International Rectifier

MBRB15..CTPbF MBR15..CT-1PbF

SCHOTTKY RECTIFIER

15 Amp

 $I_{F(AV)} = 15Amp$ $V_R = 35/45V$

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	15	А
V _{RRM}	35/45	V
I _{FSM} @ tp = 5 µs sine	690	А
V _F @7.5Apk,T _J =125°C	0.57	V
T _J	- 65 to 150	°C

Description/ Features

The MBR15.. center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_J operation
- Center tap TO-220 package
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

MBRB15..CTPbF, MBR15..CT-1PbF Series

Bulletin PD-21043 rev. A 07/06

Voltage Ratings

Pa	rameters	MBRB1535CT MBR1535CT-1	MBRB1545CT MBR1545CT-1	
V _R Max. DC Reverse Voltage (V)		35	45	
V _{RWM} Max. Working Peak Reverse Voltage (V)		35	45	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Aver. Forward Current (Per Leg)	7.5	A	_	@T = 121°C (Detect) ()	
1 ((())	(Per Device)	15		$@T_C = 131 °C (Rated V_R)$		
I _{FSM}	Max. Peak One Cycle Non Repetitive Surge	690	A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	15		A	Surge applied at rated load phase 60Hz	condition halfwave single	
E _{AS}	Non-Repetitive Avalanche Energy	7	mJ	(PerLeg)T _J = 25 °C, I _{AS} = 2 Amps, L = 3.5 mH		
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying linearly to zero in 1 µsec		
	(Per Leg)			Frequency limited by T _J ma	$x. V_A = 1.5 x V_R \text{ typical}$	

Electrical Specifications

	Parameters	Value	Units	(Conditions
V _{FM}	Max. Forward Voltage Drop	0.84	V	@ 15A	T _J = 25 °C
	(1)	0.57	V	@ 7.5A	T = 125 °C
		0.72	V	@ 15A	T _J = 125 °C
I _{RM}	Max. Instantaneus Reverse Current	0.1	mA	$T_J = 25 ^{\circ}\text{C}$	Rated DC voltage
	(1)	15	mA	T _J = 125 °C	Rated DC Voltage
C_T	Max. Junction Capacitance	400	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance	8.0	nΗ	Measured from top of terminal to mounting plane	
dv/dt	$\begin{array}{l} \text{Max. Voltage Rate of Change} \\ \text{(Rated V}_{\text{R}}) \end{array}$	10000	V/ µs		

Thermal-Mechanical Specifications

(1) Pulse Width < 300µs, Duty Cycle <2%

	Parameters		Value	Units	Conditions
T _J	Max. Junction Temperature	Range	-65 to 150	°C	
T _{stg}	Max. Storage Temperature F	Range	-65 to 175	°C	
R _{thJC}	Max. Thermal Resistance Ju to Case (Pe	inction rLeg)	3.0	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance to Heatsink	, Case	0.50	°C/W	Mounting surface, smooth and greased
R_{thJA}	Max. Thermal Resistance Junction		60	°C/W	DC operation
wt	Approximate Weight		2 (0.07)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
		Max.	12 (10)	(lbf-in)	
	Device Marking	MBRB15		.CT	Case style D ² Pak
	MBR15.		MBR15C	T-1	Case style TO-262

Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

 $\begin{tabular}{ll} \textbf{(2)} \ \ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; \\ \ \ \ \ Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) \ \ (see Fig. 6); \\ \ \ \ \ \ Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); \ I_R @ V_{R1} = rated V_R \end{tabular}$

Outlines Table

Part Marking Information

Tape & Reel Information

Ordering Information Table

Bulletin PD-21043 rev. A 07/06

```
MBR1545CT
     This model has been developed by
    Wizard SPICE MODEL GENERATOR (1999)
   (International Rectifier Corporation)
  contains Proprietary Information
**********
* SPICE Model Diode is composed by a
\star simple diode plus paralled VCG2T
.SUBCKT MBR1545 ANO CAT
D1 ANO 1 DMOD (0.03191)
*Define diode model
.MODEL DMOD D(IS=9.72464638473799E-05A, N=1.30648926537753, BV=52V,
+ IBV=0.195508065728349A,RS= 0.000727548,CJO=1.94829876431799E-08,
+ VJ=2.27282978121533, XTI=2, EG=0.854458710837653)
**********
*Implementation of VCG2T
VX 1 2 DC 0V
R1 2 CAT TRES 1E-6
.MODEL TRES RES(R=1,TC1=27.6281424524011)
GP1 ANO CAT VALUE={-ABS(I(VX))*(EXP((((-5.219758E-03/27.62814)*((V(2,CAT)*1E6)/
(I(VX)+1E-6)-1))+1)*7.000165E-02*ABS(V(ANO,CAT)))-1)}
**********
.ENDS MBR1545
Thermal Model Subcircuit
SUBCKT MBR1545 5 1
CTHERM1
          5
             4
                  1.05E+00
CTHERM2
       4 3
                  4.44E+00
              2 1.16E+01
1 6.12E+01
CTHERM3 3
CTHERM4 2
            1
RTHERM1
         5
              4
                  1.33E+00
                  1.19E+00
RTHERM2 4 3
RTHERM1
       3
2
                   3.81E-01
            2
1
                   9.54E-02
RTHERM1
.ENDS MBR1545
```

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/06