Notto - Category for the Working Mathematician

tkunn

August 2020

This is solutions for problems on the second edition of $Category\ for\ the\ Working\ Mathematician$ by S. Mac Lane.

1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.6

Let U be a set that satisfies following conditions:

(i) $x \in u \in U \Rightarrow x \in U$

- (ii) $(u \in U \land v \in U) \Rightarrow (\{u, v\}, \langle u, v \rangle, u \times v \in U)$
- (iii) (1) $x \in U \Rightarrow \mathcal{P}x \in U$
 - (2) $x \in U \Rightarrow \bigcup x \in U$
- (iv) $\omega \in U$, where $\omega = \{0, 1, 2, \dots\}$ is a set of all finite ordinal numbers.
- (v) If there exists a surjection $f: a \to b$ and $a \in U$ and $b \subset U$, then $b \in U$.

1.6.1

 $\langle \land _ \land \rangle$

For all $q \in \prod_i f_i$, we can construct a bijection $r: I \to q$. $q \subset U$ because $\forall w \in q, \exists j \in I, w \in f_j \in U$. Since $I \in U$ and $q \subset U$, we can say $q \in U$. Therefore $\prod_i f_i \subset U$.

Let $|f_k| \ge |f_i|$ for all i. Then, we can construct a surjection $g: f_k^I \to \prod_i f_i$. Also, we can construct a surjection $h: X \to f_k^I$, with X is either $\mathcal{P}f_k$ or $\mathcal{P}I$. As $X \in U$, $g \circ h: X \to \prod_i f_i$ and $\prod_i f_i \subset U$, we can say $\prod_i f_i \in U$.

1.6.2

 $\langle Q \perp Q \rangle$

- (a) We can construct a bijection $g: I \to \{f_i \mid i \in I\}, g(i) = f_i$. As $I \in U$ and $f_i \in U$ for all $i, \{f_i \mid i \in I\} \in U$. Therefore $\bigcup_i f_i = \bigcup \{f_i \mid i \in I\} \in U$.
- (b) Because $x \in U$, we have $y \in U$ for all $y \in x$. Therefore we can apply $f: x \to x, f(i) = i$ to (a) to get $\bigcup x \in U$.

Because $a \in U$ and $b \subset U$, we can apply f to (a) to get $\bigcup_i f_i \in U$. f is surjective, therefore $b = \bigcup_i f_i$. Hence $b \in U$.

- 1.7
- 1.8
- 2
- 2.1
- 2.2
- 2.3
- 2.3.1

 $\langle Q \ \dot{\ } \ Q
angle$

In this section, \times_S is a product operation for sets, \times_C is for categories, \times_G is for groups and \times_M is for monoids.

Monoids. Let M,N be a monoid with object m,n respectively. The only object in $M \times_C N$ is $\langle m,n \rangle$ (TODO)

Groups. Let G, H be a group with object a, b respectively. $G \times_C H$... (TODO)

Sets. Let A,B be discrete categories. The set of all objects in $A\times_C B$ is $X=A\times_S B$. The set of all arrows in $A\times_C B$ is $\{\langle f,g\rangle\mid a\in A,\ b\in B,\ f\in A(a,a)\ \land\ g\in B(b,b)\}=\{\langle \operatorname{id}_A(c_0),\operatorname{id}_B(c_1)\rangle\mid c\in X\}$. Therefore $A\times_C B$ is a discrete category of $X=A\times_S B$.

2.3.2

 $\phi \longrightarrow \theta$

Let P, Q be preorders. $\forall a \forall b \mid \text{hom}(a,b) \mid \leq 1$ for both P and Q. Therefore, for all $p_1 \in P$, $p_2 \in P$, $q_1 \in Q$, $q_2 \in Q$, $|\text{hom}_{P \times Q}(\langle p_1, q_1 \rangle, \langle p_2, q_2 \rangle)| = |\text{hom}_P(p_1, p_2) \times \text{hom}_Q(q_1, q_2)| \leq 1$. Hence $P \times Q$ is preorder.

2.3.3

 $\phi \longrightarrow \theta$

Let $id_X(a): a \to a$ be identity in category X.

Let the set of all object in C be the product set $\prod_i C_i$ and $C(a,b) = \prod_i C_i(a_i,b_i)$. Let $\mathrm{id}_C(c)_i = \mathrm{id}_{C_i}(c_i)$ for all $c \in C$. Now, we prove C has a universal property:

1. For every i there is a functor $P_i: C \to C_i$.

2. For every category B such that a functor $G_i: B \to C_i$ presents for every C_i , there is a functor $F: B \to C$, which makes the following diagram commutative.

First, we prove $P_i: C \to C_i$ exists. Let the object function be $P_i(x) = x_i$. Let the arrow function be $P_i(f) = f_i$. For all object $c \in C$, $P_i(\mathrm{id}_C(c)) = \mathrm{id}_C(c)_i = \mathrm{id}_{C_i}(c_i) = \mathrm{id}_{C_i}(P_i(c))$. For all arrow f, g in C, $P_i(g \circ f) = (g \circ f)_i = g_i \circ f_i = P_i(g) \circ P_i(f)$. Therefore P_i is a functor.

Second, we prove $F: B \to C$ exists. Let the object function be $F(x)_i = G_i(x)$. Let the arrow function be $F(f)_i = G_i(f)$. For all object $b \in B$, $F(\mathrm{id}_B(b))_i = G_i(\mathrm{id}_B(b)) = \mathrm{id}_{C_i}(G_i(b)) = \mathrm{id}_{C_i}(F(b)_i)$. Thus $F(\mathrm{id}_B(b)) = \mathrm{id}_{C}(F(b))$. For all arrow f, g in B, $F(f \circ g)_i = G_i(f \circ g) = G_i(f) \circ G_i(g)$. Thus $F(f \circ g) = F(f) \circ F(g)$. Therefore F is a functor.

2.3.4

In \mathbf{Matr}_K , the object set is all positive integers $\{1,2,3,...\} = \omega \setminus \{0\}$. $\mathbf{Matr}_K(n,m)$ is all rectangular matrix on K of shape $m \times n$. Therefore $\mathbf{Matr}_K^{\mathrm{op}}$ has the same objects $\omega \setminus \{0\}$ and $\mathbf{Matr}_K^{\mathrm{op}}(n,m)$ is all rectangular matrix on K of shape $n \times m$.

2.3.5

Let $R_T \subseteq (T \to \mathbb{R})$ be a ring whose elements are continuous functions from a topological space T to real number. We construct R_T as follows:

- 1. Additive identity. $0_{R_T}: x \mapsto 0$.
- 2. Multiplicative identity. $1_{R_T}: x \mapsto 1$.
- 3. Addition. $f + g : x \mapsto f(x) + g(x)$.
- 4. Multiplication. $f \times g : x \mapsto f(x) \times g(x)$.

Let X and Y be any topological spaces. If we have a continuous function $f:Y\to X$, we can construct a ring homomorphism $H(f)=h:R_X\to R_Y$. We define $h(r)=r\circ f$. Then $h(0_{R_X})=0_{R_Y},\ h(1_{R_X})=1_{R_Y},\ (h(s+t))(x)=(s+t)(f(x))=s(f(x))+t(f(x)),\ (h(s\times t))(x)=(s\times t)(f(x))=s(f(x))\times t(f(x)).$ Therefore H(f) is a ring homomorphism.

Now we construct a functor $F: \mathbf{Top}^{\mathrm{op}} \to \mathbf{Rng}$. Let the object function be $F(A) = R_A$ and the arrow function be $F(g) = H(g^{\mathrm{op}})$. For all arrow a, b in $\mathbf{Top}^{\mathrm{op}}$, $F(b \circ a) = H((b \circ a)^{\mathrm{op}}) = H(a^{\mathrm{op}} \circ b^{\mathrm{op}}) = H(b^{\mathrm{op}}) \circ H(a^{\mathrm{op}}) = F(b) \circ F(a)$. For all topological space $T \in \mathbf{Top}^{\mathrm{op}}$, $F(\mathrm{id}(T)) = H(\mathrm{id}(T)) = \mathrm{id}(R_T)$. Therefore F is a functor and \overline{F} is a contravariant functor on \mathbf{Top} to \mathbf{Rng} .

2.4

2.4.1

2.4.2

For any functor $T: X \to B$, if its object function is T(a) = b, its arrow function maps id(a) to id(b). Such a functor T is an object of B^X .

Let $R, S: X \to B$ be functors and τ be a map on an object of X to an arrow in B. $(\tau: R \to S) \Leftrightarrow (\forall x \in X, \tau_x(R(x)) = S(x))$. Therefore hom $(R, S) = \{\tau \mid \forall x \in X, \tau_x(R(x)) = S(x)\}$. Therefore an arrow on R to S exists iff $(\forall x, y \in X, e_R(x, y) \to e_S(x, y)) \land (\forall x \in X, \text{hom}(R(x), S(x)) \neq \emptyset)$, where $e_T(x, y) \Leftrightarrow (\exists a \in B, \{x, y\} \subseteq \{w \mid a = T(w)\})$.

