Wstęp do informatyki

Wykład 11

Słownik; drzewa binarne; drzewa binarnych poszukiwań

Instytut Informatyki UWr

Temat wykładu

- Słownik abstrakcyjny typ danych
- Drzewa struktura danych
- Drzewa binarnych poszukiwań implementacja słownika:
 - -Wstawianie
 - -Usuwanie
 - -Wyszukiwanie
 - -Wypisanie w porządku

Słownik

- **Słownik** struktura danych przechowująca elementy ze zbioru uporządkowanego, umożliwiająca wykonywanie operacji:
- Dodaj nowy element
- Usuń element
- Znajdź element (sprawdź czy występuje w zbiorze; jeśli tak, znajdź informacje o nim)
- Wypisz elementy w porządku

Uwaga: słownik jako abstrakcyjna struktura danych definiowany jest różnie; powyższa definicja dostosowana jest do potrzeb niniejszego wykładu!

Słownik

Słownik – implementacja:

- tablica?
- lista wiązana?
- przechowywanie dużego słownika w pamięci zewnętrznej (plik)?

Drzewo binarne – struktura danych (ukorzenione) drzewo binarne:

Struktura danych złożona z węzłów powiązanych wskaźnikami:

- Każdy węzeł ma co najwyżej dwoje dzieci (lewe dziecko i prawe dziecko)
- Każdy węzeł poza korzeniem ma dokładnie jednego rodzica
- Korzeń nie ma rodzica.
- W drzewie niepustym dokładnie jeden węzeł jest korzeniem.

Drzewo binarne – rodzic

Def. Rodzic

Węzeł v jest rodzicem x gdy:

- x jest lewym dzieckiem v LUB
- x jest prawym dzieckiem v.

Drzewo binarne w Ansi C

Definicje typów danych:

```
typedef struct node *pnode;
typedef struct node{
   int val;
   pnode left;
   pnode right;} snode;
```

Uwaga: snode to nazwa zastępująca "struct node", a pnode zastępuje "struct node *".

Drzewo binarne w Python

Obiekt definiujący węzeł drzewa:

```
class TreeItem:
    def __init__(self,value):
        self.val = value
        self.left = None
        self.right = None
```

Drzewo bin. – potomek, poddrzewo

Def. Potomek

Węzeł u jest potomkiem v gdy:

- u jest dzieckiem v LUB
- u jest potomkiem dziecka v
 (uwaga rekurencyjna definicja!)

Def. Poddrzewo

Lewe (prawe) poddrzewo v to drzewo składające się z lewego (prawego) dziecka v i jego potomków.

Drzewo binarnych poszukiwań

Drzewo binarnych poszukiwań (Binary Search Tree (BST)):

- Drzewo binarne z kluczami w węzłach; klucze należą do zbioru uporządkowanego;
- Dla każdego węzła v, spełnione są następujące warunki :
 - klucze znajdujące się w lewym poddrzewie v są mniejsze (lub równe) od klucza w węźle v,
 - klucze znajdujące się w prawym poddrzewie v są większe (lub równe) od klucza w węźle v.

- Nie jest drzewem binarnym

- Drzewo binarne
- Nie jest drzewem binarnych poszukiwań

- Nie jest drzewem binarnym

- Drzewo binarne
- Drzewo binarnych poszukiwań

Drzewa – pojęcia

Def. Liść

Węzeł v jest liściem w drzewie gdy:

- v nie ma lewego dziecka, ORAZ
- v nie ma prawego dziecka.

Def. Ścieżka

Ścieżka to ciąg węzłów $v_1, v_2, ..., v_k$ taki, że v_i jest dzieckiem v_{i-1} dla i=2,3,...,k

Def. Wysokość drzewa

Wysokość drzewa to największa długość (liczba węzłów) ścieżki od korzenia do liścia.

