Bias Variance

Prepared By: Dr.Mydhili K Nair, Professor, ISE Dept, RIT

For: Machine Learning Elective Class

Target Audience: Sem 6 Students

Term: Feb to June 2019

Bias

Our Classification Model is too simple

Animals

Our Classification Model is too specific

Anything but dogs that are wagging their tail

Too specific

Dogs that are wagging their tail

Linear Model: How much ever you vary the "prediction regression line" it will not fit the curve and there will always be a bias between actual value and predicted value.

Bias error is completely eliminated. This non-linear model fits the data points perfectly. Zero Bias.

Model 1: $y = b_0 + b_1 x$

Linear

Model

Х	У
1	1.7
2	5.3
3	18.0
4	13.8
5	21.4
6	15.9
7	15.5
8	12.7
9	27.5
10	24.6

Model 2: $y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_9 x^9$

9th Order

Model

Model 1: $y = b_0 + b_1 x$

Our Classification Model is too simple - HIGH BIAS

Х	У
1	1.7
2	5.3
3	18.0
4	13.8
5	21.4
6	15.9
7	15.5
8	12.7
9	27.5
10	24.6

Model 2: $y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_9 x^9$

60	
50 -	/ 1
30 -	
20 -	() o o o
10 - *	Bias is very high for these
0- 4	two data points, because
-10 -	the model has over-fitted
-20 -	to the training set. This
-30	means the model will have
-40 V	high "variance" among
-50 1	2 test data.5 6 7 8 9 10

X	x^2	x^9	У
1	1	 1	1.7
2	4	262144	5.3
3	9	4E+08	18.0
4	16	7E+10	13.8
5	25	4E+12	21.4
6	36	1E+14	15.9
7	49	2E+15	15.5
8	64	2E+16	12.7
9	81	2E+17	27.5
10	100	1E+18	24.6

Our Classification Model is too specific -HIGH VARIANCE

Error due to bias (underfitting)

Too simple

Animals

Error due to variance (overfitting)

Anything but dogs that are wagging their tail

Too specific

Dogs that are wagging their tail

Low Variance

High Variance

Bias - Variance Tradeoff

Error due to bias (underfitting)

Error due to variance (overfitting)

Tradeoff

High bias (Underfitting)

Not animals

Animals

Bad on Training set
Bad on Testing set

Just Right

Not dogs

Dogs

Good on Training set
Good on Testing set

High variance (Overfitting)

Not dogs who wag their tail

Dogs who wag their tail

Great on Training set

Bad on Testing set

Model Complexity Graph

Model Complexity Graph

Training - Testing - Validation Datasets

Solution: Cross Validation

Bad on Testing set

Good on Testing set

Bad on Testing set

Training a Decision Tree

Hyperparameters Parameters

Depth = 1

Depth = 2

Depth = 3

Depth = 4

F1 Score

0.5

0.8

0.4

0.2

Training

Cross Validation

Testing

Training a Logistic Regression Model

Degree = 1

Parameters

F1 Score

Training

Degree = 2

0.8

Degree = 3

0.4

Testing

0.2

Training a Support Vector Machine

Hyperparameters

Parameters and Hyperparameters

Algorithm	Parameters	Hyperparameters
Random Forest	Features Thresholds	Number of trees Depth
Logistic Regression	Coefficients of the polynomial	Degree of the polynomial
Support Vector Machines	Coefficients	Kernel Gamma C

How to use machine learning

