

Capítulo 7

Estimação

AMG, AFL, JFO (v11 – 2019) adaptado de: *Estatística*, Rui Campos Guimarães, José A. Sarsfield Cabral

Conteúdo

7.1	Introdução	7-1
7.2	Propriedades desejáveis dos Estimadores Pontuais	7-2
	7.2.1 Não-enviesamento	7-2
	7.2.2 Eficiência	7-3
	7.2.3 Consistência	7-5
	7.2.4 Outras características desejáveis	7-6
7.3	Exercícios	

Resultados de aprendizagem

- Enunciar as propriedades desejáveis de estimadores
- Calcular o enviesamento e a eficiência de estimadores
- Comparar e escolher estimadores

7.1 Introdução

Exemplo

Dados

- $Y \sim B(N, p)$, com N e p desconhecidos
- Amostra aleatória simples $\{Y_1, Y_2, \dots, Y_K\}$

Pretende-se estimar os valores:

- \bullet de N e de p
- ou de outros parâmetros, como $\mu = N \cdot p$ ou $\sigma^2 = N \cdot p \cdot (1 p)$
- $\Rightarrow~$ Definem-se estatísticas cujos valores particulares são estimativas dos parâmetros.

Por exemplo, seria razoável estimar μ a partir da média amostral:

$$\bar{Y} = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

Em que:

- \bar{Y} é um estimador pontual de μ
- \bar{y} (realização da estatística) constitui uma estimativa de μ

Slide 7b.-1

Slide 7b.0

Slide 7b.1

Estimadores e Estimativas

Estimador pontual — é uma estatística $\hat{\Theta}$ cujos valores particulares $\hat{\theta}$ constituem estimativas do parâmetro populacional θ

Estimativa — é um valor particular $\hat{\theta}$ de um estimador que é função dos valores y_1, y_2, \dots, y_n da amostra Y_1, Y_2, \dots, Y_n

Exemplos:

- Média amostral estimador do valor esperado da população
- Variância amostral estimador da variância da população
- ...

Notas

- Amostras diferentes \longrightarrow valores diferentes para o estimador (ou seja estimativas $\hat{\theta}$ diferentes) \longrightarrow $\hat{\Theta}$ é uma variável aleatória
- Os estimadores pontuais são representados por letras maiúsculas $(\hat{\Theta}, \bar{Y}, ...)$, enquanto as estimativas são representadas por letras minúsculas $(\hat{\theta}, \bar{y}, ...)$

Slide 7b.3

7.2 Propriedades desejáveis dos Estimadores Pontuais

7.2.1 Não-enviesamento

Enviesamento: diferença entre o valor esperado do estimador $(E(\hat{\Theta}) = \mu_{\hat{\Theta}})$ e o valor do parâmetro (θ)

Enviesamento_{$$\hat{\Theta}$$} = $E(\hat{\Theta}) - \theta = \mu_{\hat{\Theta}} - \theta$

(estimador não-enviesado)

(estimador enviesado)

- Se o enviesamento for nulo o estimador diz-se não-enviesado, cêntrico ou sem distorção
- O estimador diz-se assintoticamente não-enviesado se

$$\underset{N\to\infty}{\lim} E(\hat{\Theta}) - \theta = 0$$

Slide 7b.4

Exemplos de estimadores da média populacional (μ_x)

Para uma população caracterizada pela v.a. X, da qual se retiram amostras de dimensão N, consideram-se os seguintes estivadores

Média amostral, $\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$:

$$\text{Enviesamento}_{\bar{X}} = E(\bar{X}) - \mu_{x} = E\left(\frac{1}{N}\sum_{n=1}^{N}X_{n}\right) - \mu_{x} = \mu_{x} - \mu_{x} = 0$$

 \longrightarrow \bar{X} é um estimador *não-enviesado* de μ_x

Mediana amostral, med(X):

para distribuições *simétricas*,
$$E(\text{med}(X)) = \mu_X$$

Enviesamento_{med(X)} =
$$E(\text{med}(X)) - \mu_x = \mu_x - \mu_x = 0$$

 \longrightarrow med(X) é um estimador *não-enviesado* de μ_X

para distribuições *assimétricas*, $E(\text{med}(X)) \neq \mu_X$

$$Enviesamento_{med(X)} = E(med(X)) - \mu_x \neq 0$$

Exemplos de estimadores da variância populacional (σ_x^2)

