|$$
 je neprekidna u tački $x = 0$ ali nema izvod u $x = 0$ jer je

$$\frac{\Delta y}{\Delta x} = \left\{ \begin{array}{cc} 1, & \Delta x > 0 \\ -1, & \Delta x < 0 \end{array} \right.$$

Ako funkcija y = f(x) ima izvod u tački x tada važi

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \quad \Rightarrow \quad \frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x)$$
$$\Rightarrow \quad \Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x, \lim_{\Delta x \to 0} \alpha(\Delta x) = 0$$

Izvod i neprekidnost

Primer

Koristeći definiciju izračunati izvode sledećih funkcija.

$$f(x) = c,$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0.$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0} \sum_{k=1}^n \binom{n}{k} x^{n-k} (\Delta x)^{k-1} = n x^{n-1}.$$

$$f'(x) = a^x, \ a > 0,$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = a^x \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = a^x \ln a.$$

$$f(x) = \sin x,$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2}{\Delta x} \sin \frac{\Delta x}{2} \cos \frac{2x + \Delta x}{2}$$

Geometrijska interpretacija izvoda

- A(x,y), $B(x+\Delta x,y+\Delta y)$ su tačke grafika, prava AB je sečica
- ullet ako B o A prava postaje tangenta krive u tački A
- koeficijent pravca tangente, ako je $\alpha \neq \frac{\pi}{2}$,

$$tg\alpha = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x).$$

Geometrijska interpretacija izvoda

Ako je ugao koji tangenta gradi sa pozitivnim delom x—ose različit od $\frac{\pi}{2}$, jednačina tangente u tački sa grafika $M(x_0, y_0)$ je

$$t: y - y_0 = f'(x_0)(x - x_0).$$

Jednačina normale na grafik funkcije, tj. prave koja je tački M normalna na t, je

$$n: y-y_0=-\frac{1}{f'(x_0)}(x-x_0),$$

pod uslovom da je $f'(x_0) \neq 0$. Ako je $f'(x_0) = 0$ jednačina tangente je

$$y=f(x_0),$$

dok je prava

$$x = x_0$$

normala na grafik krive.

Geometrijska interpretacija izvoda

Primer

Napisati jednačinu tangente i normale na grafik funkcije $y = 2^x$ u tački $A(1, y_0)$.

U nekim slučajevima potrebno je posmatrati postojanje izvoda sa leve i desne strane tačke x, takozvane jednostrane izvode.

• **Desni izvod** funkcije f(x) nad $[x, x + \delta)$, $\delta > 0$ je

$$f'_{+}(x) = \lim_{\Delta x \to 0^{+}} \frac{f(x + \Delta x) - f(x)}{\Delta x}, \quad x + \Delta x \in [x, x + \delta)$$

• Levi izvod funkcije f(x) nad $(x - \delta, x]$, $\delta > 0$ je

$$f'_{-}(x) = \lim_{\Delta x \to 0^{-}} \frac{f(x + \Delta x) - f(x)}{\Delta x}, \quad x + \Delta x \in (x - \delta, x]$$

f(x) ima izvod u x akko postoje jednostrani izvodi i važi

$$f'_{-}(x) = f'_{+}(x) = f'(x).$$

Levi i desni izvod funkcije definišu položaj leve i desne tangente.

Primer

Izračunati izvod u tački a = 0, ako postoji, funkcije:

$$f(x) = \begin{cases} x \operatorname{arctg} \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

$$f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x \operatorname{arctg} \frac{1}{\Delta x}}{\Delta x} = \frac{\pi}{2}$$

$$f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\Delta x \operatorname{arctg} \frac{1}{\Delta x}}{\Delta x} = -\frac{\pi}{2}$$

$$t_1: y-0=\frac{\pi}{2}(x-0)$$

$$t_1: y=\frac{\pi}{2}x$$

$$t_2: y-0=-\frac{\pi}{2}(x-0)$$

$$t_2: y = -\frac{\pi}{2}x$$

Primer

Izračunati izvod sledećih funkcija u tački a=0, ako postoje:

$$g(x) = |x|, \quad h(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}.$$

$$g'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} = 1$$

$$g'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = -1$$

pa je leva polutangenta funkcije g(x) prava sa koeficijentom pravca tg $\alpha=-1$ tj. prava y=-x dok je desna polutangenta prava sa koeficijentom pravca tg $\alpha=1$ tj. prava y=x.

$$t_1: y-0=1\cdot (x-0)$$

 $t_1: y=x$
 $t_2: y-0=-1\cdot (x-0)$
 $t_2: y=-x$

Primer

Izračunati izvod sledećih funkcija u tački a=0, ako postoje:

$$h(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

$$h'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{h(0 + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0^{+}} \sin \frac{1}{\Delta x}$$

$$h'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{h(0 + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\Delta x \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0^{-}} \sin \frac{1}{\Delta x}$$

Prethodne granične vrednosti ne postoje pa ne postoji ni leva ni desna polutangenta.

Diferencijabilnost

Funkcija f(x) je definisana nad (a, b) i $x \in (a, b)$.

Definicija

Za funkciju f(x) se kaže da je diferencijabilna u tački x ako se Δy može napisati u obliku

$$\Delta y = D\Delta x + \alpha \Delta x,$$

pri čemu $\alpha \to 0$ kada $\Delta x \to 0$, dok D ne zavisi od Δx .

Teorema

Potreban i dovoljan uslov da funkcija f(x) bude diferencijabilna u tački x je da ima izvod u toj tački.

Teorema

Ako je funkcija diferencijabilna u tački x onda je ona neprekidna u toj tački.

Tablica izvoda

	f(x)	f'(x)	važi za	f(x)	f'(x)	važi za
	x ⁿ	nx^{n-1}	$x \in \mathbb{R}, n \in \mathbb{N}$	arcsin x	$\frac{1}{\sqrt{1-x^2}}$	x < 1
	x^{α}	$\alpha x^{\alpha-1}$	$\alpha \in \mathbb{R}, x > 0$	arccos x	$\frac{-1}{\sqrt{1-x^2}}$	x < 1
	a ^x	a ^x In a	$a > 0, a \neq 1, x > 0$	arctg x	$\frac{1}{1+x^2}$	$x \in \mathbb{R}$
	log _a x	$\frac{1}{x \ln a}$	$a > 0, a \neq 1, x > 0$	arcctg x	$\frac{-1}{1+x^2}$	$x \in \mathbb{R}$
	sin x	cos x	$x \in \mathbb{R}$	sh x	ch x	$x \in \mathbb{R}$
	cos x	— sin <i>x</i>	$x \in \mathbb{R}$	ch x	sh x	$x \in \mathbb{R}$
	tg x	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$	th x	$\frac{1}{\cosh^2 x}$	$x \in \mathbb{R}$
	ctg x	$-\frac{1}{\sin^2 x}$	$x \neq k\pi, k \in \mathbb{Z}$	cth x	$-\frac{1}{\sinh^2 x}$	$x \neq 0$

Osobine izvoda

Teorema

Ako funkcije $u=u(x),\ v=v(x)$ imaju izvod u tački x, tada i funkcije $u(x)\pm v(x),\ u(x)\cdot v(x),\ \frac{u(x)}{v(x)},\ (v(x)\neq 0)$ i $c\cdot u(x)$ imaju izvod u toj tački i važi da je:

- 1. $[u(x) \pm v(x)]' = u'(x) \pm v'(x)$,
- 2. [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x),

3.
$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}$$
,

4. $[c \ u(x)]' = c \ u'(x)$.

Osobine izvoda

Primer

Koristeći pravila diferenciranja izračunati izvode sledećih funkcija:

$$f(x) = \lg x, \ g(x) = e^x \ln x, \ h(x) = x^4 \ln x + \frac{2x^3}{x+1}.$$

$$f'(x) = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cdot \cos x - \sin x \cdot (\cos x)'}{\cos^2 x}$$

$$= \frac{\cos^2 x - (-\sin^2 x)}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

$$g'(x) = (e^x)' \cdot \ln x + e^x \cdot (\ln x)'$$

$$= e^x \cdot \ln x + \frac{e^x}{x},$$

$$h'(x) = (x^4 \ln x)' + \left(\frac{2x^3}{x+1}\right)'$$

$$= 4x^3 \cdot \ln x + x^4 \cdot \frac{1}{x} + \frac{6x^2(x+1) - 2x^3 \cdot 1}{(x+1)^2}$$

Izvod složene funkcije

Izvod složene funkcije

Neka je data složena funkcija y = f(x), u = g(y). Ako g(y) ima izvod u tački y i f(x) ima izvod u tački x, tada je $(g \circ f)'(x) = (g(f(x)))' = g'(y)f'(x).$

<u>P</u>rimer

Naći y' za
$$y = \sin^3 \sqrt[3]{x}, x \neq 0.$$

U ovom slučaju je

$$v = \sqrt[3]{x}, v' = \frac{1}{3} \frac{1}{\sqrt[3]{x^2}},$$

$$u = \sin v, u' = \cos v$$

$$y = u^3, y' = 3u^2,$$

$$y' = 3u^2 \cos v \frac{1}{3} \frac{1}{\sqrt[3]{x^2}} = 3 \sin^2 \sqrt[3]{x^2} \cos \sqrt[3]{x} \frac{1}{3\sqrt[3]{x^2}}.$$

Izvod inverzne funkcije

Izvod inverzne funkcije

Neka je f(x) neprekidna strogo monotona funkcija definisana na intervalu (a,b) i $f^{-1}(x)$ njena inverzna funkcija. Ako funkcija f ima izvod f'(x) u tački $x \in (a,b)$ i $f'(x) \neq 0$, tada funkcija $f^{-1}(x)$ ima izvod u tački y = f(x) i važi

$$(f^{-1})'(y) = \frac{1}{f'(x)}.$$

Primer

Naći y' za $y = \arcsin x$.

Kako je $f(x) = \arcsin x$ važi da je $f^{-1}(y) = g(y) = \sin y$, pa je

$$y' = \frac{1}{g'(y)} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Parametarski zadate krive u ravni:

Parabola
$$\begin{cases} x(t) = rac{t^2}{2p}, & , t \in \mathbb{R}, p > 0. \\ y(t) = t, & \end{cases}$$

Hiperbola
$$\begin{cases} x(t) = a \cosh t, \\ y(t) = b \sinh t, \end{cases}$$

Kružnica
$$\mathcal{K}((a, b), r)$$

$$\begin{cases} x(t) = a + r \cos t, \\ y(t) = b + r \sin t, \end{cases}$$

Elipsa
$$\begin{cases} x(t) = a + r_1 \cos t, \\ y(t) = b + r_2 \sin t, \end{cases}$$

Cikloida

$$\begin{cases} x(t) = a(t - \sin t), \\ y(t) = a(1 - \cos t), \end{cases}$$

Astroida
$$\begin{cases} x(t) = a \cos^3 t, \\ y(t) = a \sin^3 t, \end{cases}$$

Kardioida

$$\begin{cases} x(t) = 2a(1 - \cos t) \cos t, \\ y(t) = 2a(1 - \cos t) \sin t, \end{cases}$$

Neka je nad $I \subset \mathbb{R}$ definisane funkcije jedančinama $x = \varphi(t)$, $y = \psi(t)$, $t \in I$. Neka važe sledeći uslovi

- ullet postoji inverzna funkcija za $arphi(t),\ t=arphi^{-1}(x)$
- $y = \psi(\varphi^{-1}(x)) = f(x)$ je definisana nad skupom $\{\varphi(t) : t \in I\}$

Tada je jednačinama $x = x(t), y = y(t), t \in I$ funkcija f(x) zadata u parametarskom obliku i promenljivu t zovemo parametrom.

Izvod parametarski zadate funkcije

Neka je data funkcija y = f(x) u parametarskom obliku $x = \varphi(t)$, $y = \psi(t)$, $t \in I$. Ako neprekidne funkcije $\varphi(t)$ i $\psi(t)$ imaju izvode u tački $t \in (a,b)$ i ukoliko je $\varphi'(t) \neq 0$, tada funkcija y = f(x) ima izvod u tački t i važi

$$f'(x) = \frac{\psi'(t)}{\varphi'(t)} = \frac{\dot{y}(t)}{\dot{x}(t)}.$$

Primer

Naći izvod f'(x) funkcije zadate parametarski.

