Zig-Zag Sampler

A MCMC Game-Changer

Hirofumi Shiba D

Institute of Statistical Mathematics

the University of Tokyo

9/10/2024

Today's Menu

- I The Zig-Zag Sampler: What Is It?
- 2 The Algorithm: How to Use It?
- 3 Proof of Concept: How Good Is It?

I The Zig-Zag Sampler: What Is It?

A continuous-time variant of MCMC algorithms

Trajectory for Zig-Zag Sampler. Please attribute Hirofumi Shiba. © 🕦

I.I Keywords: PDMP (1/2)

PDMP (Piecewise Deterministic | Markov Process²) (Davis, 1984)

- I. Mostly deterministic with the exception of random jumps happens at random times
- 2. Continuous-time, instead of discrete-time processes
- → Plays a complementary role to SDEs / Diffusions

Property	PDMP	SDE
Exactly simulatable?	✓	×
Subject to discretization errors?	×	✓
Driving noise Hirofumi Shiba	Poisson	Gauss

i History of PDMP Applications

- 1. First applications: control theory, operations research, etc. (Davis, 1993)
- 2. Second applications: Monte Carlo simulation in material sciences (Peters and de With, 2012)
- 3. Third applications: Bayesian statistics (Bouchard-Côté et al., 2018)
- I. Mostly deterministic with the exception of random jumps happens at random times
- 2. Continuous-time, instead of discrete-time processes

I.2 Keywords: PDMP (2/2)

- We will concentrate on Zig-Zag sampler (Bierkens, Fearnhead, et al., 2019)
- Other PDMPs: Bouncy sampler (Bouchard-Côté et al., 2018),
 Boomerang sampler (Bierkens et al., 2020)

The most famous three PDMPs. Animated by (Grazzi, 2020)

1.3 Menu

What We've Learned

The new algorithm 'Zig-Zag Sampler' is based on comtinuous-time process called PDMP.

What We'll Learn in the Rest of this Section

We will review 3 instances of the standard (discrete-time) MCMC algorithm: MH, Lifted MH, and MALA.

- I. Review: MH (Metropolis-Hastings) algorithm
- 2. Review: Lifted MH, A method bridging MH and Zig-Zag
- 3. Comparison: MH vs. Lifted MH vs. Zig-Zag
- 4. Review: MALA (Metropolis Adjusted Langevin Algorithm)
- 5. Comparison: Zig-Zag vs. MALA

1.4 Review: Metropolis-Hastings (1/2)

(Metropolis et al., 1953)-(Hastings, 1970)

Input: Target distribution p, (symmetric) proposal distribution q

- I. Draw a $X_t \sim q(-|X_{t-1})$
- 2. Compute

$$lpha(X_{t-1},X_t)=rac{p(X_t)}{p(X_{t-1})}$$

- 3. Draw a uniform random number $U \sim \mathrm{U}([0,1])$.
- 4. If $\alpha(X_{t-1}, X_t) \leq U$, then $X_t \leftarrow X_{t-1}$. Do nothing otherwise.
- 5. Return to Step 1.

MH algorithm works even without p's normalizing constant. Hence, its ubiquity.

1.5 Review: Metropolis-Hastings (2/2)

Alternative View: MH is a generic procedure to turn a simple q-Markov chain into a Markov chain converging to p.

The Choise of Proposal q

• Random Walk Metropolis (Metropolis et al., 1953): Uniform / Gaussian

$$q(y|x) = q(y-x) \in \left\{ rac{d\mathrm{U}([0,1])}{d\lambda}(y-x), rac{d\mathrm{N}(0,\Sigma)}{d\lambda}(y-x)
ight\}$$

• Hybrid / Hamiltonian Monte Carlo (Duane et al., 1987): Hamiltonian dynamics

$$q(y|x) = \delta_{x+\epsilon\rho}, \qquad \epsilon > 0, \;
ho: ext{momentum defined via Hamiltonian}$$

• Metropolis-adjusted Langevin algorithm (MALA) (Besag, 1994): Langevin diffusion

$$q(-|X_t) := \text{ the transition probability of } X_t \text{ where } dX_t = \nabla \log p(X_t) \, dt + \sqrt{2\beta^{-1}} dB_t.$$

1.6 Problem: Reversibility

Reversibility (a.k.a detailed balance):

$$p(x)q(x|y) = p(y)q(y|x).$$

In words:

Probability[Going $x \to y$] = Probability[Going $y \to x$].

