BINOMIAL GENERALIZED LINEAR MIXED MODEL WITH VARYING

COEFFICIENTS AT TWO HIERARCHICAL LEVELS

Brian M. Brost

03 April 2016

Description

A generalized linear mixed model for binomially distributed data with varying coefficients at two hiearchical levels.

Implementation

The file binomial.varying.coef.3.sim.R simulates data according to the model statement presented below, and binomial.varying.coef.3.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let z_{ijk} be the number of "successes" (i.e., z_{ijk} are integers greater than or equal to 0) out of N_{ijk} "trials", for groups i = 1, ..., n and subgroups $j = 1, ..., J_i$ (the subgroups are nested withing groups). The index k, for $k = 1, ..., K_{ij}$, denotes replicate events within group i and subgroup j. Furthermore, let \mathbf{x}_{ijk} be a vector of covariates associated with z_{ijk} and α_{ij} be the corresponding vector of coefficients for subgroup j in group i. The vector β_i corresponds to group-level coefficients and μ_{β} is a vector of population-level coefficients.

$$\begin{array}{rcl} z_{ijk} & \sim & \operatorname{Binom}\left(N_{ijk}, p_{ijk}\right) \\ \operatorname{logit}\left(p_{ijk}\right) & = & \mathbf{x}_{ijk}'\boldsymbol{\alpha}_{ij} \\ \boldsymbol{\alpha}_{ij} & \sim & \mathcal{N}\left(\boldsymbol{\beta}_i, \boldsymbol{\Sigma}_{\alpha_i}\right) \\ \boldsymbol{\beta}_i & \sim & \mathcal{N}\left(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right) \\ \boldsymbol{\mu}_{\beta} & \sim & \mathcal{N}\left(\mathbf{0}, \sigma_{\beta}^2 \mathbf{I}\right) \\ \boldsymbol{\Sigma}_{\alpha_i}^{-1} & \sim & \operatorname{Wish}\left(\mathbf{S}_0^{-1}, \nu\right) \\ \boldsymbol{\Sigma}_{\beta}^{-1} & \sim & \operatorname{Wish}\left(\mathbf{S}_0^{-1}, \nu\right) \end{array}$$

Full conditional distributions

Subgroup-level regression coefficients (α_{ij}):

$$\begin{split} \left[\boldsymbol{\alpha}_{ij}\mid\cdot\right] & \propto & \prod_{k=1}^{K_{ij}}\left[z_{ijk}\mid N_{ijk},\mathbf{x}_{ijk}'\boldsymbol{\alpha}_{ij}\right]\left[\boldsymbol{\alpha}_{ij}\mid\boldsymbol{\beta}_{i},\boldsymbol{\Sigma}_{\alpha_{i}}\right] \\ & \propto & \prod_{k=1}^{K_{ij}}\operatorname{Binom}\left(z_{ijk}\mid N_{ijk},\mathbf{x}_{ijk}'\boldsymbol{\alpha}_{ij}\right)\mathcal{N}\left(\boldsymbol{\alpha}_{ij}\mid\boldsymbol{\beta}_{i},\boldsymbol{\Sigma}_{\alpha_{i}}\right). \end{split}$$

The update for α_{ij} proceeds using Metropolis-Hastings.

Group-level regression coefficients (β_i):

