Gaussian Process regression (Krigin)

Georgios Karagiannis

Department of Mathematics, Purdue

July 8, 2016

SURF 2016

Why is it useful in UQ?

E.g.:consider the framework of Computer Experiments:

• There is an expensive Simulator that describes a Physical procedure

Catalytic Conversion of Nitrate to Nitrogen

2 / 23

Why is it useful in UQ?

It can be used as an emulator (probabilistic surrogate) in:

- Prediction of the output of expensive simulators (***)
- Optimization of expensive objective functions
- Sensitivity Analysis in expensive simulators
- Uncertainty Propagation in expensive simulators

Preliminaries

Multivariate Normal distribution (I)

Notation

$$f \sim N_n(\mu, \Sigma), \quad f := (f_1, ..., f_n)^T$$

Mean (vector)

$$\boldsymbol{\mu} := (\mathsf{E}(f_1), ..., \mathsf{E}(f_n))^\intercal, \qquad \ \, \boldsymbol{\mu_i} = \mathsf{E}(f_i)$$

Covariance (matrix)

$$\Sigma = \begin{bmatrix} \mathsf{Cov}(f_1, f_1) & \cdots & \mathsf{Cov}(f_1, f_n) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(f_n, f_1) & \cdots & \mathsf{Cov}(f_n, f_n) \end{bmatrix},$$

 $\Sigma_{i,i'} = \mathsf{Cov}(f_i, f_{i'})$

Multivariate Normal distribution (II)

Notation

$$f \sim N_n(\mu, \Sigma), \quad f := (f_1, ..., f_n)^{\mathsf{T}}$$

Density function

$$\mathsf{N}_n(f|\mu,\Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp(-\frac{1}{2}(f-\mu)^\mathsf{T}\Sigma^{-1}(f-\mu))$$

Cumulative function

$$\Pr(f \leqslant U|\mu, \Sigma) = \int_{-\infty}^{U} N_n(f|\mu, \Sigma) df$$

Georgios Karagiannis (Department of Ma Gaussian Process regression (Krigin)

Multivariate Normal distribution (III)

lf

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \sim \mathsf{N}_{n_1 + n_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12}^\intercal \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix} \right)$$

then conditioning implies

$$f_1|(f_2=t) \sim N_{n_1}(\mu_{1|2}, \Sigma_{1|2})$$

where

$$\mu_{1|2} = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} (t - \mu_2)$$

$$\boldsymbol{\Sigma}_{1|2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\intercal}$$

Gaussian process (GP)

Definition GP is a collection of random variables $\{f(x); x \in \mathcal{X}\}$, indexed by label x, where any finite collection of those variables has a multivariate normal distribution

Namely We denote the GP as

$$f(\cdot) \sim \mathsf{GP}(\mu(\cdot), c(\cdot, \cdot))$$

with mean

$$\mu(x) := \mathsf{E}(f(x))$$

and covariance function

$$c(x,x') := \mathsf{Cov}(f(x),f(x'))$$

Notes Essentially, GP is a distribution defined over functions GP is specified by its mean and covariance functions.

Gaussian process regression (Krigin)

The prior GP model

Prior information about $f(\cdot)$ is represented as a GP, as:

$$f(\cdot)|\beta, r, \tau^2, \sigma^2 \sim \mathsf{GP}(\mu_0(\cdot), c_0(\cdot, \cdot)),$$

with

mean function

$$\mu_0(x) = \sum_{k=0}^{p} \beta_k h_k(x) = h^{\mathsf{T}}(x)\beta$$

E.g.,
$$\mu_0(x) = \beta_0 + \beta_1 x^1 + \beta_2 x^2 + \dots + \beta_p x^p$$

covariance function

$$c_0(x, x') := \tau^2 \prod_{j=1}^d R_j(x_j, x_j'|r_j) + \delta_{x,x'}g$$

Some $R(x, x'|\psi)$ leading to valid covariance functions

Gaussian covariance functions:

$$R(x, x'|r) = \exp(-\frac{1}{2} \frac{|x - x'|^2}{r^2})$$

Exponential covariance function

$$R(x, x'|r) = \exp(-\frac{|x - x'|}{r})$$

Matern covariance function

$$R(x, x'|r) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\frac{\sqrt{2\nu}|x - x'|}{r})^{\nu} K_{\nu} (\frac{\sqrt{2\nu}|x - x'|}{r})$$

 K_v modified Sobol function, for v = 3/2, 5/2, ...

Running example

The statistical model (likelihood function)

• Suppose available training data-set $D = \{(x_i, y_i); i = 1, ..., n\}$

$$y_{i} = \underbrace{f(x_{i})}_{f(\cdot) \sim \mathsf{GP}(\mu_{0}(\cdot), c_{0}(\cdot, \cdot))} + \underbrace{\epsilon_{i}}_{\epsilon_{i} \sim \mathsf{N}(0, \sigma^{2})}$$

The statistical model (likelihood function)

• Suppose available training data-set $D = \{(x_i, y_i); i = 1, ..., n\}$

$$y_i = \underbrace{f(x_i)}_{f(\cdot) \sim \mathsf{GP}(\mu_0(\cdot), c_0(\cdot, \cdot))} + \underbrace{\epsilon_i}_{\epsilon_i \sim \mathsf{N}(0, \sigma^2)}$$

• The joint distribution of **y** (a.k.a. likelihood function) is

$$\mathcal{L}(\mathbf{y}|\beta, r, \tau^2, \sigma^2) = \mathsf{N}_n(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{C} + \mathbb{I}_n \sigma^2)$$
$$\mathbf{y} = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\mathsf{T};$$
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_0(x_1) & \cdots & \mu_0(x_n) \end{bmatrix}^\mathsf{T};$$

$$\boldsymbol{C} = \begin{bmatrix} c_0(x_1, x_1) & \cdots & c_0(x_1, x_n) \\ \vdots & \ddots & \vdots \\ c_0(x_1, x_n) & \cdots & c_0(x_n, x_n) \end{bmatrix}$$

Towards a probabilistic surrogate model

• Let f(x) & f(x') be 'future' function values at inputs x & $x' \in \mathcal{X}$.

• Then joint distribution of $(f(x), f(x'), y)^{\mathsf{T}}$ is

$$\begin{bmatrix} f(x) \\ f(x') \\ \mathbf{y} \end{bmatrix} \sim \mathsf{N}_{n+2} \left(\begin{bmatrix} \mu_0(x) \\ \mu_0(x') \\ \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} c_0(x,x) & c_0(x,x') & \boldsymbol{c}(x)^\mathsf{T} \\ c_0(x',x) & c_0(x',x') & \boldsymbol{c}(x')^\mathsf{T} \\ \boldsymbol{c}(x) & \boldsymbol{c}(x') & \boldsymbol{C} + \mathbb{I}\sigma^2 \end{bmatrix} \right)$$

where
$$c(x) = (c_0(x, x_i); i = 1, ..., n)^T$$

→ □ ▶ → □ ▶ → □ ▶ → □ ● → ○○○

The Posterior GP model (probabilistic surrogate model)

By conditioning on \mathbf{y} , it can be shown that $f(\cdot)|D,\beta,L,\tau^2,\sigma^2$ is a GP

$$f(\cdot)|D,\beta,r,\tau^2,\sigma^2\sim\mathsf{GP}(\mu_n(\cdot),c_n(\cdot,\cdot))$$

with ...

The Posterior GP model (probabilistic surrogate model)

By conditioning on \mathbf{y} , it can be shown that $f(\cdot)|D, \beta, L, \tau^2, \sigma^2$ is a GP

$$f(\cdot)|D,\beta,r,\tau^2,\sigma^2 \sim \mathsf{GP}(\mu_n(\cdot),c_n(\cdot,\cdot))$$

with ...

mean function

$$\mu_n(x) = \mu_0(x) + \boldsymbol{c}(x)(\boldsymbol{C} + \mathbb{I}\sigma^2)^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$

covariance function

$$c_n(x,x') = c_0(x,x') + \boldsymbol{c}(x)(\boldsymbol{C} + \mathbb{I}\sigma^2)^{-1}\boldsymbol{c}(x')^{\mathsf{T}}$$

Recall:
$$\boldsymbol{\mu} = (\mu_0(x_1), ..., \mu_0(x_n))^{\mathsf{T}},$$

 $\boldsymbol{C} = (c_0(x_i, x_j); i = 1, ..., n, j = 1, ..., n)$

 $\mathbf{c}(x) = (c_0(x, x_1), ..., c_0(x, x_n))^{\mathsf{T}}$

15 / 23

Running example

How to train the GP regression?

How to learn β , r, τ^2 , σ^2 ?

Classical statistical inference:

E.g by Maximum Likelihood Estimation (MLE):

$$(\hat{\beta}, \hat{r}, \hat{\tau}^2, \hat{\sigma}^2) = \arg\min_{\forall (\beta, \ell, \tau^2, \sigma^2)} (-2\log(\mathcal{L}(\mathbf{y}|\beta, r, \tau^2, \sigma^2)))$$

- Bayesian statistical inference:
 - By Maximum A posteriori Estimation (MAP)
 - By evaluating the posterior distributions

Here, we focus on MLE ... easier to digest

Running example

Mean $\mu_n(\cdot)$: Estimate (Intercept) 0.3460

Covariance $c_n(\cdot, \cdot)$: Type : Matern v = 5/2

Estimate \hat{r} : 0.2846 Variance $\hat{\sigma}^2$: 0.6674608

Nugget effect \hat{g} : 1e-07

How to assess the GPR model?

Check for:

Normality assumption

• Goodness of fit

Predictive ability

Compare different models (Eg. Gauss vs Matern cov. funct.)

Leave-one-out Cross Validation (LOO-CV)

For i = 1, ..., n:

- Train the GP regression model against data-set $D^{(-i)} = \{(x_i, y_i); \forall i \neq i\}$
- 2 Predict \hat{y}_i at input x_i , based on the GP regression model
- **3** Compute a performance criterion ($C_i = C(\hat{y}_i, y_i)$) measuring how close your predictions (\hat{y}_i) to the real values (y_i) are.
 - E.g.: R², MSE, MAE

Compute the cross validation criterion, as $CV = \frac{1}{n} \sum_{i=1}^{n} C_i$

Performance criteria

Coefficient of determination :

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- The percentage of the total variation explained by the predictions
- Root mean squared error :

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|^2}$$

- penalizes larger differences
- Mean absolute error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

more robust to outlines

Running example

		LOO-CV criterion			
			R2	RMSE	MAE
GPR	Model	Gaussian	0.99	0.03	0.01
		Exponential	0.45	0.29	0.21
		Matern 5/2	0.96	0.07	0.04

Table: Model comparison

And now,

let's practice ...