Vektorski model

Dragan Ivanović dragan.ivanovic@uns.ac.rs

Katedra za informatiku, Fakultet tehničkih nauka, Novi Sad

2015.

Vektorski model

- Težinski faktori vezani za pojedine termove u odnosu na dokumente i upite su pozitivne ali ne celobrojne vrednosti
- I upit ima težinske faktore
- Ima rangiranja
- Ima parcijalnog poklapanja upita i dokumenta
- I upit i dokument se predstavljaju kao n-dimenzionalni vektor (n je broj termova u rečniku)
- Ugao koji zaklapaju vektori je obrnuto srazmeran relevantnosti dokumenta za postavljeni upit

• Do sada svi upiti su bili Bulovi

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije
- Dobro za aplikacije one lako mogu da obrade hiljade rezultata

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije
- Dobro za aplikacije one lako mogu da obrade hiljade rezultata
- Nije dobro za većinu korisnika

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije
- Dobro za aplikacije one lako mogu da obrade hiljade rezultata
- Nije dobro za većinu korisnika
- Većina korisnika nije u stanju da piše Bulove upite (ili jeste, ali ih mrzi)

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije
- Dobro za aplikacije one lako mogu da obrade hiljade rezultata
- Nije dobro za većinu korisnika
- Većina korisnika nije u stanju da piše Bulove upite (ili jeste, ali ih mrzi)
- Većina korisnika ne želi da pregleda hiljade pogodaka

- Do sada svi upiti su bili Bulovi
 - dokumenti ili odgovaraju upitu, ili ne odgovaraju nema između
- Dobro za korisnike-eksperte sa preciznim razumevanjem svojih potreba i sadržaja kolekcije
- Dobro za aplikacije one lako mogu da obrade hiljade rezultata
- Nije dobro za većinu korisnika
- Većina korisnika nije u stanju da piše Bulove upite (ili jeste, ali ih mrzi)
- Većina korisnika ne želi da pregleda hiljade pogodaka
- Ovo posebno važi za pretragu na webu

 Bulovi upiti često rezultuju sa malo (=0) ili previše (1000+) pogodaka

- Bulovi upiti često rezultuju sa malo (=0) ili previše (1000+) pogodaka
- Upit 1: "standard user dlink $650" \rightarrow 200,000$ hits

- Bulovi upiti često rezultuju sa malo (=0) ili previše (1000+) pogodaka
- Upit 1: "standard user dlink $650" \rightarrow 200,000$ hits
- Upit 2: "standard user dlink 650 no card found": 0 hits

- Bulovi upiti često rezultuju sa malo (=0) ili previše (1000+) pogodaka
- Upit 1: "standard user dlink $650" \rightarrow 200,000$ hits
- Upit 2: "standard user dlink 650 no card found": 0 hits
- Potrebna je veština da se napiše upit koji će vratiti razuman broj pogodaka

- Bulovi upiti često rezultuju sa malo (=0) ili previše (1000+) pogodaka
- Upit 1: "standard user dlink $650" \rightarrow 200,000$ hits
- Upit 2: "standard user dlink 650 no card found": 0 hits
- Potrebna je veština da se napiše upit koji će vratiti razuman broj pogodaka
- Sa rangiranim skupom pogodaka nije važno koliko je velik rezultat

 Želimo da nađemo dokumente koji su najkorisniji za korisnika (sortiran rezultat)

- Želimo da nađemo dokumente koji su najkorisniji za korisnika (sortiran rezultat)
- Kako možemo da rangiramo dokumente u odnosu na upit?

- Želimo da nađemo dokumente koji su najkorisniji za korisnika (sortiran rezultat)
- Kako možemo da rangiramo dokumente u odnosu na upit?
- Dodelimo ocenu (score) recimo iz [0,1] svakom dokumentu

- Želimo da nađemo dokumente koji su najkorisniji za korisnika (sortiran rezultat)
- Kako možemo da rangiramo dokumente u odnosu na upit?
- Dodelimo ocenu (score) recimo iz [0, 1] svakom dokumentu
- Ocena je mera koliko se dokument i upit "poklapaju" (match)

• Treba nam način za dodelu ocene svakom paru upit/dokument

- Treba nam način za dodelu ocene svakom paru upit/dokument
- Počnimo od upita sa jednim termom

- Treba nam način za dodelu ocene svakom paru upit/dokument
- Počnimo od upita sa jednim termom
- Ako se term ne pojavljuje u dokumentu, ocena bi trebalo da bude 0

- Treba nam način za dodelu ocene svakom paru upit/dokument
- Počnimo od upita sa jednim termom
- Ako se term ne pojavljuje u dokumentu, ocena bi trebalo da bude 0
- Što češće se term pojavljuje u dokumentu, ocena je veća

- Treba nam način za dodelu ocene svakom paru upit/dokument
- Počnimo od upita sa jednim termom
- Ako se term ne pojavljuje u dokumentu, ocena bi trebalo da bude 0
- Što češće se term pojavljuje u dokumentu, ocena je veća
- Razmotrićemo neke varijante kako ovo uraditi

• Uobičajena mera preklapanja dva skupa

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)
- Jaccard-ov koeficijent:

$$\mathsf{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)
- Jaccard-ov koeficijent:

$$\mathsf{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

• jaccard(A, A) = 1

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)
- Jaccard-ov koeficijent:

$$\mathsf{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- jaccard(A, A) = 1
- jaccard(A, B) = 0 if $A \cap B = 0$

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)
- Jaccard-ov koeficijent:

$$\mathsf{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- jaccard(A, A) = 1
- jaccard(A, B) = 0 if $A \cap B = 0$
- A i B ne moraju imati isti broj elemenata.

- Uobičajena mera preklapanja dva skupa
- Neka su A i B skupovi (bar jedan je neprazan)
- Jaccard-ov koeficijent:

$$\mathsf{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- jaccard(A, A) = 1
- jaccard(A, B) = 0 if $A \cap B = 0$
- A i B ne moraju imati isti broj elemenata.
- Uvek se dodeljuje broj između 0 i 1.

Jaccard-ov koeficijent: primer

- Koja je ocena upit/dokument dobijena pomoću Jaccard-ovog koeficijenta za:
 - Upit: "ides of March"
 - Dokument: "Caesar died in March"

Šta nije dobro kod Jaccard-ovog koeficijenta?

- Ne uzima u obzir frekvenciju terma (koliko puta se term pojavljuje)
- Retki termovi su informativniji od čestih; Jaccard ovo ne uzima u obzir
- Treba nam bolji način za normalizaciju dužine
- Kasnije ćemo koristiti $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) . . .
- ulletumesto $|A\cap B|/|A\cup B|$ (Jaccard) za normalizaciju dužine

Podsećanje: binarna matrica incidencije

	Ivanović	Milosavljević	-		
	D.	В.	S.	Μ.	
digitalan	1	1	1	1	
lucene	1	1	1	1	
dokument	1	1	1	1	
obrazovanje	0	0	1	0	
pretraga	1	1	1	1	
multimedijalan	0	1	1	1	
evaluacija	0	0	0	0	

. .

Svaki dokument je prikazan pomoću binarnog vektora $\in \{0,1\}^{|V|}.$

Podsećanje: binarna matrica incidencije

	Ivanović D.	Milosavljević B.	Gostojić S.	Zarić M.	
digitalan	1	1	1	1	
lucene	1	1	1	1	
dokument	1	1	1	1	
obrazovanje	0	0	1	0	
pretraga	1	1	1	1	
$\operatorname{multimedijalan}$	0	1	1	1	
evaluacija	0	0	0	0	

. .

Svaki dokument je prikazan pomoću binarnog vektora $\in \{0,1\}^{|V|}$.

Od sada ćemo koristiti brojačku matricu

	Ivanović	Milosavljević	Gostojić	Zarić	
	D.	B.	S.	Μ.	
digitalan	8	46	7	5	
lucene	11	68	3	2	
dokument	41	953	105	204	
obrazovanje	0	0	1	0	
pretraga	11	56	10	30	
multimedijalan	0	96	1	7	
evaluacija	0	0	0	0	

. .

Svaki dokument je prikazan pomoću vektora broja pojavljivanja $\in \mathbb{N}^{|V|}$.

Od sada ćemo koristiti brojačku matricu

	Ivanović	Milosavljević	Gostojić	Zarić	
	D.	B.	S.	Μ.	
digitalan	8	46	7	5	
lucene	11	68	3	2	
dokument	41	953	105	204	
obrazovanje	0	0	1	0	
pretraga	11	56	10	30	
multimedijalan	0	96	1	7	
evaluacija	0	0	0	0	

. .

Svaki dokument je prikazan pomoću vektora broja pojavljivanja $\in \mathbb{N}^{|V|}$.

Model "vreće sa re<u>čima"</u>

Ne uzimamo u obzir redosled reči u dokumentu

- Ne uzimamo u obzir redosled reči u dokumentu
- John is quicker than Mary i Mary is quicker than John su prikazani na isti način

- Ne uzimamo u obzir redosled reči u dokumentu
- John is quicker than Mary i Mary is quicker than John su prikazani na isti način
- Ovo se zove model "vreće sa rečima" (bag of words)

- Ne uzimamo u obzir redosled reči u dokumentu
- John is quicker than Mary i Mary is quicker than John su prikazani na isti način
- Ovo se zove model "vreće sa rečima" (bag of words)
- Korak nazad: pozicioni indeks razlikuje ova dva dokumenta

- Ne uzimamo u obzir redosled reči u dokumentu
- John is quicker than Mary i Mary is quicker than John su prikazani na isti način
- Ovo se zove model "vreće sa rečima" (bag of words)
- Korak nazad: pozicioni indeks razlikuje ova dva dokumenta
- Čuvanje informacije o poziciji ćemo ostaviti za drugi put

- Ne uzimamo u obzir redosled reči u dokumentu
- John is quicker than Mary i Mary is quicker than John su prikazani na isti način
- Ovo se zove model "vreće sa rečima" (bag of words)
- Korak nazad: pozicioni indeks razlikuje ova dva dokumenta
- Čuvanje informacije o poziciji ćemo ostaviti za drugi put
- Za sada koristimo model "vreće sa rečima"

• Frekvencija terma tf $_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.

