L7 Epigenetics Cancer, Environment & Aging

- 1. Development of cancer
- 2. Knudsen 's "two hit hypothesis"
- 3. Epigenetic mechanisms and the development of cancer
- 4. Diagnostics using DNA methylation

Cancer is a complex genetic disease of cellular origin in which a combination of genetic and epigenetic alterations allow the abnormal use of developmental programs to promote uncontrolled differentiation and proliferation.

"All cancers arise due to alterations in DNA. Some cancer-causing mutations may be present in the germline, are therefore heritable and confer an elevated risk of developing cancer. Many, however, occur over the course of a person's lifetime in individual cells of the body and are known as somatic (driver and passenger) mutations."

ICGC policy document: http://icgc.org/icgc/goals-structure-policies-guidelines/introduction

In cancer the "normal" cell physiology is altered due to a deregulation of genetic programs by:

- Chromosomal mutations = amplifications or deletion = gain or loss of genes.
- Point-mutations (either somatic or germ line).
- Transcriptional silencing or activation of genes ny epigenetic changes
- Genomic instability (e.g. actiation of transposable elements) (epigenetic).

Cancer development – a single cell progenitor model

(cancer stem cell model)

GKM: Gate Keeper Mutation, e.g., tumor suppressor gene (TSG) or oncogene (ONC)

- 1. Development of cancer
- 2. Knudsen 's "two hit hypothesis"
- 3. Epigenetic mechanisms and the development of cancer
- 4. Diagnostics using DNA methylation

The Knudson's "Two hit hypothesis" – extension by epigenetic silencing

- 1. Development of cancer
- 2. Knudsen 's "two hit hypothesis"
- 3. Epigenetic mechanisms and the development of cancer
- 4. Diagnostics using DNA methylation

How can tumor suppressor genes become inactivated and oncogenes become activated?

- 1. Genetic alterations (mutations)
- 2. Epigenetic silencing (epimutations)

Which general epigenetic changes occur in cancer cells

Frequently observed epigenetic silencing of tumor suppressor genes (CpG island hypermethylation)

50% of tumor suppressor genes are inactivated by epigenetic mechanisms.

The complex interplay of genetic and epigenetic alterations in cancer development

Genetic mutations of Tet1 in cancer

Tet1

Cancer Distribution

OPEN IN ADVAN

112 DONORS AFFECTED BY 167 MUTATIONS ACROSS 22 PROJECTS

Showing 22 projects

Project	Site	Tumour Type	Tumour Subtype	# Donors affected ▼
ESAD-UK	Esophagus	Esophageal Cancer	Esophageal Adenocarcinoma	5 / 22 (22.73%)
LIRI-JP	Liver	Liver Cancer	Hepatocellular Carcinoma (Viru	7 / 42 (16.67%)
PRAD-CA	Prostate	Prostate Cancer	Adenocarcinoma	1 / 8 (12.50%)
UCEC-US	Uterus	Endometrial Cancer	Uterine Corpus Endometrial Car	26 / 246 (10.57%)
MALY-DE	Blood	Malignant Lymphoma	Germinal Center B-cell Derived	4 / 44 (9.09%)
LAML-KR	Blood	Blood Cancer	Acute Myeloid Leukemia	5 / 55 (9.09%)

Genetic mutations of DNMT3A in cancer

Chromatin changes and cancer

Epigenetic plasticity, selection, and cancer. (**Left**) Normal chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while facilitating appropriate responses to developmental or environmental cues (blue nuclei represent normal cell state). Genetic, environmental, and metabolic insults that disrupt chromatin can lead to either restrictive or overly permissive chromatin states. (**Center**) Overly permissive chromatin results in epigenetic plasticity; this plasticity permits stochastic activation of alternate gene regulatory programs (red nuclei represent cancer-like cell state). (**Right**) Some stochastic changes will be inconsequential "passengers" while others will confer fitness and be selected as "drivers"; in this way, chromatin aberrations have the potential to fulfill each hallmark of cancer.

Chromatin structure affects cellular identity and state transitions

Disorganisation of chromatin in cancer cells

Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

Andrew P. Feinberg¹, Michael A. Koldobskiy¹ and Anita Göndör²

Chromatin structure affects cellular identity and state transitions

Chromatin programs are frequently disrupted in cancer.

or differentiation programs

pro-oncogenic genes

Chromatin programs are frequently disrupted in cancer.

Genetic and epigenetic contributions to the evolution in cancer.

Genetic and epigenetic mechanisms variable the hallmarks of cancer

Genetic and epigenetic mechanisms underlie the hallmarks of cancer.

Α

PROLIFERATIVE SIGNALING

DNA methylation-induced loss of oncogene insulation activates PDGFRA in glioma.

RESISTING CELL DEATH

Inability to activate DNA repair checkpoints due to DNMT3A dysfunction in acute myeloid leukemia.

EVADING GROWTH SUPPRESSORS

Inability to activate p16 due to promoter methylation in **colorectal cancers** (and others) or Polycomb-mediated silencing in **lymphoma**.

INDUCING ANGIOGENESIS

Promoter hypermethylation of VHL leads to gene silencing and loss of anti-angiogenic signaling in renal clear cell carcinoma.

INVASION AND METASTASIS

Epigenetic transitions underlying Epithelial to Mesenchymal Transition (EMT) drive invasion and metastasis in various tumors.

REPLICATIVE IMMORTALITY

Mutations of Histone H3.3 or its chaperone proteins promote retention of stem cell programs and telomere maintenance in **pediatric gliomas**.

Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

Andrew P. Feinberg¹, Michael A. Koldobskiy¹ and Anita Göndör²

- 1. Development of cancer
- 2. Knudsen 's "two hit hypothesis"
- 3. Epigenetic mechanisms and the development of cancer
- 4. Cancer diagnostics using DNA methylation

Table 1 | Hypermethylated genes in cancer and their associated tissue types Gene function Gene name Cancer type APC WNT signalling Prostate, colon, lung, bladder Androgen receptor signalling AR Prostate ΒN BR CE CE RARB2 CL RASSF1 CE HOXA9 -GATA4 CE DA -LMNA -DKK1 ΕN -COX-2 CRBP1 ES TPEF/ HTTP1 -DAPK1 -SYK -NORE1A EXT1 GS HLTF IG Chr 11 LC Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr X Chr 10 M/ M mi LKB1/ STK11 SOCS1 mi -WIF1 mi BRCA1 mi -SLC5A8 **TSHR** CDH1 CDH13 Chr 19 Chr 20 Chr 21 Chr 22 Chr 22 Chr 13 Chr 14 Chr 15 Chr 16 Chr 17 Cell growth control Chr 18 Chr Y NORE 12 NSD1 Nuclear receptor Glioma, neuroblastoma **PYCARD** Apoptosis Glioma, breast, colon, gastric, lung **RARB** Retinoic acid receptor Breast, colon, prostate

Table 1 Hypermethylated genes in cancer and their associated tissue types					
Gene name	Gene function	Cancer type			
APC	WNT signalling	Prostate, colon, lung, bladder			
AR	Androgen receptor signalling	Prostate			
BMAL1	AHR signalling	Leukaemia, lymphoma			
BRCA1	DNA damage response	Breast, ovarian			
CDH1	Cell-cell adhesion	Breast, prostate			
CDH11	Cell-cell adhesion	Colon, breast, oesophagus, gastric, liver			
CDH13	Cell-cell adhesion	Lung, head and neck			
CDKN2A	Cell cycle control	Lymphoma, colon, stomach, prostate			
CDKN2B	Cell cycle control	Leukaemia			
DAPK1	Programmed cell death control	Lung, head and neck, bladder			
EMP3	Signal transduction	Glioma			
ESR1	Oestrogen receptor signalling	Breast			
GSTP1	Detoxification	Prostate, liver, lung			
IGFBP3	Signal transduction	Colon, lung, ovarian, prostate			
LGALS3	Extracellular matrix protein	Prostate			
MASPIN	Peptidase inhibitor	Pancreas			
MGMT	DNA repair	Colon, glioma, lymphoma, prostate, lung			
miR-148a	Metastasis suppression	Metastasis			
miR-34b and miR-34c	Metastasis suppression	Metastasis			
miR-9	Metastasis suppression	Metastasis			
miR-200s	Epithelial–mesenchymal transition	Colon, bladder, squamous cell carcinoma			
MLH1	DNA repair	Colon, endometrium, stomach			
NORE1A	Cell growth control	Colon, liver, lung, thyroid			
NSD1	Nuclear receptor	Glioma, neuroblastoma			
PYCARD	Apoptosis	Glioma, breast, colon, gastric, lung			
RARB	Retinoic acid receptor	Breast, colon, prostate			

Cancer-Diagnostics

Mutations and epimutations in the MGMT gene

MGMT: O6-Methylguanine-DNA methyltransferase

MGMT detoxifies alkylated guanines - acts against chemotherapy

The role of MGMT in cancer treatment

Chemotherapy often uses alkalyting substances by modifying bases in the genome (i.e. addition von C_nH_{2n+1}), e.g.

- ·Chemotherapeutics (Dacarbazine, Streptozotocin, Temozolomide),
- Nutrition (Dimethylnitrosamine (DMNA))
- Smoking (Nitrosononikotin (NNN); 4-Methylnitrosoamino-1-(3.piridyl)-1-butanon (NNK))
- One product is the O6methyl-Guanin which when not not repaired, allows a "promiscuous base pairing" with Thymidine during S-phase
- This causes G-C to T-A point mutation
- Without MGMT the cell has increased mutation rates

MGMT is a suicide-enzyme

- MGMT receives alkylresidue and is subsequently inactivated
- Ubiquitination and Proteasome-mediated degradation

"Suicide Reaction"

MGMT Gene

O⁶-Methylguanine DNA Methyltransferase (MGMT)

V: Described Polymorphisms of Unknown Significance

MGMT and brain tumor treatment (chemotherapy) by Carmustin (an alkalyting agent) to kill fast dividing tumor cells

The methylation status of the MGMT promoter is a molecular biomarker to predict responsiveness to chemotherapy!

MGMT and Glioma

The methylation status of the MGMT promoter is a molecular biomarker to predict responsiveness to chemotherapy!

Epigenetics and aging

Epigenetics and aging

Sci Adv. 2016 Jul; 2(7): e1600584.

Published online 2016 Jul 29. doi: 10.1126/sciadv.1600584

DNA-methylation in Alzheimers disease: analysis of human brain samples

German Human Brain Bank Prof. Dr. H. Kretzschmar

Separation of nuclei from Healthy and Alzheimers post mortem samples into neuron and glia fractions

Armin Theo Kraus Heinrich Leonhardt LMU München

Neuronal and glial cell populations have distinct methylomes

Neuronal and glial cells have distinct patterns of aging

The AD risk gene *Clusterin* shows a clear epigenetic aging signature in neurons

Epigenetics and (altered) metabolism in cancer

