Knot Traces and Sliceness

Isaac M. Craig Joint with Paul Melvin

Bryn Mawr College

GSTGC 30 March 2019

To a framed knot $K \subset S^3 = \partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

UI Urbana-Champaign

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

The associated 4-manifold X(K) to an n-framed knot K is called its n-trace.

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

The associated 4-manifold X(K) to an n-framed knot K is called its n-trace.

Question. Do properties of K correspond to properties of X(K), and conversely?

A knot $K\subset S^3=\partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2\hookrightarrow B^4.$

A knot $K \subset S^3 = \partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

UI Urbana-Champaign

A knot $K\subset S^3=\partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2\hookrightarrow B^4.$

Remark. The core of the 2-handle and slice-disk form a smoothly embedded S^2 .

A knot $K \subset S^3 = \partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

Remark. The core of the 2-handle and slice-disk form a smoothly embedded S^2 .

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

UI Urbana-Champaign

A knot $K \subset S^3 = \partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

Remark. The core of the 2-handle and slice-disk form a smoothly embedded S^2 .

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo [1]) The Conway knot is not slice.

 $\label{eq:convay} \textbf{Theorem}. \ \mbox{(Piccirillo [1]) The Conway knot } C \ \mbox{is not slice}.$

Theorem. (Piccirillo [1]) The Conway knot C is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Theorem. (Piccirillo [1]) The Conway knot C is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

 $\xrightarrow{1,2 \text{ pairs}}$ handle slides

Theorem. (Piccirillo [1]) The Conway knot C is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Remark. This construction is known to work for unknotting number 1 knots.

Theorem. (Piccirillo [1]) The Conway knot C is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Remark. This construction is known to work for unknotting number 1 knots.

Bibliography I

Lisa Piccirillo, Shake genus and slice genus, arXiv:1803.09834, to appear in G&T (2018).