(R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols Useful for Inhibiting Cholesteryl Ester Transfer Protein Activity

FIELD OF THE INVENTION

5

10

This invention is in the field of treating cardiovascular disease, and specifically relates to compounds, compositions, methods for treating atherosclerosis and other coronary artery disease, and methods for making compounds of this invention. More particularly, the invention relates to (R)-chiral halogenated 1-substitutedamino-(n+1)-alkanol compounds that inhibit cholesteryl ester transfer protein (CETP), also known as plasma lipid transfer protein-I.

BACKGROUND OF THE INVENTION

15

20

25

30

35

Numerous studies have demonstrated that a low plasma concentration of high density lipoprotein (HDL) cholesterol is a powerful risk factor for the development of atherosclerosis (Barter and Rye, Atherosclerosis, 121, 1-12 (1996)). HDL is one of the major classes of lipoproteins that function in the transport of lipids through the blood. The major lipids found associated with HDL include cholesterol, cholesteryl ester, triglycerides, phospholipids and fatty acids. The other classes of lipoproteins found in the blood are low density lipoprotein (LDL) and very low density lipoprotein (VLDL). Since low levels of HDL cholesterol increase the risk of atherosclerosis, methods for elevating plasma HDL cholesterol would be therapeutically beneficial for the treatment of atherosclerosis and other diseases associated with accumulation of lipid in the blood vessels. These diseases include, but are not limited to, coronary heart disease, peripheral vascular disease, and stroke.

Atherosclerosis underlies most coronary artery disease (CAD), a major cause of morbidity and mortality in modern society. High LDL cholesterol (above 180 mg/dl) and low HDL cholesterol (below 35 mg/dl) have been shown to be important contributors to the development of atherosclerosis. Other diseases, such as peripheral vascular disease, stroke, and hypercholesterolaemia are negatively affected by adverse HDL/LDL ratios. Inhibition of CETP by the subject compounds is shown to effectively modify plasma HDL/LDL ratios, and to check the progress and/or formation of these diseases.

15

25

30

35

CETP is a plasma protein that facilitates the movement of cholesteryl esters and triglycerides between the various lipoproteins in the blood (Tall, J. Lipid Res., 34, 1255-74 (1993)). The movement of cholesteryl ester from HDL to LDL by CETP has the effect of lowering HDL cholesterol. It therefore follows that inhibition of CETP should lead to elevation of plasma HDL cholesterol and lowering of plasma LDL cholesterol, thereby providing a therapeutically beneficial plasma lipid profile (McCarthy, Medicinal Res. Revs., 13, 139-59 (1993); Sitori, Pharmac. Ther., 67,443-47 (1995)). This exact phenomenon was first demonstrated by Swenson et al., (J. Biol. Chem., 264, 14318 (1989)) with the use of a monoclonal antibody that specifically inhibited CETP. In rabbits, the antibody caused an elevation of the plasma HDL cholesterol and a decrease in LDL cholesterol. Son et al. (Biochim. Biophys. Acta 795, 743-480 (1984)), Morton et al. (J. Lipid Res. 35, 836-847 (1994)) and Tollefson et al. (Am. J. Physiol., 255, (Endocrinol. Metab. 18, E894-E902 (1988))) describe proteins from human plasma that inhibit CETP. U.S. Patent 5,519,001, issued to Kushwaha et al., describes a 36 amino acid peptide derived from baboon apo C-1 that inhibits CETP activity. Cho et al. (Biochim. Biophys. Acta 1391, 133-144 (1998)) describe a peptide from hog plasma that inhibits human CETP. Bonin et al. (J. Peptide Res., 51,

from hog plasma that inhibits human CETP. Bonin et al. (*J. Peptide Res.*, 5 216-225 (1998)) disclose a decapeptide inhibitor of CETP. A depsipeptide fungal metabolite is disclosed as a CETP inhibitor by Hedge et al. in *Bioorg. Med. Chem. Lett.*, 8, 1277-80 (1998).

There have been several reports of non-peptidic compounds that act as CETP inhibitors. Barrett et al. (*J. Am. Chem. Soc.*, 188, 7863-63 (1996)) and Kuo et al. (*J. Am. Chem. Soc.*, 117, 10629-34 (1995)) describe cyclopropane-containing CETP inhibitors. Pietzonka et al. (*Bioorg. Med. Chem. Lett*, 6, 1951-54 (1996)) describe phosphonate-containing analogs of cholesteryl ester as CETP inhibitors. Coval et al. (*Bioorg. Med. Chem. Lett.*, 5, 605-610 (1995)) describe Wiedendiol-A and -B, and related sesquiterpene compounds as CETP inhibitors. Japanese Patent Application No. 10287662-A describes polycyclic, non-amine containing, polyhydroxylic natural compounds possessing CETP inhibition properties. Lee et al. (*J. Antibiotics*, 49, 693-96 (1996)) describe CETP inhibitors derived from an insect fungus. Busch et al. (*Lipids*, 25, 216-220, (1990)) describe cholesteryl acetyl bromide as a CETP inhibitor. Morton and Zilversmit (*J. Lipid Res.*, 35, 836-47 (1982)) describe that p-chloromercuriphenyl sulfonate, p-hydroxymercuribenzoate and ethyl mercurithiosalicylate inhibit CETP.

10

15

20

25

Connolly et al. (*Biochem. Biophys. Res. Comm.* 223, 42–47 (1996)) describe other cysteine modification reagents as CETP inhibitors. Xia et al. describe 1,3,5-triazines as CETP inhibitors (Bioorg. Med. Chem. Lett., 6, 919-22 (1996)). Bisgaier et al. (*Lipids*, 29, 811-8 (1994)) describe 4-phenyl-5-tridecyl-4H-1,2,4-triazole-thiol as a CETP inhibitor. Oomura et al. disclose non-peptidic tetracyclic and hexacyclic phenols as CETP inhibitors in Japanese Patent Application No. 10287662.

Some substituted heteroalkylamine compounds are known. In European Patent Application No. 796846, Schmidt et al. describe 2-arylsubstituted pyridines as cholesteryl ester transfer protein inhibitors useful as cardiovascular agents. One substitutent at C3 of the pyridine ring can be an hydroxyalkyl group. In European Patent Application No. 801060, Dow and Wright describe heterocyclic derivatives substituted with an aldehyde addition product of an alkylamine to afford 1-hydroxy-1-amines. These are reported to be β3-adrenergic receptor agonists useful for treating diabetes and other disorders. In Great Britain Patent Application No. 2305665, Fisher et al. disclose 3-agonist secondary amino alcohol substituted pyridine derivatives useful for treating several disorders including cholesterol levels and artherosclerotic diseases. In European Patent Application No. 818448, Schmidt et al. describe tetrahydroquinoline derivatives as cholesteryl ester transfer protein inhibitors. European Patent Application No. 818197, Schmek et al. describe pyridines with fused heterocycles as cholesteryl ester transfer protein inhibitors. Brandes et al. in German Patent Application No. 19627430 describe bicyclic condensed pyridine derivatives as cholesteryl ester transfer protein inhibitors. In WO Patent Application No. 09839299, Muller-Gliemann et al. describe quinoline derivatives as cholesteryl ester transfer protein inhibitors. U.S. Patent 2,700,686, issued to Dickey and Towne, describes N-(2-haloalkyl-2-hydroxyethyl)amines in which the amine is further substituted with either 1 to 2 aliphatic groups or one aromatic group and one aliphatic group. U.S. Patent 2,700,686 further describes a process to prepare the N-(2haloalkyl-2-hydroxyethyl)amines by reacting halogenated-1,2-epoxyalkanes with the corresponding aliphatic amines and N-alkylanilines and their use as

SUMMARY OF THE INVENTION

dye intermediates.

30

10

15

20

The present invention provides chiral compounds that can be used to inhibit cholesteryl ester transfer protein (CETP) activity and that have the general structure:

$$R_{1}$$
 R_{2}
 R_{1}
 R_{1}

In another aspect, the present invention includes pharmaceutical compositions comprising a pharmaceutically effective amount of the chiral compounds of this invention and a pharmaceutically acceptable carrier.

In another aspect, this invention relates to methods of using these chiral inhibitors as therapeutic agents in humans to inhibit cholesteryl ester transfer protein (CETP) activity, thereby decreasing the concentrations of low density lipoprotein (LDL) and raising the level of high density lipoprotein (HDL), resulting in a therapeutically beneficial plasma lipid profile. The compounds and methods of this invention can also be used to treat dyslipidemia (hypoalphalipoproteinemia), hyperlipoproteinaemia (chylomicronemia and hyperapobetalipoproteinemia), peripheral vascular disease, hypercholesterolaemia, atherosclerosis, coronary artery disease and other CETP-mediated disorders. The compounds can also be used in prophylactic treatment of subjects who are at risk of developing such disorders. The compounds can be used to lower the risk of atherosclerosis. The compounds of this invention would be also useful in prevention of cerebral vascular accident (CVA) or stroke. Besides being useful for human treatment, these compounds are also useful for veterinary treatment of companion animals,

10

20

exotic animals and farm animals such as primates, rabbits, pigs, horses, and the like.

DESCRIPTION OF THE INVENTION

The present invention relates to a class of compounds comprising (R)-chiral halogenated 1-substitutedamino-(n+1)-alkanols which are beneficial in the therapeutic and prophylactic treatment of coronary artery disease as given in Formula I-H (also referred to herein as generic polycyclic aryl and heteroaryl (R)-chiral halogenated 1-substitutedamino-(n+1)-alkanols):

$$R_{1}$$
 R_{2}
 R_{1}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{1}

or a pharmaceutically-acceptable salt thereof, wherein;

n is an integer selected from 1 through 4;X is oxy;

 R_1 is selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

 $\ensuremath{R_{16}}$ is selected from the group consisting of hydrido, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, monocarboalkoxyalkyl, 10 monocarboalkoxy, dicarboalkoxyalkyl, monocarboxamido, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, dialkoxyphosphonoalkyl, trialkylsilyl, and a spacer selected from the group consisting of a covalent single bond and a linear spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R4, R8, R9, 15 R₁₃, R₁₄, and R₁₅ to form a heterocyclyl ring having from 5 through 10 contiguous members;

 D_1 , D_2 , J_1 , J_2 and K_1 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D₁, D₂, J₁, J₂ and K₁ can be a covalent bond, no more than one 20 of D_1 , D_2 , J_1 , J_2 and K_1 can be O, no more than one of D_1 , D_2 , J_1 , J_2 and K₁ can be S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and K_1 are O and S, and no more than four of D_1 , D_2 , J_1 , J_2 and K_1 can be N;

D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one can be a covalent bond, no more than one of D₃, D₄, J₃, J₄ and K₂ can be O, no more than one of D₃, D₄, J₃, J₄ and K₂ can be S, no more than two of D₃, D₄, J₃, J₄ and K₂ can be O and S, one of D₃, D₄, J₃, J₄ and K₂ must be a covalent bond when two of D₃, D₄, J₃, J₄ and K₂ are O and S, and no more than four of D₃, D₄, J₃, J₄ and K₂ can be N;

10 R₂ is hydrido;

5

R₂ can be selected from the group consisting of hydroxyalkyl, alkyl, alkenyl, alkynyl, aryl, aralkyl, aralkoxyalkyl, aryloxyalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, 15 halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, perhaloaryl, perhaloaralkyl, perhaloaralkyl, heteroaralkylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, 20 alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dicyanoalkyl, carboalkoxycyanoalkyl, dialkoxyphosphonoalkyl, and 25 diaralkoxyphosphonoalkyl with the proviso that R2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

R₃ is selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, hydroxyalkyl, amino, alkylamino, dialkylamino, acyl,

20

25

acylamido, alkoxy, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, alkoxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aroyl, heteroaroyl, aralkylthioalkyl, heteroaralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, haloalkyl, haloalkoxy, haloalkoxyalkyl,

- haloalkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, arylsulfinylalkyl, arylsulfinylalkyl, cycloalkylsulfinylalkyl, cycloalkylsulfonylalkyl,
- 10 heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphonoalkyl, and diaralkoxyphosphonoalkyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower

Cahn-Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-

15 Ingold-Prelog stereochemical system ranking than R₂;

Y is selected from a group consisting of a covalent single bond, $(C(R_{14})_2)_q \text{ wherein q is an integer selected from 1 through 2 and } \\ (CH(R_{14}))_g \text{-W-}(CH(R_{14}))_p \text{ wherein g and p are integers independently selected from 0 through 1:}$

R₁₄ is independently selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, amino, alkylamino, dialkylamino, hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkylalkoxy, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkoxythioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenyl, haloalkyl, haloalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl,

30 halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl,

10

15

20

25

30

Y:

haloalkylsulfonyl, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, arylsulfonylalkyl, aralkylsulfinyl, aralkylsulfonyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphono, diaralkoxyphosphono, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, a spacer selected from a moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of Ro and Ro3 to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having from 5 through 8 contiguous members, and a spacer selected from a moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R₄ and R₈ to form a heterocyclyl having from 5 through 8 contiguous members with the proviso that, when Y is a covalent bond, an R₁₄ substituent is not attached to

 R_{14} and R_{15} can be taken together to form a spacer selected from a moiety having a chain length of 2 to 5 atoms to form a heterocyclyl ring having from 5 through 8 contiguous members;

 R_{14} and R_{14} , when bonded to the different atoms, can be taken together to form a group selected from the group consisting of a covalent bond, alkylene, haloalkylene, and a spacer selected from a group consisting of a moiety having a chain length of 2 to 5 atoms connected to form a ring selected from the group of a saturated cycloalkyl having from 5 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

R₁₄ and R₁₄, when bonded to the same atom can be taken together to form a group selected from the group consisting of oxo, thiono, alkylene, haloalkylene, and a spacer selected from the group consisting of a moiety having a chain length of 3 to 7 atoms connected to form a ring selected from the group consisting of a cycloalkyl having from 4 through 8 contiguous

members, a cycloalkenyl having from 4 through 8 contiguous members, and a heterocyclyl having from 4 through 8 contiguous members;

W is selected from the group consisting of O, C(O), C(S), C(O)N(R₁₄), C(S)N(R₁₄), (R₁₄)NC(O), (R₁₄)NC(S), S, S(O), S(O)₂,

5 S(O)₂N(R₁₄), (R₁₄)NS(O)₂, and N(R₁₄) with the proviso that R₁₄ is selected from other than halo and cyano;

Z is independently selected from a group consisting of a covalent single bond, $(C(R_{15})_2)_q$ wherein q is an integer selected from 1 through 2,

 $(CH(R_{15}))_j$ -W- $(CH(R_{15}))_k$ wherein j and k are integers independently selected from 0 through 1 with the proviso that, when Z is a covalent single bond, an R_{15} substituent is not attached to Z;

 R_{15} is independently selected, when Z is $(C(R_{15})_2)_q$ wherein q is an integer selected from 1 through 2, from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, amino, alkylamino, dialkylamino, 15 hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, 20 cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, 25 monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, arylsulfonylalkyl, aralkylsulfinyl, aralkylsulfonyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, 30 heteroarylsulfonylalkyl, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphono, diaralkoxyphosphono, dialkoxyphosphonoalkyl,

10

15

20

25

30

diaralkoxyphosphonoalkyl, a spacer selected from a moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of R_4 and R_8 to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having from 5 through 8 contiguous members, and a spacer selected from a moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R_9 and R_{13} to form a heterocyclyl having from 5 through 8 contiguous members;

 R_{15} and R_{15} , when bonded to the different atoms, can be taken together to form a group selected from the group consisting of a covalent bond, alkylene, haloalkylene, and a spacer selected from a group consisting of a moiety having a chain length of 2 to 5 atoms connected to form a ring selected from the group of a saturated cycloalkyl having from 5 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

R₁₅ and R₁₅, when bonded to the same atom, can be taken together to form a group selected from the group consisting of oxo, thiono, alkylene, haloalkylene, and a spacer selected from the group consisting of a moiety having a chain length of 3 to 7 atoms connected to form a ring selected from the group consisting of a cycloalkyl having from 4 through 8 contiguous members, a cycloalkenyl having from 4 through 8 contiguous members, and a heterocyclyl having from 4 through 8 contiguous members;

 R_{15} is independently selected, when Z is $(CH(R_{15}))_j$ -W- $(CH(R_{15}))_k$ wherein j and k are integers independently selected from 0 through 1, from the group consisting of hydrido, halo, cyano, aryloxy, carboxyl, acyl, aroyl, heteroaroyl, hydroxyalkyl, heteroaryloxyalkyl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, alkoxyalkyl, heteroaryloxyalkyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkylsulfonylalkyl, alkylsulfinylalkyl, aralkoxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, halocycloalkenyl, cycloalkenyl, haloalkyl, haloalkoxyalkyl, haloalkoxyalkyl, halocycloalkoxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl,

heteroaryl, heteroaralkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, arvlsulfinyl, arvlsulfin

- arylsulfonylalkyl, aralkylsulfinyl, aralkylsulfonyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsulfonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, a spacer selected from a
- linear moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of R₄ and R₈ to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having from 5 through 8 contiguous members, and a spacer selected from a linear moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R₉ and R₁₃ to form a heterocyclyl ring having from 5 through 8 contiguous members;

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, and R₁₃ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroaralkyl, heteroarylaminoalkyl,haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl,
30 cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxy, amino, thio, nitro,

halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl,

35 heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl,

10

15

20

25

30

haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the proviso that there are one to five non-hydrido ring substituents R₄, R₅, R₆, R₇, and R₈

present, that there are one to five non-hydrido ring substituents R_9 , R_{10} , R_{11} , R_{12} , and R_{13} present, and R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , and R_{13} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no

more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , can be used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be used at the same time;

 R_4 and R_9 , R_4 and R_{13} , R_8 and R_9 , and R_8 and R_{13} can be independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear moiety wherein said linear moiety forms a ring selected from the group consisting of a partially saturated heterocyclyl ring having from 5 through 8 contiguous members and a heteroaryl ring having from 5 through 6 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R_4 and R_9 , R_4 and R_{13} , R_8 and R_9 , and R_8 and R_8 and R_9 , and R_8 and R_8 and R_9 and R_9

 R_5 and R_{10} , R_5 and R_{12} , R_7 and R_{10} , and R_7 and R_{12} can be independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear moiety wherein said linear moiety forms a C8 to C13 heterocyclyl ring having from 8 through 13 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R_5 and R_{10} , R_5 and R_{12} , R_7 and R_{10} , and R_7 and R_{12} can be used at the same time.

20

25

15

5

10

In a another embodiment of compounds of Formula I-H,

 D_1 , D_2 , J_1 , J_2 and K_1 are each carbon with the proviso that at least one of D_3 , D_4 , J_3 , J_4 and K_2 is selected from the group consisting of O, S, and N, wherein D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D_3 , D_4 , J_3 , J_4 and K_2 can be a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 can be O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 can be O, no more than one of D_3 , D_4 , J_3 , J_4

and K_2 can be S, one of D_3 , D_4 , J_3 , J_4 and K_2 must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 can be N;

D₁, D₂, J₁, J₂ and K₁ can be selected from the group consisting of C,

O, S, N and covalent bond with the provisos that D₃, D₄, J₃, J₄ and K₂ are
each carbon and at least one of D₁, D₂, J₁, J₂ and K₁ is selected from the
group consisting of O, S, and N wherein, when D₁, D₂, J₁, J₂ and K₁ are
selected from the group consisting of C, O, S, covalent bond, and N, no more
than one of D₁, D₂, J₁, J₂ and K₁ can be a covalent bond, no more than one
of D₁, D₂, J₁, J₂ and K₁ can be O, no more than one of D₁, D₂, J₁, J₂ and
K₁ can be S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two
of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁,
J₂ and K₁ can be N;

n is an integer selected from 1 through 4;

15 X is oxy;

 R_{16} is selected from the group consisting of hydrido, acyl, aroyl, and trialkylsilyl;

 R_1 is selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

10

R2 is hydrido;

R₂ can be selected from the group consisting of aryl, aralkyl, alkyl, alkenyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, dicyanoalkyl, and carboalkoxycyanoalkyl with the proviso that R_2 has a lower Cahn-Ingold-

R₃ is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl with the provisos that (CHR3)_n-N(A)Q has a lower Cahn-

15 Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-Ingold-Prelog stereochemical system ranking than R2;

Prelog system ranking than both R₁ and (CHR₃)_n-N(A)Q;

Y is selected from the group consisting of covalent single bond and $(C(R_{14})_2)_q$ wherein q is an integer selected from 1 through 2;

R₁₄ is selected from the group consisting of hydrido, cyano, 20 hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl;

Z is selected from the group consisting of covalent single bond, $(C(R_{15})_2)_q$ wherein q is an integer selected from 1 through 2, and $(CH(R_{15}))_j$ -W- $(CH(R_{15}))_k$ wherein j and k are integers independently selected from 0 through 1;

W is oxy;

5

10

15

20

25

30

R₁₅ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl;

R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

 R_5 , R_6 , R_7 , R_{10} , R_{11} , and R_{12} are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroarylsulfonyl, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, cycloalkoxy, cycloalkylalkoxy, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, arylamino, aralkylamino, arylthio, arylthioalkyl, alkylsulfonyl, alkylsulfonamido, monoarylamidosulfonyl, arylsulfonyl, heteroarylthio, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, halo, haloalkyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aryl, aryloxy, aralkoxy, saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboxamido, carboxamidoalkyl, and cyano;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} spacer pairs can be independently selected from the group consisting of alkylene, alkenylene, alkylenedioxy, aralkylene, diacyl, haloalkylene, and aryloxylene with the provisos that no

more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 can be used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be used at the same time.

5

10

15

20

In an even more specific embodiment of compounds Formula I-H, D_1 , D_2 , J_1 , J_2 and K_1 are each carbon;

D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that at least one of D₃, D₄, J₃, J₄ and K₂ is selected from the group consisting of O, S, and N, wherein no more than one of D₃, D₄, J₃, J₄ and K₂ can be a covalent bond, no more than one of D₃, D₄, J₃, J₄ and K₂ can be O, no more than one of D₃, D₄, J₃, J₄ and K₂ can be S, one of D₃, D₄, J₃, J₄ and K₂ must be a covalent bond when two of D₃, D₄, J₃, J₄ and K₂ are O and S, and no more than four of D₃, D₄, J₃, J₄ and K₂ can be N;

n is an integer selected from 1 to 3;

X is oxy;

R₁ is selected from the group consisting of trifluoromethyl,

1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, and heptafluoropropyl;

R₁₆ is selected from the group consisting of acetyl, benzoyl, dimethyl *tert* -butylsilyl, hydrido, and trimethylsilyl;

R₂ is hydrido;

R₂ can be selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, vinyl, phenyl,

4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, chloromethyl, trifluoromethoxymethyl, fluoromethyl, difluoromethyl, 2,2,3,3,3-pentafluoropropyl, and pentafluorophenoxymethyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N/ANO:

5 N(A)Q;

 R_3 is selected from the group consisting of hydrido, hydroxy, cyano, acetyl, methoxy, ethoxy, methyl, ethyl, propyl, vinyl, phenyl, methoxymethyl, 4-trifluoromethylphenyl, trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, pentafluorophenyl, and pentafluorophenoxymethyl with the provisos that (CHR3) $_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 .

15

10

In another even more specific embodiment of compounds Formula I-H, D_3 , D_4 , J_3 , J_4 and K_2 are each carbon;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that at least one of D₁, D₂, J₁, J₂ and K₁ is selected from the group consisting of O, S, and N, wherein no more than one of D₁, D₂, J₁, J₂ and K₁ can be a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ can be O, no more than one of D₁, D₂, J₁, J₂ and K₁ can be S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ can be N;

n is an integer selected from 1 to 3; X is oxy;

10

15

20

25

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, and heptafluoropropyl;

 R_{16} is selected from the group consisting of acetyl, benzoyl, dimethyl tert -butylsilyl, hydrido, and trimethylsilyl;

R2 is hydrido;

 R_2 can be selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, chloromethyl, trifluoromethoxymethyl, fluoromethyl, difluoromethyl, 2,2,3,3,3-pentafluoropropyl, and pentafluorophenoxymethyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and (CHR3) $_n$ -N(A)O;

 R_3 is selected from the group consisting of hydrido, hydroxy, cyano, acetyl, methoxy, ethoxy, methyl, ethyl, propyl, vinyl, phenyl, methoxymethyl, 4-trifluoromethylphenyl, trifluoromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, pentafluorophenyl, and pentafluorophenoxymethyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 .

In a preferred embodiment of compounds of Formula I-H, the compounds correspond to the Formula I-C (also referred to herein as phenyl (R)-chiral halogenated 1-substitutedamino-(n+1)-alkanols):

10

15

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\ R_{14} \\ R_{13} \\ R_{12} \\ \end{array}$$

or a pharmacuetically acceptable salt thereof, wherein;

n is an integer selected from 1 through 4;

 R_{16} is selected from the group consisting of hydrido, alkyl, acyl, aroyl, heteroaroyl, trialkylsilyl, and a spacer selected from the group consisting of a covalent single bond and a linear spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R_4 , R_8 , R_9 , and R_{13} to form a heterocyclyl ring having from 5 through 10 contiguous members with the proviso that said linear spacer moiety is other than covalent single bond when R_2 is alkyl;

 R_1 is selected from the group consisting of haloalkyl, haloalkenyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_{\Pi}$ -N(Ap)Qp wherein Ap is Formula (III-P);

10

R₂ is hydrido;

 R_2 can be selected from the group consisting of aryl, aralkyl, alkyl, alkenyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkoxyalkyl, haloalkoxyalkyl, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, heteroaryl, dicyanoalkyl, and carboalkoxycyanoalkyl with the proviso that R_2 has a lower Cahn-Ingold-

R₃ is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl with the provisos that (CHR₃)_n-N(Ap)Qp has a lower Cahn-

Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Prelog system ranking than both R₁ and (CHR₃)_n-N(Ap)Qp;

Y is selected from the group consisting of covalent single bond and $(C(R_{14})_2)_q$ wherein q is an integer selected from 1 through 2;

R₁₄ is selected from the group consisting of hydrido, hydroxy, cyano,

hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl,
haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl,

15

20

25

30

monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, carboxamidoalkyl;

Z is selected from the group consisting of covalent single bond,

(C(R₁₅)₂)_q wherein q is an integer selected from 1 through 2, and

5 $(CH(R_{15}))_j$ -W- $(CH(R_{15}))_k$ wherein j and k are integers independently selected from 0 through 1;

W is selected from the group consisting of O, C(O), C(S), C(O)N(R₁₄), C(S)N(R₁₄), (R₁₄)NC(O), (R₁₄)NC(S), S, S(O), S(O)₂, S(O)₂N(R₁₄), (R₁₄)NS(O)₂, and N(R₁₄) with the proviso that R₁₄ is other than cyano;

R₁₅ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkylsulfonylalkyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl,haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylalkoxy, halocycloalkoxy, halocycloalkoxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylsulfinyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl,

10

15

25

30

heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl. alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanovl, alkenovl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido,

diaralkoxyphosphono, and diaralkoxyphosphonoalkyl; $R_4 \text{ and } R_5, R_5 \text{ and } R_6, R_6 \text{ and } R_7, R_7 \text{ and } R_8, R_9 \text{ and } R_{10}, R_{10} \text{ and } R_{10}, R_{1$

carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl,

carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido,

 R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 ,

 R_6 and R_7 , and R_7 and R_8 , can be used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be used at the same time.

15

20

In a preferred embodiment of compounds of Formula I-C,

n is an integer selected from 1 through 4;

 R_{16} is selected from the group consisting of hydrido, acyl, aroyl, and trialkylsilyl;

 R_1 is selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

R2 is hydrido;

 R_2 can be selected from the group consisting of aryl, aralkyl, alkyl, alkenyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, perhaloaryl, perhaloaryl, perhaloaryloxyalkyl, heteroaryl, dicyanoalkyl, and carboalkoxycyanoalkyl with the proviso that R_2 has a lower Cahn-Ingold-

Prelog system ranking than both R₁ and (CHR₃)_n-N(Ap)Qp;

R₃ is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and

15

25

30

carboxamidoalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of covalent single bond and $(C(R_{14})_2)_q \text{ wherein } q \text{ is an integer selected from } 1 \text{ through } 2;$

R₁₄ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl;

 $Z \ is \ selected \ from \ the \ group \ consisting \ of \ covalent \ single \ bond,$ $(C(R_{15})_2)_q \ wherein \ q \ is \ an \ integer \ selected \ from \ 1 \ through \ 2, \ and$ $(CH(R_{15}))_j\text{-W-}(CH(R_{15}))_k \ wherein \ j \ and \ k \ are \ integers \ independently \ selected \ from \ 0 \ through \ 1;$

W is oxy;

R₁₅ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl;

 $R_4,\,R_8,\,R_9,\,{\rm and}\,\,R_{13}\,\,{\rm are}\,\,{\rm independently}\,\,{\rm selected}\,\,{\rm from}\,\,{\rm the}\,\,{\rm group}$ consisting of hydrido, halo, haloalkyl, and alkyl;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroarylsulfonyl, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, cycloalkoxy, cycloalkylalkoxy, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, arylamino, aralkylamino, arylthio, arylthioalkyl, alkylsulfonyl, alkylsulfonamido, monoarylamidosulfonyl, arylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, alkyl, alkenyl, alkenyloxy, alkylenedioxy, haloalkylenedioxy, cycloalkyl,

10

15

20

cycloalkylalkanoyl, halo, haloalkyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboxamido, carboxamidoalkyl, and cyano;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} spacer pairs can be independently selected from the group consisting of alkylene, alkenylene, alkylenedioxy, aralkylene, diacyl, haloalkylene, and aryloxylene with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 can be used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be used at the same time.

In a more preferred embodiment of compounds of Formula I-C, n is an integer selected from 1 through 2;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

R₁₆ is hydrido;

 R_2 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, and heteroaryl with the proviso that R_2 has a lower Cahn-

5 Ingold-Prelog system ranking than both R₁ and (CHR₃)_n-N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that $(CHR_3)_n$ - N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a covalent single bond and alkylene;

 \boldsymbol{Z} is selected from the group consisting of a covalent single bond and alkylene;

 R_{14} is selected from the group consisting of hydrido, alkyl, and haloalkyl;

 R_{15} is selected from the group consisting of hydrido, alkyl, and haloalkyl:

R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido and halo;

 $\rm R_5, R_6, R_7, R_{10}, R_{11},$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

In an even more preferred embodiment of compounds of Formula I-C, n is the integer 1;

R₁₆ is hydrido;

25

20

10

15

 R_1 is haloalkyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

R₂ is hydrido;

5

20

 R_2 can be selected from the group consisting of alkyl, haloalkyl, aryl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and (CHR₃)_n-N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, alkyl, and haloalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is alkylene;

Z is covalent single bond;

15 R₁₄ is hydrido;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy,

10

20

alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, and heteroaryloxyalkyl.

In an embodiment of compounds of Formula I-C, n is an integer selected from 1 to 3;

R₁ is selected from the group consisting of trifluoromethyl,

1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, and heptafluoropropyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

R₁₆ is selected from the group consisting of acetyl, benzoyl, dimethyl tert -butylsilyl, hydrido, and trimethylsilyl;

R2 is hydrido;

 R_2 can be selected from the group consisting of methyl, ethyl, propyl, butyl, isopropyl, isobutyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, chloromethyl, trifluoromethoxymethyl, fluoromethyl, difluoromethyl, 2,2,3,3,3-pentafluoropropyl, and and pentafluorophenoxymethyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(\text{CHR}_3)_n\text{-N}(\text{Ap})\text{Qp};$

10

R₃ is selected from the group consisting of hydrido, hydroxy, cyano, acetyl, methoxy, ethoxy, methyl, ethyl, propyl, vinyl, phenyl, methoxymethyl, 4-trifluoromethylphenyl, trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, chloromethyl, fluoromethyl, difluoromethyl, chlorodifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl. heptafluoropropyl, pentafluorophenyl, and pentafluorophenoxymethyl with the provisos that (CHR3)n-N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than \boldsymbol{R}_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R2.

In a preferred embodiment of compounds of Formula I-C, compounds have the Formula I-CP:

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\ R_{14} \\ R_{13} \\ R_{12} \end{array}$$

or a phamaceutically acceptable salt thereof, wherein;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2-15 tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that \mathbf{R}_1 has a

10

15

20

higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n-N(Ap)Qp \ wherein \ Ap \ is \ Formula \ (III-P) \ and \ Qp \ is \ Formula \ (III-P);$

R2 is hydrido;

 R_2 can be selected from the group consisting of methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and (CHR₃)_n-N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, methoxymethyl, trifluoromethyl, trifluoromethyl, trifluoromethyl, and pentafluoroethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 .

In a even more preferred embodiment of compounds of Formula I-CP, $R_1 \ \ \text{is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that <math>R_1$ has a

15

higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

R2 is hydrido;

 $R_2 \ can be selected from the group consisting of methyl, ethyl, phenyl, \\ 4-trifluoromethylphenyl, trifluoromethoxymethyl, \\ 1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that <math>R_2$ has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 .

In a most preferred embodiment of compounds of Formula I-CP, $R_1 \ \, \text{is selected from the group consisting of trifluoromethyl},$ $\text{chlorodifluoromethyl, and pentafluoroethyl with the proviso that } R_1 \ \text{has a}$ $\text{higher Cahn-Ingold-Prelog stereochemical system ranking than both } R_2 \ \text{and}$ $\text{(CHR}_3)_n\text{-N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);}$

R2 is hydrido;

 $\rm R_2$ can be phenyl with the proviso that $\rm R_2$ has a lower Cahn-Ingold-Prelog system ranking than both $\rm R_1$ and (CHR3)n-N(Ap)Qp;

 $R_3 \ is \ selected \ from \ the \ group \ consisting \ of \ hydrido,$ methyl, trifluoromethyl, and difluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 .

In another embodiment of compounds of Formulas I-H or I-C, the compounds correspond to the Cyclo I-H Formulas:

H Cyclo I-H
$$(CR_3H)_n$$
 R_{10} R_{10} R_{12} R_{12}

and

1112 St. Nicharing and the Company of the Company o

10

wherein:

5

10

 $\mbox{\ensuremath{\mbox{K}}}_1$ and $\mbox{\ensuremath{\mbox{K}}}_2$ are independently selected from the group consisting of C and N;

n is an integer selected from 1 through 3;

 R_1 is selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Apch)Qph wherein Apch is Formula (III-PCH) and Qph is Formula (III-PH);

$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_{6} \\ \\ R_{5} \end{array} \end{array} \begin{array}{c} \begin{array}{c} R_{7} \\ \\ R_{8} \end{array} \end{array} \begin{array}{c} \begin{array}{c} R_{9} \\ \\ R_{14} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \begin{array}{c} R_{10} \\ \\ R_{13} \end{array} \end{array} \begin{array}{c} \begin{array}{c} R_{10} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array}$

R₂ is hydrido;

and the state of the second se

10

15

20

25

 R_2 is selected from the group consisting of aryl, aralkyl, alkyl, alkenyl, alkoxyalkyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkoxyalkyl, halocycloalkoxy, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, dicyanoalkyl, and carboalkoxycyanoalkyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Apch)Qph;

 R_3 is selected from the group consisting of hydrido, hydroxy, halo, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboxamide, and carboxamidoalkyl with the provisos that $(\mathrm{CHR}_3)_n$ - $\mathrm{N}(\mathrm{Apch})\mathrm{Qph}$ has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a covalent single bond and $(C(R_{14})_2)_q$ wherein q is an integer selected from 1 through 2;

R₁₄ is selected from the group consisting of hydrido, hydroxy, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

Z is selected from the group consisting of covalent single bond, $(C(R_{15})_2)_q \text{ wherein } q \text{ is an integer selected from 1 through 2, and } \\ (CH(R_{15}))_j\text{-W-}(CH(R_{15}))_k \text{ wherein } j \text{ and } k \text{ are integers independently selected from 0 through 1;}$

W is selected from the group consisting of O, C(O), S, S(O), and $S(O)_2$;

10

15

20

25

30

35

 R_{15} is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

 R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl,

10

15

25

partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboxyalkyl, carboxyalkenyl, carboxamidoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

 R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , can be used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} can be used at the same time.

In an embodiment of compounds of Formula Cyclo I-H, n is the integer 1;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and

(CHR₃)_n-N(Apch)Qph wherein Apch is Formula (II-PCH) and Qph is Formula (III-PH);

10

R₂ is hydrido;

R₂ is selected from the group consisting of phenyl, 4-trifluoromethylphenyl, vinyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R2 has a lower Cahn-Ingold-Prelog system ranking than both R₁ and (CHR₃)_n-N(Apch)Qph;

R₃ is selected from the group consisting of hydrido, methyl, ethyl, vinyl, phenyl, 4-trifluoromethylphenyl, methoxymethyl, trifluoromethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the provisos that (CHR3)n-N(Apch)Qph has a lower Cahn-Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-Ingold-Prelog stereochemical system ranking than R2.

15 In another embodiment of compounds of Formula Cyclo I-H, n is the integer 1;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

20 R2 is hydrido;

R₃ is selected from the group consisting of hydrido, methyl, ethyl, vinyl, phenyl, 4-trifluoromethylphenyl, methoxymethyl, trifluoromethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the provisos that (CHR₃)_n-N(Apch)Qph has a lower

5 Cahn-Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-Ingold-Prelog stereochemical system ranking than R₂.

In a preferred embodiment of compounds of Formulas I-H, I-C, I-CP, and Cyclo I-H,

Y is selected from the group consisting of methylene, ethylene, and ethylidene;

Z is covalent single bond;

R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido and fluoro with the proviso that there is no R4, R8, R9, or R₁₃ when the embodiment is a compound of Formula Cyclo I-H;

15 R₅ and R₁₀ are independently selected from the group consisting of 4aminophenoxy, benzyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy. 20 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 25 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl. cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl,

cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl.

30 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy.

- 3.4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,
- 3.4-difluorobenzyloxy, 2.5-difluorobenzyloxy, 3.5-difluorophenoxy,
- 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
- 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 5 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
 - 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
- 10 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
- 15 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
 - 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
- 20 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
- 25 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
- 30 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
- 35 4-sec-butylphenoxy,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,

25

- $2\hbox{-}(5,6,7,8\hbox{-}tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,}$
- 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
- 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 5 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
- 10 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - +unruoromeniyumobenzyroxy, 2,5,4-umuoropnenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

 R_6 and R_{11} are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

 $$\rm R_{7}$$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

In an even more preferred embodiment of compounds of Formulas I-H, I-C, I-CP, and Cyclo I-H,

Y is methylene;

Z is covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro with the proviso that there is no R_4 , R_8 , R_9 , or R_{13} when the embodiment is a compound of Formula Cyclo I-H;

R₅ and R₁₀ are independently selected from the group consisting of

benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy,

3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy,

3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy,

- 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
- 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
- 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy,
- 5 cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy,
 - 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl,
 - 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy,
 - 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy,
- 10 3,5-difluorophenoxy, 3,4-difluorophenyl, 2,3-difluorophenoxy,
 - 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy,
 - 3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy,
 - 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl,
 - 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
- 15 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
- 20 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 - 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy,
 - 3-isopropylbenzyloxy, 3-isopropylphenoxy, isopropylthio.
- 25 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl,
 - 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenxyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
- 30 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl.
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy. phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy,
 - thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
- 35 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-vl.
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,

- 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
- 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 - 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
- 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio;

 R_6 and R_{11} are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

15 R₇ and R₁₂ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

In a most preferred embodiment of compounds of Formulas I-H, I-C, I-CP, and Cyclo I-H,

20 Y is methylene;

Z is covalent single bond:

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro with the proviso that there is no R_4 , R_8 , R_9 , or R_{13} when the embodiment is a compound of Formula Cyclo I-H;

25 R₅ is selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-text-phytylphenoxy, 3-text-phytylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-text-phytylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-text-phytylphenoxy, 3-te

3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), 3-trifluoromethoxybenzyloxy,3-trifluoromethoxyphenoxy,

3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl, isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 R_{6} and R_{11} are independently selected from the group consisting of fluoro and hydrido;

 $\ensuremath{\mbox{R}_{7}}$ and $\ensuremath{\mbox{R}_{12}}$ are independently selected from the group consisting of hydrido and fluoro.

DEFINITIONS

The use of generic terms in the description of the compounds are herein defined for clarity.

Standard single letter elemental symbols are used to represent specific types of atoms unless otherwise defined. The symbol "C" represents a carbon atom. The symbol "O" represents an oxygen atom. The symbol "N" represents a nitrogen atom. The symbol "P" represents a phosphorus atom. The symbol "S" represents a sulfur atom. The symbol "H" represents a hydrogen atom. Double letter elemental symbols are used as defined for the elements of the periodical table (i.e., CI represents chlorine, Se represents selenium, etc.).

As utilized herein, the term "alkyl", either alone or within other terms such as "haloalkyl" and "alkylthio", means an acyclic alkyl radical containing from 1 to about 10, preferably from 1 to about 8 carbon atoms and more preferably 1 to about 6 carbon atoms. Said alkyl radicals may be optionally substituted with groups as defined below. Examples of such radicals include methyl, ethyl, chloroethyl, hydroxyethyl, n-propyl, oxopropyl, isopropyl, n-butyl, cyanobutyl, isobutyl, sec-butyl, tert-butyl, pentyl, aminopentyl, iso-amyl, hexyl, octyl and the like.

5

10

15

20

10

15

20

25

30

35

The term "alkenyl" refers to an unsaturated, acyclic hydrocarbon radical in so much as it contains at least one double bond. Such alkenyl radicals contain from about 2 to about 10 carbon atoms, preferably from about 2 to about 8 carbon atoms and more preferably 2 to about 6 carbon atoms. Said alkenyl radicals may be optionally substituted with groups as defined below. Examples of suitable alkenyl radicals include propenyl, 2-chloropropenyl, buten-1-yl, isobutenyl, penten-1-yl, 2-2-methylbuten-1-yl, 3-methylbuten-1-yl, hexen-1-yl, 3-hydroxyhexen-1-yl, hepten-1-yl, and octen-1-yl, and the like.

The term "alkynyl" refers to an unsaturated, acyclic hydrocarbon radical in so much as it contains one or more triple bonds, such radicals containing about 2 to about 10 carbon atoms, preferably having from about 2 to about 8 carbon atoms and more preferably having 2 to about 6 carbon atoms. Said alkynyl radicals may be optionally substituted with groups as defined below. Examples of suitable alkynyl radicals include ethynyl, propynyl, hydroxypropynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyn-2-yl, 4-methoxypentyn-2-yl, 3-methylbutyn-1-yl, hexyn-1-yl, hexyn-2-yl, hexyn-3-yl, 3,3-dimethylbutyn-1-yl radicals and the like.