- Frekvencija terma t $_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.
- Hoćemo da koristimo tf kada računamo upit/dokument ocene.
 Kako?

- Frekvencija terma t $f_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.
- Hoćemo da koristimo tf kada računamo upit/dokument ocene.
 Kako?
- Sirova frekvencija terma nije ono što nam treba

- Frekvencija terma t $f_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.
- Hoćemo da koristimo tf kada računamo upit/dokument ocene.
 Kako?
- Sirova frekvencija terma nije ono što nam treba
- Dokument sa 10 pojava jednog terma je relevantniji od dokumenta sa jednom pojavom istog terma

- Frekvencija terma t $f_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.
- Hoćemo da koristimo tf kada računamo upit/dokument ocene.
 Kako?
- Sirova frekvencija terma nije ono što nam treba
- Dokument sa 10 pojava jednog terma je relevantniji od dokumenta sa jednom pojavom istog terma
- Ali nije 10 puta relevantniji

- Frekvencija terma t $f_{t,d}$ terma t u dokumentu d definiše se kao broj pojavljivanja t u d.
- Hoćemo da koristimo tf kada računamo upit/dokument ocene.
 Kako?
- Sirova frekvencija terma nije ono što nam treba
- Dokument sa 10 pojava jednog terma je relevantniji od dokumenta sa jednom pojavom istog terma
- Ali nije 10 puta relevantniji
- Relevantnost ne raste proporcionalno sa frekvencijom terma

• Logaritmska težina frekvencije terma t u d definiše se kao

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{ina\check{c}e} \end{array}
ight.$$

• Logaritmska težina frekvencije terma t u d definiše se kao

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{ina\check{c}e} \end{array}
ight.$$

ullet 0 o 0, 1 o 1, 2 o 1.3, 10 o 2, 1000 o 4, itd.

• Logaritmska težina frekvencije terma t u d definiše se kao

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{ina\check{c}e} \end{array}
ight.$$

- ullet 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, itd.
- Ocena za par upit/dokument: suma po termovima t za q i d: ocena $=\sum_{t\in q\cap d}(1+\log \operatorname{tf}_{t,d})$

• Logaritmska težina frekvencije terma t u d definiše se kao

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{ina\check{c}e} \end{array}
ight.$$

- $0 \to 0$, $1 \to 1$, $2 \to 1.3$, $10 \to 2$, $1000 \to 4$, itd.
- Ocena za par upit/dokument: suma po termovima t za q i d: ocena = $\sum_{t \in q \cap d} (1 + \log \mathsf{tf}_{t,d})$
- Ocena je 0 akko nijedan term iz upita nije prisutan u dokumentu

• Retki termovi su infomativniji od čestih

<u>Frekv</u>encija dokumenta

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - \rightarrow Želimo veliku težinu za retke termove kao što je digitalizacija

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - → Želimo veliku težinu za retke termove kao što je digitalizacija
- Razmotrimo term koji je čest u kolekciji (npr. visoko, teško, analiza)

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - → Želimo veliku težinu za retke termove kao što je digitalizacija
- Razmotrimo term koji je čest u kolekciji (npr. visoko, teško, analiza)
 - Dokument koji sadrži ovaj term je verovatno relevantniji od onog koji ga ne sadrži, ali to nije siguran indikator relevatnosti

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - ullet ightarrow Želimo veliku težinu za retke termove kao što je $\operatorname{digitalizacija}$
- Razmotrimo term koji je čest u kolekciji (npr. visoko, teško, analiza)
 - Dokument koji sadrži ovaj term je verovatno relevantniji od onog koji ga ne sadrži, ali to nije siguran indikator relevatnosti
 - Za česte termove želimo pozitivne težine za reči kao što su visoko, teško i analiza, ali manje težine nego za retke termove

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - → Želimo veliku težinu za retke termove kao što je digitalizacija
- Razmotrimo term koji je čest u kolekciji (npr. visoko, teško, analiza)
 - Dokument koji sadrži ovaj term je verovatno relevantniji od onog koji ga ne sadrži, ali to nije siguran indikator relevatnosti
 - Za česte termove želimo pozitivne težine za reči kao što su visoko, teško i analiza, ali manje težine nego za retke termove
- Koristićemo frekvenciju dokumenta da uzmemo to u obzir prilikom računanja ocene

