# **Introduction to Predictive Analytics**

# 예측?

Y (결과): 종속변수, 반응변수, 출력변수

| 변수<br>관측치        | X,                       |     | $X_{i}$                |     | $X_p$                  |
|------------------|--------------------------|-----|------------------------|-----|------------------------|
| N <sub>1</sub>   | x <sub>11</sub>          | ••• | $x_{li}$               | ••• | x <sub>Ip</sub>        |
| $N_2$            | <b>x</b> <sub>21</sub>   | ••• | <b>x</b> <sub>2i</sub> | ••• | <b>x</b> <sub>2p</sub> |
|                  | •••                      |     |                        |     | •••                    |
| N <sub>n-1</sub> | <i>x</i> <sub>n-11</sub> | ••• | X <sub>n-1i</sub>      | ••• | X <sub>n-1p</sub>      |
| N <sub>n</sub>   | X <sub>nl</sub>          | ••• | <b>X</b> <sub>ni</sub> | ••• | X <sub>np</sub>        |

| Υ                       |
|-------------------------|
| <b>y</b> 1              |
| <b>y</b> <sub>2</sub>   |
|                         |
| <b>y</b> <sub>n-1</sub> |
| <b>y</b> <sub>n</sub>   |

#### 수치예측 / 범주예측 (분류)



- 연속형 데이터: 데이터 자체를 숫자로 표현 예)가격, 길이, 압력, 두께, …
- 범주형 데이터: 원칙적으로 숫자로 표시할 수 없는 데이터
   예) 제품불량여부 (양품/불량), 보험사기여부(정상/비정상), ···

#### 수치예측 데이터



| 인자<br>(변수)<br>관측치 | X,                 |     | $X_{i}$                |     | $X_p$                  |
|-------------------|--------------------|-----|------------------------|-----|------------------------|
| N <sub>I</sub>    | x <sub>11</sub>    | ••• | x <sub>Ii</sub>        |     | x <sub>Ip</sub>        |
| $N_2$             | x <sub>21</sub>    | ••• | <b>x</b> <sub>2i</sub> | ••• | <b>x</b> <sub>2p</sub> |
|                   |                    | ••• | •••                    |     |                        |
| N <sub>n-1</sub>  | Х <sub>п-1 1</sub> |     | X <sub>n-1i</sub>      |     | X <sub>n-Ip</sub>      |
| N <sub>n</sub>    | x <sub>n1</sub>    | ••• | X <sub>ni</sub>        |     | X <sub>np</sub>        |

| Υ    |
|------|
| 20.5 |
| 22.2 |
|      |
| 72.3 |
| 82.8 |

#### 범주예측 데이터



| 인자<br>(변수)<br>관측치 | X,                        |     | $X_{i}$                |     | $X_p$                  |
|-------------------|---------------------------|-----|------------------------|-----|------------------------|
| N <sub>1</sub>    | x <sub>11</sub>           | ••• | x <sub>Ii</sub>        |     | x <sub>Ip</sub>        |
| $N_2$             | <b>x</b> <sub>21</sub>    | ••• | <b>x</b> <sub>2i</sub> | ••• | <b>x</b> <sub>2p</sub> |
|                   | •••                       | ••• | •••                    | ••• | •••                    |
| N <sub>n-1</sub>  | <b>X</b> <sub>n-1 1</sub> |     | X <sub>n-li</sub>      | ••• | X <sub>n-1p</sub>      |
| $N_n$             | X <sub>nl</sub>           | ••• | <b>X</b> <sub>ni</sub> | ••• | <b>X</b> np            |

