

CSC380: Principles of Data Science

Probability Primer 6

Var and Cov of independent RV and Related topics

Credit:

- · Jason Pacheco,
- Kwang-Sung Jun,
- Chicheng Zhang
- Xinchen yu

1

Review

3

Expectation

$$E[X] = \sum x \cdot p(X = x)$$

Properties

$$E[X + Y] = E[X] + E[Y]$$

 $E[cX] = cE[X]$
 $E[c] = c$
 c is a constant

· Conditional expected value

$$E[X|Y=y] = \sum_{x} x \cdot p(X=x|Y=y)$$

Variance

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Properties

$$Var[cX] = c^2 Var[X]$$

Covariance

$$\begin{aligned} Cov(X,Y) &= E[(X - E[X])(Y - E[Y])] \\ &= E[XY] - E[X]E[Y] \end{aligned}$$

$$Cov(X,X) = E[X^2] - E[X]E[X] = Var(X)$$

• Variance of X + Y

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

Outline

4

- ullet For independent RVs X_1 and X_2
 - $E(X_1X_2)$
 - $Var(X_1 + X_2)$
 - $Cov(X_1, X_2)$

4

Independence and Moments

5

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Comparison: $\mathbf{E}[X + Y] = \mathbf{E}[X] + \mathbf{E}[Y]$ regardless of independence!

Independence and Moments

6

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Scaling of Summations $\lambda \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} \lambda x_{i}$

Proof: $\mathbf{E}[XY] = \sum_{x} \sum_{y} (x \cdot y) p(X = x, Y = y)$ $= \sum_{x} \sum_{y} (x \cdot y) p(X = x) p(Y = y)$ (Independence) $= \left(\sum_{x} x \cdot p(X = x)\right) \left(\sum_{y} y \cdot p(Y = y)\right) = \mathbf{E}[X] \mathbf{E}[Y]$ (Linearity of Sum)

Example Let $X_1, X_2 \in \{1, ..., 6\}$ be RVs representing the result of rolling two fair standard dice. What is the mean of their product?

$$\mathbf{E}[X_1X_2] = \mathbf{E}[X_1]\mathbf{E}[X_2] = 3.5^2$$
 =12.25

6

Independence and Moments

7

Question: What is the variance of their sum (recall independence)?

Proof 1:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

$$\mathbf{Var}[X_1 + X_2] = \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{Cov}(X_1, X_2)$$

$$= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])(X_2 - \mathbf{E}[X_2])]$$

$$= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])]\mathbf{E}[(X_2 - \mathbf{E}[X_2])]$$

$$= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2(\mathbf{E}[X_1] - \mathbf{E}[X_1])(\mathbf{E}[X_2] - \mathbf{E}[X_2])$$

$$= \mathbf{Var}[X_1] + \mathbf{Var}[X_2]$$

• Proof 2:

• $A \perp B \Rightarrow f(A) \perp f(B)$

• f(X) = X - E[X]

• E[f(A)f(B)] = E[f(A)]E[f(B)]

$$\begin{aligned} Var[X_1 + X_2] &= Var[X_1] + Var[X_2] + 2Cov[X_1, X_2] \\ &= Var[X_1] + Var[X_2] + 2(E[X_1X_2] - E[X_1]E[X_2]) \\ &= Var[X_1] + Var[X_2] + 2(E[X_1]E[X_2] - E[X_1]E[X_2]) \\ &= Var[X_1] + Var[X_2] \end{aligned}$$

Independence and Moments

8

Recall that for any two RVs X and Y variance is not a linear function,

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y)$$

If X and Y are independent then they have zero covariance,

$$\mathbf{Cov}(X,Y) = 0$$

Thus, $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$

And, for a collection of independent RVs X_1, X_2, \dots, X_N we have,

$$\mathbf{Var}(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} \mathbf{Var}(X_i)$$

Q: Is variance a linear operator under independence?

A: No! $Var(cX) \neq c Var(X)$ for a constant c. Rather, $Var(cX) = c^2 Var(X)$.

8

Linearity

9

In mathematics, a linear map or linear function f(x) is a function that satisfies the two properties:^[1]

- Additivity: f(x + y) = f(x) + f(y).
- Homogeneity of degree 1: $f(\alpha x) = \alpha f(x)$ for all α . Homogeneous must pass: $f(zx, zy) = z^n f(x, y)$

Homogeneous?

$$f(x, y) = 4x^2 + y^2 \Rightarrow$$
 homogeneous with degree 2: $f(zx, zy) = z^2 f(x, y)$
 \Rightarrow not linear

So, expectation is a linear function/operator, but variance is not!

