Analisi dei Dati Multivariata

Nicola Torelli

2024

1 Introduzione

L'analisi multivariata riguarda l'analisi di un insieme di variabili x_1, x_2, \ldots, x_p (con $p \geq 3$) misurate su n unità. Tale analisi permette di cogliere relazioni complesse presenti nei dati, che potrebbero non emergere dall'analisi di coppie di variabili.

Le variabili possono essere quantitative o categoriali. Nel caso di dati misti, è importante distinguere le variabili categoriali, definendole come fattori in R.

2 Strumenti di Analisi

2.1 Regressione Multipla

L'estensione dell'analisi di regressione semplice a quella multipla coinvolge una variabile risposta quantitativa e più variabili esplicative. Questa tecnica, fondamentale nell'analisi statistica, è ripresa in altri corsi, come il machine learning e i modelli statistici.

2.2 Cluster Analysis

L'analisi di raggruppamento o cluster analysis cerca pattern nei dati multi-variati, identificando unità simili. Questo approccio, tipico dell'apprendimento non supervisionato, non prevede una variabile risposta.

3 Analisi di Variabili Categoriali

3.1 Associazione Marginale e Condizionale

L'associazione marginale tra due variabili categoriali può differire dall'associazione condizionale, come illustrato dal paradosso di Simpson. Un esempio sono i dati delle ammissioni ai dipartimenti dell'università di Berkeley nel 1973.

4 Analisi di Variabili Quantitative

4.1 Matrice di Varianza-Covarianza e di Correlazione

Per più variabili quantitative, si calcolano le covarianze o i coefficienti di correlazione lineare, organizzati in matrici simmetriche. Esempi includono i dati *iris* e *Cars93*, visualizzati tramite la funzione ggcorrplot.

4.2 Scatterplot Matrix

La funzione pairs() rappresenta tutti gli scatterplot delle coppie di variabili. Per dati misti, la funzione ggpairs del pacchetto GGally di ggplot adotta la rappresentazione grafica più appropriata.

5 Regressione Lineare Multipla

Nei modelli di regressione lineare multipla, una variabile risposta quantitativa Y è modellata come combinazione lineare di più variabili esplicative X_1, X_2, \ldots, X_p . La funzione di regressione ha la forma:

$$M(Y|x_1, x_2, \dots, x_p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$