Matematická analýza 3

Obsah

• <u>Číselné řady</u>

- Základní pojmy
- Kritéria absolutní konvergence
- Kritéria neabsolutní konvergence
- Odhad zbytku řady
- Přerovnávání řad
- Vektorové funkce
 - Motivační příklady
 - Základní pojmy
 - Limita a spojitost vektorové funkce
 - Limita vektorové funkce
 - Spojitost vektorové funkce
 - <u>Diferenciál vektorové funkce</u>

Číselné řady

Motivační příklady

Sierpinského koberec

- Achilles běží rychlostí $10~ms^{-1}$, želva běží rychlostí $1~ms^{-1}$. Na startu má želva náskok 1~m. Za jak dlouho se setkají a kde? Úloha vede na součet řady $100 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$.
- Jaká je plocha Sierpinského koberce (viz Figure 1) o hraně 1 j? Úloha vede na součet řady $\frac{1}{9}\cdot\sum_{n=1}^{\infty}\left(\frac{8}{9}\right)^{n-1}$.

Základní pojmy

Definice (řady a základní pojmy): Řadou (reálných čísel) rozumíme výraz $a_1+a_2+\ldots+a_n+\ldots\stackrel{\mathrm{def}}{=}\sum_{n=1}^\infty a_n$, kde pro každé $n\in\mathbb{N}$ je $a_n\in\mathbb{R}$, tj. (a_n) je posloupností reálných čísel. Číslo a_n nazýváme \mathbf{n} -tým členem řady. Posloupnost $(s_n):=a_1+\ldots+a_n$ nazýváme posloupností částečných součtů řady. Existuje-li $\lim s_n=S\in\mathbb{R}^*$, nazýváme ji součtem řady a označíme ji $\sum_{n=1}^\infty a_n$. Pokud S existuje a platí, že $s\in\mathbb{R}$, pak řekneme, že řada konverguje. Pokud $S=\{+\infty,-\infty\}$ nebo S neexistuje, pak řekneme, že řada diverguje.

- Aritmetická řada $1+2+\ldots n+\ldots = \sum_{n=1}^\infty n = \infty$, řada diverguje.
- Geometrická řada $1+q+q^2+\ldots+q^n+\ldots=\sum_{n=1}^\infty q^{n-1}=\left\{egin{array}{c} \frac{1}{1-q},q\in(1,-1)\\ rac{\pi}{2},q\notin(1,-1) \end{array}\right.$.
- Harmonická řada $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots=\sum_{n=1}^{\infty}\frac{1}{n}=\infty$, řada diverguje.
- Řada $\sum_{n=1}^{\infty} rac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(rac{1}{n} rac{1}{n+1}
 ight) = 1$, řada je konvergentní.
- Řada $\sum_{n=1}^{\infty} rac{1}{(n-1)!} = e$ (Taylorův polynom e^x v bodě 0).
- Řada $\sum_{n=1}^{\infty} {(-1)^{n+1}} \cdot rac{1}{2n-1} = rac{\pi}{4}$ (Taylorův polynom atanx v bodě 0).

Věta (nutná podmínka konvergence řady): Konverguje-li řada $\sum_{n=1}^{\infty} a_n$, poté $\lim a_n = 0$.

Z předpokladu platí, že $\lim s_n=S$ $\in \mathbb{R}$ existuje. Poté $\lim a_n=\lim \left(s_n-s_{n-1}\right)=\lim s_n-\lim s_{n-1}=S-S=0.$

Věta: Konverguje-li řada $\sum_{n=1}^{\infty} |a_n|$, poté konverguje i řada $\sum_{n=1}^{\infty} a_n$.

Z předpokladu platí $\sum_{n=1}^{\infty}|a_n|=S$ ∈ \mathbb{R} . Zavedeme $\forall n$ ∈ \mathbb{N} : $a_n^+=\max\{a_n,0\}$, $a_n^-=\max\{-a_n,0\}$. Platí, že $a_n^+\geq 0$ a $a_n^-\geq 0$. Poté $s_n=a_1+\ldots a_n=a_1^+-a_1^-+\ldots +a_n^+-a_n^-=s_n^+-s_n^-$. Dále $\lim s_n=\lim s_n^+-\lim s_n^-$, tudíž pokud s_n^+ a s_n^- jsou konvergentní, poté i s_n je konvergentní. S využitím věty o limitě neklesající a shora omezené posloupnosti ukažme, že posloupnost s_n^+ je neklesající díky definici a_n^+ a shora omezená $s_n^+=a_1^++\ldots +a_n^+\leq |a_1|+\ldots +|a_n|\to S\leq S$. Podobně $s_n^-=a_1^-+\ldots +a_n^-\leq |a_1|+\ldots +a_n^-$

Definice (absolutní konvergence): Konverguje-li řada $\sum_{n=1}^{\infty}|a_n|$, poté řadu $\sum_{n=1}^{\infty}a_n$ nazýváme **absolutně konvergentní řadou**. Konverguje-li řada $\sum_{n=1}^{\infty}a_n$, ale řada $\sum_{n=1}^{\infty}|a_n|$ diverguje, poté řadu $\sum_{n=1}^{\infty}a_n$ nazýváme **neabsolutně konvergentní řadou**.

Řada $\sum_{n=1}^{\infty} rac{(-1)^{n+1}}{n}$ je neabsolutně konvergentní.

Kritéria absolutní konvergence

Poznámka: Píšeme-li "V(n) platí pro všechna dost velká $n\in\mathbb{N}$ ", myslíme " $\exists n_0\in\mathbb{N}: \forall n\geq n_0, n\in\mathbb{N}: V(n)$ ".

Věta (srovnávací kritérium): Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou takové řady, že:

- 1. $|a_n| \leq b_n$, pro všechna dost velká $n \in \mathbb{N}$;
- 2. řada $\sum_{n=1}^{\infty} b_n$ je konvergentní;

poté $\sum_{n=1}^{\infty} a_n$ konverguje absolutně.

Díky druhému předpokladu platí, že $s_n^b = \sum_{k=1}^n b_k$ je shora omezená. Určeme $s_n^a = \sum_{k=1}^n |a_k|$, poté $s_n^a \leq s_n^b + c, c \in \mathbb{R}$ a s_n^a je také shora omezená. Navíc s_n^a je neklesající a tudíž s_n^a je konvergentní.

Důsledek (věta o srovnávacím kritériu): Nechť $\sum_{n=1}^\infty a_n$ a $\sum_{n=1}^\infty b_n$ jsou takové řady, že:

- $1. \sum_{n=1}^{\infty} a_n = +\infty;$
- 2. $0 \leq a_n \leq b_n$ pro všechna dost velká $n \in \mathbb{N}$;

poté $\sum_{n=1}^{\infty} b_n = +\infty$.

• Řada $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Předpokládejme, že řada konverguje a srovnejme s řadou $\sum_{n=1}^{\infty} \frac{1}{n(n-1)}$. Platí, že $\forall n \in \mathbb{N}, n \geq 2: \frac{1}{n^2} \leq \frac{1}{n(n-1)}$. Musíme ukázat, že $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ konverguje. K tomu využijeme rovnost s konvergentní řadou $\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Řada $\sum_{n=1}^{\infty} \frac{1}{n^2}$ je absolutně konvergentní.

• Řada $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. Předpokládejme, že řada diverguje a srovnejme s řadou $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$. Platí, že $\forall n \in \mathbb{N}, n \geq 1: \frac{1}{\sqrt{n}} \geq 1$

$$rac{1}{n}$$
. Řada $\sum_{n=1}^{\infty}rac{1}{\sqrt{n}}=+\infty$ je divergentní.

Věta (d'Alambertovo kritérium): Mějme $\sum_{n=1}^{\infty} a_n$ takovou řadu, že:

- 1. pokud platí $\exists q \in \mathbb{R}^+, q < 1: \left| rac{a_{n+1}}{a_n}
 ight| \leq q$ pro všechna dost velká $n \in \mathbb{N}$, pak $\sum_{n=1}^\infty a_n$ je absolutně konvergentní.
- 2. pokud platí $\left|rac{a_{n+1}}{a_n}
 ight|>1$ pro všechna dost velká n $\in \mathbb{N}$, pak $\sum_{n=1}^{\infty}a_n$ je divergentní.

Dokažme první tvrzení: z předpokladu platí, že $|a_{n+1}| \leq q \cdot |a_n|$, tudíž $s = |a_1| + \ldots + |a_{n_0}| + |a_{n_0+1}| + \ldots \leq |a_1| + \ldots + |a_{n_0}| + q \, |a_{n_0}| + q^2 \, |a_{n_0}| + \ldots = |a_1| + \ldots + |a_{n_0}| + |a_{n_0}| \cdot \frac{q}{1-q} < \infty$ a řada $\sum_{n=1}^\infty a_n$ je absolutně konvergentní. Dokažme druhé tvrzení: $\forall n \geq n_0 : |a_{n+1}| > |a_n| > 0 \Rightarrow \lim a_n \neq 0$ a řada $\sum_{n=1}^\infty a_n$ je divergentní.

Důsledek (limitní d'Alambertovo kritérium): Mějme $\sum_{n=1}^\infty a_n$. Pokud $\lim \left| \frac{a_{n+1}}{a_n} \right| < 1$, pak $\sum_{n=1}^\infty a_n$ je absolutně konvergentní. Je-li $\lim \left| \frac{a_{n+1}}{a_n} \right| > 1$, pak $\sum_{n=1}^\infty a_n$ je divergentní.

Pro první tvrzení využijme d'Alambertovo kritérium 1 s $q\in \left(\lim\left|\frac{a_{n+1}}{a_n}\right|,1\right)$. Pro druhé tvrzení využijme d'Alambertovo kritérium 2 s podmínkou, že pro všechna dost velká $n\in\mathbb{N}$ platí $\left|\frac{a_{n+1}}{a_n}\right|>1$.

- Řada $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$. Využijme limitní d'Alambertovo kritérium: $\lim \frac{a_{n+1}}{a_n} = \lim \frac{\left(((n+1)!)^2\right)}{\frac{(2n+2)!}{(2n)!}} = \lim \frac{\left(((n+1)!)^2\right)}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2} = \lim \frac{n+1}{2(2n+1)} = \frac{1}{4} < 1$. Řada $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ je absolutně konvergentní.
- Řada $\sum_{n=1}^{\infty} \frac{2^n}{n}$. Využijme limitní d'Alambertovo kritérium: $\lim \frac{a_{n+1}}{a_n} = \lim \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \lim \frac{2n}{n+1} = 2 > 1$. Řada $\sum_{n=1}^{\infty} \frac{2^n}{n} = +\infty$ je divergentní.

Věta (Cauchyho kritérium): Mějme $\sum_{n=1}^{\infty} a_n$ takovou řadu, že:

- 1. pokud platí $\exists q \in \mathbb{R}^+, q < 1: \sqrt[n]{|a_n|} \leq q$ pro všechna dost velká $n \in \mathbb{N}$, pak $\sum_{n=1}^\infty a_n$ je absolutně konvergentní.
- 2. pokud platí $\sqrt[n]{|a_n|} \geq 1$ pro všechna dost velká $n \in \mathbb{N}$, pak $\sum_{n=1}^\infty a_n$ je divergentní.

Dokažme první tvrzení: z předpokladu platí, že $|a_n| \leq q^n$, tudíž $s = |a_1| + \ldots + |a_{n_0}| + |a_{n_0+1}| + \ldots \leq |a_1| + \ldots + |a_{n_0-1}| + q^{n_0} + q^{n_0+1} + \ldots = |a_1| + \ldots + q^n \cdot \frac{1}{1-q} < \infty$ a řada $\sum_{n=1}^\infty a_n$ je absolutně konvergentní. Dokažme druhé tvrzení: $\forall n \geq n_0 : |a_n| > 1 \Rightarrow \lim a_n \neq 0$ a řada $\sum_{n=1}^\infty a_n$ je divergentní.

Důsledek (limitní Cauchyho kritérium): Mějme $\sum_{n=1}^\infty a_n$. Pokud $\lim \sqrt[n]{|a_n|} < 1$, pak $\sum_{n=1}^\infty a_n$ je absolutně konvergentní. Je-li $\lim \sqrt[n]{|a_n|} > 1$, pak $\sum_{n=1}^\infty a_n$ je divergentní.

• Řada $\sum_{n=1}^{\infty} \left(\frac{n-1}{n^2}\right)^n$. Využijme limitní Cauchyho kritérium: $\lim \sqrt[n]{\left(\frac{n-1}{n^2}\right)^n} = \lim \frac{n-1}{n^2} = 0 < 1$.

Řada $\sum_{n=1}^{\infty} \left(\frac{n-1}{n^2}\right)^n$ je absolutně konvergentní.

• Řada $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$.

Využijme limitní Cauchyho kritérium:
$$\lim \sqrt[n]{rac{2^n}{n^2}} = \lim rac{2}{\left(\sqrt[n]{n}
ight)^2} = 2 > 1.$$

Řada $\sum_{n=1}^{\infty} rac{2^n}{n^2} = +\infty$ je divergentní.

Věta (integrální kritérium): Nechť f je nezáporná, nerostoucí a spojitá funkce v intervale $\langle 1, \infty \rangle$. Nechť dále platí, že $\forall n \in \mathbb{N}: |a_n| = f(n)$. Poté řada $\sum_{n=1}^\infty a_n$ absolutně konverguje <u>právě tehdy</u>, konverguje-li $\int_1^\infty f(x) dx$ (tzn. že $\lim_{t \to \infty} \int_1^t f(x) dx$ existuje a je konečná).

Uvědomme si, že existují limity $\lim s_n \in \mathbb{R}^*$ a $\lim_{t \to \infty} \int_1^t f(x) dx \in \mathbb{R}^*$. Dokažme $\sum_{n=1}^\infty |a_n| < \infty \Leftrightarrow \int_1^\infty f(x) dx < \infty$. Z předpokladů $s_n = \sum_{k=1}^n |a_k| = \sum_{k=1}^n f(k) \geq \int_1^{n+1} f(x) dx \geq \sum_{k=2}^{n+1} f(k) = \sum_{k=2}^{n+1} |a_k| = s_{n+1} - |a_1|$. Přejdeme-li $n \to \infty$: $\sum_{k=1}^\infty |a_k| \geq \int_1^\infty f(x) dx \geq \sum_{k=1}^\infty |a_k| - |a_1|$.

- Řada $\sum_{n=1}^\infty rac{1}{n}$. Využijme integrální kritérium: $\lim_{t o \infty} \int_1^t rac{1}{x} dx = \lim_{t o \infty} \ln t = \infty$. Řada $\sum_{n=1}^\infty rac{1}{n} = \infty$ je divergentní.
- Řada $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Využijme integrální kritérium: $\lim_{t \to \infty} \int_1^t \frac{1}{x^2} dx = \lim_{t \to \infty} \left(-\frac{1}{t} + 1\right) = 1$. Řada $\sum_{n=1}^{\infty} \frac{1}{n^2}$ je konvergentní.

Kritéria neabsolutní konvergence

Věta (Leibnizovo kritérium): Nechť posloupnost (a_n) je taková, že platí:

- 1. $\forall n \in \mathbb{N} : a_n \geq 0$;
- 2. $\forall n \in \mathbb{N} : a_n \geq a_{n+1};$
- 3. $\lim a_n = 0$;

poté řada $\sum_{n=1}^{\infty}{(-1)^{n+1}\cdot a_n}$ je konvergentní.

Označme si posloupnost sudých částečných součtů $s_n^* \coloneqq s_{2n} = \sum_{k=1}^{2n} (-1)^{k+1} \cdot a_k$. Víme, že $s_{n+1}^* = s_{2n+2} = s_{2n} - a_{2n+1} + a_{2n+2} \ge s_n^*$, neboť $a_{2n+1} \ge a_{2n+2} \Rightarrow 0 \ge a_{2n+2} - a_{2n+1}$. Dále $s_n^* = s_{2n} = a_1 - a_2 + a_3 - \dots + a_{2n-1} - a_{2n} = a_1 - (a_2 - a_3) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n}$. Každá s postupných závorek je nezáporná, a_{2n} je také nezáporné, tudíž $s_n^* \le a_1$. Jedná se o neklesající, shora omezenou posloupnost, tudíž $\lim s_n^* = s \in \mathbb{R}$. Označme si posloupnost lichých částečných součtů $s_n^{**} = s_{2n+1} = \sum_{k=1}^{2n+1} (-1)^{k+1} \cdot a_k$. Víme, že $s_n^{**} = s_n^* + a_{2n+1}$ a $\lim s_n^{**} = \lim s_n^* + \lim a_{n2+1} = s + 0 = s \in \mathbb{R}$.

- Řada $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Členy $a_n = \frac{1}{n}$ jsou nezáporné, nerostoucí a $\lim \frac{1}{n} = 0$. Jsou splněny předpoklady Leibnizova kritéria. Řada $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ je konvergentní.
- Řada $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{n+1}{n}$. Členy $a_n = \frac{n+1}{n}$ jsou nezáporné, nerostoucí, avšak $\lim \frac{n+1}{n} = 1$, tudíž nejsou splněny předpoklady

Leibnizova kritéria. Neboť $\lim (-1)^{n+1} \cdot \frac{n+1}{n}$ neexistuje (posloupnost lichých a sudých členů má různou limitu), není splněna nutná podmínka konvergence.

Řada
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 je divergentní.

Věta (Abelovo-Dirichletovo kritérium): Nechť posloupnost (a_n) je monotónní. Platí-li jedna z následujících podmínek:

- 1. posloupnost (a_n) je omezená a řada $\sum_{n=1}^\infty b_n$ je konvergentní. (Abelovo kritérium.)
- 2. $\lim a_n=0$ a posloupnost částečných součtů řady $\sum_{n=1}^\infty b_n$ je omezená. (Dirichletovo kritérium.)

Poté řada $\sum_{n=1}^{\infty} a_n \cdot b_n$ je konvergentní.

- Řada $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Využijme Dirichletovo kritérium: $a_n=\frac{1}{n}$ (posloupnost je monotónní a $\lim \frac{1}{n}=0$) a $b_n=(-1)^n$ (posloupnost částečných součtů $-1 \leq \sum_{k=1}^n (-1)^k \leq 0$ je omezená). Řada $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ je konvergentní.
- Řada $\sum_{n=1}^{\infty} \frac{n^2 \cdot \sin n}{(n^2+1) \cdot 2^n}$. Využijeme Abelovo kritérium: $a_n = \frac{n^2}{n^2+1}$ (posloupnost je monotónní, kladná, shora omezená) a $b_n = \frac{\sin n}{2^n}$ (absolutní konvergenci ukažme srovnávacím kritériem: $\frac{|\sin n|}{2^n} \leq \frac{1}{2^n}, \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$). Řada $\sum_{n=1}^{\infty} \frac{n^2 \cdot \sin n}{(n^2+1) \cdot 2^n}$ je konvergentní.
- Řada $\sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin \frac{n \cdot \pi}{4}$. Využijme Dirichletovo kritérium; $a_n = \frac{1}{n}$ (posloupnost je monotónní a $\lim \frac{1}{n} = 0$) a $b_n = \sin \frac{n \cdot \pi}{4}$ (platí $0 \leq \sum_{k=1}^n \sin \frac{k \cdot \pi}{4} \leq 1 + \sqrt{2}$). Řada $\sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin \frac{n \cdot \pi}{4}$ je konvergentní.

Odhad zbytku řady

Mějme řadu $\sum_{n=1}^\infty a_n$. Řadu $a_{n+1}+a_{n+2}+\ldots=\sum_{k=n+1}^\infty a_k$ nazveme **zbytkem řady** $\sum_{\mathbf{k}=\mathbf{1}}^\infty \mathbf{a_k}$ **po n-tém členu**. Pro konvergentní řady je užitečné odhadnout součet jejího zbytku. Platí, že $\sum_{k=1}^\infty a_k=s_1\in\mathbb{R}$ $\Leftrightarrow \sum_{k=n+1}^\infty a_k=s_2\in\mathbb{R}$.

Součet zbytku řady můžeme odhadnout pomocí několika metod:

- ullet pomocí srovnávacího kritéria ($\sum_{k=n+1}^{\infty}a_k \leq \sum_{k=n+1}^{\infty}b_k=s$);
- pomocí integrálního kritéria ($\sum_{k=n+1}^{\infty}a_k \leq \int_n^{\infty}f(x)dx$);
- ullet pomocí limitního d'Alambertova kritéria nechť $q=rac{a_{n+1}}{a_n}$, poté $r_n\leq |a_n|\cdotrac{q}{1-q}$;
- pomocí Leibnizova kritéria ($\sum_{k=n+1}^{\infty} (-1)^{k+1} \cdot a_k \leq a_{2n+1}$; je-li n sudé, $\sum_{k=n+1}^{\infty} (-1)^{k+1} \cdot a_k \geq 0$; je-li n liché, $\sum_{k=n+1}^{\infty} (-1)^{k+1} \cdot a_k \leq 0$).
- Odhadněte součet $\sum_{n=1}^{\infty} \frac{1}{(n-1)!}$. Podle limitního d'Alambertova kritéria je řada absolutně konvergentní. $\sum_{n=1}^{\infty} \frac{1}{(n-1)!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \sum_{n=5}^{\infty} \frac{1}{(n-1)!}$ a využijeme srovnávací kritérium pro odhad zbytku řady

$$\begin{array}{l} \sum_{n=5}^{\infty} \frac{1}{(n-1)!} \leq \sum_{n=5}^{\infty} \frac{1}{2^{n-1}} = \frac{1}{8}. \\ \mathrm{Tudíž} \ \frac{8}{3} \leq \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \leq \frac{8}{3} + \frac{1}{8} \approx e. \end{array}$$

- Odhadněte součet $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Podle integrálního kritéria je řada absolutně konvergentní. $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \sum_{n=5}^{\infty} \frac{1}{n^2}$. Využijeme integrální kritérium pro odhad zbytku řady: $0 \leq \sum_{n=5}^{\infty} \frac{1}{n^2} \leq \int_4^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \left[-\frac{1}{x} \right]_4^t = \lim_{t \to \infty} \left(-\frac{1}{t} + \frac{1}{4} \right) = \frac{1}{4}$. Tudíž $\frac{205}{144} \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq \frac{205}{144} + \frac{1}{4}$.
- $\begin{array}{l} \bullet \quad \text{Odhadněte součet $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$.} \\ \text{Podle Leibnizova kritéria je řada konvergentní.} & \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} = \frac{1}{1} \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \sum_{n=5}^{\infty} \frac{(-1)^{n-1}}{2n-1}$.} \\ \text{Využijeme Leibnizovo kritérium pro odhad zbytku řady: } & 0 \leq \sum_{n=5}^{\infty} \frac{(-1)^{n-1}}{2n-1} \leq \frac{1}{9}$.} \\ \text{Tudíž $\frac{76}{105} \leq \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \leq \frac{76}{105} + \frac{1}{9}$.} \end{array}$

Přerovnávání řad

Definice: Mějme prosté zobrazení $\varphi\colon \mathbb{N}\mapsto \mathbb{N}$. Řadu $\sum_{n=1}^\infty a_{\varphi(n)}$ nazveme **přerovnáním řady** $\sum_{n=1}^\infty a_n$.

Věta (komutativita přerovnání řady): Konverguje-li $\sum_{n=1}^{\infty}a_n$ absolutně, konverguje absolutně i řada přerovnaná a má stejný součet. Konverguje-li $\sum_{n=1}^{\infty}a_n$ neabsolutně, přerovnaná řada má libovolný součet či přerovnaná řada byla divergentní.

Vektorové funkce

Motivační příklady

• Mějme hmotný bod v gravitačním poli $(g=10ms^{-2})$. Pohybujeme se pod úhlem $\varphi=\frac{\pi}{4}$. Známe $v_0,t_0,(x,y)$ a hledáme v,t,(x,y). Tento příklad můžeme řešit funkcí $f:\mathbb{R}^2\to\mathbb{R}^2:f(t,v)=\left[\frac{\sqrt{2}}{2}vt,\frac{\sqrt{2}}{2}vt-10t^2\right]^T$. Pokud $c=[t_0,v_0]$, hledáme c+h=[t,v]. Víme, že $f(c+h)\approx f(c)+df_c(h)=\left[\frac{\sqrt{2}}{2}v_0t_0,\frac{\sqrt{2}}{2}v_0t_0-5t_0^2\right]^T+\left[f_{1t}'\left(t_0,v_0\right)h_1+f_{1v}'\left(t_0,v_0\right)h_1,f_{2t}'\left(t_0,v_0\right)h_2+f_{2v}'\left(t_0,v_0\right)h_2\right]^T=\left[\frac{\sqrt{2}}{2}v_0t_0,\frac{\sqrt{2}}{2}v_0t_0-5t_0^2\right]^T+\left[f_{1t}'\left(f_{1v}'\right)\left[h_1\right]_{t_0}\left[h_1\right]_{t_0}\right]$

Základní pojmy

- Symbolem \mathbb{R}^n rozumíme metrický a vektorový prostor. Prvky \mathbb{R}^n jsou uspořádané n-tice reálných čísel $x=[x_1,\dots,x_n]$, **euklidovská metrika** $\rho(x,y)\coloneqq\sqrt{\left(x_1-y_1\right)^2+\dots+\left(x_n-y_n\right)^2}$
- Zavádíme **normu** prvku $x:\|x\|=\rho(x,0)=\sqrt{x_1^2+\dots x_n^2}$. Víme, že $\rho(x,y)=\|x-y\|$. Zavádíme **okolí bodu x o poloměru** ε : $U(x,\varepsilon)\coloneqq\{y\in\mathbb{R}^n:\rho(x,y)<\varepsilon\}$ a **prstencové okolí bodu x o poloměru** ε : $P(x,\varepsilon)=U(x,\varepsilon)\smallsetminus\{x\}$.
- Pro **limitu n-rozměrné posloupnosti** a_k platí $\lim a_k = \lim \left[a_{k_1}, a_{k_2}, \dots, a_{k_n}\right] = \left[a_1, a_2, \dots, a_n\right] = a \in \mathbb{R}^n \Leftrightarrow \lim \rho\left(a_k, a\right) = 0 \Leftrightarrow \|a_k a\| = 0 \Leftrightarrow \forall i \in \{1, \dots, n\} : \lim a_{k_i} = a_i.$

Definice: **Vektorovou funkcí** z \mathbb{R}^n do \mathbb{R}^m (reálnou m-rozměrnou funkcí n reálných proměnných) nazýváme každé zobrazení $\mathbb{R}^n \to \mathbb{R}^m$, tzn. každému $x = [x_1, \dots, x_n] \in D_f \subset \mathbb{R}^n$ přiřadí právě jednu hodnotu $f(x) = [f_1(x), \dots, f_m(x)] \in H_f \subset \mathbb{R}^m$. Množinu D_f nazýváme **definiční obor funkce** f, množinu H_f nazýváme **oborem hodnot funkce** f a f_1, \dots, f_m nazýváme **složky vektorové funkce** $f: \mathbb{R}^n \to \mathbb{R}^m$.

• Pokud m=n, nazýváme funkci f vektorovým polem. Je-li m=1, nazýváme funkce f skalárním polem.

 \acute{U} mluva: Je-li $f:\mathbb{R}^n o\mathbb{R}^m$ dána pouze svým předpisem, chápeme D_f jako množinu všech $x\in\mathbb{R}^n$, pro které má předpis smysl.

- Nechť $f=[f_1,\ldots,f_n]:\mathbb{R}^n o\mathbb{R}^m$. Poté $D_f=igcap_{i=1}^mD_{f_i}.$
- $\begin{array}{l} \bullet \quad \text{Určete D_f pro $f:\mathbb{R}^2\to\mathbb{R}^3:f(x,y)=\left[\sqrt{x+y},x^2+1,x\cdot\sqrt{y}\right].}\\ \text{Víme, že $D_f=\left\{[x,y]\in\mathbb{R}^2:x+y\geq 0\right\}\cap\mathbb{R}^2\cap\left\{[x,y]\in\mathbb{R}^2:y\geq 0\right\}=\\ \left\{[x,y]\in\mathbb{R}^2:y\geq -x\wedge y\geq 0\right\}. \end{array}$

Definice: Mějme $f,g:\mathbb{R}^n o\mathbb{R}^m$ a $c{\in}\mathbb{R}$. Funkce $f+g,f-g,c\cdot f$ definujeme takto:

- $(f+g)(x) \coloneqq f(x) + g(x)$;
- (f-g)(x) := f(x) g(x);
- $(c \cdot f)(x) := c \cdot f(x)$.

Limita a spojitost vektorové funkce

Limita vektorové funkce

Mějme $f:\mathbb{R}^n o\mathbb{R}, x_0\in\mathbb{R}^n, a\in\mathbb{R}^*$. Poté platí $x_0
eq x_n o x_0\Rightarrow f\left(x_n
ight) o a\Leftrightarrow \lim_{x o x_0}f(x)=a$.

Definice: Řekneme, že funkce $f:\mathbb{R}^n o\mathbb{R}^m$ má v bodě $\mathbf{x_0}\in\mathbb{R}^n$ limitu $a\in\mathbb{R}^m$ (píšeme $\lim_{x\to x_0}f(x)=a$), platí-li:

$$x_{0}
eq x_{k}
ightarrow x_{0}\Rightarrow \left[f_{1}\left(x_{k}
ight),\ldots,f_{m}\left(x_{k}
ight)
ight]
ightarrow a=\left[a_{1},\ldots,a_{m}
ight]$$

• $\lim_{x\to x_0} f(x) = a \Rightarrow \exists P(x_0) \subset D_f$.

Věta: Nechť $f(x)=[f_1(x),\dots f_n(x)]:\mathbb{R}^n o\mathbb{R}^m, x_0\in\mathbb{R}^n, a\in\mathbb{R}^m.$ Poté $\lim_{x o x_0}f(x)=a\Leftrightarrow orall i\in\{1,\dots,n\}:\lim_{x o x_0}f_i(x)=a_i.$

Spojitost vektorové funkce

Mějme $f:\mathbb{R}^n o\mathbb{R}, x_0\in\mathbb{R}^n$. Funkce je spojitá v bodě x_0 právě tehdy, když $\lim_{x o x_0}f(x)=f\left(x_0
ight)$.

Definice: Řekneme, že funkce $f:\mathbb{R}^n o\mathbb{R}^m$ je **spojitá v bodě \mathbf{x_0}\in\mathbb{R}^n**, platí-li:

$$\lim_{x o x_0}f(x)=f\left(x_0
ight)$$

• Ze spojitosti f v bodě x_0 plyne, že $\exists U\left(x_0
ight)\subset D_f.$

Řekneme, že funkce $f:\mathbb{R}^n o\mathbb{R}^m$ je **spojitá v bodě \mathbf{x_0}\in\mathbb{R}^\mathbf{n} vzhledem k \mathbf{M}\subset\mathbb{R}^\mathbf{n}**, platí-li:

$$\forall i \in \mathbb{N} : x_{ki} \in M : x_0 \neq x_k \rightarrow x_0 \Rightarrow f(x_k) \rightarrow f(x_0)$$

Řekneme, že funkce $f:\mathbb{R}^n o\mathbb{R}^m$ je **spojitá na množině \mathbf{M}\subset\mathbb{R}^n**, platí-li, že pro všechna $x_0\in M$ je f spojitá v bodě x_0 vzhledem k množině M.

Řekneme, že funkce $f:\mathbb{R}^n o\mathbb{R}^m$ je **spojitá**, platí-li, že je spojitá na množině D_f .

Věta: Nechť $f:\mathbb{R}^n o \mathbb{R}^m, x_0 \in M \subset \mathbb{R}^n$. Poté f je spojitá v x_0 (spojitá v x_0 vzhledem k M, spojitá na M, spojitá) právě tehdy, platí-li:

 $orall i \in \{1,..,m\}: f_i$ je spojitá v x_0 (spojitá v x_0 vzhledem k M, spojitá na M, spojitá).

Diferenciál vektorové funkce

Pro $f:\mathbb{R}^n o\mathbb{R}$ platí $f(c+h)=f(x)+df(c)+\omega(h),\lim_{\|h\| o0}rac{\omega(h)}{\|h\|}=0.$ Pro diferenciál vektorové funkce v bodě c platí $df_c(h)=f'(c)h=egin{bmatrix} f'_{1x_1}(c)&\cdots&f'_{1x_n}(c)\\ \vdots&\ddots&\vdots\\ f'_{mx_n}(c)&\cdots&f'_{mx_n}(c)\end{bmatrix}egin{bmatrix} h_1\\ \vdots\\ h_n\end{bmatrix}=[df_1(c),\ldots,df_m(c)]^T.$