Sprawozdanie z zadań z analizy numerycznej

Patryk Blacha, Radosław Szepielak

$10~\mathrm{marca}~2025$

Spis treści

1	1 Zadanie 1: Obliczanie pochodnej funkcji				
	1.1	Wprowadzenie	2		
	1.2	Metoda różnicy do przodu	2		
		1.2.1 Błędy	2		
		1.2.2 Optymalne h_{\min}	2		
	1.3	Metoda różnicy centralnej	2		
		1.3.1 Błędy	2		
		1.3.2 Optymalne h_{\min}	3		
	1.4	Implementacja	3		
		1.4.1 Definicje funkcji	3		
		1.4.2 Obliczenia	3		
		1.4.3 Różnice do przodu	3		
		1.4.4 Różnice centralne	3		
	1.5	Wyniki	4		
	1.6	Wykresy	4		
		1.6.1 Metoda różnicy do przodu	4		
		1.6.2 Metoda różnicy centralnej	4		
	1.7	Wnioski	4		
_	- I				
2		lanie 2: Sumowanie liczb zmiennoprzecinkowych	4		
	2.1	Wstęp	4		
	2.2	Implementacja	5		
		2.2.1 Definicje funkcji	5		
	0.0	2.2.2 Obliczenia	5		
	2.3	Wykresy	6		
	2.4	Dyskusja	6		
	2.5	Wnioski	6		
3	Zadanie 3: Stabilność numeryczna wyrażeń				
	3.1	Rozwiązania	7		
		3.1.1 (a) $\sqrt{x+1} - 1$, $x \approx 0$	7		
		$3.1.2$ (b) $x^2 - y^2$, $x \approx y$	7		
		3.1.3 (c) $1 - \cos x$, $x \approx 0$	7		
		3.1.4 (d) $\cos^2 x - \sin^2 x$, $x \approx \frac{\pi}{4}$	7		
		$3.1.5$ (e) $\ln x - 1$, $x \approx e^{x}$	8		
		3.1.6 (f) $e^x - e^{-x}$, $x \approx 0$	8		
4		lanie 4: Porównanie sprawności kolektorów słonecznych S1 i S2	8		
	4.1	Wstęp	8		
	4.2	Błędy pomiarowe	8		
	4.3	Propagacja błędu	8		
	4.4	Analiza porównawcza	9		
	4.5	Wniosek	9		

1 Zadanie 1: Obliczanie pochodnej funkcji

1.1 Wprowadzenie

W tym zadaniu obliczamy przybliżoną wartość pochodnej funkcji $f(x) = \tan(x)$ w punkcie $x_0 = 1.0$ przy użyciu dwóch metod: różnicy do przodu (forward difference) oraz różnicy centralnej (central difference). Następnie porównujemy wyniki z dokładną wartością pochodnej, korzystając z tożsamości:

$$\tan'(x) = 1 + \tan^2(x)$$

1.2 Metoda różnicy do przodu

Wzór na różnicę do przodu jest następujący:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

1.2.1 Błędy

W metodzie różnicy do przodu występują dwa główne źródła błędów:

• Błąd metody (truncation error):

$$E_{\rm trunc} \approx \frac{|f''(x)|}{2} \cdot h$$

• Błąd obliczeniowy (roundoff error):

$$E_{\rm round} \approx \frac{2\epsilon_{\rm mach}}{h}$$

1.2.2 Optymalne h_{\min}

Teoretycznie optymalna wartość h_{\min} dla metody różnicy do przodu jest dana wzorem:

$$h_{\min} \approx 2\sqrt{\frac{\epsilon_{\mathrm{mach}}}{M}}$$

gdzie $M \approx |f''(x)|$.

1.3 Metoda różnicy centralnej

Wzór na różnicę centralną jest następujący:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

1.3.1 Błędy

W metodzie różnicy centralnej błędy są następujące:

• Błąd metody (truncation error):

$$E_{\rm trunc} \approx \frac{|f'''(x)|}{6} \cdot h^2$$

• Bład obliczeniowy (roundoff error):

$$E_{\rm round} \approx \frac{\epsilon_{\rm mach}}{h}$$

2

1.3.2 Optymalne h_{\min}

Teoretycznie optymalna wartość h_{\min} dla metody różnicy centralnej jest dana wzorem:

$$h_{\rm min} \approx \left(\frac{3\epsilon_{\rm mach}}{M}\right)^{1/3}$$

gdzie $M \approx |f'''(x)|$.

1.4 Implementacja

Poniżej znajduje się implementacja obu metod w Pythonie:

1.4.1 Definicje funkcji

```
import numpy as np
import matplotlib.pyplot as plt

def f(x):
    return np.tan(x)

def f_analytical_prime(x):
    return 1 + np.tan(x)**2

def f_second(x):
    return 2*(1/np.cos(x)**2)*np.tan(x)

def f_third(x):
    return 2*(1/np.cos(x)**2) + 6*(np.sin(x)**2)/(np.cos(x)**4)
```

1.4.2 Obliczenia

```
1 x0 = 1.0
2 d_true = f_analytical_prime(x0)
3 eps = np.finfo(float).eps
4 k_vals = np.arange(0, 17)
5 h_vals = 10.0**(-k_vals)
```

1.4.3 Różnice do przodu

```
d_forward = (f(x0 + h_vals) - f(x0)) / h_vals
error_forward = np.abs(d_forward - d_true)

E_trunc_forward = 0.5 * np.abs(f_second(x0)) * h_vals

E_round_forward = 2 * eps / h_vals

idx_min_forward = np.argmin(error_forward)

h_min_forward_emp = h_vals[idx_min_forward]

E_min_forward_emp = error_forward[idx_min_forward]

M_forward = np.abs(f_second(x0))

h_min_forward_theor = 2 * np.sqrt(eps / M_forward)
```

1.4.4 Różnice centralne

```
d_central = (f(x0 + h_vals) - f(x0 - h_vals)) / (2 * h_vals)
error_central = np.abs(d_central - d_true)

E_trunc_central = (np.abs(f_third(x0)) / 6) * h_vals**2

E_round_central = eps / h_vals

idx_min_central = np.argmin(error_central)

h_min_central_emp = h_vals[idx_min_central]

E_min_central_emp = error_central[idx_min_central]

M_central = np.abs(f_third(x0))

h_min_central_theor = (3 * eps / M_central)**(1/3)
```

1.5 Wyniki

Poniżej przedstawiamy wyniki dla obu metod:

```
print("Dla metody r
                       nic do przodu:")
  print(f"
           Empiryczne h_min: {h_min_forward_emp:.3e}, E(h_min): {E_min_forward_emp:.3e}")
  print(f"
            Teoretyczne h_min (wz r (2)): {h_min_forward_theor:.3e}")
  print()
  print("Dla metody r
                        nic centralnych:")
            Empiryczne h_min: {h_min_central_emp:.3e}, E(h_min): {E_min_central_emp:.3e}")
  print(f"
  print(f"
            Teoretyczne h_min (wz r (4)): {h_min_central_theor:.3e}")
  print()
  if E_min_central_emp < E_min_forward_emp:</pre>
11
                        nic centralnych jest dok adniejsza.")
      print("Metoda r
13 else:
     print("Metoda r nic do przodu jest dok adniejsza.")
```

1.6 Wykresy

Poniżej znajdują się wykresy błędów dla obu metod:

1.6.1 Metoda różnicy do przodu

Rysunek 1: Błędy dla metody różnicy do przodu

1.6.2 Metoda różnicy centralnej

1.7 Wnioski

Na podstawie przeprowadzonych obliczeń i analizy błędów można stwierdzić, że metoda różnic centralnych jest dokładniejsza niż metoda różnic do przodu, co potwierdzają zarówno wyniki empiryczne, jak i teoretyczne.

2 Zadanie 2: Sumowanie liczb zmiennoprzecinkowych

2.1 Wstęp

Celem zadania było zbadanie wpływu różnych metod sumowania na dokładność obliczeń przy użyciu liczb zmiennoprzecinkowych pojedynczej precyzji. W szczególności, porównano pięć różnych metod sumowania:

• (a) Sumowanie w kolejności generowania z akumulatorem podwójnej precyzji,

Rysunek 2: Błędy dla metody różnicy centralnej

- (b) Sumowanie w kolejności generowania z akumulatorem pojedynczej precyzji,
- (c) Sumowanie z użyciem algorytmu Kahana,
- (d) Sumowanie w porządku rosnącym,
- (e) Sumowanie w porządku malejącym.

Dla każdej metody obliczono względny błąd sumowania w zależności od liczby elementów $n=10^k$, gdzie k=4,5,6,7,8. Jako wartość referencyjną przyjęto sumę obliczoną za pomocą funkcji math.fsum, która zapewnia wysoką precyzję.

2.2 Implementacja

Poniżej znajduje się implementacja w Pythonie:

2.2.1 Definicje funkcji

```
import numpy as np
  import matplotlib.pyplot as plt
  import math
  # Funkcja realizuj ca sumowanie Kahana w pojedynczej precyzji
5
  def kahan_sum(x):
      suma = np.float32(0.0)
      komp = np.float32(0.0)
9
      for xi in x:
          y = np.float32(xi - komp)
10
          temp = np.float32(suma + y)
          komp = np.float32((temp - suma) - y)
          suma = temp
      return suma
```

2.2.2 Obliczenia

```
# Lista warto ci n: n = 10^k, k = 4,5,6,7,8
n_values = [10 ** k for k in range(4, 9)]

# Listy do przechowywania wzgl dnych b d w dla poszczeg lnych metod
errors_a = [] # (a) podw jna precyzja
errors_b = [] # (b) pojedyncza precyzja
errors_c = [] # (c) Kahan
errors_d = [] # (d) sortowanie rosn co
errors_e = [] # (e) sortowanie malej co
```

```
for n in n_values:
       # Generujemy n liczb pojedynczej precyzji
      x = np.random.uniform(0, 1, n).astype(np.float32)
13
                                               wykorzystujemy math.fsum
      # Prawdziwa suma (wysoka precyzja)
14
      true_sum = math.fsum(x.tolist())
      # (a) Sumowanie w kolejno ci generowania z akumulatorem podw jnej precyzji
17
18
      sum_a = np.cumsum(x, dtype=np.float64)[-1]
19
      # (b) Sumowanie w kolejno ci generowania z akumulatorem pojedynczej precyzji
20
      sum_b = np.cumsum(x, dtype=np.float32)[-1]
21
22
      # (c) Sumowanie Kahana
                                   algorytm sumowania z kompensacj , akumulacja w
      pojedynczej precyzji
24
      sum_c = kahan_sum(x)
25
      # (d) Sumowanie w kolejno ci rosn cej (od najmniejszych do najwi kszych)
26
      x_sorted_asc = np.sort(x)
27
28
      sum_d = np.cumsum(x_sorted_asc, dtype=np.float32)[-1]
29
30
      # (e) Sumowanie w kolejno ci malej cej (od najwi kszych do najmniejszych)
      x_sorted_desc = np.sort(x)[::-1]
31
      sum_e = np.cumsum(x_sorted_desc, dtype=np.float32)[-1]
32
33
      # Obliczamy wzgl dny b d dla ka dej metody: |suma_metody - true_sum| / |
34
      true sum |
      err_a = abs(sum_a - true_sum) / abs(true_sum)
35
      err_b = abs(sum_b - true_sum) / abs(true_sum)
36
      err_c = abs(sum_c - true_sum) / abs(true_sum)
37
      err_d = abs(sum_d - true_sum) / abs(true_sum)
38
      err_e = abs(sum_e - true_sum) / abs(true_sum)
39
40
      errors_a.append(err_a)
41
42
       errors_b.append(err_b)
      errors_c.append(err_c)
43
      errors_d.append(err_d)
44
      errors_e.append(err_e)
45
46
      print(f"n = {n:>10}:")
47
48
      print(f" (a) podw jna precyzja: suma = {sum_a:.8e}, b
                                                                    d = \{err_a:.8e\}")
      print(f"
                 (b) pojedyncza precyzja: suma = {sum_b:.8e}, b d = {err_b:.8e}")
49
                                      suma = {sum_c:.8e}, b d = {err_c:.8e}")

suma = {sum_d:.8e}, b d = {err_d:.8e}")

suma = {sum_e:.8e}, b d = {err_e:.8e}")
      print(f"
                 (c) Kahan:
50
                 (d) sort. rosn co:
(e) sort. malej co:
      print(f"
51
      print(f"
52
    print()
```

2.3 Wykresy

Poniżej znajduje się wykres względnego błędu w zależności od liczby elementów n:

2.4 Dyskusja

- Metoda (a) z użyciem akumulatora podwójnej precyzji charakteryzuje się najmniejszym błędem, co wynika z większej precyzji obliczeń.
- Metoda (b) z użyciem akumulatora pojedynczej precyzji wykazuje większy błąd niż metoda (a), co jest spowodowane ograniczoną precyzją liczb pojedynczej precyzji.
- Algorytm Kahana (metoda c) pozwala na znaczące zmniejszenie błędu w porównaniu do standardowego sumowania w pojedynczej precyzji, dzięki kompensacji błędów zaokrągleń.
- Sumowanie w porządku rosnącym (metoda d) daje lepsze wyniki niż sumowanie w porządku malejącym (metoda e), co jest zgodne z oczekiwaniami, ponieważ sumowanie od najmniejszych do największych wartości minimalizuje błędy zaokrągleń.

2.5 Wnioski

• Użycie akumulatora podwójnej precyzji (metoda a) jest najbardziej efektywnym sposobem na zmniejszenie błędu sumowania.

Rysunek 3: Względny błąd sumowania w zależności od liczby elementów n dla różnych metod sumowania.

- Algorytm Kahana (metoda c) jest skutecznym narzędziem do poprawy dokładności sumowania w pojedynczej precyzji.
- Sumowanie w porządku rosnącym (metoda d) jest lepsze niż sumowanie w porządku malejącym (metoda e) pod względem dokładności.

3 Zadanie 3: Stabilność numeryczna wyrażeń

3.1 Rozwiązania

3.1.1 (a) $\sqrt{x+1}-1$, $x\approx 0$

Aby uniknąć zjawiska kancelacji, mnożymy przez sprzężenie:

$$\sqrt{x+1} - 1 = \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{\sqrt{x+1} + 1} = \frac{x}{\sqrt{x+1} + 1}.$$

3.1.2 (b)
$$x^2 - y^2$$
, $x \approx y$

Różnicę kwadratów zapisujemy jako iloczyn:

$$x^{2} - y^{2} = (x - y)(x + y).$$

Dzięki temu eliminujemy problem z odejmowaniem bliskich wartości.

3.1.3 (c) $1 - \cos x$, $x \approx 0$

Stosujemy tożsamość trygonometryczną:

$$1 - \cos x = 2\sin^2\frac{x}{2}.$$

3.1.4 (d)
$$\cos^2 x - \sin^2 x$$
, $x \approx \frac{\pi}{4}$

Korzystamy z tożsamości:

$$\cos^2 x - \sin^2 x = \cos 2x.$$

Dla $x \approx \frac{\pi}{4}$, mamy $\cos 2x = -\sin(2(x - \frac{\pi}{4}))$, co jest bardziej stabilne numerycznie.