- Korzeń: 5

- Liście: 1, 4, 8

 Wysokość drzewa: 3 (najdłuższe ścieżki od korzenia do liścia mają 3 węzły, np. ścieżka z wartościami 5, 3, 4)

BST – wyszukiwanie

Specyfikacja

Wejście: root – korzeń drzewa,

skey – szukana wartość

Wyjście:

Jeśli skey występuje w drzewie o korzeniu root: wskaźnik na węzeł zawierający skey.

W przeciwnym przypadku: wskaźnik pusty NULL.

Idea rozwiązania:

- Jeśli drzewo puste: zwróć NULL
- Jeśli skey równy wartości w korzeniu drzewa: zwróć wskaźnik na korzeń.
- Jeśli skey większy od wartości w korzeniu: wyszukaj skey w prawym poddrzewie.
- Jeśli skey mniejszy od wartości w korzeniu: wyszukaj skey w lewym poddrzewie.

BST – wyszukiwanie

Specyfikacja

Wejście: root – korzeń drzewa, skey – szukana wartość

Wyjście:

Jeśli skey występuje w drzewie o korzeniu root: wskaźnik na węzeł zawierający skey.

W przeciwnym przypadku: wskaźnik pusty NULL.

```
pnode search( pnode root, int skey)
{
   if (root==NULL || root->val == skey)
        return root;
   if (root->val > skey)
        return search(root->left, skey);
   else return search(root->right, skey);
}
```

BST – wyszukiwanie

Specyfikacja

Wejście: root – korzeń drzewa,

skey – szukana wartość

Wyjście:

Jeśli skey występuje w drzewie o korzeniu root: wskaźnik na węzeł zawierający skey.

W przeciwnym przypadku: wskaźnik pusty NULL.

```
def search( root, skey):
   if (root==None or root.val == skey):
     return root
   if (root.val > skey):
     return search(root.left, skey)
   else:
     return search(root.right, skey)
```

Wyszukiwanie - przykład

```
pnode search( pnode root, int skey)
       if (root==NULL || root->val == skey)
            return root;
       if (root->val > skey)
            return search(root->left, skey);
       else return search(root->right, skey);
                                    search(root,4)
                     5
            3
```

Wyszukiwanie - przykład

```
pnode search( pnode root, int skey)
       if (root==NULL || root->val == skey)
            return root;
       if (root->val > skey)
            return search(root->left, skey);
       else return search(root->right, skey);
                                    search(root,4)
                     5
            3
                             8
```

Wyszukiwanie - przykład

```
pnode search( pnode root, int skey)
       if (root==NULL || root->val == skey)
            return root;
       if (root->val > skey)
            return search(root->left, skey);
       else return search(root->right, skey);
                                    search(root,4)
                     5
            3
                             8
```

BST – wstawianie

Specyfikacja

Wejście: root – korzeń drzewa,

nkey – wstawiana wartość

Wyjście:

- Jeśli w drzewie nie ma węzła z kluczem nkey: wskaźnik na korzeń drzewa uzyskanego z root po wstawieniu węzła z kluczem nkey.
- •W przeciwnym przypadku : oryginalna wartość root (drzewo się nie zmienia).

Idea rozwiązania:

- Jeśli drzewo puste: utwórz węzeł z kluczem nkey, bez dzieci, zwróć go jako wynik.
- Jeśli nkey równy wartości w korzeniu drzewa: zwróć wskaźnik na korzeń.
- Jeśli nkey większy od wartości w korzeniu: wstaw nkey do prawego poddrzewa, zwróć wskaźnik na korzeń.
- Jeśli nkey mniejszy od wartości w korzeniu: wstaw nkey do lewego poddrzewa, zwróć wskaźnik na korzeń.

Drzewa – tworzenie węzła

```
pnode utworz(int wart)
{ //utworzenie nowego wezla
   pnode pom;
   pom = (pnode) malloc(sizeof(snode));
   pom->left = NULL;
   pom->right = NULL;
                          key
                                wart
                                           pom
                          left
                                NULL
   pom->val = wart;
                                NULL
                          right
   return pom;
```

Odpowiednik w python:

TreeItem(wart)

BST – wstawianie

Specyfikacja

Wejście: root – korzeń drzewa, nkey – wstawiana wartość **Wyjście**:

- Jeśli w root nie ma węzła z kluczem nkey: wskaźnik na korzeń drzewa uzyskanego z root po wstawieniu węzła z kluczem nkey.
- •W przeciwnym przypadku : oryginalna wartość root (drzewo się nie zmienia).

```
pnode insert (pnode root, int nkey)
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
    root->left = insert(root->left, nkey);
  else
    if (nkey > root->val)
      root->right = insert(root->right, nkey);
  return root;
```

BST – wstawianie

Specyfikacja

Wejście: root – korzeń drzewa, nkey – wstawiana wartość **Wyjście**:

- Jeśli w root nie ma węzła z kluczem nkey: wskaźnik na korzeń drzewa uzyskanego z root po wstawieniu węzła z kluczem nkey.
- •W przeciwnym przypadku : oryginalna wartość root (drzewo się nie zmienia).

```
def insert( root, nkey):
   if (root==None): return TreeItem(nkey)
   if (nkey < root.val):
      root.left = insert(root.left, nkey)
   else:
      if (nkey > root.val):
        root.right = insert(root.right, nkey)
   return root
```

```
pnode insert( pnode root, int nkey)
{ pnode pom;
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
     root->left = insert(root->left, nkey);
  else
   if (nkey > root->val)
     root->right = insert(root->right, nkey);
  return root;
}
```



```
pnode insert( pnode root, int nkey)
{ pnode pom;
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
    root->left = insert(root->left, nkey);
  else
   if (nkey > root->val)
      root->right = insert(root->right, nkey);
  return root;
}
```



```
pnode insert( pnode root, int nkey)
{ pnode pom;
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
     root->left = insert(root->left, nkey);
  else
   if (nkey > root->val)
     root->right = insert(root->right, nkey);
  return root;
}
```



```
pnode insert( pnode root, int nkey)
{ pnode pom;
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
    root->left = insert(root->left, nkey);
  else
    if (nkey > root->val)
      root->right = insert(root->right, nkey);
  return root;
}
```



```
pnode insert( pnode root, int nkey)
{ pnode pom;
  if (root==NULL) return utworz(nkey);
  if (nkey < root->val)
    root->left = insert(root->left, nkey);
  else
    if (nkey > root->val)
      root->right = insert(root->right, nkey);
  return root;
}
```


BST – wypisanie w porządku

Specyfikacja

Wejście: root – korzeń drzewa BST

Wyjście:

wypisanie na wyjściu elementów z drzewa root w kolejności niemalejącej.

Idea rozwiązania:

- •Jeśli drzewo niepuste:
 - •Wypisz zawartość lewego poddrzewa korzenia.
 - •Wypisz klucz znajdujący się w korzeniu.
 - •Wypisz zawartość prawego poddrzewa korzenia.

BST – wypisanie w porządku

Specyfikacja

Wejście: root – korzeń drzewa BST

Wyjście:

wypisanie na wyjściu elementów z drzewa root w kolejności niemalejącej.

```
void write( pnode root )
{ if (root!=NULL) {
    write( root->left);
    printf("%d\n", root->val);
    write( root->right);
    }
}
```

```
def write(root):
   if (root!=None):
     write( root.left)
     print root.val
     write( root.right)
```

BST – usuwanie

Specyfikacja

Wejście: root – korzeń drzewa BST,

dkey – klucz do usunięcia

Wyjście:

Korzeń drzewa uzyskanego z drzewa o korzeniu root po usunięciu węzła zawierającego dkey.

