大学物理

College Physics

主讲 华中科技大学 刘超飞

●法拉第电磁感应定律

演示: 楞次定律

回路中的感应电动势

$$\varepsilon_i = -\frac{\mathrm{d}\phi}{\mathrm{d}t}$$

任一回路中:
$$\phi = \int \vec{B} \cdot d\vec{s} = \int B \cos \theta \, ds$$

(t 时刻的)

●动生电动势

$$\varepsilon_i = \int_L (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

$$\varepsilon = \int_{-}^{+} \vec{E}_{K} \cdot d\vec{l}$$

 $d\vec{l}$: 导线上任意选定的一小段 (足够短)

v: 以上这段导线的速度

 \vec{B} : 以上这段导线处的磁感应强度

●电源及电动势

E: 静电场场强,单位正电荷所受的静电力。电源内外都存在。

 $ar{E}_{
m k}$: 非静电场场强,单位正电荷 所受的非静电力。只存在于 电源内部。

要维持电流,必须使正电荷经电源内部从负极不断补充到正极。显然,这个力不 是静电力,而是一种不同于静电力的所谓的<mark>非静电力</mark>。

电源的电动势 ϵ 的定义:

把单位正电荷从负极经过电源内部移到正极,非静电力所做的功。

即:
$$\varepsilon = A = \int_{-}^{+} \vec{E}_{K} \cdot d\vec{l}$$

对闭合回路,
$$\varepsilon = A = \oint \vec{E}_K \cdot d\vec{l}$$

42

- 三、动生电动势 $\longrightarrow \vec{B}$ 不变,导体回路运动。
 - 1. 产生动生电动势的机制
 - 1) 等效非静电场 \vec{E}_k :

$$\varepsilon = \int_{-}^{+} \vec{E}_{K} \cdot d\vec{l}$$

导线/在外磁场中运动时,/内自由电子受到磁场力作用:

$$ec{f}_{eta}$$
= $-e(ec{v} imes ec{B})$
类比静电场: $ec{E}_e = \frac{ec{F}}{q}$
定义非静电场: $ec{E}_k = \frac{ec{f}_{eta}}{-e} = ec{v} imes ec{B}$

 $|\vec{E}_k| = vB\sin\theta$, 方向 $\vec{v} \times \vec{B}$,正电荷受力方向。

2) 动生电动势的定义:

$$\varepsilon_i = \int_L \vec{E}_k \cdot d\vec{l} = \int_L (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

说明:

$$\boldsymbol{\varepsilon}_i = \int_L (\vec{\boldsymbol{v}} \times \vec{\boldsymbol{B}}) \cdot \mathrm{d}\vec{\boldsymbol{l}}$$

 $d\vec{l}$: 导线上任意选定的一小段

· 以上这段导线的速度

 \vec{B} : 以上这段导线处的磁感应强度

例:均匀磁场中ab棒沿导体框向右运动,且dB/dt=0 求其上的 ε_i .

解:

$$\varepsilon_{ab} = \int_a^b (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int vBdl = vBl$$

用法拉第定律:

$$\varepsilon_{i} = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} (\vec{B} \cdot \vec{s}) = -B\frac{\mathrm{d}s}{\mathrm{d}t}$$
$$= -B\frac{\mathrm{d}}{\mathrm{d}t} (lx) = -Bl\frac{\mathrm{d}x}{\mathrm{d}t} = -Blv$$

 $\vec{B} \times \times \times b \times d\vec{l}$ $\times \times \times x \times a \times x$ $\times \times x \times a \times x$

方向: $a \rightarrow b$

2. ε动的计算

$$\varepsilon_i = \int_L (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

第1步: 取线元 ៧ (同时假定了ε的方向)

第2步:确定线元处的磁感应强度

和线元的运动速度

第3步: 计算 $\vec{v} \times \vec{B}$

第4步: 计算 $(\vec{v} \times \vec{B}) \cdot d\vec{l}$

第5步: 完成积分

第6步:确定电动势的方向(根据ε的符号)

例. 金属杆oa长L,在匀强磁场B中以角速度 ω 反时针绕o点转动。求杆中的感应电动势。

解: 用动生电动势计算公式, 任取线元 dī

$$d\varepsilon_{i} = (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

$$= -\omega l B \cdot dl$$

$$\varepsilon_{i} = -\int_{0}^{a} \omega l B \cdot dl = -\frac{1}{2} \omega B L^{2}$$
方向: $a \rightarrow o$

另解: 用法拉第电磁感应定律 任意时刻通过扇形截面的磁通量

$$\phi = \vec{B} \cdot \vec{S} = B \frac{1}{2} (L^2 \theta)$$
 $\varepsilon_i = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{1}{2} B L^2 \omega$

$$\varepsilon_{i} = \int_{L} (\vec{v} \times B) \cdot dl$$

(物理意义?)

