UNIT IV TUTORIAL 3

Answer all the questions

PART B

- 1. Prove that $F(x^n f(x)) = (-i)^n \frac{d^n}{ds^n} (F(s))$.
- 2. Prove that $F(f^n(x)) = (-is)^n F(s)$.
- 3. StateParseval's identity for both sine and cosine transforms.
- 4. If $F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$, find $F_s(f'(x))$ and $F_c(f''(x))$.
- 5. If $f(x) = e^{-3|x|}$, find $F(xe^{-3|x|})$ and $F(x^2e^{-3|x|})$.

PART C

- 6. $f(x) = \begin{cases} a |x|, & |x| < a \\ 0, & otherwise \end{cases}$, find the value of $\int_0^\infty (\frac{\sin t}{t})^4 dt$.
- 7. Using Parseval's identity evaluate $\int_0^\infty \left(\frac{1}{x^2+a^2}\right) \left(\frac{1}{x^2+b^2}\right) dx$ and $\int_0^\infty \frac{x^2}{(x^2+a^2)^2} dx$
- 8. Solve the integral equation $\int_0^\infty f(x) \cos \alpha x \, dx = \begin{cases} 1 \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$.
- 9. Solve the integral equation $\int_0^\infty f(x) \cos ax \, dx = e^{-\alpha}$
- 10. Solve for f(x) if $\int_0^\infty f(x) sinsx dx = \begin{cases} 1, & 0 \le s < 1 \\ 2, & 1 \le s < 2. \\ 0, & s \ge 2 \end{cases}$
- 11. Prove that $e^{-\frac{\kappa^2}{2}}$ is self reciprocal under Fourier transforms.
- 12. Find the Fourier sine and cosine transforms of x^{n-1} and hence show that $\frac{1}{\sqrt{x}}$ is self reciprocal under both the transforms.
- 13. Find the Fourier transform of e^{-2x^2} and hence find $F(e^{-2(x-3)^2})$ and $F(e^{-2x^2}\cos 3x)$.

ANSWERS FOR THE QUESTIONS IN TUTORIAL 3

4.
$$F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$$

$$F_s(f'(x)) = -s \frac{1}{a\sqrt{2}} e^{-\frac{s^2}{4a^2}}$$
 and $F_c(f''(x)) = -s^2 F_c(s) - \frac{\sqrt{2}}{\sqrt{\pi}} f'(0) = -s^2 \frac{1}{a\sqrt{2}} e^{-\frac{s^2}{4a^2}}$

5. If
$$f(x)=e^{-3|x|}$$
, then $F(e^{-3|x|})=\frac{1}{\sqrt{2\pi}}\frac{6}{9+s^2}$

$$F(xe^{-3|x|}) = \frac{i}{\sqrt{2\pi}} \frac{12s}{(9+s^2)^2}$$
 and $F(x^2e^{-3|x|}) = \frac{1}{\sqrt{2\pi}} \frac{108-36s^2}{(9+s^2)^2}$

$$6. \int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}$$

7.
$$\int_0^\infty \left(\frac{1}{x^2 + a^2}\right) \left(\frac{1}{x^2 + b^2}\right) dx = \frac{\pi}{2ab(a+b)}$$
 and $\int_0^\infty \frac{x^2}{(x^2 + a^2)^2} dx = \frac{\pi}{4a}$

8.
$$f(x) = \frac{4sin^2(\frac{x}{2})}{\pi x^2}$$

9.
$$f(x) = \frac{2}{\pi} \frac{1}{1+x^2}$$

10
$$f(x) = \frac{2}{\pi} \frac{1 + \cos x - 2\cos 2x}{x}$$

13.
$$F(e^{-2x^2}) = \frac{1}{2} e^{-\frac{s^2}{8}}$$
.

$$F(e^{-2(x-3)^2}) = \frac{e^{iss}}{\sqrt{2}} e^{-\frac{s^2}{s}} \text{ and } F(e^{-2x^2}\cos 3x) = \frac{1}{2} \left[\frac{1}{2} e^{-\frac{(s+s)^2}{s}} - \frac{1}{2} e^{-\frac{(s-s)^2}{s}} \right].$$