CATALOG OF CO RADIAL VELOCITIES TOWARD GALACTIC H 11 REGIONS

LEO BLITZ AND MICHEL FICH

Radio Astronomy Laboratory, University of California at Berkeley

AND

ANTONY A. STARK

Bell Telephone Laboratories Received 1981 April 27; accepted 1981 July 27

ABSTRACT

This is a catalog of 242 molecular cloud complexes which are associated with optical H II regions. CO observations were made toward all but five of the H II regions in the Sharpless catalog and toward 62 additional suspected H II regions, 33 of which are previously uncataloged. Radial velocities are tabulated for each molecular cloud complex found to be associated with an H II region. The CO antenna temperature and line width are given for the most intense CO line seen toward each source. The catalog also summarizes previous CO observations as well as the optical distances to the stars exciting the H II regions. Radio-quiet H II regions (those with 1.4 GHz flux densities <100 mJy) are found to be well correlated with objects having no associated CO. A list of kinematically distinct complexes is tabulated to facilitate investigations of the motions of the complexes.

Subject headings: interstellar: molecules — nebulae: H II regions

I. INTRODUCTION

Since the discovery of interstellar CO (Wilson, Jefferts, and Penzias 1970), it has become clear that mostH II regions have accompanying molecular clouds. Although the peak emission from many of these clouds is detectable in a few seconds of integration with present instruments, no systematic survey of CO related to H II regions has been undertaken. Blitz (1979) has shown, for example, that such a survey can be used to determine the rotation curve of the outer part of the Milky Way. It is with the intention of studying the kinematics and dynamics of the Galaxy that we have surveyed nearly all of the *optical* H II regions in the Galaxy accessible to northern hemisphere instruments for associated CO emission.

The CO observations provide roughly an order of magnitude improvement in the accuracy of the center-of-mass radial velocity of the H II region/molecular cloud complexes for the following reasons: (i) in the vicinity of the Sun, where the molecular clouds have been fully mapped, the molecular gas is almost invariably the most massive component of the complex. (ii) Radiofrequency measurements can usually be made with an accuracy more than an order of magnitude better than optical recombination line (usually $H\alpha$) or stellar radial velocity measurements. (iii) Recombination line measurements include motions of gas streaming off the surfaces of the molecular clouds; the line velocity may be shifted from the center-of-mass velocity by several kilometers per second.

II. OBSERVATIONS

We have observed $\sim 90\%$ of the H II regions in the Sharpless (1959) catalog. Of the 10% we did not observe, all but five have been extensively observed by others. In addition, we observed 62 objects not listed in the Sharpless catalog which appear to be H II regions. These objects, 33 of which have not been previously cataloged, were found by perusing the Palomar Observatory Sky Survey (POSS) prints. We searched for nebulous objects brighter on the red plate than on the blue which tended to be circular rather than filamentary in appearance. We included any red nebulous object which appeared to be related to dust obscuration. We did not examine the POSS plates in a systematic manner and concentrated our search in the "windows" where H II regions known to be at large distances have been found. Even in the northern sky, we do not expect that this catalog is a complete listing of optical H II regions because of the incompleteness of our search. Our primary goal has been to get accurate information on the radial velocities of the CO clouds associated with the optical H II regions; information on the line strengths and line widths was of secondary importance.

a) Data Taking

The observations were made using the 7 m telescope at the Bell Telephone Laboratories (BTL) in Holmdel, New Jersey, and the 5 m telescope at the Millimeter

Wave Observatory¹ near Fort Davis, Texas. Where it was possible to do so, observations were made by frequency switching an amount significantly larger than the full velocity extent of the CO lines. This procedure gives a $\sqrt{2}$ improvement over beam switching in the signal to noise for a given amount of telescope time and obviates the need to find an emission-free reference position. In general, frequency switching can be used only for objects in the second and third galactic quadrants. In the first quadrant, the typical CO emission profile is too broad for frequency switching. Observations there were made by position switching between the source and a reference position which was found to be emission-free to a level $\lesssim 1$ K.

The velocity resolution of all the observations is 0.65 km s⁻¹. The velocity coverage was such that the full velocity extent of the H I (determined from the Weaver and Williams 1974 survey) in the direction of a particular H II region was within the passband. The beam of the BTL telescope is 1.7, and for the MWO telescope it is 2.73

For small, roughly circular H II regions with diameters $\lesssim 20'$, typically five spectra were taken: one at the center, and one displaced by an angle equal to the radius of the H II region north, south, east, and west of the center. For the larger H II regions, and those with filamentary shapes, we observed regions which show evidence of dust clouds interacting with an ionization front. In some cases, no interaction is apparent, and we tried to find locations where dark clouds are adjacent to the optical nebulae. In these cases, even if CO is detected, its association with an H II region is doubtful in the absence of additional information. In all cases where detections were made, the molecular emission is resolved; detections were always made in at least two positions, but, more commonly, detections were made in all of the positions we searched.

b) Associating the CO with the H II Regions

In order to determine whether a particular CO line is associated with an H II region, we used whatever information was available, including the longitude and latitude of the object (to estimate the expected amount of background emission), the appearance on the POSS plates, and the H α velocities (Georgelin 1975; Treffers 1981) where available. For most molecular clouds, the CO antenna temperature exceeds 10 K only in regions of active star formation. Therefore, CO lines >10 K are usually unambiguous evidence that an H II region is associated with a particular velocity component. CO is

also closely confined to the plane of the Galaxy (Cohen and Thaddeus 1979). Detection of high latitude CO, especially toward directions of dust obscuration, is, in general, also clear evidence for association with an optical nebula even if the observed line is weak. In the galactic plane, optical obscuration is essentially always accompanied by detectable CO emission. If only one velocity component is detected in the direction of a dust cloud which is clearly interacting with an H II region, again the association is usually unambiguous.

Because there is relatively little background CO along the line of sight outside the solar circle, the spatial coincidence of high velocity CO with distant H II regions is also good evidence for associating the molecules with the ionized gas, even if the CO emission is weak. However, because the H II regions known to be at large galactocentric distances are particularly important for determining the CO rotation curve, a number of the most distant objects were mapped to assure the correctness of the association. Mapping is, of course, the best way to be convinced that an apparent association is real, and $\sim 20\%$ of the Sharpless objects have been at least partially mapped by us or by others. These are indicated in the catalog.

In most cases our observing procedure allowed us to identify a particular CO line with a particular H II region. Nevertheless, a number of questionable associations remain, especially in the first quadrant where there is often a great deal of background gas along the line of sight. These are indicated in the catalog, and most of the ambiguities can be resolved by additional mapping.

III. EXPLANATION OF THE CATALOG

The first five columns give data relevant to the optical optical H II regions. Column (1) gives the Sharpless number of the H II regions. Nebulae known not be H II regions, such as planetary nebulae and supernova remnants, have been excluded from the catalog. We nevertheless observed some of these, and the results are given in the notes. We list at the end the 65 H II regions we have identified which do not appear in the Sharpless catalog; of these 65, there are three we did not observe. The 29 objects which appear in other catalogs are identified in column (15), "comments."

Columns (2) and (3) give the 1950 coordinates of the approximate center of light of the H II regions. The positions have been listed because the positions of a number of H II regions, many of those from S3 to S32 especially, are in error in the Sharpless catalog. The listed positions have been determined from transparent overlay grids on which the positions of the SAO stars in the field of the overlays have been marked. The grids were kindly provided by W. L. Peters. Columns (4) and (5) give the galactic longitude and latitude, respectively, of the position given in columns (2) and (3).

¹The Millimeter Wave Observatory is operated by the Electrical Engineering Research Laboratory of the University of Texas at Austin with support from the National Aeronautics and Space Administration, the National Science Foundation, and McDonald Observatory.

Columns (6)–(10) give data relevant to the CO observations. The parameters of the CO lines in columns (6)–(8) are for the strongest line we observed toward a given H II region. If an object has been more extensively observed by other workers, the line parameters in columns (6)–(8) are usually taken from the previously published work. In most cases we have taken at least one spectrum near the peak CO position as a check.

Column (6) gives the velocity centroid of the CO emission weighted by the intensity at each location at which a detection was made. In principle, the velocity centroid of a strong line can be determined to a fraction of the resolution (0.65 km s⁻¹). However, the velocity centroid at each of the observed points may differ because of the velocity structure of the molecular complex (such as that which would arise from independently moving clumps in the complex) or an overall systematic velocity gradient of the cloud complex. The quoted velocity uncertainties are 1 σ formal errors of the intensity-weighted velocity centroid for all of the detected lines. In general, we assume a minimum velocity uncertainty of 0.4 km s⁻¹.

Velocities in parentheses indicate that the association of the CO emission with an H II region is uncertain. "No Detection" means that no CO was detected at any of the positions we observed to the limit of our sensitivity (typically 0.5 K). "No Definite Detection" means that weak emission was observed which is probably unrelated to the H II region. "Cannot Associate" means that relatively strong emission was detected which could not be definitely associated with the H II region. This is usually due to multiple strong velocity components along the line of sight, a situation which occurs most frequently in the first quadrant. Where possible, H α velocities were used to resolve the ambiguities.

Column (7) gives the antenna temperature at the position of the strongest CO emission. Because we did not, in general, map the CO emission, these values may not be the peak CO temperatures in the cloud complex. For this reason, and because the observations were made with telescopes of somewhat different spatial resolution, getting accurately calibrated line strengths was not a high priority in the observations. The peak antenna temperatures should generally be accurate to at least 25% and in most cases to better than 10%.

Column (8) gives the full width at half-maximum of the strongest CO line. This quantity was measured directly from the profiles and is not based on Gaussian fitting because of the complex nature of many of the profiles.

Columns (9) and (10) give the galactic coordinates of the position of the strongest CO line. This position rarely differs from the position in columns (4) and (5) by more than the radius of the H II region.

Column (11) gives the CO reference for the observations presented in the catalog. If more than one reference is given, the parameters of the CO line at the peak position are generally taken from the most extensive or well-sampled observations. To insure the uniformity of the data, we did not include information available from other molecular species.

Column (12) gives the distance to the stars exciting the H II regions. These are determined by spectrophotometry of the stars and are in all cases taken from the published literature. In many cases, the distances include observations of other cluster and association members in order to obtain the most accurate determination. We have made an effort to evaluate the published distances, and we include what we believe to be the best available values.

Column (13) gives the optical diameter of the H II region taken from the Sharpless catalog and from measurements of the red POSS prints for the newly cataloged objects.

Column (14) describes the degree of mapping toward the H II region and the reference for the CO map. A blank in column (14) means that only a few points have been observed.

Column (15) gives other identifications for the H II regions and associated objects and an indication if there is additional explanatory material given in the notes. For objects in the listing of "CO Velocities for Additional H II Regions," references to other catalogs are as follows: LBN = Lynds (1965), PK = Perek and Kohoutek (1967), DG = Dorschner and Gürtler (1963), Ber = Bernes (1977), vdB = van den Bergh (1966), PP = Parsamian and Petrossian (1979), M = Marsalkova (1974), and RCW = Rogers, Campbell, and Whiteoak (1960).

IV. DISCUSSION

a) Statistical Considerations

The observations toward the 313 objects in the Sharpless catalog may be summarized as follows:

- 194 Detections and associations (68%)
 - 9 Questionable detections and associations (03%)
- 38 No detection (13%)
- 21 No definite detection (7%)
- 26 Cannot associate (9%)
- 5 No observations
- 11 Planetary nebulae
 - 8 Supernova remnants
- 1 Not found

For the 65 additional suspected H II regions:

- 47 Detections and associations (76%)
- 4 Questionable detections and associations (6%)
- 4 No detection (6%)
- 4 No definite detection (6%)
- 3 Cannot associate (5%)
- 3 No observations

(This Page Intentionally Left Blank)

CATALOG OF CO VELOCITIES TOWARD GALACTIC H II REGIONS

(This Page Intentionally Left Blank)

A. CO VELOCITIES TOWARD GALACTIC H 11 REGIONS INCLUDED IN THE SHARPLESS CATALOG

	comments	(notes) (notes)	NGC 6334		(notes) (notes) (notes) (notes) (notes)	(notes) (notes)	(notes) M8;SGR OB1 (notes)	(notes) W28 (notes) M20;SGR OBI (notes)	(notes) (notes) (notes) (notes)	(notes) NGC 6589 (notes) (notes) (notes)	(notes) (notes) (notes) (notes)
	mapping						partial [41]			partial [6]	
	diameter (arcmin)	150 60 12 100 4	240 120 80 60	90 120 40	30 20 25 4 12 10		30 30 30 30	480 40 40 20	8 8 35 90		90 3 15 60
	d* (kpc)		1.7 ± 0.3 [46]	1.74 ± 0.3 [46]		(1.2 ± 0.4) [22,24]	1.8 ± 0.2 [28]	0.17 ± 0.05 [24] 1.3 ± 0.5 [24] 1.8 ± 0.2 [39]	0.85 ± 0.27 [22] 1.8 ± 0.6 [22] (1.4 ± 0.5) [22]	+ 0.2) [2.2 ± 0.4 [22] 2.1 ± 0.6 [22]
Peak CO position	2 b CO ref	1 348.20 0.36 1 348.24 -0.98 1	351.36 0.61 1 351.89 17.17 1	352.80 0.64 1 1	359.73 -0.42 1 359.73 -0.42 1 1 359.95 -0.47 1 0.18 -0.46 1 0.33 -0.19 1	0.58 -0.86 1	5.08 30.84 1 5.95 -1.30 41	4.24 22.51 1 6.90 -2.45 1	7.29 -2.11 1 7.36 -2.09 1 8.54 36.41 1	11.53 36.19 1 11.40 -1.71 1,6 11.90 0.76 1	13.43 -1.40 1 1 14.02 -0.13 1
suo	$(km s^{-1})$	5.5 7.8 ION	6.5	5.2	2. 5. 5. 5. 5. 6. 5. 9	7.2	2.5 3.5	3.0	3.3 1.0	1.3 3.6 6.5	3.0
CO Observations	$(km s^{UCQ}_{\bullet})$ T_{A}^{\star}	NO DETECTION CANNOT ASSOCIATE -8.7 ± 1.3 20 -14.2 ± 0.6 18 NO DEFINITE DETECTION	NO DETECTION -4.3 ± 1.5 37 4.5 ± 0.5 2 NO OBSERVATIONS	-3.9 ± 1.0 25 CANNOT ASSOCIATE CANNOT ASSOCIATE	1.0 ± 0.5 10 16.4 ± 1.1 18 CANNOT ASSOCIATE 18.8 ± 0.4 28 18.1 ± 0.9 16 19.2 ± 0.4 25	16.7 ± 0.5 34 CANNOT ASSOCIATE	NO DETECTION -0.1 ± 0.4 4 12.0 ± 1.5 30 CANNOT ASSOCIATE	3.0 ± 1.5 CANNOT ASSOCIATE 11.0 ± 1.0 CANNOT ASSOCIATE	8.7 ± 0.7 26 8.9 ± 0.5 22 0.8 ± 0.5 7 CANNOT ASSOCIATE	2.4 ± 0.4 3 12.8 ± 1.4 31 28.5 ± 3.0 12 CANNOT ASSOCIATE	16.8 ± 0.7 9 CANNOT ASSOCIATE CANNOT ASSOCIATE 19.3 ± 1.0 10
HII Region	ф	20.24 2.26 0.49 0.96 -0.54		0.84 0.22 1.61	-1.85 -0.35 0.13 -0.49 -0.56	0.55	29.59 30.84 -1.29	23.58 -0.08 -2.16 -0.26	-2.18 -2.03 36.34 -0.51	-1.64 36.35 -1.78 0.77 -1.10	-0.69 1.16 -0.41 -0.11
uo	ಇ	347.22 347.36 348.25 348.25 348.25 348.97 NGC 6302	349.84 351.23 351.31 352.44	353.11 355.61 355.89	358.34 359.79 0.02 359.97 0.11	0.59	6.09 5.80 6.09	6.28 6.45 7.00 7.04	7.21 7.29 8.33 8.72	10.94 11.38 11.63 11.88 12.45	12.72 13.33 13.52 14.11
HII Region	\$(1950)	-25 58 -38 02 -38 24 -39 15 -38 25 NEBULA	-22 48 -35 49 -25 28 -33 58	-34 10 -32 30 -31 30	-31 18 -29 17 -28 50 -29 12 -29 07	-28 52 -24 58		-23 28 -23 25 -23 58 -23 01	-23 48 -23 39 -1 28 -21 40	-20 16 0 31 -19 44 -18 16 -18 41 -17 45	-18 15 -16 49 -17 25 -16 45
	S a(1950)	1 15 55.8 2 16 59.0 3 17 08.9 4 17 14.9 5 17 15.3 6 PLANETARY	15 57.4 17 16.5 16 18.1 17 14.0		115 17 45.7 - 116 17 45.7 - 117 17 42.0 - 118 17 44.6 - 119 17 44.0 - 20 17 44.0 - 20 17 44.0	17	16 16 18	27 16 34.4 28 17 57.5 29 18 06.6 30 17 59.6	18 18 15 18	35 18 12.9 36 16 02.9 37 18 14.8 38 18 05.8 39 18 13.9 40 18 09.1	41 18 12.9 42 18 07.4 43 18 13.5 44 18 13.6

	comments	M17;SER OB1 (notes)	M16;SER OBI;NGC 6611	(notes) SER OB2;NGC 6604	(notes) (notes) (notes)	(notes)	(notes) (notes)	(notes) (notes) (notes)	(notes)	(notes) (notes) (notes)	(notes) (notes) (notes) (notes)	(notes)	NGC 6823; VUL OB1 (notes) (notes) (notes)
	mapping	complete [18]	partial [35]					partial [6]					partial [6] partial [6]
	diameter (arcmin)	1	1 10 90 35	35 2 15 140	2 / 2 8 9	20 20	2 4 55 25	7 10 8 20 20	, ro	3 25 75 3	12 8 12 40 2	10 9 2 15	40 10 25 5
			[14,22] [28] [22]	[28]	[22]			[14] [14]				[22]	[28] [14] [14] [22]
	d* (kpc)	± 0.2 ± 0.7 ± 1.2)	± 0.9 ± 0.22 ± 0.5	± 0.2	+ 0.4			± 1.0 ± 0.1				+1 +1	± 0.7 ± 0.7 ± 0.6 ± 1.3
		2.2 2.0 (3.7	2.9 2.2 1.7	2.0	1.5			3.2				1.1	1.9 2.3 2.0 4.0
tion	CO ref	18,19 1 1	1,11 35 1					1,6	, ₁		. – – – –	1,30 1,1	1 1,6 1,6
CO position	ą	-0.68 3.31	-0.35	-0.32	-0.02 0.48 0.54	0.20	1.75 -20.87 3.56	-0.76 -0.73 5.33	11.36	-1.78 44.71 -1.23	-12.11	0.04	-0.21 -0.18 0.08 0.12 0.44
Peak	ઍ	15.00	16.58 17.06	18.21 18.90	21.73 22.83 23.13	24.48 25.36		29.05 30.58 31.59	35.13	36.42 37.62 39.86	40.56	53.56	59.66 60.94 61.47 62.92 63.12
suc	$\Delta V = (km s^{-1})$	5.0	4.9	6.5 2.6	7.8 (13) 2.0	3.3	3.9 <1.0 2.5	2.5 (5.2) (3.9)	2.5	3.9 1.3 3.6	1.3 ION		2.6 4.5 5.5 5.2 5.2
CO Observations	TA*(K)	2.0 50 1.0 10 ASSOCIATE	1.3 16 2.0 27 ASSOCIATE	1 17 8	ASSOCIATE 2.5 10 1.0) (8) 1.0 10	10 12	0.6 15 ASSOCIATE 0.5 5 1.2 11	1.0 15 ASSOCIATE 1.5) (9) 1.4) (20)	4	1.0 11 0.5 5 1.8 12.5	ASSOCIATE 0.4 2.5 ECTION INITE DETECTION		13 15 36 8 21
CO 09k	(km s 1)		44.6 ± 1.3 24.2 ± 2.0 CANNOT ASSOC	NO DETECTION 50.0 ± 2.0 27.6 ± 0.5	E4 +1 +1 +1	45.1 ± 2.0 43.8 ± 2.1	43.0 ± 0.6 CANNOT ASSOC 4.6 ± 0.5 6.7 ± 1.2		19.8 ± 1.5	64.2 ± 1.0 2.4 ± 0.5 48.1 ± 1.8 MO DREFINITE	CANNOT ASSOC 17.8 ± 0.4 NO DETECTION NO DEFINITE	NO DETECTION 24.0 ± 1.0 NO DETECTION NO DETECTION NO DETECTION NO DETECTION	26.8 ± 1.4 22.7 ± 1.0 22.9 ± 1.0 25.6 ± 1.0 22.2 ± 1.0
	ب	-0.74 3.31 0.16	-0.34 0.75 -1.07		-1.14 0.04 0.67 0.55			-0.71 0.41 -0.62 6.23		.8] -1.70 44.56 -1.29	2.45 2.45 12.08 3.85 -0.55	-9.67 0.01 2.42 -3.80	-0.15 -0.13 0.32 0.11 0.46
uc	ર	ł	16.68 16.80 16.92	.7.	20.28 21.98 22.89 23.13		ı	29.09 30.48 30.60 30.69		VV-473 [48] 36.40 -1 37.69 44 39.90 -1	40.45 2.45 40.45 -12.08 46.84 3.85 48.97 -0.55 M1-67 [48]	51.61 53.54 55.12 55.85 57.40	59.39 60.92 61.49 62.94 63.18
HII Region	\$ (1950)		-14 36 -13 59 -14 44	16 36 NEBULA 13 15	-11 48 -9 45 -8 39 -8 30	-7 38 -6 44		-3 47 -2 03 -2 24 0 49		NEBULA 2 14 22 00 5 31 7 02	7 44 1 01 14 03 13 52 NEBULA		
	α(1950)	17.9 03.3 14.9	18 19.5 18 15.8 18 22.7		18 29.4 18 28.3 18 27.8 18 28.7			18 44.3 18 42.9 18 46.8 18 22.6		PLANETARY 19 01.3 16 09.0 19 06.4	18 54.0 19 45.7 19 00.9 19 21.0 PLANETARY	19 58.9 19 28.1 19 22.4 19 46.8 19 01.2	
	ν	45 46 47	48 49 50		55 57 58	60 60	61 62 63 64	65 67 68 68	70		76 77 78 79 80	81 82 83 84 85	86 87 88 89

									2(notes)
	comments	(notes)	(notes)	(notes) (notes) NGC 6888	γ CYG (notes) (notes)	(notes)		(notes) IC 5146 (notes) LAC 0B1 (notes)	IC 1396;CEP OB2(notes) (notes) (notes) (notes)
	mapping	partial [6]	partial [6]	extensive [12]			extensive [2,12]	extensive [37] partial [9] partial [9]	partial [6]
	diameter (arcmin)	120 50 1 25 1 25	10 15 4 4	20 40 7 18	180 1080 50	90 15 15 9		1 40 13 70 9 160 2 140	170 90 80 160 15
	φ	[22,24]	[14]	[22] [22] [22]	[22] [22] [22,24]	[22]		[22] [22] [28] [28]	[28] [14,22] [22] [22]
	d* (kpc)	± 1.4	2.4		+ + + + 0.4 + 0.4	± 0.7		± 0.6 ± 0.16 ± 0.2 ± 0.13	5 ± 0.1 ± 1.5 ± 0.3 ± 0.4
		4.4	0.8	2.5	1.5	2.1	0.8	2.6 1.0 0.6 0.6	0.86 4.2 0.9
tion	CO ref		1 1,6	1 1 1,30 1,12		1,12 1,12	1, 2, 12, 1	1 1 1 30,37 1 1,30	1,43 1 1 1 1,6,30
CO position	P	-0.47	1.71	2.76		3.28	0.20 -4.19 2.06	1.72 -41.36 -1.45 -5.57 -15.14 2.57 3.16 7.40	-0.80 2.18 1.37
Peak	જ	64.14	66.83 70.15 70.27	71.59		83.78	84.64 87.06 90.20	90.23 89.01 · 94.57 94.40 96.72 · 96.27 97.56	102.96 103.72 104.59
suc	ΔV (km s ⁻¹)	3.7	3.0 6.5	3.3 5.2 5.5		7.2	4.5 LON 5.0 1.5	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0	3.3 3.3 3.3
Observations	TA (K)	声		8 6 25	IATE ON	TION 12 TION TION SSOCIATE	24 DETECTION 6 1.5	22 23 20 66 7	IVE MAJ DETECT: 16 16 DETECT:
CO OPE	$(\log \frac{V_{CQ}}{s})$	NO DEFINITE NO DETECTION 21.3 NO DETECTION NO DETECTION	21.0 ± 1.0 NO DETECTION -22.9 ± 2.0 -24.5 ± 1.0	13.7 ± 0.4 NO DETECTION 0 ± 2 NO DETECTION -1 ± 1.5	NO DETECTION CANNOT ASSOCIATE NO OBSERVATION NO DETECTION	NO DETECTION -4.0 ± 2.0 NO DETECTION NO DETECTION CANNOT ASSOC	0 ± 3 NO DEFINITE 3.5 ± 1.5 -65.6 ± 0.5	-60.9 ± 0.5 -6.2 ± 2.1 NO DETECTION -43.4 ± 1.1 -0.2 ± 0.4 -0.2 ± 0.4 -94.7 ± 0.4 -72.5 ± 0.4 -13.9 ± 0.7 NO DETECTION	NEEDS EXTENSIVE MAPPING -48.5 ± 1.5 9 3 NO DEFINITE DETECTION -16.1 ± 0.5 16 3 NO DEFINITE DETECTION
	م	4.43 1.65 -0.47 6.77 [48] 7.18		2.84 -5.32 LOOP 0.62 2.43 -0.61	-3.70 1.81 0.15 -12.17	-17.01 3.28 -8.03 -7.87	58 [48] -0.99 -8.92 -3.84 2.04	1.72 -41.12 -6.35 -1.54 -5.51 16.80 2.60 3.16 7.97	3.73 -0.65 9.56 2.61 1.34 13.22
uc	ચ	64.07 64.08 64.13 64.93 NGC 6842	66.87 68.15 70.15 70.27	**	78.18 79.49 79.60	81.19 - 83.78 83.95 84.21 84.84		90.23 89.18 - 91.14 94.48 94.41 95.39 96.29 97.50 98.50	99.29 102.79 103.07 103.82 104.57
HII Region	6(1950)	29 29 28 07 27 04 31 21 NEBULA 32 35	30 07 31 17 33 21 33 22	35 09 30 26 REMNANT 36 35 38 11 37 13	36 09 40 05 40 10 32 14	29 52 45 29 38 12 46 42	NEBULA 44 07 39 59 43 43 49 40	49 28 44 18 50 07 47 02 38 19 54 24 55 38 59 45	57 15 55 52 1 64 05 1 59 09 1 58 31 1 68 03 1
Д	α(1950) δ	19 33.6 19 44.6 19 53.0 19 25.9 PLANETARY 19 26.8	19 54.1 19 56.8 19 58.9 19 59.9	19 58.1 20 29.7 SUPERNOVA 20 15.8 20 10.2 20 25.6		21 39.7 20 32.2 21 18.8 21 19.2 20 32.9	PLANETARY 20 57.0 21 35.0 21 16.6 21 02.1	21 03.6 23 06.3 21 40.4 21 36.6 22 31.6 22 31.2 21 27.1 21 30.6 21 10.5 20 42.5	21 37.4 22 16.9 21 27.8 22 09.8 22 20.0 21 15.7
	w	91 92 93 94 95		101 102 103 104 105			116 117 118 119 120	121 122 123 124 125 126 127 128 129	131 132 133 134 135 135

	m		JEP OB1	(notes)		(notes)
	comments	(notes) (notes)	(notes) NGC 7380;CEP OB1 (notes) (notes) (notes) (notes) (notes)	(notes) (notes) (EP 083 (notes)	(notes) (notes) (notes) (notes)	WI;CEP OB4 (notes) (notes) (notes)
	mapping	extensive [5,6]	complete [30] partial [6]	partial [28] complete [49] partial [6,16] extensive [30] extensive [30]	part1al [6]	extensive [51]
	diameter (arcmin)	90 1 25 30	30 30 4 4 90 2 2 2 40 40	20 20 20 60 60 60 60 7 10 10 10 10 10 10 10 10 10 10 10 10 10		180 1 30 10 2 2 420 420
		[22] [14] [13,22]	[28] [22] [22] [22] [12]	[22] [14] [14] [4] [4] [14] [14,22] [22] [22] [22]		0.1 [28] 0.9 [22] 0.5 [22] 0.8 [22] 2.0) [22]
	d* (kpc)	± 0.2 ± 1.1 ± 0.1	± 0.3 ± 1.2 ± 1.8 ± 1.7	10.8) 11.1		+1 +1 +1 +1 +1
		0.6 3.3 0.9	3.4 3.7 5.5 5.5	3.5.4 4.0 1.4 0.73 1.4 0.73 2.5 2.5 2.8 2.8 2.8 3.3 3.5	3.8 (1.5 (1.5 2.3	0.84 2.7 1.7 2.5 (6.1
tion	CO ref	1 1,16 1 5,6	1,30 1,1,6 1,6	1 1 1 1 1 1,6,16 1 1,6,30 1 1 1 1		51
Peak CO position	P	7.12 0.36 -0.15 5.31	3.35 -0.90 5.55 0.58 -1.08 -1.12 6.29	2.55 0.09 1.47 2.55 0.05 0.05 0.37 0.38 0.38	0.14 3.21 -1.65 -1.70 2.26	-1.32 -0.84 18.40 1.97 -0.14 25.63
Peak	૪	105.15 105.63 105.77 106.81	106.83 107.28 108.18 108.20 108.24 108.34 108.34	108.69 108.77 109.77 109.17 110.12 110.11 111.54 111.61 111.89 111.89	114.65 114.99 115.79 115.83 117.57	118.63 119.40 120.17 120.36 120.63 125.05
suo.	$^{\Delta V}_{(km\ s^{-1})}$	2.0 5.2 1.5 5.2	2.0 2.3 100N 5.5 3.0 3.0 3.0	un n q q q q a a a a a a a a a a a a a a	3.5 ION 2.5 2.9 3.9	2.3 3.3 1.3 1.3 1.0 2.6
CO Observations	TA* (K) (5 13 6 27	4 11 N DETECT 17 13 4 4 9 9	0.6 13 0.5 22 0.4 21 0.9 10 11.5 29 2 23 1.1 21 11.0 26 ASSOCIATE 1.0 6 0.7 11	DE 1	ASSOCIATE 0.5 7 2.8 9 0.6 1.3 0.5 13 ECTION 1.0 4 INITE DETECT
40 OO	$^{ m VC\underline{0}_1}_{ m (km~s}$	-10.3 ± 1.4 -52.0 ± 1.0 -46.5 ± 0.5 -8.5 ± 1.0	-65.0 ± 1.0 4 -41.0 ± 0.5 11 NO DETECTION NO DEPINITE DETECTION -8.8 ± 0.5 13 -49.5 ± 0.5 13 -57 ± 2 4 -53.1 ± 1.3 9 -53.1 ± 1.3 9 -8.8 ± 0.4 17	+++++++++++++++++++++++++++++++++++++++		CANNOT ASSOCIATE -40.8 ± 0.5 7 -34.5 ± 2.8 9 -2.7 ± 0.6 1.3 -49.6 ± 0.5 13 NO DETECTION -3.2 ± 0.4 5.5 -3.6 ± 1.0 4 NO DEFINITE DETECTION NO DETECTION
	þ	7.85 0.35 0.09 5.30	3.32 -0.96 -1.43 0.82 5.78 0.59 -1.07 -1.05	2.75 1.60	-1.62 0.23 -0.78 3.18 -1.59 -1.71	4.70 -1.32 -0.93 118.40 1.95 -5.48 -0.09 25.36
uc	૪	105.63 105.62 105.80 106.76	106.81 107.14 107.29 107.67 107.92 108.20 108.27 108.38	108.58 108.77 108.80 110.17 110.17 111.28 111.64 111.88 111.88	113.91 114.61 114.63 114.98 115.79 115.88	118.40 118.63 119.44 120.28 120.25 120.68 121.41 121.67
HII Region	6(1950)	64 27 58 13 58 05 63 01	61 23 56 47 58 00 59 37 64 03 59 39 58 12 58 17		59 41 61 39 60 41 64 36 60 01 64 20	66 52 60 58 61 27 80 39 64 25 57 00 62 25 87 30 62 35
	α(1950)	21 55.8 22 30.8 22 33.0 22 17.5	22 26.9 22 45.6 22 47.5 22 42.9 22 23.9 22 54.5 22 54.2 22 54.2	000 549 549 113 113 113 113 113	23 36.0 23 37.4 23 39.8 23 33.2 23 50.6 23 51.5	00 02.1 0 12.8 0 19.1 23 44.7 0 24.5 0 28.9 0 28.9 0 28.9 0 37.5 0 45.8
	ς,	137 138 139 140	141 142 143 144 145 146 147 148		164 165 166 167 168 169	171 172 173 174 175 176 177 178 179

	comments	(notes) NGC 281 Y CAS (notes) (notes)	(notes) W3;IC 1795;CAS OB6	(notes) (notes) (notes) (notes) (notes) (notes) (notes) (notes)	(notes) (notes) (notes) NGC 1491 (notes) (notes)	(notes) (notes) NGC 1624	(notes) (notes) (notes) NGC 1499;Per OB2(notes)	(notes) NGC 1579;Lk Ha 101 (notes) (notes)
	mapping	extensive [17] partial [6]	complete [40]		partial [6] partial [6]	extensive [9]	partial [6]	partial [31] complete [9]
	diameter (arcmin)	15 2 35 40 120 10	2 150	120 120 6	170 45 40 120 50 4	20 20 1 1	4 80 80 70 320	6 1 10 3
	d* (kpc)	2.2 ± 0.7 [22] 0.21 ± 0.07 [20,22]	2.1 ± 0.2 [28]	2.9 ± 0.9 [22] 2.1 ± 0.2 [28]	0.8 ± 0.3 [22] 0.9 ± 0.3 [22] 3.3 ± 0.8 [14,45] 7.6 ± 0.8 [45] 7.6 ± 0.8 [45]	6.0 ± 0.6 [45]	5.2 ± 0.8 [45] 4.2 ± 0.6 [45] 0.40 ± 0.04 [28]	>0.8 [25] 2.4 ± 0.6 [43] 3.7 ± 0.9 [43]
Peak CO position	b CO ref	2.37 1 3.02 1 -6.32 17 -1.96 1 0.32 16	1 1 1.21 40	2.08 1 2.12 1 2.07 1 2.50 1 2.50 1 1.56 42 4.09 1	1.60 6,16 2.09 1 1 -1.24 1 -0.77 1,6	-0.24 1 2.46 1 2.65 1 -3.61 1	3.27 1 11.36 1 2.57 1,6	-9.00 2 1 1 1 -0.88 1
Peak CO	અ	122.72 122.81 123.00 123.04 – 123.84 – 124.89	133.71	136.13 136.09 136.14 136.51 138.30	1 1	151.61 - 154.65 155.39 157.08 -	159.15 159.61 1 159.36 160.61 -1	165.36
Observations	$^*_{(K)}$ $^{\wedge V}_{(km s^{-1})}$	9 2.0 4 2.0 5 3.3 14 3.4 (3.4) (2.0) 8 2.8 27 3.5	TTE DETECTION 3 29 6.1	DETECTION 7 3.3 2 2.3 3 3.6 DETECTION 3.5 3.3 DETECTION DETECTION 24 3.6 3 1.6	C	4.6 6 4.6 (TE DETECTION 7 2.5 3 7 2.3 4.4 3.5 2.5	DETECTION DETECTION 11 2.5 3.3 1.9 8 3.0 20 ~4	17 1.8 ATE 2.5
98q0 OO	$(km \frac{V_{CO}}{s}1)$	-36.6 ± 0.4 -36.6 ± 0.4 -10.3 ± 1.4 -30.4 ± 1.1 (-16.2 ± 0.5) -43 ± 2.6 -10.5 ± 0.5	NO DEFECTION NO DEFINITE I -46.0 ± 5.3	NO DEFINITE I -46.3 ± 0.6 -47.2 ± 1.0 -46.5 ± 1.0 NO DEFINITE I -45.1 ± 0.9 NO DEFINITE I NO DEFINITE I NO DEFINITE I -39 ± 1.0 -9.7 ± 0.5	1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-52.2 ± 2.4 NO DEFINITE I -37.6 ± 0.9 -35.3 ± 0.3 -31.0 ± 0.4	NO DETECTION NO DEFINITE DETECTION NO DEFINITE DETECTION -20.5 ± 1.1 11 3.4 ± 0.4 3.3 -24.5 ± 1.2 8 7 ± 3 20	-1.0 ± 1.0 17 CANNOT ASSOCIATE -32.9 ± 1.0 4
	.p	2.34 1.87 2.84 -6.26 -1.87 0.33	2.66 0.94	0.56 2.11 2.12 2.07 0.38 0.20 0.20 4.12	_	2.91 2.46 2.60 2.60 -3.62		-9.02 3.07 -0.97
uc	૪	122.70 122.81 123.19 123.12 123.12 123.97 124.90	131.58 134.80	135.87 136.08 136.00 136.11 136.45 136.49 137.38	138.48 140.59 143.51 145.78 148.54 150.58 W 1-2	151.60 152.80 154.65 155.35	157.59 158.31 158.57 159.15 159.52 159.36	T [11,29 165.35 T [29] F [11,29 168.09 168.48
HII Region	6(1950)	64 56 64 28 65 26 56 20 60 43 61 35	58 06 63 56 61 13	59 25 61 46 61 47 61 43 59 24 62 00 59 29 60 12	60 59 57 51 51 NE		44 15 42 29 46 43 47 55 52 09 47 19 46 16	SUPERNOVA REMNANT [11,29 4 26.9 35 09 165.35 SUPERNOVA REMNANT [29] SUPERNOVA REMNANT [11,29 5 23.5 40 34 168.09 5 07.6 37 55.5 168.48
	a(1950)	0 46.2 0 47.2 0 50.9 0 49.9 0 56.9 1 05.6		2 32.9 2 43.3 2 43.6 2 43.4 2 36.1 2 47.7 2 38.1 2 46.2 2 50.6 3 02.5			4 18.0 4 14.1 4 41.3 4 55.0 5 37.3 4 52.5 6 58.0	SUPERNOV, 4 26.9 SUPERNOV, SUPERNOV, 5 23.5 5 07.6
	ς.	181 182 183 184 185 185 186	188 189 190	191 192 193 194 195 196 197 198	201 202 203 204 205 205 207 207	209 210 211 212 213	214 215 216 217 218 219 220	221 222 223 224 224 225

	comments	IC 405 (notes) (notes)	(notes) IC 410; AUR OB2 NGC 1931 T TAURI NEBULA (notes)	(notes)	(notes) (notes) (notes)	(notes) (notes) (notes) (notes) (notes)	(notes) A ORI;ORI OB2 (notes) (notes)
	mapping	partial [16,44]	partial [6]	extensive [9]		extensive [39] extensive [21] complete [54]	partial [6]
	diameter (arcmin)	20 8 65 300	12 40 2 12 10 10 7 7	10 7 6	720 65 9 80 10	35 40 5 11 1 1 1 2 2	45 20 22 390 70 1 4 4 4
	d* (kpc)	4.3 ± 1.4 [22] 0.51 ± 0.16 [22]	2.3 ± 0.7 [22] 1.0 ± 0.3 [22] 2.3 ± 0.7 [22] 1.6 ± 0.5 [22] 3.2 ± 0.3 [28] 0.15 ± 0.05 [3,31] 0.15 ± 0.05 [3,31]	4.7 ± 1.2 [45] 2.1 ± 0.7 [22]	0.21 ± 0.02 [22] 3.5 ± 0.9 [45] 1.6 ± 0.5 [45]	1.5 ± 0.15 [28] 4.4 ± 0.4 [45] 2.5 ± 0.4 [45] 8.3 ± 2.6 [45]	1.4 ± 0.4 [22] 0.45 ± 0.14 [22] 0.40 ± 0.13 [28] 3.5 ± 1.1 [45] 3.8 ± 1.0 [45]
:fon	CO ref	1,16,44 1	1 1 1 1,6 1,32 1,31			1 39 1 1,21 1,21 1,21 1,21 1,21	1,6336 11,10 11 11 11,6
Peak CO position	.	-0.90	2.55 3.17 2.40 -0.05 2.81 -1.78 0.25 -20.88	4.03 + 0.19 - 4.04	-16.69 0.85 4.38	0.33 0.03 0.04 0.04 0.04	-15.74 -10.37 -16.98 -0.07 -2.74 -1.68
Peak (અ	169.19	173.47 173.35 173.35 173.48 173.62 173.60 173.97	180.79 182.36 + 184.16 -	187.22 - 188.96 189.45	189.81 192.23 192.61 192.61 192.61 192.61 192.61	194.59 - 196.92 - 195.23 - 195.65 195.97 196.45
ons	$\Delta V = (km \ s^{-1})$	10N 3.5 (1.6)	96.69.99.99 96.99.49.61	4.6 2.5 5.5	1.3 3.9 5.2	4744467 2. 44467 7. 5.	1.22.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3
Observations	TA* (K)	DETECTION 16 (8) (11 9 16 8 32 7 7 7	16 10 6	DETECTION 11 5 12	30 30 30 30 30 8 8	1 13 15 8 10 10 14 20 16
CO 09	$(k_m s^{\text{CO}})$	NO DEFINITE DETI -8.7 ± 2.5 10 (6.7 ± 1.0) (9	-18.1 ± 0.9 -23.0 ± 0.5 -18.4 ± 0.5 -13.4 ± 0.7 -18.8 ± 1.7 -7.2 ± 0.5 -4.3 ± 0.7 8.1 ± 0.9 7.0 ± 1.0	-6.5 ± 1.0 0.0 ± 0.5 3.7 ± 2.3	NO DEFINITE 7.5 ± 0.5 2.9 ± 1.2 -5.3 ± 2.6 NO DETECTION	NO DETECTION 7.5 ± 1.0 14.4 ± 0.5 7.5 ± 0.7 7.5 ± 0.7 7.5 ± 0.7 7.5 ± 0.7 7.5 ± 0.7 8.0 ± 0.5 8.0 ± 0.5 NO DETECTION	NO DETECTION 0.3 ± 1.0 12 ± 0.5 1.6 ± 1.1 31.2 ± 0.5 4.8 ± 0.5 17.5 ± 0.7 25.6 ± 0.4
	.p	1.00 -0.90 -2.17 -1.31	2.55 3.23 3.23 2.44 -0.18 2.81 -1.74 0.26 -20.88	4.14 0.19 -4.16	-34.31 -16.57 0.79 3 4.03 -24.87	-27.18 3.59 -0.14 -0.00 -0.12 -0.07 -0.07 -0.06	-19.95 -15.62 -11.97 -16.78 -0.09 -2.85 -1.69
uo	ચ	168.70 169.21 171.96 172.96	173.36 173.45 173.36 173.36 173.61 173.60 173.89 173.89 176.24 178.91 SHAJN	6 00.9 30 15 180.89 4.1. 5 48.7 27 00 182.36 0.1. 5 36.3 23 12 184.07 -4.11	186.34 - 186.36 - 186.96 - 188.93 T IC 443 189.00 189.67 -	189.84 190.03 192.23 192.64 192.64 192.61 192.60 192.73 192.93	r [29] 194.60 194.65 195.06 195.08 195.66 VV 1-5 196.43
HII Region	\$ (1950)	38 54 37 23 34 24 34 05	35 53 36 10 35 50 34 23 35 49 33 19 34 12.5 19 00 18 00 1A REMIANT	30 15 27 00 23 15	SUFERNOVA KERNANI CKAD NJ 359-9 359-186.34-4 4 59-3 14 01 186.96-6 6 05.5 21 37 188.93 SUPERNOVA REMNANT IC 443 6 17.9 23 06 189.00 4 37.5 7 12 189.67-7	5 45 20 30 20 03 18 03 17 59 17 57 17 56 17 56 17 56 17 56	SUPERNOVA REMNAN' 5 04.1 6 06 5 19.0 8 21 5 32.5 9 54 5 15.9 7 23 6 16.0 15 18 PLANETARY NEBULA 6 04.7 13 20 6 11.7 13 50
	α(1950)	5 16.4 5 10.1 5 13.0 5 19.2	5 36.0 5 39.1 5 35.5 5 24.8 3 5 27.7 5 19.3 5 19.3 6 19.7 1 4 28.4 1 SUPERNOVA	6 00.9 5 48.7 5 36.3	3 59.9 4 59.3 6 05.5 SUPERNOV 6 17.9	4 30.2 6 02.8 6 22.8 6 09.4 6 10.2 6 09.9 6 10.6 6 08.7 4 52.5	SUPERNOVA F 5 04.1 6 5 19.0 8 5 32.5 9 5 15.9 7 7 6 16.0 PLANETARY N 6 04.7 13 6 11.7 13 6 07.4 12
	w	227 228 229 230	231 232 233 234 235 235 237 239 240	241 242 243	245 245 247 248 249 250	251 252 253 254 255 255 257 259	261 262 263 264 265 267 268 270

	comments	(notes) (notes) (notes) NGC 2264;MON OB1 (notes) ROSETTE NEBULA;MON OB2 BARNARD'S LOOP (notes) NGC 2024 (notes) NGC 1972 (notes) (notes)	ORION NEBULA (notes) (notes) (notes)	(notes) CMA OB1 (notes) CMA OB1 vdB-88(notes) CMA OB1 vdB-90(notes) CMA OB1 (notes) CMA OB1 vdB-94(notes) NGC 2359 (notes)	RCW 7 (notes) RCW 10 (notes) (notes) (notes) NGC 2467;FUP OBI (notes) (notes)
	mapping	complete [8] complete [34] complete [34] complete [34] complete [34]	complete [34] extensive [9] complete [9]	complete [7] complete [7] complete [7] complete [7] complete [7] complete [7]	partial [6] partial [6] complete [38]
	diameter (arcmin)	2 1 1 250 8 100 1200 120 50 50 20	60 35 3 80 1 1 12 11 11	21 11 11 7 7 7 7 22 11 3	21 20 200 200 4 30 6 6 6 12 12 12 720 12
	d* (kpc)	4.8 ± 0.5 [45] 6.8 ± 0.15 [57,58] 1.6 ± 0.2 [8] 0.5 ± 0.05 [34] 0.5 ± 0.05 [34] 0.5 ± 0.05 [34] 1.7 ± 0.05 [34]	0.5 ± 0.05 [28] 1.5 ± 0.5 [22] 9.1 ± 2.9 [45] 5.2 ± 0.8 [45] 6.9 ± 0.7 [45] 3.2 ± 0.8 [45] 3.0 ± 1.2 [45] 7.9 ± 0.8 [45]	1.15 ± 0.14 [7,10] 1.15 ± 0.14 [7,10] 4.6 ± 1.5 [45] 1.15 ± 0.14 [7,10] 1.15 ± 0.14 [7,10] 1.15 ± 0.14 [7,10] 6.3 ± 2.5 [45] 4.4 ± 0.6 [45]	5.8 ± 0.9 [45] 5.2 ± 1.4 [45] 4.2 ± 0.4 [45] 2.2 ± 0.5 [45] 1.6 ± 0.7 [22] 5.5 ± 0.8 [45] 1.5 ± 0.6 [22] 4.1 ± 0.6 [22]
Peak CO position	b COref	-2.33 1 -2.09 8 2.09 8 -1.82 8 -16.22 34,56 -23.07 34 -19.09 34	-19.39 1,34 -2.15 1.25.6 1 -1.18 1 0.61 1 -0.35 1 1.95 1,44	1.96 7 -2.87 1,7 1.22 1,7 -2.74 1,7 -2.63 7 -0.06 52 1.49 1	-4.33 1 1.01 1 1 1.01 1 1 1 1 1 0.43 1 1 0.21 1,6 -4.94 1,38
Peak C	૪	197.80 197.82 203.24 207.02 206.63 - 207.57 - 208.45 -	208.99 - 209.91 210.81 211.86 213.81 217.31 217.31 218.15 218.77	224.10 224.17 224.19 224.41 224.43 225.44 227.78 230.97	231.52 232.63 233.77 234.57 234.64 239.65
ons	$\Delta V = (km s^{-1})$	1.9 1.9 6.3 3.1 1.5 -	6.5 (1.7) 5 2.7 2.7 3.0 4.2 5.1 3.5	110N 2.0 2.3 2.3 2.3 2.3 (3.9) 5.8	3.3 3.3 (2.9) 2.5 2.5 2.5
CO Observations	$(k_m s^{V_{CO}}_s)$ (K)	20.5 ± 0.5 5 20.6 ± 0.5 6 7 ± 1 20 14.3 ± 0.1 21 NO OBSERVATIONS 9.6 ± 2.1 31 9.2 ± 1.7 14 8 ± 1.5 8 CANNOT ASSOCIATE	8 ± 1.5 60 49.4 ± 2.8 2.5 45.0 ± 0.7 8 45.3 ± 1.1 2.9 45.3 ± 1.1 2.9 27.2 ± 0.8 12 56.7 ± 0.8 5 NO DETECTION	NO DEFINITE DETECTION 18.4 ± 1.0 20 14.6 ± 0.5 6 32.9 ± 1.1 7 15.0 ± 1.3 ± 1.0 5 11.7 ± 0.5 10.5 (39 ± 6) 4 (4) (52.8 ± 2.5 6	53.0 ± 0.4 9 16.6 ± 0.3 19 NO DETECTION NO DETECTION 44.1 ± 0.6 13 46.3 ± 0.7 9 NO DETECTION 44.0 ± 1.7 22 22.3 ± 1.0 22 51.0 ± 1.6 5 NO OBSERVATION
	Ф	-2.31 -2.29 2.17 -2.12 -20.46 -16.83 -22.94 -19.10	-19.50 -2.30 -2.56 -1.32 0.61 -1.37 -0.39 1.83	-2.77 -1.89 -2.87 1.22 -2.74 -1.95 -0.15 1.49	-4.41 0.89 -9.48 -12.40 -0.18 -0.36 -0.20 -0.20 -6.52
lon	૪	197.77 197.81 202.90 [33] 206.29 206.72 206.91 207.40 208.46	209.04 210.05 210.81 211.19 217.32 218.13 218.85 ABELL	220.53 223.70 224.17 224.19 224.41 224.54 225.47 227.75 230.97	231.45 232.53 233.36 233.89 233.75 234.32 234.77 234.77 237.26 231.6 251.19
HII Region	8 (1950)	12 23 12 22 9 57 ARY NEBULA 4 58 -4 00 -2 28 -5 42 -4 49 2 34	32.5 -5 29 6 35.4 1 32 6 35.9 0 45 6 42.5 0 17 6 52.7 -0 26 6 52.1 -4 28 6 52.1 -4 43 7 06.1 -4 13 6 43.5 -7 16	-7 57 -10 22 -11 14 -9 21 -11 23 -11 08 -12 15 -13 08 -15 11	7 07.6 -18 23 7 29.4 -16 52 6 51.9 -22 21 6 41.4 -24 04 7 27.9 -18 25 7 28.4 -19 00 7 28.4 -19 19 6 52.1 -23 52 7 29.9 -19 19 7 11.0 -24 29 8 57.0 -25 29 PLANETARY NEBULA
	a(1950)	6 12.1 6 12.3 6 38.1 PLANETARY 6 29.1 5 38.2 5 17.3 6 31.7	5 32.5 6 35.4 6 35.9 6 42.5 6 52.1 6 52.1 7 06.1 7 06.1	6 53.0 7 02.1 6 59.4 7 14.2 7 00.3 7 03.4 7 02.9 7 16.1 7 28.4	7 07.6 7 29.4 6 51.9 6 41.4 7 28.4 7 33.3 7 29.9 7 29.9 7 11.0 7 50.3 8 57.0
	ø	271 272 273 274 275 276 277 278 279	281 282 283 284 285 286 287 288 289	291 292 293 294 295 297 298 299	301 302 303 304 305 306 307 308 310 311 312

DBJECT

```
Although there are other observed components, the V = 44 \text{ km s}^{-1} component is most closely associated and is near the H\alpha velocity [ref 55]. There are several weak features with 2.6 < V < 13.5 km s<sup>-1</sup> and 25 < T < 5 K.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           There is line at V = 29 \text{ km s}^{-1} which is the only component present but there is no clear association with the HII region. There are components at V = 29 \text{ km s}^{-1} which is the only associated with
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Blair et al. [ref 6] found a bright cloud near the HII region, but its brightest part is almost a degree away. We found only weak lines near the position of the HII region, but with a velocity similar to that of Blair et al. It appears that the optical HII region may be a background object, and the cloud is visible only in relief against the HII region. No Ha velocity is available.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Quoted line width is ^{13}CO line width. Possibly related to S40, S41, S43, S44. Note that the Sharpless position is incorrect; should be ^{4}1950 = 19 43 35; ^{6}1950 = -23 15 00. There is a weak (T = 4K) line at V = 50 km s<sup>-1</sup>, which is close to the H\alpha velocity of 46 km s<sup>-1</sup> (ref 36), but the sources needs to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Although the 99 km s<sup>-1</sup> component reaches a maximum in the vicinity of the HII region, the very large velocity and the difference between the CO and Ha velocity [ref 22, 55] make velocity assignment doubtful.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Although the detection seems convincing, the high velocity is significantly different from the Ha velocity (ref 58) and must be
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The V = 48.1 km s<sup>-1</sup> component is almost certainly related but there is an additional moderately strong line at V = 13 km s<sup>-1</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Possibly related to S45 complex.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        May be part of $45 complex. Two T = 6K 11 are present, but needs mapping to show association with HII region. Two T = 6K lines at V = 25, V = 28 km s<sup>-1</sup> are present. Needs mapping. Possibly related to $45 complements of T = 11K) lines at V = 18, V = 40 km s<sup>-1</sup> are present.
                                                                                                                              see S16; too many strong (T \sim 15K) lines at various velocities to clearly associate with the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Velocity assignment is based on Ha [ref 36] velocity. There are other strong lines in this vicinity.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          There is a T = 4k line at V = 15.7 km s<sup>-1</sup>, but not clearly related to the HII region. No CO detected; listed as a planetary but may be the shell of a Wolf Rayet star.
                                                                                                                                                                                                                                                                                                                                                                                                                          S25, S29, S31, S32 appear to be related to a single giant molecular cloud complex. 

c Oph excites; related to Sco-Cen association.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Two strong lines T = 12K, V = 17.3 km s<sup>-1</sup>; T = 10K, V = 30 km s<sup>-1</sup> are present.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Solution T = 4K, V = 33.0 \text{ km s}^{-1}, but not definitely associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Bright dark cloud.
Two strong (T=10-15K) lines occur in this vicinity at V=18.1, V=37.5 km s<sup>-1</sup>.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   velocity line seems more closely associated; may be part of S45 complex.
                                                                                         $16-S20 appear to be related to a single giant molecular cloud complex.
Weak line (T=3K, V=-18 km s^{-1}) which does not appear to be associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Components at V = 26, V = 31 \text{ km s}^{-1} both appear to be related.
                                                                                                                                                                                                                                                                                                                                I=6K line at V=19 km s<sup>-1</sup> may be associated with this object.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A line at T = 7K, V = 39.0 is not obviously associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Component at V = 17.5 \text{ km s}^{-1} is probably associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       At least five lines with 8 < V < 120 km s<sup>-1</sup>
                                                                                                                                                                                                                                                                                                   May also be part of S16-S20 complex.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Possibly related to S45 complex.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           mapped to show an association.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        probably a foreground cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         considered doubtful.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Bright dark cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Bright dark cloud.
                                                                                                                                                                                                                                                                                                                                                                                     Bright dark cloud.
                                                                                                                                                                                                                                                          see S16.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ΛO
                                                                                                                                                                $18
$21
$21
$21
$22
$24
$25
$27
$27
$23
$33
$33
$33
$33
$340
$340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        S41
S42
S43
S44
S45
S45
S55
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            $60
$62
$63
$66
$67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         $70
$71
$74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S75
S76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 $79
$80
$81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S56
S57
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              898
```

þe

, which is

```
Weak CO line at V = -10.6 km s<sup>-1</sup>, not necessarily associated. The Ha weakness of the line, it appears to be associated with the HII region. CO appears to be definitely related in spite of the weakness of the line, especially since it peaks at the position of the HII region. Line width quoted is for 13_{\rm CO}.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        There is a component at V = -30.6 ± 1.0 km s<sup>-1</sup> which may be related, but other components are also present. There appear to be two HII regions in the same line of sight. There are two widely separated velocities for the CO clouds, and both lines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Bright dark cloud. Weak emission (T = 3K, V = 2.6 km s<sup>-1</sup>) was found but does not appear to be related to the clearly evident obscuration.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    The best estimate of the velocity is 0 ± 5 km s<sup>-1</sup>, but the object needs extensive mapping to determine the velocity accurately. Small scale mapping shows clouds, each apparently associated with the HII region with velocities of -1, -1.6, +1.0 and -8 km s<sup>-1</sup>. Althe of T = 2K, V = 0.8 km s<sup>-1</sup> was found, but is not obviously related. Israel's [ref 30] velocity of -20.8 km s<sup>-1</sup> differs from that of Blair et al. [ref 6] by 4 km s<sup>-1</sup>. We observed three positions near the eastern peak of Blair et al. and obtained a mean velocity of -20.7 \pm 0.7 \pm m s<sup>-1</sup>. The reason for the discrepancy between Israel and Blair et al. is unclear and we adopt our values for consistency.
                                                                                                                                                                                                                                                                                                                                                    There is another moderately strong component at 6 km s<sup>-1</sup>. The 13.7 km s<sup>-1</sup> component is more closely associated with the ionization front
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Listed as planetary nebula, Abell 63, in [ref 48], but the strength of the CO line and its clear association with the nebula suggest that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      The velocity assignment is based on the H_{\alpha} velocity of -64.6 km s<sup>-1</sup> [ref 55]. There is a foreground cloud at V = -7 km s<sup>-1</sup>, which has small intensity variation near the position of the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    , each close to the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Although there are a few weak components at other velocities, the velocity assignment is confirmed by Hα measurements [ref 22, 55
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Other weak components (T < 3.5K) near zero velocity are unrelated. This is confirmed by H\alpha velocity [ref 22, 55]. Velocity structure is too fragmented and chaotic to get good center of mass velocity without complete mapping. Because of high latitude, we expect any CO detected to be related to the emission nebula in spite of the weakness of the line.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     There are two almost equally strong lines at V = -40 and V = -47 km s<sup>-1</sup> both of which appear to be related to the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      weak lines (T < 1K) at V = -48.7 km s<sup>-1</sup> are near the H\alpha velocity [ref 55] but are too weak to conclude they are associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Although the line is weak, the velocity assignment is made on the basis of agreement with the Hα velocity [ref 22]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Furthermore, the H\alpha spectrum [ref 55] shows two velocity components at V = -44.8 and V = -8.9 km s<sup>-1</sup> It is unclear which HII region is at the distance given by ref. 8.
                                                                                                                                          A T = 1.2K Ifine at V = 19.7 km s-1 occurs in this vicinity but does not appear to be related to the complex
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CO observations were not made at the optimum position. There are weak (T < 2K) lines at V = -52 km s<sup>-1</sup>, but there is no evidence that they are associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                              There is associated CO at V = 11 km s<sup>-1</sup>, T = 20 K [ref 53]. Strong emission from several lines with -12 < V < +7 and V = 45 km s<sup>-1</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Too large to find dust clouds which appear to be interacting.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 The given velocity is the weighted mean of all the CO data.
                                                                                                                                                                                                                                                        Appears related to S100; error in CO velocity is estimated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Several lines were detected with -20 < V < +6 \text{ km s}^{-1}.
                                                                                                                                                                                                                                                                                                                                                                                                            and is nearly equal to the Ha velocity [ref 22,55].
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Distance given is the mean of both determinations.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Weak lines at V = -22 and V = -53.8 km s<sup>-1</sup>.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The error in the CO velocity is estimated
                                                                                                Uncertainty in CO velocity is estimated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      object has probably been misidentified.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Error in CO velocity is estimated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Error in CO velocity is estimated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Apparently related to S169.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Related to S147 and S148.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Probably related to S153.
Appears related to S88.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           are strong.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         velocities.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                See S149.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   See S149.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      See S152.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              $148
$149
$152
$153
$154
$157
                                                                                                                                                                                                                                                                                                                                                                                                                                                              $103
$108
$108
$115
$115
$116
$120
$121
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 S133
S135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S140
S141
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             $168
$169
$170
$171
                                                                                                                                                                                                                                                                                                      $100
$101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S143
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S147
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S162
S163
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S131
```

Bright dark cloud.

```
The component at V = -37.6 km s<sup>-1</sup> peaks directly on the HII region. Another component at V = 0 km s<sup>-1</sup> T = 5K is also present and appears to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The velocity is the center of mass velocity of the extended molecular complex. Interaction of the association members with the HII region and molecular cloud indicates S220 is related to Per OB2 cloud mapped by [3,50]. In immediate vicinity of S220, [20] finds V(CO) = -3.8 \pm 2.0 \text{ km s}^{-1}, T = 15\text{K} at \alpha(1950) = 3.5.28, \delta(1950) = 3.5.58.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Distance may not be meaningful because the observed stars may not be responsible for the ionization. Possible detection at V = -3 km s<sup>-1</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Distance given may not be meaningful because stars may be unrelated to the ionization. Possibly associated CO at V = 11.3 ± 1.8 km s<sup>-1</sup>,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Probable velocity assignment based on Ha [ref 55] velocity. There is another line present at one position at V = -7 km s-1 which is
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      there are two components present at V = +5.3 and 2.1 km sec. It is unclear whether one or both are related to the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                There are two components, equally strong at V = -13.5 and V = -10 km s<sup>-1</sup>. Both are probably related to the HII region. There are numerous moderately strong (T = 6K) lines over a wide range of velocities in the positions we searched.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Weak (T \sim 1K), narrow lines at V = 6, 7.5 km s<sup>-1</sup>. It is unclear whether they are associated with the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8281; Velocity is center of mass velocity for the associated giant molecular cloud complex; Part of ORI OBI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Velocity assignment based on Hα velocity [ref 55]. Another line is present at V = -25 \text{ km s}^{-1}, T = 4K. There are weak lines with -33 < V < -3 \text{ km s}^{-1}, none is clearly associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 There are weak lines at V = -7.8 \pm 0.4 and -1.6 \pm 0.3 km s<sup>-1</sup>; Neither is clearly associated. There are weak lines at V = -4.7 \pm 0.7 and +4.6 \pm 0.4 km s<sup>-1</sup>; Neither is clearly associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         V(CO) = -2.8 \pm 1.0 km s<sup>-1</sup> [ref 15]. S254, S255, S256, S257, and S258 are all related to a single glant molecular cloud complex.
                                                                                                                                                                                                                                                       Weak lines (T < 1.7K) with -12 < V < 10 km s^{-1} all of which are probably unrelated. Possibly related to S192 - S194 complex. A weak line at T < 1.5K, V = -1.7 km s^{-1} is probably unrelated.
                                    The error in the CO velocity is estimated. There are weak lines at -9 < V < O km s^-1, but none appear to be associated. Weak lines at -43 < V < 0 km s^-1. None appear to be associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                         There are two components, equally strong at V = -13.5 and V = -10 km s<sup>-1</sup>.
                                                                                                   Weak lines at -43 < V < 0 km s<sup>-1</sup>. None appear to be associated. S192, S193, S194 appear to be related to a single molecular complex.
                                                                                                                                                                                                                                                                                                                                                                    A few weak T < 2K lines are present but almost surely are unrelated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Large diffuse nebula probably related to S229, S236, S234, and S237.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Related to Orion A complex (S281) and ORI OB1 association
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Probable C0 detection at T = 1.6K, V = 11.6 \pm 0.5 km s<sup>-1</sup>,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           There are two components with T = 6K at V = -6, V = -26.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         The CO cloud may not be related to the HII region.
It is not clear whether the CO is associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           There are other weak unrelated components.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Part of the Taurus dark cloud complex.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  No CO detected; extensively searched.
                                                                                                                                                                                                                                                                                                                                                                                                               Error in CO velocity is estimated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       be due to a foreground cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        See S281; Part of ORI OB1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                probably foreground.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Bright dark cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Bright dark cloud
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Bright dark cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Related to S272.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            No CO detected.
                                                                                                                                                                                     See S192.
                                                                                                                                                                                                                             See S192.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           $254.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         See S254.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      See S254.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      See S254.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     See S271.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     See
                                                                                                                                                                                  $193
$194
$195
$196
$197
$198
$202
$203
$205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              $206
$207
$209
$210
$211
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    $215
$216
$218
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     S220
```

```
Wolf-Rayet Shell source; CO has three widely separated components [ref 52]. CO velocity is estimate of center of mass velocity and is quite
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Related to S308.
Weakness of the line and proximity in space and velocity to S305 may mean that the CO is not related to this HII region, but is part of the
                                                                                                                                                                                                    It is also close to the Ha velocity [55].
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (31) Knapp et al. 1976. (32) Knapp et al. 1977. (33) Kohoutek 1978. (34) Kutner et al. 1977. (35) Lada and Baliunas 1981. (36) Lada and Black 1976. (37) Lada and Elmegreen 1979. (38) Lada and Reid 1978. (39) Lada and Wooden 1979. (40) Lada et al. 1978. (41) Lada et al. 1976. (42) Loren and Wootten 1978. (43) Loren, Peters, and Vanden Bout 1975. (44) Lucas and Encrenaz 1975. (45) Moffatt, FitzGerald, and Jackson 1979. (46) Neckel 1978. (47) Parsamian and Petrossian 1979. (48) Perek and Kohoutek 1967. (49) Sargent 1977. (50) Sargent 1979. (51) Sargent and Blitz 1981. (52) Schneps et al. 1981. (53) Scoville et al. 1977. (54) Sewall and Jackson 1980. (55) Treffers 1980. (56) Tucker, Kutner, and Thaddeus 1973. (57) Turner 1976. (58) Walker 1956.
There are two lines present; V = 24 km s<sup>-1</sup>, T = 2.9K, V = 11 km s<sup>-1</sup>, T = 2.1K. Related to S276, S277, S278, S279; velocity is center of mass velocity for the associated giant molecular cloud complex. Temperature and line width are for BN-KL object; Part of ORI OBI.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    uncertain. Velocity components at V = 37, 54 and 67 km s<sup>-1</sup>, but 37 km s<sup>-1</sup> component is most massive.
                                                                                                                                                                                              In spite of its weakness, the given velocity component appears to be related to the HII region. No CO detected.
                                                                                                                                                                                                                                                                                                                             There is a weak line (T = 1.5K, V = 32.1 km s<sup>-1</sup>) not obviously related to the HII region.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Possible 1K line at V = 37.3; Wolf-Rayet shell source, related to S303.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1981, Abraham, Month, A. Maran, A. M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   REFERENCES.—(1) This work. (2) Bally and Scoville 1980. (3) Baran
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Noo large and diffuse for meaningful observations.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            No CO detected; extensively searched.
                                                                                                                                                                                                                                                                                                                                                                                            Related to S293, S295, S296, S279.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    complex related to S305
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Related to VY CMa.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       See S292.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            See S292.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            See S292.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             See S292.
                                                                                                                                                                                                          $282
$290
$291
$292
$293
$295
$296
$296
$297
$298
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               $303
$306
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       $308
$310
$312
$313
                                                                                      S281
```

41 6.38 -0.49 NO OBSERVATION 66.96 -1.28 11.6 ± 0.4 21 70.85 -4.69 NO OBSERVATION 10 90.31 2.67 1.1 ± 0.5 14 89.95 -0.25 CANNOT ASSOCIT 44 89.95 -0.25 -74.2 ± 0.5 15 95.62 4.06 (-79.9 ± 0.5) 21 97.40 8.51 3.3 ± 0.4 47 101.42 2.66 (-79.9 ± 0.5) 22 105.39 9.88 -10.1 ± 0.8 24 108.12 -0.13 (-79.9 ± 0.4) 25 105.39 9.88 -10.1 ± 0.8 26 10.20 0.21 -54.2 ± 3 27.40 8.51 3.3 ± 0.4 27.40 8.51 3.3 ± 0.4 28 109.99 -0.03 (-79.9 ± 0.5) 29 110.22 -0.17 -54.2 ± 1.1 20 97.40 8.51 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 21 10.24 0.03 (-79.9 ± 0.4) 22 10.20 0.27 -51.9 ± 0.9 23 105.39 9.88 -10.1 ± 0.8 24 10.20 0.21 -50.8 ± 0.5 25 110.20 0.21 -50.8 ± 0.5 27 1.0.24 0.33 (-13.0 ± 0.5 28 121.97 -0.95 NO DETECTION 29 134.34 3.56 -9.7 ± 0.4 20 134.30 -0.98 NO DETECTION 20 120.57 10.0 ± 1.6) 21 143.81 -1.57 -32.2 ± 0.4 21 143.81 -1.57 -32.2 ± 0.4 22 150.05 -1.11 -5.5 ± 0.4 23 155.50 -8.91 -7.5 ± 0.5 24 155.50 -8.91 -7.5 ± 0.5 25 156.42 -8.18 -5.9 ± 0.5 26 156.45 -7.3 ± 0.5 27 156.46 -1.15 NO DEFINITE DE 20 10 10 10 10 10 10 10 10 10 10 10 10 10				
41 6.38 -0.49 NO OBSERVATION 52 70.85 -4.69 NO DETECTION 59.31 2.67 1.1 ± 0.5 44 89.95 -0.52 CANNOT ASSOCIT 13 95.65 0.24 -74.2 ± 0.5 50.22 4.06 (-79.9 ± 0.5) 50.29 -0.17 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 48 108.03 -0.18 -10.1 ± 0.8 54 108.03 -0.18 -10.1 ± 0.8 54 108.03 -0.18 -49.9 ± 0.4 51 100.02 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 59 110.20 0.21 -0.98 NO DEFINITE DE NO DETECTION 50 11.73 2.76 -10.9 ± 0.5 50 11.73 2.76 -10.9 ± 0.5 50 11.73 2.76 -10.9 ± 0.4 51 143.50 -2.82 NO DETECTION 51 143.50 -2.82 NO DETECTION 52 155.50 -8.91 -7.5 ± 0.4 51 155.50 -8.91 -7.5 ± 0.5 52 156.93 -0.47 -7.5 ± 0.5 53 156.45 -1.15 NO DEFINITE DE NO DE	$^{\Delta V}_{\rm n \ s^{-1}})$	b CO ref	d* diameter (kpc)	mapping comments
10 90.31 2.67 1.1 ± 0.5 44 89.95 -0.52 CANNOT ASSOCIA 90.31 2.67 1.1 ± 0.5 1.6 89.95 -0.52 CANNOT ASSOCIA 90.95 -0.52 CANNOT ASSOCIA 95.05 0.24 -0.6 (-79.9 ± 0.5) 95.65 0.24 -0.70 ± 0.5 95.05 0.17 2.66 -0.17 54.2 ± 3.3 ± 0.4 47 101.42 2.66 -0.17 54.2 ± 3.3 ± 0.4 45 101.42 2.66 -0.10 ± 0.8 54 108.03 -0.18 -49.9 ± 0.4 109.99 -0.08 -10.1 ± 0.8 109.99 -0.08 -10.1 ± 0.8 109.99 -0.08 -10.1 ± 0.8 109.99 -0.08 -13.0 ± 0.5 100.20 0.27 -51.9 ± 0.5 100.24 -0.51 54.0 ± 0.5 100.24 0.05 110.20 0.21 -52.8 ± 1.1 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DETECTION 47 143.50 -0.13 (-40.0 ± 1.6) 32 141.73 2.76 -10.9 ± 0.5 140.70 -1.35 (-40.0 ± 1.6) 149.09 -1.98 -7.9 ± 0.4 57 55.50 -8.91 -7.5 ± 0.4 68 155.50 -8.91 -7.5 ± 0.5 58 156.42 -8.18 156.45 -1.35 NO DEFINITE DE 156.45 -1.35 -1.35 10.9 ± 0.5 58 156.45 -1.35 -1.35 10.9 ± 0.5 58 10.4 125.30 -8.91 -7.5 ± 0.5 58 156.45 -1.35 -1.35 10.	2.5 66.98	-1.26 1	2 5	IC 4954/5 (notes)
10 90.31 2.67 1.1 ± 0.5 44 89.95 -0.52 CANNOT ASSOCIT 1.9 95.65 0.24 -74.2 ± 0.5 0.5 0.24 2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.2 0.17 24.2 ± 0.5 0.17 24.0 ± 0.4 0.17 2 0.6 0.17 2 0.4 0.17 2 0.6 0.10 ± 0.4 0.5 0.18 0.0 0.2 0.13 0 ± 0.4 0.5 0.10 0.2 0.2 0.2 0.10 0.2 0.2 0.10 0.2 0.2 0.10 0.2 0.2 0.2 0.10 0.2 0.2 0.2 0.10 0.2 0.2 0.2 0.2 0.10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	2) - -	(notes)
44 89.95 -0.52 CANNOT ASSOCII 13 95.65 0.24 -74.2 ± 0.5 21 96.02 -4.06 (-79.9 ± 0.5) 21 97.40 8.51 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 45 108.03 -0.18 -10.1 ± 0.8 53 105.39 9.88 -10.1 ± 0.8 54 108.03 -0.18 -49.9 ± 0.4 55 108.12 -0.38 (-13.0 ± 0.4) 10.44 -0.51 -47.0 ± 0.5 60 110.20 0.27 -51.9 ± 0.9 61 10.24 0.03 0.27 -51.9 ± 0.5 60 110.24 0.16 -52.8 ± 1.1 17 110.24 0.16 -52.8 ± 1.1 17 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 -0.98 NO DEFINITE DE 41 134.10 -0.98 NO DEFINITE DE 42 138.52 0.21 NO DEFINITE DE 43 134.34 3.56 -9.7 ± 0.4 44 134.30 -1.35 (-40.0 ± 1.6) 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -2.5 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.99 -1.98 -7.2 ± 0.4 58 156.99 -1.38 -7.3 ± 0.5 59 156.99 -7.3 ± 0.5 59 156.42 -8.18 -7.3 ± 0.5 51 156.53 -8.91 -7.3 ± 0.5 51 156.45 -8.18 -7.3 ± 0.5 51 156.46 -1.15 NO DEFINITE DE	5.2 90.40	2.44 1	5.0	Ber-29 (notes)
13 95.65 0.24 -74.2 ± 0.5 16 96.02 4.06 (-79.9 ± 0.5) 19 19.29 -0.17 -54.2 ± 3 19 7.40 8.51 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 53 105.39 9.88 -10.1 ± 0.8 54 108.03 -0.18 (-13.0 ± 0.4) 12 109.44 -0.51 47.0 ± 0.5 61 100.20 0.21 -51.9 ± 0.5 60 110.24 0.51 -47.0 ± 0.5 61 110.24 0.12 -52.8 ± 1.1 61 12.48 6.62 CANNOT ASSOCIA 62 120.57 7.12 NO DETECTION 64 134.10 -0.98 NO DETECTION 65 136.52 0.20 NO DEFINITE DE 67 129.57 7.12 NO DEFINITE DE 68 134.34 3.56 -9.7 ± 0.4 69 134.34 3.56 -9.7 ± 0.4 60 134.30 -1.35 (-40.0 ± 1.6) 61 143.50 -1.35 (-40.0 ± 1.6) 62 143.50 -1.38 -7.9 ± 0.4 63 155.50 -8.91 -7.6 ± 0.4 64 155.50 -8.91 -7.6 ± 0.4 65 155.50 -8.91 -7.6 ± 0.4 65 155.50 -8.91 -7.6 ± 0.4 65 155.50 -8.91 -7.6 ± 0.5 65 156.42 -8.18 -7.3 ± 0.5 65 156.42 -7.3 ± 0.5 67 156.45 -7.3 ± 0.5 67 156.45 -7.3 ± 0.5 67 156.46 -1.15 NO DEFINITE DE		1	1	PK 089-0.1 (notes)
16 96.02 4.06 (-79.9 ± 0.5) 21 96.29 -0.17 -54.2 ± 3 47 101.42 2.66 -61.0 ± 0.4 45 101.42 2.66 -61.0 ± 0.4 45 108.13 -0.18 (-13.0 ± 0.4) 45 108.13 -0.38 (-13.0 ± 0.4) 45 109.49 -0.38 (-13.0 ± 0.4) 46 109.99 -0.08 -13.0 ± 0.4 47 10.20 0.21 -51.8 ± 0.6 49 110.20 0.27 -51.9 ± 0.9 40 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DETECTION 47 129.57 7.12 NO DETECTION 47 129.57 7.12 NO DETECTION 48 134.10 -0.98 NO DETECTION 49 134.34 3.56 -9.7 ± 0.4 41 134.10 -0.98 NO DETECTION 47 143.81 -1.5 -10.2 ± 0.4 48 156.99 -1.98 -7.2 ± 0.4 49 143.81 -1.57 -22.7 ± 0.4 40 155.50 -8.91 -7.6 ± 0.4 41 143.81 -1.57 -22.7 ± 0.4 42 155.50 -8.91 -7.6 ± 0.4 43 156.99 -1.98 -7.3 ± 0.5 44 156.99 -1.98 -7.3 ± 0.5 45 156.99 -1.98 -7.3 ± 0.5 46 156.99 -1.98 -7.3 ± 0.5 47 143.81 -1.57 -7.5 ± 0.4 48 156.38 -8.45 -7.3 ± 0.5 48 156.48 -7.3 ± 0.5 49 156.44 -8.18 -5.9 ± 0.5	2.3	0.24 1	က	
21 96.29 -0.17 -54.2 ± 3 19 97.40 8.51 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 54 108.03 -0.18 -49.9 ± 0.4 45 108.12 -0.38 (-13.0 ± 0.4) 48 156.29 -0.08 -47.0 ± 0.4 49 110.02 0.27 -51.9 ± 0.9 50 110.20 0.21 -50.8 ± 0.5 60 110.24 0.16 -52.8 ± 0.5 7.12 0.09 ETECTION 10 121.48 6.62 CANNOT ASSOCIV 47 134.10 -0.95 NO DEFICITION 47 129.57 7.12 NO DEFINITE DE 48 156.28 0.04 ± 0.4 47 143.81 -1.57 -10.9 ± 0.5 48 156.28 -1.01 -2.01 49 149.09 -1.35 (-10.9 ± 0.5 50 140.09 -1.09 ± 0.4 51 16 150.99 -1.04 52 155.53 -8.91 -7.5 ± 0.4 48 156.28 -7.3 ± 0.4 48 156.42 -1.15 NO DEFINITE DE 48 156.35 -8.39 -7.3 ± 0.5 54 143.81 -1.57 -2.77 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.35 -8.91 -7.6 ± 0.4 59 156.42 -8.18 -7.3 ± 0.5 50 156.42 -7.3 ± 0.5 51 156.44 -7.3 ± 0.5 52 156.45 -7.3 ± 0.5 53 156.44 -7.3 ± 0.5	(2.5)	4.13 1	5	very faint (notes)
19 97.40 8.51 3.3 ± 0.4 47 101.42 2.66 -61.0 ± 0.4 45 101.42 2.66 -61.0 ± 0.4 45 108.03 -0.18 -49.9 ± 0.4 45 108.12 -0.38 (-13.0 ± 0.4) 12 109.44 -0.51 -47.0 ± 0.5 48 109.99 -0.08 -51.5 ± 0.6 68 100.20 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 50 110.20 0.21 -51.9 ± 0.9 50 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 41 134.10 -0.98 NO DEFINITE DE 134.34 3.56 -9.7 ± 0.4 41 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.11 NO DEFINITE DE 141 139.92 0.20 NO OBSERVATION 35 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 57 149.09 -1.98 -7.9 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 615.50 -8.91 -7.6 ± 0.4 615.35 -8.81 -7.5 ± 0.5 515.42 -8.18 -5.9 ± 0.5 515.42 -8.18 -5.9 ± 0.5 515.42 -8.18 -5.9 ± 0.5 515.44 -8.18 -5.9 ± 0.5	1.9	-0.17 1	5	
47 101.42 2.66 -61.0 ± 0.4 53 105.39 9.88 -10.1 ± 0.8 54 108.03 -0.18 -49.9 ± 0.4 45 108.12 -0.38 (-13.0 ± 0.4) 12 109.44 -0.51 -47.0 ± 0.5 48 109.99 -0.08 -51.5 ± 0.6 60 110.24 0.27 -51.9 ± 0.9 110.24 0.16 -52.8 ± 1.1 17 110.24 0.16 -52.8 ± 1.1 17 110.24 0.16 -52.8 ± 1.1 17 110.24 0.16 -52.8 ± 1.1 18 6.62 CANNOT ASSOCIV 47 129.57 7.12 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 134.10 -0.98 NO DEFINITE DE 41 134.10 -0.98 NO DEFINITE DE 42 138.52 -0.11 NO DEFINITE DE 44 134.50 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 42 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -22.2 ± 0.9 149.09 -1.98 -7.9 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.35 -8.91 -7.6 ± 0.4 59 156.39 -8.86 -7.3 ± 0.5 59 156.42 -8.18 NO DEFINITE DE	2.5	8.50 1	- 1	DG 168
53 105.39 9.88 -10.1 ± 0.8 54 108.03 -0.18 -49.9 ± 0.4 45 108.12 -0.38 (-13.0 ± 0.4) 112 109.44 -0.51 -47.0 ± 0.5 68 110.02 0.27 -51.9 ± 0.9 59 110.20 0.27 -51.9 ± 0.9 110.24 0.16 -52.8 ± 1.1 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 42 138.52 0.21 NO DEFINITE DE 19 139.92 0.20 NO OBSENATION 47 143.81 -1.57 -10.9 ± 0.5 47 143.81 -1.57 -10.9 ± 0.4 47 143.50 -2.82 NO DETECTION 47 143.61 -1.57 -2.5 ± 0.4 48 156.59 -1.19 -7.5 ± 0.4 49 155.50 -8.91 -7.5 ± 0.4 48 156.35 -8.45 -7.5 ± 0.5 54 156.35 -8.45 -7.3 ± 0.5 55 156.45 -8.18 NO DEFINITE DE 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.9	2.66 1	1	(notes)
54 108.03	6	1 88 0	Ç	DG 176
45 108.12 -0.38 (-13.0 ± 0.4) 12 109.44 -0.51 -47.0 ± 0.5 48 110.02 0.27 -51.9 ± 0.9 110.20 0.27 -51.9 ± 0.9 110.24 0.16 -52.8 ± 1.1 17 110.24 0.16 -52.8 ± 1.1 17 110.24 0.33 NO DETECTION 17 110.24 0.33 NO DETECTION 18 121.97 -0.98 NO DEFINITE DE 19 134.10 -0.98 NO DEFINITE DE 138.52 0.21 NO DEFINITE DE 141.34.10 -0.98 NO DEFINITE DE 138.52 0.21 NO DEFINITE DE 141.73 2.76 -10.2 ± 0.4 141.73 2.76 -10.2 ± 0.4 142.18 2.06 -10.9 ± 0.5 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 149.09 -1.98 -7.9 ± 0.4 155.50 -8.91 -7.6 ± 0.4 155.50 -8.91 -7.6 ± 0.4 155.50 -8.91 -7.6 ± 0.4 156.28 -8.45 -7.5 ± 0.5 156.42 -8.18 -7.3 ± 0.5 156.44 -8.18 -5.9 ± 0.5 156.44 -8.18 -5.9 ± 0.5	2.0 108.03	-0.18 1	12	LBN 107.8-0.3 (notes)
10.00	_	-0.50	3.1	
48 109.99 -0.08 -51.5 ± 0.6 08 110.20 0.27 -51.9 ± 0.9 59 110.24 0.16 -52.8 ± 1.1 110.24 0.16 -52.8 ± 1.1 110.24 0.13 NO DETECTION 121.48 6.62 CANNOT ASSOCIA 47 129.57 7.12 NO DEFINITE DE 49 134.34 0.9.3 NO DEFINITE DE 49 134.34 0.9.3 NO DEFINITE DE 1139.92 0.20 NO DEFINITE DE 139.92 0.20 NO DEFINITE DE 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.9 ± 0.5 42 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 48 143.50 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.35 -8.89 -7.2 ± 0.4 58 156.35 -8.89 -7.3 ± 0.5 58 156.45 -8.89 -7.3 ± 0.5 58 156.45 -8.89 -7.3 ± 0.5 58 156.45 -8.89 -7.3 ± 0.5 58 156.45 -8.89 -7.3 ± 0.5 59 156.45 -8.89 -7.3 ± 0.5 51 156.46 -1.15 NO DEFINITE DE		-0.33	67	(notes)
98 110.02 0.27 -51.9 ± 0.9 59 110.20 0.21 -50.8 ± 0.5 110.20 0.21 -50.8 ± 0.5 110.24 0.16 -52.8 ± 1.11 110.24 0.33 NO DETECTION 10 121.48 6.62 CANNOT ASSOCIA 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 134.34 3.56 -9.7 ± 0.4 134.34 3.56 -9.7 ± 0.4 139.92 0.20 NO DEFINITE DE 19 139.92 0.20 NO DEFINITE DE 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.4 55.50 -8.91 -7.6 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 48 156.35 -8.84 -7.5 ± 0.5 54 156.44 -8.18 156.35 -8.18 -5.3 ± 0.5 55 156.44 -8.18 156.35 -8.18 -5.3 ± 0.5 55 156.44 -8.18 156.35 -8.18 156.35 -8.18 156.35 -8.18 156.35 -8.18 156.45 -7.3 ± 0.5 55 156.44 -8.18 156.35 -8.18 15		1 50.0-	r.	(2000)
10.02 0.27 -50.8 ± 0.5 59 110.20 0.21 -50.8 ± 1.1 110.24 0.16 -52.8 ± 1.1 110.24 0.33 NO DETECTION 121.48 6.62 CANNOT ASSOCIA 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 41 134.10 -0.98 NO DEFINITE DE 41 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.21 NO DEFINITE DE 42 138.52 -0.21 NO DEFINITE DE 44 135.50 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 47 143.81 -1.57 -10.2 ± 0.4 47 143.81 -1.57 -32.2 ± 0.9 48 156.59 -8.91 -7.6 ± 0.4 49 155.50 -8.91 -7.6 ± 0.4 48 156.35 -8.39 -7.3 ± 0.4 48 156.44 -8.18 -7.3 ± 0.5 55 156.45 -8.18 NO DEFINITE DE 48 156.44 -8.18 -7.3 ± 0.5 56 156.45 -7.3 ± 0.5 57 156.46 -7.3 ± 0.5 58 156.45 -7.3 ± 0.5 59 156.44 -8.18 NO DEFINITE DE		1 00.0		no 180 (2010)
99 110.24 0.14 -50.8 ± 1.1 1 110.24 0.16 -52.8 ± 1.1 1 110.24 0.16 -52.8 ± 1.1 1 110.24 0.16 -52.8 ± 1.1 1 110.24 0.33 NO DETECTION 47 129.57 7.12 NO DETECTION 47 134.10 -0.98 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.11 NO DEFINITE DE 139.92 0.20 NO DEFINITE DE 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 42 143.81 -1.57 -22.2 ± 0.9 143.81 -1.57 -32.2 ± 0.9 149.09 -1.98 -7.9 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 615.53 -8.81 -7.5 ± 0.4 615.53 -8.81 -7.5 ± 0.4 615.35 -8.81 -7.5 ± 0.4 615.35 -8.81 -7.5 ± 0.5 515.42 -8.81 -7.5 ± 0.5 515.42 -8.81 -7.5 ± 0.5 515.42 -8.81 -7.3 ± 0.5 515.44 -8.81 -5.9 ± 0.5 515.44 -8.81 -5.9 ± 0.5 515.44 -8.81 -5.9 ± 0.5		0.29 I	7.1	no 100 (notes)
10.24 0.16 -52.8 ± 1.1 17 110.24 0.15 -52.8 ± 1.1 18 121.97 -0.95 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 0.0.98 NO DEFINITE DE 49 134.34 0.0.98 NO DEFINITE DE 19 139.92 0.20 NO DEFINITE DE 19 139.92 0.20 NO DEFINITE DE 140.70 -1.35 (-40.0 ± 1.6) 35 140.70 -1.35 (-40.0 ± 1.6) 47 143.50 -1.35 (-10.9 ± 0.5) 47 143.51 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 48 143.50 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.35 -8.83 -7.3 ± 0.5 58 156.45 -1.15 NO DEFINITE DE 58 156.45 -1.31 -5.5 ± 0.5 58 156.45 -1.31 -7.5 ± 0.5 59 156.45 -1.31 -7.5 ± 0.5 50 156.45 -8.39 -7.3 ± 0.5 51 156.45 -8.39 -7.3 ± 0.5 52 156.45 -8.39 -7.3 ± 0.5 53 156.45 -8.38 -5.9 ± 0.5	07.011 0.0	0.21	· ·	rr-rot (nores)
10.24 0.33 NO DETECTION 10.11.48 6.62 CANNOT ASSOCIV 28.121.97 -0.95 NO DEFINITE DE 41 134.10 -0.98 NO DEFINITE DE 42 134.34 3.56 -9.7 ± 0.4 42 134.34 3.56 -9.7 ± 0.4 42 134.34 3.56 -9.7 ± 0.4 42 134.35 0.20 NO OBSERVATION 35 140.70 -1.35 (-40.0 ± 1.6) 36 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 44 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 48 156.99 -1.98 -7.9 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.35 -8.45 -7.5 ± 0.5 58 156.39 -7.3 ± 0.5 59 156.44 -8.18 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5 51 156.45 -8.18 -7.3 ± 0.5 51 156.45 -8.18 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5 51 156.45 -7.3 ± 0.5	3.3 110.24	0.16 1	-1	(notes)
10 121.48 6.62 CANNOT ASSOCIV 38 121.97 -0.95 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.10 -0.98 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.11 NO DEFINITE DE 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 44 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 47 143.81 -1.57 -32.2 ± 0.9 48 156.99 -1.98 -7.9 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 58 156.39 -8.86 -7.2 ± 0.4 59 156.39 -8.81 -7.5 ± 0.5 51 156.39 -8.83 -7.3 ± 0.5 51 156.44 -1.15 NO DEFINITE DE		1	2	(notes)
18 121.97 -0.95 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.11 NO DEFINITE DE 138.52 -0.11 NO DEFINITE DE 139.92 0.20 0.0 OBERNATION 35 140.70 -1.35 (-40.0 ± 1.6) 36 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 44 143.81 -1.57 -32.2 ± 0.9 47 143.81 -1.57 -32.2 ± 0.9 47 143.81 -1.57 -32.2 ± 0.9 48 156.99 -0.47 -27.7 ± 0.4 49 156.99 -0.47 -27.7 ± 0.4 49 156.35 -8.91 -7.6 ± 0.4 48 156.35 -8.93 -7.3 ± 0.5 55 156.44 -7.3 ± 0.5 34 156.46 1.15 NO DEFINITE DE		1	1	DG 5
38 121.97 -0.95 NO DETECTION 47 129.57 7.12 NO DEFINITE DE 49 134.34 3.56 -9.7 ± 0.4 DE 42 138.52 -0.11 NO DEFINITE DE 139.92 0.20 NO OBERNATION 35 141.73 2.76 -10.2 ± 0.4 DE 142.18 2.06 -10.9 ± 0.5 DE 143.81 -1.57 -32.2 ± 0.9 DETECTION 47 143.81 -1.57 -32.2 ± 0.9 DETECTION 47 143.81 -1.57 -32.2 ± 0.9 DETECTION 47 143.81 -1.57 -32.2 ± 0.9 DETECTION 48 156.99 -0.47 -27.7 ± 0.4 DETECTION 49 156.99 -0.47 -27.7 ± 0.4 DE 155.50 -8.91 -7.6 ± 0.4 DE 155.53 -8.93 -7.2 ± 0.4 DE 156.35 -8.93 -7.3 ± 0.5 DE 156.44 -8.18 NO DEFINITE DE 156.44 -9.18 NO DEFINITE DE 156.44 -9.18 NO DEFINITE DE		•	,	:
41 134.10 -0.98	1		1 6	VdB 4
41 134.10 -0.98 NO DEFINITE DE 134.34 3.56 -9.7 ± 0.4 4 138.32 -0.11 NO DEFINITE DE 139.92 0.20 NO OBSERVATION 135 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 4 143.50 -2.82 NO DETECTION 47 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 149.09 -1.11 -5.5 ± 0.4 25 150.09 -0.47 -27.7 ± 0.4 25 150.09 -0.47 -27.7 ± 0.4 25 155.50 -8.91 -7.6 ± 0.4 48 156.35 -8.84 -7.5 ± 0.5 5 156.42 -8.18 -7.3 ± 0.5 5 156.42 -8.18 -5.9 ± 0.5 5 156.44 -8.18 -5.9 ± 0.5 5 156.44 -8.18 -5.9 ± 0.5		٠,	7 6	TEN 13, 0-1 0
49 134.34 3.56 -9.7 ± 0.4 42 138.52 -0.11 NO DEFINITE DE 139.92 0.20 NO 0BSERNATIOD 35 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 21 149.09 -1.98 -7.9 ± 0.4 25 150 05 -1.11 -5.5 ± 0.4 26 155.50 -8.91 -7.6 ± 0.4 27 155.50 -8.91 -7.6 ± 0.4 28 156.35 -8.45 -7.5 ± 0.5 28 156.35 -8.45 -7.3 ± 0.5 28 156.35 -8.45 -7.3 ± 0.5 29 156.44 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	,	T	7	LBN 154.0-1.0
42 138.52 -0.11 NO DEFINITE DE 138.52 -0.11 NO DEFINITE DE 139.92 0.20 NO OBSERVATION 22 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 149.09 -1.98 -7.9 ± 0.4 25 150 05 -1.11 -5.5 ± 0.4 27 155.50 -8.91 -7.5 ± 0.4 27 155.50 -8.91 -7.5 ± 0.4 48 156.28 -8.45 -7.2 ± 0.4 48 156.35 -8.93 -7.3 ± 0.5 55 156.44 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	2.0 134.32	3.72 1	20	part of SI/I
19 139.92 0.20 NO OBSERVATION 35 140.70 -1.35 (-40.0 ± 1.6) 42 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 149.09 -1.11 -5.2 ± 0.4 57 155.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 68 156.28 -8.45 -7.5 ± 0.5 48 156.38 -8.45 -7.3 ± 0.5 55 156.42 -8.18 NO DEFINITE DE 156.46 1.15 NO DEFINITE DE 156.46 1.15 NO DEFINITE DE 156.47 -8.18 -5.9 ± 0.5	N(1	2	very faint
35 140.70 -1.35 (-40.0 ± 1.6) 32 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 44 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 21 149.09 -1.98 -7.9 ± 0.4 25 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 60 155.50 -8.91 -7.6 ± 0.4 61 156.39 -8.45 -7.5 ± 0.5 62 156.42 -8.18 -7.3 ± 0.5 63 156.42 -8.18 NO DEFINITE DE 64 156.44 -8.18 -5.9 ± 0.5 65 156.44 -8.18 -5.9 ± 0.5 66 1.15 NO DEFINITE DE		-	7	(notes)
32 141.73 2.76 -10.2 ± 0.4 42 142.18 2.06 -10.9 ± 0.5 54 143.80 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 21 149.09 -1.98 -7.9 ± 0.4 25 150 05 -1.11 -5.5 ± 0.4 6 150.99 -0.47 -27.7 ± 0.4 6 150.99 -1.98 -7.2 ± 0.4 6 155.50 -8.91 -7.6 ± 0.4 6 155.50 -8.91 -7.6 ± 0.4 6 155.50 -8.91 -7.6 ± 0.4 6 155.42 -8.11 -7.5 ± 0.5 6 156.35 -8.39 -7.3 ± 0.5 6 156.42 -8.18 -5.9 ± 0.5 6 156.44 -8.18 NO DEFINITE DE	(3.3) 140.82	-1,28 1	06	LBN 140.8-1.4 (notes)
42 142.18 2.06 -10.9 ± 0.5 54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 21 149.09 -1.98 -7.9 ± 0.4 25 150 05 -1.11 -5.5 ± 0.4 16 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 62 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE		2.76 1	20	LBN 141.7+2.9 (notes)
54 143.50 -2.82 NO DETECTION 47 143.81 -1.57 -32.2 ± 0.9 11 149.09 -1.11 -5.5 ± 0.4 15 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 02 155.63 -8.94 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.44 -1.15 NO DEFINITE DE	9	1.92 1	30	DG 17 (notes)
47 143.81 -1.57 -32.2 ± 0.9 21 149.09 -1.98 -7.9 ± 0.4 25 150 05 -1.11 -5.5 ± 0.4 16 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 62 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE		1	ဧ	LBN 143.5-2.9
4/ 143.81 -1.5/ -52.2 ± 0.9 21 149.09 -1.98 -7.5 ± 0.4 16 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 02 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE			c	
25 150 05 -1.11 -5.5 ± 0.4 16 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.28 -8.45 -7.5 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	2.3 143.8I	-1.51 1	7 1	(50400) 1 100-1 10 Man
25 150 05 -1.11 -5.5 ± 0.4 16 150.99 -8.91 -7.77 ± 0.4 17 155.50 -8.91 -7.6 ± 0.4 02 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE		-1.98 1	C*T	FR 149-1:1 (not
16 150.99 -0.47 -27.7 ± 0.4 57 155.50 -8.91 -7.6 ± 0.4 62 155.63 -8.68 -7.2 ± 0.4 648 156.28 -8.45 -7.5 ± 0.5 648 156.35 -8.39 -7.3 ± 0.5 65 156.42 -8.18 -5.9 ± 0.5 67 115 NO DEFINITE DE	2.0 150.06	-1.12 1		
57 155.50 -8.91 -7.6 ± 0.4 02 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	_	-0.4/ 1	C	
02 155.63 -8.68 -7.2 ± 0.4 48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE		-8.89 1	m	(notes)
48 156.28 -8.45 -7.5 ± 0.5 48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	1.3 155.63	-8.68 1	ന	(notes)
48 156.35 -8.39 -7.3 ± 0.5 55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE		-8.45 1	m	(notes)
55 156.42 -8.18 -5.9 ± 0.5 34 156.46 1.15 NO DEFINITE DE	-	-8.39	. (~	(notes)
34 156.46 1.15 NO DEFINITE DE		18 18 1	, ("	(notes)
34 ISO.46 I.IS NO DEFINITE DE	7	1 01.0-	n ((notes)
	N	1	2	(notes)
10 + 0 / 60 11 /11 01	c	. 70	r	(1040)
48 156.51 -8.24 -6.8 ±	2.0 136.51	-8.24 1	n 0	(notes)
46 I3 I56.98 -1./4 (-2.0 ± 0.5) (3.4)(-1.66 1	ю. ,	
35 159.79 1.97 CANNOT		1	15	LBN 160.1+1.9 (notes)
30 160.27 0.85 -25.2 ±	3.9 160.27	0.85 1	Š	LBN 160.2+1.0 (notes)

		HII Region	uo		CO 09t	CO Observations	su:	Peak	Peak CO position	tion				
	a(1950) &(1950)	\$ (1950)	ચ	٩	$(k_{m}^{VCO}_{s})$	TA* (K)	$\Delta V = (km s^{-1})$	૪	þ	CO ref	d* (kpc)	diameter (arcmin)	mapping	comments
45	90	1	167.68	-0.63	41.	9	1.3	167.71	-0.64	F-1 :		5.0		
46	5 37 32 5 37 28	35 40 35 38	173.71	2.70 2.67	-16.9 ± 0.5 -16.8 ± 0.5	22 20	4.6 3.0	1/3./1	2.70			0.7		M 1/3+02/3 (notes) M 1/3+02/3 (notes)
48 7	48		183.40	1.85	+1 77	11 FONS	3.9	183.37	-0.56	1		0.5		
20	47		184.88	-1.73		6	3.7	184.86	-1.72	1		0.3		IC 2144
51	6 15 43 6 11 48	23 23 19 02	188.52	3.71	-7.0 ± 0.5 7.3 ± 0.5	17	22.2	188.55	3.65			10 1		LBN 188.7+3.8 (?) (notes)
54	7 7 7 7		211.14	-1.00	-1 +1	2.3 13	3.2 2.0	211.15	-0.35		8.7 ± 2.8 [45]	·	complete [9]	NGC 2282
55	54 56		216.10	0.01	+1 +1	8 77	2.0	216.17	-0.02			25		<pre>very faint (notes) (notes)</pre>
57	26		217.39	-0.08	+1	17	3.9	217.39	-0.08			1		(notes)
58	58		217.44	0.35	41 41	7	2.3	217.46	0.38			en en		(notes)
09	47		219.58	-3.81	+1	4	2.0	219.58	-3.81	-		₽		
61	55		220.78	-2.16	+1 +	2 5	2.0	220.74	-2.17			100		NGC 2313
63 64	6 54 51 6 58 10	-8 16 -8 47	221.01	-2.51	13.4 ± 0.5 40.0 ± 0.5	7 7 15	e e	220.91	-2.48			10 5		PP-66 DG 114
65	17		348.77	-1.12	+1	25	7.2	348.73	-1.06			9		RCW 122

