Projet RePEc

Christophe WILLAERT Nahid OULMI

25 février 2016

Plan

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

Projet RePEc 2/31

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

Research Papers in Economic

- ▶ Crée en 1997
- ► Base de données décentralisée
- 2 000 000 items recensés :
 - de 58 700 auteurs
 - ► de 1 220 000 articles (publiés)
 - ► de 709 000 papiers (working papers)
 - de 37 000 chapitres de livre
- Métadonnées au format ReDIF (Research Document Information Format)

Le projet

- ► Objectif : étudier les réseaux de co-auteurs en Sciences-Économiques
 - Auteurs des publications présentes dans RePEc
 - Ex : un auteur avec un h-index élevé est-il bien central dans la discipline et dans son champ d'études ?
- Mission:
 - nous approprier les jeux de données
 - nous approprier les notions liées au web sémantique
 - concevoir un script pour la conversion des données
 - ► mettre les données converties en base de données

Les étapes

L'accès aux métadonnées

- Accès à l'ensemble des données de RePEc via des accès FTP/HTTP
 - repec.org liste tous les sites (archives)
 - ► miroir de l'ensemble des sites mis en place pour le projet
 - ► accessible sur http://test.boulgour.com/repec
- ▶ Une archive particulière
 - ► un répertoire du mirroir : remo/per
 - contient un fichier ReDIF par auteur présent dans RePEc
 - chaque fichier contient les informations sur un auteur
 - ▶ nom
 - liste des documents auxquels il a contribué
- C'est à partir de ces fichiers que nous avons travaillé

Base de données sémantiques?

- ► Web sémantique
 - un projet des fondateurs du web depuis les années 90
 - ► porté par le W3C
- ► Idée
 - rendre l'information accessible aux machines
 - lier l'information avec des données structurées
 - ▶ faire du web une bibliothèque géante unifiée
- On parle désormais de web des données (Linked Data)

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

RDF: Resource Description Framework

- ▶ un cadre de travail pour publier/manipuler des donnés sur le web
- ▶ recouvre à la fois
 - ▶ un modèle liant un sujet à un objet via un verbe
 - notion de triplets RDF (plus petit élément de connaissance)
 - plusieurs syntaxes de représentations
 - ► RDF/XML,
 - ► Turtle,
 - N-Triples
 - ٠..
- Contexte
 - récupérer les données des fichiers ReDIF
 - pour les mettre sous la forme de triplets RDF
 - afin de pouvoir analyser les relations entre auteurs
 - choix de la syntaxe N-Triples pour sa simplicité

URI : l'identifiant des objets sur le web

- Uniform Ressource Identifier (URI)
 - un identifiant unique pour une source web
 - ► composant important du web sémantique
- ► Uniform Ressource Locator (URL)
 - ▶ identifie une source et permet en plus d'y accéder directement
- ► URI ne permet pas tant de retrouver la source que de la qualifier

La syntaxe N-triples

- ▶ La structure du RDF est une séquence (Sujet Prédicat Objet)
- Utilisation de la syntaxe N-Triple pour produire cette séquence :

```
<Sujet> <Prédicat> <Objet> .
```

- ► Ne pas oublier le point !
- ► Le sujet et l'objet peuvent être
 - ▶ une URI
 - une URL (mieux)
 - un littéral (c'est-à-dire une chaîne de caractères non-identifiée)
- Le prédicat doit obligatoirement être un URI ou une URL

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

Créer un parseur de fichiers ReDIF

- ► Parser un fichier = le parcourir et en extraire les informations utiles
- Objectif dans notre cas :
 - ▶ Noms
 - ► Prénoms
 - Domaine d'activité
 - ► Ensemble des documents auxquels aura participé l'auteur
- Pour l'ensemble des auteurs enregistrés

Notre parseur en Python

- ► Trois étapes :
 - 1. Ranger les données dans des listes
 - 2. Concaténer ces listes pour avoir des N-Triples
 - 3. Lui faire comprendre qu'on lui fournit des fichiers en entrée

Prendre des fichiers en argument

- ► Plus de 58 700 fichiers ReDIF à traiter
 - automatisation de la tâche nécessaire
- ▶ Bash : langage de programmation des systèmes Unix
- Avec Bash et Python nous pouvons prendre en argument une infinité de fichiers

Organiser l'information sous forme de N-Triples

- Souvenez-vous des N-Triples : (Sujet Prédicat Objet)
- Exemple dans notre cas :

fichier .rdf (redif)
[Template-Type: ReDIF-Person 1.0]

fichier .nt (n-triples) généré

Enrichir ces données

- ► Nom/Prénom
- ► Identifiant unique (URL?)
- ▶ Dernière connexion
- ► Problème de la classification NEP/JEL

Enrichir ces données

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

Deux types de bases de données

- Bases de données sémantiques (triplestores)
 - ► logique pure / approche académique
 - ► hautement complexe
 - ► met l'accent sur le raisonnement
 - notion d'inférences
 - notion d'ontologies
 - met l'accent sur la précision (le plus complet possible)
- Bases de données orientées graphes
 - pragmatisme
 - ► complexité intermédiaire
 - faciliter pour traverser les graphes
 - plus performant

Choix de Virtuoso

- ► Virtuoso est un triplestore
 - ► Base conçue pour les données RDF ... mais pas seulement
 - ► Complet ... mais complexe
 - ► Installé sur le serveur test.boulgour.com
- ► Objectifs :
 - Importer nos N-Triples dans la base
 - Effectuer des requêtes SPARQL

Utilisation de Virtuoso

- ► Accès :
 - ▶ web via l'outil Conductor
 - ► interface graphique depuis un navigateur
 - ► en ligne de commande via iSQL
 - ► commande isql-vt
- Syntaxe:
 - ► langage SQL intégré
 - ► langage SPARQL

SPARQL

- Langage de requêtes pour des données RDF
 - ► Equivalent au SQL mais pour le web sémantique
 - ► Standardisé par le W3C depuis 2008
- Permet de sélectionner
 - ► le nœuds d'un graphe RDF
 - ainsi que les liens qui les composent

SPARQL: un exemple

Les coauteurs de pfa122 (Étienne FARVAQUE)

```
SELECT DISTINCT "pfa122" ?auteur
WHERE.
     ?publication ?p ?auteur .
     FILTER.
        ?publication =
          SELECT ?publication
          WHF.R.F.
             ?publication <a href="http://purl.org/dc/elements/1.1/creator">http://purl.org/dc/elements/1.1/creator</a> "pfa122"
       && ?auteur != "pfa122"
};
```

1. Introduction

2. Éléments du web sémantique

3. Produire les triplets RDF

4. Rendre les données accessibles

5. Conclusion

Point d'étape à l'issue du semestre

Étapes de travail restantes

- Etape facultative : création d'une API
- ► Etape de visualisation des données
- ► Enrichir l'information (JEL/NEP ?)

Ce que nous avons appris

- ► Mise en pratique de notions vu en cours
 - ► Python
 - ► Linux / Bash
- Apprentissage et mise en pratique de notions nouvelles
 - Markdown
 - ► SSH
 - ► Git / Github
 - ► RDF / Virtuoso

Difficultés rencontrées

- Compréhension des concepts liés au web sémantique
- ► Virtuoso:
 - ► difficulté de prise en main de Virtuoso
 - ► pas d'accès à l'interface en ligne de commande
 - pas de feeback lors de l'exécution des requêtes
- ▶ Classification JEL/NEP

Remarques

- ► Regarder les alternatives à Virtuoso
- Vérifier l'intégrité des données en base
- ► Souhait de suivre/poursuivre le projet