

Interfacing LCD with Arduino

G V V Sharma*

Fig. 1: Breadboard

Abstract—Through this manual, we learn how to measure an unknown resistance through arduino and display it on an LCD.

1 Components

Component	Value	Quantity
Resistor	220 Ohm	1
	1K	1
Arduino	Uno	1
LCD	16×2	1
Jumper Wires		20

TABLE I

2 Measuring the resistance

Problem 1. Connect the 5V pin of the Arduino to an extreme pin of the Breadboard shown in Fig. 1. Let this pin be V_{cc} .

Problem 2. Connect the GND pin of the Arduino to the opposite extreme pin of the Breadboard.

Problem 3. Let R_1 be the known resistor and R_2 be the unknown resistor. Connect R_1 and R_2 in

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in the manual released under GNU GPL. Free to use for anything.

Fig. 3: Voltage Divider

series such that R_1 is connected to GND and R_2 is connected to V_{cc} . Refer to Fig. 3

Problem 4. Connect the junction between the two resistors to the A0 pin on the Arduino.

Problem 5. Connect the arduino to the computer so that it is powered.

Problem 6. Open the Arduino IDE and type the following code. Open the *serial monitor* to view the output.

```
// Declarations
int V_out_q=0;
//V_out_q is the quantized voltage
float V_in = 5, V_out;
//V_in = V_cc
float R1=220,R2;
//R1 is known resistance
//R2 is unknown resistance
void setup()
{
// Get the result onto the serial
```


Fig. 7: lcd

```
monitor
Serial.begin(9600);
}

void loop()
{
//V_Out_q is an integer between 0
    to 1023

V_out_q=analogRead(0);//reading
    from A0

//V_out is the actual voltage at
    the junction of R1 and R2

V_out = V_in*V_out_q/1024;

R2 = R1*((V_in)/(V_out)-1.0);
delay(3000);
Serial.println(R2);
}
```

3 DISPLAY RESISTANCE ON LCD

Problem 7. Plug the LCD in Fig. 7 to the breadboard.

Problem 8. Connect the 220Ω resistance from V_{cc} to pin 15 (Led+) of the LCD.

Problem 9. Connect the Arduino pins to LCD pins as per Table II.

Problem 10. Include the instructions for the LCD in the code for measuring the resistance.

Solution:

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(12,11,5,4,3,2);
// arduino pins connected to LCD
```

TABLE II: Arduino to LCD Pin Connection.

Arduino Pins	LCD Pins	LCD Pin Label	LCD Pin Description
GND	1	GND	
5V	2	Vcc	
GND	3	Vee	Contrast
D12	4	RS	Register Select
GND	5	R/W	Read/Write
D11	6	EN	Enable
D5	11	DB4	Serial Connection
D4	12	DB5	Serial Connection
D3	13	DB6	Serial Connection
D2	14	DB7	Serial Connection
5V	15	LED+	Backlight
GND	16	LED-	Backlight

```
// Declarations
int V out q=0;
//V out q is the quantized voltage
float V in = 5, V out;
//V in = V cc
float R1 = 220, R2;
//R1 is known resistance
//R2 is unknown resistance
void setup()
//Get the result onto the serial
   monitor
lcd.begin (16,2);
lcd.setCursor(0,0);
lcd.print("----OHM_METER----");
Serial.begin(9600);
void loop()
//V Out q is an integer between 0
   to 1023
V_out_q=analogRead(0); // reading
```

```
//V_out is the actual voltage at
    the junction of R1 and R2
V_out = V_in*V_out_q/1024;

R2 = R1*((V_in)/(V_out)-1.0);
delay(3000);
Serial.println(R2);
lcd.setCursor(0,1);
lcd.print("R_=="");
lcd.print(R2);
lcd.print(R2);
lcd.print("Ohm");
}
```

4 EXPLANATION

- 1) We create a variable called analogPin and assign it to 0. This is because the voltage value we are going to read is connected to analogPin A0.
- 2) The 10-bit ADC can differentiate 1024 discrete voltage levels, 5 volt is applied to 2 resistors and the voltage sample is taken in between the resistors. The value which we get from analogPin can be between 0 and 1023. 0 would represent 0 volts falls across the unknown resistor. A value of 1023 would mean that practically all 5 volts falls across the unknown resistor.
- 3) V_{out} represents the divided voltage that falls across the unknown resistor.
- 4) The Ohm meter in this manual works on the principle of the voltage divider shown in Fig. 3.

$$V_{out} = \frac{R_1}{R_1 + R_2} V_{in} \tag{10.1}$$

$$\Rightarrow R_2 = R_1 \left(\frac{V_{in}}{V_{out}} - 1 \right) \tag{10.2}$$

In the above, $V_{in} = 5V$, $R_1 = 220\Omega$.