

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2022

Unidad 3: Las funciones Logaritmo y Exponencial

Consideremos la función

$$f(x) = 10^x.$$

Hemos omitido a propósito su dominio. Sabemos que para un número natural n, 10^n es el producto de 10 consigo mismo n veces. Si $k \in \mathbb{Z}$ y k < 0, entonces 10^k es el producto de 1/10 consigo mismo -k veces. Incluso si tomamos x = p/q un número racional, $10^{\frac{p}{q}} = \sqrt[q]{10^p}$. ¿Pero qué significa por ejemplo 10^{π} ?

Para poder definir formalmente una *función exponencial*, es decir tal que la variable esté en el exponente de una potencia y no en la base, y cuyo dominio sea todo el conjunto de números reales, necesitamos propiedades más complejas que las que nos brinda el álgebra elemental.

Supongamos por el momento que la función $f(x)=10^x$ está efectivamente definida para todo $x\in\mathbb{R}$. Cualquier buena definición que demos de f deberá cumplir la propiedad fundamental $10^{x+y}=10^x10^y$, o sea

$$f(x+y) = f(x)f(y). (1)$$

Si f fuese derivable y pudiesemos encontrar la función g(x) = f'(x) explicitamente, podríamos recuperar f como función integral de g. Intentemos calcular la derivada de f:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{10^{x+h} - 10^x}{h} = 10^x \lim_{h \to 0} \frac{10^h - 1}{h}$$

Observemos que entonces f será derivable si existe $\lim_{h\to 0} \frac{10^h-1}{h}$, que a su vez no es más que f'(0). Supongamos que f es efectivamente derivable en 0 y pongamos c=f'(0). Tenemos entonces que la función f verifica la ecuación diferencial

$$f'(x) = cf(x) \tag{2}$$

(esta misma propiedad vale en realidad para cualquier función que cumple la propiedad 1, o sea que el 10 elegido como base de la potencia no cumple ningún rol particular).

Derivamos formalmente f con la esperanza de encontrar una expresión que nos permitiera definirla como una función integral, pero parecería que no podemos seguir adelante, puesto que la derivada de f involucra a f

misma. De todas maneras la ecuación 2 es sumantemte importante y, sorprendentemente, nos permitirá definir explicitamente la inversa de f.

En efecto, hagamos una suposición más: que f es invertible. Al menos cuando x es racional, tiene sentido hablar de esta inversa. Sabemos que

$$10^x = y \iff \log_{10}(y) = x.$$

Observemos que como f(x) > 0 para cada x racional, para que f sea continua f deberá ser siempre positiva, y por lo tanto f^{-1} deberá tener como dominio algún subconjunto de \mathbb{R}^+ .

Recordemos que para una función invertible F podemos obtener su derivada como

$$(F^{-1})'(x) = \frac{1}{F'(F^{-1}(x))}.$$

En el caso de nuestra función f, tenemos

$$(f^{-1})'(x) = \frac{1}{cf(f^{-1}(x))} = \frac{1}{cx}.$$

El único problema que queda es determinar la constante c. La función 1/x es continua en todo su dominio e integrable en cualquier intervalo cerrado que no contenga al cero. Podemos entonces definir para cada x > 0,

$$\log_{10}(x) = \int_{1}^{x} \frac{1}{ct} dt + \log_{10}(1) = \frac{1}{c} \int_{1}^{x} \frac{1}{t} dt.$$

Nos queda el problema de encontrar la constante c. Supondremos primero que c=1, con la esperanza de estar definiendo un logaritmo en alguna base. Tiene sentido entonces dar la siguiente:

Definición 46. Si x > 0, se define

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

y se denomina logaritmo natural

Cabe aclarar que muchos textos utilizan directamente la notación \log para el logaritmo natural, e incluyen explícitamente la base en cualquier otro caso, inclusive para el logaritmo en base 10. Aquí hemos preferido incluir la base incluso en este caso, pero usaremos la notación \ln para distinguir el logaritmo natural.

Un primer análisis de la función que acabamos de definir muestra que:

- \ln es una función continua y derivable (pues es la función integral de una función continua) y $\ln'(x) = \frac{1}{x}$.
- $\ln(1) = \int_1^1 \frac{1}{t} dt = 0.$
- La función $\frac{1}{t}$ es positiva para cada t>0. Luego si a< b, $\int_a^b \frac{1}{t} dt>0$ y por lo tanto:
 - si x > 1, $\ln(x) > 0$,

• si
$$0 < x < 1$$
, $\ln(x) = \int_1^x \frac{1}{t} dt = -\int_x^1 \frac{1}{t} dt < 0$.

Esbozamos a continuación la gráfica de ln:

Veremos a continuación que \ln efectivamente verifica las propiedades de un logaritmo.

Teorema 47. $Si \ x, \ y > 0$,

$$\ln(xy) = \ln(x) + \ln(y).$$

Demostración: Fijemos y>0 y tomemos x como variable para definir la función $f(x)=\ln(xy)$. Entonces

$$f'(x) = \ln'(xy) \cdot y = \frac{1}{xy} \cdot y = \frac{1}{x}.$$

Luego f y \ln tienen la misma derivada y por lo tanto debe existir una constante c tal que

$$f(x) = \ln(x) + c.$$

Evaluando en x=1, tenemos $f(1)=\ln(1)+c=c$. Concluimos que

$$\ln(xy) = f(x) = \ln(x) + f(1) = \ln(x) + \ln(y)$$

como queríamos probar.

A partir del teorema anterior, inductivamente se prueba el siguiente:

Corolario 48. Si n es un número natural y x > 0, entonces

$$\ln(x^n) = n \ln(x).$$

Corolario 49. $Si \ x, y > 0 \ entonces$

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y).$$

<u>Demostración:</u> Basta observar que como y>0, $x=\frac{x}{y}\cdot y$ y aplicar el Teorema 47.

El Corolario 48 nos permite analizar el codominio de la función \ln . Tomemos un número mayor que 1, por ejemplo 2. No sabemos cuánto vale exactamente $\ln(2)$ (aunque podemos aproximarlo tanto como queramos usando sumas inferiores y superiores, dado que $\ln(2) = \int_1^2 \frac{1}{t} dt$), pero sí sabemos que $\ln(2) > 0$.

Fijemos un número real M>0 cualquiera. Por el principio de Arquímedes, existirá $n\in\mathbb{N}$ tal que

$$n\ln(2) > M$$
,

o sea que $\ln(2^n) > M$ y por lo tanto \ln no es acotada superiormente. De la misma manera, $-n\ln(2) < -M$ y por lo tanto $\ln\left(\frac{1}{2^n}\right) < -M$, con lo cual \ln tampoco está acotada inferiormente. Como \ln es una función continua, deberá tomar todos los valores en \mathbb{R} .

Concluimos que $Dom(ln) = \mathbb{R}^+$ y $Im(ln) = \mathbb{R}$.

Además, si y > x, se tiene que y/x > 1 y por el Corolario 49 tenemos

$$0 < \ln(y/x) = \ln(y) - \ln(x) \Rightarrow \ln(y) > \ln(x)$$

es decir que \ln es una función estrictamente creciente y por lo tanto admite inversa.

Definición 50. Se denomina función exponencial a la función $\exp : \mathbb{R} \to \mathbb{R}^+$ dada por $\exp = \ln^{-1}$.

Si todo lo que hicimos ha ido bien, es de esperar que la función \exp verifique la ecuación (2) para c=1 y la propiedad 1. En efecto, tenemos:

Teorema 51. Para cualquier número real x, se verifica

$$\exp'(x) = \exp(x).$$

<u>Demostración</u>: Como la exponencial es por definición la inversa del logaritmo, tendremos:

$$\exp'(x) = (\ln^{-1})'(x) = \frac{1}{\ln'(\ln^{-1}(x))}$$
$$= \frac{1}{\frac{1}{\ln^{-1}(x)}} = \ln^{-1}(x) = \exp(x). \quad \Box$$

Teorema 52. Para $x, y \in \mathbb{R}$, se tiene

$$\exp(x+y) = \exp(x) \cdot \exp(y).$$

<u>Demostración:</u> Fijemos $x, y \in \mathbb{R}$ y pongamos $\overline{x} = \exp(x)$, $\overline{y} = \exp(y)$, es decir

$$x = \ln(\overline{x}), \quad y = \ln(\overline{y}).$$

Entonces, a partir del Teorema 47, tenemos

$$x + y = \ln(\overline{x}) + \ln(\overline{y}) = \ln(\overline{x}\,\overline{y}).$$

Concluimos entonces que $\exp(x+y) = \overline{x}\,\overline{y} = \exp(x)\cdot\exp(y)$ como queríamos ver.

