DEEP LEARNING CÁC KIẾN TRÚC CNN (2)

Tôn Quang Toại Khoa Công nghệ thông tin Trường đại học Ngoại ngữ - Tin học TP.HCM (HUFLIT)

Nội dung

- LeNet (1998)
- AlexNet (2012)
- VGG (2014)
- Một số vấn đề của mạng sâu
 - Vanishing
 - Class Functions
- Mang sâu
 - ResNet (2015)
 - DenseNet (2016)
 - EfficientNet (2019)
 - ConvNeXt (2022)

MỘT SỐ VẤN ĐỀ KHI THÊM NHIỀU TẦNG

Khả năng biểu diễn của deep learning

• Deep learning: Deep learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but nonlinear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level... (Yann LeCun, Yoshua Bengio, Geoffrey Hinton)

Deep Learning = Deep Representation Learning

Khả năng biểu diễn của deep learning

Visualizing and Understanding Convolutional Networks [Zeiler và Fergus 2013]

Nhận xét

- Mạng càng có nhiều tầng thì khả năng biểu diễn của mạng càng cao.
- Để giải quyết bài toán phức tạp → Mạng cần có nhiều tầng hơn

Vấn đề của mạng nhiều tầng

- Hiện tượng: Mạng càng nhiều tầng
 - Độ chính xác bắt đầu bảo hòa và sau đó suy giảm
 - Giá trị lỗi không mượt như mạng ít tầng

- Lý do
 - Vanishing gradient và Exploding gradient
 - Class Function (Lóp hàm) đi lệch khỏi hàm tối ưu

Vấn đề của mạng sâu

- Vanishing gradient và Exploding gradient
 - Hàm lỗi Cost được tính tại f_6
 - Lỗi Cost được lan truyền: $f_6 \to f_5 \to \cdots \to f_1$
 - Qua mỗi tầng Cost có thêm nhiễu (noise)

$$f_6\left(f_5\left(f_4\left(f_3\left(f_2(f_1(x))\right)\right)\right)\right)$$

Nhận xét: Mạng càng sâu → Nhiễu sẽ nhiều hơn thông tin đạo hàm

Vấn đề của mạng sâu

Lớp hàm của mạng neuron

BATCH NORMALIZATION 2015

Giới thiệu

Batch Normalization (BN)

- Tác giả
 - Sergey Ioffe
 - Christian Szegedy

Sergey loffe

Christian Szegedy

- Bài báo
 - Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015
- Link
 - https://arxiv.org/abs/1502.03167

Batch Normalization

 Internal Covariate Shift (ICS): ICS là sự thay đổi phân bố của các neuron tầng ẩn do sự thay đổi các tham số mạng trong quá trình huấn luyện.

Giải thích

- Input được đưa vào tầng số 1
- Output của tầng số 1 được đưa vào tầng 2
- Output của tầng số 2 được đưa vào tầng 3
- ...
- Khi tham số của một tầng thay đổi → phân bố input của tầng sau cũng thay đổi

Batch Normalization

- Giải pháp
 - Input: Cần được chuẩn hóa
 - · Hidden layer: Cũng cần chuẩn hóa

Batch Normalization

Các bước của Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

BatchNormalization trong Keras

tf.keras.layers.BatchNormalization()

```
tf.keras.layers.BatchNormalization(
  axis=-1,
  momentum=0.99,
  epsilon=0.001,
  center=True,
  scale=True,
  beta initializer="zeros",
  gamma initializer="ones",
  moving mean initializer="zeros",
  moving variance initializer="ones",
  beta regularizer=None,
  gamma regularizer=None,
  beta constraint=None,
  gamma constraint=None,
  **kwargs)
```

BatchNormalization trong Keras

```
tf.keras.layers.BatchNormalization(
    momentum=0.99,
    epsilon=0.001,
    beta_initializer="zeros",
    gamma_initializer="ones",
    moving_mean_initializer="zeros",
    moving_variance_initializer="ones",
)

Training

gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta

Inference

gamma * (batch - self.moving_mean) / sqrt(self.moving_var+epsilon) + beta
```

- moving_mean và moving_var
 - Là các non-trainable variables
 - Được cập nhật trong training qua mỗi lần layer được gọi

```
moving_mean = moving_mean * momentum + mean(batch) * (1 - momentum)
```

moving_var = moving_var * momentum + var(batch) * (1 - momentum)

Ví dụ: LeNet

```
input shape = (28, 28, 1)
num classes = 10
# ModeL
model = Sequential()
# Features
model.add(Conv2D(filters=6, kernel size=5, padding='same', activation='relu',
                 input shape=input shape))
model.add(MaxPool2D(strides=2))
model.add(Conv2D(filters=16, kernel size=5, padding='same',activation='relu'))
model.add(MaxPool2D(strides=2))
 # Classifer
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(84, activation='relu'))
model.add(Dense(num classes, activation='softmax'))
print(model.summary())
```

Ví dụ: LeNet + BN

```
inputShape = (28, 28, 1)
# ModeL
model = Sequential()
# Features
model.add(Conv2D(filters=6, kernel size=5, padding='same', activation='relu'
                 input shape=inputShape))
model.add(BatchNormalization)
model.add(Activation('relu'))
model.add(MaxPool2D(strides=2))
model.add(Conv2D(filters=16, kernel_size=5, padding='same', activation='relu'))
model.add(BatchNormalization)
model.add(Activation('relu'))
model.add(MaxPool2D(strides=2))
 # Classifer
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(84, activation='relu'))
model.add(Dense(10, activation='softmax'))
print(model.summary())
```

RESNET RESIDUAL NETWORKS

ResNet

ResNet: Residual Networks

Tác giả

- Kaiming He
- Xiangyu Zhang
- Shaoqing Ren
- Jian Sun

- Deep Residual Learning for Image Recognition, 2015
- Identity Mappings in Deep Residual Networks, 2016

Link

- https://arxiv.org/abs/1512.03385
- https://arxiv.org/abs/1603.05027

Kaiming He

Mạng thông thường (plain network) + ReLU

Thuật toán Lan truyền tiến

Input : Dữ liệu $x \in \mathbb{R}^{n_{\mathbf{x}}}$ Output: Giá trị tại tầng $\mathcal{L}^{[L_k]}$

$$a^{[0]} \leftarrow x \in \mathbb{R}^{n_{\mathbf{X}}}$$

$$\begin{aligned} & \textbf{for } l = 1 \textbf{ to } L_{\pmb{k}} \textbf{ do} \\ & z^{[l]} \leftarrow a^{[l-1]}.W^{[l]} + b^{[l]} \\ & a^{[l]} \leftarrow \text{ReLU}(z^{[l]}) \\ & \textbf{end} \end{aligned}$$

return $a^{[L]}$

- Các bước biến đổi
 - Bước 1. Biến đổi tuyến tính
 - Bước 2. Biến đổi phi tuyến qua hàm ReLU

Shortcut/Skip Connection

Shortcut/Skip Connection

Shortcut/Skip Connection

 $a^{[l+2]} = ReLU(z^{[l+2]} + a^{[l]})$

Residual block

 Kết quả: Sử dụng các Residual Blocks cho phép huấn luyện các mạng sâu hơn

Xây dựng ResNet

 Phương pháp: Sử dụng các Residual Blocks chồng lên nhau

Các loại Shortcut

- Có 2 loại Shortcut
 - Identity block
 - Convolutional Block

Bottleneck Residual Block

 Bottleneck Residual Block: là một biến thể của residual block, Sử dụng 1x1 convolutions để tạo bottleneck

 Dùng bottleneck tăng sự phi tuyến của mô hình

- Được sử dụng cho ResNets
 - ResNet-50
 - ResNet-101

Identity block

• Khi Input activation $\left(a^{[l]}\right)$ có cùng số chiều với output activation $\left(a^{[l+2]}\right)$

Cài đặt Identity Block

```
def identity block(X, f, filters):
  F1, F2, F3 = filters
 shortcut = X
 ## 1
 X = Conv2D(filters=F1, kernel_size=1, strides=(1,1), padding='valid')(X)
 X = BatchNormalization(axis = 3)(X) # Default axis
 X = Activation('relu')(X)
 ## 2
 X = Conv2D(filters=F2, kernel size=f, strides=(1,1), padding='same')(X)
 X = BatchNormalization(axis=3)(X)
 X = Activation('relu')(X)
 ## 3
 X = Conv2D(filters=F3, kernel_size=1, strides=(1,1), padding='valid')(X)
 X = BatchNormalization(axis = 3)(X)
 ## Shortcut
 X = Add()([shortcut,X])
 X = Activation('relu')(X)
  return X
```

Convolutional Block

• Khi Input activation $(a^{\lfloor l \rfloor})$ không cùng số chiều với output activation $(a^{\lceil l+2 \rceil})$, chúng ta thêm 1 tầng convolution trên shortcut

Cài đặt Convolutional Block

```
def convolutional_block(X, f, filters, s):
  F1, F2, F3 = filters
  # Save the input value
  shortcut = X
  ## 1
  X = Conv2D(filters=F1, kernel size=1, strides=(s,s), padding='valid')(X)
 X = BatchNormalization(axis=3)(X)
  X = Activation('relu')(X)
  ## 2
 X = Conv2D(filters=F2, kernel_size=f,strides=(1,1),padding='same')(X)
 X = BatchNormalization(axis=3)(X)
  X = Activation('relu')(X)
  ## 3
  X = Conv2D(filters=F3, kernel size=1, strides=(1,1), padding='valid')(X)
  X = BatchNormalization(axis=3)(X)
 ## Shortcut
  shortcut=Conv2D(filters=F3, kernel size=1, strides=(s,s), padding='valid')(shortcut)
  shortcut = BatchNormalization(axis=3)(shortcut)
  # 4
  X = Add()([X, shortcut])
  X = Activation('relu')(X)
  return X
```

Tính năng chính của ResNet

 Sử dụng Identity Connection: Để giải quyết vấn đề Vanishing và Class function

- Sử dụng Batch Normalization: Điều chỉnh input để tăng hiệu quả huấn luyện của mạng (loại bỏ covariate shift)
- Sử dụng Bottleneck Residual Block: Để tăng hiệu quả của mạng

RESNET PRETRAINED

ResNet Pretrained

- ResNet được train trên ImageNet (>14 triệu ảnh + 1000 lớp)
- Input: $anh 224 \times 224 \times 3$
- Output: vector 1000 giá trị

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4
ResNet152	232	76.6%	93.1%	60.4M	311	127.4	6.5
ResNet152V2	232	78.0%	94.2%	60.4M	307	107.5	6.6

ResNet Pretrained

```
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess input, decode predictions
model = ResNet50(weights='imagenet')
img path = '...'
img = image.load img(img path, target size=(224,224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess input(x)
preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode predictions(preds, top=3)[0])
```

Tóm tắt

- BatchNormalization
- ResNet
- Pretrained ResNet