Competitive Programming SS24

Submit until end of contest

Problem: subgraph (1.0 second timelimit)

Note: This is a problem that is harder to solve than usual. Solve the other problems first before spending too much time on this one.

You are given a connected, undirected graph G = (V, E), four vertices $s_1, t_1, s_2, t_2 \in V$ and two distances l_1, l_2 . Find the minimal size of a set $E' \subseteq E$ such that in G' = (V, E') the following distance relations hold¹:

$$d_{G'}(s_1, t_1) \le l_1$$

$$d_{G'}(s_2, t_2) \le l_2$$

Input The first line of the input contains n and m ($1 \le n \le 2000$, $0 \le m \le \min\{\binom{n}{2}, 2000\}$), the number of nodes and edges. The next one contains six integers $s_1, t_1, l_1, s_2, t_2, l_2$ ($1 \le s_1, t_1, s_2, t_2 \le n$, $0 \le l_1, l_2 \le n$). The i-th of the next m lines contains u_i and v_i ($1 \le u_i, v_i \le n$), denoting an edge between the two nodes.

Output Output the minimal size of E'. If no valid E' exists, output -1.

Sample input

Sample output

3 2 1 2 1 2 3 1 1 2 2 3	2
4 3 1 3 2 2 4 2 1 2 2 3 3 4	3
4 3 1 3 2 2 4 1 1 2 2 3 3 4	-1

 $^{{}^{1}}d_{G}(a,b)$ is the hop-distance between a and b in G. If a and b are not connected in G, then $d_{G}(a,b)=\infty$