1.

IMHT-CET 2022]

(online shift)

(Memory Based Questions)

A circle passes through the origin and has its centre on the line y = x. If it cuts $x^2 + y^2 - 4x - 6y + 10 = 0$ orthogonally, equation of the circle is

If it cuts
$$x^2 + y^2 = x$$

b)
$$x^2 + y^2 - 2x - 4y = 0$$

a)
$$x^2 + y^2 - y - x = 0$$

If it cuts
$$x^2 + y^2 - 4x - 6y + 10$$

a) $x^2 + y^2 - y - x = 0$
c) $x^2 + y^2 + 2x + 2y = 0$
If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$
If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$

c)
$$x^2 + y^2 + 2x + 2y = 0$$

then the value of c is

b)

C)

10.

11.

12

The equation of a circle with centre (1, 0) and circumference 10π units is

3. The equation of
$$x^2 = 0$$

a) $x^2 + y^2 - 2x + 24 = 0$

b)
$$x^2 + y^2 - x - 25 = 0$$

d)
$$x^2 + y^2 + 2x + 24 = 0$$

a)
$$x^2 + y^2 - 2x + 24 = 0$$

c) $x^2 + y^2 - 2x - 24 = 0$
If the lines $2x - 3y = 5$ and $3x - 4y = 7$ are the diameters of a circle of area 154 sq. units.

Then equation of the circle is $\left(Take \ \pi = \frac{22}{7}\right)$

a)
$$x^2 + y^2 - 2x + 2y - 47 = 0$$

b)
$$x^2 + y^2 - 2x + 2y - 49 = 0$$

c)
$$x^2 + y^2 - 2x - 2y - 47 = 0$$

d)
$$x^2 + y^2 - 2x - 2y - 49 = 0$$

c)
$$x^2 + y^2 - 2x - 2y - 47 = 0$$

The parametric equations of the circle $x^2 + y^2 - 6x - 2y + 9 = 0$ are

a)
$$x = 3 + \sin \theta$$
, $y = 1 + \cos \theta$

b)
$$x = 3 + \cos \theta$$
, $y = 1 + \sin \theta$

c)
$$x = 1 + \cos \theta$$
, $y = 3 + \sin \theta$

d)
$$x = \cos \theta$$
, $y = \sin \theta$.

The equation of tangents to the circle $x^2 + y^2 = 4$ which are parallel to x + 2y + 3 = 0 is

a)
$$x + 2y = \pm 2\sqrt{3}$$

b)
$$x + 2y = \pm 2\sqrt{5}$$

b)
$$x + 2y = \pm 2\sqrt{5}$$
 c) $x - 2y = \pm 2\sqrt{5}$ d) $x - 2y = \pm 2$

d)
$$x - 2y = \pm 2$$

Given two circles
$$x^2 + y^2 + 8x - 6y - 24 = 0$$
 and $x^2 + y^2 - 4x + 10y + 20 = 0$. They are

a) disjoint

b) concentric

c) touching internally

d) touching externally

The orthocentre and centroid of a triangle are A (-3, 5) and B (3, 3) respectively. If C is the circumcentre of this triangle, then the radius of circle having line segment AC as a diameter is units.

b) $3\sqrt{10}$

c)
$$\frac{3\sqrt{5}}{2}$$

d)
$$\frac{2}{\sqrt{10}}$$

The parametric equations of the curve $x^2 + y^2 - ax - by = 0$ are

a)
$$x = \frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}} \cos \theta$$
, $y = \frac{b}{2} + \sqrt{\frac{a^2 + b^2}{4}} \sin \theta$

b)
$$x = \frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}} \cos \theta$$
, $y = \frac{b}{2} + \sqrt{\frac{a^2 + b^2}{4}} \sin \theta$

c)
$$x = \frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}} \cos \theta$$
, $y = \frac{-b}{2} + \sqrt{\frac{a^2 + b^2}{4}} \sin \theta$

d)
$$x = \frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}} \cos \theta$$
, $y = \frac{-b}{2} + \sqrt{\frac{a^2 + b^2}{4}} \sin \theta$
If the lines $2x = 4$

If the lines 3x - 4y - 7 = 0 and 2x - 3y - 5 = 0 pass through diameters of circle of area 49π a) $x^2 + y^2 + 2x - 2y - 51 = 0$

c)
$$x^2 + y^2 + 2x + 2y + 47 = 0$$

b)
$$x^2 + y^2 - 2x + 2y + 51 = 0$$

d)
$$x^2 + y^2 - 2x + 2y - 47 = 0$$

[MHT-CET 2021]

(online shift)

- (Memory Based Questions) The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$ 11.
 - a) cut orthogonally

b) touch each other internally

c) intersect at two points

- If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2 \propto x + 2y + 1 = 0$ touch each other internally, then \propto 12. is equal to

a)
$$\pm \frac{4}{3}$$

nits

- b) 1
- c) $\frac{4}{3}$
- The length of the common chord of the two circles $x^2 + y^2 4y = 0$ and $x^2 + y^2 - 8x - 4y + 11 = 0$ is