$$\begin{cases} x(t) = a(\cos t + t \sin t), \\ y(t) = a(\sin t - t \cos t), \\ lz \ x'(t) = a(-\sin t + \sin t + t \cos t) = at \cos t \ i \\ y'(t) = a(\cos t - \cos t + t \sin t) = at \sin t \ dobija \ se \ da \ je \\ f'(x) = \frac{at \sin t}{at \cos t} = \operatorname{tg} t. \end{cases}$$

$$\begin{cases} x(t) = (t^2 - 2)\sin t + 2t\cos t, \\ y(t) = (2 - t^2)\cos t + 2t\sin t, \\ lz \ x'(t) = 2t\sin t + (t^2 - 2)\cos t + 2\cos t - 2t\sin t = t^2\cos t i \\ y'(t) = -2t\cos t - (2 - t^2)\sin t + 2\sin t + 2t\cos t = t^2\sin t \\ dobija \ se \ da \ je \\ f'(x) = \frac{t^2\sin t}{t^2\cos t} = \operatorname{tg} t. \end{cases}$$

Osobine izvoda

Logaritamski izvod: Neka je $y = (f(x))^{g(x)}, f(x) > 0$. Tada je

$$y' = (f(x))^{g(x)} \left[g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right].$$

Primer

Za funkciju
$$f(x) = x^x$$
 je $u(x) = v(x) = x$ pa je
$$f'(x) = x^x \left(1 \cdot \ln x + x \cdot \frac{1}{x} \right) = x^x (\ln x + 1).$$

$$Za g(x) = (x^4 + 2) \sin^3 x \ln^2 x \arctan x je$$

$$\ln g(x) = \ln((x^4 + 2) \sin^3 x \ln^2 x \arctan x)$$

$$= \ln(x^4 + 2) + \ln(\sin^3 x) + \ln(\ln^2 x) + \ln(\arctan x)$$

pa je

$$g'(x) = g(x) \left(\frac{1}{x^4 + 2} \cdot (4x^3) + \frac{1}{\sin^3 x} 3\sin^2 x \cos x + \frac{1}{\ln^2 x} (2(\ln x) \frac{1}{x}) + \frac{1}{\arctan x} \frac{1}{1 + x^2} \right)$$

Tablica izvoda

Primer

Ispitati postojanje izvoda u tački a = 0 sledećih funkcija

$$f(x) = \begin{cases} x^2 + x, & x > 0, \\ \sin x, & x \le 0 \end{cases}$$

$$f'(0)^- = \lim_{\Delta x \to 0^-} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{\sin \Delta x - \sin 0}{\Delta x} = 1$$

$$f'(0)^+ = \lim_{\Delta x \to 0^+} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{\Delta^2 x + \Delta x - \sin 0}{\Delta x} = 1$$

pa je
$$f'(0) = 1$$
.

$$g(x) = \begin{cases} e^x, & x > 0, \\ e^{-x}, & x \le 0 \end{cases},$$

$$g'(0)^- = \lim_{\Delta x \to 0^-} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = -\lim_{\Delta x \to 0^-} \frac{e^{-\Delta x} - 1}{-\Delta x} = -\ln e = -1$$
 $g'(0)^+ = \lim_{\Delta x \to 0^+} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{e^{\Delta x} - 1}{\Delta x} = \ln e = 1$

pa g'(0) ne postoji.

Tablica izvoda

Primer

Ispitati postojanje izvoda u tački a = 0 sledećih funkcija $h(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}.$

$$h'(0)^{-} = \lim_{\Delta x \to 0^{-}} \frac{h(0 + \Delta x) - h(0)}{\Delta x} = -\lim_{\Delta x \to 0^{-}} \frac{\Delta x^{2} \sin \frac{1}{\Delta x} - 0}{\Delta x} = 0$$
$$h'(0)^{+} = \lim_{\Delta x \to 0^{+}} \frac{h(0 + \Delta x) - (0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x^{2} \sin \frac{1}{\Delta x} - 0}{\Delta x} = 0$$

$$h'(0)' = \lim_{\Delta x \to 0^+} \frac{1}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{1}{\Delta x} = 0$$

pa je h'(0) = 0.

Primer

Izračunati izvod za $f(x) = \ln(x + \sqrt{1 + x^2})$ i $g(x) = \arctan \frac{1 + x}{1 - x^2}$.

$$f'(x) = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{x}{\sqrt{1 + x^2}} \right)$$
$$g'(x) = \frac{1}{1 + \left(\frac{1 + x}{1 - x}\right)^2} \cdot \frac{2}{(1 - x)^2} = \frac{1}{1 + x^2}$$

Diferencijal funkcije

Ako je funkcija f(x) diferencijabilna u tački $x \in (a,b)$ tada je

$$\Delta y = D\Delta x + \alpha(\Delta x)\Delta x = f'(x)\Delta x + \alpha(\Delta x)\Delta x,$$

gde je
$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$$
.

- linearni deo priraštaja $f'(x)\Delta x = df(x) = dy$ naziva se diferencijal funkcije u tački x
- Lajbnicova oznaka za izvod $dy = f'(x)dx \Rightarrow f'(x) = \frac{dy}{dx}$
- Invarijantnost oblika: y = f(u), u = g(x)

$$dy = d(f(g(x))) = (f \circ g)'(x)dx = f'(u)g'(x)dx = f'(u)du$$

Geometrijska interpretacija diferencijala

• Geometrijska interpretacija:

ullet priraštaj ordinate tangente na krivu y=f(x) u tački M(x,y) koji odgovara priraštaju Δx

Osobine diferencijala

Koristeći definiciju diferencijala i osobine izvoda funkcije može se pokazati sledeća teorema.

Osobine diferencijala

Ako su funkcije u = u(x) i v = v(x) diferencijabilne u tački x tada važi

- 1. $d(u(x) \pm v(x)) = du(x) \pm dv(x),$
- 2. d(u(x)v(x)) = v(x)du(x) + u(x)dv(x),
- 3. $d\left(\frac{u(x)}{v(x)}\right) = \frac{v(x)du(x) u(x)dv(x)}{v^2(x)}, \ v(x) \neq 0$
- 4. d(c u(x)) = c du(x).

Aproksimacija funkcija

Koristeći definiciju diferencijala

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x,$$

pri čemu $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$, može se u okolini tačke x, za male vrednosti Δx , aproksimirati vrednost funkcije $f(x + \Delta x)$ koristeći vrednost funkcije i njen izvod u tački x. Kako je

$$\Delta y \approx f'(x)\Delta x$$

$$f(x + \Delta x) - f(x) \approx f'(x)\Delta x$$

važi da je

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$
.

