Es 310 pag 64 (Ethor)

$$\frac{\binom{1}{2}^{\times} - 4}{9-3^{2\times}} = 4$$

$$\frac{3-3^{2\times}}{9-3^{2\times}} = 4$$
No. $(\frac{1}{2})^{\times} - 4 > 0 = 2^{-\times} - 2^{-2} > 0 = 2^{-\times} > 2^{-2}$

$$\frac{-2}{100} = 3^{-2} = 2^{-2} =$$

20 - 8t -
$$t^2 > 0$$
 $t_1 = -10$, $t_2 = 2$
 $t^2 + 8t - 20 < 0$
 $(t + 10)(t - 2) < 0$

- 10 < $t < 2$

- 10 <

Logaritmi: Det: Dati due numeri reali positivi a e b con a #1, chiamions logaritmo in base a di b l'esponente x da assegnare alla bose a per ottenere il numero b. In Cormule × = log b $o_{x} = \rho$ Esempi: 2× = 32 $\times = 5 = \log_2 32$ 3× = 4 $\times = \log_3 4$ 5 × = 27 x = log 5 24 trace Mistica! Il logoritmo è il nome che diomo a un precios esponente. a = 2 = 4Esempi: $\log_2 \Delta = 2$ = 3^x = 1 log 1 = 0 log 10²⁴ = 24 <-> 10^X = 10²⁷ 24× = 5 ~~ $\times = \log 5$ $\log_a \alpha = 1$ $\log_{\alpha} \alpha^{n} = n$ Altra mistica: Ci interessa dare un nonne per poter manipolare bere gli esponenti. Notazione (1) Nol logaritmo in bose 10 si omette il 10 a bose log10 b = log b

