

CAT(0) kubische Komplexe

gelesen von

Dr. Olga Varghese

im Wintersemester 2015/2016

Vorlesungsmitschrift von Phil Steinhorst

Stand: 3. Januar 2016

Vorwort

Der vorliegende Text ist eine Mitschrift zur Vorlesung CAT(0) kubische Komplexe, gelesen von Dr. Olga Varghese an der WWU Münster im Wintersemester 2015/2016. Der Inhalt entspricht weitestgehend dem Tafelanschrieb und den Vorlesungsnotizen, welche auf der Vorlesungswebsite bereitsgestellt werden. Dieses Werk ist daher keine Eigenleistung des Autors und wird nicht von der Dozentin der Veranstaltung korrekturgelesen. Für die Korrektheit des Inhalts wird keinerlei Garantie übernommen. Bemerkungen, Korrekturen und Ergänzungen kann man folgenderweise loswerden:

- persönlich durch Überreichen von Notizen oder per E-Mail
- durch Abändern der entsprechenden TeX-Dateien und Versand per E-Mail an mich
- direktes Mitarbeiten via GitHub. Dieses Skript befindet sich im latex-wwu-Repository von Jannes Bantje:

https://github.com/JaMeZ-B/latex-wwu

Literatur

- Bridson, Haefliger: Metric Spaces of Non-Positive Curvature [BH99]
- Serre: Trees [Ser80]
- Bekka, de la Harpe, Valette: Kazhdan's Property (T) [BHV08]

Kommentar der Dozentin

In der geometrischen Gruppentheorie werden Gruppen als Symmetrien von Räumen betrachtet. Ihre algebraische Eigenschaften werden mittels geometrischer Eigenschaften der Räume, auf denen sie wirken, untersucht. Gruppen, die auf kubischen Komplexen wirken – das sind polyhedrische Komplexe, die aus Würfeln gebaut sind – sind dabei besonders gut verstanden.

Die Vorlesung wird eine Einführung in die Strukturtheorie $\mathrm{CAT}(0)$ kubischer Komplexe liefern, sowie Anwendungen in der Gruppentheorie diskutieren.

abstrakte Gruppen

- endliche Gruppen
- $\mathrm{GL}_n(\mathbb{Z}),\,\mathrm{SL}_n(\mathbb{Z})$
- $\operatorname{Aut}(F_n)$, $\operatorname{SAut}(F_n)$
- Coxetergruppen

metrische Räume mit "viel Geometrie"

- (\mathbb{R}^n, d_2)
- Hilberträume
- simpliziale Bäume
- CAT(0) kubische Komplexe

Geplante Themen

- CAT(0)-Räume (simpliziale Bäume, kubische Komplexe)
- Gruppenwirkungen auf $\mathrm{CAT}(0)$ kubische Komplexe
- Bruhat-Tits-Fixpunktsatz für $\mathrm{CAT}(0)$ kubische Komplexe
- Helly's Theorem
- Kazhdan-Eigenschaft (T)

Vorlesungswebsite

Das handgeschriebene Skript sowie weiteres Material findet man unter folgendem Link:

http://wwwmath.uni-muenster.de/u/ag_kramer/index.php?name=KubischeKomplexe_15& menu=teach&lang=de

Phil Steinhorst p.st@wwu.de

Inhaltsverzeichnis

1	CAI	AT(0)-Räume				
2	Der Satz von Cartan-Hadamard					
	2.1	Längenräume	25			
	2.2	Längenmetrik auf Überlagerungsräumen	37			
	2.3	Die Exponentialabbildung	44			
	2.4	Winkel in metrischen Räumen	53			
Li	terat	ur	57			
ln	dex		58			
To	do li	st	60			

1 CAT(0)-Räume

1.1 Definition (Metrischer Raum)

Sei X eine Menge. Eine Abbildung $d\colon X\times X\to\mathbb{R}_{\geq 0}$ heißt Metrik, wenn für alle $x,y,z\in X$ gilt:

21.10.15 [1]

(i)
$$d(x, y) = 0 \Leftrightarrow x = y$$

(ii)
$$d(x, y) = d(y, x)$$

(iii)
$$d(x,z) \le d(x,y) + d(y,z)$$

Das Paar (X, d) heißt dann **metrischer Raum**.

1.2 Beispiel

(i) Für $n \in \mathbb{N}$ ist $\mathbb{E}^n := (\mathbb{R}^n, d_2)$ mit

$$d_2 \colon \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}_{\geq 0}$$

$$(x, y) \longmapsto \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

(ii) Sei *X* eine Menge. Wir definieren:

$$d \colon X \times X \longrightarrow \mathbb{R}_{\geq 0}$$

$$(x, y) \longmapsto \begin{cases} 1, & x \neq y \\ 0, & x = y. \end{cases}$$

Dann ist d eine Metrik und (X, d) heißt ein **diskreter metrischer Raum**.

1.3 Definition (Geodätischer Raum)

- (i) Sei (X, d) ein metrischer Raum und $x, y \in X$. Eine Geodäte von x nach y ist eine Abbildung $\gamma \colon [a, b] \to X$ mit $\gamma(a) = x, \gamma(b) = y$ und $d(\gamma(t), \gamma(t')) = |t t'|$ für alle $t, t' \in [a, b]$. Wir schreiben $\gamma \colon x \rightsquigarrow y$.
- (ii) Der Raum (X, d) ist ein geodätischer Raum, wenn für alle $x, y \in X$ eine Geodäte $x \rightsquigarrow y$ existiert.
- (iii) Ein geodätischer Raum heißt eindeutig geodätisch, wenn genau eine solche Geodäte existiert.

Sofern nichts anderes gesagt wird, ist [0, d(x, y)] der Definitionsbereich einer Geodäte $\alpha : x \rightsquigarrow y$.

1.4 Beispiel

(i) Sei $(V, \|\cdot\|)$ ein normierter reeller Vektorraum. Dann ist $(V, d_{\|\cdot\|})$ ein geodätischer Raum. Im Detail: Seien $u, v \in V$ paarweise verschieden und $L := \|u - v\| \neq 0$. Dann ist

$$\begin{split} \gamma \colon [0,L] &\longrightarrow V \\ t &\longmapsto \left(1 - \frac{t}{L}\right) \cdot u + \frac{t}{L} \cdot \upsilon \end{split}$$

eine Geodäte von u nach v.

- (ii) $(\mathbb{R}^2 \setminus \{0\}, d_2)$ ist nicht geodätisch: Es existiert keine Geodäte $(-1, 0) \rightsquigarrow (1, 0)$.
- (iii) (\mathbb{R}^2 , d_1) ist geodätisch, aber nicht eindeutig geodätisch: In der folgenden Abbildung sind zwei Geodäten von $(1,0) \rightsquigarrow (0,1)$ dargestellt.

Abbildung 1.1: Der metrische Raum (\mathbb{R}^2 , d_1) ist nicht eindeutig geodätisch.

1.5 Definition (Geodätisches Dreieck)

Ein **geodätisches Dreieck** $\Delta = \Delta(x, y, z, \alpha, \beta, \gamma)$ in einem geodätischen Raum (X, d) ist gegeben durch ein Tripel $(x, y, z) \in X^3$ und Geodäten $\alpha \colon x \leadsto y, \beta \colon y \leadsto z, \gamma \colon z \leadsto x$ – den Seiten von Δ .

1.6 Beispiel

Abbildung 1.2: Geodätische Dreiecke sind im Allgemeinen durch ihre Ecken nicht eindeutig bestimmt.

Die Dreiecksungleichung garantiert, dass es Punkte $\overline{x}, \overline{y}, \overline{z} \in \mathbb{E}^2$ gibt mit $d(x,y) = d_2(\overline{x}, \overline{y}), d(y,z) = d_2(\overline{y}, \overline{z}), d(z,x) = d_2(\overline{z}, \overline{x})$ und Geodäten

$$\overline{\alpha}(t) = \overline{x} + t \cdot \frac{\overline{y} - \overline{x}}{d_2(\overline{y}, \overline{x})}, \qquad \overline{\beta}(t) = \overline{y} + t \cdot \frac{\overline{z} - \overline{y}}{d_2(\overline{z}, \overline{y})}, \qquad \overline{\gamma}(t) = \overline{z} + t \cdot \frac{\overline{x} - \overline{z}}{d_2(\overline{x}, \overline{z})}.$$

 $\overline{\Delta} = \overline{\Delta}(\overline{x}, \overline{y}, \overline{z}, \overline{\alpha}, \overline{\beta}, \overline{\gamma}) \text{ heißt Vergleichsdreieck zu } \Delta(x, y, z, \alpha, \beta, \gamma). \text{ Ist } v = \gamma(s) \text{ für ein } s, \text{ so heißt } \overline{v} = \overline{\gamma}(s) \text{ Vergleichspunkt von } v.$

1.7 Definition (CAT(0)-Raum)

(i) Ein Dreieck Δ in (X, d) hat die CAT(0)-Eigenschaft, wenn für alle n, m auf den Seiten von Δ und ihre Vergleichspunkte $\overline{n}, \overline{m}$ auf den Seiten von $\overline{\Delta}$ gilt:

$$d(n,m) \leq d_2(\overline{n},\overline{m})$$

- (ii) Ein metrischer Raum (X, d) ist ein CAT(0)-Raum, wenn (X, d) geodätisch ist und alle seine Dreiecke die CAT(0)-Eigenschaft erfüllen.
- (iii) Ein metrischer Raum (X, d) heißt lokal CAT(0), wenn für alle $x \in X$ ein $r_x > 0$ existiert, sodass

$$B_{r_x}(x) = \{ y \in X : d(y, x) < r_x \}$$

mit der induzierten Metrik ein CAT(0)-Raum ist.

Abbildung 1.3: Anschaulich gesprochen sind Dreiecke in CAT(0)-Räumen "mindestens so dünn" wie ihre Vergleichsdreiecke im euklidischen Raum.

1.8 Bemerkung

- (i) Lokal $\mathrm{CAT}(0)$ -Räume heißen auch nichtpositiv gekrümmte oder Alexandrov-Räume.
- (ii) CAT(0) steht für Cartan-Alexandrov-Topogonov und Krümmung ≤ 0 .

1.9 Beispiel

- (i) Der euklidische Raum \mathbb{E}^n ist CAT(0).
- (ii) (\mathbb{R}^2 , d_1) ist nicht CAT(0): In der folgenden Abbildung 1.4 ist $d_1(n, m) = 2$, aber $d_2(\overline{n}, \overline{m}) = \sqrt{3}$.

Abbildung 1.4: Der Raum (\mathbb{R}^2 , d_1) ist nicht CAT(0).

- (iii) Hilberträume sind CAT(0).
- (iv) Komplemente von Polygonen im \mathbb{R}^2 sind lokal CAT(0), aber nicht CAT(0).

1.10 Beobachtung

Sei (X, d) ein CAT(0)-Raum. Dann ist X eindeutig geodätisch.

Beweis: Seien $\gamma: x \rightsquigarrow y$ und $\gamma': x \rightsquigarrow y$ zwei Geodäten von x nach y. Seien p und p' zwei Punkte auf γ und γ' mit d(x,p) = d(x,p'). Das Vergleichsdreieck $\overline{\Delta}$ zum Dreieck

$$\Delta = \Delta \left(x, p, y, \gamma \big|_{[0, d(x, p)]}, \gamma \big|_{[d(x, p), d(x, y)]}, \gamma' \right)$$

ist degeneriert:

Wegen der CAT(0)-Eigenschaft gilt $d(p, p') \le d(\overline{p}, \overline{p'}) = 0$, also folgt d(p, p') = 0 und p = p'.

1.11 Definition (Konvexe Menge)

Sei X ein CAT(0)-Raum. Eine nichtleere Teilmenge $C\subseteq X$ heißt konvex, wenn zu allen $p,q\in C$ die Geodäte $\gamma\colon p\leadsto q$ in C liegt.

Offensichtlich ist C wieder ein $\mathrm{CAT}(0)$ -Raum und Durchschnitte konvexer Mengen sind wieder konvex.

1.12 Theorem ([BH99, 1A.6])

Sei \mathcal{M} eine einfach zusammenhängende Riemannsche Mannigfaltigkeit nichtpositiver Krümmung. Dann ist \mathcal{M} CAT(0).

23.10.15 [2]

1.13 Satz

Sei $(V, \|\cdot\|)$ ein reeller normierter Vektorraum. Dann ist $(V, \|\cdot\|)$ genau dann ein CAT(0)-Raum, wenn $(V, \|\cdot\|)$ ein Prähilbertraum ist, das heißt es existiert eine symmetrische positiv definite Bilinearform $\langle\cdot,\cdot\rangle\colon V\times V\to \mathbb{R}$ mit $\|v\|=\sqrt{\langle v,v\rangle}$ für $v\in V$.

Für den Beweis brauchen wir eine metrische Charakterisierung von Prähilberträumen:

1.14 Proposition (von Neumann, 1935)

Ein reeller normierter Vektorraum $(V, \|\cdot\|)$ ist ein Prähilbertraum genau dann, wenn für alle $v, w \in V$ die Parallelogrammgleichung gilt:

$$||v - w||^2 + ||v + w||^2 = 2 \cdot (||v||^2 + ||w||^2)$$
 (PG)

BEWEIS:

" \Rightarrow ": Seien $u, v \in V$.

$$||u - v||^2 + ||u + v||^2$$

$$= \langle u - v, u - v \rangle + \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle + \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= 2 \cdot (\langle v, v \rangle^2 + \langle u, u \rangle^2)$$

"**⇐":** Definiere:

$$b \colon V \times V \longrightarrow \mathbb{R}$$
$$(u, v) \longmapsto \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2).$$

Wir zeigen, dass b ein Skalarprodukt ist:

- Offensichtlich ist b symmetrisch.
- b ist positiv definit, denn für $v \in V$ gilt:

$$b(v, v) = \frac{1}{4}(2 \cdot ||v||)^2 = ||v||^2 \ge 0$$
$$b(v, v) = 0 \Leftrightarrow v = 0$$

• Sei nun $w \in V$ beliebig. Zu zeigen ist, dass $b(\cdot, w) \colon V \to \mathbb{R}$ linear ist. Seien also $u, v \in V$

beliebig, dann gilt:

$$b(u + v, w) + b(u - v, w)$$

$$\stackrel{\text{Def}}{=} \frac{1}{4} (\|u + v + w\|^2 - \|u + v - w\|^2 + \|u - v + w\|^2 - \|u - v - w\|^2)$$

$$\stackrel{\text{(PG)}}{=} \frac{1}{4} (2 \cdot \|u + w\|^2 + 2 \cdot \|v\|^2 - 2 \cdot \|u - w\|^2 - 2 \cdot \|v\|^2)$$

$$= \frac{1}{2} (\|u + w\|^2 - \|u - w\|^2)$$

$$\stackrel{\text{Def}}{=} 2 \cdot b(u, w)$$
(1)

Analog erhalten wir

$$b(u + v, w) - b(u - v, w) = 2 \cdot b(v, w).$$
 (2)

Addition von (1) und (2) liefert:

$$b(u + v, w) = b(u, w) + b(v, w)$$

Bleibt zu zeigen: Für alle $r \in \mathbb{R}$ gilt $b(rv, w) = r \cdot b(v, w)$.

1. Fall: r = -1. Mit u = 0 folgt aus (1):

$$b(v, w) + b(-v, w) = 2 \cdot b(0, w) = 2 \cdot \frac{1}{4} (\|w\|^2 - \|-w\|^2) = 0$$

und somit b(-v, w) = -b(v, w).

2. Fall: $r = n \in \mathbb{N}$. Für n = 2 folgt mit u = v aus (1)

$$b(2v, w) + \underbrace{b(0, w)}_{=0} = 2 \cdot b(v, w)$$

und weiter induktiv

$$b(nv, w) = b((n-1)v + v, w) = b((n-1)v, w) + b(v, w)$$
$$= (n-1)b(v, w) + b(v, w) = n \cdot b(v, w).$$

3. Fall: $r = \frac{1}{n}$ mit $n \in \mathbb{N}, n \ge 1$. Es gilt $\frac{1}{n} \cdot b(nv, w) = b(v, w)$ und damit

$$b\left(\frac{1}{n}v,w\right) = \frac{1}{n} \cdot b(n \cdot \frac{1}{n}v,w) = \frac{1}{n}b(v,w)$$

Aus allen drei Fällen folgt nun $b(qv, w) = q \cdot b(v, w)$ für alle $q \in \mathbb{Q}$. Da $\mathbb{Q} \subseteq \mathbb{R}$ eine dichte Teilmenge und $b(\cdot, w)$ stetig ist, folgt $b(rv, w) = r \cdot b(v, w)$ für alle $r \in \mathbb{R}$.

Beweis (Satz 1.13):

" \Leftarrow ": Sei $\Delta \subseteq (V, \|\cdot\|) = \mathcal{H}$ ein geodätisches Dreieck. Dann ist die lineare Hülle $\langle \Delta \rangle$ isometrisch isomorph zum \mathbb{E}^2 , bzw. zum \mathbb{E}^1 oder zu $\{0\}$, falls Δ degeneriert ist.

"⇒": Sei $u, v \in V$ beliebig. Zeige, dass für v, w das Parallelogrammgesetz gilt: Wir betrachten das Dreieck $\Delta(0, u, v)$ und das Vergleichsdreieck $\overline{\Delta}(0, \overline{u}, \overline{v})$. Es gilt:

$$d\left(\frac{u+v}{2},0\right) \overset{\text{CAT}(0)}{\leq} d_2\left(\frac{\overline{u}+\overline{v}}{2},0\right)$$

$$\Rightarrow d(u+v,0) \leq d_2(\overline{u}+\overline{v},0)$$

$$\Rightarrow \|u+v\|^2 \leq \|\overline{u}+\overline{v}\|_2^2 \overset{\text{(PG)}}{=} 2 \cdot \|\overline{u}\|_2^2 + 2 \cdot \|\overline{v}\|_2^2 - \|\overline{u}-\overline{v}\|_2^2$$

$$\overset{\text{CAT}(0)}{=} 2 \cdot \|u\|^2 + 2 \cdot \|v\|^2 - \|u-v\|^2 \tag{3}$$

Betrachte das Dreieck $\Delta(0-v,u)$ und das Vergleichsdreieck $\overline{\Delta}(0-\overline{v},\overline{u})$. Wir erhalten genauso wie oben die Ungleichung

$$||u - v||^2 \le 2 \cdot ||u||^2 + 2 \cdot ||v||^2 - ||u + v||^2.$$
(4)

Insgesamt haben wir also:

$$||u+v||^2 \stackrel{(3)}{\leq} 2 \cdot ||u||^2 + 2 \cdot ||v||^2 - ||u-v||^2 \stackrel{(4)}{\leq} ||u+v||^2$$

1.15 Erinnerung (Orthogonale Projektion)

Gegeben sei ein reeller Hilbertraum \mathbb{E}^d und $U \subseteq \mathbb{E}^d$ ein Unterraum. Sei weiter $v_1, \ldots, v_n \in U$ eine Orthonormalbasis von U. Dann ist

$$\pi_U \colon V \longrightarrow U$$

$$v \longmapsto \sum_{i=0}^n \langle v, v_i \rangle \cdot v_i$$

eine lineare Abbildung und es gilt

$$d(v, \pi_U(v)) = \inf_{u \in U} d(v, u) =: d(v, U)$$

und $v - \pi_U(v) \perp U$.

U

1.16 Satz (Projektion auf konvexe Teilmengen)

Sei X ein CAT(0)-Raum und $C \subseteq X$ konvex und vollständig mit der induzierten Metrik. Dann gilt:

(i) Für alle $x \in X$ existiert genau ein $\pi_C(x) \in C$ mit

$$d(x, \pi_C(x)) = \inf_{p \in C} d(x, p) =: d(x, C).$$

Die Abbildung $\pi_C : X \to C$ heißt die (orthogonale) Projektion auf C.

(ii) Ist $y \in [x, \pi_C(x)] = \operatorname{im}(y : x \rightsquigarrow \pi_C(x))$, so ist $\pi_C(y) = \pi_C(x)$.

(iii) Für alle $x, y \in X$ gilt

$$d(\pi_C(x), \pi_C(y)) \le d(x, y),$$

das heißt π_C ist 1-Lipschitz.

BEWEIS:

(i) Sei $(y_n)_{n\in\mathbb{N}}\subseteq C$ eine Folge mit $d(x,y_n)\to d(x,C)=:D$. Ziel ist es zu zeigen, dass $(y_n)_n$ eine Cauchy-Folge ist. Da C vollständig ist, ist die Folge $(y_n)_n$ konvergent in C und wir können $\pi_C(x):=\lim_{n\to\infty}y_n$ definieren.

Zur Eindeutigkeit von $\pi_C(x)$: Angenommen, es existiert ein $\pi_C(x') \in C$ mit $\pi_C(x)' \neq \pi_C(x)$ und $d(x, \pi_C(x)') = d(x, C)$. Betrachte die Folge

$$q_n := \begin{cases} \pi_C(x), & n \text{ gerade} \\ \pi_C(x)', & n \text{ ungerade.} \end{cases}$$

Dann ist $d(x, q_n) \to d(x, C)$, aber $(q_n)_n$ ist keine Cauchy-Folge. Widerspruch.

Zur Existenz: Betrachte folgendes Dreieck und Vergleichsdreieck ergänzt zu einem Parallelogramm:

Abbildung 1.5: Zu einem Parallelogramm ergänztes Vergleichsdreieck.

Es ist $d(y_n, m) = d(y_m, m) = \frac{1}{2}d(y_n, y_m)$. Die Parallelogrammgleichung in \mathbb{E}^2 besagt:

$$d_2(\overline{x}, \overline{p})^2 + d_2(\overline{y_n}, \overline{y_m})^2 = 2(d_2(\overline{x}, \overline{y_n})^2 + d_2(\overline{x}, \overline{y_m})^2)$$

Sei $\varepsilon>0$. Sei $\delta>0$ die positive Lösung von $\delta^2+2D\delta-\frac{\varepsilon^2}{4}=0$, das heißt $\varepsilon=2\cdot\sqrt{\delta^2+2D\delta}$.

Wähle n, m groß genug, sodass gilt

Aus der CAT(0)-Eigenschaft folgt

$$D \le d(x, m)^2 \le d_2(\overline{x}, \overline{m}). \tag{6}$$

Damit gilt:

$$\begin{split} d(y_n,y_m)^2 &\overset{\text{CAT}(0)}{=} d_2(\overline{y_n},\overline{y_m}) \\ &\overset{\text{(PG)}}{=} 2 \cdot (d_2(\overline{x},\overline{y_n}) + d_2(\overline{x},\overline{y_m})^2) - d_2(\overline{x},\overline{p})^2 \\ &= 2 \cdot (d_2(\overline{x},\overline{y_n}) + d_2(\overline{x},\overline{y_m})^2) - 4 \cdot d_2(\overline{x},\overline{m})^2 \\ &\overset{(6)}{\leq} 2 \cdot (d_2(\overline{x},\overline{y_n}) + d_2(\overline{x},\overline{y_m})^2) - 4D^2 \\ &\overset{(5)}{\leq} 2 \cdot (2 \cdot (D + \delta)^2) - 4D^2 \\ &= 4 \cdot (2D\delta + \delta^2) \end{split}$$

Somit folgt $d(y_n, y_m) \le 2 \cdot \sqrt{2D\delta + \delta^2} = \varepsilon$ für $n, m \ge N$. Also ist $(y_n)_n$ eine Cauchy-Folge und wir setzen $\pi_C(x) := \lim_{n \to \infty} y_n$.

(ii) Es ist $\operatorname{im}(\gamma: x \leadsto \pi_C(x)) = \{y \in X: d(x,y) + d(y,\pi_C(x)) = d(x,\pi_C(x))\}$. Angenommen, $\pi_C(y) \neq \pi_C(x)$. Dann ist insbesondere

$$d(y, \pi_C(y)) < d(y, \pi_C(x)) \tag{7}$$

und mit der Dreiecksungleichung folgt

$$\begin{array}{ll} d(x,\pi_C(y)) & \leq & d(x,y) + d(y,\pi_C(y)) \\ & < & d(x,y) + d(y,\pi_C(x)) \\ & = & d(x,\pi_C(x)), \end{array}$$

was ein Widerspruch zur Minimalität von $\pi_C(x)$ ist.

(iii) Übungsaufgabe.

Unser nächstes Ziel ist es zu zeigen, das CAT(0)-Räume kontrahierbar sind.

1.17 **Definition** (Homotopie)

Seien $\varphi_0, \varphi_1 : X \to Y$ stetige Abbildungen zwischen topologischen Räumen X und Y.

- (i) Die Abbildungen φ_0 , φ_1 heißen homotop, wenn es eine stetige Abbildung $H: X \times [0,1] \to Y$ gibt mit $H(x,0) = \varphi_0(x)$ und $H(x,1) = \varphi_1(x)$ für alle $x \in X$. H heißt Homotopie zwischen φ_0 und φ_1 . Wir schreiben $\varphi_0 \simeq \varphi_1$.
- (ii) Ist $A \subseteq X$ eine Teilmenge mit $\varphi_0(a) = \varphi_1(a)$ für alle $a \in A$, so heißen φ_0 und φ_1 homotop relativ zu A, wenn es eine Homotopie H zwischen φ_0 und φ_1 gibt mit $H(a,t) = \varphi_0(a)$ für alle $t \in [0,1]$ und $a \in A$. Wir schreiben $\varphi_0 \simeq \varphi_1$ rel A.
- (iii) Ein topologischer Raum $X \neq \emptyset$ heißt kontrahierbar, wenn die Identität id_X und die konstante Abbildung $\varphi_p \colon x \mapsto p, p \in X$, homotop sind.

Abbildung 1.6: Veranschaulichung des Homotopiebegriffs am Beispiel X = [0, 1].

1.18 Bemerkung

Ist X ein kontrahierbarer Raum, so ist die Fundamentalgruppe $\pi_1(X, \{x_0\}), x_0 \in X$ trivial.

1.19 Satz

Sei X ein CAT(0)-Raum und $\emptyset \neq C \subseteq X$ konvex und vollständig. Dann gilt $\mathrm{id}_X \simeq \pi_C \operatorname{rel} C$. Insbesondere erhalten wir für $C = \{p\}, p \in X$, dass $\mathrm{id}_X \simeq \varphi_p \operatorname{rel} \{p\}$, und folglich ist der Raum X kontrahierbar.

Beweis: Wir brauchen folgendes Resultat (Übungsaufgabe):

Seien $\alpha \colon x \leadsto y, \beta \colon x' \leadsto y'$ zwei Geodäten. Dann gilt für alle $t \in [0,1]$:

$$d(\alpha(t \cdot d(x, y)), \beta(t \cdot d(x', y'))) \le (1 - t) \cdot d(x, x') + t \cdot d(y, y'). \tag{8}$$

Wir definieren

$$H \colon X \times [0,1] \longrightarrow X$$

 $(x,t) \longmapsto \gamma_x (t \cdot d(x, \pi_C(x)),$

wobei $\gamma_x \colon x \rightsquigarrow \pi_C(x)$. Es gilt $H(x,0) = \gamma_x(0) = x$ und $H(x,1) = \gamma_x(d(x,\pi_C(x))) = \pi_C(x)$, somit ist $H(\cdot,0) = \mathrm{id}_X$ und $H(\cdot,1) = \pi_C$.

Sei weiter $c \in C$. Dann gilt H(c,t) = c, da $\gamma_C : c \rightsquigarrow \pi_C(c)$ und $c = \pi_C(c)$.

Es bleibt zu zeigen, dass H stetig ist. Wir wissen, dass Abbildungen zwischen metrischen Räumen genau dann stetig sind, wenn sie folgenstetig sind. Sei $(x, t) \in X \times [0, 1]$ beliebig und weiter $(x_n, t_m) \in X \times [0, 1]$ eine Folge mit $\lim_{n \to \infty} (x_n, t_m) = (x, t)$. Zu zeigen ist:

$$\begin{split} \lim_{n,m} H(x_n,t_m) &= H(x,t) \\ \Leftrightarrow &\lim_{n,m} \gamma_{x_n}(t_m \cdot d(x_n,\pi_C(x_n))) = \gamma_x(t \cdot d(x,\pi_C(x))), \end{split}$$

wobei $\gamma_{x_n} : x_n \rightsquigarrow \pi_C(x_n)$.

Sei $\varepsilon>0$ gegeben. Wähle $N_1\in\mathbb{N}$ so groß, dass mit Satz 1.16(iii) gilt:

$$d(x_n, x) < \frac{\varepsilon}{2}$$

$$d(\pi_C(x_n), \pi_C(x)) < \frac{\varepsilon}{2}$$

$$\forall n \ge N_1$$
(9)

Wir haben:

$$d(H(x,t),H(x_{n},t))$$

$$= d(\gamma_{x}(t \cdot d(x,\pi_{C}(x))),\gamma_{x_{n}}(t \cdot d(x_{n},\pi_{C}(x_{n}))))$$

$$\stackrel{\Delta\text{-Ungl.}}{\leq} d(\gamma_{x}(t \cdot d(x,\pi_{C}(x))),\alpha_{x_{n}}(t \cdot d(x_{n},\pi_{C}(x)))) + d(\alpha_{x_{n}}(t \cdot d(x_{n},\pi_{C}(x))),\gamma_{x_{n}}(t \cdot d(x_{n},\pi_{C}(x_{n}))))$$

$$\stackrel{(8)}{\leq} (1-t) \cdot d(x,x_{n}) + t \cdot \underbrace{d(\pi_{C}(x),\pi_{C}(x))}_{=0} + (1-t) \underbrace{d(x_{n},x_{n})}_{=0} + t \cdot d(\pi_{C}(x),\pi_{C}(x_{n}))$$

$$\stackrel{(9)}{\leq} (1-t) \cdot \frac{\varepsilon}{2} + t \cdot \frac{\varepsilon}{2} = \frac{\varepsilon}{2} \quad \forall t \in [0,1], n \geq N_{1}$$

$$(10)$$

Wähle $N_2 \in \mathbb{N}$ groß genug mit

$$d(H(x_n, t_m), H(x_n, t)) < \frac{\varepsilon}{2} \quad \forall m \ge N_2.$$
 (11)

Damit erhalten wir

$$\begin{split} &d(H(x_n,t_m),H(x,t))\\ &\stackrel{\Delta\text{-Ungl.}}{\leq} d(H(x_n,t_m),H(x_n,t)) + d(H(x_n,t),H(x,t))\\ &\stackrel{(10),(11)}{\leq} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall n,m \geq \max(N_1,N_2). \end{split}$$

1.20 Definition (Durchmesser, Radius)

04.11.15 Sei (X, d) ein metrischer Raum und $A \subseteq X$ beschränkt. Der **Durchmesser** von A ist gegeben durch [4]

$$\operatorname{diam}(A) := \sup \{d(x,y) : x,y \in A\}.$$

Für $x \in X$ definiere nun rad $(x, A) := \sup\{d(x, a) : a \in A\}$. Dann ist der **Radius** von A definiert durch

$$rad(A) := \inf\{rad(x, A) : x \in A\}.$$

1.21 Beispiel

Sei $X := \mathbb{R}^2$ und $A := \{(2,2),(2,-2)\}$. Für x := (1,0) und $x' := (2,0) = c_A$ ist $\operatorname{rad}(x,A) = \sqrt{5}$ und $\operatorname{rad}(x',A) = 2 = \operatorname{rad}(A)$.

Der Begriff des Radius ist also mit der Idee eines "Zentrums" ($c_A \in A$) von A verbunden, welches zwar nicht in A liegen muss, aber die Mitte von A gut beschreibt. Im Allgemeinen muss ein Zentrum nicht existieren, aber bei CAT(0)-Räumen kann man es konstruieren.

1.22 Theorem

Sei X ein vollständiger CAT(0)-Raum und $\emptyset \neq A \subseteq X$ beschränkt. Dann gibt es einen eindeutigen Punkt $c_A \in X$, das **Zentrum** von A, sodass $A \subseteq \overline{B_{\mathrm{rad}(A)}(c_A)}$ gilt.

BEWEIS: Seien $q, r \in X$ beliebig und $m \in X$ mit $d(q, m) = d(m, r) = \frac{d(q, r)}{2}$. Sei weiter $a \in X$ beliebig. Wir betrachten $\Delta(a, r, q)$ und $\overline{\Delta}(\overline{a}, \overline{r}, \overline{q})$ und ergänzen $\overline{\Delta}$ zu einem Parallelogramm (vgl. Abb. 1.5 auf S. 8). Die

Parallelogrammgleichung in \mathbb{E}^2 besagt:

$$\begin{split} (2\cdot d_2(\overline{a},\overline{m}))^2 + (d_2(\overline{r},\overline{q}))^2 &= 2\cdot d_2(\overline{a},\overline{r})^2 + 2\cdot d_2(\overline{a},\overline{q})^2 \\ \Rightarrow \qquad d_2(\overline{a},\overline{m}) &= \frac{1}{2}d_2(\overline{a},\overline{r})^2 + \frac{1}{2}d_2(\overline{a},\overline{q})^2 - \frac{1}{4}d_2(\overline{r},\overline{q})^2. \end{split}$$

Es gilt also

$$\begin{aligned} d(a,m)^2 &\overset{\text{CAT}(0)}{\leq} d_2(\overline{a},\overline{m}) \\ &= &\frac{1}{2} d_2(\overline{a},\overline{r})^2 + \frac{1}{2} d_2(\overline{a},\overline{q})^2 - \frac{1}{4} d_2(\overline{r},\overline{q})^2 \\ &= &\frac{1}{2} d_2(a,r)^2 + \frac{1}{2} d_2(a,q)^2 - \frac{1}{4} d_2(r,q)^2 \\ &\overset{\text{sup}}{\Longrightarrow} & \operatorname{rad}(m,A)^2 & \leq & \frac{1}{2} \operatorname{rad}(r,A)^2 + \frac{1}{2} \operatorname{rad}(q,A)^2 - \frac{1}{4} d(r,q)^2. \end{aligned}$$

Mit $rad(A) \leq rad(m, A)$ erhalten wir

$$\operatorname{rad}(A)^{2} \leq \frac{1}{2}\operatorname{rad}(r,A)^{2} + \frac{1}{2}\operatorname{rad}(q,A)^{2} - \frac{1}{4}d(r,q)^{2}$$

$$\Rightarrow \frac{1}{4}d(r,q)^{2} \leq \frac{1}{2}(\operatorname{rad}(r,A)^{2} + \operatorname{rad}(q,A)^{2}) - \operatorname{rad}(A)^{2}$$

$$\Rightarrow d(r,q) \leq \sqrt{2 \cdot (\operatorname{rad}(r,A)^{2} + \operatorname{rad}(q,A)^{2}) - 4\operatorname{rad}(A)^{2}}$$
(12)

Zur Eindeutigkeit: Angenommen, z_1, z_2 sind zwei Zentren von A, d.h. $rad(z_1, A) = rad(z_2, A) = rad(A)$. Mit (12) folgt

$$d(z_1,z_2) \leq \sqrt{2 \cdot (\operatorname{rad}(A)^2 + \operatorname{rad}(A)^2) - 4\operatorname{rad}(A)^2} = 0 \quad \Rightarrow \quad z_1 = z_2$$

Zur Existenz: Sei $x_n \in X$ eine Folge mit $\operatorname{rad}(x_n,A) \to \operatorname{rad}(A)$. Ziel ist zu zeigen, dass $(x_n)_n$ eine Cauchy-Folge ist. Da X vollständig ist, konvergiert diese und das Zentrum von A ist $\lim_{n\to\infty} x_n$. Sei $\varepsilon > 0$. Sei weiter $\delta > 0$ die positive Lösung von

$$\delta^2 + 2 \cdot \operatorname{rad}(A) - \delta - \frac{\varepsilon}{4} = 0. \tag{13}$$

Wähle $N \in \mathbb{N}$ groß genug mit

$$\operatorname{rad}(x_n, A) < \operatorname{rad}(A) + \delta \quad \forall n \ge N.$$
 (14)

Wir betrachten (12) quadriert und für $r = x_n$ und $q = x_m$.

$$d(x_n, x_m)^2 \leq 2 \cdot (\operatorname{rad}(x_n, A)^2 + \operatorname{rad}(x_m, A)^2) - 4 \cdot \operatorname{rad}(A)^2$$

$$\leq 2 \cdot (2 \cdot (\operatorname{rad}(A) + \delta)^2) - 4 \cdot \operatorname{rad}(A)^2 \quad \forall n, m \geq N$$

$$=8\cdot\operatorname{rad}(A)\delta+4\delta^2\quad\forall n,m\geq N$$

$$\Rightarrow\quad d(x_n,x_m)\leq 2\cdot\sqrt{2\cdot\operatorname{rad}(A)\delta+\delta^2}\stackrel{(13)}{=}\varepsilon\quad\forall n,m\geq N$$

1.23 Definition (Isometrie)

Eine Abbildung $f: X \to Y$ von metrischen Räumen $(X, d_X), (Y, d_Y)$ heißt isometrische Einbettung, wenn für alle $u, v \in X$ gilt:

$$d_Y(f(u), f(v)) = d_X(u, v).$$

Wenn f zusätzlich surjektiv ist, heißt f Isometrie und X und Y zueinander isometrisch. Wir definieren die Isometriegruppe von X:

$$\operatorname{Isom}(X) = \{ f : X \to X : f \text{ ist Isometrie} \}.$$

1.24 Bemerkung

Seien $(X, d_X), (Y, d_Y)$ metrische Räume und $f: X \to Y$ isometrische Einbettungen. Dann gilt:

- (i) *f* ist injektiv.
- (ii) Ist $(x_n)_n$ eine Cauchy-Folge in X, so ist $(f(x_n))_n$ eine Cauchy-Folge in Y.
- (iii) Sind *X* und *Y* isometrisch, so sind sie als topologische Räume homöomorph.

1.25 Definition (Isometrische Gruppenwirkung)

Sei X ein metrischer Raum und G eine Gruppe. Eine **isometrische Wirkung** von G auf X ist ein Gruppenhomomorphismus $\Phi \colon G \to \operatorname{Isom}(X)$. Die **Fixpunktmenge** von Φ ist wie folgt definiert:

$$\operatorname{Fix}_{\Phi}(G) := \{ x \in X : \Phi(q)(x) = x \ \forall q \in G \}$$

1.26 Lemma

Beweis: ÜA!

Sei X ein CAT(0)-Raum und $\Phi \colon G \to Isom(X)$ eine isometrische Wirkung. Dann ist $Fix_{\Phi}(G)$ abgeschlossen. Wenn $Fix_{\Phi}(G) \neq \emptyset$, dann ist $Fix_{\Phi}(G)$ konvex.

1.27 Satz (BRUHAT-TITS-Fixpunkttheorem, BTFT)

Sei X ein vollständiger CAT(0)-Raum, sei G eine Gruppe und $\Phi \colon G \to Isom(X)$ eine isometrische Wirkung. Sei weiter $\emptyset \neq A \subseteq X$ beschränkt mit $\Phi(g)(A) = A$ für alle $g \in G$. Dann ist $c_A \in Fix_{\Phi}(G)$.

Beweis: Sei $g \in G$ beliebig. Es gilt:

$$\operatorname{rad}(A) = \operatorname{rad}(c_A, A) \stackrel{\mathrm{Def}}{=} \sup_{a \in A} \{d(c_A, a)\}$$

$$\stackrel{\Phi(g) \text{ isom.}}{=} \sup_{a \in A} \{d(\Phi(g)(c_A), \Phi(g)(a))\}$$

$$\stackrel{\Phi(g)(A)=A}{=} \sup_{a \in A} \{ d(\Phi(g)(c_A), a) \} \stackrel{\mathrm{Def}}{=} \operatorname{rad}(\Phi(g)(c_A), A)$$

$$\stackrel{c_A \text{ eind.}}{\Longrightarrow} c_A = \Phi(g)(c_A) \stackrel{g \text{ bel.}}{\Longrightarrow} c_A \in \operatorname{Fix}_{\Phi}(G)$$

1.28 Korollar

Sei X ein vollständiger $\operatorname{CAT}(0)$ -Raum, sei G eine Gruppe und $\Phi \colon G \to \operatorname{Isom}(X)$ eine isometrische Wirkung. Sei weiter $x \in X$ mit $G(x) := \{\Phi(g)(x) : g \in G\} \subseteq X$ beschränkt. Dann ist $\operatorname{Fix}_{\Phi}(G) \neq \emptyset$.

BEWEIS: Betrachte A := G(x). Dann ist $\Phi(g)(A) = A$ für alle $g \in G$. Mit Satz 1.27 folgt $\operatorname{Fix}_{\Phi}(G) \neq \emptyset$.

1.29 Bemerkung

Jede isometrische Wirkung von einer endlichen Gruppe auf einen vollständigen CAT(0)-Raum hat einen Fixpunkt.

1.30 Korollar

Sei X ein vollständiger $\operatorname{CAT}(0)$ -Raum, G eine Gruppe und $\Phi \colon G \to \operatorname{Isom}(X)$ eine isometrische Wirkung, welche folgende Bedingungen erfüllt:

(i) G wirkt eigentlich (proper) auf X, das heißt für alle $x \in X$ existiert ein $\varepsilon > 0$, sodass gilt:

$$\#\{q\in G: \Phi(q)(B_{\varepsilon}(x))\cap B_{\varepsilon}(x)\neq\emptyset\}<\infty.$$

(ii) G wirkt kokompakt auf X, das heißt es existiert eine kompakte Teilmenge $K \subseteq X$, sodass

$$\bigcup_{g \in G} \Phi(g)(K) = X.$$

Dann enthält G nur endlich viele verschiedene Kongukationsklassen von endlichen Untergruppen. Genauer: Definiert man auf der Menge $UG_{endl} := \{U \leq G \text{ endlich}\}$ die Äquivalenzrelation

$$U \sim V \quad :\Leftrightarrow \quad \exists q \in G : U = qVq^{-1},$$

so gilt

$$\#^{\mathrm{UG}_{\mathrm{endl}/\sim}} < \infty$$
.

Beweis: Sei *K* eine kompakte Teilmenge mit

$$\bigcup_{g \in G} \Phi(g)(K) = X.$$

Wähle eine endliche Überdeckung $B_{\varepsilon_i}(x_i)$, $1 \le i \le n$, von K so, dass die Teilmengen

$$\Gamma_i \subseteq G \text{ mit } \Gamma_i = \{g \in G : \Phi(g)(B_{\varepsilon_i}(x_i)) \cap B_{\varepsilon_i}(x_i) \neq \emptyset\}$$

endlich sind. Dann ist $\Sigma := \bigcup_{i=1}^n \Gamma_i$ endlich.

Sei nun $x \in X$ beliebig. Wir betrachten die Stabilisatorgruppe $G_x := \{g \in G : \Phi(g)(x) = x\}$ von x.

