$12n_{0092} \ (K12n_{0092})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -2.63090 \times 10^{169} u^{64} - 1.19407 \times 10^{170} u^{63} + \dots + 5.11342 \times 10^{169} b - 2.60080 \times 10^{170}, \\ &- 1.33678 \times 10^{170} u^{64} - 5.86621 \times 10^{170} u^{63} + \dots + 1.27836 \times 10^{169} a - 8.83930 \times 10^{170}, \\ &u^{65} + 5u^{64} + \dots + 4u + 4 \rangle \\ I_2^u &= \langle 13a^2u + 10a^2 + 22au + 61b + 31a + 11u + 46, \ a^3 + a^2u - 7au + 13a - u + 4, \ u^2 - u - 1 \rangle \\ I_3^u &= \langle b, \ 5u^2 + a + 2u + 9, \ u^3 + u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 76 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

²All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2.63 \times 10^{169} u^{64} - 1.19 \times 10^{170} u^{63} + \dots + 5.11 \times 10^{169} b - 2.60 \times 10^{170}, \ -1.34 \times 10^{170} u^{64} - 5.87 \times 10^{170} u^{63} + \dots + 1.28 \times 10^{169} a - 8.84 \times 10^{170}, \ u^{65} + 5 u^{64} + \dots + 4 u + 4 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 10.4570u^{64} + 45.8887u^{63} + \cdots - 20.3543u + 69.1458 \\ 0.514509u^{64} + 2.33517u^{63} + \cdots - 12.7222u + 5.08623 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 10.9715u^{64} + 48.2239u^{63} + \cdots - 33.0765u + 74.2321 \\ 0.514509u^{64} + 2.33517u^{63} + \cdots - 12.7222u + 5.08623 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.56076u^{64} - 11.3025u^{63} + \cdots + 22.7562u - 15.2103 \\ -0.519422u^{64} - 2.45761u^{63} + \cdots + 16.9006u - 7.52354 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -3.92828u^{64} - 17.5296u^{63} + \cdots + 43.8945u - 28.7392 \\ -0.226329u^{64} - 1.14246u^{63} + \cdots + 13.8722u - 5.08179 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.467988u^{64} - 1.95761u^{63} + \cdots - 13.3003u + 0.571683 \\ 1.21392u^{64} + 5.72728u^{63} + \cdots - 42.4563u + 17.1644 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 11.9804u^{64} + 52.6553u^{63} + \cdots - 42.2932u + 79.5227 \\ -0.226329u^{64} - 1.14246u^{63} + \cdots + 13.8722u - 5.08179 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.45833u^{64} - 6.68429u^{63} + \cdots + 28.8135u - 15.0633 \\ -0.990343u^{64} - 4.72668u^{63} + \cdots + 42.1137u - 15.6350 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.205715u^{64} - 0.764176u^{63} + \cdots - 16.7041u + 3.00115 \\ 1.42293u^{64} + 6.67656u^{63} + \cdots - 45.2828u + 19.1221 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-250.136u^{64} 1099.53u^{63} + \cdots + 889.233u 1633.12$

Crossings	u-Polynomials at each crossing
c_1	$u^{65} + 35u^{64} + \dots + 4379u + 1$
c_{2}, c_{4}	$u^{65} - 7u^{64} + \dots - 61u - 1$
c_3, c_6	$u^{65} - 4u^{64} + \dots - 4u - 8$
c_5, c_8	$u^{65} - 3u^{64} + \dots + 224u - 64$
c_7, c_{11}	$u^{65} - 5u^{64} + \dots + 4u - 4$
c_9, c_{10}, c_{12}	$u^{65} + 7u^{64} + \dots + 88u - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{65} - 3y^{64} + \dots + 19078099y - 1$
c_2, c_4	$y^{65} - 35y^{64} + \dots + 4379y - 1$
c_{3}, c_{6}	$y^{65} + 24y^{64} + \dots + 7056y - 64$
c_5, c_8	$y^{65} - 47y^{64} + \dots + 283648y - 4096$
c_7, c_{11}	$y^{65} - 21y^{64} + \dots + 1448y - 16$
c_9, c_{10}, c_{12}	$y^{65} - 55y^{64} + \dots + 6134y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.852107 + 0.536554I		
