Notions sur les langages

Exercice 1 - Langages préfixes. On dit que \mathcal{L} est un langage préfixe si

pour tous $u, v \in \mathcal{L}$ on a $u \neq v \Longrightarrow u$ n'est pas un préfixe de v.

Autrement dit si aucun des mots de \mathcal{L} n'apparaît dans le début d'un autre mot de \mathcal{L} .

- 1. Donner un exemple de langage préfixe.
- 2. Montrer que si $\varepsilon \in \mathcal{L}$ et \mathcal{L} est préfixe alors $\mathcal{L} = \{\varepsilon\}$;
- 3. Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages préfixes, montrer que $\mathcal{L}_1 \cap \mathcal{L}_2$ est préfixe;
- 4. Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages préfixes, montrer que $\mathcal{L}_1.\mathcal{L}_2$ est préfixe;
- 5. Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages préfixes, montrer que $\mathcal{L}_1 \cup \mathcal{L}_2$ n'est pas forcément préfixe.

Exercice 2 - Quelques exemples. Définissez les langages suivants.

- 1. Le langage des identifiants du langage de programmation Python (qui commencent avec une lettre ou un *underscore* "_" et se poursuivent avec un nombre arbitraire de lettres, de chiffres ou underscores). Par exemple : a12, x, y_3, _ab mais pas 5_z.
- 2. Le langage des nombres décimaux selon l'écriture habituelle (c'est à dire sans 0 à gauche, sauf si le nombre est 0). Par exemple : 123 mais pas 0123.
- 3. Le langage des nombres hexadécimaux selon la notation utilisée dans le langage C, à savoir précédés d'un 0x et avec des majuscules A . . . F pour marquer les nombres de 10 à 15. Par exemple : 0x0, 0x123, 0xFA7.

Exercice 3 - Monotonie. Montrez les propriétés de monotonie suivantes :

- 1. Si $L_1 \subseteq M_1$ et $L_2 \subseteq M_2$, alors $L_1.L_2 \subseteq M_1.M_2$.
- 2. Si $L \subseteq M$, alors pour tout $n, L^n \subseteq M^n$.
- 3. Si $L \subseteq M$, alors $L^* \subseteq M^*$.

Exercice 4 - Distributivité. Montrer ou invalider les propriétés de distributivité suivantes :

- 1. $L.(M_1 \cup M_2) = (L.M_1) \cup (L.M_2)$ et $(L_1 \cup L_2).M = (L_1.M) \cup (L_2.M)$
- 2. $(L.M)^* = L^*.M^*$
- 3. $(L \cup M)^* = L^* \cup M^*$

Exercice 5 - Opérateur de Kleene. Quelles égalités sont correctes ? Éventuellement, pensez à corriger l'équation pour qu'elle devienne correcte.

$$L^* = L.L^*$$
 , $L^+ = L.L^*$, $L^* = L^*L^*$, $L^+ = L^+.L^+$

Exercice 6 - Code. Un ensemble de mots X est un code si et seulement si pour tous entiers $n \ge 0$ et $p \ge 0$, pour tous mots, $x_1, \ldots, x_n, y_1, \ldots, y_p$ de X, l'égalité $x_1 \ldots x_n = y_1 \ldots y_p$ implique n = p et $x_i = y_i$ pour tout i entre 1 et p.

1. Les ensembles suivants sont-ils des codes?

$$\{a,b,ab\}, \{a,ab,bb\}, \{a,ab,ba\}, \{aa,ba,baa,bb,bba\}$$

- 2. Soit $\{u_1,\ldots,u_n\}$ un ensemble de n mots distincts de même longueur k. Montrer que c'est un code.
- 3. On dit que $X \subset A^*$ est un ensemble préfixe si pour tous $x, y \in X$, si x est un préfixe de y alors x = y. Montrer que tout ensemble préfixe est un code.
- 4. Énoncer le théorème équivalent sur les suffixes.

