CptS 453 — Homework-02

Charles Nguyen, #011606177

Problem 1:

The bounds for a biparte graph are as follows:

- The lower bound is when the graph is extremely skewed to one side, where $n_i == 1$ for either side of the biparte graph and $n_j = 200 n_i$ is the remaining side. Thus, the lower bound is m = 200.
- The upper bound is when the graph is perfectly symmetrically, where $n_i == n_j$. In this case,

$$n_i = n_i = 100$$

Thus,

$$m = n_i \cdot n_j$$
, where $n_i = n_j$

Problem 2:

Similarly, for p and q as integers, where p < q. The lower bound of $K_{p,q}$ is the product $p \cdot q$, where p == 1. The upper bound is $((p+q)/2)^2$.

Problem 3:

The set of value k for which G_k is connected is controlled by the following conditions:

- k where k is prime
- k where $\|j i\| == k\%10$
- k where $10\%k \neq 0$

Since I'm not used to set theory, I am just listing the related subsets. There should be a relation among these subsets. I am suspecting the following:

$$\{k \text{ is prime}\} \cup (\{\|j-i\| == k\%10\} \cap \{10\%k \neq 0\})$$

The set of k is $k = \{1, 3, 7\}$.

Problem 4:

A cubic graph is a 3-regular graph, i.e. where all vertices have degree k = 3.

a.

Proof:

A complete graph has every *pair* of distinct vertices connected by a unique edge. A complete graph is maximally connected, i.e. the number of edges is maximum and is given by,

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

where k = n - 1, n = k + 1.

Thus, it becomes $\frac{nk}{2}$. This quantity has to yield an integer and therefore nk must be even. Recall that for a cubic graph the degree k=3, thus n must be an even value.

b.

Given the proof above, in order for a cubic graph of order n=4 to exist, we can see right away that the degree k=n-1=3. Thus the number of edges in the graph will be $\frac{nk}{2}=6$. The following image shows such a graph:

 $\mathbf{c}.$

Given input V of order 2n, we can decompose V into V_1 of order n and V_2 of the same order n. This allows us to construct a *biparte* graph of degree k=n.