Localization EKF

Yi-Chen Zhang

December 28, 2023

1 State representation x and motion input u

Let x and y represent positions in the x- and y-directions, respectively. The variables θ , ν , ω , and α denote the yaw angle, linear velocity, yaw angle rate, and linear acceleration, respectively. The target state x is defined as:

$$\boldsymbol{x} = [x, y, \theta, \nu, \omega, \alpha]^T$$

The motion input is defined as:

$$\boldsymbol{u} = [\omega, \alpha]^T$$

2 The measurement z

Suppose we have a GPS sensor and IMU sensor. The GPS sensor provides the longitudinal position x and lateral position y. The IMU sensor provides yaw angle θ , yaw angle rate ω , and linear acceleration α . The measurement z is defined as:

$$\boldsymbol{z} = [x, y, \theta, \omega, \alpha]^T$$

3 State transition function f and its derivative

The 2-D kinematic equation for the vehicle state at time t, denoted as x_t and described by kinematic model in discrete time space, can be expressed as follows:

$$\begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \\ \nu_{t} \\ \omega_{t} \\ \alpha_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} + (\nu_{t-1}\Delta t + \frac{1}{2}\alpha_{t-1}\Delta t^{2})\cos(\theta_{t-1} + \frac{1}{2}\omega_{t-1}\Delta t) + \epsilon_{x} \\ y_{t-1} + (\nu_{t-1}\Delta t + \frac{1}{2}\alpha_{t-1}\Delta t^{2})\sin(\theta_{t-1} + \frac{1}{2}\omega_{t-1}\Delta t) + \epsilon_{y} \\ \theta_{t-1} + \omega_{t-1}\Delta t + \epsilon_{\theta} \\ \nu_{t-1} + \alpha_{t-1}\Delta t + \epsilon_{\nu} \\ \omega_{t-1} + \epsilon_{\omega} \\ \alpha_{t-1} + \epsilon_{\alpha} \end{bmatrix}$$

$$(1)$$

We assume that the noises originate from the motion input. The above equation (1) can be expressed as the non-linear function f:

$$oldsymbol{x}_t = oldsymbol{f}(oldsymbol{x}_{t-1}, oldsymbol{u}_t, oldsymbol{\epsilon}_t)$$

Here, the vector $\boldsymbol{\epsilon}_t = [\epsilon_x, \epsilon_y, \epsilon_\theta, \epsilon_\nu, \epsilon_\omega, \epsilon_\alpha]^T$ represents the system noise. We make the assumption that ϵ_x , ϵ_y , ϵ_θ , and ϵ_ν are all set to zero, ensuring that $\boldsymbol{\epsilon}_t$ is solely associated with the motion

input u_t . Additionally, the non-linear function f can be approximated using a Taylor expansion at the previously updated state μ_{t-1} , with $\epsilon_t = 0$:

$$f(x_{t-1}, u_t, \epsilon_t) pprox f(\mu_{t-1}, u_t, 0) + F_t(x_{t-1} - \mu_{t-1}) + W_t \epsilon_t$$

Here, F_t represents the derivative of the state transition function f with respect to state x, and W_t represents the derivative of the state transition function f with respect to the noise ϵ . The term W_t essentially denotes the noise gain of the system. To simplify the notation, we define Δl as $\nu_{t-1}\Delta t + \frac{1}{2}\alpha_{t-1}\Delta t^2$ and $\Delta \theta$ as $\theta_{t-1} + \frac{1}{2}\omega_{t-1}\Delta t$. The derivative matrix of the state transition function F_t is denoted as:

$$\begin{aligned} \pmb{F}_t &= \frac{\partial \pmb{f}}{\partial \pmb{x}} \\ &= \begin{bmatrix} 1 & 0 & -\Delta l \sin(\Delta\theta) & \Delta t \cos(\Delta\theta) & -\frac{1}{2}\Delta t \Delta l \sin(\Delta\theta) & \frac{1}{2}\Delta t^2 \cos(\Delta\theta) \\ 0 & 1 & \Delta l \cos(\Delta\theta) & \Delta t \sin(\Delta\theta) & \frac{1}{2}\Delta t \Delta l \cos(\Delta\theta) & \frac{1}{2}\Delta t^2 \sin(\Delta\theta) \\ 0 & 0 & 1 & 0 & \Delta t & 0 \\ 0 & 0 & 0 & 1 & 0 & \Delta t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Furthermore, W_t can be expressed in matrix form:

$$\mathbf{W}_{t} = \frac{\partial \mathbf{f}}{\partial \boldsymbol{\epsilon}} \\
= \begin{bmatrix}
0 & 0 & 0 & 0 & -\frac{1}{2}\Delta t \Delta l \sin(\Delta \theta) & \frac{1}{2}\Delta t^{2} \cos(\Delta \theta) \\
0 & 0 & 0 & 0 & \frac{1}{2}\Delta t \Delta l \cos(\Delta \theta) & \frac{1}{2}\Delta t^{2} \sin(\Delta \theta) \\
0 & 0 & 0 & 0 & \Delta t & 0 \\
0 & 0 & 0 & 0 & 0 & \Delta t \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

4 Measurement function h and its derivative

The measurements of the system can be described by a linear relation between the state and the measurement at the current step t. This relation is expressed as:

$$\begin{bmatrix} z_x \\ z_y \\ z_\theta \\ z_\omega \\ z_\alpha \end{bmatrix} = \begin{bmatrix} x_t + \delta_x \\ y_t + \delta_y \\ \theta_t + \delta_\theta \\ \omega_t + \delta_\omega \\ \alpha_t + \delta_\alpha \end{bmatrix}$$
(2)

