PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-180468

(43) Date of publication of application: 12.07.1996

(51)Int.CI.

G11B 7/26

(21)Application number : 06-320394

(71)Applicant: RICOH CO LTD

(22)Date of filing:

22.12.1994

(72)Inventor: MASUZAWA MASAHIRO

(54) OPTICAL MASTER DISK

(57)Abstract:

PURPOSE: To precisely produce grooves and pits having varying depths by providing a middle layer between at least two layers of regists formed on a glass substrate and controlling the luminous exposure to the upper and lower layers by the material of the middle layers and the thickness of the films.

CONSTITUTION: A middle layer 3, which performs optical absorption, is provided between at least two layered regists 2 and 4, which are formed on a glass substrate 1 of an optical master disk. The absorption coefficient of the layer 3 against an exposure wavelength is made to be more than 1.0. By providing a middle layer which performs optical absorption and making the absorption coefficient of the refractive index of the layer against an exposure wavelength to be more than 1.0, the apparent sensitivities of the upper

LEGAL STATUS

[Date of request for examination]

and lower resists are controlled.

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

Searching PAJ Page 2 of 2

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-180468

(43)公開日 平成8年(1996)7月12日

(51) Int.Cl.*

識別記号

庁内整理番号

FΙ

技術表示箇所

G11B 7/26

501

7215-5D

審査請求 未請求 請求項の数9 OL (全 6 頁)

(21)出膜番号

特膜平6-320394

(22)出顧日

平成6年(1994)12月22日

(71)出廣人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72) 発明者 升澤 正弘

東京都大田区中馬込1丁目3番6号・株式

会社リコー内

(74)代理人 弁理士 樺山 亨 (外1名)

(54) 【発明の名称】 光ディスク原盤

(57)【要約】

【目的】ガラス基盤上に形成された少なくとも2層のレジスト間に中間層を設け、中間層の材料、膜厚により上下のレジスト層への露光量を制御し、深さの異なるグループ、ピットを精度良く作製することができる光ディスク原盤を提供する。

【構成】本発明の光ディスク原盤は、ガラス基盤1上に 形成された少なくとも2層のレジスト2,4間に、光吸 収を生じる中間層3を設け、その中間層3の露光波長に 対する吸収係数が1.0以上であることを特徴とする。

【効果】光吸収を生じる中間層を設け、その中間層の露光波長に対する屈折率の吸収係数を1.0以上にしているので、見かけ上の上下レジストの感度を制御することができる。

1

【特許請求の範囲】

【請求項1】ガラス基盤上に形成された少なくとも2層のレジスト間に、光吸収を生じる中間層を設け、その中間層の露光波長に対する吸収係数が1.0以上であることを特徴とする光ディスク原盤。

【請求項2】請求項1記載の光ディスク原盤において、中間層の上下のレジスト層に同じフォトレジストあるいは感度が同じフォトレジストを使用し、ガラス基盤上に形成された多層膜の露光波長に対する反射率が40~60%になるように中間層の材料及び膜厚を設定したこと 10を特徴とする光ディスク原盤。

【請求項3】請求項1記載の光ディスク原盤において、中間層の上下のレジスト層のうち、下層レジストの感度を上層レジストの感度より大きくし、ガラス基盤上に形成された多層膜の露光波長に対する反射率が60%以上になるように中間層の材料及び膜厚を設定したことを特徴とする光ディスク原盤。

【請求項4】請求項2記載の光ディスク原盤において、 露光波長に対する屈折率nの範囲が0.4~0.6、吸 収係数kの範囲が4.2~4.4となる物質を中間層に 20 使用し、そのときの中間層の膜厚を30~70Aとする ことを特徴とする光ディスク原盤。

【請求項5】請求項3記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が0.4~0.6、吸収係数kの範囲が4.2~4.4となる物質を中間層に使用し、そのときの中間層の膜厚を70人以上とすることを特徴とする光ディスク原盤。

【請求項6】請求項2記載の光ディスク原盤において、 露光波長に対する屈折率nの範囲が1.5~1.7、吸 収係数kの範囲が2.6~2.8となる物質を中間層に 30 使用し、そのときの中間層の膜厚を60~170Aとす ることを特徴とする光ディスク原盤。

