Grados en Informática B, Computadores A y Software C Métodos Estadísticos Control Abril 2018

- Tiempo: 1 horas 45 minutos.
- Dejar DNI encima de la mesa. Apagar y guardar el MÓVIL.

APELLIDOS, NOMBRE:

DNI: Grupo: Titulación:

1. Dada la tabla de valores:

\overline{y}	-3	-2	-1	1	2	3
\overline{x}	5.6	3.2	1.8	0.6	0.3	0.2

Hallar:

- a) Ecuaciones a resolver para realizar el ajuste $xa = \frac{3}{\sqrt{10^9}}$
- b) Obtener el ajuste y predecir el valor de x para y=1.73
- c) Ajustar una función del tipo $x = \frac{3}{ay + by^2}$
- d) Comparar ambos ajustes, ¿Cuál es el mejor modelo mediante el coeficiente de determinación?
- e) Hallar la varianza explicada en ambos modelos.

 $(0.5+(0.5+0.25)+0.75+0.75+0.5=3.25 \ Puntos)$

2. Dada la tabla de doble entrada:

$X \backslash Y$	$\left[\left(-\infty, -\frac{5\pi}{8} \right] \right]$	$(-\frac{5\pi}{8}, -\frac{3\pi}{8}]$	$\left(-\frac{3\pi}{8}, \frac{3\pi}{8}\right]$	$(\frac{3\pi}{8},\infty)$
1	80	21	10	6
2	42	32	15	10
3	14	15	10	8

- a) Calcular el P_{73} de la distribución $Y/_{x\geq 2}$. (Variable Y condicionada a que $x\geq 2$.)
- b) Calcular coeficiente que mide la dispersión relativa de $Y/_{x>2}$.
- c) Estudiar mediante la entropía que distribución es más dispersa, la marginal de X, o la condicionada $X/_{Y<\frac{3\pi}{8}}$.

 $(0.75+1+0.75=2.5 \ Puntos)$

3. Dada la serie temporal que representa la altura media de las olas en el cabo de Trafagar por estaciones:

\tilde{A} no\ Est .	P	V	O	I
2015	2	0.8	2.5	3.4
2016	1.8	1	2.3	3.7
2017	2	0.7	2.2	3.5

- a) Estimar la tendencia mediante medias móviles.
- b) Estimar los índices de estacionalidad (corregidos).
- c) Eliminar los términos tendencia y estacionalidad de la serie temporal.
- d) ¿Cuál de los periodos ha producido olas anormalmente altas?

 $(0.5+0.5+0.5+0.25=1.75 \ Puntos)$

Para los ejercicios siguientes indicad solamente las instrucciones MATLAB para su cálculo.

4. Indicad las órdenes necesarias para resolver el ejercicio 1 con MATLAB.

 $(0.5+0.75=1.25 \ Puntos)$

5. Un estudio sobre la duración en días de la estancia en un hotel de playa (X), produce los datos:

x_i	n_i
[0, 2]	120
(2, 4]	132
(4, 6]	150
(6, 8]	183
(8, 12]	78
(12, 20]	60
$(20,\infty)$	22

Indicad las órdenes necesarias para calcular:

- a) La media, varianza y sesgo de la variable X (duración).
- b) La duración que es superada por el $40\,\%$ de los clientes.

 $(0.75+0.5=1.25 \ Puntos)$

Grados en Informática A y Software A Métodos Estadísticos Control Abril 2018

- Tiempo: 1 horas 45 minutos.
- Dejar DNI encima de la mesa. Apagar y guardar el MÓVIL.

APELLIDOS, NOMBRE:

DNI: Grupo: Titulación:

1. Dada la tabla de valores:

$X \setminus Y$	0	1	2
$(-\infty, -1]$	30	43	0
(-1, 1]	0	0	35
(1, 3]	30	70	0
$(3,\infty]$	15	0	0

Hallar:

- a) Ecuaciones a resolver para realizar el ajuste de la elipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ en el estudio de la dependencia de la Y con $y \ge 0$.
- b) Obtener el ajuste y predecir el valor de y para x=1.73
- c) Ajustar una función del tipo $y = 2 a x^2$
- d) Comparar ambos ajustes mediante el coeficiente de determinación.
- e) Estimar la varianza explicada por ambos modelos.

$$(0.5+(0.5+0.25)+0.75+0.75+0.5=3.25 \ Puntos)$$

2. Dada la tabla de doble entrada:

$X \setminus Y$	$\left[(-\infty, -\frac{5\pi}{8}] \right]$	$\left(-\frac{5\pi}{8}, -\frac{3\pi}{8}\right]$	$(-\frac{3\pi}{8}, \frac{3\pi}{8}]$	$(\frac{3\pi}{8},\infty)$
1	80	21	10	6
2	42	32	15	10
3	14	15	10	8

- a) Calcular el cuartil 1 (Q_1) de la distribución $Y/_{x\leq 2}$. (Variable Y condicionada a que $x\leq 2$.)
- b) Calcular el coeficiente de dispersión relativa de $Y/_{x<2}$.
- c) Estudiar mediante la entropía que distribución es más dispersa, la marginal de X, o la condicionada $X/_{Y<-\frac{3\pi}{8}}$.

