Práctico 1 - Números complejos.

- 1. Determinar los valores de i^k para todo k entero.
- 2. Expresar los siguientes números complejos en forma binómica (a + bi con a, b reales) y en notación polar $(re^{i\theta} \cos r > 0 \text{ y } \theta \text{ real}).$

$$a) \quad (1+i)^2$$

b)
$$\frac{1}{i}$$

$$c) \quad \frac{1}{1+i}$$

a)
$$(1+i)^2$$
 b) $\frac{1}{i}$ c) $\frac{1}{1+i}$ d) $(2+3i)(3-4i)$ e) $(1+i)(1-2i)$ f) i^5+i^{16}

e)
$$(1+i)(1-2i)$$

$$f$$
) $i^5 + i^{16}$

$$h$$
) -3

$$i) \quad 1 + i + i^2 + i^3$$

g)
$$-1$$
 h) $-3i$ i) $1+i+i^2+i^3$ j) $\frac{1}{2}(1+i)(1-i^{-8})$ k) $\frac{1+i}{\sqrt{2}}$ l) $\frac{1}{(1+i)^2}$

$$k) \frac{1+\sqrt{2}}{\sqrt{2}}$$

$$l) \quad \frac{1}{(1+i)^2}$$

3. Expresar en notación binómica:

$$a)$$
 $e^{i\frac{\pi}{2}}$

b)
$$3e^{\pi i}$$

c)
$$\frac{1 - e^{\frac{\pi}{2}i}}{1 + e^{\frac{\pi}{2}i}}$$

a)
$$e^{i\frac{\pi}{2}}$$
 b) $3e^{\pi i}$ c) $\frac{1-e^{\frac{\pi}{2}i}}{1+e^{\frac{\pi}{2}i}}$ d) $(i+1)^{100}$

4. Probar que para todo par de números complejos z_1 y z_2

$$a) \quad |z_1| = |\bar{z}_1|$$

$$|z_1z_2| = |z_1||z_2|$$

c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$a) \quad |z_1| = |\bar{z}_1| \qquad b) \quad |z_1 z_2| = |z_1| |z_2| \qquad c) \quad |z_1 + z_2| \leq |z_1| + |z_2| \qquad d) \quad \text{si } z_1 \neq 0 \quad \left|\frac{1}{z_1}\right| = \frac{1}{|z_1|}$$

- 5. Representar geométricamente los complejos:
 - a) $(1+i)^n (1-i)^n$ para algunos valores naturales n.
 - b) Las raíces quintas de 1 (es decir, los complejos z tales que $z^5 = 1$).
 - c) Las raíces décimas de 1.
 - d) Los complejos z tales que $z^6 = 8(\sqrt{3} i)$.
- 6. Encontrar, en cada caso, el conjunto de los $z \in \mathbb{C}$ que satisfacen las siguientes condiciones, y representar geométricamente.

$$a$$
) $|z| > 1$

$$(b)$$
 $z - \overline{z} = i$

$$c) \quad |z-i| = |z+i|$$

$$d$$
) $Im(z) < 2$

a)
$$|z| > 1$$
 b) $z - \overline{z} = i$ c) $|z - i| = |z + i|$ d) $Im(z) < 2$ e) $|z - \overline{z}| = 2Re(z - 1)$

7. Bosquejar el resultado de aplicarle a la figura las siguientes funciones:

- a) f(z) = z + (1 + i).
- b) f(z) = (1+i)z.
- c) $f(z) = z^2$.
- *d*) $f(z) = e^z$.
- 8. En \mathbb{C} , se consideran $\{z_1, \cdots, z_8\}$ las raíces octavas de 2^8 , es decir aquellas que cumplen $z_k^8 = 2^8$ para cada $k = 1, \cdots, 8$. Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas:
 - a) $z_i = 2$ para todo $i = 1, \dots, 8$.
 - b) Existen al menos dos raíces z_i , z_k tales que $z_i = -z_k$.
 - c) Existen al menos dos raíces z_l , z_m tales que $\bar{z}_l = z_m$.
 - d) Se cumple $z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 = 2^8$.
- 9. Sea $A = \{(\cos(\frac{\pi}{7}) + i \operatorname{sen}(\frac{\pi}{7}))^n / n \in \mathbb{N}\}$. ¿Cuántos elementos tiene este conjunto de números complejos?
- 10. Sea P(z) un polinomio con coeficientes reales.
 - *a*) Probar que $P(\overline{z}) = \overline{P(z)}$ para todo $z \in \mathbb{C}$.
 - b) Probar que si $z_0 = a + ib$ es raíz de P(z), entonces $\overline{z_0} = a ib$ también es raíz de P(z).
- 11. Considere el polinomio $P(z) = z^4 2z^3 + 6z^2 8z + 8$. Sabiendo que P(z) tiene una raíz imaginaria pura halle todas sus raíces.
- 12. Se considera el polinomio complejo $P(z) = z^3 2z^2 + \frac{3}{2}z \frac{1}{2}$, y las siguientes afirmaciones:
 - (I) Existen dos raíces tales que su suma es igual a la raíz restante.
 - (II) La distancia entre dos raíces distintas siempre es constante.
 - (III) El producto de todas las raíces es igual al inverso de la suma de todas sus raíces.

Entonces:

- A) Solo las afirmaciones (I) y (III) son correctas.
- B) Todas las afirmaciones son correctas.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Ninguna afirmación es correcta.
- E) Solo la afirmación (I) es correcta.

Ejercicios Complementarios

- 1. Probar que la fórmula de Bhaskara es válida para polinomios complejos.
- 2. Probar que no existe una relación de orden en los números complejos.
- 3. Sabemos que para todo $z \in \mathbb{C} \ \exists \omega \in \mathbb{C}$ tal que $\omega^2 = z$. Discuta sobre posibles definiciones de una función raíz cuadrada, esto es f que cumpla que $f(z)^2 = z$. ¿Cuáles problemas identifica en f?
- 4. Se define el seno y coseno complejos mediante

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \quad \operatorname{sen}(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \forall z \in \mathbb{C}.$$

- *a*) Probar que las funciones seno y coseno complejas extienden a las funciones seno y coseno reales, en el sentido de que coinciden para $z \in \mathbb{R}$.
- b) Probar que sen $^2z + \cos^2 z = 1$, $\forall z \in \mathbb{C}$.
- c) Probar que sen $(-z) = -\sin z$ y $\cos(-z) = \cos z$, $\forall z \in \mathbb{C}$.
- d) Hallar los ceros en el plano complejo de las funciones seno y coseno.