

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

РАЗРАБОТКА И ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АППРОКСИМАЦИИ ВРЕМЕННЫХ РЯДОВ С ПОМОЩЬЮ В-СПЛАЙНОВ

Выполнила: Нгуен Тхи Тху Зуен, гр. 7304

Руководитель: Середа Альгирдас-Владимир Игнатьевич, д.т.н., профессор

Санкт-Петербург, 2021

Актуальность

- Обеспечение возможности аппроксимации данных с заданной степенью сглаживания
- Обеспечение возможности аппроксимации данных функцией с непрерывными первой и второй производными

Объектом исследования являются методы аппроксимации временных рядов.

Предметом исследования является аппроксимация временных рядов с использованием В-сплайнов.

Цель и задачи

Цель: разработать и реализовать программный модуль, позволяющий осуществлять аппроксимацию временных рядов с помощью В-сплайнов

Задачи:

- 1. Обзор существующих подходов к аппроксимации данных
- 2. Изучение метода аппроксимации данных с помощью В-сплайнов
- 3. Разработка программного модуля
- 4. Проведение экспериментов и анализ результатов

Обзор существующих подходов к аппроксимации данных

	Интерполяция полиномами	Аппроксимация полиномами	Интерполяция кубическими сплайнами
Вид	Глобальная		Локальная
Кривая	Линейная комбинация крива		Сплайны 3-й степени
Недостатки	Должна быть полнос весь сетку при изменен Возникает феномен Рунге с ростом выбора большего набора данных	нии значений узлов	Не обеспечивает высокую точность с выбором слишком меньшего набора данных

Аппроксимация данных с помощью В-сплайнов

Пусть значения функции f(x) на промежутке [a, b] заданы n узлов одномерной сетки w_x с шагом h>0, w_x^R - разреженная сетка с коэффициентом R

$$\frac{W_x}{W_x^R}$$
:

B-сплайн нулевого порядка $B_i^0(x) = \begin{cases} 1, x_i \le x \le x_{i+1} \\ 0, \text{ otherwise} \end{cases}$

k-го порядка
$$B_i^k(x) = \frac{(x-x_i)B_i^{k-1}(x)}{x_{i+k}-x_i} + \frac{(x_{i+k+1}-x)B_{i+1}^k(x)}{x_{i+k+1}-x_{i+1}}$$
, где $i=0,1,...,n$

$$B_{i}^{3}(x) = \begin{cases} 0 & , & x \leq x_{i} \\ \frac{(x-x_{i})^{3}}{6h^{3}} & , x \in [x_{i}, x_{i+1}] \\ \frac{h^{3}+3h^{2}(x-x_{i+1})+3h(x-x_{i+1})^{2}-3(x-x_{i+1})^{3}}{6h^{3}}, & x \in [x_{i+1}, x_{i+2}] \\ \frac{6h^{3}}{6h^{3}} & , x \in [x_{i+1}, x_{i+2}] \\ \frac{(x_{i+4}-x)^{3}}{6h^{3}} & , x \in [x_{i+2}, x_{i+3}] \\ 0 & , x \geq x_{i+4} \end{cases}$$

Аппроксимация данных с помощью В-сплайнов

Линейная комбинация функции:

$$S(x,\lambda) = \sum_{i=0}^{m} \lambda_i B_i^3(x)$$

где т- числа узлов разреженной сетки

Линейная система алгебраических уравнений: $S(x_i, \lambda) = y_i$, $i = \overline{0, n-1}$

Для достижения цели аппроксимирование значения y_i удовлетворяющей условию:

$$\sum_{i=0}^{n-1} [S(x_i, \lambda^*) - y_i]^2 = \min_{\lambda \in E_m} \sum_{i=0}^{n-1} [S(x_i, \lambda) - y_i]^2$$

где $\lambda^* \in E_m$

РАЗРАБОТКА ПРОГРАММНОГО МОДУЛЯ

Алгоритм работы

Общая архитектура решения

Интерфейский пользователь

Главное окно

ПРОВЕДЕНИЕ ВЫЧИСЛИТЕЛЬНЫХ ЭКСПЕРИМЕНОВ И АНАЛАИЗ РЕЗУЛЬТАТОВ

ЗАКЛЮЧЕНИЕ

- ✓ Проведен обзор методов интерполяции и аппроксимации данных: полиномиальной интерполяции, сплайн-интерполяции и аппроксимации с помощью В-сплайнов;
- ✓ Был спроектирован и разработан программный модуль, позволяющий реализовать методы обработки данных;
- ✓ Вычислительные эксперименты проведен и содержательно проанализированы его результаты.

Апробация работы

• Репозиторий проекта

https://github.com/Duyen38/BSPApproximation

Спасибо за внимание!

Выполнила Нгуен Тхи Тху Зуен

Контакт: duyenpam@gmail.com

Запасные слайды

• Запишем систему в более подробном виде системы линейных алгебраических уравнений (СЛАУ):

$$\begin{cases} \lambda_{-3}B_{-3}^3(x_0) \ + \ \lambda_{-2}B_{-2}^3(x_0) \ + \ \lambda_{-1}B_{-1}^3(x_0) \ + \ \lambda_0B_0^3(x_0) \ + \cdots + \ \lambda_{q-1}B_{q-1}^3(x_0) \ = \ y_0 \\ \lambda_{-3}B_{-3}^3(x_1) \ + \ \lambda_{-2}B_{-2}^3(x_1) \ + \ \lambda_{-1}B_{-1}^3(x_1) \ + \ \lambda_0B_0^3(x_1) \ + \cdots + \ \lambda_{q-1}B_{q-1}^3(x_1) \ = \ y_1 \\ \lambda_{-3}B_{-3}^3(x_2) \ + \ \lambda_{-2}B_{-2}^3(x_2) \ + \ \lambda_{-1}B_{-1}^3(x_2) \ + \ \lambda_0B_0^3(x_2) \ + \cdots + \lambda_{q-1}B_{q-1}^3(x_2) \ = \ y_2 \\ \vdots \\ \lambda_{-3}B_{-3}^3(x_{n-2}) \ + \lambda_{-2}B_{-2}^3(x_{n-2}) \ + \ \lambda_{-1}B_{-1}^3(x_{n-2}) \ + \ \lambda_0B_0^3(x_{n-2}) \ + \cdots + \lambda_{q-1}B_{q-1}^3(x_{n-2}) \ = \ y_{n-2} \\ \lambda_{-3}B_{-3}^3(x_{n-1}) \ + \lambda_{-2}B_{-2}^3(x_{n-1}) \ + \ \lambda_{-1}B_{-1}^3(x_{n-1}) \ + \ \lambda_0B_0^3(x_{n-1}) \ + \cdots + \lambda_{q-1}B_{q-1}^3(x_{n-1}) \ = \ y_{n-1} \end{cases}$$

$$\leftrightarrow$$
 A · λ = y

где $A_{n,m}$ - матрица коэффициентов В-сплайнов на каждом значении узла расширенной сетки, т.е. примет вид:

Окно «Аппрроксимация с помощью В-сплайнов»

Окно «Кубический сплайн-интерполяциия»

Окно «Аппроксимация с помощью полиномов»

График зависимости среднее время от количества узлов сетки

Феномен (явление) Рунге

Недостатки интерполяции кубическими сплайнами

