

BBC5210 A

Joint Programme Examinations 2022/23

BBC5210 Electric & Magnetic Fields

Paper A

Time allowed 2 hours

Answer ALL questions

_						
For	exa	min	ersí	use	only	ı

1	
2	
3	
4	
5	
6	
7	
8	
Total	

Complete the information below about yourself very carefully.

\sim	ΝЛ	ctii	dant	num	hor
U	W	STII	nent	num	iner.

BUPT student number

Class number

ALLOWED: electronic calculators and electronic dictionaries.

INSTRUCTIONS

- 1. You must NOT take answer books, used or unused, from the examination room.
- 2. Write only with a black or blue pen and in English.
- 3. Do all rough work in the answer book do not tear out any pages.
- 4. If you use Supplementary Answer Books, tie them to the end of this book.
- 5. Write clearly and legibly.
- 6. Read the instructions on the inside cover.

Examiners

Dr Yong Zuo, Dr Shaohua Liu

Filename: 2223_BBC5210_A No answer book required

Instructions

Before the start of the examination

- 1) Place your BUPT and QM student cards on the corner of your desk so that your picture is visible.
- 2) Put all bags, coats and other belongings at the back/front of the room. All small items in your pockets, including wallets, mobile phones and other electronic devices must be placed in your bag in advance. Possession of mobile phones, electronic devices and unauthorised materials is an offence.
- 3) Please ensure your mobile phone is switched off and that no alarm will sound during the exam. A mobile phone causing a disruption is also an assessment offence.
- 4) Do not turn over your question paper or begin writing until told to do.

During the examination

- 1) You must not communicate with or copy from another student.
- 2) If you require any assistance or wish to leave the examination room for any reason, please raise your hand to attract the attention of the invigilator.
- 3) If you finish the examination early you may leave, but not in the first 30 minutes or the last 10 minutes.
- 4) For 2 hour examinations you may **not** leave temporarily.
- 5) For examinations longer than 2 hours you **may** leave temporarily but not in the first 2 hours or the last 30 minutes.

At the end of the examination

- 1) You must stop writing immediately if you continue writing after being told to stop, that is an assessment offence.
- 2) Remain in your seat until you are told you may leave.

Question 1 Single Choice, Choose A, B, C or D in the blank area below every problem.

1) With respect to the alternating electromagnetic fields $(\vec{E}, \vec{D}, \vec{H}, \vec{B}, \omega)$ in a source-conductive medium $(\varepsilon, \mu, \sigma)$, the displacement current density in Maxwell's first equation [2 marks]		
A. $\nabla \times \vec{H}$; B. $\frac{\partial D}{\partial t}$; C. 0; D. $\sigma \vec{E}$		
		ot write in column
		2 marks
2) In the absence of any surface currents and charges at the interface between perfect di	electr	ics, the
normal components and the tangential components of \vec{E} should be respectively A. continuous, continuous; B. discontinuous, continuous; C. continuous, discontinuous; D. discontinuous, discontinuous.	[2	marks]
	l	ot write in column
		2 marks
3) If there exist surface currents (\vec{J}_s) and charges (ρ_s) at the interface of a perfect cond	luctor,	the
difference between the normal components of \vec{D} and the difference of tangential composhould be respectively A. ρ_s , $ \vec{J}_s $; B. ρ_s , ρ_s ; C. $ \vec{J}_s $, ρ_s ; D. $ \vec{J}_s $, $ \vec{J}_s $	nents 2 mar	
		ot write in column
		2 marks
4) The polarization of wave if the electric field intensity in a region is given by $\vec{E} = (\vec{e}_x + j\vec{e}_y) \ E_0 e^{j(\omega t - kz)}$ is A. elliptically polarized B. right-hand circularly polarized C. left-hand circularly polarized D. linearly polarized	[2 ma	rks]
		ot write in column
		2 marks
5) As for the oblique incidence on surface of perfect conductor, the total wave whose ellies in the incidence plane will be awave. A. TE B. TM C. TEM D. no correct answers		field 2 marks]
	l	ot write in column
		∣ a I

BBC5210 Paper A	_2022	2/23
		marks
6) When a homogenous plane wave (HPW) propagates in boundaryless region of source lossless, isotropic homogenous medium, the phase difference between electrical field intensity is A. 0 ⁰ B. 45 ⁰ C. 90 ⁰ D45 ⁰		and
A. 0° B. 45° C. 90° D45°		t write in column
		2 marks
7) In conducting medium, the phase velocity is related with frequency. The shap comprising many different frequencies will keep on changing as it progresses. The distorted by the time it reaches its destination. This phenomenon is called A. attenuation B. loss C. polarization D. dispersion	e signa . [2 1	
		t write in column
		2 marks
8) If an uniform plane wave is normally incident from air upon the surface of a perfect the magnitude of incidence electric wave is 377 V/m, the magnitude of the surface curre conductor is A. 1A/m B. 1A/m ² C. 2A/m D. 2A/m ²	nt dens	
		t write in column
		2 marks
9) If an uniform plane wave is obliquely incident from a perfect dielectric (ε_r μ_0) on a incidence angle is 26.57°. If the total refraction occurs, then the possible ε_r is A. 1 B. 4 C. 9 D. 16		the narks]
		t write in column
		2 marks
10) The rectangular waveguide's lowest-order mode in all TEmn modes is A. 10 B. 11 C. 20 D. 22	[2	! marks]
		t write in column
		2 marks

Question 2 Choose True (T) or False (F) in the blank area below every problem.

[2 marks for each, 10 marks in total]

1) For time-varying electromagnetic fields, the divergence of \vec{E} must be zero.		
		ot write in column
		2 marks
2) For time-varying electromagnetic fields, the line of electric flux density can be closed	itself.	
		ot write in column
		2 marks
3) The Poynting vector represents the transmission direction of a time-varying electroma	gnetic	field.
		ot write in column
		2 marks
4) The electromagnetic waves with different frequencies will have the same phase veloci propagate in sea water.	ty wh	en they
		ot write in column
		2 marks
5) For a uniform plane wave propagating in a perfect dielectric in boundaryless region, the field leads the magnetic field.	ne elec	etric
		ot write in column
		2 marks
6) The displacement current can be produced by static and time-varying electric fields.		
		ot write in column
		2 marks
7) The loss tangent greater than 100 means good conductor.		
The 1000 tangent grower than 100 means good conductive.		ot write in column
		2 marks

marks

BBC5210 Paper A 2022/23

Question 4

A uniform plane wave propagates in perfect dielectric ($\varepsilon_r = 9$, $\mu_r = 1$) with electric field intensity is: $\vec{E} = \vec{e}_x 36\cos(\omega t - kz) - \vec{e}_y 25\sin(\omega t - kz)$ (V/m), where $\omega = 9 \times 10^8 \, \text{rad/s}$. Determine:

- a) The wavelength λ , phase velocity v_p , phase shift constant and wave impedance.
- b) The frequency-domain expression of magnetic field intensity \vec{H} .
- c) The average Poynting vector \vec{S}_{av} .

[10 marks]
Do not write in this column
10

Question 5

An antenna just beneath the surface of a conducting medium ($\varepsilon_r = 1$, $\mu_r = 1$ and $\sigma = 4 \times 10^7$ S/m) is transmitting a signal at 100 Hz. Assuming that the signal propagate as a homogeneous plane wave, a receiver buried in the medium receives the signal which phase exactly changes $\pi/2$. Determine:

- a) Whether the medium acts like a good conductor? Give the reason;
- b) The phase constant, and the distance between the receiver and the transmitter.

[10 marks]
Do not write in this column
10 marks

marks

BBC5210 Paper A 2022/23

Question 6

A uniform plane wave is normally incident on the surface of a perfect dielectric ($\mu_r = 1$) from air at x=0. Given the electric field of incident wave can be expressed as $\dot{\vec{E}}^+ = E_0^+ \vec{e}_\nu e^{j(\omega t - kx)}$ (V/m).

- a) If $E_0^+=3\times10^{-3}$ V/m and the amplitude of the reflected magnetic field is $H_0^-=2.653\times10^{-6}$ A/m, find ε_r of the perfect dielectric.
- b) Find the complex form of reflected electric field intensity $\dot{\vec{E}}^-$.
- c) Find the complex form of refracted magnetic field intensity \vec{H}^T .

L *	• 111001112
Do no this	t write in column
	10 marks

Question 7

A uniform plane wave is incident from air upon the surface of perfect conductor at z=0 (XOY plane). Given the incident field is $\vec{E}^+ = \vec{e}_x 10 e^{j(\omega t - 6y - 8z)}$ (V/m). Determine:

- a) The angle of incidence.
- b) The expression of magnetic field of reflected wave.

[10 marks]

Do not write in this column

10 marks

[10 marks]

BBC5210 Paper A **Question 8**

Consider a rectangular waveguide with cross section $a \times b = 30 \text{cm} \times 20 \text{cm}$ is filled with a perfect dielectric ($\varepsilon_r = 4$, $\mu_r = 1$). If a uniform plane wave in the air inputs to the rectangular waveguide. Determine the frequency ranges of input plane wave in the air when it is transmitted in the single mode in the waveguide.

[10 ma	rks]
Do not write this colum	
1 ma	0 rks

Appendix:
$$\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ (F/m)}, \ \mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}.$$

For a good conductor, $\alpha = \beta = \sqrt{\frac{\omega\mu\sigma}{2}}$; for a good dielectric $\alpha = \frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}$, $\beta = \omega\sqrt{\mu\varepsilon}$.

BBC5210 Paper A	Use this section for rough work	2022/23
		Do not
		write in this
		column
	2022 2022	
	2022-2023	
Pa	ugh Working	
	ugii workiiig	
	ige 10 of 14	
	9 - 1 - 1 - 1	

2022-2023 Rough Working Page 11 of 14	BBC5210 Paper A	Use this section for rough work	2022/23
2022-2023 Rough Working			
Rough Working			write in this
Rough Working			
Rough Working		2022 2023	
		2022-2023	
	Boi	uah Workina	
Page 11 of 14		agii working	
Page 11 of 14	_		
	26	ide 11 of 14	
		96 11 01 14	

BBC5210 Paper A	Use this section for rough work	2022/23
		Do not
		write in this
	2022-2023	
Do	ugh Working	
_		
25	ige 12 of 14	
	IGE IZ OI IT	

BBC5210 Paper A	Use this section for rough work	2022/23
		Do not
		write in this
	2022-2023	
	2022-2023	
Rai	ugh Working	
	agii Working	
Pa	ige 13 of 14	
	96 10 01 14	