2.3. Considérese la población de los grupos de la materia Introducción a la Estadística que se imparte en cierta universidad. La universidad tiene 647 estudiantes de esta materia repartidos en 15 grupos con M_i estudiantes cada grupo según la tabla siguiente:

Extraemos una muestra de cinco grupos con probabilidades proporcionales a los tamaños de los grupos con reemplazo y anotamos el total de horas durante una semana que todos los estudiantes de cada grupo han empleado para estudiar la materia de Introducción a la Estadística. Los datos se recogen en la siguiente tabla:

Si se ha selecciona la muestra {a, b, c, d, e} por el método del tamaño acumulativo, estimar la cantidad promedio de tiempo semanal que un estudiante empleó para estudiar la materia Introducción a la Estadística midiendo la calidad de la estimación. Estimar por intervalos al 95%.

Primero cargaremos la informacion de la poblacion y la des muestras, con ellos obtendremos la lista de intervalos, la cual se muestra a continuacion

```
In [155]: import pandas as pd
import numpy as np
poblacion = pd.read_csv('tabla.csv', sep=';', na_values=".")
muestras = pd.read_csv('muestra.csv', sep=';', na_values=".")
total_alumnos = poblacion['tamaño'].sum()

intervals_list = []

linf = 0
lsup = 0
for x in poblacion['tamaño']:
    linf = lsup+1
    lsup = lsup + x
    intervals_list.append([linf,lsup,])

intervals_df = pd.DataFrame(intervals_list, columns=['linf','lsup'])
intervals_df
```

Out[155]:

	linf	Isup
		•
0	1	44
1	45	77
2	78	103
3	104	125
4	126	201
5	202	264
6	265	284
7	285	328
8	329	382
9	383	416
10	417	462
11	463	486
12	487	532
13	533	632
14	633	647

ahora crearemos una lista de errores y los ubicaremos en la lista de intervalos para encontrar su clase perteneciente

Out[156]:

	error	clase	tamaño
0	389	10	34
1	324	8	44
2	88	3	26
3	123	4	22
4	509	13	46

A continuacion calculare la tabla de muestras y probabilidades

```
In [157]: tabla2 = []
    i = 0
    for e in solution_df['clase']:
        grupo = e
        tamaño = solution_df['tamaño'][i]
        xi = muestras['horas'][i]
        xi_barra = muestras['horas'][i]/solution_df['tamaño'][i]
        pi = tamaño/total_alumnos
        tabla2.append([grupo,tamaño,xi,xi_barra,pi])
        i = i+1
    # tabla1 = pd.DataFrame(,muestras['horas']/poblacion['tamaño'],poblacion['tamaño']/total_alumnos], columns=['grupo', 'tamaño', 'xi', 'xi_', 'pi'])
    tabla3 = np.around(tabla2, decimals=4)

tabla_df = pd.DataFrame(tabla3,columns=['grupo','tamaño','xi','xi_','pi'])
tabla_df
```

Out[157]:

	grupo	tamaño	хi	xi_	pi
0	10.0	34.0	120.0	3.5294	0.0526
1	8.0	44.0	203.0	4.6136	0.0680
2	3.0	26.0	100.0	3.8462	0.0402
3	4.0	22.0	90.0	4.0909	0.0340
4	13.0	46.0	40.0	0.8696	0.0711

```
In [158]: n = len(tabla_df['xi_'])
    suma = 0
    for x in tabla_df['xi_']:
        suma = suma + x
    print(suma/n, "horas")
```

3.38994 horas

Una estimacion insesgada del promedio de horas/semana de un estudiante es 3.4 hrs/semana