

Francisco Paladino Blumel

ELETRICISTAInstalador Residencial — Básico

Copyright © by Editora Komedi, 2012.

Dados para Catalogação

Blumel, Francisco Paladino

Eletricista: instalador residencial: básico /

Francisco Paladino Blumel. -- Campinas, SP:

Bibliografia ISBN 978-85-7582-653-9

1. Eletricidade - Teoria 2. Eletricistas - Manuais 3. Eletrônica 4. Eletrodomésticos - Manutenção e consertos 5. Instalações elétricas I. Título.

160 p.

Diretor: Sérgio Vale

Assistente editorial: Marisa Leão

Gerente de vendas: Sandro Celestino de Araújo

Coordenadora de produção: Marilissa Mota

Diagramação: Cristiane Matozinhos

Capa: Renato Neves de Sousa

Revisão: Martha Jalkauskas

Imagens do miolo: arquivo pessoal do autor

Imagens dos diagramas unifilares cedidas pela Alto QI – *software* Lumine.

komedi

Rua Álvares Machado, 460, 3º andar 13013–070 Centro – Campinas – SP

Tel./Fax: (19) 3234.4864 www.komedi.com.br editora@komedi.com.br

Este livro é um primeiro degrau para aqueles que desejam iniciar uma atividade profissional na área elétrica e nas inúmeras áreas que exigem este conhecimento básico, surgidas em função do grande avanço tecnológico.

Conhecemos o "apagão elétrico", mas já se fala em "apagão profissional" – e ele já está acontecendo. A falta de profissionais qualificados hoje provoca atrasos e paralisações em grandes obras.

Suprir essa falta de qualificação exige um esforço muito grande de toda a sociedade. Sabemos que nosso ensino fundamental hoje é deficiente, o que exige dos mestres no ensino profissionalizante uma complementação para possibilitar a formação técnica.

Com a experiência de ministrar cursos profissionalizantes, limitamo-nos aqui ao conteúdo essencial para o desenvolvimento da atividade elétrica prática, a interpretação de projetos elétricos residenciais e o estímulo à atualização tecnológica constante.

Nosso desejo, com a elaboração deste livro, é o de contribuirmos para o trabalho de capacitação profissional, fundamental para o nosso desenvolvimento.

O Autor

Agradecimentos

A toda minha família, em especial minha esposa, Marlene, e aos meus netos Milena, Matheus, Murilo e Pietro, pelo incentivo e pelos importantes momentos que não os acompanhei durante este trabalho.

A todos do Educandário Eurípedes, onde sou professor e serei sempre aluno desta grande escola.

Sumário

1. O sistema elétrico de geração, transmissão e	
distribuição de energia	16
Diagrama simplificado do sistema elétrico in	
8	8
2. Eletricidade	19
Átomo	19
Molécula	20
Descargas elétricas	20
3. Condutores e isolantes	22
Materiais condutores	22
Materiais isolantes	24
Semicondutores	25
4. Magnetismo	25
5. Eletromagnetismo	28
Princípios do eletromagnetismo	28
6. O circuito elétrico	31
Funcionamento	31
Componentes	34
Sentido da corrente	

7. Corrente contínua e corrente alternada	35
Corrente contínua	35
Corrente alternada	35
8. Grandezas elétricas	37
Tensão	37
Corrente	38
Resistência	38
Potência elétrica	39
Fator potência	39
Valores nominais	40
9. Circuito trifásico alternado	43
Gerador trifásico	46
Série paralelo e triângulo estrela	
Interpretação de Projetos	53
11. Normas técnicas	54
ABNT (Associação Brasileira de Normas Técnicas)	54
• NBR 5410	54
• NR-10	55
 Normas técnicas de atendimento a consumidore 	s56
12. Diagramas elétricos	56
Diagrama multifilar	57
Diagrama funcional	58
Diagrama unifilar	59
Diagrama de blocos	58
Layout de montagem	59

