Data Analytics Best Practices

2.1

© 2018 NUS. The contents contained in this document may not be reproduced in any form or by any means, without the written permission of NUS ISS, other than for the purpose for which it has been supplied.

Agenda

Day 1

- Analytics basics
 - Analytics Processes
 - Data Requirements
 - Types of datasets in the industry
 - Data issues
 - Data Cleaning
 - Data Integration
- Workshop on arranging data elements
 - Functions
 - Data Formats
 - Date-time in R

Day 2

- Analytics best practices
 - Data Transformation
 - Exploratory Visualisation
 - Feature Engineering
 - Decision Engineering
 - Model Deployment
 - Model Maintenance
 - ROI Models
- Workshop on Analytics best practices
 - Intro to Data Cleaning
 - Data Preparation

Day 3

- Workshop on Data exploration
 - Visual Data Exploration
 - Non-Visual Data Exploration
- Data Warehousing Basics
 - Data Warehousing Introduction
 - Data Modelling Essentials

Data Transformation

Data Analytics Best Practices

Data transformation

- Data might need to be transformed for the following reasons
 - Rolling up to the appropriate granularity
 - Creating a single row per customer
 - Merging data from different sources
 - Creating aggregations or summaries
 - Removing skews
 - Bringing multiple variables to the same scale
 - Creating new features (feature engineering)
 - Capping to remove extreme values
 - Creating data appropriate for the downstream technique
- Data visualisation usually helps with suggesting data transformations
- Best Practice benchmarks would create 3x derived variables from raw data

Log Transformations

Log Transformation

- Makes a skewed attribute more symmetric
- Reduces the magnitudes
- Common bases 10, 2, e (which base to use is often not important)

- Incomes, customer value, account or purchase sizes—are commonly encountered sources of skewed distributions in data science applications.
- Often they are log-normally distributed: the log of the data is normally distributed

Log Transformations

If a data relationship looks like one of these curves, try using a transformation of the independent variable to make the relationship linear.

Data Normalization

- Reduces outlier distortion and enhances linear predictability
- Ensure all variables have approximately the same scale
 - E.g. variable Age vs Income: a distance of 10 "years" may be more significant than a distance of \$1000, yet \$1000 swamps 10 when they are added in calculating distance
- Normally re-center and rescale the data to be around zero, in the range from 0 to 1, etc.
- Common Methods.....

$$v' = \frac{v - min_A}{max_A - min_A}$$

$$v' = \frac{v - mean_A}{stand_dev_A}$$

$$v' = \frac{v}{10^{j}}$$

Where j is the smallest integer such that Max(|v'|)<1

Min-max scaling

Z-score scaling

Decimal scaling

- Many modeling methods require numerical inputs
 - One major exception is decision tree methods
- How to convert categories into numbers without introducing an unintended ordering?
- E.g. Which of these is the best mapping?
 - Small ->1
 - Medium -> 2
 - Large -> 3

- Small ->3
- Medium -> 2
- Large -> 1

- Small ->2
- Medium -> 3
- Large -> 1

What about this?

- Yishun->1
- Clementi -> 2
- Tuas-> 3
- Queensway -> 4

- How to handle...
 - Marital status = single, married, divorced, widowed?
- Could convert to...
 - Marital status = 0,1,2,3 where
 0 = single, 1=married, 2=divorced, 3=widowed

- Single = 0,1
- Married = 0.1
- Divorced = 0,1
- Widowed = 0,1

Caution:

 For visualization and decision tree models, it's best to leave as one field called "marital status" with values = single, married, divorced, widowed

- If there is no obvious ordering within the categories then converting to a series of binary (1 => true and 0 => false) inputs is preferable
- This is often also called "one-hot" encoding or "dummy" variable encoding
- Example

Obs.	Colour	Colour_Red	Colour_Green	Colour_Blue
1	Green	0	1	0
2	Blue	0	0	1
3	Blue	0	0	1
4	Red	1	0	0
5	Green	0	1	0
6	Red	1	0	0

- Simplify categorical variables that have too many categories before doing binarisation
- Simple grouping may help
 - E.g. transform states into groups: western, eastern etc.
- If a concept hierarchy exists then categories can be merged by climbing the hierarchy
- Example

Gender	Profession	Bought PEP
М	teacher	Υ
М	professor	Υ
F	Asst. professor	Υ
М	Civil engineer	Ν
F	Comp.engineer	Ν
F	Elec. engineer	Ζ
М	architect	Ν

Gender	Profession	Bought PEP
М	educational	Y
М	educational	Y
F	educational	Y
М	technical	N
F	technical	N
F	technical	N
М	technical	N

Exploratory Visualisation

Data Analytics Best Practices

Visualization Phase Deliverables

- Data Visualisation Presentation
 - Hypotheses improvements
 - Validation by Business
 - Often leads to interesting side projects
 - Often leads to new variable creation (more data preparation)

Data
Visualisation
Presentation

Business << >> Analytics

Summary Trends

- High level summaries of data trends are useful to start the visualisation with
- Usually time wise trends provide basic patterns to study
- To drill deeper into time across multiple categories, heat maps could be used

October has the highest PV, no. of transactions and ticket size

Average PV: (Total Purchase Volume for Ownership Category)/(Number of Unique Cardholders)

Average Transactions: (Total number of transactions for Ownership Category)/(Number of Unique Cardholders)

Average Ticket size: Average Spend per transaction for that Category

© 2018 NUS. All rights reserved.

Wednesday has maximum transactions, followed by Saturday

Average Transactions: (Total number of transactions for Ownership Category)/(Number of Unique Cardholders)

Univariates with Target variable

- The next set of visualisations should be the univariate graphs with target variables
- Each graph should show the population distribution and the target variable distribution
- A disproportionate reading on a category compared to the population is a sign of an interesting variable
- Often examining this set of visualisations leads to ideas about creating newer derived variables
- Once newer variables have been created, they need to be visualised as well

© 2018 NUS. All rights reserved.

Effect of type of account

Salaried customers re conservative in investment patterns, compared to Saving customers

Effect of of time on books of the bank

Longer the period since the customer is on book, greater is the chance of investing in Mutual Funds

Effect of latency between transactions

Longer the period between two transactions, lesser is the likelihood of taking up Mutual Fund as it indicates lower level of involvement

Effect of increasing balance

With increasing balance, there is more disposable funds and hence greater propensity to invest in Mutual Fund

Bivariate Cross tabs

- Cross tabs across two variables shows multiple trends that can reveal interesting insights
- Profiling the segments that emerge from such cross tabs could provide interesting insights
- Often just these segment analysis could provide enough insights for business teams to take action upon

Sample High Spenders Segment

Example Cross tabs

- H3 contributes majorly to transaction amount following L3
- Other segments do not contribute significantly

41

Feature Engineering

Data Analytics Best Practices

Some Feature categories to consider

- Aggregations
- Benchmarks vs. Aggregations
- Slices of time
- Other dimension slices
- Momentum/Rate of Change
- Industry classifications
- Cross tabs of two variables

© 2018 NUS. All rights reserved.

Feature Construction

Decomposing compound features into simpler

components, e.g....

<u>ID</u>	Product Holdings	Purchased Service
1.	ProdA + ProdC	Υ
2.	ProdB + ProdC	N
3.	ProdA + ProdD	N
4.	ProdB + ProdD	Υ

ProdA	ProdB	ProdC	ProdD	Svc
1. 1	0	1	0	Υ
2. 0	1	1	0	N
3. 1	0	0	1	N
4. 0	1	0	1	Υ

Feature Construction

Deriving a value that is more useful / making something more explicit

• E.g.

<u>ID</u>	Cost per unit	Units purchased
1.	10	10
2.	15	5
3.	8	8
4.	10	5

<u>ID</u>	Cost per unit	Units purchased	Total \$ Revenue
1.	10	10	100
2.	15	5	75
3.	8	8	64
4.	10	5	50

Data Reduction

- Complex data analytics may take a very long time to run on the complete data set
- Data Reduction
 - Obtain a reduced representation of the data set that is much smaller in volume yet produces the same (or almost the same) analytical results
- Data Reduction Strategies
 - Dimensionality reduction—reduce the number of attributes
 - Numerosity reduction reduce by finding alternate, smaller data representations
 - Parametric methods: fit data into models, store model parameters, discard the data
 - Non-parametric methods histograms, clustering, sampling

© 2018 NUS. All rights reserved.

Dimensionality Reduction

- Feature Selection (attribute subset selection)
 - Selecting the most relevant attributes

- Feature Extraction
 - Combining attributes into a new reduced set of features

Feature Extraction

- Also attribute reduction process by combining the original attributes
- Leading to a much smaller and richer set of attributes
- Methods exist which work well for linear between-variable relationships
 - Principle component analysis
 - Factor analysis

Unstructured data processing

- Speech data processing
 - Speech data is considered as unstructured data, Step 1 in analysis is to convert it to structured data
 - Speech data could be converted to text and text could be further processed
 - Alternatively speech data could be mined for affect (tone of voice)
- Text processing
 - Before text data can be mined for insights, a lot of pre processing needs to be in place
 - Steps in pre processing include tokenisation, POS tagging, Named Entity Recognition
 - Insights could be mined using rule based approaches or machine learning techniques
 - Applications include polarity analysis, concept extraction and sentiment mining
- Example: customer service conversation transcripts

© 2018 NUS. All rights reserved.

A typical text processing pipeline

© 2018 NUS. All rights reserved.

33

Logical Data Models

Definition

 A repository of data dictionaries, raw fields, transformed variables, metadata and transformation scripts

Benefits

- Enables maintenance and easy deployability of multiple analytics data processing workflows
- Enables best practices to be transferred across multiple teams

Maintenance

 Every time new processing pipelines are created, the data model gets appended

Feature expansions

- Statistical features
 - Averages
 - Variances
 - Ranges
 - Distances
- Combination features
 - Cross tabs
 - Categorisations
 - Multiple Hierarchies

- Benchmark features
 - Deviation from average
 - Direction of deviation
 - Count of deviations

Decision Engineering

Data Analytics Best Practices

Decision Engineering

- Decision Engineering is the process of converting the analytics insights into decisions
- Decision Engineering could be used to implement policies
- Example: Collection strategy: From a behavioural score and amount at risk matrix, arrive at collection policy
 - Type 1 to Type 4 treatment could vary in decreasing intensity of follow up.

2 - Variable Heat Map

Embed into processes

Application Scorecard

Application Score	Decision Matrix	Process
Below 350	Automatic Rejection	Straight through processing
350 – 650	Manual Review	Review by Credit Department
Above 650	Automatic Acceptance	Straight through processing

Anatomy of a Decision Making Unit

Component	Function	Business Understanding Understanding
Sensors	Data Collection and Processing	Data Preparation
Brain	Model Scoring	Deployment
Actuators	Decision Execution Processing	Data Modeling
		Evaluation

Model Deployment

Data Analytics Best Practices

What if we could predict cash outs?

- ✓ Cash-outs down by 80 %
- √ 30,000 hours of customer wait time eliminated
- ✓ Trips required to reload network down by 20 %
- ✓ Leftover cash returned to the bank decreased by 40 %
- √ 1,100 ATMs with optimized operations
- ✓ 4 million customers spared inconvenience

Deployment needs infrastructure

Deployment strategy could involve multiple models

- Implementation of analytics based treatment should be based on sound business logic
- Here is an example treatment strategy for attrition prevention

The Entire Handover

End to End cycles

Implementation Lifecycle

Tools required at various stages

- Sandbox Data, Prepared Data, Operational Data
 - Databases: Oracle, Hadoop
- ETL Process, EL Process
 - Data Wrangling systems: SQL,
 Informatica
- Data Preparation
 - Data Preparation workbenches: R, SAS
- Modelling
 - Modelling Workbenches: R, SAS
- Models
 - Model Formats: XML, JSON

- Scoring Engine
 - Rule Engines: SQL Scripts, Drools
- Dashboards, Running Trends
 - Reporting Engines: Tableau, Qlikview
- Data cubes
 - OLAP Databases: Tableau, Oracle
- UI (Optional)
 - User Interface: Web/Mobile Apps

Model Maintenance

Data Analytics Best Practices

Population stability Index

- If the underlying population has changed, we might need to recalibrate the model
- A threshold on the population stability index is tracked to determine this
- In this example, the PSI crossed the review threshold, the deviation was from the web channel
- Look into the details of why this happened before taking further action

	# records		2					
	last 3	# records	% prev 3	% recent				
Channel	months	last month	months	month	change	ratio	WoE	PSI portion
Social	6,000	2,200	7.6%	13.0%	5.4%	1.71	0.534	0.029
Web	25,000	1,600	31.7%	9.5%	-22.3%	0.30	-1.211	0.270
Email	3,000	900	3.8%	5.3%	1.5%	1.40	0.333	0.005
Print	3,500	977	4.4%	5.8%	1.3%	1.30	0.261	0.003
InStore	41,252	11,250	52.4%	66.5%	14.1%	1.27	0.238	0.034
Total	78,752	16,927	100%	100%				0.341

PSI	Strategy
< 0.1	No change
0.1 to 0.25	Closely Monitor
> 0.25	Review

Population stability Index for a credit score

• PSI should be calculated across score bands too

	# records							
Credit	last 3	# records	% prev 3	% recent				
Score	months	last month	months	month	change	ratio	WoE	PSI portion
<500	6,234	2,200	15.1%	24.1%	9.0%	1.59	0.465	0.042
500-599	7,780	1,600	18.9%	17.5%	-1.4%	0.93	-0.075	0.001
600-699	5,700	900	13.8%	9.9%	-4.0%	0.71	-0.339	0.013
700-799	6,320	977	15.3%	10.7%	-4.6%	0.70	-0.360	0.017
800-850	8,700	1,325	21.1%	14.5%	-6.6%	0.69	-0.375	0.025
>850	6,500	2,134	15.8%	23.4%	7.6%	1.48	0.393	0.030
Total	41,234	9,136	1	1				0.127

PSI	Strategy
< 0.1	No change
0.1 to 0.25	Closely Monitor
> 0.25	Review

Characteristic Analysis Report

Stability index

$$\sum (\%Actual - \%Expected) \times \ln(\frac{\%Actual}{\%Expected})$$

Characteristic reports

Age	Expected	Actual	Points	Index	# Delq	Expected	Actual	Points	Index
18-24	12%	21%	10	0.9	0	80%	65%	45	-6.75
25-29	19%	25%	15	0.9	1-2	12%	21%	20	1.8
30-37	32%	28%	25	-1	3-5	5%	8%	12	0.36
38-45	12%	6%	28	-1.68	6+	3%	6%	5	0.15
46+	25%	20%	35	-1.75					-4.44
				-2.63	Utilizati	ion at Burea	и		
Time at Res					0	12%	8%	15	-0.6
0-6	18%	29%	12	1.32	1-9	10%	19%	40	3.6
7-18	32%	32%	25	0	10-25	14%	20%	30	1.8
19-36	26%	22%	28	-1.12	26-50	22%	25%	25	0.75
37+	24%	17%	40	-2.8	50-69	11%	6%	20	-1
				-2.6	70-85	13%	9%	15	-0.6
Region					86-99	14%	8%	10	-0.6
Major Urban	55%	58%	20	0.6	100+	4%	5%	5	0.05
Minor Urban	26%	24%	25	-0.5					3.4
Rural	19%	18%	15	-0.15					
				-0.05					
Ing 6 mth									
0	63%	34%	40	-11.6					
1-3	19%	31%	30	3.6					
4-5	10%	16%	15	0.9					
6+	8%	19%	10	1.1					

Scorecard performance report

 The scorecards are analysed against actual performance to see if they are working well

Maintenance options

- Score shelf life varies across different scores
 - Fraud scores have a lower shelf life as fraudsters change techniques
 - Credit scores are relatively stable
 - Response models are likely to be less stable as market conditions change often

- Score deterioration options
 - Recalibration
 - Inexpensive
 - Remap old score to new score
 - Retraining
 - More expensive
 - Keep same variables, change weights
 - Rebuilding
 - Most expensive
 - Rebuild the model from scratch

ROI Models

Data Analytics Best Practices

Take costs into account

Predicted

Actual

riculticu					
Model A	No Infection	Infection			
No Infection	630	50			
Infection	170	150			

Actual

		Predicted	
	Model B	No Infection	Infection
I	No Infection	480	200
	Infection	70	250

22% misclassificaion

27% misclassificaion

Predicted

Actual

	No Infection	Infection
No Infection	\$0	\$2,000
Infection	\$10,000	\$0

\$1.8 Million

\$1.1 Million

Take costs into account

Model A	Transactions not flagged	Transactions Flagged suspicious
Normal cases	600,000	80,000
Actual Laundering cases	170	150

Model B	Transactions not flagged	Transactions Flagged suspicious
Normal cases	480,000	200,000
Actual Laundering cases	30	210

12% misclassification

29% misclassification

	Transactions not		Transactions	
Cost of misclassification	flagged		Flagged sus	picious
Normal cases		-	\$	1,000
Actual Laundering cases	\$	1,000,000	-	

\$250 Million

\$230 Million

