## Classification of Formal Groups (Lecture 14)

## April 27, 2010

Our goal in this lecture is to prove Lazard's theorem, which asserts that a formal group law over an algebraically closed field is determined up to isomorphism by its height. We will prove this result in the following more precise form:

**Theorem 1.** Let f(x,y),  $f'(x,y) \in R[[x,y]]$  be formal group laws of height exactly n > 0 and let R' be the ring which classifies isomorphisms between f and f': that is,  $R' = R[b_0^{\pm 1}, b_1, b_2, \ldots]/I$ , where I is the ideal generated by all coefficients in the power series f(g(x), g(y)) - g(f'(x,y)), where  $g(t) = b_0 t + b_1 t^2 + \cdots$ . Then R' is isomorphic to the direct limit of a system of (injective) finite etale maps

$$R = R(1) \hookrightarrow R(2) \hookrightarrow \cdots$$

We will regard f and f' as fixed for the duration of the proof. Since f'(x,y) has height exactly n, we may assume without loss of generality that

$$f'(x,y) \equiv x + y + \sum_{0 \le i \le n^n} \lambda \frac{\binom{p^n}{i}}{p} x^i y^{p^n - i} \mod(x,y)^{p^n + 1},$$

where  $\lambda$  is invertible in R.

Our first step is to choose a more convenient set of polynomial generators for the ring  $R[b_0^{\mp 1}, b_1, b_2, \ldots]$ .

**Construction 2.** Let A be a commutative R-algebra and suppose we are given a sequence of elements  $c_0, c_1, \ldots \in A$  with  $c_0$  invertible. We define a sequence of formal group laws  $f_m(x, y)$  by induction as follows:

- (1) Set  $f_1(x,y) = f(x,y)$ .
- (2) If m is not a power of p, we let  $f_m(x,y) = g_m^{-1} f_{m-1}(g_m(x), g_m(y))$ , where  $g_m(x) = x + c_{m-1} x^m$ .
- (3) If  $m = p^{n'}$  for n' < n, we let  $f_m = f_{m-1} = g_m^{-1} f_{m-1}(g_m(x), g_m(y))$  where  $g_m(t) = t$ .
- (4) If  $m = p^n$ , we let  $f_m = g_m^{-1} f_{m-1}(g_m(x), g_m(y))$  where  $g_m(t) = c_0 t$ .
- (5) If  $m = p^{n+n'}$  for n' > 0, we let  $f_m = g_m^{-1} f_{m-1}(g_m(x), g_m(y))$  where  $g_m(t) = f_{m-1}(t, c_{n^{n'}-1}t^{p^{n'}})$ .

We note that  $f_m(x,y)$  tends to a limit  $f_{\infty}(x,y) = g^{-1}f(g(x),g(y))$  where g(t) denotes the infinite (convergent) infinite composition  $g_2 \circ g_3 \circ g_4 \circ \cdots$ . Note that  $g(t) = b_0 t + b_1 t^2 + b_2 t^3 + \cdots$  where  $b_i = c_i + decomposables$ . This gives an identification of polynomial rings

$$R[b_0^{\pm 1}, b_1, b_2, \ldots] \simeq R[c_0^{\pm 1}, c_1, \ldots].$$

We can therefore identify the ring R' of Theorem 1w ith  $R[c_0^{\pm 1}, c_1, \ldots]/I$ , where I is the ideal generated by all coefficients in the power series  $f_{\infty}(x, y) - f'(x, y)$ .

**Lemma 3.** Let  $c_0, c_1, \ldots \in A$  be as above. Assume that  $f_{m-1}(x, y)$  is congruent to f'(x, y) modulo  $(x, y)^m$ . Then  $f_m(x, y)$  is congruent to f'(x, y) modulo  $(x, y)^m$ .

*Proof.* In cases (1) through (3), we have  $g_m(t) \equiv t \mod t^m$  so it is clear that

$$f_m(x,y) \equiv f_{m-1}(x,y) \equiv f'(x,y) \mod (x,y)^m$$
.

