Princip maximální věrohodnosti

• Věrohodnostní funkce náhodné veličiny:

Funkce je úměrná pravděpodobnosti realizované hodnoty (pro diskrétní veličiny) hustotě pravděpodobnosti (spojité veličiny).

• Parametry rozdělení/hustoty pravděpodobnosti **neznáme**, ale předpokládáme, že tato věrohodnostní funkce je na nich závislá.

• **Hledáme** takové hodnoty parametrů rozdělení, ze kterých nejpravděpodobněji vyplývají realizované hodnoty, tj. pro které je hodnota věrohodnostní funkce **největší**.

Princip max. věrohodnosti - odhad parametrů

• Příklad:

Odhad parametru binomického rozdělení z jediného experimentu.

Hledáme tedy odhad (estimátor) pro pravděpodobnost realizace p - známe počet realizací k při N pokusech

$$B_{N,k}(p) = {N \choose k} p^k (1-p)^{n-k}$$
 (věrohodnostní funkce)

Hledáme hodnotu $p = \tilde{p}$, pro niž je pravděpodobnost $B_{N,k}$ maximální.

$$\frac{\mathrm{d}B_{N,k}(p)}{\mathrm{d}p} = 0 \qquad \rightarrow \qquad \widetilde{p} = \frac{k}{N} \quad \rightarrow \qquad \langle \widetilde{p} \rangle = \frac{\langle k \rangle}{N} = p$$

střední hodnota odhadu = střední hodnotě veličiny — **nevychýlený** odhad (nepředpojatý, nestranný, *unbiased estimate*)

Princip max. věrohodnosti - odhad parametrů

Odhad parametru binomického rozdělení z jediného experimentu.

• střední hodnota odhadu
$$p$$
: $\widetilde{p} = \frac{k}{N} \longrightarrow \langle \widetilde{p} \rangle = \frac{\langle k \rangle}{N} = p$

• disperze odhadu
$$p$$
: $V(\widetilde{p}) = \frac{1}{N^2}V(k)$

Pro posouzení kvality (přesnosti) odhadů zkoumáme jejich střední hodnoty:

• odhad střední hodnoty:
$$\langle \tilde{\mu} \rangle = N \langle \tilde{p} \rangle = N p = \mu$$
 nevychýlený odhad

• odhad disperze:
$$\langle \tilde{V}(k) \rangle = \frac{N-1}{N} V(k)$$
 vychýlený odhad

nevychýlený odhad disperze:
$$\widetilde{V}^*(k) = \frac{N}{N-1}\widetilde{V}(k) = V(k)$$

Princip max. věrohodnosti - odhad parametrů

Odhad parametru **Poissonova rozdělení**: $\tilde{v} = k$ nevychýlený odhad

$$\tilde{\nu} = k$$

• odhad střední hodnoty: $\langle \tilde{\mu} \rangle = \tilde{\nu} = \mu$

nevychýlený odhad

• odhad disperze: $\langle \tilde{V}(k) \rangle = \tilde{v} = \mu$

$$\langle \tilde{V}(k) \rangle = \tilde{v} = \mu$$

nevychýlený odhad

Relativní nejistotu odhadu lze zlepšit zvýšením k:

$$\eta = \frac{\sigma}{\mu} = \frac{\sqrt{V(k)}}{\mu} = \frac{1}{\sqrt{k}}$$

Obecně lze zlepšit odhad opakováním experimentu.

Opakování nezávislého experimentu

Odhad parametru binomického rozdělení

z *n*-krát <u>nezávisle</u> opakovaného experimentu.

Výsledkem opakovaného experimentu jsou hodnoty $k_1, k_2, ..., k_n$.

Pravděpodobnost takového výsledku: $P_{k_1, k_2, \dots, k_n}(p) = \prod_{i=1}^{n} B_{k_i}(p)$

Opět z podmínky
$$\frac{dP_{k_1, k_2, \dots, k_n}(p)}{dp} = 0$$

získáme odhad p: $\widetilde{p} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{N}$ srovn.: $\widetilde{p} = \frac{k}{N}$ (pro 1 experiment)

Takový odhad je aritmetickým průměrem odhadů získaných z jediného experimentu.

$$\langle \widetilde{p} \rangle = \frac{1}{n} \sum_{i=1}^{n} \frac{\langle k_i \rangle}{N} = \frac{1}{n} \sum_{i=1}^{n} \frac{Np}{N} = p$$
 nevychýlený odhad

Opakování nezávislého experimentu

Binomické rozdělení:
$$\widetilde{p} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{N}$$

- odhad střední hodnoty: $\langle \widetilde{\mu} \rangle = N \langle \widetilde{p} \rangle = Np$
- odhad disperze: $\langle \widetilde{V}(k) \rangle = N \langle \widetilde{p}(1-\widetilde{p}) \rangle = \frac{nN-1}{nN} V(k)$ vychýlený odhad

nevychýlený odhad

nevychýlený odhad

podobně pro **Poissonovo rozdělení**:
$$\widetilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} k_i$$

- odhad střední hodnoty: $\langle \widetilde{\mu} \rangle = \widetilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} k_i$
- odhad disperze: $\langle \widetilde{V}(k) \rangle = \widetilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} k_i$ nevychýlený odhad

Odhad parametrů normálního rozdělení

Normální rozdělení:
$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

n-krát opakujeme.