Aproksimacione formule

Za male vrednosti Δx važi

$$\ln(1+x+\Delta x) \approx \ln(1+x) + \frac{1}{1+x}\Delta x$$

$$\sin(x+\Delta x) \approx \sin x + \Delta x \cos x$$

$$\cos(x+\Delta x) \approx \cos x + \Delta x \sin x$$

$$e^{x+\Delta x} \approx e^{x}(1+\Delta x)$$
 dok u okolini nule, za $x=0$ i $\Delta x=\alpha$ važi
$$\ln(1+\alpha) \approx \alpha, \quad \sin(\alpha) \approx \alpha, \quad e^{\alpha} \approx 1+\alpha.$$

Primer

Približno izračunati $\sqrt[3]{8.01}$.

U ovom slučaju se posmatra funkcija f(x) = $\sqrt[3]{x}$ *u okolini tačke* x = 8 *za* $\Delta x = 0.01$.

Kako je
$$f'(x) = \frac{1}{3\sqrt[3]{x^2}}$$
, tj. $f'(8) = \frac{1}{12}$, približna vrednost funkcije je

$$\sqrt[3]{8.01} = f(8.01) \approx f(8) + f'(8)\Delta x = 2 + \frac{0.01}{12} = 2.00083.$$

- Izvodi višeg reda
 - y = f(x) je diferencijabilna nad (a, b),
 - f'(x) je diferencijabilna u nekoj tački $x \in (a,b)$

$$f''(x) = (f'(x))'$$
 je drugi izvod funkcije $f(x)$.

Slično se definišu viši izvodi funkcije y = f(x), tj. važi

•
$$y = f^0(x), y' = f'(x), y'' = (f'(x))', \dots, y^{(n)}(x) = (f^{(n-1)}(x))'$$

Koristeći matematičku indukciju može se pokazati da je

•
$$(C u(x))^{(n)} = Cu^{(n)}(x), \quad (u(x) \pm v(x))^{(n)} = u^{(n)}(x) \pm v^{(n)}(x)$$

Lajbnicova formula:

$$(u(x)v(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)}(x)v^{(k)}(x).$$

Ukoliko funkcija ima n izvoda u tački x kaže se da je ona n—puta neprekidno diferencijabilna u tački x. Skup svih neprekidno diferencijabilnih funkcija na intervalu (a, b), u svakoj tački intervala (a, b), označava se sa $C^{(n)}(a, b)$.

Primer

Izračunati izvode reda n za sledeće funkcije:

$$f(x) = \ln(1+x), \quad g(x) = \sin x, \quad h(x) = \cos x.$$

$$f'(x) = \frac{1}{1+x}, \quad f''(x) = -\frac{1}{(1+x)^2}, \quad f'''(x) = \frac{2}{(1+x)^3},$$

$$f^{(n)}(x) = (-1)^n \frac{(n-1)!}{(1+x)^n}.$$

$$g^{(4k)}(x) = \sin x, \quad g^{(4k+1)}(x) = \cos x,$$

$$g^{(4k+2)}(x) = -\sin x, \quad g^{(4k+3)}(x) = -\cos x.$$

$$h^{(4k)}(x) = \cos x, \quad h^{(4k+3)}(x) = -\sin x,$$

$$h^{(4k+2)}(x) = -\cos x, \quad h^{(4k+3)}(x) = \sin x.$$

- Za parametarski zadatu funkciju $x = \varphi(t), y = \psi(t), t \in (a, b)$ $y''(x) = \left(\frac{y'(t)}{x'(t)}\right)'(t) \ t'(x) = \frac{y''(t)x'(t) x''(t)y'(t)}{(x'(t))^2} \cdot \frac{1}{x'(t)}$
- Za inverznu funkcijų $x = f^{-1}(y)$, je $x''(y) = \left(\frac{1}{y'(x)}\right)'(y) = \left(\frac{1}{y'(x)}\right)'(y) x'(y) = \frac{-y''(x)}{(y'(x))^2} \frac{1}{y'(x)}$

Primer

Izračunati drugi izvod sledeće funkcije:
$$\begin{cases} x(t) = a\cos^3 t \\ y(t) = a\sin^3 t \end{cases}$$

$$x'(t) = -3a\cos^2 t \sin t,$$

$$x''(t) = 3a\cos t(2\sin^2 t - \cos^2 t),$$

$$y'(t) = 3a\sin^2 t \cos t$$

$$y''(t) = 3a\sin t(2\cos^2 t - \sin^2 t)$$

$$f''(x) = \frac{1}{3a\cos^4 t \sin t}.$$

- Diferencijali višeg reda
 - $f \in C^2[(a,b)]$ diferncijal funkcije dy = f'(x)dx, označava se sa d^2y je drugi diferencijal.
 - dy = f'(x)dx diferencijal prvog reda
 - $d^2y = d(f'(x)dx) = (f'(x)dx)'dx = f''(x)dx^2$ differencijal drugog reda
 - ako je $f^{(n-1)}(x)$ diferencijabilna, $n \ge 2$ tada je $d^n y = f^{(n)}(x) dx^n$, diferencijal n—tog reda
- y = f(x)

$$d^2y = f''(x) dx^2$$

• y = f(u), u = u(x) su dva puta diferencijabilne

$$d^2y = d(f'(u)du) = d(f'(u))du + f'(u)d(du)$$

= $f''(u)du^2 + f'(u)d^2u$

Definicija

Neka je funkcija f definisana na $U(x_0)$.

- Ako je $(\forall x = x_0 + \Delta x \in U)$ $f(x) \leq f(x_0)$ tada je x_0 je lokalni maksimum funkcije. Priraštaj funkcije u x_0 je tada $\Delta f(x_0) = f(x) f(x_0) \leq 0$.
- Ako je $(\forall x = x_0 + \Delta x \in U)$ $f(x) \ge f(x_0)$ tada je x_0 je lokalni minimum funkcije. Priraštaj funkcije u x_0 je tada $\Delta f(x_0) = f(x) f(x_0) \ge 0$.
- x₀ je tada lokalna ekstremna vrednost

Ako je x_0 lokalna ekstremna vrednost tada je na $U(x_0)$ priraštaj $\Delta f(x_0)$ stalnog znaka.

Fermaova teorema

Ako funkcija ima u tački c lokalni ekstrem i ako je u toj tački diferencijabilna (ima izvod), tada je f'(c) = 0.

Rolova teorema

Ako je funkcija $f:[a,b] \to \mathbb{R}$ neprekidna nad zatvorenim intervalom [a,b], ima izvod nad otvorenim intervalom (a,b) i ako je f(a) = f(b), tada postoji bar jedna tačka $\xi \in (a,b)$ takva da je $f'(\xi) = 0$.

Geometrijski smisao: Postoji bar jedna tačka $\xi \in (a, b)$ takva da je tangenta krive y = f(x) u tački $A(\xi, f(\xi))$ paralelna sa x—osom.

