TD1: Routage statique

Rappel : ce TD doit faire l'objet d'un Compte Rendu électronique à déposer sur GitLab avant le début de séance suivante, à l'attention de l'enseignant responsable de votre groupe.

Objectifs

- Configurer un réseau local en respectant un schéma d'adressage
- Configurer les équipements dédiés : routeurs, commutateurs ...
- Construire une table de routage statique

Partie I: Tables de routage

1. Mettre en place avec Packet Tracer un réseau selon le schéma suivant :

Choisir le type 'PT-Router' pour les trois routeurs Router0, 1 et 2.

2. Configuration des routeurs (onglet CLI) :

Plutôt que l'interface graphique, nous allons utiliser le mode interactif (**CLI : Command Line Interface**), que l'on emploie généralement avec le matériel "réel" en exploitation.

Le système offre une aide contextuelle accessible en tapant « ? » chaque fois que l'on a besoin d'information sur une commande ou un paramètre.

Router>**enable**

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface FastEthernet0/0

Router(config-if)#ip address xxx.xxx.xxx yyy.yyy.yyy

Router(config-if)# exit

avec xxx.xxx.xxx pour l'adresse IP et yyy.yyy.yyy pour le masque.

1. Utiliser les commandes ci-dessous pour vérifier la configuration :

Router>show interfaces ou Router# show running-config (mode enable)

- Avec la commande ping (dans l'onglet Desktop > Command Prompt), tester la communication entre les postes clients et l'interface du routeur directement connecté.
- 3. Tester la communication entre les différents routeurs :
 - a) Passer en mode simulation
 - b) Observer les trames lors des échanges
 - c) Utiliser le panneau de simulation (**Simulation Panel**) pour observer les trames des requêtes ICMP sur les différentes interfaces (cliquer sur les carrés de couleur pour faire apparaître les fenêtres ' *PDU Information at Device*: ... ')
 - d) Les postes PC0 et PC1 peuvent-ils communiquer ensemble ? Peuvent-ils accéder à Router2 ?
- 4. Vérifier que toutes les interfaces sont opérationnelles.

Avant de débloquer le système, il faut regarder les tables de routage de chacun des routeurs.

5. Chercher la commande qui permet d'afficher la table de routage sur chacun des routeurs.

Indice: dans l'onglet CLI, taper show? pour afficher l'aide contextuelle

Voici ce que l'on doit voir respectivement pour Router0, Router1 et Router2:

- C 10.0.0.0/8 is directly connected, FastEthernet0/0
 C 20.0.0.0/8 is directly connected, Serial2/0
 C 140.140.0.0/16 is directly connected, FastEthernet1/0
 C 140.140.0.0/16 is directly connected, FastEthernet1/0
 C 192.168.1.0/24 is directly connected, FastEthernet0/0
 C 20.0.0.0/8 is directly connected, Serial2/0
 - 6. Quelle configuration faut-il adopter pour chaque routeur?

Instructions à utiliser :

Router>enable Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route xxx.xxx.xxx yyy.yyy.yyy nnn.nnn.nnn
Router(config)# end

- xxx.xxx.xxx : adresse réseau de destination
- yyy.yyy.yyy: masque associé
- nnn.nnn.nnn : adresse IP de la passerelle (Next Hop) à utiliser pour le réseau x.

Partie II: Routage et intranet

 Ouvrir avec Packet Tracer le fichier R3.06_td1.pkt correspondant à la topologie suivante :

1. Configurer les adresses IP selon le tableau ci-dessous :

Interface	Adresse IPv4
Fa0 de A	10.1.1.1/24
Fa0 de B	10.1.1.2/24
G0/0 de R1	10.1.1.3/24
G0/1 de R1	10.3.3.1/25
S0/0/3/0 de R1	10.4.4.1/30

Interface	Adresse IPv4
Fa0 de C	10.3.3.3/25
G0/0 de R2	10.2.2.3/24
S0/0/3/0 de R2	10.4.4.2/30
Fa0 de S1	10.2.2.1/24
Fa0 de S2	10.2.2.2/24

- Vérifier que les machines peuvent communiquer à l'intérieur de leur sousréseau. (A et B d'une part ; S1 et S2 d'autre part)
 Penser à la configuration des passerelles (gateway) sur les PC et les serveurs!
- 3. Observer les trames lors d'un *ping* du PC A vers le PC C
 - a) Quelles sont les adresses de niveau 2 et de niveau 3 des trames capturées par les interfaces G0/0 et G0/1 de R1 ?
 - b) Quelle doit être la configuration des routeurs R1 et R2 pour que le PC C puisse contacter les serveurs S1 ou S2 ?
- 4. Mettre en place le routage correspondant sur les routeurs.
- 5. Reproduire sur votre compte-rendu les tables de routage des routeurs que vous avez configurés, selon le modèle suivant :

Destination:	Passerelle :	Interface :
Sous-réseau de destination	Adresse du prochain routeur	Interface utilisée pour envoyer les paquets