Věrohodnostní funkce:
$$P_{x_1, x_2, ..., x_n}(\mu, \sigma) = \prod_{i=1}^n f(x_i, \mu, \sigma)$$

Řešením podmínek
$$\frac{dP_{x_1, x_2, \dots, x_n}(\mu, \sigma)}{d\mu} = 0 \qquad \frac{dP_{x_1, x_2, \dots, x_n}(\mu, \sigma)}{d\sigma} = 0$$

získáme odhady parametrů μ a σ :

$$\tilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Lze opět spočítat odhad střední hodnoty a disperze.

Odhad parametrů normálního rozdělení

- odhad střední hodnoty: $\langle \widetilde{\mu} \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle x_i \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle x \rangle = x = \mu$ nevychýlený odhad
- odhad disperze: $\langle \widetilde{V} \rangle = \langle \widetilde{\sigma}^2 \rangle = \frac{n-1}{n} V(x)$ vychýlený odhad
 - \rightarrow nevychýlený odhad disperze: $\tilde{V}^* = \frac{n}{n-1}\tilde{V} = V$, $S_x^2 \equiv \tilde{V}^*$

Výsledek měření veličiny *x* s normálním rozdělením bychom tedy mohli zapsat jako:

$$x = \widetilde{\mu} \pm \widetilde{\sigma}^* = x \pm S_x$$
 kde $S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

- interpretujeme: x leží s pravděpodobností P v intervalu $(\mu - \sigma, \mu + \sigma)$.

$$P = \int_{\mu_x - S_x}^{\mu_x + S_x} N(\mu_x, \sigma_x) dx$$

? jak ale získat P, když neznáme μ , σ ? známe pouze odhady: $\widetilde{\mu}$, $\widetilde{\sigma}$ † ; jak kompenzovat konečný počet měření? \rightarrow Studentovo t-rozdělení

Odhad parametrů normálního rozdělení

- Studentovo t-rozdělení:
 - Náhodná veličina u má rozdělení N(0,1).
 - Náhodná veličina v má rozdělení $\chi^2(n)$, normované počtem stupňů volnosti (n-1).

$$f(t) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 - \frac{t^2}{n}\right)^{-\frac{n-1}{2}}$$

• Konstrukce *u* a *v*:

$$u = \frac{x - \mu_x}{\sqrt{\frac{\sigma_x^2}{n}}} \qquad v = \frac{1}{\sigma_x^2} \sum_{i=1}^n (x_i - x)^2 = (n-1) \frac{S_x^2}{\sigma_x^2}$$

 \rightarrow veličina u má rozdělení N(0,1)

 \rightarrow veličina v má rozdělení χ^2 s n-1 stupni volnosti

$$t = \frac{u}{\sqrt{\frac{v}{n-1}}} = \frac{x - \mu_x}{S_x} \sqrt{n} \qquad P = \int_{-t_P}^{t_P} f(t) dt$$

 \rightarrow veličina t má studentovo t-rozdělení s n-1 stupni volnosti

Hodnoty t_P pro různé pravděpodobnosti Pa pro různé počty stupňů volnosti (n-1):

• Výsledek *n*-krát opakovaného měření veličiny *x*:

$$x = \bar{x} \pm \underbrace{t_P}_{\sqrt{n}} \frac{S_x}{\sqrt{n}}$$

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

- S rostoucím počtem stupňů volnosti (*n*-1), tj. s rostoucím počtem opakování měření (n), se t_P blíží hodnotám pro normální rozdělení. (Důsledek CLV.)
- Zejména pro malé hodnoty n a vysokou P je korekce výrazná.
- tj. máme-li **malý počet měření**, musíme pro dosažení stejně velké pravděpodobnosti P volit **širší** interval výskytu okolo *x*.

