一、简介--方便查阅而已

<u>注意:文档是有书签的,打开 PDF 在左边可以看到书签,另外找问题,也可以关键词搜索,很全面的</u> 1、最近一段时间,问得最多的问题:

为什么我焊上 KT6368A 的芯片到板子上面,做了几十个板子,有的板子手机端搜不到蓝牙信号,有的手机能搜索但是连接不上,有的手机能连上,但是很容易掉线?

==》面对这个问题,我们给出的基本判断,就是用户随便使用晶振,导致的问题,我们手册里面硬件设计部分,也单独把这个注意事项拿出来描述了的

- ==》晶振一定不能随便用,这里再次说明一下,希望引起重视
- ==》KT6368A 芯片的不良率是非常非常低的,因为出厂之前,都要烧录程序。而烧录程序是所有的脚都要被用到的, 所以即使有不良的,也会是在烧录这个阶段就挑出来了,给到客户的基本上不良率是低于千分之一的
- ==》实在排查不出来原因,我们建议到淘宝上面去买一个测试模块,搜索关键词"KT6368A 蓝牙芯片"

2、目前 KT6368A 蓝牙芯片,开发了 4 个版本,硬件 IO 定义都是一样。都是为了不同的应用场景和客户需求而开发。

版本	对应的版本功能说明				
KT6368A 双模版本	1、此版本不具备低功耗功能,开机就是 15mA,				
	等待 1 秒之后就是 6mA 的平均电流				
	2、支持 BLE 和 SPP 同时存在				
	3、不在乎功耗的场景,可以选择此版本,此版本最经典,客户群体最多				
KT6328A 单模低功耗版本	1、 只支持 BLE ,不支持 SPP				
	2、超低功耗版本,广播平均电流是 100uA。当然根据不同的应用场景,可以设置不同的				
	广播周期,来优化芯片整体的平均功耗				
	3、连接上之后维持 5mA 的电流				
KT6368A 主机版本	1、支持连接我们配套的从机芯片,也就是 KT6368A 或者 KT6328A 这两个任意一个				
	2、连接成功之后,可以进行双向数据透传,注意是双向,全双工的				
	3、当然支持 AT 指令修改目标从机的名称				
	4、具体的功能描述,可以参见我们的资料包文档				
KT1328A 主从一体版本	1、只支持 BLE,不支持 SPP。支持 AT 指令设置角色【主机或者从机】,详见手册				
	2、不支持低功耗。长期都是 5mA				
	3、详见资料包"12_关于主从一体版本的功能说明-KT1328A"文件夹说明				

二、原理图--方便查阅而已

三、测试最小系统--方便查阅而已

芯片测试的 demo 板, 当您的环境有 3.3V。则不需要焊接右图上面的【三极管封装-SOT-23 的 3.3v 稳压芯片】

四、问题集锦-FAQ-记得关键词搜索

前言--KT6368A 为什么网上资料少?芯片会缺货吗? 芯片会停产吗? 供货是否稳定?价格能便宜吗?

回答

- 1、KT6368A 是基于杰理的 AC6368A 这颗芯片开发的产品,注意里面是有软件的。出厂会烧录好这个是大品类的芯片,出货量很大,在您看不到的地方,如:自拍杆、防丢器、游戏手柄、充电仓等等所以,不需要推广,因为推广给您知道,那也是成本。所以您大胆用就可以了
- 2、芯片可能会缺货,但是我们也有 B 计划,会拿很多钱去备货,只要您有量 。别每个月 1K 的量来反复确认会不会缺货,大可放心,缺货争对的是 100K 以上的出货量,才需要考虑的
- 3、芯片也可能会停产,但是我们也有 B 计划,无缝替换
- 4、目前供货非常的稳定,就等您的大单,跑起来。再来降低一下成本
- 5、价格没什么空间,所以没起来量之前,尽量不用找我们讨论价格
- 6、目前淘宝是唯一销售渠道,我们用最高的效率,来打造这个最具优势的产品,这就是我们目前的做 法和后续的规划。少量也不会价格贵 ,大量可能略微便宜一点点【以分来计算】,仅此而已

问题 0--KT6368A 是什么?有什么功能?特点是什么?适用于什么场景?配什么晶振呢?KT6368A 批量有优惠吗?蓝牙天线预留的元器件怎么办,焊还是不焊?

回答

- 1、KT6368A 芯片属于蓝牙芯片, 支持蓝牙 5.1 版本 BLE。同时支持 2.1 版本的 SPP 功能
- 2、KT6368A 芯片支持连接手机,进行数据的双向交互,俗称"蓝牙透传"。通过 UART 接口 ==》支持常用的 AT 指令,如:设置名称、设置地址、设置波特率等等。详见手册
- 3、KT6368A 芯片最大的特点,就是成本低,使用简单,SOP8 的封装,也便于生产
- 4、KT6368A 芯片,适用于纯数据通讯的场合,如:客户自己开发 APP、微信小程序等等
- 5、目前 KT6368A 的程序,只做了从机版本,只能和手机连接
- 6、**搭配 24M 的晶振,参数是 12pF 的负载,精度是 10ppM** 。当然可以是 3225 封装或者其他 晶振的选择,直接影响的是蓝牙的频偏,也就是蓝牙距离,所以别随便用,到时候搜不到蓝牙名,就又 跑来问为什么了,我们有提供晶振的样品。可以顺便拿几个回去测试

晶振的电容不用焊,建议预留,我们开机芯片会自动校准晶振的负载电容,软件处理的

很多客户,一上来就问东问西,这种就请直接绕道,别买了。重点是自己先看,实在不清楚的再沟通

正因为成本低,所以利润也低,所以尽量多看文档。提升大家的效率 **再次说明:资料在宝贝详情,有网盘下载链接**

- 8、芯片批量基本没什么优惠了,价格超级敏感的,请选择其它
- 9、蓝牙天线脚,预留的元器件,做样品直接不焊,接一个 C1 的电容即可。批量建议预留,预防做认证,或者天线要求极高的场合。 只接 C1 电容蓝牙距离也是妥妥的超过 10 米以上

问题 1 --KT6368A 有测试板吗? 拿到芯片如何开始测试呢? 有什么硬件上的注意事项?

回答 芯片是 SOP8 封装的,总共的引脚就很少很少,使用也很简单。暂时没有测试模块

- 1、1 脚供电。然后对地焊一个 105 的电容就够了。或者不接也行。量产加上
- 2、蓝牙天线,直接焊一根线就可以了,连接到芯片的 4 脚。实际做产品就加个 2p7 电容
- 3、主要是晶振比较难焊,不要紧,可以配套我们给的晶振, M49 2 脚的焊一下就可以了
- 4、剩下的就是串口了,因为是 3.3V 的电平,所以 3.3V 的 mcu 直接直连即可
- 5、初次调试,建议使用串口调试助手调试。USB转 TTL的选用 CH340G,某宝很多
- 6、为什么我们不做测试版,主要是成本的原因,所以麻烦客户自己动手

问题 2--KT60368A 支持微信小程序吗 ? 默认的 uart 波特率是多少?

回答

- 1、微信小程序,只是用到了 BLE 而已。也就是说支持 BLE 就可以支持微信小程序
- 2、芯片是 BLE5.0 的协议,微信小程序需要客户自己开发。我们只是透传,无其他作用
- 3、芯片给的 uart 缓存是 1K 字节 。 默认的波特率是 115200

问题 3--KT6368A 这颗芯片供电电压多少 V? 电流多少? 透传的速率是多少 BLE 和 SPP

回答

- 1、建议给 3.3V 的电压【2.2V--3.4V】。
- 2、开机瞬间电流是 26mA。稳定大概 1 秒左右, 就降到 4mA 左右
- 3、芯片给的 uart 的缓存是 1K 字节, 默认波特率是 115200
- 4、对于 BLE 的速率,我们没有做完整的测试,需要高速传输的请自己测试一下
- 5、SPP 的传输, 建议是单次最高不超过 512 字节一包数据 , 传输速率建议自己测
- 6、BLE 的传输速率,由于不同的手机版本,都会有差别。所以速率没办法统一说明,用户自己测

问题 4--如何区分 AT 指令和串口透传数据? 如何知道蓝牙是否连接?

回答

- 1、AT 指令,在任何状态下都有效
- 2、只要蓝牙连接成功之后,就进入透传了,AT 指令还是可以正常被识别,详见章节6
- 3、这个要看芯片的第2脚。未连接输出低电平。连接成功输出高电平
- 4、当然,您可以接一个指示灯来看。或者也可以连接到 mcu 的 gpio 上面

但是低功耗 KT6328A 版本的, AT 指令有一点点特殊, 详见低功耗版本的文档, "10 号文件夹"

问题 5--如何确定芯片是否工作正常呢? 以及串口接线正常呢? 如何对接 5V 的 MCU 系统?

回答

- 1、芯片上电瞬间,2脚会输出1秒钟高电平,然后马上拉低。所以接1个指示灯来看一下状态。
- 2、芯片上电串口是一定会返回信息的。**注意是一定,如果没收到,说明串口有问题**
- 3、对接 5V 的 MCU 系统,建议 TX 和 RX 串电阻,100 欧姆或者 1K 都行,以实际调试为准。电阻存在主要是限流 。一定不要直接连接。

问题 6--支持单芯片出货吗? 芯片是什么参数? 什么包装? 芯片出货稳定吗

回答

- 1、芯片是 sop8 封装,管装,100 片一管。当然量大可以自己去编带
- 2、芯片出厂会烧录好固件,用户可以直接使用
- 3、芯片出货很稳定,因为这个是大品类的应用,如自拍杆、防丢器、等等量大的产品用的多 所以成本就很低,
- 4、另外不支持讲价。价格也没什么空间了,请留意

问题 7--支持修改 uuid ,以及蓝牙名和蓝牙 MAC 地址吗

回答

- 1、支持 AT 指令蓝牙名和蓝牙 MAC 地址【包含 ble 和 spp 地址】。注意 spp 的 mac 地址是在 ble 的 mac 地址基础上+1 的,详见手册地址描述部分
- 2、当然也支持, AT 指令读取名称和 MAC 地址
- 3、Uuid 目前已经支持 AT 指令去修改了,但不支持查询,手机端搜索一下就能看到了

问题 8--支持单芯片出货吗? 芯片是什么参数? 什么包装

回答

- 1、芯片是 sop8 封装,管装,100 片一管。当然量大可以自己去编带
- 2、芯片出厂会烧录好固件,用户可以直接使用,不需要在烧录程序了

问题 9--硬件设计,有什么需要注意的地方吗?

回答

- 1、请严格按照我们给出的供电电压,去供电。电源这一块没什么太大的讲究,不要超过 3.4V 就行
- 2、蓝牙天线,按照我们给出的封装画就可以了。因为技术很成熟了,所以基本上距离都超过15M
- 3、芯片的 7/8 脚两个必须预留测试点,这个是升级接口,以防万一要升级
- 4、升级的测试点排列,建议是 1/7/8/3 这 4 个脚顺序排列。引出测试点,很重要,非常重要

问题 10--支持买几个样品,帮我修改波特率到 9600 吗?

回答

- 1、原则上不支持修改,因为几个样品,客户自己动手发 AT 指令改一下。我们默认是 115200
- 2、实在要修改,收人工费500。

问题 11--支持按照我们特定的 uuid,以及服务,然后修改出样品吗?

- 1、原则上,不支持修改。因为样品阶段是给客户测试功能的。
- 2、您看可以先做硬件,测试蓝牙的性能,后期确实是做产品的,我们会配合修改的。
- ==》不可能几块钱的东西,我们都要工程师参与配合修改,这样效率太低了
- ==》目前最新的版本,支持AT指令设置 uuid 和特征值,但是属性是不支持修改的
- 3、实在需要修改的,可以,收人工费500修改

问题 12--KT6368A 大批量订货有货吗?后续能保证供货吗??

回答

- 1、大批量订货是有货的,大可放心。除非那种单次超过 200K 以上的订单,需要提前打招呼以外其他的数量,无需提前沟通。
- 2、后续也会有长期有货的,无论订单多少,我们仓库一般都会做库存,大概保持在300K的。

问题 13--KT6368A 用 USB 转 TTL 连接好之后,在 PC 端通过串口调试助手,就能和手机通讯了吗?

回答

- 1、答案是肯定的,在我们给出的测试方法里面,就已经有描述了,清详细看一看,不懂网上查一下
- 2、首先,要保证串口能连接好。其次要在手机上面打开测试 app 。具体看我们的测试说明
- 3、在资料包的"08_工具软件"文件夹

问题 14--KT6368A 连接好手机的测试 APP 之后,一定要打开 notify 呢? 那提交给 APP 开发人员,该如何说明呢?

回答

- 1、是的,一定要打开 notify 。串口发给 KT6368A 芯片的数据,才能通过蓝牙发送给手机 这个是蓝牙的标准,一定要这么做才行,
- 2、做 app 开发或者小程序开发的工程师,都知道连接蓝牙芯片之后,主动打开 nortify 的,这个是固定的 API 。做单片机开发的工程师可以不用管这个

问题 15--KT6368A 为什么一定要在 app 里面连接呢?系统设置的蓝牙界面可以看到但是连不上?搜不到?不正常?

- 1、请留意,BLE 一定要在 APP 里面搜索和连接。是一定,无论是安卓还是 IOS 的设备,都一样
- 2、同时,SPP 也要在安卓的 app 里面搜索和连接【蓝牙串口助手】 。注意 IOS 设备是没有 SPP 的
- 3、如果您使用手机,系统设置连接 ble,可能出现 2 脚灯亮,但是就是连不上,一直在那里打转
- 4、请马上更换为 app 去测试, 而 app 在哪里,请看资料包的"08 工具软件"文件夹

问题 16--为什么我用串口调试助手发送 AT 命令, 蓝牙芯片会给我返回 ER+1 或者 ER+3 呢?

回答

- 1、对于这个问题, 您第一时间, 就应该查阅芯片的手册 3.9 章节, 里面都有错误信息的意思解答
- 2、ER+1 --- 代表的是芯片接收串口的数据,开头的两个数据,不是 AT 。而是其他
- 3、ER+3 --- 代表的是芯片接收串口的数据,末尾不是回车换行,意思是不是\r\n
- 4、再次说明,这个东西测试很简单,能自己排查一下就自己排查一下,很多客户一上来就说
- "我用过多少多少模块",都没问题,就您们的测试有问题,真的相互理解,多的就不说了,都是泪

问题 17--为什么我在蓝牙连接成功之后,发送 AT 指令给蓝牙芯片,没有透传出去呢?

回答

- 1、目前的串口指令,支持 AT 指令,同时也支持蓝牙和手机,或者其他主机设备进行全双工数据透传 2、AT 指令,是存在于整个芯片的生命周期,只要芯片初始化蓝牙之后,那么蓝牙数据透传,就会一直在后台运行,无论是连接还是未连接状态,都支持 AT 指令
- 3、但是请留意,我们还有一个低功耗的版本 KT6328A,详见 3.7 章节的详细说明
- ==》详细查阅一下我们的手册,章节6,有详细说明的

□ 00_如何购买样品	2021-11-25 18:29	文件夹	
01_参考的原理图和PCB_99SE打开	2021-11-25 18:29	文件夹	
02_用户手册	2021-11-25 18:29	文件夹	
04_参考代码	2021-11-25 18:29	文件夹	
05_芯片规格书	2021-11-25 18:29	文件夹	
07_视频教程	2021-11-25 18:29	文件夹	
□ 08_工具软件	2021-11-25 18:29	文件夹	
09_批量生产注意事项	2021-11-25 18:30	文件夹	
─ 10_关于低功耗的说明_看这里看这里	2021 11 25 10 20	文件夹	
🕍 20210714_KT6368A的蓝牙BLE测试说明_V1.pdf	2021-07-14 17:00	PDF-XChange Vi	719 KB
🕍 KT6368A BLE标准原理图V1.1.pdf	2021-01-07 20:44	PDF-XChange Vi	107 KB
MKT6368A蓝牙芯片常见的问题集锦2_V6_注意先看	2021-07-31 15:34	PDF-XChange Vi	213 KB

问题 19--为什么我用的 KT6368A 双模的芯片, spp 能够正常连接, 但是 ble 不能连接?