- Retki termovi su infomativniji od čestih
- Razmotrimo term koji je redak u kolekciji (npr. digitalizacija)
 - Dokument koji sadrži ovaj term je verovatno relevantan
 - ightarrow Želimo veliku težinu za retke termove kao što je digitalizacija
- Razmotrimo term koji je čest u kolekciji (npr. visoko, teško, analiza)
 - Dokument koji sadrži ovaj term je verovatno relevantniji od onog koji ga ne sadrži, ali to nije siguran indikator relevatnosti
 - ullet ightarrow Za česte termove želimo pozitivne težine za reči kao što su visoko, teško i analiza, ali manje težine nego za retke termove
- Koristićemo frekvenciju dokumenta da uzmemo to u obzir prilikom računanja ocene
- Frekvencija dokumenta je broj dokumenata u kolekciji u kojima se pojavljuje dati term

• df_t je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t

- ullet df $_t$ je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t
- df je inverzna mera informativnosti terma

- ullet df $_t$ je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t
- df je inverzna mera informativnosti terma
- Definišemo idf težinu terma t kao:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- ullet df $_t$ je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t
- df je inverzna mera informativnosti terma
- Definišemo idf težinu terma t kao:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

• idf je mera informativnosti terma

- ullet df $_t$ je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t
- df je inverzna mera informativnosti terma
- Definišemo idf težinu terma t kao:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- idf je mera informativnosti terma
- Koristićemo log N/df_t umesto N/df_t da "ublažimo" efekat idf-a

- ullet df $_t$ je frekvencija dokumenta, odn. broj dokumenata u kojima se pojavljuje term t
- df je inverzna mera informativnosti terma
- Definišemo idf težinu terma t kao:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- idf je mera informativnosti terma
- Koristićemo log N/df_t umesto N/df_t da "ublažimo" efekat idf-a
- Koristimo logaritmovanje i za frekvenciju terma i za frekvenciju dokumenta

Primeri za idf

Izračunati idf $_t$ koristeći formulu: idf $_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df _t	idf _t
XMIRS	1	6
digitalizacija	100	4
nedelja	1000	3
analiza	10.000	2
ispod	100.000	1
i	1.000.000	0

Uticaj idf-a na rangiranje

• idf utiče na rangiranje samo ako upit ima bar dva terma

Uticaj idf-a na rangiranje

- idf utiče na rangiranje samo ako upit ima bar dva terma
- Na primer, u upitu "digitalizacija dokumenata", idf težina povećava relativnu težinu za digitalizacija i smanjuje relativnu težinu za dokumenata

Uticaj idf-a na rangiranje

- idf utiče na rangiranje samo ako upit ima bar dva terma
- Na primer, u upitu "digitalizacija dokumenata", idf težina povećava relativnu težinu za digitalizacija i smanjuje relativnu težinu za dokumenata
- idf nema uticaja na rangiranje rezultata upita sa jednim termom

Reč	cf	df
osiguranje	10440	3997
pokušati	10422	8760

• Frekvencija kolekcije terma t je broj pojavljivanja t u kolekciji

Reč	cf	df
osiguranje	10440	3997
pokušati	10422	8760

- Frekvencija kolekcije terma t je broj pojavljivanja t u kolekciji
- Koja reč je bolji term za upit (i trebalo bi da dobije veću težinu?

Reč	cf	df
osiguranje	10440	3997
pokušati	10422	8760

- Frekvencija kolekcije terma t je broj pojavljivanja t u kolekciji
- Koja reč je bolji term za upit (i trebalo bi da dobije veću težinu?
- Ovaj primer sugeriše da je df bolji za težine nego cf:

Reč	cf	df
osiguranje	10440	3997
pokušati	10422	8760

- Frekvencija kolekcije terma t je broj pojavljivanja t u kolekciji
- Koja reč je bolji term za upit (i trebalo bi da dobije veću težinu?
- Ovaj primer sugeriše da je df bolji za težine nego cf:
- Želimo da manji broj dokumenata koji sadrži osiguranje dobije veći značaj u odnosu na gomilu dokumenata koji sadrže pokušati pri upitu koji sadrži ova dva terma

Frekvencije terma, kolekcije i dokumenta

Veličina	Simbol	Definicija
frekv. terma	$tf_{t,d}$	broj pojavljivanja t u d
frekv. dokumenta	df_t	broj dokumenata u kolekciji koji sadrže <i>t</i>
frekv. kolekcije	cf _t	ukupan broj pojavljivanja <i>t</i> u kolekciji

Frekvencije terma, kolekcije i dokumenta

Veličina	Simbol	Definicija
frekv. terma	$tf_{t,d}$	broj pojavljivanja t u d
frekv. dokumenta	df_t	broj dokumenata u kolekciji koji sadrže <i>t</i>
frekv. kolekcije	cf _t	ukupan broj pojavljivanja <i>t</i> u kolekciji

• Veza između df i cf?