$$\begin{split} \left[\beta_{i}\mid\cdot\right] &\propto \prod_{j=1}^{J_{i}}\left[\alpha_{ij}\mid\beta_{i},\Sigma_{\alpha_{i}}\right]\left[\beta_{i}\mid\mu_{\beta},\Sigma_{\beta}\right] \\ &\propto \prod_{j=1}^{J_{i}}\mathcal{N}\left(\alpha_{ij}\mid\beta_{i},\Sigma_{\alpha_{i}}\right)\mathcal{N}\left(\beta_{i}\mid\mu_{\beta},\Sigma_{\beta}\right) \\ &\propto \exp\left\{\sum_{j=1}^{J_{i}}\left(-\frac{1}{2}\left(\alpha_{ij}-\beta_{i}\right)'\Sigma_{\alpha_{i}}^{-1}\left(\alpha_{ij}-\beta_{i}\right)\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(\beta_{i}-\mu_{\beta}\right)'\Sigma_{\beta}^{-1}\left(\beta_{i}-\mu_{\beta}\right)\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{j=1}^{J_{i}}\alpha_{ij}'\Sigma_{\alpha_{i}}^{-1}\right)\beta_{i}+\beta_{i}'\left(J_{i}\Sigma_{\alpha_{i}}^{-1}\right)\beta_{i}\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(-2\left(\mu_{\beta}'\Sigma_{\beta}^{-1}\right)\beta_{i}+\beta_{i}'\left(\Sigma_{\beta}^{-1}\right)\beta_{i}\right)\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{j=1}^{J_{i}}\alpha_{ij}'\Sigma_{\alpha_{i}}^{-1}-\mu_{\beta}'\Sigma_{\beta}^{-1}\right)\beta_{i}+\beta_{i}'\left(J_{i}\Sigma_{\alpha_{i}}^{-1}+\Sigma_{\beta}^{-1}\right)\beta_{i}\right)\right\} \\ &= \mathcal{N}(\mathbf{A}^{-1}\mathbf{b},\mathbf{A}^{-1}), \end{split}$$

where $\mathbf{A} = J_i \mathbf{\Sigma}_{\alpha_i}^{-1} + \mathbf{\Sigma}_{\beta}^{-1}$ and $\mathbf{b}' = \boldsymbol{\alpha}_i' \mathbf{\Sigma}_{\alpha_i}^{-1} - \boldsymbol{\mu}_{\beta}' \mathbf{\Sigma}_{\beta}^{-1}$, where $\boldsymbol{\alpha}_i$ is the vector sum $\sum_{j=1}^{J_i} \boldsymbol{\alpha}_{ij}$.

Mean of group-level regression coefficients (μ_{β}) :

$$\begin{split} \left[\boldsymbol{\mu}_{\beta}\mid\cdot\right] &\propto &\prod_{i=1}^{n}\left[\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}_{\beta}\right]\left[\boldsymbol{\mu}_{\beta}\mid\boldsymbol{0},\sigma_{\mu_{\beta}}^{2}\right] \\ &\propto &\prod_{i=1}^{n}\mathcal{N}\left(\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}_{\beta}\right)\mathcal{N}\left(\boldsymbol{\mu}_{\beta}\mid\boldsymbol{0},\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right) \\ &\propto &\exp\left\{\sum_{i=1}^{n}\left(-\frac{1}{2}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)'\boldsymbol{\Sigma}_{\beta}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}-\boldsymbol{0}\right)'\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\mu}_{\beta}-\boldsymbol{0}\right)\right\} \\ &\propto &\exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{n}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{n}\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}'\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\beta}\right)\right\} \\ &\propto &\exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{n}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{n}\boldsymbol{\Sigma}_{\beta}^{-1}+\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ &= &\mathcal{N}(\mathbf{A}^{-1}\mathbf{b},\mathbf{A}^{-1}), \end{split}$$

Variance-covariance of group-level regression coefficients (Σ_{β}):

where $\mathbf{A} = n \mathbf{\Sigma}_{\beta}^{-1} + \left(\sigma_{\mu_{\beta}}^{2} \mathbf{I}\right)^{-1}$ and $\mathbf{b}' = \boldsymbol{\beta}' \mathbf{\Sigma}_{\beta}^{-1}$, where $\boldsymbol{\beta}$ is the vector sum $\sum_{i=1}^{n} \boldsymbol{\beta}_{i}$.