- 1、ble 的连接一定要用 app 去连_不要在系统设置里面去连接, app 可以用我们提供的 lightblue, 或者 nrf conenct 或者其他,很多很多,在资料包的""08_工具软件"文件夹"
- 2、还有一种情况是,客户的晶振频偏过大,导致 ble 连不上,这个时候注意找我们客服买配套的晶振
- 3、spp 能正常连接说明,蓝牙芯片是在正常工作的,所以不用怀疑硬件问题

问题 20--我们现在使用贵司的 KT6368A 的芯片,但是出口需要过认证,FCC 或者 CE 或者 KC 等等认证怎么办?

回答

- 1、如果客户需要过认证,直接联系我们的客服即可,他会发对应认证的资料给您
- 2、基本上涉及到蓝牙的认证,都绕不开 FCC 和 BQB 这两个名词。简单理解如下:
- (1)、FCC 是用来测试射频的性能
- (2)、BQB 是测试蓝牙的协议。

客户如果需要过认证,最好咨询专业的机构,我们只能做到全力配合,但是不能代替客户去过

🕍 20211109_知音KC认证现场处理总结_这里仅供参考_V2.pdf	2021-11-18 19:59	PDF-XChange Vi.
20210415_关于蓝牙的认证问题_FCC和BQB以及其他_V1.5.doc	2021-11-23 15:11	DOC 文档
preLoadCfg	2022-05-30 10:26	文件夹
05_认证芯片规格书	2022-05-31 11:26	文件夹
04_相关的认证资料	2022-05-31 11:25	文件夹
02_视频说明	2022-05-31 11:25	文件夹
01_工具软件	2022-05-31 11:25	文件夹
28称	修改日期	类型

- 2、过认证,是一件很麻烦的事情,需要射频的定频测试,请联系客服购买专用"认证芯片"
- ==》这里面烧录了专用于认证的固件程序
- ==》详见"12_KT6368A 芯片的认证资料_V3-C.zip"这一份资料包

问题 21--目前我们测试 KT6368A 的性能都不错,但是现在想加快数据的传输,MTU 或者超过 20 字节的包长度

回答

- 1、因为我们目前在卖的是标准的版本,也就是需要兼容老的手机,比如蓝牙 4.2 版本及以下的
- 2、所以手机下发数据,我们内部都是20个字节进行拆包和分包的
- 3、如果需要大数据量的传输,优先尝试主机端去设置 mtu。需要配合可以联系我们
- ==》修改 MTU 的大小,以及连接间隔、数据交互间隔等等参数
- 4、当然也可以自己在手机端 app 去修改,就是主机可以申请修改 MTU,范围是 23--517
- ==》申请之后,蓝牙芯片这边就可以同步了
- 5、如果还不明白,请某度搜索一下"KT6368A mtu 速率"等等关键词,有视频上传的
- 6、或者跳转到"问题集锦的31"再去看看扩展的介绍

问题 22--KT6368A 的蓝牙芯片,板子空间不够,该如何设计蓝牙天线呢? 不想增加成本?选择陶瓷天线?

回答

- 1、这个我们有一份详细的文档 , 自己在资料包里面搜索一下
- "20220811 KT6368A 蓝牙芯片的天线注意事项 倒 F 型-蛇形 陶瓷天线的区别 V1.pdf"
- 2、总之,蓝牙技术是相当的成熟,请不要担心搞错,照着文件 copy 就好了
- 3、最好使用我们给出的参考天线封装,不要随意画天线。当然您的产品不过认证怎么弄都可以
- 一旦涉及到后期过认证,就需要标准化的参数,而您随意画的天线就是个麻烦点

问题 23--KT6368A 的蓝牙芯片,我发指令修改了蓝牙名称,但是手机的 app 好像没有更新 , uuid 同理一样理解

- 1、因为您手机也会记忆名字,尤其是芯片只改了名字,而蓝牙芯片的 MAC 地址没变 所以手机他没有刷新
- 2、解决这个问题,要么换一个手机测试,要么发 AT 指令设置一下 MAC 地址。或者您在原有的 app 上面 删掉之前的配对记录,重新搜索连接,就是主动杀死当前的 app,然后重新打开
- 3、修改了 uuid 之后,也可能存在这样的疑惑,方法如上所述
- 4、Spp 名称修改之后,也会有这样的疑惑,方法如上所述
- 5、总之遇到这类似的问题,请更换一个手机去试一下,最简单。注意一定用测试 app,比如 nrfconnect

问题 **24**--有时候我改完名之后添加 SPP 出现两个 mac 地址,之前没设置过 MAC 地址,还配对不上这个问题,搜出来两个蓝牙,试了一个不能连接显示,如下图:

回答

- 1、这个您肯定用的是"蓝牙串口"这个测试 APP, 因为这个 APP 很奇怪, 会搜索出来 SPP 蓝牙, 也会 搜出来 BLE 蓝牙
- 2、如果您点击的是 BLE 的蓝牙,那么他必定是连不上的。因为蓝牙串口测试 app 只支持 SPP 的测试
- 3、如上图, RK6006, 这个应该就是 BLE 的名称。下面的那个就是 SPP 的名称, 因为他们的地址不一样, 注意仔细看。因为明显的地址不同, 可以详见手册的 3.5 章节 "3.5 查询 BLE 蓝牙的名称和地址 [TM][TN][TD]"
- 4、实际使用的时候,建议 BLE 的名称设置,要和 SPP 的名称做一下区分。
- 5、不要用蓝牙串口这个 app。去测试,建议使用"FeasyBlue" app 或者其他的蓝牙调试宝等等 app

问题 25--样品卡片上有一个四位码【校验码】,那个有什么用吗,不同批次采购的如果不一样有无影响?

回答

- 1、芯片是可编程的,所以会有很多程序版本,也就是芯片是同一个,但是程序不同
- 2、那靠什么来区分程序呢? 所以校验码的作用就在这里? **您在做 bom 单的时候,一定要把校验码也填写进去,这点很重要。**
- 3、校验码是唯一的,对最终生成的 bin 文件,我们用的 CRC 校验工具生存的
- 4、校验码是必须记住的信息,因为客户众多,软件版本也众多,我们都是以校验码为准
- 5、批量烧录的时候,我们也会根据校验码来保证烧录的程序不会出错

请一定要记住, 只要校验码在, 烧录程序就永远不会出错

- ==》芯片偶尔原厂会改版本,所以会有一些补丁要打上。基本上都是性能的优化,比如优化 rf 部分等等
- ==》如果改动大的,我们会重新给贵司送样测一下
- ==》如果改动很小的,不影响客户使用的,我们就默认自己打上补丁了
- ==》即使是打了补丁,程序校验码也是会变的,所以校验码的作用就非常的重要!!!!

