多変量解析

第11回 主成分分析

萩原•篠田 情報理工学部

主成分分析

学力の特徴(分布)を少ない変数(主成分)で表現できないか?

第1主成分 $z_1 = 0.487u_1 + 0.511u_2 + 0.508u_3 + 0.493u_4$ 総合的学力 第2主成分 $z_2 = 0.527u_1 + 0.474u_2 - 0.481u_3 - 0.516u_4$ 文系·理系志向

 u_1, u_2, u_3, u_4 は x_1, x_2, x_3, x_4 を標準化した変数

生徒No.	国語 x ₁	英語 X ₂	数学 x ₃	理科 x ₄
1	86	79	67	68
2	71	75	78	84
3	42	43	39	44
4	62	58	98	95
5	96	97	61	63
6	39	33	45	50
7	50	53	64	72
8	78	66	52	47
9	51	44	76	72
10	89	92	93	91

<u>寄与率</u> 第1主成分: 0.680

第2主成分: 0.306

累積: 0.986

第2主成分までで4次元デー タの98.6%までが表現できる

keywords

説明変数、総合的指標、 主成分、主成分得点、 寄与率、情報損失量、 固有値、固有ベクトル

主成分分析

学力の特徴(分布)を少ない変数(主成分)で表現できないか?

第1主成分 $z_1 = 0.487u_1 + 0.511u_2 + 0.508u_3 + 0.493u_4$ 総合的学力 第2主成分 $z_2 = 0.527u_1 + 0.474u_2 - 0.481u_3 - 0.516u_4$ 文系・理系志向 u_1, u_2, u_3, u_4 は x_1, x_2, x_3, x_4 を標準化した変数

第2主成分: 0.306

累積: 0.986

100 90 80 70 60 × 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100

 X_2

第2主成分までで4次元デー タの98.6%までが表現できる

keywords

説明変数、総合的指標、 主成分、主成分得点、 寄与率、情報損失量、 固有値、固有べクトル

多変量情報の解析法

主成分分析

多くの変数 $(x_1, x_2, ***, x_p)$ の値を<u>できるだけ情報の損失なし</u>に 1個または<u>互いに独立</u>な少数の<u>総合的指標 $(z_1, z_2, ***, z_m)$ </u>で表す

独立とは?

 $m \leq p$

$$z_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1p}x_p$$
 第1主成分
$$z_2 = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2p}x_p$$
 第2主成分
$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$z_m = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mp}x_p$$
 第 m 主成分

説明変数 $(大きさ x_1, 色 x_2)$

 x_1

総合指標(主成分)

主成分得点 $z_1 = a_1x_1 + a_2x_2$

 (z_1, z_2)

 x_1

北海道のリンゴ($x_{1 \pm}, x_{2 \pm}$)

青森のリンゴ $(x_{1\dagger}, x_{2\dagger})$

長野のリンゴ (x_{1長}, x_{2長})

食べたくなるリンゴ 描きたくなるリンゴ z₂

$(x_{1} \pm x_{2} \pm x_{2})$ x_2 $(x_{1}$ 青, x_{2} 青) (x_{1}, x_{2})

ullet 傾き $rac{a_2}{}$ の直線上に射影された位置 $(x_{1} \pm x_{2} \pm x_{2})$ χ_2 Z₁長人 $(x_{1} = , x_{2} =)$ (x_{1}, x_{2}) Z_{1青}

