データベース設計論第4回操作体系(概要編)

2015/11/3

リレーショナルデータモデルの操作体系

- 関係論理 (第一階述語論理に基づく)
 - P(t)を述語論理とする時、それをP(t)が真となるものの集合 $\{t \mid P(t)\}$ を求める $P(t) \equiv \text{"tldAB型である"}$
 - 非手続的言語
 - SQLのベースとなる操作体系
- 関係代数
 - 集合に対する演算の組合せで必要な集合を求める
 - 手続き的言語
 - ・ 関係論理と等価
 - 問合せ実行プランの生成に必要な体系

 $A - B, A \cup B, A \cap B, A \times B, \neg A,$ $\sigma_C A, \pi_\alpha A, \delta A, A \bowtie B$

{t | P(t)}: AB型の人の集合

本日の内容

- •基本的な問合せに関して
 - •関係論理 & SQL
 - •関係代数
- の対応関係を具体的な例を使って 演習しながら一通り解説します

と, その前に...

 論理設計 (ER図からリレーションスキーマを作る) をDBWorksViewerの例を使って 説明しましょう

DBWorksViewerとは...

・データベース設計論のグループワーク課題を 提出し、お互いの提出作品を閲覧したりコメントしたりできるDBアプリケーション

DBWorksViewerのER図

手順1:実体をリレーションスキーマにする

- teams(<u>teamid</u>, name, database)
- works(wid, versionid,pdffile, imgfile, uploaded, description)
- exercises(<u>exid</u>, title, description, deadline)
- students(<u>stid</u>, name, grade, password)

手順2: 1:nの関係の場合の対処

- n側の実体に対するリレーションスキーマに1側の主 キーを外部キーとして追加
- ・関連に属性がついていたら、それも1側の実体に追加

teams(<u>teamid</u>, name, database) works(wid, versionid,pdffile, imgfile, uploaded, description, <u>teamid</u>)

手順2: 1:nの関係の対処

(1:1の場合も同じ対処でできる)

- n側の実体に対するリレーションスキーマに1側の主 キーを外部キーとして追加
- ・関連に属性がついていたら、それも1側の実体に追加
- ※これは作業前です。どうなるか自分で変更してみましょう。
- exercises(<u>exid</u>, title, description, deadline) works(wid, versionid,pdffile, imgfile, uploaded, description, <u>teamid</u>)

手順3: n:m関係の対処

- 関連に対するリレーションスキーマを作る
- 二つの実体の主キーを追加し、これらを外部 キーとする

members(stid, teamid)

手順3: n:m関係の対処

- 関連に対するリレーションスキーマを作る
- 二つの実体の主キーを追加し、これらを外部 キーとする
- ※ commentsに対するリレーションスキーマを作ってみましょう

comments(stid, wid, name, datetime, commen

以下のリレーションスキーマができました (以降, 講義や課題でこの例を使います)

- teams(<u>teamid</u>, name, database)
- works(wid, teamid, exid, versionid,pdffile, imgfile, uploaded, description)
 - teamidはteamsの外部キー
 - exidはexercisesの外部キー
- exercises(<u>exid</u>, title, description, deadline)
- students(<u>stid</u>, name, grade, password)
- members(<u>stid</u>, <u>teamid</u>)
 - stidはstudentsへの外部キー
 - teamidはteamsへの外部キー
- comments(stid, wid, name, datetime, comments)
 - stidはstudentsへの外部キー
 - widはworksへの外部キー

操作体系の関係

関係完備 relational complete

RCで書いた式は RAでも書くことができる RAで書いた式は RCでも書くことができる

関係論理 relational calculus (RC)

関係代数 relational algebra (RA)

関係完備

SQL

関係論理 (Relational Calculus: RC)

- ・問合せ(query) 結果の満たすべき性質を 第一階述語論理式で記述する
- 二つの流派がある
 - タプル関係論理 (tuple relational calculus)
 - ドメイン関係論理 (domain relational calculus)
- •この講義ではタプル関係論理のみ扱います

タプル関係論理

- ・問合せ (query) は次の形式を持つ $\{t|t\in P(t)\}$
 - Pは論理式
 - P(t)を満たすタプルtを求める
- 次のアトムは論理式である

$s \in R$	タプルsはリレーションRに含まれる
$s.A\theta t.B$	タプルsの属性Aの値と
	タプル t の属性 B の値は $ heta$ の関係である $ $
	$(\theta \in \{=,>,<,<>,\geq,\leq\})$
s.A\theta C	タプルsの属性Aの値と
	定数 C は $ heta$ の関係である

タプル関係論理

- Pが論理式ならば、¬Pは論理式である
- *P*₁, *P*₂が論理式ならば,

$$P_1 \wedge P_2, P_1 \vee P_2, P_1 \rightarrow P_2$$

は論理式である

• P(s)が自由変数sを含む論理式ならば、 $(\forall s)(P(s))$,

$$(\exists s)(P(s))$$

は論理式である

関係論理式の例

- •シンプルな問合せ
 - 例1) nameがchiemiであるstudentsのタプル

$$\{t|t\in students \land t.name = 'chiemi'\}$$

students(<u>stid</u>, name, grade, password)

stid	name	grade	password
g001	chiemi	3	xlskejrs;l
g002	aya	2	lakjwr
g003	takako	3	xlkjwerlkj

関係論理式の例

- 例2)studentsのname一覧を求める $\{t | (\exists s)(s \in students \land s.name = t.name)\}$
- 例3) stid='g001'である学生の名前を求める {t|(∃s)(s ∈ students ∧ s. stid =' g001' ∧ t. name = s. name)}

students(stid, name, grade, password)

stid	name	grade	password
g001	chiemi	3	xlskejrs;l
g002	aya	2	lakjwr
g003	takako	3	xlkjwerlkj

二つのリレーションを使った論理式の例

• 例4) name='chiemi'である学生の コメント時刻とコメント内容を求める

 $\{u|(\exists s)(\exists t)(s \in students \land t \in comments \land s.name =' chiemi' \land s.stid = t.stid \land u.datetime = t.datetime \land u.comment = t.comment)\}$

stid	name	grade	e p	assword		
g001	← chiem <u>i</u>	3		klskeirs:l		
g002	aya	stid	wic	l da	atetime	comment
g003		g001	w01	1 10	/23 8:20	nice!
3		g001	w02	2 10	/24 9:00	I can't read
		g002	w0′	1 10	/31 8:12	good job

SQL

- 関係論理に基づいたデータベース問合せ言語
- ISO国際標準で規格化されている

SELECT 属性名, 属性名, … FROM <リレーション名>, <リレーション名> WHERE <検索条件>

関係論理式とSQL文の対応関係

• 例3) stid='g001'である学生の名前を求める

FROM students s
WHERE s.stid = 'g001'

関係論理式とSQL文の対応関係

例4) name='chiemi'である学生の コメント時刻とコメント内容を求める

```
\{u|(\exists s)(\exists t)(s \in students \land t \in comments \land s.name =' chiemi' \land s.stid = t.stid \land u.datetime = t.datetime \land u.comment = t.comment)\}
```



```
FROM students s, comment
WHERE s.name = 'chiemi'
and t.stid = s.stid
```

関係代数

- ・リレーションを対象にした演算の組合せで問合せ(query)を表す
- •演算子
 - •和(*A*∪B), 差(*A* − *B*), 交差(*A* ∩ *B*)
 - 直積 (A × B)
 - •射影 $(\pi_L(R))$,選択 $(\sigma_C(R))$
 - 結合(A ⋈_C B)
 - 商(A ÷ B)

関係代数のために導入された演算子

関係代数の演算子

•和,差,交差

射影(projection) $\pi_L(R)$

- $\cdot R_2 = \pi_L(R_1)$
 - LはR₁から選んだ属性のリスト
 - R_2 は R_1 の各タプルのLにある属性を指定された順番で抜き出したもの
- 例2) studentsのname一覧を求める

 $\pi_{name}(students)$

students(stid, name, grade, password)

stid	name	grade	password
g001	chiemi	3	xlskejrs;l
g002	aya	2	lakjwr
g003	takako	3	xlkjwerlkj

射影(projection) $\pi_L(R)$

- ・射影演算は以下の関係論理式とSQL文で表 すことができる
 - 関係論理式

$$L = \{l_1, \dots, l_n\}$$
として
$$\{t | s \in R \land t. l_1 = s. l_1 \land \dots \land t. l_n = s. l_n\}$$

• SQL文 SELECT $l_1, ..., l_n$ FROM R

選択 (selection) $\sigma_{\mathcal{C}}(R)$

- $\cdot R_2 = \sigma_C(R_1)$
 - CはR₁の属性を参照する条件
 - R_2 は条件Cを満たすような R_1 のタプルすべて
- 例1) nameがchiemiであるstudentsのタプル

$$\sigma_{name=\prime chiemi\prime}$$
, students

students(stid, name, grade, password)

stid	name	grade	password
g001	chiemi	3	xlskejrs;l
g002	aya	2	lakjwr
g003	takako	3	xlkjwerlkj

選択 (selection) $\sigma_{\mathcal{C}}(R)$

- ・選択演算は以下の関係論理式とSQL文で表すことができる
 - ・関係論理式 C(R)とする CはRに対する論理式C(R)とする $\{t|t\in R \land C(R)\}$
 - SQL文 SELECT * FROM R WHERE C

該当するタプルの全ての 属性をもとめたいときには 「*」と書きます。

演算子の組合せ

- ・関係代数の演算子の出力はリレーションなの で出力結果に対して演算を適用できる
 - 例) $R_2 = \sigma_{grade=3}(students)$

stid	name	grade	password
g001	chiemi	3	xlskejrs;l
g003	takako	3	xlkjwerlkj

$$R_3 = \pi_{name}(R_2)$$

name
chiemi
takako

上記の処理をまとめて書ける

$$R_3 = \pi_{name}(\sigma_{grade=3}(students))$$

演算子の組合せ

• 例3) stid='g001'である学生の名前を求める $\pi_{name}(\sigma_{stid='g001'}students)$

対応する関係論理式とSQL文(再掲)

 $\{t | (\exists s)(s \in students \land s.stid = 'g001' \land t.name = s.name)\}$

SELECT s.name
FROM students s
WHERE s.stid = 'g001'

単一のリレーションに関する関係論理式は 選択演算と射影演算の組合せで表すことができる

θ -結合(theta-join) $R_1 \bowtie_C R_2$

・二つのリレーション R_1 , R_2 の各タプルのうち、 条件Cを満たす組合せを求める

• [S] $S = \pi_{stid,name}$ students $C = \pi_{stid,comment}$ comments

stid	name	stid	comment
g001	chiemi	> g001	nice!
g002	aya	⊿ g001	I can't read
g003	takako	⊿ g002	good job

$$S\bowtie_{S.stid=C.stid} C$$

S.stid	S.name	C.stid	C.comment
g001	chiemi	g001	nice!
g001	chiemi	g001	I can't read
g002	aya	g002	good job

θ -結合(theta-join) $R_1 \bowtie_C R_2$

- 例4) name='chiemi'である学生の コメント時刻とコメント内容を求める
 - 1. R₁: name='chiemi'である学生
 - $R_1 = \sigma_{name=\prime chiemi\prime}$, students
 - 2. R₂: R₁に対応するcommentsのタプルを求める
 - $R_2 = R_1 \bowtie_{students.stid=comments.stid}$ comments
 - 3. R₃: R₂からdatetimeとcommentsを射影する
 - $R_3 = \pi_{datetime,comments} R_2$

関係論理→関係代数→実行プラン

• 利用者が指定する問合せは非手続的

```
SELECT t.datetime,t.comment
  FROM students s, comments t
WHERE s.name = 'chiemi'
  and t.stid = s.stid
```

• DBMSはそれと等価な関係代数式を求める

```
\pi_{datetime,comments}(
(\sigma_{name='chiemi'}students)
\bowtie_{students.stid=comments.stid}
comments
)
```

・関係代数式から実行プラン を求め、最適なプランに 書き換えて実行する

※DBMSは各演算子のための実行プログラムをいくつか用意しており、最適なプログラムを選ぶ