

Contrôle de Physique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours [2.5 POINTS] (Pas de points négatifs)

Choisissez la bonne réponse

- 1. Un mouvement est dit uniforme si
 - a. Sa trajectoire est une ligne droite.
 - b. Son accélération est constante au cours du temps.
 - c. Sa vitesse est constante au cours du temps.
 - d. Sa vitesse et son accélération varient très peu avec le temps.
- 2. En coordonnées polaires $(\overrightarrow{u}_{\theta}, \overrightarrow{u}_{\theta})$, le vecteur position $\overrightarrow{OM}(t)$ est donné par

a.
$$\overrightarrow{OM}(t) = \rho \overrightarrow{u}_{\rho} + \theta \overrightarrow{u}_{\theta}$$

c.
$$\overrightarrow{OM}(t) = \theta \overrightarrow{u}_{\theta} + \rho \overrightarrow{u}_{\theta}$$

b.
$$\overrightarrow{OM}(t) = \rho \overrightarrow{u}_{\rho}$$

$$d. \overrightarrow{OM}(t) = \rho \overrightarrow{u}_{\theta}$$

- 3. Un mobile décrit un trajet rectiligne le long de l'axe (Ox). Son équation horaire s'écrit $x(t) = 10 2t^2$.
 - a. Le mouvement est uniforme
 - b. Le mouvement est uniformément circulaire
 - c. Le mouvement est décéléré
 - d. La norme de l'accélération est de $2 m/s^2$
- 4. Considérons un mobile dont la position à chaque instant est donné par son vecteur position OM(t). L'accélération de ce mouvement est donné par

a.
$$\overrightarrow{a}(t) = \frac{d\overrightarrow{OM}(t)}{dt^2}$$

c.
$$\overrightarrow{a}(t) = \left[\frac{d\overrightarrow{OM}(t)}{dt}\right]^2$$

b.
$$\overrightarrow{a}(t) = \frac{d^2 \overrightarrow{OM}(t)}{dt^2}$$

$$d. \ \overrightarrow{a}(t) = \sqrt{\overrightarrow{OM}(t)}$$

- 5. Deux vecteurs sont orthogonaux si leur produit scalaire est nul.
 - a. VRAI

EXERCICE 2: COORDONNES CARTESIENNES ET POLAIRES [8 POINTS]

Le schéma ci-dessous représente, sur le même plan, les coordonnées polaires ainsi que les coordonnées cartésiennes.

1. Exprimer les vecteurs unitaires $\overrightarrow{u}_{\rho}$ et $\overrightarrow{u}_{\theta}$ de la base polaire en fonction de l'angle θ et des vecteurs unitaires \overrightarrow{u}_x et \overrightarrow{u}_y de la base cartésienne.

EPITA / InfoS1 CONTROLE DE PHYSIQUE NOVEMBRE 2021 2/7

4.	vecteur position $\overrightarrow{OM}(t)$ dans la base cartésienne ainsi que dans la base polaire.
5.	Ecrire l'expression générale du vecteur vitesse instantanée et donner son expression dans la base polaire en expliquant chaque étape de calcul.

EPITA / InfoS1 CONTROLE DE PHYSIQUE NOVEMBRE 2021 4/7

EXERCICE 3: MOUVEMENT D'UN PROJECTILE [5,5 POINTS]

On considère un projectile lancé à partir du point (0;0) du repère cartésien à l'instant t=0 s. Il est lancé en faisant un angle α avec l'horizontale. Le projectile passe par

en faisant un angle α avec l'horizontale. Le projectile passe par le point S qui correspond au sommet de la trajectoire.

Le vecteur \overrightarrow{OM} vaut :

$$\overrightarrow{OM} = \left(v_0 \cos\alpha\right) \cdot t \overrightarrow{u}_x + \left[\left(v_0 \sin\alpha\right) \cdot t - 5t^2\right] \overrightarrow{u}_y$$

1. a. Donner les équations horaires, x(t) et y(t), de ce mouvement.

2.	Exprimer le vecteur vitesse instantanée $v(t)$. Exprimer sa norme.
3.	Au sommet de la trajectoire, V_y (la composante suivant l'axe Y du vecteur vitesse) est nulle.
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle $lpha$.
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle $lpha$.
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle $lpha$.
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle α .
	Calculer la hauteur maximale atteinte par le projectile en fonction de V_0 et de l'angle $lpha$.

EPITA / InfoS1 CONTROLE DE PHYSIQUE NOVEMBRE 2021 6/7

EXERCICE 4: ACCÉLÉRATION EN COORDONNÉES POLAIRES [4 POINTS]

Pour un mouvement quelconque, l'expression de l'accélération en coordonnées polaires est donnée par :

	$\overrightarrow{a}(t) = (\ddot{\rho} - \rho \dot{\theta}^2) \overrightarrow{u}_{\rho} + (\rho \ddot{\theta} + 2\dot{\rho} \dot{\theta}) \overrightarrow{u}_{\theta}$
1.	Quelle est l'expression de l'accélération si le mouvement est circulaire ? Justifier.
2.	Quelle est l'expression de l'accélération si le mouvement est, en plus d'être circulaire, aussi uniforme. Justifier.
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	