2.4.3

 $(\cdot \tau \cdot)$

An object of $\mathbf{Ab^N}$ is a map on $\mathbb N$ to \mathbf{Ab} . Same as above, $\hom(R,S) = \{\tau \mid \forall n \in \mathbb N, \ \tau_n(R(n)) = S(n)\}$. In other words, a map $\tau : \mathbb N \to (\mathbf{Ab} \to \mathbf{Ab})$ is an arrow iff, for every $n \in \mathbb N$, there is a corresponding group homomorphism τ_n on R(n) to S(n), and, for every $m \in \mathbb N$ such that R(n) = R(m), S(n) = S(m).

2.4.4

 $(\cdot \tau \cdot)$

Let $R, S: P \to Q$. Then R and S are objects of Q^P . Let τ be a natural transform $\tau: R \to S$. τ is an arrow on R to S in Q^P . Since τ is natural and P is preorder, the following diagram commutes for every pair of objects $p, p' \in P$. a = f(p, p'), where f(p, p') is the only arrow on p to p'. Since Q is preorder, $\tau p = g(Rp, Sp)$, where g(Rp, Sp) is the only arrow on Rp to Sp.

$$Rp \xrightarrow{\tau p} Sp$$

$$Ra \downarrow \qquad \qquad \downarrow Sa$$

$$Rp' \xrightarrow{\tau p'} Sp'$$

From the two downward arrows in the diagram, we can say that $\operatorname{Im}(R)$ and $\operatorname{Im}(S)$ contain the preorder structure of P. There are two functors $P \to \operatorname{Im}(R)$ and $P \to \operatorname{Im}(S)$, where $\operatorname{Im}(T)$ is a category from the image of the object function of T and all arrows between any two pairs in the image.

As explained above, $\sigma p = g(Rp, Sp)$ for all $\sigma : R \to S$. Thus $|\operatorname{hom}(R, S)| \le |\{\sigma \mid \forall p \in P, \ \sigma p = g(Rp, Sp)\}| = 1$. Therefore Q^P is preorder.

2.4.5

 $\begin{pmatrix} \hat{\sigma} \end{pmatrix}$

Let **Fin** be a category of all finite sets. The object is every finite set and the arrow is every mapping between every pair of finite sets.

Let G be a finite group. G is a category of only one object. Every arrow a in G has its inverse a^{-1} such that $a \circ a^{-1} = a^{-1} \circ a = \mathrm{id}$.

 \mathbf{Fin}^G is a category that have any functor on G to \mathbf{Fin} as objects and any natural transform between two objects as arrows. The group G has only one object $x \in G$, thus any functor $T \in \mathbf{Fin}^G$ map x to a finite set $T(x) \in \mathbf{Fin}$, and endomorphisms of x to endomorphisms of T(x). For any arrow a, b in G, $T(b \circ a) = T(b) \circ T(a)$. Also, $\mathrm{id} = T(\mathrm{id}) = T(a \circ a^{-1}) = T(a) \circ T(a^{-1})$. Thus any element in the image of the arrow function of T is invertible. Therefore T is a permutation representation of G.

Now, let $\tau: R \to S$ be an arrow in \mathbf{Fin}^G . Then, the following diagram commutes for any arrow a in G:

$$\begin{array}{ccc} Rx & \xrightarrow{\tau x} Sx \\ & \downarrow_{Sa} \\ Rx & \xrightarrow{\tau x} Sx \end{array}$$

From the diagram, hom $(R,S) = \{\tau \mid \forall a, \ \tau x \circ Ra = Sa \circ \tau x\}...$ what does it mean???? TODO

2.4.6

2.4.7

2.4.8

2.5

2.5.1

 (\hat{v})

symbols: A B C F S T

We prove there is a bijection $F : \mathbf{Cat}(A \times B, C) \to \mathbf{Cat}(A, C^B)$.

Let FT = S, where $T: A \times B \to C$ and $S: A \to C^B$. First, we make the object function of S. Given $a \in A$, we make a subcategory $a \subseteq A$, a category of an object a and an arrow $\mathrm{id}(a)$. Trivially, there is a functor $f_a: B \to a \times B$ $(f_a(b) = \langle a, b \rangle$ for objects, $f_a(b) = \langle \mathrm{id}(a), b \rangle$ for arrows). As $a \times B \subseteq A \times B$, now we define $Sa: B \to C$ as $Sa = T \circ f_a$. Second, we make the arrow function of S. Let $Sa = \tau$, where $a: a_0 \to a_1$ is an arrow in A, $\tau: Sa_0 \to Sa_1$, $\tau b = T\langle a, \mathrm{id}(b) \rangle$. Let $g: b_0 \to b_1$ is an arrow in B. Then $Sa_1g(\tau b_0(Sa_0b_0)) = Sa_1b_1 = \tau b_1(Sa_0g(Sa_0b_0))$. Thus τ is natural.

