DLD

Department of Computer Science & IT Hazara University Mansehra

Simplification of POS Expression using K-Map

SOP to POS Conversion (Vice Versa) Using K-Map

Convert the following SOP expression to an equivalent POS expression:

$$\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

 $000 \quad 010 \quad 011 \quad 101 \quad 111$

Using a Karnaugh map, convert the following standard POS expression into a minimum SOP expression,

$$(\overline{A} + \overline{B} + C + D)(A + \overline{B} + C + D)(A + B + C + \overline{D})(A + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(A + B + \overline{C} + D)$$

"Don't Care" Conditions in k-Map

"Don't Care" Conditions

- Sometimes a situation arises in which some input variable combinations are not allowed.
- For example, recall that in the BCD code, there are six invalid combinations: 1010, 1011, 1100, 1101, 1110, and 1111.
- Since these unallowed states will never occur in an application involving the BCD code, they can be treated as "don't care" terms with respect to their effect on the output.
- That is, for these "don't care" terms either a 1 or a 0 may be assigned to the output; it really does not matter since they will never occur.

"Don't Care" Conditions

- The "don't care" terms can be used to advantage on the Karnaugh map.
- For each "don't care" term, an X is placed in the cell.
 When grouping the 1s, the Xs can be treated as 1s to make a larger grouping.
- The larger a group, the simpler the resulting term will be.

7 Segment Display

7 Segment Truth Table

A	8	С	D	a	ь	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	1	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

In a 7-segment display, each of the seven segments is activated for various digits. For example, segment a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in Figure 4–41. Since each digit can be represented by a BCD code, derive an SOP expression for segment a using the variables ABCD and then minimize the expression using a Karnaugh map.

FIGURE 4-41 7-segment display.

AB	a	D	С	В	Α
ab	1	0	0	0	0
0	0	1	0	0	0
	1	0	1	0	0
0	1	1	1	0	0
	0	0	0	1	0
1	1	1	0	1	0
	1	0	1	1	0
1	1	1	1	1	0
	1	0	0	0	1
	1	1	0	0	1
	X	0	1	0	1
	X	1	1	0	1
	X	0	0	1	1
	X	1	0	1	1
	X	0	1	1	1
	X	1	1	1	1

AB	00	01	11	10
00	1		1	1
01		١	l	1
11	X	X	×	×
10	1	1	×	×

Α	В	С	D	а
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	X
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	X

5 Variable Karnaugh Map

5 Variable K-Map

Cell Adjacencies

Use a Karnaugh map to minimize the following standard SOP 5-variable expression:

$$X = \overrightarrow{ABCDE} + \overrightarrow{ABCDE}$$

$$X + \overline{ADE} + \overline{BCD} + BCE + ACDE$$