## Pandas Tutorial (Zero to Hero)

#### 1. Introduction to Pandas

- What is Pandas? (built on NumPy, for data manipulation & analysis)
- Why Pandas vs Python lists/dictionaries/NumPy?
- Installing Pandas

#### 2. Pandas Basics

- Series (1D labeled array)
- DataFrame (2D labeled data structure)
- Creating Series & DataFrames (from lists, dicts, NumPy arrays, CSV, Excel)

#### 3. DataFrame Attributes

- .shape, .ndim, .dtypes, .columns, .index, .values
- Getting quick insights: .head(), .tail(), .info(), .describe()

### 4. Indexing & Selection

- Column selection (df['col'], df.col)
- Row selection (.loc, .iloc)
- · Slicing DataFrames
- · Boolean indexing & filtering
- · Setting index & resetting index

## 5. Data Cleaning

- Handling missing values (isna, fillna, dropna)
- Handling duplicates (duplicated, drop\_duplicates)
- · Renaming columns
- Changing data types (astype)

## 6. Operations

- · Arithmetic operations
- String operations (.str)
- Apply functions (apply, map, applymap)
- Sorting(sort\_values, sort\_index)

## 7. Grouping & Aggregation

- · groupby basics
- Aggregate functions (sum, mean, count, agg)
- Pivot tables

## 8. Merging, Joining & Concatenation

- concat, merge, join
- Differences between them
- · Examples (like SQL joins)

## 9. Working with Dates & Time

- pd.to\_datetime
- Extracting year, month, day
- Resampling & time-series analysis

## 10. Input/Output with Files

- Reading: read\_csv, read\_excel, read\_json, read\_sql
- Writing: to\_csv, to\_excel, to\_json

### 11. Advanced Topics

- MultiIndex (hierarchical indexing)
- · Window functions (rolling, expanding)
- · Categorical data
- · Sparse data
- Performance tips (vectorization, .eval, .query)

## 12. Exercises & Projects

- · Small exercises after each section
- Mini-projects at the end:
  - o Analyzing a CSV dataset (e.g., Titanic dataset, sales dataset)
  - o Cleaning messy data (missing values, duplicates, etc.)
  - o Simple exploratory data analysis (EDA)

#### Extra Tips & Tricks

- Use .copy() to avoid SettingWithCopyWarning
- · Prefer loc over chained indexing
- Use df.query() for cleaner filtering
- Use .astype('category') for memory optimization

Start coding or generate with AI.

## 1. Introduction to Pandas

### ♦ What is Pandas?

- · Pandas is an open-source Python library used for data manipulation and analysis.
- It is built on top of NumPy, which means it uses NumPy arrays under the hood for fast computations.
- · It provides two main data structures:
  - ∘ Series → 1D labeled data (like a column in Excel)
  - o DataFrame → 2D labeled data (like a full Excel sheet or SQL table)
- rightarrow In short: Pandas is the go-to library for working with structured (tabular) data in Python.

## ♦ Why Pandas vs. Python lists/dictionaries/NumPy?

- · Python lists/dictionaries
  - o Good for small tasks, but become slow & messy with large datasets.
  - o No built-in tools for filtering, grouping, or joining data.
- NumPy arrays
  - o Great for numerical data & fast calculations.
  - But lacks labels (column names, row indices).
  - Harder to handle heterogeneous data (numbers + text).
- Pandas Combines the speed of NumPy with the flexibility of labels. Offers built-in methods for filtering, cleaning, grouping, merging, reshaping.
   Works seamlessly with CSV, Excel, SQL, JSON, and more.
- Installing Pandas

Pandas doesn't come pre-installed with Python. Install it using:

```
pip install pandas
```

Or if you're using Anaconda (recommended for data science):

```
conda install pandas
```

Verify the installation inside Python:

```
import pandas as pd
print(pd.__version__)
```

Start coding or generate with AI.

## 2. Pandas Basics

Pandas has two main data structures:

- 1. Series → One-dimensional (1D) labeled array.
- 2. **DataFrame** → Two-dimensional (2D) labeled data structure (rows + columns).

## ◆ 2.1 Series (1D Labeled Array)

- Think of a Series like a single column in Excel or a single column in a SQL table.
- . It has two parts:
  - Values → actual data (numbers, strings, etc.)
  - $\circ \ \ \textbf{Index} \rightarrow \textbf{labels for each value}$

### Example 1: Creating a Series from a list

```
import pandas as pd

# Create a Series from a list
data = [10, 20, 30, 40]
s = pd.Series(data)
print(s)
```

#### Output:

```
0 10
1 20
2 30
3 40
dtype: int64
```

By default, Pandas assigns integer indices (0,1,2,3).

#### Example 2: Custom Index

```
s = pd.Series([10, 20, 30, 40], index=["A", "B", "C", "D"])
print(s)
```

#### Output:

```
A 10
B 20
C 30
```

```
D 40
dtype: int64
```

Now, instead of default numbers, we gave labels.

### **Example 3: From Dictionary**

```
data = {"Apple": 3, "Banana": 5, "Orange": 2}
s = pd.Series(data)
print(s)
```

#### **Output:**

```
Apple 3
Banana 5
Orange 2
dtype: int64
```

## ◆ 2.2 DataFrame (2D Labeled Data Structure)

- A DataFrame is like an Excel sheet or SQL table → rows + columns.
- Each column is a Series, and the whole table is a DataFrame.

### Example 1: From Dictionary of Lists

```
data = {
    "Name": ["Ali", "Sara", "John"],
    "Age": [25, 30, 28],
    "City": ["Cairo", "Paris", "London"]
}

df = pd.DataFrame(data)
print(df)
```

### Output:

```
Name Age City
0 Ali 25 Cairo
1 Sara 30 Paris
2 John 28 London
```

### **Example 2: From List of Dictionaries**

## Example 3: From NumPy Array

```
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

df = pd.DataFrame(arr, columns=["A", "B", "C"])
print(df)
```

#### **Output:**

```
A B C
0 1 2 3
1 4 5 6
```

## Example 4: From CSV/Excel File

```
# From CSV
df_csv = pd.read_csv("data.csv")

# From Excel
df_excel = pd.read_excel("data.xlsx")

print(df_csv.head())  # First 5 rows
print(df_excel.head())
```

## **Exercises**

#### **Exercise 1**

Create a **Series** that represents the number of books each student has:

• Ali: 3, Sara: 7, John: 5, Noor: 9

#### **Exercise 2**

Create a **DataFrame** for the following student data:

| Name | Age | Grade |
|------|-----|-------|
| Ali  | 20  | Α     |
| Sara | 22  | В     |
| John | 21  | Α     |
| Noor | 23  | С     |

#### **Exercise 3**

Use NumPy to create a 2D array of shape (3,3), then convert it into a Pandas DataFrame with column names X, Y, Z.

## Solutions

#### Solution 1

```
books = {"Ali": 3, "Sara": 7, "John": 5, "Noor": 9}
s = pd.Series(books)
print(s)
```

## Solution 2

```
data = {
    "Name": ["Ali", "Sara", "John", "Noor"],
    "Age": [20, 22, 21, 23],
    "Grade": ["A", "B", "A", "C"]
}

df = pd.DataFrame(data)
print(df)
```

### Solution 3

```
import numpy as np

arr = np.array([[1,2,3], [4,5,6], [7,8,9]])

df = pd.DataFrame(arr, columns=["X", "Y", "Z"])
print(df)
```

3) DataFrame Attributes — Deep Dive

We'll use this small dataset throughout:

Start coding or generate with AI.

```
import pandas as pd

df = pd.DataFrame({
    "Name": ["Ali", "Sara", "John", "Noor", "Mona", "Omar"],
    "Dept": ["IT", "HR", "Finance", "IT", "HR", "Finance"],
    "Age": [20, 22, 21, 23, 29, 35],
    "Salary": [5000, 4500, 6000, 5500, 5200, 7200],
    "Joined": pd.to_datetime(["2022-01-10","2021-05-03","2020-07-19","2022-02-01","2019-09-30","2018-11-11"]),
    "Remote": [True, False, None, True, False, True]
})
```

## A) Shape & Dimensionality

```
\cdotshape \rightarrow (rows, columns)
```

```
df.shape # e.g., (6, 6)
```

#### $.ndim \rightarrow number of dimensions$

• 2 for DataFrame; 1 for Series.

```
df.ndim # 2
```

### Related helpers

```
len(df)  # rows

df.size  # rows * columns (total cells)

df.axes  # [row_index, column_index]
```

## B) Dtypes (Data Types)

.dtypes - each column's dtype

```
df.dtypes
```

Typical dtypes: int64, float64, bool, object (strings/mixed), datetime64[ns], category, and **nullable** types like Int64, boolean, string.

### Pick columns by dtype

```
df.select_dtypes(include="number")
df.select_dtypes(exclude=["object","datetime"])
```

Convert dtypes (smartly)

```
df2 = df.convert_dtypes() # uses pandas' nullable types where possible
```

#### Force a dtype

```
df["Dept"] = df["Dept"].astype("category")
```

Tip: object often means "strings" but can hide mixed types; converting to category or string saves memory and clarifies intent.

## C) Columns & Index

.columns — column labels (an Index)

```
df.columns
df.columns.tolist()
```

Rename or set:

```
df = df.rename(columns={"Dept": "Department"})
df.columns = [c.lower() for c in df.columns] # overwrite all at once
```

.index - row labels

```
df.index  # RangeIndex(...) by default

df.set_index("name", inplace=False)  # use a column as index (returns a copy)

df.reset_index(drop=True)  # back to RangeIndex
```

Common index types: RangeIndex, Index (generic), DatetimeIndex, MultiIndex.

