INSTRUCTOR'S MANUAL

to accompany

Linear Algebra: 4th Edition

Stephen H. Friedberg Arnold J. Insel Lawrence E. Spence

 $Illinois\ State\ University$

Contents

1	Vec	ctor Spaces	1		
	1.1 1.2 1.3 1.4 1.5 1.6	Introduction Vector Spaces Subspaces Linear Combinations and Systems of Linear Equations Linear Dependence and Linear Independence Bases and Dimension	1 1 1 2 2 2		
2	Line	ear Transformations and Matrices	4		
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Linear Transformations, Null Spaces, and Ranges The Matrix Representation of a Linear Transformation Composition of Linear Transformations and Matrix Multiplication Invertibility and Isomorphisms The Change of Coordinate Matrix Dual Spaces Homogeneous Linear Differential Equations with Constant Coefficients	4 4 5 5 5 6 6		
3	Elementary Matrix Operations and Systems of Linear Equations				
	3.1 3.2 3.3 3.4	Elementary Matrix Operations and Elementary Matrices The Rank of a Matrix and Matrix Inverses Systems of Linear Equations—Theoretical Aspects Systems of Linear Equations—Computational Aspects	7 7 8 8		
4	Det	erminants	10		
	4.1 4.2 4.3 4.4 4.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 10 11 11		
5	Dia	gonalization	12		
	5.1 5.2 5.3 5.4	Eigenvalues and Eigenvectors	12 13 13		

6	Inner Product Spaces		
	6.1	Inner Products and Norms	15
	6.2	The Gram-Schmidt Ortogonalization Process and Orthogonal Complements	15
	6.3	The Adjoint of a Linear Operator	16
	6.4	Normal and Self-Adjoint Operators	16
	6.5	Unitary and Orthogonal Operators and Their Matrices	17
	6.6	Orthogonal Projections and the Spectral Theorem	17
	6.7	The Singular Value Decomposition and the Pseudoinverse	18
	6.8	Bilinear and Quadratic Forms	19
	6.10	Conditioning and the Rayleigh Quotient	19
	6.11	The Geometry of Orthogonal Operators	19
7	Can	onical Forms	20
	7.1	Jordan Canonical Form I	20
	7.2	Jordan Canonical Form II	20
	7.3	The Minimal Polynomial	21
	7.4	Rational Canonical Form	21

Vector Spaces

1.1 INTRODUCTION

2. (b)
$$x = (2,4,0) + t(-5,-10,0)$$
 (d) $x = (-2,-1,5) + t(5,10,2)$

3. **(b)**
$$x = (3, -6, 7) + s(-5, 6, -11) + t(2, -3, -9)$$

(d) $x = (1, 1, 1) + s(4, 4, 4) + t(-7, 3, 1)$

4. (0,0)

1.2 VECTOR SPACES

4. (b)
$$\begin{pmatrix} 1 & -1 \\ 3 & -5 \\ 3 & 8 \end{pmatrix}$$
 (d) $\begin{pmatrix} 30 & -20 \\ -15 & 10 \\ -5 & -40 \end{pmatrix}$
(f) $-x^3 + 7x^2 + 4$ (h) $3x^5 - 6x^3 + 12x + 6$

5.
$$\begin{pmatrix} 8 & 3 & 1 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 9 & 1 & 4 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 17 & 4 & 5 \\ 6 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}$$

16. Yes **18.** No, (VS 1) fails. **19.** No, (VS 8) fails.

1.3 SUBSPACES

2. (b)
$$\begin{pmatrix} 0 & 3 \\ 8 & 4 \\ -6 & 7 \end{pmatrix}$$
 (d) $\begin{pmatrix} 10 & 2 & -5 \\ 0 & -4 & 7 \\ -8 & 3 & 6 \end{pmatrix}$ (f) $\begin{pmatrix} -2 & 7 \\ 5 & 0 \\ 1 & 1 \\ 4 & -6 \end{pmatrix}$

(h)
$$\begin{pmatrix} -4 & 0 & 6 \\ 0 & 1 & -3 \\ 6 & -3 & 5 \end{pmatrix}$$

The trace is 2.

8. (b) No (d) Yes (f) No

9.
$$W_1 \cap W_3 = \{0\}, \quad W_1 \cap W_4 = W_1,$$

 $W_3 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \colon a_1 = -11a_3 \text{ and } a_2 = -3a_3\}$

1.4 LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS

2. (b)
$$(-2, -4, -3)$$

(d)
$$\{x_3(-8,3,1,0) + (-16,9,0,2): x_3 \in R\}$$

(f)
$$(3,4,-2)$$

3. (a)
$$(-2,0,3) = 4(1,3,0) - 3(2,4,-1)$$

(b)
$$(1,2,-3) = 5(-3,2,1) + 8(2,-1,-1)$$

(f)
$$(-2,2,2) = 4(1,2,-1) + 2(-3,-3,3)$$

4. (a)
$$x^3 - 3x + 5 = 3(x^3 + 2x^2 - x + 1) - 2(x^3 + 3x^2 - 1)$$

(c)
$$-2x^3 - 11x^2 + 3x + 2 = 4(x^3 - 2x^2 + 3x - 1) - 3(2x^3 + x^2 + 3x - 2)$$

(d)
$$x^3 + x^2 + 2x + 13 = -2(2x^3 - 3x^2 + 4x + 1) + 5(x^3 - x^2 + 2x + 3)$$

(f) No

11. The span of $\{x\}$ is $\{0\}$ if x = 0 and is the line through the origin of \mathbb{R}^3 in the direction of x if $x \neq 0$.

17. if W is finite

1.5 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

- 2. (b) Linearly independent
- (d) Linearly dependent
- (f) Linearly independent
- (h) Linearly independent
- (j) Linearly dependent
- **10.** (1,0,0), (0,1,0), (1,1,0)

1.6 BASES AND DIMENSION

- **2. (b)** Not a basis
- (d) Basis

3. (b) Basis

- (d) Basis
- **4.** No, $\dim(P_3(R)) = 4$.
- 5. No, $\dim(\mathbb{R}^3) = 3$.

- 8. $\{u_1, u_3, u_5, u_7\}$
- 10. (b) 12 3x

- (d) $-x^3 + 2x^2 + 4x 5$
- **14.** $\{(0,1,0,0,0), (0,0,0,0,1), (1,0,1,0,0), (1,0,0,1,0)\}$ and $\{(-1,0,0,0,1), (0,1,1,1,0)\}; \dim(W_1) = 4 \text{ and } \dim(W_2) = 2.$
- **16.** $\dim(W) = \frac{1}{2}n(n+1)$

1.6 Bases and Dimension

18. Let σ_j be the sequence such that

$$\sigma_j(i) = \begin{cases} 0 & i = j \\ 1 & i \neq j. \end{cases}$$

Then $\{\sigma_j\colon\ j=1,2,\ldots\}$ is a basis for the vector space in Example 5 of Section 1.2.

- **22.** $W_1 \subseteq W_2$
- **23.** (a) $v \in W_1$

(b) $\dim(W_2) = \dim(W_1) + 1$

- **25.** mn
- 27. If n is even, then $\dim(W_1) = \dim(W_2) = \frac{n}{2}$; and if n is odd, then $\dim(W_1) = \frac{n+1}{2}$ and $\dim(W_2) = \frac{n-1}{2}$.
- **32.** (a) Take $W_1 = R^3$ and $W_2 = \text{span}(\{e_1\})$.
 - (b) Take $W_1 = \text{span}(\{e_1, e_2\})$ and $W_2 = \text{span}(\{e_3\})$.
 - (c) Take $W_1 = \text{span}(\{e_1, e_2\})$ and $W_2 = \text{span}(\{e_2, e_3\})$.
- **35. (b)** $\dim(V) = \dim(W) + \dim(V/W)$

Linear Transformations and Matrices

2.1 LINEAR TRANSFORMATIONS, NULL SPACES, AND RANGES

- 3. The nullity is 0, and the rank is 2. Thus T is one-to-one, but not onto.
- **6.** The nullity is n-1, and the rank is 1. Thus T is not one-to-one unless n=1, and T is not onto unless n=1.
- **11.** T(8,11) = (5,-3,16)
- **18.** T(a,b) = (b,0). $N(T) = span\{(1,0)\} = R(T)$.
- 19. Define T = I and U = 2I.
- 23. All of R³ or a plane in R³ through the origin

24. (a)
$$T(a,b) = (0,b)$$
 (b) $T(a,b) = (0,b-a)$

25. (b)
$$T(a, b, c) = (0, 0, c)$$

26. (a)
$$T = I_V$$
 (d) $T = T_0$

31. (c) Let V = P(F) and $V = \operatorname{span}(\{1\})$. Define T first on the standard basis of V by T(1) = T(x) = 0, and $T(x^k) = x^{k-1}$ for $k \ge 2$. Now extend T to a linear transformation from V to V. Then $N(T) = \operatorname{span}(\{1, x\})$, and $R(T) = \operatorname{span}(\{x^k : k \ge 1\})$. So $V = R(T) \oplus W$, but $W \ne N(T)$.

2.2 THE MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION

2. (b)
$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 3 \end{pmatrix}$$
 (e) $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$

$$\mathbf{4.} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

5. (c)
$$(1\ 0\ 0\ 1)$$
 (d) $(1\ 2\ 4)$ (f) $\begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix}$ (g) (a)

2.3 Composition of Linear Transformations and Matrix Multiplication

2.3 COMPOSITION OF LINEAR TRANSFORMATIONS AND MATRIX MULTIPLICATION

2. (a)
$$(AB)D = \begin{pmatrix} 29 \\ -26 \end{pmatrix}$$

(b)
$$A^t = \begin{pmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{pmatrix}, BC^t = \begin{pmatrix} 12 \\ 16 \\ 29 \end{pmatrix}, CA = \begin{pmatrix} 20 & 26 \end{pmatrix}$$

3. (b)
$$[h]_{\beta} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, [U(h)]_{\gamma} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$$

4. (b)
$$\begin{pmatrix} -6\\2\\0\\6 \end{pmatrix}$$
 (d) (12)

9.
$$\mathsf{T}(a_1, a_2) = (0, a_1 + a_2), \qquad \mathsf{U}(a_1, a_2) = (0, a_1),$$

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ BC^t = \begin{pmatrix} 12 \\ 16 \\ 29 \end{pmatrix}, \ CA = \begin{pmatrix} 20 & 26 \end{pmatrix}$$

20. (a)
$$B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
, $B^3 = \begin{pmatrix} 0 & 2 & 0 & 3 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 2 & 0 \end{pmatrix}$ There are no cliques.

