# Rank Deficient Models

STA 721: Lecture 3

Merlise Clyde (clyde@duke.edu)

**Duke University** 



## **Outline**

- Rank Deficient Models
- Generalized Inverses, Projections and MLEs/OLS
- Class of Unbiased Estimators

Readings: - Christensen Chapter 2 and Appendix B - Seber & Lee Chapter 3



# **Geometric View**





## Non-Full Rank Case

- Model:  $\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$
- Assumption:  $oldsymbol{\mu} \in C(\mathbf{X})$  for  $\mathbf{X} \in \mathbb{R}^{n imes p}$
- What if the rank of  $\mathbf{X}, r(\mathbf{X}) \equiv r \neq p$ ?
- Still have result that the OLS/MLE solution satisfies

$$\mathbf{P}_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{oldsymbol{eta}}$$

• How can we characterize  ${f P}$  and  $\hat{m{eta}}$  in this case? 3 cases

1. 
$$p \leq n, r(\mathbf{X}) \neq p \Rightarrow r(\mathbf{X}) < p$$

$$2. p > n, r(\mathbf{X}) \neq p$$

$$3. p > n, r(\mathbf{X}) = p$$

Focus on the first case for OLS/MLE for now...



# **Model Space**

- $\mathcal{M} = C(\mathbf{X})$  is an r-dimensional subspace of  $\mathbb{R}^n$
- ${m {\cal M}}$  has an (n-r)-dimensional orthogonal complement  ${m {\cal N}}$
- each  $\mathbf{y} \in \mathbb{R}^n$  has a unique representation as

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{e}$$

for  $\hat{\mathbf{y}} \in \mathcal{M}$  and  $\mathbf{e} \in \mathcal{N}$ 

•  $\hat{\mathbf{y}}$  is the orthogonal projection of  $\mathbf{y}$  onto  $\mathcal{M}$  and is the OLS/MLE estimate of  $\boldsymbol{\mu}$  that satisfies

$$\mathbf{P}_{\mathbf{X}}\mathbf{y} = \mathbf{X}\hat{oldsymbol{eta}}$$

ullet  $\mathbf{X}^T\mathbf{X}$  is not invertible so need another way to represent  $\mathbf{P}_{\mathbf{X}}$  and  $\hat{oldsymbol{eta}}$ 



# Spectral Decomposition (SD)

Every symmetric n imes n matrix,  ${f S}$ , has an eigen decomposition  ${f S} = {f U}{f \Lambda}{f U}^T$ 

- ${m \lambda}$  is a diagonal matrix with eigenvalues  $(\lambda_1,\ldots,\lambda_n)$  of  ${f S}$
- ${f U}$  is a n imes n orthogonal matrix  ${f U}^T{f U}={f U}{f U}^T={f I}_n$  (  ${f U}^{-1}={f U}^T$  )
- the columns of  ${f U}$  from an Orthonormal Basis (ONB) for  ${\Bbb R}^n$
- ullet the columns of  ${f U}$  associated with non-zero eigenvalues form an ONB for  $C({f S})$
- ullet the number of non-zero eigenvalues is the rank of  ${f S}$
- ullet the columns of  ${f U}$  associated with zero eigenvalues form an ONB for  $C({f S})^\perp$
- $\mathbf{S}^d = \mathbf{U} \mathbf{\Lambda}^d \mathbf{U}^T$  (matrix powers)



# Positive Definite and Non-Negative Definite Matrices

**▼ Definition:** B.21 Positive Definite and Non-Negative Definite

A symmetric matrix  $\mathbf{S}$  is positive definite ( $\mathbf{S}>0$ ) if and only if  $\mathbf{x}^T\mathbf{S}\mathbf{x}>0$  for  $\mathbf{x}\in\mathbb{R}^n$ ,  $\mathbf{x}\neq\mathbf{0}_n$ , and positive semi-definite or non-negative definite ( $\mathbf{S}\geq0$ ) if and only if  $\mathbf{x}^T\mathbf{S}\mathbf{x}\geq0$  for  $\mathbf{x}\in\mathbb{R}^n$ ,  $\mathbf{x}\neq\mathbf{0}_n$ 



Show that a symmetric matrix S is positive definite if and only if its eigenvalues are all strictly greater than zero, and positive semi-definite if all the eigenvalues are non-negative.



# **Projections**

Let  ${f P}$  be an orthogonal projection matrix onto  ${m \mathcal{M}}$ , then

- 1. the eigenvalues of  ${f P}, \lambda_i$ , are either zero or one
- 2. the trace of  $\bf P$  is the rank of  $\bf P$
- 3. the dimension of the subspace that  ${f P}$  projects onto is the rank of  ${f P}$
- 4. the columns of  $\mathbf{U}_r = [u_1, u_2, \dots u_r]$  form an ONB for the  $C(\mathbf{P})$
- 5. the projection  ${f P}$  has the representation  ${f P}={f U}_r{f U}_r^T=\sum_{i=1}^r u_iu_i^T$  (the sum of r rank 1 projections)
- 6. the projection  ${f I}_n-{f P}={f I}-{f U}_r{f U}_r^T={f U}_\perp{f U}_\perp^T$  where  ${f U}_\perp=[u_{r+1},\dots u_n]$  is an orthogonal projection onto  ${m N}$

#### MLE/OLS:

- ullet  $\mathbf{P}_X\mathbf{y}=\mathbf{U}_r\mathbf{U}_r^T\mathbf{y}=\mathbf{U}_r ilde{oldsymbol{eta}}$
- Claim  $ilde{oldsymbol{eta}}$  is a MLE/OLS estimate of  $oldsymbol{eta}$  where  $ilde{\mathbf{X}} = \mathbf{U}_r$ .



# Singular Value Decomposition & Connections to Spectral Decompositions

A matrix  $\mathbf{X} \in \mathbb{R}^{n imes p}$  ,  $p \leq n$  has a singular value decomposition

$$\mathbf{X} = \mathbf{U}_p \mathbf{D} \mathbf{V}^T$$

- ${f U}_p$  is a n imes p matrix with the first p eigenvectors in  ${f U}$  associated with the p largest eigenvectors of  ${f X}{f X}^T={f U}{f \Lambda}{f U}^T$  with  ${f U}_p^T{f U}_p=I_p$
- ${f V}$  is a p imes p orthogonal matrix associated with the p eigenvectors of  ${f X}^T{f X}={f V}{f \Lambda}_p{f V}^T$  where  ${f \Lambda}_p$  is the diagonal matrix of eigenvalues associated with the p largest eigenvalues of  ${f \Lambda}$
- $\mathbf{D} = \mathbf{\Lambda}_p^{1/2}$  are the singular values
- if  ${\bf X}$  has rank r < p, then  $C({\bf X}) = C({\bf U}_p) = C({\bf U}_r)$ , where  ${\bf U}_r$  are the eigenvectors of  ${\bf U}$  or  ${\bf U}_p$  associated with the non-zero eigenvalues.



## MLE/OLS for non-full rank case

- if  $\mathbf{X}^T\mathbf{X}$  is invertible,  $\mathbf{P}_X = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$  and  $\hat{\boldsymbol{\beta}}$  is the unique estimator that satisfies  $\mathbf{P}_{\mathbf{X}}\mathbf{y} = \mathbf{X}\hat{\boldsymbol{\beta}}$  or  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$
- if  $\mathbf{X}^T\mathbf{X}$  is not invertible, replace  $\mathbf{X}$  by  $\tilde{\mathbf{X}}$  that is rank r
- or represent  $\mathbf{P_X} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T$  where  $(\mathbf{X}^T\mathbf{X})^-$  is a generalized inverse of  $\mathbf{X}^T\mathbf{X}$  and  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T\mathbf{y}$



### **Generalized Inverses**

**▼ Definition:** Generalized-Inverse (B.36)

A generalized inverse of any matrix  $A: A^-$  satisfies  $AA^-A = A$ 

ullet A generalized inverse of  ${f A}$  symmetric always exists!

**▼ Theorem:** Christensen B.39

If  $G_1$  and  $G_2$  are generalized inverses of  $\bf A$  then  $G_1 {\bf A} G_2$  is also a generalized inverse of  $\bf A$ 

• if A is symmetric, then  $A^-$  need not be!



# Orthogonal Projections in General

#### (i) Lemma B.43

If  ${f G}$  and  ${f H}$  are generalized inverses of  ${f X}^T{f X}$  then

$$\mathbf{X}\mathbf{G}\mathbf{X}^T\mathbf{X} = \mathbf{X}\mathbf{H}\mathbf{X}^T\mathbf{X} = \mathbf{X}$$
  
 $\mathbf{X}\mathbf{G}\mathbf{X}^T = \mathbf{X}\mathbf{H}\mathbf{X}^T$ 

#### ▼ Theorem: B.44

 $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$  is an orthogonal projection onto  $C(\mathbf{X})$ .

We need to show that (i)  ${f Pm}={f m}$  for  ${f m}\in C({f X})$  and (ii)  ${f Pn}=0$  for  ${f n}\in C({f X})^\perp$ .

- i. For  $\mathbf{m}\in C(\mathbf{X})$ , write  $\mathbf{m}=\mathbf{X}\mathbf{b}$ . Then  $\mathbf{Pm}=\mathbf{PXb}=\mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T\mathbf{Xb}$  and by Lemma B43, we have that  $\mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T\mathbf{Xb}=\mathbf{Xb}=\mathbf{m}$
- ii. For  $\mathbf{n}\perp C(\mathbf{X})$ ,  $\mathbf{P}\mathbf{n}=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{n}=\mathbf{0}_n$  as  $C(\mathbf{X})^{\perp}=N(\mathbf{X}^T)$ .



## MLEs & OLS

#### MLE/OLS satisfies

- $\mathbf{P}\mathbf{y} = \mathbf{X}\hat{oldsymbol{eta}}$
- $\mathbf{P}\mathbf{y}=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{X}\hat{\boldsymbol{\beta}}=\mathbf{X}\hat{\boldsymbol{\beta}}$  (does not depend on choice of generalized inverse)
- $oldsymbol{\hat{eta}} = (\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T\mathbf{y}$
- $\hat{m{eta}}$  is not unique does depend on choice of generalized inverse unless  ${f X}$  is full rank



## Moore-Penrose Generalized Inverse:

- Decompose symmetric  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$  (i.e  $\mathbf{X}^T \mathbf{X}$ )
- $\mathbf{A}_{MP}^- = \mathbf{U}\mathbf{\Lambda}^-\mathbf{U}^T$
- $\Lambda^-$  is diagonal with

$$\lambda_i^- = egin{cases} 1/\lambda_i ext{ if } \lambda_i 
eq 0 \ 0 ext{ if } \lambda_i = 0 \end{cases}$$

- ullet Symmetric  ${f A}_{MP}^-=({f A}_{MP}^-)^T$
- Reflexive  $\mathbf{A}_{MP}^{-}\mathbf{A}\mathbf{A}_{MP}^{-}=\mathbf{A}_{MP}^{-}$
- Can you construct another generalized inverse of  $\mathbf{X}^T\mathbf{X}$ ?
- Can you find the Moore-Penrose generalized inverse of  $\mathbf{X} \in \mathbb{R}^{n \times p}$ ?



# Properties of OLS (full rank case)

How good is  $\hat{\boldsymbol{\beta}}$  as an estimator of  $\beta$ 

• 
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon}$$

- don't know  $\epsilon$ , but can talk about behavior on average over
  - different runs of an experiment
  - different samples from a population
  - different values of  $\epsilon$
- with minimal assumption  $\mathsf{E}[{m{\epsilon}}] = {m{0}}_n$ ,

$$egin{aligned} \mathsf{E}[\hat{oldsymbol{eta}}] &= \mathsf{E}[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}oldsymbol{eta} + (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Toldsymbol{\epsilon}] \ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathsf{E}[oldsymbol{\epsilon}] \ &= oldsymbol{eta} \end{aligned}$$

• Bias of  $\hat{m{eta}}$ ,  $\mathrm{Bias}[\hat{m{eta}}]=\mathsf{E}[\hat{m{eta}}-m{eta}]=\mathbf{0}_p$  -  $\hat{m{eta}}$  is an unbiased estimator of  $m{eta}$  if  $m{\mu}\in C(\mathbf{X})$ 



### Class of Unbiased Estimators

Class of linear statistical models:

$$egin{aligned} \mathbf{Y} &= \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon} \ oldsymbol{\epsilon} &\sim P \ P &\in \mathcal{P} \end{aligned}$$

An estimator  $\tilde{\pmb{\beta}}$  is unbiased for  $\pmb{\beta}$  if  $\mathsf{E}_P[\tilde{\pmb{\beta}}]=\pmb{\beta}\quad \forall \pmb{\beta}\in\mathbb{R}^p$  and  $P\in\mathcal{P}$  Examples:

$$egin{aligned} \mathcal{P}_1 &= \{\mathcal{P} = \mathsf{N}(\mathbf{0}_n, \mathbf{I}_n)\} \ \mathcal{P}_2 &= \{\mathcal{P} = \mathsf{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n), \sigma^2 > 0\} \ \mathcal{P}_3 &= \{\mathcal{P} = \mathsf{N}(\mathbf{0}_n, oldsymbol{\Sigma}), oldsymbol{\Sigma} \in \mathcal{S}^+\} \end{aligned}$$

 $\mathcal{P}_4$  is the set of distributions with  $\mathsf{E}_P[m{\epsilon}] = m{0}_n$  and  $\mathsf{E}_P[m{\epsilon}m{\epsilon}^T] > 0$ 

 ${\cal P}_5$  is the set of distributions with  ${\sf E}_P[m{\epsilon}]=m{0}_n$  and  ${\sf E}_P[m{\epsilon}m{\epsilon}^T]\geq 0$ 



## **Linear Unbiased Estimation**

#### (i) Exercise

- 1. Explain why an estimator that is unbiased for the model with parameter space  $\beta \in \mathbb{R}^p$  and  $P \in \mathcal{P}_{k+1}$  is unbiased for the model with parameter space  $\beta \in \mathbb{R}^p$  and  $P \in \mathcal{P}_k$ .
- 2. Find an estimator that is unbiased for  $m{eta} \in \mathbb{R}^p$  and  $P \in \mathcal{P}_1$  that but is biased for  $m{eta} \in \mathbb{R}^p$  and  $P \in \mathcal{P}_2$ .

#### Restrict attention to **linear** unbiased estimators

**▼ Definition:** Linear Unbiased Estimators (LUEs)

An estimator  $\tilde{oldsymbol{eta}}$  is a **Linear Unbiased Estimator** (LUE) of  $oldsymbol{eta}$  if

- 1. linearity:  $ilde{oldsymbol{eta}} = \mathbf{AY}$  for  $\mathbf{A} \in \mathbb{R}^{p imes n}$
- 2. unbiasedness:  $\mathsf{E}[ ilde{oldsymbol{eta}}] = oldsymbol{eta}$  for all  $oldsymbol{eta} \in \mathbb{R}^p$
- Are there other LUEs besides the OLS/MLE estimator?
- Which is "best"? (and in what sonse?) 21-F24.github.io/website/

