Enumerating big orbits and an application:

B acting on the cosets of Fi_{23}

[J.M.-Neunhöffer-Wilson]

J. Algebra 314, 2007, 75–96

 $http://www.math.rwth-aachen.de/{\sim} Juergen.Mueller$

[J.M.-Neunhöffer-Noeske]

GAP-4 package ORB (Version 0.999...)

 $http://www.math.rwth-aachen.de/\\ \sim Max.Neunhoeffer/Computer/Software/Gap/orb.html$

Multiplicity-free actions

[Breuer-J.M., ≤ 2006]

Character tables of endomorphism rings of multiplicity-free permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions

 $http://www.math.rwth-aachen.de/\sim Juergen.Mueller$

- Contain information on the associated orbital graphs: distance-transitivity and -regularity, Ramanujan property.
- Classification of multiplicity-free actions: [Breuer-Lux, 1996; Linton-Mpono, ~ 2001; Breuer, 2005].
- Building on earlier work (amongst others): [Ivanov-Linton-Lux-Saxl-Soicher, 1995; Praeger-Soicher, 1997; Höhler, 2001; ...].

${f BIG}$ orbits — multiplicity-free actions of B:

- on the $13\,571\,955\,000$ cosets of $2.^2E_6(2).2$ [Higman, 1976],
- on the 27 143 910 000 cosets of $2.{}^{2}E_{6}(2)$ [Higman, 1976],
- on the 11 707 448 673 375 cosets of 2^{1+22} . Co_2 [J.M., 2003; Rowley-Walker, 2004],
- on the $1\,015\,970\,529\,280\,000$ cosets of Fi_{23} [J.M.-Neunhöffer-Wilson, 2007].

B acting on the set X of cosets of $H := Fi_{23}$

- 23 orbits $X_i = x_i H \subseteq X$, neither $k_i := |X_i|$ nor $H_i := \operatorname{Stab}_H(x_i)$ were known before.
- H-orbit representatives x_i were found by random search, and using the action of the Monster \mathbb{M} on 6-transpositions.

i	k_i	$ H_i $	H_i
1	1	$\sim 4.1 \cdot 10^{18}$	Fi_{23}
2	412896	9904359628800	$O_8^+(3) \colon 2_2$
3	86316516	47377612800	$S_8(2)$
4	195747435	20891566080	$2^{11}.M_{23}$
5	8537488128	479001600	S_{12}
6	23478092352	174182400	$O_8^+(2)$
7	33816182400	120932352	$[3^9].[2^{10}].S_3$
8	113778447552	35942400	$2 \times {}^{2}F_{4}(2)'$
9	160533964800	25474176	$S_3 \times G_2(3)$
10	504245392560	8 110 080	$2^{10}.M_{11}$
11	1044084577536	3916800	$S_4(4): 4$
12	1152560897280	3548160	$(2 \times 2.M_{22}).2$
13	1584771233760	2580480	$2^{7}.A_{8}$
14	5282570779200	774144	$2^7.U_3(3)$
15	7888639030272	518400	$(A_6 \times A_6): 2^2$
16	12678169870080	322560	$2^2.L_3(4).2^2$
17	21514470082560	190080	$2 \times M_{12}$
18	43028940165120	95040	M_{12}
19	50712679480320	80 640	$2.L_3(4).2_2$
20	133120783635840	30720	$2^4.2^4.A_5.2$
21	190172548051200	21504	$2^6: L_3(2): 2$
22	262 954 634 342 400	15552	$3^4.2^{1+4}.S_3$
23	283 991 005 089 792	14 400	$(A_5 \times A_5) \colon 2^2$

Orbit enumeration by suborbits

Basic idea:

[Parker-Wilson, ~1995; Lübeck-Neunhöffer, 2001; O'Brien; Kerber-Kohnert-Laue]

• Let X be a G-set, let U < G be a **helper subgroup**, let Y be a U-set and let $\overline{}: X \to Y$ be a U-homomorphism.

Common case: $X \subseteq M$, where M is an $\mathbb{F}G$ -module, and $\overline{}$ is induced by an $\mathbb{F}U$ -module homomorphism from $M|_U$.

