אנליזה פונקציונלית — סיכום

2025 באפריל 9

תוכן העניינים

תוכן העניינים

1	26.3.2025-1 שיעור 1 1	3
	1.1 רקע	3
2	2.4.2025-2 שיעור 2	6
	הסימות לחלוטין	6
	2.2 מרחבים מטריים חשובים	6
3	9.4.2025 - 3 שיעור 3	7
	3.1 תרונות מהחרי תווהעיות	7

26.3.2025 - 1 שיעור 1

1.1

אנליזה פונקציונלית היא כמו אלגברה לינארית. בקורס זה נחקור מרחבים וקטוריים והעתקות עליהם, אבל על מרחבים מורכבים יותר והעתקות מורכבות יותר. נתחיל בשאלה,

 $(a_n)_{n=1}^\infty\subseteq A$ יש בניח נניח ה' נניח ש' מטרי כלשהו, ונניח מטרי מטרי מרחב (X,
ho) יהי היגיל 1.1 מרחב מטרי כלשהו

פושי? על תת־סדרת תכלול כך ש־ (a_n) כך על אל ההכרחיים התנאים התנאים מהם

נעבור לדוגמה וטענות מאינפי 1 לרענן את זכרוננו.

.
ho(x,y)=|x-y|ור אינטואיטיבי הכי המטרי המטרי המחב 1.1 המרחב דוגמה 1.1 המרחב

טענה 1.1 תה־סדרת $(a_n)^\infty_{n=1}\subseteq A$ יותה חסומה, ותהי $A\subseteq\mathbb{R}$ יש ל־ $(a_n)^\infty_{n=1}$

הסדרה, וכן אינסוף לחדרה בקטע Δ_0 אינסוף נקודות של הסדרה, וכן $\Delta_0=A$ ולכן יש אינסוף, ולכן יש בקטע Δ_0 אינסוף נקודות של הסדרה, וכן $\Delta_0=A$ ולכן המשיך אינסוף נקודות של Δ_0 , וכך נמשיך במשיך אינסוף נקודות הקטעים החוצים את Δ_0 , הם Δ_0 , הם Δ_0 , ובחר את זה מביניהם שמכיל אינסוף נקודות של Δ_0 החוצים את הקטעים החוצים את ובכל ובע שהסדרה הנתונה היא סדרה יורדת, במובן ש־ $\Delta_0 = \Delta_1 = \Delta_2 = \Delta_1$ מתקיים גם $\Delta_0 = \Delta_1 = \Delta_1$ לכל $\Delta_0 = \Delta_1 = \Delta_1$ ובע שאכן ובע אינסוף נקודות של $\Delta_1 = \Delta_1 = \Delta_1$ וכך באופן כללי גם $\Delta_1 = \Delta_1 = \Delta_1$ לכן נובע שאכן ובער בסדרה המדרת קושי בסדרה ($\Delta_0 = \Delta_1 = \Delta_1 = \Delta_1$).

 $ho(x,y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}
ight)^{2}}$ עבור על מרחב על מסתכלים אם מסתכלים נכונה זו נכונה אם טענה זו נכונה אם מסתכלים אל מרחב

, המקיימת, $\|\cdot\|:V o\mathbb{R}_{\geq 0}$ ותהי פונקציה " $\mathbb{F}\in\{\mathbb{R},\mathbb{C}\}$ עבור מעל \mathbb{F} עבור מרחב ורמי) אמקיימת, מרחב ווימי

$$x = 0_V \iff ||x|| = 0$$
 .1

$$\forall \alpha \in \mathbb{F}, \|\alpha x\| = |\alpha| \cdot \|x\|$$
 .2

$$\forall x, y \in V, ||x + y|| < ||x|| + ||y||$$
 .3

. ||· || יקרא מרחב נורמי עם נורמה (V, ||·||) אז

, נגדיר גם, $l_2=\{x=(x_1,\dots)\mid \forall k\in\mathbb{N}, x_k\in\mathbb{R}, \sum_{i=1}^\infty x_i^2<\infty\}$ נגדיר את נגדיר (וויר מרחב 1.3 נגדיר גם, נגדיר את הקבוצה (וויר את הקבוצה אור) נגדיר את הקבוצה (וויר את הקבוצה אור) וויר את הקבוצה (וויר את הקבוצה את הקבוצה אור) וויר את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה את הקבוצה את הקבוצה את הקבוצה (וויר את הקבוצה את הקבוצה

$$||x|| = \left(\sum_{i=1}^{\infty} x_i^2\right)^{\frac{1}{2}}$$

. אז המרחב הנורמי l_2 הוא הקבוצה והנורמה אלו.

