Definition of a Group

- <u>Reminders</u>: HW1 due Wednesday 5pm Office hours today at 10am
- <u>Video</u>: A group is a set with a bin any operation (e.g. + or •) that satisfies three axioms.

Worksheet 4: Definition of a Group

Math 335

Equity manager (person whose first name comes alphabetically last):
Reporter (person whose first name comes alphabetically second):
Get to know each other: Do you have any pets?

- 1. Let's try to figure out whether \mathbb{R} is a group under the operation of multiplication.
 - 0) Closure: Is \mathbb{R} closed under multiplication?

Yes: the product of two real numbers is a real number.

- 1) **Associativity**: I'll spoil this one for you, since it's hard to check: multiplication of real numbers is associative.
- 2) **Identity**: Does \mathbb{R} have an identity element for multiplication? If so, what is it?

3) **Inverses**: Do all elements $a \in \mathbb{R}$ have inverses under multiplication? If so, what is the inverse of a?

No! If
$$a \neq 0$$
, then the inverse of a is $1/a$, but 0 has no inverse.

2. Based on the answers to the above questions, is \mathbb{R} a group under the operation of multiplication? If not, do you see a way you can modify it to make it a group?

3. Can you think of any other sets that are groups under the operation of multiplication?

Challenge: Repeat the steps of Problem 1 to try to figure out whether the set

$$G = \{2 \times 2 \text{ matrices with real numbers as entries}\}$$

is a group under the operation of matrix multiplication. If not, do you see a way to modify it to make it a group?

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$