0.1 Sets

0.1.1 Definition

A collection of numbers is called a **set**¹, and a number that is part of a set is called an **element**. Sets can contain a finite number of elements and they can contain infinitely many elements.

0.1 Sets

For two numbers a and b, where $a \leq b$, we have that

- [a, b] is the set of all numbers greater than or equal to a and less than or equal to b.
- (a, b] is the set of all numbers greater than a and less than or equal to b.
- [a,b) is the set of all real numbers greater than or equal to a and less than b.

[a,b] is called a **closed interval**, (a,b) is called an **open interval**, and both (a,b] and [a,b) are called **half-open intervals**.

The set that contains only a and b is written as $\{a, b\}$.

That x is an element in a set M is written as $x \in M$.

That x is not an element in a set M is written as $x \notin M$.

That the set M consists of the sets M_1 and M_2 is written as $M = M_1 \cup M_2$.

That x is omitted from a set M is written as $M \setminus x$

The language box

 $x \in M$ is pronounced "x contained in M".

Many texts use (instead of (to indicate open (or half-open) intervals.

Note

¹A set can also be a collection of other mathematical objects, such as functions, but in this book, it is sufficient to consider sets of numbers.

When we define an interval described by a and b hereafter in the book, we take it for granted that a and b are two numbers, and that $a \leq b$.

Example 1

The set of all integers greater than 0 and less than 10 can be written as

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

This set contains 9 elements. 3 is an element in this set, and thus we can write $3 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

10 is not an element in this set, and thus we can write $10 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Example 2

In the expression 0 ? x ? 1, replace ? with an inequality symbol so that the expression applies to all $x \in M$, and determine if 1 is contained in M.

- a) M = [0, 1]
- b) M = (0, 1]
- c) M = [0, 1)

Answer

- a) $0 \le x \le 1$. Furthermore, $1 \in M$.
- b) $0 < x \le 1$. Furthermore, $1 \in M$.
- c) $0 \le x < 1$. Furthermore, $1 \notin M$.

0.2 Names of sets

- \mathbb{N} The set of all positive integers¹
- \mathbb{Z} The set of all integers²
- O The set of all rational numbers
- \mathbb{R} The set of all real numbers
- \mathbb{C} The set of all complex numbers

0.1.2 The Symbol for Infinity

The sets in Definition 0.2 contain infinitely many elements. Sometimes we wish to limit parts of an infinite set, and then there arises a need for a symbol that helps symbolize this. ∞ is the symbol for an infinitely large, positive value.

Example

A condition that $x \geq 2$ can be written as $x \in [2, \infty)$.

A condition that x < -7 can be written as $x \in (-\infty, -7)$.

The language box

The two intervals in the example above can also be written as $[2, \rightarrow)$ and $(\leftarrow, -7)$.

Note

 ∞ is not any specific number. Therefore, using the four basic operations alone with this symbol makes no sense.

¹Does not include 0.

²Includes 0.

0.1.3 Domain and Range

0.3 Domain and Range

Given a function f(x).

- The set that exclusively contains all the values x can have, is the **domain** of f. This set is written as D_f .
- The set that exclusively contains all the values f can have when $x \in D_f$, is the range of f. This set is written as V_f .

Example 1

Below figure shows f(x) = 2x + 1, where $D_f = [1, 3]$. Then $V_f = [3, 7]$.

Example 2

Below figure shows $f(x) = \frac{1}{x}$, where $D_f = [-3, -1] \cup [2, 5]$. Then $V_f = \left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{5}, \frac{1}{2}\right]$.

Note

The domain of a function is determined by two things; the context in which the function is used, and any values that result in an undefined function expression. In *Example 1* on page 4, the domain is arbitrarily chosen, since the function is defined for all x. In *Example 2*, however, the function is not defined for x=0, so a domain including this value for x would not make sense.

0.2 Conditions

0.2.1 Symbols for Conditions

The symbol \Rightarrow is used to indicate that if one condition is satisfied, then another (or several) condition(s) are also satisfied. For example; in MB we saw that if a triangle is right-angled, then Pythagoras' theorem is valid. We can write this as:

the triangle is right-angled \Rightarrow Pythagoras' theorem is valid

But we also saw that the converse is true; if Pythagoras' theorem is valid, then the triangle must be right-angled. Thus, we can write

the triangle is right-angled \iff Pythagoras' theorem is valid

It is very important to be aware of the difference between ⇒ and ⇒; that condition A satisfied implies condition B satisfied does not necessarily mean that condition B satisfied implies condition A satisfied!

Example 1

the square is a square \Rightarrow the square has four equal sides

Example 2

the number is a prime number greater than $2 \Rightarrow$ the number is an odd number

Example 3

the number is an even number \iff the number is divisible by 2

0.2.2 Functions with Conditions

Functions can have multiple expressions that apply under different conditions. Let us define a function f(x) as follows:

For x < 1 the function expression is -2x + 1For $x \ge 1$ the function expression is $x^2 - 2x$

Figure 1: The graph of f on the interval [-1,3].

This can be written as

$$f(x) = \begin{cases} -2x + 1 & , & x < 1 \\ x^2 - 2x & , & x \ge 1 \end{cases}$$