EJERCICIOS TEMA 3 SUCESIONES Y SERIES

2 ______ EJERCICIOS TEMA 3

SUCESIONES NUMÉRICAS

Ejercicio 1 Hallar el límite de

a)
$$a_n = \frac{8n\ln\left(1 + \frac{1}{2n}\right)\sin^3\frac{1}{n}}{(2n^2 + 5n)\cos\frac{2\pi n - 2}{6n + 3}};$$
 b) $a_n = (n+2)\left(\sqrt[n]{e} - 1\right)$

Solución: a) $\lim_{n\to\infty} a_n = 0$; b) $\lim_{n\to\infty} a_n = 1$.

Ejercicio 2 Hallar

a)
$$\lim_{n \to \infty} a_n = \frac{n!e^n}{n^n}$$
; b) $\lim_{n \to \infty} a_n = \frac{(n!)^2 e^{2n}}{n^{2n+1}}$

Solución: a) $\lim_{n\to\infty} a_n = \infty$; b) $\lim_{n\to\infty} a_n = 2\pi$.

Ejercicio 3 Hallar

a)
$$\lim_{n\to\infty} \sqrt{n^2 + 2n + 3} - n$$
; b) $\lim_{n\to\infty} \frac{\sqrt{n+a} - \sqrt{n+b}}{\sqrt{n+c} - \sqrt{n+d}}$ $(c \neq d)$

Solución: a) $\lim_{n\to\infty} a_n = 1$; b) $\lim_{n\to\infty} a_n = \frac{a-b}{c-d}$.

Ejercicio 4 Calcular los siguientes límites

a)
$$\lim_{n \to \infty} \left(\cos \frac{1}{n}\right)^{n^2 + 3};$$
 b) $\lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$ c) $\lim_{n \to \infty} \left(2 + 3n^4\right)^{\frac{1}{3+2\ln(n+1)}};$ d) $\lim_{n \to \infty} \left(\frac{n+2}{3n^3 - 1}\right)^{\frac{1}{\ln(n^4 - 3)}}$

Solución: a) $L=e^{-1/2};\ b)\ L=\frac{1}{e};\ c)\ L=e^2;\ d)\ L=e^{-\frac{1}{2}}.$

Ejercicio 5 Hallar el límite de las sucesiones de término general

a)
$$a_n = \left(1 - \frac{1}{n}\right)^n$$
; b) $a_n = \left(\frac{2+n}{n+1}\right)^n$; c) $a_n = \sqrt[n]{n}$

Solución: a) e^{-1} ; b) e; c) 1.

Ejercicio 6 Calcular los límites

a)
$$\lim_{n \to \infty} (\cos 2\pi n)^{n^2 + 3}$$
; b) $\lim_{n \to \infty} n (\sin \pi n)$; c) $\lim_{n \to \infty} \frac{\sqrt{n} \binom{2n}{n}}{2^{2n}}$

Solución: a) 1; b) 0; c) $\lim_{n\to\infty} a_n = \frac{1}{\sqrt{\pi}}$.

Ejercicio 7 Hallar los límites siguientes

a)
$$\lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{n!}$$
; b) $\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{\ln n}$

Solución: a) 1; b) 1.

Ejercicio 8 Calcular

$$L = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}} \right)$$

Solución: 1.

Ejercicio 9 Hallar el límite de las sucesiones de término general

a)
$$a_n = \sqrt[3]{n^3 + 2n^2} - n$$
; b) $a_n = \left(1 + \frac{1}{n! + 1}\right)^{n! - 1}$

Solución: a) 2/3; b) e.

Ejercicio 10 Hallar el límite de las sucesiones de término general

a)
$$a_n = \left(\frac{n^2 + 3n - 2}{n^2 + n}\right)^{\frac{n^3 + 2}{2n^2 - 1}}$$

b) $a_n = \left[1 - \ln(n^2 + 5n) + \ln(n^2 + 6n - 3)\right]^{n+2}$

Solución: a) e; b) e.

Ejercicio 11 Hallar el límite de las sucesiones de término general

a)
$$a_n = n(\sqrt[n]{a} - 1)$$
; b) $a_n = (n^5 + n^4)^{1/n}$

Solución: a) $\ln a$; b) 1.

Ejercicio 12 Hallar el límite de las sucesiones de término general

a)
$$a_n = \frac{\ln n!}{\ln n^n}$$
; b) $a_n = \frac{3+6+\ldots+3n}{n^2}$

Solución: a) 1; b) 3/2.

