

Clearance-bias Exploration - A Robot Motion Planning Algorithm that Finds Safer Paths Faster

Department of Computer Science, University of Illinois at Urbana-Champaign

Regina Rex

Diane Uwacu Shawna Thomas duwacu@tamu.edu sthomas@cs.tamu.edu Nancy M. Amato

namato@illinois.edu

ILLINOIS

Motion Planning

Input: robot, an environment, start and goal point

Output: path from start to goal without colliding with obstacles

Example of a Motion Planning Problem

Applications of Motion Planning

Building Evacuation Robotics Bioinformatics

(a) iRobot Roomba (b) Simulation of a building evacuation (c) Studying Protein molecules

Motivation

Research Problem

- Existing Motion Planning algorithms use workspace property to guide planning, e.g., Skeleton-guided planners
- These algorithms are not exploiting workspace properties while planning

Mobile Robot with safer path (green) and shorter/less safe path (red)

Approach

- Introduce the idea of using workspace metrics to bias how the environment is explored [2]
- Use max clearance to find safer paths and min clearance to explore hard areas

Clearance-bias Exploration

The Clearance-bias Metric is applied to Dynamic Region-biased Rapidly-exploring Random Tree (DR-RRT) [1]

Example Execution

rrex@uwsuper.edu

Environment with Start (red) and Goal (blue)

Workspace Skeleton (WS)

Max Clearance-bias Planning Process

Safer path found with Max Clearance-bias

Algorithm

Algorithm 1 Clearance-bias DR-RRT

Input: Environment env, Start s, Goal g, (min/max, clearance) biasMetric

Output: Path p

- 1: $WS \leftarrow \texttt{GetWorkspaceSkeleton}(env)$
- 2: $AS \leftarrow AnnotateSkeleton(WS)$
- $3: g \leftarrow s$
- 4: $r \leftarrow \text{GetInitialRegion}(AS, s)$
- 5: while $\neg done \ do$
- 6: $C_r \leftarrow \texttt{GetChildren}(r)$
- $r \leftarrow \texttt{SelectRegion}(C_r, biasMetric)$
- $T \leftarrow \mathtt{GrowRRT}(r)$
- 9: end while
- 10: $p \leftarrow \mathsf{Query}(T, g)$
- 11: return p

Example Results

Method	Regular DR-RRT	Biased DR-RRT
Bias Metric	Planning Success	Maximum Clearance
Avg Collision Detection Calls	117,043	96,586
Avg Path Clearance	3.27	4.63

Table showing experiment results averaged over ten random seeds in the 3D Obstacles Environment.

Experiments

We compare: Regular DR-RRT and Max Clearance-bias

MazeTunnel Environment

(b) Annotated WS

(a) Regular **DR-RRT** roadmap

(b) Regular DR-RRT roadmap & path

Clearance-bias roadmap

(a) Max (b) Max Clearance-bias roadmap & path

Method	Avg Run Time	Avg Collision Detection Calls
Regular DR-RRT	0.4634	11,552
Max Clearance-bias	0.1833	6,157

Table showing experiment results averaged over ten random seeds in the MazeTunnel Environment.

Conclusion & Future Work

Conclusion

 We utilize workspace properties such as clearance to find safer and more feasible paths in a faster time

Future Work

 Extend the clearance method to other motion planning applications like animation and Image-guided Medical Needle Steering

Acknowledgment & References

Acknowledgment

I want to express my gratitude to Nancy Amato (faculty mentor), Shawna Thomas (research specialist mentor), for their support and guidance throughout this project. This research is supported in part by the Computing Research Association-Women (CRA-W) Distributed Research Experience for Undergraduate (DREU) and by the Computer Science Department of the University of Illinois at Urbana-Champaign.

References

[1] J. Denny, R. Sandstrom, A. Bregger, and N. M. Amato, "Dynamic Region-biased Rapidly-exploring Random Trees," In. Proc. of the Twelfth International Workshop on the Algorithmic Foundations of Robotics (WAFR), San Francisco, CA, USA, Dec. 18–20, 2016. [2] R. Rex, D. Uwacu, S. Thomas, N. M. Amato, "Metrics for Efficient Environment Exploration in Robot Motion Planning," Technical Report, TR18-002, Parasol Laboratory, Department of Computer Science, Texas A&M University, College Station TX 77848, USA, Aug 2018.