

Computer Graphics

02. Rotations in 3D

Dr Joan Llobera – joanllobera@enti.cat

Ideal Rotation Format

- Represent degrees of freedom with minimum number of values
- Math should be simple and efficient for:
 - Concatenation
 - Interpolation

Topics

- Angle (2D) & Matrix (2D)
- Euler Angles (3D)
- Axis-Angle (3D) & Matrix (3D)
- Complex number (2D)
- Quaternion (3D)

Angle 2D. Rotation

Can we express this as a matrix?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix}$$

$$R(\theta) = ?$$

Angle 2D. Composition

- Is linear
- Is commutative

Angle 2D. Interpolation

- Is linear
- Is commutative
- It works for:

$$Q = (1 - t)\theta + t\varphi$$

• Problems! what if:

$$\theta = 30^{\circ}$$

$$\varphi = 390^{o}$$

Angle 2D. Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix}$$

$$R(\theta) = ?$$

Angle 2D. Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix}$$

$$R(\theta) = ?$$

Rotate the entire frame of reference!

Angle (2D) & Matrix (2D). Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix}$$

How to transform a rotation represented with an angle to a rotation represented with a matrix:

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

How to build a Proof:

Consider

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}, R(\theta) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

With [1,0] find a and b from the geometric construct below. Then do the same for c and d

Angle (2D) & Matrix (2D). Summary

- Compact (in angle space 1 value)
- Rotation not ideal (in matrix space)

(4 values for 1 degree of freedom)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Concatenation easy

(add in angle space)

(product in matrix space)

• Interpolation doable

(weighted sum in angle space)

(unclear in matrix space)

Angle (3D). Euler Angles

Rotation around 3 different axis, in FIXED order

Rotations in 3D are NOT commutative!

- Extrinsic rotations (fixed axis)
- Intrinsic rotations (moving axis)
- Many Intrinsic options, for example: z-x'-z"

Line of Node is intersection of planes

Angle (3D). Tait-Bryan rotations

Rotation around 3 different axis, in FIXED order

Example 2:

Tait-Bryan chained rotations:

Heading, elevation and bank angles after yaw, pitch and roll rotations (Z-Y'-X'')

Angle (3D). Trouble

- Gimbal Lock
- Different rotations give same angles. Example, on Euler angles:

```
ngles: (90,90,90) = (0,90,0)
Rotation on z cancels rotation on z'' (y rotation aligns them)
```


Angle (3D). Summary

- Compact (in angle space 3 values)
- Rotation not ideal
- Concatenation not easy
 (angles processed sequentially)
- Interpolation unclear
- Additional trouble
 (gimbal lock)
 (same rotation with different values)

Axis-Angle (3D)

- 1. It can be shown that any rotation in 3D can be done given one single rotation on a certain axis
- 2. We know that any vector can be expressed as a linear combination of three orthogonal vectors (x,y,z)
- 3. Therefore, we can make a linear combination if we express the axis as a vector

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Axis-Angle (3D)

For a given angle θ and vector u, R can be expressed as:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$R = egin{bmatrix} \cos heta + u_x^2 \left(1 - \cos heta
ight) & u_x u_y \left(1 - \cos heta
ight) - u_z \sin heta & u_x u_z \left(1 - \cos heta
ight) + u_y \sin heta \ u_y u_x \left(1 - \cos heta
ight) + u_z \sin heta & \cos heta + u_y^2 \left(1 - \cos heta
ight) & u_y u_z \left(1 - \cos heta
ight) - u_x \sin heta \ u_z u_x \left(1 - \cos heta
ight) - u_y \sin heta & u_z u_y \left(1 - \cos heta
ight) + u_x \sin heta & \cos heta + u_z^2 \left(1 - \cos heta
ight) \end{array}
ight]$$

Axis-Angle (3D)

For a given angle θ and vector u , R can be expressed:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

```
glm::vec3 myRotationAxis( ??, ??, ??);
glm::rotate( angle_in_degrees, myRotationAxis );
```


Axis-Angle (3D). Summary

- Compact (1 angle+ 3 axis coord.)
- Rotation robust but expensive

 (axis processed separately)
 (calculus on 9 values with complicated formula)
- Concatenation easy
- Interpolation unclear
- No additional trouble (NO gimbal lock) (unique representation)

Reading and Review

https://www.essentialmath.com/GDC2012/GDC2012 JMV Rotations.pdf

https://en.wikipedia.org/wiki/Rotation_matrix

https://en.wikipedia.org/wiki/Euler_angles

https://en.wikipedia.org/wiki/Davenport_chained_rotations

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#cumulating-transformations

Bourg et al. chapter 11

Summary:

- Rotations in 2D
 - Angle
 - Matrix
- Rotations in 3D
 - Euler Angles
 - Yaw-Pitch-Roll
 - Axis Angle
 - 3x3 Matrix

Rotations

- With complex numbers
- With quaternions

We want to have:

- Compact representation
- Simple calculation
- Robust composition
- Robust interpolation

Reminder on Complex Numbers

Definition:

$$z = a + bi$$

with

$$i^2 = -1$$

- Complex numbers are a good compact representation of movements on a plane (2 Values)
- If normalized $(a^2 + b^2 = 1)$, can use these to represent 2D rotation

DOES ANY OF THIS REALLY
HAVE TO DO WITH THE
SQUARE ROOT OF -1? OR
DO MATHEMATICIANS JUST
THINK THEY'RE TOO COOL
FOR REGULAR VECTORS?

COMPLEX NUMBERS AREN'T JUST VECTORS. THEY'RE A PROFOUND EXTENSION OF REAL NUMBERS, LAYING THE FOUNDATION FOR THE FUNDAMENTAL THEOREM OF ALGEBRA AND THE ENTIRE FIELD OF COMPLEX ANALYSIS.

Unit circle on complex plane

Euler Formula (proof from Taylor Expansions) $e^{i\theta} = \cos\theta + i\sin\theta$

Polar form of a complex number:

$$a + bi = Ae^{i\theta}$$

Euler Identity

You may have seen this:

$$e^{\pi i} + 1 = 0$$

It falls out from:

$$0 = e^{\pi \mathbf{i}} + 1$$

$$= \cos \pi + \mathbf{i} \sin \pi + 1$$

$$= -1 + \mathbf{i}(0) + 1$$

$$= 0$$

Who came up with this?

Roger Cotes in 1714 (sculpture by Scheemakers)

Euler in 1748 (painting by Handmann)

Interpretation on Plane

- Caspar Wessel (1799)
- Jean Robert Argand (1806)
- Made "popular" around 1814

Operations

Conjugate:

$$(a+bi)^* = a -bi$$

Addition:

$$(a+bi)+(c+di) = (a+c)+(b+d)i$$

Product:

$$(a+bi) (c+di)= (ac - bd) + (ad +bc)i$$

$$Ae^{i\theta} * Be^{i\varphi} = ABe^{i(\theta+\varphi)}$$

Conclusion

A multiplication by a complex number of modulus 1 can be seen, in geometrical terms, as a rotation on the plane

Next class

Can we achieve simple and efficient maths for all three?

- Concatenation
- Interpolation
- Rotation

Next week:

- Complex numbers (good rotations in 2D)
- Quaternions

(good rotations in 3D)

And how to go from there to usual space

In addition:

Review on dot and cross product

