Groupes et communautés dans les flots de liens : des données aux algorithmes

Noé Gaumont

Encadrants: Clémence Magnien et Matthieu Latapy

LIP6 - CNRS & UPMC, Sorbonne Universités.

Réseau complexe : ensemble d'éléments en interaction.

réseaux	éléments	interactions
cerveau	régions du cerveau	influx nerveux
trafic IP	ordinateurs	paquets IP
télécommunication	téléphones	appels/SMS

Réseau complexe : ensemble d'éléments en interaction.

réseaux	éléments	interactions
cerveau	régions du cerveau	influx nerveux
trafic IP	ordinateurs	paquets IP
télécommunication	téléphones	appels/SMS

Théorie des graphes

Réseau complexe : ensemble d'éléments en interaction.

réseaux	éléments	interactions
cerveau	régions du cerveau	influx nerveux
trafic IP	ordinateurs	paquets IP
télécommunication	téléphones	appels/SMS

Théorie des graphes Détection de communautés

Réseau complexe : ensemble d'éléments en interaction.

réseaux	éléments	interactions
cerveau	régions du cerveau	influx nerveux
trafic IP	ordinateurs	paquets IP
télécommunication	téléphones	appels/SMS

Modèle prenant en compte la temporalité?

Qu'est-ce qu'une communauté?

Réseau complexe : ensemble d'éléments en interaction.

réseaux	éléments	interactions
cerveau	régions du cerveau	influx nerveux
trafic IP	ordinateurs	paquets IP
télécommunication	téléphones	appels/SMS

Formalisme de flots de liens Partitions des interactions

Contributions

Réseaux statiques

Évaluation de partitions de liens

Modèle nul

Fonction de qualité

Tests

Algorithme d'optimisation

Réseaux dynamiques

Formalisme

Flots de liens

Représentation

Implémentaion

Description de données réelles

Densité externe

Flot quotient

Détection de structure automatique

Détection de groupes pertinents

Densité

Pertinence

Références

Applications

Vers des partitions de flots de liens

Générations

Étude de méthodes statiques

Première fonction de qualité

Contributions

Réseaux statiques

Évaluation de partitions de liens

Modèle nul

Fonction de qualité

Tests

Algorithme d'optimisation

Réseaux dynamiques

Formalisme

Flots de liens

Représentation

Implémentaion

Description de données réelles

Densité externe

Flot quotient

Détection de structure automatique

Détection de groupes pertinents

Densité

Pertinence

Références

Applications

Vers des partitions de flots de liens

Générations

Étude de méthodes statiques

Première fonction de qualité

Evaluation d'une partition de liens d'un graphe

Communautés de nœuds Communautés de liens Définition de Expected Nodes Tests avec le générateur LF Conclusions

Communautés de nœuds

Graphe : réseau téléphonique. Communautés : groupes de personnes.

Entrée :

Un graphe, G = (V, E). Une partition de **nœuds**.

Sortie:

Evaluation de la partition en tant que structure communautaire.

> La modularité pour évaluer une partition de nœuds.

Communautés de liens

Graphe : réseau téléphonique. Communautés : discussions entre personnes.

Entrée:

Un graphe, G = (V, E). Une partition de liens.

Sortie:

Évaluation de la partition en tant que structure communautaire.

Communautés de liens

Graphe: réseau téléphonique. Communautés : discussions entre personnes.

Entrée :

Un graphe, G = (V, E). Une partition de **liens**.

Sortie:

Evaluation de la partition en tant que structure communautaire.

Proposition de **Expected Nodes** pour évaluer une partition de liens.

Intuition sur la fonction de qualité

En quoi le groupe de liens bleus est-il intéressant?

Intuition sur la fonction de qualité

En quoi le groupe de liens bleus est-il intéressant?

Les liens bleus sont très denses.

Les liens adjacents en roses sont peu denses.

Qualité interne

Comparer le nombre de nœuds internes observé et celui attendu :

Qualité interne

Comparer le nombre de nœuds internes observé et celui attendu :

Qualité interne

Comparer le nombre de nœuds internes observé et celui attendu :

Qualité externe

Comparer le nombre de nœuds externes observé et celui attendu :

Qualité externe

Comparer le nombre de nœuds externes observé et celui attendu :

$$Q_{ext}(L) = \frac{|V_{ext}(L)| - \mathbb{E}[V_{ext}(L)]}{\mathbb{E}[V_{ext}(L)]} = \frac{3 - 6}{6} = -0.5$$

Combinaison des qualités internes et externes

Qualité d'un groupe de liens L :

Expected Nodes(L) =
$$2 \frac{|L|Q_{in}(L) + |L_{ext}|Q_{ext}(L_{ext})}{|L| + |L_{ext}|}$$

Expected Nodes(L)

Expected Nodes(L)

Méthodologie

Générations de graphes ayant une structure communautaire sur les nœuds.

