$11n_{172} (K11n_{172})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.80403 \times 10^{129} u^{39} + 1.00269 \times 10^{129} u^{38} + \dots + 1.55952 \times 10^{133} b - 4.83307 \times 10^{132}, \\ &3.18557 \times 10^{131} u^{39} - 1.42090 \times 10^{132} u^{38} + \dots + 6.95548 \times 10^{135} a + 3.12217 \times 10^{135}, \\ &u^{40} - u^{39} + \dots + 492 u - 892 \rangle \\ I_2^u &= \langle -3007418546 u^{15} + 933342897 u^{14} + \dots + 9161883482 b + 4813387670, \\ &- 1873381418 u^{15} - 2988794220 u^{14} + \dots + 9161883482 a - 21851752726, \\ &u^{16} + 5 u^{14} - 5 u^{13} - u^{11} - 24 u^{10} + 16 u^9 + 4 u^8 - 16 u^7 + 20 u^6 - 4 u^5 - 17 u^4 + 4 u^3 + 10 u^2 - 4 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 56 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2.80 \times 10^{129} u^{39} + 1.00 \times 10^{129} u^{38} + \dots + 1.56 \times 10^{133} b - 4.83 \times 10^{132}, \ 3.19 \times 10^{131} u^{39} - 1.42 \times 10^{132} u^{38} + \dots + 6.96 \times 10^{135} a + 3.12 \times 10^{135}, \ u^{40} - u^{39} + \dots + 492u - 892 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -0.0000457994u^{39} + 0.000204285u^{38} + \dots + 0.0708298u - 0.448879 \\ -0.000179801u^{39} - 0.0000642943u^{38} + \dots + 1.95559u + 0.309907 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0.0000420568u^{39} - 0.000112360u^{38} + \dots - 2.24245u + 0.0906996 \\ -0.000731650u^{39} + 0.000562011u^{38} + \dots + 0.278566u - 0.727739 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -0.000151445u^{39} - 0.0000710102u^{38} + \dots + 2.55187u + 2.12193 \\ 0.000373065u^{39} - 0.000239614u^{38} + \dots - 0.711429u + 0.439973 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0.000134001u^{39} + 0.000268580u^{38} + \dots - 1.88476u - 0.758785 \\ -0.000179801u^{39} - 0.0000642943u^{38} + \dots + 1.95559u + 0.309907 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0000420568u^{39} - 0.000112360u^{38} + \dots + 1.95559u + 0.309907 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0.000064508u^{39} - 0.00012360u^{38} + \dots + 0.350670u - 0.790450 \\ 0.000166450u^{39} - 0.00013652507u^{38} + \dots + 1.45638u + 1.06015 \\ 0.000220629u^{39} - 0.0000136383u^{38} + \dots - 0.303665u - 0.108440 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000515912u^{39} + 0.000203912u^{38} + \dots - 0.148443u - 0.735075 \\ -0.000308939u^{39} + 0.000237175u^{38} + \dots - 0.148443u - 0.735075 \\ -0.000308939u^{39} + 0.000237175u^{38} + \dots - 0.148443u - 0.735075 \\ -0.000308939u^{39} + 0.000237175u^{38} + \dots - 0.148443u - 0.735075 \\ -0.000308939u^{39} + 0.000237175u^{38} + \dots - 0.241184u - 0.390016 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.000707464u^{39} 0.00139771u^{38} + \dots 3.97400u 0.836131$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{40} - 2u^{39} + \dots + 14u - 1$
c_2, c_8	$u^{40} - u^{39} + \dots + 492u - 892$
c_3	$u^{40} - 5u^{39} + \dots - 248u + 88$