Tip: Give your index a meaning (e.g., an ID or date). It improves merging, slicing, and time-series operations.

## D) Values as Arrays

### .values (NumPy ndarray)

Returns the underlying array. Mixed dtypes  $\rightarrow$  object array.

```
arr = df.values
```

.to\_numpy(dtype=..., copy=...) (preferred)

Prefer to\_numpy() for clarity and control over dtype/copy. .values can surprise you with object dtype when columns are mixed.

## E) Quick Peek / Profiling

.head(n) / .tail(n) - first/last rows

```
df.head(3)
df.tail(2)
```

```
.sample(n=..., frac=...) — quick random check

df.sample(2, random_state=0)
```

### .info() — schema summary, nulls, memory

```
df.info(show counts=True)
                                  # show non-null counts explicitly
df.info(memory_usage="deep")
                                  # more accurate memory sizes
```

#### .describe() - stats summary

```
df.describe()
                                  # numeric columns only
df.describe(include="all")
                                  # all columns (object/category counts, top, freq)
df.describe(percentiles=[.05,.5,.95])
```

#### Fast missingness snapshot

```
df.isna().sum()
                                  # NA count per column
df.isna().mean()
                                  # NA ratio per column
```

### Other handy peeks

```
df.nunique()
                                  # distinct values per column
df["dept"].value_counts(dropna=False) # frequency table for a column
```

## F) Other Handy Attributes

```
df.T
                 # transpose (swap rows/cols)
                 # True if df has 0 elements (rows*cols == 0)
df.empty
df.memory_usage(deep=True) # per-column memory usage
df.columns.name = "fields"
                              # name the columns index
df.index.name = "row_id"
                             # name the row index
df.attrs["source"] = "HR export" # attach arbitrary metadata
```

## Exercises (at least 10 — here are 14)

Assume df is the DataFrame defined at the top unless stated otherwise.

#### 1. Shapes & Sizes

• Print: number of rows, number of columns, total cells (three separate lines).

#### 2. Dimensionality Check

Verify that df is 2D and that df["age"] is 1D using .ndim.

#### 3. Index Naming

Set the index to the name column (lowercase), name the index "employee", then reset it back.

#### 4. Column Cleanup

o Lowercase all column names and replace spaces with underscores.

#### 5. Dtype Audit

o Show a table of: column name, dtype, number of nulls, number of unique values.

#### 6. Select by Dtype

• Get a DataFrame containing only numeric columns. Then compute .describe() on it with percentiles at 5%, 50%, 95%.

#### 7. Memory Matters

- Show memory usage per column with deep=True.
- o Convert the dept column to category. Show memory usage again.
- Report how many bytes you saved.

#### 8. Smart Type Conversion

• Run convert\_dtypes() and print the dtypes before vs after. Which columns changed and how?

#### 9. Missingness Snapshot

- Compute a two-line summary:
  - (a) NA counts per column
  - (b) NA ratios (0-1) per column, sorted descending.

#### 10. Describe Everything

• Run df.describe(include="all") and interpret: which column has the most frequent value shown by top/freq?

#### 11. Quick Peek Trio

• Show the first 2 rows, last 2 rows, and a random sample of 2 rows (fixed random\_state for reproducibility).

#### 12. Values vs to\_numpy

- Extract all numeric data as a NumPy array with dtype float64 using one line of code (no intermediate variables).
- Explain why .values could be risky on mixed-type DataFrames.

#### 13. Index Types

• Create df2 = df.set\_index("joined"). What is the index type now? Verify using type(df2.index) and .dtypes.

#### 14. Profile Helper

Build a small function quick\_profile(df) that returns a DataFrame with columns:
 ["col","dtype","non\_null","nulls","nunique","memory\_bytes"] sorted by memory\_bytes descending.

# Solutions

#### 1) Shapes & Sizes

```
rows, cols = df.shape
print(rows)
print(cols)
print(df.size)
```

#### 2) Dimensionality Check

```
print(df.ndim) # 2
print(df["age"].ndim) # 1
```

### 3) Index Naming

```
df_ix = df.set_index("name").copy()
df_ix.index.name = "employee"
print(df_ix.index)  # check name
df_back = df_ix.reset_index()
```

## 4) Column Cleanup

```
df.columns = [c.lower().replace(" ", "_") for c in df.columns]
print(df.columns)
```

### 5) Dtype Audit

```
audit = pd.DataFrame({
    "col": df.columns,
    "dtype": df.dtypes.values,
    "nulls": df.isna().sum().values,
    "nunique": df.nunique(dropna=False).values
})
print(audit)
```

#### 6) Select by Dtype

```
num_df = df.select_dtypes(include="number")
print(num_df.describe(percentiles=[.05,.5,.95]))
```

#### 7) Memory Matters

```
before = df.memory_usage(deep=True)

df_cat = df.copy()

df_cat["dept"] = df_cat["dept"].astype("category")

after = df_cat.memory_usage(deep=True)

saved = int(before.sum() - after.sum())

print(before)

print(after)

print("Bytes saved:", saved)
```

#### 8) Smart Type Conversion

```
print("Before:\n", df.dtypes)

df_conv = df.convert_dtypes()
print("After:\n", df_conv.dtypes)
# You'll likely see 'remote' → boolean, strings → string dtype
```

#### 9) Missingness Snapshot

```
na_counts = df.isna().sum()
na_ratio = df.isna().mean().sort_values(ascending=False)
print(na_counts)
print(na_ratio)
```

#### 10) Describe Everything

```
desc_all = df.describe(include="all")
print(desc_all)
# Look at rows 'top' and 'freq' for non-numeric columns (e.g., dept)
```

## 11) Quick Peek Trio

```
print(df.head(2))
print(df.tail(2))
print(df.sample(2, random_state=42))
```

#### 12) Values vs to\_numpy

```
arr = df.select_dtypes(include="number").to_numpy(dtype="float64")
# Why .values can be risky:
# On mixed dtypes, .values may become object dtype, losing numeric efficiency and semantics.
```

#### 13) Index Types

```
df2 = df.set_index("joined")
print(type(df2.index))  # <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
print(df2.dtypes)
```

### 14) Profile Helper

```
def quick_profile(x: pd.DataFrame) -> pd.DataFrame:
    return pd.DataFrame({
        "col": x.columns,
        "dtype": x.dtypes.astype(str).values,
        "non_null": x.notna().sum().values,
        "nulls": x.isna().sum().values,
        "nunique": x.nunique(dropna=False).values,
```

```
"memory_bytes": x.memory_usage(deep=True, index=False).values
}).sort_values("memory_bytes", ascending=False).reset_index(drop=True)
print(quick_profile(df))
```

Start coding or generate with AI.

## 4. Indexing & Selection in Pandas

Indexing & selection is how you **zoom in** on the rows and columns you need in a DataFrame. Think of it like controlling a giant Excel sheet with precise commands.

### 4.1 Column Selection

Two main ways:

```
import pandas as pd

data = {
    "Name": ["Ali", "Sara", "Omar", "Nora"],
    "Age": [25, 30, 22, 28],
    "City": ["Cairo", "Alexandria", "Giza", "Mansoura"]
}

df = pd.DataFrame(data)

# Bracket notation
print(df["Name"]) # Always works

# Dot notation
print(df.Age) # Works if column has no spaces/special characters
```

### Tips & Tricks:

- Prefer df["col"] for reliability (dot notation may fail if col = "count" or "sum").
- You can select multiple columns at once: df[["Name", "City"]].

### 4.2 Row Selection

Two main approaches:

```
# .loc -> label-based
print(df.loc[0])  # Row with label 0
print(df.loc[1:2])  # From label 1 to label 2 (inclusive!)

# .iloc -> position-based
print(df.iloc[0])  # Row at position 0
print(df.iloc[1:3])  # Position 1 and 2 (end-exclusive)
```

### Tips & Tricks:

- .loc[a:b] includes the last index, .iloc[a:b] excludes it.
- Combine row & column selection: df.loc[0, "Name"].

## 4.3 Slicing DataFrames

You can slice rows like lists, and columns with .1oc .

```
# Slice rows
print(df[1:3]) # Rows 1 and 2

# Select subset of columns
print(df.loc[:, ["Name", "City"]])
```

```
# Range of rows + specific columns
print(df.loc[1:3, ["Name", "Age"]])
```

Tip: Use: to mean "all" (e.g., df.loc[:, "Age"] means all rows, only Age column).

### 4.4 Boolean Indexing & Filtering

This is where Pandas shines \\.

```
# Rows where Age > 25
print(df[df["Age"] > 25])

# Multiple conditions
print(df[(df["Age"] > 25) & (df["City"] == "Cairo")])
```

#### Tips & Tricks:

- Use & for AND, | for OR, and wrap conditions in parentheses.
- Use .isin() for matching multiple values: df[df["City"].isin(["Cairo", "Giza"])].
- Use .str.contains() for text filters: df[df["City"].str.contains("Cai")].

## 4.5 Setting Index & Resetting Index

Sometimes a column is more meaningful as the index.

```
# Set index
df2 = df.set_index("Name")
print(df2)

# Select row by index
print(df2.loc["Omar"])

# Reset to default integer index
print(df2.reset_index())
```

### Tips & Tricks:

- Use inplace=True if you don't want a copy: df.set\_index("Name", inplace=True).
- After setting index, you can quickly access rows with df.loc[index\_value].

