









Patrick Hochstenbach, Beatriz Esteves, Ruben Verborgh





#### **Trustless consent model**

#### INTERACTION PLANE



**DATA PLANE** 



#### **Evolving trust relationships**

#### INTERACTION PLANE





#### Trust envelopes as vehicles of history & destiny



#### Techno-legal systems? The 10.000 meter view



#### Techno-legal systems? The 10.000 meter view



- 1. Challenges
- 2. Policies as Computer Programs
- 3. Related Work
- 4. Conclusions & Future Work

- 1. Challenges
- 2. Policies as Computer Programs
- 3. Related Work
- 4. Conclusions & Future Work

# What are typical tasks these machines should be capable to do?

#### **Compliance checking**

Given an policy as input, the machine should be able to calculate in a particular state of the world complies with the policy norms.



#### **Requirements checking**

This is the inverse process of the previous compliance checking. If a "computer says no," we need to understand why and what actions we can take to change the "no" into a "yes."



#### **Consistency checking**

This machine get policies as input and it needs to know if there are inconsistencies between these policies. Inconsistent policies are void and useless and potential dangerous if not detected.



#### **Negotiation**

The negotiation process requires a combination of customer policies, company policies, and potentially a state of the world to arrive on a new policy for a particular use-case.



#### These four challenges are related

The logic as expressed in the policies need to commute between applications.



#### These four challenges are related

The logic as expressed in the policies need to commute between applications.



- 1. Challenges
- 2. Policies as Computer Programs
- 3. Related Work
- 4. Conclusions & Future Work

#### Policies are, in effect, computer programs

Policy logic is currently defined by their implementations.

• There were high hopes that Semantic Web logic would automatically provide us common logic suitable for expressing the richness of our policy languages.

- However, in effect, what we see is a balancing act:
  - Implementing the requirements of deontic+defeasible+(more?) in a particular framework
  - Requiring multiple of these framework, each with their own choice of what logic to implement to be interoperable
  - Making this all scalable

- 1. Challenges
- 2. Policies as Computer Programs
- 3. Related Work
- 4. Conclusions & Future Work



| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Compliance checking   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                       | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AOPL               | ASP              |
|                       | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       | <u>.</u>         |
|                       | Baarslag 2017 [33]       | -                  | Protocol         |
| Nadatiation           | Kiruthika 2020 [12]      | Survey paper       | -                |
| Negotiation           | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

| Challenge               | References               | Language           | Formalization    |
|-------------------------|--------------------------|--------------------|------------------|
|                         | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                         | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                         | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                         | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Committees of the sking | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking     | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                         | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                         | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                         | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                         | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                         | Gangadharan 2007 [23]    | ODRL/L(3)          | Theory           |
|                         | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                         | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking    | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                         | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                         | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                         | Inclezan 2023 [28]       | AOPL               | ASP              |
|                         | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                         | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking   | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                         | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                         | Adhikari 2025 [32]       | Survey paper       |                  |
| Negotiation             | Baarslag 2017 [33]       | o=                 | Protocol         |
|                         | Kiruthika 2020 [12]      | Survey paper       |                  |
|                         | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                         | IDSA 2025 [35]           | ODRL               | Protocol         |

| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Compliance sheeking   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                       | Gangadnaran 2007 [23]    | ODKL/L(S)          | Ineory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AOPL               | ASP              |
|                       | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       | g-               |
|                       | Baarslag 2017 [33]       | ¿-                 | Protocol         |
| Negotiation           | Kiruthika 2020 [12]      | Survey paper       | -                |
| Negotiation           | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

- Early implementations based on logic
   programming languages, e.g., Prolog
- Rise of the Semantic Web languages:

   challenges in covering all the deontic logic
   requirements, e.g., prohibition requires some
   form of negation
- Combination of languages has the potential to provide the necessary expressivity

| Challenge               | References               | Language           | Formalization    |
|-------------------------|--------------------------|--------------------|------------------|
|                         | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                         | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                         | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                         | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Commission of the sking | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking     | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                         | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                         | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                         | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                         | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                         | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                         | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                         | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking    | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                         | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                         | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                         | Inclezan 2023 [28]       | AOPL               | ASP              |
|                         | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                         | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking   | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                         | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                         | Adhikari 2025 [32]       | Survey paper       | -                |
|                         | Baarslag 2017 [33]       | e-                 | Protocol         |
| Nadatiation             | Kiruthika 2020 [12]      | Survey paper       | -                |
| Negotiation             | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                         | IDSA 2025 [35]           | ODRL               | Protocol         |

| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Camplianas abaalina   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRI               | Prolog           |
|                       | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AGPL               | ASP              |
|                       | Pandit 2010 [22]         | GDPRov, GDPR(EXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       | -                |
| Negotiation           | Baarslag 2017 [33]       | u=                 | Protocol         |
|                       | Kiruthika 2020 [12]      | Survey paper       |                  |
|                       | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

- Focus on software licenses
- Maude is a declarative programming environment used for specifying and analyzing formal models of systems, including consistency checks
- ASP to find inconsistencies, underspecified, and ambiguities

Inconsistencies – rules that contradict each other

**Underspecified** – rules that never trigger

Ambiguities – rules that permit an action in one possible state of the world but forbid it in another possible state of the world

| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Compliance sheeting   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                       | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AOPL               | ASP              |
|                       | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       | -                |
|                       | Baarslag 2017 [33]       | -                  | Protocol         |
| Moderitaion           | Kiruthika 2020 [12]      | Survey paper       | _                |
| Negotiation           | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

| Challenge               | References               | Language           | Formalization    |
|-------------------------|--------------------------|--------------------|------------------|
|                         | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                         | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                         | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                         | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Commission on absoluted | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking     | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                         | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                         | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                         | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                         | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                         | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                         | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                         | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking    | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                         | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                         | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                         | Inclezan 2023 [28]       | A6.PP              | ASP              |
|                         | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                         | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking   | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                         | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                         | Adhikari 2025 [32]       | Survey paper       | -                |
|                         | Baarslag 2017 [33]       | =                  | Protocol         |
| Negotiation             | Kiruthika 2020 [12]      | Survey paper       | i=               |
| regoliation             | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                         | IDSA 2025 [35]           | ODRL               | Protocol         |

#### Three approaches in the literature:

- Syntactical analysis of the policy language,
   e.g., matching of human- and machine-readable
   representation
- Analysis of the **deeper underlying logic** of the policy language, e.g., using deterministic processes to formalize and analyze the policies
- Non-deterministic processing, e.g., machine learning to analyse the policies

| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Compliance checking   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                       | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AOPL               | ASP              |
|                       | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       |                  |
|                       | Baarslag 2017 [33]       | -                  | Protocol         |
| Nadatistian           | Kiruthika 2020 [12]      | Survey paper       | c=               |
| Negotiation           | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

| Challenge             | References               | Language           | Formalization    |
|-----------------------|--------------------------|--------------------|------------------|
|                       | Wieringa 1994 [15]       | Libary Regulations | Prolog           |
|                       | Chong 2006 [16]          | LicenseScript      | Prolog           |
|                       | Gandon 2017 [17]         | LegalRuleML        | OWL+SPARQL       |
|                       | Fornara 2019 [18]        | ODRL               | OWL+RIF          |
| Compliance sheeking   | De Vos 2019 [20]         | InstAL             | ASP              |
| Compliance checking   | Kirrane 2021 [19]        | SPECIAL            | OWL              |
|                       | Van Binsbergen 2022 [22] | eFLINT             | Haskell          |
|                       | Francesconi 2023 [11]    | LegalRuleML        | OWL+SPARCL+SHACL |
|                       | Robaldo 2023 [21]        | LegalRuleML        | ASP/SHACL        |
|                       | Slabbinck 2025 [13]      | ODRL               | Prolog           |
|                       | Gangadharan 2007 [23]    | ODRL/L(S)          | Theory           |
|                       | Sensoy 2012 [24]         | OWL-POLAR          | OWL+Pellet       |
|                       | Villata 2012 [25]        | CC                 | Theory           |
| Consistency checking  | Rotolo 2013 [26]         | CC,ODC,GNU,        | Theory           |
|                       | Costantino 2018 [14]     | CNL4DSA            | Maude            |
|                       | Pellegrini 2018 [27]     | ODRL               | ASP              |
|                       | Inclezan 2023 [28]       | AOPL               | ASP              |
|                       | Pandit 2018 [29]         | GDPRov, GDPRtEXT   | SPARQL           |
|                       | Okoyomon 2019 [30]       | Consent screens    | Regex            |
| Requirements checking | Hamdani 2021 [31]        | Privacy policies   | NLP              |
|                       | Akaichi 2023 [10]        | ODRL               | OWL+SHACL        |
|                       | Adhikari 2025 [32]       | Survey paper       | -                |
|                       | Baarslag 2017 [33]       | -                  | Protocol         |
| Negotiation           | Kiruthika 2020 [12]      | Survey paper       | -                |
| Negotiation           | Yumasak 2024 [34]        | ODRL               | IDSA             |
|                       | IDSA 2025 [35]           | ODRL               | Protocol         |

- Not many examples of fully automated agents that can negotiate policies
- IDSA has semi-automated for contract negotiation
- Machines could be involved in providing feedback on the consistency of negotiated policies, explaining the consequences of the negotiated policies, and running some sample scenarios

- 1. Challenges
- 2. Policies as Computer Programs
- 3. Related Work
- 4. Conclusions & Future Work

#### **Conclusions & Future Work**

- A four course meal is required to create a fully automated techno-legal system that does not rely on a "all or nothing" trust.
- What is blocking us is the definition of a formal policy logic.
  - This should not be left to implementers of policy languages.
- High hopes are/were that standard Semantic Web languages would provide the required deontic, defeasible, and other features of such a formal logic.
- There is a renewed interest in symbolic logic that does provide a richer set of logic features.
- Is it possible to have marriage between Semantic Web and a richer set of logic features?
  - o In our group, we believe that Notation3 and RDF Surfaces, both based on first-order logic with powerful negation and a rich set of built-ins, could inspire such a recipe.











Patrick Hochstenbach, Beatriz Esteves, Ruben Verborgh

