MAE 544 - Nonlinear Control

Fall 2017

Homework # 2

• Assigned: October 17, 2017.

• Due: Tuesday, October 24, 2017 by 3:00 pm in class.

- 1. Let \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 be smooth manifolds of dimension m_1 , m_2 and m_3 , respectively. Moreover, $\Phi: \mathcal{M}_1 \to \mathcal{M}_2$ and $\Psi: \mathcal{M}_2 \to \mathcal{M}_3$ are smooth maps. Then show that $\Psi \circ \Psi: \mathcal{M}_1 \to \mathcal{M}_3$ is a smooth map.
- 2. Consider the open ball \mathcal{B}^n defined as $\mathcal{B}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n | x_1^2 + \dots + x_n^2 < 1\}$. Show that it is an n-dimensional smooth manifold. What is the least number of charts that one needs to construct an atlas for this manifold?
- 3. Consider the 2-Torus $\mathcal{T}^2 \subset \mathbb{R}^3$ defined as

$$\mathcal{T}^2 = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \middle| \left(\sqrt{x_1^2 + x_2^2} - R \right)^2 + x_3^2 = r^2 \right\},\,$$

where R > r > 0. Show that \mathcal{T}^2 is a 2-dimensional smooth manifold.

4. An n-dimensional smooth manifold \mathcal{M} is said to be parallelizable if there exist smooth vector fields $X_1, \ldots, X_n \in \mathfrak{X}(\mathcal{M})$ such that $X_1(p), \ldots, X_n(p)$ define a basis of $T_p\mathcal{M}$ for all $p \in \mathcal{M}$. Let X_1, X_2 and X_3 , defined as

$$X_{1}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{2} \frac{\partial}{\partial x_{1}} - x_{1} \frac{\partial}{\partial x_{2}} + x_{4} \frac{\partial}{\partial x_{3}} - x_{3} \frac{\partial}{\partial x_{4}}$$

$$X_{2}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{3} \frac{\partial}{\partial x_{1}} - x_{4} \frac{\partial}{\partial x_{2}} - x_{1} \frac{\partial}{\partial x_{3}} + x_{2} \frac{\partial}{\partial x_{4}}$$

$$X_{3}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{4} \frac{\partial}{\partial x_{1}} + x_{3} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{3}} - x_{1} \frac{\partial}{\partial x_{4}},$$

be three vector fields on the 3-sphere $S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$. Show that S^3 is parallelizable (i.e. $X_i, i \in \{1, 2, 3\}$ are smooth vector fields, and they define a basis for T_nS^3 at every $p \in S^3$).

5. Consider the 2-Sphere $S^2 \subset \mathbb{R}^3$ defined as

$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1 \}.$$

1

Construct an atlas for the associated tangent bundle TS^2 .