Discrete Mathematics (ITPC-309)

Algebraic Structures - Part III

Dr. Sanga Chaki

Department of Information Technology

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar

Contents

STALANONIA MESTILIPE STALEN ST

- Subgroups
- Direct product of groups
- Homomorphism
- Isomorphism of Groups
- Cyclic groups
- Rings
- Fields

Subgroup

- 1. A special subset of a group
- 2. If (G, \bullet) is a group and H is a non-null proper subset of G, then H is said to be a subgroup of (G, \bullet) if H is a group under the binary operation \bullet
- 3. Example: let $(G, \bullet) = (Z_6, +)$: what is $Z_6? = \{0, 1, 2, 3, 4, 5\}$ with + defined in modulo 6. Can you create the table for this?
- 4. If $H = \{0, 2, 4\}$, then H is a nonempty subset of Z_6
- 5. Can we show that (H, +) is a subgroup of $(Z_6, +)$?

6. Hint: Given, the table for (H, +), check for closure, associativity, identity and inverse.

+	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

Subgroup - Properties

- 1. Every group G has {e} (identity) and G as subgroups, called trivial subgroups of G
- 2. All others are non-trivial or proper subgroups of G
- 3. Examples:
 - a) In the previous example: In addition to $H = \{0, 2, 4\}$, $K = \{0, 3\}$ is also a proper subgroup of $(Z_6, +)$ Can you prove this? Hint: Create the table for K and compare with Z_6
 - b) What are the trivial subgroups of Z_6 ?
 - c) The group (Z, +) is a subgroup of (Q, +) which is a subgroup of (R, +) for general addition. Z = Set of integers, Q = set of rational numbers, R = Set of real numbers. Hint: Prove that each of these form groups on their own. State that Z is a subset of Q is a subset of R.

Larger Groups from Smaller

- 1. Let (G, o) and (H, *) be two groups.
- 2. We can define the binary operation \blacklozenge on G X H by $(g_1, h_1) \blacklozenge (g_2, h_2) = (g_1 \circ g_2, h_1 * h_2)$
- 3. Then (G X H, ♦) is a group and is called the direct product of G and H
- 4. Example: Are the below additions same? No

Consider the groups $(\mathbf{Z}_2, +)$, $(\mathbf{Z}_3, +)$. On $G = \mathbf{Z}_2 \times \mathbf{Z}_3$, define $(a_1, b_1) \cdot (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$. Then G is a group of order 6 where the identity is (0, 0), and the inverse, for example, of the element (1, 2) is (1, 1).

- 5. Make the tables for both groups remember to use modulo n
- 6. Make the table for G X H [6X6 table] check for closure, associativity, identity, inverse.

Homomorphisms of Groups

1. If (G, o) and (H, *) are groups and there exists $f: G \rightarrow H$, then f is called a group homomorphism if for all $a, b \in G$, $f(a \circ b) = f(a) * f(b)$

2. Some properties of group homomorphisms: Let (G, o) and (H, *) are groups with respective identities e_G and e_{H_i} if $f: G \rightarrow H$ is a homomorphism, then

$$\mathbf{a}) \ f(e_G) = e_H.$$

b)
$$f(a^{-1}) = [f(a)]^{-1}$$
 for all $a \in G$.

- c) $f(a^n) = [f(a)]^n$ for all $a \in G$ and all $n \in \mathbb{Z}$.
- d) f(S) is a subgroup of H for each subgroup S of G.

Isomorphism of Groups

- 1. If $f:(G, o) \rightarrow (H, *)$ is a homomorphism, we call f an isomorphism if it is one-to-one and onto. G and H are isomorphic groups.
- 2. Example 1:

Let $f: (\mathbf{R}^+, \cdot) \to (\mathbf{R}, +)$ where $f(x) = \log_{10}(x)$. This function is both one-to-one and onto. (Verify these properties.) For all $a, b \in \mathbf{R}^+$, $f(ab) = \log_{10}(ab) = \log_{10}a + \log_{10}b = f(a) + f(b)$. Therefore, f is an isomorphism and the group of positive real numbers under multiplication is abstractly the same as the group of all real numbers under addition. Here the function f translates a problem in the multiplication of real numbers (a somewhat difficult problem without a calculator) into a problem dealing with the addition of real numbers (an easier arithmetic consideration). This was a major reason behind the use of logarithms before the advent of calculators.

Isomorphism of Groups

1. Example 2:

Let G be the group of complex numbers $\{1, -1, i, -i\}$ under multiplication. Table 16.6 shows the multiplication table for this group. With $H = (\mathbb{Z}_4, +)$, consider $f: G \to H$ defined by

$$f(1) = [0]$$
 $f(-1) = [2]$ $f(i) = [1]$ $f(-i) = [3].$

Then
$$f(i)(-i) = f(1) = [0] = [1] + [3] = f(i) + f(-i)$$
, and $f((-1)(-i)) = f(i) = [1] = [2] + [3] = f(-1) + f(-i)$.

Table 16.6

2	1	1	i	i
1	1	1	i	www.j
1	1	1	-i	i
i	i	i	1	1
— i	i	i	1	···· 1

1. We can check for all possible cases and prove that the function is isomorphic.

Isomorphism of Groups

- 1. Also, in the group G: $i^1 = i$, $i^2 = -1$, $i^3 = -i$, and $i^4 = 1$
- 2. So, every element of G is a power of i (or i), and we say that **i generates G**.
- 3. This is denoted by $G = \langle i \rangle$
- 4. This is also true for $G = \langle -i \rangle$ Exercise: Verify this.
- 5. This leads us to the definition of a cyclic group.

Cyclic Groups

A group G is called cyclic if there is an element $x \in G$ such that for each $a \in G$, $a = x^n$ for some $n \in \mathbb{Z}$.

1. In case of addition, multiples are used in place of powers.

2. Example 1:

The group $H = (\mathbb{Z}_4, +)$ is cyclic. Here the operation is addition, so we have multiples instead of powers. We find that both [1] and [3] generate H. For the case of [3], we have $1 \cdot [3] = [3]$, $2 \cdot [3] = [3] + [3] = [2]$, $3 \cdot [3] = [1]$, and $4 \cdot [3] = [0]$. Hence $H = \langle [3] \rangle = \langle [1] \rangle$.

Cyclic Groups

A group G is called cyclic if there is an element $x \in G$ such that for each $a \in G$, $a = x^n$ for some $n \in \mathbb{Z}$.

1. Example 2: Consider the multiplicative group $U_9 = \{1, 2, 4, 5, 7, 8\}$

Here we find that $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 7$, $2^5 = 5$, $2^6 = 1$.

(considering modulo multiplication)

so U_9 is

a cyclic group of order 6 and $U_9 = \langle 2 \rangle$. It is also true that $U_9 = \langle 5 \rangle$ because $5^1 = 5$, $5^2 = 7$, $5^3 = 8$, $5^4 = 4$, $5^5 = 2$, $5^6 = 1$.

2. Exercise: Which elements in U_9 generate U_9 under the binary operation of multiplication modulo 9?

Cyclic Groups – Some Theorems

1. Theorem 1:

Let G be a cyclic group.

- a) If |G| is infinite, then G is isomorphic to $(\mathbb{Z}, +)$.
- **b)** If |G| = n, where n > 1, then G is isomorphic to $(\mathbf{Z}_n, +)$.

2. Theorem 2:

Every subgroup of a cyclic group is cyclic.

Ring

- A ring, denoted as R = <{...}, +, ●>, is an algebraic structure with two closed binary operations.
- 2. The first operation must satisfy all five properties required for an abelian/commutative group.
- 3. The second operation must satisfy only the first two and must be distributed over the first operation.
- 4. So, what does this actually mean?

Rings

1. $(R, +, \bullet)$ is a ring if for all a, b, $c \in R$, the following conditions are satisfied:

a)
$$a + b = b + a$$

b)
$$a + (b + c) = (a + b) + c$$

c) There exists
$$z \in R$$
 such that $a + z = z + a = a$ for every $a \in R$.

d) For each
$$a \in R$$
 there is an element $b \in R$ with $a + b = b + a = z$.

e)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

f)
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(b+c) \cdot a = b \cdot a + c \cdot a$

2. A **commutative ring** is a ring in which the commutative property is also satisfied for the second the operation.

Rings

1. Example 1:

Under the (closed) binary operations of ordinary addition and multiplication, we find that \mathbf{Z} , \mathbf{Q} , \mathbf{R} , and \mathbf{C} are rings. In all of these rings the additive identity z is the integer 0, and the additive inverse of each number x is the familiar -x.

2. Example 2:

Let $M_2(\mathbf{Z})$ denote the set of all 2×2 matrices with integer entries. [The sets $M_2(\mathbf{Q})$, $M_2(\mathbf{R})$, and $M_2(\mathbf{C})$ are defined similarly.] In $M_2(\mathbf{Z})$ two matrices are equal if their corresponding entries are equal in \mathbf{Z} .

Here we define + and \cdot by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}, \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}.$$

Under these (closed) binary operations, $M_2(\mathbf{Z})$ is a ring. Here $z = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and the additive

inverse of
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is $\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$.

1. Example 1: For infinite ring

Consider the set Z together with the binary operations of \oplus and \odot , which are defined by

$$x \oplus y = x + y - 1,$$
 $x \odot y = x + y - xy.$

Consequently, here we find, for instance, that $3 \oplus 7 = 3 + 7 - 1 = 9$ and $3 \odot 7 = 3 + 7 - 3 \cdot 7 = -11$.

- 2. Are these operations closed in Z?
 - Since ordinary + and . are closed in Z, the new operations are also closed.
- 3. Prove that Z with these operations form a ring. Hint: Check all the properties of a ring are satisfied or not for both operations.
- 4. Check if it forms a commutative ring

1. Is the first operation commutative?

First, since ordinary addition is a commutative binary operation for \mathbb{Z} , we find that for all $x, y \in \mathbb{Z}$,

$$x \oplus y = x + y - 1 = y + x - 1 = y \oplus x$$
.

So the binary operation \oplus is also commutative for \mathbb{Z} .

2. Does additive identity exist for the first operation?

we need to find an integer z such

that $a \oplus z = z \oplus a = a$, for every a in \mathbb{Z} . Therefore, we must solve the equation a + z - 1 = a, which leads us to z = 1. Hence the *nonzero* integer 1 is the *zero* element (or additive identity) for \oplus .

- 1. Does inverse exist for the first operation? Yes
- What about additive inverses? At this point if we are given an (arbitrary) integer a, we want to know if there is an integer b such that $a \oplus b = b \oplus a = z$. From part (2) above and the definition of \oplus this says that the integer b must satisfy a+b-1=1, and it follows that b=2-a. So, for instance, the additive inverse of 7 is 2-7=-5 and the additive inverse for -42 is 2-(-42)=44. After all, in the case of 7 we find that $7 \oplus (-5)=7+(-5)-1=7-5-1=1$, where 1 is the additive identity. [Note: Since we showed in part (1) that \oplus is commutative, we also know that $(-5) \oplus 7=1$.]
- 2. Complete the discussion for the other necessary properties.

1. Example 2: Finite rings: Show that R is a commutative ring.

Let $\mathfrak{U} = \{1, 2\}$ and $R = \mathfrak{P}(\mathfrak{U})$. Define + and \cdot on the elements of R by

$$A + B = A \triangle B = \{x | x \in A \text{ or } x \in B, \text{ but not both}\}$$

 $A \cdot B = A \cap B = \text{the intersection of sets } A, B \subseteq \mathcal{U}.$

2. The tables for these operations are as below:

$+(\Delta)$	Ø	{1}	{2}	M_{\odot}
Ø	Ø	{1}	{2}	\mathfrak{A}
{1}	{1}	Ø	પ	{2}
{2}	{2}	\mathfrak{N}	Ø	{1}
u	$^{\circ}u$	{2}	{1}	Ø

· (A)	Ø	{1}	{2}	ાઈ
Ø	Ø	Ø	Ø	Ø
{1}	Ø	{1}	Ø	{1}
{2}	Ø	Ø	{2}	{2}
$^{\circ}\!u$	Ø	{1}	{2}	u
(b)	L			

3. Hint: Null set is the identity, and for each $x \in R$, the inverse is x itself.

1. Property 1: z is the additive identity

Let $(R, +, \cdot)$ be a ring.

- a) If ab = ba for all $a, b \in R$, then R is called a *commutative* ring.
- b) The ring R is said to have no proper divisors of zero if for all $a, b \in R$, $ab = z \Rightarrow a = z$ or b = z.
- c) If an element $u \in R$ is such that $u \neq z$ and au = ua = a for all $a \in R$, we call u a unity, or multiplicative identity, of R. Here R is called a ring with unity.

Rings – Properties - Fields

1. Property 2

Let R be a ring with unity u. If $a \in R$ and there exists $b \in R$ such that ab = ba = u, then b is called a multiplicative inverse of a and a is called a unit of R. (The element b is also a unit of R.)

2. Property 3:

Let R be a commutative ring with unity. Then

- a) R is called an *integral domain* if R has no proper divisors of zero.
- **b)** R is called a *field* if every nonzero element of R is a unit.

1. Property 4

In any ring $(R, +, \cdot)$,

- a) the zero element z is unique, and
- b) the additive inverse of each ring element is unique.

2. Property 5:

The Cancellation Laws of Addition. For all $a, b, c \in R$,

a)
$$a+b=a+c \Rightarrow b=c$$
, and

b)
$$b+a=c+a\Rightarrow b=c$$
.

1. Property 6

For any ring $(R, +, \cdot)$ and any $a \in R$, we have az = za = z.

2. Property 7:

Given a ring $(R, +, \cdot)$, for all $a, b \in R$,

- **a**) -(-a) = a,
- **b)** a(-b) = (-a)b = -(ab), and
- c) (-a)(-b) = ab.

3. Property 8

For a ring $(R, +, \cdot)$,

- a) if R has a unity, then it is unique, and
- b) if R has a unity, and x is a unit of R, then the multiplicative inverse of x is unique.

Property 9

Let $(R, +, \cdot)$ be a commutative ring with unity. Then R is an integral domain if and only if, for all $a, b, c \in R$ where $a \neq z$, $ab = ac \Rightarrow b = c$. (Hence, a commutative ring with unity that satisfies the *cancellation law of multiplication* is an integral domain.)

Proof: If R is an integral domain and $x, y \in R$, then $xy = z \Rightarrow x = z$ or y = z. Now if ab = ac, then ab - ac = a(b - c) = z, and because $a \ne z$, it follows that b - c = z or b = c. Conversely, if R is commutative with unity and R satisfies multiplicative cancellation, then let $a, b \in R$ with ab = z. If a = z, we are finished. If not, as az = z, we can write ab = az and conclude that b = z. So there are no proper divisors of zero and R is an integral domain.

1. Property 10

If $(F, +, \cdot)$ is a field, then it is an integral domain.

Proof: Let $a, b \in F$ with ab = z. If a = z, we are finished. If not, a has a multiplicative inverse a^{-1} because F is a field. Then

$$ab = z \Rightarrow a^{-1}(ab) = a^{-1}z \Rightarrow (a^{-1}a)b = a^{-1}z \Rightarrow ub = z \Rightarrow b = z.$$

Hence F has no proper divisors of zero and is an integral domain.