

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/40834
C09K 5/04, 3/30, C08J 9/14, C11D 7/50, C23G 5/028	A1	(43) International Publication Date: 19 December 1996 (19.12.96)
(21) International Application Number: PCT/US (22) International Filing Date: 4 June 1996 (6		ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/477,755 7 June 1995 (07.06.95)	τ	Published With international search report.
(71) Applicant: E.I. DU PONT DE NEMOURS AND CO [US/US]; 1007 Market Street, Wilmington, DE 198		
(72) Inventors: BIVENS, Donald, Bernard; 210 West Lock Kennett Square, PA 19348-1635 (US). MINOR, Haviland; 233 Green Haven Drive, Elkton, MD 219 (US). SIEVERT, Allen, Capron; 215 Rhett Lane MD 21921-2059 (US).	Barbar 21-76	
(74) Agent: KING, Karen, K.; E.I. du Pont de Nemo Company, Legal/Patent Records Center, 1007 Mark Wilmington, DE 19898 (US).		
(54) Title: REFRIGERANTS BASED ON HYDROFLUO		

(57) Abstract

Compositions comprising a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_0F_0H_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_nF_0H_{2m-n}$ wherein m=4 to 6 and mand s = 1 to 13; or perfluoro-n-methylmorpholine wherein said compositions are useful as refrigerants, cleaning agents, aerosol propellants, heat transfer media, gaseous dielectrics, fire extinguishing agents, expansion agents for polymers such as polyolefins and polyurethanes, and as power cycle working fluids are described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	- Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	T.	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
es	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	us	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

WO 96/40834 PCT/US96/08921

5

10

15

20

25

30

35

40

Refrigerants based on hydrofluoroether or fluoroether

FIELD OF INVENTION

This invention relates to the use of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoronmethylmorpholine as a refrigerant, an aerosol propellant, a cleaning agent, a heat transfer media, a gaseous dielectric, a fire extinguishing agent, an expansion agent for polymers such as polyolefins and polyurethanes, and as a power cycle working fluid.

More particularly, this invention relates to the use of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein m=4 to 6 and m=1 to 13; or perfluoro-n-methylmorpholine as a highly effective and potentially environmentally safe refrigerant in refrigeration equipment that use centrifugal compression and in particular small turbine centrifugal compression.

BACKGROUND OF THE INVENTION

Mechanical refrigeration is primarily an application of thermodynamics wherein a cooling medium, such as a refrigerant, goes through a cycle so that it can be recovered for reuse. Commonly used cycles include vaporcompression, absorption, steam-jet or steam-ejector, and air.

The equipment used in a vapor-compression cycle includes an evaporator, a compressor, a condenser, a liquid storage receiver and an expansion valve. Liquid refrigerant enters the evaporator through an expansion valve, and the liquid refrigerant boils in the evaporator at a low temperature to form a gas to produce cooling. The low pressure gas enters a compressor where the gas is compressed to raise its pressure and temperature. The high pressure gaseous

-2-WO 96/40834 PCT/US96/08921

5

10

15

20

25

30

35

40

refrigerant then enters the condenser in which the refrigerant condenses and discharges its heat to the environment. A receiver collects the condensed high pressure liquid refrigerant, and the refrigerant goes to the expansion valve through which the liquid expands from the high pressure level in the condenser to the low pressure level in the evaporator.

There are various types of compressors that may be used in refrigeration applications. Compressors can be generally classified as reciprocating, rotary, jet, centrifugal, or axial-flow, depending on the mechanical means to compress the fluid, or as positive-displacement or dynamic, depending on how the mechanical elements act on the fluid to be compressed.

A centrifugal compressor uses rotating elements to accelerate the refrigerant radially, and typically includes an impeller and diffuser housed in a casing. Centrifugal compressors usually take fluid in at an impeller eye, or central inlet of a circulating impeller, and accelerate it radially outwardly. Some static pressure rise occurs in the impeller, but most of the pressure rise occurs in the diffuser section of the casing, where velocity is converted to static pressure. Each impeller-diffuser set is a stage of the compressor. Centrifugal compressors are built with from 1 to 12 or more stages, depending on the final pressure desired and the volume of refrigerant to be handled.

The pressure ratio, or compression ratio, of a compressor is the ratio of absolute discharge pressure to the absolute inlet pressure. Pressure delivered by a centrifugal compressor is practically constant over a relatively wide range of capacities.

Positive displacement compressors draw vapor into a chamber, and the chamber decreases in volume to compress the vapor. After being compressed, the vapor is forced from the chamber by further decreasing the volume of the chamber to zero or nearly zero. A positive displacement compressor can build up a pressure which is limited only by the volumetric efficiency and the strength of the parts to withstand the pressure.

Unlike a positive displacement compressor, a centrifugal compressor depends entirely on the centrifugal force of the high speed impeller to compress the vapor passing through the impeller. There is no positive displacement, but rather what is called dynamic-compression.

The pressure a centrifugal compressor can develop depends on the tip speed of the impeller. Tip speed is the speed of the impeller measured at its tip and is related to the diameter of the impeller and its revolutions per minute. The

WO 96/40834 -3-PCT/US96/08921

capacity of the centrifugal compressor is determined by the size of the passages through the impeller. This makes the size of the compressor more dependent on the pressure required than the capacity.

5

10

15

20

25

30

35

40

Because of its high speed operation, a centrifugal compressor is fundamentally a high volume, low pressure machine. A centrifugal compressor works best with a low pressure refrigerant, such as trichlorofluoromethane (CFC-11) or 1,2,2-trichlorotrifluoroethane (CFC-113).

Large centrifugal compressors typically operate at 3000 to 7000 revolutions per minute (rpm). Small turbine centrifugal compressors are designed for high speeds, from about 40,000 to about 70,000 (rpm), and have small impeller sizes, typically less than 0.15 meters.

A two-stage impeller is common for many conditions. In operation, the discharge of the first stage impeller goes to the suction intake of a second impeller. Each stage can build up a compression ratio of about 4 to 1, that is, the absolute discharge pressure can be four times the absolute suction pressure.

A proposed world-wide reduction in the production of fully halogenated chlorofluorocarbons such as CFC-11 and CFC-113 has developed a need for alternative, more environmentally acceptable products.

SUMMARY OF THE INVENTION

Accordingly, this invention relates to a refrigerant that may be used in centrifugal compressors designed for the refrigerant 1,1,2-trichlorotrifluoroethane (CFC-113) that performs similarly to CFC-113.

This invention also relates to a refrigerant that has a lower ozone depletion potential than CFC-113.

Surprisingly and unexpectedly it was found that the advantages and improvements discussed above, and others, are achieved by the use of a refrigerant containing a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoro-n-methylmorpholine. It was found that these compositions can be used as a refrigerant in centrifugal compression refrigeration equipment designed for CFC-113 while achieving operating performances comparable to CFC-113.

WO 96/40834 -4PCT/US96/08921

The present invention further relates to the discovery that use of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoro-n-methylmorpholine may be used as an aerosol propellant, a cleaning agent, a heat transfer media, a gaseous dielectric, a fire extinguishing agent, an expansion agent for polymers such as polyolefins and polyurethanes, or as a power cycle working fluid.

The present invention is particularly useful in small turbine centrifugal compressors which can be used in auto and window air conditioning or heat pump as well as other applications.

15

30

DETAILED DESCRIPTION

The present invention relates to the use of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoronmethylmorpholine as a refrigerant for use in centrifugal compression refrigeration equipment.

Examples of these compounds include the following:

- 1. 1-(difluoromethoxy)-1,1,2-trifluoroethane (CHF₂OCF₂CH₂F, 245caEαβ, boiling point = 40°C);
- 2. 1-(difluoromethoxy)-1,2,2-trifluoroethane (CHF₂OCHFCHF₂, 245eaE, boiling point = 53.0°C);
- 3. 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane (CF₃CHFOCHFCF₃, 338meeΕβγ, boiling point = 50.0°C);
- 4. 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane ((CF₃)₂CHOCHF₂,
 338mmzΕβγ, boiling point = 42.1°C);
 - 3-(difluoromethoxy)-1,1,1,2,2,3-hexafluoropropane (CHF₂OCHFCF₂CF₃, 338peEyδ, boiling point = 44.5°C);
- 6. 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane (CHF₂CH₂OCF₂CF₃,
 347mcfΕβγ, boiling point = 45.4°C);

10

3-difluoromethoxy-1,1,1,2,2-pentafluoropropane (CHF₂OCH₂CF₂CF₃, 347mcfEyδ, boiling point = 45.9°C);

8. 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane (CH₃OCF₂CHFOCF₃,
 356mecE2αβγδ, boiling point = 58.0°C);

PCT/US96/08921

- 1,1,1,2,3,3-hexafluoro-3-methoxypropane (CH₃OCF₂CHFCF₃, 356mecΕγδ, boiling point = 56.0°C);
- 10. 1,1,1,3,3,3-hexafluoro-2-methoxypropane ((CF₃)₂CHOCH₃, 356mmzE $\beta\gamma$, boiling point = 50.0°C);
- 11. 1,1,1,2,2-pentafluoro-3-methoxypropane (CF₃CF₂CH₂OCH₃, 365sfEγδ, boiling point = 47.5°C);
- 15 12. 1-ethoxy-1,1,2,2-tetrafluoroethane (C₂H₅OCF₂CHF2, 374pcFβγ, boiling point = 56.0°C);
 - 13. 2-ethoxy-1,1,1-trifluoroethane (C₂H₅OCH₂CF₃, 383mEβγ, boiling point = 49.9°C);
- 14. 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane
 20 (CF₃CF₂CF₂OCHFCF₃, 42-11meEyδ, boiling point = 40.8°C);
 - 15. 2-ethoxy-1,1,1,2,3,3,3-heptafluoropropane ($C_2H_5OCF(CF_3)_2$, 467mmyE $\beta\gamma$, boiling point = 45.5°C);
 - 16. 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane (C₂H₅OCF₂CF₂CF₃, 467sfΕγδ, boiling point = 51.5°C);
- 25 17. C₄F₉OCH₃ isomers including 1,1,1,2,2,3,3,4,4,-nonafluoro-4-methoxy-butane (CH₃OCF₂CF₂CF₃), 1,1,1,2,3,3,-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane (CH₃OCF₂CF(CF₃)₂), 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane (CH₃OC(CF₃)₃), and 1,1,1,2,3,3,4,4,4-nonafluoro-2-methoxy-butane (CH₃OCF(CF₃)CF₂CF₃), approximate isomer boiling point = 60°C;
 - 18. C₄F₉OC₂H₅ isomers including 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane (CH₃CH₂OCF₂CF₂CF₃), 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane (CH₃CH₂OCF₂CF(CF₃)₂), 1,1,1,3,3,3-hexafluoro-2-ethoxy-2-(trifluoromethyl)-propane (CH₃CH₂OC(CF₃)₃, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane (CH₃CH₂OCF(CF₃)CF₂CF₃, approximate
- nonafluoro-2-ethoxy-butane (CH₃CH₂OCF(CF₃)CF₂CF₃, approximate isomer boiling point = 73°C;
 - 19. 1,1,2,2-tetrafluorocyclobutane (cyclo-CF₂CF₂CH₂CH₂-, c354cc, boiling point = 50.0°C):
 - 20. perfluorocyclohexane (cyclo- C_6F_{12} , c51-12c, boiling point = 52.8°C);

WO 96/40834 -6-PCT/US96/08921

5 21. 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane (cyclo-CF(CF₃)CF(CF₃)CF₂CF₂-, c51-12mym, boiling point = 44.7°C);

- 22. perfluorohexane (C_6F_{14} , FC-51-14, boiling point = 57.2°C);
- 23. perfluoro-n-methylmorpholine ($C_5F_{11}NO$, boiling point = 50.0°C);
- 24. 2-(difluoromethyl)-1,1,1,2,3,3-hexafluoropropane (CHF₂CF(CF₃)CHF₂. HFC-338mpy, boiling point = 56.0°C);
- 25. 1,1,2,2,3,3,4,4-octafluorobutane (CHF₂CF₂CF₂CHF₂, HFC-338pcc, boiling point = 44.4°C);
- 26. 1,1,2,2,4-hexafluorobutane (CF₃CF₂CH₂CH₂F, HFC-356mcf, boiling point = 44.0°C);
- 27. 1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane ((CF₃)₂CFCF₂CHF₂, HFC-42-11mmyc, boiling point = 45.5°C);
 - 28. 1,1,1,2,2,3,3,4,4,5,5-undecafluoropentane (CHF₂CF₂CF₂CF₃, HFC-42-11p, boiling point = 45.0°C);
 - 29. 1,1,1,2,3,4,4,5,5,5-decafluoropentane (CF₃CHFCHFCF₂CF₃, HFC-43-10mee, boiling point = 53.6°C);
 - 30. 1,1,1,2,2,3,3,5,5,5-decafluoropentane (CF₃CH₂CF₂CF₂CF₃, HFC-43-10mf, boiling point = 47.0°C);
 - 31. 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane ((CF₃)₂CHCH₂CF₃, HFC-449mmzf, boiling point = 52.5°C);
- 25 32. 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane (CHF₂(CF₂)₄CF₃, HFC-52-13, boiling point = 70.0°C);
 - 33. 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane ((CF₃)₂CHCH₂CF₂CF₃, HFC-54-11mmzf, boiling point = 64.0°C);
 - 34. nonafluoro-tert-butanol ((CF₂)₃COH, boiling point = 45.0°C).

30

35

40

10

20

1-(difluoromethoxy)-1,1,2-trifluoroethane (245caEαβ, CHF₂OCF₂CH₂F, CAS Reg. No. [69948-24-9]) has been prepared by hydrogenation of 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether at 200°C over a palladium catalyst as disclosed by Bagnall, et. al. in J. Fluorine Chem., Vol. 13 pages 123-140 (1979).

1-(difluoromethoxy)-1,2,2-trifluoroethane (245eaE, CHF₂OCHFCHF₂, CAS Reg. No. [60113-74-8]) has been prepared by hydrogenation of 1,2-dichloro-1,22-trifluoroethyl difluoromethyl ether at a temperature range of 200-250°C using a palladium on charcoal catalyst as disclosed by Bell, et. al. U. S. Patent 4,149,018.

WO 96/40834 -7PCT/US96/08921

5

30

35

1,1'-Oxybis(1,2,2,2-tetrafluoro)ethane (338meeΕβγ, CF₃CHFOCHFCF₃, CAS Reg. No. [67429-44-1]) has been prepared by the reaction of diethylaminosulfur trifluoride with trifluoroacetaldehyde as disclosed by Siegemund Ger. Offen. 2,656,545.

2-(Difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane (338mmzΕβγ, (CF₃)₂CHOCHF₂, CAS Reg. No. [26103-08-2]) has been prepared by fluorination of 2-(dichloromethoxy)-1,1,1,3,3,3-hexafluoropropane with an antimony trifluoride/antimony pentachloride mixture as disclosed by Speers, et. al. in J. Med. Chem., Vol. 2, pp. 593-595 (1971).

3-(Difluoromethoxy)-1,1,1,2,2,3-hexafluoropropane (338peΕγδ,

15 CHF₂OCHFCF₂CF₃, CAS Reg. No. [60598-11-0]) may be prepared from pentafluoropropanol, chlorodifluoromethane, chlorine, and cobalt(III)fluoride by a process similar to that used for CHF₂OCHFCF₂CHF₂ and disclosed by Bagnall, et. al. in J. Fluorine Chem., Vol. 11, pp. 93-107 (1978).

3-Difluoromethoxy-1,1,1,2,2-pentafluoropropane (347mcfΕγδ,

CHF₂OCH₂CF₂CF₃, CAS Reg. No. [56860-81-2]) has been prepared by the reaction of 2,2,3,3,3-pentafluoro-1-propanol with chlorodifluoromethane in the presence of aqueous sodium hydroxide as disclosed by Regan in U.S. Patent 3,943,256.

1,1,2-Trifluoro-1-methoxy-2-(trifluoromethoxy)ethane

25 (356mecE2αβγδ, CH₃OCF₂CHFOCF₃, CAS Reg. No. [996-56-5]) may be prepared by the reaction of trifluoromethyl trifluorovinyl ether with methanol as disclosed by Tumanova, et. al. in Zh. Obshch. Khim., Vol. 35, pp. 399-400 (1965).

1,1,1,2,3,3-Hexafluoro-3-methoxypropane (356mecEy δ , CH₃OCF₂CHFCF₃, CAS Reg. No. [382-34-3]) has been prepared by the reaction of methanol with hexafluoropropene as disclosed by England, et. al. in J. Fluorine Chem., Vol. 3, pp. 63-8 (1973/74).

1,1,1,3,3,3-Hexafluoro-2-methoxypropane (356mmzΕβγ, (CF₃)₂CHOCH₃, CAS Reg. No. [13171-18-1]) has been prepared by the reaction of 1,1,1,3,3,3-hexafluoroisopropanol with dimethyl sulfate in the presence of aqueous sodium hydroxide as disclosed by Gilbert, et. al. in U. S. Patent 3,346,448.

1,1,1,2,2-Pentafluoro-3-methoxypropane (365sfΕγδ, CF₃CF₂CH₂OCH₃, CAS Reg. No. [378-16-5]) has been prepared by the reaction of 2,2,3,3,3-pentafluoro-1-propanol with dimethyl sulfate in the presence of aqueous potassium hydroxide as disclosed by Terrell in U. S. Patent 3,896,177.

5

15

20

25

30

35

40

1-Ethoxy-1,1,2,2-tetrafluoroethane (374pcEβγ, C₂H₅OCF₂CHF₂, CAS Reg. No. [512-51-6]) has been prepared by the reaction of ethanol with tetrafluoroethylene as reported by Park, et. al. in J. Am. Chem. Soc., Vol.73, pp. 1329-1330 (1951).

2-Ethoxy-1,1,1-trifluoroethane (383mEβγ, C₂H₅OCH₂CF₃, CAS Reg. No. [461-24-5]) has been prepared by reaction of sodium trifluoroethoxide with ethyl bromide as disclosed by Henne, et. al. in J. Am. Chem. Soc., Vol. 72, pp. 4378-4380 (1950).

1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane (42-11meΕγδ, CF₃CF₂CF₂OCHFCF₃, CAS Reg No. [3330-15-2]) has been prepared by heating CF₃CF₂CF₂OCF(CF₃)CO₂-Na+ in ethylene glycol as disclosed by Selman and Smith in French Patent No. 1,373,014 (Chemical Abstracts 6213047g).

