Clustering Case Study

Table of contents:

- 1. Introduction
- 2. Data preprocessing
- 3. Cluster analysis
- 4. Conclusions

1. Introduction

The main goal of this task was to discover an inner structure and regularities in data concerning size of the population of selected counties of Poland with regard to gender and age groups. The regularities of population structure in 2018 and predicted population structure in 2050 were to be compared.

For this task two datasets with the description of population size in different counties were given. One dataset concerns population size for 2018, another is focused on predicted population size for 2050. The datasets contain 8 attributes, among which two are categorical – *county*, *age* (kind of interval also), and the rest is numerical: *city-gen*, *city-men*, *city-women*, *country-gen*, *country-men*, *coutry-women*. As the one may see, the datasets consist information about population age groups, gender and differentiation for cities and country/villages inhabitants. There were 7 polish districts chosen for the study: *powiat poznański*, *powiat bydgoski*, *powiat krakowski*, *powiat gdański*, *powiat wrocławski*, *powiat warszawski zachodni*, *powiat rzeszowski*.

In order to discover "natural" groupings in data and organize instances them into similar clusters, an unsupervised learning algorithms of cluster analysis were performed.

2. Data preprocessing

As a first step of the analysis, a basic data preprocessing was performed in order to check the quality of the data and clean the data if necessary.

Original datasets (eg. on Fig. 1) comes from Central Office of Statistics of Poland. The datesets consist information for measured and predicted population features of each county since 2013 till 2050. From this range, only 2018 and 2050 were chosen for comparison. From the datasets, missing records, functional age groups records (*przedprodukcyjny*, *produkcyjny*) and general statistics of cities and counties inhabitants altogether were removed manually.

)olnoślas	kio														
aworski	NIC .														
· · · · · · · · · · · · · · · · · · ·			Ogółem			Miasta			Wieś						
		Ogółem	Meżczyźni	Kobietv	Ogółem	Meżczyźni	Kobiety	Ogółem	Meżczyźni	Kobiety					
013	Ogółem	52 070	25 554	26 516	29 251	14 099	15 152	22 819	11 455	11 364					
	0-2	1 344	694	650	689	358	331	655	336	319					
	3-6	2 161	1 116	1 045	1 089	551	538	1 072	565	507					
	7-12	2 803	1 467	1 336	1 393	718	675	1 410	749	661					
	13-15	1 558	763	795	785	383	402	773	380	393					
	16-18	1 751	919	832	907	486	421	844	433	411					
	18	621	315	306	313	160	153	308	155	153					
	19-24	4 087	2 120	1 967	2 246	1 164	1 082	1 841	956	885					
	przedprodukcyjny*	8 996	4 644	4 352	4 550	2 336	2 214	4 446	2 308	2 138	* wiek prze	dprodukcyjny	- 0 do 17 la	at	
	produkcyjny	33 941	18 230	15 711	19 271	10 215	9 056	14 670	8 015	6 655	wiek produ	dukcyjny - od 18 lat do wieku emerytalnego			
	mobilny	20 349	10 493	9 856	11 303	5 805	5 498	9 046	4 688	4 358	wiek mobil	obilny - od 18 do 44 lat			
	niemobilny	13 592	7 737	5 855	7 968	4 410	3 558	5 624	3 327	2 297	wiek nieme	wiek niemobilny - od 45 lat do wieku emerytalnego			
	poprodukcyjny	9 133	2 680	6 453	5 430	1 548	3 882	3 703	1 132	2 571	wiek popro	oprodukcyjny - powyżej wieku emerytalnego			
	0-14	7 323	3 773	3 550	3 682	1 880	1 802	3 641	1 893	1 748					
	15-59	33 478	17 072	16 406	18 879	9 479	9 400	14 599	7 593	7 006					
	60+	11 269	4 709	6 560	6 690	2 740	3 950	4 579	1 969	2 610		Wiek eme	erytalny		
	15-64	37 450	19 016	18 434	21 321	10 619	10 702	16 129	8 397	7 732		Mężczyźni	Kobiety		
	65+	7 297	2 765	4 532	4 248	1 600	2 648	3 049	1 165	1 884	2013	65,25	60,25		
	75+	3 528	1 065	2 463	1 965	590	1 375	1 563	475	1 088	2014	65,5	60,5		
	80+	2 124	594	1 530	1 132	309	823	992	285	707	2015	65,75	60,75		
	85+	951	218	733	499	117	382	452	101	351	2016	66	61		
	kobiety 15-49	X	х	12 199	х	х	6 817	х	х	5 382	2017	66,25	61,25		
014	Ogółem	51 805	25 434	26 371	29 024	13 992	15 032	22 781	11 442	11 339	2018	66,5	61,5		
	0-2	1 270	645	625	646	319	327	624	326	298	2019	66,75	61,75		
	3-6	2 093	1 085	1 008	1 068	556	512	1 025	529	496	2020	67	62		
	7 10	0.000	4 404	4 000	4 400	740	000	4.450	770	070	0004	0.7	00.05		