<u>ldea rozwiązania:</u>

- 1.*w* ← wartość key w węźle root
- 2.Jeśli dkey **mniejszy** od *w*: usuń dkey z root->lewy
- 3.Jeśli dkey większy od w: usuń dkey z root->prawy
- 4. Jeśli dkey równy w:
 - a) Jeśli lewe poddrzewo root puste: wstaw prawe poddrzewo root w miejsce root
 - b) Jeśli prawe poddrzewo root puste: wstaw lewe poddrzewo root w miejsce root
 - c) Jeśli oba poddrzewa root niepuste: znajdź węzeł drzewa, który można ("łatwo") przenieść w miejsce root (nie naruszając porządku BST).

BST – usuwanie

Specyfikacja

Wejście: root – korzeń drzewa BST,

dkey – klucz do usunięcia

Wyjście:

Korzeń drzewa uzyskanego z drzewa o korzeniu root po usunięciu węzła zawierającego dkey.

Idea rozwiązania:

w ← wartość w węźle root

(...)

4. Jeśli dkey równy w:

(...)

- c) Jeśli oba poddrzewa root niepuste: znajdź węzeł drzewa, który można wstawić w miejsce root (nie naruszając porządku BST):
 - i. znajdź w' najmniejszy element prawego poddrzewa root (węzeł zawierający w' nie ma lewego poddrzewa!)
 - ii. wstaw wartość w' jako val w root
 - iii. usuń "stary" węzeł zawierający w'

BST – usuwanie

Specyfikacja

Wejście: root – korzeń drzewa BST, dkey – klucz do usunięcia

Wyjście:

Korzeń drzewa uzyskanego z drzewa o korzeniu root po usunięciu węzła zawierającego dkey.

```
pnode deletekey ( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
    if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
    else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
      else // root wskazuje na element do usuniecia
        if (root->left == NULL) { // 4a
          pom=root->right; free(root);
          root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root);
            root = pom;
           } else
           delhlp(root); // 4c - oba poddrzewa niepuste
  return root;
```

Specyfikacja

Wejście: root – korzeń drzewa BST, dkey – klucz do usunięcia

Wyjście:

Korzeń drzewa uzyskanego z drzewa o korzeniu root po usunięciu węzła zawierającego dkey.

```
def deletekey( root, dkey):
  if (root!=None):
    if (dkey < root.val):</pre>
      root.left = deletekey(root.left, dkey); # 2
    else:
      if (dkey > root.val):
        root.right = deletekey(root.right, dkey); #3
      else: # root wskazuje na element do usuniecia
        if (root.left == None): # 4a
          root=root.right
        else:
          if (root.right == None): #4b
            root = root.left
          else:
            delhlp(root) # 4c - oba poddrzewa niepuste
  return root
```

Specyfikacja

Wejście: root – korzeń drzewa BST,

dkey – klucz do usunięcia

Wyjście:

Korzeń drzewa uzyskanego z drzewa o korzeniu root po usunięciu węzła zawierającego dkey.

Idea rozwiązania:

w ← wartość w węźle root

(...)

4. Jeśli dkey równy w:

(...)

- c) Jeśli oba poddrzewa root niepuste: znajdź węzeł drzewa, który można wstawić w miejsce root (nie naruszając porządku BST):
 - i. znajdź w' najmniejszy element prawego poddrzewa root (węzeł zawierający w' nie ma lewego poddrzewa!)

delhlp

- ii. wstaw wartość w' jako val w root
- iii. usuń "stary" węzeł zawierający w'

Specyfikacja (funkcji pomocniczej)

Wejście: root – korzeń drzewa BST, z niepustym prawym poddrzewem **Wyjście**:

root to drzewo BST uzyskane po usunięciu wartości przechowywanej w korzeniu i przeniesieniu do korzenia najmniejszej wartości z prawego poddrzewa węzła root

```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur, prev;
 prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // szukanie min. w root->right
   prev = cur; cur = cur->left;
  root->val = cur->val;
  if (prev!=root) //korzeń root->right NIE jest jego minimum
      prev->left = cur->right;
  else
               //korzeń root->right jest jego minimum
      root->right = cur->right;
  free (cur);
```

Specyfikacja (funkcji pomocniczej)

