Arithmetic

I. What we have seen so far

The notion of proof: constructivity, witness property, termination of proof reduction

The notion of theory: axioms spoil the last rule property, replace them by a congruence

The notion of model: many valued, constructive proofs, deduction modulo a congruence, super-consistency

Super-consistency

A theory is consistent if it has a model valued in some non-trivial algebra

A theory is super-consistent if it has a model valued in all (full, ordered, and complete) pre-Heyting algebras

Example: $P \longrightarrow (Q \Rightarrow Q)$

In any $\mathcal B$ a model: $\hat Q=\tilde \top$, $\hat P=(\tilde \top\ \tilde \Rightarrow\ \tilde \top)$

Full, ordered, and complete

Full: the domains $\mathcal A$ of $\widetilde{\forall}$ and $\mathcal E$ of $\widetilde{\exists}$ is $\mathcal P^+(\mathcal B)$

Ordered pre-Heyting algebra: pre-Heyting algebra equipped with an extra order relation \sqsubseteq such that $\tilde{\wedge}$, $\tilde{\vee}$, $\tilde{\forall}$, and $\tilde{\exists}$ are monotone, $\tilde{\Rightarrow}$ is left anti-monotone and right monotone

A ordered pre-Heyting algebra is complete if every subset of ${\mathcal B}$ has a greatest lower bound for \sqsubseteq

Super-consistency implies termination of proof-reduction

Today and in the next lectures

Examples of theories

Arithmetic, set theory, simple type theory

II. Arithmetic

Examples of propositions

$$\forall x \exists y \ (x = 2 \times y \vee x = 2 \times y + 1)$$

$$\exists y \ (4 = 2 \times y)$$

$$\exists x \exists y \ (7 = (x + 2) \times (y + 2))$$

$$\forall x \exists y \ (y \ge x \wedge \textit{prime}(y))$$

 \geq , prime?

2, 4, etc.

not constants

not terms expressing numbers in binary or decimal notation

Terms expressing numbers in unary notation: with a constant 0 and a unary function symbol S

4 is S(S(S(S(0))))

Several axiomatic theories

Classical logic: Peano arithmetic (PA)

Constructive logic: Heyting arithmetic (HA)

Several formulations:

with or without a sort κ for classes

with or without a predicate symbol N for natural numbers

Our goal: $\operatorname{HA}^{\kappa N}$ both κ and N (back to Peano)

Transformed into a purely computational theory

Full witness property

III. HA^κ

$$0, S, \textit{Pred}, +, \times, \textit{Null}, =$$

$$\textit{Pred}(0) = 0$$

$$\forall x \, (\textit{Pred}(S(x)) = x)$$

$$\forall y \, (0 + y = y)$$

$$\forall x \, \forall y \, (S(x) + y = S(x + y))$$

$$\forall y \, (0 \times y = 0)$$

$$\forall x \, \forall y \, (S(x) \times y = (x \times y) + y)$$

$$\textit{Null}(0)$$

$$\forall x \, \neg \textit{Null}(S(x))$$

Induction

No other numbers than those constructed with 0 and S

Every class containing $\boldsymbol{0}$ and closed by \boldsymbol{S} contains everything

Besides ι , a sort κ for classes, a predicate symbol ϵ

$$\forall c (0 \epsilon c \Rightarrow \forall x (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y y \epsilon c)$$

Comprehension axiom scheme: existence of some classes

$$\forall x_1...\forall x_n \exists c \forall y \ (y \in c \Leftrightarrow A)$$

if A does not contain ϵ (predicative arithmetic)

Equality

Classes also used to express the properties of equality

$$\forall x \forall y \ (x = y \Leftrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c))$$

Exercise: prove reflexivity, symmetry, transitivity, and substitutivity

How to use these axioms to prove $\forall y \ (y+0=y)$?

