ANEJO: Prontuario básico de estructuras simples.

Vigas simples.

Vigas continuas de 2 vanos.

Vigas continuas de 3 vanos.

VIGA SIMPLE APOYADA: carga puntual ${f F}$ genérica.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{Fb}}{\mathbf{L}}$$
 $\mathbf{R}_{B} = \frac{\mathbf{Fa}}{\mathbf{L}}$

Cortantes:
$$V_{AC} = \frac{Fb}{L}$$
 $V_{CB} = -\frac{Fa}{L}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{F}\mathbf{b}}{\mathbf{I}}\mathbf{x}$$
 $\mathbf{M}_{CB} = \frac{\mathbf{F}\mathbf{a}}{\mathbf{I}}(\mathbf{L} - \mathbf{x})$

$$\mathbf{M}_{\text{máx}} = \mathbf{M}_{\text{C}} = \frac{Fab}{\tau}$$
 para $\mathbf{x} = \mathbf{a}$

Deformaciones

Giros:

$$\phi_{A} = -\frac{Fab}{6EIL}(L+b)$$
 $\phi_{B} = \frac{Fab}{6EIL}(L+a)$
 $\phi_{C} = \frac{Fab}{3EIL}(a-b)$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{FLbx}}{6\mathbf{EI}} \left(1 - \frac{\mathbf{b}^2}{\mathbf{L}^2} - \frac{\mathbf{x}^2}{\mathbf{L}^2} \right) \qquad \mathbf{y}_{CB} = \frac{\mathbf{FLa}(\mathbf{L} - \mathbf{x})}{6\mathbf{EI}} \left(1 - \frac{\mathbf{a}^2}{\mathbf{L}^2} - \frac{(\mathbf{L} - \mathbf{x})^2}{\mathbf{L}^2} \right)$$

Flecha máxima (a>b):

$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{F} \mathbf{b}}{9 \mathbf{E} \mathbf{I} \mathbf{L} \sqrt{3}} (\mathbf{L}^2 - \mathbf{b}^2)^{3/2}$$
 para $\mathbf{x} = \sqrt{\frac{\mathbf{L}^2 - \mathbf{b}^2}{3}}$

VIGA SIMPLE APOYADA: carga puntual F centrada.

Reacciones y solicitaciones

Reacciones: $\mathbf{R}_{A} = \mathbf{R}_{B} = \frac{\mathbf{F}}{2}$

Cortantes:
$$\mathbf{V}_{AC} = \frac{\mathbf{F}}{2}$$
 $\mathbf{V}_{CB} = -\frac{\mathbf{F}}{2}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{F}}{2}\mathbf{x}$$
 $\mathbf{M}_{CB} = \frac{\mathbf{F}}{2}(\mathbf{L} - \mathbf{x})$

$$\mathbf{M}_{\text{máx}} = \mathbf{M}_{\text{C}} = \frac{\mathbf{FL}}{4}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

Deformaciones

Giros:

$$\phi_A = -\frac{\mathbf{F}\mathbf{L}^2}{16\mathbf{E}\mathbf{I}} \qquad \qquad \phi_B = \frac{\mathbf{F}\mathbf{L}^2}{16\mathbf{E}\mathbf{I}} \qquad \qquad \phi_C = 0$$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{L}^2 \mathbf{x}}{16 \,\mathbf{E}\mathbf{I}} \left(1 - \frac{4}{3} \frac{\mathbf{x}^2}{\mathbf{L}^2} \right) \qquad \mathbf{y}_{CB} = \frac{\mathbf{F}\mathbf{L}^2 (\mathbf{L} - \mathbf{x})}{12 \,\mathbf{E}\mathbf{I}} \left(\frac{3}{4} - \frac{(\mathbf{L} - \mathbf{x})^2}{\mathbf{L}^2} \right)$$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = \mathbf{y}_{\text{C}} = \frac{\mathbf{F} \mathbf{L}^3}{48 \mathbf{E} \mathbf{I}}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

VIGA SIMPLE APOYADA: cargas puntuales ${f F}$ simétricas.

Reacciones y solicitaciones

 $\mathbf{V}_{\mathrm{DR}} = -\mathbf{F}$

Reacciones: $\mathbf{R}_{A} = \mathbf{R}_{B} = \mathbf{F}$

Cortantes:
$$\mathbf{V}_{AC} = \mathbf{F}$$
 $\mathbf{V}_{CD} = 0$

Flectores:
$$\mathbf{M}_{AC} = \mathbf{F} \mathbf{x}$$
 $\mathbf{M}_{DB} = \mathbf{F} (\mathbf{L} - \mathbf{x})$ $\mathbf{M}_{CD} = \mathbf{M}_{m\acute{a}x} = \mathbf{F} \mathbf{a}$

Deformaciones

Giros:

$$-\phi_{A} = \phi_{B} = \frac{\mathbf{Fa}(\mathbf{L} - \mathbf{a})}{2\mathbf{EI}}$$
 $-\phi_{C} = \phi_{D} = \frac{\mathbf{Fa}(\mathbf{L} - 2\mathbf{a})}{2\mathbf{EI}}$

Elástica:

$$\mathbf{y}_{\mathrm{AC}} = \frac{\mathbf{F}\mathbf{x}}{6\mathbf{E}\mathbf{I}} \left(3\mathbf{a}\mathbf{L} - 3\mathbf{a}^2 - \mathbf{x}^2 \right) \qquad \mathbf{y}_{\mathrm{CD}} = \frac{\mathbf{F}\mathbf{a}}{6\mathbf{E}\mathbf{I}} \left(3\mathbf{L}\mathbf{x} - 3\mathbf{x}^2 - \mathbf{a}^2 \right)$$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{F} \mathbf{a}}{24 \mathbf{E} \mathbf{I}} (3 \mathbf{L}^2 - 4 \mathbf{a}^2)$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

$f VIGA SIMPLE APOYADA: carga uniforme {f q} en un extremo.$

 $\mathbf{M}_{\text{máx}}$

Reacciones y solicitaciones

Reacciones: $\mathbf{R}_{A} = \frac{\mathbf{q}\mathbf{a}}{\mathbf{L}} \left(\mathbf{b} + \frac{\mathbf{a}}{2} \right)$ $\mathbf{R}_{B} = \frac{\mathbf{q}\mathbf{a}^{2}}{2\mathbf{L}}$

Cortantes:

$$\mathbf{V}_{A} = \frac{\mathbf{q}\mathbf{a}}{\mathbf{L}} \left(\mathbf{b} + \frac{\mathbf{a}}{2} \right)$$
 $\mathbf{V}_{AC} = \frac{\mathbf{q}\mathbf{a}}{\mathbf{L}} \left(\mathbf{b} + \frac{\mathbf{a}}{2} \right) - \mathbf{p}\mathbf{x}$ $\mathbf{V}_{CB} = -\frac{\mathbf{q}\mathbf{a}^{2}}{2\mathbf{L}}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{q}\mathbf{a}}{\mathbf{L}} \left(\mathbf{b} + \frac{\mathbf{a}}{2} \right) \mathbf{x} - \frac{\mathbf{p} \mathbf{x}^2}{2}$$
 $\mathbf{M}_{CB} = \frac{\mathbf{q}\mathbf{a}^2}{2\mathbf{L}} \left(\mathbf{L} - \mathbf{x} \right)$ $\mathbf{M}_{m\acute{a}x} = \frac{\mathbf{q}\mathbf{a}^2}{2} \left(1 - \frac{\mathbf{a}}{2\mathbf{L}} \right)^2$ para $\mathbf{x}_m = \mathbf{a} \left(1 - \frac{\mathbf{a}}{2\mathbf{L}} \right)$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{\mathbf{qa}^{2}}{24 \mathbf{EIL}} (\mathbf{L} + \mathbf{b})^{2}$$
 $\varphi_{B} = \frac{\mathbf{qa}^{2}}{12 \mathbf{EI}} \left(1 - \frac{\mathbf{a}^{2}}{2 \mathbf{L}^{2}}\right) \mathbf{L}$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{q}\mathbf{x}}{24\mathbf{EIL}} \left[\mathbf{L}\mathbf{x}^3 - 4\mathbf{a} \left(\mathbf{b} + \frac{\mathbf{a}}{2} \right) \mathbf{x}^2 + \mathbf{a}^2 \left(\mathbf{L} + \mathbf{b} \right)^2 \right]$$

$$\mathbf{y}_{CB} = -\frac{\mathbf{q}(\mathbf{L} - \mathbf{x})\mathbf{a}^2}{12\mathbf{EIL}} \left[(\mathbf{L} - \mathbf{x})^2 - \mathbf{L}^2 \left(1 - \frac{\mathbf{a}^2}{2\mathbf{L}^2} \right) \right]$$

Flecha máxima:
$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{qa}^2}{216 \, \text{FU}} \left(2\mathbf{L}^2 - \mathbf{a}^2 \right) \sqrt{6 \left(2\mathbf{L}^2 - \mathbf{a}^2 \right)}$$

para **a**<0,4531**L** en **x** = **L** -
$$\sqrt{\frac{\mathbf{L}^2}{3} - \frac{\mathbf{a}^2}{6}}$$

VIGA SIMPLE APOYADA: carga uniforme q en todo el vano.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \mathbf{R}_{B} = \frac{\mathbf{qL}}{2}$$

Cortantes:
$$\mathbf{V}_{AB} = \mathbf{q} \left(\frac{\mathbf{L}}{2} - \mathbf{x} \right)$$
 $\mathbf{V}_{A} = -\mathbf{V}_{B} = \frac{\mathbf{q} \mathbf{L}}{2}$

Flectores:
$$\mathbf{M}_{AB} = \frac{\mathbf{q}\mathbf{x}}{2}(\mathbf{L} - \mathbf{x})$$

$$\mathbf{M}_{\text{máx}} = \frac{\mathbf{qL}^2}{8}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{qL^{3}}{24 EI} \qquad \varphi_{B} = \frac{qL^{3}}{24 EI}$$

Elástica:
$$\mathbf{y}_{AB} = \frac{\mathbf{q}\mathbf{x}}{24\mathbf{E}\mathbf{I}} \left(\mathbf{x}^3 - 2\mathbf{L}\mathbf{x}^2 + \mathbf{L}^3 \right)$$

Flecha máxima:
$$\mathbf{y}_{\text{máx}} = \frac{5 \, \mathbf{q} \, \mathbf{L}^4}{384 \, \mathbf{FI}}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

VIGA SIMPLE APOYADA: carga uniforme ${f q}$ en tramo intermedio.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{qbc}}{\mathbf{L}}$$
 $\mathbf{R}_{B} = \frac{\mathbf{qac}}{\mathbf{L}}$

Cortantes:

$$\mathbf{V}_{\mathrm{AC}} = \frac{\mathbf{qbc}}{\mathbf{L}}$$
 $\mathbf{V}_{\mathrm{CD}} = \frac{\mathbf{qbc}}{\mathbf{L}} - \mathbf{q} \left(\frac{\mathbf{c}}{2} - \mathbf{a} + \mathbf{x} \right)$ $\mathbf{V}_{\mathrm{DB}} = -\frac{\mathbf{qac}}{\mathbf{L}}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{qbc}}{\mathbf{L}}\mathbf{x}$$
 $\mathbf{M}_{CD} = \frac{\mathbf{qbc}}{\mathbf{L}}\mathbf{x} - \frac{\mathbf{q}}{2}\left[\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2}\right]^2$

$$\mathbf{M}_{\mathrm{DB}} = \frac{\mathbf{qac}}{\mathbf{L}} (\mathbf{L} - \mathbf{x})$$
 $\mathbf{M}_{\mathrm{máx}} = \frac{\mathbf{qbc}}{2\mathbf{L}} \left(2\mathbf{a} - \mathbf{c} + \frac{\mathbf{bc}}{\mathbf{L}} \right)$ para $\mathbf{x}_{\mathrm{m}} = \mathbf{a} - \frac{\mathbf{c}}{2} + \frac{\mathbf{bc}}{\mathbf{L}}$

Deformaciones

Giros:
$$\phi_A = -\frac{\mathbf{qabc}}{6\mathbf{EIL}} \left(\mathbf{L} + \mathbf{b} - \frac{\mathbf{c}^2}{4\mathbf{a}} \right) \qquad \phi_B = \frac{\mathbf{qabc}}{6\mathbf{EIL}} \left(\mathbf{L} + \mathbf{a} - \frac{\mathbf{c}^2}{4\mathbf{b}} \right)$$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{qbcx}}{6\mathbf{EIL}} \left| -\mathbf{x}^2 + \mathbf{a} \left(\mathbf{L} + \mathbf{b} - \frac{\mathbf{c}^2}{4\mathbf{a}} \right) \right|$$

$$\mathbf{y}_{CD} = \frac{\mathbf{q}}{24 \mathbf{EIL}} \left[\mathbf{L} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)^4 - 4 \mathbf{b} \mathbf{c} \mathbf{x}^3 + 4 \mathbf{a} \mathbf{b} \mathbf{c} \left(\mathbf{L} + \mathbf{b} - \frac{\mathbf{c}^2}{4 \mathbf{a}} \right) \mathbf{x} \right]$$

$$\mathbf{y}_{\mathrm{DB}} = \frac{\mathbf{qac}(\mathbf{L} - \mathbf{x})}{6\mathbf{EIL}} \left[-(\mathbf{L} - \mathbf{x})^2 + \mathbf{b} \left(\mathbf{L} + \mathbf{a} - \frac{\mathbf{c}^2}{4\mathbf{b}} \right) \right]$$

VIGA SIMPLE APOYADA: momento puntual ${f M}$ en extremo.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{M}}{\mathbf{L}}$$
 $\mathbf{R}_{B} = -\frac{\mathbf{M}}{\mathbf{L}}$

Cortantes:
$$V_{AB} = \frac{M}{L}$$

Flectores:
$$\mathbf{M}_{AB} = -\mathbf{M} \left(1 - \frac{\mathbf{x}}{\mathbf{L}} \right)$$
 $\mathbf{M}_{A} = -\mathbf{M}$ $\mathbf{M}_{B} = 0$

Deformaciones

Giros:
$$\varphi_{A} = \frac{ML}{3EI}$$
 $\varphi_{B} = -\frac{ML}{6EI}$

Elástica:

$$\mathbf{y}_{AB} = -\frac{\mathbf{ML}}{6\mathbf{EI}} \left(\mathbf{L} - \mathbf{x} \right) \left[1 - \left(\frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} \right)^{2} \right]$$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = -\frac{\mathbf{M} \mathbf{L}^2}{9 \mathbf{E} \mathbf{I} \sqrt{3}}$$
 para $\mathbf{x} = \mathbf{L} \left(1 - \frac{1}{\sqrt{3}} \right)$

VIGA SIMPLE APOYADA: momento puntual ${f M}$ intermedio.

Reacciones y solicitaciones

Reacciones: $\mathbf{R}_{A} = \frac{\mathbf{M}}{\mathbf{L}}$ $\mathbf{R}_{B} = -\frac{\mathbf{M}}{\mathbf{L}}$

Cortantes: $V_{AB} = \frac{M}{L}$

Flectores: $\mathbf{M}_{AC} = \frac{\mathbf{M}}{\mathbf{L}} \mathbf{x}$ $\mathbf{M}_{CB} = -\frac{\mathbf{M}}{\mathbf{L}} (\mathbf{L} - \mathbf{x})$

 $\mathbf{M}_{\mathrm{C}}^{\mathrm{izq}} = \frac{\mathbf{M}}{\mathbf{L}}\mathbf{a}$ $\mathbf{M}_{\mathrm{C}}^{\mathrm{der}} = -\frac{\mathbf{M}}{\mathbf{L}}\mathbf{b}$ $\left|\mathbf{M}\right| = \left|\mathbf{M}_{\mathrm{C}}^{\mathrm{izq}}\right| + \left|\mathbf{M}_{\mathrm{C}}^{\mathrm{der}}\right|$

Deformaciones

Giros:

$$\phi_{A} = \frac{\mathbf{ML}}{6\mathbf{EI}} \left(3\frac{\mathbf{b}^{2}}{\mathbf{L}^{2}} - 1 \right) \qquad \phi_{B} = \frac{\mathbf{ML}}{6\mathbf{EI}} \left(3\frac{\mathbf{a}^{2}}{\mathbf{L}^{2}} - 1 \right) \qquad \phi_{C} = \frac{\mathbf{M}}{3\mathbf{EIL}^{2}} \left(\mathbf{a}^{3} + \mathbf{b}^{3} \right)$$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{MLx}}{6\mathbf{EI}} \left(1 - 3\frac{\mathbf{b}^2}{\mathbf{L}^2} - \frac{\mathbf{x}^2}{\mathbf{L}^2} \right) \qquad \mathbf{y}_{CB} = -\frac{\mathbf{ML}(\mathbf{L} - \mathbf{x})}{6\mathbf{EI}} \left[1 - 3\frac{\mathbf{a}^2}{\mathbf{L}^2} - \left(\frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}}\right)^2 \right]$$

Flecha en C: $\mathbf{y}_{C} = -\frac{\mathbf{M} \mathbf{a} \mathbf{b}}{3 \mathbf{E} \mathbf{I} \mathbf{L}} (\mathbf{b} - \mathbf{a})$

f VIGA SIMPLE APOYADA: momentos puntuales \$M\$ contrarios en extremos.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{M}_{a} - \mathbf{M}_{b}}{\mathbf{I}}$$
 $\mathbf{R}_{B} = -\frac{\mathbf{M}_{a} - \mathbf{M}_{b}}{\mathbf{I}}$

Cortantes:
$$V_{AB} = \frac{M_a - M_b}{L}$$

Flectores:

$$\mathbf{M}_{AB} = -\frac{\mathbf{M}_a}{L}(\mathbf{L} - \mathbf{x}) - \frac{\mathbf{M}_b}{L}\mathbf{x}$$
 $\mathbf{M}_A = -\mathbf{M}_a$ $\mathbf{M}_B = -\mathbf{M}_b$

Deformaciones

Giros:

$$\phi_A \, = \frac{L}{6EI} \big(2 \boldsymbol{M}_a \, + \boldsymbol{M}_b \, \big) \qquad \quad \phi_B = -\frac{L}{6EI} \big(\boldsymbol{M}_a \, + 2 \boldsymbol{M}_b \, \big)$$

Elástica:

$$\mathbf{y}_{AB} = -\frac{\mathbf{M}_{a}\mathbf{x}}{6\mathbf{E}\mathbf{I}} \left(\mathbf{L} - \mathbf{x} \right) \left[1 + \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} + \frac{\mathbf{M}_{b}}{\mathbf{M}_{a}} \left(1 + \frac{\mathbf{x}}{\mathbf{L}} \right) \right]$$

VIGA SIMPLE APOYADA: momentos puntuales ${f M}$ en extremos.

Reacciones y solicitaciones

Reacciones: $\mathbf{R}_{A} = \frac{\mathbf{M}_{a} + \mathbf{M}_{b}}{\mathbf{T}}$ $\mathbf{R}_{B} = -\frac{\mathbf{M}_{a} + \mathbf{M}_{b}}{\mathbf{T}}$

Cortantes:
$$V_{AB} = \frac{M_a + M_b}{T}$$

Flectores:

$$\mathbf{M}_{AB} = -\frac{\mathbf{M}_{a}}{L}(\mathbf{L} - \mathbf{x}) + \frac{\mathbf{M}_{b}}{L}\mathbf{x}$$
 $\mathbf{M}_{A} = -\mathbf{M}_{a}$ $\mathbf{M}_{B} = \mathbf{M}_{b}$

Deformaciones

Giros:

$$\phi_{A} = -\frac{L}{6EI} (2M_{a} - M_{b}) \qquad \phi_{B} = -\frac{L}{6EI} (2M_{b} - M_{a})$$

Elástica:

$$\mathbf{y}_{AB} = \frac{\mathbf{x}(\mathbf{L} - \mathbf{x})}{6\mathbf{F}\mathbf{H}} \left[(\mathbf{M}_{a} + \mathbf{M}_{b})\mathbf{x} - (2\mathbf{M}_{a} - \mathbf{M}_{b})\mathbf{L} \right]$$

VIGA SIMPLE EMPOTRADA: carga puntual F genérica.

 $\mathbf{M}_{\mathbf{C}}$

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{F}\mathbf{b}^{2}}{\mathbf{L}^{3}}(\mathbf{L} + 2\mathbf{a})$$
 $\mathbf{R}_{B} = \frac{\mathbf{F}\mathbf{a}^{2}}{\mathbf{L}^{3}}(\mathbf{L} + 2\mathbf{b})$

Cortantes:
$$\mathbf{V}_{AC} = \frac{\mathbf{Fb}^2}{\mathbf{L}^3} (\mathbf{L} + 2\mathbf{a})$$
 $\mathbf{V}_{CB} = -\frac{\mathbf{Fa}^2}{\mathbf{L}^3} (\mathbf{L} + 2\mathbf{b})$

Flectores:
$$\mathbf{M}_{A} = -\frac{\mathbf{F}\mathbf{a}\mathbf{b}^{2}}{\mathbf{L}^{2}}$$
 $\mathbf{M}_{B} = -\frac{\mathbf{F}\mathbf{a}^{2}\mathbf{b}}{\mathbf{L}^{2}}$ $\mathbf{M}_{C} = \frac{2\mathbf{F}\mathbf{a}^{2}\mathbf{b}^{2}}{\mathbf{L}^{3}}$

$$\mathbf{M}_{AC} = \frac{\mathbf{Fb}^2}{\mathbf{L}^3} (\mathbf{Lx} + 2\mathbf{ax} - \mathbf{aL})$$
 $\mathbf{M}_{CB} = \frac{\mathbf{Fa}^2}{\mathbf{L}^3} (\mathbf{Lb} + \mathbf{L}^2 - \mathbf{Lx} - 2\mathbf{bx})$

Deformaciones

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{Fb}^2}{6\mathbf{EI}} \left(3\mathbf{a} - \mathbf{x} - \frac{2\mathbf{ax}}{\mathbf{L}} \right) \frac{\mathbf{x}^2}{\mathbf{L}^2}$$

$$\mathbf{y}_{CB} = \frac{\mathbf{Fa}^2}{6\mathbf{EI}} \left(3\mathbf{b} - (\mathbf{L} - \mathbf{x}) - 2\mathbf{b} \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} \right) \frac{(\mathbf{L} - \mathbf{x})^2}{\mathbf{L}^2}$$

Flechas:

$$\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{F} \mathbf{b}^{3} \mathbf{a}^{3}}{3 \mathbf{E} \mathbf{I} \mathbf{L}^{3}}$$
 $\mathbf{y}_{\mathrm{máx}} = \frac{2 \mathbf{F} \mathbf{b}^{2} \mathbf{a}^{3}}{3 \mathbf{E} \mathbf{I} (\mathbf{L} + 2\mathbf{a})^{2}}$ para $\mathbf{x} = \frac{2 \mathbf{a} \mathbf{L}}{\mathbf{L} + 2\mathbf{a}}$

VIGA SIMPLE EMPOTRADA: carga puntual ${f F}$ centrada.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \mathbf{R}_{B} = \frac{\mathbf{F}}{2}$$

Cortantes:
$$V_{AC} = \frac{F}{2}$$
 $V_{CB} = -\frac{F}{2}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{FL}}{8} \left(4 \frac{\mathbf{x}}{\mathbf{L}} - 1 \right) \qquad \mathbf{M}_{CB} = \frac{\mathbf{FL}}{8} \left(3 - 4 \frac{\mathbf{x}}{\mathbf{L}} \right)$$

$$\mathbf{M}_{A} = \mathbf{M}_{B} = -\frac{\mathbf{FL}}{8}$$
 $\mathbf{M}_{max} = \mathbf{M}_{C} = \frac{\mathbf{FL}}{8}$ para $\mathbf{x} = \frac{\mathbf{L}}{2}$

Deformaciones

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{FLx}^2}{48\mathbf{EI}} \left(3 - 4\frac{\mathbf{x}}{\mathbf{L}} \right)$$
 $\mathbf{y}_{CB} = \frac{\mathbf{F}(\mathbf{L} - \mathbf{x})^2}{48\mathbf{EI}} \left(4\mathbf{x} - \mathbf{L} \right)$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = \mathbf{y}_{\text{C}} = \frac{\mathbf{F} \mathbf{L}^3}{192 \, \mathbf{EI}}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

VIGA SIMPLE EMPOTRADA: cargas puntuales ${f F}$ simétricas.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \mathbf{R}_{B} = \mathbf{F}$$

Cortantes:
$$\mathbf{V}_{AC} = \mathbf{F}$$
 $\mathbf{V}_{CD} = 0$ $\mathbf{V}_{DB} = -\mathbf{F}$

Flectores:
$$\mathbf{M}_{AC} = \frac{\mathbf{F}}{\mathbf{L}} (\mathbf{L}(\mathbf{x} - \mathbf{a}) + \mathbf{a}^2)$$
 $\mathbf{M}_{CD} = \frac{\mathbf{F} \mathbf{a}^2}{\mathbf{L}}$

$$\mathbf{M}_{\mathrm{DB}} = \frac{\mathbf{F}}{\mathbf{L}} \Big(\mathbf{L} \Big(\mathbf{L} - \mathbf{x} - \mathbf{a} \Big) + \mathbf{a}^2 \Big)$$
 $\mathbf{M}_{\mathrm{A}} = \mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{F} \mathbf{a}}{\mathbf{L}} \Big(\mathbf{L} - \mathbf{a} \Big)$

Deformaciones

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{x}^2}{6\mathbf{EIL}} \left(3\mathbf{aL} - 3\mathbf{a}^2 - \mathbf{L}\mathbf{x} \right) \qquad \mathbf{y}_{CD} = \frac{\mathbf{F}\mathbf{a}^2}{6\mathbf{EIL}} \left(-\mathbf{aL} + 3\mathbf{L}\mathbf{x} - 3\mathbf{x}^2 \right)$$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{F} \mathbf{a}^2}{24 \mathbf{EI}} (3\mathbf{L} - 4\mathbf{a})$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

VIGA SIMPLE EMPOTRADA: carga uniforme q en un extremo.

Reacciones y solicitaciones

Reacciones:

$$\mathbf{R}_{A} = \frac{\mathbf{q}\mathbf{a}}{2\mathbf{L}}(\mathbf{L} + \mathbf{b}) - \frac{\mathbf{M}_{A} - \mathbf{M}_{B}}{\mathbf{L}} \qquad \mathbf{R}_{B} = \frac{\mathbf{q}\mathbf{a}^{2}}{2\mathbf{L}} + \frac{\mathbf{M}_{A} - \mathbf{M}_{B}}{\mathbf{L}}$$

Cortantes:

$$\mathbf{V}_{\mathrm{A}} = \mathbf{R}_{\mathrm{A}}$$
 $\mathbf{V}_{\mathrm{AC}} = \mathbf{R}_{\mathrm{A}} - \mathbf{p}\mathbf{x}$ $\mathbf{V}_{\mathrm{CB}} = \mathbf{R}_{\mathrm{A}} - \mathbf{p}\mathbf{a}$ $\mathbf{V}_{\mathrm{B}} = -\mathbf{R}_{\mathrm{B}}$

Flectores:

$$\mathbf{M}_{AC} = \mathbf{R}_{A} \mathbf{x} + \mathbf{M}_{A} - \frac{\mathbf{p} \mathbf{x}^{2}}{2} \qquad \mathbf{M}_{CB} = \mathbf{R}_{B} (\mathbf{L} - \mathbf{x}) + \mathbf{M}_{B}$$

$$\mathbf{M}_{A} = -\frac{\mathbf{q} \mathbf{a}^{2}}{12\mathbf{I}^{2}} \left(6\mathbf{L}^{2} - 8\mathbf{L}\mathbf{a} + 3\mathbf{a}^{2} \right) \qquad \mathbf{M}_{B} = -\frac{\mathbf{q} \mathbf{a}^{3}}{3\mathbf{I}} \left(1 - \frac{3\mathbf{a}}{4\mathbf{I}} \right)$$

