Problem 1.

Let $\mathbb{I}(\mathbf{x}) = \mathbf{x}$ be the identity mapping $\mathbb{R}^3 \to \mathbb{R}^3$. Let B_1 denote the canonical basis $\{[1\ 0\ 0]^T, [0\ 1\ 0]^T, [0\ 0\ 1]^T\}$ and let B_2 denote the basis $\{[1\ 1\ 1]^T, [1\ 0\ 1]^T, [0\ 0\ 2]^T\}$.

- (a) Find the matrix representation of $\mathbf{x} \to \mathbb{I}(\mathbf{x})$ when using basis B_2 in preimage and basis B_1 in the image.
- (b) Find the matrix representation of $\mathbf{x} \to \mathbb{I}(\mathbf{x})$ when using basis B_1 in preimage and basis B_2 in the image.
- (c) What is the relation between the two matrices you found in (a) and (b)? Let A denote the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right] ,$$

and let $L: \mathbb{R}^3 \to \mathbb{R}^3$ denote the linear mapping $L(\mathbf{x}) = A\mathbf{x}$.

- (d) Find the matrix representation of L in the basis B_1 (for both image and preimage).
- (e) Find the matrix representation of L in the basis B_2 (for both image and preimage) and express it in terms of matrix multiplication of A by the two matrices you found in (a) and (b).

Problem 2.

Let B denote the 3×4 matrix

$$B = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{array} \right] ,$$

- (a) Find a decomposition B = LU where L is a lower triangular 3×3 matrix and U is a 3×4 matrix in **reduced** row echelon form.
 - (b) What is the rank of the matrix B above.
 - (c) Find R(B), the range of B and N(B), its nullspace.

Problem 3.

Let L denote the operator

$$\mathcal{P}_3 \ni p \to Lp(t) = \frac{d}{dt} \left[(1 - t^2) \frac{d}{dt} p(t) \right].$$

- (a) Show that L is a linear operator from \mathcal{P}_3 to \mathcal{P}_3 (polynomials of degree ≤ 3).
- (b) Show that $\{1, t, t^2, t^3\}$ is a basis for \mathcal{P}_3 , and find the matrix A, that represents L in that basis.
- (c) Show that $\{1, t, t^2 \frac{1}{3}, t^3 \frac{3}{5}t\}$ is a basis for \mathcal{P}_3 and find the matrix B, that represents L in that basis.
- (d) Find the coordinate transformation matrix C which relates A to B by the change basis formula $B = C^{-1}AC$.