Ejercicio 13 Hallar el límite de las sucesiones de término general

a)
$$a_n = \frac{\sin \pi + \sin \frac{\pi}{2} + \dots + \sin \frac{\pi}{n}}{\ln n}; \ b) \ a_n = \frac{\sqrt[n]{n!}}{n}$$

Solución: a) π ; b) 1/e.

SERIES NUMÉRICAS

Ejercicio 14 Estudiar el carácter de las series de término general

a)
$$a_n = \frac{2}{3^{n-1}}$$
; b) $a_n = 2^n$; c) $a_n = (-1)^{n-1} \cdot 2$

Solución: a) convergente; b) divergente; c) oscilante.

Ejercicio 15 De la serie $\sum_{n=1}^{\infty} a_n$ se conoce que la sucesión de las sumas parciales (S_n) viene dada por

$$S_n = \frac{3n+2}{n+4}; \quad \forall n \in \mathbb{N}$$

a) Hallar el término general a_n de la serie. b) Hallar el carácter de la serie.

Solución: a) $a_n = \frac{10}{(n+3)(n+4)}$; b) convergente.

Ejercicio 16 Hallar, calculando sus sumas parciales, el carácter de las series

a)
$$\sum_{n=1}^{\infty} (0.2)^n$$
; b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$; c) $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$; d) $\sum_{n=1}^{\infty} (-1)^n$

Solución: a) convergente; b) convergente; c) divergente; d) oscilante.

Ejercicio 17 Determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{(2n-1)(2n+1)}{2n(2n+2)}$$
; b) $\sum_{n=1}^{\infty} \frac{3^n}{n^3+1}$

Solución: a) divergente; b) divergente.

Ejercicio 18 Determinar el carácter de la serie de término general

$$a_n = \frac{\sqrt[n]{n!}}{n}$$

EJERCICIOS TEMA 3 _____

Solución: divergente.

Ejercicio 19 Hallar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \left(2 + \frac{1}{n}\right)$$
; b) $\sum_{n=1}^{\infty} \frac{3}{5^n}$; c) $\sum_{n=1}^{\infty} \left(-7\right)^n$

Solución: a) divergente; b) convergente; c) divergente.

SERIES NUMÉRICAS de TÉRMINOS POSITIVOS

Ejercicio 20 Determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{3+n}{2+2n^5}$$
; b) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}$

Solución: a) divergente; b) divergente.

Ejercicio 21 Hallar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{3 + \cos \frac{n\pi}{2}}{n^2 + 5}$$
; b) $\sum_{n=2}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{(\ln n) n^3}$

Solución: a) convergente; b) convergente.

Ejercicio 22 Determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n!}$$
; b) $\sum_{n=1}^{\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{1}{n \cdot 2^n} \right)$

Solución: a) convergente; b) convergente.

Ejercicio 23 Determinar el carácter de la series

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})};$$
 b) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \cdot \frac{10n+3}{3n-1}$

Solución: a) convergente; b) convergente.

Ejercicio 24 Determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; b) $\sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots 2n} \right)$

Solución: a) convergente; b) divergente.

Ejercicio 25 Determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n+1)^n}$$
; b) $\sum_{n=1}^{\infty} n^2 \cdot e^{-n}$

Solución: a) convergente; b) convergente.

Ejercicio 26 Determinar el carácter de la series

$$a) \ \sum_{n=1}^{\infty} \frac{1+\sin^3 n}{n^n}; \ \ b) \ \sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}; \ \ c) \ \sum_{n=1}^{\infty} \frac{1}{n\cdot 2^n}$$

Solución: a) convergente; b) convergente; c) convergente.

Ejercicio 27 Hallar el carácter de las siguientes series

a)
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{\left(\ln\left(2^2\sqrt[3]{2}\right)\cdots\ln\left(2^n\sqrt[3]{n}\right)\right)};\ b)\ \sum_{n=1}^{\infty} \left(\sqrt[n]{n}-1\right)^n$$

______ EJERCICIOS TEMA 3

Solución: a) divergente; b) convergente.

Ejercicio 28 Hallar el carácter de las siguientes series

a)
$$\sum_{n=1}^{\infty} \left(\frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{3 \cdot 6 \cdot 9 \cdots 3n} \right)^{2}; b) \sum_{n=1}^{\infty} \frac{\sqrt{(n-1)!}}{(1+1)(1+\sqrt{2})\cdots (1+\sqrt{n})}$$

Solución: a) convergente; b) convergente.

Ejercicio 29 Hallar el carácter de las siguientes series

a)
$$\sum_{n=1}^{\infty} \left[\left(\frac{n+1}{n} \right)^n - \frac{2n}{n+1} \right]^{-n}$$
; b) $\sum_{n=1}^{\infty} \frac{n^4 \left[\sqrt{3} + (-1)^n \right]^n}{5^n}$

Solución: a) divergente; b) convergente.

SERIES ALTERNADAS

Ejercicio 30 Estudiar la convergencia de la serie alternada (armónica alternada)

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n+1} \frac{1}{n} + \dots$$

Solución: convergente.

Ejercicio 31 Estudiar la convergencia de la serie alternada

$$\frac{5}{2} - \frac{7}{4} + \frac{9}{6} - \frac{11}{8} + \ldots + (-1)^{n+1} \frac{2n+3}{2n} + \ldots$$

Solución: divergente.

Ejercicio 32 Acotar el error que se comete en la serie alternada

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{n+1} \frac{1}{n} + \ldots$$

al considerar la suma aproximada S_n con n=3 y n=4.

Solución:
$$Error = |S - S_3| < |a_4| = \frac{1}{4}$$
; $Error = |S - S_4| < |a_5| = \frac{1}{5}$.

Ejercicio 33 Determinar el carácter de la serie

$$\frac{1}{\sqrt{2}} - \frac{2}{3} + \frac{3}{2\sqrt{7}} - \frac{4}{\sqrt{65}} + \ldots + (-1)^{n+1} \frac{n}{\sqrt{n^3 + 1}} + \ldots$$

Solución: convergente.

Ejercicio 34 Estudiar la convergencia de la serie alternada

$$1 - \ln \frac{2}{1} + \frac{1}{2} - \ln \frac{3}{2} + \frac{1}{3} - \ldots + \frac{1}{n} - \ln \frac{n+1}{n} + \frac{1}{n+1} - \ldots$$

Solución: convergente.

Ejercicio 35 Estudiar el carácter de la serie

$$\frac{2}{1!} - \frac{3}{2!} + \frac{4}{3!} - \frac{5}{4!} + \frac{6}{5!} - \dots$$

Solución: convergente.

Ejercicio 36 Estudiar la convergencia absoluta de la serie

$$1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \ldots + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n!} + \ldots$$

Solución: absolutamente convergente.

Ejercicio 37 Estudiar la convergencia absoluta de las series

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$
; b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$

Solución: a) no es absolutamente convergente; b) absolutamente convergente.

SERIES de POTENCIAS

Ejercicio 38 Hallar el radio de convergencia de las series

$$a)\sum_{n=0}^{\infty}nx^n;\ b)\sum_{n=1}^{\infty}\frac{x^n}{n}$$

Solución: a) R = 1; b) R = 1.

Ejercicio 39 Hallar el intervalo de convergencia de las siguientes series de potencias e investigar la convergencia en los extremos de dichos intervalos

a)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n2^n}$$
; b) $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$; c) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$

Solución: a) converge puntualmemente en $x \in [-3,1)$; b) converge puntualmemente en $x \in (-1,1)$; c) converge puntualmente en todo R.

Ejercicio 40 Hallar el intervalo de convergencia de las siguientes series de potencias e investigar la convergencia en los extremos de dichos intervalos

a)
$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)2^n}$$
; b) $\sum_{n=1}^{\infty} \frac{(-1)^n (2x)^{2n}}{2n}$

Solución: a) converge puntualmemente en $x \in [-2,2)$; b) converge puntualmemente en $\left[-\frac{1}{2},\frac{1}{2}\right]$.

Ejercicio 41 Hallar el intervalo de convergencia de las siguientes series de potencias e investigar la convergencia en los extremos de dichos intervalos

a)
$$\sum_{n=1}^{\infty} n! x^n$$
; b) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^2}$; c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$

Solución: a) Convergencia sólo en x = 0; b) Convergencia puntual en [-1, 1]; c) Convergencia puntual en [-1, 1].

Ejercicio 42 Hallar el intervalo de convergencia de las siguientes series de potencias e investigar la convergencia en los extremos de dichos intervalos

a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{(2n-1)2^n}$$
; b) $\sum_{n=1}^{\infty} \frac{n}{(n+1)} \left(\frac{x}{2}\right)^n$

Solución: a) Convergencia puntual en [0,4); b) Convergencia puntual en (-2,2).

