Multivariable Calculus Day 2

Truong-Son Van

Fulbright University Vietnam

Spring 2023

Dot product

Definition

The dot product of vectors $\mathbf{u}=\langle u_1,\ldots,u_n\rangle$ and $\mathbf{v}=\langle v_1,\ldots,v_n\rangle$ in \mathbb{R}^n is the scalar

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+\cdots+u_nv_n.$$

Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}||\mathbf{v}|\cos\theta\ .$$

Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}||\mathbf{v}|\cos\theta\ .$$

Proof in \mathbb{R}^2 .

Homework

Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$
.

Proof in \mathbb{R}^2 .

Homework

Corollary

Two vectors \mathbf{u} and \mathbf{v} are orthogonal to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Projection

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. The component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$\mathrm{comp}_{\boldsymbol{v}}\boldsymbol{u} =$$

and the projection of \boldsymbol{u} onto \boldsymbol{v} is the vector

$$\mathrm{proj}_{\boldsymbol{v}}\boldsymbol{u} =$$