Discrete Mathematical Models

Lecture 12

Kane Townsend Semester 2, 2024

Section B: Digital Information (cont.)

Section B2: Sequences, Induction, Sorting (cont.)

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03$$
, $d = -10$ and $c = 2 \times 10^4$.

$$\begin{cases}
c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\
c_0 = c.
\end{cases}$$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence: $c_0 = c$,

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0=c$$
, $c_1=rc+d$,

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d =$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$,

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$,
 $c_3 = r(r^2c + (r+1)d) + d$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$,
 $c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d$.

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c, \quad c_1 = rc + d, \quad c_2 = r(rc + d) + d = r^2c + (r+1)d,$$

$$c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d.$$
So we guess that $c_n = r^nc + (1 + r + r^2 + \dots + r^{n-1})d.$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r\!=\!1.03,\; d\!=\!-10 \; \text{and} \; c\!=\!2\!\times\!10^4.$$

$$\begin{cases} c_{n+1}=rc_n\!+\!d \; \forall n\in\mathbb{N}^\star, \\ c_0=c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$, $c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d$.
So we guess that $c_n = r^nc + (1 + r + r^2 + \dots + r^{n-1})d$.

Using the formula for the sum of a geometric series (Slide 8), this simplifies to $\textbf{Claim:} \ \forall n \in \mathbb{N}^{\star} \ \ c_n = r^n c + \left(\frac{1-r^n}{1-r}\right) d.$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r = 1.03, d = -10 \text{ and } c = 2 \times 10^4.$$

$$\begin{cases} c_{n+1} = rc_n + d \ \forall n \in \mathbb{N}^*, \\ c_0 = c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$, $c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d$.
So we guess that $c_n = r^nc + (1 + r + r^2 + \dots + r^{n-1})d$.

Using the formula for the sum of a geometric series (Slide 8), this simplifies to $\textbf{Claim:} \ \forall n \in \mathbb{N}^{\star} \ \ c_n = r^n c + \left(\frac{1-r^n}{1-r}\right) d.$

As with the previous examples, this claim can be verified using proof by **mathematical induction**. Try it!

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r\!=\!1.03,\; d\!=\!-10 \text{ and } c\!=\!2\times 10^4. \qquad \begin{cases} c_{n+1}=rc_n\!+\!d \; \forall n\in\mathbb{N}^\star,\\ c_0=c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$, $c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d$.
So we guess that $c_n = r^nc + (1 + r + r^2 + \dots + r^{n-1})d$.

Using the formula for the sum of a geometric series (Slide 8), this simplifies to $\textbf{Claim:} \ \forall n \in \mathbb{N}^{\star} \ \ c_n = r^n c + \left(\frac{1-r^n}{1-r}\right) d.$

As with the previous examples, this claim can be verified using proof by **mathematical induction**. Try it!

Applying the formula gives
$$c_{10} = (1.03)^{10} (2 \times 10^4) - \left(\frac{1 - (1.03)^{10}}{1 - 1.03}\right) 10 = 26\,878.33 - 114.64.$$

We seek an explicit formula for the investment capital given by the implicit formula at right, where

$$r\!=\!1.03,\; d\!=\!-10 \text{ and } c\!=\!2\times 10^4. \qquad \begin{cases} c_{n+1}=rc_n\!+\!d \; \forall n\in\mathbb{N}^\star,\\ c_0=c. \end{cases}$$

We start by generating the first few terms of the sequence:

$$c_0 = c$$
, $c_1 = rc + d$, $c_2 = r(rc + d) + d = r^2c + (r+1)d$, $c_3 = r(r^2c + (r+1)d) + d = r^3c + (r^2 + r + 1)d$.
So we guess that $c_n = r^nc + (1 + r + r^2 + \dots + r^{n-1})d$.

Using the formula for the sum of a geometric series (Slide 8), this simplifies to $\textbf{Claim:} \ \forall n \in \mathbb{N}^{\star} \ \ c_n = r^n c + \left(\frac{1-r^n}{1-r}\right) d.$

As with the previous examples, this claim can be verified using proof by **mathematical induction**. Try it!

Applying the formula gives $c_{10} = (1.03)^{10}(2 \times 10^4) - \left(\frac{1 - (1.03)^{10}}{1 - 1.03}\right)10 = 26\,878.33 - 114.64.$ So the \$10 annual fee over 10 years costs the investment \$114.64.

It takes very little extra analysis to generalise the previous example:

Mixed Geometric-Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = ra_n + d$, $\forall n \ge k$ ($r \ne 1$ is the multiplier and d is the offset)	$\forall n \ge k$ $a_n = ar^{n-k} + \left(\frac{1 - r^{n-k}}{1 - r}\right) d$	

It takes very little extra analysis to generalise the previous example:

Mixed Geometric-Arithmetic Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term) $a_{n+1} = ra_n + d$, $\forall n \ge k$ ($r \ne 1$ is the multiplier and d is the offset)	$\forall n \ge k$ $a_n = ar^{n-k} + \left(\frac{1 - r^{n-k}}{1 - r}\right) d$

Example: A mixed geometric-arithmetic sequence $(a_n)_{n\in\mathbb{N}}$ has multiplier $\frac{1}{2}$, offset 2 and first term 1. What is the 10-th term?

