Formulari de càlcul integral

El formulari consta de dues cares. Tot i així, la primera cara **no** correspon al contingut del parcial.

Assegura't que tens l'última versió el dia de l'examen!

Última modificació: 23:22, 24 d'octubre de 2018

ApuntsFME

• La convergència és lineal i associativa. Sèries geomètriques: $\sum_{n\geq 1} \alpha^n$ conv. sii $\alpha\in(-1,1)$, oscil·lant sii $\alpha=-1$, div. altrament.

1 Sèries n. positius

Dins aquest apartat les successions són totes de termes positius.

C. comp. dir.: $a_n \leq b_n \forall n \geq n_0 \implies$ $\overline{\sum_{n=n_0}^{\infty} a_n} \le \overline{\sum_{n=n_0}^{\infty} b_n} \implies (\sum b_n \text{ conv.})$ $\Longrightarrow \sum_{n=0}^{\infty} a_n \text{ conv.}$ i $(\sum_{n=0}^{\infty} a_n \text{ div.})$. C. comp. al límit: $\lim_{n \to \infty} \frac{a_n}{b_n} = l \in [0, +\infty]$. Si $\overline{l < \infty, \sum b_n \text{ conv.}} \Longrightarrow \sum a_n \text{ conv.. Si}$ $l > 0, \sum a_n \text{ conv.} \implies \sum b_n \text{ conv.}$ C. arrel Cauchy: (a_n) positiva i $\exists \lim a_n^{1/n} = \alpha \implies (\alpha > 1 \text{ div.}) \text{ i } (\alpha < 1)$ conv.). C. quo. Alambert: (a_n) estr. pos. i $\exists \lim \frac{a_{n+1}}{a_n} = \alpha \implies (\alpha > 1 \text{ div.}) \text{ i } (\alpha < 1 \text{ div.})$ conv.). <u>C. Raabe</u>: (a_n) estr. pos. i $\exists \lim n(1-\frac{a_{n+1}}{a_n})=L \implies (L>1 \text{ conv.}) i$ (L < 1 div.).C. Leibniz sèr. alt.: (a_n) decr. i $\lim a_n = 0$, llavors $\sum (-1)^n a_n$ és conv.. A més, $|s - s_N| < a_{n+1}.$ C. de la integral: $a_n = f(n), f \ge 0$ int. i $\frac{1}{\text{decreixent}}, \int_{M}^{\infty} f \text{ convergeix} \iff \sum a_k$ convergeix i $\sum_{M}^{\infty} = \sum_{M}^{N-1} + \int_{N}^{\infty} f + \varepsilon_{N}$, $\varepsilon_N \in [0, a_N].$ $\underline{\text{C. logaritmic:}} \lim_{n \to \infty} \frac{-\log a_n}{\log n} = L \implies (L > 1)$ conv.) i (L < 1 div.). C. condensació: a_n decreixent, $a_n \geq 0$, $\sum a_n$

2 Altres sèries

altrament.

• Sèrie cond. conv. \Longrightarrow podem reordenar per tal que $\sum = s \in [-\infty, +\infty]$. Sèrie alternada: un pos., un neg., ... C. Dirichlet: Si s_n d' (a_n) fitades i (b_n) decr., $\lim b_n = 0$, llavors $\sum a_n b_n$ convergeix.

convergent $\iff \sum 2^n a_{2^n}$ convergent.

<u>Sèrie Rie.</u>: $\sum_{n\geq 1} \frac{1}{n^p}$ és conv. sii p>1, div.

3 Sèries de potències

Radi de convergència: Màxim r t.q. $\sum a_n r^n$ és conv.

