Data Mining

Model Overfitting

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

02/03/2021

Introduction to Data Mining, 2nd Edition

1

2

1

Classification Errors

- ☐ **Training errors**: Errors committed on the training set
- □ **Test errors**: Errors committed on the test set
- Generalization errors: Expected error of a model over random selection of records from same distribution

02/03/2021

Introduction to Data Mining, 2nd Edition

Reasons for Model Overfitting

- Not enough training data
- High model complexity
 - Multiple Comparison Procedure

02/03/2021

Introduction to Data Mining, 2nd Edition

11

11

Effect of Multiple Comparison Procedure

- Consider the task of predicting whether stock market will rise/fall in the next 10 trading days
- Random guessing:

$$P(correct) = 0.5$$

Make 10 random guesses in a row:

$$P(\#correct \ge 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547$$

Day 1	Up
Day 2	Down
Day 3	Down
Day 4	Up
Day 5	Down
Day 6	Down
Day 7	Up
Day 8	Up
Day 9	Up
Day 10	Down

02/03/2021

Introduction to Data Mining, 2nd Edition

Effect of Multiple Comparison Procedure

- Approach:
 - Get 50 analysts
 - Each analyst makes 10 random guesses
 - Choose the analyst that makes the most number of correct predictions
- Probability that at least one analyst makes at least 8 correct predictions

$$P(\#correct \ge 8) = 1 - (1 - 0.0547)^{50} = 0.9399$$

02/03/2021

Introduction to Data Mining, 2nd Edition

13

13

Effect of Multiple Comparison Procedure

- Many algorithms employ the following greedy strategy:
 - Initial model: M
 - Alternative model: M' = M $\cup \gamma$, where γ is a component to be added to the model (e.g., a test condition of a decision tree)
 - Keep M' if improvement, $\Delta(M,M') > \alpha$
- □ Often times, γ is chosen from a set of alternative components, $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_k\}$
- If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting

02/03/2021

Introduction to Data Mining, 2nd Edition

Notes on Overfitting

- Overfitting results in decision trees that are <u>more</u> <u>complex</u> than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization errors

02/03/2021

Introduction to Data Mining, 2nd Edition

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity

02/03/2021

Introduction to Data Mining, 2nd Edition

17

17

Model Selection:

Using Validation Set

- Divide training data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set
- Drawback:
 - Less data available for training

02/03/2021

Introduction to Data Mining, 2nd Edition

Model Selection:

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally
 - Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) + α x Complexity(Model)

02/03/2021

Introduction to Data Mining, 2nd Edition

19

19

Estimating the Complexity of Decision Trees

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to α)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

02/03/2021

Introduction to Data Mining, 2nd Edition

Estimating the Complexity of Decision Trees: Example

Decision Tree, T₁

Decision Tree, T_R

$$e_{qen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

02/03/2021

Introduction to Data Mining, 2nd Edition

21

21

Estimating the Complexity of Decision Trees

- □ Resubstitution Estimate:
 - Using training error as an optimistic estimate of generalization error
 - Referred to as optimistic error estimate

Decision Tree, T_I

Decision Tree, T_R

02/03/2021

Introduction to Data Mining, 2nd Edition

22

 $e(T_L) = 4/24$

 $e(T_R) = 6/24$

Minimum Description Length (MDL)

- □ Cost(Model, Data) = Cost(Data|Model) + α x Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

02/03/2021

Introduction to Data Mining, 2nd Edition

23

23

Model Selection for Decision Trees

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

02/03/2021

Introduction to Data Mining, 2nd Edition

Model Selection for Decision Trees

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - ◆ Trim the nodes of the decision tree in a bottom-up fashion
 - ◆ If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

02/03/2021

Introduction to Data Mining, 2nd Edition

25

Model Evaluation

- Purpose:
 - To estimate performance of classifier on previously unseen data (test set)
- Holdout
 - Reserve k% for training and (100-k)% for testing
 - Random subsampling: repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

02/03/2021

Introduction to Data Mining, 2nd Edition

Variations on Cross-validation

- □ Repeated cross-validation
 - Perform cross-validation a number of times
 - Gives an estimate of the variance of the generalization error
- □ Stratified cross-validation
 - Guarantee the same percentage of class labels in training and test
 - Important when classes are imbalanced and the sample is small
- Use nested cross-validation approach for model selection and evaluation

02/03/2021

Introduction to Data Mining, 2nd Edition