パラメータを伴った Gröbner 基底の 構造的な検出について

Comprehensive structural Gröbner basis detection

大島谷 遼*. 長坂 耕作

神戸大学大学院・人間発達環境学研究科

2021年12月21日(火)

December 21, 2021

去年の発表

Title:グレブナー基底の項順序についての再考

- 多項式集合 F がそのまま Gröbner 基底となる項順序がほしい
- Buchberger の判定条件(頭項が全て互いに素なら、F はそのまま Gröbner 基底)をもとに独自のアルゴリズムを考案(途中)
- 例:

•00

$$F = \{x^2y + z, xyz + z^4\} \subset K[x, y, z]$$

去年の発表

Title:グレブナー基底の項順序についての再考

- 多項式集合 F がそのまま Gröbner 基底となる項順序がほしい
- Buchberger の判定条件(頭項が全て互いに素なら、F はそのまま Gröbner 基底)をもとに独自のアルゴリズムを考案(途中)
- 例:

•00

$$F = \{x^2y + z, xyz + z^4\} \subset K[x, y, z]$$

既知の問題と判明

"Gröbner basis detection[GS93]"

(野呂先生のご指摘)

今日の発表

- そのまま Gröbner 基底となるような項順序(先行研究の紹介)
 - 項順序選択の重要性
 - Gröbner 基底と Newton polytope
 - Buchberger の判定条件に基づいた Gröbner 基底の構造的な検出
- パラメータを伴う場合への拡張
 - 直接的方法
 - パラメータ空間の分割の効率化

3/36

000

記法

000

- K:体
- L:Kの代数閉包
- \bar{X} :変数全体の集合 ($\{x_1,\ldots,x_n\}$)
- \bar{A} : パラメータ全体の集合 ($\{a_1,\ldots,a_m\}$)
- $\sigma_{\bar{a}}: K[\bar{X}, \bar{A}] \to L[\bar{X}]$ を各 a_i への自然な代入(specialization homomorphism)
- V(f):多項式 f の Affine 多様体
- $T_{ar{X}}(f)$: 多項式 f に含まれる $ar{X}$ に関する項全体の集合
- $\mathrm{HT}_{m{w}}(f)$:項順序 $m{w}$ における多項式fの頭項
- δ_{ij} : Kronecker delta

Gröbner 基底について

定義 2.1 (Gröbner 基底).

多項式集合 $F \subset K[\bar{X}]$ と F が生成するイデアル I に関して,

$$\langle \operatorname{HT}_{\prec}(I) \rangle = \langle \operatorname{HT}_{\prec}(f_1), \dots, \operatorname{HT}_{\prec}(f_k) \rangle$$

が満たされるとき、F を項順序 \prec に関する Gröbner 基底であるという.

項順序の例 $(x \succ y \succ z$ のとき)

- 辞書式順序(LexOrder)
 - \emptyset : $x^2yz^2 > xy^3z$, $x > y^3z^8$
- 全次数辞書式順序(GrLexOrder)
 - \emptyset : $x^2yz^2 > xy^3z$, $x < y^3z^8$
- 全次数逆辞書式順序(GrevLexOrder)
 - 例: $x^2yz^2 \prec xy^3z$, $x \prec y^3z^8$

5/36

matrix order

定義 2.2 (matrix order).

- M: 列数 n の column full rank な行列 (or ベクトル)
- t_1, t_2 :項 ($\in K[\bar{X}]$)
- e(t):項tの指数ベクトル

$$t_1 \succ_M t_2 \iff Me(t_1) >_{\neq} Me(t_2)$$

例

 $<_{
eq}$ や $>_{
eq}$ でベクトル同士の,等しくない最初の成分での大小比較を表す.

$$(2,3,30) <_{\neq} (2,5,3)$$

任意の項順序は matrix order で表現可能 [Rob85].

Gröbner 基底計算では項順序の選択が重要

計算速度(速さ)

LexOrder <<< GrevLexOrder

連立方程式の求解での例

- LexOrderでの Gröbner 基底を計算 (遅)
- GrevLexOrder での Gröbner 基底を計算 (速)
 - → FGLM アルゴリズム [FGLM93] などの基底変換アルゴ リズムによりLexOrderでの Gröbner 基底を計算

- $F = \{f_1 = xy + yz, f_2 = x^2 + y + z\} \subset K[x, y, z]$
- $\langle F \rangle$ での Gröbner 基底を求めたい (項順序は何でもいい).
 - $x \succ y \succ z$
 - LexOrder, GrLexOrder. Grevl exOrder

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z, \\ g_3 = y^2 + yz^2 + yz \end{array} \right\}$$

- $F = \{f_1 = xy + yz, f_2 = x^2 + y + z\} \subset K[x, y, z]$
- $\langle F \rangle$ での Gröbner 基底を求めたい (項順序は何でもいい).
 - $x \succ y \succ z$
 - LexOrder, GrLexOrder, Grevl exOrder

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z, \\ g_3 = y^2 + yz^2 + yz \end{array} \right\}$$

- $z \succ y \succ x$
- GrLexOrder. GrevLexOrder

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z \end{array} \right\}$$

- $F = \{f_1 = xy + yz, f_2 = x^2 + y + z\} \subset K[x, y, z]$
- $\langle F \rangle$ での Gröbner 基底を求めたい (項順序は何でもいい).

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z, \\ g_3 = y^2 + yz^2 + yz \end{array} \right\}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z \end{array} \right\}$$

例

•
$$F = \{f_1 = xy + yz, f_2 = x^2 + y + z\} \subset K[x, y, z]$$

• $\langle F \rangle$ での Gröbner 基底を求めたい (項順序は何でもいい).

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ g_2 = x^2 + y + z, \\ g_3 = y^2 + yz^2 + yz \end{array} \right\}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$G = \left\{ \begin{array}{l} g_1 = xy + yz, \\ q_2 = x^2 + y + z \end{array} \right\}$$

F がそのまま Gröbner 基底に!

Gröbner basis detection

Gröbner basis detection(GBD)[GS93]

多項式集合 $F = \{f_1, \dots, f_k\} \subset K[\bar{X}]$ とイデアル $I = \langle F \rangle$ が与えられた とき、F が I の Gröbner 基底となるような項順序 $w \in \mathbb{R}^n_+$ は存在するか. 存在するならば1つ求めよ.

Gröbner basis detection

Gröbner basis detection(GBD)[GS93]

多項式集合 $F = \{f_1, \dots, f_k\} \subset K[\bar{X}]$ とイデアル $I = \langle F \rangle$ が与えられた とき、F が I の Gröbner 基底となるような項順序 $w \in \mathbb{R}^n_+$ は存在するか. 存在するならば1つ求めよ.

- 全ての Spoly のペアがゼロ簡約される
- HT を確定させる必要がある
- → F の HT は何種類ある?

$$f$$
 に関して $oldsymbol{w_1} \equiv oldsymbol{w_2}$ とは,

$$\mathrm{HT}_{\boldsymbol{w_1}}(f) = \mathrm{HT}_{\boldsymbol{w_2}}(f)$$

Gröbner basis detection

Gröbner basis detection(GBD)[GS93]

多項式集合 $F = \{f_1, \dots, f_k\} \subset K[\bar{X}]$ とイデアル $I = \langle F \rangle$ が与えられた とき、F が I の Gröbner 基底となるような項順序 $w \in \mathbb{R}^n_+$ は存在するか. 存在するならば1つ求めよ.

- 全ての Spoly のペアがゼロ簡約される
- HT を確定させる必要がある
- → *F* の HT は何種類ある?

$$f$$
 に関して $m{w_1} \equiv m{w_2}$ とは, $\mathrm{HT}_{m{w_1}}(f) = \mathrm{HT}_{m{w_2}}(f)$

指数ベクトルの convex hull を考えることで, Fの項順序の同値類を分けられる

前提1

定義 3.1 (前提とする定義).

集合ひがconvex

$$\iff \forall \vec{u}, \vec{v} \in \mathcal{U}, \ \lambda \in \mathbb{R}, \ 0 \le \lambda \le 1, \ \lambda \vec{u} + (1 - \lambda) \vec{v} \in \mathcal{U}$$

集合 V がconvex polyhedron

集合 U のcovex hull V

● 集合 $\mathcal V$ がpolytope

⇔ 有限個の点の集合の convex hull

前提 2(Minkowski 和と Newton polytope)

定義 3.2 (Minkowski 和).

2 つの polytope $P_1, P_2 \subset \mathbb{R}^n$ に対して、Minkowski 和 $P_1 + P_2$ を

$$P_1 + P_2 = \{x \in \mathbb{R}^n : \exists x_1 \in P_1, \exists x_2 \in P_2, x = x_1 + x_2\}$$

※ Minkowski 和は可換かつ結合法則が成り立つため,2 つ以上の polytope にも自然に一般化可能.

定義 3.3 (Newton polytope).

・ 多項式
$$f = \sum_{i=1}^{t} c_i X^{\alpha_i}$$
 のNewton polytope $\mathcal{N}(f)$ を,

$$\mathcal{N}(f) = \operatorname{conv}\{\alpha_1, \dots, \alpha_t\}$$

・ 多項式集合 $F = \{f_1, \dots, f_k\}$ の Newton polytope $\mathcal{N}(F)$ を, $\mathcal{N}(F) = \mathcal{N}(f_1) + \dots + \mathcal{N}(f_k)$

前提 3(affine Newton polyhedron)

定義 3.4 (affine Newton polyhedron).

多項式 f や多項式集合 F のaffine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(f)$ を

$$\mathcal{N}_{\mathrm{aff}}(f) = \mathcal{N}(f) + \mathbb{R}^n_- \cup \{0\}$$

ゃ

$$\mathcal{N}_{\mathrm{aff}}(F) = \mathcal{N}(F) + \mathbb{R}^n_- \cup \{0\}$$

で定義.

affine Newton polyhedron の例

- $\mathcal{N}_{aff}(f) = \mathcal{N}(f) + \mathbb{R}^n_-$
- $\bullet \ f = x^3y^2 + xy^3 + xy \subset K[x, y]$

Gröbner 基底と affine Newton polyhedron

定理 3.5 ([GS93, Proposition3.2.1]).

多項式集合 $F = \{f_1, \dots, f_k\} \subset K[X]$ の affine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(F)$ の頂点は,F の項順序の同値類に対応している.

この定理より、F の項順序の同値類の数がわかる。

Gröbner 基底と affine Newton polyhedron

Gröbner 基底と affine Newton polyhedron

定理 3.5 ([GS93, Proposition3.2.1]).

多項式集合 $F = \{f_1, \ldots, f_k\} \subset K[\bar{X}]$ の affine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(F)$ の頂点は,F の項順序の同値類に対応している.

- この定理より、Fの項順序の同値類の数がわかる。
- 同値類の数だけ「そのまま Gröbner 基底となっているか」を確かめる.
- → S-polynomial が全てゼロ簡約される項順序の同値類を(全)探索する.

もっと手軽に Gröbner基底を検出したい

Structural Gröbner basis detection

Gröbner basis detection(GBD)[GS93]

多項式集合 $F=\{f_1,\ldots,f_k\}\subset K[ar{X}]$ とイデアル $I=\langle F\rangle$ が与えられた とき、F が I の Gröbner 基底となるような項順序 $w \in \mathbb{R}^n_+$ は存在するか. 存在するならば1つ求めよ.

Buchberger の判定条件 (HT が互いに素 ⇒Gröbner 基底) によって、問題を簡単に、

Structural Gröbner basis detection

Gröbner basis detection(GBD)[GS93]

多項式集合 $F=\{f_1,\ldots,f_k\}\subset K[\bar{X}]$ とイデアル $I=\langle F\rangle$ が与えられたとき,F が I の Gröbner 基底となるような項順序 $\boldsymbol{w}\in\mathbb{R}^n_+$ は存在するか.存在するならば 1 つ求めよ.

Buchberger の判定条件 (HT が互いに素 ⇒Gröbner 基底) によって,問題を簡単に.

Structural Gröbner basis detection(SGBD)[SW97]

多項式集合 $F=\{f_1,\ldots,f_k\}\subset K[\bar{X}]$ が与えられたとき、 $\mathrm{HT}_{\boldsymbol{w}}(F)$ に含まれる全ての項が互いに素であるような項順序 $\boldsymbol{w}\in\mathbb{R}^n_+$ は存在するか、存在するならば 1 つ求めよ.

(去年の発表と同じ問題設定)

SGBD の例

- $F = \{f_1 = xy + yz, f_2 = x^2 + y + z\} \subset K[x, y, z]$
- f_1 の yz と f_2 の x^2 は互いに素
- $\Rightarrow w = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ などでそれらは互いに素に

簡単のため、変数の個数 $\,n\,$ と多項式集合の濃度 $\,k\,$ が等しいときを考える (違う場合は変数の組合せを網羅することで、この場合に帰着できる).

Input: 多項式集合 $F = \{f_1, \dots, f_n\} \subset K[\bar{X}]$

Output: F が $I=\langle F \rangle$ の Gröbner 基底となるような項順序 $oldsymbol{w} \in \mathrm{R}^n_+$

- 1 つの変数からなる項で、倍単項式が存在しないような項のみを残す
- 互いに素な項(先頭項候補)をそれぞれの多項式から選出
- それらが先頭項となるような項順序を求める

December 21, 2021

簡単のため、変数の個数 $\,n\,$ と多項式集合の濃度 $\,k\,$ が等しいときを考える (違う場合は変数の組合せを網羅することで、この場合に帰着できる).

Input: 多項式集合 $F = \{f_1, \dots, f_n\} \subset K[\bar{X}]$

Output: F が $I=\langle F \rangle$ の Gröbner 基底となるような項順序 $oldsymbol{w} \in \mathrm{R}^n_+$

- 例) $f_i = x^3 + x + xy^3 + y^2 + z^2 \rightarrow \tilde{f}_i = x^3 + z^2$
- 互いに素な項(先頭項候補)をそれぞれの多項式から選出
- それらが先頭項となるような項順序を求める

簡単のため、変数の個数 $\,n\,$ と多項式集合の濃度 $\,k\,$ が等しいときを考える (違う場合は変数の組合せを網羅することで、この場合に帰着できる).

Input: 多項式集合 $F = \{f_1, \dots, f_n\} \subset K[\bar{X}]$

Output: F が $I = \langle F \rangle$ の Gröbner 基底となるような項順序 $oldsymbol{w} \in \mathrm{R}^n_+$

- 例) $f_i = x^3 + x + xy^3 + y^2 + z^2 \rightarrow \tilde{f}_i = x^3 + z^2$
- 互いに素な項(先頭項候補)をそれぞれの多項式から選出 • 二部グラフの最大マッチング問題 (Hungarian method[PL86] など)
- ❸ それらが先頭項となるような項順序を求める

簡単のため、変数の個数 $\,n\,$ と多項式集合の濃度 $\,k\,$ が等しいときを考える (違う場合は変数の組合せを網羅することで、この場合に帰着できる).

Input: 多項式集合 $F = \{f_1, \dots, f_n\} \subset K[\bar{X}]$

Output: F が $I = \langle F \rangle$ の Gröbner 基底となるような項順序 $oldsymbol{w} \in \mathrm{R}^n_+$

- 例) $f_i = x^3 + x + xy^3 + y^2 + z^2 \rightarrow \tilde{f}_i = x^3 + z^2$
- 互いに素な項(先頭項候補)をそれぞれの多項式から選出
 - 二部グラフの最大マッチング問題 (Hungarian method[PL86] など)
- 3 それらが先頭項となるような項順序を求める
 - 線形計画問題 (Khachian's Ellipsoid method[Sch98] など)

多項式にパラメータが存在する 場合はどうか

パラメータを伴ったSGBD

例

多項式集合 $F \subset (K[a])[x,y,z]$

$$F = \begin{cases} f_1 = x + (a-3)y^2, \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

パラメータを伴ったSGBD

例

多項式集合
$$F \subset (K[a])[x,y,z]$$

 $a \neq 3$ のとき,

$$F = \begin{cases} f_1 = x + (a-3)y^2, \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

パラメータを伴ったSGBD

例

多項式集合 $F \subset (K[a])[x,y,z]$

$$a=3$$
 のとき,

$$F = \begin{cases} f_1 = \mathbf{x} + (a - 3)y^2, \\ f_2 = x^3 + \mathbf{z}, \\ f_3 = \mathbf{y} + z^3 \end{cases}$$

• $a-3 \neq 0 (\Leftrightarrow a \neq 3)$ のとき

$$F = \begin{cases} f_1 = x + (a-3)y^2 \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

項順序 $w_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ で $\langle F \rangle$ の Gröbner 基底となる.

• $a-3 \neq 0 (\Leftrightarrow a \neq 3)$ のとき

$$F = \begin{cases} f_1 = x + (a-3)y^2 \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

項順序 $w_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ で $\langle F \rangle$ の Gröbner 基底となる.

• $a-3=0 (\Leftrightarrow a=3) \text{ obs}$

$$F = \begin{cases} f_1 = x + 0 \sqrt{y^2} \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

項順序 $w_2 = \begin{pmatrix} 1 & 16 & 4 \end{pmatrix}$ で $\langle F \rangle$ の Gröbner 基底となる.

• $a-3 \neq 0 (\Leftrightarrow a \neq 3)$ のとき

$$F = \begin{cases} f_1 = x + (a-3)y^2 \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

項順序 $w_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ で $\langle F \rangle$ の Gröbner 基底となる.

• $a-3=0 (\Leftrightarrow a=3) \text{ obs}$

$$F = \begin{cases} f_1 = x + 0 \sqrt{y^2} \\ f_2 = x^3 + z, \\ f_3 = y + z^3 \end{cases}$$

項順序 $w_2 = \begin{pmatrix} 1 & 16 & 4 \end{pmatrix}$ で $\langle F \rangle$ の Gröbner 基底となる.

求めたいもの: $\{(\{a-3\neq 0\}, w_1), (\{a-3=0\}, w_2)\}$

パラメータを伴ったSGBD

Comprehensive structural Gröbner basis detection(CSGBD)

 $S \subseteq L^m$ を代数構成的集合とする. 多項式集合 $F \subset K[\bar{X}, \bar{A}]$ に対して,

$$\tilde{\mathcal{G}} = \{(S_1, \boldsymbol{w_1}), \dots, (S_\ell, \boldsymbol{w_\ell})\}$$

- S_i : パラメータの条件 (和集合が S を包含する L^m の構成的部分集合)
- w_i : 項順序 (matrix order の weight vector)

パラメータの条件 S_i と weight vector $w_i \in \mathbb{R}^n_+$ は次を満たす.

• $\bar{a} \in S_i$ に対し、 $\sigma_{\bar{a}}(F)$ がイデアル $\langle \sigma_{\bar{a}}(F) \rangle$ の項順序 w_i での Gröbner 基底.

そのような項順序が見つからないとき、 $w_i = 0$ とする.

(CGS[Wei92] を踏襲した定義)

CSGBD のアルゴリズム (直接的方法)

Input: 多項式集合
$$F=\{f_1,\ldots,f_k\}\subset K[\bar{X},\bar{A}]$$

Output: $\tilde{\mathcal{G}}=\{(S_1,\boldsymbol{w_1}),\ldots,(S_\ell,\boldsymbol{w_\ell})\}$ (先程の条件を満たすもの)

↑ パラメータ空間 S を、項が確定するように分割する。

🤦 変数の組み合わせを網羅する形で SGBD のアルゴリズムを行う.

パラメータ空間の分割

例

K[x,y,a] を x,y についての多項式環 (K[a])[x,y] とみなす. 次の多項式 集合 $F \subset K[x,y,a]$ を考える.

$$F = \begin{cases} f_1 = (a-1)x^2 + y^2, \\ f_2 = x + (a-2)y^3 \end{cases}$$

場合分けは $4(=2^2)$ つ必要 (?)

- \mathbf{n} a-1=0, a-2=0 のとき
- **2** a-1=0 $a-2\neq 0$ のとき
- **3** $a-1 \neq 0, a-2 = 0$ のとき
- **4** $a-1 \neq 0, a-2 \neq 0$ のとき

パラメータ空間の分割

例

K[x,y,a] を x,y についての多項式環 (K[a])[x,y] とみなす.次の多項式集合 $F\subset K[x,y,a]$ を考える.

$$F = \begin{cases} f_1 = (a-1)x^2 + y^2, \\ f_2 = x + (a-2)y^3 \end{cases}$$

場合分けは $4(=2^2)$ つ必要 (?)

