# Slide Reduction, Revisited—Filling the Gaps in Lattice SVP Approximation

Jianwei Li ISG, RHUL, UK

London-ish Lattice Coding & Crypto Meetings 20 Nov 2019

- Divesh Aggarwal; Jianwei Li; Phong Q. Nguyen; Noah Stephens-Davidowitz
- Slide Reduction, Revisited—Filling the Gaps in SVP Approximation.
- https://arxiv.org/abs/1908.03724
- It absorbs some ideas from discussions with coauthors.

- Divesh Aggarwal; Jianwei Li; Phong Q. Nguyen; Noah Stephens-Davidowitz
- Slide Reduction, Revisited—Filling the Gaps in SVP Approximation.
- https://arxiv.org/abs/1908.03724
- It absorbs some ideas from discussions with coauthors.

- Divesh Aggarwal; Jianwei Li; Phong Q. Nguyen; Noah Stephens-Davidowitz
- Slide Reduction, Revisited—Filling the Gaps in SVP Approximation.
- https://arxiv.org/abs/1908.03724
- It absorbs some ideas from discussions with coauthors.

- Divesh Aggarwal; Jianwei Li; Phong Q. Nguyen; Noah Stephens-Davidowitz
- Slide Reduction, Revisited—Filling the Gaps in SVP Approximation.
- https://arxiv.org/abs/1908.03724
- It absorbs some ideas from discussions with coauthors.

- Divesh Aggarwal; Jianwei Li; Phong Q. Nguyen; Noah Stephens-Davidowitz
- Slide Reduction, Revisited—Filling the Gaps in SVP Approximation.
- https://arxiv.org/abs/1908.03724
- It absorbs some ideas from discussions with coauthors.

#### Outline

- Background on lattice reduction
- Our results
- Our technical ideas and argument
- 4 Conclusion and open problems

- Background on lattice reduction
- Our results
- Our technical ideas and argument
- Conclusion and open problems

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \lambda_1(L)$ .
- f-Hermite SVP (f-HSVP): Given a basis B of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector v ∈ L s.t. ||v|| < f ⋅ λ₁(L).</li>
- f-Hermite SVP (f-HSVP): Given a basis B of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector v ∈ L s.t. ||v|| ≤ f ⋅ λ₁(L).
- f-Hermite SVP (f-HSVP): Given a basis B of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \leq f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \lambda_1(L)$ .
- *f*-Hermite SVP (*f*-HSVP): Given a basis *B* of a lattice *L*, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice.

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \lambda_1(L)$ .
- *f*-Hermite SVP (*f*-HSVP): Given a basis *B* of a lattice *L*, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice.

- Given a basis of a lattice L, SVP is to find a shortest nonzero vector  $\mathbf{v}$  in L, i.e.,  $\|\mathbf{v}\| = \min_{\mathbf{x} \in L_{\neq 0}} \|\mathbf{x}\| \triangleq \lambda_1(L)$ .
- SVP is NP-hard under randomized reductions.

- f-approximate SVP (f-SVP): Given a basis of a lattice L, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \lambda_1(L)$ .
- *f*-Hermite SVP (*f*-HSVP): Given a basis *B* of a lattice *L*, find a non-zero lattice vector  $\mathbf{v} \in L$  s.t.  $\|\mathbf{v}\| \le f \cdot \operatorname{vol}(L)^{1/n}$ , where  $\operatorname{vol}(L) := \sqrt{\det(B^T B)}$  is the covolume of the lattice.

#### Lattice reduction

#### Goal

Find interesting bases, such as bases consisting of reasonably short and almost orthogonal vectors.

#### Importance

- Finding good reduced bases has proved invaluable in many fields of computer science and mathematics.
- Notably in cryptology, its importance is growing as lattice-based cryptography becomes the most popular candidate for post-quantum cryptography.

#### Goal

Find interesting bases, such as bases consisting of reasonably short and almost orthogonal vectors.

#### **Importance**

- Finding good reduced bases has proved invaluable in
- Notably in cryptology, its importance is growing as

#### Goal

Find interesting bases, such as bases consisting of reasonably short and almost orthogonal vectors.

#### **Importance**

- Finding good reduced bases has proved invaluable in many fields of computer science and mathematics.
- Notably in cryptology, its importance is growing as

#### Lattice reduction

#### Goal

Find interesting bases, such as bases consisting of reasonably short and almost orthogonal vectors.

#### **Importance**

- Finding good reduced bases has proved invaluable in many fields of computer science and mathematics.
- Notably in cryptology, its importance is growing as lattice-based cryptography becomes the most popular candidate for post-quantum cryptography.

#### Lattice reduction

#### Goal

Find interesting bases, such as bases consisting of reasonably short and almost orthogonal vectors.

#### **Importance**

- Finding good reduced bases has proved invaluable in many fields of computer science and mathematics.
- Notably in cryptology, its importance is growing as lattice-based cryptography becomes the most popular candidate for post-quantum cryptography.

LLL is the first polynomial time lattice reduction algorithm for approximating SVP/HSVP within exponential factors: <sup>1</sup>

- Intuition : A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  is *LLL-reduced* if every 2-rank projected block  $\mathbf{B}_{[i,i+1]}$  is almost SVP-reduced for  $1 \le i \le n-1$ .
- Main properties: If a basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of a lattice L is LLL-reduced, then

$$\begin{array}{lcl} \| \boldsymbol{b}_1 \| & \leq & 2^{(n-1)/4} \cdot \operatorname{vol}(L)^{1/n}, \\ \| \boldsymbol{b}_1 \| & \leq & 2^{(n-1)/2} \cdot \lambda_1(L). \end{array}$$

<sup>&</sup>lt;sup>1</sup>A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 1982

LLL is the first polynomial time lattice reduction algorithm for approximating SVP/HSVP within exponential factors: <sup>1</sup>

- Intuition : A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  is *LLL-reduced* if every 2-rank projected block  $\mathbf{B}_{[i,i+1]}$  is almost SVP-reduced for  $1 \le i \le n-1$ .
- Main properties: If a basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of a lattice L is LLL-reduced, then

$$\|\mathbf{b}_1\| \le 2^{(n-1)/4} \cdot \operatorname{vol}(L)^{1/n}, \|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \lambda_1(L).$$

<sup>&</sup>lt;sup>1</sup>A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 1982

#### Schnorr's blockwise generalizations of LLL:2

- Semi block 2k-reduction is the first lattice reduction algorithm for approximating SVP/HSVP within (subexponential) factors k<sup>O(n/k)</sup> using polynomial calls to exact SVP-oracle in rank k.
- BKZ is the most popular blockwise lattice reduction.
  - k-BKZ-reduced if every projected block  $B_{[i,\min\{i+k-1,n\}]}$  of rank  $\leq k$  is SVP-reduced for  $i=1,\cdots,n$ .
  - Main properties: If a basis B = (b<sub>1</sub>,...,b<sub>n</sub>) of a lattice L is k-BKZ-reduced, then
    - $\|\mathbf{e}_1\| \leq \eta_k$
  - Here, w is Hermite's constant.

<sup>&</sup>lt;sup>2</sup>C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS, 1987

#### Schnorr's blockwise generalizations of LLL:2

- Semi block 2k-reduction is the first lattice reduction algorithm for approximating SVP/HSVP within (subexponential) factors k<sup>O(n/k)</sup> using polynomial calls to exact SVP-oracle in rank k.
- BKZ is the most popular blockwise lattice reduction.
  - Intuition : A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is  $k\text{-}BKZ\text{-}reduced}$  if every projected block  $B_{[i,\min\{i+k-1,n\}]}$  of rank  $\leq k$  is SVP-reduced for  $i=1,\cdots,n$ .
  - Main properties: If a basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of a lattice L is k-BKZ-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)} + \frac{1}{2}} \cdot \text{vol}(L)^{1/n},$$
  
 $\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{k-1}} \cdot \lambda_1(L).$ 

Here,  $\gamma_k$  is Hermite's constant.

<sup>&</sup>lt;sup>2</sup>C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS, 1987

#### Schnorr's blockwise generalizations of LLL:2

- Semi block 2k-reduction is the first lattice reduction algorithm for approximating SVP/HSVP within (subexponential) factors k<sup>O(n/k)</sup> using polynomial calls to exact SVP-oracle in rank k.
- BKZ is the most popular blockwise lattice reduction.
  - Intuition : A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is k-BKZ-reduced if every projected block  $B_{[i,\min\{i+k-1,n\}]}$  of rank  $\leq k$  is SVP-reduced for  $i = 1, \dots, n$ .
  - Main properties: If a basis B = (b<sub>1</sub>,...,b<sub>n</sub>) of a lattice L is k-BKZ-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)} + \frac{1}{2}} \cdot \text{vol}(L)^{1/n},$$
  
 $\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{k-1}} \cdot \lambda_1(L).$ 

Here,  $\gamma_k$  is Hermite's constant.