Frekvencije terma, kolekcije i dokumenta

Veličina	Simbol	Definicija
frekv. terma	$tf_{t,d}$	broj pojavljivanja t u d
frekv. dokumenta	df_t	broj dokumenata u kolekciji koji sadrže <i>t</i>
frekv. kolekcije	cf _t	ukupan broj pojavljivanja <i>t</i> u kolekciji

Veza između tf i cf?

• tf-idf težina terma je proizvod njegove tf težine i njegove idf težine

 tf-idf težina terma je proizvod njegove tf težine i njegove idf težine

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

 tf-idf težina terma je proizvod njegove tf težine i njegove idf težine

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathsf{N}}{\mathsf{df}_t}$$

Najpoznatija težina u IR

 tf-idf težina terma je proizvod njegove tf težine i njegove idf težine

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathsf{N}}{\mathsf{df}_t}$$

- Najpoznatija težina u IR
- Poznata i kao: tf.idf, tf x idf

• Dodeli tf-idf težinu svakom termu t za svaki dokument d: $w_{t,d} = (1 + \log \operatorname{tf}_{t,d}) \cdot \log \frac{N}{\operatorname{df}_t}$

- Dodeli tf-idf težinu svakom termu t za svaki dokument d: $w_{t,d} = (1 + \log \operatorname{tf}_{t,d}) \cdot \log \frac{N}{\operatorname{df}_t}$
- N je ukupan broj dokumenata

- Dodeli tf-idf težinu svakom termu t za svaki dokument d: $w_{t,d} = (1 + \log \operatorname{tf}_{t,d}) \cdot \log \frac{N}{\operatorname{df}_{\star}}$
- N je ukupan broj dokumenata
- Raste sa brojem pojavljivanja u dokumentu

- Dodeli tf-idf težinu svakom termu t za svaki dokument d: $w_{t,d} = (1 + \log \operatorname{tf}_{t,d}) \cdot \log \frac{N}{\operatorname{df}_{\star}}$
- N je ukupan broj dokumenata
- Raste sa brojem pojavljivanja u dokumentu
- Raste sa retkošću terma u kolekciji

Binarna ightarrow brojačka ightarrow težinska matrica

	Ivanović	Milosavljević	Gostojić	Zarić	
	D.	B.	S.	Μ.	
digitalan	0.25	1.51	0.12	0.05	
lucene	0.75	3.2	0.28	0.18	
dokument	0.12	2.3	0.51	0.83	
obrazovanje	0	0	0.5	0	
pretraga	0.25	1.8	0.24	0.26	
multimedijalan	0	8.25	0.12	0.23	
evaluacija	0	0	0	0	

. .

Svaki dokument je predstavljen vektorom realnih vrednosti tf-idf težina $\in \mathbb{R}^{|V|}$

Binarna ightarrow brojačka ightarrow težinska matrica

	Ivanović	Milosavljević	Gostojić	Zarić	
	D.	B.	S.	М.	
digitalan	0.25	1.51	0.12	0.05	
lucene	0.75	3.2	0.28	0.18	
dokument	0.12	2.3	0.51	0.83	
obrazovanje	0	0	0.5	0	
pretraga	0.25	1.8	0.24	0.26	
multimedijalan	0	8.25	0.12	0.23	
evaluacija	0	0	0	0	

. . .

Svaki dokument je predstavljen vektorom realnih vrednosti tf-idf težina $\in \mathbb{R}^{|V|}$

ullet Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$

- ullet Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$
- ullet Tako imamo |V|-dimenzionalni vektorski prostor

- Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$
- \bullet Tako imamo |V|-dimenzionalni vektorski prostor
- Termovi su ose prostora

- Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$
- Tako imamo |V|-dimenzionalni vektorski prostor
- Termovi su ose prostora
- Dokumenti su tačke ili vektori u ovom prostoru

- Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$
- \bullet Tako imamo |V|-dimenzionalni vektorski prostor
- Termovi su ose prostora
- Dokumenti su tačke ili vektori u ovom prostoru
- Visoka dimenzionalnost: desetak miliona dimenzija kada se primeni na web pretraživač

- Svaki dokument se reprezentuje kao vektor realnih brojeva sa tf-idf težinama $\in \mathbb{R}^{|V|}$
- \bullet Tako imamo |V|-dimenzionalni vektorski prostor
- Termovi su ose prostora
- Dokumenti su tačke ili vektori u ovom prostoru
- Visoka dimenzionalnost: desetak miliona dimenzija kada se primeni na web pretraživač
- Vrlo retki vektori većina vrednosti je 0

• Ideja 1: upite, kao i dokumente, predstaviti kao vektore u vektorskom prostoru

- Ideja 1: upite, kao i dokumente, predstaviti kao vektore u vektorskom prostoru
- Ideja 2: rangirati dokumente prema njihovoj blizini sa upitom

