Accuracy

Accuracy bezeichnet den Anteil korrekt klassifizierter Vorhersagen im Verhältnis zur Gesamtanzahl. Sie ist ein Standardmaß für Klassifikationsmodelle, aber nicht immer sinnvoll bei unbalancierten Klassen.

Beispiel: 95 korrekte Vorhersagen von 100 ergeben 95 % Accuracy.

A/B-Test

Ein A/B-Test vergleicht zwei Varianten, um herauszufinden, welche besser abschneidet. Er erfordert eine saubere Trennung und zufällige Zuweisung.

Beispiel: Zwei Website-Versionen mit unterschiedlicher Buttonfarbe werden getestet.

Active Learning

Ein ML-Ansatz, bei dem ein Modell gezielt entscheidet, welche Daten es zur weiteren Verbesserung labeln lässt.

Beispiel: Das Modell wählt gezielt unsichere Bilder zur Annotation durch Menschen.

AdaBoost

Ein Boosting-Algorithmus, der schwache Klassifikatoren zu einem starken Modell kombiniert. Besonders effektiv bei kleinen Datensätzen.

Beispiel: Mehrere kleine Entscheidungsbäume werden zu einem Gesamtmodell verbunden.

Aggregation

Daten werden zusammengefasst, z. B. als Summe oder Durchschnitt. Wichtig in BI, SQL und Excel.

Beispiel: Durchschnittlicher Umsatz pro Monat.

Alias

Ein alternativer Name, meist in SQL oder Code, zur besseren Lesbarkeit.

Beispiel: SELECT sales AS umsatz FROM table.

Algorithmus

Eine definierte Abfolge von Anweisungen zur Lösung eines Problems. In der Datenanalyse meist Lernverfahren.

Beispiel: Der k-means-Algorithmus gruppiert Daten in Cluster.

Alternative Hypothese

Statistischer Begriff für die Annahme, dass ein Effekt oder Unterschied vorliegt.

Beispiel: Der neue Medikamentenwirkstoff wirkt besser als der alte.

Anomalieerkennung (Anomaly Detection)

Technik zur Erkennung ungewöhnlicher Muster. Nützlich in der Betrugserkennung, Loganalyse und Qualitätskontrolle.

Beispiel: Ein einzelner Nutzer tätigt 100 Käufe in einer Minute.

API (Application Programming Interface)

Eine Schnittstelle zur strukturierten Kommunikation zwischen Programmen. Unverzichtbar für Automatisierung und Datenaustausch.

Beispiel: Eine Wetter-API liefert JSON-Daten für ein Dashboard.

ARIMA

Ein Zeitreihenmodell, das autoregressive, integrierte und gleitende Mittelwerte kombiniert.

Beispiel: Monatsumsätze der letzten drei Jahre werden für das Folgejahr geschätzt.

Array

Eine Datenstruktur für gleichartige Elemente, effizient für numerische Berechnungen.

Beispiel: Ein NumPy-Array mit 1.000 Zahlen.

Artificial Intelligence (AI)

Überbegriff für Maschinen, die Aufgaben mit kognitiven Fähigkeiten lösen. Inklusive ML und Deep Learning.

Beispiel: Ein KI-System diagnostiziert Hautkrankheiten anhand von Bildern.

AUC (Area Under the Curve)

Kennzahl für Klassifikatoren. Misst die Fläche unter der ROC-Kurve – je näher an 1, desto besser.

Beispiel: Ein Modell mit AUC 0.95 trennt Klassen sehr gut.

Autoencoder

Neural Network zur Datenkomprimierung und -rekonstruktion. Hilfreich für Anomalieerkennung.

Beispiel: Eingabebild wird mit minimalem Informationsverlust rekonstruiert.

Autokorrelation

Beziehung eines Werts mit sich selbst über Zeitverschiebung. Wichtig in Zeitreihenanalyse.

Beispiel: Absatz im Dezember ist hoch wie im Vorjahr.

Automatisierung

Ersetzung manueller Prozesse durch Skripte oder Systeme. Spart Zeit und vermeidet Fehler.

Beispiel: Täglicher Import von Verkaufsdaten per Python-Skript.

Average

Der Durchschnittswert – summe aller Werte geteilt durch Anzahl.

Beispiel: Durchschnitt aus 5, 7, 8 ist 6.67.

Azure

Microsofts Cloudplattform mit Tools für Datenanalyse, ML, Datenbanken. Konkurrenz zu AWS und GCP.

Beispiel: ETL-Prozess läuft in Azure Data Factory.

Accuracy Paradox

Phänomen, dass hohe Accuracy trotzdem ein schlechtes Modell bedeuten kann.

Beispiel: 99 % korrekte Vorhersagen in einem Datensatz mit 99 % Negativen.

Augmented Analytics

Analyseform mit KI-Unterstützung für Insight-Generierung und Automatisierung.

Beispiel: Ein BI-Tool erklärt Anomalien automatisch.

Attribute

Merkmale eines Datensatzes, auch Features genannt.

Beispiel: Einkommen, Alter, Region eines Kunden.

AutoML

Automatisierte Auswahl, Training und Tuning von ML-Modellen. Für schnelle Prototypen.

Beispiel: Google AutoML erstellt ein Bildklassifikationsmodell ohne Code.

Atomic Operation

Nicht unterbrechbare Aktion, z. B. in Datenbanktransaktionen.

Garantiert Konsistenz.

Beispiel: INSERT in eine Tabelle mit Rollback-Option.

Authentication

Prozess der Identitätsprüfung. Häufig bei Datenzugriff und APIs

relevant.

Beispiel: Zugang zu einem SQL-Server nur mit Passwort.

Autonomous System

Ein vollständig selbstlaufendes Daten- oder Softwaresystem.

Beispiel: Ein Auto erstellt seine Routen-ETAs basierend auf Live-

Verkehrsdaten.

Auto Regression (AR)

Zeitreihenmodell, das aktuelle Werte aus vorherigen vorhersagt.

Bestandteil von ARIMA.

Beispiel: Heute = 0.5×Gestern + 0.3×Vorgestern

ASCII

Zeichencodierung für Buchstaben, Zahlen und Symbole. Relevant

bei Datenimporten und Codierungsproblemen.

Beispiel: Zeichen "A" = ASCII 65

Aliasing

Phänomen, bei dem zu niedrig beprobte Signale falsch interpretiert werden. Wichtig in Zeitreihenanalysen.

Beispiel: Ein wöchentlicher Messwert täuscht einen Trend vor, der bei täglicher Auflösung verschwindet.

Application Layer

Schicht in Systemarchitekturen, die direkt mit Nutzerinteraktion zu tun hat.

Beispiel: Eine Web-App zur Visualisierung von Analyseergebnissen.

Analytische Funktion (Analytic Function)

SQL-Funktionen, die über Fenster (Window Functions) aggregieren.

Beispiel: ROW_NUMBER() OVER (PARTITION BY customer_id
ORDER BY date)

Auto Scaling

Automatische Skalierung von Rechenressourcen in der Cloud je nach Auslastung.

Beispiel: Ein ML-Modell erhält mehr RAM bei Lastspitzen.

Assoziationsanalyse (Association Rule Learning)

Technik zur Entdeckung von Regeln und Zusammenhängen in Transaktionsdaten.

Beispiel: Kunden, die Bier kaufen, kaufen auch Chips.

Async (Asynchron)

Nicht-blockierende Ausführung von Prozessen – wichtig bei paralleler Datenverarbeitung oder Webanfragen.

Beispiel: Ein Webserver verarbeitet mehrere API-Requests gleichzeitig.

Backpropagation

Rückführungsverfahren zur Fehlerkorrektur in neuronalen Netzen. Es berechnet, wie stark jeder Knoten zur Gesamtabweichung beigetragen hat.

Beispiel: In einem CNN wird der Fehler von der Ausgabeschicht bis zur Eingabe zurückgerechnet.

Balanced Dataset

Ein Datensatz mit gleichmäßiger Verteilung der Klassen. Wichtig für faire Modellbewertung.

Beispiel: Je 5.000 Beispiele für Spam und Nicht-Spam.

Bar Chart

Visualisierung kategorialer Daten mit Balken unterschiedlicher Höhe.

Beispiel: Anzahl der Verkäufe je Produktkategorie.

Baseline Model

Ein einfaches Referenzmodell, um die Leistung komplexerer Modelle zu beurteilen.

Beispiel: Immer die häufigste Klasse vorhersagen.

Batch Normalization

Technik zur Beschleunigung und Stabilisierung des Trainings neuronaler Netze.

Beispiel: Werte eines Layers werden auf Mittelwert 0 und Varianz 1 skaliert.

Batch Size

Anzahl der Datenpunkte, die gleichzeitig ins ML-Modell eingespeist werden. Beeinflusst Trainingstempo und Modellqualität.

Beispiel: Training mit 128 Beispielen pro Batch.

Batch Processing

Verarbeitung von Daten in Blöcken statt einzeln. Gängig in Data Warehousing und ETL.

Beispiel: Nachtverarbeitung aller Tagesverkäufe.

Bayes'scher Klassifikator

Ein probabilistisches Modell, das Wahrscheinlichkeiten per Bayes-Theorem berechnet.

Beispiel: Naive Bayes zur Spam-Klassifikation.

Bayessche Statistik

Statistikansatz, der Vorwissen einbezieht und Wahrscheinlichkeiten iterativ aktualisiert.

Beispiel: Wahrscheinlichkeit für Betrug steigt nach auffälligem

Verhalten.

Bias (Verzerrung)

Systematischer Fehler, der zu falschen Modellergebnissen führt.

Kann durch Daten oder Modellstruktur entstehen.

Beispiel: Unausgewogene Trainingsdaten benachteiligen eine

Gruppe.

Big Data

Sehr große, schnell wachsende und vielfältige Datenmengen, die

klassische Verarbeitung überfordern.

Beispiel: Milliarden Logdaten pro Tag in einem Onlineshop.

Binary Classification

Klassifikation mit genau zwei Zielklassen.

Beispiel: Betrug: Ja oder Nein.

Binning

Einteilung kontinuierlicher Variablen in Kategorien.

Beispiel: Altersgruppen wie 18-25, 26-35.

BI (Business Intelligence)

Gesamtheit von Technologien zur datengetriebenen

Entscheidungsunterstützung.

Beispiel: Power BI oder Tableau zur Visualisierung von KPIs.

Binäre Variable

Variable mit genau zwei Ausprägungen.

Beispiel: Ja/Nein, 0/1, Wahr/Falsch.

Blending

Kombination mehrerer ML-Modelle, meist als Ensemble-Methode.

Beispiel: Kombination aus SVM und Entscheidungsbaum.

Bloom Filter

Wahrscheinlichkeitsbasierte Datenstruktur zur schnellen Mengenprüfung mit Speicherersparnis.

Beispiel: Prüfung, ob eine E-Mail schon verarbeitet wurde.

Boolean Logic

Logiksystem mit Wahrheitswerten TRUE und FALSE.

Beispiel: WHERE active = TRUE AND country = 'DE'

Bootstrap

Resampling-Technik zur Schätzung von Verteilungen aus Stichproben.

Beispiel: 1.000 Ziehungen mit Zurücklegen zur Konfidenzintervallschätzung.

Boxplot

Diagramm zur Darstellung von Verteilungen inklusive Ausreißern.

Beispiel: Verteilung der Einkommen in fünf Abteilungen.

Buffering

Temporäres Speichern von Daten zur Überbrückung oder Entlastung.

Beispiel: Daten aus einem Stream werden in RAM gepuffert.

Bucket

Einzelner Bereich in einer in Kategorien eingeteilten Skala.

Beispiel: Preisrange 0–10€, 10–50€, 50–100€.

Business Analytics

Analyseform mit Fokus auf Geschäftserkenntnisse, strategisch oder operativ.

Beispiel: Warum ist der Umsatz in Q2 gesunken?

Business Metric

Kennzahl zur Steuerung eines Unternehmens.

Beispiel: Customer Lifetime Value (CLV).

Byte

Speichereinheit bestehend aus 8 Bit. Häufigste Maßeinheit bei Datenmengen.

Beispiel: Eine Textdatei mit 1.000 Zeichen ≈ 1 KB.

Bayesian Network

Graphenbasiertes Modell zur Darstellung probabilistischer Abhängigkeiten.

Beispiel: Modell für Krankheitssymptome und Ursachen.

Bias-Variance-Tradeoff

Grundprinzip im ML: Modelle müssen zwischen Überanpassung (Varianz) und Unteranpassung (Bias) balancieren.

Beispiel: Lineare Regression = hoher Bias, niedrige Varianz.

Binary Tree

Baumstruktur mit maximal zwei Kindknoten pro Elternknoten.

Beispiel: Entscheidungsbaum zur Klassifikation.

Benchmarking

Vergleich von Algorithmen oder Systemen anhand definierter Metriken.

Beispiel: Welcher Klassifikator hat bei gleichem Datensatz die beste AUC?

Business Rule

Regel zur Steuerung eines Prozesses auf Basis von Daten.

Beispiel: Wenn Nutzer < 18 Jahre → kein Kauf erlaubt.

Bias Mitigation

Strategien zur Reduktion von Verzerrung in Modellen oder Daten.

Beispiel: Fairness Constraints beim Modelltraining.

Boolean Masking

Technik zur Selektion bestimmter Elemente mit True/False-Arrays.

Beispiel: df[df['value'] > 100]

Broadcast Join

SQL-Optimierung, bei der eine kleine Tabelle an alle Knoten verteilt wird.

Beispiel: Kleine Lookuptabelle für Länderinformationen in Spark ge-broadcastet.

Caching

Zwischenspeicherung häufig benötigter Daten zur Beschleunigung von Zugriffen. Nützlich in Webentwicklung, Datenbanken und ML-Pipelines.

Beispiel: Ein BI-Tool lädt zuvor berechnete Aggregationen aus dem Cache.

Categorical Variable

Variable mit diskreten Ausprägungen wie Farben oder Ländern. Meist durch One-Hot-Encoding aufbereitet.

Beispiel: Spalte "Farbe" mit Werten: Rot, Blau, Grün.

Centroid

Mittelpunkt eines Clusters, genutzt in k-means-Algorithmen.

Beispiel: Der Schwerpunkt einer Gruppe von Kunden mit ähnlichem Kaufverhalten.

Churn Rate

Kundenabwanderungsrate über einen bestimmten Zeitraum. Wichtig für Subscription-Modelle.

Beispiel: 15 % monatlicher Churn in einem SaaS-Service.

Classification

ML-Aufgabe, bei der Daten in diskrete Klassen eingeteilt werden.

Beispiel: Kreditwürdig vs. nicht kreditwürdig.

Clean Data

Fehlerfreie, bereinigte Daten, die für Analyse oder Modellierung geeignet sind.

Beispiel: Keine Duplikate, korrekte Typen, keine Leerwerte.

Clustering

Unüberwachtes Lernen zur Gruppierung ähnlicher Datenpunkte.

Beispiel: Kundensegmentierung auf Basis von Kaufverhalten.

Coefficient

Gewicht in einem Modell, das die Stärke und Richtung eines

Prädiktors angibt.

Beispiel: In einer Regression: Einkommen hat einen positiven

Einfluss auf Konsum.

Collinearity

Hohe Korrelation zwischen zwei oder mehr unabhängigen

Variablen. Erschwert Interpretation.

Beispiel: Größe und Gewicht korrelieren stark.

Column Store

Datenbanksystem, das Daten spaltenbasiert speichert – vorteilhaft

für analytische Abfragen.

Beispiel: BigQuery oder Redshift.

Confidence Interval

Intervall, das mit definierter Wahrscheinlichkeit den wahren

Parameter enthält.

Beispiel: 95 %-Intervall für Mittelwert: 4.1 bis 4.8.

Confusion Matrix

Darstellung von Klassifikationsergebnissen mit TP, FP, FN, TN.

Beispiel: Ein Modell hat 87 % Genauigkeit, aber viele False Positives.

Correlation

Maß für linearen Zusammenhang zwischen zwei Variablen. Werte von -1 bis +1.

Beispiel: Werbebudget und Umsatz mit Korrelation +0.84.

CPU (Central Processing Unit)

Zentrale Recheneinheit, führt logische Operationen und Modelltraining durch.

Beispiel: Pandas rechnet meist auf der CPU.

CSV (Comma-Separated Values)

Textdatei mit tabellarischen Daten, Felder durch Kommas getrennt.

Beispiel: Export einer SQL-Tabelle als data.csv.

Cross-Validation

Verfahren zur stabilen Modellbewertung durch wiederholtes Trainieren/Testen auf verschiedenen Datenaufteilungen.

Beispiel: K-fold CV mit k=5.

Curse of Dimensionality

Probleme bei hoher Dimensionalität – z. B. spärliche Daten, Overfitting.

Beispiel: 1.000 Features bei nur 100 Beobachtungen.

Cut-off-Point

Grenzwert für Klassifikationsentscheidungen.

Beispiel: Wahrscheinlichkeit > 0.6 → Kredit genehmigt.

Custom Function

Benutzerdefinierte Funktion in Python, SQL oder Excel.

Beispiel: def berechne_rabatt(preis): return preis*0.85

Categorical Encoding

Techniken zur Umwandlung kategorialer Variablen in numerische Formate.

Beispiel: One-Hot, Label, Target Encoding.

Control Chart

Diagramm zur Überwachung von Prozessen in der Qualitätskontrolle.

Beispiel: Produktionslinie zeigt Ausreißer in Fehlerhäufigkeit.

Confidence Score

Ausgabewert eines Modells, der angibt, wie sicher es in seiner Vorhersage ist.

Beispiel: Bildklassifikation: 82 % Wahrscheinlichkeit für "Katze".

Composite Key

Primärschlüssel, der aus mehreren Spalten besteht.

Beispiel: Kombination aus "Bestellnummer" + "Artikel-ID".

Contextual Bandit

ML-Modell zur Auswahl von Aktionen bei Unsicherheit, unter Berücksichtigung des Kontexts.

Beispiel: Werbeausspielung basierend auf Nutzerverhalten.

Confidence Level

Gibt an, mit welcher Sicherheit ein Konfidenzintervall den wahren Wert enthält.

Beispiel: 95 %-Vertrauensniveau → 5 % Irrtumswahrscheinlichkeit.

Click-Through-Rate (CTR)

Anteil der Klicks auf eine Anzeige im Verhältnis zur Gesamtanzahl der Impressionen.

Beispiel: 100 Klicks bei 1.000 Views = 10 % CTR.

Canonical Correlation Analysis (CCA)

Statistisches Verfahren zur Untersuchung der Beziehungen zwischen zwei Variablensätzen.

Beispiel: Zusammenhang zwischen schulischen Leistungen und familiärem Hintergrund.

Classification Report

Standardausgabe zur Bewertung eines Klassifikationsmodells: enthält Precision, Recall, F1-Score pro Klasse.

Beispiel: Scikit-learn classification_report().

Confidence Bound

Ober- oder Untergrenze eines Konfidenzintervalls.

Beispiel: Obergrenze = 7.9 bei 95 %-Intervall.

Cloud Computing

Bereitstellung von IT-Ressourcen über das Internet auf Abruf.

Beispiel: AWS, GCP oder Azure bieten Rechenleistung und Speicherplatz on demand.

Cron Job

Zeitgesteuerter Task unter Linux zur Automatisierung wiederkehrender Prozesse.

Beispiel: Tägliches Update eines Dashboards um 3:00 Uhr.

Cost Function

Funktion, die den Fehler eines Modells misst und minimiert werden soll.

Beispiel: MSE bei Regression misst Abweichung zwischen Vorhersage und Realität.

Composite Index

Datenbank-Index, der mehrere Spalten kombiniert, um Abfragen zu beschleunigen.

Beispiel: Index auf user_id + created_at.

Constraint

Einschränkung in Datenbanken, um Konsistenzregeln zu erzwingen.

Beispiel: NOT NULL, UNIQUE, FOREIGN KEY.

Confidence Ellipse

Grafische Darstellung des Konfidenzintervalls zweidimensionaler Daten.

Beispiel: Streudiagramm mit 95 %-Ellipsen für zwei Merkmale.

Dashboard

Visuelle Oberfläche zur Anzeige wichtiger Kennzahlen, oft interaktiv. Eingesetzt in BI, Monitoring und Management. **Beispiel:** Power BI-Dashboard zeigt Umsatztrends und regionale Verteilungen.

Data Analyst

Rolle zur Analyse, Visualisierung und Aufbereitung von Daten. Verwendet Tools wie SQL, Excel, Python.

Beispiel: Analysiert die Entwicklung der Conversion Rate im Onlineshop.

Data Cleaning

Prozess zur Entfernung fehlerhafter, fehlender oder doppelter Daten. Voraussetzung für jede verlässliche Analyse.

Beispiel: Entfernen leerer Felder und falscher Datentypen aus einer CSV-Datei.

Data Engineer

Spezialist für Aufbau und Pflege von Dateninfrastrukturen wie Pipelines, Datenbanken, Cloud-Systemen.

Beispiel: Entwickelt eine ETL-Strecke zur automatisierten Datenintegration.

Data Governance

Regeln und Prozesse für Datenqualität, Sicherheit und Zugriffsrechte.

Beispiel: Wer darf personenbezogene Daten sehen, wer nicht?

Data Lake

Unstrukturierter Datenspeicher in Rohform, häufig auf Hadoop oder S3.

Beispiel: Speicherung aller Rohdaten aus Weblogs, APIs und externen Quellen.

Data Mart

Fokussierter Teil eines Data Warehouses für bestimmte Fachabteilungen.

Beispiel: Separater Bereich für Marketingdaten mit aggregierten KPIs.

Data Mining

Entdeckung von Mustern und Zusammenhängen in großen Datenmengen mittels statistischer Methoden.

Beispiel: Regel "Kunden, die X kaufen, kaufen auch Y".

Data Pipeline

Automatisierter Datenfluss von Quelle zu Ziel mit Extraktion, Transformation, Speicherung.

Beispiel: Apache Airflow steuert tägliches Laden neuer Shopdaten ins Data Warehouse.

Data Scientist

Experte für Analyse, Modellierung und Prognose komplexer Daten mittels ML/AL.

Beispiel: Prognose von Retourenwahrscheinlichkeit mit Random Forest.

Database (Datenbank)

Strukturierte Ablage von Daten für effiziente Suche und Verarbeitung. Relationale (SQL) oder NoSQL-Varianten.

Beispiel: PostgreSQL speichert Kunden- und Transaktionsdaten.

Datensatz (Record)

Einzelne Zeile in einer Tabelle mit mehreren Attributen.

Beispiel: Kunde #123 mit Name, Geburtsdatum, Umsatz.

Decision Tree

ML-Modell mit if/else-Struktur zur Klassifikation oder Regression.

Beispiel: Baum entscheidet, ob Kredit gewährt wird.

Deep Learning

Teilgebiet des ML, das auf tiefen neuronalen Netzen basiert. Stark bei Bildern, Sprache, komplexen Mustern.

Beispiel: Spracherkennung auf Smartphones mit Deep Learning.

Default Value

Standardwert bei fehlender Eingabe.

Beispiel: Standardmäßig 0 bei leerem Feld.

Denormalisierung

Bewusste Redundanz zur Leistungssteigerung in Datenbanken.

Beispiel: Kundenname wird in jede Bestellzeile übernommen.

Deployment

Bereitstellung eines Modells oder Systems zur produktiven Nutzung.

Beispiel: ML-Modell wird via REST-API bereitgestellt.

Derived Variable

Abgeleitetes Merkmal, berechnet aus bestehenden Feldern.

Beispiel: Alter = Heute – Geburtsjahr.

Descriptive Analytics

Analyse historischer Daten zur Beschreibung von Entwicklungen.

Beispiel: Umsatzrückgang von 10 % im Vergleich zum Vorjahr.

Dimensionality Reduction

Verfahren zur Reduktion der Merkmalsanzahl bei hoher Dimensionalität.

Beispiel: PCA reduziert 500 Sensorwerte auf 10 Hauptkomponenten.

DNN (Deep Neural Network)

Mehrschichtiges neuronales Netz mit hohem Abstraktionsvermögen.

Beispiel: Klassifikation von Handschrift anhand von Pixelwerten.

Docker

Containertechnologie für portable, reproduzierbare Softwareumgebungen.

Beispiel: Ein Python-Analyse-Skript läuft unabhängig von Host-Systemen.

Document Store

NoSQL-Datenbank zur Speicherung von Dokumentenstrukturen wie JSON.

Beispiel: MongoDB speichert Userprofile als JSON-Objekte.

Dropout

Regulierungsmethode bei neuronalen Netzen zur Vermeidung von Overfitting.

Beispiel: 30 % der Neuronen werden pro Trainingsdurchlauf deaktiviert.

Dummy Variable

Künstlich erzeugte binäre Variable zur Kodierung kategorialer Merkmale.

Beispiel: Geschlecht_männlich = 1, Geschlecht_weiblich = 0.

Data Wrangling

Umfassender Begriff für das Bearbeiten und Umstrukturieren von Daten zur Analyse.

Beispiel: Spalten splitten, fehlende Werte ersetzen, Typen umwandeln.

Drilldown

Funktion in Dashboards zur Navigation von Aggregation in Detaildaten.

Beispiel: Klick auf "Region Bayern" zeigt Städte an.

Data Imputation

Ersetzen fehlender Werte durch Schätzung oder Regel.

Beispiel: Durchschnittswert ersetzt fehlende Umsatzangaben.

Decision Boundary

Grenze, an der ein Klassifikationsmodell zwischen zwei Klassen unterscheidet.

Beispiel: Lineare Trennung zwischen Gut-/Schlecht-Kredit.

Data Provenance

Dokumentation der Herkunft und Transformation eines Datensatzes.

Beispiel: Ursprung, Änderungen und Zugriffe eines Datensatzes werden protokolliert.

Data Drift

Veränderung der Datenverteilung über Zeit, wodurch ML-Modelle an Genauigkeit verlieren können.

Beispiel: Kundentypen ändern sich durch Marktveränderung – Modell muss neu trainiert werden.

EDA (Exploratory Data Analysis)

Systematische Untersuchung von Daten vor der Modellierung. Dient zur Erkennung von Mustern, Ausreißern und Datenproblemen.

Beispiel: Boxplots, Korrelationen und Histogramme zur Bewertung eines Kundendatensatzes.

Edge Case

Ungewöhnlicher Eingabefall, der ein System an seine Grenzen bringt. Relevant für Tests und Fehlerresistenz.

Beispiel: Ein Kunde mit Alter 0 oder 120 Jahren.

Elasticity (Elastizität)

Maß für die Empfindlichkeit einer Zielgröße bei Änderung einer Einflussgröße.

Beispiel: -1,5 Preiselastizität = 1 % Preiserhöhung \rightarrow 1,5 % weniger Nachfrage.

Embedding

Transformation von Objekten (z. B. Wörtern) in Vektoren mit fixer Länge.

Beispiel: Wort "Auto" als Vektor [0.12, -0.44, ...] für neuronales Netz.

Ensemble Learning

Verfahren zur Kombination mehrerer Modelle zur Verbesserung der Genauigkeit.

Beispiel: Random Forest kombiniert viele Entscheidungsbäume.

Entropy (Entropie)

Maß für Unordnung in Daten, genutzt in Entscheidungsbäumen. Je höher, desto gemischter die Klassen.

Beispiel: Maximale Entropie bei 50 %/50 %-Verteilung zweier Klassen.

Epoch

Ein kompletter Durchlauf aller Trainingsdaten beim Modelltraining.

Beispiel: Das Modell wird über 100 Epochen trainiert.

ETL (Extract, Transform, Load)

Kernprozess zur Datenintegration: Extraktion aus Quelle, Transformation, Laden in Zielsystem.

Beispiel: Webshopdaten → Währungsumrechnung → Speichern in PostgreSQL.

Evaluation Metric

Kennzahl zur Bewertung von Modellen, z. B. Accuracy, RMSE, Precision

Beispiel: Ein F1-Score von 0.81 bei Spam-Klassifikation.

Excel

Tabellenkalkulationstool mit hoher Relevanz in Reporting, Analyse und Visualisierung.

Beispiel: Pivot-Tabelle zur Analyse von Verkaufsdaten nach Region und Monat.

Exponential Smoothing

Zeitreihenmethode zur Glättung kurzfristiger Schwankungen.

Beispiel: Gewichtete Umsatzprognose mit stärkerem Fokus auf jüngste Werte.

Extrapolation

Vorhersage außerhalb des bekannten Datenbereichs – riskanter als Interpolation.

Beispiel: Prognose des Umsatzes für 2030 auf Basis von 2020–2024.

Early Stopping

Abbruch des Modelltrainings, sobald Validierungsfehler steigt. Verhindert Overfitting.

Beispiel: Modelltraining stoppt nach 34 Epochen.

Entity

Reales oder konzeptionelles Objekt, das in einer Datenbank erfasst wird.

Beispiel: Kunden, Produkte, Bestellungen.

Event-based Data

Zeitgestempelte Daten, die durch Aktionen erzeugt werden.

Beispiel: Klicks, Logins, Käufe in Websystemen.

Explainability

Verständlichkeit von Modellen und deren Entscheidungen für Menschen.

Beispiel: SHAP-Werte zeigen Einfluss einzelner Merkmale auf Modellentscheidungen.

Exogenous Variable

Einflussgröße von außen, nicht durch das Modell erklärt, aber berücksichtigt.

Beispiel: Wetterdaten bei Umsatzanalyse im Einzelhandel.

Elastic Net

Regularisierungstechnik, die Lasso (L1) und Ridge (L2) kombiniert.

Beispiel: Verwendung bei korrelierten Regressionsvariablen.

Error Rate

Anteil der falschen Vorhersagen. Ergänzung zur Accuracy.

Beispiel: 7 Fehlklassifikationen bei 100 Fällen → Error Rate: 7 %.

Eins-gegen-Rest (One-vs-Rest)

Klassifikationsstrategie für Multiklassen-Probleme.

Beispiel: 3 Modelle: Katze-vs-Rest, Hund-vs-Rest, Maus-vs-Rest.

Euklidische Distanz

Länge der kürzesten Verbindung zweier Punkte im Merkmalsraum.

Beispiel: Abstand zwischen zwei Kundenprofilen im 5D-Raum.

Encoding

Umwandlung von Variablen in eine numerische Repräsentation.

Beispiel: One-Hot-Encoding für Farbe: Blau = [0,1,0]

Empirical Distribution

Verteilung der beobachteten Datenwerte, ohne theoretisches Modell.

Beispiel: Histogramm der beobachteten Kundenalter.

Entity-Relationship-Model (ER-Modell)

Diagramm zur Strukturierung von Datenbanktabellen und ihren Beziehungen.

Beispiel: Beziehung: Kunde -> Bestellung (1:n).

Execution Plan

Beschreibung, wie eine Datenbankabfrage technisch ausgeführt wird.

Beispiel: PostgreSQL zeigt, wie ein JOIN ausgeführt wird (Index, Sortierung etc.).

External Table

Tabelle, die Daten außerhalb der Datenbank referenziert (z. B. in Data Lakes).

Beispiel: Hive-Tabelle, die auf Parquet-Dateien verweist.

ETL Scheduler

Werkzeug zur zeitlichen Steuerung von ETL-Prozessen.

Beispiel: Apache Airflow plant nächtliche ETL-Pipelines.

Enrichment

Ergänzung von Daten mit weiteren Attributen zur Verbesserung der Analyse.

Beispiel: Anreicherung von Transaktionsdaten mit Wetterdaten.

Einschlusskriterium (Inclusion Criteria)

Filterbedingung für Datenzugang oder Modelltraining.

Beispiel: Nur Kunden mit vollständigen Profildaten werden trainiert.

Endpoint

Adresse (z. B. URL), über die auf Daten oder Modelle per API zugegriffen wird.

Beispiel: /predict/ nimmt Features entgegen und liefert Vorhersage.

Embedding Layer

Schicht in neuronalen Netzen, die diskrete Werte in kontinuierliche Vektoren abbildet.

Beispiel: User-ID → 16-dimensionale Darstellung für Empfehlungssystem.

Error Analysis

Gezielte Untersuchung von Modellfehlern zur Verbesserung der Performance.

Beispiel: Analyse, bei welchen Produkten ein Klassifikator regelmäßig versagt.

Einschränkung (Constraint)

Datenbankregel, die bestimmte Zustände erzwingt.

Beispiel: Spalte darf keine Nullwerte enthalten (NOT NULL).

F1-Score

Harmonisches Mittel von Precision und Recall. Gute Metrik bei unbalancierten Datensätzen.

Beispiel: F1 von 0.84 bedeutet solides Gleichgewicht zwischen Erkennung und Präzision.

Factor Analysis

Statistisches Verfahren zur Reduktion auf latente Variablen (Faktoren).

Beispiel: Mehrere Zufriedenheitsfragen ergeben einen "Service"-Faktor.

Feature

Eingabemerkmal eines Modells. Auch Attribut oder Prädiktor genannt.

Beispiel: Alter, Einkommen, Wohnort.

Feature Engineering

Erstellung und Transformation relevanter Merkmale für ML-Modelle.

Beispiel: Aus Datum das Quartal extrahieren.

Feature Importance

Kennzahl für den Einfluss eines Merkmals auf das Modell.

Beispiel: In einem Churn-Modell ist "letzter Login" am wichtigsten.

Feature Selection

Auswahl der wichtigsten Merkmale zur Modellvereinfachung.

Beispiel: Elimination von redundanten oder irrelevanten Spalten.

Federated Learning

Dezentrale Modelltrainingsmethode ohne zentrale Datenspeicherung.

Beispiel: Mobilgeräte trainieren lokal ein gemeinsames Sprachmodell.

Filter Function

Funktion zur Datenselektion nach Bedingung.

Beispiel: Pandas: df[df['alter'] > 30]

Float

Datentyp für Fließkommazahlen.

Beispiel: 3.14159

Forecasting

Prognose zukünftiger Werte anhand historischer Daten.

Beispiel: Umsatzvorhersage mit Holt-Winters-Modell.

Foreign Key

Fremdschlüssel in relationalen Datenbanken. Verweist auf Primärschlüssel einer anderen Tabelle.

Beispiel: customer_id in Bestell-Tabelle verweist auf Kunden-Tabelle.

Formel

Rechenvorschrift zur automatisierten Berechnung.

Beispiel: Excel: =B2*C2

Forward Selection

Schrittweise Merkmalsauswahl für Regressionsmodelle.

Beispiel: Beginne mit leerem Modell und füge sukzessive Merkmale hinzu.

Fourier Transformation

Zerlegt Zeitreihen in Frequenzanteile.

Beispiel: Frequenzanalyse von Stromverbrauchsdaten.

False Positive (FP)

Fehlerhafte positive Vorhersage.

Beispiel: Spamfilter markiert legitime E-Mail als Spam.

False Negative (FN)

Fehlerhafte negative Vorhersage.

Beispiel: Ein Krebsfall bleibt unerkannt.

FRAUD Detection

System zur Erkennung von Betrugsmustern.

Beispiel: ML erkennt gefälschte Kreditkartentransaktionen.

Frequency Table

Tabelle mit Häufigkeiten von Ausprägungen.

Beispiel: 340 Nutzer aus Deutschland, 120 aus Österreich.

Full Outer Join

SQL-Verknüpfung, die alle Zeilen beider Tabellen zeigt, auch ohne Übereinstimmung.

Beispiel: Alle Kunden und alle Bestellungen – auch wenn keine Verbindung existiert.

Function

Wiederverwendbarer Codeblock mit Eingaben und Rückgabe.

Beispiel: def quadrat(x): return x*x

Fuzzy Matching

Abgleich ähnlich geschriebener Texte mit Toleranz.

Beispiel: "Meier" ≈ "Mayer".

Flat File

Einfache Datei ohne relationale Struktur, meist CSV oder TXT.

Beispiel: Rohdatenexport aus einem alten CRM.

Feature Map

Zwischenausgabe von CNNs in Bildverarbeitung.

Beispiel: Aktivierungskarte nach Convolution-Operation.

First Normal Form (1NF)

Grundregel für relationale Datenbanken: keine Wiederholungsgruppen, atomare Werte.

Beispiel: Eine Spalte enthält nicht mehrere Telefonnummern.

File System

Strukturierte Ablage und Verwaltung von Dateien in Verzeichnissen.

Beispiel: Hadoop Distributed File System (HDFS).

Fingerprinting

Erkennung eines Benutzers/Objekts durch eindeutige Datenmuster.

Beispiel: Wiedererkennung von Geräten anhand Browserdaten.

Finite State Machine

Modell, das Zustände und Übergänge eines Systems beschreibt.

Beispiel: Klickfolge in einer App wird als Zustandsdiagramm modelliert.

Fit (Modelltraining)

Anpassung eines ML-Modells an Trainingsdaten.

Beispiel: model.fit(X_train, y_train)

Feature Drift

Änderung der Bedeutung oder Verteilung eines Merkmals über Zeit.

Beispiel: "Nutzeraktivität" verliert Aussagekraft nach Produktupdate.

Field (Feld)

Einzelnes Datenattribut innerhalb eines Datensatzes.

Beispiel: "email" in einer User-Tabelle.

Flattening

Umwandlung verschachtelter Datenstrukturen in flache Tabellenform.

Beispiel: JSON → DataFrame mit Spalten für jeden Schlüssel.

Fact Table

Kernbestandteil eines Data Warehouses, speichert messbare Ereignisse.

Beispiel: Verkaufstabelle mit Umsatz, Menge, Datum.

Factless Fact Table

Tabelle ohne numerische Kennzahlen, aber mit Beziehungen zur Analyse von Ereignissen.

Beispiel: Anwesenheitstabelle für Schüler – kein "Wert", aber relational nutzbar.

Gantt Chart

Diagramm zur Visualisierung zeitlicher Abläufe von Projekten oder

Prozessen. Genutzt in Planung und Projektmanagement.

Beispiel: Darstellung von ETL-Jobs über eine Woche.

Gaussian Distribution (Normalverteilung)

Symmetrische, glockenförmige Verteilung vieler natürlicher Merkmale. Basis vieler statistischer Methoden.

Beispiel: Körpergröße in einer Bevölkerung.

Gini Index

Maß für Unreinheit einer Aufteilung in Entscheidungsbäumen. Je niedriger, desto homogener die Klassen.

Beispiel: Gini = 0 bei reinen Blättern.

Git

Versionskontrollsystem für Code. Erlaubt parallele Arbeit, Historie und Wiederherstellung.

Beispiel: git commit -m "Datenbereinigung hinzugefügt"

GitHub

Online-Plattform zur Verwaltung von Git-Repositories. Unterstützt Kollaboration, Reviews und Automatisierung.

Beispiel: Team teilt Notebooks über GitHub-Repo.

Gradient Descent

Optimierungsverfahren zur Minimierung von Fehlerfunktionen. Grundlage fast aller ML-Verfahren. Beispiel: Training eines neuronalen Netzes.

GPU (Graphics Processing Unit)

Prozessor für parallele Berechnungen, besonders bei Deep Learning.

Beispiel: NVIDIA A100 beschleunigt CNN-Training.

Granularity (Granularität)

Detailtiefe von Daten oder Zeitintervallen. Fein = detailliert, grob = aggregiert.

Beispiel: Minutendaten vs. Monatsdurchschnitte.

Graph Database

NoSQL-Datenbank zur Speicherung vernetzter Daten. Nutzt Knoten und Kanten.

Beispiel: Neo4j speichert soziale Netzwerke.

Grid Search

Brute-Force-Methode zur Hyperparameteroptimierung durch Testen aller Kombinationen.

Beispiel: max_depth + n_estimators für Random Forest.

Group By

SQL-Kommando zur Gruppierung von Zeilen nach Spaltenwerten, oft kombiniert mit Aggregationen.

Beispiel: SELECT region, SUM(sales) FROM data GROUP BY

region

Growth Rate

Wachstumsrate eines Werts über die Zeit.

Beispiel: 8 % Umsatzwachstum pro Monat.

Ground Truth

Verifizierte Referenzdaten zur Modellvalidierung.

Beispiel: Manuell gelabelte Bilddaten für ein CNN.

GUI (Graphical User Interface)

Benutzeroberfläche zur Interaktion mit Software über visuelle Elemente.

Beispiel: Tableau Dashboard mit Drag-and-drop.

GxP (Good x Practice)

Regelwerke für Qualität und Sicherheit in regulierten Bereichen.

Beispiel: GMP in Pharma – gute Herstellpraxis.

GMM (Gaussian Mixture Model)

Clustering-Modell, das Daten als Mischung mehrerer Normalverteilungen modelliert.

Beispiel: Clustering von Kunden nach Verhalten.

Gradient Boosting

Boosting-Verfahren, das sequentiell Fehler reduziert. Leistungsstark für strukturierte Daten.

Beispiel: XGBoost.

Guesstimate

Grobe, erfahrungsbasierte Schätzung.

Beispiel: Erwartete Rücklaufquote bei Umfrage = 30 %.

Generalization

Fähigkeit eines Modells, auf neue Daten korrekt zu reagieren.

Beispiel: Modell funktioniert auch auf unbekannten Kundendaten.

Geoanalytics

Analyse raumbezogener Daten mit geographischen Komponenten.

Beispiel: Heatmap der Verkaufszahlen pro Postleitzahl.

Gaussian Naive Bayes

Klassifikator, der Normalverteilungen pro Merkmal annimmt.

Beispiel: Schnell trainierter Textklassifikator.

Greedy Algorithmus

Algorithmus, der in jedem Schritt lokal beste Entscheidung trifft. Nicht immer optimal.

Beispiel: Entscheidungsbaum-Split mit höchstem Informationsgewinn.

Guided Analytics

Interaktive Analyse mit vordefinierten Fragen oder Pfaden.

Beispiel: Nutzer klickt sich durch Dashboard zur Zielerkenntnis.

Gamma Distribution

Schiefe Wahrscheinlichkeitsverteilung für positive Werte.

Beispiel: Modellierung von Versicherungsforderungen.

Gradient

Vektor der partiellen Ableitungen, zeigt Richtung des stärksten Anstiegs einer Funktion.

Beispiel: Gradient in Backpropagation.

Gaussian Kernel

Funktion zur Gewichtung naher Datenpunkte in Kernel-Methoden.

Beispiel: SVM mit RBF-Kernel.

