计算机组成原理

2021春计算机组成原理19级456班

QQ群号: 745575324

扫一扫二维码,加入群聊。

顾崇林 计算机科学与技术学院 guchonglin@hit.edu.cn

第二章 计算机的运算方法

- 计算机中数的表示
 - 无符号数和有符号数
 - 定点表示和浮点表示
- 定点运算
- 浮点运算

无符号数

• 寄存器的位数反映无符号数的表示范围。

有符号数: 真值与机器数

真值: 带符号的数

+0.1011或0.1001

-0.1011

+1100或1100

-1100

机器数:符号数字化的数

注:以后非特殊说明,默认二进制数表示;

二进制数位数不是8的倍数,只是为了讲解方便。

原码表示法:整数

带符号的绝对值表示

$$x = +1110$$
 $[x]_{\mathbb{R}} = 0$, 1110 用 逗号 将符号位 和数值部分隔开 $x = -1110$ $[x]_{\mathbb{R}} = 1$, 1110 $[x]_{\mathbb{R}} = 2^4 + 1110 = 1$, 1110

$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^{n} > x \ge 0 \\ 2^{n} - x & 0 \ge x > -2^{n} \end{cases}$$

原码表示法: 小数

$$x = +0.1101$$
 $[x]_{\mathbb{R}} = 0.1101$ 用小数点将符号位和数值部分隔开 $x = -0.1101$ $[x]_{\mathbb{R}} = 1 - (-0.1101) = 1.1101$ $x = +0.1000000$ $[x]_{\mathbb{R}} = 0.1000000$ 用小数点将符号位和数值部分隔开 $x = -0.10000000$ $[x]_{\mathbb{R}} = 1 - (-0.10000000) = 1.10000000$

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

举例

- 例1. 已知 $[x]_{\mathbb{R}} = 1.0011$,求 x解: 由定义得 $x = 1 [x]_{\mathbb{R}} = 1 1.0011 = -0.0011$
- 例2. 已知 $[x]_{原} = 1,1100$,求 x解: 由定义得 $x = 2^4 [x]_{\varOmega} = 10000 1,1100 = -1100$

举例

- 例4. 求 x = 0 的原码
 解: 设 x = +0.0000 则 [+0.0000]_原 = 0.0000
 x = -0.0000 则 [-0.0000]_原 = 1.0000
 同理,对于整数 [+0]_原 = 0,0000
 [-0]_原 = 1,0000
 ∴ [+0]_原 ≠ [-0]_原
 注意: x = 0 也是要分成小数和整数分别讨论的

原码的优缺点

• 优点: 简单、直观

•缺点:做加减运算时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
减法	正	正	减法	可正可负
加法	正	负	减法	可正可负
加法	负	正	减法	可正可负
减法	负	负	减法	可正可负

- •能否只作加法?
 - 找到与负数等价的正数来代替这个负数,就可变减法为加法

补数表示法

- 小明从下午5点学习到凌晨3点,一共学了多少小时?
- 补的概念: 时钟以12为模
 - 逆时针: 5-2 = 3
 - 顺时针: 5+10 = 3 + 12

- 可见 -2 可用 +10 代替
 - 称 +10 是 -2 (以 12 为模)的补数
 - 记作 $-2 \equiv +10 \pmod{12}$ 同理 $-4 \equiv +8 \pmod{12}$ $-5 \equiv +7 \pmod{12}$

减法 — 加法

补数——续

- •结论(真值的绝对值小于模)
 - •一个负数加上"模"即得该负数的补数
 - •一个正数和一个负数互为补数时,绝对值之和即为模数

补码表示法: 二进制整数

$$[x]_{\mathring{A}} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$

其中: x 为真值, n 为二进制整数的位数

$$x = -1011000$$

 x 的补数= $-1011000 + 2^7$ 检验上式为什么是 2^{n+1} ?
 $x = +0101000$
 $[x]_{\stackrel{}{\uparrow}} = 0,0101000$
 $[x]_{\stackrel{}{\uparrow}} = 1,0101000$
用 逗号 将符号位
和数值部分隔开

补码表示法: 二进制 (纯) 小数

$$[x]_{\stackrel{}{\mathbb{A}}} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \\ + x & x > x \ge 1 \end{cases}$$

$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\stackrel{}{\uparrow}} = 0.1110$ $[x]_{\stackrel{}{\uparrow}} = -0.1100000+2$ $= 10.0000000$ $= 0.1100000$ $= 1.0100000$ 和数值部分隔开

求补码的快捷方式

当真值为负时,补码可用原码除符号位外每位取反,末位加1求得

举例:已知小数补码求真值

已知 $[x]_{i}$ = 1.0001, 求 x_{\circ}

或: $[x]_{\text{\rightarrow}}$ -> $[x]_{\mathbb{R}}$ $[x]_{\mathbb{R}}$ = 1.1111

 $\therefore x = -0.1111$

当真值为负时,已知补码求原码的快捷方法:

补码除符号位外,每位取反,末位加 1 (需要记住) 补码除符号位外,末位减 1,再每位取反

练习:已知正数补码求真值

已知
$$[x]_{*} = 1,1110$$
,求 x

或:
$$[x]_{\text{\rightarrow}} -> [x]_{\bar{\bar{\gamma}}}$$
 $[x]_{\bar{\bar{\gamma}}} = 1,0010$... $x = -0010$

练习: 求下列真值的补码

真值 $[x]_{\stackrel{}{\wedge}}$ $[x]_{\stackrel{}{\otimes}}$

$$x = -70 = -1000110$$
 1,0111010 1,1000110 $x = -0.1110$ 1.0010 1.1110 $x = 0.0000$ [+ 0] $= [-0]$ 0.0000 0.0000 $= [-0.0000]$ 0.0000 1.0000 $= [-0.0000]$ 7能表示

由小数补码定义
$$[x]_{\stackrel{}{\mathbb{A}}} = \begin{cases} x & 1 > x \geq 0 \\ 2+x & 0 > x \geq -1 \pmod{2} \end{cases}$$

$$[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

反码表示法: 二进制整数

$$x = +1101$$
 $x = -1101$ $[x]_{\overline{\mathbb{Q}}} = 0,1101$ $[x]_{\overline{\mathbb{Q}}} = (2^{4+1}-1)-1101$ $= 11111-1101$ 用 逗号 将符号位 $= 1,0010$ 和数值部分隔开

反码表示法: 二进制小数

$$[x]_{\mathbb{Z}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \\$$
 其中: x 为真值, n 为二进制数位数

$$x = -0.1010$$
 $[x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ $= 1.0101$ 和数值部分隔开

例子:已知反码求真值,0的反码

• 已知 $[x]_{\overline{\mathbb{Q}}} = 1,1110$,求 x 解: 由定义得 $x = [x]_{\overline{\mathbb{Q}}} - (2^{4+1} - 1)$ = 1,1110 - 11111 = - 0001

•求0的反码

解: 设x = +0.0000, $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$ x = -0.0000, $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$ 同理,对于整数 $[+0]_{\overline{\mathbb{Q}}} = 0,0000$, $[-0]_{\overline{\mathbb{Q}}} = 1,1111$ $[+0]_{\overline{\mathbb{Q}}} \neq [-0]_{\overline{\mathbb{Q}}}$

三种机器数的小结

- •最高位为符号位,**书写上**用","(整数)或"."(小数)将数值部分和符号位隔开
- •对于正数,原码 = 补码 = 反码
- •对于负数,符号位为1,其数值部分
 - 原码除符号位外每位取反(反码) 末位加 1 -> 补码
- 当真值为 负 时,已知补码求原码的方法:
 - 补码除符号位外,每位取反,末位加 1
 - 补码除符号位外,末位减 1,再每位取反

例子: 机器数的真值

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	<u>±</u> 0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
:	•	•	•	•
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例:已知 $[y]_{i}$,求 $[-y]_{i}$

[y]补连同符号位在内,每位取反,末位加1,即得[-y]补

移码表示法

• 补码表示很难直接判断其真值大小

如 十进制	二进制	补码	
x = +21	+10101	0,10101	
x = -21	-10101	0,10101 十 1,01011 大	
x = +31	+11111	0,11111 1,00001 大	
x = -31	-11111	1,00001 大	
以上 $x+2^5$	+10101 + 10	00000 = 110101 大	
	+10101 + 1000000 = 110101 大 正确 $-10101 + 1000000 = 001011$ 大 正确 $-11111 + 1000000 = 0000001$ 大 正确		
	-111111 + 10	0000 = 000001	

移码表示法: 二进制整数

• 定义

$$[x]_{38} = 2^n + x (2^n > x \ge -2^n)$$

其中: x 为真值, n 为 整数的位数

• 移码在数轴上的表示

x = 10100

• 例:

$$[x]_8 = 2^5 + 10100 = 1,10100$$

 $x = -10100$ 用 逗号 将符号位
和数值位隔开

$$[x]_{8} = 2^{5} - 10100 = 0.01100$$

移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{8} = 2^{7} + (-1100100) = 0,0011100$ $[x]_{1} = 2^{7+1} - 1100100 = 1,0011100$ 补码与移码只差一个符号位

真值、补码和移码的对照表

真值 x (n=5)	[x] _补	[x] _移	[x] _移 对应的 十进制整数
-100000 -11111 -11110 : -00001 ±00000 +00001 +00010 :	100000 100001 100010 :: 111111 00000 00000 00001 000010 ::	00000 000001 000010 : 011111 100000 100001 100010	0 1 2 : 31 32 33 34 :
+ 11110 + 11111	$0\ 1\ 1\ 1\ 1\ 0$ $0\ 1\ 1\ 1\ 1\ 1$	111110 111111	62 63

移码的特点

续前表,
$$n=5$$
 [+0]_移 = $2^5 + 0 = 1,00000$ [-0]_移 = $2^5 - 0 = 1,00000$

$$[+0]_{8} = [-0]_{8}$$

最小真值 $-2^5 = -100000$ 对应的移码为 $2^5-100000 = 000000$ 最小真值的移码为全 0

用移码表示浮点数的阶码,便于判断浮点数的阶码大小

第二章

- 计算机中数的表示
 - 无符号数和有符号数
 - 定点表示和浮点表示
- 定点运算
- 浮点运算

定点表示

- 小数点按约定方式标出
- 定点表示

定点机 小数定点机 整数定点机 原码
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
 $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-2^n \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

浮点表示

 $N = S \times r^{j}$ 浮点数的一般形式 S 尾数 i 阶码 r 基数 (基值) 计算机中r取 2、4、8、16 等 二进制表示 r=2 N=11.0101✓= 0.110101×2¹⁰ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$ 计算机中 S 小数、可正可负 i 整数、可正可负

浮点数的表示形式

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j_f 和 m 共同表示小数点的实际位置

浮点数的表示范围

练习

• 设机器数字长为 24 位, 欲表示±3万的十进制数, 试问 在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

■ 15 位二进制数可反映 ±3 万之间的十进制数

满足 最大精度 可取 m=4, n=18

• 浮点数的规格化形式

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

• 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移 1 位, 阶码加 1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

• 例13. 设 m = 4, n = 10, r = 2, 求尾数规格化后的浮点数表示范围

• 例14. 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设
$$x = +\frac{19}{128}$$

二进制形式 $x = 0.0010011$
定点表示 $x = 0.0010011 000$

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中
$$[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{Q}} = 0.0010011000$$

浮点机中
$$[x]_{\mathbb{R}} = 1,0010; 0.1001100000$$

$$[x]_{3} = 1, 1110; 0.1001100000$$

$$[x]_{\mathbb{R}} = 1,1101; 0.1001100000$$

•例15.将-58表示成二进制定点数和浮点数,并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式 x = -111010

定点表示

x = -00001111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\mathbb{R}} = 1,0000111010$

 $[x]_{3} = 1,1111000110$

 $[x]_{\kappa} = 1,1111000101$

浮点机中

 $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{3} = 0,0110; 1.0001100000$

