High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach¹ * Andreas Blattmann¹ * Dominik Lorenz¹ Patrick Esser[®]

¹Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany

https://github.com/CompVis/latent-diffusion

Björn Ommer¹

stability.ai API News FAQ # English

Research behind Stable Diffusion Stable Diffusion Public Release

Image Synthesis

- Settings
 - Conditional Image Generation
 - Text-to-Img DALLE Series, DaVinci, Stable Diffusion
 - Inpainting —— LAMA
 - Super Resolution —— SR3

•

Text2Image Example

Inpainting Example

Diffusion Models

DDPM

- Noising and Denoising, Markov Chain
- ➤ Noising, No training required

$$\begin{aligned} q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) &= \mathcal{N}(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}) \\ \mathbf{x}_{t} &= \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \mathbf{z}_{t-1} \\ &= \sqrt{\alpha_{t} \alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t} \alpha_{t-1}} \bar{\mathbf{z}}_{t-2} \\ &= \dots \\ &= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \mathbf{z} \\ q(\mathbf{x}_{t}|\mathbf{x}_{0}) &= \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I}) \end{aligned}$$

➤ Denoising: Probabilistic Prediction

- Target: $L_{DM} = \mathbb{E}_{x, \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon \epsilon_{\theta}(x_t, t)\|_2^2 \right]$
- ε_{θ} : U-Net
 - Whole Image to Whole Image

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x₀

Diffusion Models

DDPM

- Noising and Denoising, Markov Chain
- ➤ Noising, No training required

$$\begin{aligned} q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) &= \mathcal{N}(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}) \\ \mathbf{x}_{t} &= \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \mathbf{z}_{t-1} \\ &= \sqrt{\alpha_{t} \alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t} \alpha_{t-1}} \bar{\mathbf{z}}_{t-2} \\ &= \dots \\ &= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \mathbf{z} \\ q(\mathbf{x}_{t}|\mathbf{x}_{0}) &= \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I}) \end{aligned}$$

$$(\mathbf{x}_T) \longrightarrow \cdots \longrightarrow (\mathbf{x}_t) \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} (\mathbf{x}_{t-1}) \longrightarrow \cdots \longrightarrow (\mathbf{x}_0)$$

$$\begin{split} q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) &= q(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{x}_0) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)} \\ &\propto \exp\Big(-\frac{1}{2}\Big(\frac{(\mathbf{x}_t - \sqrt{\alpha_t}\,\mathbf{x}_{t-1})^2}{\beta_t} + \frac{(\mathbf{x}_{t-1} - \sqrt{\alpha_{t-1}}\,\mathbf{x}_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_t - \sqrt{\bar{\alpha_t}}\,\mathbf{x}_0)^2}{1 - \bar{\alpha}_t}\Big)\Big) \\ &= \exp\Big(-\frac{1}{2}\Big(\Big(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\Big)\mathbf{x}_{t-1}^2 - \Big(\frac{2\sqrt{\bar{\alpha}_t}}{\beta_t}\mathbf{x}_t + \frac{2\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t}\mathbf{x}_0\Big)\mathbf{x}_{t-1} + C(\mathbf{x}_t, \mathbf{x}_0)\Big)\Big) \end{split}$$

where $C(\mathbf{x}_t, \mathbf{x}_0)$ is some function not involving \mathbf{x}_{t-1} and details are omitted. Following the standard Gaussian density function, the mean and variance can be parameterized as follows:

$$\begin{split} \tilde{\beta}_t &= 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t \\ \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) &= (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} \mathbf{x}_0) / (\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 \end{split}$$

➤ Denoising: Probabilistic Prediction

- Target: $L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon \epsilon_{\theta}(x_t,t)\|_2^2 \right]$
- ε_{θ} : U-Net
 - Whole Image to Whole Image

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \boldsymbol{t}) \right\|^2$$

until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x₀

Drawbacks and Improvements

- Slow Thousands of A100 hours for training, several hours for evaluation
 - •
 - DDIM: 20-50 times speed up!
 - DDPM time steps T = 1000
 - DDIM dim(T) = T/20
- Resolution Limitations
 - U-Net for whole image * T steps
 - Solution: Denoising on latent space —— LDM(Latent Diffusion Models)

- Two Stage Training for both Pixel Space and Latent Space
- Stage 1 —— Image AutoEncoder
- Stage 2 —— Denoising U-Net Stage2

- Stage 1 —— Perceptual Image Compression
 - Encoder Decoder model
 - Image Generation from statistics encoding and generation from distribution
 - Latent code is not high level feature(Z_c=4)
 - Load in an Gaussian Distribution and send into decoder to get image output

AutoEncoder

- Constraint Target (Loss Function)
 - Reconstruction Loss (L2 for original image and reconstructed one)
 - LPIPS Loss (Perceptual loss for better reality)
 - Pretrained VGG 16
 - KL Loss for constraints on Latent Space

- Stage 2 —— Latent Diffusion Models
 - With Stage 1 Autoencoder frozen
 - Effect on different size latent code (with different rate of encoder)
 - Structure
 - Resnet Block with cross-attention module
 - U-Net like
 - Diffusion
 - Target:
 - DDPM $L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon \epsilon_{\theta}(z_t, t)\|_2^2 \right].$
 - Can receive Conditioning
 - Text
 - Images
 - Semantic maps
 - •

- Conditioning Mechanisms
 - Different(domain specific) τ_{θ} for different modalities
 - Using Attention to let conditioning effects on generation process:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$
, with

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y).$$

• Optimization target comes to:

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[\| \epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y)) \|_2^2 \right]$$

- On Perceptual Compression Tradeoffs
 - Ablation on different downsampling factor $f \in \{1, 2, 4, 8, 16, 32\}$
- Image Generation with Latent Diffusion
 - On four regular datasets
- Conditional Latent Diffusion
 - Text to Image
 - Layout to Image
 - Semantic Map to Image
- SR and Inpainting

• On Perceptual Compression Tradeoffs

Figure 6. Analyzing the training of class-conditional *LDMs* with different downsampling factors f over 2M train steps on the ImageNet dataset. Pixel-based *LDM-1* requires substantially larger train times compared to models with larger downsampling factors ($LDM-\{4-16\}$). Too much perceptual compression as in LDM-32 limits the overall sample quality. All models are trained on a single NVIDIA A100 with the same computational budget. Results obtained with 100 DDIM steps [84] and $\kappa=0$.

Figure 7. Comparing *LDMs* with varying compression on the CelebA-HQ (left) and ImageNet (right) datasets. Different markers indicate {10, 20, 50, 100, 200} sampling steps using DDIM, from right to left along each line. The dashed line shows the FID scores for 200 steps, indicating the strong performance of *LDM*-{4-8}. FID scores assessed on 5000 samples. All models were trained for 500k (CelebA) / 2M (ImageNet) steps on an A100.

• Image Generation with Latent Diffusion

CelebA-HQ 256×256				FFHQ 256×256				
Method	FID↓	Prec. ↑	Recall ↑	Method	FID↓	Prec. ↑	Recall ↑	
DC-VAE [63]	15.8	-	-	ImageBART [21]	9.57	-	-	
VQGAN+T. [23] (k=400)	10.2	-	-	U-Net GAN (+aug) [77]	10.9 (7.6)	-	-	
PGGAN [39]	8.0	-	-	UDM [43]	5.54	-	-	
LSGM [93]	7.22	-	-	StyleGAN [41]	<u>4.16</u>	<u>0.71</u>	0.46	
UDM [43]	<u>7.16</u>	-	-	ProjectedGAN [76]	3.08	0.65	<u>0.46</u>	
<i>LDM-4</i> (ours, 500-s [†])	5.11	0.72	0.49	LDM-4 (ours, 200-s)	4.98	0.73	0.50	
LSUN-Chu	LSUN-Churches 256×256				LSUN-Bedrooms 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID↓	Prec. ↑	Recall ↑	
DDPM [30]	7.89	-	-	ImageBART [21]	5.51	-	-	
ImageBART [21]	7.32	-	-	DDPM [30]	4.9	-	-	
PGGAN [39]	6.42	-	-	UDM [43]	4.57	-	-	
StyleGAN [41]	4.21	-	-	StyleGAN [41]	2.35	0.59	0.48	
StyleGAN2 [42]	3.86	_	-	ADM [15]	1.90	0.66	$\overline{0.51}$	
ProjectedGAN [76]	1.59	<u>0.61</u>	<u>0.44</u>	ProjectedGAN [76]	1.52	<u>0.61</u>	0.34	
<i>LDM-8</i> * (ours, 200-s)	4.02	0.64	0.52	<i>LDM-4</i> (ours, 200-s)	2.95	0.66	0.48	