$$egin{aligned} \left[oldsymbol{\Sigma}_{eta} \mid \cdot
ight] & \propto & \prod_{i=1}^n \left[oldsymbol{eta}_i \mid oldsymbol{\mu}_{eta}, oldsymbol{\Sigma}_{eta}
ight] \left[oldsymbol{\Sigma}_{eta} \mid oldsymbol{S}_0,
u
ight] \end{aligned}$$

$$\propto \prod_{i=1}^{n} \mathcal{N}\left(\beta_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right) \operatorname{Wish}\left(\boldsymbol{\Sigma}_{\beta} \mid \mathbf{S}_{0}, \boldsymbol{\nu}\right)$$

$$\propto |\boldsymbol{\Sigma}_{\beta}|^{-\frac{n}{2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)' \boldsymbol{\Sigma}_{\beta}^{-1} \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)\right\}$$

$$\times |\mathbf{S}_{0}|^{-\frac{\nu}{2}} |\boldsymbol{\Sigma}_{\beta}|^{-\frac{\nu-p-1}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left(\mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1}\right)\right\}$$

$$\propto |\boldsymbol{\Sigma}_{\beta}|^{-\frac{n+\nu-p-1}{2}} \exp\left\{-\frac{1}{2} \left[\sum_{i=1}^{n} \operatorname{tr}\left(\left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)' \boldsymbol{\Sigma}_{\beta}^{-1} \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)\right) + \operatorname{tr}\left(\mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1}\right)\right]\right\}$$

$$\propto |\boldsymbol{\Sigma}_{\beta}|^{-\frac{n+\nu-p-1}{2}} \exp\left\{-\frac{1}{2} \left[\operatorname{tr}\left(\left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right) \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)' \boldsymbol{\Sigma}_{\beta}^{-1}\right) + \operatorname{tr}\left(\mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1}\right)\right]\right\}$$

$$\propto |\boldsymbol{\Sigma}_{\beta}|^{-\frac{n+\nu-p-1}{2}} \exp\left\{-\frac{1}{2} \left[\operatorname{tr}\left(\sum_{i=1}^{n} \left(\left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right) \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)'\right) \boldsymbol{\Sigma}_{\beta}^{-1} + \mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1}\right)\right]\right\}$$

$$\propto |\boldsymbol{\Sigma}_{\beta}|^{-\frac{n+\nu-p-1}{2}} \exp\left\{-\frac{1}{2} \left[\operatorname{tr}\left(\sum_{i=1}^{n} \left(\left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right) \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)'\right) + \mathbf{S}_{0}\right) \boldsymbol{\Sigma}_{\beta}^{-1}\right]\right\}$$

$$= \operatorname{Wish}\left(\left(\sum_{i=1}^{n} \left(\left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right) \left(\beta_{i} - \boldsymbol{\mu}_{\beta}\right)'\right) + \mathbf{S}_{0}\right)^{-1}, n + \nu\right).$$

Variance-covariance of subgroup-level regression coefficients (Σ_{α_i}):

$$\begin{split} \left[\mathbf{\Sigma}_{\alpha_{i}} \mid \cdot \right] & \propto & \prod_{j=1}^{J_{i}} \left[\alpha_{ij} \mid \boldsymbol{\beta}_{i}, \mathbf{\Sigma}_{\alpha_{i}} \right] \left[\mathbf{\Sigma}_{\alpha_{i}} \mid \mathbf{S}_{0}, \nu \right] \\ & \propto & \prod_{j=1}^{J_{i}} \mathcal{N} \left(\alpha_{ij} \mid \boldsymbol{\beta}_{i}, \mathbf{\Sigma}_{\alpha_{i}} \right) \operatorname{Wish} \left(\mathbf{\Sigma}_{\alpha_{i}} \mid \mathbf{S}_{0}, \nu \right) \\ & = & \operatorname{Wish} \left(\left(\sum_{j=1}^{J_{i}} \left(\left(\alpha_{ij} - \boldsymbol{\beta}_{i} \right) \left(\alpha_{ij} - \boldsymbol{\beta}_{i} \right)' \right) + \mathbf{S}_{0} \right)^{-1}, J_{i} + \nu \right). \end{split}$$