The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a "hydroxyl" radical, one hydrido radical may be attached to a carbon atom to form a "methine" radical (=CH-), or two hydrido radicals may be attached to a carbon atom to form a "methylene" (-CH₂-) radical.

The term "carbon" radical denotes a carbon atom without any covalent bonds and capable of forming four covalent bonds.

The term "cyano" radical denotes a carbon radical having three of four covalent bonds shared by a nitrogen atom.

The term "hydroxyalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with a hydroxyl as defined above. Specifically embraced are monohydroxyalkyl, dihydroxyalkyl and polyhydroxyalkyl radicals.

The term "alkanoyl" embraces radicals wherein one or more of the terminal alkyl carbon atoms are substituted with one or more carbonyl radicals as defined below. Specifically embraced are monocarbonylalkyl and dicarbonylalkyl radicals. Examples of monocarbonylalkyl radicals include formyl, acetyl, and pentanoyl. Examples of dicarbonylalkyl radicals include oxalyl, malonyl, and succinyl.

10

15

20

25

30

35

The term "alkylene" radical denotes linear or branched radicals having from 1 to about 10 carbon atoms and having attachment points for two or more covalent bonds. Examples of such radicals are methylene, ethylene, ethylene, methylethylene, and isopropylidene.

The term "alkenylene" radical denotes linear or branched radicals having from 2 to about 10 carbon atoms, at least one double bond, and having attachment points for two or more covalent bonds. Examples of such radicals are 1,1-vinylidene (CH₂=C), 1,2-vinylidene (-CH=CH-), and 1,4-butadienyl (-CH=CH-CH=CH-).

The term "halo" means halogens such as fluorine, chlorine, bromine or iodine atoms.

The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkyl radicals may have more than two of the same halo atoms or a combination of different halo radicals. More preferred haloalkyl radicals are "lower haloalkyl" radicals having one to about six carbon atoms. Examples of such haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.

The term "hydroxyhaloalkyl" embraces radicals wherein any one or more of the haloalkyl carbon atoms is substituted with hydroxy as defined above. Examples of "hydroxyhaloalkyl" radicals include hexafluorohydoxypropyl.

The term "haloalkylene radical" denotes alkylene radicals wherein any one or more of the alkylene carbon atoms is substituted with halo as defined above. Dihalo alkylene radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkylene radicals may have more than two of the same halo atoms or a combination of different halo radicals. More preferred haloalkylene radicals are "lower haloalkylene" radicals having one to about six carbon atoms. Examples of "haloalkylene" radicals include difluoromethylene, tetrafluoroethylene, tetrachloroethylene,

alkyl substituted monofluoromethylene, and aryl substituted trifluoromethylene.

The term "haloalkenyl" denotes linear or branched radicals having from 1 to about 10 carbon atoms and having one or more double bonds wherein any one or more of the alkenyl carbon atoms is substituted with halo as defined above. Dihaloalkenyl radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkenyl radicals may have more than two of the same halo atoms or a combination of different halo radicals.

10

15

5

The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxycontaining radicals each having alkyl portions of one to about ten carbon atoms, such as methoxy radical. The term "alkoxyalkyl" also embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy, isopropoxy and tert-butoxy alkyls. The "alkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkoxy" and "haloalkoxyalkyl" radicals. Examples of such haloalkoxy radicals include fluoromethoxy, chloromethoxy, trifluoromethoxy, difluoromethoxy, trifluoroethoxy, fluoroethoxy, tetrafluoroethoxy, pentafluoroethoxy, and fluoropropoxy. Examples of such haloalkoxyalkyl radicals include fluoromethoxymethyl, chloromethoxyethyl, trifluoromethoxymethyl, difluoromethoxyethyl, and trifluoroethoxymethyl.

25

30

35

20

The terms "alkenyloxy" and "alkenyloxyalkyl" embrace linear or branched oxy-containing radicals each having alkenyl portions of two to about ten carbon atoms, such as ethenyloxy or propenyloxy radical. The term "alkenyloxyalkyl" also embraces alkenyl radicals having one or more alkenyloxy radicals attached to the alkyl radical, that is, to form monoalkenyloxyalkyl and dialkenyloxyalkyl radicals. More preferred alkenyloxy radicals are "lower alkenyloxy" radicals having two to six carbon atoms. Examples of such radicals include ethenyloxy, propenyloxy, butenyloxy, and isopropenyloxy alkyls. The "alkenyloxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkenyloxy" radicals. Examples of such radicals include trifluoroethenyloxy, fluoroethenyloxy, difluoroethenyhloxy, and fluoropropenyloxy.

The term "haloalkoxyalkyl" also embraces alkyl radicals having one or more haloalkoxy radicals attached to the alkyl radical, that is, to form monohaloalkoxyalkyl and dihaloalkoxyalkyl radicals. The term "haloalkenyloxy" also embraces oxygen radicals having one or more haloalkenyloxy radicals attached to the oxygen radical, that is, to form monohaloalkenyloxy and dihaloalkenyloxy radicals. The term "haloalkenyloxyalkyl" also embraces alkyl radicals having one or more haloalkenyloxy radicals attached to the alkyl radical, that is, to form monohaloalkenyloxyalkyl and dihaloalkenyloxyalkyl radicals.

The term "alkylenedioxy" radicals denotes alkylene radicals having at least two oxygens bonded to a single alkylene group. Examples of "alkylenedioxy" include radicals methylenedioxy. ethylenedioxy. alkylsubstituted methylenedioxy, and arylsubstituted methylenedioxy. The term "haloalkylenedioxy" radicals denotes haloalkylene radicals having at least two oxy groups bonded to a single haloalkyl group. Examples of "haloalkylenedioxy" radicals include difluoromethylenedioxy, tetrafluoroethylenedioxy, tetrachloroethylenedioxy, alkylsubstituted monofluoromethylenedioxy, and arylsubstituted monofluoromethylenedioxy.

The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendant manner or may be fused. The term "fused" means that a second ring is present (ie, attached or formed) by having two adjacent atoms in common (ie, shared) with the first ring. The term "fused" is equivalent to the term "condensed". The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.

The term "perhaloaryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl wherein the aryl radical is substituted with 3 or more halo radicals as defined below.

The term "heterocyclyl" embraces saturated, partially saturated and unsaturated heteroatom-containing ring-shaped radicals having from 5 through 15 ring members selected from carbon, nitrogen, sulfur and oxygen, wherein at least one ring atom is a heteroatom. Heterocyclyl radicals may contain one, two or three rings wherein such rings may be attached in a pendant manner or may be fused. Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocylic group containing 1 to 4 nitrogen atoms[e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3

15

5

10

20

25

30

35

35) 10 by Charment and

10

15

20

25

30

35

nitrogen atoms [e.g. morpholinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. Examples of partially saturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran dihydrothiazole. Examples of unsaturated heterocyclic radicals, also termed "heteroaryl" radicals, include unsaturated 5 to 6 membered heteromonocyclyl group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolvl. isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo [1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, 2-furyl, 3-furyl, etc.; unsaturated 5 to 6-membered heteromonocyclic group containing a sulfur atom, for example, 2-thienyl, 3-thienyl, etc.; unsaturated 5- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 5 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4- thiadiazolyl, 1,3,4thiadiazolyl, 1,2,5-thiadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.] and the like. The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclyl" group may have 1 to 3 substituents as defined below. Preferred heterocyclic radicals include five to twelve membered fused or unfused radicals. Non-limiting examples of heterocyclic radicals include pyrrolyl, pyridinyl, pyridyloxy, pyrazolyl, triazolyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, imidazolyl, indolyl, thiophenyl, furanyl, tetrazolyl, 2pyrrolinyl, 3-pyrrolinyl, pyrrolindinyl, 1,3-dioxolanyl, 2-imidazolinyl, imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2,3oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, 2H-pyranyl, 4H-pyranyl,

piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, pyrazinyl, piperazinyl, 1,3,5-triazinyl, 1,3,5-trithianyl, benzo(b)thiophenyl, benzimidazoyl, quinolinyl, tetraazolyl, and the like.

The term "sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively divalent radicals -SO₂-. "Alkylsulfonyl", embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. "Alkylsulfonylalkyl", embraces alkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. "Haloalkylsulfonyl", embraces haloalkyl radicals attached to a sulfonyl radical, where haloalkyl is defined as above. "Haloalkylsulfonylalkyl", embraces haloalkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "aminosulfonyl" denotes an amino radical attached to a sulfonyl radical.

The term "sulfinyl", whether used alone or linked to other terms such as alkylsulfinyl, denotes respectively divalent radicals -S(O)-. "Alkylsulfinyl", embraces alkyl radicals attached to a sulfinyl radical, where alkyl is defined as above. "Alkylsulfinylalkyl", embraces alkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above. "Haloalkylsulfinyl", embraces haloalkyl radicals attached to a sulfinyl radical, where haloalkyl is defined as above. "Haloalkylsulfinylalkyl", embraces haloalkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aralkyl" embraces aryl-substituted alkyl radicals. Preferable aralkyl radicals are "lower aralkyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. Examples of such radicals include benzyl, diphenylmethyl, triphenylmethyl, phenylethyl and diphenylethyl. The terms benzyl and phenylmethyl are interchangeable.

The term "heteroaralkyl" embraces heteroaryl-substituted alkyl radicals wherein the heteroaralkyl radical may be additionally substituted with three or more substituents as defined above for aralkyl radicals. The term "perhaloaralkyl" embraces aryl-substituted alkyl radicals wherein the aralkyl radical is substituted with three or more halo radicals as defined above.

The term "aralkylsulfinyl", embraces aralkyl radicals attached to a sulfinyl radical, where aralkyl is defined as above. "Aralkylsulfinylalkyl", embraces aralkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aralkylsulfonyl", embraces aralkyl radicals attached to a sulfonyl radical, where aralkyl is defined as above. "Aralkylsulfonylalkyl",

20

25

30

35

5

10

10

15

20

25

30

35

embraces aralkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "cycloalkyl" embraces radicals having three to ten carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to seven carbon atoms. Examples include radicals such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "cycloalkylalkyl" embraces cycloalkyl-substituted alkyl radicals. Preferable cycloalkylalkyl radicals are "lower cycloalkylalkyl" radicals having cycloalkyl radicals attached to alkyl radicals having one to six carbon atoms. Examples of such radicals include cyclohexylhexyl. The term "cycloalkenyl" embraces radicals having three to ten carbon atoms and one or more carbon-carbon double bonds. Preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having three to seven carbon atoms. Examples include radicals such as cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl. The term "halocycloalkyl" embraces radicals wherein any one or more of the cycloalkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohalocycloalkyl, dihalocycloalkyl and polyhalocycloalkyl radicals. A monohalocycloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhalocycloalkyl radicals may have more than two of the same halo atoms or a combination of different halo radicals. More preferred halocycloalkyl radicals are "lower halocycloalkyl" radicals having three to about eight carbon atoms. Examples of such halocycloalkyl radicals include fluorocyclopropyl, difluorocyclobutyl, trifluorocyclopentyl, tetrafluorocyclohexyl, dichlorocyclopropyl. The term "halocycloalkenyl" embraces radicals wherein any one or more of the cycloalkenyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohalocycloalkenyl. dihalocycloalkenyl and polyhalocycloalkenyl radicals.

The term "cycloalkoxy" embraces cycloalkyl radicals attached to an oxy radical. Examples of such radicals includes cyclohexoxy and cyclopentoxy. The term "cycloalkoxyalkyl" also embraces alkyl radicals having one or more cycloalkoxy radicals attached to the alkyl radical, that is, to form monocycloalkoxyalkyl and dicycloalkoxyalkyl radicals. Examples of such radicals include cyclohexoxyethyl. The "cycloalkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "halocycloalkoxy" and "halocycloalkoxyalkyl" radicals.

The term "cycloalkylalkoxy" embraces cycloalkyl radicals attached to an alkoxy radical. Examples of such radicals includes cyclohexylmethoxy and cyclopentylmethoxy.

The term "cycloalkenyloxy" embraces cycloalkenyl radicals attached to an oxy radical. Examples of such radicals includes cyclohexenyloxy and cyclopentenyloxy. The term "cycloalkenyloxyalkyl" also embraces alkyl radicals having one or more cycloalkenyloxyalkyl radicals attached to the alkyl radical, that is, to form monocycloalkenyloxyalkyl and dicycloalkenyloxyalkyl radicals. Examples of such radicals include cyclohexenyloxyethyl. The "cycloalkenyloxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "halocycloalkenyloxy" and "halocycloalkenyloxyalkyl" radicals.

The term "cycloalkylenedioxy" radicals denotes cycloalkylene radicals having at least two oxygens bonded to a single cycloalkylene group. Examples of "alkylenedioxy" radicals include 1,2-dioxycyclohexylene.

The term "cycloalkylsulfinyl", embraces cycloalkyl radicals attached to a sulfinyl radical, where cycloalkyl is defined as above. "Cycloalkylsulfinylalkyl", embraces cycloalkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "Cycloalkylsulfonyl", embraces cycloalkyl radicals attached to a sulfonyl radical, where cycloalkyl is defined as above. "Cycloalkylsulfonylalkyl", embraces cycloalkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "cycloalkylalkanoyl" embraces radicals wherein one or more of the cycloalkyl carbon atoms are substituted with one or more carbonyl radicals as defined below. Specifically embraced are monocarbonylcycloalkyl and dicarbonylcycloalkyl radicals. Examples of monocarbonylcycloalkyl radicals include cyclohexylcarbonyl, cyclohexylacetyl, and cyclopentylcarbonyl. Examples of dicarbonylcycloalkyl radicals include 1,2-dicarbonylcyclohexane..

The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having one to six carbon atoms. An example of "lower alkylthio" is methylthio (CH₃-S-). The "alkylthio" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkylthio" radicals. Examples of such radicals include fluoromethylthio, chloromethylthio,

20

25

15

5

10

30

trifluoromethylthio, difluoromethylthio, trifluoroethylthio, fluoroethylthio, tetrafluoroethylthio, pentafluoroethylthio, and fluoropropylthio.

The term "alkyl aryl amino" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, and one aryl radical both attached to an amino radical. Examples include N-methyl-4-methoxyaniline, N-ethyl-4-methoxyaniline, and N-methyl-4-trifluoromethoxyaniline.

The terms alkylamino denotes "monoalkylamino" and "dialkylamino" containing one or two alkyl radicals, respectively, attached to an amino radical.

The terms arylamino denotes "monoarylamino" and "diarylamino" containing one or two aryl radicals, respectively, attached to an amino radical. Examples of such radicals include N-phenylamino and N-naphthylamino.

The term "aralkylamino", embraces aralkyl radicals attached to an amino radical, where aralkyl is defined as above. The term aralkylamino denotes "monoaralkylamino" and "diaralkylamino" containing one or two aralkyl radicals, respectively, attached to an amino radical. The term aralkylamino further denotes "monoaralkyl monoalkylamino" containing one aralkyl radical and one alkyl radical attached to an amino radical.

The term "arylsulfinyl" embraces radicals containing an aryl radical, as defined above, attached to a divalent S(=O) atom. The term "arylsulfinylalkyl" denotes arylsulfinyl radicals attached to a linear or branched alkyl radical, of one to ten carbon atoms.

The term "arylsulfonyl", embraces aryl radicals attached to a sulfonyl radical, where aryl is defined as above. "arylsulfonylalkyl", embraces arylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "heteroarylsulfinyl" embraces radicals containing an heteroaryl radical, as defined above, attached to a divalent S(=O) atom. The term "heteroarylsulfinylalkyl" denotes heteroarylsulfinyl radicals attached to a linear or branched alkyl radical, of one to ten carbon atoms. The term "Heteroarylsulfonyl", embraces heteroaryl radicals attached to a sulfonyl radical, where heteroaryl is defined as above. "Heteroarylsulfonylalkyl", embraces heteroarylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aryloxy" embraces aryl radicals, as defined above, attached to an oxygen atom. Examples of such radicals include phenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy, 3-chloro-4-ethylphenoxy, 3,4-dichlorophenoxy, 4-methylphenoxy, 3-trifluoromethylphenoxy, 4-fluorophenoxy, 3,4-dimethylphenoxy, 5-bromo-2-

15

5

10

20

25

30

fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-fluoro-3-methylphenoxy, 5,6,7,8-tetrahydronaphthyloxy, 3-isopropylphenoxy, 3-cyclopropylphenoxy, 3-ethylphenoxy, 4-*tert* -butylphenoxy, 3-pentafluoroethylphenoxy, and 3-(1,1,2,2-tetrafluoroethoxy)phenoxy.

The term "aroyl" embraces aryl radicals, as defined above, attached to an carbonyl radical as defined above. Examples of such radicals include benzoyl and toluoyl.

The term "aralkanoyl" embraces aralkyl radicals, as defined herein, attached to an carbonyl radical as defined above. Examples of such radicals include, for example, phenylacetyl.

The term "aralkoxy" embraces oxy-containing aralkyl radicals attached through an oxygen atom to other radicals. More preferred aralkoxy radicals are "lower aralkoxy" radicals having phenyl radicals attached to lower alkoxy radical as described above. Examples of such radicals include benzyloxy, 1-phenylethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethylbenzyloxy, 3,5-difluorobenyloxy, 3-bromobenzyloxy, 4-propylbenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, and 2-phenylethoxy.

The term "aryloxyalkyl" embraces aryloxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include phenoxymethyl.

The term "haloaryloxyalkyl" embraces aryloxyalkyl radicals, as defined above, wherein one to five halo radicals are attached to an aryloxy group.

The term "heteroaroyl" embraces heteroaryl radicals, as defined above, attached to an carbonyl radical as defined above. Examples of such radicals include furoyl and nicotinyl.

The term "heteroaralkanoyl" embraces heteroaralkyl radicals, as defined herein, attached to an carbonyl radical as defined above. Examples of such radicals include, for example, pyridylacetyl and furylbutyryl.

The term "heteroaralkoxy" embraces oxy-containing heteroaralkyl radicals attached through an oxygen atom to other radicals. More preferred heteroaralkoxy radicals are "lower heteroaralkoxy" radicals having heteroaryl radicals attached to lower alkoxy radical as described above.

The term "haloheteroaryloxyalkyl" embraces heteroaryloxyalkyl radicals, as defined above, wherein one to four halo radicals are attached to an heteroaryloxy group.

The term "heteroarylamino" embraces heterocyclyl radicals, as defined above, attached to an amino group. Examples of such radicals include pyridylamino.

20

25

30

35

5

10

10

15

20

25

30

35

The term "heteroarylaminoalkyl" embraces heteroarylamino radicals, as defined above, attached to an alkyl group. Examples of such radicals include pyridylmethylamino.

The term "heteroaryloxy" embraces heterocyclyl radicals, as defined above, attached to an oxy group. Examples of such radicals include 2-thiophenyloxy, 2-pyrimidyloxy, 2-pyridyloxy, 3-pyridyloxy, and 4-pyridyloxy.

The term "heteroaryloxyalkyl" embraces heteroaryloxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include 2-pyridyloxymethyl, 3-pyridyloxyethyl, and 4-pyridyloxymethyl.

The term "arylthio" embraces aryl radicals, as defined above, attached to an sulfur atom. Examples of such radicals include phenylthio.

The term "arylthioalkyl" embraces arylthio radicals, as defined above, attached to an alkyl group. Examples of such radicals include phenylthiomethyl.

The term "alkylthioalkyl" embraces alkylthio radicals, as defined above, attached to an alkyl group. Examples of such radicals include methylthiomethyl. The term "alkoxyalkyl" embraces alkoxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include methoxymethyl.

The term "carbonyl" denotes a carbon radical having two of the four covalent bonds shared with an oxygen atom. The term "carboxy" embraces a hydroxyl radical, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "carboxamide" embraces amino, monoalkylamino, dialkylamino, monocycloalkylamino, alkylcycloalkylamino, and dicycloalkylamino radicals, attached to one of two unshared bonds in a carbonyl group. The term "carboxamidoalkyl" embraces carboxamide radicals, as defined above, attached to an alkyl group. The term "carboxyalkyl" embraces a carboxy radical, as defined above, attached to an alkyl group. The term "carboalkoxy" embraces alkoxy radicals, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "carboaralkoxy" embraces aralkoxy radicals, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "monocarboalkoxyalkyl" embraces one carboalkoxy radical, as defined above, attached to an alkyl group. The term "dicarboalkoxyalkyl" embraces two carboalkoxy radicals, as defined above, attached to an alkylene group. The term "monocyanoalkyl" embraces one cyano radical, as defined above, attached to an alkyl group. The term "dicyanoalkylene" embraces two cyano radicals, as defined

10

15

20

25

above, attached to an alkyl group. The term "carboalkoxycyanoalkyl" embraces one cyano radical, as defined above, attached to an carboalkoxyalkyl group.

The term "acyl", alone or in combination, means a carbonyl or thionocarbonyl group bonded to a radical selected from, for example, hydrido, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, alkoxyalkyl, haloalkoxy, aryl, heterocyclyl, heteroaryl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkyl, cycloalkyl, cycloalkyl, delevolalkyl, cycloalkenyl, alkylthio, arylthio, amino, alkylamino, dialkylamino, aralkoxy, arylthio, and alkylthioalkyl. Examples of "acyl" are formyl, acetyl, benzoyl, trifluoroacetyl, phthaloyl, malonyl, nicotinyl, and the like. The term "haloalkanoyl" embraces one or more halo radicals, as defined herein, attached to an alkanoyl radical as defined above. Examples of such radicals include, for example, chloroacetyl, trifluoroacetyl, bromopropanoyl, and heptafluorobutanoyl. The term "diacyl", alone or in combination, means having two or more carbonyl or thionocarbonyl groups bonded to a radical selected from, for example, alkylene, alkenylene, alkynylene, haloalkylene, alkoxyalkylene, aryl, heterocyclyl, heteroaryl, aralkyl, cycloalkyl, cycloalkylalkyl, and cycloalkenyl. Examples of "diacyl" are phthaloyl, malonyl, succinyl, adipoyl, and the like.

The term "benzylidenyl" radical denotes substituted and unsubstituted benzyl groups having attachment points for two covalent bonds. One attachment point is through the methylene of the benzyl group with the other attachment point through an ortho carbon of the phenyl ring. The methylene group is designated for attached to the lowest numbered position. Examples include the base compound benzylidene of structure:

The term "phenoxylidenyl" radical denotes substituted and unsubstituted phenoxy groups having attachment points for two covalent bonds. One attachment point is through the oxy of the phenoxy group with the other attachment point through an ortho carbon of the phenyl ring. The oxy group is designated for

10

attached to the lowest numbered position. Examples include the base compound phenoxylidene of structure:

The term "phosphono" embraces a pentavalent phosphorus attached with two covalent bonds to an oxygen radical. The term "dialkoxyphosphono" denotes two alkoxy radicals, as defined above, attached to a phosphono radical with two covalent bonds. The term "diaralkoxyphosphono" denotes two aralkoxy radicals, as defined above, attached to a phosphono radical with two covalent bonds. The term "dialkoxyphosphonoalkyl" denotes dialkoxyphosphono radicals, as defined above, attached to an alkyl radical. The term "diaralkoxyphosphonoalkyl" denotes diaralkoxyphosphono radicals, as defined above, attached to an alkyl radical.

Said "alkyl", "alkenyl", "alkynyl", "alkanoyl", "alkylene", "alkenylene", "benzylidenyl", "phenoxylidenyl", "hydroxyalkyl", "haloalkyl", "haloalkylene", "haloalkenyl", "alkoxy", "alkenyloxy", "alkenyloxyalkyl", "alkoxyalkyl", "aryl", "perhaloaryl", "haloalkoxy", "haloalkoxyalkyl", "haloalkenyloxy", 15 "haloalkenyloxyalkyl", "alkylenedioxy", "haloalkylenedioxy", "heterocyclyl", "heteroaryl", "hydroxyhaloalkyl", "alkylsulfonyl", "haloalkylsulfonyl", "alkylsulfonylalkyl", "haloalkylsulfonylalkyl", "alkylsulfinyl", "alkylsulfinylalkyl", "haloalkylsulfinylalkyl", "aralkyl", "heteroaralkyl", 20 "perhaloaralkyl", "aralkylsulfonyl", "aralkylsulfonylalkyl", "aralkylsulfinyl", "aralkylsulfinylalkyl", "cycloalkyl", "cycloalkylalkanoyl", "cycloalkylalkyl", "cycloalkenyl", "halocycloalkyl", "halocycloalkenyl", "cycloalkylsulfinyl", "cycloalkylsulfinylalkyl", "cycloalkylsulfonyl", "cycloalkylsulfonylalkyl", "cycloalkoxy", "cycloalkoxyalkyl", "cycloalkylalkoxy", "cycloalkenyloxy", 25 "cycloalkenyloxyalkyl", "cycloalkylenedioxy", "halocycloalkoxy", "halocycloalkoxyalkyl", "halocycloalkenyloxy", "halocycloalkenyloxyalkyl", "alkylthio", "haloalkylthio", "alkylsulfinyl", "amino", "oxy", "thio", "alkylamino", "arylamino", "aralkylamino", "arylsulfinyl", "arylsulfinylalkyl", "arylsulfonyl", "arylsulfonylalkyl", "heteroarylsulfinyl", "heteroarylsulfinylalkyl",

2012 M. College Maries of the construction of the Maries Maries and College an

"heteroarylsulfonyl", "heteroarylsulfonylalkyl", "heteroarylamino", "heteroarylaminoalkyl", "heteroaryloxy", "heteroaryloxylalkyl", "aryloxy", "aroyl", "aralkanoyl", "aralkoxy", "aryloxyalkyl", "haloaryloxyalkyl",

"heteroaroyl", "heteroaralkanoyl", "heteroaralkoxy", "heteroaralkoxyalkyl",

- 5 "arylthio", "arylthioalkyl", "alkoxyalkyl", "acyl" and "diacyl" groups defined above may optionally have 1 to 5 non-hydrido substituents such as perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-
- N-alkylamino, heteroarylaminoalkyl, heteroaryloxy, heteroaryloxylalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxy, halocycloalkenyloxy, nitro,
- lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl,
 To mencellyl amidosulfonyl, ilkylsulfonamido, alkylaminosulfonyl, amidosulfonyl,
- 20 monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkyl, alkenyloxy, alkylenedioxy,
- 25 haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydroxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryloxy,
- 30 heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarbonyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl.

The term "spacer" can include a covalent bond and a linear moiety

having a backbone of 1 to 7 continous atoms. The spacer may have 1 to 7

PES O International district of the contract o

atoms of a univalent or multi-valent chain. Univalent chains may be constituted by a radical selected from =C(H)-, $=C(R_{17})$ -, -O-, -S-, -S(O)-,

$$-S(O)_{2}$$
-, -NH-, -N(R₁₇)-, -N=, -CH(OH)-, =C(OH)-, -CH(OR₁₇)-,

- = $C(OR_{17})$ -, and -C(O)- wherein R_{17} is selected from alkyl, alkenyl, alkynyl,
- aryl, heteroaryl, aralkyl, aryloxyalkyl, alkoxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, haloalkenyl, haloalkoxyalkyl, perhaloaralkyl, heteroarylalkyl, heteroarylthioalkyl, and heteroarylalkenyl. Multi-valent chains may consist of a straight chain of 1 or 2 or 3 or 4 or 5 or 6 or 7 atoms or a straight chain of 1 or 2 or 3 or 4 or 5 or 6 atoms with a side chain. The chain may be constituted
- or 2 or 3 or 4 or 5 or 6 atoms with a side chain. The chain may be constituted of one or more radicals selected from: lower alkylene, lower alkenyl, -O-, -O-CH₂-, -S-CH₂-, -CH₂CH₂-, ethenyl, -CH=CH(OH)-,

$$-OCF_2O_{-}$$
, $-O(CF_2)_2O_{-}$, $-S_{-}$, $-S(O)_{-}$, $-S(O)_2$ -, $-N(H)_{-}$, $-N(H)O_{-}$,

- 15 $-N(R_{17})O$ -, $-N(R_{17})$ -, -C(O)-, -C(O)NH-, $-C(O)NR_{17}$ -, -N=, $-OCH_2$ -,
 - $-{\rm SCH_{2^-}}, \, {\rm S(O)CH_{2^-}}, \, -{\rm CH_2C(O)}\text{-, -CH(OH)-, -C(OH)-, -CH(OR}_{17})\text{-,}$
 - = $C(OR_{17})$ -, $S(O)_2CH_2$ -, and - $NR_{17}CH_2$ and many other radicals defined above or generally known or ascertained by one of skill-in-the art. Side chains may include substituents such as 1 to 5 non-hydrido substituents such as
- 20 perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, heteroaryloxy, heteroaryloxylalkyl, haloalkylthio, alkanoyloxy, alkoxy,
- 25 alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkoxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio,
- 30 arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, heteroarylsulfinylalkyl,

25

30

35

heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido,

diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkenyl, alkenyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and

diaralkoxyphosphonoalkyl.

Chiral compounds of the present invention have a hydroxyl group substitutent on a chiral carbon of the alkanol and propanol compounds of the present invention specifically in the R-stereoisomeric configuration based on the Cahn-Ingold-Prelog convention for stereoisomeric carbon atoms. The Rstereoisomeric configuration compounds of the present invention may optionally have one or more additional chiral carbons present in each compound. The Rstereoisomeric configuration compounds of the present invention can exist in tautomeric, geometric, and other stereoisomeric forms. The present invention having a hydroxyl group substitutent on a chiral carbon of the alkanol and propanol compounds in the R-stereoisomeric configuration contemplates all such forms of said invented compounds, including cis- and trans-geometric isomers, E- and Zgeometric isomers, diastereomers, and other mixtures thereof, as falling within the scope of the invention. Pharmaceutically acceptable sales of such tautomeric. geometric or stereoisomeric forms are also included within the invention. The standard definitions for the Cahn-Ingold-Prelog convention and stereochemical system can be found in Pure Applied Chemistry, 1976, Vol. 45, pages 15-30 and Cahn et al., Angewandte Chemie International Edition English, 1966, Vol. 5, pages 385-415.

The terms "cis" and "trans" denote a form of geometric isomerism in which two carbon atoms connected by a double bond will each have a

10

15

20

25

30

35

hydrogen atom on the same side of the double bond ("cis") or on opposite sides of the double bond ("trans").

Some of the compounds described contain alkenyl groups, and are meant to include both cis and trans or "E" and "Z" geometric forms.

Some of the compounds described contain one or more stereocenters in addition to said hydroxyl group substitutent on a chiral carbon of the alkanol and propanol compounds in the R-stereoisomeric configuration and are meant to include R, S, and mixtures of R and S forms for each additional stereocenter present.

Some of the compounds described herein may contain one or more ketonic or aldehydic carbonyl groups or combinations thereof alone or as part of a heterocyclic ring system. Such carbonyl groups may exist in part or principally in the "keto" form and in part or principally as one or more "enol" forms of each aldehyde and ketone group present. Compounds of the present invention having aldehydic or ketonic carbonyl groups are meant to include both "keto" and "enol" tautomeric forms.

Some of the compounds described herein may contain one or more amide carbonyl groups or combinations thereof alone or as part of a heterocyclic ring system. Such carbonyl groups may exist in part or principally in the "keto" form and in part or principally as one or more "enol" forms of each amide group present. Compounds of the present invention having amidic carbonyl groups are meant to include both "keto" and "enol" tautomeric forms. Said amide carbonyl groups may be both oxo (C=O) and thiono (C=S) in type.

Some of the compounds described herein may contain one or more imine or enamine groups or combinations thereof. Such groups may exist in part or principally in the "imine" form and in part or principally as one or more "enamine" forms of each group present. Compounds of the present invention having said imine or enamine groups are meant to include both "imine" and "enamine" tautomeric forms.

The following general synthetic sequences are useful in making the present invention. Abbreviations used in the schemes are as follows: "AA" represents amino acids, "BINAP" represents 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, "Boc" represents tert-butyloxycarbonyl, "BOP" represents benzotriazol-1-yl-oxy-tris-(dimethylamino), "bu" represents butyl, "dba" represents dibenzylideneacetone, "DCC" represents 1,3-dicyclohexylcarbodiimide, "DIBAH" represents diisobutylaluminum hydride, "DIPEA" represents diisopropylethylamine, "DMF" represents

dimethylformamide, "DMSO" represents dimethylsulfoxide, "Fmoc" represents 9-fluorenylmethoxycarbonyl, "LDA" represents lithium diisopropylamide, "PHTH" represents a phthaloyl group, "pnZ" represents 4-nitrobenzyloxycarbonyl, "PTC" represents a phase transfer catalyst, "p-TsOH" represents paratoluenesulfonic acid, "TBAF" represents tetrabutylammonium fluoride, "TBTU" represents 2-(1H-benzotriozole-1-yl)-1,1,3,3-tetramethyl uronium tetrafluoroborate, "TEA" represents triethylamine, "TFA" represents trifluoroacetic acid, "THF" represents tetrahydrofuran, "TMS" represents trimethylsilyl, and "Z" represents benzyloxycarbonyl.

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a treatment and prophylaxis of coronary artery disease and other CETP-mediated disorders in a subject, comprising administering to the subject having such disorder a therapeutically-effective amount of a compound of Formula I-H:

$$R_{1}$$
 R_{2}
 R_{1}
 R_{1}

or a pharmaceutically-acceptable salt thereof, wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , X, Y, and Z are as defined above for the compounds of Formula I-H.

10

15

20

25

30

35

As a further embodiment, compounds of the present invention of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP or a pharmaceutically-acceptable salt thereof as defined above comprise a treatment and prophylaxis of coronary artery disease and other CETP-mediated disorders in a subject, comprising administering to the subject having such disorder a therapeutically-effective amount of compounds I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP of the present invention or a pharmaceutically-acceptable salt thereof.

Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP are capable of inhibiting activity of cholesteryl ester transfer protein (CETP), and thus could be used in the manufacture of a medicament, a method for the prophylactic or therapeutic treatment of diseases mediated by CETP, such as peripheral vascular disease, hyperlipidaemia, hypercholesterolemia, and other diseases attributable to either high LDL and low HDL or a combination of both, or a procedure to study the mechanism of action of the cholesteryl ester transfer protein (CETP) to enable the design of better inhibitors. The compounds of Formula I-H would be also useful in prevention of cerebral vascular accident (CVA) or stroke.

Also included in the family of compounds of Formula I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP are the pharmaceuticallyacceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I-H may be prepared from inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucoronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, phydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethylsulfonic, benzenesulfonic, sulfanilic, stearic, cyclohexylaminosulfonic, algenic, galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula V-H include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or

10

15

20

25

30

35

organic salts made from N,N'-dibenzylethyleneldiamine, choline, chloroprocaine, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procain. All of these salts may be prepared by conventional means from the corresponding compound of Formula I-H by reacting, for example, the appropriate acid or base with the compound of Formula I-H.

Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of Formula I-H in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

The amount of therapeutically active compounds which are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely.

The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 2000 mg, and preferably in the range of about 0.5 to 500 mg. A daily dose of about 0.01 to 100 mg/kg body weight, and preferably between about 0.5 and about 20 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

The compounds may be formulated in topical ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to

10

15

20

25

30

35

15% w/w. When formulated in an ointment, the active ingredients may be employed with either paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oilin-water cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogs. The compounds of this invention can also be administered by a transdermal device. Preferably topical administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. In either case, the active agent is delivered continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic

alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

The present invention further comprises a process for the preparation of (R)-chiral compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP by reacting suitable secondary amines with (R)-chiral forms of alcohols, epoxides, and cyclic sulfate esters.

The present invention also comprises a process for the preparation of (R)-chiral compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP by reacting a suitable secondary amine with a substantially stoichiometric amount of a (R)-chiral epoxide in the presence of a transition metal-based salt.

The present invention also comprises a process for the preparation of (R)-chiral precursor compounds useful in the preparation of compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-

15

5

10

20

30

25

35

11 State Michiganiana, 201

10

15

20

25

30

35

CP by reacting a suitable primary amine with a substantially stoichiometric amount of a (R)-chiral epoxide with or without the presence of an added transition metal-based compound.

All mentioned references are incorporated by reference as if here written.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

GENERAL SYNTHETIC PROCEDURES

The compounds of the present invention can be synthesized, for example, according to the following procedures of Schemes 1 through 58 below, wherein the substituents are as defined for Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP above except where further noted.

Synthetic Schemes 1 and 2 shows the preparation of compounds of formula XIII ("Generic Secondary Amines") which are intermediates in the preparation of the compounds of the present invention corresponding to Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") wherein A and Q are independently aryl and heteroaryl. Schemes 1 and 2, taken together, prepare 1-substitutedamino-2-alkanols of the present invention by addition of a halogenated, oxygen containing precursor to a secondary amine to introduce an oxy containing alkyl group wherein the two groups making up the secondary amine both are made up of aromatic groups or both groups contain aromatic rings wherein said aromatic rings maybe 0 to 2 aryl rings and 0 to 2 heteroaryl rings.

The "Generic Imine" corresponding to Formula XII can be prepared through dehydration techniques generally known in the art and the preferred technique depending on the nature of "Generic Amine-I" of Formula X by

30

35

reacting it with the "Generic Carbonyl Compound" of Formula XI. For example, when Z is a covalent bond, methylene, methine substituted with another substitutent, ethylene, or another substituent as defined in Formula I-H, the two reactants (X and XI) react by refluxing them in an aprotic solvent, such 5 as hexane, toluene, cyclohexane, benzene, and the like, using a Dean-Stark type trap to remove water. After about 2-8 hours or until the removal of water is complete, the aprotic solvent is removed in vacuo to yield the "Generic Imine" of Formula XII. Alternately, when Z is an oxygen, the "Generic Imine" is an oxime derivative. Oxime type "Generic Imine" compounds are readily 10 prepared from the corresponding O-substituted hydroxylamine and the appropriate aldehyde or ketone type "Generic Carbonyl Compound". Suitable procedures are described by Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons and by Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons, which are incorporated herein by reference. Alternately, when Z is a 15 nitrogen, the "Generic Imine" is a hydrazone derivative. Hydrazone type "Generic Imine" compounds are readily prepared from the corresponding hydrazine and the appropriate aldehyde or ketone type "Generic Carbonyl Compound". Suitable procedures for forming the hydrazone imines are also 20 described by Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and by Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons, which are incorporated herein by reference.

Scheme 1 shows the preparation of "Generic Imine" compounds in which the amine functionality is bonded to Z; Z is bonded to A; and Y is bonded to Q. One of skill in the art will recognize that A and Q as defined can be structurally interchanged to prepare "Generic Imine" compounds with similar, identical or different structures.

The "Generic Secondary Amines" of Formula XIII can be prepared from the corresponding "Generic Imine" of Formula XII in several ways.

For example, in one synthetic scheme (Reduction Method-1), which is preferred when Z is a nitrogen, the "Generic Imine" hydrazone of Formula XII is partially or completely dissolved in lower alkanols such as ethanol or like solvent containing sufficient organic acid such as acetic acid or mineral acid such as HCl or sulfuric acid to neutralize the hydrazone as described in WO Patent Application No.9738973, Swiss Patent CH 441366 and U. S. Patent Nos. 3359316 and 3334017, which are incorporated herein by reference. The

10

15

20

25

30

resulting mixture is then hydrogenated at 0-100°C, more preferrably 20-50°C, and most preferrably between 20-30°C and pressures of 10-200 psi hydrogen or more preferrably between 50-70 psi hydrogen in the presence of a noble metal catalyst such as PtO₂. The mixture is cooled, and a base such as sodium carbonate or sodium hydroxide added until the solution is neutral to just alkaline (pH 6-8).

Isolation of the desired product can be accomplished, for example, by removing the ethanol, adding water, and extracting the aqueous-organic mixture twice with a solvent, such as diethyl ether or methylene chloride, that is immiscible with water. The combined solvent extract is washed with saturated brine, dried with a drying agent such as anhydrous magnesium sulfate, and concentrated *in vacuo* to yield the "Generic Secondary Amines" hydrazine of Formula XIII. If needed the "Generic Secondary Amines" hydrazine can be further purified by crystallization, distillation at reduced pressure, or liquid chromatography.

In another synthetic scheme (Reduction Method-2), which is preferrred when Z is a single bond or carbon, the "Generic Imine" of Formula XII is slurried in a lower alcohol such as ethanol, methanol or like solvent at 0-10°C and solid sodium borohydride is added in batches over 5-10 minutes at 0-10°C with stirring. The reaction mixture is stirred below 10°C for 30-90 minutes and then is warmed gradually to 15-30°C. After about 1-10 hours, the mixture is cooled and acid is added until the aqueous layer was just acidic (pH 5-7).

Isolation of the desired product can be accomplished, for example, by extracting the aqueous layer twice with a solvent, such as diethyl ether or methylene chloride, that is immiscible with water. The combined solvent extract is washed with saturated brine, dried with a drying agent such as anhydrous MgSO4, and concentrated *in vacuo* to yield the "Generic Secondary Amines" amine, aniline, or amine of Formula XIII. If needed the "Generic Secondary Amines" amine, aniline, or amine derivative can be further purified by crystallization, distillation at reduced pressure, or liquid chromatography.

In yet another synthetic scheme (Reduction Method-3), which is preferrred when Z is an oxygen, the "Generic Imine" oxime of Formula XII is slurried in a lower alcohol solvent such methanol or like solvent at 0-10°C and

acidified to a pH less than 4. Solid sodium cyanoborohydride is added in batches over 30-90 minutes at 0-20°C with stirring and addition of a suitable organic or mineral acid to keep the pH at or below 4. The reaction mixture is stirred and warmed gradually to about 20-25°C. After about 1-10 hours, the mixture is cooled and base added until the mixture was just slightly alkaline.

Isolation of the desired product can be accomplished, for example, by removing the methanol or other low boiling solvent *in vacuo*. The residue is slurried with water and aqueous-organic mixture is extracted twice with a solvent, such as diethyl ether or methylene chloride, that is immiscible with water. The combined solvent extract is washed with saturated brine, dried with a drying agent such as anhydrous MgSO₄, and concentrated *in vacuo* to yield the "Generic Secondary Amines" hydroxylamine of Formula XIII. If needed the "Generic Secondary Amines" hydroxylamine can be further purified by crystallization, distillation at reduced pressure, or liquid chromatography.

The "Generic Secondary Amines" of Formula XIII can also be prepared, according to Scheme 1 by two alkylation procedures based on the nucleophilic substitution of bromides by amines. In one procedure, "Generic Amine-1" of Formula X is reacted with "Generic Bromide-1" of Formula XXII. In another alkylation procedure, "Generic Amine-2" of Formula XXII is reacted together with "Generic Bromide-2" of Formula XXIII.

In one synthetic alkylation scheme (Alkylation Method-1), a "Generic Amine-1" of Formula X is reacted with a "Generic Bromide-2" of Formula XXIII as described in Vogel's Textbook of Practical Organic Chemistry, Fifth Edition, 1989, pages 902 to 905 and references cited therein all of which are incorporated herein by reference. In this procedure, the "Generic Amine-1" is placed in a reaction vessel equipped with a reflux condenser with the capability to either cool or heat the vessel as dictated by the reaction. A suitable "Generic Amine-1" will be selected from primary amine and primary aromatic amine classes of compounds. Cooling may be needed and used should the reaction prove strongly exothermic. Heating may be needed and used to drive the reaction to completion. A suitable solvent may also be used to dissolve the "Generic Amine-1". Suitable solvents are hydrocarbons such as toluene, hexane, xylene, and cyclohexane, ethers, amides such as dimethylformamide, esters such as ethyl acetate, ketones such as acetone, and nitriles such as acetonitrile or mixtures of two or more of these solvents. A suitable base is

10

15

20

25

30

35

also added to the reaction vessel. Suitable bases include cesium carbonate, calcium carbonate, sodium carbonate and sodium bicarbonate. The base will normally be added in at least a stoichmetric quantity compared to the "Generic Amine-1" so as to neutralize liberated acid as it forms.

The "Generic Bromide-1" of Formula XXI is then added to the reaction vessel in portions so as to minimize the rate of heat evolution and minimize the concentration of the "Generic Bromide-1". The "Generic Bromide-1" will be selected from primary and secondary organic alkyl and substituted alkyl halide compounds. The halide will preferrably be a bromide although iodides and chlorides may also be generally used. One of skill in the art will also be able to readily select and utilize organic alkyl and substituted alkyl compounds containing readily displaceable primary and secondary groups such as tosylates, mesylates, triflates, and the like. Alternately, the halides can be generally prepared from the corresponding alcohols by reaction with, for example, concentrated hydrohalic acids such as HBr or by reaction with phosphorus trihalides such as PBr₃ as described in Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons, which are incorporated herein by reference. The appropriate alcohols can be converted to tosylates, mesylates, and triflates using procedures described below.

Addition of the "Generic Bromide-1" is carried out over a period of a few minutes to several hours at temperatures between 0 and 150 °C.

Preferrably, the addition will take 30-120 minutes at a temperature of 0 to 50 °C. The reaction can be stirred until completion. Completion can be monitored, for example, spectroscopically using nuclear magnetic resonance or chromatographically using thin layer, liquid, or gas chromatographic procedures. If the reaction does not proceed to completion, the reactants may be heated until completion is obtained and verified.

Isolation of the desired product can be accomplished, for example, when a water immiscible solvent was used for the reaction, by adding water to the finished reaction. Additional base such as sodium carbonate can be added to ensure the reaction is basic (pH of 9 to 11). The organic layer containing the "Generic Secondary Amine" is washed with saturated brine, dried with a drying agent such as anhydrous MgSO₄, and concentrated *in vacuo* to yield the "Generic Secondary Amine" amine, aniline, or amine of Formula XIII. If needed the "Generic Secondary Amine" amine, aniline, or amine derivative can

5

10

15

20

25

30

be further purified by crystallization, distillation at reduced pressure, or liquid chromatography.

In a second synthetic alkylation scheme (Alkylation Method-2), a "Generic Amine-2" of Formula XXII is reacted with a "Generic Bromide-2" of Formula XXIII in a method employing pallladium catalyzed carbon-nitrogen bond formation. Suitable procedures for this conversion are described in Wagaw and Buchwald, J. Org. Chem. (1996), 61, 7240-7241, Wolfe, Wagaw and Buchwald, J. Am. Chem. Soc. (1996), 118, 7215-7216, and Wolfe and Buchwald, Tetrahedron Letters (1997), 38(36), 6359-6362 and references cited therein all of which are incorporated herein by reference. The preferred "Generic Bromide-2" of Formula XXIII are generally aryl bromides, aryl triflates, and heteroaryl bromides.

The "Generic Amine-1" and "Generic Amine-2" amines, hydroxylamines, and hydrazines, the "Generic Carbonyl Compound" aldehydes, ketones, hydrazones, and oximes, and "Generic Bromide-1" and "Generic Bromide-2" halides, tosylates, mesylates, triflates, and precursor alcohols required to prepare the "Generic Secondary Amine" compounds are available from commercial sources, can be prepared by one skilled in the art from published procedures, and/or can be obtained using specific procedures shown in Schemes 42, 43, and 44. Commercial sources include but are not limited to Aldrich Chemical, TCI-America, Lancaster-Synthesis, Oakwood Products, Acros Organics, and Maybridge Chemical. Disclosed procedures for "Generic Amine" amines, hydroxylamines, and hydrazines include Sheradsky and Nov, J. Chem. Soc., Perkin Trans.1 (1980), (12), 2781-6; Marcoux, Doye, and Buchwald, J. Am. Chem. Soc. (1997), 119, 1053-9; Sternbach and Jamison, Tetrahedron Lett. (1981), 22(35), 3331-4; U. S. Patent No. 5306718; EP No. 314435; WO No. 9001874; WO No. 9002113; JP No. 05320117; WO No. 9738973; Swiss Patent No. CH 441366; U. S. Patents Nos. 3359316 and 3334017; and references cited therein which are incorporated herein by reference. Representative specific "Generic Secondary Amine" of Formula XIII compounds useful for the preparation of compounds of the present invention are listed in Tables 3, 4, and 5.

Table 3. Structure of "Secondary Phenyl Amine" Reagents.

$$R_5 \xrightarrow{R_7} H \xrightarrow{R_{10}} H_{11} \xrightarrow{\text{Secondary}} H_{11} \xrightarrow{\text{Raine}} H_{$$

R ₁₄	H	H	Ħ	н	н	Н
Ħ	СН	СН	СН	СН	СН	СН
R _{1.1}	Н	Н	Н	Н	Н	Н
R_{10}	O CF2CF2H	O CF2CF2H	O CF2CF2H	O CF ₂ CF ₂ H	OCF ₃	OCF3
R ₉	H	H	F	H	Ħ	H
R7	Н	Н	ഥ	Ħ	Ħ	H
R ₆	Н	Н	Н	Н	Н	Н
R5	phenoxy	OCF3	Н	Ħ	phenoxy	OCF3
R4	Н	Н	щ	H	H	Н
Reagent Number	NI	2N	3N	4N	5N	N9

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

R ₁₄	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	H
X	СН	CH	CH	CH	СН	CH	СН	СН	СН	СН	СН	СН
R ₁₁	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R ₁₀	OCF ₃	OCF ₃	OCF ₃	OCF3	CF ₃	CF ₃	CF ₃	OCF3	OCF3	CF ₃	OCF ₃	OCF3
R ₉	H	H	Н	Н	Ħ	H	E	E	H	H	H	H
$\frac{R_7}{}$	Н	Н	Н	Н	H	Н	H	H	H	H	H	Н
$\frac{R_6}{}$	phenyl	H	H	Н	ъ	Н	Н	Н	ഥ	Н	ᆔ	Н
R ₅	Н	phenyl	H	Br	CF ₃	СН3	CF_3	СН3	ш	Br	CF_3	н
1												
R ₄	Н	H	H	H	Н	Н	Н	Н	Н	Н	Н	Н

The state of the s

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

					_		_	_		_		
R ₁₄	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	НЭ	СН	СН	CH	СН	CH	CH	СН	СН	СН	СН	СН
R ₁₁	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R ₁₀	OCF3	CF ₃	CF ₃	CF ₃	phenoxy	CH ₃	СН3	CF ₃	CF_3	CF3	СН3	СН3
Rg	Н	Н	Н	Н	Н	H	Н	Н	Н	H	H	Н
$\frac{R_7}{}$	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н
$\frac{R_6}{}$	Н	Н	F	Н	Н	Q	F	Н	Н	осн3	ᅜ	Н
								I	I	Ö		
R ₅	Ü	ц	щ	a	F	CF ₃ (3		F		н	ОСН3
R ₄ R ₅	Н	Н	H		H F	CF ₃	$ m CF_3$	Н	Ŧ	Н		H OCH ₃

The state of the s

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

_															
	R ₁₄	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
*	Y	СН	CH	CH	СН	CH	СН	CH	СН	СН	СН	СН	СН	СН	СН
	R _{1.1}	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	R10	Н	Н	ш	CH3	Н	CH ₃	Н	3-CF ₃ -phenoxy	4-CH ₃ O-phenoxy	4-Cl-phenoxy	H	CH ₃	CH ₃	CH ₃
	R ₉	Н	Н	Н	Н	H	H	H	Н	H	H	Н	H	H	Н
	R7	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	ц	Н
	$\frac{R_6}{6}$	CH3	Н	Н	OCH ₃	H	СН3	D	Н	Н	H	Н	Н	Н	Н
-	R ₅	H	Q	щ	Н	H	Н	Н	ц	щ	H	щ	Ľ,	щ	Ц
	$\frac{R_4}{}$	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	ц
	Reagent Number	31N	32N	33N	34N	35N	36N	37N	38N	39N	40N	4IN	42N	43N	44 N

The first of the second of the

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

						_						
R ₁₄	H	н	Н	H	Н	Н	Н	H	н	H	Н	Н
X	CH	СН	HO	CH	CH	CH	CH	HO	HO	CH	CH	CH
R ₁₁	Н	Н	Н	Н	Н	Н	Н	Н	OCF ₃	OCF ₃	OCF ₃	CF_3
R ₁₀	CH ₃	CH ₃	CF ₃	ቪ	Ą	CH ₃	CF_3	CF ₃	Н	Н	Н	Н
R	H	H	H	H	H	H	H	H	Н	H	H	Ħ
$\frac{R_7}{}$	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н
R ₆	Н	Н	CH ₃	CH ₃	H	Н	H	СН3	Н	Н	Н	Н
R ₅	ם	СН3	Н	Н	CF3	CF3	осн3	Н	fxouayd	Н	ocF_3	CF3
R4	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н
Reagent Number	45N	46N	48N	51N	52N	53N	54N	26N	S7N	28N	29N	N09

The state of the s

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

	R ₁₄	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
>	₹	СН	СН	CH	Æ	CH	E	CH	CH	CH	CH	CH	СН
	R11	$^{ m CF}_3$	CF_3	$ ext{CF}_3$	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	phenyl	0 CF $_3$	CF3
	R10	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
ľ	<u>क्र</u>	H	H	H	H	Н	H	Н	Н	H	H	H	H
	$\frac{R_7}{}$	Н	Н	H	Ξ	Н	ц	H	H	H	H	H	Н
	R ₆	ОСН3	Н	Н	Н	Н	ш	Н	Н	ഥ	Н	Н	ш
	R ₅	Н	CH3	Ū	CF ₃	ц	īт	Br	ט	ш	Ц	СН3	Щ
	R4	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н
Doggent	Number	61N	62N	63N	64N	95N	N99	NL9	N89	N69	70N	71N	72N

The party of the state of the s

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

	R ₁₄	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
>	-	HO	HO	НЭ	нэ	НЭ	НЭ	CH	НЭ	НЭ	НЭ	CH	CH
	R ₁₁	$_{ m CH}_{ m 3}$	$_{ m CH}_{ m 3}$	$_{ m CH}_{ m 3}$	OCF_3	CH ₃	c_{H_3}	CH ₃	CF_3				
	$\frac{R_{10}}{}$	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
ľ	R ₉	Н	H	Н	H	H	Н	Ħ	Ħ	Н	H	H	H
	$\frac{R_7}{}$	Н	Н	Н	Н	Н	Н	H	Н	Ь	Н	H	Н
	$\frac{R_6}{}$	Н	Н	Н	Н	осн3	СН3	Н	Ľ	Н	Н	Н	СН3
	R ₅	Ü	ОСН3	ц	Н	Н	Н	CH ₃	ъ	Ā	Щ	CF ₃	Н
	R ₄	Н	Н	Н	щ	Н	Н	Н	H	Н	н	ഥ	Н
Descent	Number	73N	74N	75N	N9L	78N	N6L	N08	82N	83N	84N	85N	N98

Table 3. (continued) Structure of "Secondary Phenyl Amine" Reagents.

R_{14}	Н	Н	Н
$\underline{\mathtt{Y}}$	СН	CH	CH
R ₁₁	$_{ m CH}_{ m 3}$	$c_{\mathrm{H}3}$	CH3
$\frac{R_{1.0}}{}$	Н	Н	Н
Rg	Н	Н	H
$\frac{R_{7}}{}$	Н	Н	Н
$\frac{R_{6}}{}$	Н	CF ₃	ц
RS	CF3	Н	CF3
$\frac{R_4}{}$	Н	Н	Н
<u>Reagent</u> Number	N88	N06	92N

Table 4. Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent; R₄ and R₁₃ equal H).

Spacer Bond Points	R8+R9	R8+R9	R8+R14	none	none
Spacer	-0-	ı	=CH-	none	none
R12	OCF3	OCF3	Н	Ħ	Н
R11	Н	Н	Н	H	НО
R10	Н	Н	OCF3	C ₆ H ₅ O	НО
R9			H	Н	Ħ
R14	Н	Н		Н	Н
≽l	CH	СН	၁	СН	СН
R8				Н	Н
$\frac{R_7}{}$	Н	Н	Н	Н	H
$\frac{R_6}{}$	Н	Н	Н	НО	Н
R ₅	Br	OCF_3	Br	НО	C_6H_5O
Rgnt. No.	93N	94N	95N	N96	97N

The transfer and the same are t

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

R₄ and R₁₃ equal H).

			_								
Spacer Bond Points	none	none		none	none	none	none	none	none	none	none
Spacer	none	none		none	auou	əuou	none	auou	auou	auou	none
R ₁₂	Н	Н		Н	Н	Н	Н	Н	Н	Н	Н
R _{1.1}	Н	Н		Н	Н	Н	Н	Н	Н	Н	Н
R10	CF ₃	OCF3		OCF ₃	C ₆ H ₅ O	4-CI-C ₆ H ₄ O	4-CI-C ₆ H ₄ O	3,4-CI-C ₆ H ₃ O			
Rg	H	Ħ		Н	Н	H	H	Н	Н	Н	Н
R14	Н	Ħ		Н	Н	Н	H	Н	Н	Н	Н
×	CH	СН		CH	Œ	CH	E	CH	HJ	CH	CH
R ₈	Н	Н		Н	H	Н	H	H	H	Н	H
$\frac{R_7}{}$	Н	Н		Н	Н	Н	Н	Н	Н	H	Н
$\frac{R_6}{}$	Н	Н		Н	Н	Н	Н	C ₆ H ₅	Н	Н	Н
R ₅	3-pyridyl	N ₂ OS	(5113)2	SO ₂ CH ₃	C ₆ H ₅ O	CF30	C ₆ H ₅	Н	C ₆ H ₅ O	CF_3O	C ₆ H ₅ O
Rgnt. No.	N86	N66		100N	101N	102N	103N	104N	105N	106N	107N

The state of the s

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Pont			-				٢	٩	1	٩	Spacer Spacer	Spacer
No.	R ₅	% 	R ₇	* %	1	- K14 K9	<u>रू</u> ।	K10	W11	n12		Bond
		_										Points
108N	CF3O	Н	Н	Н	СН	Н	Н	3,4-CI-C ₆ H ₃ O	Н	Н	none	none
N601	CF ₃ O	Н	Н	Н	СН	Н	Н	3,5-CI-C ₆ H ₃ O		Н	none	none
110N	CF3O	Н	Н	Н	СН	Н	Н	3-СН30-	Н	Н	none	none
								C_6H_4O				
111N	CF3O	Н	Н	H	CH	Н	н	Н	3-CH ₃ O-	Н	none	none
									C_6H_4O			
112N	CF30	Н	Н	Н	НЭ	Н	Н	3-CF3-C ₆ H ₄ 0	Н	Н	none	none
113N	CF ₃ O	Н	Н	Н	ЮН	Н	Н	C_6H_5 - CH_2O	Н	Н	none	none
114N	CF ₃ O	Н	Н	Н	НЭ	Н	Н	C ₆ H ₅ -CH ₂ O	снзо	Н	none	none
115N	CF30	Н	Н	Н	СН	Н	Н	C ₆ H ₅ -CH ₂ O	C ₆ H ₅ -	н	none	none
									CH_2O			

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	none	none	none	none	none	none	none	none	none
Spacer	none	none	none	none	none	none	none	none	none
R ₁₂	Н	Н	Н	Н	Н	Н	Н	Н	Н
R11	H	Н	Н	Н	= OCH ₂ O	СН2СН20	СН3О	СН3О	ethoxy
R10	ethoxy	CH ₃ CO ₂	HOCH ₂ -		$R_{10}+R_{11}=OCH_{2}O$	R ₁₀ +R ₁₁ = OCH ₂ CH ₂ O	СН3О	ethoxy	ethoxy
Rg	Н	Н	H	Н	H	Н	Н	Н	H
R ₁₄	Н	Н	H	H	H	Н	H	Н	Н
ΣI	СН	CH	СН	СН	СН	CH	HJ	CH	CH
[™] 88	Н	Н	Н	Н	Н	Н	Н	Н	H
R ₇	H	H	Н	Ħ	Н	H	Н	Н	Н
R ₆	H	Н	H	Н	Н	Н	H	H	Н
R ₅	CF ₃ O	CF3O	CF30	CF30	CF3O	CF30	CF30	CF30	CF30
Rgnt. No.	116N	117N	118N	119N	120N	121N	122N	123N	124N

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

۶		f	ء	۵	Χ	٥	۵	D.,	B.,	P.	Spacer	Spacer
χ	ıoi	3	<u>\Z</u>	<u>%</u>		N14	21		7	7		Bond Points
CF	CF ₃ 0	Н	H	H	СН	Н	Н	CH ₃ CO ₂	CH ₃ CO ₂	Н	none	none
G.	CF ₃ 0	Н	Н	H	CH	Н	Н	СН3О	CH ₃ CO ₂	Н	none	none
ן אַ	CF30	H	Н	Н	СН	Н	Н	n-butoxy	Н	Н	none	none
l D	CF30	Н	Н	Н	CH	Н	Н	СН3О	Н	Н	none	none
ט	CF30	Н	Н	Н	СН	Н	Н	Н	снзо	Н	euou	none
כ	СН3О	Н	Н	Н	СН	Н	Н	СН3О	Н	Н	none	none
כו	СН3О	Н	Н	Н	НЭ	Н	Н	Н	cF_30	Н	auou	none
ט	CF30	Н	Н	Н	CH	Н	Н	Н	ethoxy	Н	auou	none
[ב	CF30	Н	H	Н	СН	Н	Н	Н	n-propoxy	Н	none	none
$c_{6}H_{5}$	C ₆ H ₅ -CH ₂ O	ж	Н	Н	СН	Н	Н	$_{ m CF_3O}$	Н	Н	auou	none
C ₆ H ₅	С ₆ Н5-СН2О	Н	Н	H	СН	Н	Н	C_6H_5O	Н	Н	none	none

The state was a second of the state of the s

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	none	none	none	none	none	none	none	none	none	none	none
Spacer	none	none	none	none	none	none	none	none	none	none	none
R12	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	Н
R _{1.1}	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R10	CF30	CF30	C ₆ H ₅ O	CF30	CF30	CF30	CF3O	CF30	CF30	CF30	CF30
Rg	H	H	H	Н	H	Н	н	Н	H	Н	H
R14	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н
×	CH	CH	HJ	H	СН	HJ	HJ	CH	HJ	HJ	HJ
R8	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R ₇	H	H	E	H	H	Н	Н	Н	СН30	Н	H
$\frac{R_6}{}$	Н	OCH ₂ O	OCH ₂ O	$R_5 + R_6 = OCH_2CH_2O$	СН3О	H ₂ CH ₂ CH ₂ O	сн30	C ₆ H ₅ O	СН3О	CF30	Benzyl
RS	ethoxy	$R_5 + R_6 = OCH_2O$	$R_5 + R_6 = OCH_2O$	$R_5+R_6=0$	CH30	$R_5 + R_6 = OCH_2CH_2CH_2O$	cyclo pentoxy	Н	СН3О	Н	Н
Rgnt. No.	136N	137N	138N	139N	140N	141N	142N	143N	144N	145N	146N

14 Carlo State 17 Carlo 18 Car

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	none	none	none	none	none	none	none	none	none	none	none
Spacer	none	none	none	none	none	none	none	none	auou	none	əuou
R12	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
R11	CH2CH20	Н	Н	Н	Н	Н	Н	CF3	CF3	CF_3	CF_3
R ₁₀	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCH}_2\text{CH}_2$	CF ₃	CF ₃	CF3	CF ₃	CF ₃	CF ₃	Н	Н	Н	Н
R9	H	H	H	H	Н	H	H	Н	Ħ	H	H
R14	Н	H	Н	Н	Н	H	Н	Н	Н	Н	Н
×	СН	СН	CH	СН	СН	CH	CH	СН	СН	CH	HJ
R ₈	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R ₇	H	Н	H	H	H	H	H	H	H	H	H
R6	Н	CF3O	H	Н	C ₆ H ₅	Н	OCF ₃	Н	Н	H	C ₆ H ₅
R ₅	C ₆ H ₅ O	H	C ₆ H ₅ O	C ₆ H ₅	Н	CN	Н	OCF ₃	C ₆ H ₅ 0	C ₆ H ₅	Н
Rgnt.	147N	148N	149N	150N	151N	152N	153N	154N	155N	156N	157N

The prices of the state water than the state of the state

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	əuou	əuou	əuou	auou		əuou	əuou	əuou	auou		none
Spacer	none	auou	auou	auou		auou	əuou	əuou	auou		none
R_{12}	Н	Н	Н	Н		Н	Н	Н	Н		Н
R ₁₁	CF3	CF_3	C_6H_5	Н		Н	Н	C ₆ H ₅	Н		Н
R10	Н	Н	Н	3-CF ₃ -	C_6H_5O	C ₆ H ₅ O	CF30	Н	3-CF ₃ -	c_{eH_50}	CF30
R	H	H	H	Н		Ħ	Н	Н	Н		H
R14	Н	Н	Н	Н		Н	Н	Н	Н		Н
×	CH	CH	СН	СН		H	СН	HJ	СН		СН
R8	Н	Н	Н	Н		Н	Н	Н	Н		Н
R	Н	Н	Н	Н		H	Н	H	Н		Н
R ₆	Н	Н	Н	Н		Н	Н	CF ₃	$ ext{CF}_3$		CF ₃
R ₅	CN	OCF ₃	CF ₃	CF3		CF ₃	CF ₃	Н	Н		Н
Rgnt.	158N	159N	160N	161N		162N	163N	164N	165N		166N

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent; R_4 and R_{13} equal H).

			2000000									ľ
Rgnt. No.	RS	$\frac{R_6}{}$	$\frac{R_7}{}$	R8	≻I	R14	Rg	R10	R _{1.1}	R ₁₂	Spacer	Spacer Bond
												Points
167N	Н	CF ₃	Н	Н	H	Н	H	C ₆ H ₅ O	Н	Н	none	none
168N	CF ₃	Н	CF3	Н	СН	H	H	CF30	Н	Н	none	none
169N	CF3	H	CF3	Н	Ħ	Ħ	Ħ	C ₆ H ₅ O	Н	Н	none	none
170N	CF3O	Н	Н	Н	CH	H	Ħ	CF ₃	H	CF_3	none	none
171N	C ₆ H ₅ O	Н	Н	Н	HJ	H	Н	CF ₃	Н	$^{\mathrm{CF}_3}$	none	none
172N	Н	C ₆ H ₅ O	Н	Н	СН	Н	Н	C ₆ H ₅ O	Н	Н	none	none
173N	Н	CF_3O	Н	Н	CH	H	Н	cF_30	Н	Н	əuou	none
174N	Н	CF30	Н	Н	Н	Н	H	Н	C ₆ H ₅ O	Н	none	none
175N	C ₆ H ₅ O	Н	Н	Н	H	Н	Ħ	Н	C ₆ H ₅ O	Н	none	none
176N	Н	C ₆ H ₅ O	Н	Н	H	Н	H	Н	0 CF $_3$	Н	none	none
177N	Н	C ₆ H ₅ O	Н	Н	H	H	H	Н	C ₆ H ₅ O	Н	none	none

The state of the s

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

			_	, -	_				-	,	
Spacer Bond Points	none	none	none	none	none	none		none	none	none	
Spacer	none	none	none	none	none	none		none	none	none	
R ₁₂	Н	Н	Н	H	Н	Н		Н	Н	Н	
R ₁₁	CN	H	Н	NO2	SO,CH3	2- NO ₂ -4-	$CI-C_6H_3O$	Н	Н	H	
$\frac{R_{10}}{}$	Н	CN	NO ₂	H	Н	Н		4-CI-C ₆ H ₄ O	3,4-CI-C ₆ H ₃ O	3-CF3 -	C_6H_3O
R ₉	Н	Н	Н	Н	Н	Н		Н	F	Ħ	
R14	Н	Н	Н	H	H	H		Н	H	н	
H	СН	CH	HJ	CH	CH	HJ.		СН	НЭ	H	
R ₈	Н	Н	Н	Н	Н	H		Н	Н	H	
R7	Н	Н	Н	H	Н	Н		H	Н	Н	
$\frac{R_6}{}$	H	Н	Н	Н	Н	Н		Н	Н	Н	
R ₅	C ₆ H ₅ O	C_6H_5O		C ₆ H ₅ O	C_6H_50	C ₆ H ₅ O					
Rent. No.	178N	N6/1	180N	181N	182N	183N	,	184N	185N	186N	

The state of the s

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond	Points	none	none	none	none		none		none	none	none	none
Spacer		none	none	none	none		none		none	none	none	none
$\frac{R_{12}}{}$		Н	Н	Н	H		H		Н	Н	Н	Н
R ₁₁		H	CH_3O	CO_2CH_3	Н		Н		Н	Н	Н	Н
$\frac{R_{10}}{}$		3,5-CI-C ₆ H ₃ O	Н	Н	3-CH ₃ O	C_6H_5O	4-CH ₃ O	C_6H_5O	СО2СН3	OCF3	OCF3	OCF3
<u>R9</u>		Н	Н	Н	Н		Н		Н	Н	H	Н
R14		Н	Н	Н	Н		Н		Н	Н	Н	Н
X		СН	СН	СН	СН		СН		СН	CH	CH	СН
R ₈		Н	Н	Н	Н		Н		Н	Н	Н	Н
$\frac{R_7}{}$		Н	Н	Н	Н		Н		Н	H	H	Н
R ₆		H	Ш	H	Н		Н		H	H	Н	CN
R ₅	•	C ₆ H ₅ O	C ₆ H ₅ O	C ₆ H ₅ O	C ₆ H ₅ O		C ₆ H ₅ O		C ₆ H ₅ O	CN	NO2	H
Rgnt. No.		187N	188N	189N	190N		191N		193N	194N	195N	196N

A DESCRIPTION OF STREET STREET, STREET STREET, STREET STREET, STREET,

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

R4 and R13 equal H).

Spacer Bond Points	none	none	none	none		none		none		none	none	
Spacer	none	none	none	none		none		none		none	none	
R ₁₂	Н	Н	Н	Н		Н		Н		Н	Н	
R ₁₁	Н	Н	Н	Н		Н		Н		Н	Н	
R10	OCF ₃	OCF ₃	OCF3	OCF3		0 CF $_3$		0 CF $_3$		OCF3	OCF ₃	
Rg	Н	H	Н	Ħ		Н		Н		Н	Н	
R ₁₄	Н	Н	Н	H		Н		H		Н	Н	
M	СН	CH	CH	СН		СН		CH		CH	CH	
R ₈	H	Н	Н	H		Н		Н		H	Н	
$\frac{R_7}{}$	Н	H	Н	Н		Н		H		H	H	
$\frac{R_6}{}$	NO ₂	H	SO ₂ CH ₃	4-F-C ₆ H ₅	SO_2	Н		SO ₂ N	$(CH_3)_2$	CONH2	CONH-	c_{6} H5
R ₅	Н	SO ₂ CH ₃	Н	Н		SO ₂ N	(CH ₃) ₂	н		Н	Н	
Rgnt. No.	N261	N86I	N661	200N		201N		202N		203N	204N	

The party of the p

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

R4 and R13 equal H).

13 to 12	0	a	. I	6)		<u>.</u>	٥	o		8	
Spacer Bond Points	none	none	none	none		none	none	none	none	none	
Spacer	none	none	none	none		none	none	none	none	none	
R12	Н	Н	Н	Ħ		Н	H	Н	Н	Η	
R11	Н	Н	Н	Н		Н	Н	Н	Н	Н	
R ₁₀	OCF ₃	OCF ₃	C ₆ H ₅ O	CF30		CF_3O	CF_3O	CF_3O	CF_3O	CF ₃ O	
Rg	E	H	Н	Н		Н	Н	Н	Н	Н	
R ₁₄	Н	H	Н	H		Н	Н	Н	Н	Н	
×	СН	CH	CH	CH		CH	СН	CH	CH	CH	
R ₈	Н	H	H	Н		H	H	H	H	Н	
$\frac{R_7}{}$	Н	Н	Н	H		Н	Н	Н	Н	H	
$\frac{R_6}{}$	CO ₂ CH ₃	CO ₂ C ₄ H ₉	4-CI-C ₆ H ₅	4- CF ₃ 0-	c_{6} H5	Н	Н	4-F-C ₆ H ₅	4-CN-C ₆ H ₅	4-C ₆ H ₅ -	$C_{6}H_{5}$
RS	Н	Н	Н	Н		4- F-C ₆ H ₄ O	C ₆ F ₅ O	Н	Н	Н	
Rgnt.	205N	206N	207N	208N		209N	210N	211N	212N	213N	

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

R₄ and R₁₃ equal H).

Spacer Bond	Points	попе	none	none	none				none	попе	none
Spacer	oucu	попе	auou	none	none				none	none	none
R ₁₂	П	G	Н	Н	Н				Н	Н	Н
R ₁₁	h	п	Н	CN	Н				C ₆ H ₅	H	Н
R ₁₀		$^{ m CF_3O}$	NO ₂	Н	CF ₃	•			Н	CF3	щ
8 <u> </u>		G	Н	H	H				H	H	H
R ₁₄		СН3	СН3	CH3	ب	$^{\mathrm{CF}_3}$	Сен	5	C ₆ H	С ₆ Н 5	СН3
×		5	CH	H	CH				Ħ	CH	СН
R ₈	Д	4	Н	H	Н				H	н	Н
$\frac{R_7}{}$	n	G	Н	H	Н				Н	Н	Н
$\frac{R_6}{}$	17	п	Н	Н	Н				Н	Н	Н
R ₅		C_6H_5O	C ₆ H ₅ O	C ₆ H ₅ O	C ₆ H ₅ O				C ₆ H ₅ O	C ₆ H ₅ O	C ₆ H ₅ O
Rgnt. No.	214N	VI+I7	215N	216N	217N				218N	219N	220N

THE STATE OF THE S

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	none	none	none	none	none	none
Spacer	none	none	none	none	none	none
R ₁₂	H	Н	Н	Н	Н	Н
R ₁₁	Н	Н	Н	Н	Н	Н
R10	Н	CF ₃ O	CF ₃ O	OCF2CF2H	OCF2CF2H	OCF2CF2H
R)	Н	Ħ	Ħ	H	Н	Н
- R ₁₄	CF_3	H	H	Н	Н	Н
H	СН	Ħ	Ħ	CH	СН	СН
R8	H	н	H	H	H	Н
R ₇	Н	Н	H	Н	Н	Н
Re	Н		ă (Н	Н	Н
R ₅	C ₆ H ₅ O	bond to -0- of R ₆ aryl group	to CH ₂ of R ₆ aryl group	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0
Rgnt. No.	221N	222N	223N	224N	225N	226N

A STATE OF THE STA

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R_{15} substituent;

	,										
Spacer Bond Points	none	none	none	none	none	none	none	none	none	none	
Spacer	none	none	none	none	none	none	none	none	none	none	
R ₁₂	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	
R11	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	_
R10	OCF ₂ CF ₂ H	OCF2CF2H	OCF2CF2H	OCF2CF2H	OCF ₂ CF ₂ H	OCF2CF2H	OCF2CF3	OCF ₂ CF ₃	OCF2CF3	OCF ₂ CF ₃	,
Rg	Н	Н	Н	Н	Н	H	Н	Н	Н	H	
R14	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	
X	CH	СН	СН	СН	CH	СН	СН	СН	СН	СН	
R ₈	Н	Н	Н	Н	lП		Н	Н	Н	Н	
R ₇	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	
$\frac{R_6}{}$	Н	C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н	Н	
	3,4-Cl- C ₆ H ₅ O	Н	Н	Н	Н	4-Br-C ₆ H ₅ 0	c_{6} H $_{5}$ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0	3,4-CI-	C ₆ H ₅ O
Rgnt. No.	227N	228N	229N	230N	231N	232N	233N	234N	235N	236N	

THE RESIDENCE AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS OF THE PA

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent; R_4 and R_{13} equal H).

Spacer Bond	Points	none	none	none	none	none	none	none	none	none	none	none
Spacer		none	auou	none	none	none	none	none	none	none	none	none
R ₁₂		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R ₁₁		Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
R10		OCF ₂ CF ₃	OCF2CF3	OCF2CF3	OCF2CF3	OCF2CF3	OCCI2CCI2H	OCCI2CCI2H	OCCI ₂ CCI ₂ H	OCCI2CCI2H	OCCI ₂ CCI ₂ H	OCCI,CCI,H
R ₉		Н	Н	Ħ	Н	Н	Н	H	Н	H	Н	H
R14		Н	Н	Н	Н	Н	Н	Н	Н	Н	Ħ	H
X		СН	СН	СН	HJ	HO	CH	CH	CH	CH	СН	H
% 8		H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R		Н	Н	Н	H	Н	Н	н	Н	н	H	H
$\frac{R_6}{}$		C ₆ H ₅	4CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н	Н	C ₆ H ₅	4-CI-C _k H _s
R _S		Н	Н	H	Н	4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0	3,4-Cl- C ₆ H ₅ O	Н	Н
Rgnt. No.		237N	238N	239N	240N	241N	242N	243N	244N	245N	246N	247N

The latter was a second of the latter from the

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer	Bond Points	none	none	əuou	auou	əuou	əuou	none		əuou	əuou	əuou	none
Spacer		none	auou	auou	none	auou	auou	none		auou	auou	auou	none
R1,	7	Н	Н	Н	Н	Н	Н	Н		H	Н	Н	H
R11		H	Н	Н	Н	Н	Н	Н		Н	Н	Н	Н
Rin	91	OCCI2CCI2H	OCCI2CCI2H	OCCI2CCI2H	OCCI ₂ CCI ₃	OCCI ₂ CCI ₃	OCCI ₂ CCI ₃	OCCI ₂ CCI ₃		OCCI ₂ CCI ₃	OCCI ₂ CCI ₃	OCCI ₂ CCI ₃	OCCI,CCI,
R		Н	Ħ	H	Н	Н	Н	Н		Н	Н	Н	Н
R, 4	14	Н	H	H	Н	Н	Н	Н		H	Н	Н	Н
X		СН	СН	СН	НЭ	СН	НЭ	СН		СН	CH	СН	СН
Ro	<u> </u>	E	H	E	Н	Н	H	Н		Н	Н	Н	Н
<u>*</u>	il	Н	Н	Н	Н	Н	Н	Н		Н	Н	Н	Н
R,	<u>-</u>	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н	Н		C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H5
Z.		Н	Н	4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ O	3,4-CI-	c_{6} H $_{5}$ O	Н	Н	Н	Н
Rgnt.	N0.	248N	249N	250N	251N	252N	253N	254N		255N	256N	257N	258N

The parties of the pa

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

	S	٥	_o	.	e	e		e	e e	e e	e e	e	9
	Points	none	none	none	none	none		none	none	none	none	none	none
Spacer		none	none	none	none	none		none	none	none	none	none	none
R ₁₂		Н	Н	H	Н	Н		Н	Н	Н	Н	Н	н
$\frac{R_{11}}{}$		Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н
R10		OCC1 ₂ CC1 ₃	OCCI ₂ CF ₃	OCCI ₂ CF ₃	OCCI ₂ CF ₃	OCCI ₂ CF ₃		OCCI ₂ CF ₃	OCCI ₂ CF ₃	OCCI ₂ CF ₃	OCCI ₂ CF ₃	$occl_2CF_3$	OCF ₂ CCl ₃
Rg		H	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н
R14		Н	Н	Н	Н	H		Н	Н	Н	Н	Н	Н
X		нэ	НЭ	СН	СН	СН		СН	СН	CH	СН	СН	СН
$\frac{R_8}{}$		н	Н	H	H	Н		H	Н	H	Н	Н	H
$\frac{R_7}{}$		Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н
$\frac{R_6}{}$		Н	Н	Н	Н	Н		C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н
R ₅		4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ O	3,4-CI-	$c_{6}H_{5}O$	Н	Н	Н	Н	4-Br-C ₆ H ₅ O	C ₆ H ₅ O
Rgnt. No.		259N	260N	261N	262N	263N		264N	265N	266N	267N	268N	269N

15. Table 1 15. Ta

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

							, _	_			_		
Spacer Bond	Points	none	none	none		none	none	none	none	none	none	none	none
Spacer		none	none	none		none	none	none	none	none	none	none	none
R ₁₂	1	H	Н	Н		Н	Н	Н	Н	Н	H	Н	Н
R ₁₁	į	=	Н	Н		Н	H	Н	Н	Н	OCF2CF2H	OCF2CF2H	OCF ₂ CF ₂ H
R10		OCF2CCl ₃	OCF ₂ CCl ₃	OCF ₂ CCl ₃	1	OCF ₂ CCl ₃	OCF ₂ CCl ₃	OCF ₂ CCl ₃	OCF ₂ CCl ₃	OCF ₂ CCl ₃	ОСЕ2СЕ2Н	OCF ₂ CF ₂ H	ОСР2СР2Н
R9	į	н	Н	Н		H	Н	Н	Н	Н	H	Н	Ħ
R14	1	н	Н	Н		Н	Н	Н	Н	Н	Н	Н	Н
≻l		CH	CH	CH		CH	CH	CH	СН	СН	CH	CH	CH
8 8	i	Н	Н	Н		Н	Н	H	Н	Н	Н	H	H
$\frac{R_7}{}$		H	Е	Н		Н	Н	Н	Н	Н	Н	Н	Н
$\frac{R_6}{}$		Н	Н	Н		C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н
R _S		4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ O	3,4-CI-	C_6H_5O	Н	Н	Н	Н	4-Br-C ₆ H ₅ 0	C_6H_5O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0
Rgnt. No.		270N	271N	272N		273N	274N	275N	276N	277N	278N	279N	280N

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R_{15} substituent;

		,		,						
Spacer Bond Points	none	none	none	none	none	none	none	none	none	none
Spacer	none	none	none	none	none	none	none	none	none	none
R12	Н	Н	Н	Н	Н	Н	Н	Н	H	Н
R ₁₁	OCF ₂ CF ₂ H	OCF2CF2H	OCF ₂ CF ₂ H	OCF2CF2H	OCF ₂ CF ₂ H	OCF ₂ CF ₂ H	OCF ₃	OCF ₃	OCF ₃	OCF3
R10	OCF2CF2H	OCF2CF2H	OCF ₂ CF ₂ H	OCF ₃	OCF ₃	OCF ₃	OCF3			
^R	Н	H	Н	Н	Н	Н	Н	Н	H	Н
R ₁₄	Н	H	H	Н	Н	Н	Н	Н	Н	Н
×	СН	СН	НЭ	CH	HO	HJ	СН	СН	СН	CH
R8	Н	Н	H	Н	Н	Н	Н	Н	Н	Н
$\frac{R_{7}}{}$	Н	H	H	Н	Н	Н	Н	Н	Н	Н
R ₆	Н	C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н	Н
R _S	3,4-Cl- C ₆ H ₅ O	Н	Н	Н	Н	4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ O	3,4-Cl- C ₆ H ₅ 0
Rgnt. No.	281N	282N	283N	284N	285N	286N	287N	288N	289N	290N

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

			,			,					
Spacer Bond Points	none	none	none	none	none	none	none	none	none	none	none
Spacer	none	none	none	none	none	none	none	none	none	none	none
R ₁₂	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н
R ₁₁	OCF ₃	OCF ₃	OCF ₃	OCF ₃	OCF ₃	OCF ₂ H	OCF2H	OCF2H	осғ ₂ н	OCF ₂ H	OCF ₂ H
R10	OCF ₃	OCF ₃	OCF ₃	OCF ₃	OCF ₃	OCF2H	ОСР2Н	ОСЕ2Н	осғ2н	OCF ₂ H	OCF2H
Rg	Н	Н	H	Н	H	H	Н	H	H	H	H
R14	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н
×	HJ	СН	H	HJ	HJ	HJ	CH	HJ	H	СН	HJ
R ₈	Н	н	Н	Н	Н	Н	Н	Н	H	Ħ	Н
$\frac{R_7}{2}$	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н
$\frac{R_{6}}{}$	C ₆ H ₅	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н	Н	Н	н	C ₆ H ₅	4-CI-C ₆ H ₅
RS	Н	Н	Н	Н	4-Br-C ₆ H ₅ 0	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0	3,4-Cl- C ₆ H ₅ O	H	H
Rgnt. No.	291N	NZ6Z	293N	294N	295N	296N	297N	Z98N	299N	300N	301N

The state of the s

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent; R_4 and R_{13} equal H).