- → Harder to explore the entire space
- → Slow mixing of MH

From the beginning of 21th century, many efforts have been made to make MH irreversible (Sp)

1.7 Lifting (1/3)

Lifting: A method to make MH's dynamics irreversible

How?: By adding an auxiliary variable $\sigma \in \{\pm 1\}$, called momentum

Lifted MH (Turitsyn et al., 2011)

Input: Target p, two proposals $q^{(+1)},q^{(-1)}$, and momentum $\sigma\in\{\pm 1\}$

- I. Draw X_t from $q^{(\sigma)}$
- 2. Do a MH step
- 3. If accepted, go back to Step 1.
- 4. If rejected, flip the momentum and go back to Step 1.

1.8 Lifting (2/3)

"Lifting"
$$\mathbb{R} \times \{+1\}$$
 $\mathbb{R} \times \{-1\}$

- $q^{(+1)}$: Only propose o moves
- $q^{(-1)}$: Only propose \leftarrow moves
- → Once going uphill, it continues to go uphill.
- → This is irreversible, since

$$ext{Probability}[x o y]
otag ext{Probability}[y o x].$$

1.9 Lifting (3/3)

Reversible dynamic of MH has 'irreversified'

Caution Scale is different in the vertical axis!

Lifted MH successfully explores the edges of the target distribution.

Lifted MH MH

*Irreversibility actually improves the efficiency of MCMC, as we observe in two slides later.

1.10 Comparison: MH vs. LMH vs. Zig-Zag (1/2)

Zig-Zag corresponds to the limiting case of lifted MH as the step size of proposal q goes to zero, as we'll learn later.

→ Zig-Zag has a maximum irreversibility.

I.II Comparison: MH vs. LMH vs. Zig-Zag (2/2)

Irreversibility actually improves the efficiency of MCMC.

Faster decay of autocorrelation $ho_t pprox \mathrm{Corr}[X_0, X_t]$ implies

- I. faster mixing of MCMC
- 2. lower variance of Monte Carlo estimates

Hirofumi Shiba

MH

Lifted MH

Zig-Zag

1.12 Review: MALA

Langevin diffusion: A diffusion process defined by the following SDE:

$$dX_t =
abla \log p(X_t) \, dt + \sqrt{2eta^{-1}} dB_t.$$

Langevin diffusion itself converges to the target distribution p in the sense that |

$$\|p_t-p\|_{L^1} o 0, \qquad t o \infty.$$

Two MCMC algorithms derived from Langevin diffusion:

<u>ULA (Unadjusted Langevin Algorithm)</u>

Use the discretization of (X_t) . Discretization errors accumulate.

MALA (Metropolis Adjusted Langevin Algorithm)

Use ULA as a proposal in MH, erasing the errors by MH steps.

I. under fairly general conditions on p.

I.13 Comparison: Zig-Zag vs. MALA (1/3)

How fast do they go back to high-probability regions? I

Irreversibility of Zig-Zag accelerates its convergence.

I. The target here is the standard Cauchy distribution $\mathrm{C}(0,1)$, equivalent to $\mathrm{t}(1)$ distribution. Its heavy tails hinder the convergence of MCMC.

1.14 Comparison: Zig-Zag vs. MALA (2/3)

Caution: Fake Continuity

The left plot looks continuous, but it actually is not.

MALA trajectory

MH, including MALA, is actually a discrete-time process.

The plot is obtained by connecting the points by line segments.

1.15 Comparison: Zig-Zag vs. MALA (3/3)

Monte Carlo estimation is also done differently:

MALA outputs $(X_n)_{n\in[N]}$ defines

$$rac{1}{N}\sum_{n=1}^N f(X_n) \stackrel{N o \infty}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \int_{\mathbb{R}^d} f(x) p(x) \, dx.$$

$\operatorname{\underline{Zig-Zag}}$ outputs $(X_t)_{t\in[0,T]}$ defines

1.16 Recap of Section |

- Zig-Zag Sampler's trajectory is a <u>PDMP</u>.
- PDMP, by design, has maximum irreversibility.
- Irreversibility leads to faster convergence of Zig-Zag in comparisons against MH, Lifted MH, and especially MALA.

