Intro to Math Reasoning HW 8b

Ozaner Hansha

November 7, 2018

Problem 1

Problem: Let \leq_A be a partial order on A and let X be a nonempty subset of A. Prove that $m \in A$ is a minimum for X iff m is a lower bound for X and $m \in X$.

Solution: Note that the definition of a minimum on X is:

$$(\forall x \in X) \ m \in X \land m \leq_A x$$

Now note that if m was a lower bound of X it would satisfy the following:

$$(\forall x \in X) \ m <_A x$$

And the conjunction of this and $m \in X$ is:

$$(\forall x \in X) \ m \in X \land m \leq_A x$$

And so of course, a lower bound that is also in X is also a minimum and vice versa. They are equivalent statements. Minimums are just lower bounds in the set they minimize. It's directly implied by the definition...

Problem 2

Problem: Let \leq_A be a partial order on A and let X be a nonempty finite subset of A. Prove that for all $x \in X$ there is a maximal element $m \in X$ such that $x \leq_A m$.

Solution: Recall that all finite posets are well-founded. This means, by definition, that any nonempty subset of X (including X itself) has a minimum and maximum element. The definition of a maximum element is the proposition we are trying to prove. If I use the well-foundedness of finite sets there is nothing to prove...

Problem 3

Problem: Given some set U, prove that for any nonempty set $X \in P(U)$, there is a unique set $G \in P(U)$ which is the greatest lower bound of X under the \subseteq partial order.

Solution: The greatest lower bound of X under the subset relation would be the intersection of all nonempty subsets of U. This is because for a set G to be a lower bound of X, it must be a subset of all the element in X. The arbitrary intersection of n sets is precisely the maximal (that is containing the most elements possible) set that contains only the common elements of those n sets, even for infinite n.

It is clear then that the greatest lower bound is:

$$\bigcap X = \{ a \mid (\forall x \in X) \ a \in x \}$$

And this set will always at least be the empty set (that is if the condition above never holds), which is contained in P(X), thus still qualifying it for being a lower bound of X.

Problem 4

Problem: Prove that the following relation on \mathbb{R} is an equivalence relation:

$$xRy \equiv (\exists k \in \mathbb{Z}) \ x - y = 2\pi k$$

Then give the equivalence classes of 0 and $\frac{\pi}{2}$.

Solution: First we'll prove the 3 properties that make a partial order an equivalence relation.

Reflexivity

$$xRx \equiv (\exists k \in \mathbb{Z}) \ x - x = 2\pi k$$

$$0 = 2\pi k$$

And since $2\pi k=0$ when $k=0\in\mathbb{Z},$ the relation is satisfied and thus reflexive.

Symmetry

$$xRy \equiv (\exists k \in \mathbb{Z}) \ x - y = 2\pi k$$

 $\equiv (\exists k \in \mathbb{Z}) \ y - x = 2\pi (-k)$ (anti-commutativity of subtraction)
 $\equiv yRx$ (closure of \mathbb{Z} under additive inverse)

Thus the relation is symmetric.

Transitivity

$$xRy \equiv (\exists k_1 \in \mathbb{Z}) \ x - y = 2\pi k_1 \qquad \qquad \text{(definition)}$$

$$\rightarrow (\exists k_1 \in \mathbb{Z}) \ - y = 2\pi k_1 - x \qquad \qquad \text{(arithmetic)}$$

$$yRz \equiv (\exists k_2 \in \mathbb{Z}) \ y - z = 2\pi k_2 \qquad \qquad \text{(definition)}$$

$$\rightarrow (\exists k_1 \in \mathbb{Z}) \ y = 2\pi k_2 + z \qquad \qquad \text{(arithmetic)}$$

$$\rightarrow (\exists k_1, k_2 \in \mathbb{Z}) \ 0 = 2\pi (k_1 + k_2) - x + z \qquad \text{(sum of lines 2 \& 4)}$$

$$\equiv (\exists k_1, k_2 \in \mathbb{Z}) \ z - x = 2\pi (k_1 + k_2) \qquad \qquad \text{(arithmetic)}$$

$$\equiv (\exists k_1 \in \mathbb{Z}) \ z - x = 2\pi k \qquad \qquad \text{(closure of } \mathbb{Z} \text{ under addition)}$$

$$\equiv zRx \qquad \qquad \text{(definition)}$$

$$\equiv zRx \qquad \qquad \text{(definition)}$$

$$\equiv xRz \qquad \qquad \text{(symmetry of } R)$$

And so xRy and yRx imply xRz, thus the relation is transitive.

Equivalence Classes

The equivalence classes are given below:

$$[0] = \{x \in \mathbb{R} \mid (\exists k \in \mathbb{Z}) \ 0 - x = 2\pi k\}$$
$$= \{2\pi k \mid k \in \mathbb{Z}\}$$
$$\left[\frac{\pi}{2}\right] = \left\{x \in \mathbb{R} \mid (\exists k \in \mathbb{Z}) \ \frac{\pi}{2} - x = 2\pi k\right\}$$
$$= \left\{\frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z}\right\}$$

Problem 5

Problem: Prove that the following relation on \mathbb{R} is an equivalence relation:

$$\begin{split} xRy &\equiv x - y \in \mathbb{Q} \\ &\equiv (\exists q \in Q) \ x - y = q \end{split}$$

Then give the equivalence classes of 0, $\frac{1}{2}$, and $\frac{\pi}{2}$.

Solution: First we'll prove the 3 properties that make a partial order an equivalence relation.

Reflexivity

$$xRx \equiv x - x \in \mathbb{Q}$$
$$\equiv 0 \in \mathbb{Q}$$

Which is clearly true. Thus R is reflexive.

Symmetry

$$xRy \equiv (\exists q \in Q) \ x - y = q$$

 $\equiv (\exists q \in Q) \ y - x = -q$ (anti-commutativity of subtraction)
 $\equiv yRx$ (closure of $\mathbb Q$ under additive inverse)

And of course $\mathbb Q$ is closed under the additive inverse because the negative of any rational number is also rational. Thus the relation is symmetric.

Transitivity

$$xRy \equiv (\exists q_1 \in Q) \ x - y = q_1 \qquad \qquad \text{(definition)}$$

$$\rightarrow (\exists q_1 \in Q) \ - y = q_1 - x \qquad \qquad \text{(arithmetic)}$$

$$yRz \equiv (\exists q_2 \in Q) \ y - z = q \qquad \qquad \text{(definition)}$$

$$\rightarrow (\exists q_2 \in Q) \ y = q_2 + z \qquad \qquad \text{(arithmetic)}$$

$$\rightarrow (\exists q_1, q_2 \in Q) \ 0 = q_1 + q_2 - x + z \qquad \qquad \text{(sum of lines 2 \& 4)}$$

$$\equiv (\exists q_1, q_2 \in Q) \ z - x = q_1 + q_2 \qquad \qquad \text{(arithmetic)}$$

$$\equiv (\exists q \in Q) \ z - x = q \qquad \qquad \text{(closure of } \mathbb{Q} \text{ under addition)}$$

$$\equiv zRx \qquad \qquad \text{(definition)}$$

$$\equiv xRz \qquad \qquad \text{(symmetry of } R)$$

And of course $\mathbb Q$ is closed under the addition because we can always make a find a common denominator and add the numerators. Thus the relation is transitive.

Equivalence Classes

The equivalence classes are given below:

$$\begin{aligned} [0] &= \{x \in \mathbb{R} \mid (\exists q \in \mathbb{Q}) \ x - 0 = q\} = \mathbb{Q} \\ \left[\frac{1}{2}\right] &= \left\{x \in \mathbb{R} \mid (\exists q \in \mathbb{Q}) \ x - \frac{1}{2} = q\right\} = \mathbb{Q} \\ \left[\frac{\pi}{2}\right] &= \left\{x \in \mathbb{R} \mid (\exists q \in \mathbb{Q}) \ x - \frac{\pi}{2} = q\right\} \\ &= \left\{\frac{\pi}{2} + r \mid r \in \mathbb{R}\right\} \end{aligned}$$