Ideas for a Probabilistic Numerics Framework

Session Introduction

Jonathan Wenger
ProbNum @ Alan Turing Institute
30 October 2019

- + PhD Student at Universität Tübingen
- + Advisor: Philipp Hennig
- + Research Interest: Probabilistic Numerical Linear Algebra

- ◆ e-mail: jonathan.wenger@uni-tuebingen.de
- web: jonathanwenger.netlify.com

Vision of Probabilistic Numerics

Propagation of Uncertainty

Figure: Sketch of an autonomous system (Hennig et al., 2015)

Implementation of PN routines needed. But: at what level and how?

Session Details

- + Thursday, 31 October at 10:30 am
- + Topics
 - + goals
 - + design
 - + structure
 - + implementation
- + Outcomes
 - + High-level **outline** for PN software
 - + List of people interested in development

Framework Overview

Goals and Desig

Goals

- PN methods for researchers and practitioners
- + Promotion of PN
- * Replacement of established numerics frameworks?

Design

- Target community: ML or Numerics?
- + Framework type: probabilistic programming (Oates and Sullivan, 2019), \dots
- Computational budget scheduler
- Automated prior choice based on problem properties

4

Framework Details

eberhard karls NIVERSITAT TÜBINGEN

Structure and Implementation

Structure

- + What is already available in other frameworks?
- + What core routines should be implemented?
- What could be implemented as of today?

Implementation

- Collaborative or domain-specific?
- Focus on efficiency?
- What is actually being propagated?
 - + mean and covariance
 - distribution type and its parameters
- ◆ Language: Python, Julia, . . .

Linear Algebra	Bayesian Optimization
Quadrature	Differential Equations

Session Details

- + Thursday, 31 October at 10:30 am
- + Topics
 - + goals
 - + design
 - + structure
 - + implementation
- Outcomes
 - + High-level **outline** for PN software
 - + List of people interested in development

Ideas for further discussion points are most welcome!

References I

- P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. **Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences**, 471(2179), 2015.
- C. Oates and T. Sullivan. A modern retrospective on probabilistic numerics. **Statistics and Computing**, 10 2019. doi: 10.1007/s11222-019-09902-z.