- Wir haben in Korollar 1.28 bzw. Bemerkung 1.29 gesehen, dass jede endliche Untergruppe von G in einem G_x für geeignetes $x \in X$ enthalten ist. Genauer: Ist $U \subseteq G$ endlich und $\Phi \colon G \to \mathrm{Isom}(X)$, so ist $\mathrm{Fix}_{\Phi|_{IJ}}(U) \neq \emptyset$. Für $x \in \mathrm{Fix}_{\Phi|_{IJ}}(U)$ ist $U \subseteq G_x$.
- Wir werden zunächst zeigen, dass es nur endlich viele Konjugationsklassen von Untergruppen von G vom Typ G_x gibt. Da $X = \bigcup_{g \in G} \Phi(g)(K)$, existiert ein $g \in G$ mit

$$\Phi(g)(x) \in K = \bigcup_{i=1}^{n} B_{\varepsilon_i}(x_i).$$

Also ist $\Phi(g)(x)$ in mindestens einen der $B_{\varepsilon_i}(x_i)$ enthalten und somit $G_{\Phi(g)(x)} \subseteq \Gamma_i \subseteq \Sigma$. Es gibt also nur endlich viele solche $G_{\Phi(g)(x)}$ mit $\Phi(g)(x) \in K$.

Nun gilt aber weiter $gG_xg^{-1}=G_{\Phi(g)(x)}$, das heißt jedes beliebige G_x ist konjugiert zu einer von endlich vielen $G_{\Phi(g)(x)}$. Also gibt es nur endlich viele Konjugationsklassen von Gruppen G_x . Da jedes G_x endlich ist, hat es selbst nur endlich viele Konjugationsklassen von Untergruppen. Da jede endliche Untergruppe von G automatisch eine Untergruppe eines G_x ist, kann es damit auch nur endlich viele Konjugationsklassen von endlichen Untergruppen von G geben.

Viele Sätze, die wir über CAT(0)-Räume bewiesen haben, hatten als Voraussetzung die Vollständigkeit. Der Vorteil in diesem Vorgehen ist, dass wir einen CAT(0)-Raum immer als eine dichte Teilmenge eines vollständigen CAT(0)-Raumes realisieren können. Weiter lässt sich jede Isometrie von CAT(0)-Räumen eindeutig zu einer Isometrie eines vollständigen CAT(0)-Raumes erweitern, indem wir sie auf der Vervollständigung fortsetzen. Um zu beweisen, dass die Vervollständigung eines CAT(0)-Raumes wieder CAT(0) ist, brauchen wir viel Vorarbeit.

1.31 Erinnerung (Metrische Vervollständigung)

Sei (X, d) ein metrischer Raum. Dann existiert ein vollständiger metrischer Raum $(\widehat{X}, \widehat{d})$ und eine isometrische Einbettung $\varphi \colon X \hookrightarrow \widehat{X}$ mit $\overline{\varphi(X)} = \widehat{X}$, das heißt $\varphi(X)$ liegt dicht in \widehat{X} . Das Paar $(\widehat{X}, \widehat{d})$ ist bis auf Isometrie eindeutig bestimmt und heißt metrische Vervollständigung von X.

Beweis (Skizze): Sei $CF(X) := \{(x_n)_n \text{ Cauchy-Folge in } X\}$. Definiere die Äquivalenzrelation

$$(x_n)_n \sim (y_n)_n$$
 : \Leftrightarrow $(d(x_n, y_n))_n$ ist Nullfolge

und setze

06.11.15

und definiere $\varphi \colon X \hookrightarrow \widehat{X}$ durch $x \mapsto [(x)_n]$.

16

1.32 Erinnerung

Seien (X, d_X) und (Y, d_Y) metrische Räume und $f: X \to Y$ eine Lipschitz-Abbildung. Dann existiert eine eindeutige Fortsetzung $\widehat{f}: \widehat{X} \to \widehat{Y}$ mit $\widehat{f}|_X = f$.

1.33 Definition (Mittelpunkt)

Ein metrischer Raum (X,d) hat **Mittelpunkte**, wenn für alle $u,v\in X$ stets ein $m\in X$ existiert mit $d(u,m)=d(m,v)=\frac{1}{2}d(u,v)$.

Man beachte, dass Mittelpunkte nicht eindeutig sein müssen. Zum Beispiel haben u := (1,0) und v := (0,1) in (\mathbb{R}^2, d_1) die beiden Mittelpunkte $m_1 = (0,0)$ und $m_2 = (1,1)$.

1.34 Beispiel

- (i) (\mathbb{Q}_2, d_2) hat Mittelpunkte.
- (ii) Jeder geodätische Raum hat Mittelpunkte: Für alle $u, v \in X$ existiert eine Geodäte $\gamma : [0, d(u, v)] \to X$ von u nach v. Dann ist $\gamma(\frac{1}{2}d(u, v))$ Mittelpunkt von u und v.
- (iii) CAT(0)-Räume haben eindeutige Mittelpunkte, das heißt es existiert eine wohldefinierte Mittelpunktabbildung $(u, v) \mapsto m(u, v)$.

1.35 Lemma

Ein vollständiger metrischer Raum, der Mittelpunkte hat, ist geodätisch.

Beweis: Übung.

1.36 Definition (Ungefährer Mittelpunkt, Vierpunktbedingung)

- (i) Ein metrischer Raum X hat **ungefähre Mittelpunkte**, wenn es zu allen $u, v \in X$ und $\varepsilon > 0$ ein $m \in X$ gibt mit $d(u, m), d(u, v) \leq \frac{1}{2}d(u, v) + \varepsilon$.
- (ii) Ein metrischer Raum X erfüllt die CAT(0)-Vierpunktbedingung, wenn es zu allen $x_1, y_1, x_2, y_2 in X$ stets $\overline{x_1}, \overline{x_2}, \overline{y_1}, \overline{y_2} \in \mathbb{E}^2$ gibt mit:

$$d(x_1,y_1)=d_2(\overline{x_1},\overline{y_1}),\quad d(x_2,y_2)=d_2(\overline{x_2},\overline{y_2}),\quad d(x_1,x_2)\leq d_2(\overline{x_1},\overline{x_2}),\quad d(y_1,y_2)\leq d_2(\overline{y_1},\overline{y_2}).$$

Wir werden sehen, dass man $\mathrm{CAT}(0)\text{-R\"{a}}$ ume über die Vierpunktbedingung charakterisieren kann.

1.37 Lemma

Beweis: Übung.

Ein geodätischer Raum ist genau dann CAT(0), wenn für jedes geodätische Dreieck $\Delta(x,y,z,\alpha,\beta,\gamma)$ mit Vergleichsdreieck $\overline{\Delta}(\overline{x},\overline{y},\overline{z},\overline{\alpha},\overline{\beta},\overline{\gamma})$ in \mathbb{E}^2 gilt: $d(x,\beta(s)) \leq d_2(\overline{x},\overline{\beta}(s))$ für alle $s \in [0,d(y,z)]$.

1.38 Theorem

Ein vollständiger metrischer Raum ist CAT(0) genau dann, wenn er ungefähre Mittelpunkte hat und die CAT(0)-Vierpunktbedingung erfüllt.

BEWEIS:

" \Rightarrow ": Der Raum X sei CAT(0). Dann hat X Mittelpunkte, also auch ungefähre Mittelpunkte. Seien $x_1, y_1, x_2, y_2 \in X$. Betrachte die euklidischen Vergleichsdreiecke zu $\Delta(x_1, x_2, y_2)$ und $\Delta(x_1, x_2, y_2)$. Das resultierende Viereck ist entweder konvex oder nicht.

1. Fall: Das Viereck ist konvex.

Definiere \overline{m} als Schnittpunkt der beiden Diagonalen in \mathbb{E}^2 und sei t so, dass $\overline{\alpha}(t) = \overline{m}$ für $\overline{\alpha} : \overline{x_1} \leadsto \overline{x_2}$. Setze dann $m := \alpha(t)$.

Da X CAT(0) ist, gilt $d(y_2, m) \le d_2(\overline{y_2}, \overline{m})$ sowie $d(y_1, m) \le d_2(\overline{y_1}, \overline{m})$. Da \overline{m} auf der Geodäte zwischen $\overline{y_1}$ und $\overline{y_2}$ liegt, erhalten wir insgesamt:

$$d(y_1, y_2) \stackrel{\Delta\text{-Ungl.}}{=} d(y_1, m) + d(m, y_2)$$

$$\leq d_2(\overline{y_1}, \overline{m}) + d_2(\overline{m}, \overline{y_2}) = d_2(\overline{y_1}, \overline{y_2})$$

2. Fall: Das Viereck ist nicht konvex.

Betrachte dann folgendes Dreieck in \mathbb{E}^2 mit

$$\begin{split} &d_2(\overline{x_2},\overline{y_2})=d_2(\overline{\overline{x_2}},\overline{\overline{y_2}}), \quad d_2(\overline{x_2},\overline{y_1})=d_2(\overline{\overline{x_2}},\overline{\overline{y_1}}),\\ &d_2(\overline{x_1},\overline{y_1})=d_2(\overline{\overline{x_1}},\overline{\overline{y_1}}), \quad d_2(\overline{x_1},\overline{y_2})=d_2(\overline{\overline{x_1}},\overline{\overline{y_2}}). \end{split}$$

Es gilt

$$d_2(\overline{\overline{x_1}}, \overline{\overline{x_2}}) \ge d_2(\overline{x_1}, \overline{x_2}) = d_2(x_1, x_2)$$

sowie

$$\begin{split} d_2(\overline{y_1}, \overline{y_2}) &= d_2(\overline{y_1}, \overline{x_2}) + d_2(\overline{x_2}, \overline{y_2}) \\ &= d_2(\overline{y_1}, \overline{x_2}) + d_2(\overline{x_2}, \overline{y_2}) \\ &= d(y_1, x_2) + d(x_2, y_2) \\ &\stackrel{\Delta\text{-Ungl.}}{\geq} d(y_1, y_2). \end{split}$$

"\in ": Nun sei X vollständig, habe ungefähre Mittelpunkte und erfülle die CAT(0)-Vierpunktbedingung. Zuerst zeigen wir, dass X geodätisch ist. Nach Lemma 1.35 reicht es zu zeigen, dass X Mittelpunkte hat. Seien $u,v\in X$ beliebig. Sei weiter $\varepsilon_n:=\frac{1}{n}$ für $n\in\mathbb{N}$. Da X ungefähre Mittelpunkte hat, existiert ein $m_r\in X$ mit $d(u,m_r),d(v,m_r)\leq \frac{1}{2}d(u,v)+\varepsilon_r$. Sei $(m_r)_{r\in\mathbb{N}}$ eine Folge von ungefähren Mittelpunkten mit Fehlerterm $\varepsilon_r:=\frac{1}{r}$. Unser Ziel ist es zu zeigen, dass $(m_r)_r$ eine Cauchy-Folge ist. Der Grenzwert $m:=\lim_{r\to\infty}m_r$ ist dann ein Mittelpunkt, denn:

$$d(u, m_r) \leq \frac{1}{2}d(u, v) + \varepsilon_r$$

$$\Longrightarrow \lim_{r \to \infty} d(u, m_r) \leq \frac{1}{2}d(u, v)$$

$$\Longrightarrow d \text{ stetig} d(u, m) \leq \frac{1}{2}d(u, v).$$

Ebenso erhalten wir $d(v, m) \le \frac{1}{2}d(u, v)$ und insgesamt $d(u, m) + d(m, v) \le d(u, v)$. Es gilt aber auch die Dreiecksungleichung $d(u, m) + d(m, v) \ge d(u, v)$. Folglich erhalten wir Gleichheit

$$\underbrace{d(u,m)}_{\leq \frac{1}{2}d(u,v)} + \underbrace{d(m,v)}_{\leq \frac{1}{2}d(u,v)} = d(u,v)$$

und damit $d(u, m) = d(m, v) = \frac{1}{2}d(u, v)$.

Sei nun $\varepsilon > 0$ und $\delta > 0$ die positive Lösung von $-\varepsilon^2 + 4d^2 + 8r\delta = 0$. Wir definieren d(u, v) =: 2r. Da $(\varepsilon_r)_{r \in \mathbb{N}}$ eine Nullfolge ist, existiert ein $N \in \mathbb{N}$, sodass gilt:

Betrachte das 4-Tupel (u, m_r, v, m_s) und die Vergleichspunkte $(\overline{u}, \overline{m_r}, \overline{v}, \overline{m_s})$ in \mathbb{E}^2 . Sei \overline{M} der Mittelpunkt von \overline{u} und \overline{v} . Nach Voraussetzung erfüllt X die CAT(0)-Vierpunktbedingung, also gilt

$$d(u,v) \leq d_2(\overline{u},\overline{v}) d(m_r,m_s) \leq d_2(\overline{m_r},\overline{m_s})$$
(16)

Aus der Parallelogrammgleichung für \mathbb{E}^2 kann man folgern (siehe Beweis zu Theorem 1.22):

$$d_2(\overline{m_r}, \overline{M})^2 = \frac{1}{2}d_2(\overline{u}, \overline{m_r})^2 + \frac{1}{2}d_2(\overline{m_r}, \overline{v})^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2$$
(17)

Analoges erhalten wir für $d_2(\overline{m_s}, \overline{M})^2$. Nun erhalten wir

$$\begin{split} d(m_r, m_s) &\overset{(16)}{\leq} d_2(\overline{m_r}, \overline{m_s}) \\ &\overset{\Delta-\text{Ungl.}}{\leq} d_2(\overline{m_r}, \overline{M}) + d_2(\overline{M}, \overline{m_s}) \\ &\overset{(17)}{=} \sqrt{\frac{1}{2}d_2(\overline{u}, \overline{m_r})^2 + \frac{1}{2}d_2(\overline{m_r}, \overline{v})^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2} + \sqrt{\frac{1}{2}d_2(\overline{u}, \overline{m_s})^2 + \frac{1}{2}d_2(\overline{m_s}, \overline{v})^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2} \end{split}$$

$$= \sqrt{\frac{1}{2}d(u, m_r)^2 + \frac{1}{2}d(m_r, v)^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2} + \sqrt{\frac{1}{2}d(u, m_s)^2 + \frac{1}{2}d(m_s, v)^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2}$$

$$\leq 2 \cdot \sqrt{(r + \delta)^2 - \frac{1}{4}d_2(\overline{u}, \overline{v})^2} \qquad \forall r, s \geq N$$

$$\leq 2 \cdot \sqrt{(r + \delta)^2 - \frac{1}{4}d(u, v)^2} \qquad \forall r, s \geq N$$

$$= 2 \cdot \sqrt{r^2 + 2r\delta + \delta^2 - r^2} = \varepsilon \qquad \forall r, s \geq N$$

Somit ist $(m_r)_r$ eine Cauchy-Folge.

Sei $\Delta(x, y, z, \alpha, \beta, \gamma)$ ein geodätisches Dreieck in X. Wir betrachten die Bedingung aus Lemma 1.37. Sei $p := \beta(s) \in \operatorname{im}(\beta \colon y \leadsto z)$ beliebig. Zu den Punkten (x, y, p, z) betrachten wir die Vergleichs-

punkte $(\overline{x}, \overline{y}, \overline{p}, \overline{z})$. Es gilt

$$d(x,p) \le d_2(\overline{x},\overline{p}) \quad \text{und} \quad d(z,y) \le d_2(\overline{z},\overline{y})$$
 (18)

Wir zeigen, dass $(\overline{x}, \overline{y}, \overline{p}, \overline{z})$ ein Vergleichsdreieck ist, also dass \overline{p} auf der Geodäte $\overline{\beta} \colon \overline{y} \leadsto \overline{z}$ liegt. Es gilt

$$d_2(\overline{y},\overline{z}) \stackrel{(18)}{\geq} d(y,z) = d(y,p) + d(p,z) = d_2(\overline{y},\overline{p}) + d_2(\overline{p},\overline{z})$$

und

$$d_2(\overline{y}, \overline{z} \overset{\Delta-\text{Ungl.}}{\leq} d_2(\overline{y}, \overline{p}) + d_2(\overline{p}, \overline{z}).$$

Folglich liegt \overline{p} auf der Geodäte $\overline{\beta}$, das heißt wir haben ein Vergleichsdreieck.

1.39 Theorem

Die metrische Vervollständigung eines CAT(0)-Raumes ist ein CAT(0)-Raum.

BEWEIS: Sei X ein CAT(0)-Raum mit Vervollständigung \widehat{X} . Wir zeigen, dass die Bedingung aus Theorem 1.38 erfüllt sind. Zuerst zeugen wir, dass \widehat{X} ungefähre Mittelpunkte hat. Seien $p,q\in\widehat{X},\varepsilon>0$. Wähle $p',q'\in X$ mit

$$d(p, p') < \frac{\varepsilon}{2} \quad \text{und} \quad d(q, q') < \frac{\varepsilon}{2}$$
 (19)

und $m' \in X$ als Mittelpunkt von p' und q'. Sei r = d(p, q) und r' = d(p', q').

Wir erhalten mit $r' = d(p',q') \le d(p',p) + d(p,q) + d(q,q') \le \varepsilon + r$:

$$d(p, m') \stackrel{\Delta\text{-Ungl.}}{\leq} d(p, p') + d(p', m')$$

$$\stackrel{(19)}{\leq} \frac{\varepsilon}{2} + \frac{r'}{2}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{r}{2} = \frac{r}{2} + \varepsilon.$$

und ebenso $d(q,m') \leq \frac{r}{2} + \varepsilon$, das heißt \widehat{X} hat ungefähre Mittelpunkte. Sei jetzt $(x_1,y_1,x_2,y_2) \in \widehat{X}^4$. Wähle Folgen in X mit

$$x_1(n) \to x_1$$
 $y_1(n) \to y_1$ $x_2(n) \to x_2$ $y_2(n) \to y_2$

und CAT(0)-Vierpunkt-Vergleichspunkte $\overline{x_1(n)}, \overline{y_1(n)}, \overline{x_2(n)}, \overline{y_2(n)}$ in \mathbb{E}^2 . Ohne Einschränkung sei $\overline{x_1(n)} = 0$ für alle $n \in \mathbb{N}$. Die Folge $(\overline{x_1(n)}, \overline{y_1(n)}, \overline{x_2(n)}, \overline{y_2(n)})$ hat einen Häufungspunkt in $(\mathbb{E}^2)^4$, weil sie beschränkt ist. Wir dürfen ohne Einschränkung annehmen, dass wir Konvergenz haben, das heißt

$$\lim_{n\to\infty}(\overline{x_1(n)},\overline{y_1(n)},\overline{x_2(n)},\overline{y_2(n)})=(0,\overline{y_1},\overline{x_1},\overline{x_2}).$$

Dann folgt:

$$d(x_i, y_j) = d\left(\lim_n x_i(n), \lim_n y_j(n)\right)$$

$$\stackrel{d \text{ stetig}}{=} \lim_n d(x_i(n), y_j(n))$$

$$= \lim_n d_2(\overline{x_i(n)}, \overline{y_j(n)})$$

$$\stackrel{d_2 \text{ stetig}}{=} d_2(\overline{x_i}, \overline{y_j})$$

Ebenso haben wir $d(x_1, x_2) \le d_2(\overline{x_1}, \overline{x_2})$ und $d(y_1, y_2) \le d_2(\overline{y_1}, \overline{y_2})$.

2 Der Satz von Cartan-Hadamard

Sei X ein CAT(0)-Raum. Wir haben gesehen, dass CAT(0)-Räume viele "schöne" Eigenschaften haben.

- (i) Sie sind eindeutig geodätisch und besitzen damit eindeutige Mittelpunkte.
- (ii) Für $C \subseteq X$ konvex und vollständig haben wir

$$\pi_C \colon X \longrightarrow C$$

$$x \longmapsto \pi_C(x)$$

mit $d(x, \pi_C(x)) = d(x, C)$, das heißt X ist kontrahierbar.

(iii) Für X vollständig und alle $A \subseteq X$ beschränkt existiert ein eindeutiges $c_A \in X$ mit

$$A\subseteq \overline{B_{\mathrm{rad}(A)}(c_A)}.$$

Daraus folgt, dass jede isometrische Wirkung $G \curvearrowright X$ einen globalen Fixpunkt besitzt, wenn G endlich ist.

(iv) Die metrische Vervollständigung von X ist CAT(0).

Die CAT(0)-Bedingung ist eine globale Bedingung und deshalb schwer zu erfüllen. Einfacher ist es zu zeigen, dass ein metrischer Raum lokal CAT(0) ist.

Sei X ein vollständiger metrischer Raum. Wir suchen nun eine "schwache" globale Bedingung, die einfacher überprüfbar ist als die globale ${\rm CAT}(0)$ -Bedingung, sodass wir eine äquivalente Charakterisierung von ${\rm CAT}(0)$ -Räumen erhalten.

$$X \text{ lokal } CAT(0) + ??? \Leftrightarrow X \text{ ist } CAT(0)$$

2.1 Satz (CARTAN-HADAMARD)

Sei X ein vollständiger zusammenhängender lokaler $\operatorname{CAT}(0)$ -Raum. Sei \widetilde{X} seine universelle Überlagerung. Dann ist \widetilde{X} ein $\operatorname{CAT}(0)$ -Raum.

2.2 Korollar

Sei X ein vollständiger metrischer Raum. Dann gilt:

$$X \text{ lokal } CAT(0) + \text{ einfach zusammenhängend} \Leftrightarrow X \text{ ist } CAT(0)$$
.

Um diesen Satz zu beweisen, brauchen wir viel Vorarbeit.

Erinnerung (siehe [Kra15, Kap. 3])

18.11.15 [7] Seien E, B topologische Räume. Sei weiter $p \colon E \twoheadrightarrow B$ eine stetige surjektive Abbildung. Wir nennen p eine Überlagerung von B, wenn jeder Punkt $b \in B$ eine offene Umgebung $U_b \subseteq B$ von b besitzt mit folgender Eigenschaft:

Es gibt eine Indexmenge $I \neq \emptyset$ mit

$$p^{-1}(U_b) = \left| \{V_i : i \in I\}, V_i \subseteq E \text{ offen}, V_i \cap V_j = \emptyset, i \neq j \right|$$

und $p|_{V_i} \to U_b$ ist ein Homö
omorphismus.

