Вычислительная математика Лабораторная работа 1

Ярослав Пылаев, гр. 3530904/80001 March 5, 2020

1 Задание

Вариант 14. Для $1 \le x \le 4$ с h = 0.375 вычислить значения

$$f(x) = \int_0^{20} \frac{dz}{e^z(z+x)},$$

используя для вычисления интеграла программу QUANC8. По полученным точкам построить сплайн-функцию и полином Лагранжа 8-й степени. Сравнить значения обеих аппроксимаций в точках

$$x_k = 1.1875 + 0.375k, \quad (k = 0, 1, \dots, 7).$$

1.1 Цель работы

Вычислить значение заданного интеграла и исследовать точность аппроксимирующих функций, полученных

- сплайн-интерполяцией,
- построением интерполяционного полинома Лагранжа.

1.2 Задачи

- 1. Используя программу QUANC8 определить значение интеграла.
- 2. При помощи программ SPLINE и SEVAL построить сплайн-функцию.
- 3. Построить интерполяционный полином Лагранжа.
- 4. Сравнить полученные значения в точках x_k , дополнительно для определения точности аппроксимаций для этих же точек применив программу QUANC8.

2 Реализация

2.1 QUANC8

```
Listing 1: QUANC8
              \begin{array}{lll} \textbf{const} & \textbf{int} & \textbf{X}\_\textbf{LIMIT}\_1 = 1;\\ \textbf{const} & \textbf{int} & \textbf{X}\_\textbf{LIMIT}\_2 = 4; \\ \end{array} 
              const double H = 0.375;
   _{5} const double A = 0;
              const double B = 20;
   8 int main()
   9
10 //other INPUT parameters
                              {\color{red}\textbf{const}} \  \, {\color{red}\textbf{double}} \  \, {\color{blue}\textbf{epsabs}} \, = \, 0.0; \\
11
                              const double epsrel = 1.0e-10;
12
13
              //OUTPUT parameters
14
                              double result = 0.0;
15
                              double errest = 0.0;
16
17
                              int nofun = 0;
18
                              double posn = 0.0;
                             int flagQuanc = 0;
19
20
                              {\color{red} \textbf{const}} \hspace{0.2cm} \textbf{int} \hspace{0.2cm} \textbf{n} \hspace{0.2cm} = \hspace{0.2cm} 1 \hspace{0.2cm} + \hspace{0.2cm} \textbf{static\_cast} \hspace{0.2cm} < \hspace{0.2cm} \textbf{int} \hspace{0.2cm} > \hspace{0.2cm} (\hspace{0.2cm} \textbf{A} \hspace{0.2cm} \textbf{LIMIT\_1} \hspace{0.2cm} - \hspace{0.2cm} \\ \textbf{n} \hspace{0.2cm} = \hspace{0.2cm} 1 \hspace{0.2cm} + \hspace{0.2cm} \textbf{static\_cast} \hspace{0.2cm} < \hspace{0.2cm} \textbf{int} \hspace{0.2cm} > \hspace{0.2cm} (\hspace{0.2cm} \textbf{abs} \hspace{0.2cm} (\hspace{0.2cm} \textbf{X} \hspace{0.2cm} \hspace{0.2cm} \textbf{LIMIT\_1} \hspace{0.2cm} - \hspace{0.2cm} \\ \textbf{n} \hspace{0.2cm} = \hspace{0.2cm} 1 \hspace{0.2cm} + \hspace{0.2cm} \textbf{static\_cast} \hspace{0.2cm} < \hspace{0.2cm} \textbf{n} \hspace{0.2cm} = \hspace{0.2cm} 1 \hspace{0.2cm} + \hspace{0.2cm} \textbf{static\_cast} \hspace{0.2cm} = \hspace{0.2cm} 1 \hspace{0.2cm} + \hspace{0.2cm} 1
^{21}
                                                                     - X_LIMIT_2) / H);
^{22}
23
                              double arrQuancRes[n] = \{ 0 \};
24
25
                              for (int i = 0; i < n; ++i) {
26
                                           quanc8(fun, A, B, epsabs, epsrel, &result,
27
                                                                                   &errest, &nofun, &posn, &flagQuanc); //QUANC8
29
                                           arrQuancRes[i] = result;
                             }
30
```

```
Listing 2: Подынтегральная функция

double fun(double z) {
    double x = X_LIMIT_1;
    static int i = -1;
    if (z == A) {
        x = X_LIMIT_1 + (++i * H); //compute x
    }
    else {
        x = X_LIMIT_1 + (i * H);
    }
    return { 1 / (exp(z) * (z + x)) };
}
```

2.1.1 Результат

x	1	1.375	1.75	2.125	2.5	2.875	3.25	3.625	4
f(x)	0.5963	0.4774	0.3998	0.3448	0.3035	0.2713	0.2454	0.2241	0.2063

 ${\tt FLAG~QUANC8}=0$

2.1.2 Комментарии

Так как подынтегральная функция зависит от двух переменных, то программа QUANC8 работает относительно переменной z, а изменение x учитывается в самой функции (используется статическая переменная для расчета).

Результаты программы являются разумными, потому что при увеличении переменной x, находещейся в знаменателе, значение функции уменьшается.

2.2 Сплайн-интерполяция

```
Listing 3: SPLINE-SEVAL
    const int k \min = 0;
    const int k_max = 7;
    const int nK = k_max - k_min + 1;
    double arrSplineRes[nK] = \{ 0 \};
    //compute X k values
    double arrXKPoints[nK];
    for (int i = 0; i < nK; ++i) {
10
       arrXKPoints[i] = 1.1875 + 0.375 * i;
11
12
13
    double arrB[nK] = \{ 0 \};
14
    double arrC[nK] = \{0\};
double arrD[nK] = \{0\};
15
16
17
    int flagSpline = 0;
18
    int last = 0;
19
20
     spline(n, 1, 1, 1, arrXPoints, arrQuancRes,
21
           arrB, arrC, arrD, &flagSpline); //SPLINE
22
23
    for (int i = k_min; i < k_max + 1; ++i) {
24
       arrSplineRes[i] = seval(n, arrXKPoints[i], arrXPoints,
25
             arrQuancRes, arrB, arrC, arrD, &last); //SEVAL
26
    }
27
```

2.2.1 Результат

x_k	1.1875	1.5625	1.9375	2.3125	2.6875	3.0625	3.4375	3.8125
f(x)	0.5963	0.4193	0.3744	0.3213	0.2879	0.2531	0.2509	0.2268

FLAG SPLINE = 0

2.3 Интерполяционный полином Лагранжа

```
Listing 5: lagrange.cpp
  double lagrange(int n, double arrPoints[],
        double arrFunctions[], int m, double x)
2
3
    if (n < m) {
      throw std::invalid argument("There are not enough points");
    if (n \le 0) {
      throw std::invalid argument("Tables are empty");
    //find nodes satisfying the condition of interpolation
10
    int h = 0;
11
    for (int i = 0; i < n; i++) {
12
      if ((arrPoints[i] > x) \&\& (i >= m)) {
13
          h = i + 1 - m;
14
           break;
15
      }
16
    }
17
    //compute
18
19
    double q = 0.0;
    for (int i = h; i < h + m; i++) {
20
       double p = 1.0;
^{21}
       for (int j = h; j < h + m; j++) {
22
         if (j != i) {
23
          p *= x - arrPoints[j];
24
          p /= arrPoints[i] - arrPoints[j];
25
26
27
      p *= arrFunctions[i];
```

2.3.1 Результат

	x_k	1.1875	1.5625	1.9375	2.3125	2.6875	3.0625	3.4375	3.8125
Ī	f(x)	0.5293	0.4350	0.3702	0.3228	0.2864	0.2577	0.2342	0.2148

2.3.2 Комментарии

Для построения интерполяционного полинома Лагранжа была использована программа lagrange.cpp, написанная еще в 3-м семестре в рамках курса по вычислительной математике, которая самостоятельно способна выбирать наиболее подходящие узлы интерполирования. Даже несмотря на то, что в решаемой задаче выбор узлов не предоставляется (9 точек, требуемая степень - 8), упомянуть о свойстве программы имеет смысл.

2.4 Дополнительные расчеты

```
Listing 6: QUANC8 по точкам x_k

for (int i = 0; i < nK; ++i) {
   quanc8(checkFun, A, B, epsabs, epsrel, &result,
   &errest, &nofun, &posn, &flagQuanc);
   arrQuancRes[i] = result;
}

return 0;
}
```

```
Listing 7: Функция с расчетом x_k

double checkFun(double z)

double \times = 1.1875;
static int i = -1;
if (z == A) {
    \times = 1.1875 + 0.375 * (++i);
}
else {
    \times = 1.1875 + 0.375 * i;
}

10
11
```

```
return { 1 / (exp(z) * (z + x)) }; 13 }
```

2.4.1 Результат

	1.1875							
f(x)	0.5298	0.4350	0.3702	0.3228	0.2864	0.2577	0.2343	0.2148

2.5 Сравнение результатов

x_k	$\triangle f(x)_S$	$\triangle f(x)_L$
1.1875	-0.0665	0.0004
1.5625	0.0156	$-2.8 \cdot 10^{-5}$
1.9375	-0.0042	$6.4 \cdot 10^{-6}$
2.3125	0.0014	$-3.0 \cdot 10^{-6}$
2.6875	-0.0014	$2.6 \cdot 10^{-6}$
3.0625	0.0045	$-4.2 \cdot 10^{-6}$
3.4375	-0.0166	$1.4 \cdot 10^{-5}$
3.8125	-0.0119	$-4.8 \cdot 10^{-6}$

$$\triangle f(x)_{S|L} = f(x)_{Q8} - f(x)_{S|L}$$

3 Вывод

Значение заданного интеграла было успешно вычисленно с помощью программы QUANC8, а в результате сплайн-интерполяции и построения полинома Лагранжа 8-й степени были получены аппроксимации исходной функции, что позволяет исследовать ее поведение. Проанализировав таблицу п. 2.5 "Сравнение результатов", можно сделать вывод о точности методов, заключачающийся в том, что значения аппроксимации, полученной построением полинома Лагранжа, более точные, чем значения, полученные сплайн-интерполяцией.