

MINIMIZATION

(IMPLICANTS & PRIME IMPLICANTS)

Lecture No. - 05

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Prime Implicants

02 Essential Prime Implicants

03 Question Practice

03 Discussion

PRIME IMPLICANTS AND ESSNTIAL PRIME IMPLICANTS

Implicant

Prime Implicant

Essential Prime Implicant

nom EPI Selective Prime Implicant (SPI)
Reduced Prime Implicant (RPI)

 $f(A, B, C) = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{ABC} + \overline{ABC} + \overline{ABC} = \leq m(0, 1,3, 6,7)$

$$f(A, B, C) = \sum m(2, 3, 4, 5, 7)$$

PI= {AB, BC, AC, BC, AC, AB}

 $f(A, B, C) = \sum m(0, 1, 3, 4, 6, 7)$

nonEPI

non EPI

$$f(A, B, C) = \sum m(0, 2, 3, 4, 5, 7)$$

 $f(A, B, C, D) = \sum m (1, 5, 6, 7, 11, 12, 13, 15)$

AB	S	ø .0 0	01	11	01
0	0	1.	1		•
(RPI))	Ŀ	1	1	1
	1			1	1
	0				

$$PI = 3$$

$$\Rightarrow A\overline{c} + Bc$$

$$SPI = 0$$

$$RPI = 1$$

I=8

= A+AB

noon EPI=9/

ABO	8 0 0	01	11	Lo
00		1	1	
10		L	1	
11	1	1	1	7
01		1	1	

$$I=10$$

$$SPI = 1$$

I = 6

PI= 3.

EPI = 3

SPI = 0

RPI = 0

PRIME IMPLICANTS AND ESSNTIAL PRIME IMPLICANTS

- i) Implicants: The total number of min-terms in the Boolean expression are called Implicants. Or in K-map the total number of 1 is called Implicants.
- ii) Prime Implicants (PI): The total number of min-terms in the Boolean expression are called Implicants. Or in K-map the total number of 1 is called Implicants.
- iii) Essential Pl/Selective Pl:
- iv) Reduced Pl: The total number of min-terms in the Boolean expression are called Implicants. Or in K-map the total number of 1 is called Implicants.

Note: For an n-variables Boolean function, the maximum, number of prime implicants is 2(n -1). A group of square or rectangle made up of bunch of adjacent min-terms which is allowed by definition of K-Map are called prime implicants(PI) i.e. all possible groups formed in K-Map.

Q.10 HR.

Let a function F which has 3 input variables (x, y, z). The function F will be high only when at least two of the input variables are set to high. Draw the K-Map for the given function. Let the number of PI in K-Map = 'a' and the number of EPI in K-Map = 'b'. Find the quadratic mean of 'a' and 'b' _____

A 3

B 4

C 5

D 6

Find the number of Prime implicants & Essential prime implicants in the given K

- B 4,7
- 5
- 6,6

0	1	1	6
0	b .	Ţ	Ò

Comparator

n' bit Total condition = 22h Equal condition = 2ⁿ
unequal = 2²ⁿ 2ⁿ Greater=Less=2222

Thankyou

Seldiers!

