Version 5.9 quick reference guide

How it works?

- 1. Enter text and formulas into the "Code" box on the left.
- 2. Press **F5** or click to **calculate**. The results will appear in the "**Output**" box on the right as a professionally formatted Html **report**.
- 3. Click into print or to copy the output.

 You can also export it to Html in, PDF or MS Word document.

The language

The Calcpad language includes the following elements (click an item to insert):

- Real numbers: digits "0" "9" and decimal point ".";
- Complex numbers: **re** ± **im***i* (e.g. 3 2*i*);
- Variables:

```
- Latin letters: "a" - "z", "A" - "Z";
- Greek letters: "a" - "ω", "A" - "Ω";
- digits: "0" - "9";
- comma: ",";
- prime symbols: "'," ""," ""," """;
- special symbols: "ø", "Ø", "°", "4";
- "_" for subscript;
```

A variable name must start with a letter. Names are case sensitive.

Operators:

```
"!" - factorial;
"^" - exponent;
"/" - division;
"+" - force division bar;
"\" - division;
"%" - reminder;
"*" - multiplication;
"-" - minus;
"+" - plus;
"≡" - equal to;
"≠" - not equal to;
"<" - less than;
">" - greater than;
"≤" - less or equal;
"≥" - greater or equal;
"=" - assignment;
```

```
• Custom functions of type f(x; y; z; ...);
• Built-in functions:
   sign(x) – sign of a number;
   abs(x) - absolute value/magnitude;
   \sin(x) - sine;
   \cos(x) - cosine;
   tan(x) - tangent;
   csc(x) - cosecant;
   sec(x) - secant;
   \cot(x) - cotangent;
   sinh(x) - hyperbolic sine;
   \cosh(x) - hyperbolic cosine;
   tanh(x) - hyperbolic tangent;
   \operatorname{csch}(x) - hyperbolic cosecant;
   sech(x) - hyperbolic secant;
   coth(x) - hyperbolic cotangent;
   asin(x) - inverse sine;
   a\cos(x) - inverse cosine;
   atan(x) - inverse tangent;
   atan2(x; y) - the angle whose tangent is the quotient of y and x;
   acsc(x) - inverse cosecant;
   asec(x) - inverse secant;
   acot(x) - inverse cotangent;
   asinh(x) inverse hyperbolic sine;
   acosh(x) - inverse hyperbolic cosine;
   atanh(x) - inverse hyperbolic tangent;
   \operatorname{acsch}(x) - inverse hyperbolic cosecant;
   \operatorname{asech}(x) - inverse hyperbolic secant;
   acoth(x) - inverse hyperbolic cotangent;
   \log(x) - decimal logarithm;
   ln(x) - natural logarithm;
   \log_2(x) - binary logarithm;
   \exp(x) - exponential function;
   sqr(x) or sqrt(x) - square root;
   cbrt(x) - cubic root;
   root(x; n) - n-th root;
   round(x) - round to the nearest integer;
   floor(x) - round to the lower integer;
   ceiling(x) - round to the greater integer;
```

```
trunc(x) - round to the nearest integer towards zero;
   re(x) - the real part of a complex number;
   im(x) - the imaginary part of a complex number;
   phase (x) - the phase of a complex number;
   random (x) - random number between 0 and x;
   min(x; y; z...) - minimum of multiple values;
   \max(x; y; z...) - maximum of multiple values;
   sum (x; y; z...) - sum of multiple values = x + y + z...;
   sumsq(x; y; z...) - sum of squares = x^2 + y^2 + z^2...;
   srss (x; y; z...) - square root of sum of squares = sqrt(x^2 + y^2 + z^2...);
   average (x; y; z...) - average of multiple values = (x + y + z...)/n;
   product(x; y; z...) - product of multiple values = x \cdot y \cdot z...;
   mean(x; y; z...) - geometric mean = n-th root(x \cdot y \cdot z...);
   if(cond; value-if-true; value-if-false) - conditional evaluation;
   switch (cond1; value1; cond2; value2; ...; default) - selective evaluation;
   take(n; a; b; c...) - returns the n-th element from the list;
   line (x; a; b; c...) - linear interpolation;
   spline(x; a; b; c...) - Hermite spline interpolation.
• Comments: "Title" or 'text' in double or single quotes, respectively. HTML, CSS, JS and SVG
   are allowed.
· Graphing and plotting:
   $Plot \{f(x) @ x = a : b\} - simple plot;
   Plot \{ x(t) | y(t) @ t = a : b \} - parametric;
   $Plot \{f_1(x) \& f_2(x) \& ... @ x = a : b \} - multiple;
   $\text{Plot } \{ \begin{aligned} x_1(t) & \begin{aligned} y_1(t) & \& x_2(t) & \begin{aligned} y_2(t) & \& \text{...} & \aligned & x = a : b \\ \end{aligned} \} \text{- multiple parametric;}
   Map \{ f(x; y) @ x = a : b \& y = c : d \} - 2D color map of a 3D surface;
   PlotHeight - height of plot area in pixels;
   PlotWidth - width of plot area in pixels;
   PlotStep - grid size for map plotting.
• Iterative and numerical methods:
   \{f(x) = const @ x = a : b\} - root finding for f(x) = const;
   $\text{Root } \{f(x) @ x = a : b \} - \text{root finding for } f(x) = 0;
   $\frac{\frac{f(x) @ x = a : b}}{\text{similar to above, but } x}$ is not required to be a precise solution;
   Sup\{f(x) @ x = a : b\} - local maximum of a function;
   \inf \{f(x) \otimes x = a : b\} - local minimum of a function;
   SArea \{f(x) @ x = a : b\} - adaptive Gauss-Lobatto numerical integration;
   $Integral { f(x) @ x = a : b } – Tanh-Sinh numerical integration;
   $Slope { f(x) @ x = a } - numerical differentiation;
   Sum \{ f(x) @ k = a : b \} - iterative sum;
```

```
$Product \{f(k) @ k = a : b\} - iterative product;
   $Repeat \{f(k) \otimes k = a : b\} - general inline iterative procedure;
  Precision - relative precision for numerical methods [10<sup>-2</sup>; 10<sup>-16</sup>] (default is 10<sup>-12</sup>)
• Program flow control:
   Simple:
     #if condition
        your code goes here
     #end if
   Alternative:
     #if condition
        your code goes here
     #else
        some other code
     #end if
   Complete:
     #if condition1
        your code goes here
     #else if condition2
        your code goes here
     #else
        some other code
     #end if
  You can add as many "#else if"s as needed, but only one "#else". You can omit any of them.
 Iteration blocks:
   Simple:
     #repeat number of repetitions
        your code goes here
     #loop
   With conditional break/continue:
     #repeat number of repetitions
        your code goes here
       #if condition
         #break
                  or
                      #continue
       #end if
        some more code
     #loop
  Modules and macros/string variables:
   Modules:
     #include filename - include external file (module);
     #local - start local section (not to be included);
     #global - start global section (to be included);
```

```
Inline string variable:
     #def variable name$ = content
   Multiline string variable:
     #def variable name$
       content line 1
       content line 2
     #end def
   Inline string macro:
     #def macro_name$(param1$; param2$; ...) = content
   Multiline string macro:
     #def macro_name$(param1$; param2$; ...)
       content line 1
       content line 2
     #end def

    Output control:

   #hide - hide the report contents;
   #show - always show the contents (default);
   #pre - show the next contents only before calculations;
   #post - show the next contents only after calculations;
   #val - show only the final result, without the equation;
   #equ - show complete equations and results (default);
   #noc - show only equations without results (no calculations);
   #round n - rounds the output to n digits after the decimal point.
   Each of the above commands is effective after the current line until the end of the report or
   another command that overwrites it.
• Breakpoints for step-by-step execution:
   #pause - calculates down to the current line and waits for the user to resume manually;
   #input - renders an input form to the current line and waits for user input.

    Units for trigonometric functions: #deg - degrees, #rad - radians, #gra - grades;

    Separator for target units: |;

• Return angles with units: ReturnAngleUnits = 1;
• Dimensionless units: %, %;
• Angle units°, ', ", deg, rad, grad, rev;
• Metric units (SI and compatible):
   Mass: g, hg, kg, t, kt, Mt, Gt, dg, cg, mg, \mu g, Da, u;
   Length: m, km, dm, cm, mm, \mu m, nm, pm, AU, ly;
   Time: s, ms, μs, ns, ps, min, h, d;
   Frequency: Hz, kHz, MHz, GHz, THz, mHz, µHz, nHz, pHz, rpm;
   Speed: kmh;
```

```
Electric current: A, kA, MA, GA, TA, mA, μA, nA, pA;
   Temperature: {}^{\circ}C, \Delta {}^{\circ}C, K;
   Amount of substance: mol;
   Luminous intensity: cd;
  Area: a, daa, ha;
   Volume: L, mL, cL, dL, hL;
   Force: dyn N, daN, hN, kN, MN, GN, TN, gf, kgf, tf;
   Moment: Nm, kNm;
   Pressure: Pa, daPa, hPa, kPa, MPa, GPa, TPa,
             dPa, cPa, mPa, μPa, nPa, pPa,
             bar, mbar, ubar, atm, at, Torr, mmHg;
   Viscosity: P, cP, St, cSt;
   Energy work: I, kI, MI, GI, TI, mI, \mu I, nI, pI,
                 Wh, kWh, MWh, GWh, TWh, cal, kcal, erg,
                 eV, keV, MeV, GeV, TeV, PeV, EeV;
   Power: W, kW, MW, GW, TW, mW, µW, nW, pW, hpM, ks,
          VA, kVA, MVA, GVA, TVA, mVA, μVA, nVA, pVA,
          VAR, kVAR, MVAR, GVAR, TVAR, mVAR, μVAR, nVAR, pVAR;
   Electric charge: C, kC, MC, GC, TC, mC, μC, nC, pC, Ah, mAh;
   Potential: V, kV, MV, GV, TV, mV, µV, nV, pV;
   Capacitance: F, kF, MF, GF, TF, mF, \mu F, nF, pF;
   Resistance: \Omega, k\Omega, M\Omega, G\Omega, T\Omega, m\Omega, \mu\Omega, n\Omega, p\Omega;
   Conductance: S, kS, MS, GS, TS, mS, µS, nS, pS,
                  U, kU, MU, GU, TU, mU, \mu U, nU, pU;
   Magnetic flux: Wb , kWb, MWb, GWb, TWb, mWb, μWb, nWb, pWb;
   Magnetic flux density: T, kT, MT, GT, TT, mT, \mu T, nT, pT;
   Inductance: H, kH, MH, GH, TH, mH, μH, nH, pH;
   Luminous flux: lm;
   Illuminance: lx;
   Radioactivity: Bq, kBq, MBq, GBq, TBq, mBq, µBq, nBq, pBq, Ci, Rd;
   Absorbed dose: Gy, kGy, MGy, GGy, TGy, mGy, μGy, nGy, pGy;
   Equivalent dose: Sv, kSv, MSv, GSv, TSv, mSv, μSv, nSv, pSv;
   Catalytic activity: kat;

    Non-metric units (Imperial/US):

   Mass: gr, dr, oz, lb, kip, st, gr, cwt, cwt us, ton, ton us, slug;
   Length: th, in, ft, yd, ch, fur, mi, ftm, cable, nmi, li, rod, pole, perch, lea;
   Speed: mph, knot;
   Temperature: {}^{\circ}F, {}^{\triangle}F, {}^{\circ}R;
  Area: rood, ac;
   Volume (fluid): fl_oz, gi, pt, qt, gal, bbl, (dry) bu;
                  fl\_oz uk, gi uk, pt uk, qt uk, gal uk, bbl uk, (dry) bu uk;
```

 $fl_oz_$ us, $gi_$ us, $pt_$ us, $qt_$ us, $gal_$ us, $bbl_$ us, (dry) $bu_$ us;

Force: ozf, lbf, kipf, tonf, pdl;

Pressure: osi, osf psi, psf, ksi, ksf, tsi, tsf, inHg;

Energy/work: *BTU*, therm, therm_uk, therm_us, quad;

Power: hp, hpE, hpS.