Zadanie numeryczne nr 5 Jakub Opaliński Listopad 2022

Zadanie wykonane zostało z zastosowaniem jezyka programowania Python oraz sprawdzenie przy pomocy numpy.

Zawartość: 1.NUM05.py

Rozwiazujemy równanie:

$$Ax = b$$

Dla A =
$$\begin{bmatrix} 3 & 1 & 0.2 & \dots \\ 1 & 3 & 1 & 0.2 & \dots \\ 0.2 & 1 & 3 & 1 & 0.2 & \dots \\ \dots & \dots & \dots & \dots & \dots \\ & & \dots & 0.2 & 1 & 3 & 1 \\ & & & \dots & 0.2 & 1 & 3 \end{bmatrix}$$

$$b = \begin{bmatrix} 1, 2 \dots, 100 \end{bmatrix}^T$$

Uzywajac przekształconych wzorów:

Dla metody Gauss-Seidela:

$$x_{j}^{(k+1)} = \frac{1}{a_{jj}} \left(b_{j} - \sum_{i=j+1}^{n} a_{ji} x_{i}^{(k)} - \sum_{i=1}^{j-1} a_{ij} x_{i}^{(k+1)} \right)$$
Dla metody Jacobiego:
$$x_{j}^{(k+1)} = \frac{1}{a_{jj}} \left(b_{j} - \sum_{i=1}^{j-1} a_{ij} x_{i}^{(k)} - \sum_{i=j+1}^{n} a_{ji} x_{i}^{(k)} \right)$$

$$\mathbf{x}_{j}^{(k+1)} = \frac{1}{a_{jj}} \left(b_{j} - \sum_{i=1}^{j-1} a_{ij} \mathbf{x}_{i}^{(k)} - \sum_{i=j+1}^{n} a_{ji} \mathbf{x}_{i}^{(k)} \right)$$

Rozwiazanie dla metody Jacobiego:

	[0.17126009]
	0.37523974
	0.55489993
	0.74060385
	0.9260231
	1.11108743
	1.29629727
	1.48148292
	1.66666609
	1.85185195
	2.03703705
x =	2.2222221
	16.85185669
	17.03722139
	17.22130055
	17.40924191
	17.59631865
	17.73605398
	18.1074402
	18.03115407
	16.95603806
	10.55005000

Rozwiazanie dla metody Gauss–Seidela:

[0.17126009]
0.37523974
0.55489993
0.74060385
0.9260231
1.11108743
1.29629727
1.48148292
1.66666609
1.85185195
2.03703705
2.2222221
16.85185669
17.03722139
17.22130055
17.40924191
17.59631865
17.73605398
18.1074402
18.03115407
16.95603806
26.47924371

Wykres porównujacy zachowanie metody Jacobiego i Gaussa-seidera

Możemy za-

uważyć ze metoda Gaussa-Seidera jest znacznie szybsza.

Wyniki dla roznych wartosci B
 Dla b = $\begin{bmatrix} 1000, 1001..., 1099 \end{bmatrix}^T$

Dla b =
$$[3000, 3001..., 3099]^T$$

Dla b = Losowe

