Chapitre 1: Ensembles et applications

1 Généralités

1.1 Définition

Définition 1.1. Un ensemble est une collection d'objets mathématiques.

Étant donné un objet x et un ensemble E, soit x <u>appartient</u> à E (ou <u>est élément</u> de E) et on note $x \in E$, soit x n'appartient pas à E et on note $x \notin E$

1.2 Modes de définition d'un ensemble

1.2.1 "In extenso"

On peut définir un ensemble en listant ses éléments :

$$\{0,1,2\},\{0,1,2,3,...\},\{2,3,5,7,11,13,17,19,...\}$$

1.2.2 "En compréhension"

Étant donné un ensemble X et une assertion P(x) qui dépend de $x \in X$, on peut considérer

$${x \in X \mid P(x)}$$

l'ensemble de $x \in X$ tels que P(x) soit vraie.

1.2.3 "Par paramétrage"

On peut définit l'ensemble

$$\{f(x) \mid x \in X\}$$

 $\operatorname{des} f(x)$ quand x décrit X

1.3 Inclusion

Définition 1.2. Soit *X* et *Y* deux ensembles.

On dit que X est <u>inclus</u> dans Y (ou que c'est une <u>partie</u> de Y) si $\forall n \in X, x \in Y$

Dans ce cas, on note $X \subseteq Y$

Canevas:

Montrons
$$X \subseteq Y$$

Soit $x \in X$
[...] donc $x \in Y$

Montrons X = Y par double inclusion.

Sens direct : soit $x \in X$

[...] donc $x \in Y$

Sens réciproque : soit $y \in T$

[...] donc $y \in X$

2 Opérations sur les ensembles

2.1 Opérations booléennes

Définition 2.1. Soit Ω un ensemble et A, $B \subseteq \Omega$

On définit :

- * L'union : $A \cup B = \{x \in \Omega \mid x \in A \text{ ou } x \in B\}$
- * L'intersection : $A \cap B = \{x \in \Omega \mid x \in A \text{ et } x \in B\}$
- * La différence (ensembliste) "A privé de B" : $A \setminus B = \{x \in \Omega \mid x \in A \text{ et } x \notin B\} = \{x \in A \mid x \notin B\}$

Définition 2.2. Soit *A*, *B* deux ensembles.

On dit que A et B sont disjoints si $A \cap B = \emptyset$

Proposition 2.3. Soit A, B, C trois parties d'ensemble Ω

* Lois de De Morgan :

$$\Omega \setminus (A \cup B) = (\Omega \setminus A) \cap (\Omega \setminus B)$$

$$\Omega \setminus (A \cap B) = (\Omega \setminus A) \cup (\Omega \setminus B)$$

* Double distributivité:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

2.2 Familles d'ensembles

Définition 2.4. Soit *E* et *I* deux ensembles.

Une famille $(a_i)_{i \in I}$ d'éléments de E indexée par I est la donnée, pour tout $i \in I$ d'un élément $a_i \in E$

Définition 2.5. Soit Ω et I deux ensembles de $(A_i)_{i \in I}$ une famille de parties de Ω indexée par I On définit

$$\bigcup_{i \in I} A_i = \{ x \in \Omega \mid \exists i \in I : x \in A_i \} \quad \text{ et } \quad \bigcap_{i \in I} A_i = \{ x \in \Omega \mid \forall i \in I : x \in A_i \}$$

Proposition 2.6. Soit Ω et I deux ensembles, $(A_i)_{i \in I}$ une famille de parties de Ω indexée par I et $B \in \mathcal{P}(\Omega)$

* Lois de De Morgan :

$$\Omega \setminus \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} \left(\Omega \setminus A_i\right)$$

$$\Omega \setminus \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} \left(\Omega \setminus A_i\right)$$

