Mapeos proyectivos en sistemas de qubits

José Alfredo de León¹, Carlos Pineda², David Dávalos², Alejandro Fonseca³

¹Escuela de Ciencias Físicas y Matemáticas, U. de San Carlos de Guatemala ²Instituto de Física, U. Nacional Autónoma de México ³Departamento de Física, U. Federal de Pernambuco

> I Congreso Guatemalteco de Física 09 de julio de 2021

Outline

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Sistema cerrado

¿cómo representar a los estados?

La herramienta más apropiada para representar al estado de un sistema cuántico abierto es la matriz de densidad ρ .

Por ejemplo, supongamos un sistema cuyo estado es $|\psi\rangle$, su matriz de densidad se escribe

$$\rho = |\psi\rangle\!\langle\psi|\,.$$

¿cómo representar a los estados?

Una matriz ρ representa a un estado cuántico si y sólo si

- 1. $Tr(\rho) = 1$,
- $2. \ \rho^{\dagger} = \rho,$
- 3. $\rho \ge 0$.

La teoría de los canales cuánticos es una forma para describir la evolución de la matriz de densidad (estado cuántico).

Una operación lineal ${\mathcal E}$ que actúa sobre ho como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Dinámica

La teoría de los canales cuánticos es una forma para describir la evolución de la matriz de densidad (estado cuántico).

Una operación lineal ${\mathcal E}$ que actúa sobre ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Dinámica

La teoría de los canales cuánticos es una forma para describir la evolución de la matriz de densidad (estado cuántico).

Una operación lineal ${\mathcal E}$ que actúa sobre ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

Completa positividad

¿Para qué o qué?

Supongamos una operación ${\mathcal E}$ que actúa sobre el sistema A.

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$, también $(\mathcal{E} \otimes \mathbb{1}_k)[\rho_{total}] \geq 0$.

Completa positividad

¿Para qué o qué?

Supongamos una operación ${\mathcal E}$ que actúa sobre el sistema A.

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$, también $(\mathcal{E} \otimes \mathbb{1}_k)[\rho_{total}] \geq 0$.

Canal cuántico

Una operación \mathcal{E} es un canal cuántico si y sólo si

 $(\mathcal{E} \otimes 1)[|\mathsf{Bell}\rangle\langle\mathsf{Bell}|]$ (matriz de Choi de \mathcal{E})

es (1) de traza unitaria, (2) Hermítica y (3) positiva.

Canal cuántico

Una operación ${\mathcal E}$ es un canal cuántico si y sólo si

 $(\mathcal{E} \otimes 1)[|\mathsf{Bell}\rangle\langle\mathsf{Bell}|]$ (matriz de Choi de \mathcal{E})

es (1) de traza unitaria, (2) Hermítica y (3) positiva.

Resumen

- 1. Sistemas cuánticos reales: abiertos
- 2. Estados cuánticos: matriz de densidad ho
- 3. Dinámica: canales cuánticos

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Qubit

Un qubit es un sistema cuántico de dos niveles.

$$\rho = \frac{\mathbb{1} + r_1 \sigma_x + r_2 \sigma_y + r_3 \sigma_z}{2},$$

 (r_1, r_2, r_3) especifican las coordenadas cartesianas de un punto en la esfera de Bloch,

$$\rho = (1, r_1, r_2, r_3).$$

Canal bit-flip de 1 qubit

El bit-flip actúa sobre la esfera de Bloch como

Transforma a las componentes r_i de la matriz de densidad como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, (1-2p)r_2, (1-2p)r_3).$$

Matriz de densidad de *n* qubits

En la base de productos tensoriales de las matrices de Pauli, la matriz de densidad de n qubits se escribe

$$\rho = \frac{1}{2^n} \sum_{j_1,\ldots,j_n=0}^3 r_{j_1,\ldots,j_n} \sigma_{j_1} \otimes \ldots \otimes \sigma_{j_n}, \qquad r_{0,\ldots,0} = 1.$$

Llamaremos 'componentes de Pauli' a las $r_{j_1,...,j_n}$.

Matriz de densidad de *n* qubits

En la base de productos tensoriales de las matrices de Pauli, la matriz de densidad de n qubits se escribe

$$\rho = \frac{1}{2^n} \sum_{j_1,\ldots,j_n=0}^3 r_{j_1,\ldots,j_n} \sigma_{j_1} \otimes \ldots \otimes \sigma_{j_n}, \qquad r_{0,\ldots,0} = 1.$$

Llamaremos 'componentes de Pauli' a las $r_{j_1,...,j_n}$.

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Motivación (1/2)

Un caso particular del canal bit-flip es cuando

Las componentes de Pauli r_i se transforman como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, 0, 0).$$

Motivación (1/2)

Un caso particular del canal bit-flip es cuando

Las componentes de Pauli r_i se transforman como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, 0, 0).$$

¿Son canales cuánticos todas las operaciones que borran cualesquiera de las componentes de Pauli de 1 qubit?

Motivación (2/2)

No. Las operaciones Λ que borran dos componentes de Pauli no son canales cuánticos.

 $(\Lambda \otimes 1)[|\mathsf{Bell}\rangle\langle \mathsf{Bell}|] \not\geq 0$, por consiguiente Λ no es completamente positiva.

Motivación (2/2)

No. Las operaciones Λ que borran dos componentes de Pauli no son canales cuánticos.

 $(\Lambda \otimes 1)[|\mathsf{Bell}\rangle\langle \mathsf{Bell}|] \ngeq 0$, por consiguiente Λ no es completamente positiva.

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de Pauli de una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de Pauli de una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Problema: ¿cuáles son las características del suconjunto de canales cuánticos de las operaciones PCE?

Operaciones PCE

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que transforma a las componentes de $Pauli\ de\ una\ matriz\ de\ densidad\
ho\ de\ n$ qubits como

$$r_{j_1,\ldots,j_n}\longmapsto \tau_{j_1,\ldots,j_n}r_{j_1,\ldots,j_n}, \qquad \tau_{j_1,\ldots,j_n}=0,1.$$

Una operación PCE borra o deja invariantes las componentes de Pauli.

Problema: ¿cuáles son las características del suconjunto de canales cuánticos de las operaciones PCE?

Eigenvalores matriz de Choi

Los eigenvalores de la matriz de Choi de una operación PCE de n qubits son

$$\vec{\lambda} = \underbrace{(a \otimes \ldots \otimes a)}_{n \text{ veces}} \vec{\tau}$$

con

y $\vec{\tau}$ un vector de 4^n componentes.

Regla 2^k

Los canales cuánticos PCE son operaciones que dejan 2^k componentes de Pauli $r_{j_1,...,j_n}$ invariantes. Sin embargo, no sólo importa cuántas $r_{j_1,...,j_n}$, sino también cuáles.

2 qubits, 8 componentes invariantes:

Operaciones PCE que no son canales cuánticos:

Todos los canales cuánticos PCE que borran 15 componentes:

Regla espejo

El número de canales PCE según la cantidad de componentes de Pauli invariantes obedece una regla 'espejo'.

3 qubits:

1395									
canales PCE				651		651			
			63				63		
		1	00					1	
		1	2	4	8	16	32	64	
compone	entes	1	2	4	0	10	32	04	
					7				
					$\times 10^7$				
operaciones PCE			39711	1		1.2×10^{14}			
operaciones PCE		63						9.2×10^{17}	
	1								1
componentes	1	2	4		8	1	.6	32	64
componentes	-	-	-		U	-		32	5 7

1205

Generadores

Los canales cuánticos PCE pueden escribirse como concatenación de canales generadores.

Generadores canales PCE de 2 qubits:

2 qubits

2 qubits

2 qubits

2 qubits

Canales PCE n qubits

Un canal PCE de *n* qubits puede escribirse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_l}}_{\text{máximo } 2^n},$$

con \mathcal{E}_{j_i} los generadores.

Los generadores \mathcal{E}_{j_i} son las únicas formas que están físicamente permitidas de borrar la mitad de las componentes de Pauli de un sistema de n qubits.

Canales PCE n qubits

Un canal PCE de *n* qubits puede escribirse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_l}}_{\text{máximo } 2^n},$$

con \mathcal{E}_{j_i} los generadores.

Los generadores \mathcal{E}_{j_i} son las únicas formas que están físicamente permitidas de borrar la mitad de las componentes de Pauli de un sistema de n qubits.

¡Muchas gracias!

Contacto: José Alfredo de León deleongarrido.jose@gmail.com