Aufgabe 1 (Einstimmung). Seien $p(X) = X^{500} - 2X^{301} + 1$ und $q(X) = X^2 - 1$ in $\mathbb{Q}[X]$. Man berechne den Rest von p(X) bei Division mit q(X).

Aufgabe 2 (Frühjahr 2014). Es seien K ein Körper und K[X] der Polynomring in einer Unbekannten. Sei $n, m \in \mathbb{N}_0$. Zeigen Sie:

Ist m > 1, dann ist $X^r - 1$ der Rest bei Division von $X^n - 1$ durch $X^m - 1$, wobei r der Rest bei Division von n durch m ist.

Aufgabe 3 (Herbst 1987). R sei ein kommutativer Ring mit Eins und d eine Derivation von R, das heißt eine Abbildung $d: R \to R$ mit

$$d(x+y) = dx + dy$$
 , $d(x \cdot y) = x \cdot dy + y \cdot dx$ für alle $x, y \in R$.

- (a) Zeigen Sie, daß $\ker(d) := \{x \in R; dx = 0\}$ eine Unterring von R ist, der die Eins enthält.
- (b) Beweisen Sie die Formel $d(x^n) = nx^{n-1}dx$ für $x \in R, n \in \mathbb{Z}, n > 0$.
- (c) Zeigen Sie daß der Ring $\mathbb{Z}[X]/(X^2)$ eine nicht-triviale Derivation besitzt.

Aufgabe 4 (Frühjahr 1972). Sei $P(x) \in \mathbb{Z}[x]$ ein Polynom mit der Eigenschaf, daß es ganze Zahlen a, b gibt mit P(a) - P(b) = q, wobei q eine Primzahl ist. Zeigen Sie, daß a - b nur einen der Werte -q, -1, 1, q annehmen kann.

Aufgabe 5 (Herbst 1981). Lösen Sie folgende Gleichungen für Polynome $P, Q \in \mathbb{R}[X]$.

- (a) $P(X^2) = (X^2 + 1)P(X)$.
- (b) Q(Q(X)) = Q(X).

Aufgabe 6 (Frühjahr 1993). Für $P \in \mathbb{R}[X]$ und $a, b \in \mathbb{R}$, $a \neq b$, sei 1 der Rest bei Division von P durch (X - a) und -1 der Rest bei Division von P durch (X - b). Was ist der Rest bei Division von P durch (X - a)(X - b)?

Aufgabe 7 (Frühjahr 1991). Sei K ein Körper und $A, B, P \in K[X]$, P nicht konstant. Angenommen $A \circ P | B \circ P$. Man zeige A | B.