RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Mechanical Engineering, V-Semester

Departmental Elective ME-503 (A) Mechatronics

UNIT – 1 INTRODUCTION: Definition of Mechatronics, Multi-disciplinary scenario, origins. Evaluation of Mechatronics, An over view of mechatronics, Design of mechatronics system. Measurements system and function of main elements of measurement systems. Need for mechatronics in industries. Objectives, advantages and disadvantages of mechatronics. Microprocessor based controllers. Principle of working of engine management system, automatic washing machine.

UNIT – 2 REVIEW OF TRANSDUCERS AND SENSORS: Defination and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors. **MICROPROCESSOR:** Introduction, Microprocessor based digital control. Digital member system, binary and hexadecimal number system, Logic functions, Data word representation basic Elements of control systems.

UNIT 3: MICROPROCESSOR ARCHITECTURE: 8085A processor architecture Terminology-such as, CPU, memory and address, ALU, assembler, data, registers, Fetch cycle, write cycle, state, bus interrupts. Micro controllers – difference between microprocessor and micro controllers. Requirements for control and their implementation in micro controllers. Classification of micro controllers.

Unit 4

ELECTRICAL ACTUATORS: Actuator and actuator system. Classifications of actuator system with examples. Mechanical switches. Concept of bouncing Methods of Preventing bouncing of mechanical switches. Solenoids, Relays. Solid state switches – Diodes, Thyristors, Triacs, Trasistors, Darlington pair. Electrical actuator. Principle, construction and working of AC, DC motors, stepper motors, permanent motors, servomotors, Servo systems and control

HYDRAULIC ACTUATORS: Valves – Classifications, Pressure Control Valves – Pressure relief valves, Pressure regulating/reducing valves, Pressure sequence valve. Flow control valves – Principle, needle valve, globe valve. Direction control valve –sliding spool valve, solenoid operated.

Unit 5 : SINGLE CONDITIONING: Concept, necessity, op-amps, protection, filtering, wheat stone bridge – Digital Signals – Multiplexer. Data acquisition – Introduction to digital signal processing – Concepts and different methods.

REFERENCE BOOKS:

- 1. **Mechatronics** Principles, Concepts and applications Nitaigour and Premchand, Mahilik Tata McGraw Hill -2003
- 2. **Mechatronics** W. Bolton, Pearson Education Asia -2nd Edition, 2001.
- 3. **Introduction to mechatronics and measurement systems** –David G. Alciatore & Michel BiHistand Tata McGraw Hill –2000
- 4. **Mechatronics** H.D. Ramachandra Sudha Publication -2003 **Mechatronics** by HMT Ltd. Tata McGrawHill -2000.
- 5. **Mechatronics System design** by Devadas Shetty and Richard A. Kark Thomas Learning -1997.
- 6. **Mechatronics an Introduction** by Robert H Bishop CRC
- 7 Mechatronics systems Fundamentals by Rolf Isermann Springer

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Mechanical Engineering, V-Semester

Departmental Elective ME- 503 (B) Dynamics of Machine

- **Unit 1:** Dynamics of Engine Mechanisms: Displacement, velocity and acceleration of piston; turning moment on crankshaft, turning moment diagram; fluctuation of crankshaft speed, analysis of flywheel.
- Unit 2: Governor Mechanisms: Types of governors, characteristics of centrifugal governors, gravity and spring controlled centrifugal governors, hunting of centrifugal governors, inertia governors.
- **Unit 3:** Balancing of Inertia Forces and Moments in Machines: Balancing of rotating masses, two plane balancing, determination of balancing masses (graphical and analytical methods), balancing of rotors, balancing of internal combustion engines (single cylinder engines, in-line engines, V-twin engines, radial engines, Lanchester technique of engine balancing.
- **Unit 4:** Friction: Frictional torque in pivots and collars by uniform pressure and uniform wear rate criteria. Boundary and fluid film lubrication, friction in journal and thrust bearings, concept of friction circle and axis, rolling friction. Clutches: Single plate and multi plate clutches, Cone clutches.
- **Unit 5**: Brakes: Band brake, block brakes, Internal and external shoe brakes, braking of vehicles. Dynamometer: Different types and their applications. Dynamic Analysis of Cams: Response of un-damped cam mechanism (analytical method), follower response analysis by phase-plane method, jump and cross-over shock.

References:

- 1. Ambekar, AG; Mechanism and Machine Theory; PHI
- 2. Rattan SS; Theory of machines; TMH
- 3. Sharma and Purohit; Design of Machine elements; PHI
- 4. Bevan; Theory of Machines;
- 5. Ghosh and Mallik; Theory of Mechanisms and Machines; Affiliated East-West Press, Delhi
- 6. Norton RL; kinematics and dynamics of machinery; TMH
- 7. Grover; Mechanical Vibrations
- 8. Balaney; Theory of Machines by
- 9. Theory of Vibrations by Thomson

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Mechanical Engineering, V-Semester

Departmental Elective ME-503 (C) Alternate Automotive Fuels & Emissions

Unit 1: Introduction Automobile Fuels:

Classification of Automobile alternative fuels(liquid, gaseous, hydrogen, LPG, CNG, Biogas etc.), Desirable characteristics of SI & CI engine alternative fuels, Rating of SI & CI engine fuels, Introduction to alternate energy sources. Like EV, hybrid, fuel cell and solar cars. merits and demerits of various alternate fuels.

Unit 2: Liquid alternative fuels:

Vegetable Oils: Various vegetable oils for automobile engines, esterification, performance in engines, performance and emission characteristics, bio diesel and its characteristics. Alcohols: Properties as engine fuel, alcohols and gasoline blends, performance in automobile engine, methanol and gasoline blends.

Unit 3: Gaseous Fuels:

Biogas: Introduction to Biogas system, Process during gas formation, Factors affecting biogas formation. Usage of Biogas in SI engine & CI engine., Properties of Natural gas, Hydrogen gas, LPG & CNG as engine fuels, storage and handling, performance and safety aspects to all gaseous fuel, fuel metering systems.

Unit 4: Automobile emissions:

Types of automobile emissions, emission characteristics, formation of automobile emissions, mechanism of HC, CO and NO in SI engine, exhaust emission and factors affecting the emission, evaporative emission, crankcase emission, lead emission CI engine emissions: formation of smoke, factors affecting the smoke formation, unburned hydrocarbons, carbon monoxide, oxides of nitrogen, smog and comparison of diesel and petrol emissions.

Unit 5:Emissions Norms & Measurement:

Emission norms as per Bharat Standard up to BS – IV and procedures for confirmation on production. Demerits of automobile emission to environment. Types Of Catalytic Conversion, Measurement Techniques Emission Standards and Test Procedure NDIR,FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards.

References:

- 1. J.B. Heywood. Internal combustion Engines, Wiley
- 2. Ganeshan V; Internal Combustion engines; TMH
- 3. Mathur M L & Sharma RP; A. Course in IC engines; DhanpatRai
- 4. R Yadav, Internal Combustion Engines
- 5 Halderman JD and Mitchell CD; Automotive Engines theory and servicing; Pearson
- 6. DomKundwar; Internal Combustion Engines; Dhanpat Rai Publications
- 7. Taylor GF; Internal Combustion Engines Theory & Practice; MIT Press
- 8. Richard Stone; Introduction to IC Engines; Society of Automotive Engr (Palgrave Mc Millan)

List of Experiment (Pl. expand it):

- 1. Study of alternative fuel for automobile.
- 2. Study of esterification of alternative fuels.
- 3. Study of blending different types of bio-diesel.
- 4. Measurement of smoke from automobile.
- 5. Study of different types of emissions.
- 6. Study of various techniques for NO_x reduction.