例: *B* 均匀,则在打开过程中回路里的电动势是多少? 回路是边长为*a*的正方形,磁场与回路垂直。

解: 在转动的三段导线中,对长度为a/2的两段,始终有 $(\bar{v} \times \bar{B}) \perp d\bar{l}$

$$\therefore (\vec{v} \times \vec{B}) \cdot d\vec{l} = 0$$
 (不切割磁力线)

故只需考虑以上三段导线中长为a一段。

显然,
$$(\vec{v} \times \vec{B}) // d\vec{l}$$

$$\therefore \varepsilon_{i} = \int_{L} (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_{0}^{a} \frac{a}{2} \omega \cdot B \sin \theta \cdot dl$$

$$= \frac{a}{2} \omega \cdot B \sin \theta \int_0^a dl = \frac{\omega B a^2}{2} \sin \theta$$

$$\varepsilon_i = \int_L (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

例: B 均匀,则在打开过程中回路里的电动势是多少?回路是边长为a的正方形,磁场与回路垂直。

解:
$$\phi = \phi_1 + \phi_2(t)$$
$$= \phi_1 + B \cdot a \cdot \frac{a}{2} \cos \theta$$

$$\varepsilon = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t}(\phi_1 + B \cdot a \cdot \frac{a}{2} \cos\theta)$$

$$= -B\frac{a^2}{2}\frac{\mathrm{d}\cos\theta}{\mathrm{d}t} = B\frac{a^2}{2}\sin\theta\frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$= \frac{\omega Ba^2}{2}\sin\theta \qquad 方向如何?$$

例:在真空中,有一无限长直导线电流I 旁,有一半圆 孤导线以v向右运动。已知r,R。

求 E_k 、 ϵ_{OP} ,P与Q 哪点电势高?

解: 1) 在导线上任意d处的 E_k 距电流为r': $r'=r+R\cos\theta$

$$|E_k| = |\vec{v} \times \vec{B}| = vB = v \frac{\mu_0 I}{2\pi r'} = \frac{\mu_0 I v}{2\pi (r + R\cos\theta)}$$

2)
$$\varepsilon_{QP} = \int \vec{E}_k \cdot d\vec{l} = \int \frac{\mu_0 I v}{2\pi (r + R \cos \theta)} \cdot \cos \theta \cdot d\vec{l} = R d\theta$$
$$= \frac{\mu_0 I v}{2} \left(1 - \frac{4r}{\pi \sqrt{r^2 - R^2}} t g^{-1} \sqrt{\frac{r - R}{r + R}} \right).$$

3) 显然: ε_i 从 $Q \rightarrow P$, $U_P > U_Q$ 。

能否用直线 \overline{PQ} 来代替 \widehat{PQ} ? 否! $\varepsilon_{\overline{PQ}} = \frac{\mu_0 I v}{2\pi v}$ 2

否!
$$\varepsilon_{\overline{PQ}} = \frac{\mu_0 I v}{2\pi r} 2R \neq \varepsilon_{\overline{PQ}}$$

3. 回路中产生动生电动势时谁为回路提供电能? (洛仑兹力不做功) 运动导体上的电动势 $\varepsilon_i = \int_L (\vec{v} \times \vec{B}) \cdot d\vec{l}$ } 矛盾? 但是: $\vec{f}_{\text{A}} = -e\vec{v} \times \vec{B} \perp \vec{v}$ 不做功

 ϵ_{d} 的出现是什么力做功呢?

电子同时参与两个方向的运动:

v 方向, 随导体运动;

ū方向, 在导体内的漂移形成电流。

电子受到的总洛仑兹力: $\vec{F} = \vec{f}_1 + \vec{f}_2$,

$$\vec{F} \perp \vec{V}$$
 $\therefore \vec{F} \cdot \vec{V} = 0$,

 $\vec{f}_1//\vec{u}, \vec{f}_1 \cdot \vec{u} > 0$, \vec{f}_1 做正功,即非静电力 \vec{E}_k 做功。 显然:

$$\vec{f}_2 \cdot \vec{v} = -\vec{f}_1 \cdot \vec{u}, \vec{f}_2 \cdot \vec{v} < 0,$$
 \vec{f}_2 做负功

要使棒ab保持 \vec{v} 运动,则必有外力做功: $\vec{f}_{\gamma}=-\vec{f}_{2}$

即:
$$\vec{f}_{\begin{subarray}{c} \vec{f}_{\begin{subarray}{c} \vec{f}_{\end{subarray}}} \vec{v} = \vec{f}_{\end{subarray}} \vec{v}$$