- For any U-orbit in Y designate a U-minimal point in it, and $x \in X$ is called U-minimal if $\overline{x} \in Y$ is U-minimal.
- Enumerate X by U-orbits, store the U-minimal points in X.

Orbit-stabiliser by *U*-orbits on $X = x_1G$:

a) Procedure Minimaliser $_U(x)$:

For $x \in X$ compute $u \in U$ such that xu is U-minimal.

- **b)** Procedure BarStabiliser_U(x): For U-minimal $x \in X$ compute $\overline{S} := \operatorname{Stab}_U(\overline{x})$ and $|\overline{S}|$.
- Applying $\mathsf{Minimaliser}_U(x)$ allows to check whether a U-orbit has been encountered earlier.
- \circ If not, the *U*-minimal points in xU are computed by an orbit-stabiliser algorithm using $\overline{S} = \mathsf{BarStabiliser}_U(x)$. \circ Otherwise, collect elements of $\mathsf{Stab}_G(x_1)$.
- Assume that **orders of subgroups** generated by subsets of G can be efficiently determined.

Iterating orbit enumeration by suborbits

- Let V < U < G be helper subgroups, and compute a **left transversal** \mathcal{L} **of** V **in** U.
- Let Z be a V-set, let $\widetilde{}: Y \to Z$ be a V-homomorphism, and assume $\mathsf{Minimaliser}_V(y)$ and $\mathsf{BarStabiliser}_V(y)$ to be given, hence the U-orbits in Y can be enumerated by V-orbits.
- For any U-orbit in Y designate a U-minimal point y amongst the V-minimal points in it. Moreover:
- \circ For any V-minimal $y' \in yU \setminus yV$ find $u \in \mathcal{L}$ such that $y'u \in yV$.
- o For any V-minimal $y' \in yV$ find $v \in \operatorname{Stab}_V(\widetilde{y}) = \mathsf{BarStabiliser}_V(y)$ such that y'v is U-minimal.
- a) Procedure Minimaliser $_U(x)$:

Let $v' := \mathsf{Minimaliser}_V(\overline{x})$, hence $\overline{x}v' \in yU$ is V-minimal.

Hence $\overline{x}v'u \in yV$, where y is U-minimal.

Let $v'' := \mathsf{Minimaliser}_V(\overline{x}v'u)$, hence $\overline{x}v'uv'' \in yV$ is V-minimal.

Thus $\overline{x}v'uv''v = y$, and Minimaliser_U(x) := v'uv''v.

b) Procedure BarStabiliserU(x):

 $\operatorname{Stab}_{U}(\overline{x})$ is found by enumerating the *U*-orbit $\overline{x}U$ by *V*-orbits.

- Iteration for chains $\{1\} = U_0 < U_1 < U_2 < \cdots < U_k < G.$
- For U_1 every point is U_0 -minimal, and Minimaliser U_0 and BarStabiliser U_0 are trivial.

In practice

• Index $|X| = [B: Fi_{23}] = 1\,015\,970\,529\,280\,000 \sim 1.0 \cdot 10^{15}$, realizing $X \subseteq \mathbb{F}_2^{4371}$ needs $\lceil 4371/8 \rceil = 547$ Bytes per vector, needs $555\,735\,879\,516\,160\,000 \sim 5.6 \cdot 10^{17}$ Bytes for all of X.

• The subgroup chain:

j	U_j	$ U_j $	$[U_j\colon U_{j-1}]$	$\dim_{\mathbb{F}_2}(M_j)$
5	В	$\sim 4.2 \cdot 10^{33}$	$\sim 1.0 \cdot 10^{15}$	4371
4	Fi_{23}	$\sim 4.1 \cdot 10^{18}$	86 316 516	782
3	$S_8(2)$	47 377 612 800	2295	42
2	2^{10} : A_8	20 643 840	8 192	31
1	A_7	2 520	2 520	18

- Enumeration of the *H*-orbits in $X_i^{\pi} \subseteq M_4$ by U_3 -orbits.
- Apply group generators to U_3 -orbit representatives only.
- Ignore points x such that $|\operatorname{Stab}_{U_3}(\overline{x})| > 10^5$.
- Needs $\sim 4\,800~\mathrm{s} \sim 80~\mathrm{min}$ of CPU time on a 3.2 GHz Pentium IV, and $\sim 1.1 \cdot 10^9~\mathrm{Bytes}$.

$k_i^\pi = X_i^\pi $	$ \mathcal{X}_i $	$k_i^\pi/ \mathcal{X}_i $	U_3 -orbits	N_i	$ \mathcal{X}_i /N_i$
∞	281 092 626 984 960	0.99	8 109	1430821	196 455 480
Γ	259 808 546 995 200	0.99	8969	1 212 147	214 337 491
∞	187 996 976 179 200	0.99	5 256	1227646	153 136 145
\mathcal{C}	131 937 126 773 760	0.99	3 936	601 292	219 422 721
J	49 876 298 933 760	0.98	1930	254398	196 056 175
J	42 270 766 755 840	0.98	1476	447 462	94 467 836
$\mathcal{C}\mathcal{A}$	21 046 385 848 320	0.98	692	211988	99 281 025
$\overline{}$	12 380 329 543 680	0.98	535	149079	83 045 429
	7 687 679 811 840	0.97	504	78843	97 506 180
	2 566 592 870 400	0.97	155	00069	37196998
	1 495 816 519 800	0.94	136	99 628	15 014 017
	1 087 842 631 680	0.94	101	25 699	42330154
	$1\ 010\ 524\ 999\ 680$	0.97	97	15 298	66056020
	222 345 768 960	0.88	33	9029	24625736
	19780035840	0.84	20	3808	5194337
	9952588800	0.88		1556	6 396 265
	7 229 107 200	0.85	10	965	7 491 303
	135080640	0.91	ರ	17794	7591
	366 792	0.89	2	122	3006
	18360	0.58	1	8	2 2 9 5

The character table of B on Fi_{23}

φ	χ_{φ}	1	2	3	4	5	6	7	8
1	1	1	412896	86316516	195747435	8537488128	23478092352	33816182400	113778447552
2	4371	1	-137632	18115812	-10472085	-1159411968	1449264960	3757353600	1404672192
3	96255	1	82016	8890596	5701995	457037568	327742272	1297296000	-1788671808
4	9458750	1	41888	3232548	-43605	123026688	57841344	314160000	183218112
5	63532485	1	-32032	2275812	414315	-77223168	-2312640	179625600	-32332608
6	347643114	1	10208	704484	1589355	10679040	46398528	-9609600	57081024
7	356054375	1	-17248	900900	-1508949	-20097792	43902144	32672640	-21155904
8	4221380670	1	-3232	324324	103275	-2453760	15121728	-12297600	-15494976
9	4275362520	1	14816	725796	-43605	16743168	-7316928	31920000	14841792
10	9287037474	1	6896	132516	699435	736128	11096352	4502400	-38864448
11	13508418144	1	-11632	475812	111915	-9283968	-491040	17673600	7584192
12	108348770530	1	7328	246564	-43605	3421440	1729728	4502400	-11866176
13	309720864375	1	-1120	89892	-181845	-172800	3172032	-3638400	6934464
14	635966233056	1	3408	69284	147755	295040	2450528	-169600	6681024
15	1095935366250	1	-4576	126756	2475	-1324800	-949824	1061760	-254016
16	6145833622500	1	2864	51876	-26325	316800	-507744	309120	1197504
17	6619124890560	1	1088	39204	25515	138240	-300672	-1065600	-1498176
18	12927978301875	1	-2128	19620	-40149	67968	706464	186240	-627264
19	38348970335820	1	-1232	15524	37675	19840	-69472	-233600	-576
20	89626740328125	1	944	1188	15147	-79488	61344	63360	36288
21	211069033500000	1	560	1188	-12501	-51840	12960	-68736	-129600
22	284415522641250	1	-16	-5724	8235	17280	50976	78720	-46656
23	364635285437500	1	-400	-1116	-5589	26496	-71136	-7296	119232

9	10	11	12	13	14	15	16
160533964800	504245392560	1044084577536	1152560897280	1584771233760	5282570779200	7888639030272	12678169870080
-5945702400	39426594480	-21483221760	-4743048960	-110868769440	65216923200	-292171815936	573908924160
-511948800	12027702960	-9527341824	6966984960	30484602720	28447848000	58091185152	118446831360
258508800	1991288880	1252323072	-1021697280	4906012320	-3514104000	3727696896	12802648320
35481600	1084693680	550851840	-432034560	-2400567840	1235995200	-300174336	4718165760
-167270400	224426160	533820672	271607040	-9741600	916660800	2067158016	-1656357120
63866880	185985072	-186810624	778242816	-259829856	-2109032640	-1909619712	-643458816
74188800	87499440	-219034368	-142145280	29121120	499867200	-274627584	-544631040
4147200	110118960	-61012224	62588160	198033120	197640000	-366363648	5218560
20044800	-21727440	115105536	171953280	32315760	217339200	-118153728	122446080
-18662400	32946480	-61205760	-22584960	-74323440	-10756800	200600064	-34179840
-6912000	5609520	-1790208	-28857600	-1265760	-80222400	35030016	-96802560
-6912000	12798000	19554048	-7568640	3745440	-43200	-48356352	-17729280
5913600	-1900240	-8656128	8992640	-2385200	-15211200	36246016	7220480
1935360	-841680	6983424	3168000	10755360	2721600	1741824	-31921920
691200	-2857680	2467584	-777600	-4879440	5417280	-5515776	518400
-460800	2430000	-1928448	3732480	-3810240	648000	5308416	933120
-414720	-2332368	-1292544	-307584	-943056	2928960	787968	6269184
76800	-292560	472832	-1668480	588720	-1924800	-2025984	4348160
-709632	-452304	-850176	134784	854064	938304	-1866240	518400
248832	73008	200448	-335232	518832	-720576	898560	1237248
138240	114480	532224	-293760	-481680	25920	-262656	-1416960
-82944	86832	-352512	508032	-42768	191808	290304	-311040

17	18	19	20	21	22	23
21514470082560	43028940165120	50712679480320	133120783635840	190172548051200	262954634342400	283991005089792
-796832225280	531221483520	1460859079680	-2739110774400	-782603078400	3246353510400	-1168687263744
158430504960	-222361251840	239651343360	190079809920	-857327328000	28598169600	218194808832
10166446080	20332892160	7936220160	8210885760	47791814400	-25333862400	-90188550144
-4534548480	-8511713280	-1053803520	12753417600	10828857600	-17953689600	3908653056
-679311360	1892782080	3994721280	-5895711360	1568160000	-10005811200	6838013952
1675634688	1177473024	3238050816	-155675520	-44478720	-6826659840	4981616640
-5806080	592220160	722856960	813214080	-13996800	-1025740800	-578285568
-75479040	-452874240	-1233239040	-1778474880	666144000	148377600	2518290432
-322237440	661893120	-489991680	959091840	-1020988800	174182400	-479582208
269982720	836075520	-664312320	-183254400	-1004918400	593510400	125024256
-145152000	-11612160	83082240	268168320	-170553600	212889600	-59609088
18524160	-16035840	-61793280	98133120	-116640000	190771200	-74649600
-39797760	-41656320	-22725120	16717440	9264000	80076800	-41576448
-5806080	-58060800	36449280	-18264960	41644800	94187520	-83349504
14515200	11612160	15137280	9797760	-15085440	-21934080	-10450944
14100480	-9953280	-9953280	-18195840	27993600	27648000	-35831808
7216128	-6967296	-2225664	-16744320	22654080	-8663040	-276480
-1582080	5468160	-919040	-1537920	-7036800	-17100800	23365632
-746496	-1658880	2198016	3825792	6065280	-4534272	-3815424
-1410048	995328	-1893888	-4053888	-1316736	-2764800	8570880
2903040	-1658880	-69120	-3058560	51840	6082560	-2709504
-1741824	995328	705024	4572288	-1026432	-700416	-3151872