

Ayudantía Extra Examen

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Pregunta 1: Relaciones y Funciones

Sean A y B conjuntos y (B, \preceq) un orden parcial. Considere el siguiente conjunto:

$$\phi(A, B) = \{ f \mid f : A \to B \}$$

Además definimos la relación binaria \leq_{ϕ} sobre $\phi(A, B)$ como:

$$f \leq_{\phi} g$$
 si y solo si $f(a) \leq g(a) \quad \forall a \in A$

Demuestre que $(\phi(A, B), \preceq_{\phi})$ es un orden parcial.

Solución

■ Refleja: Como ≼ es refleja, sabemos que:

$$f(a) \leq f(a) \quad \forall a \in A \Rightarrow f \leq_{\phi} f$$

Antisimétrica:

Suponemos que $f \leq_{\phi} g$ y $g \leq_{\phi} f$

$$\Rightarrow \forall a \in A(f(a) \leq g(a)) \land \forall a \in A(g(a) \leq f(a))$$
$$\Rightarrow \forall a \in A(f(a) \leq g(a) \land g(a) \leq f(a))$$

Como \leq es antisimétrica:

$$\Rightarrow \forall a \in A(f(a) = g(a))$$
$$\Rightarrow f = g$$

■ Transitiva:

Suponemos que $f \leq_{\phi} g$ y $g \leq_{\phi} h$

$$\Rightarrow \forall a \in A(f(a) \leq g(a)) \land \forall a \in A(g(a) \leq h(a))$$
$$\Rightarrow \forall a \in A(f(a) \leq g(a) \land g(a) \leq h(a))$$

Como \leq es transitiva:

$$\Rightarrow \forall a \in A(f(a) \leq h(a))$$
$$\Rightarrow f \prec_{\phi} h$$

Concluimos que $(\phi(A, B), \leq_{\phi})$ es un orden parcial.

Pregunta 2: Teoría de Números

1. Demuestre que un número es divisible por 3 si y solo si la suma de sus digitos es divisible por 3.

Solucion

Primero, descompongamos un número n en su expansion base 10:

$$n = \sum_{i} 10^{i} a_{i} \quad a_{i} \in \{0, \dots, 9\}$$

Y veamos que la suma de sus dígitos tiene la siguiente forma:

$$\sum_{i} a_{i}$$

Ahora, la pregunta consiste en demostrar que:

$$3|\sum_{i} 10^{i} a_{i} \iff 3|\sum_{i} a_{i}$$

Notemos que:

$$\sum_{i} 10^{i} a_{i} \mod 3 = \sum_{i} (10^{i} a_{i} \mod 3) \mod 3 = \sum_{i} (10 \mod 3)^{i} a_{i} \mod 3 = \sum_{i} 1^{i} a_{i} \mod 3$$

Por lo tanto:

$$3|\sum_{i} 10^{i} a_{i} \iff \sum_{i} 10^{i} a_{i} \mod 3 = 0 \iff \sum_{i} a_{i} \mod 3 = 0 \iff 3|\sum_{i} a_{i}$$

2. Demuestre que para cada número primo $p \ge 6$, se cumple que p^2-1 o p^2+1 es multiplo de 10.

Solucion

Notemos que para que 10|a debe ocurrir que 5|a y 2|a.

Veamos que como p es primo, debe ser impar, por lo tanto:

$$p \mod 2 = 1 \implies p^2 \mod 2 = 1 \implies p^2 \pm 1 \mod 2 = 0$$

Por lo tanto $2|p^2 \pm 1$

Como p primo ≥ 6 , p no es divisible por 5, por lo tanto:

$$p \mod 5 \neq 0 \implies p \mod 5 \in \{1, 2, 3, 4\}$$

Luego, si vemos el comportamiento de p^2 :

$$p^2 \mod 5 \in \{1^2 \mod 5, 2^2 \mod 5, 3^2 \mod 5, 4^2 \mod 5\} = \{1, 4\}$$

Ahora notemos dos casos:

 $p^2 \bmod 5 = 1$

Pregunta 3: Algoritmos y grafos

a) El número de operaciones de un algoritmo viene dado por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1 \\ T(n-1) + n & \text{si } n \ge 2 \end{cases}$$

Resuelva la ecuación y determine la complejidad del algoritmo.

- b) Dado un grafo G = (V, E), decimos que un grafo G' = (V', E') es subgrafo isomorfo de G si y solo si se cumple que existe un grafo $H = (V_H, E_H)$ tal que:
 - H es subgrafo de G, es decir, $V_H \subseteq V$, $E_H \subseteq E$ y $E_H \subseteq V_H \times V_H$.
 - H es isomorfo a G'.

Demuestre que si G_1 es subgrafo isomorfo de G_2 y G_2 es subgrafo isomorfo de G_1 , entonces $G_1 \cong G_2$.

Solución

a) Vamos a expandir el caso recursivo:

$$T(n) = T(n-1) + n$$

$$= (T(n-2) + n - 1) + n$$

$$= T(n-2) + n + (n-1)$$

$$= (T(n-3) + n - 2) + n + (n-1)$$

$$= T(n-3) + n + (n-1) + (n-2)$$

$$\vdots$$

$$= T(n-i) + \sum_{k=1}^{i} (n-k+1)$$

Tomamos i = n - 1:

$$T(n) = T(1) + \sum_{k=1}^{n-1} (n - k + 1)$$

$$= T(1) + \sum_{k=1}^{n-1} n - \sum_{k=1}^{n-1} k + \sum_{k=1}^{n-1} 1$$

$$= 1 + n \cdot (n - 1) - \frac{(n - 1)n}{2} + (n - 1)$$

$$= 1 + n(n - 1) - \frac{n(n - 1)}{2} + (n - 1)$$

$$= n^2 - n - \frac{n(n - 1)}{2} + n$$

$$= n^2 - \frac{n(n - 1)}{2}$$

$$= \frac{2n^2 - n(n - 1)}{2}$$

$$= \frac{2n^2 - n^2 + n}{2}$$

$$= \frac{n^2 + n}{2}$$

$$= \frac{n(n + 1)}{2}$$

b) Sean G_1 y G_2 grafos tales que G_1 es subgrafo isomorfo de G_2 y G_2 es subgrafo isomorfo de G_1 . Por simplicidad, en lo que sigue, si G es un grafo denotaremos por V(G) a su conjunto de vértices y por E(G) a su conjunto de aristas.

Dado que G_1 es subgrafo isomorfo de G_2 , existe un subgrafo de G_2 tal que $G_1 \cong H_1$. Como H_1 es subgrafo de G_2 , tenemos que $V(H_1) \subseteq V(G_2)$ y $E(H_1) \subseteq E(G_2)$. En particular, esto implica que:

$$|V(H_1)| \le |V(G_2)| \tag{1}$$

У

$$|E(H_1)| \le |E(G_2)| \tag{2}$$

Igualmente, como $G_1 \cong H_1$, tenemos que existe una función $f: V(G_1) \to V(H_1)$ biyectiva y tal que $(e_1, e_2) \in E(G_1)$ si y solo si $(f(e_1), f(e_2)) \in E(H_1)$.

Notemos entonces que dado que f es biyectiva, se tiene que:

$$|V(G_1)| = |V(H_1)| \tag{3}$$

Por lo demás, la propiedad de isomorfismo nos permite definir la biyección $h: E(G_1) \to E(H_1)$ definida por $h((e_1, e_2)) = (f(e_1), f(e_2))$, por lo que también se tiene que:

$$|E(G_1)| = |E(H_1)|$$
 (4)

Juntando (1) y (3), obtenemos:

$$|V(G_1)| \le |V(G_2)| \tag{5}$$

Por otra parte, juntando (2) y (4), obtenemos:

$$|E(G_1)| \le |E(G_2)| \tag{6}$$

Por el mismo razonamiento, dado que G_2 también es subgrafo de G_1 , tenemos que:

$$|V(G_2)| \le |V(G_1)| \tag{7}$$

$$|E(G_2)| \le |E(G_1)| \tag{8}$$

Luego, considerando lo anterior planteado:

$$(5) \wedge (7) \Rightarrow |V(G_1)| = |V(G_2)|$$
 (9)

$$(6) \wedge (8) \Rightarrow |E(G_1)| = |E(G_2)|$$
 (10)

Juntando ahora (3) y (9) obtenemos que $|V(H_1)| = |V(G_2)|$. Como además $V(H_1) \subseteq V(G_2)$, esto nos permite concluir que $V(H_1) = V(G_2)$.

Del mismo modo, juntando (4) y (10), obtenemos que $|E(H_1)| = |E(G_2)|$. Como también $E(H_1) \subseteq E(G_2)$, esto nos permite concluir que $E(H_1) = E(G_2)$.

Juntando ambas igualdades, obtenemos que $H_1 = G_2$, por lo que f, el isomorfismo entre G_1 y H_1 , es de hecho un isomorfismo entre G_1 y G_2 , por lo que $G_1 \cong G_2$.

Pregunta 4: Logica de Predicados

Solución

a) La afirmación es cierta, por lo que demostraremos que dada una interpretación \mathcal{I} , se tiene que

$$\mathcal{I} \models \forall x \forall y (Q(x) \lor P(y)) \text{ si y solo si } \mathcal{I} \models \forall x Q(x) \lor \forall x P(x)$$

(\Rightarrow) Supongamos que $\mathcal{I} \models \forall x \forall y (Q(x) \lor P(y))$. Mostraremos que $\mathcal{I} \models \forall x Q(x) \lor \forall x P(x)$. Consideremos dos casos: - $\mathcal{I} \models \forall x Q(x)$: en este caso es claro que $\mathcal{I} \models \forall x Q(x) \lor \forall x P(x)$. - $\mathcal{I} \not\models \forall x Q(x)$: en este caso tenemos que existe $a \in \mathcal{I}(dom)$ tal que $\mathcal{I} \not\models Q(a)$. Como $\mathcal{I} \models \forall x \forall y (Q(x) \lor P(y))$, en particular se tiene que cumplir que $\mathcal{I} \models \forall y (Q(a) \lor P(y))$, y entonces necesariamente $\mathcal{I} \models \forall y P(y)$. Como y es una variable cuantificada, podemos cambiarla por x, por lo que $\mathcal{I} \models \forall x P(x)$, de donde concluimos que $\mathcal{I} \models \forall x Q(x) \lor \forall x P(x)$. (\Leftarrow) Por contrapositivo, supongamos que $\mathcal{I} \not\models \forall x \forall y (Q(x) \lor P(y))$. Mostraremos que $\mathcal{I} \not\models \forall x Q(x) \lor \forall x P(x)$. Tenemos que

$$\mathcal{I} \not\models \forall x \forall y (Q(x) \lor P(y))$$

$$\Leftrightarrow \mathcal{I} \models \neg(\forall x \forall y (Q(x) \lor P(y)))$$

$$\Leftrightarrow \mathcal{I} \models \exists x \exists y (\neg Q(x) \land \neg P(y))$$

Sabemos entonces que existen $a, b \in \mathcal{I}(\text{dom})$ tales que:

$$\mathcal{I} \models \neg Q(a) \land \neg P(b)$$

$$\Leftrightarrow \mathcal{I} \models \neg Q(a) \ y \ \mathcal{I} \models \neg P(b)$$

y por generalización existencial:

$$\mathcal{I} \models \exists x \neg Q(x) \text{ y } \mathcal{I} \models \exists x \neg P(x)$$

$$\Leftrightarrow \mathcal{I} \models \exists x \neg Q(x) \land \exists x \neg P(x)$$

$$\Leftrightarrow \mathcal{I} \not\models \neg (\exists x \neg Q(x) \land \exists x \neg P(x))$$

$$\Leftrightarrow \mathcal{I} \not\models \forall x Q(x) \lor \forall x P(x)$$

b) (\Rightarrow) Dado que $\Sigma \models \varphi$, demostraremos que $\Sigma \cup \{\neg \varphi\}$ es inconsistente. Por contrapositivo, supongamos que $\Sigma \cup \{\neg \varphi\}$ es satisfacible, y luego existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \Sigma \cup \{\neg \varphi\}$. Esto implica que $\mathcal{I} \models \Sigma$ y que $\mathcal{I} \models \neg \varphi$, y por lo tanto $\mathcal{I} \models \Sigma$ y $\mathcal{I} \not\models \varphi$, de donde concluimos que $\Sigma \not\models \varphi$. (\Leftarrow) Dado que $\Sigma \cup \{\neg \varphi\}$ es inconsistente, demostraremos que $\Sigma \models \varphi$. Debemos demostrar que dada una interpretación \mathcal{I} tal que $\mathcal{I} \models \Sigma$, se tiene que $\mathcal{I} \models \varphi$. Como $\Sigma \cup \{\neg \varphi\}$ es inconsistente y $\mathcal{I} \models \Sigma$, necesariamente $\mathcal{I} \not\models \neg \varphi$, y luego $\mathcal{I} \models \varphi$. Concluimos entonces que $\Sigma \models \varphi$.