Lecture Intro

Design of Embedded Hardware and Firmware

Andreas Habegger – BFH (TI) Hans Doran – ZHAW

TSM_EmbHardw Feb. 22, 2016

> Prof. A. Habegger Bern University of Applied Sciences

Agenda

- Course Information
 - Main Course Topics
- Objectives and Organization

- Practical Work
- Let's do a 20' refresh
- **Homework**

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test

Where to Get the Stuff

All material will be available online on MS Engineering Moodle platform. Grading scheme may change within coming two weeks.

Duration

Three lectures a week @ fourteen weeks.

Grading

1st intermediary test (20%)

2nd intermediary test or miniProject (20%)

Final exam at the end (100%, 80%, or 60%)

Docs

Online on MSE Moodle platform

http://moodle.msengineering.ch

Course

TSM_EmbHardw

PWD

SoPC

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test

Course Description

- This module introduces the student to advanced concepts in modern embedded systems engineering.
- The course concentrates on the architectures used in FPGA/SoC development and associated interfacing.
- Exercises are practice-oriented and will be tested on a mobile development platform. The goal is to consolidate acquired knowledge through hands-on practice.
- ► Each student get a development board until the end of the semester. (At last course day you have to give the board back to the lecturer.)
- ► The board documentation is public available on HuCE wiki platform (QR-Code on box cover or URL https://www.microlab. ti.bfh.ch/wiki/huce:microlab: projects:internal:mse-em-board)

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Bern University of Applied Sciences

Course Information

Topics

Obj and Org

Lab

Test

Learning objectives and acquired competencies

- The student will be able to design systems using state machines, soft-core processors, micro sequencers as well as interfacing peripherals to these automatons.
- The student will be able to design and commission complete designs in an FPGA.
- The student will understand and be able to apply methodologies and strategies for test and verification of embedded systems.
- Exercises will be completed and applied on an Altera Cyclone IV device.

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information
Topics

Obj and Org

Lab

Test

Course Organization

- ► 1st trimester (7 weeks): will be given by Andreas Habegger with a main focus on **Hardware Design**, **SoPC architectures**, **DMA transfers**.
- ▶ 2nd trimester (7 weeks): will be given by Hans Doran Kluter with a main focus on **HW/SW partition** and **optimization**.
- Material on Moodle http://moodle.msengineering.ch
- Each student get a development board
- ► The development environment is a live system based on Debian Linux

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test

Practical Work: Tool-Set

- Hands-on-work practice:
 - QuartusPrime Lite Edition from Altera.
 - Qsys
 - Eclipse (C,C++)
- System setup:
 - You bring your own laptop...
 - You install tools and drivers at your own...
 - You run an Ubuntu distribution from USB stick.

Img ref. : https://www.altera.com/

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test

Practical Work: MSE-Embedded Board

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Bern University of Applied Sciences

Course Information

Topics

Obj and Org

Lab

Test

Practical Work 1st trimester (AH)

- Introduction to SoPC design tools: Quartus, Qsys, Eclipse.
- ▶ Build your own peripheral interface: LCD controller interface.
- Optimization of memory access: DMA for LCD controller interface.
- Optional: Camera data acquisition.

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information
Topics

Obj and Org

Lab

Test

Topics of 2nd trimester (HD)

- Introduction HW/SW co-design
- Scheduling and bus systems
- SW optimization
- Caches
- Algorithm Optimisations / HW acceleration / custom instructions
- Pipelines (HW and processor)
- Project presentation

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information
Topics
Obj and Org

Lab

Test

Today...

- Evaluation Test
- Introduction to FPGAs (refresh of the topic only)
- Introduction to "System On Programmable Chip" (SoPC) focusing on Altera (Nios II – Avalon Bus)
- Board distribution and initial platform test

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test

Homework

- Repeat stuff discussed in this week session
- Finish practical exercises of this week
- Repeat VHDL basics
- Check one day before next session for new course material

Design of Embedded Hardware and Firmware

Prof. A. Habegger

Course Information

Topics

Obj and Org

Lab

Test