Глава 11

Реализация на елементарните преобразувания на матрица чрез умножения с неособени матрици.

Привеждане на неособена матрица към единична чрез елементарни преобразувания само по редове.

Определение 11.1. Квадратна матрица $M \in M_{m \times m}(F)$ се нарича неособена, ако има ненулева детерминанта $\det(M) \neq 0$.

Нека $M_{i,j}(q) \in M_{m \times m}(F)$ е матрицата, получена от единичната $E_m \in M_{m \times m}(F)$ чрез умножение на j-ти ред по $q \in F$ и прибавяне към i-ти ред. За $1 \le i < j \le m$ тази матрица е от вида

$$M_{i,j}(q) = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & q & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}, \tag{11.1}$$

а за $1 \leq j < i \leq n$ е от вида

$$M_{i,j}(q) = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & q & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}.$$
(11.2)

И в двата случая, $M_{i,j}(q) \in M_{m \times m}(F)$ е триъгълна относно главния си диагонал и детерминантата и е равна на произведението на диагоналните и единици $\det M_{i,j}(q) = 1 \dots 1 = 1$. В частност $M_{i,j}(q)$ е неособена. Произведението

$$M_{i,j}(q)A = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & q & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ \dots \\ r_i \\ \dots \\ r_j \\ \dots \\ r_m \end{pmatrix} = \begin{pmatrix} r_1 \\ \dots \\ r_i + qr_j \\ \dots \\ r_j \\ \dots \\ r_m \end{pmatrix}$$

за $1 \le i < j \le n$, съответно,

$$M_{i,j}(q)A = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & q & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ \dots \\ r_j \\ \dots \\ r_i \\ \dots \\ r_m \end{pmatrix} = \begin{pmatrix} r_1 \\ \dots \\ r_j \\ \dots \\ r_i + qr_j \\ \dots \\ r_m \end{pmatrix}$$

за $1 \le j < i \le n$ се получава от матрицата A чрез умножение на j-тия ред r_j с q и прибавяне към i-тия ред. С други думи, елементарното преобразувание по редове $R_{i,j}(q)$ към A се реализира чрез ляво умножение с неособената матрица $M_{i,j}(q)$.

Нека

$$M_{i}(p) = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & p & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix} \in M_{m \times m}(F)$$
 (11.3)

е матрицата, получена от $E_m \in M_{m \times m}(F)$ чрез умножение на i-ти ред по $p \in F \setminus \{0\}$. Детерминантата на $M_i(p)$ е $\det M_i(p) = p \neq 0$ и матрицата $M_i(p)$ е неособена. Произведението

$$M_{i}(p)A = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & p & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} r_{1} \\ \dots \\ r_{i} \\ \dots \\ r_{m} \end{pmatrix} = \begin{pmatrix} r_{1} \\ \dots \\ pr_{i} \\ \dots \\ r_{m} \end{pmatrix}$$

се получава от A чрез умножение на i-тия ред с $p \in F \setminus \{0\}$. Следователно, елементарното преобразувание по редове $R_i(p)$ се реализира чрез ляво умножение с неособената матрица $M_i(p) \in M_{m \times m}(F)$.

За произволни $1 \le i < j \le n$ да разгледаме матрицата

$$M_{i,j} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \in M_{m \times m}(F), \tag{11.4}$$

получена от $E_m \in M_{m \times m}(F)$ чрез размяна на i-ти и j-ти ред. Размяната на два реда променя знака на детерминантата, така че $\det(M_{i,j}) = -\det(E_m) = -1 \neq 0$ и $M_{i,j}$ е неособена матрица. Произведението

$$M_{i,j}A = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ \dots \\ r_i \\ \dots \\ r_j \\ \dots \\ r_n \end{pmatrix} = \begin{pmatrix} r_1 \\ \dots \\ r_j \\ \dots \\ r_n \end{pmatrix}$$

се получава от A чрез размяна на i-тия и j-тия ред. Това доказва, че елементарното преобразувание по редове $R_{i,j}$ се реализира с ляво умножение с неособената матрица $M_{i,j}$.

С това установихме верността на първата част на следното

Твърдение 11.2. (а) Елементарните преобразувания по редове към произволна матрица $A \in M_{m \times n}(F)$ се реализират чрез леви умножения с неособени матрици.

(б) Елементарните преобразувания по стълбове към произволна матрица $A \in M_{m \times n}(F)$ се реализират чрез десни умножения с неособени матрици.

Доказателство. (б) Нека

$$A = (c_1 \dots c_n) \in M_{m \times n}(F)$$

е матрица със стълбове

$$c_i = \begin{pmatrix} a_{1i} \\ \dots \\ a_{mi} \end{pmatrix} \in M_{m \times 1}(F), \quad 1 \le i \le n.$$

Елементарните преобразувания по стълбове към матрица A са:

- (i) умножение $C_{j,i}(q)$ на i-ти стълб с $q \in F$ и прибавяне към j-ти стълб за $1 \le i \ne j \le n$;
- (ii) умножение $C_i(p)$ на *i*-ти стълб с $p \in F \setminus \{0\}$;
- (iii) размяна $C_{i,j}$ на i-ти и j-ти стълб за $1 \leq i < j \leq n$.