BJECT

```
Listed as a planetary nebula in referance 45, but the strength of the CO and its clear association with the nebula suggest that the object
                                                                                                    There are other weaker components present in the spectra. The region needs to be mapped or an H_{\alpha} velocity needs to be obtained
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   There are two lines (V = -15 km s<sup>-1</sup>, T = 2.5K; V = -30 km s<sup>-1</sup>, T = 3.5K) present. It is unclear if they are related to the nebula. A component at V = 4.2 km s<sup>-1</sup>, T = 4-5K is also present, but does not vary in intensity across field. Almost surely foreground.
                                                                                                                                                                    to assure association. There are two components present at V = -51.2 \text{ km s}^{-1}, T = 8K and V = -58 \text{ km s}^{-1}, T = 4K both of which appear to be associated. There is a T = 5K line near 0 velocity, but it shows no intensity variation with position as the high velocity line does; probably
                                                                                                                                                                                                                                                                                                                                                                                                   Probably related to S156. Probably related to S156, a few weak (T < IK) lines near V = -52 km s<sup>-1</sup> are probably outer parts of cloud related to 18, 14-17. Weak line at V = -2.8 km s<sup>-1</sup>, T \approx 1K is present but is probably not associated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      With 36, there are diffuse circular nebulae which appear to be part of a single bright dark cloud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Cluster of stars with red nebulosity each ~ 1' diameter. The entire region is 4' in diameter.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A line at V = 2.3 km s<sup>-1</sup> is as strong as T = 4K , but is probably unrelated.
                                                                                                                                                                                                                                                                                                     The Ine is weak, but is strongest at the optical center of the HII region.
Source consists of 3 closely spaced HII regions each 1' diameter. Cluster of stars with small (~20") circumstellar emission.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Weak (T < 1.3K) lines at V = 0.3 \pm 0.4 km s<sup>-1</sup>.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Group of 3 HII regions/reflection nebulae.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              has probably been misidentified.
                                                                      There are many lines present.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Probably related to S202.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CO not definitely related.
                                                                                                                                                                                                                                                                                                                                         Probably related to S156.
                                                                                                                                                                                                                                                                                                                                                                              Probably related to S156.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Probably related to S202.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Probably related to 57.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Related to 38, 39, 41.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 See 37.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              See 35.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            335
336
337
338
339
440
441
442
443
444
447
447
477
552
552
553
```

TABLE 1 Kinematically Distinct Complexes

Source	$(km \ s^{-1})$	४	p	d (kpc)	Other Associated HII Regions	Source	(km s ⁻¹)	४	ą	d (kpc)	Other Associated HII Regions
S3	-8.7 ± 1.3 -14.2 ± 0.6	348.20	0.36			S112 S117	-4.0 ± 2.0	83.78	3.28	2.1 ± 0.7 1.0 ± 0.3	
	+1	351.36	0.61	1.74 ± 0.31		8119	+1	87.06	-4.19	+1	
	+1	351.89	17.17			8120	+1	90.20	2.06		
S11	+1 +	352.80	0.64	1.74 ± 0.31		\$121	-60.9 ± 0.5	90.23	1.72		
	1 +1	13.800	-0.39		817.818.819.820	S122	1 +1	94.57	-1.45		
	+1	.58	-0.86			S125	+1	94.72	-5.57	1.01 ± 0.16	
	+1	5.08	30.84			S126	+1	96.72	-15.14	+1	
	+1	09.9	-0.78	1.8 ± 0.2	529,531,532	S127	+1 -	96.27	2.57		
	+1 -	356.19	13.24	+1		\$128	+1 -	97.56	3.16	+	
	+1 +	8.54	36.41			\$129	-13.9 ± 0./ -48 5 + 1 5	99.06	04.0	0.40 ± 0.13	
	1 +1	11.40	-1.71			5134		103.70	2.18	1 +1	
	+1	11.90	0.76			\$135	+1	104.59	1.37	+1	
	+1	13.70	-0.20	+1	840,841,843,844	S137	+1	105.15	7.12	+1	
	+1	15.42	3.31	2.0 ± 0.6	S47	8138	+1	105.63	0.36		
	+1	16.58	-0.35	+1		8139	-46.5 ± 0.5	105.77	-0.15	3.3 ± 1.1	
	+1	17.06	0.70	+1		8140	+1	106.81	5.31		
	+1 -	18.21	-0.32			S141		106.83	3,35		
	+1 +	18.90	2.09	2.0 ± 0.2		S142	+1 +	107.28	-0.90	3.4 ± 0.3	
	1 +	23.13	20.0-			2775	5.0 + 5.0%	100.10	00.0		
	1 +1	24.48	-0.20			5140		108.32	1.08	5.5 + 1.8	S148 S149
	+1	25.36	0.24			\$150	+1	109.00	6.29		
	+1	26.44	1.75			\$151	+1	108.69	-2.63		
	+1	27.34	-20.87			\$152	+1	108.76	96.0-	+1	S153
	+1	28.74	3.56			S154		109.17	1.47	+1	
	+1	29.05	-0.76			S155	+1	113.00	2.00	+1	
	+1	31.83	1.46			\$156		110.11	0.05	6.1 ± 2.0	
	+1 -	35.13	11.36			8157	+1	111.28	99.0-		•
	+1	36.42	-1.78			8158	+1	111.54	0.78	+1	
	+1 +	37.62	44.71			8159	+1 -	111.61	0.37		
	-1 +	39.00	-1.23			S161A	-10.0 ± 1.0	111.89	88.0		
	1 +	53.56	77.71	+		21018	+	112 19	0.00	3.5 + 1.1	
	1 +	20.00		+ 0 0	085 685 685 685	2016	1 +	113 59	77.0	ı +	
	ł	000	17.0		S93 may form a single	\$165		114.65	0.14	1.6 ± 0.5	
					kinematic group.	8167	+1	114.99	3.21		
	+1	61.21	-0.05	2.2 ± 0.5		\$168		115.81	-1.68	+1	8169
	+1	62.92	0.12			8170	+1	117.57	2.26	2.3 ± 0.7	
	+1	63.12	0.44	4.0 ± 1.3		S172	+1	118.63	-1.32		
	+1	64.14	-0.47			S173	+1	119.40	-0.84	2.7 ± 0.9	
268	21.1 ± 1.0	66.83	0.87			S174	+1	120.17	18.40		
	+1	70.21	1.65	+1 9.	8100	S175	+1	120.36	1.97	1.7 ± 0.5	
	+1	71.59	2.76	2.5 ± 0.8		8177	+1	120.63	-0.14	+1	
	+1	74.79	0.57	÷.		S178	-3.6 ± 1.0	125.05	25.63		
	+1	76.40	-0.61			\$181	-36.6 ± 0.4	122.72	2.37		

01.1.0.0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.	122.81 123.21 124.89 126.72 133.80 133.80 136.51 137.30 138.16 138.47 139.99 150.68	1.87 3.02 -6.35 0.32 -0.73 0.80 2.09								
-30.4 # 1.11 -4.3.0 # 2.6 -4.3.0 # 2.6 -4.4.0 # 2.6 -4.5.1 # 0.9 -4.6.7 # 1.0 -9.0 # 1.0	23.21 24.89 24.89 33.80 36.72 36.72 36.51 38.16 38.47 39.99 50.68	-6.35 0.32 -0.73 0.80 2.09			S271 S273	++++	197.81 202.00	-2.33 1.60	+1 +1	S272
14.9 + 0.4 4.6.0 + 1.0 4.9.1 + 1.0 4.9.2 + 1.0 4.9.3 + 1.0 4.9.4 + 0.5 4.9.5 + 1.0 4.9.5 + 1.0 4.9.6 + 1.0 4.9.6 + 1.0 4.9.7 + 1.0 4.9.8 + 1.0 4.9.9 + 1.0 4.9 + 1.0 4.9 + 1.0 4.9 + 1.0 4.0 +	26.72 33.80 336.12 336.12 37.30 38.47 39.99 50.68 51.27	-0.73 0.80 2.09 2.50	2.2 ± 0.7		S275 S281	14.3 ± 0.1 8.8 ± 2.1	207.50 208.90	-2.00 -17.50	1.6 ± 0.2 0.5 ± 0.5	S276, S277, S278, S279
4.6.0 # 5.3 4.6.0 # 5.3 4.6.0 # 1.0 4.9.0 # 1.0 4.0.0 # 1.4 4.0.0 # 1.4 4.0.0 # 1.4 4.0.0 # 1.4 4.30.2 # 2.4 4.30.2 # 0.4 4.30.3 # 0.4 4.30.4 # 0.4 4.30.4 # 1.0 4.30.4 # 1	33.80 36.12 36.12 37.30 38.16 38.47 39.99 550.68	0.80 2.09 2.50			\$283	+1 +	210.81	-2.56	+1 +	
450.7 490.0 # 1.4 40.0 # 1.4 40.0 # 1.4 11.5 # 2.0 130.2 # 2.0 130.2 # 2.0 130.2 # 2.0 130.2 # 0.4 130.3 # 0.4 130.3 # 0.4 130.3 # 1.0 130.9 # 1.0 1	36.12 36.51 38.16 38.47 39.99 50.68 51.27	2.50	2.1 ± 0.2		S284	45.0 ± 0.7	211.86	-1.18	5.2 ± 0.8 6.9 + 0.7	
-39.0 h 1.0 -9.7 h 0.5 -40.0 h 1.4 -10.0 h 1.4 -30.2 h 0.5 -30.2 h 0.4 -30.2 h 0.4 -30.3 h 0.4 -20.5 h 1.1 -20.5 h 1.1 -20.5 h 1.2 -20.5 h 1.1 -20.5 h 1.2 -20.5 h 1.2 -20.5 h 1.2 -20.5 h 1.0	37.30 38.16 38.47 39.99 50.68 51.27			5193,5194	S286 S286	1 +1	217.31	-1.39	4	
-9.7 # 0.5 -40.0 # 1.4 -11.5 # 2.0 -30.2 # 2.4 -30.2 # 0.4 -31.5 # 0.4 -20.5 # 1.1 -20.5 # 1.2 -20.5 # 1.0 -20.5 # 1.0 -32.9 # 1.0 -32.9 # 1.0 -4.3 # 0.7 -7.6 # 1.0 -7.6 # 1.0 -7.6 # 1.0 -7.2 # 0.7 -7.6 # 1.0 -7.6 # 1.0 -7.5 # 1.0	38.16 38.47 39.99 50.68 51.27	1.40	2.1 ± 0.2		S287	+1	218.15	-0.35	3.2 ± 0.8	
140.0 # 1.4 11.5 # 12.0 11.5 # 12.0 130.2 # 12.0 130.2 # 2.4 130.2 # 0.4 130.3 # 0.4 130.3 # 10.4 130.9 # 1.0	38.47 39.99 50.68 51.27 51.61	4.09			S288	+1 +	218.77	1.95	+1 -	1000
-21.5 + 2.0 -30.2 + 0.5 -30.2 + 0.5 -37.6 + 0.9 -37.6 + 0.9 -37.6 + 0.9 -24.5 + 1.2 +7.0 + 3.0 -1.0 + 1.0 -32.9 + 1.0 -13.4 + 0.7 -13.4 + 0.7 -13.5 + 1.0 -13.7 + 0.5 -13.7 + 0.5 -13.7 + 0.5 -13.8 + 1.0 -13.9 + 1.0 -14.9 + 1.0 -15.9 +	59.59 50.68 51.27 51.61	1.60	4		\$292 8292	+ +	224.00	-2.00	1.15 ± 0.15	8293, 8295, 8296, 8297
-302.2 + 0.4 -37.6 + 0.9 -37.6 + 0.9 -37.6 + 0.9 -24.5 + 1.1 -24.5 + 1.2 -23.0 + 1.0 -32.9 + 1.7 -4.3 + 0.7 -7.2 + 0.7 -7.2 + 0.7 -7.2 + 0.7 -7.2 + 0.7 -7.2 + 0.7 -7.2 + 0.7 -7.3 + 0.7 -7.4 + 0.7 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0 -7.5 + 1.0	51.27	-0.77	-1 +1		\$299		230.97	1.49	1 +1	8300
-52.2 # 2.4 -37.6 # 0.9 -37.6 # 0.9 -20.5 # 1.1 +3.4 # 0.4 +7.0 # 1.0 -32.9 # 1.0 -1.2 # 0.7 -1.3 # 0.7 -1.4 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.7 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5 -1.5 # 0.5	51.61	1.97	7.6 ± 0.8		S301		231.52	-4.33	5.8 ± 0.9	
-37.6 # 0.9 -35.3 # 0.4 -20.5 # 1.1 +3.4 # 0.4 +7.0 # 1.1 -13.9 # 1.0 -32.9 # 1.7 -1.2 # 0.7 -1.3 # 0.7 -1.3 # 0.7 -1.3 # 0.7 -1.3 # 0.7 -1.4 # 0.5 -1.5 # 1.0 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2 -2.9 # 1.2		-0.24			S302	+1 -	232.63	1.01	+1 -	
-35.3 # 0.3 -31.5 # 0.4 +31.6 # 1.1 +7.0 # 3.0 -24.5 # 1.2 +7.0 # 3.0 -8.7 # 1.0 -8.7 # 1.0 -13.4 # 0.7 -7.4 # 0.7 -7.4 # 0.7 -7.5 # 1.0 0.00 # 0.5 3.7 # 2.5 -7.5 # 1.0 -6.5 # 1.0 0.00 # 0.5 -7.5 # 1.2 -7.5 # 1.2	54.65	2.46			S305	44.1 ± 0.6	233.77	-0.15	+1 +	
+3.5 + 1.0 +3.5 + 1.0 +7.0 + 3.0 -1.0 + 1.0 -3.2 + 1.0 -1.0 + 1.0 -2.3 + 1.0 -1.0 + 1.0 -1.0 + 1.0 -1.0 + 0.7 -1.2 + 0.7 -1.3 + 0.7 -1.4 + 0.7 -1.5 + 0.5 -1.6 + 1.0 -1.7 + 0.5 -1.8 + 1.0 -1.9 + 1.0 -1.0 + 0.7 -1.0 + 0.5 -1.0 +	57.00	2.65	6.U ± 0.6		8309	+ +	234.57	0.03	+ 1-	
+3.4 + 0.4 -24.5 + 1.2 +7.0 + 3.0 -1.0 + 1.0 -8.7 + 1.0 -8.7 + 1.0 -13.4 + 1.7 -13.4 + 0.7 -13.4 + 0.7 -4.3 + 0.7 -6.5 + 1.0 0.00 + 0.5 2.9 + 1.2 -5.9 + 1.2	59.15	3.27	5.2 ± 0.8		8310	ı +ı	239.87	-4.47	1 +1	
-24.5 # 1.2 +7.0 # 3.0 -1.0 # 1.0 -8.7 # 2.10 -8.7 # 2.10 -18.4 # 1.7 -13.2 # 0.7 -4.3 # 0.7 -6.5 # 1.0 -6.5 # 1.0 0.00 # 0.5 3.7 # 0.5 3.7 # 0.5 2.9 # 1.2 -5.4 # 0.5 -6.5 # 1.0 -6.5 # 1.		11.36			8311	51.0 ± 1.6	243.20	0.44	+1	
+7.0 # 3.0 -3.0 # 1.0 -8.7 # 2.5 -18.4 # 1.7 -13.4 # 0.5 -4.3 # 0.5 -4.3 # 0.5 -6.5 # 1.0 0.00 # 0.5 3.7 # 2.5 2.9 # 1.0 2.9 # 1.2 -5.5 # 0.5 -5.5 # 0.5 -6.5 # 1.0 -6.5 # 1.0		2.57	4.2 ± 0.6							
-1.0 ± 1.0 -32.9 ± 1.0 -8.7 ± 2.5 -18.4 ± 0.7 -13.4 ± 0.7 -7.2 ± 0.5 -4.3 ± 0.7 -6.5 ± 1.0 -6.5 ± 1.0 -6.5 ± 1.0 -7.5 ± 0.5 -7.5 ± 0.5		-19.00	+!				,			
-32.9 H 1.0 -8.7 H 2.5 -13.4 H 0.7 -13.4 H 0.7 -7.2 H 0.5 -4.3 H 0.7 -6.5 H 1.0 -6.5 H 1.0 -6.0 H 0.5 3.7 H 2.3 7.5 H 0.5 -7.3 H 1.2 -7.4 H 1.2 -7.5 H 0.5 -7.5 H 0.5 -7.5 H 0.5 -7.5 H 0.5 -7.5 H 0.5		00.6-					Ā	DITIONAL	ADDITIONAL HII REGIONS	
-18.4 ± 12.7 -23.0 ± 0.5 -13.4 ± 0.7 -7.2 ± 0.5 -4.3 ± 0.7 7.5 ± 1.0 0.00 ± 0.5 3.7 ± 2.3 7.5 ± 0.5 -2.9 ± 1.2 -5.4 ± 0.5 -7.5 ± 1.2 -7.5 ± 1.2		88.0								
-23.0 ± 0.5 -13.4 ± 0.7 -7.2 ± 0.5 -4.3 ± 0.7 -6.5 ± 1.0 -6.0 ± 0.5 3.7 ± 2.3 7.5 ± 0.5 -5.9 ± 1.2 -5.9 ± 1.2 -5.9 ± 1.2 -5.4 ± 2.0		2.55	+1	5233 5235	2	11.6 ± 0.4	96.99	-1.26		
-13.4 + 0.7 -7.2 + 0.5 -4.3 + 0.7 7.6 + 1.0 -6.5 + 1.0 0.00 + 1.0 3.7 + 2.3 7.5 + 0.5 -2.9 + 1.2 -5.9 + 1.2 -5.9 + 1.2 -5.9 + 1.2 -5.9 + 1.2		3.17				+1	90.40	2.44		
-7.2 ± 0.5 -4.3 ± 0.7 7.6 ± 1.0 -6.5 ± 1.0 0.00 ± 0.5 3.7 ± 2.3 7.5 ± 0.5 -5.9 ± 1.2 -5.4 ± 2.0		2.40	+1			+1	95.65	0.24		
-4.3 ± 0.7 7.6 ± 1.0 -6.0 ± 1.0 0.00 ± 0.5 3.7 ± 2.3 7.5 ± 0.5 -5.9 ± 1.2 -5.4 ± 2.0		-0.05	+1			+1	96.29	-0.17		
7.6 ± 1.0 -6.5 ± 1.0 0.00 0.5 3.7 ± 2.3 7.5 ± 0.5 -5.9 ± 1.2 -5.4 ± 2.0		2.81	+1			+1 -	97.39	8.50		
-6.5 tr 1.0 0.00 tr 0.5 3.5 tr 0.5 7.5 tr 0.5 2.9 tr 1.2 -5.3 tr 2.6		-1.78	+1 -	S239		-61.0 ± 0.4	101.46	2.66		
2.01 + 2.3 7.5 + 0.5 7.5 + 0.5 2.9 + 1.2 -5.3 + 2.6	180./9	4.03	4./ ± 1.2		11	H +	108 83	9.08		
7.5 ± 0.5 2.9 ± 1.2 -5.3 ± 2.6 7.5 ± 1.0		-4.04	1				109,05	-0.33		
2.9 ± 1.2 -5.3 ± 2.6 7.5 ± 1.0		-16.69				+1	134.32	3.72		
-5.3 ± 2.6		0.85				-10.2 ± 0.5	141.73	2.76		
7.5 ± 1.0		4.38	+1 -			+1 -	142.27	1.92		
0.1 - 0.7		0.30	+1 +			H 4	143.81	-1.51		
14.4 ± 0.5	192.23	2,09	4.4 - 0.4	8568 7568 9568 5568			150.06	-1.90		
22.8 ± 0.5		-0.58	+	, 0500, 0501,		+	150.99	-0.47		
0.3 ± 1.0		-17.54	+1			+1	155.58	-8.79		36
12.0 ± 0.5		-10.29	_			+1	156.39	-8.32		38,39,41
-1.6 ± 1.1		-16.98				+1 -	160.06	-1.12		
31.2 ± 1.1		-0.07				н .	167.71	-0.64		!
4.8 ± 0.5	195.97	-2.74	+			H +	1/3./4	2.70		/4
2270 25 6 + 0 4 16	196.83	-1.08	3.8 ± 1.0		0 t	2.3 + 0.3	184.86	-1.79		

