⑩特許出願公開

② 公開特許公報(A) 平3-144602

⑤Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)6月20日

G 02 B 6/28

6/42 27/28 C 8106-2H 7132-2H

7132-2H A 8106-2H

審査請求 未請求 請求項の数 3 (全8頁)

劉発明の名称 双方向受発光モジュール

②特 願 平1-285532

20出 願 平1(1989)10月31日

⑩発明者 奥田 通孝

東京都世田谷区玉川台 2-14-9 京セラ株式会社東京用

賀事業所内

 東京都世田谷区玉川台 2-14-9 京セラ株式会社東京用

賀事業所内

勿出 願 人 京セラ株式会社

京都府京都市山科区東野北井ノ上町5番地の22

個代 理 人 弁理士 熊 谷 隆 外1名

明細・白

1.発明の名称

双方向受発光モジュール

2.特許請求の範囲

(1) 1 本の光ファイバーの端部に取り付けられ、 所定の波長の光を発射するとともに他の波長の光 を受光する双方向受発光モジュールにおいて、

発光素子と該発光素子から発射された光を平行 光とする結合レンズを具備する発光モジュール と.

受光素子と入射する平行光を該受光素子に集光 させる結合レンズを具備する受光モジュールと、

所定の波長の光を透過し他の所定の波長の光を 反射するビームスプリッタモジュールと、

平行光を光ファイバーに集光する結合レンズを 具備するレセプタクルモジュールとを少なくとも 1つずつ具備し、

前記各モジュールをそれぞれ直接接続して一体 化したことを特徴とする双方向受発光モジュー ル。 ②前記ピームスプリッタモジュールは、ケース内に平板状のピームスプリッタを光軸に対して45°傾けて配置し、該ピームスプリッタの一方の面には所定の波長の光を透過し他の所定の波長の光を反射する波長選択フィルターを形成したことを特徴とする請求項(1)記載の双方向受発光モジュール。

③前記ピームスブリッタモジュールのケース内には発光モジュールから発射された光の偏波面を 45°回転させるファラデー回転子を取り付ける とともに、前記ピームスブリッタの波長選択フィルターを形成しない面側には偏光ピームスブリッタを形成して、光アイソレータを構成したことを 特徴とする請求項(②記載の双方向受発光モジュール。

3.発明の詳細な説明

(産業上の利用分野)

本発明は、1本の光ファイバーを共有して送受信を行なう波長多重光通信システムに使用する双方向受発光モジュールに関するものである。

〔従来の技術〕

従来、1本の光ファイバーを共有して光の波長 多重伝送を行なう場合は、該光ファイバーの両端 に、分波器と受発光モジュールを具備する受発光 システムを取り付け、該両端の双方向受発光シス テムにそれぞれ取り付けてある発光素子と受光素 子の間で受発光するように構成していた。

第6図はこの種の従来の双方向受発光システム を示す図である。

問図に示すようにこの双方向受発光システム 8 0 0 a , b は、光ファイバー 6 0 7 の両端に取り付けられる。

なおこの双方向受発光システム600a,bは、それぞれレーザダイオードや発光ダイオード等の発光素子からなる発光モジュール601a,bと、Si-PIN,Si-APD等の受光素子からなる受光モジュール603a,bと、所定の波長の光(入」)を透過し他の所定の波長の光(入」)を反射する分波器605a,bとを具備している。そしてこれら発光モジュール601

このようにして双方向波長多重伝送が行なわれるのである。

(発明が解決しようとする課題)

しかしながら上記のような双方向受発光システム600a,bにあっては、各モジュール間を光ファイバー611a,bとコネクタ609a,bで接続する必要があるが、この光ファイバー611a,b等のために双方向受発光システム600a,bの小型化が図れないという問題点があった。また分波器605a,bはその大きさが大きく、このこともこの双方向受発光システム600a,bの小型化を阻害していた。

本発明は上述の点に鑑みてなされたものであり、小型一体化が図れその組立て調整が容易な、 双方向受発光システムをモジュール化した、双方 向受発光モジュールを提供することを目的とする。

〔課題を解決するための手段〕

上記問題点を解決するため本発明は双方向受発 光モジュールを、発光素子と該発光素子から発射 a, bと受光モジュール 6 0 3 a, bはそれぞれ 光ファイバー 6 1 1 a, bとコネクタ 6 0 9 a, bによって分波器 6 0 5 a, bに接続されている。

なおここで、発光モジュール601aは波長 入、の光を発光し、発光モジュール601bは波 長入。の光を発光する。また分波器605a,b はそれぞれ波長入。の光を透過し、波長入。の光 を反射するように構成されている。

そして発光モジュール 6 0 1 a から発射された 波長入,の光は、光ファイバー 6 1 1 a と分波器 6 0 5 a と光ファイバー 6 0 7 と分波器 6 0 5 b と光ファイバー 6 1 1 b を透過して受光モジュー ル 6 0 3 b に受光される。

一方発光モジュール 6 0 1 b から発射された波 長 1 の光は、光ファイバー 6 1 1 b を透過した 後に分波器 6 0 5 b で反射されて光ファイバー 6 0 7 に導かれ、次に分波器 6 0 5 a で反射されて光ファイバー 6 0 3 a に 受光される。

された光を平行光とする結合レンズを具備する発 光モジュールと、受光素子と入射する平行光を眩 受光素子に集光させる結合レンズを具備する受光 モジュールと、所定の波長の光を透過し他の所定 の波長の光を反射するピームスブリッタモジュー ルと、平行光を光ファイバーに集光する結合レン ズを具備するレセブタクルモジュールとを少なく とも1つずつ具備せしめ、前配各モジュールをそ れぞれ直接接続して一体化して構成した。

(作用)

上記の如く発光モジュールと受光モジュールと ビームスブリッタモジュールとレセブタクルモジュールとをそれぞれ直接接続して一体化して双 方向受発光モジュールを構成したので、従来のよ うに各モジュール間を接続するコネクタや光ファ イバーは不要となり、装置の小型化が図れる。

また発光モジュールから発射される光は結合レンズによって平行光となり、また受光モジュールに入射される光は平行光であり、またレセブタクルモジュールに入射させる光も平行光であるの

で、これら各モジュールをビームスブリッタモジュールに直接取り付ける際の調整は、各モジュール間の光軸合わせの調整だけでよいので、 その組み立てが容易となる。

〔実施例〕

以下、本発明の一実施例を図面に基づいて詳細 に説明する。

第1図は本発明にかかる双方向受発光モジュール1を示す側断面図である。

同図に示すようにこの双方向受発光モジュール 1は、発光モジュール11と受光モジュール13 とレセプタクルモジュール15をピームスプリッ タモジュール17に直接接続して一体化して構成 されている。

以下各モジュールについて説明する。

発光モジュール11はケース111内に発光索 子113と結合レンズ115を取り付けて構成されている。

ここで発光素子113はレーザダイオードや発 光ダイオード等によって構成され、また結合レン

そしてこのストッパー153と結合レンズ15 5は前記ケース151の挿入穴157内に挿入され、固定されている。

次にピームスブリッタモジュール17は、ケース175内にピームスブリッタ173とファラデー回転子171を取り付けて構成されている。

ここでケース175は、その内部に穴が形成され、該穴は3方向(同図にあっては左右下方向)に開口している。なおこのケース175の各開口した部分には、同図に示すように発光モジュール11と受光モジュール13とレセプタクルモジュール15が直接取り付けられる。

ビームスプリッタ173はこのケース175の 略中央部に配置され、光軸に対して45°傾斜す るように固定されている。このビームスプリッタ 173は第2図に示すように、その左上面側には 戻り光をアイソレートする偏光ビームスプリッタ 機能を有する誘電体多層膜からなる偏光ビームス プリッタ部pが形成されるとともに、その右下面 側には入射光の波長によって該入射光を透過また ズ115はこの実施例においては球レンズで構成 されている。

なおこの結合レンズ115は前記発光素子11 3から発射された光を平行光とする位置に配置されている。

受光モジュール 1 3 はケース 1 3 1 内に受光素子 1 3 3 と結合レンズ 1 3 5 を取り付けて構成されている。

ここでこの結合レンズ135は球レンズで構成され、外部から入射する平行光を受光素子133 に築光させる位置に配置されている。

レセプタクルモジュール 1 5 はケース 1 5 1 と ストッパー 1 5 3 と結合レンズ 1 5 5 によって構 成されている。

ここでこのケース151の中央部には、光ファイバーをその中心軸上に保持したフェルール(図示せず)を挿入する挿入穴157が形成されている。

またストッパー153は円筒状に形成され、結合レンズ155は球レンズで構成されている。

は反射する波長選択フィルター部 q が形成されている。

またファラデー回転子171は、前記ケース175の発光モジュール11を取り付ける側の開口部に取り付けられている。このファラデー回転子171はリング状の磁石171bの内部に例えばBi 置換ガーネット膜等からなる磁気光学結晶171aを取り付けて構成されている。

第3図はこの双方向受発光モジュール1の使用 例を示す図である。

まず第1図に示す双方向受発光モジュール1を 2組用意する。そしてこれら双方向受発光モジュール1,1′をそれぞれ第3図に示すように 光ファイバー31の両端に接続する。

双方向受発光モジュール1 , 1′は、それぞれ接続コネクタ33,33′によって光ファイバー31の両端に接続される。

このとき光ファイバー31は第1図に示すレセ ブタクルモジュール15のストッパー153の位 置まで挿入される。

ここで左側の双方向受発光モジュール1においては、発光モジュール11からは波長入1の光が発射され、またビームスブリッタモジュール17は波長入1の光を透過し波長入1の光を反射するように形成されている。

一方右側の双方向受発光モジュール1′においては、発光モジュール11′からは波長入。の光が発射され、またビームスプリッタモジュール1

ビームスプリッタモジュール 1 7′内のビームスプリッタ 1 7 3′によって受光モジュール 1 3′ 側に反射され、結合レンズ 1 3 5′によって受光 素子 1 3 3′に集光され、該光内の情報が検出される。

一方同様に、右側の発光モジュール11'から発射された波長入。の光は、ピームスプリッタモジュール17'とレセプタクルモジュール15'内を通過して光ファイバー31に導入され、左側の双方向受発光モジュール1のレセプタクルモジュール15に導入される。そしてこの波長入。の光はピームスプリッタモジュール17において反射され、受光モジュール13内の受光素子13内の情報が検出される。またピームスプリッタをジュール17の偏光ピームスプリッタをジュール17の偏光ピームスプリッタをジュール17の偏光ピームスプリッタをジュール17の偏光ピームスプリッタがにおいて、発光モジュール11からの発射戻り光成分も反射される。その為、それを外すように受光素子133を設置する。

以上のように、発光モジュール11から外部に 放射される光は平行光であり、受光モジュール1 7′は波長入。の光を透過し波長入。の光を反射 するように形成されている。

次に光の送受波について説明する。

まず左側の双方向受発光モジュール1の発光モジュール11から発射された波長入」の光は、第1図に示すように、結合レンズ115によって平行光となり、ファラデー回転子171でその偏光面を45°回転されてからビームスブリッタ173を透過する。その場合、ビームスブリッタ173を洗過するように波長入」の光の偏光方向は発光素子113を回転して調整してのピームスブリッタ173を透過した平行光は、結合レンズ155によって光ファイバー31内に集光される。

そしてこの光は光ファイバー 3 1 内を伝送して 第 3 図に示す双方向 受発光モジュール 1 ′ に至 る。

次に双方向受発光モジュール1、に至った波長 入,の光は、レセプタクルモジュール15、内の 結合レンズ155、によって平行光とされ、次に

3に入射させる光は平行光であり、レセプタクルモジュール15に入射させる光も平行光である。従って、これら各モジュールをピームスプリッタモジュール17に直接取り付ける際の調整は、各モジュール間の光軸合わせの調整だけでよく、その組み立ては容易である。

なおここで第1図に示すファラデー回転子17 1とピームスプリッタ173に形成した偏光ピームスプリッタ部pによってアイソレータを構成するがその作用について説明する。

即ち第1図に示すように、発光モジュール11から発射された光はファラデー回転子171によってその偏光面が45°回転されるとともに、酸45°回転された光は偏光ビームスブリッタ173を透過することとなるが、この透過光の内光ファイバー31の端面及び内部の散乱等によって反射された反射光は、再びビームスブリッタ173を透過して1部ファラデー回転子171に至る。しかしながらこの45°回転されている反射光はこのファラ

デー回転子171によってさらに45°回転されるため、発光素子113の発振光の偏波方向とは直交する。従ってこの反射光は発光素子113から発射された光とは共振成分を持たない為、干渉ノイズは発生しないのである。

第4図は本発明にかかる双方向受発光モジュール1を用いてさらに光の多重化ができるように構成した他の実施例を示す側断面図である。

同図に示すようにこの実施例における双方向受発光モジュール1は、第1発光モジュール11-1と第2発光モジュール11-2と受光モジュール13とレセプタクルモジュール15を、それぞれ第1ビームスプリッタモジュール17-2に直接接続して構成されている。

ここで第1発光モジュール11-1は第1図の 発光モジュール11と同様の構成を有し、波長 入」の光を発射する。

第2発光モジュール11-2も第1図の発光モジュール11と同様の構成を有し、波長入Lの光

スプリッタモジュール 1 7′ - 2 と、第 1 受光モジュール 1 3′ - 1 と、第 2 受光モジュール 1 3′ - 2 と、波 及 入。 の光を発射する発光モジュール 1 1′ - 1 とによって構成されている。

次にこの双方向受発光モジュール1.1'の作用について説明する。

まず、左側の第1発光モジュール11-1を発射した波長入」の光は、第1ピームスプリッタモジュール17-1と第2ピームスプリッタモジュール17-2とレセプタクルモジュール15を通過して光ファイバー31内に導かれる。次に光ファイバー31内を通過した波長入」の光は、レセプタクルモジュール15'と第2ピームスプリッタモジュール17'-1で反射されて受光モジュール13'-1に集光される。

また、左側の第2発光モジュール11-2を発射した波長入1の光は、第2ビームスブリッタモジュール17-2で反射された後、レセブタクルモジュール15を通過して光ファイバー31内に

を発射する。

また第1ピームスプリッタモジュール17-1 の波長選択フィルター部は波長入:の光を透過 し、波長入。の光を反射する。

また第2ピームスブリッタモジュール17-2 の波長選択フィルター部は波長入」と入。の光を 透過し、波長入」の光を反射する。

第5図はこの双方向受発光モジュール1の使用 例を示す図である。

同図に示すように、この双方向受発光モジュール1は光ファイバー31の左側に接続コネクタ33によって接続されている。またこの光ファイバー31の右側にはこの双方向受発光モジュール1′が接続されている。

この右側の双方向受発光モジュール1′は、レセプタクルモジュール15′と、波長入。の光を透過し波長入。の光を反射する第1ピームスプリッタモジュール17′-1と、波長入。と入。の光を透過し波長入。の光を反射する第2ピーム

導かれる。次に光ファイバー31内を通過した波 長入』の光は、レセプタクルモジュール15′を 通過した後に第2ピームスプリッタモジュール1 7′-2で反射されて受光モジュール13′-2 に集光される。

さらに、右側の発光モジュール11, を発射した波長入。の光は、第1ビームスプリッタモジュール17, -1と第2ピームスプリッタモジュール17, -2とレセプタクルモジュール15, を通過して光ファイバー31内に導かれる。次に光ファイバー31内を通過した波長入。の光は、レセプタクルモジュール15と第2ビームスプリッタモジュール17-1で反射されて受光モジュール13に集光される。

このように、光ファイバー31内を伝送する光の種類が増えても、本発明にかかる双方向受発光モジュール1によれば、該双方向受発光モジュール1を構成する各モジュールの数を必要に応じて増やしてこれを直接接続するだけでよいので、用

途に応じた組み換えが容易に行なえる。

以上本発明に係る双方向受発光モジュールの実施例を詳細に説明したが、本発明はこれに限定されるものではなく種々の変形が可能であり、要は、発光素子と該発光素子から発光された光を平行光を発光素子と入射する平行光を変光光素子と入射する平行光を変光光素とした大きないが変異し他のがユールを異常したが、所定の変化の光を透過し他のジュールを異常するに変光である。として、変化である。というなどを表して、変化である。というなどのようなものである。というなどは、本発明に係る双方の受発光モジュールの表表による構造の双方の受発光モジュールであればどのようなものであってもよい。

〔発明の効果〕

•

以上詳細に説明したように、本発明に係る双方 向受発光モジュールによれば、発光モジュールと 受光モジュールとピームスブリッタモジュールと レセブタクルモジュールとをそれぞれ直接接続し

方向受発光モジュールを示す図である。

図中、1 …双方向受発光モジュール、11 …発 光モジュール、113 …発光素子、115 …結合 レンズ、13 …受光モジュール、133 …受光素 子、135 …結合レンズ、15 …レセプタクルモ ジュール、155 …結合レンズ、17 …ピームス ブリッタモジュール、171 …ファラデー回転 子、173 …ピームスプリッタ、q…波長選択 フィルター部、p…偏光ピームスプリッタ部、1 75 …ケース、31 …光ファイバー、である。

> 特許出願人 京セラ株式会社 代理人 弁理士 熊 谷 隆(外1名)

て一体化できるので、従来のように各モジュール間を接続するコネクタや光ファイバーは不要となり、装置の小型化が図れるという優れた効果を有する。

また発光モジュールから外部に発射される光は 平行光であり、受光モジュールに入射される光は 平行光であり、レセブタクルモジュールに入射される光も平行光である。従って、これら各モジュールをビームスブリッタモジュールに直接取 り付ける際の調整は、各モジュール間の光軸合わ せの調整だけでよく、その組み立てが容易である という優れた効果を有する。

4. 図面の簡単な説明

第1図は本発明にかかる双方向受発光モジュール1を示す側断面図、第2図はビームスブリッタ 173を示す側面図、第3図はこの双方向受発光 モジュール1の使用例を示す図、第4図は本発明 にかかる双方向受発光モジュール1の他の実施例 を示す側断面図、第5図はこの双方向受発光モ ジュール1の使用例を示す図、第6図は従来の双

第 2 図

第 3 図

-15-

手統補正書(註)

特許庁長官 殿

1.事件の表示

平成 1年特許願第285532号

2.発明の名称

双方向受発光モジュール

3.補正をする者

事件との関係 特許出願人

住所 京都府京都市山科区東野北井ノ上町 5番地の22

名称 (663) 京セラ株式会社

代妻者 伊 藤 謙 介

4 . 代理人〒150

住所 東京都渋谷区東2丁目20番14号 タワーホームズ氷川1001号

氏名 弁理士(8706)熊 谷 隆(外1名)

5 . 補正命令の日付

(自発)

6.補正の対象

明細書の「3.発明の詳細な説明」の欄 図面の 「第2回」及び「第5回」

7. 補正の内容

(1)明細書第4頁13行目の「透過して」を 「伝送じて」と訂正する。

(2)明細書第4頁16行目の「透過した」を 「伝送した」と訂正する。

(3)明細書第5頁9行目の「図れない」を「図 れず、コネクタファイバー接続により損失の増 大」と訂正する。

(4)明細書第5頁14行目の「容易な」を「容 易で低損失」と訂正する。

(5)明細書第18頁1行目の「通過した」を 「伝送した」と訂正する。

(6)明細書第20頁3行目の「小型化が図れ る」を「小型化及び光の利用効率の向上が図れ る」

と訂正する。

(7)図面の第2図を別紙のとおり訂正する。

(8)図面の第5図を別紙のとおり訂正する。

第 5 図

第 2 図

PAT-NO:

JP403144602A

DOCUMENT-IDENTIFIER:

JP 03144602 A

TITLE:

TWO-WAY LIGHT EMISSION AND RECEPTION MODULE

PUBN-DATE:

June 20, 1991

INVENTOR-INFORMATION:

OKUDA, MICHITAKA SATO, YASUSHI

ASSIGNEE-INFORMATION:

NAME KYOCERA CORP COUNTRY N/A

APPL-NO:

JP01285532

APPL-DATE:

October 31, 1989

INT-CL (IPC): G02B006/28, G02B006/42, G02B027/28

ABSTRACT:

PURPOSE: To reduce the size of a device by connecting a light emission module, a light reception module, a beam splitter module, and a receptacle module directly into one body.

CONSTITUTION: The light emission module 11, light reception module 13, receptacle module 15, and beam splitter module 17 are connected in series and united. The light emission module 11 is constituted by fitting a light emitting element 113 and a coupling lens 115 in a case 111 and the light reception module 13 is constituted by fitting a light receiving element 113 and a coupling lens 135 in a case 131. Further, the beam splitter module 17 is constituted by fitting a beam splitter 173 and a Faraday rotator 171 in a case 175 and this module transmits light with specific wavelength and reflects light with other specific wavelength. Consequently, the need for a connector and an optical fiber which connect the respective modules is eliminated to reduce the size of the device.

COPYRIGHT: (C) 1991, JPO&Japio