CS145: INTRODUCTION TO DATA MINING

Text Data: Topic Model

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

December 2, 2020

Methods to be Learnt

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN; SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Text Data: Topic Models

Text Data and Topic Models

Revisit of Mixture Model

 Probabilistic Latent Semantic Analysis (pLSA)

Summary

Text Data

- Word/term
- Document
 - A sequence of words
- Corpus
 - A collection of documents

Represent a Document

- Most common way: Bag-of-Words
 - Ignore the order of words
 - keep the count
- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- m1: The generation of random, binary, unordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Vector space model

Topics

Topic

 A topic is represented by a word distribution

0.0675

sequence

Relate to an issue

drug

0.0439

universe

galaxies	0.0375	patients	0.0493	stem	0.0478	sequences	0.0493	million	0.0556
clusters	0.0279	drugs	0.0444	human	0.0421	genome	0.033	ago	0.045
matter	0.0233	clinical	0.0346	cell	0.0309	dna	0.0257	time	0.0317
galaxy	0.0232	treatment	0.028	gene	0.025	sequencing	0.0172	age	0.0243
cluster	0.0214	trials	0.0277	tissue	0.0185	map	0.0123	year	0.024
cosmic	0.0137	therapy	0.0213	cloning	0.0169	genes	0.0122	record	0.0238
dark	0.0131	trial	0.0164	transfer	0.0155	chromosome	0.0119	early	0.0233
light	0.0109	disease	0.0157	blood	0.0113	regions	0.0119	billion	0.0177
density	0.01	medical	0.00997	embryos	0.0111	human	0.0111	history	0.0148
bacteria	0.0983	male	0.0558	theory	0.0811	immune	0.0909	stars	0.0524
bacterial	0.0561	females	0.0541	physics	0.0782	response	0.0375	star	0.0458
resistance	0.0431	female	0.0529	physicists	0.0146	system	0.0358	astrophys	0.0237
coli	0.0381	males	0.0477	einstein	0.0142	responses	0.0322	mass	0.021
strains	0.025	sex	0.0339	university	0.013	antigen	0.0263	disk	0.0173
microbiol	0.0214	reproductive	0.0172	gravity	0.013	antigens	0.0184	black	0.0161
microbial	0.0196	offspring	0.0168	black	0.0127	immunity	0.0176	gas	0.0149
strain	0.0165	sexual	0.0166	theories	0.01	immunology	0.0145	stellar	0.0127
salmonella	0.0163	reproduction	0.0143	aps	0.00987	antibody	0.014	astron	0.0125
resistant	0.0145	eggs	0.0138	matter	0.00954	autoimmune	0.0128	hole	0.00824

economic or the property of th

TOPIC 45

0.156

consists identified implementing arms ally implement created whether eptember in figuration ECOn Omic initiated proved including recently deagnance building programmers deagnance building programmers de financial de finan

TOPIC 48

TOPIC 48

Ovaluated mechanism shades of crimers of communities and communities and communities and communities are communities are communities and communities are communities and communities are communities na ged improvements performance F tax operating condition in the funding tax financial list total unit facilities service years model

TOPIC 43

TOPIC 43

subsologies and or magnitude designations are being and or magnitude and or magni promote history structures of the structures of the landmark everation and Omark

control past significant http:// misse past significant process sun, lecult control post significant process sun, lecult control post sun, lecult control post sun, lecult control post sun, lecult control post sun, lecult control process sun, lecult control pr

TOPIC 46

requiren

Topic Models

- Topic modeling
 - Get topics automatically from a corpus
 - Assign documents to topics automatically
- Most frequently used topic models
 - pLSA
 - LDA

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Text Data: Topic Models

Text Data and Topic Models

Revisit of Mixture Model

 Probabilistic Latent Semantic Analysis (pLSA)

Summary

Mixture Model-Based Clustering

- A set C of k probabilistic clusters $C_1, ..., C_k$
 - probability density/mass functions: f_1 , ..., f_k ,
 - Cluster prior probabilities: $w_1, ..., w_k, \sum_j w_j = 1$
- Joint Probability of an object i and its cluster
 C_i is:
 - $P(x_i, z_i = C_j) = w_j f_j(x_i)$
 - z_i : hidden random variable
- Probability of *i* is:
 - $P(x_i) = \sum_j w_j f_j(x_i)$

Maximum Likelihood Estimation

 Since objects are assumed to be generated independently, for a data set D = {x₁, ..., x_n}, we have,

$$P(D) = \prod_{i} P(x_i) = \prod_{i} \sum_{j} w_j f_j(x_i)$$

$$\Rightarrow log P(D) = \sum_{i} log P(x_i) = \sum_{i} log \sum_{j} w_j f_j(x_i)$$

