## Natural images statistics

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neurocomputationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

#### What is vision?

"Vision is the process of discovering from images what is present in the world, and where it is"

David Marr, 1982

#### What is vision?

"Vision is the process of discovering from images what is present in the world, and where it is"

David Marr, 1982

... in order to solve tasks efficiently.

Daniela Pamplona, 2017

# What are the requirements of a working visual system?

#### **Constrains:**

- To run real time
- To be robust to noise
- To adapt to lightness, contrast, etc
- To be energetically cheap
- To use limited memory
- To cope with imperfect imaging process

#### **Functions:**

- To select and extract relevant information from the environment to solve tasks
- To represent the environment for navigation, reasoning, memory,
- To learn new objects
- To predict location, motion, shape

# What are the requirements of a working visual system?

#### **Constrains:**

- To run real time
- To be robust to noise
- To adapt to lightness, contrast, etc
- To be energetically cheap
- To use limited ,emory
- To cope with imperfect imaging process

#### Functions:

- To select and extract relevant information from the environment to solve tasks
- To represent the environment for navigation, reasoning, memory,
- To learn new objects
- To predict location, motion, shape

#### What is in here?



#### What is in here?





#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

### General Communication System



#### **Definitions**

<u>Information Source</u>: Produces messages

Transmitter: Transform/encode the

message into a signal

<u>Channel:</u>Medium to carry the message

Receiver: Transforms/decode the signal

into a message

<u>Destination:</u> Entity that the message is

intended

### General Communication System



Example: WhatsApp

**Information Source: Alice** 

<u>Transmitter</u>: Mobile phone

**Channel:**WiFi

Noise: SNR:30dB

Receiver: Mobile phone

**Destination:** Bob

### General Communication System



Example: Visual System

Information Source: Environment

<u>Transmitter</u>: Eye

<u>Channel:</u> Early visual system

Noise: Unknown

Receiver: Higher areas (MT,TE,MIP,...)

<u>Destination</u>: Other brain areas (PMC,..)

(ultimatly the environment)

Information content of an event, h(E), with probability  $P\{E\}$  must:

1.be a decreasing function of  $P\{E\}$ : more an event is likely, the less information its occurrence brings to us.

Information content of an event, h(E), with probability  $P\{E\}$  must:

- 1.be a decreasing function of  $P\{E\}$ : more an event is likely, the less information its occurrence brings to us.
- 2.if  $P\{E\} = 1$  then h(E) = 0, if we are certain that E will occur, we get no information from its outcome.

Information content of an event, h(E), with probability  $P\{E\}$  must:

- 1.be a decreasing function of  $P\{E\}$ : more an event is likely, the less information its occurrence brings to us.
- 2.if  $P\{E\} = 1$  then h(E) = 0, if we are certain that E will occur, we get no information from its outcome.
- **3.**if E and F are independent, h(E) and F = h(E) + h(F)

Information content of an event, h(E), with probability  $P\{E\}$  must:

- 1.be a decreasing function of  $P{E}$ : more an event is likely, the less information its occurrence brings to us.
- 2.if  $P{E} = 1$  then h(E) = 0, if we are certain that E will occur, we get no information from its outcome.
- **3.**if E and F are independent, h(E) and F = h(E) + h(F)

$$h(E) = \log \frac{1}{P\{E\}} = -\log P\{E\}$$

#### Entropy

- •Entropy: measure of randomness of a random variable (r. v.)
- •Entropy is the expected value of self information

#### **Entropy**

- •Entropy: measure of randomness of a random variable (r. v.)
- •Entropy is the expected value of self information

X: discrete r.v. taking values in  $\{x_1, x_2, ..., x_n\}$  with  $p_i = P\{X = x_i\}$ 

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$

#### Maximum entropy of a discrete r.v.

- X: Bernoulli r. v.,  $H_{max}(X) = 1$  with p = 0.5
- X: discrete r.v. taking values in  $\{x_1, x_2, ..., x_n\}$ with  $p_i = 1/n$  $H_{max}(X) = Log(N)$

