9장 인버터의 기초

9-1 기초지식

[1] 전력변환 장치의 종류

[1] 전력변환 장치의 동작원리

(1) AC-DC (정류기)

A-A'간: 교류전원, B-B'간: 출력전압

[2] Switching 소자

명칭	기호	이상적인 동작극성	특성
Diode (1955)	$A \longrightarrow K$	OFF V	ON/OFF 제어 불가 매우 작은 ON 방향 전압 강하 단방향 전압 저지, 단방향 전류 소자
Thyristor (1958)	$\frac{A}{G}$	OFF OFF	OFF 제어 불가 Gate의 전류펄스에 의하여 ON 제어 양방향 전압 저지, 단방향 전류 소자
TRIAC (1958)	T_2 T_1 G	OFF OFF ON V	OFF 제어 불가 SCR보다 Gate 전류에 대한 민감도가 떨어져서 OFF 시간이 길다. 양방향 전압 저지, 양방향 전류 소자
GTO (1980)	$\frac{A}{\longrightarrow} \frac{K}{G}$	OFF V	ON/OFF 제어 가능 ON 유지를 위한 Gate 전류가 낮음 음의 Gate 전류로 OFF 가능 양방향 전압 저지, 단방향 전류 소자
BJT (1975)	$B \longrightarrow_{E}^{C}$	ON OFF	Base 전류에 의하여 ON 결정 Base 전류 크기에 따라 도통 전류 최대치 결정 단방향 전압 저지, 단방향 전류 소자
MOSFET (1975)	$G + \bigcup_{S}^{D}$	ON OFF	Gate와 Source 사이에 전압을 인가하여 ON/OFF 결정 ON시 도통전류에 따라 전압강하 변동 단방향 전압 저지, 단방향 전류 소자
IGBT (1985)	$G + \bigcup_{E}^{C}$	OFF V	Gate와 Emitter 사이에 전압을 인가하여 구동하는 전압구동형 ON시 전압강하는 거의 일정 양방향 전압 저지, 단방향 전류 소자
IGCT (1996)	$\frac{A}{+G}$	OFF V	Gate에 도통 전류와 크기가 갖고 음의 전류를 흘려서 빠른 OFF 가능 IGBT보다 도통 시 전압강하가 낮다 양방향 전압 저지, 단방향 전류 소자

[3] Switching Loss (스위칭 손실)

 v_{on} :스위치 내부 전압강하 i_{off} :스위치 off시 누설전류 P_{s1} :스위치 on시 과도 손실 P_{s2} :스위치 off시 과도 손실

저항 부하의 경우

스위칭 주기당 손실 =
$$\frac{t_{on}}{T}v_{on}I_L + \frac{t_{off}}{T}E_sI_{off} + P_{s1} + P_{s2}$$

[4] PWM (Pulse Width Modulation)

극전압

 $V_H = V_{dc} \text{ or } 0$

 $V_L = V_{dc} \text{ or } 0$

부하전압 (VH-VL)

(1) T₁, T'₂ on

Va= Vdc

(2) T₂, T'₁ on

 $V_a = - V_{dc}$

극전압

 $V_H = V_{dc}/2$ or $-V_{dc}/2$

 $V_L = V_{dc}/2$ or $-V_{dc}/2$

부하전압 (VH-VL)

(1) T₁, T'₂ on

Va = Vdc

(2) T_2 , T'_1 on

 $V_a = - V_{dc}$

(1) PWM (Pulse Width Modulation)의 평균전압 1

(2) PWM (Pulse Width Modulation)의 평균전압 2

$$V_{H < AV >} = \frac{2t_H \times (V_{DC})}{T_S}$$

$$= \frac{2V_{DC}}{T_S} t_H$$

$$V_{L < AV >} = \frac{2t_L \times V_{DC}}{T_S}$$

$$= \frac{2V_{DC}}{T_S} t_L$$

$$\left(\leftarrow \frac{v_r + 1}{t_H} = \frac{2}{\frac{1}{2}T_S} = \frac{4}{T_S} \right)$$

$$V_{DC} = \frac{1 - v_r}{t_L} = \frac{2}{\frac{1}{2}T_S} = \frac{4}{T_S}$$

$$V_{DC} = \frac{V_{DC}}{t_L} (1 - v_r)$$

$$V_{H < AV >} = \frac{V_{DC}}{2} (v_r + 1)$$

$$V_{a < AV >} = V_{H < AV >} - V_{L < AV >} = V_{DC} v_r$$
 (\forall -1 \le v_r \le 1)

$$= \frac{2V_{DC}}{T_S} t_L$$

$$\leftarrow \frac{1 - v_r}{t_L} = \frac{2}{1 - T_c} = \frac{2}{T_c}$$

 $V_{L < AV >} = \frac{2t_L \times V_{DC}}{T_c}$

$$V_{L < AV >} = \frac{V_{DC}}{2} (1 - v_r)$$

여기서
$$v_r = \frac{v_r^*}{V_{DC}}$$

(3) PWM (Pulse Width Modulation)의 평균전압 3 (정현파)

$$\begin{split} V_{H < AV >} &= \frac{t_{H1} \times (\frac{V_{DC}}{2}) + t_{L1} \times (-\frac{V_{DC}}{2}) + t_{L2} \times (-\frac{V_{DC}}{2}) + t_{H2} \times (\frac{V_{DC}}{2})}{T_{S}} \\ &= \frac{V_{DC}(t_{H1} - t_{L1})}{2T_{S}} + \frac{V_{DC}(t_{H2} - t_{L2})}{2T_{S}} = \frac{V_{DC}}{2}(\frac{v_{r1}}{2}) + \frac{V_{DC}}{2}(\frac{v_{r2}}{2}) \\ &= \frac{V_{DC}}{2}(\frac{v_{r1} + v_{r2}}{2}) = \frac{V_{DC}}{2}v_{r < av >} \end{split}$$

$$\begin{split} V_{L < AV >} &= \frac{t_{H1} \times (-\frac{V_{DC}}{2}) + t_{L1} \times (+\frac{V_{DC}}{2}) + t_{L2} \times (+\frac{V_{DC}}{2}) + t_{H2} \times (-\frac{V_{DC}}{2})}{T_S} \\ &= \frac{-V_{DC}(t_{H1} - t_{L1})}{2T_S} - \frac{V_{DC}(t_{H2} - t_{L2})}{2T_S} = -\frac{V_{DC}}{2}(\frac{v_{r1}}{2}) - \frac{V_{DC}}{2}(\frac{v_{r2}}{2}) \\ &= -\frac{V_{DC}}{2}(\frac{v_{r1} + v_{r2}}{2}) = -\frac{V_{DC}}{2}v_{r < av >} \end{split}$$

$$V_{a < AV>} = V_{H < AV>} - V_{L < AV>} = V_{DC}v_r \quad (\because -1 \le v_r \le 1)$$

여기서
$$v_r = \frac{v_r^*}{V_{DC}}$$

만일 반송파의 주파수가 기준파의 주파수에 비해 충분히 크다면 출력전압의 기본파 성분은 출력전압의 매 시간 간격 Ts동안의 구간 평균값의 변화로 볼수 있다.

[4] 정현파 PWM 제어

$$m_a = \frac{ 기준파의 진폭}{ 반송파의 진폭}$$

$$m_f = \frac{ 반송파의 주파수}{ 기준파의 주파수}$$

$$= \frac{f_c}{f}$$

$$v_r = m_a \sin \omega t$$
 (단, $0 \le m_a \le 1$)
$$V_{H < 1>} = \frac{V_{DC}}{2} m_a \sin \omega t$$

$$V_{L < 1>} = -\frac{V_{DC}}{2} m_a \sin \omega t$$

$$V_{a < 1>} = V_{H < 1>} - V_{L < 1>} = V_{DC} m_a \sin \omega t$$
 (단 -1 $\le v_r \le 1$) 여기서 $m_a = \frac{m_a^*}{V_{DC}}$

9-2 단상 인버터

[1] 인버터의 종류

단상 Half Bridge Inv.

단상 Full Bridge Inv.

[2] 단상 Half-bridge Inverter

(1) 구형파 제어

기본파의 크기 : $2V_{DC}/\pi$

(2) PWM 제어

$$v_r = m_a \sin \omega t$$
 (단, $0 \le m_a \le 1$)

$$V_0 = \frac{V_{DC}}{2} m_a \sin \omega t$$

- 기준파 (선형변조): $v_r = m_a \sin \omega t$ (단, $0 \le m_a \le 1$)
- 출력전압 기본파의 크기는 m_a 에 비례하고, 주파수는 기준파의 주파수와 같다.
- 선형변조시 출력전압 기본파의 최대치는 m_a =1일 때 $V_{DC}/2$ 이다.
- 정현파 PWM 제어로 얻을 수 있는 출력전압 기본파의 최대 크기는 구형파 제어되는 경우(= $2V_{DC}/\pi$)의 78.5% 에 불과하다.

9-2 단상 Full-bridge Inverter

(1) 구형파 제어

$$v_o \, = \frac{4 \, V_{dc}}{\pi} \sum_{n \, = \, 1, 3, \dots}^{\infty} \frac{\sin\! n \omega t}{n} \label{eq:vo}$$

(2) PWM 제어

(A) bi-polar 방식

 $V_0 = V_{DC} m_a \sin \omega t$

Half-bridge의 2배

(B) Uni-polar 방식

(C) Uni-polar 방식과 bi-polar방식의 비교

선 전류(Phase current), 선간 전압 (line to line voltage)파형

bi-polar방식

Uni-polar 방식

(3) 과변조

선형변조구간 :
$$\frac{$$
선형구간의 기본파 최대치 $}{$ 구형파의 기본파의 최대치 $}=\frac{V_{DC}}{\frac{4}{\pi}V_{DC}}=\frac{\pi}{4}$

9-3 3상 인버터

[1] 6-step 제어

(1) 극전압과 선간전압

(2) 극전압과 선간전압

6-스텝 인버터의 전압 파형

(3) 스위치 상태별 전압특성

표 7.2 스위칭 상태에 따른 극전압과 상전압

스위치 상태		극전압			상전압(부하전압)			
S_a	S_b	S_c	V_{an}	V_{bn}	V_{cn}	V_{as}	V_{bs}	V_{cs}
0	0	0	$-V_{dc}/2$	$-V_{dc}/2$	$-V_{dc}/2$	0	0	0
0	0	1	$-V_{dc}/2$	$-V_{dc}/2$	V_{dc} / 2	$-V_{dc}/3$	$-V_{dc}/3$	$2V_{dc}/3$
0	1	0	$-V_{dc}/2$	V_{dc} / 2	$-V_{dc}/2$	$-V_{dc}/3$	$2V_{dc}/3$	$-V_{dc}/3$
0	1	1	$-V_{dc}/2$	V_{dc} / 2	V_{dc} / 2	$-2V_{dc}/3$	$V_{dc}/3$	$V_{dc}/3$
1	0	0	V_{dc} / 2	$-V_{dc}/2$	$-V_{dc}/2$	$2V_{dc}/3$	$-V_{dc}/3$	$-V_{dc}/3$
1	0	1	V_{dc} / 2	$-V_{dc}/2$	V_{dc} / 2	$V_{dc}/3$	$-2V_{dc}/3$	$V_{dc}/3$
1	1	0	V_{dc} / 2	V_{dc} / 2	$-V_{dc}/2$	$V_{dc}/3$	$V_{dc}/3$	$-2V_{dc}/3$
1	1	1	V_{dc} / 2	V_{dc} / 2	V_{dc} / 2	0	0	0

[2] SPWM 제어 (Sine PWM)

$$\frac{2}{\pi} V_{DC} = \frac{4}{\pi} = 1.273$$

$$\frac{2}{V_{DC}} = \frac{4}{\pi} = 1.2$$

■ 전압 변조 지수(Modulation Index) $M\!I = rac{V_{1peak}}{rac{V_{dc}}{2}}$

[3] 3고조파 주입 전압 변조방식

$$V_{an} = V_1 \cos \omega t + k V_1 \cos (3\omega t) \implies K=1/6$$

선형 변조 MI 가 최대 1.15배로 커짐

[4] SVPWM (Space Vector PWM : 공간 벡터 변조법)

(1) 원리

표 7.3 스위칭 상태에 따른 인버터의 공간 전압 벡터

스위치 상태 $S_a \ S_b \ S_c$	상전압 $v_{as} v_{bs} v_{cs}$	공간 전압 벡터 V_n
0 0 0	0 0 0	$V_0 = 0/0^{\circ}$
1 0 0	$\frac{2}{3} V_{dc} - \frac{1}{3} V_{dc} - \frac{1}{3} V_{dc}$	$V_1 = \frac{2}{3} V_{dc} / 0^{\circ}$
1 1 0	$\frac{1}{3} V_{dc} \frac{1}{3} V_{dc} - \frac{2}{3} V_{dc}$	$V_2 = \frac{2}{3} V_{dc} / 60^{\circ}$
0 1 0	$-\frac{1}{3} V_{dc} \frac{2}{3} V_{dc} -\frac{1}{3} V_{dc}$	$V_3 = \frac{2}{3} V_{dc} / 120^{\circ}$
0 1 1	$-rac{2}{3}V_{dc} - rac{1}{3}V_{dc} - rac{1}{3}V_{dc}$	$V_4 = \frac{2}{3} V_{dc} / 180^{\circ}$
0 0 1	$-\frac{1}{3} V_{dc} - \frac{1}{3} V_{dc} - \frac{2}{3} V_{dc}$	$V_5 = \frac{2}{3} V_{dc} / 240^{\circ}$
1 0 1	$\frac{1}{3} V_{dc} - \frac{2}{3} V_{dc} \frac{1}{3} V_{dc}$	$V_6 = \frac{2}{3} V_{dc} / 300^{\circ}$
1 1 1	0 0 0	$V_7 = 0/0^{\circ}$

예로서 모드 $2(S_a=1, S_b=1, S_c=0)$ 의 경우에 공간 전압 벡터 V_2 를 구해보자.

• 공간 벡터 정의식 :
$$V=\frac{2}{3}(\,v_{as}+\,a\cdot v_{bs}+\,a^2\cdot v_{cs}\,)$$

$$=v_{as}+\,\,j\,\frac{1}{\sqrt{3}}(\,v_{bs}-\,\,v_{cs}\,)$$
 (여기서, $a=e^{j\frac{2\pi}{3}}=-\frac{1}{2}+j\frac{\sqrt{3}}{2}\,,\,\,\,a^2=e^{-j\frac{2\pi}{3}}=-\frac{1}{2}-j\frac{\sqrt{3}}{2}\,\,)$

• 모드 2의 상전압 :
$$v_{as}=rac{1}{3}\,V_{dc},\;v_{bs}=rac{1}{3}\,V_{dc},\;v_{cs}=-rac{2}{3}\,V_{dc}$$

$$ightharpoonup$$
 공간 전압 벡터 $V_2=\left(\frac{1}{3}+j\frac{1}{\sqrt{3}}\right)V_{dc}=\frac{2}{3}\,V_{dc}\,\angle\,60^\circ$

(2) 스위칭 시간

그림 7.38 지령 전압 벡터의 움직임

$$\int_{0}^{T_{s}} V^{*} dt = \int_{0}^{T_{1}} V_{n} dt + \int_{T_{1}}^{T_{1} + T_{2}} V_{n+1} dt + \int_{T_{1} + T_{2}}^{T_{s}} V_{0,7} dt$$

$$\int_{0}^{T_{s}} V^{*} dt = \int_{0}^{T_{1}} V_{n} dt + \int_{T_{1}}^{T_{1} + T_{2}} V_{n+1} dt + \int_{T_{1} + T_{2}}^{T_{s}} V_{0,7} dt$$

$$T_{1} = \sqrt{3} T_{s} \frac{|V^{*}|}{V_{dc}} (\sin \frac{n\pi}{3} \cos \theta - \cos \frac{n\pi}{3} \sin \theta)$$

$$T_{2} = \sqrt{3} T_{s} \frac{|V^{*}|}{V_{dc}} (\sin \theta \cdot \cos \frac{n-1}{3} \pi - \cos \theta \cdot \sin \frac{n-1}{3} \pi)$$

(3) 스위칭 순서

[5] 각 PWM의 선형 변조 가능 전압