问题 26--为什么我把 KT6368A 芯片焊到板子上面,没有收到芯片 TX 的脚上电返回信息呢,而 KT6368A 芯片的 2 脚一直是 2 点多 v 的电压,换了好几个芯片都是这样,没反应,没返回信息

回答

- 1、其实这个问题,根据描述,换了多个芯片都是这样的现象,我的感觉就是芯片没有跑起来
- 2、注意,只要芯片正产工作,无论是【KT6368A 双模版本】还是【KT6328A 低功耗版本】,上电串口 TX 一定是会返回信息的,不用怀疑。我们做这个目的也是方便客户调试用的,如下图:

- 1、再来说明这个问题,这里拿【KT6368A 双模版本】来举例,万用表测试结果: 3.3V 供电
- ==》KT6368A的2脚也就是LED脚,上电是输出高电平3.3V,1秒之后输出低电平0.002V
- ==》KT6368A的5脚晶振也就是BT-OSCI脚,正常起振是0.576V。没有电压则是没有起振,不正常
- ==》KT6368A的6脚晶振也就是BT-OSCO脚,正常起振是0.532V。没有电压则是没有起振,不正常
- ==》KT6368A的7脚也就是rx脚,正常是2.8V。注意这个2.8v是芯片内置弱上拉
- ==》KT6368A的8脚也就是tx脚,正常是3.3V。

所以其实可以通过测量芯片的各个管脚的电压,来判断芯片是否正常

- 2、根据经验来看,这个问题,最大的可能性就是晶振没起振,所以芯片没跑起来,要么是焊接问题,要么是晶振不良,毕竟芯片换了好几个芯片依然是这样
- 3、如果到这里还解决不了问题,建议网上买一个测试模块去对比,哪里便宜哪里买就好了,如下图:

6、其实找我们,分析的流程也就是这样,无其他方法。

问题 27--为什么我给蓝牙芯片 KT6368A 发送 AT 指令没有反应呢?

- 1、KT6368A 的芯片,上电是否正常,也就是有没有跑起来,这个详细看一下"问题集锦"的问题 26
- 2、如果芯片正常跑起来了,还是没有反应,就查看一下自己购买的版本,是【KT6368A 双模版本】还是 【KT6328A 低功耗版本】。因为 KT6328A 低功耗版本有特殊的机制
- 3、就是上电前5秒才识别AT指令,超过5秒之后不识别的,进入低功耗运行,详见资料如下:

问题 28--我用 kt6328 模块,在 50cm 距离测试,信号只有-80db。这个数值合理吗?测试环境是 nrf conenct 的 app 软件,测试了苹果 IOS 和安卓手机

- 回答 1、这个客户的问题,最终找到原因,是因为客户的天线画错了。这里再次强调一下,蓝牙天线很简单 一定要参考我们提供的 demo PCB 文件
 - 2、这个简单的问题已经有好几个客户出错了,我真不知道这种一比一直接 copy 的怎么会错呢?
 - 3、回归正题,正常的参数如下:

4、所以明显,客户的这个问题-80db【50cm 距离的信号强度】,信号强度明显的偏弱,是不对的

5、总结下来,只要是天线放在板边,并且按照我们提供的封装,就能大概的测出来蓝牙的射频信号是否符合设计要求。基本上如下参数。但是实际安卓的差别很大,建议以 IOS 的测试为准

【安卓平台--50cm 距离达到"-55dB"左右就差不多】--<u>测试华为 mate20pro 是-52dB</u>

【IOS 平台 --50cm 距离达到"-65dB"左右就差不多】-- iphone7 、iphone12mini

问题 29--蓝牙天线是不是要求厂家不要喷锡会更好?有什么注意事项

回答

- 1、蓝牙天线,强烈推荐我们给的参考设计里面的倒 F 型天线
- 2、尽管您的产品可能不差钱,但是以后过认证,倒 F 天线的参数指标都是现成的
- 3、蓝牙天线,这个我们有一份详细的文档,自己在资料包里面搜索一下
- "20220811 KT6368A 蓝牙芯片的天线注意事项 倒 F 型-蛇形 陶瓷天线的区别 V1.pdf"
- 4、天线是,喷锡或者镀金,都是可以的,主要看板子的工艺,没什么特别的要求

注意背面也是不能有金属的,注意看左右两个图片对比。

5、总之,这个照着我们参考设计 copy 就可以了,别想得太复杂了,一切从简,成熟的东西要求不高

问题 30--为什么我们自己的板子,用 app 连接,基本都是在 5 分钟左右后 断掉或者断开,什么原因

- 1、遇到这样的问题,根据我们经验,大概率是硬件问题,分析方法如下:
- ==》蓝牙芯片是没有可能主动去断开和 app 的连接,永远不可能,除非您发指令复位蓝牙芯片
- ==》出现连接上一段时间断开,先检查一下蓝牙芯片的供电,是不是有抖动,导致蓝牙芯片电压复位
- 了,外接个电源试试,3.3V就好了
- ==》再检查一下晶振是否是搭配我们的样品,因为晶振频偏过大,导致连接不稳定,也是原因之一
- 2、还有一种情况,是您自己的 app,假如手机在息屏状态下,自动后台清理了应用,导致连接断开,也存在可能性,排查办法就是:
- ==》不让手机息屏,app长期运行在前台
- ==》或者使用资料包里面的测试 app 去测一下
- 3、其他,我们感觉没有其他可能行,如果这些都排查了,没问题,可以联系我们协助查找问题 前提是您们自己一定要先过滤一下问题
- 4、总之,芯片除非复位,除非断电,任何情况下都不会主动的去断开连接。出现这种问题,首先查硬
- 件,网上有那种几块钱包邮的完整模块,随便搜搜,买一个对比测一下,节省您的时间

问题 31--KT6368A 这颗芯片 BLE 和 SPP 的速率、速度是多少,请详细描述一下细节

回答 关于速率,其实我们并没有系统性的测试,这里速率包含 BLE ,和 SPP 两种速率区别很大

- 1、BLE 的速率,目前我们测试仅仅只有 4kbs,也就是每秒大概 4Kbyte 的样子
- 2、SPP的速率,理论上是可以达到60kbs,实际配合客户做项目,可以达到45kbs,也就是每秒45Kbyte

需要高速率的应用,强烈建议如下:

- 1、能选 SPP, 则不要选择 ble, ble 的速率不可能上得去
- 2、一定要把 KT6368A 的串口波特率调高,越高越好,毕竟串口接收发送,也要占用时间

关于 BLE 的速率详细说明:

- 1、关于 BLE 的速率,绕不开一个名词"MTU",具体网上搜索学习一下
- 2、BLE 在连接过程中主从机会协商 MTU 的大小,BLE 协议最大为 520 字节,但不是所有手机都支持 512 字节,大部分支持 128 字节。但是早期的手机和芯片端,都是默认 20 个字节的。基本上 2020 年以后的 手机都可以设置为 128 个字节以上,推荐 256
- 3、可以理解为,MTU 的大小跟蓝牙芯片无关,当客户在开发 APP 的时候,可以在 APP 端主动设置好 MTU 的大小,然后同步到蓝牙芯片即可
- ==》没有修改 MTU, 手机下发数据, 我们内部默认都是 20 个字节进行拆包和分包的。
- ==》【主机端】设置 MTU 为 128 之后,那么数据就会是以 128 个字节进行拆包发送
- ==》所以关于 MTU, 是主机端设置即可, 我们芯片这边不需要修改

当然从机也是可以主动提交申请的,但是也要以主机为准。意思就是最终的决定权是在主机【手机】

- 4、BLE 传输带宽主要跟两个要素有关: 通信周期和每个通信点可传输的数据量。
- ==》通信周期: 安卓手机一般可支持到 10ms, 苹果一般可支持到 15ms
- ==》每个通信点可传输的数据量: 就是指每包的长度以及可以传多少包
- 5、总之, BLE 的速率是很难提高的,也不怎么稳定,尤其高速率的情况下
- ==》距离远了会丢包重发,环境复杂了也会丢包重发,也会影响速率
- ==》所以对于大文件的传输,不推荐使用 BLE ,没办法的话,也只能忍受这个速率,无解

