«Разработка программы для расчета электронной плотности молекул»

Дипломник: Фомина М.А.

Научный руководитель: Бажанов В.И.

## Электронная плотность в квантовой механике

Электронная плотность - плотность вероятности распределения электронов в системе.

$$\rho(x) = \left| \psi_A(x) \right|^2$$

$$\rho_1(x_1; x_1') = \sum_{R(3анятые)} \psi_R(x_1) \psi_R^*(x_1');$$

### Постановка задачи

Задача данной работы состоит в разработке программы, рассчитывающей электронную плотность молекулы. В результате будет получена таблица значений электронной плотности и координаты ядер молекулы  $CH_4$  (метана) в пространстве.



## Ход решения

Для решения задачи требуется провести следующие действия и расчеты:

1. вычислить волновые функции:

$$\chi_i(r_i) = A_i \sum_{k=1}^{N} c_{ik} \chi_{0k}(r_i)$$

| n | l | m          | $\alpha$ | $\chi_{0lmn}$                                                           |
|---|---|------------|----------|-------------------------------------------------------------------------|
| 1 | 0 | 0          | 士1-      | $\frac{1}{\sqrt{\pi}}e^{-r}$                                            |
| 2 | 0 | 0          | ±1       | $\frac{1}{2\sqrt{2}\pi}(1-\frac{r}{2})e^{-\frac{r}{2}}$                 |
| 2 | 1 | 0          | ±1       | $\frac{1}{4\sqrt{2\pi}}re^{-\frac{r}{2}}\cos\theta$                     |
| 2 | 1 | <b>‡</b> 1 | ±1       | $\frac{1}{8\sqrt{\pi}}re^{-\frac{r}{2}}\sin\theta e^{\mp\imath\varphi}$ |

## Ход решения

#### 2. вычислить гибридные орбитали:

$$te_{1} = \frac{1}{2}(s + p_{x} + p_{y} + p_{z}),$$

$$te_{2} = \frac{1}{2}(s + p_{x} - p_{y} - p_{z}),$$

$$te_{3} = \frac{1}{2}(s - p_{x} + p_{y} - p_{z}),$$

$$te_{4} = \frac{1}{2}(s - p_{x} - p_{y} + p_{z}).$$



#### 3. Вычислить электронную плотность атома углерода

$$\rho_C(x, y, z) = 2|\chi_{100}|^2 + |\chi_{te1}|^2 + |\chi_{te2}|^2 + |\chi_{te3}|^2 + |\chi_{te4}|^2$$

## Ход решения

4. Найти главные оси симметрии для каждой из орбиталей

$$te_i, i = 1, 2, 3, 4$$

- 5. Выполнить преобразование координат, совместив поочередно каждую орбиталь с осью Ох;
- 6. Вычислить координаты атомов водорода;
- 7. Вычислить МО для всех связей

$$\psi_{i1} = \psi_{i2} = \chi_{tei} + \chi_{100}, i = 1, 2, 3, 4$$

8. Вычислить электронную плотность молекулы метана

$$\rho_{CH_4}(x, y, z) = 2 \left| \chi_{100} \right|^2 + \sum_{i=1}^4 (\left| \psi_{i1} \right|^2 + \left| \psi_{i2} \right|^2)$$

# График зависимости электронной плотности от *r* на связи С-Н



## Метан. Молекулярная орбиталь



## Результаты

- Получена программа, рассчитывающая электронную плотность молекулы метана координаты атомов в пространстве
- Результаты могут могут быть использованы для определения типов химических связей, присутствующих в молекуле, получения графиков областей связи молекулярного облака для вычислений межмолекулярного взаимодействия, взаимодействия с адсорбентом и др.
- Программа может быть изменена, если потребуется рассмотреть другое приближение для волновой функции либо рассчитать электронную плотность другой молекулы.