Ein triviales Beispiel einer Überlagerung ist die Identität id_B . Ein weiteres, wichtiges Beispiel ist $E := \mathbb{R}, B = \mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ und

$$p \colon E \longrightarrow B$$

 $t \longmapsto (\cos(2\pi t), \sin(2\pi t))$

Das ist eine Überlagerung, denn für $b = (\cos(\alpha), \sin(\alpha)) \in \mathbb{S}^1$ und $U_b = \mathbb{S}^{-1} \setminus \{-b\}$ ist $p^{-1}(U_b) = \bigcup \{(k+r-\frac{1}{2},k+r+\frac{1}{2}): k \in \mathbb{Z}\}.$

 $p \colon \mathbb{R} \to \mathbb{S}^1$ ist eine Überlagerung mit $\pi_1(E, \{e\}) = \pi_2(\mathbb{R}, \{x_0\}) \simeq \{0\}$ und \mathbb{R} ist wegzusammenhängend.

Definition

Eine Überlagerung $p \colon E \to B$ heißt universelle Überlagerung, wenn E einfach zusammenhängend ist. zusammenhängend!einfach

Die Frage ist nun, welche Räume die universelle Überlagerung besitzen.

Satz (ohne Beweis)

Jeder zusammenhängende topologische Raum X, welcher lokal wegzusammenhängend ist und semilokal einfach zusammenhängend ist, hat eine universelle Überlagerung.

X heißt genau dann **semilokal einfach zusammenhängend**, wenn für alle $x \in X$ eine offene Umgebung U_x von x existiert, sodass $\mathrm{id}_* \colon \pi_1(U_x, x) \to \pi_1(X, x)$ trivial ist.

Bemerkung

- (i) Wenn X lokal CAT(0) ist, dann ist X semilokal einfach zusammenhängend: Denn für $x \in X$ existiert ein $\varepsilon > 0$ sodass $B_{\varepsilon}(x)$ CAT(0) ist. CAT(0)-Räume sind kontrahierbar, folglich ist $\pi_1(B_{\varepsilon}(x), x) \simeq$ $\{0\}$ und damit ist $id_* \colon \pi_1(B_{\varepsilon}(x), x) \to \pi_1(X, x)$ trivial.
- (ii) Jeder zusammenhängende lokale CAT(0)-Raum hat also eine universelle Überlagerung.

- **BEWEIS** (Korollar 2.2): " \Leftarrow ": Ist X ein CAT(0)-Raum, dann ist $B_{\varepsilon}(x)$ für alle $\varepsilon > 0$, $x \in X$ konvex (Übung). Also ist $B_{\varepsilon}(x)$ CAT(0). In Satz 1.19 haben wir bewiesen, dass X kontrahierbar ist, folglich ist $\pi_1(X,\{x\}) \simeq \{0\}$. Da X wegzusammenhängend ist, folgt insgesamt, dass X einfach zusammenhängend ist.
- " \Rightarrow ": Die Identität id_X ist die universelle Überlagerung, da X nach Annahme zusammenhängend ist. Nach Satz 2.1 ist X dann CAT(0).

Der Satz von Cartan und Hadamard liefert uns also:

- eine lokal → global-Aussage (Korollar 2.2)
- eine Möglichkeit, viele CAT(0)-Räume zu erhalten
- ein Werkzeug, um zu zeigen, dass die universelle Überlagerung kontrahierbar ist.

Für den Beweis machen wir zuerst ein paar Vorüberlegungen: Wir haben $p: \tilde{X} \twoheadrightarrow X$, wobei X ein vollständiger metrischer zusammenhängender lokaler CAT(0)-Raum ist. Wir werden eine Metrik auf \tilde{X} definieren, sodass p eine lokale Isometrie ist, d.h. für $\tilde{x} \in \tilde{X}$ existiert ein $\varepsilon > 0$, sodass $p \colon B_{\varepsilon}(\tilde{x}) \to B_{\varepsilon}(p(\tilde{x}))$ eine Isometrie ist.

2.1 Längenräume

Betrachte $\mathbb{S}^1 \subseteq \mathbb{E}^2$. Die induzierte Metrik von \mathbb{E}^2 auf \mathbb{S}^1 ist keine "gute" Metrik, um Geometrie zu machen. Besser ist folgende Metrik:

$$d_L(x, y)$$
 = Bogenlänge zwischen x und y = $\cos(\langle x, y \rangle)$

Als allgemeines Konzept betrachten wir also Wege von *x* nach *y*.

2.3 Definition (Weg, Länge, rektifizierbar)

Sei (X, d) ein metrischer Raum und $c: [a, b] \to X$ eine stetige Abbildung. Die Abbildung c heißt **Weg** von c(a) nach c(b). Wir definieren die **Länge** von c folgendermaßen:

$$\ell(c) = \sup \left\{ \sum_{i=1}^{n} d(c(t_{i-1}), c(t_i)) : a = t_0 < t_1 < \dots t_n = b, n \in \mathbb{N} \right\} \in [0, \infty].$$

Falls $\ell(c) < \infty$, heißt c rektifizierbar.

 $\ell(c) \ge d(c(t_0), c(t_1)) + d(c(t_1), c(t_2)) + d(c(t_2), c(t_3))$

2.4 Bemerkung

Es gibt Wege, die nicht rektifizierbar sind. Wir betrachten das folgende Beispiel:

$$c: [-1, 0] \longrightarrow \mathbb{R}$$

$$-\frac{1}{n} \longmapsto \sum_{i=1}^{n} (-1)^{n+1} \cdot \frac{1}{n}$$

$$0 \longmapsto \ln(2)$$

und stetig linear fortgesetzt auf $\left[-\frac{1}{n},-\frac{1}{n+1}\right]$. Betrachte $t_n=-\frac{1}{n}$. Damit erhalten wir

$$\ell(c) \ge \ell\left(c\big|_{\left[-1, -\frac{1}{n+1}\right]}\right) \ge \sum_{i=1}^n d_2(c(t_i), c(t_{i+1})) = \sum_{i=1}^n \frac{1}{n+1} \xrightarrow{n \to \infty} \infty$$

2.5 Definition

Sei (X, d) ein metrischer Raum und $c_1 : [a_1, b_1] \to X$, $c_2 : [a_2, b_2] \to X$ zwei Wege mit $c_1(b_1) = c_2(a_2)$.

(i) Der zusammengesetzte Weg $c_1 * c_2$ von $c_1(a_1)$ nach $c_2(b_2)$ ist definiert wie folgt:

$$c_1 * c_2 \colon [a_1, b_1 + b_2 - a_2] \longrightarrow X$$

$$t \longmapsto \begin{cases} c_1(t), & t \in [a_1, b_1] \\ c_2(t + a_2 - b_1), & t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

(ii) Der inverse Weg von c_1 ist definiert wie folgt:

$$\overline{c_1} \colon [a_1, b_1] \longrightarrow X$$

$$t \longmapsto c_1(a_1 + b_1 - t)$$

2.6 Proposition

Sei (X, d) ein metrischer Raum und $c: [a, b] \rightarrow X$ ein Weg. Dann gilt:

- (i) $\ell(c) \ge d(c(a), c(b))$ und $\ell(c) = 0$ genau dann, wenn c konstant ist.
- (ii) Sei φ : [a',b'] o [a,b] eine schwach monotone surjektive stetige Funktion. Dann gilt $\ell(c) = \ell(c \circ \varphi)$.
- (iii) Additivität: Seien $c_1: [a_1, b_1] \to X$ und $c_2: [a_2, b_2] \to X$ zwei Wege in X mit $c_1(b_1) = c_2(a_2)$. Dann gilt $\ell(c_1 * c_2) = \ell(c_1) + \ell(c_2)$.
- (iv) $\ell(\overline{c}) = \ell(c)$
- (v) Wenn $\ell(c) < \infty$, dann ist

$$\lambda_c : [a, b] \longrightarrow [0, \ell(c)]$$

$$t \longmapsto \ell(c|_{[a, t]})$$

eine stetige schwach monotone surjektive Funktion.

- (vi) Parametrisierung nah der Bogenlänge: Wenn $\ell(c) < \infty$, dann existiert ein eindeutiger Weg \tilde{c} : $[0, \ell(c)] \to X$ mit $\tilde{c} \circ \lambda_c = c$ und $\ell(\tilde{c}|_{[0,t]}) = t$.
- (vii) Sei $(c_n \colon [a,b] \to X)_{n \in \mathbb{N}}$ eine Folge von Wegen, die gleichmäßig gegen einen Weg $c \colon [a,b] \to X$ konvergiert. Wenn $\ell(c) < \infty$, dann gilt: Für alle $\varepsilon > 0$ existiert ein $N(\varepsilon)$ mit $\ell(c) \le \ell(c_n) + \varepsilon$ für alle $n \ge N(\varepsilon)$.

Beweis: (i) bis (iv) und (vi) sind Übungsaufgaben.

(v) Zuerst zeigen wir, dass λ_c schwach monoton ist. Seien $t, t' \in [a, b]$ mit $t \le t'$. Dann ist

$$c|_{[a,t']} = c|_{[a,t]} * c|_{[t,t']}.$$

Mit (ii) erhalten wir:

$$\ell\left(c|_{[a,t']}\right) = \ell\left(c|_{[a,t]}\right) + \ell\left(c|_{[t,t']}\right)$$

$$\Rightarrow \underbrace{\ell\left(c|_{[a,t]}\right)}_{\lambda_{c}(t)} \leq \underbrace{\ell\left(c|_{[a,t']}\right)}_{\lambda_{c}(t')}$$

Zur Stetigkeit: Wir zeigen, dass λ_c gleichmäßig stetig ist. Sei $\varepsilon > 0$. Da [a,b] kompakt ist, ist der Weg c gleichmäßig stetig. Also existiert ein $\delta > 0$, sodass für alle $t,t' \in [a,b]$ mit $d(t,t') < \delta$ gilt:

$$d(c(t), c(t')) < \frac{\varepsilon}{4}.$$

Für $\frac{\varepsilon}{4}$ existiert $a = t_0 < t_1 < \cdots < t_{n+1} = b$ mit

$$\sum_{i=0}^{n} d(c(t_i), c(t_{i+1})) + \frac{\varepsilon}{4} > \ell(c).$$
 (20)

Weiter können wir annehmen, dass gilt (ansonsten wähle feinere Unterteilung):

$$d(t_i, t_{i+1}) < \delta$$
 für alle $i \in \{0, \dots, n\}$

Wir erhalten

$$\ell(c) \stackrel{(ii)}{=} \sum_{i=0}^{n} \ell(c|_{[t_{i},t_{i+1}]}) \stackrel{(i)}{\geq} \sum_{i=0}^{n} d(c(t_{i}),c(t_{i+1})) \stackrel{(20)}{>} \ell(c) - \frac{\varepsilon}{4}.$$

Folglich:

$$\left|\ell\left(c\big|_{[t_i,t_{i+1}]}\right) - d(c(t_i),c(t_{i+1}))\right| < \frac{\varepsilon}{4}.$$

Da $d(c(t_i), c(t_{i+1})) < \frac{\varepsilon}{4}$, erhalten wir

$$\ell\Big((c\Big|\big|_{[t_i,\,t_{i+1}]}\Big)<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\frac{\varepsilon}{2}.$$

Insgesamt erhalten wir, dass für alle $t, t' \in [a, b]$ mit $d(t, t') < \delta$ gilt:

$$|\lambda_c(t) - \lambda_c(t')| = \ell\left(c\big|_{[t,t']}\right) \leq \ell\left(c\big|_{[t_j,t_{j+2}]}\right) < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$$

für ein j ∈ {0, . . . , n − 1}.

Zur Surjektivität: Es gilt $\lambda_c(a) = 0$ und $\lambda_c(b) = \ell(c)$. Die Abbildung λ_c ist stetig und [a,b] ist zusammenhängend. Folglich ist $\lambda_c([a,b])$ zusammenhängend und wir erhalten $\lambda_c([a,b]) = [0,\ell(c)]$.

20.11.15 **(vii)** Sei $\varepsilon > 0$. Wähle $t_i \in [a, b], a = t_0 < t_1 < \dots < t_{k+1} = b$ mit [8]

$$\ell(c) \le \sum_{i=0}^{k} d(c(t_i), c(t_{i+1})) + \frac{\varepsilon}{2}$$
(21)

Da $(c_n)_{n\in\mathbb{N}}$ gleichmäßig gegen c konvergiert, existiert ein $N\in\mathbb{N}$, sodass gilt:

$$d(c(t), c_n(t)) < \frac{\varepsilon}{4 \cdot (k+1)} \text{ für alle } N \neq n, t \in [a, b].$$
 (22)

Wir erhalten:

$$\ell(c) \ (21) \ \sum_{i=0}^{k} d(c(t_i), c(t_{i+1})) + \frac{\varepsilon}{2}$$

Nebenrechnung:

$$d(c(t_{i}), c(t_{i+1})) \triangle - \text{Ungl} d(c(t_{i}), c_{n}(t_{i})) + d(c_{n}(t_{i}), c_{n}(t_{i+1})) + d(c_{n}(t_{i+1}), c(t_{i+1}))$$

$$\stackrel{\leq}{(22)} \frac{\varepsilon}{2 \cdot (k+1)} + d(c_{n}(t_{i}), c_{n}(t_{i+1})) \quad \forall n \geq N$$

Also:

$$\ell(c) \le (k+1) \cdot \frac{\varepsilon}{2 \cdot (k+1)} + \sum_{i=0}^{k} d(c_n(t_i), c_n(t_{i+1})) + \frac{\varepsilon}{2} \le \ell(c_n) + \varepsilon \quad \forall n \ge N$$

2.7 Definition

Sei (X, d) ein metrischer Raum. d heißt Längenmetrik, falls für alle $x, y \in X$ gilt:

$$d(x, y) = \inf\{\ell(c) : c \text{ ist ein rektifizierbarer Weg von } x \text{ nach } y\}$$

Falls d eine Längenmetrik ist, heißt (X, d) ein Längenraum.

2.8 Beispiel

(i) Jeder geodätische Raum X ist ein Längenraum. Genauer: Seien $x, y \in X$ beliebig. Sei weiter $\gamma : [0, d(x, y)] \to X$ eine Geodäte zwischen x und y. Sei $\varepsilon > 0$ beliebig. Wähle $0 = t_0 < t_1 < \cdots < t_{n+1} = d(x, y)$ mit

$$\ell(\gamma) \leq \sum_{i=0}^{n} d(\gamma(t_i), \gamma(t_{i+1})) + \varepsilon$$

$$\stackrel{\gamma \text{ isom.}}{=} \sum_{i=0}^{n} d_2(t_i, t_{i+1}) + \varepsilon$$

$$= d(x, y) + \varepsilon$$

Für $\varepsilon = \frac{1}{n}$ erhalten wir für $n \to \infty$: $\ell(\gamma) \le d(x, y)$. Mit $\ell(\gamma) \ge d(\gamma(0), \gamma(d(x, y))) = d(x, y)$ (Proposition 2.6(i)) folgt Gleichheit.

(ii) Im Allgemeinen ist ein Längenraum nicht geodätisch. Zum Beispiel ist ($\mathbb{R}^2 \setminus \{0\}, d_2$) ein Längenraum, aber zwischen (-1,0) und (1,0) existiert keine Geodäte.

Sei (X, d) ein metrischer Raum. Dann induziert d eine Längenmetrik d_L auf X und zwar wie folgt:

2.9 Definition

Sei (X, d) ein metrischer Raum. Wir definieren

$$d_L\colon X\times X\longrightarrow \mathbb{R}\cup\{\infty\}$$

$$(x,y)\longmapsto\inf\{\ell(c):c\text{ ist ein rektifizierbarer Weg von }x\text{ nach }y\}$$

Falls kein rektifizierbarer Weg von x nach y existiert, dann setzen wir $d_L(x, y) = \infty$. Es gilt (folgt direkt mit Proposition 2.6):

(i) d_L ist eine Metrik auf X (Konvention: $a + \infty = \infty$ für alle $a \in [0, \infty]$)

(ii)
$$d_L(x, y) \ge d(x, y)$$
 für alle $x, y \in X$

Wir nennen d_L die zu d assoziierte Längenmetrik.

2.10 Beispiel

- (i) (\mathbb{Q}, d_2) : $d_{2L}(x, y) = \infty$ für alle $x, y \in \mathbb{Q}$ mit $x \neq y$
- (ii) (\S^1, d_2): $d_{2_I}(x, y) = \arccos(\langle x, y \rangle)$

2.11 Proposition

Sei (X, d) ein metrischer Raum.

- (i) Sei $c: [a, b] \Rightarrow X$ ein rektifizierbarer Weg in (X, d), dann ist c auch ein rektifiziertbarer Weg in (X, d_L) und $\ell^d(c) = \ell^{d_2}(c)$.
- (ii) Es gilt: $(d_L)_L = d_L$.

BEWEIS:

(i) Wir zeigen zuerst, dass $c: [a,b] \to (X,d_2)$ stetig ist. Sei $t \in [a,b]$ beliebig. Sei weiter $(t_n)_{n \in \mathbb{N}}$ eine Folge in [a,b] mit $\lim_{n \to \infty} t_n = t$. Wir müssen zeigen, dass gilt: $\lim_{n \to \infty} c(t_n) = c(t)$. Sei $\varepsilon > 0$.

$$d_L(c(t), c(t_n)) \le \ell(c|_{[t,t_n]}) = |\lambda_c(t_n) - \lambda_c(t)|$$

Da λ_c stetig ist, existiert $N(\varepsilon)$ mit $|\lambda_c(t_n) - \lambda_c(t)| < \varepsilon$ für alle $n \ge N(\varepsilon)$. Da $d_L(x,y) \ge d(x,y)$ für alle $x,y \in X$ gilt, folgt $\ell^{d_L}(c) \ge \ell^d(c)$. Weiter haben wir:

$$\ell^{d_{L}}(c) \stackrel{\text{Def}}{=} \sup \left\{ \sum_{i=0}^{n} d_{L}(c(t_{i}), c(t_{i+1})) : a = t_{0} < \dots < t_{n+1} = b, n \in \mathbb{N} \right\}$$

$$\leq \sup \left\{ \sum_{i=0}^{n} \ell^{d} \left(c \big|_{[t_{i}, t_{i+1}]} : a = t_{0} < \dots < t_{n+1} = b, n \in \mathbb{N} \right) \right\}$$

$$\stackrel{\text{Def}}{=} \ell^{d}(c).$$

(ii) folgt sofort aus (i).

Im Allgemeinen muss ein Längenraum nicht geodätisch sein. Zum Beispiel ist ($\mathbb{R}^2 \setminus \{0\}, d_2$) ein (nicht vollständiger) Längenraum, aber nicht geodätisch.

2.12 Definition (lokal kompakt)

Ein metrischer Raum (X, d) heißt **lokal kompakt**, wenn für alle $x \in X$ ein r > 0 existiert, sodass $\overline{B_r(x)}$ kompakt ist.

2.13 Theorem (Hopf-Rinow)

Sei (X, d) ein Längenraum. Wenn X vollständig und lokal kompakt ist, dann gilt:

- (i) Für jedes $x \in X$ und r > 0 ist $\overline{B_r(x)}$ kompakt.
- (ii) (X, d) ist geodätisch.

Beweis (zu (i)): Sei $x \in X$ beliebig. Wir definieren:

$$\{r \in \mathbb{R}_{>0} : \overline{B_r(x)} \text{ ist kompakt}\}$$

Wir müssen zeigen, dass gilt: $\Sigma = \mathbb{R}_{\geq 0}$. Dafür zeigen wir $\Sigma \neq \emptyset$ sowie Σ offen und abgeschlossen. Da $\mathbb{R}_{\geq 0}$ zusammenhängend ist, folgt dann $\Sigma = \mathbb{R}_{\geq 0}$.

- [1] $\Sigma \neq \emptyset$, da $0 \in \Sigma$.
- [2] Falls $r \in \Sigma$, dann ist auch $[0, r] \subseteq \Sigma$. Genauer: Sei $r' \in [0, r]$ beliebig, dann ist $\overline{B_{r'}(x)} \subseteq \overline{B_r(x)}$ als abgeschlossene Teilmenge in einem kompakten Raum kompakt. Folglich: $r' \in \Sigma$

Zur Offenheit von Σ : Sei $r \in \Sigma$ beliebig. Wir müssen zeigen, dass eine offene Umgebung U_r von r existiert mit $U_r \subseteq \Sigma$.

- **1. Fall:** r = 0. Da X lokal kompakt ist, existiert ein $r' \in \mathbb{R}_{>0}$ mit $\overline{B_{r'}(x)}$ kompakt. Mit [2] folgt $[0, r'] \subseteq \Sigma$, also $U_0 := [0, r'] \subseteq \Sigma$.
- **2. Fall:** $r \in \Sigma \cap \mathbb{R}_{>0}$. Es gilt also, dass $B_r(x)$ kompakt ist. Sei $x_i \in X$ beliebig. Da X lokal kompakt ist, existiert ein $r_i > 0$ mit $\overline{B_{r_i}(x_i)}$ kompakt. Wir betrachten die offene Überdeckung von $\overline{B_r(x)}$:

$$\overline{B_r(x)} \subseteq \bigcup_{x_i \in X} B_{r_i}(x_i)$$

Da $\overline{B_r(x)}$ kompakt ist, existieren $x_1, \ldots, x_n \in X$ mit

$$\overline{B_r(x)} \subseteq \bigcup_{i=1}^n B_{r_i}(x_i).$$

Betrachte $A := \overline{B_r(x)}$ kompakt und $B := X \setminus \bigcup_{i=1}^n B_{r_i}(x_i)$ abgeschlossen. Es gilt $A \cap B = \emptyset$. Dann existiert ein $\delta > 0$ mit

$$\inf\{d(a,b): a \in A, b \in B\} > 2\delta. \tag{23}$$

Folglich ist

$$\overline{B_{r+\delta}(x)} \subseteq \bigcup_{i=1}^n \overline{B_{r_i}(x_i)}$$

und damit ist $\overline{B_{r+\delta}(x)}$ kompakt. Es folgt $U_r := (\delta - r, r + \delta) \cap [0, r + \delta) \subseteq \Sigma$.

zu (23): Angenommen, $\inf\{d(a,b): a\in A, b\in B\}=0$. Dann existieren Folgen $(a_n)_{n\in\mathbb{N}}\subseteq A, (b_n)_{n\in\mathbb{N}}\subseteq B$ mit $\lim_{n\to\infty}d(a_n,b_n)=0$. Da A kompakt ist, existiert eine konvergente Teilfolge (a_{n_k}) mit $\lim_{k\to\infty}a_{n_k}=a$. Wir erhalten

$$0 = \lim_{k \to \infty} d(a_{n_k}, b_{n_k}) = \lim_{k \to \infty} d(a, b_{n_k}).$$

Also gilt $b_{n_k} \to a$. Da B abschlossen ist, liegt $a \in B$. Widerspruch zu $A \cap B = \emptyset$.

Zur Abgeschlossenheit von Σ: Wir benutzen das folgende Kriterium für einen metrischen Raum Y:

 $A\subseteq Y$ abg. \Leftrightarrow für alle Folgen $(y_n)_n\subseteq A$, die in Y konvergieren, gilt $\lim_{n\to\infty}y_n\in A$.

In unserem Fall reicht es zu zeigen, dass für $r \in \mathbb{R}_{>0}$ mit $[0,r) \subseteq \Sigma$ auch $r \in \Sigma$ ist. Sei also $r \in \mathbb{R}_{>0}$ mit $[0,r) \subseteq \Sigma$ beliebig. Wir müssen zeigen, dass $\overline{B_r(x)}$ kompakt ist. In metrischen Räumen sind die Begriffe Folgenkompaktheit und Kompaktheit äquivalent. Sei also $(x_n)_n$ eine Folge in $\overline{B_r(x)}$. Wir müssen zeigen, dass $(x_n)_n$ eine konvergente Teilfolge hat.

Wir können annehmen, dass $\lim_{n\to\infty} d(x_n,x) = r$ ist. Andernfalls können wir eine Teilfolge (x_{n_k}) von (x_n) finden, sodass $x_{n_k} \in \overline{B_{r'}(x)}$ für ein $r' \in [0,r)$. Da $\overline{B_{r'}(x)}$ kompakt ist, existiert eine Teilfolge $(x_{n_{k_l}})$, die konvergent ist. Wir konstruieren eine Hilfsfolge:

Seien $n, m \in \mathbb{N}$ beliebig. Betrachte $c_n \colon [a,b] \to X$ mit $c(a) = x, c(b) = x_n$ und $\ell(c_n) < r - \frac{1}{2+2m}$. Sei $y_n^m \in \operatorname{im}(c_n)$ beliebig mit $d(x_n, y_n^m) < \frac{1}{m+1}$. Dann gilt

$$d(x, y_n^m) < r - \frac{1}{2 + 2m}$$
$$d(x_n, y_n^m) < \frac{1}{m+1}$$

Für festes m liegt $(y_n^m)_n$ in der kompakten Menge $\overline{B_{r-\frac{1}{2+2m}}(x)}$. Das heißt, für festes m hat $(y_n^m)_n$ eine konvergente Teilfolge. Benutze Diagonaltrick:

Sei $(y_{n_k^1}^1)_k$ eine konvergente Teilfolge von $(y_n^1)_{n\in\mathbb{N}}$. Sei $(y_{n_k^2}^2)_k$ eine konvergente Teilfolge von $(y_{n_k^1}^2)_k$.

Definiere $n_k := n_k^k$ für jedes $k \in \mathbb{N}$. Dann ist $(y_{n_k}^m)_k$ eine konvergente Folge für alle $m \in \mathbb{N}$.

Beh: (x_{n_k}) konvergiert:

Bew: Wir zeigen, dass (x_{n_k}) eine Cauchy-Folge ist. Da $\overline{B_r(x)}$ eine abgeschlossene Teilmenge in einem vollständigen Raum ist, ist $\overline{B_r(x)}$ vollständig. Damit liegt dann $\lim_{k\to\infty} x_{n_k} \in \overline{B_r(x)}$. Sei $\varepsilon > 0$. Sei weiter $m \in \mathbb{N}$ mit $2 \cdot \frac{1}{m+1} < \frac{\varepsilon}{2}$ beliebig.

$$d(x_{n_k}, x_{n_l}) \stackrel{\Delta\text{-Ungl.}}{\leq} d(x_{n_k}, y_{n_k}^m) + d(y_{n_k}^m, y_{n_l}^m) + d(y_{n_l}^m, x_{n_l})$$

$$< 2 \cdot \frac{1}{m+1} + d(y_{n_k}^m, y_{n_l}^m)$$

Da $(y_{n_k}^m)$ für alle m konvergent ist, existiert $N\in\mathbb{N}$ mit $d(y_{n_k}^m,y_{n_l}^m)<\frac{\varepsilon}{2}$ für alle k,l>N. Wir erhalten

$$d(x_{n_k}, x_{n_l}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

für alle k, l > N.

25.11. Um die Aussage (ii) zu beweisen, brauchen wir ein Resultat von Arzelà und Ascoli.

[9]

2.14 Definition (gleichstetig)

Seien X und Y metrische Räume. Eine Folge von Abbildungen $(f_n \colon X \to Y)_{n \in \mathbb{N}}$ heißt gleichstetig, wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X, n \in \mathbb{N} : d_X(x, x') < \delta \Rightarrow d_Y(f_n(x), f_n(x')) < \varepsilon$$

2.15 Lemma (Arzelà-Ascoli)

Sei X ein separabler metrischer Raum und Y ein kompakter metrischer Raum. Dann hat jede gleichstetige Folge von Funktionen $(f_n \colon X \to Y)_{n \in \mathbb{N}}$ eine konvergente Teilfolge $(f_{n_k})_k$, die gleichmäßig auf kompakte Teilmengen von X gegen die stetige Funktion $f := \lim_{k \to \infty} f_{n_k}$ konvergiert.

BEWEIS:

- Da X separabel ist, existiert eine abzählbare dichte Teilmenge Q von X. Wähle so ein $Q = \{q_j : j \in \mathbb{N}\}$.
- Für jedes $q_j \in Q$ betrachten wir die Folge $(f_n(q_j))_{n \in \mathbb{N}}$.
- Es ist $(f_n(q_i))_n$ eine Folge in Y kompakt und besitzt daher eine konvergente Teilfolge.
- Wir wählen eine Teilfolge $(n_k^1)_{k \in \mathbb{N}}$, sodass $(f_{n_k^1}(q_1))_{k \in \mathbb{N}}$ konvergiert, dann induktiv eine Teilfolge $(n_k^j)_k$ von (n_k^{j-1}) , sodass $(f_{n_k^j}(q_j))_{k \in \mathbb{N}}$ konvergiert. Mittels Diagonaltrick ist dann $(f_{n_k^k}(q_j))_k$ konvergiert für jedes $j \in \mathbb{N}$.
- Wir definieren

$$f \colon Q \longrightarrow Y$$
$$q_j \longmapsto \lim_{k \to \infty} f_{n_k^k}(q_j)$$

und zeigen, dass f gleichmäßig stetig ist:

Sei $\varepsilon > 0$ beliebig. Da $(f_n \colon X \to Y)_{n \in \mathbb{N}}$ gleichstetig ist, existiert ein $\delta > 0$, sodass für alle $n \in \mathbb{N}$ gilt:

$$d(f_n(x), f_n(x')) \le \varepsilon$$
 für alle $x, x' \in X$ mit $d(x, x') < \delta$,

also insbesondere

$$d(f_{n_k^k}(q),f_{n_k^k}(q')) \leq \varepsilon \text{ für alle } q,q' \in Q \text{ mit } d(q,q') < \delta.$$

Somit folgt für $k \to \infty$ und mit d stetig:

$$\begin{split} \lim_{k \to \infty} d(f_{n_k^k}(q), f_{n_k^k}(q')) &\leq \varepsilon \text{ für alle } q, q' \in Q \text{ mit } d(q, q') < \delta \\ \Rightarrow d(f(q), f(q')) &\leq \varepsilon \text{ für alle } q, q' \in Q \text{ mit } d(q, q') < \delta \end{split}$$

Folglich ist $f: Q \to Y$ gleichmäßig stetig.

• Gleichmäßig stetige Funktionen lassen sich stetig fortsetzen:

$$f: X \longrightarrow Y$$

$$x \longmapsto \lim_{i \to \infty} f(q_i), \text{ wobei } q_i \in Q \text{ mit } \lim_{i \to \infty} q_i = x$$

- Da f gleichmäßig stetig ist, ist $(f(q_i))_{i\in\mathbb{N}}$ eine Cauchy-Folge.
- Cauchy-Folgen sind beschränkt, das heißt es existiert ein r>0 und $y\in Y$ mit $f(q_i)\in \overline{B_r(y)}\subseteq Y$.
- $\overline{B_r(y)}$ ist als abgeschlossene Teilmenge in einem kompakten Raum wieder kompakt, also insbesondere folgenkompakt. Folglich existiert eine konvergente Teilfolge $(f(q_{i_k}))_{k \in \mathbb{N}}$. Sei $\tilde{y} = \lim_{k \to \infty} f(q_{i_k})$. Da $(f(q_i))$ eine Cauchy-Folge ist, gilt $\lim_{i \to \infty} f(q_i) = \tilde{y}$.
- Sei nun $K\subseteq X$ kompakt. Wir müssen nun zeigen, dass $(f_{n_k^k}\colon K\to Y)_{k\in\mathbb{N}}$ gleichmäßig gegen $f\colon K\to Y$ konvergiert. Sei $\varepsilon>0$. Gesucht ist $N\in\mathbb{N}$, sodass für alle $n_k^k>N$ und $x\in K$ gilt:

$$d(f_{n_k^k}(x),f(x))<\varepsilon.$$

• Da $(f_{n_k^k}\colon X\to Y)_k$ gleichstetig ist, existiert für $\frac{\varepsilon}{3}$ ein $\delta>0$, sodass für alle n_k^k gilt:

$$d(f_{n_k^k}(x), f_{n_k^k}(x')) \le \frac{\varepsilon}{3} \text{ für alle } x, x' \in K \text{ mit } d(x, x') < \delta \tag{24}$$

$$\stackrel{\lim}{\Longrightarrow} d(f(x), f(x')) \le \frac{\varepsilon}{3} \text{ für alle } x, x' \in K \text{ mit } d(x, x') < \delta$$
 (25)

• Weiter betrachten wir die offene Überdeckung

$$K \subseteq \bigcup_{q_j \in Q} B_{\delta}(q_j) \xrightarrow{K \text{ kompakt}} K \subseteq \bigcup_{j=1}^{l} B_{\delta}(q_j)$$
 (26)

• Wähle $N \in \mathbb{N}$, sodass

$$d(f_{n_k^k}(q_j), f(q_j)) \le \frac{\varepsilon}{3} \text{ für alle } n_k^k \ge N \text{ und alle } j \in \{1, \dots, l\}$$
 (27)

Insgesamt erhalten wir:

$$d(f(x), f_{n_k^k}(x)) \overset{(26)}{\leq} d(f(x), f(q_j)) + d(f(q_j), f_{n_k^k}(q_j)) + d(f_{n_k^k}(q_j), f_{n_k^k}(x))$$

$$\leq \underbrace{\frac{\varepsilon}{3}}_{(25)} + \underbrace{\frac{\varepsilon}{3}}_{(27)} + \underbrace{\frac{\varepsilon}{3}}_{(24)} = \varepsilon \text{ für alle } n_k^k \geq N \text{ und alle } x \in K.$$

г

BEWEIS (Theorem 2.13(ii)): Seien $x, y \in X, x \neq y$ beliebig. Da X ein Längenraum ist, existieren Wege

$$c_n : [a_n, b_n] \longrightarrow X$$

$$a_n \longmapsto x$$

$$b_n \longmapsto y$$

mit $\ell(c_n) \leq d(x,y) + \frac{1}{n}$ und betrachten die Folge $(c_n' \colon [0,1] \to X)_{n \in \mathbb{N}}$.

• Die Folge $(c'_n)_n$ ist gleichstetig, denn: Sei $\varepsilon > 0$. Wir definieren $\delta := \frac{\varepsilon}{d(x,y)+1}$. Es gilt $\ell(c'_n) = \ell(c_n) = d(x,y) + \frac{1}{n} \Leftrightarrow 1 \leq \frac{d(x,y)+1}{\ell(c'_n)}$, und für $t,t' \in [0,1]$ mit $d(t,t') < \delta$ folgt damit:

$$\begin{split} d(c_n'(t),c_n'(t')) & \leq & \ell\left(c_n'\big|_{[t,t']}\right) \\ & \leq & \frac{\ell\left(c_n'\big|_{[t,t']}\right)}{\ell(c_n')} \cdot (d(x,y)+1) \\ & = & d(t,t') \cdot (d(x,y)+1) \\ & < & \delta \cdot (d(x,y)+1) \\ & = & \varepsilon \end{split}$$

- Weiter gilt $\operatorname{im}(c'_n) \subseteq \overline{B_{d(x,y)+1}(x)}$. Nach Theorem 2.13(i) ist $\overline{B_{d(x,y)+1}(x)}$.
- Insgesamt haben wir $(c_n'\colon [0,1] \to \overline{B_{d(x,y)+1}(x)})_n$ gleichstetig mit [0,1] separabel und $\overline{B_{d(x,y)+1}(x)}$ kompakt. Nach Lemma 2.15 existiert also eine konvergente Teilfolge $(c_{n_k}')_{k\in\mathbb{N}}$, die gleichmäßig gegen den Weg $c'\colon [0,1] \to X$ von x nach y konvergiert.
- Für $\frac{1}{k}$ existiert nach Proposition 2.6 ein $n \in \mathbb{N}$, sodass mit $\ell(c'_{n_k}) \leq d(x, y) + \frac{1}{n_k}$ gilt:

$$\begin{split} d(x,y) &\leq \ell(c') \leq \ell(c'_{n_k}) + \frac{1}{k} \text{ für alle } n_k \geq N \\ &\leq d(x,y) + \frac{1}{n_k} + \frac{1}{k} \text{ für alle } n_k \geq N \\ &\stackrel{\lim}{\Longrightarrow} \quad d(x,y) \leq \ell(c') \leq d(x,y) \\ \Rightarrow \quad \ell(c') = d(x,y) \end{split}$$

Dann ist $\tilde{c}' : [0, d(x, y)] \to X$ aus Proposition 2.6 eine Geodäte von x nach y.

2.16 Korollar

Sei X ein Längenraum. Dann gilt:

X vollständig und lokal kompakt \Leftrightarrow $B_r(x)$ ist kompakt für alle $x \in X$ und alle $r \in \mathbb{R}_{>0}$.

BEWEIS:

"⇒": Theorem 2.13.

" \Leftarrow ": Dass X lokal kompakt ist, ist klar.

Sei $(x_i)_{i\in\mathbb{N}}$ eine Cauchy-Folge in X. Cauchy-Folgen sind beschränkt, folglich existiert ein $x\in X$ und r>0 mit $x_i\in\overline{B_r(x)}$ für alle $i\in\mathbb{N}$. Nach Voraussetzung ist $\overline{B_r(x)}$ kompakt, also existiert eine konvergente Teilfolge $(x_{i_n})_n$ mit $x_{i_n}\xrightarrow{n\to\infty} x'$. Da $(x_i)_i$ eine Cauchy-Folge ist, gilt $\lim_{i\to\infty}x_i=x'$. \square

2.17 Definition (Stetige Abhängigkeit von Endpunkten)

Sei X ein eindeutig geodätischer Raum. Die Geodäten in X hängen stetig von ihren Endpunkten ab, wenn folgendes gilt:

Seien $x,y\in X$ beliebig und $c:[0,d(x,y)]\to X$ die Geodäte von x nach y. Seien weiter $(x_n)_n,(y_n)_n$ konvergente Folgen in X mit $\lim_{n\to\infty}x_n=x$, $\lim_{n\to\infty}y_n=y$ und $c_n\colon [0,d(x_n,y_n)]\to X$ die Geodäte von x_n nach y_n . Dann konvergiert die Folge von Wegen

$$\begin{pmatrix}
c'_n : [0,1] & \longrightarrow & [0,d(x_n,y_n)] & \longrightarrow & X \\
t & \longmapsto & t \cdot d(x_n,y_n) & \longmapsto & c_n(t \cdot d(x_n,y_n))
\end{pmatrix}$$

gleichmäßig gegen

$$\begin{array}{cccc} c' \colon [0,1] & \longrightarrow & [0,d(x,y)] & \longrightarrow & X \\ & t & \longmapsto & t \cdot d(x,y) & \longmapsto & c(t \cdot d(x,y)). \end{array}$$

2.18 Satz

Sei X ein CAT(0)-Raum. Dann hängen die Geodäten stetig von ihren Endpunkten ab.

Beweis: Seien $x, y \in X$ beliebig. Seien weiter $(x_n)_n, (y_n)_n$ konvergente Folgen in X mit $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$. Weiter seien $c \colon x \leadsto y$, $c_n \colon x_n \leadsto y_n$, $\gamma_n \colon x_n \leadsto y$ Geodäten. Sei $\varepsilon > 0$. Wähle $N \in \mathbb{N}$, sodass $d(x, x_n)$, $d(y, y_n) < \frac{\varepsilon}{2}$ für alle $n \ge \mathbb{N}$.

$$d(c'(t), c'_n(t)) \stackrel{\Delta\text{-Ungl.}}{\leq} d(c'(t), \gamma'_n(t)) + d(\gamma'_n(t), c'_n(t))$$

$$\stackrel{d \text{ konv.}}{\leq} (1 - t) \cdot d(c'(0), \gamma'_n(0)) + t \cdot d(\gamma'_n(1), c'_n(1))$$

$$\leq d(x, x_n) + d(y, y_n) = \varepsilon \text{ für alle } n \geq N.$$

2.19 Definition (Linear umparametrisierte Geodäte)

02.12. Sei (X,d) ein metrischer Raum und $\gamma\colon x\leadsto y$ eine Geodäte sowie $x,y\in X$. Wir definieren [10]

$$\gamma' \colon [0,1] \longrightarrow X$$

$$t \longmapsto \gamma(t \cdot d(x,y)).$$

Der stetige Weg γ' heißt linear umparametrisierte Geodäte.

2.20 Korollar

Sei X ein kompakter metrischer Raum und $(c_n : [0, 1] \to X)_{n \in \mathbb{N}}$ eine Folge von linear umparametrisierten Geodäten. Dann existiert eine linear umparametrisierte Geodäte $c : [0, 1] \to X$ und eine Teilfolge $(c_{n_k})_k$,

Beweis: Übung!

sodass $(c_{n_k})_k$ gleichmäßig gegen c konvergiert.

2.21 Satz

Sei X ein eindeutig geodätischer Raum, in dem alle abgeschlossenen Bälle kompakt sind. Dann hängen die Geodäten in X stetig von ihren Endpunkten ab.

Beweis: Seien $x, y \in X$ beliebig. Seien weiter $(x_n)_n$, $(y_n)_n$ Folgen in X mit $\lim_{n \to \infty} x_n = x$ und $\lim_{n \to \infty} y_n = y$. Seien weiter $(c_n \colon [0,1] \to X)_n$ linear umparametrisierte Geodäten von x_n nach y_n . Sei weiter $c \colon [0,1] \to X$ die linear umparametrisierte Geodäte von x nach y. Wir müssen zeigen, dass $(c_n)_n$ gleichmäßig gegen c konvergiert.

Wir zeigen zuerst, dass $(c_n)_n$ punktweise gegen c konvergiert. Wähle R > 0, sodass $\operatorname{im}(c_n) \subseteq \overline{B_R(x)}$ für alle $n \in \mathbb{N}$ gilt.

Angenommen, $(c_n)_n$ konvergiere nicht punktweise gegen c. Dann existiert ein $\varepsilon > 0$ und $t_0 \in (0, 1)$ und eine Teilfolge $(c_{n_k})_k$, sodass gilt:

$$d(c_{n_k}(t_0), c(t_0)) \ge \varepsilon$$
 für alle $k \in \mathbb{N}$. (28)

Nach Korollar 2.20 existiert eine Teilfolge $(c_{n_{k_i}})_i$ von $(c_{n_k}\colon [0,1] \to \overline{B_R(x)})_k$, die gleichmäßig gegen eine linear umparametrisierte Geodäte $c'\colon [0,1] \to X$ konvergiert. Es gilt $c_{n_{k_i}}(0) \xrightarrow{i \to \infty} x = c'(0)$ sowie $c_{n_{k_i}}(1) \xrightarrow{i \to \infty} y = c'(1)$. Weiter gilt

$$\lim_{i \to \infty} d(c_{n_{k_i}}(t_0), c(t_0)) \stackrel{(28)}{\geq} \text{ für alle } i \in \mathbb{N}$$

und wegen d stetig

$$d(c'(t_0), c(t_0)) \ge \varepsilon$$
,

was ein Widerspruch zur Eindeutigkeit der Geodäten ist.

Als Übung zeige man nun: Wenn $(c_n)_n$ punktweise gegen c konvergiert, dann auch gleichmäßig (für beliebige metrische Räume).

2.22 Bemerkung

Konstruktionsskizze von einem vollständigen eindeutig geodätischen Raum, in dem die Geodäten nicht stetig von ihren Endpunkten abhängen:

Spaßige Konstruktion einfügen!