6、测试举例--BLE 测试 app 设置 MTU 的方法--其他 app 其实类似

第一步,在 app 里面设置 mtu 为 256。因为测试 app"蓝牙调试宝"刚连接上,默认就是 23

第二步,测试 app 往蓝牙芯片下发 1024 个字节的数据

实际的效果如下,可以看到蓝牙芯片内部是分5包数据收完的。分别是253+253+253+253+12

假如 MTU 设置为 128 , 实际数据包长度就位 128-3 , 设置为 512, 那么就是 512-3

关于 SPP 的速率详细说明

- 1、spp 就没有那么多事,简单直接,因为 spp 还是属于经典蓝牙里面子协议,共享经典蓝牙的带宽以及跳频点,所以速率相对会快很多。但是千万不要拿出来和蓝牙音频去进行比较
- 2、关于 SPP 的速率, 就只有两个重点
- ==》第一,把蓝牙芯片的串口波特率尽量的调高,越高越好
- ==》第二,每一包的数据,尽量的大,比如: 手机可以每次发 512 字节给蓝牙芯片,而不是分 4 次,每次 128。因为蓝牙芯片永远都是隔一段时间通讯一次。同时蓝牙芯片发送给手机,也是这个原理

问题 32--KT6368A 芯片的 4 脚也就是蓝牙天线脚对地短路了呢?是不是芯片坏掉了

回答 1、首先,芯片没有坏,遇到自己不懂的地方,不要轻易的去怀疑。

而是应该理性的去网上搜一下相关的信息

- 2、蓝牙芯片的天线是属于高频信号,不仅仅只是外面引的天线部分,其实芯片内部也是有天线的就是那种多少多少纳米工艺的蛇形走线
- ==》所以即使蓝牙芯片 **4 脚【天线脚**】,不外接天线,也是能搜索到蓝牙信号的,用手机搜搜就知道了
- 3、实际测试,蓝牙芯片天线脚【4 脚】,对地的阻抗是 0.5 欧姆

4、如果您使用万用表去量,万用表肯定会发出滴滴的声音,万用表一般阻抗低于2欧姆,就认为短路

问题 33--KT6368A 蓝牙芯片为什么发送 at 指令设置中文 spp 蓝牙名,是乱码 这个要如何处理

回答

- 1、其实这个问题挺麻烦的,目前默认的版本是只支持英文名或者数字
- 2、原理其实就是编码的问题,手机端显示蓝牙名,它的编码是 UTF-8 格式的。而我们发送 AT 指令设置 蓝牙名其实是 ASCLL 码的编码格式
- 3、所以理论上, 您发送 AT 指令的时候, 按照 utf-8 的编码发送, 是可以显示中文蓝牙名的
- 4、这里详细描述实现的方法,可能会比较麻烦一点

第一步,在pc端新建一个txt文档,将您需要的名字,汉字打出来,另存为UTF-8编码

第二步,使用 winhex 软件, 当然其他的可以, 其实就为了看他的 16 进制, 您要是找到其他软件, 那就更简单了, 目前我还没找, 如下图:

得到了"蓝牙名 123" 这个的 utf8 编码

0xE8, 0x93, 0x9D, 0xE7, 0x89, 0x99, 0xE5, 0x90, 0x8D, 0x31, 0x32, 0x33

第三步,使用串口软件发 AT 指令去设置,这里我们测试 spp 的改名字为中文指令如下:

41 54 2B 42 44 E8 93 9D E7 89 99 E5 90 8D 31 32 33 0D 0A

这里分为三个部分,分别是 AT+BM 蓝牙名 123 回车换行,如下图所示:

问题 34--KT6368A 蓝牙芯片的可靠性报告可以提供吗?包含做过哪些可靠性测试和项目

回答

- 1、KT6368A 芯片原厂并没有提供可靠性报告给我们
- 2、目前官方的文档,只有 ROSH 报告、规格书、BQB 证书
- 3、芯片是可编程的,功能很多,也没有所谓的单独芯片可靠性证书,高低温的数据,可以参见规格书
- 4、一般可靠性,争对的是整个产品,需要客户自己去测试

问题 35--KT6368A 蓝牙芯片的低功耗版本 KT6328A 提供 APP 的源码吗?提供 app 开发吗?提供 APP 开发的技术支持吗?

- 回答
- 1、KT6368A 系列的双模蓝牙芯片,就是一个通用器件,是不提供 app 开发的源码和技术支持的 也不提供 app 的订制开发服务
- 2、其实这个就涉及到优势问题了,我们是做硬件的,去组建 app 开发团队成本太高了,网上随便找找 app 开发的一大堆,他们开发快且成本低
- 3、当然在 app 开发过程中,有遇到什么问题,我们也是可以协助的,这个东西并不复杂,用来用去就是那么几个 api 接口而已,别想得太复杂
- 4、我们蓝牙芯片的所有测试,都是基于资料包里面的提供的工具,推荐使用 nrf conenct ,很稳定好用

00_如何购买样品	2023-11-03 9:48	文件夹			
01_参考的原理图和PCB_99SE打开	2023-11-03 9:48	文件夹			
02_用户手册	2023-11-03 9:48	文件夹			
04_参考代码	2023-11-03 9:48	文件夹			
05_芯片规格书	2023-11-03 9:48	文件夹			
07_视频教程	2023-11-03 9:48	文件夹			
08_工具软件	2023-11-03 9:48	文件夹			
09_批量生产注意事项	2023-11-03 9:48	文件夹			
10_关于低功耗的说明_看这里看这里	2023-11-03 9:48	文件夹			
11_关于主机版本的功能说明	2023-11-03 9:48	文件夹			
20221031_KT6368A芯片修改蓝牙名_波	2022-11-01 15:49	PDF-XChange Vi 323 KB			
20221114_KT6368A的蓝牙BLE测试说明	2022-11-14 14:33	PDF-X	Change Vi	756 KB	
20230703_KT6368A测试板使用说明_以	2023-07-03 14:38	PDF-X	Change Vi	505 KB	
KT6368A BLE标准原理图V1.1.pdf	2021-01-07 20:44	PDF-X	Change Vi	107 KB	
KT6368A蓝牙双模透传芯片软件版本选	2022-11-21 17:48	PDF-X	Change Vi	211 KB	
KT6368A双模蓝牙芯片常见的问题集锦F	2023-11-03 9:39	PDF-X	Change Vi	1,582 KB	
BLE调试宝.apk			2021-07-1	3 16:59	APK 文件
LightBlue_1.1.2.apk			2018-10-12 12:44		APK 文件
nRF Connect.apk			2022-07-2	2 19:36	APK 文件
☐ 在应用宝里面下载lightBlue就可以了或者其他ble测试工具.txt ☐ 注意mcu端需要发送数据给手机_必须在连接之后打开notify.txt			2018-11-20 13:42 2021-03-22 11:28		文本文档
					文本文档
注意要打开定位的权限,txt			2021-07-1	3 17:01	文本文档

5、其实 app 开发或者小程序开发,都是和这些测试 app 操作逻辑是一样的

问题 36--KT6368A 蓝牙芯片部分芯片距离短,换一个芯片距离就好了,是什么问题呢? 生产 2K 的样子

回答

- 1、按照我们出货客户的跟踪情况,这种问题,可能性极低
- 2、因为芯片本身的不良率,目前是控制在千分之三以下,当然这是官方的说法了

实际情况, 1K 的芯片, 坏一个的可能性都不到, 为什么呢?

- ==》芯片出厂之前都会烧录,而烧录是 sop8 的 8 个脚都要用到,所以芯片有不良的烧录阶段就踢出来了
- ==》芯片的烧写器, 会对芯片的 RF 性能进行软件测试, 所以芯片失效的情况也是可能性不大
- 3、但是客户生产出现了反馈,我们就要给出分析
- ==》这种问题,大概率是晶振的问题,根据经验来看:注意看看晶振的要求,合适的话提供板子我们测
- 一下匹配对,这样降低生产出现问题的概率
- ==》其他可能性真的没有,也想不出来

问题 37--KT6368A 蓝牙芯片的距离,以及天线周围的元器件,添加上去是否可以增加距离?

