Maths for Computer Science: Tutorial 5 Solutions

1. Let A and B be sets. Prove:

$$A \cap B = \emptyset \text{ iff } A \subseteq \overline{B} \tag{1}$$

Answer:

We split task into two subtasks.

The **first** is to prove that $A \cap B = \emptyset \to A \subseteq \overline{B}$.

By way of contradiction, suppose $A \cap B = \emptyset$ and $A \not\subseteq \overline{B}$.

If $A \nsubseteq \overline{B}$, we can find an x, such that $x \in A$ and $x \notin \overline{B}$.

But,

 $x\in A\wedge x\not\in \overline{B}$

therefore, $x \in A \land x \in B$ (by definition of complement)

therefore, $x \in A \cap B$ (by definition of intersection) $\rightarrow A \cap B \neq \emptyset$

This leads to a contradiction.

The **second** task is to prove that $A \subseteq \overline{B} \to A \cap B = \emptyset$

Again, by way of contradiction, suppose $A \subseteq \overline{B}$ and $A \cap B \neq \emptyset$

If $A \cap B \neq \emptyset$ there exists an x, such that, $x \in A \cap B$.

But.

 $x \in A \cap B$

therefore, $x \in A \land x \in B$ (by definition of intersection)

therefore, $x \in A \land x \not \in \overline{B}$ (by definition of complement) $\rightarrow A \not \subseteq \overline{B}$

This leads to a contradiction.

Finally, we have proved: $A \cap B = \emptyset$ if and only if $A \not\subseteq \overline{B}$

2. Let A,B and C be any sets. Show that:

$$A \times (B \cup C) = (A \times B) \cup (A \times C) \tag{2}$$

Answer:

We can prove X = Y by showing that if $a \in X$ then $a \in Y$, and if $a \notin X$ then $a \notin Y$.

Let a = (x, y), and suppose $a \in A \times (B \cup C)$.

 $(x,y) \in A \times (B \cup C)$

therefore, $x \in A \land y \in (B \cup C)$ (by definition of Cartesian Products)

therefore, $x \in A \land (y \in B \lor y \in C)$ (by definition of union)

therefore, $(x \in A \land y \in B) \lor (x \in A \land y \in C)$ (by distributive law)

therefore, $(x,y) \in A \times B \vee (x,y) \in A \times C$ (by definition of Cartesian Products)

therefore, $(x,y) \in (A \times B) \cup (A \times C)$ (by definition of union)

Therefore, $a \in (A \times B) \cup (A \times C)$

Let a = (x, y), and suppose $a \notin A \times (B \cup C)$.

 $= (x, y) \not\in A \times (B \cup C)$

therefore, $x \notin A \lor y \notin (B \cup C)$ (by definition of Cartesian Products)

therefore, $x \notin A \lor (y \notin B \land y \notin C)$ (by definition of union)

therefore, $(x \notin A \lor y \notin B) \land (x \notin A \lor y \notin C)$ (by distributive law)

therefore, $(x,y) \notin A \times B \wedge (x,y) \notin A \times C$ (by definition of Cartesian Products)

therefore, $(x,y) \notin (A \times B) \cup (A \times C)$ (by definition of union)

Therefore, $a \notin (A \times B) \cup (A \times C)$

We have finally proved that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

3. Let A and B be sets. Show that:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{3}$$

Answer:

Let
$$P = \overline{A \cup B}$$
 and $Q = \overline{A} \cap \overline{B}$

Let x be an arbitrary element of P then $x \in P \Rightarrow x \in \overline{(A \cup B)}$

$$\Rightarrow x \notin (A \cup B)$$

$$\Rightarrow x \not\in A \ and \ x \not\in B$$

$$\Rightarrow x \in \overline{A} \ and \ x \in \overline{B}$$

$$\Rightarrow x \in \overline{A} \cap \overline{B}$$

$$\Rightarrow x \in Q$$

Therefore,
$$P \subseteq Q \dots (i)$$

Again let y be an arbitrary element of Q then $y \in Q \Rightarrow y \in \overline{A} \cap \overline{B}$

$$\Rightarrow y \in \overline{A} \ and \ y \in \overline{B}$$

$$\Rightarrow y \not\in A \ and \ y \not\in B$$

$$\Rightarrow y \notin (A \cup B)$$

$$\Rightarrow y \in \overline{(A \cup B)}$$

$$\Rightarrow y \in P$$

Therefore,
$$Q \subseteq P$$
 ... (ii)

Now, combine (i) and (ii), we get:

$$P = Q$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$