数季电路与逻辑设计

Digital circuit and logic design

● 第一章 基本知识

主讲教师 于俊清

■提纲

数字信号与系统

数制及其转换

带符号二进制数的代码表示

几种常用的编码

数据的表示形式

两种表示方法:真值法和机器数(机器码)

真值法:一般书写形式表示的数,通常用"+"、"-"表示正负

机器数:正负符号数码化后的数据

机器数实际上是数据在机器中的表示形式,是由数据的符号

位和数值部分一起编码而成

• 符号位的表示

■ 常用机器码

机器码

■ 原码表示法

又称之为符号数值表示法,是一种比较直观的编码表示法

原码

符号位

表示了数据的正或负

数码 0 表示正号,数码 1 表示负号

数值部分保留了真值的特征,为真值的绝对值

简言之:符号位+真值绝对值

原码表示法

整数原码的定义

$$[X]_{\mathbb{R}} = \begin{cases} X & 0 \le X < 2^n \\ 2^n - X & -2^n < X \le 0 \end{cases}$$

小数原码的定义

$$[X]_{\bar{\mathbb{R}}} = \begin{cases} X & 0 \le X < 1 \\ 1 - X & -1 < X \le 0 \end{cases}$$

整数原码举例

整数原码举例

■ 小数原码表示举例

• 小数原码表示举例

■ 十进制数的原码求法举例

带符号数的原码表示

输入	真值	输入	真值
0000	+0	1000	-0
0001	+1	1001	-1
0010	+2	1010	-2
0011	+3	1011	-3
0100	+4	1100	-4
0101	+5	1101	-5
0110	+6	1110	-6
0111	+7	1111	-7

■ 原码表示法的特点

零的表示有 "+0" 和 "-0" 之分

正数的原码是其本身,负数的原码的符号位为1,数值位不变

■ 原码的加法

假设字长为8bits

十进制运算: $(1)_{10}+(1)_{10}=(2)_{10}$

二进制运算

$$(1)_{10} + (1)_{10}$$

$$= (2)_{10}$$

正确

■ 原码的加法

假设字长为8bits

十进制运算: (-1)10+(-1)10=(-2)10

二进制运算

$$(-1)_{10} + (-1)_{10}$$

= (10000001)原码+(10000001)原码

= (100000010)原码

= ?

数值位:2,符号位如何确定呢?

■ 原码的减法

十进制运算:(1)10-(1)10=(0)10

二进制运算

$$(1)_{10}$$
 - $(1)_{10}$

$$= (1)_{10} + (-1)_{10}$$

= (10000010)原码

 $= (-2)_{10}$

正确吗?

■ 原码的减法

十进制运算:(1)10-(2)10=(-1)10

二进制运算

$$(1)_{10}$$
 - $(2)_{10}$

$$= (1)_{10} + (-2)_{10}$$

= (10000011)原码

 $= (-3)_{10}$

正确吗?

结论

正确做法

原码不能直接进行减法运算

当对两个数求和时,如果符号相异,则需要先比较两个数的绝对值的大小,然后做减法

绝对值大的符号是结果的符号

绝对值的差值是结果的数值位

缺 点 利用它进行加减法运算较为麻烦

问题

如何简化问题呢?

解决办法

减法变加法,符号位直接参与运算

原码不行,有其他编码吗?

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