(b)
$$B = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \ B^3 = \begin{pmatrix} 2 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 2 & 3 \\ 3 & 0 & 3 & 2 \end{pmatrix}$$

Persons 1, 3, and 4 belong to a clique.

23.
$$\frac{n^2-n}{2}$$

2.4 INVERTIBILITY AND ISOMORPHISMS

14.
$$\mathsf{T}\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = (a,b,c)$$

2.5 THE CHANGE OF COORDINATE MATRIX

2. (b)
$$\begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$
 (d) $\begin{pmatrix} 2 & -1 \\ 5 & -4 \end{pmatrix}$

3. (b)
$$\begin{pmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$
 (d) $\begin{pmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ -1 & 3 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} -2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2 \end{pmatrix}$

6. (b)
$$Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $[L_A]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$
(d) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix}$, $[L_A]_{\beta} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 18 \end{pmatrix}$

7. **(b)**
$$T(x,y) = \frac{1}{m^2+1}(x+my, mx+m^2y)$$

2.6 DUAL SPACES

3. (b)
$$f_1(a+bx+cx^2)=a$$
, $f_2(a+bx+cx^2)=b$, $f_3(a+bx+cx^2)=c$

4. The basis for V is
$$\{(.4, -.3, -.1), (.6, .3, .1), (.2, .1, -.3)\}$$

6. (a)
$$\mathsf{T}^t(f)(x,y) = 7x + 4y$$
 (b) $[\mathsf{T}^t]_{\beta^*} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$ (c) $[\mathsf{T}]_{\beta} = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$ and $([\mathsf{T}]_{\beta})^t = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$

2.7 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFI-CIENTS

3. (b)
$$\{1, e^t\}$$
 (d) $\{e^{-t}, te^{-t}\}$

4.
$$\{t, te^t, t^2e^t\}$$

16. (a)
$$\theta(t) = c_1 \cos\left(\sqrt{\frac{g}{l}}t\right) + c_2 \sin\left(\sqrt{\frac{g}{l}}t\right)$$

(b)
$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}}t\right)$$

17.
$$y(t) = c_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + c_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

18. (a) Case 1:
$$r^2 = 4km$$
. $y(t) = e^{-(r/2m)t}[c_1 + c_2 t]$

Case 2:
$$r^2 > 4km$$
. $y(t) = c_1 e^{at} + c_2 e^{bt}$, where

$$a = \frac{-r}{2m} + \frac{\sqrt{r^2 - 4mk}}{2m}, \quad b = \frac{-r}{2m} - \frac{\sqrt{r^2 - 4mk}}{2m}$$

Case 3:
$$r^2 < 4km$$
. $y(t) = e^{at}[c_1 \cos bt + c_2 \sin bt]$, where

$$a = \frac{-r}{2m}, \quad b = \frac{\sqrt{4mk - r^2}}{2m}$$

(b) Referring to the three cases listed in (a):

Case 1:
$$y(t) = v_0 t e^{-(r/2m)t}$$

Case 2:
$$y(t) = \frac{v_0 m}{\sqrt{r^2 - 4mk}} [e^{at} - e^{bt}]$$

Case 3:
$$y(t) = \frac{v_0}{b}e^{at}\sin bt$$

Elementary Matrix Operations and Systems of Linear Equations

3.1 ELEMENTARY MATRIX OPERATIONS AND ELEMENTARY MATRICES

2. Adding -1 times row 1 to row 2 transforms B into C. A sequence of elementary operations that transforms C into I_2 is:

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 0 & -3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & -3 & -2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

3. (b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.2 THE RANK OF A MATRIX AND MATRIX INVERSES

2. (b) 2 (d) 1 (f) 3

4. (a)
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
; the rank is 2.

5. (b) The rank is 1; so no inverse exists.

(d) The rank is 3, and the inverse is
$$\begin{pmatrix} -0.5 & 3 & -1 \\ 1.5 & -4 & 2 \\ 1.0 & -2 & 1 \end{pmatrix}$$
.

(f) The rank is 2; so no inverse exists.

(h) The rank is 3; so no inverse exists.

6. (b) T is not invertible.

(d) $\mathsf{T}^{-1}(ax^2 + bx + c) = (c, 0.5a - 0.5b, 0.5a + 0.5b - c)$

(f) T is not invertible.

