Preparation Sheet for Final Exam

Problem 1. Vectors and the Geometry of Space. Vector-Valued Functions and Motion in Space.

- a) [5 marks] Find the point in which the line through the origin perpendicular to the plane 2x y z = 4 meets the plane 3x 5y + 2z = 6.
- b) [6 marks] Find a vector of magnitude 2 parallel to the line of intersection of the planes x + 2y + z 1 = 0 and x y + 2z + 7 = 0.
- c) [6 marks] Suppose $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j}$. Show that the angle between \mathbf{r} and \mathbf{a} never changes. What is the angle?
- d) [8 marks] Find equations for the osculating, normal, and rectifying planes of the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ at the point (1, 1, 1).

Problem 2. Partial Derivatives.

- a) [7 marks] What is the largest value that the directional derivative of f(x, y, z) = xyz can have at the point (1, 1, 1)?
- b) [10 marks] Find the extreme values of f(x, y, z) = x(y + z) on the curve of intersection of the right circular cylinder $x^2 + y^2 = 1$ and the hyperbolic cylinder xz = 1.
- c) [8 marks] Find the points on the surface $(y+z)^2 + (z-x)^2 = 16$ where the normal line is parallel to the yz-plane.

Problem 3. Multiple Integrals. Integrals and Vector Fields

- a) [7 marks] Find the area of the "triangular" region in the xy-plane that is bounded on the right by the parabola $y = x^2$, on the left by the line x + y = 2, and above by the line y = 4.
 - b) [10 marks] Convert

$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} 3 \, dz \, r \, dr \, d\theta, \quad r \ge 0$$

- to (a) rectangular coordinates with the order of integration dz dx dy and
- (b) spherical coordinates.

Then (c) evaluate one of the integrals.

c) [8 marks] Use Green's Theorem to find the outward flux of $\mathbf{F} = 2xy\mathbf{i} + 2yz\mathbf{j} + 2xz\mathbf{k}$ across the boundary of D: the entire surface of the upper cap cut from the solid sphere $x^2 + y^2 + z^2 \le 25$ by the plane z = 3.

Problem 4. Infinite Sequences and Series. Fourier series.

a) [15 marks] Given

$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{n \ 3^n}$$

- (i) find the series' radius and interval of convergence. Then identify the values of x for which the series converges
 - (ii) absolutely and
 - (iii) conditionally.
 - b) [10 marks] The series

$$\pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \cdots + (-1)^n \frac{\pi^{2n+1}}{(2n+1)!} + \cdots$$

is the value of the Maclaurin series at x = 0 of a function f(x) at a particular point. What function and what point? What is the sum of the series?