

© 2020 Trilogy Education Services, a 2U, Inc. brand. All Rights Reserved.

Class objectives

By the end of today's class you will understand:

Stationarity

In a stationary process, the mean and variance are constant across time.

Non-stationary

A time series with an upward or downward trend is **not stationary.**

Stationarity

Maked and tine each feet in granding e series model.

There are strategies to transform a non-stationary time series into a stationary one.

Auto-Regressive Model

$$y_{t} = \mu + a_1 y_{t-1} + \epsilon_{t}$$

Auto-Regressive (AR) Models

- Past values are used to predict future values.
- Therefore assumes some degree of autocorrelation.
- An AR model may have one significant lag, or it may have multiple.

Second-order AR model

$$y_{t} = \mu + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_{t}$$

AR Model Summary

An AR model predicts future values based on:

- Past values at a specified lag.
- The number of significant lags.

Moving Average Model

$$y_{\rm t} = m\epsilon_{\rm t-1} + \epsilon_{\rm t}$$

Past errors (plus current error) are used to predict future values.

13

ARMA Model

Combines features of AR and MA models.

Past values and errors are used to predict future values.

ARIMA Model

$\Delta y_{t} = \mu + \alpha_{1} \Delta y_{t-1} + \alpha_{2} \Delta y_{t-2} + \epsilon_{t}$

Combines features of AR and MA models.

Past values and errors are used to predict future values.

ARIMA creates differences (Δy) of the data as part of the process.

AIC & BIC

Akaike Information Criterion, Bayesian Information Criterion.

Assess how well a model fits the data (goodness of fit), and complexity.

Higher-order models are penalized for complexity.

Lower scores are better.

Why is Volatility Important to Understand?

High volatility can affect prices (higher volatility = more risk)

Higher volatility = More Risk

Heteroskedasticity

Volatile Periods in the US Stock Market

Volatility and returns tend to cluster.

GARCH is a model designed to take specific advantage of that.

