Applied statistics: Coursework 1

HENRY HAUSTEIN

24th February 2019

Contents

1	Task 1			
	1.1	Part (1)	1	
	1.2	Part (2)	1	
	1.3	Part (3)	1	
	1.4	Part (4)	1	
2	Tas	k 2	2	
	2.1	Part (1)	2	
	2.2	Part (2)	2	
	2.3	Part (3)	3	
3	Tas	k 3	4	
	3.1	Part (1)	4	
	3.2	Part (2)	4	
4	Tas	k 4	5	
	4.1	Part (1)	5	
	4.2	Part (2)	6	

1 Task 1

1.1 Part (1)

In the given data were two out of 26 data points with an Al/Be ratio of more than 4.5. That means

$$\hat{p} = \frac{2}{26} = \frac{1}{13}$$

1.2 Part (2)

Using the following formula from the lecture we get the 95% confidence interval:

$$\hat{p} \pm 2 \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\frac{1}{13} \pm 2 \cdot \sqrt{\frac{\frac{1}{13} \cdot \frac{12}{13}}{26}}$$
0.1045

Our 95% confidence interval is [-0.0276, 0.1814] which means that we are 95% sure that the true proportion lies between -0.0276 and 0.1814.

- 1.3 Part (3)
- 1.4 Part (4)

2 Task 2

2.1 Part (1)

```
1 x = [-4.5, -1, -0.5, -0.15, 0, 0.01, 0.02, 0.05, ...
2 0.15, 0.2, 0.5, 0.5, 1, 2, 3];
3 m = mean(x);
4 s = std(x);
```

null hypothesis	$H_0: \mu = 0$
alternative hypothesis	H_A : $\mu \neq 0$
t-test for μ	$t = \frac{m-0}{\frac{s}{\sqrt{15}}} = \frac{0.0853}{\frac{1.6031}{\sqrt{15}}} = 0.2062$
rejection region	tinv(0.05,15) = -1.7531
conclusion	t lies not in the rejection region so H_0 is accepted at the 10% significance level.

2.2 Part (2)

If we reduce the significance level our rejection region gets smaller. With $\alpha=0.05$ the rejection region will start at tinv(0.025,15) = -2.1314. The t calculated in part (1) won't change \Rightarrow our decision won't change too.

To get the type 2 error we use the MATLAB function sampsizepwr and $type\ 2\ error = 1 - power$.

```
1 testtype = 't';
2 p0 = [0 1.6031];
3 p1 = 0.0853;
4 n = 15;
5 power = sampsizepwr(testtype,p0,p1,[],n)
```

$2.~{\rm Task}~2$

This gives $power = 0.0542 \Rightarrow type \, 2 \, error = 0.9458$. This is the probability of wrongly accepting H_0 when it is false.

2.3 Part (3)

- 3 Task 3
- 3.1 Part (1)
- 3.2 Part (2)

4 Task 4

4.1 Part (1)

The probability density function f(t) is

$$f(t) = \frac{2t \cdot \frac{\exp(-t^2)}{100}}{100} = \frac{t \cdot \exp(-t^2)}{5000}$$

The cumulative distribution function F(t) is then

$$F(t) = \int_0^t f(\xi) d\xi$$

$$= \int_0^t \frac{\xi \cdot \exp(-\xi^2)}{5000} d\xi$$

$$= \frac{\exp(-t^2) \left(\exp(t^2) - 1\right)}{10000}$$

For the survival function we get

$$R(t) = 1 - F(t)$$

$$= \frac{\exp(-t^2) + 9999}{10000}$$

$$0.99998$$

$$0.6$$

$$0.99994$$

$$0.99994$$

$$0.99992$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$5$$

To get the reliability of the component at t = 7 we simply evaluate R(7) which is 0.9999.

The hazard function is defined as

$$h(t) = \frac{f(t)}{1 - F(t)}$$
$$= \frac{2t}{9999 \cdot \exp(t^2) + 1}$$

The hazard function describes how an item ages where t affects the risk of failure. It is the frequency with which the item fails, expressed in failures per unit of time.

4.2 Part (2)

Given $h(x) \sim (\sqrt{x})^{-1}$ we will try to find out the *shape*-parameter of the WEIBULL distribution first.

Comparing this graph to graphs of the hazard function with different shape-parameters we see that shape = 0.5 fits best.

To get the scale-parameter of the distribution we use the other provided information:

$$\begin{aligned} 5 &= \mu \\ &= scale \cdot \Gamma \left(1 + \frac{1}{shape} \right) \\ &= scale \cdot \Gamma(3) \\ \Rightarrow scale &= \frac{5}{2} \end{aligned}$$

Let's build the survival function:

$$R(t) = 1 - \left(1 - \exp\left(-\sqrt{\frac{x}{5/2}}\right)\right)$$
$$= \exp(-\sqrt{x} \cdot \sqrt{2.5})$$

That mean that the probability of surviving 6 years (30 years) is R(6) = 0.0208 (R(30) = 0.0002).