* Double distributivité:

$$\left(\bigcup_{i\in I}A_i\right)\cap B=\bigcup_{i\in I}\left(A_i\cap B\right)$$

$$\left(\bigcap_{i\in I}A_i\right)\cup B=\bigcap_{i\in I}\left(A_i\cup B\right)$$

Définition 2.7. Soit Ω et I deux ensembles et $(A_i)_{i \in I}$ une famille de parties de Ω

On dit que $(A_i)_{i \in I}$ est un recouvrement disjoint de Ω si :

- * $(A_i)_{i \in I} \underline{\text{recouvre}} \Omega : \bigcup_{i \in I} A_i = \Omega$
- $*(A_i)_{i\in I}$ est une famille d'ensembles (deux à deux) disjoints : $\forall i,j\in I, i\neq j \implies A_i\cap A_j=\emptyset$

2.3 Produit cartésien

Définition 2.8. Soit *A* et *B* deux ensembles.

On note

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

l'ensemble des couples dont la première coordonnée est élément de A et la deuxième de B

3 Applications

3.1 Définition

Définition 3.1. Soit *E* et *F* deux ensembles.

Une application $f: E \to F$ est la donnée, pour tout $x \in E$ d'un élément $f(x) \in F$

On dit que E est le <u>domaine</u> (ou <u>l'ensemble de départ</u>) de f et F est son <u>codomaine</u> (ou <u>l'ensemble d'arrivée</u>). L'ensemble des applications de E dans F est noté $\mathcal{F}(E,F)$ ou F^E

3.2 Graphe d'une application

Définition 3.2. Soit $f: E \to F$

On définit son graphe:

$$gr(f) = \{(x,y) \in E \times F \mid y = f(x)\} = \{(x,f(x)) \mid x \in E\}$$

3.3 Composition

Définition 3.3. Soit $f: E \to F$ et $g: G \to H$ deux applications telles que $F \subseteq G$

On définit leur composée

$$g \circ f : \begin{cases} E \to H \\ x \mapsto g(f(x)) \end{cases}$$

Proposition 3.4.

* Soit $f : E \rightarrow F$ une application.

Alors $id_F \circ f = f \circ id_E = f$

* Soit $f_1: E_1 \to F_1$, $f_2: E_2 \to F_2$ et $f_3: E_3 \to F_3$ telles que $F_1 \subseteq F_2$ et $F_2 \subseteq F_3$

Alors $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$

On dit que la composition est associative.

3.4 Restriction, induction

Définition 3.5. Soit $f: E \to F$ et $A \subseteq E$

On définit la restriction

$$f_{|A}: \begin{cases} A \to F \\ x \mapsto f(x) \end{cases}$$

Définition 3.6. Soit $f: E \to F$, $A \subseteq E$ et $B \subseteq F$

On dit que f induit une application de A vers B si $\forall x \in A$, $f(x) \in B$

On note alors

$$f_{|A}^{|B}: \begin{cases} A \to B \\ x \mapsto f(x) \end{cases}$$

l'application induite.

Définition 3.7. Soit $f: E \to E$ et $A \subseteq E$

On dit que A est stable sous f si $\forall x \in A$, $f(x) \in A$

3.5 Injectivité, surjectivité, bijectivité

Définition 3.8. Soit $f: E \to F$

On dit que :

- * f est injective (one to one) si $\forall x_1, x_2 \in E, f(x_1) = f(x_2) \implies x_1 = x_2$
- * f est surjective (onto) si $\forall y \in F$, $\exists x \in E : f(x) = y$
- * f est bijective si elle est injective et surjective.

Définition 3.9. Soit $f: E \to F$ et $y \in F$

On appelle antécédent de y par f (ou f-antécédent de y) tout élément $x \in E$ tel que f(x) = y

Proposition 3.10. Soit $f: E \to F$

- * f est injective ssi tout élément de F a au plus un antécédent.
- *~f est surjective ssi tout élément de F a au moins un antécédent.
- * f est bijective ssi tout élément de F a exactement un antécédent.

