The fundamental group of S^1

Please let me know about any misprints you notice.

Let x_0 denote the point (1,0) in S^1 . Our goal is to prove:

Theorem A. There is an isomorphism

$$\Phi: \pi_1(S^1, x_0) \xrightarrow{\cong} \mathbb{Z}.$$

which takes the class of the path $f_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$ to n.

As a tool, we will use the map

$$p: \mathbb{R} \to S^1$$

defined by

$$p(u) = (\cos 2\pi u, \sin 2\pi u).$$

We need to know three things about the map p:

Proposition B. For every path $f: I \to S^1$ and every $u_0 \in p^{-1}(f(0))$ there is a path $\tilde{f}_{u_0}: I \to \mathbb{R}$ with $f = p \circ \tilde{f}_{u_0}$ and $\tilde{f}_{u_0}(0) = u_0$.

Proposition C. Let A be a connected space and let $a \in A$. If two continuous functions $\alpha, \beta: A \to \mathbb{R}$ have the property that $\alpha(a) = \beta(a)$ and $p \circ \alpha = p \circ \beta$ then $\alpha = \beta$.

In particular, in the situation of Proposition B, any path $g: I \to \mathbb{R}$ with $f = p \circ g$ and $g(0) = u_0$ must be equal to \tilde{f}_{u_0} .

Proposition D. For every continuous $H: I \times I \to S^1$ and every $u_0 \in p^{-1}(H(0,0))$ there is a continuous $\tilde{H}_{u_0}: I \times I \to \mathbb{R}$ with $H = p \circ \tilde{H}_{u_0}$ and $\tilde{H}_{u_0}(0,0) = u_0$.

Proofs of B and D will be given later; I will ask you to prove C on the homework.

Now we can begin the process of defining $\Phi: \pi_1(S^1, x_0) \xrightarrow{\cong} \mathbb{Z}$. First note that $p^{-1}(x_0) = \mathbb{Z}$ (by trigonometry). Given a loop $f: I \to S^1$ with $f(0) = f(1) = x_0$, Proposition B gives a path $\tilde{f}_0: I \to \mathbb{R}$ with $p \circ \tilde{f}_0 = f$ and $\tilde{f}_0(0) = 0$. Then $\tilde{f}_0(1)$ is in $p^{-1}(x_0) = \mathbb{Z}$. Define

$$\phi(f) = \tilde{f}_0(1).$$

Lemma E. If f and g are loops at (1,0) with $f \simeq_p g$ then $\phi(f) = \phi(g)$.

Proof. Let H be a path-homotopy from f to g. Note that $H(0,0) = x_0$, so $0 \in p^{-1}H(0,0)$. Let \tilde{H}_0 be the map given by Proposition D.

Step 1. The path which takes s to $\tilde{H}_0(s,0)$ is the path \tilde{f}_0 provided by Proposition B. (This follows easily from Proposition C). In particular, $\tilde{H}_0(1,0) = \tilde{f}_0(1)$.

Step 2. The path which takes t to $\tilde{H}_0(0,t)$ is the constant path e_0 in \mathbb{R} . (This follows easily from Proposition C.) In particular, $\tilde{H}_0(0,1) = 0$.

Step 3. The path which takes s to $\tilde{H}_0(s,1)$ is the path \tilde{g}_0 provided by Proposition B. (This follows easily from Proposition C and Step 2). In particular, $\tilde{H}_0(1,1) = \tilde{g}_0(1)$.

Step 4. Let $u = \tilde{f}_0(1)$. The path which takes t to $\tilde{H}_0(1,t)$ is the constant path e_u in \mathbb{R} . (This follows easily from Proposition C.) In particular, $\tilde{H}_0(1,1) = \tilde{f}_0(1)$.

Step 5.
$$\tilde{g}_0(1) = \tilde{f}_0(1)$$
. (This is immediate from Steps 3 and 4.)

Finally, we can define $\Phi: \pi_1(S^1, x_0) \xrightarrow{\cong} \mathbb{Z}$ by $\Phi([f]) = \phi(f)$. This is well-defined by Lemma E.

On the homework I will ask you to show the following, which completes the proof of Theorem A:

Proposition F. (i) Φ takes the class of the path $f_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$ to n (and therefore Φ is onto).

- (ii) Φ is 1–1.
- (iii) Φ is a homomorphism.

Proof of Proposition B

We need a fact about the map p, which I will ask you to prove on the homework:

Lemma G. For each $a \in \mathbb{R}$, the map

$$p_a:(a,a+1)\to S^1-\{p(a)\}$$

given by $p_a(u) = p(u)$ is a homeomorphism.

For each $a \in \mathbb{R}$, let $U_a \subset S^1$ denote the open set $S^1 - \{p(a)\}$.

Now let f be a path in S^1 . The sets $f^{-1}(U_a)$ are an open cover of I, so by the Lebesgue Lemma (Lemma 27.5 in Munkres) there is a $\delta > 0$ such that every set $S \subset I$ with diameter $< \delta$ is contained in some $f^{-1}(U_a)$. Now fix an n with $\frac{1}{n} < \delta$; then each interval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ is contained in some $f^{-1}(U_a)$.

Now let $u_0 \in p^{-1}(f(0))$.

We claim by (finite!) induction on i that for each i with $0 \le i \le n$ there is a continuous $g_i : [0, \frac{i}{n}] \to \mathbb{R}$ with $p \circ g_i = f|_{[0,\frac{i}{n}]}$ and $g_i(0) = u_0$ (then we can let \tilde{f}_{u_0} be g_n).

