

b Universität Bern

## MIA Lab Final Presentation:

## Hypothesis: Feature Extraction

Group 3: Ackermann Denise, Krzeminska-Sciga Alicja, Palmgrove Noel



UNIVERSITÄT BERN

## Feature extraction

Hypothesis: A larger number of features increases segmentation performance.

## Pipeline Adaption - Overview

Pre-Processing

T<sub>2</sub>w

T<sub>1</sub>w

Registration



UNIVERSITÄT BERN

#### Segmentation



Started with a basic pipeline for automated brain tissue segmentation. We implemented registration, preprocessing and experimented with feature extraction.

Feature Extraction





UNIVERSITÄT BERN

Pre-Processing

pipeline.py

```
pre_process_params = {
    'load_pre': False,
    'skullstrip_pre': True,
    'normalization_pre': True,
    'registration_pre': True,
    'save_pre': True
}
```

✓ Load preprocessed data → significant runtime reduction

Feature Extraction

```
fixed_feature_extraction_params = {
    'load_features': False,
    'save_features': True,
    'overwrite': True,
binary_feature_extraction_params = {
    'intensity_feature': True,
    'coordinates_feature': True,
    'gradient_intensity_feature': True,
    'texture': True,
    't2_features': True,
    'edge_feature': True
```

run\_pipeline.py

### Metrics



D UNIVERSITÄT BERN

- Added Hausdorff Distance (95<sup>th</sup> percentile), complementing Dice Score
  - Better captures smaller anatomical regions (Amygdala and Hippocampus) in comparison to Dice
- Results logged as CSV files and visualizations shown as boxplots and feature importance plots
- Used **mean Dice** over all regions as the main metric



### Features extraction

To test the hypothesis, the following features were extracted:



UNIVERSITÄT BERN



Visualisations cover the features computed for **T1 weighted** images. Features for **T2 weighted** images were also used in experiments.

## Experiments

Three types of experiments were performed:

- 1. Verification of the main hypothesis.
- 2. Verification of the impact of the number of estimators in Random Forest Classifier on the results.
- Verification of the texture window size on the results.

#### Technical details:

- To verify the main hypothesis (the more features, the better results), all combinations of extracted features were tested.
- To keep track on the experiments, all metrics were logged to W&B.
- All experiments were run on the UBELIX.



b Universität Bern





#### b UNIVERSITÄT BERN

## Results

#### Verification of the main hypothesis

Metrics values with respect to features number (n\_estimators=100, texture\_window: 5)



#### Feature name

- MEAN\_DICE
- $\ \, \circ \ \, intensity\_feature$

#### Observations:

- In the results we can see that in general, the more features is added, the better is Dice Score.
- The best Dice Scores are computed for the runs where the intensity feature is active.



#### Verification of the main hypothesis

Metrics values with respect to features number (n\_estimators=100, texture\_window: 5)



## $u^{^{\mathsf{b}}}$

UNIVERSITÄT BERN

#### Feature name

- MEAN\_DICE
- MEAN\_DICE\_Amygdala
- MEAN\_DICE\_GreyMatter
- MEAN\_DICE\_Hippocampus
- MEAN\_DICE\_Thalamus
- MEAN\_DICE\_WhiteMatter
- intensity\_feature

#### Observations:

- In the results we can see that in general, the more features is added, the better is Dice Score.
- The best Dice Scores are computed for the runs where the intensity feature is active.
- The greatest value of Dice Score is assigned to the classes that represent relatively big organs.



UNIVERSITÄT

**BERN** 

## Results

#### Verification of the main hypothesis



All the features included



Intensity features not included



## Results – side hypotheses

UNIVERSITÄT BERN

Verification of the impact of the number of estimators in RFC on the results Verification of the texture window size on the results



#### Observations:

- Update of *n\_estimators* or texture\_window leads to a difference in the performance of the model.
- The difference in the number of estimators in Random Forest doesn't impact the results significantly.
- Smaller texture window does not impact the results significantly.



### Conclusion

b UNIVERSITÄT BERN

- Our hypothesis: A larger number of features increases segmentation performance
  - Increased slope with a larger number of features supports our hypotheses
  - With intensity features, other features become less important
  - Changes in the size of the texture window or the number of estimators in the random forest do not have a significant impact.
- Larger regions, like Gray matter or White matter have higher mean Dice Scores.



## Outlook

b Universität Bern

- Pre-processing should be further improved.
- Focus on small regions extraction, like the Amygdala, by exploring texture or intensity variations.
- Compare different classifiers.
- Other comparison metrics than mean Dice could be further investigated.



# $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN