

Technical Report RD-76-22

INVESTIGATION OF JET PLUME EIFEC'S
ON THE LONGITUDINAL STABILITY CHARACTERISTICS
OF A BODY OF REVOLUTION WITH VARIOUS FIN CONFIGURATIONS
AT MACH NUMBERS FROM 0.2 TO 2.3 (NORMAL JET PLUME SIMULATOR)

James H. Henderson
Aeroballistics Directorate
US Army Missile Research, Development and Engineering Laboratory
US Army Missile Command
Redstone Arsenal, Alabama 35809

20 February 1976

Approved for public release; distribution unlimited.

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama

DISPOSITION INSTRUCTIONS

OESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM Z. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER RD-76-22 Investigation of Jet Plume Effects on the Longitudinal Stability Characteristics of Technical Kepert. a Body of Revolution With Various Fin Configura-tions at Mach Numbers from 9.2 to 2.3 (Normal 6. PERFORMING ORG. REPORT NUMBER Jet Plume Simulator) # James H./Henderson PERFORMING ORGANIZATION NAME AND ADDRESS US Army Missile Command DA Project No. 1W362303A214 Attn: AMSMI-RDK < AMC MS Code 632303.11.21400 Redstone Arsenal, Alabama 35809 CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE 20 February US Army Missile Command Attn: AMSMI-RPR Redstone Arsenal, Alabas NUMBER OF THE 89 Alabama 35809 MONITORING AGENLY NAME SECURITY CL 3-A-214 Unclassified ISO. DECLASSIFICATION/COWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES This report was prepared from data plotted by the Chrysler Corporation Space Division. 19. KEY WORDS (Continue on reverse side if necessary and isentity by block number) Thrust Effects Jet: Plume Longitudinal Stability Plume Effects Base Pressure ABSTRACT (Continue on reveren side if necessary and identify by block number) Transonic wind turnel tests were conducted on a body of revolution with various fin configurations to investigate jet plume effects on missile longitudinal stability. A scries of cold air normal jets located downstream of the base were utilized to simulate the jet plume. Fins of various planform geometry were tested at a forward longitudinal location only. The angle of attack range was -4 to 11 degrees at Mach numbers of from 0.2 to 2.3. The test was run at the Arnold Engineering Development Center Transonic (16T) and Supersonic (16S) wind tunnels and was designated AEDC SF172/TF360.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

400 4072

DD 1 JAN 73 1473

EDITION OF ! NOV 45 IS OBSOLE !E

SECURITY CLASSIFICATION OF THIS PAGE(When De	ata Entered)
l .	
1	
1	
l .	
l	

TABLE OF CONTENTS

	PAGE
INDEX OF TABLES	2
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
INTRODUCTIC.	4
APPARATUS AND TESTS	5
TEST CONDITIONS	7
PLUME SIMULATION	8
RESULTS	9
REFERENCES	10
NOMENCLATURE	11
TABLES	14
MODEL FIGURES	17
PLOTTED DATA	25

INDEX OF TABLES

TABLE	DESCRIPTION	PAGE
1	DATA SET/RUN NUMBER COLLATION SUMMARY	14

INDEX OF MODEL FIGURES

FIGURE	DESCRIPTION	PAGE
1	Axis System Sign Convention for Main Balance	17
2	Axis System and Positive Sign Convention for Fins	18
3	AMC Model Drawing	19
4	Sketch of Fins F1 and F2	20
5	Sketch of Model Installation	
	a. Tunnel 16S	21
•	b. Tunnel 16T	22
6	Photograph of Model (BF2) in PWT (16T)	23
7	Photograph of Model (BF1) in PWT (16S)	24

INDEX OF DATA FIGURES

TITLE		CONDITIONS VARYING	PLOT SCHEDULE	PAGE
THRUST EFFECTS ON STABILITY CHARACTERISTICS		CRT, MACH	(A)	1-23
HYSTERESIS EFFECTS		CRT, ALPHA	(A)	24-26
THRUST EFFECTS ON FIN NORMAL FORCE		CRT, MACH	(8)	27-42
TYPICAL THRUST EFFECT ON FIN HINGE MOMENT		CRT, MACH	(c)	43-45
TYPICAL THRUST EFFECT ON FIN ROOT BENDING MOMENT		CRT, MACH	(0)	46-48
EFFECT OF RADIAL THRUST COEFFICIENT ON LONGITUDINAL DERIVATIVES		CONFIG, MACH	(E)	49-60
THRUST EFFECTS DN FIN MO. 2 NORMAL FORCE CHARACTERISTICS-FIN IN FORWARD POSITION		MACH	(F)	61
THRUST EFFECTS ON FIM ND. 4 NORMAL FORCE CHARACTERISTICS-FIM IN FORWARD POSITION		MACH	(9)	62
THRUST EFFECTS ON FIN NO. 2 NORMAL FORCE CHARACTORISTICS-FIN IN FURWARD POSITION		MACH	(F)	63
THRUST EFFECTS ON FIN NO. 4 NORMAL FORCE CHARACTERISTICS-FIN IN FORWARD POSITION		MACH	(9)	64
PLOT SCHEDULE:	(a)	CLMR1, CLMR2, CLMR3, AND CLMR4 vs.	CLMR3, AND CL	MR4 VS. ALPHA
УНА	(E)	CNALFA and CLMALF vs. CRT	ALF vs. CRT	
(B) CNF1, CNF2, CNF3, and CNF4 vs. ALPHA (C) CLMH1, CLMH2, CLMH3, and CLMH4 vs. ALPHA	(F) (G)	CNF2ALFA vs. CRT CNF4ALFA vs. CRT	CRT	

INTRODUCTION

During the past few years the Army Missile Command has been interested in the adverse effects of the propulsive jet plume on missile aerodynamics. Of particular importance are the effects on missile longitudinal stability. A research program has been established as a means of obtaining the understanding necessary for proper design of future missiles susceptible to this problem (see Reference 1).

It was previously shown that plume induced instability could be avoided by moving the fins forward from the base and using fins of sufficient size. Results also indicated that stability margin might be controlled to a precision where plume effects could be used to advantage as a means of reducing missile wind sensitivity. Later test results appear to substantiate this judgement. Fins can be located in a position to retain most of their effectiveness, while the plume still has a significant destabilizing influence on the missile body. Thus, based on available data, the desired unstable transonic-stable supersonic stability characteristics can be attained.

Previous tests at the CALSPAN transonic tunnel were made at Mach numbers up to 1.25. The present test extended the results up to a Mach number of 2.3. Also, tests were made at Mach numbers of 0.2 and 0.4 and at angles of attack up to 11 degrees to determine launch crosswind effects.

APPARATUS AND TESTS

The model is a sting mounted body of revolution, 5 inches in diameter and 5%-inches long with a 30 caliber tangent ogive nose. The model was tested in combination with two different sets of cruciform rectangular fins set at zero degrees roll. For the present test the fins were tested in the forward location only (Fin trailing edge 1.5 calibers ahead of the model base). The fin geometry is shown in figure 4.

The geometry of the fins tested is as follows:

<u>Fin</u>	Chord (in)	Semi span (in)
F1	5.0	2.5
F2	3.0	2.5

The plume simulator consisted of 24 sonic jets normal to the sting centerline and arranged circumferentially in two rows with a common air chamber (see figure 3). The simulator was located 0.5 caliber aft of the model base. The combined exit area of the 24 jets represented 6 per cent of the model base (reference) area. The level of plume simulation was established by setting various pressures in the simulator chamber.

Tunnels 16T and 16S are closed-circuit, continuous-flow tunnels that can be currently operated at Mach numbers from 0.20 to 1.6 and 1.5 to 2.4, respectively. The test sections are 16 by 16 ft in cross-section and 40 ft long. Details of each tunnel's capabilities and supporting equipment can be found in reference 5. Photographs of the model installed in the test sections are shown in figures 6 and 7 and sketches of the location of the models in the tunnels are shown in figure 5.

Total model force and moments were measured using a 2.0-inch, 6-component balance, with normal and side force capacities of 1800 pounds and 900 pounds, respectively. The balance was mounted in the model, such that the balance 900-pound capacity side-force gages measured model normal forces, in order to achieve better data resolution in the model pitch plane. Fin forces and moments were measured using 5-component (no axial force) balances, with a nominal normal force capacity of 60 pounds.

A static pressure measurement was made in the balance cavity and was used to calculate the balance cavity axia; force. Two static pressure measurements were made at the base of the model and were used to calculate base pressure.

Model angle of attack was measured using a pendulum-type angle sensor, with a backup measurement determined from balance-sting deflections.

Steady-state data were obtained at free-stream Mach numbers from 0.2 to 2.3. The tunnel test conditions were held constant at each Mach number. Plume effects were obtained by setting and maintaining a specific value of chamber pressure while angle of attack was varied.

Model aerodynamic coefficients were tabulated in the body-axes system and referenced to model station 26.5 inches. No correction was made to the data for tunnel flow angularity. Fin moment coefficients were referenced to the fin hinge-line and fin root bending moment coefficients were referenced to the fin-body intersection. The positive orientation of the model and fin forces and moments are shown in figure 2.

TEST CONDITIONS

The test was conducted in the AEDC Propulsion Wind Tunnels, Supersonic (16S) and Transonic (16T), respectively. Tunnels 16T and 16S at a closed-circuit, continuous-flow tunnels that can be currently operated at Mach numbers from 0.20 to 1.6 and 1.5 to 2.4, respectively. The purpose of the test was to determine the Mach number range of adverse jet plume effects on missile longitudinal stability. Similar data were previously obtained at the Calspan Corporation 8- Foot Transonic Wind Tunnel. Three configurations were tested (body with Fins F1, body with Fins F2, and body alone) at various simulated plume shapes, at model angles of attack from -4 to 11 degrees at zero degrees yaw, zero degrees roll, and at free-stream Mach numbers from 0.2 to 2.3. Steady-state data were obtained at these free-stream Mach numbers. The tunnel test conditions were held constant at each Mach number, and the plume shape was generated by setting a specific value of high-pressure air in the plume simulator chamber and discharging the air radially. The Radial Thrust Coefficient (CRT) is a measure of the plume shape and is a function of the free-stream Mach number and the simulator pressure. At specified levels of CRT and Mach number, the model angle of attack was varied from -4 to 11 degrees at the free-stream Mach numbers of 0.2 and 0.4. At all other Mach numbers, the angle-of-attack range was -4 to 4 degrees.

PLUME SIMULATION

In the past, the Army Missile Command has used base pressure ratio p_b/p_∞ as an indication of the onset and the severity of plume effects on missile aerodynamics (see reference 1). One of the parameters that can be conveniently used to correlate base pressure is thrust coefficient CT, where CT is axial thrust non-dimensionalized by dynamic pressure and body cross-sectional area, (S_{ref}) . For the normal jet simulator a similar parameter is radial thrust coefficient, CRT, where

$$CRT = \frac{Radial\ Thrust}{qA}$$

Radial thrust is the summation of the thrust of the 24 individual nozzles. For an axial jet, base pressure appears to be primarily influenced by the portion of the jet plume in the vicinity of the jet boundary where it interacts with the freestream flow. Where CT can be considered to represent the axial component of the effective jet, it can be assumed that CRT represents the normal component.

For the plume size of interest in the present investigation a value of CT several times the value of CRT is required for matching base pressures. The exact CT/CRT ratio will depend on a comparison of flight base pressures with base pressure values for the normal jet simulator. Where flight base pressures are unavailable, methods exist which allow simulation of flight rockets with cold air axial jets (see, for example reference 6). An estimate of the CT/CRT ratio (although crude) is valuable for use in preliminary design and insuring that the range of CRT values planned for wind tunnel tests are sufficient.

RESULTS

Data presented in the plots show radial thrust effects on stability characteristics, fin normal force, fin hinge moment, and fin root bending moment. Radial thrust effect on longitudinal derivatives and hysteresis effects are also plotted.

The transonic portion of the test was run 24-25 January 1975 and was designated TF360. Several runs were made to determine plume effects at high angles of attack and at low Mack numbers. These conditions approximate exit from the launcher for a free rocket configuration. Typical results at these conditions are shown for the body alone (B) configuration on page 2 of the data figures. Significant plume effects are apparent when the thrust level is increased to a CRT value of 12. With a further increase of CRT to 37.5, plume effects are more severe--but only at angles of attack between + 1.5 degrees. At higher angles of attack stability characteristics tend to approach the jet-off case. These results suggest that the plume effects at a CRT of 37.5 reach forward to the ogive portion of the body or possibly the nose tip. In this case, the short body tested does not represent the plume effects on a much longer body such as that being considered for the free rocket technology program configuration. Therefore, it is recommended that plume effects on long bodies be investigated for several typical conditions.

REFERENCES

- Deep, R. A., Henderson, J. H., and Brazzel, C. E. Thrust Effects on Missile Aerodynamics, US Army Missile Command, Redstone Arsenal, Alabama, Report No. RD-TR-71-9, May 1971.
- Aeroballistics Directorate Staff, Free Flight Rocket Technology Program-Aeroballistics Directorate FY-74 Activity Report. U.S. Army Missile Command, Redstone Arsenal Alabama, Technical Report RD-75-3, 1 July 1974.
- 3. Henderson, J. H., Transonic Wind Tunnel Investigation of Thrust Effects on the Longitudinal Stability Characteristics of Several Body-Fin Configurations (Sting-Mounted Model With Normal-Jet Plume Simulator). US Army Missile Command, Redstone Arsenal, Alabama, Tech Report RD-75-14, 31 December 1974.
- 4. Henderson, J. H., An Investigation of Jet Plume Effects on the Stability Characteristics of a Body of Revolution in Conjunction with Fins of Various Geometry and Longitudinal Positions at Transonic Speeds (Sting Mounted Model with Normal Jet Plume Simulator). US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RS-75-37, 12 June 1975.
- 5. Test Facilities Handbook (Tenth Edition), "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, May 1974.
- 6. Korst, H. H., Approximate Determination of Jet Contours Near the Exit of Axially Symmetrical Nozzles as a Basis for Plume Modeling, Technical Report No. RD-72-14, August 1973, U. S. Army Missile Command, Redstone Arsenal, Alabama.

NOMENCLATURE

SYMBOL	PLOT SYMBOL	DEFINITION
RN/L	RN/L	unit Reynolds number; per ft
٧		velocity; ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
Ψ	PSI	angle of yaw, degrees
ф	PHI	angle of roll, degrees
p		mass density; slugs/ft ³
c_T	СТ	thrust coefficient, axial thrust/qS
c_{T}	CRT	radial thrust coefficient, radial thrust/qS
P _{bAVG} /P _∞	PB/P1	ratio of average base pressure to tunnel freestream static pressure
F.P.	FINPOS	fin position on body:
		 AFT; Fin Hinge line at M.S. 49.750 MID; Fin Hinge line at M.S. 46.000 FWD; Fin Hinge line at M.S. 42.250
a		speed of sound; ft/sec
c_p	CP	pressure coefficient; $(p_1 - p_{\infty})/q$
M	MACH	Mach number; V/a
p		pressure; psf
q	Q(NSM) Q(PSF)	dynamic pressure; 1/2pV ² , psf
p_b/p_{∞}		base pressure ratio

NOMENCLATURE (Continued)

Reference & C.G. Definitions

A _b		base area; m ² , in ²
b	BREF	wing span or reference span; m, in
c.g.		center of gravity
l _{REF} , c	LREF	reference length or wing mean aerodynamic chord; m, in
S, S _{ref}	SREF	reference area based on body diameter, in ²
	MRP	moment reference point
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
		Fin Balances
CNFX	CNFX	fin normal force coefficient, fin normal force qS _{ref}
c _{mH} x	CLMHX	fin hinge moment coefficient, fin hinge moment qSreftref
C _m R _x	CLMRX	fin root bending moment coefficient, fin root bending moment qSreftref
x _{cpfx}	XCPFX	chordwise center of pressure location relative to fin hinge line, positive toward the leading edge, inches
$c_{N_{F_{\mathbf{X}_{\alpha}}}}$	CNFXALFA	fin normal force coefficient derivative with angle, per degree

NOMENCLATURE (Concluded)

Body-Axis System (Main Balance)

CN	CN	normal-force coefficient; $\frac{\text{normal force}}{qS}$
$C_{\mathbf{A}}$	CA	axial-force coefficient; $\frac{axial force}{qS}$
CY	CY	side-force coefficient; $\frac{\text{side force}}{\text{qS}}$
Cm	CLM	pitching-moment coefficient; pitching moment qSl _{REF}
Cn	CYN	yawing-moment coefficient; yawing moment qSb
Cę	CBL	rolling-moment coefficient; rolling moment qSb
$C_{m_{\alpha}}$	CLMALF	pitching moment coefficient derivative with alpha, per degree
CN a	CNALFA	normal force coefficient derivative with respect to angle of attack, per degree

SUBSCRIPTS

h	base
1	local
Š	static conditions
t	total conditions
00	free stream

	T		· · · ·					rEST	RUN	NUM	, DER	S ,				7		7		> 0 z
] -	(2)
9	VARIABLE																	CRT		ICVAR
01-20-76																				٤
10	INDEPENDENT				-	+		+					 					MACH		IDVAR (1)
 W	OEPE				-	+	+	-		-					-				4 -	1
DATE	<u> 1</u> 2				_			\perp		ļ						_				
	TERNA																	4	-	1
۲																				2
SET RUN NUMBER COLLATION SUMMARY	RS I OR	-				+	+	+	\vdash							+-			-	*SF172
3 3	WACH NUMBERS					-	+	+	-							-				*
ATE	CH RI																			ULES
COLL	\$	2.0	¥09															-		SCHEDULES
LE 1 BER	NO.	_				+			T						+	+		PB/P1		1 — 1
TABLE	UES														+	-				CGEFFICIENT
NO.	S/VAL					十	+					-			\top			CA CA		2,cg
SET	AMETERS/VALUES	0	0			-+	+	-	†-	 					\dagger				7	14
DATA	PARAW	B	0			\top												CBL		9.0
	SCHO.	8	0																1	3.0,
-	1 13	CRT	ပ			_	-	+	-							-	-	CYN		1.5,
		Z																	-	1 6
360		COMFIGURATION															ı	ځ		CRT(C)
2/TE		10014	Ш										12.5						-	5
SF17		Ô				Ì							114		1			E G		
: AEDC SF172/TF360		CC .	В	-	\vdash	\dashv	+	+	+	-	-				-		+-	-	-	OF DATA
T : A		DENTIFIER	RXE001																	TVPE OF DATA
TEST		Î O E	ê														<u> </u>	5		2

TABLE 1. (Continued)

	DATA SET/RUN NUMBER COLLATION SUMMARY	MBER COL	ATION	SUMMARY	DATE	E: 01-20-76	9,	
SCHD. PARAMETERS	WETERS		CRT	I OR AL	LTERNATE INDE	PENDENT	VARIABLE)	
ф 8	F.P.MACH[3.0]	1 2	3	4 6	6.5 12	25 37.		100
A 0 0	- 0.2 128					129	130	133
ATT	7 0.4 134				135	136		
В	1.0 137			138				
	1.25 139		140	141 142	143			
	1.5 144	145	146 1	147 148	149			
	1.7 45*	46*	47* 4	48* 49*				TE
 	▼ 2.0 56*	57+	5	58* 59*				STF
, A	3 0.2 103					104	105	107
A	10.4 109			_	110	וו		NUM
В	1.0 112			113				BER
	1.25 114		115	לוו פוו	118			s
	1.50 119	120	121	123 122	124 125			
	1.7 18*	19*	22* 2	20* 21*				
•	2.0 30*	31*	3.	32* 33*	34*			
A	2.3 36*	37*	Ř	38* 39*	40*			
A	0.2 172			173	174	175	176	177
B V V	♥ 0.4 168			169	170	ולו		-
CY CYN	LCBL	CA	PB/Pi		-	CRT	ALPHA	7
CNF3 CNF4	XCPF1	XCPF2	XCPF3	XCPF4	-	CRT	ALPHA	8
CLMH3 CLMH4	CLMR1	,CLMR2	CLMR3	CLMR4		CRT	ALPHA	٦
-4,-3,-2,-1.5,-1	0.5,6.0.5,1,1.5,2,3,4,5,7	GENT SCHE	1,4,5,7,	7,9,11		IDVAR (1)	1) IDVAR (2)	NDV (S
-4,-3,-2,-1.5,-1,	,-0.5,0,0.5,1,1	.5,2	,3,4		*SF172			
Ш	l							