Group Normalization

Alternative zu Batch Normalization – robust bei kleinen Batchgrößen.

Beispiel: In CNNs für kleine Datenmengen.

Graph Neural Network (GNN)

Neural Network zur Verarbeitung von Graphstrukturen.

Beispiel: Vorhersage von Moleküleigenschaften anhand ihrer Struktur.

Hash Function

Funktion zur Umwandlung beliebiger Daten in einen festen Code. Häufig in Sicherheit, Indexierung oder Datenabgleich genutzt. **Beispiel:** SHA-256 erzeugt aus einem Passwort einen einzigartigen Hash.

Histogram

Diagramm zur Darstellung der Häufigkeitsverteilung numerischer Werte in Intervallen (Bins).

Beispiel: Visualisierung der Altersverteilung in Kundenstammdaten.

Hyperparameter

Voreingestellte Modellparameter, die nicht durch Training gelernt werden, sondern manuell oder durch Optimierung bestimmt werden.

Beispiel: Lernrate, Anzahl Bäume in Random Forest.

Hyperparameter Tuning

Optimierung der Hyperparameter zur Verbesserung der Modellperformance.

Beispiel: Grid Search zur Auswahl der besten max_depth und n estimators.

Hypothesis Testing

Statistisches Verfahren zum Testen einer Annahme über eine Population.

Beispiel: Test, ob die durchschnittliche Conversion Rate > 3 % ist.

Heteroskedasticity

Nicht-konstante Varianz der Fehler in einem Regressionsmodell. Kann zu verzerrten Ergebnissen führen.

Beispiel: Residuen steigen mit dem Einkommen.

Heuristic

Vereinfachte Regel zur schnellen Problemlösung, nicht garantiert optimal.

Beispiel: "Wenn Nutzer >10x klickt, ist er interessiert."

Holdout Set

Teil der Daten, der nicht zum Training, sondern ausschließlich zur abschließenden Bewertung eines Modells verwendet wird.

Beispiel: 80/10/10-Split: Training/Validation/Holdout.

HDFS (Hadoop Distributed File System)

Verteiltes Dateisystem zur Speicherung großer Datenmengen auf Clustern.

Beispiel: Rohdaten werden in Blöcken über mehrere Server verteilt gespeichert.

Head (Tabellenfunktion)

Zeigt die ersten n Zeilen eines Datensatzes an.

Beispiel: df.head(5) zeigt die ersten fünf Zeilen eines DataFrames.

Hierarchical Clustering

Clusteranalyse, bei der Daten schrittweise zu immer größeren Gruppen zusammengefügt werden.

Beispiel: Dendrogramm zeigt die Hierarchie von Kundenclustern.

Homogeneity

Maß für die Ähnlichkeit von Gruppen oder Clustern. Höher = ähnlicher.

Beispiel: Cluster mit reinem Alter 20–25 ist hoch homogen.

Host (Server)

Rechner oder Dienst, auf dem Anwendungen oder Datenbanken laufen.

Beispiel: PostgreSQL läuft auf analytics.company.com

HTML (HyperText Markup Language)

Standardauszeichnungssprache für Webseiten. Relevant für Webscraping.

Beispiel: Extraktion von Daten aus -Elementen.

HTTP (Hypertext Transfer Protocol)

Protokoll für Datenübertragung im Web. Wichtig bei API-Calls und Web-Scraping.

Beispiel: REST-API liefert JSON über HTTP GET.

Heuristic Algorithm

Algorithmus, der mit Faustregeln arbeitet, um Lösungen effizient zu finden.

Beispiel: K-nearest-neighbor mit einfachem Abstandsmaß.

Histogram Equalization

Bildverarbeitungstechnik zur Kontrastanpassung durch Neuskalierung der Helligkeitsverteilung.

Beispiel: Verbesserung der Lesbarkeit von Röntgenbildern.

Hinge Loss

Verlustfunktion für lineare Klassifikation, v. a. bei SVMs.

Beispiel: Bestraft falsch klassifizierte Punkte mit Abstand zur Entscheidungsgrenze.

Hamming Distance

Anzahl unterschiedlicher Zeichen in zwei gleich langen Strings.

Beispiel: ",10101" vs. ",11100" → Hamming-Distanz = 3.

Hash Join

Join-Strategie in Datenbanksystemen, bei der Hash-Tabellen verwendet werden, um schnelle Übereinstimmungen zu finden.

Beispiel: Join zwischen großen Tabellen in PostgreSQL.

Hierarchical Indexing

Mehrstufiger Index in Pandas oder SQL, oft zur Gruppierung und Abfrage von Multi-Level-Daten.

Beispiel: MultiIndex aus "Region" und "Jahr".

Heatmap

Farbige Visualisierung von Korrelations- oder Häufigkeitsdaten in Matrixform.

Beispiel: Korrelation zwischen Features im Datensatz.

Heuristic Threshold

Schwellenwert, der empirisch oder erfahrungsbasiert gewählt wurde.

Beispiel: Kreditvergabe bei Score > 0.6.

Hybrid Model

Kombination verschiedener Modellarten oder Algorithmen, oft ML + regelbasiert.

Beispiel: Empfehlungssystem mit kollaborativem Filter + Contentbased Matching.

Hyperplane

Trennfläche in höherdimensionalen Räumen, genutzt in SVMs zur Klassenabgrenzung.

Beispiel: Zwei Klassen im 3D-Raum werden durch eine Ebene getrennt.

Hyperparameter Optimization

Systematische Suche nach den besten Hyperparametern.

Beispiel: Random Search, Grid Search, Bayesian Optimization.

Human-in-the-Loop

Systeme, bei denen Menschen gezielt in den Entscheidungsprozess eingebunden werden.

Beispiel: Mensch überprüft Anomalien, die vom Modell markiert wurden.

Hazard Function

Wahrscheinlichkeit des Eintretens eines Ereignisses zu einem bestimmten Zeitpunkt, gegeben dass es noch nicht eingetreten ist.

Beispiel: Ausfallwahrscheinlichkeit einer Maschine pro Stunde.

High Cardinality

Spalte mit sehr vielen unterschiedlichen Werten – problematisch für One-Hot-Encoding.

Beispiel: E-Mail-Adressen, IDs, URLs.

Hot Encoding (One-Hot-Encoding)

Darstellung kategorialer Variablen als binäre Spalten.

Beispiel: "Rot" → [1,0,0], "Blau" → [0,1,0], "Grün" → [0,0,1].

ID (Identifier)

Eindeutiger Schlüssel zur Unterscheidung von Datensätzen. Wird meist als Primärschlüssel verwendet.

Beispiel: user_id = 1023 identifiziert einen bestimmten Kunden.

Imbalanced Dataset

Datensatz mit ungleich verteilten Klassen. Kann Klassifikationsmodelle stark beeinflussen.

Beispiel: 95 % "Nicht-Betrug", 5 % "Betrug".

Imputation

Verfahren zum Ersetzen fehlender Werte.

Beispiel: Fehlende Temperaturwerte durch Mittelwert auffüllen.

Index (SQL/Pandas)

Struktur zur schnellen Datenzugriffsoptimierung. In Pandas zusätzlich zur Zeilenidentifikation.

Beispiel: Index auf customer_id beschleunigt Abfragen.

Independent Variable

Unabhängige Variable in einer Analyse, Prädiktor.

Beispiel: Werbebudget als Einflussfaktor auf Umsatz.

Inferential Statistics

Verfahren zur Verallgemeinerung von Stichprobenergebnissen auf Populationen.

Beispiel: Konfidenzintervalle, Hypothesentests.

Information Gain

Maß für Reduktion der Unreinheit durch ein Attribut (v. a. Entscheidungsbäume).

Beispiel: Alter reduziert Entropie der Kaufentscheidung stark → hoher Gain.

Inner Join

SQL-Verknüpfung, die nur passende Zeilen beider Tabellen zurückgibt.

Beispiel: Nur Kunden mit mindestens einer Bestellung werden angezeigt.

Instance

Einzelnes Beispiel oder Datenpunkt in einem Datensatz.

Beispiel: Ein Kunde mit Attributen: Alter, Geschlecht, Umsatz.

Interquartile Range (IQR)

Spannweite zwischen 25. und 75. Perzentil. Robust gegen Ausreißer.

Beispiel: IQR für Alter liegt zwischen 30 und 50 → IQR = 20.

Interpolation

Schätzung fehlender Werte zwischen bekannten Punkten.

Beispiel: Temperatur am 15. durch Mittelwert von 14. und 16. geschätzt.

Interpretability

Grad, in dem ein Modell für Menschen verständlich ist.

Beispiel: Entscheidungsbaum ist gut interpretierbar, ein neuronales Netz eher nicht.

Interval Data

Numerische Daten mit gleichen Abständen, aber ohne echten Nullpunkt.

Beispiel: Temperatur in $^{\circ}$ C – 0 $^{\circ}$ C bedeutet nicht "keine Temperatur".

Intersection

Schnittmenge zweier Datenmengen oder Mengenoperation in SQL.

Beispiel: Nutzer, die sowohl gekauft als auch bewertet haben.

Iterative Process

Wiederholender Prozess zur Verfeinerung von Modellen oder Workflows.

Beispiel: Feature-Engineering \rightarrow Modelltraining \rightarrow Evaluation \rightarrow zurück.

Isolation Forest

ML-Verfahren zur Anomalieerkennung durch zufällige Partitionierung.

Beispiel: Auffällige Kredittransaktionen werden isoliert.

i.i.d. (independent and identically distributed)

Annahme in der Statistik, dass Datenpunkte unabhängig und aus derselben Verteilung stammen.

Beispiel: Münzwürfe sind i.i.d., Einkommen nicht unbedingt.

Identity Matrix

Quadratische Matrix mit Einsen auf der Diagonalen, sonst Nullen.

Beispiel: I = [[1,0,0],[0,1,0],[0,0,1]]

Indicator Variable

Binäre Variable zur Kennzeichnung kategorialer Ausprägungen.

Beispiel: Geschlecht: "weiblich = 1", sonst 0.

Interaction Effect

Wechselwirkung zwischen zwei oder mehr unabhängigen Variablen.

Beispiel: Werbeeffekt hängt vom Geschlecht UND Alter ab.

Incremental Learning

Modelltraining in kleinen Schritten ohne komplettes Neulernen.

Beispiel: Modell aktualisiert sich stündlich mit neuen Nutzerdaten.

Inertia (K-Means)

Summe der Abstände aller Punkte zu ihren Clusterzentren.

Beispiel: Ziel ist minimale Inertia → enge Cluster.

Input Layer

Erste Schicht eines neuronalen Netzes, nimmt Rohdaten auf.

Beispiel: 10 Neuronen für 10 Eingabefeatures.

Image Recognition

Erkennung von Objekten oder Mustern in Bildern mittels ML.

Beispiel: Modell identifiziert Katzen auf Fotos.

Indexing (Pandas)

Zugriff auf Datenzeilen oder -spalten durch Labels oder Positionen.

Beispiel: df.loc['row1'] oder df.iloc[0]

Inter-Rater Reliability

Maß für Übereinstimmung zwischen mehreren Beurteilenden.

Beispiel: Zwei Ärzte stellen dieselbe Diagnose → hohe Reliabilität.

IQR-Based Outlier Detection

Ausreißererkennung auf Basis von IQR.

Beispiel: Werte außerhalb [Q1 – $1.5 \times IQR$, Q3 + $1.5 \times IQR$] gelten als Ausreißer.

Imbalanced Learning

ML-Techniken zur besseren Handhabung ungleicher Klassenverteilungen.

Beispiel: Verwendung von SMOTE zur Erzeugung synthetischer Minoritätsbeispiele.

Integer

Ganzzahliger Datentyp ohne Dezimalstellen.

Beispiel: 1, 42, -7 – aber nicht 3.14.

Inferencing

Anwendung eines trainierten Modells auf neue Daten.

Beispiel: Vorhersage des Kaufverhaltens für neue Nutzer.

Indicator Matrix

Matrixform für One-Hot-Encoding kategorialer Daten.

Beispiel: 3 Kategorien → 3 Spalten, je 0 oder 1.

Identity Column (SQL)

Automatisch hochzählende Spalte zur eindeutigen ID-Vergabe.

Beispiel: id INT AUTO INCREMENT

In-Memory Computing

Verarbeitung großer Datenmengen direkt im RAM zur Beschleunigung.

Beispiel: Apache Spark verarbeitet Daten im Speicher statt auf Festplatte.

Information Retrieval

Prozess des Suchens und Findens relevanter Informationen in großen Datenmengen.

Beispiel: Suche nach Produktrezensionen mit bestimmtem Keyword.

Instruction Set

Befehlssatz eines Prozessors oder Systems, relevant in Low-Level-Datenverarbeitung.

Beispiel: SIMD-Instruktionen zur Parallelverarbeitung von Matrizen.

Jaccard Distance

Maß für die Unähnlichkeit zwischen zwei Mengen, definiert als 1 minus der Jaccard-Ähnlichkeit.

Beispiel: Zwei Listen mit 60 % Überschneidung → Distance = 0.4

Jaccard Index

Maß zur Berechnung der Ähnlichkeit zwischen zwei Mengen, definiert als Größe der Schnittmenge geteilt durch Größe der Vereinigungsmenge.

Beispiel: Zwei Mengen mit 4 gleichen und 6 unterschiedlichen Elementen ergeben 0.4.

Jaccard Loss

Verlustfunktion, die auf der Jaccard-Ähnlichkeit basiert, verwendet in Bildsegmentierung.

Beispiel: Semantic-Segmentation-Netzwerke.

Jaccard Similarity Coefficient

Alternativer Begriff für den Jaccard Index; wird häufig bei Clustering oder Recommender-Systemen verwendet.

Beispiel: Vergleich von Nutzerinteressen durch binäre Vektoren.

Jaccard Similarity Matrix

Matrix mit paarweisen Jaccard-Scores zwischen Mengen oder Dokumenten.

Beispiel: Ähnlichkeitsvergleich von Texten in einem Recommender-System.

Jaccard Thresholding

Verfahren zur Auswahl ähnlicher Paare basierend auf Mindestwert für den Jaccard Index.

Beispiel: Nur Paare mit Jaccard > 0.5 werden verknüpft.

JAR File (Java Archive)

Komprimiertes Archivformat für Java-Klassen, Konfigurationen und Bibliotheken.

Beispiel: Ein Apache-Spark-Job wird als ausführbares JAR übergeben.

Java

Plattformunabhängige, objektorientierte Programmiersprache, häufig in Enterprise- und Big-Data-Anwendungen.

Beispiel: Hadoop-MapReduce-Programme werden meist in Java geschrieben.

Java EE (Enterprise Edition)

Erweiterung von Java für Web- und Unternehmensanwendungen, mit Fokus auf Skalierbarkeit und Modularität.

Beispiel: Webservice mit Authentifizierung via Java EE.

Java Native Interface (JNI)

Schnittstelle zur Einbindung von C/C++-Code in Java-Anwendungen.

Beispiel: Java ruft eine Bibliothek zur Bildverarbeitung in C auf.

Java Server Pages (JSP)

Technologie zur serverseitigen Generierung dynamischer HTML-

Inhalte in Java.

Beispiel: JSP-Seite zeigt Analyseergebnisse auf Knopfdruck an.

Java Virtual Machine (JVM)

Virtuelle Maschine, die Java-Bytecode in Maschinencode übersetzt

und ausführt.

Beispiel: Apache Spark läuft auf der JVM.

JavaBeans

Java-Komponenten mit definierten Getter- und Setter-Methoden für

die strukturierte Datenmodellierung.

Beispiel: getName() und setName() als Datenzugriff.

JavaScript

Skriptsprache zur dynamischen Webentwicklung, auch genutzt für

Visualisierungstools.

Beispiel: D3.js-Visualisierungen im Browser.

Jena (Apache Jena)

Framework für semantische Webanwendungen und Verarbeitung

von RDF-Daten.

Beispiel: SPARQL-Abfragen auf Wissensgraphen.

Jenkins

Open-Source-Automatisierungstool für Continuous Integration/Delivery.

Beispiel: Pipeline zur täglichen Ausführung von ETL-Jobs.

Jensen-Shannon-Divergenz

Maß zur Bewertung der Ähnlichkeit zwischen Wahrscheinlichkeitsverteilungen.

Beispiel: Vergleich von Sprachmodellen zweier Nachrichtentexte.

Jitter (Visualisierung)

Künstliches Streuen überlappender Punkte in einem Plot zur besseren Lesbarkeit.

Beispiel: Punktwolke mit Jitter bei identischen X-Werten.

Job Queue

System zur Verwaltung und Abarbeitung asynchroner Prozesse oder Aufgaben.

Beispiel: Warteschlange zur Bildverarbeitung auf einem Server.

Joblib

Python-Bibliothek zur Parallelisierung und Serialisierung von Aufgaben und Modellen.

Beispiel: Modell als .pkl speichern mit joblib.dump().

Join (SQL)

Operation zur Kombination von Zeilen aus zwei Tabellen basierend auf einem gemeinsamen Attribut.

Beispiel: JOIN kunden ON kunden.id = bestellungen.kundennr.

Joins (inner, outer, left, right)

Varianten des SQL-Joins mit unterschiedlichen Ergebnismengen.

Beispiel: LEFT JOIN zeigt alle Kunden, auch ohne Bestellung.

JSON (JavaScript Object Notation)

Textbasiertes, hierarchisches Format zum Speichern und Übertragen strukturierter Daten.

Beispiel: { "name": "Anna", "alter": 30 }.

JSDOM

JavaScript-Implementierung des DOM in Node.js-Umgebungen.

Beispiel: Testen von Webseiten ohne echten Browser.

JupyterHub

Multi-User-Plattform zur Bereitstellung von Jupyter Notebooks in Teams und Bildungseinrichtungen.

Beispiel: Data-Science-Kurs mit zentralem Notebook-Server.

JupyterLab

Moderne, erweiterte Benutzeroberfläche für Jupyter Notebooks mit Tabs und Terminals.

Beispiel: Gleichzeitiges Öffnen von CSV, Code und Plot.

Jupyter Notebook

Webbasierte Entwicklungsumgebung für Python, die Code, Text und Visualisierungen kombiniert.

Beispiel: Explorative Datenanalyse mit Pandas und Seaborn.

Jupyter Themes

Anpassbare Designpakete zur Modifikation des Erscheinungsbilds von Jupyter.

Beispiel: Dunkler Hintergrund für bessere Lesbarkeit.

Jupyter Widgets

Interaktive Bedienelemente in Jupyter, etwa Slider oder Dropdowns.

Beispiel: Regler für Parameter in einer ML-Demo.

JWT (JSON Web Token)

Standardformat zur sicheren Übertragung von Informationen zwischen Parteien.

Beispiel: Zugriffstoken für geschützte APIs.

Jaro-Winkler Distance

Ähnlichkeitsmaß für Strings mit Fokus auf kleine Vertauschungen.

Beispiel: Vergleich von "Data" und "Dtaa" ergibt hohe Ähnlichkeit.

k-Anonymity

Datenschutzprinzip, das sicherstellt, dass Daten nicht eindeutig auf Einzelpersonen zurückgeführt werden können, wenn sie in Gruppen von mindestens k nicht unterscheidbaren Personen vorliegen.

Beispiel: Eine Tabelle ist 3-anonym, wenn jede Kombination von Quasi-Identifikatoren mindestens dreimal vorkommt.

Kaggle

Online-Plattform für Datenanalysewettbewerbe, Tutorials und Community-Projekte. Sie bietet offene Datasets und eine interaktive Jupyter-Umgebung.

Beispiel: Teilnahme an einem Wettbewerb zur Vorhersage von Wohnpreisen.

Kappa Score (Cohen's Kappa)

Statistisches Maß zur Bewertung der Übereinstimmung zwischen zwei Klassifikatoren unter Berücksichtigung zufälliger Übereinstimmungen.

Beispiel: Vergleich von menschlicher Klassifikation und Modellklassifikation.

KDE (Kernel Density Estimation)

Nichtparametrisches Verfahren zur Schätzung der Wahrscheinlichkeitsdichte einer Zufallsvariablen.

Beispiel: Glättung eines Histogramms zur Analyse der Datenverteilung.

Kendall's Tau

Korrelationskoeffizient für Rangdaten, der die Übereinstimmung zweier Rangordnungen bewertet.

Beispiel: Vergleich der Rangfolge von Produkten durch zwei Algorithmen.

Kernel Trick

Methode in der SVM, um nichtlineare Daten durch Transformation in einen höherdimensionalen Raum trennbar zu machen.

Beispiel: Verwendung eines RBF-Kernels für komplexe Klassifikationsprobleme.

Key-Value Store

Einfaches NoSQL-Datenbanksystem, bei dem Daten als Schlüssel-Wert-Paare gespeichert werden.

Beispiel: Redis oder Amazon DynamoDB.

K-Fold Cross Validation

Technik zur Modellvalidierung, bei der Daten in k Teile geteilt und das Modell mehrfach trainiert und getestet wird.

Beispiel: 10-Fold Cross Validation für robustes Modell-Scoring.

KMeans

Beliebter Clustering-Algorithmus, der Daten in *k* Gruppen einteilt, basierend auf deren Ähnlichkeit.

Beispiel: Kundensegmentierung nach Kaufverhalten.

