Introducción al Procesamiento de Señales Curso 2024

Tema 4 - Análisis en Frecuencia de Señales y Sistemas Continuos

Santiago Rodríguez

Introducción

Análisis Frecuencial

Transformadas:

Señales	Tiempo Continuo	Tiempo Discreto
A-Periódicas	Transformada de Fourier (TF) Transformada de Fourier (TF)	Transformada de Fourier de Tiempo Discreto (TFTD)
Periódicas	Serie de Fourier (SF) & TF	Serie Discreta de Fourier (SDF) & TFTD

Motivación:

- Análisis Espectral de Señales
- Análisis de la Respuesta de Sistemas

Transformada de Fourier

Análisis Frecuencial

Motivación:

1) Respuesta de sistemas lineales a exponenciales complejas:

$$x(t) = e^{j2\pi f_0 t}$$

$$y(t) = \int_{-\infty}^{+\infty} x(t - \tau) h(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} e^{j2\pi f_0(t - \tau)} h(\tau) d\tau$$

$$y(t) = e^{j2\pi f_0 t} \int_{-\infty}^{+\infty} e^{-j2\pi f_0 \tau} h(\tau) d\tau$$

$$y(t) = H(f_0) e^{j2\pi f_0 t}$$

con

$$H(f_0) = \int_{-\infty}^{+\infty} h(\tau) e^{-j2\pi f_0 \tau} d\tau$$

Respuesta de sistemas lineales a exponenciales complejas

 $H(f_0)$ es un número complejo (Ojo!! Tiene parte real e imaginaria - o módulo y fase -).

Conclusión: En un SLIT cuando entra una exponencial compleja, sale una exponencial compleja de la misma frecuencia. Pero su amplitud y fase cambian de acuerdo a $H(f_0)$, que depende del sistema en cuestión.

Las exponenciales complejas son *autofunciones* de los SLIT y los correspondientes valores $H(f_0)$ *autovalores*. Además:

- Aprovecha los conocimientos sobre funciones periódicas.
- Transformación (casi) biunívoca entre 2 dominios (o puntos de vista).
- Permite describir el reparto de energía o de potencia.

¿Qué ocurre cuando a un SLIT entra un coseno?

Transformada de Fourier

Definición:

Transformada de Fourier directa (o integral de Fourier o ecuación de análisis):

$$X(t) = \mathcal{F}\{x(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-j2\pi t}dt$$

Transformada de Fourier inversa (o ecuación de síntesis):

$$x(t) = \mathcal{F}^{-1}\{X(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} X(t)e^{j2\pi ft}dt$$

Transformada de Fourier

Interpretación:

Medida de parecido con exponenciales complejas de frecuencia fija:

Transformada de Fourier - Existencia

Condiciones de Dirichlet:

Si queremos que:

$$X(t) = \mathcal{F}\{\mathcal{F}^{-1}\{X(\cdot)\}(t)\}(t)$$

$$x(t) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(f)\}(t)$$

Es suficiente que se cumplan simultáneamente:

- x es absolutamente integrable $\int |x| < \infty$.
- x tiene un número finito de máximos y mínimos dentro de cualquier intervalo finito.
- x tiene un número finito de discontinuidades finitas dentro de cualquier intervalo finito.

Transformada de Fourier - Existencia 2

Si x(t) es discontinua en t_0 se obtiene:

$$\hat{x}(t_0) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(f)\}(t_0) = \frac{x(t_0^+) + x(t_0^-)}{2}$$

Hay señales de uso frecuente (constantes, escalón, senoidales) que no cumplen con las condiciones de Dirichlet (CD). Para incluir a esas señales se recurre al uso de distribuciones (delta de Dirac).