Task: Find a set C of k probabilistic clusters
 s.t. P(D) is maximized

Gaussian Mixture Model

- Generative model
 - For each object:
 - Pick its cluster, i.e., a distribution component: $Z \sim Categorical(w_1, ..., w_k)$
 - Sample a value from the selected distribution: $X|Z\sim N\left(\mu_Z,\sigma_Z^2\right)$
- Overall likelihood function

•
$$L(D|\theta) = \prod_i \sum_j w_j p(x_i|\mu_j, \sigma_j^2)$$

s.t. $\sum_j w_j = 1$ and $w_j \ge 0$

Multinomial Mixture Model

- For documents with bag-of-words representation
 - $x_d = (x_{d1}, x_{d2}, ..., x_{dN}), x_{dn}$ is the number of words for nth word in the vocabulary
- Generative model
 - For each document
 - Sample its cluster label $z\sim Categorical(\pi)$
 - $\pi = (\pi_1, \pi_2, ..., \pi_K)$, π_k is the proportion of kth cluster
 - $p(z=k)=\pi_k$
 - Sample its word vector $x_d \sim multinomial(\beta_z)$
 - $\beta_z=(\beta_{z1},\beta_{z2},\dots,\beta_{zN}),\beta_{zn}$ is the parameter associate with nth word in the vocabulary
 - $p(\mathbf{x}_d|z=k) = \frac{(\sum_n x_{dn})!}{\prod_n x_{dn}!} \prod_n \beta_{kn}^{x_{dn}}$

Likelihood Function

For a set of M documents

$$L = \prod_{d} p(\mathbf{x}_{d}) = \prod_{d} \sum_{k} p(\mathbf{x}_{d}, z = k)$$

$$= \prod_{d} \sum_{k} p(\mathbf{x}_{d} | z = k) p(z = k)$$

$$= \prod_{d} \frac{(\sum_{n} x_{dn})!}{\prod_{n} x_{dn}!} \sum_{k} p(z = k) \prod_{n} \beta_{kn}^{x_{dn}}$$

Mixture of Unigrams

- For documents represented by a sequence of words
 - $\mathbf{w}_d = (w_{d1}, w_{d2}, ..., w_{dN_d}), N_d$ is the length of document d, w_{di} is the word at the ith position of the document
- Generative model
 - For each document
 - Sample its cluster label $z\sim Categorical(\pi)$
 - $\pi = (\pi_1, \pi_2, ..., \pi_K), \pi_k$ is the proportion of kth cluster
 - $p(z=k)=\pi_k$
 - For each word in the sequence
 - Sample the word $w_{di} \sim Categorical(\boldsymbol{\beta}_z)$
 - $p(w_{di}|z=k) = \beta_{kw_{di}}$

Likelihood Function

For a set of M documents

$$L = \prod_{d} p(\mathbf{w}_{d}) = \prod_{d} \sum_{k} p(\mathbf{w}_{d}, z = k)$$

$$= \prod_{d} \sum_{k} p(\mathbf{w}_{d} | z = k) p(z = k)$$

$$= \prod_{d} \sum_{k} p(z = k) \prod_{i} \beta_{kw_{di}}$$

Question

 Are multinomial mixture model and mixture of unigrams model equivalent?
 Why?

Text Data: Topic Models

Text Data and Topic Models

Revisit of Mixture Model

Probabilistic Latent Semantic Analysis
 (pLSA)

Summary

Notations

- Word, document, topic
 - w, d, z
- Word count in document
 - $\bullet c(w,d)$
- Word distribution for each topic (β_z)
 - β_{zw} : p(w|z)
- Topic distribution for each document (θ_d)
 - θ_{dz} : p(z|d) (Yes, soft clustering)

Issues of Mixture of Unigrams

 All the words in the same documents are sampled from the same topic

• In practice, people switch topics during their writing

Illustration of pLSA

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Generative Model for pLSA

- Describe how a document d is generated probabilistically
 - For each position in d, $n = 1, ..., N_d$
 - Generate the topic for the position as $z_n \sim Categorical(\boldsymbol{\theta}_d), i.e., p(z_n=k) = \theta_{dk}$ (Note, 1 trial multinomial)
 - Generate the word for the position as

$$w_n|z_n \sim Categorical(\pmb{\beta}_{z_n}), i.e., p(w_n = w|z_n) = \beta_{z_n w}$$

Graphical Model

Note: Sometimes, people add parameters such as θ and β into the graphical model

The Likelihood Function for a Corpus

Probability of a word

$$p(w|d) = \sum_{k} p(w, z = k|d) = \sum_{k} p(w|z = k)p(z = k|d) = \sum_{k} \beta_{kw} \theta_{dk}$$