נבחין כי עלינו להוכיח שזהו אכן מרחב נורמי לפי ההגדרה.

משפט 1.4 (אי־שוויון קושי־שווארץ) מתקיים,

$$\sum_{i=1}^{n} |x_i| \cdot |y_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}$$

 $.\langle x,y
angle = \sum_{i=1}^n x_i y_i$ נסמן 1.5 סימון

, אבור כלשהו, עבור $t \in \mathbb{F}$ אבור כלשהו,

$$0 \le \langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + \langle y, y \rangle t^2$$

עובדה ידועה היא $At^2+Bt+C\geq 0 \implies B^2-4AC\leq 0$ ולכן,

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \cdot \left(\sum_{i=1}^{n} y_i^2\right)$$

26.3.2025 - 1 שיעור 1 שיעור 1

ולכן,

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2} \cdot \left(\sum_{i=1}^{n} y_i^2 \right)^{1/2}$$

,וכן וכן אז מאי־השוויון הנתון נובע $x_i' = |y_i|$ ואם נגדיר $x_i' = |x_i|$ ואם נגדיר

$$\sum_{i=1}^{n} |x_i'| \cdot |y_i'| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}$$

נעבור להוכחת ההגדרה של l_2 , כלומר ההוכחה שהנורמה שהגדרנו היא אכן נורמה.

הוכחה.

$$||x + y||^2 = \sum_{i=1}^{\infty} (x_i + y_i)^2$$

$$= \sum_{i=1}^{\infty} x_i^2 + 2 \sum_{i=1}^{\infty} x_i y_i + \sum_{i=1}^{\infty} y_i^2$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$$

$$= (||x|| + ||y||)^2$$

$$\Rightarrow ||x + y|| \leq ||x|| + ||y||$$

. עתה משקיבלנו ש־ l_2 הוא אכן מרחב נורמי, נוכל לדון בתכונותיו

, במרחב במרחב כדור שפת שפת נגדיר ($l_2, \|\cdot\|$) במרחב במרחב 1.2 דוגמה 1.2

$$S = \{ x \in l_2 \mid ||x|| = 1 \}$$

נבחין כי $l_n=1, l_n^m=0$ לכל $l_n=1, l_n^m=0$ כאשר כי $l_n=(0,\dots,1,\dots)$ המוגדרת על־ידי ($l_n)_{n=1}^\infty$ לכל $l_n=1, l_n^m=0$ לכל $l_n=1, l_n^m=0$

טענה 1.6 מענה $(l_n)_{n=1}^\infty\subseteq l_2$ איינה כוללת תת־סדרת קושי.

$$n
eq m$$
 לכל $\|l_n - l_m\| = \sqrt{2}$ הוכחה. נבחין כי

 $.B_r(x) = \{x \in X \mid \rho(x,x_0) < r\}$ נסמן (X, $\rho)$ מטרי מטרי עבור עבור (כדור) 1.7 סימון סימון סימון מטרי

מיד נראה שימוש בהגדרה זו במשפט, ובכך ניתן הצדקה להגדרה הלכאורה משונה הזאת.

משפט 1.9 (שקילות לחסימות לחלוטין) יהי מרחב מטרי יהי מטרי (X, ρ) יהי הבאים שקולים, אז התנאים הבאים שקולים,

- חסומה לחלוטין. A
- . בכל סדרה של A ניתן לבחור תת־סדרת קושי.