Mehanička interpretacija: Tačka se kreće po pravoj, u trenutku t se nalazi u x(t). Neka je x=x(t) neprekidna nad $[\alpha,\beta]$ i diferencijabilna nad (α,β) . Ako je $x(\alpha)=x(\beta)$ tada postoji bar jedna tačka $\xi\in(a,b)$ u kojoj je brzina jednaka nuli.

Primer

Jednačina $\cos 10x + \cos 20x + \cos 30x = 0$ ima bar jedno rešenje nad intervalom $(0, \pi)$.

Za funkciju

$$f(x) = \frac{1}{10}\sin 10x + \frac{1}{20}\sin 20x + \frac{1}{30}\sin 30x$$

važi da je neprekidna i ima izvod u svakoj tački intervala $[0,\pi]$. Takođe važi $f(0)=f(\pi)=0$ te su zadovoljeni uslovi Rolove teoreme. Prema tome postoji bar jedna tačka $\xi\in(0,\pi)$ takva da je $f'(\xi)=0$. Kako je

$$f'(x) = \cos 10x + \cos 20x + \cos 30x,$$

tačka ξ je traženo rešenje jednačine $\cos 10x + \cos 20x + \cos 30x = 0$.

Lagranžova teorema - teorema o srednjoj vrednosti

Ako je funkcija $f:[a,b] \to \mathbb{R}$ neprekidna nad zatvorenim intervalom [a,b], ima izvod nad otvorenim intervalom (a,b), tada postoji bar jedna tačka $\xi \in (a,b)$ takva da je

$$\frac{f(b)-f(a)}{b-a}=f'(\xi).$$

Geometrijski smisao: Postoji tačka $\xi \in (a, b)$ takva da je tangenta u $C(\xi, f(\xi))$ paralelna pravoj kroz A(a, f(a)) i B(b, f(b)).

Mehanička interpretacija: Postoji tačka u kojoj je trenutna brzina jednaka srednjoj brzini u pomenutom intervalu.

Primer

Dokazati da za svako 0 < a < b važi: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$.

Za funkciju $f(x) = \ln x$ važi da je neprekidna i ima iznod nad intervalom [a,b], 0 < a < b, pa su zadovoljeni uslovi Lagranžove teoreme. Prema tome, postoji tačka $\xi \in (a,b)$ takva da je

$$rac{\ln(b) - \ln(a)}{b - a} = rac{1}{\xi},$$
 $\ln(b) - \ln(a) = rac{1}{\xi}(b - a).$

tj.

Zbog a $< \xi < b$ važi da je

$$\frac{1}{b}(b-a) \leq \frac{1}{\xi}(b-a) \leq \frac{1}{a}(b-a)$$
$$\frac{b-a}{b} \leq \ln \frac{b}{a} \leq \frac{b-a}{a}.$$

Primer

Primenom Lagranžove teoreme na funkciju $f(x) = \sin x$ na proizvoljnom odsečku [a, b] je

$$\sin(b) - \sin(a) = \cos x_0(b - a),$$

odakle se dobija nejednakost $|\sin b - \sin a| \le |b - a|$.

Košijeva teorema

Ako su funkcije f(x), g(x) neprekidne nad zatvorenim intervalom [a,b], imaju izvode nad (a,b) i za svako $x \in (a,b)$ je $g'(x) \neq 0$, tada postoji bar jedna tačka $\xi \in (a,b)$, takva da je

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$$

Posledica

Rolov metod za razdvajanje korena funkcije Ako za funkciju $f:[a,b] \to \mathbb{R}$ važi:

- a) f(x) je neprekidna nad zatvorenim intervalom [a, b],
- b) f(x) je diferencijabilna nad intervalom (a, b) i pri tome je $f'(x) \neq 0$ za $x \in (a, b)$,
- c) $f(a) \cdot f(b) < 0$

tada postoji samo jedna nula funkcije nad intervalom (a, b).

Posledica

Ako funkcije f(x) i g(x) imaju jednake izvode: $f'(x) = g'(x), x \in I$, tada se one razlikuju za konstantu nad intervalom I.

Primer

Prethodna teorema se može primeniti prilikom određivanja nule funkcije $f(x) = x^3 + x + 1$.

Kako je funkcija f(x) neprekidna nad intervalom [-1,0], ima izvod $f'(x) = 3x^2 + 1$ nad (-1,0) pri čemu je $f'(x) \neq 0$ za svako $x \in (-1,0)$ i važi da je f(0) = 1 i f(-1) = -1 prethodna teorema garantuje postojanje nule na intervalu [-1,0].

Interval u kojem se nalazi nula se može smanjiti. Kako je $f\left(-\frac{1}{2}\right) > 0$, nula se nalazi u intervalu $\left[-1, -\frac{1}{2}\right]$. Polovljenjem intervala na čijim krajevima funkcija ima različit znak dobija se aproksimacija rešenja sa željenom tačnošću.

Ovo je jedan od numeričkih postupaka - postupak polovljenja.

Posledica

Neka je funkcija $f:[a,b] \to \mathbb{R}$ neprekidna nad [a,b] i diferencijabilna nad (a,b). Ako postoji

$$\lim_{x\to a^+}f'(x)\;(\lim_{x\to b^-}f'(x)),$$

tada postoji i $f'_{+}(a)$ $(f'_{-}(b))$ i važi jednakost

$$\lim_{x \to a^{+}} f'(x) = f'_{+}(a) \left(\lim_{x \to b^{-}} f'(x) = f'_{-}(b) \right).$$

Posledica

Ako funkcija $f: I \to \mathbb{R}$ ima izvod nad intervalom I, tada izvod f'(x) ne može imati prekide prve vrste nad tim intervalom.

Lopitalova teorema

Neka su funkcije $f, g: I \to \mathbb{R}$ diferencijabilne nad $U^o(a), a \in I$, neka je $\lim_{\substack{x \to a \\ f'(x)}} g(x) = 0, g'(x) \neq 0, x \in U^o(a)$ i postoji

$$\lim_{x\to a} \frac{f'(x)}{g'(x)}. \ \ Tada \ je \qquad \lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}.$$

Slična teorema može se formulisati u slučaju da $x \to +\infty$ ili $x \to -\infty$.

Primer

1

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{1+x} = 1.$$

2.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x} = \lim_{x \to 0} \frac{\cos x}{6} = \frac{1}{6}.$$

Lopitalova teorema

Neka su funkcije $f, g: I \to \mathbb{R}$ diferencijabilne nad $U^o(a)$ i neka je $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty, \ g'(x) \neq 0, \ x \in U^o(a)$ i postoji $\lim_{x \to a} \frac{f'(x)}{g'(x)}$. Tada je $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$

Primer

$$\lim_{x \to 0} \frac{\ln x}{\operatorname{ctg} x} = \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{-1}{\sin^2 x}} = -\lim_{x \to 0} \frac{\sin^2 x}{x} = -\lim_{x \to 0} \frac{\sin x}{x} \cdot \sin x = 0.$$

$$\lim_{x \to \infty} \frac{x + \operatorname{arctg} x}{x^3 + x^2 + x} = \lim_{x \to \infty} \frac{1 + \frac{1}{1 + x^2}}{3x^2 + 2x} = \lim_{x \to \infty} \frac{x^2 + 2}{(x^2 + 1)(3x^2 + 2x)} = 0.$$

Neodređenosti oblika $0\cdot\infty,\ \infty-\infty,\ 0^0,\ 1^\infty,\ \infty^0$ se algebarskim operacijama svode na $\frac{0}{0}$ i $\frac{\infty}{\infty}$

Primer

1)
$$\lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} (-x) = 0,$$
2)
$$\lim_{x \to +\infty} \frac{e^{x}}{x} = \lim_{x \to +\infty} \frac{e^{x}}{1} = +\infty,$$
3)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0,$$
4)
$$\lim_{x \to 0^{+}} x^{2} \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{2}{x^{3}}} = -\lim_{x \to 0^{+}} \frac{x^{2}}{2} = 0,$$
5)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1}\right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1)\ln x} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + (x - 1)\frac{1}{x}} + \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + 1 - \frac{1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x^{2}}}{\frac{1}{x} + \frac{1}{x^{2}}} = \frac{1}{2}$$

Primer

6)
$$\lim_{x\to 0^+} x^{x^2}$$

Neka je $\lim_{x\to 0^+} x^{x^2} = A$. Tada je

$$\ln A = \lim_{x \to 0^+} \ln x^{x^2} = \lim_{x \to 0^+} x^2 \ln x = 0,$$

iz zadatka 4). Prema tome, $\ln A = 0$, pa je A = 1, tj. $\lim_{x \to 0^+} x^{x^2} = 1$.

Uslovi u Lopitalovoj teoremi su samo dovoljni tako da se ne mogu primeniti u narednom zadatku.

Primer

7)
$$\lim_{x \to \infty} \frac{x + \sin x}{x + \cos x} = \lim_{x \to \infty} \frac{x \left(1 + \frac{\sin x}{x}\right)}{x \left(1 + \frac{\cos x}{x}\right)} = \lim_{x \to \infty} \frac{1 + \frac{\sin x}{x}}{1 + \frac{\cos x}{x}} = 1.$$

Tejlorova i Maklorenova teorema daju uslove za aproksimaciju funkcije polinomima koji se koriste za izračunavanje približne vrednosti funkcije u okolini neke tačke koristeći vrednosti funkcije i njenih izvoda u toj tački.

Pored toga, funkcije koje su definisane komplikovanim analitičkim izrazima mogu se zameniti polinomima.

Ako se za aproksimaciju funkcije f(x) u okolini tačke a koristi polinomom n—tog stepena

$$P_n(x) = a_0 + a_1(x - a) + \cdots + a_n(x - a)^n$$

i greška aproksimacije je $R_n(x)$, tada je

$$f(x) = P_n(x) + R_n(x).$$

Uslovi koji je potrebno da budu zadovoljeni je da se aproksimacija i funkcija slažu u tački a, tj. da važi da je

$$P_n(a) = f(a), P'_n(a) = f'(a), \ldots, P_n^{(n)}(a) = f^{(n)}(a),$$

Za funkciju f koja ima n izvoda u okolini U(a) i n+1-vi izvod u tački a Tejlorov polinom stepena n je

$$T_n(x) = f(a) + \frac{x-a}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{(n)!}f^{(n)}(a)$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$$

Grešku aproksimacije $R_n(x)$ nazivamo ostatak.

• Lagranžov oblik ostatka: Funkcija f ima izvod reda n+1 u okolini tačke a. Tada postoji tačka α između tačaka a i x takva da je $(x-a)^{n+1} \qquad (x+1)$

 $R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\alpha).$

ullet Peanov oblik ostatka: Funkcija f ima izvod reda n-1 u okolini tačke a i ima izvod reda n u tački a, tada je

$$R_n(x) = o((x-a)^n).$$

Specijalni slučaj Tejlorovog polinoma je u okolini tačke a=0 i naziva se Maklorenov polinom

$$M_n(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \cdots + \frac{x^n}{n!}f^{(n)}(0) + R_n(x).$$

Greška aproksimacije je tada

$$R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x), \ 0 < \theta < 1.$$

Povećanjem stepena polinoma dobija se šira oblast u kojoj polinom dobro aproksimira funkciju.

Primer

Izračunati grešku nastalu aproksimacijom funkcije $f(x) = e^x$ na intervalu $x \in [0,3]$ polinomom n=12 stepena.

$$|R_{12}| \le \frac{3^{13} \cdot e^3}{13!} < \frac{1}{1000} = 10^{-3}.$$

Maklorenov polinom za funkciju f(x) i ostatak $R_n(x)$

1
$$f(x) = e^{x}$$

Kako je za svako $n \in \mathbb{N}$ $f^{(n)}(x) = e^{x}$, to je
 $f(0) = f'(0) = \cdots = f^{(n)}(0) = 1$, $f^{(n+1)}(\alpha) = e^{\alpha}$,
pa je
 $M_{n}(x) = 1 + x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!}$, $R_{n}(x) = \frac{x^{n+1}}{(n+1)!}e^{\alpha}$.

