ESTIMADORES

1. Suponga que se tiene una muestra aleatoria de tamaño 2n de una población denotada por X y $E[X] = \mu$, $V[X] = \sigma^2$. Sean

$$\bar{X}_1 = \frac{1}{2n} \sum_{i=1}^{2n} X_i$$

$$\bar{Y}_1 = \frac{1}{2n} \sum_{i=1}^{n} Y_i$$

$$\bar{X}_2 = \frac{1}{n} \sum_{i=1}^n X_i$$

Dos estimadores de μ . ¿Cuál es el mejor estimador de μ ? Explique su elección.

2. Sea que $X_1, X_2, ..., X_7$ denote una muestra aleatoria de una población que tiene media μ y varianza σ^2 . Considérense los siguientes estimadores de μ :

$$\hat{\theta}_1 = \frac{X_1 + X_2 + \dots + X_7}{7}$$

$$\hat{\theta}_2 = \frac{2X_1 - X_6 + X_4}{2}$$

- a) ¿Alguno de los dos estimadores es insesgado?
- b) ¿Cuál estimador es el mejor? ¿En qué sentido es mejor?
- 3. Suponga que $\hat{\theta}_1$ y $\hat{\theta}_2$ son estimadores del parámetro θ . Se sabe que $E[\hat{\theta}_1] = \theta$, $E[\hat{\theta}_2] = \frac{\theta}{2}$, y $V[\hat{\theta}_1] = 10$, $V[\hat{\theta}_2] = 4$. ¿Qué estimador es mejor?¿En qué sentido lo es?
- 4. Sea que se tomen tres muestras aleatorias de tamaño $n_1=20$, $n_2=10$, $n_3=8$ de una población con media μ y varianza σ^2 . Sea S_1^2 , S_2^2 y S_3^2 las varianzas muestrales. Demuestre que $S^2=(20S_1^2+10S_2^2+8S_3^2)/38$ es un estimador insesgado de σ^2 .
- 5. Sea $X_1, X_2, ..., X_n$ una m.a de una población con distribución de probabilidad dada por:

$$f(x) = \frac{2x}{\theta^2} \,, \quad 0 < x < \theta \,,$$

Con $\theta > 0$. ¿Cuál de los siguientes es un estimador insesgado para θ ?

$$\hat{\theta}_1 = \frac{X_1 + 2X_2 + 3X_n}{6}$$

$$\hat{\theta}_2 = \frac{X_1 + X_2 + X_n}{3}$$

$$\hat{\theta}_1 = \frac{X_1 + X_2 + X_n}{2}$$