Classical Symbolic Retrodictive Execution of Quantum Circuits

Jacques Carette
McMaster University

Gerardo Ortiz* Indiana University Amr Sabry Indiana University

March 17, 2022

4 1 Main

small tree width idea suggests we could do retro and measure every once in a while. for shor perhaps measure after every iteration of multiplication https://arxiv.org/pdf/quant-ph/0511069.pdf

try retro with impossible measurement; how happens with the equations: retroShor 15 with ancilla=0 produces equation: 0 = 1

with post selection can we solve SAT ??

what is know about complexity of converting a circuit to ANF?

for Shor we construct Uf as part of the algorithm so the cost of generating the circuit is part of the complexity analysis

for the other algos Uf is given to us: if given to us as an ANF formula we can answer questions directly with minimal evaluation; so the challenge is to convert the Uf box to ANF; exponential in general ??? but for the particular functions of interest could be efficient run Shor backwards from QFT measurement; the state right before QFT is a periodic state that approximates the state we would have received from forward exec. Good point to discuss existence of wavefunction; forward vs backwards. construct circuit with period = 3; show wavefunction before QFT in regular exec; assume we measure v show wavefunction before

QFT in retrodictive. Connection between these two wavefunctions?

of course try 1/-1 instead 0/1

existence of wavefunction: retrodictive QM says no reality to wavefunctions.

other paper on reality of wavefunction; can't be just observer belief

in our work it is an intermediate state of computation, so yes some wavefunction exists but which one exists depends on the particulars of the execution model and is not uniquely determined by the circuit

what would happen in Shor if you put 0 at ancilla init and 1 at ancilla measurement (only look for 1 at ancilla measurement)

post-selection https://en.wikipedia.org/wiki/PostBQP

why would Nature execute the circuit in the way we draw it

Retrodictive quantum theory [4], retrocausality [2], and the time-symmetry of physical laws [14] suggest that partial knowledge about the future can be exploited to understand the present. We demonstrate the even stronger proposition that, in concert with the computational concepts of demand-driven lazy evaluation [9] and symbolic partial evaluation [8], retrodictive reasoning can be used as a computational resource to dequantize some quantum algorithms, i.e., to provide efficient classical algorithms inspired by their quantum counterparts.

Symbolic Execution of Classical Programs Applied to Quantum Oracles. A well-established

technique to simultaneously explore multiple paths that a classical program could take under different inputs

Figure 2: Template quantum circuit

is symbolic execution [3, 5, 7, 10, 12]. In this execution scheme, concrete values are replaced by symbols which are initially unconstrained. As the execution proceeds, the symbols interact with program constructs and this typically introduces constraints on the possible values that the symbols represent. At the end of the execution, these constraints can be solved to infer properties of the program under consideration. The idea is also applicable to quantum circuits as the following example illustrates.

Let $[\mathbf{n}]$ denote the finite set $\{0,1,\ldots,(n-1)\}$. In Simon's problem, we are given a 2-1 (classical) function $f:[\mathbf{2^n}] \to [\mathbf{2^n}]$ with the property that there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a. The circuit in Fig. 1 implements the quantum algorithm when n=2 and a=3. In the circuit, the gates between barriers (1) and (2) implement a quantum oracle $U_f(x,0) = (x,f(x))$ that encapsulates the function f of interest. A direct classical simulation of the quantum cir-

15

16

17

18

19

20

21

22

23

24

27

28

29

30

31

32

33

34

35

37

39

41

42

43

45

46

47

48

50

Figure 1: Circuit for Simon's Algorithm n=2 and a=3

cuit would need to execute the U_f block four times, once for each possible value $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$ for the top two wires. Instead, let us introduce two symbols x_0 representing the top wire and x_1 representing the wire below it, and let's proceed with the execution symbolically. The state at barrier (1) is initially $|x_0x_100\rangle$. At the first CX-gate, we symbolically calculate the result of the target wire as $x_0 \oplus 0 = x_0$ evolving the state to $|x_0x_1x_00\rangle$. Going through the next three CX-gates, the state evolves as $|x_0x_1x_0x_0\rangle$, $|x_0x_1(x_0\oplus x_1)x_0\rangle$, and $|x_0x_1(x_0 \oplus x_1)(x_0 \oplus x_1)|$ at barrier (2). At that point, we have established that the bottom two wires are equal; the result of their measurement can only be 00 or 11. Since the function is promised to be 2-1 for all inputs, it is sufficient to analyze one case, say when the measurement at barrier (3) produces 00. This measurement collapses the top wires to $|x_0x_1\rangle$ subject to the constraint that $x_0 \oplus x_1 = 0$ or equivalently that $x_0 = x_1$. We have thus inferred that both $x_0 = x_1 = 0$ and $x_0 = x_1 = 1$ produce the same measurement result at barrier (3) and hence that $f(00) = f(11) = f(00 \oplus 11)$ which reveals that a is 11 in binary notation. Since the quantum circuit between barriers (1) and (2) is reversible, we can perform the analysis above in a mixed predictive and symbolic retrodictive execution to make the flow of information conceptually clearer. We start a forward classical simulation with one arbitrary state at barrier (1), say $|0100\rangle$. This state evolves to $|0100\rangle$, then $|0100\rangle$ again, then $|0110\rangle$, and finally $|0111\rangle$. In this case, the result of measuring the bottom two wires is 11. Having produced a possible measurement at barrier (3), we start a retrodictive execution to find out what other input states might be compatible with this future measurement. To that end, we execute the circuit backwards with the symbolic state $|x_0x_111\rangle$; that execution evolves to $|x_0x_11(1 \oplus x_1)\rangle$, then $|x_0x_1(1\oplus x_1)(1\oplus x_1)\rangle$, then $|x_0x_1(1\oplus x_1)(1\oplus x_0\oplus x_1)\rangle$, and finally $|x_0x_1(1\oplus x_0\oplus x_1)(1\oplus x_0\oplus x_1)\rangle$. Having reached the initial conditions on the bottom two wires, we reconcile them with the collected constraints to conclude that $1 \oplus x_0 \oplus x_1 = 0$ or equivalently that $x_0 \neq x_1$. The measurement of 11 at barrier (3) is consistent with not just the state $|01\rangle$ we started with but also with the state $|10\rangle$. In other words, we have $f(01) = f(10) = f(01 \oplus 11)$ and the hidden value of a is revealed to be 11.

Representing Wavefunctions Symbolically. A symbolic variable represents a boolean value that can be 0 or 1; this is similar to a qubit in a superposition $(1/\sqrt{2})(|0\rangle \pm |1\rangle)$. Thus, it appears that $H|0\rangle$ could be represented by a symbol x to denote the uncertainty. Surprisingly, this idea scales to even represent maximally entangled states. Fig. 3(left) shows a circuit to generate the Bell state $(1/\sqrt{2})(|00\rangle + |11\rangle)$. By using the symbol x for $H|0\rangle$, the input to the Cx-gate is $|x0\rangle$ which evolves to $|xx\rangle$. By sharing the same symbol in two positions, the symbolic state accurately represents the entangled Bell state. Similarly, for the circuit in Fig. 3(right), the state after the Hadamard gate is $|x00\rangle$ which evolves to $|xx0\rangle$ and then to $|xxx\rangle$ again accurately

Figure 3: Bell and GHZ States

need for entanglement [11]

capturing the entanglement correlations.

55

57

59

61

62

63

64

65

66

67

69

70

71

73

74

75

76

77

78

This insight allows us to symbolically execute the many quantum algorithms that match the template in Fig. 2 (including Deutsch, Deutsch-Jozsa, Bernstein-Vazirani, Simon, Grover, and Shor's algorithms). Specifically, in all these algorithms, the top collection of wires (which we will call the computational register) is prepared in a uniform superposition which can be represented using symbolic variables. Below, we report on the results of such symbolic executions. In each case, instead of the conventional execution flow depicted in Fig. 2(a), we find a possible measurement outcome w at barrier (3) and perform a retrodictive execution with a state $|xw\rangle$ going backwards to collect the constraints on x that enable us to solve the problem in question.

Deutsch. The quantum circuit in Fig. 4 determines if the function $[2] \rightarrow [2]$ encapsulated in the quantum oracle U_f is constant or balanced. Since 0 is always a possible measurement of the ancilla register, we start a retrodictive execution of the U_f block with state $|x0\rangle$. This execution terminates with a state $|xr\rangle$ where r is a formula expressing the dependencies of the ancilla on x. Running the experiment with different choices for f, the resulting formula always perfectly describes f. Specifically when f is the constant function that returns 0, we have

Figure 4: Deutsch

r=0; when f is the constant function that returns 1, we have r=0; when f is the balanced function that returns its input, we have r=x; and when f is the balanced function that returns the negation of its input, we have $r=1 \oplus x$.

