Rachunek zdań, tautologie oraz zastosowanie rachunku zdań

Rachunek zdań - najważniejsze reguły

- I. Rachunek zdań ma wspomóc intuicję i uporządkować proces oceny prawdziwości zdania (oznajmującego).
- II. Rachunek zdań jest opisem reguł, jakimi należy się kierować próbując określić wartość logiczną zdania złożonego na podstawie analizy jego struktury.
- **III.** Rachunek zdań nie daje żadnych podstaw do oceny, czy zdanie proste jest prawdziwe czy fałszywe.

Rachunek zdań - analiza składniowa.

W rachunku zdań wyróżniamy następujące spójniki zdaniowe:

Koniunkcja zdań - "Jestem w pracy <u>i</u> wykonuje swoje obowiązki." (ozn. "∧")

Alternatywa Zdań - "Pójdę do kina lub do teatru" (ozn. "V")

Implikacja - "<u>Jeżeli</u> jestem w pracy, <u>to</u> nie śpię" (ozn. "→")

Negacja - "Nieprawda, że pada deszcz." (ozn. "¬")

Semantyka: algebra Boole'a wartości logicznych

Koniunkcja

\wedge	true	false
true	true	false
false	false	false

Alternatywa

V	true	false
true	true	true
false	true	false

Semantyka: algebra Boole'a wartości logicznych

Implikacja

\rightarrow	true	false
true	true	false
false	true	true

Negacja

\neg	
true	false
false	true

Rachunek zdań - przykład.

"Jeśli dziś jest wtorek, to jesteśmy w Belgii."

p - dziś jest wtorek

q - jesteśmy w Belgii.

Jeśli p, to q. \Leftrightarrow p \rightarrow q

Prawa logiki zdaniowej - tautologie

Tautologia to formuła zdaniowa, która ma wartość logiczną "true" niezależnie od wartości logicznych przypisanych występującym w niej zmiennych zdaniowych.

Inaczej: tautologia to formuła prawdziwa przy każdym wartościowaniu. Zamiast "tautologia" mówimy też "prawo logiki zdaniowej".

Przykłady tautologii

$$p \vee \neg p$$

$$(p \wedge (p \to q)) \to q$$

$$\neg (p \vee q) \leftrightarrow (\neg p \wedge \neg q)$$

$$\neg (\neg p) \leftrightarrow p$$

$$(p \to (q \wedge \neg q)) \to r$$

$$(\neg p \to 0) \to p$$

$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

$$\neg (\neg p) \leftrightarrow p$$

- tertium non datur, prawo wyłączonego środka,
 - prawo odrywania,
 - prawo de Morgana,
 - prawo podwójnej negacji.
 - prawo "redukcji do absurdu"
- (to samo co powyżej)
 - prawo kontrapozycji.
- prawo podwójnego przeczenia.

Przykład tautologii

Jeśli nie jestem i nauczycielem, i hydraulikiem, to nie jestem nauczycielem lub nie jestem hydraulikiem.

$$(\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$$

Rachunek zdań w rozwiązywaniu zadań - schemat

Schemat każdego zadania, które rozwiązujemy można przedstwic tak:

dane: - zbiór zdań $Z = \{Z1, ..., Zn\}$ (zwanych <u>przesłankami</u> bądź <u>założeniami</u>),

zdanie T (zwane tezą lub konkluzją).

cel: uzasadnić, że teza \underline{T} jest konsekwencją zbioru założeń \underline{P} , co oznacza, że: jeśli wszystkie założenia ze zbioru \underline{P} są prawdziwe, to i teza \underline{T} jest prawdziwa

dowodzenie to wykazanie, że zdanie (Z1 $\land \cdots \land Zk$) \rightarrow T jest prawdziwe

Założenia to zdania:

Z1: "Jan jest w domu (jd) → Jan pracuje przy komputerze" (jk),

Z2: "Anna jest w biurze (ab) → Anna pracuje przy komputerze" (ak),

Z3: "Anna jest w biurze (ab) V Jan jest w domu" (jd)

T: Anna pracuje przy komputerze lub Jan pracuje przy komputerze.

Nasze zadanie to pokazać, że implikacja Z1 \land Z2 \land Z3 \rightarrow T jest zdaniem prawdziwym tzn. zakładając, że zdania Z1, Z2, Z3 są prawdziwe musimy pokazać, że zdanie T jest również prawdziwe

Z1: $jd \rightarrow jk$,

Z2: $ab \rightarrow ak$,

Z3: ab V jd

T: ak V jk

Schemat zdania Z1 \wedge Z2 \wedge Z3 \rightarrow T to formula zdaniowa:

$$((jd \rightarrow jk) \land (ab \rightarrow ak) \land (ab \lor jd)) \rightarrow (ak \lor jk)$$