目录

2016 年春季学期数学物理方法期末考试试卷	1
2015 年秋季学期数学物理方法期末考试试卷	3
2015 年春季学期数学物理方法期末考试试卷	5
2014 年秋季学期数学物理方法期末考试试卷	7
2014 年春季学期数学物理方法期末考试试卷	9
2013 年秋季学期数学物理方法期末考试试卷	11
2013 年春季学期数学物理方法期末考试试卷	13
2012 年秋季学期数学物理方法期末考试试卷	15
2016年春季学期数学物理方法期末考试试卷参考答案	17
2015年秋季学期数学物理方法期末考试试卷参考答案	19
2015年春季学期数学物理方法期末考试试卷参考答案	22
2014年秋季学期数学物理方法期末考试试卷参考答案	24
2014年春季学期数学物理方法期末考试试卷参考答案	26
2013年秋季学期数学物理方法期末考试试卷参考答案	29
2013年春季学期数学物理方法期末考试试卷参考答案	30
2012年秋季学期数学物理方法期末考试试卷参考答案	32

ii 目录

2016 年春季学期数学物理方法期末考试试卷(A 卷)

一、选择题(共 6 题, 每题 3 分, 共 18 分)

1. 己知
$$z = \frac{\sqrt{2}}{2}(1-i)$$
, 则 $z^{100} + z^{50} + 1$ 的值是()

- 2. 下列关于复对数函数 w = Ln z 的说法正确的是 ()
 - A. $\operatorname{Ln} z^n = n \operatorname{Ln} z$.
 - B. $\operatorname{Ln} z_1 z_2 = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$.
 - C. 若 z = x 为实数,则 $\operatorname{Ln} z = \operatorname{Ln} x = \operatorname{ln} x$.
 - D. $\operatorname{Ln} z^{\frac{1}{n}} = \frac{1}{n} \operatorname{Ln} z$.
- 3. 设函数 f(z) 在区域 D 内解析, 则与 f(z) = 常数不等价的是 (

A.
$$f'(z) \equiv 0$$
. B. $\operatorname{Re} f(z) \equiv \operatorname{Im} f(z)$. C. $\overline{f(z)}$ 解析. D. $|f(z)| \equiv 常数$.

- 4. 函数 f(z) 在单连通区域 D 内解析是 f(z) 沿 D 内任一围线积分为零的 ()
 - A. 充分条件. B. 必要条件. C. 充要条件. D. 既非充分也非必要条件.
- 5. 设幂级数 $\sum_{n=0}^{+\infty} a_n z^n$ 的收敛半径是 R > 0, 则该级数(

A. 在
$$|z| \le R$$
 上收敛. B. 在 $|z| \le \frac{R}{2}$ 上一致收敛.

C. 在
$$|z| < R$$
 上一致收敛. D. 在 $|z| \le R$ 上绝对收敛.

6. 己知
$$f(x)$$
 的傅里叶变换 $F(\lambda) = \mathbb{F}[f(x)] = \int_{-\infty}^{+\infty} f(x) \mathrm{e}^{-\mathrm{i}\lambda x} \, \mathrm{d}x$, 则 $\mathbb{F}[f(x) \sin \lambda_0 x] = ($

A.
$$\frac{\mathrm{i}}{2}[F(\lambda + \lambda_0) - F(\lambda - \lambda_0)].$$
 B. $\frac{\mathrm{i}}{2}[F(\lambda + \lambda_0) + F(\lambda - \lambda_0)].$

C.
$$\frac{1}{2}[F(\lambda + \lambda_0) - F(\lambda - \lambda_0)].$$
 D. $\frac{1}{2}[F(\lambda + \lambda_0) + F(\lambda - \lambda_0)].$

二、填空题(共6题,每题3分,共18分)

1.
$$\sum_{n=1}^{\infty} \frac{z^n}{3^n + (-1)^n i}$$
 的收敛半径是______.

4. Res
$$\left(\frac{2z}{3+z^2},\infty\right) = \underline{\hspace{1cm}}$$
.

5. 解析变换 $w = e^{iz^2}$ 在点 z = i 处的伸缩比为

6. 设
$$f(x)$$
 为连续函数, $a > 0$, 则积分 $\int_{-\infty}^{+\infty} \delta(ax - x_0) f(x) dx = ______.$

三、计算与证明题(共 5 题, 每题 6 分, 共 30 分)

- 1. 函数 $f(z) = (x^2 y^2 x) + i(2xy y^2)$ 在何处可导? 何处解析?
- 2. 把函数 $f(z) = \frac{1}{z(i-z)}$ 在 0 < |z| < 1 和 0 < |z-i| < 1 内分别展成洛朗级数.
- 3. 计算积分 $\int_0^{+\infty} \frac{x^2}{x^4 + 1} dx$.
- 4. 试证明若 a 为 f(z) 的 n 阶零点, 则 $\operatorname{Res}\left(\frac{f'(z)}{f(z)},a\right)=n.$
- 5. 简述孤立奇点的分类及分类依据.

四、应用题(共4题,共34分)

1. (10 分) 用分离变量法求解如下拉普拉斯方程的边值问题

$$\begin{cases} u_{xx} + u_{yy} = 0, & (0 < x < a, 0 < y < b) \\ u(0, y) = 0, u(a, y) = 0, \\ u(x, 0) = 0, u(x, b) = \varphi(x). \end{cases}$$

2. (10 分) 用行波法求解如下波动方程的初值问题

$$\begin{cases} u_{xx} + 2u_{xy} - 3u_{yy} = 0, & (-\infty < x < +\infty, y > 0) \\ u(x, 0) = \sin x, & \\ u_y(x, 0) = 0. & \end{cases}$$

提示: 先作变量替换 $\xi = x + y, \eta = 3x - y$.

3. (10 分) 利用拉普拉斯变换求解常微分方程

$$\begin{cases} y''(t) + y(t) = 4, \\ y(0) = A, y'(0) = B, \end{cases}$$

其中 A 和 B 均为常数.

4. $(4 \ \mathcal{G})$ 有一长为 l 的细杆, 侧面绝热, 左端保持 0 度, 右端绝热. 杆的初始温度为 $\varphi(x)$. 写出杆上各点的温度 u 所满足的定解问题. (无需求解)

2015 年秋季学期数学物理方法期末考试试卷(A 卷)

一、选择题(共 5 题, 每题 3 分, 共 15 分)

1. 若 $a \neq 0$ 且 $a \neq \infty$, 下列关于 ∞ 的性质错误的是	彦 ()
---	-----	---

A.
$$\infty + a = \infty$$
. B. $\infty \cdot a = \infty$. C. $\frac{a}{0} = \infty$. D. $\infty + \infty = \infty$.

- 2. 下列说法正确的是(
 - A. 若 f(z) = u + iv 在一点满足柯西-黎曼条件, 则在该点可微.
 - B. 若 $\overline{f(z)}$ 为解析函数, 则 $f(\overline{z})$ 也必解析.
 - C. 若 f(z) = u + iv 解析, 则 f(z) = v + iu 也解析.
 - D. $\sin z$ 是有界的整函数.

3.
$$z\cos\frac{1}{z}$$
 以 $z=0$ 为 ()

- A. 可去奇点. B. 极点. C. 本性奇点. D. 非孤立奇点.
- 4. 下列说法错误的是()
 - A. 若 ∞ 为 $\cos z$ 的本性奇点.
 - B. 若 a 为 f(z) 的 n 阶极点, 则 $\operatorname{Res}\left(\frac{f'(z)}{f(z)},a\right)=n.$
 - C. 设 f(z) 在区域 D 内解析且 $f'(z) \neq 0$, 则 f(z) 不一定为单叶函数.
 - D. 设 f(z) 在复平面上解析且在 |z| < 1 内 $f(z) \equiv 0$, 则在复平面上 $f(z) \equiv 0$.
- 5. 下列关于 f(x) 的傅里叶变换 $F(\lambda) = \mathbb{F}[f(x)]$ 的叙述错误的是(

A.
$$F(\lambda) = \int_{-\infty}^{+\infty} f(x) e^{-i\lambda x} dx$$
.

B.
$$\mathbb{F}[f^{(n)}(x)] = (\mathrm{i}\lambda)^n \mathbb{F}[f(x)].$$

C.
$$\mathbb{F}[f(x) + g(x)] = \mathbb{F}[f(x)] + \mathbb{F}[g(x)]$$
. D. $\mathbb{F}[f(x)g(x)] = F[f(x)] \cdot F[g(x)]$.

D
$$\mathbb{F}[f(x)a(x)] = F[f(x)] \cdot F[a(x)]$$

二、填空题(共7题,每题3分,共21分)

- 1. 8 的所有三次方根是____.

3.
$$\sum_{n=1}^{\infty} \frac{z^n}{[3+(-1)^n]^n}$$
 的收敛半径是_____.

- 4. $\int_C \overline{z} \, dz = ____,$ 其中 C 是从 -1 到 1 的上半单位圆周.
- 5. $\oint_C \frac{z}{(z-1)(z-2)^2} dz = \underline{\qquad}, \text{ \sharp \mathbb{P} $C: $|z-2| = \frac{1}{2}$.}$
- 6. Res $\left(e^{\frac{1}{z-1}}, \infty\right) =$ _____.
- 7. 若一光滑曲线在过 $1+{\rm i}$ 处的切线与 x 轴正向的夹角是 $\frac{\pi}{6}$, 则经过变换 $w=u+{\rm i}v=z^2$ 后其像曲线在 $(1+{\rm i})^2$ 处与 u 轴正向的夹角是_____.

三、计算及简述题(共 4 题, 每题 6 分, 共 24 分)

- 1. 试求以 v = 4xy 为虚部的解析函数 f(z) = u + iv, 并且满足 f(0) = 1.
- 2. 把函数 $f(z) = \frac{1}{(z-2)(z-3)}$ 在 2 < |z| < 3 和 0 < |z-2| < 1 内分别展成洛朗级数.
- 3. 计算积分 $\int_0^{2\pi} \frac{\mathrm{d}\theta}{2-\sin\theta}$.
- 4. 从下列定理中任选两个, 简述其内容.

 - (1) 柯西积分定理 (2) 模的最大值原理 (3) 刘维尔定理

- (4) 莫雷拉定理
- (5) 幂级数的阿贝尔定理 (6) 留数定理

四、应用题(共4题,共40分)

- 1. $(12 \, \text{分})$ 设有一长为 l 的均匀弦, 两端固定, 作自由振动. 已知弦上各点的初始位移为 $\sin \frac{2\pi x}{l}$, 初始 速度为 $\sin \frac{3\pi x}{l}$.
 - (1) 写出弦上各点的位移 u 所满足的定解问题;
 - (2) 求解此定解问题.
- 2. (8 分) 求解如下热传导方程的半无界问题

$$\begin{cases} u_t = a^2 u_{xx}, & (0 < x < +\infty, t > 0) \\ u(x,0) = \psi(x), & (0 \le x < +\infty) \\ u_x(0,t) = 0. & (t \ge 0) \end{cases}$$

提示: 热传导方程初值问题的解为 $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-4a^2t}^{+\infty} \varphi(\xi) e^{-\frac{(\xi-x)^2}{4a^2t}} d\xi$.