We assume that the measurements are associated with measurement noises, and the noises are independent of each other. The above equation (2) can be expressed as the linear function h:

$$oldsymbol{z}_t = oldsymbol{h}(oldsymbol{x}_t, oldsymbol{\delta}_t)$$

Here, $\boldsymbol{\delta}_t = [\delta_x, \delta_y, \delta_\theta, \delta_\omega, \delta_\alpha]^T$ represents the measurement error. We can apply the same technique to expend the function \boldsymbol{h} at the previously predicted state $\bar{\boldsymbol{\mu}}_t$, with $\boldsymbol{\delta}_t = \mathbf{0}$:

$$m{h}(m{x}_t,m{\delta}_t)pprox m{h}(ar{m{\mu}}_t,m{0})+m{H}_t(m{x}_t-ar{m{\mu}}_t)+m{V}_tm{\delta}_t$$

Here, H_t represents the derivative of the measurement function h with respect to x, and V_t represents the derivative of the measurement function h with respect to the noise δ . The term

 V_t is the noise gain of the measurement. The derivative matrix of the measurement function is denoted as:

$$m{H}_t = rac{\partial m{h}}{\partial m{x}} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

In addition, V_t can be expressed in matrix form:

$$\mathbf{V}_{t} = \frac{\partial \mathbf{h}}{\partial \mathbf{\delta}} \\
= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

5 Process noise covariance matrix Q

As we mentioned earlier, we assume that the system noise ϵ_t is associated with the motion input u_t . Furthermore, we assume that ϵ_t follows a normal distribution with a mean of $\mathbf{0}$ and a covariance matrix of \mathbf{Q}_t . Additionally, we define the covariance matrix \mathbf{Q}_t as

Here, σ_{ω} and σ_{α} are the standard deviation of the yaw angle rate and linear acceleration, respectively.

6 Measurement noise covariance matrix R

For the measurement error δ_t , we assume it follows a normal distribution with a mean of $\mathbf{0}$ and a covariance matrix of \mathbf{R}_t . Additionally, we assume that all measurement noises are independent. Consequently, we can disregard any interaction between them, resulting in the following diagonal covariance matrix:

$$m{R}_t = egin{bmatrix} au_x^2 & 0 & 0 & 0 & 0 \ 0 & au_y^2 & 0 & 0 & 0 \ 0 & 0 & au_ heta^2 & 0 & 0 \ 0 & 0 & 0 & au_\omega^2 & 0 \ 0 & 0 & 0 & 0 & au_lpha^2 \ \end{pmatrix} \,.$$

Here, τ_x , τ_y , τ_θ , τ_ω , and τ_α represent the standard deviations of x, y, θ , ω , and α , respectively.

Kalman filter algorithm 7

Now we are ready to implement extended Kalman filter (EKF) for the vehicle localization. Given the initial state μ_0 and state covariance Σ_0 , the EKF algorithm is summarized as follows:

Prediction:

Predicted state estimate: $\bar{\boldsymbol{\mu}}_t = \boldsymbol{f}_t(\boldsymbol{\mu}_{t-1}, \boldsymbol{u}_t)$ Predicted error covariance: $\bar{\boldsymbol{\Sigma}}_t = \boldsymbol{F}_t \boldsymbol{\Sigma}_{t-1} \boldsymbol{F}_t^T + \boldsymbol{W}_t \boldsymbol{Q}_t \boldsymbol{W}_t^T$

Update:

Innovation:

 $egin{aligned} oldsymbol{y}_t &= oldsymbol{z}_t - oldsymbol{h}(ar{oldsymbol{\mu}}_t) \ oldsymbol{S}_t &= oldsymbol{H}_t ar{oldsymbol{\Sigma}}_t oldsymbol{H}_t^T + oldsymbol{V}_t oldsymbol{R}_t oldsymbol{V}_t^T \ oldsymbol{K}_t &= ar{oldsymbol{\Sigma}}_t oldsymbol{H}_t^T oldsymbol{S}_t^{-1} \end{aligned}$ Innovation covariance:

Kalman gain: $egin{aligned} oldsymbol{\mu}_t &= ar{oldsymbol{\mu}}_t + oldsymbol{K}_t oldsymbol{y}_t \ oldsymbol{\Sigma}_t &= (oldsymbol{I} - oldsymbol{K}_t oldsymbol{H}_t) ar{ar{\Sigma}}_t \end{aligned}$ Updated state estimate: Updated error covariance:

For the updated error covariance, the Joseph formula should be employed for numerical stability. This can be expressed as follows:

$$oldsymbol{\Sigma}_t = (oldsymbol{I} - oldsymbol{K}_t oldsymbol{H}_t) ar{oldsymbol{\Sigma}}_t (oldsymbol{I} - oldsymbol{K}_t oldsymbol{H}_t)^T + oldsymbol{K}_t oldsymbol{V}_t oldsymbol{K}_t^T oldsymbol{K}_t^T$$

In the case where the measurement model is correct, the Kalman filter utilizes it for updates. Thus, a conditional statement for data association is introduced. The Mahalanobis distance is calculated for the measurement residual to determine if the measurement is suitable for updating:

$$(\boldsymbol{z}_t - \boldsymbol{h}(\bar{\boldsymbol{\mu}}_t))^T \boldsymbol{S}_t^{-1} (\boldsymbol{z}_t - \boldsymbol{h}(\bar{\boldsymbol{\mu}}_t)) \leq D_{th},$$

Here, D_{th} represents a predetermined threshold. One can further show that the quadratic term is actually a χ_m^2 distribution, where m is the number of measurements.