VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

PŘEDMĚT - SIGNÁLY A SYSTÉMY 2020/2021

Analýza vlivu rúšky na reč

Úvod

V tomto projekte sa zameriavam na analýzu vplyvu rúška na reč. Projekt je celý vypracovaný v MATLABE. Študijné zdroje sú vo všeobecnosti v tomto projekte z nasledovných zdrojov:

- 1) MATLAB fórum
- 2) Študijná etapa ku projektu
- 3) Prezentácie prednášok
- 4) Internetové články, výskumný materiál zameriavajúci sa na tematiku projektu
 - bližšie uvedenie zdrojov sú na potrebných miestach **v protokole** a v súbore riešenia **solution.m**

Ďakujem za pozornosť a tak teda tu sú moje výsledky skúmania... :)

1. Tabuľka s informáciami o nahraných tónoch

	DĹŽKA VIET		
NÁZVY SÚBOROV	V SEKUNDÁCH	VO VZORKOCH	
maskoff_tone.wav	4.62	74000	
maskon_tone.wav	4.07	65120	

2. Tabuľka s informáciami o nahraných vetách

	DĹŽKA VIET		
NÁZVY SÚBOROV	V SEKUNDÁCH	VO VZORKOCH	
maskoff_sentence.wav	2.29	36688	
maskon_sentence.wav	2.11	33704	

- 3. Vzorec pro **výpočet veľkosti rámca vo vzorkách**, graf dvoch zvolených rámcov (**s rúškou**, **bez rúšky**, **prvý a druhý graf v jednom**)
 - a) Výpočet veľkosti rámca vo vzorkách

vzorec samples_per_ms = length(s)/length_in_ms; one_frame_length = samples_per_ms * howmuch;

LEGENDA

samples_per_ms - vzorky prisluchajúce ku 1 milisekunde
length(s) - dĺžka signálu s vo vzorkách
length_in_ms - dĺžka signálu v milisekundách
one_frame_length - dĺžka jedného rámca vo vzorkách
howmuch - konštanta pre určenie veľkosti rámca v milisekundách

b) Graf dvoch zvolených rámcov s rúškou, bez rúšky, prvý a druhý graf v jednom

10. frame of mask tones 0.8 0.8 0.6 0.6 The frame of mask off tone 0.4 0.4 0.2 0.2 0 -0.2 -0.2 -0.4 -0.6 -0.6 -0.8 -0.8 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0 Time [s]

4. úloha

 a) Ľubovoľný rámec a na ňom aplikované centrálne klipovanie, autokorelácia a porovnanie základných frekvencí nahrávok v grafe.

b) Stredná hodnota a rozptyl základnej frekvencie oboch testovacích nahrávok

	STREDNÁ HODNOTA	ROZPTYL
f0 bez rúšky	216.491472294212	2.61916728462011
f0 s rúškou	216.366679007775	0.937882186288402

c) Odpoveď na otázku:

Použil som vedomosti z tejto prednášky z predmetu **ZRE**: http://www.fit.vutbr.cz/~grezl/ZRE/lectures/05_pitch_en.pdf

Clipping Level Value Estimation

As a speech signal s(n) is a nonstationary signal, the slipping level changes and it is necessary to estimate it for every frame, for which pitch is predicted. A simple method is to estimate the clipping level from the absolute maximum value in the frame:

$$c_L = k \max_{n=0}^{\infty} |x(n)|, \tag{11}$$

where the constant k is selected between 0.6 and 0.8. Further, subdivision into several micro-frames can be done, for instance $x_1(n)$, $x_2(n)$, $x_3(n)$ of one third of the original frame length. The clipping level is then given by the lowest maximum from the micro-frames:

$$c_L = k \min \left\{ \max |x_1(n)|, \max |x_2(n)|, \max |x_3(n)| \right\}$$
 (12)

Issue: clipping of noise in pauses, where subsequently can be detected pitch. The method therefore should be preceded by the silence level s_L estimation. In the maximum of the signal is $< s_L$, then the frame is not further processed.

Fundamental Frequency Detection Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 25/3

Kde po zvýšení centrálneho klipovania zo 70% (0,7) na 80% (0,8) bola viditeľne menšia veľkosť zmeny f0.

Zdôvodnenie:

- I. A to z dôvodu, že pri vyššom nastavení klipovania sa aj zvýšila absolútna maximálna hodnota rámca, a z toho vyplýva, že sa aj zvýšila minimálna hranica pre odhad. Hodnoty vzoriek rámca menšie ako max(abs(frame(n))) alebo väčšie ako -max(abs(frame(n))). Následne neprípustné hodnoty(vzorky v klipovanom rámci) v podmienkach clippingu budú nastavené na hodnotu 0, kde práve je veľká šanca za celkom dobrých podmienok, tie vyššie skoky základnej frekvencie sa čiastočne alebo úplne eliminujú.
- II. Alebo zvoliť techniku zvýraznenú v priloženej snímke prezentácie.
- III. Prikladám ilustračný graf porovnania so základnými frekvenciami testovacích nahrávok s jedinou zmenou a to zapnutie klipovania na 80%. Zmeny sú nepatrné. Predpokladám, že dôvodom je to, že pri nahrávaní tónu som nedržal rovnakú intenzitu tónu. Myslím, že mi skákala hlasitosť i keď som podľa ladičky sa držal v A3.

IV. Či som sa trafil do A3 som si empiricky overil podľa dát z tohto zdroja: http://radkon.eu/projects/other/tones.php?lang=sk

Na tejto webovej stránke sú ku nájdeniu frekvencie pre tóny.

A3 sa pohybuje na frekvencií **220 Hz.** Moje frekvencie v grafe sa pohybujú v intervale **f0 € <213.333;219.178>.** Kde sa mi potvrdzuje tvrdenie z bodu III.

Výška tónu je v medziach týchto tónov.

G#3 / Ab3	gis0 / as0	207.652348789973 H
A3	a0	220 HZ
	+	

a)

FUNKCIA IMPLEMENTUJÚCA DFT

- výsledkom porovnania s implicitnou funkciou v matlabe **fft** bolo zistenie, že mi to počíta pomalšie v rádoch sekúnd.
- bol použitý zero-padding, žeby sa to hodilo som sa dozvedel tu: https://www.fit.vutbr.cz/study/courses/ISS/public/pred/10 dft/dft.pdf

Použil som tento vzorec:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Zdroj informácii:

- 1) https://www.fit.vutbr.cz/study/courses/ISS/public/pred/10 dft/dft.pdf
- 2) matlab fórum

```
function dft = do_dft(input_frame,N)
% alokujem si miesto pre vektory
align = zeros(N,1);
dft = zeros(N,1);
% dft_frame_normalized = zeros(N,1);
% vyplnime zarovnany nulami vektor o dlzke N datami ramca o dlzke
for frame_val = input_frame(:,1)
    align(1:320,1) = frame_val;
end
% 1. x^[n] = x[ mod N(n)]. periodizujeme
% dft_frame_normalized(:,1) = mod(align(:,1), N);

% aplikacia dft na data s ruskou a bez nej
for k = 0 : N - 1
    sum = 0;
    for n = 0 : N - 1 % aplikacia vzorca pre dft na vstupne data
        sum = sum + times(align(n + 1,1), exp(-j*2*pi*k*n/N));
    end
    dft(k + 1,1) = sum; %zapisem po kazdej iteracii dopocitanu sumu
end
% zapisem vysledok dft
dft = dft(1:N,1);
end
```

b) SPEKTROGRAMY (používal som pri vykreslení spektrogramu **hammingovu okienkovú funkciu** ako jeden z parametrov pre funkciu **spectrogram**)

6. úloha

a) Vzťah pre výpočet **H(e^{jw})**

$$H(e^{jw}) = |Y(e^{jw})| / |X(e^{jw})|$$

H(e^{jw}) - frekvenčná charakteristika rúška

Y(e^{jw}) - DFT dáta s rúškom

X(e^{jw}) - DFT dáta bez rúška

Zdroje:

https://www.researchgate.net/post/What-formula-should-l-use-to-calculate-the-power-spectrum-density-of-a-FFT

Postup: Pre dáta s rúškom a bez neho som spočítal DFT a uložil do matice. Odsekol časť, ktorá bola už časťou symetrickou.

