Priority Queue:

Heap

Fatemeh Panahi
Department of Computer Science
University of Toronto
CSC263-Fall 2017
Lecture 2

Announcements

- Assignment 1: is out and the deadline is Sep 29. Do not wait till the last minute.
- Small quiz game next week: You would need to have a smartphone, a tablet or a laptop to participate.
- Tutorial on Friday: Out TA will give you an example of average case running time.
 - Insertion sort and the running time.
 - Few exercises from the textbook, chapter 6.

Average-Case running time

 Average Case: Expected value over the sample space by considering the probability distribution over inputs.

 t_n be a random variable that denotes the number of comparisons executed (Line #3)

$$E(t_n) = \sum_{(A,v)\in S_n} t_n(A,v) \times P[(A,v)]$$

$$Pr[(A, n)] = p,$$
 $v \text{ not in } A \text{ as special}$ $Pr[(A, v)] = (1 - p)/n$ other cases equally likely

Today

- Priority Queue
- Heap
 - Insert
 - o Delete
 - o Max, Extract Max
 - Increase Priority
- Heap Sort
- Build max Heap

Reading Assignments

Chapter 6

ADT we already know

Queue:

First In First Out (LIFO) data structure

Objects: A set of elements.

Operations: Enqueue (x, Q), Dequeue(Q)

• Stack:

Last In First Out (LIFO) data structure

Objects: A set of elements.

Operations: Push(x, Q), Pop(Q)

First in first serve!

Last in first read!

Priority Queue

Oldest person first!

ADT: Priority Queue:

• Abstract data type: like a regular queue or stack data structure, but each element has also a "priority" associated with it. An element with high priority is served first.

• Objects:

- a collection of elements with priorities,
 i.e., each element x has x.priority.
- operations
 - \circ Insert(Q, x)
 - ExtractMax(Q)
 - \circ Max(Q)
 - IncreasePriority(Q, x, k)

Priority Queue:

- Applications:
 - Job scheduling: in an operating system
 Processes have different priorities (Normal, high...)
 - Operating System: It is also use in Operating System for
 - load balancing on server
 - > interrupt handling.
 - o etc.

Priority queue:

Data structures:

- Unsorted list?
 - \circ $\Theta(n)$ for EXTRACT-MAX.
- Sorted list in an array?
 - \circ $\Theta(n)$ for INSERT.

A new data structure: Heap

Data Structure: Heap

- Always keep the thing we are most interested in the top in order to a fast access.
- Like a binary search tree, but less structured.
- No relationship between keys at the same level.

Tree

- Binary tree
- Complete: every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
- Full: every node other than the leaves has two children.

Heap

- The (binary) heap data structure is an array object that we can view as a nearly complete binary tree.
- Heap elements stored in array together with an integer "heapsize".

0	1	2	3	4	5	6	7	8	9

Heap

0	1	2	3	4	5	6	7	8	9

Conventions:

root at index 0

$$left[i]$$

$$= 2i + 1$$

$$right[i]$$

$$= 2i + 2$$

$$parent[i]$$

$$= \lfloor i/2 \rfloor - 1$$

for
$$i < n/2$$

for
$$i > 0$$

Heap property

- Max Heap: every node has priority ≥ to priorities of its immediate children.
- Min Heap: every node has priority ≤ to priorities of its immediate children.

		2							
90	85	55	65	80	44	30	20	35	72

Remark: every subtree of a

heap is also a heap.

INSERT:

INSERT:

Increment 'heapsize',

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

INSERT:

- Increment 'heapsize',
- add element at new index 'heapsize'.
- Result might violate heap property.
 "bubble-up" element (exchange it with its parent until priority no greater than priority of parent.)

Running time?

 $\Theta(height) = \Theta(\log n).$

Operations - Maximum

Maximum:

Return element at index 0

Running time? $\Theta(1)$

Example:

Operations - Maximum

Maximum:

Return element at index o

Running time? $\Theta(1)$

Example: 90

Return element at index o and remove

it from the Max-Heap

at index 0.

• Decrement 'heapsize', remove element at index 0.

