ightharpoonup nrupatunga.tunga@gmail.com

Research Interest

• My current interest and focus is on applying machine learning and deep learning for scene understanding which includes scene classification, detection, recognition and segmentation.

Education

Indian Institute of Science

Bangalore, Karnataka

Master of Engineering in Signal Processing

2010 - 2012

- Master Thesis: Complex Network Approach for Analysis of Biomedical signals
- CGPA: 5.8/8.0
- Advisor: Prof. D. Narayana Dutt

Sri Jayachamarajendra College of Engineering

Bachelor of Engineering in Electronics and Communication

Mysore, Karnataka

2005 - 2009

- Percentage: 71.14%

Work Experience

Samsung R&D India

Bangalore

Technical Lead, Media Analytics and Recognition Team

 $2016 ext{-}Present$

O Project: Semantic Segmentation of Sky and Non-sky regions in an image using Fully Convolutional Neural Network & Blog

- * Development: Languages & Tools used Python, Caffe
- * Aim of this project is to:
 - · Understand how fully convolutional network enables end to end dense learning
 - · Fine tune the weights of the pretrained model, appreciate how transfer learning enables to address different computer vision problems with reasonable amount of data
 - · Investigate the features learnt in each layer of the network
 - · Experimentation on using sky segmentation map as prior for horizon detection

O Project: Nearest Neighbor Image retrieval using GIST descriptor F Executable C Code

- * Development: Languages & Tools used C++, OpenCV, MATLAB
- * Aim of this project is to:
 - · Evaluate GIST descriptor for task of Image retrieval
 - · Demonstrate how GIST descriptor can be used for detection of duplicate images. \triangle t-SNE

 $Lead\ Engineer,\ AVI\ Solutions\ Team$

2014-2016

- O Project: Histogram of Oriented Gradients for Pedestrian Detection ? Code La t-SNE
 - * Development: Languages & Tools used C++, OpenCV, Python, SVMLight
 - * Aim of this project is to:
 - $\cdot\,$ Demonstrate my understanding of Support Vector Machines by applying to a computer vision problem
 - · To understand how hard negative mining and adding non maximum suppression module helps in improving the accuracy of object detection
- O Project: Combining Sketch and Tone for Pencil Drawing Production. # Software O Code
 - * Development: Languages & Tools used C++, OpenCV, QT
 - · A system to produce pencil drawings from natural images.

- · This system mimicks human style of pencil drawing
- · Designed a GUI using QT
- O Project: Auto Image Enhancement (Galaxy S6 onwards)
 - * Design and development: Languages used C, Matlab
 - · Algorithm for detection of low-light/backlight images
 - · Algorithm for detection of poorly lit faces in an image
 - · Colorfulness measurement in natural images
 - * Complete architecture design of Auto Image Enhancement Engine
 - * Complete JNI framework design & development for communicating between application and engine
- O Project: Touch Focus (Galaxy S5 onwards)
 - * Complete JNI framework design & development for communicating between application and engine

Senior Software Engineer, Multimedia Solutions Team

2012-2014

- O Project: Photo Editor, Best Photo.
 - * Design and development: Red eye correction algorithm. GUI developed using Matlab GUIDE for quick demo
 - * Design and development: Measurement of blur in an image. Algorithms implemented from two IEEE papers. Languages used:C++
 - * Implementation of bilinear resizer module for less memory architecture Insert emoticon effect module in Photo Editor. Languages used: C
 - * Optimization of Photo Editor effects using POSIX threads

Pet Projects

- 1. Implementation of Canny Edge Detector. Languages & Tools used C++, OpenCV. O Code
- 2. Implementation of Bilateral filter. Languages & Tools used C++, OpenCV. O Code
- 3. QT based GUI Application for experimenting edge detectors such as Sobel & Canny, blurring filters such as homogeneous, median, Gaussian & bilateral. Languages & Tools used C++, OpenCV, QT. Software
- 4. Image Watermarking Algorithm based on DWT DCT and SVD. Languages & Tools used MATLAB

Relevant Coursework

Signal Processing Courses: Digital Image Processing, DSP System Design, Biomedical Signal Processing, Speech Information Processing

Mathematical Courses: Linear Algebra, Probability & Random Process, Detection & Estimation Theory, Mathematics for Electrical Engineers

Deep Learning (ongoing): Learning from Data (Abu Mostafa), Machine Learning (Andrew Ng), UFLDL (Stanford).

Skills

Programming Languages: C, C++, MATLAB, Python

Framework: QT, Android JNI

Tools: Caffe Deep Learning Framework, Microsoft Visual Studio, Eclipse, Android NDK, Vim

Miscellaneous: Excellent troubleshooting and debugging skills