

Table of Contents

Business Objectives

Data Collection

Preprocessing

Model Creation

Web application

06 Limitations & Next Steps

Business Objectives

Increase average order value

Showing tailored alternatives can allow customers to reveal options that fulfill his/her interest, hence likely to add purchase

Drive website engagement

Potential customers can easily dive deeply into product line without the need of doing search after search, enhance user satisfaction

Marketing team can set promotion prices directives to customer's profile, thus facilitate boosting sales

02

Data Collection,

The datasets were collected in late 2017 from <u>goodreads.com</u>, where we only scraped users' *public* shelves, i.e. everyone can see it on web without login. User IDs and review IDs are anonymized.

We collected these datasets for academic use only. Please do not redistribute them or use for commercial purposes.

If you are using our datasets, please cite the following papers:

- Mengting Wan, Julian McAuley, "<u>Item Recommendation on Monotonic</u> <u>Behavior Chains</u>", in *RecSys'18*. [bibtex]
- Mengting Wan, Rishabh Misra, Ndapa Nakashole, Julian McAuley, "<u>Fine-Grained Spoiler Detection from Large-Scale Review Corpora</u>", in *ACL'19*.
 [bibtex]

Goodreads.com

No. of books: 2,080,190

No. of reviews: 15,739,967

No. of users: 465,323

Data preprocessing

	user_id	book_id	rating	has_spoiler	review_sentences	work_id	title	language_code
0	0	18245960	5	1	[[0, 'This is a special book.'], [0, 'It start	25696480	The Three-Body Problem (Remembrance of Earth's	NaN
1	0	16981	3	0	[[0, 'Recommended by Don Katz.'], [0, 'Avail f	170957	Invisible Man	NaN
2	0	28684704	3	1	[[0, 'A fun, fast paced science fiction thrill	43161998	Dark Matter	NaN

01

List Data

Used 'eval' to convert series, authors from string to lists

02

Mapping across dataframes

Books, Reviews, Genre and Authors are all separate tables

03

Downcast to save memory

Convert the numerical data to float with less precision/ integer

04

Text preprocessing

Remove contractions and punctuation. Tokenize and stem words.

Book-to-book Recommendation

Model Creation - Latent Matrices

Latent matrix on book content

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vect = TfidfVectorizer(min_df=0.0005,max_df=0.7, stop_words='english', dtype= np.float32)
text M = tfidf_vect.fit_transform(text)

from sklearn.decomposition import TruncatedSVD
svd_text = TruncatedSVD(n_components=300)
svd text.fit(text M)

Latent matrix on user ratings

ratingmatrix = pd.pivot_table(df_reviews, values='rating',index=['work_id'], columns=['user_id'])
ratingmatrix.fillna(0, inplace=True)
ratingmatrix.shape

user_id	0	1	2	3	4	5	6	7	8	9	 18882	18883	18884	18885	18886	18887	18888	18889	18890	1889
work_id																				
104	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
114	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
115	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
423	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
434	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7767021	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7824359	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7888058	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7978319	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7997938	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Latent Matrix

Book-to-book (Similarity Score)

```
def book to books (seedbookID, latentmatrix, rec mode):
   if rec_mode == 'collaborative':
       seed book = np. array(latentmatrix.loc[seedbookID]).reshape(1,-1)
   if rec mode == 'content':
       seed_book = latentmatrix[df_books.index[df_books['work_id'] == seedbookID]]
   similarities = cosine_similarity(latentmatrix, seed_book, dense_output=True)
   if rec mode == 'collaborative':
       index = latentmatrix.index.tolist()
   if rec mode == 'content':
       index = df_books['work_id'].tolist()
   similarities = pd. DataFrame(similarities, index = index)
   similarities.columns = ['similarity score']
   similarities. sort values ('similarity score'. ascending=False, inplace=True)
   similarities = similarities.iloc[1:]
   similarities = similarities[similarities['similarity score'] > 0]
   return similarities
```


Book-to-book (Get Recommendations)

```
def similarity_scores(collaborative_score, content_score):
    #average both similarity scores

df_sim = pd.merge(collaborative_score, pd.DataFrame(content_score['similarity_score']), left_index=True, right_index=True)

df_sim['similarity_score'] = (df_sim['similarity_score_x']*0.5 + (df_sim['similarity_score_y'])*0.2)/2

df_sim.drop("similarity_score_x", axis=1, inplace=True)

df_sim.drop("similarity_score_y", axis=1, inplace=True)

#sort by average similarity score

df_sim.sort_values('similarity_score', ascending=False, inplace=True)

#round similarity score

df_sim['similarity_score'] = df_sim['similarity_score'].round(4)

return df_sim.head(20)
```


Weighted Similarity Score

```
def get_recommendation(seed_book):
    collaborative = book_to_books(seed_book, rating_latent, 'collaborative')
    content = book_to_books(seed_book, books_latent, 'content')
    rec = similarity_scores(collaborative, content)
    rec = pd.merge(df_books, rec, how='right', left_on='work_id', right_index=True).reset_index().drop(['index', 'similarity_score'], axis=1)
    rec = rec[['title', 'authors', 'work_id', 'isbn', 'description', 'average_rating', 'image_url']]
    return rec[:5]
```


User-to-book Recommendation

User-to-book (Get Recommendations)

1. Return users with highest similarity scores

```
def user_to_user(seeduserID):
    seed_user = np.array(latent_rating_u2u.loc[seeduserID]).reshape(1,-1)
    similarities = cosine_similarity(latent_rating_u2u, seed_user, dense_output=True)
    index = latent_rating_u2u.index.tolist()
    similarities = pd.DataFrame(similarities, index = index)
    similarities.columns = ['similarity_score']
    similarities.sort_values('similarity_score', ascending=False, inplace=True)
    similarities = similarities.iloc[1:]
    similarities = similarities[similarities['similarity_score'] > 0]

return similarities[:min(len(similarities), 30)]
```

2. Get reviewed books by the similar users and filter books by content-based similarity

Streamlit WebApp

Limitations & Next Steps

Limitations & Future Improvements

Matrix too large

- Used dimensionality reduction by truncated SVD
- Removed unused columns
- Due to large database, there is not enough local ram to compute

Goodreads.com could not fetch image

- Use another book cover api to fetch image
- But some books within the dataset didn't include isbn, so those books can't show image

Next Steps

Combine other user-book interaction

(is_read, is_reviewed, add to cart...)

Apply other hybrid techniques

(Cascade, Switching...)

Build Models of Neural Network

