

IPv6+演进阶段与关键技术

IPv6+的定义及阶段

IPv6+定义

- IPv6+是面向5G和云时代的智能IP网络,IPv6+以满足5G承载和云网融合的灵活组网、业务快速开通、按需服务、差异化保障等需求,简化网络运维、优化用户体验。
- IPv6+包括以SRv6、网络切片、随流检测、BIERv6和APN6等内容为代表的协议创新,以网络分析、自动调优等网络智能化为代表的技术创新。

IPv6+ 阶段1 基础能力

2020-2021

网络简化,部分自治网络

SRv6 BE/TE/Policy 业务快速发放,灵活路径控制

IPv6+ 阶段2 SLA体验保障

2021-2023

体验保障,有条件自治网络

网络切片/随流检测/BIERv6等 大规模网络分片,体验可视,体验最优 IPv6+ 阶段3 应用驱动网络

应用感知,高度自治网络

APN6, 应用加速,网络逐流SLA 应用驱动网络编程

Page 2

"IPv6+"激发业务创新,改变商业模式,增收提效

IPv6+: 网络自身的演进和创新

IPv6+: 网络和业务融合式创新

IPv6+技术体系

IPv6+技术体系包含不限于两个部分:

- 基于IPv6创新应用技术:这些技术以IPv6为基础,通过IPv6包头/扩展头等的扩展支持创新应用。
 这些可能的协议创新包括:
 - 阶段1: SRv6 VPN/TE/FRR
 - 阶段2:基于IPv6的网络切片、基于IPv6的随路检测、SRv6 SFC(业务链)、BIERv6
 - 阶段3: 感知应用的IPv6网络 (APN6)
- IPv6+使能技术: 这些技术与IPv6+创新应用结合,实现网络管理自动化、智能化及安全。这些技术包括:

IIII

- AI技术
- 大数据分析技术
- 安全技术

SRv6: 面向未来的可编程网络创新平台

SRH: 三层网络可编程空间

丰富的网络功能

Function	Description	
End	Endpoint	
End.X	Endpoint with Layer-3 cross-connect	
End.DT4	Endpoint with decapsulation and specific IPv4 table lookup (per-VRF VPN label)	
End.DT6	Endpoint with decapsulation and specific IPv6 table lookup (per-VRF VPN label)	
End.DT46	Endpoint with decapsulation and specific IPv4/6 table lookup (per-VRF VPN label)	
End.DX4	Endpoint with decapsulation and IPv4 cross-connect (per-CE VPN label)	
End.DX6	Endpoint with decapsulation and IPv6 cross-connect (per-CE VPN label)	
End.DX2	20 Endpoint with Decapsulation and Unicast MAC L2 table lookup	
End.DT2U		
End.DX2V		

简化协议

m

可扩展

可编程

L3VPN Over BE Tunnel for SRv6

SRv6愿景: 端到端网络统一转发

- 简化: 基于IPv6可达性即可工作,无需MPLS额外信令。
- 行业接受度: MPLS无法讲DC,基于IPv6可达的SRv6称为SR进数据中心的选择。
- ■端到端统一:端到端统一的路由/转发技术; E2E业务和SFC可以轻易增量部署。
- 可延伸性: 按需PNF & VNF连接, 无缝实现云网融合联动, 从网络扩展到业务/APP。

IPv6+/SRv6研究阶段和标准规划建议

IPv6+ 1.0: SRv6基础特性

- SRv6 VPN
- SRv6 TE
- SRv6 FRR

IPv6+ 2.0: 面向5G/云新应用

VPN+

Detnet

IFIT

BIER6

• SFC

SD-WAN

m

IPv6+ 3.0: APN6 - 感知应用的新网络架构体系

• 转发面: IPv6扩展头传递应用信息给网络

• 控制面:云/网络通过控制协议交互信息

IFIT

承载网切片需求汇总

Level 3 – 独立运维

- 为租户提供独立的网络切片管控接口
- 满足有自运维能力的垂直行业需求

Level 2 – 资源隔离

- 独立网络资源保证不同切片的业务性能互不影响
- 满足5G URLLC业务的严苛服务质量要求

需要增强的VPN能力 (VPN+)

Level 1 – 业务隔离

- 业务之间逻辑连接隔离
- 资源共享,业务性能可能相互影响
- 满足传统专线业务需求

可由现有VPN提供

IFIT

VPN+ 承载网切片架构

网络切片管理

- 端到端网络切片管理协同
- 承载网切片生命周期管理
 - 规划, 创建, 监控, 调整, 删除

网络切片实例化

网络切片控制面: 网络切片信息收集与计算

• 拓扑,资源及其他切片属性

• 网络切片数据面: 网络切片标识与转发

物理网络资源切分

- 物理接口
- 逻辑子接口(FlexE,信道化子接口)
- 独立转发队列

SRv6 VPN+协议扩展

数据平面

- 每个节点为不同网络切片分配独立的SRv6 Locator
- 每个网络切片的SRv6 SID继承该切片的Locator
- 使用一组SRv6 SID标识特定网络切片的拓扑和资源

• 控制平面

- 扩展协议发布每个网络切片的Locator, SID和资源属性信息
- 收集网络切片拓扑, 计算基于切片约束的转发表项
- IETF VPN+标准化进程
 - VPN+ Framework
 https://tools.ietf.org/html/draft-ietf-teas-enhanced-vpn-01 (工作组文稿)
 - SR/SRv6 based VPN+
 https://tools.ietf.org/html/draft-ietf-spring-sr-for-enhanced-vpn
 - IGP extensions for SR-based VPN+ https://tools.ietf.org/html/draft-dong-lsr-sr-enhanced-vpn
- SRv6 VPN+原型
 - 己向多家运营商展示SRv6 VPN+网络切片原型并开展联合创新

SRv6 SID (128bit) 用于标识网络切片 Function (ARG) Locator 携带切片内的 Functions/Args **End SID End.X SID** A1:1::C2 A1:1::1 A1:2::1 A1:3::C2 A1:3::1 **End.X SID** A1:1::C1 A1:3::C1 A1:1::1 A1:2::1 A1:3::1 A1:1::C2 A1:2::C2 A1:1::G A1:2::C1 A1:3:;C1 网络切片#1 网络切片#3 网络切片#2

IFIT

VPN+网络切片方案架构

SRv6 IFIT (In-situ Flow Info Telemetry)

LOC-D	Func1				
LOC-C	Func2				
LOC-B	Func3				
In/Out TS1					
In/Out TS2					
In/Out TS3					
In/Out TS4					
Payload					

IFIT转发面 (1): Passport模式 vs. Postcard模式

Passport模式

Postcard模式

业界iOAM机制 https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-08

Passport 不支持逐跳报文丢失定 (IOAM) 报文头逐跳增加

◆ 华为PBT(Postcard-based Telemetry)机制: https://tools.ietf.org/html/draft-song-ippm-postcard-based-telemetry-05

User packet

IFIT转发面 (2): 独立IOAM头 vs. 分离IOAM头

Passport模式: 独立IOAM头

Passport模式: 分离IOAM头

IFIT技术研究布局整体视图

基于SRv6的无状态SFC: 更简单灵活的SFC方案

- □ 由draft-xuclad-spring-sr-service-programming提出
- □ 纯SRv6 SFC方案,业务链的转发信息由SRH中的SID List编码,仅需发布Service SID信息即可

Ш

- □ SID指示数据包的转发路径和业务信息
- □ 无需再SFF上维持Per-path的状态信息
- □ SRH TLV可携带Metadata,可完全替代NSH

IFIT

基于SRv6 SFC的有状态SFC: 兼容NSH的平滑演进方案

- □ 由draft-guichard-spring-nsh-sr文稿提出
- □ SRv6 SID list描述转发路径信息,NSH用于维持业务平面信息,无需改变SF的NSH协议栈
- □ Classifier需插入SRv6报头携带NSH报文.
- □ SFF维持SRv6报头与NSH报头的映射关系,用于将SF回来的NSH数据封装到对应的SRv6报头之后

IIII

□ SF无需支持SRv6,只需保持原有NSH协议栈能力即可

IPv6+的新机遇:应用与网络解耦的挑战

- 运营商的挑战
 - 运营商面临管道化的挑战,无法从承载的业务获得相应的收益

m

- 运营商无法获取应用信息,只能采用粗放的方式保证服务,造成资源浪费和成本增加
- 当前应用感知的网络服务的问题
 - 基于5元组的ACL/PBR
 - 间接的应用信息,需要映射转换
 - 影响转发性能
 - 受限于硬件资源,可扩展性差
 - DPI (Deep Packet Inspection)
 - 网络中立/安全的挑战
 - 影响转发性能
 - 基于协同器/控制器的应用感知
 - 网络控制的链条长,难以快速响应
 - 部件接口多,难以标准化,造成互通困难

IPv6+ 3.0:应用感知的(Application-aware)IPv6网络(APN6)

- 利用IPv6扩展头将应用信息及其需求传递给网络
- 根据携带应用信息,通过业务的部署和资源调整来保证应用的SLA要求

APN6的三要素

开放的应用信息携带

- 丰富的网络服务
- DiffServ
- H-QoS
- 网络切片
- DetNet
- SFC
- BIER6

● 更细粒度 (per packet vs. per flow, per node vs. E2E, individual vs. statistics, etc.)

IIII

● 综合测量 (per packet with per flow, per node with E2E, individual with statistics, in-band with out-band, passive with active, etc.)

APN6的价值获得广泛的产业共识

APN6 Side Meeting @ IETF105

- Thursday Morning @Notre Dame
- Attendee: 50+

Agenda

- Admin (Chairs) [5:5/75]
- 2. Problem Statement and Requirements (Zhenbin Li) [10:15/75]
- 3. Application-aware Information Conveying
 - a) Framework of App-aware IPv6 Networking (Shuping Peng) [10: 25/75]
 - b) Firewall and Service Tickets (Tom Herbert) [10:35/75]
 - c) SRH Metadata for Simplified Firewall (Jim Guichard) [5: 40/75]
- 4. App-aware Services
 - a) IPv6-based DetNet (Yongqing Zhu) [5:45/75]
 - b) SRv6 Path Segment (Fengwei Qin) [5:50/75]
 - c) IPv6-based IFIT (In-situ Flow Information Telemetry) (Haoyu Song) [5:55/75]
- **5. Shaping Our Discussion** (Chairs and Room) [15:70/75]
- **6. Wrap Up** (Chairs) [5 : 75/75]

Next Step:

- Setup Mailing list to continue discussions
- https://github.com/shupingpeng/IETF105-Side-Meeting-APN6

中国政府	CAICT 中国信通院			
运营商	Deutsche Telekom SoftBank 中国移动 China Mobile 中国移动 China Mobile			
友商	cisco. Nokia vmware			
学术界	THE UNIVERSITY OF AUCKLAND NEW ZEALAND Tringhua University			
ОТТ	OTT Google Tencent 腾讯 行业 TOYOTA CENET			
行业				

	Area	Topic	Draft	Vendors	Operators & Verticals
	۸ DNIG	Problem statement and use cases	draft-li-apn6-problem-statement-usecases		C) the state of th
	APN6	Application-aware IPv6 Networking	draft-li-apn6-app-aware-ipv6-network	HUAWEI	中国移动 China TELECOM 中国移动 China Mobile Unicom中国联通

THANK YOU

www.huawei.com