3. (10 分) 用行波法求解如下波动方程的初值问题

$$\begin{cases} u_{tt} - u_{xx} = 0, & (-\infty < x < +\infty, t > 0) \\ u(x, 0) = \sin x, \\ u_t(x, 0) = x^2. \end{cases}$$

提示: 先作变量替换 $\xi = x - t, \eta = x + t$, 化简方程.

4. (10 分) 利用拉普拉斯变换求解常微分方程

$$\begin{cases} x''(t) - x(t) = e^{2t}, \\ x(0) = 0, x'(0) = 1. \end{cases}$$

2015 年春季学期数学物理方法期末考试试卷(A 卷)

一、选择题(每题 3 分, 共 18 分)

- 1. 下列各命题中, 正确的是()
 - A. 复数域上, \sqrt{z} 是多值函数.
 - B. 复数域上, ezi 是以 2πi 为周期的解析函数.
 - C. 存在不是常函数的有界整函数.
 - D. 变换 $f(z) = \frac{z-1}{z+1}$ 在原点处的旋转角为 $\frac{\pi}{2}$.
- 2. 设 C 是围线 |z| = 1, 则下列哪个积分值为零. ()

$$\text{A.} \int_C \frac{\mathrm{d}z}{z}. \quad \text{B.} \int_C \frac{|\,\mathrm{d}z|}{|z|}. \quad \text{C.} \int_C \frac{\mathrm{d}z}{|z|}. \quad \text{D.} \int_C \frac{\mathrm{d}z}{\sin z}.$$

- 3. 下列哪一个结论是正确的()
 - A. 如果 $u \neq v$ 的共轭调和函数, 则 v 也是 u 的共轭调和函数.
 - B. 如果 u 和 v 在原点的偏导数均存在, 且满足柯西-黎曼条件, 则 f(z) = u + iv 在原点可导.
 - C. 设 f(z) 在 |z| < 1 上解析, 且在该区域上有无穷多个零点, 则 $f(z) \equiv 0$.
 - D. 如果 a 是解析函数 f(z) 的 4 阶零点, 则 a 必是 $\frac{f'(z)}{f(z)}$ 的 1 阶极点.
- 4. z = 0 是函数 $\frac{1}{\cos \frac{1}{z}}$ 的 ()
 - A. 可去奇点. B. 非孤立奇点. C. 极点. D. 本性奇点.
- 5. 偏微分方程 $u_t = u_{xx}$ 可以用来表示 ()
 - A. 弦的横向振动. B. 杆的纵向振动. C. 均匀细杆上的热量传导. D. 拉普拉斯方程.
- 6. 记 f(x) 的傅里叶变换为 $\mathbb{F}[f(x)] = F(\lambda)$, 形式上, 下列哪一个结论是错误的. ()

A.
$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}^1} F(\lambda) e^{i\lambda x} d\lambda$$
. B. $\mathbb{F}[3f(x)] = 3\mathbb{F}[f(x)]$.

C. $\mathbb{F}[f^{(2015)}(x)] = (i\lambda)^{2015} \mathbb{F}[f(x)].$ D. $\mathbb{F}[f(x)g(x)] = \mathbb{F}[f(x)] \mathbb{F}[g(x)].$

- 二、填空题(每题3分,共18分)
 - 1. 方程 $e^z = 1 + \sqrt{3}i$ 的解为 z = .

- 2. 幂级数 $\sum_{n=0}^{+\infty} (2+(-1)^n)^n z^n$ 的收敛半径 R=_____. 3. 积分 $\int_C \overline{z} \, \mathrm{d}z =$ _____, 其中 C 为从 0 到 $1+\mathrm{i}$ 的直线段.
- 4. 以 2y 为虚部的解析函数是______
- 5. 积分 $\int_{|z|=n} \tan(\pi z) dz =$ _______,其中 n 为正整数.
- 6. 一个偏微分方程定解问题是适定的, 如果该问题的解具有存在性、唯一性和

三、计算、陈述题(共 4 题, 每题 6 分, 共 24 分)

- 1. 讨论函数 $f(z) = x^2 x + iy^2$ 的可导性和解析性.
- 2. 将函数 $f(z) = \frac{1}{2-3z+z^2}$ 在 |z| < 1 内展成幂级数, 在 1 < |z| < 2 内展成罗朗级数.
- 3. 计算复积分 $\int_{-\infty} \frac{1}{1-z} e^{\frac{1}{z}} dz$.
- 4. 写出教材上的任意两个定理的内容.

四、应用题(共3题,共36分)

- 1. (10 分)长为 1 的均匀细杆,侧面绝热,无热源,左端点保持在零度,右端点绝热,初始温度分布为 $\sin \frac{\pi x}{2}$.
 - (1) 列出该细杆所满足的热传导方程、边值条件、初值条件.
 - (2) 用分离变量法解该问题.
- 2.(16分)解下列方程的初值问题

$$\begin{cases} u_{tt} = u_{xx}, & x \in R, t > 0, \\ u(x,0) = \varphi(x), & x \in R, \\ u_t(x,0) = 0, & x \in R. \end{cases}$$

并用图示标出区间[0,1]的决定区域、影响区域分别是什么?

3. (10 分) 用拉普拉斯变换法解下列常微分方程

$$\begin{cases} y''(t) = f(t), \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

五、证明题(4 分)设 ∞ 为 f(z) 的可去奇点, 且 $\lim_{z\to\infty} f(z) = A$, 证明:

$$\operatorname{Res}[f(z); \infty] = \lim_{z \to \infty} z(A - f(z)).$$

2014 年秋季学期数学物理方法期末考试试卷(A 卷)

一、选择题(每题 3 分, 共 18 分	拝拠(母拠 3	分, 开	18 分
----------------------	----------------	------	------

- 1. 下列各命题中, 正确的是()
 - A. $\arg z$ 是解析函数.
 - B. 设 C 为关于原点对称的光滑简单闭曲线, f(z) 是连续的偶函数, 则 $\int_C f(z) dz = 0$.
 - C. $\stackrel{\text{def}}{=} z \neq 0$ 时, $\text{Ln}(z^2) = 2 \text{Ln}(z)$.
 - D. f(z) 为整函数的充要条件是 $f(\bar{z})$ 也为整函数.
- 2. 设 C 是从原点到 1+i 点的直线段, 则 $\int_C |z| dz = ($).

A.
$$1 - i$$
 B. $1 + i$ C. $\frac{1 + i}{\sqrt{2}}$ D. $\frac{1 - i}{\sqrt{2}}$

- 3. 下列哪一个结论是错误的.()
 - (a) $\operatorname{Res}(f(z) + g(z), a) = \operatorname{Res}(f(z), a) + \operatorname{Res}(g(z), a)$.
 - (b) 若 f(z) 是偶函数, 且 0 是 f(z) 的孤立奇点, 则 Res(f(z), 0) = 0.
 - (c) 若 ∞ 是 f(z) 的可去奇点, 则 $\mathrm{Res}(f(z),\infty)=0$.
 - (d) 设 f(z) 在区域 D 上单叶解析, 则 $f'(z) \neq 0, \forall z \in D$.
- 4. 在无界的弦振动方程 $u_{tt} = u_{xx}$ 中, u(x,t) 在 (x,t) = (1,2) 处的依赖区间是 ().
 - A. [-1,3] B. [1,3] C. [1,2] D. [0,2].
- 5. 下列哪一个结论是错误的.()
 - (a) 设 0 是 f(z) 的 2 阶零点, g(z) 的 4 阶极点, 则 0 是 g(f(z)) 的 8 阶极点.
 - (b) 设 0 是 f(z) 的 3 阶零点, 则 0 是 $\frac{f'(z)}{f(z)}$ 的 1 阶极点.
 - (c) 设 0 是 f(z) 的极点, g(z) 的本性奇点, 则 0 是 f(z)g(z) 的本性奇点.
 - (d) 设 0 是 f(z) 的本性奇点, 也是 g(z) 的本性奇点, 则 0 是 f(z) + g(z) 的本性奇点.
- 6. 记 f(x) 的傅里叶变换为 $\mathbb{F}[f(x)] = F(\lambda)$, 下列哪一个结论是错误的. (
 - $\mathrm{A.}\ \mathbb{F}[\delta(x-1)] = \mathrm{e}^{-\mathrm{i}\lambda}. \qquad \quad \mathrm{B.}\ \mathbb{F}[f(x) * g(x)] = \mathbb{F}[f(x)] \cdot \mathbb{F}[g(x)].$
 - C. $\mathbb{F}[f'(x)] = i\lambda \mathbb{F}[f(x)]$. D. $\mathbb{F}[f(2x)] = 2F(2\lambda)$.

二、填空题(每题3分,共18分)

- 1. 若幂级数 $\sum_{n=0}^{+\infty} a_n z^n$ 的和函数是 $1-z-z^2$, 则该幂级数的收敛半径 R =______.
- 2. 若变换 $f(z)=\mathrm{e}^{\mathrm{i}\theta}\frac{z-1}{z+1}$ 在 z=1 处的旋转角为 $\frac{\pi}{2}$, 则 $\theta=$ ______.
- 3. $f(z) = \frac{z^6 + 1}{(1 + z^2)^2 (z + 2)^3}$ 在 ∞ 处的留数为_____.
- 4. u = xy 的共轭调和函数是_____
- 5. 计算积分 $\frac{1}{2\pi i} \int_{|z|=7} \frac{z}{1-\cos z} dz =$ ______.
- 6. 设 0 是 f(z) 的 2015 阶极点, 则 $\operatorname{Res}\left(\frac{f'(z)}{f(z)},0\right) =$ ______.

三、计算、陈述题(共4题,每题6分,共24分)

- 1. 将函数 $f(z) = \frac{1}{(3-z)(2-z)}$ 在 |z| < 2 内展成幂级数, 在 0 < |z-3| < 1 内展成罗朗级数.
- 2. 函数 $f(z) = \frac{1}{\sin \frac{1}{z}}$ 的奇点有哪些? 各是什么类型的奇点?
- 3. 计算实积分 $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^3}$.
- 4. 写出至少 3 种判别函数 f(z) 在单连通区域 D 上解析的方法.