<sup>&</sup>lt;sup>2</sup>C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS, 1987

#### Schnorr's blockwise generalizations of LLL:2

- Semi block 2k-reduction is the first lattice reduction algorithm for approximating SVP/HSVP within (subexponential) factors k<sup>O(n/k)</sup> using polynomial calls to exact SVP-oracle in rank k.
- BKZ is the most popular blockwise lattice reduction.
  - Intuition : A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is k-BKZ-reduced if every projected block  $B_{[i,\min\{i+k-1,n\}]}$  of rank  $\leq k$  is SVP-reduced for  $i = 1, \dots, n$ .
  - Main properties: If a basis B = (b<sub>1</sub>,...,b<sub>n</sub>) of a lattice L is k-BKZ-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)} + \frac{1}{2}} \cdot \text{vol}(L)^{1/n},$$
  
 $\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{k-1}} \cdot \lambda_1(L).$ 

Here,  $\gamma_k$  is Hermite's constant.

<sup>&</sup>lt;sup>2</sup>C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS, 1987

#### Schnorr's blockwise generalizations of LLL: BKZ again!

- BKZ achieves the best time/quality trade-off in practice and is the most popular blockwise lattice reduction algorithm:
   E.g., the NTL/fpLLL/G6K libraries and the SVP challenge.
- No polynomial-time bound is known for BKZ: it is typically employed with early termination in practice.
- Long-standing open problem: Within polynomial calls to SVP-oracle, can the BKZ algorithm output an almost BKZ-reduced basis?

#### Schnorr's blockwise generalizations of LLL: BKZ again!

- BKZ achieves the best time/quality trade-off in practice and is the most popular blockwise lattice reduction algorithm:
   E.g., the NTL/fpLLL/G6K libraries and the SVP challenge.
- No polynomial-time bound is known for BKZ: it is typically employed with early termination in practice.
- Long-standing open problem: Within polynomial calls to SVP-oracle, can the BKZ algorithm output an almost BKZ-reduced basis?

#### Schnorr's blockwise generalizations of LLL: BKZ again!

- BKZ achieves the best time/quality trade-off in practice and is the most popular blockwise lattice reduction algorithm:
   E.g., the NTL/fpLLL/G6K libraries and the SVP challenge.
- No polynomial-time bound is known for BKZ: it is typically employed with early termination in practice.
- Long-standing open problem: Within polynomial calls to SVP-oracle, can the BKZ algorithm output an almost BKZ-reduced basis?

- No publication claims to solve this open problem on BKZ.
- ★ In theory, both GN-slide-reduction <sup>3</sup> and MW-DBKZ <sup>4</sup> can achieve almost the same guarantees on

$$\|\mathbf{b}_1\|/\text{vol}(L)^{1/n}$$
 and  $\|\mathbf{b}_1\|/\lambda_1(L)$ 

as that of BKZ-reduced bases, with polynomial calls to SVP-oracle.

<sup>&</sup>lt;sup>3</sup>N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. STOC 2008.

<sup>&</sup>lt;sup>4</sup>D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. EUROCRYPT 2016.

- Definition: A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is  $(\varepsilon, k)$ -slide-reduced where  $n = pk \ge 2k$  if
  - Primal conditions: each block  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - Dual conditions: each block  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Main properties: Let  $n = pk \ge 2k$  be integers. With  $poly(size(B_{input}), 1/\varepsilon)$  calls to exact SVP-oracle, the slide-reduction algorithm outputs a  $(\varepsilon, k)$ -slide-reduced basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L:

$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n},$$
  
$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L).$$

<sup>&</sup>lt;sup>5</sup>N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. STOC 2008.

- Definition: A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is  $(\varepsilon, k)$ -slide-reduced where  $n = pk \ge 2k$  if
  - Primal conditions: each block  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - Dual conditions: each block  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Main properties: Let  $n = pk \ge 2k$  be integers. With  $poly(size(B_{input}), 1/\varepsilon)$  calls to exact SVP-oracle, the slide-reduction algorithm outputs a  $(\varepsilon, k)$ -slide-reduced basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L:

$$\|\mathbf{b}_{1}\| \leq ((1+\varepsilon)\gamma_{k})^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n},$$
  
$$\|\mathbf{b}_{1}\| \leq ((1+\varepsilon)\gamma_{k})^{\frac{n-k}{k-1}} \cdot \lambda_{1}(L).$$

<sup>&</sup>lt;sup>5</sup>N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. STOC 2008.

- Definition: A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is  $(\varepsilon, k)$ -slide-reduced where  $n = pk \ge 2k$  if
  - Primal conditions: each block  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - Dual conditions: each block  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Main properties: Let  $n = pk \ge 2k$  be integers. With  $poly(size(B_{input}), 1/\varepsilon)$  calls to exact SVP-oracle, the slide-reduction algorithm outputs a  $(\varepsilon, k)$ -slide-reduced basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L:

$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n},$$
  
$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L).$$

<sup>&</sup>lt;sup>5</sup>N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. STOC 2008.

- Definition: A basis  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  of rank n is  $(\varepsilon, k)$ -slide-reduced where  $n = pk \ge 2k$  if
  - Primal conditions: each block  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - Dual conditions: each block  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Main properties: Let  $n = pk \ge 2k$  be integers. With  $poly(size(B_{input}), 1/\varepsilon)$  calls to exact SVP-oracle, the slide-reduction algorithm outputs a  $(\varepsilon, k)$ -slide-reduced basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L:

$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n},$$
  
$$\|\mathbf{b}_1\| \leq ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L).$$

<sup>&</sup>lt;sup>5</sup>N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. STOC 2008.

DBKZ is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge \frac{1}{2}}$ -HSVP in theory: <sup>6</sup>

• Let  $n \ge k \ge 2$  be integers. With  $poly(size(B_{input}), 1/\varepsilon)$  calls to exact SVP-oracle, the DBKZ algorithm outputs a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\begin{split} \| \boldsymbol{b}_1 \| & \leq & (1+\varepsilon) \gamma_k^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n}, \\ \| \boldsymbol{b}_1 \| & \leq & (1+\varepsilon)^2 \gamma_k^{\frac{n-1}{k-1}} \cdot \lambda_1(L). \end{split}$$

It matches Mordell's inequality:

$$\gamma_n \le \gamma_k^{(n-1)/(k-1)}$$
 for any  $2 \le k \le n$ .

<sup>&</sup>lt;sup>6</sup>D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. EUROCRYPT 2016.

DBKZ is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge \frac{1}{2}}$ -HSVP in theory: <sup>6</sup>

• Let  $n \ge k \ge 2$  be integers. With poly(size( $B_{input}$ ),  $1/\varepsilon$ ) calls to exact SVP-oracle, the DBKZ algorithm outputs a basis ( $\mathbf{b}_1, \dots, \mathbf{b}_n$ ) of the input lattice L s.t.

$$\begin{split} \|\mathbf{b}_1\| & \leq & (1+\varepsilon)\gamma_k^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n}, \\ \|\mathbf{b}_1\| & \leq & (1+\varepsilon)^2\gamma_k^{\frac{n-1}{k-1}} \cdot \lambda_1(L). \end{split}$$

It matches Mordell's inequality:

$$\gamma_n \le \gamma_k^{(n-1)/(k-1)}$$
 for any  $2 \le k \le n$ .

<sup>6</sup>D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. EUROCRYPT 2016.

### Three questions on lattice reduction

#### Case 1: Approximating SVP with sublinear factors

- The security of many lattice-based cryptographic constructions is based on the worst-case hardness of n<sup>c</sup>-SVP with constant c ∈ [<sup>1</sup>/<sub>2</sub>, 1].
- Awkward: All known lattice reduction algorithm can only solve  $n^c$ -SVP for  $c \ge 1$ .
- Prior results: (Almost) exact SVP algorithms can trivially solve  $n^c$ -SVP with any constant  $c \in [\frac{1}{2}, 1]$ .

#### A natural guestion

Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors?

### Case 1: Approximating SVP with sublinear factors

- The security of many lattice-based cryptographic constructions is based on the worst-case hardness of  $n^c$ -SVP with constant  $c \in [\frac{1}{2}, 1]$ .
- Awkward: All known lattice reduction algorithm can only solve  $n^c$ -SVP for  $c \ge 1$ .
- Prior results: (Almost) exact SVP algorithms can trivially solve  $n^c$ -SVP with any constant  $c \in [\frac{1}{2}, 1]$ .

#### Case 1: Approximating SVP with sublinear factors

- The security of many lattice-based cryptographic constructions is based on the worst-case hardness of n<sup>c</sup>-SVP with constant c ∈ [<sup>1</sup>/<sub>2</sub>, 1].
- Awkward: All known lattice reduction algorithm can only solve  $n^c$ -SVP for c > 1.
- Prior results: (Almost) exact SVP algorithms can trivially solve  $n^c$ -SVP with any constant  $c \in [\frac{1}{2}, 1]$ .

#### Case 1: Approximating SVP with sublinear factors

- The security of many lattice-based cryptographic constructions is based on the worst-case hardness of n<sup>c</sup>-SVP with constant c ∈ [<sup>1</sup>/<sub>2</sub>, 1].
- Awkward: All known lattice reduction algorithm can only solve  $n^c$ -SVP for c > 1.
- Prior results: (Almost) exact SVP algorithms can trivially solve  $n^c$ -SVP with any constant  $c \in [\frac{1}{2}, 1]$ .

#### Case 1: Approximating SVP with sublinear factors

- The security of many lattice-based cryptographic constructions is based on the worst-case hardness of n<sup>c</sup>-SVP with constant c ∈ [<sup>1</sup>/<sub>2</sub>, 1].
- Awkward: All known lattice reduction algorithm can only solve  $n^c$ -SVP for c > 1.
- Prior results: (Almost) exact SVP algorithms can trivially solve  $n^c$ -SVP with any constant  $c \in [\frac{1}{2}, 1]$ .

#### A natural question

### Case 2: Approximating SVP with polynomial factors

- The security of some lattice-based cryptographic constructions is based on the worst-case hardness of  $n^c$ -SVP with constant  $c \ge 1$  including fractional constant, e.g.,  $n^{1.5}$ -SVP for the cryptosystem in<sup>a</sup>.
- Awkward: The previously best GN-slide reduction algorithm can non-trivially solve  $n^{\lceil c \rceil}$ -SVP or  $n^{\lfloor c \rfloor}$ -SVP rather than  $n^c$ -SVP for  $c \ge 1$ .

<sup>a</sup>O. Regev. New lattice-based cryptographic constructions. JACM 2004.

#### A natural question

### Case 2: Approximating SVP with polynomial factors

- The security of some lattice-based cryptographic constructions is based on the worst-case hardness of  $n^c$ -SVP with constant  $c \ge 1$  including fractional constant, e.g.,  $n^{1.5}$ -SVP for the cryptosystem in<sup>a</sup>.
- Awkward: The previously best GN-slide reduction algorithm can non-trivially solve  $n^{\lceil c \rceil}$ -SVP or  $n^{\lfloor c \rfloor}$ -SVP rather than  $n^c$ -SVP for  $c \ge 1$ .

### A natural question

<sup>&</sup>lt;sup>a</sup>O. Regev. New lattice-based cryptographic constructions. JACM 2004.

### Case 2: Approximating SVP with polynomial factors

- The security of some lattice-based cryptographic constructions is based on the worst-case hardness of  $n^c$ -SVP with constant  $c \ge 1$  including fractional constant, e.g.,  $n^{1.5}$ -SVP for the cryptosystem in<sup>a</sup>.
- Awkward: The previously best GN-slide reduction algorithm can non-trivially solve  $n^{\lceil c \rceil}$ -SVP or  $n^{\lfloor c \rfloor}$ -SVP rather than  $n^c$ -SVP for c > 1.

<sup>&</sup>lt;sup>a</sup>O. Regev. New lattice-based cryptographic constructions. JACM 2004.

### Case 2: Approximating SVP with polynomial factors

- The security of some lattice-based cryptographic constructions is based on the worst-case hardness of  $n^c$ -SVP with constant  $c \ge 1$  including fractional constant, e.g.,  $n^{1.5}$ -SVP for the cryptosystem in<sup>a</sup>.
- Awkward: The previously best GN-slide reduction algorithm can non-trivially solve  $n^{\lceil c \rceil}$ -SVP or  $n^{\lfloor c \rfloor}$ -SVP rather than  $n^c$ -SVP for c > 1.

#### A natural question

<sup>&</sup>lt;sup>a</sup>O. Regev. New lattice-based cryptographic constructions. JACM 2004.

#### Disharmony

- Slide-reduction is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge 1}$ -SVP in theory;
- DBKZ is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge \frac{1}{2}}$ -HSVP in theory.

#### A natural question

#### Disharmony

- Slide-reduction is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge 1}$ -SVP in theory;
- DBKZ is the previously best polynomial time lattice reduction algorithm for solving n<sup>c≥½</sup>-HSVP in theory.

#### A natural question

#### Disharmony

- Slide-reduction is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge 1}$ -SVP in theory;
- DBKZ is the previously best polynomial time lattice reduction algorithm for solving n<sup>c≥½</sup>-HSVP in theory.

#### A natural question

#### Disharmony

- Slide-reduction is the previously best polynomial time lattice reduction algorithm for solving  $n^{c \ge 1}$ -SVP in theory;
- DBKZ is the previously best polynomial time lattice reduction algorithm for solving n<sup>c≥½</sup>-HSVP in theory.

#### A natural question

- Background on lattice reduction
- Our results
- Our technical ideas and argument
- Conclusion and open problems

- Q1 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors?
- Q2 Can we extend GN-slide-reduction algorithm into the case that k does not divide n exactly, so that it can directly solve  $n^c$ -SVP over any constant  $c \in [1, O(1)]$ ?
- Q3 Is there a single algorithm which is the best in theory for solving both  $n^{c \ge 1}$ -SVP and  $n^{c \ge \frac{1}{2}}$ -HSVP?

- Q1 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors?
- Q2 Can we extend GN-slide-reduction algorithm into the case that k does not divide n exactly, so that it can directly solve  $n^c$ -SVP over any constant  $c \in [1, O(1)]$ ?
- Q3 Is there a single algorithm which is the best in theory for solving both  $n^{c\geq 1}$ -SVP and  $n^{c\geq \frac{1}{2}}$ -HSVP?

- Q1 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors?
- Q2 Can we extend GN-slide-reduction algorithm into the case that k does not divide n exactly, so that it can directly solve  $n^c$ -SVP over any constant  $c \in [1, O(1)]$ ?
- Q3 Is there a single algorithm which is the best in theory for solving both  $n^{c\geq 1}$ -SVP and  $n^{c\geq \frac{1}{2}}$ -HSVP?

- Q1 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors?
- Q2 Can we extend GN-slide-reduction algorithm into the case that k does not divide n exactly, so that it can directly solve  $n^c$ -SVP over any constant  $c \in [1, O(1)]$ ?
- Q3 Is there a single algorithm which is the best in theory for solving both  $n^{c \ge 1}$ -SVP and  $n^{c \ge \frac{1}{2}}$ -HSVP?

### Theorem (Approximating SVP with sublinear factor)

Let  $2k > n \ge k \ge 2$  be integers and  $\delta \ge 1$ . There is an algorithm that with polynomial calls to  $\delta$ -SVP-oracle in rank k, it outputs an nonzero vector  $\mathbf{b}$  of the input lattice L s.t.

$$\|\mathbf{b}\| \leq O(\delta(\delta^2 \gamma_k)^{\frac{n}{2k}}) \cdot \lambda_1(L).$$

★ This is the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} < f < n^{1-\varepsilon}$ .

For any constant  $c \in (1/2, 1)$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lceil \frac{n}{m} \rceil$ .

### Theorem (Approximating SVP with sublinear factor)

Let  $2k > n \ge k \ge 2$  be integers and  $\delta \ge 1$ . There is an algorithm that with polynomial calls to  $\delta$ -SVP-oracle in rank k, it outputs an nonzero vector  $\mathbf{b}$  of the input lattice L s.t.

$$\|\mathbf{b}\| \leq O(\delta(\delta^2 \gamma_k)^{\frac{n}{2k}}) \cdot \lambda_1(L).$$

★ This is the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} < f < n^{1-\varepsilon}$ .

For any constant  $c \in (1/2, 1)$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lceil \frac{n}{m} \rceil$ .

### Theorem (Approximating SVP with sublinear factor)

Let  $2k > n \ge k \ge 2$  be integers and  $\delta \ge 1$ . There is an algorithm that with polynomial calls to  $\delta$ -SVP-oracle in rank k, it outputs an nonzero vector **b** of the input lattice L s.t.

$$\|\mathbf{b}\| \leq O(\delta(\delta^2 \gamma_k)^{\frac{n}{2k}}) \cdot \lambda_1(L).$$

★ This is the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} < f < n^{1-\varepsilon}$ .

For any constant  $c \in (1/2,1)$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1}n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lceil \frac{n}{2c} \rceil$ .

### Theorem (Approximating SVP with sublinear factor)

Let  $2k > n \ge k \ge 2$  be integers and  $\delta \ge 1$ . There is an algorithm that with polynomial calls to  $\delta$ -SVP-oracle in rank k, it outputs an nonzero vector **b** of the input lattice L s.t.

$$\|\mathbf{b}\| \leq O(\delta(\delta^2 \gamma_k)^{\frac{n}{2k}}) \cdot \lambda_1(L).$$

★ This is the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} < f < n^{1-\varepsilon}$ .

#### Corollary

For any constant  $c \in (1/2, 1)$  and any factor  $\delta \geq 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lceil \frac{n}{2c} \rceil$ .

## Our second result

### Theorem (Approximating SVP with (at least) polynomial factor)

Let  $n \ge 2k \ge 4$  be integers and  $\delta \ge 1$ . There is an algorithm that with  $poly(\text{size}(B_{input}), 1/\epsilon)$  calls to  $\delta$ -SVP-oracle in rank k, it outputs a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\begin{aligned} \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n}, \\ \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \end{aligned}$$

Corollary

For any constant  $c \ge 1$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lfloor \frac{n}{2c} \rfloor$ .

## Our second result

### Theorem (Approximating SVP with (at least) polynomial factor)

Let  $n \ge 2k \ge 4$  be integers and  $\delta \ge 1$ . There is an algorithm that with  $poly(\text{size}(B_{input}), 1/\epsilon)$  calls to  $\delta$ -SVP-oracle in rank k, it outputs a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\begin{aligned} \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n}, \\ \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \end{aligned}$$

Corollary

For any constant  $c \ge 1$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lfloor \frac{n}{2c} \rfloor$ .

