

Semi-Weakly-Supervised Learning of Complex Actions from Instructional Task Videos

Yuhan Shen Khoury College of Computer Sciences Northeastern University

Ehsan Elhamifar Khoury College of Computer Sciences Northeastern University

Action Segmentation

Goal: action segmentation in instructional task videos

Prior Work

• Fully Supervised [Kuehne et al'16, Lea et al'17, GoelBrunskill'19, Singh et al'19, Farha'19]: framewise annotation; costly

Weakly-Supervised [Bojanowski et al'14, Ding-Xu'18, Chang et al'19, Li et al'19, Fayyaz-Gall'20, Souri et al'21, Lu-Elhamifar'21]: an ordered or unordered list of actions in each video;

Transcript: Take Cup \rightarrow Pour Coffee \rightarrow Pour Sugar \rightarrow Pour Milk

• **Unsupervised** [Alayrac et al'16, Sener-Yao'18, Elhamifar-Naing'19, Kukleva et al'19, Shen et al'21]: **no action-level annotation**; **task label** for each video;

limited performance

Task Label: Make Coffee

Contribution

- Semi-Weakly Supervised Learning (SWSL) of complex actions
 - Weakly-labeled videos (small) and unlabeled videos (large)
 - Unlabeled videos have task labels
- Observation: transcripts within the same task usually have a small distance
 - Missing actions
 - Adjacent actions are swapped

Proposed Approach

• L_{weak} : apply weakly-supervised action segmentation methods on weakly-labeled videos

Proposed Approach

- Flexible Transcript Prediction: predict the transcript of unlabeled videos
- Soft Restricted Edit Loss (L_{sre}) : encourage a small distance between transcripts of the same task

Proposed Approach

 Self training: iteratively generate pseudo-transcripts for unlabeled videos in the order of confidence

Soft Restricted Edit Loss

- Motivated by Restricted Edit Distance
- Allow insertion, deletion, substitution, and adjacent transposition
- Consider two words: "parse" and "eraser"

		e	r	a	S	e	r
	0	1	2	3	4	5	6
p	1	1	2	3	4	5	6
a	2	2	2	2	3	4	5
r	3	3	2	2	3	4	4
S	4	4	3	3	2	3	4
e	5	4	4	4	3	2	3

Edit Distance: 4

Restricted Edit Distance: 3

Soft Restricted Edit Loss

- Dynamic programming for Restricted Edit Distance
- Make it differentiable:
 - Replace indicator function with a continuous distance function
 - Replace minimum operation with soft minimum

$$e_{i,j} = \min \begin{cases} e_{i-1,j} + 1 & \text{(deletion)} \\ e_{i,j-1} + 1 & \text{(insertion)} \\ e_{i-1,j-1} + 1 & \textbf{(} \boldsymbol{x}_{i-1} \neq \boldsymbol{y}_{j-1} \text{)} & \text{(substitution)} \\ e_{i-2,j-2} + 1 & \text{(if } (\boldsymbol{x}_{i-2} = \boldsymbol{y}_{j-1}, \boldsymbol{x}_{i-1} = \boldsymbol{y}_{j-2}) & \text{(transposition)} \end{cases}$$

$$e_{i,j} = \min_{\beta} \begin{cases} e_{i-1,j} + c_D, \\ e_{i,j-1} + c_I, \\ e_{i-1,j-1} + \delta_{i-1,j-1}, \\ e_{i-2,j-2} + \delta_{i-2,j-1} + \delta_{i-1,j-2} + c_T \ (\forall i, j \ge 3), \end{cases}$$

$$\min_{\beta} (a_1, a_2, \dots) = -\beta \log \sum_{k} e^{-\frac{a_k}{\beta}}$$

- Datasets: Breakfast (Kuehne et al. CVPR'14) and CrossTask (Zhukov et al. CVPR'19)
- Methods: MuCon (Souri et al. TPAMI'21) and CDFL (Li et al. ICCV'19)
- Improve performance by a large margin, especially in the case of limited labeled data

			MuCon				CDFL					
	WP UP	Breakfast		CrossTask		Breakfast		CrossTask				
			MoF	IoU	MoF	IoU	F1	MoF	IoU	MoF	IoU	F1
WSL	1%	0	11.0	13.5	38.2	14.6	2.6	10.9	16.9	20.7	8.6	3.0
SWSL+Self	1%	99%	25.0	29.8	48.1	17.9	8.9	32.4	29.5	21.8	9.2	9.9
WSL	2%	0	12.9	14.8	44.0	15.8	5.3	10.9	17.4	20.5	8.6	5.3
SWSL+Self	2%	98%	26.7	30.6	44.6	17.8	11.3	35.4	30.0	21.4	9.1	10.1
WSL	5%	0	23.1	25.8	42.3	16.1	8.3	13.4	19.7	20.4	8.7	5.1
SWSL+Self	5%	95%	32.5	31.7	50.6	18.3	11.5	39.6	31.3	22.6	9.1	11.3
WSL	10%	0	28.0	28.8	42.1	16.7	9.9	20.4	20.9	23.2	9.0	7.8
SWSL+Self	10%	90%	36.3	33.4	49.0	18.0	12.1	40.4	32.4	24.0	9.3	11.7
WSL	20%	0	35.2	33.4	44.4	17.7	11.0	31.7	26.4	23.6	9.0	8.1
SWSL+Self	20%	80%	39.8	36.1	54.5	19.3	11.8	43.5	33.0	24.8	9.0	13.2
WSL	100%	0	48.5^{\dagger}	39.1*	48.4*	21.0*	16.7*	50.2 [†]	35.9*	31.5*	13.2*	18.8*

Ablation studies: both self-training and SRE loss improve performance

- Effects of SRE Loss: predict more accurate transcripts
- Comparison between SRE Loss and SE Loss (without adjacent transposition): more flexible transcripts, higher performance

Training Progress: performance gain after each update

SWSL+Self (Proposed)

SWSL (w/o self training)

Thanks!