Exercice 7 - Le lemme d'Arden. On considère \mathcal{M} et \mathcal{N} deux langages sur \mathcal{A} . On souhaite résoudre l'équation sur les langages $X = \mathcal{M}.X \cup \mathcal{N}$ où X est le langage inconnu.

- 1. Montrer que le langage \mathcal{M}^* . \mathcal{N} est solution de l'équation.
- 2. Soit \mathcal{L} une solution, montrer que pour tout $n \in \mathbb{N}$ on a

$$\mathcal{L} = \mathcal{M}^{n+1}.\mathcal{L} \cup \mathcal{M}^{n}.\mathcal{N} \cup \mathcal{M}^{n-1}.\mathcal{N} \cup \cdots \cup \mathcal{M} \mathcal{N} \cup \mathcal{N}.$$

- 3. En déduire que $\mathcal{M}^*.\mathcal{N} \subset \mathcal{L}$.
- 4. Montrer que si $\varepsilon \notin \mathcal{M}$ alors $\mathcal{M}^* \mathcal{N}$ est la seule solution de l'équation.

Exercice 8 - Puissance d'un mot. Soient $u, v \in A^*$. Montrer que les propositions suivantes sont équivalentes :

- -u.v = v.u;
- il existe $w \in \mathcal{A}^*$ et $p, q \in \mathbb{N}$ tels que $u = w^p$ et $v = w^q$;
- il existe $n, m \in \mathbb{N}^*$ tels que $u^n = v^m$.

Notions sur les langages (Solutions)

Correction 1 1. $\mathcal{L} = \{a, ba, bba, bbba\}$ est un langage préfixe.

- 2. ε est préfixe de tout mot. Ainsi si $\varepsilon \in \mathcal{L}$ et \mathcal{L} est préfixe alors ε ne peut être que préfixe de lui même dans \mathcal{L} . On en déduit que c'est le seul mot de \mathcal{L} .
- 3. Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages préfixes. Soient $u, v \in \mathcal{L}_1 \cap \mathcal{L}_2$, comme \mathcal{L}_1 est préfixe, on en déduit que un'est pas un préfixe de v. Ainsi $\mathcal{L}_1 \cap \mathcal{L}_2$ est préfixe.
- 4. Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages préfixes et soient $u,v\in\mathcal{L}_1.\mathcal{L}_2$ tels que $u\neq v$. On peut donc écrire $u = u_1 u_2$ et $v = v_1 v_2$ avec $u_1, u_2 \in \mathcal{L}_1$ et $v_1, v_2 \in \mathcal{L}_2$.

Supposons que u est préfixe de v alors v = uv'. On a donc les deux alternatives suivantes :

- Si $|v_1| \ge |u_1|$, cela signifie que u_1 est préfixe de v_1 donc $u_1 = v_1$ car \mathcal{L}_1 est préfixe. On a donc u_2 qui est préfixe de v_2 et $u_2 \neq v_2$ ce qui est impossible car \mathcal{L}_2 est préfixe.
- Si $|v_1| < |u_1|$, cela signifie que v_1 est préfixe de u_1 et $v_1 \neq u_1$ ce qui est impossible car \mathcal{L}_1 est préfixe.
- 5. Soit $\mathcal{L}_1 = \{a, ba, bba, bbba\}$ et $\mathcal{L}_2 = \{b, ab, abb\}$. $\mathcal{L}_1 \cup \mathcal{L}_2$ n'est pas préfixe car b est préfixe de ba.

Correction 2 On définit les ensembles $L = \{a \dots z, A \dots Z\}, C = \{0 \dots 9\}, U = \{_\}$ et on définit :

```
 \mathcal{L}_1 = (L \cup U).(L \cup C \cup U)^*
```

 $- \mathcal{L}_{2} = \{0\} \cup ((\dot{C} \setminus \{0\}).C^{*})$ $- \mathcal{L}_{3} = \{0\}.\{x\}.(C \cup (\{A,B,C,D,E,F\}))^{*}$

1. Soit $L_1 \subseteq M_1$ et $L_2 \subseteq M_2$. Alors $L_1 L_2 = \{u_1 . u_2 : u_1 \in L_1, u_2 \in L_2\} \subseteq \{u_1 . u_2 : u_1 \in L_2\}$ Correction 3 $M_1, u_2 \in M_2$ = $M_1.M_2$

2. Soit $L \subseteq M$. Preuve par induction sur n pour prouver $L^n \subseteq M^n$:

```
-n = 0: L^0 = \{\varepsilon\} = M^0
```

— hérédité : soit $L^n \subseteq M^n$.

Alors, par la monotonie de l'opérateur de concaténation : $L^{n+1} = L.L^n \subseteq M.M^n = M^{n+1}$

3. Soit $L \subseteq M$. Alors $L^* = \bigcup_{n>0} L^n \subseteq \bigcup_{n>0} M^n = M^*$, utilisant le fait que pour tout $n, L^n \subseteq M^n$ comme prouvé sous le point précédent.

Correction 4 1. correct

- 2. incorrect, prendre $L = \{l\}$ et $M = \{m\}$
- 3. On a $L^* \subseteq (L \cup M)^*$, voir l'exercice sur la monotonie, donc aussi $L^* \cup M^* \subseteq (L \cup M)^*$. Mais pas $(L \cup M)^* \subseteq L^* \cup M^*$, prendre $L = \{l\}$ et $M = \{m\}$, avec $lm \in (L \cup M)^*$ et $lm \notin L^* \cup M^*$

Correction 5 1. $L^* = L.L^*$ est incorrect, mais $L^* = \{\varepsilon\} \cup L.L^*$, parce que $L^* = \bigcup_{n>0} L^n = L^0 \cup \bigcup_{n>0} L^n = L^n \cup U_n \cup U$ $\{\varepsilon\} \cup \bigcup_{n>0} L.L^n = \{\varepsilon\} \cup L.\bigcup_{n>0} L^n = \{\varepsilon\} \cup L.L^*$ Utilise la distributivité de la concaténation de l'exercice précédent (mais sur une union infinie).

- 2. $L^+ = L.L^*$ correct, preuve similaire.
- 3. $L^* = L^*.L^*$ On montre $L^* \subseteq L^*.L^*$, parce que $\{\varepsilon\} \subseteq L^*$ et $L^* = \{\varepsilon\}.L^* \subseteq L^*.L^*$ Inversement, pour montrer $L^*.L^* \subseteq L^*$, soit $w \in L^*.L^*$. Alors, w = u.v avec |u| = n et |v| = m, donc $u \in L^n$ et $v \in L^m$, donc $w \in L^{n+m}$, donc $w \in L^*$
- 4. $L^+ = L^+.L^+$ incorrect : L^+ contient des mots de taille ≥ 1 et $L^+.L^+$ uniquement des mots de taille ≥ 2 . On pourrait écrire $L + L^+ = L^+ \cdot L^+$ (ce qui n'a pas beaucoup d'intérêt).

Correction 6 1. Le premier n'est pas un code car a.b = ab.

> Le deuxième, $X = \{a, ab, bb\}$, est un code. Soient $x_1, \ldots, x_n, y_1, \ldots, y_p \in X$ tel que $u = x_1 \ldots x_n = x_1 \ldots$ $y_1 \dots y_p$.

- Si u commence par b, le mot est formé que par cette lettre et donc les éléments $x_1, \ldots, x_n, y_1, \ldots, y_p$ ne peuvent être que l'élément bb de X. On en déduit l'égalité voulu.
- Si u commence par a, il est forcément suivi par des b.

- Si le nombre de b est pair alors $x_1 = y_1 = a$ et les autres mots sont bb.
- Si le nombre de b est impair alors $x_1 = y_1 = ab$ et les autres mots sont bb.

Le troisième n'est pas un code car a.ba = ab.a.

Le quatrième, $X = \{aa, ba, baa, bb, bba\}$ est un code. On le montre par récurrence sur le nombre de lettre du mot à décomposer puis en faisant des distinctions de cas suivant la parité du block de a qui sit le premier b.

- 2. Soit $X = \{u_1, \dots, u_n\}$ un ensemble de n mots distincts de même longueur k. Soit $x_1, \dots, x_n, y_1, \dots, y_p$ des mots de X vérifiant $x_1 \dots x_n = y_1 \dots y_p$. Comme tout mot de X ont la même longueur k, on a $|x_1 \dots x_n| = k n$ et $|y_1 \dots y_p| = k p$ donc p = n. Pour tout i entre 1 et n, les lettres d'indices compris entre k(i-1)+1 et ki dans $x_1 \dots x_n$ et $y_1 \dots y_n$ sont égales, on en déduit que $x_i = y_i$.
- 3. Soit *X* un code préfixe. Montrons par récurrence sur *n* que si $x_1, \ldots, x_n, y_1, \ldots, y_p \in X$ tels que $x_1 \ldots x_n = y_1 \ldots y_p$ alors n = p et $x_i = y_i$ pour tout i entre 1 et p.
 - Si n = 1, $x_1 = y_1 \dots y_p$ donc y_1 est un préfixe de x_1 . Comme X est un code préfixe, on en déduit que $x_1 = y_1$ et donc p = 1.
 - On suppose la propriété vraie au rang n et montrons que cette propriété reste vraie au rang suivant. Considérons $x_1, \ldots, x_{n+1}, y_1, \ldots, y_p \in X$ tels que $x_1 \ldots x_{n+1} = y_1 \ldots y_p$. On a deux possibilités, soit x_1 est préfixe de y_1 , soit y_1 est préfixe de x_1 . Dans les deux cas on en déduit que $x_1 = y_1$ car X est préfixe. On a alors $x_2 \ldots x_{n+1} = y_2 \ldots y_p$ et en appliquant l'hypothèse de récurrence, on obtient que n+1=p et $x_i=y_i$ pour tout i entre 2 et p.
- 4. Le même type de résultat fonctionne pour les codes suffixes.

Correction 7 1.
$$\mathcal{M}.(\mathcal{M}^*.\mathcal{N}) \cup \mathcal{N} = (\mathcal{M}.\mathcal{M}^* \cup \varepsilon).\mathcal{N} = \mathcal{M}^*.\mathcal{N}.$$

On a $\mathcal{N} \subset \mathcal{M}^*.\mathcal{N}$ et $\mathcal{M}.\mathcal{M}^*.\mathcal{N} \subset \mathcal{M}^*.\mathcal{N}$ donc $\mathcal{M}.\mathcal{M}^*.\mathcal{N} \cup \mathcal{N} \subset \mathcal{M}^*.\mathcal{N}.$

2. Soit \mathcal{L} une solution, montrons par récurrence que pour tout $n \in \mathbb{N}$ on a

$$\mathcal{L} = \mathcal{M}^{n+1}.\mathcal{L} \cup \mathcal{M}^{n}.\mathcal{N} \cup \mathcal{M}^{n-1}.\mathcal{N} \cup \dots \cup \mathcal{M} \mathcal{N} \cup \mathcal{N}.$$

Pour n = 1, la propriété découle que \mathcal{L} est solution de l'équation.