$$(0.75+1+0.75=2.5 \ Puntos)$$

3. Dada la serie temporal que representa la media diaria de horas de sol en Ceuta por trimestres:

$\tilde{Ano} Trim.$	I	II	III	IV
2015	7.2	9.8	14	7.7
2016	7.8	10.0	14.3	7.7
2017	7.4	10.7	14.2	7.9

- a) Estimar la tendencia mediante medias móviles.
- b) Estimar los índices de estacionalidad (corregidos).
- c) Eliminar los términos tendencia y estacionalidad de la serie temporal.
- d) ¿Cuál de los periodos ha producido una media de horas de sol anormalmente baja?

$$(0.5+0.5+0.5+0.25=1.75 \ Puntos)$$

Para los ejercicios siguientes indicad solamente las instrucciones MATLAB para su cálculo.

4. Indicad las órdenes necesarias para resolver el ejercicio 1 con MATLAB.

 $(0.5+0.75=1.25 \ Puntos)$

5. Un estudio sobre la cantidad de pesca X en Tm. obtenida por barco y mes, en el caladero del Atlántico norte, obtuvo los datos siguientes. Dada la tabla de frecuencias de la variable X:

x_i	n_i
[0, 2]	120
(2, 4]	132
(4, 6]	150
(6, 8]	183
(8, 12]	78
(12, 20]	60
$(20,\infty)$	22

Indicad las órdenes necesarias para calcular:

- a) La media y moda de la variable X.
- b) Porcentaje de barcos que rebasan 7.6 Tm.
- c) Desviación media.

 $(0.5+0.5+0.25=1.25 \ Puntos)$

Grados en Informática grupo Tarde Métodos Estadísticos Control Abril 2018

- Tiempo: 1 hora 45 minutos.
- Dejar DNI encima de la mesa. Apagar y guardar el MÓVIL.

APELLIDOS, NOMBRE:

DNI: Grupo: Titulación:

1. Dados los puntos: $P = \{(x_i, y_i, n_i)\} = \{(0.40, 0.70, 3), (0.45, 0.65, 2), (0.6, 0.9, 7), (0.31, 0.8, 4), (0.04, 1.8, 1), (0.13, 1.4, 3), (0.27, 0.9, 5)\}$

donde la tercera componente es su frecuencia absoluta y las x_i vienen dadas en radianes.

- a) Ajustar una función de la forma $Y = a + b \operatorname{sen}(\frac{\pi X}{2}) + c \operatorname{sen}(\pi X)$ a los datos.
- b) Hallar el coeficiente de determinación y la varianza explicada del ajuste realizado.
- c) Estimar el valor de y para x=0.5.

 $(1+0.5+0.25=1.75 \ Puntos)$

2. Consideremos la siguiente tabla de frecuencias absolutas, donde la variable Y representa la concentración de sal en el agua del mar y X la diferencia de temperatura sobre la media esperada para la fecha en la que se realiza la medición:

$X \backslash Y$	[1.05, 1.2)	[1.2, 1.3)	[1.3, 1.7)	[1.7, 2.3)	[2.3, 3.7]
-2	6	1	0	0	0
-1	1	7	0	0	0
0	0	0	10	1	0
1	0	0	0	8	2
2	0	0	0	1	5

- a) Usar el método de los mínimos cuadrados para determinar el sistema de ecuaciones normales del modelo $Y=e^a+e^{b+x}$
- b) Realizar dicho ajuste y determinar su fiabilidad mediante el coeficiente de determinación.
- c) Hallar el decil 4 y la moda de la variable $Y \setminus_{X > 0}$.
- d) Hallar el coeficiente de dispersión relativo y centro de gravedad de $Y\setminus_{X>0}$.

 $(0.75+1+0.75+0.75=3.25 \ Puntos)$

3. Se tienen datos de que el consumo mensual de canela en la provincia de Málaga en 10³ Kg., fue:

Mes	Dic - 2016	Ene-2017	Feb-2017	Mar-2017	Abr - 2017	May - 2017	Jun - 2017
Consumo	3.1	3.8	3.7	3.9	3.5	4.1	3.6
Precio/g.	0.24	0.24	0.24	0.25	0.25	0.25	0.26
IPC	2.01	2.00	2.02	2.08	2.10	2.15	2.30

Se pide:

- a) Calcular la recta de tendencia del Consumo mediante el método de mínimos cuadrados y estimar el consumo para agosto de 2017.
- b) ¿Qué mes produjo un consumo anormalmente bajo de canela?
- c) Calcular los precios reales del g. de canela con base en Enero de 2017, teniendo en cuenta la evolución del IPC.

 $(1+0.5+1=2.5 \ Puntos)$

Para los ejercicios siguientes indicad solamente las instrucciones MATLAB para su cálculo.

- 4. Indicad las órdenes necesarias para resolver el ejercicio 1 con MATLAB. $(0.75+0.25+0.25=1.25\ Puntos)$
- 5. Indicad las órdenes necesarias para resolver el ejercicio 2 apartados «b» y «c» con MATLAB. (0.75+0.5=1.25 Puntos)