## Our second result

### Theorem (Approximating SVP with (at least) polynomial factor)

Let  $n \ge 2k \ge 4$  be integers and  $\delta \ge 1$ . There is an algorithm that with  $poly(\operatorname{size}(B_{input}), 1/\epsilon)$  calls to  $\delta$ -SVP-oracle in rank k, it outputs a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\begin{aligned} \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-1}{2(k-1)}} \cdot \operatorname{vol}(L)^{1/n}, \\ \|\mathbf{b}_1\| &\leq ((1+\varepsilon)\delta^2\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \end{aligned}$$

#### Corollary

For any constant  $c \ge 1$  and any factor  $\delta \ge 1$ , there is an efficient Cook-reduction from  $O(\delta^{2c+1} n^c)$ -SVP in rank n to  $\delta$ -SVP in rank  $k := \lfloor \frac{n}{c+1} \rfloor$ .

# **Impact**

- Our two algorithms provide currently the best polynomial-time lattice reduction algorithm:
  - ⇒ Achieve the best time/quality trade-off in theory.
  - ⇒ Formalize the common practice of approximating SVP in high rank with approx-SVP-oracle in low ranks.
- With well-chosen SVP-oracles in lower rank, our work implies the exponentially faster provable/heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ :
  - ⇒ This is the regime most relevant for cryptography

# **Impact**

- Our two algorithms provide currently the best polynomial-time lattice reduction algorithm:
  - ⇒ Achieve the best time/quality trade-off in theory.
  - ⇒ Formalize the common practice of approximating SVP in high rank with approx-SVP-oracle in low ranks.
- With well-chosen SVP-oracles in lower rank, our work implies the exponentially faster provable/heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ :
  - ⇒ This is the regime most relevant for cryptography.

# Impact 1: the fastest provable algorithm

- WLW algorithm solves  $\delta$ -SVP in rank k with  $2^{0.802k}$ -time for some constant factor  $\delta$ .
- ★ By using WLW algorithm as SVP-oracle in lower rank, our work implies the exponentially faster provable algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ .

Table: Provable algorithms for approximating SVP.

| Approx-factor                                 | Previous best                      |                 | This work |
|-----------------------------------------------|------------------------------------|-----------------|-----------|
| Exact                                         | 2 <sup>n</sup>                     | [ADRS15]        |           |
| $\Omega(1) \le f \le \sqrt{n}$                | 2 <sup>0.802</sup> n               | [WLW15]         |           |
| $n^c$ for $c \in \left[\frac{1}{2}, 1\right)$ | 2 <sup>0.802n</sup>                | [WLW15]         |           |
| $n^c$ for $c \ge 1$                           | $2^{\frac{n}{\lfloor c+1\rfloor}}$ | [GN08]+[ADRS15] |           |

<sup>&</sup>lt;sup>7</sup>W. Wei, M. Liu, and X. Wang. Finding shortest latticevectors in the presence of gaps. CT-RSA 2015.

# Impact 1: the fastest provable algorithm

- WLW algorithm solves  $\delta$ -SVP in rank k with  $2^{0.802k}$ -time for some constant factor  $\delta$ .<sup>7</sup>
- ★ By using WLW algorithm as SVP-oracle in lower rank, our work implies the exponentially faster provable algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ .

Table: Provable algorithms for approximating SVP.

| Approx-factor                      | Previous best                       |                 | This work                |
|------------------------------------|-------------------------------------|-----------------|--------------------------|
| Exact                              | 2 <sup>n</sup>                      | [ADRS15]        | _                        |
| $\Omega(1) \le f \le \sqrt{n}$     | 2 <sup>0.802n</sup>                 | [WLW15]         | _                        |
| $n^c$ for $c \in [\frac{1}{2}, 1)$ | 2 <sup>0.802n</sup>                 | [WLW15]         | $2^{\frac{0.802n}{2c}}$  |
| $n^c$ for $c \ge 1$                | $2^{\frac{n}{\lfloor c+1 \rfloor}}$ | [GN08]+[ADRS15] | $2^{\frac{0.802n}{c+1}}$ |

<sup>&</sup>lt;sup>7</sup>W. Wei, M. Liu, and X. Wang. Finding shortest latticevectors in the presence of gaps. CT-RSA 2015.

# Impact 1: the fastest provable algorithm

★ By using WLW algorithm as SVP-oracle in lower rank, our work imply the exponentially faster provable algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ .



Figure: Runtime T as a function of approximation factor f for f-SVP. The y-axis is  $\log_2(T)/n$ , and the x-axis is  $\log_n f$ .

# Impact 2: the fastest heuristic algorithm

- BDGL heuristic sieving algorithm solves SVP exactly in rank k with 2<sup>0.292k</sup>-time.<sup>8</sup>
- ★ By using BDGL algorithm as SVP-oracle in lower rank, our work imply the exponentially faster heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ :
- $\Rightarrow$  Security estimates of lattice-based cryptosystems.

Table: Heuristic algorithms for approximating SVP.

| Approx-factor                      | Previous best                          |                 | This work |
|------------------------------------|----------------------------------------|-----------------|-----------|
| $1 \le f \le \sqrt{n}$             | 2 <sup>0.292n</sup>                    | [BDGL16]        |           |
| $n^c$ for $c \in [\frac{1}{2}, 1)$ |                                        | [BDGL16]        |           |
| $n^c$ for $c \ge 1$                | 2 <sup>0.292n</sup> / <sub>[c+1]</sub> | [GN08]+[BDGL16] |           |

<sup>&</sup>lt;sup>8</sup>A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. SODA 2016.

# Impact 2: the fastest heuristic algorithm

- BDGL heuristic sieving algorithm solves SVP exactly in rank k with 2<sup>0.292k</sup>-time.<sup>8</sup>
- ★ By using BDGL algorithm as SVP-oracle in lower rank, our work imply the exponentially faster heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ :
- ⇒ Security estimates of lattice-based cryptosystems.

Table: Heuristic algorithms for approximating SVP.

| Approx-factor                      | Previous best                            |                 | This work                |
|------------------------------------|------------------------------------------|-----------------|--------------------------|
| $1 \le f \le \sqrt{n}$             | 2 <sup>0.292n</sup>                      | [BDGL16]        | _                        |
| $n^c$ for $c \in [\frac{1}{2}, 1)$ | 2 <sup>0.292n</sup>                      | [BDGL16]        | $2^{\frac{0.292n}{2c}}$  |
| $n^c$ for $c \ge 1$                | $2^{\frac{0.292n}{\lfloor c+1 \rfloor}}$ | [GN08]+[BDGL16] | $2^{\frac{0.292n}{c+1}}$ |

<sup>&</sup>lt;sup>8</sup>A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. SODA 2016. ■

- Background on lattice reduction
- Our results
- Our technical ideas and argument
- Conclusion and open problems

#### GSO

Given a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , define the orthogonal projection:

$$\pi_i : \operatorname{span}(\mathbf{b}_1, \dots, \mathbf{b}_n) \mapsto \operatorname{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})^{\perp}.$$

- The vectors  $\mathbf{b}_{i}^{*} = \pi_{i}(\mathbf{b}_{i})$  for i = 1, ..., n are the Gram-Schmidt vectors of B.
- The projected block  $B_{[i,j]} = (\pi_i(\mathbf{b}_i), \pi_i(\mathbf{b}_{i+1}), \dots, \pi_i(\mathbf{b}_i)).$

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f*-*HSVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- *B* is *HKZ-reduced* if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- Hermite's constant  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices  $L$ .

• Fact: Any  $\delta$ -SVP-oracle in rank n is also a

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f*-*HSVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- Hermite's constant  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max rac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices  $L$ .

- Fact: Any  $\delta$ -SVP-oracle in rank n is also a
  - $\delta_{*}/\gamma_{n}$ -(D)HSVP-oracle in rank n.

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f*-*HSVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- Hermite's constant  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max rac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices  $L$ .

• Fact: Any  $\delta$ -SVP-oracle in rank n is also a

$$\delta \sqrt{N}$$
-(D)HSVP-oracle in rank n

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f*-*HSVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- Hermite's constant  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max rac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices $L$ .

• Fact: Any  $\delta$ -SVP-oracle in rank n is also a

 $\delta = \sqrt{2}$  (D)HSVP-oracle in rank n

### SVP reduction and its extensions

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- B is f-HSVP-reduced if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- B is f-DHSVP-reduced if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if B<sub>[i,n]</sub> is SVP-reduced for all

### SVP reduction and its extensions

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f-HSVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- *B* is *HKZ-reduced* if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- Hermite's constant  $\gamma_n$  in dimension n is the maximum
  - $\gamma_n := \max rac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$  over all n-rank lattices L
- Fact: Any  $\delta$ -SVP-oracle in rank n is also a
  - $\delta$ .  $\sqrt{2}$ -(D)HSVP-oracle in rank n

### SVP reduction and its extensions

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f-HSVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- ullet Hermite's constant  $\gamma_n$  in dimension n is the maximum
  - $\gamma_n := \max \frac{A(L)}{\operatorname{vol}(L)^{2/n}}$  over all n-rank latticesL
  - Fact: Any δ-SVP-oracle in rank n is also a
     δ √ω-(D)HSVP-oracle in rank n

### SVP reduction and its extensions

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f-HSVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- ullet Hermite's constant  $\gamma_n$  in dimension n is the maximum
  - $\gamma_n := \max \frac{A(L)}{\operatorname{vol}(L)^{2/n}}$  over all n-rank latticesL
  - Fact: Any δ-SVP-oracle in rank n is also a
     δ √ω-(D)HSVP-oracle in rank n

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- *B* is *SVP-reduced* if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f-SVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f-HSVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f*-DHSVP-reduced if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- *Hermite's constant*  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices  $L$ .

• Fact: Any  $\delta$ -SVP-oracle in rank n is also a  $\delta \sqrt{2}$ -(D)HSVP-oracle in rank n

#### SVP reduction and its extensions

Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a basis of a lattice L and  $1 \le \delta \in \mathbb{R}$ .

- B is SVP-reduced if  $\|\mathbf{b}_1\| = \lambda_1(L)$ .
- *B* is *f*-*SVP*-reduced if  $\|\mathbf{b}_1\| \le f \cdot \lambda_1(L)$ .
- *B* is *f-DSVP-reduced* if  $1/\|\mathbf{b}_n^*\| \le f \cdot \lambda_1$  (the dual lattice of *L*).
- *B* is *f-HSVP-reduced* if  $\|\mathbf{b}_1\| \le f \cdot \operatorname{vol}(L)^{1/n}$ .
- *B* is *f-DHSVP-reduced* if  $vol(L)^{1/n} \le f \cdot ||\mathbf{b}_n^*||$ .
- B is HKZ-reduced if  $B_{[i,n]}$  is SVP-reduced for all i = 1, ..., n.
- *Hermite's constant*  $\gamma_n$  in dimension n is the maximum

$$\gamma_n := \max \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$$
 over all n-rank lattices  $L$ .

• Fact: Any  $\delta$ -SVP-oracle in rank n is also a  $\delta \sqrt{\gamma_n}$ -(D)HSVP-oracle in rank n.

### Warning

- It is trivial to replace exact SVP-oracle with  $\delta$ -SVP-oracle in our arguments.
- Argue the case  $\delta = 1$ .

### Warning

- It is trivial to replace exact SVP-oracle with  $\delta$ -SVP-oracle in our arguments.
- Argue the case  $\delta = 1$ .

### Warning

- It is trivial to replace exact SVP-oracle with  $\delta$ -SVP-oracle in our arguments.
- Argue the case  $\delta = 1$ .

Given a lattice L of rank n and a SVP-oracle in rank k with k < n < 2k - 1.

• Goal: Find a nonzero vector  $\mathbf{b} \in L$  s.t.

$$\|\mathbf{b}\| \lesssim \gamma_k^{\frac{n}{2k}} \cdot \lambda_1(L).$$

• Idea: If finding a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of L s.t.  $vol(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ , then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \cdot \operatorname{vol}(\mathbf{b}_1,\ldots,\mathbf{b}_k)^{1/k}.$$

• Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

Given a lattice L of rank n and a SVP-oracle in rank k with k < n < 2k - 1.

• Goal: Find a nonzero vector  $\mathbf{b} \in L$  s.t.

$$\|\mathbf{b}\| \lesssim \gamma_k^{\frac{n}{2k}} \cdot \lambda_1(L).$$

• Idea: If finding a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of L s.t.  $vol(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ , then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \cdot \operatorname{vol}(\mathbf{b}_1,\ldots,\mathbf{b}_k)^{1/k}.$$

• Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

Given a lattice L of rank n and a SVP-oracle in rank k with k < n < 2k - 1.

• Goal: Find a nonzero vector  $\mathbf{b} \in L$  s.t.

$$\|\mathbf{b}\| \lesssim \gamma_k^{\frac{n}{2k}} \cdot \lambda_1(L).$$

• Idea: If finding a basis  $(\mathbf{b}_1, \dots, \mathbf{b}_n)$  of L s.t.  $vol(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ , then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \cdot \operatorname{vol}(\mathbf{b}_1,\ldots,\mathbf{b}_k)^{1/k}.$$

• Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice l
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $\|\mathbf{b}_1\| = \lambda_1(L)$ ; • If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $\|\mathbf{b}_{k+1}^*\| \le \lambda_1(L)$  implies vol( $\mathbf{b}_k$ ) is small wrt  $\lambda_1(L)$

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice L.
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $||\mathbf{b}_1|| = \lambda_1(L)$ ; • If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $||\mathbf{b}_{k+1}^*|| \le \lambda_1(L)$  implies vol( $\mathbf{b}_1, \dots, \mathbf{b}_k$ ) is small w.r.t.  $\lambda_1(L)$ .

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice L.
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $\|\mathbf{b}_1\| = \lambda_1(L)$ ; • If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $\|\mathbf{b}_{k+1}^*\| \le \lambda_1(L)$  implies

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice l

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice L.
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, ..., \mathbf{b}_k)))$ , then  $||\mathbf{b}_1|| = \lambda_1(L)$ ;
  - If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k))$ , then  $\|\mathbf{b}_{k+1}^*\| \le \lambda_1(L)$  implies:  $\operatorname{vol}(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ .

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice L.
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k)))$ , then  $||\mathbf{b}_1|| = \lambda_1(L)$ ;
  - If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k))$ , then  $\|\mathbf{b}_{k+1}^*\| \le \lambda_1(L)$  implies:  $vol(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ .

Issue: How to efficiently find a basis whose first k basis vectors has small volume w.r.t  $\lambda_1(L)$ ?

- Definition: A basis **B** of rank 2k is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions:  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
  - Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.
- Observation: Let  $(\mathbf{b}_1, \dots, \mathbf{b}_{2k})$  be a  $(\varepsilon, k)$ -slide-reduced basis of a lattice L.
  - If  $\lambda_1(L) = \lambda_1(L((\mathbf{b}_1, ..., \mathbf{b}_k)))$ , then  $||\mathbf{b}_1|| = \lambda_1(L)$ ;
  - If  $\lambda_1(L) < \lambda_1(L((\mathbf{b}_1, \dots, \mathbf{b}_k))$ , then  $\|\mathbf{b}_{k+1}^*\| \le \lambda_1(L)$  implies:  $\operatorname{vol}(\mathbf{b}_1, \dots, \mathbf{b}_k)$  is small w.r.t.  $\lambda_1(L)$ .

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction

Let n = k + q with  $0 \le q \le k - 1$  and  $k \ge 2$ .

- Definition: A basis B of rank n is k-slide-reduced if
  - STATE OF THE STATE
- Property: If B = (b<sub>1</sub>,...,b<sub>n</sub>) be a k-slide-reduced basis of a lattice L, then

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction

Let n = k + q with  $0 \le q \le k - 1$  and  $k \ge 2$ .

• Definition: A basis **B** of rank n is k-silde-reduced in

$$B_{[1,q+1]}$$
 is

 Property: If B = (b<sub>1</sub>,...,b<sub>n</sub>) be a k-slide-reduced basis of a lattice L, then

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction

Let n = k + q with  $0 \le q \le k - 1$  and  $k \ge 2$ .

- Definition: A basis B of rank n is k-slide-reduced if
   Primal conditions: for all i = q + 1,...,k, B<sub>[i,n]</sub> is SVP-reduced.
- Property: If  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a k-slide-reduced basis of a lattice L, then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \gamma_{q+1}^{\frac{q+1}{2k}} \lambda_1(L)$$

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction

Let n = k + q with  $0 \le q \le k - 1$  and  $k \ge 2$ .

- Definition: A basis B of rank n is k-slide-reduced if
  - Primal conditions: for all i = q + 1, ..., k,  $B_{[i,n]}$  is SVP-reduced.
  - Dual condition:  $B_{[1,q+1]}$  is  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduced.
- Property: If  $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a k-slide-reduced basis of a lattice L, then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \gamma_{q+1}^{\frac{q+1}{2k}} \lambda_1(L).$$

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction

Let n = k + q with 0 < q < k - 1 and k > 2.

- Definition: A basis B of rank n is k-slide-reduced if
  - Primal conditions: for all i = q + 1, ..., k,  $B_{[i,n]}$  is SVP-reduced.
  - Dual condition:  $B_{[1,q+1]}$  is  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduced.
- Property: If B = (b<sub>1</sub>,...,b<sub>n</sub>) be a k-slide-reduced basis of a lattice L, then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \gamma_{q+1}^{\frac{q+1}{2k}} \lambda_1(L).$$

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction

Let n = k + q with  $0 \le q \le k - 1$  and  $k \ge 2$ .

- Definition: A basis B of rank n is k-slide-reduced if
  - Primal conditions: for all i = q + 1, ..., k,  $B_{[i,n]}$  is SVP-reduced.
  - Dual condition:  $B_{[1,q+1]}$  is  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduced.
- Property: If **B** = (**b**<sub>1</sub>,...,**b**<sub>n</sub>) be a *k*-slide-reduced basis of a lattice *L*, then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \gamma_{q+1}^{\frac{q+1}{2k}} \lambda_1(L).$$

GN-slide-reduction in case n = 2k: A basis B of rank 2k is  $(\varepsilon, k)$ -slide-reduced if

- Primal conditions: both  $B_{[1,k]}$  and  $B_{[k+1,2k]}$  are HKZ-reduced.
- Dual condition:  $B_{[2,k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction

Let n = k + q with 0 < q < k - 1 and k > 2.

- Definition: A basis **B** of rank *n* is *k-slide-reduced* if
  - Primal conditions: for all i = q + 1, ..., k,  $B_{[i,n]}$  is SVP-reduced.
  - Dual condition:  $B_{[1,q+1]}$  is  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduced.
- Property: If **B** = (**b**<sub>1</sub>,..., **b**<sub>n</sub>) be a k-slide-reduced basis of a lattice L, then

$$\lambda_1(L(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq \sqrt{\gamma_k} \gamma_{q+1}^{\frac{q+1}{2k}} \lambda_1(L).$$

### **Algorithm 1** Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: if  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced then
- 4. end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### **Algorithm 2** Approximating SVP with sublinear factor

**Input:** Blocksize  $k \geq 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \leq q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{iq+1,i}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)}\gamma_{q+1}$ -DHSVP-reduced **then**
- 1: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### **Algorithm 3** Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,a]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[a+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### Algorithm 4 Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,a]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### **Algorithm 5** Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### Algorithm 6 Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i=q+2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce B<sub>[1,k</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### Algorithm 7 Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce  $B_{11.k1}$
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### Algorithm 8 Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce B<sub>[1,k]</sub>
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

### Algorithm 9 Approximating SVP with sublinear factor

**Input:** Blocksize  $k \ge 2$ , termination factor  $\varepsilon > 0$ , a basis B of an integer lattice L of rank n = k + q where  $1 \le q < k$ , and an SVP-oracle in rank k.

Output: A nonzero vector of L.

- 1: **while**  $vol(\mathbf{B}_{[1,q]})$  is modified by the loop **do**
- 2: SVP-reduce  $B_{[q+1,n]}$
- 3: **if**  $B_{[1,q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_{q+1}}$ -DHSVP-reduced **then**  $\sqrt{\gamma_{q+1}}$ -DHSVP-reduce  $B_{[1,q+1]}$
- 4: end while
- 5: **for** i = q + 2 to k **do** SVP-reduce  $B_{[i,n]}$
- 6: SVP-reduce  $B_{[1,k]}$
- 7: return The first basis vector.

$$\|\mathbf{b}\| \leq \sqrt{\gamma_k} \left( (1+\varepsilon)\gamma_{q+1} \right)^{\frac{q+1}{2k}} \lambda_1(L).$$

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-\kappa}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds
- Idea: Wrap "the extra q vectors" and "its nearby k vectors' into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.  $\|\mathbf{c}_1\| \lesssim \gamma_k^{\frac{m-1}{2(k-1)}} \cdot \operatorname{vol}(\Lambda)^{1/m}$ ?  $\iff$  DBKZ

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- **2** Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors' into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1,\ldots,\mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m\in[k,2k]$  s.t.  $\|\mathbf{c}_1\|\lesssim \gamma_k^{\frac{m-1}{2(k-1)}}\cdot \mathrm{vol}(\Lambda)^{1/m}? \iff \mathsf{DBKZ}_{\{\square, \dots, \square, m\}}$

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- **2** Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors' into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1,\ldots,\mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m\in[k,2k]$  s.t.  $\|\mathbf{c}_1\|\lesssim \gamma_k^{\frac{m-1}{2(k-1)}}\cdot \mathrm{vol}(\Lambda)^{1/m}? \iff \mathsf{DBKZ}_{\{\square, \dots, \square, m\}}$

- Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- 2 Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1 + \varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- $\|\mathbf{c}_1\| \lesssim \gamma_k^{2(k-1)} \cdot \mathrm{vol}(\Lambda)^{1/m}? \quad \Leftarrow \quad \mathsf{DBKZ}_{} \quad \text{on the position}$

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors" into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- **2** Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors" into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.  $\|\mathbf{c}_1\| \leq \gamma_k^{\frac{m-1}{2(k-1)}} \cdot \operatorname{vol}(\Lambda)^{1/m}$ ?

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- **2** Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors" into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.

$$\|\mathbf{c}_1\| \lesssim \gamma_k^{\frac{m-1}{2(k-1)}} \cdot \operatorname{vol}(\Lambda)^{1/m}$$
?

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- **2** Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors" into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.

$$\|\mathbf{c}_1\| \lesssim \gamma_k^{\frac{m-1}{2(k-1)}} \cdot \operatorname{vol}(\Lambda)^{1/m}$$
?

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

$$\Rightarrow \|\mathbf{b}_1\| \le ((1+\varepsilon)\gamma_k)^{\frac{n-k}{k-1}} \cdot \lambda_1(L). \tag{1}$$

- Goal: Extend GN-slide-reduction into the case  $n = pk + q \ge 2k$  with  $0 \le q < k$  s.t. Eq. (1) still holds.
- Idea: Wrap "the extra q vectors" and "its nearby k vectors" into a bigger block of size k + q.
- Issue: With SVP-oracle in rank k, how to efficiently find a basis  $(\mathbf{c}_1, \dots, \mathbf{c}_m)$  for any lattice  $\Lambda$  of rank  $m \in [k, 2k]$  s.t.

$$\|\mathbf{c}_1\| \lesssim \gamma_k^{\frac{m-1}{2(k-1)}} \cdot \operatorname{vol}(\Lambda)^{1/m}$$
?  $\Leftarrow$  DBKZ

### Algorithm 10 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$ 
  - 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{1i,i+k-11}$
  - 4: end for
  - 5: SVP-reduce  $B_{[1,k]}$ .
  - 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 11 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$ 
  - 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[i,i+k-1]}$
  - 4: end for
  - 5: SVP-reduce  $B_{[1,k]}$ .
  - 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 12 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[i,i+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 13 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[i,j+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 14 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[j,j+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 15 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[j,j+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 16 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[j,j+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

### Algorithm 17 The Micciancio-Walter DBKZ algorithm

**Input:** Block size  $k \ge 2$ , Integer N, a basis  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ , and an SVP oracle in rank k.

**Output:** A new basis of L(B).

- 1: for  $\ell = 1$  to N do
- 2: **for** i = 1 to n k **do** SVP-reduce  $B_{[i,i+k-1]}$
- 3: **for** j = n k + 1 to 1 **do** DSVP-reduce  $B_{[j,j+k-1]}$
- 4: end for
- 5: SVP-reduce  $B_{[1,k]}$ .
- 6: return B.

$$\|\mathbf{b}_1\| \leq (1+\varepsilon) \cdot \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(B)^{1/n}.$$

Observation: Twin in both DBKZ and GN-slide-reduction.

#### **Algorithm 18** DBKZ with n = k + 1

- 1: **for**  $\ell = 1$  **to** *N* **do**
- 2: SVP-reduce  $B_{\text{Id}}$   $k_1$
- 3: DSVP-reduce  $B_{[2,k+1]}$
- 4: end for
- 5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

#### **VS**

- ① Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

#### **Algorithm 19** DBKZ with n = k + 1

- 1: for  $\ell = 1$  to N do
- 2: SVP-reduce  $B_{[1,k]}$
- 3: DSVP-reduce  $B_{[2,k+1]}$
- 4: end for
- 5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

#### VS

- ① Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

### **Algorithm 20** DBKZ with n = k + 1

- 1: for  $\ell = 1$  to N do
- 2: SVP-reduce  $B_{[1,k]}$
- 3: DSVP-reduce  $B_{[2,k+1]}$
- 4: end for
- 5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

#### VS

- ① Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1, ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

### **Algorithm 21** DBKZ with n = k + 1

- 1: for  $\ell = 1$  to N do
- 2: SVP-reduce  $B_{[1,k]}$
- 3: DSVP-reduce  $B_{[2,k+1]}$
- 4: end for
- 5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

#### VS

 $B_{[ik,ik+k+1]}$  in GN-slide-reduction: A basis B of rank

- $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if
  - Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

#### **Algorithm 22** DBKZ with n = k + 1

- 1: for  $\ell = 1$  to N do
- 2: SVP-reduce  $B_{[1,k]}$
- 3: DSVP-reduce  $B_{[2,k+1]}$
- 4: end for
- 5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .
- 6: **return** *B*.

#### VS

 $B_{[ik,ik+k+1]}$  in GN-slide-reduction: A basis B of rank

- $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if
  - ① Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
  - 2 Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

#### **Algorithm 23** DBKZ with n = k + 1

```
1: for \ell = 1 to N do
```

2: SVP-reduce  $B_{[1,k]}$ 

3: DSVP-reduce  $B_{[2,k+1]}$ 

4: end for

5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .

6: **return** *B*.

#### VS

 $B_{[ik,ik+k+1]}$  in GN-slide-reduction: A basis B of rank

 $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- ① Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- 2 Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

### **Algorithm 24** DBKZ with n = k + 1

```
1: for \ell = 1 to N do
```

2: SVP-reduce  $B_{[1,k]}$ 

3: DSVP-reduce  $B_{[2,k+1]}$ 

4: end for

5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .

6: **return** *B*.

#### ٧S

- Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- 2 Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

Observation: Twin in both DBKZ and GN-slide-reduction.

#### **Algorithm 25** DBKZ with n = k + 1

```
1: for \ell = 1 to N do
```

2: SVP-reduce  $B_{[1,k]}$ 

3. DSVP-reduce  $B_{[2,k+1]}$ 

4: end for

5:  $\delta$ -SVP-reduce  $B_{[1,k]}$ .

6: **return** *B*.

#### ٧S

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- 2 Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

- Formalization: A basis B of rank d + 1 is f-twin-reduced if B<sub>[1,d]</sub> is f-HSVP-reduced and B<sub>[2,d+1]</sub> is f-DHSVP-reduced.
- Fact: If  $B = (\mathbf{b}_1, \dots, \mathbf{b}_{d+1})$  is f-twin-reduced, then

$$\|\mathbf{b}_1\| \le f^{2d/(d-1)}\|\mathbf{b}_{d+1}^*\|.$$

Further, 
$$f^{-d/(d-1)} \|\mathbf{b}_1\| \le \operatorname{vol}(B)^{1/(d+1)} \le f^{d/(d-1)} \|\mathbf{b}_{d+1}^*\|$$
.

• Instantiation: Every block  $B_{[ik+1,jk+1]}$  for any i < j of a GN-slide-reduced basis is  $\gamma_k^{\frac{(j-i)k-1}{2(k-1)}}$ -twin-reduced.

- Formalization: A basis B of rank d+1 is f-twin-reduced if  $B_{[1,d]}$  is f-HSVP-reduced and  $B_{[2,d+1]}$  is f-DHSVP-reduced.
- Fact: If  $B = (\mathbf{b}_1, \dots, \mathbf{b}_{d+1})$  is f-twin-reduced, then

$$\|\mathbf{b}_1\| \le f^{2d/(d-1)}\|\mathbf{b}_{d+1}^*\|.$$

Further, 
$$f^{-d/(d-1)} \|\mathbf{b}_1\| \le \operatorname{vol}(B)^{1/(d+1)} \le f^{d/(d-1)} \|\mathbf{b}_{d+1}^*\|$$
.

• Instantiation: Every block  $B_{[ik+1,jk+1]}$  for any i < j of a GN-slide-reduced basis is  $\gamma_k^{\frac{(j-i)k-1}{2(k-1)}}$ -twin-reduced.

- Formalization: A basis B of rank d+1 is f-twin-reduced if  $B_{[1,d]}$  is f-HSVP-reduced and  $B_{[2,d+1]}$  is f-DHSVP-reduced.
- Fact: If  $B = (\mathbf{b}_1, \dots, \mathbf{b}_{d+1})$  is f-twin-reduced, then

$$\|\mathbf{b}_1\| \le f^{2d/(d-1)}\|\mathbf{b}_{d+1}^*\|.$$

Further, 
$$f^{-d/(d-1)} \|\mathbf{b}_1\| \le \operatorname{vol}(B)^{1/(d+1)} \le f^{d/(d-1)} \|\mathbf{b}_{d+1}^*\|.$$

• Instantiation: Every block  $B_{[ik+1,jk+1]}$  for any i < j of a GN-slide-reduced basis is  $\gamma_k^{\frac{(j-i)k-1}{2(k-1)}}$ -twin-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction for n > 2k

- Twin condition:  $B_{[1,k+q+1]}$  is  $\gamma_{\nu}^{2(k-1)}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced:
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_{\nu}}$ -DHSVP-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction for n > 2k

- Twin condition:  $B_{[1,k+\sigma+1]}$  is  $\gamma_k^{2^{(k-1)}}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced;
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_k}$ -DHSVP-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction for n > 2k

- Twin condition:  $B_{[1,k+q+1]}$  is  $\gamma_k^{\frac{2(k-1)}{2(k-1)}}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced;
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_k}$ -DHSVP-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction for $n \ge 2k$

- Twin condition:  $B_{[1,k+q+1]}$  is  $\gamma_k^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced:
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_k}$ -DHSVP-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

### Our variant of slide-reduction for $n \ge 2k$

- Twin condition:  $B_{[1,k+q+1]}$  is  $\gamma_k^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced:
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_k}$ -DHSVP-reduced.

GN-slide-reduction in case n = pk: A basis B of rank  $n = pk \ge 2k$  is  $(\varepsilon, k)$ -slide-reduced if

- **1** Primal conditions: for all  $i \in [0; p-1]$ ,  $B_{[ik+1,ik+k]}$  is HKZ-reduced.
- ② Dual condition: for all  $i \in [0; p-2]$ ,  $B_{[ik+2,ik+k+1]}$  is  $(1+\varepsilon)$ -DSVP-reduced.

#### Our variant of slide-reduction for n > 2k

- Twin condition:  $B_{[1,k+q+1]}$  is  $\gamma_k^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced;
- Primal conditions: for all i = 1, ..., k,  $B_{[ik+q+1,(i+1)k+q]}$  is SVP-reduced:
- Dual condition: for all  $i \in [1, p-2]$ ,  $B_{[ik+q+2,(i+1)k+q+1]}$  is  $\sqrt{\gamma_k}$ -DHSVP-reduced.

#### Our variant of slide-reduction for n > 2k

Let n = pk + q with  $0 \le q \le k - 1$  and  $p, k \ge 2$ .

- Intuition: A basis B of rank n is k-slide-reduced if  $B_{[1,k+q+1]}$  is  $\gamma_k^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced and  $B_{[k+q+1,n]}$  is k-GN-slide-reduced;
- Property: Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a k-slide-reduced basis of a lattice L. Then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(L)^{1/n}.$$

Further, if either  $\lambda_1(L(B_{[1,k+q]})) > \lambda_1(L)$  or  $B_{[1,k+q]}$  is  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-\kappa}{k-1}} \lambda_1(L)$$

#### Our variant of slide-reduction for n > 2k

Let n = pk + q with  $0 \le q \le k - 1$  and  $p, k \ge 2$ .

- Intuition: A basis B of rank n is k-slide-reduced if  $B_{[1,k+q+1]}$ 
  - is  $\gamma_k^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced and  $B_{[k+q+1,n]}$  is k-GN-slide-reduced;
- Property: Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a k-slide-reduced basis of a lattice L. Then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(L)^{1/n}.$$

Further, if either  $\lambda_1(L(B_{[1,k+q]})) > \lambda_1(L)$  or  $B_{[1,k+q]}$  is  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-\kappa}{k-1}} \lambda_1(L)$$

# Approximating SVP with (at least) polynomial factor

#### Our variant of slide-reduction for n > 2k

Let n = pk + q with  $0 \le q \le k - 1$  and  $p, k \ge 2$ .

- Intuition: A basis B of rank n is k-slide-reduced if  $B_{[1,k+q+1]}$  is  $\gamma_{k}^{\frac{k+q-1}{2(k-1)}}$ -twin-reduced and  $B_{[k+q+1,n]}$  is
  - k-GN-slide-reduced:
- Property: Let  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  be a k-slide-reduced basis of a lattice L. Then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-1}{2(k-1)}} \operatorname{vol}(L)^{1/n}.$$

Further, if either  $\lambda_1(L(B_{[1,k+q]}))>\lambda_1(L)$  or  $B_{[1,k+q]}$  is  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced, then

$$\|\mathbf{b}_1\| \le \gamma_k^{\frac{n-k}{k-1}} \lambda_1(L).$$

#### **Algorithm 26** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{0,k\to d}$  using DBKZ for  $\eta:=\gamma_{\nu}^{\frac{2(k-1)}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: if  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced then  $\sqrt{1 + \varepsilon\eta}$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[k+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[k+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+q]} \leftarrow C$
- 9: return B.

## **Algorithm 27** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{0,k+\eta}$  using DBKZ for  $\eta:=\gamma_{\nu}^{\frac{2(k-1)}{2(k-1)}}$
- 3: for i=1 to p-1 do SVP-reduce  $B_{[ik+q+1,(i+1)k+q)}$
- 4: if  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced then  $\sqrt{1 + \varepsilon\eta}$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: if  $B_{[k+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced forms ome  $i\in[1,p-2]$  then  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[k+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

# **Algorithm 28** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

**Output:** An (almost) k-slide-reduced basis of L(B).

1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do

- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

# **Algorithm 29** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\frac{n-1}{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

#### **Algorithm 30** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1, p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta := \gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

# **Algorithm 31** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $\operatorname{vol}(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

## **Algorithm 32** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $\operatorname{vol}(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\overline{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

#### **Algorithm 33** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1, p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\frac{k-1}{k-1}}$ -SVP-reduced basis  $C = (\mathbf{c}_1, \dots, \mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+\sigma]} \leftarrow C$
- 9: return B.

## **Algorithm 34** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced basis  $C=(\mathbf{c}_1,\ldots,\mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: if  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  then  $B_{[1,k+q]} \leftarrow C$
- 9: return B

# **Algorithm 35** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $\operatorname{vol}(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1,p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced basis  $C=(\mathbf{c}_1,\ldots,\mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: **if**  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  **then**  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

## **Algorithm 36** The slide reduction algorithm for $n \ge 2k$

**Input:** Blocksize k, termination factor  $\varepsilon$ , a basis B of rank n = pk + q where  $0 \le q < k$ , and an SVP-oracle in rank k.

- 1: while  $vol(B_{[1,ik+q]})$  is modified for some  $i \in [1,p-1]$  do
- 2:  $(1+\varepsilon)\eta$ -HSVP-reduce  $B_{[1,k+q]}$  using DBKZ for  $\eta:=\gamma_k^{\frac{k+q-1}{2(k-1)}}$
- 3: **for** i = 1 to p 1 **do** SVP-reduce  $B_{[ik+q+1,(i+1)k+q]}$
- 4: **if**  $B_{[2,k+q+1]}$  is not  $(1 + \varepsilon)\eta$ -DHSVP-reduced **then**  $\sqrt{1 + \varepsilon}\eta$ -DHSVP-reduce  $B_{[2,k+q+1]}$  using DBKZ
- 5: **if**  $B_{[ik+q+2,(i+1)k+q+1]}$  is not  $\sqrt{(1+\varepsilon)\gamma_k}$ -DHSVP-reduced for some  $i \in [1, p-2]$  **then**  $\sqrt{\gamma_k}$ -DHSVP-reduce  $B_{[ik+q+2,(i+1)k+q+1]}$
- 6: end while
- 7: Find a  $\gamma_k^{\frac{n-k}{k-1}}$ -SVP-reduced basis  $C=(\mathbf{c}_1,\ldots,\mathbf{c}_{k+q})$  for the sublattice  $B_{[1,k+q]}$  using our first algorithm
- 8: **if**  $\|\mathbf{c}_1\| < \|\mathbf{b}_1\|$  **then**  $B_{[1,k+a]} \leftarrow C$
- 9: return B.

# Approximating SVP with (at least) polynomial factor

★ Th: Our slide reduction algorithm for  $n \ge 2k$  terminates within  $\operatorname{poly}(B_{\operatorname{input}}, 1/\varepsilon)$  calls to SVP-oracle in rank k, and outputs a basis  $(\mathbf{b}_1, \ldots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\begin{aligned} \|\mathbf{b}_{1}\| &\leq (1+\varepsilon)^{O(1)} ((1+\varepsilon)\gamma_{k})^{\frac{n-1}{2(k-1)}} \text{vol}(L)^{1/n}, \\ \|\mathbf{b}_{1}\| &\leq (1+\varepsilon)^{O(1)} ((1+\varepsilon)\gamma_{k})^{\frac{n-k}{k-1}} \lambda_{1}(L). \end{aligned}$$

 It includes both GN-slide-reduction and DBKZ as special cases.

# Approximating SVP with (at least) polynomial factor

★ Th: Our slide reduction algorithm for  $n \ge 2k$  terminates within  $\operatorname{poly}(B_{\operatorname{input}}, 1/\varepsilon)$  calls to SVP-oracle in rank k, and outputs a basis  $(\mathbf{b}_1, \ldots, \mathbf{b}_n)$  of the input lattice L s.t.

$$\|\mathbf{b}_{1}\| \leq (1+\varepsilon)^{O(1)} ((1+\varepsilon)\gamma_{k})^{\frac{n-1}{2(k-1)}} \operatorname{vol}(L)^{1/n}, \|\mathbf{b}_{1}\| \leq (1+\varepsilon)^{O(1)} ((1+\varepsilon)\gamma_{k})^{\frac{n-k}{k-1}} \lambda_{1}(L).$$

 It includes both GN-slide-reduction and DBKZ as special cases.

- Background on lattice reduction
- Our results
- Our technical ideas and argument
- Conclusion and open problems

#### Conclusion

The best polynomial-time lattice reduction in theory, including the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} \le f \le n^{1-\varepsilon}$ :

- The significantly exponentially faster provable/heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ ;
  - ⇒ The regime most relevant for cryptography.
  - $\Rightarrow$  Security estimates of lattice-based cryptosystems.

| n <sup>0.99</sup> -SVP | Provable: $2^{0.802n} \rightarrow 2^{0.405n}$  |
|------------------------|------------------------------------------------|
|                        | Heuristic: $2^{0.292n} \to 2^{0.148n}$         |
| n <sup>1.99</sup> -SVP | Provable: $2^{0.401n} \rightarrow 2^{0.269n}$  |
|                        | Heuristic: $2^{0.146n} \rightarrow 2^{0.098n}$ |

For solving n<sup>c</sup> ∈ [½,O(1)]-SVP, it is more efficient to run blockwise lattice reduction with an approximate rather than exact SVP-oracle in low ranks.

#### Conclusion

The best polynomial-time lattice reduction in theory, including the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} \le f \le n^{1-\varepsilon}$ :

- The significantly exponentially faster provable/heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ ;
  - ⇒ The regime most relevant for cryptography.
  - $\Rightarrow$  Security estimates of lattice-based cryptosystems.

| n <sup>0.99</sup> -SVP | Provable: $2^{0.802n} \rightarrow 2^{0.405n}$  |
|------------------------|------------------------------------------------|
|                        | Heuristic: $2^{0.292n} \to 2^{0.148n}$         |
| n <sup>1.99</sup> -SVP | Provable: $2^{0.401n} \rightarrow 2^{0.269n}$  |
|                        | Heuristic: $2^{0.146n} \rightarrow 2^{0.098n}$ |

For solving n<sup>c</sup> ∈ [½,O(1)]-SVP, it is more efficient to run blockwise lattice reduction with an approximate rather than exact SVP-oracle in low ranks.

#### Conclusion

The best polynomial-time lattice reduction in theory, including the first non-trivial algorithm for approximating SVP with sublinear factors  $n^{\frac{1}{2}} \le f \le n^{1-\varepsilon}$ :

- The significantly exponentially faster provable/heuristic algorithm for approximating SVP with factor  $n^{1/2} \le f \le n^{O(1)}$ ;
  - ⇒ The regime most relevant for cryptography.
  - ⇒ Security estimates of lattice-based cryptosystems.

| n <sup>0.99</sup> -SVP | Provable: $2^{0.802n} \rightarrow 2^{0.405n}$  |
|------------------------|------------------------------------------------|
|                        | Heuristic: $2^{0.292n} \rightarrow 2^{0.148n}$ |
| n <sup>1.99</sup> -SVP | Provable: $2^{0.401n} \rightarrow 2^{0.269n}$  |
|                        | Heuristic: $2^{0.146n} \rightarrow 2^{0.098n}$ |

• For solving  $n^c \in [\frac{1}{2}, O(1)]$ -SVP, it is more efficient to run blockwise lattice reduction with an approximate rather than exact SVP-oracle in low ranks.

- Q1 Can we rigorously prove (without any heuristic assumption) that within polynomial calls to SVP-oracle, the (original) BKZ algorithm outputs an almost BKZ-reduced basis?

  ⇒ Can we rigorously prove that within polynomial calls to SVP-oracle, the BKZ algorithm achieves almost the same quality guarantees as that of our slide-reduction algorithm?
- Q2 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors  $n^{\varepsilon} \le f \le n^{\frac{1}{2}}$ ?
- Q3 · · · · · · · ·

- Q1 Can we rigorously prove (without any heuristic assumption) that within polynomial calls to SVP-oracle, the (original) BKZ algorithm outputs an almost BKZ-reduced basis?

  ⇒ Can we rigorously prove that within polynomial calls to SVP-oracle, the BKZ algorithm achieves almost the same quality guarantees as that of our slide-reduction algorithm?
- Q2 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors  $n^{\varepsilon} \le f \le n^{\frac{1}{2}}$ .
- Q3 · · · · · · · ·

- Q1 Can we rigorously prove (without any heuristic assumption) that within polynomial calls to SVP-oracle, the (original) BKZ algorithm outputs an almost BKZ-reduced basis?

  ⇒ Can we rigorously prove that within polynomial calls to SVP-oracle, the BKZ algorithm achieves almost the same quality guarantees as that of our slide-reduction algorithm?
- Q2 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors  $n^{\varepsilon} \le f \le n^{\frac{1}{2}}$ ?
- Q3 · · · · · · · ·

- Q1 Can we rigorously prove (without any heuristic assumption) that within polynomial calls to SVP-oracle, the (original) BKZ algorithm outputs an almost BKZ-reduced basis?

  ⇒ Can we rigorously prove that within polynomial calls to SVP-oracle, the BKZ algorithm achieves almost the same quality guarantees as that of our slide-reduction algorithm?
- Q2 Is there an non-trivial (lattice reduction) algorithm for approximating SVP with sublinear factors  $n^{\varepsilon} \le f \le n^{\frac{1}{2}}$ ?
- Q3 · · · · · · · ·

| n <sup>0.99</sup> -SVP | Provable: $2^{0.802n} \to 2^{0.405n}$          |
|------------------------|------------------------------------------------|
|                        | Heuristic: $2^{0.292n} \rightarrow 2^{0.148n}$ |
| n <sup>1.99</sup> -SVP | Provable: $2^{0.401n} \rightarrow 2^{0.269n}$  |
|                        | Heuristic: $2^{0.146n} \rightarrow 2^{0.098n}$ |

# Thank you!