Übungen Datenbanksysteme Serie 7

1. Begriffe der relationalen Algebra

Was versteht man unter folgenden Begriffen?

- (a) Datentyp
- (b) Attribut
- (c) Tupel
- (d) Tupelmenge
- (e) Relationsschema
- (f) Relation
- (g) Relationsvariable

2. Zwei Typen von Relationen

Beschreiben Sie die Definition der Relation in der Mathematik und in der relationalen Datenbanktheorie. Worin besteht der Unterschied? Warum spricht man in der Literatur von der *unnamed* bzw. *named perspective*?

3. Was ist eine Relation?

Im Folgenden haben alle Attribute als Wertebereich *Integer*.

Gegeben sei die Relation A

a	b	С
1	2	3
1	2	2
1	1	1

Welche der folgenden Relationen sind mit A identisch?

	X	У	Z
(2)	1	2	3
(a)	1	2	2
	1	1	1

	b	a	С
(h)	1	2	3
(b)	1	2	2
	1	1	1

	b	С	a
(c)	2	3	1
(c)	2	2	1
	1	1	1

(d)
$$b \quad a \quad c \\ 1 \quad 1 \quad 1 \\ 2 \quad 1 \quad 2 \\ 2 \quad 1 \quad 3$$

$$(e) \begin{array}{|c|c|c|c|} \hline \textbf{a} & \textbf{b} & \textbf{c} \\ \hline 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \\ \hline \end{array}$$

	a	b	X
(f)	1	1	1
(1)	1	2	3
	1	2	2

4. Musiker

Gegeben seien die Relationen Musiker und Instrument wie in Tabelle 1

Tabelle 1: Datenbank Musiker

Musiker		Instrument		
MId	Name	IId	IId	Instrument
M1	Stanley Clarke	В	Т	Trompete
M2	Al Di Meola	G	В	Bass
М3	Jimi Hendrix	G	G	Guitarre
M4	Jack Bruce	В		

Berechnen Sie

- (a) $Musiker \times \pi_{IId \rightarrow InstId, Instrument}(Instrument)$
- (b) $Musiker \bowtie Instrument$
- (c) $\sigma_{IId='B'}(Musiker)$
- (d) $\pi_{Name}(\sigma_{IId='G'}(Musiker))$

5. Operatoren der relationalen Algebra

Gegeben seien zwei Relationen R(a,b,c) und S(a,x,y). Alle Attribute haben Integer als Wertebereich.

Berechnen Sie

- (a) $R \bowtie S$
- (b) $R \times \pi_{a \to z, x, y}(S)$
- (c) $R \bowtie_{a \neq x} \pi_{a \rightarrow z, x, y}(S)$
- (d) $R \bowtie_{b=x} \pi_{a \to z, x, y}(S)$

6. Gesetze der relationalen Algebra

Welche der folgenden Gleichungen sind richtig? Begründen Sie warum eine Aussage zutrifft oder nennen Sie ein Gegenbeispiel, wenn nicht.

- (a) $\sigma_{C_1 \wedge C_2}(R) = \sigma_{C_1}(\sigma_{C_2}(R))$
- (b) $\sigma_{C_1 \wedge C_2}(R) = \sigma_{C_1}(R) \cap \sigma_{C_2}(R)$
- (c) $\sigma_{C_1 \wedge C_2}(R) = \sigma_{C_1}(R) \cup \sigma_{C_2}(R)$

- (d) $\sigma_{C_1 \vee C_2}(R) = \sigma_{C_1}(R) \cup \sigma_{C_2}(R)$
- (e) $((R_1 \cup R_2) \cap R_1) \cap R_2 = \{\}$
- (f) Es sei vorausgesetzt, dass sich die Bedingung ${\cal C}$ nur auf Attribute der Relation ${\cal S}$ bezieht.

$$\sigma_C(R \bowtie S) = R \bowtie \sigma_C(S)$$