Figure 1. Exemplary dataset with population structure prediction from Central Office of Statistics.

Attributes can be correlated – linearly related to each other. Particular associations may lead to data redundancy, which may be detected by correlation analysis. Handling redundant data is beneficial due to fact that larger number of redundant data may slow-down or confuse knowledge discovery process. In this case, correlation analysis may give an answer whether all conditional attributes are necessary to describe the decision attribute.

In order to detect correlated attributes, the chi-squared dependency test was performed, as it resolves the matter of the independence of two variables. Performing chi-square dependency test also enables the analyst to determine a measure of association between two variables, giving a value between 0 and +1 (inclusive) using Cramér's V formula.

Below a null (H_0) and an alternative (H_1) hypothesises are formulated.

H₀: Variables are independent.

H₁: Variables are dependent.

The one reject null hypothesis if a calculated χ^2 value is bigger than the upper-tail Critical Value of chi-square distribution for certain number of Degrees of Freedom (df) and accepted Significance Level α . In other case, H_0 is accepted. An example of chi-squared distribution was given on fig. 1 below.

Fig. 1. Exemplary χ^2 distribution [2].

The one may see, that for tested variables every chi-squared independence test is associated with a very large number of degrees of freedom. However, for large numbers of degrees of freedom the chi-squared distribution is almost indistinguishable from normal distribution (fig. 2 below). In that case the one may calculate Critical Values for α based on normal distribution with a good approximation without loosing generality.

Fig. 2. Chi-squared distribution (solid dark red curve) and normal distribution (dotted blue curve) for 2^{12} degrees of freedom.

For the needs of this task, chi-square independency tests for pairs of different conditional attributes and one decision attribute and Cramér's V calculations were performed using R programming language and software environment for statistical computing. Simplified R code is given below.

Simplified R code:

```
      data <- read.csv(file="e:/Powiaty2018.csv", header=TRUE, sep=";")</td>
      # Load data

      chisq.test(data$City.gen, data$City.men)
      # Calculate χ² test statistics

      DescTools::CramerV(data$City.gen, data$City.men)
      # Calculate Cramér's V
```

Computed statistics are given in table 1 below. The Significance Level for this task was arbitrary set as $\alpha = 0.05$. Critical Value for numbers of Degrees of Freedom of different attributes from the given dataset was read from chi-square distribution tables.

Table 1. Independence tests statistics for dependent attributes.

Attributes	χ^2	df	p-Value	Crit. V.	Reject H ₀ ?	Cramér's V
city-gen / city-men	10815	10712	0,2401	1,64	Yes	1
city-gen / city-women	10710	10609	0,2433	1,64	Yes	0,995
country-gen / country-men	10920	10816	0,239	1,64	Yes	1
country-gen / country-women	10815	10712	0,2401	1,64	Yes	1

Since (1) *city-gen* and (2) *country-gen* attributes were strongly correlated with (1) *city-men*, *city-women* and (2) *country-men*, *country-women*, there were removed from a dataset. Then, the final dataset prepared for cluster analysis consists of 6 attributes and 105 records.