【請求項7】請求項3記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が $1.5\sim1.7$ 、吸収係数kの範囲が $2.6\sim2.8$ となる物質を中間層に使用し、そのときの中間層の膜厚を170 A以上とすることを特徴とする光ディスク原盤。

【請求項8】請求項2記載の光ディスク原盤において、 露光波長に対する屈折率nの範囲が3.2~3.4、吸 収係数kの範囲が1.2~1.4となる物質を中間層に 40 使用し、そのときの中間層の膜厚を50~160Aとす ることを特徴とする光ディスク原盤。

【請求項9】請求項3記載の光ディスク原盤において、 露光波長に対する屈折率nの範囲が3.2~3.4、吸 収係数kの範囲が1.2~1.4となる物質を中間層に 使用し、そのときの中間層の膜厚を160A以上とする ととを特徴とする光ディスク原盤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、CD、CD-ROM、

CD-R、MOディスク等、光学的な情報記録媒体である光ディスクの製造に用いられる光ディスク原盤に関する。

[0002]

【従来の技術】光ディスクでは、同心円状または螺旋状 の案内溝 (グループ) 及び信号用ピットがアクリル樹脂 あるいはポリカーボネート樹脂等からなる透明基板上に 形成されているが、とのようなグループ及びピットから なる光ディスクバターンは、光ディスク原盤のガラス基 盤上に形成されたフォトレジスト層に原盤露光装置によ りレーザビームを露光してレーザカッティングを施し、 現像して形成している。そして、この光ディスク原盤に Niメッキ(あるいは蒸着)を施して光ディスクパター ンのネガ像が転写されたスタンパを作製し、このスタン バを原盤から剥離して光ディスク作製用の型として用 い、アクリル樹脂あるいはポリカーボネート樹脂等を材 料として射出成形等によって光ディスクパターンが転写 された透明基板を作製する。そして、この透明基板のパ ターン形成面にAl等の反射膜を蒸着した後、透明プラ スチックによる保護膜を設けるか、あるいは2枚のディ スクを合わせてサンドイッチ構造を形成すれば、所望の パターンを有する光ディスクが得られる。

[0003]

【発明が解決しようとする課題】一般に光ディスクのグループ及びピットの深さは、グループが入/8~入/4、ビットが入/4~入/2が適当とされている(入:再生波長)。従って、光ディスク作製用の光ディスク原盤も夫々対応したグループとピットを形成しておく必要がある。ピット深さはガラス基盤上に形成されたフォトレジスト層の厚さで決定されるが、グループ深さは露光パワーを弱くしてフォトレジスト層の底まで感光させずに形成しなければならない。このとき露光パワー変動にグループ深さが大きく依存し、またグループ形状の制御が難しい。

【0004】そこで、特開平2-29955号公報記載の技術では、ガラス基盤上に感度の異なるレジスト層を2層形成し、上層レジストを高感度、下層レジストを低感度とすることにより、弱い露光パワーで上層レジストの底まで感光させてグルーブとし、強い露光パワーで下層レジストの底まで感光させてビットを形成している。しかしながら、この方法では、下層レジストの上に上層レジストを形成する際、上層レジストに含まれている溶媒成分が下層レジストを溶解し、上下レジストの境界がはっきりせず、グルーブ深さにバラツキが発生するという問題がある。

【0005】とれに対し、特開平1-125742号公報、特開平2-49230号公報記載の技術では、光ディスク原盤の上下層のレジスト間にアルカリ可溶性金属あるいは酸可溶性金属からなる中間層を設けて境界をは50っきりさせている。そして、上層レジストを高感度、下

3

層レジストを低感度として、弱い露光パワーで上層レジストの底まで感光させてグループとし、強い露光パワーで下層レジストの底まで感光させてピットとし、上層レジストを現像してグループ及びピット部の上層レジストを除去した後、グループ及びピット部の中間層をアルカリ現像液で除去するか、あるいはエッチングにより中間層を除去し、さらに下層レジストを現像してピット部の下層レジストを除去して、所望の深さのグループ及びピットを形成している。しかしての場合、中間層を設けることにより必然的に下層レジストにおいて露光パワーが10不足して低感度となり、上層を高感度、下層を低感度にする理由がない。

[0006]本発明は上記事情に鑑みなされたものであって、ガラス基盤上に形成された少なくとも2層のレジスト間に中間層を設け、中間層の材料、膜厚により上下のレジスト層への露光量を制御し、深さの異なるグルーブ、ビットを精度良く作製することができる光ディスク原盤を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため、請求項1記載の光ディスク原盤は、ガラス基盤上に形成された少なくとも2層のレジスト間に、光吸収を生じる中間層を設け、その中間層の露光波長に対する吸収係数が1.0以上であることを特徴とする。

【0008】請求項2記載の光ディスク原盤は、請求項1記載の光ディスク原盤において、中間層の上下のレジスト層に同じフォトレジストあるいは感度が同じフォトレジストを使用し、ガラス基盤上に形成された多層膜の露光波長に対する反射率が40~60%になるように中間層の材料及び膜厚を設定したことを特徴とする。

【0009】請求項3記載の光ディスク原盤は、請求項1記載の光ディスク原盤において、中間層の上下のレジスト層のうち、下層レジストの感度を上層レジストの感度より大きくし、ガラス基盤上に形成された多層膜の露光波長に対する反射率が60%以上になるように中間層の材料及び膜厚を設定したことを特徴とする。

【0010】請求項4記載の光ディスク原盤は、請求項2記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が0.4~0.6、吸収係数kの範囲が4.2~4.4となる物質を中間層に使用し、そのとき40の中間層の膜厚を30~70Åとすることを特徴とする。

【0011】請求項5記載の光ディスク原盤は、請求項3記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が0.4~0.6、吸収係数kの範囲が4.2~4.4となる物質を中間層に使用し、そのときの中間層の膜厚を70A以上とすることを特徴とする。【0012】請求項6記載の光ディスク原盤は、請求項2記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が1.5~1.7、吸収係数kの範囲が

2.6~2.8となる物質を中間層に使用し、そのときの中間層の膜厚を6.0~1.70 Aとすることを特徴とする。

【0013】請求項7記載の光ディスク原盤は、請求項3記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が1.5~1.7、吸収係数kの範囲が2.6~2.8となる物質を中間層に使用し、そのときの中間層の膜厚を170点以上とすることを特徴とする。

【0014】請求項8記載の光ディスク原盤は、請求項2記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が $3.2\sim3.4$ 、吸収係数kの範囲が $1.2\sim1.4$ となる物質を中間層に使用し、そのときの中間層の膜厚を $50\sim160$ Aとすることを特徴とする。

【0015】請求項9記載の光ディスク原盤は、請求項3記載の光ディスク原盤において、露光波長に対する屈折率nの範囲が3.2~3.4、吸収係数kの範囲が1.2~1.4となる物質を中間層に使用し、そのときの中間層の膜厚を160A以上とすることを特徴とする。

[0016]

20

30

【作用】請求項1は、ガラス基盤上に形成された上下のレジスト層の感度をレジスト材料の性質以外の方法、すなわち中間層の材料、膜厚により制御するものであり、請求項2、3は、請求項1において、上下のレジストの感度の違いに対し、新規方法の範囲を規定するものであり、さらに請求項4~9は、請求項2、3において規定された範囲を示す材料及びその膜厚を規定したものである。すなわち、本発明の光ディスク原盤においては、中間層の材料、膜厚により上下レジストへの露光量を制御しており、また、適正な材料及び膜厚をガラス/レジスト/中間層/レジストという層構成からの反射光量を計算することにより規定している。これにより、深さの異なるグルーブ、ピットを有する光ディスク原盤を精度良く作製することができる。

[0017]

【実施例】以下、本発明の実施例を図面を参照して詳細に説明する。図1は本発明に係る光ディスク原盤の断面 20であり、この光ディスク原盤は、ガラス基盤1上に形成された2層のレジスト層(下層レジスト2、上層レジスト4)の間に、中間層3を設けたものである。図1のように2つのレジスト層2、4の間に中間層3がある場合、上層レジスト4は光吸収と熱吸収により露光され、下層レジスト4は中間層3が吸収した熱吸収がほとんどで、中間層3を透過した光による光吸収はわずかである。従って、下層レジスト2は上層レジスト4より露光パワーが不足し、従来技術のように下層レジスト2に低感度、上層レジスト4に高感度のものを使用すると、ピットを形成する際、かなり大きな露光パワーを必要と

し、図2の3のように、ピットの上層レジスト部分の形 状が崩れてしまう。また、中間層3の膜厚を薄くして、 下層レジスト2への光吸収を増加させようとする場合、 中間層3が薄いため膜形成が困難になり、また、上下の レジストの分離が弱くなる。以上のことより、下層レジ ストに低感度、上層レジストに高感度のものを使用する と作製が困難になる。

【0018】本発明の光ディスク原盤では、上下のレジ

スト層2, 4の間に光吸収を生じる中間層3を設け、そ の中間層3の材料、膜厚を適正に設定するので、従来の 10 ように上下のレジスト層の感度差だけで露光パワー (P.)が決定されるのではなく、中間層3の材料、膜厚 によっても上下レジスト層への見かけ上の感度差をつけ ることが可能なる。すなわち、上下レジスト層2、4の 感度及び中間層3の材料、膜厚を適正化することによ り、図2の①、②のように良好なグループとピットを形 成することができる。特に、中間層3の屈折率の露光波 長に対する吸収係数 k を 1. 0以上にすることによっ て、中間層3に適当な熱吸収が発生し、上層レジスト4 と下層レジスト2の見かけ上の感度差をつけやすくな る。

【0019】上層レジスト4と下層レジスト2に同じフ ォトレジストあるいは感度が同じフォトレジストを使用 した場合、ガラス基盤1上に形成された多層膜の露光波 長に対する膜全体の反射率が40~60%とすることに より、上層レジスト4と下層レジスト2に見かけ上の感 度差をつけることができ、深さの異なるグループとピッ トを良好に露光することができる。尚、膜全体の反射率 を60%以上にすると中間層3の透過が減少し、また熱 吸収も減少する。そのため、下層レジスト2の感度を上 30 層レジストの感度より大きくし、露光パワー不足を補う 必要がある。

【0020】中間層3の膜厚を変えることにより、上記 のような範囲に膜全体の反射率を設定することができ る。また、中間層3の材料により屈折率が異なるため、 膜厚も異なる。図3に中間層の材料としてアルミニウム (A1), ニッケル(Ni), クロム(Cr)を使用し たときの膜全体の反射率を計算によって求めた結果を示 す。尚、計算パラメータは、

露光波長:457.9nm,

レジストの屈折率: n = 1.65.

Alの屈折率: n = 0.49, 吸収係数: k = 4.3 2.

Niの屈折率: n=1.56, 吸収係数: k=2.6 8.

Crの屈折率: n = 3.28, 吸収係数: k = 1.3

である。図3に示す計算結果よりAl, Ni, Crを材 料とした中間層の膜厚を決定することができる。

後、現像あるいはエッチングにて除去できる。例えば、 A1はアルカリ可溶性なので、上層レジスト4の現像 後、続けて現像することにより除去できる。また、N i、Crは酸可溶性なので、上層レジスト4を現像して グループ及びピット部の上層レジスト4を除去後、エッ チングにより除去する。そして、現像あるいはエッチン グにより中間層3を除去した後、再び下層レジスト2に 対し現像を行い、ビット部の下層レジスト2を除去する ことにより、図2の**①**, ②のような良好な形状のグルー ブ及びピットが形成された光ディスク原盤が得られる。 【0022】中間層3に使用できる材料として、屈折率 の吸収係数が1. 0以上の物質を選ぶことが可能である が、酸、アルカリに反応しにくい材料、融点が低い材 料、屈折率が小さくかつ吸収係数が大きい材料は現実上 使用できない。すなわち、酸、アルカリに反応しにくい 材料は、エッチングや現像により中間層を除去すること が難しく、下層レジストの現像が不可能となる。とのよ うな材料としては、銅(Cu),銀(Ag),水銀(H g),金(Au),パラジウム(Pd)等、標準電極電 位が水素より大きい金属があげられる。また、融点が低 20 い材料は、弱い露光レーザに対しても融解してしまい、 中間層がなくなり、下層レジストを露光してしまう。そ の結果、上層レジストと下層レジストの感度差を制御す ることが困難になる。このような材料として、鉛(P b, 融点: 327.5℃), 錫(Sn. 融点:231. 9℃), カリウム(K, 融点:63.5℃), ナトリウ ム (Na, 融点: 97.81℃) 等がある。 【0023】屈折率が小さく、かつ吸収係数が大きい材