It takes very little extra analysis to generalise the previous example:

Mixed Geometric-Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = ra_n + d$, $\forall n \ge k$ ($r \ne 1$ is the multiplier and d is the offset)	$\forall n \ge k$ $a_n = ar^{n-k} + \left(\frac{1 - r^{n-k}}{1 - r}\right) d$	

Example: A mixed geometric-arithmetic sequence $(a_n)_{n\in\mathbb{N}}$ has multiplier $\frac{1}{2}$, offset 2 and first term 1. What is the 10-th term?

Answer: As
$$k=1$$
, $a_{10}=1(\frac{1}{2})^9+\left(\frac{1-(\frac{1}{2})^9}{1-\frac{1}{2}}\right)2=4-3(\frac{1}{2})^9\approx 3.99.$

It takes very little extra analysis to generalise the previous example:

Mixed Geometric-Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = ra_n + d$, $\forall n \ge k$ ($r \ne 1$ is the multiplier and d is the offset)	$\forall n \ge k$ $a_n = ar^{n-k} + \left(\frac{1 - r^{n-k}}{1 - r}\right) d$	

Example: A mixed geometric-arithmetic sequence $(a_n)_{n\in\mathbb{N}}$ has multiplier $\frac{1}{2}$, offset 2 and first term 1. What is the 10-th term?

Answer: As
$$k=1$$
, $a_{10}=1(\frac{1}{2})^9+\left(\frac{1-(\frac{1}{2})^9}{1-\frac{1}{2}}\right)2=4-3(\frac{1}{2})^9\approx 3.99.$

Remark: For this sequence, as n increases a_n approaches 4 ever more closely.

Mixed Geometric-Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = ra_n + d$, $\forall n \ge k$ ($r \ne 1$ is the multiplier and d is the offset)	$\forall n \ge k$ $a_n = ar^{n-k} + \left(\frac{1 - r^{n-k}}{1 - r}\right) d$	

Example: A mixed geometric-arithmetic sequence $(a_n)_{n\in\mathbb{N}}$ has multiplier $\frac{1}{2}$, offset 2 and first term 1. What is the 10-th term?

Answer: As
$$k=1$$
, $a_{10}=1(\frac{1}{2})^9+\left(\frac{1-(\frac{1}{2})^9}{1-\frac{1}{2}}\right)2=4-3(\frac{1}{2})^9\approx 3.99.$

Remark: For this sequence, as n increases a_n approaches 4 ever more closely. In fact the value 4 is called the **steady state** of the sequence, because if $a_n = 4$ then from the implicit definition $a_{n+1} = (\frac{1}{2})4 + 2 = 4$, so the sequence values remain at 4 for ever.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

Aim: transfer all discs to the rightmost peg according to the following rules.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

Aim: transfer all discs to the rightmost peg according to the following rules.

You may move only one disc at a time to one of the other two pegs.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

Aim: transfer all discs to the rightmost peg according to the following rules.

- You may move only one disc at a time to one of the other two pegs.
- You can only move the discs that are at the top of one of the piles.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

Aim: transfer all discs to the rightmost peg according to the following rules.

- You may move only one disc at a time to one of the other two pegs.
- You can only move the discs that are at the top of one of the piles.
- No disc may sit on top of a smaller disc.

"The Towers of Hanoi" is a puzzle with 3 pegs and a number of punctured discs of decreasing sizes initially on the leftmost peg.

Aim: transfer all discs to the rightmost peg according to the following rules.

- You may move only one disc at a time to one of the other two pegs.
- You can only move the discs that are at the top of one of the piles.
- No disc may sit on top of a smaller disc.

At one move per second, how fast can you solve a puzzle with 64 discs?

Assume you have n discs (we are ultimately interested in n = 64).

$$x_1 = 1$$
.

$$x_1 = 1$$
.

 $x_1 = 1$.

 $x_2 = 3$.

To move n+1 discs first move top n discs to central peg (x_n mvs):

To move n+1 discs first move top n discs to central peg (x_n mvs):

Next move base disc (1mv). Then remaining n discs (x_n mvs).

To move n+1 discs first move top n discs to central peg (x_n mvs):

Next move base disc (1mv). Then remaining n discs (x_n mvs).

$$x_{n+1} = x_n + 1 + x_n = 2x_n + 1 \quad \forall n \in \mathbb{N}$$

To move n+1 discs first move top n discs to central peg (x_n mvs):

Next move base disc (1mv). Then remaining n discs (x_n mvs).

$$x_{n+1} = x_n + 1 + x_n = 2x_n + 1 \quad \forall n \in \mathbb{N}$$

So we have an implicit definition of a mixed geometric-arithmetic sequence $(x_n)_{n\in\mathbb{N}}$ with multiplier 2, offset 1 and first term 1.

Towers of Hanoi: Solution

To move n+1 discs first move top n discs to central peg (x_n mvs):

Next move base disc (1mv). Then remaining n discs (x_n mvs).

$$x_{n+1} = x_n + 1 + x_n = 2x_n + 1 \quad \forall n \in \mathbb{N}$$

So we have an implicit definition of a mixed geometric-arithmetic sequence $(x_n)_{n\in\mathbb{N}}$ with multiplier 2, offset 1 and first term 1.

Using the explicit formula gives

$$x_n = 1(2^{n-1}) + \left(\frac{1-2^{n-1}}{1-2}\right)1 = 2^n - 1 \quad \forall n \in \mathbb{N}.$$

5

Towers of Hanoi: Solution

To move n+1 discs first move top n discs to central peg (x_n mvs):

Next move base disc (1mv). Then remaining n discs (x_n mvs).

$$x_{n+1} = x_n + 1 + x_n = 2x_n + 1 \quad \forall n \in \mathbb{N}$$

So we have an implicit definition of a mixed geometric-arithmetic sequence $(x_n)_{n\in\mathbb{N}}$ with multiplier 2, offset 1 and first term 1.

Using the explicit formula gives

$$x_n = 1(2^{n-1}) + \left(\frac{1-2^{n-1}}{1-2}\right)1 = 2^n - 1 \quad \forall n \in \mathbb{N}.$$

In particular $x_{64}=(2^{64}-1)$ seconds $\sim 5.8 \times 10^{11}$ years.

Sorting

Let $N \in \mathbb{N}$, S be a set, and $(x_n)_{n \in \{1,...,N\}} \subseteq S$.

Remember that this just means that $x_n \in S$ for each $n \in \{1, ..., N\}$;

Let $N \in \mathbb{N}$, S be a set, and $(x_n)_{n \in \{1,...,N\}} \subseteq S$.

Remember that this just means that $x_n \in S$ for each $n \in \{1, ..., N\}$; it does not imply that all the x_n 's are different.

So sequences may contain some elements more than once.

Let $N \in \mathbb{N}$, S be a set, and $(x_n)_{n \in \{1,...,N\}} \subseteq S$.

Remember that this just means that $x_n \in S$ for each $n \in \{1, ..., N\}$; it does not imply that all the x_n 's are different.

So sequences may contain some elements more than once.

A **sorting algorithm** is a procedure for sorting a sequence into increasing order according to some specified ordering rule (*e.g.* numerical, alphabetical, etc.)

Let $N \in \mathbb{N}$, S be a set, and $(x_n)_{n \in \{1,...,N\}} \subseteq S$.

Remember that this just means that $x_n \in S$ for each $n \in \{1, ..., N\}$; it does not imply that all the x_n 's are different.

So sequences may contain some elements more than once.

A **sorting algorithm** is a procedure for sorting a sequence into increasing order according to some specified ordering rule (*e.g.* numerical, alphabetical, etc.) *i.e.* it replaces $(x_n)_{n \in \{1,...,N\}}$ by a rearrangement $(y_n)_{n \in \{1,...,N\}}$ with

$$y_1 \le y_2 \le y_3 \cdots y_{N-1} \le y_N$$

where "\le " denotes the ordering rule.

Let $N \in \mathbb{N}$, S be a set, and $(x_n)_{n \in \{1,...,N\}} \subseteq S$.

Remember that this just means that $x_n \in S$ for each $n \in \{1, ..., N\}$; it does not imply that all the x_n 's are different.

So sequences may contain some elements more than once.

A **sorting algorithm** is a procedure for sorting a sequence into increasing order according to some specified ordering rule (*e.g.* numerical, alphabetical, etc.) *i.e.* it replaces $(x_n)_{n \in \{1,...,N\}}$ by a rearrangement $(y_n)_{n \in \{1,...,N\}}$ with

$$y_1 \leq y_2 \leq y_3 \cdots y_{N-1} \leq y_N$$

where "\le " denotes the ordering rule.

Example:

$$(x_n)_{n\in\{1,\dots,5\}}=$$
 Jane, Fred, Jo, Jane, Ann $(y_n)_{n\in\{1,\dots,5\}}=$ Ann, Fred, Jane, Jane, Jo (in alphabetical order)

An index set I is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example:
$$I = \{3, 4, 5, 6\}$$
 $(s = 3, f = 6)$

7

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example:
$$I = \{3, 4, 5, 6\}$$
 $(s = 3, f = 6)$

For $I = \{s, ..., f\}$ we may denote the sequence $(a_n)_{n \in I}$ by $(a_n)_{s..f}$.

7

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example:
$$I = \{3, 4, 5, 6\}$$
 $(s = 3, f = 6)$

For $I = \{s, ..., f\}$ we may denote the sequence $(a_n)_{n \in I}$ by $(a_n)_{s...f}$.

Example: Suppose $\forall n \in \mathbb{N} \ a_n = 2n + 1$. Then $(a_n)_{3..6} = 7,9,11,13$.

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example: $I = \{3, 4, 5, 6\}$ (s = 3, f = 6)

For $I = \{s, ..., f\}$ we may denote the sequence $(a_n)_{n \in I}$ by $(a_n)_{s...f}$.

Example: Suppose $\forall n \in \mathbb{N} \ a_n = 2n + 1$. Then $(a_n)_{3..6} = 7,9,11,13$.

An **index permutation** on an index set I is a bijection $\pi:I\to I$.

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example: $I = \{3, 4, 5, 6\}$ (s = 3, f = 6)

For $I = \{s, ..., f\}$ we may denote the sequence $(a_n)_{n \in I}$ by $(a_n)_{s...f}$.

Example: Suppose $\forall n \in \mathbb{N} \ a_n = 2n + 1$. Then $(a_n)_{3..6} = 7,9,11,13$.

An **index permutation** on an index set I is a bijection $\pi: I \to I$. For $I = \{s, \ldots, f\}$ the permutation can be specified using the notation

$$\pi = \left(\begin{array}{cccc} s & s+1 & \dots & f \\ \pi(s) & \pi(s+1) & \dots & \pi(f) \end{array} \right).$$

7

An **index set** *I* is a set of the form

$$I = \{i \in \mathbb{N}^* : s \le i \le f\} = \{s, \dots, f\}$$

where $s, f \in \mathbb{N}^*$, $s \leq f$, are the **start index** and the **finish index**.

Example:
$$I = \{3, 4, 5, 6\}$$
 $(s = 3, f = 6)$

For $I = \{s, ..., f\}$ we may denote the sequence $(a_n)_{n \in I}$ by $(a_n)_{s...f}$.

Example: Suppose $\forall n \in \mathbb{N} \ a_n = 2n + 1$. Then $(a_n)_{3..6} = 7,9,11,13$.

An **index permutation** on an index set I is a bijection $\pi: I \to I$. For $I = \{s, \ldots, f\}$ the permutation can be specified using the notation

$$\pi = \left(\begin{array}{ccc} s & s+1 & \dots & f \\ \pi(s) & \pi(s+1) & \dots & \pi(f) \end{array} \right).$$

Example:

$$\pi = \begin{pmatrix} 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 \end{pmatrix} \text{ means} \quad \begin{matrix} I = \{3,4,5,6\} \\ \pi(3) = 6, \ \pi(4) = 4, \ \pi(5) = 3, \ \pi(6) = 5 \end{matrix} \; .$$

Using index permutations for sorting has two benefits:

• it allows for more precise algorithm specification: and

Using index permutations for sorting has two benefits:

- it allows for more precise algorithm specification: and
- items being sorted do not get moved only their indices are affected. This is valuable when the items have long and/or variable storage length.

Using index permutations for sorting has two benefits:

- it allows for more precise algorithm specification: and
- items being sorted do not get moved only their indices are affected.
 This is valuable when the items have long and/or variable storage length.

A **reordering** of a sequence $(x_n)_{s..t}$ is a sequence $(y_n)_{s..t}$ where $y_n = x_{\pi(n)}$ for some index permutation π .

Using index permutations for sorting has two benefits:

- it allows for more precise algorithm specification: and
- items being sorted do not get moved only their indices are affected.
 This is valuable when the items have long and/or variable storage length.

A **reordering** of a sequence $(x_n)_{s..t}$ is a sequence $(y_n)_{s..t}$ where $y_n = x_{\pi(n)}$ for some index permutation π .

The reordering of a sequence $(a_n)_{s..t}$ can be denoted by $(a_{\pi(n)})_{s..t}$.

Using index permutations for sorting has two benefits:

- it allows for more precise algorithm specification: and
- items being sorted do not get moved only their indices are affected.
 This is valuable when the items have long and/or variable storage length.

A **reordering** of a sequence $(x_n)_{s..t}$ is a sequence $(y_n)_{s..t}$ where $y_n = x_{\pi(n)}$ for some index permutation π .

The reordering of a sequence $(a_n)_{s..t}$ can be denoted by $(a_{\pi(n)})_{s..t}$.

Example: For
$$\pi = \begin{pmatrix} 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 \end{pmatrix}$$
, if $(a_n)_{3..6} = 7, \ 9, 11, 13$. then $(a_{\pi(n)})_{3..6} = 13, 9, 7, 11$

8

Using index permutations for sorting has two benefits:

- it allows for more precise algorithm specification: and
- items being sorted do not get moved only their indices are affected. This is valuable when the items have long and/or variable storage length.

A **reordering** of a sequence $(x_n)_{s..t}$ is a sequence $(y_n)_{s..t}$ where $y_n = x_{\pi(n)}$ for some index permutation π .

The reordering of a sequence $(a_n)_{s..t}$ can be denoted by $(a_{\pi(n)})_{s..t}$.

Example: For
$$\pi = \begin{pmatrix} 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 \end{pmatrix}$$
, if $(a_n)_{3..6} = 7, \ 9, 11, 13$. then $(a_{\pi(n)})_{3..6} = 13, 9, 7, 11$

Example: (names example recast using an index permutation) If $(x_n)_{n\in\{1,\dots,5\}}=$ Jane, Fred, Jo, Jane, Ann then $(x_{\pi(n)})_{n\in\{1,\dots,5\}}=$ Ann, Fred, Jane, Jane, Jo where $\pi=\begin{pmatrix}1&2&3&4&5\\5&2&1&4&3\end{pmatrix}$ sorts the sequence into alphabetical order.

The first algorithm we will use to begin sorting is the **least element** algorithm.

The first algorithm we will use to begin sorting is the **least element** algorithm.

Example: $(x_i)_{1..5} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) so that the smallest letter with respect to alphabetical order can be first.

9

The first algorithm we will use to begin sorting is the **least element** algorithm.

Example: $(x_i)_{1..5} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) so that the smallest letter with respect to alphabetical order can be first.

We begin with our marker m=1 and index i=1+1=2, and we compare $x_1=J$ and $x_{1+1}=x_2=O$. Since J is before O in the alphabet we keep m=1 as our marker (least in sequence tested so far). We increase our index by 1, i=2+1=3.

9

The first algorithm we will use to begin sorting is the **least element** algorithm.

Example: $(x_i)_{1..5} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) so that the smallest letter with respect to alphabetical order can be first.

We begin with our marker m=1 and index i=1+1=2, and we compare $x_1=J$ and $x_{1+1}=x_2=O$. Since J is before O in the alphabet we keep m=1 as our marker (least in sequence tested so far). We increase our index by 1, i=2+1=3.

We then compare $x_1 = J$ with $x_{2+1} = x_3 = E$. Since E is before J in the alphabet we change our marker to m = 3. We cannot increase our index anymore so we stop the algorithm.

The first algorithm we will use to begin sorting is the **least element** algorithm.

Example: $(x_i)_{1..5} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) so that the smallest letter with respect to alphabetical order can be first.

We begin with our marker m=1 and index i=1+1=2, and we compare $x_1=J$ and $x_{1+1}=x_2=O$. Since J is before O in the alphabet we keep m=1 as our marker (least in sequence tested so far). We increase our index by 1, i=2+1=3.

We then compare $x_1 = J$ with $x_{2+1} = x_3 = E$. Since E is before J in the alphabet we change our marker to m = 3. We cannot increase our index anymore so we stop the algorithm.

We now put our marker in the first place by modifying π to $\pi(1)=3$, $\pi(2)=2$ and $\pi(3)=1$.

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s...f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s...f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

 $i \leftarrow s + 1$. [Initialisation]

```
In writing algorithms from now on we will use the notation a \leftarrow b to mean
"assign a the value b, leaving b unchanged" (Some authors use a := b for this.)
Input: Sequence (x_i)_{s,f} \subseteq S, an ordering rule "\leq" for S
        and an index function \pi on \{s, \ldots, f\}.
Output: Modification to \pi so that x_{\pi(s)} \leq x_{\pi(i)} for i = s, ..., f.
Method:
i \leftarrow s + 1. [ Initialisation ]
m \leftarrow s, [ m is a marker; x_{\pi(m)}
             is the least sequence
              member so far tested
```

```
In writing algorithms from now on we will use the notation a \leftarrow b to mean
"assign a the value b, leaving b unchanged". (Some authors use a := b for this.)
Input: Sequence (x_i)_{s,i} \subseteq S, an ordering rule "\leq" for S
        and an index function \pi on \{s, \ldots, f\}.
Output: Modification to \pi so that x_{\pi(s)} \leq x_{\pi(i)} for i = s, ..., f.
Method:
i \leftarrow s + 1. [ Initialisation ]
m \leftarrow s, [ m is a marker; x_{\pi(m)}
              is the least sequence
              member so far tested
Loop: If i = f + 1 stop.
If x_{\pi(i)} < x_{\pi(m)} then m \leftarrow i.
i \leftarrow i + 1
Repeat loop
```

```
In writing algorithms from now on we will use the notation a \leftarrow b to mean
"assign a the value b, leaving b unchanged". (Some authors use a := b for this.)
Input: Sequence (x_i)_{s,i} \subseteq S, an ordering rule "\leq" for S
        and an index function \pi on \{s, \ldots, f\}.
Output: Modification to \pi so that x_{\pi(s)} \leq x_{\pi(i)} for i = s, ..., f.
Method:
i \leftarrow s + 1. [ Initialisation ]
m \leftarrow s, [ m is a marker; x_{\pi(m)}
              is the least sequence
              member so far tested
Loop: If i = f + 1 stop.
If x_{\pi(i)} < x_{\pi(m)} then m \leftarrow i.
i \leftarrow i + 1
Repeat loop
Swap the values of \pi(s) and \pi(m).
```

