Undergraduate Complexity Theory Lecture 20: The Immerman-Szelepcsényi Theorem

Marcythm

July 22, 2022

1 Lecture Notes

complete the proof of TQBF's PSPACE-hardness.

Fact 1.1. NPSPACE = coNPSPACE = PSPACE

```
a "scaled down" version: NL = coNL?
```

Theorem 1.2 (Immerman-Szelepcsényi '88). NL = coNL.

Proof. Show exists log-space verifier V that $\langle G, s, t \rangle \notin \mathsf{ST}\text{-}\mathsf{PATH}$.

Let R_l be {vertices reachable from s in $\leq l$ steps}, $r_l = R_l$, the certificate is like concatenation of cert for r_1 , cert for r_2 , ..., cert for r_n , and cert that t not reachable from s.

keypoint: After V processed cert for r_l , only retains l, r_l on its work tapes.

Suppose V now convinced of r_n , what cert would convince V that $t \notin R_n$?

cert of $t \notin R_n$ consists of: $s \to v_1, s \to v_2, \ldots, s \to v_{r_n}$.

V checks:

- 1. each path is in $G(O(\log n))$
- 2. exactly r_n paths presented (check in $O(\log n)$ space by presenting endpoints in strictly increasing order)
- 3. and t is not among the endpoints $(O(\log n))$

```
cert of r_{l+1}: v_1 \in R_{l+1}, \dots, v_{r_{l+1}} \in R_{l+1}, v_{r_{l+1}+1} \notin R_{l+1}, \dots, v_n \notin R_{l+1}.
cert of v_x \notin R_{l+1}: list all vertices in R_l (in incr order), check no edge connects them them to v_x.
```

2 Reading

2.1 sipser 8.6 (NL Equals coNL)