Code No: Z0224

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, May - 2018 MATHEMATICAL METHODS

(Common to EEE, ME, ECE, CSE, IT)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) Find the rank of the matrix $A = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ by reducing it to canonical.
 - b) Solve the following equations by expressing the coefficient matrix as a product of lower triangular and upper triangular matrices. 2x+y-z=3, x-2y-2z=1, x+2y-3z=9. [8+8]
- 2.a) Find the Eigen values and the corresponding Eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.
 - b) Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation. [8+8]
- 3.a) Prove that the Eigen values of a Skew-Hermitian matrix are purely imaginary or zero.
- B) Reduce the quadratic form to canonical form by an orthogonal reduction and state the nature of the quadratic form $2x^2 + 2y^2 + 2z^2 2xy 2yz 2zx$ [8+8]
- 4.a) Find the real root of the equation $xe^x \cos x = 0$ using Newton Raphson method.
 - b) Find f(22) from the Gauss forward formula.

[8+8]

х	20	25	30	35	40	45
f(x)	354	332	291	260	231	204

5.a) Find the curve of best fit to the type $y = ae^{bx}$ to the following data by the method of least squares.

х	1	5	7	9	12
у	10	15	12	15	21

b) A rocket is launched from the ground. Its acceleration measured every 5 seconds is tabulated below. Find the velocity and the position of the rocket at t = 40 seconds. Use trapezoidal rule as well as Simpson's rule. [8+8]

	t	0	5	1	15	20	25	30	35	40
Ī	a(t)	40.0	45.25	48.50	51.25	54.35	59.48	61.5	64.3	68.7

- 6. Given $y' = x + \sin y$, y(0) = 1 compute y(0.2) and y(0.4) with h = 0.2 using Euler's modified method. [16]
- Find the Fourier series of the following function $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \frac{\pi x}{4}, 0 < x < \pi \end{cases}$
- b) Find Fourier Sine and Cosine transforms of xe^{-ax} . [8+8]
- 8.a) Form the partial differential equation by eliminating the arbitrary function f from $xy + yz + zx = f\left(\frac{z}{x+y}\right)$.
- b) State convolution theorem. Use convolution theorem to evaluate $z^{-1} \left\{ \frac{z^2}{(z-a)(z-b)} \right\}$.

--00O00---