Implementation of the algorithm for testing an automaton for synchronization in linear expected time

Pavel Ageev, Ural Federal University

A deterministic finite automaton (DFA)

$$\mathcal{A} = (Q, \Sigma, \delta)$$

- Q is a finite set of states
- Σ stands for a finite *alphabet*
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$

A deterministic finite automaton (DFA)

$$\mathcal{A} = (Q, \Sigma, \delta)$$

- Q is a finite set of states
- Σ stands for a finite *alphabet*
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$

 Σ^* is the set of all words over Σ

A DFA (Q, Σ, δ) is called **synchronizing** if there exist a word $w \in \Sigma^*$ and a state $f \in Q$ such that

$$\delta(q, w) = f \text{ for all } q \in Q$$

A DFA (Q, Σ, δ) is called **synchronizing** if there exist a word $w \in \Sigma^*$ and a state $f \in Q$ such that

$$\delta(q, w) = f \text{ for all } q \in Q$$

Any such w is a synchronizing word

An example

An example

Testing an automaton for synchronization

Černý's synchronization criterion (1964)

An automaton is synchronizing if and only if for each pair of states there exists a word mapping them to the single state.

The implied algorithm requires $\Theta(|\mathbf{\Sigma}||\mathbf{Q}|^2)$ time and memory.

Testing an automaton for synchronization

Černý's synchronization criterion (1964)

An automaton is synchronizing if and only if for each pair of states there exists a word mapping them to the single state.

The implied algorithm requires $||\mathbf{x}|| ||\mathbf{x}||^2$) time and memory.

The probability of being synchronizable for 2-letter random automata with n states is

$$1-\Theta\left(\frac{1}{n}\right)$$

Each test has two features:

Each condition has two features:

1. it can be checked in O(n) in every DFA with n states;

Each condition has two features:

- 1. it can be checked in O(n) in every DFA with n states;
- 2. the fraction of automata with n states not satisfying the condition is $O\left(\frac{1}{n}\right)$.

The expected time of the whole algorithm will be

$$O(n)\left(1-O\left(\frac{1}{n}\right)\right)+O(n^2)O\left(\frac{1}{n}\right)=O(n).$$

Berlinkov's algorithm. Practice. If you implement Berlinkov's algorithm as is, it will invoke *SyncSlow* for **EVERY** automaton with nup to **SEVERAL THOUSAND!**

The probability of being synchronizable for 2-letter random automata with n states

equals
$$1 - \Theta\left(\frac{\min\{n, 10000\}}{n}\right)$$
.

$$1 - \Theta\left(\frac{\min\{n,10000\}}{n}\right)$$

$$1 - \Theta\left(\frac{\min\{n,6\}}{n}\right)$$

$$1 - \Theta\left(\frac{\min\{n,6\}}{n}\right)$$

100000=>35

Are you interested?

Welcome to the poster section

Feel free to mail me (birne.ageev@gmail.com)

Are you NOT interested?