Introduction to Computational Psychiatry

Klaas Enno Stephan

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

From differential diagnosis to nosology

>3,000 FDA-approved clinical tests in medicine

1 diagnostic instrument in psychiatry

Diagnostic and Statistical Manual of Mental Disorders (DSM)

DSM IV: Schizophrenia

- Delusions
- Hallucinations
- Formal thought disorder
- Grossly disorganized or catatonic behavior
- Negative symptoms: flat affect, anhedonia, avolition, alogia, asociality

≥ 2 symptoms

over ≥ 1 month

- + social or occupational dysfunction
- + continuous signs of the disturbance persist for at least six months

Psychiatric disorders = spectrum diseases

polygenetic basis
gene-environment interactions
environmental variation

variability in clinical trajectory and treatment response

multiple disease mechanisms

www.nature.com/mp

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

We often take DSM too seriously (or forget about its original purpose).

Trying to develop clinical tests based on constructs which are inherently heterogenous is not a promising strategy.

www.nature.com/mp

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

From reinforcement learning models to psychiatric and neurological disorders

Tiago V Maia^{1,2} & Michael J Frank^{3,4}

Computational psychiatry

P. Read Montague^{1,2}, Raymond J. Dolan², Karl J. Friston² and Peter Dayan³

Computational approaches to psychiatry

Klaas Enno Stephan^{1,2,3} and Christoph Mathys³

Computational psychiatry: the brain as a phantastic organ

Karl J Friston, Klaas Enno Stephan, Read Montague, Raymond J Dolan

Computational Psychiatry

Xiao-Jing Wang^{1,2,3,*} and John H. Krystal^{3,4,5,6}

Computational Psychiatry: towards a mathematically informed understanding of mental illness

Rick A Adams, 1,2 Quentin J M Huys, 3,4 Jonathan P Roiser1

Translational Perspectives for Computational Neuroimaging

Klaas E. Stephan, 1,2,3,* Sandra Iglesias, 1 Jakob Heinzle, 1 and Andreea O. Diaconescu1

Computational psychiatry as a bridge from neuroscience to clinical applications

Quentin J M Huys^{1,2,5}, Tiago V Maia^{3,5} & Michael J Frank⁴

What exactly do we mean by "computational"?

- in computer science:
 - "computation" = a well-defined process (algorithm) that transforms an input set into an output set in a finite number of steps
- in neuroscience: two common usages
 - methodological approach
 - investigations of neural or cognitive systems by algorithmic, as opposed to analytical, approaches
 - → "computational neuroscience"
 - information processing (Marr's "algorithmic level")
 - as opposed to physiological implementation

A taxonomy of computational fields in neuroscience

① Computational assays: Models of disease mechanisms

Translational Neuromodeling

Detecting physiological subgroups (based on inferred mechanisms)

- disease mechanism A
- disease mechanism B
- disease mechanism C

Individual treatment prediction

Application to brain activity and behaviour of individual patients

Generative models as "computational assays"

$$p(y | \theta, m) \cdot p(\theta | m)$$

$$p(\theta | y, m)$$

$$p(y | \theta, m) \cdot p(\theta | m)$$

$$p(\theta | y, m)$$

Computational assays: key clinical questions

SYMPTOMS

(behavioural or physiological data)

MECHANISMS

(computational, physiological)

CAUSES

(aetiology)

differential diagnosis

of alternative disease mechanisms

spectrum dissection

into mechanistically distinct subgroups

trajectories and treatment response

Differential diagnosis by model selection

Synaesthesia

- "projectors" experience color externally colocalized with a presented grapheme
- "associators" report an internally evoked association
- Bayesian model selection of competing DCMs separates projectors (bottom-up mechanisms) and associators (top-down)

Generative embedding (supervised)

measurements from an individual subject

subject-specific inverted generative model

subject representation in the generative score space

jointly discriminative

model parameters

separating hyperplane fitted to discriminate between groups

step 3 — support vector classification

$$\hat{c} = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i}^{*} k(x_{i}, x) + b^{*}\right)$$

Predicting future drug abuse

- fMRI of occasional stimulant users (stop-signal task), Bayesian hidden Markov model
- prediction error (PE) activity in several brain regions predicted drug abuse symptoms 3 years later
- model-based prediction outperformed predictions based on clinical variables and conventional fMRI analyses

UPE = unsigned PE SPE = signed PE

Generative embedding (unsupervised)

Detecting subgroups of patients in schizophrenia

Optimal cluster solution

- three distinct subgroups (total N=41)
- subgroups differ (p < 0.05) wrt. negative symptoms
 on the positive and negative symptom scale (PANSS)

- 1. Highly interdisciplinary → mutual teaching
- 2. Methodology in its infancy \rightarrow open source code and data sharing
- 3. Prospective validation studies → uniting computational & biomedical scientists in new types of organisations

- 1. Highly interdisciplinary → mutual teaching
- 2. Methodology in its infancy \rightarrow open source code and data sharing
- 3. Prospective validation studies → uniting computational & biomedical scientists in new types of organisations

COMPUTATIONALPSYCHIATRYCOURSE

- **1.** Highly interdisciplinary → mutual teaching
- 2. Methodology in its infancy \rightarrow open source code and data sharing
- 3. Prospective validation studies → uniting computational & biomedical scientists in new types of organisations

- **1.** Highly interdisciplinary → mutual teaching
- 2. Methodology in its infancy \rightarrow open source code and data sharing
- 3. Prospective validation studies → uniting computational & biomedical scientists in new types of organisations

www.tnu.ethz.ch twitter: @tnuzurich

CPC 2016

COMPUTATIONALPSYCHIATRYCOURSE

TNU, Zurich, 29.08. - 02.09.2016

- 2nd edition
- originated from our previous local courses on Computational Psychiatry
- key features
 - theoretical lectures & practical demonstrations coupled
 - open source software only
 - computation in a broad sense: models of physiology and behaviour
 - 26 international presenters from 16 different institutions

Further reading

- Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E., 2011. Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7, e1002079
- Brodersen, K.H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W.D., Buhmann, J.M., Stephan, K.E., 2014. Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin. 4, 98–111.
- Friston KJ, Stephan KE, Montague R, Dolan RJ (2014) Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry 1: 148-158.
- Harle, K.M., Stewart, J.L., Zhang, S., Tapert, S.F., Yu, A.J., Paulus, M.P., 2015. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426.
- Huys, Q.J.M., Maia, T.V., Frank, M.J., 2016. Computational psychiatry as a bridge between neuroscience and clinical applications. Nat. Neurosci. 19: 404-413
- Kapur, S., Phillips, A.G., Insel, T.R., 2012. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174–1179.
- Maia, T.V., Frank, M.J., 2011. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162.
- Montague, P.R., Dolan, R.J., Friston, K.J., Dayan, P., 2012. Computational psychiatry. Trends Cogn. Sci. 16, 72–80.
- Stephan KE, Mathys C (2014) Computational Approaches to Psychiatry. Current Opinion in Neurobiology 25:85-92.
- Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015) Translational Perspectives for Computational Neuroimaging.
 Neuron 87: 716-732.
- Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A (2016) Computational Neuroimaging Strategies for Single Patient Predictions.
 NeuroImage, in press. DOI: 10.1016/j.neuroimage.2016.06.038
- van Leeuwen, T.M., den Ouden, H.E., Hagoort, P., 2011. Effective connectivity determines the nature of subjective experience in grapheme-color synesthesia. J. Neurosci. 31, 9879–9884.

Welcome & Thank You