Exam Review 1

September 16, 2024

Contents

$\overline{}$	OII OII O	
1	1.1	1
2	1.2	1
3	1.3	2
4	1.4	2
5	1.5	2
6	1.6	3
7	1.7	3
1	1.1	
	• Gauss-Jordan Elimination	
	- Add a multiple of one row to another	
	- Swap 2 rows	
	- Multiply a row by a constant	
2	1.0	

$2 \quad 1.2$

- Solve system to get solution with parameters
 - Use Gauss-Jordan to get rref

- How do we see if the system has n solutions
 - 1. If after doing gauss-jordan elimination, the last row is all 0s, and the rhs is non-zero
 - No solutions
 - 2. All zeros but one of the lhs vars is not

$$-\ X_n=0$$

- 3. # of nonzero rows < # variables
 - Infinite solutions
 - # of variables number of non-zero rows

3 1.3

• Write a matrix product as a linear combination of columns

$$-~\$~Ax^{\rightarrow} => column_1x_1 + column\{2\}x_2 + \dots \\ + column\{n\}x_n$$

- Do matrix multiplication
 - $A_{m \ x \ n} B_{n \ x \ o} => (AB)_{m \ x \ l}$
 - Row of first matrix, times column of second matrix
- Compute the trace

4 1.4

- Find inverse of A and solve $Ax^{\rightarrow} = b^{\rightarrow}$
- A_{3 x 3} => [A | I] -> gauss-jordan -> [I | A⁻¹], after having A⁻¹, Ax $\stackrel{\rightarrow}{=}$ b $\stackrel{\rightarrow}{=}$
- Apply inverses to isolate variables

$5 \quad 1.5$

- Find E so that EA = B, where A&B are given
 - Realize the change in A to get B, a single row operation

6 1.6

- Find b for $Ax^{\rightarrow} = b^{\rightarrow}$ to be consistent
- Given $Ax^{\rightarrow} = b^{\rightarrow}$
 - $[A \mid b^{\rightarrow}] => gauss-jordan elimination$

$$- \begin{vmatrix} * & (any) & (any) \\ 0 & * & (any) \\ 0 & 0 & * \end{vmatrix}$$

- Analize the last row to
- m = 0, n is an expression of b_1, b_2 , and b_3
- then set n = 0, solve for b_1, b_2 , and b_3
- Use parameters t, s (if needed) to write the solution

$$-\$b^{\rightarrow}=t[]+s[]$$

7 1.7

- Just memorize things
 - Diagonal matrix
 - Triangular matrix
 - Skew matrix
 - Symmetric matrix
- $A_{n \times n}$, $B_{n \times n}$

$$- (AB)^{T} = B^{T}A^{T}$$

$$- (AB)^{-1} = B^{-1}A^{-1}$$

$$- (A^{-1})^{T} = (A^{T})^{-1}$$