Selected hyperparameters

Matheus Yasuo Ribeiro Utino¹, Paulo Mann², Elton H. Matsushima³, Aline $Paes^4$

matheusutino@usp.br, {paulomannjr,eh.matsushima}@gmail.com, alinepaes@ic.uff.br

Table 1 outlines the search space used for tuning the XGBoost hyperparameters. Different distributions were considered for each parameter, including uniform, log-uniform, and integer distributions. Table 2, in turn, presents the optimal hyperparameter values obtained after the tuning process for each data augmentation strategy under the Multiple Instance Learning (MIL) setting. Each method resulted in a distinct set of hyperparameters, highlighting the importance of fine-tuning the model according to the input data characteristics and the adopted semantic enrichment strategy.

Table 1: Search space for XGBoost hyperparameters.

Parameter	Distribution	Interval	Parameter	Distribution	Interval
$\begin{array}{c} \eta \\ \text{Max Depth} \\ \text{Min Child Weight} \\ \alpha \end{array}$	Log-uniform Integer Integer Uniform	[0.01, 0.3] [3, 10] [1, 5] [0, 10.0]	$ \begin{vmatrix} \gamma \\ \text{Subsample} \\ \lambda \\ \end{vmatrix} $	Uniform Uniform Uniform —	[0, 0.2] [0.8, 1.0] [0, 10.0]

Table 2: Optimal XGBoost hyperparameters for each augmentation method under MIL. See Table 4 in paper for all configurations.

Method	η	γ	Max Depth	Subsample	min_child_weight	λ	α
Contextual	0.03365	0.05619	7	0.82818	5	0.74551	9.86887
LLM – No BDI	0.01875	0.19392	9	0.98790	5	5.97900	9.21874
LLM - BDI	0.01351	0.03920	3	0.86507	2	2.71349	8.28738
Copy	0.01124	0.18186	5	0.93250	2	5.20068	5.46710
No augmentation	0.01351	0.03920	3	0.86507	2	2.71349	8.28738

 $^{^1\,}$ Institute of Mathematics and Computer Science, University of São Paulo $^2\,$ Institute of Computing, Federal University of Rio de Janeiro $^3\,$ Department of Psychology, Fluminense Federal University

⁴ Institute of Computing, Fluminense Federal University