Simbologia	60
13. Dimensionamento	69
14. Fornecimento de energia elétrica	71
Concessionárias de energia elétrica	71
Entrada de energia elétrica	71
Tipos e tensões de fornecimento	72
Tensões padronizadas	72
Padrão de entrada	73
15. Condutores elétricos	74
Padrão de condutores elétricos (AWG/mm²)	74
Materiais para a fabricação de condutores	75
Tipos de condutores	76
Isolação	76
Tabela mm² – Corrente – Potência – Disjuntor.	78
Emendas e conexões de condutores elétricos	79
Emenda de linhas abertas ou prolongamento	80
Emenda de derivação ou "T"	80
Emenda de caixas de passagem	80
Emenda por soldagem	81
Isolação	81
Emendas de fios espessos (igual ou superior a 10	mm²)81
Conectores	82
Olhal	82
16. Proteção dos circuitos elétricos	83
Dispositivos de proteção	85
• Fusíveis	85
• Disjuntores termomagnéticos	86

 Disjuntores e interruptores diferenciais residuais 	
(DR, IDR's)	88
• Dispositivos de proteção	89
• Aterramento	90
• Condutores de proteção de surto	91
• Para-raios	92
• Seletividade	93
17. Quadro de distribuição	94
Componentes de um quadro de distribuição	95
Diagrama multifilar	96
Diagrama unifilar	
Diagrama unifilar em planta	
18. Circuitos terminais	97
Formas de instalação de circuitos	
70 Diversites tempeinesis Dieduspese perultities euroities	4 0 4
19. Circuitos terminais – Diagramas multifilar e unifilar	
Instalação de tomadas Instalação de tomadas	
_	102
Instalação de tomadas	102
Instalação de tomadas • NBR- 5410	102
Instalação de tomadasNBR- 5410Novo padrão de tomadas	102
 Instalação de tomadas	102
 Instalação de tomadas NBR- 5410 Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples 	102 102 102
 Instalação de tomadas NBR- 5410 Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas 	102 102 102
 Instalação de tomadas NBR- 5410 Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas por dois interruptores simples 	102 102 105
Instalação de tomadas • NBR- 5410 • Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas por dois interruptores simples Circuito de duas lâmpadas 127V comandadas	102 102 105
 Instalação de tomadas NBR- 5410 Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas por dois interruptores simples Circuito de duas lâmpadas 127V comandadas por um interruptor simples 	102 102 105 106
Instalação de tomadas • NBR- 5410 • Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas por dois interruptores simples Circuito de duas lâmpadas 127V comandadas por um interruptor simples Circuito de lâmpada 127V comandadas em	102 102 105 106
Instalação de tomadas • NBR- 5410 • Novo padrão de tomadas Circuito de lâmpada 127V comandada por interruptor simples Circuito de duas lâmpadas 127V comandadas por dois interruptores simples Circuito de duas lâmpadas 127V comandadas por um interruptor simples Circuito de lâmpada 127V comandadas em dois pontos por dois interruptores paralelos	102 102 105 106

Uma lâmpada com interruptores simples	
e duas tomada 127V em circuitos separados	111
Circuito de lâmpada 127V controlada por "dimmer	" (resis-
tência variável para controlar a intensidade da luz),	fotocélu-
la, sensor de presença e controle remoto	112
Circuito de campainha 127V com botão pulsador .	115
Circuito de tomada de uso específico para chuveiro	
127V e 220V	116
Circuito de controle de ventilador 127V,	
com ventilação, exaustão, controle de velocidade	
e lâmpada	
Circuitos didáticos	122
20. Diagrama unifilar em planta civil	126
Planta das caixas, componentes e eletrodutos	127
Eletrodutos na planta civil	128
Diagrama unifilar completo	129
Diagrama unifilar completo em planta	130
Quadro de cargas	131
21. Luminotécnica	133
Grandezas fundamentais	133
• Fluxo luminoso	133
• Eficiência luminosa	134
Intensidade luminosa	134
• Iluminância	134
• Índice de reprodução de cor	135
• Fator de reflexão	
• Coeficiente de utilização	
Classificação da luminária	

Ti	pos de lâmpadas136)
	• Lâmpadas incandescentes136	ó
	• Lâmpadas halógenas137	7
	• Lâmpadas de descarga137	7
22. Fe	rramentas 14	ļ1
	gurança141	
	rramentas manuais142	
	rramentas elétricas144	
	versidade144	
	gurança 14	
	s perigos da energia elétrica145	
	eitos da corrente elétrica no corpo humano14	
151	enos da corrente eletrica no corpo numano14	J
24. In	ovações tecnológicas14	!7
So	ftware147	7
Αι	ıtomação residencial148	3
Ιlι	ıminação148	}
Re	lê de impulso149)
Fi	ora ótica149)
Re	ede Inteligente (Smart Grid)150)
Fe	rramentas e acessórios para os profissionais	
de	elétrica150)
25. Cd	mercial 15	0
Cı	ısto de mão de obra150)
Té	cnicas de venda de produtos e serviços152	2
Referê	ncias bibliográficas 15	7