KMedoids

Clustering-Verfahren ähnlich KMeans, aber robuster gegen Ausreißer, da reale Datenpunkte als Clusterzentren gewählt werden.

Beispiel: Clustering von Usern basierend auf ihren Surfmustern.

K-NN (K-Nearest Neighbors)

Einfacher Klassifikationsalgorithmus, der die Klasse eines Punktes basierend auf der Mehrheitsklasse seiner *k* nächsten Nachbarn bestimmt.

Beispiel: Handschriftenerkennung basierend auf Pixeln.

Knowledge Graph

Netzwerk aus Entitäten und deren Beziehungen, das Wissen strukturiert repräsentiert.

Beispiel: Google Knowledge Graph zur Verbesserung von Suchergebnissen.

Kolmogorov-Smirnov-Test

Nichtparametrischer Test zur Bewertung, ob eine Stichprobe einer Referenzverteilung folgt.

Beispiel: Prüfung, ob Daten normalverteilt sind.

Kolmogorov-Komplexität

Maß für die Informationsmenge eines Objekts, definiert als Länge des kürzesten Programms, das es erzeugt.

Beispiel: Zufallszahlen haben hohe Kolmogorov-Komplexität.

Komplexitätsklasse

Klassifikation von Problemen nach ihrem rechnerischen Aufwand.

Beispiel: P, NP, NP-schwer im Kontext von Algorithmus-Analyse.

Konfidenzintervall

Bereich, der den wahren Wert eines Parameters mit einer bestimmten Wahrscheinlichkeit enthält.

Beispiel: "Der Mittelwert liegt mit 95% Sicherheit zwischen 10 und 12."

Konfusionsmatrix

Tabelle zur Bewertung von Klassifikationsmodellen, die wahre/nicht wahre Positiv/Negativ-Werte darstellt.

Beispiel: Analyse der Treffergenauigkeit eines Spam-Filters.

Kontingenztabelle

Kreuztabelle zur Darstellung von Häufigkeiten zweier kategorialer Merkmale.

Beispiel: Verteilung von Geschlecht und Zustimmung zu einer Aussage.

Kontinuierliche Variable

Variable mit unendlich vielen möglichen Ausprägungen in einem Intervall.

Beispiel: Temperatur, Gewicht, Einkommen.

Konvergenz (Numerik)

Eigenschaft eines Algorithmus, sich einem stabilen Wert oder Lösung näherungsweise anzunähern.

Beispiel: Gradientenverfahren in der linearen Regression.

Korrelation

Statistischer Zusammenhang zwischen zwei Variablen.

Beispiel: Positiver Zusammenhang zwischen Werbung und Umsatz.

Korrelationsmatrix

Matrix mit paarweisen Korrelationskoeffizienten mehrerer Variablen

Beispiel: Vergleich von Aktienrenditen.

Kovarianz

Maß für die gemeinsame Variabilität zweier Zufallsvariablen.

Beispiel: Wenn x steigt und y dazu, ist Kovarianz positiv.

Kritischer Wert

Grenzwert, ab dem ein statistisches Testergebnis als signifikant gilt.

Beispiel: t-Kritisch = 2.01 für df=20 bei α = 0.05.

Kruskal-Wallis-Test

Nichtparametrischer Test zur Analyse von Unterschieden zwischen mehr als zwei Gruppen.

Beispiel: Vergleich von Benutzerbewertungen mehrerer Produkte.

k-d Tree

Datenstruktur zur schnellen Suche in mehrdimensionalen Räumen.

Beispiel: Effiziente Nachbarsuche in k-NN-Algorithmen.

Kollinearität

Problem in der Regression, wenn unabhängige Variablen hoch korreliert sind.

Beispiel: Gewicht und BMI gleichzeitig in einer Regressionsanalyse.

Kreuztabelle

Synonym für Kontingenztabelle, oft in Excel und Statistiksoftware verwendet.

Beispiel: Darstellung der Kundenanzahl pro Region und Geschlecht.

Kumulative Verteilung

Funktion, die angibt, mit welcher Wahrscheinlichkeit eine Zufallsvariable kleiner oder gleich einem Wert ist.

Beispiel: 80% der Werte liegen unter x = 15.

Kurtosis (Wölbung)

Statistisches Maß für die "Spitzigkeit" einer Verteilung.

Beispiel: Hohe Kurtosis bei stark konzentrierten Daten um den Mittelwert.

K-Anonymisierung

Praktische Umsetzung der k-Anonymity, oft durch Generalisierung oder Suppression.

Beispiel: Alter 31 wird zu Altersgruppe 30-39.

KPI (Key Performance Indicator)

Kennzahl zur Bewertung von Prozessen, Leistung oder Zielerreichung.

Beispiel: Conversion Rate, Churn Rate.

Kernkomponente

Zentrales Element oder Einflussfaktor in einem komplexen System.

Beispiel: Feature mit starker Gewichtung in einem Modell.

Knowledge Discovery in Databases (KDD)

Gesamter Prozess der Mustererkennung in Daten, inkl. Vorverarbeitung, Modellierung und Interpretation.

Beispiel: Data-Mining-Projekt zur Betrugserkennung.

Kombinatorik

Teilgebiet der Mathematik zur Zählung möglicher Kombinationen und Anordnungen.

Beispiel: Anzahl der möglichen Passwortvarianten mit 3 Zeichen.

Label Encoding

Verfahren zur Umwandlung kategorialer Variablen in numerische Werte, indem jeder Kategorie eine Ganzzahl zugewiesen wird.

Beispiel: "rot" = 0, "grün" = 1, "blau" = 2

Lag Feature

Zeitversetzte Variable in Zeitreihenanalysen, um vergangene Werte zur Prognose künftiger Zustände zu nutzen.

Beispiel: Temperatur von gestern als Feature für heute.

Lagrange-Multiplikator

Mathematische Methode zur Berücksichtigung von Nebenbedingungen bei Optimierungsproblemen.

Beispiel: Optimierung eines Modells unter

Ressourcenbeschränkung.

Lambda-Funktion (Python)

Anonyme Kurzfunktion, die mit dem lambda-Schlüsselwort definiert wird.

Beispiel: 1 ambda $x: x^{**}$ 2 ergibt das Quadrat von x.

Laplacian (Graphentheorie)

Matrix zur Beschreibung der Struktur eines Graphen, oft verwendet bei Clustering oder Graph-basierten ML-Algorithmen.

Beispiel: Laplace-Matrix bei Spectral Clustering.

Lasso (Least Absolute Shrinkage and Selection Operator)

Regressionsmethode mit L1-Regularisierung, die Koeffizienten auf null setzen kann.

Beispiel: Feature-Selektion durch Lasso-Regression.

Latente Variable

Nicht direkt beobachtbare Variable, die Einfluss auf beobachtete Daten hat.

Beispiel: Kundenloyalität als latente Einflussgröße auf Kaufverhalten.

Latent Dirichlet Allocation (LDA)

Themenmodellierungsverfahren zur Entdeckung latenter Themen in Textdaten.

Beispiel: Extraktion von Themen aus Nutzerbewertungen.

Layer (NN)

Ebene in einem neuronalen Netz, die aus Knoten besteht und Transformationen durchführt.

Beispiel: Eingabeschicht, versteckte Schicht, Ausgabeschicht.

Leaky ReLU

Aktivierungsfunktion in neuronalen Netzen, die auch für negative Werte einen kleinen Gradienten liefert.

Beispiel: $f(x) = x f \ddot{u} r x > 0$, f(x) = 0.01x sonst.

Leistung (Statistik)

Wahrscheinlichkeit, dass ein Test eine falsche Nullhypothese korrekt ablehnt (Power).

Beispiel: Ein Test mit 80% Leistung erkennt einen echten Effekt mit 80% Wahrscheinlichkeit.

Likelihood

Wahrscheinlichkeit, dass ein Modell gegebene Daten erzeugt, wichtig für Maximum-Likelihood-Schätzungen.

Beispiel: Likelihood einer Normalverteilung bei gegebenen Messwerten.

Likelihood Ratio Test

Vergleich zweier verschachtelter Modelle über das Verhältnis ihrer Likelihoods.

Beispiel: Test, ob ein zusätzliches Feature die Modellgüte verbessert.

Lineare Regression

Statistisches Modell, das den Zusammenhang zwischen einer abhängigen und unabhängigen Variable durch eine lineare Gleichung beschreibt.

Beispiel: Umsatz = a + b * Werbekosten

Linear Discriminant Analysis (LDA)

Klassifikationsverfahren, das Merkmalsräume so transformiert, dass Klassen gut trennbar sind.

Beispiel: Trennung von Spam- und Nicht-Spam-Mails.

Lineare Unabhängigkeit

Eigenschaft einer Variablenmenge, dass keine Variable als Linearkombination der anderen darstellbar ist.

Beispiel: Features mit hoher Korrelation sind nicht linear unabhängig.

Linkage (Clustering)

Strategie zur Berechnung der Distanz zwischen Clustern in hierarchischen Verfahren.

Beispiel: Single-Linkage verbindet die nächsten Punkte zweier Cluster.

Little's MCAR Test

Statistischer Test, um zu prüfen, ob fehlende Werte zufällig (MCAR) sind.

Beispiel: Diagnose von Ausfällen in Umfragedaten.

Local Outlier Factor (LOF)

Verfahren zur Identifikation lokaler Ausreißer durch Dichtevergleich mit Nachbarn.

Beispiel: Detektion seltener Ereignisse in Sensordaten.

Log-Loss (Logarithmic Loss)

Verlustfunktion für probabilistische Klassifikatoren, die falsche, sichere Vorhersagen stark bestraft.

Beispiel: $-\log(p)$ bei p = 0.01 ergibt hohen Verlust.

Logarithmische Transformation

Transformation zur Reduktion von Schiefe in rechts-schiefen Verteilungen.

Beispiel: Anwendung von log(x+1) auf Einkommensdaten.

Logistische Regression

Klassifikationsmodell, das Wahrscheinlichkeiten für binäre Klassen vorhersagt.

Beispiel: Vorhersage, ob ein Kunde kündigt.

Long Short-Term Memory (LSTM)

Spezielle Form eines rekurrenten neuronalen Netzes, das Langzeitabhängigkeiten lernen kann.

Beispiel: Textgenerierung aus Sequenzen.

Look-Up Table

Tabelle zur schnellen Zuordnung von Eingabewerten zu Ausgabewerten.

Beispiel: Mapping von Codes zu Kategorien.

Loss Function

Funktion zur Quantifizierung des Fehlers eines Modells.

Beispiel: Mean Squared Error in Regression.

Low Cardinality

Kategoriales Merkmal mit wenigen verschiedenen Ausprägungen.

Beispiel: "Geschlecht" oder "Wochentag".

Lurking Variable

Verdeckter Einflussfaktor, der eine scheinbare Beziehung zwischen zwei beobachteten Variablen erklärt.

Beispiel: Eiskonsum und Ertrinken werden beide durch das Wetter

beeinflusst.

Lückenanalyse (Gap Analysis)

Vergleich des Ist-Zustands mit dem Soll-Zustand zur Identifikation

von Optimierungspotenzialen.

Beispiel: Umsatzsoll = 10M€, Ist = 8M€, Gap = 2M€.

LZ77

Algorithmus zur verlustfreien Datenkompression mittels Erkennung

von Wiederholungsmustern.

Beispiel: Grundlage des ZIP-Dateiformats.

LZMA (Lempel-Ziv-Markov chain algorithm)

Effizienter Kompressionsalgorithmus mit hoher Kompressionsrate.

Beispiel: 7z-Archivformat.

L1-Regularisierung

Regulierungsmethode zur Bestrafung großer Koeffizienten in

Modellen, fördert Sparsamkeit.

Beispiel: Lasso-Regression.

L2-Regularisierung

Bestraft große Koeffizienten quadratisch, stabilisiert das Modell.

Beispiel: Ridge-Regression.

Latent Semantic Analysis (LSA)

Textanalyseverfahren, das latente Bedeutungsbeziehungen zwischen Wörtern ermittelt.

Beispiel: Dokumentenclustering nach Inhalt.

Latent Space

Abstrakter Merkmalsraum, in den Daten durch ein Modell projiziert werden.

Beispiel: Repräsentation von Bildern in einem Autoencoder.

Lemmatization

Textvorverarbeitungsschritt zur Rückführung von Wörtern auf ihre Grundform.

Beispiel: "went" wird zu "go".

Machine Learning (ML)

Oberbegriff für Methoden, bei denen Modelle aus Daten lernen, ohne explizit programmiert zu sein.

Beispiel: Ein Modell lernt, Spam-Mails zu erkennen.

Manifold Learning

Nichtlineare Dimensionenreduktion zur Entdeckung von niedrigdimensionalen Strukturen in hochdimensionalen Daten.

Beispiel: t-SNE oder Isomap zur Datenvisualisierung.

MapReduce

Verteiltes Programmiermodell zur Verarbeitung großer Datenmengen.

Beispiel: Google nutzt MapReduce zur Indexierung des Webs.

Marginalisierung

Integration über unwichtige Variablen, um Verteilungen zu vereinfachen.

Beispiel: $P(X) = \int P(X,Y) dY$.

Markov-Kette

Modell, bei dem die Wahrscheinlichkeit des nächsten Zustands nur vom aktuellen Zustand abhängt.

Beispiel: Wettermodell: Sonne → Regen mit definierter Übergangswahrscheinlichkeit.

Markov Decision Process (MDP)

Mathematisches Modell für Entscheidungsfindung unter Unsicherheit.

Beispiel: Optimale Strategie im Reinforcement Learning.

MAE (Mean Absolute Error)

Durchschnittlicher absoluter Fehler zwischen Prognose und Beobachtung.

Beispiel: MAE von 2 bedeutet, dass Vorhersagen im Schnitt um 2 Einheiten abweichen.

Mean

Arithmetisches Mittel einer Zahlenreihe.

Beispiel: Mittelwert von [2, 4, 6] ist 4.

Mean Imputation

Ersatz fehlender Werte durch den Mittelwert der Spalte.

Beispiel: Fehlende Alterseinträge werden durch den Durchschnitt ersetzt.

Mean Shift

Clustering-Verfahren, das Dichte-Maxima identifiziert und Cluster daran ausrichtet.

Beispiel: Gruppierung von Kunden in Dichteregionen.

Mean Squared Error (MSE)

Durchschnitt des quadratischen Fehlers zwischen Vorhersage und Realwert.

Beispiel: Großer MSE zeigt starke Abweichung.

Median

Zentraler Wert einer sortierten Datenreihe.

Beispiel: Median von [1, 3, 9] ist 3.

Median Imputation

Ersatz fehlender Werte durch den Median.

Beispiel: Robuste Methode bei Ausreißern.

Membership Inference Attack

Angriff, bei dem ermittelt wird, ob bestimmte Daten beim Training eines Modells verwendet wurden.

Beispiel: Angriff auf ein ML-Modell, um Trainingsdaten zu extrahieren.

Memory-Based Learning

Lernmethode, bei der alle Beispiele gespeichert und zur Vorhersage herangezogen werden.

Beispiel: k-NN speichert alle Datenpunkte.

Meta-Learning

"Lernen zu lernen": Modelle lernen, wie sie neue Aufgaben schnell und effizient lösen.

Beispiel: Few-Shot Learning bei Bildklassifikation.

Metric Learning

Lernen einer Distanzfunktion, die relevante Ähnlichkeiten korrekt abbildet.

Beispiel: Gesichtsvergleich auf Basis gelernter Ähnlichkeitsmetriken.

Min-Max-Normalisierung

Skalierung von Werten auf einen definierten Bereich, meist [0, 1].

Beispiel: Werte zwischen 5 und 10 werden auf 0-1 gestreckt.

Minimum Description Length (MDL)

Prinzip der Modellwahl basierend auf der Kürze der Beschreibung von Daten plus Modell.

Beispiel: Präferenz für einfache Modelle mit guter Erklärungskraft.

Minimum Spanning Tree

Teilgraph mit minimaler Gesamtkantengewichtung, der alle Knoten verbindet.

Beispiel: Netzwerkoptimierung bei Kabelverbindungen.

Missing Completely at Random (MCAR)

Fehlende Daten sind völlig zufällig und unabhängig von beobachteten oder unbeobachteten Werten.

Beispiel: Sensorfehler ohne systematische Ursache.

Missing Not at Random (MNAR)

Fehlende Daten hängen mit den fehlenden Werten selbst zusammen.

Beispiel: Hohe Einkommen werden überdurchschnittlich oft nicht angegeben.

Missing at Random (MAR)

Fehlende Daten hängen nur mit beobachteten Werten zusammen.

Beispiel: Alter beeinflusst Wahrscheinlichkeit für fehlende Einkommensangabe.

Mode

Der am häufigsten vorkommende Wert in einem Datensatz.

Beispiel: Modus von [1, 2, 2, 3] ist 2.

Model Drift

Verlust der Modellgenauigkeit über Zeit durch Änderungen in den Daten.

Beispiel: Ein Empfehlungsmodell altert, wenn sich Nutzerverhalten ändert.

Model Interpretability

Verständlichkeit der Entscheidungslogik eines Modells für Menschen.

Beispiel: Entscheidungsbaum ist besser interpretierbar als ein neuronales Netz.

Model Selection

Auswahl des besten Modells anhand von Validierungskriterien.

Beispiel: Vergleich mehrerer Regressionsmodelle mit Cross-Validation.

Model Zoo

Sammlung vortrainierter Modelle, oft mit offenen Gewichten und Dokumentation.

Beispiel: TensorFlow Hub oder HuggingFace Transformers.

Model-Based Clustering

Clustering basierend auf der Annahme, dass Daten von einer Mischung statistischer Modelle stammen.

Beispiel: Gaussian Mixture Models.

Modelkomplexität

Grad an Freiheitsgraden und Parametern eines Modells.

Beispiel: Neuronale Netze mit vielen Schichten sind komplexer als lineare Modelle.

Monte Carlo Simulation

Zufallsbasierte Simulation zur Näherung von Wahrscheinlichkeitsverteilungen.

Beispiel: Prognose von Projektrisiken durch viele Durchläufe.

Multikollinearität

Problem in der Regression, wenn unabhängige Variablen stark korrelieren.

Beispiel: Gewicht und BMI als Regressoren.

Multilabel-Klassifikation

Klassifikationsproblem mit mehreren zutreffenden Labels pro Instanz.

Beispiel: Ein Film kann gleichzeitig als Komödie und Action gelten.

Multivariate Analyse

Analyse mehrerer abhängiger Variablen gleichzeitig.

Beispiel: Gleichzeitige Vorhersage von Gewicht und Blutdruck.

Mutual Information

Maß für die Abhängigkeit zwischen zwei Variablen.

Beispiel: MI = 0 bei unabhängigen Variablen.

MVP (Minimum Viable Product)

Einfachste funktionsfähige Version eines Produkts zur Überprüfung am Markt.

Beispiel: Prototyp einer App mit Kernfunktionalität.

MXNet

Deep-Learning-Framework mit Fokus auf Performance und Skalierbarkeit.

Beispiel: Verwendung von MXNet für GPU-Training in der Cloud.

MySQL

Beliebtes relationales Datenbankmanagementsystem (RDBMS).

Beispiel: Speicherung strukturierter Transaktionsdaten.

Naive Bayes

Ein einfaches, probabilistisches Klassifikationsverfahren basierend auf Bayes' Theorem mit der Annahme bedingter Unabhängigkeit der Merkmale.

Beispiel: Spam-Filter klassifizieren E-Mails als Spam/Nicht-Spam basierend auf Wortwahrscheinlichkeiten.

Named Entity Recognition (NER)

Verfahren aus der natürlichen Sprachverarbeitung zur Identifikation benannter Entitäten wie Namen, Orte, Organisationen in Texten.

Beispiel: Erkennung von "Berlin" als Stadt in einem Text.

NAND-Gatter

Logikgatter in der Digitaltechnik, das ein Ausgangssignal liefert, wenn nicht beide Eingänge 1 sind. Es ist universell einsetzbar.

Beispiel: Grundlage für Speicherlogik in CPUs.

Natural Language Processing (NLP)

Teilgebiet der KI zur Verarbeitung, Analyse und Generierung natürlicher Sprache.

Beispiel: Chatbots, maschinelle Übersetzung, Textklassifikation.

Natural Logarithm (ln)

Logarithmus zur Basis e (Euler-Zahl, ca. 2,718), verwendet in exponentiellem Wachstum und Zerfall sowie in vielen ML-Algorithmen.

Beispiel: ln(x), oft genutzt in log-linearen Modellen.

Negative Binomial Distribution

Wahrscheinlichkeitsverteilung für die Anzahl der Fehlversuche bis zum r-ten Erfolg.

Beispiel: Modellierung der Anzahl von Kundenanrufen bis zur dritten Beschwerde.

Negative Sampling

Technik zum effizienten Training neuronaler Netzwerke bei sehr großen Ausgabemengen durch gezielte Auswahl negativer Beispiele.

Beispiel: Training von Word2Vec-Modellen.

Nested Queries (SQL)

Abfragen innerhalb anderer Abfragen, oft als Subqueries bezeichnet.

Beispiel: SELECT * FROM users WHERE id IN (SELECT user id FROM orders)

Neural Network

Maschinelles Lernmodell, das aus Schichten vernetzter künstlicher Neuronen besteht und komplexe Muster in Daten erkennt. Beispiel: Bilderkennung oder Spracherkennung durch Deep

Learning.

NLP Pipeline

Verarbeitungskette für Textdaten in NLP, oft bestehend aus

Tokenisierung, Stoppwortentfernung, Lemmatisierung etc.

Beispiel: Analyse von Kundenfeedback durch strukturierte

Schritte.

Noise (Statistik)

Unsystematische, zufällige Störungen oder Fehler in Daten, die

nicht durch das Modell erklärt werden können.

Beispiel: Messfehler in Sensorwerten.

Noise Reduction

Verfahren zur Entfernung oder Minimierung von Rauschen in Daten.

Beispiel: Glättung von Zeitreihen durch Moving Average.

Nominal Variable

Kategoriale Variable ohne natürliche Reihenfolge.

Beispiel: Farben: Rot, Blau, Grün.

Normalization

Skalierung von numerischen Werten auf einen einheitlichen

Bereich, oft zwischen 0 und 1.

Beispiel: x' = (x - min) / (max - min)

Normalverteilung

Glockenförmige Wahrscheinlichkeitsverteilung mit Mittelwert und Standardabweichung. Häufige Annahme in der Statistik.

Beispiel: Körpergrößenverteilung in einer Population.

Null Hypothesis (H0)

Annahme, dass kein Effekt oder Unterschied vorliegt. Grundlage für viele statistische Tests.

Beispiel: "Die Werbemaßnahme hatte keinen Einfluss auf den Umsatz."

Null Value

Spezielle Kennzeichnung fehlender oder undefinierter Werte in Datenbanken oder Programmen.

Beispiel: NULL in SQL bedeutet kein Wert vorhanden.

Numerical Feature

Merkmal mit kontinuierlichen oder diskreten numerischen Werten.

Beispiel: Alter, Preis, Temperatur.

Numerical Integration

Berechnung von Näherungswerten für bestimmte Integrale, wenn keine analytische Lösung möglich ist.

Beispiel: Trapezregel oder Monte-Carlo-Verfahren zur Flächenberechnung.

NumPy

Python-Bibliothek für numerische Berechnungen und effiziente Array-Operationen. Grundlage vieler Datenanalyse-Tools.

Beispiel: Vektoroperationen mit numpy.array().

N-gram

Sequenz von N aufeinanderfolgenden Elementen (z. B. Wörtern oder Zeichen) in Textdaten, genutzt zur Sprachmodellierung.

Beispiel: Trigramm von "Ich liebe dich" = ["Ich liebe", "liebe dich"]

NaN (Not a Number)

Spezielle Darstellung ungültiger oder fehlender numerischer Werte in Programmen wie Python oder R.

Beispiel: Division durch null ergibt NaN in pandas.

Nearest Neighbor Search

Algorithmus zur Suche der nächsten Punkte im Merkmalsraum, Grundlage für k-NN und Clustering.

Beispiel: Empfehlung ähnlicher Produkte.

Nested Cross Validation

Kombination aus zwei verschachtelten Cross-Validation-Schleifen für faire Modell- und Hyperparameterbewertung.

Beispiel: äußere CV zur Performance-Messung, innere CV zur Hyperparameter-Optimierung.

NetworkX

Python-Bibliothek zur Analyse und Visualisierung komplexer Netzwerke.

Beispiel: Soziale Netzwerkanalyse oder Transportnetzwerke.

Newton-Raphson-Verfahren

Iteratives Verfahren zur Lösung nichtlinearer Gleichungen.

Beispiel: Wurzelbestimmung oder Maximum-Likelihood-Schätzungen.

Node (Graphentheorie)

Einzelnes Element in einem Netzwerk oder Baumstruktur, z. B. ein Nutzer in einem sozialen Netzwerk.

Beispiel: Jeder Knoten in einem Entscheidungsbaum ist ein Node.

NoSQL

Datenbanktechnologien, die nicht auf relationalen Tabellen basieren, oft dokumenten- oder graphenbasiert.

Beispiel: MongoDB oder Cassandra.

Nullmodell

Einfaches Basismodell ohne erklärende Variablen, dient als Referenz zur Bewertung komplexerer Modelle. Beispiel: Mittelwertmodell als Vergleich für lineare Regression.

Numerische Stabilität

Maß für die Robustheit numerischer Algorithmen gegenüber Rundungsfehlern.

Beispiel: Verwendung stabiler Matrizenoperationen in ML.

Nyquist-Theorem

Theorem aus der Signalverarbeitung, das die minimale Abtastfrequenz zur exakten Rekonstruktion eines Signals beschreibt.

Beispiel: Audio-Sampling muss mit mindestens doppelter Frequenz erfolgen.

NamedTuple (Python)

Datentyp in Python zur Definition von Tupeln mit benannten Feldern, ähnlich wie Klassen.

Beispiel: Point = namedtuple('Point', ['x', 'y'])

Nesterov Momentum

Optimierungsverfahren mit vorausschauendem Gradienten, verbessert die Konvergenz bei neuronalen Netzen.

Beispiel: Trainingsbeschleunigung im Vergleich zu klassischem Momentum.

Noise Injection

Technik zur Erhöhung der Modellrobustheit durch absichtliches Einfügen von Rauschen in Trainingsdaten.

Beispiel: Bildrauschen in der Bildklassifikation.

Normalized Mutual Information (NMI)

Metrik zur Bewertung der Übereinstimmung zweier Clusterings, skaliert auf [0,1].

Beispiel: Vergleich von Clustering-Ergebnissen mit Ground Truth.

Numerisches Differenzieren

Approximation der Ableitung durch Differenzenquotienten.

Beispiel: Finite-Differenzen-Methode in Optimierungsverfahren.

Newton-Verfahren (Multivariabel)

Erweiterung des Newton-Raphson-Verfahrens auf mehrere Variablen zur Optimierung.

Beispiel: Einsatz bei nichtkonvexen Zielfunktionen in ML.

Nützlichkeit (Utility)

Maß für den Wert oder Nutzen einer Handlung oder Vorhersage, häufig in Entscheidungsbäumen oder Recommender-Systemen.

Beispiel: Empfehlung mit maximalem erwarteten Nutzen.

Object Detection

Verfahren des maschinellen Sehens zur Lokalisierung und Klassifizierung mehrerer Objekte in einem Bild. **Beispiel:** Erkennung von Fahrzeugen und Fußgängern in Echtzeit für autonome Fahrzeuge.

Object-Oriented Programming (OOP)

Programmierparadigma, das Daten und Verhalten in Objekten kapselt. Erleichtert Wiederverwendbarkeit, Modularität und Wartung.

Beispiel: In Python definierte Klassen zur Modellierung von Datentransformationen.

Observability

Fähigkeit, den internen Zustand eines Systems durch externe Outputs zu bestimmen.

Beispiel: Logfiles und Metriken zur Analyse von Datenpipelines.

Observation

Einzelner Datenpunkt in einem Datensatz, meist eine Zeile.

Beispiel: Ein Kunde mit allen Attributen in einer CRM-Tabelle.

Occam's Razor

Prinzip, nach dem bei gleicher Güte das einfachere Modell bevorzugt wird.

Beispiel: Wahl eines linearen Modells statt eines tiefen neuronalen Netzes bei gleicher Leistung.

OCR (Optical Character Recognition)

Technik zur automatischen Texterkennung in Bildern oder gescannten Dokumenten.

Beispiel: Digitalisierung von Rechnungen im PDF-Format.

Octile Distance

Metrik zur Berechnung von Distanzen in Rastern mit diagonalen Bewegungen.

Beispiel: Pfadfindung in Gitterkarten.

ODS (Operational Data Store)

Zentraler Speicher operativer Daten für Reporting und Analyse in nahezu Echtzeit.

Beispiel: Daten aus mehreren Systemen für ein Dashboard zusammengeführt.

Offline Learning

Modelltraining auf einem statischen, vorher bekannten Datensatz.

Beispiel: Klassifikatortraining auf historischem Nutzerverhalten.

OGNL (Object Graph Navigation Language)

Ausdruckssprache zur Navigation und Manipulation von Objektgraphen, z. B. in Java-Frameworks.

Beispiel: Zugriff auf verschachtelte Werte in JavaBeans.

OLS (Ordinary Least Squares)

Standardverfahren zur Schätzung linearer Regressionsmodelle.

Beispiel: Minimierung der quadrierten Fehler zur Anpassung einer Regressionslinie.

One-Hot-Encoding

Kategoriale Kodierung, bei der jede Kategorie als binärer Vektor dargestellt wird.

Beispiel: "rot", "blau", "grün" → [1,0,0], [0,1,0], [0,0,1]

One-Class SVM

Support-Vector-Machine für Anomalieerkennung in einer einzigen Klasse.

Beispiel: Erkennung von Betrug basierend auf "normalem" Verhalten.

Online Learning

Lernverfahren, bei dem das Modell schrittweise mit neuen Daten aktualisiert wird.

Beispiel: Anpassung eines Empfehlungssystems in Echtzeit.

Ontology

Formale Beschreibung von Begriffen und deren Beziehungen innerhalb eines Wissensgebiets.

Beispiel: Datenmodell für medizinische Diagnosen mit ICD-Begriffen.

Open Data

Daten, die frei nutzbar, weiterverwendbar und weiterverbreitbar sind.

Beispiel: Verkehrsdaten einer Stadtregierung für Entwickler freigegeben.

Open Source

Software, deren Quellcode öffentlich zugänglich ist und modifiziert werden darf.

Beispiel: Python-Bibliotheken wie Pandas oder Scikit-learn.

Operationalization

Übersetzung abstrakter Konzepte in messbare Variablen.

Beispiel: "Kundenzufriedenheit" wird durch eine Umfrage mit 5-Punkte-Skala operationalisiert.

Optimization

Prozess der Verbesserung eines Modells, Algorithmus oder Systems durch Feinjustierung.

Beispiel: Hyperparameter-Tuning mit Grid Search.

Optimizer

Algorithmus zur Anpassung der Modellparameter während des Lernprozesses.

Beispiel: Adam-Optimizer in neuronalen Netzen.

Ordinal Data

Daten mit natürlicher Reihenfolge, aber ohne festen Abstand zwischen Werten.

Beispiel: Zufriedenheitsumfrage: "sehr schlecht" bis "sehr gut".

Outlier

Datenpunkt, der signifikant von anderen abweicht.

Beispiel: Einkommen von 1.000.000 € in einem Datensatz mit Mittelwert 50.000 €.

Outlier Detection

Verfahren zur Identifikation von Ausreißern.

Beispiel: Isolation Forest oder Z-Score.

Output Layer

Letzte Schicht in einem neuronalen Netz, die die finale Vorhersage liefert.

Beispiel: Softmax-Schicht für Klassifikation mit mehreren Klassen.

Overfitting

Modellanpassung, die sich zu stark an Trainingsdaten orientiert und Generalisierungsfähigkeit verliert.

Beispiel: Komplexes Modell mit 100% Trainingsgenauigkeit, aber schlechter Testleistung.

Oversampling

Technik zur Erhöhung der Anzahl seltener Klassen in unbalancierten Datensätzen.

Beispiel: SMOTE zur künstlichen Erzeugung von Minoritätsklassen.

Own Join

Join-Operation, bei der eine Tabelle mit sich selbst verknüpft wird.

Beispiel: Hierarchien in Mitarbeiterdaten analysieren.

Ox Metrics

Softwarepaket zur ökonometrischen Modellierung und Zeitreihenanalyse.

Beispiel: Durchführung von ARIMA-Modellen.

Out-of-Bag Error

Fehlerschätzung bei Bagging-Verfahren, basierend auf Daten, die beim Bootstrapping nicht verwendet wurden.

Beispiel: Random Forest verwendet OOB-Daten zur internen Validierung.

Out-of-Sample Performance

Modellleistung auf unbekannten, nicht im Training verwendeten Daten.

Beispiel: Validierungsergebnisse im Holdout-Set.

Out-of-Vocabulary (OOV)

Wörter, die im Trainingsvokabular eines NLP-Modells nicht enthalten sind.

Beispiel: Umgang mit neuen Slang-Begriffen in Chatbots.

Outlier Score

Numerischer Wert, der angibt, wie stark ein Datenpunkt ein Ausreißer ist.

Beispiel: LOF-Score > 1.5 gilt oft als Ausreißer.

Ordinal Encoding

Zuordnung von Ganzzahlen zu geordneten kategorialen Variablen.

Beispiel: "niedrig" = 0, "mittel" = 1, "hoch" = 2.

Oracle

System oder Komponente, das als allwissend angenommen wird und für Vergleichszwecke dient.

Beispiel: Theorie-Modell mit perfektem Wissen als Benchmark.

Operational Metric

Kennzahl zur Überwachung betrieblicher Abläufe und Datenverarbeitungssysteme.

Beispiel: Latenzzeit oder Fehlerrate einer Pipeline.

One-vs-Rest (OvR)

Strategie zur Erweiterung binärer Klassifikatoren auf Mehrklassenprobleme.

Beispiel: Drei binäre Modelle für Klassen A vs B+C, B vs A+C, C vs A+B.

Ordinal Logistic Regression

Regressionsmodell für ordinal skalierte Zielvariablen.

Beispiel: Analyse von Kundenzufriedenheitsskalen.

Online Analytical Processing (OLAP)

Technologie zur schnellen multidimensionalen Analyse großer Datenmengen.

Beispiel: Drilldown von Quartalsumsätzen nach Region und Produkt.

OpenAl API

Programmierschnittstelle zur Nutzung von Sprachmodellen und KI-Diensten von OpenAI.

Beispiel: Textgenerierung durch einen API-Call aus einer Python-Anwendung.

P-Value (p-Wert)

Statistisches Maß zur Bewertung der Signifikanz eines Ergebnisses. Ein niedriger p-Wert deutet darauf hin, dass ein beobachtetes Ergebnis nicht durch Zufall erklärbar ist.

Beispiel: Ein p-Wert von 0.01 bedeutet, dass die

Wahrscheinlichkeit für das Ergebnis unter der Nullhypothese bei 1 % liegt.

Pandas

Python-Bibliothek zur Datenmanipulation und -analyse. Sie stellt leistungsfähige Datenstrukturen wie DataFrames bereit.

Beispiel: df = pd.read_csv("daten.csv") lädt eine CSV-Datei in ein DataFrame.

Parameter

Feste Werte in einem statistischen Modell, die geschätzt werden müssen. Sie definieren das Verhalten des Modells.

Beispiel: In einer linearen Regression ist die Steigung ein Parameter.

Parquet

Spaltenbasiertes Speicherformat, optimiert für große Datenmengen. Unterstützt effiziente Abfragen und Kompression.

Beispiel: Speicherung eines DataFrames in data.parquet für schnelle Analysen.

Partial Dependence Plot (PDP)

Visualisierung des Einflusses eines Merkmals auf das Modell-Ergebnis, unter Kontrolle aller anderen Merkmale.

Beispiel: PDP zeigt, wie sich der Hauspreis bei zunehmender Wohnfläche entwickelt.

Partitioning

Aufteilung von Daten in logische oder physische Teile, z. B. bei Datenbanken oder Data Lakes.

Beispiel: Monatsweise Partitionierung einer Tabelle zur Performance-Steigerung.

Pearson-Korrelation

Maß für linearen Zusammenhang zwischen zwei Variablen. Werte reichen von –1 (negativ) bis +1 (positiv).

Beispiel: Korrelation zwischen Lernzeit und Prüfungsergebnis.

Percentile

Schwellenwerte, die eine Verteilung in 100 gleiche Teile teilen.

Beispiel: Das 90. Perzentil ist der Wert, unter dem 90 % der Daten liegen.

Permutationstest

Nichtparametrischer Test zur Bestimmung der Signifikanz durch zufälliges Neuanordnen der Daten.

Beispiel: Vergleich von Mittelwerten zweier Gruppen durch Permutation.

Pipelines

Reihenfolge von Verarbeitungsschritten, z. B. bei Datenvorverarbeitung und ML-Training.

Beispiel: Skalieren, Feature-Engineering, Modelltraining – alles in einer Pipeline.

Pivot-Tabelle

Excel-Funktion zur schnellen Aggregation und Analyse großer Datenmengen.

Beispiel: Summierung von Umsatz nach Produkt und Region.

Plotly

Interaktive Visualisierungsbibliothek in Python. Unterstützt dynamische Grafiken für Web und Dashboarding.

Beispiel: plotly.express.scatter() für interaktive Scatterplots.

Poisson-Verteilung

Wahrscheinlichkeitsverteilung für Ereignisse mit konstanter durchschnittlicher Rate.

Beispiel: Anzahl der Anrufe pro Stunde im Callcenter.

Polynomial Regression

Regressionsmodell mit nichtlinearer Beziehung, durch Polynomterme höherer Ordnung.

Beispiel: Vorhersage der Verkaufszahlen bei wachsender Werbung mit abnehmender Grenzwirkung.

Population

Gesamtheit aller Elemente, über die statistische Aussagen gemacht werden.

Beispiel: Alle Bürger eines Landes in einer Umfrage.

Portierung (Porting)

Übertragung von Code oder Daten von einer Plattform auf eine andere.

Beispiel: Portierung eines Skripts von R nach Python.

Precision (Genauigkeit)

Anteil der korrekt als positiv klassifizierten Elemente an allen als positiv klassifizierten.

Beispiel: 80 % Precision bedeutet: Von 100 als "krank" vorhergesagten Personen sind 80 wirklich krank.

Precision-Recall-Kurve

Visualisierung von Precision und Recall bei verschiedenen Schwellenwerten.

Beispiel: Entscheidungsgrundlage bei unbalancierten Datensätzen.

Predictive Modeling

Erstellung von Modellen zur Vorhersage zukünftiger Ereignisse basierend auf historischen Daten.

Beispiel: Prognose des Kundenabsprungs mit ML-Modell.

Prescriptive Analytics

Analytischer Ansatz, der nicht nur vorhersagt, was passieren wird, sondern auch Handlungsempfehlungen gibt.

Beispiel: Empfehlung von Preisänderungen basierend auf Nachfrageprognose.

Principal Component Analysis (PCA)

Dimensionsreduktionsverfahren, das Daten auf Basis der Hauptvarianzrichtungen projiziert.

Beispiel: Reduktion von 100 Features auf 3 Hauptkomponenten.

Priorwahrscheinlichkeit

Subjektive Anfangswahrscheinlichkeit vor Beobachtung von Daten, z. B. in Bayes-Theorie.

Beispiel: Vorerwartung, dass 5 % der Kunden kündigen.

Probability Density Function (PDF)

Funktion, die die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen beschreibt.

Beispiel: Glockenkurve bei Normalverteilung.

Probability Mass Function (PMF)

Entsprechung der PDF für diskrete Zufallsvariablen.

Beispiel: Anzahl der gewürfelten Sechsen in 10 Würfen.

Process Mining

Technik zur Analyse realer Geschäftsprozesse anhand von Logdaten.

Beispiel: Entdeckung ineffizienter Abläufe in Supportprozessen.

Profiling (Datenprofiling)

Analyse der Struktur, Qualität und Eigenschaften von Datenbeständen.

Beispiel: Erkennung von Dubletten, Nullwerten, Inkonsistenzen.

Prophet (Facebook)

Open-Source-Tool für Zeitreihenprognosen mit einfacher API.

Beispiel: Prognose saisonaler Verkaufszahlen.

Protokoll (Logging)

Systematische Aufzeichnung von Prozessen, Fehlern oder Transaktionen.

Beispiel: Speichern von Anfragen an eine API zur Fehlersuche.

Python

Weit verbreitete Programmiersprache im Data-Science-Bereich, bekannt für Lesbarkeit und umfangreiche Bibliotheken.

Beispiel: Verwendung von numpy, pandas, scikit-learn zur Datenanalyse.

PyTorch

Python-Framework für Deep Learning mit dynamischer Berechnungsgrafik.

Beispiel: Aufbau und Training neuronaler Netze mit GPU-Unterstützung.

PySpark

Python-Schnittstelle für Apache Spark zur verteilten Datenverarbeitung.

Beispiel: Verarbeitung großer CSV-Dateien im Cluster.

Pseudocode

Programmiernahe Beschreibung von Algorithmen in Klartextform, unabhängig von Programmiersprache.

Beispiel: Beschreibung eines Sortierverfahrens in strukturiertem Text.

P-Wert-Korrektur

Anpassung von p-Werten bei multiplen Tests zur Kontrolle des Fehlertyps.

Beispiel: Bonferroni-Korrektur bei mehreren Hypothesentests.

pandas_profiling

Python-Bibliothek zur schnellen automatisierten Datenanalyse und Erstellung eines EDA-Reports.

Beispiel: df.profile_report() generiert PDF mit Statistiken und Plots.

Point-Biseriale Korrelation

Korrelation zwischen einer binären und einer metrischen Variable.

Beispiel: Zusammenhang zwischen Geschlecht und Einkommen.

Poisson-Prozess

Stochastischer Prozess für zählbare Ereignisse über kontinuierliche Zeit.

Beispiel: Modellierung von Anrufen im Callcenter.

Power BI

BI-Tool von Microsoft für Dashboards, Reports und Datenvisualisierung.

Beispiel: Verbindung zu Excel und Visualisierung von Verkaufszahlen.

