Тема 5. Функції декількох змінних

Лекція 5.2. Екстремум функції декількох змінних. Умовний екстремум функції декількох змінних. Функція Лагранжа

Екстремуми функції багатьох змінних

Поняття екстремуму, необхідні умови його існування

Функція багатьох змінних z = f(X), $X \in E_n$ має максимум в точці X_0 , якщо $f(X_0) > f(X)$ для усіх точок X із достатньо малого околу точки X_0 .

Функція багатьох змінних $z=f(X),\ X\in E_n$ має мінімум в точці X_0 , якщо $f(X_0)< f(X)$ для усіх точок X із достатньо малого околу точки X_0 .

Означення. Максимуми та мінімуми функції кількох змінних називають екстремумами функції, а точку X_0 , де функція має екстремум, називають точкою екстремуму функції.

Означення. Екстремум (максимум або мінімум) функції в точці називають локальним екстремумом (максимумом або мінімумом), оскільки він характеризує функцію у достатньо малому околі даної точки.

Означення. Екстремум (максимум або мінімум) функції на множині називають глобальним, або абсолютним екстремумом (максимумом або мінімумом).

- **Екстремум.** Термін походить від латинського слова extremum "крайній", "останній".
 - extstyle ex
- П Максимум. Термін походить від латинського слова тахітит "найбільше". Окремі задачі на знаходження екстремуму були розв'язані давньогрецькими математиками. Та обставина, що поблизу екстремуму зміна функції "непомітна", було відзначено Кеплером у 1615 році. Перший загальний алгоритм розв'язування таких задач розробив Ферма (близько 1629 року).

<u>Теорема (необхідні умови існування екстремуму).</u> Якщо функція $z = f(x_1, x_2, ..., x_n)$ має екстремум у точці $X_0 = \begin{pmatrix} x_1^0, x_2^0, ..., x_n^0 \end{pmatrix}$, то кожна частинна похідна першого порядку функції дорівнює нулю або не існує в цій точці.

Hacnidok. Точки, в яких $\frac{\partial z}{\partial x_i}\left(i=\overline{1,n}\right)$ не існують або дорівнюють нулю називають *критичними точками* або *точками підозрілими на екстремум*. Точки, в яких $\frac{\partial z}{\partial x_i}\left(i=\overline{1,n}\right)$ дорівнюють нулю називають *стаціонарними точками* функції.

Знаходження екстремуму функцій двох змінних

Необхідні умови існування екстремуму функцій кількох змінних дозволяють знаходити лише критичні точки.

<u>Теорема (достатні умови існування екстремуму).</u> Нехай в стаціонарній точці $X_0 = \begin{pmatrix} x_1^0, x_2^0 \end{pmatrix}$ і деякому її околі функція $f(x_1, x_2)$ має неперервні частинні похідні другого порядку. Якщо

$$\Delta(x_1^0, x_2^0) = f_{xx}''(x_1^0, x_2^0) f_{yy}''(x_1^0, x_2^0) - (f_{xy}''(x_1^0, x_2^0))^2 > 0,$$

то функція $f(x_1,x_2)$ має в точці X_0 екстремум, причому максимум при $f''_{xx}(x_1^0,x_2^0)<0$ і мінімум при $f''_{xx}(x_1^0,x_2^0)>0$. Якщо $\Delta(x_1^0,x_2^0)<0$, то в точці X_0 функція $f(x_1,x_2)$ екстремуму не має.

Правило дослідження диференційованих функцій двох змінних на екстремум:

1) знайти стаціонарні точки функції із системи рівнянь:

$$\begin{cases} f'_{x_1^0} \left(x_1^0, x_2^0 \right) = 0, \\ f'_{x_2^0} \left(x_1^0, x_2^0 \right) = 0; \end{cases}$$

2) у кожній стаціонарній точці (x_1^0, x_2^0) обчислити вираз

$$\Delta\!\left(\!x_1^0,x_2^0\right) = f_{xx}''\!\left(\!x_1^0,x_2^0\right) \! f_{yy}''\!\left(\!x_1^0,x_2^0\right) \! - \left(\!f_{xy}''\!\left(\!x_1^0,x_2^0\right)\!\right)^{\!2},$$

якщо $\Delta \left(x_1^0, x_2^0\right) > 0$, то $\left(x_1^0, x_2^0\right)$ — точка екстремуму функції, причому точка максимуму при $f''_{xx}\left(x_1^0, x_2^0\right) < 0$ і мінімуму при $f''_{xx}\left(x_1^0, x_2^0\right) > 0$; якщо $\Delta \left(x_1^0, x_2^0\right) < 0$, то точка $\left(x_1^0, x_2^0\right)$ не є точкою екстремуму функції;

3) обчислити значення функції $f(x_1, x_2)$ в точках максимуму та мінімуму.