משפט זה הוא משפט חשוב ומרכזי, ועל הקורא לשנן את הוכחתו. את ההוכחה אומנם נראה בהרצאות הבאות, אך נראה עתה שימושים למשפט זה. נעבור למשפט פחות חשוב ומרכזי,

משפט 1.10 (שקילות חסימות במרחבים האוקלידיים) נניח ש $X=\mathbb{R}^m$, וכן ש $X=\mathbb{R}^m$, וכן ש $X=\mathbb{R}^m$, אז אם $A\subseteq\mathbb{R}^m$, אז אם $A\subseteq\mathbb{R}^m$ הסומה לחלוטין.

26.3.2025 - 1 שיעור 1 רקע 1.1

הוכל לחסום מאינפי 3), ונוכל מאינפי (ההצדקה מגיעה מספיק קטנות מספיק את הקובייה לתת-קוביות מספיק קטנות (ההצדקה מאינפי 3), ונוכל לחסום כל , קובייה כזו בכדור. נסמן $\{x_i\}\subseteq \mathbb{R}^m$ את מרכזי הקוביות ונקבל $A\subseteq igcup_{j=1}^N B_\epsilon(x_j)$ מהגדרת החלוקה של הקובייה החוסמת.

טענה 1.11 ב־ $(l_2,\|\cdot\|)$ נגדיר את הקבוצה,

$$\Pi = \{x = (x_1, \dots) \in l_2 \mid \forall i \in \mathbb{N}, |x_i| \le \frac{1}{2^{i-1}}\}$$

 $.\Pi\subseteq l_2$ אז בהכרח , $\sum_{n=1}^{\infty}x_n^2<\infty$ אז $x\in\Pi$ אם

הקבוצה Π חסומה לחלוטין.

 $\Pi_n^*=\{x=(x_1,\dots,x_n,0,\dots)\mid |x_n|\leq rac{1}{2^{n-1}}\}$ נגדיר גם $x_n^*=(x_1,\dots,x_n,\dots,0,0,\dots)$, ונגדיר ($x_1,\dots,x_n,\dots,0,0,\dots$), וונגדיר ($x_1,\dots,x_n,\dots,0,0,\dots$) Π_n^* בהתאם עודנה עודנה עודנה שראינו ולכן היוסומה, ולכן כי היא הקבוצה ב- \mathbb{R}^n , ונבחין כי הקבוצה שראינו קודם עודנה שכן הקבוצה שקולה לקבוצה ב- \mathbb{R}^n , ונבחין כי היא חסומה לחלוטין, זאת שכן הקבוצה שקולה לקבוצה ב- \mathbb{R}^n , ונבחין כי היא חסומה שראינו קודם עודנה תקפה ובהתאם חסומה לחלוטין.

נבחין כי

$$\|x - x_n^*\|^2 = \sum_{i=n+1}^{\infty} x_i^2 \le \sum_{i=n+1}^{\infty} \frac{1}{2^{2i-2}} = \sum_{i=n+1}^{\infty} \frac{4}{4^i} = \frac{1}{4^n} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{3 \cdot 4^{n-1}}$$

, כך שמתקיים, $y^1,\dots,y^n\in l_2$ קיימים ולכן החלוטין חסומה ח Π^*_n אז הל $\epsilon>0$ יהי . $\|x-x^*_n\|\leq \frac{1}{2^{n-1}}$ ולכן ולכן

$$\Pi_n^* \subseteq \bigcup_{i=1}^N B_{\epsilon}(y^i)$$

 $\Pi_n^*\subseteq igcup_{i=1}^N B_\epsilon(y^i)$ נניח ש־ $\|x-x_n^*\|<\epsilon$ שמתקיים $x_n^*\in B_\epsilon(y^i)$ אז $x_n^*\in B_\epsilon(y^i)$ נניח ש־כי בובע ש־כי $x_n^*\in B_\epsilon(y^i)$ נובע ש־כי בובע ש

$$||x - y^i|| \le ||x - x_n^*|| + ||x_n^* - y^i|| < 2\epsilon$$

 $\Pi \subseteq \bigcup_{i=1}^N B_{2\epsilon}(y^i)$ נובע ש

. נבחין אכן אכן זהו אכן חסומות, של קבוצות נורמי במרחב וורמי שב־ב l_2 במרחב כי עתה כי נבחין כי עתה במרחב וורמי

2.4.2025 - 2 שיעור 2

2.1 חסימות לחלוטין

נראה את הוכחתם של שני משפטים שמומלץ לזכור. המשפט הראשון הוא משפט 1.9, בקורס זה נקרא לו משפט האוסדורף, זאת למרות שזהו רק משפט חלקי למשפט המוכר כמשפט בשם זה. נעבור להוכחה.

הוכחה. נניח של ספר סופי מטרי מספר על־ידי לכסות לכסות לכסות לכח לכסות $A\subseteq X$ מטרי וש־ $A\subseteq X$ מרחב מטרי של כדורים. נניח ונסיק $V^1=A\cap B^1_{\epsilon=1}$ ונסיק נסיק אינסוף נקודות כדור $B^1_{\epsilon=1}$ הכולל מכאן נסיק שקיים מכאן מכאן אינסוף נקודות בסדרה. נגדיר $\{x_n\}_{n=1}^\infty\subseteq A$ באופן באופן עכשיו נפעל עכשיו פעל לחלוטין. אין ספק ש V^1 אין ספק ש V^1 מספר אינסופי של כשיו כולל מספר אינסופי אינסופי על מספר אינסופי אין אין כולל מספר אינסופי על מספר אינסופי של מינסופי של מספר אינסופי של מספר אינסופי של מספר אינסופי ינסופי וכוללת מספר אינסופי לחלוטין וכוללת אינסופי אינסופי ולב V^2 הפעם אינסופי וכוללת אינסופי ונגדיר גם אינסופי ול $V^2=V^1\cap B^2_{\epsilon=\frac{1}{8}}$ ונגדיר גם ווגדיר אונגדיר אפעם ווארטיין אינסופי ולכו . בחזות של $\{x_n\}$ נחזור על תהליך האינסוף פעמים.

בחר (גבחר אינסוף נקודות של V^k אינסוף (אינסוף נקודות של V^k אינסוף (אינסוף נקודות של V^k וכחר אוכן אינסוף (גבחר אינסוף נקודות של אינסוף נקודות של אינסוף נכחר אוכן אינסוף נקודות של אינסוף נכחר אוכן אינסוף נפחר אינסוף נפחר אוכן אינסוף נפחר אינסוף נפחר אוכן אינסוף אי קיבלנו אם $x_{n_k},x_{n_{k+l}}\in V^k$ זאת שכן , $ho(x_{n_k},x_{n_{k+l}})\leq rac{2}{k} o 0$ כך שי $\{x_{n_k}\}_{k=1}^\infty\subseteq A$ זות ונקבל תת-סדרה ונקבל תת-סדרה אם ונקבל תת-סדרה אונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדר

נעבור לכיוון השני, נניח שלכל סדרה יש תת־סדרת קושי ב-A. נניח בשלילה כי A אינה אין כיסוי עבורו אין כיסוי אין פיסוי סופי $x_2 \in A$ שקיימת להסיק שקיימת להוכיח כבחר $x_1 \in A$ מספיק שקיימת אינה כוללת תת־סדרת שאינה כוללת $\{x_n\}_{n=1}^\infty \subseteq A$ לכל $ho(x_n,x_m)\geq\epsilon$ נמשיך כך להשתמש באי־החסימות עבור ϵ כדי לבנות סדרה של אינסוף נקודות כאלה, כלומר $ho(x_n,x_m)\geq\epsilon$ לכל הנחה. להנחה בסתירה קושי, בסתירה להנחה. $n \neq m$ כך ש־ $n, m \in \mathbb{N}$

מרחבים מטריים חשובים 2.2

 $C[a,b]=\{f:[a,b] o\mathbb{R}\mid f ext{ is continuous}\}$ עבור ($C[a,b],\|\cdot\|_{\infty}$) נגדיר את המרחב נגדיר עבור (מרחב הפונקציות הרציפות) נגדיר את המרחב המטרי נורמי. $\|f\|=\max_{x\in[a,b]}|f(x)|$ ו־מרחב נורמי.

. ממרה במידה חסומה Φ רש אונו במקרה במקרה x, φ ר במקרה אינו אינו K

. הסומה Φ אז $|\sin(nx)| \leq 1$ כי בי חדוע החסומה לחלוטין, גדיר $\Phi = \{\sin(nx)\}_{n=1}^\infty$ גדיר בגדיר בוגמה 2.1

, אז,
$$n\in\mathbb{N}$$
 עבור $f_n(x)=rac{x^2}{x^2+(1-nx)^2}$ נגדיר 2.2 אז,

$$\forall x \in [0, 1], n \in \mathbb{N}, |f_n(x)| < 1$$

. החידה אחידה במידה אחידה $\{f_n\}$ רט נאמר ולכן נאמר

 $\delta=\delta(\epsilon)$ קיים $\epsilon>0$ עבור כל $\Phi\subseteq C[a,b]$. Eqicontinuous family of functions באנגלית במידה במידה במידה במידה במידה במידה באנגלית (כלומר ערך δ תלוי רק ב־ δ), כך שמתקיים,

$$\forall x_1, x_2 \in [a, b], \varphi \in \Phi |x_1 - x_2| \le \delta(\epsilon) \implies |\varphi(x_1) - \varphi(x_2)| \le \epsilon$$

במקרה זה Φ נקראת רציפה במידה אחידה.

, אחידה, במידה רציפה איז אם שלנו, ונבדוק שלנו, האחרונה לדוגמה מוזור 2.3 דוגמה לדוגמה וונבדוק אחידה וונבדוק ל $|f_n(\frac{1}{n})-f_n(0)|=1$

$$|f_n(\frac{1}{n}) - f_n(0)| = 1$$

הידה אחידה במידה אולכן $\{f_n\}$ ולכן

 $|f_n'(x)| \leq K$ טענה $|f_n(x)| \leq K$ נניח שקיים $|f_n(x)| \leq K$ כך עבור כל $|f_n(x)| \leq K$ נניח שקיים $|f_n(x)| \leq K$ נניח שקיים $|f_n(x)| \leq K$ נניח שקיים $|f_n(x)| \leq K$ טענה פאר נניח שי אז הקבוצה במידה אחידה וגם רציפה במידה אחידה. $\{f_n\}$

$$|f_n(x_1)-f_n(x_2)| \leq |f'(y)|\cdot |x_1-x_2| \leq K|x_1-x_2|$$
, הוקיים, נבחוץ כי מתקיים, נבחוץ לא תלוי בפונקציות או בערכי $\delta(\epsilon)=rac{\epsilon}{K}$.

9.4.2025 - 3 שיעור 3

מכונות מרחבי פונקציות 3.1

, אז התנאים שקולים, עביה ש $\Phi\subseteq (C[a,b],\|\cdot\|_\infty)$ נניה ש $\Phi\subseteq C[a,b]$, נניה שי

- $l\in\mathbb{N}$ עבור כל $\|f_{n_k}-f_{n_{k+l}}\|_\infty \xrightarrow{k o\infty} 0$ כך ש־ $\{f_{n_k}\}$ כך כל סדרה $\{f_n\}_{n=1}^\infty\subseteq \Phi$ עבור כל .1
 - Φ חסומה במידה אחידה ורציפה במידה אחידה.

$$\|\varphi\|_{\infty} = \|\varphi - f_i + f_i\|_{\infty} \le \|\varphi - f_i\|_{\infty} + \|f_i\|_{\infty} \le \epsilon + \|f_i\|_{\infty}$$

מסדרות קושי נוכל להסיק שקיימים,

$$\forall x \in [a, b], |f_1(x)| \le K_1, \dots, |f_N(x)| \le K_N$$

. אחידה אחידה ש־ Φ חסומה ש־ Φ , נובע ש־ Φ , לכן מתקיים אחידה, לכן מתקיים ארידה, ארידה אחידה, ארידה אחידה אחידה.

נעבור להוכחת רציפות במידה שווה.

$$\forall x, y \in [a, b], |x - y| \le \delta_i(\epsilon) \implies |f_i(x) - f_i(y)| \le \epsilon$$

, לכן, $arphi\in B_\epsilon(f_i)$ כך ש־ $i\in\{1,\ldots,N\}$ קיים $\delta=\min\{\delta_i\mid i\in\mathbb{N}\}$ גגדיר

$$|\varphi(x) - \varphi(y)| \le |\varphi - f_i||_{\infty} \le \frac{\varepsilon}{|\varphi(x) - f_i(x)|} + |f_i(x) - f_i(y)| + |f_i(y) - \varphi(y)|$$

(נניה גם ש־ $\delta(\epsilon)$ ולכן ולכן ולכן ולכן

$$\forall \epsilon > 0, \ \exists \delta = \delta(\epsilon), \ |x - y| \le \delta(\epsilon) \implies |\varphi(x) - \varphi(y)| \le 3\epsilon$$

כלומר, מצאנו רציפות במידה שווה.

, כך שמתקיים, הייס $\delta(\epsilon)>0$ ו־ $\epsilon>0$ הייס במידה חסומה שרש הסומה שני, נניח שבי, נעבור עתה לכיוון השני, השני, נניח ש

$$|x - y| \le \delta(\epsilon) \implies \forall \varphi \in \Phi, \ |\varphi(x) - \varphi(y)| \le \epsilon$$

ברור $y_m=K,y_0=-K$ וכן $x_0=a,x_n=b$ ונגדיר אם ונגדיר על פר שר סדרה כך שי $y_{i+1}-y_i\leq \epsilon$ וכן פר ברות ברות מדרות כך של $y_{i+1}-y_i\leq \epsilon$ וכן את הגרף של פר את הגרף של ווגדיר את הגרף של את הגדרנו. נגדיר את הפונקציה של כך שהיא עוברת דרך נקודות בתיבות הללו כך שהיא מקרבת את גרף של אך קטנה ממנה תמיד, $x\in [a,b]$ את הנקודות y_i עבור את החיתוכים של עבור y_i עבור את הגדולות ביותר שמתחת לנקודות אלה. עתה נבדוק את y_i עבור y_i עבור שמתחת לנקודות אלה.

$$|\varphi(x) - \psi(x)| \le |\varphi(x) - \varphi(x_i)| + |\varphi(x_i) - \psi(x_i)| + |\psi(x_i) - \psi(x)| \le \epsilon + \epsilon + |\psi(x_i) - \psi(x_{i+1})| \le 2\epsilon + 3\epsilon$$

, עבור הנקודות ברשת שהגדרנו שברים שעוברים קיבלנו ש Γ עבור $\Psi\subseteq\bigcup_{\psi\in\Gamma}B_{5\epsilon}(\psi)$ לחסום ניתן לחסום ($\psi-\psi\|_\infty\leq 5\epsilon$ עבור קבוצה המצולעים שעוברים ברשת שהגדרנו כלומר זוהי קבוצה סופית.

. מטרי שלם) מרחב מטרי שלם) מרחב מטרי הערא שלם אם כל סדרת קושי מתכנסת לנקודה במרחב המטרי. מגדרה 3.2 (מרחב מטרי שלם)

משפט 3.3 (שלמות מרחב הפונקציות הרציפות) המרחב המרחב מטרי שלם. משפט 3.3 (שלמות מרחב הפונקציות הרציפות)

הוכחה. חהי סדרת קושי. כלומר ($\{f_n\}_{n=1}^\infty\subseteq C[a,b]$ היא סדרת הוכחה. תהי סדרה ($\{f_n\}_{n=1}^\infty$

$$\forall \epsilon > 0 \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n, m \ge N(\epsilon) \| f_n - f_m \|_{\infty} \le \epsilon$$

נובע שלכל $(a,b]_{n=1}^\infty\subseteq\mathbb{R}$ אז $x\in[a,b]$ אז מקסימום. אם נבחר הנורמה על מקסימום, ואת מהגדרת הנורמה $(a,b]_{n=1}^\infty$, אז (a,b) אז אוהי סדרת ממשיים ומשלמות הממשיים והעובדה כי זוהי סדרת קושי נסיק שקיים (a,b) שקיים (a,b) לכל (a,b) גנדיר (a,b) כלומר נבנה ווהי סדרת ממשיים ומשלמות המשיים והעובדה כי זוהי סדרת הפונקציות. כאשר (a,b) מתקיים, פונקציה שמתקבלת מהנקודות הגבוליות של סדרת הפונקציות. כאשר (a,b) מקסימום.

$$\forall \epsilon > 0, \exists N = N(\epsilon), \ \forall x \in [a, b], \ |f_n(x) - f(x)| \le \epsilon$$

9.4.2025-3 שיעור 3 3 שיעור 3 3

ולכן,

$$\forall \epsilon > 0, \exists N = N(\epsilon), \forall n \geq N(\epsilon), \forall x \in [a, b], \max |f_n(x) - f(x)| \leq \epsilon$$

. אז נובע שר $\lim_{n \to \infty} \|f - f_n\|_{\infty} = 0$ אז נובע אז נובע

יזכר במשפט שאנו כבר יודעים

משפט 3.4 (משפט ויירשטראס להתכנסות במידה שווה) אז אם $f_n
ightharpoonup f_n
ightharpoo$

, שלמות (וויר שמוגדר על-ידי, אנזכיר שמוגדר על-ידי (וויר שמוגדר שמוגדר על-ידי), אמשפט 3.5 שלמות (וויר) המרחב המטרי

$$l_2 = \left\{ x \in \mathbb{R}^{\mathbb{N}} \middle| \sum_{i=1}^{\infty} x_i^2 < \infty \right\}, \qquad \|x\| = \left(\sum_{i=1}^{\infty} x_i^2 \right)^{\frac{1}{2}}$$

הוא מרחר ממרי שלח

, כי, אז אנו יודעים סדרת שזוהי ונניח ונניח אנו יודעים יודעים יודעים הוכחה. תהי סדרה $\{x^n\}_{n=1}^\infty\subseteq l_2$

$$\forall \epsilon > 0, \exists N = N(\epsilon), \forall n, m \ge N(\epsilon), \|x^n - x^m\|^2 \le \epsilon \implies \sum_{i=1}^{\infty} (x_i^n - x_i^m)^2 \le \epsilon^2$$

$$\forall \epsilon > 0, \exists N(\epsilon), \ (x_i^n - x_i^m)^2 \le \epsilon^2$$

נקבל שמתקיים $\{x_i\}_{i=1}^\infty\subseteq\mathbb{R}$ הסדרה אז נקבל $x_i=\lim_{n\to\infty}x_i^n$ ונגדיר קושי, ונגדיר קושי, סדרת אז נקבל סדרה אז נקבל סדרה אז מתקיים, נבחר $\{x_i\}_{i=1}^\infty\subseteq\mathbb{R}$ סדרת הסדרה אז מתקיים, ולכל $(x_i^n-x_i)^2\leq\epsilon^2$

$$\sum_{i=1}^{M} (x_i^n - x_i^m)^2 \le \epsilon^2$$

ונובע,

$$\lim_{M \to \infty} \sum_{i=1}^{M} (x_i^n - x_i^m)^2 = \sum_{i=1}^{M} (x_i^n - x_i)^2 \le \epsilon^2$$

אז מתקיים,

$$\sum_{i=1}^{\infty} (x_i^n - x_i)^2 \le \epsilon^2$$

, נבדוק, $\lim_{n\to\infty} \lVert x^n - x \rVert^2 = 0$, נבדוק, נבדוק,

$$\sum_{i=1}^{\infty} x_i^2 = \sum_{i=1}^{\infty} (x_i - x_i^n + x_i^n)^2 = 2\sum_{i=1}^{\infty} (x_i - x_i^n)^2 + 2\sum_{i=1}^{\infty} (x_i^n)^2 < \infty$$

כלומר מצאנו סדרה גבולית והוכחנו שהיא במרחב שלנו.