料は、請求項2あるいは請求項3の範囲内の反射率を示 す膜厚がかなり薄くなり、均一な成膜が不可能であり、 また、成膜が可能としても薄すぎて上下層のレジストの 分離が難しい。具体的にはマグネシウム (Mg) の場 合、屈折率n=0.57、吸収係数k=6.14(露光 波長付近)であり、反射率が40~60%となる膜厚を 計算すると20~40Aとなる。従って、Mg原子が数 個程度の膜厚であり、上下層のレジストを分離すること は難しい。このような材料としては、他にカルシウム (Ca(n=0.27, k=8.08))等がある。 【0024】上記に述べた理由により、中間層としてA

1, Ni, Crのうち何れか一つの金属が優れている。 尚、請求項4,5の屈折率、吸収係数の物質としてA1 があげられる。また、請求項6、7の屈折率、吸収係数 の物質としてNiがあげられる。また、請求項8,9の 屈折率、吸収係数の物質としてCrがあげられる。

【0025】次に、より具体的な実施例として、下記の 表1に示す実施例1~6で、計算により得られた膜厚を 持つ中間層を上下のレジスト層の間に有する光ディスク 原盤を作製した。高感度フォトレジストとして、東京応 化工業のOFPR-800、低感度フォトレジストとし 【0021】グループ及びピット部の中間層3は、露光 50 て、東京応化工業のTSMR-V3を使用した。表1に

* [0026] 各層の膜厚及びグルーブ、ピットが形成される露光パワ * 【表1】

ーP_eを示した。

	下層レシスト	中間層	上層レジスト	Pw(1/N-1)	Pw(221)
実施例1	OFPR800(1500 A)	A1 (50 A)	OFPR800(1400 A)	1.0mW	2. OmW
実施例2	OFPR800(1500 Å)	A1(100A)	TSUR-V3(1400A)	1.4mW	2.2mW
実施例3	OFPR800(1500 A)	Ni(100A)	OFPR800(1400A)	1. OmW	2.2mW
実施例4	OFPR800(1500 Å)	Ni (200 A)	TSMR-V3(1300 Å)	1.4mW	2.4mW
実施例5	OFPR800(1500A)	Cr(100 A)	OFPR800(1400A)	1.0mW	2.2mW
実施例6	OFPR800(1500 A)	Cr(200 Å)	TSMR-V3(1300A)	1.4mW	2.4m\
比較例1	TSMR-V3(1500 A)	A1 (50 Å)	OFPR800(1400 A)	1.0mW	3.5m₩

【0027】表1の実施例1~6では、どの場合も良好 な形状の深さの異なるグループとピットが得られた。ま た、比較例1として、下層レジストに低感度、上層レジ ストに高感度のものを使用した場合の結果を表1に示し た。この比較例1の場合、ピットを形成するには3.5 mWの露光パワーを必要とし、ピット形成不可能ではな いが、ピット形状が図2の3のようになり、良くなかっ 20 た。

【0028】尚、表1の実施例における光ディスク原盤 の作製方法の例として、実施例1と実施例6の光ディス ク原盤の作製方法を例にあげて説明する。

【0029】(実施例1)ガラス基盤を洗浄、及び、H MDS処理後、下層レジストとしてOFPR-800を スピンコートにより1500人の膜厚に形成し、90℃ で30分間オーブンで乾燥する。次に、中間層のAlを 真空蒸着により50人の膜厚に形成した。また、Alは イオンビームスパッタによっても形成できる。さらに上 層レジストとしてOFPR-800をスピンコートによ り1400点の膜厚に形成し、90℃で30分間オーブ ンで乾燥する。露光は、457.9nmの露光波長のレ ーザを用い、グルーブを1.0m♥、ピットを2.0m Wの露光パワーで行った。現像液には東京応化工業のD E-3を用いて、上下層レジストの現像及び中間層の除 去を同時に行った。このようにして、グループ深さ約1 500点、ピット深さ約3000点の光ディスク原盤を 得ることができた。

【0030】(実施例6)ガラス基盤を洗浄、及び、H MDS処理後、下層レジストとしてOFPR-800を スピンコートにより1500人の膜厚に形成し、90℃ で30分間オーブンで乾燥する。次に、中間層のCrを 真空蒸着により200人の膜厚に形成した。また、Cr はイオンビームスパッタによっても形成できる。さらに 上層レジストとしてTSMR-V3をスピンコートによ り1300人の膜厚に形成し、90℃で30分間オーブ ンで乾燥する。露光は、457.9nmの露光波長のレ ーザを用い、グループを1.4mW、ピットを2.4m Wの露光パワーで行った。現像液には東京応化工業のD

E-3を用いて、上層レジストを現像した。また、Cr のエッチングをNaOH+K, [Fe(CN),]のエッ チング液で行い、再びDE-3を用いて下層レジストを 現像した。とのようにして、グループ深さ約1500 A、ピット深さ約3000Aの光ディスク原盤を得ると とができた。

【0031】尚、その他の実施例2~5については説明 を省略するが、上記の実施例1あるいは実施例6の作製 方法と同様にして光ディスク原盤を作製することができ る。

[0032]

【発明の効果】以上説明したように、請求項1記載の光 ディスク原盤においては、光吸収を生じる中間層を設 け、その中間層の露光波長に対する屈折率の吸収係数を 1. 0以上にしているので、見かけ上の上下レジストの 感度を制御することができる。

【0033】請求項2記載の光ディスク原盤において は、上下レジストに同じフォトレジストあるいは感度が 同じフォトレジストを使用し、ガラス基盤上に形成され た多層膜の露光波長に対する反射率が40~60%にな るように中間層の材料、膜厚を設けることにより、見か け上では下層レジストの感度を上層レジストの感度より 小さくすることができる。

[0034]請求項3記載の光ディスク原盤において は、下層レジストの感度を上層レジストの感度より大き くし、その反面、ガラス基盤上に形成された多層膜の露 40 光波長に対する反射率が60%以上になるように中間層 の材料、膜厚を設けることにより、見かけ上では下層レ ジストの感度を上層レジストの感度より小さくすること ができる。

【0035】請求項4~9記載の光ディスク原盤におい ては、中間層の材料及び膜厚を規定することにより、請 求項2あるいは請求項3のような反射率の光ディスク原 盤を得ることができる。また、中間層にアルカリ可溶性 金属であるAlを使用することにより、現像液(アルカ リ) で中間層を除去することができ、光ディスク原盤の 50 作製プロセスが簡単になる。また、光学定数(屈折率)

9

の関係上、AIでは中間層が薄くなるが、Ni, Crを使用することにより中間層を厚くすることができ、中間層の厚さのバラツキ等を小さくでき、品質の良い中間層を得ることができる。

【図面の簡単な説明】

【図1】本発明に係る光ディスク原盤の断面図である。

【図2】光ディスク原盤に形成されるグルーブ及びピッ

トの例を示す断面図である。

【図3】中間層にアルミニウム(A1)、ニッケル(N*

*i)、クロム(Cr)を使用したときの中間層膜厚に対する膜全体の反射率を計算によって求めた結果を示すグラフである。

【符号の説明】

1:ガラス基盤

2:下層レジスト

3:中間層

4:上層レジスト

【図1】

【図2】

【図3】

