HLSC 2P95 Final Exam Review

Lecture 1 (Intro, organ systems, epithelial tissue)

Types of Anatomy

- Microscopic anatomy: Cannot be seen without magnification (cytology, histology)
- Macroscopic anatomy: Can be seen without magnification
 - o Surface (morphology)
 - o Regional (specific area)
 - **o** Systemic (organ systems)

Levels of Organization

Chemical/molecular → Cell → Tissue → Organ → Organ-system

Organ Systems

- **Integumentary:** Protection from environment, controls temperature.
- **Skeletal:** Support/protection, mineral storage, blood formation.
- Muscular: Support, movement, produce heat.
- Nervous: Responds to stimuli, orders organ systems.
- Endocrine: Directs long-term changes.
- Cardiovascular: Transports cells, nutrients & wastes.
- Lymphatic: Fights infection.
- **Respiratory:** Exchanges and delivers air to body.
- **Digestive:** Processes and absorbs food.
- **Urinary:** Eliminates waste
- **Reproductive:** Produce sex cells & hormones.

Body Cavities

- **Ventral** (protection, organ movement with no friction)
 - o **Thoracic** (chest)
 - Left/right pleural (surrounds lungs)
 - Mediastinum (trachea, esophagus)
 - > Pericardial (surrounds heart)
 - O Abdominopelvic (abs)
 - Abdominal (digestive organs)
 - Pelvic (bladder & reproductive organs)

Epithelial tissue

Sheet of cells, covers interior/exterior surfaces.

I.e. skin, digestive system, CVS, respiratory system

Cellularity: cells are close together

Polarity: apical surface (top), contains cilia

Basal surface ("base")

Avascular, regenerates

Simple: protected areas

Stratified: found in mechanical/chemical stresses

Lecture 2 (Connective tissue, bones, cartilage, joints)

Connective tissue

Structural framework of body, stores energy, defends body from microorganisms

3 types:

- Connective Tissue Proper:
 - o Loose: framework
 - **o** Dense: densely packed
- Fluid:
 - o Blood: CVS
 - **o** Lymph: Lymph system
- Supporting:
 - Cartilage: rubberyBone: crystalline
- F Fixed cells = Fibroblast

W - Wandering cells = white blood cells (neutrophil/eosinophil)

Cartilage

- 1. Appositional Growth
 - a. Cells → chondroblasts
 - b. Chondroblasts secrete matrix
 - c. Chondroblast \rightarrow chondrocyte

2. Interstitial Growth

- a. Chondrocytes divide
- b. Daughter cells secrete matrix, cells create cartilage

3 Types:

• **Hyaline:** Stiff, reduces friction. (i.e. coastal cartilage)

• **Elastic:** Returns to original shape, provides support (i.e. ear lobe)

• **Fibrous:** Resists compression, prevents bone-to-bone contact (i.e. pads of knee)

Bones

Osteoblast: immature bone cells, produce osteoids.

Osteocyte: mature bone cells

Osteoclast: breaks down bone cells

Osteoprogenitor: bone stem cell

2 Types:

• **Compact:** Dense & solid, forms walls of bone, contains **osteons** (functional unit of bone)

• Spongy: Lightweight, surrounds bone marrow, forms trabeculae (open network)

Osteon *** Know this slide

Bone Growth

Ossification: Replaces tissue with bone

Osteogenesis: bone formation

Calcification: puts Ca²⁺ in bone

Intramembranous Ossification (Think of the apple sauce "MOTTS" minus one "T")

1. Mesenchymal cells → osteoblasts

- a. Osteoblasts secrete osteoid
- **b.** Osteoid hardens = ossification centre

2. Osteoblasts → osteocytes & formation of spicules

- a. Osteoblasts surround osteoid = osteocyte
- **b.** Ossification centre grows = spicules

3. Trapping Blood vessels

a. Blood vessels grow, spicules surround & trap them.