In case (4), we have  $f_{m-1}(x,y) \equiv x+y \mod (x,y)^m$  so that

$$f_m(x,y) = c_0^{-1} f_{m-1}(c_0 x, c_0 y) \equiv x + y \mod (x,y)^m$$

The tricky part is case (5).

The tricky part is case (5). Let  $m = p^{n+n'}$  for n' > 0, and let  $c = c_{p^{n'}-1}$ , so that  $g_m(t) = f_{m-1}(t, ct^{p^{n'}})$ . For any sequence of variables  $x_1, x_2, \ldots, x_a$ , we let  $f_{m-1}(x_1, x_2, \ldots, x_a) = f_{m-1}(x_1, f_{m-1}(x_2, \ldots, f_{m-1}(x_{a-1}, x_a)) \ldots)$  (this is unambiguous since  $f_{m-1}$  is a formal group law).

We have

$$g_m f_m(x,y) = f_{m-1}(g_m(x), g_m(y)) = f_{m-1}(x, y, cx^{p^{n'}}, cy^{p^{n'}})$$

Let z = z(x,y) be such that  $cf_m(x,y)^{p^{n'}} = f_{m-1}(z,cx^{p^{n'}},cy^{p^{n'}})$ , so that  $f_{m-1}(f_m(x,y),z) = f_{m-1}(x,y)$ . We prove the following by simultaneous induction on  $m' \le m$ :

- (a) We have  $z \equiv 0 \mod ((x, y)^{m'})$ .
- (b) We have  $f_m(x,y) \equiv f_{m-1}(x,y) \equiv f'(x,y) \mod ((x,y)^{m'})$ .

These claims are obvious when m'=1, and the implication  $(a)\Rightarrow (b)$  is clear. Assume that (a) and (b) hold for some integer m'< m. The inductive hypothesis gives  $f_{m-1}(z,cx^{p^{n'}},cy^{p^{n'}})\equiv z+f_{m-1}(cx^{p^{n'}},cy^{p^{n'}})$  mod  $(x,y)^{m'+1}$ . Thus  $z\equiv cf_m(x,y)^{p^{n'}}-f_{m-1}(cx^{p^{n'}},cy^{p^{n'}})\mod(x,y)^{m'+1}$ . The inductive hypothesis gives  $f_m(x,y)^{p^{n'}}\equiv f_{m-1}(x,y)^{p^{n'}}\mod(x,y)^{p^{n'}m'}$ , so we get

$$z \equiv c f_{m-1}(x,y)^{p^{n'}} - f_{m-1}(cx^{p^{n'}}, cy^{p^{n'}}) \mod (x,y)^{m'+1}$$

By assumption, we have  $f_{m-1}(x,y) \equiv f'(x,y) \equiv x+y \mod (x,y)^{p^n}$ . It follows that

$$cf_{m-1}(x,y)^{p^{n'}} - f_{m-1}(cx^{p^{n'}}, cy^{p^{n'}}) \equiv c(x+y)^{p^{n'}} - cx^{p^{n'}} - cy^{p^{n'}} \equiv 0 \mod(x,y)^{p^{n+n'}}.$$

Since  $m' + 1 \le m = p^{n+n'}$ , we conclude that  $z \equiv 0 \mod (x, y)^{m'+1}$  as desired.

We now return to the proof of Theorem 1. By Lemma 3, we have  $f_{\infty}(x,y) = f'(x,y)$  if and only if  $f_m(x,y) \equiv f'(x,y) \mod (x,y)^{m+1}$  for all m. Note that  $f_m(x,y)$  depends only on the parameters  $c_i$  where i belongs to the set  $S_m = \{i < m : i \neq p^k - 1\} \cup \{p^k - 1 : p^{n+k} \leq m\}$ . R(m) denote the quotient ring  $R[c_i]_{i \in S_m}/I(m)$  for  $m < p^n$ , and the quotient ring  $R[c_i, c_0^{-1}]_{i:S_m}/I(m)$  for  $m \geq p^n$ , where I(m) is the ideal generated by the coefficients of  $x^iy^j$  in  $f_m(x,y) - f'(x,y)$  where  $i + j \leq m$ . Then R' is the colimit of the sequence

$$R = R(1) \rightarrow R(2) \rightarrow R(3) \rightarrow \cdots$$

To prove Theorem 1, it will suffice to show that each of the inclusions  $R(m-1) \to R(m)$  is a finite etale extension (which is injective). There are several cases to consider:

(a) Suppose that m is not a power of p. Then  $R(m) = R(m-1)[c_{m-1}]/J$ , where J is the ideal generated by coefficients of total degree m in the expression  $f_m(x,y) - f'(x,y)$ . Note that  $f_{m-1}(x,y) \equiv f'(x,y)$  mod  $(x,y)^m$ , so (by the lemma of the previous lecture) we can write

$$f'(x,y) \equiv f_{m-1}(x,y) + \mu \sum_{0 \le i \le m} \frac{\binom{m}{i}}{d} x^i y^{m-i} \mod (x,y)^{m+1}$$

where d is the greatest common divisor of the binomial coefficients  $\binom{m}{i}$ . Since m is not a power of p, the integer d is invertible in R. A simple calculation gives  $f_m(x,y) \equiv f_{m-1}(x,y) + c_m(x^m + y^m - (x+y)^m)$  mod  $(x,y)^{m+1}$ . Thus  $f_m(x,y) \equiv f'(x,y)$  if and only if  $c_m = -\frac{\mu}{d}$ . It follows that  $R(m) \simeq R(m-1)$  (that is, the coefficient  $c_m$  is uniquely determined by the requirement that  $f'(x,y) \equiv f_m(x,y)$  mod  $(x,y)^{m+1}$ .

- (b) Suppose that  $m=p^{n'}$ , n'< n. Then R(m)=R(m-1)/J, where J is the ideal generated by coefficients of degree m in the difference  $f_m(x,y)-f'(x,y)$ . We have  $f_m(x,y)=f_{m-1}(x,y)\equiv f'(x,y)\equiv x+y \mod (x,y)^{p^m}$ . It follows from the lemma of the last lecture that  $f_m(x,y)=x+y+\mu\sum_{0\leq i\leq m}\frac{\binom{p^{n'}}{i}}{p}x^iy^{m-i}$  for some uniquely determined constant  $\mu$ . Since  $f_m$  is isomorphic to f, it has height exactly n, and therefore  $\mu=0$ . It follows that  $f_m(x,y)\equiv x+y\equiv f'(x,y)\mod (x,y)^{p^m+1}$ , so that again  $R(m)\simeq R(m-1)$ .
- (c) Suppose that  $m = p^n$ . Then  $R(m) = R(m-1)[c_0^{\pm 1}]/J$  where J is the ideal generated by coefficients of degree m in  $f_m(x,y) f'(x,y)$ . We have  $f_{m-1}(x,y) \equiv f'(x,y) \equiv x+y \mod (x,y)^{p^m}$  so that

$$f_{m-1}(x,y) \equiv x + y + \lambda' \sum_{0 \le i \le m} \frac{\binom{m}{i}}{p} x^i y^{m-j} \mod (x,y)^{m+1}$$

for some constant  $\lambda'$ . It follows that

$$f_m(x,y) \equiv x + y + c_0^{p^n - 1} \lambda' \sum_{0 \le i \le m} \frac{\binom{m}{i}}{p} x^i y^{m-j} \mod (x,y)^{m+1}.$$

Consequently,  $f_m(x,y) \equiv f'(x,y) \mod (x,y)^{m+1}$  if and only if  $c_0^{p^n-1}\lambda' = \lambda$ . Since f and f' have height exactly n, the constants  $\lambda$  and  $\lambda'$  are invertible; thus  $R(m) \simeq R(m-1)[c_0]/(c_0^{p_n-1}-\frac{\lambda}{\lambda'})$ .