Next, we prove for all $S:A\to C^B$, there exists $T:A\times B\to C$, such that FT=S. First, we prove it for the object function of T. We define $T\langle a,b\rangle=Sab$. $FTab=T\langle a,b\rangle$, thus FT=S. Second, we prove it for the arrow function. Let $T\langle a,b\rangle=Sa(\mathrm{dom}(b))$. Then FTab=Sab for any arrow a in A, object $b\in B$, thus FT=S.

Finally, we prove that for all T_0 , $T_1: A\times B\to C$, if $FT_0=FT_1$, then $T_0=T_1$. Let $FT_0=FT_1$ and $n\in\{0,1\}$. We write $T_=\langle x,y\rangle$ when $T_0\langle x,y\rangle=T_1\langle x,y\rangle$. First, for all $a\in A,\ b\in B,\ FT_nab=T_n\langle a,b\rangle$. Thus $T_=\langle a,b\rangle$ (for objects). Second, for every object $a\in A$, arrow b in $B,\ FT_nab=T_n\langle \operatorname{id}(a),b\rangle$, and, for every arrow a in A, object $b\in B,\ FT_nab=T_n\langle a,\operatorname{id}(b)\rangle$. Now, let $a:a_0\to a_1$ is any arrow in A and $b:b_0\to b_1$ is any arrow in B. $T_=\langle\operatorname{id}(a_0),b\rangle$ and $T_=\langle a,\operatorname{id}(b_1)\rangle$, thus $T_=(\langle\operatorname{id}(a_0),b\rangle\circ\langle a,\operatorname{id}(b_1)\rangle)$. Hence $T_=\langle a,b\rangle$ (for arrows).

2.5.2

For any $x \in (A \times B)^C$, there are two functions $G(c) = x(c)_0$ and $H(c) = x(c)_1$. Let the object function be $F(x) = \langle G, H \rangle$, where $F: (A \times B)^C \to A^C \times B^C$.

For any natural transform $\tau: (A \times B) \to C$, there are two natural transforms $\tau_0: A \to C$ and $\tau_1: B \to C$. Let $\tau_0(x) = \text{and } \tau_1(x) =$.

Thus we can construct the arrow function $F(\tau) = \langle \tau_0, \tau_1 \rangle$.

2.5.3

2.5.4

2.5.5

2.5.6

2.5.7

2.5.8

2.6

2.6.1

$$\langle \land _ \land \rangle$$

(seems to be trivial...)

In **CRng**, $f: K \to L$ is a ring homomorphism on K to L. Thus $K \downarrow \mathbf{CRng}$ is the category of all small commutative K-algebra.

2.6.2

$$\langle Q \perp Q \rangle$$

(seems to be trivial...)

We make a functor $F: C \to (C \downarrow t)$. Since t is a terminal object in C, for all object $c \in C$, there is a unique arrow $a_c: c \to t$. We use the arrowmaking function a_c as the object function of F. For any objects $c_0, c_1 \in C$, $|C(c_0, c_1)| = |(C \downarrow t)(a_{c_0}, a_{c_1})|$. Since a_c is a bijection, both the object and arrow function of F is bijective. Thus C is isomorphic to $(C \downarrow t)$.

2.6.3

$$\langle Q \ \dot{\ } \ Q \rangle$$

An alternative diagram for objects:

A diagram for arrows:

An alternative diagram for arrows:

2.6.4

$$\phi \longrightarrow \theta$$

Let $T, S: D \to C$ be functors, $\tau: T \to S$ be a natural transform, $\tau': D \to (T \downarrow S)$ be a functor such that $(\tau_d)_0 = (\tau_d)_1 = d$. Thus the object function maps an object $d \in D$ to $\langle d, d, Td \to Sd \rangle$. Then, for any arrow $g: d \to d'$ in D, $f: Td \to Sd$ and $f': Td' \to Sd'$ in C, the following diagram commutes:

$$Td \xrightarrow{f} Sd$$

$$\downarrow_{Tg} \qquad \downarrow_{Sg}$$

$$Td' \xrightarrow{f'} Sd'$$

This means that τ' is a natural transform on T to S.

2.6.5

Let E, C, D, X be categories, P, Q, R, P', Q', R', T, S be functors. We prove that if the following diagram commutes, there is a functor $L: X \to (T \downarrow S)$ that keeps it commutative.

2.6.6

2.7

2.8