3-Ethoxy-1,1,1,2,2,3,3-heptafluoropropane (467sfΕγδ, C₂H₅OCF₂CF₃, CAS Reg. No. [22052-86-4]) has been prepared by reaction of pentafluoropropionyl fluoride with potassium fluoride and diethyl sulfate in N,N-dimethylformamide as disclosed by Scherer, et. al. in Ger. Offen. 1,294,949.

2-Ethoxy-1,1,1,2,3,3,3-heptafluoropropane (467mmyΕβγ, C₂H₅OCF(CF₃)₂, CAS. Reg. No. [22137-14-0]) may be prepared by the reaction of ethyl iodide with a mixture of hexafluoroacetone and potassium fluoride as disclosed in French Patent 1,506,638.

1,1,2,2-Tetrafluorocyclobutane (HFC-C-354cc, cyclo-CF₂CF₂CH₂CH₂-, CAS Reg. No. [374-12-9]) has been prepared by reacting ethylene and tetrafluoroethylene at 150°C as disclosed by Coffman, et. al. in J. Am. Chem. Soc., Vol. 71, pp. 490-496 (1949).

Perfluorocyclohexane (FC-C-51-12, cyclo-C₆F₁₂, CAS Reg. No. [355-68-0]) has been prepared by the reaction of fluorine with cyclohexane as disclosed by Adcock, et. al. in J. Am. Chem. Soc., Vol. 103, pp. 6937-6947 (1981).

2-(Difluoromethyl)-1,1,1,2,3,3-hexafluoropropane (HFC-338mpy, CHF₂CF(CF₃)CHF₂, CAS Reg. No. [65781-21-7]) has been prepared by the reaction of isobutane with cobalt(III) fluoride as disclosed by Burdon, et. al. in J. Fluorine Chem., Vol. 10, 523-540 (1977).

1,1,2,2,3,3,4,4-octafluorobutane (HFC-338pcc, CHF₂CF₂CF₂CHF₂) has been prepared by refluxing the potassium salt of perfluoroadipic acid in ethylene glycol as disclosed by Hudlicky, et. al. in J. Fluorine Chemistry, Vol. 59, pp. 9-14 (1992).

WO 96/40834 PCT/US96/08921

5

15

20

25

30

35

40

1,1,1,2,2,4-Hexafluorobutane (HFC-356mcf, CF₃CF₂CH₂CH₂F, CAS Reg. No. [161791-33-9]) may be prepared by the reaction of the p-toluene sulfonate of 3,3,4,4,4-pentafluoro-1-butanol with potassium fluoride following the procedure disclosed by Cohen in J. Org. Chem., Vol. 26, pp. 4021-4026 (1961).

1,1,1,2,3,3,4,4-Octafluoro-2-(trifluoromethyl)butane (HFC-42-10 11mmyc, (CF₃)₂CFCF₂CHF₂, CAS Reg. No. [1960-20-9]) has been prepared by reducing 1-iodo-1,1,2,2,3,4,4,4-octafluoro-3-(trifluoromethyl)butane with zinc in the presence of sulfuric acid as disclosed by Chambers, et. al. in Tetrahedron, Vol. 20, pp. 497-506 (1964).

1,1,1,2,2,3,3,4,4,5,5-Undecafluoropentane (HFC-42-11p, CHF₂CF₂CF₂CF₃, CAS Reg. No. [375-61-1]) has been prepared by treating 1-iodo-1,1,1,2,2,3,3,4,4,5,5-undecafluoropentane with alcoholic potassium hydroxide at elevated temperature as disclosed by Haszeldine in J. Chem. Soc. pp. 3761-3768 (1953).

1,1,1,2,2,3,3,5,5,5-Decafluoropentane (HFC-43-10mf, CF₃CH₂CF₂C₂F₅, CAS Reg. No. [755-45-3]) has been prepared by the reaction of antimony dichlorotrifluoride with 1-iodo-1,1,3,3,4,4,5,5,5-nonafluoropentane (prepared in turn from vinylidene fluoride and 1-iodo-heptafluoropropane) as disclosed by Hauptschein, et. al. in J. Am. Chem. Soc., Vol. 82, pp. 2868-2871 (1960).

1,1,1,4,4,4-Hexafluoro-2-(trifluoromethyl)butane (HFC-449mmzf, (CF₃)₂CHCH₂CF₃, CAS Reg. No. [367-53-3]) has been prepared by the reaction of 2-iodo-3-trifluoromethyl-hexafluoro-2-butene with hydrogen over palladium catalyst as disclosed by Evans, et. al. in J. Chem. Soc. Perkin Transactions I pp.649-654 (1973).

1,1,1,2,2,3,3,4,4,5,5,6,6-Tridecafluorohexane (HFC-52-13p, CHF₂(CF₂)₄CF₃, CAS Reg. No. [355-37-3]) may be prepared by the reduction of 1-iodo-perfluorohexane with zinc in ethylene glycol as reported by Hudlicky, et. al. in J. Fluorine Chem., Vol. 59, pp. 9-14 (1992).

1,1,1,2,2,5,5,5-Octafluoro-4-(trifluoromethyl)pentane (HFC-54-11mmzf, (CF₃)₂CHCH₂CF₂CF₃, CAS Reg. No. [90278-01-6] may be prepared by the reaction of sodium borohydrice with perfluoro-2-methyl-2-pentene as disclosed by Snegirev, et. al. in Izx. Akad. Nauk SSSR, Ser. Khim., pp. 2775-2781 (1983).

As early as the 1970's with the initial emergence of a theory that the ozone was being depleted by chlorine atoms introduced to the atmosphere from the release of fully halogenated chlorofluorocarbons, it was known that the introduction

WO 96/40834 -10-PCT/US96/08921

of hydrogen into previously fully halogenated chlorofluorocarbons markedly reduced the chemical stability of these compounds. Hence, these now destabilized compounds would be expected to degrade in the atmosphere and not reach the stratosphere and the ozone layer.

10

15

20

25

30

35

Ozone Depletion Potential (ODP) is based on the ratio of the calculated ozone depletion in the stratosphere resulting from the emission of a compound compared to the ozone depletion potential resulting from the same rate of emission of CFC-11, which is set at 1.0. Compounds of the present invention do not contain any chlorine or bromine and therefore have an Ozone Depletion Potential (ODP) of 0 as compared with CFC-113 at 0.8.