Wejście: root – korzeń drzewa BST, z niepustym prawym poddrzewem **Wyjście**:

root to drzewo uzyskane po usunięciu wartości przechowywanej w korzeniu i przeniesieniu do korzenia najmniejszej wartości z prawego poddrzewa węzła root

```
pnode deletekey( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
    if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
    else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
      else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
  return root;
```



```
pnode deletekey( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
    if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
    else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
      else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
  return root;
```



```
pnode deletekey ( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
   if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
   else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
     else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
 return root;
```



```
pnode deletekey( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
   if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
   else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
     else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
 return root;
```



```
pnode deletekey( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
    if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
    else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
      else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
  return root;
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur;
  prev = cur;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur;
  prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur,prev;
  prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```



```
pnode deletekey( pnode root, int dkey)
{ pnode pom;
  if (root!=NULL)
    if (dkey < root->val) root->left = deletekey(root->left, dkey); // 2
    else
      if (dkey > root->val) root->right = deletekey(root->right, dkey); //3
      else
        if (root->left == NULL) { // 4a
          pom=root->right; free(root); root=pom;
         } else
           if (root->right == NULL) { //4b
            pom=root->left; free(root); root = pom;
           } else
            delhlp(root); // 4c - oba poddrzewa niepuste
  return root;
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur, prev;
  prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur, prev;
  prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```



```
void delhlp(pnode root) //FUNKCJA POMOCNICZA!
{ pnode cur, prev;
  prev = root;
  cur = root->right;
  while (cur->left!=NULL) { // cur nie jest najmniejszy
    prev = cur; cur = cur->left;
  }
  root->val = cur->val;
  if (prev!=root) prev->left = cur->right;
  else root->right = cur->right;
  free(cur);
}
```


BST – złożoność operacji

Oznaczenie: n – liczba węzłów w drzewie

Fakt.

Złożoność czasowa (najgorszego przypadku) operacji:

- dodaj nowy element
- usuń element
- znajdź element jest O(h), gdzie h to wysokość drzewa.

Fakt. Wypisanie elementów w porządku dla drzewa o n węzłach wymaga czasu O(*n*).

Fakt

Wysokość drzewa o *n* węzłach:

- •najmniejsza: [log (*n*+1)]
- •największa: n

BST – złożoność operacji

Wniosek.

Złożoność czasowa (najgorszego przypadku) operacji dodaj nowy element, usuń element, znajdź element jest O(n), gdzie n to liczba węzłów w drzewie.

Pytanie:

Dlaczego drzewa BST, skoro złożoność nie jest lepsza niż w przypadku list lub tablic?

Odp.:

- 1. Zazwyczaj (czyli przy "losowej" kolejności wstawiania/usuwania elementów) wysokość drzewa dużo mniejsza niż liczba węzłów.
- 2. Można zaimplementować operacje na BST tak, aby złożoność wyszukiwania, wstawiania i usuwania wynosiła O(log n) [algorytmy i struktury danych II rok studiów]

Drzewa, BST, słowniki - podsumowanie

Słownik.

Abstrakcyjna struktura danych do (szybkiego) wyszukiwania, wstawiania, usuwania,...

Drzewo

Dynamiczna struktura danych, oparta na wskaźnikach

Drzewo BST

Struktura danych oparta na drzewach, operacje wstawiania, usuwania, wyszukiwania ("szybkie" implementacje nie są omawiane na tym przedmiocie).

Usprawnienia i alternatywne implementacje

- bez rekurencji?
- użycie wartownika?
- rotacje... (AVL, drzewa czerwono-czarne, ...)

Drzewa, BST, słowniki - podsumowanie

Usprawnienia i alternatywne implementacje

- bez rekurencji?
- użycie wartownika?
- rotacje... (AVL, drzewa czerwono-czarne, ...) umożliwiają realizację
 - Wstawianie O(log n)
 - Usuwanie O(log n)
 - Wyszukiwanie O(log n)
 - Wypisanie elementów w kolejności niemalejącej O(n)