

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002288856 A

(43) Date of publication of application: 04.10.02

(51) Int. CI

G11B 7/09 G11B 7/135

(21) Application number: 2001091492

(22) Date of filing: 27.03.01

(71) Applicant:

SHARP CORP

(72) Inventor:

HAMAOKA OSAMU

(54) OPTICAL PICKUP

(57) Abstract:

PROBLEM TO BE SOLVED. To reduce the difference in diffraction efficiency between reflecting lights which pass through two areas formed in a hologram and the deterioration of tracking error signal TES characteristics.

SOLUTION: Grids with small meshes formed on each area 14a and 14b of the hologram 14 are formed to have the same interval and to be symmetrical to each other so that a division line dividing the area 14a and 14b may become an axis of symmetry. By this, the depth of each grid with small meshes at the areas 14a and 14b and the variation in grid angles are reduced, and at the same time, the intensity of each diffracted light to the main beam and the sub-beam, that is, the difference in diffraction efficiency, is reduced and the deterioration of the characteristics of the optical pickup can be prevented. Particularly, balance characteristics tracking error signal TES can be improved.

COPYRIGHT: (C)2002, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-288856 (P2002-288856A)

(43)公開日 平成14年10月4日(2002.10.4)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G 1 1 B 7/09 7/135 G11B 7/09

C 5D118

7/135

Z 5D119

審査請求 未請求 請求項の数5 OL (全 6 頁)

(21)出願番号

特願2001-91492(P2001-91492)

(71) 出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(22)出願日

平成13年3月27日(2001, 3, 27)

(72)発明者 檳岡 治

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 100078282

弁理士 山本 秀策

最終頁に続く

(54) 【発明の名称】 光ピックアップ

(57) 【要約】

【課題】 ホログラムに形成された2つの領域を透過する反射光間の回折効率の差を低減し、トラッキング誤差信号TESの特性の悪化を低減する。

【解決手段】 ホログラム14の各領域14a及び14bに形成された小間格子を、それぞれ同一の間隔、且つ、各領域14a及び14bを分割する分割線を対称軸とするように互いに対称になるように形成されているため、各領域14a及び14bにおける各小間格子の深さ、格子角度のバラツキが低減される。その際、主ビーム及び副ビームに対する各回折光の強度、すなわち回折効率の差が低減され、光ピックアップの特性が低下することを防止することができる。特に、トラッキング誤差信号TESにおけるバランス特性を向上させることができる。

【特許請求の範囲】

【請求項1】 光源と、光源から発せられる光を1つの . 主ビームと2つの副ビームの3つに分割する3分割光回 折手段と、記録媒体に照射されて反射する主ビーム及び 副ビームを、それぞれ所定の2方向にさらに分割するホ ログラムと、該ホログラムにより分割された各ビームを 受光する受光手段とを備えた光ピックアップであって、 該ホログラムは、各ビームを所定方向に回折する小間格 子を形成した2つの領域を有するとともに、各領域に形 成された小間格子は、それぞれ同一の間隔であって、し 10 かも、各領域を分ける分割線を対称軸とするように互い に対称になるように形成されていることを特徴とする光 ピックアップ。

【請求項2】 前記受光手段は、前記ホログラムの各領 域を分ける分割線を含むとともに、ホログラムに垂直な 平面に対して面対称になるように、各ビームをそれぞれ 受光する複数の受光部が設けられている、請求項1に記 載の光ピックアップ。

【請求項3】 前記受光手段は、前記各ビームの検出に 使用されない受光部を有する、請求項2に記載の光ピッ 20 クアップ。

【請求項4】 前記受光手段の各受光部は、前記ホログ ラムに対して等しい間隔を空けてそれぞれ配置されてい る、請求項2に記載の光ピックアップ。

【請求項5】 前記光源と前記3分割光回折手段と前記 ホログラムと前記受光手段とが、一体的に組み込まれて いる、請求項1~3のいずれかに記載の光ピックアッ プ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンパクトディス ク、ビデオディスク等の光ディスクシステムに使用され る光ピックアップに関し、特に、ホログラム素子一体型 半導体レーザ素子を備えた光ピックアップに関する。 [0002]