c_4, c_{10}	$u^{40} - u^{39} + \dots - 12u + 4$
c_6	$u^{40} - 5u^{39} + \dots + 457u + 29$
	$u^{40} - 3u^{39} + \dots - 26575u + 7349$
<i>C</i> 9	$u^{40} + 5u^{39} + \dots + 96u + 11$
c_{11}	$u^{40} + u^{39} + \dots - 1168u - 424$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{40} + 38y^{39} + \dots - 78y + 1$
c_2, c_8	$y^{40} + 63y^{39} + \dots + 6026912y + 795664$
c_3	$y^{40} - 59y^{39} + \dots - 199840y + 7744$
c_4,c_{10}	$y^{40} - 35y^{39} + \dots + 1888y + 16$
	$y^{40} - 15y^{39} + \dots - 262383y + 841$
	$y^{40} + 47y^{39} + \dots + 923130863y + 54007801$
<i>c</i> ₉	$y^{40} + 7y^{39} + \dots - 218y + 121$
c_{11}	$y^{40} + 57y^{39} + \dots + 1150944y + 179776$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.972209 + 0.363644I		
a = -0.691473 - 0.726212I	-1.63884 - 2.52981I	-3.46896 + 4.78238I
b = 0.246524 - 1.044100I		
u = -0.972209 - 0.363644I		
a = -0.691473 + 0.726212I	-1.63884 + 2.52981I	-3.46896 - 4.78238I
b = 0.246524 + 1.044100I		
u = -0.777438 + 0.253101I		
a = -0.28608 - 2.07418I	-0.55843 - 5.04023I	8.92316 + 6.11668I
b = 0.0965200 - 0.0759702I		
u = -0.777438 - 0.253101I		
a = -0.28608 + 2.07418I	-0.55843 + 5.04023I	8.92316 - 6.11668I
b = 0.0965200 + 0.0759702I		
u = -1.028590 + 0.641044I		
a = 0.812402 + 0.180660I	-6.89381 + 4.31374I	-3.00921 - 2.52408I
b = -0.05196 + 1.65626I		
u = -1.028590 - 0.641044I		
a = 0.812402 - 0.180660I	-6.89381 - 4.31374I	-3.00921 + 2.52408I
b = -0.05196 - 1.65626I		
u = 1.28769		
a = -1.23762	2.31916	3.45590
b = 1.21545		
u = -0.004586 + 0.662077I		
a = -0.110517 - 1.374950I	-6.21063 + 2.44288I	-1.57019 - 3.53786I
b = -0.440412 - 1.198770I		
u = -0.004586 - 0.662077I		
a = -0.110517 + 1.374950I	-6.21063 - 2.44288I	-1.57019 + 3.53786I
b = -0.440412 + 1.198770I		
u = 0.606580 + 0.241726I		
a = -0.989022 - 0.886345I	1.31470 + 0.60771I	8.49421 - 3.04989I
b = 0.197863 + 0.060558I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.606580 - 0.241726I		
a = -0.989022 + 0.886345I	1.31470 - 0.60771I	8.49421 + 3.04989I
b = 0.197863 - 0.060558I		
u = 0.584454 + 0.231728I		
a = -0.083035 + 1.313620I	-5.71740 - 6.20191I	-6.05433 + 5.08780I
b = -0.458127 + 1.196180I		
u = 0.584454 - 0.231728I		
a = -0.083035 - 1.313620I	-5.71740 + 6.20191I	-6.05433 - 5.08780I
b = -0.458127 - 1.196180I		
u = -0.607336		
a = 2.89129	3.09539	-9.16160
b = -1.09842		
u = 0.13576 + 1.42105I		
a = -0.158909 - 0.108207I	-4.59373 + 2.98825I	4.81250 - 3.01552I
b = -0.742397 - 0.144685I		
u = 0.13576 - 1.42105I		
a = -0.158909 + 0.108207I	-4.59373 - 2.98825I	4.81250 + 3.01552I
b = -0.742397 + 0.144685I		
u = -0.292078 + 0.391717I		
a = -0.559269 + 0.026373I	-2.47058 + 1.70720I	0.230221 - 0.591796I
b = -0.768195 + 0.090718I		
u = -0.292078 - 0.391717I		
a = -0.559269 - 0.026373I	-2.47058 - 1.70720I	0.230221 + 0.591796I
b = -0.768195 - 0.090718I		
u = 0.011693 + 0.471366I		
a = -0.639263 - 0.198812I	0.03644 + 1.50292I	1.25089 - 6.14683I