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

Example: (s=1, f=6)

	i	1 2 3 4 5 6
before	$\pi(i)$	1 2 3 4 5 6
	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

Example: (s=1, f=6)

	i	1 2 3 4 5 6
before	$\pi(i)$	1 2 3 4 5 6
	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

Example: (s=1, f=6)

	i	1 2 3 4 5 6
before	$\pi(i)$	1 2 3 4 5 6
	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s...f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

	i	1 2 3 4 5 6
fore	$\pi(i)$	1 2 3 4 5 6
bef	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s...f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

	i	1 2 3 4 5 6
fore	$\pi(i)$	1 2 3 4 5 6
bef	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s...f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation] $m \leftarrow s$, [m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

	i	1 2 3 4 5 6
fore	$\pi(i)$	1 2 3 4 5 6
bef	$X_{\pi(i)}$	FDCEBC

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation]
$$m \leftarrow s, \qquad \text{[m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested]}$$

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$.

$$i \leftarrow i + 1$$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

	i	1	2	3	4	5	6
.0	$\pi(i)$	1	2	3	4	5	6
b e f	$X_{\pi(i)}$	F	D	C	Ε	В	C

Tra	ce:	i	2	3 2	4	5	6	7
		m	1	2	3	3	5	5
	X ₇	:(i)	D	С	Е	В	С	-
	x_{π}	m)	F	C D	С	С	В	В

In writing algorithms from now on we will use the notation $a \leftarrow b$ to mean "assign a the value b, leaving b unchanged". (Some authors use a := b for this.)

Input: Sequence $(x_i)_{s..f} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{s, \ldots, f\}$.

Output: Modification to π so that $x_{\pi(s)} \leq x_{\pi(i)}$ for i = s, ..., f.

Method:

$$i \leftarrow s+1$$
. [Initialisation]
$$m \leftarrow s, \qquad \text{[m is a marker; $x_{\pi(m)}$ is the least sequence member so far tested]}$$

Loop: If i = f + 1 stop.

If
$$x_{\pi(i)} < x_{\pi(m)}$$
 then $m \leftarrow i$. $i \leftarrow i + 1$

Repeat loop

Swap the values of $\pi(s)$ and $\pi(m)$.

	i	1	2	3	4	5	6
before	$\pi(i)$	1	2	3	4	5	6
bef	$X_{\pi(i)}$	F	D	C	Е	В	C

Trace: i	2 1	3 2	4 3	5	6	7
$X_{\pi(i)}$ $X_{\pi(m)}$	D	C	E	B	C	-
	F	D	C	C	B	В

	i	1 2 3 4 5 6
ů	$\pi(i)$	5 2 3 4 1 6
after	$X_{\pi(i)}$	B D C E F C

The selection sort algorithm algorithm is a sorting algorithm.

The **selection sort algorithm** algorithm is a sorting algorithm.

Example: $(x_i)_{1..3} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) into alphabetical order.

The **selection sort algorithm** algorithm is a sorting algorithm.

Example: $(x_i)_{1..3} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) into alphabetical order.

Apply the least element algorithm to $(x_{\pi(i)})_{1..3}$. Gaining a modification to π given by $\pi(1)=3$, $\pi(2)=2$ and $\pi(3)=1$.

The selection sort algorithm algorithm is a sorting algorithm.

Example: $(x_i)_{1..3} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) into alphabetical order.

Apply the least element algorithm to $(x_{\pi(i)})_{1..3}$. Gaining a modification to π given by $\pi(1)=3$, $\pi(2)=2$ and $\pi(3)=1$.

Apply the least element algorithm $(x_{\pi(i)})_{2..3}$. We gain a modification to π given by $\pi(1)=3$, $\pi(2)=1$ and $\pi(3)=2$.

The **selection sort algorithm** algorithm is a sorting algorithm.

Example: $(x_i)_{1..3} = (J, O, E)$ with index set $\{1, 2, 3\}$. Our index function begins as $\pi(i) = i$. We want to know how to rearrange (J, O, E) into alphabetical order.

Apply the least element algorithm to $(x_{\pi(i)})_{1..3}$. Gaining a modification to π given by $\pi(1)=3$, $\pi(2)=2$ and $\pi(3)=1$.

Apply the least element algorithm $(x_{\pi(i)})_{2..3}$. We gain a modification to π given by $\pi(1)=3$, $\pi(2)=1$ and $\pi(3)=2$.

We complete stop the algorithm since we reached the end of our indexing.

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{1, \ldots, n\}$.

```
Input: Sequence (x_i)_{1..n} \subseteq S, an ordering rule "\leq" for S and an index function \pi on \{1,\ldots,n\}. Output: Modification to \pi, so that (x_{\pi(i)})_{1..n} is in increasing order x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}.
```

```
Input: Sequence (x_i)_{1..n} \subseteq S, an ordering rule "\leq" for S and an index function \pi on \{1,\ldots,n\}. Output: Modification to \pi, so that (x_{\pi(i)})_{1..n} is in increasing order x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}. Method: s \leftarrow 1 [Initialisation]
```

```
Input: Sequence (x_i)_{1..n} \subseteq S,
an ordering rule "<" for S
and an index function \pi on
\{1, \ldots, n\}.
Output: Modification to \pi,
so that (x_{\pi(i)})_{1..n} is in
increasing order
x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}.
Method:
s \leftarrow 1 [ Initialisation ]
Loop: If s = n stop.
Run least element
algorithm on (x_{\pi(i)})_{s..n}
s \leftarrow s + 1
Repeat loop
```

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule "<" for S and an index function π on $\{1,\ldots,n\}.$ **Output**: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order $x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}$. Method: $s \leftarrow 1$ [Initialisation] Loop: If s = n stop.

Run least element algorithm on $(x_{\pi(i)})_{s..n}$

 $s \leftarrow s + 1$ Repeat loop

Example:	i:	1	2	3	4	5	6
Input:	$\pi(i)$	1	2	3	4	5	6
(n = 6)	$X_{\pi(i)}$	F	D	C	Е	В	C

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{1, \ldots, n\}$.

Output: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order

$$x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}.$$

Method:

 $s \leftarrow 1$ [Initialisation]

Loop: If s = n stop.

Run least element algorithm on $(x_{\pi(i)})_{s..n}$

 $s \leftarrow s + 1$

Repeat loop

Example:	i:	1	2	3	4	5	6	
Input:	$\pi(i)$	1	2	3	4	5	6	
(n = 6)	$X_{\pi(i)}$	F	D	C	Ε	В	C	
s = 1								
After 1st	$\pi(i)$	5	2	3	4	1	6	
itoration	X (1)	R	D	\mathcal{C}	F	F	\mathcal{C}	

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule " \leq " for S and an index function π on $\{1, \ldots, n\}$.

Output: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order

$$X_{\pi(1)} \leq X_{\pi(2)} \leq \cdots \leq X_{\pi(n)}.$$

Method:

 $s \leftarrow 1$ [Initialisation] Loop: If s = n stop.

Run least element algorithm on $(x_{\pi(i)})_{s..n}$

 $s \leftarrow s + 1$

Repeat loop

Example:	i:	1	2	3	4	5	6	
Input:	$\pi(i)$	1	2	3	4	5	6]
(n = 6)	$X_{\pi(i)}$	F	D	C	Ε	В	C	
s=1								_
After 1st	$\pi(i)$	5	2	3	4	1	6]
iteration	$X_{\pi(i)}$	В	D	C	Ε	F	C	
s = 2								_
After 2nd	$\pi(i)$	5	3	2	4	1	6]
iteration	$X_{\pi(i)}$	В	C	D	Ε	F	C	

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule "<" for S and an index function π on $\{1,\ldots,n\}.$ **Output**: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order $x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}$. Method: $s \leftarrow 1$ [Initialisation] Loop: If s = n stop. Run least element algorithm on $(x_{\pi(i)})_{s..n}$ $s \leftarrow s + 1$ Repeat loop

Example:	i:	1	2	3	4	5	6
Input:	$\pi(i)$	1	2	3	4	5	6
(n = 6)	$X_{\pi(i)}$	F	D	C	Ε	В	C
s=1							
After 1st	$\pi(i)$			3			
iteration	$X_{\pi(i)}$	В	D	C	Ε	F	C
s=2							
After 2nd	$\pi(i)$	5	3	2	4	1	6
iteration	$X_{\pi(i)}$	В	C	D	Ε	F	C
s=3							
After 3rd	$\pi(i)$	5	3	6	4	1	2
iteration	$X_{\pi(i)}$	В	C	C	Е	F	D

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule "<" for S and an index function π on $\{1,\ldots,n\}.$ **Output**: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order $x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}$. Method: $s \leftarrow 1$ [Initialisation] Loop: If s = n stop. Run least element algorithm on $(x_{\pi(i)})_{s..n}$ $s \leftarrow s + 1$ Repeat loop

Example:	i:	1 2 3 4 5 6
Input:	$\pi(i)$	1 2 3 4 5 6
(n = 6)	$X_{\pi(i)}$	FDCEBC
s = 1		•
After 1st	$\pi(i)$	5 2 3 4 1 6
iteration	$X_{\pi(i)}$	B D C E F C
s=2		
After 2nd	$\pi(i)$	5 3 2 4 1 6
iteration	$X_{\pi(i)}$	B C D E F C
s=3		
After 3rd	$\pi(i)$	5 3 6 4 1 2
iteration	$X_{\pi(i)}$	B C C E F D
s = 4		
After 4th	$\pi(i)$	5 3 6 2 1 4
iteration	$X_{\pi(i)}$	B C C D F E

Input: Sequence $(x_i)_{1..n} \subseteq S$, an ordering rule "<" for S and an index function π on $\{1, \ldots, n\}.$ **Output**: Modification to π , so that $(x_{\pi(i)})_{1..n}$ is in increasing order $x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}$. Method: $s \leftarrow 1$ [Initialisation] Loop: If s = n stop. Run least element algorithm on $(x_{\pi(i)})_{s..n}$ $s \leftarrow s + 1$ Repeat loop

Example:	i:	1 2 3 4 5 6
Input:	$\pi(i)$	1 2 3 4 5 6
(n = 6)	$X_{\pi(i)}$	FDCEBC
s = 1		•
After 1st	$\pi(i)$	5 2 3 4 1 6
iteration	$X_{\pi(i)}$	B D C E F C
s=2		
After 2nd	$\pi(i)$	5 3 2 4 1 6
iteration	$X_{\pi(i)}$	B C D E F C
s = 3		
After 3rd	$\pi(i)$	5 3 6 4 1 2
iteration	$X_{\pi(i)}$	B C C E F D
s = 4		
After 4th	$\pi(i)$	5 3 6 2 1 4
iteration	$X_{\pi(i)}$	B C C D F E
s=5		
After final	$\pi(i)$	5 3 6 2 4 1
iteration	$X_{\pi(i)}$	B C C D E F

How many operations are required by Selection Sort?

How many operations are required by Selection Sort? By *operation* here we mean any comparison step; *i.e.* a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then . . ."

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then . . . "

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then ..."

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then ..."

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

So: 1st iteration uses n-1 comparisons

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then . . . "

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

So: 1st iteration uses n-1 comparisons 2nd iteration uses n-2 comparisons

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then ..."

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

So: 1st iteration uses n-1 comparisons 2nd iteration uses n-2 comparisons \vdots \vdots \vdots last iteration uses 1 comparison

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then . . ."

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

So: 1st iteration uses
$$n-1$$
 comparisons 2nd iteration uses $n-2$ comparisons \vdots \vdots \vdots last iteration uses 1 comparison

Hence the total number of comparisons, T_n say, is given by $1+2+\cdots+(n-1)=(n-1)\left(\frac{1+(n-1)}{2}\right)$ (sum of an arithmetic series).

How many operations are required by Selection Sort?

By operation here we mean any comparison step;

i.e. a step of the form "If $x_{\pi(i)} \leq x_{\pi(j)}$ then . . ."

The loop of the Selection Sort algorithm is iterated n-1 times; once each for $s=1,\ldots,n-1$.

Iteration s runs the Least Element algorithm on $(x_{\pi(i)})_{s..n}$ and so uses n-s comparisons.

So: 1st iteration uses
$$n-1$$
 comparisons 2nd iteration uses $n-2$ comparisons \vdots \vdots \vdots last iteration uses 1 comparison

Hence the total number of comparisons, T_n say, is given by $1+2+\cdots+(n-1)=(n-1)\left(\frac{1+(n-1)}{2}\right)$ (sum of an arithmetic series).

That is:
$$\forall n \in T_n = \frac{n(n-1)}{2}$$
.

There are many different sorting algorithms, with various pros and cons. A full study of the topic belongs in course on algorithms and data structures.

There are many different sorting algorithms, with various pros and cons. A full study of the topic belongs in course on algorithms and data structures.

We will look at just one more; "Merge Sort".

This will provide us with an opportunity to compare two algorithms designed to do the same job – what are their respective advantages and disadvantages?

There are many different sorting algorithms, with various pros and cons. A full study of the topic belongs in course on algorithms and data structures.

We will look at just one more; "Merge Sort".

This will provide us with an opportunity to compare two algorithms designed to do the same job – what are their respective advantages and disadvantages?

In order to keep the description simple, I will not use an indexing function π in specifying the algorithm, though it is possible, and often preferable, to do so.

There are many different sorting algorithms, with various pros and cons. A full study of the topic belongs in course on algorithms and data structures.

We will look at just one more; "Merge Sort".

This will provide us with an opportunity to compare two algorithms designed to do the same job – what are their respective advantages and disadvantages?

In order to keep the description simple, I will not use an indexing function π in specifying the algorithm, though it is possible, and often preferable, to do so.

As with Selection Sort, Merge Sort makes use of a sub-algorithm, which we treat first.