①
$$a-1=0, a-2=0$$
 のとき $\to (E,N)=(\{a-1,a-2\},\{\})$

2
$$a-1=0, a-2\neq 0$$
 のとき $\to (E,N)=(\{a-1\}, \{a-2\})$

3
$$a-1 \neq 0, a-2 = 0$$
 のとき $\rightarrow (E, N) = (\{a-2\}, \{a-1\})$

4
$$a-1 \neq 0, a-2 \neq 0$$
 のとき $\rightarrow (E,N) = (\{\}, \{a-1, a-2\})$

パラメータ空間の分割についての詳細 (CPSS)

定義 5.1 (包括的多項式項集合系 (Comprehensive polynomial support system)).

多項式集合 $F = \{f_1, \ldots, f_k\} \subset K[\overline{X}, \overline{A}]$ とし, $S \subseteq L^m$ を代数構成的集合 (algebraically constructible subsets) とする. S_1, \ldots, S_ℓ を

$$\bigcup_{i=1}^{\ell} S_i \supseteq S, \ S_i \cap S_j = \phi \quad (\forall i, j \in \{1, \dots, \ell\}, \ i \neq j)$$

を満たす L^m の構成的部分集合とするとき、集合 $E_i, N_i \subset K[\bar{A}]$ に対して $S_i = V(E_i) \setminus V(N_i)$ が成立するものとする.

集合 $\mathcal{P} = \{(E_1, N_1, \mathscr{T}_1), \ldots, (E_\ell, N_\ell, \mathscr{T}_\ell)\}$ や $\mathcal{P}' = \{(S_1, \mathscr{T}_1), \ldots, (S_\ell, \mathscr{T}_\ell)\}$ を F に関す る S 上の包括的多項式項集合系(comprehensive polynomial support system)と呼ぶ. 特に, $S=L^m$ を満たす場合,上記 $\mathcal P$ を単に F の包括的多項式項集合系と呼ぶ.ただ し, $i=1,\ldots,\ell$ に対して

$$\mathscr{T}_i = \{T_{i1}, \dots, T_{ik} : T_{ij} \subset K[\bar{X}], \ j = 1, \dots, k\}$$

とし、任意の $a_i \in S_i \subset L^m$ に対して $\mathcal{T}_i = T_{\bar{X}}(\sigma_{a_i}(F))$ を満たす集合族とする.

(CGS を踏襲した定義)

パラメータ空間の分割についての詳細 (CPSS)

定義 5.1 (包括的多項式項集合系 (Comprehensive polynomial support system)).

多項式集合 $F=\{f_1,\ldots,f_k\}\subset K[\bar X,\bar A]$ とし、 $S\subseteq L^m$ を代数構成的集合 (algebraically constructible subsets) とする. S_1,\ldots,S_ℓ を

$$\bigcup_{i=1}^{\ell} S_i \supseteq S, \ S_i \cap S_j = \phi \quad (\forall i, j \in \{1, \dots, \ell\}, \ i \neq j)$$

を満たす L^m の構成的部分集合とするとき、集合 $E_i, N_i \subseteq K[\bar{A}]$ に対して $S_i = V(E_i) \setminus V(N_i)$ が成立するものとする.

集合 $\mathcal{P}=\{(E_1,N_1,\mathscr{T}_1),\ldots,(E_\ell,N_\ell,\mathscr{T}_\ell)\}$ や $\mathcal{P}'=\{(S_1,\mathscr{T}_1),\ldots,(S_\ell,\mathscr{T}_\ell)\}$ を F に関する S 上の包括的多項式項集合系(comprehensive polynomial support system)と呼ぶ、特に、 $S=L^m$ を満たす場合,上記 \mathcal{P} を単に F の包括的多項式項集合系と呼ぶ.ただし, $i=1,\ldots,\ell$ に対して

$$\mathscr{T}_i = \{T_{i1}, \dots, T_{ik} : T_{ij} \subset K[\bar{X}], \ j = 1, \dots, k\}$$

とし、任意の $a_i \in S_i \subset L^m$ に対して $\mathscr{T}_i = T_{\bar{X}}(\sigma_{a_i}(F))$ を満たす集合族とする.

(CGS を踏襲した定義)

パラメータ空間の分割

例

K[x,y,a] を x,y についての多項式環 (K[a])[x,y] とみなす.次の多項式集合 $F\subset K[x,y,a]$ を考える.

$$F = \begin{cases} f_1 = (a-1)x^2 + y^2, \\ f_2 = x + (a-2)y^3 \end{cases}$$

場合分けは $4(=2^2)$ つ必要 (?)

$$a-1=0, a-2=0$$
 のとき $\to (E,N)=(\{a-1,a-2\},\{\})$

2
$$a-1=0, a-2\neq 0$$
 のとき $\to (E,N)=(\{a-1\},\{a-2\})$

3
$$a-1 \neq 0, a-2 = 0$$
 のとき $\rightarrow (E, N) = (\{a-2\}, \{a-1\})$

4
$$a-1 \neq 0, a-2 \neq 0$$
 のとき $\rightarrow (E,N) = (\{\}, \{a-1, a-2\})$

パラメータ空間の分割

例

K[x,y,a] を x,y についての多項式環 (K[a])[x,y] とみなす.次の多項式集合 $F\subset K[x,y,a]$ を考える.

$$F = \begin{cases} f_1 = (a-1)x^2 + y^2, \\ f_2 = x + (a-2)y^3 \end{cases}$$

場合分けは $4(=2^2)$ つ必要 (?)