- a) $\frac{\sqrt{145}}{4}$ cm b) $\frac{\sqrt{11}}{2}$ cm c) $\sqrt{135}$ cm d) $\frac{\sqrt{135}}{4}$ cm
- Area of the equilateral triangle inscribed in the circle $x^2 + y^2 - 7x + 9y + 5 = 0$ is
 - a) $\frac{155}{9}$ $\sqrt{3}$ square units

b) $\frac{168}{9}$ $\sqrt{3}$ square units

c) $\frac{175}{\Omega}$ $\sqrt{3}$ square units

- d) $\frac{165}{9}$ $\sqrt{3}$ square units
- If the lines 3x 4y + 4 = 0 and 6x 8y 7 = 0 are tangents to a circle, then the radius of 15. the circle is
 - a) $\frac{7}{4}$ units
- b) $\frac{3}{4}$ units
- c) $\frac{4}{3}$ units d) $\frac{1}{4}$ units

- The equation of the circle whose centre lies on the line x 4y = 1 and which Pa 16. through the points (3, 7) and (5, 5) is b) $x^2 + y^2 - 6x - 2y - 25 = 0$
 - a) $x^2 + y^2 + 6x 2y + 90 = 0$

- c) $x^2 + y^2 6x + 2y 30 = 0$
- d) $x^2 + y^2 + 6x + 2y 90 = 0$
- The equation of a circle that passes through the origin and cut off intercepts -2
 - on the X axis and Y axis respectively is
 - a) $x^2 + y^2 2x + 3y = 0$

b) $x^2 + y^2 + 2x + 3y = 0$ d) $x^2 + y^2 - 2x - 3y = 0$

c) $x^2 + y^2 + 2x - 3y = 0$

- If a circle passes through the points (0, 0) (x, 0) and (0, y) then the co-ordinates of 18. centre are

- a) $\left(\frac{-x}{2}, \frac{y}{2}\right)$ b) $\left(\frac{x}{2}, \frac{y}{2}\right)$ c) $\left(\frac{-x}{2}, \frac{-y}{2}\right)$ d) $\left(\frac{x}{2}, \frac{-y}{2}\right)$
- Equation of the chord of the circle $x^2 + y^2 4x 10y + 25 = 0$ having midpoint (1, 2)19.
 - a) -x + 3y = 5
- b) x + 3y = 7
- c) 5x + y = 7
- d) 3x + y = 5
- If y = 2x is a chord of circle $x^2 + y^2 10x = 0$, then the equation of circle with this chore 20. as diameter is
 - a) $x^2 + y^2 2x 4y = 0$

b) $x^2 + y^2 + 2x + 4y = 0$

c) $x^2 + y^2 - 2x + 4y = 0$

d) $x^2 + y^2 + 2x - 4y = 0$

[MHT-CET 2020]

(online shift)

(Memory Based Questions)

- If θ is a parameter, then the parametric equations of the circle $x^2 + y^2 6x + 4y 3 = 0$ are 21.
 - a) $x = 3 + 4 \sin \theta$ and $y = 2 + 4 \cos \theta$
- b) $x = 3 + 4 \cos \theta$ and $y = -2 + 4 \sin \theta$
- c) $x = -3 + 4 \sin \theta$ and $y = -2 + 4 \cos \theta$
- d) $x = 3 + 4 \cos \theta$ and $y = 2 + 4 \sin \theta$
- The Cartesian equation of the curve given by $x = 6 \cos \theta$, $y = 6 \sin \theta$ is 22. a) $x^2 + y^2 = 6$

- b) $x^2 + y^2 = 5$ c) $x^2 + y^2 = 16$ The equation of the circle whose end points of a diameter are the centres of the circles 23. $x^2 + y^2 + 2x - 4y + 1 = 0$ and $x^2 + y^2 - 8x + 6y + 17 = 0$ is a) $x^2 + y^2 + 3x - y - 10 = 0$

 - c) $x^2 + y^2 3x + y 10 = 0$

- b) $x^2 + y^2 3x y 10 = 0$
- If A (3, -2, 2), B (2, λ + 1, 5) are the end points of the diameter of the circle and if the point d) $x^2 + y^2 + 3x + y - 10 = 0$

- The centre and radius of a circle $x = 4a\left(\frac{1-t^2}{1+t^2}\right)$, $y = \frac{8at}{1+t^2}$ are respectively. 25.
 - a) (0,0) and 2a units
 - c) (0,0) and a units

- b) (0, 0) and 4a units d) (0, 0) and 3a units

- 3) ()

Th

T

Circles

26.

- 16 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
 - 37.

 - 38.

u basses									
3268				39			MHT-CET		
	26.	The equation	of a circle p	assing throu	gh origin and	making x -	intercept 3	and	
		a) $x^2 + y^2 + 3x$	-5v=0				r i i	5) 750 JST	
5 and 3		c) $x^2 + y^2 - 3x$	-5v = 0		b) $x^2 + y^2 - 3x$				
43	27.	If the radius o	facircle $x^2 + y$	$\frac{2}{4} - 4x + 6y - 1$	d) $x^2 + y^2 + 3x$ < = 0 is 5 then K	+5y-0			
			C. J. Carl		4.00				
	28.	The co-ordinat	es of the midp	oint of the cl	c) = 12 hord cut off on t	d) - 2 he line 2 v = 5) 19 = 0.1	har the	
of its				ES-02-110-110-200	a car on on i	The fine $2x - 3$	1y + 10 = 0 t	by the	
140		a) (4, 1) The radius of al	b) (2, 4	1)	c) (1, 1)	d) (1,	4)		
	29.	a) 2 units	ne circle passi	ng through t	c) (1, 1) he points (5, 7),	(2, -2) and (-2, 0) is		
	30.	30. The equation of the circle, the end points of whose diameter are the centres of the circles $x^2 + y^2 - 2x + 3y - 3 = 0$ and $x^2 + y^2 + 6x - 12y - 5 = 0$, is							
) is	a	$2x^2 + 2y^2 + 4x$	c + 9y - 24 - 0	$y = x^2 + y^2$	x + y + 6x - 12y - 5 = 0, is				
	c	$2x^2 + 2y^2 + 4x$	y = 24 = 0 y = 24 = 0		b) $2x^2 + 2y^2 + \dots$	4x - 9y + 24 =	= 0		
	31. T	he cartesian eq	uation of the	011 #*** 0	d) $2x^2 + 2y^2 - x^2$	4x - 9y - 24 =	= 0		
Prd	a)	$x^2 + y^2 + 6x -$	$4\nu + 12 = 0$	curve $\chi = 3 +$	$5\cos\theta \text{ and } y =$	$2 + 5 \sin \theta$ is	$(0 \le \theta \le 2)$	2π)	
		$x^2 + y^2 + 6x + 6$, , ,		b) $x^2 + y^2 - 6x$	+4y-12=0)		
		3	-9 12 - 0	[MUT OF	d) $x^2 + y^2 - 6x$	-4y - 12 = 0			
	32. Th	e equation of	the circle co	[MHT-CE]	2019]		¥		
	tou	x iching the $y-x$	axis is	icentric wit	h the circle x^2	$+ y^2 - 6x -$	4y - 12 =	0 and	
		$x^2 + y^2 - 6x - 4$							
	·c)	$x^2 + y^2 - 6x - 4$			b) $x^2 + y^2 - 6x$	-4y-9=0			
3.				,	d) $x^2 + y^2 - 6x$	-4y+4=0			
33. The intercept on the line $y = x$ by the circle $x^2 + y^2 - 2x = 0$ is AB. The equation of the circle with AB as a diameter is									
		$x^2 + y^2 - x - y =$	- araticici 19	i i parate					
		$x^2 + y^2 + x + y =$			b) $x^2 + y^2 + 3x$.960	
34		V2-07			d) $x^2 + y^2 - 3x$	+y=0			
34. The parametric equations of the circle $x^2 + y^2 + 2x - 4y - 4 = 0$ are a) $x = 1 + 3\cos\theta$, $y = 2 + 3\sin\theta$ b) $x = 1 + 3\cos\theta$, $y = -2 + 3\sin\theta$									
1	a) x	$-1+3\cos\theta$, y	$y = 2 + 3 \sin \theta$		b) $x = 1 + 3 \cos x$	θ , $y = -2 + $	$3 \sin \theta$		
0.5	,	2 . 5 . 605 0,	y 2 + 3 SI	n o	d) $x = -1 + 3 cc$	10 A 2 . 5			
35.	11 1116	radius of the	circle $x^2 + y^2$	-18x + 12y	+ k = 0 is 11 up	nits, then th	e value o	fkio	
	-/		D) 4	19	c) 3	TV .	e e		
36.	If (a, b) and (4, 3) are	end – points	of a diame	ter of the circle	$\alpha_j = \frac{1}{2}$			
	(a,b) =	*******	•		or the effete	x + y - + 4x	-6y + 11 =	0, then	
	a) (-8	3, 3)	b) (8.3)		a) (8 2)		_		
				MHT-CET		d) (–	8, -3)		
37.	Letac	ircle nacces t	hrough noin	to (4, 0)	2023]				
37. Let a circle passes through points $(4, 0)$ and $(0, 2)$ and its centre lies on y-axis. If the radius of this circle is r, then the value of $r^2 - r + 1$ is									
	a) 10	or this circle	b) 11	varue or /	- / + 1 lS]				
38.		ne nernendic			2) 20	d) 21			
A STATE OF	the line	2r + 11 + 12 -	O then man	or a point	P on the circle	$x^2 + y^2 + 2x$	+2y-3=	= 0 from	
	_	22 9 10	o, then maxi	mum possi	ble value of λ	is	7.		
ć	a) √5	*	b) $2\sqrt{5}$	c) 3√5	d) 4	/5		
_						, 1	· M		