Although compounds of the present invention have zero ODP and an expected lower global warming potential than CFCs, they are extremely effective refrigerants and perform similarly to chlorofluorocarbon refrigerants.

Another important consideration when selecting a refrigerant is the stability of the compound under consideration. Compounds are usually preferred that do not contain groups which may eliminate hydrogen fluoride during use. Examples of groups where hydrogen fluoride may be eliminated include -CH₂CH₂F and -CH₂-CHF-CH₂- (see Powell, U.S. 4,541,943, column 2, lines 5-9).

There are three important considerations in selecting or designing a centrifugal compressor: the diameter of the impeller, which means the length from the end of one of the impeller blades to the end of an opposite blade, the width of the passage in the impeller, and the refrigerant. The impeller and refrigerant must be selected in a combination that best suits a desired application.

The diameter of the impeller depends on the discharge pressure that must be achieved. For a given rotative speed, a large impeller diameter provides a higher tip speed, which results in a higher pressure ratio. Tip speed means the tangential velocity of the refrigerant leaving the impeller.

If a small turbine centrifugal compressor is driven by an electric motor operating at 40,000 rpm, the impeller diameter needed for the 146.3 m/s tip speed of CFC-113 is about 0.0698 meters.

It is desirable to find a "close match" replacement for CFC-113. By "close match", it is meant a refrigerant that may be used in equipment designed for CFC-113 or that performs similarly to CFC-113. To perform as well as CFC-113, a refrigerant must be such that when it is used, the impeller achieves a tip speed that is comparable to the tip speed of the impeller when CFC-113 is used. Compounds

WO 96/40834 -11-PCT/US96/08921

of the present invention provide tip speed comparable to the tip speed of CFC-113 when the refrigerants are used at the same operating conditions.

The liquid density of the refrigerant is another important design characteristic. Approximate liquid densities of the compounds of the present invention are all within about +/-25 percent of CFC-113 as shown in Table 1.

10

TABLE 1

		Liquid Densities
	Compound	(g/cc at 25°C)
15	CFC-113	1.565
	245caΕαβ	1.406
	245eaE	1.404
	338тееЕβү	1.554
	338mmzEβγ	1.435
20	338pe E γδ	1.537
	347mcfEβγ	1.472
	347mcfΕγδ	1.473
	356mecE2αβγδ	1.476
	356mecΕγδ	1.443
25	356mmzEβγ	1.435
	365sfΕγδ	1.345
	374рсеЕβү	1.240
	383me Ε βγ	1.121
	42-11meΕγδ	1.605
30	467sfΕγδ	1.409
	467mmyEβγ	1.386
	C ₄ F ₉ OCH ₃	1.585
	C ₄ F ₉ OC ₂ H ₅	1.503
	c354cc	1.418
35	c51-12mym	1.783
	c51-12c	1.900
	FC-51-14	1.670
	C ₅ F ₁₁ NO	1.861
	HFC-338mpy	1.545
40	HFC-338pcc	1.520
	HFC-356mcf	1.365
	HFC-42-11mmyc	1.621
	HFC-42-11p	1.620
	HFC-43-10mee	1.566
45	HFC-43-10mf	1.573
	HFC-449mmzf	1.505

-12-

WO 96/40834 PCT/US96/08921

5 HFC-52-13p 1.684 HFC-54-11mmzf 1.555 (CF₃)₃COH 1.629

EXAMPLE 1

Tip Speed to Develop Pressure

Tip speed can be estimated by making some fundamental relationships for refrigeration equipment that use centrifugal compressors. The torque an impeller ideally imparts to a gas is defined as

 $T = m^*(v_2^*r_2-v_1^*r_1)$ Equation 1

where

10

15

T = torque, N*m

m = mass rate of flow, kg/s

v₂ = tangential velocity of refrigerant leaving impeller, m/s

 r_2 = radius of exit impeller, m

v₁ = tangential velocity of refrigerant entering impeller, m/s

 r_1 = radius of inlet of impeller, m

Assuming the refrigerant enters the impeller in an essentially radial direction, the tangential component of the velocity v1 = 0, therefore

 $T = m^*v_2^*r_2 \qquad Equation 2$

The power required at the shaft is the product of the torque and the rotative speed

 $P = T^*w$ Equation 3

where

P = power, W

w = rotative speed, rez/s

therefore,

$$P = T^*w = m^*v_2^*r_2^*w$$
 Equation 4

At low refrigerant flow rates, the tip speed of the impeller and the tangential velocity of the refrigerant are nearly identical; therefore

 $r_2^*w = v_2$ Equation 5

and

 $P = m^*v_2^*v_2$ Equation 6

WO 96/40834 -13-PCT/US96/08921

Another expression for ideal power is the product of the mass rate of flow and the isentropic work of compression,

$$P = m^*H_i^*(1000J/kJ)$$
 Equation 7

where

10

15

20

25

H_i = Difference in enthalpy of the refrigerant from a saturated vapor at the evaporating conditions to saturated condensing conditions, kJ/kg.
 Combining the two expressions Equation 6 and 7

produces,

$$v_2^*v_2 = 1000^*H_i$$
 Equation 8

Although equation 8 is based on some fundamental assumptions, it provides a good estimate of the tip speed of the impeller and provides an important way to compare tip speeds of refrigerants.

Table 2 shows theoretical tip speeds that are calculated for 1,2,2-trichlorotrifluoroethane (CFC-113), compounds of the present invention, and ammonia. The conditions assumed for this comparison are:

Evaporator temperature 40.0°F (4.4°C)

Condenser temperature 110.0°F (43.3°C)

Liquid subcool temperature 10.0°F (5.5°C)

Return gas temperature 75.0°F (23.8°C)

Compressor efficiency is 70%

These are typical conditions under which small turbine centrifugal compressors perform.

TABLE 2
Impeller Diameter Calculations at 40,000 rpm

			Impell.	Impell.			
		Hi	Hi*.7	Hi*.7	V2	Diameter Diamet	er
35		Btu/lb	Btu/lb	(KJ/kg)	(m/s)	(m) (in)	
	CFC-113	13.2	9.2	21.4	146.3	0.0698 2.75	
	245caΕαβ	16.6	11.6	27.0	164.0	0.0783 3.08	
	245eaE	18.1	12.7	29.4	171.2	0.0817 3.22	
	338meeΕβγ	12.0	8.4	19.5	139.3	0.0665 2.62	
40	338mmzΕβγ	11.5	8.1	18.7	136.8	0.0653 2.57	

Example 1 shows that compounds of the present invention have impeller diameters within +/- 25 percent of CFC-113.

6.8

8.5

83.6

15.7

19.8

193.9

125.2

140.7

440.5

0.0598

0.0672

0.2102

2.35

2.64

8.28

9.7

12.2

119.4

. . . .

HFC-54-11mmzf

(CF₃)₃COH

NH₃

35

If another refrigerant such as ammonia were used in the equipment designed for CFC-113, the equipment would require an impeller diameter of 0.2102

WO 96/40834 -15-PCT/US96/08921

meters. Therefore, ammonia could not be used in equipment designed for CFC-113 because the impeller diameter of that equipment would need to be increased to 0.2102 meters for the equipment to perform as well with ammonia as it performs with CFC-113.

<u>TABLE 3</u> <u>Small Turbine Performance Data</u>

The following table shows the performance of various refrigerants. The data are based on the following conditions.

15	Evaporator temperature	40.0°F (4.4°C)
	Condenser temperature	110.0°F (43.3°C)
	Subcool temperature	10.0°F (5.5°C)
	Return gas temperature	75.0°F (23.8°C)
	Compressor efficiency is	70%

20

10

		Evap.	Cond.			Capacity
	Refrig.	Press.	Press.	Comp. Dis.		BTU/min
	Comp.	Psia (kPa)	Psia (kPa)	<u>Temp. °F (°C)</u>	<u>COP</u>	(kw)
25	CFC-113	2.7 19	12.8 88	156.3 69.1	4.18	14.8 0.26
	245caΕαβ	3.3 23	16.5 114	159.2 70.7	4.18	21.6 0.38
	245eaE	1.9 13	10.3 71	168.0 75.6	4.25	13.2 0.23
	338meeEβγ	2.2 15	11.8 81	141.7 60.9	4.05	14.2 0.25
	338mmzEβγ	3.1 21	15.6 108	139.8 59.9	4.00	19.0 0.33
30	338pe Ε γδ	2.8 19	14.3 99	140.3 60.2	4.02	17.4 0.31
	347mcfEβγ	2.7 19	13.8 95	142.0 61.1	4.04	16.9 0.30
	347mcfΕγδ	2.6 18	13.6 94	142.1 61.2	4.04	16.6 0.29
	356mecE2αβγδ	1.5 10	8.7 60	143.8 62.1	4.09	10.3 0.18
	356mecEγδ	1.7 12	9.4 65	145.9 63.3	4.12	11.6 0.20
35	356mmzEβγ	2.2 15	11.6 80	144.3 62.4	4.09	14.5 0.26
	365sfEγδ	2.5 17	12.7 88	145.2 62.9	4.10	16.0 0.28
	374рсЕβγ	1.7 12	9.3 64	152.7 67.1	4.18	11.7 0.21
	383m Ε βγ	2.2 15	11.5 79	152.9 67.2	4.17	14.8 0.26
	42-11meΕγδ	3.3 23	16.8 116	126.3 52.4	3.75	18.8 0.33
40	467sfEγδ	2.1 14	11.1 77	133.2 56.2	3.95	13.1 0.23

	WO 96/40834				-16-		PCT	/US96/08 921
5	467mmy Ε βγ	2.7	19	13.8	95	132.0 55.6	3.91	16.3 0.29
	C ₄ F ₉ OCH ₃	1.5	10	8.3	57	131.3 55.2	3.93	9.5 0.17
	C ₄ F ₉ OC ₂ H ₅	0.8	6	5.1	35	128.9 53.8	3.90	5.5 0.10
	c354cc	2.6	18	1.7	12	153.1 67.3	4.21	15.9 0.28
	c51-12mym	3.1	21	14.0	97	119.7 48.7	3.65	15.9 0.28
10	c51-12c	2.3	16	10.8	74	120.3 49.1	3.70	12.3 0.22
	FC-51-14	1.7	12	9.3	64	121.3 49.6	3.69	10.0 0.18
	C ₅ F ₁₁ NO	2.3	16	11.8	81	122.6 50.3	3.74	13.3 0.23
	HFC-338mpy	1.8	12	9.5	66	145.8 63.2	4.12	11.8 0.21
	HFC-338pcc	3.0	21	14.4	99	142.8 61.6	4.06	18.2 0.32
15	HFC-356mcf	3.0	21	14.3	99	145.9 63.3	4.10	18.4 0.32
	HFC-42-11mmyc	2.8	19	13.9	96	128.5 53.6	3.83	16.2 0.29
	HFC-42-11p	2.8	19	14.2	98	128.4 53.6	3.83	16.5 0.29
	HFC-43-10mee	1.9	13	10.4	72	132.8 56.0	3.94	12.2 0.21

13.1 90

10.8 74

5.8 40

7.2 50

15.0 103

129.5 54.2

133.5 56.4

125.5 51.9

127.1 52.8

140.6 60.3

3.86

3.95

3.82

3.85

3.98

15.5 0.27

12.8 0.23

6.2 0.11

7.9 0.14

16.4 0.29

Compounds of the present invention could also be used as cleaning agents, aerosol propellants, heat transfer media, gaseous dielectrics, fire extinguishing agents, expansion agents for polymers such as polyolefins and polyurethanes, and power cycle working fluids.

HFC-43-10mf

HFC-449mmzf

HFC-54-11mmzf

HFC-52-13

(CF₃)₃COH

20

30

2.6 18

2.1 14

0.9 6

1.2 8

2.3 16

ADDITIONAL COMPOUNDS

Additives such as lubricants, corrosion inhibitors, surfactants, stabilizers, dyes and other appropriate materials may be added to the compositions of the invention for a variety of purposes provided they do not have an adverse influence on the composition for its intended application.

WO 96/40834 -17-

5 FL-1021

CLAIMS

It is claimed:

1. A composition comprising a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoro-n-methylmorpholine.

15

10

2. The composition of claim 1 comprising 1-(difluoromethoxy)-1,1,2trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2-pentafluoropropane, 1,1,2-20 trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3heptafluoropropane, 2-ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-25 tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3-hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane. 1,1,1,2,2,3,3,4,4,5,5-undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 30 1,1,1,2,2,3,3,5,5,5-decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4nonafluoro-4-methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 35 1,1,1,2,3,3,4,4,4-nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxybutane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3hexafluoro-2-ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2ethoxy-butane.

WO 96/40834 PCT/US96/08921

3. The composition of claim 1 or 2 wherein said composition is used as a refrigerant.

5

10

15

20

- 4. The composition of claim 1 or 2 wherein said composition is used as an aerosol propellant, a cleaning agent, a heat transfer media, a gaseous dielectric, a fire extinguishing agent, an expansion agent for polymers such as polyolefins and polyurethanes, or as a power cycle working fluid.
- 5. A refrigerant for use with a centrifugal compressor selected from a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein m=4 to 6 and m=1 to 13; or perfluoro-n-methylmorpholine.

6. The refrigerant of claim 5 wherein the compressor is a small turbine centrifugal compressor.

7. The composition of claim 5 comprising a refrigerant for use with a centrifugal compressor said refrigerant selected from the group consisting of 1-25 (difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane, 1,1,2,2tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 30 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, 35 perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1, 1, 1, 2, 3, 3, 4, 4 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 - (trifluoromethyl) butane, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 - octafluoro - 2 undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5-40

WO 96/40834 -19-PCT/US96/08921

- decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4-nonafluoro-4-ethoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2-ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane.
- 8. A process for preparing a polymer foam from a polymer foam formulation utilizing an effective amount of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to b=1 to b=1
- 9. A process according to claim 8 for preparing a polymer foam from a polymer foam formulation utilizing an effective amount of 1-(difluoromethoxy)-25 1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2-pentafluoropropane, 1,1,2trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-30 methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-ethoxy-1,1,1-trifluoroethane. 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3heptafluoropropane, 2-ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-35 bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3-hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane. 1,1,1,2,2,3,3,4,4,5,5-undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5-decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-40

WO 96/40834 -20-

octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4-nonafluoro-4-ethoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane.

PCT/US96/08921

10. A process for preparing an aerosol utilizing an effective amount of a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and n=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r=4 to 6 and s=1 to 13; or perfluoro-n-methylmorpholine.

20

15

66 3

11. A process according to claim 10 for preparing an aerosol utilizing an effective amount of 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-25 hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3difluoromethoxy-1,1,1,2,2-pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-30 ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane. perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane. perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5-35 undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 40

-21-WO 96/40834 PCT/US96/08921

9.6

5 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4-nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2-ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane.

- 12. A process for atomizing a fluid comprising using a hydrofluoroether or fluoroether of the formula C_aF_bH_{2a+2-b}O_c wherein a = 3 to 6, b = 1 to 14 and c = 1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula C_dF_eH_{2d+2-e} wherein d = 4 to 6 and e = 1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula C_mF_nH_{2m-n} wherein m = 4 to 6 and n = 1 to 12; a fluoroalcohol of the formula C_rF_sH_{2r+1-s}OH wherein r = 4 to 6 and s = 1 to 13; or perfluoro-n-methylmorpholine.
- 13. A process according to claim 12 for atomizing a fluid comprising using 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-20 1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-25 ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3-30 hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-35 (trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane,

WO 96/40834 -22-PCT/US96/08921

5 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2-ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane.

14. A process for electrically insulating comprising using a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein m=4 to 6 and m=1 to 13; or perfluoro-n-methylmorpholine.

15

10

15. A process according to claim 14 for electrically insulating comprising a step of using 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-20 hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3difluoromethoxy-1,1,1,2,2-pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1.1,1,3,3,3hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-25 ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1.1.1.2.3.3hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1.1.1.2.3.3.4.4-octafluoro-2-(trifluoromethyl)butane, 1.1,1,2,2,3,3,4,4,5,5-30 undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane. 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 35 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane, 1.1.1.2.3.3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane as a gaseous dielectric. 40

5

10

16. A process for suppressing a fire comprising using a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$ wherein a=3 to 6, b=1 to 14 and c=1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d=4 to 6 and e=1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m=4 to 6 and m=1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein m=4 to 6 and m=1 to 13; or perfluoro-n-methylmorpholine.

17. A process according to claim 16 for suppressing a fire comprising a step of using 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-15 trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane. 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 20 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-ethoxy-1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, 25 perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 30 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane. 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane, 35 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane as a fire extinguishing agent.

WO 96/40834 -24-

18. A process for delivering power comprising using a hydrofluoroether or fluoroether of the formula C_aF_bH_{2a+2-b}O_c wherein a = 3 to 6, b = 1 to 14 and c = 1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula C_dF_eH_{2d+2-e} wherein d = 4 to 6 and e = 1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula C_mF_nH_{2m-n} wherein m = 4 to 6 and n = 1 to 12; a fluoroalcohol of the formula C_rF_sH_{2r+1-s}OH wherein r = 4 to 6 and s = 1 to 13; or perfluoro-n-methylmorpholine.

- 19. A process according to claim 18 for delivering power comprising using 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-15 1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3-hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3-difluoromethoxy-1,1,1,2,2pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3-hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-20 ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2-ethoxy-1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3-25 hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane. 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-30 (trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane. 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2-35 ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane as a power cycle working fluid.
- 20. A process for cleaning a solid surface comprises treating said surface with a hydrofluoroether or fluoroether of the formula $C_aF_bH_{2a+2-b}O_c$

-25-WO 96/40834 PCT/US96/08921

wherein a = 3 to 6, b = 1 to 14 and c = 1 or 2; an acyclic hydrofluorocarbon or fluorocarbon of the formula $C_dF_eH_{2d+2-e}$ wherein d = 4 to 6 and e = 1 to 14; a cyclic hydrofluorocarbon or fluorocarbon of the formula $C_mF_nH_{2m-n}$ wherein m = 4 to 6 and n = 1 to 12; a fluoroalcohol of the formula $C_rF_sH_{2r+1-s}OH$ wherein r = 4 to 6 and s = 1 to 13; or perfluoro-n-methylmorpholine.

10

15

20

25

30

0 7 3

21. A process according to claim 20 for cleaning a solid surface comprises treating said surface with 1-(difluoromethoxy)-1,1,2-trifluoroethane, 1-(difluoromethoxy)-1,2,2-trifluoroethane, 1,1'-oxybis(1,2,2,2-tetrafluoro)ethane, 2-(difluoromethoxy)-1,1,1,3,3,3-hexafluoropropane, 3-(difluoromethoxy)1,1,1,2,2,3hexafluoropropane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane, 3difluoromethoxy-1,1,1,2,2-pentafluoropropane, 1,1,2-trifluoro-1-methoxy-2-(trifluoromethoxy)ethane, 1,1,1,2,3,3-hexafluoro-3-methoxypropane, 1,1,1,3,3,3hexafluoro-2-methoxypropane, 1,1,1,2,2-pentafluoro-3-methoxypropane, 1-ethoxy-1,1,2,2-tetrafluoroethane, 2-ethoxy-1,1,1-trifluoroethane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane, 3-ethoxy-1,1,1,2,2,3,3-heptafluoropropane, 2ethoxy-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorocyclobutane, perfluorocyclohexane, 1,1,2,2,3,4-hexafluoro-3,4-bis(trifluoromethyl)cyclobutane, perfluorohexane, perfluoro-n-methylmorpholine, 2-(difluoromethyl)-1,1,1,2,3,3hexafluoropropane, 1,1,2,2,3,3,4,4-octafluorobutane, 1,1,1,2,2,4-hexafluorobutane, 1,1,1,2,3,3,4,4-octafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5undecafluoropentane, 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,3,5,5,5decafluoropentane, 1,1,1,4,4,4-hexafluoro-2-(trifluoromethyl)butane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,5,5,5-octafluoro-4-(trifluoromethyl)pentane, nonafluoro-tert-butanol, 1,1,1,2,2,3,3,4,4-nonafluoro-4methoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxy-propane, 1,1,1,3,3,3-hexafluoro-2-methoxy-2-(trifluoromethyl)-propane, 1,1,1,2,3,3,4,4,4nonafluoro-2-methoxy-butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-ethoxy-butane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-ethoxy-propane, 1,1,1,3,3,3-hexafluoro-2ethoxy-2-(trifluoromethyl)propane, and 1,1,1,2,3,3,4,4,4-nonafluoro-2-ethoxy-butane.

INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/US 96/08921

A CLASS	IFICATION OF CHICAGO			.705 50700521	
IPC 6	IFICATION OF SUBJECT MATTER C09K5/04 C09K3/30	C08J9/14	C11D7/50	C23G5/028	
According t	o International Patent Classification (IPC) or to bot	h national classificatio	n and IPC		
	SEARCHED		ii aliq ii c		
Minimum d IPC 6	ocumentation searched (classification system follow C09K C08J C11D C23G	red by classification sy	mbols)		
Documental	ion searched other than minimum documentation to	the extent that such d	ocuments are included i	n the fields searched	
Electronic d	ata base consulted during the international search (r	same of data base and	where practical, search	terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appro	opriate, of the relevant	passages	Relevant to claim No.	
		<u> </u>		recevant to claim 140.	
Υ	WO,A,93 24586 (DU PONT DE December 1993 see abstract; claims 1,2 table 2	•		1-21	
	Lable 2				
Y	WO,A,94 26837 (E.I. DU PO 24 November 1994 see abstract; claims 1,4		•	1-21	
Y	WO,A,93 11201 (UNITED ST/ PROTECTION AGENCY) 10 Jun see abstract; claims 1-50 see page 10, line 23 - pa	ne 1993 B: examples	4-6	1-21	
Y	WO,A,94 29402 (DU PONT DI December 1994 see abstract; claims 1,3	-6; figure 1		1-21	
	see page 2, line 25 - pag	ge 3, line 7			
		-/			
X Furt	ner documents are listed in the continuation of box (c. X	Patent family member	rs are listed in annex.	
"A" docume consider E" earlier of filing of "L" docume which citation ofter n "P" docume of the property of th	int which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) into the publication or other special or or other special reason (as specified).	7. d	or priority date and not it ited to understand the provention ocument of particular reannot be considered not awolve an inventive step ocument of particular reannot be considered to it ocument is combined when the considered to it ocument is combined when the considered to it ocument is combined when the combined whe	after the international filing date in conflict with the application but iniciple or theory underlying the levance; the claimed invention well or cannot be considered to when the document is taken alone levance; the claimed invention involve an inventive step when the ith one or more other such docubeing obvious to a person skilled same patent family	
Date of the	actual completion of the international search			ernational search report	
1:	l September 1996			9.1996	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL · 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016		uthorized officer Nicolas, H		

INTERNATIONAL SEARCH REPORT

Interna and Application No
PCT/US 96/08921

C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 96/08921
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI	
	Week 8652 Derwent Publications Ltd., London, GB; AN 86-342477 XP002012858 & JP,A,01 255 978 (ASAHI GLASS) , 13 November 1986 see abstract	1-21
4	PATENT ABSTRACTS OF JAPAN vol. 015, no. 104 (C-0814) & JP,A,30 000744 (ASAHI GLASS), 7 January 1991, see abstract	1-21
۸	PATENT ABSTRACTS OF JAPAN vol. 16, no. 006 (C-0900) & JP,A,32 031941 (ASAHI GLASS), 15 October 1991, see abstract	1-21

	•	

3

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal sal Application No PCT/US 96/08921

				30/00321
Patent document cited in search report	Publication date		family ber(s)	Publication date
WO-A-9324586	09-12-93	AU-A- CN-A- EP-A- JP-T-	4250093 1082088 0642560 7507342	30-12-93 16-02-94 15-03-95 10-08-95
WO-A-9426837	24-11-94	US-A- AU-A- EP-A-	5484546 6916894 0699222	16-01-96 12-12-94 06-03-96
WO-A-9311201	10-06-93	AU-B- AU-A- CA-A- CN-A- EP-A- JP-T-	668534 3151393 2125143 1075977 0615538 7504889	09-05-96 28-06-93 10-06-93 08-09-93 21-09-94 01-06-95
WO-A-9429402	22-12-94	US-A- AU-A- EP-A-	5480572 7204394 0703953	02-01-96 03-01-95 03-04-96