

GLM

Modello Lineare Generale vantaggi

- Consente di stimare le relazioni fra due o più variabili
- Si applica ad una ampio spettro di tipi di dati
- Consente di stimare vari tipi di effetti

svantaggi

- Assume una struttura dei dati molto semplice
- Non consente di modellare una ampia serie di relazioni e dipendenza tra unità di misurazione

Assunzioni GLM

Modello Lineare Generale

Assunzioni GLM

Modello Lineare Generale

Assunzioni GLM

Modello Lineare Generale

$$y_i = a + e_i$$

$$corr(e_i, e_j) = 0$$

Le variazioni casuali sono indipendenti l'una dall'altra

Violazioni delle assunzioni

Le assunzioni di unicità degli effetti (effetti fissi) e indipendenza delle misurazioni (errori indipendenti) non sono rispettate in tutti i seguenti casi:

- Misurazioni correlate
- Disegni a misure ripeture
- Disegni longitudinali
- Dati con strutture gerarchiche
- Dati con misurazioni multi-livello

I modelli misti

Non esiste un solo valore fisso che intendiamo stimare

Le variazioni casuali non sono indipendenti l'una dall'altra

I modelli misti consentono di estendere il modello lineare generale in tutte quelle situazioni in cui le due assunzioni fondamentali del GLM non sono rispettate

I modelli misti

GLM

LMM

Regressione

T-test

ANOVA

ANCOVA

Moderazione

Mediazione

Path Analysis

Regressione Logistica **Random coefficients models**

Random intercept regression models

One-way ANOVA with random effects

One-way ANCOVA with random effects

Intercepts-and-slopes-as-outcomes models

Generalized mixed model

Estensione del GLM al modello misto

Esempio "birre" 2

Consideriamo il caso in cui abbiamo ampliato il nostro campione di "bevitori di birra", avendo raccolto ulteriori dati in diversi bar della città

bar

Cumulative Frequency Valid Percent Percent Percent Valid 3 1.3 1.3 1.3 а 7.3 14 6.0 6.0 b 22 16.7 9.4 9.4 С 25.6 21 9.0 9.0 d 14 6.0 6.0 31.6 40.2 20 8.5 8.5 50.4 24 10.3 10.3 12 5.1 5.1 55.6 h 16 6.8 6.8 62.4 22 9.4 9.4 71.8 21 9.0 9.0 80.8 m 15 87.2 б.4 б.4 n 16 6.8 6.8 94.0 0 11 4.7 4.7 98.7 р 1.3 100.0 q 1.3

100.0

100.0

Totale di 234 soggetti

234

Total

Esempio "birre" 2

Lo scatterplot mostra una distribuzione differente dall'esempio

precedente

Esempio "birre" 2

La regressione semplice conferma il risultato assai differente

Possibili spiegazioni

I risultati potrebbero essere distorti (e ciò spiegherebbe il risultato inatteso) dal non aver considerato la struttura dei dati

I dati infatti:

- I soggetti sono stati campionati in diversi bar
- Ogni bar potrebbe avere caretteristiche particolari (ambiente, qualità della birra, etc) che condizionano la relazione tra le variabili
- I soggetti in ogni singolo bar potrebbero essere più simili tra loro di quando lo siano soggetti in bar diversi

Lo scatterplot, distinguendo per bar, offre indicazioni

Lo scatterplot, distinguendo per bar, offre indicazioni

Lo scatterplot, distinguendo per bar, offre indicazioni

Modello

- Sembrerebbe che considerando tutti i soggetti come equivalenti ed indipendenti (assunzione della regressione) otteniamo un risultato distorto
- Se stimassimo un modello in cui la retta di regressione (intercetta e coefficiente B) sia diversa in ogni gruppo, avremmo dei risultati più soddisfacenti

Modello

Definiamo dunque una regressione per ogni gruppo

$$y_{ij}$$

Numero di sorrisi del soggetto i nel gruppo j

$$\hat{y}_{ia} = a_a + b_a \cdot x_{ia}$$

$$\hat{y}_{ib} = a_b + b_b \cdot x_{ib}$$

$$\hat{y}_{ic} = a_c + b_c \cdot x_{ic}$$

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

In queste regressioni, sia l'intercetta che i coefficienti sono diversi (non fissi) nei vari gruppi

Coefficienti variabili

• Se i coefficienti cambiano nei vari gruppi, ovviamente non sono fissi (!!!)

