Send me Your Answer!

Suppose g(x) is a third degree polynomial with coefficient of x^3 as 1. Its all 3 roots are distinct (There was an error in the question post). Let $h(x) = x^2 + x + a$.(where a is some integer) If g(h(x)) has no real roots what is the lower bound of g(a)?

$$\sum_{i=0}^{Creative} Math_i = Solving$$

Solution \rightarrow

As g(x) has 3 distinct roots let its 3 roots are p, q, r. Hence

$$g(x) = (x - p)(x - q)(x - r)$$

As the coefficient of x^3 is 1 hence as $x \to \infty$, $g(x) \to \infty$. Similarly $h(x) \to \infty$ as $x \to \infty$. As it is given that g(h(x)) has no real roots we can say $g(h(x)) > 0 \ \forall x \in \mathbb{R}$. Hence h(x) - c has only imaginary roots where $c = \{p, q, r\}$. Hence

the discriminant $1-4(a-c) < 0 \implies \min h(x) =$ $a-\frac{1}{4}>c$ where $c=\{p,q,r\}$. Hence g(a)= $(a-p)(a-q)(a-r) > \frac{1}{64}$. Therefore $\frac{1}{64}$ is the infimum of g(a).