						Run 1	Run 2	Run
		Schlumber						
Company: Lamont Doherty	Doherty							
	.eg 201, Site 1230A PRU-4A //orain	U-4A						
Ria: Feru Ma	iviargin ES Resolution Ocean:	ո։ Pacific						
_≅ HLDT								
DA PF	Natural Gamma Ray							
Latitue 1230								
9' S l , Site)' S Latitude	Elev.: K.B. 11.3 m	3					
201 Dohe	W Longitude	-	я —					
u M eg 0 P Le	MOI	Пох · О В · · ·						
Per 9 D OD Lar	l I	11.3 m above Perm. Datum	Datum					
any:	ı							
Rig: Field: Locati Well: Comp	API Serial No. Max. Hole Devi.	Longitude	Latitude					
Logging Date	16-Mar-2002			Logging Date				
Run Number	_			Run Number				
Schlimberger Death	5375 m		<u> </u>	Depth Driller Schlumberger Depth	3			
Bottom Log Interval	5373 m			Bottom Log Interval	val			
Top Log Interval				Top Log Interval				
Casing Driller Size @ Depth	0.000 in @ 5178 m	@	<u> </u>	Casing Driller Size @ Depth	ize @ Depth		@	
Bit Size	11.438 in		<u> </u>	Bit Size	e Ge			
Type Fluid In Hole	Sepiolite/Saltwater			Type Fluid In Hole	le			
Density Viscosity	1.07 g/cm3		UD	Density	Viscosity			
Source Of Sample	mudpit	_	M	Source Of Sample	ple			
RM @ Measured Temperature	hm.m			RM @ Measured Temperature	Temperature		@	
RMF @ Measured Temperature				RMF @ Measured Temperature	ed Temperature		@	
RMC @ Measured Temperature	8	(9)		RMC @ Measured Temperature	ed Temperature		@	
	0.421 @ 9 @ 9	@	@	RM @ MRT	RMF @ MRT	@	@	
Maximum Recorded Temperatures	9 degC 3-00			Maximum Recorded	Maximum Recorded Temperatures Circulation Stopped			
				Logger On Bottom				
Unit Number Location	99 Houston ODP			Unit Number	Location			
Recorded By	K. Swain			Recorded By				
Witnessed By	Gilles Guerin			Witnessed By				

	(8)																																			ω
	(9)	9 6	9					@					-																							Run 4
TUE 110	5 05 4				 	ına			550							MEF														- 1						
THE US AFFILIA AND CO USE OF COMPA FOR AN	TES, PONDITION THE RENY'S U	ARTONS RECO	TNE S AG ORI OF	RS, F SREE DED-I AND	REP D U DAT REL	RES IPON A; (b	ENT N BE D) DI ICE	TATI ETW ISCL UPC	VES, EEN AIME ON TH	AC SCI ERS	SEN HLU S AN REC	ITS JMI VD COF	, C BEI WA RDI	ON: RGI IVE ED-	SUL ER / ERS DA	TAN AND OF FA: A	NTS TH WA ANE	AN HE C ARR/ O (c)	D E ON AN Cl	EMP IPA TIES JST	PLC NY S A ON	YE ', IN ND IER	ES) CL RE 'S I	IS UDI PR -UL	SÙ ING ESI L A	BJE 6: (a ENT ND	CT) R TAT	T TO SES TOI OLE	OT TR NS ER	HE CICT RE ESF	TE IOI GA POI	NS (RDI	ON NG	3		
OTHER SERVIC	CES1																	SEI	RV	ICE	S2															
OS1: DITE OS2: MEST/	DSST															OS1 OS2																				
OS3:																OS3																				
OS4: OS5:																OS4 OS5																				
REMARKS: RU															_			RKS:	R	UN	ΝL	IME	ER	2									_			
Hole cored with Log presented				w ria	floo	r																														
Lamont Tempe	rature t	ool	(TAI	P) wa	as ru	ın or																											_			
Wireline Heave Sepliolite mud																																				
Drillers TD 537														mb	orf.																					
				•																																
Drill Pipe Schlu Sea Floor Schlu																																				
- COUT 1001 COING	arriborg	01 0	000	, ,,,,																																
Software bug sl Low backgroun																	- I																			
source used for												69	a w	eai	\	.CIIId	<u>ما</u>																			
																																	—			
				RUN	1																			ı	RU	N 2										
SERVICE ORD PROGRAM VER									10C	0-3	06							CE C RAM																		
FLUID LEVEL: LOGGED	INITER	\/ΔΙ				STA	PT			-	TO					FLU		LEVI OGG			JTF	:R\/	ΔΙ					STA	PT		-		_	TO		
LOGGED	INTLIN	VAL				317	MIX I				10						L	JGC) L L	יוו כ	NIL.	.1\ V	<u> </u>					,,,	17.1					10		
																																	_			
							E	EQ.	UII	PN	ΛE	ΞN	ĪΓ	-	D	E;	S	CR	RIF	PΤ	⁻ (1C	1													
				RU	N	1																			R۱	JN	2									
057 004 04				E I			PMI	EN	Т																											
SFT-281 24 SFT-178 4722	V	VIII	VI (L	OTS)-	A 2																															
GSR-U 135 GSR-U/Y																																				
	DOV	۸/N	НС)I F	F	OLI	IPN	/F1	NT.						_																					
	D01	V 1 4	110		_`	Q O		VIL.	• •																											
LEH-QT								Ţ				3	85.	14																						
LEH-QT 1726			_	CTI			_	-	_ 33	3.98	3																									
DTC-H ECH-KC 9343			To	elSta olSta	เนร atu]_	33	3.34	4	3	34.	25																						
SGT-N		G	amı	ma R	≀ay			۱ –	33	3.06	6	3	33.	34																						
SGH-K 2448												J		- •																						

