Algorithms

1118011111113

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

2.3 QUICKSORT

- quicksort
- selection
- duplicate keys
- system sorts

Selection

Goal. Given an array of N items, find the k^{th} smallest item.

Ex. Min (k = 0), max (k = N - 1), median (k = N/2).

Applications.

- Order statistics.
- Find the "top k."

Use theory as a guide.

- Easy $N \log N$ upper bound. How?
- Easy *N* upper bound for k = 1, 2, 3. How?
- Easy *N* lower bound. Why?

Which is true?

- $N \log N$ lower bound? \leftarrow is selection as hard as sorting?
- N upper bound?

 is there a linear-time algorithm?

Quick-select

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

```
if a[k] is here set hi to j-1 set lo to j+1  \leq V \qquad \qquad \bigvee \\ \leq V \qquad \bigvee \\ \uparrow \\ 10 \qquad \qquad \downarrow
```

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

- Intuitively, each partitioning step splits array approximately in half: $N + N/2 + N/4 + ... + 1 \sim 2N$ compares.
- Formal analysis similar to quicksort analysis yields:

$$C_N = 2N + 2k \ln(N/k) + 2(N-k) \ln(N/(N-k))$$

• Ex: $(2 + 2 \ln 2) N \approx 3.38 N$ compares to find median k = N/2.

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] Compare-based selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4305 n comparisons are ever required. This bound is improved for

Remark. Constants are high \Rightarrow not used in practice.

Use theory as a guide.

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort.