Logic Design Tutorial 3

Amr Keleg

Faculty of Engineering, Ain Shams University

July 30, 2020

Contact: amr_mohamed@live.com

Outline

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
- 3 Unsigned binary multiplication
- 4 Binary and Gray code

Outline

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

Assume we have 4 bits to represent numbers on our system.

■ We can represent 16 unsigned values [0, 15].

Assume we have 4 bits to represent numbers on our system.

- We can represent 16 unsigned values [0, 15].
- What if we want to represent negative values as well?

Assume we have 4 bits to represent numbers on our system.

- We can represent 16 unsigned values [0, 15].
- What if we want to represent negative values as well?

Table 1.3 *Signed Binary Numbers*

Decimal	Signed Magnitude
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
+0	0000
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
- 7	1111
-8	_

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed Magnitude
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
-0	_	1000
-1	1111	1001
-2	1110	1010
-3	1101	1011
-4	1100	1100
-5	1011	1101
-6	1010	1110
-7	1001	1111
-8	1000	_

$$(+7) + (+7) = ??$$

$$(+7) + (+7) = ??$$

 $(0111) + (0111) =$

$$(+7) + (+7) = ??$$

(0111) + (0111) = (1110) which is

$$(+7) + (+7) = ??$$

(0111) + (0111) = (1110) which is -2 !!

Example:

$$(+7) + (+7) = ??$$

 $(0111) + (0111) = (1110)$ which is -2!!

Therefore we need to have another bit to handle this overflow:

Example:

$$(+7) + (+7) = ??$$

(0111) + (0111) = (1110) which is -2!!

Therefore we need to have another bit to handle this overflow:($\mathbf{0}0111$) + ($\mathbf{0}0111$) = $\mathbf{0}1110$

Example:

$$(+7) + (+7) = ??$$

 $(0111) + (0111) = (1110)$ which is -2!!
Therefore we need to have another bit to handle this

overflow: $(\mathbf{0}0111) + (\mathbf{0}0111) = \mathbf{0}1110$

- The result is positive since the sign bit is equal to zero
- The value is 8 + 4 + 2 = 14 (Makes sense now)

What about (-7) + (-7)?

What about
$$(-7) + (-7)$$
?

$$+7 = (00111)$$

 $-7 = (11001)$

What about
$$(-7) + (-7)$$
?

$$+7 = (00111)$$

 $-7 = (11001)$

$$(11001) + (11001) = 110010$$
 (Ignore the overflow).

The result is 10010.

What about
$$(-7) + (-7)$$
?

$$+7 = (00111)$$

 $-7 = (11001)$

$$(11001) + (11001) = 110010$$
 (Ignore the overflow).

The result is 10010.

- The result is negative since the sign bit is equal to one
- Its two's complement is 01110
- The value is (8 + 4 + 2) = -14 (Makes sense now)

Outline

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

- \bullet 49₁₀ = 110001₂
- $\mathbf{29}_{10} = \mathbf{0}11101_2$

- \bullet 49₁₀ = 110001₂
- $\mathbf{29}_{10} = \mathbf{0}11101_2$
- Add two bits, one for sign and one for overflow:
- \bullet 49₁₀ = **00**110001₂
- $\mathbf{29}_{10} = \mathbf{00}_{011101_2}$

- \bullet 49₁₀ = 110001₂
- $\mathbf{29}_{10} = \mathbf{0}11101_2$
- Add two bits, one for sign and one for overflow:
- $\bullet 49_{10} = \mathbf{00}110001_2$
- $\mathbf{29}_{10} = \mathbf{00}_{011101_2}$
- $-49_{10} = 11001111_2$
- $-29_{10} = 11100011_2$

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111$$

Sheet 1 - Question 17

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111 = 0,1110,1100$$

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111 = 0,1110,1100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1110,1100.

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111 = 0,1110,1100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1110,1100.
- This is a negative value (Sign bit = 1).

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111 = 0,1110,1100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1110,1100.
- This is a negative value (Sign bit = 1).
- Its magnitude is 0001,0100 which is 16 + 4 = 20

A]
$$(+29) + (-49) = 0001,1101 + 1100,1111 = 0,1110,1100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1110,1100.
- This is a negative value (Sign bit = 1).
- Its magnitude is 0001,0100 which is 16 + 4 = 20
- The result is $(-20)_{10}$

B]
$$(-29) + (49) = 1110,0011 + 0011,0001$$

B]
$$(-29) + (49) = 1110,0011 + 0011,0001 = 1,0001,0100$$

B]
$$(-29) + (49) = 1110,0011 + 0011,0001 = 1,0001,0100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 0001,0100.

B]
$$(-29) + (49) = 1110,0011 + 0011,0001 = 1,0001,0100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 0001,0100.
- This is a positive value (Sign bit = 0).

B]
$$(-29) + (49) = 1110,0011 + 0011,0001 = 1,0001,0100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 0001,0100.
- This is a positive value (Sign bit = 0).
- Its magnitude is 0001,0100 which is 16 + 4 = 20

B]
$$(-29) + (49) = 1110,0011 + 0011,0001 = 1,0001,0100$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 0001,0100.
- This is a positive value (Sign bit = 0).
- Its magnitude is 0001,0100 which is 16 + 4 = 20
- The result is $(+20)_{10}$

$$C] (-29) + (-49) = 1110,0011 + 1100,1111$$

Two's complement

Sheet 1 - Question 17

$$C] (-29) + (-49) = 1110,0011 + 1100,1111 = 1,1011,0010$$

C]
$$(-29) + (-49) = 1110,0011 + 1100,1111 = 1,1011,0010$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1011,0010.

C]
$$(-29) + (-49) = 1110,0011 + 1100,1111 = 1,1011,0010$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1011,0010.
- This is a negative value (Sign bit = 1).

C]
$$(-29) + (-49) = 1110,0011 + 1100,1111 = 1,1011,0010$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1011,0010.
- This is a negative value (Sign bit = 1).
- Its magnitude is 0100,1110 which is 64 + 8 + 4 + 2 = 78

C]
$$(-29) + (-49) = 1110,0011 + 1100,1111 = 1,1011,0010$$

- ALWAYS IGNORE ANY BITS OTHER THAN THE bits that we need (8 bits in this case).
- Result is 1011,0010.
- This is a negative value (Sign bit = 1).
- Its magnitude is 0100,1110 which is 64 + 8 + 4 + 2 = 78
- The result is $(-78)_{10}$

- 1 Two's complement
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
- 4 Binary and Gray code

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

a) BCD

a) BCD: Represent each decimal digit as a 4-bit binary number.

 $6,248_{10}=0110,\ 0010,\ 0100,\ 1000_{BCD}$

■ b) excess3 code

- a) BCD: Represent each decimal digit as a 4-bit binary number.
 - $6,248_{10} = 0110,\ 0010,\ 0100,\ 1000_{BCD}$
- b) excess3 code: Similar to BCD but add three to each digit before converting to binary
 6,248₁₀ = 1001, 0101, 0111, 1011_{Excess-3 code}
- **c**) 2421 code¹

- a) BCD: Represent each decimal digit as a 4-bit binary number.
 - $6,248_{10} = 0110,\ 0010,\ 0100,\ 1000_{BCD}$
- b) excess3 code: Similar to BCD but add three to each digit before converting to binary
 6,248₁₀ = 1001, 0101, 0111, 1011_{Excess-3 code}
- c) 2421 code¹: Instead of considering the weights of the 4 bits to be 8, 4, 2, 1 make them 2, 4, 2, 1
 6,248₁₀ = 1100, 0010, 0100, 1110_{2421 code}
- **d**) 6311 code

- a) BCD: Represent each decimal digit as a 4-bit binary number.
 - $6,248_{10} = 0110, 0010, 0100, 1000_{BCD}$
- b) excess3 code: Similar to BCD but add three to each digit before converting to binary $6,248_{10} = 1001, 0101, 0111, 1011_{\text{Excess-3 code}}$
- c) 2421 code¹: Instead of considering the weights of the 4 bits to be 8, 4, 2, 1 make them 2, 4, 2, 1 $6.248_{10} = 1100, 0010, 0100, 1110_{2421 \text{ code}}$
- d) 6311 code: Instead of considering the weights of the 4 bits to be 8, 4, 2, 1 make them 6, 3, 1, 1 $6.248_{10} = 1000, 0011, 0101, 1011_{6311 \text{ code}}$

¹https://en.wikipedia.org/wiki/Aiken_code ← □ → ← ∰ → ← ≧ → ← ≧ → ⊃ ≥ → へへ ♡

Sheet 2 - Question 1

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

- Q1) Convert the following numbers into BCD and hence carry out the BCD addition:
 - b) (398)₁₀ +(198)₁₀

Q1) Convert the following numbers into BCD and hence carry out the BCD addition:

- **b**) $(398)_{10} + (198)_{10}$
- \blacksquare (398)₁₀ = (0011, 1001, 1000)_{BCD}
- \blacksquare (198)₁₀ = (0001, 1001, 1000)_{BCD}

Tutorial 3 BCD and other representations Sheet 2 - Question 1

1000	1001	0011
+		
1000	1001	0001

0011	1001	1000
		+
0001	1001	1000
		10000

(result is more than 9, Add 6 to the value)

0011	1001	1000
		+
0001	1001	1000
		10000
(result is more than 9, Add 6 to the value)		
		+
		0110

0011	1001	1000
		+
0001	1001	1000
		10000
(result is more than 9, Add 6 to the value)		
		+
		0110
	1	0110

	1	
0011	1001	1000
		+
0001	1001	1000

	1		
0011	1001	1000	
		+	
0001	1001	1000	
	10011	0110	

(result is more than 9, Add 6 to the value)

	1	
0011	1001	1000
		+
0001	1001	1000
	10011	0110
(result is more than 9, Add 6 to the value)		
		+
	0110	

	1	
0011	1001	1000
		+
0001	1001	1000
	10011	0110
(result is more than 9, Add 6 to the value)		
		+
	0110	
1	1001	0110

 1 0011 1001 1000 + 0001 1001 1000 0110 (result is less than 9, Do thing)

1		
0011	1001	1000
		+
0001	1001	1000
0101	1001	0110
(result is less than 9, Do thing)		
0101	1001	0110

- 1 Two's complement
- 2 BCD and other representations
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

$$\blacksquare$$
 10011₂ * 1₂ = 10011₂

- \blacksquare 10011₂ * 1₂ = 10011₂
- 10011₂ * 10₂ =

- \blacksquare 10011₂ * 1₂ = 10011₂
- $10011_2 * 10_2 = 10011\mathbf{0}_2$ Explanation: $10011_2 = (2^4) + (2^1) + (2^0)$ $10_2 = (2^1)$

$$10011_2 * 1_2 = 10011_2$$

■
$$10011_2 * 10_2 = 10011\mathbf{0}_2$$

Explanation:
 $10011_2 = (2^4) + (2^1) + (2^0)$
 $10_2 = (2^1)$
 $10011_2 * 10_2 = ((2^4) + (2^1) + (2^0)) * (2^1) = 2^5 + 2^2 + 2^1$

$$\blacksquare$$
 10011₂ * 1₂ = 10011₂

■
$$10011_2 * 10_2 = 10011\mathbf{0}_2$$

Explanation:
 $10011_2 = (2^4) + (2^1) + (2^0)$
 $10_2 = (2^1)$
 $10011_2 * 10_2 = ((2^4) + (2^1) + (2^0)) * (2^1) = 2^5 + 2^2 + 2^1$

$$10011_2 * 100_2 = 1001100_2$$

- \blacksquare 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- \blacksquare 10011₂ * 100₂ = 1001100₂

- \blacksquare 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- \blacksquare 10011₂ * 100₂ = 1001100₂
- 10011₂ * 111₂ =

- \blacksquare 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- \blacksquare 10011₂ * 100₂ = 1001100₂
- $10011_2 * 111_2 =$ $10011_2 * 1_2 + 10011_2 * 10_2 + 10011_2 * 100_2$

- \bullet 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- \blacksquare 10011₂ * 100₂ = 1001100₂
- $10011_2 * 111_2 = 10011_2 * 1_2 + 10011_2 * 1_2 + 10011_2 * 10011_2 * 10011_2 * 10011_1 + 1001100 = 1000, 0101_2$

- \blacksquare 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- $10011_2 * 100_2 = 1001100_2$
- $10011_2 * 111_2 = 10011_2 * 1_2 + 10011_2 * 1_2 + 10011_2 * 1002 = 10011 + 100110 + 1001100 = 1000, 0101_2$
- Note: Convert the values to decimal and check that the result is correct.

- \bullet 10011₂ * 1₂ = 10011₂
- \blacksquare 10011₂ * 10₂ = 100110₂
- \blacksquare 10011₂ * 100₂ = 1001100₂
- $10011_2 * 111_2 = 10011_2 * 1_2 + 10011_2 * 1_2 + 10011_2 * 1002 = 10011 + 100110 + 1001100 = 1000, 0101_2$
- Note: Convert the values to decimal and check that the result is correct.

Thus, binary multiplication depends on two operations: Shift-left (multiplication by 2) and Binary-addition.

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

- Unsigned binary multiplication
 - Quick introduction to flowcharts

The main blocks are:

Example 1: Allow the user to input two values and check whether they are equal to not.

Quick introduction to flowcharts

Example 1: Allow the user to input two values and check whether they are equal to not.

Unsigned binary multiplication

Quick introduction to flowcharts

Example 2: Allow the user to input a **Signed 2's complement** binary number and check whether it's positive or negative.

Quick introduction to flowcharts

Example 2: Allow the user to input a **Signed 2's complement** binary number and check whether it's positive or negative.

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

Note: For binary non-floating numbers:

 A shift left operation adds a zero to the right of the number (e.g. 101 becomes 1010).

Note: For binary non-floating numbers:

- A shift left operation adds a zero to the right of the number (e.g: 101 becomes 1010).
- A shift right operation drops the least significant bit (e.g. 101 becomes 10).

Note: For binary non-floating numbers:

- A shift left operation adds a zero to the right of the number (e.g: 101 becomes 1010).
- A shift right operation drops the least significant bit (e.g. 101 becomes 10).

Note: Assume that we want to compute (A * B) where A, B are two binary numbers of the equal length.

Tutorial 3 Unsigned binary multiplication Sheet 2 - Question 4

- 1 Two's complement
- 2 BCD and other representations
- 3 Unsigned binary multiplication
- 4 Binary and Gray code
 - Idea

- 1 Two's complement
 - Negative values
 - Sheet 1 Question 17
- 2 BCD and other representations
 - Sheet 1 Question 18
 - Sheet 2 Question 1
- 3 Unsigned binary multiplication
 - Idea
 - Quick introduction to flowcharts
 - Sheet 2 Question 4
- 4 Binary and Gray code
 - Idea

Table 1.6
Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15