## **Exercises**

Using the same DataFrame df:

```
import pandas as pd

data = {
    "Name": ["Ali", "Sara", "Omar", "Nora", "Mona"],
    "Age": [25, 30, 22, 28, 35],
    "City": ["Cairo", "Alexandria", "Giza", "Mansoura", "Cairo"]
}

df = pd.DataFrame(data)
```

### **Tasks**

- 1. Select the "City" column using both methods.
- 2. Select the first two rows using .iloc .
- 3. Select rows with labels 1 to 3 using .loc.
- 4. Get the Name and Age columns for the first three rows.
- 5. Select all rows where Age > 25.
- 6. Select all rows where City is Cairo OR Giza.

- 7. Select only the Name of people older than 28.
- 8. Set "Name" as the index and access Omar's row.
- 9. Reset the index back to default integers.
- 10. Slice the DataFrame to get rows 2 to 4 and only the "City" column.

### Solutions

```
# 1
print(df["City"])
print(df.City)
print(df.iloc[0:2])
# 3
print(df.loc[1:3])
# 4
print(df.loc[0:2, ["Name", "Age"]])
print(df[df["Age"] > 25])
# 6
print(df[df["City"].isin(["Cairo", "Giza"])])
print(df.loc[df["Age"] > 28, "Name"])
# 8
df2 = df.set_index("Name")
print(df2.loc["Omar"])
# 9
print(df2.reset_index())
print(df.loc[2:4, ["City"]])
```

Start coding or  $\underline{\text{generate}}$  with AI.

## 5. Data Cleaning in Pandas

Real-world datasets are rarely perfect — they have **missing values**, **duplicates**, **wrong column names**, **and incorrect data types**. Pandas gives us tools to fix all that.

## 5.1 Handling Missing Values

Missing values often appear as  $\,{\rm NaN}\,.$ 

```
import pandas as pd
import numpy as np

data = {
    "Name": ["Ali", "Sara", "Omar", "Nora", "Mona"],
    "Age": [25, np.nan, 22, 28, np.nan],
    "City": ["Cairo", "Alexandria", None, "Mansoura", "Cairo"]
}

df = pd.DataFrame(data)

print(df.isna())  # Check missing values (True/False)
print(df.isna().sum()) # Count missing values per column
```

```
# Fill missing values
print(df.fillna("Unknown"))  # Fill NaN with "Unknown"
print(df["Age"].fillna(df["Age"].mean()))  # Replace NaN with mean Age

# Drop missing values
print(df.dropna())  # Drop rows with any NaN
print(df.dropna(subset=["Age"])) # Drop only if Age is missing
```

#### Tips & Tricks:

- Use .fillna(method="ffill") (forward fill) or .fillna(method="bfill") (backward fill) for sequential data.
- .dropna(axis=1) removes columns with missing values.

## 5.2 Handling Duplicates

```
data2 = {
    "Name": ["Ali", "Sara", "Omar", "Sara"],
    "Age": [25, 30, 22, 30],
    "City": ["Cairo", "Alexandria", "Giza", "Alexandria"]
}
df2 = pd.DataFrame(data2)

print(df2.duplicated())  # True if row is duplicate
print(df2.drop_duplicates())  # Remove duplicates
```

#### Tips & Tricks:

- Keep first/last occurrence: drop\_duplicates(keep="first") or keep="last".
- · Drop based on certain columns:

```
df2.drop_duplicates(subset=["Name"])
```

## 5.3 Renaming Columns

```
df3 = df.rename(columns={"Name": "FullName", "Age": "Years"})
print(df3)
```

#### Tips & Tricks:

· Rename in place:

```
df.rename(columns={"Name": "FullName"}, inplace=True)
```

• Use df.columns = [list] to rename all at once:

```
df.columns = ["Name", "Age", "City"]
```

## 5.4 Changing Data Types

```
df["Age"] = df["Age"].astype("float")  # Convert to float
df["Age"] = df["Age"].astype("Int64")  # Nullable integer
```

#### Tips & Tricks:

- Use .astype(str) to convert numbers to strings.
- Use pd.to\_datetime(df["col"]) for dates.
- $\bullet \ \ \mathsf{Use} \ \mathsf{pd.to\_numeric}(\mathsf{df["col"]}, \ \mathsf{errors="coerce"}) \ \mathsf{to} \ \mathsf{force} \ \mathsf{invalid} \ \mathsf{numbers} \ \mathsf{into} \ \mathsf{NaN}.$



Using this DataFrame:

```
data = {
    "Name": ["Ali", "Sara", "Omar", "Nora", "Sara"],
    "Age": [25, None, 22, 28, 30],
    "City": ["Cairo", "Alexandria", None, "Mansoura", "Alexandria"]
}
df = pd.DataFrame(data)
```

#### **Tasks**

- 1. Check how many missing values are in each column.
- 2. Fill missing Age values with the average Age.
- 3. Fill missing City values with "Unknown".
- 4. Drop rows where "City" is missing.
- 5. Identify which rows are duplicates.
- 6. Remove duplicate rows, keeping the first occurrence.
- 7. Remove duplicates based only on "Name".
- 8. Rename "Age" to "Years".
- 9. Change "Years" column to float type.
- 10. Convert "City" to string type.

Start coding or generate with AI.

### Solutions

```
# 1
print(df.isna().sum())
# 2
df["Age"].fillna(df["Age"].mean(), inplace=True)
# 3
df["City"].fillna("Unknown", inplace=True)
# 4
print(df.dropna(subset=["City"]))
# 5
print(df.duplicated())
# 6
print(df.drop_duplicates())
# 7
print(df.drop_duplicates(subset=["Name"]))
# 8
df.rename(columns={"Age": "Years"}, inplace=True)
# 9
df["Years"] = df["Years"].astype(float)
# 10
df["City"] = dff"City"].astype(str)
```

Perfect — let's turn **Data Cleaning** into something closer to how it actually happens in real-world datasets. I'll give you a couple of **mini** case studies that combine the techniques we just covered. That way you'll see how missing values, duplicates, renaming, and type conversions play together.

# 🗸 📴 Case Study 1: Hospital Patient Records

Suppose you receive this dataset:

```
import pandas as pd
import numpy as np

data = {
    "PatientID": [101, 102, 103, 104, 104, 105],
    "Name": ["Ali", "Sara", "Omar", "Nora", "Mona"],
    "Age": [25, np.nan, 60, None, None, 45],
    "AdmissionDate": ["2023-01-10", "2023-02-15", "not_recorded", "2023-04-01", "2023-04-01", "2023-05-20"],
    "City": ["Cairo", "Alex", None, "Cairo", "Mansoura"]
}
df = pd.DataFrame(data)
print(df)
```

#### Issues we see immediately:

- · Missing Ages
- Invalid AdmissionDate ("not\_recorded")
- · Duplicate rows (PatientID 104 repeated)
- City values inconsistent (Alex vs Alexandria)

### Cleaning Steps

```
# 1. Handle missing values
df["Age"].fillna(df["Age"].mean(), inplace=True)  # Fill age with mean

# 2. Fix invalid dates
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"], errors="coerce")

# 3. Handle missing cities
df["City"].fillna("Unknown", inplace=True)

# 4. Standardize city names
df["City"].replace({"Alex": "Alexandria"}, inplace=True)

# 5. Remove duplicates
df = df.drop_duplicates()

# 6. Set PatientID as index
df.set_index("PatientID", inplace=True)
```

### Result: A clean dataset where

- All patients have an Age
- Dates are in proper datetime format
- · City names are consistent
- · No duplicate patients

## 🔢 Case Study 2: Employee Salary Records

Dataset:

```
data = {
    "EmpID": [1, 2, 3, 4, 4, 5],
    "Full Name": ["Khaled", "Sara", "Omar", "Nora", "Mona"],
    "Salary": ["5000", "NaN", "7000", "8000", "ten thousand"],
```

```
"JoinDate": ["2021/01/10", "2021/02/15", None, "2021/04/01", "2021/04/01", "2021/05/20"]
}
df = pd.DataFrame(data)
print(df)
```

#### Problems here:

- "Salary" column stored as strings
- "NaN" and "ten thousand" are not valid numbers
- · Missing JoinDate
- Duplicate employee ID (4)
- Column name "Full Name" has a space

#### Cleaning Steps

```
# 1. Fix column names
df.rename(columns={"Full Name": "Name"}, inplace=True)

# 2. Convert Salary to numeric (invalid values → NaN)
df["Salary"] = pd.to_numeric(df["Salary"], errors="coerce")

# 3. Fill missing salaries with median
df["Salary"].fillna(df["Salary"].median(), inplace=True)

# 4. Convert JoinDate to datetime
df["JoinDate"] = pd.to_datetime(df["JoinDate"], errors="coerce")

# 5. Drop duplicates
df = df.drop_duplicates(subset=["EmpID"])

# 6. Set EmpID as index
df.set_index("EmpID", inplace=True)
print(df)
```

#### Result:

- Clean Salary as numbers, with bad values handled
- Proper datetime for JoinDate
- · No duplicate employees
- · Column names standardized

## XX What you should notice

- Real cleaning always combines multiple steps.
- You often have to decide: fill vs drop missing values (depends on use case).
- Text normalization (like "Alex" → "Alexandria") is very common.
- Changing types (str → float, str → datetime) is essential before analysis.

Now here's the fun part: do you want me to create a **bigger "challenge dataset"** (like a messy customer database with missing, wrong, and duplicate entries) and then **walk you through step-by-step cleaning it** as if you were preparing it for analysis? That would feel like a real project.

Start coding or generate with AI.

