

Trapped positrons and electrons in the inner radiation belt

Vladimir Mikhailov (MEPhI)

For PAMELA collaboration

ISCRA, 20-22 June, 2017, MEPHI, Moscow,

PAMELA Collaboration

Bari Florence Frascati Naples Rome Trieste CNR, Florence

Electron halo around the Earth

N. Grigorov

Possibility of existence of a radiation belt around the earth consisting of electrons with energies of 100 MeV and above. Soviet Physics Doklady, Vol. 22, p.305, 1977

- Production of charged pions in CR protons interaction with residual atmosphere $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$
- Trapping of secondary particles by the Earth magnetic field livetime $T(h) \sim 1/\rho(h)$ Intensity:

 $I_e(h) \propto I_{cr} \times \rho(h) \times T(h) \propto \rho/\rho \approx \text{ constant (h)}$ from ~100 to ~1000км

Basilova et al. 1978 & Kurnosova et al. 1979: first measurements Galper et al 1983 : electron excess in SAA

The PAMELA Experiment

Resurs DK satellite built by the Space factory «TsSKB Progress» in Samara (Russia)

Trigger rate ~25Hz (outside radiation belts)
Event size (compressed mode) ~ 5kB
25 Hz x 5 kB/ev → ~ 10 GB/day

Satellite was launched 15.06.2006 on elliptical polar orbit with inclination 70°, altitude 350-610km. Circular orbit with altitude ~570km from September 2010

Since July 2006 till Junuary 2016:

- ~3200 days of data taking
- ~50 TByte of raw data downlinked
- ~9•109 triggers recorded and analyzed

Spectra in different parts of magnetosphere

Positron to electron ratio for quasitrapped particles

AMS-01 experiment (1998):
Due to East-West effect
ratio e+/e- is about ~5 at E~1GeV
in near equatorial region

Primary Cosmic Geomagnetic Field Forbidden Allowed Trajectory Trajectory atmosphere

Result of AMS-01 confirmed by PAMELA Adriani et al , JGR ,2009

Data analysis

Trajectories of positrons and electrons were tracing back in the Earth's magnetic field.

IGRF field model was used (http:/nssdcftp.gsfc.nasa.gov)

Boundary:

Losses in atmosphere Hmin=30 km,

Escaping Hmax=20000 km

Time of tracing Tmax=50 s

it is drift time around the Earth for particles with energy E~70 MeV

Reconstructed trajectories of electrons and positrons detected by PAMELA during several orbits

Samples of particles trajectories:

Simple reentrant albedo:

Altitude vs latitude

Trajectory of **re-entrant albedo** positrons with rigidity R=1.24 GV

Time of flight $\sim 0.1 \text{ s}$

Quasi-trapped particles:

Positron trajectory with rigidity R~1.2 GV,

Altitude vs latitude

Time of flight >>0.1 s at R<1GV.

Trapped positron

Positron trajectory with rigidity R~1 GV, pitch-angle about 90 °.

Altitude vs longitude. Minimal trajectory altitude is in South Atlantic Anomaly region.

Quasi-trapped particle near geomagnetic cut-off

Altitude vs latitude

Positron trajectory with rigidity R=2.24 GV, with small pitch-angle

Cosmic ray trajectory near geomagnetic cut-off

Chaotic trajectory of non-adiabatic type.

Quasi-trapped particles:

Positron trajectory with rigidity R~1.2 GV,

Positron trajectory with rigidity R~0.5 GV

Time of flight >>0.1 s at R<1GV. Drift time is decreasing with R increasing

Electron and positron live time in magnetosphere

The live time versus rigidity R for electrons and positrons Max time of tracing was 50 sec. It corresponds drift time of ~70MeV electrons around the Earth.

There is trapped component with very long flight time >> minute

Galactic CR

Detection region

electrons

positrons

Re-entrant albedo (time < 0.1s)

electrons points of origin

points of detection

Quasi-trapped albedo (time>>0.1s)

Positron to electron ratio vs energy

Stably trapped particles: points of detection

positrons

electrons

Space distribution of trapped particles

positrons

electrons

Geomagnetic coordinates L-B of detected trapped particles

Positron to electron ratio

Positron to electron ratio for trapped particles (time >50 sec)

Sources of trapped electrons and positrons with E>10 MeV

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu; \quad \mu^{\pm} \rightarrow e^{\pm} + \nu + \tilde{\nu}$$
$$\pi^{0} \rightarrow 2\gamma \rightarrow 2e^{+} + 2e^{-} .$$

Gusev et al, 2001, 2004 :TP source are limited in spatial distribution at around L=1.2 \pm 0.1 with the energy spectrum showing a steep cutoff at energy of about \sim 300 MeV. The calculated e+/e- flux ratios in the belt due to this source are high and attain values of \geq 7 in the energy range of 10 to 500 MeV. The simulated results for the CR source, at the center of the positron belt, are about 100 times lower than the positron fluxes of the TP origin at L=1.2.

Trapped proton (TR) interactions

CR interaction with residual atmosphere

Fig. 4. Spectra of the trapped positrons and electrons produced by trapped proton source.

Fig. 11. Positron/electron flux ratio for CR source; circles are data of AMS experiment.

Ratio of positrons to electrons vs L-shell for trapped particles

Ratio of positrons to electrons vs L-shell for trapped particles

ratio e+/e- in LB coordinates for trapped particles

ratio e+/e- in LB coordinates for trapped particles

0.18<B<0.2 G , 1.12<L<1.3

Energy distribution of trapped particles

L-shell 1.12-1.3

0.20<B<0.23 G

0.18<B<0.20 G

Spectra of trapped electrons from keVs to GeVs

Постер 46

CRAND model,
New calculations
L=1.5

R. Selecnick J. Geophys. Res. 2015

Conclusion

- 1. Particle tracing in magnetosphere selects
 - cosmic ray
 - re-entrant albedo
 - quasitrapped
 - trapped

electron and positron

- 2. Charge composition of stably trapped particles in radiation belt differs from longlived quasitrapped component
- 3. PAMELA detects more electrons then positrons on boundary of radiation belt at E < 0.5 GeV

Thank you!

SPARE SLIDES

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

<u>Time-Of-Flight</u> plastic scintillators + PMT:

- Trigger
- Albedo rejection;
- Mass identification up to 1 GeV;
- Charge identification from dE/dX.

Electromagnetic calorimeter

W/Si sampling (16.3 X_0 , 0.6 λI)

- Discrimination e+ / p, anti-p / e⁻ (shower topology)
- Direct E measurement for e

Neutron detector

³He tubes + polyethylene moderator:

- High-energy e/h discrimination

GF: 21.5 cm² sr Mass: 470 kg

Size: 130x70x70 cm³ Power Budget: 360W Spectrometer

microstrip silicon tracking system + permanent magnet It provides:

- Magnetic rigidity \rightarrow R = pc/Ze
- Charge sign
- Charge value from dE/dx

Electron and positron spectra in SAA

Отношение e+/e- для 0.18<B<0.2, 1.18<L<1.13

Energy distributions of trapped electrons and positrons

0.18<B<0.2 G , 1.12<L<1.3