We will just say "linearity of expectation"

Example: Independent Gaussian RVs

10

Let X and Y be independent Gaussian RV with,

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

$$Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$$

(Property of Gaussian: $E[X] = \mu_x$, $Var[X] = \sigma_x^2$)

What is the variance of their sum?

$$Var(X + Y) = Var(X) + Var(Y) = \sigma_x^2 + \sigma_y^2$$

What is the mean of their product?

$$\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y] = \mu_x \mu_y$$

Suppose X and Y are **dependent**, what is the mean of their sum?

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y] = \mu_x + \mu_y$$

10

The amazing Gaussian

11

Let X and Y be **independent** Gaussian RVs with,

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

For normal distributions

· Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$, $X \perp Y$ $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

• Closed under affine transformation (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$

Independence and Moments

12

On slide page 6, If X and Y are independent RVs, then:

$$\mathbf{Cov}(X,Y) = 0$$

The reverse is not true! $(Cov(X,Y) = 0) \Rightarrow X \perp Y$

12

Counter Example

13

• Let X, Z be independent RV that is −1 or +1 with probability 1/2.

Indicator function: $I\{X = 1\} = 1, if X = 1$ $I\{X = 1\} = 0, if X \neq 1$

- Let $Y = Z \cdot I\{X = 1\}$
- Claim: Cov(X,Y) = 0 but X and Y are dependent.

Cov(X,Y) = E[XY] - E[X]E[Y]

	Х	Z	Υ	XY
1	1/2	1/2	1/4	1/4
-1	1/2	1/2	1/4	1/4
0	N/A	N/A	1/2	1/2

$$E[X]=1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0$$

$$E[Y]=0$$

$$E[XY]=0$$

$$P(X = 1, Y = 0) = 0$$

$$P(X = 1)P(Y = 0) = \frac{1}{4} \quad 0 \neq \frac{1}{4}!$$

$$P(Y = 1) = P(X = 1, Z = 1) = P(X = 1) \cdot P(Z = 1) = \frac{1}{4}$$

$$P(Y = -1) = P(X = 1, Z = -1) = \frac{1}{4}$$

$$P(Y = 0) = P(X = -1) = \frac{1}{2}$$

$$P(XY = 1) = P(X = 1, Y = 1) + P(X = -1, Y = -1)$$

$$= P(X = 1, Z = 1) + 0 = \frac{1}{4}$$

$$P(XY = -1) = P(X = 1, Y = -1) + P(X = -1, Y = 1)$$

$$= P(X = 1, Z = -1) + 0 = \frac{1}{4}$$

$$P(XY = 0) = P(Y = 0) = \frac{1}{2}$$

 $Y = Z \cdot 1, if X = 1, Y = Z \cdot 0, if X = -1$

Moments of Continuous RVs

14

Replace all sums with integrals,

$$\mathbf{E}[X] = \int xp(x) \, dx \qquad \mathbf{Var}[X] = \int (x - \mathbf{E}[X])^2 p(x) \, dx$$

• All properties push through, as you would expect (e.g. law of total expectation, conditional expectation, etc.)

(and use PDF p(x) instead of PMF P(X=x))

14

Exercise

15

<u>Question:</u> Roll two dice and let their outcomes be $X_1, X_2 \in \{1, \dots, 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$p(X_1 \mid X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

Which of the following are true?

a)
$$p(X_1 = 1 | X_2 = 1) > p(X_1 = 1)$$

b)
$$p(X_1=1|X_2=1)=p(X_1=1)$$
 Outcome of die 2 doesn't *affect* die 1

c)
$$p(X_1 = 1 | X_2 = 1) < p(X_1 = 1)$$

Exercise

16

<u>Question:</u> Let $X_1 \in \{1, \dots, 6\}$ be outcome of die 1, as before. Now let $X_3 \in \{2, 3, \dots, 12\}$ be the sum of both dice. Which of the following are true?

a)
$$p(X_1 = 1 | X_3 = 3) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_3 = 3) = p(X_1 = 1)$$

c)
$$p(X_1 = 1 | X_3 = 3) < p(X_1 = 1)$$

Only 2 ways to get $X_3=3$, each with equal probability:

$$(X_1 = 1, X_2 = 2)$$
 or $(X_1 = 2, X_2 = 1)$

so

$$p(X_1 = 1 \mid X_3 = 3) = \frac{1}{2} > \frac{1}{6} = p(X_1 = 1)$$

16

Review

17

We have covered a lot of ground on probability in short time...

Discrete Random Processes

- Definition of sample space / random events
- · Axioms of probability
- Uniform probability of random event
- Random Variables
- Fundamental rules of probability (chain rule, conditional, law of total probability)

Probability Distributions

- · Useful discrete probability mass functions
- · Introduction to continuous probability
- Useful probability density functions

Moments / Independence

- Expected Value
- Linearity
- Variance, Covariance, Corr.
- Dependent / Independent RVs