Deutsch-Jozsa. The problem is a generalization of the previous one. We are given a function $[2^n] \to [2]$ that is promised to be constant or balanced and we need to decide distinguish the two cases. The quantum 83 circuit generalizes the one in Fig. 4 to use n-wires for the computation register. Similarly to before, we 84 perform a retrodictive execution of the U_f block with the state $|x_{n-1}\cdots x_1x_00\rangle$ and observe the resulting 85 formula r. Like before, when the function is constant, the formula r is the corresponding constant and when 86 the function is balanced, the formula r completely describes how the result is computed from the symbols 87 x_{n-1}, \dots, x_1, x_0 . For example, for n=6, the resulting formulae for three balanced functions were: x_0 , $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$, and $1 \oplus x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_0x_3 \oplus x_0x_2 \oplus x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_1x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_2x_5 \oplus x$ 89 $x_0x_3x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_2 \oplus x_2x_3x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_2x_5 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x_0x_5$ 90 $x_0x_1x_4x_5 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_4$. In the first case, the 91 function is balanced because its output depends on just one variable (which is 0 in half the possible inputs); 92 in the second case the output of the function is the exclusive-or of all the input variables which is an easy 93 instance of a balanced function. The last case is a cryptographically strong balanced function whose output pattern is, by design, difficult to discern [6]. An important insight in the case of the Deutsch-Jozsa problem 95 is that, since we are promised the function is either constant or balanced, then any formula that refers to at least one variable must indicate a balanced function. In other words, the outcome of the algorithm can be 97 immediately decided if the formula is anything other than 0 or 1. We confirmed this observation by running the experiment on all 12870 balanced functions from $[2^4] \rightarrow [2]$ and correctly identifying them as such. This is 99 significant as some of these functions produce complicated entangled patterns during quantum evolution and 100 could not be de-quantized using previous approaches [1]. The catch is that symbolic retrodictive execution

```
u = 0
               1 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2 \oplus x_0x_3 \oplus x_0x_2 \oplus x_0x_1 \oplus x_1x_2x_3 \oplus x_0x_2x_3
                   \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
               x_0 \oplus x_0 x_3 \oplus x_0 x_2 \oplus x_0 x_1 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u=1
               x_1 \oplus x_1 x_3 \oplus x_1 x_2 \oplus x_0 x_1 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
               x_0x_1 \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 3
               x_2 \oplus x_2 x_3 \oplus x_1 x_2 \oplus x_0 x_2 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u = 4
u = 5
               x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 6
               x_1x_2 \oplus x_1x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u=7
               x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 8
               x_3 \oplus x_2 x_3 \oplus x_1 x_3 \oplus x_0 x_3 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3
u = 9
               x_0x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 10
               x_1x_3 \oplus x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 11
               x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 12
               x_2x_3 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_2x_3
u = 13
               x_0x_2x_3 \oplus x_0x_1x_2x_3
u = 14
               x_1x_2x_3 \oplus x_0x_1x_2x_3
u = 15
               x_0x_1x_2x_3
```

Figure 6: Result of retrodictive execution for the Grover oracle $(n = 4, w \text{ in the range } \{0..15\})$.

is not consistent with "query complexity" as it operates in time proportional to the depth of the quantum oracle and the size of the formula.

Bernstein-Vazirani. We are given a function $f:[2^n] \to$ 104 [2] that hides a secret number $s \in [2^n]$. We are promised the 105 function is defined using the binary representations $\sum_{i=1}^{n-1} x_i$ and $\sum_{i=1}^{n-1} s_i$ of x and s respectively as $f(x) = \sum_{i=0}^{n-1} s_i x_i$ 107 $\operatorname{mod} \overline{2}$. The goal is to determine the secret number s. The 108 circuit in Fig. 5 solves the problem for n = 8 and a hidden 109 number 92 (= 00111010 in binary notation with the right-110 most bit at index 0). Retrodictive execution starting with 111 the state $|x_0x_1x_2x_3x_4x_5x_6x_70\rangle$ terminates with the formula 112 $x_1 \oplus x_3 \oplus x_4 \oplus x_5$. The secret string can be immediately read 113 from the formula as the indices $\{1, 3, 4, 5\}$ of the symbols are exactly the positions at which the secret string has a 1. 115

Grover. We are given a function $f:[\mathbf{2^n}] \to [\mathbf{2}]$ with the property that there exists only one input u such f(u) = 1. The goal is to find u. The conventional presentation of the quantum algorithm does not fit the template of Fig. 2. But it is still possible to construct a quantum oracle U_f from the given f and perform retrodictive execution starting from an ancilla measurement of 1 corresponding to the input pattern

116

117

118

119

120

121

122

Figure 5: Circuit for Bernstein-Vazirani Algorithm (n=8, s=92, least significant bit is the top wire)

we are interested in. The resulting equations for n=4 and u in the range $\{0..15\}$ are in Fig. 6. In some cases (e.g. u=15) the equations immediately reveal u; in others, retrodictive executive provides no advantage since solving arbitrary equations over boolean variables is, in general, an NP-complete problem.

run PEZ with +1/-1 instead of 0/1

126

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

black box model forbids you to use some interesting property of the circuit for U_f ; we actually have this too because ANF representation does not depend on how you implement the circuit. (circuit for a^x mod 15 manually optimized or not gives the same formula); so we could fit in the black box model but putting the formula inside the black box. We can answer lots of questions quickly but not Shor in general.

if oracle takes n steps to answer, I can probably absorb the n cost in the main algorithm and assume the oracle takes one step

for Grover the shortest clause gives the solution!!!!!!!

ANF is a normal form; any other implementation gives the same formula

two important points to make up front: ANF and white-box, black-box, and generator complexity measures https://dl.acm.org/doi/10.1145/3341106 Ewin Tang makes a similar point about the white, black, generator measures I think

relation between the complexity of the formula and the corresponding wavefunction. Some very complicated formula denote just a single quantum state so it's not clear

Easy Instances of Shor. The circuit in Fig. 7 uses a handoptimized implementation of the modular exponentiation $4^x \mod 15$ to factor 15 using Shor's algorithm. In a conventional forward execution, the state before the QFT block is:

$$\frac{1}{2\sqrt{2}}((|0\rangle+|2\rangle+|4\rangle+|6\rangle)|1\rangle+(|1\rangle+|3\rangle+|5\rangle+|7\rangle)|4\rangle)$$

At this point, the ancilla register is measured to either $|1\rangle$ or $|4\rangle$. In either case, the computational register snaps to a state of the form $\sum_{r=0}^{3} |a+2r\rangle$ whose QFT has peaks at $|0\rangle$ or $|4\rangle$ making them the most likely outcomes of measurements of the computational register. If we measure $|0\rangle$, we repeat the experiment; otherwise we infer that the period is 2.

Figure 7: Finding the period of 4^x mod 15

In the retrodictive execution, we can start with the state $|x_2x_1x_0001\rangle$ since 1 is guaranteed to be a possible ancilla measurement. The first CX-gate changes the state to $|x_2x_1x_0x_001\rangle$ and the second CX-gate produces $|x_2x_1x_0x_00x_0\rangle$. At that point, we reconcile the retrodictive result of the ancilla register $|x_00x_0\rangle$ with the initial condition $|000\rangle$ to conclude that $x_0=0$. In other words, in order to observe the ancilla at 001, the computational register must be initialized to a superposition of the form $|??0\rangle$ where the least significant bit must be 0 and the other two bits are unconstrained. Expanding the possibilities, the first register needs to be in a superposition of the states $|000\rangle$, $|010\rangle$, $|100\rangle$ or $|110\rangle$ and we have just inferred using purely classical but retrodictive reasoning that the period is 2. Significantly, this approach is robust and does not require small hand-optimized circuits. Indeed, following the methods for producing quantum circuits for arithmetic operations from first principles using adders and multipliers [13], our implementation for a general circuit for a^x mod 15 has 56538 generalized Toffoli gates over 9 qubits, and yet the equations resulting from the retrodictive execution in Fig. 8 are trivial and immediately solvable as they only involve either the least significant bit x_0 (when $a \in \{4, 11, 14\}$) or the least significant two bits x_0 and x_1 (when $a \in \{2, 7, 8, 13\}$). When the solution is $x_0 = 0$, the period is 2. When the solution is $x_0 = 0$, the period is 4.

Figure 8: Equations generated by retrodictive execution of $a^x \mod 15$ starting from observed result 1 and unknown $x_8x_7x_6x_5x_4x_3x_2x_1x_0$. The solution for the unknown variables is given in the last column.

```
retroShor 51 n=12: a=49
           Generalized Toffoli Gates with 3 controls = 8788 Generalized Toffoli Gates with 2 controls
           = 86866 Generalized Toffoli Gates with 1 controls = 81796
           1 \oplus x_2 \oplus x_0 x_2 = 1
           x_0x_1 \oplus x_0x_2 = 0
           x_1 \oplus x_0 x_1 = 0
148
           x_0 \oplus x_1 \oplus x_1 x_2 \oplus x_0 x_1 x_2 = 0
           x_0 \oplus x_2 \oplus x_1 x_2 = 0
           x_0 x_2 = 0
           x_0 = x_1 = x_2 = 0; period = 8
           retroShor 85 n=13; a=57
           Generalized Toffoli Gates with 3 controls = 10976 Generalized Toffoli Gates with 2 controls
           = 109368 Generalized Toffoli Gates with 1 controls = 102704
           1 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 \oplus x_1 x_2 x_3 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_3 = 1
           x_0 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 \oplus x_0 x_2 \oplus x_0 x_3 \oplus x_1 x_3 = 0
           x_0x_1x_2 \oplus x_0x_1x_3 \oplus x_1x_2x_3 \oplus x_2x_3 = 0
149
           x_0x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_2 \oplus x_1 \oplus x_1x_2 = 0
           x_0x_1 \oplus x_0x_1x_2x_3 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_2 \oplus x_2x_3 \oplus x_3 = 0
           x_0x_3 \oplus x_1x_2 \oplus x_1x_3 = 0
           x_1x_2 \oplus x_1x_2x_3 \oplus x_2 \oplus x_2x_3 = 0
           period = 16
           retroShor 771 n=20; a=769
           Generalized Toffoli Gates with 3 controls = 37044 Generalized Toffoli Gates with 2 controls
           = 381906 Generalized Toffoli Gates with 1 controls = 354564
           1 \oplus x_0 x_3 \oplus x_3 = 1
           x_0x_1x_2 \oplus x_0x_3 = 0
           x_0x_1x_2 \oplus x_1x_2 = 0
           x_0x_1x_2x_3 \oplus x_0x_2 \oplus x_1x_2 \oplus x_1x_2x_3 = 0
150
           x_0x_2 \oplus x_0x_2x_3 \oplus x_1x_2x_3 \oplus x_2 = 0
           x_0x_1 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_0x_2 \oplus x_2 \oplus x_2x_3 = 0
           x_0x_1 \oplus x_0x_1x_2 \oplus x_0x_1x_3 \oplus x_0x_2 \oplus x_1 \oplus x_1x_2 \oplus x_2 \oplus x_2x_3 = 0
           x_0 \oplus x_0 x_1 x_2 x_3 \oplus x_1 \oplus x_1 x_2 \oplus x_1 x_2 x_3 \oplus x_1 x_3 \oplus x_2 \oplus x_2 x_3 = 0
           x_0 \oplus x_0 x_1 x_3 \oplus x_0 x_2 x_3 \oplus x_1 x_2 x_3 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_3 = 0
           x_0 x_3 = 0
           period = 16
           longest clause gives period; basically we have constraints on all the vars in the longest clause;
           2^{i} where i is the index of the next variable is the period
151
           Try: 1285, 196611, 327685
```

Known Fermat primes: 3, 5, 17, 257, 65537 some equations are bigger; these are sweet is it ever the case that we have an even number of clauses that are 1 in the formula for Shor it should $a^x mod N = 1$ for two different x???

Shor 21. The examples presented so far demonstrate that some instances of quantum algorithms can be solved via classical symbolic retrodictive execution. But as was already apparent in some examples (e.g. Grover), running retrodictive execution may produce large residual equations that are difficult to solve. To appreciate how large these equations may be, we include the full set of equations produced for a retrodictive execution of Shor's algorithm for factoring 21. Unlike the number 15 which corresponds to a rare occurrence of products of Fermat primes producing a period that is a power of 2 and hence trivial to represent by equations of binary numbers, the period of 21 is not easily representable as a system of equations over binary numbers. The equations which span about five pages in Sec. 2 glaringly show the limitations of the basic retrodictive execution approach and the need for additional insights.

n=4

152

153

154

155

156

157

158

159

160

161

162

```
1 \oplus x_0 \oplus x_2 \oplus x_4
                                                    \oplus x_0x_2 \oplus x_0x_3 \oplus x_0x_4 \oplus x_2x_3 \oplus x_2x_4 \oplus x_3x_4
                                                    \oplus x_0x_2x_4
                                                    \oplus x_0 x_2 x_3 x_4 = 1
                                                x_0 \oplus x_2 \oplus x_4
                                                    \oplus x_0x_3 \oplus x_2x_3 \oplus x_3x_4
                                                    \oplus x_0x_2x_3 \oplus x_0x_3x_4 \oplus x_2x_3x_4
                                                    \oplus x_0x_2x_3x_4 = 0
n=5
          1 \oplus x_0 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5
             \oplus x_0x_2 \oplus x_0x_4 \oplus x_2x_4 \oplus x_3x_5
             \oplus x_0x_2x_3 \oplus x_0x_2x_5 \oplus x_0x_3x_4 \oplus x_0x_3x_5 \oplus x_0x_4x_5 \oplus x_2x_3x_4 \oplus x_2x_3x_5 \oplus x_2x_4x_5 \oplus x_3x_4x_5
             \oplus x_0x_2x_3x_4 \oplus x_0x_2x_4x_5
             \oplus x_0x_2x_3x_4x_5 = 1
          x_0 \oplus x_2 \oplus x_4
             \oplus x_0x_3 \oplus x_0x_5 \oplus x_2x_3 \oplus x_2x_5 \oplus x_3x_4 \oplus x_3x_5 \oplus x_4x_5
             \oplus x_0x_2x_3 \oplus x_0x_2x_4 \oplus x_0x_2x_5 \oplus x_0x_3x_4 \oplus x_0x_4x_5 \oplus x_2x_3x_4 \oplus x_2x_4x_5
             \oplus x_0x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_2x_3x_4x_5
             \oplus x_0x_2x_3x_4x_5 = 0
          x_3 \oplus x_5
             \oplus x_0x_2 \oplus x_0x_3 \oplus x_0x_4 \oplus x_0x_5 \oplus x_2x_3 \oplus x_2x_4 \oplus x_2x_5 \oplus x_3x_4 \oplus x_4x_5
             \oplus x_0x_2x_4 \oplus x_0x_3x_5 \oplus x_2x_3x_5 \oplus x_3x_4x_5
             \oplus x_0 x_2 x_3 x_4 \oplus x_0 x_2 x_3 x_5 \oplus x_0 x_2 x_4 x_5 \oplus x_0 x_3 x_4 x_5 \oplus x_2 x_3 x_4 x_5 = 0
```

z-gate entanglement uses xor perhaps look at various patterns of entanglement and how they are expressed in ANF then look at ANF and how various properties are apparent without actually solving the equations

n=6

```
 \begin{array}{l} 1 \oplus x_0 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \\ \oplus x_0 x_2 \oplus x_0 x_4 \oplus x_0 x_6 \oplus x_2 x_4 \oplus x_2 x_6 \oplus x_3 x_5 \oplus x_4 x_6 \\ \oplus x_0 x_2 x_3 \oplus x_0 x_2 x_5 \oplus x_0 x_3 x_4 \oplus x_0 x_3 x_5 \oplus x_0 x_3 x_6 \oplus x_0 x_4 x_5 \oplus x_0 x_5 x_6 \oplus x_2 x_3 x_4 \oplus x_2 x_3 x_5 \oplus x_2 x_3 x_6 \\ \oplus x_2 x_4 x_5 \oplus x_2 x_5 x_6 \oplus x_3 x_4 x_5 \oplus x_3 x_4 x_6 \oplus x_3 x_5 x_6 \oplus x_4 x_5 x_6 \\ \oplus x_0 x_2 x_3 x_4 \oplus x_0 x_2 x_3 x_6 \oplus x_0 x_2 x_4 x_5 \oplus x_0 x_2 x_4 x_6 \oplus x_0 x_2 x_5 x_6 \oplus x_0 x_3 x_4 x_6 \oplus x_0 x_4 x_5 x_6 \oplus x_2 x_3 x_4 x_5 \oplus x_0 x_2 x_3 x_4 x_5 x_6 \oplus x_0 x_2 x_4 x_5 x_6 \oplus x_0 x_2 x_4
```

 $x_{0} \oplus x_{0}x_{2}x_{3} \oplus x_{0}x_{2}x_{3}x_{4}x_{5} \oplus x_{0}x_{2}x_{3}x_{4}x_{6} \oplus x_{0}x_{2}x_{3}x_{5} \oplus x_{0}x_{2}x_{3}x_{5}x_{6} \oplus x_{0}x_{2}x_{4} \oplus x_{0}x_{2}x_{4}x_{5}x_{6} \oplus x_{0}x_{2}x_{4}x_{5} \oplus x_{0}x_{2}x_{5} \oplus x_{0}x_{2}x_{5} \oplus x_{0}x_{2}x_{3}x_{5} \oplus x_{0}x_{2}x_{3}x_{4} \oplus x_{0}x_{2}x_{3}x_{4} \oplus x_{0}x_{2}x_{3}x_{4}x_{5}x_{6} \oplus x_{0}x_{2}x_{3}x_{4}x_{5} \oplus x_{0}x_{2}x_{3}x_{5} \oplus x_{0}x_{2}x_{3}x_{5}$

Retrodictive Executions and Function Pre-images. Given finite sets A and B, a function $f: A \to B$ and an element $y \in B$, we define $\{\cdot \xleftarrow{f} y\}$, the pre-image of y under f, as the set $\{x \in A \mid f(x) = y\}$. For example, let $A = B = [\mathbf{2}^4]$ and let $f(x) = 7^x \mod 15$, then the collection of values that f maps to f, we calculate that f is the set f as shown in Fig. 9. Symbolic retrodictive execution can be seen as a method to generate boolean formulae that describe the pre-image of the function f under study. For the example in Fig. 9, retrodictive execution might generate the formulae f and f and f and f be a solution for the formulae is indeed the set f be a solution for the formulae is indeed the set f be a solution describing the pre-image is in general an intractable (even for quantum computers) f be a solution for the quantum algorithms in the previous section. Only some global properties

Figure 9: The pre-image of 4 under $f(x) = 7^x \mod 15$.

of the pre-image are needed! Indeed, we have already seen that for solving the Deutsch-Jozsa problem, the only thing needed was whether the formula contains some variables. Also for the Bernstein-Vazirani problem, the only thing needed was the indices of the variables occurring in the formula. For Grover's algorithm, we only need to extract the singleton element in the pre-image and for Shor's algorithm we only need to extract the periodicity of the elements in the pre-image but retrodictive execution as presented so far is only able to de-quantize some rare instances of algorithms.

do communication protocols too?

extensional vs intensional reasoning about functions

graph state: H,H,CZ 00 00 01 01 10 10 11 -11

check if H commutes with x and cx and ccx so we only need H at beginning and end

insight: QFT insensitive to 0+2+4... vs 1+3+5... so insensitive to where lsb is 0/1 so we only need to know if a variable is constant or varying fourier transform classical efficient in some cases

Kochen-Specker; interactive QM; observer free will; choice backtracks

universe uses lazy evaluation?

algebra of Toffoli and Hadamard ZX calculus

values going at different speeds; intervals ideas; path types

https://quantumalgorithmzoo.org

 $|-\rangle$; two classes of vars; +vars and -vars; -vars infect +vars in control gates; We have two operations +red (add red) -red (remove red) Remember cx(+,-) = (-,-) Some interactions (Toffoli) want to create more refined operations +/-(1/2)(red) +/-(red) The more you do these operations the more precise it wants to be +/-(1/4)(red) +/-(1/2) red +/-(red) taint analysis with increasing precisions; truncate at desired precision (more and more colors) The taint analysis groups variables in "waves" (superpositions) of things that have the same color so the values we propagate are "red: phase=p; frequency=f; involved variables=x1,x2,..." Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured We need to explain ideas about time-reversal, prediction and retrodiction in physics. The laws of computation and the laws of physics are intimately related. When does knowing something about the future help us unveil the structure or symmetries of the past? It is like a detective story, but one with ramifications in complexity and/or efficiency. Problems involving questions where answers demand a Many(past)-to-one(future) map are at the root of our proposal

Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured transactional interpretation?

instead of generating one formula; generating many formulas with different weights or with various patterns of negative weights... and sum them to get the patterns we need

- Symbolic (retrodictive) evaluation as a broader perspective to classical computation
- Symbolic execution allows you to express/discover interference via shared variables
- When interference pattern is simple symbolic execution reveals solutions faster (and completely classically)
- Symbolic execution as a "classical waves" computing paradigm

Shor: have some fixed set of periodic states and always match the closest one after each gate??

Sort clauses by length; the difference two consecutive clauses is the period!!!!!!

something has to give: either more entanglement requires more energy; or signal back in time can be detected; or more mass

quantum algorithms built complex wavevfunction and then ask an aggregate question; similar to molecules moving this way and that way and then asking a question about temperature. It can be calculated by average; no need to track every molecule.

but the program and the programming language is designed to track every molecule; and then the observation is something aggregate and statistical. Strange

Average frequency of each bit weighed by 2^{i} . Run with one symbolic variable and all others 0 to find

185

186

187

189

190

191

192

contribution of this bit to frequency or its average frquency.

Use qutrits for Shor 21. Equations should be nice

Then see if we can run with a parameter p for the base. Then we can choose p dynamically. Perhaps keep a range of "good" values of p as we execute.

References

195

198

- [1] Alastair A. Abbott. "The Deutsch-Jozsa problem: de-quantization and entanglement". In: *Natural Computing* 11 (2012).
- Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time in Quantum Mechanics*. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg:
 Springer Berlin Heidelberg, 2008, pp. 399–447.
- 204 [3] Roberto Baldoni, Emilio Coppa, Daniele Cono D'elia, Camil Demetrescu, and Irene Finocchi. "A Survey of Symbolic Execution Techniques". In: *ACM Comput. Surv.* 51.3 (May 2018).
- [4] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and
 Controversies". In: Symmetry 13.4 (2021).
- Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. "SELECT—a Formal System for Testing and Debugging Programs by Symbolic Execution". In: SIGPLAN Not. 10.6 (Apr. 1975), pp. 234–245.
- Linda Burnett, William Millan, Edward Dawson, and Andrew Clark. "Simpler Methods for Generating Better Boolean Functions with Good Cryptographic Properties". In: Australasian Journal of Combinatorics 29 (2004), pp. 231–247.
- ²¹³ [7] Lori A. Clarke. "A Program Testing System". In: *Proceedings of the 1976 Annual Conference*. ACM '76. Houston, Texas, USA: Association for Computing Machinery, 1976, pp. 488–491.
- Yoshihiko Futamura. "Partial computation of programs". In: *RIMS Symposia on Software Science*and Engineering. Ed. by Eiichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori
 Yonezawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 1–35.
- 218 [9] Peter Henderson and James H. Morris. "A Lazy Evaluator". In: *Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages*. POPL '76. Atlanta, Georgia: Association for Computing Machinery, 1976, pp. 95–103.
- ²²¹ [10] William E. Howden. "Experiments with a symbolic evaluation system". In: *Proceedings of the National Computer Conference*. 1976.
- 223 [11] Richarda Jozsa and Noah Linden. "On the Role of Entanglement in Quantum-Computational Speed-224 Up". In: *Proceedings: Mathematical, Physical and Engineering Sciences* 459.2036 (2003), pp. 2011– 2032.
- [12] James C. King. "Symbolic Execution and Program Testing". In: Commun. ACM 19.7 (July 1976),
 pp. 385–394.
- Vlatko Vedral, Adriano Barenco, and Artur Ekert. "Quantum networks for elementary arithmetic operations". In: *Phys. Rev. A* 54 (1 July 1996), pp. 147–153.
- [14] Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod. Phys. 27 (2 Apr. 1955), pp. 179–186.

$_{\scriptscriptstyle 32}$ 2 Methods

233

You can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. Steve Jobs

Lazy Evaluation. Consider a program that searches for three different numbers x, y, and z each in the range [1..n] and that sum to s. A well-established design principle for solving such problems is the *generate-and-test* computational paradigm. Following this principle, a simple program to solve this problem in the programming language Haskell is:

```
generate :: Int -> [(Int,Int,Int)]
generate n = [(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n]]

test :: Int -> [(Int,Int,Int)] -> [(Int,Int,Int)]

test s nums = [(x,y,z) | (x,y,z) <- nums, x /= y, x /= z, y /= z, x+y+z == s]

find :: Int -> Int -> (Int,Int,Int)

find s = head . test s . generate
```

The program consists of three functions: generate that produces all triples (x,y,z) from (1,1,1) to (n,n,n); test that checks that the numbers are different and that their sum is equal to s; and find that composes the two functions: generating all triples, testing the ones that satisfy the condition, and returning the first solution. Running this program to find numbers in the range [1..6] that sum to 15 immediately produces (4,5,6) as expected.

But what if the range of interest was [1..10000000]? A naïve execution of the generate-and-test method would be prohibitively expensive as it would spend all its time generating an enormous number of triples that are un-needed. Lazy demand-driven evaluation as implemented in Haskell succeeds in a few seconds with the result (1, 2, 12), however. The idea is simple: instead of eagerly generating all the triples, generate a process that, when queried, produces one triple at a time on demand. Conceptually the execution starts from the observer site which is asking for the first element of a list; this demand is propagated to the function test which itself propagates the demand to the function generate. As each triple is generated, it is tested until one triple passes the test. This triple is immediately returned without having to generate any additional values.

Partial Evaluation. Below is a Haskell program that computes a^n by repeated squaring:

When both inputs are known, e.g., a = 3 and n = 5, the program evaluates as follows:

```
269 power 3 5

270 = 3 * power 3 4

271 = 3 * (let r1 = power 3 2 in r1 * r1)

272 = 3 * (let r1 = (let r2 = power 3 1 in r2 * r2) in r1 * r1)

273 = 3 * (let r1 = (let r2 = 3 in r2 * r2) in r1 * r1)

274 = 3 * (let r1 = 9 in r1 * r1)

275 = 243
```

Partial evaluation is used when we only have partial information about the inputs. Say we only know n = 5. A partial evaluator then attempts to evaluate power with symbolic input a and actual input n=5. This evaluation proceeds as follows:

```
279 power a 5
280 = a * power a 4
```

247

248

249

250

251

252

253

254

256

257

258

259

```
281 = a * (let r1 = power a 2 in r1 * r1)

282 = a * (let r1 = (let r2 = power a 1 in r2 * r2) in r1 * r1)

283 = a * (let r1 = (let r2 = a in r2 * r2) in r1 * r1)

284 = a * (let r1 = a * a in r1 * r1)

285 = let r1 = a * a in a * r1 * r1
```

All of this evaluation, simplification, and specialization happens without knowledge of a. Just knowing n was enough to produce a residual program that is much simpler.

The evolution of a quantum system is typically understood as proceeding forwards in time — from the present to the future. As shown in Fig. 2(a),

Since the conventional execution starts with complete ignorance about the future, the initial state is prepared as a superposition that includes every possibility. In a well-designed algorithm, , by the time the computation reaches the measurement stages, the relative phases and probability amplitudes in that enormous superposition have become biased towards states of interest which are projected to produce the final answer.

95 Algebraic Normal Form (ANF).

287

288

289

290

291

292

293

294

296

297

298

299

301

303

305

306

307

309

circuits have generalized toffoli gates: semantics (and of controls; xor with target); ANF uses exactly those two primitives; explain

The resulting expressions are in algebraic normal form [5] where + denotes exclusive-or. instances with no 'and' easy to solve

if only x and cx then symbolic execution is efficient; no need for last batch of H can solve problem classically connect with Gottsman-Knill

Function Pre-Images and NP-Complete Problems. To appreciate the difficulty of computing preimages in general, note that finding the pre-image of a function subsumes several challenging computational problems such as pre-image attacks on hash functions [4], predicting environmental conditions that allow certain reactions to take place in computational biology [1, 2], and finding the pre-image of feature vectors in the space induced by a kernel in neural networks [3]. More to the point, the boolean satisfiability problem SAT is expressible as a boolean function over the input variables and solving a SAT problem is asking for the pre-image of true. Indeed, based on the conjectured existence of one-way functions which itself implies $P \neq NP$, all these pre-images calculations are believed to be computationally intractable in their most general setting.

Complexity Analysis.

one pass over circuit BUT size of circuit may be exponential and complexity of normalizing to ANF not trivial

B Discussion.

observer 1 measures wires a,b; obs2 measures wires b,c; not commuting; each obs gives partial solution to equations; but partial solutions cannot lead to a global solution KS suggests that equations do not have unique solutions; only materialize when you measure; can associate a probability with each variable in a equation: look at all solutions and see the contribution of each variable to these solutions.

Data Availability. All execution results will be made available and can be replicated by executing the associated software.

Code Availability. The computer programs used to generate the circuits and symbolically execute the quantum algorithms retrodictively will be made publicly available.

Author Contributions. The idea of symbolic evaluation is due to A.S. The connection to retrodictive quantum mechanics is due to G.O. The connection to partial evaluation is due to J.C. Both A.S. and J.C. contributed to the software code to run the experiments. Both A.S. and G.O. contributed to the analysis of the quantum algorithms and their de-quantization. All authors contributed to the writing of the document.

318 Competing Interests. No competing interests.

319 Materials & Correspondence. The corresponding author is Gerardo Ortiz.

Supplementary Information. Equations generated by retrodictive execution of $16^x \mod 21$ starting from observed result 1 and unknown x. The circuit consists of 9 qubits, 36400 CX-gates, 38200 CCX-gates, and 4000 CCCX-gates. There are only three equations but each equation is exponentially large.

