Vorlesung Systemtheorie und Regelungstechnik I (SR1) Albert-Ludwigs-Universität Freiburg – Sommersemester 2020

Übungsblatt 7: Dynamisches Verhalten linearer Systeme (zu Kapitel 5)

Prof. Dr. Moritz Diehl, Jochem De Schutter

1. Berechnen Sie analytisch die Impulsantwort g(t) des folgenden Systems. (1 P.)

$$\dot{y}(t) + y(t) = \dot{u}(t)$$

TIPP: Formen Sie das System zunächst in eine Zustandsraumdarstellung um und identifizieren Sie die Matrizen A, B, C und D.

- 2. Gegeben sind die folgenden Sprungantworten $h_1(t)$ bis $h_4(t)$ von vier unterschiedlichen Systemen für $t \in [0, \infty)$. Berechnen Sie daraus die Impulsantworten g(t) der Systeme für $t \in (0, \infty)$, d.h. für alle Zeitpunkte t > 0 ohne t = 0. (4 P.)
 - (a) $h_1(t) = 2t^2$
 - (b) $h_2(t) = 1 e^{-t}$
 - (c) $h_3(t) = 2e^{-2t}$

$$\text{(d)} \ \ h_4(t) = \begin{cases} 10-2t & \text{für } t \leq 5 \\ 0 & \text{für } t > 5 \end{cases}$$

3. Betrachten Sie nun das System $h_5(t)$, das aus dem System aus Aufgabe 2c) mit erweitertem Definitionsbereich besteht:

$$h_5(t) = \begin{cases} h_3(t) & \text{für } t \in [0, \infty) \\ 0 & \text{für } t \in (-\infty, 0) \end{cases}$$

Wie lautet die Impulsantwort $g_5(t)$ für $t \in (-\infty, \infty)$?

TIPP: die Sprungantwort kann auch als $h_5(t) = h_3(t) \cdot \sigma(t)$ geschrieben werden.

4. Sind die folgenden Systeme BIBO-stabil?

(2 P.)

(1 P.)

- (a) Ein System besitzt die Impulsantwort $g(t) = \frac{3}{(2+t)^2}$.
- (b) Ein System hat die Zustandsraumdarstellung $\dot{x}(t) = -2x(t) + 3u(t)$, y(t) = 4x(t) + u(t).
- 5. Gegeben ist folgende Impulsantwort g(t). Zeichnen Sie die Sprungantwort h(t) in die folgende Abbildung ein. Es gilt g(t) = h(t) = 0 für $t \le 0$. (2 P.)

Abbildung 1: Impulsantwort eines Systems