②
$$f(x) = \sin x$$

 $Iz \ f^{(2n)}(x) = (-1)^n \sin x, \ f^{(2n+1)}(x) = (-1)^n \cos x \ se \ dobija \ da$
 je
 $f^{(2n)}(0) = 0, \quad f^{(2n+1)}(0) = (-1)^n,$

odakle je

$$M_{2n+1}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$$

$$R_{2n+1}(x) = (-1)^n \frac{x^{2n+1}}{(2n+1)!} \cos \alpha.$$

$$f(x) = \cos x$$

$$Iz \ f^{(2n-1)}(x) = (-1)^{n-1} \sin x, \ f^{(2n)}(x) = (-1)^n \cos x \ se \ dobija$$

$$da \ je \qquad f^{(2n-1)}(0) = 0, \quad f^{(2n)}(0) = (-1)^n,$$

$$odakle \ je \quad M_{2n}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

$$R_{2n+1}(x) = (-1)^n \frac{x^{2n}}{(2n)!} \cos \alpha.$$

$$f(x) = \ln(1+x)$$

$$Iz \ f'(x) = (1+x)^{-1}, \ f''(x) = -(1+x)^{-2}, \ f'''(x) = 2!(1+x)^{-3},$$

$$\dots, \ f^{(n)}(x) = (-1)^n (n-2)!(1+x)^{1-n} \ dobija \ se \ da \ je$$

$$f^{(n-1)}(0) = (-1)^n (n-1)! \ odakle \ je$$

$$M_n(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}$$

$$R_n(x) = (-1)^n \frac{x^{n+1}}{n+1} \frac{1}{(1+\alpha)^{n+1}}$$

1
$$f(x) = (1+x)^p, p \in \mathbb{R}$$

 $f(x) = p(1+x)^{p-1}, f''(x) = p(p-1)(1+x)^{p-2}, \dots, f^{(n)}(x) = p(p-1)(p-n+1)(1+x)^{p-n}$ dobija se da je $f^{(n)}(0) = p(p-1)(p-n+1)$ odakle je $M_n(x) = 1 + px + \binom{p}{2}x^2 + \dots + \binom{p}{n}x^n,$
 $f(x) = \frac{p(p-1)\cdots(p-k+1)}{k!}$. Specijalno je za $f(x) = \frac{p(p-1)\cdots(p-k+1)}{k!}$. $f(x) = \frac{p(p-1)\cdots(p-k+1)}{(1+\alpha)^{n+1}}$. $f(x) = \frac{p(p-1)^n x^n}{(1+\alpha)^{n+1}}$.

Primer

Konstruisati Tejlorov polinom drugog stepena u tački a =1 za sledeće funkcije.

1)
$$f(x) = e^x$$

Kako je
$$f(1) = f'(1) = f''(1) = e$$
 dobija se da je

$$T_2(x) = e + e(x-1) + \frac{e}{2}(x-1)^2.$$

2)
$$f(x) = \ln x$$

Kako je
$$f(1) = 0$$
, $f'(1) = 1$, $f''(1) = -1$ dobija se da je

$$T_2(x) = 0 + 1(x-1) + \frac{-1}{2!}(x-1)^2.$$

3)
$$f(x) = x^2 e^{-2x}$$

Kako je
$$f'(x) = 2e^{-2x}(x - x^2)$$
, $f''(x) = e^{-2x}(2 - 8x + 4x^2)$ i $f(1) = e^{-2}$, $f'(1) = 0$, $f''(1) = -2e^{-2}$ dobija se da je

$$T_2(x) = e^{-2} + 0 + \frac{-2e^{-2}}{2!}(x-1)^2.$$

Ispitivanje funkcija (monotonost)

Neka funkcija f(x) ima izvod nad intervalom I.

- Ako je f'(x) > 0 tada je funkcija f(x) monotono rastuća nad intervalom I. Ako je $f'(x) \ge 0$ tada je funkcija f(x) monotono neopadajuća nad intervalom I.
- Ako je f'(x) < 0 tada je funkcija f(x) monotono opadajuća nad intervalom I. Ako je $f'(x) \le 0$ tada je funkcija f(x) monotono nerastuća nad intervalom I.

- Ako je f(x) monotono neopadajuća funkcija nad intervalom I tada je $f'(x) \ge 0$, za $x \in I$.
- Ako je f(x) monotono nerastuća funkcija nad intervalom I tada je $f'(x) \le 0$, za $x \in I$.

Ispitivanje funkcija (Monotonost)

Primer

Ispitati monotonost funkcija $f(x) = x \ln x$, $g(x) = x^2 e^{-x}$.

Kako je $f'(x) = \ln x + 1$ funkcija je za $x > e^{-1}$ monotono rastuća dok je za $0 < x < e^{-1}$ monotono opadajuća.

Kako je $f'(x) = e^{-x}(2x - x^2)$ funkcija je za $x \in (0,2)$ monotono rastuća dok je za $x \in (-\infty,0) \cup (2,+\infty)$ monotono opadajuća.

Ispitivanje funkcija (Ekstremne vrednosti funkcija)

Teorema

Ako je funkcija u tački a neprekidna i postoji $\delta>0$ takvo da

- $za \ x \in (a \delta, a) \ je \ f'(x) > 0, \ (f'(x) < 0),$
- dok za $x \in (a, a + \delta)$ je $f'(x) < 0 \ (f'(x) > 0)$

onda funkcija u tački a ima ekstremnu vrednost i to maksimum (minimum). PRVI IZVOD MENJA ZNAK

• stacionarne tačke - tačke u kojima je f'(x) = 0

Kandiati za ekstremnu vrednost funkcije kritične tačke:

- stacionarne tačke (nule prvog izvoda), tj. prvi izvod menja znak
 - tačke u kojima funkcija nije diferencijabilna (prvi izvod ne postoji)

Ispitivanje funkcija (Ekstremne vrednosti funkcija)

Teorema

Neka je a stacionarna tačka funkcije f koja ima prvi izvod u okolini tačke a i drugi izvod u tački a.

- Ako je f''(a) > 0 tada funkcija f ima strogi lokalni minimum.
- Ako je f''(a) < 0 tada funkcija f ima strogi lokalni maksimum.

Primer

Za funkciju f(x) = |x| je x = 0 strogi minimum.

Teorema

Neka je $f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0$ i $f^{(n)}(a) \neq 0$, $n \geq 2$. Ako je n paran broj, funkcija f(x) ima u tački a ekstremnu vrednost i to:

- maksimum ako je $f^{(n)}(a) < 0$ odnosno,
- minimum ako je $f^{(n)}(a) > 0$.

Ako je n neparan broj f(x) nema ekstremnu vrednost u tački a.

Ispitivanje funkcija (Monotonost)

Primer

Za funkciju $f(x) = e^{-|x|}$ je $f'_{-}(x) = e^{x}$ i $f'_{+}(x) = -e^{-x}$ dok je $\lim_{\Delta x \to 0^{-}} \frac{\Delta y}{\Delta x} = 1$ i $\lim_{\Delta x \to 0^{+}} \frac{\Delta y}{\Delta x} = -1$. Funkcija u x = 0 nema izvod ali ima u tački x = 0 strogi lokalni maksimum.

Funkcija $f(x) = e^{-\frac{1}{x^2}}$ za $x \neq 0$ i f(0) = 0, ima lokalni minimum u x = 0.

Ispitivanje funkcija (Konveksnost, konkavnost)

Ako postoji izvod funkcije f(x) nad intervalom I tada je

• f(x) je konveksna nad I ako za svako $a \in I, x \in I \setminus \{a\}$

$$f(x) \geq y_t(x), \quad y_t = f(a) + f'(a)(x-a).$$

tj. grafik funkcije se nalazi iznad tangente povučene u proizvoljnoj tački intervala I. Ako je $f(x) > y_t(x)$ tada je funkcija srogo konveksna.

• f(x) je konkavna nad I ako za svako $a \in I, x \in I \setminus \{a\}$

$$f(x) \leq y_t(x), \quad y_t = f(a) + f'(a)(x-a).$$

tj. grafik funkcije se nalazi ispod tangente povučene u proizvoljnoj tački intervala I. Ako je $f(x) < y_t(x)$ tada je funkcija srogo konkavna.

Ispitivanje funkcija (Prevojne tačke)

Teorema

Neka je f dva puta diferencijabilna na (a, b).

- Ako je f''(x) > 0 nad intervalom (a, b), tada je funkcija f(x) strogo konveksna nad intervalom (a, b).
- Ako je $f''(x) \ge 0$ nad intervalom (a, b), tada je funkcija f(x) konveksna nad intervalom (a, b).
- Ako je f'(x) rastuća funkcija na (a, b) tada je f konveksna funkcija nad (a, b).
- Ako je f''(c) > 0 i f'' neprekidna funkcija u tački c, tada postoji okolina tačke c u kojoj je funkcija strogo konveksna.

Analogna tvrđenja važe za konkavne funkcije.

Ispitivanje funkcija (Prevojne tačke)

Definicija

Za tačku P(a, f(a)) se kaže da je prevojna tačka funkcije f(x) ako postoji okolina $(a - \delta, a + \delta)$ tačke a, takva da je funkcija f(x) nad intervalom $(a - \delta, a)$ konkavna, a nad intervalom $(a, a + \delta)$ konveksna ili obrnuto.

Teorema

Ako je P(a, f(a)) prevojna tačka funkcije f(x) i ako postoji f''(a), tada je f''(a) = 0.

Kandiati za prevojne tačke funkcije:

- nule drugog izvoda, tj. drugi izvod menja znak
- tačke u kojima drugi izvod ne postoji

Ispitivanje funkcija (Prevojne tačke) Primer

Za funkciju $f(x) = x^2 \ln x$ je $f'(x) = x(2 \ln x + 1)$ i $f''(x) = 2 \ln x + 3$ pa je za $x = e^{-\frac{3}{2}}$ tačka prevoja $T(e^{-\frac{3}{2}} - 3e^{-\frac{3}{2}})$.

Funkcija $f(x) = \arcsin \frac{2x}{1+x^2}$ ima izvod $f'(x) = \frac{2(1-x^2)}{|1-x^2|(1+x^2)}$ i $f''(x) = \pm \frac{2x}{(1+x^2)^2}$, prevojna tačka je $T_1(0,0)$ i tačke u kojima ne postoji drugi izvod $T_2(1,\frac{\pi}{2})$ i $T_3(-1,-\frac{\pi}{2})$.

Ispitivanje funkcija (Asimptote funkcija)

Definicija

Za f(x) definisanu nad intervalom (a, ∞) , $a \in \mathbb{R}$, funkcija $\phi(x)$ je asimptota funkcije f(x), kada $x \to \infty$, ako je

$$\lim_{x\to\infty} \left[f(x) - \phi(x) \right] = 0.$$

Slično, za f(x) definisanu nad $(-\infty, a)$ funkcija $\phi(x)$ je asimptota funkcije f(x) kada $x \to -\infty$, ako je

$$\lim_{x\to-\infty} \left[f(x) - \phi(x) \right] = 0.$$

• Geometrijski smisao: postoji $b \in \mathbb{R}$ takav da je razlika ordinata krivih y = f(x) i $y = \phi(x)$ proizvoljno mala za x > b, (x < b).

Ispitivanje funkcija (Asimptote funkcija)

Prava $\phi(x) = mx + n$ je asimptota funkcije y = f(x), tada

- za $m \neq 0$ je $\phi(x) = mx + n$ kosa asimptota
- za m = 0 je $\phi(x) = n$ horizontalna asimptota.

Za $x \to \infty$ je

$$m = \lim_{x \to \infty} \frac{f(x)}{x}, \quad n = \lim_{x \to \infty} [f(x) - mx].$$

Definicija

Funkcija y = f(x) ima vertikalnu asimptotu u tački nagomilavanja x = a definicionog skupa, ako funkcija bar sa jedne strane tačke a teži ∞ odnosno $-\infty$.

Ispitivanje funkcija (Asimptote funkcija)

Primer

Ispitati postojanje asimptota za sledeće funkcije.

- $f(x) = x^2$ nema asimptota.
- 2 $f(x) = (1 + \frac{1}{x})^x$ ima asimptotu y = e za $x \to \pm \infty$.
- 3 $f(x) = x^2 e^{-x}$ ima asimptotu y = 0 kada $x \to +\infty$ ali nema asimptotu kada $x \to -\infty$.
- **1** $f(x) = \frac{x^2}{\sqrt{x^2+1}}$ ima asimptotu y = x kada $x \to +\infty$ i pravu y = -x kada $x \to -\infty$.
- **5** Za funkciju $f(x) = \frac{1}{x-1}$ je x = 1 vertikalna asimptota.
- **6** Za funkciju $f(x) = \frac{\ln x}{x}$ je x = 0 vertikalna asimptota.

Ispitivanje toka funkcije

- Obavezna grupa zahteva
 - određivanje oblasti definisanosti
 - određivanje nula funkcije
 - određivanje intervala monotonosti i ekstremnih vrednosti
 - određivanje intervala konveksnosti, konkavnosti i prevojnih tačaka
 - određivanje asimptota funkcije i ispitivanje položaja grafika u odnosu na asimptote
 - tangente funkcije u tačkama gde ne postoji f'(x) i njegovo ponašanje u tim tačkama
 - skiciranje grafika funkcije
- Neobavezna grupa zahteva
 - znak funkcije
 - parnost i neparnost funkcije
 - periodičnost funkcije