Statistics Practical

1. Use the internal/own database and run the following operators also explain the output.

data(), dim(), names(), View(), str(), ls(), rm()

#data() returns a list of currently loaded datasets or loads a dataset.

#dim() is used to get or set the dimension of the specified matrix, array or data frame.

#name() returns names of the columns

#The View() invokes a spreadsheet-style data viewer on a matrix-like R object.

#str() is used for compactly displaying the internal structure of a R object.

#Is() is used to list the names of all the objects that are present in the working directory.

#lists all objects from the memory

#rm() is used to delete objects from the memory.

2. Find the correlation coefficient of eruption duration and waiting time in the data set faithful.

Observe if there is any linear relationship between the variables.

```
# eruptions waiting
# eruptions 1.0000000 0.9008112
# waiting 0.9008112 1.0000000
```

Since the correlation values are greater than 0.2 there is a significant relationship between eruptions and waiting

3. Generate the Sample and use the following to get the probability/sample for Binomial

distribution

dbinom(x, size, prob)

pbinom(x, size, prob)

qbinom(p, size, prob)

rbinom(n, size, prob)

#dbinom gives the probability density distribution at each point.

#pbinom gives the cumulative probability of an event.

#qbinom takes the probability value and gives a number whose cumulative value matches the probability value.

#rbimon generates required number of random values of given probability from a given sample

4. Generate the random sample between 4 to 8 where

i. replacement is allowed

ii. replacement is not allowed

i. replacement is allowed #means numbers can be repeated

ii. replacement is not allowed #means numbers cannot be repeated

5. If the coin is tossed 3 times generate the sample in tabular form along with the probability of

each combination. Plot the Histogram and scatterplot using R internal data set.

