§10. Операционный метод описания линейных САУ. Основные свойства преобразования Лапласа

В математике под *операционным исчислением* подразумевается раздел математического анализа, в котором разрабатываются методы решения линейных дифференциальных, разностных и некоторых типов интегральных уравнений. Операционное исчисление базируется на *идее замены одних функций на другие*, получаемые по определенным правилам, например, используя *преобразование Лапласа* или *преобразование Фурье*.

В ТАУ самое широкое применение нашел операционный метод описания, основанный на использовании интегрального преобразования Лапласа (*L*- преобразования):

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt.$$
 (2.5)

Это преобразование устанавливает соответствие между функцией f(t) действительной переменной t и функцией F(s) комплексной переменной $s = \alpha + j\beta$. При этом f(t) называют *оригиналом*, а F(s) - изображением.

Достаточными условиями существования (2.5) являются следующие требования:

- функция f(t) должна быть однозначной и непрерывной при всех $t \ge 0$, непрерывность может быть нарушена только в отдельных точках, являющихся точками разрыва непрерывности первого рода;
 - функция f(t) = 0 для всех t < 0;
- функция f(t) должна иметь ограниченный порядок возрастания, т.е. должны быть такие два постоянных числа M>0 и c>0, при которых $f(t) < Me^{ct}$ при t>0.

Основные свойства преобразования Лапласа

Преобразование Лапласа ставит в соответствие операциям над оригиналами некоторые определенные операции над изображениями. В таблице 2.1 приведены основные соотношения, используемые при описании линейных САУ.

Таблица 2.1

Наименование свойства	Оригинал	Изображение
Линейность	$\sum_{k=1}^{n} a_k f_k(t)$	$\sum_{k=1}^{n} a_k F_k(s)$
Дифференцирование оригинала при нулевых начальных условиях	$\frac{d^{(n)}f(t)}{dt^n}$	$s^n F(s)$
Интегрирование оригинала при нулевых начальных условиях	$\int_{0}^{\tau} f(t)dt$	$\frac{F(s)}{s}$
Изменение масштаба	$f(\alpha t)$	$\frac{1}{\alpha}F\left(\frac{s}{\alpha}\right)$
Смещение аргумента оригинала	f(t- au)	$F(s)e^{-s\tau}$
Свертка функций	$\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau$	$F_1(s)F_2(s)$
Начальное значение оригинала	$\lim_{t \to 0} f(t)$	$\lim_{s\to\infty} sF(s)$
Конечное значение оригинала	$\lim_{t\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$