• Decrement 'heapsize', remove element at index 0.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1'
 into index 0.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1'
 into index 0.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1'
 into index 0.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1' into index 0.
- Restore heap order by "bubbling down" (exchange with highest priority child until priority is greater than or equal to both children, or leaf is reached): called MAX-HEAPIFY in textbook.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1' into index 0.
- Restore heap order by "bubbling down" (exchange with highest priority child until priority is greater than or equal to both children, or leaf is reached): called MAX-HEAPIFY in textbook.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1'
 into index 0.
- Restore heap order by "bubbling down" (exchange with highest priority child until priority is greater than or equal to both children, or leaf is reached): called MAX-HEAPIFY in textbook.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1' into index 0.
- Restore heap order by "bubbling down" (exchange with highest priority child until priority is greater than or equal to both children, or leaf is reached): called MAX-HEAPIFY in textbook.

- Decrement 'heapsize', remove element at index 0.
- Move element at index 'heapsize+1'
 into index 0.
- Restore heap order by "bubbling down" (exchange with highest priority child until priority is greater than or equal to both children, or leaf is reached): called MAX-HEAPIFY in textbook.

Heap Sort

Sorts an array, in $O(n \log n)$ time

Heap Sort – the idea

How to get a sorted list out of a heap with n nodes?

• Keep extracting max for *n* times.

Worst case running time?

Each Extract-Max is $O(\log n)$, we perform it n times, so overall it's $\Theta(n \log n)$

Heap Sort – Psudocode

HeapSort(A) #sort any array A into non-descending order' # convert any array A into a heap-ordered one for $i \leftarrow A$. size downto swap A[1] and A[i] # Step 1: swap the first and the last # Step 2: decrement size of heap BubbleDown(A, 1) # Step 3: bubble down the 1st element in A

Does it work?

```
It works for an array A that is initially heap ordered, it does work NOT for any array!
BuildMaxHeap
```

Build Max Heap

Converts an array into a max-heap ordered array, in O(n) time

Build Max Heap

A given arbitrary array

 10
 5

 7
 12

 1
 7

A Max-Heap

Build Max Heap – First idea

BuildMaxHeap(A):

```
B \leftarrow \text{empty array} # empty heap
for x \in A:
   Insert(B, x) # heap insert
   A \leftarrow B # overwrite A with B
```

Running time:

Each Insert takes $O(\log n)$, there are n inserts. So it's $O(n \log n)$, not very exciting. Not in-place, needs a second array.

Max-Heap built!

Max-Heap built!

We did nothing but but but bubling-down!

What is the starting index?

We always start from $\lfloor n/2 \rfloor - 1$ and go down to 0.

Build-Max-Heap(A): for $i \leftarrow \lfloor n/2 \rfloor - 1$ downto 1: BubbleDown(A, i)

- It's in-place, no need for extra array (we did nothing but swappings).
- It's worst-case running time is O(n), instead of $O(n \log n)$.

Analysis:

Worst-case running time of BuildMaxHeap(A)

Intuition

A complete binary tree:

How many levels? ~ log n

Total number of swaps:

A complete binary tree:

$$T(n) \le 1.\frac{n}{4} + 2.\frac{n}{8} + \dots + \log n.\frac{n}{2^{\log n}}$$

How many levels? ~ log n

BuildMaxHeap-Running time

$$T(n) \le 1 \cdot \frac{n}{4} + 2 \cdot \frac{n}{8} + \dots + \log n \cdot \frac{n}{2^{\log n}} = \sum_{i=1}^{\log n} i \cdot \frac{n}{2^{i+1}} \le n \sum_{i=1}^{\infty} \frac{i}{2^{i+1}} = n$$

$$\sum_{i=1}^{\infty} \frac{i}{2^{i+1}} = 1$$

Building a Max-Heap has a linear time complexity.

Summary

	Time Complexity
BuildMaxHeap	$\Theta(n)$
Maximum	Θ(1)
Extract Max	$\Theta(\log n)$
Delete	$\Theta(\log n)$
IncreaseKey	$\Theta(\log n)$
Heap Sort	$\Theta(\operatorname{nlog} n)$

Questions?