M378K Introduction to Mathematical Statistics Problem Set #16 Consistency.

Definition 16.1. $\hat{\theta}_n$ is said to be a consistent estimator of θ if

$$\hat{\theta}_n o heta$$
 in probability as $n o \infty$,

i.e., if for any $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left[|\hat{\theta}_n - \theta| > \varepsilon\right] = 0.$$

Theorem 16.2. Let $\hat{\theta}_n$ be unbiased and such that

$$\operatorname{Var}\left[\hat{\theta}_n\right] \xrightarrow{n \to \infty} 0.$$

Then, $\hat{\theta}_n$ is a consistent estimator.

Problem 16.1. Let Y_1, Y_2, \ldots, Y_n be a random sample from any distribution with finite first and second moments. Propose a consistent estimator for the population mean μ and **prove** that it is, indeed, consistent.

Problem 16.2. Consider a random sample Y_1, Y_2, \dots, Y_n from a power distribution with the density of the form

$$f_Y(y) = \theta y^{\theta - 1} \mathbf{1}_{(0,1)}(y).$$

What is a consistent estimator for $\frac{\theta}{\theta+1}$? **Prove** that your choice is indeed consistent.