3. Cluster analysis

"Cluster analysis" stands for a type of unsupervised learning technique - it finds "natural" grouping of instances given unlabeled data. Clustering is the process of grouping a set of objects in such a way that objects in the same group (called a *cluster*) are more similar to each other than to those in other groups (clusters). Clustering task comes down to partitioning a set of data into a set of meaningful, yet not predefined, sub-classes. The main advantage of using clustering is that it enables analysts to find comprehensible patterns, structures and regularities in raw data.

In terms of evaluation, the one concerns cluster analysis outcome as a "good clustering" if it produces high quality clusters in which:

- the intra-class similarity is high,
- the inter-class similarity is low.

Similarity is usually expressed in terms of a distance function, which is typically metric d(i,j). As such, distance functions are also used in clustering quality evaluation, which estimates the "goodness" of a cluster. Distance functions may vary depending of a type variables and type of application.

Exemplary distance measures include Euclidean distance: $\sqrt{\sum_{i=1}^{k}(x_i-y_i)^2}$ or Manhattan distance: $\sum_{i=1}^{k}|x_i-y_i|$.

HAC Algorithm

The first cluster analysis was performed using *Hierarchical Agglomerative Clustering* (HAC) algorithm. Hierarchical clustering are methods of cluster analysis which seek to build a hierarchy of clusters – they perform hierarchical decomposition of the set of data using some criterion.

Hierarchical clustering algorithms generate dendrograms – tree-based hierarchical taxonomies – out of a set of unlabeled examples. Dendrogram shows data decomposed into several levels of nested partitioning. Exemplary dendrogram is shown on figure 3 below.

¹ Eg. similar in terms of a distance: Euclidean, Manhattan etc.

Fig. 3. Exemplary dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster. The main advantage of using dendrograms is that they are easily readable and inspectable for humans.

For this task the HAC algorithm is used. The algorithm is *agglomerative*, what indicates "bottom-up" approach – each observation starts in its own cluster and in the next step pairs of clusters are merged as one moves up the hierarchy. Using HAC the one may choose different linkage criteria, which determines the distance between sets of instances as a function of the pairwise distances between instances. Choosing linkage method determines how distance between clusters is measured. The one may choose:

- *single linkage* distance between clusters is a minimum distance between instances belonging to different clusters,
- complete linkage distance between clusters is a maximum distance between instances belonging to different clusters,
- mean distance distance between clusters is a distance between means of different clusters
- average distance.

Outcomes of single and complete linkage HAC algorithms generated using Statistica software for the case study are presented below.

a) HAC algorithm with single linkage and Euclidean distance measure for 2018 and 2050 data comparison.

On figure 4 the one may inspect dendrograms build for 2018 and 2050 counties population size.

Fig. 4. Scaled dendrogram for 2018 (left) and predicted 2050 (right).

While using HAC algorithm, it is important to find a cut point which determines individual cluster. It is advisable to follow the "knee" rule. Cutting points for both 2018 and 2050 data according to "knee" rule are about 5000 distance units. The points are presented on agglomeration charts below.

Fig. 5. Agglomeration chart for 2018 (left) and 2050 (right) data.

The "knee" points are indicated with red dot.

Clusters discovered by cutting dendrograms at the "knee"-based distance units are listed on figure 6 below.