DGF1 Deep 10 kHz Gain Factor 0.995593 DGF2 Deep 20 kHz Gain Factor 1.00789 DGF4 Deep 40 kHz Gain Factor 1.02614 DPH1 Deep 40 kHz Phase Shift 0.114289 DPH2 Deep 20 kHz Phase Shift -0.152394 DEG DPH4 Deep 40 kHz Phase Shift -0.152394 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44.9501 MMM DRE2 Deep Real 20 kHz Sonde Error Correction 16.357 MMM DRE4 Deep Real 40 kHz Sonde Error Correction 4.69026 MMM DRF Deep Real 40 kHz Sonde Error Correction 4.69026 MMM DRF Deep Real 40 kHz Sonde Error Correction 4.69026 MMM DRF Deep Sigma Reference (10 kHz) 7637 MMM DSR1 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DXE1 Deep Quad 20 kHz Sonde Error Correction 108.903 MM/M DXE4 Deep Quad 20 kHz Sonde Error Correction <td< th=""><th>BHT</th><th>Bottom Hole Temperature (used in calculations)</th><th>40</th><th>DEGF</th></td<>	BHT	Bottom Hole Temperature (used in calculations)	40	DEGF
DGF4 Deep 40 kHz Gain Factor 1.02614 DPH1 Deep 10 kHz Phase Shift 0.114289 DPH2 Deep 20 kHz Phase Shift -0.152394 DEG DPH4 Deep 40 kHz Phase Shift -0.152394 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44,9501 MM/M DRE2 Deep Real 40 kHz Sonde Error Correction 16,357 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4,69026 MM/M DRIM DIT-E Radial Invasion Mode Rxo>Rt Rxo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DSR4 Deep Guad 10 kHz Sonde Error Correction 10 kB,903 MM/M DXE1 Deep Quad 10 kHz Sonde Error Correction 64,6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 64,6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 65,6326 MM/M GCSE		Deep 10 kHz Gain Factor	0.995593	
DGF4 Deep 40 kHz Gain Factor 1.02614 DPH1 Deep 10 kHz Phase Shift 0.114289 DPH2 Deep 20 kHz Phase Shift -0.152394 DEG DPH4 Deep 40 kHz Phase Shift -0.152394 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44,9501 MM/M DRE2 Deep Real 40 kHz Sonde Error Correction 16.337 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4,69026 MM/M DRIM DIT-E Radial Invasion Mode Rxo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 405 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DSR4 Deep Guad 10 kHz Sonde Error Correction 10 kg.903 MM/M DXE1 Deep Quad 10 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction CALI GM/M GGRD Gentralize	DGF2	Deep 20 kHz Gain Factor	1.00789	
DPH1 Deep 10 kHz Phase Shift 0.114289 DEG DPH2 Deep 20 kHz Phase Shift -0.152394 DEG DPH4 Deep 40 kHz Phase Shift -0.152394 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44.9501 MM/M DRE2 Deep Real 20 kHz Sonde Error Correction 46.9026 MM/M DRIM DIT-E Radial Invasion Mode RXO-Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR1 Deep Sigma Reference (20 kHz) 1843 MM/M DSR2 Deep Sigma Reference (40 kHz) 405 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 64.6326 MM/M DXE2 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 64.6326 MM/M GCSE Generalized Caliper Selection CALI GRSE Generalized Mud Re	DGF4	Deep 40 kHz Gain Factor	1.02614	
DPH2 Deep 20 kHz Phase Shift -0.152394 DEG DPH4 Deep 40 kHz Phase Shift -1.42629 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44.9501 MM/M DRE2 Deep Real 20 kHz Sonde Error Correction 16.357 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4.69026 MM/M DRIM DIT-E Radial Invasion Mode Rxo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DXE1 Deep Quad 10 kHz Sonde Error Correction 0 IN MM/M DXE2 Deep Quad 10 kHz Sonde Error Correction 64.6326 MM/M DXE2 Deep Quad 40 kHz Sonde Error Correction CALI A6.096 MM/M	DPH1	Deep 10 kHz Phase Shift	0.114289	DEG
DPH4 Deep 40 kHz Phase Shift -1.42629 DEG DRE1 Deep Real 10 kHz Sonde Error Correction 44.9501 MM/M DRE2 Deep Real 20 kHz Sonde Error Correction 16.357 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4.69026 MM/M DRIM DIT-E Radial Invasion Mode RXo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSR4 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE1 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 20 kHz Sonde Error Correction CALI GGRD <td>DPH2</td> <td>Deep 20 kHz Phase Shift</td> <td>-0.152394</td> <td>DEG</td>	DPH2	Deep 20 kHz Phase Shift	-0.152394	DEG
DRE1 Deep Real 10 kHz Sonde Error Correction 44,9501 MM/M DRE2 Deep Real 20 kHz Sonde Error Correction 16.357 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4,69026 MM/M DRIM DIT-E Radial Invasion Mode RXo>Rt MM/M DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108,903 MM/M DXE2 Deep Quad 10 kHz Sonde Error Correction 46,036 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46,096 MM/M GCSE Generalized Caliper Selection CALI CALI GDEV Average Angular Deviation of Borehole from Normal 0 DF/F GTSE Generalized Mud Resistivity Selection CHART_GEN_9 DF/F GTSE Generalized Temperature Selection LINEA		Deep 40 kHz Phase Shift		
DRE2 Deep Real 20 kHz Sonde Error Correction 16.357 MM/M DRE4 Deep Real 40 kHz Sonde Error Correction 4.69026 MM/M DRIM DIT-E Radial Invasion Mode Rxo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (20 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE2 Deep Quad 10 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction CALI GCSE Generalized Caliper Selection CALI GBRD Geothermal Gradient 0.01 DF/F GRSE Generalized Mule Resistivity Selection CHART_GEN_9 DF/F GTSE Gener			44.9501	
DRE4 DRIM Deep Real 40 kHz Sonde Error Correction 4.69026 MM/M DRIM DIT-E Radial Invasion Mode Rxo>Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE2 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M GCSE Generalized Caliper Selection CALI GDEV Average Angular Deviation of Borehole from Normal Geothermal Gradient 0 DEG GRSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Temperature Selection LINEAR_ESTIMATE IFRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Induction Processing Mode HAL IPRO DIT-E Temperature Enable ENABLE				
DRIM DIT-E Radial Invasion Mode Rxo-Rt DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE2 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M GCSE Generalized Caliper Selection CALI MM/M GCSE Generalized Caliper Selection CALI DEG GRD Geothermal Gradient 0.01 DF/F GRSE Generalized Mud Resistivity Selection CHART_GEN_9 DF/F GTSE Generalized Temperature Selection LINEAR_ESTIMATE LINEAR_ESTIMATE IFRS DIT-E Induction Processing Mode ALL PHASOR IFNO DIT-E Induction Processing Selector PHASOR ENABLE MATR				
DSR1 Deep Sigma Reference (10 kHz) 7637 MM/M DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108,903 MM/M DXE2 Deep Quad 40 kHz Sonde Error Correction 64,6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M GCSE Generalized Caliper Selection CALI CALI GDEV Average Angular Deviation of Borehole from Normal 0 DEG GGRD Geothermal Gradient 0.01 DF/F GRSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Temperature Selection LINEAR_ESTIMATE IFRS DIT-E Induction Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Induction Processing Selector ENABLE MATR Rock Matrix for Neutron Porosity Corrections				
DSR2 Deep Sigma Reference (20 kHz) 1843 MM/M DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DSTA DIT-E Transversal Standoff 0 IN DXE1 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE2 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M GCSE Generalized Caliper Selection CALI GDEV Average Angular Deviation of Borehole from Normal 0 DEG GGRD Geothermal Gradient 0.01 DEG GRSE Generalized Mud Resistivity Selection CHART_GEN_9 DF/F GTSE Generalized Temperature Selection LINEAR_ESTIMATE DF/F IFRS DIT-E Induction Frequency Selector 20 DF/F IPHA DIT-E Phasor Processing Mode ALL PHASOR ITF Induction Processing Selector PHASOR PHASOR MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2				MM/M
DSR4 Deep Sigma Reference (40 kHz) 405 MM/M DT-E Transversal Standoff 0 1N N DT-E Transversal Standoff 1 108.903 MM/M DXE2 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M DXE2 Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M DXE4 Deep Quad 40 kHz Sonde Error Correction 46.096 MM/M DEEP Quad 40 kHz Sonde Error Correction 46.096 MM/M GCSE Generalized Caliper Selection CALI GDEV Average Angular Deviation of Borehole from Normal GRAD Geothermal Gradient 0.0.1 DEG GRD Geothermal Gradient 0.0.1 DEG GRSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Temperature Selection LINEAR_ESTIMATE IFRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Phasor Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 Medium 20 kHz Gain Factor 1.02182 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.02964 MGF4 Medium 10 kHz Gain Factor 1.02964 Medium 20 kHz Gain Factor 1.025819 DEG MPH1 Medium 10 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRF1 Medium Real 10 kHz Sonde Error Correction -1.78642 MM/M MRF2 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M MRF4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				
DSTA DIT-E Transversal Standoff DXE1 Deep Quad 10 kHz Sonde Error Correction DXE2 Deep Quad 20 kHz Sonde Error Correction DXE4 Deep Quad 40 kHz Sonde Error Correction DXE4 DXE4 DEEP QUAD 40 kHz Sonde Error Correction DXE5 DXE6 DXE7 DXE7 DXE8 DXE8 DXE8 DXE8 DXE8 DXE8 DXE8 DXE8				
DXE1 Deep Quad 10 kHz Sonde Error Correction 108.903 MM/M Deep Quad 20 kHz Sonde Error Correction 64.6326 MM/M Deep Quad 40 kHz Sonde Error Correction 64.6326 MM/M GCSE Generalized Caliper Selection CALI GDEV Average Angular Deviation of Borehole from Normal 0 DEG GRD Geothermal Gradient 0.0.1 DF/F GRSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Temperature Selection LINEAR_ESTIMATE IFRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Phasor Processing Mode IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.025819 DEG MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH4 Medium 40 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 20 kHz Sonde Error Correction -1.04594 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -1.04594 MM/M MM/M				
DXE2 DEEP Quad 20 kHz Sonde Error Correction DEEP Quad 40 kHz Sonde Error Correction GCSE GERD Generalized Caliper Selection GGRD Geothermal Gradient GTSE GERS Generalized Temperature Selection CHART_GEN_9 GENERO GERD GEOTHER Induction Frequency Selector CHART_GEN_9 CHART_GEN_P CHART_CHA			•	
DXE4 GCSE Generalized Caliper Selection GENERAL GENERA		Deep Quad 20 kHz Sonde Error Correction		
GCSE GDEV Average Angular Deviation of Borehole from Normal GGRD Geothermal Gradient GRSE Generalized Mud Resistivity Selection GRSE Generalized Temperature Selection IFRS DIT-E Induction Frequency Selector IPHA DIT-E Phasor Processing Mode ITEN DIT-E Induction Processing Selector ITEN DIT-E Temperature Enable MATR Rock Matrix for Neutron Porosity Corrections MGF1 MGF1 MGF2 MGF4 Medium 10 kHz Gain Factor MGF4 Medium 40 kHz Gain Factor MPH1 Medium 10 kHz Phase Shift MPH2 Medium 20 kHz Phase Shift Medium 40 kHz Phase Shift Medium Real 20 kHz Sonde Error Correction MRE2 Medium Real 40 kHz Sonde Error Correction MRE4 Medium Real 40 kHz Sonde Error Correction MRE5 MRE4 Medium Real 40 kHz Sonde Error Correction MRE6 MMC6 MMC6 MMC6 MMC6 MMC6 MMC6 MMC6 MM		Deep Quad 40 kHz Sonde Error Correction		
GDEV GGRD Geothermal Gradient GRSE Generalized Mud Resistivity Selection GTSE IFRS DIT-E Induction Frequency Selector IPHA IPRO DIT-E Induction Processing Mode ITEN MATR MATR Medium 10 kHz Gain Factor MGF2 Medium 20 kHz Gain Factor MGF4 MPH1 MPH2 Medium 10 kHz Phase Shift MRE1 MRE1 MRE1 MRE1 MRE2 MRE1 MRE4 MEDIT-E Induction Procestation OLINEAR_ESTIMATE ENABLE UNIVERSALE				,
GGRD GRSE Generalized Mud Resistivity Selection GTSE Generalized Temperature Selection INFAR_ESTIMATE IFRS DIT-E Induction Frequency Selector IPHA DIT-E Phasor Processing Mode IFRN DIT-E Induction Processing Selector IPHA DIT-E Temperature Enable MATR MATR Medium 10 kHz Gain Factor MGF2 Medium 20 kHz Gain Factor MGF4 Medium 40 kHz Gain Factor MPH1 Medium 10 kHz Phase Shift MPH2 Medium 20 kHz Phase Shift Medium 40 kHz Phase Shift MRE1 Medium 40 kHz Phase Shift Medium 40 kHz Phase Shift MRE1 Medium Real 10 kHz Sonde Error Correction MRE2 Medium Real 20 kHz Sonde Error Correction MRE4 Medium Real 40 kHz Sonde Error Correction MRE5 MMMM Medium Real 40 kHz Sonde Error Correction MRE4 Medium Real 40 kHz Sonde Error Correction MMMM MMMM MMMMMMMMMMMMMMMMMMMMMMMMMM	GDEV			DEG
GRSE Generalized Mud Resistivity Selection CHART_GEN_9 GTSE Generalized Temperature Selection LINEAR_ESTIMATE IFRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Phasor Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MPH4 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE1 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE2 Medium Real 40 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -1.0.4594 MM/M	GGRD			
GTSE IPRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Phasor Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -2.46117 DEG MPH4 Medium 40 kHz Sonde Error Correction 20.7292 MM/M MRE1 Medium Real 10 kHz Sonde Error Correction -1.78642 MM/M MRE2 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				,.
IFRS DIT-E Induction Frequency Selector 20 IPHA DIT-E Phasor Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 40 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -1.04594 MM/M				
IPHA DIT-E Phasor Processing Mode ALL IPRO DIT-E Induction Processing Selector PHASOR ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections LIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium 40 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M	IFRS			
IPRO DIT-E Induction Processing Selector ITEN DIT-E Temperature Enable ENABLE MATR Rock Matrix for Neutron Porosity Corrections MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium 40 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M	IPHA	DIT-E Phasor Processing Mode		
ITEN DIT-E Temperature Enable Rock Matrix for Neutron Porosity Corrections HIMESTONE MGF1 Medium 10 kHz Gain Factor 1.02182 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M	IPRO	DIT-F Induction Processing Selector		
MATR MGF1 MGF1 MGF2 MGF2 MGF4 MGGium 20 kHz Gain Factor MGF4 Medium 40 kHz Gain Factor MFH1 Medium 10 kHz Gain Factor MGF4 MGF4 Medium 40 kHz Gain Factor MPH1 Medium 10 kHz Phase Shift MPH2 Medium 20 kHz Phase Shift MPH4 Medium 20 kHz Phase Shift MGG12 MPH4 MGIUM 20 KHz Phase Shift MGG12 MPH4 MGIUM 20 KHz Phase Shift MGG10 MGMMMMMMMMMM	ITEN	DIT-E Temperature Enable		
MGF1 Medium 10 kHz Gain Factor 1.02182 MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M		Rock Matrix for Neutron Porosity Corrections		
MGF2 Medium 20 kHz Gain Factor 1.02964 MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				
MGF4 Medium 40 kHz Gain Factor 1.06122 MPH1 Medium 10 kHz Phase Shift -0.255819 DEG MPH2 Medium 20 kHz Phase Shift -0.933067 DEG MPH4 Medium 40 kHz Phase Shift -2.46117 DEG MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				
MPH1Medium 10 kHz Phase Shift-0.255819DEGMPH2Medium 20 kHz Phase Shift-0.933067DEGMPH4Medium 40 kHz Phase Shift-2.46117DEGMRE1Medium Real 10 kHz Sonde Error Correction20.7292MM/MMRE2Medium Real 20 kHz Sonde Error Correction-1.78642MM/MMRE4Medium Real 40 kHz Sonde Error Correction-10.4594MM/M				
MPH2Medium 20 kHz Phase Shift-0.933067DEGMPH4Medium 40 kHz Phase Shift-2.46117DEGMRE1Medium Real 10 kHz Sonde Error Correction20.7292MM/MMRE2Medium Real 20 kHz Sonde Error Correction-1.78642MM/MMRE4Medium Real 40 kHz Sonde Error Correction-10.4594MM/M				DEG
MPH4Medium 40 kHz Phase Shift-2.46117DEGMRE1Medium Real 10 kHz Sonde Error Correction20.7292MM/MMRE2Medium Real 20 kHz Sonde Error Correction-1.78642MM/MMRE4Medium Real 40 kHz Sonde Error Correction-10.4594MM/M				
MRE1 Medium Real 10 kHz Sonde Error Correction 20.7292 MM/M MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				
MRE2 Medium Real 20 kHz Sonde Error Correction -1.78642 MM/M MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M			_	
MRE4 Medium Real 40 kHz Sonde Error Correction -10.4594 MM/M				

MSR2	Medium Siğma Reference (20 kHz)	3250	MM/M
MSR4 MXE1	Medium Siğma Reference (40 kHz) Medium Quad 10 kHz Sonde Error Correction	685 -105.752	MM/M MM/M
MXE2	Medium Quad 20 kHz Sonde Error Correction	-34.2041	MM/M
MXE4 SBR	Medium Quad 40 kHz Sonde Error Correction Shoulder Bed Resistivity Factor	11.4521 1	MM/M OHMM
SFCR	SFL Channel Ratio	1000	C 1
SFLE SHT	SFL Enable Surface Hole Temperature	ENABLE 68	DEGF
SPAE	DIT-E SPARC Processing Enable	ENABLE	
SPNV	SP Next Value HLDT-A: Hostile Environment Litho Density - A	0	MV
BFM	Borehole Fluid Medium	LIQUID	
DHC DPPM	Density Hole Correction Density Porosity Processing Mode	BS HIRS	
FD LSHC	Fluid Density	1	G/C3
MDEN	LS Hardware Loop Control Matrix Density	DISALLOW 2.71	G/C3
QPPS SSHC	Quicklook Processing Pe Select SS Hardware Loop Control	PEFL DISALLOW	
WMUD	Mud Weight	1.07	G/C3
NOTS	NPLC-B: Nuclear Porosity Lithology Cartridge - B NPLC Old Temperature Sensor	NO	
NOIS	APS-BA: Accelerator-Porosity Tool	NO	
AASD	APS Software Version APS Thermal and Array Detectors High Voltage Setting	5 1968.98	V
ABOS	APS Thermal and Array Detectors High Voltage Setting APS Neutron Burst-Off Background Subtraction Switch	ON	V
ADSO AFSD	APS Array Detectors Data Source Switch APS Far Detector High Voltage Setting	Both 2052.03	٧
AHCS	APS Holesize Correction Source	GCSE	V
AHSS AMTY	APS Holesize Correction Switch APS Environmental Corrections Mud Type	ON WaterBaseBarite	
ANSD	APS Near Detector High Voltage Setting	1748.3	V
AOTS ASOS	APS Old Temperature Sensor Switch APS Standoff Correction Switch	NO ON	
ATSS	APS Temperature-Pressure-Salinity Correction Switch	OFF	
BHS BHT	Borehole Status Bottom Hole Temperature (used in calculations)	OPEN 40	DEGF
DPPM	Density Porosity Processing Mode	HIRS	
FSAL GCSE	Formation Salinity Generalized Caliper Selection	-50000 CALI	PPM
GDEV GGRD	Average Angular Deviation of Borehole from Normal Geothermal Gradient	0 0.01	DEG DF/F
GRSE	Generalized Mud Resistivity Selection	CHART_GEN_9	DF/F
GTSE MATR	Generalized Temperature Selection	LINEAR_ESTIMATE LIMESTONE	
NARC	Rock Matrix for Neutron Porosity Corrections APS Near/Array Calibration Ratio	1.0631	
NFRC SHT	APS Near/Far Ćalibration Ratio Surface Hole Temperature	0.902243 68	DEGF
	HNGS-BA: Hostile Natural Gamma Ray Sonde	00	DEGI
BAR1 BAR2	HNGS Detector 1 Barite Constant HNGS Detector 2 Barite Constant	1 1	
BHK	HNGS Borehole Potassium Correction Concentration	0	
BHS BHT	Borehole Status Bottom Hole Temperature (used in calculations)	OPEN 40	DEGF
CSD1	Inner Casing Outer Diameter	0	IN
CSD2 CSW1	Outer Casing Outer Diameter Inner Casing Weight	0	IN LB/F
CSW2	Outer Casing Weight	0	LB/F
DBCC GCSE	HNGS Barite Constant Correction Flag Generalized Caliper Selection	NONE CALI	
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG DE/E
GGRD GRSE	Geothermal Gradient Generalized Mud Resistivity Selection	0.01 CHART_GEN_9	DF/F
GTSE H1P	Generalized Temperature Selection HNGS Detector 1 Allow/Disallow In Processing	LINEAR_ESTIMATE ALLOW	
H2P	HNGS Detector 2 Allow/Disallow In Processing	ALLOW	
HABK HALF	HNGS Borehole Potassium Running Average HNGS Alpha Filter Length	0.000145375 60	IN
HCRB	HNGS Apply Borehole Potassium Correction	NONE	114
HMWM HNPE	Mud Weighting Material HNGS Processing Enable	NATU YES	
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	
S1BI S2BI	HNGS Detector 1 Calibration Biśmuth Count Rate HNGS Detector 2 Calibration Bismuth Count Rate	1.3 1.3	CPS CPS
SGRC	HNGS Standard Gamma-Ray Correction Flag	YES	
SHT TPOS	Surface Hole Temperature Tool Position	68 ECCE	DEGF
VBA1	HNGS Detector 1 Variable Barite Factor Running Average	e 0.973008	
VBA2	HNGS Detector 2 Variable Barite Factor Running Average SGT-N: Scintillation Gamma-Ray - N	ge 0.974631	
BHS BHT	Borehole Status	OPEN 40	DECE
DPPM	Bottom Hole Temperature (used in calculations) Density Porosity Processing Mode Goneralized Calinar Selection	40 HIRS	DEGF
CCSE	Gonoralized Calipor Solection	CALL	

GCSE GDEV GGRD GRSE GTSE	Average Angular Geothermal Grad Generalized Mud Generalized Tem	Deviation of B lient Resistivity Se perature Selection	Borehole from No election	CHART LINEAR_ES	O.01 F_GEN_9 STIMATE	DEG DF/F
ISSBAR MATR SHT SOGR HOLEV	SGT Nuclear Mud Rock Matrix for N Surface Hole Tem SGT Standoff Dis ': Integrated Hole/Cement Volume	leutron Porosit nperature tance	ty Corrections		DBARITE ESTONE 68 0	DEGF IN
BHS BHT FCD GCSE GDEV GGRD	Borehole Status Bottom Hole Tem Future Casing (O Generalized Calip Average Angular Geothermal Grad	nperature (use uter) Diameter per Selection Deviation of B lient	r Borehole from No	ormal	OPEN 40 0 CALI 0 0.01	DEGF IN DEG DF/F
GRSE GTSE HVCS MATR SHT System	Generalized Mud Generalized Tem Integrated Hole V Rock Matrix for N Surface Hole Tem and Miscellaneous	perature Select olume Caliper leutron Porosit nperature	ction r Selection ity Corrections	LINEAR_ES AUT LIMI	OMATIC ESTONE 68	DEGF
ALTDPCHAN BS BSAL CSIZ CWEI DFD DO MST PBVSADP PP	Name of alternate Bit Size Borehole Salinity Current Casing Si Casing Weight Drilling Fluid Dens Depth Offset for F Mud Sample Tem Use alternate dep Playback Process	ize sity Playback perature oth channel for sing	r playback	RECO	11.438 50000.00 0.000 0.00 1.07 0.0 33.00 NO OMPUTE	IN PPM IN LB/F G/C3 M DEGC
RMFS RW TD TDD TDL TWS	Reśistivity of Mud Resistivity of Con Total Depth Total Depth - Drille Total Depth - Logo Temperature of C	d Filtrate Samp Inate Water er ger		-500	000.0000 1.0000 17647.6 5377.00 5377.00 37.78	OHMM OHMM FT M M DEGC
Format: APSLiquidI				Graphics File	Created: 17	7-Mar-2002 13:54
	OP S		ersion: 10C0)-306		
DIT-E DTA-A APS-BA SGT-N	10C0-306 10C0-306 10C0-306 10C0-306		HLDT-A NPLC-B HNGS-BA DTC-H	10C0-306 10C0-306 10C0-306 10C0-306		
		Input D	LIS Files			
DEFAULT	PI_LDL_APS_NGS_006LUP	FN:8	PRODUCER	16-Mar-2002 08:47	5383.5 M	1 5079.3 M
		Output [DLIS Files			
DEFAULT TCOM	PI_LDL_APS_NGS_021PUP PI_LDL_APS_NGS_021PUP	FN:32 FN:33	PRODUCER PRODUCER	17-Mar-2002 13:54 17-Mar-2002 13:54		
		Input D	LIS Files			
DEFAULT	PI_LDL_APS_NGS_008LUP	FN:11	PRODUCER	16-Mar-2002 09:52	5383.5 M	1 5202.5 M
		•	DLIS Files			
DEFAULT TCOM	PI_LDL_APS_NGS_023PUP PI_LDL_APS_NGS_023PUP	FN:35 FN:36	PRODUCER PRODUCER	17-Mar-2002 14:07 17-Mar-2002 14:07	5383.5 M 5383.5 M	
	OP S		ersion: 10C0)-306		
DIT-E DTA-A APS-BA SGT-N	10C0-306 10C0-306 10C0-306 10C0-306		HLDT-A NPLC-B HNGS-BA DTC-H	10C0-306 10C0-306 10C0-306 10C0-306		

PIP SUMMARY Time Mark Every 60 S HNGS Spectroscopy Gamma Ray **Bulk Density (RHOB)** (HSGR) (G/C3) (GAPI) APS Effective Standoff in Limestone PhotoElectric Factor (PEF) Bulk Density Correction (DRHO)

0 (----) 10 -0.25 (G/C3) 0.25 (STOF) (IN) Tension APS Near/Array Corrected Limestone Porosity (APLC) (PU) Caliper (CALI) (IN) (TENS) `(LBF)[′] 10000 0 **REPEAT SECTION** 5225 5250

	DIT-E: Dual Induction - E		
BHS	Borehole Status	OPEN	
BHT	Bottom Hole Temperature (used in calculations)	40	DEGF
DGF1	Deep 10 kHz Gain Factor	0.995593	
DGF2	Deep 20 kHz Gain Factor	1.00789	
DGF4	Deep 40 kHz Gain Factor	1.02614	
DPH1	Deep 10 kHz Phase Shift	0.114289	DEG
DPH2	Deep 20 kHz Phase Shift	-0.152394	DEG
DPH4	Deep 40 kHz Phase Shift	-1.42629	DEG
DRE1	Deep Real 10 kHz Sonde Error Correction	44.9501	MM/M
DRE2	Deep Real 20 kHz Sonde Error Correction	16.357	MM/M
DRE4	Deep Real 40 kHz Sonde Error Correction	4.69026	MM/M
DRIM	DIT-E Radial Invasion Mode	Rxo>Rt	
DSR1	Deep Sigma Reference (10 kHz)	7637	MM/M
DSR2	Deep Sigma Reference (20 kHz)	1843	MM/M
DSR4	Deep Sigma Reference (40 kHz)	405	MM/M
DSTA	DIT-E Transversal Standoff	0	IN
DXE1	Deep Quad 10 kHz Sonde Error Correction	108.903	MM/M
DXE2	Deep Quad 20 kHz Sonde Error Correction	64.6326	MM/M
DXE4	Deep Quad 40 kHz Sonde Error Correction	46.096	MM/M
GCSE	Generalized Caliper Selection	CALI	
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD	Geothermal Gradient	0.01	DF/F
GRSE	Generalized Mud Resistivity Selection	CHART_GEN_9	
GTSE	Generalized Temperature Selection	LINEAR_ESTIMATE	
IFRS	DIT-E Induction Frequency Selector	20	
IPHA	DIT-E Phasor Processing Mode	ALL	
IPRO	DIT-E Induction Processing Selector	PHASOR	
ITEN	DIT-E Temperature Enable	ENABLE	
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	
MGF1	Medium 10 kHz Gain Factor	1 02182	

	.255819 DEG	
	.933067 DEG	
MRE1 Medium Real 10 kHz Sonde Error Correction	2.46117 DEG 20.7292 MM/M	
	1.78642 MM/M 10.4594 MM/M	
MSR1 Medium Sigma Reference (10 kHz) MSR2 Medium Sigma Reference (20 kHz)	13520 MM/M 3250 MM/M	
MSR4 Medium Sigma Reference (40 kHz)	685 MM/M 105.752 MM/M	
MXE2 Medium Quad 20 kHz Sonde Error Correction	34.2041 MM/M	
SBR Shoulder Bed Resistivity Factor	11.4521 MM/M 1 OHMM	
	1000 ENABLE	
	68 DEGF ENABLE	
SPNV SP Next Value HLDT-A: Hostile Environment Litho Density - A	0 MV	
	LIQUID BS	
DPPM Density Processing Mode FD Fluid Density	HIRS	
LSHC LS Hardware Loop Control DIS	ALLOW	
MDEN Matrix Density QPPS Quicklook Processing Pe Select	2.71 G/C3 PEFL	
SSHC SS Hardware Loop Control DIS WMUD Mud Weight	ALLOW 1.07 G/C3	
NPLC-B: Nuclear Porosity Litholŏgy Cartridge - B NOTS NPLC Old Temperature Sensor	NO	
APS-BA: Accelerator-Porosity Tool APS Software Version	5	
AASD APS Thermal and Array Detectors High Voltage Setting	1968.98 V	
ABOS APS Neutron Burst-Off Background Subtraction Switch ADSO APS Array Detectors Data Source Switch	ON Both	
AHCS APS Holesize Correction Source	2052.03 V GCSE	
AHSS APS Holesize Correction Switch AMTY APS Environmental Corrections Mud Type WaterBas	ON seBarite	
ANSD APS Near Detector High Voltage Setting APS Old Temperature Sensor Switch	1748.3 V NO	
ASOS APS Standoff Correction Switch ATSS APS Temperature-Pressure-Salinity Correction Switch	ON OFF	
BHS Borehole Status	OPEN	
BHT Bottom Hole Temperature (used in calculations) DPPM Density Porosity Processing Mode	40 DEGF HIRS	
FSAL Formation Salinity GCSE Generalized Caliper Selection	-50000 PPM CALI	
GDEV Average Angular Deviation of Borehole from Normal GGRD Geothermal Gradient	0 DEG 0.01 DF/F	
GRSE Generalized Mud Resistivity Selection CHART GTSE Generalized Temperature Selection LINEAR_ES	GEN 9	
MATR Rock Matrix for Neutron Porosity Corrections LIME	STONE	
	1.0631 .902243	
SHT Surface Hole Temperature HNGS-BA: Hostile Natural Gamma Ray Sonde	68 DEGF	
BAR1 HNGS Detector 1 Barite Constant BAR2 HNGS Detector 2 Barite Constant	1 1	
BHK HNGS Borehole Potassium Correction Concentration BHS Borehole Status	0 OPEN	
BHT Bottom Hole Temperature (used in calculations)	40 DEGF	
CSD1 Inner Casing Outer Diameter CSD2 Outer Casing Outer Diameter	0 IN 0 IN	
CSW1 Inner Casing Weight CSW2 Outer Casing Weight	0 LB/F 0 LB/F	
DBCC HNGS Barite Constant Correction Flag GCSE Generalized Caliper Selection	NONE CALI	
GDEV Average Angular Deviation of Borehole from Normal GGRD Geothermal Gradient	0 DEG 0.01 DF/F	
GRSE Generalized Mud Resistivity Selection CHART	_GEN_9	
	ALLOW	
HABK HNGS Borehole Potassium Running Average 0.000	ALLOW)145375	
HALF HNGS Alpha Filter Length HCRB HNGS Apply Borehole Potassium Correction	60 IN NONE	
HMWM Mud Weighting Material HNPE HNGS Processing Enable	NATU YES	
MATR Rock Matrix for Neutron Porosity Corrections LIME S1BI HNGS Detector 1 Calibration Bismuth Count Rate	STONE	
S2BI HNGS Detector 2 Calibration Bismuth Count Rate S2BI HNGS Detector 2 Calibration Bismuth Count Rate	1.3 CPS 1.3 CPS	

SGRC		HNGS Standard	d Gamma-Ray Co	orrection Flag			YES		
SHT TPOS		Surface Hole Tool Position	emperature				68 ECCE	DEGF	
VBA1		HNGS Detector	r 1 Variable Barit	e Factor Runnir	ng Average	e 0	.973008		
VBA2	GT-N: Scintillation Ga	HNGS Detector	r 2 Variable Barit	e Factor Runnir	ng Average) 0	.974631		
BHS	OT 14. Comunation Ca	Borehole Status	S .				OPEN		
BHT DPPM		Bottom Hole Te	emperature (used by Processing Mo	d in calculations	s)		40 HIRS	DEGF	
GCSE		Generalized Ca	aliper Selection	Jue			CALI		
GDEV		Average Angula	ar Deviation of B	Sorehole from N	Iormal		0	DEG	
GGRD GRSE		Geothermal Gra	adient ud Resistivity Se emperature Selec lud Type	lection		СПУВТ	0.01	DF/F	
GTSE		Generalized Te	mperature Selec	ction	L	INEAR ES	_GLN_9 TIMATE		
ISSBAR		SGT Nuclear M	lud Type · Neutron Porosit			110			
MATR SHT		Surface Hole To	Neutron Porosit	ly Corrections		LIME	STONE 68	DEGF	
SOGR		SGT Standoff D	Distance				0	IN	
ВПС Н	OLEV: Integrated Ho						ODEN		
BHS BHT		Borehole Status Bottom Hole Te	s emperature (use	d in calculations	s)		OPEN 40	DEGF	
FCD		Future Casing	(Outer) Diameter aliper Selection	ſ	-,		0	IN	
GCSE GDEV		Generalized Ca	aliper Selection ar Deviation of B	Rorehole from N	lormal		CALI 0	DEG	
GGRD		Geothermal Gr	adient				0.01	DEG DF/F	
GRSE		Generalized M	ud Resistivity Se emperature Select e Volume Caliper r Neutron Porosit	lection		CHART	_GEN_9		
GTSE HVCS		Integrated Hole	mperature Selec	XION Selection	L	INEAR_ES	OMATIC		
MATR		Rock Matrix for	Neutron Porosit	ty Corrections		LIME	STONE		
SHT		Sulface Hole II	emperature				68	DEGF	
ALTDPCH	ystem and Miscellan IAN		ate depth channe	el	Spe	edCorrecte	edDepth		
BS		Bit Size	•		op s		11.438	IN .	
BSAL CSIZ		Borehole Salini Current Casing	ty Sizo			-5	0.000	PPM IN	
CWEI		Casing Weight	Size				0.00	LB/F	
DFD		Casing Weight Drilling Fluid De Depth Offset fo	ensity				1.07	G/C3	
DO MST		Mud Sample Te	r Playback Pmperature				0.0 33.00	M DEGC	
PBVSADF)	Use alternate d	lepth channel for	r playback			NO	DEGO	
PP		Playback Proce	essing	alo.			MPUTE		
RMFS RW		Resistivity of C	lud Filtrate Samp onnate Water	ле		-5000	00.0000 1.0000	OHMM OHMM	
TD		Total Depth					17647.6	FT	
TDD TDL		Total Depth - Do Total Depth - Lo	filler agger				5377.00 5377.00	M M	
TWS			Connate Water	Sample			37.78	DEGC	
Format: APS	LiquidPorosity_1	Vertical Scale:	1:200		Gra	aphics File	Created:	17-Mar-2002	2 14:07
		OD.	Cychom Va	raion, 100/	0.200				
		OP	System Ve	rsion: Tuci ICM	0-306				
	_		ıv	-					
DIT-E	10C0-306			HLDT-A		0-306			
DTA-A APS-BA	10C0-306 10C0-306			NPLC-B HNGS-BA		0-306 0-306			
SGT-N	10C0-306			DTC-H		0-306			
			Input D	LIS Files					
DEFAULT	PI LDL APS	NGS_008LUP	FN:11	PRODUCER	16-Mar-20	002 09:52	5383.5	M 520	02.5 M
		_							
			Output [DLIS Files					
DEFAULT	PI_LDL_APS_	NGS_023PUP	FN:35	PRODUCER	17-Mar-20	002 14:07			
TCOM	PI_LDL_APS_	NGS_023PUP	FN:36	PRODUCER	17-Mar-20)02 14:07			

Measurement	Nominal	Master	Before	After	Change	Limit	Units
Hostile Environment Litho Density - A Master: 25-Jan-2002 14:22 Before: 2		0					
LSW1 Background	100.0	89.06	86.19	87.21	1.019	3.000	CPS
LSW2 Background	105.0	93.23	91.94	91.16	-0.7827	3.150	CPS
LCM2 Pookground	210.0	100.0	177.0	170 /	1 106	6 200	CDC

Calibration and Check Summary

	210.0	100.0	177.0	170.4	1.400	0.300	CPS
LSW4 Background	290.0	237.9	235.4	237.0	1.540	8.700	CPS
LSW5 Background SSW1 Background	610.0 100.0	529.6 85.18	525.7 85.99	526.2 85.89	0.5357 -0.09821	18.30 3.000	CPS CPS
SSW1 Background	200.0	166.8	165.6	167.1	1.530	6.000	CPS
SSW3 Background	530.0	446.5	445.9	441.3	-4.582	15.90	CPS
SSW4 Background	280.0	235.8	234.2	233.3	-0.9212	8.400	CPS
SSW5 Background	205.0	176.3	175.5	177.7	2.273	6.150	CPS
Heatile Foreign and Little Depoits. A Malleite	O-10	-1 01 0		-l- \			
Hostile Environment Litho Density - A Wellsite Master: 25-Jan-2002 14:22 Before: 21-Feb-200				gn voltage			
LS Bkg. High Voltage	1129	1129	1134	1135	0.8025	N/A	V
SS Bkg. High Voltage	1173	1173	1180	1178	-2.820	N/A	v
Hostile Environment Litho Density - A Wellsite				easurments			
Master: 25-Jan-2002 14:22 Before: 21-Feb-200 LS Background Resolution	02 4:36 After: 1 1.000	6-Mar-2002 13:3: 1.042	1.032	1.052	0.01986	N/A	
SS Background Resolution	1.000	0.9530	0.9479	0.9570	0.009117	N/A	
30 2001.g. 00.110 1.00010.1011		0.0000	0.0 0	0.007.0	0.000	,, .	
Hostile Environment Litho Density - A Wellsite	Calibration - Ca	liper Calibration					
Before: 7-Feb-2002 1:47							
Caliper Small Ring	12.00	N/A	16.99	N/A	N/A	N/A	IN
Caliper Large Ring	18.25	N/A	23.87	N/A	N/A	N/A	IN
Hostile Environment Litho Density - A Master (Calibration - Alur	minum Measurer	nent				
Master: 25-Jan-2002 15:58							
LSW1 Aluminum	648.4	632.3					CPS
LSW2 Aluminum	1018	998.4					CPS
LSW3 Aluminum	1105	1037					CPS
LSW4 Aluminum LSW5 Aluminum	609.5 533.8	564.9 497.5					CPS CPS
SSW1 Aluminum	2664	2526			-		CPS
SSW2 Aluminum	7731	7417					CPS
SSW3 Aluminum	10380	9945					CPS
SSW4 Aluminum	4574	4376					CPS
SSW5 Aluminum	745.2	731.3					CPS
Heatile Environment Lithe Density A Moster	Calibratian Tac	J Ouglity Control	Information: Lie	rb \/altaga			
Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58	Calibration - 100	or Quality Control	inioimation. ni	gri voltage			
LS Alum. High Voltage	1129	1130					V
SS Alum. High Voltage	1173	1161					V
Hostile Environment Litho Density - A Master	Calibration - Det	ectors Resolution	n From Aluminu	m Measurment			
Master: 25-Jan-2002 15:58			n From Aluminui	m Measurment		_	
	Calibration - Det 1.000 1.000	ectors Resolution 1.032 1.050	n From Aluminuı 	m Measurment	 		
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution	1.000 1.000	1.032 1.050	 	 	 		
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master	1.000 1.000	1.032 1.050	 	 	-	-	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58	1.000 1.000 Calibration - Alui	1.032 1.050 minum Measurer	 	 	- -	- -	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc.	1.000 1.000 Calibration - Alui 0.5400	1.032 1.050 minum Measurer 0.5952	 nent (Window R 	 	-	-	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc.	1.000 1.000 Calibration - Alu 0.5400 0.9600	1.032 1.050 minum Measurer 0.5952 0.9762	 	 	- - - -	-	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc.	1.000 1.000 Calibration - Alui 0.5400	1.032 1.050 minum Measurer 0.5952	 nent (Window R 	 	- - - - -	- - - -	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc.	1.000 1.000 Calibration - Alu 0.5400 0.9600 0.4600 1.900	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947	 ment (Window R 	 	- - - -	-	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master O	1.000 1.000 Calibration - Alu 0.5400 0.9600 0.4600 1.900	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947	 ment (Window R 	 	- - - -	-	
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme	 ment (Window R nt	 	- - - -	- -	CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3	 ment (Window R 	 	- - - - -	-	CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme	 ment (Window R nt	 	-	-	CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master of Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master of Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0	 ment (Window R nt	 atios) 	 	-	CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW4 Iron LSW5 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9	 ment (Window R nt	 atios) 			CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW5 Iron SSW1 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931	 ment (Window R nt 	atios)			CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497	 ment (Window R nt 	 atios) 			CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron SSW3 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541	 ment (Window R nt 	atios)	-		CPS CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497	 ment (Window R nt 	atios)			CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW3 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW4 Iron SSW4 Iron SSW5 Iron	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9	nent (Window R nt	atios)			CPS CPS CPS CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW5 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9	nent (Window R nt	atios)			CPS CPS CPS CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW5 Iron SW4 Iron SSW5 Iron SSW5 Iron SSW5 Iron SSW5 Iron SSW5 Iron	1.000 1.000 Calibration - Alun 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9	nent (Window R nt	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW5 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage	1.000 1.000 Calibration - Alum 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control	nent (Window R nt	atios)			CPS CPS CPS CPS CPS CPS CPS CPS CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW5 Iron SW4 Iron SSW5 Iron SSW5 Iron SSW5 Iron SSW5 Iron SSW5 Iron	1.000 1.000 Calibration - Alun 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9	nent (Window R nt	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW5 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control	nent (Window R nt	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution	nent (Window R nt	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution 1.033	nent (Window R nt	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution	nent (Window R nt Information: Hig	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW4 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW3 Iron SSW4 Iron SSW3 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too 1129 1173 Calibration - Det	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution 1.033 1.016	nent (Window R nt Information: Hig	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW5 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith Resolution SS Lith Resolution SS Lith Resolution SS Lith Resolution Accelerator-Porosity Tool Wellsite Calibration Master: 25-Jan-2002 18:34 Before: 16-Mar-200	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too 1129 1173 Calibration - Det 1.000 1.000 - Detector Backo 02 6:13 After: 1	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution 1.033 1.016 ground 6-Mar-2002 11:12	nent (Window R	atios)			CPS CPS CPS CPS CPS CPS CPS CPS V
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW5 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW2 Iron SSW3 Iron SSW4 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith Resolution SS Lith Resolution SS Lith Resolution SS Lith Resolution Accelerator-Porosity Tool Wellsite Calibration Master: 25-Jan-2002 18:34 Before: 16-Mar-200 Near Det Bkg Cntrate	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too 1129 1173 Calibration - Det 1.000 1.000 - Detector Backo 02 6:13 After: 1 30.00	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution 1.033 1.016 ground 6-Mar-2002 11:12	nent (Window R	atios)			CPS
Master: 25-Jan-2002 15:58 LS Aluminum Resolution SS Aluminum Resolution Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:58 LSW1/(LSW4 + LSW5) Calc. LSW3/(LSW4 + LSW5) Calc. SSW1/(SSW4 + SSW5) Calc. SSW3/(SSW4 + SSW5) Calc. Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LSW1 Iron LSW2 Iron LSW3 Iron LSW4 Iron LSW5 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW1 Iron SSW5 Iron Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith High Voltage SS Lith High Voltage SS Lith High Voltage Hostile Environment Litho Density - A Master Master: 25-Jan-2002 15:52 LS Lith Resolution SS Lith Resolution SS Lith Resolution SS Lith Resolution Accelerator-Porosity Tool Wellsite Calibration Master: 25-Jan-2002 18:34 Before: 16-Mar-200	1.000 1.000 Calibration - Alui 0.5400 0.9600 0.4600 1.900 Calibration - Lith 410.0 870.0 1030 590.0 530.0 1850 6500 10000 4500 750.0 Calibration - Too 1129 1173 Calibration - Det 1.000 1.000 - Detector Backo 02 6:13 After: 1	1.032 1.050 minum Measurer 0.5952 0.9762 0.4946 1.947 olog Measureme 450.3 861.2 996.5 556.0 490.9 1931 6497 9541 4223 684.9 ol Quality Control 1130 1163 ectors Resolution 1.033 1.016 ground 6-Mar-2002 11:12	nent (Window R	atios)			CPS CPS CPS CPS CPS CPS CPS CPS V

Array-2 Det Bkg Cntrate Array Therm Det Bkg Cntrate	30.00 30.00	30.78 32.89	28.66 34.90	29.48 31.52	0.8174 -3.376	N/A N/A	CPS CPS
Accelerator-Porosity Tool Wellsite Calibration - C Master: 25-Jan-2002 18:35	Calibration Ratios						
Near/Far Calibration Ratio	0.9250	0.9022	N/A	N/A	N/A	N/A	
Near/Array Calibration Ratio	1.030	1.063	N/A	N/A	N/A	N/A	
Near/Array Cal Ratio Up/Down	1.000	1.007	N/A	N/A	N/A	N/A	
Accelerator-Porosity Tool Wellsite Calibration - T Master: Calibration not done	ank Check						
Array-1 Standoff Porosity	11.10	11.94	N/A	N/A	N/A	N/A	PU
Array-2 Standoff Porosity	11.10	11.71	N/A	N/A	N/A	N/A	PU
Average Slowing Down Time	6.000	N/A	N/A	N/A	N/A	N/A	US
Array-1 SDT Ratio Up/Down Array-1 SDT Ratio Up/Down	1.000 1.000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
Sigma Formation	27.50	27.64	N/A N/A	N/A	N/A	N/A N/A	CU
		4. Ob Iv					
Hostile Natural Gamma Ray Sonde Wellsite Cal Master: 23-Jan-2002 11:37 Before: 7-Feb-2002							
Na 511 Peak Loc	40.00	40.51	40.71	40.60	-0.1139	1.000	
Na 511 Peak Res	15.50	15.75	17.24	16.36	-0.8792	2.000	%
High Voltage	1150	1203	1207	1211	4.461	30.00	V
Na 1785 Peak Loc	142.6	144.6	146.2	145.3	-0.8852	7.000	
Na 1785 Peak Res	8.500	9.254	9.073	9.056	-0.01723	2.000	%
Temperature	15.50	21.86	29.34	29.05	-0.2867	N/A	DEGC
Na Count Rate	45.00	39.29	40.56	38.30	-2.263	8.000	CPS
Hostile Natural Gamma Ray Sonde Wellsite Cal Master: 23-Jan-2002 11:37 Before: 7-Feb-2002							
Na 511 Peak Loc	40.00	40.54	40.54	40.49	-0.04351	1.000	
Na 511 Peak Res	15.50	16.19	16.67	16.83	0.1667	2.000	%
High Voltage	1150	1233	1236	1241	4.679	30.00	V
Na 1785 Peak Loc	142.6	143.9	144.1	144.7	0.6076	7.000	0/
Na 1785 Peak Res Temperature	8.500 15.50	9.453 21.24	8.968 29.04	9.504 29.75	0.5361 0.7097	2.000 N/A	% DEGC
Na Count Rate	45.00	39.11	40.36	38.11	-2.251	8.000	CPS
Hostile Natural Gamma Ray Sonde Wellsite Cal			Detector 2				
Master: 23-Jan-2002 11:37 Before: 7-Feb-2002 Coincidence Count Rate Ratio	1.000	1.004	1.005	1.005	-0.0001048	0.05000	
Hostile Natural Gamma Ray Sonde Master Calil	oration - Detector	1 Calibration					
Master: 23-Jan-2002 11:31 Na 511 Peak Set Point	40.00	41.00					
Th Peak Loc	209.6	209.7					
Th Peak Res	7.000	7.364					%
Background Count Rate	142.5	19.66					CPS
Gain Ratio	1.000	0.9848					
Hostile Natural Gamma Ray Sonde Master Calil Master: 23-Jan-2002 11:31	oration - Detector	2 Calibration					
Na 511 Peak Set Point	40.00	41.00					
Th Peak Loc	209.6	208.7					
Th Peak Res	7.000	7.834					%
Background Count Rate	142.5	17.61					CPS
Gain Ratio	1.000	0.9795					
Scintillation Gamma-Ray - N Wellsite Calibration Before: Calibration out of date 7-Feb-2002 1:	- Detector Calibra						
Gamma Ray (Jig - Bkg)	167.5	N/A	167.5	N/A	N/A	0.09091	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI
Accelerator-Porosity Tool - Detector Plateau Set Near Detector Plateau Setting 1748 V Far Detector Plateau Setting 2052 V Array Detector Plateau Setting 1969 V	iings :						

Dual Induction - E / Equipment Identification

Primary Equipment: Dual Induction Sonde Dual Induction Cartridge DIS - HB DIC - EB 442 438 Auxiliary Equipment:

(14111111	nam) (Nominal)	(IVIGAII)	maini)	(14111111	nam) (Non	miai) (iviax	mam ₎	(iamimi	idiri) (rioriliridi)	(iviaxii	iuiii)
Phase	LSW4 Aluminum	CPS	Value	Phase	LSW5 Alum	ninum CPS	Value	Phase	SSW1 Aluminum CPS		Value
Master			564.9	Master			497.5	Master			2526
520. (Minin		720. (Maxir		450. (Minir			.0 mum)	1850 (Minim		290 (Maxir	
Phase	SSW2 Aluminum	CPS	Value	Phase	SSW3 Alum	ninum CPS	Value	Phase	SSW4 Aluminum CPS		Value
Master			7417	Master			9945	Master			4376
620 (Minin		850 (Maxir		875 (Minir			50 mum)	4000 (Minim		540 (Maxir	
Phase	SSW5 Aluminum	CPS	Value								
Master			731.3								
570. (Minin		1110 (Maxir	-								
Master: 2	25-Jan-2002 15:58				_						
								_			

	Hostile Environment Litho Density - A Master Calibration									
Detectors Resolution From Aluminum Measurment										
Phase	LS Aluminur	n Resolution	Value	Phase	SS Aluminun	Value				
Master			1.032	Master			1.050			
0.7000 1.000 1.1 (Minimum) (Nominal) (Max		111 ximum)	0.70 (Mini			l 1 mum)				
Master:	Master: 25-Jan-2002 15:58									

	Hostile Environment Litho Density - A Master Calibration									
	Aluminum Measurement (Window Ratios)									
Phase	hase LSW1/(LSW4 + LSW5) Calc.			Value	Phase	LSW3/(LSW4 -	Value			
Master				0.5952	Master			0.9762		
0.0.0		0.5400 (Nominal)	0.7400 (Maximum)			0.7600 0.9600 1.1 (Minimum) (Nominal) (Max		60 mum)		
Phase	SSW1/(S	SW4 + SSW5)	Calc.	Value	Phase	SSW3/(SSW4	+ SSW5) Calc.	Value		
Master				0.4946	Master			1.947		
0.3600 0.4600 0.56 (Minimum) (Nominal) (Maxi			1.70 (Mini		00 2.10 minal) (Maxi					
Master:	Master: 25-Jan-2002 15:58									

	Hostile Environment Litho Density - A Master Calibration									
Litholog Measurement										
Phase	LSW1 Iron CPS	Value	Phase	LSW2 Iron CPS		Value	Phase	LSW3 Iron CPS	Valu	ıe
Master		450.3	Master			861.2	Master		996.5	5
310.0 (Minimum)	410.0) (Nominal)	510.0 (Maximum)	660.0 (Minimum)	870.0 (Nominal)	980. (Maxir		810.0 (Minimum)	1030 (Nominal)	1170 (Maximum)	
Phase	LSW4 Iron CPS	Value	Phase	LSW5 Iron CPS		Value	Phase	SSW1 Iron CPS	Valu	ıe
Master		556.0	Master			490.9	Master		1931	
470.0 (Minimum)	590.0) (Nominal)	670.0 (Maximum)	400.0 (Minimum)	530.0 (Nominal)	620. (Maxir		1400 (Minimum)	1850 (Nominal)	2120 (Maximum)	
Phase	SSW2 Iron CPS	Value	Phase	SSW3 Iron CPS		Value	Phase	SSW4 Iron CPS	Valu	ıe.
Master		6497	Master			9541	Master		4223	į.
5170 (Minimum)	6500) (Nominal)	7270 (Maximum)	8100 (Minimum)	10000 (Nominal)	1100 (Maxir		3620 (Minimum)	4500 (Nominal)	5020 (Maximum)	
Phase	SSW5 Iron CPS	Value								
Master		684.9								
470.0 (Minimum)	750.0) (Nominal)	10100 (Maximum)								
Master: 25-Ja	an-2002 15:52			-					-	

Hostile Environment Litho Density - A Master Calibration Detectors Resolution From Litholog Measurment									
								Value	
Master				1.033	Master				1.016
0.7000 1.000 1.111 (Minimum) (Nominal) (Maxim		-	0.70 (Minir		1.000 (Nominal)	1.11 (Maxin	•		
Master: 25-Jan-2002 15:52									

Primary Equipment: NPLC - B **NPLC Cartridge** 79 Auxiliary Equipment: NPLC Housing NPH - B 82 Accelerator-Porosity Tool / Equipment Identification Primary Equipment: Accelerator-Porosity Sonde APS - BA 22 **APS Minitron** MNTR - F 4185 Auxiliary Equipment: Accelerator-Porosity Housing APH - AC 22 APS Calibration Water Tank 4722 SFT - 178 **APS Aluminium Calibrator Sleeve** SFT - 281

	Accelerator-Porosity Tool Wellsite Calibration									
	Tank Check									
Phase	Array-1 Standoff Porosity PU	Value	Phase	Array-2 Standof	f Porosity PU	Value	Phase	Average Slowing Down Time U	S Value	
Master		11.94	Master			11.71	Master	NOT DONE	N/A	
9.90 (Minir		30 imum)	9.90 (Minir				5.75 (Mini		.250 aximum)	
Phase	Array-1 SDT Ratio Up/Down	Value	Phase	Array-1 SDT Ra	tio Up/Down	Value	Phase	Sigma Formation CU	Value	
Master	NOT DONE	N/A	Master	NOT D	ONE	N/A	Master		27.64	
	0.9500 1.000 1.050 0.9500 1.000 1.050 20.00 27.50 35.00 (Minimum) (Nominal) (Maximum) (Minimum) (Maximum) (Minimum) (Mominal) (Maximum)									
Master:	Master: Calibration not done See Remarks									
	Oce itemative									

Accelerator-Porosity Tool Master Calibration **Detector Calibration** Phase Near/Far Calibration Ratio Value Phase Near/Array Calibration Ratio Value Phase Near/Array Cal Ratio Up/Down Value Master 0.9022 Master 1.063 Master 1.007 0.8000 0.9250 1.050 0.9000 1.030 1.170 0.9700 1.000 1.030 (Minimum) (Minimum) (Nominal) (Maximum) (Minimum) Master: 25-Jan-2002 18:35

After 38.11

15.00 45.00 100.0 (Maximum)

Master: 23-Jan-2002 11:37

Before: 7-Feb-2002 1:13

After: 16-Mar-2002 13:31

			Hostile Na	atural Gamma Ray Sonde	Master	Calibration				
	Detector 2 Calibration									
Phase	Na 511 Peak Set Point	Value	Phase	Th Peak Loc		Value	Phase	Th Pea	k Res %	Value
Master		41.00	Master			208.7	Master			7.834
38.0 (Minir		00 imum)	201.0 (Minimum	209.6 n) (Nominal)	218. (Maxin		5.00 (Minin		00 minal)	9.000 (Maximum)
Phase	Background Count Rate CPS	Value	Phase	Gain Ratio		Value				
Master	EXCEEDS LIMIT	17.61	Master			0.9795	Se	ee Remark	3	
20.0 (Minir		5.0 imum)	0.9400 (Minimun		1.06 (Maxin					
Master: 2	23-,lan-2002 11:31									

	Scintillation Gamma-Ray - N / Equipment Identification		
Primary Equipment: Scintillation Gamma Cartridge Scintillation Gamma Detector	SGC - TB SGD - TAA	9582	
Auxiliary Equipment: Scintillation Gamma Housing Gamma Source Radioactive	SGH - K GSR - U/Y	2448	

Company: Lamont Doherty

Schlumberger

Field: Peru Margin JOIDES Resolution Rig: Pacific Ocean: **HLDT/APS** Porosity Natural Gamma Ray