 $x_0x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_4x_5x_6x_8x_9 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_4x_5x_7x_8 \oplus x_0x_1x_2x_4x_5x_7x_9 \oplus x_0x_1x_2x_4x_5x_8 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_5x_1x_2x_5x_6x$ $x_0x_1x_2x_5x_8 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_6 \oplus x_0x_1x_2x_6x_7 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8x_9 \oplus x_0x_1x_2x_6x_8x_9 \oplus x_0x_1x_2x_6x_9 \oplus x_0x_1x_2x$ $x_0x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_6x_7x_9 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_3x_4x_5x_7 \oplus x_0x_1x_3x_4x_5x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_5x$ $x_0x_1x_4x_5x_6 \oplus x_0x_1x_4x_5x_6x_7x_8 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_7 \oplus x_0x_1x_4x_5x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x$ $x_0x_1x_4x_6x_8y_9 \oplus x_0x_1x_4x_6x_9 \oplus x_0x_1x_4x_7x_8 \oplus x_0x_1x_4x_7x_9 \oplus x_0x_1x_4x_8 \oplus x_0x_1x_4x_8x_9 \oplus x_0x_1x_5 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x$ $x_0x_1x_5x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_9 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_8x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_6x_9$ $x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5x_6x_7 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x$ $x_0x_2x_3x_4x_5x_8 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_6x_7 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_2x_3x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_7 \oplus x_0x$ $x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x$ $x_0x_2x_3x_6x_8x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_7x_8 \oplus x_0x_2x_3x_7x_9 \oplus x_0x_2x_3x_8 \oplus x_0x_2x_3x_8x_9 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_4x_5x_6x_7 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x$ $x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_7x_9 \oplus x_0x_2x_4x_5x_6x_8 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_4x_5x_7 \oplus x_0x_2x_4x_5x_7x_8 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x_9$ $x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x_0x$ $x_0x_2x_5x_8 \oplus x_0x_2x_5x_8x_9 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8x_9 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_7 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x$ $x_0x_2x_7x_8 \oplus x_0x_2x_7x_8x_9 \oplus x_0x_2x_8x_9 \oplus x_0x_2x_9 \oplus x_0x_3x_4 \oplus x_0x_3x_4x_5x_6 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_9 \oplus x_0x_9 \oplus x$ $x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_5x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x$

```
362
363
                                                                                   x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7x_8 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_5x_7x_8 \oplus x_0x_7x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x
364
                                                                                   x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8 y \oplus x_0x_3x_7 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8 y \oplus x_0x_3x_7 y \oplus x_0x_3x_8 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5 \oplus x_0x_3x_6 y \oplus x_0x_3x_7 \oplus x_0x_3x_7 y \oplus x_0x_7 y \oplus
365
                                                                                   x_0x_4x_5x_6 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_8x_9 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x
366
                                                                                       x_0x_4x_5x_7x_9 \oplus x_0x_4x_5x_8 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_6x_7 \oplus x_0x_4x_6x_7x_8x_9 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_6x_6 \oplus x_0x_6 \oplus x_0x
367
                                                                                   x_0x_4x_7 \oplus x_0x_4x_7x_8 \oplus x_0x_4x_7x_8x_9 \oplus x_0x_4x_8x_9 \oplus x_0x_4x_9 \oplus x_0x_5x_6 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_8 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_8 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9x_6x_9 \oplus x_0x_5x_6x_9 \oplus x
368
                                                                                       x_0x_5x_6x_8x_9 \oplus x_0x_5x_7 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_9x_9 \oplus x_0x_9x_9 
369
                                                                                   x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_7x_8 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_8x_9 \oplus x_1 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4x_5 x_6x_7 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_5 \oplus x_1x_2x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_5 \oplus x_1x_5 \oplus x_1x_5
370
                                                                                       x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 
371
                                                                                   x_1x_2x_3x_4x_5x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_8x_9 \oplus x_1x_2x_3x_4x_5x_9 \oplus x_1x_2x_3x_4x_6 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_9 \oplus x_1x_2x_3x_4x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x
372
                                                                                   373
                                                                                   x_1x_2x_3x_5 \oplus x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x
374
                                                                                   x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_9 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x
375
                                                                                   x_{1}x_{2}x_{3}x_{6}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{9} \oplus x_{1}x_{2}x_{3}x_{7} \oplus x_{1}x_{2}x_{3}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{9} \oplus x_{1}x_{2}x_{
376
                                                                                   377
                                                                                   x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_7 
378
                                                                                   x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_5 \oplus x_1x
379
380
                                                                                   x_1x_2x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_8 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_5x_8 \oplus x_1x_2x
                                                                                   x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 
381
                                                                                   382
                                                                                   x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x
383
                                                                                   x_1x_3x_4x_5x_8x_9 \oplus x_1x_3x_4x_6x_7 \oplus x_1x_3x_4x_6x_7x_8x_9 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_9 \oplus x_1x_3x_4x_6x_7 \oplus x_1x_3x_4x_6x_9 \oplus x_1x_3x_6x_6 \oplus x_1x_5x_6x_6 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_6 \oplus x_1x_5x_6x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x
384
                                                                                   385
386
                                                                                       x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_7 \oplus x
                                                                                   x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7x_8x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_7x_8 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_8x_9 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x
387
                                                                                   x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x
388
                                                                                   x_{1}x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{1}x_{4}x_{5}x_{8}x_{9} \oplus x_{1}x_{4}x_{5}x_{9} \oplus x_{1}x_{4}x_{6} \oplus x_{1}x_{4}x_{6}x_{7}x_{8} \oplus x_{1}x_{4}x_{6}x_{7}x_{9} \oplus x_{1}x_{4}x_{6}x_{8} \oplus x_{1}x_{4}x_{6}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus
389
                                                                                   x_1x_4x_7 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_7x_9 \oplus x_1x_4x_8 \oplus x_1x_4x_9 \oplus x_1x_5 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x
390
391
                                                                                   x_1x_5x_6x_8x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_8x_9 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9 \oplus x_1x_6x
                                                                                       x_1x_6x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x_1x_7x_8 \oplus x_1x_7x_8x_9 \oplus x_1x_8x_9 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5x_6 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x
392
                                                                                   x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_8x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_9 \oplus x_2x_5x_9 
393
                                                                                   x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_6x_8 \oplus x_2x_5x
394
                                                                                   x_2x_3x_4x_6x_9 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_8x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 
395
                                                                                   x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_5x_9 
396
                                                                                   x_2x_3x_6 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8x_9 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_6x_8 
397
                                                                                   x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5 \oplus x_2x_4x_5x_6 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_8x_9 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_6x_9 \oplus x_2x_4x_5x_6x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_5x_6x_9 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x
398
                                                                                   x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_5x_8 \oplus x_2x_4x_5x_8x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_7 \oplus x_2x_4x_7 \oplus x_2x_6x_7 \oplus x_2x_4x_7 \oplus x_2x_4x_7 \oplus x_2x_4x_7 \oplus x_2x_4x_7 \oplus x_2x_4x_7 \oplus x_2x_7 \oplus x
399
                                                                                   x_2x_4x_6x_8 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_8x_9 \oplus x_2x_4x_9 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7x_8 \oplus x_2x
400
401
                                                                                       x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_8x_9 \oplus x_2x_5x_7 \oplus x_2x_5x_7x_8x_9 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_9 \oplus x_2x_6 \oplus x_2x_6x_7 \oplus x_2x_6x
                                                                                   x_2x_6x_7x_8 \oplus x_2x_6x_7x_8x_9 \oplus x_2x_6x_8x_9 \oplus x_2x_6x_9 \oplus x_2x_7x_8 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_8x_9 \oplus x_3 \oplus x_3x_4x_5 \oplus x_3x_4x_5 \oplus x_6x_7 \oplus x_6x_7 \oplus x_6x_7 \oplus x_6x_7 \oplus x_6x_7 \oplus x_6x_7 \oplus x_7x_8 \oplus x
402
403
                                                                                   x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_8x_9 \oplus x_3x_4x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_7 
404
                                                                                   405
                                                                                   x_3x_5x_6x_9 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_8 \oplus x_3x_5x_8x_9 \oplus x_3x_6x_7 \oplus x_3x_6x_7x_8x_9 \oplus x_3x_6x_7x_9 \oplus x_3x_6x_9 \oplus x_6x_6x_9 \oplus x_6x_9 \oplus x
406
                                                                                   x_3x_7 \oplus x_3x_7x_8 \oplus x_3x_7x_8x_9 \oplus x_3x_8x_9 \oplus x_3x_9 \oplus x_4 \oplus x_4x_5x_6 \oplus x_4x_5x_6x_7x_8 \oplus x_4x_5x_6x_7x_9 \oplus x_4x_5x_6x_8 \oplus x_4x_5x_6x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_9 \oplus x
407
                                                                                   x_{4}x_{5}x_{7} \oplus x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{4}x_{5}x_{7}x_{9} \oplus x_{4}x_{5}x_{8} \oplus x_{4}x_{5}x_{9} \oplus x_{4}x_{6} \oplus x_{4}x_{6}x_{7} \oplus x_{4}x_{6}x_{7}x_{8} \oplus x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{4}x_{6}x_{8}x_{9} \oplus x_{4}x_{6}x_{7}x_{8} \oplus x_{7}x_{7}x_{8} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7
408
                                                                                   x_{4}x_{6}x_{9} \oplus x_{4}x_{7}x_{8} \oplus x_{4}x_{7}x_{9} \oplus x_{4}x_{8} \oplus x_{4}x_{8}x_{9} \oplus x_{5} \oplus x_{5}x_{6}x_{7} \oplus x_{5}x_{7} \oplus x_{5}x_{7} \oplus x_{5}x_{7} \oplus x_{5}x_{7} \oplus x_{7} \oplus x_{
409
                                                                                   x_5x_7x_8 \oplus x_5x_7x_8x_9 \oplus x_5x_8x_9 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7x_8 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_8x_9 \oplus x_7 \oplus x_7x_8x_9 \oplus x_7x_9 \oplus x_8 \oplus x_9 = 1
410
```

 $x_0 \oplus x_0 x_1 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 \oplus x_0 x_1 x_2 x_3 x_4 \oplus x_0 x_1 x_2 x_3 x_4 x_5 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_9 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_9 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_9 x_$

411

```
413
414
                                        415
                                        416
                                        417
                                        418
                                        419
                                          x_0x_1x_2x_4x_5x_8x_9 \oplus x_0x_1x_2x_4x_5x_9 \oplus x_0x_1x_2x_4x_6 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_9 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_9 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x
420
                                        421
                                          x_0x_1x_2x_5x_6 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_5x_6x_7x_8 \oplus x_0x_1x_2x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_5x_6x_8x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x
422
                                        423
                                        424
                                        425
                                          x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_7x_9 \oplus x_0x_1x_3x_4x_5x_8 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_7 \oplus x_0x_1x_7 
426
                                        427
                                          x_0x_1x_3x_4x_8 \oplus x_0x_1x_3x_4x_8x_9 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7x_9 \oplus x_0x_1x_3x_5x_6x_8 \oplus x_0x_1x_3x_5x_6x_7x_8 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7x_8 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x
428
                                        429
                                        430
431
                                        432
                                        433
                                        434
                                        x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_9 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8x_9 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x
435
                                        x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_8x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3 + x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5 + x_0x_2x_3x_4x_5 \oplus x_0x_2x_3 + x_0x_3x_3 + x_0x
436
437
                                          x_0x_2x_3x_4x_5x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_6 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x
438
                                        439
                                        440
                                          441
442
                                        443
                                        x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_9 \oplus x_0x_2x_4x_6 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7x_8x_9 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_8 \oplus x
444
                                        x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_5x_7 \oplus x_0x_7 
445
                                        x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_7x_8 \oplus x_0x_2x_5x_8 \oplus x_0x_2x_7x_8 \oplus x_0x
446
                                        447
                                        x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_9 \oplus x_0x_3 \oplus x_0x_3x_4 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_7 \oplus x_0x
448
                                        x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 
449
                                        x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
450
                                        451
452
                                          x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x
                                        x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_7x_8x_9 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_8x_9 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
453
454
                                        x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_7x_9 \oplus x_0x_4x_5x_6x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 
                                        x_0x_4x_5x_7x_8x_9 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_5x_9 \oplus x_0x_4x_6 \oplus x_0x_4x_6x_7x_8 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_8x_9 \oplus x_0x_4x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
455
                                          x_0x_4x_7 \oplus x_0x_4x_7x_8x_9 \oplus x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_9 \oplus x_0x_5 \oplus x_0x_5x_6 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7 \oplus x_0x_5x
456
                                        x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_8x_9 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_8 \oplus x
457
                                        x_0x_6x_8 \oplus x_0x_6x_9 \oplus x_0x_7 \oplus x_0x_7x_8 \oplus x_0x_7x_8x_9 \oplus x_0x_8x_9 \oplus x_0x_9 \oplus x_1x_2 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_0x_1x_2x_3x_4 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x
458
                                        459
                                        460
                                        461
                                        462
                                        x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_8x_9 \oplus x_1x_2x_3x_5x_9 \oplus x_1x_2x_3x_6 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_9 \oplus x_1x
```

 $x_1x_2x_3x_6x_8 \oplus x_1x_2x_3x_6x_8x_9 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_7x_9 \oplus x_1x_2x_3x_8 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_4 \oplus x_1x_2x_3x_1 \oplus x_1x_2x_1 \oplus x_1x$ $x_1x_2x_4x_5 \oplus x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x$ $x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x$ $x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x$ $x_1x_2x_5x_8 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7 \oplus x$ $x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_8x_9 \oplus x_1x_3 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_7 \oplus x$ $x_1x_3x_4x_6 \oplus x_1x_3x_4x_6x_7x_8 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_5x$ $x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_6x_7 \oplus x_1x_6x_7$ $x_1x_4x_5x_7x_9 \oplus x_1x_4x_5x_8 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_8x_9 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_9 \oplus x_1x_6x_6x_9 \oplus x_1x_4x_6x_9 \oplus x_1x_6x_9 \oplus x_1x$ $x_{1}x_{4}x_{6}x_{9} \oplus x_{1}x_{4}x_{7}x_{8} \oplus x_{1}x_{4}x_{7}x_{9} \oplus x_{1}x_{4}x_{8} \oplus x_{1}x_{4}x_{8}x_{9} \oplus x_{1}x_{5} \oplus x_{1}x_{5}x_{6}x_{7} \oplus x_{1}x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{5}x_{6}x_{7}x_{9} \oplus x_{1}x_{7}x_{9} \oplus x$ $x_1x_5x_6x_8 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9 \oplus x_1x_6x$ $x_1x_6x_8 \oplus x_1x_6x_8x_9 \oplus x_1x_7 \oplus x_1x_7x_8x_9 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_5 \oplus x$ $x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x$ $x_2x_3x_4x_6x_9 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_8x_9 \oplus x_2x_3x_4x_9 \oplus x_2x_3x_5x_6 \oplus x_2x_5x_5 \oplus x_2x_5 \oplus x_2x_5x_5 \oplus x_2x_5 \oplus x_2x$ $x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_5x_8 \oplus x$ $x_2x_3x_6 \oplus x_2x_3x_6x_7 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_6x_9 \oplus x_2x$ $x_2x_3x_8 \oplus x_2x_3x_8x_9 \oplus x_2x_4x_5 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_4x_5x_6x_7x_8x_9 \oplus x_2x_4x_5x_6x_7x_9 \oplus x_2x_4x_5x_6x_8 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_6x_9 \oplus x_2x$ $x_2x_4x_6x_8 \oplus x_2x_4x_6x_8x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_9 \oplus x_2x_5 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6 \oplus x_2x_6 \oplus x_2x_6$ $x_2x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_7x_8 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_8x_9 \oplus x_2x_6x_7 \oplus x_2x_5x_6x_9 \oplus x$ $x_2x_6x_7x_8x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_6x_8 \oplus x_2x_6x_9 \oplus x_2x_7 \oplus x_2x_7x_8 \oplus x_2x_7x_8x_9 \oplus x_2x_8x_9 \oplus x_2x_9 \oplus x_3x_4 \oplus x_3x_4x_5x_6 \oplus x_3x_5x_6 \oplus x_3x_6 \oplus x_5x_6 \oplus x_5x$ $x_3x_4x_5x_8 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_8x_9 \oplus x_3x_4x_6x_8x_9 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_8 \oplus x_3x$ $x_3x_4x_7x_9 \oplus x_3x_4x_8 \oplus x_3x_4x_8x_9 \oplus x_3x_5 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_5x_6x_8 \oplus x_5x_6x$ $x_3x_7 \oplus x_3x_7x_8x_9 \oplus x_3x_7x_9 \oplus x_3x_8 \oplus x_3x_9 \oplus x_4 \oplus x_4x_5 \oplus x_4x_5x_6 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8 \oplus x_5x$ $x_4x_5x_6x_8x_9 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7x_8 \oplus x_4x_5x_7x_9 \oplus x_4x_5x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x_8 \oplus x_6x_6x$ $x_4x_6x_8 \oplus x_4x_6x_9 \oplus x_4x_7 \oplus x_4x_7x_8 \oplus x_4x_7x_8x_9 \oplus x_4x_8x_9 \oplus x_4x_9 \oplus x_5x_6 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_9 \oplus x$ $x_5x_6x_8x_9 \oplus x_5x_7 \oplus x_5x_7x_8x_9 \oplus x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7 \oplus x_6x_7x_8 \oplus x_6x_7x_8x_9 \oplus x_6x_8x_9 \oplus x_6x_9 \oplus x_6x$ $x_7x_8 \oplus x_7x_9 \oplus x_8 \oplus x_8x_9 = 0$

 $x_0x_1 \oplus x_0x_1x_2x_3 \oplus x_0x_1x_2x_3x_4x_5 \oplus x_0x_1x_2x_3x_4x_5x_6x_7 \oplus x_0x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_5x_6x_8 \oplus x_0x_1x_2x_3x_4x_5x_6x_9 \oplus x_0x_1x_2x_3x_4x_5x_7 \oplus x_0x_1x_2x_3x_4x_5x_7x_8 \oplus x_0x_1x_2x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_2x_3x_4x_5x_8x_9 \oplus x_0x_1x_2x_3x_4x_5x_9 \oplus x_0x_1x_2x_3x_4x_6 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_7x_9 \oplus x_0x_1x_2x_3x_4x_7x_9 \oplus x_0x_1x_2x_3x_4x_8 \oplus x_0x_1x_2x_3x_4x_9 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7x_8 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_9 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_9 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_5x_6x_9 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_6x_9 \oplus x_0x_1x_2x_3x_5x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_7 \oplus x_0x_1x_2x_3x_6x_9 \oplus x_0x_1x_2x_3x_7 \oplus x_0x_1x_2x_4x_5x_6x_7 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_7 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x$

```
515
516
                                                            x_0x_1x_3x_4x_6x_7x_8x_9 \oplus x_0x_1x_3x_4x_6x_7x_9 \oplus x_0x_1x_3x_4x_6x_8 \oplus x_0x_1x_3x_4x_6x_9 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7x_8 \oplus x_0x_1x_3x_4x_6x_9 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_6x_6x_9 \oplus x_0x_1x_5x_6x_6x_6x_9 \oplus x_0x_1x_5x_6x_6x_9 \oplus x_0x_1x_5x_6x_6x_9 \oplus x_0x_1x_5x_6x_6x_9 \oplus x_0x_1x_5x_6x_6x_9 \oplus x_0x_1x_5x
                                                            517
                                                            x_0x_1x_3x_5x_6x_8x_9 \oplus x_0x_1x_3x_5x_7 \oplus x_0x_1x_3x_5x_7x_8x_9 \oplus x_0x_1x_3x_5x_7x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_9 \oplus x_0x_1x_3x_6 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_8 \oplus x_0x_1x_8 \oplus x_0x_1x_8 \oplus x
518
                                                            519
                                                            x_0x_1x_3x_8 \oplus x_0x_1x_3x_8x_9 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x
520
                                                            521
                                                            522
                                                            523
                                                              x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_7x_9 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_8x_9 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7x_8x_9 \oplus x_0x_1x_6x_7x_9 \oplus x_0x_1x_6x_1x_6x_9 \oplus x_0x_1x_6x_1x_6x_9 \oplus x_0x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x_6x_1x
524
                                                            x_0x_1x_6x_8 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_8x_9 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3x_4 
525
                                                            526
                                                            527
                                                            528
                                                            529
                                                              530
                                                            x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8x_9 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7x_8x_9 \oplus x_0x_2x_3x_7x_9 \oplus x_0x_2x_3x_8 \oplus x_0x_2x_3x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_1 \oplus x_0x_1 \oplus x_0x
531
                                                            x_0x_2x_4x_5 \oplus x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x
532
533
                                                            x_0x_2x_4x_5x_7x_8 \oplus x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_8x_9 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x
                                                            x_0x_2x_4x_6x_8 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_9 \oplus x
534
                                                            x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_7x_9 \oplus x
535
                                                            x_0x_2x_5x_8 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_9 \oplus x
536
                                                            x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_8x_9 \oplus x_0x_3 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9 
537
                                                            x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_9 
538
539
                                                              x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9x_9 \oplus x_0x_9 \oplus x
                                                            540
                                                            x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x
541
                                                            x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_8x_9 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5x_6 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 
542
                                                              543
544
                                                            x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_8x_9 \oplus x_0x_5 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_8 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x
545
                                                            x_0x_5x_7 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_8 \oplus x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x
546
                                                            x_0x_7 \oplus x_0x_7x_8x_9 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_9 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_5 \oplus x_1x_5 
547
548
                                                            x_1x_2x_3x_4x_5x_6x_7 \oplus x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_7x_9 
                                                            549
                                                            x_1x_2x_3x_4x_6x_8 \oplus x_1x_2x_3x_4x_6x_9 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x_7x_8 \oplus x_1x_2x_3x_4x_7x_8x_9 \oplus x_1x_2x_3x_4x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_8x_9 
550
                                                            x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_9 \oplus x_1x_2x_3x_5x_6x_8 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_7 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_6x_8x_9 \oplus x_1x_2x_5x_6x_5x_9x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x
551
                                                            x_{1}x_{2}x_{3}x_{5}x_{7}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{8} \oplus x_{1}x_{2}x_{3}x_{5}x_{9} \oplus x_{1}x_{2}x_{3}x_{6} \oplus x_{1}x_{2}x_{3}x_{6}x_{7} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{7} \oplus x_{1}x_{2}x_{
552
                                                            553
554
                                                              x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x
                                                            x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x
555
556
                                                            x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_5 \oplus x_1x
                                                            x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x
557
                                                            x_1x_2x_5x_8 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x
558
                                                            559
                                                            x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_5x_8 \oplus x_1x
560
                                                            561
                                                            x_1x_3x_4x_7x_9 \oplus x_1x_3x_4x_8 \oplus x_1x_3x_4x_8x_9 \oplus x_1x_3x_5 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_5x_6x_7x_8x_9 \oplus x_1x_3x_5x_6x_7x_9 \oplus x_1x_3x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x
562
                                                            563
                                                            x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8x_9 \oplus x_1x_3x_7 \oplus x_1x_3x_7x_8x_9 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_9 \oplus x_1x_4 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_8 \oplus x_1x_6x_8 \oplus x_1x
564
```

 $x_1x_4x_5x_7x_9 \oplus x_1x_4x_5x_8 \oplus x_1x_4x_5x_8x_9 \oplus x_1x_4x_6x_7 \oplus x_1x_4x_6x_7x_8x_9 \oplus x_1x_4x_6x_7x_9 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_9 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_9 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_9 \oplus x_1x_4x_6x_8 \oplus x_1x$ 566 567 $x_1x_4x_7 \oplus x_1x_4x_7x_8 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_8x_9 \oplus x_1x_4x_9 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x$ $x_1x_5x_6x_8x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7 \oplus x$ 568 $x_1x_6x_8x_9 \oplus x_1x_6x_9 \oplus x_1x_7x_8 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_8x_9 \oplus x_2x_3 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_5 \oplus x$ $x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x$ 570 $x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_9 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4 \oplus x_2x_3x_4$ 571 $x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_7x_6x_7x_6x_7x_7x_6x$ 572 $x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x$ 573 $x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8x_9 \oplus x_2x_3x_8x_9 \oplus x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5x_6 \oplus x_2x_3x_6x_9 \oplus x_2x_6x_9 \oplus x$ 574 575 $x_2x_4x_5x_8 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_6 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_9 \oplus x_2x_6x_9 \oplus x_2x_6x_9$ 576 $x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_8x_9 \oplus x_2x_5 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x$ 577 $x_{2}x_{5}x_{7} \oplus x_{2}x_{5}x_{7}x_{8} \oplus x_{2}x_{5}x_{7}x_{8}x_{9} \oplus x_{2}x_{5}x_{8}x_{9} \oplus x_{2}x_{5}x_{9} \oplus x_{2}x_{6} \oplus x_{2}x_{6}x_{7}x_{8} \oplus x_{2}x_{6}x_{7}x_{9} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{8}x_{9} \oplus x_{2}x_{8}x_{9} \oplus x_{2}x_{8}$ 578 $x_2x_7 \oplus x_2x_7x_8x_9 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_9 \oplus x_3 \oplus x_3x_4 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6x_7x_8 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6 \oplus x_3x_4x_5 \oplus x_3x_4 \oplus x_3x_4x_5 \oplus x_3x_4 \oplus x$ 579 $x_3x_4x_5x_6x_7x_8x_9 \oplus x_3x_4x_5x_6x_8x_9 \oplus x_3x_4x_5x_6x_9 \oplus x_3x_4x_5x_7x_8 \oplus x_3x_4x_5x_7x_9 \oplus x_3x_4x_5x_8 \oplus x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x$ $x_3x_4x_6x_7 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7 x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_9 \oplus x_3x_4x_7 \oplus x_3x_4x_7x_8 \oplus x_3x_4x_7x_8 x_9 \oplus x_3x_4x_6x_9 \oplus x_3x_6x_9 \oplus x_3x_6x_$ 581 $x_3x_4x_9 \oplus x_3x_5x_6 \oplus x_3x_5x_6x_7x_8 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_7 \oplus x_3x_5x_7 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_7x_9 \oplus x_7x_9 \oplus x_7x_9$ 582 583 $x_3x_8x_9 \oplus x_4x_5 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_4x_5x_6x_7x_9 \oplus x_4x_5x_6x_8 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7 \oplus x_4x_5x_7x_8 \oplus x_5x_6x_7 \oplus x_5x$ $x_4x_5x_7x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_9 \oplus x_4x_6 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_8 \oplus x_4x_6x_8x_9 \oplus x_4x_7 \oplus x_4x_7x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x$ 585 $x_{4}x_{7}x_{9} \oplus x_{4}x_{8} \oplus x_{4}x_{9} \oplus x_{5} \oplus x_{5}x_{6} \oplus x_{5}x_{6}x_{7} \oplus x_{5}x_{6}x_{7}x_{8} \oplus x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{7}x_{8} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{9} \oplus x_{5}x_{9$ $x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_8x_9 \oplus x_6x_7 \oplus x_6x_7x_8x_9 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_9 \oplus x_7 \oplus x_7x_8 \oplus x_7x_8x_9 \oplus x_8x_9 \oplus x_9 = 0$ 587

References

589

590

- [1] Tatsuya Akutsu, Morihiro Hayashida, Shu-Qin Zhang, Wai-Ki Ching, and Michael K Ng. "Analyses and algorithms for predecessor and control problems for Boolean networks of bounded indegree". In: *Information and Media Technologies* 4.2 (2009), pp. 338–349.
- Johannes Georg Klotz, Martin Bossert, and Steffen Schober. "Computing preimages of Boolean networks". In: *BMC Bioinformatics* 14.10 (Aug. 2013), S4.
- J.T.-Y. Kwok and I.W.-H. Tsang. "The pre-image problem in kernel methods". In: *IEEE Transactions* on Neural Networks 15.6 (2004), pp. 1517–1525.
- Phillip Rogaway and Thomas Shrimpton. "Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance". In: Fast Software Encryption. Ed. by Bimal Roy and Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 371–388.
- [5] Natalia Tokareva. "Chapter 1 Boolean Functions". In: Bent Functions. Ed. by Natalia Tokareva.
 Boston: Academic Press, 2015, pp. 1–15.