Stupeň	Pravděpodobnost (P)					
volnosti	0.6827	0.9	0.95	0.9545	0.99	0.9973
(n-1)	σ			2σ		3σ
1	1.84	6.31	12.71	13.97	63.66	235.80
2	1.32	2.92	4.30	4.53	9.92	19.21
3	1.20	2.35	3.18	3.31	5.84	9.22
4	1.14	2.13	2.78	2.87	4.60	6.62
5	1.11	2.02	2.57	2.65	4.03	5.51
6	1.09	1.94	2.45	2.52	3.71	4.90
7	1.08	1.89	2.36	2.43	3.50	4.53
8	1.07	1.63	2.31	2.37	3.36	4.28
9	1.06	1.83	2.26	2.32	3.25	4.09
10	1.05	1.81	2.23	2.28	3.17	3.96
11	1.05	1.80	2.20	2.25	3.11	3.85
12	1.04	1.78	2.18	2.23	3.05	3.76
13	1.04	1.77	2.16	2.21	3.01	3.69
14	1.04	1.76	2.14	2.20	2.98	3.64
15	1.03	1.75	2.13	2.18	2.95	3.59
16	1.03	1.75	2.12	2.17	2.92	3.54
17	1.03	1.74	2.11	2.16	2.90	3.51
18	1.03	1.73	2.10	2.15	2.88	3.48
19	1.03	1.73	2.09	2.14	2.86	3.45
20	1.03	1.72	2.09	2.13	2.85	3.42
25	1.02	1.71	2.06	2.11	2.79	3.33
30	1.02	1.70	2.04	2.09	2.75	3.27
35	1.01	1.70	2.03	2.07	2.72	3.23
40	1.01	1.68	2.02	2.06	2.70	3.20
45	1.01	1.68	2.01	2.06	2.69	3.18
50	1.01	1.68	2.01	2.05	2.68	3.16
100	1.005	1.660	1.984	2.025	2.626	3.077
∞	1.000	1.645	1.960	2.000	2.576	3.000

Příklad - zpracování měření jedné veličiny

• Mikrometrem byla změřena tloušťka destičky, byly změřeny tyto hodnoty:

číslo měření	1	2	3	4	5	6	7	8	9	10
d (mm)	2,45	2,38	2,41	2,71	2,57	2,48	2,39	2,43	2,49	2,55

- Výsledek měření udejte:
 - a) se standardní odchylkou
 - b) s mezní chybou

(Vliv měřidla prozatím nezapočítáváme.)

Příklad - zpracování měření jedné veličiny

- 1) Spočítáme aritmetický průměr $\overline{d} = 2,486$ mm,
- 2) Odchylky $d_i \overline{d}$ jednotlivých hodnot.
- 3) Nevychýlený odhad standardní odchylky pro d_i :

$$S_d^2 = \frac{1}{n-1}V = \frac{1}{10-1}\sum_{i=1}^{10} (d_i - \vec{d})^2$$

$$S_d = \sqrt{\frac{0,0920}{10-1}} = 0,101127 \cong 0,10 \text{ mm}$$

4) Vyloučíme hrubé chyby, $\left| d - \overline{d} \right| \ge "3\sigma"$

Koeficient t_P pro hladinu pravděpodobnosti 3σ (99,73%) a n-1 = 9:

$$t_{P=0,9973}^{3\sigma}(9) = 4.09 \rightarrow |d - \overline{d}| \ge 4.09 \cdot 0.10 = 0.41 \text{ mm}$$

5) Odhad standardní odchylky aritm. průměru \overline{d} :

$$S_d = \frac{S_d}{\sqrt{n}} \cong 0.032 \text{ mm}$$

číslo měření	<i>d</i> (mm)	$d-\overline{d}$ (mm)	$(d-\overline{d})^2$ (mm ²)	
HICICIII	(mm)	(111111)	(111111-)	
1	2,45	-0,04	0,0013	
2	2,38	-0,11	0,0112	
3	2,41	-0,08	0,0058	
4	2,71	0,22	0,0502	
5	2,57	0,08	0,0071	
6	2,48	-0,01	0,0000	
7	2,39	-0,10	0,0092	
8	2,43	-0,06	0,0031	
9	2,49	0,00	0,0000	
10	2,55	0,06	0,0041	
d (mm)	2,486			
$\sum (d_i - \vec{d})^2$			0,0920	

Příklad - zpracování měření jedné veličiny

- 6) Spočítáme výslednou nejistotu (korigovanou pomocí t_P) jako:
- a) <u>standardní odchylku</u> aritmetického průměru, $P \sim 68.27 \%$ (interval $\pm \sigma$) (též *směrodatná odchylka, střední kvadratická chyba*)

$$t_{68,27\%}^{\sigma}(9) = 1,06 \rightarrow u_d = 1,06 \cdot 0,032 \cong 0,034 \text{ mm}$$

b) mezní chybu aritmetického průměru, $P \sim 99,73 \%$ (interval $\pm 3\sigma$)

$$t_{99.73\%}^{3\sigma}(9) = 4.09 \rightarrow u_d = 4.09 \cdot 0.032 \cong 0.131 \,\text{mm}$$

7) Zaokrouhlení a zápis:

a)
$$d = (2,49 \pm 0,03) \text{ mm}, P = 68,27\%$$

b)
$$d = (2,49 \pm 0,13) \text{ mm}, P = 99,73\%$$