RAPPORTO SUL MODELLO SIMULATIVO DEL PROCESSO PRODUTTIVO

1. Contesto aziendale e processo produttivo

L'industria alimentare rappresenta uno dei comparti più rilevanti del settore secondario in Italia, caratterizzandosi per l'integrazione tra tradizione artigianale, innovazione tecnologica e capacità di penetrazione sui mercati internazionali. All'interno di questo panorama si colloca Vicenzi SPA virgola in realtà emblematica del settore dolciario italiano.

Fondata nel 1905 da Matilde Vicenzi a San Giovanni Lupatoto, in provincia di Verona l'azienda ha saputo trasformarsi nel corso del tempo dal laboratorio artigianale a gruppo industriale di dimensioni internazionali. La crescita è stata accompagnata da scelte strategiche rilevanti come l'acquisizione dei marchi "Grisbì" e "Mr.Day" virgola che hanno ampliato l'offerta e consolidato la presenza sui mercati nazionali e globali.

Oggi il gruppo conta tre stabilimenti produttivi, impiega oltre 360 addetti e realizza un fatturato superiore a 160 milioni di euro, esportando in quasi cento paesi. La sua missione si fonda su tre pilastri: la valorizzazione della tradizione dolciaria italiana, l'investimento continuo in ricerca e sviluppo, e l'impegno verso la sostenibilità ambientale e sociale.

Dal punto di vista produttivo, Vicenzi si distingue per la capacità di unire processi altamente automatizzati con il mantenimento di ricette e standard qualitativi tipici dell'artigianalità. Le fasi principali del ciclo produttivo comprendono:

- La selezione delle materie prime, con particolare attenzione alla tracciabilità e all'origine certificata;
- La lavorazione e preparazione degli impasti, attraverso linee automatizzate che garantiscono uniformità e qualità;
- La cottura, raffreddamento e confezionamento, effettuati con macchinari avanzati e packaging sostenibili;
- Il controllo qualità e la logistica, fondamentali per garantire sicurezza alimentare, efficienza distributiva e rispetto delle normative internazionali.

Questa combinazione di tradizione, innovazione e organizzazione rende l'azienda un caso ideale per sviluppare un modello simulativo del processo produttivo, utile sia in chiave didattica che gestionale.

2. Codice Python sviluppato

Alla fine della rappresentazione in forma semplificata il processo produttivo è stato sviluppato un modello in linguaggio Python che consente di simulare la produzione di un lotto composto da più tipologie di prodotti.

Il codice si fonda su alcuni elementi chiave:

- La generazione causale delle quantità da produrre per ciascun prodotto;
- L'assegnazione di parametri operativi variabili (tempo unitario di produzione, capacità giornaliera per-prodotto e capacità complessiva dell'impianto);

- Il calcolo del makespan, inteso come tempo minimo necessario, espresso in giornate intere per completare la produzione del lotto;
- La produzione di un report leggibile, utile a interpretare lo scenario e i risultati ottenuti.

Il codice è stato scritto, facendo uso esclusivamente di librerie standard già incluse nell'ambiente di programmazione. Questa scelta risponde all'esigenza di mantenere il modello leggero, portabile e facilmente eseguibile anche su sistemi privi di pacchetti esterni.

In particolare, sono state utilizzate le seguenti librerie:

Random

La libreria è stata impiegata per la generazione di numeri casuali, sia interi sia decimali. Essa è fondamentale per introdurre variabilità nella quantità da produrre e nei parametri operativi (tempi unitari, capacità giornaliere). L'uso della funzione Random (seed) consente inoltre di fissare un seme iniziale e ottenere così risultati ripetibili, caratteristica utile per verificare e replicare la simulazione:

Math

All'interno del modello, la libreria math è stata utilizzata per l'impegno della funzione ceil, che permette di arrotondare all'intero superiore i valori decimali. Tale operazione è necessaria nel calcolo del makespan, in quanto i risultati devono essere espressi in giornate operative intere, non in frazioni di giorno.

Typing

Questa libreria non incide direttamente sul calcolo, ma è stata utilizzata per migliorare la leggibilità del codice. In particolare, i suoi strumenti consentono di specificare il tipo di variabile e valori restituiti dalle funzioni, ad esempio Dict, List, Tuple. Tali annotazioni hanno finalità documentative e didattiche.

L'uso di sole librerie standard dimostra che anche con strumenti di base è possibile realizzare una simulazione efficace e chiara, non avendo quindi la necessità di ricorrere a framework complessi o pacchetti esterni.

Struttura del codice

Il programma è stato organizzato seguendo un approccio modulare, al fine di rendere il codice di facile lettura, modificabile ed estendibile. Ogni parte della simulazione è stata isolata in una funzione dedicata, con l'obbiettivo di separare i compiti e ridurre la complessità complessiva.

La struttura logica del codice può essere suddivisa in tre blocchi principali:

• Definizione dei parametri di base

Nella parte iniziale del file sono stati definiti i valori costanti e gli intervalli utilizzati per la generazione dei dati (ad esempio quantità minime e quantità massime, i range dei tempi unitari e delle capacità giornaliere). Questa sezione ha la funzione di rendere il codice configurabile: modificando tali valori è possibile simulare scenari diversi senza alterare la logica del programma.

• Definizione delle funzioni

Le funzioni genera_quantita, genera_parmetri, calcola_makespan e stampa_report racchiudono la logica del modello, ciascuna con un compito specifico. La scelta di utilizzare

funzioni distinte garantisce chiarezza e facilita eventuali riutilizzi e estensioni future (ad esempio l'aggiunta di nuovi vincoli o indicatori di performance).