2.2 Längenmetrik auf Überlagerungsräumen

2.23 Definition (Induzierte Pseudometrik)

Sei X ein Längenraum, \tilde{X} ein topologischer Raum und $p \colon \tilde{X} \to X$ ein **lokaler Homöomorphismus**, das heißt für jeden Punkt $\tilde{x} \in \tilde{X}$ existiert eine offene Umgebung $\tilde{U}_{\tilde{x}} \subseteq \tilde{X}$ von \tilde{x} , sodass $U := p(\tilde{U}_{\tilde{x}}) \subseteq X$ eine offene Menge ist und $p|_{\tilde{U}_{\tilde{x}}} \colon \tilde{U}_{\tilde{x}} \to U$ ein Homöomorphismus ist.

Sei $c : [a, b] \to \tilde{X}$ ein Weg. Wir definieren $\ell(c) := \ell(p \circ c)$. Für $\tilde{x}, \tilde{y} \in \tilde{X}$ setze

$$\tilde{d}(\tilde{x}, \tilde{y}) := \inf\{\ell(c) : c \text{ ist ein rektifizierbarer Weg von } \tilde{x} \text{ nach } \tilde{y}\}.$$

 \tilde{d} heißt die von p induzierte Pseudometrik auf \tilde{X} .

2.24 Satz

Sei X ein Längenraum, \tilde{X} ein Hausdorff-Raum. Sei weiter $p \colon \tilde{X} \to X$ ein lokaler Homöomorphismus und \tilde{d} die von p induzierte Pseudometrik auf \tilde{X} . Dann gilt:

- (i) \tilde{d} ist eine Metrik auf \tilde{X} .
- (ii) p ist eine lokale Isometrie, das heißt für jedes $\tilde{x} \in \tilde{X}$ existiert ein $\varepsilon > 0$, sodass $p \colon B_{\varepsilon}(\tilde{x}) \to B_{\varepsilon}(p(\tilde{x}))$ eine Isometrie ist.
- (iii) \tilde{d} ist eine Längenmetrik.
- (iv) Die Eigenschaften (ii) und (iii) legen \tilde{d} eindeutig fest.

Beweis:

04.12. (i) Es ist nur zu zeigen, dass \tilde{d} keine Pseudometrik ist. Seien $\tilde{x}, \tilde{y} \in \tilde{X}$ beliebig und verschieden. Da \tilde{X} ein Hausdorff-Raum ist, existieren offene Umgebungen $\tilde{U}_{\tilde{x}}, \tilde{U}_{\tilde{y}}$ von \tilde{x} bzw. \tilde{y} in \tilde{X} mit $\tilde{U}_{\tilde{x}} \cap \tilde{U}_{\tilde{y}} = \emptyset$. Wir können $\tilde{U}_{\tilde{x}}$ so klein wählen, dass $p|_{\tilde{U}_{\tilde{x}}} \to U$ ein Homöomorphismus auf eine offene Teilmenge U von X ist.

Sei nun c ein beliebiger Weg von \tilde{x} nach \tilde{y} . Dann gilt $\operatorname{im}(p \circ c) \not\subseteq U$, denn andernfalls wäre $\operatorname{im}(p^{-1}|_{\tilde{U}_{\tilde{x}}} \circ p \circ c) = \operatorname{im}(c) \subseteq \tilde{U}_{\tilde{x}}$ und damit $c(1) = \tilde{y} \in \tilde{U}_{\tilde{x}}$, was ein Widerspruch ist.

Sei r > 0 so gewählt, dass $B_r(x) = B_r(p(\tilde{x})) \subseteq U$. Wir betrachten:

$$p: p|_{\tilde{U}_{\tilde{x}}}^{-1}(B_r(x)) \to B_r(x)$$

Da im $(p \circ c) \nsubseteq B_r(x)$, existiert ein $t \in [0,1]$ mit $p \circ c(t) \notin B_r(x)$ und somit ein $s \in [0,1]$, sodass $p \circ c(s) \in \partial B_r(x)$. Damit folgt

$$\ell(c) = \ell(p \circ c) \ge d(p \circ c(s), p \circ c(0)) = r.$$

Da c ein beliebiger Weg war, folgt $\tilde{d}(\tilde{x}, \tilde{y}) \ge r$.

(ii) Sei $\tilde{x} \in \tilde{X}$ beliebig. Da p ein lokaler Homöomorphismus ist, existiert eine offene Umgebung $\tilde{U}_{\tilde{x}}$ von \tilde{x} in \tilde{X} und eine offene Umgebung $U \subseteq X$, sodass $p|_{\tilde{U}_{\tilde{x}}} \colon \tilde{U}_{\tilde{x}} \to U$ ein Homöomorphismus ist. Sei $s \colon U \to \tilde{U}_{\tilde{x}}$ die Inverse von $p|_{\tilde{U}_{\tilde{x}}}$. Wähle r > 0, sodass $B_{2r}(p(\tilde{x})) \subseteq U$ gilt, und zeige, dass

$$s' := s \big|_{B_r(p(\tilde{x}))} \colon B_r(p(\tilde{x})) \to B_r(\tilde{x})$$

eine Isometrie ist.

surjektiv: Sei $y \in B_r(\tilde{x})$ beliebig. Zu zeigen ist $p(y) \in B_r(p(\tilde{x}))$.

$$d(p(y), p(\tilde{x})) \stackrel{\text{Def.}}{\leq} \tilde{d}(y, \tilde{x}) < r \implies p(y) \in B_r(p(\tilde{x})).$$

Weiter gilt s'(p(y)) = y, da s die Inverse $p\big|_{\tilde{U}_{\tilde{x}}}$ ist.

isom. Einbettung: Seien nun $a, b \in B_r(p(\tilde{x}))$ beliebig. Wir müssen zeigen, dass $\tilde{d}(s'(a), s'(b)) = d(a, b)$ gilt. Nach Definition von \tilde{d} gilt $\tilde{d}(s'(a), s'(b)) \ge d(a, b)$.

Sei $\varepsilon \in (0, r)$ beliebig. Da X ein Längenraum ist, existiert ein Weg

$$c_{\varepsilon} \colon [0, \ell(c_{\varepsilon})] \longrightarrow B_{2r}(p(\tilde{x}))$$
$$0 \longmapsto a$$
$$\ell(c_{\varepsilon}) \longmapsto b$$

mit $\ell(c_{\varepsilon}) \leq d(a,b) + \varepsilon$. Wir betrachten den Weg

$$s \circ c_{\varepsilon} \colon [0, \ell_{\varepsilon}] \longrightarrow B_{2r}(\tilde{x})$$

 $0 \longmapsto s'(a)$
 $\ell(c_{\varepsilon}) \longmapsto s'(b)$

Damit gilt $\tilde{d}(s'(a), s'(b)) \le \ell(c_{\varepsilon}) \le d(a, b) + \varepsilon$ und es folgt für $s \to 0$: $\tilde{d}(s'(a), s'(b)) \le d(a, b)$.

- (iii) Da p eine lokale Isometrie ist, ist die Länge von einem Weg in (\tilde{X}, \tilde{d}) dieselbe wie die Länge von dem Weg unter p.
- (iv) Sei d' eine andere Längenmetrik auf \tilde{X} , sodass $p: (\tilde{X}, d') \to (X, d)$ eine lokale Isometrie ist. Dann ist id: $(\tilde{X}, d') \to (\tilde{X}, \tilde{d})$ eine lokale Isometrie, denn:

Sei $\tilde{x} \in \tilde{X}$ beliebig. Da p eine lokale Isometrie ist, existiert ein $\varepsilon_1 > 0$, sodass $p : (B_{\varepsilon_1}(\tilde{x}), d') \to B_{\varepsilon_1}(p(\tilde{x}))$ eine Isometrie ist, und ein $\varepsilon_2 > 0$, sodass $p : (B_{\varepsilon_2}(\tilde{x}), \tilde{d}) \to B_{\varepsilon_2}(p(\tilde{x}))$ eine Isometrie ist. Sie nun $\varepsilon := \min\{\varepsilon_1, \varepsilon_2\}$. Dann ist $\mathrm{id}_{B_{\varepsilon}(\tilde{x})} = p^{-1} \circ \mathrm{id}_{B_{\varepsilon}(p(\tilde{x}))} \circ p$.

$$(B_{\varepsilon}(\tilde{x}), d') \xrightarrow{\operatorname{id}} (B_{\varepsilon}(\tilde{x}), \tilde{d})$$

$$\downarrow^{p} \qquad \qquad \cong p^{-1}$$

$$(B_{\varepsilon}(p(\tilde{x})), d) \xrightarrow{\operatorname{id}} (B_{\varepsilon}(p(\tilde{x})), d)$$

Für einen beliebigen Weg $c: [a,b] \to \tilde{X}$ gilt somit $\ell^{d'}(c) = \ell^{\tilde{d}}(c)$. Da d' und \tilde{d} beide Längenmetriken sind, stimmen sie überein.

2.25 Bemerkung

Jede Überlagerung $p \colon \tilde{X} \to X$ ist ein lokaler Homöomorphismus, und falls X hausdorffsch ist, dann ist

 \tilde{X} ein Hausdorff-Raum. Man kann also die Konstruktion aus Satz 2.24 insbesondere auf Überlagerungen anwenden.

Wie erkennen wir Überlagerungen?

2.26 Definition (Lokal eindeutig geodätisch)

Sei X ein metrischer Raum. X heißt **lokal eindeutig geodätisch**, wenn für alle $x \in X$ ein r > 0 existiert, sodass für beliebige $y, z \in B_r(x)$ eine eindeutige Geodäte $\gamma : y \rightsquigarrow z$ existiert und $\operatorname{im}(\gamma) \subseteq B_r(x)$ gilt.

2.27 Beispiel

Sei X ein lokaler CAT(0)-Raum. Dann ist X lokal eindeutig geodätisch.

2.28 Satz

Sei $p\colon \tilde{X}\to X$ eine Abbildung zwischen Längenräumen mit folgenden Eigenschaften:

- (i) X ist wegzusammenhängend.
- (ii) p ist ein lokaler Homöomorphismus.
- (iii) Für jeden Weg $c: [a, b] \to \tilde{X}$ gilt $\ell_{\tilde{X}}(c) \le \ell_X(p \circ c)$.
- (iv) X ist lokal eindeutig geodätisch.
- (v) Für $x \in X$ beliebig hängen die Geodäten in einem eundeutig geodätischen Ball um x von ihren Endpunkten ab.
- (vi) \tilde{X} ist vollständig.

Dann ist $p \colon \tilde{X} \to X$ eine Überlagerung.

Beweis: Wir zeigen zuerst, dass wir rektifizierbare Wege $c \colon [0,1] \to X$ eindeutig liften können. Das heißt:

Sei $c \colon [0,1] \to X$ ein rektifizierbarer Weg und $\tilde{x} \in \tilde{X}$ mit $p(\tilde{x}) = c(0)$. Dann existiert ein eindeutiger Weg $\tilde{c} \colon [0,1] \to \tilde{X}$ mit $p \circ \tilde{c} = c$ – der Lift von c.

Zur Eindeutigkeit: Übungsaufgabe.

 $Zur\ Existenz$: Sei $c\colon [0,1]\to X$ ein rektifizierbarer Weg und $\tilde x\in \tilde X$ mit $p(\tilde x)=c(0)$. Wir definieren $S:=\{t\in [0,1]:$ es existiert ein Lift $\tilde c$ von $c\big|_{[0,t]}\}$ und zeigen, dass S offen, abgeschlossen und nichtleer ist. Dann folgt S=[0,1], da [0,1] zusammenhängend ist.

- $S \neq \emptyset$, da $0 \in S$ (\tilde{c} : $\{0\} \rightarrow \tilde{X}, 0 \mapsto \tilde{x}$)
- S ist offen: Sei $t \in S$ beliebig, das heißt es existiert ein Lift $\tilde{c}|_{[0,t]}$ von $c|_{[0,t]}$. Betrachte $\tilde{c}(t) \in \tilde{X}$. Da p ein lokaler Homöomorphismus ist, existiert eine offene Teilmenge $\tilde{U}_{\tilde{c}(t)} \subseteq \tilde{X}$, sodass $p \colon \tilde{U}_{\tilde{c}(t)} \to U \subseteq X$ ein Homöomorphismus ist. Da U offen ist, existiert ein $\varepsilon > 0$, sodass $B_{\varepsilon}(p \circ \tilde{c}(t)) \subseteq U$. Sei $\tilde{U}'_{\tilde{c}(t)} := p^{-1}(B_{\varepsilon}(p \circ \tilde{c}(t)))$ und $s \colon B_{\varepsilon}(p \circ \tilde{c}(t)) \to \tilde{U}'_{\tilde{c}(t)}$. Wir definieren:

$$\begin{split} \tilde{c} \colon [0,t+\varepsilon) &\longrightarrow \tilde{X} \\ t' &\longmapsto \begin{cases} \tilde{c}(t'), & t' \in [0,t] \\ s \circ c(t'), & t' \in [t,t+\varepsilon). \end{cases} \end{split}$$

 \tilde{c} ist stetig und ein Lift von $c\big|_{[0,t+\varepsilon)}$, also ist $[0,t+\varepsilon)\subseteq S$ und S damit offen.

• S ist abgeschlossen: Wir nehmen an, dass $[0,a)\subseteq S$. Zu zeigen ist dann $a\in S$. Sei $t_n\in [0,a)$ eine beliebige Folge mit $t_n\to a$. Seien $y_n:=\tilde{c}(t_n)\in \tilde{X}$. Da \tilde{X} ein Längenraum ist, gilt o.B.d.A. für $t_n\le t_m$

$$\tilde{d}(y_n,y_m) \leq \ell_{\tilde{X}} \left(\tilde{c}\big|_{[t_n,t_m]} \right) \quad \stackrel{\text{(iii)}}{\leq} \quad \ell_X \left(c\big|_{[t_n,t_m]} \right) \in \mathbb{R},$$

da c ein rektifizierbarer Weg ist. Wir haben eine konvergente Folge in \mathbb{R} :

$$\lim_{n\to\infty} \ell_X \left(c\big|_{[0,t_n]} \right) = \ell_X.$$

Damit erhalten wir

$$\tilde{d}(y_n,y_m) \leq \ell_X \Big(c\big|_{[t_n,t_m]} \Big) = \ell_X \Big(c\big|_{[0,t_m]} \Big) - \ell_X \Big(c\big|_{[0,t_n]} \Big).$$

Somit ist $\tilde{d}(y_n, y_m)$ eine Nullfolge in $(y_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge. Da \tilde{X} vollständig ist, existiert ein

 $y \in \tilde{X}$ mit $\lim_{n \to \infty} y_n = y$. Wir definieren

$$\begin{split} \tilde{c} \colon [0,a] &\longrightarrow \tilde{X} \\ t &\longmapsto \begin{cases} \tilde{c}(t), & t \in [0,a) \\ y, & t = a. \end{cases} \end{split}$$

 \tilde{c} ist stetig, denn: Sei $t_n \in [0,a)$ eine beliebige Folge, die gegen akonvergiert. Dann erhalten wir

$$\lim_{n \to \infty} \tilde{c}(t_n) = \lim_{n \to \infty} y_n = y = \tilde{c}(a) = \tilde{c}\left(\lim_{n \to \infty} t_n\right)$$

und \tilde{c} ist ein Lift von $c\big|_{[0,a]}$, denn:

$$p \circ \tilde{c}(a) = p(y) = p\left(\lim_{n \to \infty} y_n\right) = \lim_{n \to \infty} p(y_n) = \lim_{n \to \infty} p \circ \tilde{c}(t_n) = \lim_{n \to \infty} c(t_n) = c\left(\lim_{n \to \infty} t_n\right) = c(a).$$

- Nun können wir zeigen, dass p surjektiv ist: Sei $x \in X$ und $y \in \tilde{X}$ beliebig. Da X wegzusammenhängend ist, existiert ein rektifizierbarer Weg c von p(y) nach x. Sei \tilde{c} der Lift von c, das heißt $p \circ \tilde{c} = c$ und insbesondere $p \circ \tilde{c}(1) = c(1) = x$. Dann ist $\tilde{c}(1)$ ein Urbild von x unter p.
- Jetzt müssen wir zeigen, dass jeder Punkt $x \in X$ eine Umgebung U hat, sodass $p^{-1}(U)$ in eine disjunkte Vereinigung von offenen Mengen, die homöomorph zu U sind, zerfällt. Sei also $x \in X$ beliebig. Nach (iv) und (v) existiert ein r > 0, sodass $B_r(x)$ eindeutig geodätisch ist und die Geodäten in $B_r(x)$ stetig von ihren Endpunkten abhängen. Sei $y \in p^{-1}(x)$ beliebig. Wir definieren

$$s_y: B_r(x) \longrightarrow \tilde{X}$$

 $x' \longmapsto \tilde{c}_{x'}(1),$

wobei $\tilde{c}_{x'}$ der Lift der linear umparametrisierten Geodäte $c_{x'}$: $[0,1] \to X, x \rightsquigarrow x'$ mit $\tilde{c}_{x'}(0) = y$.

• Nun ist $s_y : B_r(x) \to s_y(B_r(x))$ ein Homöomorphismus und $s_y(B_r(x))$ ist offen: Mit Hilfe von (v) zeigt man, dass s_y eine Inverse zu p ist. Wir zeigen die Stetigkeit von s_y in $z \in B_r(x)$ beliebig. Betrachte die linear umparametrisierte eindeutige Geodäte $c_z : [0,1] \to B_r(x), x \rightsquigarrow z$ und den eindeutigen Lift $\tilde{c}_z : [0,1] \to \tilde{X}$ mit $\tilde{c}_z(0) = y$.

Da \tilde{c}_z stetig ist und [0,1] kompakt, ist das Bild von \tilde{c}_z kompakt. Weiter ist p ein lokaler Homöomorphismus. Folglich existieren endlich viele Bälle $\tilde{B}_1,\ldots,\tilde{B}_k$ in \tilde{X} mit $\tilde{c}_z([0,1])\subseteq \tilde{B}_1\cup\cdots\cup\tilde{B}_k$ und sodass

$$p|_{\tilde{B}_i} : \tilde{B}_i \longrightarrow p(\tilde{B}_i) =: B_i$$

ein Homö
omorphismus auf die offene Menge B_i ist. Da $p \circ \tilde{c}_z = c_z$ ist, gil
t $c_z([0,1]) \subseteq B_1 \cup \cdots \cup B_k$.

O.B.d.A. sei $c_z\Big(\Big[\frac{l-1}{n},\frac{l}{n}\Big]\Big)\subseteq B_l$ für $l\in\{1,\ldots,k\}$. Sei s^l die lokale Inverse von $p\big|_{\tilde{B}_l}$. Es gilt also $s^l\colon B_l\to \tilde{B}_l$ und $s^l\circ p\big|_{\tilde{B}_l}=\mathrm{id}_{\tilde{B}_l}$ sowie $p\big|_{\tilde{B}_l}\circ s^l=\mathrm{id}_{B_l}$. Wir erhalten $s^l(c_z(t))=s_y(c_z(t))$ für $t\in\Big[\frac{l-1}{n},\frac{l}{n}\Big]$.

Da die Geodäten in $B_r(x)$ stetig von ihren Endpunkten abhängen, existiert ein $\delta > 0$, sodass für alle $z' \in B_{\delta}(z) \subseteq B_r(x)$ gilt:

$$c_{z'}\left(\left[\frac{l-1}{n},\frac{l}{n}\right]\right)\subseteq B_l$$
 für $l\in\{1,\ldots,k\}.$

Wir definieren:

$$\tilde{s}: B_{\delta}(z) \times [0, 1] \longrightarrow \tilde{X}$$

$$(z', t) \longmapsto s^{l}(c_{z'}(t)) \text{ für } t \in \left[\frac{l-1}{n}, \frac{l}{n}\right].$$

 \tilde{s} ist wohldefiniert und stetig und es gilt $s_y|_{B_{\delta}(z)} = \tilde{s}|_{B_{\delta}(z) \times \{1\}}$. Folglich ist s_y stetig in z.

2.3 Die Exponentialabbildung

09.12. Sei X ein metrischer Raum und $x_0 \in X$ beliebig. Wir werden nun einen Raum \tilde{X}_{x_0} und eine Abbildung exp: $\tilde{X}_{x_0} \to X$ konstruieren, die für "schöne" Basisräume die universelle Überlagerung werden wird.

2.29 Definition (Exponential abbildung)

Sei (X, d_X) ein metrischer Raum und $x_0 \in X$ beliebig. Wir definieren die Menge

$$\tilde{X}_{x_0} := \{c \colon [0,1] \to X \text{ linear umparametrisierte lokale Geodäte mit } c(0) = x_0\}$$

$$\cup \{c_{x_0} \colon [0,1] \to X \colon c_{x_0}(t) = x_0 \text{ für alle } t \in [0,1]\}$$

Weiter definieren wir auf der Menge \tilde{X}_{x_0} eine Metrik durch

$$d(c_1, c_2) := \sup\{d_X(c_1(t), c_2(t)) : t \in [0, 1]\}$$

für $c_1, c_2 \in \tilde{X}_{x_0}$ und definieren die Exponentialabbildung wie folgt:

$$\exp \colon \tilde{X}_{x_0} \longrightarrow X$$
$$c \longmapsto c(1).$$

2.30 Bemerkung

Die Abbildung exp: $(\tilde{X}_{x_0}, d) \to (X, d_X)$ ist 1-Lipschitz. Genauer: Seien $c_1, c_2 \in \tilde{X}_{x_0}$ beliebig. Dann haben wir

$$\begin{array}{ll} d_X(\exp(c_1), \exp(c_2)) & \stackrel{\mathrm{Def.}}{=} & d_X(c_1(1), c_2(1)) \\ & \leq & \sup_{t \in [0, 1]} d_X(c_1(t), c_2(t)) \\ & \stackrel{\mathrm{Def.}}{=} & d(c_1, c_2). \end{array}$$

2.31 Satz

Sei (X, d_X) ein metrischer Raum, der lokal CAT(0) und lokal vollständig ist, das heißt für jedes $x \in X$ existiert ein r > 0, sodass $B_r(x)$ CAT(0) und $\overline{B_r(x)}$ vollständig ist. Dann gilt:

(i) \tilde{X}_{x_0} ist zusammenziehbar.