- Ideja 1: upite, kao i dokumente, predstaviti kao vektore u vektorskom prostoru
- Ideja 2: rangirati dokumente prema njihovoj blizini sa upitom
- blizina = sličnost

- Ideja 1: upite, kao i dokumente, predstaviti kao vektore u vektorskom prostoru
- Ideja 2: rangirati dokumente prema njihovoj blizini sa upitom
- blizina = sličnost
- blizina ≈ negativno rastojanje

- Ideja 1: upite, kao i dokumente, predstaviti kao vektore u vektorskom prostoru
- Ideja 2: rangirati dokumente prema njihovoj blizini sa upitom
- blizina = sličnost
- blizina ≈ negativno rastojanje
- Podsećanje: ovo radimo da prevaziđemo problem "ili jesi ili nisi" Bulovog modela

• Prvi pokušaj: rastojanje između dve tačke

- Prvi pokušaj: rastojanje između dve tačke
- (= rastojanje između krajnjih tačaka dvaju vektora)

- Prvi pokušaj: rastojanje između dve tačke
- (= rastojanje između krajnjih tačaka dvaju vektora)
- Euklidsko rastojanje?

- Prvi pokušaj: rastojanje između dve tačke
- (= rastojanje između krajnjih tačaka dvaju vektora)
- Euklidsko rastojanje?
- Euklidsko rastojanje je loša ideja . . .

- Prvi pokušaj: rastojanje između dve tačke
- (= rastojanje između krajnjih tačaka dvaju vektora)
- Euklidsko rastojanje?
- Euklidsko rastojanje je loša ideja . . .
- ...jer je veliko za vektore različitih dužina.

Zašto je rastojanje loša ideja

Zašto je rastojanje loša ideja

Euklidsko \vec{q} i $\vec{d_2}$ je veliko iako je distribucija termova u upitu q i dokumentu d_2 vrlo slična

Ugao umesto rastojanja

• Rangiraćemo dokumente prema uglu koji zaklapaju sa upitom

- Rangiraćemo dokumente prema uglu koji zaklapaju sa upitom
- Eksperiment: uzmimo dokument d i dodajmo ga još jednom na njegov kraj; nazovimo to d'

- Rangiraćemo dokumente prema uglu koji zaklapaju sa upitom
- Eksperiment: uzmimo dokument d i dodajmo ga još jednom na njegov kraj; nazovimo to d'
- "Semantički" d i d' imaju isti sadržaj

- Rangiraćemo dokumente prema uglu koji zaklapaju sa upitom
- Eksperiment: uzmimo dokument d i dodajmo ga još jednom na njegov kraj; nazovimo to d'
- "Semantički" d i d' imaju isti sadržaj
- Ugao između dokumenata je 0, što odgovara maksimalnoj sličnosti

- Rangiraćemo dokumente prema uglu koji zaklapaju sa upitom
- Eksperiment: uzmimo dokument d i dodajmo ga još jednom na njegov kraj; nazovimo to d'
- "Semantički" d i d' imaju isti sadržaj
- Ugao između dokumenata je 0, što odgovara maksimalnoj sličnosti
- Euklidsko rastojanje između d i d' je veliko (u svakom slučaju > 0)

Sledeće dve stvari su ekvivalentne

- Sledeće dve stvari su ekvivalentne
 - Rangiraj dokumente prema uglu između upita i dokumenta u rastućem redosledu

- Sledeće dve stvari su ekvivalentne
 - Rangiraj dokumente prema uglu između upita i dokumenta u rastućem redosledu
 - Rangiraj dokumente prema cos(query,document) u opadajućem redosledu

- Sledeće dve stvari su ekvivalentne
 - Rangiraj dokumente prema uglu između upita i dokumenta u rastućem redosledu
 - Rangiraj dokumente prema cos(query,document) u opadajućem redosledu
- Kosinus je monotono opadajuća funkcija ugla u intervalu [0°, 180°]

• Kako da izračunamo kosinus?

- Kako da izračunamo kosinus?
- Vektor se može normalizovati deljenjem svake komponente njegovom dužinom – ovde koristimo L₂ normu:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- Kako da izračunamo kosinus?
- Vektor se može normalizovati deljenjem svake komponente njegovom dužinom ovde koristimo L_2 normu: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Ovo premešta sve vektore u jediničnu sferu . . .

