Eq diff secondo ordine omogenee a coefficienti costanti

Polinomio caratteristico $\lambda^2 + a_1 \lambda + a_0 = 0$	Soluzione associata all'equazione differenziale $y''(t)+a_1y'(t)+a_0y(t)=0$ $\cos a_1,a_0\in\mathbb{R}$
$\Delta>0$ Due radici reali e distinte λ_1,λ_2	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ $c_1, c_2 \in \mathbb{R}$
$\Delta=0$ Due radici reali e coincidenti λ_0	$y(t) = c_1 e^{\lambda_0 t} + t c_2 e^{\lambda_0 t}$ $c_1, c_2 \in \mathbb{R}$
$\begin{array}{c} \Delta < 0 \\ \text{Due radici complesse e coniugate} \\ \alpha + i\beta \\ \alpha - i\beta \end{array}$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t)$ $c_1, c_2 \in \mathbb{R}$

Il "metodo di somiglianza" per la ricerca di una soluzione particolare delle equazioni differenziali lineari del second'ordine non omogenee:

$$ay'' + by' + cy = f(x) \tag{*}$$

$(con \ a, \ b, \ c \ costanti, \ a \neq 0)$		
Forma di $f(x)$	Forma in cui si cerca $\overline{y}(x)$	Eventuali eccezioni e osservazioni
CASO 1 polinomio di grado n	polinomio di grado n	Se nella (*) $c = 0$, cercare un polinomio di grado $n + 1$; se $c = b = 0$, cercare un polinomio di grado $n + 2$.
ESEMPI CASO 1 $y'' + 2y = x^3 + 2$ y'' - 3y' = 2x + 1	$\overline{y}(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$ $\overline{y}(x) = \alpha x^2 + \beta x + \gamma$	
CASO 2 esponenziale $Ae^{\lambda x}$ ESEMPI CASO 2 $y'' + 2y' + 3y = 2e^{-3x}$ $y'' + 2y' - 3y = 3e^{x}$ (Spiegazione 2° esempion $y'' + 2y' - 3y = 0$; perc	$\overline{y}(x) = cxe^x$	Se non c'è soluzione di questo tipo (ciò accade perché $a\lambda^2 + b\lambda + c = 0$, ossia perché $e^{\lambda x}$ è soluzione dell'eq. diff. omogenea), cercare $\overline{y}(x) = cxe^{\lambda x}$; se nemmeno questo tipo di soluzione esiste, cercare $\overline{y}(x) = cx^2e^{\lambda x}$ tica $\lambda^2 + 2\lambda - 3 = 0$; equivalentemente: e^x è soluzione dell'eq. diff. omogenea
CASO 3 $A\cos\omega x + B\sin\omega x$ ESEMPIO CASO 3	$c_1 {\cos} \omega x + c_2 {\sin} \omega x$ (lo stesso ω , e c_1, c_2 da determinarsi	Notare che anche se f ha uno solo dei due addendi (seno o coseno), i) in generale la soluzione li ha entrambi. Se $b=0$ può accadere che $c_1\cos\omega x+c_2\sin\omega x$ sia soluzione dell'omogenea: in tal caso, cercare soluzione $x(c_1\cos\omega x+c_2\sin\omega x)$.

 $y'' + 2y' - y = 3\sin 2x$ $\overline{y}(x) = c_1 \cos 2x + c_2 \sin 2x$

$$e^{\lambda x}(A\cos\omega x + B\sin\omega x) e^{\lambda x}(c_1\cos\omega x + c_2\sin\omega x)$$

(gli stessi ω , λ e

 c_1, c_2 da determinarsi)

Se $z = \lambda + i\omega$ è soluzione di $az^2 + bz + c = 0$, sostituire $e^{\lambda x}$ con $xe^{\lambda x}$.

Notare che anche se f ha uno solo dei due addendi (seno o coseno), in generale la soluzione li ha entrambi.

ESEMPI CASO 4

$$y'' + 2y = 3e^{-x}\sin 2x$$

$$\overline{y}(x) = e^{-x}(c_1 \cos 2x + c_2 \sin 2x)$$

$$y''-4y'+5y = 3e^{2x}\cos x \ \overline{y}(x) = xe^{2x}(c_1\cos x + c_2\sin x)$$

(Spiegazione 2° es.: z = 2 + i è soluzione dell'eq. caratteristica $z^2 - 4\lambda + 5 = 0$, ossia $e^{2x}\cos x$, $e^{2x}\sin x$ sono soluzioni dell'eq. omogenea y'' - 4y' + 5y = 0, perciò si introduce il fattore x).

(Nel caso 4 può essere più comodo effettuare i calcoli utilizzando i numeri complessi.

Per sinteticità, qui non si riporta l'illustrazione di quel metodo).

CASO 5

 $e^{\lambda x}p(x)$, dove p(x) è

 $e^{\lambda x}q(x)$, con lo stesso λ , e un polinomio di grado n q(x) polinomio di grado n, da

Se λ è soluzione dell'eq. caratteristica $a\lambda^2 + b\lambda + c = 0$, cercare una soluzione $y(x) = e^{\lambda x}$ (polinomio di grado n+1)

determinarsi

ESEMPI CASO 5

$$y'' + 2y' - y = e^{3x}(x+2)$$
 $\overline{y}(x) = e^{3x}(ax+b)$

$$y'' - y = e^x(x+2)$$

$$\overline{y}(x) = e^x(ax^2 + bx + c)$$

(Spiegazione 2° esempio: $\lambda = 1$ è soluzione dell'eq. caratteristica $\lambda^2 - \lambda = 0$, ossia e^x è soluzione dell'equazione omogenea y'' - y = 0; perciò il polinomio che compare in \overline{v} si alza di grado).

OSSERVAZIONE. QUANDO IL TERMINE NOTO E' SOMMA DI DUE FUNZIONI DEI TIPI PRECEDENTI

Se il termine noto è del tipo $f(x) = f_1(x) + f_2(x)$, con f_1 , f_2 dei tipi descritti in precedenza, è sufficente cercare (separatamente): una soluzione particolare y_1 dell'equazione $Ly = f_1$; una soluzione particolare y_2 dell'equazione $Ly = f_2$; a questo punto (per la linearità dell'equazione differenziale), la funzione $y_1 + y_2$ sarà una soluzione particolare di $Ly = f_1 + f_2$.

Esempio:

$$y'' + 2y = 3e^{-x} + x^2 + 1$$

Si cerca una soluzione $y_1 = c_1 e^{-x}$ dell'equazione $y'' + 2y = 3e^{-x}$; si cerca una soluzione $y_1 = ax^2 + bc + c$ dell'equazione $y'' + 2y = x^2 + 1$; la funzione $y_1 + y_2$ sarà allora una soluzione particolare dell'equazione di partenza.

EQ 01 EULERO

62 2x² y" + b x y' + c y = 0 " 01 8 UL8 R 0"

1) PISOLVENS ('80 71 STLONDO GRADO

2 L (1-2) + bt + c = 0

2) SI MANNO 3 CAS 1

- 2 MANCI MERCI DISTINES KA, tz

INF GEN: y(x) = C, x^{rq} + Cz x^{rq} per x>0

- 2 MADICI COMPLESSO CONIUGATO OLIB

INF GEN: y(x) = x^q (ca cos (B LOG(x)) + Cz SIN (B LOG(x)) Pro x>0

- 2 MADICI COINCIDENTI F

INF GEN: y(x) = x^{rq} (ca + ca LOG(x)) Pro x>0

(Pro x<0 STESSE SOLVEIONI MA CON -x MANGE DIX)