

PROBLEM STATEMENT

Handwritten signatures are frequently used for personal identification and verification.

Challenges of detecting forged signatures:

- "No two signatures of the same person are exactly the same"
- Variability in pens used
- Noisy background

METHODOLOGY

Look for usable dataset

04 — MODEL

View and explore images

PROCESS

Pre-process data Create Lists of Signatures and binary Labels

05 — TUNE

Tune optimizers and model parameters

03 <u>—</u> EDA

Create lists of Signatures and binary labels

05 _____EVALUATE

Evaluate models

55 sets of 20 forged and 20 signatures per person

DATASET

GENUINE / FORGED SIGNATURES ?

O1 Thora

03

Why pre-processing is required:

- Not centered
- Background noise
- Variability in image size
- Noisy background

02

04

IMAGE PRE-PROCESSING

Image pre-processing steps

- Image changed to grayscale / single channel.
- Background is removed
- Gaussian filter applied
- Centralized image
- Image is cropped and resized

EDA

Forged

MODELING: NEURAL NETWORK

CNN

Covolutional Neural Network
Insufficient data is likely to
cause over fitting of the model

SNN

Siamese Neural Networks
Good for training with
insufficient data

PRE-TRAINED

InceptionV3
Experimented with it
Requires more tuning

Genuine-Genuine Pairs

20 genuine signatures per pax: 20 choose 2 = 190 Genuine-Genuine image pairs for one person

Genuine-Forged Pairs

Pair every 1 genuine signature of a person with 20 randomly sampled Forged signatures of the same person.

20 * 20 = 400 Genuine-Forged image pairs per person

In all we have 55 person's data in the training data.

Total no. of Genuine-Genuine pairs = 55 * 190 = 10450

Total number of Genuine-Forged pairs = 55 * 400 = 22000

Total no. of data points = 10450 + 22000 = 32450

SIAMESE NEURAL NETWORK

MODEL TUNING

OPTIMIZER

- 1. Adam
- 2. Adagrad
- 3. SGD
- 4. RMSprop

BATCH SIZE 32, 64, 256

LEARNING RATE

1. 1e-4

2. 1e-5

3. 1e-6

MODEL EVALUATION

Model No.	Optimizer	Batch Size	Learning Rate	Epoch Number	Accuracy (%)
1	Adam	32	0.0001	13	65.6
2	Adam	64	0.0001	24	69.3
3	Adam	256	0.0001	8	64.8
4	Adam	32	1e-05	7	65.9
5	Adam	64	1e-05	79	70.4
6	Adam	256	1e-05	2	71.4
7	RMSprop	32	0.0001	8	72.2
8	RMSprop	64	0.0001	11	69.2
9	RMSprop	256	0.0001	25	72.1
10	RMSprop	32	1e-05	3	69.9
11	RMSprop	64	1e-05	18	68.2
12	RMSprop	256	1e-05	0	70.7

Model 7 has the highest accuracy score.

PREDICTIONS

FUTURE WORKS

- 1. Build model using triplet loss on Siamese Neural Networks (Current models built on contrastive loss)
- 2. Change metrics to precision
- 3. Look into pre-trained models and fine-tune the model more.
- 4. Deploy on web application

QUESTIONS

