ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО» Институт компьютерных наук и технологий Высшая школа искусственного интеллекта

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Элементы теории вероятности и линейной алгебры»

Вариант №11

Выполнил Студент 3540201/10301 группы

Ф.М. Титов

Руководитель доцент, к.т.н.

А.В. Востров

Санкт-Петербург 2021 г.

Оглавление

Постановка задачи	3
Теоретическая часть	4
Реализация	7
Результаты	10
Заключение	13

Постановка задачи

Найти оценки параметров линейной регрессии у на x, доверительные интервалы для параметров и линии регрессии и проверить согласие линейной регрессии с результатами наблюдений. Принять уровень доверительной вероятности равным 0.90.

Значения для варианта 11:

x	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55
y	2.43	2.67	2.71	3.15	3.47	3.76	3.91	4.46	4.76	5.15	5.54	5.61

Теоретическая часть

Линейная регрессионная модель имеет вид:

$$y_i = \alpha + \beta x_i + \varepsilon_i, i = \overline{1, n},$$

где ϵ_i - ошибки измерений переменной у предполагаются независимыми случайными величинами, распределенными нормально: $\epsilon_i \in N \ (0, \ D_\epsilon)$. Наша задача состоит в том, чтобы по наблюдениям найти оценки $\alpha=a$, $\beta=b$ и $s^2=D$. для параметров α , β и D соответственно.

Для оценки параметров необходимо переписать уравнение регрессии в виде:

$$y = \alpha + \beta \left(x - \overline{x} \right),$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Эта прямая называется теоретической линией регрессии или прямой отклика.

Уравнение, определяющее кривую, которая является оценкой для прямой регрессии, имеет вид:

$$\widehat{y} = a + b(x - \overline{x})$$

Суть метода наименьших квадратов состоит в выборе таких оценок а и b, которые бы минимизировали сумму квадратов отклонений наблюденных значений y_i от прогнозируемых величин y_i . Уравнения для нахождения оценок:

$$a = \widehat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}, \quad b = \widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \quad b = \frac{\sum_{i=1}^{n} [(x_i - \overline{x}) (y_i - \overline{y})]}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Для нахождения интервальных оценок необходима формула:

$$\widehat{D} = D^* = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Доверительный интервал для α:

$$\varepsilon = t_{\beta',n-2} \sqrt{\frac{\widehat{D}}{n-2}} \text{ if } I_{\alpha} = \left(a - t_{\beta',n-2} \sqrt{\frac{\widehat{D}}{n-2}}, \ a + t_{\beta',n-2} \sqrt{\frac{\widehat{D}}{n-2}}\right)$$

Доверительный интервал для β:

$$\varepsilon = \frac{t_{\beta'}}{d} = t_{\beta',n-2} \sqrt{\frac{\widehat{D}}{n-2}} \sqrt{1 + \frac{n(x-\overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}, \quad I_y = (\widehat{y} - \varepsilon, \ \widehat{y} + \varepsilon)$$

Доверительный интервал для любого конкретного х:

$$\varepsilon = t_{\beta', n-2} \sqrt{\frac{n}{n-2} \frac{\widehat{D}}{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \text{ if } I_{\beta} = \left(\varepsilon - t_{\beta', n-2} \sqrt{\frac{n}{n-2} \frac{\widehat{D}}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}, \ \varepsilon + t_{\beta', n-2} \sqrt{\frac{n}{n-2} \frac{\widehat{D}}{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \right).$$

Критерий Пирсона

Коэффициент корреляции Пирсона позволяет определить меру линейной корреляции между двумя наборами данных. Он рассчитывается следующим образом:

Given paired data $\{(x_1,y_1),\ldots,(x_n,y_n)\}$ consisting of n pairs, r_{xy} is defined as:

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$
 (Eq.3)

where:

n is sample size

 x_i,y_i are the individual sample points indexed with i

 $ar{x} = rac{1}{n} \sum_{i=1}^n x_i$ (the sample mean); and analogously for $ar{y}$

Коэффициент корреляции Пирсона может принимать значения от -1 до 1. Причем чем ближе значение коэффициента по модулю к 1, тем лучше линейное уравнение описывает взаимосвязь между х и у, а все точки лежат на почти прямой линии.

Кроме того, для оценки построенной модели линейной регрессии можно вычислить критерий Пирсона по формуле:

$$\mathbf{r}_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})[y_i - \bar{y} + b(x_i - \bar{x})]}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 * \sum_{i=1}^{n} [y_i - \bar{y} + b(x_i - \bar{x})]^2}}$$

Реализация

В ходе реализации были использованы программные модули Python: statistics, numpy, prettytable, matplotlib, math.

На рис. 1 представлен программный код, необходимый для построения вспомогательной таблицы №1.

```
x = [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55]
y = [2.43, 2.67, 2.71, 3.15, 3.47, 3.76, 3.91, 4.46, 4.76, 5.15, 5.54, 5.61]
x_sm = s.mean(x)
xi_xsm = [x[i] - x_sm for i in range(len(x))]
xi_xsm2 = [xi_xsm[i] ** 2 for i in range(len(xi_xsm))]

y_sm = s.mean(y)
yi_ysm = [y[i] - y_sm for i in range(len(y))]
yi_ysm2 = [el ** 2 for el in yi_ysm]
xi_xsm_yi_ysm2 = [xi_xsm[i] * yi_ysm[i] for i in range(len(yi_ysm))]

pt = PrettyTable()
pt.add_column('x', x)
pt.add_column('y', y)
pt.add_column('yi-y_sm', xi_xsm)
pt.add_column('yi-y_sm', yi_ysm)
pt.add_column('(xi-x_sm)^2', xi_xsm2)
pt.add_column('(xi-x_sm)(yi-y_sm)', xi_xsm_yi_ysm2)
print(pt.get_string())
```

Рис. 1. Листинг программы, строящей вспомогательную таблицу №1.

На рис. 2 представлен программный код, необходимый для построения вспомогательной таблицы №2 а также для нахождения уравнения регрессии.

```
alpha = y_sm
beta = sum(xi_xsm_yi_ysm2) / sum(xi_xsm2)

print('Уравнение регрессии: y_r={}-{}*(x-{})'.format(alpha, beta, x_sm))
y_r = [alpha + beta * xi_xsm[i] for i in range(len(xi_xsm))]
yi_yo = [y[i] - y_r[i] for i in range(len(y))]
yi_yo2 = [yi_yo[i] ** 2 for i in range(len(yi_yo))]

pt = PrettyTable()
pt.add_column('x', x)
pt.add_column('y', y)
pt.add_column('y', y)
pt.add_column('y-r_i', yi_yo)
pt.add_column('yi-y_r_i', yi_yo)
pt.add_column('(yi-y_r_i)**2', yi_yo2)

print(pt.get_string())
```

Рис. 2. Листинг программы, строящей вспомогательную таблицу №2 и уравнение оценки линейной регрессии.

```
fig, ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.plot(x, y, '-bo', color='blue', label='y')
ax.plot(x, y_r, '-bo', color='orange', label='y_r')
ax.grid()
ax.legend()
plt.show()
```

Рис. 3. Листинг программы построения графика регрессии и исходных данных.

На рис. 3 представлен программный код, необходимый для построения графика исходных значений и линейной регрессии.

```
e_a = t * math.sqrt(0_o / (n - 2))
e_b = t * math.sqrt((len(x) / (n - 2)) * (D_o / sum(xi_xsm2)))

print('eps_a={}, eps_b={}'.format(e_a, e_b))

pdef get_eps_y_i(xi_xsm2_i):
    return t * (sigma_o / math.sqrt(n - 2) * math.sqrt(1 + (n * xi_xsm2_i / sum(xi_xsm2))))

x_copy = x.copy()
x_copy[5] = x_sm
s2 = [(el - x_sm) ** 2 for el in x_copy]
e_y = [t * (sigma_o / math.sqrt(n - 2) * math.sqrt(1 + (n * ((el - x_sm) ** 2) / sum(s2)))) for el in x_copy]

pt = PrettyTable()
pt.add_column('x', x)
pt.add_column('eps_y', e_y)
```

Рис. 4. Листинг программы нахождения ε_a , ε_b , ε_v .

На рис. 4 представлен листинг программы, которая находит значения ε_a , ε_b , ε_y . Для нахождения ε_a и ε_b необходимо задать значение параметра t. Для

```
n-2=10, \beta'=0.9, t(0.9, 10)=2.228 (из методички).
```

```
Ia_left = alpha - e_a
Ia_right = alpha + e_a

c = lin_reg.coef_[0]

Ib_left = beta - e_a
Ib_right = beta + e_a

print('Доверительный интервал Ia: ({}; {})'.format(Ia_left, Ia_right))
print('Доверительный интервал Ib: ({}; {})'.format(Ib_left, Ib_right))
```

Рис. 5. Листинг программы нахождения I_a , I_b .

На рис. 5 представлен листинг программы, которая находит значения доверительных интервалов I_a , I_b .

На рис. 6 представлен листинг программы, которая строит график регрессии и её 90% интервалов.

```
graph_up = [y_r[i] + e_y[i] for i in range(len(y_r))]
graph_down = [y_r[i] - e_y[i] for i in range(len(y_r))]

fig, ax = plt.subplots()
ax.plot(x, y, color='blue', label='y')
ax.plot(x, y_r, color='red', label='y_r')
ax.plot(x, graph_up, ':', color='black', label='U_lim')
ax.plot(x, graph_down, '--', color='black', label='D_lim')
ax.legend()
plt.grid()
plt.show()
```

Рис. 6. Листинг программы построения графика регрессии и её 90% интервалов.

На рис. 7-8 представлен листинг программы, которая находит значение коэффициента корреляции Пирсона двумя способами.

```
# критерий Пирсона

denom = sum([xi_xsm[i] * yi_ysm[i] for i in range(len(xi_xsm))])

sigma_x = math.sqrt(sum([xi_xsm[i] ** 2 for i in range(len(xi_xsm))]))

sigma_y = math.sqrt(sum([yi_ysm[i] ** 2 for i in range(len(xi_xsm))]))

nom = sigma_x * sigma_y

print('Критерий Пирсона:{}'.format(denom/nom))
```

Рис. 7. Листинг программы вычисления критерия корреляции Пирсона первым способом.

```
# критерий Пирсона 2

denom = sum([xi_xsm[i] * (yi_ysm[i] + beta * xi_xsm[i]) for i in range(len(xi_xsm))])

sigma_x = math.sqrt(sum([xi_xsm[i] ** 2 for i in range(len(xi_xsm))]))

sigma_y = math.sqrt(sum([(yi_ysm[i] + beta * xi_xsm[i]) ** 2 for i in range(len(xi_xsm))]))

nom = sigma_x * sigma_y

print('Критерий Пирсона 2:{}'.format(denom / nom))
```

Рис. 8. Листинг программы вычисления критерия корреляции Пирсона вторым способом.

Результаты

x y	xi-x_sm		+ (xi-x_sm)^2	++ (xi-x_sm)(yi-y_sm)
0 2.43 0.05 2.67 0.1 2.71 0.15 3.15 0.2 3.47 0.25 3.47 0.25 3.76 0.35 4.46 0.45 5.15 0.45 5.15 0.55 5.54 0.55 5.55 5.61 0.55 5.56	-0.275 -0.2250000000000000000000000000000000000	-1.53833333333333333333333333333333333333	0.07562500000000001 0.050625000000000002 0.0306250000000000007 0.0056250000000000007 0.0056250000000000011 0.0006250000000000011 0.0062499999999994 0.0562499999999994 0.0562629999999999999999999999999999999999	0.423841666666665 0.292125 0.292083333333334 0.102291666666667 0.0373749999999995 0.00520833333333342 0.005208333333333326 0.0052083333333333333333333333333333333333

Рис. 9. Вспомогательная таблица №1.

На рис. 9 представлена вспомогательная таблица №1 (результат работы программы рис. 1). На рис. 10 представлена вспомогательная таблица №2 и полученное уравнение регрессии.

Уравнени ++	е регре +	ссии: y_r=3.96833333	33	3333333-6.2279720279720)2 -+	85*(x-0.275) 	-+
x		y_r_i		yi-y_r_i		(yi-y_r_i)**2	1
0	2.43	2.255641025641025	1	0.17435897435897507	1	0.030401051939513726	1
0.05	2.67	2.5670396270396267		0.10296037296037319		0.010600838400139147	-1
0.1	2.71	2.8784382284382284		-0.16843822843822842		0.02837143679940882	-1
0.15	3.15	3.1898368298368296		-0.03983682983682968		0.0015869730114485233	-1
0.2	3.47	3.5012354312354312		-0.031235431235431044		0.0009756521644633413	-1
0.25	3.76	3.8126340326340324		-0.05263403263403266		0.002770341391320415	-1
0.3	3.91	4.124032634032634		-0.21403263403263395		0.045809968430947416	-1
0.35	4.46	4.435431235431235		0.02456876456876511		0.0006036241924354079	-1
0.4	4.76	4.7468298368298365		0.013170163170163285		0.00017345319792872542	1
0.45	5.15	5.058228438228438		0.0917715617715622		0.008422019549991657	-1
0.5	5.54	5.36962703962704		0.17037296037296024		0.02902694562624628	-1
0.55	5.61	5.6810256410256414		-0.07102564102564113		0.005044641683103236	-1
++	+		+-		+		-+

Рис. 10. Вспомогательная таблица №2 и полученное уравнение оценки регрессии.

Далее с помощью программы (рис. 3) был построен график, где изображены исходные данные и регрессия (рис. 11).

Рис.11. График регрессии и исходных данных.

Результат работы программы, которая находит значения ϵ_a , ϵ_b , ϵ_y , представлен на рис. 12.

```
eps_a=0.7618317599021162, eps_b=4.413790076391515
+-----+
| x | eps_y |
+-----+
| 0 | 1.4339663535575784 |
| 0.05 | 1.2523449903907538 |
| 0.1 | 1.0853823070301525 |
| 0.15 | 0.9409143614097174 |
| 0.2 | 0.830760629926392 |
| 0.25 | 0.7618317599021162 |
| 0.3 | 0.769795374498974 |
| 0.35 | 0.8307606299263919 |
| 0.4 | 0.9409143614097173 |
| 0.45 | 1.0853823070301525 |
| 0.55 | 1.2523449903907535 |
| 0.55 | 1.2523449903907535 |
```

Puc. 12. Найденные значения ε_a , ε_b , ε_y .

Результат работы программы, которая находит значения доверительных интервалов для a, b, представлен на рис.13.

```
Доверительный интервал Ia: (3.206501573431217; 4.730165093235449)
Доверительный интервал Ib: (5.466140268069912; 6.989803787874145)
```

Puc. 13. Найденные доверительные интервалы I_a , I_b .

Далее с помощью программы (рис. 6) строим график регрессии и ее 90% интервалов (рис. 14).

Рис. 14. График регрессии и её 90% интервалов.

Критерий Пирсона:0.9941459919515787 Критерий Пирсона 2:0.998526807762543

Рис. 15. Полученное значение критерия корреляции Пирсона.

На рис. 15 представлен результат вычисления критерия корреляции Пирсона двумя способами.

Заключение

В результате работы были найдены оценки параметров линейной регрессии у на х и доверительные интервалы для параметров и линии регрессии для заданных наборов значений.

Далее двумя способами был найден коэффициент корреляции Пирсона для х и у, который приблизительно равен 0.994 в первом случае, и 0.999 во втором. Это говорит о том, что линейное уравнение наилучшим образом описывает взаимосвязь х и у, все точки практически лежат на прямой. Близость коэффициент корреляции Пирсона к 1 также говорит о сильной связи между переменными. Таким образом, можно сказать, что построенная линейная регрессионная модель является адекватной исходным данным.