UTFPR - Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Aluno: Jessé Pires Barbato Rocha

RA: 2149389

Disciplina: Algoritmos e Estruturas de Dados 2

d. Preencha a tabela abaixo usando as funções que você implementou. para cada M, crie uma tabela hash com endereçamento aberto com sondagem linear e insira as chaves geradas aleatoriamente com a função int* random_vector(int n, int max, int seed) Use n = 10000, max = 10n* e seed = 42.

М	N	α	Custo mal sucedidas	Custo bem sucedidas	maior cluster
9973	9481	0.950667	31.394039	0.500527	837
10000	9481	0.948100	29.262346	0.503480	864
11987	9481	0.790940	6.845488	0.522939	138
12000	9481	0.790083	6.850433	0.519774	156
13999	9481	0.677263	4.147419	0.542557	71
14000	9481	0.677214	4.134758	0.541818	80
15991	9481	0.592896	3.218262	0.562598	70
16000	9481	0.592562	3.221543	0.563389	58
17989	9481	0.527044	2.635075	0.586914	44
18000	9481	0.526722	2.630688	0.587177	36
19997	9481	0.474121	2.274712	0.607482	29

20000	9481	0.474050	2.329484	0.602683	25
21997	9481	0.431013	2.111111	0.624521	26
22000	9481	0.430955	2.092012	0.624680	27
23993	9481	0.395157	1.938062	0.644879	22
24000	9481	0.395042	1.919231	0.648308	19
25999	9481	0.364668	1.828191	0.658543	23
26000	9481	0.364654	1.823269	0.660442	23
26997	9481	0.351187	1.783148	0.668147	22
28000	9481	0.338607	1.736765	0.675530	17
29989	9481	0.316149	1.666549	0.688189	13
30000	9481	0.316033	1.680432	0.685867	14

- e. Com base nos dados da tabela, responda as questões a seguir.
- i. Existe alguma relação entre o valor de α e o custo das buscas? Se sim, qual é?

R: analisando o valor de α e o custo das buscas, pode-se perceber que, quanto mais próximo de 1 for α , maior será o custo de uma busca mal sucedida. Já no caso da busca bem sucedida, conforme α aumenta, este custo diminui.

ii. Existe alguma diferença entre o custo das buscas quando comparamos entre M primo e M composto? Caso exista, essa diferença se mantém para todos os valores de α ?

R: os testes realizados mostram que para qualquer valor de α , o custo das buscas mal sucedidas com M primo é maior que o custo com M composto. Em alguns

casos, essa diferença é menos significativa, principalmente quando o M primo escolhido e o M composto são bem próximos. Porém o padrão se mantém durante todo o experimento. Já para o casos das buscas bem sucedidas, o custo não sofreu alterações significativas.

iii. Suponha que depois da inserção de muitas chaves no início do seu programa você vai fazer muito mais consultas na sua tabela do que inserções de novas chaves. Você se preocuparia mais em escolher M para diminuir o custo de buscas bem-sucedidas ou mal-sucedidas?

R: de acordo com os testes mostram, o custo para as buscas bem sucedidas é significativamente menor que o custo para as buscas bem sucedidos. Logo, visando reduzir a diferença entre os custos, optaria por um M que reduza o custo das buscas mal sucedidas mesmo, ainda que o custo para as bem sucedidas sofresse um pequeno aumento.

iv. α é comumente utilizado como limiar para o redimensionamento da tabela conforme mais elementos são 3 inseridos. Qual um limiar que você acha adequado para os casos que você não conhece N de antemão? Por quê? (Estudaremos como implementar o redimensionamento na próxima semana.)

R: pode-se usar o tamanho do maior cluster como limiar como para redimensionamento da tabela. Quanto mais próximo o valor do maior cluster estiver de M, menos posições livres se tem na tabela. Uma abordagem interessante seria verificar se o tamanho do maior cluster ultrapassou M/2, para então realizar o redimensionamento e garantir posições livres.