import os In [49]: #allows plots to appear directly in the notebook %matplotlib inline In [50]: pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) In [51]: #upload data df = pd.read_excel(r"C:\Users\Sierra\Documents\los_and_readmission.xlsx") In [53]: #shape of data frame df.shape Out[53]: (146606, 40) In [54]: #examine columns in data set df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 146606 entries, 0 to 146605 Data columns (total 40 columns): 146606 non-null int64 ENCOUNTER_KEY PATIENT_NUMBER 146606 non-null int64 146606 non-null object gender 146606 non-null object race_cd PatientAge 146606 non-null int64 146606 non-null object Diagnosis_Group 146606 non-null int64 icd9_target DRG_APR_CODE 146606 non-null object DRG_APR_DESC 146606 non-null object DRG_APR_SEVERITY 146413 non-null float64 146606 non-null int64 DIAGNOSIS_SUBCAT_CODE DIAGNOSIS_SUBCAT_DESC 146606 non-null object DIAGNOSIS_ICD_CODE 146606 non-null float64 99875 non-null float64 PROCEDURE_SUBCAT_CODE PROCEDURE_SUBCAT_DESC 99875 non-null object PROCEDURE_ICD_CODE 99875 non-null float64 DOCTOR 146606 non-null int64 146606 non-null datetime64[ns] ADMIT_DATE 146606 non-null datetime64[ns] DISCHARGE_DATE 22642 non-null datetime64[ns] readmit_date 22642 non-null datetime64[ns] readmit_discharge_date 22642 non-null object readmit_days 146606 non-null int64 LENGTH_OF_STAY 146606 non-null int64 ICU_DAYS DISCHARGED_TO 146606 non-null object 146606 non-null int64 op_visits6 146606 non-null object Standard_Orders_Used 146413 non-null float64 Num_Chronic_Cond 146606 non-null int64 Disch_Nurse_ID admit_month 146606 non-null int64 22642 non-null float64 readmit_month order_set_used 146606 non-null int64 order_total_charges 146606 non-null int64 readmit_number 146606 non-null int64 operationcount 146606 non-null int64 **HOSPITAL** 146606 non-null object 146606 non-null int64 ZIP 146606 non-null object 146606 non-null object City 146606 non-null object County_name dtypes: datetime64[ns](4), float64(6), int64(16), object(14) memory usage: 44.7+ MB In [55]: #examine first few rows of data df.head() Out[55]: ENCOUNTER_KEY PATIENT_NUMBER gender race_cd PatientAge Diagnosis_Group icd9_target DRG_APR_CODE DRG_APR_DESC DRG_APR_SEVERITY 105240011 9921900011 194 HEART FAILURE 2.0 105240017 9921900017 67 CHF 194 HEART FAILURE 1.0 1 White 105240019 9921900019 CHF 194 HEART FAILURE 1.0 OTHER 105240021 9921900021 72 2.0 AMI 3 White **PNEUMONIA** 105240029 9921900029 White 75 CHF 194 HEART FAILURE 2.0 In [56]: #examine descriptive statistics df[['ENCOUNTER_KEY', 'PATIENT_NUMBER', 'PatientAge', 'icd9_target', 'DRG_APR_SEVERITY']].describe() Out[56]: ENCOUNTER_KEY PATIENT_NUMBER PatientAge icd9_target DRG_APR_SEVERITY 1.466060e+05 146606.000000 146606.000000 146413.000000 1.466060e+05 count 1.053277e+08 9.921988e+09 74.440848 0.876172 2.539945 mean 4.247076e+04 0.329387 0.746014 4.247076e+04 13.267879 1.052400e+08 9.921900e+09 27.000000 0.000000 1.000000 min 1.052911e+08 1.000000 2.000000 25% 9.921951e+09 69.000000 50% 1.053278e+08 9.921988e+09 76.000000 1.000000 3.000000 3.000000 1.053644e+08 9.922024e+09 83.000000 1.000000 75% max 1.054011e+08 9.922061e+09 101.000000 1.000000 4.000000 In [57]: #examine descriptive statistics df[['DIAGNOSIS_SUBCAT_CODE', 'PROCEDURE_SUBCAT_CODE', 'DOCTOR', 'LENGTH_OF_STAY']].describe() Out[57]: DIAGNOSIS SUBCAT CODE PROCEDURE SUBCAT CODE DOCTOR LENGTH OF STAY count 146606.000000 99875.000000 146606.000000 146606.000000 446.938972 76.542148 268245.745208 5.428925 mean 24.928839 37313.516974 33.820447 4.100839 std 0.000000 201620.000000 31.000000 1.000000 min 428.000000 39.000000 235415.000000 25% 3.000000 428.000000 88.000000 268058.000000 50% 4.000000 486.000000 7.000000 75% 89.000000 297501.000000 99.000000 344581.000000 783.000000 32.000000 max In [58]: #examine descriptive statistics df[['ICU_DAYS','op_visits6','Num_Chronic_Cond','Disch_Nurse_ID','admit_month']].describe() Out[58]: ICU DAYS op_visits6 Num_Chronic_Cond Disch_Nurse_ID admit_month count 146606.000000 146606.000000 146413.000000 146606.000000 146606.000000 1.018550 157374.126925 2.785398 2.464674 5.916504 mean 158107.900859 3.832078 2.965829 0.937125 3.635043 0.000000 0.000000 1001.000000 1.000000 0.000000 min 25% 0.000000 0.000000 0.000000 13005.000000 3.000000 2.000000 1.000000 100292.000000 5.000000 50% 2.000000 75% 4.000000 4.000000 1.000000 310012.000000 10.000000 29.000000 31.000000 4.000000 827298.000000 12.000000 max In [59]: #examine descriptive statistics df[['readmit_month','order_set_used','order_total_charges','readmit_number','operationcount','ZIP']].describe() Out[59]: readmit_month order_set_used order_total_charges readmit_number operationcount 22642.000000 146606.000000 146606.000000 146606.000000 146606.000000 146606.000000 count 6.142523 0.802511 28723.934020 0.154441 0.787962 55308.679195 mean 8474.330612 3.470503 0.398105 0.361372 0.806079 1141.573432 -2104.000000 1.000000 0.000000 0.000000 0.000000 50644.000000 1.000000 25% 3.000000 22306.000000 0.000000 0.000000 55406.000000 55406.000000 50% 6.000000 1.000000 27839.000000 0.000000 1.000000 75% 9.000000 1.000000 34368.000000 0.000000 1.000000 55437.000000 67671.000000 12.000000 1.000000 1.000000 6.000000 58072.000000 max #drop uselss and data leakage into the future numeric columns In [60]: df.drop(['ENCOUNTER_KEY', 'PATIENT_NUMBER', 'icd9_target', 'DOCTOR', 'Disch_Nurse_ID', 'readmit_month', 'order_total_charges', 'readmit_number', 'ZIP'], inplace = True, axis = 1) In [61]: #check for linear relationships among columns #note strong correlation between LENGTH_OF_STAY and ICU_DAYS df.corr() Out[61]: PatientAge DRG_APR_SEVERITY DIAGNOSIS_SUBCAT_CODE DIAGNOSIS_ICD_CODE PROCEDURE_SUBCAT_CODE PROCEDURE PatientAge 1.000000 0.019316 -0.023399 -0.023311 0.015013 DRG_APR_SEVERITY 0.019316 1.000000 -0.005591 -0.005804 -0.187127 DIAGNOSIS_SUBCAT_CODE -0.023399 -0.005591 1.000000 0.999981 -0.196678 DIAGNOSIS_ICD_CODE -0.005804 0.999981 1.000000 -0.196403 -0.023311 PROCEDURE_SUBCAT_CODE 0.015013 -0.187127 -0.196678 -0.196403 1.000000 PROCEDURE_ICD_CODE -0.186313 -0.199526 -0.199249 0.999950 0.014747 LENGTH_OF_STAY -0.005383 0.234020 -0.005533 -0.005299 -0.127479 0.229224 0.018182 0.018440 -0.139628 ICU_DAYS -0.007687 0.013638 0.023032 -0.010198 -0.010270 -0.005806 op_visits6 -0.013398 -0.064415 -0.064712 0.021335 Num_Chronic_Cond -0.027101 admit_month -0.023886 -0.050489 -0.014885 -0.014845 -0.019895 0.027166 -0.001746 -0.031455 -0.031316 0.004383 order_set_used operationcount -0.007898 -0.007982 -0.040662 -0.040702 -0.011674 In [62]: #printed : strong correlation between LENGTH_OF_STAY and ICU_DAYS df['LENGTH_OF_STAY'].corr(df['ICU_DAYS']) Out[62]: 0.9877336804958825 In [63]: #check values and counts of column df['gender'].value_counts().to_dict() Out[63]: {'F': 83002, 'M': 63604} In [64]: #check values and counts of column df['race_cd'].value_counts().to_dict() Out[64]: {'White': 125231, 'Black': 13849, 'Others': 7526} In [65]: #check values and counts of column df['Diagnosis_Group'].value_counts().to_dict() Out[65]: {'CHF': 95270, 'AMI': 40143, 'COPD': 11193} In [66]: #check values and counts of column df['DIAGNOSIS_SUBCAT_DESC'].value_counts().to_dict() Out[66]: {'HEART FAILURE': 87828, 'PNEUMONIA ORGANISM UNSP': 32531, 'CHRONIC BRONCHITIS': 7761, 'OTHER BACTERIAL PNEUMONI': 3763, 'PNEUMOCOCCAL PNEUMONIA': 2985, 'HYPERTENSIVE HEART AND C': 2904, 'HYPERTENSIVE HEART DISEA': 1744, 'OTHER RHEUMATIC HEART DI': 1635, 'ASTHMA': 1159, 'BRONCHIECTASIS': 1016, 'EMPHYSEMA': 820, 'VIRAL PNEUMONIA': 576, 'ACUTE MYOCARDIAL INFARCT': 481, 'CHRONIC AIRWAY OBSTRUCTI': 388, 'CHRONIC Hosp 46 HEART': 291, 'PNEUMONIA DUE TO OTHER S': 192, 'SYMPTOMS CONCERNING NUTR': 98, 'SEPTICEMIA': 97, 'OTHER AND UNSPECIFIED DI': 97, 'BRONCHOPNEUMONIA ORGANI': 96, 'DISORDERS OF FLUID ELEC': 95, 'DISEASES DUE TO OTHER MY': 49} In [67]: #notice DIAGNOSIS_SUBCAT_DESC and DIAGNOSIS_SUBCAT_CODE have same number of unique values len(df['DIAGNOSIS_SUBCAT_DESC'].unique()) Out[67]: 22 In [68]: len(df['DIAGNOSIS_SUBCAT_CODE'].unique()) Out[68]: 22 In [69]: #check values and counts of column df['DRG_APR_DESC'].value_counts().to_dict() Out[69]: {'HEART FAILURE': 93725, 'OTHER PNEUMONIA': 34636, 'CHRONIC OBSTRUCTIVE Hosp 46 DISEASE': 9611, 'MAJOR RESPIRATORY INFECTIONS & INFLAMMATIONS': 2271, 'CYSTIC FIBROSIS - Hosp 46 DISEASE': 2012, 'RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT 96+ HOURS': 961, 'ACUTE MYOCARDIAL INFARCTION': 481, 'HIV W MAJOR HIV RELATED CONDITION': 390, 'HIV W ONE SIGNIF HIV COND OR W/O SIGNIF RELATED COND': 389, 'OTHER CIRCULATORY SYSTEM DIAGNOSES': 291, 'OTHER RESPIRATORY & CHEST PROCEDURES': 290, 'NODATA': 193, 'TRACHEOSTOMY W LONG TERM MECHANICAL VENTILATION W/O EXTENSIVE PROCEDUR': 193, 'CARDIAC CATHETERIZATION W CIRC DISORD EXC ISCHEMIC HEART DISEASE': 193, 'BPD & OTH CHRONIC RESPIRATORY DISEASES ARISING IN PERINATAL PERIOD': 98, 'MALNUTRITION, FAILURE TO THRIVE & OTHER NUTRITIONAL DISORDERS': 98, 'EXTENSIVE PROCEDURE UNRELATED TO PRINCIPAL DIAGNOSIS': 98, BRONCHIOLITIS & RSV PNEUMONIA': 97, 'CONNECTIVE TISSUE DISORDERS': 97, 'MAJOR RESPIRATORY & CHEST PROCEDURES': 