NOTE ON POLYNOMIALS

KEISUKE HOSHINO

Notation 0.1. We employ the following notations.

- Sets are regarded as discrete categories, and categories are regarded as locally discrete 2-categories.
- **Set** is the large category of small sets.
- We write CUT for the huge 2-category of large categories.
- For each set S and a functor $X: S \longrightarrow \mathbf{Set}$, we write X_s for the image of $s \in S$ under X. Moreover, we write $(X_s)_{s:S}$ for X.
- For each set S and functors $X, Y: S \longrightarrow \mathbf{Set}$, a natural transformation $f: X \Longrightarrow Y$ is denoted as a family of functions $(f_s)_{s:S}$.
- We write 1 for the terminal set, and we write * for the unique element in 1.

1. POLYNOMIALS

Definition 1.1. We define a category **Poly** by the Grothendieck construction of the following 2-functor.

$$\mathbf{Set}^{\mathsf{op}} \xrightarrow{[-,\mathbf{Set}]^{\mathsf{op}}} \mathfrak{CMT}$$

A *polynomial* is an object in **Poly**. We write

$$(-)_{\circ} : \mathbf{Polv} \longrightarrow \mathbf{Set}$$

for the fibration corresponding to the 2-functor. For each polynomial A, we write $A = \sum_{a:A_o} y^{A_a}$. In particular, we mean by y the polynomial satisfying $(y)_o = 1$ and $(y)_* = 1$.

Definition 1.2. We define a category **Fam** by the Grothendieck construction of the following 2-functor.

$$\mathbf{Set}^{\mathsf{op}} \xrightarrow{\quad [-,\mathbf{Set}] \quad} \mathfrak{CAT}$$

Note that the fibration $Poly \longrightarrow Set$ is the fibrewise opposit of $Fam \longrightarrow Set$.

Definition 1.3. Consider the composite

where $\Delta \colon \mathbf{Set} \longrightarrow [S, \mathbf{Set}]$ in the former is the diagonal and the latter is the internal hom for [S, Set]. This is natural in $S \in \mathbf{Set}^{op}$ and induces a functor $\mathbf{Poly} \times \mathbf{Set} \longrightarrow \mathbf{Fam}$. We write $\mathbf{rep} \colon \mathbf{Poly} \longrightarrow [\mathbf{Set}, \mathbf{Set}]$ for the currying of the composite

$$\begin{array}{ccc} \mathbf{Poly} \times \mathbf{Set} & \longrightarrow \mathbf{Fam} & \stackrel{\Sigma}{\longrightarrow} \mathbf{Set} \\ & & & & & & & & \\ (A,S) & \longmapsto & \sum_{a:A_{\mathbf{o}}} \left[A_{p},S\right] \end{array}$$

where \sum is the coproduct (i.e., the left adjoint of the fibred terminal **Set** \longrightarrow **Fam**).

Proposition 1.4. rep is fully faithful.

Date: April 30, 2024.

Proof. Suppose we are given $P, Q \in \mathbf{Poly}$, a morphism $\alpha \colon \mathbf{rep}(P) \longrightarrow \mathbf{rep}(Q)$ in $[\mathbf{Set}, \mathbf{Set}]$, and $S \in \mathbf{Set}$. We have the following commutative square:

$$\begin{array}{ccc} \sum_{p \in P_{\mathrm{o}}}[P_{p},S] & \xrightarrow{\alpha_{S}} & \sum_{q \in Q_{\mathrm{o}}}[Q_{q},S] \\ & & & & \downarrow \operatorname{rep}(P)(!_{S}) \\ & & & & \downarrow \operatorname{rep}(Q)(!_{S}) \\ & & & & P_{\mathrm{o}} & \xrightarrow{\alpha_{1}} & Q_{\mathrm{o}} \end{array}$$

where the left and the right vertical arrows are projections. Therefore, we have a family of morphisms $[P_p,S] \longrightarrow [Q_{\alpha_1(p)},S]$ natural in $p \in P_o$ and $S \in \mathbf{Set}$. By applying the yoneda lemma, we obtain $Q_{\alpha_1(p)} \longrightarrow P_p$ for each $p \in P_o$, which induces a morphism $\bar{\alpha} \colon P \longrightarrow Q$ in **Poly**. One can readily check that $\bar{\alpha}$ is a unique morphism satisfying $\operatorname{rep}(\bar{\alpha}) = \alpha$.

Lemma 1.5. (The essential image of) rep is closed under the monoidal structure (\circ, id_{Set}) on [Set, Set].

Proof. $rep(y) \cong id_{Set}$ is trivial. It suffices to show rep is closed under \circ . Let A, B be polynomials. Let us define another polynomial $A \triangleleft B$ as follows.

$$(A \triangleleft B)_{o} = \sum_{a:A_{o}} [A_{a}, B_{o}]$$
$$(A \triangleleft B)_{a,t} = \sum_{u:A} B_{t(u)}$$

for any $a: A_o$ and $t: A_a \longrightarrow B_o$. Then, observe the following bijections.

$$\begin{split} \operatorname{rep}(A \triangleleft B)(S) &\cong \sum_{a:A_{\mathfrak{o}}} \sum_{t:[A_{a},B_{\mathfrak{o}}]} \left[\sum_{u:A_{a}} B_{t(u)}, S \right] \\ &\cong \sum_{a:A_{\mathfrak{o}}} \sum_{t:[A_{a},B_{\mathfrak{o}}]} \prod_{u:A_{a}} \left[B_{t(u)}, S \right] \\ &\cong \sum_{a:A_{\mathfrak{o}}} \prod_{u:A_{a}} \sum_{b:B_{\mathfrak{o}}} \left[B_{b}, S \right] \\ &\cong \sum_{a:A_{\mathfrak{o}}} \left[A_{a}, \sum_{b:B_{\mathfrak{o}}} \left[B_{b}, S \right] \right] \\ &= \operatorname{rep}(A)(\operatorname{rep}(B)(S)) \end{split}$$

The third bijection is the distributive law. Since these are natural in $S \in \mathbf{Set}$ this shows that $\mathbf{rep}(A \triangleleft B) \cong \mathbf{rep}(A) \circ \mathbf{rep}(B)$.

Proposition 1.6. Let V be a category and W be a monoidal category. Suppose there is a fully faithful functor $F \colon V \hookrightarrow W$ that is closed under the monoidal structure on W. Then there exists a monoidal structure on V that makes F strong monoidal, which is unique up to isomorphisms.

$$Proof.$$
 folklore

Proposition 1.7. (Poly, \triangleleft , y) is a monoidal category such that rep: Poly \longrightarrow ([Set, Set], \circ , id_{Set}) is a pseudo monoidal functor.

Proof. Follows from Lemma 1.5 and Propositions 1.4 and 1.6.

Remark 1.8. The functor $- \triangleleft -: \mathbf{Poly} \times \mathbf{Poly} \longrightarrow \mathbf{Poly}$ acts on morphisms as follows. Let $F: A \longrightarrow X, G: B \longrightarrow Y$ be morphisms in \mathbf{Poly} .

$$(F \triangleleft G)_{\mathbf{o}} \colon \sum_{a:A_{\mathbf{o}}} [A_a, B_{\mathbf{o}}] \longrightarrow \sum_{x:X_{\mathbf{o}}} [X_x, Y_{\mathbf{o}}] \colon (a, t) \mapsto (F_{\mathbf{o}}(a), F_a \circ t \circ G_{\mathbf{o}})$$

$$(F \triangleleft G)_{a,t} \colon \sum_{v:X_{F_{\mathbf{o}}(a)}} Y_{G_{\mathbf{o}}(t(F_a(v)))} \longrightarrow \sum_{u:A_a} B_{t(u)} \colon (v, r) \mapsto (F_a(v), G_{t(F_a(v))}(r))$$

Lemma 1.9. Poly \times Poly $\xrightarrow{\triangleleft}$ Poly restricts to a functor Poly \times Set $\xrightarrow{\triangleleft}$ Set and coincides with the uncurrying of rep.

Proof.

2. Double categories

By *double categories*, we mean psuedo ones.

Definition 2.1. A double category \mathbb{D} is a *company* if its tight arrows have companions. \mathbb{D} is an *opcompany* if \mathbb{D}^{hop} is a company. We say \mathbb{D} is an *equipment* if \mathbb{D} and \mathbb{D}^{hop} are companies.

Definition 2.2. (It is defined for arbitrary bvdc whose underlying sdc is a opcompany.) Let \mathbb{D} be an opcompany. Define another double category $\mathbb{R}\text{et}(\mathbb{D})$ as follows.

- The vertical category is the same as \mathbb{D} .
- A loose arrow is a loose arrow in \mathbb{D} .
- A cell

$$\begin{array}{ccc} A & \stackrel{p}{\longrightarrow} & B \\ f \downarrow & \alpha & \downarrow g & \text{in } \mathbb{R}\mathrm{et}(\mathbb{D}) \\ X & \stackrel{1}{\longrightarrow} & Y \end{array}$$

is a cell in \mathbb{D} of the following form.

$$\begin{array}{cccc} X & \stackrel{q}{\longrightarrow} Y & \stackrel{g^*}{\longrightarrow} B \\ \parallel & \alpha & \parallel \\ X & \stackrel{}{\longrightarrow} A & \stackrel{}{\longrightarrow} B \end{array}$$

- horizontal composite
- vertical composite

Proposition 2.3. The virtual double category of monoids in $\mathbb{R}et(\mathbb{D})^{\text{vop}}$ is representable if \mathbb{D} has local reflexive coequalizers.

Definition 2.4. Let \mathbb{D} be a double category with local reflexive coequalizers.

- We write $Mod(\mathbb{D})$ for the double category corresponding to the representable virtual double category of monoids in $Ret(\mathbb{D})$.
- We write $\operatorname{Mod_{co}}(\mathbb{D})$ for the vertical opposite of the double category corresponding to the representable virtual double category of monoids in $\operatorname{Ret}(\mathbb{D})^{\operatorname{vop}}$ obtained in Proposition 2.3.

Lemma 2.5. Let \mathbb{D} be a double category with local reflexive coequalizers. There is an isomorphism $\mathfrak{H}(\mathbb{M}_{od_{co}}(\mathbb{D})) \cong \mathfrak{H}(\mathbb{M}_{od}(\mathbb{D}))$. Where?

Definition 2.6.

References

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY