Álgebra - Curso de Verão - UFV

4^a Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Seja G um grupo tal que |G| = p(p+2), onde p e p+2 são primos (chamados **primos gêmeos**). Mostre que G é cíclico.

Exercício 2: Prove que todo grupo de ordem $5 \cdot 7 \cdot 47$ é cíclico.

Exercício 3: Seja G um grupo finito. Mostre que:

- 1. Se |G| = 42, então $n_7 = 1$.
- 2. Se |G| = 48, então G necessariamente contém um sugbrupo normal de ordem 8 ou de ordem 16.
- 3. Se |G| = 36, então G contém um subgrupo normal de ordem 9 ou 3.

Exercício 4: Sejam G um grupo, $|G| = p^m b$, com p número primo e p não divide b, K um p-subgrupo de Sylow de G e $H \subseteq G$ tal que $K \subseteq H$. Mostre que $K \subseteq H$ se, e somente se, $K \subseteq G$ se, e somente se, $n_p = 1$.

Exercício 5: Sejam G um grupo finito tal que $|G| = p_1 p_2 \cdots p_r$ com $p_1 < p_2 < \cdots < p_r$ e, para cada i, p_i é primo. Sabendo que grupos deste tipo não são simples, mostre que o p_r subgrupo de Sylow de G é normal.

Exercício 6: Sejam p um número primo e G um grupo não abeliano de ordem p^3 . Mostre que |Z(G)| = p. Mostre que Z(G) = G' e que $G/Z(G) \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Exercício 7: Seja G um grupo de ordem 11^213^2 . Mostre que G é um grupo abeliano.

Exercício 8: Sejam G um p-grupo finito, isto é, $|G| = p^n$ e $H \leq G$. Mostre que:

- 1. Se $H \neq G$, então existe $x \in G$, $x \notin H$ tal que $x^{-1}Hx = H$. [Sugestão: Faça por indução sobre n usando as possibilidades de Z(G) estar ou não contido em H.]
- 2. Se $|H| = p^{n-1}$, então H é normal em G.
- 3. Existe uma sequência de subgrupos $H_0 \leq H_1 \leq \cdots \leq H_n$ tal que $H_i \leq H_{i+1}$, $i = 0, \ldots, n-1$ e H_{i+1}/H_i é cíclido de ordem p.