MANSUR SHAKIPOV University Park, UMD, USA, +12029266554, shakipov@umd.edu

EDUCATION

Aug 2020 – present PhD in Applied Mathematics

University of Maryland, College Park, MD, US

Concentration on Scientific Computing, Adviser: Dr. Ricardo H. Nochetto.

Aug 2016 – Jun 2020 BS in Computer Science

Nazarbayev University, Nur-Sultan, Kazakhstan

Second major in Mathematics.

WORK EXPERIENCE

Jan 2021 – present	Graduate Teaching Assistant
(excluding summers)	University of Maryland, College Park.
$Jun\ 2022 - Aug\ 2022$	Graduate Research Assistant
	University of Maryland, College Park.
Jun 2021 – Aug 2021	Graduate Research Assistant
	Nazarbayev University, Nur-Sultan, Kazakhstan.
	Supervisors: Dr. Dichuan Zhang, Dr. Dongming Wei.
Jun 2019 – Aug 2019	Visiting Academic (internship)
	Courant Institute of Mathematical Sciences, NYC, NY, USA.
	Supervisor: Dr. Aleksandar Donev.
Aug 2018 - May 2019	Research Assistant
	Nazarbayev University, Nur-Sultan, Kazakhstan.
	Supervisor: Dr. Piotr Skrzypacz.

Projects

Jun 2022 – present Simulating PDEs on surfaces

University of Maryland, MD, USA.

I wrote scientific computing codes that simulate different PDEs on implicitly defined static surfaces. The list of PDEs include Laplace-Beltrami, Heat, Stokes and Navier-Stokes equations. The code is written using <code>ngsxfem</code> add-on to NGSolve library. The finite element method used is TraceFEM. All the major routines like system assembly and linear solver are parallelizable.

Project adviser: Dr. Ricardo H. Nochetto.

Jun 2021 – Aug 2021 – **Multilaye**

Multilayer inertial reactive armor

Nazarbayev University, Nur-Sultan, Kazakhstan.

We are working on producing realistic simulation of the graphene armor under impact loading. I have implemented a FEM scheme that solves a semilinear version of the (static and dynamic) Euler-Bernoulli beam equation corresponding to 1) swelling force, 2) nonlinear stress-strain relation for graphene in Matlab.

Supervisors: Dr. Dongming Wei, Dr. Dichuan Zhang.

Aug 2019 – Dec 2020

cheML.io: An Online Database of ML-generated Molecules

Nazarbayev University, Nur-Sultan, Kazakhstan.

We investigated the properties of molecules generated by several state-of-the-art ML algorithms; combined them into a single database, and developed a web application, where users can seamlessly interact with the database. That includes molecule search, results download, and on-demand molecule generation. My input was building the first minimum working prototype, and back-end.

Supervisors: Dr. Siamac Fazli, Dr. Vsevolod Peshkov.

Nov 2019 – May 2020

Finite Element Method for Retaining Walls Subjected to Swelling Pressure

Nazarbayev University, Nur-Sultan, Kazakhstan.

Retaining walls are constructions that separate two levels of soil. The purpose of this capstone project is to model the deflection of retaining walls subjected to a swelling pressure, which occurs due to expansion of soil. This problem was modelled by a semilinear Euler-Bernoulli beam equation, which was treated using FEM and implemented in pure Python and numpy.

Supervisor: Dr. Dongming Wei.

Jun 2019 - Aug 2019 Dynamics of colloidal particles driven by magnetic field

NYU Courant, NYC, NY, USA.

I worked on parallelization of a Fortran 90 code which implements Finite Volume Method to simulate the movement of colloidal particles driven by a magnetic field rotating around the axis parallel to the floor. Using OpenMP framework for these purposes, I managed to achieve sub-linear speed-up. I also ran simulations on a multi-core processor and a GPU, and analyzed the results.

Supervisor: Dr. Aleksandar Donev

Aug 2018 - May 2019

Dead-core solutions to simple catalytic reaction problems in chemical engineering

Nazarbayev University, Nur-Sultan, Kazakhstan.

We investigated the solutions of a semilinear diffusion-reaction equation, which models the density distribution of a catalyst inside a porous pellet inside a chemical reactor. Chemical reaction can occur very fast close to the external surface of a pellet causing all reactant to be consumed, resulting in a deadcore: an area where no reaction occurs. This can lead to inefficient use of an expensive catalyst. In this project, we investigated the deadcore solutions of a 1-d version of the problem.

Supervisors: Dr. Piotr Skrzypacz, Dr. Boris Golman.

SCHOLARSHIPS AND GRANTS

Apr 2020	Fellowship and Dean's Stipend
	I was offered a GA position, tuition remission and Dean's stipend (for the first two years) to pursue
	PhD in Mathematics at the University of Maryland, College Park.
Jan 2019	Summer Research Internship Funding $(\sim \$8,000)$
	A selective grant issued by Shakhmardan Yessenov Foundation to 2-3 year undergraduate students
	from Kazakhstan, about 10 grants a year.
Jun 2016	Full scholarship and stipend
	to pursue BSc in Computer Science at Nazarbayev University in Astana, Kazakhstan.
Jun 2016	Altyn Belgi (Golden Sign)
	Issued by the Department of Education of Kazakhstan to students who finished middle- and highschool
	with a GPA of 4.0.
Jan 2013	Full scholarship (highschool)
	A merit-based scholarship to study at Nazarbayev Intellectual School in Karaganda, Kazakhstan.

PUBLICATIONS

R. Zhumagambetov, D. Kazbek, M. Shakipov, D. Maksut, V. A. Peshkov, and S. Fazli, "cheML.io: an online database of ML-generated molecules," RSC Adv., vol. 10, pp. 45189–45198, 2020.

F. Sabit, M. Shakipov, P. Skrzypacz, and B. Golman, "Dead-Core Solutions to Simple Catalytic Reaction Problems in Chemical Engineering", *Eurasian Chem.-Technol. J.*, vol. 21, no. 1, pp. 29-33, Feb. 2019.