【従来の技術】半導体レーザ装置を備えた光ピックアッ プは、コンパクトディスク等の光ディスクに記録された。 情報を読み出すために使用される。光ピックアップで は、半導体レーザ装置から出射される光が、ホログラム 素子のトラッキングビーム生成用回折格子にて、1つの 40 ィスク1に照射される光の焦点が遠すぎる場合、図5 主ビーム及び2つの副ビームに分割されて、光ディスク 上に照射される。光ディスクにて反射された主ビーム及 び副ビームは、ホログラム素子のホログラムにより、そ れぞれをさらに2分割されて、受光素子または受光素子 付きの信号処理集積回路に与えられる。そして、信号処 理集積回路の出力信号に基づいて、光ディスクの記録信 号を正確に読み出すためのトラッキング情報信号等を得 ることができる。

【0003】図4は、従来の3ビーム法ホログラム光ピ ックアップの光学系を示す概略図である。

【0004】この光ピックアップは、半導体レーザチッ プ(LD)6を有し、この半導体レーザチップ6から出 射された光は、ホログラム素子(図示せず)の裏面に形 成されたトラッキングビーム生成用回折格子5により、 トラッキング用の2つの副ビームと情報信号読出し用の 1つの主ビームの3つの光に分離される。そして、この 光は、ホログラム素子の上面に設けられたホログラム4 を0次光として透過し、コリメートレンズ3で平行光に 変換された後、対物レンズ2によってディスク1上に集 光される。ディスク1上に集光された光は、ディスク1 上のピットによる変調を受けた後に反射される。ディス ク1にて反射された反射光は、対物レンズ2、コリメー トレンズ3を順次透過した後、ホログラム4によって同 折され、1次回折光として5分割フォトダイオード7に 導かれる。

【0005】この5分割フォトダイオード7は、5つの 光検出部D1~D5を有している。 5分割フォトダイオ ード7における光が照射される領域は、長方形状になっ ており、長手方向に沿った3つの帯状の領域が得られる ように3等分されており、両側の領域が第1及び第5の 光検出部D1及びD5になっている。中央部の帯状の領 域は、さらに長手方向に2等分されて、一方の領域が第 4光検出部D4になっている。他方の領域は、中央方向 に2等分されて、第2及び第3の光検出部D2及びD3 になっている。

【0006】ホログラム4は、格子周期が異なる2つの 領域4a及び4bを有しており、領域4aに入射した主 ビームの反射光は、5分割フォトダイオード7の第2光 検出部D2と第3光検出部D3との分割線上に、また、 領域4 bに入射した主ビームの反射光は、第4光検出部 D4に、それぞれ集光される。また、領域4 aに入射さ れた2つの副ビームの反射光は、両側の第1及び第5の 光検出部D1及びD5に集光されて、各光検出部D1及 びD5のそれぞれについて2つのビームスポットが形成 される。

【0007】上記のように、5分割フォトダイオード7 の各光検出部D1~D5に集光された反射光のビームス ポットは、ディスク1上に照射される光の集光状態に応 じて、図5に示すように変化する。図5 (a) は、光デ

(b) は焦点が合っている場合、図5 (c) は焦点が近 すぎる場合をそれぞれ示している。

【0008】5分割フォトダイオード7の各光検出部D 1~D5によって検出される出力をそれぞれS1、S 2、S3、S4、S5とすると、フォーカス誤差信号F ESは、第2光検出部D2及び第3光検出部D3の出力 差、

FES = S2 - S3

で与えられる。一方、トラッキング誤差はいわゆる3ビ 50 ーム法により検出される。トラッキング用副ビームは、

それぞれ光検出部D1、D5にそれぞれ集光されるの で、トラッキング誤差信号TESは、各光検出部D1及 びD5の出力差、

TES=S1-S5

で与えられる。また、再生用信号RFは、第2、3、4 の各光検出部 D2、D3、D4の出力の和、

RF = S2 + S3 + S4で与えられる。

[0009]

【発明が解決しようとする課題】従来の3ビーム法を用 10 いたホログラム光ピックアップでは、ホログラム4は、 格子周期が異なる2つの領域4a及び4bによって構成 されており、光ディスク1にて反射されて、ホログラム 4のそれぞれの領域 4 a 及び 4 b を透過する光の回折角 度がそれぞれ異なっている。したがって、領域4 a 及び 4 bを透過した光は、ホログラム4に対して一方の側方 に小さな角度及び大きな角度で回折される。

【0010】ホログラム4は、通常、フォトエッチング 技術を用いてパターン形成される溝部によって格子が作 製されるが、格子周期が異なる2つの領域4 a 及び4 b をパターン形成すると、それぞれのエッチングレート等 の相異によって、両領域4 a 及び4 b のそれぞれにおい て、溝の深さ、格子角度に差が生じる。

【0011】このような各領域4a及び4b間における 深さ、格子角度に相異が生じた場合、この差異は、主ビ ーム及び副ビームに対する各回折光の強度、すなわち回 折効率の差になって現れる。この結果、各光検出部D1 ~D5に入射する各反射光間の光強度にアンバランスが 生じ、トラッキング誤差信号TESにオフセットが発生 して、ホログラム光ピックアップの特性が悪化するおそ れがある。

【0012】本発明は、上記問題を解決するためになさ れたものであり、ホログラムに形成された2つの領域を 透過する反射光間の回折効率の差を低減し、トラッキン グ誤差信号TESの特性の悪化を低減し得る光ピックア ップを提供することを目的とする。

[0013]

【課題を解決するための手段】上記課題を解決するた め、本発明の光ピックアップは、光源と、光源から発せ られる光を1つの主ビームと2つの副ビームの3つに分 割する3分割光回折手段と、記録媒体に照射されて反射 する主ビーム及び副ビームを、それぞれ所定の2方向に さらに分割するホログラムと、該ホログラムにより分割 された各ビームを受光する受光手段とを備えた光ピック アップであって、該ホログラムは、各ビームを所定方向 に回折する小間格子を形成した2つの領域を有するとと もに、各領域に形成された小間格子は、それぞれ同一の 間隔であって、しかも、各領域を分ける分割線を対称軸 とするように互いに対称になるように形成されているこ とを特徴とするものである。

【0014】上記本発明の光ピックアップにおいて、前 記受光手段は、前記ホログラムの各領域を分ける分割線 を含むとともに、ホログラムに垂直な平面に対して面対 称になるように、各ビームをそれぞれ受光する複数の受 光部が設けられていることが好ましい。

【0015】上記本発明の光ピックアップにおいて、前 記受光手段は、前記各ビームの検出に使用されない受光 部を有することが好ましい。

【0016】上記本発明の光ピックアップにおいて、前 記受光手段の各受光部は、前記ホログラムに対して等し い間隔を空けてそれぞれ配置されていることが好まし

【0017】上記本発明の光ピックアップにおいて、前 記光源と前記3分割光回折手段と前記ホログラムと前記 受光手段とが、一体的に組み込まれていることが好まし ٧١₀

[0018]

【発明の実施の形態】以下、本発明の光ピックアップに ついて、図面に基づいて説明する。

【0019】図1は、本発明に係る光ピックアップの光 学系を示す概略図である。

【0020】この光ピックアップは、所定の光を発光す る半導体レーザチップ16を有しており、この半導体レ ーザチップ16から出射された光は、ホログラム素子 (図1において、図示せず) の裏面に形成されたトラッ キングビーム生成用回折格子15により、トラッキング 用の2つの副ビームと情報信号読み出し用の1つの主ビ ームの3つに分離される。この3つのビーム光は、ホロ グラム素子の上面に設けられたホログラム14を0次光 として透過し、コリメートレンズ13により平行光に変 換された後、対物レンズ12によってディスク11上に 集光される。ディスク11上に集光された光は、ディス ク11上に形成されたピットによる変調を受けた後に反 射され、ディスク11から反射された反射光は、対物レ ンズ12、コリメートレンズ13を順次透過した後、ホ ログラム14によて回折され、1次回折光として5分割 フォトダイオード17上に導かれる。

