Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2 k^2 (t_1 + 4 t_3)}{3 (1 + 2 k^2)^2 t_1 t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} +^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1^{ ext{-}1}}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$	
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$\left -\frac{1}{3} \tilde{l} k (t_1 - 2 t_3) \right -\frac{1}{3} \tilde{l} \sqrt{2} k (t_1 + t_3)$	
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$	
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_1^{\#2}{}_+^{a\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta} \ \ \omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1+}^{\#1} + \alpha \beta k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	
	$ u_1^{\#1} + \alpha \beta $	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_{1+}^{#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{#1} \dagger^{\alpha}$	$f_{1}^{#2} \dagger^{\alpha}$	

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2+\alpha\beta}^{*1}$	_							
$\omega_{2+}^{\#1} \uparrow^{\alpha\beta} \frac{t_1}{2}$		$-\frac{ikt_1}{\sqrt{2}}$	0							
$f_{2^{+}}^{#1}$ †	$f_{2+}^{\#1} \dagger^{\alpha\beta} \frac{ikt_1}{\sqrt{2}}$		0			$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$\omega_2^{\sharp 1} \dagger^{\alpha}$	$\beta \chi$ 0	0	$k^2 r_1$	$+\frac{t_1}{2}$		$f_{0}^{\#2}$	0	0	0	0
_	$\sigma_{0^{+}}^{#1}$	$ au_0^{\#}$	1	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	$f_{0}^{\#1}$	$\frac{1}{2}kt_3$	$2 k^2 t_3$	0	0
$\sigma_{0^{+}}^{\!$	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{1+2}k}{(1+2k)}$	$\frac{2}{2} \frac{k}{t_3}$	0	0	f_{i}	- <i>i</i> √2	2 k		
$\tau_{0}^{#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$		0	0	$\omega_{0}^{\#1}$	t_3	$\sqrt{2} kt_3$	0	0
$\tau_{0}^{\#2}$ †	0	0		0	0			Ţ	<u> </u>	
$\sigma_0^{\!\#_1}$ †	0	0		0	$-\frac{1}{t_1}$		$\omega_{0^+}^{\#1}$ -	$f_{0}^{\#1}$ -	$f_{0}^{#2}$	$\omega_{0}^{\#1}$ -

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0^{+}}^{#2} == 0$	1					
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
Total constraints:	16					

$\sigma_{2^{-}}^{\#1}lphaeta\chi$	0	0	$\frac{2}{2k^2r_1+t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$o_{2}^{#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\int_{2^{-}}^{\#1} +^{\alpha \beta \chi}$	

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$