

Dynamic Programming

Algorithms: Design and Analysis, Part II

The Knapsack Problem

Problem Definition

Input: *n* items. Each has a value:

- Value v_i (nonnegative)
- Size w_i (nonnegative and integral)
- Capacity W (a nonnegative integer)

Output: A subset $S \subseteq \{1, 2, ..., n\}$ that maximizes $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq W$.

Developing a Dynamic Programming Algorithm

Step 1: Formulate recurrence [optimal solution as function of solutions to "smaller subproblems"] based on a structure of an optimal solution.

Let S = a max-value solution to an instance of knapsack.

Case 1: Supose item $n \notin S$.

 \Rightarrow S must be optimal with the first n-1 items (same capacity W) [If S^* were better than S with respect to 1st n-1 items, then this equally true w.r.t. all n items - contradiction]

Optimal Substructure

- Case 2: Suppose item $n \in S$. Then $S \{n\}$...
 - A) is an optimal solution with respect to the 1st n-1 items and capacity W.
 - B) is an optimal solution with respect to the 1st n-1 items and capacity $W-v_n$.
 - C) is an optimal solution with respect to the 1st n-1 items and capacity $W-w_n$.
 - D) might not be feasible for capacity $W w_n$.

Proof: If S^* has higher value than $S - \{n\} + \text{total size} \le W - w_n$, then $S^* \cup \{n\}$ has size $\le W$ and value more than S [contradiction]