Sur chaque graphe, évaluation par **Expected Nodes** des trois partitions.

Résultats

La vérité de terrain a une meilleure évaluation que les partitions Evans et Link Clustering.

Conclusions

En résumé

- Étude des communautés de liens au lieu de nœuds.
- Définition d'une nouvelle fonction de qualité : Expected Nodes.
- Sur nos tests, Expected Nodes met en avant la vérité de terrain.
- Les méthodes existantes n'ont pas cette caractéristique.

Contributions

Réseaux statiques

Évaluation de partitions de liens

Modèle nul

Fonction de qualité

Tests

Algorithme d'optimisation

Réseaux dynamiques

Formalisme

Flots de liens

Représentation

Implémentaion

Description de données réelles

Densité externe

Flot quotient

Détection de structure automatique

Détection de groupes pertinents

Densité

Pertinence

Références

Applications

Vers des partitions de flots de liens

Générations

Étude de méthodes statiques

Première fonction de qualité

Formalisme de flot de liens

Séries de graphes Graphes temporels Flots de liens

Séries de graphes

Série de graphes : ensemble de graphes statiques.

T=[0.3]

T=[3,6[

T = [6,9[

Nécessite de connaître une échelle de temps pertinente Perte d'information

Graphes temporels

Graphe temporels : ensembles d'ajouts et de suppressions de liens

Pas de perte d'information temporelle Structure de graphe à chaque instant

Flots de liens

$$L = (T, V, E)$$

Flots de liens

$$L = (T, V, E)$$

a et c interagissent sur $[2,3] \Rightarrow (2,3,a,c) \in E$ a et b interagissent sur $[4,6] \Rightarrow (4,6,a,b) \in E$

Flots de liens

$$L = (T, V, E)$$

a et c interagissent sur
$$[2,3] \Rightarrow (2,3,a,c) \in E$$

a et b interagissent sur $[4,6] \Rightarrow (4,6,a,b) \in E$

Pas de perte d'information temporelle Définition de concepts adaptés aux flots de liens

Détection de groupes pertinents dans les flots de liens

Définition de la pertinence Détection de groupes pertinents Jeux de données et applications Conclusions

Densité d'un groupe de liens

Densité d'un groupe de liens

 $d(V', \alpha', \delta)$ = probabilité qu'il existe un lien entre 2 nœuds dans V' à un instant dans l'intervalle $[\alpha', \alpha' + \delta]$.

Densité d'un groupe de liens

Si d = 0.13, est-ce élevé?

 $d(V', \alpha', \delta)$ = probabilité qu'il existe un lien entre 2 nœuds dans V' à un instant dans l'intervalle $[\alpha', \alpha' + \delta]$.

Référence sur les nœuds

$$d(\mathbf{X}, \alpha', \delta)$$
 tel que $|\mathbf{X} \cap V'| = |V'| - 1 = |\mathbf{X}| - 1$

Référence sur la durée

 $d(V', \alpha', \mathbf{X})$ tel que $\mathbf{X} \in [0, \omega]$

Référence sur le temps de début

 $d(V', \mathbf{X}, \delta)$ tel que $\mathbf{X} \in [\alpha, \omega]$

Évaluation d'un groupe

Évaluation d'un groupe

- $0 < score_{r \neq f \neq rence} < 1$
- Score élevé : le groupe est plus dense que la majorité des groupes pour la référence considérée.

Créer le graphe statique.

- Créer le graphe statique.
- Détection des communautés du graphe statique, via Louvain.

- Créer le graphe statique.
- Détection des communautés du graphe statique, via Louvain.
- Transfert de la partition trouvée dans le flot de liens.

- Créer le graphe statique.
- Détection des communautés du graphe statique, via Louvain.
- Transfert de la partition trouvée dans le flot de liens.
- Application de la méthode d'évaluation pour garder certains groupes .

Applications

Jeux de données : plusieurs réseaux d'interactions.

Jeux de données	Nœuds	Liens	Durée
Rollernet	62	15803	3 heures
Socio Pattern	180	19774	9 jours
Reality Mining	94	44975	9 mois
Babouin	28	95616	14 jours

Différences de dynamique

Rollernet

Socio Pattern

Rollernet

15 minutes du flot de Rollernet.

Rollernet : étude d'un groupe

38 interactions entre 11 personnes pendant 5 minutes au début de la randonnée.