Hirofumi Shiba

MH

Lifted MH

Zig-Zag

2 The Algorithm: How to Use It?

Fast and exact simulation of continuous trajectory.

2.1 Review: MH vs. LMH vs. Zig-Zag (1/2)

As we've learned before, Zig-Zag corresponds to the limiting case of lifted MH as the step size of proposal q goes to zero.

2.2 Review: MH vs. LMH vs. Zig-Zag (2/2)

'Limiting case of lifted MH' means that we only simulate <u>where</u> we should flip the momentum $\sigma \in \{\pm 1\}$ in Lifted MH.

2.3 Algorithm (1/2)

'Limiting case of lifted MH' means that we only simulate <u>where</u> we should flip the momentum $\sigma \in \{\pm 1\}$ in Lifted MH.

(Id I Zig Zag sampler Bierkens, Fearnhead, et al., 2019)

Input: Gradient $\nabla \log p$ of log target density p

For
$$n \in \{1, 2, \cdots, N\}$$
:

- I. Simulate an first arrival time T_n of a Poisson point process (described in the next slide)
- 2. Linearly interpolate until time T_n :

$$X_t = X_{T_{n-1}} + \sigma(t-T_{n-1}), \qquad t \in [T_{n-1}, T_n].$$

- 3. Go back to Step I with the momentum $\sigma \in \{\pm 1\}$ flipped
- I. Multidimensional extension is straightforward, but we won't cover it today.

2.4 Algorithm (2/2)

(Fundamental Property of Zig-Zag Sampler (1d) Bierkens, Fearnhead, et al., 2019)

Let $U(x) := -\log p(x)$. Simluating a Poisson point process with a rate function

$$\lambda(x,\sigma) := igg(\sigma U'(x)igg)_+ + \gamma(x)igg)$$

ensures the Zig-Zag sampler converges to the target p, where γ is an arbitrary nonnegative function.

Its ergodicity is ensured as long as there exists c, C>0 such that $\left| \right|$

$$p(x) \leq C|x|^{-c}$$
.

I. With some regularity conditions on U. (See Bierkens, Roberts, et al., 2019).

2.5 Core of the Algorithm

Given a rate function

$$\lambda(x,\sigma) := igg(\sigma U'(x)igg)_+ + \gamma(x)$$

how to simulate a corresponding Poisson point process?

What We'll Learn in the Rest of this Section 2

- I. What is Poisson Point Process?
- 2. How to Simulate It?
- 3. Core Technique: Poisson Thinning

Take Away: Zig-Zag sampling reduces to Poisson Thinning.

2.6 Simulating Poisson Point Process (1/2)

What is a Poisson Point Process with rate λ ?

The number of points in [0,t] follows a Poisson distribution with mean $\int_0^t \lambda(x_s,\sigma_s)\,ds$:

$$N([0,t]) \sim \mathrm{Pois}\left(M(t)
ight), \qquad M(t) := \int_0^t \lambda(x_s,\sigma_s)\,ds.$$

We want to know when the first point T_1 falls on $[0, \infty)$.

When $\lambda(x,\sigma)\equiv c$ (constant),

- blue line: Poisson Process
- red dots: Poisson Point Process

satisfying
$$N_t = N([0,t]) \sim \operatorname{Pois}(ct).$$

2.7 Simulating Poisson Point Process (2/2)

Proposition (Simulation of Poisson Point Process)

The first arrival time T_1 of a Poisson Point Process with rate λ can be simulated by

$$T_1 \stackrel{\mathrm{d}}{=} M^{-1}(E), \qquad E \sim \mathrm{Exp}(1), M(t) := \int_0^t \lambda(x_s, \sigma_s) \, ds,$$

where Exp(1) denotes the exponential distribution with parameter 1.

Since
$$\lambda(x,\sigma):=\Bigl(\sigma U'(x)\Bigr)_++\gamma(x)$$
, M can be quite complicated.

- \rightarrow Inverting M can be impossible.
- → We need more general techniques: Poisson Thinning.

2.8 Poisson Thinning (1/2)

(Lewis and Shedler, 1979)

To obtain the first arrival time T_1 of a Poisson Point Process with rate λ ,

I. Find a bound M that satisfies

$$m(t) := \int_0^t \lambda(x_s, \sigma_s) \, ds \leq M(t).$$

- 2. Simulate a point T from the Poisson Point Process with intensity M.
- 3. Accept T with probability $\frac{m(T)}{M(T)}$.
- ullet m(t): Defined via $\lambda(x,\sigma):=igg(\sigma U'(x)igg)_++\gamma(x).$
- M(t): Simple upper bound $m \leq M$, such that M^{-1} is analytically tractable.

2.9 Poisson Thinning (2/2)

In order to simulate a Poisson Point Process with rate

$$\lambda(x,\sigma):=igg(\sigma U'(x)igg)_++\gamma(x),$$

we find a invertible upper bound M that satisfies

$$\int_0^t \lambda(x_s,\sigma_s)\,ds = m(t) \leq extbf{ extit{M}}(t).$$

for all possible Zig-Zag trajectories $\{(x_s,\sigma_s)\}_{s\in[0,T]}$.

2.10 Recap of Section 2

- I. Continuous-time MCMC, based on <u>PDMP</u>, has an entirely different algorithm and strategy.
- 2. To simulate PDMP is to simulate Poisson Point Process.
- 3. The core technology to simulate Poisson Point Process is Poisson Thinning.
- 4. Poisson Thinning is about finding an upper bound M, with tractable inverse M^{-1} ; Typically a polynomial function.
- 5. The upper bound M has to be given on a case-by-case basis.

3 Proof of Concept: How Good Is It?

Quick demonstration of the state-of-the-art performance on a toy example.

3.1 Review: The 3 Steps of Zig-Zag Sampling

Given a target p,

- I. Calculate the negative log-likelihood $U(x) := -\log p(x)$
- 2. Fix a refresh rate $\gamma(x)$ and compute the rate function

$$\lambda(x,\sigma):=igg(\sigma U'(x)igg)_++\gamma(x).$$

3. Find an invertible upper bound M that satisfies

$$\int_0^t \lambda(x_s,\sigma_s)\,ds =: m(t) \leq extbf{ extit{M}}(t).$$

3.2 Model: Id Gaussian Mean Reconstruction

Setting

ullet Data: $y_1,\cdots,y_n\in\mathbb{R}$ aquired by

$$y_i \overset{ ext{iid}}{\sim} \mathrm{N}(x_0, \sigma^2), \qquad i \in [n],$$

with $\sigma>0$ known, $x_0\in\mathbb{R}$ unknown.

- Prior: $N(0, \rho^2)$ with known $\rho > 0$.
- Goal: Sampling from the posterior

$$p(x) \, \propto \, \left(\prod_{i=1}^n \phi(x|y_i,\sigma^2)
ight) \phi(x|0,
ho^2),$$

where $\phi(x|y,\sigma^2)$ is the $\mathrm{N}(y,\sigma^2)$ density.

The negative log-likelihood:

$$egin{split} U(x) &= -\log p(x) \ &= rac{x^2}{2
ho^2} + rac{1}{2\sigma^2} \sum_{i=1}^n (x-y_i)^2 \end{split}$$

$$U'(x)=rac{x}{
ho^2}+rac{1}{\sigma^2}\sum_{i=1}^n(x-y_i),$$

$$U''(x)=rac{1}{
ho^2}+rac{n}{\sigma^2}.$$

3.3 Menu

In the rest of this Section 3, we'll learn:

- I. Even a simple Zig-Zag Sampler with $\gamma \equiv 0$ surpasses MALA.
- 2. Incorporating sub-sampling, Zig-Zag with Control Variates further improves the efficiency.

3.4 Simple Zig-Zag Sampler with $\gamma \equiv 0$ (1/2)

Fixing $\gamma \equiv 0$, we obtain the upper bound M

$$egin{align} m(t) &= \int_0^t \lambda(x_s,\sigma_s)\,ds = \int_0^t igg(\sigma U'(x_s)igg)_+ \,ds \ &\leq igg(rac{\sigma x}{
ho^2} + rac{\sigma}{\sigma^2} \sum_{i=1}^n (x-y_i) + t \left(rac{1}{
ho^2} + rac{n}{\sigma^2}
ight)igg)_+ \ &=: (a+bt)_+ = M(t), \end{aligned}$$

where

$$a=rac{\sigma x}{
ho^2}+rac{\sigma}{\sigma^2}\sum_{i=1}^n(x-y_i),\quad b=rac{1}{
ho^2}+rac{n}{\sigma^2}.$$

3.5 Result: Id Gaussian Mean Reconstruction

We generated 100 samples from $N(x_0, \sigma^2)$ with $x_0 = 1$.

3.6 MSE per Epoch: The Vertical Axis

MSE (Mean Squared Error) of $\{X_i\}_{i=1}^n$ is defined as

$$rac{1}{n} \sum_{i=1}^n (X_i - x_0)^2.$$

Epoch: Unit computational cost.

The following is considered as one epoch:

• One evaluation of a likelihood ratio

$$rac{p(X_{n+1})}{p(X_n)}.$$

• One evaluation of a Poisson Point Process.

(5)

3.7 Good News!

Case-by-case construction of an upper bound M is too complicated / demanding.

Therefore, we are trying to automate the whole procedure.

Automatic Zig-Zag

- I. Automatic Zig-Zag (Corbella et al., 2022)
- 2. Concave-Convex PDMP (Sutton and Fearnhead, 2023)
- 3. NuZZ (numerical Zig-Zag) (Pagani et al., 2024)

References

Slides and codes are available here

- Besag, J. E. (1994). Comments on "Representations of Knowledge in Complex Systems" by U. Grenander and M. I. Miller. Journal of the Royal Statistical Society. Series B (Methodological), 56(4), 591–592.
- Bierkens, J., Fearnhead, P., and Roberts, G. (2019).

 The Zig-Zag Process and Super-Efficient
 Sampling for Bayesian Analysis of Big Data. The
 Annals of Statistics, 47(3), 1288–1320.
- Bierkens, J., Grazzi, S., Kamatani, K., and Roberts, G. O. (2020). The boomerang sampler.

 Proceedings of the 37th International Conference on Machine Learning, 119, 908–918.
- Bierkens, J., Roberts, G. O., and Zitt, P.-A. (2019). Ergodicity of the zigzag process. The Annals of Applied Probability, 29(4), 2266–2301.
- Bouchard-Côté, A., Vollmer, S. J., and Doucet, A. Hirofumi Shiba

- (2018). The bouncy particle sampler: A nonreversible rejection-free markov chain monte carlo method. Journal of the American Statistical Association, 113(522), 855–867.
- Corbella, A., Spencer, S. E. F., and Roberts, G. O. (2022). Automatic zig-zag sampling in practice. Statistics and Computing, 32(6), 107.
- Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo Fusion. Journal of Applied Probability, 56(1), 174–191.
- Davis, M. H. A. (1984). Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B (Methodological), 46(3), 353–388.
- Davis, M. H. A. (1993). Markov models and optimization, Vol. 49. Chapman & Hall.
- Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo. *Physics*Hirofulletters B, 195(2), 216–222.

- Fearnhead, P., Grazzi, S., Nemeth, C., and Roberts, G. O. (2024). Stochastic gradient piecewise deterministic monte carlo samplers.
- Grazzi, S. (2020). Piecewise deterministic monte carlo.
- Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1), 97–109.
- Lewis, P. A. W., and Shedler, G. S. (1979).

 Simulation of nonhomogeneous poisson processes by thinning. Naval Research Logistics Quarterly, 26(3), 403–413.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
- Pagani, F., Chevallier, A., Power, S., House, T., and Cotter, S. (2024). NuZZ: Numerical zig-zag for Hirofugieshieral models. Statistics and Computing, 34(1)

61.

- Peters, E. A. J. F., and de With, G. (2012).

 Rejection-free monte carlo sampling for general potentials. *Physical Review E*, 85(2).
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes and big data: The consensus monte carlo algorithm. International Journal of Management Science and Engineering Management, 11, 78–88.
- Srivastava, S., Cevher, V., Dinh, Q., and Dunson, D. (2015). WASP: Scalable Bayes via barycenters of subset posteriors. In G. Lebanon and S. V. N. Vishwanathan, editors, *Proceedings of the eighteenth international conference on artificial intelligence and statistics*, Vol. 38, pages 912–920. San Diego, California, USA: PMLR.
- Sutton, M., and Fearnhead, P. (2023). Concaveconvex PDMP-based sampling. Journal of HirofuComputational and Graphical Statistics, 32(4),

1425-1435.

Turitsyn, K. S., Chertkov, M., and Vucelja, M. (2011). Irreversible Monte Carlo algorithms for Efficient Sampling. *Physica D-Nonlinear Phenomena*, 240(5-Apr), 410–414.

