Hide Items Restore Clear Cancel

DATE: Thursday, April 22, 2004

Hide?	Set Name	Query	Hit Count
	DB=PGPB,	USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=1	YES; OP=ADJ
	L7	L1 and marine	57
	DB = USPT, U	USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=YES; O	P=ADJ
	L6	L2 and marine	40
	L5	L1 and marine	40
	L4	L1 and marine organism	9
	L3	L2 and marine organism	9
	L2	(anti adj3 fouling) and (enzyme or oxidase)	75
	DB=PGPB,	USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=1	YES; OP=ADJ
	L1	(anti adj3 fouling) and (enzyme or oxidase)	117

END OF SEARCH HISTORY

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 20 of 57 returned.

☐ 1. Document ID: US 20040029812 A1

Using default format because multiple data bases are involved.

L7: Entry 1 of 57

File: PGPB

Feb 12, 2004

PGPUB-DOCUMENT-NUMBER: 20040029812

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040029812 A1

TITLE: Furanone derivatives

PUBLICATION-DATE: February 12, 2004

INVENTOR-INFORMATION:

RULE-47 STATE COUNTRY CITY NAME Boddupalli, Sekhar San Jose CA US CA US Walkinshaw, Gail San Jose CA US Cupertino Wang, Bing

US-CL-CURRENT: <u>514/18</u>; <u>514/19</u>, <u>514/217.03</u>, <u>514/227.8</u>, <u>514/231.5</u>, <u>514/254.1</u>, <u>514/326</u>, <u>514/365</u>, <u>514/374</u>, <u>514/397</u>, <u>514/422</u>, <u>514/473</u>, <u>514/99</u>

Full Title Citation Front	Review Classificatio	n Date Reference	Sequences	Attachments C	Haims 1000C Draw.D
	<u> </u>				

☐ 2. Document ID: US 20040019143 A1

L7: Entry 2 of 57

File: PGPB

Jan 29, 2004

PGPUB-DOCUMENT-NUMBER: 20040019143

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040019143 A1

TITLE: Polymer composites and methods for making and using same

PUBLICATION-DATE: January 29, 2004

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Koloski, Timothy S. West Amherst NY US

☐ 3. Document ID: US 20040009159 A1

L7: Entry 3 of 57

File: PGPB

Jan 15, 2004

PGPUB-DOCUMENT-NUMBER: 20040009159

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040009159 A1

TITLE: Coatings with enhanced microbial performance

PUBLICATION-DATE: January 15, 2004

INVENTOR-INFORMATION:

NAME

CITY

STATE COUNTRY

RULE-47

Polsenski, Martin J.

Jacksonville

FL US

VE GITON

Leavitt, Richard I.

Ponte Vedra Beach

FL

US

US-CL-CURRENT: 424/93.45

Full Title Citation Fron	t Review Classification	Date Reference	Sequences	Attachments	Claims	KWIC	Draw, De

☐ 4. Document ID: US 20030203991 A1

L7: Entry 4 of 57

File: PGPB

Oct 30, 2003

PGPUB-DOCUMENT-NUMBER: 20030203991

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030203991 A1

TITLE: Coating composition for multiple hydrophilic applications

PUBLICATION-DATE: October 30, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Schottman, Thomas C. Flemington NJ US Hennessey, Patrick M. Fords NJ US

Gruening, Rainer Basking Ridge NJ US

US-CL-CURRENT: 523/334; 524/430, 524/589

FUII	Title C	itation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWMC	Draws De
			•					· · · · · · · · · · · · · · · · · · ·				

FGEOR-DOCOMENT-NOMBER: 70020100010

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030185870 A1

TITLE: Interfacial biomaterials

PUBLICATION-DATE: October 2, 2003

INVENTOR-INFORMATION:

COUNTRY RULE-47 STATE CITYNAME NC US Durham Grinstaff, Mark W. US NC Chapel Hill Kenan, Daniel J. US NC Durham Walsh, Elisabeth B. VA US Arlington Middleton, Crystan

US-CL-CURRENT: 424/423; 530/326

Full Title Citation Front Review Classific	ation Date Reference Sequences A	ttachments Claims KWMC Draw De
······································		
☐ 6. Document ID: US 20030180	0466 A1	
L7: Entry 6 of 57	File: PGPB	Sep 25, 2003

PGPUB-DOCUMENT-NUMBER: 20030180466

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030180466 A1

TITLE: Long lasting coatings for modifying hard surfaces and processes for applying

the same

PUBLICATION-DATE: September 25, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Rohrbaugh, Robert Henry	Hamilton	OH	US	
Goldstein, Alan Scott	Blue Ash	ОН	US	
McDonald, Michael Ray	Middletown	ОН	US	
O'Connor, Helen Frances	Loveland	ОН	US	
Liddle, Heather Anne	Cincinnati	ОН	US	
Jensen, John Michael	Wyoming	OH	US	
Sakkab, Nabil Yaqub	Cincinnati	OH	US	

US-CL-CURRENT: 427/372.2; 427/162, 427/407.1

							•				
C., (1)	Title Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KAMC	Drawe De
L All	Title Citation	1 10/164	(1001000)	010231110211311		كالتستيس					

FG50R-DOCOMFML-MOMBER: 70020110201

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030176361 A1

TITLE: Furanone derivatives

PUBLICATION-DATE: September 18, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Wang, Bing	Cupertino	CA	US	
Zhang, Wei	Santa Clara	CA	US	
Song, Jiangao	Cupertino	CA	US	
Balzo, Ughetta del	Morgan Hill	CA	US	
Brown, Lesley	East Palo Alto	CA	US	
Walkinshaw, Gail	San Jose	CA	US	

 $\text{US-CL-CURRENT: } \underline{514/18}; \ \underline{514/19}, \ \underline{514/471}, \ \underline{514/99}, \ \underline{530/330}, \ \underline{530/331}, \ \underline{549/321}$

Full Title Citation Front Review Classification Date	Referenc	e Sequences	Attachments	Claims	KMC	Draw De
***************************************	·········	·····	***************************************	······	**********	
☐ 8. Document ID: US 20030166237 A1						
L7: Entry 8 of 57	File:	PGPB		Sep	4,	2003

PGPUB-DOCUMENT-NUMBER: 20030166237

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030166237 A1

TITLE: Antifouling paint composition comprising rosin and enzyme

PUBLICATION-DATE: September 4, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Allermann, Knud Rungsted Kyst DK Schneider, Ib Copenhagen DK

US-CL-CURRENT: 435/204; 106/16, 435/200, 435/222

Full Title	Citation E	ront Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
FOII 11112	Chanon	TOTILE INCOMESSO	21323117311711							
		······································	······			***************************************		~~~~~~~		

☐ 9. Document ID: US 20030087338 A1

L7: Entry 9 of 57 File: PGPB May 8, 2003

PUBLICATION-DATE: May 8, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Messersmith, Phillip B.	Clarendon Hills	${\tt IL}$	US	
Huang, Kui	Evanston	IL	US	
Lee, Bruce P.	Evanston	IL	US	
Dalsin, Jeffrey	Chicago	IL	US	
Hu, Bi-Huang	Chicago	IL	US	
Friedstat, Jonathan	Wilmette	IL	US	

US-CL-CURRENT: 435/68.1; 527/200

Full Title	Citation Front Review Classification Date	Reference Sequences	Attachments Claims	KWWC - Draw, De
	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************
□ 10	Document ID: US 20020142022 A1			
L7: Entry		File: PGPB	Oct	3, 2002
ri: Fucra	10 01 37	riie. igib	000	3, 2002

PGPUB-DOCUMENT-NUMBER: 20020142022

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020142022 A1

TITLE: Method of controlled release and controlled release microstructures

PUBLICATION-DATE: October 3, 2002

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Price, Ronald R.	Stevensville	MD	US	
Schnur, Joel M.	Burke	VA	US	
Schoen, Paul E.	Alexandria	VA	US	
Testoff, Mary	Greenbelt	MD	US	
Georger, Jacque H. JR.	Springfield	VA	US	
Rudolph, Alan	Bowie	MD	US	
Brady, Robert F.	Gaithersburg	MD	US	

US-CL-CURRENT: 424/405; 424/417, 424/450

Full	Title	Citation	Front	Review Classification	Date	Reference	Sequences	Attachments	Claims	10000	Drawt De
•											
***************************************								***************************************			
	11.	Docum	ent ID	: US 2002012856	1 A1						

TITLE: Locating marker/tracer elements detectable by neutron activated analysis within or on carrier microspheres, including microspheres used in biological experimentation

PUBLICATION-DATE: September 12, 2002

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Rheinhardt, Christopher Worcester MA US Kemper, W. Scott San Diego CA US

US-CL-CURRENT: 600/504; 600/3, 600/505

Full Title Citation	Front Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
**************************************	······		·····	***************************************				***************************************	······································

☐ 12. Document ID: US 20020106361 A1

L7: Entry 12 of 57 File: PGPB Aug 8, 2002

PGPUB-DOCUMENT-NUMBER: 20020106361

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020106361 A1

TITLE: Composition

PUBLICATION-DATE: August 8, 2002

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Poulsen, Charlotte Horsmans Brabrand DK Kragh, Karsten Matthias Viby J, DK

US-CL-CURRENT: 424/94.4; 504/117, 523/105

								<u></u>	,		
Full Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KOMO	Draw, De
··	· · · · · · · · · · · · · · · · · · ·							-			
					***************************************					***************************************	***************************************

☐ 13. Document ID: US 20020045057 A1

L7: Entry 13 of 57 File: PGPB Apr 18, 2002

PGPUB-DOCUMENT-NUMBER: 20020045057

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020045057 A1

mimit. Chanananhilumia matricae and methode of making and using the same

US-CL-CURRENT: $\underline{428}/\underline{540}$; $\underline{427}/\underline{2.1}$, $\underline{428}/\underline{541}$, $\underline{428}/\underline{543}$, $\underline{435}/\underline{243}$, $\underline{435}/\underline{41}$, $\underline{523}/\underline{122}$, $\underline{523}/\underline{124}$, $\underline{523}/\underline{177}$, $\underline{523}/\underline{442}$, $\underline{523}/\underline{458}$

Full Title	Citation Front F	Review Classification	Date Reference	Sequences	Attachments 0	:laims }	004C	Draw, De
			•••••••••••••••••	***************************************	·····	·····	************	***************************************
□ 14.	Document ID:	US 20020028288	A1					
L7: Entry	14 of 57		File:	PGPB		Mar	7,	2002

PGPUB-DOCUMENT-NUMBER: 20020028288

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020028288 A1

TITLE: Long lasting coatings for modifying hard surfaces and processes for applying

the same

PUBLICATION-DATE: March 7, 2002

INVENTOR-INFORMATION:

CITY	STATE	COUNTRY	RULE-47
Hamilton	OH	US	
Blue Ash	ОН	US	
Middletown	ОН	US	
Loveland	OH	US	
Cincinnati	OH	US	
Wyoming	OH	US	
Cincinnati	OH	US	
	Hamilton Blue Ash Middletown Loveland Cincinnati Wyoming	Hamilton OH Blue Ash OH Middletown OH Loveland OH Cincinnati OH Wyoming OH	Hamilton OH US Blue Ash OH US Middletown OH US Loveland OH US Cincinnati OH US Wyoming OH US

US-CL-CURRENT: 427/180; 427/372.2, 427/402

Full Title Citation Front Review Classific	ication Date Reference Sequences Atta	chments Claims KVMC Draw. De
***************************************		······································
☐ 15. Document ID: US 200200)16980 A1	
L7: Entry 15 of 57	File: PGPB	Feb 7, 2002

PGPUB-DOCUMENT-NUMBER: 20020016980

PGPUB-FILING-TYPE: new

1975ACTES

DOCUMENT-IDENTIFIER: US 20020016980 A1

TITLE: Transgenic plants incorporating traits of zostera marina

PUBLICATION-DATE: February 7, 2002

US-CL-CURRENT: 800/289; 536/23.6, 800/278

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims WWC Draw De

☐ 16. Document ID: US 20010051274 A1

L7: Entry 16 of 57

File: PGPB

Dec 13, 2001

PGPUB-DOCUMENT-NUMBER: 20010051274

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20010051274 A1

TITLE: Antifouling compounds and uses thereof

PUBLICATION-DATE: December 13, 2001

INVENTOR-INFORMATION:

NAME

CITY

STATE COUNTRY

RULE-47

Alberte, Randall S.

Falmouth

ME US

Zimmerman, Richard C.

Pacific Grove

СA

US

US-CL-CURRENT: 428/411.1; 424/411, 523/122

Full | Title | Citation | Front | Review | Classification | Date | Reference | Sequences | Attachments | Claims | RMC | Draw. De

☐ 17. Document ID: US 20010026802 A1

L7: Entry 17 of 57

File: PGPB

Oct 4, 2001

PGPUB-DOCUMENT-NUMBER: 20010026802

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20010026802 A1

TITLE: Method of controlled release and controlled release microstructures

PUBLICATION-DATE: October 4, 2001

INVENTOR-INFORMATION:

COUNTRY CITY STATE RULE-47 NAME Price, Ronald R. Stevensville MD US VA US Schnur, Joel M. Burke Alexandria VΑ US Schoen, Paul E. MD US Testoff, Mary Greenbelt Georger, Jacque H. JR. Springfield VΑ US

☐ 18. Document ID: US 6667330 B2

L7: Entry 18 of 57

File: USPT

Dec 23, 2003

US-PAT-NO: 6667330

DOCUMENT-IDENTIFIER: US 6667330 B2

TITLE: Furanone derivatives

DATE-ISSUED: December 23, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Wang; Bing	Cupertino	CA		
Zhang; Wei	Santa Clara	CA		
Song; Jiangao	Cupertino	CA		
del Balzo; Ughetta	Morgan Hill	CA		
Brown; Lesley	East Palo Alto	CA		
Walkinshaw; Gail	San Jose	CA		

US-CL-CURRENT: 514/367; 514/256, 514/383, 514/473, 544/296, 548/156, 548/262.4,

549/313

ABSTRACT:

Furanone derivatives and the pharmaceutically acceptable salts thereof have cytoprotective activity and protective activity for neuroinflammation, and neurodegenerative disorders; they are useful in the treatment of stroke, cerebral ischemia, myocardial infarction, myocardial ischemia, chronic heart failure, inflammation and other oxidative stress-related conditions, as well as Alzheimer's disease and senile dementia; they are also useful in the manufacture of pharmaceutical formulations for the treatment of such conditions.

47 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title	e Citation Fron	t Review	Classification	Date	Reference		Claims	FOVOIC	Draw. De
□ 19.	Document I	D: US 6	6608129 B 1				 ······································		••••••
L7: Entr	y 19 of 57				File: U	JSPT	Aug	19,	2003

US-PAT-NO: 6608129

DOCUMENT-IDENTIFIER: US 6608129 B1

NAME

CITY

ZIP CODE COUNTRY STATE

Apr 29, 2003

Koloski; Timothy S.

West Amherst

NY

Vargo; Terrence G.

Kenmore

NY

US-CL-CURRENT: 524/403; 524/430, 524/431, 524/433, 524/439, 524/502, 524/515, 524/520, 524/544, 524/546

ABSTRACT:

Composites which include a polymer matrix having natural free volume therein and an inorganic or organic material disposed in the natural free volume of the polymer matrix are disclosed. In addition, methods for making a composite are described. A polymer matrix having free volume therein is provided. The free volume is evacuated, and inorganic or organic molecules are infused into the evacuated free volume of the polymer matrix. The inorganic or organic molecules can then be polymerized under conditions effective to cause the polymerized inorganic or organic molecules to assemble into macromolecular networks. Alternatively, where the polymer matrix contains a functionality, the inorganic or organic molecules can be treated under conditions effective to cause the inorganic or organic molecules to interact with the polymer matrix's functionality. Use of the disclosed composites as photoradiation shields and filters, electromagnetic radiation shields and filters, antistatic layers, heterogeneous catalysts, conducting electrodes, materials having flame and heat retardant properties, components in the construction of electrolytic cells, fuel cells, and optoelectronic devices, and antifouling coatings is also described.

25 Claims, 4 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 3

Full	Title	Citation Front	Review Classifica	ition Date	Reference	Claims	KWIC	Draw, De
						 	·····	***************************************
	20.	Document ID:	US 6555228	B2				

File: USPT

US-PAT-NO: 6555228

L7: Entry 20 of 57

DOCUMENT-IDENTIFIER: US 6555228 B2

TITLE: Bio-supportive medium, and methods of making and using the same

DATE-ISSUED: April 29, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Guritza; Dennis A. Chagrin Falls OH 44023

TTG OT OTTODDING 400/414 100/14 OF 404/80 OO 400/411 4 400/410 400/410 4

at least one nutritional source, and at least one bio-limiting agent dispersed in the biodegradable material. The nutritional source is present in the degradable material or an additive to the degradable material. The components of the biosupportive medium are provided in quantities, such that the bio-supportive medium is capable of supporting formation of a biomass having a specific consortium of organisms, substantially at equilibrium within its environment or host habitat. While maintaining the biomass, the bio-limiting agent also provides the biosupportive medium to limit the amount and type of species present in the biomass. The instant invention provides a unique bio-mimicking and environmentally-friendly way to control fouling of materials exposed to marine and aquatic environments.

38 Claims, 0 Drawing figures Exemplary Claim Number: 31,32

Full	Title Citation	Front	Review	Classification	Date	Reference	L		Claim	s kowic	Draws De
			•••••								
Clear	Gener	ate Coll	ection	Print	F	wd Refs	Bkw	d Refs	Gen	erate O/	ACS
									·		
	Terms					Docu	ıments				
	L1 and mar	ine								57	

Previous Page Next Page Go to Doc#

Search Results - Record(s) 21 through 40 of 57 returned.

☐ 21. Document ID: US 6440405 B1

Using default format because multiple data bases are involved.

L7: Entry 21 of 57

File: USPT

Aug 27, 2002

Jun 25, 2002

US-PAT-NO: 6440405

DOCUMENT-IDENTIFIER: US 6440405 B1

** See image for Certificate of Correction **

TITLE: Quaternary ammonium functionalized dendrimers and methods of use therefor

DATE-ISSUED: August 27, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Cooper; Stuart L. Chicago IL Chen; Chris Zhisheng Media PA

US-CL-CURRENT: 424/78.17; 424/486, 424/719, 424/DIG.16, 564/281

Full Title Citation Front Review Classification Date Reference Section Claims KWIC Draw De Claims De Claims WIC Draw De Claims De Claims WIC Draw De Claims Claims WIC Draw De Claims Claims WIC Draw De Cl

File: USPT

US-PAT-NO: 6410622

L7: Entry 22 of 57

DOCUMENT-IDENTIFIER: US 6410622 B1

TITLE: Method of preventing fouling organisms in marine environments and polymer-

bound nitric oxide/nitric oxide-releasing compositions usable therefor

DATE-ISSUED: June 25, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Endres; Gregory W. Saline MI 48176

US-CL-CURRENT: 524/189; 523/122, 525/360, 525/376, 525/420, 525/437, 525/453,

of introducing into the <u>marine</u> environment in a predetermined form and in a sufficient amount an antifouling composition having as its effective ingredient a nitric oxide-releasing functional group of the diazeniumdiolate structure: ##STR1##

whereupon nitric oxide is controllably released into the $\underline{\text{marine}}$ environment to prevent at least one of the fouling organisms' propagation, ability to attach, and ability to function.

An antifouling composition consists essentially of an antifouling-acceptable carrier and a coprecipitation product of polylactide/glycolide and diethylenetriamine having the formula H.sub.3 N.sup.+ CH.sub.2 CH.sub.2 N(N.sub.2 O.sub.2).sup.-1 CH.sub.2 CH.sub.2 NH.sub.2, wherein diethylenetriamine contains a nitric oxide-releasing functional group.

20 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title		Review Classification					Claims		·	•
		US 6361780 B1				***************************************		••••••••••		~~
L7: Entry	23 of 57		:	File: U	SPT		Mar	26,	2002	

US-PAT-NO: 6361780

DOCUMENT-IDENTIFIER: US 6361780 B1

TITLE: Microporous drug delivery system

DATE-ISSUED: March 26, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Ley; Gregory R. New Brighton MN Knapp; Christopher Paul Oakdale MN

US-CL-CURRENT: 424/400; 424/422, 424/423, 424/432, 424/443, 424/484, 424/486, 604/264, 604/265

ABSTRACT:

authorities.

A drug delivery device is described comprising a porous biocompatible solid having at least one therapeutic drug within its pores, the therapeutic drug being removable from the pores by immersion in an aqueous solution. This may also be described as a drug delivery device comprising a porous annulus comprising a biocompatible solid having at least one therapeutic drug within its pores, the therapeutic drug being removable from the pores by immersion in an aqueous solution, the annulus having a top outer surface with an outside diameter, an inner

http://westbrs:9000/bin/cgi-bin/accum_query.pl

The device may have a medical device or component of a medical device pass through an opening in the annulus. Examples of such medical devices may include, but not be limited to medical devices or components of medical devices selected from the group consisting of catheters, tubes, and electrical leads. A catheter or electrical lead may have at least a portion of its length surrounded by the porous drug delivery device.

A more specific description of an aspect of the present invention would include a catheter or cardiac lead having a collar comprising a porous, solid material surrounding at least a length of the catheter or cardiac lead, the collar comprising a porous material selected from the group consisting of inorganic oxides, metals, polymers, and composite materials, the porous material having pores with an average greatest dimension of between about 10.sup.-6 and 10.sup.-1 mm, and the collar having a largest dimension of less than 5 mm.

16 Claims, 4 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 4

Full	Title	Citation	Front	Review Classification	Date	Reference		Claims	KWIC	Draw. De
	24.	Docum	ent ID	: US 6328700 B1		***************************************	 			

File: USPT

US-PAT-NO: 6328700

L7: Entry 24 of 57

DOCUMENT-IDENTIFIER: US 6328700 B1

TITLE: Locating marker/tracer elements detectable by neutron activated analysis within or on carrier microspheres, including microspheres used in biological experimentation

DATE-ISSUED: December 11, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Rheinhardt; Christopher Worcester MA 01601

Kemper; W. Scott San Diego CA 92129

US-CL-CURRENT: 600/504; 600/3, 600/505

ABSTRACT:

Microspheres are permanently marked with non-radioactive stable isotopes of elements suitably detected by neutron activation analysis. The marked microspheres are suitable to permanently label diverse things. For example, families of stable-multiple-isotope-marked microspheres injected into an animal become lodged by the circulating blood within selected tissues of an animal during blood flow analysis.

Dec 11, 2001

microspheres to the tissue. Microspheres are preferably marked with stable isotopes of gold, antimony, lanthanum, samarium, europium, terbium, holmium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, scandium and/or bromide.

22 Claims, 3 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 3

Full Title	Citation Front Review Classification Dar	le Reference	Claims 2000C Draw. De
□ 25.	Document ID: US 6285807 B1		
L7: Entry	25 of 57	File: USPT	Sep 4, 2001

US-PAT-NO: 6285807

DOCUMENT-IDENTIFIER: US 6285807 B1

TITLE: Fiber optic sensor for long-term analyte measurements in fluids

DATE-ISSUED: September 4, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Walt; David R. Lexington MA Tabacco; Mary Beth Boston MA

Uttamlal; Mahesh Glasgow GB

US-CL-CURRENT: 385/12; 250/227.14, 250/227.18, 436/171, 436/172

sousing methods of the present apparence as associately as

ABSTRACT:

A robust fiber optic sensor and sensing method for reliable, long-term measurement of analytes is disclosed. The sensor comprises an optical interrogation region comprising an indicator dye confined at a distal end of an optical fiber and an analyte permeable membrane enclosing the interrogation region at the distal fiber end. In a preferred embodiment, a reservoir member is provided with excess dye for continuous replenishment of the interrogation region with dye over the lifetime of the sensor. In another preferred embodiment, the reservoir member comprises an indicator support for containment of excess dye. In one preferred embodiment, a ratiometric dye is used for monitoring optical signal-to-noise and signal drift caused by sensor aging. The sensor may be configured with a variety of alternative indicator dyes and membrane materials as a specific ion sensor for analyzing dissolved analytes such as gases, cations, and anions. The sensor may be configured for a wide dynamic detection range and sensitivity for specific analytes. In one embodiment, a CO.sub.2 is disclosed which has a reversible working dynamic detection range between 200 and 1000 ppm pCO.sub.2 and a sensitivity .+-.1 ppm. An integrated measurement system and measurement methods for remote sensing

14 Claims, 16 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 14

Full Title Citation Front Review Classification Date Reference

☐ 26. Document ID: US 6280759 B1

L7: Entry 26 of 57

File: USPT

Aug 28, 2001

US-PAT-NO: 6280759

DOCUMENT-IDENTIFIER: US 6280759 B1

TITLE: Method of controlled release and controlled release microstructures

DATE-ISSUED: August 28, 2001

INVENTOR-INFORMATION:

CITY	STATE	ZIP CODE	COUNTRY
Stevensville	MD	21666	
Burke	AV	22015	
Alexandria	AV	22304	
Greenbelt	MD	20770	
Springfield	VA	22153	
Bowie	MD	20716	
Gaithersburg	MD	20878	
	Stevensville Burke Alexandria Greenbelt Springfield Bowie	Stevensville MD Burke VA Alexandria VA Greenbelt MD Springfield VA Bowie MD	Stevensville MD 21666 Burke VA 22015 Alexandria VA 22304 Greenbelt MD 20770 Springfield VA 22153 Bowie MD 20716

US-CL-CURRENT: <u>424/408</u>; <u>424/405</u>, <u>424/406</u>, <u>424/411</u>, <u>424/417</u>, <u>424/418</u>, <u>424/419</u>, <u>424/420</u>, <u>424/499</u>, <u>523/122</u>

ABSTRACT:

Tubules which contain an active agent in their lumen and compositions containing such microtubules are effective for providing a slow, controlled release of the active agent. Such microtubules are useful in the production of coating compositions for the protection of surfaces coming into contact with water, adhesive resins for the production of laminated wood products, and devices for dispensing pesticides.

14 Claims, 5 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 5

Full Title Citation Front Review Classification Date Reference

DOCUMENT-IDENTIFIER: US 6270903 B1

TITLE: Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

DATE-ISSUED: August 7, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Feng; Xiangdong West Richland WA Liu; Jun West Richland WA

Liang; Liang Richland WA

US-CL-CURRENT: 428/429; 428/442

ABSTRACT:

A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

15 Claims, 20 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 14

Full Title	Citation Front	Review Classification	Date	Reference		Claims	KWC	Dram, De
□ 28.		US 6174700 B1				 **************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L7: Entry	28 of 57			File: U	SPT	Jan	16,	2001

US-PAT-NO: 6174700

DOCUMENT-IDENTIFIER: US 6174700 B1

NAME CITY STATE ZIP CODE COUNTRY

Haynes; Charles A. Vancouver CA
Tomme; Peter Vancouver CA
Kilburn; Douglas G. Vancouver CA

US-CL-CURRENT: <u>435/68.1</u>; <u>435/178</u>, <u>435/179</u>, <u>435/320.1</u>, <u>435/69.1</u>, <u>435/69.7</u>, <u>435/70.1</u>, <u>435/71.1</u>, <u>435/71.2</u>, <u>435/803</u>, <u>435/815</u>, <u>436/529</u>, <u>436/530</u>, <u>530/413</u>, <u>530/813</u>, 530/814

ABSTRACT:

A compound having a polysaccharide binding domain such as contained by a cellulose and essentially lacking in polysaccharidase activity is purified from other ingredients in a mixture using an affinity partition system. A mixture containing the compound is contacted with a system containing as a first phase an aqueous solution of oligosaccharide polymer such as cellulose and as a second phase a solution of a polymer such as a poly(ethylene glycol)-poly(propylene glycol) copolymer. The compound petitions into the first phase and binds to the oligosaccharide polymer, preferably with a K.sub.a of 10.sup.3 to 10.sup.7, to form a complex. The complex is collected, and the compound is dissociated from the oligosaccharide polymer. The compound may be formed of a non-peptide chemical moiety or a peptide moiety linked to a polypeptide having the polysaccharide binding domain. The compound may also be a fusion polypeptide containing the polysaccharide binding domain linked through a protease recognition sequence to a macromolecule such as an enzyme, a hormone or an antibody. The macromolecule can be removed by using a protease to cleave the recognition sequence. Another partition system contains the oligosaccharide polymer and a phase separation inducing agent such as a sulfate or citrate salt that induces separation to produce different phases.

34 Claims, 25 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 18

Full	Title	Citation	Front	Review	Classification	Date	Reference		Claims	KOMC	Draw, De
					-				1		
***************************************	***************************************	***************************************		***************************************							

☐ 29. Document ID: US 6124117 A

L7: Entry 29 of 57

File: USPT

Sep 26, 2000

US-PAT-NO: 6124117

DOCUMENT-IDENTIFIER: US 6124117 A

TITLE: Polysaccharide binding fusion proteins and conjugates

DATE-ISSUED: September 26, 2000

INVENTOR-INFORMATION:

High rependent and association and a

NAME CITY STATE ZIP CODE COUNTRY

http://westbrs:9000/bin/cgi-bin/accum_query.pl

US-CL-CURRENT: 435/69.1; 435/200, 435/252.3, 435/69.7, 536/23.2, 536/23.4

ABSTRACT:

Novel polypeptide compositions and methods for their use are provided comprising fusion proteins in which the polysaccharide binding domain or functional portion thereof of a polysaccharidase is fused to a heterologous protein or is conjugated to a chemical moiety. The compositions can be synthesized or prepared by recombinant DNA technology. The compositions find use as removable labels.

25 Claims, 35 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 20

Full Title	Citation Front	Review Classification	Date	Reference		Claims		: Draw
□ 30.	Document ID:	US 6093732 A					***************************************	***************************************
L7: Entry	30 of 57			File: U	SPT	Jul	25,	2000

US-PAT-NO: 6093732

DOCUMENT-IDENTIFIER: US 6093732 A

TITLE: 4-hydroxyquinoline-3-carboxamides and hydrazides as antiviral agents

DATE-ISSUED: July 25, 2000

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP	CODE	COUNTRY
Tucker; John Alan	Kalamazoo	MI			
Vaillancourt; Valerie A.	Kalamazoo	MI			
Strohbach; Joseph Walter	Mendon	MI			
Romines; Karen Rene	Paw Paw	MI			
Schnute; Mark E.	Kalamazoo	MI			
Cudahy; Michele M.	Kalamazoo	MI			
Thaisrivongs; Suvit	Kalamazoo	MI			
Turner; Steven Ronald	Kalamazoo	MI			

US-CL-CURRENT: 514/312; 546/156

ABSTRACT:

The present invention provides 4-hydroxyquinoline-3-carboxamide and hydrazide compounds of formula I ##STR1## These compounds are useful to treat or prevent the herpesviral infections, particularly, human cytomegaloviral infection.

☐ 31. Document ID: US 6048715 A

L7: Entry 31 of 57

File: USPT

Apr 11, 2000

US-PAT-NO: 6048715

DOCUMENT-IDENTIFIER: US 6048715 A

TITLE: Two-phase partition affinity separation system and affinity separated cell-

containing composition

DATE-ISSUED: April 11, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Haynes; Charles A. British Columbia CA
Tomme; Peter British Columbia CA
Kilburn; Douglas G. British Columbia CA

US-CL-CURRENT: <u>435/179</u>; <u>435/178</u>, <u>435/320.1</u>, <u>435/395</u>, <u>435/68.1</u>, <u>435/69.1</u>, <u>435/69.7</u>, <u>435/70.1</u>, <u>435/71.1</u>, <u>435/71.2</u>, <u>435/803</u>, <u>435/815</u>, <u>436/529</u>, <u>436/530</u>, <u>530/413</u>, 530/813, 530/814

ABSTRACT:

A two-phase partition system is provided for affinity separation of a composition containing a polysaccharide binding peptide from a mixture such as a fermentation broth. The peptide may be from an enzyme and lacking in polysaccharidase activity such as the binding domain of cellulase that binds to cellulose. The system contains a phase-forming oligosaccharide polymer such as a cellulose derivative to which the peptide binds with a Ka of 10.sup.3 M to 10.sup.7 M, and a phase inducing agent such as a polyethylene glycol polymer, or a salt present at sufficiently high concentration to induce phase separation. If the oligosaccharide polymer is thermoseparating, phase separation can be induced by heating. Using the system involves contacting a composition containing the peptide such as a fusion protein with the system, partitioning the composition into a phase containing the oligosaccharide polymer by binding to the polymer and recovering the polymer containing the bound composition. The peptide or a fusion protein containing the peptide can be contacted with a cell having a carbohydrate residue to which the peptide binds to form a complex, and the complex is separated with the system to produce a bound cell composition. The peptide may be linked through a protease recognition sequence to a macromolecule such as an enzyme, a hormone or an antibody, and the macromolecule can be removed by using a protease to cleave the recognition sequence.

22 Claims, 26 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 18 L 52. DOGGEORED. OD SOOSSON

L7: Entry 32 of 57

File: USPT

Dec 7, 1999

US-PAT-NO: 5998200

DOCUMENT-IDENTIFIER: US 5998200 A

TITLE: Anti-fouling methods using enzyme coatings

DATE-ISSUED: December 7, 1999

INVENTOR-INFORMATION:

STATE ZIP CODE COUNTRY NAME CITY

Bonaventura; Celia Beaufort NC Beaufort NC Bonaventura; Joseph Beaufort NC Hooper; Irving R.

US-CL-CURRENT: $\underline{435/264}$; $\underline{106/15.05}$, $\underline{422/6}$, $\underline{424/94.1}$, $\underline{424/94.63}$, $\underline{435/174}$, $\underline{435/180}$

ABSTRACT:

A method for preventing fouling of an aquatic apparatus by an aquatic organism which comprises affixing a biologically active chemical to a surface intended for use in contact with an aquatic environment containing the organism, wherein the chemical is an enzyme, repellant, chelating agent, enzyme inhibitor, or nonmetallic toxicant capable of hindering the attachment of the organism to the surface while affixed to the surface, is disclosed along with improved apparatuses which are produced using the method.

14 Claims, 1 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 1

		,							1			
Full	Title	Citation	Front	Review	Classification	Date	Reference			Claims	10000	Draw, De
***************************************	***************************************		***************************************		***************************************		***************************************	***************************************		·······		***************************************

☐ 33. Document ID: US 5997961 A

L7: Entry 33 of 57

File: USPT

Dec 7, 1999

US-PAT-NO: 5997961

DOCUMENT-IDENTIFIER: US 5997961 A

TITLE: Method of bonding functional surface materials to substrates and

applications in microtechnology and antifouling

DATE-ISSUED: December 7, 1999

INVENTOR-INFORMATION:

US-CL-CURRENT: <u>427/515</u>; <u>427/407.2</u>, <u>427/518</u>

ABSTRACT:

A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

6 Claims, 20 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 14

Full Title	Citation Front	•				FORME	Draw De
□ 34.	Document ID:	US 5972363 A	***************************************		***************************************		***************************************
L7: Entry	34 of 57		File: U	SPT	Oct	26.	1999

US-PAT-NO: 5972363

DOCUMENT-IDENTIFIER: US 5972363 A

TITLE: Use of an encapsulated bioactive composition

DATE-ISSUED: October 26, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Clikeman; Richard Roy Morrisville PΑ Natoli; John Ambler PΑ Wills; Morris Christopher Philadelphia PA Guo; Yili Maple Glen PΑ

US-CL-CURRENT: 424/408; 264/4.1, 424/405, 424/406, 424/419, 427/213.36, 428/402.21

of the bloactive compound through the physical-chemical properties of a particle containing the bloactive compound. The method is particularly useful for delivering agricultural chemicals and pharmaceutical compounds.

8 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title		Review Classification	<u> </u>		Claims KMC Draw De
		: US 5962289 A	<i></i>		
L7: Entry	35 of 57		File:	USPT	Oct 5, 1999

US-PAT-NO: 5962289

DOCUMENT-IDENTIFIER: US 5962289 A

TITLE: Polysaccharide binding fusion proteins and conjugates

DATE-ISSUED: October 5, 1999

INVENTOR-INFORMATION:

NAME		CITY	STATE	ZIP	CODE	COUNTRY
Kilburn	; Douglas G.	Vancouver				CA
Miller;	Robert C.	North Vancouver				CA
Warren;	Richard A.J.	Vancouver				CA
Gilkes;	Neil R.	Vancouver				CA

US-CL-CURRENT: <u>435/179</u>; <u>435/177</u>, <u>435/178</u>, <u>435/195</u>, <u>435/200</u>, <u>435/209</u>, <u>435/4</u>, <u>435/69.1</u>, <u>435/69.52</u>, <u>435/69.7</u>, <u>435/71.1</u>, <u>435/803</u>, <u>436/530</u>, <u>530/402</u>, <u>530/413</u>, 530/808, 530/814

ABSTRACT:

Fusion proteins or conjugates are provided containing an amino acid sequence having a substrate binding region of a polysaccharidase such as cellulase that binds to a .beta.-1,4-glycan matrix such as cellulose. The substrate binding region is essentially without polysaccharidase activity. In the fusion protein, the substrate binding region is fused or chemically linked to a polypeptide such as an enzyme, a hormone, an immunoglobulin or a protein dye. By contacting the fusion protein with a .beta.-1,4-glycan matrix, the substrate binding region binds to the matrix to immobilize the polypeptide on the matrix. The polypeptide or fusion protein can be removed from the matrix with a protease acting on a protease recognition sequence or with a solution having a low ionic strength or high pH. In the conjugate, the substrate binding region is joined such as by covalent bonding to a non-protein chemical moiety such as a dye, chromophore, fluorescor, radionuclide or enzyme cofactor. By contacting the conjugate with a .beta.-1,4-glycan matrix, the substrate binding region binds to the matrix to immobilize the chemical moiety on the matrix. The conjugate or chemical moiety can be removed with a protease acting on a

Full Title Citation Front	Review Classification Date	Reference	Claims 100	40 Draw De

☐ 36. Document ID: US 5928917 A

L7: Entry 36 of 57

File: USPT

Jul 27, 1999

US-PAT-NO: 5928917

DOCUMENT-IDENTIFIER: US 5928917 A

TITLE: Conjugate of non-protein chemical moiety and polypeptide having cellulose

binding region

DATE-ISSUED: July 27, 1999

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Kilburn; Douglas G.	Vancouver			CA
Miller; Robert C.	North Vancouver			CA
Gilkes; Neil	Vancouver			CA
Warren; R. Antony J.	Vancouver			CA

US-CL-CURRENT: 435/179; 435/177, 435/195, 435/200, 435/209, 435/4, 435/69.1, 435/69.52, 435/69.7, 435/71.1, 435/803, 436/530, 530/402, 530/808, 530/814

ABSTRACT:

Fusion proteins or conjugates are provided containing an amino acid sequence having a substrate binding region of a polysaccharidase such as cellulase that binds to a .beta.-1,4-glycan matrix such as cellulose. The substrate binding region is essentially without polysaccharidase activity. In the fusion protein, the substrate binding region is fused or chemically linked to a polypeptide such as an enzyme, a hormone, an immunoglobulin or a protein dye. By contacting the fusion protein with a .beta.-1,4-glycan matrix, the substrate binding region binds to the matrix to immobilize the polypeptide on the matrix. The polypeptide or fusion protein can be removed from the matrix with a protease recognition sequence or with a solution having a low ionic strength or high pH. In the conjugate, the substrate binding region is joined such as by covalent bonding to a non-protein chemical moiety such as a dye, chromophore, fluorescor, radionuclide or enzyme co-factor. By contacting the conjugate with a .beta.-1, 4-qlycan matrix, the substrate binding region binds to the matrix to immobilize the chemical moiety on the matrix. The conjugate or chemical moiety can be removed with a protease acting on a protease recognition sequence or with a solution having a low ionic strength or high pH.

43 Claims, 35 Drawing figures Exemplary Claim Number: 1,43 Number of Drawing Sheets: 20

L7: Entry 37 of 57

File: USPT

Feb 20, 1996

US-PAT-NO: 5492696

DOCUMENT-IDENTIFIER: US 5492696 A

TITLE: Controlled release microstructures

DATE-ISSUED: February 20, 1996

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Price; Ronald R.	Stevensville	MD		
Schnur; Joel M.	Burke	VA		
Schoen; Paul E.	Alexandria	VA		
Testoff; Mary	Greenbelt	MD		
Georger, Jr.; Jacque H.	Springfield	VA		
Rudolph; Alan	Bowie	MD		
Brady; Robert F.	Gaithersburg	MD		

US-CL-CURRENT: 424/417; 264/4.4, 264/4.7, 424/405, 424/406, 424/419

ABSTRACT:

Tubules which contain an active agent in their lumen and compositions containing such microtubules are effective for providing a slow, controlled release of the active agent. Such microtubules are useful in the production of coating compositions for the protection of surfaces coming into contact with water, adhesive resins for the production of laminated wood products, and devices for dispensing pesticides.

3 Claims, 5 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 5

Full	Title Citation	Front Review	Classification	Date	Reference	Claims	KMC Draw De
`							

☐ 38. Document ID: US 5340731 A

L7: Entry 38 of 57

File: USPT

Aug 23, 1994

US-PAT-NO: 5340731

DOCUMENT-IDENTIFIER: US 5340731 A

** See image for Certificate of Correction **

TITLE: Method of preparing a B-1,4 glycan matrix containing a bound fusion protein

REPRESENTATION PORTER OF Miller; Robert C.

North Vancouver

CA

Gilkes; Neil

Vancouver

.

CA

Warren; R. Antony J.

Vancouver

CA

US-CL-CURRENT: 435/179; 435/177, 435/195, 435/200, 435/209, 435/69.1, 435/69.52, 435/69.7, 435/71.1, 435/803, 436/530, 530/808, 530/814

ABSTRACT:

A fusion protein that can function as a removable label is prepared containing a polypetide such as an enzyme and an amino acid sequence having a substrate binding region of a polysaccharidase such as cellulase that has essentially no polysaccharidase activity. By contacting the fusion protein with a .beta.-1,4 glycan matrix such as cellulose, the substrate binding region binds to the matrix to immobilize the polypeptide. The polypetide or fusion protein can be removed from the matrix with a protease capable of cleaving a specific protease cleavage site, or with a solution having a low ionic strength or a high pH. The fusion protein can be prepared by recombinant DNA technology.

19 Claims, 35 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 20

Full Title	Citation Front Review Classification			laims KVMC	
	Document ID: US 5202247 A				
L7: Entry	39 of 57	File: U	SPT	Apr 13,	1993

US-PAT-NO: 5202247

L7: Entry 39 of 57

DOCUMENT-IDENTIFIER: US 5202247 A

** See image for Certificate of Correction **

TITLE: Cellulose binding fusion proteins having a substrate binding region of

cellulase

DATE-ISSUED: April 13, 1993

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Kilburn; Douglas G.	Vancouver			CA
Miller; Robert C.	Vancouver			CA
Warren; Richard A. J.	Vancouver			CA
Gilkes; Neil R.	Vancouver			CA

US-CL-CURRENT: 435/195; 435/177, 435/179, 435/200, 435/209, 435/69.1, 435/69.52,

cellulase that has essentially no polysaccharidase activity. By contacting the fusion protein with an affinity matrix containing a substrate such as cellulose for the cellulase substrate binding region, the substrate binding region binds to the affinity matrix to immobilize the polypeptide. The polypeptide can be purified by separating the fusion protein or polypeptide from the affinity matrix. The polypeptide can be separated by cleaving the protein with a Cellulomonas fimi protease.

8 Claims, 9 Drawing figures
Exemplary Claim Number: 1
Number of Drawing Sheets: 8

Full Title	Citation Front Review Classification	·			KWAC	Draww De
☐ 40 <i>.</i>	Document ID: US 5137819 A					
L7: Entry	40 of 57	File: U	SPT	Aug	11,	1992

US-PAT-NO: 5137819

DOCUMENT-IDENTIFIER: US 5137819 A

** See image for Certificate of Correction **

TITLE: Cellulose binding fusion proteins for immobilization and purification of polypeptides

DATE-ISSUED: August 11, 1992

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Kilburn; Douglas G.	Vancouver			CA
Miller; Robert C.	Vancouver			CA
Warren; Richard A. J.	Vancouver			CA
Gilkes; Neil R.	Vancouver			CA

US-CL-CURRENT: <u>435/179</u>; <u>435/177</u>, <u>435/195</u>, <u>435/200</u>, <u>435/209</u>, <u>435/69.1</u>, <u>435/69.52</u>, <u>435/69.7</u>, <u>435/71.1</u>, <u>435/803</u>

ABSTRACT:

A fusion protein is prepared containing a polypeptide such as an enzyme and an amino acid sequence having a substrate binding region of a polysaccharidase such as cellulase that has essentially no polysaccharidase activity. By contacting the fusion protein with an affinity matrix containing a substrate such as cellulose for the cellulase substrate binding region, the substrate binding region binds to the affinity matrix to immobilize the polypeptide. The polypeptide can be purified by separating the fusion protein or polypeptide from the affinity matrix.

7	Claims.	9	Drawing	figures

بالعادينيستينا وستنسابه

Clear	Generate Collection	Print Fwd F	Refs Bkwd Refs	Generate OACS
G				
	Terms		Documents	
	L1 and marine			57
-				

Display Format: - Change Format

Previous Page Next Page Go to Doc#

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 41 through 57 of 57 returned.

☐ 41. Document ID: US 5015677 A

Using default format because multiple data bases are involved.

L7: Entry 41 of 57

File: USPT

May 14, 1991

US-PAT-NO: 5015677

DOCUMENT-IDENTIFIER: US 5015677 A

TITLE: Adhesives derived from bioadhesive polyphenolic proteins

DATE-ISSUED: May 14, 1991

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Benedict; Christine V. Farmington CT Picciano; Paul T. Canton CT

US-CL-CURRENT: <u>524/17</u>; <u>106/124.1</u>, <u>106/135.1</u>, <u>106/151.1</u>, <u>106/154.11</u>, <u>106/159.1</u>, <u>106/160.1</u>, <u>156/336</u>, <u>524/21</u>, <u>524/22</u>, <u>524/25</u>, <u>530/328</u>, <u>530/350</u>

Full Title Citation Front Review Classification Date Reference

☐ 42. Document ID: US 4663202 A

L7: Entry 42 of 57 File: USPT May 5, 1987

US-PAT-NO: 4663202

DOCUMENT-IDENTIFIER: US 4663202 A

TITLE: Prevention of undesired adsorption on surfaces

DATE-ISSUED: May 5, 1987

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Causton; Brian E. North Waltham GB2

US-CL-CURRENT: 427/388.4; 106/35, 424/49, 427/388.5, 523/118, 524/765, 524/767

reactive groups (A) capable of bonding with the surface to be treated and (b) hydrophobic groups (B); and (2) a polymer comprising (c) at least one hydrophilic polymeric chain (c) and (d) at least one hydrophobic group (D) in the presence of water. Compositions containing the polymer mixture may be used as mouthwashes to prevent or reduce tooth decay and prevent plaque formation. They may also be applied to various surfaces where prevention and/or reduction of colonization by microorganisms on the surfaces is desired.

28 Claims, 6 Drawing figures Exemplary Claim Number: 1,9,15 Number of Drawing Sheets: 3

Full	Title	Citation Front	Review	Classification	Date	Reference		Claims	KWMC	Draw, De
	43.	Document ID	: US 4	603006 A						

L7: Entry 43 of 57

File: USPT

Jul 29, 1986

US-PAT-NO: 4603006

DOCUMENT-IDENTIFIER: US 4603006 A

** See image for Certificate of Correction **

TITLE: Inhibition of inorganic or biological CaCO.sub.3 deposition by synthetic polysaccharide derivatives

DATE-ISSUED: July 29, 1986

INVENTOR-INFORMATION:

CITY STATE ZIP CODE COUNTRY NAME

Sikes; C. Steven Mobile ALWheeler; A. P. Clemson SC

US-CL-CURRENT: 252/180; 210/698, 252/175, 427/384

ABSTRACT:

The present invention relates to a method of inhibiting the formation of calcium carbonate-containing deposits on a surface by applying a composition comprising an anticalcification-effective amount of a polysaccharide or derivative thereof. The present method is useful for the prevention and/or retardation (inhibition) of inorganic scaling, as well as, for the inhibition of fouling by plant or animal organisms.

17 Claims, 0 Drawing figures Exemplary Claim Number: 1

EU	Title	Citation	Front	Review	Classification	Date	Reference	Claims	KWIC	Draw, De

US-PAT-NO: 4594965

DOCUMENT-IDENTIFIER: US 4594965 A

TITLE: Symbiotic aqua-culture

DATE-ISSUED: June 17, 1986

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Asher, Jr.; Donald F. Annapolis MD 21403

Munz, deceased; Otto J. late of Arlington VA
Munz, Executrix; by Gerta H. Arlington VA

US-CL-CURRENT: 119/239; 119/200, 119/242

ABSTRACT:

A symbiotic aqua-culture system includes a barrier fence surrounding a protected body of water in which is extended a conduit having a plurality of tubes therein and which is coaxial with a tubular screen. An electrode in the form of a helically wound wire on the conduit coacts with the tubular screen, which comprises a second electrode, to form an electrical field which attracts marine life and stimulates the growth thereof. The barrier fence may also be constructed to produce an electrical field to inhibit or kill undesired marine organisms attempting to pass through the fence. The tubes within the conduit are connected to sources of various materials, such as nutrients, algaecide, heat, etc., and valves are connected with the tubes to control flow therethrough. Orifices connect the tubes with the surface of the conduit along its length to supply the materials as desired. The method of symbiotic mari-culture using the structure is also disclosed.

10 Claims, 7 Drawing figures Exemplary Claim Number: 1 Number of Drawing Sheets: 2

Full Title Citation Front	Date Reference		Claims KMC Draw, D	ļ
	 	***************************************		***

☐ 45. Document ID: US 4587021 A

L7: Entry 45 of 57

TAMORES TRACEROLISM AND A CONTRACTOR

File: USPT

May 6, 1986

US-PAT-NO: 4587021

DOCUMENT-IDENTIFIER: US 4587021 A

** See image for Certificate of Correction **

TITLE: Inhibition of the formation of inorganic or biological CaCO.sub.3 - containing deposits by a proteinaceous fraction obtained from CaCO.sub.3 -forming

4/22/04

Sikes; C. Steven

Mobile

AT.

US-CL-CURRENT: 210/698; 106/14.05, 134/22.14, 252/180, 422/16

ABSTRACT:

The present invention relates to a method of inhibiting the formation of CaCO.sub.3 -containing deposits on a surface by applying a composition comprising an anti calcification-effective amount of the peptide-containing or the protein-containing fractions isolated from a CaCO.sub.3 -containing tissue obtained from a CaCO.sub.3 -forming organism. Said fractions can be isolated from many CaCO.sub.3 -containing tissues, including, but not limited to, molluscan shells, echinoderm skeletons, carbonate sands, crustacean exoskeletons, coral endoskeletons and the like. The present method is useful for the prevention and/or retardation of inorganic scaling, as well as, for the inhibition of fouling by plant or animal organisms.

21 Claims, 14 Drawing figures Exemplary Claim Number: 1,15 Number of Drawing Sheets: 7

Full Title Citation Front	Review Classification Da	ate Reference	Claims	10001C Draws De
				······

☐ 46. Document ID: US 4585560 A

L7: Entry 46 of 57

File: USPT

Apr 29, 1986

US-PAT-NO: 4585560

DOCUMENT-IDENTIFIER: US 4585560 A

** See image for Certificate of Correction **

TITLE: Inhibition of inorganic and biological CaCO.sub.3 deposition by a polysaccharide fraction obtained from CaCO.sub.3 -forming organisms

DATE-ISSUED: April 29, 1986

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE COUNTRY

Sikes; C. Steven

Mobile

AL

Wheeler; A. P.

Clemson

SC

US-CL-CURRENT: 210/698; 106/14.15, 134/22.14, 252/180, 422/16

ABSTRACT:

The present invention relates to a method of inhibiting the formation of CaCO.sub.3 -containing deposits on a surface, by applying a composition comprising an anticalcification effective amount of the polysaccharide-containing fraction

12 Claims, 0 Drawing figures Exemplary Claim Number: 1

☐ 47. Document ID: US 4534881 A

L7: Entry 47 of 57

File: USPT

Aug 13, 1985

Claims KWWC Drawu De

US-PAT-NO: 4534881

DOCUMENT-IDENTIFIER: US 4534881 A

** See image for Certificate of Correction **

TITLE: Inhibition of inorganic or biological CaCO.sub.3 deposition by poly amino

acid derivatives

DATE-ISSUED: August 13, 1985

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Sikes; C. Steven Mobile AL Wheeler; Alfred P. Clemson SC

US-CL-CURRENT: 252/180; 210/698, 252/175, 422/16, 930/290

Full Title Citation Front Review Classification Date Reference

ABSTRACT:

The present invention relates to a method of inhibiting the formation of CaCO.sub.3 -containing deposits on a surface by applying a composition comprising an anti calcification-effective amount of a poly amino acid, a poly amino acid amide or derivative thereof. The present method is useful for the prevention and/or retardation (inhibition) of inorganic scaling, as well as for the inhibition of fouling by plant or animal organisms.

15 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title Citation	Front Review Classificat	ion Date Reference	Claims	KOMO Draw. Dx

☐ 48. Document ID: US 4297137 A

L7: Entry 48 of 57 File: USPT Oct 27, 1981

US-PAT-NO: 4297137

INVENTOR-INFORMATION:

NAME CITY

STATE ZIP CODE COUNTRY

Sachetto; Jean-Pierre

Saint-Julien-en-Genevois

FR

Cuccolo; Sergio

Geneva

CH

US-CL-CURRENT: 514/493; 106/156.1, 106/156.23, 106/157.8, 106/163.01, 106/203.1, 106/203.3, 106/204.01, 424/635, 424/638

ABSTRACT:

The invention relates to <u>anti-fouling</u> paints and is concerned with <u>anti-fouling</u> paints developed for inhibiting the fixation of <u>marine</u> organisms on structures which are immersed in sea water, the paints including at least one toxic substance uniformly incorporated into a discontinuous solid matrix which is insoluble in sea water and is dispersed in the paint, the matrix being at least partially formed from at least one substance which becomes soluble in sea water under the action of <u>enzymes</u> liberated by the <u>marine</u> organisms to be inhibited and/or by the bacterial film in contact with the surface of the paint.

The paints according to the invention provide an effective life which is much longer than that of the known anti-fouling paints.

The invention relates to an <u>anti-fouling</u> paint containing at least one toxic substance.

5 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title	Citation Front	Review Classification	Date	Reference			Claims	KOMC	Drawi De
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,	»
		: US 4237114 A							
L7: Entry				File:	USPT		Dec	2,	1980

US-PAT-NO: 4237114

DOCUMENT-IDENTIFIER: US 4237114 A

TITLE: Method and composition for the long term controlled release of a non-persistent organotin pesticide from an inert monolithic thermoplastic dispenser

DATE-ISSUED: December 2, 1980

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Cardarelli; Nathan F. Barberton OH

other pest-life forms over a sustained period of time, by the gradual and continuous release of an organotin substance from an inert thermoplastic medium. The composition comprises an organotin of extremely low water solubility bound in an ethylene-vinyl acetate copolymer, or an ethylene-propylene copolymer, in which said organotin is insoluble and in which said organotin is uniformly dispersed with an inert coleachant of moderate or low water solubility. When this formulation is brought into contact with water, the coleachant gradually solvates into the water creating and enhancing the development of porosity within the thermoplastic phase. Said organotin agent, interspersed within the thermoplastic matrix, contacts the entering water and egresses as molecular aggregates being washed through the pore system and into the external watery medium. Such aggregates, being toxic to mosquito larva, other insects and various other pesteferous life forms upon continuous exposure, lead to a condition of terminal chronic intoxication.

