```
entrada \langle x,y \rangle t:=1 Executar indefinidament: Per a cada i,j entre 0 i t fer: Si M_x(i) i M_y(j) s'aturen en t passos i M_x(i) = M_y(j) llavors acceptar t:=t+1
```

- 4. (1.5 punts) Considereu els següents tres problemes:
 - (intersecció no buida) Donades dues gramàtiques, saber si tenen intersecció no buida.

$$\{\langle G_1, G_2 \rangle \mid L(G_1) \cap L(G_2) \neq \emptyset\}$$

• (3-and-intersecció no buida)

$$\{\langle G_1, G_2, G_3 \rangle \mid L(G_1) \cap L(G_2) \neq \emptyset \land L(G_1) \cap L(G_3) \neq \emptyset \land L(G_2) \cap L(G_3) \neq \emptyset\}$$

• (3-or-intersecció no buida)

$$\{\langle G_1, G_2, G_3 \rangle \mid \mathsf{L}(G_1) \cap \mathsf{L}(G_2) \neq \emptyset \vee \mathsf{L}(G_1) \cap \mathsf{L}(G_3) \neq \emptyset \vee \mathsf{L}(G_2) \cap \mathsf{L}(G_3) \neq \emptyset\}$$

- (a) (0.75) Reduïu el primer problema al segon. Justifiqueu la resposta.
- (b) (0.75) Reduïu el primer problema al tercer. Justifiqueu la resposta.

Resposta:

Per simplificar, suposem que l'alfabet és $\Sigma = \{a, b\}$.

- Una reducció possible és: $\langle G_1, G_2 \rangle \mapsto \langle G_1, G_2, S \to Sa | Sb | \lambda \rangle$. Està clar que si $\langle G_1, G_2, S \to Sa | Sb | \lambda \rangle$ satisfà 3-and-intersecció no buida, llavors G_1 i G_2 generen algun mot comú. Per l'altra direcció, està clar que si G_1 i G_2 generen algun mot comú, aquest també serà generat amb $S \to Sa | Sb | \lambda$, ja que genera Σ^* .
- Una reducció possible és: $\langle G_1,G_2\rangle \mapsto \langle G_1,G_2,S \to S\rangle$. Està clar que si G_1 i G_2 generen algun mot comú, llavors $\langle G_1,G_2,S \to S\rangle$ satisfà 3-or-intersecció no buida. Per l'altra direcció, està clar que ni G_1 ni G_2 generen mots comuns amb $S \to S$, ja que aquesta CFG genera el llenguatge buit. Per tant, si $\langle G_1,G_2,S \to S\rangle$ satisfà 3-or-intersecció no buida, llavors G_1 i G_2 generen algun mot comú.

(Examen de Juny-2009)

1. (3 punts) Raoneu la veracitat o falsedat de les afirmacions següents. En cas afirmatiu cal escriure una demostració, on podeu donar per sabudes totes les propietats de tancament de llenguatges que s'han vist a l'assignatura. En cas negatiu cal donar un contraexemple, i una explicació del contraexemple si aquest no és prou evident. (Cada apartat val 0.5 punts.)

- (a) Si $L\subseteq \Sigma^*$ és no regular i $\sigma:\Sigma^*\to \Sigma^*$ és un morfisme, llavors $\sigma(L)$ és no regular.
- (b) Si $L \subseteq \Sigma^*$ és no regular i $\sigma: \Sigma^* \to \Sigma^*$ és un morfisme, llavors $\sigma^{-1}(L)$ és no regular.
- (c) Si L és no regular, llavors \overline{L} és no regular.
- (d) Si L és no regular, llavors L^R és no regular.
- (e) Si L és no incontextual, llavors \overline{L} és no incontextual.
- (f) Si L és no incontextual, llavors L^R és no incontextual.

Resposta:

- (a) No es cumpleix l'afirmació. Contraexemple: Definint $\Sigma = \{a, b\}, \sigma(a) = \lambda, \sigma(b) = \lambda$, resulta que $L = \{a^n b^n | n \ge 0\}$ és no regular però $\sigma(L) = \{\lambda\}$ sí és regular.
- (b) No es cumpleix l'afirmació. Contraexemple: Definint $\Sigma = \{a,b\}, \sigma(a) = \lambda, \sigma(b) = \lambda$, resulta que $L = \{a^nb^n|n \geq 0\}$ és no regular però $\sigma^{-1}(L) = \{a,b\}^*$ sí és regular.
- (c) Sí es cumpleix l'afirmació. Per contrarecíproc, l'enunciat "Si L és no regular, llavors \overline{L} és no regular" és equivalent a l'enunciat "Si \overline{L} és regular, llavors L és regular", que sabem que és cert perquè els llenguatges regulars són tancats per complementari i $\overline{\overline{L}}$ és L.
- (d) Sí es cumpleix l'afirmació. Per contrarecíproc, l'enunciat "Si L és no regular, llavors L^R és no regular" és equivalent a l'enunciat "Si L^R és regular, llavors L és regular", que sabem que és cert perquè els llenguatges regulars són tancats per revessat i $(L^R)^R$ és L.
- (e) No es cumpleix l'afirmació. És fàcil obtenir una gramàtica pel llenguatge $L=\{a^ib^jc^k|i=j\vee j=k\}$. Però el seu complementari \overline{L} no és incontextual, cosa que justifiquem a continuació. Suposem que \overline{L} és incontextual. Llavors, la seva intersecció amb el llenguatge regular $a^*b^*c^*$ és incontextual. Però aquesta intersecció és $\{a^nb^nc^n|n\geqslant 0\}$, que no és incontextual: contradicció.

Resposta alternativa:

No es cumpleix l'afirmació. Per contrarecíproc, l'enunciat "Si L és no incontextual, llavors \overline{L} és no incontextual." és equivalent a l'enunciat "Si \overline{L} és incontextual, llavors L és incontextual". Per tant, si l'enunciat fos cert, llavors els llenguatges incontextuals serien tancats per complementari. Donat que són tancats per unió, llavors també ho serien per intersecció, ja que $A \cap B = \overline{A \cup B}$. Per tant, n'hi ha prou amb que donem un contraexemple al tancament dels llenguatges incontextuals per intersecció, i aquest és $\{a^nb^nc^m|n,m\geqslant 0\} \cap \{a^mb^nc^n|n,m\geqslant 0\} = \{a^nb^nc^n|n\geqslant 0\}$, ja que $\{a^nb^nc^m|n,m\geqslant 0\}$ i $\{a^mb^nc^n|n,m\geqslant 0\}$ són incontextuals, però $\{a^nb^nc^n|n\geqslant 0\}$ no ho és.

- (f) Sí es cumpleix l'afirmació. Per contrarecíproc, l'enunciat "Si L és no incontextual, llavors L^R és no incontextual" és equivalent a l'enunciat "Si L^R és incontextual, llavors L és incontextual", que sabem que és cert perquè els llenguatges incontextuals són tancats per revessat i $(L^R)^R$ és L.
- 2. (3 punts) Resoleu els exercicis següents. (Cada apartat val 0.75 punts.)
 - (a) Obtingueu un DFA mínim per al llenguatge sobre $\{a,b\}$ dels mots amb un nombre parell de a's i un nombre senar de b's, és a dir: $\{w \in \{a,b\}^* | |w|_a \in \dot{2} \land |w|_b \in (\dot{2}+1)\}$. Justifiqueu la seva minimalitat.

En cas que no obtingueu el DFA per descomposició en llenguatges més simples, cal que el justifiqueu, explicant almenys el significat de cada estat.

(b) Sigui A el DFA que heu construït a l'apartat anterior. Siguin q_1, \ldots, q_N els estats de A, i sigui F el conjunt d'estats acceptadors de A. Per cada estat q_i de A, sigui L_{q_i} el llenguatge reconegut començant l'execució des de q_i , és a dir: $L_{q_i} = \{w | q_i w \in F\}$. Escriviu un conjunt de N equacions de llenguatges, amb N variables X_1, \ldots, X_N , que tingui com a única solució $X_1 := L_{q_1}, \ldots, X_N := L_{q_N}$.

En aquest apartat no calen justificacions.

- (c) Raoneu per què el conjunt d'equacions de l'apartat anterior té solució única. Si voleu, podeu escriure un recordatori de què diu el Lema d'Arden sobre equacions del tipus X = AX + B i utilitzar-ho.
- (d) Obtingueu una expressió regular per a $\{w \in \{a,b\}^* | |w|_a \in \dot{2} \land |w|_b \in (\dot{2}+1)\}$. Si no l'obteniu resolent el conjunt d'equacions anterior, llavors cal que doneu una justificació de per què l'expressió regular proposada representa el llenguatge.

Resposta:

(a) Construïm un DFA amb 4 estats $q_{00}, q_{01}, q_{10}, q_{11}$. El significat dels estats és el següent. Si havent llegit un mot w arribem a l'estat q_{ij} , llavors el nombre d'a's de w és i mòdul 2, i el nombre de b's de w és j mòdul 2.

	a	b
$\rightarrow q_{00}$	q_{10}	q_{01}
$^{\dagger q_{01}}$	q_{11}	q_{00}
q_{10}	q_{00}	q_{11}
q_{11}	q_{01}	q_{10}

Per veure que el DFA és mínim, podem aplicar l'algorisme de minimització i veure que no canvia, o bé argumentar que tots els estats són distingibles. Procedim d'aquesta segona manera.

El mot b ens distingeix q_{00} de q_{01} , perquè $q_{00}b$ és q_{01} , que és acceptador, i $q_{01}b$ és q_{00} , que és rebutjador. Similarment, b ens distingeix q_{00} de q_{10} , i q_{00} de q_{11} . El mot λ distingeix q_{01} de q_{10} , i q_{01} de q_{11} . El mot a ens distingeix q_{10} de q_{11} .

(b)

$$X_{00} = aX_{10} + bX_{01}$$

$$X_{01} = aX_{11} + bX_{00} + \Lambda$$

$$X_{10} = aX_{00} + bX_{11}$$

$$X_{11} = aX_{01} + bX_{10}$$

(c) El Lema d'Arden ens parla d'equacions X = AX + B, on A, B són llenguatges fixats, i X és una variable amb rang en els llenguatges. El lema ens diu que A^*B és una solució d'aquesta equació, i que si A no conté λ , llavors A^*B n'és l'única solució.

Una equació de la forma $X = AX + B_1Y_1 + \cdots + B_nY_n$ no és com les del Lema d'Arden, perquè hi ha més variables, però sí el podem aplicar quan pensem en valors fixats substituïnt aquestes variables. Així doncs, si A no conté λ , per cada valor de Y_1, \ldots, Y_n el valor de X queda univocament determinat per $A^*(B_1Y_1 + \cdots + B_nY_n)$. És a dir que qualsevol solució de $X = AX + B_1Y_1 + \cdots + B_nY_n$ també cumpleix $X = A^*(B_1Y_1 + \cdots + B_nY_n)$.

En l'apartat següent veurem que, sempre que apliquem el Lema d'Arden, els A's involucrats no contenen λ . Per tant, la solució a la que arribarem serà, de fet, única.

(d) Substituïnt la segona i tercera equacions en la primera i quarta, simultàniament, obtenim:

$$X_{00} = a(aX_{00} + bX_{11}) + b(aX_{11} + bX_{00} + \Lambda)$$

$$X_{11} = a(aX_{11} + bX_{00} + \Lambda) + b(aX_{00} + bX_{11}) =$$

$$= (aa + bb)X_{11} + (ab + ba)X_{00} + a$$

Aplicant el Lema d'Arden a l'última d'aquestes equacions obtenim:

$$X_{11} = (aa + bb)^*((ab + ba)X_{00} + a) = (aa + bb)^*(ab + ba)X_{00} + (aa + bb)^*a$$

I susbtituïnt en l'altra equació obtenim:

$$X_{00} = a(aX_{00} + b(aa + bb)^*(ab + ba)X_{00} + b(aa + bb)^*a) + b(a(aa + bb)^*(ab + ba)X_{00} + a(aa + bb)^*a + bX_{00} + \Lambda)$$

Agrupant termes ens queda:

$$X_{00} = (aa + ab(aa + bb)^*(ab + ba) + ba(aa + bb)^*(ab + ba) + bb)X_{00} + (ab(aa + bb)^*a + ba(aa + bb)^*a + b)$$

Aplicant novament el Lema d'Arden concloem:

$$X_{00} = (aa + ab(aa + bb)^*(ab + ba) + ba(aa + bb)^*(ab + ba) + bb)^* (ab(aa + bb)^*a + ba(aa + bb)^*a + b)$$

Donat que volem expressar els mots acceptats començant l'execució des de l'estat inicial q_{00} , aquesta última expressió és la que buscàvem.

3. (1.5 punts) Classifiqueu com a decidible, semi-decidible però no decidible, o no semi-decidible, el problema següent: $C = \{\langle x,y \rangle \mid \forall z,w : (M_x(z) \downarrow \land M_y(w) \downarrow \land M_x(z) > M_y(w))\}$

Resposta:

Demostrem que C no és ni semi-decidible reduïnt des de \overline{K} . Per cada nombre natural x, la reducció dona com a sortida la parella $\langle p_1, p_2 \rangle$, on p_1 és el natural que codifica el programa següent:

Entrada y

Si $M_x(x)$ s'atura en y o menys passos llavors sortida 1 Sino sortida 3

I p_2 és el natural que codifica el programa següent:

Entrada y Sortida 2

Donat un x de \overline{K} , sabem que $M_x(x) \uparrow$. Per tant, el programa p_1 dona sortida 3 per tota entrada, i el programa p_2 dona sortida 2 per tota entrada, de manera que la parella $\langle p_1, p_2 \rangle$ és de C.

Donat un x que no és de \overline{K} , sabem que $M_x(x) \downarrow$. Sigui T el temps que triga $M_x(x)$ en aturar. Llavors, el programa p_1 dona sortida 1 per a entrada T, i el programa p_2 dona sortida 2 per a entrada T, de manera que la parella $\langle p_1, p_2 \rangle$ no és de C.

- 4. (2.5 punts en total) Considereu els problemes següents.
 - (accessibilitat de mots) Donada una llista finita R de regles de reescriptura (un conjunt finit de parells (u_i, v_i) de mots diferents de λ) i dos mots u (inicial), v (final), determinar si és possible passar de u a v utilitzant les regles de reescriptura (un seguit de substitucions d'algun submot u_i pel seu corresponent v_i).

$$\{\langle R = \{u_1 \to v_1, \dots, u_n \to v_n\}, u, v \rangle | \quad u \to_R^* v \land \forall i \in \{1, \dots, n\} : (|u_i|, |v_i| \neq 0)\}$$

• (accessibilitat de símbol especial) Donada una llista finita R de regles de reescriptura (un conjunt finit de parells (u_i, v_i) de mots diferents de λ) i un mot u (inicial), i un símbol # (final) que no apareix en cap u_i , determinar si és possible passar de u a # utilitzant les regles de reescriptura.

$$\{\langle R = \{u_1 \to v_1, \dots, u_n \to v_n\}, u, \# \rangle | \quad u \to_R^* \# \land \forall i \in \{1, \dots, n\} : (|u_i|, |v_i| \neq 0 \land |u_i|_\# = 0)\}$$

• (acabament) Donada una llista finita R de regles de reescriptura (un conjunt finit de parells (u_i, v_i) de mots diferents de λ) i un mot u (inicial), determinar si existeix un mot v tal que $u \to_R^* v$ i v no pot ser reescrit per cap regla (és a dir, v és accessible des de u, però no admet cap derivació ulterior, i per tant existeix una derivació des de u que acaba).

$$\{\langle R = \{u_1 \rightarrow v_1, \dots, u_n \rightarrow v_n\}, u\rangle | \exists v : (u \rightarrow_R^* v \land \not\exists w : (v \rightarrow_R w)) \land \forall i \in \{1, \dots, n\} : (|u_i|, |v_i| \neq 0)\}$$

- (a) (0.75 punts) Reduïu el primer problema (accessibilitat de mots) al segon (accessibilitat de símbol especial). Justifiqueu correctament la vostra reducció. (una reducció correcta val 0.5, i la justificació els altres 0.25).
- (b) (0.75 punts) Demostreu que la reducció següent del segon problema (accessibilitat de símbol especial) al tercer (acabament) no és correcta, donant un contraexemple: $\langle R, u, \# \rangle \mapsto \langle R, u \rangle$.
- (c) (1 punt) Reduïu el segon problema (accessibilitat de símbol especial) al tercer (acabament). Justifiqueu correctament la vostra reducció. (Una reducció correcta val 0.5, i la justificació els altres 0.5).

Resposta:

(a) Proposem la següent reducció:

 $\langle R, u, v \rangle \mapsto \langle R \cup \{\$v\$ \to \#\}, \$u\$, \# \rangle$ on \$, # són símbols nous.

Clarament, la transformació és computable i total.

Sigui $\langle R, u, v \rangle$ una entrada d'accessibilitat de mots, i $\langle R \cup \{\$v\$ \to \#\}, \$u\$, \# \rangle$ el resultat de la seva transformació.

Suposem primer que $\langle R, u, v \rangle$ té resposta afirmativa en el problema d'accessibilitat de mots, és a dir, tots els u_i, v_i són diferents de λ i $u \to_R^* v$. Llavors, també passa que tots els u_i, v_i , juntament amb v, # són no buits (encara que v pugui ser buit), i # no apareix a la part esquerra de cap de les regles de $R \cup \{v \to \#\}$. Ademés, tenim $u \to_R^* v \to_{v \to \#} \#$. Per tant, $u \to \#\}$, $u \to \#$, u

Ara, suposem que $\langle R \cup \{\$v\$ \to \#\}, \$u\$, \# \rangle$ té resposta afirmativa en el problema d'accessibilitat de símbol especial. Llavors, tots els u_i, v_i són diferents de λ . Ademés, existeix una derivació $\$u\$ \to_{R \cup \$v\$ \to \#}^* \#$. Donat que # només apareix a la regla $\$v\$ \to \#$ i que no apareix en \$u\$, aquesta regla s'ha fet servir una i només una vegada en la derivació $\$u\$ \to_{R \cup \$v\$ \to \#}^* \#$. Per tant, aquesta derivació és de la forma $\$u\$ \to_R^* w_1\$v\$w_2 \to_{\$v\$ \to \#}^* w_1\#w_2 \to_R^* \#$, i conté subderivations $\$u\$ \to_R^* w_1\$v\$w_2$, $w_1 \to_R^* \lambda$ i $w_2 \to_R^* \lambda$. Però com que tots els costats de regla són no buits, λ no és generable amb un o més passos, de manera que w_1 i w_2 són λ . Per tant, tenim una derivació $\$u\$ \to_R^* \$v\$$, i com que \$ no apareix a R, tenim una derivació $u \to_R^* v$. Això conclou que $\langle R, u, v \rangle$ té resposta afirmativa en el problema d'accessibilitat de mots.

Resposta alternativa d'aquest apartat:

La transformació a partir de $\langle R = \{u_1 \rightarrow v_1, \dots, u_n \rightarrow v_n\}, u, v \rangle$ procedeix així:

- Si tots els $|u_i|, |v_i|$ són diferents de 0 i $u = v = \lambda$, llavors generem $\langle R = \emptyset, \#, \# \rangle$.
- En cas contrari, generem $\langle R \cup \{v \to \#\}, u, v \rangle$, on # és un símbol nou.

Clarament, la transformació és computable i total.

Sigui $\langle R = \{u_1 \to v_1, \dots, u_n \to v_n\}, u, v \rangle$ una instància d'accessibilitat de mots amb resposta afirmativa. Llavors, tots els $|u_i|, |v_i|$ són diferents de 0. En el cas en que v i

 $u \sin \lambda$, generem $\langle R = \emptyset, \#, \# \rangle$, que té resposta afirmativa en accessibilitat de símbol especial. Suposem que o bé u o bé v no és λ . Llavors cap dels dos és λ , perquè $u \to_R^* v$ i cap de les regles de R té λ com a part esquerra o dreta. En aquest cas estem generant $\langle R \cup \{v \to \#\}, u, v \rangle$. Donat que $u \to_R^* v$, deduïm $u \to_R^* v \to_{v \to \#} \#$. Ademés, com que #és nou, no apareix a l'esquerra de cap regla de $u \to_R^* v \to_{v \to \#} \#$. Recalquem ademés que tots els $|u_i|, |v_i|$ no són 0, que |v| no és 0 (per ser diferent de λ), i que |#| no és 0. Per $tant, R \cup \{v \rightarrow \#\}, u, v\}$ té resposta afirmativa en accessibilitat de símbol especial. Sigui $\langle R=\{u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n\}, u, v \rangle$ una instància d'accessibilitat de mots amb resposta negativa. En tal cas no es cumpleix simultàniament que tots els $|u_i|, |v_i|$ siguin diferents de 0 i $u=v=\lambda$. Per tant, hem generat $\langle R \cup \{v \to \#\}, u, v \rangle$. En cas que algun $|u_i|$ o $|v_i|$ sigui 0, també $\langle R \cup \{v \to \#\}, u, v \rangle$ té resposta negativa en accessibilitat de símbol especial. Suposem que tots els $|u_i|, |v_i|$ són diferents de 0. Llavors o bé u o bé v no són λ . Si v és λ , llavors no es cumpleix $|v| \neq 0$, de manera que $\langle R \cup \{v \rightarrow \#\}, u, v \rangle$ té resposta negativa en accessibilitat de símbol especial. Si u és λ , llavors v no és λ , i no és possible accedir de u a # amb regles que no tenen λ com a part dreta d'alguna regla, de manera que $\langle R \cup \{v \to \#\}, u, v \rangle$ té resposta negativa en accessibilitat de símbol especial. Suposem, finalment, que ni u ni v és λ . Ens queda per veure que no és possible accedir de u a # utilitzant $R' = R \cup \{v \to \#\}$. Ho veiem per reducció a l'absurd. Si existís una derivació $u \to_{R'}^* \#$, llavors, com que # no apareix ni en u, ni a l'esquerra de cap regla, resulta que la regla $v \to \#$ s'ha utilitzat una i només una vegada. Per tant, la derivació $u \to_{R'}^* \#$ és de la forma $u \to_R^* w_1 v w_2 \to_{v \to \#} w_1 \# w_2 \to_{R}^* \#$. Així doncs, tenim subderivacions de la forma $u \to_R^* w_1 v w_2$, $w_1 \to_R^* \lambda$ i $w_2 \to_R^* \lambda$. Per les condicions sobre R, les derivacions $w_1 \to_R^* \lambda$ i $w_2 \to_R^* \lambda$ només poden ser buides, de manera que $w_1 = w_2 = \lambda$. Això conclou $u \to_R^* v$, lo qual està en contradicció amb el fet que $\langle R, u, v \rangle$ té resposta negativa en el problema d'accessibilitat de mots.