	Przynależność do skupień (Po Odległość łączenia = 4993,67 Pojedyncze wiązanie Odległ: euklidesowa	Przynalezność do skupień (Powiaty/2050) Odległość I _E ocenia – 4975.07 Pojedyncze wiązanie Odległ euklelosowa													
	Przynależność do skupień	County	Age	City-men	City-women	Country-men	Country-woman		Przynależność do skupień	County	Age	City-men	City-women	Country-men	Country-woman
		poznański	15-59		42759	76485	78814		1	poznański	15-59	35730	35734	106529	108461
	2	poznański	60+	12704	17637	18822	23881		2	poznański	60+	24346	31485	56272	69313
	3	poznański	15-64	45849	47818	83350	86457		3	poznański	15-64	40859	41320	119702	122791
	4	poznański	65+	8385	12578	11957	16238		4	poznański	65+	19217	25899	43099	54983
	5	krakowski	0-14		3251	19660	18465		5	poznański	75+	8532	13617	16844	25077
	6	krakowski	15-59	13610	13704	72584	72189		6	bydgoski	15-59	6643	6266	31317	30827
	7	krakowski	60+	4842	6901	21849	27719	C_39	7	krakowski	15-59	10600	10491	71086	68921
	8	krakowski	15-64	15158	15503	80044	79757	C 40	8	krakowski	60+	8134	9796	46120	54964
	9	wrocławski	15-59	6611	6905	37898	37743	C_41	9	krakowski	15-64	12264	12235	81230	79459
	10	wrocławski	15-64	7301	7721	41536	41487	C 42	10	krakowski	65+	6470	8052	35976	44426
	11	rzeszowski	15-59	9007	9037	45700	43622	C 56	11	gdański	15-64	11627	12050	39111	38683
1	12	rzeszowski	15-64	9956	10027	49578	47461	C 71	12	wrocławski	15-64	9512	10555	53090	52551
	13	poznański	0-14	11862	11292	26033	24819	C 84	13	awski zach.	15-59	11168	11304	23734	23243
	13	bydgoski	15-59	8526	8468	28991	28517	C 85	14	awski zach.	60+	8278	10327	14602	18470
	13		15-64	9393	9494	31820	31282	C 86	15	awski zach.	15-64	12775	13045	26865	26586
	13	gdański	15-59	9319	9889	27360	26941	C 70	16	wrocławski	60+	5032	6180	26665	32290
	13	gdański	15-64	10174	10893	29755	29429	C 100	16	rzeszowski	60+	5702	6449	25680	29900
	13	awski zach.	15-59	11936	12445	22482	22878	C 69	17	wrocławski	15-59	8339	9244	46785	45953
	13	awski zach.	15-64	13302	14082	25091	25636	C 101	17	rzeszowski	15-64	9118	8651	45039	43136
	14	poznański	0-2	2210	2079	4555	4333	C 25	18	bydgoski	60+	4804	5778	18847	22276
	14	poznański	3-6	3103	2946	6730	6435	C 43	18	krakowski	75+	3043	4287	15961	22744
	14	poznański	7-12	5089	4892	11565	11078	C 55	18	gdański	60+	6096	7769	18697	21243
	14	poznański	13-15	2105	2037	4573	4343	C 72	18	wrocławski	65+	3859	4869	20360	25692
	14	poznański	16-18	2063	1922	4074	3712	C 102	18	rzeszowski	65+	4437	5268	19722	24167
	14	poznański	18	724	652	1371	1203	C 8	19	poznański	0-14	10503	9910	34036	32330
	14	poznański	19-24	4242	4152	7612	7347	C 26	19	bydgoski	15-64	7675	7292	35603	35188
	14	poznański	75+	2540	4777	3121	5786	C 54	19		15-59	10249	10492	34563	34130
	14		80+		2929	1664		C 99		rzeszowski	15-59	7853	7470	39081	37403
	14		85+		1370	662		C 1	20		0-2	2046	1924	6443	6105
	14		0-2		339	1332		C 2	20		3-6	2842	2684	9162	8721
	14		3-6		490	1942		C 3	20		7-12	4240	4006	13950	13254
	1 14		7.12		897	3676	3466			poznański	13-15	2054	1936	6674	6331

Fig. 6. Clusters and their instances for 2018 (left) and 2050 (right) data.

For 2018 population in different counties 14 clusters were found. Many of them have only one instance: clusters 1-12. 7 instances belong to cluster 13, and all the rest of a 105-item itemset belong to cluster 14. For 2050 predicted population in different counties 20 clusters were found. Some of them have only one instance: clusters 1-15. The majority of instances belong to cluster 20. The one may observe that for both 2018 and 2050 data some single-instance clusters contain similar corresponding records.

b) HAC algorithm with complete linkage and Euclidean distance measure for 2018 and 2050 data comparison.

On figure 7 the one may inspect dendrograms build for 2018 and 2050 counties population size.

Fig. 7. Scaled dendrogram for 2018 (left) and predicted 2050 (right).

In this case we also attempt to find a cut point which determines individual clusters using "knee" rule. Cutting points for both 2018 and 2050 data according to "knee" rule are about 10000 distance units. The points are presented on agglomeration charts below.

Fig. 8. Agglomeration chart for 2018 (left) and 2050 (right) data.

The "knee" points are indicated with red dot.

Clusters and their instances for 2018 and 2050 (right) are not presented, because of higher diversity of discovered clusters. For the 2018 data there were 15 clusters found. Among them clusters 1-8 contain only one instance, clusters 10-13 and 15 contain a few instances and the majority of the data is assigned to clusters 9 and 14. For the 2050 data there 18 clusters found. Among them cluster 1-7 contain only one instances and the majority of data is assigned to cluster 13. It should be noted that for both 2018 and 2050 data single-instance clusters contain nearly identical corresponding 2018/2050 records in terms of county and age group (fig. 9).

Przynależność do skupień (Powiaty2018) Odległość łączenia = 10022 Pełne wiązanie Odległ. euklidesowa

	Przynależność do skupień	County	Age	City-men	City-women	Country-men	Country-woman
C_9	1	poznański	15-59	41530	42759	76485	78814
C_9 C_11	2	poznański	15-64	45849	47818	83350	86457
C_12	3	poznański	65+	8385	12578	11957	16238
C_39	4	krakowski	15-59	13610	13704	72584	72189
C_40	5	krakowski	60+	4842	6901	21849	27719
C_41	6	krakowski	15-64	15158	15503	80044	79757
C_69	7	wrocławski	15-59	6611	6905	37898	37743
C_101	8	rzeszowski	15-64	9956	10027	49578	47461

Przynależność do skupień (Powiaty2050)

Odległość łączenia = 9990,66

Pełne wiązanie Odległ. euklidesowa

	Przynależność do skupień	County	Age	City-men	City-women	Country-men	Country-woman
C_9	1	poznański	15-59	35730	35734	106529	108461
C_10	2	poznański	60+	24346	31485	56272	69313
C_11 C_12	3	poznański	15-64	40859	41320	119702	122791
C_12	4	poznański	65+	19217	25899	43099	54983
C_39	5	krakowski	15-59	10600	10491	71086	68921
C_41	6	krakowski	15-64	12264	12235	81230	79459
C_42	7	krakowski	65+	6470	8052	35976	44426
C_69	8	wrocławski	15-59	8339	9244	46785	45953
C_101	8	rzeszowski	15-64	9118	8651	45039	43136

Fig. 9. Single-instance clusters for 2018 and 2050 data.

Generally, the one may observe that using complete linkage agglomeration results in more diverse clusters – instances appear to be more evenly distributed into different groups.

K-means algorithm

After HAC cluster analysis an alternative analysis was performed using *K-Means Clustering* algorithm. *K*-means clustering is a method of partitioning algorithms paradigm, which generally construct various partitions and then evaluate them by some criterion. All partitioning techniques come down to tasks:

Construct a partition of a database D of n objects into a set of k clusters.

Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion.

K-means algorithm represents cluster as its centre – mean of all instances the cluster contains. The centre of the cluster is called *centroid*. *K*-means clustering algorithm might be represented as a set of instructions:

- 1) Pick a number k of cluster centres centroids.
- 2) Choose centroids values randomly.
- 3) Assign every item to its nearest cluster centre (e.g. using Euclidean distance)
- 4) Move each cluster centre to the mean of its assigned items
- 5) Repeat steps 2,3 until convergence (or change lesser than a threshold).

Exemplary illustration of k-means cluster analysis done with Python is shown on figure 10 below.