TABLE 1. (Concluded)

A SET /RUN NUMBER COLL ATION SUMI AMETERS R. P MACH 0.01 1 2 3 4 3 1.0 152 3 4 3 1.0 152 154 155 156 157 158 1 1.5 161 162 163 164 165 0 0.2 6.2 6.8 164 165	y DATE: 01-20-76	FOR ALTERNATE INCEPENDENT VARIABLE!	5 16.5 12 25 37.5 50 100 1	.3	91 091 69	96 167	131	132	108 106	EST	RUN	NUA	BEER	5				CRT , ALPHA , 7	4 CRT ALPHA 8	4 , CRT , ALPHA , 8	IDVAR (1) (CVAR (2) NDV	(1) (CVAR (2)
	DATA SET/RUN NUMBER COLLATION SUMMARY	CRT	F. P. MACHIO. 01 1 2 3 1	3 1.0	154 155 156 157	.5 161 162 163 164	0.2		A									CBL CA	. xcpf1 xcpf2	MH4 CLR1 CLMR2	COEFFICIENT SCHEDULES	COEFFICIENT SCHEDULES

Figure 1 - Axis System Sign Convention for Main Balance

Figure 2 - Axis System and Positive Sign Convention for Fins

Figure 3 - AMC Model Drawing

Figure 4 - Sketch of Fins Fl and F4

Figure 5 - Sketch of Model Installation

b. Tunnel 16TFigure 5. Concluded

Figure 6 - Photograph of Model (BF2) in PWT (16T)

Figure 7. - Photograph of Model (BF1) in PWT (16S)

PLOTTED DATA

Tabulations of the plotted data and corresponding source data are available from Data Management Services Operations.

3

PAGE

THRUST EFFECTS ON STABILITY CHARACTERISTICS

Ņ

Ó

9.1-

CLM

-1.5

-2.0 -2.5

-1.0

27.52 27.53

000

2.0

...

СИ

PAGE

כרא

سس ف

CN

0□◊

СN

000044

THRUST EFFECTS ON STABILITY CHARACTERISTICS

CLM

: T

PAGE

PAGE

!

PAGE

THRUST EFFECTS ON FIN NORMAL FORCE

88 88

SARANETRIC VALUES
.000 PHI
3.000 PMCH

AEDC TF360 BODY FIN, BF1

THRUST EFFECTS ON FIN NORMAL FORCE

!

PARAMETRIC VALUES
.000 PHI
3,000 PACH

2.010 3.012

№0□04

AEDC 1F360 B00Y FIN. BF1

THRUST EFFECTS ON FIN NORMAL FORCE

THRUST EFFECTS ON FIN NORMAL FORCE

88

PARAMETRIC VALUES
.000 PHI
3.000 MACH

AEDC TF360 BODY FIN. BF1

THRUST EFFECTS ON FIN NORMAL FORCE

PARAMETRIC VALLES
.000 PMI
3.000 PMCH

BETA FINANS

5.850 0.850

00

AEDC TF360 800Y FIN. BF2

CHET

CM£3

THRUST EFFECTS ON FIN NORMAL FORCE

TYPICAL THRUST EFFECT ON FIN HINGE MOMENT

.05

СГИНІ

8

CLMH2

СГИНЗ

1

(RXE213)

8 8

PARMETRIC VALUES
.000 PHI
3.000 PACH

PINPOS

010. 3.042 4.014 6.006

00044

CLHH4

AEDC TF360 BODY FIN. BF1

THRUSI EFFECTS ON FIN NO. 4 NORMAL FORCE CHARACTERISTICS-FIN IN FORWARD POSITION

DISTRIBUTION

	DISTRIB	01100		
No.	of Copies		No. of	Copies
Defense Documentation Center		NASA-Ames Research Center		
Cameron Station	10	ATTN: Technical Library	_	
Alexandria, Virginia 22314	12	Moffett Field, California 94035	1	
Commanding General		NACA Loude Desease Contan		
US Army Materiel Command		NASA-Lewis Research Center		
Research & Development Directorate		ATTN: Technical Library		
ATTN: DRCRD		Cleveland, Ohio 44135	1	
Washington, D. C. 20315	1	NASA-Marshall Space Flight Center		
nearring con, 27 cr 20020	•	ATTN: Mr. K. Blackwell	1	
Commanding Officer		Mr. H. Struck	ī	
US Army Picatinny Arsenal		Mr. J. Sims	1	
ATTN: SMUPA-VC3, Mr. A. Loeb	*sq man	Technical Library—		
Dover, New Jersey 07801	1	Marshall Space Flight Center,		
		Alabama 35812		
Director		110 Alia Farra Arada		
US Army Mobility Research		US Air Force Academy		
and Development Laboratory ATTN: SAVDL-AS		ATTN: Lt. Col. W. A. Edgington DFAN		
Ames Research Center		USAF Academy, Colorado 80840	1	
Moffett Field, California 94035	1	OSAI Academy, Colorado 80040	•	
	•	Philco Corporation		
Commanding Officer		Aeronutronic Division		
Research Laboratories		ATTN: Technical Information		
ATTN: SMUEA-RA, Mr. Abraham Flatau		Services-Acquisitions		
Edgewood Arsenal, Maryland 21010	1	Mr. L. E. Horowtiz		
		Ford Road		
Commanding Officer		Newport Beach, California 92663	1	l
Air Force Armament Laboratory	1			
ATTN: Mr. C. Butler		Rockwell International		
Mr. F. Howard	1	Columbus Aircraft Division		
Dr. F. Findley	1	ATTN: Mr. Fred Hessman		
Eglin Air Force Base, Florida 3 2542		4300 East Fifth Avenue Columbus, Ohio 43216		1
Arnold Engineering and		COTUMBUS, 01110 43210	1	
Development Center		Sandia Corporation		
ATTN: Dr. McKay	1	Sandia Base Division 9322		
Library	1	ATTN: Mr. W. Curry		
Arnold Air Force Station,		Box 5800		
Tennessee 37389		Albuquerque, New Mexico 87115	1	l
Air Force Flight Dynamics Laboratory		Purdue University		
ATTN: FDMM, Mr. Gene Fleeman		ATTN: Dr. J. Hoffman,		
Wright-Patterson Air Force Base, Ohio 45433	1	Propulsion Center Lafayette, Indiana 47907	1	,
0110 43433	1	Latayette, Indiana 4/90/	,	
Commanding Officer		University of Tennessee		
Ballistic Research Laboratories		Space Institute		
ATTN: AMXRD-BEL, Mr. R. Krieger		ATTN: Dr. J. M. Wu		
Aberdeen Proving Ground,		Tullahoma, Tennessee 37388	1	l
Maryland 21005	1			
Commondan Office		University of Alabama	_	
Commanding Officer		Department of Aerospace Engineering		ı
US Naval Ordnance Laboratories ATTN: Mr. S. Hastings	1	ATTN: Dr. Zien Dr. J. O. Doughty		
Mr. R. T. Hall	î	University, Alabama 35486		
Library	ī	omitar brogg madama be rec		
White Oak	-	Jet Propulsion Laboratory		
Silver Springs, Maryland 20910		California Institute of Technology		
		ATTN: Mr. R. Martin		
NASA-Langley Research Center		4800 Oak Grove Drive		
ATTN: Mr. Leroy Spearman	1	Pasadena, California 91109	1	
Mr. Charles Jackson	1	Undergrades of Managed at 6-3-44-		
Technical Library Langley Field, Virginia 23365	1	University of Missouri at Columbia Dept. of Mechanical Engineering		
Languey Freid, Friginia 2000	The res	ATTN: Dr. D. E. Wollersheim		
Commanding Officer & Director		Columbia, Missouri 65201	1	1
Naval Ship Research and Development		SOLUMBIA, MISSOULL OCCU	,	
Center		University of Illinois		
ATTN: Aerodynamic Laboratory		College of Engineering		
Carderock, Maryland 20007	1	ATTN: Dr. A. L. Addy	1	l
		Dr. H. H. Korst	1	
Naval Wearions Center		Dr. R. A. White		
ATTN; Mr. R. Meeker	,	Engineering Library	1	l
China Lake, California 93555	1	Urbana, Illinois 61801		