# 🗸 🧝 Challenge Dataset: Messy Customer Records

```
import pandas as pd

data = {
```

```
"CustomerID": [1, 2, 2, 3, 4, 5, 6, 7, 8, 9],

"Name": ["Ali", "Sara", "Sara", "Omar", "Nora", "Mona", None, "Khaled", "Sara", "Omar"],

"Age": [25, "Thirty", None, 40, 29, 35, 22, None, 30, 40],

"SignupDate": ["2021-01-10", "2021-02-30", "2021-02-15", "not_recorded", None, "2021-06-01", "2021/07/20", "2021-08-15", "202

"Email": ["ali@example.com", "sara@", "sara@", "omar@example.com", "nora@example.com", "mona@example.com", "bad_email", None,

"City": ["Cairo", "Alex", "Alex", None, "Cairo", "Mansoura", "Cairo", "Alexandria", "Cairo"]

}

df = pd.DataFrame(data)

print(df)
```

### Problems spotted:

- Duplicates: CustomerID 2 appears twice, Omar appears twice.
- · Name column: Missing values.
- Age column: Mixed types (string "Thirty", None, int).
- SignupDate column: Invalid dates ( "2021-02-30", "not\_recorded", None).
- Email column: Invalid emails ("sara@", "bad email", None).
- City column: Inconsistent naming ("Alex" vs "Alexandria"), missing values.

## ★ Step-by-Step Cleaning

#### 1. Handle duplicates

```
df = df.drop_duplicates()
```

#### 2. Fix missing names

```
df["Name"].fillna("Unknown", inplace=True)
```

### 3. Fix ages

```
# Convert to numeric, invalid → NaN
df["Age"] = pd.to_numeric(df["Age"], errors="coerce")

# Fill missing ages with median
df["Age"].fillna(df["Age"].median(), inplace=True)
```

#### 4. Fix dates

```
df["SignupDate"] = pd.to_datetime(df["SignupDate"], errors="coerce")

# Fill missing/invalid dates with the earliest valid signup date
min_date = df["SignupDate"].min()
df["SignupDate"].fillna(min_date, inplace=True)
```

### 5. Clean emails

```
# Simple rule: keep only if contains '@' and '.'

df["Email"] = df["Email"].where(df["Email"].str.contains("@") & df["Email"].str.contains("\."), "invalid@example.com")
```

#### 6. Normalize cities

```
df["City"].replace({"Alex": "Alexandria"}, inplace=True)
df["City"].fillna("Unknown", inplace=True)
```

## 7. Set a meaningful index

```
df.set_index("CustomerID", inplace=True)
```

# ✓ Final Cleaned DataFrame

After cleaning, df is now consistent, with:

- · No duplicates
- · Valid numbers for Age
- · Valid dates in SignupDate
- · Standardized City names
- Emails either valid or flagged as "invalid@example.com"

### That's a realistic data cleaning workflow. You've touched:

- · Missing values
- Duplicates
- · Type conversion
- String cleanup
- Normalization

Start coding or  $\underline{\text{generate}}$  with AI.

## 6. Operations in Pandas

### 6.1 Arithmetic Operations

Pandas lets you do math directly on columns (like Excel formulas).

```
import pandas as pd

data = {
    "Name": ["Ali", "Sara", "Omar", "Nora"],
    "Math": [80, 90, 75, 60],
    "Science": [85, 95, 70, 65]
}

df = pd.DataFrame(data)

# Column-wise arithmetic

df["Total"] = df["Math"] + df["Science"]

df["Average"] = df["Total"] / 2

print(df)

# Broadcasting with scalars

df["Bonus"] = df["Math"] * 1.1
```

#### Tips & Tricks:

- Operations are vectorized → much faster than loops.
- Use .add(), .sub(), .mul(), .div() for element-wise with fill\_value in case of NaN.

## 6.2 String Operations (.str)

When dealing with text columns, use .str for transformations.

```
df2 = pd.DataFrame({"City": ["cairo", "Alexandria", "giza", "Mansoura"]})
print(df2["City"].str.upper())  # Convert to uppercase
```

```
print(df2["City"].str.lower())  # Convert to lowercase
print(df2["City"].str.len())  # Length of each string
print(df2["City"].str.contains("a"))  # Boolean mask
```

#### Tips & Tricks:

- Use .str.replace("old", "new") for corrections.
- .str.strip() removes spaces; .str.split(",") splits strings.

## 6.3 Apply Functions (apply, map, applymap)

You can apply custom logic to rows, columns, or individual elements.

```
# Column-wise with apply
df["Grade"] = df["Average"].apply(lambda x: "Pass" if x >= 75 else "Fail")

# Element-wise with map (for Series)
df["NameLength"] = df["Name"].map(len)

# Element-wise with applymap (for entire DataFrame)
df_numeric = df[["Math", "Science"]]
print(df_numeric.applymap(lambda x: x + 5))  # Add 5 to all numbers
```

#### Tips & Tricks:

- applymap → works on entire DataFrame, element by element.
- apply  $\rightarrow$  works on Series (or DataFrame row/col).
- map → only for Series.

## 6.4 Sorting (sort\_values, sort\_index)

Sorting is essential for organizing data.

```
# Sort by column values
print(df.sort_values("Average", ascending=False))

# Sort by multiple columns
print(df.sort_values(["Average", "Math"], ascending=[False, True]))

# Sort by index
print(df.sort_index())
```

#### Tips & Tricks:

- Use ascending=False for descending order.
- na\_position="first" moves NaN to the top.

# **Exercises**

Using this dataset:

```
data = {
    "Name": ["Ali", "Sara", "Omar", "Nora", "Mona"],
    "Math": [80, 90, 75, 60, 85],
    "Science": [85, 95, 70, 65, 88],
    "City": ["cairo", "Alexandria", "giza", "Mansoura", "Cairo"]
}
df = pd.DataFrame(data)
```

#### **Tasks**

- 1. Create a new column "Total" = Math + Science.
- 2. Create a new column "Average" = Total / 2.

- 3. Multiply all "Math" scores by 1.1 (bonus).
- 4. Convert all "City" names to uppercase.
- 5. Count the number of characters in each "City".
- 6. Create a new column "Result" → "Pass" if Average ≥ 80, else "Fail".
- 7. Add a column "NameLength" containing the length of each name.
- 8. Add 10 to all numbers in both "Math" and "Science" columns.
- 9. Sort the DataFrame by "Average" in descending order.
- 10. Sort the DataFrame by "City" alphabetically.

## Solutions

```
# 1
df["Total"] = df["Math"] + df["Science"]
# 2
df["Average"] = df["Total"] / 2
# 3
df["MathBonus"] = df["Math"] * 1.1
# 4
df["cityUpper"] = df["City"].str.upper()
# 5
df["CityLength"] = df["City"].str.len()
# 6
df["Result"] = df["Average"].apply(lambda x: "Pass" if x >= 80 else "Fail")
# 7
df["NameLength"] = df["Name"].map(len)
# 8
df[["Math", "Science"]] = df[["Math", "Science"]].applymap(lambda x: x + 10)
# 9
print(df.sort_values("Average", ascending=False))
# 10
print(df.sort_values("City"))
```

# Case Study: Employee Performance Dataset

You receive this raw dataset from HR:

Start coding or generate with AI.

```
import pandas as pd

data = {
    "EmpID": [101, 102, 103, 104, 105],
    "Name": ["ali ", "SARA", "Omar", "nora", "Mona"],
    "Department": ["sales", "sales", "tech", "tech", "sales"],
    "BaseSalary": [5000, 6000, 7000, 6500, 6200],
    "Bonus%": [10, 15, 5, 12, 20],
    "Projects": [3, 5, 2, 4, 6]
}

df = pd.DataFrame(data)
print(df)
```

## Problems to solve:

- Name column is inconsistent (extra spaces, mixed case).
- We need total salary after bonus.
- We want to categorize employees as "High Performer" or "Regular" based on projects.
- Need to sort employees by performance and salary.

## Cleaning & Operations

### 1. Fix Names (string ops)

```
df["Name"] = df["Name"].str.strip().str.title()
```

 $\blacksquare$  Removes spaces and makes names consistent ("ali "  $\rightarrow$  "Ali", "SARA"  $\rightarrow$  "Sara").

## 2. Calculate Total Salary (arithmetic ops)

```
df["TotalSalary"] = df["BaseSalary"] + (df["BaseSalary"] * df["Bonus%"] / 100)
```

## 3. Categorize Employees (apply function)

### 4. Sort by Performance then Salary

```
df_sorted = df.sort_values(["Performance", "TotalSalary"], ascending=[False, False])
print(df_sorted)
```

## Final Result (Clean + Analyzed)

| EmpID | Name | Department | BaseSalary | Bonus% | Projects | TotalSalary | Performance    |
|-------|------|------------|------------|--------|----------|-------------|----------------|
| 105   | Mona | sales      | 6200       | 20     | 6        | 7440        | High Performer |
| 102   | Sara | sales      | 6000       | 15     | 5        | 6900        | High Performer |
| 104   | Nora | tech       | 6500       | 12     | 4        | 7280        | High Performer |
| 103   | Omar | tech       | 7000       | 5      | 2        | 7350        | Regular        |
| 101   | Ali  | sales      | 5000       | 10     | 3        | 5500        | Regular        |

## \* What you did here

- String ops: Cleaned inconsistent names.
- Arithmetic ops: Calculated salaries.
- · Apply functions: Created performance categories.
- Sorting: Ranked employees by performance + pay.

This is exactly how operations come together in practice.

Start coding or generate with AI.

## 6. Operations in Pandas

Pandas allows you to perform a wide range of operations on DataFrames and Series. These include **arithmetic operations**, **string operations**, **applying functions**, **and sorting**.

### 1. Arithmetic Operations

Pandas supports element-wise arithmetic operations between DataFrames and Series.

```
import pandas as pd

df = pd.DataFrame({
    'A': [10, 20, 30],
    'B': [1, 2, 3]
})

print(df['A'] + df['B'])  # Addition
print(df['A'] - df['B'])  # Subtraction
print(df['A'] * df['B'])  # Multiplication
print(df['A'] / df['B'])  # Division
```

## 2. String Operations (.str)

String operations are applied to **Series of strings** using .str.

```
s = pd.Series(["Pandas", "is", "awesome", "python"])
print(s.str.upper())  # Convert to uppercase
print(s.str.contains("a"))  # Check if string contains 'a'
print(s.str.len())  # Length of each string
print(s.str.replace("python", "great"))
```

Tip: You can chain multiple string operations together:

```
s.str.lower().str.replace("python", "pandas")
```

## 3. Apply Functions (apply, map, applymap)

- apply() → Works on rows or columns of a DataFrame.
- map() → Works on a Series (1D).
- applymap() → Works on element-wise DataFrame.

```
# Using apply on DataFrame
print(df.apply(sum))  # Sum of each column

# Using map on Series
print(df['A'].map(lambda x: x * 2))

# Using applymap on DataFrame
print(df.applymap(lambda x: x ** 2))
```

Tip: Use vectorized operations whenever possible—they are faster than apply/map.

#### 4. Sorting

Sort by column values

```
print(df.sort_values(by='A', ascending=False))
```

## Sort by index

```
print(df.sort_index())
```

Tip: Use df.sort\_values(by=['A', 'B']) for multi-column sorting.

# Exercises (with Solutions)

#### **Exercise 1**

Create a DataFrame with columns Math, Science, English. Add 10 to all values in Math.

**✓** Solution:

```
df = pd.DataFrame({'Math': [50, 60, 70], 'Science': [80, 90, 100], 'English': [65, 75, 85]})
df['Math'] = df['Math'] + 10
print(df)
```

#### **Exercise 2**

Check which strings contain the word "data" in a Series.

Solution:

```
s = pd.Series(["data science", "machine learning", "deep learning"])
print(s.str.contains("data"))
```

#### **Exercise 3**

Convert all strings in a Series to title case.

Solution:

```
s = pd.Series(["python is fun", "pandas tutorial"])
print(s.str.title())
```

### **Exercise 4**

Square all numbers in a DataFrame using applymap.

Solution:

```
df = pd.DataFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]})
print(df.applymap(lambda x: x ** 2))
```

#### **Exercise 5**

Get the length of each string in a Series.

Solution:

```
s = pd.Series(["apple", "banana", "cherry"])
print(s.str.len())
```

#### **Exercise 6**

Sort a DataFrame by column Age in descending order.

Solution:

```
df = pd.DataFrame({'Name': ['Ali', 'Sara', 'John'], 'Age': [25, 30, 22]})
print(df.sort_values(by='Age', ascending=False))
```

### **Exercise 7**

Apply a function that adds 100 to all values in column Salary.

Solution:

```
df = pd.DataFrame({'Salary': [1000, 2000, 3000]})
df['Salary'] = df['Salary'].apply(lambda x: x + 100)
```

```
print(df)
```

#### **Exercise 8**

Convert all values in a Series to lowercase.

#### **✓** Solution:

```
s = pd.Series(["HELLO", "WORLD", "PYTHON"])
print(s.str.lower())
```

#### **Exercise 9**

Check if each string in a Series starts with "p".

#### **✓** Solution:

```
s = pd.Series(["python", "Pandas", "Numpy"])
print(s.str.startswith("p"))
```

#### **Exercise 10**

Sort a DataFrame by multiple columns (Score ascending, Age descending).

### Solution:

```
df = pd.DataFrame({
    'Name': ['A', 'B', 'C'],
    'Score': [90, 80, 90],
    'Age': [20, 25, 22]
})
print(df.sort_values(by=['Score', 'Age'], ascending=[True, False]))
```

```
import pandas as pd
data = {
    "Department": ["IT", "IT", "HR", "Finance", "Finance"],
    "Employee": ["A", "B", "C", "D", "E", "F"],
    "Salary": [60000, 65000, 55000, 52000, 70000, 72000],
    "Bonus": [5000, 6000, 4000, 4500, 7000, 7500]
}

df = pd.DataFrame(data)
print(df)
```

```
₹
     Department Employee Salary
                     A 60000
            ΙT
   1
            ΙT
                     B 65000
                                 6000
   2
            HR
                         55000
                                 4000
    3
            HR
                      D
                         52000
                                 4500
    4
        Finance
                         70000
                                 7000
                     Ε
                         72000
                                 7500
        Finance
```

```
grouped = df.groupby("Department")
print(grouped["Salary"].mean())  # average salary per department
```

```
Department
Finance 71000.0
HR 53500.0
IT 62500.0
Name: Salary, dtype: float64
```

```
pivot = df.pivot_table(
   values="Salary",
   index="Department",
   aggfunc="mean"
)
print(pivot)
```

```
Department Finance 71000.0 HR 53500.0 IT 62500.0
```

Start coding or generate with AI.

## 7. Grouping & Aggregation in Pandas

Grouping and aggregation are powerful ways to **summarize** and **analyze** data. They let you split data into groups, apply computations, and combine results efficiently.

## 7.1 GroupBy Basics

The main idea: Split  $\rightarrow$  Apply  $\rightarrow$  Combine

```
import pandas as pd

data = {
    "Department": ["IT", "IT", "HR", "HR", "Finance", "Finance"],
    "Employee": ["A", "B", "C", "D", "E", "F"],
    "Salary": [60000, 65000, 55000, 52000, 70000, 72000],
    "Bonus": [5000, 6000, 4000, 4500, 7000, 7500]
}

df = pd.DataFrame(data)
print(df)
```

### Group by Department:

```
grouped = df.groupby("Department")
print(grouped["Salary"].mean())  # average salary per department
```

## 7.2 Aggregate Functions

Aggregation is applying a summary function on groups. Common aggregate functions:

- sum() total
- mean() average
- count() number of items
- min(), max() smallest/largest
- std(), var() standard deviation, variance
- median() middle value

```
# Total salary per department
print(df.groupby("Department")["Salary"].sum())

# Multiple aggregations
print(df.groupby("Department")["Salary"].agg(["mean", "sum", "max"]))
```

#### Using different functions on different columns:

```
print(df.groupby("Department").agg({
    "Salary": "mean",
    "Bonus": "sum"
}))
```

### 7.3 Pivot Tables

Pivot tables are like Excel pivot tables—summarize data by categories.

```
pivot = df.pivot_table(
   values="Salary",
   index="Department",
    aggfunc="mean"
print(pivot)
```

With multiple values and functions:

```
pivot2 = df.pivot_table(
   values=["Salary", "Bonus"],
   index="Department",
   aggfunc={"Salary": "mean", "Bonus": "sum"}
print(pivot2)
```

## Tips & Tricks

1. as index=False keeps grouped results as a DataFrame instead of setting group keys as index.

```
df.groupby("Department", as_index=False).mean()
```

- 2. Use reset\_index() after grouping to flatten the result.
- 3. Pivot tables are more flexible than groupby for multi-level summaries.
- 4. Use margins=True in pivot\_table to get totals.

```
df.pivot_table(values="Salary", index="Department", aggfunc="mean", margins=True)
```

5. For faster computation on large datasets, use .agg() with dictionaries instead of chaining multiple groupby operations.

## **Exercises**

### Exercise 1

Group the employees by Department and calculate the average bonus.

#### Exercise 2

Find the total salary paid by each department.

### Exercise 3

Count how many employees work in each department.

## Exercise 4

Find the **maximum bonus** in each department.

#### Exercise 5

Group by Department and calculate both mean Salary and sum Bonus.

### Exercise 6

Create a pivot table showing the average Salary per Department.

#### Exercise 7

Modify the pivot table to show both average Salary and sum of Bonus per Department.

### Exercise 8

Add margins=True to the pivot table and observe the total row.

#### Exercise 9

Use .agg() to calculate min Salary and max Bonus per Department.

#### Exercise 10

Group by Department and return results as a normal DataFrame (not index-based).

## Solutions

```
# 1. Average bonus
 print(df.groupby("Department")["Bonus"].mean())
 # 2. Total salary
 print(df.groupby("Department")["Salary"].sum())
 # 3. Employee count
 print(df.groupby("Department")["Employee"].count())
 # 4. Max bonus
 print(df.groupby("Department")["Bonus"].max())
 # 5. Mean Salary + Sum Bonus
 print(df.groupby("Department").agg({"Salary": "mean", "Bonus": "sum"}))
 # 6. Pivot avg salary
 print(df.pivot_table(values="Salary", index="Department", aggfunc="mean"))
 # 7. Pivot salary+bonus
 print(df.pivot_table(values=["Salary", "Bonus"], index="Department",
                      aggfunc={"Salary": "mean", "Bonus": "sum"}))
 # 8. Pivot with margins
 print(df.pivot_table(values="Salary", index="Department",
                      aggfunc="mean", margins=True))
 # 9. Min salary & Max bonus
 print(df.groupby("Department").agg({"Salary": "min", "Bonus": "max"}))
 # 10. Keep DataFrame format
 print(df.groupby("Department", as_index=False).mean())
Start coding or generate with AI.
```

## 8. Merging, Joining & Concatenation

## 1. Concatenation (pd.concat)

- Used to stack DataFrames vertically (row-wise) or horizontally (column-wise).
- Think of it as "gluing" datasets together.

```
import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']})

df2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'], 'B': ['B3', 'B4', 'B5']})

# Vertical concatenation (default: axis=0 → rows)

result = pd.concat([df1, df2])

# Horizontal concatenation (axis=1 → columns)

result_h = pd.concat([df1, df2], axis=1)
```

## 2. Merge (pd.merge)

- · Similar to SQL joins.
- Combines DataFrames on common columns or indices.

```
left = pd.DataFrame({'id': [1, 2, 3], 'name': ['Alice', 'Bob', 'Charlie']})
right = pd.DataFrame({'id': [1, 2, 4], 'score': [85, 90, 75]})

# Inner Join (default)
pd.merge(left, right, on='id', how='inner')

# Left Join
pd.merge(left, right, on='id', how='left')

# Right Join
pd.merge(left, right, on='id', how='right')

# Outer Join
pd.merge(left, right, on='id', how='outer')
```

## 3. Join (DataFrame.join)

- A shortcut for joining on index.
- Works best when combining a main DataFrame with a lookup table.

```
left = pd.DataFrame({'name': ['Alice', 'Bob']}, index=[1, 2])
right = pd.DataFrame({'score': [85, 90]}, index=[1, 2])
# Joins on index
left.join(right)
```

## 4. Differences Between concat, merge, join

| Function | Use Case                                |
|----------|-----------------------------------------|
| concat   | Just stack/append along rows or columns |
| merge    | SQL-like joins using keys (columns)     |
| join     | Convenient method to join on index      |



- Use ignore\_index=True with concat to reindex automatically.
- Use indicator=True in merge to see join origin (left\_only, right\_only, both).
- Rename overlapping columns with suffixes=('left', 'right').
- Always check for duplicate keys before merging to avoid data explosion.



#### Exercise 1

Concatenate the following two DataFrames row-wise and column-wise:

```
df1 = pd.DataFrame({'X': [1, 2], 'Y': [3, 4]})
df2 = pd.DataFrame({'X': [5, 6], 'Y': [7, 8]})
```

#### Exercise 2

Perform an inner join between:

```
df1 = pd.DataFrame({'id': [1, 2, 3], 'value': ['A', 'B', 'C']})
df2 = pd.DataFrame({'id': [2, 3, 4], 'score': [10, 20, 30]})
```

#### Exercise 3

Do a **left join** on the same DataFrames.

#### Exercise 4

Perform an outer join on the same DataFrames.

#### Exercise 5

Join two DataFrames on their index:

```
df1 = pd.DataFrame({'A': ['foo', 'bar']}, index=[1, 2])
df2 = pd.DataFrame({'B': ['baz', 'qux']}, index=[1, 2])
```

#### Exercise 6

Concatenate three small DataFrames (df1, df2, df3) along rows.

#### Exercise 7

Merge with different column names:

```
df1 = pd.DataFrame({'emp_id': [1, 2], 'name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'id': [1, 2], 'salary': [1000, 1500]})
```

(Hint: use left\_on and right\_on.)

#### Exercise 8

Perform a merge with indicator=True and explain what the output column means.

## Exercise 9

Use concat with keys=['df1', 'df2'] to create a hierarchical index.

#### Exercise 10

Create two DataFrames with duplicate keys and show how merging causes data duplication.

## 8. Merging, Joining & Concatenation in Pandas

Working with multiple datasets is one of the most common tasks in data analysis. Pandas provides powerful tools to combine DataFrames in different ways, similar to SQL.



## 1. Concatenation (pd.concat)

- · Definition: Combines multiple DataFrames vertically (stacking rows) or horizontally (stacking columns).
- Syntax:

```
pd.concat([df1, df2], axis=0) # Vertical (default)
pd.concat([df1, df2], axis=1) # Horizontal
```

- Options:
  - $\circ$  ignore\_index=True  $\rightarrow$  resets index.
  - $\circ$  keys  $\rightarrow$  adds hierarchical index.
- ▼ Tip: Use axis=0 for more rows, axis=1 for more columns.

## 2. Merge (pd.merge)

- Definition: Combines DataFrames based on one or more common columns or indices.
- Syntax:

```
pd.merge(df1, df2, on="key")
```

- . Join types (like SQL):
  - o how="inner" (default): Keep only matching rows.
  - o how="left": Keep all rows from left, add matching from right.
  - o how="right": Keep all rows from right, add matching from left.
  - o how="outer": Keep all rows from both.
- ▼ Tip: Always check for duplicate column names Pandas will add suffixes like \_x , \_y .



## 分 3. Join (df.join)

- **Definition**: A shortcut for merging, often using **index** instead of columns.
- Syntax:

```
df1.join(df2, how="left")
```

- · Works well when you want to combine DataFrames by index.
- ☑ Tip: Use .set\_index() first if you want to join on a specific column.

## Example: SQL-style joins

```
import pandas as pd
employees = pd.DataFrame({
    "id": [1, 2, 3, 4],
    "name": ["Alice", "Bob", "Charlie", "David"]
})
salaries = pd.DataFrame({
   "id": [1, 2, 4, 5],
    "salary": [50000, 60000, 70000, 80000]
})
# INNER JOIN
print(pd.merge(employees, salaries, on="id", how="inner"))
# LEFT JOIN
print(pd.merge(employees, salaries, on="id", how="left"))
# OUTER JOIN
print(pd.merge(employees, salaries, on="id", how="outer"))
```

## Tips & Tricks

- $\bullet$  Use indicator=True in merge  $\to$  shows which rows came from which DataFrame.
- · Use concat with keys to distinguish data sources.
- Use suffixes=('\_left', '\_right') to avoid confusion in column names after merge.
- · For performance, set indexes before merging on large DataFrames.



## **Exercises**

#### Exercise 1: Concatenation of rows

Combine two DataFrames vertically.

```
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]})
df2 = pd.DataFrame({"A": [5, 6], "B": [7, 8]})
```

Solution:

```
pd.concat([df1, df2], ignore_index=True)
```

#### **Exercise 2: Concatenation of columns**

Stack df1 and df2 side by side.

Solution:

```
pd.concat([df1, df2], axis=1)
```

### **Exercise 3: Inner merge**

Merge employees and salaries only where IDs match.

Solution:

```
pd.merge(employees, salaries, on="id", how="inner")
```

#### **Exercise 4: Left merge**

Keep all employees, even if they don't have salaries.

**✓** Solution:

```
pd.merge(employees, salaries, on="id", how="left")
```

#### **Exercise 5: Outer merge**

Show all employees and all salaries (IDs may not match).

Solution:

```
pd.merge(employees, salaries, on="id", how="outer")
```

### Exercise 6: Merge with different column names

```
df1 = pd.DataFrame({"emp_id": [1,2,3], "name": ["A","B","C"]})
df2 = pd.DataFrame({"id": [1,2,4], "dept": ["HR","IT","Sales"]})
```

Solution:

```
pd.merge(df1, df2, left_on="emp_id", right_on="id", how="inner")
```

### Exercise 7: Join using index

```
df1 = pd.DataFrame({"A": [10,20,30]}, index=["x","y","z"])
df2 = pd.DataFrame({"B": [40,50,60]}, index=["x","y","w"])
```

**✓** Solution:

```
df1.join(df2, how="outer")
```

### **Exercise 8: Concatenation with keys**

Combine df1 and df2 with a hierarchical index.

**✓** Solution:

```
pd.concat([df1, df2], keys=["First", "Second"])
```

### **Exercise 9: Merge with indicator**

See which rows matched or not.

Solution:

```
pd.merge(employees, salaries, on="id", how="outer", indicator=True)
```

### **Exercise 10: Sorting after merge**

Merge employees and salaries, then sort by salary descending.

Solution:

```
merged = pd.merge(employees, salaries, on="id", how="inner")
merged.sort_values("salary", ascending=False)
```

Start coding or generate with AI.

## 9. Working with Dates & Time in Pandas

Pandas makes it very easy to work with dates, times, and time-series data. It provides flexible tools for parsing, manipulating, and analyzing temporal data.

## 1. Converting to DateTime

Most datasets have dates stored as **strings** (e.g., "2024-08-25") or numbers. We can convert them into Pandas datetime objects for powerful operations.

```
import pandas as pd

# Example

df = pd.DataFrame({
    "date_str": ["2023-01-01", "2023-03-15", "2023-07-20"],
    "sales": [200, 340, 560]
})

# Convert string to datetime

df["date"] = pd.to_datetime(df["date_str"])
print(df)
```

👉 pd.to\_datetime automatically detects formats, but you can also specify format="%Y-%m-%d" for efficiency.

#### 2. Extracting Date/Time Components

Once you have a datetime column, you can extract components:

```
df["year"] = df["date"].dt.year
df["month"] = df["date"].dt.month
df["day"] = df["date"].dt.day
df["weekday"] = df["date"].dt.day_name()
```

This is super useful for grouping (e.g., sales by month, transactions by weekday).

## 3. Creating Date Ranges

Generate sequences of dates easily:

```
dates = pd.date_range(start="2023-01-01", end="2023-01-10", freq="D")
print(dates)
```

Common frequencies:

- "D" → daily
- "W" → weekly
- "M" → month end
- "Q"  $\rightarrow$  quarter end
- "Y" → year end
- "H" → hourly

### 4. Setting Date as Index

Time series analysis often requires setting a datetime column as the index.

```
df = df.set_index("date")
print(df)
```

This enables time-based indexing:

```
df["2023-01"]  # All rows from January 2023
df["2023-03-15"]  # Specific date
df["2023":"2023-06"]  # Slice by range
```

## 5. Resampling

Resampling means changing the frequency of time series data:

- **Downsampling**: daily → monthly
- **Upsampling**: monthly → daily

```
# Example: Resample monthly and take sum of sales
monthly_sales = df["sales"].resample("M").sum()
print(monthly_sales)
```

Common resampling methods:

- .sum()  $\rightarrow$  total
- .mean()  $\rightarrow$  average
- .count() → number of entries

## 6. Shifting & Lagging

Shift values forward/backward for lag analysis:

```
df["prev_day_sales"] = df["sales"].shift(1)
df["sales_change"] = df["sales"] - df["prev_day_sales"]
```

Useful in finance, forecasting, or trend detection.

