Logics

FAMAF - UNC

SLP

Contents

1	Fun	ctions	2
2	Equivalence relations		3
	2.1^{-}	Partitions and equivalence	8
	2.2	Functions with domain A/R	9
3	Partial orders		
	3.1	Maximum, minimum, maximal, minimal	11
	3.2	Supremum and infimum	12
	3.3	Poset homomorphism	17
	3.4	Lattices	18
	3.5	Binary operations	20
4	Lattices as algebras		
	4.1	Distributive lattice	23
	4.2	Sub-lattices and sub-universes	23
	4.3	Lattice homomorphisms and isomorphisms	23
	4.4	Lattice congruence	24

1 Functions

A function $f: A \mapsto B$ is a set of tuples $\{(a,b): a \in A \text{ and } b \in B\}$. The domain \mathcal{D}_f and image I_f of a function have the usual definitions. The kernel of a function is

$$ker(f) = \left\{ (a,b) \in \mathcal{D}_f^2 : f(a) = f(b) \right\}$$

From this follows that a function f is injective—that it maps to each element in \mathcal{D}_f a distinct element in the range—iff $ker(f) = \left\{ (a,b) \in \mathcal{D}_f^2 : a = b \right\}$. Given $F: A \mapsto B$ and $S \subseteq A$, we will use F(S) to denote $\{F(a) : a \in S\}$.

2 Equivalence relations

Definition 1 Given a set A, a binary relation over A is a subset of A^2 .

Observe that \emptyset is a binary relationship over any set A. We use $A \propto B$ to say "A is a binary relation over B". The notation aRb is a shorthand for $(a, b) \in R$.

Observe that $R \propto A$ and $A \subseteq B$ implies $R \propto B$. Many properties of the \propto relation follow from the properties of the \subseteq relation. The properties that a binary relation R may follow are the following, given any $R \propto A$:

- \propto is reflexive: aRa for any $a \in A$.
- \propto is transitive: aRb and bRc implies aRc for any $a, b, c \in A$.
- \propto is symmetric: $aRb \Rightarrow bRa$ for any $a, b \in A$.
- \propto is anti-symmetric: aRb and bRa implies a = b for any $a, b \in A$.

Whether and which of these properties hold depends on the sets in question.

Example. Consider $R = \{(x, y) \in \mathbb{N}^2 : x \le y\}$. Then $R \propto \mathbb{N}$ and $R \propto \omega$. However, R is reflexive with respect to \mathbb{N} but not with respect to ω , because $(0,0) \notin R$.

Definition 2 An equivalence relation over A is a binary relation $R \propto A$ s.t. R is reflexive, transitive and symmetric with respect to A.

We write $R \ddot{\propto} A$ to say R is an equivalence relation over A.

Problem 1 Determine true or false for the following statements.

(1) Given X a set, then $R = \emptyset$ is a binary relation over X that is transitive, symmetric and anti-symmetric with respect to X.

We know $\emptyset \propto X$ for any X. Recall that xRx is a shorthand for $(x,x) \in R$ where R is a binary relation. In particular, $(x,x) \notin \emptyset$ for any $x \in X$, so \emptyset is not reflexive. The same applies to all other properties. The statement is false.

(2) If $R \propto X$ and R is not anti-symmetric with respect to X, then R is symmetric with respect to X.

The statement is false. Consider $R = \{(1, 2), (2, 1), (5, 3)\}$ where $R \propto \omega$. Evidently R is not anti-symmetric over ω , because 1R2 and 2R1 and yet $2 \neq 1$. However, it is also not symmetric, because 5R3 and $\neg(3R5)$.

(3) If A a set then $A^2 \propto A$.

Trivially true, since $A^2 \subseteq A^2$.

(4) If
$$R = \{(x, y) \in \mathbb{N}^2 : x = y\}$$
 then $R \stackrel{\sim}{\sim} \omega$.

By definition xRx holds. Evidently, $xRy \Rightarrow yRx$ so it is symmetric. Furthermore, $xRy \land yRz \Rightarrow xRz$. The statement is true.

(5) If $R \stackrel{.}{\propto} B$ and $A \subseteq B$ then $R \stackrel{.}{\propto} A$.

We need not even impose the constraint of an *equivalence* relation since the statement is false for any binary relation. In fact, $R \subseteq B^2$ and $A \subseteq B$ does not imply $R \subseteq A^2$. For example, $R = \{(1,2), (2,3), (3,4)\} \subseteq \omega^2$ and $A = \{1,2\} \subseteq \omega$. However, $R \not \in A$. Since the statement is false for all binary relations, and equivalence relations are a form of binary relation, the statement is false.

Definition 3 The equivalence class of $a \in A$ with respect to equivalence relation $R \stackrel{\circ}{\sim} A$ is

$$[a]_R = \{b \in A : aRb\}$$

.

We sometimes write simply [a] if the equivalence relation R is understood by the context. We may also write a/R to denote the equivalence class $[a]_R$.

Example. Let $R = \{(x, y) \in \mathbb{Z}^2 : x \text{ has the same parity than } y\}$. Then [2] denotes the set of all numbers that have the same parity than 2; this is, all even numbers.

If
$$R = \{(x, y) \in \mathbb{Z}^2 : 5 \mid x - y\}$$
 then $[0] = \{5t : t \in \mathbb{Z}\}.$

Problem 2 If $R \stackrel{.}{\propto} A$ and $a \in A$ then $a \in [a]$.

True because R is reflexive: $aRa \Rightarrow a \in [a]$ by definition.

Problem 3 If
$$R \stackrel{.}{\propto} A$$
 and $a, b \in A$, then $aRb \iff [a] = [b]$.

Assume aRb. Then, for any $x \in [b]$, transitivity tells us aRx. And because $aRb \Rightarrow bRa$ we have, via the same argument, that for any $y \in [a]$ bRy. Of course,

$$\langle \forall x : x \in A : x \in B \rangle \land \langle \forall y : y \in B : y \in A \rangle \Rightarrow A = B$$

So
$$[a] = [b]$$
.

If we assume [a] = [b] then of course $aRx \iff bRx$. By symmetry we have xRa and then by transitivity $bRx \land xRa \Rightarrow bRa \Rightarrow aRb$.

Problem 4 Let $R \stackrel{.}{\propto} A$ and $a, b \in A$. Then $[a] \cap [b] = \emptyset$ or [a] = [b].

Assume $[a] \cap [b] \neq \emptyset$ and $[a] \neq [b]$, which is the negation of the statement we want to prove. Since $[a] \neq [b]$ we cannot have aRb, due to what was proven in the previous exercise. However, since $[a] \cap [b] \neq \emptyset$ there is some $z \in A$ s.t. aRz and bRz. However, $bRz \Rightarrow zRb$ and then aRb by transitivity. This is a contradiction. Then the statement is true.

Definition 4 We use A/R to denote $\{[a] : a \in A\}$ and call this set the quotient of A by R.

In other words, given $R \stackrel{.}{\sim} A$, the quotient of A by R is the set of all equivalence classes. For example, if $R = \{(x, y) \in \mathbb{R}^2 : x = y\}$ then $\mathbb{R}/R = \{\{x\} : x \in \mathbb{R}\}$.

Definition 5 If $R \stackrel{.}{\propto} A$, we define $\pi_R : A \mapsto A/R$ defined as $\pi_R(a) = a/R$ for every $a \in A$. We call this function the **canonic projection** with respect to R.

Theorem 1 If $R \stackrel{.}{\propto} A$, then $ker(\pi_R) = R$. This entails that π_R is injective iff $R = \{(x, y) \in A^2 : x = y\}$.

Problem 5 Let $R = \{(x, y) \in \mathbb{Z}^2 : 5 \mid x - y\}$. Find \mathbb{Z}/R .

Observe that (5,0), (6,1), (7,2), (8,3), $(9,4) \in R$. From that point onward (and from (5,0) downward) we deal with the same equivalence class.

More formally, $[5] = \{5t : t \in \mathbb{Z}\}, [6] = \{1, 6, 11, \ldots\} = \{5(t+1) : t \in \mathbb{Z}\}.$ In general, if $A(t) = \{5t : t \in \mathbb{Z}\}$, then

$${A(0), A(1), \dots, A(4)} = \mathbb{Z}/R$$

Observe that this can be generalized. If $R = \{(x, y) : z \mid x - y\}$ for some fixed $z \in \mathbb{N}$, then

$$\{\{zt: t \in \mathbb{Z}\}, \{z(t+1): t \in \mathbb{Z}\}, \dots, \{z(t+z-1): t \in \mathbb{Z}\}\} = \mathbb{Z}/R$$

always with z elements.

Problem 6 Let $R = \{(x, y) \in \mathbb{N}^2 : x, y \le 6\} \cup \{(x, y) \in \mathbb{N}^2 : x > 6 \land y > 6\}$. Prove that R is an equivalence relation over \mathbb{N} and find \mathbb{Z}/R . How many elements does it have?

- (1) Let $(a, b) \in R$. We have two possible cases. If (a, b) is s.t. $a, b \le 6$, then if bRc for some $c \in \mathbb{N}$ we must have $c \le 6$. This implies $(a, c) \in R$, which means the relation is transitive. A similar argument shows transitivity applies to the case a, b > 6. It is very simple to show that the relation is reflexive. To show it is symmetric, simply observe that $(a, b) \in R$ implies either $a, b \le 6$ or a, b > 6 which implies $(b, a) \in R$.
- (2) Evidently, 6R5, 6R4, 6R3, ..., and 7R8, 7R9, 7R10, Thus, the equivalence relation R over \mathbb{Z} has a quotient space

$$\mathbb{Z}/R = \{\{z \in \mathbb{Z} : z \le 6\}, \{z \in \mathbb{Z} : z > 6\}\} = \{6/R, 7/R\}$$

Problem 7 *Give true or false for the following statements.*

- (1) If R an equivalence relation over $A \neq \emptyset$, then $|A/R| = 1 \iff R = A \times A$.
 - (⇐) It is easy to see that $R = A \times A$ is by definition the equivalence relation where any $a \in A$ is equivalent to any $b \in A$. So |R/A| = 1.
 - (⇒) Let $R = A \times A$. Assume $|A/R| \neq 1$. Since $A \neq \emptyset$, $A \times A \neq \emptyset$ and |A/R| > 0. So we must have |A/R| > 1. This implies there is some $a, b \in A$ s.t. $\neg(aRb)$ (otherwise a unique equivalence class would exist). But then $(a, b) \notin A^2$, which contradicts the definition of Cartesian product. Then if $R = A \times A$, |A/R| = 1. In conclusion, the statement is true.
- (2) If $R \stackrel{.}{\propto} A$ then $A/R = \{ \{ a/R \} : a \in A \}$.

False. By definition: $A/R = \{a/R : a \in A\} \neq \{\{a/R\} : a \in A\}$

(3) Let $R \stackrel{.}{\sim} A$ with $A = \{1, 2, 3, 4, 5\}$. Then $|\{i/R : i \in A\}| = 5$.

False. It depends on R, which is unspecified. E.g. we have shown that if $R = A^2$ then |A/R| = 1.

$$(4) A/\{(x,y) \in A^2 : x = y\} = A.$$

False, but it is made look like it is true. By definition of $R = \{(x, y) \in A^2 : x = y\}$ we have $x, y \in A \land x \neq y \Rightarrow \neg(xRy)$. So $a \in A$ belongs to a single equivalence class a/R. Then $A/R = \{\{a\} : a \in A\} \neq A$.

(5) Let $R \stackrel{\circ}{\propto} A$ and $C \subseteq A, C \neq \emptyset$. Assume xRy for any $x, y \in C$. Then $C \in A/R$.

Figure 1: Graph of a quotient space with 7 equivalent classes. Any two connected vertices denote equivalent elements of a set.

The statement is false. Observe that

$$c/R = C \cup \{x \in A : x \notin C \land cRx\}$$

If the second set is non-empty then $C \notin A/R$.

Counter example. Let $A = \{1, 2, 3, 4, 5\}$ and $C = \{1, 2\}$, satisfying the constraints of the problem. If $(1, 3) \in R$ and we assume no non-reflexive relations other than (1, 2), (1, 3) exist, then $A/R = \{\{1, 2, 3\}\} \not\supseteq C$.

Problem 8 Let $R \stackrel{.}{\propto} A$. Prove (1) that $ker(\pi_R) = R$ and (2) π_R is injective iff $R = \{(x, y) \in A^2 : x = y\}$.

- (1) By definition $\pi_R(a) = a/R$ which entails that $\ker \pi_R = \{(a,b) : a/R = b/R\}$. Of course $a/R = b/R \iff aRb$. Then $\ker(\pi_R) = \{(a,b) : aRb\} = \{(a,b) : (a,b) \in R\} = R$.
- (2) (\Rightarrow) Assume π_R is injective. Then no two elements in the domain map to the same element. Then $\pi_R(a) \neq \pi_R(b)$ for all $a, b \in A, a \neq b$, which entails $a/R \neq b/R$ for all $a, b \in A, a \neq b$. Then each element is only equivalent to itself. Then $R = \{(a, b) \in A^2 : a = b\}$.
- (⇐) Assume $R = \{(a, b) \in A^2 : a = b\}$. Then $\neg (aRb)$ for any $a, b \in A, a \neq b$. Then $\pi_R(a) \neq \pi_R(b)$ for all $a, b \in A, a \neq b$. Then π_R is injective.

2.1 Partitions and equivalence

A partition \mathcal{P} of a set A is a set s.t. every $P \in \mathcal{P}$ is a subset of A, $P_1 \cap P_2 = \emptyset$ for any $P_1, P_2 \in \mathcal{P}$, $P_1 \neq P_2$; and $\bigcup_{P \in \mathcal{P}} P = A$.

Given a partition \mathcal{P} of a set A, a valid binary relation is

$$R_{\mathcal{P}} = \{(a, b) : a, b \in S \text{ for some } S \in \mathcal{P}\}$$

Observe that $R_{\mathcal{P}}$ is an equivalence relation. First of all, $aR_{\mathcal{P}}a$ because a is always in the same partition than a. Furthermore, if $aR_{\mathcal{P}}b$ and $bR_{\mathcal{P}}c$ then a and c are in the same partition. Lastly, if a is in the same partition than b, then b is in the same partition than a (symmetry).

Furthermore, if $R \stackrel{.}{\sim} A$ is an arbitrary equivalence relation, then A/R is a partition of A. To each element $a \in A$ corresponds some a/R that at least contains a; from this follows trivially that $\bigcup_{a \in A} a/R = A$. Furthermore, if $a/R \neq b/R$ for some $a, b \in A$, then $a/R \cap b/R = \emptyset$ —otherwise, some element $c \in A$ equivalent to a and b should exist, but this would contradict the hypothesis that a and b are not equivalent. That $a/R \subseteq A$ for every $a \in A$ follows trivially from the definition of equivalence class.

Theorem 2 Let A an arbitrary set, \mathcal{P}_A the set of all partitions of A and \mathcal{R}_A the set of all binary equivalence relations over A. Then

$$\begin{array}{ccc} \mathscr{P}_A \mapsto \mathscr{R}_A & & \mathscr{R}_A \mapsto \mathscr{P}_A \\ \mathscr{P} \mapsto R_{\mathscr{P}} & & R \mapsto A/R \end{array}$$

are bijections one the inverse of the other.

Problem 9 Say true, false or imprecise the following statements.

(1) If \mathcal{P} a partition of X and $x \in X$, then $x/\mathcal{P} \in \mathcal{P}$.

Imprecise. \mathcal{P} is a partition, not a binary relation, and thus the expression x/\mathcal{P} is undefined.

(2)
$$\mathcal{P} = \{1, 3/2, 4/5, 6\}$$
 is a partition of $\{1, 2, 3, 4, 5, 6\}$.

Imprecise. The expression 3/2, 4/5, etc. are undefined.

(3) If \mathcal{P} a partition of X, then $\mathcal{P} \cap X = \emptyset$.

The statement is true. The set \mathcal{P} contains *sets* of elements of X; the set X contains elements of X. Therefore, each $P \in \mathcal{P}$ is of a different type than each $x \in X$.

(4) If $R \stackrel{.}{\propto} A$, then $A \cap A/R = \emptyset$.

We know A/R is a partition of A, and in the previous problem we have already stated that $A \cap \mathcal{P} = \emptyset$ for any partition \mathcal{P} of A. So the statement is true.

(5) If $R \stackrel{\text{$\ \ }}{\sim} A$ and there is a bijection between A and A/R, then $R = \{(x,y) \in A^2 : x = y\}$.

The statement is false. Consider $A = \mathbb{N}$ and R the equivalence relation s.t. A/R is the partition

$$\{\{1\},\{2,3\},\{4,5,6\},\{7,8,9,10\},\ldots\}$$

Then $F(1) = \{1\}, F(2) = \{2, 3\}, F(3) = \{4, 5, 6\}, \dots$ is a bijection.

It is interesting to study the finite case, however. If $A = \{a_1, \dots, a_n\}$ a finite set, and F is bijective, we must have

$$F(a_1) = X_1, \dots, F(a_n) = X_n$$

with $X_i \neq X_j$ for $i, j \in [1, n]$. In other words, |A/R| = |A|, which implies A/R is a partition of A into singleton sets. And because every element must be equivalent to itself, $A/R = \{\{a_1\}, \ldots, \{a_n\}\} \Rightarrow R = \{(x, y) \in A^2 : x = y\}$.

2.2 Functions with domain A/R

In general, defining $f: A/R \mapsto B$ leads to ambiguity. For example, if we define $f(a/R) = f([a]) = a^2$ and R is the relationship "has the same parity", then the fact that [2] = [4] would lead us to expect f([2]) = 4 = f([4]) = 16.

Notwithstanding, one of the fundamental ideas of modern algebra relates to a function of precisely this form:

Theorem 3 If $f: A \mapsto B$ is onto, then $\overline{f}(a/ker\ f) = f(a)$ defines a bijection $\overline{f}: A/ker\ f \mapsto B$.

Proof. (Is a function) Observe that $\overline{f}(a/ker\ f) = f(a)$ is uniquely determined for any $a \in A$.

(*Injective*) Let $a_1, a_2 \in A$ arbitrary elements with a_1/ker $f \neq a_2/ker$ f. Assume $\overline{f}(a_1) = \overline{f}(a_2)$. Then $f(a_1) = f(a_2)$, which entails $(a_1, a_2) \in ker$ f, which contradicts the assumption. Then \overline{f} is injective.

(Surjective) Let $b \in B$ an arbitrary element. Since f is surjective, b = f(a) for some $a \in A$. From this follows $b = \overline{f}(a/ker\ f)$.

Since \overline{f} is injective and surjective, \overline{f} is a bijection.

The theorem above guarantees, for any surjective f, the existence of a mapping from the quotient space $A/ker\ f$ onto I_f .

Problem 10 Say true, false or imprecise for the following statements.

(1) Let $R = \{(x, y) \in \mathbb{Z}^2 : 2 \mid x - y\}$. The equation $f(n/R) = \frac{1}{n^2 + 1}$ correctly defines a function.

False. Observe that

$$\mathbb{Z}/R = \{\{z \in \mathbb{Z} : z \text{ is even }\}, \{z \in \mathbb{Z} : z \text{ is odd }\}\}$$

We would then expect $f(0/R) = f(2/R) \iff 1 = \frac{1}{5}$. (\perp)

(2) If $R \stackrel{\circ}{\sim} A$ then $f: A/R \mapsto A$ defined as f(a/R) = a is onto.

Imprecise because f is not necessarily a function and hence we cannot say it is onto.

3 Partial orders

Definition 6 If $R \propto A$ is reflexive, transitive and anti-symmetric, then it is a partial order.

We use \leq to denote the binary relation that is a partial order. Because we define \leq as a binary relation, we must emphasize that \leq denotes a set of 2-uples. Furthermore, < denotes $\{(a,b) \in \leq : a \leq b \land a \neq b\}$.

Definition 7 Let \leq be a partial order over A. If a < b and there is no z s.t. a < z and z < b, then we write a < b and read "b covers a" or "a is covered by b".

Observe that < is itself the binary relation

$$\{(a,b) \in A^2 : a < b \land \neg (\exists z \in A : a < z \land z < b)\}$$

Definition 8 We say \leq is a total order over A if it is a partial order s.t. $x \leq y$ or $y \leq x$ for any $x, y \in A$.

Partially or totally ordered sets are pairs (P, \leq) where \leq is a partial or total order (respectively) over P.

3.1 Maximum, minimum, maximal, minimal

Given a poset (P, \leq) , x is a maximum if $a \leq x$ for all $a \in P$. The definition of a minimum is analogous.

Theorem 4 If (P, \leq) a poset, then (P, \leq) has at most one maximum.

Proof. Assume (P, \le) is a poset with two distinct maximums x, y. By definition then $x \le y$ and $y \le x$. By anti-symmetry we have x = y, which is a contradiction.

Given a poset (P, \leq) , we use 1 to denote its maximum and 0 to denote its minimum, if they exist.

A maximal element of a poset (P, \leq) is any $a \in P$ s.t. there is no $b \in P$ s.t. a < b. In other words, a maximal element is an element that has no successor in the order. Similarly, $a \in P$ is minimal if there is no $b \in P$ s.t. b < a. In other words, a minimal element is one that has no predecessor.

Problem 11 *True or false: If* (P, \leq) *a poset and* $a \in P$ *is not a maximum, then* a < b *for some* $p \in B$.

False. Consider any poset (P, \leq) that has n > 1 maximals m_1, \ldots, m_n . Then, for any $i, j = 1, \ldots, n$, m_i is not a maximum (because $m_j \not< m_i$) but $m_i \not< b$ for all $b \in B$. For an example of a poset with n = 3 maximals, see the graph below.

Problem 12 *True or false: If* (P, \leq) *a poset without maximal elements, then* P *is infinite.*

False, but only for a special case. If $P \neq \emptyset$, then it is true that for any $a_1 \in P$ there is some a_2 s.t. $a_1 < a_2$, and this extends to infinity: $a_1 < a_2 < \dots$ However, if $P = \emptyset$, then the only binary relation over \emptyset is $\emptyset^2 = \emptyset$, which gives the poset (\emptyset, \emptyset) . This poset is not only a partial order but a total order; it contains no maximal elements, and yet it is not infinite.

3.2 Supremum and infimum

Let (P, \leq) a poset and $S \subseteq P$. We say $a \in P$ is an upper bound of S in (P, \leq) when $b \leq a$ for all $b \in S$.

Note. $\emptyset \subseteq P$, so what's the deal? Well, every element in \emptyset (which is no element at all) is lesser than any $a \in P$. In other words, every element in P is an upper bound of \emptyset .

Note 2. For any given $S \subseteq P$, many upper bounds may exist (see the previous note).

An element $a \in P$ is called the *supremum* of S in (P, \leq) when two properties hold:

• a is an upper bound of S in (P, \leq)

• For any $b \in P$, if b is an upper bound of S in (P, \leq) , then $a \leq b$.

In other words, a is a supremum if it is the lesser upper bound. It is always unique.

Example. Let (\mathbb{N}, \leq) denote the usual order over \mathbb{N} and $S = \{1, 2, 3\}$. Any natural $n \geq 3$ is an upper bound of S in (\mathbb{N}, \leq) . However, 3 is the only supremum of S.

The definitions of the lower bound and the infimum are analogous. A lower bound of $S \subseteq P$ in (P, \leq) is any $a \in P$ s.t. $a \leq b$ for all $b \in S$. The infimum is the greatest lower bound, or the lower bound a satisfying that any lower bound a' is s.t. $a' \leq a$.

Problem 13 Prove that if a, a' are supremums of S in (P, \leq) , then a = a'. By definition, a, a' are the least upper bounds of S. If a < a' then a' is no longer the least upper bound and hence $a' \leq a$. The same reasoning gives $a \leq a'$. Then, by anti-symmetry, a = a'.

The previous problem shows that we can speak of *the* supremum of $S \subseteq P$ for any poset (P, \leq) .

Problem 14 Let (P, \leq) a poset. (1) If $a \leq b$ then $\sup\{a, b\} = b$. (2) Find $\{a \in P : a \text{ is upper bound of } \emptyset \text{ in } (P, \leq)\}$. (3) If the supremum of \emptyset in (P, \leq) exists, it is a minimum element of (P, \leq) .

- (1) The statement is trivially true.
- (2) Assume $P \neq \emptyset$. Since $\emptyset \subseteq P$ it is correct to speak of the upper bound of \emptyset in (P, \leq) . However, any element $a \in P$ is an upper bound of \emptyset in (P, \leq) . The reason is that to prove $a \in P$ is *not* an upper bound of \emptyset , we should find some $x \in \emptyset$ s.t. $x \nleq a$ —in other words, because the definition of upper bound involves a universal quantifier, its negation involves an existential, a counter-example. And since \emptyset has no elements, there is no such counter-example. In conclusion,

$$\{a \in P : a \text{ is upper bound of } \emptyset \text{ in } (P, \leq)\} = P$$

However, if $P = \emptyset$ (and therefore $\leq = \emptyset = \emptyset^2$), there is no upper bound of \emptyset in (\emptyset, \emptyset) .

(3) The statement is false. The hypothesis gives $P \neq \emptyset$, and we know any $a \in P$ is an upper-bound of \emptyset . If we assume \emptyset has a supremum over (P, \leq) , then it is the least upper-bound. In other words, it is some $m \in P$ s.t. $m \leq a$ for any $a \in P$. By definition, m is a minimum.

Problem 15 Give a finite poset with three elements x_1, x_2, x_3 s.t. $(1) \{x_1, x_2, x_3\}$ is an anti-chain, meaning that $x_i \nleq x_j$ when $i \neq j$; $(2) \sup\{x_i, x_j\}$ doesn't exist for any $i \neq j$; $(3) \sup\{x_1, x_2, x_3\}$ exists.

A poset that satisfies this can be any that has the following Hasse diagram:

Here, 0, 1, 2 are x_1, x_2, x_3 . The supremum on any pair of them does not exist because each $\{x_i, x_j\}$ has two upper bounds that are not ordered with respect to one another. For example, the two smallest upper bounds of $\{1, 0\}$ are 10, 7. But $10 \nleq 7$ and $7 \nleq 10$. However, $\sup\{0, 1, 2\} = 12$.

Problem 16 If (P, \leq) a poset and $a = \sup(S)$ then $a = \sup(S \cup \{a\})$.

The statement is true. Our hypothesis is that $x \le a$ for any $x \in S$, and $a \le b$ for any upper-bound b of S. This evidently still holds for $S \cup \{a\}$, because $a \le a$.

Problem 17 Let (P, \leq) a poset and $a \in P$. Then a is a maximum of (P, \leq) iff a = sup(P).

- (⇒) Assume a is a maximum of (P, \leq) . Then $x \leq a$ for all $x \in P$. Then a is an upper-bound of P. Furthermore, if there were some $u \in P$ s.t. u is an upper bound and u < a, then by definition u would not be an upper-bound of P because $a \nleq u$. Then a is the least upper bound of P. \blacksquare
- (\Leftarrow) Assume a is the supremum of P. Then $x \le a$ for all $x \in P$. The definition of a supremum of $S \subseteq P$ over (P, \le) requires that the supremum be an element of P. Then $a \in P$. Then by definition a is the maximum of P.

Note. The problem reveals a property; namely, that if $S \subseteq P$ and $\sup(S)$ over (P, \leq) satisfies $\sup(S) \in S$, then this supremum is the maximum of (S, \leq) . Alternatively, this can be stated as follows: *The maximum of a poset* (P, \leq) , if it exists, is the supremum m of P over (P, \leq) whenever $m \in P$.

Problem 18 Give true, false or imprecise.

(1) If (P, \leq) a poset and $S \subseteq P$, then $a = \sup(S)$ in (P, \leq) iff $a \in S$ and $b \leq a$, for all $b \in S$.

False. It is not necessary that $\sup(S) \in S$. Consider the last graph we gave, where $\sup\{0,1,2\} = 12$ is not in $\{0,1,2\}$.

(2) Let (P, \leq) a poset and $S \subseteq P$ and $a \in P$ an upper bound of S. If a is not the supremum of S, then there is some upper bound b of S s.t. b < a.

The statement is false. If a is an upper bound of S but it is not the supremum, it could very well be the case that another upper bound b exists, with $a \not< b$ and $a \not> b$.

For an example, go at the last graph we showed; imagine the maximum (i.e. 12) does not exist. Then consider that 10 is an upper bound of $\{0, 1\}$ but not a supremum, and yet there is no upper bound b of $\{0, 1\}$ s.t. 10 < b.

Problem 19 *Let* $P = \{0\} \cup \{x \in \mathbb{R} : 1 < x \le 2\}$. *Let*

$$\leq = \left\{ (x, y) \in P^2 : x \leq y \right\}$$

Let $S = \{x \in \mathbb{Q} : 1 < x \le 2\}$. Does S have an infimum over (P, \le) ?

The order is the usual order, but over $P = \{0\} \cup (1,2]$. The set S (and in fact P as well) has only one lower bound over (P, \leq) ; namely, 0. Observe that 1 is not a lower bound because $1 \notin P$, and there is no such thing as the "first rational number". Since 0 is the *only* lower bound it is also the greatest lower bound.

Problem 20 Say true or false. Let

$$\mathcal{D}((x_0, y_0), r) = \{(x, y) \in \mathbb{R}^2 : (x - x_0)^2 + (y - y_0)^2 \le r^2 \}$$

Let $P = \{\emptyset\} \cup \{\mathcal{D}((x_0, y_0), r) : x_0, y_0 \in \mathbb{R}, r > 0\}$. In the poset (P, \subseteq) , there is always inf $\{D_1, D_2\}$, for any $D_1, D_2 \in P$.

 $\mathcal{D}((x_0, y_0), r)$ is the set of points within a circumference with center (x_0, y_0) and radius r. So P is the set of all disks, including \emptyset . Two disks may be related in one and only one of the ways schematized by the following Venn diagrams:

Formally, for $D_1, D_2 \in P$, the image depicts the following exhaustive and mutually exclusive cases:

- $D_1 \subseteq D_2$,
- $D_1 \cap D_2 \neq \emptyset$ but $D_1 \nsubseteq D_2$
- $D_1 \cap D_2 = \emptyset$.

It is easy to prove that in the first and third cases, there is an infimum. However, consider the case $D_1 \cap D_2 \neq \emptyset$ with $D_1 \nsubseteq D_2$. Let D_3 a disk s.t. $D_3 \subseteq D_1 \cap D_2$ —this is, D_3 is an arbitrary, non-empty lower bound of $\{D_1, D_2\}$. Then, given any arbitrary $(z_1, z_2) \notin D_3$ that lies in $D_1 \cap D_2$, we can define $D_z = \mathcal{D}((z_1, z_2), \epsilon)$, with $\epsilon > 0$ a quantity sufficiently small to guarantee $D_z \cap D_3 = \emptyset$ and $D_z \in D_1 \cap D_2$. It is evident that D_z is a lower bound of $\{D_1, D_2\}$; but since $D_z \nsubseteq D_3$ we cannot say D_3 is the greatest lower bound.

The argument above holds for any lower bound $D_3 \subseteq D_1 \cap D_2$. In general terms, we have shown that, in the case $D_1 \cap D_2 \neq \emptyset$, $D_1 \nsubseteq D_2$, for any lower bound D_3 of $\{D_1, D_2\}$, we can find a lower bound D_z that is not a subset of D_3 . Therefore no greater lower bound exists and there is no infimum. Thus, the statement is false.

3.3 Poset homomorphism

Let (P, \leq) , (Q, \leq') two posets. A function $F: P \mapsto Q$ is called a homomorphism from (P, \leq) to (Q, \leq') iff

$$\forall x, y \in P : x \le y \Rightarrow F(x) \le' F(y)$$

We say F is an isomorphism of (P, \leq) in (Q, \leq') if F is a bijective homomorphism and F^{-1} is a homomorphism from (Q, \leq') in (P, \leq) .

Note. Not all bijective homomorphism satisfy the last property. For example,

$$P = (\{1, 2\}, \{(1, 1), (2, 2)\})$$
$$Q = (\{1, 2\}, \{(1, 2), (2, 2), (1, 2)\})$$

Then $F: \{1,2\} \mapsto \{1,2\}$ with F(1)=1, F(2)=2 is a bijective homomorphism. However, F^{-1} is not a homomorphism because $1 \le 2$ and $F^{-1}(1)=1$, $F^{-1}(2)=2$, $1 \le 2$.

The following theorem states that an isomorphism preserves all the properties of interest.

Theorem 5 Let (P, \leq) , (Q, \leq') two posets. Assume F is an isomorphism from (P, \leq) to (Q, \leq') . Then $x \leq y$ iff $F(x) \leq' F(y)$. Furthermore, if x is a maximum, a minimum, a maximal or a minimal of (P, \leq) , then F(x) is that same thing of (Q, \leq') . Moreover, for any $x, y, z \in P$, $z = \sup\{x, y\}$ if and only if $F(z) = \sup\{F(x), F(y)\}$, and the same applies to the infimum. Lastly, x < y if and only if F(x) <' F(y).

Problem 21 Prove that if (P, \leq) , (Q, \leq') posets with an isomorphism F, then for all $x, y \in P$ we have $x < y \iff F(x) <' F(y)$.

- (⇒) Assume x < y. Then $F(x) \le' F(y)$. Assume F(x) = F(y). Then $F^{-1}(F(x)) = F^{-1}(F(y))$, which contradicts the assumption. Then F(x) <' F(y).
- (⇐) Assume F(x) <' F(y). Then we have $x \le y$ (because F^{-1} is an homomorphism). If x = y and F(x) <' F(y), we have F(y) covers F(x) but y does not cover x (⊥). Then x < y.

Problem 22 Now prove x is a maximum iff F(x) is a maximum.

- (⇒) Assume $x \in P$ is a maximum of (P, \leq) . Then $\forall y \in P : y \leq x$. Then $\forall y \in P : F(y) \leq' F(x)$. Then F(x) is a maximum of (Q, \leq') .
- (⇐) Assume F(x) is a maximum of (Q, \le') with $x \in P$. Then $\forall y \in P : F(y) \le' F(x)$. Then $\forall y \in P : F^{-1}(F(y)) \le F^{-1}(F(x))$ or rather $\forall y \in P : y \le x$.

Problem 23 *Now prove* $x < y \iff F(x) < F(y)$.

Assume x < y for $x, y \in P$. Then $y \le x$ and for all $z \in P$ s.t. $y \le z$ we have $x \le z$. The first fact gives $F(y) \le' F(x)$. The second fact gives $F(x) \le F(z)$ for all $z \in P$ s.t. $y \le z$. Then F(x) <' F(y). The other side of the implication is left to the reader.

Problem 24 Give true, false or imprecise for the following statements

(1) If (P, \leq) , (P, \leq') are finite and isomorphic, then $\leq =\leq'$.

True. Observe that $x \le y \iff x \le' y$ which by definition entails $(x, y) \in \le \iff (x, y) \in \le'$.

(2) If (P, \leq) a poset s.t. every $F: P \mapsto P$ is homomorphic from (P, \leq) in (P, \leq) , then |P| = 1.

False. Assume $P = \emptyset$. There is only one function $F: P \to P$, namely $\emptyset^2 = \emptyset$. This function is a homomorphism because no counter-example can be found to the defining properties of a homomorphism in the empty set. So $P = \emptyset$ satisfies the properties but $|P| \neq 1$.

3.4 Lattices

A poset (P, \leq) is called a lattice if for any $x, y \in P$, $\sup\{x, y\}$ and $\inf\{x, y\}$ exist. Informally, this means that any pair of elements in P is related to some common successor and some common predecessor in P. We use (L, \leq) to denote a lattice.

Problem 25 *Prove that* $(\mathbb{N}, |)$ *is a lattice. Does it have maximum and minimum?*

We skip the proof that $(\mathbb{N}, |)$ is a poset. Let $n_1, n_2 \in \mathbb{N}$ two arbitrary numbers. Because the set $\mathcal{D}(n_1, n_2) = \{d \in \mathbb{N} : d \mid n_1, d \mid n_2\}$ is a finite set over the natural numbers, it has a maximum. Of course, from a lattice perspective, $\mathcal{D}(n_1, n_2)$ is the set of lower bounds of $\{n_1, n_2\}$. Then $\inf\{n_1, n_2\} = \max \mathcal{D}(n_1, n_2)$ is guaranteed to exist. The proof that $\sup\{n_1, n_2\}$ exists is similar.

Because $1 \mid n$ for any $n \in \mathbb{N}$, 1 is a minimum. However, there is no natural $m \in \mathbb{N}$ s.t. $n \mid m$ for every n, so the set lacks a maximum.

Problem 26 *Show that if* (P, \leq) *is a total order then it is lattice.*

Assume (P, \leq) is a total order. If $\ldots \leq p_0 \leq p_1 \leq p_2 < \ldots$ is the (potentially infinite) order of P, then for any $i, k \in \omega$, $\sup \{p_i, p_{i+k}\} = p_{i+k}$ and $\inf \{p_i, p_{i+k}\} = p_i$. Then (P, \leq) is a lattice.

Problem 27 If (P, \leq) a lattice then $\sup(S)$ exists for any $S \subseteq P$?

The statement is false. (\mathbb{N}, \leq) with \leq the usual order is a total order and therefore a lattice, and $\sup(\mathbb{N})$ does not exist.

Problem 28 True or false: If (P, \leq) a lattice and $S \subseteq P$, then $(S, \leq \cap S^2)$ is a lattice.

False. Consider as a counter example $(\{1, 2, 3, 6\}, |)$. It is evident that this is a lattice, and here

$$= \{(1,2), (1,3), (1,6), (2,6), (3,6)\}$$

Now consider $(\{1,2,3\},\{(1,2),(1,3)\})$. This is obviously not a lattice.

Problem 29 True or false: If (P, \leq) a lattice and $S \subseteq P$ non-empty and s.t. $(S, \leq \cap S^2)$ a lattice, then for any $a, b \in S$, inf $\{a, b\}$ in (P, \leq) coincides with inf $\{a, b\}$ in $(S, \leq \cap S^2)$.

Should be true. COMPLETE.

Problem 30 Let $P \subseteq \mathcal{P}(\mathbb{N})$ and assume (P, \leq) a lattice with

$$\leq = \{(A, B) \in P \times P : A \subseteq B\}$$

Is $inf\{A, B\} = A \cap |_{P^2}B$?

Since (P, \leq) a lattice we know the infimum of any pair of elements always exist. Let $A, B \in P$ and assume $\inf \{A, B\} = I$. Then, by definition, $I \subseteq A$ and $I \subseteq B$. Furthermore, for any $I' \in P$ s.t. $I' \subseteq A$ and $I' \subseteq B$ we have $I' \subseteq I$. It follows that for every $x \in A \cap B$ we have $x \in I$. Then $I = A \cap B$. And since we have imposed the condition $A, B \in P$, the restriction of the intersection to P^2 satisfies what we have shown. The statement is true.

Problem 31 If (P, \leq) a lattice and m is a maximal element of (P, \leq) , then m is a maximum of (P, \leq) . Is this true if (P, \leq) is not a lattice?

The statement is true. Assume m is not a maximum. Then either there is some $m' \in P$ s.t. $m \le m', m \ne m'$, or there is some $x \in P$ s.t. $x \not\le m$. If the first case holds then m is not maximal (\bot) . If the second case holds then $\sup \{x, m\}$ does not exist and (P, \le) is not a lattice (\bot) . Then m is a maximum. \blacksquare

3.5 Binary operations

Given a set A, a binary operation over A is a function $f: A^2 \to A$ s.t. $\mathcal{D}_f = A$. A lattice has by definition two binary operations: inf and sup. We will write $a \lor b$ and $a \land b$ to denote the supremum and infimum of $\{a,b\} \subseteq P$, respectively.

Some properties with their proofs: Assume $x, y \in (L, \leq)$ a lattice.

 $(1) x \le x \lor y$

Proof. $x \le x \lor y$ by definition of supremum, because $x \lor y$ is the least $z \in L$ s.t. $x \le z, y \le z$.

 $(2) x \wedge y \leq x$

Proof. The proof is similar to the previous case.

 $(3) x \lor x = x$

Proof. sup $\{x, x\} = \sup \{x\}$ and of course x is the lesser element in L s.t. $x \le x$.

 $(4) x \wedge x = x$

Proof. Similar to the previous case.

 $(5) x \lor y = y \lor x$

Proof. Trivial; left to the reader.

$$(6) x \wedge y = y \wedge x$$

Theorem 6 Let (L, \leq) a lattice. For any $x, y \in L$, we have $x \leq y \iff x \vee y = y$. Furthermore, $x \leq y \iff x \wedge y = x$.

Theorem 7 (Absortion laws) *Let* (L, \leq) *a lattice and* $x, y, z \in L$. *Then* (1) $x \vee (x \wedge y) = x$ *and* (2) $x \wedge (x \vee y) = x$.

Theorem 8 (Order preservation) *If* $x \le z$ *and* $y \le w$, *then* $x \circ y \le z \circ w$, *with* $oldsymbol{o} \in \{ \lor, \land \}$.

Some proving tips.

• If you want to prove $x \lor y \le z$, it suffices to show $x \le z$ and $y \le z$.

Justification. Assume $x \le z, y \le z$. Then z is an upper bound of $\{x, y\}$. Since $x \lor y$ is the least upper bound, $x \lor y \le z$.

• If you want to prove $z \le x \land y$, it suffices to show $z \le x$ and $z \le y$.

Justification. If $z \le x, z \le y$, then z is a lower bound of $\{x, y\}$. Then, because $x \land y$ is the least lower bound of this set, $z \le x \land y$.

Theorem 9 (Associativity) For any $x, y, z \in L$ with (L, \leq) a lattice, $(x \lor y) \lor z = x \lor (y \lor z)$, and the same holds for \land .

Proof. (1) Firstly, we will prove $(x \lor y) \lor z \le x \lor (y \lor z)$. To do this, we will prove the expression to the right is an upper-bound of the terms in the expressions to the left.

(1.1) It follows directly from the definition of supremum that $x \le x \lor (y \lor z)$. Furthermore, let $\varphi = y \lor z$, so that by definition $y \le \varphi$. Since $\varphi \le x \lor \varphi$ we have $y \le x \lor \varphi$ by transitivity. In other words, $y \le x \lor (y \lor z)$. Then $x \lor (y \lor z)$ is an upper bound of $\{x, y\}$. Then $x \lor y \le x \lor (y \lor z)$.

(1. 2) That $z \le x \lor (y \lor z)$ is clear from the fact that $z \le y \lor z$ and $y \lor z \le x \lor (y \lor z)$ (apply transitivity).

From (1.1, 1.2) follows that $x \lor (y \lor z)$ is an upper bound of $\{x \lor y, z\}$. Then $(x \lor y) \lor z \le x \lor (y \lor z)$.

(2) In a similar way, we can prove that $x \lor (y \lor z) \le (x \lor y) \lor z$. Since $\varphi \le \psi$ and $\psi \le \varphi$ imply $\varphi = \psi$ for any $\varphi, \psi \in L$, this concludes the proof.

Theorem 10 If (L, \leq) a lattice and $x, y, z \in L$, then $(x \wedge y) \vee (x \wedge z) = x \wedge (y \vee z)$.

- **Proof.** (1) Observe that $(x \wedge y) \vee (x \wedge z) \leq x$. The reason is that $x \wedge y \leq x$ trivially, $x \wedge z \leq x$ trivially, and therefore x is an upper bound of $\{x \wedge y, x \wedge z\}$. Then the supremum of this set is necessarily less than or equal to x.
- (2) Observe that $(x \land y) \lor (x \land z) \le y \lor z$. The reason is that $x \land y \le y \le y \lor z$ and $x \land z \le z \le y \lor z$. Then $y \lor z$ is an upper bound of $\{x \land y, x \land z\}$, and then the supremum of this set is less than or equal to $y \lor z$.
- (3) Results (1) and (2) entail $(x \land y) \lor (x \land z)$ is a lower bound of $\{x, y \lor z\}$. Then $(x \land y) \lor (x \land z) \le x \land (y \lor z)$.