Fig. 10. Visualization of cluster analysis done with *k*-means algorithm.

Stars represents cluster centroids.

It should be noted that k-means clustering results may vary significantly depending on initial choice of seeds. The algorithm can also get trapped in local minimum, which is why it is advisable to iterate it with different random seeds. Moreover it is also very sensitive to outliers.

However, when terminated at global optimum, the algorithm produces simple, understandable and sometimes easy to visualize information of data inner structure. *K*-means time complexity (linear) is also lower than the HAC one (polynomial). Using *k*-means user is also able to determine how many cluster the algorithm have to produce.

The k-means algorithm cluster analysis was performed using Statistica software for the case study main task. The number of centroids has been arbitrarily adopted as k = 3. Centroids were selected to maximize cluster distance. Means of each cluster are presented on figure 11 below.

Fig. 10. Means of each cluster for 2018 (left) and 2050 (right) data.

The majority of dataset instances were assigned to cluster 1 for both 2018 and 2050. Cluster 2 contains only 3-4 instances for both datasets. Among cluster 2 instances the one may observe *poznański* – age groups 15-59, 15-64 and *krakowski* – age group 15-64 (15-59, 15-64 for 2018).

	1	1 2 3 4 5 6 7								2	3	4	5	6	7
	County	Age	City-men	City-women	Country-men	Country-woman	GRUPA		County	Age	City-men	City-women	Country-men	Country-woman	GRUPA
83	warszawski	0-14	3402	3412	6605	6240		1 C_83	warszawski	0-14	3152	3124	6647	6204	3.0
85	warszawski	60+	4404	6211	7261	9387		1 C 85	warszawski	60+	8278	10327	14602	18470	
87	warszawski	65+	3038	4574	4652	6629		1 C 87	warszawski	65+	6671	8586	11471	15127	
88	warszawski	75+	1061	1941	1408	2682		1 C_88	warszawski	75+	3135	4609	5031	7755	
89	warszawski	80+	594	1188	786	1708		1 C_89	warszawski	80+	1774	2952	2690	4863	
90	warszawski	85+	237	581	325	898		1 C_90	warszawski		940	1837	1295	2817	
91	rzeszowski	0-2	437	419	2132	2019		1 C_91	rzeszowski	0-2	393	373	1796	1696	
92	rzeszowski	3-6	648	587	3019	2885		1 C 92	rzeszowski		559	533	2547	2424	
93	rzeszowski	7-12	999	976	5065	4788		1 C 93	rzeszowski	7-12	861	826	4016	3800	
94	rzeszowski	13-15	458	437	2366	2226		1 C 94	rzeszowski	13-15	427	410	2039	1933	
95	rzeszowski	16-18	465	431	2471	2363		1 C_95	rzeszowski	16-18	425	407	2067	1967	
96	rzeszowski	18	167	142	838	808		1 C_96	rzeszowski	18	142	136	695	661	
97	rzeszowski	19-24	955	990	5576	5320		1 C 97	rzeszowski	19-24	876	840	4344	4109	
98	rzeszowski	0-14	2402	2275	11795	11172		1 C 98	rzeszowski	0-14	2098	2006	9717	9207	- 80
100	rzeszowski	60+	2787	3524	12249	16408		1 C 102	rzeszowski	65+	4437	5268	19722	24167	
102	rzeszowski	65+	1838	2534	8371	12569		1 C 103	rzeszowski	75+	2048	2787	9093	12899	37
103	rzeszowski	75+	633	1117	3292	6291		1 C_104	rzeszowski	80+	1163	1849	5132	8200	
104	rzeszowski	80+	360	719	1859	4122		1 C_105	rzeszowski	85+	619	1130	2442	4530	
105	rzeszowski	85+	156	356	773	2104		1 C 9	poznański	15-59	35730	35734	106529	108461	
9	poznański	15-59	41530	42759	76485	78814		2 C 11	poznański	15-64	40859	41320	119702	122791	1
11	poznański	15-64	45849	47818	83350	86457		2 C 41	krakowski	15-64	12264	12235	81230	79459	
39	krakowski	15-59	13610	13704	72584	72189		2 C 8	poznański	0-14	10503	9910	34036	32330	
41	krakowski	15-64	15158	15503	80044	79757		2 C_10	poznański	60+	24346	31485	56272	69313	
8	poznański	0-14	11862	11292	26033	24819		3 C 12	poznański	65+	19217	25899	43099	54983	
10	poznański	60+	12704	17637	18822	23881		3 C 24	bydgoski	15-59	6643	6266	31317	30827	
24	bydgoski	15-59	8526	8468	28991	28517		3 C 26	bydgoski	15-64	7675	7292	35603	35188	
26	bydgoski	15-64	9393	9494	31820	31282		3 C 39	krakowski	15-59	10600	10491	71086	68921	
38	krakowski	0-14	3549	3251	19660	18465		3 C 40	krakowski	60+	8134	9796	46120	54964	
40	krakowski	60+	4842	6901	21849	27719		3 C 42	krakowski	65+	6470	8052	35976	44426	
54	gdański	15-59	9319	9889	27360	26941		3 C 54	gdański	15-59	10249	10492	34563	34130	
56	gdański	15-64	10174	10893	29755	29429		3 C 56	gdański	15-64	11627	12050	39111	38683	
69	wrocławski	15-59	6611	6905	37898	37743		3 C 69	wrocławski		8339	9244	46785	45953	
71	wrocławski	15-64	7301	7721	41536	41487		3 C 70	wrocławski	60+	5032	6180	26665	32290	
84	warszawski	15-59	11936	12445	22482	22878		3 C 71	wrocławski		9512	10555	53090	52551	
86	warszawski	15-64	13302	14082	25091	25636		3 C 84	warszawski		11168	11304	23734	23243	
99	rzeszowski	15-59	9007	9037	45700	43622		3 C 86	warszawski		12775	13045	26865	26586	

