

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

CONCURRENCY CONTROL

Lecture A

RPCs

WHY RPCs

- RPC = Remote Procedure Call
- Proposed by Birrell and Nelson in 1984
- Important abstraction for processes to call functions in other processes
- Allows code reuse
- Implemented and used in most distributed systems, including cloud computing systems
- Counterpart in Object-based settings is called RMI (Remote Method Invocation)

LOCAL PROCEDURE CALL (LPC)

- Call from one function to another function within the same process
 - Uses stack to pass arguments and return values
 - Accesses objects via pointers (e.g., C) or by reference (e.g., Java)
- LPC has *exactly-once* semantics
 - If process is alive, called function executed exactly once

REMOTE PROCEDURE CALL

- Call from one function to another function, where caller and callee function reside in different processes
 - Function call crosses a process boundary
 - Accesses objects via global references
 - Can't use pointers across processes since a reference address in process P1 may point to a different object in another process P2
 - E.g., Object address = IP + port + object number
- Similarly, RMI (Remote Method Invocation) in Object-based settings

LPCs

RPCs

RPCs

Host A

RPCs

RPC CALL SEMANTICS

- Under failures, hard to guarantee exactly-once semantics
- Function may not be executed if
 - Request (call) message is dropped
 - Reply (return) message is dropped
 - Called process fails before executing called function
 - Called process fails after executing called function
 - Hard for caller to distinguish these cases
- Function may be executed multiple times if
 - Request (call) message is duplicated

IMPLEMENTING RPC CALL SEMANTICS

- Possible semantics
 - At most once semantics (e.g., Java RMI)
 - At least once semantics (e.g., Sun RPC)
 - Maybe, i.e., best-effort (e.g., CORBA)

Retransmit request	Filter duplicate requests	Re-execute function or retransmit reply	RPC Semantics
Yes	No	Re-execute	At least once
Yes	Yes	Retransmit	At most once
No	NA	NA	Maybe

IDEMPOTENT OPERATIONS

- Idempotent operations are those that can be repeated multiple times, without any side effects
- Examples (x is server-side variable)
 - x=1;
 - x=(argument) y;
- Non-examples
 - x=x+1;
 - x=x*2;
- Idempotent operations can be used with at-leastonce semantics

IMPLEMENTING RPCs

RPC COMPONENTS

Client

- **Client stub**: has same function signature as callee()
 - Allows same caller() code to be used for LPC and RPC
- Communication Module: Forwards requests and replies to appropriate hosts

Server

- **Dispatcher**: Selects which server stub to forward request to
- **Server stub**: calls callee(), allows it to return a value

GENERATING CODE

- Programmer only writes code for caller function and callee function
- Code for remaining components all **generated automatically** from function signatures (or object interfaces in Object-based languages)
 - E.g., Sun RPC system: Sun XDR interface representation fed into rpcgen compiler
- These components together part of a Middleware system
 - E.g., CORBA (Common Object Request Brokerage Architecture)
 - E.g., Sun RPC
 - E.g., Java RMI

MARSHALLING

- Different architectures use different ways of representing data
 - Big endian: Hex 12-AC-33 stored with 12 in lowest address, then AC in next higher address, then 33 in highest address
 - IBM z, System 360
 - Little endian: Hex 12-AC-33 stored with 33 in lowest address, then AC in next higher address, then 12
 - Intel
- Caller (and callee) process uses its own *platform-dependent* way of storing data
- Middleware has a common data representation (CDR)
 - Platform-independent

Marshalling (2)

- Middleware has a common data representation (CDR)
 - Platform-independent
- Caller process converts arguments into CDR format
 - Called "Marshalling"
- Callee process extracts arguments from message into its own platform-dependent format
 - Called "Unmarshalling"
- Return values are marshalled on callee process and unmarshalled at caller process

NEXT

 Now that we know RPCs, we can use them as a building block to understand transactions