Prof. Dr. Leif Kobbelt

Stefan Dollase, Ira Fesefeldt, Alexandra Heuschling, Gregor Kobsik

Übung 9

Tutoraufgabe 1 (Optimaler Suchbaum):

Gegeben sind folgende Knoten mit dazugehörigen Zugriffswahrscheinlichkeiten:

Knoten	10	N_1	11	N_2	12	N ₃	<i>I</i> ₃	N_4	14
Wert	$(-\infty,1)$	1	(1,2)	2	(2,3)	3	(3,4)	4	(4,∞)
Wahrscheinlichkeiten	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.0

Konstruieren Sie einen optimalen Suchbaum wie folgt.

a) Füllen Sie untenstehende Tabellen für $W_{i,j}$ und $C_{i,j}$ nach dem Verfahren aus der Vorlesung aus. Geben Sie in $C_{i,j}$ ebenfalls **alle möglichen Wurzeln** des optimalen Suchbaums für $\{i, \ldots, j\}$ an.

· ·						
$W_{i,j}$	0	1	2	3	4	
1						
2	_					
3	_	_				
4	_	_	_			
5	_	_	_	_		
$C_{i,j}(R_{i,j})$	0	1	2	3	4	
1		()	()	()	()	
2	_		()	()	()	
3	_	_		()	()	
4	_	_	_		()	
5	_	_	_	_		

- **b)** Geben Sie einen optimalen Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten graphisch an.
- c) Ist der optimale Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten eindeutig? Geben Sie dazu eine kurze Begründung an.

Tutoraufgabe 2 (Union Find):

Führen Sie die folgenden Operationen beginnend mit einer anfangs leeren *Union-Find-Struktur* aus und geben Sie die entstehende Union-Find-Struktur nach jeder *MakeSet*, *Union* und *Find* Operation an. Nutzen Sie dabei die beiden Laufzeitverbesserungen: Höhenbalencierung und Pfadkompression. Dabei soll die Union-Operation bei **gleicher Höhe der Wurzeln immer die Wurzel des zweiten Parameters** als neue Wurzel wählen. Es ist nicht notwendig die Höhe der Bäume zu notieren.

- 1. MakeSet(1)
- 2. MakeSet(2)
- 3. MakeSet(3)
- 4. MakeSet(4)
- 5. MakeSet(5)
- 6. MakeSet(6)

- 7. MakeSet(7)
- 8. MakeSet(8)
- 9. MakeSet(9)
- 10. Union(1,2)
- 11. Union(3,4)
- 12. Union(3,1)
- 13 Union(5,6)
- 14. Union(7,8)
- 15. Union(7,9)
- 16. Union(9,5)
- 17. Union(9,2)
- 18. MakeSet(10)
- 19. Union(7,10)
- 20. Find(3)

Tutoraufgabe 3 (Prominenz suchen):

Sei ein gerichteter Graph G=(V,E) als Adjazenzmatrix gegeben. Wir nennen einen Knoten $v\in V$ prominent, wenn von allen Knoten $v' \in V \setminus \{v\}$ eine Kante $(v', v) \in E$ nach v existiert, aber es von keinem Knoten $v' \in V$ eine Kante $(v, v') \notin E$ zurück gibt.

Geben Sie einen Algorithmus an, der in O(|V|) Worst-case Laufzeit herausfindet, ob G einen prominenten Knoten besitzt. Begründen Sie die Korrektheit und die Laufzeit Ihres Algorithmus.