Výsledná veľkosť matice je **[N/2+1 x 100].** Kde N je hodnota pre DFT 1024 z predošlej úlohy. Ďalej aby som nedelil a nepriemeroval komplexné zložky dát som pre obe matice spočítal absolútne hodnoty. Aby som dostal frekvenčnú charakteristiku pre každý rámec, tak som matice dát navzájom vydelil a podiel spriemeroval cez všetky rámce aby som získal jednu frekvenčnú charakteristiku.

b) Frekvenčná charakteristika rúšky

c) Krátky komentár ku filtru pomocou znázornenia na frekvenčnej charakteristike rúška

7. úloha

a) Vlastná implementácia IDFT

FUNKCIA IMPLEMENTUJÚCA IDFT

Použil som tento vzorec:

zpětná transformace IDFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{j2\pi nk/N} \qquad n = 0, 1, \dots, N-1$$

Zdroj informácii:

1) http://www.kiv.zcu.cz/~mautner/Azs/Azs5 Fourierova transformace.pdf

```
function idft = do_idft(input_data,N)
    %alokujem si miesto pre vektor
    idft = zeros(1,N);

    % aplikacia dft na data s ruskou a bez nej
    for n = 0 : N - 1
        sum = 0;
    for k = 0 : N - 1 % aplikacia vzorca pre dft na vstupne data
            sum = sum + times(input_data(1,k + 1), exp(j*2*pi*k*n/N));
    end
        % zapisem po kazdej iteracii dopocitanu sumu
        idft(1,n + 1) = times((1/N), sum);
    end
    %zapisem vysledok dft
    idft = idft(1,1:N);
end
```

b) Graf impulznej odozvy rúška

8. úloha

a) Graf nahranej vety bez rúška, s rúškou a so simulovaným rúškom

b) Odpoveď na otázky

Signál so simulovaným rúškom oproti signálu so skutočným rúškom sa javí zosilnený ako i pri posluchu, tak i pri vizuálnej kontrole signálu. A to v kladnej i zápornej časti podľa osi Y. Predpokladám, že príčinou tohto efektu "zosilnenia" je pásmová priepusť v kladnej časti osi y a pásmová zádrž v zápornej časti osi Y filtra pre simulovanie rúška. Signály sú najviac podobné v stredných hodnotách signálu v okolí bodu 0 na osi Y. Najviac sa líšia po okrajoch signálu, čo najďalej od stredu.

9. Záver

Na hlavné črty filtra som poukázal v úlohách 6c) a 8b), kde by som dodal, že pásmová zádrž zadržiava a nepúšťa práve tie frekvencie, v ktorých som nahrával tón a cca +- 50 Hz nad a pod touto frekvenciou, takže ju tlmí a to bol žiadaný efekt simulácie rúšky podľa mňa. No bolo by to žiadaným efektom, keby to pásmová priepusť nepokazila a neprepustila nižšie frekvencie s minimálnym útlmom. Keďže sú prítomné v jednom filtry obe priepuste, tak nakoniec je konečný filtrovaný signál zosilnený. A som za to, že to nebol žiadaný efekt. Na druhú stranu nahrávky po prefiltrovaní sú pekne jasne počuteľné a slová sú zrozumiteľné. Jemné praskanie v nahrávke vety je spôsobené nekvalitnou nahrávkou z dôvodu HW závady. Takže informácia v signále nebola stratená. Myslím, že riešenie by bolo úspešné ak by bola prítomná iba jedna z priepustí a to pásmová zádrž.

Na úplný záver chcem poďakovať všetkým, čo toto zadanie vymysleli. Veľa som si počas riešenia toho zopakoval a naučil sa. Napríklad práca v Matlabe bola pre mňa španielskou dedinou a veľa som sa v ňom naučil a je to cenná skúsenosť do budúcna.