| Y      |
|--------|
| 0 (정상) |
| 0 (정상) |
|        |
| I(불량)  |
| I(불량)  |



# 수치예측 예제 – 중고차 가격 예측

|                                                          |        | X   |         | Y      |
|----------------------------------------------------------|--------|-----|---------|--------|
| 모델                                                       | 주행거리   | 마력  | 용량 (CC) | 가격     |
| TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors            | 46986  | 90  | 2000    | 13500  |
| TOYOTA Corolla 1800 T SPORT VVT I 2/3-Doors              | 19700  | 192 | 1800    | 21500  |
| TOYOTA Corolla 1.9 D HATCHB TERRA 2/3-Doors              | 71138  | 69  | 1900    | 12950  |
| TOYOTA Corolla 1.8 VVTL-i T-Sport 3-Drs 2/3-Doors        | 31461  | 192 | 1800    | 20950  |
| TOYOTA Corolla 1.8 16V VVTLI 3DR T SPORT BNS 2/3-Doors   | 43610  | 192 | 1800    | 19950  |
| TOYOTA Corolla 1.6 VVTI Linea Terra Comfort 2/3-Doors    | 21716  | 110 | 1600    | 17950  |
| TOYOTA Corolla 1.6 16v L.SOL 2/3-Doors                   | 25563  | 110 | 1600    | 16750  |
| TOYOTA Corolla 1.6 16V VVT I 3DR TERRA 2/3-Doors         | 64359  | 110 | 1600    | 16950  |
| TOYOTA Corolla 1.6 16V VVT I 3DR SOL AUT4 2/3-Doors      | 43905  | 110 | 1600    | 16950  |
| TOYOTA Corolla 1.6 16V VVT I 3DR SOL 2/3-Doors           | 56349  | 110 | 1600    | 15950  |
| TOYOTA Corolla 1.4 VVTI Linea Terra 2/3-Doors            | 9750   | 97  | 1400    | 12950  |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 27500  | 97  | 1400    | 14750  |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 49059  | 97  | 1400    | 13950  |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 44068  | 97  | 1400    | 16750  |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 46961  | 97  | 1400    | 13950  |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors    | 110404 | 90  | 2000    | 16950  |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors    | 100250 | 90  | 2000    | 16950  |
| TOYOTA Corolla 2.0 D4D 90 5DR SOL 4/5-Doors              | 84000  | 90  | 2000    | 19000  |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA 4/5-Doors            | 79375  | 90  | 2000    | 17950  |
| TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors | 75048  | 97  | 1400    | 15800  |
| TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors | 132151 | 110 | 1600    | ?????? |



#### 범주예측 모델링 개요

- 불량범주
- 양품범주



배터리 공정에서 설비 파라미터 측정값들을 이용하여,
 배터리가 양품인지 불량품인지 여부를 예측



배터리 공정 데이터

모델구축

불량 배터리 예측

고객의 정보(성별, 연령, 직업, 연봉 등)를 이용하여,
 고객 이탈 여부를 예측



#### 범주예측 예제 – 보험 사기 여부 예측

• 각 청구 건에 대한 내역 분석을 통해 청구 건에 대한 사기 여부 예측



Y (결과): 종속변수, 반응변수, 출력변수

X (원인): 독립변수, 예측변수, 입력변수

| 변수<br>관측치        | X,                       |     | $X_{i}$                |     | $X_p$                  |
|------------------|--------------------------|-----|------------------------|-----|------------------------|
| N <sub>1</sub>   | x <sub>11</sub>          | ••• | x <sub>Ii</sub>        | ••  | $x_{lp}$               |
| N <sub>2</sub>   | <b>x</b> <sub>21</sub>   | ••• | <b>x</b> <sub>2i</sub> | ••• | <b>x</b> <sub>2p</sub> |
|                  | •••                      |     |                        |     | •••                    |
| N <sub>n-1</sub> | <i>X</i> <sub>n-11</sub> | ••• | X <sub>n-1i</sub>      | ••• | X <sub>n-1p</sub>      |
| $N_n$            | X <sub>nl</sub>          | ••• | <b>X</b> <sub>ni</sub> | ••• | X <sub>np</sub>        |

