week 5 day 1

"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Feb 6, 2023.

Recap: Exponential families

- An {exponential family} is a parametric statistical model with probability distributions of a certain form.
- {General} enough to include many of the most common families of probability distributions:
 - multivariate normal
 - exponential
 - Poisson
 - binomial (with fixed number of trials)
- {Specific} enough to have nice properties:
 - likelihood function is strictly concave [next lecture]
 - have conjugate priors.

Objectives

- {What is} an exponential family?
- **How to find the polynomial ideal of an exponential family?**
 - Discrete exponential models: Hypothesis testing [future lecture]
 - Gaussian exponential submodels: Conditional independence implications [past lecture]

Recap: Discrete exponential families

Notation

- X a discrete random variable
 X ∈ [r].
- $T(x) = a_x$, writing as a vector: $a_x = (a_{1x}, \dots, a_{kx})^t$. Assume $a_{jx} \in \mathbb{Z}$.
- $h(x) = h_x$, so $h = (h_1, ..., h_r)$ is also a vector (of positive real numbers)
- $\eta = (\eta_1, \dots, \eta_k)^t$ and $\theta_i = \exp \eta_i$.

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}.$$

- The design matrix:
- $\mathcal{A} = (a_{jx})_{j \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}.$ For each value x of X, the
- For each value x of X, the monomial $\prod_j \theta_j^{a_{jx}} \leftrightarrow$ a column of \mathcal{A} .

Design matrix recipe

Columns of $\ensuremath{\mathcal{A}}$ are exponents of the parametrization of each given state.

Question from the previous lecture

• Consider the model $p_{ij} = \alpha_i \beta_j$ for $i \in [2]$ and $j \in [2]$.

Question from the previous lecture

- Consider the model $p_{ij} = \alpha_i \beta_j$ for $i \in [2]$ and $j \in [2]$. Binary independent random variables.
- The design matrix is

$$\mathcal{A} = egin{array}{cccc} lpha_1 & egin{array}{ccccc} eta_1 & eta_1 & eta_2 & eta_2 & 0 & 0 & 1 & 1 \ eta_2 & eta_2 & eta_2 & 0 & 1 & 0 & 1 \ eta_2 & 0 & 1 & 0 & 1 & 0 \ \end{array}
ight)$$

Finally, the vector $h = [1, 1, 1, 1]^t$.

 \rightarrow I assume that **each of you** has completed this example for not 2 \times 2 but $r_1 \times r_2$ by hand, by now.

In this lecture

- log-affine models
- what to do with the *h* function in the parametrization of an exponential family model (nothing!)
- is there an "easy" way to compute the implicitization of all discrete exponential families?

Log-affine, log-linear discrete exponential families

• Let $\mathcal{A} = [a_{jx}]_{j \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}$ be a design matrix.

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{ix}}.$$

• The **logarithm** of the exponential family model $p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}$ is

Log-affine, log-linear discrete exponential families

• Let $A = [a_{jx}]_{j \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}$ be a design matrix.

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}.$$

• The **logarithm** of the exponential family model $p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}$ is

$$\log p_{\theta}(x) = \log h_x + \sum_j a_{jx} \log \theta_j - \log Z(\theta).$$

• Assume \mathcal{A} contains the vector 1 = (1, ..., 1) in the rowspan, then this is equivalent to requiring that $\log p$ belongs to the affine space $\log(h) + rowspan(\mathcal{A})$.

... "equivalent to requiring that $\log p$ belongs to the affine space $\log(h) + rowspan(A)$."

Definition

Definition 6.2.1. Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \text{rowspan}(A)$ and let $h \in \mathbb{R}^r_{>0}$. The *log-affine model* associated to these data is the set of probability distributions

$$\mathcal{M}_{A,h} := \{ p \in \operatorname{int}(\Delta_{r-1}) : \log p \in \log h + \operatorname{rowspan}(A) \}.$$

If h = 1, then $\mathcal{M}_A = \mathcal{M}_{A,1}$ is called a log-linear model.

Figure 1: Source: textbook

Ideal of a log-linear model

The *log-affine* model $\mathcal{M}_{\mathcal{A},h}$ given by design matrix \mathcal{A} and vector h:

$$p_{\theta}(x) \propto h_{x} \prod_{i} \theta_{i}^{a_{ix}}.$$

- This is a model for the joint distribution for discrete random variables, whose states we may denote by $\{1, \ldots, r\}$. So the model is a parametric form of the joint probabilities p_1, \ldots, p_r .
- $\mathcal{M}_{\mathcal{A},h}$ is the set of all joint probability vectors (p_1,\ldots,p_r) of the above form.
- The indeterminates p_i index the columns of the matrix A.

Definition [Cf. 6.2.2. & 6.2.3. in the book]

The toric ideal of the model $\mathcal{M}_{\mathcal{A},h}$ is the ideal $I_{\mathcal{A},h}$ of the variety parametrized by (p_1,\ldots,p_r) . If $h=[1,\ldots,1]$, we denote this as $I_{\mathcal{A}}$.

Proposition 6.2.4. Let $A \in \mathbb{Z}^{k \times r}$ be a $k \times r$ matrix of integers. Then the toric ideal I_A is a binomial ideal and

$$I_A = \langle p^u - p^v : u, v \in \mathbb{N}^r \text{ and } Au = Av \rangle.$$

If $1 \in \text{rowspan}(A)$, then I_A is homogeneous.