Likelihood of a corpus

$$\prod_{d=1}^{N} P(w_1, \dots, w_{N_d}, d | \theta, \beta, \pi)$$

$$= \prod_{d=1}^{N_d} P(d) \left\{ \prod_{n=1}^{N_d} \left(\sum_k P(z_n = k | d, \theta_d) P(w_n | \beta_k) \right) \right\}$$

$$= \prod_{d=1}^{N_d} \pi_d \left\{ \prod_{n=1}^{N_d} \left(\sum_k \theta_{dk} \beta_{kw_n} \right) \right\}$$

 π_d is usually considered as uniform, i.e., 1/M

Re-arrange the Likelihood Function

 Group the same word from different positions together

$$\max log L = \sum_{dw} c(w, d) log \sum_{z} \theta_{dz} \beta_{zw}$$
$$s.t. \sum_{z} \theta_{dz} = 1 \text{ and } \sum_{w} \beta_{zw} = 1$$

Optimization: EM Algorithm

Repeat until converge

• E-step: for each word in each document, calculate its conditional probability belonging to each topic

$$p(z|w,d) \propto p(w|z,d)p(z|d) = \beta_{zw}\theta_{dz} (i.e., p(z|w,d))$$

$$= \frac{\beta_{zw}\theta_{dz}}{\sum_{z'}\beta_{z'w}\theta_{dz'}})$$

• M-step: given the conditional distribution, find the parameters that can maximize the expected complete log-likelihood

$$\beta_{zw} \propto \sum_{d} p(z|w,d)c(w,d) \ (i.e., \beta_{zw} = \frac{\sum_{d} p(z|w,d)c(w,d)}{\sum_{w',d} p(z|w',d)c(w',d)})$$

$$\theta_{dz} \propto \sum_{w} p(z|w,d)c(w,d) \ (i.e., \theta_{dz} = \frac{\sum_{w} p(z|w,d)c(w,d)}{N_{d}})$$

Example

Two documents, two topics

• Vocabulary: {1: data, 2: mining, 3: frequent, 4: pattern, 5: web, 6: information, 7: retrieval}

• A

	<u> </u>	
word (w)	word count in Document 1 ($c(w, d_1)$)	$p(z=1 w,d_1)$
data	5	0.8
mining	4	0.8
frequent	3	0.6
pattern	2	0.8
web	2	0.5
information	1	0.2

	A ('	
word (w)	word count in Document 2 ($c(w,d_2)$)	$p(z=1 w,d_2)$
information	5	0.2
retrieval	4	0.2
web	3	0.1
mining	3	0.5
frequent	2	0.6
data	2	0.5

Example (Continued)

M-step

$$\beta_{11} = \frac{0.8 * 5 + 0.5 * 2}{11.8 + 5.8} = 5/17.6$$

$$\beta_{12} = \frac{0.8 * 4 + 0.5 * 3}{11.8 + 5.8} = 4.7/17.6$$

$$\beta_{13} = 3/17.6$$

$$\beta_{14} = 1.6/17.6$$

$$\beta_{15} = 1.3/17.6$$

$$\beta_{16} = 1.2/17.6$$

$$\beta_{17} = 0.8/17.6$$

Text Data: Topic Models

Text Data and Topic Models

Revisit of Mixture Model

 Probabilistic Latent Semantic Analysis (pLSA)

Summary

Summary

- Basic Concepts
 - Word/term, document, corpus, topic
- Mixture of unigrams
- pLSA
 - Generative model
 - Likelihood function
 - EM algorithm

Learnt Algorithms

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN; SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Major Deadlines ahead

- Homework 6 (optional)
 - We will pick 5 highest score
- Course project
 - Kaggle completion and report are due on different dates
 - Don't forget peer evaluation form:
 - One question is: "Do you think some member in your group should be given a lower score than the group score? If yes, please list the name, and explain why."

Content to Cover

- All the content learned so far
 - ~20% before midterm
 - ~80% after midt

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN; SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Type of Questions

- Similar to Midterm
 - True or false

Conceptual questions

Computation questions

Sample question on DTW

 Suppose that we have two sequences S1 and S2 as follows:

$$\bullet$$
 S1 = <1, 2, 5, 3, 2, 1, 7>

$$\bullet$$
 S2 = <2, 3, 2, 1, 7, 4, 3, 0, 2, 5>

 Compute the distance between two sequences according to the dynamic time warping algorithm.

What's next?

- Following-up courses
 - CS247: Advanced Data Mining
 - Focus on Text, Recommender Systems, and Networks/Graphs
 - Will be offered in Spring 2021
 - CS249: Graph Neural Networks
 - Focus on Deep Neural Networks on Graphs
 - Research seminar: You are expected to read papers and present to the whole class; you are expected to write a survey or conduct a course project
 - Will be offered in Winter 2021

Thank you and good luck!

- Give us feedback by submitting evaluation form (counted as bonus for participation)
- 1-2 undergraduate research intern positions are available