Para uma população caracterizada pela v.a. X, da qual se retiram amostras de dimensão N, consideram-se os seguintes exemplos de estimadores

Desvio quadrático médio,
$$DQM(X) = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})^2$$
:

Enviesamento_{DQM(X)} =
$$E(DQM(X)) - \sigma_x^2 = E\left(\frac{1}{N}\sum_{n=1}^N (X_n - \bar{X})^2\right) - \sigma_x^2 =$$

$$= \dots = \frac{N-1}{N}\sigma_X^2 - \sigma_x^2 = -\frac{1}{N}\sigma_X^2 \neq 0$$

$$\longrightarrow DQM(X) \text{ é um estimador } enviesado \text{ de } \sigma_x^2$$

Varância amostral,
$$s^2 = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \bar{X})^2$$
:

Enviesamento_{s²} =
$$E(s^2) - \sigma_x^2 = E\left(\frac{N}{N-1}DQM\right) - \sigma_x^2 =$$

= ... = $\frac{N}{N-1}\frac{N-1}{N}\sigma_X^2 - \sigma_x^2 = \sigma_X^2 - \sigma_X^2 = 0$
 $\longrightarrow s^2$ é um estimador $n\tilde{a}o$ -enviesado de σ_x^2

7.2.2 Eficiência

Eficiência de um Estimador

- Reflecte a sua precisão potencial
- Pode ser medida através do seu Erro Quadrático Médio (medida de dispersão do estimador em redor do parâmetro estimado)

Eficiência
$$\hat{\Theta} = E\left[(\hat{\Theta} - \theta)^2\right] = \sigma_{\hat{\Theta}}^2 + (\text{Enviesamento}_{\hat{\Theta}})^2$$

Notas

- Como a eficiência de um estimador é calculada por uma medida de dispersão, pretende-se ter valores baixos de eficiência
- ou seja, quanto menor o valor da sua eficiência melhor é o estimador

Slide 7b.7

Eficiência entre estimadores não-enviesados

- O estimador $\hat{\Theta}_1$ é mais eficiente que o estimador $\hat{\Theta}_2$
- Estimador eficiente ou de fraca dispersão
- Um estimador é tanto "melhor" quanto menor for a sua variância

Exemplo

Objectivo: estimar o valor esperado de uma população Normal com variância σ^2 a partir de estatísticas de uma amostra de tamanho N

Hipótese 1: média amostral \bar{X}

- $E(\bar{X}) = \mu_X$ \rightarrow estimador não enviesado
- ullet $\sigma_{ar{X}}^2=rac{\sigma_{\!X}^2}{N}$ (conforme visto em capítulo anterior)

Hipótese 2: mediana amostral

- ullet $E(Med)=\mu_X$ (distribuição normal é simétrica) ullet estimador não enviesado
- $\sigma_{Med}^2 = \frac{\pi}{2} \frac{\sigma^2}{N}$ (pode demonstrar-se)

⇒ a mediana é um estimador menos eficiente:

A mediana teria que ser calculada sobre uma amostra 1.57 vezes maior do que aquela sobre a qual se calcula a média, para ambos os estimadores terem a mesma eficiência

Comparação de estimadores enviesados

• Qual é o melhor estimador do parâmetro θ , $\hat{\Theta}_1$, $\hat{\Theta}_2$ ou $\hat{\Theta}_3$, ?

 $\hat{\Theta}_1$ é o estimador com menor enviesamento (tem enviesamento nulo)

- $\Rightarrow~\hat{\Theta}_2$ é o estimador mais eficiente (menor Erro Quadrático Médio)
 - $\hat{\Theta}_3$ é o estimador com menor variância

A comparação da eficiência entre diferentes estimadores faz-se com base no conceito de *eficiência relativa* entre estimadores

