ANLP Project

Andrés Lamilla

Problem to solve

Given a word in a text detect if it is negate:

word: gallops

text: No murmurs, GALLOPS, or rubs.

Or not:

word: vomiting

text: The patient was admitted on **DATE[Sep 25

2007], complaining of nausea and VOMITING.

Using negEx as a tagger

- [PREN] Prenegation rule tag
- [POST] Postnegation rule tag
- [PREP] Pre possible negation tag
- [POSP] Post possible negation tag
- [PSEU] Pseudo negation tag
- [CONJ] Conjunction tag
- [PHRASE] Term is recognized from the term list
- [NEGATED] Term was recognized from term list, and it was found being negated

Using negEx as a tagger

getNegTaggedSentence:

• sentence1 = '[PREN]no[PREN] murmurs, [NEGATED]GALLOPS [NEGATED], or rubs.'

- sentence2 = 'The patient was admitted on **DATE[Sep 25 2007], complaining of nausea and [PHRASE]VOMITING[PHRASE].'
- sentence3 = 'His [PHRASE]NAUSEA[PHRASE] and vomiting [PREN]resolved[PREN].'

• sentence1 = 'PREN murmurs, NEGATED, or rubs.'

 sentence2 = 'The patient was admitted on **DATE[Sep 25 2007], complaining of nausea and PHRASE.'

sentence3 = 'His PHRASE and vomiting PREN .'

Replace **NEGATED** by **PHRASE**:

• sentence1 = 'PREN murmurs, PHRASE, or rubs.'

 sentence2 = 'The patient was admitted on **DATE[Sep 25 2007], complaining of nausea and PHRASE.'

sentence3 = 'His PHRASE and vomiting PREN .'

Use additional may be useful tags:

- POINT: .
- COMMA:,
- **OR**: or
- AND: and

 sentence1 = 'PREN murmurs COMMA PHRASE COMMA OR rubs POINT'

sentence2 = 'The patient was admitted on **DATE[Sep 25 2007]
 COMMA complaining of nausea AND PHRASE POINT'

sentence3 = 'His PHRASE AND vomiting PREN POINT'

Replace all non tagged words by WORDS

 sentence1 = 'PREN WORDS COMMA PHRASE COMMA OR WORDS POINT'

sentence2 = 'WORDS WORDS WORDS WORDS WORDS WORDS WORDS AND PHRASE POINT'

sentence3 = 'WORDS PHRASE AND WORDS PREN POINT'

Remove consecutive WORDS

 sentence1 = 'PREN WORDS COMMA PHRASE COMMA OR WORDS POINT'

sentence2 = 'WORDS COMMA WORDS AND PHRASE POINT'

sentence3 = 'WORDS PHRASE AND WORDS PREN POINT'

And finally split the sentence in pre PHRASE and post PHRASE

sentence1

- pre: COMMA WORDS PREN
- post: COMMA OR WORDS POINT

sentence2

- pre: AND WORDS COMMA WORDS
- o post: POINT

• sentence3

- o pre: WORDS
- post: AND WORDS PREN POINT

Features

- Feature1: The previous and next tag to the PHRASE
- Feature2: The two previous and next tags to the PHRASE
- Feature3: The three previous and next tags to the PHRASE
- **Feature4**: If there was a PREN tag before PHRASE and there wasn't a POINT between them.

Features

sentence1

pre: COMMA WORDS PREN

post: COMMA OR WORDS POINT

Feature1:

pre: COMMApost: COMMA

Feature2:

• pre: COMMA WORDS

• post: COMMA OR

Feature3:

pre: COMMA WORDS PREN

post: COMMA OR WORDS

Feature4: True

Naive Bayes

Then just count words and be happy:)

$$p(C, F_1, ..., F_n) = p(C) \ p(F_1|C) \ p(F_2|C) \ p(F_3|C) \ ...$$

= $p(C) \prod_{i=1}^{n} p(F_i|C)$.

		Condition (as determined by "Gold standard")		
		Condition positive	Condition negative	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Precision = Σ True positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	Negative predictive value : Σ True negative Σ Test outcome negative
		Sensitivity = Σ True positive Σ Condition positive	Specificity = Σ True negative Σ Condition negative	Accuracy

Training set (2115):

- Results:
 - o Correct: 2071
 - Negative Correct: 426
 - Negative Incorrect: 20
 - o Positive Correct: 1645
 - Positive Incorrect: 24
- NegEx results:
 - Correct: 2056
 - Negative Correct: 406
 - Negative Incorrect: 40
 - Positive Correct: 1650
 - Positive Incorrect: 19

Training set

Results:

- o sensitivity: 1645/(1645+20) = 0.9879
- specificity: 426/(426+24) = 0.9466
- o precision(PPV): 1645/(1645+24) = 0.9856
- o NPV: 426/(426+20) = 0.9551
- o accuracy: 2071/2115 = 0.9791

NegEx results:

- sensitivity: 1650/(1650+40) = 0.9763
- o specificity: 406/(406+19) = 0.9552
- o precision(PPV): 1650/(1650+19) = 0.9886
- o NPV: 406/(406+40) = 0.9103
- o accuracy: 2056/2115 = 0.9721

Testing set (235)

Results:

- sensitivity: 188/(188+0) = 1
- specificity: 44/(44+3) = 0.9361
- o precision(PPV): 188/(188+3) = 0.9842
- O NPV: 44/(44+0) = 1
- o accuracy: 232/235 = 0.9872

NegEx results:

- sensitivity: 187/(187+2) = 0.9894
- \circ specificity: 42/(42+4) = 0.913
- o precision(PPV): 187/(187+4) = 0.979
- o NPV: 42/(42+2) = 0.9545
- o accuracy: 229/235 = 0.9744

Improvements

- Add more features
- Add more useful tags