Chapitre 8

Ensemble relations et lois de compo

Table des matières

Ι	Théorie naïve des ensembles	2
II	Applications	6
TTI	Relations hinaires	10

Première partie

Théorie naïve des ensembles

Définition: Un <u>ensemble</u> est une collection finie ou infinie d'objets de même nature ou non. L'ordre de ces objets n'a pas d'importance.

Remarque (Notation):

Soit E un ensemble et x un objet de E.

On écrit $x \in E$ ou bien $x \ni E$.

Remarque (▲ Paradoxe):

On note Ω l'ensemble de tous les ensembles. Alors, $\Omega \in \Omega$.

Ce n'est pas le cas de tous les ensembles :

 $\mathbb{N} \not \in \mathbb{N}$ car \mathbb{N} n'est pas un entier

On distingue donc 2 types d'ensembles :

- ceux qui vérifient $E \not\in E$, on dit qu'ils sont <u>ordinaires</u>
- ceux qui vérifient $E \in E$, on dit qu'ils sont <u>extra-ordinaires</u>

On note ${\cal O}$ l'ensemble de tous les ensembles ordinaires.

- Supposons O ordinaire. Alors, $O\not\in O$
 - Or, O est ordinaire et donc $O \in O$ 4
- Supposons O extra-ordinaire.
 - Alors $O \in O$ et donc O ordinaire $\mit{\rlap/}4$

C'est un paradoxe

Pour éviter ce type de paradoxe, on a donné une définition axiomatique qui explique quelles sont les opérations permettant de combiner des ensembles pour en faire un autre.

Définition: Soit E un ensemble et F un autre ensemble. On dit que E et F sont <u>égaux</u> (noté E=F) si E et F contiennent les mêmes objets.

Définition: L'ensemble vide, noté \emptyset est le seul ensemble à n'avoir aucun élément.

Définition: Soient E et F deux ensembles. On dit que F est <u>inclus</u> dans E, noté $F \subset E$ ou $E \supset F$ si tous les éléments de F sont aussi des éléments de E.

 $\forall x \in F, x \in E$

Proposition: Pour tout ensemble $E, \varnothing \subset E$

Définition: Soit E un ensemble. On peut former <u>l'ensemble de toutes les parties de</u> E (une <u>partie</u> de E est un ensemble F avec $F \subset E$). On le note $\mathscr{P}(E)$

$$A\in \mathscr{P}(E) \iff A\subset E$$

Définition: Soit E un ensemble et $A, B \in \mathscr{P}(E)$

1. La <u>réunion</u> de A et B est

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

2. L'<u>intersection</u> de A et B est

$$A\cap B=\{x\in E\mid x\in A\ \text{et}\ x\in B\}$$

3.

Le complémentaire de A dans E est

$$E \setminus A = \{x \in E \mid x \not\in A\} = C_E A$$

4. La <u>différence symétrique</u> de A et B est

$$A\Delta B = \{x \in E \mid (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B)\}$$
$$= (A \cup B) \setminus (A \cap B)$$

Proposition: Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$

- 1. $A \cap A = A$
- $2. \ B\cap A=A\cap B$
- 3. $A \cap (B \cap C) = (A \cap B) \cap C$
- 4. $A \cap \emptyset = \emptyset$
- 5. $A \cap E = A$
- 6. $A \cup A = A$
- 7. $B \cup A = A \cup B$
- 8. $A \cup (B \cup C) = (A \cup B) \cup C$
- 9. $A \cup \emptyset = A$

- 10. $A \cup E = E$
- 11. $(E \setminus A) \setminus A = E \setminus A$
- 12. $E \setminus (E \setminus A) = A$
- 13. $E \setminus \emptyset = E$
- 14. $E \setminus E = \emptyset$
- 15. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 16. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 17. $E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$
- 18. $E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$

Deuxième partie

Applications

Définition: Une application f est la donnée de

- un ensemble E appelé ensemble de départ
- un ensemble F appelé ensemble d'arrivée
- une fonction qui associe à tout élément x de E un unique élément de F noté f(x) L'application est notée

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

Définition: Soit $f: E \to F$ une application. On dit que f est

- <u>injective</u> si tout élément de F a au plus un antécédant par f
- bijective si tout élément de F a un unique antécédant par f
- $\underline{\text{surjective}}$ si tout élément de F a au moins un antécédant par f

Définition: Soit $f: E \to F$ et $g: F \to G$. L'application notée $g \circ f$ est définie par

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

On dit que c'est la composée de f et g.