 $\begin{array}{l} \underline{\text{Domini de conv.:}} \ (-R,R), \text{ on } R \text{ \'es radi de} \\ \text{conv..} \ \acute{\text{Es possible que convergeixi als exterms.} \\ \underline{\text{T. Cauchy-Hadamard:}} \ \ \text{Sigui} \ \sum a_n x^n, R \text{ ve} \\ \hline \text{donada per } \frac{1}{R} = \lim\sup_{} \left|a_n\right|^{1/n}. \ \ \text{La s\'erie de} \\ \text{pot\`encies \'es abs. conv. si} \ |x| < R \text{ i div. si} \\ |x| > R. \ \ \text{Si} \ |x| = R \text{ no sabem res.} \\ \underline{\text{C\`alcul radi de conv.:}} \ \ \frac{1}{R} = \lim_{} \left|a_n\right|^{1/n} \text{ o} \\ \hline \frac{1}{R} = \lim_{} \left|\frac{a_{n+1}}{|a_n|}\right|. \end{array}$

4 Integrals impròpies

• La convergència d'integrals és lineal. C. Cauchy per a int. impròpies: $f: [a,b) \to \mathbb{R}$. $\int_a^b f$ és conv. $\iff \forall \varepsilon > 0, \exists c_0 \in [a,b) \text{ t. q. si } c_1, c_2 > c_0,$ llavors $\left| \int_{c_1}^{c_2} f \right| < \varepsilon$.

C. comp. dir.: $f, g : [a, b) \to \mathbb{R}$, f, g > 0, $f \le g$ localment integrables. Aleshores $\int_a^b f \le \int_a^b g$. Si la segona conv., la primera també. Si la primera div., la segona també.

C. comp. al límit: $f, g : [a, b) \to \mathbb{R}, f, g > 0$ localment integrables. Suposem $\exists \lim_{x \to b} \frac{f(x)}{g(x)} = l$. Si $l < \infty, \int_a^b g$ conv. $\Longrightarrow \int_a^b f$ conv.. Si

l > 0, $\int_a^b f$ conv. $\Longrightarrow \int_a^b g$ conv.. <u>C. Dirichlet</u>: $f, g : [a, b) \to \mathbb{R}$ localment integrables. Suposem $\exists M > 0$ t. q. si a < c < b, $\left| \int_a^c f(x) \, \mathrm{d}x \right| \le M$ i g decreixent amb $\lim_{r \to b} g = 0$. Aleshores $\int_a^b fg$ és conv..

5 Integrals a rectangles

Suma inf. del rect.:

 $m_R = \inf_{x \in R} f(x), s(f; \mathcal{P}) = \sum_R m_R \operatorname{vol}(R).$ Suma sup. del rect.:

 $\overline{M_R} = \sup_{x \in R} f(x), \ S(f; \mathcal{P}) = \sum_R M_R \operatorname{vol}(R).$ Si \mathcal{P}' més fina que \mathcal{P} :

 $\overline{s(f; \mathcal{P})} \le s(f; \mathcal{P}') \le S(f; \mathcal{P}') \le S(f; \mathcal{P}).$ • $\int_{\mathbb{R}} f = \sup_{\mathcal{P}} s(f; \mathcal{P}) \quad \overline{\int}_{\mathbb{R}} f = \inf_{\mathcal{P}} S(f; \mathcal{P})$

• $\int_A f = \sup_{\mathcal{P}} s(f; \mathcal{P}), \ \bar{\int}_A f = \inf_{\mathcal{P}} S(f; \mathcal{P}) \rightarrow$ si són iguals, f és integrable Riemann. <u>C. Riemann</u>: f int. Rie.

 $\iff \forall \varepsilon > 0, \exists \mathcal{P} \text{ t. q. } S(f; \mathcal{P}) - s(f; \mathcal{P}) < \varepsilon.$ • Integrabilitat Riemann és lineal.

Suma de Rie.: Siguin $\xi_k \in R_k$, la suma és $R(f; \mathcal{P}; \xi) = \sum_k f(\xi_k) \operatorname{vol}(R_k)$.

6 Mesura nul·la

<u>Mesura nul·la</u>: Recobert per numerables rectangles de mesura $< \varepsilon$, $\forall \varepsilon > 0$.

Contingut nul: Mesura nul·la amb un nombre finit de rectangles.

• Si un conjunt té un punt interior, no és de mesura nul·la.

Quadrat: volum: c^n , diàmetre: $c\sqrt{n}$ (a \mathbb{R}^n , on c costat).

• Sigui $z \subset \mathbb{R}^n$ mesura nul·la. $\forall \varepsilon, \exists$ família numerable de quadrats compactes Q_k t. q. $z \in \bigcup_k Q_k, \sum \operatorname{vol}(Q_k) < \varepsilon$.

• Sigui $f: U \to \mathbb{R}$ classe \mathscr{C}^1 o lipschitziana, $z \subset U$ mesura nul·la, llavors $f(z) \subset \mathbb{R}^n$ té mesura nul·la.

7 Teorema de Lebesgue

$$\begin{split} \bullet & \text{Sigui } X \text{ espai mètric, } f \colon X \to \mathbb{R}, \text{ l'oscil·lació} \\ \text{de } f \text{ sobre } E \subset X \text{ és el diàmetre de } f(E) \text{:} \\ \omega(f,E) &= \sup_{x,y \in E} \operatorname{d}(f(x),f(y)) \in [0,+\infty]. \\ \text{Finita} &\iff f_{|E} \text{ fitada, } 0 \iff f_{|E} \text{ constant.} \\ \underline{\text{Oscil·lació en }} a \in X \text{: } \omega(f,a) &= \\ \lim_{r \to 0} \omega(f,B(a;r)) &= \inf_{r > 0} \omega(f,B(a;r)). \end{split}$$

• f cont. en $a \iff \omega(f, a) = 0$. T. Lebesgue: Sigui $A \subset \mathbb{R}^n$ rectangle compacte, $f \colon A \to \mathbb{R}$ fitada. Llavors f és integrable Riemann \iff disc(f) és de mesura nul·la \iff contínua gairebé pertot.

8 Integral de Riemann

- \bullet $C\subset\mathbb{R}^n$ és admissible o mesurable Jordan si és fitat i ${\rm Fr}(C)$ té mesura nul·la.
- $\operatorname{Fr}(A \cup A'), \operatorname{Fr}(A \cap A'), \operatorname{Fr}(A \setminus A') \subseteq \operatorname{Fr}(A) \cup \operatorname{Fr}(A').$
- $\operatorname{Fr}(A \times B) = (\operatorname{Fr}(A) \times \overline{B}) \cup (\overline{A} \times \operatorname{Fr}(B)).$
- $A, A' \subset \mathbb{R}^n$ admissibles
- $\implies A \cup A', A \cap A', A \setminus A'$ admissibles.
- $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ admissibles $\Rightarrow A \times B \subset \mathbb{R}^{n+m}$ admissible.
- Els rectangles fitats i les boles euclidianes són admissibles.

Funció característica de $C \subset X$: (o indicatriu) $\chi_C \colon X \to \mathbb{R}, \chi_C(x) = 1$ si $x \in C$, val 0 altrament.

- χ no és contínua a $Fr(C) \Longrightarrow (C \text{ adm.}$ $\iff C \text{ fitat i } \forall R, \exists \int_{R} \chi_{C} \text{ t. q. } C \subset R).$
- $g: E \to \mathbb{R}, \tilde{g}: X \to \mathbb{R}(\tilde{g}(x) = 0, \forall x \notin E).$ Aleshores $\operatorname{disc}(g) \subseteq \operatorname{disc}(\tilde{g}) \subseteq \operatorname{disc}(g) \cup \operatorname{Fr}(E).$
- $f\chi_C$ integrable Rie. en R \iff disc(f) de mesura nul·la.

Pel T. Lebesgue: $C \subset \mathbb{R}^n$ admissible. $f \colon C \to \mathbb{R}$ és integrable Rie. \iff disc(f) mesura nul·la.

- \bullet Si Cadm., $\mathrm{vol}(C)=\int_C 1$ és la mesura (o contingut) de Jordan o volum (n-dimensional) de C.
- $C \subset \mathbb{R}^n$ té contingut nul $\iff C$ adm. i $\operatorname{vol}(C) = 0$.

9 Propietats de la int. de Rie.

• Sigui $E \subset \mathbb{R}^n$ mesurable Jordan, $\mathrm{Rie}(E) = \{f | f \text{ int. Rie. en } E\}$ és un \mathbb{R} -e.v. i $\mathrm{Rie}\colon E \to \mathbb{R}, \mathrm{Rie}(f) = \int_E f$ és una forma lineal positiva i monòtona.

T. valor mitjà per a integrals: Sigui E m.J., $f: E \to \mathbb{R}$ int. Rie.. $m \le f \le M \Longrightarrow m \operatorname{vol}(E) \le \int_E f \le M \operatorname{vol}(E)$.

- E m.J. connex, $f: E \to \mathbb{R}$ fitada i cont., $\exists x_0 \in E$ t. q. $\int_E f = f(x_0) \operatorname{vol}(E)$.
- E m.J., $f: E \to \mathbb{R}$ int. Rie., $h: f(E) \to \mathbb{R}$ cont., $h \circ f$ és int. Rie..
- \bullet f,h int. Rie. no implica $h\circ f$ int. Rie..
- f int. Rie. $\Longrightarrow |f|$ int. Rie. $i \left| \int_E f \right| \le \int_E |f|$.
- f, g int. Rie. $\implies f \times g$ int. Rie..
- Siguin $A, B \subset \mathbb{R}^n$ m.J. $f: A \cup B \to \mathbb{R}$ fitada. Si f és int. Rie. a A i B, aleshores ho és a $A \cap B$ i a $A \cup B$ i es compleix: $\int_{A \cup B} f = \int_A f + \int_B f - \int_{A \cap B} f.$
- $\begin{array}{l} \int_{A\cup B}f=\int_{A}f+\int_{B}f-\int_{A\cap B}f.\\ \bullet \ E \ \text{m.J.,} \ f\colon E\to\mathbb{R} \ \text{positiva i int. Rie.,}\\ \text{aleshores} \ \int_{E}f=0 \iff f \ \text{nul·la gaireb\'e}\\ \text{pertot.} \end{array}$
- Dues funcions int. i iguals gairebé pertot tenen la mateixa integral (tot i que canviar els valors en un conjunt de mesura nul·la pot destruir la integrabilitat).

10 Teorema de Fubini

 $\begin{array}{l} \underline{\mathrm{T.\ Fubini:}}\ A\subset\mathbb{R}^n, B\subset\mathbb{R}^m\ \mathrm{rect.\ comp.},\\ f\colon A\times B\to\mathbb{R}\ \mathrm{int.\ Rie..\ Sigui}\\ \Phi\colon A\to\mathbb{R}\ \mathrm{t.\,q.\ }\int_B f(x,)\le \Phi(x)\le \bar{\int}_B f(x,).\\ \mathrm{Aleshores}\ \Phi\ \mathrm{int.\ Rie.\ i}\\ \int_{A\times B} f=\int_A \Phi,\ (A\leftrightarrow B\ \mathrm{tamb\'e}).\\ \bullet\ x\in A\ \mathrm{t.\,q.}\ f(x,)\ \mathrm{no\ int.\ Rie.\ t\'e\ mesura} \end{array}$

- $x \in A$ t.q. f(x) no int. Rie. tê mesura nul·la.
- $\begin{array}{l} \bullet \ D \subset X, f \colon D \to \mathbb{R} \ \text{cont.}, \\ E = \big\{ (x,y) \in X \times \mathbb{R} | x \in D, y \geq f(x) \big\}, \ \text{llavors} \\ (D \subset X \ \text{tancat} \implies E \subset X \times \mathbb{R} \ \text{tancat}) \ \text{i} \\ (\text{Fr}(E) \subset \operatorname{graf}(f) \cup (\text{Fr}(D) \times \mathbb{R})). \end{array}$
- $D \subset \mathbb{R}^{n-1}$ comp., m.J., $\varphi, \psi \colon D \to \mathbb{R}$ cont. t.q. $\varphi \leq \psi$, $E = \{(x,y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x \in D, \varphi(x) \leq y \leq \psi(x)\} \subset \mathbb{R}^n$ és compacte i m.J.. (Si $f \colon E \to \mathbb{R}$, $\int_E f = \int_D \mathrm{d}x \int_{\varphi(x)}^{\psi(x)} \mathrm{d}y \, f(x,y)$).

Regió elemental: A \mathbb{R} és un interval compacte. Si no és de la forma $\{(x,y)\in\mathbb{R}^{n-1}\times\mathbb{R}|x\in D,$ $\phi(x)\leq y\leq \psi(x)\}$, on $D\subset\mathbb{R}^{n-1}$ és regió elemental i $\phi\leq \psi\colon D\to\mathbb{R}$ contínues.

11 Canvi de variables

• Sigui $V \subset \mathbb{R}^n$ obert, $\varphi \colon V \to \mathbb{R}^n$ injectiva, classe \mathscr{C}^1 amb det $\mathrm{d}\varphi(y) \neq 0, \forall y \in V$. Sigui $U = \varphi(V)(\varphi \colon V \to U \text{ difeo. classe } \mathscr{C}^1)$. Si $f \colon U \to \mathbb{R}$ int., $\int_U f = \int_V (f \circ \varphi) |\det \mathrm{d}\varphi|$.

11.1 Alguns canvis de variables Polars a \mathbb{R}^2 :

 $\overline{\int_{U} f(x,y) \, \mathrm{d}x \, \mathrm{d}y} = \int_{V} f(r\cos\varphi, r\sin\varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi.$ $\underline{\text{Cil\'indriques a } \mathbb{R}^{3}} : \int_{U} f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z =$ $\overline{\int_{V} f(\rho\cos\varphi, \rho\sin\varphi, z) \rho \, \mathrm{d}\rho \, \mathrm{d}\varphi \, \mathrm{d}z.}$ $\underline{\text{Esf\`eriques a } \mathbb{R}^{3}} : \int_{U} f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z =$ $\overline{\int_{V} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)}$ $r^{2} \sin\theta \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}\theta.$

12 Integrals impròpies

Exhaustió: $E \subset \mathbb{R}^n$. (E_i) m.J tals que $E_i \subset E$, $E_i \subset E_{i+1}$, $\bigcup E_i = E$

Integral de Riemann impròpia: Sigui (E_i) exhaustió, és $\int_E f := \lim_i \int_{E_i} f$ (suposant que no depengui de l'exhaustió).

- Si E m.J., (E_i) exh., $\lim_i \text{vol}(E_i) = \text{vol}(E)$, i si $f \colon E \to \mathbb{R}$ int. Rie., f és int. Rie. a cada E_i i int. Rie. coincideix amb la int. impròpia.
- Siguin $E \subset \mathbb{R}^n, f \colon E \to \mathbb{R}, f \geq 0$, llavors $\lim_i \int_{E_i} f$ no depèn de l'exh. considerada. Lema ceba: Sigui $U \subset \mathbb{R}^n$ obert no buit, $\exists (V_i)$ de conj. oberts m.J., $\overline{V}_i \subset U$ t.q. \overline{V}_i és compacte, $\overline{V}_i \subset V_{i+1}, \bigcup_i V_i = U$.

13 Camins i long. de corba

Longitud d'una poligonal:

 $L(\gamma, \mathcal{P}) = \sum_{i=0}^{N} ||\gamma(t_i) - \gamma(t_{i-1})||.$ Longitud d'una corba:

 $\frac{L(\gamma) = \sup_{\mathcal{P}} L(\gamma, \mathcal{P})}{L(\gamma)} \in [0, +\infty].$

Camí rectificable: Si longitud és finita.

Additivitat camí: $a < c < b \implies$

 $L(\gamma) = L(\gamma_{|[a,c]}) + L(\gamma_{|[c,b]}).$

- Sigui $\gamma \colon [a,b] \to \mathbb{R}, l(a) = 0$ i $l(t) = L(\gamma_{|[a,t]}), a < t \le b, l \colon [a,b] \to \mathbb{R}$ és creixent i continua.
- Si $\vec{f} : E \to \mathbb{R}^n$ int., $||\vec{f}||$ també (norma euclidiana).
- $\gamma \colon I \to \mathbb{R}^n$ classe $\mathscr{C}^1 \implies$ rectificable i

 $L(\gamma) = \int_I \|\gamma'\|.$

14 Integrals de línia

Int. de línia f. escalars: $\int_C f \, \mathrm{d}l = \int_\sigma f \, \mathrm{d}l := \int_I f(\sigma(s)) \|\sigma'(s)\| \, \mathrm{d}s.$ Int. de línia c. vectorials: (o circulació) $\int_\sigma \vec{f} \, \mathrm{d}\vec{l} = \int_I \vec{f}(\sigma(s)) \cdot \sigma'(s) \, \mathrm{d}s.$ $\underline{\tau} \; \mathrm{i} \; \sigma \; \mathrm{equivalents:} \; \int_\tau \vec{f} \, \mathrm{d}\vec{l} = \pm \int_\sigma \vec{f} \, \mathrm{d}\vec{l}, \; \mathrm{signe} \; \mathrm{\acute{e}s}$ el de φ' .

Vector tangent a parametrització:

 $\overline{\vec{t}(\sigma(s)) = \frac{\sigma'(s)}{\|\sigma'(s)\|}}.$

Component tangencial: $f_t = \vec{f} \cdot \vec{t}$.

• $\int_C \vec{f} \, d\vec{l} = \int_C f_t \, dl$.

15 Integrals de superfície

Vectors tangents: $\sigma \colon U \subset \mathbb{R}^2 \to \mathbb{R}^n$, $\vec{J}_{\sigma} = (\vec{T}_1 \ \vec{T}_2)$.

Int. de superfície f. escalars: $\sigma \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\int_{\sigma} f \, \mathrm{d}S = \int_{U} f(\sigma(\omega)) \|\vec{T_1} \times \vec{T_2}\| \, \mathrm{d}\omega_1 \, \mathrm{d}\omega_2.$ Int. de superfície c. vectorials: (o flux a través de σ) $\sigma \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$,

 $\int_{\sigma} \vec{f} \, d\vec{S} := \int_{U} \vec{f}(\sigma(u)) \cdot (\vec{T}_{1} \times \vec{T}_{2}) \, du_{1} \, du_{2}.$ $\underline{\sigma \text{ difeo.:}} \quad \int_{\tilde{\sigma}} \vec{f} \, d\vec{S} = \pm \int_{\sigma} \vec{f} \, d\vec{S}, \text{ signe de det } J_{\sigma}.$ Vector normal a sup.: $\vec{n}(\sigma(u)) = \frac{\vec{T}_{1} \times \vec{T}_{2}}{\|\vec{T}_{1} \times \vec{T}_{2}\|}.$

Component normal: $f_n = \vec{f} \cdot \vec{n}$.

 $\overline{\bullet \int_M \vec{f} \, d\vec{S}} = \int_M f_n \, dS.$

16 Operadors dif. a \mathbb{R}^3

<u>Gradient</u>: grad $f := \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$.

 $\begin{array}{l} \underline{\text{Rotacional:}} \ \text{rot} \ \vec{F} := \\ (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}) \hat{i} + (\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}) \hat{j} + (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}) \hat{k}. \\ \underline{\text{Divergència:}} \ \text{div} \ \vec{F} := \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial x} + \frac{\partial F_3}{\partial z}. \end{array}$

Regles de Leibniz:

- $\bullet \operatorname{grad}(fq) = f \operatorname{grad} q + q \operatorname{grad} f$
- $\operatorname{rot}(f\vec{G}) = f \operatorname{rot} \vec{G} + \operatorname{grad} f \times \vec{G}$,
- $\operatorname{div}(f\vec{G}) = f \operatorname{div} \vec{G} + \operatorname{grad} f \cdot \vec{G}$.
- $\operatorname{div}(\vec{F} \times \vec{G}) = \vec{G} \cdot \operatorname{rot} \vec{F} \vec{F} \cdot \operatorname{rot} \vec{G}$.

T. Schwarz:

 $f, \vec{F} \in \mathscr{C}^2 \implies \operatorname{rot}(\operatorname{grad} f) = 0, \operatorname{div}(\operatorname{rot} \vec{F}) = 0.$

Camp conservatiu: $\vec{F} = \text{grad } f$.

Camp irrotacional: rot $\vec{F} = 0$.

Camp solenoidal: $\vec{G} = \operatorname{rot} \vec{F}$.

Camp sense div.: $\operatorname{div} \vec{G} = 0$.

Laplacià: $\Delta f := \operatorname{div}(\operatorname{grad} f),$ $\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$

17 Fórmules int. camps

 $\begin{array}{l} \underline{\mathrm{T.\ fon.\ calcul}}\colon (\mathrm{o\ gradient})\ W\subseteq \mathbb{R}^n\ \mathrm{obert},\\ f\colon W\to \mathbb{R}\ \mathrm{classe}\ \mathscr{C}^1.\ C\ \mathrm{corba\ regular}\\ \mathrm{orientada\ classe}\ \mathscr{C}^1,\ \mathrm{t.\ q.}\ \bar{C}\subset W\ \mathrm{compacte}\\ \Longrightarrow \int_{C}\mathrm{grad}\ f\ \mathrm{d}\vec{l}=\int_{\partial C}f=\\ f(x_1)-f(x_0),\partial C=\{x_0,x_1\}\ (\mathrm{orientada}\\ x_0\to x_1).\ \partial C=\varnothing\Longrightarrow\int_{\partial C}f=0.\\ \underline{\mathrm{T.\ Kelvin\text{-}Stokes}}\colon (\mathrm{o\ rotacional})\ W\subseteq \mathbb{R}^3\\ \mathrm{obert},\ \vec{F}\colon W\to \mathbb{R}^3\ \mathrm{classe}\ \mathscr{C}^1,\ M\subset W\\ \mathrm{superficie\ orientada\ classe}\ \mathscr{C}^2\ \mathrm{t.\ q.\ }\bar{M}\\ \mathrm{compacte},\ \bar{M}\subset W,\partial M^*\\ \Longrightarrow \int_{M}\mathrm{rot}\ \vec{F}\cdot \mathrm{d}\vec{S}=\int_{\partial M}\vec{F}\cdot \mathrm{d}\vec{l}.\\ \underline{\mathrm{T.\ Gauss\text{-}Ostrogradski:}}\ (\mathrm{o\ divergencia})\\ \overline{W}\subset \mathbb{R}^3\ \mathrm{obert},\ \vec{F}\colon W\to \mathbb{R}^3\ \mathrm{classe}\ \mathscr{C}^1,\ B\subset W\\ \mathrm{obert\ t.q.\ }\bar{B}\ \mathrm{compacte},\ \bar{B}\subset W,\partial B^*\\ \Longrightarrow \int_{B}\mathrm{div}\ \vec{F}\,\mathrm{d}V=\int_{\partial B}\vec{F}\cdot \mathrm{d}\vec{S}. \end{array}$

18 Potencials

 $\begin{array}{l} \underline{\text{Potencial escalar: }f} \text{ \'es el pot. esc. de} \\ \vec{F} \iff \operatorname{grad} f = \vec{F}. \\ \underline{\text{Propietats: }}U \subseteq \mathbb{R}^3 \text{ obert connex, } \vec{F} \colon U \to \mathbb{R}^3 \\ \overline{\text{classe } \mathscr{C}^1,} \text{ s\'en equivalents:} \end{array}$

- \vec{F} conservatiu.
- $p_0, p_1 \in U, C \subset U$ corba orientada t.q. $\partial U = \{p_0, p_1\}$, circulación $\int_C \vec{F} \, d\vec{l} = f(p_0, p_1)$,
- $\forall C \subset U$ corba tancada, $\oint_C \vec{F} \, d\vec{l} = 0$.
- $U \subset \mathbb{R}^3$ obert simplement connex (def. apunts profe) i $\vec{F} : U \to \mathbb{R}^3$ classe \mathscr{C}^1 irrotacional $\Longrightarrow \vec{F}$ conservatiu.

 T. Green: $U \subseteq \mathbb{R}^2$ obert, $\vec{F} : U \to \mathbb{R}^2$ classe \mathscr{C}^1 , $M \subset U$ obert t.q. $\vec{M} \subset U$ compacte, ∂M^* $\Longrightarrow \int_M (\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial M} \vec{F} \cdot \mathrm{d}\vec{l}$.

19 Tema 5

- $(f dx^I) \wedge (g dx^J) = fg dx^I \wedge dx^J$.
- $\alpha \wedge \beta = (-1)^{|\alpha||\beta|} \beta \wedge \alpha$.
- $f \in \mathscr{C}^{\infty}(\mathbb{R}^n) = \Omega^0(\mathbb{R}^n)$, podem construir $\mathrm{d} f := \sum_{i=1}^n \frac{\partial f}{\partial x^i} \, \mathrm{d} x^i \in \Omega^1(\mathbb{R}^n)$.

<u>Diferencial exterior</u>: Aplicació lineal, $d(f dx^I) = df \wedge dx^I$.

- $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d\beta$.
- $\bullet \ d \circ d = 0.$

<u>Tancada</u>: α tancada \iff $d\alpha = 0$. Exacta: β exacta \iff $\exists \alpha$ t. q. $\beta = d\alpha$.

 \bullet Exacta \Longrightarrow tancada.

Lema Poincaré: En \mathbb{R}^n , α tancada i $|\alpha| \geq 1 \implies \alpha$ exacta.

<u>Pullback</u>: $F: \mathbb{R}^m \to \mathbb{R}^n$ classe \mathscr{C}^{∞} ,

 $g \in \mathscr{C}^{\infty}(\mathbb{R}^n)$, el pullback és $F^*(g) := g \circ F \in \mathscr{C}^{\infty} : \mathbb{R}^m \to \mathbb{R}, F^*$ és \mathbb{R} -lineal, $F^*(g \, \mathrm{d} y^{i_1} \wedge \cdots \wedge \mathrm{d} y^{i_k}) := F^*(g) \, \mathrm{d} F^*(y^{i_1}) \wedge \cdots \wedge \mathrm{d} F^*(y^{i_k}).$ • $F^*(\alpha \wedge \beta) = F^*(\alpha) \wedge F^*(\beta).$ • $F^*(\mathrm{d} x) = \mathrm{d} F^*(x).$

Integral de ω al llarg de σ : $\omega \in \Omega^k(\mathbb{R}^n), \ \sigma \colon D \subseteq \mathbb{R}^k \to \mathbb{R}^n, \implies \int_{\sigma} \omega := \int_{D} \sigma^*(\omega).$

<u>T. Stokes</u>: M varietat amb vora, orientada i dim $M=m, \ \omega \in \Omega^{m-1}(M)$ de suport compacte i ∂M té orientació induïda $\Longrightarrow \int_M \mathrm{d}\omega = \int_{\partial M} \omega$.

20.1 Altres. Volums n-dimensionals

Esfera: $S = 4\pi r^2$, $V = \frac{4}{3}\pi r^3$. Piràmide: $V = \frac{1}{3}bh$.

Con: $A = \pi r \sqrt{r^2 + h^2} + \pi r^2$.

Casquet esfèric: $A = 2\pi Rh$,

 $V = \frac{1}{3}\pi h^2 (3R - h).$ Parametrització el·lipse: $(\frac{x}{a})^2 + (\frac{y}{b})^2 = c^2 \implies \theta \mapsto c \cdot (a\cos(\theta), b\sin(\theta)).$

20.2 Altres. Integrals

- $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ conv. $\iff \alpha > 1$ i és $\frac{1}{\alpha 1}$.
- $\int_0^1 \frac{1}{x^{\alpha}} dx$ conv. $\iff \alpha < 1$ i és $\frac{1}{1-\alpha}$.
- $\int_0^{+\infty} e^{-\alpha t} dt$ conv. $\iff \alpha > 0$ i és $\frac{1}{\alpha}$.
- $\int \sqrt{1-x^2} = \frac{1}{2}(\arcsin(x) + x\sqrt{1-x^2}) + C.$

20.3 Altres. Taylor

- $\bullet e^x = \sum_{n>0} \frac{x^n}{n!}.$
- $\cos x = \sum_{n\geq 0} (-1)^n \frac{x^{2n}}{(2n)!}$.
- $\bullet \sin x = \sum_{n \ge 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$
- $\bullet \log(1+x) = \sum_{n>1} (-1)^{n+1} \frac{x^n}{n}$.
- $\bullet (1+x)^p = \sum_{n\geq 0} {p \choose n} x^n.$
- $\bullet (1+x)^{-1} = \sum_{n>0}^{\infty} (-1)^n x^n.$

20.4 Altres. Trigonometria

- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$.
- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$.
- $\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}).$
- $\bullet \cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}).$

* amb orientació induïda (interior a l'esquerra) i punts frontera de M regulars o conjunt de punts frontera singulars és finit.

Nom: