Algebraic Exercises

In Exercises 1–9 find the value of x.

- A 1. On a number line, R and S have coordinates -8 and x, and the midpoint of \overline{RS} has coordinate -1.
 - 2. Two vertical angles have measures $x^2 + 18x$ and $x^2 + 54$.
 - 3. The measures of the angles of a quadrilateral are x, x + 4, x + 8, and x + 12.
 - **4.** The lengths of the legs of an isosceles triangle are 7x 13 and 2x + 17.
 - 5. Consecutive angles of a parallelogram have measures 6x and 2x + 20.
 - **6.** A trapezoid has bases of length x and x + 8 and a median of length 15.

7.
$$\frac{3x-1}{4x+2}=\frac{2}{3}$$

8.
$$\frac{5}{8} = \frac{x-1}{6}$$

$$9. \ \frac{x}{x+4} = \frac{x+3}{x+9}$$

- **B** 10. The measure of a supplement of an angle is 8 more than three times the measure of a complement. Find the measure of the angle.
 - 11. In a regular polygon, the ratio of the measure of an exterior angle to the measure of an interior angle is 2:13. How many sides does the polygon have?
 - 12. The sides of a parallelogram have lengths 12 cm and 15 cm. Find the lengths of the sides of a similar parallelogram with perimeter 90 cm.
 - 13. A triangle with perimeter 64 cm has sides with lengths in the ratio 4:5:7. Find the length of each side.
 - **14.** In $\triangle XYZ$, XY = YZ. Find the measure of $\angle Z$ if $m \angle X : m \angle Y = 5 : 2$.
 - 15. In the diagram, $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{GC}$. Find the values of x and y.

Proof Exercises

- A 1. Given: $\overline{SU} \cong \overline{SV}$; $\angle 1 \cong \angle 2$ Prove: $\overline{UO} \cong \overline{VO}$
 - 2. Given: \overrightarrow{QS} bisects $\angle RQT$; $\angle R \cong \angle T$ Prove: \overrightarrow{SQ} bisects $\angle RST$.
- **B** 3. Given: $\triangle QRU \cong \triangle QTV$; $\overline{US} \cong \overline{VS}$ Prove: $\triangle QRS \cong \triangle QTS$
 - **4.** Given: \overline{QS} bisects $\angle UQV$ and $\angle USV$; $\angle R \cong \angle T$ Prove: $\overline{RQ} \cong \overline{TQ}$
 - **5.** Given: $\overline{EF} \parallel \overline{JK}$; $\overline{JK} \parallel \overline{HI}$ Prove: $\triangle EFG \sim \triangle IHG$
 - 6. Given: $\frac{JG}{HG} = \frac{KG}{IG}$, $\angle 1 \cong \angle 2$ Prove: $\overline{EF} \parallel \overline{HI}$