Proposition: Soient $f: E \to F, g: F \to G, h: G \to G$. Alors, $h \circ (g \circ f) = (h \circ g) \circ f$

Remarque (\bigwedge Attention): En général, $g \circ f \neq f \circ g$

Par exemple, $f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array}$ et $g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array}$

 $\text{Alors, } f \circ g : \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x \end{array} \text{ et } g \circ f : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x| \end{array}$

donc $f\circ g\neq g\circ f$

Proposition: Soient $f: E \to F$ et $g: F \to G$

- 1. Si $g \circ f$ est injective, alors f est injective
- 2. Si $g \circ f$ est surjective, alors g est surjective
- 3. Si f et g sont surjectives, alors $g\circ f$ est surjective
- 4. Si f et g sont injectives, alors $g\circ f$ est injective

Remarque:

 $f: E \longrightarrow F$

$$f \text{ injective } \iff \left(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y \right)$$

Définition: Soit $f: E \to F$ une <u>bijection</u>. L'application $\begin{cases} F & \longrightarrow & E \\ y & \longmapsto & \text{l'unique antécédant} \end{cases}$ de y par f est la <u>réciproque</u> de f notée f^{-1}

Proposition: Soient $f: E \to F$ et $g: F \to E$

$$\begin{cases} f \circ g = \mathrm{id}_F \\ g \circ f = \mathrm{id}_E \end{cases} \iff \begin{cases} f \text{ bijective} \\ f^{-1} = g \end{cases}$$

Définition: Soit $f: E \to F$

1. Soit $A \in \mathscr{P}(E)$. L'<u>image directe</u> de A par f est

$$f(A) = \{f(x) \mid x \in A\}$$

$$f$$

$$\downarrow f$$

$$\uparrow f(A)$$

$$\downarrow f$$

2. Soit $B \in \mathcal{P}(F)$. L'<u>image réciproque</u> de B par f est

Remarque:

$$\begin{array}{ll} - & y \in f(A) \iff \exists x \in A, y = f(x), \\ - & x \in f^{-1}(B) \iff f(x) \in B. \end{array}$$

Proposition: Soient $f: E \to F$, $A \in \mathscr{P}(E)$ et $F \in \mathscr{P}(F)$.

- f⁻¹(f(A)) ⊃ A,
 Si f est injective alors f⁻¹(f(A)) = A,
 f(f⁻¹(B)) ⊂ B,
- 4. Si f est surjectuve, alors $f(f^{-1}(B) = B$.

Proposition: Soit $f: E \to F$ et $(A, B) \in \mathscr{P}(F)^2$. Alors

$$\begin{cases} f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), & (1) \\ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B). & (2) \end{cases}$$

Proposition: Soient $f: E \to F$ et $(A, B) \in \mathcal{P}(E)^2$.

- 1. $f(A \cap B) \subset f(A) \cap f(B)$ 2. Si f est injective, $f(A \cap B) = f(A) \cap f(B)$
- 3. $f(A \cup B) = f(A) \cup f(B)$.

Remarque (Contre-exemple pour 2.): Cas d'une application qui n'est pas injective

On pose $A = \mathbb{R}_*^+$, $B = \mathbb{R}_*^-$ et

$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$x \longmapsto x^2$$

On a $A \cap B = \emptyset$ donc $f(A \cap B) = \emptyset$.

$$\text{Or,} \quad \begin{array}{ll} f(A) = \mathbb{R}_*^+ \\ f(B) = \mathbb{R}_*^+ \end{array} \text{donc } f(A) \cap f(B) = \mathbb{R}_*^+.$$

On a

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Définition: Soit $f: E \to F$ et $A \in \mathcal{P}(E)$.

La restriction de f à A est

$$f_{|A}:A\longrightarrow F$$

 $x\longmapsto f(x)a$

On dit aussi que f est <u>un prolongement</u> de $f_{|A}$.

Remarque (Notation):

L'ensemble des applications de E dans F est noté F^E .

Troisième partie

Relations binaires

Ш

Définition: Soit E un ensemble. Un <u>relation (binaire)</u> sur E est un prédicat définit sur E^2 .

Définition: Soit E un ensemble, \diamond une relation sur E. On dit que \diamond est un <u>relation</u> <u>d'équivalence</u> si

1. $\forall x \in E, x \diamond x$,

 $(\underline{\text{r\'efl\'ectivit\'e}})$

 $2. \ \forall x,y,\in E, x \diamond y \implies y \diamond x,$

 $(\underline{\operatorname{sym\acute{e}trie}})$

$$3. \ \forall x,y,z \in E, \quad \left. \begin{array}{c} x \diamond y \\ y \diamond z \end{array} \right\} \implies x \diamond z$$

 $(\underline{\operatorname{transitivit\acute{e}}})$

Remarque

Le but d'une relation d'équivalence est d'identifier des objets différents.

Définition: Soit E un ensemble et \diamond une relation d'équivalence sur E. Soit $x \in E$. La classe de x (modulo \diamond) est

$$\mathscr{C}\ell \diamond (x) = \mathscr{C}\ell(x) = \overline{x} = \{y \in E \mid y \diamond x\}.$$

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Alors

$$\forall x,y \in E, x \diamond y \iff \overline{x} = \overline{y}.$$

HORS-PROGRAMME

Définition: Soit E un ensemble et \diamond une relation d'équivalence.

L'ensemble

$$\{\overline{x}\mid x\in E\}={}^E/\diamond$$

est appelé quotient de E modulo \diamond .

Définition: Soit E un ensemble et $(A_i)_{i \in I}$ une famille de parties de E.

On dit que $(A_i)_{i\in I}$ est une partition de E si

$$\begin{cases} E = \bigcup_{i \in I} A_i \\ \forall i \neq j, A_i \cap A_j = \emptyset \end{cases}$$

On a donc

 $\forall x \in E, \exists! i \in I, x \in A_i.$

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Les classes d'équivalences de E modulo \diamond forment une partition de E.

Proposition: Soit E un ensemble et $(A_i)_{i\in I}$ une partition de E telle que

 $\forall i \in I, A_i \neq \varnothing.$

Alors il existe une relation d'équivalence \diamond telle que pour tout $i \in I, A_i$ est une classe d'équivalence modulo \diamond .

Définition: Soit E un ensemble et \diamond . On dit que \diamond est une <u>relation d'ordre</u> sur E si

- 1. \diamond est réfléctive $(\forall x \in E, x \diamond x)$,
- $2. \ \, \diamondsuit \ \, \text{est} \, \, \underline{\text{anti-symétrique}} :$

$$\forall x,y \in E, \quad \left. \begin{array}{c} x \mathrel{\diamond} y \\ y \mathrel{\diamond} x \end{array} \right\} \implies x = y,$$

3. \diamond est transitive $(\forall x, y, z \in E, (x \diamond y \text{ et } y \diamond z) \implies x \diamond z)$.

En général, la relation \diamond est notée \leq ou \leq . On dit aussi que (E, \diamond) est un ensemble ordonné.

Définition: Soit (E,\leqslant) un ensemble ordonné. Soient $x,y\in E.$ On dit que x et y sont comparables si

$$x \leqslant y$$
 ou $y \leqslant x$.

On dit que \leq est un <u>ordre total</u> si tous les éléments de E sont comparables 2 à 2.

Définition: Soit (E, \leq) un ensemble ordonné, $A \in \mathscr{P}(E)$ et $M \in E$. On dit que \underline{A} est

 $\underline{\text{majorée par }M},$ que \underline{M} majore \underline{A} ou que \underline{M} est un majorant de \underline{A} si

 $\forall a \in A, a \leqslant M.$

Soit $m \in E.$ On dit que \underline{A} est minorée par $\underline{m},$ que \underline{m} minore \underline{A} ou que \underline{m} est un minorant de \underline{A} si

 $\forall a \in A, m \leqslant a.$

Il manque une partie du cours ici

Proposition: Soit (E,\leqslant) un ensemble ordonné et $A\in\mathscr{P}(E)$. Si A a une borne supérieure, alors celle-ci est unique. On la note sup A.

_