(d) Suppose that  $m = p^{n+n'}$  for n' > 0. Let  $c = c_{p^{n'}-1}$ , so that  $R(m) \simeq R(m-1)[c]/J$ , where J is the ideal generated by coefficients on monomials of degree m in  $f_m(x,y) - f'(x,y)$ . This is the tricky part. Since  $f_{m-1}(x,y) \equiv f'(x,y) \mod (x,y)^m$ , we can write

$$f_{m-1}(x,y) \equiv f'(x,y) + \mu \sum_{0 < i < m} \frac{\binom{m}{i}}{p} x^i y^{m-i}$$

for some constant  $\mu$ . Let z=z(x,y) be as in the proof of Lemma 3, so that  $z(x,y)\in(x,y)^m$ . We have

$$f_{m-1}(x,y) = f_{m-1}(f_m(x,y),z) \equiv f_m(x,y) + z \mod (x,y)^{m+1}.$$

Consequently, we have  $f_m(x,y) \equiv f'(x,y) \mod (x,y)^{m+1}$  if and only if  $z \equiv \mu \sum_{0 < i < m} \frac{\binom{m}{i}}{p} x^i y^{m-i} \mod (x,y)^{m+1}$ .

The proof of Lemma 3 gives

$$z \equiv c f_{m-1}(x, y)^{p^{n'}} - f_{m-1}(c x^{p^{n'}}, c y^{p^{n'}}) \mod (x, y)^{m+1}$$

We have

$$f_{m-1}(x,y) \equiv f'(x,y) \equiv x + y + \lambda \sum_{0 < j < p^n} \frac{\binom{p^n}{j}}{p} x^j y^{p^n - j} \mod(x,y)^{p^n + 1}.$$

It follows that

$$z \equiv (c\lambda^{p^{n'}} - \lambda c^{p^n}) \sum_{0 \le j \le n^n} \frac{\binom{p^n}{j}}{p} x^{p^{n'}j} y^{m-p^{n'}j} \mod(x, y)^{m+1}.$$

Thus  $f_m(x,y) \equiv f'(x,y) \mod (x,y)^{m+1}$  if and only if the following conditions are satisfied:

(i) The coefficients  $\mu^{\binom{p^{n+n'}}{i}}$  vanishes when i is not divisible by  $p^n$ .

(ii) For  $0 < j < p^{n'}$ , we have

$$\mu \frac{{p^{n+n'}\choose p^n j}}{p} = (\lambda^{p^{n'}}c - \lambda c^{p^n})\frac{{p^{n'}\choose j}}{p}$$

We claim that these conditions are satisfied if and only if  $c^{p^n} - \lambda^{p^{n'}-1}c + \frac{\mu}{\lambda} = 0$ . It follows that  $R(m) = R(m-1)[c]/(c^{p^n} - \lambda^{p^{n'}-1}c + \frac{\mu}{\lambda})$  is a finite étale extension of R(m-1). To complete the proof, we verify the following combinatorial identity:

Lemma 4. Let n be an integer. Then

$$\binom{p^n}{i} \equiv \begin{cases} \binom{p}{j} & \text{if } i = p^{n-1}j \\ 0 & \text{otherwise} \end{cases} \mod p^2.$$

*Proof.* Let  $G = \mathbf{Z}/p^n\mathbf{Z}$  be a cyclic group. Then G acts by translation on the set S of all i-element subsets of G. Let G' be the subgroup  $p\mathbf{Z}/p^n\mathbf{Z}$ . Any point of S is either fixed by G', or is fixed by a smaller subgroup and therefore has size divisible by  $p^2$ . It follows that the cardinality |S| is congruent modulo  $p^2$  to the cardinality of the fixed point set  $|S^{G'}|$ , which is the number of ways to choose a subset of the quotient G/G' having cardinality  $j = \frac{i}{p^{n-1}}$ .