Blocco principale di esecuzione

L'ultima parte del file è racchiusa all'interno della condizione if name = " main ":

Questo costrutto è tipico di Python e serve a distinguere due casi:

- se il file viene eseguito direttamente, il blocco viene avviato e la simulazione parte;
- se il file viene importato con modulo in un altro programma, il blocco non viene eseguito automaticamente.

All'interno di questo blocco si susseguono quattro passaggi logici:

- 1. Generazioni casuale delle quantità da produrre;
- 2. Generazione casuale dei parametri operativi;
- 3. Calcolo del makespan sulla base dei dati ottenuti;
- 4. Stampa del report finale, contenente lo scenario e i risultati della simulazione.

Questa organizzazione lineare, con parametri iniziali, funzioni modulari e blocco principale, rendi il codice semplice da leggere e da spiegare.

Funzioni Implementate

Il programma è stato suddiviso in più funzioni, ognuna con un compito ben definito. Questo approccio consente di isolare le singole responsabilità e facilita sia la lettura che la manutenzione del codice. Le funzioni implementate sono:

genera quantita

Questa funzione si occupa di definire la domanda produttiva che prende in input: l'elenco dei prodotti, un intervallo di quantità ammissibili e il generatore casuale, dando in output: un dizionario che associa a ciascun prodotto la quantità da produrre. La logica su cui si basa è: per ogni prodotto viene estratto un valore intero compreso nell'intervallo stabilito.

In questo modo è possibile simulare scenari diversi ad ogni esecuzione, mantenendo tuttavia la ripetibilità dei risultati grazie al seme fissato nel generatore casuale.

genera parametri

Questa funzione definisce i vincoli operativi del sistema produttivo. Prende in input l'elenco dei prodotti, gli intervalli dei tempi unitari, delle capacità per prodotto e della capacità complessiva giornaliera, fornendo in output: come primo risultato un dizionario che per ogni prodotto contiene il tempo medio di lavorazione per unità (t_unit) e la capacità massima giornaliera (cap_giorno); come seconda risultato il valore della capacità complessiva giornaliera espressa in ore (cap_tot_ore_giorno). I valori estratti casualmente entro i range forniti, così fa simulare condizioni operative differenti. Questa funzione permette quindi di introdurre nel modello la variabilità tipica dei sistemi reali, legata a fattori tecnologici, organizzativi e strutturali.

calcola makespan

È la funzione che esegue il calcolo vero e proprio del tempo minimo necessario per completare il lotto. In input abbiamo le quantità da produrre, i parametri operativi e la capacità complessiva giornaliera. In output otteniamo un dizionario chi riporta: il tempo totale di lavorazione (espresso in ore); i giorni minimi richiesti dal vincolo di orari giornalieri dell'impianto; i giorni minimi richiesti dal vincolo di capacità per prodotto; il makespan finale, espresso in giornate intere. Il makespan viene determinato prendendo il massimo tra i due vincoli (globale e per prodotto) arrotondando all'intero superiore. In questo modo si ottiene una stima sintetica ma significativa della durata complessiva del processo produttivo.

stampa report

Questa funzione allo scopo di rendere i risultati leggibili e facilmente interpretabili. In input abbiamo i nomi dei prodotti, le quantità generate, i parametri operativi, la capacità complessiva e i risultati calcolati. In output riceviamo una stampa ordinata a schermo. Analizzando nello specifico, vengono prima e riportati i parametri dello scenario, poi le quantità e i tempi richiesti per ogni prodotto, e infine i risultati globali della simulazione (ore totali, giorni minimi, makespan). Grazie a questa funzione, il modello non restituisce solo numeri grezzi, non vero e proprio report di sintesi.

3. Processo di sviluppo del codice

Il percorso di sviluppo del modello si è articolato in più fasi:

1. Analisi del contesto produttivo:

È stato descritto il processo produttivo tipico del settore dolciario, individuando le fasi principali (approvvigionamento, lavorazione, confezionamento, logistica) e i relativi vincoli.

2. Definizione degli obbiettivi del modello:

L'obbiettivo principale è stato stimare il tempo necessario per completare un lotto di produzione con più prodotti, rispettando vincoli di capacità globali che specifici perprodotto.

3. Progettazione della struttura del codice:

Il programma è stato suddiviso in funzioni modulari, ciascuna con un compito chiaro: generazione delle quantità, Generazione dei parametri, calcolo del makespan, stampa del report.

4. Implementazione e commento:

Ogni funzione è stata sviluppata con un linguaggio semplice e arricchita di commenti, così da risultare leggibile anche ad un pubblico non esperto di programmazione.

5. Esecuzione e analisi dei risultati:

Il programma e stato testato fissando un seme casuale, così da garantire la ripetibilità dei dati. I risultati hanno mostrato come, anche in un modello semplificato, il makespan sia fortemente influenzato dal vincolo del tempo complessivo disponibile giornalmente.

4. Considerazioni finali

Il modello sviluppato rappresenta un primo passo vero la simulazione dei processi produttivi nel settore alimentare. La sua semplicità costituisce al tempo stesso un limite e un punto di forza: se da un lato non include variabili quali scarti, tempi di setup o manutenzioni, dall'altro permette di comprendere con immediatezza il legame tra quantità da produrre, capacità operativa e durata complessiva.

Tra i possibili risvolti futuri si segnalano:

- L'introduzione di ulteriori vincoli e parametri, per rendere la simulazione più vicina alla realtà;
- l'elaborazione di una schedulazione giorno per giorno, per visualizzare la distribuzione dei lotti:
- l'integrazione di tecniche di ottimizzazione e algoritmi di scheduling, volti a individuare soluzioni più efficienti.

In conclusione, il lavoro mostra come l'unione di competenze economiche e informatiche posso produrre strumenti utili per analisi e decisioni in ambito industriale, confermando il potenziale della simulazione come supporto formativo e gestionale.