四、应用题(共 4 题, 每题 10 分, 共 40 分)

1. 用分离变量法求解下面的混合问题

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < l, t > 0, \\ u(0,t) = u(l,t) = 0, & t \ge 0, \\ u(x,0) = \sin \frac{\pi x}{l}, u_t(x,0) = \sin \frac{\pi x}{l}, & 0 \le x \le l. \end{cases}$$

2. 用达朗贝尔方法解下列弦振动方程的初值问题

$$\begin{cases} u_{tt} = u_{xx}, & x \in R, t > 0, \\ u(x,0) = \varphi(x), & x \in R, \\ u_t(x,0) = \psi(x), & x \in R. \end{cases}$$

3. 解下列问题的特征值及相应的特征函数

$$\begin{cases} x''(t) + \lambda x(t) = 0, \\ x'(0) = x'(1) = 0. \end{cases}$$

4. 用拉普拉斯变换法解下列积分方程

$$y(t) = \cos t + \int_0^t y(s)\sin(t-s)\,\mathrm{d}s.$$

2014 年春季学期数学物理方法期末考试试卷(A 卷)

一、判断题(共6题,每题2分,共12分)

1. 若二元函数 u(x,y) 和 v(x,y) 可微, 则 $f(z) = u + \mathrm{i} v$ 可导.

 $2. f(z) = e^z$ 为周期函数. ()

3. 若 f(z) 与 $\overline{f(z)}$ 同为区域 D 内的解析函数, 则 f(z) 在 D 内必为常数. ()

4. $f(z) = \sin^{-1} \frac{1}{z}$ 以 z = 0 为本性奇点. ()

5. 对 $z \neq 0$, 我们有 $\text{Ln}(z^2) = 2 \text{Ln} z$. ()

6. 若级数 $\sum_{n=1}^{\infty} f_n(z)$ 在区域 D 上内闭一致收敛, 则该级数在 D 上必一致收敛. ()

二、填空题(共6题,每题3分,共18分)

1. -2 - i2√3 的指数形式是 .

2. Ln(1-i) =_____.

3. $\operatorname{Res}\left(\frac{\mathrm{e}^z}{z^n},0\right) =$ (其中 n 为自然数).

4. Res $\left(\frac{e^z}{z^2-1},\infty\right) = \underline{\hspace{1cm}}$.

5. $\sum_{n=1}^{\infty} 2^n z^{2n}$ 的收敛半径是______.

6. 解析变换 $f(z) = (1 + \sqrt{3}i)z + 2 - i$ 在 z = 1 处的旋转角是

三、计算与证明题(共 5 题, 每题 6 分, 共 30 分)

1. 已知 $u(x,y)=x^2-y^2+xy$, 证明 u(x,y) 为调和函数并求以 u 为实部的解析函数 f(z).

2. 计算积分 $\int_C (x^2 + iy) dz$, 其中 C 是从原点沿抛物线 $y = x^2$ 到 1 + i.

3. 把函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 |z| < 1 和 0 < |z-1| < 1 内分别展成罗朗(或泰勒)级数.

4. 设 f(z) 在区域 D 内解析, C 为 D 内任一围线, 证明:对在 D 内但不在 C 上的任一点 z_0 , 等式

$$\oint_C \frac{f'(z)}{z - z_0} \, \mathrm{d}z = \oint_C \frac{f(z)}{(z - z_0)^2} \, \mathrm{d}z$$

成立.

5. 计算实积分 $\int_0^{+\infty} \frac{x^2}{1+x^4} dx$.

四、应用题(共4题,每题10分,共40分)

- 1. 设有一长为 l 的弹性弦, 两端固定, 弦上各点的初始位移为 $\sin \frac{\pi x}{l}$, 初始速度为 $\sin \frac{3\pi x}{l}$. 试写出弦上各点的位移 u(x,t) 所满足的定解问题并求解.
- 2. 求解热传导方程的初值问题

$$\begin{cases} u_t = a^2 u_{xx}, & (-\infty < x < +\infty, t > 0) \\ u(x, 0) = \varphi(x), & (-\infty < x < +\infty). \end{cases}$$

3. 利用行波法求解初值问题

$$\begin{cases} u_{xx} + 2u_{xt} - 3u_{tt} = 0, & (-\infty < x < +\infty, t > 0) \\ u(x,0) = \varphi(x), & (-\infty < x < +\infty) \\ u_t(x,0) = \psi(x), & (-\infty < x < +\infty). \end{cases}$$

提示: 首先作变量替换 $\xi = x - \frac{t}{3}, \eta = x + t$, 化简方程并求通解.

4. 利用拉普拉斯变换求解常微分方程

$$\begin{cases} y''(t) + y(t) = t, \\ y(0) = 0, y'(0) = -2. \end{cases}$$

提示: 拉普拉斯变换 $L(p) = \int_0^{+\infty} f(t) e^{-pt} dt$.

2013 年秋季学期数学物理方法期末考试试卷(A 卷)

一、判	判断题	(正确的划	"√"	,错误的划	"×"	. 共 6	题, 每题	2 分	,共 12	分)
-----	-----	-------	-----	-------	-----	-------	-------	-----	-------	----

 $1. \ f(z) = \mathrm{e}^{\mathrm{i} z}$ 是以 2π 为周期的解析函数.

2. 有界区域 D 上的解析函数 f(z) 一定是有界的函数.

3. 如果 f(z) 和 $\overline{f(z)}$ 都是区域 D 上的解析函数, 则 f(z) 必是常函数.

4. 若级数 $\sum_{n=1}^{\infty} a_n z^n$ 在 z=i 处收敛, 则该级数必在 z=1 处也收敛.

6. 无穷远点 ∞ 是 $f(z) = \frac{1}{\sin z}$ 的本性奇点.

二、填空题(每空 3 分, 共 18 分)

1. 当 |z|<1 时,成立等式 $f(z)=rac{1}{2\pi \mathrm{i}}\int_{|\xi|=1}rac{\xi^2}{\xi-z}\,\mathrm{d}\xi$,则导函数 f'(z)=______.

2. 若 $u(x,y) = x^2 + ay^2$ 是调和函数,则 $a = _____.$

3. 称定解问题是适定的, 是指这个定解问题的解存在, 唯一且_____.

4. $f(z) = \frac{z^2}{(1 - \cos z)\sin z}$ 在 z = 0 处的留数是______.

5. $f(z) = \frac{z}{z^2 - 2z + 2}$ 在 ∞ 处的留数是______.

6. 积分 $\int_C |z| \, \mathrm{d}z =$ _________,其中曲线 C 是从 $-\mathrm{i}$ 到 i 的右半单位圆周.

三、计算、概述题(共4题,共30分)

1. (6 分) 计算实积分 $\int_{-\pi}^{\pi} e^{\cos \theta} \cos(\sin \theta) d\theta$.

2. $(8\ eta)$ 将函数 $f(z) = \frac{1}{1-z}$ 在 |z+1| < 2 上展成幂级数, 在 1 < |z| 上展成洛朗级数.

3. (8 分) f(z) 的孤立奇点 a 可以分为哪几类? 如何判定它们?

4. (8分)请写出本教材上的定理(任选两个,写出定理及其内容,不用证明).

四、应用题(共 4 题, 每题 10 分, 共 40 分)

1. 用分离变量法求解下列热传导方程的混合问题

$$\begin{cases} u_t - a^2 u_{xx} = 0, & (t > 0, x \in (0, l)), \\ u(0, t) = u(l, t) = 0, & (t \ge 0), \\ u(x, 0) = \sin \frac{\pi x}{l}, & (x \in [0, l]). \end{cases}$$

2. 已知下列的非齐次弦方程的初值问题

$$\begin{cases} u_{tt} = u_{xx} - \sin x, & x \in R, t > 0, \\ u(x,0) = 0, & x \in R, \\ u_t(x,0) = 0, & x \in R. \end{cases}$$

- (1) 令 $w = u + \sin x$, 写出 w 所满足的泛定方程和初值问题.
- (2) 用达朗贝尔方法解 (1) 中的 w, 进而求出 u.
- 3. 求解积分方程 $f(t)=\sin t+\int_0^t f(s)\sin(t-s)\,\mathrm{d}s.$ (本题不限定方法,可以选择拉普拉斯变换方法,(公式 $L[\sin t]=\frac{1}{p^2+1}$),也可以用微积分中的方法.)
- 4. (1) 写出傅里叶变换及逆变换的公式.
 - (2) 求 δ 函数的傅里叶变换.
 - (3) 写出傅里叶变换的至少 3 个性质.

2013 年春季学期数学物理方法期末考试试卷(A 卷)

—、	判断题	(正确的划	"√"	,错误的划	"×".	、共6颗。	、 毎颗 2 分	7. 共 12	分)

1. $u(x,y) = x^2y^2$ 是某个解析函数 f(z) = u(x,y) + iv(x,y) 的实部.

2. 常函数是唯一的一类有界整函数. ()

3. 分式线性变换具有保角性. ()

4. 当 $z \neq 0$ 时, $\operatorname{Arg}(z^2) = 2 \operatorname{Arg}(z)$.

5. 称定解问题是适定的, 是指这个定解问题的解存在、唯一且稳定. ()

6. 若 f(z) = u(x,y) + iv(x,y) 在一点满足柯西-黎曼条件, 则函数在该点可导.

二、填空题(每空3分,共18分)

1. 幂级数 $\sum_{n=0}^{+\infty} 2^n z^{2n}$ 的收敛半径 $R = _____,$ 和函数 $f(z) = ______.$

2. 变换 $f(z) = z^2$ 在 z = i 处的旋转角为

3. $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$ 在 ∞ 处的留数为_____.

4. z = 0 是 $f(z) = \frac{z^2}{(1 - \cos z^2) \sin z^3}$ 的_____ 阶极点.

5. 积分 $\int_{|z|=1} \frac{1}{\sin z^2} dz = ____.$

三、计算、证明题(共 5 题, 每题 6 分, 共 30 分)

1. 将函数 $f(z) = \frac{1}{(1-z)(2-z)}$ 在 |z| < 1 内展成幂级数, 在 0 < |z-1| < 1 内展成罗朗级数.

2. 计算实积分 $\int_{-\infty}^{+\infty} \frac{\cos x}{1+x^2} \, \mathrm{d}x.$

3. 设 f(z) 在区域 D 上解析, 且 |f(z)| 在 D 上是一常数, 证明 f(z) 在 D 上必为常函数.

4. 计算 $\int_C \operatorname{Re} z \, dz$ 之值, 其中 C 是连接原点到 1 点再到 1 + i 点的折线.

5. 求 $u = e^x \sin y$ 的共轭调和函数.

