Devoir à la maison n° 3

À rendre le 5 octobre

I. Étude d'une fonction

1) Soit f la fonction définie sur $[0, \pi]$ par

$$\forall x \in [0, \pi]$$
 $f(x) = \frac{\sin x}{\sqrt{5 - 4\cos x}}$.

- a) Calculer la dérivée de f. Vérifier que f'(x) est du même signe que $\cos(x) \frac{1}{2}$.
- b) En déduire les variations de f sur $[0, \pi]$ et tracer sa courbe représentative.
- 2) Soit g la fonction définie sur $[0, \pi]$ par

$$\forall x \in [0, \pi]$$
 $g(x) = \operatorname{Arccos}\left(\frac{4 - 5\cos x}{5 - 4\cos x}\right)$.

- a) Vérifier que g est bien définie en tout point de $[0, \pi]$.
- **b)** Pour $x \in [0, \pi]$, simplifier les expressions $\cos(g(x))$ et $\sin(g(x))$.
- c) Calculer g'(x) pour $x \in]0, \pi[$ (pour cela, on pourra dériver la relation donnant $\cos(g(x))$ obtenue à la question précédente).
- d) Vérifier que $\forall x \in [0, \pi]$ g(g(x)) = x. Qu'en déduit-on concernant la courbe (Γ) représentant g?
- e) Construire la courbe (Γ) .
- 3) Soit x un réel appartenant à l'intervalle $\left[0, \frac{\pi}{3}\right[$.
 - a) Montrer qu'il existe un unique $z \in \left[\frac{\pi}{3}, \pi\right]$ tel que f(z) = f(x).
 - **b)** Montrer que z = g(x).

II. Autour d'une somme

Pour tout $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n \frac{1}{k} \binom{n}{k} (-1)^{k-1}.$$

On se propose de montrer que, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

1) Montrer que, pour tout $n \in \mathbb{N}^*$,

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} \frac{1}{k} \left[\binom{n+1}{k} - \binom{n}{k} \right] (-1)^{k-1}.$$

- 2) En déduire une expression simplifiée de $S_{n+1} S_n$, pour tout $n \in \mathbb{N}^*$.
- 3) Montrer que, pour tout $n, k \in \mathbb{N}^*$,

$$\frac{1}{k} \binom{n}{k-1} = \frac{1}{n+1} \binom{n+1}{k}.$$

4) En déduire que, pour tout $n \in \mathbb{N}^*$,

$$S_{n+1} - S_n = \frac{1}{n+1}.$$

5) Conclure, sans utiliser de raisonnement par récurrence.