| Υ    |  |
|------|--|
| 20.5 |  |
| 22.2 |  |
| •••  |  |
| 72.3 |  |
| 82.8 |  |

# 단변량 시계열 예측

|                  |                        | X 변수 |                        |  |                        |      |
|------------------|------------------------|------|------------------------|--|------------------------|------|
| 변수<br>관측치        | X,                     |      | $X_i$                  |  | $X_p$                  | Y    |
| N <sub>1</sub>   | x <sub>11</sub>        | •••  | x <sub>li</sub>        |  | x <sub>Ip</sub>        | 20.5 |
| N <sub>2</sub>   | x <sub>21</sub>        |      | <b>x</b> <sub>2i</sub> |  | <i>x</i> <sub>2p</sub> | 22.2 |
|                  |                        |      | •••                    |  |                        |      |
| N <sub>n-1</sub> | Х <sub>п-1 I</sub>     |      | X <sub>n-li</sub>      |  | X <sub>n-Ip</sub>      | 72.3 |
| $N_n$            | <b>x</b> <sub>n1</sub> | •••  | X <sub>ni</sub>        |  | X <sub>np</sub>        | 82.8 |



#### 많은 현상을 X와 Y로 설명할 수 있어...



어떤 고객들이 이탈할까?



고장을 미리 예측 할 수 있을까?



최적의 투자전략은 무엇인가?



식품 판매량 (수요) 예측?



보험 과다 청구 여부?



출시 예정 상품이 시장에 서 어떤 반응을 보일까?

X와 Y의 관계를 찾는 것! 우리의 주 관심은 Y (예측하려는 대상)

Y를 설명하는 X변수는 보통 여러 개

여러 개의 X와 Y의 관계를 찿는 것!

X변수들을 조합(결합)하여 Y를 표현

수학적으로는,  $Y = f(X_1, X_2, ..., X_p)$ 





#### X와 Y의 관계 찾기

| X | Y |
|---|---|
| 0 | 0 |
| 1 | 2 |
| 2 | 4 |
| 3 | 6 |



| X   | Y   |
|-----|-----|
| 0   | - 1 |
| - 1 | 3   |
| 2   | 5   |
| 3   | 7   |



| X | Y   |
|---|-----|
| 0 | 2   |
| 1 | 2.5 |
| 2 | 3   |
| 3 | 3.5 |



| $X_{l}$ | $X_2$ | Y |
|---------|-------|---|
| 0       | 2     | 2 |
| -1      | 3     | 4 |
| 2       | 4     | 6 |
| 3       | 5     | 8 |



| $X_{l}$ | $X_2$ | Y    |
|---------|-------|------|
| 0       | 2     | 6    |
| -1      | 3     | 9.5  |
| 2       | 4     | 13   |
| 3       | 5     | 16.5 |



| $\mathbf{X}_{\mathbf{I}}$ | $X_2$ | Y    |
|---------------------------|-------|------|
| 0                         | 2     | 6    |
| - 1                       | 3     | 9    |
| 2                         | 4     | 11.5 |
| 3                         | 5     | 14.5 |



|                                                          | <u> </u> | Λ2  | <u>^3</u> |        |
|----------------------------------------------------------|----------|-----|-----------|--------|
| 모델                                                       | 주행거리     | 마력  | 용량        | 가격     |
| TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors            | 46,986   | 90  | 2,000     | 13,500 |
| TOYOTA Corolla 1800 T SPORT VVT I 2/3-Doors              | 19,700   | 192 | 1,800     | 21,500 |
| TOYOTA Corolla 1.9 D HATCHB TERRA 2/3-Doors              | 71,138   | 69  | 1,900     | 12,950 |
| TOYOTA Corolla 1.8 VVTL-i T-Sport 3-Drs 2/3-Doors        | 31,461   | 192 | 1,800     | 20,950 |
| TOYOTA Corolla 1.8 16V VVTLI 3DR T SPORT BNS 2/3-Doors   | 43,610   | 192 | 1,800     | 19,950 |
| TOYOTA Corolla 1.6 VVTI Linea Terra Comfort 2/3-Doors    | 21,716   | 110 | 1,600     | 17,950 |
| TOYOTA Corolla 1.6 16v LSOL 2/3-Doors                    | 25,563   | 110 | 1,600     | 16,750 |
| TOYOTA Corolla 1.6 16V VVT I 3DR TERRA 2/3-Doors         | 64,359   | 110 | 1,600     | 16,950 |
| TOYOTA Corolla 1.6 16V VVT I 3DR SOL AUT4 2/3-Doors      | 43,905   | 110 | 1,600     | 16,950 |
| TOYOTA Corolla 1.6 16V VVT I 3DR SOL 2/3-Doors           | 56,349   | 110 | 1,600     | 15,950 |
| TOYOTA Corolla 1.4 VVTI Linea Terra 2/3-Doors            | 9,750    | 97  | 1,400     | 12,950 |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 27,500   | 97  | 1,400     | 14,750 |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 49,059   | 97  | 1,400     | 13,950 |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 44,068   | 97  | 1,400     | 16,750 |
| TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors               | 46,961   | 97  | 1,400     | 13,950 |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors    | 110,404  | 90  | 2,000     | 16,950 |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors    | 100,250  | 90  | 2,000     | 16,950 |
| TOYOTA Corolla 2.0 D4D 90 5DR SOL 4/5-Doors              | 84,000   | 90  | 2,000     | 19,000 |
| TOYOTA Corolla 2.0 D4D 90 5DR TERRA 4/5-Doors            | 79,375   | 90  | 2,000     | 17,950 |
| TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors | 75,048   | 97  | 1,400     | 15,800 |



X로 설명되는 부분 그렇지 않은 부분

X1 X2 X2 Y

Y= 
$$?X_1+?X_2 + \epsilon$$
Y=  $w_1X_1+w_2X_2 + \epsilon$ 
 $w_1? w_2?$ 
Given  $X_1, X_2, Y$  (데이터)



파라미터 (母數)(媒介變數)

데이터가 주어졌을 때 모델의 파라미터 찿기!

$$Y = w_1 X_1 + w_2 X_2 + \varepsilon$$
$$= f(X) + \varepsilon$$

$$\varepsilon = Y - f(X) \rightarrow 오차$$
 Loss function (손실함수)

$$Y-f(X)=0, \varepsilon=0$$

$$\varepsilon = Y - f(X)$$
 Loss function (손실함수)

$$f(X) = w_1 X_1 + w_2 X_2 + \varepsilon$$

$$\varepsilon = Y - (w_1 X_1 + w_2 X_2)$$

$$\varepsilon_i = Y_i - (w_i X_{ii} + w_2 X_{2i}), i = 1, 2, ..., n$$

$$\varepsilon_i = Y_{i-}(w_1X_{1i}+w_2X_{2i}), i=1,2,...,n$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\} = o$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\}^2$$

$$(비용함수)$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\}^2$$
 Cost function (비용함수)

비용함수를 최소로 하는 ₩₂와 ₩₂를 찾자!

$$\min_{\mathbf{w_1}, \mathbf{w_2}} \sum_{i=1}^{n} \{Y_i - (\mathbf{w_1} X_{1i} + \mathbf{w_2} X_{2i})\}^2$$

$$\min_{\mathbf{w_1, w_2}} \sum_{i=1}^{n} \{Y_i - (\mathbf{w_1} X_{1i} + \mathbf{w_2} X_{2i})\}^2$$

답:
$$\widehat{w}_1,\widehat{w}_2$$

$$\widehat{f}(X) = \widehat{w}_1 X_{1i} + \widehat{w}_2 X_{2i}$$

#### 비용함수

Regression (Y가 연속형)

Mean squared error (MSE)

$$C(Y, f(X)) = \sum_{i=1}^{N} \{Y_i - f(X_i)\}^2$$

Classification (Y가 범주형)

$$C(Y, f(X)) = \sum_{i=1}^{N} \{-Y_i \cdot \log(f(X_i)) - (1 - Y_i) \cdot \log(1 - f(X_i))\}$$

$$f(X) = w_0 + w_1 X_1 + w_2 X_2$$

선형회귀 모델

$$f(X) = \frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}}$$

로지스틱회귀 모델

$$f(X) = \sum_{m=0}^{\infty} k(m)I\{(x_1, x_2) \in R_m\}$$
 의사결정나무 모델

$$f(X) = \frac{1}{1 + exp\left(-\left(w_0 + w_1\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_1 + w_{21}X_2)}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_1 + w_{22}X_2)}\right)\right)}$$

뉴럴네트워크 모델

#### 모델 결정 → 파라미터 추정

$$\min_{W} \sum_{i=1}^{n} \{Y_i - f(X_i)\}^2$$
  $f(X_i) = w_0 + w_1 X_{1i} + w_2 X_{2i}$  선형회귀 모델

$$\min_{w_0,w_1,w_2} \sum_{i=1}^n \{Y_i - (w_0 + w_1 X_{1i} + w_2 X_{2i})\}^2$$
 Least square estimation algorithm (최소제곱법)

$$\widehat{f}(X) = \widehat{w}_0 + \widehat{w}_1 X_1 + \widehat{w}_2 X_2$$

#### 모델 결정 → 파라미터 추정

$$\min_{W} \sum_{i=1}^{N} \{-Y_i \cdot \log(f(X_i)) - (1 - Y_i) \cdot \log(1 - f(X_i))\}$$
 $f(X_i) = \frac{1}{1 + e^{-(w_0 + w_1 X_{1i} + w_2 X_{2i})}}$  로지스틱회귀 모델

$$\min_{w_0, w_1, w_2} \sum_{i=1}^{N} \left\{ -Y_i \log \left( \frac{1}{1 + e^{-(w_0 + w_1 X_{1i} + w_2 X_{2i})}} \right) - (1 - Y_i) \log \left( 1 - \frac{1}{1 + e^{-(w_0 + w_1 X_{1i} + w_2 X_{2i})}} \right) \right\}$$

$$\widehat{f}(X) = \frac{1}{1 + e^{-(\widehat{w}_0 + \widehat{w}_1 X_1 + \widehat{w}_2 X_2)}}$$

### 모델 결정 → 파라미터 추정

$$f(X_i) = \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})}}\right)\right)} \\ = \frac{1}{1 + exp\left(-\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})})}\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)\right)} \\ = \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})})}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})}}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})}}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})}}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_{1i} + w_{21}X_{2i})}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_{1i} + w_{22}X_{2i})}}\right)}\right)} \\ \Rightarrow \frac{1}{1 + exp\left(-\left(\frac{1}{w_0 + w_1}\left(\frac{1}{1 + e^{-(w_0 + w_1)}\left(\frac{1}{1 + e^{-(w_0 + w_1)}\left(\frac{1}{1$$

$$f(X) = w_0 + w_1 X_1 + w_2 X_2$$
 다중선형회귀모델 Least square estimation algorithm 
$$f(X) = \frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}} \quad \hat{f}(X) = \frac{1}{1 + e^{-(\hat{w}_0 + \hat{w}_1 X_1 + \hat{w}_2 X_2)}}$$
 로지스틱회귀모델 Conjugate gradient algorithm 
$$f(X) = \frac{1}{1 + exp\left(-\left(w_0 + w_1\left(\frac{1}{1 + e^{-(w_{01} + w_{11} X_1 + w_{21} X_2)}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12} X_1 + w_{22} X_2)}\right)\right)}$$
 뉴럴네트워크모델 Backpropagation algorithm 
$$\hat{f}(X) = \frac{1}{1 + exp\left(-\left(\hat{w}_0 + \hat{w}_1\left(\frac{1}{1 + e^{-(\hat{w}_{01} + \hat{w}_{11} X_1 + \hat{w}_{21} X_2)}\right)\right) + \hat{w}_2\left(\frac{1}{1 + e^{-(\hat{w}_{02} + \hat{w}_{12} X_1 + \hat{w}_{22} X_2)}\right)}\right)$$

# **EOD**