Laufunaaauluafuuaul

Schriftliche Prüfung aus Energieversorgung, am 04.10.2012

Nama //amanana	/ Motor No. //www.	,
Name/Vorname:	/ MatrNr./Knz.:	′

1 Wasserkraft (24 Punkte)

Ein Pumpspeicherkraftwerk weist folgende Kenndaten auf:

Volumen Obersee	V_{OS}	60	Mio. m³
Volumen Untersee	V_{US}	30	Mio. m³
Füllstand Obersee (des Volumens)		40	%
Füllstand Untersee (des Volumens)		80	%
mittlere Fallhöhe	h	287	m
Nenndurchfluss	Q_N	130	m³/s
Hydraulischer Wirkungsgrad	η_H	94	%
Turbinenwirkungsgrad	η_T	90	%
Pumpenwirkungsgrad	η_P	87	%
Elektrischer Wirkungsgrad	η_{el}	96	%
Eigenbedarfsfaktor	ε	2	%

Die mittlere Fallhöhe h und der Durchfluss Q sollen als konstant angenommen werden.

- a. (4) Welche potenzielle Energie weist der Speicherinhalt des Oberbeckens gegenüber dem Unterbecken auf?
- b. (7) Wie hoch ist die **elektrische Pumpleistung** P_{el} des Pumpspeicherkraftwerks, um einen Durchfluss von $Q=80~m^3/s$ im **Pumpbetrieb** zu erzielen?
- c. (5) Wie lange kann unter den gegebenen Füllständen und dem Durchfluss aus Punkt (b) das Kraftwerk im Pumpbetrieb gefahren werden?
 HINWEIS: es finden keine weiteren Zu- oder Abflüsse aus Ober- und Untersee statt.
- d. (4) Welche elektrische Energie wird in dem Zeitraum aus Punkt (c) aufgenommen?
- e. (4) Um wie viel erhöht sich dabei die **potenzielle Energie** des Wassers im Pumpspeicherkraftwerk?

2 Wirtschaftlichkeitsrechnung (24 Punkte)

In einem Energieversorgungsnetz werden zusätzliche Kraftwerke gebaut. Die folgenden zwei Kraftwerkstypen sind zu vergleichen:

C.D. Kanfterraule

	Gub-krattwerk	Lautwasserkrattwerk
spezifische Errichtungskosten	660 €/kW _{el}	3100 €/kW _{el}
Zinssatz	5 %	4 %
Ausbauleistung	450 MW _{el}	450 MW _{el}
leistungsabhängige Kosten	97 €/kW _{el} a	88 €/kW _{el} a
Brennstoffkosten	0,47 €/m³ Erdgas	0 €/kWh
Gesamtwirkungsgrad	58 %	88 %
betriebsabhängige Kosten	0,0015 €/kWh _{el}	0 €/kWh
Volllaststundenzahl	7000 h/a	5200 h/a
Nutzungsdauer	25 a	40 a

Hinweis: Heizwert von Erdgas Hu = 30 MJ/m³

- a. (6) Wie hoch sind die Stromgestehungskosten für das GuD-Kraftwerk?
- b. (6) Wie hoch sind die Stromgestehungskosten für das Laufwasserkraftwerk?
- c. (6) Bedingt durch sehr kalte Winter und unerwartete Reparaturen erreicht das Laufwasserkraftwerk nicht seine Sollstundenanzahl von 5200 h/a. Unter welche Volllaststundenzahl darf das Laufkraftwerk nicht sinken um noch günstiger als das GuD-KW (dieses bleibt bei 7000 Volllaststunden) produzieren zu können?
- d. (6) Zeichnen Sie qualitativ richtig die beiden Stromgestehungskosten in Abhängigkeit der Volllaststunden. Achsenbeschriftung nicht vergessen!

3 Fünf Sicherheitsregeln (4 Punkte)

Bringen Sie die fünf Sicherheitsregeln in die richtige Reihenfolge:

Benachbarte, unter Spannung stehende Teile abdecken oder abschranken
Spannungsfreiheit allpolig feststellen
Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von
spannungsführenden Teilen)
Erden und kurzschließen
Gegen Wiedereinschalten sichern

EV - 2012

4 Leitungsgleichungen (24 Punkte)

In einem $380~\mathrm{kV}$ -Drehstromfreileitungssystem sind Leiter in Dreierbündel mit den folgenden geometrischen Daten der Aufhängung aufgezogen (Koordinatenursprung = Mastfußpunkt; Bündelmittelpunkte):

Leiterbündel A: x = 4m, y = 24mLeiterbündel B: x = -8m, y = 20mLeiterbündel C: x = -6m, y = 26m

Der gegenseitige Abstand der Leiter a im Dreierbündel beträgt 20 cm. Der Querschnitt eines einzelnen Leiterseils berechnet sich auf $71,96~\text{mm}^2$. Der spezifische Widerstand des Leitermaterials ist $0,0269~\Omega\cdot\text{mm}^2/\text{m}$. Der Verseilungsfaktor beträgt 1,07. Die Leitung ist 500~km lang und verdrillt.

- a. (6) Wie groß ist die längenbezogene symmetrische Betriebsinduktivität der Leitung?
- b. (4) Hinweis: Rechnen Sie nun die weiteren Unterpunkte mit L'= 1.5 mH/km weiter. Wie groß ist der Betrag des Wellenwiderstands der Leitung unter der zusätzlichen Annahme, dass G'=0 S/km und C' = 13 nF/km ist?
- c. (3) Die Leitung wird im Leerlauf betrieben. Wie groß ist die **Spannung am Ende** der Leitung, wenn sie als verlustlos betrachtet wird ($R = 0 \frac{\Omega}{l_{cm}}$, $G = 0 \frac{S}{l_{cm}}$)?
- d. (8) Die verlustlose Leitung wird an ihrem Ende mit einer dreiphasigen, induktiven Last (siehe Bild rechts) abgeschlossen und am Leitungsanfang mit Nennspannung betrieben. Wie groß ist die **Eingangsimpedanz** \underline{Z}_1 dieser Anordnung?
- e. (3) Wie groß ist die natürliche Leistung der verlustlosen Leitung?

EV - 2012

5 Drehstromkomponentensystem (24 Punkte)

Leitungsimpedanz $\underline{Z}_L = 1 \Omega$, Neutralleiterimpedanz $\underline{Z}_N = 0.333 \Omega$

a. (4) Ein symmetrischer Drehstromverbraucher in Sternschaltung (siehe Skizze) besitzt folgende Nenndaten:

$$U_{Nenn} = 40 \text{ V}$$

 $S_{Nenn} = 1,6 \text{ kW}$
 $\cos \omega = 1.$

Berechnen Sie die komplexe Impedanz Z_{Last} des Drehstromverbrauchers.

 b. (4) Ermitteln Sie (für das gesamte Drehstromsystem entsprechend Skizze) Null-, Mit- und Gegenimpedanz (Z₍₀₎, Z₍₁₎, Z₍₂₎).

Durch Messung werden die Ströme in den einzelnen Phasen ermittelt:

$$|\underline{I}_a| = 8 \text{ A}, |\underline{I}_b| = 8 \text{ A}, |\underline{I}_c| = 10 \text{ A}$$

Phasenlagen entsprechend dem Zeigerdiagramm!

- c. (7) Berechnen Sie die symmetrischen Stromkomponenten <u>I(0)</u>, <u>I(1)</u>, <u>I(2)</u>.
- d. (4) Berechnen Sie die symmetrischen Spannungskomponenten $\underline{U}_{(0)}$, $\underline{U}_{(1)}$, $\underline{U}_{(2)}$.
- e. (5) Berechnen Sie die **Phasenspannungen** (<u>U_a</u>, <u>U_b</u>, <u>U_c</u>).