CIVIFORM

CODING E ROBOTICA PER L'INNOVAZIONE SOCIALE

ROBOT

Dal ceco robota, lavoro pesante.

Usato dallo scrittore ceco Karel Čapek in un dramma teatrale del 1920 ad indicare degli umanoidi creati per svolgere i lavori più faticosi...

DEFINIZIONE

Apparato meccanico ed elettronico programmabile, impiegato nell'industria, in sostituzione dell'uomo, per eseguire automaticamente e autonomamente lavorazioni e operazioni ripetitive, o complesse, pesanti e pericolose.

By Manfred Werner - Tsui - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4762533

By Maggie Bartlett, National Human Genome Research Institute - http://www.genome.gov/dmd/img.cfm?node=Photos/Technology/Research%20laboratory4id=79299, Public Domain, https://commons.wikimedia.org/w/index.php?curid=37410189

By Robobotics - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=56206814

By | | | | | | | | | | - https://www.franciscanhealth.org/health-care-services/robotic-assisted-surgery-334, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70874369

By NASA - http://photojournal.jpl.nasa.gov/catalog/PIA14309, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17465432

mBot2

mBot2

mBot2 shield

compatible with a variety of external components ,and includes a built-in lithium-ion battery.

Quad RGB sensor

Four sensor probes support color recognition ,as well as basic and advanced line detection programs.

CyberPi

ESP32 microprocessor for wireless communication ,and compatibility with block-based and Python coding.

Ultrasonic Sensor 2

Object detection is accompanied with 8 programmable LEDs for an enhanced interaction.

Encoder Motors

1 degree detection accuracy ,distance traveled, and up to 200 RPM can be precisely controlled.

SENSORI

- joystick
- pulsanti
- microfono
- fotoricettore
- accelerometro/giroscopio
- sensore ultrasonico
- sensore di linea RGB

ATTUATORI

- striscia LED
- altoparlante
- display grafico 128x128 a colori
- 2 motori con encoder
- 8 LED blu (montati sul sensore ultrasonico)

CONTROLLO

CONTROLLO

CONTROLLO

CARATTERISTICHE

Basata su SOC ESP-32

• CPU: Xtensa® 32-bit LX6 dual-core

• Clock: 240MHz

• **ROM**: 448KB

• **RAM**: 520KB

• Mem. di massa: 8MB SPI Flash + 8MB PSRAM

CyberPi vs iPhone 12

	CyberPi	iPhone 12
core	2	6 + 4
parola (bit)	32	64
clock	240MHz	3.1Ghz
memoria RAM	520KB	4GB
capacità	16MB	64GB
display	1.4" 128×128	6.1" 2532×1170

AMBIENTE DI SVILUPPO

COLLEGAMENTI

FISICI

collegare CyberPi al PC con il cavo USB

LOGICI

- connettere mBlock a CyberPi
- selezionare una modalità tra UPLOAD/LIVE

MODALITÀ LIVE

Il programma viene eseguito in mBlock.

Quando incontra un blocco di pertinenza di CyberPi, mBlock invia la richiesta di esecuzione del comando al dispositivo e resta in attesa della risposta; ricevutala, prosegue con il programma.

MODALITÀ LIVE

PRO

- CyberPi può interagire con sprite e sfondo
- lo sviluppo del programma risulta più agevole

CONTRO

- l'esecuzione del programma è rallentata
- il programma risiede sul PC, non su CyberPi

joystick

pressed/pulled?
pressed/pulled counts
reset pressed/pulled counts

- joystick
- pulsanti A/B

pressed?
press counts
reset press counts

- joystick
- pulsanti A/B
- fotoricettore

ambient light intensity [0÷100]

- joystick
- pulsanti A/B
- fotoricettore
- microfono

loudness [0÷100]

FUNZIONI TIPICHE

fotoricettore

- regolazione automatica del contrasto
- attivazione di funzioni "notturne"
- ottimizzazione dell'esposizione alla luce

microfono

- registratore di suoni
- reazione a segnali audio
- riconoscimento vocale

SENSORI AVANZATI

- accelerometro/giroscopio
- sensore ultrasonico
- sensore di linea a colori

ACCELEROMETRO

Rileva l'accelerazione sugli assi x/y/z.

Se fermo si può determinarne l'orientamento.

Se in moto si può dedurre velocità e spostamento.

ACCELEROMETRO

GIROSCOPIO

Rileva la velocità angolare sugli assi x/y/z.

Usato per tracciare l'orientamento nel tempo (determinato integrando le velocità angolari).

Necessita di calibrazione.

DATI GREZZI

- accelerometro
 motion sensor x/y/z acceleration
- giroscopio

angle speed around x/y/z axis

"SENSOR FUSION"

Tecniche di integrazione dei dati provenienti da diversi sensori per ottenere dati più precisi, più affidabili o più semplici da interpretare.

Combinando i dati dell'accelerometro e del giroscopio si possono riconoscere movimenti come rotazioni, scuotimenti, urti e vibrazioni.

DATI INTEGRATI

```
accelerometro + giroscopio
tilted left, right, ... ?
wave, rotate, freefall, shaken?
shaking strength [0÷100]
waving direction [0÷100]
waving speed [0÷100]
```

MODALITÀ UPLOAD

Il programma viene eseguito in CyberPi.

Il programma a blocchi viene riscritto in Python. Il codice è visibile in mBlock ma non modificabile.

Il programma è trasmesso a CyberPi che lo salva al posto dell'ultimo programma usato e lo esegue.

