Data Visualisation Lecture 4 – Visualising Comparisons

Dr. Cathy Ennis

Learning Outcomes Week 4

- Design effective visualizations based on principles from perceptual psychology, cognitive science, graphic design and visual art
- Create and deploy successful data visualisations using leading software tools
- Demonstrate an understanding how visualisation is used in date journalism to communicate complex ideas and stories
- Demonstrate understanding how visualisation is used in story telling

Visualisation of the Week

(Un) Visualization of the Week

(Un) Visualization of the Week

Overview

The concept of storytelling and how can visualise comparisons between variable values

Single variable exploration

Simple comparisons

Multivariate distributions

STORY TELLING

Storytelling

 Data visualisations are not really about the data, they are about the meaning of the data

- Storytelling guides your audience from one point or argument to the next. For example:
 - Chronologically
 - When it involves a combination of a broad overview and granular detail
 - When the message has multiple separate components

Storytelling - Understand the Context

- How to capture audience's attention without losing the most important parts of the data?
- How to turn data into information that can be consumed by an audience?

- Who am I communicating to?
- What do I want my audience to know or do?
- How can I use data to help make my point?

Storytelling - Understand the Context

Storytelling - Explanatory Analysis

 Focus on explanatory analysis (NOT exploratory analysis) and communication

Choose an Effective Visual

Eliminate Clutter

Draw Attention Where You Want It

Choosing the Appropriate Visual

Example

Example Please approve the hire of 2 FTEs

to backfill those who quit in the past year

Ticket volume over time

Craft a Narrative

• Telling a story that the reader will remember, and possibly re-tell later

Plot – what is the essential context?

Twist – what are the most interesting findings in the data?

 Ending – what do you want your audience to do? What is the take home message?

Storytelling References

- https://www.storytellingwithdata.com/books
- https://youtu.be/8EMW7io4rSI
- https://www.forbes.com/sites/evamurray/2019/02/06/how-do-you-tell-a-story-with-data-visualization
- https://towardsdatascience.com/storytelling-with-data-a-data-visualization-guide-for-business-professionals-97d50512b407

SINGLE VARIABLE EXPLORATION

 A histogram is an estimate of the probability distribution of a continuous variable (quantitative variable)

• It differs from a bar graph. A bar graph relates two variables (categorical and temporal data), but a histogram relates only one

- A histogram gives us an in-depth view of a single numeric variable. To construct a histogram:
- 1. Divide the data range into bins
- 2. Count the occurrence frequency of each bin within the data
- 3. Normalize the frequency counts
 - Display "relative" frequencies. It shows the proportion of cases that fall into each of several categories, with the sum of the heights being equal to 1
- 4. Plot a bar graph to show the normalised count for each bin

Histogram Shapes

Bell Shaped: The normal pattern

Skewed: Look for other processes in the tail

Double Peaked: Suggests two distributions

Truncated: Look for reasons for sharp end of distribution or pattern

Ragged Plateau: No single clear process or pattern

 It is a good idea to plot the data using several different bin widths to learn more about it

 The histogram is quite possibly your most important visual data exploration tool!!!

The components of a box plot are:

- A thick dark line at the median
- A horizontal lines at the 1st quartiles
- A horizontal lines at the 3rd quartiles
- A whisker down to the low value
 - Multiply the IQR by 1.5 to calculate the step
 - The low value is the lowest value above the 1st quartile minus the step
- A whisker up to the high value
 - The high value is the highest value above the 3rd quartile plus the step
- Any values outside low and high are marked as outliers

Some important points about a box plot:

- 50% of the data occurs between the lower and upper edges of the box
- The lower 50% of the data occurs below the median
- The upper 50% of the data occurs above the median line in the box.
- The lower 25% of the data occurs between the bottom edge of the box and the bottom edge of the lower whisker
- The upper 25% of the data occurs above the top edge of the box and the top edge of the upper whisker

Box Plots & Density Functions

Box Plots & Density Functions

Points Scored by Country

Points Scored by Country

Histogram useful when

 a wide variances exist among the observed frequencies for a particular dataset

 Very little variance amongst the observed frequencies

Histogram useful when

 a wide variances exist among the observed frequencies for a particular dataset.

 Very little variance amongst the observed frequencies

Box Plot useful when

- A moderate variance exist among the observed frequencies, which causes the histogram to look ragged and non-symmetrical due to the way the data is grouped.
- This may lead into the assumption that data is slightly skewed.
- A box plot for the same data shows a perfect normal distribution.

Box Plot useful when

- Outliers are present in the data
- We are interested in values such as the median or the quartiles

SIMPLE COMPARISONS

• Tufte removes the grid and uses simple labeling on the y- axis, and a line to illustrate quantity.

• Always show increase or decrease – do not have different categories without some illustration.

- If you have multiple bar charts, ensure that they have the same scale.
- Start from 0.

PARTS OF A WHOLE CHARTS

1. Internet Explorer	33	29.73%
2. Chrome	32	28.83%
3. Firefox	24	21.62%
4. Safari	17	15.32%
5. Android Browser	4	3.60%
6. Safari (in-app)	1	0.90%

- Pie charts are the subject of a lot of negative comment
 - The main reason is that their descriptive power is based on our ability to interpret differences in angle
- Pie charts are useful when:
 - We have a small number of categories (< 8)
 - The values sum to a meaningful whole
 - The differences are coarse
- "We cannot easily rank categories when using a pie chart " Stephen Few

Nightingale Rose Charts

Nightingale Rose Charts

- Nightingale Rose Charts are drawn on a polar coordinate grid.
- Each category or interval in the data is divided into **equal segments** on this radial chart.
- How far each segment extends from the centre of the polar axis depends on the value it represents.
- So each ring from the centre of the polar grid can be used as a scale to plot the segment size and represent a higher value.
- Therefore, it's important to notice with Nightingale Rose Charts that it's the area, rather than the radius of a segment that represents its value.

Rose Charts

Doughnut Chart

Doughnut Chart

 Sections within a Donut Chart may be hard to compare to each other

- Use of Donut Chart
 - Compare an individual section to the whole Part of a whole -> must add up to 100% No more than six categories.

Tree Map

Billion-Dollar-O-Gram

Treemaps

- Treemaps were originally designed to handle hierarchical structures such as disk drives – but can be used for non-hierarchical data
- Treemaps rely on a tiling algorithm to figure out how to position the rectangles
- For more:
 - TreeMap page by Ben Schneiderman (TreeMap Pioneer): <u>http://www.cs.umd.edu/hcil/treemap-history/index.shtml</u>
 - Early paper on TreeMaps: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isNumber=4467&arNumber=175815&isnumber=4467&arnumber=175815

MULTI DISTRIBUTION COMPARISONS

Aggregate Values

Aggregate Values

Six Nation Points

Points Scored by Country

Multiple box plots are a great way to show multiple distributions

Overlaid Histograms

Overlaid Histograms

Back-to-Back Histograms

Beware of Stacked Histograms

Don't Forget Small Multiples

How good is "good"?

On a scale of 0 to 10, where 0 is 'very negative' and 10 is 'very positive', general, how positive or negative would the following word/phrase be to someone when you used it to describe something?

Conclusions

- We often need to create visualisations to compare values
- There are a range of ways to do this
- Key things to keep in mind are:
 - Are you comparing values or proportions?
 - Are you comparing single values or distributions?
 - Are you comparing across one or many dimensions?

Thanks To

 Marisa Llorens-Salvador, John McAuley, Colman McMahon and Brian Mac Namee for an earlier version of these lecture notes