SI3 - IHM 2017-2018 JavaFX

Université Nice Sophia Antipolis (Polytech)

22 Janvier 2018

Marco Winckler Clément Duffau + Anne Marie Pinna-Dery

Université Nice Sophia (Polytech) | I3S | SPARKS team | bureau 446 winckler@i3s.unice.fr

http://www.i3s.unice.fr/~winckler/

Agenda

- User groups
 - Profile utilisateurs
 - Rôles
 - Personna
- L'importance de l'IHM dans le logiciel
- Architecture logiciel et IHM
- Démarrage JavaFX

What does it mean user group?

- The first requirement of practical HCI design is to identify who the users will be!
- Process for identifying and selecting users
 - define the characteristics of the user population, i.e. user groups
 - work with a representative sample of the user group
- Users groups describe the characteristics of target users of an interactive system
- User groups descriptions might include
 - Users characteristics (user profiling)
 - Users tasks and responsibilities (user roles)
 - Sample in the population (number of individuals concerned)

Describing and assessing user groups

- Methods for describing user groups
 - User roles, personas, user profiling
- Methods for assessing user groups
 - Interviews, questionnaires, focus groups ...
- Important Problems
 - Every user is an unique individual (variation in the population)
 - In some cases, users tasks and responsibilities might be more important that individuals preferences but not always...
 - Stereotyped views of users is a dangerous and yet necessary tradeoff

User characteristics

(based on learning skills and usage)

- A simplest classification:
 - Users are: NOVICE or EXPERT
 - Usage is: FREQUENT or INFREQUENT
- Defining user ability
 - Levels of ability e.g. novice, advanced beginner, competent user, proficient user, expert (Dreyfus, 1980)
 - Revised frequency of usage (constant, regular, occasional)
 - Task familiarity (slanted towards technical ability)
 - Degree of usage of similar technology (dissimilar hardware/software).
 - Demographic data (user age and status profile)
 - Value perception (particularly relevant to the introduction of new technology)

Ascertain User's Needs

- Define tasks
 - Tasks
 - Subtasks
- Frequency
 - Frequent
 - Occasional
 - Exceptional
 - Repair
- Ex. difference between a space satellite, car engine, and fighter jet

Reliability

- Actions function as specified
- Data displayed must be correct
- Updates done correctly
- Leads to trust! (software, hardware, information) – case: Pentium floating point bug
- Privacy, security, access, data destruction, tampering

Standardization, Integration, Consistency, Portability

- **Standardization** common user-interface features across multiple applications
 - Apple
 - Web
 - Windows
- Integration across application packages
 - file formats
- Consistency common action sequences, terms, units, layouts, color, typography within an application
- Portability convert data and interfaces across multiple hardware and software environments
 - Word/HTML/PDF/ASCII

Usability Measures

- How can we measure the 'goodness' of an interface?
- What are good metrics?
- ISO 9241
 - Effectiveness
 - Efficiency
 - Satisfaction
- Schneiderman
 - Time to learn
 - Speed of performance
 - Rate of errors
 - Retention over time
 - Subjective satisfaction

Usability Motivations

- Time to learn
- Speed of performance
- Rate of errors
- Retention over time
- Subjective satisfaction

- Life-Critical systems
 - Applications: air traffic, nuclear reactors, military, emergency dispatch
 - Requirements: reliability and effective (even under stress)
 - Not as important: cost, long training, satisfaction, retention
- Industrial and Commercial Use
 - Applications: banking, insurance, inventory, reservations
 - Requirements: short training, ease of use/learning, multiple languages, adapt to local cultures, multiplatform, speed
- Office, Home, and Entertainment
 - Applications: E-mail, ATMs, games, education, search engines, cell phones/PDA
 - Requirements: Ease of learning/use/retention, error rates, satisfaction
 - Difficulties: cost, size