四、应用题(共 4 题, 每题 10 分, 共 40 分)

- 1. 有一根长为 l 的弦, 其两端被钉子钉紧, 作自由振动, 它的初始位移为 $\sin 3\pi x$, 初始速度为 0.
 - (1) 列出弦所满足的方程及定解条件;
 - (2) 解出该弦方程的付氏解.
- 2. 用达朗贝尔方法解下列弦振动方程的古尔萨问题

$$\begin{cases} u_{tt} = u_{xx}, & x \in R, t > 0, \\ u(x, x) = \sin 2x, & x \in R, \\ u(x, -x) = 2x, & x \in R. \end{cases}$$

3. 求解下列热传导方程的初值问题

$$\begin{cases} u_t = u_{xx}, & x \in R, t > 0, \\ u(x,0) = \varphi(x), & x \in R. \end{cases}$$

4. 用拉普拉斯变换法解下列常微分方程初值问题

$$\begin{cases} y'' + y = f(t), \\ y(0) = y'(0) = 0. \end{cases}$$

2012 年秋季学期数学物理方法期末考试试卷(A 卷)

一、计算题(共6题,每题4分,共24分)

- 1. 计算 $(1+\sqrt{3}i)(-\sqrt{3}-i)$.
- 2. 设 $z = r(\cos \theta + i \sin \theta)$, 求 $\frac{1}{z}$ 的三角表示.
- 3. 设 C 为原点到点 3+4i 的直线段, 求积分 $\int_C \frac{1}{z-i} dz$ 绝对值得一个上界.
- 4. 计算积分 $\int_C \sin z \, \mathrm{d}z$, 其中 C 是圆周 |z-1|=1 的上半周, 走向从 0 到 2.
- 5. 求积分值 $\oint_{|z-i|=1} \frac{\cos z}{(z-i)^3} dz$.
- 6. 求函数 $f(z) = \frac{e^{-z}}{z^2}$ 在 z = 0 处的留数.

二、计算及证明题(共 5 题, 每题 6 分, 共 30 分)

- 1. 求函数 $f(z) = \frac{2z^5 z + 3}{4z^2 + 1}$ 的解析性区域, 并求该区域上的导函数.
- 2. 已知调和函数 u = 2(x-1)y, 求解析函数 f(z) = u + iv, 使得 f(0) = -i.
- 3. 函数 $\frac{1}{\sin z}$ 有些什么奇点? 如果是极点, 指出它的阶.
- 4. 把函数 $\frac{1}{z}$ 表成形如 $\sum_{n=0}^{\infty} C_n(z-2)^n$ 的幂级数.
- 5. 求证: $f(z) = \arg z \ (z \neq 0)$ 在全平面除去原点和负实轴的区域上连续, 在负实轴上不连续.

三、应用题(共5题,每题8分,共40分)

- 1. 论述波动方程定解问题傅里叶解的物理意义
- 2. 给出波动方程 $\begin{cases} u_{tt} = 4u_{xx}, \ -\infty < x < +\infty, t > 0, \\ u(x,0) = \varphi(x), u_t(x,0) = \psi(x) \end{cases}$ 初值问题在点 (1,3) 的依赖区间、区间 [1,2] 的 决定区域、点 x = 5 的影响区域.
- 3. 求定解问题 $\begin{cases} u_{tt} a^2 u_{xx} = 0 \\ u_x(0,t) = 0, u_x(l,t) = 0, \\ u(x,0) = -2\varepsilon x + \varepsilon l, u_t(x,0) = 0 \end{cases}$ (0 < x < 1, t > 0) 的解.
- 4. 求函数 f(t) = 1 的傅氏变换.

5. 应用拉普拉斯变换, 求 y''(t) + 4y(t) = 0 满足初始条件 y(0) = -2, y'(0) = 4 的特解.

四、应用题(共 1 题, 每题 6 分, 共 6 分)

求解半无界弦的振动问题

$$\begin{cases} u_{tt} = a^2 u_{xx} & (0 < x < +\infty, t > 0), \\ u(0,t) = f(t), \lim_{x \to +\infty} u(x,t) = 0 & (t \ge 0), \\ u(x,0) = 0, u_t(x,0) = 0 & (0 \le x < +\infty), \end{cases}$$

其中 f(t) 为充分光滑的已知函数.

2016年春季学期数学物理方法期末考试试卷(A 卷)参考答案

—, 1. A 2. B 3. B 4. A 5. B 6. A.

$$\equiv$$
 1. 3. 2. $\frac{i-1}{3}$. 3. 0. 4. -2. 5. 2. 6. $\frac{1}{a}f\left(\frac{x_0}{a}\right)$.

三、

1. f(z) 在直线 $y=\frac{1}{2}$ 上可导; 处处不解析.

2.
$$0 < |z| < 1 \text{ ff}, f(z) = -\frac{\mathrm{i}}{z} - \sum_{n=0}^{+\infty} (-\mathrm{i})^n z^n; \ 0 < |z-\mathrm{i}| < 1 \text{ ff}, f(z) = \frac{\mathrm{i}}{z-\mathrm{i}} - \sum_{n=0}^{+\infty} \mathrm{i}^n (z-\mathrm{i})^n.$$

3.
$$\frac{\sqrt{2}}{4}\pi$$
.

四、

1.
$$u(x,y) = \sum_{n=1}^{+\infty} \left(C_n e^{\frac{n\pi y}{a}} + D_n e^{-\frac{n\pi y}{a}} \right) \sin \frac{n\pi x}{a}, \quad \sharp + C_n = \left(e^{\frac{n\pi b}{a}} - e^{-\frac{n\pi b}{a}} \right)^{-1} \frac{2}{a} \int_0^a \varphi(\xi) \sin \frac{n\pi \xi}{a} \, \mathrm{d}\xi,$$

$$D_n = -C_n.$$

2.
$$u(x,y) = \frac{3}{4}\sin\left(\frac{3x-y}{3}\right) + \frac{1}{4}\sin(x+y)$$
.

3.
$$y(t) = 4 + (A - 4)\cos t + B\sin t$$
.

4.

$$\begin{cases} u_t = a^2 u_{xx}, & 0 < x < l, t > 0, \\ u(0,t) = 0, u_x(l,t) = 0, & t \ge 0, \\ u(x,0) = \varphi(x), & 0 \le x \le l. \end{cases}$$

18 目录

2015年秋季学期数学物理方法期末考试试卷(A 卷)参考答案

-, 1. D 2. B 3. C 4. B 5. D.

二、1.
$$2,-1+\sqrt{3}$$
 i, $-1-\sqrt{3}$ i; 2. $ie^{-\frac{\pi}{2}-2k\pi}, k=0,\pm 1,\pm 2,\cdots$; 3. 2; 4. $-\pi$ i; 5. -2π i; 6. -1 (提示:利用洛朗展式先计算 $z=1$ 处的留数); 7. $\frac{5\pi}{12}$ (提示: $w'(t_0)=f'(z_0)z'(t_0)\Rightarrow \operatorname{Arg} w'(t_0)=\operatorname{Arg} f'(z_0)+\operatorname{Arg} z'(t_0)$).

- 1. 由 $u_x = v_y = 4x$ 推出 $u = 2x^2 + \varphi(y)$, 再由 $\varphi'(y) = u_y = -v_x = -4y$ 推出 $\varphi(y) = -2y^2 + C$. 所以 $f(z) = 2x^2 2y^2 + C + i4xy$. 由 f(0) = 1 得 C = 1, 所以 $f(z) = 2x^2 2y^2 + 1 + i4xy = 2z^2 + 1$.
- 2. 2 < |z| < 3 时,

$$f(z) = \frac{1}{z - 3} - \frac{1}{z - 2} = -\frac{1}{3} \frac{1}{1 - \frac{z}{3}} - \frac{1}{z} \frac{1}{1 - \frac{2}{z}} = -\frac{1}{3} \sum_{n=0}^{+\infty} \frac{z^n}{3^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{z^n}{z^n} = -\sum_{n=0}^{+\infty} \frac{z^n}{3^{n+1}} - \sum_{n=0}^{+\infty} \frac{z^n}{z^{n+1}};$$

当 0 < |z-2| < 1 时,

$$f(z) = \frac{1}{z - 2} \frac{1}{(z - 2) - 1} = \frac{-1}{z - 2} \sum_{n=0}^{+\infty} (z - 2)^n = -\sum_{n=0}^{+\infty} (z - 2)^{n-1} = -\sum_{n=-1}^{+\infty} (z - 2)^n.$$

3. 设
$$z = e^{i\theta}, 0 \le \theta \le 2\pi$$
, 则 $\sin \theta = \frac{z^2 - 1}{2iz}$, $d\theta = \frac{dz}{iz}$. 于是有

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2 - \sin\theta} = -2 \int_{|z|=1} \frac{\mathrm{d}z}{z^2 - 4\mathrm{i}z - 1} = -2 \int_{|z|=1} \frac{\mathrm{d}z}{[z - (2 + \sqrt{3})\mathrm{i}][z - (2 - \sqrt{3})\mathrm{i}]}$$
$$= -2 \times 2\pi\mathrm{i} \frac{1}{z - (2 + \sqrt{3})\mathrm{i}} \bigg|_{z = (2 - \sqrt{3})\mathrm{i}} = \frac{2\sqrt{3}}{3}\pi.$$

4. (2) 模的最大值原理: 若 f(z) 在闭区域 \overline{D} 解析, 且不为常数, 则 |f(z)| 只能在边界上达到最大值. 其余见教材.