 $[x]_{\mathbb{R}} = 0,0110; 1.0001011111$

 $[x]_{\text{mbs}, \text{Rh}} = 1,0110; 1.0001100000$

•例16. 写出对应下图所示的浮点数的补码形式。设 n = 10, m = 4, 阶符、数符各取1位。

机器零

- 当浮点数尾数为 0 时,不论其阶码为何值,按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值, 按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

$$\times, \times \times \times \times; \quad 0.00 \quad \cdots \quad 0$$

(阶码 =
$$-16$$
) 1, 0 0 0 0; $\times . \times \times$ ··· ×

当阶码用移码, 尾数用补码表示时, 机器零为

 $0,0000; 0.00 \cdots 0$

有利于机器中"判0"电路的实现

IEEE 754 标准

尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

	符号位S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

IEEE 754浮点数标准

• 单精度 (32-bit)

31	30	29	28	27	26	25	24	23	22 ~ 0
S		8	位指	数(无符 ⁵	号数)			23位尾数(无符号数)

• 双精度 (64-bit)

63	62	61	60	59	58	57	56	55	54	53	52	51~0
S				11	位指数	女 (无统	符号数	()				52位尾数(无符号数)

IEEE 754浮点数: 单精度为例

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
s 8位指数(无符号数)								23位尾数(无符号数)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	23位尾数(无符号数)														

指数	尾数	表示对象	换算方法
0	0	0	规定 (符号位不同, 存在+0.0和-0.0)
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁽⁰ - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负浮点数

- 正负浮点数 = $(-1)^S$ * $(1 + 尾数_2)$ * $2^{(指数 127)}$
- 尾数前加一?
 - 因为规格化二进制数,小数点前要求是1,这个1称为**前导数**。为了打包更多的位到数中,就在二进制表示中省略了前导数,默认小数点前有1。
 - 有效位数: 隐含的1加上尾数共有多少位。对单精度来说,有效位数是 24 位(隐含的1和 23 位尾数);对双精度来说,是 53 位(1 + 52)。
 - 由于 0(和非规格化数)没有前导数,所以被赋予特殊的指数 0,硬件不会给它附加 1

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负浮点数

- 正负浮点数 = $(-1)^S$ * $(1 + 尾数_2)$ * $2^{(指数 127)}$
- 指数 127?
 - 使用**移码的思想**。二进制表示中的指数部分是**原码**,可以直接进行大小比较。如果两个数的**符号相同**,那么具有**更大二进制指数的数就更大**。
 - 对于真值而言, 其实际的"指数"范围: [1-127: 254-127] = [-126: 127]

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负非规格化数

- 正负非规格化数 = (-1)^S * (尾数₂) * 2^(0 126)
- 什么是非规格化数?
 - 规格化数: 科学计数法中整数部分没有前导 0 的数称为规格化数;
 - 非规格化数: 整数部分前导为 0 的数
- 非规格化数的绝对值比浮点数绝对值更小
 - 对于正负浮点数来说,若二进制指数部分为1,则真值指数部分为 -126,和非规格化数相同。但浮点数尾数有前导1,导致浮点数绝对值更大。

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁽⁰ - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负非规格化数

- 正负浮点数 = $(-1)^S$ * $(1 + 尾数_2)$ * $2^{(指数 127)}$
- 正负非规格化数 = (-1)^S * (尾数₂) * 2^(0 126)
- 最小正浮点数: $S_1 = (1 + 0_2) * 2^{(1-127)} = 2^{-126}$
- 倒数最二小正浮点数: $S_2 = (1 + 0.0 \cdot \cdot \cdot \cdot 01_2) * 2^{(1-127)} = 2^{-126} + 2^{-149}$

- 最小非规格化数: $S_4 = 0.0 \cdot \cdot \cdot \cdot 01_2 * 2^{(0-126)} = 2^{-23} * 2^{-126} = 2^{-149}$
- 最大非规格化数: $S_3 = 0.1 \cdots 11_2 * 2^{(0-126)} = (1-2^{-23}) * 2^{-126} = 2^{-126} 2^{-149}$

IEEE 754浮点数: 真值转二进制

• 例题

• 将十进制 -0.75 转为单精度 IEEE 754格式二进制

解

根据十进制小数转二进制小数算法: $-0.75_{10} = -0.11_2$ 规格化: $-0.11 = -1.1 * 2^{-1}$,能够规格化,说明是正负浮点数表示 $-1.1 * 2^{-1} = (-1)^S * (1 + 尾数_2) * 2^{(fat)} - 127)$ $= (-1)^1 * (1 + 0.1_2) * 2^{(126 - 127)}$