Ejercicio 43 Analizar la convergencia de la serie

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(n!)^2}$$

y demostrar que la función suma de la serie verifica

$$x^2f''(x) + xf'(x) - 4x^2f(x) = 0$$

DESARROLLO de una FUNCIÓN en SERIE de POTENCIAS

Ejercicio 44 Obtener los desarrollos en serie de potencias de x (desarrollos de Maclaurin) de las funciones elementales

a)
$$e^x$$
; b) $\sin x$; c) $\cos x$; d) $\ln(1+x)$; e) $(1+x)^{\alpha}$

Solución:

a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
; $x \in \mathbb{R}$; b) $\sin x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$; $x \in \mathbb{R}$; c) $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$; $x \in \mathbb{R}$

d)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}$$
; $x \in (-1,1]$; e) $(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$; $x \in (-1,1)$

8 ______ EJERCICIOS TEMA 3

Ejercicio 45 Obtener el desarrollo de Maclaurin de las funciones

a)
$$\frac{1}{1+x}$$
; b) $\frac{1}{1-x}$; c) $\frac{1}{1+x^2}$; d) $\frac{1}{1-x^2}$

Solución:

a)
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$
; $x \in (-1,1)$; b) $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$; $x \in (-1,1)$
c) $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$; $x \in (-1,1)$; d) $\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}$; $x \in (-1,1)$

Ejercicio 46 Desarrollar en serie de Taylor la función e^x alrededor de $x_0 = 1$.

Solución:

$$e^x = \sum_{n=0}^{\infty} \frac{e}{n!} (x-1)^n, \quad (x \in \mathbb{R})$$

Ejemplo 1 Ejercicio 47 Usando los desarrollos de Maclaurin de

$$\frac{1}{1-x} \ y \ \frac{1}{1+x}$$

y derivando término a término, calcular los desarrollos de

a)
$$\frac{1}{(1-x)^2}$$
; b) $\frac{1}{(1+x)^2}$

Solución:

a)
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + \dots, \quad x \in (-1,1)$$
b)
$$\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^{n-1} nx^{n-1} = 1 - 2x + 3x^2 + \dots, \quad x \in (-1,1)$$

Ejercicio 48 Usando los desarrollos de Maclaurin de

$$\frac{1}{1+x} \ y \ \frac{1}{1+x^2}$$

e integrando término a término, calcular los desarrollos de

a)
$$\ln(1+x)$$
; b) $\arctan x$

Solución:

a)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots; \ x \in (-1,1)$$

b) $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}; \ x \in (-1,1)$

Ejercicio 49 Obtener el desarrollo de Maclaurin de la función

$$f(x) = \arcsin x$$

Solución:

$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n \cdot n!} \frac{x^{2n+1}}{2n+1}; \ x \in (-1,1)$$

Ejercicio 50 Demostrar que cada una de las siguientes funciones tiene como representación la serie de potencias que se indica, en los conjuntos dados:

a)
$$\sin^2 x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n)!} x^{2n}; \ x \in \mathbb{R}$$

b) $\frac{12 - 5x}{6 - 5x - x^2} = \sum_{n=0}^{\infty} (1 + \frac{(-1)^n}{6^n}) x^n; \ x \in (-1, 1)$
c) $\int_0^x \frac{\sin^2 t}{t} dt = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-2}}{n(2n)!} x^{2n}; \ x \in \mathbb{R}$

EJERCICIOS TEMA 3 _____

9

Ejercicio 51 Desarrollar en serie de potencias de x la función

$$f(x) = \operatorname{arctg} x$$

Solución:
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}; x \in (-1,1).$$

Ejercicio 52 Desarrollar en serie de potencias de x la función

$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

Solución:
$$2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}; x \in (-1,1).$$

Ejercicio 53 Desarrollar en serie de potencias de x la función

$$f(x) = \frac{3}{(1-x)(1+2x)}$$

Solución:
$$\sum_{n=0}^{\infty} (1 + (-1)^n 2^{n+1}) x^n; x \in (-1/2, 1/2).$$

Ejercicio 54 Desarrollar en serie de potencias de x la función

$$f(x) = (1+x)e^{-x}$$

Solución:
$$1 + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{n-1}{n!} x^n; x \in \mathbb{R}.$$

Ejercicio 55 Desarrollar en serie de potencias la función $f(x) = \ln x$ en torno al punto a = 1. Aplicando el desarrollo anterior, con n = 3, calcular de forma aproximada

$$\int_0^1 x^7 \ln x dx$$

Solución:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{n}$$
.

Ejercicio 56 Desarrollar en serie de potencias de x la función $f(x) = \frac{\sin x}{x}$. Aplicando el desarrollo anterior, con n = 3, calcular de forma aproximada

$$\int_0^1 \frac{\sin x}{x} dx$$

Solución:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-2}}{(2n-1)!}$$
.

Ejercicio 57 Desarrollar en serie de potencias de x la función $f(x) = x^{30}e^x$. Aplicando el desarrollo anterior, con tres términos del desarrollo, calcular de forma aproximada

$$\int_0^1 x^{30} e^x dx$$

Solución:
$$\sum_{n=0}^{\infty} \frac{x^{n+30}}{n!}.$$