Cezary Wernik

Asystent, KAKiT, WI, ZUT

5. Modulacja dyskretna

Uwaga: Studencie! – na koniec zajęć laboratoryjnych **bezwzględnie zaktualizuj** swoje repozytorium/e-dysk, zawierające prace z zajęć laboratoryjnych tego przedmiotu. Brak systematycznych aktualizacji repozytorium może zostać uznany za brak dokumentacji postępu w realizacji zadań laboratoryjnych, co może skutkować oceną niedostateczną.

Skrót z teorii:

Modulację dyskretną równoważnie określa się mianem kluczowania.

Przyjmując za sygnał informacyjny $\overline{m}(t) \in \{0,1\}$, to: kluczowanie amplitudy (ASK) odbywa się następująco:

$$z_A(t) = \begin{cases} A_1 \cdot \sin(2\pi f t + \varphi) & \text{dla } \overline{m}(t) = 0\\ \underbrace{A_2 \cdot \sin(2\pi f t + \varphi)}_{s_{A_n}(t)} & \text{dla } \overline{m}(t) = 1 \end{cases}$$

kluczowanie częstotliwości (FSK) odbywa się następująco:

$$z_F(t) = \begin{cases} A \cdot \sin(2\pi f_0 t + \varphi) & \text{dla } \overline{m}(t) = 0\\ \underbrace{A \cdot \sin(2\pi f_1 t + \varphi)}_{s_{f_n}(t)} & \text{dla } \overline{m}(t) = 1 \end{cases}$$

kluczowanie fazy (PSK) odbywa się następująco:

$$z_P(t) = \begin{cases} A \cdot \sin(2\pi f t + \varphi_0) & \text{dla } \overline{m}(t) = 0\\ \underbrace{A \cdot \sin(2\pi f t + \varphi_1)}_{s_{\varphi_n}(t)} & \text{dla } \overline{m}(t) = 1 \end{cases}$$

gdzie $s_{A_n}(t)$, $s_{f_n}(t)$, $s_{\varphi_n}(t)$ to **sygnały nośne**,

Zadanie:

Wykonaj w formie programistycznej implementacji poniżej przedstawione zadania.

1) Napisz funkcję, która na wejściu przyjmuje zadany ciąg znaków ASCII, a na wyjściu zwraca strumień binarny i wypisuje go na konsolę w kolejności little endian lub big endian. Przykład pseudokodu:

```
byte [] S2BS( char in[], int switch ) //String To Binary Stream
{
    //...
    if( switch == littleEndian )
    {
        //...
        //print out;
        return out;// in little endian order
}else{
        //...
```

```
//print out;
return out;// in big endian order
}
```

Przykład strumienia binarnego z zadanego ciągu znaków zanotuj w kodzie programu w formie komentarza.

2) Dla dowolnego strumienia bitowego wygenerowanego w zadaniu pierwszym wygeneruj sygnał informacyjny $\overline{m}(t)$, przyjmij czas trwania pojedynczego bitu jako $T_b[\mathbf{s}]$.

Dobierz parametry $A_1,A_2(A_1\neq A_2),f=N\cdot T_b^{-1}$ i wygeneruj sygnały zmodulowane $z_A(t),z_F(t),z_P(t)$ i wykonaj ich wykresy.

Częstotliwość w przypadku kluczowania FSK można dobrać według następujących zależności:

$$f_1 = \frac{N+1}{Tb}$$

$$f_2 = \frac{N+2}{Tb}$$

gdzie N jest liczbą całkowitą określającą docelową częstotliwość (po wymnożeniu przez odwrotność czasu trwania pojedynczego bitu).

Dla PSK $\varphi_0 = 0$, $\varphi_1 = \pi$.

- 3) Wygeneruj sygnały zmodulowane $z_A(t), z_P(t)$ w dziedzinie czasu dla N=2. Przy generowaniu wykresów ogranicz liczbę bitów do 10.
- 4) Wygeneruj widma amplitudowe sygnałów zmodulowanych $z_A(t), z_P(t), z_P(t)$. W tym przypadku sygnałźródłowy powinien odzwierciedlać cały strumień bitowy. Należy tak dobrać skalę (liniową lub logarytmiczną) osi posiomej i pionowej aby jak najwięcej prążków widma było widocznych na wykresie.

5) Oszacuj szerokość pasma sygnału zmodulowanego dla każdego z rodzajów kluczowania. Szerokości wyznaczonych w zadaniu pasm zapisz w formie komentarza w kodzie programu.	
Łącznie w wyniku działania twojego kodu powinno zostać wygene wartościami.	rowanych 9 wykresów z prawidłowo oznaczonymi osiami i
Kody i wykresy spakuj w katalog i umieść na swoim repozytorium.	
< Poprzedni temat	Wydrukuj instrukcję

Następny temat >