I coefficienti avranno una distribuzione rispetto ai bar per i quali sono calcolati

Coefficienti random

I coefficienti che cambiano sono definiti coefficienti random

I coefficienti avranno una distribuzione random (cioè avranno una loro variabilità)

Cioè, nella popolazione esiste una variazione random dei coefficienti

Media dei Coefficiente

• Se i coefficienti sono delle variabili, avranno una loro **media** ed una loro **varianza**

$$\bar{b} = \frac{\sum_{j} b_{j}}{k}$$

Coefficienti fissi

• La media dei coefficienti per bar indica la relazione (media) tra birre e sorrisi in tutto il campione

La media (come visto prima) è un parametro fisso del modello che descrive la distribuzione dei coefficienti nei cluster (bar)

Modello

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Una regressione per cluster

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

Ogni coefficiente è espresso come deviazione dalla media dei coefficienti

$$b'_{j} = b_{j} - \overline{b}$$

Modello generale

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \overline{b} \cdot x_{ij}$$

Modello

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Modello generale

random

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \bar{b} \cdot x_{ij}$$
Coefficienti
Coefficiente fisso

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Modello generale

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \overline{b} \cdot x_{ij}$$

Coefficienti random

Coefficiente fisso

I modelli che contengono coefficienti sia random che fissi sono definiti **modelli misti** (**mixed models**)

Analogamente

Una regressione per cluster

Ogni intercetta espressa come deviazione dalla media delle intercette

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

$$a'_{j} = a_{j} - \overline{a}$$

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Il punteggio della VD (i sorrisi) di ogni soggetto in un dato cluster (bar) è influenzato da:

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{q} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

La media dei valori attesi di Y per x=0

Per x=0, in media quanto è grande y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

I valori attesi di y per x=0 in ogni cluster (bar)

Per x=0, quanto devo aggiungere o sottrarre al valore atteso medio per un cluster specifico

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto specifico di x su y per il cluster j

In un dato cluster, quanto aumenta (o diminuisce) l'effetto di x su y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto medio di x su y

In media, quanto aumenta y per ogni unità in più di x

GLM come sottocaso

La corrispondenza logica tra le varie tecniche inerenti al Modello Lineare Generale con le tecniche inerenti ai Modelli Misti è data dal fatto che il GLM può essere pensato come sottocaso dei MM

MM

$$\hat{y}_{ij} = \overline{a} + a'_{j} + b'_{j} \cdot x_{ij} + \overline{b} \cdot x_{ij}$$

GLM

$$\hat{y}_{ij} = \hat{a} + \overline{b} \cdot x_{ij}$$

Notazione

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

 y_{ij} , X_{ij}

Variabili osservate per caso i nel cluster j

 \bar{a}, \bar{b}

Effetti fissi

 a_j, b_j

Effetti random calcolati nel cluster j espressi come deviazione dalla loro media

 e_{ij}

Errore associato al singolo caso i

Varianze

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

 σ_a

Varianza dei coefficienti a

 σ_b

Varianza dei coefficienti b

O

Varianza di errore

 σ_{ab}

Covarianza tra i coefficienti a e b

Modelli Misti

- In sostanza, i modelli misti consentono di stimare gli effetti di VI su una VD, consentendo a tali effetti di variare in diverse unità di misurazione (cluster).
- Gli effetti che variano sono detti effetti random
- Gli effetti che non variano (cioè gli effetti medi uguali per tutto il campione) sono detti **effetti fissi**

Modelli Misti

- Per stimare correttamente un modello misto, si deve semplicemente capire quale siano gli effetti random, e per quali unità variano (quali sono i cluster)
- Una volta stimato il modello, gli **effetti fissi** si interpretano esattamente come nel GLM (regressione/anova etc)
- Gli **effetti random** generalmente non si interpretano, ma se ne può studiare la variabilità
- La definizione corretta del modello, consente di ottenere stime e errori standard (e dunque test inferenziali) corretti

Costruire il modello

Per costruire il modello, dobbiamo rispondere a tre semplici domande

- Quali sono i cluster su cui variano gli effetti random?
- Quali sono gli effetti fissi?
- Quali sono gli effetti random?

Variabili cluster

- Quali sono i cluster su cui variano gli effetti random?
- Quali sono gli effetti fissi?
- Quali sono gli effetti random?
 - Qualunque variabile che raggruppa le osservazioni (i casi o le osservazioni) in modo che i punteggi possano essere più simili entro i gruppi che tra gruppi
 - Una variabili i cui livelli rappresentano un campione casuale di gruppi estratti da una popolazione più ampia di gruppi

Effetti Fissi

- Quali sono i cluster su cui variano gli effetti random?
- Quali sono gli effetti fissi?
- Quali sono gli effetti random?
 - Qualunque effetto che ci interessa in generale (equivalenti agli effetti nel GLM)
 - Esempio: L'effetto di birra sui sorrisi

Effetti Random

- Quali sono i cluster su cui variano gli effetti random?
- Quali sono gli effetti fissi?
- Quali sono gli effetti random?
 - Qualunque efffetto che può variare da cluster a cluster
 - (Dunque:) Qualunque effetto (coefficiente) che può essere calcolato dentro ogni cluster
 - Esempio: le intercette e il B di birre su sorrisi

Definiamo il modello, iniziando dal più semplice

Bar

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi?
- Quali sono gli effetti random?
- Quali sono i cluster su cui variano gli effetti random?

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di birre
- Quali sono gli effetti random? Intercetta
- Quali sono i cluster su cui variano gli effetti random? bar

Vari autori e libri definiscono questomodello:

Random-intercepts regression altri

Intercepts-as-outcomes model

•In jamovi "mixed model" è nel modulo GAMLj

Definiamo gli effetti fissi

Definiamo la componente random

Risultati

• Una volta definita la componente random, otteniamo i risultati

Mixed Model

R-squared Marginal

R-squared Conditional

Model Info

Linear mixed model fit by REML
smile ~ 1 + (1 bar) + beer
811.1613

0.0894

0.8172

R-squared Marginal: Quanta varianza è spiegata dai fixed effects da soli

R-squared Conditional: quanta varianza è spiegata dai fixed e dai random effects tutti insieme

Componente random

La varianza delle intercette è diversa da zero, dunque le intercette variano, dunque ok che siano random

Random Components

Groups	Name	SD	Variance
bar	(Intercept)	2.40	5.77
Residual		1.20	1.45

Note. Numer of Obs: 234, groups: bar, 15

Jamovi

F-test per l'effetto fisso di beer

Fixed Effect ANOVA

	F	Num df	Den df	р
beer	46.0	1	229	< .001

Note. Satterthwaite method for degrees of freedom

Output

Se tutto è ok, guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

Fixed Effects Parameter Estimates

				95% Confide	nce Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept) beer	Intercept beer	7.778 0.548	0.6276 0.0808	6.548 0.390	9.008 0.706	13.2 229.4	12.39 6.79	< .001 < .001

Output

Se tutto è ok, guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

Fixed Effects Parameter Estimates

				95% Confide	nce Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	7.778	0.6276	6.548	9.008	13.2	12.39	< .001
beer	beer	0.548	0.0808	0.390	0.706	229.4	6.79	< .001

Coefficiente b: In media, per ogni birra in più i sorrisi aumentano di .548

Intercetta: In media, per zero (media di) birre ci attendiamo 7.7 sorrisi

Jamovi

Plots

Jamovi

Plot dell'effetto fisso

Fixed Effects Plots

R Plot

Possiamo anche plottare gli effetti random

Effects Plots

Note: Random effects are plotted by bar

Definiamo un modello dove le intercette e i coefficienti di regressione possono variare nei diversi bar,

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + b \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di birre
- Quali sono gli effetti random? Intercetta ed effetto di birre
- Quali sono i cluster su cui variano gli effetti random? bar

Vari autori e libri definiscono questo modello:

Random-coefficients regression
Altri come

Intercepts- and Slopes-as-outcomes model

Effetti random

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + b \cdot x_{ij} + e_{ij}$$

Output

Poi guarderemo la variabilità degli effetti random, per capire se è abbiamo fatto bene a settarli come tali

Random Components

Groups	Name	SD	Variance	ICC
bar	(Intercept)	2.417	5.8417	0.803
	beer	0.167	0.0278	
Residual		1.196	1.4314	

Note. Number of Obs: 234, groups: bar 15

Random Parameters correlations

Groups	Param.1	Param.2	Corr.
bar	(Intercept)	beer	-0.766

La varianza dei b è piccola dunque i b variano molto poco, dunque potremmo tenere il modello precedente

Varianze

La varianza degli effetti random ci indica quanta variabilità c'è tra i cluster nell'effetto

- L'effetto random lo lasciamo anche se la varianza è molto piccola
- Se è zero (esattamente), l'effetto random deve essere tolto dal modello

Coefficiente di dipendenza

Possiamo quantificare la dipendenza tra punteggi mediante il **coefficiente di correlazione intraclasse**

$$ICC = \frac{\sigma_a}{\sigma_a + \sigma}$$

Random Co	mponents	a		
Groups	Name	SD	Variance /	ICC
bar	(Intercept)	2.417	5.8417	0.803
	beer	0.167	0.0278	
Residual		1.196	1.4314	

Note. Number of Obs: 234, groups: bar 15

 O

Output

Guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

Fixed Effects Parameter Estimates

			95% Confide	nce Interval			
Names	Estimate	SE	Lower	Upper	df	t	p
(Intercept)	7.610	0.6335	6.368	8.851	12.93	12.01	< .001
beer	0.555	0.0925	0.374	0.737	7.23	6.00	< .001

Effetti non diversi da prima

Plots

Plottando glli effetti random vediamo che non sono più tutti paralleli

Effects Plots

Note: Random effects are plotted by bar

Morale

- Il modello misto consente di estendere il modello lineare generale a cui problemi di analisi dei dati in cui la struttura dei dati non si adatta naturalmente
- I semplici concetti visti oggi, combinati alle conoscenze relative al GLM, ci consentiranno di stimare modelli misti per (quasi) tutte i problemi di ricerca (plausibili)

Il disegno a misure ripetute

Disegno a misure ripetute

 Consideriamo un disegno a misure ripetute classico (withinsubjects) in cui i livelli del fattore WS (5 differenti trials) sono misurati sulle stesse persone

trial

Soggetti

		Т		3	4	5
	1	Y11	Y21	Y31	Y41	Y51
	2	Y12	Y22	Y32	Y42	Y52
	3	Y13	Y23	Y33	Y43	Y53
N		Y1n	Y2n	Y3n	Y4n	Y5n

Formato file Standard

 Spesso (in SPSS) il file è organizzato nel formato "wide", una riga un soggetto

	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform 1	Analyze Direc	ct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilit	ies Add- <u>o</u> ns	<u>W</u> indow <u>H</u> elp
Una riga, un						*5		A (
	1: group							
soggetto		group	err_t0	err_t1	err_t2	err_t3	err_t4	Х
	1	1	.14	.22	.439	.27	.01	04
	2	1	.43	.52	.492	.48	.43	36
	3	1	.61	.43	.446	.51	.57	-1.77
	4	0	.29	.70	1.000	.89	.75	1.63
	5	1	.16	.49	.500	.56	.29	32
	6	0	.70	.36	.573	.57	.69	-1.16
	7	0	.35	.51	.572	.46	.77	87
	8	1	.45	.49	.545	.41	.43	-1.79
	9	1	.05	.55	.333	.54	.53	1.01
	10	1	.10	.35	.358	.57	.67	.58
	11	0	.14	.45	.373	.25	.29	88
	12	0	.04	.74	.541	.53	.35	27
	13	1	.62	.73	.529	.31	.48	1.36
	14	1	.15	.22	.101	.17	.17	32
	15	0	.72	.55	.568	.53	.57	98
		- 1		!		!	1	1

Formato file "Long"

Per l'utilizzo dei modelli misti è necessario un formato "una

misura, una riga"

Ogni riga rappresenta una misurazione

Q 9	@L	И	Tillel				
	id	+	group [‡]	x	trial ‡	error [‡]	
1		1	Cognitive Load	-0.03721233	1	0.139644148	
2		1	Cognitive Load	-0.03721233	2	0.219611404	
3		1	Cognitive Load	-0.03721233	3	0.439030338	
4		1	Cognitive Load	-0.03721233	4	0.270522729	
5		1	Cognitive Load	-0.03721233	5	0.009309587	
6		2	Cognitive Load	-0.36044158	1	0.431302228	
7		2	Cognitive Load	-0.36044158	2	0.518326274	
8		2	Cognitive Load	-0.36044158	3	0.492408109	
9		2	Cognitive Load	-0.36044158	4	0.483458141	
10		2	Cognitive Load	-0.36044158	5	0.432801733	
11		3	Cognitive Load	-1.76705741	1	0.612178698	
12		3	Cognitive Load	-1.76705741	2	0.431445717	
13		3	Cognitive Load	-1.76705741	3	0.446141329	
14		3	Cognitive Load	-1.76705741	4	0.509173965	
15		3	Cognitive Load	-1.76705741	5	0.572991706	
16		4	Emotional Stressor	1.63388771	1	0.290753013	
17		4	Emotional Stressor	1.63388771	2	0.702075839	

GLM

 Potremmo analizzare questi dati mediante un modell GLM, ma incontremo dei (gravi) problemi

Problemi

 Il primo problema è ogni soggetto, avendo tutte le misurazioni, esprime il suo proprio effetto di trial

Esempio per 6 soggetti

Soluzione (1)

Dunque per analizzare correttamente il disegno, dobbiamo considerare nel modello un termine che rappresenti la specificità di ogni soggetto. Questo termine sarà lo stesso in ogni soggetto

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

 $Y_{12} = a + b \cdot T_2 + u_1 + e_{12}$
 $Y_{13} = a + b \cdot T_3 + u_1 + e_{13}$

Stesso soggetto, stesso errore

• • • • •

$$Y_{i1} = a + b \cdot T_1 + u_i + e_{i1}$$

 $Y_{i2} = a + b \cdot T_2 + u_i + e_{i2}$
 $Y_{i3} = a + b \cdot T_2 + u_i + e_{i3}$

Stesso soggetto, stesso errore

Componente individuale

Esempio per un soggetto

Componente individuale

Esempio per un soggetto

Componente individuale

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

Soluzione (1)

Dato che **u** è la stesso dentro ogni soggetto, le componenti delle misure ripetute che non sono legate agli effetti fissi saranno correlate

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

 $Y_{12} = a + b \cdot T_2 + u_1 + e_{12}$
 $Y_{13} = a + b \cdot T_3 + u_1 + e_{13}$

Stesso soggetto, stesso errore

• • • • •

$$Y_{i1} = a + b \cdot T_1 + u_i + e_{i1}$$

 $Y_{i2} = a + b \cdot T_2 + u_i + e_{i2}$
 $Y_{i3} = a + b \cdot T_2 + u_i + e_{i3}$

Stesso soggetto, stesso errore

Soluzione (1)

Dato che **u** è la stesso dentro ogni soggetto, le componenti delle misure ripetute che non sono legate agli effetti fissi saranno correlate

Modello misto

- Si può specificare il modello in maniera alternativa, più in linea con la teoria dei modelli misti vista fin ora
- Possiamo modellare la componente individuale come un parametro random

$$Y_{ij} = \overline{a} + a_i + b \cdot T_j + e_{ij}$$

Intercetta media (Effetto fisso)

Intercetta random, diversa per ogni soggetto

Definizione del modello

Riportiamo il modello con la terminologia del MM

$$Y_{ij} = a + b \cdot T_i + u_j + e_{ij}$$

$$y_{ij} = \bar{a} + a_j + \bar{b} \cdot x_{ij} + e_{ij}$$

Definizione del modello

Modello completo

i=soggetti, j=trials

Definizione del modello

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di trial
- Quali sono gli effetti random? Intercetta
- Quali sono i cluster su cui variano gli effetti random? Soggetto (id)

Input

Coefficienti random

Effetti fissi

Risultati: modello

R-squared Marginal: Quanta varianza è spiegata dai fixed effects da soli

R-squared Conditional: quanta varianza è spiegata dai fixed e dai random effects tutti insieme

Risultati: variance

Random Components

Varianza dell'intercette

Groups	Name	SD	Variance
id	(Intercept)	0.0883	0.00780
Residual		0.1738	0.03020

Note. Numer of Obs: 1000, groups: id, 200

Se è maggiore di 0, ok

GAMLj: Results: fixed

Fixed Effect ANOVA

F-tests

9.8	F	Num df	Den df	р
trial	4.72	4	796	< .001

Note. Satterthwaite method for degrees of freedom

Coefficienti

Fixed Effects Parameter Estimates

				95% Confide	ence Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	0.49474	0.00832	0.4784	0.51104	199	59.4620	< .001
trial1	2 - (1, 2, 3, 4, 5)	-0.01791	0.01099	-0.0395	0.00363	796	-1.6296	0.104
trial2	3 - (1, 2, 3, 4, 5)	-7.92e-4	0.01099	-0.0223	0.02075	796	-0.0720	0.943
trial3	4 - (1, 2, 3, 4, 5)	0.04094	0.01099	0.0194	0.06248	796	3.7246	< .001
trial4	5 - (1, 2, 3, 4, 5)	0.00634	0.01099	-0.0152	0.02788	796	0.5764	0.564

Constrasti

GAMLj: plot

Risultati: plot

Fixed Effects Plots

Fixed Effects Plots

MM nelle misure ripetute

- Il modello misto permette di analizzare le misure ripetute con una vasta gamma di opzioni
- Applicazione delle varie tecniche come in regressione/Anova
- Gestione efficente dei valori mancanti
- Possibilità di modellare variabili continue come variabili ripetute nel tempo
- Possibilità di combinare il disegno a misure ripetute con disegni gerachici o clusterizzati

Interazione → Moderazione

- Come per il modello lineare generale la moderazione si stima mediante l'interazione
- L'interazione nel modello misto funziona esattamente come nel modello lineare generale

Variabili continue

- Abbiamo Una serie di scuole. In ogni scuola abbiamo misurato il QI degli studenti (*intel*). Di ogni scuola abbiamo anche la dotazione economica annuale (*funds*).
- La variabile dipendente è uno score di performance
- Vogliamo sapere se il QI è associato alla performance, e se tale relazione è moderata dai fondi a disposizione della scuola

Dati

	nipodulu		VUITUDICO	INUMO
	🐣 school	funds	perform	intel
5	1	372.327	10.029	102.145
6	1	372.327	9.196	90.859
7 '	1	372.327	10.187	103.771
8	1	372.327	9.124	91.466
9	1	372.327	10.752	108.944
0	1	372.327	9.493	96.176
1	1	372.327	9.954	101.083
2	1	372.327	9.752	99.053
3	1	372.327	9.459	95.260
4	1	372.327	10.367	106.097
5 ;	1	372.327	9.788	98.727
6	2	368.685	12.081	109.591
7	2	368.685	6.328	80.896
8	2	368.685	10.551	101.516
9	2	368.685	8.189	90.094
0	2	368.685	9.145	94.737
1	2	368.685	7.815	87.620
2 '	2	368.685	10.799	103.318

Input

Effetti fissi

Effetti random

Risultati

Spieghiamo tanto (dati didattici!)

Model Info

Info	
Estimate	Linear mixed model fit by REML
Call	perform ~ 1 + intel + funds + intel:funds+(1 + intel school)
AIC	-1252.950
BIC	-1177.120
LogLikel.	613.418
R-squared Marginal	0.599
R-squared Conditional	0.999
Converged	yes
Optimizer	bobyqa

Risultati: variance

Le varianze non sono 0: ok

Random Components

Groups	Name	SD	Variance	ICC
school	(Intercept)	0.1026	0.01053	0.792
	intel	0.0885	0.00783	
Residual		0.0526	0.00277	

Note. Number of Obs: 500, groups: school 20

Random Parameters correlations

Groups	Param.1	Param.2	Corr.
school	(Intercept)	intel	0.487

Risultati: effetti fissi

Fixed Effect Omnibus tests

	F	Num df	Den df	р
intel	24.1264	1	18.0	< .001
funds	0.0471	1	18.0	0.831
intel * funds	6.4748	1	18.0	0.020

Note. Satterthwaite method for degrees of freedom

Coefficienti

Test F

Fixed Effects Parameter Estimates

			95% Confide	ence Interval			
Names	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	10.0981	0.0231	10.0529	10.14331	18.0	437.597	< .001
intel	0.0972	0.0198	0.0584	0.13602	18.0	4.912	< .001
funds	-5.63e-5	2.60e-4	-5.65e-4	4.52e-4	18.0	-0.217	0.831
intel * funds	5.67e-4	2.23e-4	1.30e-4	0.00100	18.0	2.545	0.020

Risultati: plot

Effects Plots

Plot effetti fissi

Disegno a misure ripetute

- Abbiamo 2 gruppi Control vs Treatment, measurati in 4 tempi diversi. I tempi sono: 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).
- La variabile dipendente è uno score di depressione (e.g. Beck Depression Inventory) e il trattamento è l'utilizzo di un farmaco versus nessun farmaco. Ci aspettiamo un miglioramento in tutte e due gruppi, ma vogliamo testare che il gruppo in treatment migliori più rapidamente

Disegno a misure ripetute

 Abbiamo 2 gruppi - Control vs Treatment, measurati in 4 tempi diversi. I tempi sono: 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).

Contingency Tables

Contingency Tables

	grou	ab	
time	1	2	Total
0	12	12	24
1	12	12	24
3	12	12	24
6	12	12	24
Total	48	48	96

96 osservazioni 24 soggetti

Disegno a misure ripetute: dati

Data sono in "long format"

Ogni soggetto ha 4 righe

:	≡ □	Data	Analyses			
E	xploration	ŢŢ T-Tests	T _ T		quencies Factor	Linear Models
_	& subj		♣ time	group		Linear modelo
4	Subj				-	
1		1	0	1	296	
2		1	1	1	175	
3		1	3	1	187	
4		1	6	1	192	
5		2	0	1	376	
6		2	1	1	329	
7		2	3	1	236	
8		2	6	1	76	
9		3	0	1	309	
10		3	1	1	238	
11		3	3	1	150	
12		3	6	1	123	
13		4	0	1	222	
14		4	1	1	60	
15		4	3	1	82	
16		4	6	1	85	
17		5	0	1	150	
18		5	1	1	271	
10		5	2	1	250	

Mixed model

Traduciamo il disegno in un modello misto

- Effetti Fissi? Intercetta group,time, la loro interazione
- Effetti Random? Intercetta
- Clusters? Soggetto (subj)

Variables

Definisco le variabili

Modello

Risultati

Interpretazione dei risultatiixed Model

Modello	Model Info Info			
	Estimate	Linear mixed model fit by REML		
	Call	$dv \sim 1 + (1 \mid subj) + time + group + time:group$		
	AIC	1011.895		
	R-squared Marginal	0.554		
	R-squared Conditional	0.768		

Effetti random

Random Components

Groups	Name	SD	Variance
subj	(Intercept)	50.4	2539
Residual		52.5	2761

Note. Numer of Obs: 96, groups: subj, 24

Risultati

Interpretazione dei risultati

F-tests per gli effetti fissi

Fixed Effect ANOVA

	F	Num df	Den df	p
time	45.14	3	66.0	< .001
group	13.71	1	22.0	0.001
time:group	9.01	3	66.0	< .001

Note. Satterthwaite method for degrees of freedom

• Per il momento ignoriamo la stima dei coefficienti

Results: plot

Analisi sulla interazione

- Per analizzare ulteriormente l'interazione possiamo fare (come nel GLM):
- Simple effects: Testare se l'effetto di tempo è presente in ognuno dei gruppi
- Trend analysis: Testare dei trend specifici nelle nostre medie
- Post-hoc test: confronto delle medie tutto contro tutto

Simple effects

Chiediamo di stimare gli effetti ti tempo in ogni gruppo

Simple effects

Chiediamo di stimare gli effetti ti tempo in ogni gruppo

Simple Effects ANOVA

Simple effects of time

Effect	Moderator Levels	df Num	df Den	F	р
time	group at 1	3.00	66.0	18.9	<.001
time	group at 2	3.00	66.0	35.3	<.001

In entrambi i gruppi le medie cambiano nel tempo

Results: plot

Fixed Effects Plots

Ricapitolando

- Dunque, i disegni a misure ripetute possono essere analizzati come qualunque altro disegno "Anova", ma deve essere modellata la componente individuale che cambia da soggetto a soggetto
- Ciò consente di applicare tutte le conoscenze dell'ANOVA/Regressione al caso delle misure ripetute
- I modelli misti consentono dunque di stimare modelli a misure ripetute combinandoli con altre strutture complesse dei dati