Welling, M., and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th international conference on international conference on machine learning, pages 681–688. Madison, WI, USA:

Omnipress.

Appendix: Scalability by Subsampling

Construction of ZZ-CV (Zig-Zag with Control Variates).

3.8 Review: Id Gaussian Mean Reconstruction

U' has an alternative form:

$$U'(x) = rac{x}{
ho^2} + rac{1}{\sigma^2} \sum_{i=1}^n (x-y_i) =: rac{1}{n} \sum_{i=1}^n U_i'(x),$$

where

$$U_i'(x) = rac{x}{
ho^2} + rac{n}{\sigma^2}(x-y_i).$$

 \rightarrow We only need one sample y_i to evaluate U'_i .

3.9 Randomized Rate Function

Instead of

$$\lambda_{ extsf{ZZ}}(x,\sigma) = igg(\sigma U'(x)igg)_+$$

we use

$$\lambda_{ exttt{ZZ-CV}}(x,\sigma) = igg(\sigma U_I'(x)igg)_+, \qquad I \sim \mathrm{U}([n]).$$

Then, the latter is an unbiased estimator of the former:

$$\mathrm{E}_{I\sim \mathrm{U}([n])}igg[\lambda_{\operatorname{ZZ-CV}}(x,\sigma)igg] = \lambda_{\operatorname{ZZ}}(x,\sigma).$$

3.10 Last Step: Poisson Thinning

Find an invertible upper bound M that satisfies

$$\int_0^t \lambda_{ exttt{ZZ-CV}}(x_s,\sigma_s)\,ds =: m_I(t) \leq exttt{ extit{M}}(t), \qquad I \sim \mathrm{U}([n]).$$

It is harder to bound $\lambda_{\rm ZZ-CV}$, since it is now an estimator (random function).

3.11 Upper Bound M with Control Variates

Preprocessing (once and for all)

I. Find

$$x_* := rgmin_{x \in \mathbb{R}} U(x)$$

2. Compute

$$U'(x_*) = rac{x_*}{
ho^2} + rac{1}{\sigma^2} \sum_{i=1}^n (x_* - y_i).$$

Then, with a reparameterization of m_i ,

$$m_i(t) \leq M(t) := a + bt,$$

where

$$a = (\sigma U'(x_*))_+ + \|U'\|_{\mathrm{Lip}} \|x - x_*\|_p, \qquad b := \|U'\|_{\mathrm{Lip}}.$$

And m_i is redefined as

$$m_i(t) = U'(x_*) + U_i'(x) - U_i'(x_*).$$

3.12 Subsampling with Control Variates

Zig-Zag sampler with the random rate function

$$\lambda_{ extsf{ZZ-CV}}(x,\sigma) = igg(\sigma U_I'(x)igg)_+, \qquad I \sim \mathrm{U}([n]).$$

and the upper bound

$$M(t) = a + bt$$

is called Zig-Zag with Control Variates (Bierkens, Fearnhead, et al., 2019).

3.13 Zig-Zag with Control Variates

- I. has O(1) efficiency as the sample size n grows.
- 2. is exact (no bias).

I. As long as the preprocessing step is properly done.

3.14 Scalability (1/3)

There are currently two main approaches to scaling up MCMC for large data.

I. <u>Devide-and-conquer</u>

Devide the data into smaller **chunks** and run MCMC on each **chunk**.

2. Subsampling

Use a subsampling estimate of the likelihood, which does not require the entire data.

3.15 Scalability (2/3) by Devide-and-conquer

Devide the data into smaller chunks and run MCMC on each chunk.

Unbiased?	Method	Reference
×	WASP	(Srivastava et al., 2015)
×	Consensus Monte Carlo	(Scott et al., 2016)
✓	Monte Carlo Fusion	(Dai et al., 2019)

3.16 Scalability (3/3) by Subsampling

Use a subsampling estimate of the likelihood, which does not require the entire data.

Unbiased?	Method	Reference
X	Stochastic Gadient MCMC	(Welling and Teh, 2011)
✓	Zig-Zag with Subsampling	(Bierkens, Fearnhead, et al., 2019)
×	Stochastic Gradient PDMP	(Fearnhead et al., 2024)

0 reactions

0 comments