Using the same tricks we can prove $x \land (y \lor z) \le (x \land y) \lor (x \land z)$, which completes the proof. \blacksquare

4 Lattices as algebras

We have treated lattices as a special kind of poset. However, a lattice can be modeled as a special kind of algebra. In general, a lattice is any 3-uple (L, \vee, \wedge) with L a set and \vee , \wedge binary relations over L that satisfy the following properties:

For any $x, y, z \in L$:

- $x \lor x = x \land x$
- $x \lor y = y \lor x$ (Commutativity)
- $x \wedge y = y \wedge x$ (Commutativity)
- $(x \lor y) \lor z = x \lor (y \lor z)$ (Associativity)
- $(x \land y) \land z = x \land (y \land z)$ (Associativity)
- $x \lor (x \land y) = x$
- $x \wedge (x \vee y) = x$

Viewed in this way, if (L, \leq) a lattice *in the poset* sense, then we have (L, \vee, \wedge) a lattice *in the algebraice sense* where \vee, \wedge denote the supremum and infimum operators. More formally,

Theorem 11 (Dedekind) If (L, \vee, \wedge) a lattice, the binary relation $x \leq y \iff x \vee y = y$ is a partial order over L s.t. $\sup\{x, y\} = x \vee y$, $\inf\{x, y\} = x \wedge y$, for any $x, y \in L$.

We call \leq the order associated to (L, \vee, \wedge) and (L, \leq) the poset associated to (L, \vee, \wedge) .

4.1 Distributive lattice

A lattice (L, \vee, \wedge) is said to be distributive when, for any $x, y, z \in L$, we have $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. It can be proven that if this property holds (distributivity of \wedge over \vee), its complementary property holds (distributivity of \vee over \wedge).

4.2 Sub-lattices and sub-universes

If (L, \wedge, \vee) , (L', \wedge', \vee') are lattices, we say the first is a sub-lattice of the other iff

- $L \subseteq L'$
- $\vee = \vee' \mid_{L \times L}$ and $\wedge = \wedge' \mid_{L \times L}$

We say $S \subseteq L$ is a sub-universe of (L, \vee, \wedge) if $S \neq \emptyset$ and S is closed under \vee, \wedge .

Note. The concepts of sub-lattice and sub-universe are similar but not identical. A sub-universe of (L, \vee, \wedge) is a *set*; a sub-lattice of (L, \vee, \wedge) is a lattice. It is true that if S is a sub-universe, then $(S, \vee \mid_{S\times S}, \wedge \mid_{S\times S})$ is a sub-lattice, and that every sub-lattice is obtained in this manner. In other words, there is a bijection between sub-lattices and sub-universes.

4.3 Lattice homomorphisms and isomorphisms

Let $(L, \vee, \wedge), (L', \vee', \wedge')$ be lattices. A function $F : L \mapsto L'$ is a lattice homomorphism from (L, \vee, \wedge) in (L', \vee', \wedge') iff

$$F(x \circ y) = F(x) \circ' F(y)$$

with \circ either \vee or \wedge . A homomorphism is called an isomorphism when it is bijective and its inverse is a homomorphism as well. We write $(L, \wedge, \vee) \simeq (L', \wedge', \vee')$ to say that two lattices are isomorphic.

Theorem 12 If F is a bijective homomorphism between two lattices, then it is an isomorphism.

Theorem 13 Let F an homomorphism from (L, \vee, \wedge) in (L', \vee', \wedge') . Then I_F is a sub-universe of (L', \vee', \wedge') , and in consequence F is an homomorphism from (L, \vee, \wedge) in $(I_F, \vee')_{I_F \times I_F} \wedge'_{I_F \times I_F}$.

Theorem 14 Let (L, \vee, \wedge) and (L', \vee', \wedge') lattices with associated posets $(L, \leq), (L', \leq')$. Then F is an isomorphism of (L, \vee, \wedge) in (L', \vee', \wedge') iff F is an isomorphism from (L, \leq) to (L', \leq') .

4.4 Lattice congruence

A congruence over a lattice (L, \vee, \wedge) is an equivalence relation $\theta \stackrel{\circ}{\sim} L$ s.t.

$$x_1\theta x_2$$
 and $y_1\theta y_2 \Rightarrow (x_1 \vee y_1)\theta(x_2 \vee y_2)$ and $(x_1 \wedge y_1)\theta(x_2\theta y_2)$

This condition allows us to define two binary operations $\hat{\nabla}$, $\hat{\wedge}$ over L/θ as follows:

$$x/\theta \widetilde{\vee} y/\theta = (x \vee y)/\theta$$
$$x/\theta \widetilde{\wedge} y/\theta = (x \wedge y)/\theta$$

Examples. (1) Consider the lattice ($\{1, 2, 3, 4, 5, 6\}$, max, min). Let θ be the equivalence relation given by the partition $\{\{1, 2\}, \{3\}, \{4, 5\}\}$. Then θ is a congruence. For example,

$$\begin{vmatrix} 1 \theta 2 \\ 4 \theta 5 \end{vmatrix} \Rightarrow (1 \max 4)\theta(2 \max 5)$$

which holds, because 4 θ 5. The same can be verified for the min operation. Of course, we have that $\{1,2\}$ $\max \{4,5\}$ =

 $(1 \max 4)/\theta = 4/\theta = \{4, 5\}$. In a sense, we are taking the supremum and infimum operations to a broader dimension, not applying to individual elements but to sets of equivalent elements.

Note. Observe that a congruence is an equivalence relation that is preserved in the supremum and infimum operations of a lattice. In the previous example, because it is a congruence, we expect that because 1 is equivalent to 2, and 4 is equivalent to 5, that the supremum of 1 and 4 matches the supremum of 2 and 5.

Theorem 15 *If* (L, \vee, \wedge) *a lattice and* θ *a congruence relation of this lattice, then* $(L/\theta, \widetilde{\vee}, \widetilde{\wedge})$ *is a lattice.*

We use \leq to denote the partial order associated to the lattice $(L/\theta, \widetilde{\vee}, \widetilde{\wedge})$.

Theorem 16 *If* (L, \vee, \wedge) *a lattice and* θ *a congruence over this lattice, then*

$$x/\theta \leq y/\theta \iff y\theta(x \vee y)$$

for any $x, y \in L$.

Theorem 17 If $F:(L, \wedge, \vee) \mapsto (L', \wedge', \vee')$ an homomorphism, then ker(F) is a congruence over (L, \wedge, \vee) .