1 of 6

ı		
	Ξ	2
ì	Ξ	
•	`	
3	X	
	-7	
(4	1

	1 0/00 1 200/0 1					
kin skbasal sksquam bowens thyroid	Ξ					
cola02g cola02n skia02w10	fit sex:2 naga nic*hiro nic*naga sex*lage70:4 sex*lage70sq sex*lage70sp sex*e30 sex*e30sq inahs - %con	x*lage70sp con				
tran if cola02w10 < 0 then delete endif @	5 C C C C C C C C C C C C C C C C C C C	Ç				
Skip 1 @ imput leginolysks cov @	sreb O	ש ע				
from Issinc07ahs	000	21.0				
44371 records read 42040 records used 2331 records rejected	3 0 2293.608 4 0 2270.673 5 0 2267.698	∞∽∞				
itional	000	844				
levels city sex un4gy distcat agxcat agecat dcat time @	Piece-wise exponential regression	* (1 ± T1	(+ 77 +	مم		
city has 2 levels from 1 to 2 sex has 2 levels from 1 to 2 unday has 2 levels from 0 to 1 distar has 3 lavels from 1 to 3	S rr	- - -	+ <u>.</u>	7		
agxcat has 15 levels from 1 to 15 agecat has 16 levels from 3 to 18 agecat has 20 levels from 3 to 18	Paran	Parameter Summary	ТарТе			
deat has 22 levels from 2 to 23 time has 10 levels from 1 to 10	# Name	Estimate	Std.Err.	Test Stat.	P value	
tran msex = 2*sex - 3; lage50sp = log(age/50)*(age >= 50); py10k = pyr/10000; iage35 = age < 35; distal = distcat == 2; nic = distcat == 3; inahs = ahs == 2; nic = distcat == 3; inahs = ats == 2; nic = distcat == 3; inahs = ats == 2; nic = distcat == 3; inahs = ats == 2; nic = distance = cola02w10 < 0; nidose = 1.12*cola02w10 = 0; nidose = 1.12*skia02w10 = 0; skia02wsq = 1.12*skia02w10 < 0; skia02wsq = 1.12*skia02w10 < 0; skia02wsq = 1.13*skia02w10 < 0; ados = 30),10; agos = agos = agos lage70 = log(age/70); lage70sq = lage70x2; lage70x2 = lage70x2*(age > 70);	Log-linear term 0 1 sex_1 2 sex_2 3 sex_2 3 nads 4 inahs 5 nic * hiro 6 nic * hiro 7 sex_1 * lage70 8 sex_2 * lage70 9 sex_1 * lage70 10 sex_2 * lage70 11 sex_1 * lage70sp	0.08992 0.100404 0.100404 0.2973 0.3978 0.3978 0.3978 0.3978 0.4088 0.4088	0.1633 0.1358 0.1358 0.1358 0.1359 0.1359 0.1359 0.1359 0.1359 0.1359 0.1359 0.1359	5.508 0.7516 0.7516 1.868 1.868 1.868 1.744 1.744 0.8618	^	
Ø.	35.	-9.528 -0.02996	0.09937		0.07	
categ thya02w10 as tbdcat_t < 0.005 0.1 0.2 0.5 1 2 > @ tbdcat_t has 7 levels from 1 to 7 tran if nic then tbdcat_t = 0 endif @	14 sex_2 * e30. 15 sex_1 * e30sq 16 sex_2 * e30sq	0.1697 -0.07983 -0.09127	0.1106 0.04179 0.04003		0.125 0.0561 0.0226	
<pre>leve tbdcat_t @ tbdcat_t has 8 levels from 0 to 7</pre>	Linear term 1 17 skra02w1018 ski1Gyth	0.1813 1.084	0.1644 0.5138	1.103	0.27	
<pre>categ skia02w10 as tbdcat_s < 0.005 0.1 0.2 0.5 1 2 > @ tbdcat_s has 7 levels from 1 to 7 tran if nic then tbdcat_s = 0 endif @ leve tbdcat s @</pre>	Log-linear term 1 19 e30	-1.291 0.2771	0.3283	-3.933 0.2561	< 0.001 > 0.5	
tbdcat_s has 8 levels from 0 to 7	Linear product term 1 21 %CON	1.000	Aliased 0.2346	1.608	0.108	
excess w *** WARNING: Fit model again to compute statistics	Records used	42040				
! Skin cancer models nomodel rrisk @ nekin @	Deviance 2267 Pearson Chi2 4187	2267.504 41873.57 Deg	Degrees of freedom	dom 42019		
3y10K @	! Slope for 1+ Gy doses lincomb 17 + 18 $^\circ$					
tran $SKIILGYTH = (SKIAUZWIU - I)^*(SKIAUZWIU > I);$	Estimate	Std.Error	м %56	95% wald Bounds		
R linear sp ⁻ 1 skia02w10	MLE : 1.2651	0.54540	0.19617	2.3341	11	
The tank at the second of the						

