中国石油大学

数字逻辑实验报告

实验名称: _	实验四 时序	电路的仿真			
实验时间:_	2020	年 6	月	15 日	
学生班级: _		计算机 19-3			
学生姓名 : _	刘康来	学号:	201901	1777	

中国石油大学(北京)信息学院计算机系

一、实验目的:

- 1、学习 Verilog 描述时序逻辑电路的方法。
- 2、学习仿真软件 Quartus || 的使用方法。
- 3、进一步熟悉时序逻辑电路的原理和设计方法。

二、实验要求:

- 1、设计一个模块,实现8421BCD码表示的模60的计数器,实现0-59加1计数,当第60个计数脉冲到来时,产生一个进位脉冲。
- 2、将计数器改写成模 24 的计数器。

三、代码:

1.

```
module DigitalCountBCD60(qout, cout, data, load, cin, reset, clk); //一般情况下使用<=,组合逻辑使用=赋
值,时序逻辑使用<=赋值:
input load, cin, reset, clk; // load, data no need
input[7:0] data;
output [7:0] qout;
output cout;
reg [7:0] qout;
always@(posedge clk)
begin
   if(reset) qout <= 0;</pre>
   else if(cin)
        if(qout[3:0] == 9)
           qout[3:0] <= 0;
           if(qout[7:4] == 5)
                qout[7:4] <= 0;
                qout[7:4] <= qout[7:4]+1;</pre>
            qout[3:0] <= qout[3:0]+1;</pre>
   assign cout = ((qout == 8'h59)&cin) ? 1 : 0;
```

```
endmodule
module DigitalCountBCD24(qout, cout, data, load, cin, reset, clk);
input load, cin, reset, clk;
input[7:0] data;
output [7:0] qout;
output cout;
reg [7:0] qout;
always@(posedge clk)
begin
   if(reset) qout = 0;
    else if(cin)
        if(qout[7:4] == 2)
            if(qout[3:0] == 3)
                qout[7:4] <= 0;
                qout[3:0] <= 0;
                qout[3:0] <= qout[3:0]+1;</pre>
```


五、总结(收获,问题和解决方法等)

对于最后一个进位脉冲,因代码并行,cout 要快于 sum 变化可以给 cout 加一延迟,或者在代码修改使 cout 在 sum 后变化(不知语法。。。),或使 sum 为 0 时才令 cout 变化...

六、其他