## 7. Rolling Windows

Rolling aggregates (moving average, rolling sum, etc.):

```
df["7d_avg"] = df["sales"].rolling(window=7).mean()
```

## Tips & Tricks

- Always use pd.to\_datetime() before working with dates.
- 2. If your dataset is huge, **specify the format** in to\_datetime to speed things up.
- 3. Use .dt accessor to extract date/time components.
- 4. For time-based grouping, resampling is often easier than groupby.
- 5. Use .asfreq("D") to reindex with specific frequency and fill missing dates.
- 6. Combine .shift() + .rolling() for advanced time-series features.

## 7 10 Exercises (with Solutions)

```
import pandas as pd
import numpy as np
# Create sample dataset
dates = pd.date_range(start="2023-01-01", periods=10, freq="D")
df = pd.DataFrame({
    "date": dates,
    "sales": [200, 220, 250, 180, 300, 270, 290, 310, 400, 420]
})
```

- 1. Convert "date" column to datetime
- ✓ Solution:

```
df["date"] = pd.to_datetime(df["date"])
```

- 2. Extract year, month, and weekday
- Solution:

```
df["year"] = df["date"].dt.year
df["month"] = df["date"].dt.month
df["weekday"] = df["date"].dt.day_name()
```

- 3. Set "date" as index
- Solution:

```
df = df.set_index("date")
```

- 4. Select sales for "2023-01-05"
- Solution:

```
df.loc["2023-01-05", "sales"]
```

- 5. Select sales between "2023-01-03" and "2023-01-07"
- Solution:

```
df.loc["2023-01-03":"2023-01-07", "sales"]
```

- 6. Resample to weekly sales (sum)
- Solution:

```
df["sales"].resample("W").sum()
```

7. Calculate daily difference in sales

✓ Solution:

```
df["daily_change"] = df["sales"].diff()
```

- 8. Create a 3-day rolling average
- Solution:

```
df["3d_avg"] = df["sales"].rolling(3).mean()
```

- 9. Shift sales by 2 days (lag feature)
- Solution:

```
df["lag_2"] = df["sales"].shift(2)
```

- 10. Fill missing values in resampled daily data
- Solution:

```
df_daily = df["sales"].resample("D").asfreq()
df_daily_filled = df_daily.fillna(method="ffill") # forward fill
```

```
Start coding or generate with AI.
```

## 10. Input/Output with Files

Pandas makes it super easy to read and write data in different formats.

## 📥 Reading Data

1. pd.read\_csv() → Read CSV file

```
import pandas as pd

# Reading CSV file
df = pd.read_csv("data.csv")
print(df.head())
```

Illustration: If data.csv looks like this:

```
name,age,city
Ali,25,Cairo
Sara,30,Alexandria
```

Output:

```
name age city
0 Ali 25 Cairo
1 Sara 30 Alexandria
```

2. pd.read\_excel()  $\rightarrow$  Read Excel file

```
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")
print(df.head())
```

Reads directly from Excel sheets .....

3. pd.read\_json() → Read JSON file

```
df = pd.read_json("data.json")
print(df)
```

If data.json looks like:

```
[
{"name": "Ali", "age": 25},
{"name": "Sara", "age": 30}
]
```

Output:

```
name age
0 Ali 25
1 Sara 30
```

4. pd.read\_sql() → Read from SQL Database

```
# Connect to database
conn = sqlite3.connect("mydb.db")

# Read SQL query into DataFrame
df = pd.read_sql("SELECT * FROM employees", conn)
print(df.head())
```

Works like pulling data from a database straight into Pandas.

## Writing Data

1. to\_csv()  $\rightarrow$  Save to CSV

```
df.to_csv("output.csv", index=False)
```

index=False avoids saving the row numbers.

2. to\_excel()  $\rightarrow$  Save to Excel

```
df.to_excel("output.xlsx", index=False, sheet_name="Sheet1")
```

Great for exporting clean Excel reports.

3. to\_json()  $\rightarrow$  Save to JSON

```
df.to_json("output.json", orient="records", lines=True)
```

orient="records" makes JSON more human-readable.

```
? Tips & Tricks
```

• Use nrows in pd.read\_csv() to read only part of a large file:

```
df = pd.read_csv("data.csv", nrows=100)
```

· Use chunksize to read huge files in pieces:

```
for chunk in pd.read_csv("bigfile.csv", chunksize=5000):
    print(chunk.shape)
```

• For Excel, install openpyxl for .xlsx files.

## **Exercises**

- 1. Read a CSV file named students.csv into a DataFrame.
- 2. Read only the first 50 rows of a CSV file.
- 3. Read the Sheet2 from an Excel file.
- 4. Read a JSON file named products.json.
- 5. Read data from a SQL table named orders.
- 6. Save a DataFrame df to result.csv without the index column.
- 7. Save a DataFrame to Excel with sheet name Report.
- 8. Save a DataFrame to JSON in records orientation.
- 9. Load a huge CSV file in chunks of 10,000 rows.
- 10. Practice writing the same DataFrame to all 3 formats: CSV, Excel, JSON.

Start coding or generate with AI.

## 10. Input/Output with Files in Pandas

Pandas makes it super easy to read from and write to different file formats like CSV, Excel, JSON, SQL databases, and more.

## Reading Files

## pd.read\_csv() - Read CSV files

CSV (Comma-Separated Values) is the most common format.

```
import pandas as pd

# Reading CSV
df = pd.read_csv("data.csv")
print(df.head())
```

#### ♦ Tips:

- Use sep=";" if your file uses semicolons.
- Use nrows=10 to read only the first 10 rows.
- Use usecols=['col1','col2'] to read selected columns.

### 2. pd.read\_excel() - Read Excel files

```
# Reading Excel (requires openpyxl installed)
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")
print(df.head())
```

#### ♦ Tips:

- sheet name=None → loads all sheets into a dictionary of DataFrames.
- usecols="A:C" → selects columns A to C.

## 3. pd.read\_json() - Read JSON files

```
# Reading JSON

df = pd.read_json("data.json")
print(df.head())
```

#### Tips:

- · JSON is often used in APIs.
- If the JSON is nested, use json\_normalize to flatten.

### 4. pd.read\_sql() - Read from SQL Databases

```
import sqlite3

# Connect to database
conn = sqlite3.connect("mydata.db")

# Read SQL query into DataFrame
df = pd.read_sql("SELECT * FROM employees", conn)
print(df.head())
```

## Writing Files

## 1. to\_csv() - Save DataFrame to CSV

```
df.to_csv("output.csv", index=False)
```

#### ♦ Tips:

- index=False removes the row index column.
- sep=";" → saves with semicolon instead of comma.

## 2. to\_excel() - Save DataFrame to Excel

```
df.to_excel("output.xlsx", sheet_name="Results", index=False)
```

### 3. to\_json() - Save DataFrame to JSON

```
df.to_json("output.json", orient="records", lines=True)
```

#### Tips:

- orient="records" → saves each row as a dictionary.
- lines=True → saves in newline-delimited JSON (good for big files).

## 🖓 Extra Tricks

- Use chunksize=1000 in read\_csv to read large files in small pieces.
- · Use compression:

```
df.to_csv("output.csv.gz", index=False, compression="gzip")
```

• For very large data, consider Parquet format (read\_parquet / to\_parquet) for faster performance.

## **Exercises**

#### Exercise 1:

Read a CSV file students.csv and display only the first 5 rows.

### Exercise 2:

Read an Excel file grades.xlsx from sheet Math and display only the columns Name and Score.

#### Exercise 3:

Save a DataFrame df into a CSV file without the index column.

#### Exercise 4:

Convert a DataFrame df into JSON format with orient="records".

#### Exercise 5:

Connect to a SQLite database school.db, read the table teachers, and print the first 3 rows.

## Solutions

```
# Exercise 1
df = pd.read_csv("students.csv")
print(df.head())

# Exercise 2
df = pd.read_excel("grades.xlsx", sheet_name="Math", usecols=["Name", "Score"])
print(df.head())

# Exercise 3
df.to_csv("students_output.csv", index=False)

# Exercise 4
df.to_json("students.json", orient="records")

# Exercise 5
import sqlite3
conn = sqlite3.connect("school.db")
df = pd.read_sql("SELECT * FROM teachers", conn)
print(df.head(3))
```

Start coding or generate with AI.

## 11. Advanced Topics in Pandas

## 1. MultiIndex (Hierarchical Indexing)

A MultiIndex allows you to have multiple levels of indexing (rows or columns). It's useful for handling higher-dimensional data in a 2D table.

```
import pandas as pd

# Create a MultiIndex DataFrame
arrays = [
        ['A', 'A', 'B', 'B'],
        ['one', 'two', 'one', 'two']

]
index = pd.MultiIndex.from_arrays(arrays, names=('letter', 'number'))

df = pd.DataFrame({'value': [10, 20, 30, 40]}, index=index)
print(df)
```

#### **Output:**

```
value
letter number
```

```
A one 10 two 20 B one 30 two 40
```

♦ Accessing data with MultiIndex:

```
df.loc['A']  # All rows under 'A'
df.loc[('B', 'two')] # Specific cell
```

▼ Tip: Use .xs() (cross section) to slice one level:

```
df.xs('one', level='number')
```

## 2. Window Functions (Rolling, Expanding)

Useful for time-series analysis (like moving averages).

```
import numpy as np

s = pd.Series([1, 2, 3, 4, 5])

# Rolling window (moving average)
print(s.rolling(window=3).mean())

# Expanding window (cumulative mean)
print(s.expanding().mean())
```

#### Output (rolling mean):

```
0 NaN
1 NaN
2 2.0
3 3.0
4 4.0
dtype: float64
```

√ Tip: Combine with .plot() to visualize trends smoothly.

### 3. Categorical Data

```
df = pd.DataFrame({'fruit': ['apple', 'banana', 'apple', 'orange', 'banana']})

# Convert to categorical
df['fruit'] = df['fruit'].astype('category')

print(df['fruit'].cat.categories)
print(df['fruit'].cat.codes)
```

#### Output:

```
Index(['apple', 'banana', 'orange'], dtype='object')
0    0
1    1
2    0
3    2
4    1
dtype: int8
```



Tip: Use categorical for columns with few unique values (like gender, country codes).

## 4. Sparse Data

P Sparse data structures help save memory when you have lots of zeros or missing values.

```
arr = pd.Series([0, 0, 0, 1, 0, 0, 2])
sparse_arr = pd.arrays.SparseArray(arr)
print(sparse arr)
```

#### **Output:**

```
[0, 0, 0, 1, 0, 0, 2]
Fill: 0
IntIndex
Indices: array([3, 6])
```

Tip: Store large matrices with many zeros using sparse arrays.

## 5. Performance Tips

✓ Vectorization (avoid loops!):

```
# Slow
df['new'] = [x * 2 for x in df['value']]
# Fast (vectorized)
df['new'] = df['value'] * 2
```

.eval() & .query() for faster calculations:

```
df = pd.DataFrame({'a': range(100000), 'b': range(100000)})
# Faster than df['a'] + df['b']
df.eval('c = a + b', inplace=True)
# Filtering
result = df.query('a < 5 & b > 2')
print(result)
```

## **\$\leftrightarrow\$** Exercises (with Solutions)

- Q1. Create a MultiIndex DataFrame for regions (Asia, Europe) and countries, then assign random population values.
- Q2. Select all data for Europe only using .1oc.
- Q3. Using .xs(), select all countries named "India".
- Q4. Create a Series of numbers and compute a 7-day rolling mean.
- Q5. Compute the expanding mean for the same series.
- Q6. Convert a column ["yes", "no", "yes", "maybe"] to categorical and print codes.
- Q7. Create a Series with [0, 0, 0, 5, 0, 0, 10] as a sparse array.
- Q8. Show the memory difference between categorical and string columns.
- Q9. Use .eval() to compute total = col1 + col2 on a DataFrame with 2 numeric columns.
- Q10. Use .query() to filter a DataFrame where age > 30 and salary < 5000.

## Solutions

```
import pandas as pd
import numpy as np
# Q1
arrays = [['Asia','Asia','Europe','Europe'],['India','China','Germany','France']]
index = pd.MultiIndex.from_arrays(arrays, names=('Continent','Country'))
df = pd.DataFrame({'Population': [1400, 1300, 80, 65]}, index=index)
print(df.loc['Europe'])
# Q3
print(df.xs('India', level='Country'))
# Q4
s = pd.Series(np.arange(1,15))
print(s.rolling(window=7).mean())
# Q5
print(s.expanding().mean())
# 06
c = pd.Series(["yes","no","yes","maybe"], dtype="category")
print(c.cat.codes)
sparse_series = pd.arrays.SparseArray([0,0,0,5,0,0,10])
print(sparse_series)
# 08
df2 = pd.DataFrame({"Answer":["yes","no","yes","maybe"]*1000})
print(df2.memory_usage(deep=True))
df2['Answer'] = df2['Answer'].astype('category')
print(df2.memory_usage(deep=True))
# Q9
df3 = pd.DataFrame({"col1": [1,2,3], "col2": [4,5,6]})
df3.eval("total = col1 + col2", inplace=True)
print(df3)
df4 = pd.DataFrame({"age":[25,35,40], "salary":[4000,6000,3000]})
print(df4.query("age > 30 and salary < 5000"))</pre>
```

Start coding or generate with AI.

## Project 1: Titanic Dataset Analysis

#### **Problem Statement**

Analyze the Titanic dataset to uncover insights about survival patterns.

#### Tasks:

- 1. Download and load the dataset.
- 2. Clean missing values in "Age" and "Embarked".
- 3. Compute survival rates by "Sex" and "Pclass".
- 4. Create a pivot table showing survival rate by "Pclass" and "Sex".
- 5. Visualize survival rates using a bar chart.

## Download the Data

You can download the CSV directly:

```
https://calmcode.io/static/data/titanic.csv
```

#### ([CalmCode][1])

### Solution Code

```
import pandas as pd
import matplotlib.pyplot as plt
# 1. Load dataset
url = "https://calmcode.io/static/data/titanic.csv"
df = pd.read_csv(url)
# 2. Clean missing values
df["Age"].fillna(df["Age"].median(), inplace=True)
df["Embarked"].fillna(df["Embarked"].mode()[0], inplace=True)
# 3. Survival rates by Sex and Pclass
survival_by_sex = df.groupby("Sex")["Survived"].mean()
survival_by_pclass = df.groupby("Pclass")["Survived"].mean()
# 4. Pivot table
pivot = df.pivot_table(
   values="Survived",
   index="Pclass",
   columns="Sex",
   aggfunc="mean"
)
# 5. Visualization
pivot.plot(kind="bar", figsize=(8,6))
plt.title("Survival Rate by Class and Sex")
plt.ylabel("Survival Rate")
plt.xticks(rotation=0)
plt.legend(title="Sex")
plt.show()
# Display results
print("Survival Rate by Sex:\n", survival_by_sex)
print("\nSurvival Rate by Pclass:\n", survival_by_pclass)
print("\nPivot Table:\n", pivot)
```

## Project 2: Retail Sales Dataset Analysis

### **Problem Statement**

Examine a retail sales dataset to understand trends and product performance.

#### Tasks:

- 1. Download and load the dataset.
- 2. Convert "Date" to datetime and clean duplicates.
- 3. Compute a new "Total" column (Quantity \* Price).
- 4. Group sales by "Region" and "Product Category" to find total and average sales.
- 5. Identify the overall best-selling product.
- 6. Plot total sales by region.

#### Download the Data

Use this sample dataset (1,000 rows, retail sales details):

```
Sample Retail Sales Dataset (1000 rows, 10 columns including date, product category, quantity, price, region)
```

([Gigasheet][2]) (You'll need to copy the data manually or use your preferred CSV source.)

#### Solution Code

```
import pandas as pd
import matplotlib.pyplot as plt
# 1. Load dataset
# Example path:
# df = pd.read_csv("retail-sales.csv")
# For demonstration, we'll create a simulated dataset:
import numpy as np
date_range = pd.date_range(start="2025-01-01", periods=100, freq="D")
np.random.seed(0)
df = pd.DataFrame({
    "Date": np.random.choice(date_range, 1000),
    "Product Category": np.random.choice(["Electronics", "Clothing", "Groceries"], 1000),
    "Quantity": np.random.randint(1, 5, 1000),
    "Price": np.random.uniform(5.0, 100.0, 1000),
    "Region": np.random.choice(["North", "South", "East", "West"], 1000)
})
# 2. Clean data
df["Date"] = pd.to_datetime(df["Date"])
df.drop_duplicates(inplace=True)
# 3. Compute Total
df["Total"] = df["Quantity"] * df["Price"]
# 4. Group by Region & Product Category
grouped = df.groupby(["Region", "Product Category"]).agg(
   Total_Sales=("Total", "sum"),
   Avg_Sales=("Total", "mean"),
   Count=("Total", "count")
).reset_index()
# 5. Best-selling product
best_product = grouped.loc[grouped["Total_Sales"].idxmax()]
# 6. Plot total sales by region
region_sales = df.groupby("Region")["Total"].sum()
region_sales.plot(kind="bar", figsize=(8,6))
plt.title("Total Sales by Region")
plt.ylabel("Total Sales")
plt.xticks(rotation=0)
plt.show()
# Display results
print("Sales by Region & Product:\n", grouped.head())
print("\nBest-selling product entry:\n", best_product)
```

```
Start coding or generate with AI.
```

## Project 3: Movies Dataset – Ratings Analysis

**Problem Statement:** The Movies dataset contains movie titles, genres, ratings, and release years. Your task is to clean the dataset, find the most popular genres, and analyze average ratings per year.

Dataset: IMDB Movies Dataset

Steps & Solution:

```
# Load dataset
df = pd.read_csv("imdb_top_1000.csv")

# Most common genres
genres = df['Genre'].str.split(',').explode().value_counts().head(5)
print("Top 5 Genres:\n", genres)

# Average rating per year
avg_rating_year = df.groupby('Year')['IMDB Rating'].mean()
print("Average Rating by Year:\n", avg_rating_year.head())

# Highest rated movie per genre
best_per_genre = df.groupby('Genre')['IMDB Rating'].max()
print("Best Movies per Genre:\n", best_per_genre)
```

## **Project 4: Weather Data Analysis**

**Problem Statement:** You have a weather dataset containing temperature, humidity, and wind speed recorded daily. Your task is to analyze temperature trends, detect missing values, and compute monthly averages.

Dataset: Daily Weather Dataset

#### Steps & Solution:

```
# Load dataset
df = pd.read_csv("DailyDelhiClimateTrain.csv")

# Convert date column
df['date'] = pd.to_datetime(df['date'])

# Missing values
print("Missing Values:\n", df.isna().sum())

# Monthly average temperature
monthly_temp = df.resample('M', on='date')['meantemp'].mean()
print("Monthly Avg Temperature:\n", monthly_temp)

# Highest temp day
hottest_day = df.loc[df['meantemp'].idxmax()]
print("Hottest Day:\n", hottest_day)
```

Start coding or generate with AI.