Eletricidade básica

Estudar os fenômenos da eletricidade, entender como é gerada a energia elétrica, entender como os elétrons percorrem um condutor e nos trazem tantos benefícios através da luz, calor, som e movimento, e poder utilizar esses conhecimentos é, sem dúvida, um desafio gratificante.

É nos impossível acompanhar todo conhecimento gerado pelo desenvolvimento tecnológico em todas as áreas da ciência nos dias de hoje, mas, sem dúvida, a eletricidade é a que está mais presente e nos traz mais conforto, e através de seu aprendizado, podemos seguir diversas carreiras no âmbito profissional.

Com certeza nos sentiremos mais próximos de toda essa evolução e agentes de transformação quando, ao finalizarmos um serviço ou com um projeto nas mãos, ligarmos as instalações de uma nova casa.

1. O sistema elétrico de geração, transmissão e distribuição de energia

O conjunto de todos os equipamentos e dispositivos elétricos instalados que geram e transportam a energia elétrica das usinas até os consumidores (residenciais, industriais e comerciais) é chamado de Sistema Elétrico de Geração, Transmissão e Distribuição de Energia.

Esse sistema é interligado em quase todo o território nacional, onde temos diversos tipos de usinas, classificadas de acordo com a fonte de energia que é transformada em energia elétrica.

	Hidroelétrica		da água	
	Termoelétrica		do calor (combustíveis)	
Tipo de Usina	Nuclear	transforma a energia a	do átomo	Em energia ELÉTRICA
	Eólica	partir	do vento	
	Solar		do sol	
	Maremotriz		do mar	

No Brasil, mais de 70% da geração de energia elétrica é produzida por usinas hidroelétricas.

A tensão da energia produzida pelas usinas é elevada nas subestações de alta tensão e conectada a um sistema interligado de transmissão que transporta até as subestações abaixadoras, onde a energia é distribuída nas cidades.

Francisco Paladino Blumel

Sistema Elétrico de Geração, Transmissão e Distribuição de Energia.

1-Represa | 2-Barragem | 3-Turbina | 4-Gerador | 5- Transformador Elevador 6- Linha de Transmissão | 7- Torres de Alta Tensão | 8- Transformador Abaixador 9- Linha Primária de Distribuição | 10- Transformador de Distribuição 11- Linha de Distribuição Secundária | 12- Consumidor Residencial, medidor de Kwh.

Diagrama simplificado do sistema elétrico interligado

Nossa energia não povém exclusivamente de uma usina, mas de um sistema interligado que recebe e distribui a energia elétrica gerada.

17

Tensões de Geração

2,2Kv a 25KV

Tensões de Transmissão

138Kv, 230Kv, 345Kv

440Kv, 500Kv, 700Kv

Tensões de distribuição Primária

3,8Kv, 6,6Kv, 11,9Kv

13,8Kv, 34,5Kv

Na distribuição os circuitos da rede primária chegam pelos postes até próximo dos consumidores, e a tensão é novamente abaixada pelos transformadores para atenderem as residências e comércio.

Na eletricidade existem diferentes sistemas desenvolvidos para atender áreas especificas, como o sistema elétrico dos veículos, de alimentação dos computadores, de um navio etc.. As principais características do sistema de fornecimento de energia elétrica aos consumidores de baixa tensão, cujo conhecimento é importante para nosso estudo são:

Nosso sistema elétrico de baixa tensão				
3 Ø → 60 hZ 127/120V N≟				
Sistema Trifásico	Corrente Alternada	Frequência de 60 Hertz	Tensão 127/220 Volts*	Neutro Aterrado

Aparelhos, eletrodomésticos e iluminação são fabricados de acordo com normas que estabelecem os valores de Tensão.

As tensões de distribuição secundária padronizadas são: 220/127, 380/220, 254/127, 440/220, 208/120, 230/115, 240/120 (Volts).

18

^{*} Existem variações nos valores de tensões e tipos de ligações, consultar sempre a concessionária de energia elétrica local.

2. Eletricidade

Para entender e estudar os fenômenos que produzem eletricidade, é fundamental o conhecimento da matéria, sua composição e as leis que regem seu comportamento.

Matéria é tudo aquilo que nos cerca e que ocupa um lugar no espaço. Ela se apresenta em diversas formas, que recebem o nome de *corpos*. Existem coisas com as quais temos contato na vida diária que não ocupam lugar no espaço, não sendo, portanto, matéria. Exemplos desses fenômenos são o som, o calor e a eletricidade.

A matéria e todos os corpos compõem-se de moléculas e átomos.

Átomo

Os animais, as plantas, as rochas, as águas dos rios, lagos e oceanos, enfim, tudo o que nos cerca é composto de átomos.

Constituição do átomo

O átomo é formado por uma parte central chamada núcleo e uma parte periférica formada pelos elétrons e denominada eletrosfera. O núcleo é constituído por dois tipos de partículas: os prótons, com carga positiva, e os nêutrons, que são eletricamente neutros.

Átomo → Movimento de elétrons →Eletricidade

Os prótons, juntamente com os nêutrons, são a parte central do átomo. Os elétrons possuem carga negativa. Como os planetas do sistema solar, eles giram na eletrosfera ao redor do núcleo, descrevendo trajetórias que se chamam *órbitas*.

Molécula

Formada de átomos, a molécula é a menor partícula em que se pode dividir uma substância de modo que mantenha as mesmas características da substância que a originou.

As moléculas se formam porque, na natureza, todos os elementos que compõem a matéria tendem a procurar um equilíbrio elétrico.

Molécula de água

Descargas elétricas

Sempre que dois corpos com cargas elétricas contrárias são colocados próximo um do outro em condições favoráveis, o excesso de elétrons de um deles é atraído na direção daquele que está com falta de elétrons, sob a forma de um descarga elétrica. Essa descarga pode se dar por contato ou por arco.

Quando dois materiais possuem grande diferença de cargas elétricas, uma grande quantidade de carga elétrica negativa pode passar de um material para outro pelo ar. Essa é a descarga elétrica por arco.

Francisco Paladino Blumel

O raio, em uma tempestade, é um bom exemplo de descarga por arco.

Para estudarmos os fenômenos, dividimos a eletricidade em:

		Campos Magnéticos	
Eletrostática	Eletrodinâmica	Magnetismo	Eletromagnetismo

Os campos magnéticos cercam materiais e correntes elétricas e são detectados pela força que exercem sobre outros materiais magnéticos e cargas elétricas em movimento. Vamos estudar, nos capítulos 4 e 5, Magnetismo e Eletromagnetismo.

Eletrostática → Eletricidade Estática → Energia Potencial.

Dá-se o nome de *eletricidade estática* à eletricidade produzida por cargas elétricas em repouso em um corpo. Na eletricidade estática, estudamos as propriedades e a ação mútua das cargas elétricas em repouso nos corpos eletrizados.

Ao aproximarmos o pente eletrizado negativamente de pequenos pedaços de papel, estes são atraídos momentaneamente pelo pente, comprovando a existência da eletrização.

A *eletrostática* refere-se às cargas armazenadas em um corpo, ou seja, sua energia potencial.

Eletrodinâmica → Eletricidade dinâmica → Energia Ativa

A eletricidade dinâmica estuda tudo que se refere ao movimento dos elétrons livres de um átomo para outro. Para haver movimento dos elétrons livres em um corpo, é necessário aplicar nesse corpo uma tensão elétrica. Essa tensão resulta na formação de um polo com excesso de elétrons denominado polo negativo e de outro com falta de elétrons denominado de polo positivo. Essa tensão é fornecida por uma fonte geradora de eletricidade.

Fontes de geração de eletricidade	Calor	Queima de combustíveis Queima de resíduos Reação nuclear Nascentes hidrotermais
	Luz	Energia Solar Célula fotoelétrica
	Movimento	Vento Água dos rios Ondas do mar Motores
	Química	Reações químicas

3. Condutores e isolantes

Materiais condutores

Os materiais condutores caracterizam-se por permitirem a movimentação de elétrons, formando uma corrente elétrica toda vez que existir um desequilíbrio de elétrons entre suas extremidades. Esse desequilíbrio chama-se diferença de potencial entre dois pontos

ou *tensão elétrica*. Os condutores são de fundamental importância em todos os dispositivos e equipamentos elétricos e eletrônicos.