符号位: 1; 指数部分: 126; 尾数部分: 0.12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754浮点数: 二进制转真值

• 例题

• 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

解

符号位为1,指数字段为129,尾数字段为2⁻² = 0.25。是浮点数 $(-1)^S*(1 + 尾数_2)*2^{(129 - 127)} = (-1)^1*(1 + 0.25)*2^{(129 - 127)} = -1*1.25*2^2 = -5.0$

第二章

- 计算机中数的表示
- 定点运算
- 浮点运算

移位运算

• 移位的意义

15.m = 1500.cm 小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

• 在计算机中,移位与加减配合,能够实现乘除运算

算术移位规则

符号位不变

真值	码制	添补代码
正数	原码、补码、反码	0
	原 码	0
	补 码	左移添0
火 <u>秋</u> 	个I、 11—3	右移添1
	反 码	1

•例17. 设机器数字长为 8 位(含1位符号位),写出 *A* = +26 时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机 器 数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

•例18. 设机器数字长为 8 位(含1位符号位),写出 *A* = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,0110100	- 52
左移两位	1,1101000	-104
右移一位	1,0001101	-13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1,1110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

6.3

算术移位和逻辑移位的区别

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110

算术左移 00100110

高位1移丢

10110010

01011001

11011001 (补码)

10100110

逻辑右移

算术右移

加减法运算

• 补码加减运算公式

(1) 加法

整数
$$[A]_{\stackrel{}{\mathbb{A}}} + [B]_{\stackrel{}{\mathbb{A}}} = [A+B]_{\stackrel{}{\mathbb{A}}} \pmod{2^{n+1}}$$

小数 $[A]_{\stackrel{}{\mathbb{A}}} + [B]_{\stackrel{}{\mathbb{A}}} = [A+B]_{\stackrel{}{\mathbb{A}}} \pmod{2}$
(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{.}{N}} = [A+(-B)]_{\stackrel{.}{N}} = [A]_{\stackrel{.}{N}} + [-B]_{\stackrel{.}{N}} \pmod{2^{n+1}}$$
 小数 $[A-B]_{\stackrel{.}{N}} = [A+(-B)]_{\stackrel{.}{N}} = [A]_{\stackrel{.}{N}} + [-B]_{\stackrel{.}{N}} \pmod{2}$ 连同符号位一起相加,符号位产生的进位自然丢掉

•例19.设
$$A = 0.1011$$
, $B = -0.0101$,求 $[A+B]$ _补

解:
$$[A]_{\stackrel{}{\uparrow}} = 0.1011$$
 验证 $+[B]_{\stackrel{}{\uparrow}} = 1.1011$ -0.0101 -0.0101 $[A]_{\stackrel{}{\uparrow}} + [B]_{\stackrel{}{\uparrow}} = 10.0110$ -0.0110 -0.0110

•例20. 设
$$A = -9$$
, $B = -5$, 求 $[A+B]_{\text{补}}$

解:
$$[A]_{\stackrel{?}{\uparrow}} = 1,0111$$
 验证
$$+[B]_{\stackrel{?}{\uparrow}} = 1,1011$$

$$-1001 \\ +-0101$$

$$A+B=-1110$$

$$A+B=-1110$$

•例21.设机器数字长为 8 位(含 1 位符号位)目 A =15, B = 24, 用补码求 A - B解: A = 15 = 0001111B = 24 = 0011000 $[A]_{\nmid k} = 0,0001111$ $[B]_{\nmid k} = 0,0011000$ $+ [-B]_{\lambda k} = 1,1101000$ $[A]_{\lambda h} + [-B]_{\lambda h} = 1,1110111 = [A-B]_{\lambda h}$ A - B = -1001 = -9练习 1 设 $x = \frac{9}{16}$ $y = \frac{11}{16}$,用补码求 x+y $x+y=-0.1100=-\frac{12}{16}$ 错 练习2 设机器数字长为8位(含1位符号位) 日 A = -97, B = +41, 用补码求 A - BA - B = +1110110 = +118 错

一位符号位判溢出

- 一位符号位判溢出
 - ·参加操作的两个数(减法时即为被减数和"求补"以后的减数) 符号相同,其结果的符号与原操作数的符号不同,即为溢出
- 硬件实现
 - •最高有效位的进位⊕符号位的进位 = 1, 溢出

两位符号位判溢出

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\dot{\uparrow}\dot{\uparrow}} + [y]_{\dot{\uparrow}\dot{\uparrow}} = [x + y]_{\dot{\uparrow}\dot{\uparrow}}$$
 (mod 4)

$$[x-y]_{\lambda | \cdot} = [x]_{\lambda | \cdot} + [-y]_{\lambda | \cdot} \pmod{4}$$

最高符号位 代表其 真正的符号

补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

乘法运算

• 分析笔算乘法

$$A \times B = -\frac{0.1101}{0.1101}$$

$$\times 0.1011$$

$$1101$$

$$1101$$

$$0000$$

$$1101$$

$$0.10001111$$

- A = -0.1101 B = 0.1011
- $A \times B = -0.10001111$ 乘积的符号心算求得
 - ✓ 符号位单独处理
 - ✓ 乘数的某一位决定是否加被乘数
 - ? 4个位积一起相加
 - ✓ 乘积的位数扩大一倍

• 笔算乘法改进

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第一步 被乘数 $A + 0$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$
第二步 右移一位,得新的部分积
$$= 0.1A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第二步 右移一位,得新的部分积
$$= 0.1A + 0.001(A + 0.001(A + 0.1A))$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第二步 右移一位,得新的部分积

• 改进后的笔算乘法过程(竖式)

部分积	乘数	说 明
0.0000	1011	初态,部分积=0
+0.1101		乘数为1,加被乘数
0.1101		
0.0110	$1\ 1\ 0\ 1$	→1,形成新的部分积
+0.1101		乘数为1,加被乘数
1.0011	1	
0.1001	1110	→1,形成新的部分积
+ 0.0000		乘数为0,加0
0.1001	11	
0.0100	1111	→ 1,形成新的部分积
+ 0.1101		乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结

- 乘法运算可用 加和移位 实现
 - n = 4, 加 4 次, 移 4 次
- •由乘数的末位决定被乘数是否与原部分积相加,然后->1 位形成新的部分积,同时乘数->1位(末位移丢),空出 高位存放部分积的低位。

• 被乘数只与部分积的高位相加

硬件: 3个寄存器,具有移位功能

1个全加器

原码乘法

• 原码一位乘运算规则

以小数为例 设
$$[x]_{\mathbb{R}} = x_0. x_1x_2 \cdots x_n$$
 $[y]_{\mathbb{R}} = y_0. y_1y_2 \cdots y_n$ $[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0. x_1x_2 \cdots x_n)(0.y_1y_2 \cdots y_n)$ $= (x_0 \oplus y_0). x^*y^*$ 式中 $x^* = 0. x_1x_2 \cdots x_n$ 为 x 的绝对值 $y^* = 0. y_1y_2 \cdots y_n$ 为 y 的绝对值 乘积的符号位单独处理 $x_0 \oplus y_0$

数值部分为绝对值相乘 $x^* \cdot y^*$

68

原码一位乘递推公式

$$x^{*} \cdot y^{*} = x^{*}(0.y_{1}y_{2} \dots y_{n})$$

$$= x^{*}(y_{1}2^{-1} + y_{2}2^{-2} + \dots + y_{n}2^{-n})$$

$$= 2^{-1}(y_{1}x^{*} + 2^{-1}(y_{2}x^{*} + \dots 2^{-1}(y_{n}x^{*} + 0) \dots))$$

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

• 例 21. 已知 x = -0.1110, y = 0.1101, 求 $[x \times y]_{\mathbb{R}}$

解: 数值部分的运算	Ť	
解:数值部分的运第部分积	乘数	说明
0.0000	1101	部分积 初态 $z_0 = 0$
+ 0.1110	=	+ **
0.1110		
逻辑右移 0.0111	0110	→1,得 z ₁
+ 0.0000	=	+ 0
0.0111	0	
逻辑右移 0.0011	1011	→1,得 <i>z</i> 。
+ 0.1110	=	→1 , 得 z ₂ + x*
1.0001	10	
逻辑右移 0.1000	1101	→1, 得 z ₃ + x*
+ 0.1110	=	$+x^*$
1.0110	110	
逻辑右移 0.1011	0110	→1,得 Z ₄

- 例21结果
 - ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
 - ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点绝对值运算用移位的次数判断乘法是否结束逻辑移位

原码一位乘的硬件配置

A、X、Q均 n+1 位 移位和加受末位乘数控制

补码乘法

• 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

- ① 被乘数任意,乘数为正 同原码乘 但加和移位按补码规则运算 乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

Booth 算法(被乘数、乘数符号任意)

Booth 算法递推公式

如何实现 y_{i+1} - y_i ?

$y_i y_{i+1}$	$y_{i+1}-y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{\uparrow h} \rightarrow 1$
1 0	-1	$+[-x]_{\nmid h} \rightarrow 1$
1 1	0	→ 1

• 例 22. 已知 x = +0.0011, y = -0.1011, 求 $[x \times y]_{*}$ 解: 00.0000 | 1.01010 | $[x]_{3} = 0.0011$ +[-x]* + 1 1 . 1 1 0 1 $[y]_{3} = 1.0101$ 补码 $[-x]_{3} = 1.1101$ 右移 $+[x]_{ih}$ +00.0011 补码 右移 $+[-x]_{i}$ $\therefore [x \cdot y]_{\gtrless h}$ 补码 右移

Booth 算法的硬件配置

A、X、Q 均 n+2 位 移位和加受末两位乘数控制

乘法小结

- 整数乘法与小数乘法完全相同
 - 可用 逗号 代替小数点

• 原码乘: 符号位 单独处理

补码乘:符号位 自然形成

• 原码乘去掉符号位运算, 即为无符号数乘法

• 不同的乘法运算需有不同的硬件支持

除法运算

• 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001111 \\ \hline 0.00000111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

 $x \div y = -0.1101$ 商符心算求得 余数 0.00001111

笔算除法和机器除法的比较

笔算除法

商符单独处理

心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器

上商位置 不固定

机器除法

符号位异或形成

|x| - |y| > 0上商 1

|x| - |y| < 0上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

原码除法

• 以小数为例

$$[x]_{\mathbb{F}} = x_{0}. x_{1}x_{2} ... x_{n}$$

$$[y]_{\mathbb{F}} = y_{0}. y_{1}y_{2} ... y_{n}$$

$$[\frac{x}{y}]_{\mathbb{F}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$
式中 $x^{*} = 0. x_{1}x_{2} ... x_{n}$ 为 x 的绝对值 $y^{*} = 0. y_{1}y_{2} ... y_{n}$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

恢复余数法

• 例 23.
$$x = -0.1011$$
, $y = -0.1101$, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$ $[x]_{\bar{p}} = 1.1011$ $[y]_{\bar{p}} = 1.1101$ $[y^*]_{\bar{q}} = 0.1101$ $[-y^*]_{\bar{q}} = 1.0011$

①
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

② 被除数(余数)	商	说 明
0.1011	0.0000	
+ 1.0011		+[- <i>y</i> *] _补
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1
+ 1.0011		+[_y*] _{*\}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	← 1
+ 1.0011		+[- <i>y</i> *] _补

被除数(余数)	商	说明
0.0101	011	余数为正,上商1
逻辑左移 0.1010	011	←1
+ 1.0011		+[- <i>y*</i>] _补
1.1101	0110	余数为负,上商0
+ 0.1101		恢复余数 +[y*]*
0.1010	0110	恢复后的余数
逻辑左移 1.0100	0110	←1
+ 1.0011		$+ \llbracket - y^* brace_{ early}$
0.0111	01101	余数为正,上商1

$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

余数为正 上商1

上商5次

第一次上商判溢出

移 4 次

余数为负 上商 0,恢复余数

不恢复余数法(加减交替法)

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i - y^*$$
 加减交替上商"0" $2R_i + y^*$

• 例 24. x = -0.1011, y = -0.1101, 求[$\frac{x}{y}$] 原 $0.1011 \mid 0.0000$ $[x]_{\text{\tiny \mathbb{R}}} = 1.1011$ +[-y*]_补 +1.0011 $[y]_{\mathbb{R}} = 1.1101$ 逻辑 余数为负,上商0 0 1.1110 左移 0 $[x^*]_{3} = 0.1011$ 4.1100 $+[y^*]_{\stackrel{*}{\sim}}$ +0.1101 $[y^*]_{3} = 0.1101$ 逻辑 余数为正,上商1 0.1001 01 左移 $[-y^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}$ 1.0010 01 +[-y*]* +1.0011逻辑 0.0101 011 余数为正,上商1 左移 011 -0.1010 $+[-y^*]_{i}$ +1.0011逻辑 余数为负,上商 0 0110 1.1101 左移 4.1010 0110 +[y*]* +0.11010.0111 01101 余数为正,上商1

• 例24. 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$[\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次 第一次上商判溢出 移 n 次, 加 n+1 次 用移位的次数判断除法是否结束

原码加减交替除法硬件配置

A、X、Q均n+1位 用 Q_n 控制加减交替

乘法器硬件

- •被乘数寄存器128位
 - •被乘数64位,要进行64次左移一位
- 存在的问题
 - 被乘数寄存器浪费
 - 128位ALU浪费

改良版乘法器硬件

- 积寄存器129位
 - 右64位: 乘数
 - 左65位: 全0,多的一位用于保存加法器的进位
- 若乘数最右端为1
 - 将积寄存器[128:65]位取出 (时间不计)
 - 取出的值和被乘数进行加法运算;同时,积寄存器进行 右移一位运算(一个时钟周期)
 - 加法运算结果写入积寄存器 [128:64](时间不计)
- 若乘数最右端为0
 - 积寄存器整体右移一位
- 最后结果在积寄存器[128:1]

第二章

- 计算机中数的表示
- 定点运算
- 浮点运算

6.4 浮点四则运算

•一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 永冽左
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{N}} = [j_x]_{\hat{N}} - [j_y]_{\hat{N}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2) ∴ $S_x \rightarrow 2$ $j_x + 2$
② 对阶 $[x]_{\hat{N}'} = 00,11;00.0011$

2. 尾数求和

3. 规格化

• (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• (2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1\times\times\cdots\times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid h} = [1.1]00 \cdots 0$$

-1 $\left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = \boxed{1.0000} \cdots 0$$

• (3)左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例
$$[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 11; 11.1001$$

左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$
 $\therefore x+y = (-0.1110) \times 2^{10}$

• (4)右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

• 例 27. $x = 0.1101 \times 2^{10}$, $y = 0.1011 \times 2^{01}$, 求 x + y(除阶符、数符外, 阶码取 3 位, 尾数取 6 位) 解: $[x]_{*} = 00,010;00.110100$ $[y]_{3} = 00,001;00.101100$

(1) 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1
$$S_y \longrightarrow 1, j_y + 1$$

$$[y]_{\stackrel{?}{\Rightarrow}_{\downarrow}} = 00,010;00,010110$$

 $[y]_{*k'} = 00, 010; 00.010110$

② 尾数求和

$$[S_x]_{\stackrel{}{ imes}} = 00.110100$$
 $+ [S_y]_{\stackrel{}{ imes}} = 00.010110$ 对阶后的 $[S_y]_{\stackrel{}{ imes}}$ 足数溢出需右规

③右规

$$[x+y]_{3} = 00, 010; 01.001010$$

右规后

$$[x+y]_{3} = 00, 011; 00. 100101$$

$$x+y=0.100101\times 2^{11}$$

• 4. 舍入

- 在 对阶 和 右规 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
 - (1)0 舍 1 入法
 - (2)恒置"1"法

• 例28.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$, 求 $x - y$ (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$ $[x]_{*} = 11,011;11.011000$ $[y]_{*} = 11,100;00.111000$

① 对阶

$$[\Delta j]_{\stackrel{?}{\uparrow}} = [j_x]_{\stackrel{?}{\uparrow}} - [j_y]_{\stackrel{?}{\uparrow}} = 11,011$$

$$+ 00,100$$

$$11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1$, j_x+1

$$[x]_{*} = 11, 100; 11.101100$$

② 尾数求和

③ 右规

$$[x-y]_{\nmid h} = 11, 100; 10. 110100$$

右规后

$$[x-y]_{36} = 11, 101; 11.011010$$

$$x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

