linkedin.com/in/eliot-heinrich-36200a67

Eliot Heinrich

51 Cushing St, Waltham MA 802-310-1278 eliotheinrich.github.io

Summary

Ph.D. candidate in physics specializing in quantum simulation, with strong experience in C++/Python software engineering, high performance computing, and published research in quantum information science. Skilled in building scalable quantum libraries, collaborating across scientific teams, and technical writing.

Education

Boston College

Chestnut Hill, MA

Physics (Masters, Ph.D), GPA: 3.95

Aug. 2020 – May 2026

University of Vermont

Burlington, VT

Physics (BS), Computer Science (BS), Mathematics (BS), GPA: 3.91

Sept. 2016 - May 2020

Experience

Quantum Simulation Research (PI: Xiao Chen)

Chestnut Hill, MA

Graduate student

Sept. 2022 – Present

- Developed and maintained modular and efficient framework for large-scale quantum trajectory simulations in C++ with Python API. Stabilizer and matrix product state simulators typically outperform standard libraries (i.e. Qiskit) on similar single-shot tasks by 3-10x.
- Studied dynamic phase transitions characterized by entanglement, participation entropy, stabilizer entropy, and other nonlinear quantities.

Boston College Research Services (High Performance Computing)

Chestnut Hill, MA

High performance computing research assistant

Jan. 2023 – Present

- Collaborated with 35+ interdisciplinary research groups to design optimized HPC workflows, deploy custom modules, and accelerate large-scale simulations.
- Wrote and deployed automated scripts for aggregating and visualizing cluster usage data for monthly report to cluster policy committee.
- Wrote documentation for cluster policies and best practices.

MIT Lincoln Laboratory (Group 89)

Lexington, MA

Quantum theory/software summer intern

June 2022 – Aug. 2022

- Interned with Quantum Information & Integrated Nanosystems group to develop and benchmark algorithms for simulations of quantum circuits in C++ and Python.
- Developed sparse-vector based C++ backend, extending simulation error model to include leakage errors in quantum circuit models and integrated into existing code base.

Recent Publications

E. Heinrich et al, *Critical slowing of participation and stabilizer entropy in non-unitary quantum circuit dynamics,* (in preparation)

E. Heinrich et al, *Measurement induced phase transitions in quantum raise and peel models*, Phys. Rev. B (2024).

Skills

- High performance parallelized computing, open-source software, Linux, C++, Python, Rust, Git/GitHub, LaTeX
- Numerical methods/algorithms for large-scale physics simulations and data visualization
- Markov-chain Monte Carlo techniques for microscopic models of magnetism