1. Generalities

Fix a field K.

Definition 1. A valuation $v: K \to \mathbb{Z}$ on K is discrete if it is non-archimedean and surjective.

We have the

Proposition 1.0.1 ([Ser68, Chap I, \S 1, Proposition 1]). If K is complete with respect to a discrete valuation v, then its unit ball K° is a discrete valuation ring.

Lemma 1.0.2 ([Ser68, Chap II,§2, last part of Proposition 3]). If K is complete with respect to a discrete valuation v and if L/K is a finite extension, then L has a discrete valuation $w: L \to \mathbb{Z}$ inducing v and L is complete with respect to w.

Moreover,

Proposition 1.0.3 ([Ser68, Chap II,§2, Proposition 3]). If K is complete with respect to a discrete valuation v and if L/K is a finite extension, then the integral closure of K° inside L coincides L° and so, in particular, it is a discrete valuation ring by 1.0.1. Moreover, L° is a finite, free K° -module of rank n = [L:K].

2. Local Fields

Definition 2. A (nonarchimedean) local field is a field complete with respect to a discrete valuation and with finite residue field.

Definition 3. A mixed characteristic local field is a finite field extension of the field \mathbb{Q}_p of p-adic numbers, for some prime p.

Definition 4. An equal characteristic local field is a finite field extension of the field $\mathbb{F}_p((X))$, for some prime p.

Lemma 2.0.1. A mixed characteristic local field is a local field.

Lemma 2.0.2. An equal characteristic local field is a local field.

2.1. Ramification Index.

- (1) Define a local ramification index to get rid of the variables \mathfrak{p} and \mathfrak{P} in the mathlib definition
- (2) Obtain from there the formula n = ef
- (3) Prove that \mathbb{Q}_p and $\mathbb{F}_p((X))$ are unramified
- (4) If possible, go through [Ser68, Chap. I, §6] (before completion, the results there hold for DVR's).

3. Global to Local

Starting with a Dedekind domain R and a non-zero maximal ideal \mathfrak{p} , let $K=\operatorname{Frac}(R)$. Then we prove the

Proposition 3.0.1 ([Ser68, Chap. II, §2, Théorème 1]). The completion $K_{\mathfrak{p}}$ has a discrete valuation extending the valuation $v_{\mathfrak{p}}$ and such that $K_{\mathfrak{p}}^{\circ} = R_{\mathfrak{p}}$. In particular, this localization is a DVR by Proposition 1.0.1.

Proposition 3.0.2. Let F be a number field and let v be a finite place of residue characteristic p. Then F_v is a mixed characteristic local field with residue characteristic p.

Proposition 3.0.3. Let F be a function field and let v be any place. Then F_v is an equal characteristic local field with residue characteristic p.

References

- [Ser67] Jean-Pierre Serre. Local class field theory. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 128–161. Thompson, Washington, D.C., 1967.
- [Ser68] Jean-Pierre Serre. Corps locaux. Hermann, Paris, 1968. Deuxième édition.