John Hopkins University Applied Physics Laboratory ATTN: Dr. L. Cronvich Mr. Gordon Dugger Mr. R. Walker 8621 Georgia Avenue	1 1 1	Lockheed Aircraft Corporation Missile and Space Division ATTN: Technical Information Center P. O. Box 504 Sunnyvale, California	1
Silver Springs, Maryland 20910 University of Notre Dame Dept. of Aerospace Engineering ATTN: Dr. T. J. Mueller Notre Dame, Indiana 46556	1	The Martin-Marietta Corporation Orlando Division ATTN: D. Tipping L. Gilbert Orlando, Florida 32804	1
Commander US Army Material Development and Readiness Command ATTN: DRMRD-MS, Mr. Sol Cohen 5001 Eisenhower Avenue		McDonnel-Douglas Company - West Alin: Library A3-328 5301 Bolsa Avenue Huntington Beach, California 92646 McDonnel-Douglas Corporation	1
Alexandria, Virginia 22333 For Transmittal to:	1	P. O. Box 516 St. Louis, Missouri 63166	1
Dr. Hans-Georg Knoche MBB Ottobrun, Germany DEA Aera Weapons		Northrop Corporation Electro-Mechanical Division ATTN: Mr. E. Clark 500 East Orangethorpe Y20	
Naval Air Systems Command ATTN: Mr. William Volz Air 320-C, Room 778, JP-1 Washington, D. C. 20361 For Transmittal to:	6	Anaheim, California 92801 Emerson Electric Company ATTN: Mr. Robert Bauman B100 Florissant St. Louis, Missouri 73136	1
TICP		Data Management Services Department 2910	
Boeing Company ATTN: Library Unit Chief Mr. R. J. Dixon Mr. H. L. Giles	1 1 1	Chrysler Corporation Space Division ATTN: Mr. N. D. Kemp P. O. Box 29200 New Orleans, Louisiana 70189	6
P. O. Box 3707 Seattle, Washington 98124		Data Management Services Department 5807	
Convair, A Division of General Dynamics Corporation ATTN: Division Library Pomona, California 91776	1	Chrysler Corporation Huntsville Electronics Division ATTN: Mr. J. E. Vaughn 102 Wynn Drive Huntsville, Alabama 35805	1
Nielson Engineering & Research, Inc. ATTN: Dr. Jack N. Nielson 850 Maude Avenue Mountain View, California 94040	1	DRSMI-FR DRSMI-R, Dr. McDaniel R, Dr. Kobler	1 1 1
Hughes Aircraft Company ATTN: Documents Group Technical		-RBD -RKD, Mr. Deep Mr. Henderson	3 1 20
Library Florence Avenue at Teale Street Culver City, California 90230	1	Mr. Craft Mr. Dahlke -RFG, Mr. Sullivan	1 4 1
Ling-Temco-Vought Aerospace Corp. ATIN: Mr. Dick Ellison P. O. Box 404 Warren, Michigan 48090	1	-L, Mr. Voight -R, Col. Gojsza -RPR (Record Set) (Reference Set)	1 1 1
Ling-Temco-Vought Aerospace Corp. Vought Aeronautics Division ATTN: C. R. James, Unit 2-53330 Box 5907 Dallas, Texas 75222	1	e even personal de la companya de la	
Lockheed Missiles & Space Company Huntsville R&E Center ATTN: Mr. J. Benefield 4800 Bradford Boulevard, N.W. Huntsville, Alabama 36005	1		
Control with the transport of the second of the second	•		