Présentation L'état de l'art Amélioration des nombres de Schur Template pour les nombres de Weak Schur

Weak Schur numbers P05 - Formation à la recherche 1A

Romain Ageron, Paul Castéras, Thibaut Pellerin, Yann Portella

3 juin 2021

Un problème de partition Les nombres de Schur Weak Schur

En 1917, le russe Issai Schur pose le problème suivant :

En 1917, le russe **Issai Schur** pose le problème suivant :

- Pour n > 1 un entier
- Et $k \ge 1$ un autre entier (= nombre de **couleurs**)

En 1917, le russe Issai Schur pose le problème suivant :

- Pour n > 1 un entier
- Et $k \ge 1$ un autre entier (= nombre de **couleurs**)

Question

Peut-on colorier les entiers de 1 à n de sorte que si deux nombres ont la même couleur, leur somme n'est pas de cette couleur? Si oui, un tel coloriage est dit **sans sommes**.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Sur l'exemple, on peut vérifier que S(3)=13 : on ne peut colorier $[\![1,14]\!]$ avec trois couleurs.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième nombre de Schur faible.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième **nombre de Schur faible**.

Un coloriage sans sommes et en particulier faiblement sans somme, donc on a toujours $WS(k) \ge S(k)$.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième nombre de Schur faible.

Un coloriage sans sommes et en particulier faiblement sans somme, donc on a toujours $WS(k) \ge S(k)$.

$$S(2) = 4 \text{ mais } WS(2) = 8$$

- Pour montrer que S(k) = n, il faut :
 - trouver un coloriage sans sommes de [1, n] à k couleurs
 - montrer qu'on ne peut pas colorier [1, n+1].

- Pour montrer que S(k) = n, il faut :
 - trouver un coloriage sans sommes de [1, n] à k couleurs
 - montrer qu'on ne peut pas colorier [1, n+1].
- En pratique, on se contente de **minorer** S(k):
 - inégalités récursives
 - recherche de coloriages par ordinateur

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe k et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - arbre → Monte-Carlo Tree Search sur un espace de recherche restreint
 - formules booléennes → solveur SAT

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe k et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - arbre → Monte-Carlo Tree Search sur un espace de recherche restreint
 - formules booléennes → solveur SAT
- Améliorations des bornes inférieures pour $k \geq 5$
- Temps de calcul : le calcul exact de S(5) via un solveur SAT a demandé 20 années de calcul machine!

La borne inférieure établie par I. Schur est :

$$S(n+1) \geqslant 3S(n)+1 \Longrightarrow S(n) \geqslant \frac{3^n-1}{2}$$

Une première piste pour améliorer cette borne est proposée par H. L. Abbott et D. Hanson en 1972. Ils prouvent :

$$S(n+m) \geqslant S(n)(2S(m)+1) + S(m)$$

Que font-ils concrètement?

Un exemple pour n = m = 2:

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

$$S(4) \geqslant S(2)(2S(2)+1)+S(2)=40$$

Un article fondateur : Abbott et Hanson Une extension par Rowley : les SF-templates Nouvelles bornes

• F. Rowley améliore cette approche théorique en 2020.

Un article fondateur : Abbott et Hanson Une extension par Rowley : les SF-templates Nouvelles bornes

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.

Un article fondateur : Abbott et Hanson Une extension par Rowley : les SF-templates Nouvelles bornes

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- Notre contribution : recherche de SF-templates intéressants

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- Notre contribution : recherche de SF-templates intéressants
- Recette : SF-template = Partition sans somme + condition suivante :

$$\forall i \in \llbracket 1, n-1 \rrbracket, \forall (x,y) \in A_i^2, x+y > p \Longrightarrow x+y-p \notin A_i$$

Un article fondateur : Abbott et Hanson Une extension par Rowley : les SF-templates Nouvelles bornes

En fait, l'exemple précédent faisait déjà apparaître un SF-template, en voici un autre :

Un article fondateur : Abbott et Hanson Une extension par Rowley : les SF-templates

Nouvelles bornes

Quelques résultats!

n	8	9	10	11
33 S(n-3) + 6	5 286	17 694	55 446	174 444
111 S(n-4) + 43	4927	17 803	59 539	186 523
380 S(n-5) + 148	5 088	16 868	60 948	203 828
1140 S(n-6) + 528	5 088	15 348	50 688	182 928

n	12	13	14	15	
33 S(n-3) + 6	587 505	2 011 290	6 726 330	21 072 090	
111 S(n-4) + 43	586 789	1 976 176	6 765 271	22 624 951	
380 S(n-5) + 148	638 548	2 008 828	6 765 288	23 160 388	
1140 S(n-6) + 528	611 568	1 915 728	6 026 568	20 295 948	

• Premières inégalités obtenues par Rowley :

•
$$WS(n+1) \ge 4S(n) + 2$$

•
$$WS(n+2) \geqslant 13S(n) + 8$$

• Notre inégalité généralisée : Soit $(n, k) \in \mathbb{N}^2$,

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

Inégalités entre les nombres de Schur et de Weak Schur Principe général du template Weak Schur Nouvelles valeurs obtenus

WS(n)

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

$$WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$$

• On cherche un template à n couleurs de cardinal $WS^+(n)$ tel que : $WS(n+k) \ge S(k)WS^+(n) + b$

• Or
$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

• Par conséquent,
$$WS^+(n) \geqslant WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$$

n	8	9	10	11	
4S(n-1)+2	6722	21146	71214	243794	
13S(n-2) + 8	6976	21 848	68 726	231447	
42S(n-3)+24	6744	22536	70 584	222036	
n	12	13	14	15	
4S(n-1)+2	815 314	2554194	8 045 162	27061154	
13S(n-2) + 8	792332	2649772	8 301 132	26146778	
42S(n-3)+24	747 750	2559840	8 560 800	25886224	