Technical Report

No Author Given

No Institute Given

1 Proof

1.1 Proof of Theorem 1

Proof. Let $\Delta \mathbf{x} = \tilde{\mathbf{x}}_j^i - \mathbf{x}_j^i = \operatorname{clamp}(\tilde{\mathbf{y}}_j^i, 0, t) - \operatorname{ReLU}(\mathbf{y}_j^i)$ be the difference of two neurons in QNN and DNN after applying the activation function. Note that, here we use $\tilde{\mathbf{y}}_j^i$ (resp. \mathbf{y}_j^i) to denote the value of neuron before an activation function in QNN (resp. DNN). Let $\Delta = \tilde{\mathbf{y}}_j^i - \mathbf{y}_j^i$.

First, considering Case 1 (UB($S^{in}(\mathbf{x}_j^i)$) ≤ 0), the neuron of DNN is always deactivated as 0. Hence, the output difference $\delta_{i,j} = S(\tilde{\mathbf{x}}_j^i)$.

Next, we consider following cases when the neuron in DNN is always activated, i.e., $LB(S^{in}(\mathbf{x}_i^i)) > 0$:

- Case 2-1&2-2 (UB($S^{in}(\tilde{\mathbf{x}}_j^i)$) ≤ 0 or LB($S^{in}(\tilde{\mathbf{x}}_j^i)$) $\geq t$): Since the neuron in QNN is always deactivated or clampped to t, we can get $\delta_{i,j} = -S^{in}(\mathbf{x}_j^i)$ or $\delta_{i,j} = t S^{in}(\mathbf{x}_j^i)$.
- Case 2-3 (LB($S^{in}(\tilde{\mathbf{x}}_{j}^{i})$) ≥ 0 and UB($S^{in}(\tilde{\mathbf{x}}_{j}^{i})$) $\leq t$): Both of two neurons in QNN and DNN are activated and without clampped. Therefore, we have $\delta_{i,j} = \delta_{i,j}^{in}$.
- Case 2-4 (LB($S^{in}(\tilde{\mathbf{x}}_j^i)$) < 0 and 0 \leq UB($S^{in}(\tilde{\mathbf{x}}_j^i)$) \leq t): Since $\tilde{\mathbf{y}}_j^i$ is always smaller than t, we have $\Delta \mathbf{x} = \max(\tilde{\mathbf{y}}_j^i, 0) \mathbf{y}_j^i = \max(\tilde{\mathbf{y}}_j^i \mathbf{y}_j^i, -\mathbf{y}_j^i)$. Then, $\delta = \max(\delta_{i,j}^{in}, -S^{in}(\mathbf{x}_j^i))$.
- Case 2-5 $(0 \le LB(S^{in}(\tilde{\mathbf{x}}_j^i)) < t \text{ and } UB(S^{in}(\tilde{\mathbf{x}}_j^i)) > t)$: Since $\tilde{\mathbf{y}}_j^i$ is always larger than 0, we have $\Delta \mathbf{x} = \min(\tilde{\mathbf{y}}_j^i, t) \mathbf{y}_j^i = \min(\tilde{\mathbf{y}}_j^i \mathbf{y}_j^i, t \mathbf{y}_j^i)$. Hence, we have $\delta_{i,j} = \min(\delta_{i,j}^{in}, t S^{in}(\mathbf{x}_j^i))$.
- Case 2-6 (Otherwise): By case 2-4 & 2-5, we have $\Delta \mathbf{x} = \max(\min(\tilde{\mathbf{y}}_j^i, t), 0) \mathbf{y}_j^i = \max(\min(\Delta, t \mathbf{y}_j^i), -\mathbf{y}_j^i)$. Hence, we have $\delta_{i,j} = \max(\min(\delta_{i,j}^{in}, t S^{in}(\mathbf{x}_j^i)), -S^{in}(\mathbf{x}_j^i))$.

Finally, we consider following cases when the neuron in DNN can be either activated or deactivated:

- Case 3-1&3-2 (UB($S^{in}(\tilde{\mathbf{x}}_j^i)$) ≤ 0 or LB($S^{in}(\tilde{\mathbf{x}}_j^i)$) $\geq t$): Similar to above, we have $\delta_{i,j} = -S(\mathbf{x}_j^i)$ or $t S(\mathbf{x}_j^i)$ directly.
- Case 3-3 (LB($S^{in}(\tilde{\mathbf{x}}_j^i)$) ≥ 0 and UB($S^{in}(\tilde{\mathbf{x}}_j^i)$) $\leq t$): $\Delta \mathbf{x}_j^i = \tilde{\mathbf{y}}_j^i \max(\mathbf{y}_j^i, 0) = \tilde{\mathbf{y}}_j^i + \min(-\mathbf{y}_j^i, 0) = \min(\tilde{\mathbf{y}}_j^i, \Delta)$. Then, we have $\delta_{i,j} = \min(S^{in}(\tilde{\mathbf{x}}_j^i), \delta_{i,j}^{in})$.
- Case 3-4 (LB($S^{in}(\tilde{\mathbf{x}}_j^i)$) < 0 and $0 \leq \text{UB}(S^{in}(\tilde{\mathbf{x}}_j^i)) \leq t$): We rewrite $\Delta \mathbf{x}$ as $\max(\tilde{\mathbf{y}}_j^i) \max(\mathbf{y}_j^i)$:

- If $\Delta \leq 0$, $\Delta \mathbf{x} = \max(\mathbf{y}_j^i + \Delta) \max(\mathbf{y}_j^i) \leq 0$. Then, we have $\Delta \mathbf{x} = 0$ when $\mathbf{y}_j^i \leq 0$, and $\Delta \mathbf{x} = \max(\mathbf{y}_j^i + \Delta, 0) \mathbf{y}_j^i = \max(\Delta, -\mathbf{y}_j^i) \leq 0$ when $\mathbf{y}_j^i \geq 0$. Therefore, we have $\max(\mathrm{LB}(\delta_{i,j}^{in}), -\mathrm{UB}(S^{in}(\mathbf{x}_j^i))) \leq \Delta \mathbf{x} \leq 0$
- If $\Delta \geq 0$, $\Delta \mathbf{x} = \max(\tilde{\mathbf{y}}_j^i) \max(\tilde{\mathbf{y}}_j^i \Delta) \geq 0$. Then, we have $\Delta \mathbf{x} = 0$ when $\tilde{\mathbf{y}}_j^i \leq 0$, and $\Delta \mathbf{x} = \tilde{\mathbf{y}}_j^i \max(\tilde{\mathbf{y}}_j^i \Delta, 0) = \tilde{\mathbf{y}}_j^i + \min(\Delta \tilde{\mathbf{y}}_j^i, 0) = \min(\Delta, \tilde{\mathbf{y}}_j^i) \geq 0$ when $\mathbf{y}_j^i \geq 0$. Therefore, we have $0 \leq \Delta \mathbf{x} \leq \min(\mathrm{UB}(\delta_{i,j}^{in}), \mathrm{UB}(S^{in}(\tilde{\mathbf{x}}_j^i)))$

Therefore, we have $LB(\delta_{i,j}) = 0$ if $LB(\delta_{i,j}^{in}) \ge 0$, and $\max(LB(\delta_{i,j}^{in}), -UB(S^{in}(\mathbf{x}_j^i)))$ otherwise. $UB(\delta_{i,j}) = 0$ if $UB(\delta_{i,j}^{in}) \le 0$, and $\min(UB(\delta_{i,j}^{in}), UB(S^{in}(\tilde{\mathbf{x}}_j^i)))$ otherwise.

- Case 3-5 $(0 \le LB(S^{in}(\tilde{\mathbf{x}}_j^i)) \le t \text{ and } UB(S^{in}(\tilde{\mathbf{x}}_j^i)) > t)$: We rewrite $\Delta \mathbf{x}$ as $\min(\tilde{\mathbf{y}}_j^i, t) \max(\mathbf{y}_j^i, 0)$. Then, $\Delta \mathbf{x} = t \max(\mathbf{y}_j^i, 0) = \min(t \mathbf{y}_j^i, t)$ when $\tilde{\mathbf{y}}_j^i \ge t$, and $\Delta \mathbf{x} = \tilde{\mathbf{y}}_j^i \max(\tilde{\mathbf{y}}_j^i \Delta, 0) = \tilde{\mathbf{y}}_j^i + \min(\Delta \tilde{\mathbf{y}}_j^i, 0) = \min(\Delta, \tilde{\mathbf{y}}_j^i)$ when $\tilde{\mathbf{y}}_j^i \le t$. Specifically, when $\tilde{\mathbf{y}}_j^i \ge t$:
 - If $\Delta \leq t$, then $\mathbf{y}_j^i = \tilde{\mathbf{y}}_j^i \Delta \geq 0$, and we will have $\Delta \mathbf{x} = t \mathbf{y}_j^i = t \tilde{\mathbf{y}}_j^i + \Delta \leq \Delta \leq t$;
 - If $\Delta \geq t$, then $\Delta \mathbf{x} = t \max(\mathbf{y}_i^i, 0) \leq t \leq \Delta$.

Then, $t-\mathrm{UB}(S^{in}(\mathbf{x}_j^i)) \leq \Delta \mathbf{x} \leq \{\Delta, t\}$ for $\tilde{\mathbf{y}}_j^i \leq t$, and $\min(\mathrm{LB}(\delta_{i,j}^{in}), \mathrm{LB}(S^{in}(\tilde{\mathbf{x}}_j^i))) \leq \Delta \mathbf{x} \leq \{\Delta, t\}$ for $\tilde{\mathbf{y}}_j^i \leq t$. Finally, $\mathrm{LB}(\delta_{i,j}) = \min(\mathrm{LB}(\delta_{i,j}^{in}), \mathrm{LB}(S^{in}(\tilde{\mathbf{x}}_j^i)), t - \mathrm{UB}(S^{in}(\mathbf{x}_j^i)))$ and $\mathrm{UB}(\delta_{i,j}) = \min(\mathrm{UB}(\delta_{i,j}^{in}), t)$.

- Case 3-6 (Otherwise):
 - If $\tilde{\mathbf{y}}_{j}^{i} < 0$, $UB(\delta_{i,j}) = 0$ by case 3-1.
 - If $\tilde{\mathbf{y}}_{j}^{i} \geq 0$, $UB(\delta_{i,j}) = \min(UB(\delta_{i,j}^{in}), t)$ by case 3-5.
 - If $\tilde{\mathbf{y}}_{i}^{i} \geq t$, LB $(\delta_{i,j}) = t \text{UB}(S^{in}(\mathbf{x}_{i}^{i}))$ by case 3-2;
 - If $\tilde{\mathbf{y}}_{j}^{i} \leq t$, LB($\delta_{i,j}$) = 0 if LB($\delta_{i,j}^{in}$) \geq 0, and max(LB($\delta_{i,j}^{in}$), -UB($S^{in}(\mathbf{x}_{j}^{i})$)) otherwise by case 3-4.

Then, we get the lower bound as

$$LB(\delta_{i,j}) = \min(t - UB(S^{in}(\mathbf{x}_i^i)), 0, \max(LB(\delta_{i,j}^{in}), -UB(S^{in}(\mathbf{x}_j^i)))),$$

and upper bound as

$$UB(\delta_{i,j}) = \max(\min(UB(\delta_{i,j}^{in}), t), 0) = \operatorname{clamp}(UB(\delta_{i,j}^{in}), 0, t).$$