

2º Grado Informática Estructura de Computadores 14 Febrero 2014

Examen Test de Teoría (3.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 3/30 si es correcta, 0 si está en blanco o claramente tachada, -1/30 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
a	С	d	С	a	b	С	С	d	d	a	С	d	С	b	b	С	d	b	С	a	С	С	a	d	b	a	b	d	d

Examen Test de Prácticas (4.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 4/20 si es correcta, 0 si está en blanco o claramente tachada, -1.33.../20 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

Examen de Problemas (3.0p)

1. Ensamblador (0.5 puntos).

max:				
pushl	%ebp	max:		
movl	%esp, %ebp	pushl	%ebp	
movl	8(%ebp), %eax	movl	%esp,	%ebp
cmpl	12(%ebp), %eax	movl	8(%ebj	o), %edx
jle	.else	movl	12(%el	op), %eax
movl	8(%ebp), %eax	cmpl	%edx,	%eax
jmp	.cont	jge	.cont	
.else:		.else:		#innecesario
movl	12(%ebp), %eax	movl	%edx,	%eax
.cont:		.cont:		
popl	%ebp	popl	%ebp	
ret		ret		

2. Ensamblador (0.5 puntos).

ASM	función C
A	guru
В	rookie
C	hacker

Ver hojas adjuntas para

- **3.** Unidad de control (0.5 puntos).
- **4.** Entrada/Salida (0.5 puntos).
- **5. Jerarquía de memoria** (0.25 puntos).
- **6. Diseño del sistema de memoria** (0.5 puntos).
- **7. Memoria cache** (0.25 puntos).

(4) Entrada/salida

5) derarguia de memoria

$$A_i = 0$$
 $F_0 = 1$

$$A_{i}=0$$
 $F_{o}=1$

$$\begin{bmatrix} M \\ A_3 = 1 \end{bmatrix} = 0$$

$$T = \sum_{i=1}^{2} F_{i-1}t_i = t_1 + F_1 t_2 =$$

$$= 1.9 \text{ ns} + 0.07 + 55 \text{ ns} =$$

$$= 1.9 \text{ ns} + 1.1 \text{ ns} = 3 \text{ ns}$$

$$T = \frac{3}{5} F_{i-1} t_i = t_i + F_i t_2 + F_2 t_3 =$$

$$= 0.6 \text{ ns} + 0.05 \cdot 1.9 \text{ ns} + 0.02 \cdot 55 \text{ ns} =$$

$$= 0.6 \text{ ns} + 0.095 \text{ ns} + 1.1 \text{ ns} = 1.795 \text{ ns}$$

$$T = \sum_{i=1}^{2} a_i T_i = a_i t_i + a_2(t_i + t_2) =$$

$$= 0.98 \cdot 1.9 \text{ ns} + 0.02 (1.9 \text{ ns} + 55 \text{ ns}) =$$

$$= 1.862 \text{ ns} + 1.138 \text{ ns} = 3 \text{ ns}$$

$$T = \sum_{i=1}^{3} a_i T_i = a_i t_i + a_2(t_i + t_i) + a_3(t_i + t_i + t_i)$$

$$= 0.95 \cdot 0.6 \text{ ns} + 0.03 (0.6 \text{ ns} + 1.9 \text{ ns}) +$$

$$+ 0.02 (0.6 \text{ ns} + 1.9 \text{ ns} + 55 \text{ ns}) =$$

$$= 0.57 \text{ ns} + 0.075 \text{ ns} + 1.15 \text{ ns} = 1.795 \text{ ns}$$

$$a_1 = A_1 = 0.98$$

 $a_2 = A_2 - A_1 = 1 - 0.98 = 0.02$

$$a_1 = A_1 = 0.95$$

 $a_2 = A_2 - A_1 = 0.98 - 0.95 = 0.03$
 $a_3 = A_3 - A_2 = 1 - 0.98 = 0.02$

Mejora =
$$\frac{3ns}{1,795ns} = 1,6713...$$

Mejora =
$$\frac{V_b}{V_a} = \frac{\frac{x}{t_b}}{\frac{x}{t_a}} = \frac{t_a}{t_b} = 1,6713 \cdot ... \Rightarrow V_b = 1,6713 V_a$$

No es un 67,13%

nuejor que Va

(6) Diseño del sistema de memoria

Mapa de memora:

	0×0000
ROM	0×3FFF
50000	0×4000
DRAM	0x7FFF
	0x8000
DRAM	
	OXFFFF

Esquema:

DO- = D NAND OR con entradas vegadas

- 1. Procesador direcciona las 8 memoras de etiquetas con los 6 bits A11-A6, Leyendo 8 etiquetas de 24 bits
- 2. Se comparan las d'etiquetas leidas con los bits A35-A12. Si coinciden =) acierto
- 3 si acierto => se lee el byte indicado por AII-Ao de la memoria de datos correspondiente al acierto (una de las 8 memoriz de datos, la de la vía que ha dado acierto).