【0021】ホログラム14は、円形状に形成されてお り、この円の直径方向に沿った分割線により均等な2つ の半円形の領域14a及び14bを有している。各領域 14a及び14bは、それぞれ同一の格子周期を有する 小間格子が形成されている。各領域14a及び14bに 形成された小間格子は、領域14a及び14bを分割す る分割線に対して対称に形成されており、したがって、 各領域14a及び14bの小間格子の格子間隔は等しく なっている。このため、ホログラム14の各領域14 a 及び14bを透過する反射光は、ホログラム14を各領 域14a及び14bに分ける分割線を含み、且つ、ホロ グラム14に対して垂直な面に対して対称になるよう

50 に、等しい角度にて同方に回折される。これにより、ホ

ログラム14の各領域14a及び14bを透過した光は、一次回折光となって、2方向に分離される。

【0022】図2は、反射光が入射される5分割フォトダイオード17の各光検出部D1~D5の配置を示す平面図である。

【0023】各光検出部D1~D5は、1つの主ビーム 及び2つの副ビームのそれぞれがホログラムにおける2 つの領域4a及び4bにより2方向に分離されて進行す る各一次回折光が入射する位置を考慮して配置されてい る。第1~第5の各光検出部D1~D5は、ホログラム 10 14における各領域14a及び14bに2分割する分割 線とは直交する方向に順番に並んで、同一平面上に配置 されており、領域14aを透過した2つの副ビームそれ ぞれが照射される第1及び第5の光検出部D1及びD5 は、両側にそれぞれ配置されている。第1光検出部D1 には、ホログラム14の領域14aを透過した主ビーム が照射される一対の第2及び第3の光検出部D2及びD 3が隣接して配置されており、また、第5光検出部D5 には、ホログラム14の領域14 bを透過した主ビーム が照射される第4光検出部D4が配置されている。第1 及び第5の光検出部D1及びD5は、それぞれ、副ビー ムの回折された方向に沿って長くなった平行四辺形状に 形成されており、ホログラム14の分割線を含むととも に、ホログラム14に垂直な面に対して相互に対称な形 状になっている。したがって、ホログラム14から離れ るにつれて第1及び第5の光検出部D1及びD5の間隔 が大きくなっている。第5光検出部D5に隣接して配置 された第4光検出部D4は、第5光検出部D5と同様の 平行四辺形状になっており、第2及び第3の光検出部D 2及びD3は、ホログラム14の分割線を含むとともに ホログラム14に垂直な面に対して、第4光検出部D4 とは対称な平行四辺形を幅方向に二等分した平行四辺形 状にそれぞれ形成されている。

【0024】また、第3及び第4の光検出部D3及びD4の間には、各光検出部D1~D5の出力に影響を及ぼす迷光を発生させないようにするため、主ビーム及び副ビームの検出に使用されない光検出部D×が設けられている。光検出部D×は、第3及び第4の光検出部D3及びD4の間の領域を埋めるように、ホログラム14から離れるにつれて幅方向側が大きくなった台形状になっている。

【0025】各光検出部D1~D5の長手方向の長さは、光源が温度変化することによって、出射する光に波長変動が生じても各光検出部D1~D5に所望の出力が得られるように、反射光の波長変動による入射位置の変動範囲よりも長くなるように設定されている。ただし、必要以上にこの長さを長くした場合には、各光検出部D1~D5における容量成分が大きくなって、応答速度が低下するため、取り付け精度を勘案した上で適度な長さに設定される。また、各光検出部D1~D5が、それぞ

れ平行四辺形状に形成されているために、それぞれの平行四辺形の長手方向と同方向に長くなった長方形状に各 光検出部D1~D5を形成した場合に比べて、無駄な領域が減少し、アンプ回路等の周辺回路を配置し易くする ことができる。

【0026】ディスク1から反射された反射光の主ビー ムは、ホログラム14の各領域14a及び14bを透過 することにより、各領域14a及び14bを分割する分 割線に対して対称な方向に回折されて、それぞれ、5分 割フォトダイオード17の第2及び第3の光検出部D2 及びD3の間、第4光検出部D4に、それぞれ、ビーム スポットを形成する。また、2つの副ビームは、ホログ ラム14の各領域14a及び14bを透過することによ り、各領域14a及び14bを分割する分割線に対して 対称な方向に回折されて、それぞれ、5分割フォトダイ オード17の両側に位置する第1及び第5の光検出部D 1及びD5にビームスポットを、それぞれ形成する。 【0027】このように、本発明の光ピックアップで は、光ディスク11から反射された反射光を2分割する ホログラム14において、2つの格子領域14a及び1 4 bの格子間隔が等しくなっているため、各格子領域1 4 a 及び 1 4 b 間において、各小間格子の深さ、格子角 度のバラツキが低減され、主ビーム及び副ビームに対す る各回折光の強度、すなわち回折効率の差が低減され る。この結果、光ピックアップの特性の悪化を改善する ことができる。特に、トラッキング誤差信号TESにお けるバランス特性を向上させることができる。

【0028】図3は、光ピックアップの具体的な構造の一例を説明する概略図である。

30 【0029】この光ピックアップでは、図示しない光ディスク装置本体に複数のリードピン21によって支持された平板状のステム20を有している。ステム20の表面上の所定位置には、半導体レーザチップ16、5分割フォトダイオード17がそれぞれ取り付けられている。この半導体レーザチップ16及び5分割フォトダイオード17は、それぞれ、図示しない配線によって、光ディスク装置本体に接続されている。ステム20の上面には、半導体レーザチップ16及び5分割フォトダイオード17の周囲を覆って遮光する中空のキャップ19が設切られ、このキャップ19の上面には、下面側にトラッキングビーム生成用回折格子15、上面側にホログラム14が、それぞれ設けられたホログラム素子22が設けられている。

【0030】このように、光ピックアップを、ホログラム素子22、レーザダイオード16、フォトダイオード17等の各構成を一体的に組み込んだパッケージとすれば、光ピックアップの小型化を図ることができるとともに、その製造工程を簡略にすることができる。

[0031]

【発明の効果】本発明の光ピックアップでは、ホログラ

ムが、光を所定方向に回折する小間格子を形成した2つの領域を有するとともに、各領域に形成された小間格子は、それぞれ同一の間隔、且つ、各領域を分ける分割線を対称軸とするように互いに対称になるように形成されているため、各領域における小間格子の深さ、格子角度のバラツキが低減される。その際に、主ビーム及び副ビームに対する各回折光の強度、すなわち回折効率の差が低減され、光ピックアップの特性が低下することを防止することができる。特に、トラッキング誤差信号TESにおけるバランス特性を向上させることができる。

【図面の簡単な説明】

【図1】本発明の光ピックアップの光学系を示す概略図 である。

【図2】5分割フォトダイオード7の各光検出部D1~D5の配置を示す平面図である。

【図3】本発明の光ピックアップの具体的な構造の一例 を説明する概略図である。

【図4】従来の光ピックアップの光学系を示す概略図で

ある。

【図5】(a)~(c)は、それぞれ、従来の5分割フォトダイオード7の各光検出部D1~D5の配置を示す平面図であり、(a)は焦点が遠すぎる場合、(b)は焦点が合っている場合、(c)は焦点が近すぎる場合をそれぞれ示している。

【符号の説明】

- 11 ディスク
- 12 対物レンズ
- 0 13 コリメートレンズ
 - 14 ホログラム
 - 15 トラッキングビーム生成用回折格子
 - 16 半導体レーザチップ
 - 17 5分割フォトダイオード
 - 19 キャップ
 - 20 ステム
 - 21 リードピン
 - 22 ホログラム素子

【図1】

【図2】

【図3】

【図4】

【図5】

(c) 近すぎ

フロントページの続き

F ターム(参考) 5D118 AA18 BA01 CC15 CD03 CF08 CF11 CF16 CG04 CG24 DA20 DA33 DA42 DB02 DB16 DB18 5D119 AA29 BA01 EA02 EC41 FA30 FA36 JA22 JA24 KA04 KA15 KA20 KA21 KA25 LB04 LB05 LB07