Esperienza di laboratorio

Generatori di segnale basati su operazionali

Gruppo A6 Giacomo Calabria - 2007964 Daniele Venturini - 1195858

17 March 2023

Contents

1	Priı	mo esperimento	3
	1.1	Definizione dei valori di $R_1 = R_2$	3
	1.2	Assemblaggi e settaggi	4
	1.3	Risultati	5
	1.4	Risultati in configurazione Zener back-to-back	6
2	Sec		7
	2.1	PRELAB	7
	2.2	Risultati	8
	2.3	Generatore onda sinusoidale	9
		2.3.1 Scelta dei valori di R_3 e R_4 - prelab	9
		2.3.2 Risultati	0
3	Mu	ltivibratore astabile basato su BJT 1	1
	3.1	Risultati	2
	3.2	Funzionamento del circuito	.3
	3.3	Periodo della forma d'onda	4
4	Osc	illatore a rilassamento 1	5
	4.1	Descrizione del funzionamento del circuito	.5
	4.2	Dimensionamento del circuito	
	4.3	Risultati	
	4.4	Elaborazione dati con MATLAB (R)	

CONTENTS CONTENTS

INTRODUZIONE

Lo scopo dell'esperienza di laboratorio è progettare e realizzare un generatore di forme d'onda basato su amplificatori operazionali e quindi studiarne il funzionamento e il dimensionamento.

Strumentazione necessaria:

- Generatore di forma d'onda arbitraria
- Oscilloscopio a 2 canali
- Alimentatore da banco
- 1 connettore BNC a "T"
- 2 connettore BNC maschio/banana femmina
- 1 connettore BNC femmina-femmina
- 1 cavo BNC
- Cavo 1 mm
- \bullet Spellafili

Componenti specifici utilizzati:

- 2 amplificatori operazionali a doppia uscita, codice TL082CP
- Diodi Zener 4.3V, codice 1N5229BTR
- Resistenze con valore da determinare
- \bullet Condensatori da $100nF,220nF,1\mu F$ in dotazione

1 Primo esperimento

In questo primo esperimento si vuole valutare la caratteristica di trasferimento del circuito bistabile mostrato in Figura 1. In cui il segnale v_i è applicato mediante il generatore di funzione e l'uscita v_o è connessa all'oscilloscopio.

Figure 1: Schema circuito

Il circuito è alimentato dalla tensione duale: $\pm V_{CC} = \pm 10V$. L'integrato TL082 contiene due amplificatori operazionali e i pinout dell'integrato sono stati ricavati dal datasheet e sono riportati in Figura 2

Figure 2: Pinout dell'integrato TL082

1.1 Definizione dei valori di $R_1 = R_2$

Tenendo conto delle resistenze di ingresso e uscita dell'integrato; si è scelto il seguente valore per le resistenze della rete di retroazione positiva

$$R_1 = R_1 = 10k\Omega$$

Con tali valori si prevedono le seguenti soglie per il circuito bistabile

$V_{TH} =$	4,5V
$V_{TL} =$	-4,5V

I valori delle soglie sono stati calcolati sulla base della relazione

$$V_{TH} = L_{+}\beta, \quad V_{TL} = L_{-}\beta, \quad \text{con } \beta = \frac{R_1}{R_1 + R_2}$$
 (1)

In cui L_+ e L_- sono stati ricavati dal datasheet, applicando sempre una proporzione con l'alimentazione scelta.

1.2 Assemblaggi e settaggi

L'uscita del generatore di segnale è stato collegato mediante il "BNC T" sia al canale 1 dell'oscilloscopio, sia al morsetto invertente dell'amplificatore operazionale. In seguito è stato connesso il canale 2 dell'oscilloscopio all'uscita dell'operazionale, prestando particolare attenzione al raggruppamento delle varie masse. In Figura 3 si può vedere lo schema dei collegamenti

Figure 3: Schema dei collegamenti

Il generatore di funzione è stato impostato in modo da erogare un segnale come segue:

• Forma d'onda: triangolare

• Frequenza: 100Hz

• Ampiezza: 15V picco-picco

• Valor medio nullo

• Simmetria: 50%

1.3 Risultati

Si riporta in Figura 4 la schermata prodotta dall'oscilloscopio che visualizza le forme d'onda in ingresso e in uscita all'operazionale

Figure 4: Forme d'onda di ingresso e uscita

Dall'analisi dell'oscilloscopio si ricavano i valori di massimo e minimo della tensione di uscita e le soglie V_{TH} e V_{TL} misurate, riportati in Tabella 1.

