## Numerical analysis Coursework 2

# Stefan A. Obada so1118

#### March 2020

#### Abstract

This paper solves the questions from the  $2^{nd}$  Coursework. I study a recurrence relation for the  $p^{th}$  derivative of Chebyshev polynomials and solve the differential equation  $\ddot{y}(x) - xy(x) = 0$  using this result. Please refer to  $\binom{1}{2}$  for full documentation.

## Contents

| Problem 1                          |  |
|------------------------------------|--|
| Recurrence for derivatives         |  |
| Evaluation at Gauss-Lobatto points |  |
| Problem 2                          |  |
| Idea                               |  |
| Implementation (Python)            |  |
| Solution plot                      |  |

<sup>&</sup>lt;sup>1</sup>https://github.com/stefan-obada/chebyshev-poly

## Problem 1

**Definition:** Chebyshev polynomials are defined by the relation

$$T_n(x) = \cos(n * \arccos(x)) \tag{1}$$

**Note:** We use this definition, as in the lectures. However, this is just one of the 2 forms of Chebyshev polynomials. Moreover, this one holds only for  $x \in [-1, 1]$ , but we will work just with the open interval.

#### Recurrence for derivatives

To derive a recurrence relation for the  $p^{th}$  derivative we will firstly derive the differential equation that is verified by  $T_n$  and we will proceed by using Leibniz Lemma of differentiation.

**Lemma 1:**  $T_k$  verifies one of the Sturm-Liouville differential equations, which is:

$$(1 - x^2)\ddot{T}_k(x) = k^2 T_k(x) + x\dot{T}_k(x)$$
(2)

**Proof:** Differentiate  $T_k(x)$  to obtain:

$$\dot{T}_k(x) = k \cdot \frac{\sin(k \cdot \arccos(x))}{\sqrt{1 - x^2}} \tag{3}$$

$$\ddot{T}_{k}(x) = \frac{d}{dx}\dot{T}_{k}(x) = k \cdot \frac{\cos(k \cdot \arccos(x))\frac{k\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} - \sin(k \cdot \arccos(x)) \cdot \frac{-2x}{2\sqrt{1-x^{2}}}}{(1-x^{2})} = \frac{k^{2}T_{k}(x) + x\dot{T}_{k}(x)}{1-x^{2}} \Rightarrow \underline{(1-x^{2})\ddot{T}_{k}(x) = k^{2}T_{k}(x) + x\dot{T}_{k}(x)}$$

**Lemma 2:** (Leibniz formula) For f and g real functions n times differentiable, we have:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \cdot f^{(n-k)} g^{(k)}$$

**Lemma 3:** The recurrence relation between the derivatives of  $T = T_n(x)$  is given by:

$$(1 - x^2)T^{(p)} = (2p - 3) \cdot xT^{(p-1)} + [k^2 + (p - 2)^2] \cdot T^{(p-2)}$$
(4)

**Proof:** Firstly, differentiate (2) from **Lemma 1**, p-2 times. Note that all the terms involved are infinite times differentiable.

$$[(1-x^2)\ddot{T}]^{(p-2)} = k^2 T^{(p-2)} + [x\dot{T}]^{(p-2)}$$
(5)

We proceed by applying **Lemma 2** on LHS and RHS. Note that  $(1-x^2)^{(p)} = 0, \forall p \geq 3$  and  $x^{(p)} = 0, \forall p \geq 2$ .

$$\begin{split} [(1-x^2)\ddot{T}]^{(p-2)} &= \binom{p-2}{0}(1-x^2)T^{(p)} + \binom{p-2}{1}(-2x)T^{(p-1)} + \binom{p-2}{2}(-2)T^{(p-2)} \\ &= (1-x^2)T^{(p)} - (p-2)2x \cdot T^{(p-1)} - (p-2)(p-3)T^{(p-2)} \\ &[x\dot{T}]^{(p-2)} = \binom{p-2}{0}xT^{(p-1)} + \binom{p-2}{1}T^{(p-2)} = xT^{(p-1)} + (p-2)T^{(p-2)} \end{split}$$

By plugging these 2 relations into (5) and rearranging results in:

$$(1-x^2)T^{(p)} = [(p-2)2x + x]T^{(p-1)} + [k^2 + (p-2)(p-3) + p-2]T^{(p-2)}$$

which finishes the proof.

**Remark 1:**  $T_n^{(n+1)}(x) = 0$  and  $T_n^{(p)}(x) \neq 0, \forall p \leq n$ 

**Remark 2:** The initial terms  $T_n^{(0)}$  and  $T_n^{(1)}$  are defined as in (1) and (3).

## Evaluation at Gauss-Lobatto points

We simply evaluate (4) at  $x_j = cos(\frac{j\pi}{N})$ , for  $j \in (0, 1, ..., N-1)$ :

$$\sin^2(\frac{j\pi}{N}) \cdot T^{(p)} = (2p-3) \cdot \cos(\frac{j\pi}{N}) \cdot T^{(p-1)} + [k^2 + (p-2)^2] \cdot T^{(p-2)}$$
 (6)

Where the initial terms are:

$$T_k^{(0)}(x_j) = \cos(\frac{kj\pi}{N}) \text{ and } T_k^{(1)}(x_j) = \frac{k \cdot \sin(\frac{kj\pi}{N})}{\sin(\frac{j\pi}{N})}$$
 (7)

**Remark:** For  $x_N = cos(\pi)$  we have  $T^{(0)}(x_N) = cos(n\pi) = (-1)^n$  and  $T^{(1)}(x_N) = k^2$  by applying L'Hospital rule on (3).

## Problem 2

#### Idea

**Step 0:** Rescale the initial differential equation on the interval [-1,1] using the function u(x) = y(40x).

$$\ddot{y}(x) - xy(x) = 0$$
,  $-40 \le x \le 40$ ,  $y(40) = 0$ ,  $\dot{y}(-40) = 1$ 

is equivalent (due to linearity of the equation and basic differentiation) to:

$$\ddot{u}(x) - 40^3 x u(x) = 0, \quad -1 \le x \le 1, \quad u(1) = 0, \quad \dot{u}(-1) = 40$$
 (8)

**Step 1:** Write the Chebyshev expansion for u(x) (up to  $N < \infty$ ) and differentiate to obtain a relation for  $\ddot{u}(x)$ :

$$u(x) = \sum_{k=0}^{N} a_k T_k(x)$$
$$\ddot{u}(x) = \sum_{k=0}^{N} a_k \ddot{T}_k(x)$$

where  $T_k$  is the  $k^{th}$  Chebyshev polynomial and  $\dot{T}_k$  its derivative.

**Step 2:** Evaluate these relations at Gauss-Lobatto points:  $x_j = cos(\frac{j\pi}{N}), \forall j = 0, 1, ..., N$  using (1), (2) and (3):

$$u(x_j) = \sum_{k=0}^{N} a_k \cdot T_k(x_j)$$
$$\ddot{u}(x_j) = \sum_{k=0}^{N} a_k \cdot \left[ \frac{k^2}{1 - x_j^2} T_k(x_j) + \frac{x_j}{1 - x_j^2} \dot{T}_k(x_j) \right]$$

**Step 3:** Rewrite the differential equation  $\ddot{u}(x) - 40^3 x u(x) = 0$  into matrix form:

$$\ddot{u}(x_j) - 40^3 x_j u(x_j) = \sum_{k=0}^{N} a_k \cdot \left[ \left( \frac{k^2}{1 - x_j^2} - 40^3 x_j \right) \cdot T_k(x_j) + \frac{x_j}{1 - x_j^2} \dot{T}_k(x_j) \right] = 0$$

Therefore let  $D_{jk} = [(\frac{k^2}{1-x_j^2} - 40^3 x_j) \cdot T_k(x_j) + \frac{x_j}{1-x_j^2} \dot{T}_k(x_j)], \text{ for all } j, k \in (0, 1, ..., N).$ 

**Step 4:** Introduce boundary conditions u(1) = 0 and  $\dot{u}(-1) = 40$ . Note that these are equivalent to:  $u(x_0) = 0$  and  $\dot{u}(x_N) = 40$ , which is therefore equivalent to changing the first and the last rows of D accordingly:

$$D_{0,k} = [T_k(x_0)]$$
$$D_{N,k} = [\dot{T}_k(x_N)]$$

Finally, the equation reduces to solving  $\mathbf{a} = (a_1, a_2..., a_N)^T$  in:

$$D\mathbf{a} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 40 \end{bmatrix}$$
 which can be performed via several computational methods.

**Remark 1:** y(x) can be approximated via:  $y(x) = u(\frac{x}{40}) = \sum_{k=0}^{N} a_k T_k(\frac{x}{40})$ , where  $T_k$  are the Chebyshev polynomials.

**Remark 2:** We need to work with the polynomial form of  $T_k$  computed recursively (because we need to compute  $\dot{T}_k(-1)$ ).

### Implementation (Python)

```
import numpy as np
import matplotlib.pyplot as plt
\# Set N
N = 20
# Create vector of evaluations [0, ..., 0, 40]
ev = np.zeros(shape=(N+1,1))
ev[-1] = 40
\# Define functions T and its derivative, T\_dot recursive
def T(x, k):
    if k==0:
        # 1st Chebyshev polynomial
        return 1
    elif k==1:
        # 2nd Chebyshev polynomial
        return x
        # Recurrence formula
        return 2*T(x, k-1)*x - T(x, k-2)
def T_dot(x, k):
    if k==0:
        # 1st Chebyshev poly derivative
```

```
return 0
    elif k==1:
        # 2nd Chebyshev poly derivative
    else:
        # Recurrence formula for derivatives
        return 2*T(x, k-1)+2*x*T_dot(x, k-1)-T_dot(x, k-2)
# Create the Gauss-Lobatto linear space, i.e. x_j
X = []
for j in range(N+1):
    X.append(np.cos(j * np.pi / N))
# Create D - matrix function, according to Step 3
def D_jk(j, k):
    return ( (k**2 / (1 - X[j]**2)) - 40**3 * X[j] ) * T(X[
                             j], k) + (X[j] / (1 - X[j] **2)
                             ) ) * T_dot(X[j], k)
D = np.zeros(shape=(N+1, N+1)) # Matrix of zeros
for j in range(N+1):
    if j==0:
        # The 1st row (for boundary condition)
        for k in range(N+1):
           D[j, k] = T(X[j], k)
    elif j==N:
        # The last row (for boundary condition)
        for k in range(N+1):
            D[j, k] = T_dot(X[j], k)
    else:
        # Matrix body
        for k in range(N+1):
            D[j, k] = D_jk(j, k)
# Linear solver
D = np.array(D)
a = np.linalg.inv(D).dot(ev)
# Define the solution function y as in Remark 1
def y(x):
    Tk\_vector = np.array([T(x/40, k) for k in range(N+1)])
    return Tk_vector.dot(a)[0]
# Plot the solution
linsp = np.linspace(start=-40, stop=40, num=300)
plt.plot(linsp, [y(x) for x in linsp], c='red')
```

# Solution plot



Figure 1: x vs. y(x)