## INTRODUCTION TO BIOLOGY



Dr. Manu Smriti Singh

Department of Biotechnology

Bennett University

#### CENTRAL DOGWA OF LIFE



#### GRIFTITH'S EXPERIMENT

1928
-Frederick Griffith



Conclusion: A chemical substance from one cell is genetically transforming another cell

#### DNA- INFORMATION MOLECULE



#### NUCLEIC ACIDS

- Composed of elements C, H, O, N, P
- Deoxyribonucleic Acid → Codes for protein/RNA sequence



Ribonucleic Acid → Reads DNA-coded information to direct protein synthesis





#### COMPONENTS OF NUCLEOSIDES







#### DNA IS A REPEAT OF NUCLOTIDES







#### DNA VS RNA



### DNA VS RNA



#### CHARGAFF'S RULE



# CULTURALUM

- The amount of Adenine = the amount of Thymine.
- The amount of Guanine = the amount of Cytosine.
- He failed to make a connection to the structure of DNA.
- · Indicated that DNA is symmetrical.

7

In other words- A/T=1; G/C=1 Also, Purines = Pyrimidines (A+G= C+T)

Avg. Molecular Weight of 1 base pair (bp) = 650

Q. What is the MW of duplex DNA needed to code a protein of 200 amino acids?



## Q. What is the MW of the gene needed to code a protein of 200 amino acids?

Answer: Each amino acid is coded by 3 DNA molecules

So, 3X200 = 600 base pairs (bp)

Now MW for each bp = 650

Therefore, MW of DNA = 650X600 = 390,000



#### G Phe UGU Cys UUU UCU UAU Tyr UUC UCC UGC Ser UAC UCA UGA UUA UAA Stop Stop Leu UUG UCG UAG Stop UGG Trp CGU CUU CCU CAU His CUC ccc Leu CGC Pro CAC Arg CUA CCA CAA Gin CGA 3rd CGG CUG CCG CAG G letter AUU ACU AAU AGU Ser letter Asn AUC lle ACC AAC AGC Thr AUA **ACA** AAA Arg G AUG ACG AAG Met GGU GUU GCU GAU Asp G GUC GCC GAC GGC Val Gly Ala

Second Letter

Amino Acid Codons

GAA

GAG

**GGA** 

GGG

Glu

**GUA** 

GUG

**GCA** 

GCG

#### EARLY BREAKTHROUGH DISCOVERIES



- 1. Erwin Chargaff (1951):
  - Rule of Base pairing



- 2. Rosalind Franklin & Maurice Wilkins (1953):
  - X-ray diffraction pattern of DNA



- 3. James Watson & Francis Crick (1953):
  - Molecular structure of DNA







## RIBONUCLEIC ACIDS (RNA)

- DNA never leaves nucleus. How does it pass information/ codes?
- RNA Roles:
- 1. Genetic: Transfer of genetic info during protein synthesis
- 2. Non-genetic: Control of gene expression





#### RNA: CONTROL OF GENE EXPRESSION

Pfizer Vaccine Based on mRNA



#### RNA: CONTROL OF GENE EXPRESSION

- Certain genes are over-expressed in disease conditions like cancer
- Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA non-coding RNA molecules, typically 20-27 base pairs in length. It interferes with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription, preventing translation.
- A microRNA (miRNA) is a small single-stranded noncoding RNA molecule (containing about 22 nucleotides) found in plants, animals and some viruses, that functions in RNA silencing and post-transcriptional regulation of gene expression.



#### CARBOHYDRATES

- Hydrates of Carbon (H and O present in the same ratio as water)-  $C_nH_{2n}O_n$  (Ratio 1:2:1)
- Examples-Sugar, Starch, Cellulose
- Monosaccharides (monomer)
- Oligosaccharides (2-10 monosaccharides)
- Polysaccharides (100-1000s of monosaccharides)





### DISACCHARIDES

 $^6\!\mathrm{CH}_2\!\mathrm{OH}$  $HOCH_2$ H  $\mathbf{H}$ 1(x) OH  $_{6}^{\mathrm{CH}_{2}\mathrm{OH}}$ HO OH H OH Glucose Fructose



#### αl-4 glycosidic bond



#### GLYCOSIDIC LINKAGES





#### ISOMERS AND STEROISOMERS

#### FIGURE 3.24

Isomers and stereoisomers. Glucose, fructose, and galactose are isomers with the empirical formula  $C_6H_{12}O_6$ . A structural isomer of glucose, such as fructose, has identical chemical groups bonded to different carbon atoms, while a stereoisomer of glucose, such as galactose, has identical chemical groups bonded to the same carbon atoms but in different orientations.





#### SUCROSE

is often called table sugar.

Made up from glucose and fructose, it is extracted from sugar cane or sugar beet and is naturally present in most fruits and vegetables



# GLUCOSE & FRUCTOSE

are found in **fruits**, **vegetables** and **honey** 



#### LACTOSE

is commonly called milk sugar because it is found in milk and dairy products



#### MALTOSE

is also commonly known as malt sugar, found in malted drinks and beer



#### POLYSACCHARIDES: NON-SUGARS

Starch-Simple polysaccharide with glucose repeats



Cellulose- Polysaccharide with glucose cross-links. Forms plant cell walls.



Animals store glucose as glycogen, similar to starch



### STRUCTURAL COMPONENT

Chitin- Forms cell wall of fungi and exoskeleton of arthropods

