Programmable peripheral interface: 8255 Ch-15

Block diagram of 8255

Ports and modes in 8255

Control register

Ports

- Control register controls the operation of 8255
- All other ports are grouped into two as shown below

Operation modes

- 8255 has 3 modes
- Mode-0: simple input or output
 - Each group (A with U-C) and (B with L-C) can be programmed as either input or as output
- Mode-1: input or output with handshake
 - Ports A and B used as either input or output
 - Each port uses 3 lines of C as handshake signals
- Mode-2: bidirectional data transfer
 - To transfer data between two computers or floppy disks

Bit set or reset (BSR) mode

- Set or reset bits in port-C
- Used for handshake signals
- BSR control word
- Examples:
- Set PC-7
- Reset PC-7
- Set PC-3

D7	D6	D5	D4	D3	D2	D1	D0
0=BSR Mode	No	Not used, So (000)			Bit	Select	S/R (1/0)

Bit set or reset (BSR) mode

- Examples:
- Set PC-7 = 0.000 111 1 = 0FH
- Reset PC-7 = 0 000 111 0 = 0EH
- Set PC-3 = 0.0000111 = 07H

D7	D6	D5	D4	D3	D2	D1	D0
0=BSR Mode	No	ot used, S	So (000)		Bit	Select	S/R (1/0)

BSR example

- Generate activation pulse of delay 'D' on PC7 and PC3
- Set PC7 and PC3 and after delay reset PC7 and PC3

BSR example

- Generate activation pulse of delay 'D' on PC7 and PC3
- Set PC7 and PC3 and after delay reset PC7 and PC3

```
A, OFH ; Load ACC to set PC7
MVI
     83H : set PC7=1
OUT
     A,07H
            : Load ACC to set PC3
MVI
     83H
             : set PC3=1
OUT
CALL
     DELAYD
     A,06H
             ; Load ACC to Reset PC3
MVI
             ; set PC3=1
     83H
OUT
     A,OEH
             ; Load ACC to Reset PC7
MVI
     83H
OUT
             : set PC7=1
```

- Mode-0: simple input or output
 - Each group (A with CU) and (B with CL) can be programmed as either input or as output
 - Outputs are latched
 - Inputs are not latched
 - Ports do not have handshake or interrupt capability
- Configure port-A and port CU as out port
- Port-B and port CL as in port
- Interface to read from input DIPs and display the read value at output LEDs
- What is the control word?

Mode-0

- Configure port-A and port CU as out port
- Port-B and port CL as in port
- Interface to read from input DIPs and display the read value at output LEDs
- What is the control word = 83H

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	1	1
I/O function	Port A i Mode 0		Port A as O/P	Port CU as O/P		Port B as I/P	Port CL as I/P

Interface circuit


```
; Load acc with Control word
MVI A,83H
OUT 83H
             ; Load control register with 83 at port address 83
             ; Read DIP from port B
IN 81H
HO8 TUO
             : Write to LEDs
             ; Read DIP from port C
   82H
IN
ANI OFH
             ; Mask upper part of port C, as it is not i/p
RLC
RLC
RLC
            ; Rotate 4 time
RLC
            ; Display data at port CU
OUT 82H
HLT
```

- Temperature controller for a room
- Devices:
 - Heater,
 - Cooler
 - Temperature sensor
 - A/D converter
 - Driver switch to drive heater/cooler
- Read temperature and control temperature between 20-30 degree Celsius

- Temperature controller for a room
- Devices:
 - Heater,
 - Cooler
 - Temperature sensor
 - A/D converter
 - Driver switch to drive heater/cooler
- Read temperature and control temperature between 20-30 degree Celsius
- Port-A as input in mode-0, port-C in BSR mode

Interface circuit

- Port-A as input
- Port-B not used
- Port-CU = output (PC4=WRb, PC7=RDb)
- Port-CL = input (PC0 = INTRb)
- Control word = ?

- Port-A as input
- Port-B not used
- Port-CU = output (PC4=WRb, PC7=RDb)
- Port-CL = input (PC0 = INTRb)
- Control word = 91H

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	0	0	0	1
I/O function	Port A in Mode 0		Port A as I/P	Port CU As O/P	Port B Is Not used		Port CL As I/P

Mode-0: ex-2

- Control word = 91H
- BSR control words
 - Send start conversion on PC4 = WRb
 - 0000 1000, 0000 1001 (set)
 - Send RDb to ADC on PC7
 - 0000 1110, 0000 1111 (set)
 - Set PC5=high for Fan-ON
 - 0000 1011 (ON), 0000 1010 (OFF)
 - Set PC6=high for heater-ON
 - 0000 1101(ON), 0000 1100 (OFF)

Mode-0: ex-2 program

```
MVI A, 91H ; control word
OUT CNTRL
MVI A, OFH; set PC7 high to
           : disable Rdb
OUT CNTRL
MVI A, 08H ; word to set Wrb low
OUT CNTRL
MVI A, 09H ; word to set WRB high
OUT CNTRL
READ: IN PORTC ; read port-C PC0
                ;to check if
               ; conversion over
      RAR
      JC READ
```

```
MVI A, OEH; assert Rdb
OUT CNTRL
IN PORTA : read A/D converter
MOV B, A; save temperature reading
         ; compare if temp is more
         ; than 35 deg-C
         ; yes then turn on fan by
         ; calling sub-routine FANON
FANON:
PUSH PSW; save A and flags
MVI A, OCH; set PC5 to turn on fan
OUT CNTRL
POP PSW
RET
; similar program to turn on cooler
```

Mode: 1

- Mode-1: input or output with handshake
 - Ports A and B used as either input or output
 - Each port uses 3 lines of C as handshake signals
 - Other 2 lines of C used for I/O
 - Input and output data are latched
 - Interrupt logic is supported
 - Example
 - Port-A: keyboard with interrupt I/O and port-B to printer
 - Read key press and print using the printer

Inteface circuit

Mode: 2

- Mode-2: bidirectional data transfer
 - To transfer data between two computers or floppy disks
 - Port-A as bidirectional and port-B in mode-0 or mode-1
 - Five lines from c are used for handshake
 - Remaining lines used for I/O or as handshake for B
 - Example: data tranfers between master and slave MPU
 - Use port-C to handshake between two computers, to check input/output buffer full and ready status
 - From Master to Slave
 - Master writes data to port-A and sends OBFb (output buffer full) to slave via 8255
 - Slave checks OBFb and then reads data from port-A and then sends ACK to master via 8255
 - From Slave to Master
 - Slave checks IBF (input buffer full) to find whether port-A is available
 - It then writes data to port-A and informs master by sending STBb (strobe) signal
 - Master then reads data from port-A and makes IBF low

Interface circuit

Interface circuit