Figure 2: Proposition 6.2.4. from textbook

Class work: Before going into the proof, decipher:

- What is the definition of I_A , and what is really the claim in this proposition that needs to be proved?
- What is u? $(u \in \mathbb{N}^r...)$ What is A? $(A \in \mathbb{Z}^{k \times r}...)$
- What is Au? example, meaning?
- What does p^u mean?

Proof.

On the board, draw out steps of "peeling terms" of any $f \in I_A$ one binomial at a time. Using ideas from page 123 of the book.

Remark on generality

We defined $I_{A,h}$ and I_A . The proposition only defines the binomial ideal I_A .

- Why?? What happens to general *h*?
- Good news: Generators for the toric ideal $I_{\mathcal{A},h}$ are easily obtained from generators of the toric ideal $I_{\mathcal{A}}$, by globally making the substitution $p_j \mapsto p_j/h_j$. Hence, it is sufficient to focus on the case of the toric ideal $I_{\mathcal{A}}$.
- All of these ideals I_A turn out to be *binomial* ideals; the proposition tells us which particular binomials to look for.
 - ... and what is a "binomial ideal"? [Board as needed.]

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

•
$$k = ?, r = ?$$

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

• $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- ullet What do columns of ${\cal A}$ represent?

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- What do columns of \mathcal{A} represent? $p_1 = \theta_2^3, p_2 = \theta_1 \theta_2^2, p_3 = \theta_1^2 \theta_2, p_4 = \theta_1^3$.
- What is an example of p^u ?

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- What do columns of \mathcal{A} represent? $p_1 = \theta_2^3, p_2 = \theta_1 \theta_2^2, p_3 = \theta_1^2 \theta_2, p_4 = \theta_1^3.$
- What is an example of p^u ? \rightarrow Say, $u = (0, 2, 0, 0)^t$. Then $p^u = p_2^2$.

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- What do columns of \mathcal{A} represent? $p_1 = \theta_2^3, p_2 = \theta_1 \theta_2^2, p_3 = \theta_1^2 \theta_2, p_4 = \theta_1^3.$
- What is an example of p^u ? \rightarrow Say, $u = (0, 2, 0, 0)^t$. Then $p^u = p_2^2$.
 - What is Au in this case?

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- What do columns of \mathcal{A} represent? $p_1 = \theta_2^3, p_2 = \theta_1 \theta_2^2, p_3 = \theta_1^2 \theta_2, p_4 = \theta_1^3$.
- What is an example of p^u ? \rightarrow Say, $u = (0, 2, 0, 0)^t$. Then $p^u = p_2^2$.
 - What is Au in this case? → Au is the value of the sufficient statistic in this exponential family. HW: verify that this is sufficient for the binomial model.
 - Can you come up with v such that Au = Av?

Let
$$\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
.

- $k = ?, r = ? \rightarrow k = 4, r = 2$. There are 4 joint outcomes, and 2 parameters.
 - So the vector of joint probabilities is $p = [p_1, p_2, p_3, p_4]$.
- What do columns of \mathcal{A} represent? $p_1 = \theta_2^3, p_2 = \theta_1 \theta_2^2, p_3 = \theta_1^2 \theta_2, p_4 = \theta_1^3$.
- What is an example of p^u ? \rightarrow Say, $u = (0,2,0,0)^t$. Then $p^u = p_2^2$.
 - What is $\mathcal{A}u$ in this case? $\to \mathcal{A}u$ is the value of the sufficient statistic in this exponential family. HW: verify that this is sufficient for the binomial model.
 - ullet Can you come up with v such that Au=Av? $\setminus \operatorname{attn}\{ o v=(1,0,1,0)^t.$
- The corresponding binomial is $p_1p_3 p_2^2$.
 - ullet VERIFY that this binomial evaluates to 0 at all points in the model. $_{11/17}$

Example 6.2.6. - class & board work

The model of independence of two discrete random variables. Say that $r_1 = 4$ and $r_2 = 3$.

- What is the parametrization of the model?
- What is the design matrix A?
- From an observed table of counts *u* (which format is the table in, by the way??), what does *Au* compute?
- Find some generators of the toric ideal I_A by hand. Interpet them.
- How do you know when you have all binomials that suffice to capture (generate) the entire ideal of the model?
 - ... That's the million dollar question!

Self-study

- We leave 6.2.7 for self-study and reading at your own pace.
 - This is good/useful for homework 2.
- You should try the following Macaulay2 code for computing ideal generators of I_A from the matrix A see next slide.
 - Try it on your examples as well as the class examples.

```
14 : loadPackage "FourTiTwo";
i15 : A = matrix"3,2,1,0;0,1,2,3"
015 = | 3210 |
     I 0 1 2 3 I
o15 : Matrix ZZ <--- ZZ
i16 : toricMarkov A -- I_A generators: vector format
016 = | 0 1 -2 1 |
     1 1 -2 1 0 1
     | 1 -1 -1 1 |
o16 : Matrix ZZ <--- ZZ
i17 : R=QQ[p_1,p_2,p_3,p_4];
i18 : toricMarkov(A,R) -- I_A generators: polynomial format
o18 = ideal (-p +pp, -p +pp, -pp +pp)
              3 24 2 13 23 14
o18: Ideal of R
```

Next up:

How to use implicit models for likelihood inference.

• next topic: likelihood inference from ch7,

Course timeline update

- Your project presentations will take place during week 13.
 - Each day = 10 students
 - 10 students = between 2 and 5 projects
 - \implies each student gets 7 minutes of time at the board/slides:
 - 4 minutes presentation,
 - followed by 3 minutes Q&A.

If anyone wishes to do this Wed of Week 12 instead, please do let me know.

License

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.