自由教辅 信息技术重构 依据 CC-BY-NC-SA 许可分发 Version 0.0.1

第一章 计算机基础

一、 计算机组成

1. 硬件组成

计算机的五个基本组成部分是:

- a. **运算器**:负责执行**算术运算(如加减乘除)和逻辑运算(如与、或、非)**。它通常包含寄存器和算术逻辑单元(ALU),用于临时存储和处理数据。
 - --拓展 1: 逻辑门
- b. **控制器**: 负责**从存储器中取出指令,解释指令**,并**协调计算机各部分的工作**。控制器通常包括程序计数器(PC)、指令寄存器(IR)和控制单元(CU)。
- - --拓展 2: RAM、ROM、硬盘的区分
- d. **输入设备**:用于将外部信息输入计算机,如**键盘、鼠标、扫描仪**等。输入设备负责将用户指令和数据转换为计算机可以识别的格式。
- e. **输出设备**:用于将计算机处理后的结果输出给用户,如**显示器、打印机、扬声器**等。 它们将计算机内部的二进制数据转换为人类可理解的信息。

2. 软件组成

软件是指使计算机硬件执行特定任务的程序和相关文档,主要分为两类:

自由教辅 信息技术重构 依据 CC-BY-NC-SA 分发 Version 0.0.1 第 1 章 第 1 页

- a. **系统软件**:管理和控制计算机硬件,支持应用软件运行的程序,包括**操作系统**(如 Windows、Linux、macOS、BSD、Unix、RTOS)和**系统工具**。
- b. 应用软件:为满足用户特定需求而开发的程序,如文字处理软件、浏览器、媒体播放器等。

硬件和软件相互依赖,共同构成完整的计算机系统。硬件提供运行平台,软件指挥硬件 完成各种任务,实现计算机的功能。

二、进制及其转换

1. 进制规则

- a. 先用阿拉伯数字(0~9)表示,不够用则引入字母(A~Z);
- b. n 进制则有 (0,1,2,...,n-1) 的数字 (0 也算一个数字);
- c. 相同的值, n 进制表示, n 越大, 位数越短;
- d. 不同的值,不同的进制表示,看上去可能一样;
- e. 对于 n 进制, 描述时的 n 是使用十进制描述的。

2. 重要的进制法举例

进制	定义	英文名	英文名渊源
二进制 (Binary)	以 2 为基数,仅 使用 0 和 1	Binary	源自拉丁语 bini,意为"两者一组"
八进制 (Octal)	以 8 为基数,使 用 0-7	Octal	源自拉丁语 octo,意为"八"
十进制 (Decimal)	以 10 为基数,使 用 0-9	Decimal	源自拉丁语 decem,意为"十"
十 六 进 制 (Hexadecimal)	以 16 为基数,使 用 0-9 和 A-F	Hexadecimal	Hex- 源自希腊语 hex (六), - decimal 源自拉丁语 decem (十)

3. 进制转换

- a. 十进制转其他进制: 首先将待转换的十进制数除以目标进制的数,记录余数,然后用所得的商继续除以目标进制,直到商为 0。把所有余数倒序排列,得到的数就是对应进制的表示。例如,将十进制数 156 转换为 8 进制: 156 除以 8 商 19 余 4, 19 除以 8 商 2 余 3, 2 除以 8 商 0 余 2, **倒序排列余数**就是 2 3 4, 所以 156 的8 进制表示为 234。
- b. 其他进制转十进制: 从右往左给每一位乘上目标进制的对应幂次(最右边的数位为该进制的 0 次幂,依次向左依次增大),然后把所有乘积相加得到的和就是十进制数。例如,将八进制数 234 转换为十进制: 右边数字 4 乘 8[®] 得 4,中间数字 3 乘 8¹ 得 24,最左边数字 2 乘 8² 得 128,将这些值相加 128+24+4 得 156,所以八进制数 234 转换为十进制数为 156。
- c. 使用系统自带的计算器: Windows 徽标键 + R 键,输入 "calc",回车,点击 "查看",选择"程序员"模式,选择待转换的进制,输入待转换的值,再选择目标进制,结果即为所求。

4. 进制转换技巧

- a. 待转换值的**最右边的数位的转换结果**与最终结果的**最右边的数位**一致:
- b. 二进制与八进制或十六进制之间转换时,可先将二进制分成 3 位 (2³,对于二进制/八进制)或 4 位一组 (2⁴,对于二进制/十六进制),再分别对应转换后合并。

三、汇编语言基础

1. 汇编语言基本概念

- a. 寄存器 (Registers): CPU 内部的小型存储单元,如 AX、BX (8086);
- b. 指令(Instructions): CPU 可执行的基本操作,如 MOV(数据传输)、ADD(加法);
- c. 内存寻址: 汇编通过地址操作数据,如 MOV AX, [1234H] 读取内存地址 0x1234 的数据;
- d. 中断: 计算机系统中用于处理异步事件的一种机制。当 CPU 在执行程序时,某些事件(如 I/O 设备请求、异常情况或外部信号)可能需要 CPU 立即响应,这时 CPU 会暂停当前任务,转去执行相应的中断处理程序,然后再恢复原任务。

2. 基本寄存器

寄存	名称	作用	示例用途
器			
AX	累加寄存器(Accumulator)	主要用于算术运算、I/O 操	MOV AX, BX(数据传输)
		作	
вх	基址寄存器(Base)	存放内存地址或数据	MOV [BX], AL (访问内存)
СХ	计数寄存器 (Counter)	主要用于循环计数	LOOP start(循环控制)
DX	数据寄存器(Data)	I/0 端口访问、扩展乘除法	OUT DX, AL (I/O 操作)
SP	堆栈指针(Stack Pointer)	指向栈顶(相对于 SS 段)	PUSH AX (压栈)
ВР	基址指针 (Base Pointer)	访问栈中的局部变量	MOV AX, [BP-2]

3. 汇编语言基本指令

指令	语法	作用	示例
MOV	MOV 目标,源	数据传输	MOV AX, BX (将 BX 的值复制到 AX)

ADD	ADD 目标,源	加法	ADD AX, 5 (AX += 5)
SUB	SUB 目标,源	减法	SUB BX, AX (BX -= AX)
MUL	MUL 源	无符号乘法	MUL CX (AX = AX * CX)
IMUL	IMUL 源	有符号乘法	IMUL DX (AX = AX * DX)
DIV	DIV 源	无符号除法	DIV CX (AX / CX, 余数存 DX)
IDIV	IDIV 源	有符号除法	IDIV DX (AX / DX, 余数存 DX)
INC	INC 目标	<i>†</i> □ 1	INC AX (AX += 1)
DEC	DEC 目标	减 1	DEC BX (BX -= 1)
CMP	CMP 目标,源	比较	CMP AX, BX (AX - BX, 不改变寄存器值)
JMP	JMP 目标地址	无条件跳转	JMP start
JE	JE 目标地址	等于时跳转	JE loop (ZF=1 时跳转)
JNE	JNE 目标地址	不等时跳转	JNE retry (ZF=0 时跳转)
JG	JG 目标地址	大于时跳转(有符	JG end
		号)	
JL	JL 目标地址	小于时跳转(有符 号)	JL retry
AND	AND 目标,源	按位与	AND AL, 0x0F (AL &= 0x0F)
OR	OR 目标,源	按位或	OR BX, AX (BX
XOR	XOR 目标,源	按位异或	XOR CX, CX (清零 CX)
NOT	NOT 目标	按位取反	NOT DX
SHL	SHL 目标, 位数	左移	SHL AX, 1 (AX <<= 1)
SHR	SHR 目标, 位数	右移	SHR BX, 2 (BX >>= 2)
PUSH	PUSH 目标	压栈	PUSH AX
POP	POP 目标	出栈	POP BX
CALL	CALL 地址	调用子程序	CALL my_func
RET	RET	返回	RET

INT	INT 中断号	调用中断	INT 0x21 (调用 DOS 21h 号中断)
SYSCALL	SYSCALL	调用 Linux 系统 调用	SYSCALL

四、拓展

拓展 1. 逻辑门

逻辑门是计算机电路里最基本的"开关",它们根据输入信号决定输出结果,就像做数学题一样。下面是 12 种常见的逻辑门:

逻辑门	符号	功能	学生能理解的例子
与门 (AND)	٨	只有所有输入都是 1, 输出才是 1	只有 你完成作业 并且 老师批 准 ,才能出去玩
或门 (OR)	V	只要有一个输入是 1, 输出就是 1	你可以去春游, 只要 交了钱 或者 被选中
非门 (NOT)	٦	取反, 1 变 0, 0 变 1	老师说"没交作业不能下课",NOT 让"没交"变成"交了"
与非门(NAND)	1	与门的反向,只有全 1时输出 0,否则 1	你和朋友都作弊,才会被扣分(但 NAND 反转成"不给分")
或非门(NOR)	\	或门的反向,只有全 0 才输出 1	老师规定" 只要一个人说话,全班 不能下课"
异或门(XOR)	Φ	输入不同时输出 1,相同时输出 0	你和朋友不能点一样的菜, 否则就 没得吃
同或门(XNOR)	0	输入相同时输出 1,不同时输出 0	你和朋友答案一样,才能得分
缓冲器(BUFFER)	=	输出和输入相同,但增 强信号	老师用麦克风讲课,声音变大但内容不变
三态门(Tri-state)	Z	允许或阻断信号(高阻 态)	老师决定谁可以发言, 谁要保持安 静

施密特触发器(Schmitt	=	过滤噪音,保持信号稳	班上噪声很小,老师不会管,但超
Trigger)		定	过一定程度就会喊"安静!"
传输门 (Transmission	开关	选择信号是否通过	食堂只有你饭卡有钱,才会允许你
Gate)			刷卡吃饭
门控反相器(Controlled	受 控	只有控制信号允许,才	作业只有老师批准后,才能被改成
Inverter)	NOT	会取反	对的答案

拓展 2. RAM、ROM、硬盘的区分

属性	RAM(随机存取存储器)	ROM (只读存储器)	硬盘 (HDD/SSD)
定义	计算机的 运行内存 ,用	预先写入数据的存储器,主	计算机的 长期存储设备 ,用于 存储操
	于 临时存储数据	要用于 存储固件	作系统、应用程序和用户数据
读写	可读可写,速度快	只能读取 ,某些类型支持写	可读可写,速度比 RAM 慢但比 ROM
方式		λ	快(SSD > HDD)
数 据	断电后数据会丢失	断电后数据仍然保留	断电后数据仍然保留
持久			
性			
用途	运行程序、缓存数据,提	存储 BIOS/UEFI 固件 、	存储 操作系统、软件、文件等长期数据
	高计算机响应速度	嵌入式系统程序	
典 型	4GB - 128GB	Л МВ – Л GB	256GB - 数 TB
容量		EEPROM 可能几 KB	
示例	DDR4、DDR5 内存	BIOS 芯片、微控制器固件	HDD (机械硬盘)、SSD (固态硬盘)