This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

EP99/9284

2 0 1999

INVESTOR IN PEOPLE

EPO-DG PCT/EP 99 / 09284

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

REC'D 25 JAN 2000

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

An E

Signed Season

Dated 30 November 1999

An Executive Agency of the Department of Trade and Industry

Patents Form 1/77

Request for grant of a patent (See the notes on the back of this form. You can also get an explanatory leastet from the Patent Office to help you fill in

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1.	Your Reference	MJS/MKR/PG3606				
2.	Patent application number (The Patent office will fill in this part)	0 1 DEC 1998	9826359.3			
3.	Full name, address and postcode of the or of each applicant (underline all surnames)	GLAXO GROUP LIMITED GLAXO WELLCOME HOUSE BERKELEY AVENUE GREENFORD MIDDLESEX UB6 ONN	020E098 E408848-1 001030 P01/7700 0.00 - 9826359.3			
	Patents ADP number (if you know it)	H137870	c3			
	If the applicant is a corporate body, give the country/state of its corporation	GB				
4	Title of the invention	NOVEL RECEPTORS				
5	Name of your agent (if you know one)	MICHAEL J STOTT (SEE CONTINUA	ATION SHEET)			
	"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)	m GLAXO WELLCOME PLC GLAXO WELLCOME HOUSE, BERKELEY AVENUE GREENFORD, MIDDLESEX UB6 ONN, GB				
\bigcirc	Patents ADP number (if you know it)	133757	15003			
6.	If you are declaring priority from one or more earlier patent applications, give the country and date of filing of the or of each of these earlier applications and (if you know it) the or each application number	Country Priority application number (if you know it)	Date of Filing (day / month / year)			
7.	If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number of earlier application	Date of filing (day / month / year)			
8.	Is a statement of inventorship and of right to grant a patent required in support of this request? (Answer yes if: a) any applicant named in part 3 is not an inventor, or	YES				
	b) there is an inventor who is not named as an applicant, orc) any named applicant is a corporate body.					

See note (d))

Additional Agents (See Page 1 No. 5)

NAME(S)

Alan HESKETH

Laurence David JENKINS
William Michael DADSON

Michael ATKINSON
Karen CRAWLEY
Peter I. DOLTON
Hugh B. DAWSON
Wendy Anne FILLER
Ruth Elizabeth HACKETT
Catriona MacLeod HAMMER

Audrey HAMMETT Graham M.H. LANE

Stephanie Anne LEAROYD Helen Kaye QUILLIN Michael A REED

Marion REES

Michael John STOTT Andrew J. TEUTEN Rachel M. THORNLEY Janis Florence VOLCKMAN

ADDRESS

Glaxo Wellcome plc Glaxo Wellcome House

Berkeley Avenue

Greenford Middlesex UB6 ONN Great Britain

Novel Receptors

Field of the Invention

The present invention relates to human vanilloid receptor (hVR) proteins and to related nucleotide sequences, expression vectors, cell lines, antibodies, screening methods, compounds, methods of production and methods of treatment, as well as other related aspects.

10

15

20

25

Background of the Invention

Capsaicin, the irritant in hot peppers and a member of the vanilloid family activates a sub-group of sensory neurons: the nociceptors. These neurons transmit nociceptive and thermoceptive pain information back to pain-processing centres in the central nervous system such as the spinal cord and the brain. They are also sites for the release of pro-inflammatory mediators in the periphery (1). Nociceptors show heterogeneity in their sensitivity to capsaicin. Excitation and prolonged exposure of these neurons to capsaicin is followed by a refractory state known as desensitisation (2) when they become insensitive to capsaicin and other noxious stimuli (3). The long-term response to insensitivity could be explained by death of the nociceptors or destruction of its peripheral terminals (4). Because of the desensitisation phenomenon, capsaicin has been used therapeutically for decades as an analgesic agent for the treatment of pain in a range of disorders (5).

It has been speculated that the endogenous target for capsaicin plays an important function in the detection of painful stimuli. It has been shown by electrophysiological and biochemical studies that capsaicin induces a flux of cations in dorsal root ganglion (DRG) neurons (6,7). Because other vanilloid derivatives show responses in a dose dependent manner (8,9) a receptor is the most likely candidate to explain the mechanism. Therefore, based on indirect

human vanilloid receptor sub-types could provide targets for the development of novel analgesic agents (agonists and antagonists) and agents which may interact with other disorders.

Accordingly, it is an object of the present invention to locate and characterise human vanilloid receptors. Other objects of the present invention will become apparent from the following detailed description thereof.

10 Summary of the Invention

15

20

25

30

According to one embodiment of the present invention there is provided an isolated human vanilloid receptor (hVR) protein or a variant thereof. Preferably the hVR protein is an hVR1, hVR2 or hVR3 protein or a variant thereof. In a particularly preferred aspect of the invention the hVR protein has an amino acid sequence as shown in Figure 2.

According to another aspect of the invention there is provided a nucleotide sequence encoding a human vanilloid receptor (hVR) protein or a variant thereof, or a nucleotide sequence which is complementary thereto. Preferably the nucleotide sequence encodes an hVR1, hVR2 or hVR3 protein or variant thereof or a nucleotide sequence which is complementary thereto. Particularly preferably the nucleotide sequence is as shown in Figure 1.

According to another aspect of the invention there is provided an expression vector comprising a nucleic acid sequence as referred to above which is capable of expressing an hVR protein.

According to another aspect of the invention there is provided a stable cell line comprising an expression vector as referred to above. Preferably the call line is a modified HEK293, C40 or HeLa cell line.

thereof, under conditions suitable for obtaining expression of the hVR-protein-or variant.

Brief Description of the Figures

5

Figure 1 shows the complete nucleotide sequence of the human VR1 including the 2517 open reading frame (base 51- 2568)

Figure 2 shows the nucleotide and encoded amino acid sequence of the human VR1 sequence.

Figure 3 shows the amino acid sequence of the human VR1 gene; the shading denotes predicted trans-membrane-regions (boxed) and the ankyrine binding domains (unboxed). The predicted phosphorylation sites are underlined.

Figure 4 shows multiple alignment of the rate and human VR1 full-length amino acids sequences. The genes are described as: hVR1 for human VR1 and rVR1 for native VR1.

20

15

Figure 5 shows a slot blot hybridisation of various tissues and clones with a probe derived from the amino acid coding region of the human VR1 gene.

Figure 6 shows a multiple alignment of the amino acids sequences of the various human vanilloid receptors genes identified with the rat VR1 sequence. They are described as: hVR1 for human VR1, rVR1 for rat VR1, 3primehVR2 for the 3' end of human VR2 5primehVR2 for the 5' end of human VR2 and 3endhVR3 for the 3' end of human VR3.

Figure 7 shows the nucleotide sequence of the 5' end of hVR2.

Figure 8 shows the nucleotide sequence of the 3' end of hVR2.

Routine methods, as further explained in the subsequent experimental section, can be employed to purify and/or synthesise the receptor proteins according to the invention. Such methods are well understood by persons skilled in the art, and include techniques such as those disclosed in Sambrook, J. et al (28), the disclosure of which is included herein in its entirety by way of reference.

5

10

15

20

25

30

35

By the term "variant" what is meant throughout the specification and claims is that other peptides or proteins which retain the same essential character of the vanilloid receptor proteins for which sequence information is provided, are also intended to be included within the scope of the invention. For example, other peptides or proteins with greater than about 80%, preferably at least 90% and particularly preferably at least 95% homology with the sequences provided are considered as variants of the receptor proteins. Such variants may include the deletion, modification or addition of single amino acids or groups of amino acids within the protein sequence, as long as the peptide maintains the biological functionality of a vanilloid receptor. This biological functionality can of course be assessed by conducting binding studies with the know vanilloid modulators: capsaicin, capsazepine (12) and resiniferatoxin (11). The term "variant" does, however, exclude the rat VR1 protein which has been previously identified (15).

Human VR1 is preferentially expressed in human dorsal root ganglia (DRG) and relative to hVR2 and hVR3 has the highest sequence homology with the rat VR1. Therefore, hVR1 is likely to be the human orthologue to rat VR1. hVR2 and hVR3 are less similar to rat VR1 and are expressed in a wider range of tissues. Nucleotide sequence analysis of hVR1 reveals a 2517bp open reading frame which encodes an 839 amino acid protein (see Figures 1, 2 and 3). This deduced protein sequence is 90 % identical to the rat VR1 (15) and shares many of its characteristics such as 6 transmembrane regions with an hydrophobic stretch between transmembrane 5 and 6 and an N-terminus which contains 3 ankyrin repeat domains.

which have been modified by insertion of vectors encoding for the receptor proteins according to the invention include the mammalian HEK293T, CHO, HeLa and COS cells. Preferably the cell line selected will be one which is not only stable, but also allows for mature glycosylation and cell surface expression of the inventive receptors.

It is also possible for the receptors of the invention to be transiently expressed in a cell line or on a membrane, such as for example in a baculovirus expression system. Such systems, which are adapted to express the receptors according to the invention, are also included within the scope of the present invention.

In particular, the functional hVR protein may include hVR receptor proteins selected from hVR1, hVR2 and hVR3 and thereof or even other hVR protein subtypes or splice variants which have not yet been identified.

According to another aspect, the present invention also relates to antibodies (either polyclonal or preferably monoclonal antibodies) which have been raised by standard techniques and are specific for the receptor proteins or variants thereof according to the invention. Such antibodies could for example, be useful in purification, isolation or screening involving immuno precipitation techniques and may be used as tools to further ellucidate hVR protein function, or indeed as therapeutic agents in their own right. Antibodies may also be raised against specific epitopes of the receptors according to the invention.

An important aspect of the present invention is the use of receptor proteins according to the invention in screening methods designed to identify compounds which act as receptor ligands and which may be useful to modulate receptor activity. In general terms, such screening methods will involve contacting the receptor protein concerned, preferably hVR1, hVR2 or hVR3, with a test compound and then detecting modulation in the receptor activity, or indeed

Pharmaceutical Sciences, Mack Publishing Company, Eastern Pennsylvania, 17th Ed, 1985, the disclosure of which is included herein in its entirety by way of reference.

- The compounds may be administered via enteral or parenteral routes such as via oral, buccal, anal, pulmonary, intravenous, intraarterial, intramuscular, intraperitoneal, topical or other appropriate administration routes.
- The present invention will be further explained, by way of example, in the appended experimental section.

Experimental

15

20

25

30

35

Identification of related human ESTs (Expressed Sequence Tags) (19) to the rat VR1 sequence by in silico analysis:

The full-length rat VR1 amino acid sequence (15) was used as a query sequence using the tBlastn (20) alignment program to identify related human genes in the dbEST (21) and Incyte (Palo Alto, Ca. USA) databases. Several human ESTs were identified and those with similarities greater than 50% selected for further analysis. One of these ESTs was T12251 previously shown to have 68% aminoacid identity and 84% similarity over a region of 70 amino acids (15). All human ESTs from both databases were clustered to identify overlapping identical ESTs belonging to the same transcript. The GCG package (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, Wisconsin) and a program developed in house termed ESTBlast (22) were used to build up these clusters. In total, forty-three ESTs derived from different tissue sources and both EST databases were clustered in ten groups named hVR2, hVR3, hVR1a, hVR1b, hVR1c, hVR1d, hVR1e, hVR1f, hVR1g and hVR1h. For each EST the tissue source was assigned according to the annotations in the dbEST and Incyte databases. The shortest cluster

hVR1c also while having high homology (71% identity and 82% similarity over 65 residues) was closely related to the C-terminus of the rat protein sequence.

Cluster hVR1e shared a high homology (67% identity and 78% similarity for amino acids) with the 5' of the rat VR1 sequence but did not seem to have a potential start codon. It contained two Incyte ESTs (Clones Ids: 3801964 and 3802764) derived from the same tissue, bladder, and from the same patient. These two ESTs were selected for further investigation since this cluster was the most 5', had high homology with rat VR1 and the bladder tissue could be contaminated with sensory neurons. Both cDNA clones were ordered but only 3801964 was received as 3802764 failed the recovering procedure established at Incyte laboratories. The cDNA insert was directionally cloned into the pINCY vector (Incyte).

The 3801964 clone was grown using standard procedures and DNA SP6 isolated Qiagen columns. (5' was : using **T7** ATTTAGGTGACACTATAG) and (5) TAATACGACTCACTATAGGG) primers flanking the cloning site of pINCY were used to sequence both ends. Plasmid DNA (0.6 pmol) was used with 10.0 pmol of each primer for the dye terminator reaction. The SP6 end corresponded to the in silico derived EST sequence (identical to 3801964). The T7 end did not have homologies with VR1 nor did it possess a long open reading frame or a polyadenylation motif (data not shown). The size of the insert was determined by enzyme digestion of the DNA with the endonucleases NotI and EcoRI and calculated to be approximately 3kb (data not shown).

30

35

5

10

15

20

25

Plasmid DNA (50ng) was used to amplify the insert by Polymerase Chain Reaction (PCR) with T7 and SP6 as primers. The PCR conditions included an initial hot-start at 94°C for 2 minutes, followed by 35 cycles at 94°C for 45 seconds, 50°C for 45 seconds and 72°C for 1 minute and terminated by 5 minutes at 72°C. The resulting

5

10

15

20

We formulated the hypothesis that both sequences (hVR1e and hVR3/1c) were part of a common transcript. If the human and rat VR1 were going to be similar, the 2 contigs should be separated by a gap of approximately 275bp. Primers were designed on both sides of the gap to amplify mRNA from DRG and brain tissues in order to clone the gap (Figure 6). A smear was obtained with the sense primer (5' TCTACTTCGGTGAACTGCCC) and antisense (5' ACGGCAGGGAGTCATTCTTC). For specificity 50ng of the PCR amplified with product were the nested sense (5' CTGCAGAACTCCTGGCAGA) (5' and antisense GTCACCACCGCTGTGGAAAA) primers. The 900bp nested amplicon was sequenced and shown to be identical to hVR1e at one end and hVR3/1c at the other end. The middle part of the PCR product was homologous to the rat VR1 sequence. This region corresponded to 91 amino acids. When the sequences of hVR1e, hVR3/hVR1c and the internal amplicon are combined the total length of the Open Reading Frame (ORF) is 823 amino acids followed by a 3' untranslated sequence of 1120 bp. The human amino acid sequence is 87% identical to the rat sequence over that part of the coding region. This sequence was termed hVR1 because of its high degree of identity with the rat VR1 sequence. It was a combination of the following clusters: HVR1c, hVR1e, hVR3.

Since no start codon was identified at the 5' end an additional strategy was designed to identify the full-length sequence. Two primers, sense (5' TCCTCTGGCTTCCAACCCGTT) and antisense (5' GAACTGGGCAGAAAGTGCCT) were designed to amplify a 150bp product from the first intron. A P1 Artificial Chromosome (PAC) genomic clone (25) was isolated by PCR screening of a PAC library (Genome Systems, St Louis, Missouri). PAC DNA was recovered by using standard plasmid isolation protocol (26). An antisense primer was designed (5' CTGGAGTTAGGGTCTCCATCC) to sequence the genomic clone towards the potential 5' end of the gene. An open reading frame with a starting codon was identified.

the hVR1 gene appears to be located on human chromosome 17 around marker SHGC-36073 (lod score=9.55).

In conclusion, we are confident that we have identified the full-length human orthologue of the rat VR1 gene because of the very high degree of homology with the rat transcript and a tissue distribution similar to that of rat VR1.

Identification and partial characterisation of additional human vanilloid receptors:

5

15

20

25

30

35

ESTs belonging to the remaining clusters were characterised by a combination of end sequencing, Bal-31 analysis and *in silico* cloning. The following Incyte clones were used during this process: -3324775 (hVR1a), -1725152 (hVR1b), -197476 (hVR1f), -3498406 (hVR1g), -1682513 (hVR1h), -1559496 (hVR2).

hVR2 was found to be a cluster of more than 40 ESTs derived from various tissues (and none from a DRG source). After *in silico* analysis and further sequencing of a particular Incyte clone, 1559496, two contiguous sequences were obtained: one located towards the 5' end and the other one more towards the 3' end. The former is 201 amino acid long while the latter has a size of 376 amino acids. A multiple comparison of these two contiguous sequences and the other vanilloid receptors is shown on figure 6. The 5' and 3' ends amino acid sequences of hVR2 have respectively 51% and 34% identity with the rat VR1 sequence.

A DNA probe from the coding region hVR2 was designed by enzyme restriction digest with Sty1 (New England Biolabs). A 438 bp fragment was obtained and used for radioactive hybridization on multi-Tissue northern blots (Clontech) according to the manufacturer's recommendations. As expected hVR2 is expressed in various tissues and a transcript of about 3.8 kb is detected by hybridization (figures 7 and 8).

shown by RT-PCR with the primer combination used to produce the probe that the gene is not expressed in DRG.

The 3' UTR sequence of hVR3 was used to design two primers to 360 bp: 5' amplify product of sense primer 5' ATGGCCACCAGCAGGGTTAC and antisense primer TCTGCCAGGTTCCAGCTG. The G3 radiation hybrid panel from Stanford University (Research Genetics, Huntsville, Alabama) was screened by PCR. The positive lanes (eg: 11 lanes) and negative patterns were analysed using the public web server at Stanford University (http://www-sghc.stanford.edu). After analysis the hVR3 gene appears to be located on human chromosome 12 around markers D12S177E (lod score=15) and D12S1893 (lod score=14).

5

10

25

The same primer combination was used to isolate a genomic PAC clone (Genome Systems. St Louis, Missouri) to be used to identify the complete 5' end of the hVR3 transcript.

We have concluded that hVR3 is an additional human gene member of the vanilloid receptors family, but is not the orthologue of rVR1 because of its tissue distribution and homologies with rVR1.

hVR1g and hVR1b collapsed in a single contiguous sequence. Sequence analysis has shown that both cDNAs are likely to be chimeric. The 5' end has weak similarities with the rat VR1 gene but the 3' end is identical to a DNA binding protein.

Screening for compounds which exhibit hVR modulating activity

Mammalian cells, such as Hek293, CHO and HeLa cells overexpressing the VR receptor of choice are generated for use in the assay. 96 and 384 well plate, high throughput screens (HTS) are employed using fluorescence based calcium indicator molecules, including but not limited to dyes such as Fura-2, Fura-Red, Fluo 3 and Fluo 4 (Molecular Probes). Secondary screening involves

References

- 1. Szallasi, A. and Blumberg, P.M (1993) Mechanisms and therapeutic potential of vanilloids (capsaicin-like molecules). *Adv. Pharmacol.*, 24, 123-155.
- 2. Jansco, G. (1968) Desensitisation with capsaicin and related acylamides as a tool for studying the function of pain receptors. In: K. Lin, D. Armstrong and E.G. Pardo (Eds), Pharmacology of Pain, Pergamon Press, Oxford, 33-55.
- 3. Szolcsanyi, J. (1993) In Capsaicin in the study of pain. Ed. J. Wood, J. London: Academic Press, 1-26.
- 4. Szallasi, A. and Blumberg, P.M. (1996) Vanilloid receptors: new insights enhance potential as a therapeutic target. *Pain*, 68, 195-208.
- 5. Jansco, G., Kiraly, E. and Jansco-Gabor, A. (1977) Pharamacologically induced selective degeneration of chemosensitive primary sensory neurons. *Nature*, 270, 741-743.
- 6. Oh, U., Hwang, S.W. and Kim, D. (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosciences, 16, 1659-1667.
- 7. Wood, J.N et al. (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. *J. Neurosciences*, 8, 3208-3220.
- 8. Szolcsanyi, J. and Jansco-Gabor, A. (1975) Sensory effects of capsaicin congeners I. Relationship between chemical structure and pain-producing potency of pungent agents. *Drug Res.*, 25, 1877-1881.
- 9. Szolcsanyi, J. and Jansco-Gabor, A. (1976) Sensory effects of capsaicin congeners II. Importance of chemical structure and pungency in desensitising activity of capsaicin-like compounds. Drug res., 26, 33-37.
- 10. James, I.F., Nikina, N. and Wood, J.N. (1993) The capsaicin receptor. In *Capsaicin in the Study of Pain*. Ed. Wood, J. London: Academic Press, 83-104.
- 11. Szallasi, A. and Blumberg, P.M. (1990) Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. *Brain Research*, 524, 106-111.

- of Expressed Sequence Tags (ESTs). Computer Applications in Biosciences (CABIOS), 13, 453-457.
- 23. Lau, P.P. and Gray H.B. (1979). Nucleic Acids Research, 6, 331.
- 24. Trower MK., Burt D., Purvis IJ., Dykes CW. & Christodoulou C. (1995). Fluorescent dye-primer cycle sequencing using non-purified PCR products as templates; development of a protocol amenable to high-throughput DNA sequencing. *Nucleic Acids Research*, 23, 2348-2349
- 25. Shepherd, N., Pfogner, B., Coulby, J., Ackerman, S., Vaidyanathan, G., Sauer, R., Balkenhol, T. and Sternberg, N. (1994). Preparation and screening of an arrayed human genomic library generated with the P1 cloning system. *Proc. Natl. Acad. Sci. USA.*, 91, 2629-2633.
- 26. Birboim, H.C. and Doly, J. (1979). Nucl. Acids Res., 7, 1513-1523.
- 27. Burge, C. and Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
- 28. Sambrook, J., Fritsch, E.F. and Maniatis, T. Molecular Cloning: a Laboratory Manual. 2nd Edition. CSH Laboratory Press. (1989)

10

25

30

- 10. The nucleotide sequence according to any one of claims 6 to 9 which is a cDNA sequence.
- 11. The nucleotide sequence according to claim 6 as shown in5 Figure 1 or Figure 9.
 - 12. An expression vector comprising a nucleotide sequence according to any one of claims 6 to 11, which is capable of expressing an hVR protein.
- 13. The expression vector according to claim 12 capable of expressing a protein selected from hVR1, hVR2 or hVR3.
- 14. The expression vector-according to claim 12 capable of expressing hVR4.
 - 15. A stable celle line comprising an expression vector according to any one of claims 12 to 14.
- 20 16. The cell line according to claim 15 which is a modified HEK293, C40 or HeLa cell line.
 - 17. An antibody specific for a protein as claimed in any one of claims 1 to 5.
 - 18. A method for identification of a compound which exhibits hVR modulating activity comprising contacting an hVR protein according to any of claims 1 to 5 with a test compound and detecting modulating activity or inactivity.
 - 19. A compound which modulates hVR activity, identifiable by a method according to claim 18, excluding the compounds capsaicin, resiniferatoxin and capsazepine.

Figure 1: hVR1 nucleotide sequence

1	CGTGGTGGCT	GCTGCAGGTT	GCACACTGGG	CCACAGAGGA	TCCAGCAAGG
51	ATGAAGAAAT	GGAGCAGCAC	AGACTTGGGG	GCAGCTGCGG	ACCCACTCCA
101	AAAGGACACC	TGCCCAGACC	CCCTGGATGG	AGACCCTAAC	TCCAGGCCAC
151	CTCCAGCCAA	GCCCCAGCTC	TCCACGGCCA	AGAGCCGCAC	CCGGCTCTTT
201	GGGAAGGGTG	ACTCGGAGGA	GGCTTTCCCG	GTGGATTGCC	CTCACGAGGA
251	AGGTGAGCTG	GACTCCTGCC	CGACCATCAC	AGTCAGCCCT	GTTATCACCA
301	TCCAGAGGCC	AGGAGACGGC	CCCACCGGTG	CCAGGCTGCT	GTCCCAGGAC
351	TCTGTCGCCG	CCAGCACCGA	GAAGACCCTC	AGGCTCTATG	ATCGCAGGAG
401	TATCTTTGAA	GCCGTTGCTC	AGAATAACTG	CCAGGATCTG	GAGAGCCTGC
451	TGCTCTTCCT	GCAGAAGAGC	AAGAAGCACC	TCACAGACAA	CGAGTTCAAA
501	GACCCTGAGA	CAGGGAAGAC	CTGTCTGCTG	AAAGCCATGC	TCAACCTGCA
551	CGACGGACAG	AACACCACCA	TCCCCCTGCT	CCTGGAGATC	GCGCGGCAAA
601	CGGACAGCCT	GAAGGAGCTT	GTCAACGCCA	GCTACACGGA	CAGCTACTAC
651	AAGGGCCAGA	CAGCACTGCA	CATCGCCATC	GAGAGACGCA	ACATGGCCCT
701	GGTGACCCTC	CTGGTGGAGA	ACGGAGCAGA	CGTCCAGGCT	GCGGCCCATG
751	GGGACTTCTT	TAAGAAAACC	AAAGGGCGGC	CTGGATTCTA	CTTCGGTGAA
801	CTGCCCCTGT	CCCTGGCCGC	GTGCACCAAC	CAGCTGGGCA	TCGTGAAGTT
851	CCTGCTGCAG	AACTCCTGGC	AGACGGCCGA	CATCAGCGCC	AGGGACTCGG
901	TGGGCAACAC	GGTGCTGCAC	GCCCTGGTGG	AGGTGGCCGA	CAACACGGCC
951	GACAACaCGA	AGTTTGTgAC	gAGCATGtaC	AaTgAGATTC	TGATCCTGGG
1001	GGCCAAACTG	CAcCCGACGC	TgAAGCTgGA	GGAGCTCACC	aACaAGAAGG
1051	GAATGACGCC	GCTGGCTCTG	GCAGCTGGGA	CCgGGAAGAT	CGGGGTCTTG
1101	GCCTATATTC	TCCAGCGGGA	GATCCAGGAG	CCCGAGTGCA	GGCACCTGTC
1151	CAGGAAGTTC	ACCGAGTGgg	cCTACGGGCC	CGTGCACTCC	TCGCTGTACG
1201	ACCTGTCCTG	CATCGACACC	TGCGAGAAGA	ACTCGGTGCT	GGAGGTGATC
1251	GCCTACAGCA	GCAGCGAGAC	CCCTAATCGC	CACGACATGC	TCTTGGTGGA

1301	GCCGCTGAAC	CGACTCCTGC	AGGACAAGTG	GGACAGATTC	GTCAAGCGCA
1351	TCTTCTACTT	CAACTTCCTG	GTCTACTGCC	TGTACATGAT	CATCTTCACC
1401	ATGGCTGCCT	ACTACAGGCC	CGTGGATGGC	TTGCCTCCCT	TTAAGATGGA
1451	AAAAACTGGA	GACTATTTCC	GAGTTACTGG	AGAGATCCTG	TCTGTGTTAG
1501	GAGGAGTCTA	СТТСТТТТТС	CGAGGGATTC	AGTATTTCCT	GCAGAGGCGG
1551	CCGTCGATGA	AGACCCTGTT	TGTGGACAGC	TACAGTGAGA	TGCTTTTCTT
1601	TCTGCAGTCA	CTGTTCATGC	TGGCCACCGT	GGTGCTGTAC	TTCAGCCACC
1651	TCAAGGAGTA	TGTGGCTTCC	ATGGTATTCT	CCCTGGCCTT	GGGCTGGACC
1701	AACATGCTCT	ACTACACCCG	CGGTTTCCAG	CAGATGGGCA	TCTATGCCGT
1751	CATGATAGAG	AAGATGATCC	TGAGAGACCT	GTGCCGTTTC	ATGTTTGTCT
1801	ACATCGTCTT	CTTGTTCGGG	TTTTCCACAG	CGGTGGTGAC	GCTGATTGAA
1851	GACGGGAAGA	ATGACTCCCT	GCCGTCTGAG	TCCACGTCGC	ACAGGTGGCG
1901	GGGGCCTGCC	TGCAGGCCCC	CCGATAGCTC	CTACAACAGC	CTGTACTCCA
1951	CCTGCCTGGA	GCTGTTCAAG	TTCACCATCG	GCATGGGCGA	CCTGGAGTTC
2001	ACTGAGAACT	ATGACTTCAA	GGCTGTCTTC	ATCATCCTGC	TGCTGGCCTA
2051	TGTAATTCTC	ACCTACATCC	TCCTGCTCAA	CATGCTCATC	GCCCTCATGG
2101	GTGAGACTGT	CAACAAGATC	GCACAGGAGA	GCAAGAACAT	CTGGAAGCTG
2151	CAGAGAGCCA	TCACCATCCT	GGACACGGAG	AAGAGCTTCC	TTAAGTGCAT
2201	GAGGAAGGCC	TTCCGCTCAG	GCAAGCTGCT	GCAGGTGGGG	TACACACCTG
2251	ATGGCAAGGA	CGACTACCGG	TGGTGCTTCA	GGGTGGACGA	GGTGAACTGG
2301	ACCACCTGGA	ACACCAACGT	GGGCATCATC	AACGAAGACC	CGGGCAACTG
2351	TGAkGGCGTC	AAGCGCACCC	TGAGCTTCTC	CCTGCGGTCA	AGCAGAGTTT
2401	CAGGCAGACA	CTGGAAGAAC	TTTGCCCTGG	TCCCCCTTTT	AAGAGAGGCA
2451	AGTGCTCGAG	ATAGGCAGTC	TGCTCAGCCC	GAGGAAGTTT	ATCTGCGACA
2501	GTTTTCAGGG	TCTCTGAAGC	CAGAGGACGC	TGAGGTCTTC	AAGAGTCCTG
2551	CCGCTTCCGG	GGAGAAGTGA	GGACGTCACG	CAGACAGCAC	TGTCAACACT
2601	GGGCCTTAGG	AGACCCCGTT	GCCACGGGGX	XCTGCTGAGG	GAACACCAGT
2651	GCTCTGTCAG	CAGCCTGGCC	TGGTCTGTGC	CTGCCCAGCA	TGTTCCCAAA
2701	TCTGTGCTGG	ACAAGCTGTG	GGAAGCGTTC	TTGGAAGCAT	GGGGAGTGAT

2751	GTACATCCAA	CCGTCACTGT	CCCCAAGTGA	ATCTCCTAAC	AGACTTTCAG
2801	GTTTTTACTC	ACTTTACTAA	ACAGTTTGGA	TGGTCAGTCT	CTACTGGGAC
2851	ATGTTAGGCC	CTTGTTTTCT	TTGATTTTAT	TCTTTTCTGT	GAGACAGAGT
2901	TCACTCTTGT	TGCCCAGGCT	GGAGTGCAGT	GGTGTGATCT	TGGCTCACTG
2951	CAACCTCTGC	TCCCGGGTTC	AAGCGATTCT	TCTGCTTCAG	TCTCCCAAGT
3001	AGCTTGGATT	ACAGGTGAGC	ACTACCACGC	CCGGCTAATT	TTTGTATTTT
3051	TAATAGAGAC	GGGGTTTCAC	CATGTTGGCC	AGGCTGGTCT	CGAACTCTTG
3101	ACCTCAGGTG	ATCTGCCCGC	CTTGGCCTCC	CAAAGTGCTG	GGATTACAGG
3151	TGTGAGCCGC	TGCGCTCGGC	CTTCTTTGAT	TTTATATTAT	TAGGAGCAAA
3201	AGTAAATGAA	GCCCAGGAAA	ACACCTTTGG	GAACAAACTC	TTCCTTTGAT
3251	GGAAAATGCA	GAGGCCCTTC	CTCTCTGTGC	CGTGCTTGCT	CCTCTTACCT
3301	GCCCGGGTGG	TTTGGGGGTG	TTGGTGTTTC	CTCCCTGGAG	AAGATGGGGG
3351	AGGCTGTCCC	ACTCCCAGCT	CTGGCAGAAT	CAAGCTGTTG	CAGCAGTGCC
3401	TTCTTCATCC	TTCCTTACGA	TCAATCACAG	TCTCCAGAAG	ATCAGCTCAA
3451	TTGCTGTGCA	GGTTAAAACT	ACAGAACCAC	ATCCCAAAGG	TACCTGGTAA
3501	GAATGTTTGA	AAGATCTTCC	ATTTCTAGGA	ACCCCAGTCC	TGCTTCTCCG
3551	CAATGGCACA	TGCTTCCACT	CCATCCATAC	TGGCATCCTC	AAATAAACAG
3601	ATATGTATAC	АААААААА	AAAAAAAA	AAAAAAAA	А

Figure 2: Nucleotide and amino acid sequence of hVR1

-50	cgtg	gtg	gct	gct	gca	ggti	tgc	aca	ctg	ggc	caca	aga	gga	tcca	agca	aag	JAT(M	GAA(K	GAA/ K	T. W	
11 5	GGAG S	CAG S	CAC! T		L L				rgc A		P P				GGA(T	CTG(CCC <i>I</i> P	AGA(D		70 24
71 25	CCCT	GGA' D			CCC	raac N	STC(-						GCC(S S	T	GGC(130 44
131 45	AGAG S	CCG(CCG(R										GGC1 A		P			rtg(C		190 64
191 65	CTCA H	CGA(P				AGT(V					T		250 84
251 85	TCCA Q	GAG(R																			310 104
311 105	CCAG S		E E	K K		L L			Y Y					TATO I							370 124
371 125	AGAA N	TAA(N	CTG(Q	GGAT D	L L	E E	SAG(L L	CT(L L	F	L	Q Q	SAA(K	SAGO S	K K	SAA(K	GCAC H		430 144
431 145	TCAC T	AGA(CAAC N	E E	F	K K		P	rga(E	GAC <i>I</i> T	G G	K K		CTG1			K K		M M		490 164
491 165	TCAA N	CCT(ACAC Q					P			L L	E E	I I	A A	R R			550 184
551 185	CGGA D		L L		E E					CAGO				S S	Y Y		K K	G G	Q Q		.610 204
611 205	CAGC A	ACT(GCA(EGC(A					N ·						L	L	V V			670 224
225		A	D	V	Q	A	A	A ·	Н	G	D	F	F	K	ĸ	T	K	G	R	₽	244
245	CTGG G	F	Y	F	G	E	L	P	L	s	L	A	A	С	T	N	Q	L	G	Ι	264
265		K	F	L	L	Q	N	s	W	Q	T	A	D	I	s	A	R	D	S	V	284
285		N	T	V	L	Н	A	L	V	E	v	A	D	N	T	A	D	N	T	K	304
305	AGTT F	V	T	S	M	Y	N	E	I	L	Ι	L	G	A	K	L	Н	P	T	L	324
325	TgAA K	L	E	E.	L	T	N	K	K	G	M	T	P	L	A	L	A	A	G	Т	344
	G	K	I	G	V	L	A	Y	I	L	Q	R	E	I	Q	E	P	Е	С	R	364
1091 365	Н	L	S	R	K	F	T	E	W	A	Y	G	P	V	Н	S	s	L	Y	D	384
1151 385	L	s	С	I	D	T	С	E	K	N	S	V	L	E	V	I	A	Y	S	s	404
	S	E	T	P	N	R	Н	D	М	L	L	V	E	P	L	N	R	L	L	Q	424
1271	AGGA	CAAC	STGG	GAC	AGA	TTC	GTC	CAAC	CGC	CATC	TTC	TAC	TTC	CAAC	TTC	CTC	GTC	TAC	TGC	C	1330

5/2

425 DKWDRFVKRIFYFNFLVYCL444 1331 TGTACATGATCATCTTCACCATGGCTGCCTACTACAGGCCCGTGGATGGCTTGCCTCCCT 1390 YMIIFTMAAYYRPVDGLPPF464 KMEKTGDYFRVTGEILSVLG484 1451 GAGGAGTCTACTTCTTTTCCGAGGGATTCAGTATTTCCTGCAGAGGCGGCCGTCGATGA 1510 G V Y F F F R G I Q Y F L Q R R P S M K 504 1511 AGACCCTGTTTGTGGACAGCTACAGTGAGATGCTTTTCTTCTGCAGTCACTGTTCATGC 1570 1571 TGGCCACCGTGGTGCTGTACTTCAGCCACCTCAAGGAGTATGTGGCTTCCATGGTATTCT 1630 ATVVLYFSHLKEYVASMVFS544 1631 CCCTGGCCTTGGGCTGGACCAACATGCTCTACTACACCCGCGGTTTCCAGCAGATGGGCA 1690 LALGWINMLYYTRGFQQMGI564 1691 TCTATGCCGTCATGATAGAGAAGATGATCCTGAGAGACCTGTGCCGTTTCATGTTTGTCT 1750 Y A V M I E K M I L R D L C R F M F V Y 584 1751 ACATCGTCTTCTTGTTCGGGTTTTCCACAGCGGTGGTGACGCTGATTGAAGACGGGAAGA 1810 IVFLFGFSTAVVTLIEDGKN604 D S L P S E S T S H R W R G P A C R P P 624 1871 CCGATAGCTCCTACAACAGCCTGTACTCCACCTGCCTGGAGCTGTTCAAGTTCACCATCG 1930 DSSYNSLYSTCLELFKFTIG644 1931 GCATGGGCGACCTGGAGTTCACTGAGAACTATGACTTCAAGGCTGTCTTCATCATCCTGC 1990 645 M G D L E F T E N Y D F K A V F I I L L 664 1991 TGCTGGCCTATGTAATTCTCACCTACATCCTCCTGCTCAACATGCTCATCGCCCTCATGG 2050 LAYVILTYILL NMLIAL MG 684 2051 GTGAGACTGTCAACAAGATCGCACAGGAGAGCAAGAACATCTGGAAGCTGCAGAGAGCCA 2110 685 E T V N K I A Q E S K N I W K L Q R A I 704 2111 TCACCATCCTGGACACGGAGAAGAGCTTCCTTAAGTGCATGAGGAAGGCCTTCCGCTCAG 2170 TILDTEKSFLKCMRKAFRSG724 2171 GCAAGCTGCTGCAGGTGGGGTACACCTGATGGCAAGGACGACTACCGGTGGTGCTTCA 2230 KLLQVGYTPDGKDDYRWCFR744 2231 GGGTGGACGAGGTGAACTGGACCACCTGGAACACCAACGTGGGCATCATCAACGAAGACC 2290 V D E V N W T T W N T N V G I I N E D P 764 2291 CGGGCAACTGTGAKGGCGTCAAGCGCACCCTGAGCTTCTCCCTGCGGTCAAGCAGAGTTT 2350 GNC?GVKRTLSFSLRSSRVS784 2351 CAGGCAGACACTGGAAGAACTTTGCCCTGGTCCCCCTTTTAAGAGAGGCAAGTGCTCGAG 2410 GRHWKNFALVPLLREASARD804 2411 ATAGGCAGTCTGCTCAGCCCGAGGAAGTTTATCTGCGACAGTTTTCAGGGTCTCTGAAGC 2470 R Q S A Q P E E V Y L R Q F S G S L K P 824 2471 CAGAGGACGCTGAGGTCTTCAAGAGTCCTGCCGCTTCCGGGGAGAAGTGAggacgtcacg 2530 EDAEVFKSPAASGEK 2531 cagacagcactgtcaacactgggccttaggagaccccgttgccacggggxxctgctgagg 2590 2652 tctgtgctggacaagctgtgggaagcgttcttggaagcatggggagtgatgtacatccaa 2710 2711 ccqtcactqtccccaagtgaatctcctaacagactttcaggtttttactcactttactaa 2770 2771 acagtttggatggtcagtctctactgggacatgttaggcccttgttttctttgatttat 2830

2831	${\tt tcttttctgtgagacagagttcactcttgttgcccaggctggagtgcagtggtgttatct}$	2890
2891	${\tt tggctcactgcaacctctgctcccgggttcaagcgattcttctgcttcagtctcccaagt}$	2950
2951	${\tt agcttggattacaggtgagcactaccacgcccggctaatttttgtatttttaatagagac}$	3010
3011	$\tt ggggtttcaccatgttggccaggctggtctcgaactcttgacctcaggtgatctgcccgc$	3070
3071	$\verb"cttggcctcccaaagtgctgggattacaggtgtgagccgctgcgctcggccttctttgat"$	3130
3131	$\verb tttatattattaggagcaaaagtaaatgaagcccaggaaaacacctttgggaacaaactc $	3190
3191	${\tt ttcctttgatggaaaatgcagaggcccttcctcttgtgccgtgcttgct$	3250
3251	$\tt gcccgggtggtttggggtgtttgcttcctccctggagaagatgggggaggctgtccc$	3310
3311	${\tt actcccagctctggcagaatcaagctgttgcagcagtgccttcttcatccttacga}$	3370
3371	${\tt tcaatcacagtctccagaagatcagctcaattgctgtgcaggttaaaactacagaaccac}$	3430
3431	${\tt atcccaaaggtacctggtaagaatgtttgaaagatcttccatttctaggaaccccagtcc}$	3490
3491	${\tt tgcttctccgcaatggcacatgcttccactccatactggcatcctcaaataaacag}$	3550

3551 atatgtatacaaaaaaaaaaaaaaaaaaaaaaaaaa 3591

Figure 3: Amino acid sequence of hVR1

Figure 4: Comparison of the amino acid sequences of the rat (rVR1) and human (hVR1) vanilloid proteins.

FURI STREET BY A A DELIGN OF THE PRINCIPLE REPARTS LITTURES TO STREET BY A STR

Figure 5: Slot Blot hybridisation with hVR1 probe

Well
1A hDRG
2A rDRG
3A rat Spinal cord

1B hDRG

3B hSpinal Cord

4B Water

5B Incyte clone 1427927

6B 900bp Amplicon from Brain cDNA

Figure 6: Multiple comparison of the amino acid sequ nces of rat VR1 and the human vanilloid receptors: hVR1, the 5' and 3' ends of hVR2 and the 3' end of hVR3.

b 781	HIX X M SKITTIN, GAAADEN, ENK DIFFEMENLEDEDENIS REPERANDOLISTA KERTERET.
rVR1 3primehVR2	HKKM SETEDLGAAADBILDE DTEPDEDEDENBARDE LSTAKERARE. MEGRAS LDSEE 6E 6 POR DESCLORPEDED DE KEPPP VKPRIFTTRESETRUE.
3primehVR3 SprimehVR2	MTS.PES.5.PVF
hVR1 ±VR1	anad seen processes of the control o
3primehVR2 3primehVR3 5primehVR2	RIET LDGGQEDGSEADRENEDFGSGLPPHEEDFQGEDRRFAPDIRVELHY
byri	- -
rVR1 3primehVR2	DEVICE TERM EXPERIMENTAL PROPERTY OF THE PROPE
SprimehVR3 SprimehVR2	RKGTGAS QPDPDRFPBDR LPD <u>RV</u> SRGVPEDEDAGEPEYESKTSKYE <u>TDSE</u> Y
hVRI rVRI	NDPETGKTCLI NAHLULEDIĞÜNTIFILELE IARDID SLRELIVUASYTDEĞ NDPETGKTCLI NAHLULENGQUDTI ALLUDVARKTOSLAQIVUA SYTDEY
3primehVR2 3primehVR3	TEGSTGENTCENEN/ENENDENDENGENENDENGENENDEN
SprimehVR2	
hVRI rVRI 3primehVRI	YNGG TALELAYERRUHALVILLVEUGADVGAXAEGDEFRKTKGRPGFYFG YRGG TALELAYERRUHTLVTLLVEUGADVGAXAUGDFFRKTKGRPGFYFG
3primehVR3 5primehVR2	ДВДИ С <u>РУМИЗУУЛЕ</u> КВЕ ГОСМИ <u>ТЕРАЕЛЯУ</u> НМИВВИСВУ СТЕВТ
hVRI rVRI	TIPLSTANCTUOLICIONERGIQUENQITADERANDEVOURNERGEVEVANDIT TIPLSTANCTUOLICIONERGIQUENQIADES PROVINCERLU O URBERTANCE PROVINCERLU
3primehVR2 3primehVR3	EMERTYMCAING MEAN AFLICHEN SEREND MEDGES SHIVI SYLAN I KONAL STOTESTY CAING TELLAKSITION ENGLISHED SOME SAGILATISY TAKED THE STOTESTY CAING TELLAKSITION ENGLISHED SAGILATISY TAKED THE STOTESTY CAING TELLAKSITION ENGLISHED SAGILATISY TAKED THE
SprimehVR2	
hVR1 rVR1 3primehVRI	ADDITATION THE LEGISLE REPORT OF THE REPORT OF THE REPORT OF THE RESIDENCE
3primehVR3 5primehVR2	
hVR1 rVR1	TAYTICRE DEPENDED REPORT FOR A CONTROL OF THE PROPERTY OF THE
3primehVR2 3primehVR3	YRHDLIGREFS. GLSRIESRETTENCYGEVRYSLYDLASVDSC.EEHSVUL XQHDITRELYTDEDTEREUSBEEKDRAYGEFYBSLYDLASSLDTCGEEASWUL
SprimehVR?	
zVR1 3pzimehVR2	VIAY666ETPÜBEDHLIVEDÜBELIGDKEDREVKEIFYEÜELNYCLYHII VIAY666ETPÜBEDHLIVEDÜBELIGDKEDREVKEIFYEUEFYYCLYHII ILAF KCKSPREKENNYVLEDIUKKIORKEDLI IPK PELBECLLIKEFL ILVP. UBRIEBERKINNESPURLIRDKEPKEAV6FYPUPKUCKNYP
3primehVR3 5primehVR2	
hVRI zVRI	FTHEATHER POLICE FREE RESERVATION OF THE STREET OF T
3primehVR2 3primehVR3	FILTNAMOS, LEGISENS VETEN SALELAGENTITIEGINLIVGOLE.
SprimehVR?	
zVR1 3ozimehVRI	ENERGE ANETAL DE 21 GINALIAEN TANDY YEARVER THE WARNEST AND ENERGY BASE OF THE MAINTENERS OF THE WARNEST PROBLEM TO THE STAND
3primehVR3 5primehVR2	
hVR1 zVR1	ALCATURLYYTRGYGGRGIYAVHIERHILBDLCBFRYVYL PYLLGESTAV ARGATURLYYTRGYGGRGIYAVRIERRILBDLCBFRFVYLVTUTGFSTAV
3primehVR2 3primehVR3 5primehVR2	ALPHTUHLYTTEGFOONGITÄVHIEKHILEDICEFHFVYLVYLTEGFSTAV ANGETHMIYTTEGFOONGITÄVHIEKHILEDICEFHFVYLVYLTEGFSTAV VIDMIDHITYTTEGFOOTITYSKHIDKOLTEFHILIKTVILIKTVILIKESFKVAL VIDMIDHITYTTEGFKKITAKKINKKITEKHILEDIFEFLLVYLLEFHTENASAL
PAK1	
zVR1 3primehVR2	утту вроянива по световника прободива у вторива по световника по светов
SprimehVR3 SprimehVR2	Aber was which act acts and and the state of

igure 7

1	ACCGGCGAAC	GTGCNAGAAG	GAAGGAAGAA	AGCAAAGAAC	GGCGTAGGGC
51	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	CCCGCCGCGC
101	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC
151	TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC
201	GAAAGGGGGA	TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT
251	CCCAGTCACG	ACGTTGTAAA	ACGACGGCCA	GTGAATTGAA	TTTAGGTGAC
301	ACTATAGAAG	AGCTATGACG	TCGCATGCAC	GCGTACGTAA	GCTCGGAATT
351	CGGCTCGAGC	CCACACCAGC	CCGCCAGCCT	GCAGGCCACT	GACTCCCAGG
401	GCAACACAGT	CCTGCATGCC	CTAGTGATGA	TCTCGGACAA	CTCAGCTGAG
451	AACATTGCAC	TGGTGACCAG	CATGTATGAT	GGGCTCCTCC	AAGCTGGGGC
501	CCGCCTCTGC	CCTACCGTGC	AGCTTGAGGA	CATCCGCAAC	CTGCAGGATC
551	TCACGCCTCT	GAAGCTGGCC	GCCAAGGAGG	GCAAGATCGA	GATTTTCAGG
601	CACATCCTGC	AGCGGGAGTT	TTCAGGACTG	AGCCACCTTT	CCCGAAAGTT
651	CACCGAGTGG	TGCTATGGGC	CTGTCCGGGT	GTCGCTGTAT	GACCTGGCTT
701	CTGTGGACAG	CTGTGAGGAG	AACTCAGTGC	TGGAGATCAT	TGCCTTTCAT
751	TGCAAGAGCC	CGCACCGACA	CCGAATGGTC	GTTTTGGAGC	CCCTGAACAA
801	ACTGCTGCAG	GCGAAATGGG	ATCTGCTCAT	CCCCAAGTTC	TTCTTAAACT
851	TCCTGTGTAA	TCTGATCTAC	ATGTTCATCT	TCACCGCTGT	TGCCTACCAT
901	CAGCCTACCC	TGAAGAAGCA	GGCCGCCCCT	CACCTGAAAG	CGGAGGTTGG
951	AAACTCCATG	CTGCTGACGG	GCCACATCCT	TATCCTGCTA	GGGGGGATCT
1001	ACCTCCTCGT	GGGCCAGCTG	TGGTACTTCT	GGCGGCGCCA	CGTGTTCATC
1051	TGGATCTCGT	TCATAGACAG	CTACTTTGAA	ATCCTCTTCC	TGTTCCAGGC
1101	CCTGCTCACA	GTGGTGTCCC	AGGTGCTGTG	TTTCCTGGCC	ATCGAGTGGT
1151	ACCTGCCCCT	GCTTGTGTCT	GCGCTGGTGC	TGGGCTGGCT	GAACCTGCTT
1201	TACTATACAC	GTGGCTTCCA	GCACACAGGC	ATCTACAGTG	TCATGATCCA
1251	GAAGGTCATC	CTGCGGGACC	TGCTGCGCTT	CCTTCTGATC	TACTTAGTCT
1301	TCCTTTTCGG	CTTCGCTGTA	GCCCTGGTGA	GCCTGAGCCA	GGAGGCTTGG

12/21

1351	CGCCCGAAG	CTCCTACAGG	CCCCAATGCC	ACAGAGTCAG	TGCAGCCCAT
1401	GGAGGGACAG	GAGGACGAGG	GCAACGGGGC	CCAGTACAGG	GGTATCCTGG
1451	AAGCCTCCTT	GGAGCTCTTC	AAATTCACCA	TCGGCATGGG	CGAGCTGGCC
1501	TTCCAGGAGC	AGCTGCACTT	CCGCGGCATG	GTGCTGCTGC	TGCTGCTGGC
1551	CTACGTGCTG	CTCACCTACA	TCCTGCTGCT	CAACATGCTC	ATCGCCCTCA
1601	TGAGCGAGAC	CGTCAACAGT	GTCGCCACTG	ACAGCTGGAG	CATCTGGAAG
1651	CTGCAGAAAG	CCATCTCTGT	CCTGGAGATG	GAGAATGGCT	ATTGGTGGTG
1701	CAGGAAGAAG	CAGCGGGCAG	GTGTGATGCT	GACCGTTGGC	ACTAAGCCAG
1751	ATGGCAGCCC	CGATGAGCGC	TGGTGCTTCA	GGGTGGAGGA	GGTGAACTGG
1801	GCTTCATGGG	AGCAGACGCT	GCCTACGCTG	TGTGAGGACC	CGTCAGGGGC
1851	AGGTGTCCCT	CGTGAGTAGC	CTGGAACTCT	CGAGAACCCT	GTCCTGGCTT
1901	CCCCTCCCAA	GGAGGATGAG	GATGGTGCCT	CTGAGGAAAA	CTATGTGCCC
1951	GTCCAGCTCC	TCAGTCCAAC	TGATGGCCCA	GATGCAGCAG	GAGGCCAGAG
2001	GACAGAGCAG	AGGATCTTTC	CAACCACATC	TGCTGGCTCT	GGGGTCCCAG
2051	TGAATTCTGG	TGGCAAATAT	ATATTTTCAC	ТААСТААААА	AAAAAAAA

igure 8

1	GGGAAGAATC	CCCATCnATG	GCAGCTTCCA	TGGGTGGCAA	GTCCCCAGCA
51	TCCAAGGGCT	GCCTCTGAGn	GTCACCCACC	CCCACCTGAG	ACCTTAGTGG
101	CTAGAATnnG	GAnGGnTGGn	GGTGGAnCCT	nAnTCGCAGC	AGGGTGTGTC
151	CAGATGGTCA	GTCTCTGGTG	GCTAGCCTGT	CCTGACAGGG	GAGAGTTAAG
201	CTCCCGtTCT	CCACCGTGCC	GGCTGGCaGG	TGGGCTGAGG	GTGACCGAGA
251	GACCAGAACC	TGCTTGCTGG	AGCTTAGTGC	TCAGAGCTGG	GGAGGGAGGT
301	TCCGCCGCTC	CTCTGCTGTC	AGCGCCGGCA	GCCCCTCCCG	GCTTCACTTC
351	CTCCCGCAGC	CCCTGCTACT	GAGAAGCTCC	GGGATCCCAG	CAGCCGCCAC
401	GCCCTGGCCT	CAGCCTGCGG	GGCTCCAGTC	AGGCCAACAC	CGACGCGCAn
451	CTGGnGAGGA	AGACAGGACC	CTTGACATCT	CCATCTGCAC	AGAGGTCCTG
501	GCTGGACCGA	GCAGCCTCCT	CCTCCTAGGA	TGACCTCACC	CTCCAGCTCT
551	CCAGTTTTCA	GGTTGGAGAC	ATTAGATGGA	GGCCAAGAAG	ATGGCTCTGA
601	GGCGGACAGA	GGAAAGCTGG	ATTTTGGGAG	CGGGCTGCCT	CCCATGGAGT
651	CACAGTTCCA	GGGCGAGGAC	CGGAAATTCG	CCCCTCAGAT	AAGAGTCAAC
701	CTCAACTACC	GAAAGGGAAC	AGGTGCCAGT	CAGCCGGATC	CAAACCGATT
751	TGACCGAGAT	CGGCTCTTCA	ATGCGGTCTC	CCGGGGTGTC	CCCGAGGATC
801	TGGCTGGACT	TCCAGAGTAC	CTGAGCAAGA	CCAGCAAGTA	CCTCACCGAC
851	TCGGAATACA	CAGAGGGCTC	CACAGGTAAG	ACGTGCCTGA	TGAAGGCTGT
901	GCTGAACCTT	AAGGACGGGG	TCAATGCCTG	CATTCTGCCA	CTGCTGCAGA
951	TCGACmGGGA	CTCTGGCAAT	CCTCAGCCCC	TGGTAAATGC	CCAGTGCACA
1001	GATGACTATT	ACCGAGGCCA	CAGCGCTCTG	CACATCGCCA	TTGAGAAGAG
1051	GAGTCTGCAG	TGTGTGAAGC	TCCTGGTGGA	GAATGGGGCC	AATGTGCATG
1101	CCCGGGCCTG	CGGCGCAAGC	TTATTCCCTT	TA	·

Figure 9

1	cTGCACCTGT	CGCTGGCTGC	CTGCACnAAC	CAGnnCCACA	TTGTCAACTA
51	CCTGACGGAG	AACCCCCACA	AGAAGGCGGA	CATGCGGCGC	CAGGACTCGC
101	GAGGCAACAC	AGTGCTGCAT	GCGCTGGTGG	CCATTGCTGA	CAACACCCGT
151	GAGAACACCA	AGTTTGTTAC	CAAGATGTAC	GACCTGCTGC	TGCTCAAGTG
201	TGCnCGCCTC	TTCCCCGACA	GCAACCTGGA	nGCCGTGCTC	AACAACGACG
251	GCCTCTCGCC	CCTCATGATG	GCTGCCAAGA	CGGGCAAGAT	TGGGAwCyTT
301	CAGCACATCA	TCCGGCGGGA	GGTGACGGAT	GAGGACACAC	GGCACCTGTC
351	CCGCAAGTTC	AAGGACTGGG	CCTATGGGCC	AGTGTATTCC	TCGCTTTATG
401	ACCTCTCCTC	CCTGGACACG	TGTGGGGAAG	AGGCCTCCGT	GCTGGAGATC
451	CTGGTGTACA	ACAGCAAGAT	TGAGAACCGC	CACGAGATGC	TGGCTGTGGA
501	GCCCATCAAT	GAACTGCTGC	GGGACAAGTG	GCGCAAgTTC	GGGGCCGTCT
551	CCTTCTACAT	CAACGTGGTC	TCCTACCTGT	GTGCCATGGT	CATCTTCACT
601	CTCACCGCCT	ACTACCAGCC	GCTGGAGGGC	ACACCGCCGT	ACCCTTACCG
651	CACCACGGTG	GACTACCTGC	GGCTGGCTGG	CGAGGTCATT	ACGCTCTTCA
701	CTGGGGTCCT	GTTCTTCTTC	ACCAACATCA	AAGACTTGTT	CATGAAGAAA
751	TGCCCTGGAG	TGAATTCTCT	CTTCATTGAT	GGCTCCTTCC	AGCTGCTCTA
801	CTTCATCTAC	TCTGTCCTGG	TGATCGTCTC	AGCAGCCCTC	TACCTGGCAG
851	GGATCGAGGC	CTACCTGGCC	GTGATGGTCT	TTGCCCTGGT	CCTGGGCTGG
901	ATGAATGCCC	TTTACTTCAC	CCGTGGGCTG	AAGCTgacgg	ggacctataG
951	CATCATGATC	CAGAAGATTC	TCTTCAAGGA	CCTTTTCCGA	TTCCTGCTCG
1001	TCTACTTGCT	CTTCATGATC	GGCTACGCTT	CAGCCCTGGT	CTCCCTCCTG
1051	AACCCGTGTG	CCAACATGAA	GGTGTGCAAT	GAGGACCAGA	CCAACTGCAC
1101	AGTGCCCACT	TACCCCTCGT	GCCGTGACAG	CGAGACCTTC	AGCACCTTCC
1151	TCCTGGACCT	GTTTAAGCTG	ACCATCGGCA	TGGGCGACCT	GGAGATGCTG
1201	AGCAGCACCA	AGTACCCCGT	GGTCTTCATC	ATCCTGCTGG	TGACCTACAT
1251	CATCCTCACC	TTTGTGCTGC	TCCTCAACAT	GCTCATTGCC	CTCATGGGCG
1301	AGACAGTGGG	CCAGGTCTCC	AAGGAGAGCA	AGCACATCTG	GAAGCTGCAG
1351	TGGGCCACCA	CCATCCTGGA	CATTGAGCGC	TCCTTCCCCG	TATTCCTGAG

15/21

1401	GAAGGCCTTC	CGCTCTGGGG	AGATGGTCAC	CGTGGGCAAG	AGCTCGGACG
1451	GCACTCCTGA	CCGCAGGTGG	TGCTTCAGGG	TGGATGAGGT	GAACTGGTCT
1501	yACTGGAACC	AGAACTTGGG	CATCATCAAC	GAGGACCCGG	GCAAGAATGA
1551	GACCTACCAG	TATTATGGCT	TCTCGCATAC	CGTGGGCCGC	CTCCGCAGGG
1601	ATCGCTGGTC	CTCGGTGGTA	CCCCGCGTGG	TGGAACTGAA	CAAGAACTCG
1651	AACCCGGACG	AGGTGGTGGT	GCCTCTGGAC	AGCATGGGGA	ACCCCCGCTG
1701	CGATGGCCAC	CAGCAGGGTT	ACCCCGCAA	GTGGAGGACT	GATGACGCCC
1751	CGCTCTAGGG	ACTGCAGCCC	AGCCCCAGCT	TCTCTGCCCA	CTCATTTCTA
1801	GTCCAGCCGC	ATTTCAGCAG	TGCCTTCTGG	GGTGTCCCCC	CACACCCTGC
1851	TTTGGCCCCA	GAGGCGAGGG	ACCAGTGGAG	GTGCCAGGGA	GGCCCCAGGA
1901	CCCTGTGGTC	CCCTGGCTCT	GCCTCCCCAC	CCTGGGGTGG	GGGCTCCCGG
1951	CCACCTGTCT	TGCTCCTATG	GAGTCACATA	AGCCAACGCC	AGAGCCCCTC
2001	CACCTCAGGC	CCCAGCCCCT	GCCTCTCCAT	TATTTATTTG	CTCTGCTCTC
2051	AGGAAGCGAC	GTGACCCCTG	CCCCAGCTGG	AACCTGGCAG	AGGCCTTAGG
2101	ACCCCGTTCC	AAGTGCACTG	CCCGGCCAAG	CCCCAGCCTC	AGCCTGCGCC
2151	TGAGCTGCAT	GCGCCACCAT	TTTTGGCAGC	GTGGCAGCTT	TGCAAGGGGC
2201	TGGGGCCCTC	GGCGTGGGGC	CATGCCTTCT	GTGTGTTCTG	TAGTGTCTGG
2251	GATTTGCCGG	TGCTCAATAA	ATGTTTATTC	ATTGAAAAAA	ААААААА

Figure 10: Hybridisation of northern blot with hVR2 probe

Lane 1: Spleen

<u>.</u>

Lane 5: Ovary

Lane 2: Thymus

Lane 6: Small intestine

Lane 3: Prostate

Lane 7: Colon

Lane 4: Testis

Lane 8: Peripheral blood leukocyt

Figure 11: Hybridisation of northern blot with hVR2 probe

Lane 1: Pancreas

Lane 2: Kidney

Lane 3: Skeletal muscle

Lane 4: Liver

Lane 5: Lung

Lane 6: Placenta

Lane 7: Brain

Lane 8: Heart

Figure 12: Hybridisation of a northern blot with hVR3

Lane 1: Bone marrow Lane 2: Adrenal Gland

Lane 3: Trachea Lane 4: Lymph node Lane 5: Spinal cord

Lane 6: Thyroid

Lane 7: Stomach

Figure 13: Hybridisation of northern blot with hVR3 probe

Lane 1: Peripheral Blood Leukocyte

Lane 2: Colon

Lane 3: Small Intestine

Lane 4: Uterus Lane 5: Testis Lane 6: Prostate Lane 7: Thyroid Lane 8: Spleen

Figure 14: Hybridisation of a multi-tissue northern blot with the hVR3 prob

Lane 1: Heart Lane 5: Liver

Lane 2: Brain Lane 6: Skeletal Muscle

Lane 3: Placenta Lane 7: Kidney
Lane 4: Lung Lane 8: Pancreas

Figure 15

THIS PACE BLANK (MARINE)

; ; ;