Usability Motivations

- Time to learn
- Speed of performance
- Rate of errors
- Retention over time
- Subjective satisfaction
- Exploratory, Creative, Collaborative
 - Applications: Web browsing, search engines, simulations, scientific visualization, CAD, computer graphics, music composition/artist, photo arranger (email photos)
 - Requirements: remove the 'computer' from the experience,
 - Difficulties: user tech savvy-ness (apply this to application examples)
- Socio-technical systems
 - Applications: health care, voting, police
 - Requirements: Trust, security, accuracy, veracity, error handling, user tech-savy-ness

Universal Usability

- Interface should handle diversity of users
 - Backgrounds
 - Abilities
 - Motivation
 - Personalities
 - Cultures
- Question, how would you design an interface to a database differently for:
 - A. right-handed female, Indian, software engineer, technology savvy, wants rapid interaction
 - B. left-handed male, French, artist

Universal Usability

- Does not mean 'dumbing down'
 - Ex. Helping disabled has helped others (parents w/ strollers, elderly)
 - Ex. Door handles
- Goal: Address the needs of more users - unlike yourself!
- Everyone is often not at full faculties at all times

Physical Variation

- Ability
 - Disabled (elderly, handicapped, vision, ambidexterity, ability to see in stereo [SUTHERLAND])
 - Speed
 - Color deficiency
- Workspace
 - Science of *ergonomics*
 - Size
 - Design
- Lots of prior research

Physical Variation

Field of anthropometry

- Measures of what is 5-95% for weight, height, etc. (static and dynamic)
- Large variance reminds us there is great 'variety'
- Name some devices that this would affect.
 - note most keyboards are the same
 - screen brightness varies considerably
 - chair height, back height, display angle

Multi-modal interfaces

- Audio
- Touch screens

Cognitive and Perceptual Variation

- Bloom's Taxonomy
 - knowledge, comprehension, analysis, application, synthesis, evaluation
- Memory
 - short-term and working
 - long-term and semantic
- Problem solving and reasoning
- Decision making
- Language and communication

Cognitive and Perceptual Variation

- Language and communication
- Search, imagery, sensory memory
- Learning, skill development, knowledge acquisition
- Confounding factors:
 - Fatigue
 - Cognitive load
 - Background
 - Boredom
 - Fear
 - Drugs/alcohol

Personality

- Computer anxiety
- Gender
 - Which games do women like?
 - Pac-man, Donkey Kong, Tetris
 - Why? (Hypotheses: less violent, quieter soundtracks, fully visible playing fields, softer colors, personality, closure/completeness)
 - Can we measure this?
- What current games are for women?
- Style, pace, top-down/bottom-up, visual/audio learners, dense vs. sparse data

Personality

- No simple taxonomy of user personality types. Ex. Myers-Briggs Type Indicator
 - Extrovert vs. introvert
 - Sensing vs. intuition
 - Perceptive vs. judging
 - Feeling vs. thinking
- Weak link between personality types and interfaces
- Think about your application, and see if user personality is important!
 - Fighter jets vs. search engines

Cultural and International Diversity

- Language
- Date / Time conventions
- Weights and Measures
- Left-to-right
- Directions (!)
- Telephone #s and addresses
- Names, titles, salutations
- SSN, ID, passport
- Sorting
- Icons, buttons, colors
- Etiquette
- Evaluation:
 - Local experts/usability studies

Users with Disabilities

- Federal law to ensure access to IT, including computers and web sites. (1998 Amendment to Rehabilitation Act)
- Disabilities
 - Vision
 - Blind (bill-reader)
 - low-vision
 - color-blind
 - Hearing
 - Deaf
 - Limited hearing
 - Mobility
 - Learning
 - Dyslexia
 - Attention deficient, hemisphere specific, etc.
- Keyboard and mouse alternatives
- Color coding
- Font-size

Users with Disabilities

- Contrast
- Text descriptors for web images
- Screen magnification
- Text to Speech (TTS) JAWS (web pages)
 - Check email on the road, in bright sunshine, riding a bike
- Speech Recognition
- Head mounted optical mice

Users with Disabilities

- Eye Gaze control
- Learning what helps those with disabilities affects everyone
 - Present procedures, directions, and instructions accessible to even poor readers
 - Design feedback sequences that explain the reason for error and help put users on the right track
 - Reinforcement techniques with other devices
- Good target area for a final project!