_		,											
Spacer	Bond Points	none	none	none	none	none	none	none		none	none	none	none
Spacer	Space	none	none	none	none	none	none	none		none	none	none	none
	R ₁₂	H	H	Н	Н	Н	Н	H		H	H	Н	H
	$\frac{R_{11}}{}$	OCF ₂ H	OCF ₂ H	OCF2H	OCF2CF2O	OCF2CF2O	OCF2CF2O	OCECE	27-27-2	OCF2CF20	OCF2CF20	CF2CF20	CF2CF20
	$\frac{R_{10}}{}$	OCF ₂ H	OCF ₂ H	OCF ₂ H	$R_{10}+R_{11}=OCF_2CF_2O$	R ₁₀ +R ₁₁ = OCF ₂ CF ₂ O	$R_{10}+R_{11}=OCF_2CF_2O$	R1 n+R1 1= OCE1CE2O	1101-	R ₁₀ +R ₁₁ = OCF ₂ CF ₂ O	R ₁₀ +R ₁₁ = OCF ₂ CF ₂ O	R ₁₀ +R ₁₁ = OCF ₂ CF ₂ O	R ₁₀ +R ₁₁ = OCF ₂ CF ₂ O
	જ <u>ી</u>	Н	Н	H	Н	Н	Н	H		Н	Н	H	H
	R14	Н	Н	Н	Н	H	Н	F		H	H	H	H
	4	СН	СН	СН	НЭ	CH	СН	СН		HJ	H	H	HD
	8 8	Н	Н	H	Н	Н	H	Н		Н	Н	Н	Н
	R ₇	Н	Н	Н	Н	Н	Н	Н		Н	H	Н	H
	%	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	H	Н	Н	Н	Н		C_6H_5	4-CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅
	쬤	Н	Н	4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ 0	3,4-Cl-	C_6H_5O	Н	Н	Н	Н
Rønt.	N0.	302N	303N	304N	305N	306N	307N	308N		309N	310N	311N	312N

The first term of the state of

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond	<u>Points</u>	none	none	auou	none	none		none	none	none	none	none	none
<u>Spacer</u>		none	auou	auou	none	none		none	none	none	none	none	none
R ₁₂		Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н
R ₁₁		CF2CF2O	CC12CC120	2C122C12O	2C12CC120	3C12CC120		CC12CC120	2C12CC120	CCI2CCI2O	CCI2CCI2O	CC12CC120	Н
R10		$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCF}_2 \text{CF}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \mathrm{OCCI}_2\mathrm{CCI}_2\mathrm{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$		$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCl}_2 \text{CCl}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	$\mathbf{R}_{10} + \mathbf{R}_{11} = \text{OCCI}_2 \text{CCI}_2 \text{O}$	ЮН
Rg		Н	Н	Н	Н	Н		H	Н	Н	Н	Н	H
R14		Н	Н	Н	Н	H		Н	Н	Н	Н	Н	H
×		CH	CH	CH	CH	CH		НЭ	СН	СН	CH	СН	HJ
<u>%</u>		H	H	H	H	H		Н	Н	Н	Н	Н	H
R ₇		Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н
R ₆		Н	Н	Н	Н	Н		C ₆ H ₅	4CI-C ₆ H ₅	4-F-C ₆ H ₅	4-Br-C ₆ H ₅	Н	Н
RS		4-Br-C ₆ H ₅ O	C ₆ H ₅ O	4-CI-C ₆ H ₅ O	4-F-C ₆ H ₅ O	3,4-Cl-	C ₆ H ₅ O	Н	Н	Н	Н	4-Br-C ₆ H ₅ O	Н
Rgnt. No.		313N	314N	315N	316N	317N		318N	N618	320N	321N	322N	323N

THE RESIDENCE OF THE PARTY OF T

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Rant				L	>						Grana	Sec. 3
	8 	R	R/	% %	-	R14	Rg	R10	R ₁₁	R12	Space	Bond
												Points
	Н	Н	Н	Н	CH	Н	H	НО	НО	Н	none	none
	Н	Н	н	Н	CH	Н	Н	Н	НО	Н	none	none
	Н	Н	Н	Н	НЭ	Н	Н	OCH ₂ CF ₃	Н	Н	none	none
	Н	Н	Н	Н	HJ	Н	Н	Н	OCH ₂ CF ₃	Н	none	none
	Н	Н	Н	Н	HЭ	Н	H	OCH ₂ CF ₂ CF ₃	H	Н	none	none
	Н	Н	Н	Н	СН	Н	H	OCH ₂ CH ₂ CF ₃	H	Н	none	none
	Н	Н	Н	Н	СН	Н	Н	OCH(CF ₃) ₃	Н	Н	none	none
	Н	4-F-C ₆ H ₅ O	Н	Н	СН	H	H	Н	Н	Н	none	none
4	4-F-C ₆ H ₅ O	Н	Н	Н	СН	H	Н	Ŧ	Н	H	none	none
	Н	cyclo- hexoxy	Н	Н	НЭ	Н	H	Н	Н	Н	none	none
ا.ن ا	cyclo-hexoxy	Н	Н	Н	НЭ	H	Н	Н	Н	Н	none	none
	Н	C(CH ₃) ₃	Н	Н	НЭ	H	Н	Н	Н	Н	none	none

Table 4. (continued) Structure of "Secondary Phenyl Amine" Reagents (Z is covalent bond; there is no R₁₅ substituent;

Spacer Bond Points	none
Spacer	none
R ₁₂	Н
R11 R12	bond to indicated phenyl carbon of R ₁₀ subst.
R10	
R _g	H
R ₁₄	Н
H	СН
R8	Н
$\frac{R_7}{}$	Н
$\frac{R_6}{}$	Щ
R ₅	·
Rgnt.	330N

Table 5. Structure of "Secondary Phenyl Amine" Reagents (Y and Z each equal CH; R_7 , R_8 , R_{12} , R_{13} , R_{14} , and R_{15} each equal H).

Reagent Number	<u>R4</u>	<u>R5</u>	<u>R6</u>	<u>R9</u>	R ₁₀	<u>R₁₁</u>
1DB	Н	OCF ₃	Н	Н	OCF ₃	Н
2DB	Н	Cl	Н	Н	Н	CF ₃
3DB	Н	Br	H	Н	OCF ₃	Н
4DB	Н	Cl	Н	Н	OCF ₃	Н
5DB	Н	Cl	Н	Н	CF ₃	Н
6DB	Н	H	Cl	Н	CF ₃	Н
7DB	Н	F	Н	Н	OCF ₃	Н
8DB	H	Н	Cl	Н	Н	CF ₃
9DB	Н	F	Н	Н	Н	CF ₃
10DB	Н	Н	F	Н	Н	CF ₃
11DB	F	Н	Н	Н	Н	CF ₃
12DB	Н	Cl	Н	CF ₃	Н	Н
13DB	Н	Н	CI	CF ₃	Н	Н
14DB	Cl	H	Н	CF ₃	Н	Н
15DB	H	F	Н	СН3	Н	H
16DB	Н	Н	F	Н	Н	СН3
17DB	Н	F	Н	Н	СН3	Н
18DB	F	Н	Н	СН3	Н	Н

Table 5. (continued) Structure of "Secondary Phenyl Amine" Reagents (Y and Z each equal CH; R_7 , R_8 , R_{12} , R_{13} , R_{14} , and R_{15} each equal H).

Reagent Number	<u>R₄</u>	<u>R₅</u>	<u>R₆</u>	R9	<u>R₁₀</u>	<u>R₁₁</u>
19DB	Н	Н	F	Н	СН3	Н
20DB	F	Н	H	Н	H	СН3
21DB	F	Н	Н	Н	CF ₃	Н
22DB	Cl	Н	Н	Н	CF ₃	Н
23DB	Н	F	Н	CF ₃	Н	Н
24DB	Н	Н	F	CF ₃	Н	Н
25DB	Н	F	Н	Н	CF ₃	Н
26DB	Н	Н	F	Н	CF ₃	Н
27DB	Н	OCF ₃	Н	Н	Н	OCF ₃

10

15

20

25

30

35

As summarized in the general Scheme 1 and specific descriptions above, Schemes 3, 4, 9, and 10 illustrate the principles of Scheme 1 for the preparation of specifically substituted "Secondary Heteroaryl Amines" (XIIIA-H) having 0 to 2 aryl groups and 0 to 2 aromatic heterocyclyl groups and "Secondary Phenyl Amines" (XIII-A) having two aryl groups.

Synthetic Scheme 2 shows the preparation of the class of compounds of the present invention corresponding to Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") wherein A and Q are independently aryl and heteroaryl.

Derivatives of "Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols", "Generic Polycyclic Aryl and Heteroarvl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols", "Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols", "Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols", and "Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols", wherein A and O are independently aryl and heteroaryl, in which the hetero atom (-O-) is attached to an alkyl group removed from the amine by three or more carbons are readily prepared by anion chemistry using Method B of Scheme 2. The anion of "Generic Secondary Amine" amines, hydroxylamines, and hydrazines of Formula XIII are readily formed by dissolving the specific amine, hydroxylamine, or hydrazine in an aprotic solvent, such as tetrahydrofuran, toluene, ether, dimethylformamide, and dimethylformamide, under anhydrous conditions. The solution is cooled to a temperature between -78 and 0°C, preferrably between -78 and -60°C and the anion formed by the addition of at least one equivalent of a strong, aprotic, non-nucleophillic base such as NaH or n-butyllithium under an inert atmosphere for each acidic group present. Maintaining the temperature between -78 and 0°C, preferrably between -78 and -60°C, with suitable cooling, an appropriate alkyl halide, alkyl benzenesulfonate such as a alkyl

tosylate, alkyl mesylate, alkyl triflate or similar alkylating reagent of the general structure:

where M is a readily displaceable group such as chloride, bromide, iodide, tosylate, triflate, and mesylate, X is oxy, and XXX is a chiral reagent in the indicated (R)-configuration. After allowing the reaction mixture to warm to room temperature, the reaction product is added to water, neutralized if necessary, and extracted with a water-immiscible solvent such as diethyl ether or methylene chloride. The combined aprotic solvent extract is washed with 10 saturated brine, dried over drying agent such as anhydrous MgSO4 and concentrated in vacuo to yield crude Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic 15 Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), wherein A and Q are independently aryl and heteroaryl. This material is purified, for example, by 20 eluting through silica gel with 5-40% of a medium polar solvent such as ethyl acetate in a non-polar solvent such as hexanes to yield Formula I-H ("Generic Polycyclic Arvl and Heteroarvl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC 25 ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). Products are tested for purity by HPLC. If necessary, Formula I-H ("Generic Polycyclic 30 Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral

10

15

Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds are purified by additional chromatography or recrystallization. Products are structurally confirmed by low and high resolution mass spectrometry and NMR. Examples of specific compounds prepared are summarized in Tables 6 and 7.

Compounds of Formula (XXX), which can be used to prepare the "Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanol" compounds of Tables 6 and 7, are given in Table 2. Reagents 1a and 2a in Table 2 are prepared from the corresponding alcohols. (R)-Chiral alcohol precursors to 1a, 2a, and similiar alcohols that can be envisioned by one of inventive skill can be obtained from the corresponding racemic mixture of the R-enatiomer and S-enantiomer by separation procedures using preparative gas chromatography and high pressure liquid chromatography using chiral chromatographic columns. The tosylates of chiral alcohols and racemic mixtures are readily obtained by reacting the corresponding alcohol with tosyl chloride using procedures found in House's Modern Synthetic Reactions, Chapter 7, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The

20 Chapter 7, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons, which are incorporated herein by reference.

(Y is CH; R8, R9, R12, R13, and R14 are each H; Z is covalent bond and R15 is absent). Table 6. Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols

Inhibitor Numbe Column1+Column	r Number Column 2	$\frac{R_1}{}$	al a	$\frac{R_2}{}$	$\frac{R_3}{}$	R4	R5	$\frac{R_6}{}$	$\frac{R_7}{}$	R10	R ₁₁
Reagent	Reagent										
ΙĄ	NI	CF ₃	3	H	H	H	C ₆ H ₅ O	Н	Н	OCF ₂ CF ₂ H	Н
IA	2N	CF ₃	3	Н	Н	Н	OCF_3	Н	Н	OCF ₂ CF ₂ H	Н

The state of the s

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R_8 , R_9 , R_{12} , R_{13} , and R_{14} are each H; Z is covalent bond and R_{15} is absent).

	-													
R ₁₁	1		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R10	ĀŢ		OCF ₂ CF ₂ H	осғ2сғ2н	ocF_3	OCF_3	OCF ₃	OCF3	OCF ₃	ocF_3	CF_3	CF_3	$_{\mathrm{CF}_3}$	OCF ₃
R7	1		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Rk	1		Н	Н	Н	Н	phenyl	Н	Н	Н	ഥ	Н	Н	Н
Re	6		Н	Н	C ₆ H ₅ O	OCF3	Н	phenyl	Н	Br	CF3	CH_3	CF3	CH ₃
R.	+		Ħ	Н	Н	H	Н	H	Н	Н	Н	Н	Н	Н
R3	<u></u>		Н	H	Н	Н	Н	Н	H	Н	H	H	H	H
R			Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
п	ı		3	3	3	3	3	3	3	3	3	е	3	3
ž	1		CF ₃	CF ₃	CF ₃	CF ₃	CF3	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃
Inhibitor Number	Column 2	Reagent	3N	V4	5N	N9	NZ	N8	N6	10N	11N	12N	13N	I4N
Inhibitor	Column1+Column	Reagent	ΙΑ	IA	ΙĄ	IA	IA	IA	1A	ΙΑ	ΙΑ	ΙΑ	IA	IA

The state of the s

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R_8 , R_9 , R_{12} , R_{13} , and R_{14} are each H; Z is covalent bond and R_{15} is absent).

Inhibitor Number	r R ₁	티	R ₂	R3	R4	R ₅	$\frac{R_6}{}$	$\frac{R_7}{}$	R10	R ₁₁
numu	7	-								
Reagent	ı,							1		
15N	CF ₃	3	H	Ξ	H	ц	F	Н	OCF_3	Ξ
16N	CF ₃	3	Н	H	Н	Br	Н	Н	CF_3	Ħ
N71	CF ₃	3	Н	H	Н	$_{ m CF}_3$	F	Н	OCF ₃	Ħ
18N	CF ₃	3	H	Н	Н	Ħ	Н	Н	OCF_3	н
19N	CF ₃	c	H	Н	Н	CI	Н	Н	OCF ₃	Н
20N	G ₃	3	H	Н	H	Щ	Н	Н	CF_3	Н
21N	CF ₃	3	H	Н	Н	ц	ц	Н	CF_3	Н
22N	CF ₃	3	Н	Н	Н	Q	Н	Н	CF_3	H
23N	CF ₃	3	Н	Н	Н	F	Н	Н	phenoxy	H
24N	CF ₃	3	H	Н	Н	$^{ m CF}_3$	ರ	Н	CH_3	н
25N	CF ₃	3	Ħ	Н	Н	$^{ m CF}_3$	ц	Н	$ m CH_3$	H
26N	GF ₃	E.	Ξ	Н	Н	Н	Н	Н	CF_3	H

and prime green, and means means prime prime and prime a

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R8, R9, R12, R13, and R14 are each H; Z is covalent bond and R15 is absent).

_		_	_				_					_		
	R11		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	R ₁₀		CF3	CF_3	СН3	CH ₃	Н	Н	щ	СН3	Н	CH ₃	Н	3-CF ₃ -
	$\frac{R_7}{}$		H	Н	H	Н	H	H	H	Н	Н	Н	Н	H
	$\frac{R_6}{}$		Н	OCH ₃	Ħ	Н	CH ₃	Н	Н	OCH ₃	Н	CH3	ם	Н
	R ₅		П	Н	Н	ОСН3	Н	Ŋ	Н	Н	Н	Н	Ħ	Ħ
	₽		ц	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	R3		Н	H	Н	H	Н	H	H	Н	Н	Н	H	Н
	$\frac{R_2}{2}$		H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Ħ١		3	3	3	3	3	3	3	3	3	3	3	3
	\mathbb{R}_1		CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF3	CF ₃	CF_3	CF3	CF ₃	CF ₃	CF ₃
	Column1+Column 2	Reagent	27N	28N	29N	30N	31N	32N	33N	34N	35N	36N	37N	38N
1.	Column1+	Reagent	ΙΑ	ΙĄ	ΙΑ	ΙĄ	ΙΑ	ΙĄ	ΙĄ	IA	1 A	1A	ΙĄ	ΙĄ

The state of the s

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R8, R9, R12, R13, and R14 are each H; Z is covalent bond and R15 is absent).

$\frac{R_{10}}{}$
1
H
1
Reagent

The state of the s

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R8, R9, R12, R13, and R14 are each H; Z is covalent bond and R15 is absent).

R1.1			Н	Н	Н	Н	OCF_3	ocF_3	ocF_3	CF_3	CF_3	CF_3	CF_3	ocF_3
Rin	AT		Ħ	CH3	CF ₃	CF_3	Н	Н	Н	Н	Н	Н	Н	Н
R7	1		Н	Н	Н	Н	Н	н	Н	Н	н	Н	Н	Н
Rk			Н	Н	Н	CH_3	Н	Н	Н	ᄄ	OCH ₃	Н	Н	Н
Re	rl		CF_3	CF3	OCH ₃	Н	C ₆ H ₅ O	Н	OCF3	CF3	Н	СН3	CI	CF_3
R ₂	+		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R,	?		Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н
ž	7		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
п			3	3	3	3	3	3	3	3	3	3	3	6
R,	. 1		CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃
Inhibitor Number	Column 2	Reagent	52N	53N	54N	26N	S7N	28N	N65	N09	N19	62N	93N	64N
Inhibitor	Column1+Column	Reagent	IA	IA	IA	IA	1A	IA	IA	ΙΑ	ΙΑ	ΙΑ	ΙΑ	IA

and printing the control county plants that is a printing the county of county of county of county of county of county of county from the county of county

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; Rg, Rg, Rg, Rl2, Rl3, and Rl4 are each H; Z is covalent bond and Rl5 is absent).

R11			$0CF_3$	0 CF $_3$	$0CF_3$	$0CF_3$	OCF_3	phenyl	0 CF $_3$	CF_3	CH_3	CH_3	CH_3	0 CF $_3$
R1.0	01:		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
R,	7		Н	Ľ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
E E	0		Н	Н	Н	Н	ഥ	Н	Н	щ	Н	Ħ	Н	Н
ž	il.		F	F	Br	ם	Н	ц	СН3	П	ם	ОСН3	Ā	F
B,	<u>**4</u>		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	F
D,	<u>"3</u>		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
á	77		Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
=	I		3	3	3	3	3	3	3	3	3	3	3	3
à	[CF ₃	CF ₃	\mathbb{CF}_3	CF_3	CF ₃	CF ₃	CF ₃	CF ₃	CF_3	CF_3	CF_3	CF ₃
Inhibitor Number	Column 2	Reagent	92N	N99	NL9	N89	N69	70N	VIL	72N	73N	74N	75N	N9 <i>L</i>
Inhibitor	Column1+Column	Reagent	ΙΑ	ΙΑ	ΙΑ	ΙĄ	IA	IA	IA	IA	ΙΑ	ΙΑ	IA	ΙΑ

. If you have the second of th

Table 6. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y is CH; R8, R9, R12, R13, and R14 are each H; Z is covalent bond and R15 is absent).

		_	1							_	_		
	R ₁₁		CH ₃	CH ₃	CH ₃	СН3	CH ₃	CH ₃	CH ₃	CF3	СН3	CH ₃	СН3
	R10		Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н
	$\frac{R_7}{}$		H	Н	Н	Н	ᅜ	Н	H	H	H	H	H
	$\frac{R_6}{}$		ОСН3	СН3	Н	Ħ	Н	Н	Н	СН3	Н	CF3	ᅜ
3	RS		H	H	СН3	H	F	F	CF3	Н	$^{\mathrm{CF}_3}$	Н	CF3
	R4		Н	Н	H	Н	H	н	ᅜ	Н	Н	Н	Н
	$\frac{R_3}{}$		Н	H	Н	Н	Н	H	Н	H	Ħ	Ħ	H
	$\frac{R_2}{}$		Ξ	Н	H	H	Н	H	Н	Н	Н	H	Н
	п		3	3	က	3	3	6	3	3	3	3	3
	$R_{\underline{1}}$		CF ₃	CF ₃	CF ₃	CF_3	CF ₃	CF ₃	CF_3	CF_3	CF_3	CF_3	CF_3
	Inhibitor Number olumn1+Column 2	Reagent	V8 <i>L</i>	N6 <i>L</i>	N08	85N	N88	84N	NS8	N98	N88	N06	92N
	Inhibitor Number Column1+Column	Reagent	ΙA	ΙA	IA	ΙA	IA	IA	1A	1A	ΙΑ	1A	IA

Table 7. Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols (Y and Z are each CH; Rg, Rg, R12, R13, R14 and R15 are each H).

				-							
Inhibito Column 1	r Number +Column 2	$\frac{R_1}{}$	ជ	$\frac{R_2}{}$	R3	R ₄	$\frac{R_5}{}$	$\frac{R_6}{}$	R9	R10	R11
Reagent	Reagent										
IA	IDB	CF ₃	3	H	Н	Н	OCF_3	Н	Н	OCF ₃	Н

Table 7. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols

	J						_		_					
		R11		CF_3	Н	Н	Н	Н	Ħ	CF_3	CF_3	CF_3	CF_3	Н
VIKanois		$\frac{R_{10}}{}$		н	OCF_3	0 CF $_3$	CF_3	CF ₃	OCF3	Н	Н	Н	Н	Н
/-(n+1)-		<u>R9</u>		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	CF_3
amino		$\frac{R_6}{}$		Н	Н	Н	Н	ט	Н	D	Н	H	Н	Н
ubstratec		R5		ט	Br	ט	מ	Н	Н	Н	F	Н	Н	ם
S-I pa	ach H)	R4		Н	Н	Н	Н	Н	Н	Н	Н	Н	ഥ	Н
ogenat	s are e	R3		H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н
al Ha	ndR_1	R2		Ħ	Ħ	Ħ	Н	Н	Ħ	Н	Н	Н	Н	Н
Ę	14 a	띠		n	3	က	3	3	3	3	3	ε	3	3
Table 7. (continued) Structure of Phenyl (K)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols	(Y and Z are each CH; R8, R9, R12, R13, R14 and R15 are each H).	$R_{\underline{1}}$		CF ₃	CF ₃	CF ₃	CF_3	CF_3	CF_3	CF_3	CF_3	CF_3	CF ₃	CF_3
ntinued) Structu	each CH; Rg,	Inhibitor Number Column 1+Column 2	Reagent	2DB	3DB	4DB	SDB	g(O)	7DB	8DB	9ДВ	10DB	11DB	12DB
l able /. (co	(Y and Z are	Inhibito Column 1	Reagent	1A	IA	IA	ΙΑ	1A	ΙΑ	1A	1A	1A	1A	1A

The state of the s

Table 7. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols

	R11	1		Н	Н	Н	CH_3	Н	Н	Н	CH_3	Н	Н	Н
	Rin	110		Н	н	Н	Н	CH_3	Н	$_{\mathrm{CH_3}}$	Н	CF_3	CF_3	Н
	Z.	<u> </u>		CF_3	CF_3	CH_3	Н	Н	CH_3	Н	Н	Н	Н	CF3
	R	9		C	Н	Н	F	Н	Н	F	Н	Н	Н	Н
	ž	?		Н	Н	Щ	Н	Ł	Н	Н	Н	Н	Н	Д
асп п)	В,	 		Н	מ	Н	Н	Н	щ	Н	Н	ц	C	Н
, are e	R	<u> </u>		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
na 12	ĸ	7		Н	Н	Н	Н	H	Н	Н	н	Н	Н	Н
14 a	ũ			3	3	3	က	3	3	3	3	3	3	3
69, K12, K13, F	Β,	7		CF ₃	CF ₃	CF ₃	CF3	CF ₃	CF ₃	CF ₃	CF ₃	CF ₃	CF3	CF_3
(Y and Z are each CH; Kg, Kg, K12, K13, K14 and K15 are each H)	Inhibitor Number	Column 1+Column 2	Reagent	13DB	14DB	15DB	I6DB	17DB	18DB	19DB	20DB	21DB	22DB	23DB
(Y and Z are	Inhibito	Column 1	Reagent	ΙΑ	ΙΑ	ΙΑ	ΙΑ	ΙΑ	ΙΑ	IA	ΙΑ	ΙΑ	ΙΑ	1A

Table 7. (continued) Structure of Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols

	(Y and Z are each CH; Rg, Rg, R ₁₂ , R ₁₃ , R ₁₄ and R ₁₅ are each H).	R11	1		H	н	H	0 CF $_3$
		1 R, 11	77		Н	CF_3	CF_3	Н
Table 7. (Columned) Subtime of Therap (A)—column transformed a Substitution (A-1)		Ro	7		CF_3	Н	Н	н
		Re	7		н	Н	н	Н
		Re	9		Н	щ	Н	3 H H H OCF ₃
		R.	†		Н	H	3 Н Н Н	Н
		R3	<u>-3</u>		Н	н	Н	Н
		R	7		3 н н н	3 Н Н	Н	Н
		ū			က	es.	3	3
tunued) Su ucture of Tricinyi (18)		R,	T		CF ₃	CF ₃	CF ₃	CF ₃
		Y and Z are each CH; Kg, Inhibitor Number Column 1+Column 2	Reagent	24DB	25DB	26DB	27DB	
Lable /. (col		Inhibito	Column 1	Reagent	ΙΑ	1A	IA	ΙΑ

10

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can also be prepared using Method B of Scheme 2 through the use of racemic (XXX) as described followed by preparative separation of the R-enantiomer from the S-enatiomer using chiral chromatographic procedures such as preparative gas chromatography and high pressure liquid chromatography using readily available chiral chromatographic columns and procedures.

A preferred procedure for Formula I-HP ("Generic Polycyclic Aryl and 15 Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"). Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds is the novel inventive Method A of Scheme 2. (R)-Chiral oxirane reagents useful in 20 Method A are exemplified, but not limited to those in Table 1. Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds are prepared by reacting "Generic Secondary Amine" amines, 25 hydroxylamines, and hydrazines of Formula XIII with (R)-chiral oxiranes of the type listed in Table 1 and represented by the general structure:

$$R_{1} \xrightarrow{R_{1}} R_{3} (XX)$$

Oxiranes having a specific stereochemical arrangement of R₁, R₂ and R₃ can be prepared using chiral procedures such as those published in 1995 by

Ramachandran, Gong, and Brown in the Journal of Organic Chemistry, Vol. 60, pages 41 to 46; cited references also detail alternate procedures to prepare chiral and achiral epoxides, which are incorporated herein by reference. For example, the specific preparation of R-(+)-1,1,1-trifluoro-2,3-epoxypropane.

F₃C , using a procedure adopted from H.C.Brown et al. (*J. Org. Chem.* **60**, 41-46, (1995)), is accomplished as described in **Example 4**. Many of the epoxides summarized in Table 1 can be prepared in the (R)-configuration using procedures analogous to that given above for R-(+)-1.1.1-trifluoro-2.3-

epoxypropane.

10

15

20

25

30

In some cases, achiral oxiranes of (XX) can be prepared from the corresponding alkenes by reaction of epoxidation reagents such as metachloroperbenzoic acid (MCPBA) and similar type reagents readily selectable by a person of skill-in-the-art with alkenes. Fieser and Fieser in Reagents for Organic Synthesis, John Wiley & Sons provides, along with cited references, numerous suitable epoxidation reagents and reaction conditions, which are incorporated herein by reference. These achiral oxiranes can be reacted in an identical manner to that described for (R)-chiral oxiranes with "Generic Secondary Amine" amines, hydroxylamines, and hydrazines of Formula XIII to afford racemic compounds structurally identical to those of Formula I-HP, Formula I-HPC, and Formula I-C but with the corresponding (S) chiral configuration present in an equivalent amount. Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can be obtained by preparative chiral chromatography of said racemic mixtures to obtain the (R)-chiral configuration of Formula I-HP, Formula I-HPC, and Formula I-CP substantially free of the (S)-chiral configuration enantiomer. Alternatively, achiral oxiranes may be separated by chiral preparative chromatography into their respective (R)-Chiral and (S)-Chiral enantiomers and the (R)-Chiral enantiomer reacted to afford Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl

10

15

20

25

30

(R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds.

A mixture of a "Generic Secondary Amine" amine, hydroxylamine, or hydrazine of Formula XIII and an excess of a halogenated oxirane of (R)-chiral configuration of Formula XX are stirred and heated to 40-90°C for 5 to 48 hours in a tightly capped or contained reaction vessel. More preferrably, a Lewis acid such as a transition metal-based salts (for example, ytterbium triflate, hafnium triflate, scandium triflate, neodynium triflate, gadolium triflate, and zirconium triflate) in methylene chloride, tetrahydrofuran, or, more preferrably, acetonitrile is added to speed up the reaction to a total time of 4 to 18 hours, improve yields, to permit the reaction temperature to be reduced to 15-65°C, and to use a smaller excess of halogenated oxirane. When a Lewis acid is used, the reaction should be carried out under inert, anhydrous conditions using a blanket of dry nitrogen or argon gas. After cooling to room temperature and testing the reaction mixture for complete reaction by thin layer chromatography or high pressure liquid chromatography (hplc), the reaction product is added to water and extracted with a water immiscible solvent such as diethyl ether or methylene chloride. (Note: If the above analysis indicates that reaction is incomplete, heating should be resumed until complete with the optional addition of more of the oxirane). The combined aprotic solvent extract is washed with saturated brine, dried over drying agent such as anhydrous MgSO₄ and concentrated in vacuo to yield crude Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds. This material is purified by eluting through silica gel with 5-40% of a medium polar solvent such as ethyl acetate in a non-polar solvent such as hexanes to yield Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds. Products are tested for purity by

- HPLC. If necessary, the Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-C ("Polycyclic Phenyl (R)-
- 5 Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds are purified by additional chromatography or recrystallization. Products are structurally confirmed by low and high resolution mass spectrometry and NMR. Examples of specific Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic
- Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds prepared are summarized in the Examples 1 through 44, and Example Tables 1 through 12.

Table 1. Structure of (R)-Chiral Oxirane Reagents.

Reagent	<u>R</u> 1	R ₂	R _a	
<u>Number</u>			<u>R3</u>	
1	CF ₃	Н	Н	
2	CCI ₃	Н	Н	
3	CF ₃	СН3	Н	
4	CF ₃ CF ₂	Н	Н	
5	CF ₃ CF ₂ CF ₂	Н	Н	
6	CF ₃ OCF ₂ CF ₂	Н	H	
7	CF₃CH₂	Н	Н	
. 9	CF ₃	Н	CF ₃	
11	CF ₃	С ₆ Н ₅	Н	
12	CCl ₃	C ₆ H ₅	Н	
13	CCl ₃	Cyclopropyl	Н	
14	CCl ₃	СН3	Н	
15	CCl ₃	(CH ₃) ₂ CH	Н	
16	CHCl ₂	Н	Н	
18	CF ₃	Н	СН3	
27	CCl ₃ CH ₂	Н	Н	
28	СВг ₃ СН ₂	Н	Н	
29	CHBr ₂ CH ₂	Н	Н	
30	CBrCl ₂	Н	Н	
31	CCIF ₂	Н	Н	
32	CCl ₂ F	Н	Н	

Table 1. (continued) Structure of (R)-Chiral Oxirane Reagents.

Reagent Number	<u>R₁</u>	<u>R2</u>	<u>R3</u>	
33	CCI3CCI2	Н	Н	
43	FCH ₂	Н	Н	
56	CBrF2CCIFCH2	Н	Н	
57	HCF ₂ CF ₂ OCH ₂	Н	Н	

Table 2. Structure and Source of Alcohol and Glycol Reagents.

		 	_		
	Source of Reagent	Chiral separation and then tosylation of alcohol from Justus	Liebigs Ann. Chem. (1969), 720, 81-97.	Chiral separation and then tosylation of alcohol from Z.	Naturforsch., B: Chem. Sci. (1997), 52 (3). 413-418
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	3 OTs H H OH		НО	
	$\frac{R_3}{}$	Ή		Н	
	$\frac{R_2}{}$	Н		Н	
	M	OIs		OTs	
	ū	က		8	
	R_1	CF_3		CF ₃ CH ₂ CH ₂ 3 OTs H H OH	
	Reagent Number	14		2A	

10

15

20

25

30

groups.

As summarized in the general Scheme 2 and specific descriptions above, Schemes 5, 6, 7, and 11 illustrate the principles of Scheme 2 for the preparation of specifically substituted Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") having 2 aryl groups, Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols") having two aromatic substituents made up of 0 to 2 aryl groups and 0 to 2 aromatic heterocyclyl groups, and Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") having two aromatic substituents made up of 0 to 2 aryl groups and 0 to 2 aromatic heterocyclyl

Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can further be prepared in an alternate manner to procedures disclosed above and in Schemes 1 to 7 and 9 to 11. Schemes 45 to 50 detail such procedures to prepare aminopropanol compounds of the present invention by initial formation of an halogenated, oxygen containing primary alkylamine XVL ("Generic Substituted Alkylamine"). Said halogenated, oxygen containing primary alkylamine XVL. formed in Schemes 45 and 48, is itself converted to secondary amines, VLX-H ("Heteroaryl Alkyl Amine) and VLX ("Phenyl Alkyl Amine"), using procedures disclosed above. Primary alkylamine XVL is first reacted with an aldehydic or ketonic carbonyl compound, XI-AH ("Heteroaryl Carbonyl") and XI-A ("Phenyl Carbonyl") with azeotropic distillation to form imines, VL-H ("Heteroaryl Imine") and VL ("Phenyl Imine"). Said imines VL-H and VL are then reduced with or without prior isolation by Reduction Methods 1, 2 or 3 as disclosed above and in Schemes 1, 3, and 9 to yield secondary amines, VLX-H ("Heteroaryl Alkyl Amine) and VLX ("Phenyl Alkyl Amine"). Said secondary amine VLX-H can be converted according to Schemes 46 and 47 to give Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols") and Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-

10

15

20

25

30

Propanols") and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds. Using Schemes 49 and 50, VLX can be converted to Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds. Compounds of this invention in which one aromatic substituent is aryl and the other aromatic substitutent is heteroaryl can be readily prepared by reacting VLX-H with an aralkyl bromide or aryl bromide instead of using an heteroaralkyl bromide or heteroaryl bromide as described in Schemes 46 and 47. Similarly, compounds of this invention in which one aromatic substituent is aryl and the other aromatic substitutent is heteroaryl can be readily prepared by reacting VLX with an heteroaryl bromide or heteroaralkyl bromide instead of using an aryl bromide or an aralkyl bromide as described in Schemes 49 and 50.

Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral

Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can further be prepared in an alternate manner to procedures disclosed above and in Schemes 1 to 7, 9 to 11. and 45 to 50. Schemes 56,57, and 58 detail alternate procedures to prepare (R)-Chiral Halogenated 1-Substitutedamino-2-propanols" compounds of the present invention by initial formation of an halogenated, oxygen containing secondary alkylamines VLX and VLXX ("Phenyl Alkylamines") and VLXX-O ("Phenyl Oxy Alkylamines"). Said secondary alkylamines VLX and VLXX ("Phenyl Alkylamines") and VLXX-O ("Phenyl Oxy Alkylamines") can be converted according to Schemes 56,57, and 58 to Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with appropriate aromatic halides such as aryl bromides and heteroaryl bromides as desired.

Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"),

15

20

25

and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can further be prepared in an alternate manner to procedures disclosed above and in Schemes 1 to 7. 9 through 11, 45 through 50, and 56 through 58. Another alternate procedure to prepare "(R)-Chiral Halogenated 1-Substitutedamino-2-propanols" compounds of the present invention can be achieved by reacting secondary amines of Formula XIIIA-H ("Secondary Heteroaryl Amines") and Formula XIII-A ("Secondary Phenyl Amines") with certain cyclic sulfates. Cyclic sulfates useful in the preparation of "(R)-Chiral Halogenated 1-Substitutedamino-2propanols" compounds of Formulas I-HP, I-HPC, and I-CP have a halogenated or haloalkoxy carbon adjacent to the cyclic sulfate. Some cyclic sulfates useful for the preparation of "(R)-Chiral Halogenated 1-Substitutedamino-2-propanols" compounds of Formulas I-HP, I-HPC, and I-CP have been described by K. P. M. Vanhessche and K. B. Sharpless in Chem. Eur. J, 1997, Vol. 3, No. 4, pages 517-522 and references cited therein. (2R)-(+)-3,3,3-Trifluoro-1,2-propanediol can be prepared as described in the reference cited immediately above from 3,3,3-trifluoropropene followed by separation from the predominating (2S)-(-)-3,3,3-trifluoro-1,2propanediol. Alternatively, (2R)-(+)-3,3,3-Trifluoro-1,2-propanediol can be prepared by hydrolysis of (2R)-(+)-3,3,3-Trifluoro-2,3-epxoypropane analogous to the procedure described by described by McBee and Burton in J. Am. Chem. Soc., 1952, Vol. 74, page 3022. (2R)-(+)-3,3,3-Trifluoro-1,2propanediol is converted by reaction with a slight excess of sulfuryl chloride in the presence of 2.5 molar equivalents of imidazole, methylene chloride solvent, and at a temperature of -20 °C to give the desired (4R)-(+)-4-trifluoromethyl-2,2-dioxo-1,3,2-dioxathiolane. Reaction of other (R)-Chiral haloalkyl or haloalkoxyalkyl substituted 1,2-ethanediols can afford the corresponding (4R)substituted-2,2-dioxo-1,3,2-dioxathiolanes. Reaction of (4R)-(+)-4trifluoromethyl-2,2-1,3,2-dioxathiolane or another (4R)-substituted-2,2-dioxo-30 1,3,2-dioxathiolane with a secondary amine of Formula XIIIA-H ("Secondary Heteroaryl Amines") and Formula XIII-A ("Secondary Phenyl Amines") in an

anhydrous polar, non-protic solvent such as tetrahydrofuran or acetonitrile at 25-60 °C until the reaction is complete can afford the mono-sulfate ester of a

10

15

compound of Formulas I-HP, I-HPC, and I-CP. Removal of the solvent followed by addition of diethyl ether and excess 20% aqueous sulfuric acid can lead to a precipitant of the crude mono-sulfate ester of a compound of Formulas I-HP, I-HPC, and I-CP. This precipitant can be filtered, the solid can be washed with ether, it can be resuspended in aqueous 20% sulfuric acid, and can be heated to 80-95 °C to give an aqueous solution of the sulfate salt of crude a compound of Formulas I-HP, I-HPC, and I-CP. Neutralization of the aqueous solution, extraction with a water immiscible solvent such as diethyl ether or methylene chloride, drying the organic solvent over anhydrous magnesium sulfate, and removal of solvent can afford a compound of Formulas I-HP, I-HPC, and I-CP. Compounds of Formulas I-HP, I-HPC, and I-CP can be purified as described previously. By using a wide variety of (R)-Chiral diols, secondary amines of Formula XIIIA-H ("Secondary Heteroaryl Amines") and Formula XIII-A ("Secondary Phenyl Amines"), and reaction conditions described herein, a large variety of compounds of Formulas I-HP, I-HPC, and I-CP may be preparable.

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols") and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), in which the halogenated hydroxy containing alkyl side chain has 20 three carbons between the amine and hydroxy group, can be prepared in a manner similar to procedures disclosed above and in Schemes 45 to 50. Schemes 30 to 35 detail such procedures to prepare 1-amino-3-butanol compounds of the present invention by initial formation of an halogenated. 25 oxygen containing primary alkylamine XL ("Generic Substituted Alkylamine"). Said halogenated, oxygen containing primary alkylamine XL, formed in Schemes 30 and 33, is itself converted to secondary amines, LX-H ("Heteroaryl Alkyl Amine) and LX ("Phenyl Alkyl Amine"), using procedures disclosed above. Primary alkylamine XL is first reacted with an aldehydic or ketonic carbonyl compound, XI-AH ("Heteroaryl Carbonyl") and XI-A 30 ("Phenyl Carbonyl") with azeotropic distillation to form imines, L-H ("Heteroaryl Imine") and L ("Phenyl Imine"). Said imines L-H and L are then reduced with or without prior isolation by Reduction Methods 1, 2 or 3 as disclosed above and in Schemes 1, 3, and 9 to yield secondary amines, LX-H

10

Schemes 34 and 35.

("Heteroaryl Alkyl Amine) and LX ("Phenyl Alkyl Amine"). Said secondary amine LX-H can be converted according to Schemes 31 and 32 to Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"). Using Schemes 34 and 35, LX can be converted to Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"). Compounds of this invention in which one aromatic substituent is aryl and the other aromatic substitutent is heteroaryl can be readily prepared by reacting LX-H with an aryl bromide instead of using an heteroaryl bromide as described in Schemes 31 and 32. Similarly, compounds of this invention in which one aromatic substituent is aryl and the other aromatic substitutent is heteroaryl can be readily prepared by reacting LX with an heteroaryl bromide instead of using an aryl bromide as described in

Particularly useful procedures to prepare Formula I-H ("Generic 15 Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-20 Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds of the present invention in which the heteroaryl group is directly bonded is disclosed in Schemes 51 to 54. An halogenated, hydroxy containing primary alkylamine XVL ("Generic Substituted Alkylamine") formed in Schemes 45 and 48 is 25 itself converted by reaction with LXXI-AH ("Heteroaryl Halide") to afford secondary amine VLXX-H ("Heteroaryl Secondary Amine) using procedures disclosed in Scheme 51 and above. VLXX-H is converted to Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), and Formula I-CP 30 ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by alkylation chemistry with an aralkyl bromide or aralkyloxyalkyl bromide using either of two procedures disclosed in Scheme 52. Isolation and purification is effected as disclosed previously. An halogenated, hydroxy

10

15

containing primary alkylamine XL ("Generic Substituted Alkylamine") formed in Schemes 30 and 33 is itself also converted by reaction with LXXI-AH ("Heteroaryl Halide") to afford secondary amine LXX-H ("Heteroaryl Secondary Amine) using procedures disclosed in Scheme 53 and above. LXX-H is converted to Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols") and Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols") compounds by alkylation chemistry disclosed in Scheme 54 and previously and as given above with reference to Scheme 52. Isolation and purification of I-H and I-C are effected as disclosed previously.

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds can themselves serve as intermediates for conversion to additional compounds of this invention. Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC and others of the

20 Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC and others of the present invention useful as intermediates include those in which the R₇ position substituent in Formulas I-H, I-HP, I-C, I-CP, and I-HPC is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other bromoalkyl groups, nitro group, amino group, methoxycarbonyl or other alkoxy carbonyl groups, cyano group, or acyl group. Other preferred compounds of Formulas I-H, I-

HP, I-C, I-CP, I-HPC and the present invention useful as intermediates include those in which the R₁₀ position substituent is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other bromoalkyl groups, nitro group, amino group, methoxy carbonyl or other alkoxy carbonyl groups,

cyano group, or acyl groups. Other compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC and the present invention useful as intermediates include those in which one or more of R_6 , R_7 , R_{11} , and R_{12} substituents in Formula VII is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other

bromoalkyl groups, nitro group, amino group, methoxy carbonyl or other alkoxy carbonyl groups, cyano group, or acyl groups.

Scheme 8 discloses the conversion of a 3-bromo substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Bromophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with a phenol to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Phenoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

10

15

5

Scheme 12 discloses the conversion of a 3-bromo substituent at the R₇ position in Formula I-HP and I-HPC ("Polycyclic 3-Bromophenyl amd 3-Bromoheteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") by reaction with a phenol or thiophenol to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-HP and I-HPC ("Polycyclic 3-Aryloxyaryl, 3-Heteroaryloxyaryl, 3-Heteroaryloxyheteroaryl, 3-Aryloxyheteroaryl, 3-Arylthioaryl, 3-Heteroarylthioaryl, 3-Heteroarylthioheteroaryl, and 3-Arylthioheteroaryl Aryl amd Heteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

20

25

30

Scheme 22 discloses the conversion of a 3-bromo substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Bromophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an aryl borinate or an aryl tin to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Arylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 23 discloses the conversion of a 3-bromo substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Bromophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with a primary or secondary amine to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3- R₂₂aminophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

10

15

20

Scheme 40 discloses the conversion of a 3-bromo substituent at the R₁₀ position in Formula I-CP ("Polycyclic 3-Bromophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an aryl borinate to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Arylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 41 discloses the conversion of a 3-bromo substituent at the R₁₀ position in Formula I-CP ("Polycyclic 3-Bromophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with a heteroaryl dibutyl tin compound to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Heteroarylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 21 discloses the conversion of a 3-bromomethyl substituent at the R_7 position in Formula I-CP ("Polycyclic 3-Bromomethylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") by reaction with an aryl borinate to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Arylmethylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 13 discloses the conversion of a 3-hydroxyl substituent at the $\rm R_7$ position in Formula I-HP and I-HPC ("Polycyclic 3-Hydroxyphenyl amd 3-Hydroxyheteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-

Substitutedamino-2-Propanols") by reaction with an aryl bromide or heteroaryl bromide to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-HP and I-HPC ("Polycyclic 3-Aryloxyaryl, 3-Heteroaryloxyheteroaryl, and 3-Aryloxyheteroaryl Aryl-Heteroaryl (R)-Chiral
 Halogenated 1-Substitutedamino-2-Propanols").

Scheme 14 discloses the conversion of a 3-hydroxyl substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Hyroxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with

an aryl bromide to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Phenoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 15 discloses the conversion of a 3-hydroxyl substituent at the R₇ position in Formula I-HP and I-HPC ("Polycyclic 3-Hydroxyphenyl amd 3-Hydroxyheteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an aralkyl bromide or heteroaralkyl bromide to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-HP and I-HPC ("Polycyclic 3-Aralkyloxyaryl,

3-Heteroaralkyloxyaryl, 3-Heteroaralkyloxyheteroaryl, and 3-Aralkyloxyheteroaryl Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 16 discloses the conversion of a 3-hydroxyl substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Hyroxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an aralkyl bromide to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Aralkyloxyaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 20 discloses the conversion of a 3-hydroxyl substituent at the R_7 position in Formula I-CP ("Polycyclic 3-Hyroxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an R_{17} -bromide to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3- R_{17} -oxyaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 19 discloses the conversion of a 3-thio substituent at the R_7 position in Formula I-CP ("Polycyclic 3-thiophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an R_{17} -bromide to afford, after isolation and purification as described above for Schemes 2, 5,

15

20

25

30

10

5

6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3- R_{17} thiaaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). "Polycyclic 3- R_{17} thiaaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols" can be oxidized to sulfonyl compounds of Formula I-CP ("Polycyclic 3- R_{17} sulfonylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 24 discloses the conversion of a 3-nitro substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Nitrophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by hydrogenation to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Aminophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). "Polycyclic 3-Aminophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols" can be acylated to acyl amide compounds of Formula I-CP ("Polycyclic 3-R₁₇-C(O)amidophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Schemes 25 and 26 disclose the conversion of a 3-amino substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Aminophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with carbonyl compounds to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-(Saturated Nitrogen Heterocycllyl)aryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols" and ("Polycyclic 3-(Unsaturated Nitrogen Heterocycl-1yl)aryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols", respectively).

Scheme 27 discloses the conversion of a 3-methoxycarbonyl substituent at the R_7 position in Formula I-CP ("Polycyclic 3-Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with amination reagents to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-

10

25

30

Carboxamidophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 28 discloses the conversion of a 3-cyano substituent at the R₇ position in Formula I-CP ("Polycyclic 3-Cyanophenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with organometallic reagents to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Acylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"). Said "Polycyclic 3-Acylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols", according to Scheme 29 can be reduced to hydroxyl compounds of Formula I-CP ("Polycyclic 3-hydroxysubstitutedmethylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 36 discloses the conversion of a 3-methoxycarbonyl

substituent at the R₁₀ position in Formula I-CP ("Polycyclic 3Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2Propanols") compounds by reaction with amination reagents to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP "Polycyclic 3Carboxamdophenyl (R)-Chiral Halogenated 1-Substitutedamino-2Propanols").

substituent at the R_{10} position in Formula I-CP ("Polycyclic 3-Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an organometallic reagent to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP "Polycyclic 3-(bis- R_{20} -hydroxymethyl)aryl (R)-Chiral Halogenated 1-

Scheme 37 discloses the conversion of a 3-methoxycarbonyl

Scheme 38 discloses the conversion of a 3-methoxycarbonyl substituent at the R_{10} position in Formula I-CP ("Polycyclic 3-Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with lithium aluminum hydride to afford,

Substitutedamino-2-Propanols").

10

15

20

after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-Hydroxymethylphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 39 discloses the conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in Formula I-CP ("Polycyclic 3-Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction with an alkylation reagent to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-(bis- R₂₁-hydroxymethyl)phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols").

substituent at the R_{10} position in Formula I-CP ("Polycyclic 3-Carbomethoxyphenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") compounds by reaction intially with an amidation reagent and then an R_{20} -organometallic reagent to afford, after isolation and purification as described above for Schemes 2, 5, 6, 7, and 11, additional compounds of the present invention of Formula I-CP ("Polycyclic 3-(R_{20} -carbonyl)phenyl (R)-

Chiral Halogenated 1-Substitutedamino-2-Propanols").

Scheme 55 discloses the conversion of a 3-methoxycarbonyl

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") and other compounds of this invention posssessing hydroxyl, thiol, and amine functional groups can be converted to a wide variety derivatives. The hydroxyl group, wherein R₁₆ is a hydrogen and X is oxy, of compounds of Formulas I-H, I-HP, I-HPC, I-C, and I-CP can

10

15

20

25

30

be readily converted to esters of carboxylic, sulfonic, carbamic, phosphonic, and phosphoric acids. Acylation to form a carboxylic acid ester is readily effected using a suitable acylating reagent such as an aliphatic acid anhydride or acid chloride. The corresponding aryl and heteroaryl acid anhydrides and acid chlorides can also be used. Such reactions are generally carried out using an amine catalyst such as pyridine in an inert solvent. In like manner, compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one hydroxyl group present in the form of an alcohol or phenol can be acylated to its corresponding esters. Similarly, carbamic acid esters (urethans) can be obtained by reacting any hydroxyl group with isocyanates and carbamoyl chlorides. Sulfonate, phosphonate, and phosphate esters can be prepared using the corresponding acid chloride and similar reagents. Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one thiol group present can be converted to the corresponding thioesters derivatives analogous to those of alcohols and phenols using the same reagents and comparable reaction conditions. Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one primary or secondary amine group present can be converted to the corresponding amide derivatives. Amides of carboxylic acids can be prepared using the appropriate acid chloride or anhydrides with reaction conditions analogous to those used with alcohols and phenols. Ureas of the corresponding primary or secondary amine can be prepared using isocyanates directly and carbamoyl chlorides in the presence of an acid scavenger such as triethylamine or pyridine. Sulfonamides can be prepared from the corresponding sulfonyl chloride in the presence of aqueous sodium hydroxide. Suitable procedures and methods for preparing these derivatives can be found in House's Modern Synthetic Reactions, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons. Reagents of a wide variety that can be used to derivatize hydroxyl, thiol, and amines of compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP are available from commerical sources or the references cited above, which are incorporated herein by reference.

5

10

15

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols") and other compounds of this invention posssessing hydroxyl, thiol, and amine functional groups can be alkylated to a wide variety derivatives. The hydroxyl group, wherein R₁₆ is a hydrogen and X is oxy, of compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP can be readily converted to ethers. Alkylation to form an ether is readily effected using a suitable alkylating reagent such as an alkyl bromide, alkyl iodide or alkyl sulfonate. The corresponding aralkyl, heteroaralkyl, alkoxyalkyl, aralkyloxyalkyl, and heteroaralkyloxyalkyl bromides, iodides, and sulfonates can also be used. Such reactions are generally carried out using an alkoxide forming reagent such as sodium hydride, potassium t-butoxide, sodium amide, lithium amide, and n-butyl

lithium using an inert polar solvent such as DMF, DMSO, THF, and similar, comparable solvents. In like manner, compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one hydroxyl group present in the form of an alcohol or phenol can be alkylated to their corresponding ethers. Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one thiol group present can be converted to the corresponding thioether derivatives analogous

to those of alcohols and phenols using the same reagents and comparable reaction conditions. Compounds of Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP that have at least one primary, secondary or tertiary amine group present can be converted to the corresponding quaternary ammonium derivatives. Quaternary ammonium

30 corresponding quaternary ammonium derivatives. Quaternary ammonium derivatives can be prepared using the appropriate bromides, iodides, and sulfonates analogous to those used with alcohols and phenols. Conditions involve reaction of the amine by warming it

5

with the alkylating reagent with a stoichiometric amount of the amine (i.e., one equivalent with a tertiary amine, two with a secondary, and three with a primary). With primary and secondary amines, two and one equivalents, respectively, of an acid scavenger are used concurrently. Tertiary amines can be prepared from the corresponding primary or secondary amine by reductive alkylation with aldehydes and ketones using reduction methods 1, 2, or 3 as shown in Scheme 3. Suitable procedures and methods for preparing these derivatives can be found in House's Modern Synthetic Reactions, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification 10 of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons. Perfluoroalkyl derivatives can be prepared as described by DesMarteau in J. Chem. Soc. Chem. Commun. 2241 (1998). Reagents of a wide variety that can be used to derivatize hydroxyl, thiol, and amines of compounds of 15 Formulas I-H, I-HP, I-C, I-CP, I-HPC, Cyclo I-H, Cyclo I-C, and Cyclo I-CP are available from commercial sources or the references cited above, which are incorporated herein by reference.

Formula I-H ("Generic Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-alkanols"), Formula I-HP ("Generic

Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated I-Substitutedamino-2-20 propanols"), Formula I-HPC ("Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols"), Formula I-C ("Polycyclic Phenyl (R)-Chiral Halogenated 1-Substitutedamino-(n+1)-Alkanols"), and Formula I-CP ("Polycyclic Phenyl (R)-Chiral Halogenated 1-25 Substitutedamino-2-Propanols") and certain other compounds of this invention can be converted, according to Schemes 17 and 18, to the corresponding cyclic derivatives represented by "Tricyclic tertiary-oxyalkylamines" and exemplified by Formulas Cyclo I-H ("Polycyclic Aryl and Heteroaryl (R)-Chiral Halogenated (N+1)-Cycloazaalkoxy"), Cyclo I-C ("Polycyclic Aryl Phenyl (R)-Chiral Halogenated (N+1)-Cycloazaalkoxy") and Cyclo I-CP ("Polycyclic 30 Phenyl Phenyl (R)-Chiral Halogenated Cycloazaalkoxy"). The hydroxyl group, wherein R₁₆ is a hydrogen and X is oxy, of compounds of Formulas I-H, I-HP, I-C, I-CP, and I-HPC can be cyclized to corresponding cyclic ethers. Compounds suitable for cyclization will normally have at least one

leaving group within 5 to 10 continuous atoms of the hydroxyl group wherein R_{16} is a hydrogen and X is oxy. Most preferrably the leaving group will be within 5 to 7 atoms of the hydroxyl group so as to form a 6 to 8 membered ring heteroatom containing ring. When the leaving group is part of an aromatic ring system, the leaving group will be preferrably in an ortho position. Suitable leaving groups generally include halides, sulfates, sulfonates, trisubsituted amino, disubstituted sulfonium, diazonium, and like, and, in the case of aromatic systems, also includes nitro, alkoxy, aryloxy, heteroaryloxy, and alkylthio.

The cyclization reaction to form "Tricyclic tertiary-oxyalkylamines" of Formulas Cyclo I-H, Cyclo I-C and Cyclo I-CP can be accomplished by aromatic and aliphatic nucleophilic substitution reactions such as those disclosed in March's Advanced Organic Chemistry, 4th Edition, John Wiley &

Sons, especially at pages 293-412 and 649-658 and the references cited therein, which are incorporated herein by reference. Hydroxyl containing suitably substituted compounds can be converted to a cyclic analog by heating a suitably substituted compound under anhydrous conditions in a suitable solvent, such as dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone,

tetraglyme, or hexamethylphosphoramide, in the presence of a suitable base such as potassium carbonate, cesium carbonate, sodium hydroxide, potassium tertiary-butoxide, or lithium diisopropylamide. Alternately, sodium amide in

anhydrous ammonia solvent can be used. Temperatures in the range of -20 °C to 200 °C can be used for time periods of 30 minutes to more than 24 hours.

The preferred temperature can be selected by standard synthetic chemical technique balancing maximum yield, maximum purity, cost, ease of isolation and operation, and time required. Isolation of the "Tricyclic tertiary-oxyalkylamines" can be effected as described above for other tertiary-oxyalkylamines. Representative "Tricyclic tertiary-oxyalkylamines" prepared using the methodology described above are included in Table 8.

The following examples are provided to illustrate the present invention and are not intended to limit the scope thereof. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.

20

25

30

5

10

15

148
Table 8. Structure of Substituted Tricyclic*tertiary*-2-oxyalkylamines.

Y	<u>z</u>	<u>R5</u>	<u>K₁-R₆</u>	<u>R₁₀</u>	K ₂ -R ₁₁	<u>R₁₂</u>	<u>R₁₃</u>
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	Н	C- CF ₃	Н	Н
CH ₂	-	4-chloro-3- ethylphenoxy	N	Н	C- CF ₃	Н	Н
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	Н	C- H	CF ₃	Н
CH ₂	-	4-chloro-3- ethylphenoxy	N	Н	C- H	CF ₃	Н
СН2	-	4-chloro-3- ethylphenoxy	С-Н	Н	N	CF ₃	Н
-	-	4-chloro-3- ethylphenoxy	С-Н	Н	C- CF ₃	Н	Н
-	-	4-chloro-3- ethylphenoxy	N	Н	C- CF ₃	Н	Н
-	-	4-chloro-3- ethylphenoxy	С-Н	Н	C- H	CF ₃	Н
-	-	4-chloro-3- ethylphenoxy	N	H	C- H	CF ₃	Н
-	-	4-chloro-3- ethylphenoxy	С-Н	H	N	CF ₃	Н

Table 8. (cont.) Structure of Substituted Tricyclic tertiary-2-oxyalkylamines.

Y	Z	<u>R₇</u>	K ₁ -R ₆	<u>R₁₀</u>	K ₂ - R ₁₁	<u>R5</u>	<u>R</u> 8
СН2	-	4-chloro-3- ethylphenoxy	С-Н	OCF ₂ CF ₂ H	С- Н	Н	Н
СН2	-	4-chloro-3- ethylphenoxy	N	OCF ₂ CF ₂ H	C- H	Н	H
CH ₂	-	4-chloro-3- ethylphenoxy	C-H	OCF ₂ CF ₂ H	,N	Н	H
СН2	-	phenoxy	С-Н	OCF ₂ CF ₂ H	C-H	H	Н
CH ₂	_	phenoxy	N	OCF ₂ CF ₂ H	C- H	·H	H
СН2	-	phenoxy	С-Н	OCF ₂ CF ₂ H	N	Н	Н
СН2	-	4-chloro-3- ethylphenoxy	С-Н	CF ₂ CF ₃	C- H	H	Н
СН2	-	4-chloro-3- ethylphenoxy	N	CF ₂ CF ₃	C- H	Н	Н
СН2	-	4-chloro-3- ethylphenoxy	С-Н	CF ₂ CF ₃	N	Н	Н
СН2	-	phenoxy	С-Н	CF ₂ CF ₃	C- H	H	Н
СН2	-	phenoxy	N	CF ₂ CF ₃	C- H	Н	Н
CH ₂	-	phenoxy	С-Н	CF ₂ CF ₃	N	Н	Н

Table 8. (cont.) Structure of Substituted Tricyclic tertiary-2-oxyalkylamines.

Y	<u>z</u>	<u>R7</u>	<u>K₁-R₆</u>	<u>R₁₀</u>	K ₂ - R ₁₁	<u>R5</u>	<u>R8</u>
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	CF ₃	C- H	Н	Н
СН2	-	4-chloro-3- ethylphenoxy	N	CF ₃	C- H	Н	Н
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	CF ₃	N	Н	Н
CH ₂	-	phenoxy	С-Н	CF ₃	C- H	Н	Н
СН ₂	-	phenoxy	N	CF ₃	C- H	H	Н
СН2	-	phenoxy	С-Н	CF ₃	N	Н	Н
СН ₂	-	4-chloro-3- ethylphenoxy	С-Н	OCF ₂ CF ₂ H	C- H	Н	F
CH ₂	-	4-chloro-3- ethylphenoxy	N	OCF ₂ CF ₂ H	C- H	Н	F
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	OCF ₂ CF ₂ H	N	Н	F
СН2	-	4-chloro-3- ethylphenoxy	C-H	2-furyl	C- H	Н	Н
CH ₂	-	4-chloro-3- ethylphenoxy	N	2-furyl	С- Н	Ή	Н
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	2-furyl	N	Ή	Н
CH ₂	-	4-chloro-3- ethylphenoxy	С-Н	SCF ₃	C- H	Н	Н
СН2	_	4-chloro-3- ethylphenoxy	N	SCF ₃	C- H	H ·	Н
сн ₂	-	4-chloro-3- ethylphenoxy	С-Н	SCF ₃	N	Н	H

Scheme 1 -H₂O R₁₅ Generic heat $\dot{N}H_2$ R_{14} Imine R₁₅ Generic Amine-1 Generic Carbonyl (XII) Compound (X) (XI; Y = C)Reduction Akylation Method-1: Method-1: Reduction H₂/ PtO₂ Method-3: C2H5OH NaCNBH₃ Br20°€ Reduction CH₃OH Generic Bromide-1 60 psi Method-2: 20°C $NaBH_4$ pH < 4 (XXI; Y = CH)сн3он NaHCO₃ 0-20°C Solvent Generic Secondary Amine R_{14} (XIII) R₁₄ H_2N Generic Amine-2 Akylation Method-2: (XXII; Y = CH) $Pd_2(dba)_3 + Base$ A —Br Generic Bromide-2

(XXIII)

Scheme 5 R₁₅ R₃ F R_9 R_{10} R_{14} R₁₃ R_{11} I-C: (Polycyclic Phenyl R₁₂ (R)-Chiral Halogenated Method B: (n+1)-Alkanols) Step 1: NaH or n-BuLi Aprotic Solvent, -78 °C R_6 Step 2: R5 - (ČH) _ R_4 R₁₅ R9 (XXX) $\mathbf{R}_{\mathbf{2}}$ R₁₀ R₁₃ \dot{R}_{12} Secondary Phenyl Amine (XIIIA)

I-HP/I-HPC:(Generic Polycyclic Aryl and
 Heteroaryl/Aryl-Heteroaryl (R)-Chiral
 Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

105 °C/10-14 Days

Secondary Phenyl Amine (XIII-A)

Secondary Phenyl Amine (XIII-A)

I-HP/I-HPC:(Generic Polycyclic 3-Aryloxyaryl,
3-Heteroaryloxyaryl,3-Heteroaryloxyheteroaryl,
3-Aryloxyheteroaryl, 3-Arylthioaryl,
3-Heteroarylthioaryl,3-Heteroarylthioheteroaryl,
3-Arylthioheteroaryl Aryl and Heteroaryl/ArylHeteroaryl (R)-Chiral Halogenated
1-Substitutedamino-2-Propanols)

I-HP/I-HPC:(Generic Polycyclic 3-Bromo Aryl and Heteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols)

I-HP/I-HPC: (Generic Polycyclic 3-Hydroxy Aryl and Heteroaryl/Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols) I-CP:(Generic Substituted Polycyclic
3-Phenoxyphenyl Aryl (R)-Chiral Halogenated
1-Substitutedamino-2-Propanols)

$$R_{16} = 0$$
 $R_{16} = 0$
 $R_{$

Cu2(triflate)2 · Benzene

- 1 equiv. of aryl bromide
 or heteroaryl bromide
- 1.4 eqiuv. Cs₂CO₃

Ethyl acetate/toluene

105 °C/3-10 Days

I-CP:(Generic Polycyclic 3-Hydroxyphenyl

Aryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols) I-HP/I-HPC: (Generic Polycyclic 3-Aralkyloxyaryl, 3-Heteraralkyloxyaryl, 3-Aralkyloxyheteroaryl, or 3-Heteraralkyloxyheteroaryl Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-

Scheme 15 $\frac{\text{Cs}_2\text{Cl}}{2\text{ eq}}$

2 equivalents of aralkyl bromide or heteroaralkyl bromide

I-HP/I-HPC:(Generic Polycyclic 3-Hydroxy Aryl
 and Heteroaryl/Aryl-Heteroaryl (R)-Chiral
 Halogenated 1-Substitutedamino-2-Propanols)

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{4} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{4} \\$$

Cyclo I-H/Cyclo I-C: Polycyclic Aryl and Heteroaryl/Phenyl (R)-Chiral Halogenated (n+1)-Cycloazaalkoxy)

I-CP:(Generic Polycyclic Phenyl R
Phenyl (R)-Chiral Halogenated
1-Substitutedamino-2-Propanols)

Cyclo I-CP: (Polycyclic Phenyl Phenyl (R)-Chiral Halogenated Cycloazaalkoxy)

I-CP:(Polycyclic 3-Thiophenyl Phenyl (R)-Chiral
 Halogenated 1-Substitutedamino-2-Propanols)

I-CP:(Polycyclic 3- R₁₇-oxyphenyl
 Phenyl (R)-Chiral Halogenated
 1-Substitutedamino-2-Propanols)

I-CP:(Polycyclic 3-Hydroxyphenyl
 Phenyl (R)-Chiral Halogenated
 1-Substitutedamino-2-Propanols)

I-CP:(Polycyclic 3-Bromomethylphenyl
 Phenyl (R)-Chiral Halogenated
 1-Substitutedamino-2-Propanols)

 I-CP:(Polycyclic 3-R₂₂-aminophenyl Phenyl (R)-Chiral
Halogenated 1-Substitutedamino-2-Propanols)

R22 is selected independently from any one or two of the following groups: hydrido, hydroxy, aryloxy, alkyl, alkenyl, alkynyl, aryl, aralkyl, alkoxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkoxy, halocycloalkoxyalkyl, arylsulfinylalkyl, arylsulfonylalkyl, alkylamino cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, hydroxyalkyl, amino, alkoxy, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, heteroaryl, halocycloalkenyloxyalkyl, heteroarylalkyl, aryloxyalkyl, halocycloalkenyl, and heteroarylthioalkyl.

R₁₆-

I-CP:(Polycyclic 3-R₁₇-C(O)amidophenyl Phenyl (R)-Chiral Halogenated

1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP: (Polycyclic 3-Nitrophenyl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; R₁₆ = trialkylsilyl)

I-CP:(Polycyclic 3-(Saturated nitrogen
 heterocycl-1-yl)phenyl Phenyl (R)-Chiral
 Halogenated 1-Substitutedamino 2-Propanols; R₁₆ = H)

 R_{12} I-CP:(Polycyclic 3-Aminophenyl Phenyl

(R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP:(Polycyclic 3-(Unsaturated nitrogen
 heterocycl-1-y1)phenyl Phenyl (R)-Chiral
 Halogenated 1-Substitutedamino 2-Propanols; R₁₆ = H)

$$R_{16}$$
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{11}

I-CP:(Polycyclic 3-Aminophenyl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

R₂₂ is selected independently from any one or two of the following groups: hydrido, hydroxy, aryloxy, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, alkoxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkoxy, halocycloalkoxyalkyl, heteroaryl, arylsulfinylalkyl, arylsulfonylalkyl, alkylamino cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, hydroxyalkyl, amino, alkoxy, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkenyl, halocycloalkenyloxyalkyl, heteroarylalkyl, and heteroarylthioalkyl.

I-CP:(Polycyclic 3-Cyanophenyl Phenyl (R)-Chiral
Halogenated 1-Substitutedamino-2-Propanols; R₁₆ = H)

I-CP:(Polycyclic 3-Acylphenyl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16}=\mathrm{H})$ R_{17} is selected from alkyl, alkenyl, alkynyl, aryl, aryloxyalkyl, aralkoxyalkyl, aralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heteroarylthioalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl,cycloalkenylalkyl, arylthioalkyl, aralkyl, and cycloalkenyl.

Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$) R_{17} is selected from alkyl, alkenyl, alkynyl, aryl, aryloxyalkyl, aralkoxyalkyl, aralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, aralkyl, heteroaralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl, cycloalkenylalkyl, arylthioalkyl, and cycloalkenyl.

XL:(Generic Substituted Alkylamine; $R_{16} = H$)

I-CP: (Polycyclic 3-Carbomethoxyaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; R_{16} = H)

I-CP: (Polycyclic 3-Carboxamidoaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

NOTE: R_{22} is as defined in Scheme 27

I-CP: (Polycyclic 3-Carbomethoxyaryl Phenyl
 (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

I-CP: (Polycyclic 3-(bis-R₂₀-hydroxymethyl)aryl
Phenyl (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

R₂₀ is selected from alkyl, alkenyl, alkynyl, aryl, aryloxyalkyl, aralkoxyalkyl, aralkylthioalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, cycloalkenylalkyl, arylthioalkyl, aralkyl, alkoxyalkyl, and cycloalkenyl.

I-CP: (Polycyclic 3-Carbomethoxyaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP: (Polycyclic 3-Hydroxymethylaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP: (Polycyclic 3-Carbomethoxyaryl Phenyl
 (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

I-CP: (Polycyclic 3-(bis-R₂₁-hydroxymethyl)aryl
 Phenyl (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

 R_{21} is selected from perfluoroalkyl, perfluoroalkenyl, perfluorocycloalkyl, perfluorocycloalkyl, perfluoroalkyl, perfluoroalkoxyalkyl,

I-CP: (Polycyclic 3-Arylaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP: (Polycyclic 3-Bromoaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

I-CP: (Polycyclic 3-Heteroarylaryl Phenyl
 (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

I-CP: (Polycyclic 3-Bromoaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols; $R_{16} = H$)

3-Bromo Phenyl Scheme 42 Carbonyl (XI-A) R9 Br R₁₃ \dot{R}_{12} Pd(triphenylphosphine)₂Cl₂ Heteroaryl-SnBu₃, Dioxane R_9 R_{14} R₁₃ 3-Heteroaryl R₁₃ Phenyl Carbonyl Ř₁₂ (XI-A) R_6 Phenyl R_6 Amine (X-A) -R₇ R₁₅ R₄ ŃН₂ NaB(OAc)₃H Acetic Acid R₁₅. ClcH2CH2Cl 10R H-R₁₄ R₁₃ R₁₃

Secondary Phenyl Amine (XIII-A)

12^Ř

R₁₁

3-Bromo Phenyl Carbonyl (XI-A) Scheme 43

Secondary Phenyl Amine (XIII-A)

3-B(OH)₂ Phenyl Carbonyl (XI-A) Scheme 44 R9 B(OH)₂ R₁₄ R_{11} R₁₃ Ř₁₂ Pd(triphenylphosphine)₄ Heteroaryl-Br or Aryl-Br, K2CO3, Toluene, DMF R₉ R_{14} R₁₃ 3-Heteroaryl R₁₃ Phenyl Carbonyl R₁₂ (XI-A) R_6 Phenyl R_6 Amine (X-A) -R₇ R₁₅ R₄-'nн₂ NaB(OAc)₃H Acetic Acid R₁₅-ClCH2CH2Cl H-R₁₄ R₁₃ R₁₃ `R₁₁

Secondary Phenyl Amine (XIII-A)

12^Ŕ

I-HP/I-HPC:(Generic Polycyclic
Heteroaryl/Aryl-Heteroaryl (R)-Chiral
Halogenated 1-Substitutedamino-2-Propanols)

I-HP/I-HPC:(Generic Polycyclic
Heteroaryl/Aryl-Heteroaryl (R)-Chiral
Halogenated 1-Substitutedamino-2-Propanols)

I-HP/I-HPC/I-CP: (Generic Polycyclic
Aryl Aryl and Heteroaryl (R)-Chiral
Halogenated 1-Substitutedamino-2-Propanols)

I-H/I-C:(Generic Polycyclic
Aryl Aryl and Heteroaryl (R)-Chiral

Halogenated 1-Substitutedamino-3-Propanols)

I-CP:(Polycyclic 3-Carbomethoxyphenyl Phenyl
 (R)-Chiral Halogenated 1-Substitutedamino2-Propanols; R₁₆ = H)

I-CP: (Polycyclic 3-Heteroarylaryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-

NOTE: HeteroarylAnalogs Can Be Prepared Using Heteroaryl Analogs of X-A, VLX, and XI-A.

I-HPC: Polycyclic Aryl-Heteroaryl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols when R₁₆ equals H) NOTE: Aryl Analogs (I-CP) of (I-HPC) Can Be Prepared by Starting With Arvl Bromide Analogs of (LXXI-AH).

I-HPC: (Polycyclic Heteroaryl-Aryl Phenyl (R)-Chiral Halogenated 1-Substitutedamino-2-Propanols when R_{16} = H and Y = O) NOTE: Diaryl (I-CP) and Diheteroaryl (I-HP) Analogs Can Be Prepared by Using Aryl Bromide and Heteroaryl-OH, respectively.

10

15

20

The following examples are provided to illustrate the present invention and are not intended to limit the scope thereof. Without further elaboration, it is believed that one skilled in the art can, using the preceding descriptions, utilize the present invention to its fullest extent. Therefore the following preferred specific embodiments are to be construed as merely illustrative and not limitative of the remainder of the disclosure in any way whatsoever. Compounds containing multiple variations of the structural modifications illustrated in the preceding schemes or the following Examples are also contemplated. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.

One skilled in the art may use these generic methods to prepare the following specific examples, which have been or may be properly characterized by ¹H NMR and mass spectrometry. These compounds also may be formed in vivo.

The following examples contain detailed descriptions of the methods of preparation of compounds of Formula V-H. These detailed descriptions fall within the scope and are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are Degrees centigrade unless otherwise indicated.

10

15

EXAMPLE 1

(2R,S)-3-[(3-phenoxyphenyl)[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl|amino]-1,1,1-trifluoro-2-propanol

EX-1A) To a solution of 3-(1,1,2,2-tetrafluoroethoxy)toluene (50 g, 0.24 mol) and N-bromosuccinimide (42.75 g, 0.24 mol) in 100 mL of carbon tetrachloride under nitrogen was added 2,2'-azobisisobutyronitrile (0.71 g, 0.004 mol). The resultant mixture was refluxed for 2 h, then cooled to room temperature and quenched with 300 mL of water. The organic layer was collected, washed with water and brine, dried over MgSO₄, and concentrated *in vacuo* to give 66.0 g (96%) of the desired crude 3-(1,1,2,2-tetrafluoroethoxy)bromomethylbenzene product as a yellow oil. 1 H NMR indicates that this oil is a mixture of products: 7% dibrominated, 67% monobrominated, and 20% starting material. The crude product was used without further purification. ESMS $m/z = 287 [M+H]^{+}$.

EX-1B) The crude product (56 g, 0.14 mol) from EX-1A in 200 mL of cyclohexane was added dropwise under nitrogen to a solution of 3-phenoxyaniline (89 g, 0.480 mol) in 500 mL of cyclohexane. The reaction mixture was refluxed overnight, then cooled to room temperature and diluted with water and diethyl ether. The layers were separated, and the agueous layer

10

15

20

was extracted with diethyl ether. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give a dark oil. The crude product was purified by column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to afford 44.96 g (83%) of the desired N-(3-phenoxyphenyl)-[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amine product as a yellow oil. ESMS m/z = 392 [M+H]⁺.

To a mixture of the amine product (15.0 g, 0.038 mol) from EX-1B and 1,1,1-trifluoro-2,3-epoxypropane (8.58 g, 0.077 mol, TCI) was added a suspension of ytterbium (III) trifluoromethanesulfonate (2.37 g, 0.0031 mol) in 15 mL of acetonitrile. The resulting mixture was heated at 50 °C in a sealed glass vial for 1.5 h. The reaction mixture was cooled to room temperature then diluted with water and ethyl acetate and extracted. The organic layers were combined, dried over MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to afford 12.03 g (62%) of the desired (2RS)-3-[(3-phenoxyphenyl)][3-(1,1,2,2tetrafluoroethoxy) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol product as a yellow oil. Anal. calcd. for C₂₄H₂₀F₇NO₃: C, 57.26; H, 4.00; N, 2.78. Found: C, 56.96; H, 4.35; N, 2.69. HRMS calcd. 504.1410 [M+H]⁺, found: 504.1431. ¹H NMR (CDCl₂) δ 7.28 (m, 4H), 7.14 (t, 1H), 7.07, (m, 3H), 7.00 (s, 1H), 6.94 (d, 2H), 6.46 (dd, 1H), 6.38 (dd, 1H), 6.35 (t, 1H), 5.84 (t, 1H), 4.60 (t, 2H), 4.36 (m, 1H), 3.82 (d, 1H), 3.48 (m, 1H), 2.51 (s, 1H). ¹⁹ F NMR (CDCl₃) δ -79.0 (s, 3F), -88.21 (d, 2F), -137.05 (dd, 2F).

10

15

20

EXAMPLE 2

(2R)-3-[(3-phenoxyphenyl)[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]- 1,1,1-trifluoro-2-propanol

On a Chiralpak AD HPLC column, (2RS)-3-[(3-phenoxyphenyl)][3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol (12.2 g, 0.024 mol) from EX-1 was purified by chiral chromatography to give 1.4 (0.003)(2R)-3-[(3-phenoxyphenyl)][3-(1,1,2,2-12%) of tetrafluoroethoxy)phenyl]methyl] amino]-1,1,1-trifluoro-2-propanol as a light yellow oil. Chiral purification was accomplished by eluting with 1:9 isopropanol in heptane at 1.0 mL/min with 250 nm UV detection. The product eluted at 8.43 min. $[\alpha]_{589} = +16.8.0$ (c 0.125 g/dL, CH₃CN), $[\alpha]_{365} = +84.0$ (c 0.125, CH₃CN). Anal. calcd. for C₂₄H₂₀F₇NO₃: C, 57.26; H, 4.00; N, 2.78. Found: C, 56.96; H, 4.35; N, 2.69. HRMS calcd.: 504.1410 [M+H]⁺, found: 504.1388. $^{1}{\rm H}$ NMR (CDCl₃) δ 7.28 (m, 4H), 7.14 (t, 1H), 7.07, (m, 3H), 7.00 (s, 1H), 6.94 (d, 2H), 6.46 (dd, 1H), 6.38 (dd, 1H), 6.35 (t, 1H), 5.84 (t, 1H), 4.60 (t, 2H), 4.36 (m, 1H), 3.82 (d, 1H), 3.48 (m, 1H), 2.51 (s, 1H). ¹⁹ F NMR (CDCl₃) & -79.0 (s, 3F), -88.21 (d, 2F), -137.05 (dd, 2F).

10

15

20

EXAMPLE 3

(2S)-3-[(3-phenoxyphenyl)][3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]- 1,1,1-trifluoro-2-propanol

On a Chiralpak AD HPLC column, (2RS)-3-[(3-phenoxyphenyl)[[3-(1,1,2,2tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol (12.2 g. 0.024 mol) from EX-1 was purified by chiral chromatography to give 10.5 g (0.021)mol. 86%) of (2S)-3-[(3-phenoxyphenyl)][3-(1,1,2,2tetrafluoroethoxy)phenyl] methyl]amino]-1,1,1-trifluoro-2-propanol as a light yellow oil. Chiral purification was accomplished by eluting with 1:9 isopropanol in heptane at 1.0 mL/min with 250 nm UV detection. The product eluted at 6.36 min. $[\alpha]_{589} = -17.0$ (c 0.265 g/dL, CH₃CN), $[\alpha]_{365} = -85.7$ (c 0.265, CH₃CN). Anal. calcd. For C₂₄H₂₀F₇NO₃: C, 57.26; H, 4.00; N, 2.78. Found: C, 56.96; H, 4.35; N, 2.69. HRMS calcd.: 504.1410 [M+H]⁺, found: 504.1431. 1 H NMR (CDCl₃) δ 7.28 (m, 4H), 7.14 (t, 1H), 7.07, (m, 3H), 7.00 (s, 1H), 6.94 (d, 2H), 6.46 (dd, 1H), 6.38 (dd, 1H), 6.35 (t, 1H), 5.84 (t, 1H), 4.60 (t, 2H), 4.36 (m, 1H), 3.82 (d, 1H), 3.48 (m, 1H), 2.51 (s, 1H). ¹⁹ F NMR (CDCl₃) & -79.0 (s, 3F), -88.21 (d, 2F), -137.05 (dd, 2F).

10

15

20

EXAMPLE 4

(2R)-3-[(3-phenoxyphenyl)[[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol

Using a procedure adopted from H.C.Brown et al. (J. Org. Chem. 60, 41-46, (1995)), R-(+)-1,1,1-trifluoro-2,3-epoxypropane was prepared beginning with the transfer of (+)-B-chlorodiisopinocampheylborane ((+)-DIP-Cl, 1.2 kg, 3.74 mol) to a 5 L three neck flask containing 5 L of ether under nitrogen. Anhydrous ether (5 L) was added, and the mixture was stirred until the solids dissolved and the temperature equilibrated to 0 °C. Then 3-bromotrifluoroacetone (326 mL, 3.14 mol) was added, and the reaction was stirred for 72 h while maintaining the temperature between -4 and +5 °C. The reaction was followed by ¹⁹F NMR by removing an aliquot (20 µL), quenching with anhydrous methanol (0.6 mL), and referencing to external D2O. The reduction was 68 % complete after 48 h. The ether was removed under vacuum (100 torr to 0.1 torr), leaving a pale. viscous oil. A 5 L 3-neck flask equipped with stirrer, dropping funnel, and short-path distillation head with chilled receiver was charged with 50% (w/w) aqueous NaOH and heated to 40 °C. With external heat removed, the quenched reduction mixture was added dropwise to the aqueous NaOH, with the rate controlled to maintain the pot temperature below 65 °C. The product epoxide

10

15

20

25

formed immediately, distilling over with a head temperature of 32-42 °C. A yellow-orange solid byproduct was broken up by stirring and some foaming was observed. When the distillation was complete, 145 g (43%) of the desired R-(+)-1,1,1-trifluoro-2,3-epoxy-propane product was obtained as a clear, colorless oil. ¹H NMR (C₆D₆) δ 2.50 (m, 1H, CF₃CH), 2.15 (dd, 1H, J = 2.10, 5.01 Hz), 1.75 (m, 1H). 19 F NMR (C₆D₆) δ -75.4 (d, J = 4.7 Hz). Chiral GC/MS analysis was performed on the corresponding diethylamine adduct using a gamma cyclodextrin column (Supelco gammadex120 G-cyclodextrin fused silica): 4 drops of the epoxide, R-(+)-1,1,1-trifluoro-2,3-epoxypropane, and 4 drops of diethylamine were heated briefly in a sealed vial, cooled, diluted with methyl tbutyl ether, and analyzed. Found: two gc peaks: 10.97 min and 11.11 min (ratio 1:230; 99% ee), where the R-product predominated. MS calcd. for $C_7H_14F_3NO: m/z = 186 [M+H]^+$, found: 186, for both gc peaks. In contrast, the diethylamine adduct obtained with the TCI trifluoromethyl-oxirane (lot OGH01) from EX-1, gave 2 peaks with identical MS signals m/z = 186, 10.96 min and 11.12 min (ratio 8.5:1; 79% ee), where the S-product predominated.

To a mixture N-(3-phenoxyphenyl)-[[3-(1,1,2,2-tetrafluoroethoxy)phenyl] methyl]-amine from EX-1B (1.48 g, 0.0038 mol) and R-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.64 g, 0.0057 mol) was added a suspension of ytterbium (III) trifluoro-methanesulfonate (0.23 g, 0.0004 mol) in 1.5 mL of acetonitrile. The resulting mixture was heated at 50 °C in a sealed glass tube for 1.5 h. The reaction mixture was cooled to room temperature then diluted with water and ethyl acetate and extracted. The organic layers were combined, dried over MgSO4, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to afford

1.2 g (63%) of the desired (2*R*)-3-[(3-phenoxyphenyl)-[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol product as a pure yellow oil (>96% ee by chiral HPLC analysis), which was identical in all respects to **EX-2**. Anal. calcd. for C₂₄H₂₀F₇NO₃: C, 57.26; H, 4.00; N, 2.78. found: C, 56.96; H, 4.35; N, 2.69. HRMS calcd.: 504.1410 [M+H]⁺, found: 504.1431. ¹H NMR (CDCl₃) δ 7.28 (m, 4H), 7.14 (t, 1H), 7.07, (m, 3H), 7.00 (s, 1H), 6.94 (d, 2H), 6.46 (dd, 1H), 6.38 (dd, 1H), 6.35 (t, 1H), 5.84 (t, 1H), 4.60 (t, 2H), 4.36 (m, 1H), 3.82 (d, 1H), 3.48 (m, 1H), 2.51 (s, 1H). ¹⁹F NMR (CDCl₃) δ -79.0 (s, 3F), -88.21 (d, 2F), -137.05 (dd, 2F).

Additional examples can be prepared by one skilled in the art using similiar methods and commercially available epoxides. For example, 3-[(3-phenoxyphenyl)[[3-(trifluoromethoxy)phenyl]methyl]amino]-1-chloro-2-propanols can be prepared from the reaction of *N*-(3-phenoxyphenyl)-[[3-(trifluoromethoxy)phenyl]methyl]amine with either (*R*)-epichlorohydrin or (*S*)-epichlorohydrin, as illustrated in Example Table 1.

Example Table 1. 3-[(3-phenoxyphenyl)[[3-(trifluoromethoxy)phenyl]methyl]amino]-1-chloro-2-propanols.

Ex. No.	R _{SUB1}	R _{SUB2}	Calculated Mass [M+H]+	Observed Mass [M+H] +
5	ОН	Н	452.1240	452.1245
6	Н	ОН	452.1240	452.1259

10

15

20

EXAMPLE 7

 $(2R)-3-[(3,4,5-trimethoxyphenyl)][[3-(trifluoromethylthio)phenyl]methyl]- \\ amino]-1,1,1-trifluoro-2-propanol$

EX-45A) To a 1,2-dichloroethane (12 mL) solution of 3,4,5-trimethoxyaniline (0.80 g, 4.4 mmol) was added (3-trifluoromethylthio)benzaldehyde (0.90 g, 4.4 mmol), NaB(OAc)₃H (1.20 g, 5.66 mmol) and acetic acid (0.26 mL, 4.5 mmol). The cloudy solution was stirred at room temperature for 1 h. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated NaHCO₃ and brine, dried (MgSO₄) and evaporated to give 1.58 g (96%) of the desired N-(3,4,5-trimethoxyphenyl)[[3-trifluoromethylthiophenyl]methyl]amine product as an off-white solid. MS: m/z = 373.8 [M+H]⁺.

To an acetonitrile (3.2 mL) solution of amine (1.20 g, 3.2 mmol) from **EX-45A** was added *R*-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.55 mL, 6.4 mmol) from **EX-4** and Yb(OTf)₃ (0.40 g, 0.64 mmol). The cloudy solution was stirred in a sealed flask at 50 °C for 18 h. The cooled reaction mixture was diluted with diethyl ether and washed with water and brine. The organic layer was dried

15

(MgSO₄) and evaporated to an oil. Purification by flash column chromatography on silica gel eluting with 20% ethyl acetate in hexane gave an oil which was triturated with hexanes to give a white solid. The precipitate was isolated by filtration and dried *in vacuo* to give 0.82 g (53 %) of the desired (2*R*)-3-[(3,4,5-trimethoxyphenyl)[[3-(trifluoromethylthio)phenyl] methyl]-amino]-1,1,1-trifluoro-2-propanol product as a white solid, m.p. 88.9-89.1 °C (95% ee by chiral HPLC). Anal. calcd. for C₂₀H₂₁NO₄SF₆: C, 49.48; H, 4.36; N, 2.89. Found: C, 49.29; H, 4.21; N, 2.81. HRMS calcd.: 486.1174 [M+H]⁺, found: 486.1158. ¹H NMR (C₆D₆) δ 3.10 (d, 1H), 3.18 (dd, 1H), 3.32 (s, 6H), 3.53 (d, 1H), 3.64 (s, 3H), 4.01 (m, 1H), 4.21 (dd, 2H), 5.70 (s, 2H), 6.80 (t, 1H), 6.94 (d, 1H), 7.23 (d, 1H), 7.37 (s, 1H). [α]₅₈₉ = +26.8 (c 1.099 g/dL, CHCl₃).

EXAMPLE 8

2P) 2 II2 (4 ablama 2 atlanta).

(2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoro-ethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol

EX-8A) To a solution of 1,3-dinitrobenzene (16.8 g, 0.1 mol) and 4-chloro-3-ethylphenol (15.6 g, 0.1 mol) in 200 mL of dimethylsulfoxide was added cesium carbonate (65 g, 0.2 mol). The reaction mixture was heated at 100 °C under nitrogen overnight then cooled to room temperature. The reaction mixture was

10

15

filtered through celite then rinsed with diethyl ether and a small amount of water. The filtrate was extracted several times with diethyl ether. The organic layers were combined, washed with water and brine, dried over MgSO₄, and concentrated *in vacuo* to give 21.8 g (78%) of the desired 3-(4-chloro-3-ethylphenoxy)-1-nitrobenzene product as a dark orange oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C₁₄H₁₂CINO₃: 295.0849 [M+NH₄]⁺, found 295.0862.

EX-8B) To a solution of 3-(4-chloro-3-ethylphenoxy)-1-nitrobenzene (10 g, 0.036 mol) from EX-8A in 400 mL of glacial acetic acid and 1 mL of water was added zinc metal (20 g, 0.305 mol) at room temperature, and the resultant mixture was stirred for 1 h. The reaction mixture was filtered through celite. The filtrate was neutralized with ammonium hydroxide and extracted with diethyl ether. The organic layer was washed with water and brine, dried over MgSO4, and concentrated *in vacuo* to give 10 g (100%) of the desired 3-(4-chloro-3-ethylphenoxy)aniline product as a dark orange oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C₁4H₁4ClNO: 248.0842 [M+H]⁺, found: 248.0833.

EX-8C) To a solution of 3-(4-chloro-3-ethylphenoxy)aniline (2.0 g, 8.1 mmol) from EX-8B and 3-(1,1,2,2-tetrafluoroethoxy)benzaldehyde (1.6 g, 7.3 mmol) in 30 mL of dichloroethane was added sodium triacetoxyborohydride (2.0 g, 9.7 mmol) and glacial acetic acid (0.51 mL, 8.9 mmol). The reaction mixture was stirred at room temperature for 1 h then quenched with water and extracted with diethyl ether. The organic layer was washed with water and brine, dried over MgSO4, and concentrated *in vacuo* to give 3.5 g (95%) of the desired N-[(4-chloro-3-ethylphenoxy)phenyl]-3-[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-

10

15

20

25

methyl]amine product as a brown oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C₂₃H₂₀ClF₄NO₂: 454.1197 [M+H]⁺, found: 454.1220.

solution of N-[(4-chloro-3-ethylphenoxy)phenyl]-3-[[3-(1,1,2,2tetrafluoroethoxy)-phenyl]methyl]amine (1.8 g, 4.0 mmol) from EX-8C, R-(+)-1,1,1-trifluoro-2,3-epoxy-propane (0.64 g, 0.0057 mol) from EX-4, and ytterbium (III) trifluoromethanesulfonate (0.25 g, 0.4 mmol) in 1.5 mL of acetonitrile was heated at 40 °C in a sealed glass tube for 1 h. The reaction mixture was cooled to room temperature then diluted with water and diethyl ether and extracted. The ether layer was washed with water and brine, dried over MgSO4, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel eluting with 1:7:0.01 of acetate:hexane:ammonium hydroxide to afford 1.5 g (66%) of the desired (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl] methyl]amino]-1,1,1-tri-fluoro-2-propanol product as a yellow oil (96% ee by chiral HPLC analysis). $[\alpha]_{589}^{25} = +36.9$ (c 1.044g%, CHCl₃), $[\alpha]_{365}^{25} = +$ 189.7 (c 1.044g%, CHCl₃). The refractive index @ 25 °C is 1.5275. Anal. calcd. for C26H23ClF7NO3: C, 55.18; H, 4.10; N, 2.48. found: C, 54.92; H, 4.05; N, 2.33. HRMS calcd.: 566.1330 [M+H]⁺, found: 566.1323, ¹H NMR (CDCl₂) δ 7.30 (t, 1H), 7.20 (d, 1H), 7.15 (t, 1H), 7.08 (t, 2H), 7.00 (s, 1H), 6.86 (d, 1H), 6.68 (dd, 1H), 6.48 (dd, 1H), 6.36 (dd, 1H), 6.34 (t, 1H), 5.81 (tt, 1H), 4.62 (s, 2H), 4.32 (m, 1H), 3.84 (dd, 1H), 3.55 (dd, 1H), 2.67 (q, 2H), 2.45 (bs, 1H), 1.17 (t, 3H). 19 F NMR (CDCl₃) δ -79.22 (d, 3F), -88.57 (m, 2F), -137.16 (dt, 2F).

Additional examples of (2R)-3-[[3-(substituted-phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols and (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-substituted-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols can be prepared by one skilled in the art using similar methods, as shown in Example Tables 2 and 3, respectively.

Example Table 2. (2*R*)-3-[[3-(Substituted-phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols.

HO HO CF2CF2H

Ex.	R_{SUB}	Calculated	Observed
No.		<u>Mass</u>	Mass
		[M+H] ⁺	[M+H] +
9	4-methyl	518.1566	518.1587
10	3-isopropyl	546.1879	546.1900
11	3-ethyl	532.1723	532.1713

15

5

Example Table 3. (2R)-3-[[3-(4-Chloro-3-ethylphenoxy)phenyl][[3-substituted-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex. R_{SUB} Calculated Observed No. <u>Mass</u> Mass $[M+H]^+$ [M+H] + 12 3-trifluoromethoxy 534.1271 534.1309 13 3-trifluoromethyl, 4-fluoro 536.1228 536.1265 14 2-fluoro, 4-trifluoromethyl 536.1228 536.1241 15 2-trifluoromethyl, 4-fluoro 536.1228 536.1245 16 2-fluoro, 5-trifluoromethyl 536.1228 536.1252

536.1228

536.1199

2-fluoro, 6-trifluoromethyl

10

17

10

15

20

EXAMPLE 18

$(2R)\hbox{-}3\hbox{-}[[3\hbox{-}(4\hbox{-}chloro\hbox{-}3\hbox{-}ethylphenoxy)phenyl]][[3\hbox{-}(1,1,1,2,2\hbox{-}pentafluoroethyl)\hbox{-}phenyl]methyl]amino]\hbox{-}1,1,1\hbox{-}trifluoro\hbox{-}2\hbox{-}propanol$

EX-18A) Sodium pentafluoroethyl propionate (8.4 g, 50 mmol) and 3-iodotoluene (5.5 g, 25 mmol) were dissolved in anhydrous DMF (300 mL) under nitrogen. CuI (9.5 g, 50 mmol) was added, and the mixture was heated to 160 °C under nitrogen for 4 h, at which time a 15 mL fraction of a mixture of DMF and 3-pentafluoroethyl toluene was collected. The distillate was diluted with Et₂O and was washed with brine. The ether layer was dried over MgSO₄, filtered and concentrated *in vacuo* to give 5.25 g (55%) of the desired 3-pentafluoroethyl-toluene product as a colorless oil. ¹H NMR (CDCl₃) δ 7.36 (m, 4H), 2.40 (s, 3H). ¹⁹F NMR (CDCl₃) δ -85.2 (s, 3F), -115.2 (s, 2F).

EX-18B) The 3-pentafluoroethyl-toluene (2.9 g, 13.8 mmol) product from EX-18A and N-bromosuccinimide (2.5 g, 13.8 mmol) were dissolved in CCl₄ (25 mL). AIBN (50 mg, 0.3 mmol) was added, and the mixture was refluxed for 3.5 h under N₂. The reaction mixture was cooled to room temperature and diluted with water. The layers were separated, and the organic layer was washed with

15

20

brine, dried with anhydrous MgSO4, filtered, and concentrated in vacuo to give 3.4 g (87%) of a colorless oil. The ¹H NMR spectrum indicated that the crude product contained 3-pentafluoroethyl-benzylbromide (70%). the benzyldibromide (10%) and pentafluoroethyl toluene (20%). H NMR (CDCl₃) δ 7.60 (m, 2H), 7.50 (m, 2H), 4.50 (s, 2H). ¹⁹ F NMR (CDCl₃) δ -85.1 (s, 3F), -115.4 (s, 2F).

EX-18C) A solution of 3-(4-chloro-3-ethylphenoxy)aniline (1.7 g, 6.9 mmol) was prepared in cyclohexane (13 mL). A solution of crude 3-pentafluoroethyl benzylbromide (1 g, 3.5 mmol) product from EX-18B in cyclohexane (10 mL) 10 was added dropwise under nitrogen over 3 min. The reaction mixture was refluxed under N2 for 24 h and then was cooled to room temperature. mixture was diluted with Et2O and saturated aqueous NaHCO3. The layers were separated, and the aqueous layer was extracted with Et₂O. The organic layer was washed with brine, dried with anhydrous MgSO4, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with hexanes in ethyl acetate (95:5) which gave 0.56 g (35%) of the desired N-[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(pentafluoro-ethyl)phenyl]methyllamine product as a brown oil. ¹H NMR (CDCl₃) & 7.53 (m, 4H), 7.27 (d, 1H), 7.15 (t, 1H), 6.93 (d, 1H), 6.77 (dd, 1H), 6.41 (tt, 2H), 6.30 (t, 1H), 4.41 (s, 2H), 2.73 (q, 2H), 1.23 (t, 3H). ¹³C NMR (CDCl₃) δ 158.6, 156.1. 143.4, 141.3, 140.2, 131.3, 130.7, 130.4, 129.4, 128.1, 120.4, 117.8, 108.8, 103.9, 48.5, 27.5, 14.1. ¹⁹F NMR (CDCl₃) δ -85.1 (s, 3F), -115.2 (s, 2F). HRMS calcd. for C₂₃H₁₉CIF₅NO: 456.1154 [M+H]⁺, found: 456.1164.

The N-[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]amine (0.4 g, 0.88 mmol) product of EX-18C was dissolved in anhydrous acetonitrile (1.5 mL). R-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.22 g, 1.94 mmol) and Yb(OTf)3 (22 mg, 0.035 mmol) were added, and the reaction mixture was stirred under N2 at 45 °C in a sealed glass tube for 15 h. The reaction mixture was then cooled to room temperature and diluted with Et2O and saturated aqueous NaHCO3. The layers were separated and the aqueous layer was extracted with Et2O. The ether layers were combined, washed with brine, dried with anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The viscous oil was adsorbed onto silica gel and purified by column chromatography eluting with hexanes in ethyl acetate (95:5) which gave 0.32 g (64%) of the desired (2R)-3-[(4-chloro-3-ethylphenoxy)phenyl[[3-(pentafluoroethyl)phenyl] methyl]amino]-1,1,1-trifluoro-2-propanol product as a viscous, colorless oil. H NMR (CDCl₃) 8 7.47 (m, 4H), 7.23 (m, 3H), 6.90 (d, 1H), 6.72 (dd, 1H), 6.52 (d, 1H), 6.42 (m, 2H), 4.73 (s, 2H), 4.39 (m, 1H), 3.91 (dd, 1H), 3.58 (m, 2H), 2.73 (q, 2H), 2.57 (s, 1H), 1.22 (t, 3H). ¹⁹ F NMR (CDCl₂) δ -79.2 (s, 3F), -84.9 (s, 3F), -115.2 (s, 2F). HRMS calcd. for $C_{26}H_{22}ClF_8NO_2$: 568.1290 [M+H]⁺, found: 568.1296.

5

10

EXAMPLE 19

 $(2R)\hbox{-}3\hbox{-}[[3\hbox{-}(3\hbox{-}trifluoromethoxyphenoxy)phenyl][[3\hbox{-}(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]\hbox{-}1,1,1\hbox{-}trifluoro-2\hbox{-}propanol$

EX-19A) To a solution of 1,3-dinitrobenzene (4.5 g, 0.03 mol) and 3-trifluoromethoxy-phenol (4.8 g, 0.03 mol) in 54 mL of dimethylsulfoxide was added cesium carbonate (21.8 g, 0.07 mol). The reaction mixture was heated at 100 °C under nitrogen overnight then cooled to room temperature. The reaction mixture was diluted with water and extracted with diethyl ether several times. The organic layers were combined, washed with 1 N HCl and water, dried over MgSO4, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluting with 1:9 ethyl acetate in hexane to afford 3.0 g (38%) of the desired 3-(3-trifluoro-methoxyphenoxy)nitrobenzene product as a yellow-orange liquid which was 85% pure by reverse phase HPLC analysis. This material was carried on without further purification.

20

5

10

15

EX-19B) To a solution of 3-(3-trifluoromethoxyphenoxy)nitrobenzene (3.0 g, 0.01 mol) from **EX-19A** in 100 mL of glacial acetic acid was added zinc metal (6.6 g, 0.1 mol) at room temperature, and the resultant mixture was stirred for 1 h. The reaction mixture was filtered through celite. The filtrate was neutralized

with ammonium hydroxide and extracted with diethyl ether then ethyl acetate. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluting with 1:9 ethyl acetate in hexane to afford 1.2 g (44%) of the desired 3-(3-trifluoromethoxyphenoxy)aniline product as a yellow oil which was 98% pure by reverse phase HPLC analysis. Anal. calcd. for C₁₃H₁₀F₃NO₂: C, 58.00; H, 3.74; N, 5.20. found: C, 57.68; H, 3.57; N, 5.14. HRMS calcd.: 270.0742 [M+H]⁺, found: 270.0767.

- EX-19C) To a solution of 3-(3-trifluoromethoxyphenoxy)aniline (1.0 g, 3.7 mmol) from EX-19B and 3-(1,1,2,2-tetrafluoroethoxy)benzaldehyde (0.83 g, 3.7 mmol) in 18.5 mL of dichloroethane was added sodium triacetoxyborohydride (1.0 g, 4.7 mmol) and glacial acetic acid (0.25 mL, 4.3 mmol). The reaction mixture was stirred at room temperature overnight then quenched with saturated aqueous sodium bicarbonate and extracted with methylene chloride. The organic layer was dried over MgSO4 and concentrated *in vacuo* to give 1.8 g (100%) of the desired [3-(3-trifluoromethoxy-phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] amine product as a yellow oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C22H16F7NO3:
 476.1097 [M+H]⁺, found: 476.1069. This material was carried on to the next step without further purification.
- A solution of [3-(3-trifluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amine (1.8 g, 3.7 mmol) from EX-19C, R-(+)-25 1,1,1-trifluoro-2,3-epoxy-propane (0.57 g, 5.2 mmol), and ytterbium (III) trifluoromethanesulfonate (0.24 g, 0.38 mmol) in 2.0 mL of acetonitrile was

10

15

heated at 40 °C in a sealed glass tube overnight. At this time reverse phase HPLC analysis indicated that the reaction was only 50% complete. Additional (III) trifluoromethanesulfonate and R-(+)-1,1,1-trifluoro-2,3vtterbium epoxypropane (0.26 g, 2.3 mmol) were added to the reaction mixture and again heated at 40 °C in a sealed glass tube for 48 h. The reaction mixture was cooled to room temperature then diluted with water and methylene chloride and extracted. The organic layer was washed with brine, dried over MgSO4, and concentrated in vacuo. The crude product was purified by reverse phase HPLC eluting with 30% to 90% acetonitrile in water to afford 1.25 g (23%) of the desired (2R)-3-[3-(3-trifluoromethoxyphenoxy) phenyl][[3-(1,1,2,2tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol product as yellow-brown oil (90% ee by chiral HPLC analysis). HRMS calcd. for $C_{25}H_{19}F_{10}NO_4$: 588.1233 [M+H]⁺, found: 588.1225. ¹H NMR (CDCl₃) δ 7.35-7.18 (m, 3H), 7.12 (t, 2H), 7.01 (s, 1H), 6.93 (d, 1H), 6.85 (d, 1H), 6.82 (s, 1H), 6.56 (dd, 1H), 6.47 (dd, 1H), 6.41 (s, 1H), 5.88 (t, 1H), 4.66 (s, 2H), 4.35 (m, 1H), 3.86 (d, 1H), 3.59 (dd, 1H), 2.02 (s, 1H). ¹⁹ F NMR (CDCl₂) δ -58.31 (s, 3F), -79.24 (d, 3F), -88.57 (m, 2F), -137.16 (dt, 2F).

EXAMPLE 20

5

$(2R)\hbox{-}3\hbox{-}[[[3\hbox{-}(1,1,2,2\hbox{-}tetrafluoroethoxy)phenyl]methyl][3\hbox{-}[[3\hbox{-}(trifluoromethyl)\hbox{-}phenyl]methoxy]phenyl]amino]\hbox{-}1,1,1\hbox{-}trifluoro-2\hbox{-}propanol}$

EX-20A) To a solution of 3-aminophenol (4.91 g, 45.0 mmol) and 3-(1,1,2,2-tetrafluoroethoxy)benzaldehyde (10.0 g, 45.0 mmol) in 100 mL of 1,2-dichloroethane was added sodium triacetoxyborohydride (14.28 g 67.5 mmol) and glacial acetic acid (2.7 mL, 47.3 mmol). The reaction mixture was stirred at room temperature for 6 h then quenched with water and extracted with dichloromethane. The organic layer was washed with saturated aqueous sodium bicarbonate, dried over MgSO4, and concentrated *in vacuo* to give 11.82 g (83%) of the desired 3-[[[3-(1,1,2,2-tetrafluoro-ethoxy)phenyl]methyl]amino]phenol product as a dark orange oil. ¹H NMR (acetone-d₆) δ 7.01-7.38 (m, 5H), 6.26-6.44 (m, 3H), 6.08 (t, 1H), 5.88 (tt, 1H), 4.34 (s, 2H).

20

EX-20B) A solution of 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino] phenol (5.1 g, 16.2 mmol) from **EX-20A**, *R*-(+)-1,1,1-trifluoro-2,3-epoxypropane (1.5 mL, 17.4 mmol), and ytterbium trifluoromethanesulfonate

10

15

20

25

(1.0 g, 10 mol%) in 10 mL of acetonitrile was heated at 50 °C in a sealed glass tube for 4 h. The reaction mixture was cooled to room temperature, then diluted with water and diethyl ether and extracted. The ether layer was washed with saturated aqueous sodium bicarbonate and brine, dried over MgSO₄, and concentrated *in vacuo* to give 5.64 g (81%) of the desired (2*R*)-3-[[[3-(1,1,2,2-tetrafluoroethoxy]phenyl]methyl][3,3,3-trifluoro-2-hydroxy-propyl)amino]-phenol product as a yellow oil. ¹H NMR (acetone-*d*₆) δ 7.41 (t, 1H), 7.23 (d, 1H), 7.16-7.20 (m, 2H), 6.97 (t, 1H), 6.42 (tt, 1H), 6.18-6.24 (m, 3H), 4.77 (s, 2H), 4.43-4.48 (m, 1H), 3.58 (dd, 1H), 3.39 (dd, 1H).

To a solution of (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy]phenyl]methyl][3,3,3trifluoro-2-hydroxypropyl)amino|phenol (100 mg, 0.23 mmol) from EX-20B and 3-trifluoromethylbenzyl bromide (70.0 mg, 0.27 mmol) in 2.5 mL of acetone was added cesium carbonate (100 mg, 0.31 mmol). The reaction mixture was heated at 60 °C for 18 h then cooled to room temperature. The reaction mixture was filtered through celite, and the filtrate was concentrated. The residue was purified by reverse phase HPLC eluting with 50% to 90% acetonitrile in water afford 63.3 mg (45%) of the desired (2R)-3-[[[3-(1,1,2,2tetrafluoroethoxy)phenyl]methyl][3-[[3-(trifluoro-methyl)phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol product as an orange oil. HRMS calcd. for C₂₆H₂₁F₁₀NO₃: 586.1440 [M+H]⁺, found: 586.1419. ¹H NMR (acetone-d₆) δ 7.61-7.82 (m, 4H), 7.41 (t, 1H), 7.25 (d, 1H), 7.10-7.21 (m, 3H), 6.34-6.67 (m, 4H), 5.73 (d, 1H), 5.19 (s, 2H), 4.82 (s, 2H), 4.34-4.48 (m, 1H), 3.99 (dd, 1H), 3.68 (dd, 1H).

Additional examples of (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]-[3-[[aryl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanols are prepared by one skilled in the art using similar methods, as shown in. Example Table 4.

Example Table 4. (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[aryl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanols.

Ex.	$\mathbf{R}_{ ext{SUB}}$	Calculated	Observed
No.		Mass	<u>Mass</u>
		[M+H]*	[M+H] +
21	3,5-difluorobenzyl	554.1378	554.1352
22	3-trifluoromethoxybenzyl	602.1389	602.1390
23	3-isopropyl	470.1566	464.1601

EXAMPLE 24

$(2R)\hbox{-}3\hbox{-}[[3\hbox{-}[[3\hbox{-}(trifluoromethoxy)phenyl]methoxy]phenyl][[3\hbox{-}(trifluoromethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol amino]-1,1,1-trifluoro-2-propanol amino]-1,1-trifluoro-2-propanol amino]-1,1-trifluoro-2-prop$

(2R)-3-[[3-[[3-(trifluoromethoxy)phenyl]methoxy]phenyl][[3-(trifluoromethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol can be prepared by one skilled in the art using similar methods starting from 3-(trifluoromethoxy)-benzaldehyde. HRMS calcd. for C₂₅H₂₀F₉NO₄: 570.1327 [M+H]⁺, found: 570.1325. 1 H NMR (acetone- d_6) δ 7.43 (t, 1H), 7.32 (d, 1H), 7.18-7.23 (m, 2H), 7.01-7.16 (m, 3H), 6.92-7.00 (m, 1H), 6.38-6.45 (m, 3H), 5.12 (s, 2H), 4.81 (s, 2H), 4.41-4.53 (m, 1H), 3.98 (dd, 1H), 3.63 (dd, 1H).

15

5

10

Additional examples of (2R)-3-[[3-[[aryl]methoxy]phenyl][[3-(trifluoromethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols can be prepared by one skilled in the art using similar methods, as shown in Example Table 5.

Example Table 5. (2R)- 3-[[3-[[aryl]methoxy]phenyl][[3-(trifluoromethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex.	R_{SUB}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] +
25	4-trifluoromethoxybenzyl	570.1327	570.1299
26	3,5-	622.1252	622.1252
	di(trifluoromethyl)benzyl		
27	3-trifluoromethylbenzyl	554.1378	554.1369
28	3,5-difluorobenzyl	522.1315	522.1259
29	benzyl	486.1504	486.1504
30	isopropyl	438.1504	438.1509
31	cyclohexylmethyl	492.1973	492.1973
32	cyclopentyl	464.1660	464.1641

EXAMPLE 33

 $(2R)\hbox{-}3\hbox{-}[[3\hbox{-}(4\hbox{-}fluoro\hbox{-}3\hbox{-}methylphenoxy)phenyl][[3\hbox{-}(trifluoromethoxy)-phenyl]methyl]amino]\hbox{-}1,1,1\hbox{-}trifluoro\hbox{-}2\hbox{-}propanol$

EX-33A) To a solution of 3-bromoaniline (5.7 mL, 52.6 mmol) and 3-trifluoromethoxybenzaldehyde (10.0 g, 52.6 mmol) in 135 mL of dichloroethane was added sodium triacetoxyborohydride (14.5 g, 68.4 mmol) and glacial acetic acid (3.1 mL, 54.7 mmol). The reaction was stirred at room temperature for 2 h, then quenched with water and extracted with dichloromethane. The organic layer was washed with saturated aqueous sodium bicarbonate, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluting with 1:9 ethyl acetate in hexane to give 14.3 g (78%) of the desired of *N*-(3-bromophenyl)[[3-(trifluoromethoxy) phenyl]methyl]amine product as a dark brown oil. HRMS calcd. for C₁₄H₁₁BrF₃NO: 346.0055 [M+H]⁺, found: 346.0052.

20

5

10

15

EX-33B) A solution of of *N*-(3-bromophenyl)[[3-(trifluoromethoxy)phenyl]methyl]-amine (10.0 g, 28.9 mmol) from **EX-33A**, *R*-(+)-1,1,1-trifluoro-2,3-epoxypropane (4.2 g, 37.6 mmol), and ytterbium (III)

trifluoromethanesulfonate (1.79 g, 2.89 mmol) in 27 mL of acetonitrile was heated at 50 °C in a sealed glass tube overnight. The reaction mixture was cooled to room temperature and filtered through celite. The crude product was purified by column chromatography on silica gel eluting with 2:3 dichloromethane in hexane to afford 11.9 g (90%) of the desired (2R)-3-[[(3-bromophenyl)][[3-(tri-fluoromethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol product as a brown oil (98% ee by chiral HPLC analysis). HRMS calcd. for C₁₇H₁₄BrF₆NO₂: 458.0190 [M+H]⁺, found: 458.0197.

10

15

20

25

5

A suspension of 4-fluoro-3-methylphenol (98.0 µL, 0.88 mmol) and cesium carbonate (319.5 mg, 0.98 mmol) in 1 mL of N,N-dimethylacetamide was preheated at 60 °C for 5 minutes. To this solution was added 4 mL of a stock solution containing (2R)-3-[[(3-bromophenyl)][[3-(trifluoromethoxy)phenyl] methyl]amino]-1,1,1-trifluoro-2-propanol (200 mg, 0.437 mmol) from EX-33B. 1-naphthoic acid (164 mg, 0.95 mmol), copper(I) trifluoromethansulfonate benzene complex (21.8 mg, 0.0434 mmol), 4 Å sieves (105 mg), and 4 mL of toluene. The reaction mixture was stirred at 105 °C for 3 weeks and 2 days. During that time, additional cesium carbonate and catalyst were added (a spatula tip of each) to the reaction three different times. The reaction was cooled to room temperature, filtered through celite, and the solvent was evaporated. The residue was purified by reverse phase HPLC eluting with 35% to 90% acetonitrile in water to afford 50.5 mg (23%) of the desired (2R)-3-[[3-(4-fluoro-3-methylphenoxy)phenyl][[3-(trifluoromethoxy)phenyl] methyllaminol-1,1,1trifluoro-2-propanol product as an orange oil. HRMS calcd. for C24H20F7NO3: 504.1410 [M+H]⁺, found: 504.1389. ¹H NMR (acetone-d₆) δ 7.44 (t. 1H). 7.24 (d, 1H), 7.08-7.21 (m, 3H), 6.98 (t, 1H), 6.75-6.85 (m, 1H), 6.68-6.74 (m,

1H), 6.53 (d, 1H), 6.21-6.34 (m, 2H), 4.79 (t, 2H), 4.46-4.53 (m, 1H), 3.95 (dd, 1H), 2.61-2.72 (m, 1H), 2.20 (s, 3H).

Additional examples (2R)-3-[[(aryloxy)phenyl][[3-(trifluoromethoxy)phenyl] methyl]amino]-1,1,1-trifluoro-2-propanols can be prepared by one skilled in the art using similar methods, as shown in ExampleTable 6.

Example Table 6. (2*R*)-3-[[(aryloxy)phenyl][[3-(trifluoromethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	<u>R_{SUB}</u>	Calculated Mass [M+H]+	Observed Mass [M+H] +
34	3-trifluoromethoxy	556.1170	556.1180
35	3-isopropyl	514.1817	514.1823
36	3,4-dimethyl	500.1660	500.1654
37	4-chloro-3-methyl	520.1114	520.1129
38	3-tert-butyl	528.1973	528.1942
39	3,4-dichloro	540.0568	540.0567
40	3,4-(CH ₂ CH ₂ CH ₂ CH ₂)-	526.1817	526.1788

10

15

20

EXAMPLE 41

$$HO$$
 HO
 F_3C
 N
 OCF_3

(2R)-3-[[3-(4-methylphenoxy)phenyl][[3-(trifluoromethoxy)phenyl] methyl]amino]- 1,1,1-trifluoro-2-propanol

EX-41A) To a solution of *p*-cresol (5.76 g, 0.053 mol) and 1,3-dinitrobenzene (8.97 g, 0.053 mol) in 100 mL of dimethylsulfoxide was added cesium carbonate (43.4 g, 0.133 mol). The reaction mixture was heated at 100 °C for 18 h, then cooled to room temperature, quenched with water, and extracted with diethyl ether. The organic layers were combined, washed with 0.1 N HCl and water, dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to afford 8.0 g (66%) of the desired 3-(4-methylphenoxy)nitrobenzene product as a yellow oil. ¹H NMR (CDCl₃) δ 7.83 (s, 1H), 7.64 (t, 1H), 7.32 (d, 1H), 7.18 (d, 1H), 7.09 (d, 2H), 6.8 (d, 2H), 2.20 (s, 1H).

EX-41B) A solution of 3-(4-methylphenoxy)nitrobenzene (8.0 g, 0.035 mol) from **EX-41A** in 25 mL of ethanol under nitrogen was charged with 10% palladium on carbon (0.80 g). The resulting mixture was hydrogenated for 4 h at room temperature and 45 psi. The reaction mixture was filtered through celite and concentrated *in vacuo* to give 6.7 g (96%) of the desired 3-(4-

methylphenoxy)aniline product as a yellow oil. ESMS m/z = 200 $[M+H]^+$ confirmed the desired $C_{13}H_{13}NO$ product and the complete consumption of starting material.

5

10

20

25

EX-41C) To a solution of 3-(4-methylphenoxy)aniline (2.91 g, 0.015 mol) from **EX-41B**, and 3-(trifluoromethoxy)benzyaldehyde (3.24 g, 0.015 mol) in 50 mL dichloroethane was added sodium triacetoxyborohydride (4.02 g, 0.019 mol) and glacial acetic acid (0.99 g, 0.017 mol). The reaction mixture was stirred at room temperature for 18 h, then quenched with saturated aqueous sodium bicarbonate and extracted with dichloromethane. The organic layers were combined, dried over MgSO4 and concentrated *in vacuo* to give 5.38 g (91%) of the desired *N*-[3-(4-methylphenoxy)-phenyl)]-[[3-(trifluoromethoxy)phenyl]methyl]amine product as an orange oil. ESMS m/z = 374 [M+H]⁺confirmed the desired

15 C₂₁H₁₈NO₂F₃ product and the complete consumption of starting material.

To a mixture of N-[3-(4-methylphenoxy)phenyl)]-[[3-(trifluoromethoxy)-phenyl]-methyl]amine(1.3 g, 0.0035 mol) from **EX-41C** and R-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.59 g, 0.0053 mol) was added a suspension of ytterbium (III) trifluoromethanesulfonate (0.22 g, 0.0004 mol) in 1.3 mL of acetonitrile. The resulting mixture was heated at 50 °C in a sealed glass tube for 18 h. The reaction mixture was cooled to room temperature, then diluted with water and extracted with ethyl acetate. The crude product was purified by column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to afford 1.03 g (61%) of the desired (2R)-3-[3-(4-methyl-phenoxy)phenyl)[[3-(trifluoromethoxy)phenyl] methyl]amino]-1,1,1-trifluoro-2-propa-nol product as a pure yellow oil. Anal. calcd. for C₂₄H₂₁F₆NO₃: C, 59.38; H, 4.36; N,

10

15

2.89. Found: C, 59.17; H, 4.62; N, 2.80. HRMS calcd.: 486.1504 [M+H] $^+$, found: 486.1513. 1 H NMR (C₆D₆) δ 6.82 (m, 8H), 6.60 (dd, 1H), 6.42 (dd, 1H), 6.38 (s, 1H), 6.18 (dd, 1H), 4.00 (s, 2H), 3.63 (m, 1H), 3.40 (d, 1H), 3.02 (m, 1H), 2.00 (s, 3H), 1.40 (d, 1H). 19 F NMR (C₆D₆) δ -57.98 (s, 3F), -78.50 (s, 3F).

Additional examples of (2R)-3-[3-(substituted-phenoxy)phenyl]-[[3-(trifluoro-methoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols can prepared by one skilled in the art using similar methods, as shown in Example Table 7.

Example Table 7. (2*R*)- 3-[3-(substituted-phenoxy)phenyl][[3-(trifluoromethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanols.

HO N OCF 3

Ex. No.	<u>R_{SUB}</u>	Calculated Mass [M+H]+	Observed Mass [M+H] +
42	4-fluoro	490.1253	490.1238

10

15

20

EXAMPLE 43

 $(2R)\hbox{-}3\hbox{-}[[3\hbox{-}(2\hbox{-bromo-}5\hbox{-fluorophenoxy})phenyl]][[3\hbox{-}(1,1,2,2\hbox{-}tetrafluoroethoxy})phenyl]] methyl] amino]\hbox{-}1,1,1\hbox{-trifluoro-}2\hbox{-propanol}$

EX-43A) To a solution of 3-aminophenol (5 g, 46 mmol), 1-bromo-2,4-difluorobenzene (10 g, 50 mmol) and Cs₂CO₃ (16 g, 50 mmol) in 25 mL of dimethyl-formamide was added solid (CuOTf)₂C₆H₆ (100 mg), and the mixture was stirred under nitrogen at 85 °C for 22 h, at which time HPLC analysis indicated that the reaction had gone to completion and formed two products. The DMF was removed under reduced pressure. The residue was diluted with ether and filtered through a celite pad. The pad was washed with ether and a small amount of water. The mixture was extracted with ether several times. The combined ether layers were washed with water and brine, then dried over MgSO₄. The dried organic layer was evaporated to give 10.2 g (80%) of the desired product, which consisted of a 11:1 ratio of 3-(2-bromo-5-fluoro-phenoxy)aniline and 3-(4-bromo-3-fluorophenoxy)aniline. The crude product was purified by flash column chromatography on silica gel eluting with 1:7:0.01 of ethyl acetate:hexane:ammonium hydroxide to give 8.8 g (68%) of the desired product

as a yellow oil, which was a 25:1 ratio of 3-(2-bromo-5-fluorophenoxy)aniline and 3-(4-bromo-3-fluorophenoxy)aniline. HRMS calcd. for C₁₂H₉NOFBr: 281.9930 [M+H]⁺, found: 281.9950.

EX-43B) The 3-(2-bromo-5-fluorophenoxy)aniline (1.39 g, 4.95 mmol) product from EX-43A and 3-(1,1,2,2-tetrafluoroethoxy)benzaldehyde (1.0 g, 4.5 mmol) were dissolved in 15 mL of dichloroethane and acetic acid (0.30 mL, 5.4 mmol), then solid NaBH(OAc)₃ (1.26 g, 5.9 mmol) was added. The mixture was stirred at room temperature for 1 h, then quenched with water and extracted with ether. The ether layer was washed with water and brine, then dried over MgSO₄, and evaporated to give 2.1 g (97%) of crude product, which was purified by flash column chromatography on silica gel eluting with 1:7:0.01 of ethyl acetate:hexane:ammonium hydroxide to give 2.0 g (91%) of the desired 3-[3-(2-bromo-5-fluoro-phenoxy)phenyl][[3-(1,1,2,2-tetrafluoro-ethoxy)phenyl]methyl]amine product, as a light yellow oil, > 90% pure by HPLC analysis. HRMS calcd. for C₂₁H₁₅NO₂BrF₅: 488.0285 [M+H]⁺, found: 488.0269.

The 3-[3-(2-bromo-5-fluorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amine (0.5 g, 2.0 mmol) product from **EX-43B** and *R*-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.17 g, 2.0 mmol) from **EX-4** were dissolved in 0.5 mL of acetonitrile. Ytterbium (III) trifluoromethanesulfonate (0.06 g, 0.1 mmol) was added, and the stirred solution was warmed to 40 °C for 1 h, at which time HPLC analysis indicated that no secondary amine starting material remained. The reaction was quenched with water and extracted with ether. The ether layer

was washed with water and brine, then dried over MgSO₄. The crude product was purified by flash column chromatography on silica gel eluting with 1:7:0.01 of ethyl acetate:hexane:ammonium hydroxide to give 0.4 g (67%) of the desired 5 R-(+)-3-[[3-(2-bromo-5-fluorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] amino]-1,1,1-trifluoro-2-propanol product as a light yellow oil (> 84% ee by chiral HPLC analysis). Anal. calcd. for C24H18BrF8NO3: C, 48.02; H, 3.02; N, 2.33. found: C, 48.07; H, 3.14; N, 2.31. HRMS calcd.: 600.0420 [M+H]⁺, found: 600.0386. ¹H NMR (CDCl₃) δ 7.5 0 (dd, 1H), 7.30 10 (t, 1H), 7.18 (t, 1H), 7.07 (t, 2H), 6.99 (s, 1H), 6.70 (dt, 1H), 6.56 (dd, 1H), 6.52 (dd, 1H), 6.38 (dd, 1H), 6.32 (m, 1H), 5.87 (tt, 1H,), 4.65 (d, 2H), 4.33 (m, 1H), 3.85 (dd, 1H), 3.56 (dd, 1H), 2.48 (bs, 1H). NOE difference spectra confirmed that the isolated material was the indicated N-[3-(2-bromo-5-fluorophenoxy)phenyl]-3-aminopropanol product. ¹⁹F NMR (CDCl₃) δ -79.24 (d. 3F), -88.57 (m, 2F), -112.04 (q, 1H), -137.16 (dt, 2F). 15

10

15

244 EXAMPLE 44

$$CI$$
 N
 N
 N
 OCF_3
 F_3C

(2R)-N-[2-chloro-6-(p-fluorophenoxy)-1,3,5-triazin-4-yl]-3-[[[3-(trifluoromethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol

EX-44A) 3-Trifluoromethoxybenzenemethanamine (1.15g, 6 mmol) and *R*-(+)-1,1,1-trifluoro-2,3-epoxypropane (0.67 g, 6 mmol) were combined and stirred at 80 °C for 1.5 h. The mixture was cooled to room temperature, and the resulting solid was recrystallized from hot hexanes. The white solid was isolated by vacuum filtration and washed with cold hexanes to give 0.67 g (37%) of pure (2*R*)-3-[[[3-(trifluoro-methoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol. ¹H NMR (CDCl₃) δ 7.37 (t, 1H), 7.24 (d, 1H), 7.15 (m, 2H), 3.99 (m, 1H), 3.85 (d, 2H), 2.98 (dd, 1H), 2.88 (dd, 1H), 2.79 (s, 1H). ¹⁹F NMR (CDCl₃) δ -58.19 (s, 3F), -78.88 (s, 3F). HRMS calcd. for C₁₁H₁₁F₆NO₂: 304.0772 [M+H]⁺, found: 304.0794.

EX-44B) To a solution of p-fluorophenol 1.00 g (8.92 mmol) in 30 mL of tetrahydrofuran at 0 °C was added a 60% dispersion of sodium hydride in mineral oil (0.36 g, 8.92 mmol). After 30 min, cyanuric chloride (1.64 g, 8.92 mmol) was added as a heterogeneous mixture in tetrahydrofuran at 0 °C. The reaction mixture was allowed to slowly warm to room temperature. After 14 h,

the mixture was cooled to 0 °C, and a saturated aqueous NH₄Cl solution was added. The aqueous solution was extracted with diethyl ether (3 x 50 mL). The combined ether extracts were washed with brine, dried (MgSO₄), and concentrated *in vacuo* to afford 1.34 g (58%) of the desired 2,4-dichloro-6-(4-fluorophenoxy)-1,3,5-triazine product as an off white solid which was taken on to the next step without purification. MS $m/z = 260 \, [M+H]^{+}$.

To a stirred solution of aminopropanol from EX-44A (0.100 g, 0.330 mmol) in N,N-dimethylformamide at 0 °C was added the 2,4-dichloro-(4-fluorophenoxy)-1,3,5-triazine ether product from EX-44B (0.086 g, 0.330 mmol) as a solution in N,N-di-methylformamide. The reaction mixture was allowed to slowly warm to room temperature. After 14 h, the reaction mixture was cooled to 0 °C, and a saturated aq. NaHCO3 solution was added. After stirring the reaction mixture for 30 min at room temperature, the aqueous layer was extracted with ether (3 x 30 mL). The combined ether extracts were washed with brine, dried (MgSO4), and concentrated *in vacuo* to give a yellow oil. The crude residue was purified by column chromatography on silica gel eluting with 20 % ethyl acetate in hexanes to give 0.075 g (43%) of the desired (2R)-N-[2-chloro-6-(p-fluorophenoxy)-1,3,5-triazin-4-yl]-3-[[[3-(trifluoromethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol product as a pale yellow oil. HRMS calcd. for C20H14CIF7N4O3: 526.0643 [M⁺], found: 526.0632.

Based on the preceding procedures, additional substituted (2R)-3-[(N-aryl)-[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols are prepared by one

NMR (C₆D₆) δ 6.95 (s, 1H), 6.63 (m, 14H), 4.74 (d, 1H), 4.37 (d, 1H), 4.16 (d, 1H), 4.00 (d, 2H), 3.73 (m, 1H), 3.48 (m, 2H), 3.26 (m, 2H), 3.12 (m, 2H).

skilled in the art using similar methods, as shown in Example Table 8. Substituted (3R)-4-[N-(aryl)-[(aryl)methyl]amino]-1,1,1,2,2-pentafluoro-3-butanols are prepared by one skilled in the art using similar methods, as shown in Example Table 9. Substituted (2R)-3-[N-(aryl)[(aryl)oxy]amino]-1,1,1-

- trifluoro-2-propanols are prepared by one skilled in the art using similar methods, as shown in Example Table 10. Substituted (2R)-3-[N-(aryl)-[(aryl)methyl]amino]-1,1-difluoro-1-chloro-2-propanols are prepared by one skilled in the art using similar methods, as shown in Example Table 11. Substituted (2R)-3-[N,N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols are
- prepared by one skilled in the art using similar methods, as shown in Example Table 12.

 $\label{eq:247} \mbox{Example Table 8. Substituted (2R)-3-[N-(aryl)-[(aryl)methyl]amino]-} \\ 1,1,1-trifluoro-2-propanols.$

Ex. No. 45	R _{SUB1}
	3-isopropyl
46	2-Cl, 3-Cl
47	3-CF ₃ O
48	4-F
49	4-CH ₃
50	2-F, 5-Br
51	3-CF ₃ CF ₂
52	3-CH ₃ CH ₂
53	3-CH ₃ , 5-CH ₃
54	3-(CH ₃) ₃ C
55	4-F, 3-CH ₃
56 57	3-Cl, 4-Cl
_	3,4-(CH ₂) ₄
58	3-HCF ₂ CF ₂ O
59	3-CHF ₂ O
60	3-(CH ₃) ₂ N
61	3-cyclopropyl
62	3-(2-furyl)
63	3-CF ₃ CF ₂
64	4-NH ₂
65	3-CH ₃ , 4-CH ₃ , 5-CH ₃

E	T
Ex. No.	R _{SUB2}
69	3-CF ₃ O-benzyloxy
70	3-CF ₃ -benzyloxy
71	3-F, 5-F-benzyloxy
72	cyclohexylmethyleneoxy
73	benzyloxy
74	3-CF ₃ , 5-CF ₃ -benzyloxy
75	4-CF ₃ O-benzyloxy
76	4-CH ₃ CH ₂ -benzyloxy
77	isopropoxy
78	3-CF ₃ -benzyl
79	isopropylthio
80	cyclopentoxy
81	cyclopentoxy 3-Cl-5-pyridinyloxy
82	3-CF ₃ S-benzyloxy
83	3-CH ₃ , 4-CH ₃ -benzyloxy
84	2-F, 3-CF ₃ -benzyloxy
85	3-F, 5-CF ₃ -benzyloxy
86	4-(CH ₃) ₂ CH-benzyloxy
87	1-phenylethoxy
88	4-F, 3-CH ₃ -benzoyl
89	3-CF ₃ -phenyl

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-

1.1.1-	trifluoro-2-propar	nols.

Ex. No.	R _{SUB1}
66	4-CH ₃ CH ₂ CH ₂ O
67	3-CF ₃
68	2-NO ₂

Ex. No.	R _{SUB2}	
90	4-CH ₃ O-phenylamino	
91	cyclopropoxy	
92	4-NO ₂ -phenylthio	

R_{SUB2}

Ex. No. 93	R _{SUB1}
93	3-isopropyl
94	2-Cl, 3-Cl
95	3-CF ₃ O
96	4-F
97	4-CH ₃
98	2-F, 5-Br
99	4-Cl, 3-CH ₃ CH ₂
100	3-CH ₃ CH ₂
101	3-CH ₃ , 5-CH ₃
102	3-(CH ₃) ₃ C
103	4-F, 3-CH ₃
104	3-Cl, 4-Cl
105	3,4-(CH ₂) ₄
106	3-HCF ₂ CF ₂ O
107	3-CHF ₂ O

Ex. No. 117	R _{SUB2}
	3-CF ₃ O-benzyloxy
118	3-CF ₃ -benzyloxy
119	3-F, 5-F-benzyloxy
120	cyclohexylmethyleneoxy
121	benzyloxy
122	3-CF ₃ , 5-CF ₃ -benzyloxy
123	4-CF ₃ O-benzyloxy
124	4-CH ₃ CH ₂ -benzyloxy
125	isopropoxy
126	3-CF ₃ -benzyl
127	isopropylthio
128	cyclopentoxy
129	3-Cl-5-pyridinyloxy
130	3-CF ₃ S-benzyloxy
131	3-CH ₃ , 4-CH ₃ -benzyloxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
108	3-(CH ₃) ₂ N
109	3-cyclopropyl
110	3-(2-furyl)
111	3-CF ₃ CF ₂
112	4-NH ₂
113	3-CH ₃ , 4-CH ₃ , 5-CH ₃
114	4-CH ₃ CH ₂ CH ₂ O
115	3-CF ₃
116	2-NO ₂

Ex. No.	R _{SUB2}
132	2-F, 3-CF ₃ -benzyloxy
133	3-F, 5-CF ₃ -benzyloxy
134	4-(CH ₃) ₂ CH-benzyloxy
135	1-phenylethoxy
136	4-F, 3-CH ₃ -benzoyl
137	3-CF ₃ -phenyl
138	4-CH ₃ O-phenylamino
139	cyclopropoxy
140	4-NO ₂ -phenylthio

	, GOB
3 HQH N	CF ₂ CF ₂ CF ₃
F ₃ C	—

Ex. No.	R _{SUB1}
141	3-isopropyl
142	2-Cl, 3-Cl
143	3-CF ₃ O
144	4-F
145	4-CH ₃
146	2-F, 5-Br
147	4-Cl, 3-CH ₃ CH ₂
148	3-CH ₃ CH ₂

Ex. No.	R _{SUB2}
165	3-CF ₃ O-benzyloxy
166	3-CF ₃ -benzyloxy
167	3-F, 5-F-benzyloxy
168	cyclohexylmethyleneoxy
169	benzyloxy
170	3-CF ₃ , 5-CF ₃ -benzyloxy
171	4-CF ₃ O-benzyloxy
172	4-CH ₃ CH ₂ -benzyloxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB1}
<u>No.</u> 149	<u> –30B1</u>
	3-CH ₃ , 5-CH ₃
150	3-(CH ₃) ₃ C
151	4-F, 3-CH ₃
152	3-Cl, 4-Cl
153	3,4-(CH ₂) ₄
154	3-HCF ₂ CF ₂ O
155	3-CHF ₂ O
156	3-(CH ₃) ₂ N
157	3-cyclopropyl
158	3-(2-furyl)
159	3-CF ₃ CF ₂
160	4-NH ₂
161	3-CH ₃ , 4-CH ₃ , 5-CH ₃
162	4-CH ₃ CH ₂ CH ₂ O
163	3-CF ₃
164	2-NO ₂

Ex. No.	R _{SUB2}
	isopropoxy
174	3-CF ₃ -benzyl
175	isopropylthio
176	cyclopentoxy
177	3-Cl-5-pyridinyloxy
178	3-CF ₃ S-benzyloxy
179	3-CH ₃ , 4-CH ₃ -benzyloxy
180	2-F, 3-CF ₃ -benzyloxy
181	3-F, 5-CF ₃ -benzyloxy
182	4-(CH ₃) ₂ CH-benzyloxy
183	1-phenylethoxy
184	4-F, 3-CH ₃ -benzoyl
185	3-CF ₃ -phenyl
186	4-CH ₃ O-phenylamino
187	cyclopropoxy
188	4-NO ₂ -phenylthio

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

$$R_{SUB1}$$
 $F_{3}C$
 R_{SUB1}
 $F_{3}C$
 R_{SUB2}
 $F_{3}C$

Ex. No. 189	R _{SUB1}
189	3-isopropyl
190	2-Cl, 3-Cl
191	3-CF ₃ O
192	4-F
193	4-CH ₃
194	2-F, 5-Br
195	4-Cl, 3-CH ₃
196	3-CH ₃ CH ₂
197	3-CH ₃ , 5-CH ₃
198	3-(CH ₃) ₃ C
199	4-F, 3-CH ₃
200	3-Cl, 4-Cl
201	3,4-(CH ₂) ₄
202	3-HCF ₂ CF ₂ O
203	3-CHF ₂ O
204	3-(CH ₃) ₂ N
205	3-cyclopropyl
206	3-(2-furyl)
207	3-CF ₃ CF ₂

_	
Ex. No. 213	R _{SUB2}
	3-CF ₃ O-benzyloxy
214	3-CF ₃ -benzyloxy
215	3-F, 5-F-benzyloxy
216	cyclohexylmethyleneoxy
217	benzyloxy
218	3-CF ₃ , 5-CF ₃ -benzyloxy
219	4-CF ₃ O-benzyloxy
220	4-CH ₃ CH ₂ -benzyloxy
221	isopropoxy
222	3-CF ₃ -benzyl
223	isopropylthio
224	cyclopentoxy
225	3-Cl-5-pyridinyloxy
226	3-CF ₃ S-benzyloxy
227	3-CH ₃ , 4-CH ₃ -benzyloxy
228	2-F, 3-CF ₃ -benzyloxy
229	3-F, 5-CF ₃ -benzyloxy
230	4-(CH ₃) ₂ CH-benzyloxy
231	1-phenylethoxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
208	4-NH ₂
209	3-CH ₃ , 4-CH ₃ , 5-CH ₃
210	4-CH ₃ CH ₂ CH ₂ O
211	3-CF ₃
212	2-NO ₂

Ex. No.	R _{SUB2}
232	4-F, 3-CH ₃ -benzoyl
233	3-CF ₃ -phenyl
234	4-CH ₃ O-phenylamino
235	cyclopropoxy
236	4-NO ₂ -phenylthio

$$F_3$$
C F_3 C

Ex. No.	R _{SUB1}
237	3-isopropyl
238	2-CI, 3-CI
239	3-CF ₃ O
240	4-F
241	4-CH ₃
242	2-F, 5-Br
243	4-Cl, 3-CH ₃
244	3-CH ₃ CH ₂
245	3-CH ₃ , 5-CH ₃
246	3-(CH ₃) ₃ C
247	4-F, 3-CH ₃
248	3-Cl, 4-Cl

Ex. No.	R _{SUB2}
261	3-CF ₃ O-benzyloxy
262	3-CF ₃ -benzyloxy
263	3-F, 5-F-benzyloxy
264	cyclohexylmethyleneoxy
265	benzyloxy
266	3-CF ₃ , 5-CF ₃ -benzyloxy
267	4-CF ₃ O-benzyloxy
268	4-CH ₃ CH ₂ -benzyloxy
269	isopropoxy
270	3-CF ₃ -benzyl
271	isopropylthio
272	cyclopentoxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
249	3,4-(CH ₂) ₄
250	3-HCF ₂ CF ₂ O
251	3-CHF ₂ O
252	3-(CH ₃) ₂ N
253	3-cyclopropyl
254	3-(2-furyl)
255	3-CF ₃ CF ₂
256	4-NH ₂
257	3-CH ₃ , 4-CH ₃ , 5-CH ₃
258	4-CH ₃ CH ₂ CH ₂ O
259	3-CF ₃
260	2-NO ₂

$\frac{\mathbf{E}\mathbf{x}}{\mathbf{No}}$.	R _{SUB2}
273	3-Cl-5-pyridinyloxy
274	3-CF ₃ S-benzyloxy
275	3-CH ₃ , 4-CH ₃ -benzyloxy
276	2-F, 3-CF ₃ -benzyloxy
277	3-F, 5-CF ₃ -benzyloxy
278	4-(CH ₃) ₂ CH-benzyloxy
279	1-phenylethoxy
280	4-F, 3-CH ₃ -benzoyl
281	3-CF ₃ -phenyl
282	4-CH ₃ O-phenylamino
283	cyclopropoxy
284	4-NO ₂ -phenylthio

	R _{SUB2}
" ÖH	CH(CF ₃) ₂
H 3 N	

<u>No.</u> 285	$\underline{\mathbf{R}_{\mathbf{SUB1}}}$
	3-isopropyl
286	2-Cl, 3-Cl
287	3-CF ₃ O
288	4-F
289	4-CH ₃

	Ex. No.	R _{SUB2}
	309	3-CF ₃ O-benzyloxy
	310	3-CF ₃ -benzyloxy
i	311	3-F, 5-F-benzyloxy
	312	cyclohexylmethyleneoxy
ı	313	benzyloxy

 ${\bf 254}$ Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ew.	
Ex. No. 290	R _{SUB1}
290	2-F, 5-Br
291	4-Cl, 3-CH ₃ CH ₂
292	3-CH ₃ CH ₂
293	3-CH ₃ , 5-CH ₃
294	3-(CH ₃) ₃ C
295	4-F, 3-CH ₃
296	3-Cl, 4-Cl
297	3,4-(CH ₂) ₄
298	3-HCF ₂ CF ₂ O
299	3-CHF ₂ O
300	3-(CH ₃) ₂ N
301	3-cyclopropyl
302	3-(2-furyl)
303	3-CF ₃ CF ₂
304	4-NH ₂
305	3-CH ₃ , 4-CH ₃ , 5-CH ₃
306	4-CH ₃ CH ₂ CH ₂ O
307	3-CF ₃
308	2-NO ₂

Ex. No. 314	<u>R</u> SUB2
	3-CF ₃ , 5-CF ₃ -benzyloxy
315	4-CF ₃ O-benzyloxy
316	4-CH ₃ CH ₂ -benzyloxy
317	isopropoxy
318	3-CF ₃ -benzyl
319	isopropylthio
320	cyclopentoxy
321	3-Cl-5-pyridinyloxy
322	3-CF ₃ S-benzyloxy
323	3-CH ₃ , 4-CH ₃ -benzyloxy
324	2-F, 3-CF ₃ -benzyloxy
325	3-F, 5-CF ₃ -benzyloxy
326	4-(CH ₃) ₂ CH-benzyloxy
327	1-phenylethoxy
328	4-F, 3-CH ₃ -benzoyl
329	3-CF ₃ -phenyl
330	4-CH ₃ O-phenylamino
331	cyclopropoxy
332	4-NO ₂ -phenylthio

$$R_{SUB1}$$
 $CCH(CF_3)_2$
 F_3C
 R_{SUB2}
 $CCH(CF_3)_2$
 $CCH(CF_3)_2$

Ex. No.	R _{SUB1}
333	3-isopropyl
334	2-Cl, 3-Cl
335	3-CF ₃ O
336	4-F
337	4-CH ₃
338	2-F, 5-Br
339	4-Cl, 3-CH ₃ CH ₂
340	3-CH ₃ CH ₂
341	3-CH ₃ , 5-CH ₃
342	3-(CH ₃) ₃ C
343	4-F, 3-CH ₃
344	3-Cl, 4-Cl
345	3,4-(CH ₂) ₄
346	3-HCF ₂ CF ₂ O
347	3-CHF ₂ O
348	3-(CH ₃) ₂ N
349	3-cyclopropyl
350	3-(2-furyl)
351	3-CF ₃ CF ₂
352	4-NH ₂

Ex. No. 357	R _{SUB2}
	3-CF ₃ O-benzyloxy
358	3-CF ₃ -benzyloxy
359	3-F, 5-F-benzyloxy
360	cyclohexylmethyleneoxy
361	benzyloxy
362	3-CF ₃ , 5-CF ₃ -benzyloxy
363	4-CF ₃ O-benzyloxy
364	4-CH ₃ CH ₂ -benzyloxy
365	isopropoxy
366	3-CF ₃ -benzyl
367	isopropylthio
368	cyclopentoxy
369	3-Cl-5-pyridinyloxy
370	3-CF ₃ S-benzyloxy
371	3-CH ₃ , 4-CH ₃ -benzyloxy
372	2-F, 3-CF ₃ -benzyloxy
373	3-F, 5-CF ₃ -benzyloxy
374	4-(CH ₃) ₂ CH-benzyloxy
375	1-phenylethoxy
376	4-F, 3-CH ₃ -benzoyl

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-

1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
353	3-CH ₃ , 4-CH ₃ , 5-CH ₃
354	4-CH ₃ CH ₂ CH ₂ O
355	3-CF ₃
356	2-NO ₂

Ex. No.	R _{SUB2}
377	3-CF ₃ -phenyl
378	4-CH ₃ O-phenylamino
379	cyclopropoxy
380	4-NO ₂ -phenylthio

Ex. No.	R _{SUB1}
381	3-isopropyl
382	2-Cl, 3-Cl
383	3-CF ₃ O
384	4-F
385	4-CH ₃
386	2-F, 5-Br
387	4-Cl, 3-CH ₃ CH ₂
388	3-CH ₃ CH ₂
389	3-CH ₃ , 5-CH ₃
390	3-(CH ₃) ₃ C
391	4-F, 3-CH ₃
392	3-Cl, 4-Cl
393	3,4-(CH ₂) ₄

Ex. No.	R _{SUB2}
405	3-CF ₃ O-benzyloxy
406	3-CF ₃ -benzyloxy
407	3-F, 5-F-benzyloxy
408	cyclohexylmethyleneoxy
409	benzyloxy
410	3-CF ₃ , 5-CF ₃ -benzyloxy
411	4-CF ₃ O-benzyloxy
412	4-CH ₃ CH ₂ -benzyloxy
413	isopropoxy
414	3-CF ₃ -benzyl
415	isopropylthio
416	cyclopentoxy
417	3-Cl-5-pyridinyloxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
394	3-HCF ₂ CF ₂ O
395	3-CHF ₂ O
396	3-(CH ₃) ₂ N
397	3-cyclopropyl
398	3-(2-furyl)
399	3-CF ₃ CF ₂
400	4-NH ₂
401	3-CH ₃ , 4-CH ₃ , 5-CH ₃
402	4-CH ₃ CH ₂ CH ₂ O
403	3-CF ₃
404	2-NO ₂

Ex. No.	R _{SUB2}
418	3-CF ₃ S-benzyloxy
419	3-CH ₃ , 4-CH ₃ -benzyloxy
420	2-F, 3-CF ₃ -benzyloxy
421	3-F, 5-CF ₃ -benzyloxy
422	4-(CH ₃) ₂ CH-benzyloxy
423	1-phenylethoxy
424	4-F, 3-CH ₃ -benzoyl
425	3-CF ₃ -phenyl
426	4-CH ₃ O-phenylamino
427	cyclopropoxy
428	4-NO ₂ -phenylthio

<u>Ex.</u> <u>No.</u> 429	R _{SUB1}
	3-isopropyl
430	2-Cl, 3-Cl
431	3-CF ₃ O
432	4-F
433	4-CH ₃
434	2-F, 5-Br

Ex. No.	R _{SUB2}
453	3-CF ₃ O-benzyloxy
454	3-CF ₃ -benzyloxy
455	3-F, 5-F-benzyloxy
456	cyclohexylmethyleneoxy
457	benzyloxy
458	3-CF ₃ , 5-CF ₃ -benzyloxy

·CF₂CF₃

Ex. No. 435	R _{SUB1}
435	4-Cl, 3-CH ₃ CH ₂
436	3-CH ₃ CH ₂
437	3-CH ₃ , 5-CH ₃
438	3-(CH ₃) ₃ C
439	4-F, 3-CH ₃
440	3-Cl, 4-Cl
441	3,4-(CH ₂) ₄
442	3-HCF ₂ CF ₂ O
443	3-CHF ₂ O
444	3-(CH ₃) ₂ N
445	3-cyclopropyl
446	3-(2-furyl)
447	3-CF ₃ CF ₂
448	4-NH ₂
449	3-CH ₃ , 4-CH ₃ , 5-CH ₃
450	4-CH ₃ CH ₂ CH ₂ O
451	3-CF ₃
452	2-NO ₂

Ex.	Rosses
<u>No.</u>	R _{SUB2}
	4-CF ₃ O-benzyloxy
460	4-CH ₃ CH ₂ -benzyloxy
461	isopropoxy
462	3-CF ₃ -benzyl
463	isopropylthio
464	cyclopentoxy
465	3-Cl-5-pyridinyloxy
466	3-CF ₃ S-benzyloxy
467	3-CH ₃ , 4-CH ₃ -benzyloxy
468	2-F, 3-CF ₃ -benzyloxy
469	3-F, 5-CF ₃ -benzyloxy
470	4-(CH ₃) ₂ CH-benzyloxy
471	1-phenylethoxy
472	4-F, 3-CH ₃ -benzoyl
473	3-CF ₃ -phenyl
474	4-CH ₃ O-phenylamino
475	cyclopropoxy
476	4-NO ₂ -phenylthio

$$R_{SUB1}$$
 R_{SUB2}
 R_{SUB2}
 $R_{3}C$
 $R_{3}C$
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}

	F
Ex. No. 477	R _{SUB1}
477	3-isopropyl
478	2-Cl, 3-Cl
479	3-CF ₃ O
480	4-F
481	4-CH ₃
482	2-F, 5-Br
483	4-Cl, 3-CH ₃ CH ₂
484	3-CH ₃ CH ₂
485	3-CH ₃ , 5-CH ₃
486	3-(CH ₃) ₃ C
487	4-F, 3-CH ₃
488	3-Cl, 4-Cl
489	3,4-(CH ₂) ₄
490	3-HCF ₂ CF ₂ O
491	3-CHF ₂ O
492	3-(CH ₃) ₂ N
493	3-cyclopropyl
494	3-(2-furyl)
495	3-CF ₃ CF ₂

17-	
Ex. No. 501	R _{SUB2}
ł	3-CF ₃ O-benzyloxy
502	3-CF ₃ -benzyloxy
503	3-F, 5-F-benzyloxy
504	cyclohexylmethyleneoxy
505	benzyloxy
506	3-CF ₃ , 5-CF ₃ -benzyloxy
507	4-CF ₃ O-benzyloxy
508	4-CH ₃ CH ₂ -benzyloxy
509	isopropoxy
510	3-CF ₃ -benzyl
511	isopropylthio
512	cyclopentoxy
513	3-Cl-5-pyridinyloxy
514	3-CF ₃ S-benzyloxy
515	3-CH ₃ , 4-CH ₃ -benzyloxy
516	2-F, 3-CF ₃ -benzyloxy
517	3-F, 5-CF ₃ -benzyloxy
518	4-(CH ₃) ₂ CH-benzyloxy
519	1-phenylethoxy

<u>Ex.</u> <u>No.</u>	R _{SUB1}
496	4-NH ₂
497	3-CH ₃ , 4-CH ₃ , 5-CH ₃
498	4-CH ₃ CH ₂ CH ₂ O
499	3-CF ₃
500	2-NO ₂

Ex. No.	R _{SUB2}
520	4-F, 3-CH ₃ -benzoyl
521	3-CF ₃ -phenyl
522	4-CH ₃ O-phenylamino
523	cyclopropoxy
524	4-NO ₂ -phenylthio

<u>Ex.</u> <u>No.</u>	R _{SUB1}
525	3-isopropyl
526	2-Cl, 3-Cl
527	3-CF ₃ O
528	4-F
529	4-CH ₃
530	2-F, 5-Br
531	4-Cl, 3-CH ₃ CH ₂
532	3-CH ₃ CH ₂
533	3-CH ₃ , 5-CH ₃
534	3-(CH ₃) ₃ C
535	4-F, 3-CH ₃
536	3-Cl, 4-Cl

Ex. No.	R _{SUB2}
549	3-CF ₃ O-benzyloxy
550	3-CF ₃ -benzyloxy
551	3-F, 5-F-benzyloxy
552	cyclohexylmethyleneoxy
553	benzyloxy
554	3-CF ₃ , 5-CF ₃ -benzyloxy
555	4-CF ₃ O-benzyloxy
556	4-CH ₃ CH ₂ -benzyloxy
557	isopropoxy
558	3-CF ₃ -benzyl
559	isopropylthio
560	cyclopentoxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
537	3,4-(CH ₂) ₄
538	3-HCF ₂ CF ₂ O
539	3-CHF ₂ O
540	3-(CH ₃) ₂ N
541	3-cyclopropyl
542	3-(2-furyl)
543	3-CF ₃ CF ₂
544	4-NH ₂
545	3-CH ₃ , 4-CH ₃ , 5-CH ₃
546	4-CH ₃ CH ₂ CH ₂ O
547	3-CF ₃
548	2-NO ₂

Ex. No.	<u>R</u> _{SUB2}
561	3-Cl-5-pyridinyloxy
562	3-CF ₃ S-benzyloxy
563	3-CH ₃ , 4-CH ₃ -benzyloxy
564	2-F, 3-CF ₃ -benzyloxy
565	3-F, 5-CF ₃ -benzyloxy
566	4-(CH ₃) ₂ CH-benzyloxy
567	1-phenylethoxy
568	4-F, 3-CH ₃ -benzoyl
569	3-CF ₃ -phenyl
570	4-CH ₃ O-phenylamino
571	cyclopropoxy
572	4-NO ₂ -phenylthio

Ex. No.	<u>R</u> SUB1
573	3-isopropyl
574	2-Cl, 3-Cl
575	3-CF ₃ O
576	4-F

Ex. No.	R _{SUB2}
597	3-CF ₃ O-benzyloxy
598	3-CF ₃ -benzyloxy
599	3-F, 5-F-benzyloxy
600	cyclohexylmethyleneoxy

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No. 577	R _{SUB1}
577	4-CH ₃
578	2-F, 5-Br
579	4-Cl, 3-CH ₃ CH ₂
580	3-CH ₃ CH ₂
581	3-CH ₃ , 5-CH ₃
582	3-(CH ₃) ₃ C
583	4-F, 3-CH ₃
584	3-Cl, 4-Cl
585	3,4-(CH ₂) ₄
586	3-HCF ₂ CF ₂ O
587	3-CHF ₂ O
588	3-(CH ₃) ₂ N
589	3-cyclopropyl
590	3-(2-furyl)
591	3-CF ₃ CF ₂
592	4-NH ₂
593	3-CH ₃ , 4-CH ₃ , 5-CH ₃
594	4-CH ₃ CH ₂ CH ₂ O
595	3-CF ₃
596	2-NO ₂

Ex. No.	R _{SUB2}
	benzyloxy
602	3-CF ₃ , 5-CF ₃ -benzyloxy
603	4-CF ₃ O-benzyloxy
604	4-CH ₃ CH ₂ -benzyloxy
.605	isopropoxy
606	3-CF ₃ -benzyl
607	isopropylthio
608	cyclopentoxy
609	3-Cl-5-pyridinyloxy
610	3-CF ₃ S-benzyloxy
611	3-CH ₃ , 4-CH ₃ -benzyloxy
612	2-F, 3-CF ₃ -benzyloxy
613	3-F, 5-CF ₃ -benzyloxy
614	4-(CH ₃) ₂ CH-benzyloxy
615	1-phenylethoxy
616	4-F, 3-CH ₃ -benzoyl
617	3-CF ₃ -phenyl
618	4-CH ₃ O-phenylamino
619	cyclopropoxy
620	4-NO ₂ -phenylthio

Ex.	R _{SUB1}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] +
621	4-F	522.1315	522.1297
622	2-Cl, 3-Cl	572.0630	572.0653
623	2-F, 5-Br	600.0420	600.0404
624	4-Cl, 3-CH ₃	551.1098	551.1101
625	3-CH ₃ , 5-CH ₃	532.1722	532.1705
626	3-(CH ₃) ₃ C	560.2035	560.2055
627	4-F, 3-CH ₃	536.1471	536.1480
628	3-Cl, 4-Cl	572.0630	572.0630
629	3,4-(CH ₂) ₄	558.1879	558.1881
630	3-HCF ₂ CF ₂ O		
631	3-CHF ₂ O		
632	3-(CH ₃) ₂ N	547.1831	547.1844
633	3-cyclopropyl		
634	3-(2-furyl)		
635	3-CF ₃ CF ₂	1	
636	3-cyclopentyl		
637	4-NH ₂	519.1519	519.1529

 ${\bf 264}$ Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB1}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] ⁺
638	3-CH ₃ , 4-CH ₃ , 5-CH ₃	546.1879	546.1901
639	4-CH ₃ CH ₂ O	547.1594	547.1594
640	3-CF ₃		
641	2-NO ₂	549.1260	549.1235
642	3,4-dimethyl	531.1644	531.1649
643	3-methyl, 5-ethyl	546.1879	546.1899
644	3-methyl	517.1488	517.1493
645	2,3-difluoro	540.1221	540.1182
646	4-CF ₃	572.1282	572.1268
647	2-fluoro, 3-CF ₃	590.1189	590.1184
648	2-fluoro, 4-CF ₃	590.1189	590.1155
649	2-chloro, 4-fluoro	556.0925	556.0891
650	4-n-propyl	546.1879	546.1878
651	3-chloro, 4-fluoro	556.0925	556.0932
652	2,4-difluoro	540.1221	540.1194
653	3,5-difluoro	540.1221	540.1217
654	3,4-difluoro	540.1221	540.1248
655	3-fluoro	522.1315	522.1337
656	2-chloro	538.1019	538.1021
657	2-fluoro	522.1315	522.1310
658	2,5-difluoro	540.1221	540.1255
659	4-chloro, 2-fluoro	556.0926	556.0954
660	2,4-dichloro	572.0630	572.0667
661	2-fluoro, 3-CH ₃		
662	4-chloro	537.0942	537.0944

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB1}	Calculated	Observed
<u>No.</u>		Mass	Mass
		[M+H] ⁺	[M+H] +
663	4-isopropyl, 3-methyl	560.2035	560.2035
664	2,3,4-trifluoro	558.1127	558.1161
665	2,3,5-trifluoro	558.1127	558.1109
666	4-propoxy	562.1828	562.1803
667	4-isopropyl	546.1879	546.1899
668	4-CF ₃ O-	588.1233	588.1241
669	4-butoxy	576.1958	576.1969
670	3-methyl, 4-CH ₃ S-	564.1443	564.1476
671	4-nitro	549.1260	549.1306
672	3-CF ₃ S-		
673	4-chloro, 3-fluoro	556.0925	556.0933
674	3,5-dimethoxy	564.1623	564.1617
675	4-bromo	582.0716	582.0473
676	4-sec-butyl	560.2035	560.2051
677	3-fluoro-2-nitro	567.1166	567.1135
678	3-methoxy	533.1437	533.1450
679	4-bromo-2-nitro	627.0366	627.0375
680	4-cyano	529.1362	529.1364
681	4-CH ₃ S-	550.1209	550.1251
682	3,4-(CH=CH) ₂	554.1566	554.1578
683	4-CH ₃ CH ₂ NH-	547.1832	547.1819
684	4-propionyl	560.1672	560.1694
685	3-phenyl	580.1723	580.1772
686	4-cyclopentyl	572.2035	572.2029

$$R_{SUB2}$$
 H
 GH
 F_3C
 OCF_2CF_2H

Ex.	R _{SUB2}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] +
687	6-methyl-3-pyridinyloxy	518.1440	518.1452
688	5-chloro-3-pyridinyloxy	539.0972	539.1002
689	3-pyridinyloxy	505.1362	505.1369
690	2-methyl-3-pyridinyloxy	519.1518	519.1517
691	5-indolinyloxy	543.1519	543.1630
692	4-fluoro-2-pyridinyloxy	523.1268	523.1243
693	2-cyano-3-pyridinyloxy	530.1315	530.1300
694	5-bromo-2-pyridinyloxy	583.0667	583.0405
695	3-CF ₃ -2-pyridinyloxy	573.1236	573.1205
696	2-pyridinylmethyleneoxy	519.1519	519.1522
697	cyclohexylmethyleneoxy	524.2036	524.2028
698	isopropoxy	470.1488	470.1565
699	cyclopentyloxy	496.1723	496.1719
700	neo-pentoxy	498.1879	498.1845
701	4-(methoxycarbonyl)-butoxy	542.1777	542.1827
702	trifluoromethoxy	496.0971	496.0959
703	2-methylpropoxy	484.1723	484.1718
704	2-methoxyethoxy	486.1515	486.1537
705	2-oxobutoxy	498.1515	498.1529
706	cyclohexyloxy	510.1880	510.1910

 ${\it 267}$ Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols,

Ex.	R _{SUB2}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] +
707	(methoxycarbonyl)methoxy	500.1308	500.1297
708	4-tetrahydropyranyloxy	512.1672	512.1631
709	1-phenylethoxy	532.1723	532.1711
710	3-CF ₃ O-benzyloxy	602.1389	602.1380
711	3-trifluoromethyl-benzyloxy	586.1440	586.1419
712	3,5-dimethyl-benzyloxy	546.1879	546.1890
713	3-bromo-benzyloxy	596.0671	596.0641
714	3-CF ₃ S-benzyloxy	618.1161	618.1151
715	3,4-dimethyl-benzyloxy	546.1879	546.1881
716	3,5-difluoro-benzyloxy	554.1378	554.1390
717	2-fluoro-3-CF ₃ -benzyloxy	604.1346	604.1329
718	benzyloxy	518.1566	518.1578
719	3,5-(CF ₃) ₂ -benzyloxy	654.1314	654.1308
720	3-fluoro-5-CF ₃ -benzyloxy	604.1346	604.1309
721	4-CF ₃ O-benzyloxy	602.1389	602.1383
722	3-chloro-benzyloxy	552.1176	552.1157
723	4-ethyl-benzyloxy	546.1879	546.1862
724	3-methyl-benzyloxy	532.1723	532.1692
725	2-fluoro-benzyloxy	536.1472	536.1465
726	2,3-difluoro-benzyloxy	554.1378	554.1364
727	4-isopropyl-benzyloxy	560.2036	560.2020
728	4-methyl-benzyloxy	532.1723	532.1729
729	4-bromo-benzyloxy	596.0671	596.0669
730	4-CF ₃ -benzyloxy	586.1440	586.1400
731	4-fluoro-benzyloxy	536.1472	536.1454

268 Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB2}	Calculated	Observed
No.		Mass	<u>Mass</u>
		[M+H] ⁺	[M+H] +
732	3-iodo-benzyloxy	644.0533	644.0517
733	4-CF ₃ S-benzyloxy	618.1161	618.1165
734	4-CF ₂ HO-benzyloxy	584.1483	584.1480
735	4-fluoro-3-CF ₃ -benzyloxy	604.1346	604.1336
736	2,3,5-trifluoro-benzyloxy	572.1284	572.1276
737	4-chloro-benzyloxy	552.1176	552.1188
738	2,5-difluoro-benzyloxy	554.1378	554.1350
739	3-chloro-2-fluoro-benzyloxy	570.1082	570.1069
740	2,4-(CF ₃) ₂ -benzyloxy	654.1314	654.1321
741	3,5-dichloro-benzyloxy	586.1787	586.1378
742	3-methoxy-benzyloxy	548.1672	548.1676
743	4-cyano-benzyloxy	543.1519	543.1517
744	4-tert-butyl-benzyloxy	574.2192	574.2163
745	isopropylthio	486.1338	486.1351
746	4-nitrophenylthio	565.1032	565.1034
747	4-acetylphenylthio	562.1287	562.1261
748	(4-chloro-thien-2-yl)- methylthio	574.0512	574.0523
749	4-methoxy-phenylamino	532.1597	532.1592
750	3-methoxy-phenylamino	532.1597	532.1593
751	4-chloro-phenylamino	536.1102	536.1125
752	4-n-propyl-phenylamino	544.1961	544.1959
753	3-cyano-phenylamino	527.1444	527.1448
754	3-CF ₃ -benzyl	570.1413	570.1480
755	3-methyl-4-fluoro-benzyl	534.1679	534.1688
756	3-CF ₃ -phenyl	556.1334	556.1339

Example Table 8 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-methyl] amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB2}	Calculated	Observed
No.		Mass	Mass
		[M+H] ⁺	[M+H] +
757	2,4-dichloro-phenyl	556.0681	556.0651
758	3-methoxybenzyl	532.1723	532.1705
759	4-methoxyphenyl	518.1566	518.1533
760	3-chloro-4-fluoro-phenyl	540.0976	540.0957
761	4-fluoro-3-methyl-benzoyl	548.1410	548.1441
762	3-chlorobenzyl	536.1227	536.1218
763	3,4-dimethylbenzyl	530.1930	530.1887
764	3,5-dichlorobenzyl	570.0838	570.0801
765	2,3,4-trifluorophenyl	542.1177	542.1152
766	3-chloro-4-fluoro-benzyl	554.1133	554.1108
767	4-fluoro-3-methyl-phenyl	520.1523	520.1494
768	3-methyl-4-chloro-benzyl	550.1384	550.1380
769	2-methylpropanoyl	482.1566	482.1576
770	4-methylthiobenzyl	548.1494	548.1503
771	4-fluorophenyl	506.1366	506.1336
772	4-chlorophenyl	522.1071	522.1049
773	3-methoxyphenyl	518.1566	518.1544
774	4-methylbenzyl	516.1774	516.1769
775	1-hydroxy-2-methyl-propyl	484.1723	484.1725
776	benzyl	502.1617	502.1609
777	2-CF ₃ -phenyl	556.1334	556.1286
778	3,4-dichlorophenyl	556.0681	556.0698
779	benzoyl	516.1410	516.1383
780	4-fluorobenzoyl	534.1315	534.1273
781	N-piperidinyl	494.1804	494.1804
782	phenyl	488.1460	488.1457
783	thien-2-yl	494.1024	494.0987

Ex.	Round	R _{SUB2}	Calculated	Observed
No.	R _{SUB1}	KSUB2	Mass	<u>Mass</u>
			[M+H] ⁺	[M+H] ⁺
784	phenoxy	3-cyclopentyl	456.2150	456.2143
785	phenoxy	3-isopropoxy	446.1943	446.1936
786	phenoxy	3-CF ₃ S	488.1119	488.1116
787	4-F-phenoxy	3-CF ₃ S	505.0946	505.0927
788	4-F-phenoxy	3-sec-butoxy	478.2005	478.1880
789	phenoxy	3-(CF ₃) ₂ COH-	554.1378	554.1385
790	4-CH ₃ - phenoxy	3-CF ₃ S	502.1275	502.1261
791	phenoxy	3-(2-furyl)	454.1630	454.1635
792	4-F-phenoxy	3-isopropoxy	464.1849	464.1867
793	phenoxy	3-isobutyl	444.2150	444.2157
794	phenoxy	3-tert-butoxy	460.2100	460.2103
795	4-F-phenoxy	3-CH ₃ CH ₂ O-	450.1692	450.1682
796	4-F-phenoxy	3-CF ₃ O-	490.1253	490.1211
797	phenoxy	4-F-3-(2-furyl)-	472.1536	472.1530
798	4-F-phenoxy	3-n-propoxy-	464.1849	464.1820
799	4-F-phenoxy	3-cyclopentyloxy-	490.2005	490.1998
800	phenoxy	3-(3-furyl)-	454.1630	454.1646
801	4-F-phenoxy	3-cyclopropyl- methyleneoxy	476.1849	476.1857
802	phenoxy	3-CF ₃ CH ₂ O-	486.1504	486.1498

Example Table 9. (3R)-4-[N-(aryl)-[(aryl)-methyl]amino]-1,1,1,2,2-pentafluoro-3-butanols.

Ex.	R _{SUB1}
<u>No.</u>	3-isopropyl
	* **
804	2-Cl, 3-Cl
805	3-CF ₃ O
806	4-F
807	4-CH ₃
808	2-F, 5-Br
809	4-Cl, 3-CH ₃ CH ₂
810	3-CH ₃ CH ₂
811	3-CH ₃ , 5-CH ₃
812	3-(CH ₃) ₃ C
813	4-F, 3-CH ₃
814	3-Cl, 4-Cl
815	3,4-(CH ₂) ₄
816	3-HCF ₂ CF ₂ O
817	3-CHF ₂ O
818	3-(CH ₃) ₂ N
819	3-cyclopropyl
820	3-(2-furyl)
821	3-CF ₃ CF ₂
822	4-NH ₂
823	3-CH ₃ , 4-CH ₃ , 5-CH ₃
824	4-CH ₃ CH ₂ CH ₂ O

<u>Ex.</u> <u>No.</u> 827	R _{SUB2}
827	3-CF ₃ O-benzyloxy
828	3-CF ₃ -benzyloxy
829	3-F, 5-F-benzyloxy
830	cyclohexylmethyleneoxy
831	benzyloxy
832	3-CF ₃ , 5-CF ₃ -benzyloxy
833	4-CF ₃ O-benzyloxy
834	4-CH ₃ CH ₂ -benzyloxy
835	isopropoxy
836	3-CF ₃ -benzyl
837	isopropylthio
838	cyclopentoxy
839	3-Cl-5-pyridinyloxy
840	3-CF ₃ S-benzyloxy
841	3-CH ₃ , 4-CH ₃ -benzyloxy
842	2-F, 3-CF ₃ -benzyloxy
843	3-F, 5-CF ₃ -benzyloxy
844	4-(CH ₃) ₂ CH-benzyloxy
845	1-phenylethoxy
846	4-F, 3-CH ₃ -benzoyl
847	3-CF ₃ -phenyl
848	4-CH ₃ O-phenylamino

Example Table 9. (3R)-4-[N-(aryl)-[(aryl)-methyl]amino]-1,1,1,2,2-pentafluoro-3-butanols (Continued).

