Network Flows

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 11

Network of pipelines

- Network of pipelines
- \blacksquare Ship as much oil as possible from s to t

- Network of pipelines
- lacksquare Ship as much oil as possible from s to t
- No storage along the way

- Network of pipelines
- \blacksquare Ship as much oil as possible from s to t
- No storage along the way
- A flow of 7 is possible

- Network of pipelines
- \blacksquare Ship as much oil as possible from s to t
- No storage along the way
- A flow of 7 is possible
- Is this the maximum?

- Network: graph G = (V, E)
- Special nodes: *s* (source), *t* (sink)

- Network: graph G = (V, E)
- Special nodes: *s* (source), *t* (sink)
- Each edge *e* has capacity *c_e*

- Network: graph G = (V, E)
- Special nodes: *s* (source), *t* (sink)
- Each edge e has capacity ce
- Flow: f_e for each edge e
 - $f_e \leq c_e$
 - At each node, except s and t, sum of incoming flows equal sum of outgoing flows

- Network: graph G = (V, E)
- Special nodes: *s* (source), *t* (sink)
- Each edge *e* has capacity *c_e*
- Flow: f_e for each edge e
 - $f_e \leq c_e$
 - At each node, except s and t, sum of incoming flows equal sum of outgoing flows
- Total volume of flow is sum of outgoing flow from s

- Variable f_e for each edge e
 - \bullet f_{sa} , f_{bd} , f_{ce} , ...

- Variable f_e for each edge e
 - \blacksquare f_{sa} , f_{bd} , f_{ce}
- Capacity constraints per edge
 - $f_{ba} < 10$

- Variable f_e for each edge e
 - \blacksquare f_{sa} , f_{bd} , f_{ce} , ...
- Capacity constraints per edge
 - $f_{ba} \leq 10, \ldots$
- Conservation of flow at each internal node

$$f_{ad} + f_{bd} = f_{dc} + f_{de} + f_{dt}, \dots$$

- Variable f_e for each edge e
 - \blacksquare f_{sa} , f_{bd} , f_{ce}
- Capacity constraints per edge
 - $f_{ba} < 10$
- Conservation of flow at each internal node

$$f_{ad} + f_{bd} = f_{dc} + f_{de} + f_{dt}, \dots$$

- Objective: maximize flow volume
 - Maximize $f_{sa} + f_{sb} + f_{sc}$

- Variable f_e for each edge e
 - \blacksquare f_{sa} , f_{bd} , f_{ce} , . . .
- Capacity constraints per edge
 - $f_{ba} \le 10, \ldots$
- Conservation of flow at each internal node

$$f_{ad} + f_{bd} = f_{dc} + f_{de} + f_{dt}, \dots$$

- Objective: maximize flow volume
 - Maximize $f_{sa} + f_{sb} + f_{sc}$
- Simplex explores vertices of feasible region to solve LP, find maximum flow

- Variable f_e for each edge e
 - \bullet f_{sa} , f_{bd} , f_{ce} , ...
- Capacity constraints per edge
 - $f_{ba} \le 10, \ldots$
- Conservation of flow at each internal node

$$f_{ad} + f_{bd} = f_{dc} + f_{de} + f_{dt}, \dots$$

- Objective: maximize flow volume
 - Maximize $f_{sa} + f_{sb} + f_{sc}$
- Simplex explores vertices of feasible region to solve LP, find maximum flow
- Moving from vertex to vertex gives a more direct algorithm for maximum flow

Madhavan Mukund Network Flows PDSA using Python Week 11

■ Start with zero flow

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow 2

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow 2
- What if one chooses a bad flow to begin with?

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow 2
- What if one chooses a bad flow to begin with?
- Add reverse edges to undo flow from previous steps

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow 2
- What if one chooses a bad flow to begin with?
- Add reverse edges to undo flow from previous steps
- Residual graph: for each edge e with capacity c_e and current flow f_e
 - Reduce capacity to $c_e f_e$
 - Add reverse edge with capacity fe

5/9

Start with zero flow

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Build residual graph

- Start with zero flow
- Choose a path from *s* to *t* that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t

- Start with zero flow
- Choose a path from *s* to *t* that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t
- Flow 20, s a b t,

Network Flows

- Start with zero flow
- Choose a path from s to t that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t
- Flow 20, s a b t, build residual graph

- Start with zero flow
- Choose a path from *s* to *t* that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t
- Flow 20, s a b t, build residual graph
- Add flow 10, s b a t,

Network Flows

- Start with zero flow
- Choose a path from *s* to *t* that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t
- Flow 20, s a b t, build residual graph
- Add flow 10, s b a t, build residual graph

- Start with zero flow
- Choose a path from *s* to *t* that is not saturated and augment the flow as much as possible
- Build residual graph
- Repeat the previous two steps till there is no feasible flow from s to t
- Flow 20, s a b t, build residual graph
- Add flow 10, s b a t, build residual graph
- No more feasible paths from s to t

6/9

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - \bullet (s, t)-cut

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - \bullet (s, t)-cut
- Flow from s to t must go through this cut

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - \bullet (s, t)-cut
- Flow from s to t must go through this cut
- Cannot exceed cut capacity, 7

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - **■** (*s*, *t*)-cut
- Flow from s to t must go through this cut
- Cannot exceed cut capacity, 7
- Max flow cannot exceed capacity of min cut

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - \bullet (s, t)-cut
- Flow from s to t must go through this cut
- Cannot exceed cut capacity, 7
- Max flow cannot exceed capacity of min cut

Max flow-min cut theorem

■ In fact, max flow is always equal to min cut

Madhavan Mukund PDSA using Python Week 11

- Edges $\{ad, bd, sc\}$ disconnect s and t
 - \bullet (s, t)-cut
- Flow from s to t must go through this cut
- Cannot exceed cut capacity, 7
- Max flow cannot exceed capacity of min cut

Max flow-min cut theorem

- In fact, max flow is always equal to min cut
- At max flow, no path from s to t in residual graph
 - s can reach L, R can reach t
 - Any edge from *L* to *R* must be at full capacity
 - Any edge from R to L must be at zero capacity

7/9

■ Choose augmenting paths wisely

- Choose augmenting paths wisely
- If we keep going through the middle edge, 200 iterations to find the max flow
 - Ford-Fulkerson can take time proportional to max capacity

8/9

- Choose augmenting paths wisely
- If we keep going through the middle edge, 200 iterations to find the max flow
 - Ford-Fulkerson can take time proportional to max capacity
- Use BFS to find augmenting path with fewest edges
- Iterations bounded by $|V| \times |E|$, regardless of capacities

8/9