MEAM 520: Intoduction to Robotics

Denavit-Hartenberg Parameters

DH Procedure (from SHV p110-111)

- **Step 1:** Locate and label the joint axes z_0, \ldots, z_{n-1} .
- **Step 2:** Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-handed frame.
- For i = 1, ..., n 1, perform Steps 3 to 5.
- **Step 3:** Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.
- **Step 5:** Establish y_i to complete a right-handed frame.
- **Step 6:** Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the *n*-th joint is revolute, set $z_n = a$ parallel to z_{n-1} . Establish the origin o_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-handed frame.
- **Step 7:** Create a table of DH parameters a_i , d_i , α_i , θ_i .
 - a_i = distance along x_i from the intersection of the x_i and z_{i-1} axes to o_i .
 - d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint i is prismatic.
 - α_i = the angle from z_{i-1} to z_i measured about x_i .
 - θ_i = the angle from x_{i-1} to x_i measured about z_{i-1} . θ_i is variable if joint i is revolute.
- **Step 8:** Form the homogeneous transformation matrices A_i by substituting the above parameters into Equation (3.10).
- **Step 9:** Form $T_n^0 = A_1 \cdots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.

Figure 3.31: PUMA 260 manipulator.