Найбільше і найменше значення функції в замкненій області

Для знаходження найбільшого і найменшого значень функцій у замкненій області \overline{D} , які позначаються $\max_{\overline{D}} f(x_1, x_2)$ і $\min_{\overline{D}} f(x_1, x_2)$, відповідно, необхідно знайти екстремальні значення функції в точках, що лежать всередині D та на межі області, і обрати найбільше і найменше значення.

***** Приклад. Знайти критичні точки функції $z = x^2 - xy + y^2 + 3x - 2y + 1$.

Спочатку знайдемо частинні похідні першого порядку заданої функції двох змінних:

$$z'_{x} = 2x - y + 3;$$
 $z'_{y} = -x + 2y - 2.$

Ці похідні існують для усіх x та y, тому критичними будуть лише точки, де частинні похідні дорівнюють нулю, тобто

$$\begin{cases} z'_x = 0, \\ z'_y = 0, \end{cases} \Rightarrow \begin{cases} 2x - y = -3, \\ -x + 2y = 2. \end{cases}$$

Остання система лінійна, неоднорідна, з двома невідомими. Розв'язуючи систему за правилом Крамера, одержимо:

$$x = -\frac{4}{3}$$
; $y = \frac{1}{3}$.

Отже, критична точка — точка $M_0\left(-\frac{4}{3};\frac{1}{3}\right)$.

Приклад. Знайти екстремум функції $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Знаходимо частинні похідні

$$z'_{x} = 4(x^{3} - x + y), \quad z'_{y} = 4(y^{3} + x - y)$$

Стаціонарні точки функції визначимо із системи:

$$\begin{cases} x^3 - x + y = 0, \\ y^3 + x - y = 0. \end{cases}$$

Додаючи ці рівняння, знайдемо $x^3 + y^3 = 0$, звідки y = -x.

Підставляючи y=-x в перше рівняння, дістанемо $x^3-2x=0$, звідки $x_1=0,\ x_2=\sqrt{2}$, $x_3=-\sqrt{2}$, тоді $y_1=0,\ y_2=-\sqrt{2}$, $y_3=\sqrt{2}$.

Отже, функція має три стаціонарні точки:

$$M_1(0;0), \quad M_2(\sqrt{2};-\sqrt{2}), \quad M_3(-\sqrt{2};\sqrt{2})$$

Знайдемо величину $\Delta(x, y)$. Оскільки

$$f_{xx}''(x,y) = 12x^2 - 4$$
, $f_{xy}''(x,y) = 4$, $f_{yy}''(x,y) = 12y^2 - 4$,

TO

$$\Delta(x, y) = 16(9x^2y^2 - 3x^2 - 3y^2)$$

Обчислимо величину $\Delta(x, y)$ в кожній стаціонарній точці:

$$\Delta(M_1) = 0$$
, $\Delta(M_2) = \Delta(M_3) = 384 > 0$, $f''_{xx}(M_2) = f''_{xx}(M_3) = 20 > 0$.

Таким чином, точки M_2 і M_3 – точки мінімуму. В цих точках $z_{\min} = -8$.

У точці M_1 значення $\Delta(M_1) = 0$, тому скористатися теоремою про існування екстремуму не можна.

Переконаємося, що в цій точці екстремум відсутній.

Якщо
$$y = 0$$
, то $z = x^4 - 2x^2 = x^2(x^2 - 2) < 0$ в околі точки M_1 .

Якщо y=x, то $z=2x^4>0$. Отже, в околі точки M_1 значення z можуть бути як додатні, так і від'ємні, а це значить, що точка M_1 не є екстремальною.