Definición 53. El número real exp(1) se denota por e. Es decir, e es tal que

$$\ln(e) = \int_1^e \frac{1}{t} dt = 1.$$

Observemos que como $\ln(e)=1>0$, deberá ser e>1. Utilizando la patición $P=\{1,2\}$ del intervalo [1,2], tenemos que $\sup\{\frac{1}{t}:1\leq t\leq 2\}=1$ y por lo tanto 1=1(2-1) es una suma superior para f(t)=1/t en [1,2]. Luego

$$\ln(2) = \int_{1}^{2} \frac{1}{t} dt < 1$$

y como \ln es una función creciente y $\ln(e) = 1 > \ln(2)$, concluimos que e > 2.

Tomando ahora la partición $P = \{1, 2, 4\}$ del intervalo [1, 4], resulta

$$\inf \left\{ \frac{1}{t} \, : \, 1 \le t \le 2 \right\} = \frac{1}{2}, \quad \inf \left\{ \frac{1}{t} \, : \, 2 \le t \le 4 \right\} = \frac{1}{4}$$

y por lo tanto $1=\frac{1}{2}(2-1)+\frac{1}{4}(4-2)$ es una suma inferior de f(t) en [1,4], conluimos que

$$\ln(4) = \int_{1}^{4} \frac{1}{t} dt > 1$$

y nuevamente como \ln es creciente, deberá ser e < 4.

Hasta el momento sabemos que 2 < e < 4. Esta no es una buena aproximación de e. Veremos una acotación más fina más adelante.

Trataremos ahora de definir la potencia a^x para cualquier valor real x.

Teorema 54. Para cada número racional r,

$$\exp(rx) = \exp(x)^r.$$

Demostración: A partir del Teorema 52 es fácil ver inductivamente que

$$\exp(nx) = \exp(x)^n$$

para cada $n \in \mathbb{N}$ y cualquier número real x.

Pongamos ahora $y = \frac{x}{n}$. Entonces

$$\exp(x) = \exp(ny) = \exp(y)^n = \exp\left(\frac{x}{n}\right)^n \Rightarrow \exp(x)^{\frac{1}{n}} = \exp\left(\frac{x}{n}\right)^n$$

Luego si $r = \frac{n}{m}$ con $m, n \in \mathbb{N}$, resulta

$$exp(rx) = \exp\left(n\frac{x}{m}\right) = \exp\left(\frac{x}{m}\right)^n = \exp(x)^{\frac{n}{m}}.$$

Dejamos como **ejercicio** el caso en que $n \in \mathbb{Z}$.

Observemos que e=exp(1) es un número real positivo y por lo tanto tiene sentido evaluar e^r para $r=\frac{n}{m}$ racional de acuerdo a la noción usual de potenciación, es decir, $e^r=\sqrt[m]{e^n}$. El teorema 54 nos dice que hacer e^r de esta manera coincide con evaluar la función \exp en r, pues en efecto $\exp(r)=\exp(r\cdot 1)=\exp(1)^r=e^r$. Como la función exponencial está definida para todos los números reales, y coincide con la potencia usual en los racionales, podemos extender el concepto de potencia a cualquier exponente mediante la siguiente definición:

Definición 55. Para cualquier número real x, se define

$$e^x = \exp(x)$$

La definición 55 permite generalizar la potencia a un exponente real cualquiera, aunque sólo para el caso en que la base sea e. Es decir, todavía no sabemos qué significa, y ni siquiera si tiene sentido, hacer 10^{π} , o más generalmente a^x para a y x arbitrarios.

Comencemos observando que no tendrá sentido definir a^x cuando a<0, pues ya carece de sentido (en el contexto de los números reales) pensar en $a^{\frac{1}{2}}$. Tendremos además un problema si a=0, pues 0^0 no puede definirse. Supondremos por lo tanto que a>0.

Observemos que en ese caso está bien definido $\ln(a)$. Dejamos como ejercicio probar, combinando los Corolarios 48 y 49 que para cada número racional r resulta

$$\ln(a^r) = r \ln(a).$$

Luego si a > 0, para cada $r \in \mathbb{Q}$ tendremos

$$a^r = \exp(\ln(a^r)) = \exp(r\ln(a)) = e^{r\ln(a)}$$

Esta última expresión tiene sentido incluso cuando r no es racional y nos permite definir una nueva noción de potencia para una base a>0 cualquiera, que nuevamente coincide con la noción usual cuando el exponente es racional:

Definición 56. Si a > 0, para cualquier número real x definimos

$$a^x = e^{x \ln(a)}$$
.

