Méthode de Newton

Leçons: 218, 223, 226, 228

Théorème 1

Soit I intervalle de \mathbb{R} , $a \in I$ et $f: I \to \mathbb{R}$ de classe \mathscr{C}^2 . Si f(a) = 0 et f'(a) > 0, il existe J = [a-h,a+h] tel qu'on ait $\forall x \in J$, f'(x) > 0 et que J soit stable par $\varphi: x \mapsto x - \frac{f(x)}{f'(x)}$.

Alors si $x_0 \in J$, la suite définie par la relation de récurrence $x_{n+1} = \varphi(x_n)$ converge vers a, et il existe C > 0 tel que $\forall n \in \mathbb{N}, |x_n - a|^2 \le C^{2^n - 1} |x_0 - a|^{2^n}$

De plus, si f''(a) > 0 et $x_0 > a$, la suite (x_n) est décroissante et

$$x_{n+1} - a \sim \frac{1}{2} \frac{f''(a)}{f(a)} (x_n - a)^2$$

Démonstration. Comme f' est continue sur I et f'(a) > 0, on peut trouver J = [a-h, a+h] tel que $\forall x \in J, f'(x) > 0$.

De plus, si
$$x \in J$$
, $\varphi(x) - a = x - a - \frac{f(x) - f(a)}{f'(x)} = \frac{f(a) - f(x) - (a - x)f'(x)}{f'(x)}$.

Selon l'égalité de Taylor appliquée à la fonction $\mathscr{C}^2 f$ entre a et x, il existe $z_x \in [a,x]$ tel que $\varphi(x) - a = \frac{1}{2} \frac{f''(z_x)}{f'(x)} (x-a)^2$.

Ainsi, si $m = \min_{J} |f'| > 0$ (car f' est continue et strictement positive sur J compact) et

$$M = \max_{J} |f''|$$
, on a $|\varphi(x) - a| \le \frac{1}{2} \frac{M}{m} |x - a|^2 = C|x - a|^2$

En particulier, si $Ch^2 \le h$ soit $h \le \frac{1}{C}$, J est un intervalle stable par φ . Quitte à prendre h plus petit, on suppose donc que cette hypothèse est vérifiée.

Ainsi, si $x_0 \in J$, la suite $(x_n)_n$ est bien définie et vérifie $\forall n \in \mathbb{N}, |x_{n+1} - a| \le C|x_n - a|^2$. Par conséquent, $C|x_{n+1} - a| \le (C|x_n - a|^2)^2$ donc une récurrence immédiate nous assure que

$$\forall n \in \mathbb{N}, |x_n - a|^2 \le C^{2^n - 1} |x_0 - a|^{2^n}$$

En particulier, (x_n) converge vers a.

Supposons à présent que f''(a) > 0. Par le même argument que pour f', on peut supposer, quitte à remplacer J par un sous-intervalle, que $\forall x \in J, f''(x) > 0$. Par suite, f' est croissante sur J et en particulier, si $x \ge a$, $f'(x) \ge f'(a) > 0$ donc f elle-même est croissante. Ainsi, $\forall x > a, f(x) > f(a) = 0$.

On obtient donc $\forall x > a, \varphi(x) = x - \frac{f(x)}{f'(x)} < x$. De plus si $x \ge a$,

$$\varphi(x) - a = \frac{1}{2} \frac{f''(z_x)}{f'(x)} (x - a)^2 \ge 0$$

car $a \le z_x \le x^1$. Par conséquent, si $x_0 > a$, la suite (x_n) est décroissante et $\forall n \in \mathbb{N}, x_n \ge a$.

De plus, $\forall n \in \mathbb{N}, x_{n+1} - a = \frac{1}{2} \frac{f''(z_n)}{f'(x_n)} (x_n - a)^2$ où $a \le z_n \le x_n$ donc comme $x_n \xrightarrow[n \to +\infty]{} a$, il en va de même pour (z_n) et par continuité de f' et f'', on a

^{1.} Cette inégalité exprime simplement le fait que, par convexité de f, le graphe de f est au-dessus de ses tangentes.

$$x_{n+1} - a \simeq \frac{1}{2} \frac{f''(a)}{f'(a)} (x_n - a)^2$$

Exemple. Application à l'approximation d'une racine carrée : si y > 0 et $f: x \mapsto x^2 - y$, $a = \sqrt{y}$ alors si c > a et $c^2 > c$, l'intervalle $J = [a, +\infty[$ est stable et si $x_0 \in J$, on a la majoration de l'erreur

$$0 \leqslant x_n - a \leqslant 2a \left(\frac{x_0 - a}{2a}\right)^{2^n}$$

En effet, soit $F: x \mapsto x - \frac{f(x)}{f'(x)} = \frac{x^2 + a^2}{2x}$. $F(x) - a = \frac{(x-a)^2}{2x}$ et $F(x) + a = \frac{(x+a)^2}{2x}$, de sorte que $\frac{F(x) - a}{F(x) + a} = \left(\frac{x-a}{x+a}\right)^2$. Donc en notant $\varphi: x \mapsto \frac{x-a}{x+a}$ bijection de $]-a, +\infty[$

sur] $-\infty$, 1[, et $G: x \mapsto x^2$, on a $F = \varphi^{-1} \circ G \circ \varphi$. Ainsi, si $x_0 \in J$, $x_{n+1} = F(x_n)$, pour tout $n \in \mathbb{N}$, $x_n = (\varphi^{-1} \circ G^n \circ \varphi)(x_0)$ soit $\frac{x_n - a}{x_n + a} = 0$

$$\left(\frac{x_0-a}{x_0+a}\right)^{2^n}$$
. D'où

$$1 + \frac{2a}{x_n - a} = \left(1 + \frac{2a}{x_0 - a}\right)^{2^n} \stackrel{x_0 > a}{\geqslant} 1 + \left(\frac{2a}{x_0 - a}\right)^{2^n}$$

Une simplification immédiate nous fournit la majoration voulue.

Remarque. • Attention à bien adapter l'énoncé du théorème pour le rendre tout à fait général, les jurys y seront attentifs puisque c'est un développement très classique.

- L'énoncé du théorème peut être résumé en disant simplement que a est un point fixe superattractif de φ .
- Une généralisation existe en dimension n (et a une preuve identique): Newton-Raphson. Si $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ est tel que Df(a) est inversible et f(a) = 0, alors a est un point fixe superattractif de $\varphi: x \to x (Df(x))^{-1}.f(x)$. (voir DEMAILLY 2006, p. 110).

Référence : François ROUVIÈRE (2003). *Petit guide de calcul différentiel*. 2^e éd. Cassini p. 142.