***** Приклад. Дослідити на екстремум функцію $u = x + \frac{y^2}{4x} + \frac{z^2}{4y} + \frac{2}{z}$.

Оскільки
$$u'_x = 1 - \frac{y^2}{4x^2}$$
, $u'_y = \frac{2y}{4x} - \frac{z^2}{4y^2}$, $u'_z = \frac{2z}{4y} - \frac{2}{z^2}$, то для

відшукання стаціонарних точок функції u потрібно розв'язати систему рівнянь:

$$\begin{cases} 1 - \frac{y^2}{4x^2} = 0, \\ \frac{2y}{4x} - \frac{z^2}{4y^2} = 0, \Leftrightarrow \begin{cases} x \neq 0, \ y \neq 0, \ z \neq 0, \\ y = \pm 2x, \end{cases} \Leftrightarrow \begin{cases} z = \pm \sqrt{2}, \\ y = \pm \frac{\sqrt{2}}{4}, \\ \frac{2z}{4y} - \frac{2}{z^2} = 0, \end{cases} \Leftrightarrow \begin{cases} z = \pm \sqrt{2}, \\ z = \pm \frac{\sqrt{2}}{4}, \end{cases}$$

Отже, функція u має дві стаціонарні точки: $M_0\left(\frac{\sqrt{2}}{4}; \frac{\sqrt{2}}{2}; \sqrt{2}\right)$ і

$$M_1\left(-\frac{\sqrt{2}}{4};-\frac{\sqrt{2}}{2};-\sqrt{2}\right).$$

Знайдемо $d^2u(M_0)$ і $d^2u(M_1)$. Маємо:

$$u''_{xx} = \frac{y^2}{2x^3}, \quad u''_{xz} = 0, \quad u''_{xy} = -\frac{y}{2x^2}, \quad u''_{yy} = \frac{1}{2x} + \frac{z^2}{2y^3},$$

$$u''_{yz} = -\frac{z}{2y^2}, \quad u''_{zz} = \frac{1}{2y} + \frac{4}{z^3},$$

тому

$$d^{2}u(M_{0}) = \frac{8}{\sqrt{2}}\Delta x^{2} - \frac{8}{\sqrt{2}}\Delta x \Delta y + \frac{6}{\sqrt{2}}\Delta y^{2} - \frac{4}{\sqrt{2}}\Delta y \Delta z + \frac{3}{\sqrt{2}}\Delta z^{2} =$$

$$= \sqrt{2}\left(\left((2\Delta x)^{2} - 2 \cdot 2\Delta x \Delta y + \Delta y^{2}\right) + \Delta y^{2} + \left(\Delta y^{2} - 2\Delta y \Delta z + \Delta z^{2}\right) + \frac{1}{2}\Delta z^{2}\right) =$$

$$= \sqrt{2}\left((2\Delta x - \Delta y)^{2} + \Delta y^{2} + (\Delta y - \Delta z)^{2} + \frac{1}{2}\Delta z^{2}\right) > 0,$$

якщо $\Delta x^2 + \Delta y^2 + \Delta z^2 > 0$,

$$d^2u(M_1) = -d^2u(M_0) < 0,$$

якщо $\Delta x^2 + \Delta y^2 + \Delta z^2 > 0$. Отже,

$$u_{\min} = u(M_0) = \frac{\sqrt{2}}{4} + \frac{2 \cdot 4}{4 \cdot 4 \cdot \sqrt{2}} + \frac{2 \cdot 2}{4 \cdot \sqrt{2}} + \frac{2}{\sqrt{2}} = \sqrt{2} \left(\frac{1}{4} + \frac{1}{4} + \frac{2}{4} + 1\right) = 2\sqrt{2},$$

$$u_{\max} = u(M_1) = -2\sqrt{2}.$$

 \bigstar Приклад. Знайти найбільше і найменше значення функції $z=x^2y(4-x-y)$ в трикутнику, обмеженому лініями x=0, y=0, x+y=6.

Спочатку знайдемо критичні точки всередині області:

$$z'_{x} = 2xy(4-x-y)-x^{2}y = xy(8-3x-2y),$$

$$z'_{y} = x^{2}(4-x-y)-x^{2}y = x^{2}(4-x-2y).$$

Згідно з необхідними умовами існування екстремуму функції двох змінних маємо систему рівнянь

$$\begin{cases} xy(8-3x-2y) = 0, \\ x^2(4-x-2y) = 0. \end{cases}$$

Всередині області $x \neq 0$, $y \neq 0$, тому

$$\begin{cases} 3x + 2y = 8, \\ x + 2y = 4, \end{cases} \Rightarrow \begin{cases} x = 2, \\ y = 1. \end{cases}$$

В критичній точці $M_1(2;1)$ маємо z(2,1)=4.

Тепер проведемо дослідження функції на межі трикутника.

На прямій x + y = 6 змінна y = 6 - x і функція z приймає вигляд

$$z = x^{2}(6-x)\cdot(4-x+x-6) = 2x^{2}(x-6), x \in [0;6].$$

Знайдемо найбільше та найменше значення цієї функції однієї змінної x на замкненому відрізку [0;6]: $z' = 6x^2 - 24x$.

Із рівності z'=0 знаходимо: 6x(x-4)=0, звідси випливає, що $x_1=4$ та $x_2=0$. Отже, z(4)=-64.

При
$$x = 0$$
 та $x = 6$: $z(0) = 0$, $z(6) = 0$.

На прямій y = 0 маємо z = 0.

Отже, задана функція z має найбільше значення в точці $M_1(2;1)$ всередині області, найменше значення — в точці $M_2(4;2)$ на межі області.

Найбільше значення $\max_{\overline{D}} z = z(2;1) = 4;$

найменше значення $\min_{\overline{D}} z = z(4;2) = -64$.

Умовний екстремум функції багатьох змінних.

Метод множників Лагранжа

Нехай в області D задано функцію $z = f(x_1, x_2)$ і лінію L, яка визначається рівнянням $\varphi(x_1, x_2) = 0$ та лежить в цій області.

Задача полягає в тому, щоб на лінії L знайти таку точку $X(x_1,x_2)$, в якій значення функції $f(x_1,x_2)$ є найбільшим або найменшим порівняно із значеннями цієї функції в інших точках лінії L. Такі точки X називають точками умовного екстремуму функції $f(x_1,x_2)$ на лінії L. На відміну від звичайного екстремуму значення функції в точці умовного екстремуму порівнюється із значеннями цієї функції не в усіх точках області D, а лише в точках, які лежать на лінії L.

Умовні екстремуми часто використовуються при дослідженні оптимізації багатьох економічних та соціальних проблем.

Для знаходження умовного екстремуму скористаємося *методом множників Лагранжа*.

1) Записати функцію Лагранжа вигляду

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda \varphi(x_1, x_2).$$

2) Знайти критичні точки $M_k(x_1^k, x_2^k, \lambda^k)$ функції Лагранжа, використовуючи необхідні умови існування екстремуму:

$$\begin{cases} \frac{\partial L}{\partial x_1} = 0, \\ \frac{\partial L}{\partial x_2} = 0, \\ \frac{\partial L}{\partial \lambda} = 0, \end{cases} \begin{cases} \frac{\partial f}{\partial x_1} + \lambda \frac{\partial \varphi}{\partial x_1} = 0, \\ \frac{\partial f}{\partial x_2} + \lambda \frac{\partial \varphi}{\partial x_2} = 0, \\ \varphi(x_1, x_2) = 0. \end{cases}$$

- 3) Перевірити в кожній критичній точці достатні умови існування екстремуму:
 - a) знайти d^2L :

$$d^{2}L = \frac{\partial^{2}L}{\partial x_{1}^{2}} dx_{1}^{2} + \frac{\partial^{2}L}{\partial x_{2}^{2}} dx_{2}^{2} + 2 \frac{\partial^{2}L}{\partial x_{1} \partial x_{2}} dx_{1} dx_{2},$$

б) встановити знак , знайденого диференціала: якщо в точці $M_k \left(x_1^k \, , x_2^k \, , \lambda^k \, \right)$ диференціал $d^2 L > 0$, то ця точка є точкою умовного мінімуму,

якщо в точці $M_k \left(x_1^k, x_2^k, \lambda^k \right)$ диференціал $d^2L < 0$, то ця точка є точкою умовного максимуму.

4) Знайти значення функції у точках екстремуму.

Для функції $u=f(x_1,x_2,x_3)$ з рівняннями $\varphi_1(x_1,x_2,x_3)=0$ та $\varphi_2(x_1,x_2,x_3)=0$ функція Лагранжа запишеться у вигляді

$$L(x_1, x_2, x_3, \lambda_1, \lambda_2) = f(x_1, x_2, x_3) + \lambda_1 \varphi_1(x_1, x_2, x_3) + \lambda_2 \varphi_2(x_1, x_2, x_3).$$

Стаціонарні точки умовного екстремуму знаходяться із системи рівнянь

$$\begin{cases} \frac{\partial f}{\partial x_1} + \lambda_1 \frac{\partial \varphi_1}{\partial x_1} + \lambda_2 \frac{\partial \varphi_2}{\partial x_2} = 0, \\ \frac{\partial f}{\partial x_2} + \lambda_1 \frac{\partial \varphi_1}{\partial x_2} + \lambda_2 \frac{\partial \varphi_2}{\partial x_2} = 0, \\ \frac{\partial f}{\partial x_3} + \lambda_1 \frac{\partial \varphi_1}{\partial x_3} + \lambda_2 \frac{\partial \varphi_2}{\partial x_3} = 0, \\ \varphi_1(x_1, x_2, x_3) = 0, \\ \varphi_2(x_1, x_2, x_3) = 0. \end{cases}$$

а достатні умови існування умовного екстремуму в цих точках можна визначити за знаком диференціала d^2L :

$$\begin{split} d^2L &= \frac{\partial^2 L}{\partial x_1^2} dx_1^2 + \frac{\partial^2 L}{\partial x_2^2} dx_2^2 + \frac{\partial^2 L}{\partial x_3^2} dx_3^2 + 2 \frac{\partial^2 L}{\partial x_1 \partial x_2} dx_1 dx_2 + \\ &+ 2 \frac{\partial^2 L}{\partial x_1 \partial x_3} dx_1 dx_3 + 2 \frac{\partial^2 L}{\partial x_3 \partial x_2} dx_3 dx_2. \end{split}$$

Приклад. Дослідити на умовний екстремум методом множників Лагранжа функцію $F=2x_1^2+3x_2^2+x_3^2+4x_2x_1-3x_3+12$ при заданих обмеженнях

$$\begin{cases} x_2 - x_1 = 3, \\ x_3 - x_2 = 1. \end{cases}$$

Складемо функцію Лагранжа

$$L(x_1, x_2, \lambda_1, \lambda_2) = 2x_1^2 + 3x_2^2 + x_3^2 + 4x_1x_2 - 3x_3 + 12 + \lambda_1(3 + x_1 - x_2) + \lambda_2(1 + x_2 - x_3)$$

Знайдемо її частинні похідні за всіма змінними $x_1, x_2, x_3, \lambda_1, \lambda_2$ та прирівняємо їх до нуля.

$$\begin{cases} \frac{\partial L}{\partial x_1} = 4x_1 + 4x_2 + \lambda_1 = 0, \\ \frac{\partial L}{\partial x_2} = 6x_2 + 4x_1 - \lambda_1 + \lambda_2 = 0, \\ \frac{\partial L}{\partial x_3} = 2x_3 - 3 - \lambda_2 = 0, \\ \frac{\partial L}{\partial \lambda_1} = 3 + x_1 - x_2 = 0, \\ \frac{\partial L}{\partial \lambda_2} = 1 + x_2 - x_3 = 0. \end{cases}$$

Розв'яжемо дану систему за допомогою оберненої матриці:

$$A \cdot X = B \Longrightarrow X = A^{-1} \cdot B$$
.

$$A = \begin{pmatrix} 4 & 4 & 0 & 1 & 0 \\ 4 & 6 & 0 & -1 & 1 \\ 0 & 0 & 2 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 0 \\ 0 \\ 3 \\ -3 \\ -1 \end{pmatrix}.$$

$$\Delta_A = \begin{vmatrix} 4 & 4 & 0 & 1 & 0 \\ 4 & 6 & 0 & -1 & 1 \\ 0 & 0 & 2 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{vmatrix} = 20 \neq 0.$$

Отже, за формулою оберненої матриці:

$$A_{11} = 1;$$
 $A_{12} = 1;$ $A_{13} = 1;$ $A_{14} = 12;$ $A_{15} = 2;$ $A_{21} = 1;$ $A_{22} = 1;$ $A_{23} = 1;$ $A_{24} = -8;$ $A_{25} = 2;$ $A_{31} = 1;$ $A_{32} = 1;$ $A_{33} = 1;$ $A_{34} = -8;$ $A_{35} = -18;$ $A_{41} = 12;$ $A_{42} = -8;$ $A_{43} = -8;$ $A_{44} = -16;$ $A_{45} = -16;$ $A_{51} = 2;$ $A_{52} = 2;$ $A_{53} = -18;$ $A_{54} = -16;$ $A_{55} = -18.$

$$A^{-1} = \frac{1}{20} \cdot \begin{pmatrix} 1 & 1 & 1 & 12 & 2 \\ 1 & 1 & 1 & -8 & 2 \\ 1 & 1 & 1 & -8 & -18 \\ 12 & -8 & -8 & -16 & -16 \\ 2 & 2 & -18 & -16 & -18 \end{pmatrix}.$$

Отже, шуканий результат:

$$X = \begin{pmatrix} \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & \frac{3}{5} & \frac{1}{10} \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & -\frac{2}{5} & \frac{1}{10} \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & -\frac{2}{5} & -\frac{9}{10} \\ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{4}{5} & -\frac{4}{5} \\ \frac{1}{10} & \frac{1}{10} & -\frac{9}{10} & -\frac{4}{5} & -\frac{9}{5} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 3 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -\frac{7}{4} \\ \frac{5}{4} \\ \frac{9}{4} \\ \frac{2}{3} \\ \frac{3}{2} \end{pmatrix}.$$

Отже,
$$x_1 = -\frac{7}{4}$$
; $x_2 = \frac{5}{4}$; $x_3 = \frac{9}{4}$; $\lambda_1 = 2$; $\lambda_2 = \frac{3}{2}$.

Точка
$$B\left(-\frac{7}{4}; \frac{5}{4}; \frac{9}{4}\right)$$
 – екстремальна точка.

Знайдемо повний диференціал другого порядку функції Лагранжа.

$$d^{2}L = \frac{\partial^{2}L}{\partial x_{1}^{2}} dx_{1}^{2} + \frac{\partial^{2}L}{\partial x_{2}^{2}} dx_{2}^{2} + \frac{\partial^{2}L}{\partial x_{3}^{2}} dx_{3}^{2} + 2 \frac{\partial^{2}L}{\partial x_{1} \partial x_{2}} dx_{1} dx_{2} + 2 \frac{\partial^{2}L}{\partial x_{1} \partial x_{3}} dx_{1} dx_{3} + 2 \frac{\partial^{2}L}{\partial x_{3} \partial x_{2}} dx_{3} dx_{2}.$$

$$\frac{\partial^{2}L}{\partial x_{1}^{2}} = 4; \quad \frac{\partial^{2}L}{\partial x_{2}^{2}} = 6; \quad \frac{\partial^{2}L}{\partial x_{3}^{2}} = 2; \quad \frac{\partial^{2}L}{\partial x_{1} \partial x_{2}} = 4; \quad \frac{\partial^{2}L}{\partial x_{1} \partial x_{3}} = 0; \quad \frac{\partial^{2}L}{\partial x_{3} \partial x_{2}} = 0.$$

$$d^{2}L = 4dx_{1}^{2} + 6dx_{2}^{2} + 2dx_{3}^{2} + 4dx_{1} dx_{2}.$$

$$dx_{2} = dx_{1};$$

$$dx_{3} = dx_{2}$$

$$3$$

$$3$$

$$3$$

$$d^{2}L = 4dx_{2}^{2} + 6dx_{2}^{2} + 2dx_{3}^{2} + 4dx_{2}^{2} = 16dx_{2}^{2} > 0.$$

Отже, точка B — точка мінімуму.

$$F\left(-\frac{7}{4}; \frac{5}{4}; \frac{9}{4}\right) = F_{\min} = 2 \cdot \left(-\frac{7}{4}\right)^2 + 3 \cdot \left(\frac{5}{4}\right)^2 + 1 \cdot \left(\frac{9}{4}\right)^2 - 4 \cdot \frac{7}{4} \cdot \frac{5}{4} - 3 \cdot \frac{9}{4} + 12 = \frac{99}{8} = 12,375.$$

$$F_{\min} = 12,375.$$

відшуканні екстремумів функцій багатьох змінних також використовується так звана матриця Гессе.

 $H(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_{n1}} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}.$ Головні мінори матриці мають вигляд **•**Матриця виду ие

$$M_{1} = \frac{\partial^{2} f}{\partial x_{1}^{2}}; M_{2} = \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} \end{vmatrix};$$

$$M_{3} = \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} & \frac{\partial^{2} f}{\partial x_{3}^{2}} \end{vmatrix}; \dots; M_{n} = \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \dots & \dots & \dots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{vmatrix}.$$

 Матриця Гессе додатно визначена, якщо $M_1>0; M_2>0; ...; M_n>0$ – від 'ємно мінімуму; матриця визначена, якщо $M_1 < 0; M_2 > 0; ...; (-1)^n M_n > 0$ – умови максимуму.

$$H(x) = \frac{\partial^2 f}{\partial x^2}(x) \quad (7)$$

від'ємно визначена для усіх x , тобто

$$\frac{\partial^2 f}{\partial x^2}(x) = \frac{\partial}{\partial x_j} (MP_j(x)) < 0.$$
 (8)