- Kako da izračunamo kosinus?
- Vektor se može normalizovati deljenjem svake komponente njegovom dužinom ovde koristimo L_2 normu: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Ovo premešta sve vektore u jediničnu sferu . . .
- ...jer je nakon normalizacije: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$

- Kako da izračunamo kosinus?
- Vektor se može normalizovati deljenjem svake komponente njegovom dužinom ovde koristimo L_2 normu: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Ovo premešta sve vektore u jediničnu sferu . . .
- ullet ...jer je nakon normalizacije: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- Kao rezultat, i kratki i dugački dokumenti imaju težine istog reda veličine

- Kako da izračunamo kosinus?
- Vektor se može normalizovati deljenjem svake komponente njegovom dužinom ovde koristimo L_2 normu: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Ovo premešta sve vektore u jediničnu sferu . . .
- ullet ...jer je nakon normalizacije: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- Kao rezultat, i kratki i dugački dokumenti imaju težine istog reda veličine
- Efekat na dva dokumenta d i d' (d dodat na samog sebe) sa prethodnog primera: imaju identične vektore nakon normalizacije

$$\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 \bullet q_i je tf-idf težina terma i u upitu

$$\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i je tf-idf težina terma i u upitu
- d_i je tf-idf težina terma i u dokumentu

$$\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i je tf-idf težina terma i u upitu
- d_i je tf-idf težina terma i u dokumentu
- $|\vec{q}|$ i $|\vec{d}|$ su dužine \vec{q} i \vec{d} .

$$\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i je tf-idf težina terma i u upitu
- d_i je tf-idf težina terma i u dokumentu
- $|\vec{q}|$ i $|\vec{d}|$ su dužine \vec{q} i \vec{d} .
- Ovo je kosinusna sličnost \vec{q} i \vec{d} ili, ekvivalentno, kosinus ugla između \vec{q} i \vec{d} .

Kosinus za normalizovane vektore

Za normalizovane vektore kosinus je jednak skalarnom proizvodu

Kosinus za normalizovane vektore

- Za normalizovane vektore kosinus je jednak skalarnom proizvodu
- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$ (ako su \vec{q} i \vec{d} normalizovani)

Ilustracija kosinusne sličnosti

Pretpostavimo da imamo tri disertacije u kolekciji:

ID: Ivanović D.

MB: Milosavljević B.

GS: Gostojić S.

Pretpostavimo da imamo tri disertacije u kolekciji:

ID: Ivanović D.

MB: Milosavljević B.

GS: Gostojić S.

frekv. terma (broj)

term	ID	MB	GS
indeksiranje	5	58	0
dokument	41	953	105
obrazovanje	0	0	1
multimedijalan	0	96	1

frekv. terma (broj)

term	ID	MB	GS
indeksiranje	5	58	0
dokument	41	953	105
obrazovanje	0	0	1
$\operatorname{multimedijalan}$	0	96	1

frekv. terma (broj)

log frekv.

term	ID	MB	GS
indeksiranje	5	58	0
dokument	41	953	105
obrazovanje	0	0	1
multimedijalan	0	96	1

.	ID	MD	CC
term	ID	MB	GS
indeksiranje	1,7	2,76	0
dokument	2,61	3,98	3,02
obrazovanje	0	0	1
multimedijalan	0	2,98	1

frekv. dok

term	idf
indeksiranje	0,176
$\operatorname{dokument}$	0
obrazovanje	0,477
$\operatorname{multimedijalan}$	0,176

frekv. dok

term	idf
indeksiranje	0,176
$\operatorname{dokument}$	0
obrazovanje	0,477
$\operatorname{multimedijalan}$	0,176

 tf_idf

term	ID	MB	GS
indeksiranje	0,29	0,49	0
dokument	0	0	0
obrazovanje	0	0	0,48
multimedijalan	0	0,52	0,18

 tf_idf

term	ID	MB	GS
indeksiranje	0,29	0,49	0
dokument	0	0	0
obrazovanje	0	0	0,48
multimedijalan	0	0,52	0,18

 tf_idf

term	ID	MB	GS
indeksiranje	0,29	0,49	0
$\operatorname{dokument}$	0	0	0
obrazovanje	0	0	0,48
$\operatorname{multimedijalan}$	0	0,52	0,18

tf_idf & normalizacija

term	ID	MB	GS
indeksiranje	1	0,69	0
dokument	0	0	0
obrazovanje	0	0	0,94
multimedijalan	0	0,73	0,35

tfidf

term	ID	MB	GS
indeksiranje	0,29	0,49	0
$\operatorname{dokument}$	0	0	0
obrazovanje	0	0	0,48
$\operatorname{multimedijalan}$	0	0,52	0,18

tf_idf & normalizacija

			J	
	term	ID	MB	GS
ĺ	indeksiranje	1	0,69	0
	dokument	0	0	0
	obrazovanje	0	0	0,94
	multimedijalan	0	0,73	0,35

• Razmotrimo kako bismo odgovorili na upit: ... multimedijalnih ... indeksiranje ... multimedijalnog , pri čemu ... predstavljaju delove upita koji će nakon pretprocesiranja upita biti izbačeni.

tf_idf & normalizacija

term	ID	MB	GS	upit
indeksiranje	1	0,69	0	0,62
dokument	0	0	0	0
obrazovanje	0	0	0,94	0
multimedijalan	0	0,73	0,35	0,79

tf_idf & normalizacija

term	ID	MB	GS	upit
indeksiranje	1	0,69	0	0,62
dokument	0	0	0	0
obrazovanje	0	0	0,94	0
multimedijalan	0	0,73	0,35	0,79

• $cos(ID,upit) = 1 * 0,62 + 0 * 0 + 0 * 0 + 0 * 0,79 \approx 0,62$

tf_idf & normalizacija

		,		
term	ID	MB	GS	upit
indeksiranje	1	0,69	0	0,62
dokument	0	0	0	0
obrazovanje	0	0	0,94	0
multimedijalan	0	0,73	0,35	0,79

- $cos(ID,upit) = 1 * 0.62 + 0 * 0 + 0 * 0 + 0 * 0.79 \approx 0.62$
- $cos(MB,upit) = 0,69 * 0,62 + 0 * 0 + 0 * 0 + 0,73 * 0,79 \approx 1$

tf_idf & normalizacija

		-		
term	ID	MB	GS	upit
indeksiranje	1	0,69	0	0,62
dokument	0	0	0	0
obrazovanje	0	0	0,94	0
multimedijalan	0	0,73	0,35	0,79

- $cos(ID,upit) = 1 * 0.62 + 0 * 0 + 0 * 0 + 0 * 0.79 \approx 0.62$
- $cos(MB,upit) = 0,69*0,62+0*0+0*0+0,73*0,79 \approx 1$
- $cos(GS,upit) = 0 * 0,62 + 0 * 0 + 0,94 * 0 + 0,35 * 0,79 \approx 0,28$

tf¡df & normalizacija

		,		
term	ID	MB	GS	upit
indeksiranje	1	0,69	0	0,62
\parallel dokument	0	0	0	0
obrazovanje	0	0	0,94	0
\parallel multimedijalan	0	0,73	0,35	0,79

- $cos(ID,upit) = 1 * 0.62 + 0 * 0 + 0 * 0 + 0 * 0.79 \approx 0.62$
- $cos(MB, upit) = 0.69 * 0.62 + 0 * 0 + 0 * 0 + 0.73 * 0.79 \approx 1$
- $cos(GS,upit) = 0 * 0,62 + 0 * 0 + 0,94 * 0 + 0,35 * 0,79 \approx 0,28$
- Koja disertacija najbolje odgovara upitu?

Izračunavanje kosinusne ocene

```
CosineScore(q)
     float Scores[N] = 0
     float Length[N]
    for each query term t
     do calculate w_{t,q} and fetch postings list for t
 5
         for each pair (d, \mathsf{tf}_{t,d}) in postings list
         do Scores[d] += w_{t,d} \times w_{t,a}
 6
     Read the array Length
    for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Komponente tf-idf težina

Frekv. terma		Frekv. dokumenta		Normalizacija	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

Komponente tf-idf težina

Frekv. terma		Frekv. dokumenta		Normalizacija	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{oth erwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

Najbolja poznata kombinacija komponenti težine

Komponente tf-idf težina

Frekv. terma		Frekv. dokumenta		Normaliz acija	
n (natural)	tf _{t,d}	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

Default: bez težina

• Mogu da se koriste različite težine za upite i dokumente

- Mogu da se koriste različite težine za upite i dokumente
- Notacija: qqq.ddd

- Mogu da se koriste različite težine za upite i dokumente
- Notacija: qqq.ddd
- Primer: Itn Inc

- Mogu da se koriste različite težine za upite i dokumente
- Notacija: qqq.ddd
- Primer: Itn.Inc
- upit: logaritamski tf, idf, bez normalizacije

- Mogu da se koriste različite težine za upite i dokumente
- Notacija: qqq.ddd
- Primer: Itn.Inc
- upit: logaritamski tf, idf, bez normalizacije
- dokument: logaritamski tf, bez idf, kosinusna normalizacija

Predstavi svaki dokument kao tf-idf vektor

- Predstavi svaki dokument kao tf-idf vektor
- Predstavi upit kao ponderisani tf-idf vektor

- Predstavi svaki dokument kao tf-idf vektor
- Predstavi upit kao ponderisani tf-idf vektor
- Izračunaj kosinusnu sličnost između upita i svakog dokumenta

- Predstavi svaki dokument kao tf-idf vektor
- Predstavi upit kao ponderisani tf-idf vektor
- Izračunaj kosinusnu sličnost između upita i svakog dokumenta
- Rangiraj dokumente prema sličnosti

- Predstavi svaki dokument kao tf-idf vektor
- Predstavi upit kao ponderisani tf-idf vektor
- Izračunaj kosinusnu sličnost između upita i svakog dokumenta
- Rangiraj dokumente prema sličnosti
- ullet Prikaži najboljih K (npr. K=10) dokumenata korisniku