$L_{+} =$	9.165V
$L_{-}=$	-8.64V
$V_{TH} =$	4.66125V
$V_{TL} =$	-4.224V

Table 1: Misurazioni della tensione di uscita e valori di soglia

La misura delle soglie V_{TH} e V_{TL} è stata fatta in modalità \mathbf{xy} . In Figura 5 è riportata la caratteristica di trasferimento, usando l'oscilloscopio in modalità \mathbf{xy}

Figure 5: Caratteristica di trasferimento del circuito

1.4 Risultati in configurazione Zener back-to-back

Al fine di limitare la corrente sui diodi al valore di 3mA, sono stati collegati due diodi Zener back-to-back all' uscita ed è stata aggiunta una resistenza R_3 . Il circuito è riportato in Figura 6.

Figure 6: Schema circuito con diodi Zener

Per la resistenza R_3 si è utilizzata la formula $\frac{L_+-V_o}{R_3}=3mA$, con $L_+=V_{Z_1}+V_D$, che ha fornito il valore $R_3=1.388k\Omega$ arrotondato al valore più vicino disponibile in laboratorio $R_3=1.5k\Omega$, in questo modo ci si aspetta in uscita la tensione di

$L_{+} =$	+5V
$L_{-} =$	-5V

Infine viene riportata in Figura 7 la caratteristica di trasferimento, catturata utilizzando l'oscilloscopio in modalità $\mathbf{x}\mathbf{y}$

Figure 7: Caratteristica di trasferimento del circuito

2 Secondo esperimento

Lo scopo di questa seconda esperienza è realizzare un generatore di onda triangolare, quadra e sinusoidale basato su un multi vibratore astabile, secondo lo schema riportato in Figura 8. Sono stati utilizzati i seguenti componenti:

- Amplificatore operazionale, codice TL082CP
- Resistenze $R_1 = 10 \mathrm{k}\Omega$, da $0.25 \mathrm{W}$
- Resistenza $R_2 = 39 \mathrm{k}\Omega$, da $0.25 \mathrm{W}$
- \bullet Resistenza R, da calcolare
- \bullet Condensatore C, da scegliere tra i disponibili.

Figure 8: Schema circuito

Il circuito è alimentato dalla tensione duale: $\pm V_{CC} = \pm 10V$.

2.1 PRELAB

Sono stati determinati i valori delle soglie V_{TH} e V_{TL} dalle condizioni operative determinate nel primo esperimento

$$V_{TH} = \begin{vmatrix} -L_{-}(R_{1}/R_{2}) = 2.2154V \\ V_{TL} = \begin{vmatrix} -L_{+}(R_{1}/R_{2}) = -2.35V \end{vmatrix}$$

In seguito sono stati scelti i valori di Re C in modo da ottenere frequenza di oscillazione pari a $f=1kHz\pm10\%$

R =	$10k\Omega$
C =	100nF

I valori di R e C sono stati ottenuti con la seguente formula

$$T = \frac{1}{f} = \frac{2RC(V_{TH} - V_{TL})}{L_{+}} \tag{2}$$

2.2 Risultati

Si realizza il circuito in Figura 8 connettendo l'oscilloscopio alle uscite v_{01} e v_{02} e si accendono le uscite dell'alimentatore $\pm V_{CC} = \pm 10V$. L'oscilloscopio è stato impostato in modo tale da visualizzare simultaneamente i segnali v_{01} e v_{02} , come è stato riportato in Figura 9.

Figure 9: Forme d'onda dei segnali v_{01} e v_{02}

Successivamente sono state misurati i parametri delle forme d'onda v_{01} e v_{02} e riportati in Tabella 2

l	Segnale	Ampiezza picco-picco	Frequenza
	v_{01}	Pk - Pk(1) = 4.47V	F(1) = 947.98Hz
	v_{02}	Pk - Pk(2) = 17.58V	F(2) = 947.83Hz

Table 2: Misure delle forme d'onda v_{01} e v_{02}

2.3 Generatore onda sinusoidale

Volendo generare anche un'onda sinusoidale, viene collegato un filtro passa-basso all'uscita v_{01} , come riportato in Figura 10.

Figure 10: Schema circuito

2.3.1 Scelta dei valori di R_3 e R_4 - prelab

Sono stati scelti i valori delle resistenze, usando C = 100nF in modo da ottenere frequenza di taglio pari a 100Hz e guadagno unitario in bassa frequenza

$R_3 =$	$16k\Omega$
$R_4 =$	$16k\Omega$
C =	100nF

Il dimensionamento delle resistenze del circuito affinché il filtro passa-basso abbia guadagno unitario in bassa frequenza e frequenza di taglio pari a 100Hz è il seguente. Dalla funzione di trasferimento del filtro si ottiene

$$A_0 = \frac{R_3}{R_4} = 1 \implies R_3 = R_4$$
 (3)

Dalla frequenza di taglio si ricava il valore delle resistenze

$$F = \frac{1}{2\pi R_4 C} = 100Hz \implies R_3 = R_4 = \frac{1}{2\pi CF} \approx 16k\Omega \tag{4}$$

2.3.2 Risultati

Dopo aver realizzato il circuito e collegato l'ingresso all'uscita v_{01} . Sull'oscilloscopio sono state visualizzate le forme d'onda v_{01} e v_{03} , che sono riportate in Figura 11.