Нека $N_{i,j}(q) \in M_{n \times n}(F)$ е матрицата, получена от $E_n \in M_{n \times n}(F)$ чрез умножение на j-ти стълб по $q \in F$ и прибавяне към i-ти стулб. Пресмятаме, че

$$AN_{i,j}(q) = (c_1 \dots c_i \dots c_j \dots c_j) \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & q & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = (c_1 \dots c_i + qc_j \dots c_j \dots c_n)$$

за $1 \le i < j \le n$ и

$$AN_{i,j}(q) = (c_1 \dots c_j \dots c_i \dots c_n) \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & q & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = (c_1 \dots c_j \dots c_i + qc_j \dots c_n)$$

за $1 \leq j < i \leq n$. И в двата случая, $AN_{i,j}(q)$ се получава от A чрез умножение на j-ти стълб с $q \in F$ и прибавяне към i-ти стълб. По този начин, елементарното преобразувание по стълбове $C_{i,j}(q)$ към A се реализира чрез дясно умножение с неособената матрица $N_{i,j}(q)$ с детерминанта $\det N_{i,j}(q) = 1$.

Нека $N_i(p) \in M_{n \times n}(F)$ се получава от $E_n \in M_{n \times n}(F)$ чрез умножение на i-ти стълб по $p \in F \setminus \{0\}$. Тогава

$$AN_{i}(p) = (c_{1} \dots c_{i} \dots c_{n}) \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & p & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix} = (c_{1} \dots pc_{i} \dots c_{n}),$$

така че $AN_i(p)$ се получава от A чрез умножение на i-ти стълб с p. Това доказва, че $C_i(p)$ се реализира чрез дясно умножение с неособената матрица $N_i(p)$ с детерминанта $\det N_i(p) = p$.

Накрая, за произволни $1 \le i < j \le n$ нека $N_{i,j} \in M_{n \times n}(F)$ е матрицата, получена от E_n чрез размяна на i-ти и j-ти стълб. Тогава $\det N_{i,j} = -1 \ne 0$ и произведението

$$AN_{i,j} = (c_1 \dots c_i \dots c_j \dots c_n) \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = \\ = (c_1 \dots c_j \dots c_i \dots c_n)$$

се получава от A чрез размяна на i-ти и j-ти стълб. По този начин, $C_{i,j}$ се реализира чрез дясно умножение с неособената матрица $N_{i,j}$ и това завършва доказателството на твърдението.

Твърдение 11.3. (i) Всяка неособена матрица $A \in M_{n \times n}(F)$ се привежда към единичната E_n с елементарни преобразувания само по редове.

(ii) Всяка неособена матрица $A \in M_{n \times n}(F)$ се привежда към единичната E_n с елементарни преобразувания само по стълбове.

Доказателство. (i) От $\det A \neq 0$ следва съществуването на ненулев елемент $a_{i1} \neq 0$ на първия стълб на A. С разместване на редове постигаме $a_{11} \neq 0$. След умножение на първия ред с $\frac{1}{a_{11}}$ постигаме $a_{11}=1$. За всяко $2 \leq i \leq n$, умножаваме първия ред с $-a_{i1}$ и прибавяме към i-тия ред, за да получим

$$A_1 = \left(\begin{array}{cc} 1 & * \\ \mathbb{O}_{(n-1)\times 1} & A' \end{array}\right).$$

Елементарните преобразувания по редове към A се реализират с леви умножения с неособени матрици и привеждат към неособена матрица A_1 по теоремата за умножение на детерминанти. Развивайки $0 \neq \det A_1$ по пъвия стълб получаваме, че $\det A' = \det A_1 \neq 0$. В частност, първият стълб на A' има ненулев елемент. Продължаваме по същия начин с A' без да разваляме нулите в първия стълб и привеждаме към

$$A_2 = \begin{pmatrix} 1 & a_{12} & \dots & a_{1,n-1} & a_{1,n} \\ 0 & 1 & \dots & a_{2,n-1} & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Умножаваме последния ред с $-a_{in}$ и прибавяме към i-ти ред за всяко естествено число $1 \le i \le n-1$, за да получим нули в последния стълб над последния ред. Продължаваме по същия начин със стълбовете с номера $n-1, n-2, \ldots, 2$ и получаваме единичната матрица E_n .

(ii) Транспонираме матрицата A и привеждаме A^t към E_n с елементарни преобразувания само по редове. Тези преобразувания отговарят на елементарни преобразувания по стълбове към A, които свеждат A към $E_n^t=E_n$.