On suppose la propriété vraie au rang n. Comme \mathcal{L} est solution de l'équation on a :

- 3. On a $\varepsilon \mathcal{N} = \mathcal{N} \subset \mathcal{M}.\mathcal{L} \cup \mathcal{N} = \mathcal{L}.$ Pour $n \in \mathbb{N}$, on a $\mathcal{M}^n.\mathcal{N} \subset \mathcal{M}^{n+1}.\mathcal{L} \cup \mathcal{M}^n.\mathcal{N} \cup \mathcal{M}^{n-1}.\mathcal{N} \cup \cdots \cup \mathcal{M} \mathcal{N} \cup \mathcal{N} = \mathcal{L}.$ On en déduit que $\mathcal{M}^*.\mathcal{N} \subset \mathcal{L}$
- 4. Supposons que $\varepsilon \notin \mathcal{M}$. On veut montrer que $\mathcal{L} \subset \mathcal{M}^*.\mathcal{N}$. Soit $w \in \mathcal{L}$ de longueur n. Alors $w \in \mathcal{M}^{n+1}.\mathcal{L} \cup \mathcal{M}^n.\mathcal{N} \cup \mathcal{M}^{n-1}.\mathcal{N} \cup \cdots \cup \mathcal{M} \mathcal{N} \cup \mathcal{N} = \mathcal{L}$. Comme $\mathcal{M}^{n+1}.\mathcal{L}$ contient uniquement des mots de longueurs plus grandes que n+1, on en déduit que $w \in \mathcal{M}^n.\mathcal{N} \cup \mathcal{M}^{n-1}.\mathcal{N} \cup \cdots \cup \mathcal{M} \mathcal{N} \cup \mathcal{N} \subset \mathcal{M}^*.\mathcal{N}$. Ainsi $\mathcal{L} \subset \mathcal{M}^*.\mathcal{N}$ et donc $\mathcal{L} = \mathcal{M}^*.\mathcal{N}$.
- **Correction 8** (1) \Longrightarrow (3) Supposons que u.v = v.u alors $u^{|v|}v^{|u|} = v^{|u|}u^{|v|}$. Comme $|v^{|u|}| = |u^{|v|}|$ on en déduit que $v^{|u|} = u^{|v|}$.
 - (3) \Longrightarrow (2) Montrons par récurrence sur n que si $|u| + |v| \le n$ et s'il existe $i, j \in \mathbb{N}^*$ tels que $u^i = v^j$ alors il existe $w \in \mathcal{A}^*$ et $p, q \in \mathbb{N}^*$ vérifiant $u = w^p$ et $v = w^q$.
 - Si |u| + |v| = 0, cela signifie que $u = v = \varepsilon$ et la propriété est vérifiée.
 - Supposons que la propriété soit vraie pour $n \in \mathbb{N}$ et vérifions là au rang n+1. Soit $|u|+|v| \le n+1$ et $i,j \in \mathbb{N}^*$ tels que $u^i = v^j$. Quitte à inverser les rôle, on peut supposer que $|u| \ge |v|$. On réalise la division euclidienne |u| = q|v| + r avec $r \in [0, |v|-1]$, on a deux possibilités :
 - Si r = 0 alors $u = v^q$.
 - Sinon $u=v^q.w$ avec $|w|=r\neq 0$. Comme $u^i=v^j$, en considérant le dernier mot u on voit qu'on peut le décomposer de la forme $u=w'v^q$ où |w|=|w'|. Or w est un préfixe de v est donc de u. Comme |w|=|w'|, on en déduit que w=w' donc on a $wv^q=v^qw$. D'après l'implication $(1)\Longrightarrow (3)$, il existe $i',j'\in \mathbb{N}^*$ tels que $v^{i'}=w^{j'}$ et $|w|+|v|\leq n$. Par hypothèse de récurrence, il existe un mot x tel que $v=x^r$ et $w=x^s$, on a alors $u=v^q.w=x^{rq+s}$.

Par récurrence, on en déduit la décomposition demandée.

 $(2) \Longrightarrow (1)$ Supposons qu'il existe $w \in \mathcal{A}^*$ et $p, q \in \mathbb{N}^*$ tels que $u = w^p$ et $v = w^q$. On a $uv = w^{p+q} = vu$.