回答 1、关于蓝牙芯片的 rf 性能,也就是距离,其实中规中矩吧,但是达到 20 米还很简单的,无需要任何注意事项,电路如下,只要保证贴了 C1 电容 2.7pF,就可以达到这个距离

2、当然,影响距离的问题点也有很多

比如: 外壳是金属的就不行, 金属会吸收无线信号

比如:天线的位置不是板边,这样也会影响距离

比如: 晶振的匹配度不够, 频偏过大, 也会导致距离变短, 丢包率变高

3、如下图,即使增加 L1 和 C17 这两个元器件,其实对距离的变化也是微乎其微的,这两个元件预留主要是方便到时候过认证,测试 RF 性能,进行匹配的作用

4、综上所述,蓝牙技术很成熟了,没有那么多需要注意的地方,但是对距离要求很高,就需要外置小辣椒天线,或者陶瓷天线,或者选择 rf 性能更好的芯片,比如: nordic 的产品,一分钱一分货

问题 38--MCU 通过 KT6368A 用 SPP 透传发送 1K 左右的数据, 手机 APP 显示是 3 个包或者 4 个包, 但是我看手册说最大一个包是 512, 理论应该是两个包吧,请问这正常吗?

回答 实际测试的截图如下:使用的是 app 测试软件测试的结果

原因分析如下:

- 1、当您发 1K 的数据给 KT6368A,芯片内部串口是 dma 的接收,收满 256 个字节,就中断 然后转发 spp 到手机
- 2、但是此时串口还在不停的接收,下一个 256 满了之后,继续转发给 spp 逻辑就是这样子,这就是解释了您为什么 1K 发上去,分了 3 包或者 4 包的原因
- 3、这里还有一个细节,蓝牙不是实时发送的,而是等待心跳包确认之后才发送,大概是 10ms 左右交互一次,如果当前收满 256 之后,还没到发送的时间,此时还会继续串口接收存到缓存,等时间到了,在一起发送到 spp,所以长度是不确定的

扩展说明:

蓝牙 spp,理论上最大一包的数据长度,可以达到 600 个字节左右,不同的手机可能略有差异 基本一包数据大于 512 是肯定可以的

这里分包,是我们芯片内部串口机制去分包,和 spp 无关

当然您需要最大的数据包,我们这边修改蓝牙程序——串口部分,也是可以做到的,加大蓝牙芯片的 dma 接收长度限制就可以了,很简单

但是尽量您那边能自己处理最好, app 那边处理数据也很简单, 这样会比较通用一点

问题 39--KT6368A 蓝牙芯片 ble 能搜到, 但是 spp 却搜不到, 是怎么回事呢? Spp 可以连电脑吗?

- 回答 1、这个问题,其实前面都有集中化的回复,直接在"问题集锦文档",也就是此文档,搜索"SPP" 就可以找到相关的一些案例
 - 2、回答问题的本身:

08 工具软件

09_批量生产注意事项 🚄

11 关于主机版本的功能说明

10 关于低功耗的说明 看这里看这里

KT6368A BLE标准原理图V1.1.pdf

20221114_KT6368A的蓝牙BLE测试说明_V2.pdf

20230703_KT6368A测试板使用说明_以及贴片说明V3.pdf

KT6368A蓝牙双模透传芯片软件版本选型说明_V3.pdf

🥌 KT6368A蓝牙芯片常问题集锦FAQ_V19_更新至39.pdf

- (1)、ios 的手机是没有 spp 的请留意, spp 只存在于安卓手机。具体为什么 ios 不支持 spp, 故事很多, 感兴趣的网上搜搜,了解一下就好了
- (2) 、spp 在安卓手机端,有的手机,可以在"系统"-"蓝牙里面"被搜索到,有的手机可能搜不到 所以,<u>统一建议使用 app 去搜索,也就是"蓝牙串口助手",我们给的资料包里面"08 文件夹"有对应</u>的 apk,找一下装上试试
- (3)、spp 是可以被电脑端连接的,注意是 win10 系统或者以后的版本自带驱动,一般笔记本自带蓝牙模块,台式机的有的带有的不带,不带蓝牙的可以买一个"蓝牙适配器-几块钱",具体网上搜搜
- 3、kt6368a 的 spp 是从机,只能被主机连接,也就是安卓手机或者 pc 电脑 。连接之后就直接是透传
- 4、最最最重要的,注意不要买错了版本,我们还有一个低功耗的版本叫做"KT6328A-BLE"版本,这个是没有 spp 的,这点可以通过 ble 的名称来判断,如果是 KT6368A 则是双模带 spp ,KT6328A 则是单模不带 spp 只有 ble。
- 5、如果还不能解决问题,换一个芯片试试,不排除芯片可能坏掉了,但是概率很低,万分之一以下

问题 40--KT6368A 批量生产怎么办?不可能用手机一个一个的去连吧,太慢了 回答 别慌,这个问题,我们早就考虑清楚了,答案如下,分为两个方法: 方法 1: 使用专用的测试盒工具, 去进行批量测试, 对应的文档如下 a 👚 🔳 📒 👪 99 KT6368A蓝牙芯片 完整资料3 V2.1 20230421.zip\99 KT6368A蓝牙芯片∨ 🔻 名称 压缩前 压缩后 类型 修改日期 .. (上级目录) 文件夹 00 如何购买样品 2023-11-22 10:01 文件夹 01 参考的原理图和PCB 99SE打开 2023-11-22 10:01 文件夹 02 用户手册 2023-11-22 10:02 文件夹 04 参考代码 文件夹 2023-11-22 10:02 05 芯片规格书 2023-11-22 10:02 文件夹 07 视频教程 2023-11-22 10:02 文件夹

文件夹

文件夹

文件夹

文件夹

755.0 KB 661.2 KB PDF-XChange Vi... 2022-11-14 14:33

505.0 KB 467.0 KB PDF-XChange Vi... 2023-07-03 14:38

96.0 KB PDF-XChange Vi... 2021-01-07 20:44

190.0 KB PDF-XChange Vi... 2022-11-21 17:48

1.4 MB PDF-XChange Vi... 2023-12-18 15:32

2023-11-22 10:02

2023-11-22 10:02

2023-11-22 10:02

2023-11-22 10:02

方法 2: 自己做个测试板子,选用我们的主机版本芯片"KT6358M"

- 1、这样 KT6358M 长期通电,把需要测试的从机开机,放在旁边,就会自动连接
- 2、并且您在做测试板的时候,可以加 mcu 上去,这样主和从连接之后,您可以 mcu 发测试指令 具体如何做,就很灵活了
- 3、KT6358M 的主机芯片,只会连接 BLE 这个协议,如果 ble 测试没问题,spp 这一部分是不用测的

20221031 KT6368A芯片修改蓝牙名 波特率 等等需要记忆的参... 322.2 KB 291.3 KB PDF-XChange Vi... 2022-11-01 15:49

106.4 KB

210.6 KB

1.5 MB

4、详细的可以看看 KT6358M 的说明书,详见上图的 11 号文件夹里面的文档

问题 41--KT6368A 蓝牙芯片开发 app 或者小程序的时候,给出的接口 api,里面的 device ID 是什么?

回答 有客户在开发 app 的过程中,问到我们 device ID 的问题

其实这个问题您稍微有点方法,直接百度搜搜就很清楚了,但是没办法,做服务的就要有耐心解决问题的方法如下**:百度搜索关键词"BLE device id"**

就可以得到如下信息:

由于系统限制,Android 上获取到的 deviceld 为设备 MAC 地址,iOS 上则为设备 uuid。因此 deviceld 不能硬编码到代码中。

- 1、安卓的 api 给出的接口,获取蓝牙的"device ID" 就是蓝牙芯片的 mac 地址
- 2、IOS 给出的获取"device ID"接口,实际上就是 uuid

假如您的产品,一定是要唯一的标识,而且每个设备都需要不同,那么就是一定要获取到 mac 地址 因为蓝牙芯片之间不同的,就是 mac 地址 ,接着往下看

我们必须 保证设备的标识唯一 ,两种平台获取的数据是一样的,那么我们既然不能联系苹果叫他开放,我们就采用一个 折中 的方法。

我一开始网上查找了很多资料,其中有说道蓝牙的 advertisData 当中是含有MAC地址的数据包,你只要解析一下就可以获取了,但是我按照他的方法操作一番发现安卓的deviceId和我获取的是不一样的值。所以就放弃这个方法了。

就获取了"advertisdata"这个关键词,拿到这个关键词,直接在 KT6368A 的手册里面搜一下 资料包\02_用户手册\KT6368A 蓝牙芯片双模用户手册 7_V2.1.pdf"

问题 42--KT6368A 或者 KT6328A 低功耗版本,有出现蓝牙名修改不成功,有的成功,有的不行换一个芯片就好了的情况,是什么问题呢?

