Paper Report

NGO HO Anh Khoa

October 13, 2017

- 1 IBM models
- 2 Unsupervised Neural HMMs [3]
- 3 What does Attention in NMT pay Attention to ? [1]

3.1 Main idea

This research compares between Attention Models (Non-recurrent attention model/ Global attention and Recurrent attention/ Input-feeding model) and known Word Alignment. The result is that their differences depends on the word being generated.

3.2 How to compare?

Higher consistency between Attention and Alignment leading to better translation.

- Spearman's rank correlation between attention quality (Attention loss compared known human alignment) and translation quality (Word prediction loss). Higher correlation means a closer relationship between translation quality and consistency of attention versus alignment.
 - Attention loss
 - Word prediction loss
- Attention concentration: Entropy of attention distribution (Soft-hard attention problem)

3.3 Analysis

The analysis is based on POS tags experiments.

- Impact of Attention between Non-recurrent (NR) and Recurrent attention (IF): IF has lower AER (Hard attention) and Attention loss (Soft attention).
- Translation quality: Consistency between attention and word alignment depends on POS tags. For example,
 - There is a higher consistency in the case of nouns. However, attention captures other information in the case of verbs.
 - Translation quality of Verbs is better than Nouns. It means attention does not follow alignment for translating Verbs.
- Attention concentration: Review the case of Verbs and Nouns.
 - Nouns have a lower attention entropy (Higher concentration), lower attention loss (Closer to Alignment), which is that attention entropy can be used as a measure of closeness of attention to alignment in the case of nouns
 - Verbs have a lower correlation between attention entropy and word prediction loss, which means that attention concentration is not necessary for translating verbs.
- Attention distribution: It shows how a POS tag of target sentence depends on other POS tags of source sentence.

4 Confidence through Attention [2]

4.1 Main idea

References

- [1] H. Ghader and C. Monz. What does Attention in Neural Machine Translation Pay Attention to? ArXiv e-prints, October 2017.
- [2] M. Rikters and M. Fishel. Confidence through Attention. ArXiv e-prints, October 2017.
- [3] M. Ke Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Proceedings of the workshop on structured prediction for nlp. pages 63–71. Association for Computational Linguistics, 2016.