Hagamos algunas observaciones:

- Si a=e, la Definición 56 coincide efectivamente con la Definición 55, dado que $\ln(e)=1$.
- Tanto la función $\exp(x)$ como $h(x) = x \ln(a)$ son continuas y derivables. Por lo tanto la función $f(x) = a^x = \exp \circ h(x)$ resulta continua y derivable.

■ Para a > 0 y $x \in \mathbb{R}$ cualquiera, se tiene

$$\ln(a^x) = \ln\left(e^{x\ln(a)}\right) = x\ln(a) \tag{3}$$

lo que generaliza la propiedad del Corolario 48.

Veremos que la definición que hemos dado verifica las propiedades esperables de la potencia:

Teorema 57. Si a > 0, cualesquiera sean $x, y \in \mathbb{R}$ se verifica:

- 1. $(a^x)^y = a^{xy}$.
- 2. $a^1 = a \ y \ a^{x+y} = a^x \cdot a^y$.

Demostración:

1. $(a^x)^y = e^{y\ln(a^x)}$. Por la ecuación (3), $\ln(a^x) = x\ln(a)$ y por lo tanto

$$(a^x)^y = e^{xy\ln(a)} = a^{xy}.$$

2. $a^1 = e^{1 \cdot \ln(a)} = a$. Por otra parte,

$$a^{x+y} = e^{(x+y)\ln(a)} = \exp(x\ln(a) + y\ln(a)) = \exp(x\ln(a)) \cdot \exp(y\ln(a)) = a^x a^y$$
. \square

Estas propiedades nos permiten analizar el comportamiento de las funciones $f(x) = a^x$ para las distintas opciones para a > 0. Recordemos primero que la inversa de una función monótona es monótona del mismo tipo que la función original (creciente o decreciente). Por lo tanto la función $\exp(x)$ es estrictamente creciente.

Dividiremos el análisis de $f(x) = a^x$ en tres casos:

- 1. Si a=1, entonces $1^x=e^{x\ln 1}=e^0=1$. Luego f es la función constante igual a 1.
- 2. Si 0 < a < 1, entonces $\ln(a) < 0$, luego si x < y, $y \ln(a) < x \ln(a)$ y como \exp es una función creciente, resulta

$$a^y = e^{y\ln(a)} < e^{x\ln(a)} = a^x$$

con lo cual en este caso f es una función decreciente.

3. Si 1 < a, $\ln(a) > 0$ y un análisis análogo al del item anterior muestra que f es una función creciente.

Mostramos a continuación las graficas de la función $f(x) = a^x$ para distintos valores de a. Observemos que para cualquier a > 0, $a^0 = 1$, y por lo tanto todas las gráficas pasan por el punto (0,1).

Como las funciones del tipo $f(x)=a^x$ para a>0 y $a\neq 1$ son monótonas, son biyectivas y por lo tanto admiten inversa. Las inversas definen las distintas funciones logarítmicas:

Definición 58. Dado un número real positivo a se denomina función logaritmo en base a a la función inversa de la función a^x . Se denota $\log_a(x)$ y verifica:

$$\log_a(x) = y \iff a^y = x$$

Observemos que

$$\log_a(x) = y \quad \Leftrightarrow \quad a^y = x \ \Leftrightarrow \ x = e^{y \ln a}$$

$$\Leftrightarrow \quad \ln(x) = \ln\left(e^{y \ln(a)}\right) \ \Leftrightarrow \ln(x) = y \ln(a)$$

$$\Leftrightarrow \quad \log_a(x) = \frac{\ln(x)}{\ln(a)}.$$

Queda claro de este análisis que el dominio y la imagen de las distintas funciones logarítmicas coinciden con el dominio y la imagen de ln. Por lo tanto

$$Dom(log_a) = \mathbb{R}^+, Im(log_a) = \mathbb{R}$$

y siendo las funciones exponenciales inversas de las funciones logarítmicas, es claro que

$$Dom(a^x) = \mathbb{R}, \quad Im(a^x) = \mathbb{R}^+$$

(este último puede obtenerese también directamente de la definición de las funciones exponenciales).

De las propiedades de a^x (pero también del hecho que \log_a es un múltiplo de \ln) obtenemos que:

• Si a=1, \log_a no está definida.

- Si 0 < a < 1, entonces \log_a es decreciente.
- Si 1 < a, entonces \log_a es creciente.

Incluimos a continuación las gráficas de las distintas funciones logarítmicas.

Como ya hemos mencionado, las funciones exponenciales y logarítmicas que hemos definido en esta unidad son continuas y derivables en todo su dominio. Obtendremos a continuación expresiones para sus derivadas.

Ya hemos visto que

$$\ln'(x) = \frac{1}{x}, \exp'(x) = \exp(x) = e^x.$$

Tomemos a>0 y definamos $h(x)=x\ln(a)$. La función h es derivable y $h'(x)=\ln(a)$. Por otra parte, $f(x)=a^x=\exp(h(x))$. Aplicando la regla de la cadena, resulta

$$f'(x) = \exp'(h(x)) \cdot h'(x) = \exp(h(x)) \cdot \ln(a) = \ln(a)e^{x \ln(a)} = \ln(a)a^x = \ln(a)f(x).$$

Como $\log_a(x) = \frac{\ln(x)}{\ln(a)}$,

$$(\log_a)'(x) = \frac{1}{\ln(a)} \ln'(x) = \frac{1}{\ln(a)x}$$

Podemos finalmente considerar la función $g(x)=x^a$, donde ahora la variable aparece en la base pero el exponente a es arbitrario. Por definición, $g(x)=e^{a\ln(x)}$ con lo cual g es continua y derivable y se tiene

$$g'(x) = e^{a \ln(x)} a \cdot \ln'(x) = \frac{a}{x} e^{a \ln(x)} = \frac{a}{x} x^a = ax^{a-1}.$$

Como hemos adelantado en el comienzo, la ecuación 2 es muy importante y caracteriza completamente a las funciones exponenciales en el siguiente sentido:

Teorema 59. Si f es una función derivable tal que f'(x) = f(x) para todo x, entonces existe un número real c tal que $f(x) = ce^x$.

Demostración: Definamos $g(x) = \frac{f(x)}{e^x}$. Entonces aplicando la regla de derivación de un cociente, tenemos

$$g'(x) = \frac{f'(x)e^x - f(x)e^x}{(e^x)^2} = 0$$

y por lo tanto existe una constante c tal que g(x) = c

Terminamos esta unidad probando que la función exponencial crece más rápido que cualquier potencia. Esto se traduce en el siguiente límite:

Teorema 60. Para cualquier número natural n,

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty.$$

Demostración: Probemos primero que

$$e^x > x, \quad \forall \ x \in \mathbb{R}.$$
 (4)

Si $x \le 0$ la afirmación es trivial dado que $e^x > 0$ para todo x.

Supongamos entonces que x>0 y veamos que $\ln(x)< x$. Si $0< x\le 1$ la afirmación nuevamente es trivial, pues $\ln(x)\le 0$. Supongamos entonces que x>1. Tomando la partición trivial $P=\{1,x\}$ del intervalo [1,x], resulta claro que $U(\frac{1}{t},P)=x-1$ y por lo tanto

$$\ln(x) = \int_{1}^{x} \frac{1}{t} < x - 1 < x.$$

Como la función exponencial es creciente, resulta $e^{\ln(x)} < e^x$, o sea que $x < e^x$.

Probaremos ahora que

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty. \tag{5}$$

Para ello observemos que

$$\frac{e^x}{x} = \frac{e^{x/2}e^{x/2}}{2\frac{x}{2}} = \frac{1}{2} \left(\frac{e^{x/2}}{\frac{x}{2}}\right) e^{x/2}.$$

Aplicando la desigualdad (4) a $\frac{x}{2}$, obtenemos que la expresión entre paréntesis es mayor que 1 (observemos que estamos haciendo tender x a infinito y por lo tanto podemos suponer que x > 0). Luego

$$\frac{e^x}{x} > \frac{1}{2}e^{x/2}.$$

Como la función \exp es creciente y no acotada, el límite cuando x tiende a infinito del lado derecho de la desigualdad es infinito, de donde obtenemos que vale la ecuación 5.

Para el caso general, observemos que

$$\frac{e^x}{x^n} = \frac{(e^{x/n})^n}{\left(\frac{x}{n}\right)^n n^n} = \frac{1}{n^n} \left(\frac{e^{x/n}}{\frac{x}{n}}\right)^n.$$

La expresión dentro del paréntesis tiende a infinito cuando x tiene a infinito en virtud de (5), y por lo tanto el límite de toda la expresión es infinito.