a = 0.312816 - 0.088889I	1.38895 - 2.95818I	0
b = -1.40349 + 0.30161I		
u = -0.852107 - 0.536554I		
a = 0.312816 + 0.088889I	1.38895 + 2.95818I	0
b = -1.40349 - 0.30161I		
u = -0.948009 + 0.367228I		
a = 0.850963 - 0.753331I	2.10912 - 0.34030I	0
b = 0.153663 + 0.857675I		
u = -0.948009 - 0.367228I		
a = 0.850963 + 0.753331I	2.10912 + 0.34030I	0
b = 0.153663 - 0.857675I		
u = -1.024770 + 0.135153I		
a = -0.04125 + 1.56220I	9.17254 - 3.64107I	0
b = -0.13124 - 1.75548I		
u = -1.024770 - 0.135153I		
a = -0.04125 - 1.56220I	9.17254 + 3.64107I	0
b = -0.13124 + 1.75548I		
u = -0.691259 + 0.784338I		
a = -0.662548 + 0.346420I	0.56978 - 4.38703I	0
b = -0.470514 - 0.941528I		
u = -0.691259 - 0.784338I		
a = -0.662548 - 0.346420I	0.56978 + 4.38703I	0
b = -0.470514 + 0.941528I		
u = 0.916883 + 0.120007I		
a = -0.389774 + 0.653279I	3.47356 + 1.55230I	0
b = -0.947907 - 0.877633I		
u = 0.916883 - 0.120007I		
a = -0.389774 - 0.653279I	3.47356 - 1.55230I	0
b = -0.947907 + 0.877633I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.568857 + 0.725937I		
a = 0.442387 + 0.229414I	-2.18618 - 0.21906I	0
b = -0.895487 - 0.532333I		
u = 0.568857 - 0.725937I		
a = 0.442387 - 0.229414I	-2.18618 + 0.21906I	0
b = -0.895487 + 0.532333I		
u = -0.842958 + 0.701034I		
a = -0.402908 + 1.148860I	-1.58736 + 0.20570I	0
b = 0.613031 - 0.666960I		
u = -0.842958 - 0.701034I		
a = -0.402908 - 1.148860I	-1.58736 - 0.20570I	0
b = 0.613031 + 0.666960I		
u = 0.322386 + 0.842732I		
a = -0.573249 + 1.009110I	4.65051 + 1.43055I	0
b = 0.004484 + 1.102400I		
u = 0.322386 - 0.842732I		
a = -0.573249 - 1.009110I	4.65051 - 1.43055I	0
b = 0.004484 - 1.102400I		
u = 0.890471 + 0.716800I		
a = -0.459802 - 0.793448I	4.31441 + 8.34885I	0
b = -0.820727 + 1.097090I		
u = 0.890471 - 0.716800I		
a = -0.459802 + 0.793448I	4.31441 - 8.34885I	0
b = -0.820727 - 1.097090I		
u = 0.807936 + 0.810042I		
a = 0.59554 + 1.80173I	-5.30684 + 1.54275I	0
b = 0.635097 - 0.948580I		
u = 0.807936 - 0.810042I		
a = 0.59554 - 1.80173I	-5.30684 - 1.54275I	0
b = 0.635097 + 0.948580I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.093900 + 0.380450I		
a = 0.431231 + 0.794777I	7.57890 + 3.09040I	0
b = 0.769105 - 1.004900I		
u = 1.093900 - 0.380450I		
a = 0.431231 - 0.794777I	7.57890 - 3.09040I	0
b = 0.769105 + 1.004900I		
u = -1.123750 + 0.281723I		
a = 0.31854 + 1.48804I	1.65110 - 0.40415I	0
b = -0.360396 - 0.792963I		
u = -1.123750 - 0.281723I		
a = 0.31854 - 1.48804I	1.65110 + 0.40415I	0
b = -0.360396 + 0.792963I		
u = -0.916981 + 0.724426I		
a = 0.35528 - 1.65844I	-1.34521 - 5.69764I	0
b = 0.449506 + 1.288610I		
u = -0.916981 - 0.724426I		
a = 0.35528 + 1.65844I	-1.34521 + 5.69764I	0
b = 0.449506 - 1.288610I		
u = -0.716927 + 0.933576I		
a = 0.95858 - 1.67087I	-1.31032 + 2.58838I	0
b = 0.830238 + 0.572871I		
u = -0.716927 - 0.933576I		
a = 0.95858 + 1.67087I	-1.31032 - 2.58838I	0
b = 0.830238 - 0.572871I		
u = 0.640640 + 0.505760I		
a = 2.04088 - 0.00556I	4.03132 - 3.47720I	8.54192 + 0.I
b = -0.281677 - 1.140920I		
u = 0.640640 - 0.505760I		
a = 2.04088 + 0.00556I	4.03132 + 3.47720I	8.54192 + 0.I
b = -0.281677 + 1.140920I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.963394 + 0.774365I		
a = -0.309238 - 0.466323I	-4.82760 + 4.40824I	0
b = 1.011710 + 0.670256I		
u = 0.963394 - 0.774365I		
a = -0.309238 + 0.466323I	-4.82760 - 4.40824I	0
b = 1.011710 - 0.670256I		
u = -0.516521 + 1.180440I		
a = 0.443034 - 0.252752I	2.73256 + 3.28945I	0
b = -0.511934 + 1.004960I		
u = -0.516521 - 1.180440I		
a = 0.443034 + 0.252752I	2.73256 - 3.28945I	0
b = -0.511934 - 1.004960I		
u = -1.040640 + 0.792804I		
a = -0.269379 + 0.165081I	-0.31021 - 8.92181I	0
b = 1.29598 - 0.58611I		
u = -1.040640 - 0.792804I		
a = -0.269379 - 0.165081I	-0.31021 + 8.92181I	0
b = 1.29598 + 0.58611I		
u = 1.133830 + 0.655680I		
a = -0.23216 - 1.57884I	-0.42473 + 5.58831I	0
b = -0.680939 + 1.100720I		
u = 1.133830 - 0.655680I		
a = -0.23216 + 1.57884I	-0.42473 - 5.58831I	0
b = -0.680939 - 1.100720I		
u = 0.481460 + 1.304030I		
a = -0.160877 - 0.218086I	-6.03312 - 3.48808I	0
b = 0.650609 + 0.709593I		
u = 0.481460 - 1.304030I		
a = -0.160877 + 0.218086I	-6.03312 + 3.48808I	0
b = 0.650609 - 0.709593I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.605447 + 0.034461I		
a = 0.36569 - 3.69530I	3.85230 + 2.93050I	-14.9510 - 12.7631I
b = -0.185254 + 1.354450I		
u = 0.605447 - 0.034461I		
a = 0.36569 + 3.69530I	3.85230 - 2.93050I	-14.9510 + 12.7631I
b = -0.185254 - 1.354450I		
u = -0.596504		
a = 11.6408	-0.561787	-200.700
b = 0.144153		
u = -1.20386 + 0.80436I		
a = -0.39858 + 1.41760I	4.86618 - 10.28160I	0
b = -0.72823 - 1.36563I		
u = -1.20386 - 0.80436I		
a = -0.39858 - 1.41760I	4.86618 + 10.28160I	0
b = -0.72823 + 1.36563I		
u = -0.551957		
a = 1.56151	1.12640	9.50900
b = -0.122994		
u = -0.35331 + 1.40989I		
a = -0.0507171 + 0.0998246I	-4.60256 - 2.48429I	0
b = 0.265762 - 0.457711I		
u = -0.35331 - 1.40989I		_
a = -0.0507171 - 0.0998246I	-4.60256 + 2.48429I	0
b = 0.265762 + 0.457711I		
u = -0.515646 + 0.173541I	4 000-00 0 0000007	0.40010.7
a = -2.52072 + 0.01596I	-1.000760 - 0.692383I	-6.73751 - 0.40613I
b = -0.510707 + 0.338412I		
u = -0.515646 - 0.173541I	1.000 7.00 . 0.0000007	0.0000
a = -2.52072 - 0.01596I	-1.000760 + 0.692383I	-6.73751 + 0.40613I
b = -0.510707 - 0.338412I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.30779 + 0.82249I		
a = 0.312309 + 1.360860I	-3.39471 + 10.94230I	0
b = 0.780596 - 1.112270I		
u = 1.30779 - 0.82249I		
a = 0.312309 - 1.360860I	-3.39471 - 10.94230I	0
b = 0.780596 + 1.112270I		
u = -1.42808 + 0.65324I		
a = 0.120606 - 1.218490I	-0.66498 - 4.63908I	0
b = 0.608224 + 0.971552I		
u = -1.42808 - 0.65324I		
a = 0.120606 + 1.218490I	-0.66498 + 4.63908I	0
b = 0.608224 - 0.971552I		
u = -1.26142 + 0.95426I		
a = 0.49685 - 1.33557I	1.9343 - 16.4466I	0
b = 0.84089 + 1.26809I		
u = -1.26142 - 0.95426I		
a = 0.49685 + 1.33557I	1.9343 + 16.4466I	0
b = 0.84089 - 1.26809I		
u = -0.76428 + 1.39601I		
a = -0.194634 + 0.365377I	0.19526 + 8.22606I	0
b = 0.676063 - 1.067470I		
u = -0.76428 - 1.39601I		
a = -0.194634 - 0.365377I	0.19526 - 8.22606I	0
b = 0.676063 + 1.067470I		
u = 1.63520		
a = 1.82265	7.71518	0
b = 0.534695		
u = -0.284609		
a = -0.440890	-7.15457	47.4220
b = 1.67721		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.027450 + 0.277565I		
a = -14.7216 + 8.1087I	0.646116 - 0.109642I	-45.2047 + 8.8218I
b = -0.617886 + 0.064219I		
u = -0.027450 - 0.277565I		
a = -14.7216 - 8.1087I	0.646116 + 0.109642I	-45.2047 - 8.8218I