High school proof:

$$0 + 0 = 0$$

$$\forall x (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$

hence
$$\forall y (y+0=y)$$

Using the axioms

$$\forall y (0 + y = y)$$

$$\forall x \forall y (S(x) + y = S(x + y))$$

How do we know

$$0 + 0 = 0 \Rightarrow \forall x (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$
$$\Rightarrow \forall y (y + 0 = y) ?$$

How do we know

$$0 + 0 = 0 \Rightarrow \forall x (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$
$$\Rightarrow \forall y (y + 0 = y) ?$$

$$\forall c (0 \epsilon c \Rightarrow \forall x (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y y \epsilon c)$$

How do we know

$$0+0=0 \Rightarrow \forall x \ (x+0=x\Rightarrow S(x)+0=S(x))$$
 $\Rightarrow \forall y \ (y+0=y)$?

$$\forall c (0 \in c \Rightarrow \forall x (x \in c \Rightarrow S(x) \in c) \Rightarrow \forall y y \in c)$$

$$\exists c \forall y \ (y \in c \Leftrightarrow y + 0 = y)$$

Another exercise

Prove

$$\forall x \forall y \ (S(x) = S(y) \Rightarrow x = y)$$

$$\forall x \neg (0 = S(x))$$

HA: avoiding classes

Instead of a sort κ , a comprehension scheme, an induction axiom: an induction scheme

$$\forall x_1...\forall x_n ((0/y)A \Rightarrow \forall p ((p/y)A \Rightarrow (S(p)/y)A) \Rightarrow \forall q (q/y)A)$$

(same thing for equality)

For instance A = y + 0 = y:

$$0 + 0 = 0 \Rightarrow \forall p \ (p + 0 = p \Rightarrow S(p) + 0 = S(p))$$
$$\Rightarrow \forall q \ (q + 0 = q)$$

Equivalent

Equivalent: in what sense?

A proposition A provable in HA iff it is provable in HA $^{\kappa}$

No way: the language of HA^{κ} contains more symbols

If A in the language of HA: A is provable in HA iff provable in HA $^{\kappa}$

If A provable in HA then A is provable in HA $^{\kappa}$ easy (extension)

If A provable in HA^{κ} then provable in HA (conservative extension): not so easy

Conservative extension of an axiomatic theory

$$\mathcal{L}\subseteq\mathcal{L}'$$

 \mathcal{T} in \mathcal{L} , \mathcal{T}' in \mathcal{L}'

 \mathcal{T}' is an extension of \mathcal{T} if all propositions provable in \mathcal{T} are provable in \mathcal{T}'

 \mathcal{T}' is a conservative extension of \mathcal{T} if all the propositions of \mathcal{L} provable in \mathcal{T}' provable in \mathcal{T}

To prove that a theory is a conservative extension of another: extension of a model

$$\mathcal{L}\subseteq\mathcal{L}'$$

 ${\mathcal M}$ model of ${\mathcal L}$ and ${\mathcal M}'$ of ${\mathcal L}'$

 \mathcal{M}' is an extension of \mathcal{M} if for all sorts and symbols of \mathcal{L} interpreted in the same way in both models

If for all models \mathcal{M} of \mathcal{T} , there exists an extension \mathcal{M}' of \mathcal{M} that is a model of \mathcal{T}' , then \mathcal{T}' conservative extension of \mathcal{T}

A proposition in ${\mathcal L}$ provable in ${\mathcal T}'$

We want: A provable in \mathcal{T} , i.e. A valid in all models of \mathcal{T}

 ${\mathcal M}$ any model of ${\mathcal T}$

There exists \mathcal{M}' model of \mathcal{T}' extension of \mathcal{M}

A is valid in \mathcal{M}' (\mathcal{M}' model of \mathcal{T}')

Same interpretation of A in \mathcal{M} and \mathcal{M}' (\mathcal{M}' extension of \mathcal{M})

A valid in ${\mathcal M}$

 HA^{κ} is a conservative extension of HA

Any model of HA extends to a model of HA^{κ}

Need to define \mathcal{M}_{κ} and $\hat{\epsilon}$

First idea \mathcal{M}_{κ} : the set of all functions from \mathcal{M}_{ι} to \mathcal{B}

No way to prove the validity of the induction axiom

$$\forall c (0 \epsilon c \Rightarrow \forall x (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y y \epsilon c)$$

 \mathcal{M}_{κ} : the set of definable functions from \mathcal{M}_{ι} to \mathcal{B} , i.e. of the form $a\mapsto [\![A]\!]_{\phi,x=a}$ for some A (not using ϵ) and ϕ

Validity of HA-induction scheme: validity of HA^{κ} -induction axiom

IV. Peano's predicate symbol

Induction axiom: all objects of sort ι are natural numbers

Alternative: not all objects are natural numbers, a predicate symbol N for the natural numbers

$$\forall c (0 \epsilon c \Rightarrow \forall x (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y (N(y) \Rightarrow y \epsilon c))$$

or even (equivalent)

$$\forall c (0 \epsilon c \Rightarrow \forall x (N(x) \Rightarrow x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y (N(y) \Rightarrow y \epsilon c)$$

More axioms

$$N(0)$$

$$\forall x (N(x) \Rightarrow N(S(x)))$$

$$\forall y (N(y) \Rightarrow \forall c (0 \epsilon c \Rightarrow \forall x (N(x) \Rightarrow x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow y \epsilon c)$$

Converse provable (with N(0) and $\forall x \ (N(x) \Rightarrow N(S(x)))$)
Alternative:

$$\forall y (N(y) \Leftrightarrow \forall c (0 \epsilon c \Rightarrow \forall x (N(x) \Rightarrow x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow y \epsilon c)$$

$$(N(0))$$
 and $\forall x (N(x)) \Rightarrow N(S(x))$ dropped)

 $\mathsf{HA}^{\kappa N}$

A conservative extension of HA^{κ} ?

Not even an extension

$$\forall x (x = 0 \lor \exists y (x = S(y)))$$

provable in HA^{κ} (by induction), but not in $HA^{\kappa N}$

$$\forall x \ (N(x) \Rightarrow (x = 0 \lor \exists y \ (x = S(y))))$$

is

Translation

$$|\forall x A| = \forall x (N(x) \Rightarrow |A|)$$
$$|\exists x A| = \exists x (N(x) \land |A|)$$

$$|P|=P,$$
 if P is atomic, $|A\wedge B|=|A|\wedge |B|,$ etc.
$$|\forall c\,A|=\forall c\,|A|,\,|\exists c\,A|=\exists c\,|A|$$

A closed proposition in the language of HA^κ

If A provable in HA^κ then |A| provable in $\mathsf{HA}^{\kappa N}$ (\simeq extension)

If |A| provable in $\mathrm{HA}^{\kappa N}$ then A provable in HA^{κ} (\simeq conservative extension)

What is so great about Peano predicate symbol N?

(as we shall see) ${\sf HA}^{\kappa N}$: disjunction and witness property

 HA^{κ} : restricted to closed propositions

$$\forall x (x = 0 \lor \exists y (x = S(y)))$$

$$x = 0 \lor \exists y (x = S(y))$$

but neither x = 0 nor $\exists y \ (x = S(y))$ provable

In $\mathsf{HA}^{\kappa N}$

$$\forall x (x = 0 \lor \exists y (x = S(y)))$$

not provable

$$\forall x (N(x) \Rightarrow (x = 0 \lor \exists y (x = S(y))))$$
$$N(x) \Rightarrow (x = 0 \lor \exists y (x = S(y)))$$

provable but not disjunctions

 HA^κ cannot be transformed into a purely computational theory where proof reduction terminates

 $\mathsf{HA}^{\kappa N}$ can

V. Arithmetic as a purely computational theory	

$$extit{Pred}(0) \longrightarrow 0$$
 $extit{Pred}(S(x)) \longrightarrow x$
 $0 + y \longrightarrow y$
 $S(x) + y \longrightarrow S(x + y)$
 $0 \times y \longrightarrow 0$
 $S(x) \times y \longrightarrow (x \times y) + y$
 $extit{Null}(0) \longrightarrow \top$
 $extit{Null}(S(x)) \longrightarrow \bot$

$$x = y \longrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c)$$

$$N(y) \longrightarrow \forall c \, (0 \, \epsilon \, c \Rightarrow \forall x \, (N(x) \Rightarrow x \, \epsilon \, c \Rightarrow S(x) \, \epsilon \, c) \Rightarrow y \, \epsilon \, c)$$

The comprehension scheme

$$\forall x_1...\forall x_n \exists c \forall y \ (y \ \epsilon \ c \Leftrightarrow A)$$

Introduce a notation for this class: $f_{x_1,...,x_n,y,A}(x_1,...,x_n)$

$$\forall x_1...\forall x_n \forall y \ (y \ \epsilon \ f_{x_1,...,x_n,y,A}(x_1,...,x_n) \Leftrightarrow A)$$

$$y \in f_{x_1,...,x_n,y,A}(x_1,...,x_n) \longrightarrow A$$

 $\mathsf{HA}^{\longrightarrow}$ conservative extension of $\mathsf{HA}^{\kappa N}$

VI. Models of arithmetic

A model valued in the algebra $\{0,1\}$

$$\mathcal{M}_{\iota} = \mathbb{N}, \mathcal{M}_{\kappa} = \mathbb{N} \to \{0, 1\}$$

 $\hat{0}$, \hat{S} , \hat{Pred} , $\hat{+}$, $\hat{\times}$, \hat{Null} : obvious way

 $\hat{\epsilon}$: function mapping the number n and the function g of $\mathbb{N} \to \{0,1\}$ to g(n)

 $\hat{=}$: function mapping n and p to 1 if n=p and to 0 otherwise

 \hat{N} : constant function equal to 1

 $\hat{f}_{x_1,...,x_n,y,A}$: function mapping $a_1,...,a_n$ to function mapping b to $[\![A]\!]_{x_1=a_1,...,x_n=a_n,y=b}$

Super-consistency

 ${\cal B}$ a full, ordered and complete pre-Heyting algebra build a model whose pre-Heyting algebra is ${\cal B}$:

$$\mathcal{M}_{\iota}=\mathbb{N}$$

$$\mathcal{M}_{\kappa} = \mathbb{N} \to \mathcal{B}$$
,

 $\hat{0}$, \hat{S} , \hat{Pred} , $\hat{+}$, $\hat{\times}$, obvious way

 $\hat{\textit{Null}}$ function mapping 0 to $\tilde{\top}$ and the other numbers to $\tilde{\bot}$

 $\hat{\epsilon}$ function mapping n and g to g(n)

Remain to be interpreted: =, N, and $f_{x_1,...,x_n,y,A}$

Interpretation must validate the rules

$$x = y \longrightarrow \forall c \ (x \in c \Rightarrow y \in c)$$

$$N(y) \longrightarrow \forall c \ (0 \in c \Rightarrow \forall x \ (N(x) \Rightarrow x \in c \Rightarrow S(x) \in c) \Rightarrow y \in c)$$

$$y \in f_{x_1,...,x_n,y,A}(x_1,...,x_n) \longrightarrow A$$

$$x = y \longrightarrow \forall c (x \in c \Rightarrow y \in c)$$

definition: interpret the left-hand side like the right-hand side

 $\hat{=}$ function mapping n and p to $[\![\forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c)]\!]_{x=n,y=p}$ i.e. $\tilde{\forall} \ \{ f(n) \ \tilde{\Rightarrow} \ f(p) \ | \ f \in \mathbb{N} \to \mathcal{B} \}$

This cannot be done for the induction rule

$$N(y) \longrightarrow \forall c \, (0 \, \epsilon \, c \Rightarrow \forall x \, (N(x) \Rightarrow x \, \epsilon \, c \Rightarrow S(x) \, \epsilon \, c) \Rightarrow y \, \epsilon \, c)$$

Super-consistency: ordered and complete pre-Heyting algebras For each function f of $\mathbb{N} \to \mathcal{B}$: \mathcal{M}_f where N interpreted by f Φ mapping f to the function mapping the natural number n to

$$\left[\!\!\left[\forall c\left(0\in c\Rightarrow \forall x\left(N(x)\Rightarrow x\in c\Rightarrow S(x)\in c\right)\Rightarrow y\in c\right)\right]\!\!\right]_{n/y}^{\mathcal{M}_f}$$

The order on $\mathbb{N} \to \mathcal{B}$ complete, Φ monotone, fixed-point g, $\hat{N} = g$

 $f_{x,y_1,...,y_n,A}$ obvious way

HA[→] super-consistent

Next time

Naive set theory