SANTA CLARA UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF BIOENGINEERING

Date: November 20, 2016

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Maxwell Abrams Cynthia Le

ENTITLED

3D Bioprinter

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN BIOENGINEERING

Thesis Advisor
Thesis Advisor
Department Chair
Dopartinont Chair
Department Chair

3D Bioprinter

by

Maxwell Abrams Cynthia Le

Submitted in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Mechanical Engineering
Bachelor of Science in Bioengineering
School of Engineering
Santa Clara University

3D Bioprinter

Maxwell Abrams Cynthia Le

Department of Computer Engineering Department of Mechanical Engineering Department of Bioengineering Santa Clara University November 20, 2016

ABSTRACT

The 3D bioprinting project aims to create a 3D bioprinter that can improve the capabilities of high school teachers to engage students in STEM education. In order to accomplish this goal, the team is working to expand functionality in SE3Ds product line to allow for a better student and teacher user experience and the execution of more interesting experiments. The 3D Bioprinting projects main goal is to create a modular incubating box with a variety of sensors to allow for custom environments per experiment, a clear interface to control the settings, and an automatic image capture system. As the project increases functionality, it also will keep the final deliverable as low cost as possible. These additions to the current SE3D 3D Bioprinter will increase effectiveness in the classroom and allow the target audience, high-school students, to better engage in STEM education activities.

Keywords: 3D Printing, Bioprinting, STEM, Education, Control Systems, Incubation

Acknowledgments

Acknowledge the contributions of the sponsor, university staff, other students, faculty, and other persons who were of assistance. This section is optional.

Table of Contents

1	Intr	roduction		
	1.1	Motivation		
	1.2	Solution		
2	The Box			
	2.1	Incubating Box		
	2.2	User Interface		
	2.3	Environment Control		
3	Societal Issues			
	3.1	Ethical		
	3.2	Social		
	3.3	Political		
	3.4	Health and Safety		
	3.5	Economic		
	3.6	Manufacturability		
	3.7	Sustainability		
	3.8	Environmental Impact		
	3.9	Usability		
	3.10	Lifelong Learning		
		Compassion		
4	Con	nclusion		
5	Refe	erences		
6	Apr	pendices		

List of Figures

Introduction

1.1 Motivation

This is the introduction to your thesis and should be page number one. The main body of your thesis should be double spaced.

1.2 Solution

The Box

2.1 Incubating Box

This is the introduction to your thesis and should be page number one. The main body of your thesis should be double spaced.

2.2 User Interface

2.3 Environment Control

Societal Issues

- 3.1 Ethical
- 3.2 Social
- 3.3 Political
- 3.4 Health and Safety
- 3.5 Economic
- 3.6 Manufacturability
- 3.7 Sustainability
- 3.8 Environmental Impact
- 3.9 Usability
- 3.10 Lifelong Learning
- 3.11 Compassion

Conclusion

References

Appendices