Rozellomycota species (excluding core microsporidia and metchnikovellids)	1	2	3	4	5	6	7	8	9	10
1. Nucleophaga amoebae JQ288099 (Corsaro et al. 2014a)										
2. Nucleophaga terricolae KX017226 (Corsaro et al. 2016)	0,0553									
3. Nucleophaga striatae MW890541 (Michel et al. 2021b)	0,0670	0,0455								
4. Nucleophaga amutiana PV883253	0,0346	0,0226	0,0423							
5. Paramicrosporidium saccamoebae JQ796369 (Corsaro et al. 2014b)	0,2250	0,2237	0,2308	0,2247						
6. Paramicrosporidium vannellae JQ796368 (Corsaro et al. 2014b)	0,2429	0,2379	0,2417	0,2389	0,0605					
7. Morellospora saccamoebae MN821072 (Corsaro et al. 2020)	0,2546	0,2516	0,2528	0,2556	0,2048	0,1690				
8. Morellospora lamprodermatis AB779691 (Yajima et al. 2013)	0,2468	0,2444	0,2523	0,2496	0,1571	0,1705	0,0312			
9. Mitosporidium daphniae MF278562 (Haag et al. 2014)	0,2425	0,2458	0,2501	0,2647	0,2482	0,1795	0,2070	0,1055		
10. Rozella allomycis AY635838 (James et al. 2006)	0,2322	0,2317	0,2283	0,2396	0,1528	0,1696	0,1405	0,1324	0,1582	
11. Rozella sp. KX354831 (Letcher et al. 2017)	0,2676	0,2588	0,2719	0,2775	0,1693	0,1908	0,1411	0,1399	0,1617	0,0842