In the claims:

Claims 1-21 (cancelled).

22. **(currently amended)** A method for the antimicrobial treatment of a surface of a plastic, which method comprises contacting said surface of a plastic with a surface coating composition containing an antimicrobially effective amount of a 2,4-bis(alkylamino)pyrimidine of formula

(1)
$$R_{5} \xrightarrow{N} N \xrightarrow{N} R_{4}$$

wherein

 R_1 is methyl C_4 - C_{12} alkyl or C_6 - C_{10} aryl;

 R_2 is hydrogen or C_1 - C_{12} alkyl;

when R₂ is C₁-C₁₂alkyl

 R_3 and R_5 are each independently of the other-hydrogen or C_4 - C_8 alkyl; one of R_4 and R_6 is C_1 - C_2 0alkyl, the other is C_6 - C_4 0aryl- C_4 - C_6 alkyl, hydroxy- C_4 - C_6 alkyl, mono- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, --(C_1 - C_2 - C_3 - C_4 - C_5 -C

 $R_6 \text{-is-} C_4 - C_{20} \text{alkyl}, \ C_6 - C_{40} \text{aryl-} C_4 - C_6 \text{alkyl}, \ \text{hydroxy-} C_4 - C_6 \text{alkyl}, \ \text{di-} C_4 - C_6 \text{alkylamino-} C_4 - C_6 \text{alkyl}, \ \text{mono-} C_4 - C_6 \text{alkyl}, \ \text{-} (CH_2)_2 - (O - (CH_2)_2)_{4-4} - OH - \text{or-} - (CH_2)_2 - (O - (CH_2)_2)_{4-4} - NH_2; \ \text{or-} - (CH_2)_2 - (O - (CH_2)_2)_{4-4} - OH - OH - (CH_2)_2 - (O - (CH_2)_2)_{4-4} - OH - (CH_2)_2 - (O - (CH_2)_2)$

when R₂ is hydrogen

one of R₃ and R₅ is hydrogen;

one of R₄ and R₆ is C₁-C₂₀alkyl; and

<u>either</u> R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

23. (cancelled)

- 24. (previously presented) A method according to claim 22, wherein
- R₂ is hydrogen or C₃-C₈alkyl.
- 25. (cancelled)
- 26. (withdrawn and amended) A method according to claim 22, wherein

 $R_4 \text{ is } C_1-C_{12}\text{alkyl}, \text{ unsubstituted phenyl}, C_6-C_{40}\text{aryl}-C_4-C_6\text{alkyl}, \text{ hydroxy-}C_2-C_6\text{alkyl}, \\ \text{di-}C_4-C_4\text{alkylamino-}C_4-C_4\text{alkyl}, \text{ mono-}C_4-C_4\text{alkylamino-}C_4-C_4\text{alkyl}, -(CH_2)_2-(O-(CH_2)_2)_{4,2}-OH \text{ or-}(CH_2)_2-(O-(CH_2)_2)_{4,2}-NH_2; \text{ and}$

 $R_6 \text{ is } C_4 - C_{42} \\ \text{alkyl}, C_6 - C_{40} \\ \text{aryl}, C_6 - C_{40} \\ \text{aryl} - C_4 - C_6 \\ \text{alkyl}, \\ \text{hydroxy} - C_2 - C_6 \\ \text{alkyl}, \\ \text{di-} C_4 - C_4 \\ \text{alkylamino-} \\ C_4 - C_4 \\ \text{alkyl}, \\ \text{-} (CH_2)_2 - (O - (CH_2)_2)_{4,2} - OH \\ \text{-} \text{or}_2 - (CH_2)_2 - (O - (CH_2)_2)_{1,2} - NH_2.$

- 27. (cancelled)
- 28. (cancelled)
- 29. (currently amended) A method according to claim 22, wherein
- R₁ is C₁-C₄alkyl or phenyl methyl;

R₂ is hydrogen or hexyl

one of R₃ and R₅ are each independently of the other is hydrogen or C₁-C₀alkyl;

one of R_4 and R_6 is C_1 - C_{12} alkyl, C_6 - C_{40} aryl- C_4 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl,

 $\begin{array}{l} \text{di-}C_4 - C_4 \text{alkylamino-}C_4 - C_4 \text{alkyl, mono-}C_4 - C_4 \text{alkylamino-}C_4 - C_4 \text{alkyl, -}(CH_2)_2 - (O - (CH_2)_2)_{4,2} - OH \text{ or } \\ - (CH_2)_2 - (O - (CH_2)_2)_{4,2} - NH_2; \text{ and } \end{array}$

 $R_6 \text{ is } C_4 - C_{42} \text{alkyl}, C_6 - C_{40} \text{aryl-} C_4 - C_6 \text{alkyl}, \text{ hydroxy-} C_2 - C_6 \text{alkyl}, \text{ di-} C_4 - C_4 \text{alkylamino-} C_4 - C_4 \text{alkyl}, \text{ mono-} C_4 - C_4 \text{alkylamino-} C_4 - C_4 \text{alkyl}, -(CH_2)_2 - (O - (CH_2)_2)_{4,2} - OH \text{ or -} (CH_2)_2 - (O - (CH_2)_2)_{4,2} - NH_2; \text{ or } C_4 - C_4 \text{alkylamino-} C_4 -$

and either R_3 and R_4 together, and R_6 together, form a pyrrolidine or [[,]] piperidine ring. , hexamethyleneimine or morpholine ring.

- 30. (cancelled)
- 31. (currently amended) A method according to claim 22, wherein the 2,4-bis(alkylamino)pyrimidine is of the formula

32-42. (cancelled)