A eficiência relativa entre dois estimadores $\hat{\Theta}_1$ e $\hat{\Theta}_2$ de um parâmetro θ é dada por:

$$\text{Eficiência relativa}_{\frac{\hat{\Theta}_1}{\hat{\Theta}_2}} = \frac{E\left[(\hat{\Theta}_1 - \theta)^2\right]}{E\left[(\hat{\Theta}_2 - \theta)^2\right]} \qquad \qquad \left(= \frac{\sigma_{\hat{\Theta}_1}^2 + (\text{Envies.}_{\hat{\Theta}_1})^2}{\sigma_{\hat{\Theta}_2}^2 + (\text{Envies.}_{\hat{\Theta}_2})^2} \right)$$

Notas:

- Um estimador diz-se absolutamente eficiente se não existir outro estimador mais eficiente que ele
- Média amostral é o estimador eficiente do valor esperado para populações Normais

Slide 7b.8

Slide 7b.9

Slide 7b.10

Nota: Exactidão vs Precisão

Accuracy vs Precision

- Accuracy is how close an estimate is to the true value (bias)
- Precision is how close individual estimates are between each other (variance)

Slide 7b.12

7.2.3 Consistência

Estimador consistente: converge em probabilidade para o valor do parâmetro quando a dimensão da amostra N tende para ∞

Seja $\hat{\Theta}$ um estimador do parâmetro θ e N a dimensão da amostra com base na qual ele é calculado. Um estimador diz-se consistente se:

$$\forall_{\delta>0} \quad \lim_{N\to\infty} P[|\hat{\Theta}-\theta|<\delta]=1$$

(quando o tamanho da amostra tende para infinito o estimador concentra-se no seu alvo)

- Estimador consistente, coerente ou convergente
- A média amostral é um estimador consistente do valor esperado:
 - o enviesamento é nulo $(E(\bar{X}) = \mu_X)$
 - a variância tende para 0 quando N tende para infinito $(\sigma_{\bar{X}}^2 = \sigma_X^2/N)$

Slide 7b.13

Condições suficientes para a consistência de um estimador

São condições **suficientes** (mas não necessárias) para que um estimador seja consistente que o enviesamento e a variância do estimador tendam para zero quando a dimensão da amostra tender para infinito.

 $\it Exemplo$: estimador $\hat{\Theta}$ do parâmetro θ com função de probabilidade:

$$p(\hat{\Theta}) = \left\{ \begin{array}{l} 1 - \frac{1}{N}, \; \mathrm{para} \; \hat{\Theta} = \theta \\ \\ \frac{1}{N}, \; \mathrm{para} \; \hat{\Theta} = N. \end{array} \right.$$

Verificação da consistência pela definição:

$$\lim_{N \to \infty} \text{Probabilidade}(|\hat{\Theta} - \theta| < \delta) = \lim_{N \to \infty} \left(1 - \frac{1}{N}\right) = 1$$

(não) Verificação das condições suficientes de consistência:

•
$$E(\hat{\Theta}) = \theta \times \left(1 - \frac{1}{N}\right) + N \times \frac{1}{N} = \theta - \frac{\theta}{N} + 1 \neq \theta$$

$$\bullet \ E[(\hat{\Theta}-\theta)^2] = (\theta-\theta)^2 \left(1-\frac{1}{N}\right) + (N-\theta)^2 \frac{1}{N} = N + \frac{\theta^2}{N} - 2\theta \overset{N\to\infty}{\longrightarrow} \infty$$

7.2.4 Outras características desejáveis

Outras características desejáveis nos estimadores

Suficiência

Capacidade de um estimador conseguir condensar toda a informação, relativa ao parâmetro estimado, presente nas observações que integram uma amostra

Robustez

É a propriedade de um estimador em se manter aproximadamente não-enviesado e eficiente para um grande conjunto de distribuições populacionais

Slide 7b.15

Slide 7b 16

7.3 Exercícios

1. T_1 e T_2 são estimadores de um parâmetro θ , tais que:

$$E(T_1) = \theta$$
 $Var(T_1) = 9$ $E(T_2) = 3\theta$ $Var(T_2) = 3$

Diga, justificando, qual destes estimadores é melhor estimador de θ .

(Resp.: Depende do valor de $\theta \dots$)

- 2. Considere uma população Normal e a estatística $T = \frac{X_1 + 2X_2}{3}$ para amostras aleatórias simples de dimensão 2.
 - a) Determine a distribuição amostral de T e os respectivos parâmetros.

(Resp.:
$$T \rightsquigarrow N\left(\mu_X, \frac{5}{9} \cdot \sigma_X^2\right)$$
)

b) T é um estimador não-enviesado para μ ?

c) Obtenha uma estimativa para T com base na amostra (7.8; 6.7).

(Resp.:
$$t = 7.067$$
)

3. Let X1 and X2 be independent random variables with mean μ and variance σ^2 . Suppose that we have two estimators of μ :

$$\hat{\Theta}_1 = \frac{X1 + X2}{2} \qquad \qquad \hat{\Theta}_1 = \frac{X1 + 3X2}{4}$$

- a) Are both unbiased estimators of μ ?
- b) What is the variance of each estimator?
- c) Which one is the most efficient estimator of μ ?

Resolução:

a) Cálculo dos valores esperados dos estimadores:

$$E(\hat{\Theta}_1) = E\left(\frac{X1 + X2}{2}\right) = \frac{E(X1) + E(X2)}{2} = \frac{\mu + \mu}{2} = \mu$$

$$E(\hat{\Theta}_2) = E\left(\frac{X1 + 3X2}{4}\right) = \frac{E(X1) + 3 \cdot E(X2)}{4} = \frac{\mu + 3\mu}{4} = \mu$$

Cálculo dos enviesamentos:

Enviesamento
$$\hat{\Theta}_1 = E(\hat{\Theta}_1) - \mu = \mu - \mu = 0$$

Enviesamento
$$\hat{\Theta}_2 = E(\hat{\Theta}_2) - \mu = \mu - \mu = 0$$

Logo, os dois estivadores são não enviesados.

b) Cálculo das variâncias dos estimadores:

$$\sigma_{\hat{\Theta}_1}^2 = \textit{Var}(\hat{\Theta}_1) = \textit{Var}\left(\frac{\textit{X} 1 + \textit{X} 2}{2}\right) = \frac{\textit{Var}(\textit{X} 1) + \textit{Var}(\textit{X} 2)}{4} = \frac{\sigma^2 + \sigma^2}{4} = \frac{1}{2} \cdot \sigma^2$$

$$\sigma_{\hat{\Theta}_2}^2 = Var(\hat{\Theta}_2) = Var\left(\frac{X1 + 3X2}{4}\right) = \frac{Var(X1) + 9 \cdot Var(X2)}{16} = \frac{\sigma^2 + 9\sigma^2}{16} = \frac{5}{8} \cdot \sigma^2$$

c) Cálculo das eficiências dos estimadores:

$$\mathrm{Efici\hat{e}ncia}_{\hat{\Theta}_1} = E\left[(\hat{\Theta}_1 - \mu)^2\right] = \sigma_{\hat{\Theta}_1}^2 + (\mathrm{Enviesamento}_{\hat{\Theta}_1})^2 = \frac{1}{2} \cdot \sigma^2 + 0 = \frac{1}{2} \cdot \sigma^2$$

$$\mathrm{Efici\hat{e}ncia}_{\hat{\Theta}_2} = E\left[(\hat{\Theta}_2 - \mu)^2 \right] = \sigma_{\hat{\Theta}_2}^2 + (\mathrm{Enviesamento}_{\hat{\Theta}_2})^2 = \frac{5}{8} \cdot \sigma^2 + 0 = \frac{5}{8} \cdot \sigma^2$$

Cálculo da eficiência relativa entre os dois estimadores:

$$\text{Eficiência relativa}_{\frac{\hat{\Theta}_1}{\hat{\Theta}_2}} = \frac{\text{Eficiência}_{\hat{\Theta}_1}}{\text{Eficiência}_{\hat{\Theta}_2}} = \frac{\frac{1}{2} \cdot \sigma^2}{\frac{5}{8} \cdot \sigma^2} = \frac{4}{5}$$

Logo, o estimador $\hat{\Theta}_1$ é o mais eficiente porque a eficiência relativa é menor do que 1 (nota: um estimador será tanto melhor quanto menor for o valor da sua eficiência).

Resolução alternativa: como neste caso os dois estimadores são não enviesados o mais eficiente será o que tiver menor variância, logo será o estimador $\hat{\Theta}_1$