问题:

能否直接由法拉第电磁感应定律导出动生电动势的计算公式?

$$\varepsilon_{i} = -\frac{\mathrm{d}\phi}{\mathrm{d}t} \qquad \qquad \varepsilon_{i} = \int_{L} (\vec{v} \times \vec{B}) \cdot \mathrm{d}\vec{l} \qquad \qquad \longleftarrow$$

$$d\boldsymbol{\phi} = \vec{\boldsymbol{B}} \cdot \vec{\boldsymbol{S}} = \vec{\boldsymbol{B}} \cdot \int_{L} \vec{\boldsymbol{v}} dt \times d\vec{\boldsymbol{l}}$$

$$\boldsymbol{\varepsilon}_{i} = -\frac{\mathrm{d}\boldsymbol{\phi}}{\mathrm{d}\boldsymbol{t}} = \vec{\boldsymbol{B}} \cdot \left(\int_{L} \mathrm{d}\vec{\boldsymbol{l}} \times \vec{\boldsymbol{v}} \right) = \int_{L} \left(\vec{\boldsymbol{v}} \times \vec{\boldsymbol{B}} \right) \cdot \mathrm{d}\vec{\boldsymbol{l}}$$

四. 感生电动势 感应电场

法拉第电磁感应定律: $\varepsilon_i = -\frac{\mathrm{d}\phi}{\mathrm{d}t}$ (ε_i 是回路中的感应电动势)

 ϕ 的变化方式 $\left\{ egin{align*} egin{align*}$

1. 感生电动势

如图,考虑两个静止的线圈1,2. 当线圈1中I变化时,线圈2中出现感应电 流 I_i 即回路2中出现感应电动势 ε_i 那么,与此 ϵ ,对应的非静电力是什么? 是不是静电场提供的静电力?

 $:\oint \vec{E} \cdot d\vec{l} = 0$, \vec{E} 为保守力场,静电场 \vec{E} 不能为闭合回路运动的电荷提供能量。那么,此非静电力是什么呢?其场强 \vec{E}_K 是什么?

2. 感应电场 —— 感应电场的存在得到了实验的验证。

由电动势的定义:
$$\varepsilon_i = \int_{-}^{+} \vec{E}_K \cdot d\vec{l}$$
 (经电源内部)

对闭合回路: $\varepsilon_i = \oint \bar{E}_K \cdot d\bar{l}$

感生电动势:
$$\varepsilon_i = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \int \vec{B} \cdot \mathrm{d}\vec{s} = -\int \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{d}\vec{s}$$

 $\therefore \quad \oint \vec{E}_K \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \quad \dot{\mathbf{Z}} : \quad d\vec{l} = \int d\vec{s} \, d\vec{k} \, d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec{k} \, d\vec{k} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{k} \, d\vec$

可见, \vec{E}_K 与 \vec{B} 的变化有关。

$$\oint \vec{E}_i \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$$

由此,麦克斯韦提出感应电场的概念。

磁场随时间变化的同时在周围空间产生电场,

此电场称为感应电场 E_i 。

它是由于磁场随时间变化而产生的电场。

- 3. 感应电场的实验验证与应用
 - (1) 电子感应加速器

原理:用变化磁场所激发的感应电场来加速电子

交流电在前 1/4周期时,假定管中的感应电场是顺时针的(俯视图)

电子受力:

$$\vec{f}_i = -e\vec{E}_i$$
 (切向加速)

$$\vec{f}_m = -e\vec{v} \times \vec{B}$$
 (向心力)

加速器的成功证实了 感应电场的客观存在.

问题: 为什么在电流 I 的每一个变化周期里, 只有前1/4周期是在给电子加速?

(2) 涡流 ——高频电磁感应炉

将导体块放置在 $\vec{E_i}$ 中,则在导体中将产生环形电流 \rightarrow 涡流。

涡流还是有害的,它不仅消耗电功率,而且降低设备能量利用效率。

演示: <u>涡流</u>

例:将半径为a、厚为h、电导率为 σ 的金属圆盘,同轴放置在轴对称匀强磁场 \vec{B} 中,且dB/dt>0。求圆盘上的电流强度及产生的热功率。

解:取半径为r,厚度为dr的圆筒,其电动势

$$\mathrm{d}\boldsymbol{\varepsilon}_i = -\frac{\mathrm{d}\boldsymbol{\phi}}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{B} \cdot \boldsymbol{\pi} \boldsymbol{r}^2) = -\boldsymbol{\pi} \boldsymbol{r}^2 \frac{\mathrm{d}\boldsymbol{B}}{\mathrm{d}t}$$

其上电阻为:
$$R = \frac{2\pi r}{\sigma \cdot h \cdot dr}$$

电流为:
$$dI_i = \frac{d\varepsilon_i}{R} = -\frac{r}{2}\sigma h \frac{dB}{dt} dr$$

总电流:
$$I_i = \int dI_i = -\frac{1}{4}a^2\sigma h \frac{dB}{dt}$$

产生的热功率:

$$P = \int dP = \int R(dI_i)^2 = \frac{1}{8}\pi\sigma ha^4 \left(\frac{dB}{dt}\right)^2$$

- 4. 感应电场的特点、性质感应电场 \bar{E}_i 的特点:
 - 1) \bar{E}_i 与 \bar{E}_e 一样,对场中的电荷有电场力的作用。

$$\vec{E}_i = \frac{\vec{F}}{q} \qquad \vec{F} = q\vec{E}_i$$

2) \bar{E}_i 的产生不依赖空间是否有导体存在,只要d $B/dt\neq 0$ 就行。

只要磁场变化,真空、介质中都可以激发感应电场。

3) 不仅在磁场分布范围内 有感应电场,之外也有。

 $ar{E}_i$ 的方向与 $arepsilon_i$ 基本一致,可用楞次定律判断。

4) \bar{E}_i 是非保守力场, $\oint \bar{E}_i \cdot d\bar{l} \neq 0$ \bar{E}_i 场中不能引入电势概念, 其电场线是无头无尾的闭合曲线~~故也称为涡旋电场。

感应电场 \bar{E}_i 与静电场 \bar{E}_e 的异同:

相同处: 对电荷的作用相同。

19

5. E_i 的计算 一般情况下的 E_i 的计算较复杂

求一个轴对称磁场变化时的涡旋电场。已知磁场均匀 例: 分布在半径为R的范围内,dB/dt=常量,而且大于零。

2) 计算将单位正电荷从 $a \rightarrow b$, \vec{E}_i 的功。

 $(\mathbf{m:1})$ 由 \mathbf{B} 的均匀及柱对称性可知,在同一圆 周上Ēi的大小相等,且沿切线方向,

取半径为r的电力线为积分路径,

$$-\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = -\frac{dB}{dt} \cdot (-\pi r^2)$$

当
$$r > R$$
时:
$$\int \vec{E}_i \cdot d\vec{l} = E_i \cdot 2\pi r$$
$$-\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = \frac{dB}{dt} \pi R^2$$
$$E_i = \frac{R^2 dB}{2r dt}$$

$$A_{\frac{1}{4}ab} = \int \vec{E}_i \cdot d\vec{l} = \int_0^{\frac{\pi r}{2}} \frac{r \, dB}{2 \, dt} \cdot dl = \frac{\pi}{4} r^2 \frac{dB}{dt}$$

$$A_{\frac{1}{4}ab} = \int \vec{E}_i \cdot d\vec{l} = \int_0^{\frac{\pi r}{2}} \frac{r \, dB}{2 \, dt} \cdot dl = \frac{\pi}{4} r^2 \frac{dB}{dt}$$

$$A_{\frac{1}{4}ab} = \int \vec{E}_i \cdot d\vec{l} = \int_0^{\frac{\pi r}{2}} \frac{r \, dB}{2 \, dt} \cdot dl = \frac{\pi}{4} r^2 \frac{dB}{dt}$$

$$A_{\frac{1}{4}ab} = \int \vec{E}_i \cdot d\vec{l} = \int_0^{\frac{\pi r}{2}} \frac{r \, dB}{2 \, dt} \cdot dl = \frac{\pi}{4} r^2 \frac{dB}{dt}$$

$$A_{\frac{3}{4}ab} = \int \vec{E}_i \cdot d\vec{l} = -\int_0^{\frac{3\pi}{2}} \frac{r \, dB}{2 \, dt} \cdot dl = -\frac{3\pi}{4} r^2 \frac{dB}{dt}$$

结论:

- 1) E_i ∝dB/dt,与B大小无关
- 2) r > R,磁场外 $E_i \neq 0$ 。
- 3) $A_{1/4ab} \neq A_{3/4ab}$

即:Ē,做功与路径有关——非保守场

作业: 7—T15-T16, 8—T1-T7

作业要求

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 作业纸上每次都要写姓名以及学号(或学号末两位)。
- 4. 课代表收作业后按学号排序,并装入透明文件袋。
- 5. 每周二交上周的作业。迟交不改。
- 6. 作业缺交三分之一及以上者综合成绩按零分计。