Ex. No. 825	R _{SUB1}
825	3-CF ₃
826	2-NO ₂

Ex. No.	R _{SUB2}
849	cyclopropoxy
850	4-NO ₂ -phenylthio

Ex. No. 851	R _{SUB1}
	3-isopropyl
852	2-Cl, 3-Cl
853	3-CF ₃ O
854	4-F
855	4-CH ₃
856	2-F, 5-Br
857	4-Cl, 3-CH ₃ CH ₂
858	3-CH ₃ CH ₂
859	3-CH ₃ , 5-CH ₃
860	3-(CH ₃) ₃ C
861	4-F, 3-CH ₃
862	3-Cl, 4-Cl
863	3,4-(CH ₂) ₄
864	3-HCF ₂ CF ₂ O
865	3-CHF ₂ O
866	3-(CH ₃) ₂ N
867	3-cyclopropyl
868	3-(2-furyl)

E	
<u>Ex.</u> <u>No.</u> <u>R_{SUB2}</u>	2
3-CF3O-benz	zyloxy
876 3-CF ₃ -benz	
877 3-F, 5-F-benz	zyloxy
878 cyclohexylmeth	yleneoxy
879 benzylox	(y
880 3-CF ₃ , 5-CF ₃ -t	enzyloxy
881 4-CF ₃ O-benz	zyloxy
882 4-CH ₃ CH ₂ -be	nzyloxy
883 isopropo	ху
884 3-CF ₃ -ber	nzyl
885 isopropylt	hio
886 cyclopent	оху
887 3-Cl-5-pyridi	nyloxy
888 3-CF ₃ S-benz	zyloxy
889 3-CH ₃ , 4-CH ₃ -l	benzyloxy
890 2-F, 3-CF ₃ -be	nzyloxy
891 3-F, 5-CF ₃ -be	nzyloxy
892 4-(CH ₃) ₂ CH-b	enzyloxy

273

Example Table 9. (3R)-4-[N-(aryl)-[(aryl)-methyl]amino]-1,1,1,2,2-pentafluoro-3-butanols (Continued).

Ex. No.	R _{SUB1}
869	3-CF ₃ CF ₂
870	4-NH ₂
871	3-CH ₃ , 4-CH ₃ , 5-CH ₃
872	4-CH ₃ CH ₂ CH ₂ O
873	3-CF ₃
874	2-NO ₂

Ex. No.	<u>R</u> SUB2
893	1-phenylethoxy
894	4-F, 3-CH ₃ -benzoyl
895	3-CF ₃ -phenyl
896	4-CH ₃ O-phenylamino
897	cyclopropoxy
898	4-NO ₂ -phenylthio

274 Example Table 10. Substituted (2R)-3-[N-(aryl)-[(aryl)oxy]amino]-1,1,1-trifluoro-2-propanols.

$$R_{SUB1}$$
 $CF_2CF_2CF_3$
 F_3C
 F_3C
 $CF_2CF_2CF_3$

Ex. No.	R _{SUB1}
899	3-isopropyl
900	2-Cl, 3-Cl
901	3-CF ₃ O
902	4-F
903	4-CH ₃
904	2-F, 5-Br
905	4-Cl, 3-CH ₃ CH ₂
906	3-CH ₃ CH ₂
907	3-CH ₃ , 5-CH ₃
908	3-(CH ₃) ₃ C
909	4-F, 3-CH ₃
910	3-Cl, 4-Cl
911	3,4-(CH ₂) ₄
912	3-HCF ₂ CF ₂ O
913	3-CHF ₂ O
914	3-(CH ₃) ₂ N
915	3-cyclopropyl
916	3-(2-furyl)
917	3-CF ₃ CF ₂
918	4-NH ₂
919	3-CH ₃ , 4-CH ₃ , 5-CH ₃
920	4-CH ₃ CH ₂ CH ₂ O
921	3-CF ₃

Ex. No. 923	R _{SUB2}
l	3-CF ₃ O-benzyloxy
924	3-CF ₃ -benzyloxy
925	3-F, 5-F-benzyloxy
926	cyclohexylmethyleneoxy
927	benzyloxy
928	3-CF ₃ , 5-CF ₃ -benzyloxy
929	4-CF ₃ O-benzyloxy
930	4-CH ₃ CH ₂ -benzyloxy
931	isopropoxy
932	3-CF ₃ -benzyl
933	isopropylthio
934	cyclopentoxy
935	3-Cl-5-pyridinyloxy
936	3-CF ₃ S-benzyloxy
937	3-CH ₃ , 4-CH ₃ -benzyloxy
938	2-F, 3-CF ₃ -benzyloxy
939	3-F, 5-CF ₃ -benzyloxy
940	4-(CH ₃) ₂ CH-benzyloxy
941	1-phenylethoxy
942	4-F, 3-CH ₃ -benzoyl
943	3-CF ₃ -phenyl
944	4-CH ₃ O-phenylamino
945	cyclopropoxy

Example Table 10 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)oxy]amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}	
922	2-NO ₂	

Ex. No.	R _{SUB2}
946	4-NO ₂ -phenylthio

Ex. No.	R _{SUB1}
947	3-isopropyl
948	2-Cl, 3-Cl
949	3-CF ₃ O
950	4-F
951	4-CH ₃
952	2-F, 5-Br
953	4-Cl, 3-CH ₃ CH ₂
954	3-CH ₃ CH ₂
955	3-CH ₃ , 5-CH ₃
956	3-(CH ₃) ₃ C
957	4-F, 3-CH ₃
958	3-Cl, 4-Cl
959	3,4-(CH ₂) ₄
960	3-HCF ₂ CF ₂ O
961	3-CHF ₂ O
962	3-(CH ₃) ₂ N
963	3-cyclopropyl
964	3-(2-furyl)

T3	
Ex.	D
<u>No.</u> 971	R _{SUB2}
	3-CF ₃ O-benzyloxy
972	3-CF ₃ -benzyloxy
973	3-F, 5-F-benzyloxy
974	cyclohexylmethyleneoxy
975	benzyloxy
976	3-CF ₃ , 5-CF ₃ -benzyloxy
977	4-CF ₃ O-benzyloxy
978	4-CH ₃ CH ₂ -benzyloxy
979	isopropoxy
980	3-CF ₃ -benzyl
981	isopropylthio
982	cyclopentoxy
983	3-Cl-5-pyridinyloxy
984	3-CF ₃ S-benzyloxy
985	3-CH ₃ , 4-CH ₃ -benzyloxy
986	2-F, 3-CF ₃ -benzyloxy
987	3-F, 5-CF ₃ -benzyloxy
988	4-(CH ₃) ₂ CH-benzyloxy

Example Table 10 (continued). Substituted (2R)-3-[N-(aryl)-[(aryl)-oxy]amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
965	3-CF ₃ CF ₂
966	4-NH ₂
967	3-CH ₃ , 4-CH ₃ , 5-CH ₃
968	4-CH ₃ CH ₂ CH ₂ O
969	3-CF ₃
970	2-NO ₂

Ex. No.	R _{SUB2}
989	1-phenylethoxy
990	4-F, 3-CH ₃ -benzoyl
991	3-CF ₃ -phenyl
992	4-CH ₃ O-phenylamino
993	cyclopropoxy
994	4-NO ₂ -phenylthio

Ex. No.	R _{SUB1}
995	3-isopropyl
996	2-Cl, 3-Cl
997	3-CF ₃ O
998	4-F
999	4-CH ₃
1000	2-F, 5-Br
1001	4-Cl, 3-CH ₃ CH ₂
1002	3-CH ₃ CH ₂
1003	3-CH ₃ , 5-CH ₃
1004	3-(CH ₃) ₃ C
1005	4-F, 3-CH ₃
1006	3-Cl, 4-Cl
1007	3,4-(CH ₂) ₄

Ex. No.	<u>R</u> _{SUB2}
1019	3-CF ₃ O-benzyloxy
1020	3-CF ₃ -benzyloxy
1021	3-F, 5-F-benzyloxy
1022	cyclohexylmethyleneoxy
1023	benzyloxy
1024	3-CF ₃ , 5-CF ₃ -benzyloxy
1025	4-CF ₃ O-benzyloxy
1026	4-CH ₃ CH ₂ -benzyloxy
1027	isopropoxy
1028	3-CF ₃ -benzyl
1029	isopropylthio
1030	cyclopentoxy
1031	3-Cl-5-pyridinyloxy

Ex.	
No.	R _{SUB1}
1008	3-HCF ₂ CF ₂ O
1009	3-CHF ₂ O
1010	3-(CH ₃) ₂ N
1011	3-cyclopropyl
1012	3-(2-furyl)
1013	3-CF ₃ CF ₂
1014	4-NH ₂
1015	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1016	4-CH ₃ CH ₂ CH ₂ O
1017	3-CF ₃
1018	2-NO ₂

Ex. No.	R _{SUB2}
1032	3-CF ₃ S-benzyloxy
1033	3-CH ₃ , 4-CH ₃ -benzyloxy
1034	2-F, 3-CF ₃ -benzyloxy
1035	3-F, 5-CF ₃ -benzyloxy
1036	4-(CH ₃) ₂ CH-benzyloxy
1037	1-phenylethoxy
1038	4-F, 3-CH ₃ -benzoyl
1039	3-CF ₃ -phenyl
1040	4-CH ₃ O-phenylamino
1041	cyclopropoxy
1042	4-NO ₂ -phenylthio

R_{SUB2}

Ex. No.	R _{SUB2}
1067	3-CF ₃ O-benzyloxy
1068	3-CF ₃ -benzyloxy
1069	3-F, 5-F-benzyloxy
1070	cyclohexylmethyleneoxy
1071	benzyloxy
1072	3-CF ₃ , 5-CF ₃ -benzyloxy
1073	4-CF ₃ O-benzyloxy
1074	4-CH ₃ CH ₂ -benzyloxy

Ex. No. 1051	R _{SUB1}
1051	3-CH ₃ , 5-CH ₃
1052	3-(CH ₃) ₃ C
1053	4-F, 3-CH ₃
1054	3-Cl, 4-Cl
1055	3,4-(CH ₂) ₄
1056	3-HCF ₂ CF ₂ O
1057	3-CHF ₂ O
1058	3-(CH ₃) ₂ N
1059	3-cyclopropyl
1060	3-(2-furyl)
1061	3-CF ₃ CF ₂
1062	4-NH ₂
1063	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1064	4-CH ₃ CH ₂ CH ₂ O
1065	3-CF ₃
1066	2-NO ₂

Ex. No.	R _{SUB2}
1075	isopropoxy
1076	3-CF ₃ -benzyl
1077	isopropylthio
1078	cyclopentoxy
1079	3-Cl-5-pyridinyloxy
1080	3-CF ₃ S-benzyloxy
1081	3-CH ₃ , 4-CH ₃ -benzyloxy
1082	2-F, 3-CF ₃ -benzyloxy
1083	3-F, 5-CF ₃ -benzyloxy
1084	4-(CH ₃) ₂ CH-benzyloxy
1085	1-phenylethoxy
1086	4-F, 3-CH ₃ -benzoyl
1087	3-CF ₃ -phenyl
1088	4-CH ₃ O-phenylamino
1089	cyclopropoxy
1090	4-NO ₂ -phenylthio

Ex. No.	<u>R</u> SUB1
1091	3-isopropyl
1092	2-Cl, 3-Cl
1093	3-CF ₃ O
1094	4-F

<u>Ex.</u> No.	R _{SUB2}
1115	3-CF ₃ O-benzyloxy
1116	3-CF ₃ -benzyloxy
1117	3-F, 5-F-benzyloxy
1118	cyclohexylmethyleneoxy

- T	
Ex. No. 1095	R _{SUB1}
	4-CH ₃
1096	2-F, 5-Br
1097	4-Cl, 3-CH ₃ CH ₂
1098	3-CH ₃ CH ₂
1099	3-CH ₃ , 5-CH ₃
1100	3-(CH ₃) ₃ C
1101	4-F, 3-CH ₃
1102	3-Cl, 4-Cl
1103	3,4-(CH ₂) ₄
1104	3-HCF ₂ CF ₂ O
1105	3-CHF ₂ O
1106	3-(CH ₃) ₂ N
1107	3-cyclopropyl
1108	3-(2-furyl)
1109	3-CF ₃ CF ₂
1110	4-NH ₂
1111	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1112	4-CH ₃ CH ₂ CH ₂ O
1113	3-CF ₃
1114	2-NO ₂

Ex. No.	R _{SUB2}
1119	benzyloxy
1120	3-CF ₃ , 5-CF ₃ -benzyloxy
1121	4-CF ₃ O-benzyloxy
1122	4-CH ₃ CH ₂ -benzyloxy
1123	isopropoxy
1124	3-CF ₃ -benzyl
1125	isopropylthio
1126	cyclopentoxy
1127	3-Cl-5-pyridinyloxy
1128	3-CF ₃ S-benzyloxy
1129	3-CH ₃ , 4-CH ₃ -benzyloxy
1130	2-F, 3-CF ₃ -benzyloxy
1131	3-F, 5-CF ₃ -benzyloxy
1132	4-(CH ₃) ₂ CH-benzyloxy
1133	1-phenylethoxy
1134	4-F, 3-CH ₃ -benzoyl
1135	3-CF ₃ -phenyl
1136	4-CH ₃ O-phenylamino
1137	cyclopropoxy
1138	4-NO ₂ -phenylthio

280

Example Table 11. (2R)-3-[N-(aryl)-[(aryl)-methyl]amino]-1,1-difluoro-1-chloro-2-propanols.

Ex. No.	R _{SUB1}
<u>No.</u> 1139	3-isopropyl
1140	2-Cl, 3-Cl
1141	3-CF ₃ O
1142	4-F
1143	4-CH ₃
1144	2-F, 5-Br
1145	4-Cl, 3-CH ₃ CH ₂
1146	3-CH ₃ CH ₂
1147	3-CH ₃ , 5-CH ₃
1148	3-(CH ₃) ₃ C
1149	4-F, 3-CH ₃
1150	3-Cl, 4-Cl
1151	3,4-(CH ₂) ₄
1152	3-HCF ₂ CF ₂ O
1153	3-CHF ₂ O
1154	3-(CH ₃) ₂ N
1155	3-cyclopropyl
1156	3-(2-furyl)
1157	3-CF ₃ CF ₂
1158	4-NH ₂
1159	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1160	4-CH ₃ CH ₂ CH ₂ O
1161	3-CF ₃

011 2	
Ex. No. 1163	R _{SUB2}
	3-CF ₃ O-benzyloxy
1164	3-CF ₃ -benzyloxy
1165	3-F, 5-F-benzyloxy
1166	cyclohexylmethyleneoxy
1167	benzyloxy
1168	3-CF ₃ , 5-CF ₃ -benzyloxy
1169	4-CF ₃ O-benzyloxy
1170	4-CH ₃ CH ₂ -benzyloxy
1171	isopropoxy
1172	3-CF ₃ -benzyl
1173	isopropylthio
1174	cyclopentoxy
1175	3-Cl-5-pyridinyloxy
1176	3-CF ₃ S-benzyloxy
1177	3-CH ₃ , 4-CH ₃ -benzyloxy
1178	2-F, 3-CF ₃ -benzyloxy
1179	3-F, 5-CF ₃ -benzyloxy
1180	4-(CH ₃) ₂ CH-benzyloxy
1181	1-phenylethoxy
1182	4-F, 3-CH ₃ -benzoyl
1183	3-CF ₃ -phenyl
1184	4-CH ₃ O-phenylamino
1185	cyclopropoxy

Example Table 11 (continued). (2R)-3-[N-(aryl)-[(aryl)methyl]amino]-1,1-difluoro-1-chloro-2-propanols.

Ex. No.	R _{SUB1}
1162	2-NO ₂

Ex. No.	R _{SUB2}
1186	4-NO ₂ -phenylthio

Ex.	
<u>No.</u> 1187	R _{SUB1}
	3-isopropyl
1188	2-Cl, 3-Cl
1189	3-CF ₃ O
1190	4-F
1191	4-CH ₃
1192	2-F, 5-Br
1193	4-Cl, 3-CH ₃ CH ₂
1194	3-CH ₃ CH ₂
1195	3-CH ₃ , 5-CH ₃
1196	3-(CH ₃) ₃ C
1197	4-F, 3-CH ₃
1198	3-Cl, 4-Cl
1199	3,4-(CH ₂) ₄
1200	3-HCF ₂ CF ₂ O
1201	3-CHF ₂ O
1202	3-(CH ₃) ₂ N
1203	3-cyclopropyl
1204	3-(2-furyl)
1205	3-CF ₃ CF ₂

Ex. No.	R _{SUB2}
1211	3-CF ₃ O-benzyloxy
1212	3-CF ₃ -benzyloxy
1213	3-F, 5-F-benzyloxy
1214	cyclohexylmethyleneoxy
1215	benzyloxy
1216	3-CF ₃ , 5-CF ₃ -benzyloxy
1217	4-CF ₃ O-benzyloxy
1218	4-CH ₃ CH ₂ -benzyloxy
1219	isopropoxy
1220	3-CF ₃ -benzyl
1221	isopropylthio
1222	cyclopentoxy
1223	3-Cl-5-pyridinyloxy
1224	3-CF ₃ S-benzyloxy
1225	3-CH ₃ , 4-CH ₃ -benzyloxy
1226	2-F, 3-CF ₃ -benzyloxy
1227	3-F, 5-CF ₃ -benzyloxy
1228	4-(CH ₃) ₂ CH-benzyloxy
1229	1-phenylethoxy

Example Table 11 (continued). (2R)-3-[N-(aryl)-[(aryl)-methyl]amino]-1,1-difluoro-1-chloro-2-propanols.

Ex. No.	R _{SUB1}
1206	4-NH ₂
1207	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1208	4-CH ₃ CH ₂ CH ₂ O
1209	3-CF ₃
1210	2-NO ₂

Ex. No.	R _{SUB2}
1230	4-F, 3-CH ₃ -benzoyl
1231	3-CF ₃ -phenyl
1232	4-CH ₃ O-phenylamino
1233	cyclopropoxy
1234	4-NO ₂ -phenylthio

Example Table 12. (2R)-3-[N, N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols.

$$R_{SUB1}$$
 CF_2CF_3
 F_3C
 R_{SUB2}
 CF_2CF_3

Ex. No.	R _{SUB1}
1235	3-isopropyl
1236	2-Cl, 3-Cl
1237	3-CF ₃ O
1238	4-F
1239	4-CH ₃
1240	2-F, 5-Br
1241	4-Cl, 3-CH ₃ CH ₂
1242	3-CH ₃ CH ₂
1243	3-CH ₃ , 5-CH ₃
1244	3-(CH ₃) ₃ C
1245	4-F, 3-CH ₃
1246	3-Cl, 4-Cl
1247	3,4-(CH ₂) ₄
1248	3-HCF ₂ CF ₂ O
1249	3-CHF ₂ O
1250	3-(CH ₃) ₂ N
1251	3-cyclopropyl
1252	3-(2-furyl)
1253	3-CF ₃ CF ₂
1254	4-NH ₂
1255	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1256	4-CH ₃ CH ₂ CH ₂ O
1257	3-CF ₃

130	
Ex. No. 1259	R _{SUB2}
	3-CF ₃ O-benzyloxy
1260	3-CF ₃ -benzyloxy
1261	3-F, 5-F-benzyloxy
1262	cyclohexylmethyleneoxy
1263	benzyloxy
1264	3-CF ₃ , 5-CF ₃ -benzyloxy
1265	4-CF ₃ O-benzyloxy
1266	4-CH ₃ CH ₂ -benzyloxy
1267	isopropoxy
1268	3-CF ₃ -benzyl
1269	isopropylthio
1270	cyclopentoxy
1271	3-Cl-5-pyridinyloxy
1272	3-CF ₃ S-benzyloxy
1273	3-CH ₃ , 4-CH ₃ -benzyloxy
1274	2-F, 3-CF ₃ -benzyloxy
1275	3-F, 5-CF ₃ -benzyloxy
1276	4-(CH ₃) ₂ CH-benzyloxy
1277	1-phenylethoxy
1278	4-F, 3-CH ₃ -benzoyl
1279	3-CF ₃ -phenyl
1280	4-CH ₃ O-phenylamino
1281	cyclopropoxy

Example Table 12 (continued). (2R)-3-[N,N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
1258	2-NO ₂

Ex. No.	R _{SUB2}
1282	4-NO ₂ -phenylthio

Ex. No. 1283	<u>R</u> SUB1
1283	3-isopropyl
1284	2-Cl, 3-Cl
1285	3-CF ₃ O
1286	4-F
1287	4-CH ₃
1288	2-F, 5-Br
1289	4-Cl, 3-CH ₃ CH ₂
1290	3-CH ₃ CH ₂
1291	3-CH ₃ , 5-CH ₃
1292	3-(CH ₃) ₃ C
1293	4-F, 3-CH ₃
1294	3-Cl, 4-Cl
1295	3,4-(CH ₂) ₄
1296	3-HCF ₂ CF ₂ O
1297	3-CHF ₂ O
1298	3-(CH ₃) ₂ N
1299	3-cyclopropyl
1300	3-(2-furyl)

	✓ R _{SUB2}
	CF₃
H OH Y	
F ₃ C	

Ex. No. 1307	R _{SUB2}
İ	3-CF ₃ O-benzyloxy
1308	3-CF ₃ -benzyloxy
1309	3-F, 5-F-benzyloxy
1310	cyclohexylmethyleneoxy
1311	benzyloxy
1312	3-CF ₃ , 5-CF ₃ -benzyloxy
1313	4-CF ₃ O-benzyloxy
1314	4-CH ₃ CH ₂ -benzyloxy
1315	isopropoxy
1316	3-CF ₃ -benzyl
1317	isopropylthio
1318	cyclopentoxy
1319	3-Cl-5-pyridinyloxy
1320	3-CF ₃ S-benzyloxy
1321	3-CH ₃ , 4-CH ₃ -benzyloxy
1322	2-F, 3-CF ₃ -benzyloxy
1323	3-F, 5-CF ₃ -benzyloxy
1324	4-(CH ₃) ₂ CH-benzyloxy

Example Table 12 (continued). (2R)-3-[N,N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
1301	3-CF ₃ CF ₂
1302	4-NH ₂
1303	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1304	4-CH ₃ CH ₂ CH ₂ O
1305	3-CF ₃
1306	2-NO ₂

Ex. No.	R _{SUB2}
1325	1-phenylethoxy
1326	4-F, 3-CH ₃ -benzoyl
1327	3-CF ₃ -phenyl
1328	4-CH ₃ O-phenylamino
1329	cyclopropoxy
1330	4-NO ₂ -phenylthio

Ex. No.	R _{SUB1}
1331	3-isopropyl
1332	2-Cl, 3-Cl
1333	3-CF ₃ O
1334	4-F
1335	4-CH ₃
1336	2-F, 5-Br
1337	4-Cl, 3-CH ₃ CH ₂
1338	3-CH ₃ CH ₂
1339	3-CH ₃ , 5-CH ₃
1340	3-(CH ₃) ₃ C
1341	4-F, 3-CH ₃
1342	3-Cl, 4-Cl
1343	3,4-(CH ₂) ₄

		SUB2
1		OCF ₃
		/ / JOH 3
L	'ŌH Ĭ	/=\
'	' > ₹ _N-	—(\ /\
F_3C		

Ex. No.	R _{SUB2}	
1355	3-CF ₃ O-benzyloxy	
1356	3-CF ₃ -benzyloxy	
1357	3-F, 5-F-benzyloxy	
1358	cyclohexylmethyleneoxy	
1359	benzyloxy	
1360	3-CF ₃ , 5-CF ₃ -benzyloxy	
1361	4-CF ₃ O-benzyloxy	
1362	4-CH ₃ CH ₂ -benzyloxy	
1363	isopropoxy	
1364	3-CF ₃ -benzyl	
1365	isopropylthio	
1366	cyclopentoxy	
1367	3-Cl-5-pyridinyloxy	

Example Table 12 (continued). (2R)-3-[N,N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
1344	3-HCF ₂ CF ₂ O
1345	3-CHF ₂ O
1346	3-(CH ₃) ₂ N
1347	3-cyclopropyl
1348	3-(2-furyl)
1349	3-CF ₃ CF ₂
1350	4-NH ₂
1351	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1352	4-CH ₃ CH ₂ CH ₂ O
1353	3-CF ₃
1354	2-NO ₂

Ex. No.	R _{SUB2}
1368	3-CF ₃ S-benzyloxy
1369	3-CH ₃ , 4-CH ₃ -benzyloxy
1370	2-F, 3-CF ₃ -benzyloxy
1371	3-F, 5-CF ₃ -benzyloxy
1372	4-(CH ₃) ₂ CH-benzyloxy
1373	1-phenylethoxy
1374	4-F, 3-CH ₃ -benzoyl
1375	3-CF ₃ -phenyl
1376	4-CH ₃ O-phenylamino
1377	cyclopropoxy
1378	4-NO ₂ -phenylthio

Ex. No.	R _{SUB1}
1379	3-isopropyl
1380	2-Cl, 3-Cl
1381	3-CF ₃ O
1382	4-F
1383	4-CH ₃
1384	2-F, 5-Br
1385	4-Cl, 3-CH ₃ CH ₂
1386	3-CH ₃ CH ₂

Ex. No.	R _{SUB2}
1403	3-CF ₃ O-benzyloxy
1404	3-CF ₃ -benzyloxy
1405	3-F, 5-F-benzyloxy
1406	cyclohexylmethyleneoxy
1407	benzyloxy
1408	3-CF ₃ , 5-CF ₃ -benzyloxy
1409	4-CF ₃ O-benzyloxy
1410	4-CH ₃ CH ₂ -benzyloxy

Example Table 12 (continued). (2R)-3-[N,N'-(diaryl)amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}
1387	3-CH ₃ , 5-CH ₃
1388	3-(CH ₃) ₃ C
1389	4-F, 3-CH ₃
1390	3-Cl, 4-Cl
1391	3,4-(CH ₂) ₄
1392	3-HCF ₂ CF ₂ O
1393	3-CHF ₂ O
1394	3-(CH ₃) ₂ N
1395	3-cyclopropyl
1396	3-(2-furyl)
1397	3-CF ₃ CF ₂
1398	4-NH ₂
1399	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1400	4-CH ₃ CH ₂ CH ₂ O
1401	3-CF ₃
1402	2-NO ₂

Ex. No.	<u>R</u> SUB2
No. 1411	isopropoxy
1412	3-CF ₃ -benzyl
1413	isopropylthio
1414	cyclopentoxy
1415	3-Cl-5-pyridinyloxy
1416	3-CF ₃ S-benzyloxy
1417	3-CH ₃ , 4-CH ₃ -benzyloxy
1418	2-F, 3-CF ₃ -benzyloxy
1419	3-F, 5-CF ₃ -benzyloxy
1420	4-(CH ₃) ₂ CH-benzyloxy
1421	1-phenylethoxy
1422	4-F, 3-CH ₃ -benzoyl
1423	3-CF ₃ -phenyl
1424	4-CH ₃ O-phenylamino
1425	cyclopropoxy
1426	4-NO ₂ -phenylthio

BIOASSAYS

CETP Activity In Vitro

5

10

15

20

25

ASSAY OF CETP INHIBITION USING PURIFIED COMPONENTS (RECONSTITUTED BUFFER ASSAY)

The ability of compounds to inhibit CETP activity was assessed using an in vitro assay that measured the rate of transfer of radiolabeled cholesteryl ester ([3H]CE) from HDL donor particles to LDL acceptor particles. Details of the assay are provided by Glenn, K. C. et al. (Glenn and Melton, "Quantification of Cholesteryl Ester Transfer Protein (CETP): A) CETP Activity and B) Immunochemical Assay of CETP Protein," Meth. Enzymol., 263, 339-351 (1996)). Human recombinant CETP can be obtained from the serum-free conditioned medium of CHO cells transfected with a cDNA for CETP and purified as described by Wang, S. et al. (J. Biol. Chem. 267, 17487-17490 (1992)). To measure CETP activity, [3H]CE-labeled-HDL, LDL, CETP and assay buffer (50 mM tris(hydroxymethyl)aminomethane, pH 7.4; 150 mM sodium chloride; 2 mM ethylenediamine-tetraacetic acid (EDTA); 1% bovine serum albumin) were incubated in a final volume of 200 µL, for 2 hours at 37 °C in 96 well plates. Inhibitors were included in the assay by diluting from a 10 mM DMSO stock solution into 16% (v/v) aqueous DMSO so that the final concentration of inhibitor was 800 µM. The inhibitors were then diluted 1:1 with CETP in assay buffer, and then 25 µL of that solution was mixed with 175 µL of lipoprotein pool for assay. Following incubation, LDL was differentially precipitated by the addition of 50 µL of 1% (w/v) dextran sulfate/0.5 M magnesium chloride, mixed by vortex, and incubated at room temperature for 10 minutes. A potion of the solution (200 µL) was transferred to a filter plate (Millipore). After filtration, the radioactivity present in the precipitated LDL was measured by liquid scintillation counting. Correction for non-specific transfer or precipitation was made by including samples that do not contain

10

15

20

25

CETP. The rate of [³H]CE transfer using this assay was linear with respect to time and CETP concentration, up to 25-30% of [³H]CE transferred.

The potency of test compounds was determined by performing the above described assay in the presence of varying concentrations of the test compounds and determining the concentration required for 50% inhibition of transfer of [3 H]CE from HDL to LDL. This value was defined as the IC $_{50}$. The IC $_{50}$ values determined from this assay are accurate when the IC $_{50}$ is greater than 10 nM. In the case where compounds have greater inhibitory potency, accurate measurements of IC $_{50}$ may be determined using longer incubation times (up to 18 hours) and lower final concentrations of CETP (< 50 nM).

Examples of IC₅₀ values determined by these methods are summarized in Table 9.

ASSAY OF CETP INHIBITION IN HUMAN PLASMA

Blood was obtained from healthy volunteers, recruited from the personnel of Monsanto Company, Saint Louis, MO. Blood was collected in tubes containing EDTA (EDTA plasma pool). The EDTA human plasma pool, previously stored at -20 °C, was thawed at room temperature and centrifuged for 5 minutes to remove any particulate matter. Tritiated HDL, radiolabeled in the cholesteryl ester moiety ([3H]CE-HDL) as described by Morton and Zilversmit (J. Biol. Chem., 256, 11992-95 (1981)), was added to the plasma to a final concentration of 25 μ g/mL cholesterol. Equal volumes (396 μ L) of the plasma containing the [3H]CE-HDL were added by pipette into micro tubes (Titertube®. Bio-Rad laboratories, Hercules, CA). Inhibitor compounds, dissolved as 20-50 mM stock solutions in DMSO, were serially diluted in DMSO (or an alternative solvent in some cases, such as dimethylformamide or ethanol). Four µL of each of the serial dilutions of inhibitor compounds or DMSO alone were then added to each of the tubes containing plasma (396 µL). After mixing, triplicate aliquots (100 µL) from each plasma tube were then transferred to wells of 96-well roundbottomed polystyrene microtiter plates (Corning, Corning, NY). Plates were

10

15

sealed with plastic film and incubated at 37 °C for 4 hours. "Test" samples contained plasma with dilutions of inhibitor compounds. "Control" samples contained plasma with DMSO diluted to the same concentration as the test samples, but without inhibitor. "Blank" samples were prepared as "control" samples, but were left in the micro tubes at 4 °C for the 4 hour incubation and were then added to the microtiter wells at the end of the incubation period. VLDL and LDL were precipitated by the addition of 10 μL of precipitating reagent (1% (w/v) dextran sulfate (Dextralip50)/0.5 M magnesium chloride, pH 7.4) to all wells. The wells were mixed on a plate mixer and then incubated at ambient temperature for 10 min. The plates were then centrifuged at 1000 x g for 30 min at 10 °C. The supernatants (50 μ L) from each well were then transferred to Picoplate TM 96 plate wells (Packard, Meriden, CT) containing MicroscintTM-40 (Packard, Meriden, CT). The plates were heat-sealed (TopSealTM-P, Packard, Meriden, CT) according to the manufacturer's directions and mixed for 30 min. Radioactivity was measured on a microplate scintillation counter (TopCount, Packard, Meriden, CT). The maximum percentage transfer in the control wells (% transfer) was determined using the following equation:

% Transfer =
$$\frac{[dpm_{blank}-dpm_{control}] \times 100}{dpm_{blank}}$$

The percentage of transfer relative to the control (% control) was determined in the wells containing inhibitor compounds was determined as follows:

% Control =
$$\frac{[dpm_{blank}-dpm_{test}] \times 100}{dpm_{blank}-dpm_{control}}$$

IC50 values were then calculated from plots of % control versus concentration

10

15

20

25

of inhibitor compound. IC₅₀ values were determined as the concentration of inhibitor compound inhibiting transfer of [³H]CE from the supernatant [³H]CE-HDL to the precipitated VLDL and LDL by 50% compared to the transfer obtained in the control wells.

Examples of plasma IC_{50} values determined by these methods are summarized in Table 10.

ASSAY OF CETP INHIBITION IN VIVO.

Inhibition of CETP activity by a test compound can be determined by administering the compound to an animal by intravenous injection or oral gavage, measuring the amount of transfer of tritium-labeled cholesteryl ester ([³H]CE) from HDL to VLDL and LDL particles, and comparing this amount of transfer with the amount of transfer observed in control animals.

Male golden Syrian hamsters were maintained on a diet of chow containing 0.24% cholesterol for at least two weeks prior to the study. For animals receiving intravenous dosing immediately before the experiment, animals were anesthetized with pentobarbital. Anesthesia was maintained throughout the experiment. In-dwelling catheters were inserted into the jugular vein and carotid artery. At the start of the experiment all animals received 0.2 mL of a solution containing [3H]CE-HDL into the jugular vein. [3H]CE-HDL is a preparation of human HDL containing tritium-labeled cholesteryl ester, and was prepared according to the method of Glenn et al. (Meth. Enzymol., 263, 339-351 (1996)). Test compound was dissolved as a 80 mM stock solution in vehicle (2% ethanol: 98% PEG 400, Sigma Chemical Company, St. Louis, Missouri, USA) and administered either by bolus injection or by continuous infusion. Two minutes after the [3H]CE-HDL dose was administered, animals received 0.1 mL of the test solution injected into the jugular vein. Control animals received 0.1 mL of the intravenous vehicle solution without test compound. After 5 minutes, the first blood samples (0.5 mL) were taken from the carotid artery and collected in standard microtainer tubes containing ethylenediamine tetraacetic acid. Saline

(0.5 mL) was injected to flush the catheter and replace blood volume. Subsequent blood samples were taken at two hours and four hours by the same method. Blood samples were mixed well and kept on ice until the completion of the experiment. Plasma was obtained by centrifugation of the blood samples at 4 °C. The plasma (50 μ L) was treated with 5 μ L of precipitating reagent (dextran sulfate, 10 g/L; 0.5 M magnesium chloride) to remove VLDL/LDL. After centrifugation, the resulting supernatant (25 μ L) containing the HDL was analyzed for radioactivity using a liquid scintillation counter.

The percentage [³H]CE transferred from HDL to LDL and VLDL (% transfer) was calculated based on the total radioactivity in equivalent plasma samples before precipitation. Typically, the amount of transfer from HDL to LDL and VLDL in control animals was 20% to 35% after 4 hours. The polyethylene glycol vehicle was determined to have no effect on CETP activity in this model.

Alternatively, conscious, non-anesthetized animals received an oral gavage dose of test compound as a suspension in 0.1% methyl cellulose in water. At a time determined for each compound at which plasma levels of the test substance reached their peak (C_{max}) after oral dosing, the animals were anesthetized with pentobarbital and then dosed with 0.2 mL of a solution containing [³H]CE-HDL into the jugular vein as described above. Control animals received 0.25 mL of the vehicle solution without test compound by oral gavage. After 4 hours, the animals were sacrificed, blood samples were collected, and the percentage [³H]CE transferred from HDL to LDL and VLDL (% transfer) assayed, as described above. The aqueous methyl cellulose vehicle was determined to have no effect on CETP activity in this model. Results from testing in this model are summarized in Table 11.

Alternatively, inhibition of CETP activity by a test compound was determined by administering the compound to mice which have been selected for expression of human CETP (hCETP) by transgenic manipulation (hCETP mice). Test compounds were administered by intravenous injection, or oral gavage and

10

15

20

25

the amount of transfer of tritium-labeled cholesteryl ester ([3H]CE) from HDL to VLDL and LDL particles was determined, and compared to the amount of transfer observed in control animals. C57Bl/6 mice that were homozygous for the hCETP gene were maintained on a high fat chow diet, such as TD 88051, as described by Nishina et al. (J Lipid Res., 31, 859-869 (1990)) for at least two weeks prior to the study. Mice received an oral gavage dose of test compound as a suspension in 0.1% methyl cellulose in water or an intravenous bolus injection of test compound in 10% ethanol and 90% polyethylene glycol. Control animals received the vehicle solution without test compound by oral gavage or by an intravenous bolus injection. At the start of the experiment all animals received 0.05 mL of a solution containing [3H]CE-HDL into the tail vein. [3H]CE-HDL is a preparation of human HDL containing tritium-labeled cholesteryl ester, and was prepared according to the method of Glenn et al. (Meth. Enzymol., 263, 339-351 (1996)). After 30 minutes, the animals were exsanguinated and blood collected in standard microtainer tubes containing ethylenediamine tetraacetic acid. Blood samples were mixed well and kept on ice until the completion of the experiment. Plasma was obtained by centrifugation of the blood samples at 4 °C. The plasma was separated and analyzed by gel filtration chromatography and the relative proportion of [3H]CE in the VLDL, LDL and HDL regions was determined.

The percentage [³H]CE transferred from HDL to LDL and VLDL (% transfer) was calculated based on the total radioactivity in equivalent plasma samples before precipitation. Typically, the amount of transfer from HDL to LDL and VLDL in control animals was 20% to 35% after 30 min. The polyethylene glycol and the aqueous methyl cellulose vehicles were determined to have no effect on CETP activity in this model. Results from testing in this model are summarized in Table 12.

ASSAY OF PLASMA HDL ELEVATION IN VIVO.

Syrian Golden hamsters were made hypercholesterolemic by feeding cholesterol supplemented chow for a minimum of two weeks, as described

10

15

20

25

above. Test compounds were administered orally in selected aqueous or oil based vehicles for up to 1 week. Serum was obtained and analyzed by precipitation or size exclusion chromatography for the relative abundance of VLDL, LDL and HDL. Results from testing in this model are summarized in Table 13.

Alternatively, a strain of C57bl mouse was made to transgenicaly express human CETP. Plasma concentrations of hCETP ranged from 2-20 µg/ml. The hCETP mice were made hypercholesterolemic by feeding cholesterol and fat supplemented chow for a minimum of two weeks, as described above. Test compounds were administered orally in selected aqueous or oil based vehicles for up to 1 week. Serum was obtained and analyzed by size exclusion chromatography for the relative abundance of VLDL, LDL and HDL. Results from testing in this model are summarized in Table 14.

Alternatively, cynomologous monkeys were maintained on a normal chow diet. The compound corresponding to example 8 was dissolved in a corn oil based vehicle and administered by oral gavage at 10 mpk q.d. for up to 11 days. Plasma levels of drug were detected throughout the experiment in treated animals at ranges of 0.1-1.5 μ g/mL. Periodically, plasma samples were taken and analyzed for total cholesterol and HDL. After seven days, the treated animals exhibited a 2% increase in HDL and a 5% increase in total cholesterol, relative to vehicle-treated controls.

Alternatively, rabbits were maintained on a normal chow diet. The compound corresponding to example 8 was dissolved in a vehicle of ethanol:propylene glycol (1.5:18) and administered by Alzet pump at 30 mg/day/animal for up to 14 days. Plasma concentrations of drug were detected throughout the duration of the pump infusion in treated animals and averaged 1.2 µg/mL. Periodically, plasma samples were taken and analyzed

for triglycerides, total cholesterol, and HDL. After fourteen days, the treated animals exhibited a 12% decrease in HDL, a 19% decrease in total cholesterol, as well as a 17% increase in triglycerides, compared to pre-dose levels.

296
Table 9. Inhibition of CETP Activity by Examples in Reconstituted Buffer Assay.

Ex.	<u>IC₅₀</u>	
No.	(µM)	
8	0.0008	
11	0.001	
19	0.004	
9	0.008	
10	0.012	
2	0.014	
4	0.014	
20	0.027	
22	0.027	
12	0.034	
14	0.04	
18	0.044	
16	0.049	
43	0.058	
23	0.066	
34	0.076	
41	0.086	
21	0.11	
13	0.13	
1	0.14	
33	0.15	
38	0.18	
36	0.20	
37	0.21	
40	0.23	
35	0.28	
24	0.33	

Ex.	<u>IC₅₀</u>
No.	(μM)
42	0.38
27	0.44
26	0.53
29	0.72
3	0.76
28	0.86
32	1.2
25	1.4
39	1.6
15	1.6
30	2.7
33B	3.2
5	3.4
31	3.5
7	4.9
44	6.8
17	18
6	68
44A	> 50

Table 10. Inhibition of CETP Activity by
Examples in Human Plasma Assay.

Ex.	IC ₅₀
<u>No.</u>	(μM)
8	0.049
11	0.072
10	0.11
22	0.14
19	0.19
20	0.3
18	0.44
14	0.59
9	0.62
2	0.65
4	0.65
16	0.77
12	0.79
34	1.4
43	1.5
23	2.0
1	5.6
41	7.2
42	11
3	20

Table 11. Inhibition of CETP-mediated Transfer in Hamster

Ex. No.	Single Oral Dose	% Inhibition of Transfer
8	10 mpk	35

Table 12. Inhibition of CETP-mediated Transfer in hCETP Mice.

Ex. No.	Single Oral Dose	% Inhibition of Transfer	
8	60 mpk	40	

Table 13. Change in Lipoprotein Profile in Hamster.

Ex. No.	Oral Dose qd, 5 days	% Change in Lipoprotein Profile			
		HDL	LDL	VLDL	
8	30 mpk	12	-12	-22	

Table 14. Change in Lipoprotein Profile in hCETP Mice.

Ex. No.	Oral Dose qd, 5 days	% Change in Lipoprotein Profile			
		HDL	LDL	VLDL	
8	30 mpk	12	20		