19. *m*

3.3 SYSTEMS OF LINEAR EQUATIONS—THEORETICAL ASPECTS

2. (b)
$$\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$$
 (d) $\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ (f) \varnothing

3. (b)
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 1\\2\\3 \end{pmatrix} : t \in R \right\}$$
 (d)
$$\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix} + t \begin{pmatrix} 0\\1\\1 \end{pmatrix} : t \in R \right\}$$

(f)
$$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

4. (a) (1)
$$A^{-1} = \begin{pmatrix} -5 & 3 \\ 2 & -1 \end{pmatrix}$$
 (2) $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -11 \\ 5 \end{pmatrix}$

5.
$$x + y = 0$$

 $2x + 2y = 0$

- 8. (a) Yes (b) Yes
- 12. $\frac{3}{7}$ of the total economic output
- 14. \$300 billion worth of goods and \$200 billion worth of services

3.4 SYSTEMS OF LINEAR EQUATIONS—COMPUTATIONAL ASPECTS

2. (b)
$$\left\{ \begin{pmatrix} 9\\4\\0 \end{pmatrix} + t \begin{pmatrix} -5\\-3\\1 \end{pmatrix} : t \in R \right\}$$
 (d) $\begin{pmatrix} -21\\-16\\14\\-10 \end{pmatrix}$

(f)
$$\left\{ \begin{pmatrix} -3\\3\\1\\0 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix} : t \in R \right\}$$
 (h) $\left\{ \begin{pmatrix} -3\\-8\\0\\0\\3 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1\\0\\0 \end{pmatrix} : t \in R \right\}$

(j)
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 0 \\ 2 \\ 1 \end{pmatrix} : t \in R \right\}$$

4. (b)
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix} : s, t \in R \right\}$$

3.4 Systems of Linear Equations—Computational Aspects

6.
$$\begin{pmatrix} 1 & -3 & -1 & 1 & 0 & 3 \\ -2 & 6 & 1 & -5 & 1 & -9 \\ -1 & 3 & 2 & 2 & -3 & 2 \\ 3 & -9 & -4 & 0 & 2 & 5 \end{pmatrix}$$

- 8. $\{u_1, u_3, u_5, u_7\}$
- 9. $\left\{ \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \right\}$
- **10. (b)** $\{(0,1,1,1,0),(2,1,0,0,0),(-3,0,1,0,0),(-2,0,0,0,1)\}$
- **12. (b)** $\{(0,-1,0,1,1,0),(1,0,1,1,1,0),(-1,1,0,1,0,0),(-3,-2,0,0,0,1)\}$

Determinants

DETERMINANTS OF ORDER 2

2. (b)
$$-17$$

3. (b)
$$36 + 41i$$

DETERMINANTS OF ORDER n

6.
$$-13$$

10.
$$4+2i$$

20.
$$17 - 3i$$

22.
$$-100$$

26. if n is even or
$$det(A) = 0$$

28.
$$det(E_1) = -1$$
 and $det(E_3) = 1$.

30. If *n* is even, then
$$det(B) = (-1)^{\frac{n}{2}} \cdot det(A)$$
. If *n* is odd, then $det(B) = (-1)^{\frac{n-1}{2}} \cdot det(A)$.

4.3 PROPERTIES OF DETERMINANTS

2.
$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}}$$
 and $x_2 = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}}$

$$x_2 = \frac{a_{11}b_2 - a_{21}}{a_{12}b_2 - a_{21}}$$

4.
$$(-1.0, -1.2, -1.4)$$

6.
$$(-43, -109, -17)$$

18.
$$A_{11}A_{22}\cdots A_{nn}$$

25. (b)
$$\begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 16 \\ 0 & 0 & 16 \end{pmatrix}$$
 (d) $\begin{pmatrix} 20 & -30 & 20 \\ 0 & 15 & -24 \\ 0 & 0 & 12 \end{pmatrix}$

$$\text{(f)} \quad \begin{pmatrix}
 6 & 22 & 12 \\
 12 & -2 & 24 \\
 21 & -38 & -27
 \end{pmatrix}$$

(f)
$$\begin{pmatrix} 6 & 22 & 12 \\ 12 & -2 & 24 \\ 21 & -38 & -27 \end{pmatrix}$$
 (h) $\begin{pmatrix} -i & -8+i & -1+2i \\ 1-5i & 9-6i & -3i \\ -1+i & -3 & 3-i \end{pmatrix}$

4.4 Summary-Important Facts about Determinants

4.4 SUMMARY-IMPORTANT FACTS ABOUT DETERMINANTS

2. (b) -29

(d) -24 + 6i

3. (b) −13

(d) -13

(f) 4+2i

(h) 154

4. (b) 36

(d) 10

(f) 17 - 3i

(h) -100

4.5 A CHARACTERIZATION OF THE DETERMINANT

2. The 1-linear functions $\delta: M_{1\times 1}(F) \to F$ have the form $\delta(A_{11}) = cA_{11}$ for some scalar c.

4. No

6. No

8. No

10. Yes

20. Define $\delta \colon \mathsf{M}_{3\times 3}(F) \to F$ by $\delta(A) = A_{11}A_{21}A_{31}$. Then $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ has identical rows, but $\delta(B) \neq 0$.

Diagonalization

5.1 EIGENVALUES AND EIGENVECTORS

2. (b)
$$[T]_{\beta} = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix}$$
, yes (d) $[T]_{\beta} = \begin{pmatrix} 0 & 0 & 3 \\ 0 & -2 & 0 \\ -4 & 0 & 0 \end{pmatrix}$, no

$$(\mathbf{f}) \quad [\mathsf{T}]_{\beta} = \begin{pmatrix} -3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ yes }$$

3. (b) The eigenvalues are 1, 2, and 3. A basis of eigenvectors is

$$\left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}. \quad Q = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(d) The eigenvalues are 0 and 1. A basis of eigenvectors is

$$\left\{ \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}. \quad Q = \begin{pmatrix} 1 & 0 & 1 \\ 4 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4. (c)
$$\lambda = 2, -1$$
 $\beta = \{(-1, 2, 2), (1, 1, 0), (-2, 0, 1)\}$

(d)
$$\lambda = -2, -3$$
 $\beta = \{x + 2, 2x + 3\}$

(d)
$$\lambda = -2, -3$$
 $\beta = \{x + 2, 2x + 3\}$
(e) $\lambda = 4, 2, 0$ $\beta = \{1 + x, 3 + 13x - 4x^2, 3 - x\}$

(g)
$$\lambda = -1, 1, 2, 3$$
 $\beta = \{1, 1-x, 2-3x^2, -7+6x+2x^3\}$

- 10. (b) $(\lambda t)^n$, where $n = \dim(V)$
- 17. (c) The eigenvectors corresponding to $\lambda = 1$ are the nonzero symmetric matrices. The eigenvectors corresponding to $\lambda = -1$ are the nonzero skew-symmetric matrices.

(d)
$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

- (e) $\beta = \{D_i: 1 \le i \le n\} \cup \{E_{ij}: 1 \le i < j \le n\} \cup \{F_{ij}: 1 \le i < j \le n\}$, where D_i is the $n \times n$ diagonal matrix with 1 as the ith diagonal entry and 0 elsewhere, E_{ij} is the $n \times n$ matrix with 1 as the ijth entry, -1 as the jith entry, and 0 elsewhere, and F_{ij} is the $n \times n$ matrix with 1 as both the ijth and jith entries and 0 elsewhere.
- **18.** (b) Take $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$.

Diagonalizability

5.2 DIAGONALIZABILITY

2. (b)
$$Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 (d) $Q = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 4 \\ 0 & 1 & 3 \end{pmatrix}$ (f) Not diagonalizable

(d)
$$Q = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 4 \\ 0 & 1 & 3 \end{pmatrix}$$

3. **(b)**
$$\beta = \{x, 1 + x^2, -1 + x^2\}$$

3. **(b)**
$$\beta = \{x, 1 + x^2, -1 + x^2\}$$
 (f) $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$

13. (a) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Then $A^t = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Notice that the eigenvalues of both A and A^t are 1 and 2. For $\lambda = 1$, $E_{\lambda}(A)$ is spanned by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $E_{\lambda}(A^{t})$ is spanned by $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

14. (a)
$$x(t) = c_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

MATRIX LIMITS AND MARKOV CHAINS 5.3

2. (b)
$$\begin{pmatrix} -0.5 & 0.5 \\ -1.5 & 1.5 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(f)
$$\begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$$

2. (b)
$$\begin{pmatrix} -0.5 & 0.5 \\ -1.5 & 1.5 \end{pmatrix}$$
 (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (f) $\begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$ (h) $\begin{pmatrix} -2 & -3 & -1 \\ 0 & 0 & 0 \\ 6 & 9 & 3 \end{pmatrix}$ (j) No limit exists.

5.
$$A = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

9. (b)
$$\begin{pmatrix} 0.50 & 0.50 & 0.50 \\ 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 \end{pmatrix}$$
 (d) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (f) $\begin{pmatrix} 1 & 0.0 & 0.0 \\ 0 & 0.4 & 0.4 \\ 0 & 0.6 & 0.6 \end{pmatrix}$

(d)
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{(f)} \quad \begin{pmatrix} 1 & 0.0 & 0.0 \\ 0 & 0.4 & 0.4 \\ 0 & 0.6 & 0.6 \end{pmatrix}$$

$$\begin{array}{cccccc}
(0.25 & 0.25 & 0.25) \\
(\mathbf{h}) & \begin{pmatrix}
0.0 & 0.0 & 0 & 0 \\
0.0 & 0.0 & 0 & 0 \\
0.5 & 0.5 & 1 & 0 \\
0.5 & 0.5 & 0 & 1
\end{pmatrix}$$

10. (b)
$$\begin{pmatrix} .375 \\ .375 \\ .250 \end{pmatrix}$$
 after two stages and $\begin{pmatrix} .4 \\ .4 \\ .2 \end{pmatrix}$ eventually

(d)
$$\begin{pmatrix} .252 \\ .334 \\ .414 \end{pmatrix}$$
 after two stages and $\begin{pmatrix} .25 \\ .35 \\ .40 \end{pmatrix}$ eventually

(f)
$$\begin{pmatrix} .316 \\ .428 \\ .256 \end{pmatrix}$$
 after two stages and $\begin{pmatrix} .25 \\ .50 \\ .25 \end{pmatrix}$ eventually

11. For 1950, the distribution is 19.7% urban, 33.9% unused, and 46.4% agricultural. Eventually, the distribution is 20% urban, 30% unused, and 50% agricultural.

23. Here are two examples.

(a) Take
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

(b) Take
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

5.4 INVARIANT SUBSPACES AND THE CAYLEY-HAMILTON THEOREM

6. (b)
$$\{x^3, 6x\}$$

(d)
$$\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \right\}$$

9. (b)
$$t^2$$

(d)
$$t(t-3)$$

10. (b)
$$t^4$$

10. (b)
$$t^4$$
 (d) $t^2(t-3)^2$

31. (c)
$$-(t+1)(t^2-6t+6)$$

41.
$$(-t)^{n-2}\left(t^2-\frac{n(n^2+1)}{2}t-\frac{n^3(n+1)(n-1)}{12}\right)$$

42.
$$(-1)^{n-2}t^{n-1}(t-n)$$

Inner Product Spaces

6.1 INNER PRODUCTS AND NORMS

- **4.** (b) ||A|| = 4, ||B|| = 2, $\langle A, B \rangle = -4i$
- 5. 6-21i
- 8. (a) Observe that $\langle (1,1),(1,1)\rangle=0$, which violates (d) of the definition of inner product.
 - (b) Let $A = B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, and let c = 2. Then $\langle cA, B \rangle = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$, but $c \langle A, B \rangle = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$. Thus (b) of the definition of inner product is violated.
 - (c) Let f(x) be the constant polynomial 1. Then $\langle f, f \rangle = 0$, which violates (d) of the definition of inner product.
- 11. The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides.

6.2 THE GRAM-SCHMIDT ORTOGONALIZATION PROCESS AND ORTHOGONAL COMPLEMENTS

- 2. (a) The orthonormal basis is $\left\{\frac{\sqrt{2}}{2}(1,0,1), \frac{\sqrt{6}}{6}(-1,2,1), \frac{\sqrt{3}}{3}(1,1,-1)\right\}$.

 The Fourier coefficients are $\frac{3\sqrt{2}}{2}, \frac{\sqrt{6}}{2}, 0$.
 - (d) The orthonormal basis is $\left\{\frac{\sqrt{2}}{2}(1,i,0), \frac{\sqrt{17}}{34}(1+i,1-i,8i)\right\}$.

The Fourier coefficients are $\frac{\sqrt{2}}{2}(7+i)$, $\sqrt{17}i$.

- (f) The orthonormal basis is $\left\{ \frac{1}{\sqrt{15}} (1, -2, -1, 3), \frac{1}{\sqrt{10}} (2, 2, 1, 1), \frac{1}{\sqrt{30}} (-4, 2, 1, 3) \right\}$. The Fourier coefficients are $-\frac{\sqrt{15}}{5}, \frac{2\sqrt{10}}{5}, \frac{2\sqrt{30}}{5}$.
- (h) The orthonormal basis is $\left\{\frac{1}{\sqrt{13}}\begin{pmatrix}2&2\\2&1\end{pmatrix}, \frac{1}{7}\begin{pmatrix}5&-2\\-4&2\end{pmatrix}, \frac{1}{\sqrt{373}}\begin{pmatrix}8&-8\\7&-14\end{pmatrix}\right\}$. The Fourier coefficients are $5\sqrt{13}$, -14, $\sqrt{373}$.
- (j) The orthonormal basis is

$$\left\{\frac{1}{\sqrt{8}}(1,i,2-i,-1),\frac{1}{\sqrt{20}}(1+3i,2i,-1,1+2i),\frac{1}{\sqrt{140}}(-7+i,6+2i,5,5)\right\}.$$

The Fourier coefficients are $6\sqrt{2}$, $4\sqrt{5}$, $2\sqrt{35}$

(1) The orthonormal basis is

$$\left\{ \frac{1}{\sqrt{40}} \begin{pmatrix} 1-i & -2-3i \\ 2+2i & 4+i \end{pmatrix}, \frac{1}{\sqrt{50}} \begin{pmatrix} 6i & -1-i \\ 1-3i & 1+i \end{pmatrix}, \frac{1}{\sqrt{8075}} \begin{pmatrix} -2-43i & 1-21i \\ -68i & 34i \end{pmatrix} \right\}.$$

The Fourier coefficients are $\sqrt{10}(2-6i)$, $10\sqrt{2}$, 0.

- 3. $\frac{7}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$
- **9.** An orthonormal basis for W is $\left\{\frac{1}{\sqrt{2}}(i,0,1)\right\}$. An orthonormal basis for W^{\perp} is $\left\{\frac{1}{\sqrt{2}}(1,0,i),(0,1,0)\right\}$.
- **19.** (c) $x + \frac{13}{3}$
- **20.** (a) $\frac{2}{\sqrt{17}}$ (c) $\frac{5}{\sqrt{15}}$
- **21.** The best approximation is $\frac{3}{4e}(5e^2-35)t^2+\frac{3}{e}t+\frac{3}{4e}(11-e^2)$.
- **22.** (a) $\{\sqrt{3}t, \sqrt{2}(5\sqrt{t}-6t)\}$
 - (b) $\frac{45}{28}t \frac{5}{7}\sqrt{t}$

THE ADJOINT OF A LINEAR OPERATOR

- **2. (b)** y = (1, -2)
- 3. (b) $T^*(z_1, z_2) = (5 + i, -1 3i)$
- 7. T: $R^2 \to R^2$ defined by $T(a_1, a_2) = (a_2, 0)$
- **11.** Yes
- 20. (c) The linear function is y = -1.8x + 0.8 with E = 0.4, and the quadratic function is $y = -t^2/7 - 9t/5 + 38/35$ with $E \approx 0.11429$
- **22.** (a) x = 2, y = 4, z = -2 (c) $x = 1, y = -\frac{1}{2}, z = \frac{1}{2}$

6.4 NORMAL AND SELF-ADJOINT OPERATORS

- 2. (b) T is neither self-adjoint nor normal. If we let $A = [T]_{\beta}$, where β is the standard ordered basis, then $AA^* \neq A^*A$.
 - (d) T is not normal.
 - (f) T is self-adjoint. An orthonormal basis of eigenvectors is

$$\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1&0\\1&0\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}0&1\\0&1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}-1&0\\1&0\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}0&-1\\0&1\end{pmatrix}\right\}$$

with corresponding eigenvalues 1, 1, -1, -1.

6.5 Unitary and Orthogonal Operators and Their Matrices

6.5 UNITARY AND ORTHOGONAL OPERATORS AND THEIR MATRICES

2. (b)
$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}, D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

(c)
$$P = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \sqrt{2} \\ 1+i & \frac{\sqrt{2}}{2}(1+i) \end{pmatrix}$$
, $D = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}$

(e)
$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

9. No. Let U be the linear operator on C^2 defined by $U(z_1, z_2) = (z_1 + z_2, 0)$, and let β be the standard basis for C^2 .

11.
$$\frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ -2 & -1 & 2 \end{pmatrix}$$

16. In the notation of Example 3 of Section 6.4, let U = T, and let $W = \text{span}(\{f_0, f_1, f_2, \dots\})$

27. (b)
$$x = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$$
, and $y = -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$

The quadratic form is $(x')^2 + 3(y')^2$.

(d)
$$x = \frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y'$$
, and $y = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$

The quadratic form is $4(x')^2 + 2(y')^2$.

(e)
$$x = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$$
, and $y = -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$

The quadratic form is $2(x')^2$

28.
$$x = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{6}}y' + \frac{1}{\sqrt{3}}z', y = -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{6}}y' + \frac{1}{\sqrt{3}}z', z = -\frac{2}{\sqrt{6}}y' + \frac{1}{\sqrt{3}}z'.$$

The quadratic form is $(x')^2 + (y')^2 + 4(z')^2$.

6.6 ORTHOGONAL PROJECTIONS AND THE SPECTRAL THEOREM

2. For W = span({(1,0,1)}), [T]_{\beta} =
$$\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

3. (b)
$$T_1(a,b) = \frac{1}{2}(a+ib,-ia+b)$$
 and $T_2(a,b) = \frac{1}{2}(a-ib,ia+b)$

(c)
$$\mathsf{T}_1(a,b) = \frac{1}{3}(a+(1+i)b,(1+i)a+2ib)$$
 and $\mathsf{T}_2(a,b) = \frac{1}{3}(2a+(1+i)b,(1+i)a+ib)$

(e)
$$T_1(a, b, c) = \frac{1}{2}(a - b, -a + b, 0)$$

 $T_2(a, b, c) = \frac{1}{6}(a + b - 2c, a + b - 2c, -2a - 2b + 4c)$, and $T_3(a, b, c) = \frac{1}{3}(a + b + c, a + b + c, a + b + c)$

5. (a) Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be the projection on the line y = x defined by $\mathsf{T}_1(a,b) = (a,a)$. Then $\|\mathsf{T}(1,0)\| = \|(1,1)\| = \sqrt{2} > 1 = \|(1,0)\|$. In the case of equality, T is the identity operator.

6.7 THE SINGULAR VALUE DECOMPOSITION AND THE PSEUDOINVERSE

2. (b)
$$v_1 = \sqrt{\frac{5}{8}}(3x^2 - 1), v_2 = \frac{1}{\sqrt{2}}, v_3 = \sqrt{\frac{3}{2}}x, \quad u_1 = \frac{1}{\sqrt{2}}, u_2 = \sqrt{\frac{3}{2}}x \quad \sigma_1 = 3\sqrt{5}$$

(d)
$$v_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1+i \end{pmatrix}, v_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1-i \\ -1 \end{pmatrix}, \quad u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1+i \end{pmatrix}, u_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1+i \\ 1 \end{pmatrix}$$

 $\sigma_1 = 2, \sigma_2 = 1$

3. (b)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}^*$$

(d)
$$\begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0\\ 0 & \sqrt{3} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}^*$$

(f)
$$\begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 & 0 \\ 0 & \sqrt{6} & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}^*$$

4. **(b)**
$$WP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 20 & 4 & 0 \\ 4 & 20 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

5. **(b)**
$$\mathsf{T}^{\dagger}(a+bx) = \frac{a}{6}(3x^2-1)$$

(d)
$$\mathsf{T}^\dagger(z_1,z_2) = \mathsf{T}^{-1}(z_1,z_2) = \frac{1}{2}(-z_1 + (1-i)z_2,(1+i)z_1)$$

6. (b)
$$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}$$
 (d) $\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ (f) $\frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & -3 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

7. (b)
$$Z_1 = N(T)^{\perp} = P_1(R)^{\perp} = \operatorname{span}(\{3x^2 - 1\})$$
 and $Z_2 = R(T) = \operatorname{span}(\{1\})$.
(d) $Z_1 = N(T)^{\perp} = C^2$ and $Z_2 = R(T) = C^2$.

