Turing Machines

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Spesifikasi: 2 sifat penting

- Mampu mendeskripsikan segala komputasi.
 - Setingkat komputer tetapi tidak seterbatas FSM/PDA
- Sederhana, agar penjelasan formal dapat dilakukan.
 - Sesederhana FSM/PDA, tapi tidak seperti sekompleks komputer

Manfaat dan Masalah Stack

- Adanya stack meningkatkan secara signifikan kemampuan suatu FSM, dari hanya mengenali Bahasa Reguler ke bahasa Context Free.
 - Namun, mekanisme LIFO pada stack masih membatasi kemampuan komputasinya.
- Perlu struktur yang menggantikan stack sehingga
 - memungkinkan mengakses isi storage tersebut secara lebih fleksibel.
 - memungkinkan akses suatu data dalam storage tanpa mengganggu data pada posisi lainnya.

Definisi Intuitif: Turing Machines

- Bayangkan suatu FSM yang dilengkapi storage berbentuk tape
 - **Tape** berbentuk **linear**, setiap posisi, atau **square**, terurut dari kiri ke kanan,
 - Setiap posisi dapat menyimpan satu simbol tape atau kosong (□),
 - **Kapasitas** (panjang tape) tak berhingga (tidak berujung baik di kiri maupun di kanan).
- Read/write dilakukan melalui sebuah head
 - Head bergerak secara sikuensial dari satu posisi ke posisi berikutnya (arah R)/sebelumnya (arah L).

Mekanisme Komputasi

- Komputasi dilakukan menurut current state, current data tape (pada head), untuk bertransisi ke next-state, meng-update isi tape (pada head), arah pemindahan head.
- Dengan adanya tape, input string <u>bisa diasumsikan</u> <u>sudah langsung ditaruh di dalam tape</u>, sehingga mesin segera bekerja pada tape.
- Di konfigurasi awal dibuat konvensi: head berada di posisi kosong tepat sebelum simbol terkiri string input pada tape.

Definisi Formal: Turing Machines

- Suatu Turing Machine M adalah 6-tuple (K, Σ , Γ , δ , s, H), dimana:
 - *K*: himpunan terbatas **status**.
 - Σ : alfabet input yang tidak berisi \square
 - Γ : alfabet tape, termasuk Σ dan \square
 - s: status mulai
 - *H*: himpunan **status halting**, $H \subseteq K$
 - δ: **fungsi transisi**, yang memetakan:

$$(K-H) \times \Gamma \rightarrow K \times \Gamma \times \{\rightarrow, \leftarrow\}$$
 non-halting tape symbol state tape symbol aksi head

• Note: definisi TM deterministik

Fungsi Transisi δ

- Suatu transisi $((q_0, a), (q_1, b, A)) \in \delta$
 - menyatakan dari
 - current state q_0 ,
 - saat head membaca a dari tape (pada posisi head),
 - Bertransisi menjadi
 - Next state q_1 ,
 - sambil mengubah tape (pada posis head) **menjadi** b, serta **bergerak ke arah** A, yaitu satu posisi ke kiri (" \leftarrow ") atau ke kanan (" \rightarrow ").
- δ adalah fungsi, berarti mesin bersifat **deterministik**, dan setiap kemungkinan (q, a) harus terdefinisi.
 - Karena sejumlah (q, a) tidak akan terjadi, untuk kejelasan pembacaan, seringkali itu disembunyikan.

Pengertian "simbol "

- Setiap posisi tape "berisi satu simbol tape" $x \in \Gamma$ ($x \ne \Box$), atau "kosong".
 - Jika disebut kosong, maka kenyataan yang sebenarnya, posisi tape tersebut berisi simbol "□" (blank).
 - Jika disebutkan tape hanya berisi string α, maka kenyataan yang sebenarnya, yang lainnya berisi "□".
- Active tape: isi tape dari non-blank terkiri hingga nonblank terkanan, di tambah beberapa blank di luar itu yang terkait beroperasinya mesin tsb.
 - Selama komputasi, bagian tape yang kosong yang lain tidak perlu diperhatikan.

Contoh (Deskripsi Masalah)

- TM M yang dapat memproses input string dari $\{a^ib^j: 0 \le j \le i\}$ dengan menambahkan sejumlah b di belakang string agar menjadi a^ib^i .
- Saat mulai, isi tape sebagai berikut:

• Saat halt isi tape menjadi:

- Tanda panah menunjukkan posisi head
- Untuk contoh ini string input <u>diasumsikan selalu benar</u> $\{a^ib^j: 0 \le j \le i\}$

Contoh (Operasi pada M)

- Pindahkan head ke kanan satu posisi, jika simbol di bawah head adalah □, maka halt
- Dalam loop:
 - Tandai (sebenarnya ganti) setiap a dengan \$.
 - Scan ke kanan menemukan b atau □
 - Jika b, tandai (sebenarnya ganti) dengan #, kemudian siap balik ke kiri.
 - Jika □, berarti b habis, tetapi masih ada a tersisa, maka tuliskan # dan siap balik ke kiri.
 - Bali ke kiri untuk menemukan a atau □,
 - jika a kembali ke awal loop,
 - jika □, semua a sudah ditangani, maka halt.
- Lakukan pass terakhir untuk mengganti \$ ke a, dan # ke b.

Contoh (Mesin M)

- $M = (\{1,2,3,4,5,6\}, \{a,b\}, \{a,b,\Box,\$,\#\}, \delta, 1, \{6\}), \text{ dengan } \delta$ $((1, \square), (2, \square, \rightarrow)), ((1, a), (2, q, \rightarrow)), ((1, b), (2, q, \rightarrow)), ((1, a), (2, q, \rightarrow)), ((1, a)$ $(2, \$, \rightarrow)), ((1, \#), (2, \#, \rightarrow)),$ $((2, \square), (6, \$, \rightarrow)), ((2, a), (3, \$, \rightarrow)), ((2, b), (3, \$, \rightarrow)), ((2, a), (3, \$, \rightarrow)), ((2, b), (3, \$, \rightarrow)), ((2, a), (3, \$, \rightarrow)), ((2, b), (3, \$, \rightarrow)), ((2, b)$ $(3, \$, \rightarrow)), ((2, \#), (3, \$, \rightarrow)),$ $((3, \square), (4, \#, \leftarrow)), ((3, a), (3, a, \rightarrow)), ((3, b), (4, \#, \leftarrow)), ((3, a), (3, a), (3,$ $(3, \$, \rightarrow)), ((3, \#), (3, \#, \rightarrow)),$ $((4, \Box), (5, \Box, \rightarrow)), ((4, a), (3, \$, \rightarrow)), ((4, \$), (4, \$, \leftarrow)), ((4, \Box), ($ #), $(4, \#, \rightarrow)$), $((5, \Box), (6, \Box, \rightarrow)), ((4, a), (3, \$, \rightarrow)), ((5, \$), (5, a, \leftarrow)), ((5, \Box, (5, a), (5, a), (5, a), (6, a$ #), $(5, b, \rightarrow))$
- Note: 6 merupakan halting state maka transisi untuk 6 tidak perlu didefinisikan.

Halting, Crash atau Forever Loop

- Mesin **berhenti** jika:
 - Mencapai status halt (status khusus untuk menyatakan mesin berhenti).
 - Terpaksa berhenti (crash) karena transisi untuk konfigurasi saat ini (status dan isi tape pada head) tidak terdefinisi.
- Mesin bisa **tidak pernah berhenti** (karena *forever-loop*)
 - Tidak dapat mencapai halt maupun crash.
 - Karena **kesalahan logika** dalam pendefinisian transisi atau karena *nature of its related problem* sendiri (tidak ada mesin ekivalen yang bisa halt/crash).

Konfigurasi

- Saat komputasi **konfigurasi** mesin dinyatakan sebagai (q, α, x, β) atau $(q, \alpha \underline{x}\beta)$ dengan
 - q: current state
 - α: string isi tape di kiri posisi head
 - X: simbol tape pada posisi head
 - β: string isi tape di kanan posisi head
 - $\alpha \underline{x} \beta$ isi active tape
- **Konfigurasi awal**: (s, $\underline{\square}\gamma$), start state s, dan head berada pada square kosong tepat disamping kiri string.
- Halting configuration: jika q merupakan status halting.

Yields dan Komputasi

- **Yield in one step**: untuk mesin TM M, relasi antara konfigurasi C_1 dan C_2 dimana C_2 dicapai dari C_1 setelah satu kali transisi, ditulis $C_1 \vdash_M C_2$.
- **Yields**: untuk mesin TM M, reflexive, transitive closure dari \vdash_M , ditulis \vdash^*_M
- **Path**: dari mesin TM M, adalah suatu sikuens C_0, C_1, C_2, \ldots dengan C_0 adalah **konfigurasi awal**, apabila terjadi $C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \ldots$
- **Komputasi**: dari mesin TM M, adalah suatu path C_0 , C_1 , ..., C_n , untuk $n \ge 0$, dengan Cn adalah **halting** configuration.
 - Disebut komputasi halt dalam n langkah, $C_1 \vdash_M^n C_n$

Contoh

- Untuk contoh menambahkan b sebelumnya, jika input string aaab, TM ybs menghasilkan komputasi:
- $(1, \square aaab \square \square) \vdash (2, \square aaab \square \square) \vdash (3, \square \$aab \square \square)$ \vdash (3, \Box \$aab \Box \Box) \vdash (3, \Box \$aab \Box \Box) \vdash (4, \Box \$aa# \Box \Box) \vdash (3, \Box \$a\$# \Box \Box) \vdash (3, \Box \$a\$# $\underline{\Box}$ \Box) \vdash (4, \Box \$a\$## \Box) \vdash (4, \Box \$a\$## \Box) \vdash (4, \Box \$a\$## \Box) \vdash (3, \Box \$\$\$## \Box) \vdash (4, \Box \$\$\$###) \vdash (4, \Box \$\$\$###) \vdash (4, \Box \$\$\$###) \vdash (4, \Box \$\$\$###) \vdash (5, \Box \$\$\$###) \vdash (5, \Box a\$\$###) \vdash (5, \Box aaabb#) \vdash (6, \Box aaabbb \Box)