	Maximum 2704.6	1822.7 1919.4 429.91	309.95	81.467		Maximum 5	121		1 	-	,	7 [[.0.0	0.026837 0.026837 0.020883		Maximum 0 00028868	0.0044504	0.016326 0.049091 0.10863		Maximum	625 418	380 75 41 78	23	-	Maximum 2883.3 2121.3 1995.3 321.20 209.29 393.57 214.68 87.184	
	Ċ	2336 0.0018700 3369 0.00092000 2550 0.0044600			L	Count Min	336	5550 897	1669 1914 0	044	Count	336 1.3	550 1.1	289, 9.3370e-09 1669 9.3776e-08 1914 1.0400e-08 2844 1.3407e-07		Minimum 0 0 0	.0816e-10	.0981e-09 .7670e-09 .4754e-08		cts Count Minimum		3/6/ 2990 14532 1869		3	Count Minimum 1274 0.015560 2447 0.0025900 3767 0.0039900 4532 0.0016900 4532 0.00066000 1869 0.0075100 2337 0.0055100 3310 0.0059000	
Summary for pyr	s Sum 261594.	342498. 241849. 58613.9	39406.8	15241.1	Summary for nmskin	s-sum	37	111 6	040,	TZ TOW WEN	Sum	∞.	+ .	2.87,803 4.81281 3.83478 2.01466	Summary for %EX	Ξ,	0.262040	0.932398 3.44020 9.24841	ex = 2	Summary for subjects Sum		14541 3286 3830 2741	1387 857	Summary f	-s 419150. 575693. 575693. 91469.3 104237. 74149.0 38805.3	Summary for nmski
	tbdca	H (2 m s	4 10 0	7 0		tbdca		7 W 4	100		tbdca.	O H C	78.8	1000		tbdca:	7.3.4	1000	For s	tbdca	010	∆ w 4 rv r	7 0		tbdca;	
		Maximum 625		Maximum 2883.3		Maximum	2		Maximum 0.59527		Maximum 0.17871			Maximum 619 625		Maximum 2704.6 2883.3		Maximum 2 2 2		Maximum 0.27008 0.59527		Maximum 0.10863 0.17871			Maximum 619 437 390 112 37 63	20
		Minimum O		Minimum 0.00054000		Mimimim	0		Minimum 9.3570e-09		MuminiM O	sex @		Minimum O O		Minimum 0.00054000 0.00059000		Minimum O O		Minimum 9.3570e-09 1.5756e-08		muminim 0 0	sex tbdcat_s @		Minimum 000 000 000 000	
%bk %ex @		Count 42040	pyr	Count 42040		Count	42040	%BK	Count 42040	%EX	Count 42040	%ex by	subjects	Count 19814 22226	oyr	Count 19814 22226	nmskin	Count 19814 22226	%BK	Count 19814 22226	%EX	Count 19814 22226	%bk %ex by	subjects	Count 1235 2336 3369 2550 3897 1669 1914	2844
sum subjects nor nmskin %bk %ex	Summary for s	Sum 105427	Summary for p	Sum 2.76473e+06	2	5	330	Summary for %	Sum 295.218	Summary for %	Sum 34.7822	sum subjects pyr nmskin %bk	Summary for s	Sum 42902 62525	Summary for pyr	Sum 1.04027e+06 1.72445e+06	Summary for r	Sum 123 207	Summary for %	Sum 108.298 186.920	or	Sum 14.7023 20.0798	subjects pyr nmskin sex = 1	Summary for s		657
idus mus												sum subj		sex 1		sex 1		sex 1		sex 1		sex 1	sum subj For sex		tbdcat_s 0 1 2 3 4 4 6	7

PYGy)	P value (0.0364 0.0364 0.0519 0.0111 (0.001 0.0383 (0.001 0.0383 (0.0453 (0.0453	0.089 0.0189 0.0189 0.001 0.001 0.001
per 10,000 P	est stat. 4.97 4.97 4.97 0.484739 0.484739 1.5948 1.5948 0.9248 0.9248 0.02456 1.547 1.547 1.547	1.077 2.348 -3.526 -0.3849 om 42019 1d Bounds 5.6440
(excess cases pe	Table Std.Err. Te 1,104 0,1415 0,1415 0,1415 0,1415 0,1416 0,9786 7,359 7,359 7,359 0,1032 0,1032 0,1032 0,04448	.3376 1.2 1.108 1.108 iased .2036 of freed 95% wa
at 1 Gy 1 Gy 3	Summary timate 0.8471 0.5702 0.75702 0.2960 0.3257 0.2261	0.3636 0 2.819 0 4.159 0 4.159 All 0.07835 All 42040 All 42040 All 33.68 Degrees 33.68 Degrees
add @ fit @ Iter Step Deviance 1	mmskin is used for cases py10k is used for person years # Name	erm 1 ct term 1 Records used 420 Deviance 2272.7 Pearson Chi2 51133.7 1+ Gy doses + 18 @ Estimate MLE: 3.1823
Minimum Maximum 2	Minimum Maximum 0 0 0 0 0.00027962 0.0023178 0.0023178 0.017920 0.017920 0.017920 0.17871	
Count 1274 1274 1274 1274 1274 1274 1274 1274	Count 1274 2447 2447 2453 1869 1869 1869 1869 1869 1869 1869 1869	
Sum 35 71 42 144 110 110 110 110 110 110 110 110 110	Sum 0.0227026 0.376533 0.362966 0.922286 1.66682 5.10418 11.6241	
tbdcat_s tbdcat_s tbdcat_s 7 7 7 7 7 7 7 7 7 7 7 7 7	tbdcat_0 0 22 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

! Thyroid cancer models					
ויישיים	sum subjects pyr thyroid	thyroid %bk %ex	Ø		
rribuse. rribuse. rribuses thoroid @	Summa	Summary for subjects			
cases cifyrold & pyr py10k @	Sum 105427	Sum Count 127 42040	Muminimum O	Maximum 625	
near dose	Summa	For pyr			
line 1 thya02w10 @ log11 1 e30 lage70 inahs=0 @ loline 1 %con=1 msex @	2.76473e	Sum Count 3e+06 42040	Minimum 0.00054000	Maximum 2883.3	
fit sex:1 naga nic*hiro nic*naga inahs	Summary	for thyrc			
sex*lage/U:z sex*lage/Usq sex*lage/Usp sex*e30 sex*e30sq - %con @	V , V	Sum Count 471 42040	Minimum O	Maximum 3	
Iter Step Deviance	Summary	⁻y for %BK			
0 3268	407.8	Sum Count843 42040	Minimum 1.3770e-08	Maximum 0.47375	
0000	Summary	⁻y for %EX			
\$ 0 3037.968 5 0 3037.968 6 0 3037.968	Sum 63.1565	Sum Count 565 42040	muminiM O	Maximum 0.10644	
7606 O	sum subjects pyr	subjects pyr thyroid %bk %ex k	by sex @		
Precervise exponential regression Product additive excess model $\{ T0 * (1 + T1 + T2 +) \}$	Summa	Summary for subjects			
thyroid is used for cases py10k is used for person years	sex 1	Sum Count 42902 19814	muminiM 0	Maximum 619 619	
Parameter Summary Table		5	Þ	620	
# Name Estimate Std.Err. Test Stat. P value		lyd lyd			
-linear term 0 0.3380 0.2188 1.545	sex Sum 1 1.04027e+06 2 1.72445e+06	Sum Count +06 19814 :+06 22226	Minimum 0.00054000 0.00059000	Maximum 2704.6 2883.3	
7.22	Summa	Summary for thyroid			
f nic * hiro0.590 0.1469 -2.942 0.0034 6 nic * naga0.590 0.3202 -1.842 0.0654 7 sex_1 * lage_70 2.711 1.163 2.332 0.0197	sex 1 2	Sum Count 90 19814 381 22226	Minimum O O	Maximum 2 3 3	
2.622 age/0	Summary	∵y for %BK			
sex_1	sex 79.68	Sum Count 6828 19814 3.161 22226	Minimum 1.3770e-08 1.5565e-07	Maximum 0.19567 0.47375	
sex_2 * e30	Summa	Summary for %EX			
ear term 1 thya02w10 0.5767 0.2636 2.188	sex Sum 1 10.3172 2 52.8394	Sum Count 172 19814 394 22226	Muminim 0 0	Maximum 0.021514 0.10644	
Log-linear term 1 18 e30	sum subjects pyr thyroid %bk For sex = 1 Summary for subjec	%ex	by sex tbdcat_t @		
Linear product term 1 1.000 Aliased 21 %CON	tbdcat_t 10,	Sum Count 191 1235 118 2348 561 3076	мiм	Maximum 619 437 300	
Records used 42040				112 112 63	
Deviance 3037.968 Pearson Chi2 33681.27 Degrees of freedom 42020		1057 1502 975 2320 399 1914	000	38 30 20	