回答 **蓝牙芯片修改名称,是没有任何问题的**。出现这个问题,我们猜测大概率分为两种情况

1、情况 1:

蓝牙芯片的第一次开机启动慢,而客户发 AT 指令快了,导致修改不成功,这个可以参考资料包里面的一份文档,有详细说明,如下截图路径

^	修改日期	类型	大小
00_如何购买样品	2024-04-10 14:46	文件夹	
01_参考的原理图和PCB_99SE打开	2024-04-10 14:46	文件夹	
02_用户手册	2024-04-10 14:47	文件夹	
04_参考代码	2024-04-10 14:47	文件夹	
05_芯片规格书	2024-04-10 14:47	文件夹	
07_视频教程	2024-04-10 14:47	文件夹	
08_工具软件	2024-04-10 14:47	文件夹	
09_批量生产注意事项	2024-04-10 14:47	文件夹	
10_关于低功耗的说明_看这里看这里	2024-04-10 14:47	文件夹	
11_关于主机版本的功能说明	2024-04-10 14:47	文件夹	
12_关于主从一体版本的功能说明	2024-04-10 14:47	文件夹	
20221031_KT6368A芯片修改蓝牙名_波特率_等等需要记忆的参数重要说明_V1.pdf	2022-11-01 15:49	PDF-XChange Vi	323 KB
🧝 20221114_KT6368A的蓝牙BLE测试说明_V2.pdf	2022-11-14 14:33	PDF-XChange Vi	756 KB
👱 20230703_KT6368A测试板使用说明_以及贴片说明V3.pdf	2023-07-03 14:38	PDF-XChange Vi	505 KB
🧝 KT6368A BLE标准原理图V1.1.pdf	2021-01-07 20:44	PDF-XChange Vi	107 KB
KT6368A蓝牙双模透传芯片软件版本选型说明_V3.pdf	2022-11-21 17:48	PDF-XChange Vi	211 KB
MT6368A蓝牙芯片常问题集锦FAQ_V19_更新至41.pdf	2024-01-26 14:49	PDF-XChange Vi	1,880 KB

"20221031_KT6368A 芯片修改蓝牙名_波特率_等等需要记忆的参数重要说明_V1.pdf" 大概的意思,就是芯片出厂第一次启动需要 2.5 秒的时候,如果启动一次之后,后续再启动就大概是 800ms 因为第一次启动需要校准很多的数据

2、情况 2:

客户使用的是 KT6328A 低功耗的版本的芯片,这个版本的特点是开机前 5 秒可以接收 AT 指令超过 5 秒芯片自动进入低功耗,也就是串口资源会被关闭,目的是为了省功耗 所以导致蓝牙芯片不能接收到 AT 指令,详细看看低功耗版本的详细文档说明

|脑 > infor (D:) > tengcent > 01_产品资料 > 23_KT6368A方案 > 99_KT6368A蓝牙芯片_完整资料_V2.1_20240320 名称 修改日期 类型 📙 00_如何购买样品 2024-04-10 14:46 文件夹 01 参考的原理图和PCB 99SE打开 2024-04-10 14:46 文件夹 02_用户手册 2024-04-10 14:47 04 参考代码 2024-04-10 14:47 文件夹 05 芯片规格书 2024-04-10 14:47 文件夹 2024-04-10 14:47 07 视频教程 文件实 08_工具软件 2024-04-10 14:47 文件夹 2024-04-10 14:47 文件夹 09_批量生产注意事项 10_关于低功耗的说明_看这里看这里 2024-04-10 14:47 文件夹

问题 43--KT6368A 有没有主从一体的版本?可以自己发指令设置为主机去连接从机

回答 有的,我们新增一个版本命名为"KT1328A"是主从一体,不支持低功耗,只有 BLE 详见资料包里面的文档上说明,如下路径

|脑 > infor (D:) > tengcent > 01_产品资料 > 23_KT6368A方案 > 99_KT6368A蓝牙芯片 完整资料_V2.1_20240320

名称 ^	修改日期	类型	大小
00_如何购买样品	2024-04-10 14:46	文件夹	
01_参考的原理图和PCB_99SE打开	2024-04-10 14:46	文件夹	
02_用户手册	2024-04-10 14:47	文件夹	
04_参考代码	2024-04-10 14:47	文件夹	
05_芯片规格书	2024-04-10 14:47	文件夹	
07_视频教程	2024-04-10 14:47	文件夹	
08_工具软件	2024-04-10 14:47	文件夹	
09_批量生产注意事项	2024-04-10 14:47	文件夹	
10_关于低功耗的说明_看这里看这里	2024-04-10 14:47	文件夹	
11_关于主机版本的功能说明	2024-04-10 14:47	文件夹	
12_关于主从一体版本的功能说明	2024-04-10 14:47	文件夹	
🧝 20221031_KT6368A芯片修改蓝牙名_波特率_等等需要记忆的参数重要说明_V1.pdf	2022-11-01 15:49	PDF-XChange Vi	323 K
🥍 20221114_KT6368A的蓝牙BLE测试说明_V2.pdf	2022-11-14 14:33	PDF-XChange Vi	756 K
🕍 20230703_KT6368A测试板使用说明_以及贴片说明V3.pdf	2023-07-03 14:38	PDF-XChange Vi	505 K
🥌 KT6368A BLE标准原理图V1.1.pdf	2021-01-07 20:44	PDF-XChange Vi	107 K
🕍 KT6368A蓝牙双模透传芯片软件版本选型说明_V3.pdf	2022-11-21 17:48	PDF-XChange Vi	211 K
🥍 KT6368A蓝牙芯片常问题集锦FAQ_V19_更新至41.pdf	2024-01-26 14:49	PDF-XChange Vi	1,880 K

新增 KT1328A 芯片方案的蓝牙主从一体版本,实现的是主从一体相互切换,也就是说可以设置为主机【类似于手机的角色】,也可以设置为从机角色,通过 AT 指令此版本的型号命名为: KT1328A-SOP8 。后续需要,请直接标注 KT1328A 即可此版本: 不支持 SPP,不支持低功耗 。功耗和之前 KT6368A 双模版本保持完全一致=6mA

问题 44--KT1328A 主从一体的这个版本,从机能不能自定义广播包,这样主机在不连接的情况下也能 获取到从机的数据,实现一对多接收数据的应用场景

回答

很显然是可以的。详细说明如下:

1、这里分别举例为 A、B、C、D、E、F 合计 6 个设备,其中 A 作为主机,B、C、D、E、F 作为从机,通过 AT 指令分别去设置角色,详见主从一体版本的说明书章节 2.4

==》当 A 设置为主机之后,其实只需要 1 条指令即可

AT+MC01\r\n 开启扫描周边设备,并且返回周边设备的广播包信息=名称、地址、rssi

==》B、C、D、E、F作为从机,

如果需要填充广播的数据,也是一条指令 AT+UR00112233\r\n,详见手册 2.11 章节的详细描述。并且填充之后蓝牙芯片自动会更新广播数据

这样就可以实现 A 角色,可以获取 B、C、D、E、F 的数据,但是问题就在于 A 不能发数据给 B、C、D、E、F

实在要发送数据给 B、C、D、E、F。那么只能挨个的去连接,发完数据给 B 就断开,再去连接设备 C 这样的逻辑

问题 45--KT6368A 的 RF 指令对应的功率分别是多少?

回答 KT6368A 蓝牙芯片的发射功率是可以设置的,取值范围是【0-9】

详见手册的 3.12 章节

但是具体对应的功率值如下:

{-14.0, -11.5, -9.6, -6.6, -4.4, -0.79, +1.12, +3.8, +5.65, +8.04} 举例说明:

- 1、取值为9,那么对应功率就是+8.04
- 2、取值为 0,对应的就是-14.0

问题 46--KT6368A 蓝牙 spp 在电脑端 PC_蓝牙适配器 dongle 怎么用,电脑连接蓝牙支持串口工具软件还是得专用的软件

回答 蓝牙 spp 是支持电脑,虚拟成串口使用的。注意电脑一定要带蓝牙

一般笔记本 win10 以上都是自带蓝牙的,而台式机 PC 则不一定带蓝牙,自己一定要搞清楚,不行某宝买一个 usb 转蓝牙的适配器

我这里的测试环境是台式机+win10 的系统,外加一个蓝牙的 dongle,淘宝随便买的

选择这个连接即可。**打开串口调试助手,会出现两个端口号,有一个是不能用的:如上右图所示**

请留意, 当您点击"打开串口"按钮之后, 电脑的蓝牙才会和蓝牙芯片建立 SPP 连接

同时蓝牙芯片的 2 脚,会输出高电平,也就是会把指示灯点亮

此时蓝牙芯片处于透传状态

左边窗口的波特率其实是虚拟的,填多少都可以。这个波特率相当于是电脑和蓝牙芯片 spp 协议栈之间的数据波特率和硬件是无关的。实际测试效果如下:

问题 47--KT6368A 再被连接之后,AT 命令会被透传出去。被透传的这组 AT 命令是符合文档要求,不应被透传,实际却经常被透传。并且可以每次都复现

回答 有问题部分的串口数据监控结果如下: 其中 41 54 2B 42 4D 46 30 41 46 42 43 33 42 43 30 42 46 0D 0A ,是一个标准的 AT 指令。按道理不会被透传才对。如下图:

这是一组更改蓝牙名称失败的通讯过程:

[20:29:03.055]收←◆01 D0 2B 42 4D //从机单片机收到主机透传的读MAC地址命令 //第一步

[20:29:03.098]收←◆41 54 2B 54 4E 0D 0A //从机单片机发给蓝牙模块的读MAC地址AT命令 //第二步

[20:29:03.103]收←◆54 42 2B 46 30 41 46 42 43 33 42 43 30 42 46 0D 0A//从机单片机收到蓝牙模块的MAC地址 //第三步的第 1小步骤

[20:29:03.119]收←◆4F 4B 0D 0A //从机单片机收到的蓝牙模块的读MAC地址OK //第三步的第2小步骤

[20:29:03.162]收←◆01 D0 46 30 41 46 42 43 33 42 43 30 42 46 05 2C //从机单片机发给主机的MAC地址透传数据//第四步 [20:29:03.197]收←◆01 D1 46 30 41 46 42 43 33 42 43 30 42 46 00 35 D4 //从机单片机收到主机的修改蓝牙模块名称的透传命

20:29:03.258]收←◆41 54 2B 42 4D 46 30 41 46 42 43 33 42 43 30 42 46 0D 0A //从机单片机发修改蓝牙模块名称的AT命令出 去//第六步(我们是蓝牙名称用MAC地址命名)

第六步经过监测,该AT命令数据实际被透传到主机去了。

好的,经过配合客户调试之后,得到了问题所在,如下图:

[14:49:55.751]收

←•[00:00:06.801]at2_com_packet_handler_AT [00:00:06.802][BLE_TRANS]audio222222 send ok---tc!

[00:00:06.809]at2_com_packet_handler_AT [00:00:06.810][BLE_TRANS]audio222222 send ok---tc!

星期二 20:31

问题已经解决了。在发出A时,存了一次FLASH,关闭中断了2.5ms,可能是这个原因导致蓝牙判断超时了。

最后的问题分析

- 1、客户发送的"41 54 2B 42 4D 46 30 41 46 42 43 33 42 43 30 42 46 0D 0A"指令完全没问题
- 2、问题就在于客户不是一次性发出去的。被当成了2包数据发出了
- 3、而 KT6368A 在处理串口来的数据,是按照当前包来处理的,蓝牙芯片串口接收,有两个中断
- ==》中断 1: 超时中断,就是多久没有接收到数据,就认为这一帧数据完毕了,中断,再去分析
- 一般这个超时中断,都是设置为 10ms 的样子。
- ==》中断 2: 长度中断, 计入接收到 256 个字节, 就中断, 数据被取走, 同时继续收数据
- 4、假如客户先发送了"41 54 2B 42 4D 46",等个几 ms 在发送剩余的"30 41 46 42 43 33 42 43 30 42 46 0D 0A",这样表面看起来是按照规则来发的。实际上蓝牙芯片在接接收的时候就产生了 2 次超时中断 1,就认为数据不合理,所以给透传出去了

问题 48--KT6368A 芯片上电到正常发送 AT 指令,或者开启蓝牙广播被搜索到,或者指令复位需要多久等等系列问题总结

回答 其实这些问题归结到一起,就还是一个问题,芯片上电需要多久的时间 在另外一份文档里面,是有描述的,如下路径

名称		修改日期	类型
00_如何购买样品		2024-05-15 12:27	文件夹
01_参考的原理图和PCB	_99SE打开	2024-05-15 12:27	文件夹
02_用户手册		2024-05-15 12:27	文件夹
04_参考代码		2024-05-15 12:27	文件夹
05_芯片规格书		2024-05-15 12:27	文件夹
07_视频教程		2024-05-15 12:27	文件夹
08_工具软件		2024-05-15 12:27	文件夹
09_批量生产注意事项		2024-05-15 12:27	文件夹
📙 10_关于低功耗的说明_看	这里看这里-KT6328A	2024-05-15 12:27	文件夹
11_关于主机版本的功能	说明-KT6358M	2024-05-15 12:27	文件夹
12_关于主从一体版本的	功能说明-KT1328A	2024-05-15 12:27	文件夹
🕍 20221031_KT6368A芯)	片修改蓝牙名_波特率_等等需要记忆的参数重要说明_V1.pdf	2022-11-01 15:49	PDF-XChange Vi
🕍 20221114_KT6368A的	蓝牙BLE测试说明_V2.pdf	2022-11-14 14:33	PDF-XChange Vi
🕍 20240514_KT6368A测i	式板使用说明_以及贴片说明V3.pdf	2024-05-14 17:14	PDF-XChange Vi
M KT6368A BLE标准原理B	图V1.1.pdf	2021-01-07 20:44	PDF-XChange Vi
🥍 KT6368A蓝牙双模透传动	芯片软件版本选型说明_V3.pdf	2022-11-21 17:48	PDF-XChange Vi
🥍 KT6368A蓝牙芯片常问题	@集镍FAQ_V19_更新至45.pdf	2024-04-29 21:21	PDF-XChange Vi

KT6328A 或者 KT6368A 芯片在<mark>第一次上电</mark>的时候,系统内部有很多很多的校准操作这个时间的消耗大概是 2.5 秒 。所以串口发指令必须要上电 3 秒左右才能发指令但是第二次或者第三次上电,以及以后上电,时间消耗大概是 500ms 。

- 1、所以用户在使用过程中,尤其那种固定上电时间,发 AT 指令修改蓝牙名的操作 一定要注意好这个发送的时间,不然会导致一些奇怪的问题
- 2、建议芯片上电 2.5 秒---3 秒之间去修改蓝牙的参数,比如:蓝牙名、地址、波特率等等需要记忆的参数

什么是第一次启动,请跳转到那个文档再看一下

另外只要芯片上电 500ms 以后,串口外设打开的同时,蓝牙的广播也就随之打开了 BLE 的广播默认是 500ms 广播一次

SPP 的广播就是 50ms 广播一次 , 注意这是不可修改的