Transformada de Fourier - Simetrías

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt \qquad 6 \qquad x \supset X$$

$$\text{Como } e^{-j2\pi ft} = \cos(2\pi ft) - j \sin(2\pi ft), \ x = p_R + jp_I + n_R + jn_I$$

$$X(f) = \int_{-\infty}^{+\infty} (p_R + jp_I + n_R + jn_I) \left(\cos(2\pi ft) - j \sin(2\pi ft)\right) dt$$

$$\text{y usando que } \int_{-\infty}^{+\infty} f_{par} f_{impar} = 0 \text{ se tiene}$$

$$X = p_R + jp_I + n_R + jn_I$$

$$F \downarrow \uparrow F^{-1} \qquad F \downarrow \uparrow F^{-1} \qquad F \downarrow \uparrow F^{-1}$$

$$X = p_R + jp_I + jn_I + jn_I + jn_I + jn_I$$

$$X = p_R + jp_I + jn_I + jn_I$$

Transformada de Fourier - Propiedades 1

Dualidad:Si $x \supset X$

- 1. $X^*(t) \supset X^*(-f)$
 - Demo: Plantear def. de $\mathcal{F}\{x(t)^*\}(f)$
- 2. $X(-t) \supset x(t)$
 - Demo: Plantear def. de F{X(t)}(f), reflejar f y luego intercambiar roles f y t.
 - $x par \rightarrow X par$ entonces $x(t) \supset X(f)$ y también $X(t) \supset x(f)$
- 3. $x(-t) \supset X(-f)$
 - Demo: Plantear def. de $\mathcal{F}^{-1}\{X(f)\}(t)$, reflejar t y luego reflejar f.

Linealidad:Si $x \supset X$ e $y \supset Y$ entonces

$$\alpha X(t) + \beta Y(t) \supset \alpha X(t) + \beta Y(t)$$

Transformada de Fourier - Propiedades 2

Traslación: Si $x \supset X$, $t_0 \in \Re$ y $t_0 \in \Re$ entonces

$$x(t-t_0)\supset X(t)e^{-j2\pi t_0 t}$$

$$X(t)e^{j2\pi f_0t}\supset X(f-f_0)$$

Similaridad: Si $x \supset X$ y $a \in \Re$ entonces

$$x(at) \supset \frac{1}{|a|}X(f/a)$$

Traslación y similaridad juntos: Si $x \supset X$ y $a, b \in \Re$ entonces

$$x(at-b)=x\left(a(t-b/a)\right)\supset \frac{1}{|a|}X(f/a)e^{-j2\pi f\frac{b}{a}}$$

Propiedades de la Transformada de Fourier

Si
$$a > 1$$
, $x(at)$ se contrae; pero $X\left(\frac{f}{a}\right)$ se expande.

Ejemplo: Si
$$T > 0$$
, entonces $\bigcap \left(\frac{t}{T}\right) \supset T \operatorname{sinc}(tT)$

Variaciones más rápidas ⇒ contenido en mayores frecuencias.

Transformada de Fourier - Propiedades 3

Derivación: Si $x \supset X$, entonces

$$\frac{dx}{dt}(t) = x'(t) \supset j2\pi f X(f)$$

$$-j2\pi t x(t) \supset \frac{dX}{df}(f) = X'(f)$$

Notar que al derivar se incrementan las altas frecuencias. Integración: Si $x \supset X$ entonces

$$\int_{-\infty}^{t} x(\lambda) d\lambda \supset \frac{X(f)}{j2\pi f} + \frac{X(0)\delta(f)}{2}$$

¿Qué representa X(0)? ¿Cuándo tiene sentido aplicar esta propiedad?

Transformada de Fourier - Propiedades 4

Convolución: Si $x \supset X$ e $y \supset Y$ entonces

$${x * y}(t) \supset X(f)Y(f)$$

 Demo: Plantear la convolución en el tiempo y tomarle F{}(f).

Multiplicación: Si $x \supset X$ e $y \supset Y$ entonces

$$x(t)y(t)\supset \{X*Y\}(f)$$

 Demo: Plantear la convolución en el espectro y tomarle F⁻¹{}(f).

