Probabilités, Statistiques, Combinatoire - cours 7

Adrian Tanasă

université de Bordeaux - Licence Informatique

Rappel - notions vu le dernier cours

- le vocabulaire des probabilités (univers, événement, loi de probabilités, . . .)
- les définitions essentielles (axiomes d'une loi de probabilités)
- définition d'une probabilité par des choix de poids; probabilité uniforme.
- lacktriangle opérations ensemblistes ightarrow opérations sur les événements

Plan du cours d'aujourd'hui

- Interprétation possible de la définition d'un espace de probabilités; exemples
- Exemples utilisations de la loi uniforme
- Quelques formules utiles
- Espace produit
- Indépendance de 2 événements
- ► Indépendance de plus de 2 événements : indépendance 2-à-2 et indépendance globale
- Calcul d'événements

Interprétation

interprétation possible de la définition d'un espace de probabilités est la suivante :

- on a défini l'ensemble des "résultats possibles" de l'expérience (les événements élémentaires)
- ▶ on imagine ensuite que "quelque chose" (ou "quelqu'un") choisit un élément $x \in \Omega$ au hasard, de telle sorte que chaque élément x ait probabilité $\mathbb{P}(\{x\})$ d'être choisi;
- ▶ pour n'importe quel événement A, on considère alors que "l'événement A se produit" lorsque le x choisi est dans A
- ▶ et donc, "les événements A et B se produisent tous les deux" correspond à la condition " $x \in A$ et $x \in B$ ", soit $x \in A \cap B$; et "l'un au moins des événements A et B se produit" correspond à la condition " $x \in A$ ou $x \in B$ ", soit $x \in A \cup B$.

Quelques exemples

- ▶ Lancer d'un dé équilibré : on peut prendre $\Omega = \{1, 2, 3, 4, 5, 6\}$, et, pour tout $A \subset \Omega$, $\mathbb{P}(A) = \#A/6$
- ▶ Tirage à pile ou face avec une pièce équilibrée : on peut prendre $\Omega = \{\text{pile}, \text{face}\}, \text{ avec } \mathbb{P}(\{\text{pile}\}) = \mathbb{P}(\{\text{face}\}) = 1/2.$
- ▶ Tirage deux fois à pile ou face : on peut prendre pour Ω , les séquences de longueur 2, à valeur dans $\{P,F\}$: par exemple, $\Omega_2 = \{(P,P),(P,F),(F,P),(F,F)\}$ (avec loi $\mathbb{P}(x) = \frac{1}{4}$ pour tout $x \in \Omega_2$)
- ► Tirage à pile ou face avec une pièce déséquilibrée : par exemple, $\Omega = \{P, F\}$ avec $\mathbb{P}(\{P\}) = 0.6$ et $\mathbb{P}(\{F\}) = 0.4$.

Rappel: loi uniforme

Parmi les lois de probabilités sur un tel ensemble, la **loi uniforme** est la seule qui accorde la même probabilité à tous les singletons, *i.e.* pour tout $x \in \Omega$, $p(x) = 1/\#\Omega$.

Définition

La loi uniforme \mathbb{P}_U sur Ω est définie de la façon suivante : pour toute partie $A\subseteq \Omega$,

$$\mathbb{P}_U(A) = \frac{\#A}{\#\Omega}.$$

C'est la loi des "tirages équitables".

Exemples:

"dé équilibré" (univers : les entiers de 1 à 6),

"[jeu de cartes] bien mélangé" (univers : les ordres possibles sur le paquet de cartes, *i.e.* les permutations sur un ensemble à 32, ou 52, ou 78 éléments),

"choisir uniformément" parmi un ensemble fini...

Formules utiles

- ightharpoonup vide : on a toujours $\mathbb{P}(\emptyset)=0$;
- union : pour n'importe quels événements A et B, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- complémentaire : pour n'importe quel événement A, $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$;
- ▶ $A \setminus B$: pour n'importe quels événements A et B, $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(A \cap B)$;
- ▶ En particulier, monotonie : si $B \subset A$, on a bien $\mathbb{P}(B) \leq \mathbb{P}(A)$.

(preuves en TD)

Espace produit

- Situation fréquente : on a une expérience "composite", facile à décrire comme : "on effectue l'expérience A, puis, indépendamment, l'expérience B".
- On a une modélisation pour \mathcal{A} , par un espace $(\Omega_{\mathcal{A}}, \mathbb{P}_{\mathcal{A}})$; et une modélisation pour \mathcal{B} , par un espace $(\Omega_{\mathcal{B}}, \mathbb{P}_{\mathcal{B}})$.
- Soient $(p(x))_{x \in \Omega_A}$ les poids pour la première proba, $(q(y))_{y \in \Omega_B}$ les poids pour la deuxième.
- pour modéliser l'expérience composite, l'espace "produit" : $\Omega = \Omega_A \times \Omega_B$, avec poids p'(x, y) = p(x)q(y).