直線の傾き(方向比)

$$tan\theta = \frac{sin\theta}{cos\theta} \left(= \frac{a_2}{a_1} \right)$$

点 (x_{11}, x_{21}) は、 z_1 軸上では

$$x_{11}cos\theta + x_{21}sin\theta = a_1x_{11} + a_2x_{21} = z_{11}$$

 z_1 軸を平行移動しても z_1 の値は変わらない

主成分の求め方(その1)情報の損失量を最も少なくする

情報の損失とは

データP, Qは主成分 z_1 上で考えると同じ点に移動

従ってデータから主成分 z_1 に下ろした垂線の長さは

主成分 z_1 上では考慮されない

総合的指標

 $z_1 = a_1 x_1 + a_2 x_2$

 z_1 軸上では 垂線の長さ = 情報の損失
 X2
 P

 情報損失量
 C

 B
 X1

できるだけ情報の損失なしに 最も良い方向比 a_1 : a_2 を見つけ出す

- = 情報損失量の和が最小になる方向比 $a_1: a_2$ を見つける
- = <u>垂線の長さ</u>の和が最小になる方向比 $a_1:a_2$ を見つける

主成分の求め方(その1)情報の損失量を最も少なくする

情報の損失量を少なくする係数 a_1 , a_2 を決める

直線zは、方向比が a_1 : a_2 なので

直線Zの式

$$x_2 = \frac{a_2}{a_1} x_1 + 切片$$

$$a_1x_2 = a_2x_1 + \underbrace{a_1 \cdot 切片}_{a_0}$$

$$a_2x_1 - a_1x_2 + a_0 = 0$$

主成分の求め方(その1)情報の損失量を最も少なくする

直線zは、 $a_2x_1 - a_1x_2 + a_0 = 0$

平面上の点 (α,β) からこの直線にお ろした垂線の長さは

できるだけ情報の損失なしに 最も良い方向比 a_1 : a_2 を見つけ出す

<ヘッセの標準形> 点(α,β)から直線 ax + by + c = 0におろした垂線の長さは $|a\alpha + b\beta + c|$ $\int a^2 + b^2$ (α,β)

= 垂線の長さの和が最小になる方向比 $a_1: a_2$ を見つける

(例題) 説明変数 x_I : スポーツ施設数

説明変数 x_2 :教育施設数

表1

変量 サン プル	人口10万人 当りスポー ツ施設数 x ₁	人口10万人 当り教育施 設数 x ₂	
埼玉	22.9	13.7	
千葉	24.9	16.2	
東京	19.3	11.3	
神奈川	22.0	10.4	
茨城	28.6	24.9	
栃木	42.6	26.5	
群馬	41.3	20.3	
平均	28.8	17.614	
偏差平方和	533.2	248.5	
偏差積和	292.4		
分散	88.87	41.41	
共分散	48.73		

主成分を求めるとは:

2つの説明変数の総合特性を求めること

情報の損失量:各点からzにおろした垂線の長さ情報の損失量を少なくする係数 a_1 , a_2 を決める

平面上の点
$$(\alpha,\beta)$$
から直線 z におろした垂線の長さ:
$$\frac{|a_2\alpha - a_1\beta + a_0|}{\sqrt{a_2^2 + (-a_1)^2}}$$

知りたいのは直線zの方向、つまり a_1 と a_2 の比 従って $a_2^2 + a_1^2 = 1$ という条件を付けると

	スポーツ 施設 <i>x_I</i>	教育 施設 <i>x₂</i>	情報損失量
埼玉	22.9	13.7	$ 22.9a_2 - 13.7a_1 + a_0 $
千葉	24.9	16.2	$ 24.9a_2 - 16.2a_1 + a_0 $
東京	19.3	11.3	$ 19.3a_2 - 11.3a_1 + a_0 $
神奈川	22.0	10.4	$ 22.0a_2 - 10.4a_1 + a_0 $
茨城	28.6	24.9	$ 28.6a_2 - 24.9a_1 + a_0 $
栃木	42.6	26.5	$ 42.6a_2 - 26.5a_1 + a_0 $
群馬	41.3	20.3	$ 41.3a_2 - 20.3a_1 + a_0 $

