LOAN STATUS PREDICTION

DATA INFO...

Problem Statement

About Company

Dream Housing Finance company deals in all home loans. They have presence across all urban, semi urban and rural areas. Customer first apply for home loan after that company validates the customer eligibility for loan.

Problem

Company wants to automate the loan eligibility process (real time) based on customer detail provided while filling online application form. These details are Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History and others. To automate this process, they have given a problem to identify the customers segments, those are eligible for loan amount so that they can specifically target these customers. Here they have provided a partial data set.

In [1]:

import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

Impoet data file

In [2]:

loan=pd.read_csv("C:/Users/sohel/Downloads/loan data.csv")
loan

Out[2]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_F
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	

614 rows × 13 columns

In [3]:

loan.shape # Dimention of the data set

Out[3]:

(614, 13)

In [4]:

loan.size # Total number of observations of the data set

Out[4]:

7982

```
In [5]:
```

loan.head() # First five rows of the dataset

Out[5]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											+

In [6]:

loan.tail() # Last five rows of the dataset

Out[6]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_F
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	
4											>

In [7]:

loan.describe() # it gives discriptive ststistics of all columns

Out[7]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [8]:

checking missing value in dataset
loan.isnull().sum()

Out[8]:

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

Data cleaning

```
In [9]:
loan["Gender"]=loan["Gender"].fillna(loan["Gender"].mode().iloc[0])
In [10]:
loan["Married"]=loan["Married"].fillna(loan["Married"].mode().iloc[0])
In [11]:
loan["Dependents"]=loan["Dependents"].fillna(loan["Dependents"].mode().iloc[0])
In [12]:
loan["Self\_Employed"] = loan["Self\_Employed"].fillna(loan["Self\_Employed"].mode().iloc[\emptyset])
In [13]:
loan["LoanAmount"]=loan["LoanAmount"].fillna(loan["LoanAmount"].mean())
In [14]:
loan["Loan_Amount_Term"] = loan["Loan_Amount_Term"].fillna(loan["Loan_Amount_Term"].mean())
In [15]:
loan["Credit_History"]=loan["Credit_History"].fillna(loan["Credit_History"].mean())
In [16]:
loan
Out[16]:
      Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_I-
   0 LP001002
                           Nο
                                           Graduate
                                                                             5849
                                                                                               0.0
                                                                                                     146 412162
                                                                                                                            360.0
                 Male
                                        0
                                                              Nο
   1 LP001003
                 Male
                          Yes
                                           Graduate
                                                              No
                                                                             4583
                                                                                             1508.0
                                                                                                     128.000000
                                                                                                                            360.0
   2 LP001005
                 Male
                          Yes
                                       0
                                           Graduate
                                                              Yes
                                                                            3000
                                                                                               0.0
                                                                                                      66.000000
                                                                                                                            360.0
                                                Not
  3 LP001006
                 Male
                          Yes
                                       0
                                                              No
                                                                            2583
                                                                                            2358.0
                                                                                                     120.000000
                                                                                                                            360.0
                                           Graduate
   4 LP001008
                                                                                                     141.000000
                 Male
                           No
                                       0
                                           Graduate
                                                              Nο
                                                                            6000
                                                                                               0.0
                                                                                                                            360.0
                                       ...
                                                               ...
                                                                                                ...
 609
     LP002978
               Female
                           No
                                       0
                                           Graduate
                                                              No
                                                                            2900
                                                                                               0.0
                                                                                                      71.000000
                                                                                                                            360.0
 610 I P002979
                                                                                                      40.000000
                 Male
                          Yes
                                      3+
                                           Graduate
                                                              Nο
                                                                            4106
                                                                                               0.0
                                                                                                                            180.0
 611 LP002983
                                                                            8072
                                                                                              240.0
                                                                                                     253.000000
                                                                                                                            360.0
                 Male
                          Yes
                                           Graduate
                                                              No
 612 LP002984
                 Male
                          Yes
                                        2
                                           Graduate
                                                              No
                                                                             7583
                                                                                               0.0
                                                                                                     187.000000
                                                                                                                            360.0
 613 LP002990 Female
                                                                             4583
                                                                                               0.0
                                                                                                     133.000000
                                                                                                                            360.0
                                           Graduate
                           No
                                                              Yes
614 rows × 13 columns
In [17]:
loan.isnull().sum()
Out[17]:
Loan_ID
                       0
Gender
                       0
Married
                       0
Dependents
                       0
Education
Self_Employed
                       0
ApplicantIncome
CoapplicantIncome
LoanAmount
                       0
Loan_Amount_Term
Credit_History
                       0
Property Area
                       0
Loan_Status
                       0
dtype: int64
```

In [18]:

Now there is no missing observation in our dataset

In [19]:

```
#Drowing Box plot
loan.plot(kind="box",figsize=(15,10))
```

Out[19]:

<AxesSubplot:>

In [20]:

loan=loan[loan.ApplicantIncome<7500]</pre>

In [21]:

loan.shape

Out[21]:

(521, 13)

In [22]:

loan.ApplicantIncome.plot(kind="box")

Out[22]:

<AxesSubplot:>

In [114]:

```
loan=loan[loan.CoapplicantIncome<4500]
loan.CoapplicantIncome.plot(kind="box")</pre>
```

Out[114]:

<AxesSubplot:>

In [116]:

```
loan=loan[loan.CoapplicantIncome<200]
loan.LoanAmount.plot(kind="box")</pre>
```

Out[116]:

<AxesSubplot:>

In [23]:

```
loan["Gender"].value_counts()
```

Out[23]:

Male 423 Female 98

Name: Gender, dtype: int64

In [24]:

```
sb.countplot(loan["Gender"])
plt.show()
```


In [25]:

```
loan["Married"].value_counts()
```

Out[25]:

Yes 335 No 186

Name: Married, dtype: int64

```
In [26]:
```

```
sb.countplot(loan["Married"])
plt.show()
```


In [27]:

```
loan["Dependents"].value_counts()
```

Out[27]:

0 3162 861 803+ 39

Name: Dependents, dtype: int64

In [28]:

```
sb.countplot(loan["Dependents"])
plt.show()
```


In [29]:

```
loan["Education"].value_counts()
```

Out[29]:

Graduate 391
Not Graduate 130
Name: Education, dtype: int64

In [30]:

```
sb.countplot(loan["Education"])
plt.show()
```



```
In [31]:
```

```
loan["Self_Employed"].value_counts()
```

Out[31]:

No 465 Yes 56

Name: Self_Employed, dtype: int64

In [32]:

```
sb.countplot(loan["Self_Employed"])
plt.show()
```


In [33]:

```
loan["Property_Area"].value_counts()
```

Out[33]:

Semiurban 202 Urban 167 Rural 152

Name: Property_Area, dtype: int64

In [34]:

```
sb.countplot(loan["Property_Area"])
plt.show()
```


In [35]:

```
loan["Loan_Status"].value_counts()
```

Out[35]:

Y 357 N 164

Name: Loan_Status, dtype: int64

```
In [36]:
```

```
sb.countplot(loan["Loan_Status"])
plt.show()
```


In [37]:

```
plt.figure(figsize=(17,6))
sb.heatmap(loan.corr(),annot=True)
```

Out[37]:

<AxesSubplot:>

In [38]:

loan.shape

Out[38]:

(521, 13)

In [39]:

loan.columns

Out[39]:

In [40]:

from sklearn.preprocessing import LabelEncoder L=LabelEncoder

In [41]:

```
loan["Gender"].replace(["Male","Female"],[1,0], inplace=True)
```

In [42]:

```
loan["Married"].replace(["Yes","No"],[1,0],inplace=True)
```

3 LP001006

4 LP001008

```
In [43]:
loan["Dependents"].replace(["0","1","2","3+"],[0,1,2,3], inplace=True)
In [44]:
loan["Education"].replace(["Not Graduate","Graduate"],[0,1], inplace=True)
In [45]:
loan["Self_Employed"].replace(["No","Yes"],[0,1], inplace=True)
In [46]:
loan["Property_Area"].replace(["Semiurban","Urban","Rural"],[0,1,2], inplace=True)
In [47]:
loan["Loan_Status"].replace(["Y","N"],[1,0], inplace=True)
In [48]:
loan.head()
Out[48]:
    Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome
                                                                                             LoanAmount Loan_Amount_Term Credit_His
 0 LP001002
                         0
                                    0
                                                           0
                                                                       5849
                                                                                          0.0
                                                                                               146.412162
                                                                                                                     360.0
 1 LP001003
                                                                       4583
                                                                                       1508.0
                                                                                               128.000000
                                                                                                                     360.0
                                                                                                                     360.0
 2 LP001005
                                    0
                                                           1
                                                                       3000
                                                                                          0.0
                                                                                                66,000000
```

2583

6000

2358.0

120.000000

141.000000

spliting the data for train and test

1

0

0

0

0

0

```
In [50]:
x=loan.drop(["Loan_ID","Loan_Status"],axis=True)

In [51]:
y=loan["Loan_Status"]

In [52]:
from sklearn.model_selection import train_test_split

In [53]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=12)

In [54]:
x_train.shape,x_test.shape

Out[54]:
((416, 11), (105, 11))

In [55]:
y_train.shape,y_test.shape

Out[55]:
((416,), (105,))
```

Logistic Regression

360.0

360.0

```
In [56]:
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
In [57]:
model=LogisticRegression()
In [58]:
model.fit(x_train,y_train)
Out[58]:
LogisticRegression()
In [59]:
pred=model.predict(x_test)
In [60]:
pred
Out[60]:
\mathsf{array}([1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,
       1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
       1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1], dtype=int64)
In [61]:
len(pred)
Out[61]:
105
In [62]:
accuracy_score(y_test,pred)
Out[62]:
0.8
In [63]:
{\tt confusion\_matrix}({\tt y\_test,pred})
Out[63]:
array([[15, 19],
       [ 2, 69]], dtype=int64)
In [64]:
(15+69)/(15+19+2+69)
Out[64]:
0.8
Decision Tree classifier
In [65]:
from sklearn.tree import DecisionTreeClassifier
In [66]:
model=DecisionTreeClassifier()
In [67]:
model.fit(x_train,y_train)
```

Out[67]:

DecisionTreeClassifier()

```
In [68]:
pred=model.predict(x_test)
In [69]:
pred
Out[69]:
In [70]:
accuracy_score(y_test,pred)
Out[70]:
0.7333333333333333
In [87]:
confusion_matrix(y_test,pred)
Out[87]:
array([[19, 15],
     [13, 58]], dtype=int64)
In [88]:
(19+58)/(19+15+13+58)
Out[88]:
0.7333333333333333
```

In [83]:

```
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(15,25))
from sklearn import tree
tr=tree.plot_tree(model,filled=True,fontsize=25,max_depth=4)
```


In [92]:

KNN Classifier

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,confusion_matrix
In [93]:
model=KNeighborsClassifier(n_neighbors=5)
In [95]:
model.fit(x_train,y_train)
Out[95]:
KNeighborsClassifier()
In [96]:
pred=model.predict(x_test)
In [97]:
pred
Out[97]:
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
      0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      In [98]:
accuracy_score(y_test,pred)
Out[98]:
0.6285714285714286
In [99]:
confusion_matrix(y_test,pred)
Out[99]:
array([[ 6, 28],
      [11, 60]], dtype=int64)
In [100]:
(6+60)/(6+28+11+60)
Out[100]:
0.6285714285714286
Naive Bayes Algorithm
In [102]:
from sklearn.naive_bayes import GaussianNB
In [103]:
nb=GaussianNB()
In [105]:
nb.fit(x_train,y_train)
Out[105]:
GaussianNB()
```

In [108]:

pred=nb.predict(x_test)

```
In [109]:
pred
Out[109]:
In [110]:
accuracy_score(y_test,pred)
Out[110]:
0.780952380952381
In [111]:
confusion_matrix(y_test,pred)
Out[111]:
In [112]:
(15+67)/(15+19+4+67)
Out[112]:
0.780952380952381
In [ ]:
```