Deuxième contrôle continu 2009

Exercice 1 [1]. Soit U_n une suite des v.a. uniformes en]1-1/n, 1[et $X_n = -\log(U_n)$. Montrer que $Z_n = nX_n$ converge en loi vers une v.a. uniforme sur [0,1].

Exercice 1 [2]. Soit X_n une v.a. suivant une loi géométrique de paramètre 2/n. Montrer que $Z_n = (1 + X_n)/n$ converge en loi vers une v.a. exponentielle de paramètre 2.

Exercice 1 [3]. Soit X_n la v.a. continue de densité $f_n(x) = n(nx)^{-2}I_{x \ge 1/n}$. Montrer que $Y_n = X_n - 1/n$ converge en probabilité vers 0.

Exercice 1 [4]. Soit X une v.a. exponentielle de paramètre 1. On considère la suite $Y_n = X1_{[1/n,+\infty]}(X)$. Montrer que Y_n converge presque sûrement vers X.

Exercice 2 [1]. Soit X la v.a. continue de loi $f(x) = (a/2)e^{-a|x|}$ pour a > 0. Trouver l'estimateur de maximum de vraisemblance pour a. Est-il biaisé?

Exercice 2 [2]. Soit X la v.a. discrète telle que

$$\mathbb{P}(X = 1) = p, \mathbb{P}(X = 2) = 2p, \mathbb{P}(X = 3) = 1 - 3p$$

avec $p \in]0,1/3[$. Trouver l'estimateur de maximum de vraisemblance pour p. Est-il biaisé?

Exercice 2 [3]. Soient $X_1, ..., X_n$ des v.a. i.i.d. comme X de densité

$$f_X(x,\theta) = (1-\theta)1_{x\in[-1/2,0]} + (1+\theta)1_{x\in[0,1/2]}, \quad \theta\in]-1,1[.$$

Déterminer l'estimateur du maximum de vraisemblance de θ

Exercice 2 [4]. Soit X la v.a. continue de loi $f(x) = e^{a-x} 1_{[a,+\infty]}(x)$ pour a > 0. Trouver l'estimateur de maximum de vraisemblance pour a. Est-il biaisé?

Exercice 3 [1]. Soit $X \sim \Gamma(a,1)$ avec a > 0. Trouver une statistique exhaustive pour a.

Exercice 3 [2]. Soit $X \sim \mathcal{N}(0, a)$ avec a > 0. Trouver une statistique exhaustive pour a.

Exercice 3 [3]. Soit X une v.a. de loi géométrique de paramètre $p \in]0,1[$. Trouver une statistique exhaustive pour p.

Exercice 3 [4]. Soit X une v.a. de Poisson de paramètre λ . Trouver une statistique exhaustive pour a.

Exercice 4 [1]. Soient $V \sim \chi^2(n)$ et $W \sim \chi^2(m)$ deux v.a. indépendantes. Calculer $\mathbb{E}[(V+W)^2]$.

Exercice 4 [2]. Soit $X \sim \mathcal{N}(1,1)$. Calculer $Var[X^4]$.

Exercice 4 [3]. Soit $X \sim \mathcal{N}(0,2)$ et $Y \sim \mathcal{N}(0,2)$ avec X,Y indépendantes. Calculer $\mathbb{E}[(X^2 + Y^2)^2]$.

Exercice 4 [4]. Soit $X \sim \mathcal{N}(1,1)$. Calculer $\mathbb{E}[(X-2)^4]$.