06 What is Machine Learning

Concepts of AI, ML, and DL

- Artificial intelligence
 - A technology that embodies the intellectual abilities of humans through computers
- Classification of artificial intelligence
 - Strong AI: AI with performance beyond human capabilities
 - Weak AI: AI designed for use as a tool in certain areas

Concepts of AI, ML, and DL

- Machine Learning
 - A technology that allows computers to learn like humans so that computers themselves can discover new rules without human help
 - Machine learning basically analyzes data using algorithms, learns through analysis, and makes judgments or predictions based on what is learned
 - Machine learning is the process of self-learning and processing data
 - Insert Big Data
 - Analyze data to create a model
 - Use models to make decisions, predictions, etc

- Concepts of AI, ML, and DL
 - Machine Learning

3. 모델을 이용하여 의사결정 및 예측 등 수행

- Concepts of AI, ML, and DL
 - Deep Learning
 - ANN, Artificial Neural Network
 - A network of interconnected neurons

Concepts of AI, ML, and DL

- Deep Learning
 - Technology for performing machine learning using artificial neural networks with multiple hidden layers
 - "Deep" in deep learning means deep layers of continuous neural networks
 - Performance increases as this neural network deepens

- Human in the loop
 - Machine learning involves some degree of intervention, such as human informing the learning data of labels (corrects) or extracting the characteristics of the data
 - Deep learning learns on its own without human intervention

- Feature extraction
 - In machine learning, in order for a computer to learn on its own, it has to convert human-recognized data into computer-aware data,
 - For this task, it finds out what characteristics each data has and converts the data into vector

- Data dependencies
 - Deep learning directly extracts important features to solve a given problem
 - So if you don't have enough data, you can't extract the exact features
 - On the other hand, if sufficient data is given, it performs well enough to identify important features that humans do not recognize

- Using neural network
 - Deep learning uses a deep neural network to extract features from input data and derive results (prediction or classification) on its own
 - The use of deep neural networks is a distinct characteristic of deep learning

- Difference between ML and DL
 - Using neural network

구분	머신러닝	딥러닝
필요한 데이터의 양	적은 양의 데이터도 가능	빅데이터
정확도	낮음	높음
훈련 시간	짧은 시간 안에 가능	오래 걸림
하드웨어	CPU만으로도 가능	GPU
하이퍼파라미터 튜닝	제한적	다양한 방법으로 튜닝 가능

Why Machine Learning?

Limitation of basic programming

Why Machine Learning?

Usability of machine learning

- But it's not the right time to make a quick decision
 - Using machine learning to solve this problem
- Machine learning is a very useful solution when large amounts of data and many variables are involved, and programs with conventional rules cannot solve complex tasks or problems

Categorization for training

- Supervised learning : classification and regression
- Unsupervised learning : Clustering
- Reinforcement learning : Use rewards for actions taken in the environment to conduct learning

Supervised learning

- Learning to predict the right answer to an unknown problem by learning questions and answers together
- The models used in supervised learning include prediction and classification

- Unsupervised learning
 - A form of computer learning without the help
 - Computer uses training data to find regularity between data

Unsupervised learning

- Unlike supervised learning, which identified the relationship between x (input data) and y (labels in supervised learning), unsupervised learning identifies the relationship between x by itself
- In other words, the difference between y (label)
 - Clustering is a model used in unsupervised learning

	구분	지도학습	비지도학습	
S -	필요한 데이터 종류	x(학습 데이터), y(레이블)	x(학습 데이터)	

- Reinforcement learning
 - Learning to be rewarded for what you've done
 - How computers learn to choose the best behavior for a given state

Reinforcement learning

- Agent: Subject to act in a given problem situation
- State : Current situation
- Action: Options that the player can take
- Rewards: Benefits that follow when a player does something
- Environment: means the problem itself
- Observation: Information about the environment (viewing and listening) collected by the agent

Reinforcement learning

- Depending on the behavior chosen by the agent in a given environment, you are rewarded if the behavior is the right choice, and punished if the behavior is the wrong choice
- Reinforcement learning allows the agent to keep an eye on the status and learn (behavior) toward higher rewards

Classification

 A technique for learning labeled data, classifying data with similar properties, and finding out which group the newly entered data belongs to

Classification

- Binary classification : Categorize data into 2 groups
- Multiclass classification: Categorize data into 3 or more groups

- Classification (Algorithm)
 - K-neighbor nearest
 - Support vector machine
 - Decision tree

Classification (Algorithm)

- K-neighbor nearest
 - Algorithms to classify which of the existing groups of data (K groups)
 belongs to when new data comes in
 - (Example) When new data is entered when K=1, new data is classified as a red circle, when K=3, and when K=9, it is classified as a blue triangle

- Classification (Algorithm)
 - K-neighbor nearest
 - KNNs are not significantly affected by the noise present in the learning data and are quite effective when the number of learning data is large
 - However, it is unclear which hyperparameters are suitable for analysis, so there is a disadvantage that researchers should randomly select according to each characteristic of the data

- Classification (Algorithm)
 - Support vector machine
 - Categorize data in the direction of maximizing margin, which means margin between two categories
 - SVMs find and classify lines that maximize margins, so larger margins are more likely to be classified even if new data comes in
 - SVM is easy to use and highly predictive
 - However, it takes time to build a model and the results are less descriptive

- · 결정 경계(Decision Boundary) : 분류를 위한 기준선
- · 서포트 벡터(Support Vector) : 결정 경계와 가장 가까운 위치에 있는 데이터
- · 마진(Margin) : 결정 경계와 서포트 벡터 사이의 거리

Classification (Algorithm)

- Decision tree
 - An analysis method for classifying decision-making rules into tree forms
 - It is called 'decision tree' because the method of starting from the upper node and expanding to the lower node according to the classification criteria resembles 'tree'

Classification (Algorithm)

- Decision tree
 - Decision Tree is intuitive and easy to understand the analysis process
 - In the case of artificial neural networks, it is a black box model that is
 difficult to explain the analysis results, while decision trees can observe
 the analysis process with their eyes
 - Need for a clear explanation of the results

Unsupervised learning

- Cluster
 - A group of data with similar characteristics
- Clustering
 - Classifying the data into clusters according to a similar degree when given the data
 - Various data are mixed together, but the clustering process groups similar data as shown in the graph on the right

Unsupervised learning

- K-means clustering
 - 'K' is the number of groups to be grouped from the given data
 - 'Means' means the average distance between the center of each cluster and the data
 - The center of the cluster is called centroids

Reinforcement learning

Algorithm

- Model-based algorithms refer to the probability that an action in the current state will result in the next state
- Intuitive visibility of the robot's next state as it moves up, down, left, and right in a grid space
 - Model-based algorithms can predict changes in state according to behavior,
 resulting in optimal solutions

Reinforcement learning

- Algorithm
 - Finding a policy that maximizes the rewards an agent receives through action

Examples

- Install the scikit-learn library
 - pip install scikit-learn

TIP https://scikit-learn.org/dev/_downloads/scikit-learn-docs.pdf에 접속하면 가장 최신 버전의 사이킷 런 사용 설명서를 무료로 다운로드할 수 있다. 무려 2,500여 쪽에 달하는 방대한 문서다. 그렇다고 겁먹을 필요는 없다. 필요한 부분을 선택적으로 참조하면 된다.

Load 'iris' Dataset

Load the dataset

```
프로그램 3-1(a) iris 데이터셋 읽기

01 from sklearn import datasets
02
03 d=datasets.load_iris() # iris 데이터셋을 읽고
04 print(d.DESCR) # 내용을 출력
```

- 01행: sklearn 모듈의 datasets 클래스를 불러옴
- 03행: load_iris 함수를 호출해 iris 데이터셋을 읽어 객체 d에 저장
- 04행: 객체 d의 DESCR 변수를 출력

Terminology

- Dataset
- Feature vector
- Class 기계 학습이 사용하는 데이터는 여러 개의 샘플을 담고 있어서 데이터셋(data set)이라 부르기도 한다. 이 책에서는 데이터와 데이터셋을 엄밀히 구분하지 않고 함께 사용하는데, 데이터셋은 iris처럼 특정한 데이터를 가리킬 때 주로 사용한다.

Load 'iris' Dataset

Iris plants dataset

Data Set Characteristics: / 150개의 샘플

네 개의 특징(feature)

세 개의 부류

:Number of Instances: 150 (50 in each of three classes)

:Number of Attributes: 4 numeric, predictive attributes and the class

:Attribute Information:

- sepal length in cm

- sepal width in cm

- petal length in cm

- petal width in cm

- class:

- Iris-Setosa

- Iris-Versicolour

- Iris-Virginica

:Summary Statistics:

	Min	Max	Mean	SD	Class Correlation	
sepal length: sepal width: petal length: petal width:	2.0 1.0	4.4 6.9	3.05 3.76	0.43 1.76	-0.4194 0.9490	

:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

Load 'iris' Dataset

'iris' dataset

```
프로그램 3-1(b)
                iris의 내용 살펴보기
    for i in range(0,len(d.data)):
                                          # 샘플을 순서대로 출력
06
        print(i+1,d.data[i],d.target[i])
1 [5.1 3.5 1.4 0.2] 0
2 [4.9 3. 1.4 0.2] 0
3 [4.7 3.2 1.3 0.2] 0
4 [4.6 3.1 1.5 0.2] 0
51 [7. 3.2 4.7 1.4] 1
52 [6.4 3.2 4.5 1.5] 1
53 [6.9 3.1 4.9 1.5] 1
54 [5.5 2.3 4. 1.3] 1
101 [6.3 3.3 6. 2.5] 2
102 [5.8 2.7 5.1 1.9] 2
103 [7.1 3. 5.9 2.1] 2
104 [6.3 2.9 5.6 1.8] 2
                          d.target(레이블)
```

d.data(특징 벡터)

Representation of dataset

Representing samples as feature vectors and labels

- Feature vectors are denoted by x 특징 벡터: $\mathbf{x} = (x_1, x_2, \dots, x_d)$
 - d is the number of features called the dimension of the feature vector
- Labels are 0,1,2,...A value of ,c-1 or 1,2,...A value of ,c-1,c or one hot code
 - One hot code is a binary sequence with only one element
 - Ex) Setosa: (1,0,0), Versicolor: (0,1,0), Virginica: (0,0,1)

	특징 벡터 \mathbf{x} = (x_1, x_2, \dots, x_d)	레이블(참값) <i>y</i>	
샘플 1:	(5.1, 3.5, 1.4, 0.2)	0	t t elleletul
샘플 2:	(4.9, 3.0, 1.4, 0.2)	0	iris 데이터셋 (n=150, d=4)
•••			(11 130, 0 17
샘 플 51:	(7.0, 3.2, 4.7, 1.4)	1	(
샘플 52:	(6.4, 3.2, 4.5, 1.5)	1	
•••			
샘플 101:	(6.3, 3.3, 6.0, 2.5)	2	
샘플 102:	(5.8, 2.7, 5.1, 1.9)	2	6
•••			Ĭ.
샘플 n:	(5.9, 3.0, 5.1, 1.8)	2	-

Data Distribution of Feature Space

iris dataset

 Distribution of data in a three-dimensional space, excluding one data dimension

```
프로그램 3-2 iris 데이터의 분포를 특징 공간에 그리기

01 import plotly.express as px
02

03 df = px.data.iris()
04 fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width', color='species') # petal_length를 제외하여 3차원 공간 구성
05 fig.show(renderer="browser")
```

Data Distribution of Feature Space

- Observe the distribution of data in the feature space
 - Setosa is distributed downward and Virginica is distributed upward for the vertical width
 - Petal width is excellent in discernment
 - The segmental width axis overlaps a lot in three categories, so it is less
 sensible
 - As a whole, the three classes occupy different areas of the threedimensional space, with several samples overlapping

Data Distribution of Feature Space

NOTE 다치원 특징 공간

종이에 그릴 수 있는 공간은 3차원으로 제한되지만, 수학은 아주 높은 차원까지 다룰 수 있다. 예를 들어 2차원 상의 두 점 $\mathbf{x} = (x_1, x_2)$ 와 $\mathbf{y} = (y_1, y_2)$ 의 거리를 $d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ 으로 계산할 수 있는데, 4차원 상의 두 점 $\mathbf{x} = (x_1, x_2, x_3, x_4)$ 와 $\mathbf{y} = (y_1, y_2, y_3, y_4)$ 의 거리는 $d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 + (x_4 - y_4)^2}$ 로 계산할 수 있다.

일반적으로 d차원 상의 두 점의 거리는 $d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$ 로 계산한다. 기계 학습에서는 d =수백 \sim 수만에 달하는 매우 고차원 특징 공간의 데이터를 주로 다룬다.

Modeling and Prediction

Using the support vector machine model

```
프로그램 3-1(c)
             iris에 기계 학습 적용: 모델링과 예측
    from sklearn import svm / Hyperparameter
08
09
    s=svm.SVC(gamma=0.1,C=10)
                                              # SVM 분류 모델 SVC 객체 생성하고
    s.fit(d.data,d.target) Training set
                                              # iris 데이터로 학습
10
11
12
    new_d=[[6.4,3.2,6.0,2.5],[7.1,3.1,4.7,1.35]] # 101번째와 51번째 샘플을 변형하여
                                                새로운 데이터 생성
    res=s.predict(new_d) Test set
13
    print("새로운 2개 샘플의 부류는", res)
```

새로운 2개 샘플의 부류는 [2 1]

- 09행: SVM의 분류기 모델 SVC 클래스의 객체를 생성하여 s에 저장
- 10행: 객체 s의 fit 함수는 훈련 집합을 가지고 학습을 수행 (매개변수로 특징 벡터 iris.data와 레이블 iris,target을 설정)
- 13행: 객체 s의 predict 함수는 테스트 집합을 가지고 예측 수행

Performance Measurement

- The importance of objective performance measurements
 - Important when choosing a model
 - Important when deciding whether to install on-site
- Generalization capabilities
 - Performance on new data not used for learning
 - The most obvious way is to install it on-site and measure performance
 - Cost makes it difficult to apply it in real life
 - Requires wisdom to segment and use given data

Performance Measurement

Confusion matrix

- Matrix recording the number of correct and incorrect classifications by class
 - n_{ij} 는 모델이 i 라고 예측했는데 실제 부류는 j 인 샘플의 개수

		참값(그라운드 트루스)					
		부류 1	부류 2		부류 <i>j</i>	•••	부류 c
예 측 한	부류 1	n_{11}	n_{12}		n_{1j}		n_{1c}
	부류 2	n_{21}	n_{22}		n_{2j}		n_{2c}
부류	부류 i	n_{i1}	n_{i2}		n_{ij}		n_{ic}
	•••						
	부류 c	n_{c1}	n_{c2}		n_{cj}		n_{cc}

		그라운드 트루스	
		긍정	부정
예측값	긍정	TP	FP
	부정	FN	TN

(a) 부류가 c개인 경우

(b) 부류가 2개인 경우

- Positive and negative negative in binary classification
- True positive, false negative, false positive, true negative

Performance Measurement

Performance metric

Accuracy

Specificity and sensitivity

특이도=
$$\frac{TN}{TN+FP}$$
, 민감도= $\frac{TP}{TP+FN}$

Precision and recall

정밀도=
$$\frac{TP}{TP+FP}$$
, 재현율= $\frac{TP}{TP+FN}$

Training/Validation/Test

- Training set
 - Data used to learn machine learning models that provide both feature vector and label information
- Test Set
 - Data used to measure the performance of a learned model, which
 provides only feature vector information when predicting, and uses label
 information when measuring accuracy with prediction results

NOTE 하이퍼 매개변수 설정

하이퍼 매개변수hyper parameter란 모델의 동작을 제어하는 데 쓰는 변수이다. 모델의 학습을 시작하기 전에 설정해야 하는데, 적절한 값으로 설정해야 좋은 성능을 얻을 수 있다. 최적의 하이퍼 매개변수 값을 자동으로 설정하는 일을 하이퍼 매개변수 최적화(hyper parameter optimization)라 하는데, 이것은 기계 학습의 중요한 주제 중 하나다. 하이퍼 매개변수 최적화는 4.10절에서 다룬다.

- Divide the given data into training, validation, and test sets at an appropriate rate
 - Model selection included: divided into training/validation/test sets
 - Exclude model selection: split into training/test sets

훈련 집합	검증 집합	테스트 집합
학습 단계		테스트 단계
(a) 모델 선택 포함		
훈련 집합		테스트 집합
학습 단계		테스트 단계
(b) 모델 선택 제외		1

Exclude the model selection

- 08행: train_test_split 함수로 훈련 60%, 테스트 40%로 랜덤 분할
- 12행: 훈련 집합 x_train, y_train을 fit 함수에 주어 학습 수행
- 14행: 테스트 집합의 특징 벡터 x_test를 predict 함수에 주어 예측 수행
- 17~20행: 테스트 집합의 레이블 y_test를 가지고 혼동 행렬 계산

프로그램 3-5 필기 숫자 인식 – 훈련 집합으로 학습하고 테스트 집합으로 성능 측정

- 01 from sklearn import datasets
- 02 from sklearn import svm
- 03 from sklearn.model_selection import train_test_split
- 04 import numpy as np

05

- 06 # 데이터셋을 읽고 훈련 집합과 테스트 집합으로 분할
- 07 digit=datasets.load_digits()
- 08 x_train,x_test,y_train,y_test=train_test_split(digit.data,digit.target,train_size=0.6)

09


```
예) 부류 3에 속하는 75개 샘플 중 73개를 3,
                                                 1개를 2, 1개를 7로 인식
    # SVM의 분류 모델 SVC를 학습
10
11
    s=svm.SVC(gamma=0.001)
                                   [[76. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
12
    s.fit(x_train,y_train)
                                    [ 0. 78. 0. 0. 0. 0. 0. 3. 0.]
13
                                    [0. 0. 66. 1. 0. 0. 0. 0. 0. 0.]
    res=s.predict(x_test)
14
                                    [0. 0. 0. 73. 0. 0. 0. 0. 0. 0.]
15
                                    [0. 0. 0. 0. 63. 0. 0. 0. 0. 0.]
    # 혼동 행렬 구함
16
                                    [0. 0. 0. 0. 0. 70. 0. 0. 0. 2.]
17
    conf=np.zeros((10,10))
                                    [0. 0. 0. 0. 0. 0. 0. 77. 0. 0. 0.]
    for i in range(len(res)):
18
                                    [0. 0. 0. 1. 0. 0. 0. 77. 0. 1.]
19
        conf[res[i]][y_test[i]]+=1
                                    [0. 0. 0. 0. 0. 0. 0. 0. 74. 0.]
20
    print(conf)
                                    [ 0. 0. 0. 0.
                                                  0. 1. 0. 0. 0. 56.]]
21
    # 정확률 측정하고 출력
22
                                   테스트 집합에 대한 정확률은 98.74826147426981%입니다.
23
    no_correct=0
24
    for i in range(10):
25
        no_correct+=conf[i][i]
26
    accuracy=no_correct/len(res)
27
    print("테스트 집합에 대한 정확률은", accuracy*100, "%입니다.")
```

Cross-Validation

- Limitations of training/test set division
 - Likelihood of accidental high or accidental low accuracy
- k-fold cross validation
 - Use the training set divided into k subsets
 - Measure performance by learning with k-1 leaving one and then leaving it
 - Increase reliability by averaging k performance

Cross-Validation

(b) 모델 선택 제외

Cross-Validation

프로그램 3-6 필기 숫자 인식 – 교차 검증으로 성능 측정

```
from sklearn import datasets
01
    from sklearn import svm
02
    from sklearn.model_selection import cross_val_score
04
    import numpy as np
05
    digit=datasets.load_digits()
06
07
    s=svm.SVC(gamma=0.001)
    accuracies=cross_val_score(s,digit.data,digit.target,cv=5) # 5-겹 교차 검증
08
09
10
    print(accuracies)
    print("정확률(평균)=%0.3f, 표준편차=%0.3f"%(accuracies.mean()*100,accuracies.std()))
11
```

[0.97527473 0.95027624 0.98328691 0.99159664 0.95774648] 정확률(평균)=97.164, 표준편차=0.015

Need for a variety of data

- Computers can only recognize numbers 0 and 1 unlike humans
- In other words, the object in the image should be expressed as a number, and a separate processing (weight of machine learning)
 should be performed to recognize only the car among the objects
 - Through this complex process, a lot of data is needed to accurately recognize various types of cars

- Overlearning training data means poor performance when analyzing real data
- This occurs when data is significantly lacking compared to the complexity of the problem,
 - i.e. learning data does not cover the entire space where the problem is defined and focuses only in some cases

- (a) 그래프: 변수가 0인 쪽의 데이터 몇 개는 비교적 잘 근사하지만, 일정 시점 이후 데이터는 우하향하고 있음
- (b) 그래프: 데이터와 비슷하게 우상향하고 있어 제대로 반영하고 있다고 볼 수 있음

- (c) 그래프: 학습 데이터와 생성된 모델의 오차를 구해보면 0에 가까울 것임. 즉, 그래프가 모든 점을 지나고 있음
- 그렇다면 (b) 그래프보다 (c) 그래프가 더 좋은 그래프일까? 어떤 그래프 가 좋은 그래프인지 알아보기 위해서는 실제 데이터값을 불러오면 됨

- 하나의 실제값을 불러왔을 때, 실제값과 모델이 내놓은 예측값의 차이인 오차가 가장 작은 그래프가 좋은 그래프라고 할 수 있음
- 확인해 보면 (b) 그래프의 오차가 가장 작으므로 최적합(Optimal), 즉 가장 좋은 그래프라고 할 수 있음