Practice Final, STAT 611

Name:

1. Let X_1, \dots, X_n be independent identically distributed random variables with pdf

$$f(x) = \frac{1}{\lambda} \exp \left[-\left(1 + \frac{1}{\lambda}\right) \log(x) \right]$$

where $\lambda > 0$ and $x \ge 1$

(a) Find the maximum likelihood estimator of λ . Log-likelihood is

$$l(\lambda; \boldsymbol{x}) = -n \log \lambda - \left(1 + \frac{1}{\lambda}\right) \sum_{i=1}^{n} \log x_i.$$

After checking both first and second order conditions (details omitted here!!!), we have

$$\widehat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \log x_i$$

is the MLE.

(b) What is the maximum likelihood estimator of λ^8 ? Explain your answer. By the invariance property of MLE, the MLE of λ^8 is

$$\widehat{\lambda}^8 = \left(\frac{1}{n} \sum_{i=1}^n \log x_i\right)^8.$$

- 2. Let X_1, \ldots, X_n be independent identically distributed from a N (μ, σ^2) population, where σ^2 is known. Let \overline{X} be the sample mean.
 - (a) Calculate the MSE of the maximum likelihood estimator of μ . Does this estimator attain the Cramer-Rao lower bound?
 - (b) Find the UMVUE of μ^2 .

Class example; check lecture notes.

3. Let X_1, \ldots, X_n be iid random variables from the Pareto(a, b) distribution. The PDF is $f_X(x) = ba^b x^{-b-1}$ for x > a and $f_X(x) = 0$ for $x \le a$. The parameters a, b satisfy a > 0, b > 2.

1

(a) Find the moment estimator for a, b. Provide brief derivation. [5]

$$E(X) = \frac{ab}{b-1}, \qquad E(X^2) = \frac{ba^2}{(b-1)^2(b-2)} + \frac{a^2b^2}{(b-1)^2} = \frac{ba^2}{b-2}$$

Thus, solve

$$\widehat{m}_1 = \frac{ab}{b-1}, \quad \widehat{m}_2 = \frac{ba^2}{b-2}.$$

We obtain

$$\widehat{a} = \frac{\widehat{m}_1 \sqrt{\widehat{m}_2}}{\sqrt{\widehat{m}_2 - \widehat{m}_1^2} + \sqrt{\widehat{m}_2}}, \qquad \widehat{b} = 1 + \sqrt{\frac{\widehat{m}_2}{\widehat{m}_2 - \widehat{m}_1^2}}.$$

- (b) Is your estimator strongly consistent? Briefly justify your answers.[5]

 Strongly consistent. Theorem on moment estimator and the continuous function of it.
- (c) Find the MLE for a, b. Provide brief derivation. [5]

$$l = n \log(b) + nb \log(a) - (b+1) \sum_{i=1}^{n} \log(x_i)$$

Hence, $\hat{a} = x_{(1)}$. From

$$l'_b = n/b + n\log(a) - \sum_{i=1}^n \log(x_i) = 0,$$

we obtain $\hat{b} = n/\{\sum_{i=1}^{n} \log(x_i) - n \log(x_{(1)})\}$. Obviously $l_b'' < 0$. So this is MLE.

- (d) Is your estimator strongly consistent? Briefly justify your answer.[5]
 Strongly consistent due to the theorem about the asymptotic properties of MLE
- 4. Let X_1, \dots, X_n be independent identically distributed random variables from a $N(\mu, \sigma^2)$ distribution where the variance σ^2 is known. We want to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$
 - (a) Derive the likelihood ratio test
 - (b) Let λ be the likelihood ratio. Show that $-2 \log \lambda$ is a function of $(\bar{X} \mu_0)$
 - (c) Derive the distribution for $-2 \log \lambda$.

Solutions:

(a) The likelihood function is

$$L(\mu) = \left(2\pi\sigma^2\right)^{-n/2} \exp\left[\frac{-1}{2\sigma^2} \sum_{i} (x_i - \mu)^2\right]$$

and the MLE for μ is $\hat{\mu} = \overline{x}$. Thus the numerator of the likelihood ratio test statistic is $L(\mu_0)$ and the denominator is $L(\overline{x})$. So the test is reject H_0 if $\lambda(x) = L(\mu_0)/L(\overline{x}) \le c$ where $\alpha = P_{\mu_0}(\lambda(X) \le c)$

- (b) $\log \lambda = \log L(\mu_0) \log L(\overline{X}) = -\frac{1}{2\sigma^2} \left[\sum (X_i \mu_0)^2 \sum (X_i \overline{X})^2 \right] = \frac{-n}{2\sigma^2} \left[\overline{X} \mu_0 \right]^2$ $\operatorname{since} \sum (X_i - \mu_0)^2 = \sum (X_i - \overline{X} + \overline{X} - \mu_0)^2 = \sum (X_i - \overline{X})^2 + n(\overline{X} - \mu_0)^2.$ $\operatorname{So} -2 \log \lambda = \frac{n}{\sigma^2} \left[X - \mu_0 \right]^2$
- (c) $-2\log\lambda \sim \chi_1^2$
- 5. Let $X \sim \text{Binomial}(n, p)$, where the positive integer n is large and 0 .
 - (a) Find the asymptotic distribution of X/n. Note that $X \stackrel{d}{=} \sum_{i=1}^{n} Y_i$, where $Y_i, i \geq 1$ are iid Bernoulli r.v. with parameter p. Then by CLT,

$$\sqrt{n}\left(\frac{X}{n}-p\right) \stackrel{d}{\longrightarrow} N(0,p(1-p)).$$

(b) Find the asymptotic distribution of $(X/n)^2$. Using the delta method, we have

$$\sqrt{n}\left(\left(\frac{X}{n}\right)^2 - p^2\right) \stackrel{d}{\longrightarrow} N(0, 4p^3(1-p)).$$

- 6. Let X_1, \ldots, X_n be a random sample from a uniform $(0, \theta)$ distribution. Let $Y = \max(X_1, X_2, \ldots, X_n)$.
 - (a) Find the pdf of Y/θ .
 - (b) Find a pivotal quantity and use it to construct a $(1 \alpha)\%$ confidence interval for θ .

Solution:

- (a) (a) Let $W_i \sim U(0,1)$ for $i=1,\ldots,n$ and let $T_n=Y/\theta$. Then $P\left(\frac{Y}{\theta} \leq t\right) = P\left(\max\left(W_1,\ldots,W_n\right) \leq t\right) = P\left(\operatorname{all} W_i \leq t\right) = \left[F_{W_i}(t)\right]^n = t^n$ for 0 < t < 1. It follows that the pdf of T_n is $f_{T_n}(t) = \frac{d}{dt}t^n = nt^{n-1}$ for 0 < t < 1
- (b) (b) The distribution of $T_n = Y/\theta$ does not depend on θ . Let $W_i = X_i/\theta \sim U(0,1)$ which has cdf $F_Z(t) = t$ for 0 < t < 1. Let $W_{(n)} = X_{(n)}/\theta = \max(W_1, \dots, W_n)$. Then

$$F_{W_{(n)}}(t) = P\left(\frac{X_{(n)}}{\theta} \le t\right) = t^n$$

for 0 < t < 1. Find c_n such that $P\left(c_n \le \frac{X_{(n)}}{\theta} \le 1\right) = 1 - \alpha$ for $0 < \alpha < 1$. So $1 - F_{W_{(n)}}(c_n) = 1 - c_n^n = 1 - \alpha$. So $c_n = \alpha^{1/n}$ Therefore $\left(X_{(n)}, \frac{X_{(n)}}{\alpha^{1/n}}\right)$ is an exact $100(1-\alpha)\%$ CI for θ

7. Let X_1, \ldots, X_n be a random sample from a location-exponential family with density

$$f(x;\theta) = \exp^{-(x-\theta)}$$
, if, $x \ge \theta, -\infty < \theta < \infty$

and CDF,

$$F(x;\theta) = 1 - \exp^{-(x-\theta)}$$
, if, $x \ge \theta, -\infty < \theta < \infty$

(a) Write down the likelihood function of θ . (Pay attention to the range/support of θ) The likelihood function is

$$L(\theta; \boldsymbol{x}) = \exp\left\{-\sum_{i=1}^{n} (x_i - \theta)\right\} \mathbf{1}_{\{x_{(1)} \ge \theta\}},$$

where $x_{(1)}$ is the minimum of x_i 's.

(b) Derive the likelihood ratio test and calculate the power function for the test

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$

The likelihood ratio is

$$\lambda(\mathbf{X}) = \exp\left\{-n(X_{(1)} - \theta_0)\right\}.$$

Hence, the rejection region is:

$$\{x: \lambda(x) \leq C\} \Leftrightarrow \{x: x_{(1)} \geq \theta_0 + C'\}.$$

Since

$$\mathbb{P}_{\theta_0}(X_{(1)} \ge \theta_0 + C') = e^{-nC'} \stackrel{\text{set}}{=} \alpha,$$

then $C' = -\frac{1}{n} \log \alpha$ and the LRT is to reject H_0 if $X_{(1)} \ge \theta_0 - \frac{1}{n} \log \alpha$.

Power function:

$$\mathbb{P}_{\theta}(X_{(1)} \ge \theta_0 - \frac{1}{n} \log \alpha) = \alpha e^{-n(\theta_0 - \theta)}.$$

(c) Construct a $100(1-\alpha)\%$ confidence interval of θ .

Inverting the LRT in the previous part gives the $100(1-\alpha)\%$ for θ :

$$\left[X_{(1)} + \frac{1}{n}\log\alpha, X_{(1)}\right].$$

8. Review exercises on other topics which are not covered in the previous 7 questions.