7県の情報損失量の平方和

$$U(a_2, a_1, a_0) = \sum_{i=1}^{7} (a_2 x_{1i} - a_1 x_{2i} + a_0)^2$$

$$= (22.9a_2 - 13.7a_1 + a_0)^2$$

$$+ (24.9a_2 - 16.2a_1 + a_0)^2$$

$$\vdots$$

$$+ (41.3a_2 - 20.3a_1 + a_0)^2$$

$$= 6339a_2^2 + 2420a_1^2 - 7687a_1a_2$$

$$+ 403.2a_2a_0 - 246.6a_1a_0 + 7a_0^2$$

 $a_2^2 + a_1^2 = 1$ という条件のもと $U(a_2, a_1, a_0)$ の最小値を与える a_1, a_2 を求める

ラグランジュの乗数法

関数 $U(a_2, a_1, a_0)$ が条件 $a_2^2 + a_1^2 = 1$ のもとに、点 (α, β, γ) で極値を取るならば関数 $F(a_2, a_1, a_0, \lambda)$ を

$$F(a_2, a_1, a_0, \lambda) = U(a_2, a_1, a_0) - \lambda(a_2^2 + a_1^2 - 1)$$

とおいたとき、極値をとる点 (α,β,γ) は連立方程式

$$\frac{\partial F}{\partial a_2} = 0$$
, $\frac{\partial F}{\partial a_I} = 0$, $\frac{\partial F}{\partial a_0} = 0$, $a_2^2 + a_I^2 - 1 = 0$

の解となる

$$F(a_2, a_1, a_0, \lambda) = U(a_2, a_1, a_0) - \lambda(a_2^2 + a_1^2 - 1)$$

$$= 6339a_2^2 + 2420a_1^2 - 7687a_1a_2 + 403.2a_2a_0 - 246.6a_1a_0 + 7a_0^2 - \lambda(a_2^2 + a_1^2 - 1)$$

$$\frac{\partial F}{\partial a_2} = 12678a_2 - 7687a_1 + 403.2a_0 - 2\lambda a_2 = 0 \qquad \dots$$

$$\frac{\partial F}{\partial a_I} = 4840a_I - 7687a_I - 246.6a_0 - 2\lambda a_I = 0 \qquad ---- 2$$

$$\frac{\partial F}{\partial a_0} = 403.2a_2 - 246.6a_1 + 14a_0 = 0$$
 3

③より

$$a_0 = -28.8a_2 + 17.614a_1$$
 ----- 4

④を①、②に代入すると

$$\begin{cases} (533.2-\lambda)a_2-292.4a_1 = 0 & ----- \\ -292.4a_2+(248.5-\lambda)a_1 = 0 & ----- \end{cases}$$

$$\begin{bmatrix} 533.2-\lambda & -292.4 \\ -292.4 & 248.5-\lambda \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

固有値固有ベクトル問題を解けば良い

 (a_2, a_1) が(0, 0)以外の解をもつためには

$$\begin{vmatrix} 533.2 - \lambda & -292.4 \\ -292.4 & 248.5 - \lambda \end{vmatrix} = 0$$

従って、λの2次方程式

$$(533.2 - \lambda) (248.5 - \lambda) -292.4^2 = 0$$

を解いて

$$\lambda_1 = 65.65$$
 $\lambda_2 = 716.1$ 8

λ1 = 65.65を⑤に代入

最小の固有値 →第1主成分

$$(533.2-65.65)a_2-292.4a_1 = 0$$

 $467.59a_2-292.4a_1 = 0$

$$\lambda_1 = 65.65$$
を⑥に代入しても良い $-292.4a_2 + (248.5-65.65)a_1 = 0$ $-292.4a_2 + 182.84a_1 = 0$

$$a_2^2 + a_1^2 = 1$$
 という条件で解くと

$$\begin{cases} (a_1, a_2) = (0.848, 0.530) & ---- & \\ (a_1, a_2) = (-0.848, -0.530) & ---- & \\ \end{pmatrix}$$

$$(a_1, a_2) = (-0.848, -0.530)$$
 ----- ①

の2つの解を得る。直線としては同一。

$$\lambda_2 = 716.1$$
を⑤に代入した場合は (533.2-716.1) a_2 -292.4 a_1 = 0 -182.8 a_2 -292.4 a_1 = 0

$$\lambda_2 = 716.1$$
を⑥に代入しても良い
-292.4 a_2 +(248.5-716.1) a_1 = 0
-292.4 a_2 -467.6 a_1 = 0

$$a_2^2 + a_1^2 = 1$$
 という条件で解くと

$$\begin{cases} (a_1, a_2) = (0.530, -0.848) & ---- \\ (a_1, a_2) = (-0.530, 0.848) & ---- \\ \boxed{2} \end{cases}$$

$$(a_1, a_2) = (-0.530, 0.848)$$
 ---- ①

の2つの解を得る。直線としては同一。

$$\begin{bmatrix} 533.2-\lambda & -292.4 \\ -292.4 & 248.5-\lambda \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

固有値固有ベクトル問題を解いて得た 対する固有ベクトルは、第1主成分と 第2主成分に相当する. 最小の固有値 →第1主成分

主成分得点(1)

主成分 z を表す直線 z は $a_2x_1 - a_1x_2 + a_0 = 0$

④より
$$a_0 = -28.8a_2 + 17.614a_1$$

従って

$$a_2x_1 - a_1x_2 - 28.8a_2 + 17.614a_1 = 0$$

 $a_2(x_1 - 28.8) - a_1(x_2 - 17.614) = 0$

説明変数 x_1,x_2 の平均値は直線z上にある

$$(\overline{x_1}, \overline{x_2}) = (28.8, 17.614)$$

	人口10万人 当りスポー ツ施設x ₁	人口10万人 当り教育施 設x ₂	$a_1x_1 + a_2x_2$	平均値で z = 0 となる 主成分得点
埼玉	22.9	13.7	26.68	-7.08
千葉	24.9	16.2	29.70	-4.06
東京	19.3	11.3	22.36	-11.40
神奈川	22.0	10.4	24.17	-9.59
茨城	28.6	24.9	37.45	3.69
栃木	42.6	26.5	50.17	16.41
群馬	41.3	20.3	45.78	12.02
平均	28.8	17.614	33.76	0

主成分得点(2)

主成分の解釈

主成分の意味するもの \leftarrow --- x_1, x_2 の係数から判断

例題の場合

- x₁, x₂の係数は0.848, 0.530と共に正の値で1に近い
- ・スポーツ施設、教育施設が多いほどzの値大(栃木、群馬)
- ・スポーツ施設、教育施設が少ないほどzの値小(東京、神奈川)

主成分zは、各県における施設の充実度を意味している

命名(任意)

主成分得点(3)

主成分得点を各点からz軸におろした垂線との交点の<math>z軸上での値と定義する

$$z(x_1, x_2) = 0.848x_1 + 0.530x_2$$

さらに<u>平均値をz軸の原点</u>とすると

$$z(x_1, x_2) = 0.848x_1 + 0.530x_2 - 33.76$$

この式で主成分得点が得られる

例

山梨の スポーツ施設 x_1 30.0 教育施設 x_2 20.0

$$z(30.0, 20.0) = 2.28$$

山梨の施設充実度 = 2.28

	人口10万人 当りスポー ツ施設x ₁	人口10万人 当り教育施 設x ₂	$a_1x_1 + a_2x_2$	平均値で z = 0 となる 主成分得点
埼玉	22.9	13.7	26.68	-7.08
千葉	24.9	16.2	29.70	-4.06
東京	19.3	11.3	22.36	-11.40
神奈川	22.0	10.4	24.17	-9.59
茨城	28.6	24.9	37.45	3.69
栃木	42.6	26.5	50.17	16.41
群馬	41.3	20.3	45.78	12.02
平均	28.8	17.614	33.76	0