b = 0.381500 + 0.672173I		
u = 0.011693 - 0.471366I		
a = -0.639263 + 0.198812I	0.03644 - 1.50292I	1.25089 + 6.14683I
b = 0.381500 - 0.672173I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.281701 + 0.359944I		
a = -2.19829 - 0.09585I	-1.21242 + 1.07873I	-3.63948 + 1.17826I
b = 0.325667 + 1.141170I		
u = 0.281701 - 0.359944I		
a = -2.19829 + 0.09585I	-1.21242 - 1.07873I	-3.63948 - 1.17826I
b = 0.325667 - 1.141170I		
u = -0.11719 + 1.62482I		
a = 0.403686 - 0.292336I	-8.09181 - 0.67197I	0
b = -0.345255 - 0.125454I		
u = -0.11719 - 1.62482I		
a = 0.403686 + 0.292336I	-8.09181 + 0.67197I	0
b = -0.345255 + 0.125454I		
u = 1.60181 + 1.05960I		
a = 0.323648 - 0.513185I	-6.22320 + 3.43752I	0
b = 0.10749 - 1.61398I		
u = 1.60181 - 1.05960I		
a = 0.323648 + 0.513185I	-6.22320 - 3.43752I	0
b = 0.10749 + 1.61398I		
u = -0.48768 + 1.87046I		
a = 0.445879 + 1.224510I	-14.3940 - 1.3454I	0
b = -0.14644 + 1.58425I		
u = -0.48768 - 1.87046I		
a = 0.445879 - 1.224510I	-14.3940 + 1.3454I	0
b = -0.14644 - 1.58425I		
u = -0.11349 + 1.97784I		
a = 0.128360 + 1.333720I	-10.55230 - 6.76566I	0
b = -0.27705 + 1.55024I		
u = -0.11349 - 1.97784I		
a = 0.128360 - 1.333720I	-10.55230 + 6.76566I	0
b = -0.27705 - 1.55024I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.00542 + 2.12395I		
a = 0.124816 - 1.215410I	-9.55118 + 0.96633I	0
b = -0.28024 - 1.51688I		
u = -0.00542 - 2.12395I		
a = 0.124816 + 1.215410I	-9.55118 - 0.96633I	0
b = -0.28024 + 1.51688I		
u = 0.21330 + 2.22331I		
a = -0.0303329 + 0.0193746I	-10.09040 - 5.18311I	0
b = 1.75447 - 0.27463I		
u = 0.21330 - 2.22331I		
a = -0.0303329 - 0.0193746I	-10.09040 + 5.18311I	0
b = 1.75447 + 0.27463I		
u = -0.79762 + 2.19173I		
a = -0.440868 - 0.873034I	-14.8294 - 4.4956I	0
b = 0.84317 - 1.82666I		
u = -0.79762 - 2.19173I		
a = -0.440868 + 0.873034I	-14.8294 + 4.4956I	0
b = 0.84317 + 1.82666I		
u = 0.56414 + 2.26378I		
a = -0.363789 + 1.003570I	-16.3560 + 13.3915I	0
b = 0.63008 + 1.69717I		
u = 0.56414 - 2.26378I		
a = -0.363789 - 1.003570I	-16.3560 - 13.3915I	0
b = 0.63008 - 1.69717I		
u = 0.75669 + 2.48566I		
a = 0.256526 - 1.062360I	-12.97920 + 2.42998I	0
b = -0.13173 - 1.46303I		
u = 0.75669 - 2.48566I		
a = 0.256526 + 1.062360I	-12.97920 - 2.42998I	0
b = -0.13173 + 1.46303I		

$$\begin{matrix} I_2^u = \langle -3.01 \times 10^9 u^{15} + 9.33 \times 10^8 u^{14} + \dots + 9.16 \times 10^9 b + 4.81 \times 10^9, \ -1.87 \times 10^9 u^{15} - 2.99 \times 10^9 u^{14} + \dots + 9.16 \times 10^9 a - 2.19 \times 10^{10}, \ u^{16} + 5 u^{14} + \dots + 10 u^2 - 4 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.204476u^{15} + 0.326221u^{14} + \cdots - 0.0881222u + 2.38507 \\ 0.328253u^{15} - 0.101872u^{14} + \cdots + 1.42300u - 0.525371 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.197482u^{15} - 0.179148u^{14} + \cdots + 1.09215u - 1.18979 \\ -0.196147u^{15} + 0.172594u^{14} + \cdots - 1.16409u + 0.366552 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0632878u^{15} - 0.0676739u^{14} + \cdots - 0.398063u + 1.03749 \\ -0.00954759u^{15} + 0.0961985u^{14} + \cdots - 0.151211u + 0.663053 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.123778u^{15} + 0.428093u^{14} + \cdots - 1.51112u + 2.91044 \\ 0.328253u^{15} - 0.101872u^{14} + \cdots + 1.42300u - 0.525371 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.197482u^{15} - 0.179148u^{14} + \cdots + 1.09215u - 1.18979 \\ -0.0923248u^{15} + 0.0842185u^{14} + \cdots - 0.374160u - 0.350040 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0660443u^{15} + 0.133020u^{14} + \cdots - 2.18472u + 1.03736 \\ 0.0529067u^{15} + 0.140450u^{14} + \cdots + 0.570148u + 0.302746 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0419856u^{15} - 0.418545u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 0.632997u - 0.128181 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0419856u^{15} - 0.418545u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 1.04104u - 2.75923 \\ -0.120621u^{15} - 0.0702787u^{14} + \cdots + 0.632997u - 0.128181 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{7739992772}{4580941741}u^{15} + \frac{9173770896}{4580941741}u^{14} + \cdots \frac{57525934822}{4580941741}u + \frac{47024714230}{4580941741}u^{14} + \cdots$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - u^{15} + \dots - 2u - 1$
c_2	$u^{16} + 5u^{14} + \dots + 10u^2 - 4$
<i>c</i> ₃	$u^{16} + 8u^{15} + \dots + 12u + 8$
C ₄	$u^{16} - 6u^{14} + \dots - 14u^2 + 4$
<i>C</i> ₅	$u^{16} + u^{15} + \dots + 2u - 1$
<i>c</i> ₆	$u^{16} + 2u^{15} + \dots + 11u + 1$
	$u^{16} - 2u^{15} + \dots + 13u + 1$
<i>C</i> ₈	$u^{16} + 5u^{14} + \dots + 10u^2 - 4$
<i>c</i> ₉	$u^{16} - 6u^{15} + \dots - 2u + 1$
c_{10}	$u^{16} - 6u^{14} + \dots - 14u^2 + 4$
c_{11}	$u^{16} + 4u^{14} + \dots + 4u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{16} + 9y^{15} + \dots + 10y + 1$
c_2, c_8	$y^{16} + 10y^{15} + \dots - 80y + 16$
c_3	$y^{16} - 20y^{15} + \dots - 1168y + 64$
c_4, c_{10}	$y^{16} - 12y^{15} + \dots - 112y + 16$
c_6	$y^{16} + 4y^{14} + \dots - 91y + 1$
	$y^{16} + 10y^{15} + \dots - 69y + 1$
<i>c</i> 9	$y^{16} - 2y^{15} + \dots - 2y + 1$
c_{11}	$y^{16} + 8y^{15} + \dots - 8y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.044910 + 0.084383I		
a = 0.057226 + 0.245893I	-4.61886 + 6.15067I	1.67402 - 4.95826I
b = 0.361947 + 1.340670I		
u = -1.044910 - 0.084383I		
a = 0.057226 - 0.245893I	-4.61886 - 6.15067I	1.67402 + 4.95826I
b = 0.361947 - 1.340670I		
u = 0.203156 + 1.098810I		
a = -0.741658 - 0.024758I	-5.56667 + 2.95635I	-4.74772 - 2.75237I
b = -0.379929 - 0.431781I		
u = 0.203156 - 1.098810I		
a = -0.741658 + 0.024758I	-5.56667 - 2.95635I	-4.74772 + 2.75237I
b = -0.379929 + 0.431781I		
u = 0.701325 + 0.516464I		
a = 1.021890 - 0.280960I	-0.62726 + 1.86405I	2.38240 - 3.76150I
b = -0.299377 - 1.065240I		
u = 0.701325 - 0.516464I		
a = 1.021890 + 0.280960I	-0.62726 - 1.86405I	2.38240 + 3.76150I
b = -0.299377 + 1.065240I		
u = -0.813758		
a = 2.21481	3.38602	19.6050
b = -1.08888		
u = 0.752983 + 0.179131I		
a = 0.79516 - 2.54506I	-1.13425 + 5.09162I	-5.21325 - 6.81011I
b = -0.050757 - 0.668728I		
u = 0.752983 - 0.179131I		
a = 0.79516 + 2.54506I	-1.13425 - 5.09162I	-5.21325 + 6.81011I
b = -0.050757 + 0.668728I		
u = -0.474047 + 0.462486I		
a = 1.29761 - 1.51241I	0.363930 + 0.209601I	0.372974 + 0.607008I
b = -0.190166 - 0.829536I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.474047 - 0.462486I		
a = 1.29761 + 1.51241I	0.363930 - 0.209601I	0.372974 - 0.607008I
b = -0.190166 + 0.829536I		
u = 1.43010		
a = -1.12981	1.43155	-5.25650
b = 1.62094		
u = 0.13607 + 1.51148I		
a = -0.173098 - 0.201972I	-8.25349 - 1.91163I	-5.00806 + 3.84199I
b = 0.597072 - 0.748618I		
u = 0.13607 - 1.51148I		
a = -0.173098 + 0.201972I	-8.25349 + 1.91163I	-5.00806 - 3.84199I
b = 0.597072 + 0.748618I		
u = -0.58274 + 2.26201I		
a = -0.299629 - 1.085740I	-12.18100 - 1.94801I	-0.634861 - 0.077298I
b = 0.19518 - 1.54614I		
u = -0.58274 - 2.26201I		
a = -0.299629 + 1.085740I	-12.18100 + 1.94801I	-0.634861 + 0.077298I
b = 0.19518 + 1.54614I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^{16} - u^{15} + \dots - 2u - 1)(u^{40} - 2u^{39} + \dots + 14u - 1) \right $
c_2	$ (u^{16} + 5u^{14} + \dots + 10u^2 - 4)(u^{40} - u^{39} + \dots + 492u - 892) $
c_3	$ (u^{16} + 8u^{15} + \dots + 12u + 8)(u^{40} - 5u^{39} + \dots - 248u + 88) $
c_4	$ (u^{16} - 6u^{14} + \dots - 14u^2 + 4)(u^{40} - u^{39} + \dots - 12u + 4) $
c_5	$ (u^{16} + u^{15} + \dots + 2u - 1)(u^{40} - 2u^{39} + \dots + 14u - 1) $
c_6	$(u^{16} + 2u^{15} + \dots + 11u + 1)(u^{40} - 5u^{39} + \dots + 457u + 29)$
	$ (u^{16} - 2u^{15} + \dots + 13u + 1)(u^{40} - 3u^{39} + \dots - 26575u + 7349) $
c_8	$ (u^{16} + 5u^{14} + \dots + 10u^2 - 4)(u^{40} - u^{39} + \dots + 492u - 892) $
<i>c</i> ₉	$ (u^{16} - 6u^{15} + \dots - 2u + 1)(u^{40} + 5u^{39} + \dots + 96u + 11) $
c_{10}	$(u^{16} - 6u^{14} + \dots - 14u^2 + 4)(u^{40} - u^{39} + \dots - 12u + 4)$
c_{11}	$(u^{16} + 4u^{14} + \dots + 4u^2 - 1)(u^{40} + u^{39} + \dots - 1168u - 424)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{16} + 9y^{15} + \dots + 10y + 1)(y^{40} + 38y^{39} + \dots - 78y + 1)$
c_2, c_8	$(y^{16} + 10y^{15} + \dots - 80y + 16)$ $\cdot (y^{40} + 63y^{39} + \dots + 6026912y + 795664)$
c_3	$(y^{16} - 20y^{15} + \dots - 1168y + 64)$ $\cdot (y^{40} - 59y^{39} + \dots - 199840y + 7744)$
c_4, c_{10}	$(y^{16} - 12y^{15} + \dots - 112y + 16)(y^{40} - 35y^{39} + \dots + 1888y + 16)$
c_6	$(y^{16} + 4y^{14} + \dots - 91y + 1)(y^{40} - 15y^{39} + \dots - 262383y + 841)$
C ₇	$(y^{16} + 10y^{15} + \dots - 69y + 1)$ $\cdot (y^{40} + 47y^{39} + \dots + 923130863y + 54007801)$
<i>c</i> 9	$(y^{16} - 2y^{15} + \dots - 2y + 1)(y^{40} + 7y^{39} + \dots - 218y + 121)$
c_{11}	$(y^{16} + 8y^{15} + \dots - 8y + 1)(y^{40} + 57y^{39} + \dots + 1150944y + 179776)$