Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Информационная безопасность (Криптография)
Лабораторная работа 2.4

Вариант 12

Работу выполнил студент группы Р34111: Кривоносов Егор Дмитриевич

Преподаватель:

Маркина Татьяна Анатольевна

2022 г.

г. Санкт-Петербург

Оглавление

Цель работы	3
Задание	3
Ход работы	3
Скриншот работы программы Bcalc.exe	4
Листинг разработанной программы	4
Скриншоты работы программы Python	7
Вывод	9
Полезные ссылки	10

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством Китайской теоремы об остатках.

Задание

Вариант	Модуль			Блоки зашифрованного текста		
	N_{1}	N_{2}	N_3	C_{1}	C_2	C_3
12	473302960111	476210148031	478258728547	384927940677 473049749478 98141220439 47772742554 85402795076 49762300554 243238759870 132174590679 394107604075 292566652796 394413369679 176379334217 425745574767 279970734890	47337377053 15502694428 81559584886 360290532716 378412185459 471133458035 276394936545 2116712669 37111299200 387986386867 97786707059 256442600412 455327955288 119517607360	342954751710 440889851539 67503329756 462595462377 84092175909 57911552136 60433527302 25311956275 370327609107 296462225245 241699085506 465708091819 454345671530 210180151910

Экспонента для варианта задание e = 3

Ход работы

1. Последовательно вычисляем параметры:

a.
$$M_0 = N_1 \cdot N_2 \cdot N_3 = 107795534809612608831244752757766227$$

b.
$$m_1 = N_2 \cdot N_3 = 227751659918484715540957$$

c.
$$m_2 = N_1 \cdot N_3 = 226361271920218317988717$$

d.
$$m_3 = N_1 \cdot N_2 = 225391672697969798191441$$

e.
$$n_1 = m_1^{-1} mod N_1 = 56632858425$$

f.
$$n_2 = m_2^{-1} \mod N_2 = 63677728068$$

g.
$$n_3 = m_2^{-1} mod N_2 = 357081230267$$

- 2. Вычисляем значение для блока зашифрованного текста $S=c_1\cdot n_1\cdot \ m_1+c_2\cdot n_2\cdot \ m_2+c_2\cdot n_2\cdot \ m_2$
- 3. Вычисляем значение $M = (S \mod M_0)^{1/3}$
- 4. Преобразуем результат в текст.
- 5. Повторяем шаги 2-5 для каждой строки.

Скриншот работы программы Bcalc.exe

Листинг разработанной программы

```
from decimal import Decimal
N1 = 473302960111
N2 = 476210148031
N3 = 478258728547
C1 = '''
384927940677
473049749478
98141220439
47772742554
85402795076
49762300554
243238759870
132174590679
394107604075
292566652796
394413369679
176379334217
425745574767
279970734890
(\tau_{-},\tau_{-},\tau_{-})
C2 = '''
47337377053
15502694428
81559584886
360290532716
378412185459
471133458035
276394936545
2116712669
37111299200
387986386867
97786707059
256442600412
455327955288
119517607360
C3 = '''
342954751710
440889851539
67503329756
462595462377
84092175909
57911552136
60433527302
25311956275
370327609107
296462225245
241699085506
465708091819
454345671530
210180151910
```

```
def solver(N1, N2, N3, C1, C2, C3):
   print("======"")
   print("======= DATA =======")
   print("======="")
   print(f"N1 = {N1}")
   print(f"N2 = {N2}")
   print(f"N3 = {N3}")
   print(f"C1 = {C1}")
   print(f"C2 = {C2}")
   print(f"C3 = {C3}")
   print("======"")
   print("== SOLVE - Chinese theorem ==")
   print("======"")
   c1 = list(map(int, C1.split()))
   c2 = list(map(int, C2.split()))
   c3 = list(map(int, C3.split()))
   message = ""
   M0 = N1 * N2 * N3
   m1 = N2 * N3
   m2 = N1 * N3
   m3 = N1 * N2
   n1 = pow(m1, -1, N1)
   n2 = pow(m2, -1, N2)
   n3 = pow(m3, -1, N3)
   print(f"M0 = N1 * N2 * N3 = {N1} * {N2} * {N3} = {M0}", "\n")
   print(f"m1 = N2 * N3 = {N2} * {N3} = {m1}")
   print(f"m2 = N1 * N3 = {N1} * {N3} = {m2}")
   print(f"m3 = N1 * N2 = {N1} * {N2} = {m3}", "\n")
   print(f"n1 = m1^(-1) mod N1 = {m1}^(-1) mod {N1} = {n1}")
   print(f''n2 = m2^{(-1)} \mod N2 = \{m2\}^{(-1)} \mod \{N2\} = \{n2\}'')
   print(f"n3 = m3^{(-1)} mod N3 = {m3}^{(-1)} mod {N3} = {n3}", "\n")
   for i in range(len(c1)):
       S = (c1[i] * n1 * m1) + (c2[i] * n2 * m2) + (c3[i] * n3 * m3)
       SmodM0 = S % M0
       M = round(SmodM0 ** (Decimal(1 / 3)))
       part = M.to bytes(4, byteorder='big').decode('cp1251')
       message += part
       print(f"S[{i}] = c1[{i}]*n1*m1 + c2[{i}]*n2*m2 + c3[{i}]*n3*m3 = {S}")
       print(f"SmodM0[{i}] = S[{i}] mod M0 = {SmodM0}")
       print(f''M = SmodM0[{i}]^{(1/3)} = {M} = text(M) = {part}'', "\n")
   print(f"message = {message}")
solver(N1, N2, N3, C1, C2, C3)
```