97, 'MODERATELY EXTENSIVE PROCEDURE UNRELATED TO PRINCIPAL DIAGNOSIS': 97, 'SEPTICEMIA & DISSEMINATED INFECTIONS': 97, 'TRACHEOSTOMY W LONG TERM MECHANICAL VENTILATION W EXTENSIVE PROCEDURE': 96, 'ELECTROLYTE DISORDERS EXCEPT HYPOVOLEMIA RELATED': 95} In [70]: | #notice DIAGNOSIS_SUBCAT_DESC and DIAGNOSIS_SUBCAT_CODE have same number of unique values len(df['DRG_APR_DESC'].unique()) Out[70]: 24 In [71]: len(df['DRG_APR_CODE'].unique()) Out[71]: 24 In [72]: #notice DRG_APR_CODE is not stored as numeric due to @@@@@ #no need to fix since it is a duplicate of DRG_APR_DESC df['DRG_APR_CODE'].value_counts().to_dict() Out[72]: {'194': 93725, '139': 34636, '140': 9611, '137': 2271, '131': 2012, '130': 961, '190': 481, '892': 390, '894': 389, '207': 291, '121': 290, '191': 193, '005': 193, '@@@@@': 193, '421': 98, '132': 98, '950': 98, '951': 97, '120': 97, '138': 97, '720': 97, '346': 97, '004': 96, '425': 95} In [73]: #check values and counts of column df['PROCEDURE_SUBCAT_DESC'].value_counts().to_dict() Out[73]: {'OTHER DIAGNOSTIC RADIOLO': 47026, 'OTHER NONOPERATIVE PROCE': 17120, 'INCISION, EXCISION, AND': 11635, 'OTHER OPERATIONS ON VESS': 5154, 'NONOPERATIVE INTUBATION': 5016, 'OTHER OPERATIONS ON LUNG': 4053, 'OPERATIONS ON CHEST WALL': 2462, 'INTERVIEW, EVALUATION, C': 2310, 'OTHER OPERATIONS ON HEAR': 821, 'NUCLEAR MEDICINE': 811, 'OPERATIONS ON SPINAL COR': 578, 'PROCEDURES RELATED TO TH': 383, 'OTHER OPERATIONS ON LARY': 336, 'OTHER OPERATIONS ON ABDO': 293, 'OPERATIONS ON BONE MARRO': 288, 'OPERATIONS ON SKIN AND S': 285, 'OPERATIONS ON NOSE': 195, 'REPAIR AND PLASTIC OPERA': 193, 'PROCEDURES AND INTERVENT': 192, 'INCISION AND EXCISION OF': 146, 'REPLACEMENT AND REMOVAL': 98, 'OPERATIONS ON RECTUM REC': 97, 'OPERATIONS ON LYMPHATIC': 97, 'OTHER OPERATIONS ON TEET': 96, 'OPERATIONS ON ANUS': 96, 'OPERATIONS ON LIVER': 94} In [74]: #notice PROCEDURE SUBCAT DESC and PROCEDURE SUBCAT CODE have almost same number of unique values len(df['PROCEDURE_SUBCAT_DESC'].unique()) Out[74]: 27 In [75]: len(df['PROCEDURE_SUBCAT_CODE'].unique()) Out[75]: 28 In [76]: #notice ADMIT_DATE has too many unique values to examine count of each len(df['ADMIT_DATE'].unique()) Out[76]: 317 In [77]: #check values and counts for column df['Standard_Orders_Used'].value_counts().to_dict() Out[77]: {'Y': 117653, 'N': 28953} In [78]: #check values and counts for column df['HOSPITAL'].value_counts().to_dict() Out[78]: {'St. Anthony Medical Center': 69577, 'Mercy Hospital': 34840, 'Hilding-Long Memorial Hospital': 18109, 'Oxbow Regional Hospital': 9133, 'Independence Medical Center': 5787, 'Superior-Parkland Hospital': 5113, 'Valley City Regional Hospital': 2601, 'Delaware County Hospital': 1446} In [79]: #check values and counts for column df['STATECODE'].value_counts().to_dict() Out[79]: {'MN': 122526, 'WI': 14246, 'IA': 7233, 'ND': 2601} In [80]: #check values and counts for column df['City'].value_counts().to_dict() Out[80]: {'Minneapolis': 69577, 'Bloomington': 34840, 'Park Rapids': 18109, 'Eau Claire': 9133, 'Waterloo': 5787, 'Parkland': 5113, 'Valley City': 2601, 'Manchester': 1446} In [81]: #check values and counts for column df['County_name'].value_counts().to_dict() Out[81]: {'Hennepin': 104417, 'Hubbard': 18109, 'Eau Claire': 9133, 'Black Hawk': 5787, 'Douglas': 5113, 'Barnes': 2601, 'Delaware': 1446} In [82]: #drop columns with data leakage into the future #drop redundant and useless columns df.drop(['Diagnosis_Group','DRG_APR_CODE','DRG_APR_DESC','DIAGNOSIS_SUBCAT_DESC','DIAGNOSIS_SUBCAT_CODE','DIAGNOSIS_ ICD_CODE', 'PROCEDURE_SUBCAT_CODE', 'PROCEDURE_ICD_CODE', 'STATECODE', 'City', 'County_name', 'ADMIT_DATE', 'DISCHARGE_DAT E', 'readmit_date', 'readmit_discharge_date', 'readmit_days', 'DISCHARGED_TO'], inplace = **True**, axis = 1) In [83]: #null value check df.isnull().sum()/len(df)*100 Out[83]: gender 0.000000 0.000000 race_cd PatientAge 0.000000 DRG_APR_SEVERITY 0.131645 PROCEDURE_SUBCAT_DESC 31.875230 LENGTH_OF_STAY 0.000000 0.000000 ICU_DAYS op_visits6 0.000000 Standard_Orders_Used 0.000000 0.131645 Num_Chronic_Cond 0.000000 admit_month 0.000000 order_set_used operationcount 0.000000 **HOSPITAL** 0.000000 dtype: float64 In [84]: #drop null values for DRG_APR_SEVERITY df = df[df['DRG_APR_SEVERITY'].notna()] In [85]: #drop null values for Num_Chronic_Cond df = df[df['Num_Chronic_Cond'].notna()] In [86]: #impute null values of PROCEDURE_SUBCAT_DESCn with No Procedure df['PROCEDURE_SUBCAT_DESC'].fillna('No Procedure', inplace = True) In [87]: #null value check df.isnull().sum()/len(df)*100 Out[87]: gender 0.0 0.0 race_cd 0.0 PatientAge DRG_APR_SEVERITY PROCEDURE_SUBCAT_DESC 0.0 LENGTH_OF_STAY 0.0 ICU_DAYS 0.0 op_visits6 Standard_Orders_Used 0.0 Num_Chronic_Cond 0.0 admit_month 0.0 order_set_used 0.0 operationcount 0.0 **HOSPITAL** 0.0 dtype: float64 In [88]: #get dummy variables and drop first column gender = pd.get_dummies(df['gender'], drop_first=True) In [89]: #get dummy variables and drop first column race_cd = pd.get_dummies(df['race_cd'],drop_first=True) In [90]: #get dummy variables and drop first column PROCEDURE_SUBCAT_DESC = pd.get_dummies(df['PROCEDURE_SUBCAT_DESC'], drop_first=True) In [91]: #get dummy variables and drop first column Standard_Orders_Used = pd.get_dummies(df['Standard_Orders_Used'], drop_first=True) In [92]: #get dummy variables and drop first column admit_month = pd.get_dummies(df['admit_month'], drop_first=True)

In [93]: #get dummy variables and drop first column

In [95]: #drop original dummy variables from data frame

In [94]: #concatentate dummies with data frame

In [96]: #export as csv

In []: #Project paused

HOSPITAL = pd.get_dummies(df['HOSPITAL'], drop_first=True)

df.to_csv(r'C:\Users\Sierra\Documents\Preprocessed_LOS_READM.csv')

df = pd.concat([df,gender,race_cd,PROCEDURE_SUBCAT_DESC,Standard_Orders_Used,admit_month,HOSPITAL],axis=1)

df.drop(['gender', 'race_cd', 'PROCEDURE_SUBCAT_DESC', 'Standard_Orders_Used', 'admit_month', 'HOSPITAL'], inplace = True

In [48]: #imports

import pandas as pd
import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt