EXERCICE B

Principaux domaines abordés: Fonction logarithme népérien, dérivation

Cet exercice est composé de deux parties.

Certains résultats de la première partie seront utilisés dans la deuxième.

Partie 1 : Étude d'une fonction auxiliaire

Soit la fonction f définie sur l'intervalle [1; 4] par :

$$f(x) = -30x + 50 + 35 \ln x$$
.

- 1) On rappelle que f' désigne la fonction dérivée de la fonction f.
 - a) Pour tout nombre réel x de l'intervalle [1; 4], montrer que :

$$f'(x) = \frac{35 - 30x}{x}.$$

- **b)** Dresser le tableau de signe de f'(x) sur l'intervalle [1; 4].
- c) En déduire les variations de f sur ce même intervalle.
- 2) Justifier que l'équation f(x) = 0 admet une unique solution, notée α , sur l'intervalle [1; 4] puis donner une valeur approchée de α à 10^{-3} près.
- 3) Dresser le tableau de signe de f(x) pour $x \in [1; 4]$.

Partie 2: Optimisation

Une entreprise vend du jus de fruits. Pour x milliers de litres vendus, avec x nombre réel de l'intervalle [1; 4], l'analyse des ventes conduit à modéliser le bénéfice B(x) par l'expression donnée en milliers d'euros par :

$$B(x) = -15x^2 + 15x + 35x \ln x$$
.

- 1) D'après le modèle, calculer le bénéfice réalisé par l'entreprise lorsqu'elle vend 2 500 litres de jus de fruits. On donnera une valeur approchée à l'euro près de ce bénéfice.
- 2) Pour tout x de l'intervalle [1; 4], montrer que B'(x) = f(x) où B' désigne la fonction dérivée de B.
- **a)** À l'aide des résultats de la **partie 1**, donner les variations de la fonction *B* sur l'intervalle [1; 4].
 - **b)** En déduire la quantité de jus de fruits, au litre près, que l'entreprise doit vendre afin de réaliser un bénéfice maximal.

Correction

EXERCICE B

Partie 1 : Étude d'une fonction auxiliaire

Soit la fonction f définie sur l'intervalle [1; 4] par : $f(x) = -30x + 50 + 35 \ln x$.

- 1) **a)** Sur l'intervalle [1; 4], $f'(x) = -30 + \frac{35}{x} = \frac{-30x + 35}{x} = \frac{35 30x}{x}$
 - **b)** Puisque $1 \le x \le 4$, x > 0, donc le signe de f'(x) est celui du numérateur 35 30x = 5(7 6x) donc du facteur 7 6x.

$$7-6x > 0 \iff 7 > 6x \iff \frac{7}{6} > x \iff x < \frac{7}{6};$$

$$7-6x < 0 \iff 7 < 6x \iff \frac{7}{6} < x \iff x > \frac{7}{6};$$

$$7-6x = 0 \iff 7 = 6x \iff \frac{7}{6} = x \iff x = \frac{7}{6}.$$

- c) La fonction f est donc croissante sur $\left[1; \frac{7}{6}\right]$, décroissante sur $\left[\frac{7}{6}; 4\right]$ et a donc un maximum : $f\left(\frac{7}{6}\right) = -30 \times \frac{7}{6} + 50 + 35 \ln \frac{7}{6} = -35 + 50 + 35 \ln \frac{7}{6} = 15 + 35 \ln \frac{7}{6} \approx 20, 4.$
- 2) f décroit sur $\left[\frac{7}{6}; 4\right]$ de $f\left(\frac{7}{6}\right) = 15 + 35 \ln \frac{7}{6} \approx 20,4$ à $f(4) = -120 + 50 + 35 \ln 4 = 35 \ln 4 70 \approx -21,5$.

Sur l'intervalle $\left[\frac{7}{6}; 4\right]$, f est continue et strictement décroissante.

Comme $0 \in [f(\frac{7}{6}); f(4)]$, il existe d'après le théorème des valeurs intermédiaires, un réel unique α de cet intervalle tel que $f(\alpha) = 0$.

- On a $f(2) \approx 14,26$ et $f(3) \approx -1,54$, donc $2 < \alpha < 3$;
- On a $f(2,9) \approx 0.26$ et $f(3,0) \approx -1.54$, donc $2.9 < \alpha < 3.0$;
- On a $f(2,91) \approx 0.09$ et $f(2,92) \approx -0.09$, donc $2.91 < \alpha < 2.92$;
- On a $f(2,914) \approx 0,0013$ et $f(2,915) \approx -0,005$, donc $2,914 < \alpha < 2,915$.
- 3) On a donc $f(x) \ge 0$ sur $[1; \alpha]$ et $f(x) \le 0$ sur $[\alpha; 4]$.

Partie 2: Optimisation

$$B(x) = -15x^2 + 15x + 35x \ln x$$
.

- 1) 2500 litres correspondent à x = 2.5 et $B(2.5) = -15 \times 2.5^2 + 15 \times 2.5 + 35 \times 2.5 \times \ln 2.5 \approx 23.9254$ soit environ 23 925 \in .
- **2)** La fonction *B* est dérivable sur [1; 4] et sur cet intervalle :

$$B'(x) = -30x + 15 + 35\ln x + 35x \times \frac{1}{x} = 50 - 30x + 35\ln x = f(x).$$

- 3) **a)** D'après la partie 1, $f(x) = B'(x) \ge 0$ sur $[1; \alpha]$: la fonction B est donc croissante sur $[1; \alpha]$. De même $f(x) = B'(x) \le 0$ sur $[\alpha; 4]$: la fonction B est donc décroissante sur $[1; \alpha]$. Conclusion: $B(\alpha)$ est le maximum de la fonction B sur l'intervalle [1; 4].
 - **b)** $B(\alpha) = -15\alpha^2 + 15\alpha + 35\alpha \ln \alpha$.

En utilisant la valeur approchée de α trouvée dans la partie 1, on a :

 $B(\alpha)$ ≈ −15 × 2,914² + 15 × 2,914 + 35 × 2,914 × ln 2,914 ≈ 25,4201, soit environ 25 420 € à l'euro près.

Il faut donc que l'entreprise vende 2914 litres de jus de fruits pour faire un bénéficie maximal.