CATALOG OF CO EMISSION

TABLE 1—Continued

Sour	ce V (km s ⁻¹)	L	ъ	d (kpc)	Other Associated HII Regions
					mii kegions
51	-7.0 ± 0.5	188.55	3.65		
52	7.3 ± 0.5	191.92	0.86		
53	37.1 ± 1.0	211.16	-0.99		
54	21.4 ± 0.5	211.25	-0.35	8.7 ± 2.8	
55	23.5 ± 0.5	216.17	-0.02		
56	25.9 ± 0.4	217.35	-0.07		57
58	49.9 ± 0.4	217.46	0.38		
59	25.7 ± 0.4	217.67	-0.19		56 (?)
60	11.2 ± 0.4	219.58	-3.81		• •
61	9.9 ± 0.7	220.74	-2.17		
62	13.4 ± 0.4	220.78	-1.75		
63	13.4 ± 0.5	220.91	-2.48		
64	40.0 ± 0.5	221.84	-2.05		
65	-11.9 ± 1.0	348.73	-1.06		

Thus, a lower limit to the percentage of H II regions in the Sharpless catalog which have associated molecular clouds is $\sim 70\%$. It is a lower limit because many of the objects which have been listed as "Cannot Associate" do have accompanying molecular clouds, but these could not be identified without additional mapping. Furthermore, some of the objects for which no detection or no definite detection has been made may not be H II regions. Some may be unidentified planetary nebulae, and some of the filamentary objects may be old supernova remnants which have lost their nonthermal radio signature.

Sharpless objects which have little or no associated molecular material (those with no detections or no definite detections, viz., "naked" H II regions) tend to be radio quiet (1.4 GHz flux densities <100 mJy). Naked H II regions are 20% of our sample. In a survey of 168 of the Sharpless objects, Felli and Churchwell (1972) found that 34 (20%) were radio quiet. Yet 19 (56%) of the radio-quiet H II regions were naked H II regions. Felli and Perinotto (1974) concluded that most of the radioquiet H II regions are likely to be faint nearby H II regions excited by stars of relatively late spectral type. These stars, of spectral type B1-B9, live for times sufficiently long to be able to drift long distances from their placental molecular clouds. The correlation between radio-quiet and naked H II regions is, therefore, not surprising.

Twelve (34%) of the radio-quiet H II regions have detected associated molecular clouds, and 17 (13%) of the H II regions with flux densities > 100 mJy are naked H II regions. Some of the former may be reflection nebulae, but we have no independent data to support this conjecture. The latter class of objects may indicate that some early-type stars, albeit a small percentage, are not formed in massive molecular clouds, and the mechanisms that govern their formation may be different from those of the large majority of massive stars. In some cases, however, a molecular cloud may be present which we did not detect with our search technique. Another possibility is that the molecular cloud has been completely destroyed by the recently formed stars.

For the 65 additional objects, three of which were not observed, the majority are associated with very strong CO emission, confirming that they are indeed H II regions. Many of the rest are relatively high latitude objects (in this case, high latitude means |b| > 20), with CO line strengths comparable to similar H II regions listed in the Sharpless catalog.

b) Independence of the Molecular Complexes

In a number of cases, two or more H II regions are associated with a single molecular cloud complex. In order to study the motions of the complexes in the Galaxy, it is necessary to have a statistically unbiased sample of kinematically distinct objects. Table 1 is a listing of the objects we detected which appear to be kinematically distinct on the basis of CO mapping where available, of the distances to the exciting stars, and of the agreement (or lack of agreement) of the CO velocities for objects which are separated by relatively small angles. The coordinates and velocities listed in Table 1 are for the center of mass of the entire complex.

REFERENCES

Bally, J., and Scoville, N. Z. 1980, Ap. J., 239, 121. Baran, G. P. 1981, Ph.D. thesis, Columbia University. Bernes, C. 1977, Astr. Ap. Suppl., 29, 65. Blaauw, A., Hiltner, W. A., and Johnson, H. L. 1959, Ap. J., 130, Blair, G. N., Evans, N. J., Vanden Bout, P. A., and Peters, W. L.

1978, Ap. J., 219, 896.

Blair, G. N., Peters, W. L., and Vanden Bout, P. A. 1975, Ap. J. (Letters), 200, L161. Blitz, L. 1978, Ph.D. thesis, Columbia University. _____. 1979, Ap. J. (Letters), 231, 115. . 1981, in preparation.

Blitz, L., and Thaddeus, P. 1980, Ap. J., 241, 676.

Claria, J. J. 1974, Astr. Ap., 37, 229.

```
Clark, D. H., and Caswell, J. L. 1976, M.N.R.A.S., 174, 267.
Cohen, R. S., and Thaddeus, P. 1977, Ap. J. (Letters), 217, L155.
Cong, H. I. 1977, Ph.D. thesis, Columbia University.
Crampton, D., and Fisher, W. A. 1974, Pub. D.A.O., 14, No. 12.
Crampton, D., Georgelin, Y. M., and Georgelin, Y. P. 1978, Astr. Ap., 66, 1.

De Noyer, L. K. 1979, Ap. J. (Letters), 232, L165.
Dickinson, D. F., Frogel, J. A., and Persson, S. E. 1974, Ap. J., 192, 347.

Dorschner, J., and Gürtler, J. 1963, Astr. Nach., 287, 257.
Elmegreen, B. G., and Lada, C. J. 1976, A.J., 81, 1089.

______. 1978, Ap. J., 219, 467.

Elmegreen, B. G., Lada, C. J., and Dickinson, D. F. 1979, Ap. J., 230, 415.

Evans, N. J., Blair, G. N., and Beckwith, S. 1977, Ap. J., 217, 448.
Felli, M., and Perinotto, M. 1974, Ap. Space Sci., 26, 115.
Georgelin, Y. 1975, thèse de doctorat, Université de Provence.
Georgelin, Y. M., and Georgelin, Y. P., 1976, Astr. Ap., 49, 57.
Georgelin, Y. M., Georgelin, Y. P., and Roux, S. 1973, Astr. Ap., 25, 337.

Herbig, G. H. 1971, Ap. J., 169, 537.

______. 1972, Ap. J., 172, 375.
Herbist, W., Racine, R., and Warner, J. W. 1978, Ap. J., 223, 471.
Humphreys, R. M. 1978, Ap. J. Suppl., 38, 309.
Ilovaisky, S. A., and Lequeux, J. 1972, Astr. Ap., 18, 169.
Israel, F. P. 1978, Astr. Ap., 70, 769.

Knapp, G. R., Kuiper, T. B. H., Knapp, S. L., and Brown, R. L. 1976, Ap. J., 206, 443.

_____. 1977, Ap. J., 214, 78.

Kohoutek, L. 1978, IAU Symposium 76, Planetary Nebulae Observations and Theory, ed. Y. Terzian (Dordrecht: Reidel), p. 47.
Ap. J., 215, 521.

Lada, C. J., and Blaiunas, S. 1981, in preparation.

Lada, C. J., and Blaiunas, S. 1981, in preparation.

Lada, C. J., and Blaiunas, S. 1981, in preparation.

Lada, C. J., and Elmegreen, B. G., Cong, H.-I., and Thaddeus, P. 1978, Ap. J., (Letters), 226, L39.
```

```
Lada, C. J., Gull, T. R., Gottlieb, C. A., and Gottlieb, E. W. 1976,
Ap. J., 203, 159.
Lada, C. J., and Reid, M. J. 1978, Ap. J., 219, 95.
Lada, C. J., and Wooden, D. 1979, Ap. J., 232, 158.
Loren, R. B., Peters, W. L., and Vanden Bout, P. A. 1975, Ap. J.,
Loren, R. B., and Wootten, A. H. 1978, Ap. J. (Letters), 225, L81. Lucas, R., and Encrenaz, P. J. 1975, Astr. Ap., 41, 233.
Lynds, B. T. 1965, Ap. J. Suppl., 12, 163.
Marsalkova, P. 1974, Ap. Space Sci., 27, 3.
Moffatt, A. F. J., FitzGerald, M. P., and Jackson, P. D. 1979, Astr.
Ap. Suppl., 38, 197.
Neckel, T. 1978, Astr. Ap., 69, 51.
Parsamian, E. S., and Petrossian, V. M. 1979, Acad. Nauk.
    Armenian SSR
Perek, L., and Kohoutek, L. 1967, Catalogue of Galactic Planetary
Nebulae (Prague: Czech Institute of Science).
Rogers, A. W., Campbell, C. T., and Whiteoak, J. B. 1960,
M.N.R.A.S., 121, 103.
Sargent, A. I. 1977, Ap. J., 218, 736.
_____. 1979, Ap. J., 233, 163.
Sargent, A. I., and Blitz, L. 1981, in preparation. Schneps, M. H., Haschick, A. D., Wright, E. L., and Barrett, A. H.
1981, Ap. J., in press. Scoville, N. Z., Irvine, W. M., Wannier, P. G., and Predmore, C. R.
    1977, Ap. J., 216, 32.
Sewall, J. R., and Jackson, P. D. 1980, private communication. Sharpless, S. 1959, Ap. J. Suppl., 4, 257.
Treffers, R. 1980, private communication.
_____. 1981, in preparation.
Tucker, K. D., Kutner, M. L., and Thaddeus, P. 1973, Ap. J. (Letters), 186, L13.
Turner, D. G. 1976, Ap. J., 210, 65. van den Bergh, S. 1966, A.J., 71, 990. Walker, M. F. 1956, Ap. J. Suppl., 2, 365. Weaver, H. F., and Williams, D. R. W. 1974, Astr. Ap. Suppl.,
 Wilson, R. W., Jefferts, K. B., and Penzias, A. A. 1970, Ap. J.
    (Letters), 161, L43.
```

LEO BLITZ and MICHEL FICH: Radio Astronomy Laboratory, University of California, Berkeley, CA 94720

Antony A. Stark: Bell Telephone Laboratories, Crawford Hill Laboratory, Box 400, Holmdel, NJ 07974