4. Spongy bone formation

- a. Osteoblasts create bony plates
- **b.** Bony plates fuse together

Endochondrial Ossification (Think of a penis, it enlarges, blood vessels grow, blood supply increases, and it's a spongy bone)

1. Chondrocytes enlarge

- a. Matrix begins to calcify
- **b.** Chondrocytes die

2. Blood vessels grow

- a. Osteoblasts → periosteum
- **b.** Bone collar forms

3. Blood Supply Increases

- a. Osteoblasts move to the centre
- **b.** Calcified matrix replaced by spongy bone

4. Shaft fills with spongy bone

- a. Shaft becomes thicker
- **b.** Osteoclasts make medullary cavity

Further growth:

• **Longitudinal** (length): Epiphyseal plate opens, fills up with spongy bone, pushes plates away, epiphyseal plates close.

 Appositional (diameter): Ridges create a pocket for blood vessel, ridges trap the blood vessel, bone grows inwards creating osteon, circumferential lamellae forms (more layers of bone form).

Factors affecting bone growth

Nutrition: calcium, magnesium, vitamins

Hormones: parathyroid, calcitonin, estrogen

<mark>Joints</mark>

Synarthrosis: no movement

• **Fibrous:** Sutures, gomphosis ("gums" of teeth)

• Cartilaginous: synchondrosis ("Syn" for synarthrosis, "chond" has a "C" like cartilaginous)

• Bony fusion: synostosis ("Bony" = osto)

Amphiarthrosis: little movement

• **Fibrous:** syndesmosis (syndesmosis has a "M" like amphiarthrosis)

• Cartilaginous: symphysis (symphysis has a "M" like amphiarthrosis)

Diarthrosis: free movement

Synovial

Lecture 3 (Muscle tissue, contraction)

- 1. Excitability: can respond to stimuli
- 2. Contractility: can shorten and exert a pull or tension (contract = shorten)
- **3. Extensibility:** can contract over a range of resting lengths (Extend = length)
- 4. Elasticity: can rebound to its original length

3 types:

Skeletal: striated, voluntary, does not reproduce, repairs by myosatellite cells, multiple nuclei

Cardiac: striated, involuntary, heart muscle, has intercalated discs, does not regenerate, one nuclei

Smooth: non-striated, involuntary, spindle-shaped, can regenerate, one central nucleus

Gross anatomy: Connective tissue, muscle, muscle fascicle, muscle fiber

Microanatomy: Muscle fiber, myofibril, sarcomeres, myofilaments

Connective tissue

• **Epimysium:** surrounds entire muscle

• **Perimysium:** divides muscle into fascicles

• Endomysium: surrounds muscle fibers

Muscle fiber

30-40 cm in length

Multiple nuclei

Muscle fibers run parallel to each other

Myofibrils

Organized bundles of contractile protein surrounded by SR (sarcoplasmic reticulum)

Where force generation takes place

Sarcomere

Smallest unit of skeletal muscle

Actin-thin filament

Myosin-thick filament

M-line: middle of A-band, myosin filaments are held together

Z-disc: middle of I-band, actin filaments are held together

I-band: Only actin filaments (light region)

H-zone: middle of A-band, only myosin filaments

A-band: Actin and myosin filaments overlap (dark region)

Summary

Skeletal muscle > muscle fascicles > muscle fibers > myofibrils > sarcomeres > myofilaments > actin and myosin

Contraction

Presence of Ca²⁺ & ATP = actin filaments slide together = contraction

Sliding filament Theory:

- H & I-bands get smaller
- Z-lines move closer
- Myosin does not move
- Actin moves together
- Titin limits length of sarcomere

Contraction Phase: (Easier to remember 3 things, so chunk it up R.M., A.M., P.A.)

- **1. Rigor State** (myosin bound to actin = cross-bridge)
- 2. Myosin Release (ATP binds to myosin and breaks cross-bridge)
- 3. ATP Hydrolysis (ATP breaks down, myosin head goes into "cocked" position)
- **4. Myosin Reattaches** (Myosin head binds to actin = forms cross-bridge)
- **5. Power stroke** (Pi is released, myosin head pulls actin)
- **6. ADP release** (ADP is released, goes back to rigor state)

Excitation Phase: (Remember "Insecure Assholes Causes Castles to Crash")

- **1.** Impulse travels down axon (of nerve)
- 2. Acetylcholine is released
- 3. Causes action potential & release of Ca2+ from SR
- 4. Ca²⁺ binds to actin

^{*}Requires Ca²⁺ for myosin to bind to actin in rigor state

5. Contraction begins

Triad = SR and T-tubules

Paralell: Biceps brachii

Paralell with tendinous bands:

Rectus Abdominis

Wrapping: Supinator

Convergent: Pectorialis major

Unipennate: Extensor digitorum

Bipennate: Rectus femoris

Multipennate: Deltoid

Circular: Orbicularis oris

Types of fibers:

Type 1 = Aerobic

Type 2 = Anaerobic (larger than aerobic)

Classes of Levers

First Class: Fulcrum in the middle (I.e. Neck looking down)

Second Class: Resistance in the middle (I.e. plantar flexion)

Third Class: Force in the middle (I.e. bicep curl)

Lecture 4 Cardiovascular System

Cardiovascular system: transports nutrients, gases, hormones, ions, waste, &

leukocytes, & stabilizes pH

Blood = ~8% of body weight

Terminology: Hypovolemic: low blood volume

Normovolemic: normal blood volume

Hypervolemic: high blood volume

Average blood volume:

Males: 4-6 LFemales: 4-5 L

Average pH: 7.35-7.45

Blood composition:

Plasma: ~55%

White blood cells: <1%Red blood cells: ~45%

Wrong blood type leads to "agglutination" (blockage of small blood vessels)

Universal donor = O negative

Universal recipient = AB positive

Rhogam binds to D-antigen in fetus during pregnancy so Mom doesn't trigger anti-D antibodies and killing baby

Heart

~100 000 beats per day

Pumps ~ 1.5 million gallons of blood per year

Structure of Heart wall

4 Chambers of the heart (Left/right atriums & ventricles) are separated by:

- Interatrial groove: separates atria
- Coronary sulcus: separates atria and ventricles
- Anterior/posterior interventricular sulcus: separates ventricles

Coronary Blood Vessels & branches

Arteries

They are opposites but LCA has circumflex

Right coronary artery (RCA):

- Right marginal branch
- Posterior interventricular branch

Left coronary artery (LCA):

- Left marginal branch
- Anterior interventricular branch
- Circumflex branch

Veins

- Great cardiac vein (delivers blood to coronary sinus)
- Middle cardiac vein (delivers blood to coronary sinus)
- Coronary sinus
- Posterior vein of left ventricle
- Small cardiac vein

Anterior cardiac vein

Ventricles of Heart (right vs left)

Right ventricle	<u>Left Ventricle</u>
Thinner wall	Thicker wall
Weaker contraction	Stronger contraction
Has moderator band	6-7x more powerful than right ventricle

Cardiac cycle

- 1. Atrial systole begins (forces blood to ventricles)
- 2. Atrial systole ends, atrial diastole begins
- 3. Ventricular systole 1st phase (AV valves close)
- 4. Ventricular systole 2nd phase (Pressure increases, Semilunar valves open)
- 5. Ventricular diastole-early (Ventricles relax, cusps close, blood flows to atria)
- **6. Ventricular diastole-late** (All chambers relax, AV valves open, ventricles fill passively)

Lecture 5 Respiratory System

Respiratory system: exchanges gas between air and blood, protects from dehydration, invading pathogens, produces sound, regulates blood volume, BP and body fluid pH.

Upper respiratory: Nose, nasal cavity, sinuses & pharynx

Lower respiratory: Larynx, trachea, bronchi, bronchioles, & alveoli

Respiratory epithelial cells have **cilia** to push mucus up and away from lungs.

Smokers have the cilia damaged and needs to cough to remove the mucus.

Trachea

^{*}Remember that anything below larynx is lower

11 cm long, 2.5 cm diameter

The carina splits the trachea into 2 branches (bronchi)

Levels of bronchi

<u>Lungs</u>

Major Differences of lungs (left vs right)

Right Lung	Left Lung
Has a middle lobe & horizontal fissure	Has a cardiac notch
Shorter and wider	Longer and skinnier
3 secondary bronchi, 10 tertiary bronchi	2 secondary bronchi, 9 tertiary bronchi

Lungs have a "sack" (pleural membrane)

Pleural fluid reduces friction during inhalation & exhalation

Lungs have opposite blood system from body:

- **Pulmonary veins** are red = oxygenated for the heart
- **Pulmonary arteries** are blue = deoxygenated from the heart

2 Types of pneumocytes:

- Pneumocyte type 1: allows for gas exchange
- **Pneumocyte type 2:** is larger and produces surfactant (oily substance)

There is about 150 million alveoli

Muscles of respiration:

Inhalation: external intercostals, diaphragm, pectoral, serratus, & scalene muscles

Exhalation: internal intercostals, transverse thoracis, rectus abdominis

RESPIRATORY FUNCTION

		₹7	\$
TOTAL LUNG CAPACITY [mL²]		5900	4400
VITAL CAPACITY	max oxygen a person can expel from the lungs after a max inhalation	4700	3400
INSPIRATORY RESERVE	max amount of air that can be inspired after a normal inspiration	3000	2100
TIDAL VOLUME	normal volume of air displaced between normal inhalation and exhalation	500	500
EXPIRATORY RESERVE	additional air that can be expired after normal expiration	1200	800
RESIDUAL VOLUME	amount of air left in the lungs after a forced exhalation	1200	1000

^{*}Just be aware of the definitions

Lecture 6 The Nervous System (Brain)

Lobes of the brain:

• Frontal lobe: voluntary control of skeletal muscles

• Occipital lobe: Vision

• Parietal lobe: Touch, pain, taste, temperature

Temporal lobe: Hearing, and smell

Cerebrum vs cerebellum

Cerebrum: Thoughts, intellectual functions, memory, muscle contractions

Cerebellum: Motor functions

Diencephalon and more

Diencephalon

o Thalamus: processes sensory info

o Hypothalamus: controls emotion & hormones

• Mesencephalon: processes visual and sound data, reflexes, consciousness

• **Pons:** relays sensory info to thalamus

Medulla Oblongata: relays sensory info to thalamus, regulates organ systems

White matter vs Gray matter (brain)

Gray matter is made up of **cell bodies**

White matter is made up of axons

Dura matter (hard) \rightarrow arachnoid matter (middle) \rightarrow Pia matter (thin)

*Cerebrospinal fluid (CSF) drains into the sinuses which drains to jugular vein

Ependymal cells help produce CSF (~500 mL/day) in the choroid plexus

Cranial Nerves

1. Olfactory: Sensory, smell

2. Optic: Sensory, vision

3. Oculomotor: Motor, eye movement

4. Trochlear: Motor, eye movement

5. Trigeminal: Sensory & motor, biting & chewing

6. Abducens: Motor, eye movements, lateral movements

7. Facial: Sensory & motor, taste & facial expression

- 8. Vestibulocochlear: Sensory, balance & hearing
- **9. Glossopharyngeal:** Sensory & motor, carries afferent (sensory) and efferent (motor) info.
- **10. Vagus:** Sensory & motor, PSNS control of organ systems (i.e. CVS, digestive system)
- 11. Accessory: Motor, controls neck & back muscles
- **12.** Hypoglossal: Motor, tongue movement

Nervous system Chart

Somatic vs Autonomic

<u>Somatic</u>	<u>Autonomic</u>
Single neuron between CNS & muscle	Two neurons between CNS & organ
Innervates ONLY skeletal muscle	Innervates smooth/cardiac muscles &
	glands
Leads ONLY to excitation	Can be excitatory or inhibitory
Voluntary	involuntary
Myelinated axons	Pre-ganglionic axon myelinated

^{*}PSNS originates from cervical and sacral regions, post-ganglion is short, pre-ganglion is long.

Lecture 7 The Nervous System (Spinal Chord)

^{*}SNS originates from thoracic and lumbar regions, post-ganglion is long, pre-ganglion is short.

Neuron classification

Neurons: transfers info in the nervous system, contains soma, axon, dendrites

Neuroglia: cells that protects neuron

Neuronal Organization circuits

Classification of Neuroglia

CNS neuroglia:

White matter = myelinated axons

Grey matter = unmyelinated axons

Central Nervous system

Brain can work with or without the spinal cord.

Spinal cord is the same, it can work without the brain.

Spinal Cord

45 cm in length

Has 31 spinal segments/nerves

- 8 cervical
- 12 thoracic
- 5 lumbar
- 5 sacral
- 1 coccygeal

Each segment has dorsal root, dorsal root ganglia, ventral root, and spinal nerve.

Spinal meninges provide protection/shock absorption

Reflexes

Reflex: immediate involuntary motor response

Reflex Arc

- 1. Activation of sensory receptor
- 2. Relay info to CNS
- 3. Info processing
- 4. Activation of motor neuron
- 5. Response by effector

Lecture 8 The Digestive System

Peristalsis: moves bolus in a wave like motion

Segmentation: churns and fragments digestive materials

Salivary Glands

Parotid (cheeks): Largest, Drains to parotid duct

Sublingual (under tongue): Drains to sublingual ducts

Submandibular (under mandible): Drains to submandibular ducts

Pharynx

Passage for food, liquid, & air

Pharyngeal muscles: ("Palantini" for palatal, "pharyngeus" for elevators)

- Pharyngeal constrictors
- Laryngeal elevators
 - **o** Palatopharyngeus
 - **o** Stylopharyngeus
- Palatal (Raises soft palate)
 - **o** Tensor veli palantini
 - **o** Levator veli palantini

Stomach

Stores ingested food, produces chyme

Regions of stomach: fundus, cardia, body, and pyloris

Has pyloris and cardiac sphincters

Small intestine

~20 ft long, 1.5-2.5 in diameter

Regions of S.I.:

• **Duodenum:** 10 in long, receives bile and enzymes

• Jejunum: 8 ft long, most digestion and absorption occurs here

• **Ileum:** 12 ft long, controls flow of materials to cecum.

Plicae: has microvilli and absorbs nutrients

Intestinal crypts: contains enteroendocrine cells that produce hormones/enzymes

*Main differences between regions of S.I.: Duodenum & jejunum has plicae, ileum has Peyer's patches

Large Intestine

~5 ft long, 3 in diameter

Reabsorbs water & absorbs vitamins

Stores shit

Flow order of shit

- 1. Shit leaves ileum, enters cecum
- 2. Shit goes up ascending colon
- 3. Around hepatic flexure
- 4. Across transverse colon
- 5. Around splenic flexure
- 6. Down descending colon
- 7. Around sigmoid flexure
- 8. In sigmoid colon
- 9. Into rectum

Haustra: pouches that allow expansion

Taeniae coli: long muscles that help peristalsis

Omental appendices: "Flaps" of sacs of fat in intestine

<u>Liver</u>

Largest visceral organ in body

Regulates blood, metabolism, and stores bile

Liver lobule: functional unit of liver

<u>Gallbladder</u>

Has 3 regions: fundus, body, neck

Cystic duct leads to common bile duct

Stores & modifies bile

Pancreas

Consists of Head, body, tail, pancreatic duct (delivers secretions to duodenum)

Acinar cells: produces digestive enzymes (i.e. lipases, carbohydrases, nucleases, proteinases)

Pancreatic islets: produces hormones (i.e. insulin, glucagon, somatostatin)

Lecture 9 The Urinary System

Regulates ion concentration, BP, stabilize blood ph, prevents dehydration.

Kidney

Produces urine

Blood Supply of Kidney

The Nephron

Functional unit of kidney

Reabsorbs organic material, 80% of water, secretes waste into filtrate.

2 Types:

Cortical: Short nephron loop, 85% of nephrons are cortical

Juxtamedullary: Long nephron loops, 15% of nephrons are juxtamedullary

Renal Corpuscle

~200um diameter

Produces glomerular filtrate (protein free solution)

Consists of:

- Glomerular capsule
 - Parietal layer: lining of proximal convoluted tubule (PCT)
 - o Visceral layer: podocytes
- Glomerulus

Filtration layers:

- Capillary endothelium: Has holes too small for blood cells
- Basal lamina: restricts large proteins, allows small proteins, ions, & nutrients
- Glomerular epithelium: allows water, ions, small organic molecules

Juxtaglomerular complex

Types of cells:

- Macula densa: monitors electrolyte concentration
- Juxtaglomerular: secretes hormones
- Mesangial: provides support for arteries

Produces 2 hormones:

- Renin: regulates BP
- **Erythropoietin:** produces red blood cells

Angiotensin system ------

Proximal Convoluted Tubule (PCT)

Reabsorbs: plasma proteins, all organic nutrients, 60% sodium/chloride ions, and other ions

Nephron Loop

Descending: water enters bloodstream

Ascending: pumps ions out of loop

Distal Convoluted Tubule (DCT)

Secretes ions and acids, reabsorbs water, sodium/calcium ions

Collecting System

Piss from **DCT** empties into **collecting duct**

Travels through papillary duct, minor calyx, major calyx

Exits kidneys through ureter, urinary bladder, urethra

Ureter

Exits kidney into urinary bladder in the trigone area

<u>Urinary bladder</u> (Males vs females)

Males: between rectum and pubis symphysis

Females: Inferior to uterus

<u>Urethra</u> (Males vs Females)

Males: 18-20 cm, has prostatic, membranous, and spongy urethra

Females: 3-5 cm, external urethral orifice near anterior wall of vagina

*Holding our piss is voluntary, we lose control as we age and/or spinal cord injuries.

Lecture 10 The Reproductive System

Male gametes = sperm

Female gametes = ova

Ovum + sperm → fertilization = zygote

Testes

5 cm long, 3 cm wide, 2.5 cm thick, 10-15 g

Hangs outside the body in the scrotum, which is 2°F cooler

Before birth, testes are in the abdominal cavity

Muscles of scrotum

1. Dartos: Contracts, causes wrinkling

2. Cremaster: Contracts, pulls sac closer to body

Spermatogenesis: formation of sperm cells

Spermatogonia: stem cells that become sperm cells

Nurse cells

Supports spermatogenesis, spermiogenesis (provides nutrients)

Secretes inhibin (controls rate of sperm formation), androgen-binding protein

Male Reproductive Tract

Consists of Epididymis. Ductus deferens, & urethra

Accessory glands

- Seminal Glands: ~ 60% semen volume
 - Produces seminal fluid & contents empty to ductus deferens
- Prostate Gland: ~ 20-30% semen volume
 - **o** Weakly acidic, secretes seminalplasmin to prevent UTIs, contents empty to prostatic urethra
- **Bulbo-urethra glands:** ~5% semen volume
 - Secretes alkaline mucus and lubes penis, contents empty to spongy urethra

Ovarian Cycle

- 1. Follicle-stimulating hormone begins cycle
- 2. Primary follicles → secondary follicles
- 3. Secondary follicles → tertiary follicles (~10-14 days)
- 4. Ovulation (Peak estrogen levels)
- 5. Formation of corpus luteum

^{*}Interstitial cells produce and release testosterone

^{*}acrosomal (head of sperm) contains enzymes for fertilization

*No pregnancy corpus lutem becomes corpus albicans

<u>Uterus</u>

Protects embryo

Pear-shaped, 7.5 cm long, 5 cm diameter, 30-40g

3 layers:

- Endometrium:
 - o Functional Layer: contains uterine glands, closest to uterine cavity
 - **o** Basilar Layer: closest to myometrium
- Myometrium
- Perimetrium

Uterine cycle

Menstrual cycle (28 days)

- 1. Proliferation Phase: endometrial lining thickens, prepares for egg implant
- 2. Secretory Phase: endometrial glands enlarge, ready for egg implant
- **3. Menses:** decrease progestin/estrogen, constricts blood vessels, loses endometrial cells (period)

<u>Vagina</u>

Receives the penis ^^, holds sperm, serves as a passageway for birth

~7.5-9 cm long (not big enough ^^)

External Genitalia

Vulva: THE ENTIRE GENITILIA AREA

Vestibule: Opening of vagina, surrounded by the labia minora

Clitoris: Contains erectile tissue

Prepuce: skin surrounding the clitoris

Labia majora and mons pubis: Lateral and superior edges of the vestibule

Hymen (when present): elastic epithelial fold