MODALITÀ UPLOAD

Nella modalità **Upload** il sistema operativo di CyberPi è accessibile in ogni momento.

Il tasto **Home** richiama il menu principale.

MODALITÀ UPLOAD

PRO

- il programma risiede stabilmente su CyberPi
- il programma viene eseguito a velocità massima

CONTRO

- richiede ogni volta il trasferimento del codice
- l'ambiente di mBlock non è disponibile
- il numero di salvataggi ammessi è limitato

STRISCIA LED

LED RGB

- accendere la striscia LED di rosso
- accendere i LED per un tempo prefissato
- accendere i LED solo se il tasto B è premuto
- far lampeggiare la striscia LED
- controllare l'intensità luminosa dei LED
- far lampeggiare i LED alternativamente

COLORI RGB

ROSSO (RED)

VERDE (GREEN)

BLU (BLUE)

ROSSO + VERDE

GIALLO

VERDE + BLU

CIANO

ROSSO + BLU

MAGENTA

ROSSO + VERDE + BLU

BIANCO

- controllare il colore dei LED della striscia
- cambiare il colore dei LED a caso ogni secondo
- simulare un semaforo
- emulare un indicatore di direzione moderno
- realizzare l'animazione "supercar"

•

riprodurre il lampeggio della polizia

4 lampeggi blu "stroboscopici" (LED accesi per 20ms, spenti per 80ms) alternati sui due LED sinistro/destro

• riprodurre il lampeggio della polizia

4 lampeggi blu "stroboscopici" (LED accesi per 20ms, spenti per 80ms) alternati sui due LED sinistro/destro

Nella modalità LIVE i tempi non sono rispettati!

PROGRAMMAZIONE

IL PROGRAMMATORE

LINGUAGGIO NATURALE

Accendi i LED di rosso!

IL CONTROLLO

PROGRAMMAZIONE

Accendi i LED di rosso?!

svariate di migliaia di bit!

UN DIALOGO DIFFICILE!

Accendi i LED di rosso!

UN INTERPRETE IN AIUTO

LINGUAGGIO DI ALTO LIVELLO

LINGUAGGIO DI BASSO LIVELLO

UN PASSAGGIO INTERMEDIO

LINGUAGGIO INTERMEDIO

LINGUAGGIO INTERMEDIO

SCRITTURA DEL PROGRAMMA

TRADUZIONE "AL VOLO"


```
@event.start
def on_start():
    cyberpi.led.on(255, 0, 0, "all")
    time.sleep(1)
    cyberpi.led.on(0, 0, 0, "all")
```

TRASMISSIONE


```
@event.start
def on_start():
    cyberpi.led.on(255, 0, 0, "all")
    time.sleep(1)
    cyberpi.led.on(0, 0, 0, "all")
```

INTERPRETAZIONE

INTERPRETAZIONE

ATTUATORI DI BASE

- altoparlante
- display grafico

ALTOPARLANTE

- riproduce tracce audio
- emette note della scala temperata
- genera segnali in frequenza

Abbassare il volume! (5% è più che sufficiente)

• riprodurre i suoni precaricati

- riprodurre i suoni precaricati
- suonare la scala diatonica:

60 62 64 65 67 69 71 72

- riprodurre i suoni precaricati
- suonare la scala diatonica
- replicare la sirena della polizia:

G4 (67) per un secondo

E5 (76) per un sesto di secondo

G4 (67) per un sesto di secondo

E5 (76) per un sesto di secondo

- riprodurre i suoni precaricati
- suonare la scala diatonica
- replicare la sirena della polizia:

G4 (67) per un secondo

E5 (76) per un sesto di se var

G4 (67) per un sesto di Jecondo

E5 (76) per un sest di secondo

- riprodurre i suoni precaricati
- suonare la scala diatonica
- replicare la sirena della polizia
- suonare la melodia di "Tanti auguri"

- riprodurre i suoni precaricati
- suonare la scala diatonica
- replicare la sirena della polizia
- suonare la melodia di "Tanti auguri"

- riprodurre i suoni precaricati
- suonare la scala diatonica
- replicare la sirena della polizia
- suonare la melodia di "Tanti auguri"
- emettere dei "beep" a frequenza casuale

CONCORRENZA

Sappiamo riprodurre la sirena della polizia...
Sappiamo emulare il lampeggio della polizia...

CONCORRENZA

Sappiamo riprodurre la sirena della polizia...
Sappiamo emulare il lampeggio della polizia...

Lo si può fare in contemporanea!?

CONCORRENZA

Sappiamo riprodurre la sirena della polizia...
Sappiamo emulare il lampeggio della polizia...

Lo si può fare in con poranea!?

- 128×128 pixel, a colori
- tre modalità: testo, tabella e grafica
- fino a 8 etichette in sovrimpressione
- orientabile nelle quattro direzioni

Modalità testo

• 4 dimensioni di carattere

small, middle, big, super big

Modalità testo

- 4 dimensioni di carattere
- testo a dimensione fissa
- flusso organizzato in linee
- scorrimento automatico verso l'alto

Modalità tabella

- massimo 4 righe, 3 colonne
- dimensione del testo prefissata (middle)
- scorrimento orizzontale automatico dei testi

Modalità grafica

- grafico a linea o a barre verticali
- valori compresi nell'intervallo [0÷100]
- raggruppamento implicito per colore
- scorrimento orizzontale automatico delle tracce
- aggiornamento automatico delle barre