HOMEWORK 2 OBJECT DETECTION

Le Van Hung (黎文雄)

Student ID: 0860831

1. Install darknet on ubuntu

unzip HW2.zip
cd HW2/
git clone https://github.com/pjreddie/darknet
cd darknet/
make

2. Copy data, weights and config file to darknet folder

cd ..
cp -r data darknet/
cp yolo-acv.cfg darknet/
cp yolo-acv.weights darknet/

3. Create bash script file

touch run_hw2.sh vim run_hw2.sh cat run_hw2.sh

#!/bin/bash

#create folder for save image

mkdir result_hw

#cd to darknet folder

```
cd darknet
#first image
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/1.jpg -thresh 0.02
cp predictions.jpg ../result hw/image1 thresh002.jpg
darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/1.jpg -thresh 0.4-
cp predictions.jpg ../result_hw/image1_thresh04.jpg
#second image
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/2.jpg -thresh 0.02
cp predictions.jpg ../result_hw/image2_thresh002.jpg
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/2.jpg -thresh 0.4
cp predictions.jpg ../result_hw/image2_thresh04.jpg
#thrid image
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/3.jpg -thresh 0.02
cp predictions.jpg ../result_hw/image3_thresh002.jpg
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/3.jpg -thresh 0.4
cp predictions.jpg ../result_hw/image3_thresh04.jpg
#forth image
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/4.jpg -thresh 0.02
cp predictions.jpg ../result_hw/image4_thresh002.jpg
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/4.jpg -thresh 0.4
cp predictions.jpg ../result_hw/image4_thresh04.jpg
#fifth image
./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/5.jpg -thresh 0.02
cp predictions.jpg ../result_hw/image5_thresh002.jpg
```

cp predictions.jpg ../result_hw/image5_thresh002.jpg

./darknet detector test data/obj.data yolo-acv.cfg yolo-acv.weights data/5.jpg -thresh 0.4

cp predictions.jpg ../result_hw/image5_thresh04.jpg

chmod 777 run_hw2.sh

./run_hw2.sh

4. Result

Threshold = 0.4

Threshold = 0.02

1.jpg

Threshold = 0.4

Threshold = 0.02

2.jpg

Threshold = 0.4

Threshold = 0.02

3.jpg

Threshold = 0.4

Threshold = 0.02

4.jpg

Threshold = 0.4

Threshold = 0.02

5. Comparison of the threshold 0.02 and 0.4

- **a.** Threshold value: For each predicted box, the class confidence score indicate how many percentage of the predicted box is an object from a certain class. Threshold value determines what is minimum value of the class confidence score can be accepted.
- **b. Metrics:** In order to determine the quality of the model and compare the results, I use these below metrics:

> True Positive (TP): object correctly detected

➤ False Positive (FP): object detected but misclassified

➤ False Negative (FN): object could not detected

c. Compare result

	Threshold = 0.4	Threshold = 0.02
True Positive (TP)	Low	High One more motorbike in 1.jpg and more car in 5.jpg can detected correctly.
False Positive (FP)	Low	High Misclassify in 2.jpg and 5.jpg
False Negative (FN)	High In 1.jpg, a small motorbike could not detected In 2.jpg, one man could not detected In 4.jpg, many cars could not detected.	Low

Limitation of yolov3: how close object can be? In 4.jpg, yolov3 can not detect all of the car because cars are very close to each other.