MLOps Culture for Continuous Experimentation

Olga Tsubiks

DIRECTOR, STRATEGIC ANALYTICS AND DATA SCIENCE ROYAL BANK OF CANADA

Olga Tsubiks is director of advanced analytics and data science at the Royal Bank of Canada, where she's responsible for the development and evolution of next-generation capacity modeling.

A passionate AI/ML leader, she's spent the last 15 years in various senior roles in data science, big data, data engineering, analytics, and data warehousing.

She's also worked on various data science and analytics challenges with global organizations such as the UN Environment Programme World Conservation Monitoring Centre, the World Resources Institute, and prominent Canadian nonprofits such as War Child Canada and Rainbow Railroad.

Olga Tsubiks

Director, Strategic Analytics and Data Science RBC

Agenda

Our MLOps discussion will focus on what happens after your first model is deployed.

- MLOps process used for designing machine learning experiments
- Explain why continuous improvement often requires a cultural change
- Decipher MLOps concepts such as model drift and monitoring (which are useful for ML engineers and can help practitioners who are working closely with data scientists or those who aspire to build complex experimentation frameworks)
- Explore common pitfalls on the way to MLOps maturity

You'll come away knowing how to navigate the challenges of managing ML pipelines and build a culture of continuous experimentation and improvement.

ML Lifecycle

Image Source: Reliable Machine Learning. C. Chen, N. Ri. Murphy, K.Parisa, D. Sculley, T. Underwood. O'Reilly Media, Inc. AI/ML products are expensive to build, and businesses expect them to be around for a long time.

Experimentation is key to extending the lifetime of the AI/ML product.

MLOps Maturity and Experimentation

Level	Description	Technology	Experimentation Highlights	
0	No MLOps	Manual builds and deployments No centralized tracking of performance Manual model training	No ongoing experiments Manual model improvements mostly to fix errors and defects Infrequent releases Lack of performance monitoring The models fail to adapt to changes in the dynamic environment or changes in the data that describes the environment.	
1	DevOps but no MLOps	Reliance on DevOps team Automated builds and testing of code		
2	Automated Training	Automated model training and tracking Model management Releases are manual, but low friction	Deployment of the ML training pipeline Manual model improvements	
3	Automated Model Deployment	Automated releases Model traceability and observability The entire environment managed: train > test > production	Integrated A/B testing and model performance and deployment Centralized tracking of model performance	
4	Full MLOps Automated Operations	Full system automation and monitoring Production systems provide information on how to improvise or automatically improve with new models	Automated experimentation for model performance and sophisticated experimentation pipeline that drives the AI product development	

MLOps and Experimentation: Manual Process

MLOps and Experimentation: Automated Process

ML Experiment Lifecycle

Model drift is the degradation of models' predictive power over time as a result of changes in real-world environments.

Model drift is our friend. It is a signal that model experimentation is overdue.

Culture of Continuous Experimentation

- 1. Become an advocate of experimentation
- 2. Lead by example
- 3. Solicit improvement ideas from others
- 4. Empower with tools, skills and experimentation frameworks
- 5. Sustainable experimentation is a set of small, incremental improvements
- 6. Celebrate experimentation results and communicate outcomes
- 7. Make your experimentation methodology simple and transparent

Common pitfalls on the way to MLOps maturity

Deploying	Lifecycle	Monitoring	Governance	
ML models are not deployed to	Models are not being updated in	No monitoring is performed	Lack of access control to input data,	
production	production	Manual monitoring	model code, and output data	
Lack of standardized	Model drift is not	based on data	Madal regulta are	
deployment process	being actioned on	scientist availability	Model results are hard to trace	
Overly complex path	Significant manual	Inconsistent		
to prepare models for	work is required to	monitoring	Lack of data	
production	maintain existing models making any	No actions are taken	governance to ensure that it is free	
Long backlog for	new ML model	on flags raised by	of bias and complies	
production	deployments rare	monitoring	with regulations	
deployment				

Thank you!