

## Matematika Diskret dan Logika

Teori Himpunan

Dr. I Wayan Mustika, ST., M.Eng.





# Himpunan

- Himpunan adalah kumpulan objek-objek yang berbeda
- Objek-objek dalam himpunan disebut elemen atau anggota himpunan
- Dua himpunan dikatakan sama (ekivalen) jika memiliki elemen yang sama
- Himpunan bisa dinyatakan dengan:
  - Menulisakan anggota-anggotanya di antara 2 kurung kurawal
     Contoh: {a, e, i, o, u}
  - Menuliskan sifat-sifat yang ada pada semua anggota himpunan Contoh { x | x adalah huruf vokal dalam alfabet}
  - Menggunakan diagram Venn



- Kardinalitas (cardinality) dari suatu himpunan terhingga (finite set) S adalah banyaknya elemen berbeda dalam S, dan dinotasikan dengan S
- Suatu himpunan dikatakan infinite jika mengandung elemen yang tidak terhingga
- Suatu himpunan yang mengandung semua objek yang dibicarakan disebut himpunan *universal*, dinotasikan dengan *U*
- Suatu himpunan yang tidak memiliki elemen disebut himpunan kosong (*empty set*), dinotasikan dengan Ø





- Tentukan elemen-elemen dari himpunan berikut
  - a.  $\{x \mid x \text{ adalah bilangan riil dimana } x^2 = 1\}$ .
  - b.  $\{x | x \text{ adalah bilangan integer dimana}$  $x^2 - 3 = 0\}.$

#### Solusi



- 1.  $A = \{1, 2, 3\}, |A| = ?$
- 2.  $B = \{3, 3, 3, 3, 3\}, |B| = ?$
- 3. If  $C = \emptyset$ , |C| = ?
- 4. If  $D = \{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \}, |D| = ?$
- 5. If  $E = \{0, 1, 2, 3, ...\}$ , |E| = ?

- Himpunan S adalah himpunan bagian (subset)
  dari T jika dan hanya jika setiap elemen S juga
  merupakan elemen dari T (dinotasikan dengan
  S ⊆ T)
- Himpunan kuasa (power set) dari himpunan S adalah himpunan dari semua himpunan bagian dari S, dinotasikan dengan P(S)
- Perkalian kartesian (cartesian product) dari dua himpunan A dan B dinotasikan dengan A × B





- Tentukan apakah pernyataan no. 1-3 adalah benar atau salah
- $1.2 \subseteq \{1, 2, 3\}$ ???
- $2.\{3\} \subseteq \{\{1\},\{2\},\{3\}\}$ ???
- $3.\{3\} \in \{\{1\}, \{2\}, \{3\}\} ???$
- $4. A = \{a, b, c\}$ P(A) = ?
- 5.  $A = \{x,y\}, B = \{1,2,3\}$  $A \times B = ???$



# Operasi-Operasi pada Himpunan

Gabungan (Union):  $A \cup B = \{x \mid x \in A \cup x \in B\}$ 

Irisan (*Intersection*):  $A \cap B = \{x \mid x \in A \cap x \in B\}$ 

Selisih (*Difference*):  $A - B = \{x \mid x \in A \cap x \notin B\}$ 

Komplemen (Complement)  $\bar{A} = \{x \mid x \notin A\}$ 

Dua himpunan dikatakan terpisah (disjoint) jika irisan keduanya adalah himpunan kosong





$$S = \{a, b, c, d, e, f, g\}$$

$$A = \{a, c, e, g\}$$

$$B = \{d, e, f, g\}$$

$$1.A \cup B =$$

$$2.A \cap B =$$

$$3.A - B =$$

$$4.B^c =$$





# Sifat-sifat Himpunan

- Misalkan A dan B adalah 2 himpunan
  - a.  $A \cap B \subset A \operatorname{dan} A \cap B \subset B$
  - b.  $A \subset A \cup B \operatorname{dan} B \subset A \cup B$
- Misalkan A adalah himpunan bagian dari universal set U
  - a.  $\varnothing^c = U$
  - b.  $U^c = \emptyset$
  - c.  $(A^{c})^{c} = A$
  - $d. A \cup A^c = U$
  - e.  $A \cap A^c = \emptyset$





| Ekivalen                                         | Nama              |  |  |
|--------------------------------------------------|-------------------|--|--|
| $A \cap B = B \cap A$                            | Hukum Komutatif   |  |  |
| $(A \cap B) \cap C = A \cap (B \cap C)$          | Hukum Asosiatif   |  |  |
| $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ | Hukum Distributif |  |  |
| $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ |                   |  |  |
| $A \cap S = A$                                   | Irisan dengan S   |  |  |
| $A \cup S = S$                                   | Gabungan dengan S |  |  |
| $(A^c)^c = A$                                    | Komplemen ganda   |  |  |
| $A \cup A = A$ ; $A \cap A = A$                  | Hukum Idempoten   |  |  |
| $(A \cup B)^c = A^c \cap B^c;$                   | Hukum De Morgan   |  |  |
| $(A \cap B)^c = A^c \cup B^c$                    |                   |  |  |

partment



Jika A dan B adalah himpunan bagian dari U

a. 
$$A \cup U = U$$

b. 
$$A \cup A = A$$

c. 
$$A \cup \emptyset = A$$

$$d. A \cup B = B \cup A$$

e. 
$$(A \cup B) \cup C = A \cup (B \cup C)$$

Jika A dan B adalah himpunan bagian dari U

a. 
$$A \cap U = A$$

b. 
$$A \cap A = A$$

c. 
$$A \cap \emptyset = \emptyset$$

$$d. A \cap B = B \cap A$$

e. 
$$(A \cap B) \cap C = A \cap (B \cap C)$$



 Jika A, B, dan C adalah himpunan bagian dari U

a. 
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b. 
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

#### De Morgan's Laws

Misalkan A dan B adalah himpunan bagian of U

a. 
$$(A \cup B)^c = A^c \cap B^c$$

b. 
$$(A \cap B)^c = A^c \cup B^c$$



## Aljabar Boolean

- Aljabar Boolean didefinisikan sebagai suatu himpunan dengan operasi "∧", " ∨ " dan "~" (atau ') serta elemen 0 dan 1 yang memenuhi sifatsifat berikut:
  - Hukum Komutatif
  - Hukum Asosiatif
  - Hukum Distributif
  - Hukum Identitas
  - Hukum Negasi (Komplemen)





Hukum Identitas

■ 
$$x \lor 0 = x$$

■ 
$$x \wedge 1 = x$$

Hukum Negasi (Komplemen)

• 
$$x \vee x' = 1$$

$$\mathbf{x} \wedge \mathbf{x}' = \mathbf{0}$$

Kadang-kadang simbol "√" dituliskan sebagai "+" dan "∧" ditulis sebagai "\*" atau tidak ditulis sama sekali.



# Hukum-hukum lainnya dalam Aljabar Boolean

- Hukum idempoten
  - $X \lor X = X$
  - $X \wedge X = X$
- Hukum ikatan
  - $x \lor 1 = 1$
  - $X \wedge 0 = 0$
- Hukum absorpsi
  - $\mathbf{x} \wedge \mathbf{y} \vee \mathbf{x} = \mathbf{x}$
  - $X \lor Y \land X = X$
- Hukum De Morgan
  - $(x \vee y)' = x' \wedge y'$
  - $(x \wedge y)' = x' \vee y'$





## Fungsi Boolean

- Misal B = {B, ∨, ∧, ~, 0, 1} adalah alajabar Boolean
- Suatu fungsi Boolean n variabel adalah fungsi f: B<sup>n</sup>
   → B
- Fungsi Boolean disebut sederhana jika B = {0,1}. Jadi, f: {0,1}<sup>n</sup> → {0,1}
- Masukkannya adalah {0,1}<sup>n</sup> dan keluaran fungsi adalah {0,1}
- Operasi Not, And, Or dalam logika dapat dipandang sebagai fungsi Boolean dari {0,1}<sup>2</sup>→ {0,1}



- Nyatakan penghubung XOR (eksklusif Or) dalam fungsi {0,1}<sup>2</sup>→ {0,1}.
- Penghubung XOR (symbol ⊕) mirip dengan penghubung "atau" (∨). Akan tetapi jika kedua kalimat penyusunnya benar atau keduanya salah, maka hasilnya salah.



#### Tabel kebenaran dari XOR

| р | q | $p \vee q$ | $p \oplus q$ |
|---|---|------------|--------------|
| Т | Т | Т          | F            |
| Т | F | Т          | Т            |
| F | Т | Т          | Т            |
| F | F | F          | F            |



## Kuis

- 1. Misalkan  $A = \{b, c, d, f, g\}$  dan  $B = \{a, b, c\}$ . Tentukan:
  - a.  $A \cup B$

c. A - B

b.  $A \cap B$ 

- d. B-A
- 2. Misalkan  $A = \{1, 2\}$  dan  $B = \{2, 3\}$ . Tentukanlah:
- a.  $P(A \cap B)$ 
  - c. P(AuB)

b. P(A)

- d.  $P(A \times B)$
- 3. Misalkan A dan B adalah 2 himpunan. Buktikan bahwa

$$(A - B) \cap (A \cap B) = \emptyset$$