Existem materiais sólidos, líquidos e gasosos que são condutores elétricos. Entretanto, na área da eletricidade e da eletrônica, os materiais sólidos são os mais importantes.

As cargas elétricas que se movimentam no interior dos materiais sólidos são os elétrons livres.

Os elétrons livres que se movimentam ordenadamente formam a corrente elétrica.

A intensa mobilidade ou liberdade de movimentação dos elétrons no interior da estrutura química do cobre faz dele um material de grande condutividade elétrica. Assim, os bons condutores são também materiais com baixa resistência elétrica. Depois da prata, o cobre é considerado o melhor condutor elétrico. Ele é o metal mais usado na fabricação de condutores para instalações elétricas.

Torre de Transmissão de Energia Elétrica

Alumínio → Condutor Elétrico

Isolador de Porcelana → Material isolante

O quadro a seguir mostra, em ordem crescente, a resistência elétrica de alguns materiais condutores e isolantes em Ohms/cm.

Materiais isolantes

Materiais isolantes, também chamados materiais dielétricos, são os que apresentam forte oposição à circulação de corrente elétrica no interior de sua estrutura. Isso acontece porque os elétrons livres dos átomos que compõem a estrutura química dos materiais isolantes são fortemente ligados a seus núcleos e dificilmente são liberados para a circulação.

Em condições anormais, um material isolante pode tornarse condutor. Esse fenômeno chama-se ruptura dielétrica. Ocorre quando grande quantidade de energia transforma um material normalmente isolante em condutor. Essa carga de energia aplicada ao material é tão elevada que os elétrons, normalmente presos aos núcleos dos átomos, são arrancados das órbitas, provocando a circulação de corrente.

A formação de faíscas no desligamento de um interruptor elétrico é um exemplo típico de ruptura dielétrica. A tensão elevada entre os

contatos no momento da abertura fornece uma grande quantidade de energia que provoca a ruptura dielétrica do ar, gerando a faísca.

Isolantes	Semicondutores	Condutores
vidro, cerâmica,	carbono,	ferro, alumínio,
plástico	germânio, silício	cobre, prata

Semicondutores

Assim como existem materiais condutores e materiais isolantes, também existem tipos de materiais que são um meio termo entre esses dois primeiros. Esse material é o semicondutor. O semicondutor, portanto, possui valores de condutividade entre os valores de um isolante e um condutor. Os materiais semicondutores mais usados na indústria eletrônica são o germânio (Ge) e o silício (Si).

4. Magnetismo

Magnetismo é a denominação associada ao fenômeno ou conjunto de fenômenos naturais relacionados à atração ou repulsão observada entre determinados objetos. O nome originou-se na Grécia antiga pela descoberta de uma pedra com comportamento estranho que teria a propriedade de atrair materiais como o ferro. Hoje sabemos que esta pedra é a magnetita, chamada de *ímã*, e o estudo dos ímãs chama-se *magnetismo*.

As propriedades dos corpos magnéticos são muito utilizadas em eletricidade.

• Ímãs

Materiais encontrados na natureza que apresentam propriedades magnéticas naturais.

Ímãs artificiais

É possível também obter um ímã de forma artificial. Os ímãs artificiais são muito empregados porque podem ser fabricados com os mais diversos formatos, de forma a atender às mais variadas necessidades práticas.

• Polos magnéticos de um ímã

Externamente, as forças de atração magnética de um ímã se manifestam com maior intensidade nas suas extremidades. Por isso, as extremidades do ímã são denominadas de polos magnéticos.

Cada um dos polos apresenta propriedades magnéticas específicas. São denominadas polo sul e polo norte.

Inseparabilidade dos polos

Por mais que se divida um ímã em partes menores, as partes sempre terão um polo norte e um polo sul.

• Interação entre ímãs

Quando os polos magnéticos de dois ímãs estão próximos, as forças magnéticas dos dois ímãs reagem entre si de forma a provo-