> 10 personnes étiquetées comme organisateurs à l'arrière de la randonnée

Rollernet : étude d'un groupe

score = 0.86

Rollernet : étude d'un groupe

Rollernet: résultats

Fort chevauchement topologique

Chevauchement temporel

Socio Pattern: étude d'un groupe

50 interactions entre 17 étudiants pendant environ \approx 15 minutes à 7h44.

15 personnes de la même classe

Socio Pattern: étude d'un groupe

Socio Pattern: étude d'un groupe

Socio pattern: résultats

Fort chevauchement topologique

Chevauchement temporel

Conclusions

En résumé

- La densité prend en compte le temps et la structure.
- Les références permettent d'évaluer la pertinence d'un groupe de liens.
- De nombreux groupes pertinents détectés dans tous les jeux de données.

Vers des partitions de flots de liens

Génération de flots de liens Modularité temporelle Tests du générateur Conclusions

Stochastic block model

Nœuds

Stochastic block model

Stochastic block model

Stochastic block model

39/48

Graphe généré

Génération par processus de Poisson non-homogènes indépendants

Génération par processus de Poisson non-homogènes indépendants

Génération par processus de Poisson non-homogènes indépendants

Génération par processus de Poisson non-homogènes indépendants

15 Temps

Génération par processus de Poisson non-homogènes indépendants

Ajout d'une durée à chaque lien si besoin

Modularité

Modularité d'un ensemble de nœuds V' dans un graphe G:

$$Q_G(V') = f(deg^{in}(V'), deg(V'))$$

Modularité

Modularité temporelle de V' dans un flot de liens sur l'intervalle $[\alpha', \omega']$:

$$Q_L(V', \alpha', \omega') = \int_{\alpha'}^{\omega'} f(deg_t^{in}(V'), deg_t(V')) dt$$

Méthodologie

Génération de flots de liens ayant une structure communautaire de liens.

Sur chaque flot de liens, évaluation par la modularité temporelle des trois partitions.

Test de trois configurations

Lorsque le chevauchement est trop important, la fonction de qualité n'est plus adaptée.

Conclusions

En résumé

- Génération de nombreuses structures de flots de liens.
- Une première fonction de qualité pour évaluer une partition de liens.
- Méthodes statiques parfois inefficaces pour détecter la vérité de terrain.

Conclusions

La modélisation sous la forme de flots de liens ... définition et implémentation

> ... permet de définir de nouveaux outils de mesure. description, détection et génération

Perspectives

- Extension du formalisme
 - Orientation
 - Poids non constant sur les liens
- Approfondissement des applications
 - Générations de flots de liens réalistes
 - Prédiction de liens
 - Récurrence de groupes pertinents
 - Fonctions de qualité locales

Fonctions de qualité locales

cohésion = nombreux chemins internes à la communauté

cohésion =

- nombreux chemins internes à la communauté
- nombreux cycles internes courts
- marcheurs aléatoires "piégés" à l'intérieur de la communauté

Merci!

Expected Nodes

Random graph with the same degree distribution.

Random sampling without replacement of 2|L| stub.

 B_u : random variable corresponds to how many time u is picked,

 $B_u \sim HyperGeom(2|E|, d(u), 2|L|)^{-1}$.

$$\mathbb{P}(B_u = 0) = \frac{\binom{2|E| - d(u)}{2|L|}}{\binom{2|E|}{2|L|}}$$

$$\mathbb{E}[|V(L)|] = \sum_{u \in V} 1 - \mathbb{P}(B_u = 0)\mu_G(m) = \sum_{u \in V} 1 - \frac{\binom{2|E| - d_G(u)}{2m}}{\binom{2|E|}{2m}}$$

^{1.} This can be approximate with a Binomial.

Génération de vérité de terrain

Transformation d'une couverture de nœuds vers une partition de liens

Nombre de nœuds et de communautés Durée du flot de liens Durée et intensité de l'activité d'une communauté Temps de début d'une communauté Densité du graphe d'affiliation

fixe variable fixe uniforme variable

Chevauchements temporel et topologique manipulables séparément

Modularité temporelle

Modularité dans un graphe G d'un ensemble de nœuds V_i

$$Q_{G}(V_{i}) = \frac{d_{in}(V_{i})}{2m} - \left(\frac{d(V_{i})}{2m}\right)^{2}$$

Modularité temporelle dans un flot de liens L d'un ensemble de nœuds V_i sur l'intervalle $[\alpha_i, \omega_i]$

$$Q_L(V_i, \alpha_i, \omega_i) = \int_{\alpha_i}^{\omega_i} \frac{d_{in}(t, V_i)}{d(t, V)} - \left(\frac{d(V_i, t)}{d(V, t)}\right)^2 dt$$

Résultat en fonction de delta

