Бэггинг, ансамбли моделей и случайный лес

Основные свойства решающих деревьев

Плюсы

▶ Восстанавливают сложные закономерности

Минусы

- Очень легко переобучаются.
 Неустойчивы к малейшим изменениям в данных.
- Восстанавливаемая зависимость довольно ужасна.

⇒ Сами деревья не очень хороши.

Один в поле не воин...

Идея

Лес - много деревьев

Ô

А есть ли смысл брать деревья одинаковыми? Нужны разные деревья

"Танцующий лес", нац. парк Куршская коса, Калининградская обл.

Возьмем композицию вида:

$$f = \frac{1}{T} \sum_{t=1}^{T} b_t$$

где b_t — решающее дерево.

Чтобы сделать деревья b_t разными:

- $ightharpoonup b_t$ обучаем на некоторой подвыборке.
- $ightharpoonup b_t$ обучаем на случайном подпространстве признаков.

Беггинг

Bagging = Boostrap Aggregating

Пусть есть выборка (X, Y).

Сгенерируем T бутстрепных подвыборок из нее.

На каждой из них обучим отдельную модель $\hat{y}_t = \mu_t(X_t^*, Y_t^*)$.

Итоговая модель строится как композиция:

$$\hat{y} = \frac{1}{T} \sum_{t=1}^{T} \hat{y}_t$$

Модели \hat{y}_t не обязаны быть моделями из одного вида моделей Например, \hat{y}_1 может быть линейной моделью, а \hat{y}_2 - деревом.

Случайный лес

Возьмем в качестве базовых моделей решающие деревья.

Как сделать деревья разными?

- ▶ По объектам: Каждое дерево обучается на бутстрепной выборке.
- По признакам: Деревья в лесу являются рандомизированными.
 При каждом разбиении вершины выбираютсся случайные
 признаки для перебора.

Простая практика

Ансамбли моделей и случайные леса

Bias-variance tradeoff

Беггинг

Случайный лес

Важность признаков

Bias-variance tradeoff

Bias-variance tradeoff

Шум = шум в данных.

Смещение (bias) = среднее отклонение модели от истинной зависимости.

Pas6poc (variance) = среднеквадратичный разброс ответов обученных моделей относительно среднего ответа.

Разброс показывает, насколько сильно может измениться предсказание обученной модели в зависимости от разных реализаций выборки.

Bias-variance tradeoff

Общий случай

Есть более общие формулы этого разложения для других функций, состоящие из трех компонент с похожим смыслом.

Т.е. для многих распространненых функций потерь ошибка метода обучения может быть разложена на шум, смещение и дисперсию.

Подробнее про общий вид разложения можно прочитать тут: Domingos, Pedro (2000). A Unified Bias-Variance Decomposition and its Applications

Беггинг: вывод

Если базовые модели

- слабо коррелированы
- имеют низкое смещение
- имеют высокий разброс

то беггинг-композиция имеет низкое смещение и низкий разброс.

Когда модели менее коррелированы?

Когда они достаточно разные.

Как сделать модели разными?

- ▶ Использовать разные виды моделей и разные гиперпараметры.
- Обучать модели на разных признаках.
- Делать разную предобработку данных.

Ансамбли моделей и случайные леса

Bias-variance tradeoff

Беггинг

Случайный лес

Связь с метрическими моделями Важность признаков

Случайный лес

Возьмем в качестве базовых моделей решающие деревья.

Свойства решающего дерева с большой глубиной:

- bias низкий
- variance высокий
 Напоминание: Деревья могут быть сильно разными даже при небольшом изменении выборки.

Случайный лес

- ▶ Деревья глубокие ⇒ низкое смещение.
- lacktriangle Каждое дерево обучается на бутстрепной выборке \Rightarrow разные.
- ▶ При разбиении признаки выбираются случайно ⇒ разные.

Деревья разные \Rightarrow малая корреляция, при объединении получим хорошую композицию.

Случайный лес

Пусть d — количество признаков, d_0 — количество случайно выбираемых признаков при разбиении.

Рекомендации:

В задаче классификации $\text{Взять } d_0 = \left \lfloor \sqrt{d} \right \rfloor.$ Строить каждое дерево до тех пор, пока в каждом листе не окажется по 1 объекту.

В задаче регрессии Взять $d_0 = \left \lfloor d/3 \right \rfloor$. Строить каждое дерево до тех пор, пока в каждом листе не окажется по 5 объектов.

Ансамбли моделей и случайные леса

Bias-variance tradeoff

Беггинг

Случайный лес

Важность признаков

Ô

Mean Decrease in Impurity (MDI)

Случай одного дерева.

При разбиении одной вершины на две решаем задачу:

$$Q(X_m, j, t) = \frac{|X_l|}{|X_m|} \cdot H(X_l) + \frac{|X_r|}{|X_m|} \cdot H(X_r) \to \min_{j, t}$$

Подобрав оптимальные j и t имеем уменьшение в критерии ошибки, равное $H(X_m) - \frac{|X_l|}{|X_m|} \cdot H(X_l) - \frac{|X_r|}{|X_m|} \cdot H(X_r)$.

Для задачи регрессии — это величина уменьшения MSE.

Это уменьшение является относительным по отношению κ вершине m, а хотим посчитать общее уменьшение:

$$\Delta I_j^m = \frac{|X_m|}{|X|} H(X_m) - \frac{|X_l|}{|X|} \cdot H(X_l) - \frac{|X_r|}{|X|} \cdot H(X_r)$$

 ΔI_j^m — уменьшение критерия ошибки на этапе разбиения вершины m по признаку j и оптимальному порогу t.

Mean Decrease in Impurity (MDI)

⇒ При построении дерева можем посчитать какой вклад каждый признак вносит в уменьшение ошибки:

$$\Delta l_j = \sum_{\substack{\mathrm{m} \;:\; \mathrm{pas} \Delta l_i = \mathrm{m} \\ \mathrm{происходит} \; \mathrm{no} \; \mathrm{признак} y \; i}} \Delta l_j^m$$

Отнормируем данные значения:

$$\widetilde{\Delta I_j} = \frac{\Delta I_j}{\sum_i \Delta I_i}$$

Случай леса.

Для получения важности признаков для случайного леса усредним важности признаков, полученные от каждого дерева.

Пусть \mathscr{T} — набор деревьев в лесу.

 $\Delta I_i(T)$ — важность признака j для дерева T.

$$\Delta l_j = rac{1}{|\mathscr{T}|} \sum_{T \in \mathscr{T}} \Delta l_j(T)$$

Mean Decrease in Impurity (MDI)

Плюсы:

- ▶ B sklearn RandomForest переменная feature_importances_ важности признаков, посчитанные этим методом.
- Быстро считается, обучение происходит один раз.

Минусы:

- Важность признаков смещена в сторону признаков с большим количеством значений.
 Bias in information-based measures in decision tree induction, 1994
- Считается при использовании лишь обучающей выборки.
 Не смотрит на полезность признака при предсказании теста.

