Towards Decoding as Continuous Optimisation in Neural Machine Translation

Cong Duy Vu Hoang

University of Melbourne
Melbourne, VIC, Australia
vhoang2@student.unimelb.edu.au

Gholamreza Haffari

Monash University
Clayton, VIC, Australia
gholamreza.haffari@monash.edu

Trevor Cohn

University of Melbourne Melbourne, VIC, Australia t.cohn@unimelb.edu.au

Neural Machine Translation

$$P_{\Theta}(\boldsymbol{y}|\boldsymbol{x}) = \sum_{i=1}^{|\boldsymbol{y}|} \log P_{\Theta}(y_i|\boldsymbol{y}_{< i}, \boldsymbol{x})$$
$$y_i|\boldsymbol{y}_{< i}, \boldsymbol{x} \sim \operatorname{softmax}(\boldsymbol{f}(\boldsymbol{\Theta}, \boldsymbol{y}_{< i}, \boldsymbol{x}))$$

In this paper:

$$egin{aligned} oldsymbol{f}(oldsymbol{\Theta}, oldsymbol{y}_{< i}, oldsymbol{x}) &= oldsymbol{W}_o \cdot ext{MLP}\left(oldsymbol{c}_i, oldsymbol{E}_T^{y_{i-1}}, oldsymbol{g}_i
ight) + oldsymbol{b}_o \ oldsymbol{g}_i &= ext{RNN}_{dec}^{\phi}\left(oldsymbol{c}_i, oldsymbol{E}_T^{y_{i-1}}, oldsymbol{g}_{i-1}
ight) \end{aligned}$$

Training objective:

$$\mathbf{\Theta}^* := \operatorname{argmax}_{\mathbf{\Theta}} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}} \log P_{\mathbf{\Theta}} (\boldsymbol{y} \mid \boldsymbol{x}).$$

Discrete decoding

Decoding objective:

$$\mathbf{y}^* = \operatorname*{arg\,min}_{y_1, \dots, y_\ell} \sum_{i=1}^{\ell} -\log \mathrm{P}_{\mathbf{\Theta}} \left(y_i \mid \mathbf{y}_{< i}, \mathbf{x} \right)$$

s.t. $\forall i \in \{1 \dots \ell\} : y_i \in V_T$.

Re-write:

$$\underset{\tilde{\boldsymbol{y}}_{1},...,\tilde{\boldsymbol{y}}_{\ell}}{\operatorname{arg\,min}} - \sum_{i=1}^{\ell} \tilde{\boldsymbol{y}}_{i} \cdot \log \operatorname{softmax} \left(\boldsymbol{f} \left(\boldsymbol{\Theta}, \tilde{\boldsymbol{y}}_{< i}, \boldsymbol{x} \right) \right)$$
s.t. $\forall i \in \{1 ... \ell\} : \tilde{\boldsymbol{y}}_{i} \in \mathbb{I}^{|V_{T}|}$ (5)

where \tilde{y}_i are vectors using the one-hot representation of the target words $\mathbb{I}^{|V_T|}$.

discrete optimization problem

Continuous decoding

$$\begin{aligned} & \underset{\hat{\boldsymbol{y}}_{1}, \dots, \hat{\boldsymbol{y}}_{\ell}}{\operatorname{arg\,min}} - \sum_{i=1}^{\ell} \hat{\boldsymbol{y}}_{i} \cdot \log \operatorname{softmax} \left(\boldsymbol{f} \left(\boldsymbol{\Theta}, \hat{\boldsymbol{y}}_{< i}, \boldsymbol{x} \right) \right) \\ & \text{s.t.} \quad \forall i \in \{1 \dots \ell\} : \hat{\boldsymbol{y}}_{i} \in \Delta_{|V_{T}|} \end{aligned}$$

where $\Delta_{|V_T|}$ is the $|V_T|$ -dimensional probability simplex, i.e., $\{\hat{\boldsymbol{y}}_i \in [0,1]^{|V_T|} : \|\hat{\boldsymbol{y}}_i\|_1 = 1\}$. Intuitively, this amounts to replacing $\boldsymbol{E}_T^{y_i}$ with the expected embedding of target language words $\mathbb{E}_{\hat{\boldsymbol{y}}_i(w)}[\boldsymbol{E}_T^w]$ under the distribution $\hat{\boldsymbol{y}}_i$ in the NMT model.

Y_i is a distribution over words Generation words: choose the highest probability

Optimization method

Exponentiated Gradient (EG)

Problem:

$$rg\min_{\hat{m{y}}_1,\dots,\hat{m{y}}_\ell}Q(\hat{m{y}}_1,\dots,\hat{m{y}}_\ell)$$

s.t. $orall i\in\{1\dots\ell\}:\hat{m{y}}_i\in\Delta_{|V_T|}$

where $Q(\hat{\pmb{y}}_1,\ldots,\hat{\pmb{y}}_\ell)$ is defined as

$$-\sum_{i=1}^{\ell} \hat{oldsymbol{y}}_i \cdot \log \operatorname{softmax} \left(oldsymbol{f}\left(oldsymbol{\Theta}, \hat{oldsymbol{y}}_{< i}, oldsymbol{x}
ight)
ight).$$

Algorithm:

$$\forall w \in V_T: \quad \hat{\boldsymbol{y}}_i^t(w) = \frac{1}{Z_i^t} \hat{\boldsymbol{y}}_i^{t-1}(w) \exp\left(-\eta \nabla_{i,w}^{t-1}\right)$$

where η is the step size, $\nabla_{i,w}^{t-1} = \frac{\partial Q(\hat{\pmb{y}}_1^{t-1},...,\hat{\pmb{y}}_\ell^{t-1})}{\partial \hat{\pmb{y}}_i(w)}$ and Z_i^t is the normalisation constant

$$Z_i^t = \sum_{w \in V_-} \hat{\boldsymbol{y}}_i^{t-1}(w) \exp\left(-\eta \nabla_{i,w}^{t-1}\right).$$

Algorithm 1 The EG Algorithm for Decoding by Optimisation

- 1: For all i initialise $\hat{\boldsymbol{y}}_i^0 \in \Delta_{|V_T|}$
- 2: for $t = 1, \ldots, MaxIter do$
- 3: For all i, w: calculate $\nabla_{i, w}^{t-1} = \frac{\partial Q(\hat{\boldsymbol{y}}_1^{t-1}, ..., \hat{\boldsymbol{y}}_\ell^{t-1})}{\partial \hat{\boldsymbol{y}}_i(w)}$
- 4: For all i, w: update $\hat{\boldsymbol{y}}_i^t(w) \propto \hat{\boldsymbol{y}}_i^{t-1}(w) \cdot \exp\left(-\eta \nabla_{i,w}^{t-1}\right)$
- 5: **return** $\arg\min_t Q(\hat{\boldsymbol{y}}_1^t, \dots, \hat{\boldsymbol{y}}_\ell^t)$

- $\triangleright Q(.)$ is defined as eqn (6)
 - using backpropagation
 - $\triangleright \eta$ is the step size

Optimization method

Stochastic Gradient Descent (SGD)

Make sure the simplex constraints:

$$\begin{split} \hat{\boldsymbol{y}}_i &= \operatorname{softmax} \left(\hat{\boldsymbol{r}}_i \right). \\ \underset{\hat{\boldsymbol{r}}_1, \dots, \hat{\boldsymbol{r}}_\ell}{\operatorname{arg\,min}} - \sum_{i=1}^{\ell} \operatorname{softmax} \left(\hat{\boldsymbol{r}}_i \right) \cdot \log \operatorname{softmax} \left(\operatorname{f} \left(\boldsymbol{\Theta}, \hat{\boldsymbol{y}}_{< i}, \boldsymbol{x} \right) \right) \end{split}$$

Algorithm 2 The SGD Algorithm for Decoding by Optimisation

```
1: For all i initialise \hat{\boldsymbol{r}}_{i}^{0}

2: for t=1,\ldots, MaxIter do

\Rightarrow Q(.) is defined in eqn (6) and \hat{\boldsymbol{y}}_{i}=\operatorname{softmax}(\hat{\boldsymbol{r}}_{i})

3: For all i,w: calculate \nabla_{i,w}^{t-1}=\sum_{w'\in V_{T}}\frac{\partial Q(\hat{\boldsymbol{y}}_{1}^{t-1},\ldots,\hat{\boldsymbol{y}}_{\ell}^{t-1})}{\partial \hat{\boldsymbol{y}}_{i}(w')}\frac{\partial \hat{\boldsymbol{y}}_{i}(w')}{\partial \hat{\boldsymbol{r}}_{i}(w)}

\Rightarrow using backpropagation

4: For all i,w: update \hat{\boldsymbol{r}}_{i}^{t}(w)=\hat{\boldsymbol{r}}_{i}^{t-1}(w)-\eta\nabla_{i,w}^{t-1}

\Rightarrow \eta is the step size

5: return \operatorname{arg\,min}_{t}Q(\operatorname{softmax}(\hat{\boldsymbol{r}}_{1}^{t}),\ldots,\operatorname{softmax}(\hat{\boldsymbol{r}}_{\ell}^{t}))
```

Decoding in Extended NMT

 Allowing decoding for richer global models, for which there is no effective means of greedy decoding or beam search.

Bidirectional Ensemble:

$$C_{+\text{bidir}} := -\alpha \log P_{\boldsymbol{\Theta}_{\leftarrow}} (\boldsymbol{y} \mid \boldsymbol{x}) - (1 - \alpha) \log P_{\boldsymbol{\Theta}_{\rightarrow}} (\boldsymbol{y} \mid \boldsymbol{x});$$

Bilingual Ensemble:

$$\begin{aligned} \mathcal{C}_{+\text{biling}} := & -\alpha \log P_{\mathbf{\Theta}_{s \to t}} \left(\boldsymbol{y} \mid \boldsymbol{x} \right) \\ & - (1 - \alpha) \log P_{\mathbf{\Theta}_{s \leftarrow t}} \left(\boldsymbol{x} \mid \boldsymbol{y} \right); \end{aligned}$$

Experiment

Main results:

	BTEC	TEDTalks	WMT
	zh→en	de→en	de→en
gdec _{left-to-right}	35.98	23.16	24.41
gdec _{right-to-left}	35.86	21.95	23.59
EGdec _{greedy init}	36.34	23.28	24.63
+bidirectional	36.67	23.91	25.37^{\dagger}
+bilingual	36.88^{\dagger}	24.01^{\dagger}	25.21
bdec _{left-to-right}	38.02	23.95	26.69
bdec _{right-to-left}	37.38	23.13	26.11
EGdecbeam init	38.38	24.02	26.66
+bidirectional	39.13^{\dagger}	24.72^{\dagger}	27.34^{\dagger}
+bilingual	38.25	24.60	26.82

Table 3: The BLEU evaluation results across evaluation datasets for EG algorithm variants against the baselines; **bold**: statistically significantly better than the best greedy or beam baseline, †: best performance on dataset.