TRABAJO PRACTICO N^{ro} 4

AJUSTE DE CURVAS- RESOLUCIÓN DE UNA ECUACION NO LINEAL

Fecha de entrega de enunciado: miércoles 16 de octubre de 2013 Fecha de entrega del práctico resuelto: miércoles 23 de octubre de 2013

Ejercicio 1: Considere los valores de la función $f(x) = \sin^{12} x$ en los valores discretos

de x $x_i = \frac{i\pi}{10}$ como se indica en la siguiente tabla:

i	x_i	$f_i = f(x_i) \cdot 10^4$
0	0	0
1	0.31416	0.8315
2	0.62832	142.4809
3	0.94248	1835.1291
4	1.25664	6693.5116
5	1.57080	10000.0000
6	1.88496	6693.3858
7	2.19912	1835.0555
8	2.51328	142.4702
9	2.82744	0.8314
10	3.14160	0

Para estos datos use interpolación por splines a) lineales y b) cúbicas y encuentre el valor interpolado de f en para cada $x_i = (2i-1)\frac{\pi}{20}$ i = 1,2,...,10.

También compute el error E asociado con cada interpolación usando la relación:

$$E = \sum_{i=1}^{10} (f_{i,exacto} - f_{i,int erpolado})^{2}$$

Ejercicio 2: Utilizando MATLAB encuentre las raíces de:

a)
$$f(x) = x^{12} - 2 = 0$$

b)
$$f(x) = \frac{1.5x}{(1+x^2)^2} - 0.65 \tan^{-1} \frac{1}{x} + \frac{0.65x}{(1+x^2)} = 0$$

Ejercicio 3: La eficiencia térmica de de una aleta uniforme (η) con un borde aislado

está dada por:
$$\eta = \frac{\tanh \frac{l}{\lambda}}{\frac{l}{\lambda}} \cot \lambda = \left(\frac{kA}{h_{\infty}P}\right)^{\frac{1}{2}}$$

Donde l= longitud, A= área transversal, P= perímetro de la sección transversal, k= conductividad térmica y h_{∞} = coeficiente de transferencia de calor de la aleta.

Si la aleta está hecha de aluminio con una sección transversal cuadrada con l=0.1m, k=240 W/(m °C) y h $_{\infty}$ =9 W/(m 2 °C), determinar las dimensiones transversales necesarias de la aleta para lograr una eficiencia de 0.95 usando los siguientes métodos:

- a) método gráfico
- b) Método de bisección
- c) Método de Newton-Raphson