- (b) Aquesta reducció ens transforma $\langle \{a \to b\}, a, \# \rangle$ en $\langle \{a \to b\}, a \rangle$. El primer té resposta negativa en accessibilitat de símbol especial, però afirmativa en acabament.
- (c) La transformació $\langle R, u, \# \rangle \mapsto \langle R \cup \{\$ \to \$, \$ \#\$ \to \&\}, \$ u\$ \rangle$, on \$ i & són símbols nous, ens redueix accessibilitat de símbol especial a acabament.

Clarament, la transformació és computable i total.

Sigui $\langle R = \{u_1 \to v_1, \dots, u_n \to v_n\}, u, \# \rangle$ una entrada d'accessibilitat de símbol especial i $\langle R \cup \{\$ \to \$, \$\#\$ \to \&\}, \$u\$ \rangle$ el resultat de la seva transformació.

Suposem que $\langle R = \{u_1 \to v_1, \dots, u_n \to v_n\}, u, \# \rangle$ té resposta afirmativa en el problema d'accessibilitat de símbol especial. Llavors, tots els $|u_i|, |v_i|$ no són 0 i es cumpleix $u \to_R^* \#$. Per tant, $u \to_R^* \# \to_R^* \# \to_R^* \# \to_R^* \# \to_R^* \# \to_R^* \# \to W$, i donat que $u \to W \to W$ no pot ser reescrit per cap regla, i que $u \to W \to W \to W$, $u \to$

Ara, suposem que $\langle R \cup \{\$ \to \$, \$\#\$ \to \&\}, \$u\$ \rangle$ té resposta afirmativa en el problema d'acabament. Llavors, tots els $|u_i|, |v_i|$ no són 0, i hi ha alguna derivació que acaba, començant des de \$u\$ amb les regles de $R' = R \cup \{\$ \to \$, \$\#\$ \to \&\}$. Degut a l'existencia de la regla $\$ \to \$$ i el fet que aquesta derivació acaba, en algun moment s'ha d'haver aplicat $\$\#\$ \to \&$. Fins que s'aplica, els mots intermitjos sempre tenen la forms \$w\$, on w és un mot sobre l'alfabet original. I un cop s'aplica ens queda &, que no es pot reescriure més. Ademés, podem suposar que, en aquesta derivació no s'hi ha aplicat cap vegada la regla $\$ \to \$$, doncs podem eliminar les aplicacions d'aquesta regla sense modificar el fet d'arribar a &. Per tant, la derivació és de la forma $\$u\$ \to_R^* \$\#\$ \to_{\$\#\$ \to \&} \&$. La subderivació $\$u\$ \to_R^* \$\#\$$ permet concloure $u \to_R^* \#$, de manera que $\langle R, u, \# \rangle$ té resposta afirmativa en accessibilitat de símbol especial.

Resposta alternativa simplificada:

La reducció $\langle R, u, \# \rangle \mapsto \langle R \cup \{a \to a | a \in \Sigma - \{\#\}\} \cup \{\#\# \to \#\#\}, u \rangle$ també funciona.