PostgreSQL

Leistungsfähiges, objektrelationales Open-Source-Datenbanksystem.

Beispiel: Nutzung von SQL und JSON-Funktionen zur Datenanalyse.

Probability Calibration

Anpassung von Vorhersagewahrscheinlichkeiten zur besseren Interpretation.

Beispiel: Platt Scaling bei unkalibrierten Modellen.

Prediction Interval

Intervall, das zukünftige Einzelbeobachtungen mit definierter Wahrscheinlichkeit einschließt.

Beispiel: Prognose von Temperatur morgen: 17–21 °C mit 95 % Sicherheit.

Precision Medicine

Ansatz in der Medizin, bei dem Entscheidungen auf individuellen Patientendaten basieren.

Beispiel: Personalisierte Krebsbehandlung auf Basis von Genomdaten.

Q-Q Plot (Quantile-Quantile Plot)

Grafische Methode zum Vergleich zweier Verteilungen, indem deren Quantile gegeneinander aufgetragen werden.

Beispiel: Normalverteilungs-Q-Q-Plot zeigt, ob Daten normalverteilt sind (Punkte liegen auf der Diagonalen).

Q-Learning

Bestärkendes Lernverfahren, bei dem ein Agent aus Belohnungen lernt, welche Aktionen in welchem Zustand am lohnendsten sind.

Beispiel: Ein autonomer Agent lernt, Hindernissen auszuweichen und Belohnungen zu sammeln.

Quadratic Loss

Verlustfunktion, bei der die Differenz zwischen Vorhersage und wahrem Wert quadriert wird.

Beispiel: Mean Squared Error (MSE) ist eine Form von Quadratic Loss.

Quadratic Programming (QP)

Optimierungsproblem mit quadratischer Zielfunktion und linearen Nebenbedingungen.

Beispiel: Portfoliomanagement mit Risiko-Minimierung.

Qualitative Data

Nicht-numerische, kategoriale Daten, die Zustände oder Merkmale beschreiben.

Beispiel: Farben, Produktkategorien, Kundenmeinungen.

Quantile

Werte, die eine Verteilung in gleich große Intervalle aufteilen.

Beispiel: Das 25%-Quantil (Q1) ist der Wert, unter dem 25% der Daten liegen.

Quantile Regression

Regressionsverfahren, das nicht den Mittelwert, sondern ein bestimmtes Quantil der Zielvariablen modelliert.

Beispiel: Prognose des 90%-Quantils der Lieferzeit.

Quantitative Data

Zahlenbasierte Daten, die gemessen oder gezählt werden können.

Beispiel: Alter, Umsatz, Temperatur.

Quantization

Reduktion der Genauigkeit von Werten auf eine diskrete Menge, oft in ML zur Modellkomprimierung genutzt.

Beispiel: Komprimierung neuronaler Netze durch 8-Bit-Quantisierung.

Query

Anfrage an eine Datenbank, um bestimmte Informationen zu extrahieren.

Beispiel: SELECT * FROM kunden WHERE land = 'DE' ist eine SQL-Query.

Query Optimization

Prozess der Verbesserung der Ausführungsgeschwindigkeit von Datenbankanfragen.

Beispiel: Nutzung von Indexen und Join-Strategien zur Query-Beschleunigung.

Queue

Datenstruktur, bei der Elemente in der Reihenfolge ihres Eintreffens verarbeitet werden (FIFO). Beispiel: Warteschlange bei Ereignisverarbeitung.

QuickSort

Effizienter, rekursiver Sortieralgorithmus mit Divide-and-Conquer-Ansatz.

Beispiel: Sortieren eines Arrays mit Pivot-Element.

Quota Sampling

Nicht-zufällige Stichprobenmethode, bei der bestimmte Gruppenanteile gezielt erhoben werden.

Beispiel: 50% Frauen, 50% Männer in einer Umfrage.

Quasi-Experiment

Studie mit experimentellem Design ohne zufällige Zuweisung zu Gruppen.

Beispiel: Untersuchung der Wirkung einer Preisänderung ohne Zufallsstichprobe.

Quasi-Newton Method

Näherungsverfahren zur numerischen Optimierung, das auf einer Annäherung der Hesse-Matrix basiert.

Beispiel: BFGS-Algorithmus zur Minimierung einer Kostenfunktion.

Quadrant Analysis

Analyseverfahren zur Klassifikation von Datenpunkten anhand von zwei Achsen, meist in vier Quadranten unterteilt.

Beispiel: Priorisierung von Aufgaben nach Wichtigkeit und

Dringlichkeit.

Quantum Computing

Rechenparadigma, das quantenmechanische Zustände für

parallele Informationsverarbeitung nutzt.

Beispiel: Qubits statt Bits für exponentielle Rechenleistung.

Query Plan

Interner Ausführungsplan einer Datenbank zur Bearbeitung einer

Anfrage.

Beispiel: Darstellung der Schritte eines SQL-Joins zur Analyse der

Performance.

Quality Assurance (QA)

Systematische Prozesse zur Sicherstellung der Qualität von Daten,

Modellen und Software.

Beispiel: Validierung von Datenpipelines und Unit Tests für ML-

Modelle.

Quantitative Trait

Merkmal, das durch kontinuierlich messbare Werte beschrieben

wird und oft durch mehrere Gene beeinflusst ist.

Beispiel: Körpergröße oder Blutzuckerwert.

Quadratic Mean (RMS)

Wurzel aus dem Durchschnitt der quadrierten Werte; robust gegen Ausreißer.

Beispiel: Berechnung der Effektivspannung.

Query Language

Programmiersprache zur Formulierung von Datenbankanfragen.

Beispiel: SQL, GraphQL.

Quality Score

Bewertung der Qualität eines Datenpunkts, einer Vorhersage oder eines Modells.

Beispiel: Bewertung von Anzeigeneffektivität im Marketing.

Quadratwurzeltransformation

Transformation zur Reduktion der Schiefe in zählbaren Daten.

Beispiel: sqrt(x) bei zählbaren Ereignissen wie Unfallzahlen.

Quantile Normalization

Methode zur Normalisierung mehrerer Verteilungen auf dieselbe Quantilverteilung.

Beispiel: Vergleich von Genexpressionen über verschiedene Experimente hinweg.

Quicksight (AWS)

BI-Tool von Amazon zur Datenvisualisierung und Dashboard-Erstellung.

Beispiel: Erstellung interaktiver Verkaufs-Dashboards für E-Commerce.

Quorum

Minimale Anzahl an Teilnehmern, die für eine Entscheidung oder ein Systemverhalten erforderlich ist.

Beispiel: Replikationssysteme in verteilten Datenbanken.

Qubit

Elementare Informationseinheit im Quantencomputing mit Überlagerungszuständen.

Beispiel: Ein Qubit kann gleichzeitig 0 und 1 sein.

Query Federation

Technik, um Anfragen über mehrere Datenquellen hinweg gleichzeitig auszuführen.

Beispiel: Kombinieren von Daten aus S3, Redshift und MySQL in einer Abfrage.

Queueing Theory

Mathematische Theorie zur Modellierung von Warteschlangenprozessen.

Beispiel: Optimierung von Callcenter-Kapazitäten.

Query Caching

Zwischenspeicherung von Abfrageergebnissen zur Beschleunigung wiederholter Zugriffe.

Beispiel: Redis als Cache für komplexe SQL-Reports.

QGIS (Quantum GIS)

Open-Source-Software zur Bearbeitung, Analyse und Visualisierung geographischer Daten.

Beispiel: Darstellung von Kundenstandorten auf einer Karte.

Quasi-Poisson Regression

Variante der Poisson-Regression, die Überdispersion in zählbaren Daten berücksichtigt.

Beispiel: Modellierung von Anrufzahlen bei variierender Tageslast.

Quality Control Chart

Diagramm zur Überwachung der Qualität in Prozessen durch statistische Grenzen.

Beispiel: SPC-Kontrollkarte zur Produktionsüberwachung.

Quadratmatrix

Matrix mit gleicher Anzahl von Zeilen und Spalten, wichtig für lineare Algebra und Eigenwertanalysen.

Beispiel: Kovarianzmatrix.

Quantitative PCR (qPCR)

Laborverfahren zur quantitativen Bestimmung von DNA/RNA-Mengen.

Beispiel: Nachweis viraler Lasten in medizinischen Tests.

Quadraturregel

Numerisches Verfahren zur Näherung von Integralen.

Beispiel: Trapezregel zur Flächenberechnung unter Kurven.

Query Result Cache

Speicherbereich, in dem Datenbankantworten für schnelleren Zugriff zwischengelagert werden.

Beispiel: Oracle Query Result Cache.

Quasi-Binomial Model

Generalisiertes lineares Modell, das Überdispersion bei binären Ergebnissen erlaubt.

Beispiel: Modellierung von Conversion-Raten bei Online-Werbung.

Quantitative Forecasting

Prognosemethode, die numerische Zeitreihendaten verwendet.

Beispiel: Absatzprognose auf Basis historischer Verkaufszahlen.

Quotientenkorrelation

Verhältnisbasierte Korrelation zweier Variablen, genutzt bei Dimensionsreduktion.

Beispiel: Anteil von Kategorie-A-Käufen an Gesamtkäufen.

Quadratfehler (Squared Error)

Fehlerwert, der durch Quadrieren der Differenz zwischen Ist- und Sollwert berechnet wird.

Beispiel: $(y - \hat{y})^2$ bei Vorhersageabweichungen.

Quick Ratio

Kennzahl für kurzfristige Liquidität eines Unternehmens.

Beispiel: (Umlaufvermögen - Vorräte) / kurzfristige Verbindlichkeiten.

R (Programmiersprache)

Statistisch orientierte Programmiersprache mit starker Unterstützung für Datenanalyse, Visualisierung und wissenschaftliches Rechnen.

Beispiel: R wird häufig in der akademischen Forschung verwendet, z. B. für lineare Modelle oder ggplot2-Visualisierungen.

R-Squared (R², Bestimmtheitsmaß)

Statistisches Maß zur Bewertung der Erklärkraft eines Regressionsmodells. Werte nahe 1 bedeuten hohe Erklärungsgüte.

Beispiel: Ein R² von 0{,}85 bedeutet, dass 85 % der Varianz durch das Modell erklärt werden.

Random Forest

Ensemble-Lernverfahren, das viele Entscheidungsbäume kombiniert, um Klassifikationen oder Regressionen robust durchzuführen.

Beispiel: Ein Random Forest kann zur Vorhersage von Kreditrisiken verwendet werden.

Random Sampling

Zufällige Auswahl von Beobachtungen aus einer Population zur Schätzung oder Analyse.

Beispiel: Zufälliges Ziehen von 1.000 Kunden für eine Umfrage.

Random Variable (Zufallsvariable)

Variable, deren Wert vom Ergebnis eines Zufallsprozesses abhängt.

Beispiel: Augenzahl eines geworfenen Würfels.

Range (Spannweite)

Differenz zwischen dem größten und kleinsten Wert in einem Datensatz.

Beispiel: Bei den Werten 2, 4, 6 ist die Range 6 - 2 = 4.

Rank Transformation

Transformation numerischer Werte in ihre Rangfolge.

Beispiel: Werte [100, 50, 75] werden zu Rängen [3, 1, 2].

Rasch-Modell

Statistisches Modell zur Skalierung latenter Merkmale, oft in der Psychometrie.

Beispiel: Analyse von Schülerantworten in standardisierten Tests.

Rate Limiting

Technik zur Begrenzung der Anzahl von API-Anfragen innerhalb eines Zeitfensters.

Beispiel: Max. 1000 Anfragen pro Stunde bei einem Webservice.

Rationalisierung

Datenbereinigung durch Entfernen redundanter oder irrelevanter Informationen.

Beispiel: Zusammenfassung doppelter Einträge in einer Kundenliste.

Raw Data

Unverarbeitete Rohdaten, wie sie direkt aus Quellen generiert werden.

Beispiel: CSV-Export aus einer Sensor-API.

Recall

Kennzahl für Klassifikationsmodelle, die misst, wie viele der tatsächlich positiven Fälle korrekt erkannt wurden. **Beispiel:** 80 % Recall bedeutet: 80 % aller Positiven wurden erkannt.

Receiver Operating Characteristic (ROC)

Kurve zur Visualisierung der Trade-Offs zwischen Sensitivität und Spezifität.

Beispiel: Fläche unter der ROC-Kurve (AUC) als Maß für Modellgüte.

Recoding

Umschüsselung oder Umcodierung von Variablenwerten in eine andere Struktur.

Beispiel: "m" und "f" werden zu 0 und 1.

Recursive Feature Elimination (RFE)

Feature-Selektionstechnik, bei der schrittweise weniger relevante Merkmale entfernt werden.

Beispiel: RFE mit Random Forest zur Reduktion von 100 auf 10 wichtige Features.

Regression

Statistisches Verfahren zur Modellierung von Zusammenhängen zwischen abhängigen und unabhängigen Variablen.

Beispiel: Vorhersage von Hauspreisen auf Basis von Größe, Lage, Zustand.

Regression Tree

Entscheidungsbaum-Modell zur Vorhersage numerischer Zielvariablen.

Beispiel: Entscheidungspfade zur Vorhersage von Gehaltswerten.

Regularization

Technik zur Vermeidung von Overfitting durch Bestrafung großer Koeffizienten.

Beispiel: L1- und L2-Regularisierung in Regressionsmodellen.

Reinforcement Learning

Lernparadigma, bei dem ein Agent durch Belohnung und Bestrafung optimale Strategien erlernt.

Beispiel: Trainingsprozess eines Schachprogramms.

Relationale Datenbank

Datenbanksystem mit tabellarischer Struktur und Beziehungen über Schlüssel.

Beispiel: MySQL-Datenbank für Kundendaten.

Relationship

Verknüpfung zwischen Tabellen in relationalen Datenbanken.

Beispiel: Fremdschlüssel verbindet Kunden und Bestellungen.

Relative Häufigkeit

Anteil eines Werts an der Gesamtheit.

Beispiel: 40 von 200 Kunden haben gekauft → 20 % relative Häufigkeit.

Replikation

Wiederholung einer Analyse, um Ergebnisse zu überprüfen.

Beispiel: Reproduktion eines ML-Modells mit neuen Daten.

Residual (Residuum)

Differenz zwischen beobachtetem und vorhergesagtem Wert.

Beispiel: Beobachtung = 10, Prognose = 8 → Residuum = 2.

Residual Sum of Squares (RSS)

Summe der quadrierten Residuen, Maß für Modellgüte in der Regression.

Beispiel: Niedriger RSS weist auf gute Modellanpassung hin.

Resolution (Rasterdaten)

Maß für die Detailgenauigkeit von Rasterbildern oder -daten.

Beispiel: 10x10 Pixelauflösung pro km in einem Höhenmodell.

Resampling

Techniken wie Bootstrapping oder Cross-Validation zur Erhöhung der Robustheit von Schätzungen.

Beispiel: Bootstrapping zur Konfidenzintervallschätzung.

REST API

Webservice-Architektur auf Basis von HTTP-Methoden.

Beispiel: GET, POST, PUT, DELETE auf Ressourcen wie /kunden.

Resultatmatrix

Matrix mit Ausgabeergebnissen eines Analyseverfahrens oder eines Modells.

Beispiel: Konfusionsmatrix bei Klassifikation.

Retail Analytics

Datenanalyse im Einzelhandel zur Optimierung von Sortiment, Preisgestaltung, Lagerhaltung.

Beispiel: Analyse von Kassendaten zur Prognose von Abverkäufen.

Ridge Regression

Regressionsform mit L2-Regularisierung zur Vermeidung von Overfitting.

Beispiel: Stabilisierung bei multikollinearen Daten.

Right Join

SQL-Operation, bei der alle Zeilen der rechten Tabelle und passende der linken ausgegeben werden.

Beispiel: Kunden ohne Bestellung tauchen nicht auf, aber alle Bestellungen werden angezeigt.

ROC AUC

Metrik zur Bewertung von Klassifikationsmodellen, misst Fläche unter der ROC-Kurve.

Beispiel: AUC-Wert von 0.95 zeigt hohe Klassifikationsqualität.

Root Mean Square Error (RMSE)

Wurzel des mittleren quadratischen Fehlers, gebräuchliches Maß für Prognosegüte.

Beispiel: RMSE = 2 bedeutet durchschnittlich 2 Einheiten Abweichung.

Round()

Funktion zur Rundung numerischer Werte.

Beispiel: round(3.14159, 2) ergibt 3.14.

Row-Level Security

Technik zur Einschränkung des Datenzugriffs auf Zeilenebene, z. B. in BI-Tools.

Beispiel: Nutzer sieht nur Verkaufsdaten seiner Region.

R Script

Datei mit R-Befehlen zur wiederholbaren Analyse und Visualisierung.

Beispiel: Automatisiertes Reporting in RMarkdown.

Runtime

Ausführungszeit eines Programms oder Modells, oft kritisch bei Big Data.

Beispiel: Python-Skript läuft in 12 Sekunden durch.

Run-Length Encoding (RLE)

Kompressionsmethode, bei der Wiederholungen durch Zählen codiert werden.

Beispiel: "AAAABBB" → "4A3B".

Rückpropagation (Backpropagation)

Lernverfahren für neuronale Netze, das Fehler zurück durch das Netz propagiert.

Beispiel: Training eines CNN durch Minimierung des Fehlers.

Rückschlussstatistik

Teilgebiet der Statistik zur Generalisierung von Stichproben auf Grundgesamtheiten.

Beispiel: Konfidenzintervall, Hypothesentest.

Sample

Teilmenge aus einer größeren Population, die für Analysen verwendet wird.

Beispiel: 500 Kundenbefragungen aus einer Datenbank mit 10.000 Einträgen.

Sampling Bias

Verzerrung durch eine nicht-repräsentative Stichprobe.

Beispiel: Online-Umfrage nur unter jungen Nutzern.

Sampling Rate

Frequenz, mit der Daten erfasst werden.

Beispiel: Ein Sensor, der alle 10 Sekunden misst, hat eine Sampling Rate von 0{,}1 Hz.

Sankey Diagram

Visualisierung von Flüssen und Verzweigungen, z. B. bei Energieflüssen oder Nutzerpfaden.

Beispiel: Darstellung der Conversion-Ströme in einem Online-Shop.

Scalability

Fähigkeit eines Systems, bei wachsendem Datenvolumen effizient zu bleiben.

Beispiel: Cloud-Datenbanken skalieren horizontal bei großen Datenmengen.

Scaling

Transformation von Features auf einen vergleichbaren Wertebereich.

Beispiel: Min-Max- oder Z-Score-Normalisierung.

Scenario Analysis

Modellierung alternativer Zukunftsszenarien zur Risikoabschätzung.

Beispiel: Umsatz bei +10 % bzw. -10 % Nachfrage.

Scatterplot

Diagramm zur Darstellung von Beziehungen zwischen zwei numerischen Variablen.

Beispiel: Alter vs. Einkommen.

Schema

Struktur und Definition von Tabellen, Feldern und Beziehungen in einer Datenbank.

Beispiel: Datenbankschema mit "Kunden", "Bestellungen", "Produkten".

Scientific Method

Strukturierter Prozess zur Erkenntnisgewinnung durch Hypothesenbildung und -prüfung.

Beispiel: Hypothese testen: "Mehr Licht erhöht Produktivität".

Scikit-learn

Populäre ML-Bibliothek in Python für Klassifikation, Regression, Clustering.

Beispiel: RandomForestClassifier() aus scikit-learn.

Score

Numerische Bewertung einer Vorhersage oder eines Modells.

Beispiel: Kreditrisiko-Score = 0{,}82

Scoring Function

Funktion zur Berechnung eines Scores für Klassifikation oder Ranking.

Beispiel: Log-Loss oder ROC-AUC als Scoring-Funktion.

Script

Programmdatei zur automatisierten Ausführung von Befehlen.

Beispiel: Python-Script zur Datenbereinigung.

Seasonality

Regelmäßige, wiederkehrende Muster in Zeitreihen.

Beispiel: Umsatzrückgang im Januar.

Second Normal Form (2NF)

Datenbanknormalform, die Teilschlusselabhängigkeiten vermeidet.

Beispiel: Trennung von Artikel- und Bestellinformationen.

Segmentation

Aufteilung von Daten in Gruppen mit ähnlichen Merkmalen.

Beispiel: Clusteranalyse zur Kundensegmentierung.

Selectivity

Anteil der Zeilen in einer Tabelle, die durch eine Abfrage getroffen werden.

Beispiel: SELECT * WHERE status = 'aktiv' mit 5 % Selectivity.

Self-Join

Verknüpfung einer Tabelle mit sich selbst.

Beispiel: Hierarchische Struktur in einer Mitarbeiterliste.

Semi-Structured Data

Daten mit teilweise definierter Struktur.

Beispiel: JSON- oder XML-Dokumente.

Sensitivity (Recall)

Maß für die korrekte Erkennung positiver Fälle.

Beispiel: 90 % Sensitivity = 90 % der Kranken erkannt.

Sentiment Analysis

Analyse von Meinungen und Gefühlen in Textdaten.

Beispiel: Bewertung von Tweets als positiv, neutral oder negativ.

Sequence Model

ML-Modelle, die auf sequentielle Daten spezialisiert sind.

Beispiel: LSTM für Text- oder Audiosequenzen.

Shannon Entropy

Maß für die Unbestimmtheit oder Informationsmenge einer Verteilung.

Beispiel: Maximale Entropie bei Gleichverteilung.

Shapiro-Wilk-Test

Statistischer Test auf Normalverteilung.

Beispiel: p-Wert < 0{,}05 deutet auf Abweichung von der Normalverteilung hin.

Sharding

Verteilung von Daten auf mehrere Server zur Lastverteilung.

Beispiel: Horizontales Sharding in verteilten NoSQL-Systemen.

Sharpe Ratio

Verhältnis von Überrendite zur Volatilität eines Investments.

Beispiel: Sharpe Ratio = (Rendite - risikofreier Zins) / Standardabweichung.

Shotgun Stochastic Search

Suchverfahren zur Modellauswahl in hochdimensionalen Datenräumen.

Beispiel: Auswahl relevanter Gene in Bioinformatik.

Shrinkage

Regularisierungsprinzip zur Verringerung von Modellkomplexität.

Beispiel: Ridge-Regression.

Signal-to-Noise Ratio

Verhältnis von nützlicher Information zu Rauschen.

Beispiel: 10:1 ist ein hoher SNR.

Silhouette Score

Maß für die Qualität eines Clusterings.

Beispiel: Score nahe 1 = klare Clustertrennung.

Simulation

Nachbildung von Prozessen zur Analyse von Szenarien.

Beispiel: Monte-Carlo-Simulation zur Risikobewertung.

Singular Value Decomposition (SVD)

Matrixfaktoriserung für Dimensionsreduktion und Latent Space Learning. Beispiel: Empfehlungssysteme.

Skewness (Schiefe)

Maß für die Asymmetrie einer Verteilung.

Beispiel: Positive Schiefe bei Einkommen.

Slack Space

Unbenutzter Speicherbereich in Blöcken auf Datenträgern.

Beispiel: In forensischer Datenanalyse relevant.

Sliding Window

Technik zur Analyse sequentieller Daten durch Verschieben eines festen Fensters.

Beispiel: Moving Average mit Fenstergröße 5.

Softmax

Aktivierungsfunktion, die Wahrscheinlichkeitsverteilung über Klassen erzeugt.

Beispiel: Softmax-Ausgabe bei Klassifikation.

Spearman-Korrelation

Nichtparametrisches Maß für Rangkorrelation.

Beispiel: Bewertung von Korrelation bei nicht-normalverteilten Daten.

SQL

Sprache für die Abfrage und Manipulation relationaler Datenbanken.

Beispiel: SELECT name FROM kunden WHERE ort = 'Berlin'

Stacked Generalization (Stacking)

Ensemble-Methode zur Kombination mehrerer Modelle.

Beispiel: Meta-Classifier aggregiert Vorhersagen verschiedener Modelle.

Standardabweichung

Maß für die Streuung von Daten um den Mittelwert.

Beispiel: Std = 5 bedeutet, dass Daten im Schnitt 5 Einheiten abweichen.

Standardfehler

Schätzwert für die Streuung einer Statistik (z. B. Mittelwert).

Beispiel: StdError = 0{,}2 für Mittelwert einer Stichprobe.

Standardisierung

Skalierung von Variablen auf Mittelwert 0 und Std 1.

Beispiel: Z-Transformation für Regressionsanalyse.

Stationarität

Eigenschaft von Zeitreihen, deren statistische Eigenschaften sich nicht ändern.

Beispiel: Differenzieren zur Erreichung von Stationarität.

Statistische Signifikanz

Wahrscheinlichkeit, dass ein beobachteter Effekt kein Zufall ist.

Beispiel: p < 0{,}05 bedeutet statistisch signifikant.

Stetige Variable (kontinuierlich)

Variable mit unendlich vielen Ausprägungen im Wertebereich.

Beispiel: Körpergröße in cm.

Stichprobe

Auswahl von Datenpunkten zur Analyse einer Population.

Beispiel: 1.000 Kundenbefragungen.

Streuung (Dispersion)

Maß für die Verteilung der Werte um das Zentrum.

Beispiel: Hohe Streuung bei stark variierenden Einkommen.

Stochastik

Teilgebiet der Mathematik, das sich mit Zufall und Wahrscheinlichkeiten befasst.

Beispiel: Anwendung in Prognosemodellen.

Stratifiziertes Sampling

Aufteilung der Population in Schichten zur gezielten Stichprobenziehung.

Beispiel: Altersgruppen bei Wahlumfragen.

Streaming Data

Kontinuierlich eingehende Daten in Echtzeit.

Beispiel: Sensordaten oder Weblogs.

Strukturierte Daten

Daten mit klar definierter Struktur in Tabellenform.

Beispiel: Excel-Tabelle mit Kundendaten.

Subsampling

Teilweise Auswahl aus großem Datensatz.

Beispiel: 10 % der Logdaten für erste Analyse.

Supervised Learning

ML-Ansatz mit gelabelten Trainingsdaten.

Beispiel: Klassifikation von E-Mails als Spam oder Nicht-Spam.

Support Vector Machine (SVM)

ML-Algorithmus zur Klassifikation durch Trennung mit maximalem Abstand.

Beispiel: Erkennung von Handschrift in Bildern.

Synthetische Daten

Künstlich erzeugte Daten zur Modellierung oder zum Training.

Beispiel: Generierte Kundendaten zum Testen eines Dashboards.

Syntax

Grammatikregeln einer Programmiersprache.

Beispiel: Python: if x > 0:

Systematische Verzerrung

Verzerrung durch methodische Fehler oder Voreingenommenheit.

Beispiel: Schiefe Stichprobe bei nicht-randomisierter Auswahl.

Tabellenstruktur

Definiert die Organisation von Spalten und Datentypen in einer Datenbanktabelle.

Beispiel: Eine Kundentabelle mit Name (Text), Alter (Integer) und Stadt (Text).

Tabellenverknüpfung

Verbindung von zwei oder mehr Tabellen über gemeinsame Schlüssel.

Beispiel: Kunden-ID verbindet "Kunden"- und "Bestellungen"- Tabelle.

Target Variable

Die zu prognostizierende oder zu klassifizierende Zielvariable in einem ML-Modell.

Beispiel: "Kaufentscheidung" in einem Modell zur Vorhersage von Konversionen.

Tidy Data

Strukturierte Daten, bei denen jede Variable eine Spalte, jede Beobachtung eine Zeile ist.

Beispiel: Zeitreihendaten in langem Format.

t-SNE (t-distributed Stochastic Neighbor Embedding)

Nichtlineare Dimensionsreduktion zur Visualisierung hochdimensionaler Daten.

Beispiel: Darstellung von Wortvektoren in 2D.

Target Encoding

Kodierung kategorialer Variablen basierend auf dem Mittelwert der Zielvariablen.

Beispiel: Durchschnittliche Konversionsrate pro Werbekanal.

TensorFlow

Open-Source-Bibliothek von Google für Machine Learning und Deep Learning.

Beispiel: tf.keras.Sequential() zur Modellerstellung.

Testdaten

Datensatz zur Prüfung der Modellgüte, getrennt vom Trainingsdatensatz.

Beispiel: 20 % der Daten für die finale Validierung.

Teststatistik

Wert, der aus einer Stichprobe berechnet wird, um eine Hypothese zu testen.

Beispiel: t-Wert beim t-Test.

Text Mining

Extraktion strukturierter Informationen aus unstrukturierten Texten.

Beispiel: Themenextraktion aus Kundenbewertungen.

Textklassifikation

Zuordnung von Texten zu vordefinierten Kategorien.

Beispiel: E-Mail als Spam oder Nicht-Spam.

TF-IDF (Term Frequency-Inverse Document Frequency)

Gewichtungsmaß für Worte in Texten, um wichtige Begriffe hervorzuheben.

Beispiel: Häufiges Wort in einem Dokument, selten in anderen.

Threshold

Grenzwert zur Entscheidung bei Klassifikationen.

Beispiel: Wahrscheinlichkeit > 0{,}5 = Klasse 1.

Time Series Analysis

Analyse zeitlich geordneter Daten zur Prognose oder Mustererkennung.

Beispiel: Absatzentwicklung pro Monat.

Time to Event

Zeit bis zum Eintreten eines bestimmten Ereignisses.

Beispiel: Zeit bis zum ersten Kauf nach Newsletter-Anmeldung.

Tokenisierung

Aufteilung von Text in kleinere Einheiten wie Wörter oder Sätze.

Beispiel: "Data Science ist cool" → ["Data", "Science", "ist", "cool"].

Top-K Accuracy

Metrik, bei der das richtige Label unter den Top-K-Vorhersagen sein muss.

Beispiel: In Top-3-Vorhersagen ist die richtige Klasse enthalten.

Tracking Code

Skript oder Tag zur Erfassung von Nutzeraktionen.

Beispiel: Google Analytics Tracking Pixel.

Trainingsdaten

Daten, auf denen ein ML-Modell lernt.

Beispiel: Historische Verkaufszahlen zum Modelltraining.

Transformationsfunktion

Funktion zur Umwandlung von Daten für bessere Modellleistung.

Beispiel: Log-Transformation bei stark rechts-schiefen Daten.

Transponieren

Vertauschen von Zeilen und Spalten in einer Matrix oder Tabelle.

Beispiel: df.T in Pandas.

True Negative

Fall, in dem ein negatives Beispiel korrekt als negativ klassifiziert wird.

Beispiel: Gesunder Patient wird korrekt als gesund erkannt.

True Positive

Fall, in dem ein positives Beispiel korrekt erkannt wird.

Beispiel: Kranker Patient korrekt als krank erkannt.

T-Test

Statistischer Test zum Vergleich von Mittelwerten zweier Gruppen.

Beispiel: Vergleich der Durchschnittsausgaben von Männern und Frauen.

Type I Error (Alpha-Fehler)

Falsch-positiver Fehler: Ablehnung der Nullhypothese, obwohl sie wahr ist.

Beispiel: Gesunder wird als krank diagnostiziert.

Type II Error (Beta-Fehler)

Falsch-negativer Fehler: Nullhypothese wird beibehalten, obwohl sie falsch ist.

Beispiel: Kranker wird als gesund eingestuft.

Typkonvertierung (Type Casting)

Umwandlung von Datentypen innerhalb eines Programms oder einer Analyse.

Beispiel: int("42") in Python ergibt eine Ganzzahl.

UAT (User Acceptance Testing)

Letzte Phase des Softwaretests, in der reale Nutzer prüfen, ob das System ihren Anforderungen entspricht.

Beispiel: Ein BI-Tool wird von Endanwendern getestet, bevor es live geht.

UDAF (User-Defined Aggregate Function)

Benutzerdefinierte Funktion zur Aggregation mehrerer Werte in SQL-ähnlichen Sprachen.

Beispiel: Eigene Median-Funktion in Apache Hive.

UDF (User-Defined Function)

Benutzerdefinierte Funktion, die in SQL-, Python- oder Spark-Umgebungen verwendet wird.

Beispiel: Eigene Berechnungslogik mit @udf in PySpark.

UI (User Interface)

Schnittstelle zwischen Mensch und System zur Bedienung von Software.

Beispiel: Dashboard-Oberfläche mit Filterelementen.

ULID (Universally Unique Lexicographically Sortable Identifier)

Alternative zu UUIDs, die sortierbar ist.

Beispiel: ULID = 01F8MECHZX3TBDSZ7XRADM79XV

UMAP (Uniform Manifold Approximation and Projection)

Algorithmus zur Dimensionsreduktion und Datenvisualisierung.

Beispiel: Visualisierung von Kundensegmenten im 2D-Raum.

Unbalanced Data

Datensätze, in denen Klassenverteilungen stark ungleich sind.

Beispiel: 95 % Nicht-Spam, 5 % Spam.

Uncertainty

Unsicherheit über den wahren Wert oder das Modell.

Beispiel: Prognose: Umsatz = 10 Mio ± 0,5 Mio.

Underfitting

Modell ist zu einfach und bildet die Datenstruktur nicht ausreichend ab.

Beispiel: Lineares Modell bei nichtlinearer Beziehung.

Undersampling

Technik zur Reduktion der Mehrheitklasse in unbalancierten Daten.

Beispiel: Reduktion der Nicht-Spam-Mails.

Univariate Analysis

Analyse einer einzelnen Variable.

Beispiel: Histogramm der Altersverteilung.

Unit Test

Automatisierter Test einzelner Funktionen oder Module.

Beispiel: test_mean_function() in Python.

Unnormalized Data

Daten ohne Skalierung oder Normalisierung.

Beispiel: Einkommen in Euro, Alter in Jahren, Gewicht in kg.

Unstructured Data

Daten ohne feste Struktur, oft Text, Bilder oder Audio.

Beispiel: E-Mails, PDFs, Chatverläufe.

Unsupervised Learning

ML-Methode ohne gelabelte Trainingsdaten.

Beispiel: Clustering-Algorithmus (z. B. K-Means).

Update Anomaly

Dateninkonsistenz durch redundante Speicherung ohne Normalisierung.

Beispiel: Änderung einer Adresse muss in mehreren Tabellen erfolgen.

Upsampling

Künstliches Vergrößern der Minderheitsklasse.

Beispiel: Kopieren von Spam-Mails zur Klassenbalance.

Upper Bound

Obere Grenze eines Konfidenzintervalls oder Parameters.

Beispiel: Vertrauensbereich 95 %: [10, 15] → Upper Bound = 15

URI (Uniform Resource Identifier)

Eindeutige Adresse zur Identifikation von Ressourcen im Web.

Beispiel: https://api.server.com/data/123

URL Encoding

Kodierung spezieller Zeichen in URLs.

Beispiel: Leerzeichen wird zu %20

UUID (Universally Unique Identifier)

128-bit-Wert zur eindeutigen Identifikation.

Beispiel: 550e8400-e29b-41d4-a716-446655440000

UX (User Experience)

Gesamterfahrung eines Nutzers mit einem System.

Beispiel: Ladezeiten, Navigation und visuelle Gestaltung eines Dashboards.

Utility Function

Funktion zur Bewertung von Entscheidungen oder Ergebnissen.

Beispiel: Auswahl zwischen Modellen basierend auf Kosten/Nutzen.

Validation Set

Datensatz, der zur Bewertung eines Modells während der Trainingsphase verwendet wird.

Beispiel: Aufteilung eines Datensatzes in 70 % Training, 15 % Validierung, 15 % Test.

Value at Risk (VaR)

Statistische Kennzahl zur Quantifizierung des potenziellen Verlusts in einem bestimmten Zeitraum bei gegebenem Konfidenzniveau.

Beispiel: Ein Tages-VaR von 5 % bei 1 Mio. EUR = 50.000 EUR Verlust mit 95 % Wahrscheinlichkeit.

Variance

Maß für die Streuung der Daten um den Mittelwert.

Beispiel: Hohe Varianz bedeutet große Unterschiede zwischen den Werten.

Variance Inflation Factor (VIF)

Maß für Multikollinearität in Regressionsmodellen.

Beispiel: VIF > 10 weist auf starke Korrelation mit anderen Variablen hin.

Variable

Eine messbare Eigenschaft oder ein Merkmal, das analysiert wird.

Beispiel: Alter, Einkommen oder Klickrate.

Variable Importance

Maß für die Relevanz einer Variable in einem Modell.

Beispiel: Feature-Importances bei Random Forests.

Variance Threshold

Feature-Selection-Methode, die Merkmale mit geringer Varianz entfernt.

Beispiel: Filtert Spalten, deren Werte fast immer gleich sind.

Vector

Mathematische Struktur zur Darstellung von Datenpunkten in ndimensionalem Raum.

Beispiel: [1.2, 3.4, 0.5] als Eingabe für ein neuronales Netz.

Vectorization

Umwandlung von Daten in numerische Vektoren, oft für maschinelles Lernen.

Beispiel: Text zu TF-IDF-Vektoren.

Version Control

System zur Verwaltung von Änderungen am Code oder an Daten.

Beispiel: Git mit Commit-Historie.

Vertical Scaling

Erhöhung der Ressourcen eines einzelnen Servers.

Beispiel: Mehr RAM oder CPU für eine Datenbankinstanz.

Visualization

Darstellung von Daten in visueller Form zur Erkennung von Mustern.

Beispiel: Balkendiagramm, Heatmap oder Boxplot.

VLOOKUP

Excel-Funktion zum vertikalen Suchen in Tabellen.

Beispiel: Suchen eines Produktnamens anhand der ID.

Volatility

Maß für die Schwankungsbreite von Zeitreihen oder Märkten.

Beispiel: Aktien mit hoher Volatilität haben stark schwankende Kurse.

Voting Classifier

Ensemble-Lernverfahren, bei dem mehrere Modelle abstimmen.

Beispiel: Mehrheit entscheidet über Klassifikation.

VAE (Variational Autoencoder)

Neuronales Netz zur Dimensionsreduktion und Generierung von Daten.

Beispiel: Bildkompression oder synthetische Datengenerierung.

Variance Explained

Anteil der Gesamtvarianz, der durch ein Modell oder eine Komponente erklärt wird.

Beispiel: 80 % erklärte Varianz in PCA.

Virtual Join

Verknüpfung zweier Tabellen in der Abfrage ohne physische Zusammenführung.

Beispiel: View in SQL.

Volumetrische Daten

3D-Daten, häufig in Medizin oder Geowissenschaften.

Beispiel: CT-Scans oder seismische Datenwürfel.

Voice Recognition

Technologie zur Umwandlung von gesprochener Sprache in Text.

Beispiel: Google Assistant erkennt Befehle per Sprache.

Variance-Bias Tradeoff

Grundlegendes Konzept im maschinellen Lernen: Balance zwischen Unter- und Überanpassung.

Beispiel: Komplexe Modelle riskieren Overfitting, einfache Underfitting.

Vector Database

Spezialisierte Datenbank für semantische Suchen mit Embeddings.

Beispiel: Verwenden von FAISS oder Pinecone zur Ähnlichkeitssuche.

Video Analytics

Automatisierte Analyse von Videodaten.

Beispiel: Erkennung von Objekten oder Bewegungen in Überwachungsvideos.

Violin Plot

Visualisierung, die Boxplot mit Dichteverteilung kombiniert.

Beispiel: Darstellung von Notenverteilungen nach Fach.

Virtual Machine

Virtuelles System mit eigener Betriebssysteminstanz.

Beispiel: Ubuntu-VM auf Windows zur Datenanalyse.

View (SQL)

Virtuelle Tabelle, basierend auf gespeicherten Abfragen.

Beispiel: CREATE VIEW aktive_kunden AS SELECT * FROM
kunden WHERE status='aktiv'

Von Neumann Architecture

Rechenarchitektur mit gemeinsamem Speicher für Daten und Programme.

Beispiel: Grundlage moderner Computerdesigns.

Vector Space Model

Modell zur Darstellung von Texten oder Dokumenten als Vektoren.

Beispiel: TF-IDF-Vektoren in NLP.

Visual Regression Testing

Testmethode zum Erkennen von UI-Änderungen durch Bildvergleiche.

Beispiel: Differenzvergleich von Screenshots bei Webänderungen.

Vulnerability Assessment

Bewertung von Schwachstellen in IT-Systemen.

Beispiel: Scans auf unsichere Ports oder veraltete Software.

WAAS (Workspace as a Service)

Cloud-Dienstleistung, die eine komplette virtuelle Arbeitsumgebung bereitstellt.

Beispiel: Remote-Teams nutzen WAAS für sicheren Zugriff auf Daten und Software.

Wahrscheinlichkeit

Maß für die Erwartung, dass ein bestimmtes Ereignis eintritt.

Beispiel: Die Wahrscheinlichkeit, dass bei einem Münzwurf "Kopf" erscheint, ist 0{,}5.

Wald-Test (Wald Statistic)

Statistischer Test zur Signifikanzprüfung von Regressionskoeffizienten.

Beispiel: Einsatz bei Logit-Modellen zur Prüfung einzelner Einflussgrößen.

Warehouse (Data Warehouse)

Zentrale Datenbank zur Analyse und Berichterstattung über große Datenmengen.

Beispiel: Speicherung historischer Verkaufszahlen zur Analyse von Trends.

Wasserfalldiagramm (Waterfall Chart)

Grafik zur Darstellung kumulativer Veränderungen.

Beispiel: Gewinnentwicklung eines Unternehmens über mehrere Quartale.

Wavelet Transformation

Technik zur Analyse von Signalen oder Zeitreihen in verschiedenen Frequenzbereichen.

Beispiel: Kompression von Audio- oder Bilddaten.

Web Scraping

Automatisierte Extraktion von Daten aus Webseiten.

Beispiel: Preissammlung von Produkten aus einem Online-Shop.

Weight Initialization

Ausgangswertzuweisung für neuronale Netze, beeinflusst Trainingsverlauf.

Beispiel: He-Initialization für ReLU-Aktivierungen.

Weighted Average

Durchschnitt, bei dem unterschiedliche Werte unterschiedlich stark gewichtet werden.

Beispiel: Durchschnittsnote unter Berücksichtigung von Kreditpunkten.

White Noise

Zufallsrauschen mit konstanter spektraler Leistungsdichte.

Beispiel: Residuenmodellierung in Zeitreihenanalyse.

Whitening

Vorverarbeitung, bei der Korrelationen zwischen Features entfernt werden.

Beispiel: PCA Whitening vor Clustering.

Whisker Plot (Boxplot)

Grafische Darstellung von Median, Quartilen und Ausreißern.

Beispiel: Vergleich der Einkommensverteilung verschiedener Regionen.

Wide Format

Datenstruktur mit einer Spalte pro Variable und einer Zeile pro Beobachtungseinheit.

Beispiel: Pivotierte Tabelle mit Monatsumsätzen als Spalten.

Wilcoxon-Test

Nichtparametrischer Test für gepaarte Stichproben.

Beispiel: Vorher-Nachher-Vergleich von Trainingsdaten.

Window Function

SQL-Funktion zur Berechnung über Datenzeilen mit Bezug zur aktuellen Zeile.

Beispiel: Laufender Durchschnitt in einer Zeitreihe mit OVER(PARTITION BY...).

Winsorizing

Technik zur Behandlung von Ausreißern durch Begrenzung extremer Werte.

Beispiel: Setzen aller Werte über dem 95. Perzentil auf genau dieses Perzentil.

Wirtschaftskennzahl (Key Performance Indicator)

Quantitative Messgröße zur Bewertung wirtschaftlicher Leistung.

Beispiel: Umsatzwachstum, EBITDA, Return on Investment.

Word Embedding

Darstellung von Wörtern als Vektoren im kontinuierlichen Raum.

Beispiel: Word2Vec, GloVe.

Word Cloud

Visualisierung, bei der Wörter je nach Häufigkeit unterschiedlich groß dargestellt werden.

Beispiel: Analyse dominanter Begriffe in Kundenbewertungen.

Working Directory

Aktuelles Verzeichnis, in dem ein Skript arbeitet oder Dateien speichert.

Beispiel: Pfad in Python über os.getcwd() auslesen.

Workload

Menge an Aufgaben oder Daten, die ein System oder Benutzer in einer Zeit verarbeiten muss.

Beispiel: Hohe CPU-Auslastung bei parallelem Datenimport.

Wrapper Method

Feature Selection durch wiederholte Modellierung mit unterschiedlichen Variablensätzen.

Beispiel: Rekursive Eliminierung unwichtiger Features bei Regression.

Wurzel-MSE (Root Mean Squared Error)

Fehlermetrik für Regressionsmodelle – Quadratwurzel des mittleren quadratischen Fehlers.

Beispiel: RMSE von 5{,}2 für ein Vorhersagemodell des Umsatzes.

WYSIWYG (What You See Is What You Get)

Oberflächenkonzept, bei dem das Ergebnis der Darstellung direkt der Ansicht entspricht.

Beispiel: Dashboard-Editoren mit Live-Vorschau.

Wöchentliche Saisonalität

Regelmäßiges Muster im Wochenrhythmus innerhalb einer Zeitreihe.

Beispiel: Höherer Traffic auf Webseiten am Montag und Freitag.

X-Achse

Horizontale Achse in einem Koordinatensystem oder Diagramm.

Beispiel: In einem Liniendiagramm stellt die X-Achse meist die Zeit dar.

X-bar Chart

Qualitätskontroll-Diagramm zur Überwachung von Mittelwerten in Prozessen.

Beispiel: Tägliche Mittelwertkontrolle der Produktmaße in einer Fertigung.

XGBoost

Hochleistungs-Boosting-Framework für maschinelles Lernen.

Beispiel: Wird zur Teilnahme an Kaggle-Wettbewerben verwendet.

XML (eXtensible Markup Language)

Textbasiertes Datenformat zur Darstellung hierarchisch strukturierter Daten.

Beispiel: Produktdaten als XML-Datei mit verschachtelten Tags.

XPath

Abfragesprache für die Navigation in XML-Dokumenten.

Beispiel: //Produkt/Preis extrahiert den Preis aus jedem Produkt-Tag.

XOR (exclusive OR)

Logische Operation mit wahr, wenn genau ein Operand wahr ist.

Beispiel: XOR(1, 0) = 1, XOR(1, 1) = 0.

XSS (Cross-Site Scripting)

Sicherheitslücke, bei der Angreifer Skripte in Webanwendungen einschleusen.

Beispiel: Ein manipuliertes Eingabefeld führt JavaScript aus.

X-Intercept

Der Punkt, an dem eine Linie die X-Achse schneidet.

Beispiel: Bei f(x) = 2x - 4 liegt der X-Intercept bei x = 2.

X-Wert

Unabhängige Variable oder Feature in einer Analyse.

Beispiel: In einem Modell zur Gehaltsvorhersage ist "Berufserfahrung" ein X-Wert.

XOML

XML-basiertes Format für Workflows in Microsoft-Technologien.

Beispiel: Workflows in alten .NET-Automatisierungsprojekten.

X-Querverweis

Verweis auf andere Inhalte oder Daten innerhalb einer Datenbank oder eines Berichts.

Beispiel: KPI-Bericht verlinkt auf zugehörige Rohdaten.

X-Test

Teilmenge der Daten, die für die Prüfung eines Modells reserviert wird.

Beispiel: X_train und X_test zur Trennung von Trainings- und Testdaten.

X-Space

Merkmalsraum für Eingabedaten in einem Modell.

Beispiel: Alle Features zusammen bilden den X-Space.

XOR-Gate

Elektronisches Gatter, das eine XOR-Funktion realisiert.

Beispiel: Wird in digitalen Schaltungen verwendet.

XAI (Explainable AI)

Techniken zur Erklärung von Entscheidungen von ML-Modellen.

Beispiel: SHAP-Werte für Entscheidungsbäume.

Xref (Cross-reference)

Bezugssystem zur Verknüpfung von Datenpunkten oder Dokumenten.

Beispiel: Tabellenblatt mit Zellverweisen auf andere Sheets.

X-Modellierung

Strukturierung von Prozessen mit parallelen und sequentiellen Abläufen.

Beispiel: X-förmige Prozessverzweigung in BPMN.

XPL (eXtensible Processing Language)

Programmiersprache für datengetriebene Workflows.

Beispiel: Verwendung zur Datenumwandlung und -verarbeitung in XML.

X-Means Clustering

Erweiterung von K-Means mit automatischer Bestimmung der Clusteranzahl.

Beispiel: Identifikation optimaler Clusterzahl bei Kundenklassifikation.

X-Y-Diagramm

Zweidimensionale Visualisierung numerischer Beziehungen.

Beispiel: Streudiagramm mit Gewicht (X) und Blutdruck (Y).

X-R Chart

Diagramm zur Überwachung von Mittelwert und Spannweite in der Qualitätssicherung.

Beispiel: Tägliche Kontrolle von Prozessabweichungen.

X.509-Zertifikat

Standard für die Struktur von digitalen Zertifikaten.

Beispiel: TLS/SSL-Zertifikate zur Website-Verschlüsselung basieren auf X.509.

X-Pipeline

Datentransformations- oder Modellpipeline mit mehreren Schritten.

Beispiel: Daten-Cleaning → Feature Engineering → Modellierung.

X-Feature

Einzelnes Eingabemerkmal im ML-Kontext.

Beispiel: Alter ist ein X-Feature bei einer Vorhersage.

X-Variablen

Sammelbegriff für unabhängige Variablen in statistischen Modellen.

Beispiel: In der linearen Regression y = ax + b ist x die X-Variable.

X-Strategie

Abstrakter Begriff für explorative Vorgehensweise in Datenanalysen.

Beispiel: Unstrukturierte Datenanalyse mit offenen Hypothesen.

X-Header

Zusätzliche HTTP-Header zur Informationsübertragung im Web.

Beispiel: X-Requested-With: XMLHttpRequest zur Identifikation von AJAX-Aufrufen.

X-Formular

Strukturierte Datenmaske zur Eingabe oder Anzeige von Daten.

Beispiel: Formular mit Drop-downs, Checkboxes und Eingabefeldern.

X.25

Früher Standard für paketvermittelte Netzwerke.

Beispiel: Wurde in Banken und Kreditkartennetzen genutzt.

Y-axis

Die vertikale Achse in einem Diagramm oder Koordinatensystem. Sie stellt meist abhängige Variablen wie gemessene Werte oder Ergebnisse dar.

Beispiel: In einem Liniendiagramm zeigt die Y-Achse den Umsatz pro Monat.

YAML (YAML Ain't Markup Language)

Ein menschenlesbares Datenformat zur Konfiguration und zum Datenaustausch, häufig in DevOps und ML-Projekten genutzt. YAML ist einfacher strukturiert als JSON, unterstützt aber komplexe Datenhierarchien.

Beispiel: Definition von Trainingsparametern für ein ML-Modell.

Yarn (Hadoop YARN)

"Yet Another Resource Negotiator" – ein Framework zur Ressourcenverwaltung im Hadoop-Ökosystem. Es ermöglicht das Ausführen verteilter Datenverarbeitungsanwendungen.

Beispiel: YARN verwaltet Ressourcen für MapReduce-Jobs in einem Hadoop-Cluster.

Yeo-Johnson Transformation

Eine Transformation zur Normalisierung von Daten, ähnlich der Box-Cox-Transformation, aber auch für negative Werte geeignet. Verbessert die Linearisierung und die Modellierbarkeit von Variablen.

Beispiel: Anwendung auf stark schiefe Daten wie Nettovermögen.

Yield Curve

Grafische Darstellung von Zinssätzen über verschiedene Laufzeiten hinweg. Eine inverse Zinsstrukturkurve kann auf wirtschaftliche Rezessionen hinweisen.

Beispiel: Analyse der Renditekurve zur Konjunkturprognose.

YOLO (You Only Look Once)

Ein Echtzeit-Objekterkennungsalgorithmus im Bereich Deep Learning. YOLO erkennt Objekte in Bildern oder Videos mit hoher Geschwindigkeit.

Beispiel: Einsatz in Überwachungssystemen zur Erkennung von Personen.

YTD (Year-to-Date)

Kennzahl, die den Zeitraum vom Jahresbeginn bis zum aktuellen Datum beschreibt. Häufig verwendet in Finanzanalysen zur Performancebewertung.

Beispiel: YTD-Umsatz = Gesamtumsatz vom 1. Januar bis heute.

Yule-Simon-Verteilung

Eine Wahrscheinlichkeitsverteilung, die bei der Analyse von "Long Tail"-Phänomenen wie der Häufigkeit seltener Ereignisse nützlich ist.

Beispiel: Modellierung der Wortverteilung in einem Textkorpus.

Yule's Q-Koeffizient

Ein Maß für die Assoziation zweier binärer Variablen. Q = (ad - bc)/(ad + bc), basierend auf einer 2×2-Kontingenztafel.

Beispiel: Untersuchung der Beziehung zwischen zwei Ja/Nein-Antworten.

Y-Funktion

Oberbegriff für eine mathematische Funktion, die von einer unabhängigen X-Variable abhängt. In der Statistik meist das zu erklärende Merkmal.

Beispiel: Y = 3X + 2 ist eine lineare Funktion.

Yield

Allgemein der Ertrag oder das Ergebnis einer Operation oder eines Invests. In Programmierung auch ein Schlüsselwort in Python zur Erzeugung von Generatoren.

Beispiel: Python-Funktion mit yield erzeugt Lazy-Sequenzen.

Y-Achsenbeschriftung

Die Beschreibungseinheit oder Beschriftung auf der Y-Achse eines Diagramms. Sie vermittelt die Bedeutung der angezeigten Werte.

Beispiel: "Einnahmen in EUR" als Achsenbeschriftung.

Y-Splitter

In der Datenpipeline ein Mechanismus zur Verzweigung von Datenströmen basierend auf Bedingungen.

Beispiel: Weiterleitung von Daten mit "Status = Fehler" an eine separate Pipeline.

Yellowbrick

Python-Toolkit zur Visualisierung und Analyse von ML-Modellen. Ergänzt scikit-learn mit visuellen Diagnosewerkzeugen.

Beispiel: Visualisierung der Modellgüte mittels ROC-Kurve mit Yellowbrick.

Yield Spread

Differenz zwischen den Renditen zweier Anleihen. Ein Maß für Risiko und Investorenvertrauen.

Beispiel: Höherer Spread = höheres wahrgenommenes Risiko.

Y-Codierung (One-Hot Encoding Zielvariable)

Verfahren zur Kodierung von Zielvariablen mit mehreren Klassen für ML-Modelle.

Beispiel: Zielvariable "Farbe" mit Klassen "rot", "blau", "grün" wird zu [1,0,0], [0,1,0], [0,0,1].

Youden-Index

Kennzahl zur Optimierung des Schwellenwerts in binären Klassifikationsmodellen.

Beispiel: Maximiere Sensitivität + Spezifität - 1 zur Auswahl des besten Cutoffs.

Y-Randomization

Validierungstechnik zur Überprüfung von Overfitting in ML-Modellen. Zielvariable wird zufällig permutiert und Modell erneut trainiert.

Beispiel: Deutlich schlechtere Leistung nach Y-Randomization spricht gegen Overfitting.

Yield Forecasting

Vorhersage von Erträgen oder Produktionsausbringung, z. B. in der Landwirtschaft oder Fertigung.

Beispiel: ML-Modell zur Prognose der Maisernte auf Basis von Wetterdaten.

Yield Management

Dynamische Preisgestaltung zur Optimierung von Auslastung und Ertrag, z. B. im Flugverkehr oder Hotelwesen.

Beispiel: Preisanpassung je nach Buchungszeitpunkt und Nachfrage.

YTD-Analyse

Analyse der kumulierten Entwicklungen seit Jahresbeginn. Nützlich zur Bewertung saisonaler Trends.

Beispiel: Vergleich der YTD-Performance verschiedener Geschäftsbereiche.

Z-Score

Standardisierte Kennzahl, die angibt, wie viele Standardabweichungen ein Wert vom Mittelwert entfernt ist.

Beispiel: Z = (Wert - Mittelwert) / Standardabweichung.

Z-Test

Statistischer Test zur Überprüfung von Hypothesen bei bekanntem Populationsstandardabweichung.

Beispiel: Test auf Mittelwertunterschied mit bekanntem σ .

Zero-Inflated Model

Modelltyp für Daten mit überproportional vielen Nullen, z. B. in Zählvariablen.

Beispiel: Unfallstatistik mit vielen Nullmeldungen.

Zero-Shot Learning

ML-Ansatz, bei dem ein Modell Aufgaben lösen kann, ohne für diese Beispiele gesehen zu haben.

Beispiel: Textklassifikation mit rein beschreibenden Klassenlabels.

Zero Trust Architecture

Sicherheitskonzept in IT, bei dem kein Nutzer oder Gerät automatisch vertraut wird.

Beispiel: Zugriffskontrollen bei jeder API-Anfrage.

Zero-Based Budgeting

Planungsmethode, bei der alle Ausgaben von Grund auf neu begründet werden müssen.

Beispiel: Jeder Kostenposten wird jährlich neu validiert.

Zentrale Tendenz

Lageparameter wie Mittelwert, Median oder Modus, die die Verteilung beschreiben.

Beispiel: Median-Einkommen in einer Region.

Zeitreihe (Time Series)

Daten, die zeitlich geordnet sind, oft mit gleichmäßigen Abständen.

Beispiel: Tägliche Aktienkurse.

Zeitreihenanalyse

Analyseverfahren zur Modellierung zeitabhängiger Daten.

Beispiel: ARIMA-Modell zur Prognose von Verkaufszahlen.

Zeitverzögerung (Lag)

Verzögerter Einfluss einer Variable in einer Zeitreihe.

Beispiel: Umsatz heute hängt vom Wetter gestern ab (Lag-1).

Zeitfensteranalyse (Rolling Window)

Analyse innerhalb eines sich bewegenden Zeitraums.

Beispiel: Gleitender Durchschnitt der letzten 30 Tage.

Zielgröße (Target Variable)

Die vorherzusagende oder zu erklärende Variable in einem Modell.

Beispiel: Preis eines Hauses in einer Regression.

Zielwert (Label)

Klassifikation oder Regressionswert, mit dem das Modell trainiert wird.

Beispiel: "Spam" oder "Nicht-Spam" als Label.

Zufallsfehler (Random Error)

Nicht systematische Abweichung vom wahren Wert.

Beispiel: Messfehler durch Rauschen.

Zufallsforest (Random Forest)

Ensemble-ML-Verfahren aus Entscheidungsbäumen zur Klassifikation oder Regression.

Beispiel: Klassifikation von Kundenabwanderung.

Zufallsvariable

Variable, deren Wert von einem Zufallsprozess abhängt.

Beispiel: Augenzahl beim Würfeln.

Zufallszahlengenerator

Algorithmus zur Erzeugung scheinbar zufälliger Werte.

Beispiel: random() in Python.

Zufallsstichprobe

Stichprobe, bei der jede Einheit der Grundgesamtheit die gleiche Auswahlwahrscheinlichkeit hat.

Beispiel: Zufällig gezogene Teilnehmer für eine Umfrage.

Zugrundeliegende Verteilung (Underlying Distribution)

Die angenommene oder beobachtete Verteilung, auf der eine Analyse basiert.

Beispiel: Normalverteilung bei IQ-Werten.

Zugriffsrechte (Access Rights)

Regeln, welche Nutzer welche Daten lesen, schreiben oder verändern dürfen.

Beispiel: Nur Admins dürfen Benutzerdaten löschen.

Zugriffszeit (Access Time)

Zeitspanne zwischen Anfrage und Erhalt von Daten.

Beispiel: Zugriff auf SQL-Datenbank dauert 15 ms.

Zugriffslog

Protokoll über Datenbank- oder Systemzugriffe.

Beispiel: Logdateien bei Webservern.

Zuverlässigkeit (Reliability)

Maß für die Konsistenz oder Reproduzierbarkeit von Messungen oder Modellen.

Beispiel: Ein Test liefert bei Wiederholung ähnliche Ergebnisse.

Zuvor bekannte Labels (Known Labels)

In Supervised Learning bekannte Zielvariablen im Trainingsdatensatz.

Beispiel: E-Mail-Daten mit bekannter Spam-Klassifikation.

Z-Transformation

Standardisierung einer Variable durch Subtraktion des Mittelwerts und Division durch die Standardabweichung.

Beispiel: Anwendung vor dem Trainieren eines linearen Modells.

Zoomable Chart

Interaktive Visualisierung mit Zoom-Funktion.

Beispiel: Zoombares Liniendiagramm mit D3.js.

Zensierte Daten (Censored Data)

Beobachtungen, bei denen nur ein Teilwert bekannt ist. Häufig in Überlebenszeitanalysen.

Beispiel: Patientenstudie endet vor dem Todeszeitpunkt.

Zielgruppenanalyse

Identifikation und Beschreibung von Nutzergruppen für gezielte Ansprache.

Beispiel: Analyse von Website-Besuchern nach Alter und Herkunft.

Zonierung (Zoning)

Segmentierung eines geografischen oder logischen Bereichs zur Analyse oder Steuerung.

Beispiel: Unterteilung einer Stadt in Cluster für Verkehrsanalysen.

Zuverlässigkeitsschätzung

Statistische Abschätzung, wie konsistent ein Verfahren bei Wiederholung ist.

Beispiel: Cronbachs Alpha in der Psychometrie.

Zweistichproben-Test

Statistischer Vergleich zweier Gruppen hinsichtlich Mittelwert oder Verteilung.

Beispiel: T-Test zwischen Kontroll- und Behandlungsgruppe.

Zweidimensionale Normalverteilung

Verteilung zweier korrelierter metrischer Variablen.

Beispiel: Größe und Gewicht.

Zyklische Komponente

Langfristige, wiederkehrende Schwankung in Zeitreihen.

Beispiel: Konjunkturzyklen in Wirtschaftsdaten.

Zweistufiges Modell (Two-Stage Model)

Modellierungsansatz in zwei Schritten, oft bei Endogenität.

Beispiel: 2SLS in ökonometrischen Modellen.

Zentralwert (Median)

Der mittlere Wert einer geordneten Verteilung.

Beispiel: Bei [3, 5, 7] ist 5 der Median.

Zielkonflikt

Widersprüchliche Anforderungen in einem Optimierungskontext.

Beispiel: Kosten senken vs. Qualität sichern.

Zufallsprozesse

Modelle zur Beschreibung stochastischer Abläufe.

Beispiel: Markov-Kette.

Zellreferenz (Excel)

Bezug auf eine Zelle oder Zellbereich in einer Tabelle.

Beispiel: =A1 + B2.

Zugriffspfad (Access Path)

Pfad, über den ein Datenbanksystem Daten aus Tabellen liest.

Beispiel: Indexzugriff vs. Full Table Scan.

Zielerreichungsgrad

Messgröße zur Bewertung, wie nahe eine Maßnahme dem gesetzten Ziel kommt.

Beispiel: Erfüllung von KPIs zu 90 %.

Zahlendarstellung (Number Format)

Darstellung von Zahlenwerten in Computern oder Tabellen.

Beispiel: Dezimal-, Prozent- oder Währungsformat.

Zeitstempel (Timestamp)

Zeitmarkierung für Ereignisse oder Datenpunkte.

Beispiel: 2025-05-28 13:32:00 als Logeintrag.

Zugangskontrolle (Access Control)

Mechanismus zur Einschränkung des Zugriffs auf Daten oder Systeme.

Beispiel: Rollenbasierte Zugriffskontrolle (RBAC).