An Essay on Linear Regression Bootstrapping

Pham Viet Hung

Pham Viet Hung Presentation 1 / 24

Content

- ► Resampling methods
 - Introduction
 - Jackknife vs Bootstrap
 - Bootstrap Confidence Interval
- Linear Regression
 - ► Gauss-Markov
 - Heteroscedasticity
- ► Bootstrap Regression with Simulations
 - Methods
 - Simulations

Pham Viet Hung Presentation 2 / 24

Introduction Jackknife vs Bootstrap Bootstrap Confidence Interval

Resampling

Pham Viet Hung Presentation 3 / 24

Introduction

- Extract all the info from the data
- ▶ Earlier: a statistic is a RV having a probability distribution, that is, a sampling distribution of the statistic. Sometimes, no need to approximate the properties ("relative accuracy") of an estimator with some strong prior hypothesis. E.x.: OLS is a BLUE (Gauss-Markov Theorem).
- ► However, most of the time, those hypothesis do not apply. An estimation of a statistic is needed ⇒ Jackknife, Bootstrap

Jackknife

Algorithm 1: The (Leave-One-Out) Jackknife

```
Input: S_n = (X_1, X_2, \dots, X_n) – observed samples of size n Output: J_{\theta_{jack}} = [\hat{\theta}^*_{(-1)}, \dots, \hat{\theta}^*_{(-n)}] – jackknifed parameters Init: N := sample size J_{\theta_{jack}} := [] – an empty array of parameter estimates T – A function of a statistic
```

for
$$i := 1$$
 to N do

$$S_{(-i)}^* := \text{remove } i^{\text{th}} \text{ element from } S_n$$

 $\hat{\theta}_{(-i)}^* := T(S_{(-i)}^*)$
 $J_{\theta_{iack}}[i] := \hat{\theta}_{(-i)}^*$

end

Bootstrap

```
Algorithm 2: The Bootstrap
```

```
Input : \hat{F}_n = (X_1, X_2, \dots, X_n) – observed sample of size n
Output: L_{\theta_{1},\ldots} = [\hat{\theta}_{1}^{*},\ldots,\hat{\theta}_{n}^{*}] – bootstrapped parameters
Init: B - \# of bootstrap repetitions
        b \cdot - 1
        L_{\theta_{host}} := [] - an empty array of parameter estimates
        T-A function of a statistic
while b < B + 1 do
    \hat{F}_n^{*(i)} := a sample size n from S_n by sampling with replacement
    \hat{\theta}_b^* := T\Big(\hat{F}_n^{*(b)}\Big)
   L_{\theta_{boot}}[b] := \hat{\theta}_b^*
end
```

Bias-Corrected and accelerated (BCa)

- ▶ bootstrap CDF: $\hat{G}(x) = \frac{\#\{\hat{\theta}_b^* \leq x\}}{B}$
- lacktriangledown $lpha^{ ext{th}}$ percentile point $\hat{ heta}^{*(lpha)}$ of the bootstrap distribution: $\hat{ heta}^{*(lpha)}=\hat{G}^{-1}(lpha)$
- bias-correction factor: $\hat{z}_0 = \Phi^{-1}\left(\frac{\#\{\hat{\theta}_b^* < \hat{\theta}\}}{B}\right) \longrightarrow$ to measure the difference between the median of $\hat{\theta}^*$ and $\hat{\theta}$ in normal units.

the bootstrap sampling distribution using jackkinfe.

Bias-Corrected and accelerated (BCa)

The $100\,(1-\alpha)\%$ BCa confidence interval is given by

$$\left[\hat{\theta}^{*(\alpha_1)}, \, \hat{\theta}^{*(\alpha_2)}\right] = \left[\hat{G}^{-1}(\alpha_1), \, \hat{G}^{-1}(\alpha_2)\right] \tag{1}$$

where

$$\alpha_{1} = \Phi\left(\hat{z}_{0} + \frac{\hat{z}_{0} + z_{\alpha/2}}{1 - \hat{\alpha}(\hat{z}_{0} + z_{\alpha/2})}\right)$$

$$\alpha_{2} = \Phi\left(\hat{z}_{0} + \frac{\hat{z}_{0} + z_{1-\alpha/2}}{1 - \hat{\alpha}(\hat{z}_{0} + z_{1-\alpha/2})}\right),$$
(2)

and z_{α} is the 100α th percentile point of the standard normal distribution.

Speeding up BCa: Inner Group Jackknife, Inner Random Subset Jackknife

Pham Viet Hung Presentation 8 / 24

Linear Regression

Pham Viet Hung Presentation 9 / 24

Model Specification

The multivariable regression model with n observations and d independent variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_d X_{id} + \epsilon_i \tag{3}$$

Model assumptions:

- OLSA.1: Observations are Mutually Independent
- OLSA.2: Linear Model DGP and Strict Exogeneity
- OLSA.3: Condtional Homoskedasticity
- ► OLSA.4: Conditionally Uncorrelated Error Terms
- OLSA.5: No Exact Collinearity Between Regressors
- ► OLSA.6: Conditionally Normally Distributed Errors

Pham Viet Hung Presentation 10 / 24

Gauss-Markov Theorems

OLS Estimator:
$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{Y}$$

Gauss-Markov Theorem states that If the conditions OLSA.1 - OLSA.5 hold true, the OLS estimator $\hat{\beta}$ is the Best Linear Unbiased Estimator (BLUE). It is also consistent with the true parameter values of the multivariate linear regression model.regression model.

Modern Gauss-Markov Theorem says that if $\hat{\beta}$ is an unbiased estimator of β then $\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1} \leq \mathbb{V}_{\hat{\beta}}$

However, what about relaxing the OLSA.3 (condtional homoskedasticity) assumption?

Pham Viet Hung Presentation 11 / 24

White Test for Heteroscedasticity

- 1. Estimate the model $Y = X\beta + \epsilon$ using OLS.
- 2. Obtain the predicted \hat{Y} and the squared residual $\hat{\epsilon}^2$.
- 3. Run the OLS for $\hat{\boldsymbol{\epsilon}} \odot \hat{\boldsymbol{\epsilon}} = \delta_0 + \delta_1 \hat{\boldsymbol{Y}} + \delta_2 \hat{\boldsymbol{Y}} \odot \hat{\boldsymbol{Y}} + u_i$. Retrieve the R-squared value $\boldsymbol{R}_{\hat{\boldsymbol{\epsilon}}^2}^2$ from this regression.
- 4. For the following hypothesis test,

$$\begin{cases} H_0: & \delta_1 = \delta_2 = 0 \\ H_1: & \exists i \in \{1, 2\} : \delta_i \neq 0, \end{cases}$$

apply either the
$$\mathsf{F} = \frac{oldsymbol{R_{\hat{oldsymbol{\epsilon}}^2}}/2}{\left(1 - oldsymbol{R_{\hat{oldsymbol{\epsilon}}^2}}\right)/\left(n - 3\right)} \sim F_{2,\,n - 3} \; \mathsf{or} \; \mathsf{LM} = n oldsymbol{R_{\hat{oldsymbol{\epsilon}}^2}^2} \sim \chi_2^2 \, .$$

5. Calculate the p-value.

Pham Viet Hung Presentation 12 / 24

Heteroskedasticity-Consistent Covariance Matrix Estimator

The error covariance matrix is
$$\mathbb{V}_{\hat{\boldsymbol{\beta}}} := \mathbb{V}\left(\hat{\boldsymbol{\beta}} \,|\, \boldsymbol{X}\right) = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T\boldsymbol{\Sigma}\boldsymbol{X}\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}.$$

The estimated HCCME is
$$\mathbb{V}^{\mathsf{HCCME}}_{\hat{\boldsymbol{\beta}}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T\hat{\boldsymbol{\Sigma}}\boldsymbol{X}\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}.$$

Revolutionary idea by White:
$$\hat{\mathbb{V}}_n \equiv \frac{1}{n} \sum_{i=1}^n \mathbf{X}_{i\cdot} \mathbf{X}_{i\cdot}^T \hat{\epsilon}_i^2 \xrightarrow{a.s.} \frac{1}{n} \sum_{i=1}^n \mathbb{E}(\mathbf{X}_{i\cdot} \mathbf{X}_{i\cdot}^T \hat{\epsilon}_i^2).$$

From which the asymptotic covariance matrix is $(\boldsymbol{X}^T\boldsymbol{X}/n)^{-1}\,\hat{\mathbb{V}}_n\,(\boldsymbol{X}^T\boldsymbol{X}/n)^{-1}.$

The finite version becomes the HC0:
$$\hat{\mathbb{V}}_{\hat{\boldsymbol{\beta}}}^{\text{HC0}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1} \left(\sum_{i=1}^n \boldsymbol{X}_i.\boldsymbol{X}_{i\cdot}^T \hat{\epsilon}_i^2\right) \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}.$$

$$\text{HC3: } \hat{\mathbb{V}}_{\hat{\boldsymbol{\beta}}}^{\text{HC3}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1} \left(\sum_{i=1}^n \left(1-h_{ii}\right)^{-2} \boldsymbol{X}_{i\cdot} \boldsymbol{X}_{i\cdot}^T \hat{\epsilon}_i^2\right) \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}, \text{ where } h_{ii} \text{ from } \boldsymbol{H}.$$

Pham Viet Hung Presentation 13 / 24

Bootstrap Regression

Pham Viet Hung Presentation 14 / 24

Methods

Applying bootstrap principles on OLS. These techniques are nonparametric bootstrapping.

3 ways to do that:

- Pairs Bootstrap
- Residual Bootstrap
- Wild Bootstrap

However, from the modelling perspective, Wild Bootstrap is the desirable one.

Pham Viet Hung Presentation 15 / 24

Wild Bootstrap

The wild bootstrap DGP: $Y_i^* = X_{i\cdot}^T \hat{\beta} + \xi_i^* f(\hat{\epsilon}_i)$ where ξ_i^* is a random variable.

Mammen's two-point distribution:

$$\xi_i^* = \begin{cases} -\frac{\sqrt{5} - 1}{2} & \text{with probability } \frac{\sqrt{5} + 1}{2\sqrt{5}} \approx 0.7236\\ \frac{\sqrt{5} + 1}{2} & \text{with probability } \frac{\sqrt{5} - 1}{2\sqrt{5}} \approx 0.2764. \end{cases}$$

$$\tag{4}$$

Rademacher distribution:

$$\xi_i^* = \begin{cases} -1 & \text{with probability } 1/2\\ 1 & \text{with probability } 1/2 \end{cases}$$
 (5)

Pham Viet Hung Presentation 16 / 24

Wild Bootstrap

- ▶ When conditional uncorrelatedness is assumed, for large sample size it's not worth using wild bootstrap to estimate the standard errors of the coefficients. A simple OLS with HCCME is a surprisingly good estimator in this case. However, bootstrap confidence interval may be worth using even for larger sample sizes.
- When conditional uncorrelatedness (OLSA.4) is NOT assumed, even for larger sample sizes it is worth using wild bootstrap. This is called wild cluster bootstrap.

Pham Viet Hung Presentation 17 / 24

Framework of the Simulations

- ► How bootstrap distributions and confidence intervals of regression coefficients change in wild bootstrap simulations when increasing the sample size and bootstrap replication numbers.
- ▶ CEU MicroData's Hungarian balance sheet data in the commerce sector from 2014.
- Python package ols_bootstrap
- ► The model: $ln(w_i/L_i) = \beta_0 + \beta_1 ln(L_i) + \beta_2 D_i + \epsilon_i$ $\forall i = 1, ..., n$ where
- \triangleright $\beta_0 = 6.7833$ for the constant
- ho $\beta_1 = 0.2105$ for the log_employment $(ln(L_i))$
- $ightharpoonup eta_2 = 0.3226$ for the is_exporter (D_i)

Pham Viet Hung Presentation 18 / 24

Confidence Interval Test

sample size	100	600	1100
BCa	0: 60	0: 46	0: 56
	1: 940	1: 954	1: 944
BC	0: 59	0: 44	0: 55
	1: 941	1: 956	1: 945
Percentile	0: 58	0: 44	0: 55
	1: 942	1: 956	1: 945
Reverse Percentile	0: 58	0: 45	0: 56
	1: 942	1: 955	1: 944

sample size	100	600	1100
BCa	0: 67	0: 58	0: 46
	1: 933	1: 942	1: 954
BC	0: 59	0: 51	0: 42
	1: 941	1: 949	1: 958
Percentile	0: 60	0: 51	0: 46
	1: 940	1: 949	1: 954
Reverse	0: 57	0: 50	0: 47
Percentile	1: 943	1: 950	1: 953

Table 4.1: The 95% Confidence Interval Test for $\hat{\beta}_1$

Table 4.2: The 95% Confidence Interval Test for $\hat{\beta}_2$

Pham Viet Hung Presentation 19 / 24

Bootstrap Distribution Test

https://github.com/pvh95/ols_bootstrap/blob/masterthesis2022/bca_application.ipynb

Pham Viet Hung Presentation 20 / 24

Thank you very much for your attention!

Pham Viet Hung Presentation 21 / 24

Reference 1

- Rao, C. R. (1989). Statistics and Truth. Putting Chance to Work. International Co-operative Publishing House, Burtonsville, Md.
- Shao, J. & Tu, D. (1995). *The Jackknife and Bootstrap*. New York, NY, USA: Springer Verlag.
- Tukey, J. W. (1958). Bias and Confidence in not-quite Large Samples (Abstract). In: The Annals of Mathematical Statistics 29, p. 614
- Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife: Annual Statistics. In.
- Efron, B. & Tibshirani, R. (1993). *An Introduction to the Bootstrap*. New York: Chapman and Hall.

Pham Viet Hung Presentation 22 / 24

Reference 2

- Efron, B. & Balasubramanian N. (2020). *The Automatic Construction of Bootstrap Confidence Intervals*. In: Journal of Computational and Graphical Statistics 29.3, pp. 608–619.
- Hansen, B. (2022b). *A Modern Gauss-Markov Theorem*. In: Econometrica 90.3, pp. 1283–1294
- White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: journal of the Econometric Society, 817-838.
- Davidson, R. & Flachaire, E. (2008). *The Wild Bootstrap, Tamed at Last*. In: Journal of Econometrics 146.1, pp. 162–169.

Reference 3

- MacKinnon, J.G. and White, H., 1985. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of econometrics, 29(3), pp.305-325.
- MacKinnon, J. G. (2013). *Thirty Years of Heteroskedasticity-Robust Inference*. In: Recent Advances and Future Firections in Causality, Prediction, and Specification Analysis. Springer, pp. 437–461.
- Liu, R.Y. (1988). Bootstrap procedures under some non-I.I.D. models. Annals of Statistics, 16, 1696–1708.
- Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of Statistics 21, 255–285.

Pham Viet Hung Presentation 24 / 24