Summary for thyroid	Sum 103 103 89 89 29 24 21 12 12	Summary for %BK	117.143 1274	Summaly 101 %EA	0.155775 1274 3.59025 2451 3.8421 3.4622 3.8421 3.598 1.9224 11.0654 1645 1.7198 9.65366 1645 4.4667 13.3916 2361 3.9397							
Summary for nyr	Sum 	Summary for thyroid	bdcat_t Sum Count Minimum Maximum Maximum 1235	Summary for %BK	bdcat_t	Summary for %EX	tbdcat_t Sum Count Minimum Maximum Maximum 0.0278411 2348 0 0.00040145 2 0.712214 3976 1.5026e-09 0.0039434 3050 5.5370e-08 0.0052926 4 1.84679 3469 7.0810e-09 0.0151514 1.61609 2320 5.2550e-08 0.016789 6 2.87436 25305 1914 1.2102e-07 0.020615	or sex = 2	Summary for subjects	tbdcat_t Sum Count Minimum Maximum Maximum C21127 2451 0 625 21127 2451 0 418 21127 2451 0 380 3 3630 3598 0 53 4 4159 4086 0 78 5 11512 2361 0 39 7 485 2389 0 23	Summary for pyr	tbdcat_t Sum Count Minimum Maximum 0.01550 2.883.3 2.55694. 2451 0.0025900 2.121.3 2.55694. 4422 0.0025900 2.121.3 3.9883.3 3.998 0.00066000 247.20 3.103438. 4086 0.0035100 393.57 5.40843.4 1.645 0.0062800 2.14.68 5.2361 0.0005100 87.184

	ļ	5
•	٥	0

Iter Step	Deviance			
011284207	3062.860 3043.953 3041.999 3041.989 3041.988 3041.987			
Piece-wise exponential regr Additive model { T0 + T1 +	l regression T1 + T2 + }			
used for used for	rs			
	Parameter Summary	у Таblе		
# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0 1 sex_1 2 sex_2 3 saga.	i !	0.2305 0.113 0.113	1.518 8.255 -1.694	0.129 0.001 0.0002
5 nic * hiro		0.147 0.3236 0.3236	-3.033 -1.808	0.00242 0.0706 0.0706
/ sex_1 % lage/U 8 sex_2 % lage70 9 sex 1 % lage70sg		1.36/ 0.6463 1.25	1.984 2.466 0.695	0.04/3 0.0136 0.487
10 sex_2 * lage70sq		0.6894	-0.3865	790.0 0.0667
1. sex " "age/osp 1. sex_1 = e30		0.38 0.106 0.05293 0.04416 0.02056	1.708 0.7583 1.179 4.529	0.0877 0.448 0.238 < 0.001
Linear term 1 17 thya02w10	. 1.232	0.5061	2.434	0.0149
Log-linear term 1 18 e30. 19 lage70. 20 inahs.	0.5903 . 0.5921 . 0.000	0.2385 0.6191 Fixed	-2.475 0.9565 1.276	0.0133 0.339 0.202
Linear product term 1 21 %CON	0.5699	Aliased 0.1649	3.456	< 0.001
Records used	42040			
Deviance Pearson Chi2	3041.987 34650.86 De	Degrees of fre	freedom 42020	

3/28/2007