b = -0.617886 - 0.064219I		
u = 1.83739 + 0.12757I		
a = 0.128738 + 1.010030I	11.02040 + 2.29381I	0
b = 0.151006 - 1.055190I		
u = 1.83739 - 0.12757I		
a = 0.128738 - 1.010030I	11.02040 - 2.29381I	0
b = 0.151006 + 1.055190I		
u = 0.113052		
a = 3.84398	-1.00335	-10.2290
b = -0.612202		

$$I_2^u = \langle 13a^2u + 22au + \dots + 31a + 46, \ a^3 + a^2u - 7au + 13a - u + 4, \ u^2 - u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.213115a^{2}u - 0.360656au + \cdots - 0.508197a - 0.754098 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.213115a^{2}u - 0.360656au + \cdots + 0.491803a - 0.754098 \\ -0.213115a^{2}u - 0.360656au + \cdots - 0.508197a - 0.754098 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0163934a^{2}u + 0.0491803au + \cdots + 0.114754a + 0.557377 \\ -0.262295a^{2}u - 0.213115au + \cdots - 0.163934a - 0.0819672 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0163934a^{2}u + 0.0491803au + \cdots + 0.114754a + 0.557377 \\ -0.262295a^{2}u - 0.213115au + \cdots - 0.163934a - 0.0819672 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.278689a^{2}u - 0.163934au + \cdots - 0.0491803a - 1.52459 \\ -0.262295a^{2}u - 0.213115au + \cdots - 0.163934a - 0.0819672 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{476}{61}a^2u + \frac{216}{61}a^2 + \frac{158}{61}au + \frac{23}{61}a + \frac{872}{61}u + \frac{591}{61}$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_8	u^6
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_9, c_{10}	$(u^2 - u - 1)^3$
c_{11}, c_{12}	$(u^2 + u - 1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_8	y^6
$c_7, c_9, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -0.263016	-0.126494	1.08690
b = -0.569840		
u = -0.618034		
a = 0.44053 + 4.16700I	4.01109 - 2.82812I	22.3213 - 9.8050I
b = -0.215080 - 1.307140I		
u = -0.618034		
a = 0.44053 - 4.16700I	4.01109 + 2.82812I	22.3213 + 9.8050I
b = -0.215080 + 1.307140I		
u = 1.61803		
a = -0.040408 + 1.244150I	11.90680 - 2.82812I	7.63548 + 4.05775I
b = -0.215080 - 1.307140I		
u = 1.61803		
a = -0.040408 - 1.244150I	11.90680 + 2.82812I	7.63548 - 4.05775I
b = -0.215080 + 1.307140I		
u = 1.61803		
a = -1.53722	7.76919	64.0000
b = -0.569840		

III.
$$I_3^u = \langle b, \ 5u^2 + a + 2u + 9, \ u^3 + u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -5u^{2} - 2u - 9 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -5u^{2} - 2u - 9 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u + 2 \\ -2u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6u^{2} - 2u - 10 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $53u^2 + 32u + 92$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
<i>C</i> ₄	$(u+1)^3$
<i>C</i> ₅	$u^3 - 3u^2 + 2u + 1$
C ₇	$u^3 + u^2 + 2u + 1$
<i>c</i> ₈	$u^3 + 3u^2 + 2u - 1$
c_9, c_{10}	$u^3 - u^2 + 1$
c_{11}	$u^3 - u^2 + 2u - 1$
c_{12}	$u^3 + u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_{3}, c_{6}	y^3
c_5, c_8	$y^3 - 5y^2 + 10y - 1$
c_7, c_{11}	$y^3 + 3y^2 + 2y - 1$
c_9, c_{10}, c_{12}	$y^3 - y^2 + 2y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.258045 + 0.197115I	-4.66906 - 2.82812I	-2.98758 + 12.02771I
b = 0		
u = -0.215080 - 1.307140I		
a = -0.258045 - 0.197115I	-4.66906 + 2.82812I	-2.98758 - 12.02771I
b = 0		
u = -0.569840		
a = -9.48391	-0.531480	90.9750
b = 0		

IV.
$$I_1^v = \langle a, \ 3b + v - 5, \ v^2 - 7v + 1 \rangle$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -\frac{1}{3}v + \frac{5}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -\frac{1}{3}v + \frac{5}{3} \\ -\frac{1}{3}v + \frac{5}{3} \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1\\ \frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} \frac{1}{3}v - \frac{5}{3} \\ \frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -\frac{2}{3}v + \frac{16}{3} \\ -v + 7 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1\\ \frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_1 = \begin{pmatrix} \frac{2}{3}v - \frac{16}{3} \\ v - 7 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}v + \frac{16}{3} \\ -v + 7 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -49

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^2 - 3u + 1$
c_2, c_3	$u^2 + u - 1$
c_4, c_6	u^2-u-1
c_7,c_{11}	u^2
<i>C</i> ₈	$u^2 + 3u + 1$
c_9,c_{10}	$(u+1)^2$
c_{12}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_8	$y^2 - 7y + 1$
c_2, c_3, c_4 c_6	$y^2 - 3y + 1$
c_7, c_{11}	y^2
c_9, c_{10}, c_{12}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.145898		
a = 0	-7.23771	-49.0000
b = 1.61803		
v = 6.85410		
a = 0	0.657974	-49.0000
b = -0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^3(u^2 - 3u + 1)(u^3 - u^2 + 2u - 1)^2$ $\cdot (u^{65} + 35u^{64} + \dots + 4379u + 1)$
c_2	$((u-1)^3)(u^2+u-1)(u^3+u^2-1)^2(u^{65}-7u^{64}+\cdots-61u-1)$
c_3	$u^{3}(u^{2}+u-1)(u^{3}-u^{2}+2u-1)^{2}(u^{65}-4u^{64}+\cdots-4u-8)$
c_4	$((u+1)^3)(u^2-u-1)(u^3-u^2+1)^2(u^{65}-7u^{64}+\cdots-61u-1)$
c_5	$u^{6}(u^{2} - 3u + 1)(u^{3} - 3u^{2} + 2u + 1)(u^{65} - 3u^{64} + \dots + 224u - 64)$
c_6	$u^{3}(u^{2}-u-1)(u^{3}+u^{2}+2u+1)^{2}(u^{65}-4u^{64}+\cdots-4u-8)$
<i>C</i> ₇	$u^{2}(u^{2}-u-1)^{3}(u^{3}+u^{2}+2u+1)(u^{65}-5u^{64}+\cdots+4u-4)$
c ₈	$u^{6}(u^{2} + 3u + 1)(u^{3} + 3u^{2} + 2u - 1)(u^{65} - 3u^{64} + \dots + 224u - 64)$
c_9, c_{10}	$((u+1)^2)(u^2-u-1)^3(u^3-u^2+1)(u^{65}+7u^{64}+\cdots+88u-1)$
c_{11}	$u^{2}(u^{2}+u-1)^{3}(u^{3}-u^{2}+2u-1)(u^{65}-5u^{64}+\cdots+4u-4)$
c_{12}	$((u-1)^2)(u^2+u-1)^3(u^3+u^2-1)(u^{65}+7u^{64}+\cdots+88u-1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^3(y^2 - 7y + 1)(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^{65} - 3y^{64} + \dots + 19078099y - 1)$
c_2, c_4	$(y-1)^3(y^2 - 3y + 1)(y^3 - y^2 + 2y - 1)^2$ $\cdot (y^{65} - 35y^{64} + \dots + 4379y - 1)$
c_3, c_6	$y^{3}(y^{2} - 3y + 1)(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{65} + 24y^{64} + \dots + 7056y - 64)$
c_5, c_8	$y^{6}(y^{2} - 7y + 1)(y^{3} - 5y^{2} + 10y - 1)$ $\cdot (y^{65} - 47y^{64} + \dots + 283648y - 4096)$
c_7, c_{11}	$y^{2}(y^{2} - 3y + 1)^{3}(y^{3} + 3y^{2} + 2y - 1)(y^{65} - 21y^{64} + \dots + 1448y - 16)$
c_9, c_{10}, c_{12}	$(y-1)^{2}(y^{2}-3y+1)^{3}(y^{3}-y^{2}+2y-1)$ $\cdot (y^{65}-55y^{64}+\cdots+6134y-1)$