①
$$a-1=0, a-2=0$$
 のとき $\to (E,N)=(\{a-1,a-2\},\{\})$

②
$$a-1=0, a-2 \neq 0$$
 のとき $\to (E,N)=(\{a-1\},\{a-2\})$

3
$$a-1 \neq 0, a-2 = 0$$
 のとき $\rightarrow (E, N) = (\{a-2\}, \{a-1\})$

4
$$a-1 \neq 0, a-2 \neq 0$$
 のとき $\rightarrow (E,N) = (\{\}, \{a-1, a-2\})$

パラメータ空間に矛盾が生じる場合とその対処法

① 等号制約 E に矛盾のある場合 $(V(E) = \phi)$

例

$$(E, N) = (\{a-1, a-2\}, \{b^2+3\})$$

 $\Rightarrow E$ が生成するイデアル $\langle E \rangle$ の, 任意の項順序での簡約 Gröbner 基底が {1} に等しい.

パラメータ空間に矛盾が生じる場合とその対処法

① 等号制約 E に矛盾のある場合 ($V(E) = \phi$)

例

$$(E,N) = (\{a-1, a-2\}, \{b^2+3\})$$

- $\Rightarrow E$ が生成するイデアル $\langle E \rangle$ の, 任意の項順序での簡約 Gröbner 基底が $\{1\}$ に等しい.
- ② 等号制約 E と不等号制約 N の間の矛盾 $(V(E) \setminus V(N) = \phi)$

例

$$(E,N) = (\{(a-3)^2, b-1\}, \{a-3, b+3\})$$

 $\Rightarrow N$ の要素それぞれがラディカル \sqrt{E} に含まれているかを確かめる.

Algorithm 1 Parameter Division Main

```
Require: \{(E, N, \mathcal{T})\}\ (ただし \mathcal{T} = \{T_1, \dots, T_k\}, \ N = \{a_N\}, \ a_N \in K[\bar{A}] とする.)
```

Ensure: PolySet(\mathscr{T}) \mathcal{O} $V(E) \setminus V(N) \perp \mathcal{O}$ CPSS $\{(E_1, N_1, \mathscr{T}_1), \dots, (E_{\ell'}, N_{\ell'}, \mathscr{T}_{\ell'})\}$ 1: if $E \neq \phi \land \text{ReducedGr\"obnerBasis}(E, \prec_{\bar{A}}) = \{1\}$ then

- ▷ 等号制約 E の矛盾を検出する if 文
- return ϕ
- 3: end if
- 4: if $a_N \neq 1 \land E \neq \phi \land \text{ReducedGr\"obnerBasis}(E \cup \{1 y \cdot a_N\}, \prec_{\bar{A}, y}) = \{1\}$ then ▷ 不等号制約 N の矛盾を検出する if 文
- 5: return ϕ
- 6: end if 7: if $\forall i \in \{1, ..., k\}, \ \forall t_i \in T_i, \ t_i \in K[\bar{X}]$ then

▶ 再帰の終了条件

- 8: return $\{(E, N, \mathcal{T})\}$
- 9: end if
- 10: if $\forall j \in \{1, \dots, \ell\}$, $\exists t_j \in T_j, t_j \notin K[\bar{X}]$ then $\triangleright 項 t$ を E, N に追加し、再帰的に繰り返す
- 11: $m \leftarrow t_i$
- 12: $c, t \leftarrow \operatorname{coeff}_{\bar{X}}(m), \operatorname{term}_{\bar{X}}(m)$
- 13: end if
- 14: $\mathscr{T}_E \leftarrow \{T_1, \dots, T_{i-1}, T_i \setminus \{m\}, T_{i+1}, \dots, T_k\}$
- 15: $\mathscr{T}_N \leftarrow \{T_1, \dots, T_{i-1}, (T_i \cup \{t\}) \setminus \{m\}, T_{i+1}, \dots, T_k\}$ $\triangleright c \neq 0$ のとき(項が残る)
- 16: return Parameter Division Main $(E \cup \{c\}, N, \mathcal{T}_E)$
- \cup ParameterDivisionMain $(E, N \land \{c\}, \mathscr{T}_N)$ 17:

 $\triangleright c = 0$ のとき(項が消える)

多項式集合 F が与えられたとき、

SGBD

- 変数の数と card(F) が違う場合は、変数の組み合わせを構成.
- 倍単項式が存在しない、且つ単一変数のみからなる項をピックアップ。
- 変数と指数部分からなる二部グラフを構成し、最大マッチング問題を解く、
- 線形計画問題を解き、求めたい weight vector を計算.

多項式集合 F が与えられたとき、

SGBD

- パラメータ空間を分割し、項を確定させる(後で新たな場合分けが発生しない)、
- 変数の数と card(F) が違う場合は、変数の組み合わせを構成.
- 倍単項式が存在しない、且つ単一変数のみからなる項をピックアップ。
- 変数と指数部分からなる二部グラフを構成し、最大マッチング問題を解く、
- 線形計画問題を解き、求めたい weight vector を計算.

多項式集合 F が与えられたとき.

SGBD

- パラメータ空間を分割し、項を確定させる(後で新たな場合分けが発生しない)。
- 変数の数と card(F) が違う場合は、変数の組み合わせを構成。
- 倍単項式が存在しない、且つ単一変数のみからなる項をピックアップ。
- 変数と指数部分からなる二部グラフを構成し、最大マッチング問題を解く、
- 線形計画問題を解き、求めたい weight vector を計算。

GBD

- affine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(F)$ を得る.
- N_{aff}(F) の頂点が項順序の同値類に対応している.
- 各同値類の代表元で、全ての Spoly がゼロ簡約されるか調べる.

多項式集合 F が与えられたとき、

SGBD

- パラメータ空間を分割し、項を確定させる(後で新たな場合分けが発生しない)、
- 変数の数と card(F) が違う場合は、変数の組み合わせを構成。
- 倍単項式が存在しない、且つ単一変数のみからなる項をピックアップ。
- 変数と指数部分からなる二部グラフを構成し、最大マッチング問題を解く、
- 線形計画問題を解き、求めたい weight vector を計算。

GBD

- パラメータ空間を分割する
- affine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(F)$ を得る.
- N_{aff}(F) の頂点が項順序の同値類に対応している.
- 各同値類の代表元で、全ての Spoly がゼロ簡約されるか調べる.

多項式集合 F が与えられたとき、

SGBD

- パラメータ空間を分割し、項を確定させる(後で新たな場合分けが発生しない)、
- 変数の数と card(F) が違う場合は、変数の組み合わせを構成。
- 倍単項式が存在しない、且つ単一変数のみからなる項をピックアップ。
- 変数と指数部分からなる二部グラフを構成し、最大マッチング問題を解く、
- 線形計画問題を解き、求めたい weight vector を計算。

GBD

- パラメータ空間を分割する
- affine Newton polyhedron $\mathcal{N}_{\mathrm{aff}}(F)$ を得る.
- N_{aff}(F) の頂点が項順序の同値類に対応している.
- 各同値類の代表元で、全ての Spoly がゼロ簡約されるか調べる.
 - Spoly の計算時に新たな場合分けが発生する可能性がある.

ここまでのまとめ

- 多項式集合がそのまま Gröbner 基底であるような項順序を求めたい。
- 2 "(Structural) Gröbner basis detection"という問題 (Sturmfels ら).
- ③ GBD は affine Newton polyhedron の計算, SGBD は二部グラフの最大マッチング問題と線形計画問題に帰着 可能.
- △ パラメータを伴っている場合でも、適切に場合分けすれば計算可能.

ここまでのまとめ

- 多項式集合がそのまま Gröbner 基底であるような項順序を求めたい。
- ② "(Structural) Gröbner basis detection"という問題 (Sturmfels ら).
- 3 GBD は affine Newton polyhedron の計算, SGBD は二部グラフの最大マッチング問題と線形計画問題に帰着 可能.
- △ パラメータを伴っている場合でも、適切に場合分けすれば計算可能.

ここからのはなし

⋒ パラメータ空間の分割の効率化

SGBD のアルゴリズム(概略)[SW97]

簡単のため、変数の個数 $\,n\,$ と多項式集合の濃度 $\,k\,$ が等しいときを考える (違う場合は変数の組合せを網羅することで、この場合に帰着できる).

Input: 多項式集合 $F = \{f_1, \dots, f_n\} \subset K[\bar{X}]$

Output: F が $I=\langle F \rangle$ の Gröbner 基底となるような項順序 $oldsymbol{w} \in \mathrm{R}^n_+$

- ▲ 1つの変数からなる項で,倍単項式が存在しないような項のみを残す 例) $f_i = x^3 + x + xy^3 + y^2 + z^2 \rightarrow \tilde{f}_i = x^3 + z^2$
- 互いに素な項(先頭項候補)をそれぞれの多項式から選出
 - 二部グラフの最大マッチング問題 (Hungarian method[PL86] など)
- る それらが先頭項となるような項順序を求める
 - 線形計画問題 (Khachian's Ellipsoid method[Sch98] など)

31/36

例

$$F = \begin{cases} f_1 = (a-3)x^3 + (b-2)x^2 + \cdots, \\ f_2 = \cdots \end{cases}$$

(E,N) は

- $(\{a-3,b-2\},\{\})$
- $(\{a-3\}, \{b-2\})$
- $(\{\}, \{a-3, b-2\})$
- $(\{b-2\},\{a-3\})$

例

$$F = \begin{cases} f_1 = (a-3)x^3 + (b-2)x^2 + \cdots, \\ f_2 = \cdots \end{cases}$$

(E,N)は

- $({a-3,b-2},{})$
- $({a-3}, {b-2})$
- $(\{\}, \{a-3,b-2\})$
- $(\{b-2\}, \{a-3\})$

) 同じ

 f_1 の項 x^2 は HT 候補から外れる.

$\mathcal{N}_{\mathrm{aff}}(t)$ を用いた改善

```
1: if \forall j \in \{1, \dots, \ell\}, \exists t_j \in T_j, t_j \notin K[\bar{X}] then \Rightarrow 項 t を E, N に追加し、再帰的に繰り返す
2: m \leftarrow t_i
       c, t \leftarrow \operatorname{coeff}_{\bar{X}}(m), \operatorname{term}_{\bar{X}}(m)
4: end if
5: \mathscr{T}_E \leftarrow \{T_1, \dots, T_{i-1}, T_i \setminus \{m\}, T_{i+1}, \dots, T_k\}
                                                                                                    \triangleright c = 0 のとき(項が消える)
                                                                                                        \triangleright c \neq 0 のとき (項が残る)
6: \mathcal{T}_N \leftarrow \{T_1, \dots, T_{i-1}, (T_i \cup \{t\}) \setminus \{m\}, T_{i+1}, \dots, T_k\}
7: return ParameterDivisionMain(E \cup \{c\}, N, \mathscr{T}_E) \cup ParameterDivisionMain(E, N \land \{c\}, \mathscr{T}_N)
```



```
1: if \forall j \in \{1, \dots, \ell\}, \exists t_j \in T_i, t_j \notin K[\bar{X}] then \Rightarrow 項 t を E, N に追加し、再帰的に繰り返す
2: m \leftarrow t_i
          c, t \leftarrow \operatorname{coeff}_{\bar{X}}(m), \operatorname{term}_{\bar{X}}(m)
4: end if
5: \mathscr{T}_E \leftarrow \{T_1, \dots, T_{i-1}, T_i \setminus \{m\}, T_{i+1}, \dots, T_k\}
                                                                                                        \triangleright c = 0 のとき(項が消える)
```

6: $\mathscr{T}_N \leftarrow \{T_1, \dots, T_{i-1}, (T_i \setminus \mathcal{N}_{aff}(t)) \cup \{t\}, T_{i+1}, \dots, T_k\}$ 7: return Parameter Division Main $(E \cup \{c\}, N, \mathscr{T}_E) \cup$ Parameter Division Main $(E, N \land \{c\}, \mathscr{T}_N)$

 $\triangleright c \neq 0$ のとき(項が残る)

$F = \{f_1, \ldots, f_k\}$ の項の確定をしたい

- $R = K[\bar{X}, \bar{A}]$
- $f_i = t_{i1} + t_{i2} + \dots + t_{ir_i}, \ e_i = (\delta_{ij}) \in \mathbb{R}^k$
- 加群 R^k の部分加群 $I=\langle M \rangle$ で、M はそのまま CGS

$$M = \bigcup_{i=1}^k \{t_{i1} \boldsymbol{e_i}, \dots, t_{ir_i} \boldsymbol{e_i}\} \subset R^k$$

• minimal CGS にすると、項の確定ができる(?)

$$t_{\beta} \mid t_{\alpha} \Longrightarrow t_{\alpha}$$
が取り除かれる

消したいのは t_{β} のほう! しかし、 t_{α} が消えてしまう

$F = \{f_1, \ldots, f_k\}$ の項の確定をしたい

- $R = K[\bar{X}, \bar{A}]$
- $f_i = t_{i1} + t_{i2} + \dots + t_{ir_i}, \ e_i = (\delta_{ij}) \in \mathbb{R}^k$
- $\hat{t}_{ij}:t_{ij}$ の f_i での reversal(次数反転)
- 加群 R^k の部分加群 $\hat{I} = \hat{M}$ で、 \hat{M} はそのまま CGS

$$\hat{M} = \bigcup_{i=1}^{k} \{\hat{t}_{i1} e_i, \dots, \hat{t}_{ir_i} e_i\} \subset R^k$$

• minimal CGS にすると、項の確定ができる(!)

$$\hat{t}_{\alpha} \mid \hat{t}_{\beta} \Longrightarrow \hat{t}_{\beta}$$
が取り除かれる

反転していた次数を元に戻すと

 $t_{\beta} \mid t_{\alpha} \Longrightarrow$ 消したい t_{β} が消える!

Reference I

- [FGLM93] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329-344, 1993.
- [GS93] Peter Gritzmann and Bernd Sturmfels. Minkowski addition of polytopes: computational complexity and applications to gröbner bases. SIAM Journal on Discrete Mathematics, 6(2):246-269, 1993.
- [PL86] Michael D Plummer and László Lovász. Matching theory. Elsevier. 1986.
- [Rob85] Term orderings on the polynomial ring. In European Conference on Computer Algebra, pages 513-517. Springer, 1985.
- [Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Lorenzo Robbiano.

Reference II

[SW97] Bernd Sturmfels and Markus Wiegelmann.

Structural gröbner basis detection.

Applicable Algebra in Engineering, Communication and Computing, 8(4):257-263, 1997.

[Wei92] Volker Weispfenning.

Comprehensive gröbner bases.

Journal of Symbolic Computation, 14(1):1-29, 1992.