## Redundancy of a r.v.

- X: Bernoulli r. v.,  $H_{max}(X) = 1$  with p = 0.5
- X: discrete r.v. taking values in  $\{x_1, x_2, ..., x_n\}$ with  $p_i = 1/n$  $H_{max}(X) = Log(N)$
- Redundancy, or relative entropy, compares the entropy of a random variable with the maximal entropy  $r = 1 H(X)/H_{max}(X)$

## Redundancy of a r.v.

- X: Bernoulli r. v.,  $H_{max}(X) = 1$  with p = 0.5
- X: discrete r.v. taking values in  $\{x_1, x_2, ..., x_n\}$ with  $p_i = 1/n$  $H_{max}(X) = Log(N)$
- Redundancy, or relative entropy, compares the entropy of a random variable with the maximal entropy  $r = 1 H(X)/H_{max}(X)$

#### REDUCE THE REDUNDANCY <=> INCREASE THE ENTROPY

#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

# What is the function of the early visual system?

They [The sensory relays] recode sensory messages, extracting signals of high relative entropy from the highly redundant sensory input.

**Barlow 1961** 



What is present in this world and where is it?



What is present in this world and where is it?

Black square, 8, (4,4)
Black square, 6, (18,14)



What is present in this world and where is it?



What is present in this world and where is it?

Black pixel (0,0)

Black pixel (0,1)

Black pixel (0,2)

Black pixel (0,3)

Gray pixel (0,4)

Light gray pixel (0,4)



What is present in this world and where is it?



What is present in this world and where is it?

Branches and leaves on top Mountain on left to center Reflects on left to center bottom

Dog and person on bottom Dense trees on right



























## What is the message? What are natural images?



Non Natural

**Natural** 

# What is the message? What are natural images?



Non Natural

**Natural** 

Answer: No, because we do not know the probability distribution of natural images (we do know the distribution of white noise images, e.g. N(0,1))

Answer: No, because we do not know the probability distribution of natural images (we do know the distribution of white noise images, e.g. N(0,1))

Question: Can we, at least, approximate it?

Answer: No, because we do not know the probability distribution of natural images (we do know the distribution of white noise images, e.g. N(0,1))

Question: Can we, at least, approximate it?

Answer: Yes!

Answer: No, because we do not know the probability distribution of natural images (we do know the distribution of white noise images, e.g. N(0,1))

Question: Can we, at least, approximate it?

Answer: Yes!

Question: How?

Answer: No, because we do not know the probability distribution of natural images (we do know the distribution of white noise images, e.g. N(0,1))

Question: Can we, at least, approximate it?

Answer: Yes!

**Question:** How?

Answer: Looking at the statistics of the natural images

## Natural images are redundant

100% deleted



40% deleted



1% deleted



Daniela Pamplona - Natural images statistics

Natural images are redundant



Natural images are redundant



Daniela Pamplona - Natural images statistics

100% deleted



16 gray levels





100% deleted



16 gray levels











1% deleted

40% d

100% de

16 gray levels

#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

#### General idea (method of the moments):

- $\mu^n$  moment of order n:  $\mu^n[X] = E[(X-\mu)^n]$
- X r. v. with n first moments well defined
- $X_1, X_2, ..., X_k$  sequence of r. v.

If 
$$\lim_{k \to \infty} \mu^n[X^k] = \mu^n[X]$$
 then  $X^k \stackrel{d}{\to} X$ 

#### Moments

```
    μ¹[X] = E[X-μ]=0
    μ²[X] = E[(X-μ)²] (auto correlation)
    μ³[X] = E[(X-μ)³] (skewness)
    μ⁴[X] = E[(X-μ)⁴] (kurtosis)
```

#### Fourier Transform

• The Fourier transform decomposes a function of time (a signal) into the frequencies that make it up.

1D

$$F(x) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi(x\frac{n}{N})}$$

$$f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x) e^{j2\pi(x\frac{n}{N})}$$

$$\mathsf{PS}(\mathsf{x}) = |\mathsf{F}(\mathsf{x})|^2$$

#### 1D Fourier Transform

time domain



#### 1D Fourier Transform

time domain





#### Fourier Transform

• The Fourier transform decomposes a function of time (a signal) into the frequencies that make it up.

$$F(x) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi(x\frac{n}{N})}$$

$$f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x) e^{j2\pi (x\frac{n}{N})}$$

$$\mathsf{PS}(\mathsf{x}) = |\mathsf{F}(\mathsf{x})|^2$$

$$F(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\pi(x\frac{m}{M} + y\frac{n}{N})}$$

$$f(m,n) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(x,y) e^{\int 2\pi (x \frac{m}{M} + y \frac{n}{N})}$$

$$PS(x,y) = |F(x,y)|^2$$

#### 2 D Fourier Transform of waves



#### Fourier Transform

• The Fourier transform decomposes a function of time (a signal) into the frequencies that make it up.

$$f(x) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi(x\frac{n}{N})}$$

$$F(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)e^{-j2\pi(x\frac{m}{M}+y\frac{n}{N})}$$

$$f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x)e^{j2\pi(x\frac{n}{N})}$$

$$f(m,n) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(x,y)e^{j2\pi(x\frac{m}{M}+y\frac{n}{N})}$$

$$PS(x) = |F(x)|^2$$

$$PS(x,y) = |F(x,y)|^2$$

Wiener-Khinchin theorem:If  $X = \{x_1, ..., x_n\}$  is a stationary process and  $\mu^2[X]$  exists and is finite, then:

$$E[PS(X)) = F(\mu^2[X])$$

#### **Contents**

- 1. What is vision?
- 2. Information theory a la Shannon
- 3. The redundancy reduction hypothesis
- 4. Statistics and the Fourier Transform
- 5. Natural images statistics

#### Sample









## Auto correlation of natural images



## Auto correlation of natural images



#### Sobel Filters: Introduction

- It performs a 2-D spatial gradient measurement on images in order to emphasizes edges.
- Pairs of convolution kernels ( $K_x$  and  $K_y$ ) designed to respond maximally to edges running vertically and horizontally relative to the pixel grid

$$G_x = I * K_x$$





$$G_y = I * K_y$$



#### Sobel Filters: Introduction

Magnitude of the gradient:

$$|G| = \sqrt{(G_x^2 + G_y^2)}$$





Angle of the gradient:

$$\theta = \arctan(G_y/G_x)$$





## Analysis of edges orientations

A. Original photograph



B. Sobel direction filter



C. Sobel magnitude filter



D. Analysis of upright scene



### Analysis of edges orientations



The distribution of oriented contoursin the real world, Coppola et al

### Summary

1. What is vision?

2. The redundancy reduction hypothesis

Transmitter Receiver Destination

Noise Source



Information

Message



Message

3. Natural images statistics

## Bibliography

- Marr, David, Vision: A computational investigation into the human representation and processing of visual information, 1982
- Shannon, A mathematical theory of communication, 1948
- Marc URO, Basic Concepts in information theory, http://www-public.tem-tsp.eu/~uro/cours-pdf/poly.pdf
- Barlow HB Possible principles underlying the transformation of sensory messages, 1961
- Attneave, Some informational aspects of visual perception, 1954

## Bibliography (cont)

- Hyvarinen et al, Natural Image Statistics, 2009
- Kersten Predictability and redundancy of natural images, 1987
- Attneave, Some informational aspects of visual perception, 1954
- Attick, Could information theory provide an ecological theory of sensory processing?, 1992
- Ruderman, The statistics of natural images, 1994
- Coppola et all, The distribution of oriented contoursin the real world, 2001

#### Extra Slides