Lecture 1

Math Basics for DS and ML

Scalar-Vector Operations

Consider a scalar $a \in \mathbb{R}$ and a vector $\bar{x} \in \mathbb{R}^{N \times 1}$. Then,

$$aar{x} = egin{bmatrix} ax_1 \ ax_2 \ dots \ ax_N \end{bmatrix}$$

For scalar-vector addition, since $\bar{x} + a$ is not valid, we consider

$$ar{x}+a\mathbb{1}=egin{bmatrix} x_1+a\ x_2+a\ dots\ x_N+a \end{bmatrix}$$

Vector-Vector Operations

For vectors $ar{x}, ar{y} \in \mathbb{R}^{N imes 1}$,

$$ar{x}+ar{y}=egin{bmatrix} x_1+y_1\ x_2+y_2\ dots\ x_N+y_N \end{bmatrix}$$

Also, we can define an inner product,

$$ar{x}\cdotar{y}=ar{x}^Tar{y}=\langle x,y
angle=x_1y_1+\ldots+x_Ny_N$$

Similarly,

$$ar{x}\odotar{y}=egin{bmatrix} x_1y_1\ x_2y_2\ dots\ x_Ny_N \end{bmatrix}$$

which is also a $N \times 1$ column vector.

Sub-Spaces

For a vector space V,

If $v_1, v_2 \in V$, then -

1. $cv_i \in V$, where $c \in \mathbb{R}$

$$2. v_1 + v_2 \in V$$

Now, if $w_1, w_2 \in V$ and $c_1, c_2 \in \mathbb{R}$, then

$$c_1w_1+c_2w_2\in W\subset V$$
,

where W is a subspace described by w_1 and w_2 .

Matrix-Matrix Operations

Consider two matrices $X,Y\in\mathbb{R}^{M\times N}.$ And column vectors are $x,y\in\mathbb{R}^{N\times 1}.$ Then,

$$X+Y=egin{bmatrix} x_{11}+y_{11} & \cdots & x_{1N}+y_{1N} \ \cdots & \cdots & \cdots \ x_{M1}+y_{M1} & \cdots & x_{MN}+y_{MN} \end{bmatrix}$$

For $Z \in \mathbb{R}^{N \times P}$,

Also,

$$X\odot Y = egin{bmatrix} x_{11}y_{11} & \cdots & x_{1N}y_{1N} \ \cdots & \cdots & \cdots \ x_{M1}y_{M1} & \cdots & x_{MN}y_{MN} \end{bmatrix}$$

Transpose, Determinant and Inverse of a matrix

Let the elements of X^T be b_{ij} . Then,

$$b_{ij}=a_{ji},$$

for all i, j in range and a_{ij} are the elements of X.

$$X_{M imes N}X_{M imes N}^{-1}=I_{M imes N}$$

If X is invertible $\implies X$ should be Full Rank, where Rank(X) = Number of independent rows and columns of a matrix

Pseudo-Inverse

If, $X_{N\times M}^+X_{M\times N}=I_{N\times N}$, then X^+ is the pseudo-inverse of the non-square matrix X.

The formula for X^+ is,

$$(X^{H}X)^{-1}X^{H}$$
,

where X^H is the conjugate transpose of X. If all entries of X are real, then X^H becomes X^T (transpose matrix).

Eigen Decomposition

We have a matrix $A(N \times N)$ for which we are trying to find a vector v_i for which,

$$Av_i = \lambda_i v_i$$

where v_i 's are the (normalized, i.e. $||v_i||_2^2=1$ and orthogonal, i.e. $v_i^Tv_j=\delta_{ij}$) eigenvectors of A, and λ_i are the corresponding eigenvalues.

Implication of $\lambda_i = 0 \implies \text{Rank Deficiency}$

The matrix A can be eigen-decomposed as,

$$A = Q\Lambda Q^{-1}$$

where, $Q=[\bar{v_1},\bar{v_2},\cdots,\bar{v_N}]$ and Λ is the matrix with diagonal entries as λ_i .

Tensors

Say, a tensor $T \in \mathbb{R}^{M \times N \times P}$ and a matrix $X \in \mathbb{R}^{M \times N}$.

For transpose of T, we also need to define the order of dimension swap, whereas in matrices, only 1 swap was possible (since, 2D matrices).

e.g.
$$transpose(T, [0, 2, 1])$$

Functions

where, $x \in X$ and $f(x) \in Y$.

Continuity

lf

$$\displaystyle \mathop{lt}_{\Delta x o 0} \! f(x + \Delta x) = f(x)$$

and

$$\mathop{lt}\limits_{\Delta x
ightarrow 0} \! f(x - \Delta x) = f(x)$$

then, f(x) is continuous at x.

Smoothness

If the derivative is continuous at x, then function is smooth at x.

Lipschitz Continuity

lf

$$|f(x + \Delta x) - f(x)| \le K\Delta x$$

for some $K \in \mathbb{R}$, then the function is Lipschitz continuous at x.

Derivative of a function

$$\frac{d}{dx}f(x)$$

Critical Points

The points where f'(x) = 0, which can lead to three types of critical points:

- Maxima If f''(x) < 0
- Minima If f''(x) > 0
- Inflection Point If f''(x) = 0

Multi-Variate functions

 $y = f(x_1, x_2)$, then gradient of the function is

$$igtriangledown f = egin{bmatrix} rac{df}{dx_1} \ rac{df}{dx_2} \end{bmatrix}$$

Thus, for calculating maxima and minima (or saddle point), we equate all entries of ∇f to 0.

Hessian Matrix

Now,

$$Hf=egin{bmatrix} rac{d^2f}{dx_1^2} & rac{d^2f}{dx_1dx_2} \ rac{d^2f}{dx_2dx_1} & rac{d^2f}{dx_2^2} \end{bmatrix}$$

All eigenvalues of Hf positive, then minima, if all negative, then maxima, else it is a saddle point.

Constrained Optimization using Lagrange Multiplier

If we want to maximize f(x), then we will try to find the critical points and find the maxima. This would be known as unconstrained optimization.

For (equality) constrained optimization, maximize f(x), subject to g(x) = 0.

Then, the direction of normals of f(x) and g(x) should be aligned in graphical representation.

Thus, we define a Lagrangian function

$$L(x) = f(x) + \lambda g(x), \lambda \neq 0$$

Making the gradient of L to be 0, we obtain λ .

$$\bigtriangledown L(x) = 0 \implies \bigtriangledown f(x) = -\lambda \bigtriangledown g(x)$$

where, substituting values of x obtained from g(x) = 0, will give the required λ .