Abstract Algebra Notes

Cruz Godar

Math 481, 482, and 483/560 Professor Brussel Cal Poly, Fall 2017–Spring 2018

I — Groups

Definition 1.1: A group is a set G equipped with a binary operation such that

- 1. $ab \in G$ for all $a, b \in G$.
- 2. (ab)c = a(bc) for all $a, b, c \in G$.
- 3. There is an $e \in G$ with ae = ea = a for all $a \in G$.
- 4. For all $a \in G$, there is an $a^{-1} \in G$ with $aa^{-1} = a^{-1}a = e$.

Example: One important type of group is a *symmetry group*, formed by taking the collection S_X of symmetries of a set X — that is, structure-preserving bijections from X to itself. If $X = \mathbb{R}$, for instance, then S_X contains translational symmetries and stretching/shrinking ones.

Definition 1.2: Let $n \in \mathbb{N}$. The **integers modulo** n are the set $\mathbb{Z}_n = \{0, 1, ..., n-1\}$. \mathbb{Z}_n is a group, with the operation given by addition mod n.

Definition 1.3: Let $n \in \mathbb{N}$. The group $\mathbf{U}(\mathbf{n})$ is defined as $U(n) = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}$, with the operation given by multiplication mod n.

Definition 1.4: The **dihedral group** of degree n is the the group D_n of symmetries of a regular n-gon, given by $D_n = \{e, r, r^2, ..., r^{n-1}, s, rs, r^2s, ..., r^{n-1}s\}$, where r is a rotation counter-clockwise by $\frac{2\pi}{n}$, s is a reflection over the x-axis, and the operation is function composition. Note that $sr = r^{-1}s$.

Definition 1.5: The **symmetric group** of degree n is the group S_n of permutations on n elements, defined as $\{\sigma : \{1,...,n\} \hookrightarrow \{1,...,n\}\}$, where each σ is a bijection and the operation is given by function composition. We use **cycle notation** to denote elements of S_n : the element $(124) \in S_4$, for example, denotes the function σ with $\sigma(1) = 2$, $\sigma(2) = 4$, $\sigma(4) = 1$, and $\sigma(3) = 3$.

Definition 1.6: The **general linear group** of degree n over k is $GL_n(k) = \{A \in M_n(k) \mid \det A \neq 0\}$, with the operation given by matrix multiplication. Typically, k is \mathbb{R} , \mathbb{C} , or \mathbb{Z} .

Definition 1.7: The **special linear group** of degree n over k is $SL_n(k) = \{A \in M_n(k) \mid \det A = 1\}$, with the operation again given by matrix multiplication.

Definition 1.8: The **orthogonal group** of degree n is $O_n = \{A \in M_n(\mathbb{R}) \mid AA^{\mathrm{T}} = I\}$, and the **special orthogonal group** of degree n is $SO_n = \{A \in O_n \mid \det A = 1\}$. The **unitary group**, U_n , and **special unitary group**, SU_n , are defined identically, except their matrices are taken from $M_n(\mathbb{C})$ and require that $A\overline{A}^{\mathrm{T}} = I$.

Definition 1.9: The order of a group G is |G|. A finite group is one that has finite order.

Definition 1.10: A group G is **Abelian** if ab = ba for all $a, b \in G$.

Proposition 1.11: Let G be a group. Then $e \in G$ is unique.

Proof: Suppose there were $e, e' \in G$ such that ae = ea = ae' = e'a = a for all $a \in G$. Then ee' = e and ee' = e', so e = e'.

Proposition 1.12: Let G be a group. If ab = ac for $a, b, c \in G$, then b = c, and similarly, if ab = cb, then a = c.

Proposition 1.13: Let G be a group and $a \in G$. Then a^{-1} is unique.

Proof: If there were a^{-1} , $(a^{-1})' \in G$ such that $aa^{-1} = a^{-1}a = a(a^{-1})' = (a^{-1})'a = e$, then $aa^{-1} = a(a^{-1})'$, so $a^{-1}aa^{-1} = a^{-1}a(a^{-1})'$, and so $a^{-1} = (a^{-1})'$.

Definition 1.14: Let G be a group. A set $H \subseteq G$ is a **subgroup** of G, written $H \subseteq G$, if H is itself a group under G's operation.

Example: For all groups, $\{e\} \leq G$, called the *trivial subgroup*, and $G \leq G$.

Example: If X is a regular, nonoriented n-gon and X' is a regular, oriented n-gon (so reflections count as symmetries of X, but not of X'), then $S'_X \leq S_X$.

Definition 1.15: $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is a group with its operation given by stretching and rotating the plane $-z = re^{i\theta}$ represents the symmetry of stretching by r and rotating by θ (or equivalently, moving 1 to z). $S^1 = \{e^{i\theta} \mid \theta \in [0, 2\pi)\} = \{z \in \mathbb{C}^* \mid |z| = 1\}$ is also a group under the same operation, so $S^1 \leq C^*$.

Definition 1.16: The quaternions are the set

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1, ijk = -1\}.$$

 \mathbb{H} forms a group under addition, and \mathbb{H}^* a group under multiplication. Similarly to S^1 , we define the **unit 3-sphere** as $S^3 = \{z \in \mathbb{H}^* \mid |z| = 1\} \leq \mathbb{H}^*$.

Proposition 1.17: Let G be a group. Then $H \subseteq G$ is a subgroup of G if and only if

- 1. $H \neq \emptyset$.
- 2. $ab \in H$ for all $a, b \in H$.
- 3. For all $a \in H$, $a^{-1} \in H$.

Proof: (\Rightarrow) If $H \leq G$, then the only statement to prove is that the identity of H is the same as that of G, so that we can be sure that $a^{-1} \in H$ is the same as a^{-1} in G. If the two identities are e_G and e_H , then $e_H e_G = e_H$ in G and $e_H e_H = e_H$ in H, so $e_H e_G = e_H e_H$ in G, and therefore $e_G = e_H$. Thus the inverses are the same, and so all three conditions are met.

(\Leftarrow) Let $a, b, c \in H$ (which is valid, since H is nonempty). Then $a, b, c \in G$, so (ab)c = a(bc). Also, since $a^{-1} \in H$ (and this is the inverse from G), $aa^{-1} = e_G \in H$. We already know H is closed under G's operation, so $H \leq G$.

Definition 1.18: Let G be a group and $a \in G$. The **group generated by** a is $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Example: In D_n , $\langle r \rangle = \{e, r, r^2, ..., r^{n-1}\}$ and $\langle s \rangle = \{e, s\}$.

Definition 1.19: Let G be a group. The **order** of $a \in G$ is $|a| = |\langle a \rangle|$, or equivalently, the smallest $n \in \mathbb{N}$ such that $a^n = e$ if it exists, or ∞ if it does not.

Definition 1.20: The orders of the elements in $U(9) = \{1, 2, 4, 5, 7, 8\}$ are

$$|1| = 1,$$
 $|2| = 6,$ $|4| = 3,$ $|5| = 6,$ $|7| = 3,$ $|8| = 2.$

Proposition 1.21: Let G be a group and $a \in G$. Then $|a| = |a^{-1}|$.

Proof: Since $a^k = e$ if and only if $(a^k)^{-1} = e$, if and only if $(a^{-1})^k = e$, the smallest $n \in \mathbb{N}$ such that $a^n = e$ will also be the smallest $m \in \mathbb{N}$ such that $(a^{-1})^m = e$. Thus $|a| = |a^{-1}|$.

Definition 1.22: A group G is cyclic if $G = \langle a \rangle$ for some $a \in G$, called a **generator** of G.

Theorem 1.23: A subgroup of a cyclic group is cyclic.

Proof: Let $G = \langle a \rangle$ and $H \leq G$. Then for all $h \in H$, $h = a^m$ for some $m \in \mathbb{Z}$. Let $S = \{m \in \mathbb{N} \mid a^m \in H\}$, let m_0 be the minimum element of S, and let $h = a^m \in H$ be arbitrary. Then $m = m_0q + r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r < m_0$, so $a^m = a^{m_0q+r}$, or equivalently, $a^r = a^{m-m_0q}$. Since $a^m = h \in H$ and $a^{m_0q} = (a^{m_0})^q \in H$, $a^{m-m_0q} = a^r \in H$. Thus if $r \neq 0$, $r \in S$ by definition, but $r < m_0$, the smallest element in S. If Thus r = 0, and so $h = (a^{m_0})^q$ for some $q \in \mathbb{Z}$. Since h was arbitrary, $H = \langle a^{m_0} \rangle$.

Example: Since \mathbb{Z} is cyclic, every subgroup of \mathbb{Z} is of the form $\langle a \rangle$ for $a \in \mathbb{Z}$.

Example: The subgroups of \mathbb{Z}_6 are $\langle 0 \rangle$, $\langle 3 \rangle$, $\langle 2 \rangle$, and $\langle 1 \rangle = \mathbb{Z}_6$.

Theorem 1.24: Let $G = \langle a \rangle$ be cyclic with |G| = n. Then for any $k \in \mathbb{N}$, $|a^k| = \frac{n}{\gcd(n,k)}$.

Proof: Let $d = \gcd(n, k)$. We claim $\langle a^k \rangle = \langle a^d \rangle$.

- (\subseteq) Since d|k, k = dq for some $q \in \mathbb{Z}$. Then $a^k = (a^d)^q \in \langle a^d \rangle$, so $\langle a^k \rangle \subseteq \langle a^d \rangle$.
- (2) By Bezout's identity, d = ks + nt for some $s, t \in \mathbb{Z}$, so $a^d = a^{ks+nt} = (a^k)^s (a^n)^t = (a^k)^s (e)^t = (a^k)^s \in \langle a^k \rangle$. Thus $\langle a^d \rangle \subseteq \langle a^k \rangle$.

Now $\langle a^k \rangle = \langle a^d \rangle$, so in particular, $|a^k| = |a^d|$. We know $|a^d| = \frac{n}{d}$, since otherwise, if $|a^d| = m < \frac{n}{d}$, $a^{dm} = e$ amd dm < n, so |G| = |a| < n. If Thus $|a^k| = |a^d| = \frac{n}{d}$.

Corollary 1.24.1: Let $G = \langle a \rangle$ with |G| = n. Then the generators of G are a^k with gcd(k, n) = 1.

Proposition 1.25: Let G be a cyclic group and $a \in G$ such that $G \neq \langle a \rangle$. Then no element of $\langle a \rangle$ is a generator for G.

Proof: Suppose |G| = n. Since $\langle a \rangle \neq G$, |a| < |G|. Now every element of $\langle a \rangle$ is of the form a^k for some $k \in \mathbb{Z}$, and $|a^k| = \frac{|a|}{\gcd(k,|a|)} \le |a| < |G|$, so no element of $\langle a \rangle$ is a generator for G.

Definition 1.26: Two groups G and H are **isomorphic** if there is a bijection $\varphi: G \longrightarrow H$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$. φ is called an **isomorphism**, and we write $G \simeq H$.

Example: $\mathbb{Z}_4 \simeq \langle i \rangle \leq \mathbb{C}^*$, since the map $\varphi : \mathbb{Z}_4 \longrightarrow \angle i \rangle$ given by $\varphi(a) = i^a$ is an isomorphism.

Example: Let $H = \{x \in D_6 \mid x \text{ preserves an inscribed triangle}\} \leq D_6$. Then $H \simeq D_3$.

Proposition 1.27: Isomorphisms preserve identities, inverses, subgroups, and order (both of elements and groups).

II — The Symmetric Group

Definition 2.1: A k-cycle is an element of S_n of the form $(a_1 \cdots a_k)$.

Definition 2.2: A transposition is a 2-cycle.

Proposition 2.3: Every element of S_n can be expressed as a product of disjoint cycles.

Example: To remove duplicate numbers, start with 1 and pass it through the permutation, then pass the result through, and so on. Since every permutation is a bijection by definition, every number will be sent to a unique other. Once the permutation results in 1 again, close the cycle and continue with the next lowest unused number. For instance, if $\sigma = (124)(314)$, $\sigma(1) = 1$, so we start again with 2: $\sigma(2) = 4$. Then $\sigma(4) = 3$, and $\sigma(3) = 2$, so the permutation is (243).

Proposition 2.4: Disjoint cycles commute.

Proposition 2.5: Every element of S_n can be expressed as a product of transpositions.

Proof: For an arbitrary $\sigma \in S_n$, express σ as a product of disjoint cycles. Then for an individual cycle $(a_1 \cdots a_k)$, $(a_1 \cdots a_k) = (a_1 a_k)(a_1 a_{k-1}) \cdots (a_1 a_3)(a_1 a_2)$.

Definition 2.6: Let $\pi \in S_n$. The **permutation matrix** for π is P_{π} , defined by $(P_{\pi})_{ij} = 1$ if $\pi(j) = i$ and 0 if not.

Example: For $\pi = (243) \in S_4$,

$$P_{\pi} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Proposition 2.7: All permutation matrices are orthogonal (that is, the columns form an orthonormal basis for \mathbb{R}^n , so det $P_{\pi} = \pm 1$).

Definition 2.8: A permutation $\pi \in S_n$ is **even** if det $P_{\pi} = 1$, and **odd** if det $P_{\pi} = -1$.

Definition 2.9: The alternating group of degree n is $A_n = \{\pi \in S_n \mid \pi \text{ is even}\} \leq S_n$.

Proposition 2.10: For $n \ge 2$, $|A_n| = \frac{n!}{2}$.

Proof: Define $f: A_n \longrightarrow S_n \setminus A_n$ by $f(\pi) = (12)\pi$. Then $f^{-1}(\pi) = (12)\pi$, so f is invertible. Thus $|A_n| = |S_n \setminus A_n|$, so $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$.

Theorem 2.11: Let $\pi \in S_n$. Then $\pi \in A_n$ if and only if π can be expressed as the product of evenly many transpositions. Moreover, when π is expressed in such a way, there are always the same number of transpositions (mod 2).

Proof: Suppose $\pi = \tau_1 \cdots \tau_k$, where each τ_i is a transposition. Then $P_{\pi} = P_{\tau_1} \cdots P_{\tau_k}$. Since P_{τ_i} has exactly 2 columns permuted from I_n , det $P_{\tau_i} = -1$, so det $P_{\pi} = (-1)^k$. Thus π is even if and only if k is even, proving both claims.

Theorem 2.12: Let $n \ge 3$. Then A_n is generated by 3-cycles.

Proof: Let $\pi \in A_n$. Then π is the product of evenly many transpositions. Group them in pairs, and consider an arbitrary pair, say (ab)(cd).

If (ab) and (cd) have no common entries, then (ab)(cd) = (ab)(bc)(bc)(cd) = (abc)(bcd) (which is valid, since $b \neq c$ by assumption).

If (ab) and (cd) have one entry in common, then without loss of generality, (cd) = (bd). Then (ab)(cd) = (ab)(bd) = (abd).

Finally, if (ab) and (cd) share two entries, they are identical, so (ab)(cd) = e. Thus each pair is expressible as either one or two 3-cycles or the identity, and since we can omit the identities, π is the product of 3-cycles.