Real Analysis, Assignment-1

August 28, 2018

- 1. Let E_1 and E_2 be two bounded nonempty subsets of \mathbb{R} , and let $E_1 + E_2 := \{a + b : a \in E_1, b \in E_2\}$. Prove that $\sup(E_1 + E_2) = \sup E_1 + \sup E_2$ and $\inf(E_1 + E_2) = \inf E_1 + \inf E_2$.
- 2. Let S be a nonempty bounded set in \mathbb{R}
 - Let a > 0, and let $aS := \{as : s \in S\}$. Prove that $\inf(aS) = a \inf S$, $\sup(aS) = a \sup S$.
 - (b) Let b < 0, and let $bS := \{bs : s \in S\}$. Prove that $\inf(bS) = b \sup S$, $\sup(bS) = b \inf S$.
 - If y > 0, show that $\exists n \in \mathbb{N}$ such that $\frac{1}{2^n} < y$.
 - 4. Show that $\sup\{\frac{1}{n}: n \in \mathbb{N}\} = 1$.
 - Show that a nonempty finite set $S \subseteq \mathbb{R}$ contains its supremum.
- 6 Let $S \subseteq \mathbb{R}$ and suppose that $s^* := \sup S$ belongs to S. If $u \notin S$, show that $\sup(S \cup \{u\}) = \sup\{s^*, u\}$.
- 7. Given a function $f: D \to \mathbb{R}$. We say f is bounded above if the set $f(D) = \{f(x) : x \in D\}$ is bounded above in \mathbb{R} . Similarly we can define bounded below functions.
 - (a) If $f(x) \leq g(x), \forall x \in D$, show that $\sup_{x \in D} f(x) \leq \inf_{x \in D} g(x)$. Does it give any relation between $\sup f(D)$ and $\inf g(D)$?. Justify your results.
 - $\text{ (b) If } f(x) \leq g(y), \forall x,y \in D, \text{ show that } \sup_{x \in D} \mathrm{f}(x) \leq \inf_{y \in D} \mathrm{g}(y).$
- 8 Show that set of algebraic numbers is countable. 🗷 🥻 👭
- Using rational density theorem , show that if x and y are real numbers with x < y, then \exists an irrational number z such that x < z < y.
- 10 Show that if $x \in N_{\epsilon}(a)$ (neighborhood of a), $a \in \mathbb{R}$ for every $\epsilon > 0$, then x = a.
- 11. A metric space is called separable if it contains a countable dense subsets. Show that \mathbb{R}^n is countable.
- 12. Prove that every separable metric space has a countable base.
- 13 Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

- 14. Let X be a metric space in which every infinite subset has a limit point. Prove that X is compact.
- 15. Prove that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals. (use Ex.11)
- 16. Show that if $\mathbb{R}^k = \bigcup_{n=1}^{\infty} F_n$, where each F_n is closed subset of \mathbb{R}^k , then at least one of F_n has nonempty interior.
- 17. If A is compact, then show that sup A and inf A belongs to A. Give an example of a noncompact set A such that both sup A and inf A belongs to A.
- 18. If $B_1, B_2, B_3, \dots, B_n$ is a finite open cover of a compact set $A \neq \phi$, can the union $B_1 \cup B_2 \cup \dots \cup B_n = A$?.
- 19. Let A be open set. Show that if a finite number of points are removed from A, the remaining set is still open. Is the same true if a countable number of points are removed?
- 20. Let $K \subset \mathbb{R}$ consists of 0 and the number $\frac{1}{n}$, for $n = 1, 2, 3, \cdots$. Prove that K is compact directly from the definition (without using the Heine-Borel theorem).