University of Rome "La Sapienza"

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2018/2019

Prof. Luca locchi

Luca locchi

15. Convolutional Neural Networks

1 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sapienza University of Rome, Italy Master in Artificial Intelligence and Robotics Machine Learning (2018/19)

15. Convolutional Neural Networks

Luca locchi

Luca locchi

15. Convolutional Neural Networks

Summary

- Convolution
- Convolutional layers
- Pooling
- Example: LeNet
- "Famous" CNNs
- Resources

Luca locchi

15. Convolutional Neural Networks

3 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Motivation

Up to now we treated inputs as general feature vectors

In some cases inputs have special structure:

- Audio
- Images
- Videos

Signals: Numerical representations of physical quantities

Deep learning can be directly applied on signals by using suitable operators

Motivation - Examples

Audio

Note: variable length 1D vectors (1D tensor)

Luca locchi

15. Convolutional Neural Networks

5 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Motivation - Examples

Images

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

Note: multi-channel 2D matrices (3D tensor)

Video

A sequence of color images sampled through time Note: sequence of multi-channel 2D matrices (4D tensor)

Convolution

Continuous functions

$$(x*w)(t) \equiv \int_{a=-\infty}^{\infty} x(a) w(t-a) da$$

Discrete functions

$$(x*w)(t) \equiv \sum_{a=-\infty}^{\infty} x(a) w(t-a)$$

Discrete limited 2D functions:

$$(I * K)(i,j) \equiv \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

I: input, K: kernel

Luca locchi

15. Convolutional Neural Networks

7 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Convolution

Commutative

$$(I * K)(i, j) = (K * I)(i, j) = \sum_{m} \sum_{n} I(i - m, j - n)K(m, n)$$

Cross-correlation

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n)K(m, n)$$

implemented in machine learning libraries (called convolution).

Image Convolutions

Original Emboss

Interactive example: http://setosa.io/ev/image-kernels/

Luca locchi

15. Convolutional Neural Networks

9 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Convolutional Neural Networks

FNN with one or more convolutional layers.

Convolutional layer

Three stages:

- convolutions between input and kernel
- non-linear activation function (detector)
- pooling

Convolutional layer: Convolution

1. Convolution stage

$$(I*K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Very efficient in terms of memory requirements and generalization accuracy.

- Sparse connectivity
- Parameter sharing

Luca locchi

15. Convolutional Neural Networks

11 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sparse connectivity

sparse interactions/ sparse connectivity: outputs depend only on a few inputs (as kernel is usually much smaller than input)

Parameter sharing

Learn only one set of parameters (for the kernel) shared to all the units.

k parameters instead of $m \times n$ (note: $k \ll m$)

Luca locchi

15. Convolutional Neural Networks

13 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Padding

valid padding: output contains only valid values (depends on kernel size) **same** padding: input layer is padded with zeros, output size independent of kernel size.

Convolutional layer: Detector

2. Detector stage

Use non-linear activation functions.

- ReLU
- tanh

Luca locchi

15. Convolutional Neural Networks

15 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Convolutional layer: Pooling

3. Pooling stage

Implements invariance to local translations.

max pooling returns the maximum value in a rectangular region. average pooling returns the average value in a rectangular region.

When applied with stride, it reduces the size of the output layer.

Example: pool width 3 and stride 2

LeNet

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

Luca locchi

15. Convolutional Neural Networks

17 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Handwritten recognition with LeNet

MNIST database

Accuracy up to 98 %.

ImageNet and ILSVRC

ImageNet Huge dataset of images over 14 M labelled high resolution images about 22 K categories

ILSVRC Competitions of image classification at large scale (since 2010)

1.2 M images in 1 K categories

5 guesses about image label

http://image-net.org

Luca locchi

15. Convolutional Neural Networks

19 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

"Famous" CNNs

- GoogLeNet
- VGG
- ResNet

Image classification error rate (ILSVRC)

Common uses of famous CNNs

- Train the model on a new dataset
- Use pre-trained models (e.g., trained on ImageNet) to
 - predict ImageNet categories for new images
 - extract features to train another model (e.g., SVM)
- Refine pre-trained models on a new set of classes

Examples: https://keras.io/applications/

Luca locchi

15. Convolutional Neural Networks

21 / 23

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Resources

Frameworks

- Caffe/Caffe 2 (UC Berkeley) C/C++, Python, Matlab
- TensorFlow (Google) C/C++, Python, Java, Go
- Theano (U Montreal) Python
- CNTK (Microsoft) Python, C++ , C#/.Net, Java
- Torch/PyTorch (Facebook) Lua/Python
- MxNet (DMLC) Python, C++, R, Perl,
- Darknet (Redmon J.) C

High-level application libraries and models

- Keras
- TFLearn

Conclusions

- CNNs are deep networks using convolution
- Very efficient (memory and generalization accuracy)
- Many successful examples
- Requires very large amount of data and very high computational resources.

Luca locchi

15. Convolutional Neural Networks

23 / 23