Отчёт по лабораторной работе N2

Семён Бевзюк

10 марта 2019 г.

Постановка задачи №1

Рассмотрим систему, которая описывает авторегрессор без задержки. Она имеет следующий вид:

$$\dot{x} = \frac{\alpha}{1 + x^n} - x \tag{1}$$

Где n — размерность белка, α — положительный коэффициент синтеза, x — концентрация белка в клетке.

Состояние равновесия можно найти приравняв нулю правую часть. После преобразований получим следующее уравнение:

$$x^{n+1} + x - \alpha = 0 \tag{2}$$

Данная функция монотонная, возрастающая, следовательно имеет один корень в области x>0. Корень, обозначим его за x^* , можно найти численно используя метод Ньютона или метод бисекции.

Сравним эти методы для поиска корней нелинейного уравнения. Для этого нужно:

- 1. При разных n построить зависимость корня x^* от параметра α .
- 2. Зафиксируем n и α и сравним методы. Для этого построим графики сходимости методов к ответу.

Постановка задачи №2

Рассмотрим систему, которая описывает генный переключатель:

$$\begin{cases} \dot{x_1} = \frac{\alpha}{1+x_2^n} - x_1\\ \dot{x_2} = \frac{\alpha}{1+x_1^n} - x_2 \end{cases}$$
 (3)

Система для поиска состояний равновесия:

$$\begin{cases} x_1 = \frac{\alpha}{1 + x_2^n} \\ x_2 = \frac{\alpha}{1 + x_1^n} \end{cases} \tag{4}$$

Выразим x_2 через x_1 , подставим и упростим. Для поиска состояний равновесия нужно решить уравнение:

$$x_1(1+x_1^n)^n - \alpha(1+x_1^n)^n + \alpha^n x_1 = 0$$
 (5)

При n=2 оно примет следующий вид:

$$x^{5} - \alpha x^{4} + 2x^{3} - 2\alpha x^{2} + (1 + \alpha^{2})x - \alpha = 0$$
(6)

Нужно решить данное уравнение и построить график зависимости корней от параметра α .

Рис. 1: Зависимость корня уравнения (2) от параметра α .

Решение задачи №1

Для решения задачи были реализованы метод Ньютона и метод бисекции на языке Python 3.7.

Найдём корни (2) используя метод Ньютона с критерием остановки $|f(x_{k-1})-f(x_k)|<10^{-6}$ при $n=\{2,4,6\}$. На Рис. 1 показан график зависимости корня от параметра α .

Теперь сравним методы. Пусть $n=4,~\alpha=2,$ точность решения $\varepsilon=10^{-6}.$ Метод Ньютона запустим из точки $x_0=0,$ для метода бисекции левая граница a=0, правая b=10.

Результаты представлены на Рис. 2 и Рис. 3. Можно заметить, что метод Ньютона сходится к ответу быстрее. Метод же биссекции долго уточняет ответ.

Рис. 2: Зависимость текущей точки метода от итерации

Рис. 3: Зависимость разности между двумя испытаниями от итерации

Рис. 4: Зависимость корней уравнения (6) от параметра α .

Решение задачи №2

Представим уравнение (6) в ином виде:

$$\begin{cases}
P_5(x) = P_3(x) * P_2(x) \\
P_3(x) = x^3 + x - \alpha \\
P_2(x) = x^2 - \alpha x + 1
\end{cases}$$
(7)

Для $P_3(x)$ мы можем легко найти корень используя численный метод и мы знаем, что он один. Для $P_2(x)$ можно найти корень точно или численно. При $\alpha=2$ уравнение имеет ровно один корень. При $\alpha>2$ уравненеи имеет два корня. Следовательно исходное уравнение $P_5(x)$ имеет один или три корня.

Построим зависимость корней от параметра α . На Рис. 4 видно, что при переходе значения параметра α через 2 появляются новые корни, то есть появляются новые состояния равновесия исходной системы (3).