To start the induction, let g_0 : $[0,0] \to \mathbb{R}$ take 0 to u_0 .

Now suppose g_i exists for some i < n. Choose an a with $\left[\frac{i}{n}, \frac{i+1}{n}\right] \subset f^{-1}(U_a)$. Then $p_a^{-1}(f(\frac{i}{n}))$ and $g_i(\frac{i}{n})$ are both in $p^{-1}(f(\frac{i}{n}))$, so by trigonometry they must differ by an element of \mathbb{Z} ; that is, there is a $k \in \mathbb{Z}$ with

(*)
$$g_i(\frac{i}{n}) = p_a^{-1}(f(\frac{i}{n})) + k.$$

Now define

$$g_{i+1}(s) = \begin{cases} g_i(s) & \text{if } s \le \frac{i}{n}, \\ p_a^{-1}(f(s)) + k & \text{if } s \ge \frac{i}{n}, \end{cases}$$

which is well-defined by (*) and hence continuous by the Pasting Lemma. Then $g_{i+1}(0) = u_0$ and (using trigonmetry) $p \circ g_{i+1} = f|_{[0,\frac{i+1}{n}]}$.

Proof of Proposition D

The proof uses ideas similar to the proof of Proposition B.

Let $H: I \times I \to S^1$ be continuous. The sets $H^{-1}(U_a)$ are an open cover of $I \times I$, so by the Lebesgue Lemma there is a $\delta > 0$ such that every set $S \subset I \times I$ with diameter $< \delta$ is contained in some $H^{-1}(U_a)$. Now fix an n with $\frac{1}{n} < \delta$; then each set $\left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right]$ with $0 \le i < n \text{ and } 0 \le j < n \text{ is contained in some } H^{-1}(U_a).$

Now let $u_0 \in p^{-1}(H(0,0))$.

We claim by (finite) induction on j that for each j with $0 \le j \le n$ there is a continuous $K_j: I \times [0, \frac{j}{n}] \to \mathbb{R}$ with $p \circ K_j = H|_{I \times [0, \frac{j}{n}]}$ and $K_j(0, 0) = u_0$ (then we can let \tilde{H}_{u_0} be K_n).

To start the induction, define f(s) = H(s,0), and let $K_0(s,0) = \tilde{f}_{u_0}(s)$, where \tilde{f}_{u_0} is the map given by Proposition B.

Now fix a j with 0 < j < n and suppose K_j exists. For $0 \le i \le n$ let S_i denote the set

$$(I \times [0, \frac{j}{n}]) \cup ([0, \frac{i}{n}] \times [\frac{j}{n}, \frac{j+1}{n}]).$$

We claim by a (second!) finite induction that for each i with $0 \le i \le n$ there is a continuous

$$L_i: S_i \to \mathbb{R}$$

such that $p \circ L_i = H|_{S_i}$ and $L_i(0,0) = u_0$ (then we can let K_{j+1} be L_n). To start the (second) induction, choose an a with $\{0\} \times \left[\frac{j}{n}, \frac{j+1}{n}\right] \subset H^{-1}(U_a)$. $p_a^{-1}(H(0,\frac{j}{n}))$ and $K_j(0,\frac{j}{n})$ are both in $p^{-1}(H(0,\frac{j}{n}))$, so there is a $k\in\mathbb{Z}$ with

(**)
$$K_j(0, \frac{j}{n}) = p_a^{-1}(H(0, \frac{j}{n})) + k.$$

Now define $L_0: S_0 \to \mathbb{R}$ by

$$L_0(s,t) = \begin{cases} K_j(s,t) & \text{if } t \le \frac{j}{n}, \\ p_a^{-1}(H(s,t)) + k & \text{if } s = 0 \text{ and } t \in [\frac{j}{n}, \frac{j+1}{n}]. \end{cases}$$

This is well-defined by (**) and hence continuous by the Pasting Lemma. Then $L_0(0,0)=u_0$ and (using trigonometry) $p \circ L_0 = H|_{S_0}$.

Now suppose that L_i exists for some i < n. Choose an a with $\left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right] \subset H^{-1}(U_a)$. Then $p_a^{-1}(H(\frac{i}{n}, \frac{j}{n}))$ and $K_j(\frac{i}{n}, \frac{j}{n})$ are both in $p^{-1}(H(\frac{i}{n}, \frac{j}{n}))$, so there is a $k \in \mathbb{Z}$ with

(***)
$$K_{j}(\frac{i}{n}, \frac{j}{n}) = p_{a}^{-1}(H(\frac{i}{n}, \frac{j}{n})) + k.$$

Now define $L_{i+1}: S_{i+1} \to \mathbb{R}$ by

$$L_{i+1}(s,t) = \begin{cases} L_i(s,t) & \text{if } s \le \frac{i}{n} \text{ or } t \le \frac{j}{n}, \\ p_a^{-1}(H(s,t)) + k & \text{if } (s,t) \in \left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right]. \end{cases}$$

To see that L_{i+1} is well-defined we need to know that $L_i = p_a^{-1} \circ H + k$ on the set

$$A = \{\frac{i}{n}\} \times [\frac{j}{n}, \frac{j+1}{n}] \cup [\frac{i}{n}, \frac{i+1}{n}] \times \{\frac{j}{n}\}.$$

But A is connected by Theorem 23.3, so the fact we need follows from (***) and Proposition C (with $a=(\frac{i}{n},\frac{j}{n})$). Now L_{i+1} is continuous by the Pasting Lemma and we have $L_{i+1}(0,0)=u_0$ and (using trigonometry) $p \circ L_{i+1} = H|_{S_{i+1}}$.