寄与率

(元の情報)2 = (新たな情報)2 + (情報の損失量)2

変動、偏差平方和

主成分の寄与率 =
$$\frac{\sum (新たな情報)^2}{\sum (元の情報)^2}$$
 = $\frac{主成分の変動}{元情報の変動}$ = $\frac{主成分の分散}{元情報の分散}$

例題の主成分の寄与率 =
$$\frac{Var(z_1)}{Var(x_1) + Var(x_2)}$$
 = 0.916

第1主成分と第2主成分の関係

 $\lambda = 65.65$ について a_1 , a_2 は $(a_1, a_2) = (0.848, 0.530)$ $z_1 = 0.848x_1 + 0.530x_2$ ・・・第1主成分

⑧のもう一つの $\lambda = 716.1$ について a_1, a_2 を求めると $(a_1, a_2) = (-0.530, 0.848)$ $z_2 = -0.530x_1 + 0.848x_2$ ・・・第2主成分

第1主成分と第2主成分は直交(互いに独立)

 z_1 の寄与率 = 0.916

 z_2 の寄与率 = 0.084

累積寄与率 = 0.916 + 0.084 = 1

第1主成分の損失を第2主成分が

補っている 教育施設 X_2 第2主成分 第1主成分 30 茨城 茨城県の 第2主成分 群馬 20 茨城県の第1主成分 東京 10 z軸の原点=データの中心 10 スポーツ施設 20 50 30 40 χ_1

主成分の求め方(その2) 分散の最大化

分散共分散行列の固有値、固有ベクトルの問題を解くことになる 主成分分析のプログラムはこの方法で主成分を求めている

主成分 $z = a_1 x_1 + a_2 x_2$ の求め方(分散Var(z)の最大化)

$$Var(z) = Var(a_1x_1 + a_2x_2) = a_1^2 Var(x_1) + a_2^2 Var(x_2) + 2a_1a_2 Cov(x_1, x_2)$$

ラグランジュの乗数法

$$G(a_1, a_2, \lambda') = a_1^2 Var(x_1) + a_2^2 Var(x_2) + 2a_1 a_2 Cov(x_1, x_2) - \lambda'(a_1^2 + a_2^2 - 1)$$

変量 サン プル	人口10万 人当りス ポーツ施 設x ₁	人口10万 人当り教 育施設x ₂
埼玉	22.9	13.7
千葉	24.9	16.2
東京	19.3	11.3
神奈川	22.0	10.4
茨城	28.6	24.9
栃木	42.6	26.5
群馬	41.3	20.3
平均	28.8	17.614
分散	88.87	41.41
共分散	48.73	

$$\begin{cases} \frac{\partial G}{\partial a_1} = 2(a_1 Var(x_1) + a_2 Cov(x_1, x_2) - \lambda' a_1) = 0\\ \frac{\partial G}{\partial a_2} = 2(a_2 Var(x_2) + a_1 Cov(x_1, x_2) - \lambda' a_2) = 0 \end{cases}$$

分散共分散行列の固有値固有ベクトル問題

$$\begin{bmatrix} Var(x_1) & Cov(x_1, x_2) \\ Cov(x_1, x_2) & Var(x_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\begin{bmatrix} 88.87 & 48.73 \\ 48.73 & 41.41 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
 固有値 $\lambda' = 119.3, 10.94$ 固有ベクトル
$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.848 \\ 0.530 \end{bmatrix}, \begin{bmatrix} -0.530 \\ 0.848 \end{bmatrix}$$

分散 $Var(z_1) = \lambda'_1, Var(z_2) = \lambda'_2$

寄与率
$$\frac{Var(z_1)}{Var(x_1) + Var(x_2)} = \frac{\lambda'_1}{Var(x_1) + Var(x_2)} = \frac{119.3}{88.87 + 41.41} = 0.916$$

主成分の求め方

表1

変量 サン プル	人口10万 人当りス ポーツ施 設x ₁	人口10万 人当り教 育施設x ₂
埼玉	22.9	13.7
千葉	24.9	16.2
東京	19.3	11.3
神奈川	22.0	10.4
茨城	28.6	24.9
栃木	42.6	26.5
群馬	41.3	20.3
平均	28.8	17.614
偏差平方和	533.2	248.5
偏差積和	292	2.4
分散	88.87	41.41
共分散	48.73	

情報損失量Uの最小化

偏差平方和偏差積和行列の固有値固有ベクトル問題

$$\begin{bmatrix} (n-1)Var(x_1) & -(n-1)Cov(x_1, x_2) \\ -(n-1)Cov(x_1, x_2) & (n-1)Var(x_2) \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \lambda \begin{bmatrix} a_2 \\ a_1 \end{bmatrix}$$

$$\begin{bmatrix} 533.2 & -292.4 \\ -292.4 & 248.5 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \lambda \begin{bmatrix} a_2 \\ a_1 \end{bmatrix}$$
 固有值 $\lambda = 65.65, 716.1$

固有ベクトル $\begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0.530 \\ 0.848 \end{bmatrix}$, $\begin{bmatrix} 0.848 \\ -0.530 \end{bmatrix}$

情報損失量 $U_1 = \lambda_1, U_2 = \lambda_2$

寄与率

$$\frac{Var(z_1)}{Var(x_1) + Var(x_2)} = 1 - \frac{U_1}{(n-1)(Var(x_1) + Var(x_2))} = 1 - \frac{65.65}{533.2 + 248.5} = 0.916$$

分散Var(z)の最大化

分散共分散行列の固有値固有ベクトル問題

 $\begin{bmatrix} Var(x_1) & Cov(x_1, x_2) \\ Cov(x_1, x_2) & Var(x_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

得られる 主成分は同じ

$$\begin{bmatrix} 88.87 & 48.73 \\ 48.73 & 41.41 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

分散 $Var(z_1) = \lambda'_1, Var(z_2) = \lambda'_2$

寄与率
$$\frac{Var(z_1)}{Var(x_1) + Var(x_2)} = \frac{\lambda'_1}{Var(x_1) + Var(x_2)} = \frac{119.3}{88.87 + 41.41} = 0.916$$

主成分分析は単位の影響を受ける

	<mark>人口10万人</mark> 当りスポー ツ施設 <i>x</i> ₁	人口10万人 当り教育施 設 <i>x</i> ₂
埼玉	22.9	13.7
千葉	24.9	16.2
東京	19.3	11.3
神奈川	22.0	10.4
茨城	28.6	24.9
栃木	42.6	26.5
群馬	41.3	20.3
平均	28.8	17.614
分散	88.87	41.41
共分散	48.	.73

ノリ・日ス	0.0007	
共分散	4.8	73
固有値	$\lambda_1 = 41.99$	

固有值 $\lambda_1 = 65.65$

固有ベクトル $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.848 \\ 0.530 \end{bmatrix}$

固有ベクトル $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.118 \\ 0.993 \end{bmatrix}$

人口1万人

当りスポー

2.29

2.49

1.93

2.20

2.86

4.26

4.13

2.88

0 8887

ツ施設x₁

埼玉

千葉

東京

神奈川

茨城

栃木

群馬

平均

分数

人口10万人

当り教育施

13.7

16.2

11.3

10.4

24.9

26.5

20.3

17.614

41.41

設 x_2

主成分はその変数の単位の影響を受ける

変数の単位を変えると方向比 $a_1:a_2$ も変わるため、 主成分の解釈も変わってしまう。 説明変量が身長と体重のように一方がcmで他方がkgであるような場合もある。

単位の影響を受けない主成分分析はあるか。

変数の単位の影響を取り除く統計手法:データの標準化

相関係数
$$r = \frac{x_1 \ge x_2}{\sqrt{x_1} \mathcal{O}$$
 分散 $\cdot \sqrt{x_2} \mathcal{O}$ 分散