四、

1. (1)
$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < l, t > 0, \\ u(0,t) = u(l,t) = 0, & t \ge 0, \\ u(x,0) = \sin \frac{2\pi x}{l}, u_t(x,0) = \sin \frac{3\pi x}{l}, & 0 \le x \le l. \end{cases}$$

(2) 设方程有变量分离形式的非零特解

$$u(x,t) = X(x)T(t).$$

将其代入泛定方程中得

$$X(x)T''(t) = a^2X''(x)T(t).$$

两边同除以 $a^2X(x)T(t)$ 得

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda.$$

可得两个常微分方程

$$T''(t) + \lambda a^2 T(t) = 0,$$

$$X''(x) + \lambda X(x) = 0.$$

将非零特解 u(x,t) = X(x)T(t) 代入边界条件中可得

$$X(0) = X(l) = 0.$$

求解特征值问题

$$\left\{ \begin{array}{l} X''(x) + \lambda X(x) = 0, \quad 0 < x < l, \\ X(0) = X(l) = 0, \end{array} \right.$$

得特征值和特征函数

$$\lambda = \lambda_n = \left(\frac{n\pi}{l}\right)^2, \quad X_n(x) = \sin\frac{n\pi x}{l}, \quad n = 1, 2, \dots$$

把特征值 λ_n 代入方程 $T''(t) + \lambda a^2 T(t) = 0$ 中, 注意到 $\lambda_n > 0$, 得其通解为

$$T_n(t) = C_n \cos \frac{n\pi at}{l} + D_n \sin \frac{n\pi at}{l},$$

其中 C_n, D_n 是任意常数. 于是可得对应于特征值 λ_n 的特解为

$$u_n(x,t) = X_n(x)T_n(t) = \left(C_n \cos \frac{n\pi at}{l} + D_n \sin \frac{n\pi at}{l}\right) \sin \frac{n\pi x}{l}, \quad n = 1, 2, \dots,$$

叠加所有变量分离形式的特解得

$$u(x,t) = \sum_{n=1}^{+\infty} u_n(x,t) = \sum_{n=1}^{+\infty} \left(C_n \cos \frac{n\pi at}{l} + D_n \sin \frac{n\pi at}{l} \right) \sin \frac{n\pi x}{l},$$

由

$$\sin\frac{2\pi x}{l} = \sum_{n=1}^{+\infty} C_n \sin\frac{n\pi x}{l}$$

得

$$C_2 = 1, C_n = 0, n = 1, 3, 4, \cdots$$

又由 $u_t(x,0) = \sin \frac{3\pi x}{l}$ 得

$$\sin\frac{3\pi x}{l} = \sum_{n=1}^{+\infty} \frac{n\pi a}{l} D_n \sin\frac{n\pi x}{l}.$$

由此可知

$$D_3 = \frac{l}{3\pi a}, D_n = 0, \ n = 1, 2, 4, 5, \cdots$$

所以

$$u(x,t) = \cos\frac{2\pi at}{l}\sin\frac{2\pi x}{l} + \frac{l}{3\pi a}\sin\frac{3\pi at}{l}\sin\frac{3\pi x}{l}.$$

2. 将初值 $\psi(x)$ 偶延拓为

$$\psi_e(x) = \begin{cases} \psi(x), & x \ge 0, \\ \psi(-x), & x < 0. \end{cases}$$

利用初值问题的解的公式, 当 $x \ge 0, t > 0$ 时有

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \psi_e(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi$$
$$= \frac{1}{2a\sqrt{\pi t}} \left[\int_{-\infty}^{0} \psi(-\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi + \int_{0}^{+\infty} \psi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi \right].$$

令 $\xi = -\eta$, 则有

$$\int_{-\infty}^{0} \psi(-\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi = \int_{0}^{+\infty} \psi(\eta) e^{-\frac{(x+\eta)^2}{4a^2t}} d\eta.$$

于是有

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_0^{+\infty} \psi(\xi) \left[e^{-\frac{(x+\xi)^2}{4a^2t}} + e^{-\frac{(x-\xi)^2}{4a^2t}} \right] d\xi.$$

3. 设

$$u(x,t) = f(x-t) + g(x+t).$$

把它代入初始条件中,得

$$f(x) + g(x) = \sin x,$$

$$-f'(x) + g'(x) = x^{2}.$$

对第二式积分得

$$-f(x) + g(x) = \frac{x^3}{3} + c,$$

其中 c 是一个任意常数. 从上面的两个关于 f 和 g 的函数方程中可以解出

$$f(x) = \frac{1}{2} \left(\sin x - \frac{x^3}{3} + c \right),$$

$$g(x) = \frac{1}{2} \left(\sin x + \frac{x^3}{3} + c \right).$$

所以

$$u(x,t) = \frac{1}{2}[\sin(x-t) + \sin(x+t)] + \frac{1}{6}[(x+t)^3 - (x-t)^3] = \sin x \cos t + x^2 t + \frac{t^3}{3}.$$

4. 对方程作拉普拉斯变换得

$$s^2 \hat{x}(s) - 1 - \hat{x}(s) = \frac{1}{s-2}$$
.

于是可得

$$\widehat{x}(s) = \frac{1}{s^2 - 1} + \frac{1}{(s^2 - 1)(s - 2)} = \frac{1}{(s + 1)(s - 2)} = \frac{1}{3} \left(\frac{1}{s - 2} - \frac{1}{s + 1} \right).$$

作逆变换得

$$x(t) = \frac{1}{3} \left(e^{2t} - e^{-t} \right).$$

2015年春季学期数学物理方法期末考试试卷(A卷)参考答案

-, 1. A 2. C 3. D 4. B 5. C 6. D.

$$\exists$$
 1. $\ln 2 + i(\pi/3 + 2k\pi), k = 0, \pm 1, \pm 2, \dots;$ 2. $1/3;$ 3. 1;

4.
$$2x + c + i2y$$
, c 为任意实数;

三、

1. 设
$$f(z) = u(x,y) + iv(x,y)$$
. 由 $f(z) = x^2 - x + iy^2$ 可得

$$u(x, y) = x^2 - x$$
, $v(x, y) = y^2$.

计算得

$$u_x = 2x - 1, u_y = 0, v_x = 0, v_y = 2y.$$

显然这四个一阶偏导数都连续, 故 u(x,y) 和 v(x,y) 处处可微. 但只有当 x-y=1/2 时, C-R 方程 $u_x=v_y,u_y=-v_x$ 才成立. 所以 f(z) 只在直线 x-y=1/2 上可导. 根据解析点的定义, 直线 x-y=1/2 上的点都不是解析点, 所以 f(z) 无解析点.

2.
$$f(z) = \frac{1}{2 - 3z + z^2} = \frac{1}{(z - 1)(z - 2)}$$
. 当 $|z| < 1$ 时, $f(z) = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n$; 当 $1 < |z| < 2$ 时, $f(z) = -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{+\infty} \frac{1}{z^n}$. 具体展开过程见教材.

3. 因为
$$\operatorname{Res}\left[\frac{1}{1-z}e^{\frac{1}{z}};\infty\right] = -\lim_{z\to\infty}\frac{z}{1-z}e^{\frac{1}{z}} = 1$$
,所以

$$\int_{|z|=2} \frac{1}{1-z} \mathrm{e}^{\frac{1}{z}} \, \mathrm{d}z = 2\pi \mathrm{i} \, \left(\mathrm{Res} \left[\frac{1}{1-z} \mathrm{e}^{\frac{1}{z}}; 0 \right] + \mathrm{Res} \left[\frac{1}{1-z} \mathrm{e}^{\frac{1}{z}}; 1 \right] \right) = -2\pi \mathrm{i} \, \mathrm{Res} \left[\frac{1}{1-z} \mathrm{e}^{\frac{1}{z}}; \infty \right] = -2\pi \mathrm{i}.$$

四、

1.

$$\begin{cases} u_t = a^2 u_{xx}, & x \in (0,1), t > 0, \\ u(0,t) = u_x(1,t) = 0, & t \ge 0, \\ u(x,0) = \sin \frac{\pi x}{2}, & x \in [0,1]. \end{cases}$$

设 u(x,t) = X(x)T(t), 把它代入方程中得

$$X(x)T'(t) = a^2X''(x)T(t),$$

即有

$$\frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda.$$

由此得到两个常微分方程

$$T'(t) + \lambda a^{2}T(t) = 0,$$

$$X''(x) + \lambda X(x) = 0.$$

再利用边界条件可得

$$X(0)T(t) = X'(1)T(t) = 0.$$

因为 $T(t) \neq 0$, 故必有

$$X(0) = X'(1) = 0.$$

求解特征值问题

$$\left\{ \begin{array}{l} X''(x) + \lambda X(x) = 0, \quad 0 < x < 1, \\ X(0) = X'(1) = 0. \end{array} \right.$$

可得特征值和特征函数为

$$\lambda_n = \left[\left(n + \frac{1}{2} \right) \pi \right]^2, \quad X_n(x) = \sin \left(n + \frac{1}{2} \right) \pi x, \qquad n = 0, 1, 2, \cdots.$$

由 $T'_n(t) + \lambda_n a^2 T_n(t) = 0$ 可得

$$T_n(t) = C_n e^{-\lambda_n a^2 t}$$

于是叠加所有变量分离形式的特解得

$$u(x,t) = \sum_{n=0}^{+\infty} C_n e^{-\lambda_n a^2 t} \sin\left(n + \frac{1}{2}\right) \pi x.$$

利用初始条件有

$$\sin\frac{\pi x}{2} = \sum_{n=0}^{+\infty} C_n \sin\left(n + \frac{1}{2}\right) \pi x.$$

比较两端系数可得 $C_0 = 1, C_n = 0, n = 1, 2, \cdots$. 所以有

$$u(x,t) = e^{-\frac{\pi^2}{4}a^2t} \sin \frac{\pi x}{2}.$$

2. 设 u(x,t) = f(x-t) + g(x+t), 代入初始条件得

$$f(x) + g(x) = \varphi(x), -f'(x) + g'(x) = 0,$$

即

$$f(x) + g(x) = \varphi(x), \quad -f(x) + g(x) = c.$$

由此得

$$f(x) = \frac{1}{2}\varphi(x) - \frac{c}{2}, \quad g(x) = \frac{1}{2}\varphi(x) + \frac{c}{2}.$$

代回通解形式得 $u(x,t) = \frac{1}{2} [\varphi(x+t) + \varphi(x-t)].$

以点 (0,0), (1,0) 和 (1/2,1/2) 为顶点的三角形区域为区间 [0,1] 的决定区域,过点 (0,0) 的直线 t=-x 和过点 (1,0) 的直线 t=x-1 以及区间 [0,1] 所围的区域为区间 [0,1] 的影响区域.

- 3. 做拉普拉斯变换得 $s^2\widehat{y}(s)=\widehat{f}(s)$, 即 $\widehat{y}(s)=\frac{\widehat{f}(s)}{s^2}$. 于是由拉普拉斯变换的卷积性质可得 $y(t)=\int_0^t (t-\tau)f(\tau)\,\mathrm{d}\tau$.
- 五、设 f(z) 在 ∞ 的空心解析邻域内的洛朗展式为

$$f(z) = \dots + \frac{c_{-n}}{z^n} + \dots + \frac{c_{-2}}{z^2} + \frac{c_{-1}}{z} + c_0.$$

由此可知 $\lim_{z\to\infty}f(z)=c_0$. 而由 $\lim_{z\to\infty}f(z)=A$ 可知 $A=c_0$, 所以

$$z(A-f(z)) = \cdots - \frac{c_{-n}}{z^{n-1}} - \cdots - \frac{c_{-2}}{z} - c_{-1}.$$

由此可知 $\lim_{z\to\infty} z(A-f(z)) = -c_{-1}$. 这就证明了 $\operatorname{Res}[f(z);\infty] = \lim_{z\to\infty} z(A-f(z))$.

2014年秋季学期数学物理方法期末考试试卷(A卷)参考答案

-, 1. B 2. C 3. C 4. A 5. D 6. D.

$$\frac{\pi}{2}$$
, 1. $+\infty$; 2. $\frac{\pi}{2}$; 3. -1 ; 4. $\frac{y^2}{2} - \frac{x^2}{2} + c$; 5. 6; 6. -2015 .

1.
$$f(z) = \frac{1}{(3-z)(2-z)} = \frac{1}{z-3} - \frac{1}{z-2}$$
.
 $|z| < 2$ 时,

$$f(z) = -\frac{1}{3} \frac{1}{1 - \frac{z}{3}} + \frac{1}{2} \frac{1}{1 - \frac{z}{2}} = -\frac{1}{3} \sum_{n=0}^{+\infty} \frac{z^n}{3^n} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}} \right) z^n.$$

$$f(z) = \frac{1}{z-3} - \frac{1}{z-3+1} = \frac{1}{z-3} - \sum_{n=0}^{+\infty} (-1)^n (z-3)^n = \sum_{n=-1}^{+\infty} (-1)^{n+1} (z-3)^n.$$

2. 由 $\sin\frac{1}{z}=0$ 推出 $\frac{1}{z}=n\pi$, 即 $z=\frac{1}{n\pi}, n=\pm 1, \pm 2, \cdots$ 为奇点.显然, $z=0,\infty$ 也是奇点.由于当 $n\to\infty$ 时, $\frac{1}{n\pi}\to 0$, 所以 z=0 是非孤立奇点.由

$$\left(\sin\frac{1}{z}\right)' = -\frac{1}{z^2}\cos\frac{1}{z}$$

可知 $z=\frac{1}{n\pi}, n=\pm 1, \pm 2, \cdots$ 是 $\sin\frac{1}{z}$ 的一阶零点,所以它们是 f(z) 的一阶极点.由 $\lim_{z\to\infty}f(z)=\infty$ 可知 $z=\infty$ 是极点.进一步,由 w=0 是 $\frac{1}{\sin w}$ 的一阶极点,所以 $z=\infty$ 是 f(z) 的一阶极点.

3.
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^3} = 2\pi \mathbf{i} \cdot \operatorname{Res} \left[\frac{1}{(1+z^2)^3}; \mathbf{i} \right] = 2\pi \mathbf{i} \frac{1}{2} \left. \frac{\mathrm{d}^2}{\mathrm{d}z^2} \frac{1}{(z+\mathbf{i})^3} \right|_{z=\mathbf{i}} = \pi \mathbf{i} \frac{12}{(2\mathbf{i})^5} = \frac{3\pi}{8}.$$

四、

- 3. 对 λ 分类讨论:
 - 1) 当 $\lambda < 0$ 时,方程的通解为 $x(t) = A \mathrm{e}^{\sqrt{-\lambda}t} + B \mathrm{e}^{-\sqrt{-\lambda}t}$. 计算得 $x'(t) = \sqrt{-\lambda}A \mathrm{e}^{\sqrt{-\lambda}t} \sqrt{-\lambda}B \mathrm{e}^{-\sqrt{-\lambda}t}$. 将其代入边界条件得

$$A - B = 0,$$

$$Ae^{\sqrt{-\lambda}} - Be^{-\sqrt{-\lambda}} = 0.$$

解此线性方程组可得 A = B = 0, 只有零解, 故在此种情形下特征值问题无解.

- 2) 当 $\lambda = 0$ 时, 方程的通解为 x(t) = At + B. 将其代入边界条件得 A = 0. 故在此种情形下特征值问题有解 $x(t) = B \neq 0$.
- 3) 当 $\lambda > 0$ 时, 方程的通解为可表示为 $x(t) = A\cos\sqrt{\lambda}\,t + B\sin\sqrt{\lambda}\,t$. 计算得 $x'(t) = -\sqrt{\lambda}A\sin\sqrt{\lambda}\,t + \sqrt{\lambda}B\cos\sqrt{\lambda}\,t$. 由 x'(0) = 0 得 B = 0. 又由 x'(1) = 0 得 $\sin\sqrt{\lambda} = 0$. 由此可推出 $\sqrt{\lambda} = n\pi$, 即 $\lambda = (n\pi)^2$, $n = 1, 2, \cdots$. 相应的特征函数为 $x(t) = A\cos n\pi t$.

综上所述,特征值和特征函数为

$$\lambda_n = (n\pi)^2, \ x_n(t) = A_n \cos n\pi t, \quad n = 0, 1, 2, \cdots.$$

4. 作拉普拉斯变换得 $\hat{y}(s) = \frac{s}{s^2 + 1} + \frac{\hat{y}(s)}{s^2 + 1}$. 由此可得 $\hat{y}(s) = \frac{1}{s}$, 所以 y(t) = 1.

附 第二题第 5 题的计算过程如下:

$$\frac{1}{2\pi\mathrm{i}}\int_{|z|=7}\frac{z}{1-\cos z}\,\mathrm{d}z = \mathrm{Res}\left[\frac{z}{1-\cos z};0\right] + \mathrm{Res}\left[\frac{z}{1-\cos z};2\pi\right] + \mathrm{Res}\left[\frac{z}{1-\cos z};-2\pi\right].$$

由 z = 0 是函数 $\frac{z}{1 - \cos z}$ 的一阶极点, 利用洛必达法则可得

$$\operatorname{Res}\left[\frac{z}{1-\cos z};0\right] = \lim_{z\to 0}\frac{z^2}{1-\cos z} = \lim_{z\to 0}\frac{2z}{\sin z} = 2.$$

由留数的定义,

$$\operatorname{Res}\left[\frac{z}{1-\cos z}; 2\pi\right] = \frac{1}{2\pi i} \int_{|z-2\pi|=1} \frac{z}{1-\cos z} \,dz.$$

作积分变量替换 $w = z - 2\pi$, 有

$$\int_{|z-2\pi|=1} \frac{z}{1-\cos z} \, dz = \int_{|w|=1} \frac{w+2\pi}{1-\cos w} \, dw = \int_{|w|=1} \frac{w}{1-\cos w} \, dw + \int_{|w|=1} \frac{2\pi}{1-\cos w} \, dw$$
$$= \int_{|w|=1} \frac{w}{1-\cos w} \, dw.$$

所以

$$\operatorname{Res}\left[\frac{z}{1-\cos z}; 2\pi\right] = \operatorname{Res}\left[\frac{z}{1-\cos z}; 0\right] = 2.$$

类似地可得

$$\operatorname{Res}\left[\frac{z}{1-\cos z};-2\pi\right] = \operatorname{Res}\left[\frac{z}{1-\cos z};0\right] = 2.$$

所以

$$\frac{1}{2\pi \mathrm{i}} \int_{|z|=7} \frac{z}{1-\cos z} \,\mathrm{d}z = \mathrm{Res}\left[\frac{z}{1-\cos z};0\right] + \mathrm{Res}\left[\frac{z}{1-\cos z};2\pi\right] + \mathrm{Res}\left[\frac{z}{1-\cos z};-2\pi\right] = 6.$$

2014年春季学期数学物理方法期末考试试卷(A卷)参考答案

一、1. 错 2. 对 3. 对 4. 错 5. 错 6. 错.

三、 1.
$$4e^{i\left(-\frac{2\pi}{3}\right)}$$
 或 $4e^{i\frac{4\pi}{3}}$; 2. $\ln\sqrt{2} + i\left(-\frac{\pi}{4} + 2k\pi\right)$, $k = 0, \pm, 1 \pm 2, \cdots$; 3. $\frac{1}{(n-1)!}$; 4. $\frac{e^{-1} - e}{2}$ 或 $-\sinh 1$; 5. $\frac{\sqrt{2}}{2}$; 6. $\frac{\pi}{3}$.

1. 计算可得 $u_x = 2x + y, u_y = -2y + x, u_{xx} = 2, u_{yy} = -2$, 显然在整个平面上满足拉普拉斯方程 $u_{xx} + u_{yy} = 0$. 所以 u(x,y) 是调和函数.

解法一 由 $v_y = u_x = 2x + y$ 可推出 $v(x,y) = 2xy + \frac{y^2}{2} + \varphi(x)$. 又由 $u_y = -v_x$,即 $-2y + x = -2y - \varphi'(x)$ 得 $\varphi'(x) = -x$. 由此可知 $\varphi(x) = -\frac{x^2}{2} + c$,其中 c 为任意实常数. 因此所求解析函数 $f(z) = (x^2 - y^2 + xy) + i\left(\frac{y^2}{2} - \frac{x^2}{2} + 2xy + c\right)$. 令 y = 0 可得 $f(x) = \left(1 - \frac{i}{2}\right)x^2 + ic$. 所以 $f(z) = \left(1 - \frac{i}{2}\right)z^2 + ic$.

解法二 $f'(z) = u_x - iu_y = 2x + y - i(-2y + x)$. 令 y = 0 可得 f'(x) = (2 - i)x. 由此可知 f'(z) = (2 - i)z. 所以 $f(z) = \left(1 - \frac{i}{2}\right)z^2 + C$, 其中 C 是一个复常数. 但 f(z) 的实部 u(x,y) 已经 给定, 所以 C 是纯虚数.

2. 设积分路径 C 的参数方程为 $z = x + ix^2$, $0 \le x \le 1$, 则

$$\int_C (x^2 + iy) dz = \int_0^1 (x^2 + ix^2)(1 + i2x) dx = (1 + i) \int_0^1 (x^2 + i2x^3) dx$$
$$= (1 + i) \left(\frac{x^3}{3} + i\frac{x^4}{2}\right) \Big|_0^1 = (1 + i) \left(\frac{1}{3} + i\frac{1}{2}\right) = -\frac{1}{6} + i\frac{5}{6}.$$

3. 当 |z| < 1 时

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{2} \frac{1}{1-\frac{z}{2}} + \frac{1}{1-z} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} + \sum_{n=0}^{+\infty} z^n = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n.$$

当 0 < |z-1| < 1 时,

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{1-(z-1)} - \frac{1}{z-1} = -\frac{1}{z-1} - \sum_{r=0}^{+\infty} (z-1)^r = -\sum_{r=0}^{+\infty} (z-1)^r.$$

或

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-1} \times \frac{1}{z-2} = -\frac{1}{z-1} \times \frac{1}{1-(z-1)}$$
$$= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=0}^{+\infty} (z-1)^{n-1} = -\sum_{n=-1}^{+\infty} (z-1)^n.$$

4. 本题条件有误, 应将区域 D 限制为单连通区域.

当 z_0 在 C 内时, 由柯西积分公式和导数的柯西型积分公式有

$$\oint_C \frac{f'(z)}{z - z_0} dz = 2\pi i f'(z_0) = \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$

当 z_0 在 C 外时, 由柯西积分定理有

$$\oint_C \frac{f'(z)}{z - z_0} \, \mathrm{d}z = 0 = \oint_C \frac{f(z)}{(z - z_0)^2} \, \mathrm{d}z.$$

5. 记 $f(z) = \frac{z^2}{1+z^4}$,它在上半平面内只有两个一阶极点 $a_k = e^{i\frac{\pi+2k\pi}{4}}, k = 0, 1$.

$$\operatorname{Res}[f(z); a_k] = \frac{z^2}{4z^3} \Big|_{z=a_k} = \frac{1}{4a_k} = \frac{1}{4} e^{-i\frac{\pi + 2k\pi}{4}}, k = 0, 1.$$

$$\int_0^{+\infty} \frac{x^2}{1+x^4} \, \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} \, \mathrm{d}x = \frac{1}{2} \times 2\pi i \left[e^{-i\frac{\pi}{4}} + e^{-i\frac{3\pi}{4}} \right] = \frac{\pi i}{4} \times (-\sqrt{2}i) = \frac{\sqrt{2}}{4}\pi.$$

四、

1. 定解问题为

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < l, t > 0, \\ u(0,t) = u(l,t) = 0, & t \ge 0, \\ u(x,0) = \sin \frac{\pi x}{l}, u_t(x,0) = \sin \frac{3\pi x}{l}, & 0 \le x \le l. \end{cases}$$

解题过程略,答案为

$$u(x,t) = \cos\frac{\pi at}{l}\sin\frac{\pi x}{l} + \frac{l}{3\pi a}\sin\frac{3\pi at}{l}\sin\frac{3\pi x}{l}.$$

2. 关于 x 作傅里叶变换. 记 $\widehat{u}(\omega,t) = F[u], \widehat{\varphi}(\omega) = F[\varphi]$, 由微分性质和线性性质有

$$\left\{ \begin{array}{l} \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\widehat{u}(\omega,t) = -a^2\omega^2\widehat{u}(\omega,t), \quad t>0, \\ \\ \displaystyle \widehat{u}(\omega,0) = \widehat{\varphi}(\omega), \end{array} \right.$$

其中的 ω 视为参数. 解得

$$\widehat{u}(\omega, t) = \widehat{\varphi}(\omega) e^{-a^2 \omega^2 t}$$
.

对 $\widehat{u}(\omega,t)$ 作傅里叶逆变换,便可得到解 $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi$.

3. 利用算子分解

$$(\partial_x)^2 + 2\partial_x\partial_t - 3(\partial_t)^2 = (\partial_x + 3\partial_t)(\partial_x - \partial_t),$$

可得坐标变换 $\xi = x - \frac{t}{3}, \eta = x + t$. 在此变换下有

$$\begin{cases} u_x = u_{\xi} + u_{\eta}, \\ u_t = -\frac{1}{3}u_{\xi} + u_{\eta}. \end{cases}$$

由此可知

$$\begin{cases} \partial_x = \partial_{\xi} + \partial_{\eta}, \\ \partial_t = -\frac{1}{3}\partial_{\xi} + \partial_{\eta}. \end{cases}$$

计算可得

$$\frac{\partial^2 u}{\partial \xi \partial n} = 0.$$

解得

$$u(\xi, \eta) = f(\xi) + g(\eta),$$

即

$$u(x,t) = f\left(x - \frac{t}{3}\right) + g(x+t).$$

将其代入初始条件得

$$f(x) + g(x) = \varphi(x),$$

$$-\frac{1}{3}f'(x) + g'(x) = \psi(x).$$

对第二个等式积分得

$$-\frac{1}{3}f(x) + g(x) = \int_{x_0}^x \psi(\xi) \,d\xi + c.$$

于是可解得

$$f(x) = \frac{3}{4} \left[\varphi(x) - \int_{x_0}^x \psi(\xi) \, d\xi - c \right],$$

$$g(x) = \frac{1}{4} \left[\varphi(x) + 3 \int_{x_0}^x \psi(\xi) \, d\xi + 3c \right].$$

将它们代回通解公式可得

$$u(x,t) = \frac{3}{4}\varphi\left(x - \frac{t}{3}\right) + \frac{1}{4}\varphi(x+t) + \frac{3}{4}\int_{x - \frac{t}{3}}^{x+t} \psi(\xi) d\xi.$$

4. 对方程作拉普拉斯变换可得

$$(s^2 + 1)\widehat{y}(s) + 2 = \frac{1}{s^2}.$$

解得

$$\widehat{y}(s) = \frac{1}{s^2(s^2+1)} - \frac{2}{s^2+1} = \frac{1}{s^2} - \frac{3}{s^2+1}.$$

作逆变换得

$$y(t) = t - 3\sin t.$$

2013年秋季学期数学物理方法期末考试试卷(A卷)参考答案

-, 1. \checkmark 2. \times 3. \checkmark 4. \times 5. \checkmark 6. \times .

二、1.2z; 2.-1; 3.稳定; 4.2; 5.-1; 6.2i.

三、

1. 设 $z = \cos \theta + i \sin \theta$, 则由欧拉公式有

$$e^z = e^{\cos \theta} [\cos(\sin \theta) + i \sin(\sin \theta)].$$

由于函数 $e^{\cos\theta}\sin(\sin\theta)$ 是奇函数, 所以

$$\int_{-\pi}^{\pi} e^{\cos \theta} \cos(\sin \theta) d\theta = \int_{-\pi}^{\pi} e^{\cos \theta} \cos(\sin \theta) d\theta + i \int_{-\pi}^{\pi} e^{\cos \theta} \sin(\sin \theta) d\theta$$
$$= \int_{-\pi}^{\pi} e^{\cos \theta} [\cos(\sin \theta) + i \sin(\sin \theta)] d\theta$$
$$= \int_{-\pi}^{\pi} e^{z} d\theta = \int_{|z|=1}^{\pi} \frac{e^{z}}{iz} dz = 2\pi.$$

2. 当 |z+1| < 2 时,

$$\frac{1}{1-z} = \frac{1}{2-(z+1)} = \frac{1}{2} \frac{1}{1-\frac{z+1}{2}} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(z+1)^n}{2^n} = \sum_{n=0}^{+\infty} \frac{(z+1)^n}{2^{n+1}}.$$

当 |z| > 1 时,

$$\frac{1}{1-z} = \frac{1}{-z} \frac{1}{1-\frac{1}{z}} = -\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = -\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}} = -\sum_{n=1}^{+\infty} \frac{1}{z^n}.$$

3. 见教材 4.5.1 小节.

四、

- 1. 解题过程略, $u(x,t) = e^{-\frac{\pi^2 a^2}{l^2}t} \sin \frac{\pi x}{l}$.
- 2. (1)

$$\begin{cases} w_{tt} = u_{xx}, & x \in R, t > 0, \\ w(x,0) = \sin x, & x \in R, \\ w_t(x,0) = 0, & x \in R. \end{cases}$$

(2) 设 w(x,t) = f(x+t) + g(x-t), 将其代入初始条件中得

$$f(x) + g(x) = \sin x,$$

$$f'(x) - g'(x) = 0.$$

由第二式可得 f(x) - g(x) = c, 其中 c 为任意常数. 于是可解得

$$f(x) = \frac{1}{2}[\sin x + c], \quad g(x) = \frac{1}{2}[\sin x - c].$$

曲此可知 $w(x,t) = \frac{1}{2}[\sin(x+t) + \sin(x-t)] = \sin x \cos t, \ u(x,t) = \sin x (\cos t - 1).$

3. 作拉普拉斯变换得

$$\widehat{f}(s) = \frac{1}{s^2 + 1} + \frac{\widehat{f}(s)}{s^2 + 1}.$$

从中解出 $\hat{f}(s) = \frac{1}{s^2}$. 再作逆变换便可得 f(t) = t.

4. (2) $F[\delta(x)] = 1$.

2013年春季学期数学物理方法期末考试试卷(A卷)参考答案

-, 1. \times 2. \checkmark 3. \checkmark 4. \times 5. \checkmark 6. \times .

$$\equiv$$
, 1. $\frac{\sqrt{2}}{2}$, $\frac{1}{1-2z^2}$; 2. $\frac{\pi}{2}$; 3. 1; 4. 5; 5. 0.

三、

1. 当 |z| < 1 时,

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{2} \frac{1}{1-\frac{z}{2}} + \frac{1}{1-z} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} + \sum_{n=0}^{+\infty} z^n = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n.$$

当 0 < |z-1| < 1 时,

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{1-(z-1)} - \frac{1}{z-1} = -\frac{1}{z-1} - \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=-1}^{+\infty} (z-1)^n.$$

或

$$\begin{split} f(z) &= \frac{1}{(z-1)(z-2)} = \frac{1}{z-1} \times \frac{1}{z-2} = -\frac{1}{z-1} \times \frac{1}{1-(z-1)} \\ &= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=0}^{+\infty} (z-1)^{n-1} = -\sum_{n=-1}^{+\infty} (z-1)^n. \end{split}$$

2.

$$\int_{-\infty}^{+\infty} \frac{\cos x}{1+x^2} \, \mathrm{d}x = \int_{-\infty}^{+\infty} \frac{\cos x}{1+x^2} \, \mathrm{d}x + \mathrm{i} \int_{-\infty}^{+\infty} \frac{\sin x}{1+x^2} \, \mathrm{d}x = \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{\mathrm{i}x}}{1+x^2} \, \mathrm{d}x$$
$$= 2\pi \mathrm{i} \operatorname{Res} \left[\frac{\mathrm{e}^{\mathrm{i}z}}{1+z^2} ; \mathrm{i} \right] = 2\pi \mathrm{i} \frac{\mathrm{e}^{-1}}{2\mathrm{i}} = \frac{\pi}{\mathrm{e}}.$$

3. 不妨设 |f(z)| = r, 则 $u^2 + v^2 = r^2$. 两边关于 x 和 y 分别求偏导数得

$$\begin{cases} uu_x + vv_x = 0, \\ uu_y + vv_y = 0. \end{cases}$$

利用 C-R 方程可重写为

$$\begin{cases} uu_x + vv_x = 0, \\ vu_x - uv_x = 0. \end{cases}$$

此线性方程组的系数行列式为

$$\left| \begin{array}{cc} u & v \\ v & -u \end{array} \right| = -(u^2 + v^2).$$

若 $u^2+v^2=r^2=0$, 则 $u=v\equiv 0$, 即 $f(z)\equiv 0$; 若 $u^2+v^2=r^2\neq 0$, 则上面的方程组只有零解, 即 $u_x=v_x=0$. 再次利用 C-R 方程得 $u_y=v_y=0$. 因此 u 和 v 在区域 D 上为常数, 所以 f(z) 为常函数.

4. 设直线段 C_1 的参数方程为: z = t, $0 \le t \le 1$, 直线段 C_2 的参数方程为: z = 1 + it, $0 \le t \le 1$, 则有

$$\int_{C} \operatorname{Re} z \, dz = \int_{C_{1}} \operatorname{Re} z \, dz + \int_{C_{2}} \operatorname{Re} z \, dz = \int_{0}^{1} \operatorname{Re} t \cdot 1 \, dt + \int_{0}^{1} \operatorname{Re}(1 + it) i \, dt$$
$$= \int_{0}^{1} t \, dt + i \int_{0}^{1} 1 \, dt = \frac{1}{2} + i.$$

5. 由 $v_y = u_x = e^x \sin y$ 可推出 $v(x,y) = -e^x \cos y + \varphi(x)$. 再由 $u_y = -v_x$ 即 $\varphi'(x) = 0$ 可知 $\varphi(x) = c$, 其中 c 为一任意常数. 所以 $v(x,y) = -e^x \cos y + c$.

四、

1. (1)

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < 1, t > 0, \\ u(0,t) = u(1,t) = 0, & t \ge 0, \\ u(x,0) = \sin(3\pi x), u_t(x,0) = 0, & 0 \le x \le 1. \end{cases}$$

- (2) $u(x,t) = \cos(3\pi t)\sin(3\pi x)$.
- 2. 设 u(x,t) = f(x+t) + g(x-t), 将其代入初始条件中得

$$f(2x) + g(0) = \sin 2x,$$

$$f(0) + g(2x) = 2x.$$

由此可得 $f(x) = \sin x - g(0), g(x) = x - f(0)$. 于是有 $u(x,t) = \sin(x+t) + x - t - [f(0) + g(0)]$. 易知 f(0) + g(0) = 0. 所以 $u(x,t) = \sin(x+t) + x - t$.

3. 关于 x 作傅里叶变换. 记 $\widehat{u}(\omega,t) = F[u], \widehat{\varphi}(\omega) = F[\varphi]$, 由微分性质和线性性质有

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}\widehat{u}(\omega,t) = -\omega^2\widehat{u}(\omega,t), & t > 0, \\ \widehat{u}(\omega,0) = \widehat{\varphi}(\omega), \end{cases}$$

其中的 ω 视为参数. 解得

$$\widehat{u}(\omega, t) = \widehat{\varphi}(\omega) e^{-\omega^2 t}.$$

对 $\widehat{u}(\omega,t)$ 作傅里叶逆变换, 便可得到解 $u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi$.

4. 作拉普拉斯变换得

$$s^2\widehat{y}(s) + \widehat{y}(s) = \widehat{f}(s).$$

从中解出 $\widehat{y}(s) = \frac{\widehat{f}(s)}{s^2 + 1}$. 再作逆变换便可得

$$y(t) = \int_0^t f(\tau) \sin(t - \tau) d\tau.$$

2012年秋季学期数学物理方法期末考试试卷(A卷)参考答案

_,

- 1. $(1+\sqrt{3}i)(-\sqrt{3}-i) = -\sqrt{3}+\sqrt{3}+i(-1-3) = -4i$.
- 2. $\frac{1}{z} = \frac{1}{r} [\cos(-\theta) + i\sin(-\theta)]$. 注意 $\frac{1}{r} (\cos\theta i\sin\theta)$ 是错误的.
- 3. 由积分估计定理有 $\left|\int_C \frac{1}{z-\mathrm{i}}\,\mathrm{d}z\right| \leq \int_C \frac{1}{|z-\mathrm{i}|} |\,\mathrm{d}z|$. 利用相似三角形的知识, 易知 $|z-\mathrm{i}|\,(z\in C)$ 的最小值是 $\frac{3}{5}$. 所以

$$\left| \int_C \frac{1}{z - \mathbf{i}} \, \mathrm{d}z \right| \le \frac{5}{3} \times 5 = \frac{25}{3}.$$

4. 由于 $\sin z$ 在整个复平面上解析, 积分值 $\int_C \sin z \, \mathrm{d}z$ 只与积分路径的起点和终点有关, 根据牛顿–莱布尼兹公式,

$$\int_C \sin z \, dz = \int_0^2 \sin z \, dz = -\cos z \Big|_0^2 = 1 - \cos 2.$$

5.
$$\oint_{|z-\mathbf{i}|=1} \frac{\cos z}{(z-\mathbf{i})^3} dz = \frac{2\pi \mathbf{i}}{2} (\cos z)'' \Big|_{z=\mathbf{i}} = -\pi \mathbf{i} \cos \mathbf{i} = -\frac{\pi \mathbf{i} (e^{-1} + e)}{2}.$$

6. Res
$$\left[\frac{e^{-z}}{z^2}; 0 \right] = -1.$$

二、

1. 由 $4z^2+1=0$ 可得 f(z) 的全部奇点为 $z=\pm\frac{\mathrm{i}}{2}$. 它的解析区域为复平面上除去点 $z=\pm\frac{\mathrm{i}}{2}$ 的部分.

$$\frac{\mathrm{d}}{\mathrm{d}z}\frac{2z^5-z+3}{4z^2+1} = \frac{(10z^4-1)(4z^2+1)-(2z^5-z+3)\cdot 8z}{(4z^2+1)^2} = \frac{24z^6+10z^4+4z^2-24z-1}{(4z^2+1)^2}.$$

- 2. 由 $v_y = u_x = 2y$ 可推出 $v(x,y) = y^2 + \varphi(x)$. 又由 $v_x = \varphi'(x) = -u_y = 2(1-x)$ 可推出 $\varphi(x) = 2x x^2 + C$,其中 C 为任意常数. 于是 $f(z) = 2(x-1)y + \mathrm{i}(y^2 + 2x x^2 + C)$. 令 y = 0 得 $f(x) = \mathrm{i}(2x x^2 + C)$. 由此可知 $f(z) = \mathrm{i}(2z z^2 + C)$. 由 $f(0) = \mathrm{i}$ 可得 C = -1. 所以 $f(z) = -\mathrm{i}(1-z)^2$.
- 3. $z = k\pi, k = 0, \pm 1, \pm 2, \cdots$ 全都是一阶极点; $z = \infty$ 是非孤立奇点.

4.
$$\frac{1}{z} = \frac{1}{(z-2)+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{z-2}{2}} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n (z-2)^n}{2^n} = \sum_{n=0}^{+\infty} \frac{(-1)^n (z-2)^n}{2^{n+1}}, |z-2| < 2.$$

5. 略.

三、

- 1. 见教材 8.1.3 和 11.1.2 小节.
- 2. 点 (1,3) 的依赖区间为 [-5,7]; 区间 [1,2] 的决定区域为 $\{(x,t)|1+2t \le x \le 2-2t, 0 \le t \le 1/4\}$; 点 x=5 的影响区域为 $\{(x,t)|5-2t \le x \le 5+2t, t \ge 0\}$. 最好绘制草图作答.

3. 设 u(x,t) = X(x)T(t), 把它代入方程中得

$$X(x)T''(t) = a^2X''(x)T(t),$$

即有

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda.$$

由此得到两个常微分方程

$$T''(t) + \lambda a^{2}T(t) = 0,$$

$$X''(x) + \lambda X(x) = 0.$$

再利用边界条件可得

$$X'(0)T(t) = X'(l)T(t) = 0.$$

因为 $T(t) \neq 0$, 故必有

$$X'(0) = X'(l) = 0.$$

求解特征值问题

$$\left\{ \begin{array}{l} X^{\prime\prime}(x) + \lambda X(x) = 0, \quad 0 < x < l, \\ X^{\prime}(0) = X^{\prime}(l) = 0. \end{array} \right.$$

可得特征值和特征函数为

$$\lambda_n = \left(\frac{n\pi}{l}\right)^2, \quad X_n(x) = \cos\frac{n\pi x}{l}, \qquad n = 0, 1, 2, \cdots.$$

由 $T_n''(t) + \lambda_n a^2 T_n(t) = 0$ 可得

$$T_n(t) = C_n \cos \frac{n\pi at}{l} + D_n \sin \frac{n\pi at}{l}.$$

于是叠加所有变量分离形式的特解得

$$u(x,t) = \sum_{n=0}^{+\infty} \left(C_n \cos \frac{n\pi at}{l} + D_n \sin \frac{n\pi at}{l} \right) \cos \frac{n\pi x}{l}.$$

代入初始条件可得 $D_n = 0, 1, 2, \cdots$,

$$C_0 = \frac{1}{l} \int_0^l (-2\varepsilon x + \varepsilon l) \, \mathrm{d}x = 0,$$

$$C_n = \frac{2}{l} \int_0^l (-2\varepsilon x + \varepsilon l) \cos \frac{n\pi x}{l} \, \mathrm{d}x = -\frac{4\varepsilon}{l} \int_0^l x \cos \frac{n\pi x}{l} \, \mathrm{d}x = \frac{4\varepsilon l}{n^2 \pi^2} [1 - (-1)^n].$$

所以

$$u(x,t) = \sum_{k=0}^{+\infty} \frac{8\varepsilon l}{(2k+1)^2 \pi^2} \cos \frac{(2k+1)\pi at}{l} \cos \frac{(2k+1)\pi x}{l}.$$

- 4. $F[1] = 2\pi\delta(\omega)$.
- 5. 作拉普拉斯变换得

$$s^2\widehat{y}(s)+2s-4+4\widehat{y}(s)=0.$$
 从中解出 $\widehat{y}(s)=\frac{4-2s}{s^2+4}=\frac{4}{s^2+4}-\frac{2s}{s^2+4}.$ 再作逆变换便可得
$$y(t)=2\sin 2t-2\cos 2t.$$

四、除了教材上讲的拉普拉斯变换解法外,还可以用行波法求解. 设 $u(x,t) = f_1(x+at) + f_2(x-at)$. 代入初始条件得

$$f_1(x) + f_2(x) = 0$$
, $af'_1(x) - af'_2(x) = 0$, $x \ge 0$.

由第二个等式积分可得 $f_1(x) - f_2(x) = C$, 这里 C 为一任意常数. 于是可解得

$$f_1(x) = -\frac{C}{2}, \quad f_2(x) = \frac{C}{2}, \qquad x \ge 0.$$

利用边界条件有
$$f_1(at)+f_2(-at)=f(t)$$
. 由此可知
$$f_2(x)=f\left(-\frac{x}{a}\right)-f_1(-x), \qquad x<0.$$

所以

$$u(x,t) = \begin{cases} 0 & x \ge at, \\ f\left(t - \frac{x}{a}\right), & x \le at. \end{cases}$$