•
$$x(t) = e^{-\alpha t}u(t), \quad \alpha > 0$$

$$e^{-\alpha t}u(t) \supset \frac{1}{\alpha + j2\pi t} \quad \alpha > 0$$

•
$$x(t) = e^{-\alpha|t|}$$
, $\alpha > 0$

$$e^{-\alpha|t|} \supset \frac{2\alpha}{\alpha^2 + 4\pi^2 f^2} \quad \alpha > 0$$

•
$$x(t) = \delta(t)$$
 $\delta(t) \supset 1$

•
$$x(t) = 1$$

$$1 \supset \delta(f) \quad \textit{por dualidad } (2)$$

• Cajón:
$$x(t) = \Box(t)$$

$$\sqcap(t)\supset \mathsf{sinc}(f)=\frac{\mathsf{sen}(\pi f)}{\pi f}$$

• Signo: $x(t) = \operatorname{sgn}(t)$

$$sgn(t) \supset \frac{1}{j\pi f} = \frac{-j}{\pi f}$$

$$\frac{1}{j\pi t}\supset \operatorname{sgn}(f)$$

• Escalón: x(t) = u(t), (no es módulo integrable!!)

$$u(t) = \frac{1}{2} \left(1 + \operatorname{sgn}(t) \right)$$

$$u(t) \supset \frac{1}{2} \left(\frac{\delta(f)}{\int \pi f} + \frac{1}{\int \pi f} \right)$$

• Exponencial compleja: $x(t) = e^{j2\pi f_0 t}$ con $f_0 \in \Re$

$$e^{j2\pi f_0 t} \supset \delta(f-f_0)$$

• Coseno: $x(t) = \cos(2\pi f_0 t)$

$$\cos(2\pi f_0 t) \supset \frac{1}{2} \left(\delta(f + f_0) + \delta(f - f_0)\right)$$

• Seno: $x(t) = \text{sen}(2\pi f_0 t)$

$$\operatorname{sen}(2\pi f_0 t) \supset \frac{j}{2} \left(\delta(f+f_0) - \delta(f-f_0)\right)$$

• Pulso gaussiano: $x(t) = e^{-\pi t^2}$

$$e^{-\pi t^2} \supset e^{-\pi f^2}$$

Coseno

$$\frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0t} = \cos(2\pi f_0t) \supset \frac{1}{2}\left(\delta(f+f_0) + \delta(f-f_0)\right)$$

Seno

$$\operatorname{sen}(2\pi f_0 t) \supset \frac{j}{2} \left(\delta(f + f_0) - \delta(f - f_0) \right)$$

Transformada de Fourier - Modulación

Si $X\supset X$ y $f_0,t_o\in\Re$ entonces

$$X(t)\cos(2\pi f_0 t) \supset \frac{1}{2}(X(f+f_0)+X(f-f_0))$$

$$x(t)$$
sen $(2\pi f_0 t) \supset \frac{j}{2} (X(f + f_0) - X(f - f_0))$

De forma dual

$$\frac{1}{2}(x(t+t_0)+x(t-t_0))\supset X(t)\cos(2\pi ft_0)$$

Propiedades de la Transformada de Fourier

Serie de Fourier de Señales

Continuas

Serie de Fourier

Definición:

Si x(t) es periódica de período T y cumple ciertas condiciones (CD), entonces se puede representar como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

 c_k son los coeficientes de la serie y se calculan como:

$$c_k = \frac{1}{T} \int_T x(t) e^{-j2\pi kt/T} dt$$

Notar: Es una descomposición en suma de exponenciales complejas armónicas.

Antes de seguir...

Una señal periódica particular: El peine

Habíamos definido a la función peine como

Es simple ver que es una función periódica de período T=1.

Aunque no cumple las condiciones de Dirichlet, podemos intentar representarla en serie de Fourier.

Para ello, calculamos los coeficientes:

$$c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-j2\pi kt/T} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} \delta(t) e^{-j2\pi kt/T} dt = 1$$

La serie de Fourier del peine

Por lo tanto, tenemos que

Notemos que la última suma no converge en el sentido usual. Hemos "descubierto" una nueva igualdad en sentido distribucional

$$\sum_{i=-\infty}^{\infty} \delta(t-i) = \sum_{k=-\infty}^{\infty} e^{j2\pi kt}$$

igualdad conocida como de Poisson (o de Pascal).

La transformada de Fourier del peine

Usando los resultados anteriores, podemos calcular fácilmente la transformada de Fourier del peine

$$TF\{ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \} = TF\left\{ \sum_{i=-\infty}^{\infty} \delta(t-i) \right\} = \sum_{i=-\infty}^{\infty} TF\{\delta(t-i)\}$$
$$= \sum_{i=-\infty}^{\infty} e^{j2\pi i f} = \sum_{k=-\infty}^{\infty} \delta(f-k)$$

donde en el último paso usamos la igualdad de Poisson.

O sea, mostramos que

Transformada de Fourier de

señales periódicas

Transformada de Fourier de señales periódicas

Esto último es un caso particular de un resultado más general.

Si x(t) es periódica de período T, puede escribirse como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T} = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi \frac{k}{T}t}$$

Utilizando la linealidad de la TF y la propiedad de traslación resulta

$$X(t) = \sum_{k=-\infty}^{+\infty} c_k \delta(t - \frac{k}{T})$$

Las señales periódicas tienen espectro de líneas (aparecen deltas de Dirac).

La separación de las deltas es inversamente proporcional al período.

Respuesta en frecuencia de SLITs

Recordar

Respuesta de SLITs a exponenciales complejas:

$$x(t) = e^{j2\pi f_0 t}$$

$$y(t) = H(f_0)e^{j2\pi f_0 t}$$

 $H(f_0)$ es un número complejo (Ojo!! Tiene parte real e imaginaria - o módulo y fase -).

Conclusión:

En un SLIT cuando entra una exponencial compleja, sale una exponencial compleja de la misma frecuencia. Pero su amplitud y fase cambian de acuerdo a $H(f_0)$, que depende del sistema en cuestión.

Respuesta en Frecuencia de SLIT

Si variamos la frecuencia de la exponencial compleja de entrada, obtenemos

$$H(t) = \int_{-\infty}^{+\infty} h(t)e^{-j2\pi ft}dt$$

que es la transformada de Fourier de la respuesta impulsional del sistema.

Por este motivo, H(f) se conoce como la **respuesta en frecuencia** del sistema.

Respuesta en Frecuencia de SLIT

Sea un SLIT con respuesta impulsional h(t). Sean x(t) e y(t) la entrada y la salida de dicho sistema respectivamente. Como

$$y(t) = \{x * h\}(t)$$

Utilizando propiedades de la TF llegamos a que

$$Y(f) = H(f)X(f)$$

donde H(f) es la respuesta en frecuencia del sistema.

Atención: ¿Siempre existe H(f)?

Respuesta en Frecuencia de SLIT - Ejemplo

Analicemos un circuito RC con $R = 10 k\Omega$ y $C = 10 \mu F$.

x(t) es la tensión de la fuente de alimentación (entrada).

y(t) es la tensión en el capacitor (salida). La ecuación diferencial que describe el comportamiento del circuito es:

$$y(t) + RCy'(t) = x(t)$$

Aplicando TF a ambos lados de la igualdad:

$$Y(f) + j2\pi fRCY(f) = X(f)$$

Despejando, la **respuesta en frecuencia** resulta:

$$\frac{Y(f)}{X(f)} = H(f) = \frac{1}{1 + j2\pi fRC}$$

Antitransformando podemos encontrar h(t):

$$h(t) = \frac{1}{RC}e^{-t/RC}u(t)$$

Respuesta en Frecuencia de SLIT - Ejemplo (cont.)

Teoremas de Rayleigh y Parseval

Teoremas de Rayleigh y Parseval

Teorema de Rayleigh

$$\int_{-\infty}^{+\infty} x(t)y^*(t)dt = \int_{-\infty}^{+\infty} X(t)Y^*(t)dt$$

Teorema de Parseval

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(t)|^2 dt$$

Respuesta de un SLIT a señales

periódicas

Respuesta de un SLIT a señales periódicas

Sea un SLIT con respuesta impulsional h(t). Sea x(t) una señal periódica de período T la entrada al sistema. ¿Cómo resulta la salida?

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi \frac{k}{T}t}$$

Utilizando superposición (SLIT) resulta

$$y(t) = \sum_{k=-\infty}^{+\infty} c_k H(k/T) e^{j2\pi \frac{k}{7}t}$$

¿Qué se puede decir de la señal de salida? ¿Es períodica? ¿Cuáles son los coeficientes de su SF?