CALCULO II, MATEMÁTICAS-INFORMÁTICA

Curso 2018-19

2 parte

(2 ptos.)

- 1) Decir si son verdaderas o falsas las siguientes cuestiones justificando la respuesta:
 - Sean $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$ con $f(A) \subset B$ dos funciones uniformemente continuas, entonces $g \circ f$ es uniformemente continua. \bigvee
 - Si $f: \mathbb{R}^+ \to \mathbb{R}$ es uniformemente continua y tiene límite en $+\infty$, es una función acotada. \bigvee
 - El producto de funciones convexas es convexa €
 - Sea $f: I \to \mathbb{R}$ con $I \subset \mathbb{R}$ intervalo abierto y f convexa. Entonces f es integrable en cualquier intervalo cerrado y acotado contenido en I.

(2 ptos.)

2) Calcular

$$\lim_{x \to 0} \frac{(\cos x - 1) \left[\log(1 + x) - x \right] - \frac{1}{4} x^4}{x^5}$$

(2 ptos.)

3) Dada $f: I \to \mathbb{R}$ con $I \subset \mathbb{R}$ intervalo abierto y f continua, $a \in I$. Probar que para todo $x \in I$ se verifica

$$\int_{a}^{x} (x-t)f(t) dt = \int_{a}^{x} \left(\int_{a}^{t} f(s) ds \right) dt$$

(2 ptos.)

4) Calcula

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} \sin(\sqrt{t}) dt}{x^3}$$

(2 ptos.)

- 5) Calcula
 - a) La integral definida $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin^3 x}{\sqrt{\cos x}} dx$.
 - b) Una primitiva de $\int \frac{dx}{x\sqrt{1+x^2}}$.

Granada, a 31 de mayo de 2019