Figure 11: Forme d'onda v_{01} e v_{03}

Inoltre sono stati misurati l'ampiezza picco-picco della sinusoide generata e lo sfasamento rispetto all'onda triangolare generata, riportata in Tabella 3

Ampiezza picco-picco	303mV
Fase	-95.686°

Table 3: Misurazioni sulle forme d'onda v_{01} e v_{03}

Infine è stata messa a confronto l'onda sinusoidale generata dal circuito con quella generata dal generatore di funzione impostato sugli stessi parametri. In Figura 12 sono riportate le due forme d'onda

Figure 12: Forma d'onda generata dal circuito e "pura"

Possiamo notare che le due forme d'onda sono pressoché identiche in frequenza e in ampiezza picco-picco (a meno di un offset).

3 Multivibratore astabile basato su BJT

In questo esperimento facoltativo si vuole realizzare un multi vibratore astabile basato su BJT che fa accendere alternativamente due diodi LED, ponendo particolare attenzione a comprenderne e descriverne il funzionamento. Il circuito è riportato in Figura 13. Sono stati utilizzati i seguenti componenti:

- 2 transistor bipolari NPN, codice BC548
- Resistenze: $R_1=R_4=470\Omega, R_2=R_3=47\mathrm{k}\Omega$
- Condensatori: $C_1 = C_2 = 10 \mu F$
- LED rossi, codice CREE C503B-RCS-CW0Z0AA1

Il circuito è alimentato da una tensione $V_{CC}=+12V$ e in Figura 14 si è riportato il package del transistor e del led

Figure 13: Schema circuito

Figure 14: Package del BJT BC548 e del LED

3.1 Risultati

Misurare le forme d'onda alla base e al collettore del transistor Q_1 e riportarle in relazione

Con l'utilizzo dell'oscilloscopio è stato campionato il segnale e ottenuto le seguenti forme d'onda, riportate in Figura 15 per la misura alla base e in Figura 16 per la misura al collettore.

Figure 15: Forma d'onda campionata alla base di Q_1

Figure 16: Forma d'onda campionata al collettore di Q_1

Riportare il confronto della forma d'onda out_1 e out_2 in relazione

Sempre con l'utilizzo dell'oscilloscopio è stato campionato il canale di entrambe le uscite per poi metterle a confronto in Figura 17

Figure 17: Confronto della forma d'onda out_1 e out_2

Valutare il periodo, frequenza e duty cycle della forma d'onda generata all'uscita out_1 e out_2

L'oscilloscopio fornisce i seguenti parametri delle forme d'onda generate dal circuito, riassunti nella Tabella 4

	Uscita	Vpp	Periodo	Frequenza	Duty cycle
ſ	out_1	10.7V	$566.78 \mathrm{ms}$	$1.7644 \mathrm{Hz}$	48.346%
ſ	out_2	10.8V	$566.78 \mathrm{ms}$	1.7644 Hz	50.489%

Table 4: Valutazione dei segnali di uscita

3.2 Funzionamento del circuito

Un circuito multivibratore astabile basato su transistor BJT è costituito da due BJT, due condensatori, due diodi e quattro resistenze, tali che $R_1 = R_2 < R_2 = R_3$. Il circuito funziona in modo che i due transistor si alternino nel loro stato di accensione e spegnimento. Entrambi i transistor sono accoppiati a croce, ciò significa che il collettore di un transistor è connesso alla base dell'altro transistor attraverso una capacità. Nel momento in cui viene fornita l'alimentazione, uno dei due transistor si accende più rapidamente dell'altro a causa di piccole differenze tra i dispositivi. Supponendo che Q_1 vada in saturazione per primo, la tensione base-emettitore di Q_1 si porta al valore di 0.7V e la tensione al collettore di Q_2 si porta al potenziale di massa. Questo comporta che alla base di Q_2 appare l'inverso della tensione ai capi del condensatore C_1 , portandolo nella regione di interdizione (cut-off), di conseguenza al collettore di Q_2 si ha il potenziale V_{cc} . Si ha Q_1 On e Q_2 Off.

Il condensatore C_2 inizia a caricarsi fino al potenziale $V_{cc} - V_{be}$, mentre il condensatore C_1 fino a V_{cc} . Dato $R_1 < R_2$ si ha che C_2 si carica più rapidamente di C_1 . Appena la tensione ai capi di C_1 (e quindi alla base di C_2) diventa 0.7V il transistor Q_2 inizia a condurre fino a entrare in saturazione. Di conseguenza la tensione al collettore di Q_2 si porta al potenziale di massa. La tensione alla base di Q_1 si porta all'inverso del valore ai capi di C_2 , quindi a $-(V_{cc} - V_{be})$ e Q_1

entra in interdizione. Si ha Q_1 Off e Q_2 On.

Da qui in poi il circuito continuerà a cambiare tra i due stati fino alla rimozione dell'alimentazione.

3.3 Periodo della forma d'onda

Il periodo T della forma d'onda dipende dalle resistenze R_2 e R_3 e dai condensatori C_1 e C_2 utilizzati nel circuito, secondo la formula:

$$T = \ln 2(R_2C_1 + R_3C_2) \tag{5}$$

4 Oscillatore a rilassamento

In questa esperimento facoltativo è stato descritto e in seguito analizzato il funzionamento dell'oscillatore a rilassamento. Il circuito è rappresentato in Figura 18. Sono stati utilizzati i seguenti componenti:

- Amplificatore operazionale a doppia uscita, codice TL082CP
- Resistenze R_1, R_2, R a valori da determinare
- Condensatore da 100nF, 220nF, $1\mu F$ in dotazione

Figure 18: Schema circuito

Il circuito è alimentato dalla tensione duale: $\pm V_{CC} = \pm 10V$

4.1 Descrizione del funzionamento del circuito

Un modo semplice per generare onde quadre è forzare un circuito bistabile a cambiare stato periodicamente. Questo può essere ottenuto connettendo un circuito bistabile a una rete di retroazione RC. Questo circuito non ha stati stabili, ed è detto multivibratore astabile.

Si noti che non sono presenti ingressi, ciò comporta che all'accensione dell'alimentazione l'uscita V_o si porta a uno dei due valori di saturazione L_+ o L_- . Se per ipotesi l'uscita si trova al valore L_+ , si ha $V_+ = \beta L_+$ (con $\beta = \frac{R1}{R1+R2}$), mentre il condensatore C si carica verso L_+ attraverso la resistenza R. Quando la tensione ai capi del condensatore raggiunge $V_{th} = \beta L_+$, l'uscita V_o commuta verso l'altro stato stabile in cui $V_o = L_-$ e $V_+ = \beta L_-$. Il condensatore inizia a scaricarsi fino a $V_{tl} = \beta L_-$, dove avviene la successiva commutazione. Da qui in poi il circuito continua a commutare tra i due stati fino allo spegnimento dell'alimentazione.

4.2 Dimensionamento del circuito

Si vuole dimensionare i componenti R_1, R_2, R, C , in modo tale che il circuito risultante abbia frequenza di oscillazione pari a 100Hz.

Il periodo T dell'onda quadra in uscita vale

$$T = 2\tau \ln \frac{1+\beta}{1-\beta} \tag{6}$$

Dove $\beta = R_1/R_1 + R_2$ e $\tau = RC$ costante di tempo. I valori di R_1, R_2 sono quelli scelti nel primo esperimento, quindi

$$R_1 = R_2 = 10k\Omega \implies \frac{1+\beta}{1-\beta} = 3$$

Scelto un valore di capacità tra quelli disponibili, è stato ricavato il valore della resistenza R da

$$R = \frac{1}{f2C\ln 3} \tag{7}$$

Quindi ponendo C = 100nF si è ottenuto

$$R = 45511.96\Omega \approx 47k\Omega$$

Riassumiamo nella tabella sotto il dimensionamento del circuito scelto.

R_1	$10k\Omega$
R_2	$10k\Omega$
R	$47k\Omega$
C	100nF

4.3 Risultati

Sono riportate di seguito le forme d'onda di v_0, v_-, v_+ , rispettivamente in Figura 19,20,21.

Figure 19: Forma d'onda presa in v_0

Figure 20: Forma d'onda presa in v_{-}

Figure 21: Forma d'onda presa in v_+

4.4 Elaborazione dati con MATLAB®

Riportiamo in Figura 22 il plotting fatto con MATLAB® dei dati campionati con l'oscilloscopio.

Figure 22: Plot MATLAB®

Il valore di τ determinato dal dimensionamento del circuito è

$$\tau = RC = 0.0047 \ [\Omega F]$$

Tramite la funzione CurveFitter di MATLAB® abbiamo ricavato un valore alla variabile τ . Il fitting è stato fatto solo su un fronte di salita scelto. Come si vede in Figura 23

Figure 23: Curve Fitter sui dati campionati

Dal fitting abbiamo ricavato il seguente valore di $\tau = 0.004707$.