Author Name

June 22, 2024

Contents

1 Exercises

2.1. Let (X,d) be a metric space and $S \subseteq X$. Show that $\partial S = \emptyset \implies S^o = \emptyset$.

2.2. Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $E = \{(x, y) | (x - a)^2 + (y - b)^2 \le r^2\}$ is in a bounded set in \mathbb{R}^2 .

2.3. Let (X,d) be a metric space and $x \in X, y \in X$. Show that if $d(x,y) < \epsilon$ for every $\epsilon > 0$, then x = y.

(1) Assume $\partial S = \varnothing \implies \exists n \in S^c, \exists l \in S^o, \exists x \in \partial S$ ".

Then, by $x \in S^{int} \forall \epsilon > 0$: $B_{\epsilon}(x) \subseteq S$.

However, by $x \in S^c$, this value of $\epsilon > 0$ implies $B_{\epsilon^+}(x) \cap S \subset S^c \implies B_{\epsilon^+}(x) \nsubseteq S$ which is a contradiction, implying our assumption that $x \in \partial S \cap S^{int}$ must be false and $\partial S \cap S^{int} = \emptyset$.

(2) A set S is bounded iff $\exists M \in \mathbb{R}^+ : \forall x, y \in S, d(x, y) \leq M$.

Let $a, b, r \in \mathbb{R}$.

$$S = \{(x, y) \in \mathbb{R} \mid (x - a)^2 + (y - b)^2 \le r^2\}$$

$$\Rightarrow x^2 - 2ax + a^2 + y^2 - 2yb + b^2 \le r^2$$

$$\Rightarrow x^2 - 2ax + y^2 - 2yb < r^2 - a^2 - b^2$$

$$\Rightarrow x^2 + y^2 \le r^2 - a^2 - b^2 + 2ax + 2yb$$

we need to show x^2 is bounded:

$$(x-a)^2 < r^2$$

$$\Rightarrow |x - a| < |r|$$

$$\Rightarrow |x - a| \le |r| = |r| + |a|$$

$$\Rightarrow |x| = |x - a + a| \le |x - a| + |a| \le r + |a|$$

$$\Rightarrow |y| \le r + |a| \Rightarrow x^2 \le (r + |a|)^2$$

Same for
$$y$$
, $y^2 \le (r + |b|)^2$

$$\forall z = (x, y) \in D_{r + \max(|a|, |b|)}$$

$$||z|| = \sqrt{x^2 + y^2} \le \sqrt{(r + |a|)^2 + (r + |b|)^2}$$

Thus if $R = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the bound holds.

#15 is normed boundness \equiv distance boundness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{r \to xy}$$

$$z_0 = (x_1, x_2)$$

$$(x_2 - a)^2 + (y_2 - b)^2 = r^2$$

$$\Rightarrow d(x,(a,b)) = \sqrt{(x_1-a)^2 + (x_2-b)^2} \le r$$

$$\Rightarrow d(x,y) \le d(x,(a,b)) + d(y,(a,b))$$

$$= \sqrt{(x_1 - a)^2 + (x_2 - b)^2} + \sqrt{(y_1 - a)^2 + (y_2 - b)^2}$$

$$\leq r + r = 2r$$
.

(iii)

Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\varepsilon = d(x,y) \Rightarrow \varepsilon > 0$, but $d(x,y) \in \varepsilon$. (contradiction).

(contradiction) Suppose $x \neq y$ and so $d(x,y) \neq 0$. Choose $\varepsilon > 0$ so that $\varepsilon = d(y,x) = \frac{S}{2}$.

$$d(x,y) < \varepsilon = d\left(\frac{S}{2}\right),$$

which is a contradiction, as this implies if $d(x,y) = S > 0 \Rightarrow d(x,y) = S < \varepsilon = \frac{S}{2}$.

$$\Rightarrow S < \frac{S}{2} \Rightarrow 2S < S.$$

Thus x = y.

(iv)

Let $(V, \|\cdot\|)$ be a normed vector space. Then let r > 0 and $x \in V$. Then

$$B'_r(x) = \{ u \in V \mid d(x, u) < r \}$$

$$B_{r+\|x\|}(0) = \{ y \in V \mid d(0, u) < r + \|x\| \}$$

Let $y \in B_r(x)$.

$$d(0,y) \le d(0,x) + d(x,y)$$

$$\leq \|x\| + r$$

$$\Rightarrow B_r(x) \subseteq B_{r+\|x\|}(0).$$

(v)

Suppose S is bounded. Then $\exists M \in \mathbb{R} : \forall x \in S ||x|| \leq M$.

(Equal to $\exists M \in \mathbb{R} : \forall x \in S \ x \in B_{\mathbf{M}}(0)$)