Assignment #2 Are Deeper Networks Better?

F64126147 胡瑀真

注意事項 1: 書面報告可參考網路資料,但須理解與整理,自己理解與整理後撰寫報告, 使用整段網路內容所獲的評分不高

注意事項 2: 勿分享報告給課程同學,相似內容的報告所獲評分不高

1. 說明是否參考或使用網路上程式,或程式自行撰寫?

(允許參考網路程式資源,在書面報告中須說明參考來源與有參考程式的範圍。如程 式與模型全部自做,亦在報告中說明,有額外分數)

程式參考網路資料:iT 邦幫忙、生成式 AI ChatGPT,以及講義第五章內容。

- 2. a)類神經網路(Artificial Neural Network, ANN)待求解未知數為何?
 - b)激活函數在 ANN 扮演角色為何?
 - c)損失函數(Loss Function)在 ANN 扮演角色為何?
 - d) ANN 內的 Softmax 激活函數有何作用?
 - a) 類神經網路的待求解未知數(unknown parameters)為權重(weights)和偏差(biases)。在類神經網路中,要丟進激活函數(Activation Function)的參數 $Z=w_1a_1+\dots+w_ia_i+\dots+w_ka_k+b$,前式中的W和b分別就是權重和偏差。 其中權重表示輸入特徵對預測結果的重要程度,偏差表示不輸入特徵仍會產生的模型偏移量,在訓練模型時,透過調整權重和偏差可使模型的預測更加準確。
 - b) 激活函數(Activation Function),若以生物學的角度說明,是用以控制單一神經元對訊號活躍程度,擁有將訊號衰減或是保留的能力;若用數值上的角度說明,則可以使類神經網路不再只有線性(如:上題中 $z=w_1a_1+\dots+w_ia_i+\dots+w_ka_k+b$)的特性。透過激活函數可使類神經網路擁有非線性特性,讓類神經網路處理更加複雜的問題,否則,若無激活函數,則無論類神經網路疊多少層神經元,皆等同於一層神經元、一層線性轉換。舉例說明:Sigmoid Function $\sigma(z)=\frac{1}{1+e^{-z}}$ 便是一種激活函數,可以使輸出被限制在 $0\sim1$ 之間,有讓數值再類神經網路中傳遞時不發散的優點。
 - c) 損失函數 (Loss Function)是用以衡量「模型預測結果」和「真值」之間誤差的函數,若假設預測結果為 \hat{y} ,真值為y,則損失函數計算 \hat{y} 和y的差距(L(x)=

distance(y,ŷ))。在訓練模型時,藉由不斷最小化損失函數,使模型預測愈加準確,而其中一種最小化方法是梯度下降法(Gradient Decent)。另外,在選擇 Loss Function 時,回歸問題使用 Mean Square Error,分類問題使用 Cross Entropy。

- d) Softmax Function 具有兩個功能,分別是將神經網路的各個輸出轉換為機率,以及抑制較不可能的類別,突顯較可能的類別,達到 Single-peak Curve(例如:用 exponential,使大的更大,小的更小,讓單一類別最突出)。
- 3. 比較 10 個不同深度神經網路模型的分類準確度

(列出神經網路模型簡易架構、比較這些神經網路模型分類準確度比較結果)

神經網路模型簡易架構

神經網路模型分類準確度比較結果

1 hidden layer

Accuracy of testing data = 83.7%

5 hidden layers

Accuracy of testing data = 83.0%

9 hidden layers

Accuracy of testing data = 80.0%

13 hidden layers

Accuracy of testing data = 75.3%

17 hidden layers

Accuracy of testing data = 61.9%

21 hidden layers

Accuracy of testing data = 59.9%

25 hidden layers

Accuracy of testing data = 59.0%

29 hidden layers

Accuracy of testing data = 56.5%

33 hidden layers

Accuracy of testing data = 10%

37 hidden layers

Accuracy of testing data = 10%

根據圖表,比較各深度與 accuracy 的關係,可發現深度和 accuracy 呈現負相關性: 深度愈深, accuracy 愈低; 深度愈淺, accuracy 愈高。

Accuracy 的最大值是 83.7%, 對應的模型深度是 1 hidden layer; 次高值是 83.0%, 對應 5 hidden layers。accuracy 的最低值是 10%, 對應的深度是 33 hidden layers 和 37 hidden layers;次低值是 56.5%, 對應 29 hidden layers。

觀察圖表可發現,accuracy 在深度從 29 到 33 之間有明顯驟降,進一步觀察 Train History 的 accuracy 的圖表,可知: train 和 validation 的 accuracy 並沒有劇烈差異,且 training accuracy 較 validation accuracy 低,故推測不是過擬合 (overfitting) 所造成的 accuracy 下降,因為若是過擬合,training accuracy 應該會較 validation accuracy 高許多。

此外,從 Train History 的 loss 的圖表可看出:隨著深度加深,train 和 validation 的 loss 在訓練初期 (epoch 較少,為 $1 \le 5$ 時)下降快速,在訓練中期 (epoch 為 $6 \le 10$ 時)下降趨緩,雖偶有局部擺盪或小峰值,但整體趨勢仍維持穩定、沒有出現 NaN。

又在訓練末期 (epoch 為 11 至 15 時) loss 趨穩, 結合兩資料集的 accuracy 皆穩定偏低的現象,可推測不是梯度爆炸 (exploding gradient)所造成的 accuracy 下降。

綜上所述,推測 accuracy 的明顯下降,是因爲網路深度過深導致梯度消失 (vanishing gradient),由於梯度在 output layer 傳遞至 input layer 的過程中變得很小,最後趨近於零,使得後面的 layer 已收斂完畢,但前面的 layer 仍是初始亂數,令模型訓練的結果等同於亂猜。

4. 試著評論與回答"Are deeper networks betterg?"

不一定,從本次作業的結果可知,深度愈深不一定可使 accuracy 愈高。

當神經網路愈深,運算的計算量會愈大、耗時愈長,並且,因為常見的最小化損失函數方法——梯度下降法 (gradient decent)的梯度問題源於神經網路過深,若神經網路太深,可能會使梯度消失 (vanishing gradient)或梯度爆炸 (exploding gradient)的情況產生。

若發生梯度消失(vanishing gradient)的情況,表示梯度從 output layer 傳遞至 input layer 的過程中逐層變小,最終趨近於零,導致權重更新的幅度極小,進而使模型無法有效學習;相對地,若發生梯度爆炸(exploding gradient),則梯度從 output layer 傳遞至 input layer 的過程中急遽放大,使未知參數(unknown parameters)的更新大,變得難以收斂,使訓練過程失敗、找不到最佳解,類似於誤差傳播,傳播愈久會使誤差愈大的情況。

另外,當神經網路愈深,模型會愈加複雜,因此當問題單純時,過複雜的模型易導致過擬合(overfitting),使模型在 training data 表現良好(高 R^2)但在 validation data 表現差勁(低 R^2),令模型失去應用在 training data 外的能力。

參考資料 (書面報告的參考資料)

- 1. 上課講義.....
- 2. http://www.deeplearning.com