70 Claims, 0 Drawing figures Exemplary Claim Number: 1

Full Title Citation Front Review Classification	on Date Reference	
☐ 50. Document ID: US 4177256 A		Dec 4, 1979

US-PAT-NO: 4177256

DOCUMENT-IDENTIFIER: US 4177256 A

TITLE: Osmotic bursting drug delivery device

DATE-ISSUED: December 4, 1979

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Michaels; Alan S. San Francisco CA Guillod; Mark S. Kaneohe HI

US-CL-CURRENT: 424/427; 424/432, 424/473, 604/892.1

ABSTRACT:

A drug delivery for administering drug to an aqueous body environment at a substantially constant rate. The devices consist essentially of a mixture of drug of specific average particle size dispersed in a polymer of specific water permeability, tensile strength, and Young's modulus in specific volume proportions such that the particles are surrounded substantially individually by the polymer. The constancy of the release rate of drug from the devices is governed by the drug particle size and volume proportion of drug in the mixture.

12 Claims, 17 Drawing figures

51. Document ID: US 6342386 B1

L7: Entry 51 of 57

File: DWPI

Jan 29, 2002

DERWENT-ACC-NO: 2002-314624

DERWENT-WEEK: 200235

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Removal of undesired growth on surfaces, such as floors, comprises coating surface with composition containing polymeric resin base material and microorganism capable of producing amylolytic and/or proteolytic enzyme

INVENTOR: LEAVITT, R I; POWERS, W P; SELVIG, T A

PRIORITY-DATA: 1996US-0739272 (October 29, 1996), 1999US-0346535 (July 2, 1999)

PATENT-FAMILY:

PUB-NO P

PUB-DATE

LANGUAGE

PAGES MAIN-

MAIN-IPC

US 6342386 B1

January 29, 2002

016

A01N063/00

INT-CL (IPC): A01 N 63/00; A61 K 38/43; B09 B 3/00; C12 N 1/00; D06 M 16/00

ABSTRACTED-PUB-NO: US 6342386B

BASIC-ABSTRACT:

NOVELTY - Removing undesired growth on a surface comprising coating the surface with a composition containing a polymeric resin base material and at least one microorganism capable of producing amylolytic and/or proteolytic enzyme, is new.

USE - For preventing or minimizing fouling of markers, boat hulls, bulkheads, pilings, water inlets, floors, roofs and shingles.

ADVANTAGE - The method utilizing the marine anti fouling composition effectively reduces or prevents fouling of marine articles, reduces marine corrosion, reduces absorption of corrosive molecules. Therefore it impedes surface and inter-granular corrosion. The film formed by the application of composition reduces adsorption or attachment of mildew fungus on marine surfaces, retards growth of fouling microbe, and prevents accumulation of marine growth. The method minimizes blockage due to fouling of marine growth on heat exchangers, evaporator, condensers, and fire and flushing systems. Therefore it significantly reduces maintenance cost of all categories of marine structure. Aesthetic appearance of the marine structures are improved by coating the composition. The method reduces fouling without utilizing toxic materials, and effectively prevents environmental problems.

DESCRIPTION OF DRAWING(S) - The figure shows the plot of test results for upper tile panels and control coated with the \underline{anti} fouling composition.

Full Title Citation Front Review Classification Date Reference State State Claims KIMC Draw. De

DERWENT-ACC-NO: ZUUZ-1Z194/

DERWENT-WEEK: 200219

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: New transgenic plants comprising a zosteric acid biosynthetic gene, a saline resistance gene or a hypoxia resistance gene derived from Zostera marina, useful for producing plants with antifouling traits

INVENTOR: ALBERTE, R S; SMITH, R; SMITH, R D

PRIORITY-DATA: 2000US-202529P (May 10, 2000), 2001US-0854122 (May 10, 2001)

PATENT-FAMILY:

				METAL TOG
PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 200185971 A2	November 15, 2001	E	117	C12N015/82
AU 200159754 A	November 20, 2001		000	C12N015/82
US 20020016980 A1	February 7, 2002		000	C12N015/82

INT-CL (IPC): $\underline{A01}$ \underline{H} $\underline{5/00}$; $\underline{C12}$ \underline{N} $\underline{9/02}$; $\underline{C12}$ \underline{N} $\underline{9/04}$; $\underline{C12}$ \underline{N} $\underline{9/10}$; $\underline{C12}$ \underline{N} $\underline{9/88}$; $\underline{C12}$ \underline{N} $\underline{15/29}$; $\underline{C12}$ \underline{N} $\underline{15/82}$

ABSTRACTED-PUB-NO: US20020016980A

BASIC-ABSTRACT:

NOVELTY - A new transgenic plant comprising a heterologous gene derived from a marine vascular plant, or at least one heterologous nucleotide sequence encoding a zosteric acid biosynthetic function, a saline-resistance function, or a hypoxia-resistance function.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) a nucleic acid comprising sequence (I) (not given in the specification), or a subsequence of at least 50 nucleotides of (I);
- (2) a nucleic acid which hybridizes under stringent conditions to the nucleic acid of (I);
- (3) producing a transgenic plant possessing an <u>anti-fouling</u> genetic trait by providing a cDNA population derived from a <u>marine</u> vascular plant, isolating from the cDNA population a nucleic acid species which hybridizes to a nucleic acid that encodes a sulfotransferase, a phenylalanine ammonium lyase or a cinnamate-4-hydroxylase activity, and transforming a target host plant with the isolated nucleic acid; and
- (4) a transgenic plant created by the method.

USE - The plant is useful in the genetic engineering of plant species having desirable genetic traits such as antifouling traits, salt and anoxia resistance, and pathogen defense strategy. The expression of such biosynthetic enzymes are sufficient to support the production of zosteric acid and other sulfated phenolic compounds in a target plant.

ABSTRACTED-PUB-NO:

resistance function.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) a nucleic acid comprising sequence (I) (not given in the specification), or a subsequence of at least 50 nucleotides of (I);
- (2) a nucleic acid which hybridizes under stringent conditions to the nucleic acid of (I);
- (3) producing a transgenic plant possessing an <u>anti-fouling</u> genetic trait by providing a cDNA population derived from a <u>marine</u> vascular plant, isolating from the cDNA population a nucleic acid species which hybridizes to a nucleic acid that encodes a sulfotransferase, a phenylalanine ammonium lyase or a cinnamate-4-hydroxylase activity, and transforming a target host plant with the isolated nucleic acid; and
- (4) a transgenic plant created by the method.

USE - The plant is useful in the genetic engineering of plant species having desirable genetic traits such as antifouling traits, salt and anoxia resistance, and pathogen defense strategy. The expression of such biosynthetic enzymes are sufficient to support the production of zosteric acid and other sulfated phenolic compounds in a target plant.

Full Title	Citation Front	Review Classification	n Date	Reference		Claims	FOOMC	Draw, De
A, NO 20	0105831 A, K	D: NZ 515111 A, KR 2002010153 A C 2001012448 A1						

File: DWPI

DERWENT-ACC-NO: 2001-112148

DERWENT-WEEK: 200418

L7: Entry 53 of 57

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: New <u>anti-fouling</u> composition, useful as a coating for treating different surfaces, e.g. outdoor woodwork, external surface of a central heating system, or a hull of a marine vessel

INVENTOR: KRAGH, K M; POULSEN, C H

PRIORITY-DATA: 1999GB-0013050 (June 4, 1999)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
NZ 515111 A	February 27, 2004		000	C12N009/00
wo 200075293 A2	December 14, 2000	E	036	C12N009/00
TTT 200050070 T	December 28 2000		000	

Feb 27, 2004

CN 1364185 A	August 14, 2002		000	0002000, 10
EP 1282669 A2	February 12, 2003	E	000	C09D005/16
JP 2003525312 W	August 26, 2003		042	C09K003/00
MX 2001012448 A1	June 1, 2002		000	C12N009/00

INT-CL (IPC): A01 N 63/00; C02 F 1/00; C02 F 1/50; C08 L 89/00; C09 D 5/16; C09 D 7/12; C09 D 201/00; C09 K 3/00; C12 N 0/00; C12 N 9/00; C12 N 9/04; C12 N 9/34

ABSTRACTED-PUB-NO: US20020106361A

BASIC-ABSTRACT:

NOVELTY - A new <u>anti-fouling</u> composition comprises a surface coating material, an <u>enzyme</u> obtained or obtainable from a <u>marine</u> organism and a substrate for the <u>enzyme</u>, and/or a precursor <u>enzyme</u> and a precursor substrate.

DETAILED DESCRIPTION - A new <u>anti-fouling</u> composition comprises a surface coating material, an <u>enzyme</u> obtained or obtainable from a <u>marine</u> organism and a substrate for the <u>enzyme</u>, and/or a precursor <u>enzyme</u> and a precursor substrate. The precursor <u>enzyme</u> and the precursor substrate are selected so that a substrate for the <u>enzyme</u> is generated by action of the precursor <u>enzyme</u> on the precursor substrate. The <u>enzyme</u> and the substrate are selected so that an anti-foulant compound is generated by action of the <u>enzyme</u> on the substrate.

INDEPENDENT CLAIMS are also included for the following:

- (1) a coating consisting of the anti-fouling composition;
- (2) a marine anti-foul consisting of the composition; and
- (3) a method for releasing an <u>anti-fouling</u> compound from a surface coating comprising incorporating in a surface coating the <u>anti-fouling</u> composition above.

USE - The <u>anti-fouling</u> composition is useful as a coating formulated for treating a surface, e.g. outdoor wood work, external surface of a central heating system, or a hull of a <u>marine</u> vessel (claimed). It is also useful as an <u>anti-fouling</u> agent for <u>marine</u> structures exposed to seawater flora and fauna.

ADVANTAGE - The use of tributyl tin as <u>marine</u> anti-fouls has led to the pollution of surrounding water due to leaching which can cause the degradation of mussel and shell organisms. The use of the present <u>anti-fouling</u> composition is safer for the environment. It also has long term effectiveness in harsh environment, e.g. <u>marine</u> environment. It requires less substrate and less <u>enzyme</u> than prior art systems to provide a given anti-microbial effect. Furthermore, it has improved salt tolerance, which leads to further improved activity in <u>marine</u> environments, and is resistant to degradation by fouling.

ABSTRACTED-PUB-NO:

WO 200075293A EQUIVALENT-ABSTRACTS:

NOVELTY - A new <u>anti-fouling</u> composition comprises a surface coating material, an <u>enzyme</u> obtained or obtainable from a <u>marine</u> organism and a substrate for the <u>enzyme</u>, and/or a precursor <u>enzyme</u> and a precursor substrate.

by action of the enzyme on the substrate.

INDEPENDENT CLAIMS are also included for the following:

- (1) a coating consisting of the anti-fouling composition;
- (2) a marine anti-foul consisting of the composition; and
- (3) a method for releasing an <u>anti-fouling</u> compound from a surface coating comprising incorporating in a surface coating the <u>anti-fouling</u> composition above.

USE - The <u>anti-fouling</u> composition is useful as a coating formulated for treating a surface, e.g. outdoor wood work, external surface of a central heating system, or a hull of a <u>marine</u> vessel (claimed). It is also useful as an <u>anti-fouling</u> agent for marine structures exposed to seawater flora and fauna.

ADVANTAGE - The use of tributyl tin as marine anti-fouls has led to the pollution of surrounding water due to leaching which can cause the degradation of mussel and shell organisms. The use of the present anti-fouling composition is safer for the environment. It also has long term effectiveness in harsh environment, e.g. marine environment. It requires less substrate and less enzyme than prior art systems to provide a given anti-microbial effect. Furthermore, it has improved salt tolerance, which leads to further improved activity in marine environments, and is resistant to degradation by fouling.

Full Title	Citation Front Review		Claims KW	
	Document ID: US 6			
L7: Entry	54 of 57	File: DWPI	Apr 11,	2000

DERWENT-ACC-NO: 2000-328038

DERWENT-WEEK: 200028

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Two-phase partition affinity separation system useful for separating and purifying proteins comprises a phase-forming oligosaccharide polymer and a phase-separation agent

INVENTOR: HAYNES, C A; KILBURN, D G; TOMME, P

PRIORITY-DATA: 1996US-0685808 (July 24, 1996), 1988US-0216794 (July 8, 1988), 1990US-0603987 (October 25, 1990), 1992US-0865095 (April 8, 1992), 1994US-0249037 (May 24, 1994), 1995US-0505860 (July 24, 1995)

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 Us 6048715 A
 April 11, 2000
 046
 C12N011/12

INT-CL (IPC): A23 J 1/00; C12 N 11/12; C12 N 15/00; C12 P 21/06

http://westbrs:9000/bin/cgi-bin/accum_query.pl

Difficulty percise (FDF) Diffice and a phase separation inducting agence (D).

DETAILED DESCRIPTION - A two-phase partition system (I) for affinity separation, is new and comprises a phase-forming oligosaccharide polymer (A) selected from methyl cellulose, ethylhydroxyethyl cellulose, hydroxyethyl cellulose, to which a polysaccharide binding peptide (PBP) binds with a Ka of 103-107 M and a phase separation inducing agent (B) selected from polyethylene glycol, dextran, a copolymer of ethylene oxide and propylene oxide and a salt at a concentration of 3 M. (A) and (B) are present in amounts sufficient to induce phase separation upon mixing.

INDEPENDENT CLAIMS are also included for the following:

- (1) a composition, comprising a polypeptide which comprises a non-catalytic PBP bound to (A) and a cell having a carbohydrate residue on its surface to which PBP binds, obtained by contacting PBP with a cell to form a complex and contacting the complex with (I), where the complex partitions into first phase by binding to (A) and recovering the first phase; and
- (2) a composition (II) obtained by the same method as above, comprising a fusion polypeptide which comprises a non-catalytic PBP and a ligand bound to (A) and a cell having a receptor on its surface to which the ligand binds.

USE - (I) is useful for the separation and purification of proteins such as interleukin 2, factor X, ligninase and other compounds from cultured broth, biological fluids, tissue extracts, extracts from cell lysates including bacterial, fungal, plant, fish and fowl. (I) is also useful for concentrating a component in a mixture, cell separation, removing contaminants and for preparing solid state reagents for diagnostic assays, for targeting enzymes such as ligninase for treatment of wood chips and for bleaching of wood pulp. (I) can be used under high salt conditions such as in marine environment for anti-fouling of surfaces exposed to sea water.

ADVANTAGE - Oligosaccharide polymers can be obtained inexpensively and the water-soluble cellulosic substrates offer new, cost-effective, highly-flexible, affinity partition system for continuous purification. Selective binding of PBP from the oligosaccharide polymer makes it suitable for purification of a wide variety of compounds using a single oligosaccharide polymer phase separation system. Hence it is unnecessary to prepare separate systems for each compound to be separated. PBP compounds can be removed easily by elution with water.

Full Title Citation Front Review Classification Date Reference Claims RWIC Draw Co.

| 55. Document ID: GB 2306473 A, GB 2306473 B, JP 09118842 A, JP 09118844 A, JP 09124570 A, US 5770188 A
| L7: Entry 55 of 57 File: DWPI May 7, 1997

DERWENT-ACC-NO: 1997-229317

DERWENT-WEEK: 199902

COPYRIGHT 2004 DERWENT INFORMATION LTD

1995), 1995JP-0278718 (October 26, 1995)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
GB 2306473 A	May 7, 1997		029	C07C235/06
GB 2306473 B	December 23, 1998		000	C07C235/06
JP 09118842 A	May 6, 1997		006	C09D005/14
JP 09118844 A	May 6, 1997		005	C09D005/16
JP 09124570 A	May 13, 1997		004	C07C235/06
US 5770188 A	June 23, 1998		000	A61K031/74

INT-CL (IPC): A61 K 31/74; C07 C 235/06; C09 D 5/14; C09 D 5/16; C09 D 7/12; C09 D $\frac{101}{00}$; C09 D $\frac{167}{00}$; C12 N $\frac{9}{00}$

ABSTRACTED-PUB-NO: GB 2306473A

BASIC-ABSTRACT:

Glucoxide derivatives for enzyme modification of formula (I) are new. R1, R2 = 6-20C hydrocarbon. Also claimed are: (1) a lipid-coated enzyme coated with (I) for enzyme modification; (2) production of lipid-coated enzymes comprising dissolving (I) in hydrophilic solvent and adding this solution dropwise into a buffer solution containing an enzyme; and (3) an anti-fouling paint composition comprising a lipid stable enzyme, stable in organic solvents as a result of coating with a lipid having 6-30C and a paint resin.

USE - (I) is useful for producing lipid-coated <u>enzymes</u> in antifouling paint compositions. Proteins and polysaccharides involved in the attachment of <u>marine</u> organisms can be degraded. Cell walls of attaching organisms may also be degraded.

ADVANTAGE - The paint resin used is enzyme-susceptible and can be degraded by the lipid-coated enzyme, to form a self-polishing antifouling composition.

ABSTRACTED-PUB-NO:

GB 2306473B EQUIVALENT-ABSTRACTS:

Glucoxide derivatives for enzyme modification of formula (I) are new. R1, R2 = 6-20C hydrocarbon. Also claimed are: (1) a lipid-coated enzyme coated with (I) for enzyme modification; (2) production of lipid-coated enzymes comprising dissolving (I) in hydrophilic solvent and adding this solution dropwise into a buffer solution containing an enzyme; and (3) an anti-fouling paint composition comprising a lipid stable enzyme, stable in organic solvents as a result of coating with a lipid having 6-30C and a paint resin.

USE - (I) is useful for producing lipid-coated <u>enzymes</u> in antifouling paint compositions. Proteins and polysaccharides involved in the attachment of <u>marine</u> organisms can be degraded. Cell walls of attaching organisms may also be degraded.

ADVANTAGE - The paint resin used is enzyme-susceptible and can be degraded by the lipid-coated enzyme, to form a self-polishing antifouling composition.

THE THE PROPERTY OF THE PROPER

US 5770188A

having 6-30C and a paint resin.

USE - (I) is useful for producing lipid-coated <u>enzymes</u> in antifouling paint compositions. Proteins and polysaccharides involved in the attachment of <u>marine</u> organisms can be degraded. Cell walls of attaching organisms may also be degraded.

------ we - ----- or seasoning writing interpret

ADVANTAGE - The paint resin used is enzyme-susceptible and can be degraded by the lipid-coated enzyme, to form a self-polishing antifouling composition.

Full Title Citation Front Review Classification Date Reference Cla

US-PAT-NO: 2882213

DOCUMENT-IDENTIFIER: US 2882213 A

TITLE: Galvanic anode

DATE-ISSUED: April 14, 1959

INVENTOR-NAME: BURKE DOUGLAS

US-CL-CURRENT: 204/196.19; 204/196.2, 204/290.05

Full Title Citation Front	Review Classification	Date Reference	Claims KMC Draw, De

☐ 57. Document ID): US 2855358 A		
L7: Entry 57 of 57		File: USOC	Oct 7, 1958

US-PAT-NO: 2855358

DOCUMENT-IDENTIFIER: US 2855358 A

TITLE: Galvanic anode

DATE-ISSUED: October 7, 1958

INVENTOR-NAME: BURKE DOUGLAS

US-CL-CURRENT: 204/196.19; 204/196.2, 204/290.05

<u> Display Format:</u>	-	Change Format
-------------------------	---	---------------

Previous Page Next Page

Go to Doc#

neep ... received 2000 on rogitons accum_query.pr