Indépendance

- ▶ **Définition**: deux événements A et B sont indépendants, si on a $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- À ne surtout pas confondre avec deux événements incompatibles : $A \cap B = \emptyset$ (donc $\mathbb{P}(A \cap B) = 0$).
- Note : la définition ne parle pas de causes communes, ou quoi que ce soit ; seulement de la formule.
- ▶ Exemple important : dans le cas de l'espace produit $\Omega = \Omega_1 \times \Omega_2$, tout événement qui "vient" uniquement de Ω_1 est indépendant de tout événement qui "vient" uniquement de Ω_2 .
- Mais il peut arriver qu'on découvre, par le calcul, que deux événements sont indépendants "sans qu'on le sache à l'avance".

Un exemple d'indépendance

- $\Omega = \{(P, P), (P, F), (F, P), (F, F)\}$ avec loi uniforme.
 - ▶ On modélise deux lancers successifs d'une pièce équilibrée.
 - $ightharpoonup A = \{(P, P), (P, F)\}$: "le premier lancer donne Pile".
 - \triangleright $B = \{(P, F), (F, F)\}$: "le second lancer donne Face".
 - ▶ $A \cap B = \{(P, F)\}$; sans surprise, A et B sont indépendants.
 - $C = \{(P, P), (F, F)\}$: "les deux lancers donnent le même résultat".
 - ► A et C sont indépendants ; c'est déjà plus surprenant.
 - ightharpoonup De plus, B et C sont également indépendants.
 - ▶ Par contre, $A \cap B \cap C = \emptyset$: $\mathbb{P}(A \cap B \cap C) \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$.

Indépendance de plus de deux événements

deux notions différentes

Soit *n* événements $A_1, A_2, \dots A_n$

- **Définition**: les *n* événements A_i sont deux-à-deux indépendants si, dès qu'on en prend deux, ils sont indépendants : pour tous i, j avec $i \neq j$, $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$.
- ▶ **Définition**: les n événements A_i sont globalement indépendants si, dès qu'on en prend $k \le n$ sur les n, la probabilité de leur intersection est le produit de leurs probabilités : pour tout $k \le n$, pour tous $i_1 < i_2 \cdots < i_k$,

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1})\mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_k})$$

 Propriété : l'indépendance globale entraîne l'indépendance 2-à-2 (mais la réciproque est fausse : voir par exemple le cas des deux pile-ou-face).

Calculs : calculs d'événements

- Dans énormément de situations, on ne connaît pas l'univers, mais on connaît certains événements "de base", et diverses relations entre eux (indépendance, probabilités d'intersections ou d'unions).
- On peut alors déterminer la probabilité de certains événements composites, définis par des combinaison des événements de base (par intersections, unions, complémentaires...)
- ► En bref, on **calcule** l'événement (on en donne une expression à base d'opérations ensemblistes) comme un préalable au calcul de sa probabilité.
- ▶ Bonus : ces calculs d'événements ne dépendent pas de la loi de probabilités choisie pour modéliser l'expérience; les calculs de probabilités, eux, en dépendent généralement.

Exemple de calcul

- ➤ **Situation :** on a trois événements "de base" *A*, *B*, *C*, dont on sait les choses suivantes :
 - ► A et B sont incompatibles;
 - ► A et C sont indépendants ;
 - $\mathbb{P}(A) = 0.3, \ \mathbb{P}(B) = 0.25, \ \mathbb{P}(C) = 0.5, \ \mathbb{P}(B \cap C) = 0.1.$
- Dans ce cas, on a assez d'informations pour calculer la probabilité de n'importe quel événement qui s'exprime en fonction de A, B et C.
- Par exemple : on s'intéresse à l'événement D : "A ou B se produit, mais pas C"
- ▶ On exprime $D = (A \cup B) \cap \overline{C}$.
- ▶ On développe : $D = (A \cap \overline{C}) \cup (B \cap \overline{C})$.
- ▶ $A \cap \overline{C} = A \setminus (A \cap C)$; similaire pour B; de plus comme A et B sont incompatibles, l'union pour D est une union disjointe.
- Au final, $\mathbb{P}(D) = (0.3 0.3 \times 0.5) + (0.25 0.1) = 0.3$.

Au prochain cours

Probabilités conditionnelles