3.1.5 (e) $\ln x - 1$, $x \approx e$

Przekształcamy wyrażenie:

$$\ln x - 1 = \ln \frac{x}{e}.$$

Dzięki temu unikamy odejmowania wartości bliskich sobie.

3.1.6 (f) $e^x - e^{-x}$, $x \approx 0$

Używamy funkcji hiperbolicznej:

$$e^x - e^{-x} = 2\sinh x.$$

Dla małych x rozwijamy sinh x w szereg Taylora:

$$sinh x = x + \frac{x^3}{3!} + \mathcal{O}(x^5).$$

To pozwala na stabilniejsze obliczenia numeryczne.

4 Zadanie 4: Porównanie sprawności kolektorów słonecznych S1 i S2

4.1 Wstęp

Efektywność kolektora słonecznego dana jest wzorem:

$$\eta = \frac{K \, Q \, T_d}{I},$$

gdzie:

- K stała znana z dużą dokładnością,
- \bullet Q objętość przepływu,
- T_d różnica temperatur,
- I natężenie promieniowania.

Dla dwóch kolektorów obliczono:

$$\eta_{S1} = 0.76 \quad \text{oraz} \quad \eta_{S2} = 0.70.$$

4.2 Błędy pomiarowe

Wielkości $Q,\,T_d$ oraz I zmierzono z następującymi względnymi błędami:

Wielkość	S1	S2
\overline{Q}	1.5%	0.5%
T_d	1.0%	1.0%
I	3.6%	2.0%

4.3 Propagacja błędu

Zakładając, że K jest znane bardzo dokładnie, względny błąd efektywności η wyraża się przy pomocy zasady dla iloczynu i ilorazu:

$$\frac{\Delta \eta}{\eta} \approx \frac{\Delta Q}{Q} + \frac{\Delta T_d}{T_d} + \frac{\Delta I}{I}.$$

8

Kolektor S1

Dla S1:

$$\frac{\Delta \eta_{S1}}{\eta_{S1}} = 1.5\% + 1.0\% + 3.6\% = 6.1\%.$$

Błąd bezwzględny wynosi:

$$\Delta \eta_{S1} = 0.76 \times 0.061 \approx 0.046.$$

Przyjmując, że rzeczywista efektywność mieści się w przedziale:

$$\eta_{S1} \in [0.76 - 0.046, \ 0.76 + 0.046] \approx [0.714, \ 0.806].$$

Kolektor S2

Dla S2:

$$\frac{\Delta \eta_{S2}}{\eta_{S2}} = 0.5\% + 1.0\% + 2.0\% = 3.5\%.$$

Błąd bezwzględny wynosi:

$$\Delta \eta_{S2} = 0.70 \times 0.035 \approx 0.0245.$$

Przyjmując przedział niepewności:

$$\eta_{S2} \in [0.70 - 0.0245, 0.70 + 0.0245] \approx [0.6755, 0.7245].$$

4.4 Analiza porównawcza

Dla kolektora S1 efektywność mieści się w przedziale $[0.714,\ 0.806]$, natomiast dla S2 w przedziale $[0.6755,\ 0.7245]$. Zauważamy, że:

- Górna granica dla S2 wynosi około 0.7245,
- Dolna granica dla S1 wynosi około 0.714.

Przedziały te częściowo się nakładają, co oznacza, że w wyniku błędów pomiarowych nie możemy z całą pewnością stwierdzić, że rzeczywista efektywność S1 jest większa niż S2.

4.5 Wniosek

Pomimo nominalnie wyższej sprawności S1 (0.76) w porównaniu do S2 (0.70), niepewności pomiarowe (szczególnie większy błąd w I dla S1) powodują, że przedziały niepewności dla obu kolektorów się nakładają. Dlatego na podstawie dostępnych danych nie możemy być pewni, że kolektor S1 ma większą sprawność niż kolektor S2.