2. Symmetrie – Schwingungen von Molekülen

- a.) Besitzen die Moleküle A und B ein permanentes Dipolmoment?
- b.) Bestimmen Sie die Punktgruppe der Verbindungen A und B.
- c.) Bestimme die Anzahl der Grundschwingungen pro Symmetrierasse. Nutzen Sie zur Aufstellung der Charaktere, die nur Schwingungsfreiheitsgrade besitzen, nachfolgende Tabelle.

	Elemente der Punktgruppe
$ m N_R$	
$N_R - 2$	
$1+2\cos\varphi$	
$-1+2\cos\varphi$	
$\chi_{ m vib}\left({ m C_n} ight)$	
$\chi_{\mathrm{vib}}\left(\mathrm{S_{n}}\right)$	

Zum Charakter einer Symmetrieoperation tragen immer nur die Atome ($N_{\rm R}$) bei, deren Position bei dieser Operation invariant bleibt. Der so bestimmte Charakter enthält jedoch neben der Schwingungsfreiheitsgrade noch die Translations- und Rotationsfreiheitsgrade. Um nur die Schwingungsfreiheitsgrade zu berechnen, gilt:

$$\chi_{\text{vib}}\left(\mathbf{C}_{n}\right) = \left(\mathbf{N}_{\mathrm{R}} - 2\right) \cdot \left(1 + 2\cos\varphi\right)$$

$$\chi_{\text{vib}}(S_n) = N_R \cdot (-1 + 2\cos\varphi)$$

d.) Wann ist eine Schwingung IR-aktiv? Welche der Schwingungen von **A** und **B** sind IR-aktiv? Eignet sich die IR-Spektroskopie, um die beiden Isomere zu unterscheiden?