EDA: Exploratory Data Analysis

1. Working Directory

Configurando o diretório de trabalho

 $setwd("C:/Users/Utilizador/repos/Formacao_cientista_de_dados/big_data_analytics_R_microsoft_azure_machine_leargetwd()$

- 2. Imports library(data.table) library("ggplot2") library(readr) library(plyr) library(caret) library(mart) library(mboost) library(MASS) library(pamr) library(dplyr) library(naivebayes)
- 3. Data Loading dados <- fread("creditcard.csv", stringsAsFactors = F, sep = ",", header =T) head(dados)
- 4. Data Cleaning
- 4.1 Variable Format Changes

Make the variable of interest (Fraud) a factor and re-level the variable for later interpretation in the models, this makes that the fraud level can be interpreted as Y=1

```
\label{eq:cases} $$ names(dados) = \text{``Class''}] < \text{``Fraud''} $$ dados $Fraud < -factor(dados Fraud, labels = c("Normal", "Fraud")) $$ dados $Fraud < -relevel(dados Fraud, "Fraud")) $$ dados $Fraud < -relevel(dados Fraud, "Fraud") $$
```

- **4.2 Missing values** any(is.na(dados))
- 5.Descriptive statistics

Descreve, compreende, organiza e resumi os dados

5.1 Structure & simple statistics

```
DataViewer View(dados)

Object structure(str) str(dados)

summary summary(dados)
```

5.2 Central Trend Measures

Medidas de Tendência Central

resumo das variaveis do dataset

summary(dadosFraud)summary(dadosAmount)

5.3 Dispersion Measures

Medidas de Dispersão

5.3.1 Variation

Na variância, números maiores indicam que os dados estão espalhados mais amplamente

em torno da média.

var(dados\$Amount)

5.3.2 standard deviation

O desvio padrão indica, em média, a quantidade de cada valor diferente da média.

sd(dados\$Amount)

- 6. Exploratory Data Analysis
- 6.1 Exploratory Data Analysis for Numerical Variables

Análise Exploratória de Dados Para Variáveis Numéricas

mean
mean(dados\$Amount)
median
median(dados\$Amount)
quartiles

```
 \begin{array}{l} {\rm quantile(dadosAmount)} {\rm quantile(dadosAmount,\ probs=c(0.01,\ 0.99))\ quantile(dados\$Amount,\ seq(\ from\ =0,\ to=1,\ by=0.20)) \\ {\rm Difference\ between\ quartiles\ (Q3\ and\ Q1)} \\ {\rm IQR(dados\$Amount)\ \#Diference\ entre\ Q3\ e\ Q1} \\ {\rm Minimum\ and\ maximum\ range(dados\$Amount)} \\ {\rm Difference\ between\ ranges:\ Amplitude\ diff(range(dados\$Amount))} \\ 6.1.2\ {\rm Plot} \\ \end{array}
```

Explora cada variável em um conjunto de dados, separadamente;

a) Boxplot

6.1.2.1 Univariate Analysis

Diagrama de caixa (Bigode);

Leitura de Baixo para Cima - Q1, Q2 (Mediana) e Q3

valor mínimo, 1° quartil (25%), mediana(50%), 3° quartil(75%), valor máximo, outliers

Distribuição de frequência dos valores dentro de cada bin (classe de valores)

Indicam a frequência de valores dentro de cada bin (classe de valores)

variavél amount

```
hist(dados Amount, main = "Histograma Aumont", xlab = "Preço(R)")
```

variavel amount com bins

```
hist(dadosAmount, main = "HistogramaAumont", breaks = 5, ylab = "Preço(R)") 6.1.2.2 Bivariate Analysis
```

Explora como duas variáveis se comportam na presença uma da outra

a) Scatterplot

plot(x = dados Amount, y = dados Fraud, main = "Scatterplot - Aumont x Fraud", xlab = "Aumont", ylab = "Fraud")

6.2 Exploratory Data Analysis for Categorical Variables

Análise Exploratória de Dados Para Variáveis Categóricas

Criando tabelas de contingência - representam uma única variável categórica

Lista as categorias das variáveis nominais

table(dados\$Fraud)

Calculando a proporção de cada categoria

model_table <- table(dados\$Fraude) prop.table(model_table)

Arrendondando os valores

 $model_table <- \ table(dados\$Fraud) \ model_table <- \ prop.table(model_table) \ * \ 100 \ round(model_table, digits = 1)$

7. Visual Analysis

7.1 Fraud Distribution

This graph shows the high prevalence in the data, only 0.17% of the transactions in the data were fraudulent and the other 99.83% do not.

7.2 Fraud Distribution by Amount (scaled) dados%>% group_by(Fraud)%>% ggplot()+ geom_density(aes(Amount, fill = Fraud), alpha = .5)+ scale_x_log10()

7.3 Fraud Distribution by other variables

Here we can see that for some variables we can easily discriminate the fraudulent transactions

```
\textbf{7.3.1 V2} \quad \text{dados} \% > \% \text{ group\_by}(\text{Fraud}) \% > \% \text{ ggplot}() + \text{ geom\_density}(\text{aes}(\text{V2}, \text{fill} = \text{Fraud}), \text{ alpha} = .5)
```

$$\textbf{7.3.2 V3} \quad \text{dados\%>\% group_by(Fraud)\%>\% ggplot() + geom_density(aes(V3, fill = Fraud), alpha = .5)}$$

But for others this would be a little more difficult

7.3.4 V25 dados%>% group_by(Fraud)%>% ggplot()+ geom_density(aes(V25, fill = Fraud), alpha = .5)