- (ii) $\exp: \tilde{X}_{x_0} \to X$ ist eine lokale Isometrie.
- (iii) Wenn X vollständig ist, dann ist \tilde{X}_{x_0} vollständig.

Beweis: Wir zeigen zuerst nur (i). Für (ii) und (iii) brauchen wir ein technisches Lemma. Wir zeigen, dass die Abbildung

$$H \colon \tilde{X}_{x_0} \times [0, 1] \longrightarrow \tilde{X}_{x_0}$$

 $(c, s) \longmapsto [c_s \colon t \mapsto c(s \cdot t)]$

eine Homotopie von $f: \tilde{X}_{x_0} \to \tilde{X}_{x_0}, c \mapsto c_{x_0}$ und id: $\tilde{X}_{c_0} \to \tilde{X}_{c_0}$ ist.

• H ist wohldefiniert. Für $c \in \tilde{X}_{x_0}$ beliebig haben wir

$$H(c,0) = [c_0 \colon t \mapsto c(0 \cdot t) = c(0) = x_0] = f(c)$$

$$H(c,1) = [c_1 \colon t \mapsto c(1 \cdot t) = c(t)] = id(c)$$

• Wir zeigen Folgenstetigkeit: Sei $(c_n, s_n) \in \tilde{X}_{x_0} \times [0, 1]$ für $n \in \mathbb{N}$ eine konvergente Folge mit $c_n \to c$, $s_n \to s$. Zu zeigen ist $\lim_{n \to \infty} H(c_n, s_n) = H(c, s)$, also $\lim_{n \to \infty} c_{ns_n} = c_s$. Es gilt:

$$\begin{array}{ll} d(c_{n_{s_n}},c_s) & \stackrel{\mathrm{Def.}}{=} & \sup_{t \in [0,1]} d_X(c_n(s_n \cdot t),c(st)) \\ & \stackrel{\Delta\text{-Ungl.}}{\leq} & \sup_{t \in [0,1]} d_X(c_n(s_n \cdot t),c(s_n \cdot t)) + \sup_{t \in [0,1]} d_X(c(s_n \cdot t),c(st)) \\ & \leq & d(c_n,c) + \sup_{t \in [0,1]} d_X(c(s_n \cdot t),c(st)) \\ & \leq & d(c_n,c) + \sup_{t \in [0,1]} \lambda \cdot |s_n t - st| \text{ für ein } \lambda \geq 0, \text{ da c lin. ump. Geodäte und } [0,1] \text{ kompakt} \\ & \leq & d(c_n,c) + \lambda \cdot |s_n - s| \xrightarrow{n \to \infty} 0 \end{array}$$

Damit haben wir gezeigt, dass die Folge $(c_{n_{s_n}})_n$ gegen c_s konvergiert.

Der Beweis von (ii) und (iii) ist wesentlich aufwändiger. Wir müssen zuerst verstehen, wie eine Umgebung einer gegebenen linear umparametrisierten Geodäte aussieht, und welche Beziehung es zwischen den Geodäten in solch einer Umgebung und ihren Endpunkten gibt.

2.32 Lemma

Sei (X, d_X) ein metrischer Raum, der lokal CAT(0) und lokal vollständig ist und $c \colon [0, 1] \to X$ eine linear umparametrisierte lokale Geodäte von $x \in X$ nach $y \in X$. Dann existiert ein $\varepsilon > 0$, sodass für alle $\overline{x} \in B_{\varepsilon}(x)$ und $\overline{y} \in B_{\varepsilon}(y)$ eine eindeutige linear umparametrisierte lokale Geodäte $c_{\overline{x},\overline{y}} \colon [0,1] \to X$ existiert mit $c_{\overline{x},\overline{y}}(0) = \overline{x}$ und $c_{\overline{x},\overline{y}}(1) = \overline{y}$ sowie

$$\sup_{t\in[0,1]}d_X(c_{\overline{x},\overline{y}}(t),c(t))<\varepsilon.$$

Bild einfügen.

Weiter gilt, dass für je zwei linear umparametrisierte Geodäten $c_1, c_2 : [0, 1] \to X$ mit $\sup_{t \in [0, 1]} d_X(c_1(t), c(t)) < \varepsilon$ und $\sup_{t \in [0, 1]} d_X(c_2(t), c(t)) < \varepsilon$ die Funktion

$$\Phi \colon [0,1] \longrightarrow \mathbb{R}_{\geq 0}$$

$$t \longmapsto d_X(c_1(t), c_2(t))$$

konvex ist, das heißt für alle $s, t, \lambda \in [0, 1]$ gilt

$$\Phi(\lambda s + (1 - \lambda)t) \le \lambda \Phi(s) + (1 - \lambda)\Phi(t).$$

Insbesondere gilt also $\Phi(t) \le t \cdot \Phi(1)$ für alle $t \in [0, 1]$.

Referenz einfügen

Bild einfügen

Dieses Lemma beweisen zu einem späteren Zeitpunkt (siehe ??).

Beweis (Fortsetzung von Satz 2.31):

- (ii) Sei $c \in \tilde{X}_{x_0}$ beliebig und $\varepsilon > 0$ so, wie in Lemma 2.32. Dann ist $\exp : B_{\varepsilon}(c) \to B_{\varepsilon}(c(1))$ eine Isometrie:
 - exp ist surjektiv: Sei $\overline{y} \in B_{\varepsilon}(c(1))$ beliebig. Nach Lemma 2.32 existiert eine linear umparametrisierte Geodäte $c_{x_0\overline{y}} \colon [0,1] \to X, x_0 \leadsto \overline{y}$ mit $d(c_{x_0\overline{y}},c) = \sup_{t \in [0,1]} d_X(c_{x_0\overline{y}}(t),c(t)) < \varepsilon$. Somit ist $c_{x_0\overline{y}} \in B_{\varepsilon}(c)$. Ferner gilt $\exp(c_{x_0\overline{y}}) = c_{x_0\overline{y}}(1) = \overline{y}$.
 - exp ist isometrische Einbettung: Seien $c_1, c_2 \in B_{\varepsilon}(c)$ beliebig. Aus Lemma 2.32 wissen wir, dass für alle $t \in [0, 1]$ gilt:

$$\Phi(t) \le t \cdot \Phi(1)$$

$$d_X(c_1(t), c_2(t)) \le t \cdot d_X(c_1(1), c_2(t)) \le d_X(c_1(1), c_2(t))$$
(29)

Wir erhalten

$$d_X(\exp(c_1), \exp(c_2)) \ \stackrel{\mathrm{Def.}}{=} \ d_X(c_1(1), c_2(1)) \ \stackrel{(29)}{=} \ \sup_{t \in [0, 1]} d_X(c_1(t), c_2(t)) \ \stackrel{\mathrm{Def.}}{=} \ d(c_1, c_2).$$

Somit ist exp eine Isometrie auf $B_{\varepsilon}(c)$.

(iii) Sei $(c_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \tilde{X}_{x_0} . Dann ist $(c_n(t))_{n\in\mathbb{N}}$ für jedes $t\in[0,1]$ eine Cauchy-Folge in X und da X vollständig ist, konvergiert diese. Wir definieren:

$$c: [0,1] \longrightarrow X$$

$$t \longmapsto \lim_{n \to \infty} c_n(t) =: c(t).$$

Es gilt $c(0) = x_0$. Wir müssen zeigen, dass $c \in \tilde{X}_{x_0}$, das heißt c ist eine linear umparametrisierte lokale Geodäte.

Sei $t \in [0,1]$ beliebig. Wähle r > 0 so, dass $B_r(c(t))$ CAT(0) ist. Da $c_n(t) \to c(t)$ konvergiert,

existiert ein $N \in \mathbb{N}$, sodass gilt

$$c_n(t) \in B_{\frac{r}{2}}(c(t))$$
 für alle $n \ge N$.

Wir finden ein $\varepsilon > 0$, sodass für $I := [t - \varepsilon, t + \varepsilon]$ und $n \ge N$ gilt:

$$c_n(I) \subseteq \underbrace{B_r(c(t))}_{\text{CAT}(0)} \quad \text{und} \quad c(I) \subseteq B_r(c(t)).$$

Folglich sind die $c_n|_I$ linear umparametrisierte Geodäten (vgl. Übungsaufgabe). Da die linear umparametrisierten Geodäten $c_n|_I$ stetig von ihren Endpunkten abhängen, konvergiert $c_n|_I$ gleichmäßig gegen die eindeutige linear umparametrisierte Geodäte $\gamma: c(t-\varepsilon) \leadsto c(t+\varepsilon)$. Es gilt aber auch $\gamma=c|_I$ und damit ist $c|_I$ eine linear umparametrisierte Geodäte und damit haben wir gezeigt, dass c eine linear umparametrisierte lokale Geodäte ist. Ferner gilt $\lim_{n\to\infty} c_n=c$.

2.33 Satz

Sei (X, d) ein vollständiger zusammenhängender lokaler CAT(0)-Raum. Dann ist exp: $(\tilde{X}_{x_0}, d) \to (X, d_X)$ 16.12.
die universelle Überlagerung.

Beweis: Wir zeigen zuerst, dass \tilde{X}_{x_0} wegzusammenhängend ist. Seien $c_1, c_2 \in \tilde{X}_{x_0}$ beliebig. Wir betrachten

$$H|_{\{c_1\}\times[0,1]}\colon [0,1] \longrightarrow \tilde{X}_{x_0}$$

 $s \longmapsto [c_{1_s}\colon t \mapsto c_1(st)].$

Es gilt $H|_{\{c_1\}\times[0,1]}(0) = c_{x_0}$ und $H|_{\{c_1\}\times[0,1]}(1) = c_1$. Folglich ist $H|_{\{c_1\}\times[0,1]}$ ein Weg von c_{x_0} nach c_1 . Dann ist

$$\overline{H|_{\{c_1\}\times[0,1]}}*H|_{\{c_2\}\times[0,1]}$$

ein Weg von c_1 nach c_2 .

Weiter haben wir in Satz 2.31 bewiesen, dass \tilde{X}_{x_0} zusammenziehbar ist. Insgesamt ist also \tilde{X}_{x_0} einfach zusammenhängend. Wenn also exp eine Überlagerung ist, handelt es sich um die universelle Überlagerung.

• Wir ersetzen nun die Metriken auf X und \tilde{X}_{x_0} durch die induzierten Längenmetriken \tilde{d} auf \tilde{X}_{x_0} und \tilde{d}_X auf X. Da X lokal geodätisch ist, ändert sich die Topologie auf X nicht, und da \exp eine lokale Isometrie ist, auch nicht auf \tilde{X}_{x_0} . Das bedeutet:

$$\exp: (\tilde{X}_{x_0}, d) \to (X, d_X)$$
 ist Überlagerung $\Leftrightarrow \operatorname{Exp}: (\tilde{X}_{x_0}, \tilde{d}) \to \tilde{d}_X$ ist Überlagerung.

• Da die Metriken lokal nicht verändert werden, bleibt Exp eine lokale Isometrie. Nach Satz 2.24 ist $\tilde{d} =: d_{\exp}$ die von exp induzierte Längenmetrik. Die Bedingungen von Satz 2.28 sind für Exp: $(\tilde{X}_{x_0}, d_{\exp}) \rightarrow (X, \tilde{d_X})$ erfüllt:

- (i) gilt, da X lokal wegzusammenhängend und zusammenhängend
- (ii) gilt, da Exp lokale Isometrie ist.
- (iii) gilt, da d_{exp} die von exp induzierte Längenmetrik ist.
- (iv) gilt, da X lokal CAT(0) ist.
- (v) gilt, da X lokal CAT(0) ist (Satz 2.18).
- (vi) gilt, da X vollständig ist (Satz 2.31).

Damit ist Exp eine Überlagerung.

2.34 Bemerkung

Da Exp eine lokale Isometrie ist, ist $(\tilde{X}_{x_0}, d_{\text{exp}})$ lokal CAT(0).

Unser Ziel ist es, nun zu zeigen, dass $(\tilde{X}_{x_0}, d_{\text{exp}})$ global CAT(0) ist. Wir zeigen:

- (1) Für je zwei Punkte $c_1, c_2 \in \tilde{X}_{x_0}$ existiert eine eindeutige linear umparametrisierte lokale Geodäte von c_1 nach c_2 und diese hängen stetig von ihren Endpunkten ab.
- (2) Jede linear umparametrisierte lokale Geodäte in \tilde{X}_{x_0} ist schon eine globale Geodäte.

Folglich ist $(\tilde{X}_{x_0}, d_{\text{exp}})$ eindeutig geodätisch, lokal CAT(0) und die Geodäten hängen stetig von ihren Endpunkten ab. Daraus folgt, dass $(\tilde{X}_{x_0}, d_{\text{exp}})$ global CAT(0) ist. Um dies zu beweisen, brauchen wir eine Umformulierung der CAT(0)-Eigenschaft mit Hilfe von Winkeln in metrischen Räumen, siehe Abschnitt 2.4.

2.35 Korollar

Sei (X, d_X) ein metrischer Raum, der lokal CAT(0) und lokal vollständig ist und $c \colon [0, 1] \to X$ eine linear umparametrisierte Geodäte von $x \in X$ nach $y \in X$. Sei weiter $\varepsilon > 0$ so, wie in Lemma 2.32. Sei nun $\overline{y} \in B_{\varepsilon}(y)$ beliebig und $c_{x\overline{y}}$ die eindeutige linear umparametrisierte Geodäte von x nach \overline{y} . Dann gilt:

 $\ell(c_{X\overline{y}}) \le \ell(c) + d_X(y, \overline{y}).$

Beweis: Wähle t > 0 so, dass $c\big|_{[0,t]}$ und $c_{x\overline{y}}\big|_{[0,t]}$ linear umparametrisierte Geodäten sind. Es gilt:

$$t \cdot \ell(c_{X\overline{u}}) = d_X(c_{X\overline{u}}(0), c_{X\overline{u}}(t)) \tag{30}$$

$$t \cdot \ell(c) = d_X(c(0), c(t)) \tag{31}$$

Wir haben:

$$t \cdot \ell(c_{x\overline{y}}) \stackrel{\text{(30)}}{=} d_X(\underbrace{c_{x\overline{y}}(0)}, c_{x\overline{y}}(t))$$

$$\stackrel{\Delta\text{-Ungl}}{\leq} d_X(c(0), c(t)) + d_X(c(t), c_{x\overline{y}}(t))$$

$$\stackrel{\text{(31)}}{=} t \cdot \ell(c) + d_X(c(t), c_{x\overline{y}}(t))$$

Bild einfügen

$$\stackrel{2.32}{\leq} t \cdot \ell(c) + t \cdot d_X(y, \overline{y}) \qquad (\Phi \text{ ist konvex}) \qquad \Box$$

2.36 Bemerkung ([Mun74, § 12])

Seien E, B, Y lokal wegzusammenhängende und wegzusammenhängende topologische Räume.

- (i) Sei $p: E \to B$ eine universelle Überlagerung. Sei $r: Y \to B$ eine weitere Überlagerung. Sei weiter $b_0 \in B$ beliebig und $e_0 \in E$ mit $p(e_0) = b_0$ und $y_0 \in Y$ mit $r(y_0) = b_0$. Dann existiert eine Überlagerung $q: E \to Y$, sodass $r \circ q = p$ und $q(e_0) = y_0$ gilt.
- (ii) Seien $p: E \to B, r: Y \to B$ zwei universelle Überlagerungen und e_0, y_0, b_0 wie in (i). Dann existiert ein Homöomorphismus $q: E \to Y$, sodass $r \circ q = p$ und $q(e_0) = y_0$ gilt.

2.37 Bemerkung

Sei (X,d_X) ein vollständiger zusammenhängender lokaler CAT(0)-Raum. Sei $x_0 \in X$ beliebig. Sei weiter $p \in (\tilde{X}_{x_0},d_{\exp})$ beliebig. Wir haben in Satz 2.33 bewiesen, dass $(\tilde{X}_{x_0},d_{\exp}),(\tilde{X}_{p(1)},d_{\exp})$ universelle Überlagerungen sind. Es existiert also ein Homöomorphismus $\alpha \colon \tilde{X}_{x_0} \to \tilde{X}_{p(1)}$, sodass $\operatorname{Exp}_{x_1} \circ \alpha = \operatorname{Exp}_{x_0}$ und $\alpha(p) = c_{p(1)}$ für $b_0 = p(1)$ gilt.

Weiter ist α eine lokale Isometrie, da Exp_{x_0} und Exp_{x_1} lokale Isometrien sind.

2.38 Lemma

Sei (X, d_X) ein vollständiger zusammenhängender lokaler CAT(0)-Raum. Sei weiter $x_0 \in X$ beliebig. Seien nun $p, q \in (\tilde{X}_{x_0}, d_{\text{exp}})$ beliebig. Dann existiert genau eine linear umparametrisierte lokale Geodäte zwischen p und q.

BEWEIS:

1. Fall:

$$p = c_{x_0} \colon [0, 1] \longrightarrow X$$

 $t \longmapsto x_0$

Zur Existenz: Wir definieren

$$C_{pq} \colon [0,1] \longrightarrow \tilde{X}_{x_0}$$

 $s \longmapsto [q_s \colon t \mapsto q(st)]$

- C_{pq} ist stetig, da $C_{pq} = H|_{\{q\} \times [0,1]}$, siehe Satz 2.31.
- Es gilt $C_{pq}(0) = c_{x_0}$ und $C_{pq} = q$.

• Weiter gilt $\text{Exp} \circ C_{pq} = q$, wobei Exp eine lokale Isometrie und q eine linear umparametrisierte Geodäte ist. Folglich ist C_{pq} eine linear umparametrisierte lokale Geodäte von c_{x_0} nach q.

Zur Eindeutigkeit: Sei $\gamma: [0,1] \to \tilde{X}_{x_0}$ eine linear umparametrisierte lokale Geodäte von c_{x_0} nach q. Da Exp eine lokale Isometrie ist, ist $\operatorname{Exp} \circ \gamma: [0,1] \to X$ eine linear umparametrisierte lokale Geodäte von $\operatorname{Exp}: \gamma(0) = \operatorname{Exp}(c_{x_0}) = c_{x_0}(1) = x_0$ nach $\operatorname{Exp} \circ \gamma(1) = \operatorname{Exp}(q) = q(1)$. Aber q ist auch eine linear umparametrisierte lokale Geodäte von x_0 nach q(1). Aus der in Lemma 2.32 formulierten Eindeutigkeit folgt somit $\operatorname{Exp} \circ \gamma = q$, und damit

Exp
$$\circ \gamma(s) = q(s)$$
 für alle $s \in [0, 1]$
 $\Leftrightarrow \gamma(s)(1) = q(s)$ für alle $s \in [0, 1]$

Sei $s \in [0,1]$ beliebig. Wir wissen, dass $\gamma(s) \colon [0,1] \to X$ und $q_s \colon [0,1] \to X$, $t \mapsto q(st)$ zwei linear umparametrisierte lokale Geodäten von x_0 nach q(s) sind. Mit Lemma 2.32 folgt somit wieder $\gamma(s) = q_s$. Insgesamt erhalten wir $\gamma = C_{pq}$.

allgemein: Seien $p,q\in \tilde{X}_{x_0}$ beliebig. Wir betrachten die universelle Überlagerung $\mathrm{Exp}_{p(1)}\colon \tilde{X}_{p(1)}\to X$. Nach Bemerkung 2.37 existiert ein Homöomorphismus $\alpha\colon \tilde{X}_{x_0}\to \tilde{X}_{p(1)}$ mit $\alpha^{-1}(c_{p(1)})=p$, der eine lokale Isometrie ist und sodass das dort angegebene Diagramm kommutiert. Wir haben im 1. Fall gesehen, dass es eine eindeutige linear umparametrisierte lokale Geodäte existiert:

$$C_{c_p(1)\alpha(q)} \colon [0,1] \longrightarrow \tilde{X}_{p(1)}$$

 $0 \longmapsto c_{p(1)}$
 $1 \longmapsto \alpha(q)$

Zur Existenz: Wir zeigen, dass $\alpha^{-1} \circ C_{c_p(1)\alpha(q)}$: $[0,1] \to \tilde{X}_{x_0}$ eine linear umparametrisierte lokale Geodäte von p nach q ist.

- $\alpha \circ C_{c_p(1)\alpha(q)}$ ist eine linear umparametrisierte lokale Geodäte, da dies für $C_{c_p(1)\alpha(q)}$ der Fall ist und α eine lokale Isometrie ist.
- Weiter gilt $\alpha^{-1} \circ C_{c_p(1)\alpha(q)}(0) = \alpha^{-1}(C_{p(1)}) = p$ und $\alpha^{-1} \circ C_{c_p(1)\alpha(q)}(1) = \alpha^{-1}(\alpha(q)) = q$.

Zur Eindeutigkeit: Sei $\gamma\colon [0,1]\to \tilde X_{x_0}$ eine weitere linear umparametrisierte lokale Geodäte von p nach q. Dann ist $\alpha\circ\gamma\colon [0,1]\to \tilde X_{p(1)}$ eine linear umparametrisierte lokale Geodäte von $\alpha\circ\gamma(0)=\alpha(p)=c_{x_0}$ nach $\alpha\circ\gamma(1)=\alpha(q)$. Aus der Eindeutigkeit im 1. Fall folgt $\alpha\circ\gamma=C_{c_p(1)\alpha(q)}$ und damit $\gamma=\alpha^{-1}\circ C_{c_p(1)\alpha(q)}$.

2.39 Lemma

Beweis: ÜA Die linear umparametrisierten lokalen Geodäten in \tilde{X}_{x_0} hängen stetig von ihren Endpunkten ab.

2.40 Lemma

Sei C_{pq} : $[0,1] \to (\tilde{X}_{x_0}, d_{\exp})$ die eindeutige linear umparametrisierte lokale Geodäte von p nach $q, p, q \in$

 $\tilde{X}_{x_0}.$ Dann ist C_{pq} eine linear umparametrisierte globale Geodäte.

Beweis: Nach Proposition 2.6(iv) genügt zu zeigen, dass $\ell(C_{pq}) = d_{\exp}(p,q)$ gilt. Es gilt $\ell(C_{pq}) \ge d_{\exp}(p,q)$ (vgl. Aufgabe 4.2). Es bleibt zu zeigen:

Referenz einbauen

$$\ell(C_{pq}) \le d_{\exp}(p,q) = \inf\{\ell(\gamma) : \gamma \text{ ist ein rektifizierbarer Weg von } p \text{ nach } q\}.$$

Sei also γ ein beliebiger rektifizierbarer Weg von p nach q. Wir müssen also zeigen, dass $\ell(C_{pq}) \leq \ell(\gamma)$ gilt. Das zeigen wir mit dem Zusammenhangsargument: Wir definieren

$$S := \{t_0 \in [0, 1] : \text{Für alle } t \le t_0 \text{ gilt } \ell(C_{\gamma(0)\gamma(t)}) \le \ell(\gamma|_{[0, t]})\},$$

wobei $C_{\gamma(0)\gamma(t)}$ die eindeutige linear umparametrisierte lokale Geodäte von $\gamma(0)$ nach $\gamma(t)$ bezeichnet.

- Es ist $S \neq \emptyset$, da $0 \in S$.
- *S* ist offen: Sei $t_0 \in S$ beliebig.
 - **1. Fall:** $t_0 = 0$. Da \tilde{X}_{x_0} lokal CAT(0) ist, existiert ein $\varepsilon > 0$, sodass $B_{\varepsilon}(\gamma(0)) = B_{\varepsilon}(p)$ CAT(0) ist. Dann existiert ein $\eta > 0$, sodass $\operatorname{im}(C_{\gamma(0)\gamma(\eta)}) \subseteq B_{\varepsilon}(\gamma(0))$. Da $B_{\varepsilon}(\gamma(0))$ ein CAT(0)-Raum ist, ist die linear umparametrisierte lokale Geodäte $C_{\gamma(0)\gamma(\eta)}$ eine linear umparametrisierte globale Geodäte und es gilt

$$\ell(C_{\gamma(0)\gamma(\eta)}) = d_{\exp}(\gamma(0),\gamma(\eta)) \leq \ell(\gamma\big|_{[0,\eta]}).$$

Somit ist $[0, \eta] \subseteq \delta$.

2. Fall: $t_0 > 0$. Wähle $\varepsilon > 0$ so, wie in Lemma 2.32 für die linear umparametrisierte lokale Geodäte $\operatorname{Exp} \circ C_{\gamma(0)\gamma(t_0)}$. Weiter wähle $\eta > 0$, sodass für alle $t' \in (t_0 - \eta, t_0 + \eta)$ gilt, dass $\operatorname{Exp} \circ \gamma(t') \in B_{\varepsilon}(\operatorname{Exp} \circ \gamma(t_0))$ ist und $\operatorname{Exp} \colon B_{\eta}(\gamma(0)) \to B_{\eta}(\operatorname{Exp} \circ \gamma(t_0))$ eine Isometrie ist.

Bild einfügen

Dann gilt für alle $t' \in (t_0 - \eta, t_0 + \eta)$:

$$\begin{split} \ell(C_{\gamma(0)\gamma(t')}) &= \ell(\operatorname{Exp} \circ C_{\gamma(0)\gamma(t')}) \\ &\overset{\operatorname{Bem. ??}}{\leq} \ell(\operatorname{Exp} \circ C_{\gamma(0)\gamma(t_0)}) + d_X(\operatorname{Exp} \circ \gamma(t_0), \operatorname{Exp} \circ \gamma(t')) \\ &= \ell(C_{\gamma(0)\gamma(t_0)}) + d_X(\operatorname{Exp} \circ \gamma(t_0), \operatorname{Exp} \circ \gamma(t')) \\ &\overset{t_0 \in S}{\leq} \ell(\gamma|_{[0,t_0]}) + d_{\operatorname{exp}}(\gamma(t_0), \gamma(t')) \\ &\leq \ell(\gamma|_{[0,t_0]}) + \ell(\gamma|_{[t_0,t']}) \\ &\overset{\operatorname{Aufg. 4.2}}{=} \ell(\gamma|_{[0,t']}) \end{split}$$

Also ist $[0, t_0 + \eta) \subseteq S$ und S ist offen.

• *S* ist abgeschlossen: Es reicht zu zeigen: $[0, t_0) \subseteq S \Rightarrow t_0 \in S$.

Wir wissen nach Proposition 2.6(v), dass die Funktion

$$\begin{split} \lambda_{\gamma} \colon [0,1] &\longrightarrow [0,\ell(\gamma)] \\ t &\longmapsto \ell(\gamma\big|_{[0,t]}) \end{split}$$

stetig ist. Sei $(t_n)_n$ eine Folge in S mit $t_n \to t_0$ beliebig. Da die linear umparametrisierten lokalen Geodäten nach Lemma 2.39 stetig von ihren Endpunkten abhängen, konvergiert $C_{\gamma(0)\gamma(t_n)}$ gleichmäßig gegen $C_{\gamma(0)\gamma(t_0)}$. Nach Proposition 2.6(vii) existiert somit für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$, sodass

$$\ell(C_{\gamma(0)\gamma(t_0)}) \le \ell(C_{\gamma(0)\gamma(t_n)}) + \varepsilon \tag{32}$$

für alle $n \ge N$. Wähle $\varepsilon > 0$ so, wie in Lemma 2.32 für die linear umparametrisierte lokale Geodäte $\operatorname{Exp} \circ C_{\gamma(0)\gamma(t_0)}$. Sei $N \ge \mathbb{N}$ so groß, dass $\operatorname{Exp} \circ \gamma(t_n) \in B_{\varepsilon}(\operatorname{Exp} \circ \gamma(t_0))$ für alle $n \ge N$. Nach ?? gilt o.B.d.A.

$$\ell(C_{\gamma(0)\gamma(t_n)}) = \ell(\operatorname{Exp} \circ C_{\gamma(0)\gamma(t_n)}) \le \ell(\operatorname{Exp} \circ C_{\gamma(0)\gamma(t_0)}) + d_X(\operatorname{Exp} \circ \gamma(t_0), \operatorname{Exp} \circ \gamma(t_n))$$

$$= \ell(C_{\gamma(0)\gamma(t_0)}) + d_{\operatorname{exp}}(\gamma(t_0), \gamma(t_n)), \tag{33}$$

da Exp eine Isometrie auf $B_{\varepsilon}(\gamma(0))$ ist.

Nun können wir zeigen, dass gilt:

$$\lim_{n\to\infty} \ell(C_{\gamma(0)\gamma(t_n)}) = \ell(C_{\gamma(0)\gamma(t_0)}).$$

Sei $\eta > 0$ beliebig. Dann existiert nach (32) ein $N \in \mathbb{N}$, sodass gilt:

$$\ell(C_{\gamma(0)\gamma(t_0)}) - \ell(C_{\gamma(0)\gamma(t_n)}) < \eta$$
 für alle $n \ge N$.

Weiter existiert nach (33) ein $M \in \mathbb{N}$, sodass gilt:

$$\ell(C_{\gamma(0)\gamma(t_n)}) - \ell(C_{\gamma(0)\gamma(t_0)}) < \eta$$
 für alle $n \ge M$.

Folglich gilt $|\ell(C_{\gamma(0)\gamma(t_0)}) - \ell(C_{\gamma(0)\gamma(t_n)})| < \eta$ für alle $n \ge \max\{N, M\}$, und wir erhalten insgesamt:

$$\begin{array}{cccc} & \ell(C_{\gamma(0)\gamma(t_n)}) & \stackrel{t_n \in S}{\leq} & \ell(\gamma\big|_{[0,\,t_n]}) \\ & \stackrel{n \to \infty}{\Longrightarrow} & \ell(C_{\gamma(0)\gamma(t_0)}) & \leq & \ell(\gamma\big|_{[0,\,t_0]}) \end{array}$$

Also ist $t_0 \in S$.

Insgesamt folgt S = [0, 1] und damit $\ell(C_{pq}) \le \ell(\gamma)$.

2.4 Winkel in metrischen Räumen

2.41 Definition (Dreieck, Winkel)

(i) Sei (X, d_X) ein metrischer Raum. Ein **Dreieck** in X ist gegeben durch ein 3-Tupel von Punkten aus X.

Sei (x, y, z) ein Dreieck in X. Ein **Vergleichsdreieck** in \mathbb{E}^2 zu $\Delta = (x, y, z) \in X^3$ ist ein Dreieck $(\overline{x}, \overline{y}, \overline{z})$ in \mathbb{E}^2 , sodass gilt:

$$d_X(x,y) = d_2(\overline{x},\overline{y})$$
 $d_X(y,z) = d_2(\overline{y},\overline{z})$ $d_X(x,z) = d_2(\overline{x},\overline{z}).$

Das Vergleichsdreieck $(\overline{x}, \overline{y}, \overline{z})$ in \mathbb{E}^2 ist eindeutig bis auf Isometrie und wir schreiben dafür $\overline{\Delta} = (\overline{x}, \overline{y}, \overline{z})$. Weiter bezeichnen wir mit $\angle_{\overline{x}}(\overline{y}, \overline{z}) \in [0, \pi]$ den Winkel in $\overline{\Delta}$ in \overline{x} .

(ii) Seien c_1, c_2 zwei Geodäten in (X, d_X) mit $c_1(0) = c_2(0) =: p$. Wir definieren

$$\begin{split} \angle(c_1,c_2) := & \limsup_{t,t'\to 0} \angle_{\overline{p}}(\overline{c_1(t)},\overline{c_2(t)}) \\ = & \limsup_{n\to\infty} \left\{ \angle_{\overline{p}}(\overline{c_1(t)},\overline{c_2(t)}) : t,t'\in\left(0,\frac{1}{n}\right) \right\}. \end{split}$$

 $\angle(c_1, c_2)$ heißt der **Winkel** zwischen c_1 und c_2 .

2.42 Beispiel

Seien c_1, c_2 zwei Geodäten in X mit $c_1(0) = c_2(0) =: p$, sodass $\overline{c_1} * c_2$ eine Geodäte in X ist. Dann ist $\angle(c_1, c_2) = \pi$.

Bild einfügen

2.43 Proposition

Sei (X, d_X) ein metrischer Raum und c_1, c_2, c_3 Geodäten in X mit $c_1(0) = c_2(0) = c_3(0)$. Dann gilt:

Beweis: ÜA

$$\angle(c_1, c_3) \le \angle(c_1, c_2) + \angle(c_2, c_3)$$

2.44 Lemma (ALEXANDROVS Lemma)

Wir betrachten zwei Dreiecke in \mathbb{E}^2 mit gemeinsamer Seite und $\gamma + \gamma' \geq \pi$. Dann gilt:

Bild einfügen.

- (i) $d_2(B,A) + d_2(A,B') \ge d_2(B,C) + d_2(C,B')$
- (ii) Bewege C ein wenig, sodass $\gamma + \gamma' = \pi$ und die Seitenlängen des Vierecks A, B, C, B' gleich bleiben (rechtes Dreieck). Dann gilt:

$$\overline{\alpha} \ge \alpha + \alpha' \quad \overline{\beta} \ge \beta \quad \overline{\beta'} \ge \beta' \quad d_2(A, \overline{C}) \ge d(A, C).$$

2.45 Lemma

Sei X ein geodätischer Raum. Der Raum X ist genau dann CAT(0), wenn für alle geodätischen Dreiecke $\Delta(x, y, z, \alpha, \beta, \gamma)$ gilt:

Beweis: ÜA

Bild einfügen

$$d\left(x, \underbrace{\beta\left(\frac{d(z,y)}{2}\right)}_{=:m}\right) \le d_2\left(\overline{x}, \underbrace{\overline{\beta}\left(\frac{d_2(\overline{z}, \overline{y})}{2}\right)}_{=:\overline{m}}\right)$$

2.46 Satz (Winkelbedingung für CAT(0)-Räume)

Sei (X, d_X) ein geodätischer Raum. Dann sind äquivalent:

- 1. X ist CAT(0).
- **2.** Für jedes geodätische Dreieck $\Delta(x, y, z, \alpha, \beta, \gamma)$ in X und Vergleichsdreieck $\overline{Delta}(\overline{x}, \overline{y}, \overline{z})$ gilt $\angle(\alpha, \gamma) \le \angle_{\overline{x}}(\overline{y}, \overline{z})$.

BEWEIS:

(i) \Rightarrow (ii): Sei $\Delta(x, y, z, \alpha, \beta, \gamma)$ ein beliebiges geodätisches Dreieck. Da X CAT(0) ist, gilt für $t \in [0, d(x, z)], t' \in [0, d(x, y)]$ beliebig:

 $d(\alpha(t), \gamma(t')) \leq d_2(\overline{\alpha(t)}, \overline{\gamma(t')}).$

Folglich gilt $\angle_{\overline{x}}(\overline{\overline{\alpha(t)}}, \overline{\overline{\gamma(t')}}) \le \angle_{\overline{x}}(\overline{y}, \overline{z})$ und damit

$$\begin{split} \angle(\alpha,\gamma) :&= \limsup_{t,t' \to \infty} \angle_{\overline{x}}(\overline{\alpha(t)},\overline{\gamma(t')}) \\ &\leq \limsup_{t,t' \to \infty} \angle_{\overline{x}}(\overline{z},\overline{y}) \\ &= \angle_{\overline{x}}(\overline{z},\overline{y}) \end{split}$$

(ii) \Rightarrow (i): Sei $\Delta(x, y, z, \alpha, \beta, \gamma)$ ein beliebiges geodätisches Dreieck in X. Wir zeigen, dass dann mit $m := \beta\left(\frac{d(z,y)}{2}\right)$ und Vergleichspunkt $\overline{m} := \overline{\beta}\left(\frac{d(\overline{z},\overline{y})}{2}\right)$ gilt:

$$d(x, m) \le d_2(\overline{x}, \overline{m}).$$

Dann folgt mit Lemma 2.45, dass X CAT(0) ist.

Wähle eine Geodäte zwischen *x* und *m* und betrachte das grüne und rote schraffierte Dreieck:

Wir haben zwei Möglichkeiten für die Lage von $\overline{\overline{m}}$ für die Vergleichsdreiecke $\overline{\Delta}(\overline{x}, \overline{\overline{m}}, \overline{z})$ und $\overline{\Delta}(\overline{x}, \overline{y}, \overline{\overline{m}})$:

Bild einfügen

Bild einfügen

Bild einfügen

Für die Dreiecke $\Delta(x, m, z)$ und $\Delta(x, y, m)$ gilt (i). Wir haben also

$$\angle(\beta\big|_{-},\overline{\alpha}) \leq \angle_{\overline{\overline{m}}}(\overline{x},\overline{\overline{z}}) \qquad \qquad \angle(\overline{\alpha},\overline{\beta}\big|_{-}) \leq \angle_{\overline{\overline{m}}}(\overline{x},\overline{\overline{y}}),$$

wobei $\overline{\alpha}, \overline{\beta}$ hier die inversen Geodäten bezeichnen. Wir erhalten:

$$\angle \overline{\overline{m}}(\overline{x}, \overline{\overline{z}}) + \angle \overline{\overline{m}}(\overline{x}, \overline{\overline{y}})$$

$$\geq \angle (\beta|_{-}, \overline{\alpha}) + \angle (\overline{\alpha}, \overline{\beta}|_{-})$$

$$\stackrel{2.43}{\geq} \angle (\beta|_{-}, \overline{\beta}|_{-}) \stackrel{2.42}{=} \pi.$$

Also: Bild einfügen

Mit Lemma 2.44 folgt:

$$d(x, m) = d_2(\overline{x}, \overline{m}) \le d_2(\overline{x}, \overline{m}).$$

2.47 Satz

Sei Y ein lokaler CAT(0)-Raum. Weiter sei Y eindeutig geodätisch und die Geodäten hängen stetig von ihren Endpunkten ab. Dann ist Y ein CAT(0)-Raum.

Beweis: Wir zeigen die Winkelbedingung für CAT(0)-Räume. Seien $p, q_0, q_1 \in Y$ paarweise verschiedene Punkte und $\Delta(p, q_0, q_1)$ das geodätische Dreieck. Sei

Bild einfügen

 $q: [0,1] \to Y$ die linear umparametrisierte Geodäte von q_0 nach q_1 ,

 $\beta \colon [0,1] \to Y$ die linear umparametrisierte Geodäte von p nach q_0 und

 $\gamma: [0,1] \to Y$ die linear umparametrisierte Geodäte von p nach q_1 .

Zu zeigen ist:

$$\alpha := \angle(\beta, \gamma) \le \angle_{\overline{p}}(\overline{q_0}, \overline{q_1}).$$

Für $s \in [0,1]$ sei $c_s \colon [0,1] \to Y$ die linear umparametrisierte Geodäte von p zu q(s). Wir definieren

$$c: [0,1] \times [0,1] \longrightarrow Y$$

 $(s,t) \longmapsto c_s(t)$

- c ist stetig, da die Geodäten in Y stetig von ihren Endpunkten abhängen.
- $\operatorname{im}(c) \subseteq Y$ ist kompakt und Y ist lokal CAT(0), somit ist

$$\operatorname{im}(c) \subseteq B_{\varepsilon_1}(p_1) \cup \cdots \cup B_{\varepsilon_n}(p_n)$$

mit $B_{\varepsilon_i}(p_i)$ CAT(0).

• Wähle Unterteilungen

$$0 = s_0 < s_1 < \dots < s_k = 1$$

$$0 = t_0 < t_1 < \dots < t_l = 1$$

mit $c([s_i, s_{i+1}] \times [t_j, t_{j+1}]) \subseteq B_{\varepsilon_m}(p_m)$ für $m \in \{1, \ldots, n\}$.

Beweis zu Ende machen (mit Bildern)

Literatur

- [BH99] Martin R. Bridson, André Haefliger. *Metric Spaces of Non-Positive Curvature*. Springer, 1999 (siehe S. III, 5).
- [BHV08] Mohammed El Bachir Bekka, Pierre de la Harpe, Alain Valette. *Kazhdan's Property (T)*. Cambridge Univ. Press, 2008 (siehe S. III).
- [Kra15] Linus Kramer. "Skript zu Grundlagen der Analysis, Topologie und Geometrie". Westfälische Wilhelms-Universität Münster. Sommersemester 2015. URL: http://wwwmath.uni-muenster.de/u/ag_kramer/index.php?name=VorlesungGrundlagenAnalysisGeometrieTopologie15&menu=teach&lang=de (siehe S. 24).
- [Mun74] James R. Munkres. *Topology a first course*. Prentice-Hall, 1974 (siehe S. 49).
- [Ser80] Jean-Pierre Serre. Trees. Springer-Verlag, 1980 (siehe S. III).

Index

Arzelà-Ascoli, 33	Kongukationsklasse, 15		
	kontrahierbar, 10		
Bruhat-Tits-Fixpunktsatz, 14	konvex, 4, 14		
CAT(0)-Raum, 3	Lift, 40		
lokal, 3	Lipschitz, 8, 17		
Vierpunktbedingung, 17	lokal kompakt, 30		
Dreieck, 53	Länge, 25		
Durchmesser, 12	Längenmetrik, 29		
Durchinesser, 12	assoziiert, 29		
Exponentialabbildung, 44	Längenraum, 29		
Fixpunkt, 14	Metrik, 1		
	induzierte Pseudometrik, 38		
Geodäte, 1	metrischer Raum, 1		
linear umparametrisiert, 36	diskret, 1		
geodätischer Raum, 1	Mittelpunkt, 17		
eindeutig, 1	T		
lokal eindeutig, 40	orthogonale Projektion, 7		
geodätisches Dreieck, 2			
gleichstetig, 33	Parallelogrammgleichung, 5		
Gruppenwirkung	Radius, 12		
eigentlich, 15	rektifizierbar, 25		
isometrisch, 14	Textilizicibal, 23		
kokompakt, 15	Stetige Abhängigkeit von Endpunkten, 36		
Homotopie, 10	Vergleichsdreieck, 3, 53		
Homöomorphismus	Vergleichspunkt, 3		
lokal, 37	Vervollständigung, 16		
Hopf-Rinow, 30			
	Weg, 25		
Isometrie, 14	invers, 26		
lokal, 38	zusammengesetzt, 26		
Isometriegruppe, 14	Winkel, 53		

Zentrum, 12 zusammenhängend lokal wegzusammenhängenhand, 24 semilokal einfach, 24

Überlagerung, 24 universell, 24

To-Dos und andere Baustellen

Spaßige Konstruktion einfügen!	7
Bild einfügen	:6
Referenz einfügen	6
Bild einfügen	6
Bild einfügen	8
Referenz einbauen	1
Bild einfügen	1
Bild einfügen	3
Bild einfügen	3
Bild einfügen	3
Bild einfügen	4
Bild einfügen	4
Bild einfügen	4
Bild einfügen	5
Bild einfügen	5
Beweis zu Ende machen (mit Bildern)	5