שמתכנסת $\{f_n\}_{k=1}^\infty\subseteq\{f_n\}$ בניח שר קיימת שווה, אז קיימת שווה במידה חסומה במידה חסומה במידה סדרה הווה עניח של $\{f_n\}_{n=1}^\infty\subseteq C[a,b]$ שמתכנסת היימת שווה לפונקציה $\{f_n\}_{n=1}^\infty\subseteq C[a,b]$ שמתכנסת במידה שווה לפונקציה

, אז החנאים הבאים הכאים (12) נניח ש $\Phi\subseteq l_2$ אז נניח ארצלה ל-12) משפט ארצלה למשפט ארצלה למשפט ארצלה ל

- חסומה לחלוטין Φ .1
- הסומה Φ הסומה $\varphi\in\Phi$ לכל $\|\varphi\|\leq K$ כך ע־ K>0 קיים (a) .2
 - $\lim_{M\to\infty} \left(\sup_{x\in\Phi} \sum_{i=M}^{\infty} x_i^2 \right) = 0 \ (b)$

ננסה להבין את התנאי שהרגע הגדרנו,

בלבד. בהתאם $e_n=1$ כאשר $e_n=(0,\dots,0,1,0,\dots)$ בלבד. בהתאם הסדרות $S\subseteq l_2$ על־ידי בלבד. בהתאם איידיר את בארות הסדרות $S=\{x\mid \|x\|=1\}$ בלבד. בהתאם גודיר את בארות העליים איידיר את בארות השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$ התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$ התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$ התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$

9.4.2025 - 3 שיעור 3 3.1 תכונות מרחבי פונקציות

, הפעם נקבל,
$$H=\{x\in l_2\mid \forall n\in\mathbb{N}, |x_n|\leq \frac{1}{2^{n-1}}\}$$
 הפעם נקבל,
$$\sum_{i=M}^\infty x_i^2=\sum_{i=M}^\infty \frac{1}{4^{i-1}}=\frac{4}{4^M}\cdot\frac{1}{1-\frac{1}{4}}\xrightarrow{M\to\infty}0$$

ולכן התנאי השני עבור חסימות לחלוטין מתקיים.

הגדרות ומשפטים

הגדרות ומשפטים

3 .			•	•	•	 	•	•	•	 •	•		•				•									•	•			. (רמי	: ברו	זרחב	(د	1.2	רה	הגד.
3 .						 						 																			. (12 :	ורחב	2)	1.3	רה	הגד
						 																				(רץ	יואו	-שו	שי	קו .	ויון	י-שו	ĸ)	1.4	פט -	משנ
ł .						 																				(זיך)	לוני	לחי	זה	סוכ	ה ח	ןבוצו	7)	1.8	רה	הגד
ł .						 																			(מין	לוו	לח	ות	זימ	לחכ	ת י	וקילו	")	1.9	פט י	משנ
ļ .						 														ם)	-רר	ליז	וק	הא	ם	ובי	רח	במ	ות	זימ	: חכ	לות	שקיי) 1	.10	פט ו	משנ
						 																			(1	פוו	ציו	הר	ות	וצי	פונק	: הכ	ורחב) i	2.1	רה	הגד
						 																					(1	זידו	78	דה	במי	ות ו	וסימו	7)	2.2	רה	הגד
						 																					(7	וידו	ИК	דה	במי	ת נ	ציפו	ו (ר	2.3	רה	הגד
						 																								(ה	צל	אר	שפט	(מ	3.1	פט	משנ
						 																						. (לם)	שי	זרי	: מנ	ורחב) :	3.2	רה	הגד
						 																(1	בוו	ציו	הר	תו	ביוו	נקצ	ופו	בד	ורח.	ת מ	ולמוו	")	3.3	פט פ	משנ
3.						 													(7	זרוז	ני ע	77	מי	זב	סוו	כנ	התו	לז	אס.	טר	רש.	ן ריי	שפט	(מ	3.4	פט :	משנ
3.						 																									. (1	2 r	ולמוו	")	3.5	פט	משנ
3.						 																		((12		הי	צל	אר	פט	משכ	י לנ	נלוגי	ĸ)	3.7	פט '	משנ