Elderly

Reduced

- Motor skills
- Perception
- Vision, hearing, touch, mobility
- Speed
- Memory
- Other needs
 - Technology experience is varied (How many grandmothers use email? mothers?)
 - Uninformed on how technology could help them
 - Practice skills (hand-eye, problem solving, etc.)
- Touch screens, larger fonts, louder sounds

Children

- Technology saviness?
- Age changes much:
 - Physical dexterity
 - (double-clicking, click and drag, and small targets)
 - Attention span
 - (vaguely) Intelligence
- Varied backgrounds (socio-economic)
- Goals
 - Educational acceleration
 - Socialization with peers
 - Psychological improve self-image, self-confidence
 - Creativity art, music, etc. exploration

Children

- Teenagers are a special group
 - Next generation
 - Beta test new interfaces, trends
 - Cell phones, text messages, simulations, fantasy games, virtual worlds
- Requires Safety
- They
 - Like exploring (easy to reset state)
 - Don't mind making mistakes
 - Like familiar characters and repetition (ever had to babysit a kid with an Ice Age DVD?)
 - Don't like patronizing comments, inappropriate humor
- Design: Focus groups

Accommodating Hardware and Software Diversity

- Support a wide range of hardware and software platforms
- Software and hardware evolution
 - OS, application, browsers, capabilities
 - backward compatibility is a good goal
- Three major technical challenges are:
 - Producing satisfying and effective Internet interaction (broadband vs. dial-up & wireless)
 - Enabling web services from large to small (size and resolution)
 - Support easy maintenance of or automatic conversion to multiple languages

User groups modeling techniques

- Inferring individuals facts, patterns of user behaviors, condition-action rules
 - Task models
 - Scenarios
- Using stereotypes to infer many things at a time
 - User roles
 - User profiles
 - Persona

User characteristics to consider

- Demographic data:
 - Age, gender, education, occupation, cultural background, special needs, computer training and knowledge, experience with similar systems/products
- Traits and intelligence:
 - cognitive styles, affective traits, skill sets or capability
- Job or task related factors:
 - job characteristic, knowledge of application and job familiarity, rate of use of the computer (in work)

User profile

- Fictitious summary including motivation, goals and personalities
- Includes information about, age, gender, skills, education level, experience, cultural level

Describing the main user characteristics

Personal characteristics:

- Age, sex, education, job type, socio-economic status, role in organization.
- Lifestyle, personality, emotions and attitudes (e.g. toward using a technology).
- Skills.
- Physical abilities and constraints, e.g. poor eyesight, color blindness, etc.

Task related characteristics:

- Goals and motivation.
- Tasks.
- Usage (heavy vs. light, frequency, indirect or remote).
- Training and experience (from novice to expert).

Geographic and social characteristics:

- Location: regions, countries, continents, market areas.
- Cultures and other circumstances.
- Social connections and societies.

Example

- 1. # of users that occupy this user type
- 2. General responsibilities or activities
- 3. Computer skills
- 4. Domain expertise

- To help understanding the characteristics of users/customers that might have bearing on the design, construct a profile containing information about the type of user relevant to the tool being created.
- 5. Goals: how does the tool help this user reach their goals?
- **6. Pain Points:** what nagging problems can the tool help to solve?
- 7. Usage Contexts: where will the tool be used?
- 8. Tool Ecosystem: what other tools does this user type rely on?
- 9. Collaborators: who does this user work with to help reach their goals?
- **10.Frequency of Use:** how often is this type of user likely to use the tool?

Characteristics suitable for this user type (design imperatives)

- ease of learning
- retention of learning
- efficiency of interaction
- reliability of interaction
- user satisfaction
- user convenience
- necessity for proficiency
- importance of accuracy

Design for the target audience

 Ex. e-commerce application for selling games for kinds

Audience	Criteria
Parents	Price Security Durability Time spent for buying
Teachers	Price Security Educational value Useful in classes
Friends	Suggestions for gifts Ordered by age Time and costs of delivering Il vient avec papier cadeaux?
Children	Is it fun? It is new? Are children allowed to buy on-line?