Fig. 11. Clusters and their instances for 2018 (left) and 2050 (right) data.

4. Conclusions

- Generally, population in *powiat poznański, powiat bydgoski, powiat krakowski, powiat gdański, powiat wrocławski, powiat warszawski zachodni, powiat rzeszowski* predicted for 2050 is going to be bigger than in 2018, and higher population growth will likely be observed in villages rather than in cities. It may indicated progressive deurbanization process.
- In studied counties population tend to grow, but mostly within older age groups, what corresponds with thesis about Polish society aging.
- Male-female inhabitants proportion will remains more or less at the same level in 2050 as it
 was in 2018. Among cities inhabitants, sex disparity aims at an even level in 2050, while

among villages inhabitants women will still outnumber men at the similar level as it was in 2018.

HAC algorithm

- More clusters (20) found in 2050 data than in 2018 data (14) suggests increasing diversification of the population of the studied counties.
- Single-instance clusters may be treated as outliers. Similar single-instance clusters in both 2018 and 2050 data indicate counties and age groups that tend to be outside of population changing processes in terms of structure rather than number (figure 9).

K-means algorithm

- Cluster 1 appear to group decreasing population, especially strongly in its rural part.
- Cluster analysis cluster 2 appear to group increasing population that tend to stay at the same proportion of city-village inhabitants in 2050 as it was in 2018.
- Cluster 3 appear to group increasing population, especially strongly in its rural part.
- Small change in cluster 2 instances in 2018 and 2050 may be observed age group 15-59 for *krakowski* county is within the cluster for 2018, but not for 2050, in which case age group age group 15-59 for *krakowski* county is within cluster 3. The change indicates that population of people of so-called "mobile age" or "production age" from *powiat krakowski* will not stay at the same level, but rather will increase.
- A change in cluster 3 itemset indicates huge growth in village population size mostly in terms of inhabitants of older age in *powiat poznański, krakowski, wrocławski* and *rzeszowski*. In *powiat warszawski zachodni* and *bydgoski* village population size growth will be significant for 15-59 age groups.