

· 변 연구 배경

젠더 갈등에서 탄생한 "**워마드**"

최근 국내 여혐 및 남혐 문제를 기반으로 힘을 얻고 있는 혐오 사이트, **워마드**

혐오 발언을 기초로 낙태 태아 훼손 사진 업로드, '성체 모독' 논란 등 사회적 갈등 확산

>온라인 <mark>혐오 발언</mark>을 통해 퍼지는 갈등

혐오 발언을 잡아내는 인공지능을 개발하면 어떨까?

1. 2. 머신 러닝 이론 기초 데이터 수집 과정

3. 자연어 처리 기법을 통한 인공지능 개발

4. 자연어 처리 응용

1. 머신 러닝 이론 기초

· **머신 러닝**의 정의: 머신 러닝이란, 대량의 정보를 통해 기계를 학습시켜 기존에 알지 못했던 사실을 예측하는 알고리즘을 개발하는 분야이다.

Ex) 선형회귀모델
$$f(x) = a_0 x_0 + a_1 x_1 + \dots + a_n x_n + b$$

- · 응용: 인구증가예측, 분야별 기사 분류 등
- · 비유: 학생이 교과서 내용을 공부한 뒤 학습 내용을 바탕으로 시험 문제 정답을 고르는 것과 유사하다.

1. 머신 러닝 이론 기초

2. 데이터 수집 과정

- · 워마드 웹사이트에서 인기 포스트의 댓글, 학습 데이터로서 **크롤링**
- · 웹크롤링: 웹사이트에서 원하는 정보를 자동으로 가져오는 것. 파이썬(프로그래밍 언어의 일종)에서는 beautifulsoup 와 selenium 라이브러리를 활용하여 이를 실행한다.

/ 크 노무딱 여자답노 한남충들 좋다 고 쩝쩝거리겠노"

2. 데이터 수집 과정

댓글

0	띵문에 묻은 소추 나노 말멀 달아라\n개인적으로는 큰 깨달음 얻었노 나는 야망이 없
1	멋진 글이노
2	띵문이노 내일 일어나자마자 필사하노
3	말멀 안 쓰노?
4	말멀 달아라 이기 그거 빼면 띵문이노
5	권력은 복종하지 않기위해 얻어야하는 것이다 ㅇㄱㄹㅇ이노. 난 누구의 지배를 받는것
6	말머리 달아라 소추준다
7	추하고 역겨운 길을 걸어, 무감각함과 평온의 세계로 가는 것이야말로 권력이다.\n누
8	띵문이노 야망보지 더 힘주겠노
9	띵문이노. 내가 워마드에 들어가본 것이 인생의 최대 터닝포인트라고 느끼는 이유 중
10	띵문이노 일기에 붙여놓고 보겠노
11	띵문이노 윾입들은 닥눈삼 자세로 이 글 정독하고 다른 웜띵문들도 정독해라 이기야
12	구구절절 띵문이노 자트릭스에서 추하지 않은 방법으로 권력을 획득할 수 있는 방법은
13	지금 아주 자트릭스 심한 집단 (과)에서 스트레스 봊나 받고 살았는데 개돼지들보다

- · 워마드 웹사이트 대부분의 댓글을 혐오 발언 이라 가정
- · 특정한 단어("한남충", "~이기", "~노")가 반복되고, 극단적인 혐오 내용이 자주 출연하기에 혐오 발언 데이터로서 적합하다 판정
- · 약 3만 개의 댓글을 크롤링하여 데이터셋(그 림과 같은 표)으로 저장

3.자연어 처리 기법을 통한 인공지능 개발

1. 문서의 특징어 추출 (TF-IDF 가중치)

- · 컴퓨터가 문서를 분석할 때에는 문장들에 자주 나타나거나 중요한 단어인 "특징어"를 추출하여 내용을 파악한다.
- · 자연어 처리에서는 특징어에 TF-IDF 가중치를 부여하여 중 요도 순으로 단어에 값을 매긴다.

```
TF(단어의 빈도수) * IDF(단어의 희소성) = \frac{n(\text{단어 출현 빈도})}{N(\text{문서 내 총 단어 수})} * \log_{10} \frac{D(\text{문서 내 문장 수})}{d(\text{단어를 포함한 문장 수})}
```

3.자연어 처리 기법을 통한 인공지능 개발

2.로지스틱 회귀(logistic regression)

- · 문장이 혐오발언일 경우엔 1, 정상발언일 경우엔 0으로 나태내어, 혐오발언(1)이 될 확률 f(x)가 0.5보다 큰가 작은가에 따라 혐오발언 또는 정상발언으로 분류한다.
- · 앞서 각 특징어에 부여한 TF-IDF 가중치의 값에 따라 로지 스틱 함수를 제작한다.

$$f(x) = \frac{1}{1 + \exp[-(b + a_1 x_1 + \dots + a_n x_n)]}$$

3.자연어 처리 기법을 통한 인공지능 개발

3. 결과물


```
#TfidfVectorizer Logistic Regression
import pandas as pd
from sklearn.utils import shuffle
from sklearn.model selection import train test split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear model import LogisticRegression
from sklearn.metrics import roc_auc_score
list = []
normal_data = pd.read_csv("korean_sentence.csv",encoding="ANSI")
for i in range(len(normal data["문장"])):
    normal_data["문장"][i]=normal_data["문장"][i].replace("\t","")
for i in range(len(normal_data["문장"])):
   list.append(i)
for | in range(len(list)):
   list[I] = 0
list
normal_data["혐오 여부"]=list
womad_data=pd.read_csv("womad_comment_train_data.csv")
womad_data["문장"] = womad_data["댓글"]
list=[]
for i in range(len(womad_data["문장"])):
   list.append(i)
for I in range(len(list)):
   list[I] = 1
womad data["혐오 여부"]=list
womad_data = womad_data.drop(['댓글','Unnamed: 0','level_0','Unnamed: 0.1','index','Unnamed: 0.1.1'],axis=1)
train_data = shuffle(pd.concat([womad_data.sample(n=1000), normal_data])).reset_index(drop=True)
hate_data = shuffle(pd.concat([womad_data, normal_data])).reset_index(drop=True)
X_train,X_test,y_train,y_test = train_test_split(train_data["문장"].train_data["혐오 여부"].random state=0)
vect = TfidfVectorizer().fit(X train)
X_train_vectorized = vect.transform(X_train)
model = LogisticRegression()
model.fit(X train vectorized, y train)
```

4. 자연어 처리 응용

-미래에 <mark>딥러닝</mark>을 통해 단어의 의미 분석과 관한 연구 또한 진행할 예정

-<mark>자연어 처리</mark> 기술이 혐오 발언 감지, 분야에 따른 문헌 분류, 가짜 뉴스 감지 등으로 발전할 가능성

-<mark>인공지능</mark>을 어떻게 개발하고 사용할지 결정하는 것은 결국 인간, 우리의 선택에 따라 미래가 좌우된다.