Proposition 3.11.

- * La composée de deux injections $f: E \to F$ et $g: G \to H$ (où $F \subseteq G$) est injective.
- * La composée de deux surjections $f: E \to F$ et $g: F \to H$ est surjective.
- * La composée de deux bijections $f: E \to F$ et $g: F \to H$ est bijective.

Attention : Pour les deux derniers points, il est capital que le codomaine de f soit le domaine de g

Proposition 3.12. Soit $f: E \to F$ et $g: G \to H$, où $F \subseteq G$

- * Si $g \circ f$ est injective, alors f est injective.
- * Si $g \circ f$ est surjective, alors g est surjective.

3.6 Bijectivité et réciproque

Théorème 3.13. Soit $f: E \rightarrow F$

Alors f est bijective si et seulement si elle admet une réciproque, càd une application $g: F \to E$ telle que

$$\begin{cases} g \circ f = id_E \\ f \circ g = id_F \end{cases}$$

Si c'est la cas, la réciproque est unique : on la note f^{-1}

Attention : Ne pas utiliser la notation f^{-1} avant de savoir que f est bien bijective!

Proposition 3.14 (Chaussettes et chaussures). Soit $f : E \to F$ et $g : F \to G$ deux bijections.

Alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

3.7 Images directe et réciproque

Définition 3.15. Soit $f: E \to F$

* Pour toute partie $A \subseteq E$, on définit l'image directe

$$f(A) = f[A] = \{ f(x) \mid x \in A \}$$

* Pour toute partie $B \subseteq F$, on définit l'image réciproque

$$f^{-1}(B) = f^{-1}[B] = \{ x \in E \mid f(x) \in B \}$$

Proposition 3.16. Soit $f: E \to F$

- * Alors f induit une application surjective $f_{|E|}^{|f[E]}: E \to f[E]$
- * Si f est injective, l'application induite $f_{|E|}^{|f[E]|}$ est bijective.

Proposition 3.17 (Propriétés de l'image directe). Soit $f: E \to F$

- * Soit $A, A' \subseteq E$ Si $A \subseteq A'$, alors $f[A] \subseteq f[A']$
- * Soit $(A_i)_{i \in I}$ une famille de parties de EAlors

$$f\left[\bigcup_{i\in I}A_i\right] = \bigcup_{i\in I}f[A_i]$$

Proposition 3.18 (Propriétés de l'image réciproque). Soit $f: E \to F$

- * Soit $B, B' \subseteq F$ tels que $B \subseteq B'$ Alors $f^{-1}[B] \subseteq f^{-1}[B']$
- * Soit $(B_i)_{i \in I}$ une famille de parties de FAlors

$$f^{-1}\left[\bigcup_{i\in I}B_i\right] = \bigcup_{i\in I}f^{-1}[B_i]$$
 et $f^{-1}\left[\bigcap_{i\in I}B_i\right] = \bigcap_{i\in I}f^{-1}[B_i]$

* Si $B \subseteq F$, on a $f^{-1}[F \setminus B] = E \setminus f^{-1}[B]$

3.8 Fonctions indicatrices

Définition 3.19. Soit Ω un ensemble et $A \subseteq \Omega$

On définit la fonction indicatrice de A (ou fonction caractéristique)

$$\mathbb{1}_A: \begin{cases} \Omega \to \{0,1\} \\ x \mapsto \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{cases} \end{cases}$$

4 Ensembles finis

Définition 4.1. On dit que deux ensembles *E* et *F* sont en <u>bijection</u> ou <u>équipotents</u> s'il existe une bijection entre *E* et *F*

4.1 Principe des tiroirs

Théorème 4.2 (Principe des tiroirs / Principe de Dinichlet / Pigeonhole principle). Soit $n, m \in \mathbb{N}$ S'il existe une injection $[1, n] \to [1, m]$, alors $n \le m$

Corollaire 4.3. Soit $n, m \in \mathbb{N}$

Si [1, n] et [1, m] sont équipotents, alors n = m

4.2 Définitions

Définition 4.4. Soit *E* un ensemble.

- * On dit que E est fini s'il existe un entier $n \in \mathbb{N}$ tel que E et [1, n] soient équipotents.
- * Quand c'est le cas, on dit que E a n éléments ou qu'il est de cardinal n et on note

$$n = |E| = \operatorname{Card}(E) = \#E$$

Proposition 4.5. Soit *E* et *F* deux ensembles équipotents.

Si E est fini, alors F aussi et |E| = |F|

Définition 4.6. Soit *E* un ensemble.

- * Pour tout entier $k \in \mathbb{N}$, on note $\mathcal{P}_k(E)$ l'ensemble des parties finies de E de cardinal k
- * On note \mathcal{P}_f l'ensemble des parties finies de E

4.3 Parties d'un ensemble fini

Proposition 4.7. Soit *E* un ensemble fini et $F \subseteq E$

Alors *F* est fini et $|F| \leq |E|$

Lemme 4.8. Soit A_0 , A_1 , B_0 , B_1 quatre ensembles tels que $A_0 \cap A_1 = B_0 \cap B_1 = \emptyset$ et deux bijections

$$f_0: A_0 \to B_0 \text{ et } f_1: A_1 \to B_1$$

Alors l'application

$$f: \begin{cases} A_0 \cup A_1 \to B_0 \cup B_1 \\ i \mapsto \begin{cases} f_0(i) \text{ si } i \in A_0 \\ f_1(i) \text{ si } i \in A_1 \end{cases}$$

est une bijection.

Opérations sur les ensembles et les cardinaux

4.4.1 Union

Proposition 4.9.

* Soit *E* et *F* deux ensembles disjoints finis.

Alors
$$E \cup F$$
 est fini et $|E \cup F| = |E| + |F|$

* Soit E_1, \dots, E_r des ensembles finis disjoints (deux à deux).

Alors
$$\bigcup_{i=1}^{r} E_i$$
 est fini et $\left| \bigcup_{i=1}^{r} E_i \right| = |E_1| + ... + |E_r|$
* Soit E et F deux ensembles finis.

Alors
$$(E \cup F)$$
 est fini et $|E \cup F| = |E| + |F| - |E \cap F|$

4.4.2 Différence

Proposition 4.10. Soit *E* et *F* deux ensembles tels que $F \subseteq E$ et *E* soit fini.

- * On a $|E \setminus F| = |E| |F|$
- * Si |E| = |F|, on a E = F

4.4.3 Produit cartésien

Proposition 4.11. Soit *E* et *F* deux ensembles finis.

Alors
$$E \times F$$
 est fini et $|E \times F| = |E| \times |F|$

Corollaire 4.12.

- * Si $E_1, ..., E_r$ sont des ensembles finis, $|E_1 \times ... \times E_r| = |E_1| \times ... \times |E_r|$
- * Si *E* est un ensemble fini, $|E^r| = |E|^r$

4.4.4 Ensembles d'applications

Proposition 4.13. Soit *E* et *F* deux ensembles finis.

Alors F^E est fini, de cardinal $|F^E| = |F|^{|E|}$

4.4.5 Ensembles de parties

Proposition 4.14. Soit *E* un ensemble fini.

Alors $\mathcal{P}(E)$ est fini de cardinal $|\mathcal{P}(E)| = 2^{|E|}$

Proposition 4.15. Soit $k \in \mathbb{N}$ et E un ensemble fini de cardinal n

Alors
$$\mathcal{P}_k(E)$$
 est fini et $|\mathcal{P}_k(E)| = |\mathcal{P}_k([1, n])|$

Définition 4.16. Soit $k, n \in \mathbb{N}$

On appelle coefficient binomial le nombre $\binom{n}{k} = |\mathcal{P}_k([\![1,n]\!])|$

4.5 Applications entre ensembles finis

Théorème 4.17. Soit *E* et *F* deux ensembles finis et $f: E \rightarrow F$

- * Si f est injective, alors $|E| \le |F|$
- * Si f est surjective, alors $|E| \ge |F|$
- * Si |E| = |F|, alors les assertions suivantes sont équivalentes :
 - (i) *f* est injective.
 - (ii) *f* est surjective.
- (iii) *f* est bijective.

Lemme 4.18. Soit $f : E \to F$ une application entre ensembles finis.

- * On a $|f[E]| \le |E|$
- * On a |f[E]| = |E| si et seulement si f est injective.

Corollaire 4.19. Soit *E* un ensemble fini et $f: E \rightarrow E$

Alors f injective \iff f surjective \iff f bijective.

4.6 Parties finies de \mathbb{R} , minimum, maximum

Théorème 4.20. Soit $E = \{x_1, x_2, ..., x_n\}$ une partie finie non vide de \mathbb{R} Alors E possède un plus petit élément / un minimum

$$\min(E) = \min\{x_1, x_2, \dots, x_n\}$$

et un plus grand élément / un maximum

$$\max(E) = \max\{x_1, x_2, \dots, x_n\}$$

Définition 4.21. Soit $E \subseteq \mathbb{R}$

On dit que E:

- * Admet un minimum $m = \min(E)$ si $m \in E$ et $\forall x \in E, x \geq m$
- * Est minoré si on peut trouver $a \in \mathbb{R}$ tel que $\forall x \in E, x \ge a$
- * Admet un maximum $M = \max(E)$ si $M \in E$ et $\forall x \in E, x \leq M$
- * Est majoré si on peut trouver $b \in \mathbb{R}$ tel que $\forall x \in E$, $x \leq b$

Théorème 4.22. Toute partie non vide et majorée de **Z** admet un maximum.

Corollaire 4.23.

- * Toute partie non vide et minorée de Z a un minimum.
- * En particulier, toute partie non vide de $\mathbb N$ a un minimum.

4.7 Récurrences finies

On peut effectuer des récurrences sur un intervalle d'entiers : il y en a de deux types : montant et descendante.

Exemple : Soit $f: \llbracket 1, n \rrbracket \to \llbracket 1, n \rrbracket$ bijective telle que $\forall k \in \llbracket 1, n \rrbracket$, $f(k) \geq k$. Montrer $f = id_{\llbracket 1, n \rrbracket}$ Pour tout $k \in \llbracket 1, n \rrbracket$, notons P(k) l'assertion f(k) = k Montrons $\forall k \in \llbracket 1, n \rrbracket$, P(k) par récurrence descendante forte.

Initialisation : On a $f(n) \in \llbracket 1, n \rrbracket$ et $f(n) \geq n$, d'où f(n) = n, ce que montre P(n) Hérédité : Soit $k \in \llbracket 2, n \rrbracket$ tel que P(n) et P(n) et ... et P(k). Montrons P(k-1) On a P(k-1) par hypothèse et P(k) et ... et P(k) càd P(k) con a P(k) d'où P(k) con a P(k) et ... et P(k) con a P(k) con a P(k) et ... et P(k) et ... et P(k)

4.8 Premier contact avec les ensembles infinis

Définition 4.24. Un ensemble *E* est dit infini ssi il n'est pas fini.

Proposition 4.25 (Principe des tiroirs, version infinie).

Il n'existe pas d'injection $E \to F$, où E est un ensemble infini et F un ensemble fini.

Théorème 4.26. Soit *E* un ensemble.

Cela montre P(k-1) et clôt la récurrence.

Alors E est infini si et seulement s'il existe une injection $\mathbb{N} \to E$

Théorème 4.27 (Cantor). Soit *E* un ensemble.

Il n'existe pas de surjection $E \to \mathcal{P}(E)$