Deformaciones

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{x}^2}{24\mathbf{E}\mathbf{I}} \left(\mathbf{q} \mathbf{x}^2 - 4\mathbf{R}_{A} \mathbf{x} - 12\mathbf{M}_{A} \right)$$

$$\mathbf{y}_{CB} = \frac{1}{6 \, \mathbf{EI}} \left[\mathbf{R}_{B} \mathbf{x}^{3} - 3 \left(\mathbf{M}_{B} + \mathbf{L} \mathbf{R}_{B} \right) \mathbf{x}^{2} + 3 \left(2 \mathbf{M}_{B} + \mathbf{L} \mathbf{R}_{B} \right) \mathbf{L} \mathbf{x} - \left(3 \mathbf{M}_{B} + \mathbf{L} \mathbf{R}_{B} \right) \mathbf{L}^{2} \right]$$

Flecha máxima:

$$\mathbf{y}_{\text{máx}} = -\frac{2\mathbf{M}_{\text{B}}^3}{3\mathbf{R}_{\text{B}}^2\mathbf{EI}}$$
 para $\mathbf{x} = \frac{2\mathbf{M}_{\text{B}} + \mathbf{L}\mathbf{R}_{\text{B}}}{\mathbf{R}_{\text{B}}}$

VIGA SIMPLE EMPOTRADA: carga uniforme q en todo el vano.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \mathbf{R}_{B} = \frac{\mathbf{qL}}{2}$$

Cortantes:
$$\mathbf{V}_{AB} = \mathbf{q} \left(\frac{\mathbf{L}}{2} - \mathbf{x} \right)$$
 $\mathbf{V}_{A} = -\mathbf{V}_{B} = \frac{\mathbf{q} \mathbf{L}}{2}$

Flectores:
$$\mathbf{M}_{AB} = -\frac{\mathbf{q}}{12} (\mathbf{L}^2 - 6\mathbf{L}\mathbf{x} + 6\mathbf{x}^2)$$
 $\mathbf{M}_{A} = \mathbf{M}_{B} = -\frac{\mathbf{q}\mathbf{L}^2}{12}$

$$\mathbf{M}_{\text{máx}} = \frac{\mathbf{qL}^2}{24}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$ $\mathbf{M}_{\text{x}} = 0$ para $\mathbf{x} = 0,2113\mathbf{L}$

Deformaciones

Elástica:
$$\mathbf{y}_{AB} = \frac{\mathbf{q}\mathbf{L}^4}{24\mathbf{E}\mathbf{I}} \left(\frac{\mathbf{x}}{\mathbf{L}} - \frac{\mathbf{x}^2}{\mathbf{L}^2}\right)^2$$

Flecha máxima:
$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{q} \mathbf{L}^4}{384 \, \text{FI}}$$
 para $\mathbf{x} = \frac{\mathbf{L}}{2}$

VIGA SIMPLE EMPOTRADA: carga uniforme ${f q}$ en tramo intermedio.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{qbc}}{\mathbf{L}} - \frac{\mathbf{M}_{A} - \mathbf{M}_{B}}{\mathbf{L}}$$
 $\mathbf{R}_{B} = \frac{\mathbf{qac}}{\mathbf{L}} + \frac{\mathbf{M}_{A} - \mathbf{M}_{B}}{\mathbf{L}}$

Cortantes:

$$\mathbf{V}_{\mathrm{AC}} = \mathbf{R}_{\mathrm{A}}$$
 $\mathbf{V}_{\mathrm{CD}} = \mathbf{R}_{\mathrm{A}} - \mathbf{q} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)$ $\mathbf{V}_{\mathrm{DB}} = -\mathbf{R}_{\mathrm{B}}$

Flectores:
$$\mathbf{M}_{AC} = \mathbf{R}_{A}\mathbf{x} + \mathbf{M}_{A}$$
 $\mathbf{M}_{CD} = \mathbf{R}_{A}\mathbf{x} + \mathbf{M}_{A} - \frac{\mathbf{q}}{2} \left[\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right]^{2}$

$$\mathbf{M}_{\mathrm{DB}} = \mathbf{R}_{\mathrm{B}} (\mathbf{L} - \mathbf{x}) + \mathbf{M}_{\mathrm{B}} \qquad \mathbf{M}_{\mathrm{A}} = -\frac{\mathbf{q} \mathbf{c}^{3}}{12 \mathbf{L}^{2}} \left(\mathbf{L} - 3\mathbf{b} + \frac{12 \mathbf{a} \mathbf{b}^{2}}{\mathbf{c}^{2}} \right)$$
$$\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{q} \mathbf{c}^{3}}{12 \mathbf{L}^{2}} \left(\mathbf{L} - 3\mathbf{a} + \frac{12 \mathbf{a}^{2} \mathbf{b}}{\mathbf{c}^{2}} \right)$$

Deformaciones

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{x}^2}{6\mathbf{E}\mathbf{I}} \left[-3\mathbf{M}_A - \mathbf{R}_A \mathbf{x} \right]$$
$$\mathbf{y}_{CD} = \frac{1}{24\mathbf{E}\mathbf{I}} \left[\mathbf{q} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)^4 - 4\mathbf{R}_A \mathbf{x}^3 - 12\mathbf{M}_A \mathbf{x}^2 \right]$$
$$\mathbf{y}_{DB} = \frac{1}{6\mathbf{E}\mathbf{I}} \left[\mathbf{R}_B \mathbf{x}^3 - 3(\mathbf{M}_B + \mathbf{L}\mathbf{R}_B)\mathbf{x}^2 + 3(2\mathbf{M}_A + \mathbf{L}\mathbf{R}_B)\mathbf{L}\mathbf{x} - (3\mathbf{M}_B + \mathbf{L}\mathbf{R}_B)\mathbf{L}^2 \right]$$

VIGA SIMPLE EMPOTRADA: momento puntual ${f M}$ intermedio.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{6\mathbf{M}}{\mathbf{L}^{3}}\mathbf{ab}$$
 $\mathbf{R}_{B} = -\frac{6\mathbf{M}}{\mathbf{L}^{3}}\mathbf{ab}$

Cortantes:
$$V_{AB} = \frac{6M}{L^3}ab$$

Flectores:

$$\mathbf{M}_{AC} = \frac{\mathbf{Ma}}{\mathbf{L}} \left[1 - 3 \frac{\mathbf{a}}{\mathbf{L}} \left(1 - 2 \frac{\mathbf{x}}{\mathbf{L}} \right) \right] \qquad \mathbf{M}_{CB} = -\frac{\mathbf{Mb}}{\mathbf{L}} \left[1 - 3 \frac{\mathbf{b}}{\mathbf{L}} \left(1 - 2 \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} \right) \right]$$

$$\mathbf{M}_{A} = \frac{\mathbf{Ma}}{\mathbf{L}} \left(1 - 3 \frac{\mathbf{a}}{\mathbf{L}} \right) \qquad \mathbf{M}_{B} = -\frac{\mathbf{Mb}}{\mathbf{L}} \left(1 - 3 \frac{\mathbf{b}}{\mathbf{L}} \right)$$

$$\mathbf{M}_{C}^{izq} = \mathbf{M}_{A} + \frac{6\mathbf{M}}{\mathbf{L}^{3}} \mathbf{a}^{2} \mathbf{b} \qquad \mathbf{M}_{C}^{der} = \mathbf{M}_{A} - \frac{\mathbf{M}}{\mathbf{L}^{3}} \left(\mathbf{L}^{3} - 6 \mathbf{a}^{2} \mathbf{b} \right)$$

Deformaciones

Elástica:

$$\mathbf{y}_{\mathrm{AC}} = \frac{\mathbf{Mbx}^2}{2\,\mathbf{EIL}} \left(2\mathbf{a} \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}^2} - \frac{\mathbf{b}}{\mathbf{L}} \right) \qquad \mathbf{y}_{\mathrm{CB}} = -\frac{\mathbf{Ma}(\mathbf{L} - \mathbf{x})^2}{2\,\mathbf{EIL}} \left(2\frac{\mathbf{bx}}{\mathbf{L}^2} - \frac{\mathbf{a}}{\mathbf{L}} \right)$$

Flecha en C:
$$\mathbf{y}_{C} = -\frac{\mathbf{M} \mathbf{a}^{2} \mathbf{b}^{2}}{2 \mathbf{E} \mathbf{I} \mathbf{L}^{3}} (\mathbf{a} - \mathbf{b})$$

$oldsymbol{\mathsf{VIGA}}$ $oldsymbol{\mathsf{SIMPLE}}$ $oldsymbol{\mathsf{APOYADA-EMPOTRADA:}}$ carga puntual $oldsymbol{\mathsf{F}}$ genérica.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{F}\mathbf{b}^{2}}{2\mathbf{I}^{3}}(3\mathbf{L} - \mathbf{b})$$
 $\mathbf{R}_{B} = \frac{\mathbf{F}\mathbf{a}}{2\mathbf{I}^{3}}(3\mathbf{L}^{2} - \mathbf{a}^{2})$

Cortantes:
$$\mathbf{V}_{AC} = \frac{\mathbf{F}\mathbf{b}^2}{2\mathbf{I}^3} (3\mathbf{L} - \mathbf{b})$$
 $\mathbf{V}_{CB} = -\frac{\mathbf{F}\mathbf{a}}{2\mathbf{I}^3} (3\mathbf{L}^2 - \mathbf{a}^2)$

Flectores:
$$\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{F}\mathbf{a}}{2\mathbf{I}^2} (\mathbf{L}^2 - \mathbf{a}^2)$$
 $\mathbf{M}_{\mathrm{C}} = \frac{\mathbf{F}\mathbf{a}}{2\mathbf{I}^3} \mathbf{b}^2 (3\mathbf{a} + 2\mathbf{b})$

$$\mathbf{M}_{AC} = \frac{\mathbf{F}\mathbf{x}\mathbf{b}^2}{2\mathbf{L}^3} (3\mathbf{a} + 2\mathbf{b}) \qquad \mathbf{M}_{CB} = \frac{\mathbf{F}\mathbf{a}}{2\mathbf{L}^3} (2\mathbf{L}^3 - 3\mathbf{L}^2\mathbf{x} + \mathbf{a}^2\mathbf{x})$$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{\mathbf{Fa}}{4\mathbf{EIL}}(\mathbf{L} - \mathbf{a})^{2}$$
 $\varphi_{C} = -\frac{\mathbf{Fa}(\mathbf{L} - \mathbf{a})^{2}}{4\mathbf{EIL}^{3}}(\mathbf{L}^{2} - 2\mathbf{aL} - \mathbf{a}^{2})$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{b}^2\mathbf{x}}{12\mathbf{E}\mathbf{I}\mathbf{L}^3} \left[3\mathbf{a}\mathbf{L}^2 - \mathbf{x}^2 (2\mathbf{L} + \mathbf{a}) \right]$$

$$\mathbf{y}_{CB} = \frac{\mathbf{Fa}(\mathbf{L} - \mathbf{x})^2}{12\mathbf{EI}} \left[3\left(1 - \frac{\mathbf{a}^2}{\mathbf{L}^2}\right) - \left(3 - \frac{\mathbf{a}^2}{\mathbf{L}^2}\right) \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} \right]$$

Flechas:
$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{F} \mathbf{b}^2 \mathbf{a}}{6\mathbf{E} \mathbf{I}} \sqrt{\frac{\mathbf{a}}{2\mathbf{L} + \mathbf{a}}}$$
 para $\mathbf{x} = \mathbf{L} \sqrt{\frac{\mathbf{a}}{2\mathbf{L} + \mathbf{a}}}$

$\overline{ extsf{VIGA SIMPLE APOYADA-EMPOTRADA:}}$ carga puntual $\overline{ extsf{F}}$ centrada.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{5}{16}\mathbf{F}$$
 $\mathbf{R}_{B} = \frac{11}{16}\mathbf{F}$

Cortantes:
$$\mathbf{V}_{AC} = \frac{5}{16}\mathbf{F}$$
 $\mathbf{V}_{CB} = -\frac{11}{16}\mathbf{F}$

Flectores:
$$\mathbf{M}_{AC} = \frac{5}{16} \mathbf{F} \mathbf{x}$$
 $\mathbf{M}_{CB} = \frac{\mathbf{F} \mathbf{L}}{16} \left(11 \frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}} - 3 \right)$

$$\mathbf{M}_{\mathrm{B}} = -\frac{3}{16}\mathbf{FL} \qquad \mathbf{M}_{\mathrm{C}} = \frac{5}{32}\mathbf{FL}$$

Giros:
$$\phi_{A} = -\frac{\mathbf{F}\mathbf{a}^{2}}{32\mathbf{E}\mathbf{I}} \qquad \qquad \phi_{C} = \frac{\mathbf{F}\mathbf{L}^{2}}{128\mathbf{E}\mathbf{I}}$$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{L}^2}{96\mathbf{E}\mathbf{I}}\mathbf{x} \left(3 - 5\frac{\mathbf{x}^2}{\mathbf{L}^2}\right) \qquad \mathbf{y}_{CB} = \frac{\mathbf{F}\mathbf{L}}{96\mathbf{E}\mathbf{I}}(\mathbf{L} - \mathbf{x})^2 \left(9 - 11\frac{\mathbf{L} - \mathbf{x}}{\mathbf{L}}\right)$$

Flechas:

$$\mathbf{y}_{\mathrm{C}} = \frac{7\mathbf{F}\mathbf{L}^{3}}{768\mathbf{E}\mathbf{I}}$$
 $\mathbf{y}_{\mathrm{máx}} = \frac{\mathbf{F}\mathbf{L}^{3}}{48\sqrt{5}\mathbf{E}\mathbf{I}}$ para $\mathbf{x} = \frac{\mathbf{L}}{\sqrt{5}}$

VIGA SIMPLE APOYADA-EMPOTRADA: cargas puntuales ${f F}$ simétricas.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \mathbf{F} \frac{2\mathbf{L}^2 + 3\mathbf{a}^2 - 3\mathbf{a}\mathbf{L}}{2\mathbf{L}^2}$$
 $\mathbf{R}_{B} = \mathbf{F} \frac{2\mathbf{L}^2 - 3\mathbf{a}^2 + 3\mathbf{a}\mathbf{L}}{2\mathbf{L}^2}$

$$\mathbf{V}_{AC} = \mathbf{F} \frac{2\mathbf{L}^2 + 3\mathbf{a}^2 - 3\mathbf{a}\mathbf{L}}{2\mathbf{L}^2}$$
 $\mathbf{V}_{CD} = 3\mathbf{F} \mathbf{a} \frac{\mathbf{a} - \mathbf{L}}{2\mathbf{L}^2}$ $\mathbf{V}_{DB} = \mathbf{F} \frac{-2\mathbf{L}^2 + 3\mathbf{a}^2 - 3\mathbf{a}\mathbf{L}}{2\mathbf{L}^2}$

lectores:
$$\mathbf{M}_{AC} = \mathbf{F} \mathbf{x} \frac{2\mathbf{L}^2 + 3\mathbf{a}^2 - 3\mathbf{a}\mathbf{L}}{2\mathbf{L}^2}$$
 $\mathbf{M}_{CD} = \mathbf{F} \left[\frac{3\mathbf{a}(\mathbf{a} - \mathbf{L})\mathbf{x}}{2\mathbf{L}^2} + \mathbf{a} \right]$

$$\mathbf{M}_{\mathrm{DB}} = \mathbf{F} \left(\frac{3\mathbf{a}^2 - 3\mathbf{a}\mathbf{L} - 2\mathbf{L}^2}{2\mathbf{L}^2} \mathbf{x} + \mathbf{L} \right) \qquad \mathbf{M}_{\mathrm{B}} = -3\mathbf{F} \mathbf{a} \frac{\mathbf{L} - \mathbf{a}}{2\mathbf{L}}$$

Giros:
$$\phi_A = -F \frac{a(L-a)}{4EI}$$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{x}}{12\mathbf{E}\mathbf{I}\mathbf{L}^2} \left[\left(3\mathbf{a}\mathbf{L} - 3\mathbf{a}^2 - 2\mathbf{L}^2 \right) \mathbf{x}^2 + 3\mathbf{a}\mathbf{L}^3 - 3\mathbf{a}^2\mathbf{L}^2 \right]$$
$$\mathbf{y}_{CD} = \frac{\mathbf{F}\mathbf{a}}{12\mathbf{E}\mathbf{I}\mathbf{L}^2} \left[3(\mathbf{L} - \mathbf{a})\mathbf{x}^3 - 6\mathbf{L}^2\mathbf{x}^2 + 3\mathbf{L}^2(\mathbf{L} + \mathbf{a})\mathbf{x} - 2\mathbf{L}^2\mathbf{a}^2 \right]$$

$$\mathbf{y}_{\mathrm{DB}} = \frac{\mathbf{F}(\mathbf{L} - \mathbf{x})^{2}}{12\mathbf{E}\mathbf{I}\mathbf{L}^{2}} \left[\left(3\mathbf{a}^{2} - 3\mathbf{a}\mathbf{L} - 2\mathbf{L}^{2} \right) \mathbf{x} + 2\mathbf{L} \left(3\mathbf{a}^{2} - 3\mathbf{a}\mathbf{L} + \mathbf{L}^{2} \right) \right]$$

Flecha máxima:
$$\mathbf{y}_{\text{máx}}$$
 para $\mathbf{x} = \frac{2\mathbf{L} - \sqrt{\mathbf{L}^2 + 3\mathbf{a}^2}}{3(\mathbf{L} - \mathbf{a})\mathbf{L}}$

VIGA SIMPLE APOYADA-EMPOTRADA: carga uniforme q intermedia.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{\mathbf{qbc}}{\mathbf{L}} + \frac{\mathbf{M}_{B}}{\mathbf{L}} \qquad \qquad \mathbf{R}_{B} = \frac{\mathbf{qac}}{\mathbf{L}} - \frac{\mathbf{M}_{B}}{\mathbf{L}}$$

Cortantes:
$$\mathbf{V}_{AC} = \mathbf{R}_{A}$$
 $\mathbf{V}_{CD} = \mathbf{R}_{A} - \mathbf{q} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)$ $\mathbf{V}_{DB} = -\mathbf{R}_{B}$

Flectores:
$$\mathbf{M}_{AC} = \mathbf{R}_{A} \mathbf{x}$$
 $\mathbf{M}_{CD} = \mathbf{R}_{A} \mathbf{x} - \frac{\mathbf{q}}{2} \left[\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right]^{2}$

$$\mathbf{M}_{\mathrm{DB}} = \mathbf{R}_{\mathrm{B}} (\mathbf{L} - \mathbf{x}) + \mathbf{M}_{\mathrm{B}}$$
 $\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{qabc}}{2\mathbf{L}^2} (\mathbf{L} + \mathbf{a} - \frac{\mathbf{c}^2}{4\mathbf{b}})$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{\mathbf{q} \mathbf{c}^{3}}{48 \mathbf{EIL}} \left(\mathbf{L} - 3\mathbf{b} + \frac{12 \mathbf{a} \mathbf{b}^{2}}{\mathbf{c}^{2}} \right)$$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{x}}{48\mathbf{EIL}} \left[-8\mathbf{R}_{A}\mathbf{L}\mathbf{x}^{2} + \mathbf{q}\mathbf{c}^{3} \left(\mathbf{L} - 3\mathbf{b} + \frac{12\mathbf{a}\mathbf{b}^{2}}{\mathbf{c}^{2}}\right) \right]$$

$$\mathbf{y}_{\text{CD}} = \frac{1}{48 \, \text{EIL}} \left[-8 \mathbf{R}_{\text{A}} \mathbf{L} \mathbf{x}^3 + 2 \mathbf{q} \mathbf{L} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)^4 + \mathbf{q} \mathbf{c}^3 \left(\mathbf{L} - 3 \mathbf{b} + \frac{12 \mathbf{a} \mathbf{b}^2}{\mathbf{c}^2} \right) \mathbf{x} \right]$$

$$\mathbf{y}_{\mathrm{DB}} = -\frac{(\mathbf{L} - \mathbf{x})^{2}}{6\mathbf{E}\mathbf{I}} \left[\mathbf{R}_{\mathrm{B}} (\mathbf{L} - \mathbf{x}) + 3\mathbf{M}_{\mathrm{B}} \right]$$

VIGA SIMPLE APOYADA-EMPOTRADA: carga uniforme ${f q}$ en todo el vano.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = \frac{3}{8}\mathbf{q}\mathbf{L}$$

$$\mathbf{R}_{\mathrm{B}} = \frac{5}{8}\mathbf{q}\mathbf{L}$$

Cortantes:
$$\mathbf{V}_{AB} = \mathbf{q}\mathbf{L} \left(\frac{3}{8} - \frac{\mathbf{x}}{\mathbf{L}} \right)$$
 $\mathbf{V}_{A} = \frac{3}{8}\mathbf{q}\mathbf{L}$ $\mathbf{V}_{B} = -\frac{5}{8}\mathbf{q}\mathbf{L}$

$$V_A = \frac{3}{9} qL$$

$$\mathbf{V}_{\mathrm{B}} = -\frac{5}{8}\mathbf{q}\mathbf{L}$$

Flectores:
$$\mathbf{M}_{AB} = \frac{\mathbf{q} \mathbf{x}}{8} (3\mathbf{L} - 4\mathbf{x})$$
 $\mathbf{M}_{B} = -\frac{\mathbf{q} \mathbf{L}^{2}}{8}$

$$\mathbf{M}_{\text{máx}(+)} = \frac{9}{128} \mathbf{q} \mathbf{L}^2$$
 para $\mathbf{x} = \frac{3}{8} \mathbf{L}$ $\mathbf{M}_{x} = 0$ para $\mathbf{x} = \frac{3}{4} \mathbf{L}$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{qL^{3}}{48EI}$$

Elástica:
$$\mathbf{y}_{AB} = \frac{\mathbf{q}\mathbf{x}}{48\,\mathbf{FI}}(\mathbf{L} + 2\mathbf{x})(\mathbf{L} - \mathbf{x})^2$$

Flecha máxima:
$$\mathbf{y}_{\text{máx}} = \frac{\mathbf{qL}^4}{185 \, \text{FI}}$$
 para $\mathbf{x} = \frac{1 + \sqrt{33}}{16} \mathbf{L}$

VIGA SIMPLE APOYADA-EMPOTRADA: momento puntual ${f M}$ intermedio.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{A} = -\mathbf{R}_{B} = \frac{3}{2} \frac{\mathbf{M}}{\mathbf{L}^{3}} (\mathbf{L}^{2} - \mathbf{a}^{2})$$

Cortantes:
$$V_{AB} = R_A$$

Flectores:

$$\mathbf{M}_{AC} = \frac{3}{2} \frac{\mathbf{M} \mathbf{x}}{\mathbf{L}^3} \left(\mathbf{L}^2 - \mathbf{a}^2 \right) \qquad \mathbf{M}_{CB} = \frac{\mathbf{M}}{2} \left[3 \frac{\mathbf{x}}{\mathbf{L}} \left(1 - \frac{\mathbf{a}^2}{\mathbf{L}^2} \right) - 2 \right]$$

$$\mathbf{M}_{\mathrm{B}} = \frac{\mathbf{M}}{2\mathbf{L}^2} \left(\mathbf{L}^2 - 3\mathbf{a}^2 \right) \qquad \mathbf{M}_{\mathrm{C}}^{\mathrm{izq}} = \mathbf{R}_{\mathrm{A}} \mathbf{a} \qquad \mathbf{M}_{\mathrm{C}}^{\mathrm{der}} = \mathbf{R}_{\mathrm{A}} \mathbf{a} - \mathbf{M}$$

Deformaciones

Giros:
$$\varphi_{A} = -\frac{M}{4EH}(L-a)(3a-L)$$

$$\phi_{C} = \frac{\mathbf{M}\mathbf{b}}{4\mathbf{E}\mathbf{I}} \left[4 - 3\frac{\mathbf{b}}{\mathbf{L}} \left(1 + \frac{\mathbf{a}}{\mathbf{L}} \right)^{2} \right]$$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{Mbx}}{4\mathbf{EU}^3} \left[-4\mathbf{L}^3 - (\mathbf{x}^2 - 3\mathbf{L}^2)(\mathbf{a} + \mathbf{L}) \right]$$

$$\mathbf{y}_{CB} = \frac{\mathbf{M} (\mathbf{L} - \mathbf{x})^2}{4 \mathbf{E} \mathbf{H}^3} \left[2\mathbf{a}^2 \mathbf{L} - \mathbf{x} (\mathbf{L}^2 - \mathbf{a}^2) \right]$$

VIGA SIMPLE APOYADA-EMPOTRADA: momento puntual ${f M}$ extremo.

Reacciones y solicitaciones

Reacciones:

$$\mathbf{R}_{\mathrm{A}} = -\mathbf{R}_{\mathrm{B}} = \frac{3}{2} \frac{\mathbf{M}}{\mathbf{L}}$$

Cortantes:

$$\mathbf{V}_{\Delta \mathbf{R}} = \mathbf{R}_{\Delta}$$

Flectores:

$$\mathbf{M}_{AB} = \frac{\mathbf{M}}{2} \left(3 \frac{\mathbf{x}}{\mathbf{L}} - 2 \right) \qquad \mathbf{M}_{B} = \frac{\mathbf{M}}{2}$$

Deformaciones

Giros:

$$\varphi_{A} = \frac{ML}{4EI}$$

Elástica:

$$\mathbf{y}_{AB} = -\frac{\mathbf{M}\,\mathbf{x}}{4\,\mathbf{E}\mathbf{H}} \left(\mathbf{L} - \mathbf{x}\right)^2$$

VIGA SIMPLE EN VOLADIZO: carga puntual \mathbf{F} en extremo.

Reacciones y solicitaciones

Reacciones:

$$\mathbf{R}_{\mathrm{B}} = \mathbf{F}$$

Cortantes:

$$\mathbf{V}_{\mathrm{AB}} = -\mathbf{F}$$

Flectores:

$$\mathbf{M}_{\mathrm{CB}} = -\mathbf{F}\mathbf{x}$$
 $\mathbf{M}_{\mathrm{B}} = -\mathbf{F}\mathbf{L}$

$$\mathbf{M}_{\mathrm{B}} = -\mathbf{F}\mathbf{L}$$

Deformaciones

Giros:

$$\varphi_{A} = \frac{\mathbf{FL}^{2}}{2\mathbf{EI}}$$

Elástica:

$$\mathbf{y}_{AB} = \frac{\mathbf{F}}{6\mathbf{EI}}(\mathbf{L} - \mathbf{x})^2(2\mathbf{L} + \mathbf{x})$$

Flechas:

$$\mathbf{y}_{\mathbf{A}} = \frac{\mathbf{F}\mathbf{L}^3}{3\mathbf{E}\mathbf{I}}$$

VIGA SIMPLE EN VOLADIZO: carga puntual F genérica.

Reacciones y solicitaciones

Cortantes:

$$\mathbf{V}_{\mathrm{AC}} = 0 \qquad \qquad \mathbf{V}_{\mathrm{CB}} = -\mathbf{F}$$

Flectores:

$$\mathbf{M}_{\Delta C} = 0$$

$$\mathbf{M}_{AC} = 0$$
 $\mathbf{M}_{CB} = -\mathbf{F}(\mathbf{x} - \mathbf{a})$ $\mathbf{M}_{B} = -\mathbf{F}\mathbf{b}$

$$\mathbf{M}_{\mathbf{R}} = -\mathbf{F}\mathbf{b}$$

Deformaciones

 \mathbf{M}_{B}

$$\varphi_{\rm C} = \varphi_{\rm A} = \frac{\mathbf{Fb}^2}{2\mathbf{EI}}$$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{b}^2}{6\mathbf{E}\mathbf{I}} [3(\mathbf{L} - \mathbf{x}) - \mathbf{b}]$$

$$\mathbf{y}_{AC} = \frac{\mathbf{F}\mathbf{b}^2}{6\mathbf{E}\mathbf{I}} [3(\mathbf{L} - \mathbf{x}) - \mathbf{b}]$$
 $\mathbf{y}_{CB} = \frac{\mathbf{F}}{6\mathbf{E}\mathbf{I}} (\mathbf{L} - \mathbf{x})^2 (2\mathbf{b} - \mathbf{a} + \mathbf{x})$

Flechas:

$$\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{F} \mathbf{b}^{3}}{3\mathbf{E}\mathbf{I}}$$

$$\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{F}\mathbf{b}^{3}}{3\mathbf{E}\mathbf{I}}$$
 $\mathbf{y}_{\mathrm{A}} = \frac{\mathbf{F}\mathbf{b}^{2}}{6\mathbf{E}\mathbf{I}}(2\mathbf{b} + 3\mathbf{a})$

VIGA SIMPLE EN VOLADIZO: carga uniforme q intermedia.

Reacciones y solicitaciones

Reacciones:
$$\mathbf{R}_{\mathrm{B}} = \mathbf{qc}$$

Cortantes:
$$\mathbf{V}_{AC} = 0$$
 $\mathbf{V}_{CD} = -\mathbf{q} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)$ $\mathbf{V}_{B} = -\mathbf{q} \mathbf{c}$

Flectores:
$$\mathbf{M}_{AC} = 0$$
 $\mathbf{M}_{CD} = -\frac{\mathbf{q}}{2} \left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)^2$

$$\mathbf{M}_{\mathrm{DB}} = -\mathbf{q}\mathbf{c}(\mathbf{x} - \mathbf{a})$$
 $\mathbf{M}_{\mathrm{B}} = -\mathbf{q}\mathbf{c}\mathbf{b}$

Deformaciones

Giros:
$$\varphi_{A} = \varphi_{C} = \frac{\mathbf{qc}}{2\mathbf{EI}} \left(\mathbf{b}^{2} + \frac{\mathbf{c}^{2}}{12} \right) \varphi_{D} = \frac{\mathbf{qc}}{2\mathbf{EI}} \left(\mathbf{b}^{2} - \frac{\mathbf{c}^{2}}{4} \right)$$

Elástica:
$$\mathbf{y}_{AC} = \frac{\mathbf{qc}}{6\mathbf{EI}} \left[\left(\mathbf{a} - \mathbf{x} \right) \left(3\mathbf{b}^2 + \frac{\mathbf{c}^2}{4} \right) + 2\mathbf{b}^3 \right]$$

$$\mathbf{y}_{\mathrm{CD}} = \frac{\mathbf{q}}{24\,\mathbf{EI}} \left[\left(\mathbf{x} - \mathbf{a} + \frac{\mathbf{c}}{2} \right)^4 + 4\mathbf{c} \left(\mathbf{a} - \mathbf{x} \right) \left(3\mathbf{b}^2 + \frac{\mathbf{c}^2}{4} \right) + 8\mathbf{b}^3 \mathbf{c} \right]$$

$$\mathbf{y}_{\mathrm{DB}} = \frac{\mathbf{q} \, \mathbf{c}}{6 \mathbf{E} \mathbf{I}} (\mathbf{L} - \mathbf{x})^2 (2\mathbf{b} - \mathbf{a} + \mathbf{x})$$

Elástica:
$$\mathbf{y}_{A} = \frac{\mathbf{q} \mathbf{c}}{6\mathbf{E}\mathbf{I}} \left[\mathbf{a} \left(3\mathbf{b}^{2} + \frac{\mathbf{c}^{2}}{4} \right) + 2\mathbf{b}^{3} \right]$$

$$\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{q} \mathbf{c}}{12\mathbf{E}\mathbf{I}} \left[\left(\mathbf{b} + \frac{\mathbf{c}}{2} \right)^{2} \left(4\mathbf{b} - \mathbf{c} \right) + \mathbf{c}^{3} \right] \qquad \mathbf{y}_{\mathrm{D}} = \frac{\mathbf{q} \mathbf{c}}{\mathbf{E}\mathbf{I}} \left(\mathbf{b} - \frac{\mathbf{c}}{2} \right)^{2} \left(\frac{\mathbf{b}}{3} + \frac{\mathbf{c}}{12} \right)$$

VIGA SIMPLE EN VOLADIZO: carga uniforme \mathbf{q} en todo el vano.

Reacciones y solicitaciones

Reacciones: $R_B = qL$

Cortantes: $V_{AB} = -q x$ $V_{B} = -qL$

Flectores: $\mathbf{M}_{AB} = -\frac{\mathbf{q} \mathbf{x}^2}{2}$ $\mathbf{M}_{B} = -\frac{\mathbf{q} \mathbf{L}^2}{2}$

Deformaciones

Giros: $\varphi_A = \frac{\mathbf{q} \mathbf{L}^3}{6\mathbf{E}\mathbf{I}}$

Elástica: $\mathbf{y}_{AB} = \frac{\mathbf{q}}{24 \, \text{FJ}} (\mathbf{L} - \mathbf{x})^2 (3\mathbf{L}^2 + 2\mathbf{L}\mathbf{x} + \mathbf{x}^2)$

Flecha máxima: $\mathbf{y}_{A} = \frac{\mathbf{q} \mathbf{L}^{4}}{8 \mathbf{E} \mathbf{I}}$

VIGA SIMPLE EN VOLADIZO: momento puntual ${f M}$ extremo.

Reacciones:

$$\mathbf{R}_{\mathrm{B}} = 0$$

Cortantes:

$$\mathbf{V}_{AB} = 0$$

Flectores:

$$\mathbf{M}_{AB} = -\mathbf{M}$$

Deformaciones

Giros:

$$\phi_{A} = -\frac{ML}{EI}$$

Elástica:

 \mathbf{M}_{B}

$$\mathbf{y}_{AB} = \frac{\mathbf{M}}{2\mathbf{E}\mathbf{I}} \left(\mathbf{x}^2 - 2\mathbf{L}\mathbf{x} + \mathbf{L}^2 \right)$$

Flecha:

$$\mathbf{y}_{\mathrm{A}} = \frac{\mathbf{M}\mathbf{L}^2}{2\mathbf{E}\mathbf{I}}$$

VIGA SIMPLE EN VOLADIZO: momento puntual M intermedio.

$$\mathbf{V}_{\mathrm{AB}} = 0$$

Reacciones: $\mathbf{R}_{\mathrm{B}} = 0$

Cortantes: $\mathbf{V}_{AB} = 0$

Flectores:

$$\mathbf{M}_{\mathrm{AC}} = 0 \qquad \qquad \mathbf{M}_{\mathrm{CB}} = -\mathbf{M}$$

$$\mathbf{M}_{\mathrm{B}} = -\mathbf{M}$$

Deformaciones

Giros:

$$\phi_A = \phi_C = \frac{Mb}{EI}$$

Elástica:

$$\mathbf{y}_{AC} = \frac{\mathbf{M}}{2\mathbf{EI}} \mathbf{b} (2\mathbf{L} - 2\mathbf{x} - \mathbf{b})$$
 $\mathbf{y}_{CB} = \frac{\mathbf{M}}{2\mathbf{EI}} (\mathbf{L} - \mathbf{x})^2$

$$\mathbf{y}_{\mathrm{CB}} = \frac{\mathbf{M}}{2\mathbf{E}\mathbf{I}} (\mathbf{L} - \mathbf{x})^2$$

Flecha:

$$\mathbf{y}_{\mathrm{A}} = \frac{\mathbf{M}}{2\mathbf{E}\mathbf{I}}\mathbf{b}(2\mathbf{L} - \mathbf{b})$$
 $\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{M}\mathbf{b}^{2}}{2\mathbf{E}\mathbf{I}}$

$$\mathbf{y}_{\mathrm{C}} = \frac{\mathbf{M}\mathbf{b}^2}{2\mathbf{E}\mathbf{I}}$$

VIGA 2 VANOS IGUALES: carga puntual ${f F}$ en 1 $^{ m er}$ vano.

$$\mathbf{R}_{A} = \frac{\mathbf{F}}{4\mathbf{L}^{3}} \cdot \left(4\mathbf{L}^{3} - 5\mathbf{L}^{2}\mathbf{a} + \mathbf{a}^{3}\right)$$

$$\mathbf{R}_{\mathrm{B}} = \frac{\mathbf{F}\mathbf{a}}{2\mathbf{L}^{3}} \cdot \left(3\mathbf{L}^{2} - \mathbf{a}^{2}\right)$$

$$\mathbf{R}_{\mathrm{C}} = -\frac{\mathbf{F}\mathbf{a}}{4\mathbf{L}^{3}} \cdot \left(\mathbf{L}^{2} - \mathbf{a}^{2}\right)$$

Cortantes

$$\mathbf{V}_{\mathrm{AD}} = \mathbf{R}_{\mathrm{A}}$$

$$\mathbf{V}_{\mathrm{DB}} = \frac{\mathbf{F}\mathbf{a}}{4\mathbf{L}^{3}} \cdot \left(\mathbf{a}^{2} - 5\mathbf{L}^{2}\right)$$

$$\mathbf{V}_{\mathrm{BC}} = -\mathbf{R}_{\mathrm{C}}$$

$$\mathbf{V}_{BC} = -\mathbf{R}_{C}$$

$$\mathbf{M}_{AD} = \frac{\mathbf{F}}{4\mathbf{L}^{3}} \cdot \left(4\mathbf{L}^{3} - 5\mathbf{L}^{2}\mathbf{a} + \mathbf{a}^{3}\right) \cdot \mathbf{x}$$

$$\mathbf{M}_{\mathrm{DB}} = \frac{\mathbf{F}\mathbf{a}}{4\mathbf{I}^{3}} \cdot \left(\mathbf{a}^{2} - 5\mathbf{L}^{2}\right) \cdot \mathbf{x} + \mathbf{P}\mathbf{a}$$

$$\mathbf{M}_{\mathrm{BC}} = \frac{\mathbf{F}\mathbf{a}}{4\mathbf{I}^{3}} \cdot \left(\mathbf{L}^{2} - \mathbf{a}^{2}\right) \cdot \left(\mathbf{x} - 2\mathbf{L}\right)$$

$$\mathbf{M}_{\mathrm{D}} = \frac{\mathbf{F}\mathbf{a}}{4\mathbf{L}^{3}} \cdot \left(4\mathbf{L}^{3} - 5\mathbf{L}^{2}\mathbf{a} + \mathbf{a}^{3}\right)$$

$$\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{F}\mathbf{a}}{4\mathbf{L}^2} \cdot \left(\mathbf{L}^2 - \mathbf{a}^2\right)$$

VIGA 2 VANOS IGUALES: carga repartida en 1er vano.

Reacciones

$$\mathbf{R}_{A} = \frac{7 \, \mathbf{q} \mathbf{L}}{16}$$

$$\mathbf{R}_{\mathrm{B}} = \frac{5\,\mathrm{qL}}{8}$$

$$\mathbf{R}_{\mathrm{C}} = -\frac{\mathbf{q}\mathbf{L}}{16}$$

Cortantes

$$\mathbf{V}_{AB} = \frac{\mathbf{q}}{16} \cdot (7\mathbf{L} - 16\mathbf{x})$$

$$V_B^{izq} = -\frac{9 \, qL}{16}$$

$$\mathbf{V}_{\mathrm{BC}} = \frac{\mathbf{q} \, \mathbf{L}}{16}$$

Flectores

$$\mathbf{M}_{AB} = \frac{\mathbf{q} \, \mathbf{x}}{16} \cdot \left(7\mathbf{L} - 8\mathbf{x} \right)$$

$$\mathbf{M}_{\mathrm{BC}} = -\frac{\mathbf{q}\,\mathbf{L}}{16} \cdot (2\mathbf{L} - \mathbf{x})$$

$$\mathbf{M}_{\text{máx}} = \frac{49 \,\mathbf{q} \,\mathbf{L}^2}{512} \qquad \text{para } \mathbf{x} = \frac{7 \,\mathbf{L}}{16}$$

VIGA 2 VANOS IGUALES: carga repartida en los 2 vanos.

Reacciones

$$\mathbf{R}_{\mathbf{A}} = \mathbf{R}_{\mathbf{C}} = \frac{3\,\mathbf{q}\mathbf{L}}{8}$$

$$\mathbf{R}_{\mathrm{B}} = \frac{5\,\mathbf{q}\mathbf{L}}{4}$$

Cortantes

$$\mathbf{V}_{AB} = \frac{\mathbf{q}}{8} \cdot \left(3\mathbf{L} - 8\mathbf{x} \right)$$

$$\mathbf{V}_{\mathrm{B}}^{\mathrm{izq}} = -\mathbf{V}_{\mathrm{B}}^{\mathrm{der}} = -\frac{5\,\mathbf{q}\mathbf{L}}{8}$$

$$\mathbf{V}_{\mathrm{BC}} = \frac{\mathbf{q}}{8} \cdot \left(13\mathbf{L} - 8\mathbf{x} \right)$$

Flectores

$$\mathbf{M}_{AB} = \frac{\mathbf{q} \, \mathbf{x}}{8} \cdot \left(3\mathbf{L} - 4\mathbf{x} \right)$$

$$\mathbf{M}_{BC} = \frac{\mathbf{q}}{8} \cdot (2\mathbf{L} - \mathbf{x}) \cdot (4\mathbf{x} - 5\mathbf{L})$$

$$\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{q}\mathbf{L}^2}{8}$$

$$\mathbf{M}_{\text{máx}} = \frac{9 \,\mathbf{q} \,\mathbf{L}^2}{128} \qquad \text{para} \quad \mathbf{x} = \frac{3 \,\mathbf{L}}{8} \quad \text{y} \quad \mathbf{x} = \frac{13 \,\mathbf{L}}{8}$$

VIGA 2 VANOS DESIGUALES: carga repartida en los 2 vanos.

Reacciones:

$$\mathbf{R}_{\mathrm{A}} = \mathbf{V}_{\mathrm{A}}$$

$$\mathbf{R}_{\mathrm{B}} = -\mathbf{V_{\mathrm{B}}}^{\mathrm{izq}} + \mathbf{V_{\mathrm{B}}}^{\mathrm{der}}$$

$$\mathbf{R}_{\mathrm{C}} = -\mathbf{V}_{\mathrm{C}}$$

		Corta	antes				Flectores	3	
k	\mathbf{V}_{A}	$\mathbf{V}_{\mathrm{B}}^{\mathrm{izq}}$	${f V_B}^{ m der}$	\mathbf{V}_{C}	$\mathbf{M_{B}}^{(-)}$	$\mathbf{M_D}^{(+)}$	d	$\mathbf{M}_{\mathrm{E}}^{(+)}$	e
	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{L})$
1,1	0,424	-0,676	0,639	-0,361	-0,139	0,090	0,424	0,065	0,361
1,2	0,471	-0,729	0,655	-0,345	-0,155	0,111	0,471	0,060	0,345
1,3	0,516	-0,784	0,674	-0,326	-0,174	0,133	0,516	0,053	0,326
1,4	0,560	-0,840	0,695	-0,305	-0,195	0,157	0,560	0,047	0,305
1,5	0,604	-0,896	0,719	-0,281	-0,219	0,183	0,604	0,040	0,281
1,6	0,647	-0,953	0,745	-0,255	-0,245	0,209	0,647	0,033	0,255
1,7	0,689	-1,011	0,774	-0,226	-0,274	0,237	0,689	0,026	0,226
1,8	0,730	-1,070	0,805	-0,195	-0,305	0,267	0,730	0,019	0,195
1,9	0,772	-1,128	0,839	-0,161	-0,339	0,298	0,772	0,013	0,161
2	0,812	-1,188	0,875	-0,125	-0,375	0,330	0,812	0,008	0,125
2,1	0,853	-1,247	0,914	-0,086	-0,414	0,364	0,853	0,004	0,086
2,2	0,892	-1,308	0,954	-0,045	-0,455	0,399	0,892	0,001	0,045
2,3	0,933	-1,367	0,999	-0,001	-0,499	0,435	0,933	~ 0	0,001
2,4	0,973	-1,427	1,045	0,045	-0,545	0,473	0,973		
2,5	1,013	-1,487	1,094	0,094	-0,594	0,513	1,013		

VIGA 3 VANOS DESIGUALES: carga repartida en vano extremo.

$$\mathbf{M}_{\text{máx}} = \frac{1}{8} \cdot \left(\frac{3 + 7k + 3k^2}{4 + 8k + 3k^2} \right)^2 \cdot \mathbf{qL}^2$$
 en $\mathbf{x} = \mathbf{d} = \frac{3 + 7k + 3k^2}{4 + 8k + 3k^2} \cdot \frac{\mathbf{L}}{2}$

Reacciones:

$$\mathbf{R}_{A} = \frac{3 + 7k + 3k^{2}}{4 + 8k + 3k^{2}} \cdot \frac{1}{2} \cdot \mathbf{qL}$$

$$\mathbf{R}_{B} = \frac{2 + 13k + 18k^{2} + 6k^{3}}{4 + 8k + 3k^{2}} \cdot \frac{1}{4k} \cdot \mathbf{qL}$$

$$\mathbf{R}_{C} = \frac{-(1+k) \cdot (2+k)}{4 + 8k + 3k^{2}} \cdot \frac{1}{4k} \cdot \mathbf{qL}$$

$$\mathbf{R}_{D} = \frac{k}{4 + 8k + 3k^{2}} \cdot \frac{1}{4} \cdot \mathbf{qL}$$

Flectores:

$$\mathbf{M}_{\mathrm{B}} = \frac{-(1+k)}{4+8k+3k^{2}} \cdot \frac{1}{2} \cdot \mathbf{q} \mathbf{L}^{2}$$
$$\mathbf{M}_{\mathrm{C}} = \frac{k}{4+8k+3k^{2}} \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^{2}$$

$$\mathbf{n} \quad \mathbf{x} = \mathbf{d} = \frac{3 + 7k + 3k^2}{3} \cdot \frac{\mathbf{L}}{3}$$

		Reaco	iones			Flect	tores	
k	\mathbf{R}_{A}	\mathbf{R}_{B}	\mathbf{R}_{C}	\mathbf{R}_{D}	\mathbf{M}_{B}	\mathbf{M}_{C}	$\mathbf{M}_{ ext{máx}}$	d
	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{q} \cdot \mathbf{L^2})$	$(\times \mathbf{L})$			
0,5	0,414	0,786	-0,214	0,014	-0,086	0,014	0,086	0,414
0,6	0,419	0,741	-0,175	0,015	-0,081	0,015	0,088	0,419
0,7	0,423	0,709	-0,148	0,016	-0,077	0,016	0,090	0,423
0,8	0,427	0,685	-0,128	0,016	-0,073	0,016	0,091	0,427
0,9	0,430	0,665	-0,112	0,017	-0,070	0,017	0,093	0,430
1	0,433	0,650	-0,100	0,017	-0,067	0,017	0,094	0,433
1,1	0,436	0,637	-0,090	0,017	-0,064	0,017	0,095	0,436
1,2	0,439	0,626	-0,082	0,017	-0,061	0,017	0,096	0,439
1,3	0,441	0,617	-0,075	0,017	-0,059	0,017	0,097	0,441
1,4	0,443	0,609	-0,069	0,017	-0,057	0,017	0,098	0,443
1,5	0,445	0,603	-0,064	0,016	-0,055	0,016	0,099	0,445
1,6	0,447	0,597	-0,060	0,016	-0,053	0,016	0,100	0,447
1,7	0,449	0,591	-0,056	0,016	-0,051	0,016	0,101	0,449
1,8	0,450	0,586	-0,053	0,016	-0,050	0,016	0,101	0,450
1,9	0,452	0,582	-0,050	0,016	-0,048	0,016	0,102	0,452
2	0,453	0,578	-0,047	0,016	-0,047	0,016	0,103	0,453
2,1	0,454	0,575	-0,044	0,015	-0,046	0,015	0,103	0,454
2,2	0,456	0,571	-0,042	0,015	-0,044	0,015	0,104	0,456
2,3	0,457	0,568	-0,040	0,015	-0,043	0,015	0,104	0,457
2,4	0,458	0,566	-0,038	0,015	-0,042	0,015	0,105	0,458
2,5	0,459	0,563	-0,037	0,015	-0,041	0,015	0,105	0,459
2,6	0,460	0,561	-0,035	0,014	-0,040	0,014	0,106	0,460
2,7	0,461	0,559	-0,034	0,014	-0,039	0,014	0,106	0,461
2,8	0,462	0,557	-0,033	0,014	-0,038	0,014	0,107	0,462
2,9	0,463	0,555	-0,031	0,014	-0,037	0,014	0,107	0,463
3	0,464	0,553	-0,030	0,014	-0,036	0,014	0,107	0,464

VIGA 3 VANOS DESIGUALES: carga repartida en vano central.

Reacciones

$$\mathbf{R}_{A} = \mathbf{R}_{D} = \frac{-\mathbf{k}^{3}}{2+3\mathbf{k}} \cdot \frac{1}{4} \cdot \mathbf{qL}$$

$$\mathbf{R}_{\mathrm{B}} = \mathbf{R}_{\mathrm{C}} = \frac{4 + 6k + k^2}{2 + 3k} \cdot \frac{k}{4} \cdot \mathbf{qL}$$

Flectores

$$\mathbf{M}_{\mathrm{B}} = \mathbf{M}_{\mathrm{C}} = \frac{-\mathbf{k}^3}{2+3\mathbf{k}} \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^2$$

$$\mathbf{M}_{\text{máx}} = \frac{2+k}{2+3k} \cdot \frac{k^2}{8} \cdot \mathbf{qL}^2$$

			2 3R	O
	Reacc	iones	Flec	tores
k	$\mathbf{R}_{\mathbf{A}} = \mathbf{R}_{\mathbf{D}}$ $(\times \mathbf{q} \cdot \mathbf{L})$	$\mathbf{R}_{\mathrm{B}} = \mathbf{R}_{\mathrm{C}}$ $(\times \mathbf{q} \cdot \mathbf{L})$	$\mathbf{M}_{\mathrm{B}} = \mathbf{M}_{\mathrm{C}}$ $(\times \mathbf{q} \cdot \mathbf{L}^{2})$	$\mathbf{M}_{ ext{máx}} \ (imes \mathbf{q} \cdot \mathbf{L^2})$
0,5	-0,009	0,259	-0,009	0,022
0,6	-0,014	0,314	-0,014	0,031
0,7	-0,021	0,371	-0,021	0,040
0,8	-0,029	0,429	-0,029	0,051
0,9	-0,039	0,489	-0,039	0,062
1	-0,050	0,550	-0,050	0,075
1,1	-0,063	0,613	-0,063	0,088
1,2	-0,077	0,677	-0,077	0,103
1,3	-0,093	0,743	-0,093	0,118
1,4	-0,111	0,811	-0,111	0,134
1,5	-0,130	0,880	-0,130	0,151
1,6	-0,151	0,951	-0,151	0,169
1,7	-0,173	1,023	-0,173	0,188
1,8	-0,197	1,097	-0,197	0,208
1,9	-0,223	1,173	-0,223	0,229
2	-0,250	1,250	-0,250	0,250
2,1	-0,279	1,329	-0,279	0,272
2,2	-0,310	1,410	-0,310	0,295
2,3	-0,342	1,492	-0,342	0,319
2,4	-0,376	1,576	-0,376	0,344
2,5	-0,411	1,661	-0,411	0,370
2,6	-0,448	1,748	-0,448	0,397
2,7	-0,487	1,837	-0,487	0,424
2,8	-0,528	1,928	-0,528	0,452
2,9	-0,570	2,020	-0,570	0,481
3	-0,614	2,114	-0,614	0,511

VIGA 3 VANOS DESIGUALES: carga repartida en vanos extremos.

Reacciones

$$\mathbf{R}_{A} = \mathbf{R}_{D} = \frac{2 + 5k + 2k^{2}}{4 + 8k + 3k^{2}} \cdot \frac{3}{4} \cdot \mathbf{qL}$$

$$\mathbf{R}_{\rm B} = \mathbf{R}_{\rm C} = \frac{10 + 17k + 6k^2}{4 + 8k + 3k^2} \cdot \frac{1}{4} \cdot \mathbf{qL}$$

Flectores

$$\mathbf{M}_{\mathrm{B}} = \mathbf{M}_{\mathrm{C}} = \frac{-\left(2+\mathrm{k}\right)}{4+8\mathrm{k}+3\mathrm{k}^{2}} \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^{2}$$

$$\mathbf{M}_{\text{máx}} = \frac{9}{32} \cdot \left(\frac{2 + 5k + 2k^2}{4 + 8k + 3k^2} \right)^2 \cdot \mathbf{qL}^2$$

con
$$\mathbf{d} = \frac{2 + 5k + 2k^2}{4 + 8k + 3k^2} \cdot \frac{3L}{4}$$

	Reaco	iones	Flectores					
k	$\mathbf{R}_{\mathrm{A}} = \mathbf{R}_{\mathrm{D}}$	$\mathbf{R}_{\mathrm{B}} = \mathbf{R}_{\mathrm{C}}$	$\mathbf{M}_{\mathrm{B}} = \mathbf{M}_{\mathrm{C}}$	$\mathbf{M}_{ ext{m\'ax}}$	d			
	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(imes {f q}{\cdot}{f L}^2)$	$(\times \mathbf{L})$			
0,5	0,429	0,571	-0,071	0,092	0,429			
0,6	0,434	0,566	-0,066	0,094	0,434			
0,7	0,439	0,561	-0,061	0,096	0,439			
0,8	0,443	0,557	-0,057	0,098	0,443			
0,9	0,447	0,553	-0,053	0,100	0,447			
1	0,450	0,550	-0,050	0,101	0,450			
1,1	0,453	0,547	-0,047	0,103	0,453			
1,2	0,455	0,545	-0,045	0,104	0,455			
1,3	0,458	0,542	-0,042	0,105	0,458			
1,4	0,460	0,540	-0,040	0,106	0,460			
1,5	0,462	0,538	-0,038	0,107	0,462			
1,6	0,463	0,537	-0,037	0,107	0,463			
1,7	0,465	0,535	-0,035	0,108	0,465			
1,8	0,466	0,534	-0,034	0,109	0,466			
1,9	0,468	0,532	-0,032	0,109	0,468			
2	0,469	0,531	-0,031	0,110	0,469			
2,1	0,470	0,530	-0,030	0,110	0,470			
2,2	0,471	0,529	-0,029	0,111	0,471			
2,3	0,472	0,528	-0,028	0,111	0,472			
2,4	0,473	0,527	-0,027	0,112	0,473			
2,5	0,474	0,526	-0,026	0,112	0,474			
2,6	0,474	0,526	-0,026	0,113	0,474			
2,7	0,475	0,525	-0,025	0,113	0,475			
2,8	0,476	0,524	-0,024	0,113	0,476			
2,9	0,477	0,523	-0,023	0,114	0,477			
3	0,477	0,523	-0,023	0,114	0,477			

VIGA 3 VANOS DESIGUALES: carga repartida en 2 vanos contiguos.

Reacciones

$$\mathbf{R}_{A} = \left(\frac{3 + 7k + 3k^{2}}{4 + 8k + 3k^{2}} - \frac{k^{3}}{2 \cdot (2 + 3k)}\right) \cdot \frac{1}{4} \cdot \mathbf{qL}$$

$$\mathbf{R}_{A} = \left[\frac{3 + 7k + 3k}{4 + 8k + 3k^{2}} - \frac{k^{2}}{2 \cdot (2 + 3k)} \right] \cdot \frac{1}{4} \cdot \mathbf{qL}$$

$$\mathbf{R}_{B} = \left(\frac{2 + 13k + 18k^{2} + 6k^{3}}{4 + 8k + 3k^{2}} \cdot \frac{1}{k} + \frac{4 + 6k + k^{2}}{2 + 3k} \cdot k \right) \cdot \frac{\mathbf{qL}}{4}$$

$$\mathbf{R}_{C} = \left(\frac{4+6k+k^{2}}{2+3k} \cdot k - \frac{(1+k)(2+k)}{4+8k+3k^{2}} \cdot \frac{1}{k}\right) \cdot \frac{\mathbf{qL}}{4}$$

$$\mathbf{R}_{\mathrm{D}} = \left(\frac{1}{4 + 8k + 3k^{2}} - \frac{k^{2}}{2 + 3k}\right) \cdot \frac{k}{4} \cdot \mathbf{qL}$$

Flectores:

$$\mathbf{M}_{\rm B} = -\left(\frac{k^3}{2+3k} + \frac{2(1+k)}{4+8k+3k^2}\right) \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^2 \; ; \qquad \qquad \mathbf{M}_{\rm C} = \left(\frac{k}{4+8k+3k^2} - \frac{k^3}{2+3k}\right) \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^2$$

$$\mathbf{M}_{\mathrm{E}} = \frac{\mathbf{R}_{\mathrm{A}}^{2}}{2\pi} \quad \text{con } \mathbf{e} = \frac{\mathbf{R}_{\mathrm{A}}}{2\pi}$$

$$\mathbf{M}_{\mathrm{C}} = \left(\frac{\mathbf{k}}{4 + 8\mathbf{k} + 3\mathbf{k}^2} - \frac{\mathbf{k}^3}{2 + 3\mathbf{k}}\right) \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^2$$

$$\mathbf{M}_{\mathrm{E}} = \frac{\mathbf{R}_{\mathrm{A}}^{2}}{2 \mathbf{q}} \quad \text{con} \quad \mathbf{e} = \frac{\mathbf{R}_{\mathrm{A}}}{\mathbf{q}} \quad ; \qquad \qquad \mathbf{M}_{\mathrm{F}} = \frac{\left(\mathbf{R}_{\mathrm{A}} + \mathbf{R}_{\mathrm{B}}\right)^{2}}{2 \mathbf{q}} - \mathbf{L} \mathbf{R}_{\mathrm{B}} \quad \text{con} \quad \mathbf{f} = \frac{\mathbf{R}_{\mathrm{A}} + \mathbf{R}_{\mathrm{B}}}{\mathbf{q}} - \mathbf{L}$$

		1	4			<i>2</i> 4			Ч	
		Reacc	iones				Flect	ores		
k	\mathbf{R}_{A}	\mathbf{R}_{B}	\mathbf{R}_{C}	\mathbf{R}_{D}	\mathbf{M}_{B}	\mathbf{M}_{C}	\mathbf{M}_{E}	e	\mathbf{M}_{F}	\mathbf{f}
	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times L)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$	$(\times \mathbf{L})$			
0,5	0,405	1,045	0,045	0,005	-0,095	0,005	0,082	0,405	0,007	0,450
0,6	0,405	1,055	0,139	0,001	-0,095	0,001	0,082	0,405	0,011	0,460
0,7	0,402	1,080	0,223	-0,005	-0,098	-0,005	0,081	0,402	0,019	0,482
0,8	0,398	1,114	0,301	-0,013	-0,102	-0,013	0,079	0,398	0,029	0,512
0,9	0,392	1,154	0,376	-0,022	-0,108	-0,022	0,077	0,392	0,040	0,546
1	0,383	1,200	0,450	-0,033	-0,117	-0,033	0,073	0,383	0,053	0,583
1,1	0,373	1,250	0,523	-0,046	-0,127	-0,046	0,070	0,373	0,068	0,623
1,2	0,361	1,304	0,595	-0,060	-0,139	-0,060	0,065	0,361	0,083	0,665
1,3	0,348	1,360	0,668	-0,076	-0,152	-0,076	0,060	0,348	0,099	0,708
1,4	0,332	1,420	0,742	-0,094	-0,168	-0,094	0,055	0,332	0,116	0,753
1,5	0,315	1,482	0,816	-0,113	-0,185	-0,113	0,050	0,315	0,133	0,798
1,6	0,296	1,547	0,891	-0,134	-0,204	-0,134	0,044	0,296	0,152	0,843
1,7	0,276	1,614	0,967	-0,157	-0,224	-0,157	0,038	0,276	0,171	0,890
1,8	0,253	1,683	1,044	-0,181	-0,247	-0,181	0,032	0,253	0,192	0,937
1,9	0,229	1,755	1,123	-0,207	-0,271	-0,207	0,026	0,229	0,213	0,984
2	0,203	1,828	1,203	-0,234	-0,297	-0,234	0,021	0,203	0,235	1,031
2,1	0,176	1,904	1,284	-0,264	-0,324	-0,264	0,015	0,176	0,258	1,079
2,2	0,146	1,981	1,367	-0,294	-0,354	-0,294	0,011	0,146	0,281	1,127
2,3	0,115	2,060	1,451	-0,327	-0,385	-0,327	0,007	0,115	0,306	1,175
2,4	0,082	2,141	1,537	-0,361	-0,418	-0,361	0,003	0,082	0,331	1,224
2,5	0,048	2,224	1,624	-0,397	-0,452	-0,397	0,001	0,048	0,357	1,272
2,6	0,012	2,309	1,713	-0,434	-0,488	-0,434	0,000	0,012	0,384	1,321
2,7	-0,026	2,396	1,803	-0,473	-0,526	-0,473	0,000	-0,026	0,412	1,370
2,8	-0,066	2,484	1,895	-0,514	-0,566	-0,514	0,002	-0,066	0,440	1,419
2,9	-0,107	2,575	1,988	-0,556	-0,607	-0,556	0,006	-0,107	0,470	1,468
3	-0,150	2,667	2,083	-0,600	-0,650	-0,600	0,011	-0,150	0,500	1,517

VIGA 3 VANOS DESIGUALES: carga repartida en todos los vanos.

Reacciones

$$\mathbf{R}_{A} = \mathbf{R}_{D} = \left(\frac{3 \cdot (2 + 5k + 2k^{2})}{4 + 8k + 3k^{2}} - \frac{k^{3}}{2 + 3k}\right) \cdot \frac{\mathbf{qL}}{4}$$

$$\mathbf{R}_{\rm B} = \mathbf{R}_{\rm C} = \left(\frac{10 + 17k + 6k^2}{4 + 8k + 3k^2} + \frac{k \cdot (4 + 6k + k^2)}{2 + 3k}\right) \cdot \frac{\mathbf{qL}}{4}$$

Flectores
$$\mathbf{M}_{\mathrm{B}} = \mathbf{M}_{\mathrm{C}} = -\left(\frac{\mathbf{k}^{3}}{2+3\mathbf{k}} + \frac{2+\mathbf{k}}{4+8\mathbf{k}+3\mathbf{k}^{2}}\right) \cdot \frac{1}{4} \cdot \mathbf{q} \mathbf{L}^{2}$$

$$\mathbf{M}_{\mathrm{E}}$$

$$\mathbf{M}_{E} = \left(\frac{3 \cdot \left(2 + 5k + 2k^{2}\right)}{4 + 8k + 3k^{2}} - \frac{k^{3}}{2 + 3k}\right)^{2} \cdot \frac{\mathbf{qL}^{2}}{32} \quad \text{con} \quad \mathbf{e} = \left(\frac{3 \cdot \left(2 + 5k + 2k^{2}\right)}{4 + 8k + 3k^{2}} - \frac{k^{3}}{2 + 3k}\right) \cdot \frac{\mathbf{L}}{4} \quad ; \quad \mathbf{e} = 0 \text{ con } k = 2,669$$

$$\mathbf{M}_{F} = \left(\frac{(2+k)^{2}}{2} - \frac{10 + 17k + 6k^{2}}{4 + 8k + 3k^{2}} - \frac{k \cdot (4 + 6k + k^{2})}{2 + 3k}\right) \cdot \frac{1}{4} \cdot \mathbf{qL}^{2} ; \qquad \mathbf{M}_{F} = 0 \text{ con } k = 0,840$$

			•		Floctores						
		Reacc			3.6		Flectores		3.6		
k	\mathbf{R}_{A}	$\mathbf{R}_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{C}}$	\mathbf{R}_{D}	\mathbf{M}_{B}	$\mathbf{M}_{\mathbf{C}}$	\mathbf{M}_{E}	e	\mathbf{M}_{F}		
	$(\times \mathbf{q} \cdot \mathbf{L})$	$(\times \mathbf{q} \cdot \mathbf{L^2})$	$(\times \mathbf{q} \cdot \mathbf{L^2})$	$(\times \mathbf{q} \cdot \mathbf{L^2})$	$(\times L)$	$(\times \mathbf{q} \cdot \mathbf{L}^2)$					
0,5	0,420	0,830	0,830	0,420	-0,080	-0,080	0,088	0,420	-0,049		
0,6	0,420	0,880	0,880	0,420	-0,080	-0,080	0,088	0,420	-0,035		
0,7	0,418	0,932	0,932	0,418	-0,082	-0,082	0,087	0,418	-0,021		
0,8	0,414	0,986	0,986	0,414	-0,086	-0,086	0,086	0,414	-0,006		
0,9	0,408	1,042	1,042	0,408	-0,092	-0,092	0,083	0,408	0,009		
1	0,400	1,100	1,100	0,400	-0,100	-0,100	0,080	0,400	0,025		
1,1	0,390	1,160	1,160	0,390	-0,110	-0,110	0,076	0,390	0,041		
1,2	0,378	1,222	1,222	0,378	-0,122	-0,122	0,072	0,378	0,058		
1,3	0,365	1,285	1,285	0,365	-0,135	-0,135	0,066	0,365	0,076		
1,4	0,349	1,351	1,351	0,349	-0,151	-0,151	0,061	0,349	0,094		
1,5	0,332	1,418	1,418	0,332	-0,168	-0,168	0,055	0,332	0,113		
1,6	0,313	1,487	1,487	0,313	-0,187	-0,187	0,049	0,313	0,133		
1,7	0,292	1,558	1,558	0,292	-0,208	-0,208	0,043	0,292	0,153		
1,8	0,269	1,631	1,631	0,269	-0,231	-0,231	0,036	0,269	0,174		
1,9	0,245	1,705	1,705	0,245	-0,255	-0,255	0,030	0,245	0,196		
2	0,219	1,781	1,781	0,219	-0,281	-0,281	0,024	0,219	0,219		
2,1	0,191	1,859	1,859	0,191	-0,309	-0,309	0,018	0,191	0,242		
2,2	0,161	1,939	1,939	0,161	-0,339	-0,339	0,013	0,161	0,266		
2,3	0,130	2,020	2,020	0,130	-0,370	-0,370	0,008	0,130	0,291		
2,4	0,097	2,103	2,103	0,097	-0,403	-0,403	0,005	0,097	0,317		
2,5	0,063	2,188	2,188	0,063	-0,438	-0,438	0,002	0,063	0,344		
2,6	0,026	2,274	2,274	0,026	-0,474	-0,474	0,000	0,026	0,371		
2,7	-0,012	2,362	2,362	-0,012	-0,512	-0,512			0,399		
2,8	-0,052	2,452	2,452	-0,052	-0,552	-0,552			0,428		
2,9	-0,093	2,543	2,543	-0,093	-0,593	-0,593			0,458		
3	-0,136	2,636	2,636	-0,136	-0,636	-0,636			0,489		

Universidad de Alicante

X

COEFICIENTES DE REDUCCION A PANDEO

 $\alpha = 0.13$

λk	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.2	1.000	0.999	0.997	0.996	0.995	0.993	0.992	0.990	0.989	0.987
0.3	0.986	0.984	0.983	0.981	0.980	0.978	0.977	0.975	0.973	0.972
0.4	0.970	0.968	0.967	0.965	0.963	0.961	0.959	0.957	0.955	0.953
0.5	0.951	0.949	0.947	0.945	0.943	0.940	0.938	0.935	0.933	0.930
0.6	0.928	0.925	0.922	0.919	0.916	0.913	0.910	0.907	0.903	0.900
0.7	0.896	0.892	0.889	0.885	0.881	0.876	0.872	0.868	0.863	0.858
0.8	0.853	0.848	0.843	0.838	0.832	0.827	0.821	0.815	0.809	0.802
0.9	0.796	0.790	0.783	0.776	0.769	0.762	0.755	0.748	0.740	0.733
1.0	0.725	0.718	0.710	0.702	0.695	0.687	0.679	0.672	0.664	0.656
1.1	0.648	0.641	0.633	0.625	0.618	0.610	0.603	0.595	0.588	0.580
1.2	0.573	0.566	0.559	0.552	0.545	0.538	0.531	0.525	0.518	0.512
1.3	0.505	0.499	0.493	0.487	0.481	0.475	0.469	0.463	0.457	0.452
1.4	0.446	0.441	0.435	0.430	0.425	0.420	0.415	0.410	0.405	0.400
1.5	0.395	0.391	0.386	0.382	0.377	0.373	0.369	0.364	0.360	0.356
1.6	0.352	0.348	0.344	0.340	0.337	0.333	0.329	0.325	0.322	0.318
1.7	0.315	0.312	0.308	0.305	0.302	0.299	0.295	0.292	0.289	0.286
1.8	0.283	0.280	0.277	0.275	0.272	0.269	0.266	0.264	0.261	0.259
1.9	0.256	0.253	0.251	0.248	0.246	0.244	0.241	0.239	0.237	0.235
2.0	0.232	0.230	0.228	0.226	0.224	0.222	0.220	0.218	0.216	0.214
2.1	0.212	0.210	0.208	0.206	0.204	0.202	0.201	0.199	0.197	0.195
2.2	0.194	0.192	0.190	0.189	0.187	0.186	0.184	0.182	0.181	0.179
2.3	0.178	0.176	0.175	0.173	0.172	0.171	0.169	0.168	0.167	0.165
2.4	0.164	0.163	0.161	0.160	0.159	0.157	0.156	0.155	0.154	0.153
2.5	0.151	0.150	0.149	0.148	0.147	0.146	0.145	0.144	0.143	0.141
2.6	0.140	0.139	0.138	0.137	0.136	0.135	0.134	0.133	0.132	0.131
2.7	0.130	0.130	0.129	0.128	0.127	0.126	0.125	0.124	0.123	0.122
2.8	0.122	0.121	0.120	0.119	0.118	0.117	0.117	0.116	0.115	0.114
2.9	0.114	0.113	0.112	0.111	0.111	0.110	0.109	0.108	0.108	0.107
3.0	0.106	0.106	0.105	0.104	0.104	0.103	0.102	0.102	0.101	0.100
3.1	0.100	0.099	0.098	0.098	0.097	0.097	0.096	0.095	0.095	0.094
3.2	0.094	0.093	0.093	0.092	0.091	0.091	0.090	0.090	0.089	0.089
3.3	0.088	0.088	0.087	0.087	0.086	0.086	0.085	0.085	0.084	0.084
3.4	0.083	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.080	0.079
3.5	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075	0.075

Universidad de Alicante

X

COEFICIENTES DE REDUCCION A PANDEO

 $\alpha = 0.21$

λk	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.1	1.000	0.998	0.996	0.993	0.991	0.989	0.987	0.984	0.982	0.980
0.3	0.977	0.975	0.973	0.933	0.968	0.966	0.963	0.961	0.958	0.955
0.3	0.977	0.950	0.947	0.945	0.942	0.939	0.936	0.933	0.930	0.933
0.4	0.933	0.930	0.918	0.945	0.942	0.908	0.905	0.901	0.897	0.894
0.6	0.890	0.886	0.882	0.878	0.874	0.870	0.866	0.861	0.857	0.852
0.7	0.848	0.843	0.838	0.833	0.828	0.823	0.818	0.812	0.807	0.801
0.8	0.796	0.790	0.784	0.778	0.772	0.766	0.760	0.753	0.747	0.740
0.9	0.734	0.727	0.721	0.714	0.707	0.700	0.693	0.686	0.680	0.673
1.0	0.666	0.659	0.652	0.645	0.638	0.631	0.624	0.617	0.610	0.603
1.1	0.596	0.589	0.582	0.576	0.569	0.562	0.556	0.549	0.543	0.536
1.2	0.530	0.524	0.518	0.511	0.505	0.499	0.493	0.487	0.482	0.476
1.3	0.470	0.465	0.459	0.454	0.448	0.443	0.438	0.433	0.428	0.423
1.4	0.418	0.413	0.408	0.404	0.399	0.394	0.390	0.385	0.381	0.377
1.5	0.372	0.368	0.364	0.360	0.356	0.352	0.348	0.344	0.341	0.337
1.6	0.333	0.330	0.326	0.323	0.319	0.316	0.312	0.309	0.306	0.303
1.7	0.299	0.296	0.293	0.290	0.287	0.284	0.281	0.279	0.276	0.273
1.8	0.270	0.268	0.265	0.262	0.260	0.257	0.255	0.252	0.250	0.247
1.9	0.245	0.243	0.240	0.238	0.236	0.234	0.231	0.229	0.227	0.225
2.0	0.223	0.221	0.219	0.217	0.215	0.213	0.211	0.209	0.207	0.205
2.1	0.204	0.202	0.200	0.198	0.197	0.195	0.193	0.192	0.190	0.188
2.2	0.187	0.185	0.184	0.182	0.180	0.179	0.178	0.176	0.175	0.173
2.3	0.172	0.170	0.169	0.168	0.166	0.165	0.164	0.162	0.161	0.160
2.4	0.159	0.157	0.156	0.155	0.154	0.152	0.151	0.150	0.149	0.148
2.5	0.147	0.146	0.145	0.143	0.142	0.141	0.140	0.139	0.138	0.137
2.6	0.136	0.135	0.134	0.133	0.132	0.131	0.130	0.129	0.129	0.128
2.7	0.127	0.126	0.125	0.124	0.123	0.122	0.122	0.121	0.120	0.119
2.8	0.118	0.117	0.117	0.116	0.115	0.114	0.114	0.113	0.112	0.111
2.9	0.111	0.110	0.109	0.108	0.108	0.107	0.106	0.106	0.105	0.104
3.0	0.104	0.103	0.102	0.102	0.101	0.100	0.100	0.099	0.098	0.098
3.1	0.097	0.097	0.096	0.095	0.095	0.094	0.094	0.093	0.093	0.092
3.2	0.091	0.091	0.090	0.090	0.089	0.089	0.088	0.088	0.087	0.087
3.3	0.086	0.086	0.085	0.085	0.084	0.084	0.083	0.083	0.082	0.082
3.4	0.081	0.081	0.080	0.080	0.080	0.079	0.079	0.078	0.078	0.077
3.5	0.077	0.076	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073

Universidad de Alicante

COEFICIENTES DE REDUCCION A PANDEO

 $\alpha = 0.34$

λk	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0 0.1	1.000 1.000									
0.1	1.000	0.996	0.993	0.989	0.986	0.982	0.979	0.975	0.971	0.968
0.3		0.960	0.957	0.953	0.949	0.982	0.979	0.973	0.971	0.988
0.3	0.964 0.926	0.900	0.937	0.933	0.949	0.945	0.942	0.938	0.934	0.930
0.4	0.920	0.880	0.918	0.914	0.866	0.861	0.857	0.852	0.847	0.842
0.5	0.837	0.832	0.873	0.871	0.800	0.801	0.837	0.832	0.795	0.842
0.7	0.784	0.832	0.772	0.766	0.761	0.755	0.749	0.743	0.737	0.731
0.7	0.784	0.778	0.772	0.706	0.701	0.733	0.749	0.743	0.737	0.731
0.8	0.724	0.655	0.712	0.700	0.635	0.629	0.623	0.616	0.610	0.603
1.0	0.597	0.591	0.584	0.578	0.572	0.566	0.559	0.553	0.547	0.541
1.1	0.535	0.529	0.523	0.518	0.512	0.506	0.500	0.495	0.489	0.484
1.2	0.478	0.473	0.467	0.462	0.457	0.452	0.447	0.442	0.437	0.432
1.3	0.427	0.422	0.417	0.413	0.408	0.404	0.399	0.395	0.390	0.386
1.4	0.382	0.378	0.373	0.369	0.365	0.361	0.357	0.354	0.350	0.346
1.5	0.342	0.339	0.335	0.331	0.328	0.324	0.321	0.318	0.314	0.311
1.6	0.308	0.305	0.302	0.299	0.295	0.292	0.289	0.287	0.284	0.281
1.7	0.278	0.275	0.273	0.270	0.267	0.265	0.262	0.259	0.257	0.255
1.8	0.252	0.250	0.247	0.245	0.243	0.240	0.238	0.236	0.234	0.231
1.9	0.229	0.227	0.225	0.223	0.221	0.219	0.217	0.215	0.213	0.211
2.0	0.209	0.208	0.206	0.204	0.202	0.200	0.199	0.197	0.195	0.194
2.1	0.192	0.190	0.189	0.187	0.186	0.184	0.182	0.181	0.179	0.178
2.2	0.176	0.175	0.174	0.172	0.171	0.169	0.168	0.167	0.165	0.164
2.3	0.163	0.162	0.160	0.159	0.158	0.157	0.155	0.154	0.153	0.152
2.4	0.151	0.149	0.148	0.147	0.146	0.145	0.144	0.143	0.142	0.141
2.5	0.140	0.139	0.138	0.137	0.136	0.135	0.134	0.133	0.132	0.131
2.6	0.130	0.129	0.128	0.127	0.126	0.125	0.125	0.124	0.123	0.122
2.7	0.121	0.120	0.119	0.119	0.118	0.117	0.116	0.115	0.115	0.114
2.8	0.113	0.112	0.112	0.111	0.110	0.109	0.109	0.108	0.107	0.107
2.9	0.106	0.105	0.105	0.104	0.103	0.103	0.102	0.101	0.101	0.100
3.0	0.099	0.099	0.098	0.098	0.097	0.096	0.096	0.095	0.095	0.094
3.1	0.093	0.093	0.092	0.092	0.091	0.091	0.090	0.090	0.089	0.089
3.2	0.088	0.088	0.087	0.087	0.086	0.085	0.085	0.085	0.084	0.084
3.3	0.083	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.079	0.079
3.4	0.078	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075	0.075
3.5	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072	0.071	0.071

Universidad de Alicante

COEFICIENTES DE REDUCCION A PANDEO $\alpha = 0.49$

CURVA C

λk	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.2	1.000	0.995	0.990	0.985	0.980	0.975	0.969	0.964	0.959	0.954
0.3	0.949	0.944	0.939	0.934	0.929	0.923	0.918	0.913	0.908	0.903
0.4	0.897	0.892	0.887	0.881	0.876	0.871	0.865	0.860	0.854	0.849
0.5	0.843	0.837	0.832	0.826	0.820	0.815	0.809	0.803	0.797	0.791
0.6	0.785	0.779	0.773	0.767	0.761	0.755	0.749	0.743	0.737	0.731
0.7	0.725	0.718	0.712	0.706	0.700	0.694	0.687	0.681	0.675	0.668
0.8	0.662	0.656	0.650	0.643	0.637	0.631	0.625	0.618	0.612	0.606
0.9	0.600	0.594	0.588	0.582	0.575	0.569	0.563	0.558	0.552	0.546
1.0	0.540	0.534	0.528	0.523	0.517	0.511	0.506	0.500	0.495	0.490
1.1	0.484	0.479	0.474	0.469	0.463	0.458	0.453	0.448	0.443	0.439
1.2	0.434	0.429	0.424	0.420	0.415	0.411	0.406	0.402	0.397	0.393
1.3	0.389	0.385	0.380	0.376	0.372	0.368	0.364	0.361	0.357	0.353
1.4	0.349	0.346	0.342	0.338	0.335	0.331	0.328	0.324	0.321	0.318
1.5	0.315	0.311	0.308	0.305	0.302	0.299	0.296	0.293	0.290	0.287
1.6	0.284	0.281	0.279	0.276	0.273	0.271	0.268	0.265	0.263	0.260
1.7	0.258	0.255	0.253	0.250	0.248	0.246	0.243	0.241	0.239	0.237
1.8	0.235	0.232	0.230	0.228	0.226	0.224	0.222	0.220	0.218	0.216
1.9	0.214	0.212	0.210	0.209	0.207	0.205	0.203	0.201	0.200	0.198
2.0	0.196	0.195	0.193	0.191	0.190	0.188	0.186	0.185	0.183	0.182
2.1	0.180	0.179	0.177	0.176	0.174	0.173	0.172	0.170	0.169	0.168
2.2	0.166	0.165	0.164	0.162	0.161	0.160	0.159	0.157	0.156	0.155
2.3	0.154	0.153	0.151	0.150	0.149	0.148	0.147	0.146	0.145	0.144
2.4	0.143	0.141	0.140	0.139	0.138	0.137	0.136	0.135	0.134	0.133
2.5	0.132	0.132	0.131	0.130	0.129	0.128	0.127	0.126	0.125	0.124
2.6	0.123	0.123	0.122	0.121	0.120	0.119	0.118	0.118	0.117	0.116
2.7	0.115	0.115	0.114	0.113	0.112	0.111	0.111	0.110	0.109	0.109
2.8	0.108	0.107	0.107	0.106	0.105	0.104	0.104	0.103	0.102	0.102
2.9	0.101	0.101	0.100	0.099	0.099	0.098	0.097	0.097	0.096	0.096
3.0	0.095	0.095	0.094	0.093	0.093	0.092	0.092	0.091	0.091	0.090
3.1	0.090	0.089	0.088	0.088	0.087	0.087	0.086	0.086	0.085	0.085
3.2	0.084	0.084	0.083	0.083	0.083	0.082	0.082	0.081	0.081	0.080 0.076
3.3 3.4	0.080 0.075	0.079 0.075	0.079 0.075	0.078 0.074	0.078 0.074	0.078 0.073	0.077 0.073	0.077 0.073	0.076 0.072	0.076
3.5	0.071	0.071	0.071	0.070	0.070	0.070	0.069	0.069	0.069	0.068

Universidad de Alicante

COEFICIENTES DE REDUCCION A PANDEO $\alpha = 0.76$

CURVA

λk	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.2	1.000	0.992	0.984	0.977	0.969	0.961	0.954	0.946	0.938	0.931
0.3	0.923	0.916	0.909	0.901	0.894	0.887	0.879	0.872	0.865	0.858
0.4	0.850	0.843	0.836	0.829	0.822	0.815	0.808	0.800	0.793	0.786
0.5	0.779	0.772	0.765	0.758	0.751	0.744	0.738	0.731	0.724	0.717
0.6	0.710	0.703	0.696	0.690	0.683	0.676	0.670	0.663	0.656	0.650
0.7	0.643	0.637	0.630	0.624	0.617	0.611	0.605	0.598	0.592	0.586
0.8	0.580	0.574	0.568	0.562	0.556	0.550	0.544	0.538	0.532	0.526
0.9	0.521	0.515	0.510	0.504	0.499	0.493	0.488	0.483	0.477	0.472
1.0	0.467	0.462	0.457	0.452	0.447	0.442	0.438	0.433	0.428	0.423
1.1	0.419	0.414	0.410	0.406	0.401	0.397	0.393	0.388	0.384	0.380
1.2	0.376	0.372	0.368	0.364	0.361	0.357	0.353	0.349	0.346	0.342
1.3	0.339	0.335	0.332	0.328	0.325	0.321	0.318	0.315	0.312	0.309
1.4	0.306	0.302	0.299	0.296	0.293	0.291	0.288	0.285	0.282	0.279
1.5	0.277	0.274	0.271	0.269	0.266	0.263	0.261	0.258	0.256	0.254
1.6	0.251	0.249	0.247	0.244	0.242	0.240	0.237	0.235	0.233	0.231
1.7	0.229	0.227	0.225	0.223	0.221	0.219	0.217	0.215	0.213	0.211
1.8	0.209	0.207	0.206	0.204	0.202	0.200	0.199	0.197	0.195	0.194
1.9	0.192	0.190	0.189	0.187	0.186	0.184	0.183	0.181	0.180	0.178
2.0	0.177	0.175	0.174	0.172	0.171	0.170	0.168	0.167	0.166	0.164
2.1	0.163	0.162	0.160	0.159	0.158	0.157	0.156	0.154	0.153	0.152
2.2	0.151	0.150	0.149	0.147	0.146	0.145	0.144	0.143	0.142	0.141
2.3	0.140	0.139	0.138	0.137	0.136	0.135	0.134	0.133	0.132	0.131
2.4	0.130	0.129	0.128	0.127	0.127	0.126	0.125	0.124	0.123	0.122
2.5	0.121	0.121	0.120	0.119	0.118	0.117	0.116	0.116	0.115	0.114
2.6	0.113	0.113	0.112	0.111	0.110	0.110	0.109	0.108	0.108	0.107
2.7	0.106	0.106	0.105	0.104	0.104	0.103	0.102	0.102	0.101	0.100
2.8	0.100	0.099	0.098	0.098	0.097	0.097	0.096	0.095	0.095	0.094
2.9	0.094	0.093	0.093	0.092	0.091	0.091	0.090	0.090	0.089	0.089
3.0	0.088	0.088	0.087	0.087	0.086	0.086	0.085	0.085	0.084	0.084
3.1	0.083	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.080	0.079
3.2	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075	0.075
3.3	0.074	0.074	0.074	0.073	0.073	0.072	0.072	0.072	0.071	0.071
3.4	0.071	0.070	0.070	0.069	0.069	0.069	0.068	0.068	0.068	0.067
3.5	0.067	0.067	0.066	0.066	0.066	0.065	0.065	0.065	0.064	0.064