# Домашнее задание №1 по курсу «Машинное обучение»: основы машинного обучения

#### Скавыш Максим

## Задание 1

Пусть  $f:(0,+\infty) \to R$  обратимая функция, X-сл. величина.

Доказать: если для любого t>0  $P[X>t]\leq f(t)$ , то для любого  $\delta>0$  с вероятностью как минимум  $1-\delta$  выполняется  $X\leq f^{-1}(\delta)$ 

#### Решение:

для любого t > 0 выполняется  $P[X > t] \le f(t)$ .

Пусть f(t) обратимая функция, тогда имеет место  $f^{-1}(f(t)) = t$ .

Обозначим для любого фиксированного  $t \in (0, +\infty)$ :  $f(t) = \delta \Rightarrow f^{-1}(\delta) = t$ ,  $\delta \in R$ 

Перепишем  $P[X > t] \le f(t)$  как  $P[X > f^{-1}(\delta)] \le \delta$  и так как вероятность не может быть меньше 0, то накладываем на  $\delta$  ограничение  $\delta > 0$ .

Выражение  $P[X > f^{-1}(\delta)] \le \delta$  эквивалентно  $P[X \le f^{-1}(\delta)] > 1 - \delta$  из чего следует что если для любого t > 0,  $P[X > t] \le f(t)$ , то для любого  $\delta > 0$  с вероятностью как минимум  $1 - \delta$  выполняется  $X \le f^{-1}(\delta)$ .

## Задание 2

#### Решение:

Рассмотрим класс полиномиальных классификаторов:

$$h_p(x) = \begin{cases} 1, & a_0 + a_1 x + \dots + a_n x^n \ge 0 \\ & 0, \text{иначе} \end{cases}$$

и построим в нем классификатор, совпадающий с  $h_s(x)$  из условия.

Пусть  $S = ((x_1, y_1), ..., (x_m, y_m))$  — тренировачная выборка

Пусть 
$$L = \{ i \in (1, \dots, m) : y_i = 1 \}$$

Построим полином который будет принимать 0-вые значения только в  $X_L = \{x_i, i \in L\}$ , таким полиномом является полином с корнями  $\{x_i, i \in L\}$  и его можно представить в виде:  $\prod_{i \in L} (x - x_i)$ .

Рассмотрим полином  $P_L(x) = (-1) \prod_{i \in L} (x-x_i)^2$  он всегда  $\leq 0$  и принимает значение 0 только в точках  $X_L$ , тогда классификатор вида  $\begin{cases} 1, & P_L(x) = \geq 0 \\ 0, \text{ иначе} \end{cases}$  будет принадлежать классу  $h_n(x)$  и совпадать с классификатором  $h_s(x)$ .

Какой вывод можно сделать о ERM-парадигме в классе пороговых полиномиальных классификаторов?

В классе пороговых полиномиальных классификаторов обязательно найдется классификатором с полиномом степени не меньше  $\sum_{i \in (1,\dots,m)} y_i$  имеющий ошибку на

тренировочной выборке равной 0, однако это будет приводить к переобучению и тому, что на всем D такой классификатор будет иметь большую погрешность.

## Задание 3

$$h_{a_1,b_1,a_2b_2}(x_1,x_2) =$$
 
$$\begin{cases} 1, & a_1 \leq x_1 \leq b_1 \text{ и } a_2 \leq x_2 \leq b_2 \\ & 1, \text{иначе} \end{cases}$$

1. Пусть алгоритм A выбирает наименьший прямоугольник, содержащий все точки положительного класса. Докажите, что A является реализацией ERM-алгоритма

Выполнено предположение о реализуемости  $\Rightarrow$  найдётся такая гипотеза  $h^* \in H$ , что  $L_{D,f}(h^*) = 0 \Rightarrow$  найдётся такая гипотеза  $h_s \in H$ , что  $L_s(h_s) = 0$ 

Пусть алгоритм А выбирает наименьший прямоугольник, содержащий все точки положительного класса. Тогда на тренировочной выборке гипотеза  $h_s$  полученная алгоритмом будет иметь минимально возможную эмпирическую ошибку  $L_s(h_s)=0$  ERM-алгоритм выбирает самую лучшую гипотезу по отношению к тренировочной выборке:  $ERM_H(S) \in argmin_{h \in H} L_s(h) \Rightarrow$  А является реализацией ERM-алгоритма.

- 2. Реализуйте программу
- 3. Постройте график true risk в зависимости от m. Запустите программу для всех m от 1 до n (n выберите в зависимости от показателей алгоритма). Какой в среднем понадобился размер выборки, чтоб true risk 10%? 1%? 0.1%? https://github.com/MaksimSkavysh/Math/blob/master/ml-homework\_1.py-Copy2.ipynb

10% ~ m в среднем 67 1% ~ m в среднем 550 0.1% ~ m в среднем 4000

