

Prediction of Car Prices – Regression

Under the Guidance:

Dr. Chaojie Wang

Presented By:

Abdul Junaid Mohammed

Introduction/Problem

- Buying a used car can be a difficult task, especially when you are new to the country and don't know the market value of the cars.
- To address this issue, I have undertaken a project to predict the prices of used cars using various data sources and regression algorithms.
- The project aims to help users get an estimate of the price of a car by providing basic details such as year, model, company, miles driven, etc.
- Through my analysis, I aim to identify useful insights and patterns that can help users make informed decisions when purchasing a used car.

Dataset

- The dataset is a collection of data scraped from the well-known website Craigslist.
 Dataset has been acquired from Kaggle.
- It has 426880 Rows and 26 columns. It has all the useful features which will be required for the purchase of used car. Here the Target Variable will be the Price Column.
- Of course not all the columns are going to be useful, but I found a good amount we can use.

Attributes/Characteristics

• Some of the few important attributes from 26 columns are

Attribute	Data Type	Description		
PRICE	Integer Type	The Price of the used cars from the craigslist website		
YEAR	Integer Type	The year in which car was manufactured		
MANUFACTURER	String Type	The Car manufacturers such as Ford, Honda, Gmc		
CONDITION	String Type	The Condition of a Car such as excellent, fair, new		
CYLINDERS	String Type	The Cylinder type a car have such as four, six, eight cylinders		
ODOMETER	Integer Type	The Odometer reading such as miles of a car driven		
TYPE	String Type	The type of a car such as Sedan, Suv, Hatchback		

Data Wrangling

- **Dropping Redundant Columns** County, Id, Lat, Long, region, VIN, etc. and once removed those columns, they were left with around 14 attributes.
- Handling Missing values Imputation(Mean Numerical Columns, Mode-Categorical Columns), dropna(More than 75% Nan values)
- Removal of Duplicates records
- Outlier Treatment Inter Quartile Range(IQR) For columns Odometer, Price
- Categorical Encoding Label Encoding For categorical columns
- **Data Scaling** Normalization (MinMaxScaler()) In the range of 0 to 1.

Potential Modeling Features

Year Make

Fuel Type

Drive

Percentage of different drive types used in cars

Different type of cars and Cylinders types

Transmission

Percentage of different transmission types used in cars

Condition

Percentage of different condition types used cars

Models

Model Building and Deployment Steps

- Splitting data into: Train = 70 % Test = 30 %
- Label Encoding of categorical Columns
- First built models with default parameters
- Hyperparameter Tuning Randomized SearchCV To improve the Accuracy
- Study models for any Underfitting or Overfitting
- Used the Random Forest model with best accuracy score as $-\mathbf{R}^{**2}$ (Coefficient Of Determination) -86%.
- Best Model is saved as Pickle file.
- Used Streamlit for deploying the model as WebApp.

Results

Model	Accuracy	MAE	MSE	RMSE
Random Forest Regressor	86.78	2382.29	21701516.81	4658.48
XGBoost Regressor	80.78	3466.68	31542312.17	5616.25
Decision Tree Regressor	73.90	3008.64	42549793.55	6523.02
Lasso Regressor	41.52	7326.61	96013084.67	9798.62
Linear Regressor	41.51	7325.84	96015990.90	9798.77

Model Metrics

Graphical User Interface

References

- https://www.census.gov/quickfacts/CA
- https://dagshub.com/blog/ci-cd-for-machine-learning-test-and-and-deploy-your-ml-modelwith-github-actions/
- https://towardsdatascience.com/what-and-why-behind-fit-transform-vs-transform-in-scikit-learn-78f915cf96fe
- https://washingtondc.craigslist.org/

Thank You!