単位を変えない場合			
	人口10万人 当りスポー ツ施設x1人口10万人 当り教育施 設x2		
分散	88.87 41.41		
共分散	48.73		

単位を変えた場合			
	人口1万人 当りスポー ツ施設 x_I 人口10万人 当り教育施 設 x_2		
分散	0.8887 41.41		
共分散	4.873		

$$r = \frac{48.73}{\sqrt{88.87}$$
 $\sqrt[8]{41.42} = 0.8033$
$$r = \frac{4.873}{\sqrt{0.8887}} = 0.8033$$
 同じ値になる

データの標準化 分散 → 1 共分散 → 相関係数

従って

分散共分散行列

相関行列

となる。

4ページ前のスライドでは

主成分の求め方 \rightarrow 主成分 z の分散を最大にする

分散共分散行列の固有値、固有ベクトルの問題を解くことになる

2ページ前のスライドでは

主成分分析は単位の影響を受ける

単位の影響を受けない主成分分析はあるか

変数の単位の影響を取り除く統計手法:データの標準化

標準化されたデータの分散共分散行列による主成分分析は 相関行列による主成分分析である

主成分 $z = a_1u_1 + a_2u_2$ の求め方(標準化 \rightarrow 分散Var(z)の最大化)

$$Var(z) = Var(a_1u_1 + a_2u_2) = a_1^2 Var(u_1) + a_2^2 Var(u_2) + 2a_1a_2 Cov(u_1, u_2)$$

= $a_1^2 + a_2^2 + 2a_1a_2 r$

ラグランジュの乗数法
$$G(a_1, a_2, \lambda') = a_1^2 + a_2^2 + 2a_1a_2r - \lambda'(a_1^2 + a_2^2 - 1)$$

$$\bar{u}_1 = \bar{u}_2 = 0$$

標準化 $Var(u_1) = Var(u_2) = 1$
 $Cov(u_1, u_2) = r$

変量 サン プル	人口10万 人当りス ポーツ施 設x ₁	人口10万 人当り教 育施設x ₂	$u_1 = \frac{x_1 - \bar{x}_1}{\sqrt{Var(x_1)}}$	$u_2 = \frac{x_2 - \bar{x}_2}{\sqrt{Var(x_2)}}$
埼玉	22.9	13.7	-0.626	-0.608
千葉	24.9	16.2	-0.414	-0.220
東京	19.3	11.3	-1.008	-0.981
神奈川	22.0	10.4	-0.721	-1.121
茨城	28.6	24.9	-0.021	1.132
栃木	42.6	26.5	1.464	1.381
群馬	41.3	20.3	1.326	0.417
平均	28.8	17.614	0.000	0.000
分散	88.87	41.41	1.000	1.000
共分散	48.	73	r = 0	.803

相関行列の固有値固有ベクトル問題

$$\begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0.803 \\ 0.803 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

固有値

固有ベクトル

$$\lambda' = 1.803, 0.197$$
 $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \begin{bmatrix} 0.707 \\ -0.707 \end{bmatrix}$

寄与率
$$\frac{Var(z_1)}{Var(u_1) + Var(u_2)} = \frac{1.803}{1+1} = 0.902$$
 累積寄与率 = 1
$$\frac{Var(z_2)}{Var(u_1) + Var(u_2)} = \frac{0.197}{1+1} = 0.098$$

主成分分散=固有值: $Var(z_1)=\lambda'_1$, $Var(z_2)=\lambda'_2$

回帰分析と主成分分析

主成分分析

- ①主成分分析とは何か。 式も用いて説明せよ。
- ②主成分の寄与率とは何か。 式も用いて説明せよ。
- ③主成分分析は単位の影響を受ける。 単位の影響を受けないようにする ためにはどのようにしたらよいか。
- ④回帰分析と主成分分析の求め 方の違いを図を用いて説明せよ。