User roles

- A collection of attributes that characterize certain user population and their intentional interaction with the system
- Task and responsibility based
- Individual preferences does not matte here

User roles: a simple example

User group	Task	Number of users
Admission clerks	Collect patient data	25
Nurses	View medical data	490
Administrators	Install and maintain software	12

Role Modeling Steps

- brainstorm an initial set of user roles
 - A user role is one user
 - System roles are also useful
- organize the initial set of cards
 - Tasks and responsabilities
- consolidate roles
- refine the roles
 - The frequency with which the user will use the software.
 - The user's level of expertise with the domain.
 - The user's general level of proficiency with computers and software.
 - The user's level of proficiency with the software being developed.
 - The user's general goal for using the software. Some users are after convenience,
 - others favor a rich experience, and so on.

Priorities and conflicts between user groups

Personas

 Technique based on data gathered through user research, mapping user archetypes (profiles), that represent a few important classes of users' goals and needs

Build a simple persona

- Include:
 - Name
 - A role or job title
 - Quotes in the personas language
 - Relevant demographics
 - Descriptions that reveals goals, motivations, pain points
 - Descriptions that describe primary activities this user type will engage in.

Case study BRPE

Users	Criteria
RMP stakeholders	Costs Prevent frauds
	Time for checking eligible applications Traceability of applications
High school's principals	Visibility on students applying for the scholarship in his/her institution
	Time for checking eligible applications (e.g. no required information is missing)
	Time for assisting students to filling in the forms
	Pedagogical value of procedures in daily life
Citizens	Ensure eligibility of application
	Time for filling in the forms
	Time for obtaining the scholarship
	Full transparency

Personas for BRPE

First name	Rémi, the nature boy
Age	16 years old
Nationality	French
Family status	Single, living with his parents in a farmer.
Education	Repeating first year at the vocational high school Saint Paul on Veterinary Scholar Program after failing a first year in a traditional high school.
Information Technology skills	He prefers to surf the Web at school because of the low Internet bandwidth in the rural area where he lives. He gave up with cell phones because of the poor mobile network in the farmer.
Motivation for using new information technologies	He does not have any specific motivation but he knows how to use computer to check his assignments at the electronic kiosk available at the school.
Professional projects	To finish high school and go back to the farm to work with his father.

First name	Iban, the artist
Age	18 years old
Nationality	French
Family status	Single. Part time job in a restaurant after classes and during weekends. Living with friend in an apartment rented by his parents who live in another city.
Education	First year of vocational program in arts at the high school Matisse after two years attending Plumbing program at the same high school.
Information Technology skills	In the top 5 students in informatics. He is very skilled with drawing programs.
Motivation for using new information technologies	He likes innovative IT solutions and he very keen to try new devices. He was a first adopter of iPhone. Since then, he is using it to show his paintings everywhere he goes.
Professional projects	Work in the game industry.

Exercice

 Créer des « persona » pour décrire les utilisateurs que vous avez prévu pour votre application

Architecture IHM

Architecture logiciel et IHM

- Nécessaire pour:
 - Organiser le code
 - Organiser le travail
 - Réutiliser le code
 - Gérer la complexité (simplifier la création et la maintenance)
- Notions: modularité, évolution, flexibilité
- Séparations possibles:
 - Code pour la vue IHM
 - Code pour le noyau fonctionnel (couche métiers)
 - Ex. deux vue IHM pour une application de gestion de stock de livres;
 - Objectif: éviter de tout modifier si l'on change un partie du noyau fonctionnel ou la vue IHM

Architecture logiciel et IHM

Problème classique

Architecture logiciel

- Les modèles architectures logiciel contiennent:
 - Une vue (présentation)
 - Le noyau fonctionnel (partie du code qui fait le traitement interne de donnes traités par le système, contient les modèles, abstraction, interface de communication)
 - Articulateurs (contrôleurs, adaptateurs... pour gérer les événements)

MVC

Zoom: Architecture MVC

- Smalltalk[Goldberg et Robson1979-1983]
- –Model : modélisation (données et comportement)
- -View: représentation manipulable de l'objet
- -Control : interprétation des entrées

Séparer dans le code

- -les données (le Modèle),
- –La ou les Vues.
- –Le Contrôle
- •V s'abonne à M
- C s'abonne à V
- C modifie M

Organisation de l'IHM niveau du code

Structure

- Organise l'information
- Contient la partie visible de l'IHM
 - Widgets prêt à employer ayant un contrôle associé
 - Containeurs: pour organiser les objets graphiques
 - Gestionnaire de lay-out: mise en forme
 - Fenêtre d'affichage

Comportement (dialogue)

- Géré les évènements déclenchés par l'utilisateur
 - Ecoute les actions des utilisateurs produisant des évènements avec des dispositifs (ex. clavier, souris, etc.)
- Fait l'interface avec le noyau fonctionnel

JavaFX

JavaFX et Java

- Concepts réutilisables:
 - API Java
 - Héritage
 - Exceptions
 - Threads
 - Inner classes

D'abord la structure

Des éléments graphiques : Component Définition d'un élément graphique avec

une dimension, une position

Des Coordonnées

(Origine coin supérieur gauche, x (width) vers

la droite et y (height) vers le bas)

Des éléments graphiques Contenant Container :

qui contiennent d'autres éléments graphiques organisés

Des morceaux d'écrans : Graphics

Contexte graphique

Permet de dessiner

-Changer de crayon : couleur, formes géométriques, images, chaînes de caractères

 Automatiquement redimensionnés, réaffichés Du Formattage: LayoutManager

Définition de l'organisation En ligne, en tableau, avec des contraintes, etc

Structure Java FX

Structure d'une application JavaFX

Composants « classique »

https://openclassrooms.com/courses/les-applications-web-avec-javafx/presentation-de-l-interface-graphique-en-javafx

Formes et images

Les layouts

Composants spécifique (stat)

Composant spécifiques (temporisés)

Composants spécifiques: transformations

la rotation,
 l'agrandissement, la translation et le cisaillement

Curseurs

Animations

Déplacement le long d'un chemin :

Rotation autour d'un axe :

Changement de taille :

Médias

formats audio et vidéo dont le format FLV qui permet de faire du streaming vidéo

Widgets (examples)

Formulaire

Gestion du temps

Vues spécialisées

WebView ScrollView MapView

Gestion d'événements

- On gérer les interactions avec
 - Observer observable / listeners

Définir une dépendance de "1" à "n" entre des objets telle que

lorsque l'état d'un objet change,

tous ses dépendants sont informés et mis à jour automatiquement

Le pattern

- Le pattern "Observer" décrit
 - comment établir les relations entre les objets dépendants.
- Les objets-clés sont
 - la source
 - Peut avoir n'importe quel nombre d'observateurs dépendants
 - · Tous les observateurs sont informés lorsque l'état de la source change
 - l'observateur.
 - Chaque observateur demande à la source son état afin de se synchroniser

Implémentation du pattern

- Une classe: Observable {...}
- Une interface: Observer
 - Un objet observable doit être une instance de la classe que dérive de la classe Observable
 - Un objet observer doit être une instance de la classe qui implémente l'interface Observer
 - Void update(Observable o, Objet arg);
- De listeners
 - Ajouter de listeners, notifiers avec listeners des événements, réagir aux évenements

Méthode de développent

- Créer un projet JavaFX
- Utiliser SceneBuilder pour construir l'interface utilisateur (à partir des maquettes)
- Structurer l'applications selon le pattern MVC
- Choisir les composants IHM et les connecter au Modèle avec les événements
- Ajouter du style avec CSS
- Sauvegarder les données en XML (si besoin)

En conclusion

- Les bibliothèques IHM ne s'apprennent pas en cours... elles s'explorent et se pratiquent
- Ce qu'on enseigne:
 - L'architecture d'un système interactif
 - Les bonnes méthodes selon le dispositif visé
 - Les protocole de communications avec les utilisateurs
 - Comment choisir les outils
 - Les bons usages