Скриншоты работы программы Python

```
====== DATA =======
N1 = 473302960111
N2 = 476210148031
N3 = 478258728547
C1 =
384927940677
473049749478
98141220439
47772742554
85402795076
49762300554
243238759870
132174590679
394107604075
292566652796
394413369679
176379334217
425745574767
279970734890
47337377053
15502694428
81559584886
360290532716
378412185459
471133458035
276394936545
2116712669
37111299200
387986386867
97786707059
256442600412
455327955288
119517607360
```

```
C3 =
 342954751710
 440889851539
 67503329756
 462595462377
 84092175909
 57911552136
 60433527302
 25311956275
 370327609107
 296462225245
 241699085506
 465708091819
 454345671530
 210180151910
 == SOLVE - Chinese theorem ==
 \texttt{M0} = \texttt{N1} \, \star \, \texttt{N2} \, \star \, \texttt{N3} \, = \, 473302960111 \, \star \, 476210148031 \, \star \, 478258728547 \, = \, 107795534809612608831244752757766227 \, \text{MO} 
 m1 = N2 * N3 = 476210148031 * 478258728547 = 227751659918484715540957
 m2 = N1 * N3 = 473302960111 * 478258728547 = 226361271920218317988717
 m3 = N1 * N2 = 473302960111 * 476210148031 = 225391672697969798191441
n1 = m1^{(-1)} \mod N1 = 227751659918484715540957^{(-1)} \mod 473302960111 = 56632858425
n2 = m2^(-1) mod N2 = 226361271920218317988717^(-1) mod 476210148031 = 63677728068
n3 = m3^{-1} \mod N3 = 225391672697969798191441^{-1} \mod 478258728547 = 357081230267
S[0] = c1[0]*n1*m1 + c2[0]*n2*m2 + c3[0]*n3*m3 = 33249291074643700591741430647283763208392958263
SmodM0[0] = S[0] mod M0 = 65227483215832160623477089592
M = SmodM0[0]^(1/3) = 4025410798 => text(M) = подо
S[1] = c1[1]*n1*m1 + c2[1]*n2*m2 + c3[1]*n3*m3 = 41809159574815271033549934178033181326451434751
SmodM0[1] = S[1] mod M0 = 54459903129128949413417755391
M = SmodM0[1]^{(1/3)} = 3790463231 => text(M) = 6 Hag
S[2] = c1[2]*n1*m1 + c2[2]*n2*m2 + c3[2]*n3*m3 = 7874341289352671358879145889050580252549139823
SmodM0[2] = S[2] mod M0 = 168859955225098304125215048
M = SmodM0[2]^{(1/3)} = 552724722 \Rightarrow text(M) = cut
S[3] = c1[3]*n1*m1 + c2[3]*n2*m2 + c3[3]*n3*m3 = 43040606646594973619794247920773027284021144565
SmodM0[3] = S[3] mod M0 = 68498594807201486009395776000
M = SmodM0[3]^{(1/3)} = 4091606760 \Rightarrow text(M) = уаци
```

```
S[4] = c1[4]*n1*m1 + c2[4]*n2*m2 + c3[4]*n3*m3 = 13324044838581673790828756298311319865007921127
SmodM0[4] = S[4] \mod M0 = 78421941393248706639336304264
M = SmodM0[4]^{(1/3)} = 4280349154 \Rightarrow text(M) = я св
S[5] = c1[5]*n1*m1 + c2[5]*n2*m2 + c3[5]*n3*m3 = 12093747260009970516493098908916131256325533702
SmodM0[5] = S[5] mod M0 = 59653418418400550554965654856
M = SmodM0[5]^{(1/3)} = 3907315186 \Rightarrow text(M) = идет
S[6] = c1[6]*n1*m1 + c2[6]*n2*m2 + c3[6]*n3*m3 = 11985232670234611318067127486350385468437916364
SmodM0[6] = S[6] mod M0 = 57398467964121855547794721233
M = SmodM0[6]^{(1/3)} = 3857448177 => text(M) = ельс
S[7] = c1[7]*n1*m1 + c2[7]*n2*m2 + c3[7]*n3*m3 = 3772514215089980837084731199038732871128257464
SmodM0[7] = S[7] mod M0 = 67665921498096193958738276125
M = SmodM0[7]^{(1/3)} = 4074959845 => text(M) = твуе
S[8] = c1[8]*n1*m1 + c2[8]*n2*m2 + c3[8]*n3*m3 = 35423345420042419849213243531506611690548860504
SmodM0[8] = S[8] mod M0 = 67116250898853891523482398671
M = SmodM0[8]^{(1/3)} = 4063895791 => text(M) = T: \Pi
S[9] = c1[9]*n1*m1 + c2[9]*n2*m2 + c3[9]*n3*m3 = 33226303105098034071923364845394887861480174567
SmodM0[9] = S[9] mod M0 = 64427957598391047551664123904
M = SmodM0[9]^{(1/3)} = 4008895984 => text(M) = orep
```

```
$\text{S[10]} = c1[10]*n1*m1 + c2[10]*n2*m2 + c3[10]*n3*m3 = 25949448060178168986854372116741833450186110861
$\text{SmodM0[10]} = S[10] \text{ mod M0} = 78421913141670446003564544000
$\text{M} = SmodM0[10]^(1/3) = 4280348640 => \text(M) = \text{M} \text{ ma}
$\text{S[11]} = c1[11]*n1*m1 + c2[11]*n2*m2 + c3[11]*n3*m3 = 43453035995378279003026000624166739695330643590
$\text{SmodM0[11]} = S[11] \text{ mod M0} = 61206700082427061652239191352
$\text{M} = SmodM0[11]^(1/3) = 3940938478 => \text(M) = \text{KeTO}
$\text{S[12]} = c1[12]*n1*m1 + c2[12]*n2*m2 + c3[12]*n3*m3 = 48621702902655796825326238345957797834445964713
$\text{SmodM0[12]} = S[12] \text{ mod M0} = 54781128070979442116678545951
$\text{M} = SmodM0[12]^(1/3) = 3797901151 => \text{text(M)} = \text{B}____
$\text{S[13]} = c1[13]*n1*m1 + c2[13]*n2*m2 + c3[13]*n3*m3 = 22249831231546813521103020985899092885026036180
$\text{SmodM0[13]} = S[13] \text{ mod M0} = 4064905100762239656020443136
$\text{M} = SmodM0[13]^(1/3) = 1595940896 => \text{text(M)} = ___
$\text{message} = \text{nogO666688 cutyaquy CbuqetenbctByet: noteps naketob_____
```

Полученный результат: "подобная ситуация свидетельствует: потеря пакетов_____"

Вывод

В ходе выполнения данной лабораторной работы я ознакомился с методом для атаки на алгоритм шифрования RSA, основанном на Китайской теореме об остатках.

Полезные ссылки

Библиотека Decimal

$$x = y^e mod z$$