Tweet Clustering

Exploratory data analysis of one million tweets using clustering techniques in scikit-learn. Civil & Environmental Engineering 263n: Scalable Spatial Analytics at UC-Berkeley, Fall 2016 By Paul Sohn, September 14, 2016

Part 1: Baseline Results for Different Clustering Algorithms

We will test three different clustering algorithms through the scikit-learn packing in Python:

- K-means
- MiniBatch K-means
- DBSCAN

The first step is to understand the processing limits of each algorithm. The dataset we are using includes 1 million tweets (mostly) from the Bay Area. We will start with a random subset of 100,000 tweets to test the algorithms.

K-means

We are trying to find the reference time of clustering of 100K samples into k=100 clusters with k-means. The basic python code snippet involves instatiating a KMeans object, fitting to a numpy array (data), and printing the time taken:

```
k_means = KMeans(n_clusters=100, init='k-means++', n_init=10)

t0 = time.time()
k_means.fit(data)
print time.time() - t0

Time to cluster 100,000 tweets into 100 clusters using K-means: 20.7 seconds
```

MiniBatch K-means

As above, we are trying to find the reference time of clustering of 100K samples into k=100 clusters with MiniBatch k-means. The python code is very similar, except one has to select a batch size. We can simply test several arbitrary batch size values as below:

```
for batch_size in [5, 10, 20, 50, 100, 500, 1000]:
    mb = MiniBatchKMeans(n_clusters=100, init='k-means++', n_init=10, batch_size=batch_size)
    t0 = time.time()
    mb.fit(data)
    print time.time() - t0
```

Batch Size	Time to generate 100 clusters (seconds)
5	5.29
10	2.84
20	2.69
50	1.48
100	0.74

Batch Size	Time to generate 100 clusters (seconds)
500	0.63
1000	0.70

DBSCAN

DBSCAN is different from the other algorithms in that it does not produce a set number of clusters but instead detects as many clusters as exist based on two parameters:

- eps, or the "The maximum distance between two samples for them to be considered as in the same neighborhood" and
- min_samples, the "number of samples (or total weight) in a neighborhood for a point to be considered as a core point." (Language taken from sklearn documentation).

Our goal here is to find the value of eps in DBScan resulting in approximately 100 clusters (eps_100) of a minimum of samples (min_samples=100) and the corresponding processing time. Furthermore, we can convert eps, which is in degrees latitude and longitude, into a more meaningful unit like miles. We will use a very rough approximation of 100 kilometers per degree:

```
miles = .75
kilometers = miles / 0.621371
eps = kilometers / 100
```

Then we can loop through various values of eps to find eps_100, the value that will give us approximately 100 clusters:

```
dbscan = DBSCAN(eps=eps, min_samples=100)
dbscan.fit(data)
print len(numpy.unique(dbscan.labels_))
```

miles	espilon	clusters	seconds
0.1	0.00160934449789	45	0.873108863831
0.2	0.00321868899579	70	1.11532998085
0.3	0.00482803349368	106	1.34408187866
0.4	0.00643737799157	126	1.49612116814
0.5	0.00804672248946	119	1.59469985962
0.6	0.00965606698736	103	1.79232883453
0.7	0.0112654114852	86	2.09918904305
0.8	0.0128747559831	72	2.40508508682
0.9	0.014484100481	61	5.46035599709

I select 0.009656 as eps_100. I could have also used a smaller value but chose to be inclusive.

Part 2: Scalability of Clustering Algorithms

In this section, we will expand the baseline results from the previous section to see how performance scales by:

- Number of clusters (K-means and MiniBatch K-means only)
- Number of data points processed

K-means

Number of requested clusters

We are now trying to find the processing time of K-means for varying numbers of data samples (consider the range of 100 to 100'000) for a fixed k=100. To achieve this, we simply run a loop fitting the K-means model to random samples of various sizes:

```
for n in range(100, 100000, step):
    k_means = KMeans(n_clusters=k, init='k-means++', n_init=10)

data = data[numpy.random.randint(low=0, high=len(data), size=n), :]

t0 = time.time()
    k_means.fit(data)
    t1 = time.time() - t0
```


Figure 1: kmeans scaling