NAME OF THIS STUDY

Running title: INSERT RUNNING TITLE HERE
Begüm D. Topçuoğlu^1, Jenna Wiens^2, Patrick D. Schloss ^{1†}
† To whom correspondence should be addressed: pschloss@umich.edu 1. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
2. Department of Computer Science and Engineering, University or Michigan, Ann Arbor, MI 49109

1 Abstract

Introduction

- 3 As gut microbiome field continues to grow, there will be an ever-increasing demand for reproducible
- 4 machine learning methods to analyze microbiome sequence read count data and to determine
- association with a continuous or categorical phenotype of interest.
- 6 Colorectal cancer is one of the leading cause of death among cancers in the United States. Early
- diagnosis increases the chance of survival. However the current diagnostic methods are expensive
- and invasive. As a less invasive tool, numerous studies use relative abundances of the gut bacteria
- 9 populations to predict disease progression. Most microbial communities are pretty patchy and the
- likelihood of a single feature that explains the differences in health is pretty small. It is likely that
- many biomarkers are needed to account for the patchiness as well as the context dependency of
- 12 the features.
- 13 ML use in microbiome literature is a bit like the wild west with lack of clarity over methods,
- testing, validation, etc. There is a need for guidance on how to properly implement these different
- methods. We need to emphasize good machine learning practices and pipelines and discuss the
- reproducibility, robustness and actionability of models.
- We established a non-leaky pipeline. We performed L1 and L2-regularized logistic regression,
- Linear SVM, Non-Linear SVM, Decision tree, Random forest, XGBoost and Feed Forward Neural
- 19 Net classification models. We evaluated the classification performance of different machine learning
- 20 methods. We also want to discuss the reproducibility, robustness, actionability, interpretibility and
- susceptibility to overfitting of each method.
- 22 Generalisation Perfomance of each model. Is there a maximum threshold of prediction with all
- these methods? Does an increase in model complexity improve predictibility? Synthesis statement
- 24 regarding modeling 16S microbiome data

- 25 Results and Discussion
- 26 Conclusions
- 27 Materials and Methods

Table 1: Optimized hyper-parameters, pre-processing and cross-validation methods and software implementation of the classification algorithms.

Method	Parameter	Cross Validation	Epoch	Scaler	Sklearn Function
Logistic Regression	С	5-fold, 100-repeats	100	MinMax	LogisticRegression
L1 SVM Linear Kernel	С	5-fold, 100-repeats	100	Standard	LinearSVC
L2 SVM Linear Kernel	С	5-fold, 100-repeats	100	Standard	LinearSVC
SVM RBF Kernel	C, gamma	5-fold, 100-repeats	100	Standard	SVC
Decision Tree	max_depth, min_samples_split	5-fold, 100-repeats	100	MinMax	DecisionTreeClassifier
Random Forest	n_estimators, max_features	5-fold, 100-repeats	100	MinMax	RandomForestClassifier
XGBoost	n_estimators, colsample_bytree, learning_rate, subsample, max_depth, min_child_weight	5-fold, 100-repeats	100	MinMax	XGBClassifier

Figure 1. Generalization and classification performance of modeling methods AUC values

of all cross validation and testing performances.

Table 2: The range of optimized hyper-parameters for logistic regression and support vector machines.

Parameter	L2 Logistic			L1 SVM Linear				L2 SVM Linear			SVM RBF					
С	0.01	0.1	1	10	0.001	0.01	0.1	1	0.01	0.1	1	1e-06	1e-05	1e-04	0.001	0.01
gamma	-	-	-	-	-	-	-	-	-	-	-	1e-09	1e-08	1e-07	-	-

Table 3: The range of optimized hyper-parameters for tree based classification algorithms.

Parameter	Random Forest					Decision Tree				XGBoost		
learning_rate	-	-	-	-	-	-	-	-	-	0.01	0.1	1
max_depth	-	-	-	-	-	6	8	10	50	6	7	8
max_features	10	80	500	1000	1500	-	-	-	-	-	-	-
min_child_weight	-	-	-	-	-	-	-	-	-	1	2	3
min_samples_split	-	-	-	-	-	10	25	50	-	-	-	-
n_estimators	1000	-	-	-	-	-	-	-	-	100	-	-
subsample	-	-	-	-	-	-	-	-	-	0.7	8.0	0.9