6.8 Bilinear and Quadratic Forms

8. (b) The system is consistent.
$$\frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

6.8 BILINEAR AND QUADRATIC FORMS

6. (b)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- 9. (b) Let $\beta = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for V. For each $i, j, 1 \leq i, j \leq n$, let H_{ij} be the unique bilinear form such that $H_{ij}(v_i, v_j) = 1$ and $H_{ij}(v_p, v_q) = 0$ if $(p, q) \neq (i, j)$. Then $\{H_{ij} : 1 \leq i, j \leq n\}$ is the required basis.
- 17. (a) $H(x,y) = -2x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2$, where $x = (x_1, x_2)$ and $y = (y_1, y_2)$
 - (b) $H(x,y) = 7x_1y_1 4x_1y_2 4x_2y_1 + x_2y_2$, where $x = (x_1, x_2)$ and $y = (y_1, y_2)$
 - (c) $H(x,y) = 3x_1y_1 + 3x_2y_2 + 3x_3y_3 x_1y_3 x_3y_1$, where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$
- 24. (c) T is self-adjoint and positive definite.
 - (d) For any scalar c, $H(x,cy) = \langle x, \mathsf{T}(cy) \rangle = \overline{c} \langle x, \mathsf{T}(y) \rangle = \overline{c} H(x,y)$. So if c is not real and $H(x,y) \neq 0$, then $H(x,cy) \neq cH(x,y)$.

6.10 CONDITIONING AND THE RAYLEIGH QUOTIENT

2. (b) 6

6.11 THE GEOMETRY OF ORTHOGONAL OPERATORS

11.
$$T(x, y, z) = (-x, -z, y)$$

Canonical Forms

7.1 JORDAN CANONICAL FORM I

2. (b) For
$$\lambda = -1$$
, $\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$, For $\lambda = 4$, $\left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$ $J = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$

(d) for
$$\lambda = 2$$
, $\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \right\}$ For $\lambda = 3$, $\left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$ $J = \begin{pmatrix} 2 & 1 & 0 & 0\\0 & 2 & 0 & 0\\0 & 0 & 3 & 0\\0 & 0 & 0 & 3 \end{pmatrix}$

3. **(b)** For
$$\lambda = 0$$
, $\{1, t, \frac{1}{2}t^2\}$, For $\lambda = 1$, $\{e^t, te^t\}$ $J = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

(d) For
$$\lambda = 3$$
, $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ For $\lambda = 1$, $\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$

$$J = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

7.2 JORDAN CANONICAL FORM II

4. (b)
$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

(c)
$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 0 & -3 & 2 \\ -1 & -3 & -1 \\ 1 & 9 & 0 \end{pmatrix}$

5. **(b)**
$$J = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 and $\beta = \{1, 12x, 6x^2, x^3\}$

7.3 The Minimal Polynomial

8. (c) For example, since $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector of A corresponding to the eigenvalue $\lambda = 2$, we

may add this vector to the end vector $\begin{pmatrix} 0\\1\\2\\0 \end{pmatrix}$ of the first cycle given in Example 2. Thus

 $\beta' = \left\{ \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ is also a Jordan canoncial basis for } \mathsf{L}_A.$

15. Define T: $\mathbb{R}^3 \to \mathbb{R}^3$ by $\mathsf{T}(x,y,z) = (0,-z,y)$. In general, T is such an operator if its characteristic polynomial is of the form $f(t) = t^k g(t)$, where $k \geq 1$ and g(t) is a polynomial of degree greater than 1 with no zeros in the underlying field.

7.3 THE MINIMAL POLYNOMIAL

- 2. **(b)** $(t-1)^2$
- 3. (b) $(t-1)^3$

7.4 RATIONAL CANONICAL FORM

- **2.** (b) $C = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ $Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - (d) $C = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $Q = \begin{pmatrix} 1 & 0 & -7 & -4 \\ 0 & 1 & -4 & -3 \\ 0 & 0 & -4 & -4 \\ 0 & 0 & -4 & -8 \end{pmatrix}$
- 3. **(b)** $(t^2+1)^2$ $C = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

 $\beta = \{x\sin x, \sin x + x\cos x, 2\cos x - x\sin x, -3\sin x - x\cos x\}$

 $\beta = \{\sin x \sin y + \cos x \cos y, \sin x \cos y - \cos x \sin y, \sin x \cos y + \cos x \sin y, 2(\cos x \cos y - \sin x \sin y)\}$