- Conditional Latent Diffusion
 - Text to Image
 - BERT Tokenizer, Train on LAION-400M

Text-Conditional Image Synthesis							
FID↓	IS↑	$N_{ m params}$					
27.10	18.20	4B	self-ranking, rejection rate 0.017				
26.94	<u>26.02</u>	75M					
12.24	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$				
11.84	-	4B	c.f.g for AR models [98] $s=5$				
23.31	20.03 ± 0.33 30.29 ± 0.42	1.45B 1.45B	250 DDIM steps 250 DDIM steps, c.f.g. [32] $s = 1.5$				
	FID \(\psi \) 27.10 26.94 12.24 11.84	FID \ IS\\ 27.10	FID \downarrow IS \uparrow Nparams 27.10 18.20 4B 26.94 26.02 75M 12.24 - 6B 11.84 - 4B 23.31 20.03 \pm 0.33 1.45B				

Table 2. Evaluation of text-conditional image synthesis on the 256×256 -sized MS-COCO [51] dataset: with 250 DDIM [84] steps our model is on par with the most recent diffusion [59] and autoregressive [26] methods despite using significantly less parameters. †/*:Numbers from [109]/ [26]

- Conditional Latent Diffusion
 - Layout to Image
 - Semantic map to Image

• Super Resolution & Inpainting

	SR on Imag	eNet	Inpainting on Places		
User Study	Pixel-DM $(f1)$	LDM-4	LAMA [88]	LDM-4	
Task 1: Preference vs GT ↑	16.0%	30.4%	13.6%	21.0%	
Task 2: Preference Score ↑	29.4%	70.6%	31.9%	68.1%	

Table 4. Task 1: Subjects were shown ground truth and generated image and asked for preference. Task 2: Subjects had to decide between two generated images. More details in E.3.6

Method	FID ↓	IS ↑	PSNR ↑	SSIM↑	$N_{ m params}$	$[\frac{\text{samples}}{s}](*)$
Image Regression [72] SR3 [72]	15.2 5.2	121.1 180.1	27.9 26.4	0.801 0.762	625M 625M	N/A N/A
LDM-4 (ours, 100 steps) emphLDM-4 (ours, big, 100 steps) LDM-4 (ours, 50 steps, guiding)	$\frac{2.8^{\dagger}/4.8^{\ddagger}}{2.4^{\dagger}/4.3^{\ddagger}}$ $4.4^{\dagger}/6.4^{\ddagger}$	166.3 174.9 153.7	24.4 ± 3.8 24.7 ± 4.1 25.8 ± 3.7	$\begin{array}{c} 0.69 \pm 0.14 \\ 0.71 \pm 0.15 \\ 0.74 \pm 0.12 \end{array}$	169M 552M <u>184M</u>	4.62 4.5 0.38

Table 5. ×4 upscaling results on ImageNet-Val. (256²); †: FID features computed on validation split, ‡: FID features computed on train split; *: Assessed on a NVIDIA A100

Model (regtype)	train throughput samples/sec.	sampling @256	throughput [†] @512	train+val hours/epoch	FID@2k epoch 6
LDM-1 (no first stage)	0.11	0.26	0.07	20.66	24.74
LDM-4 (KL, w/ attn)	0.32	0.97	0.34	7.66	15.21
LDM-4 (VQ , w/ attn)	0.33	0.97	0.34	7.04	14.99
LDM-4 (VQ, w/o attn)	0.35	0.99	0.36	6.66	15.95

Table 6. Assessing inpainting efficiency. † : Deviations from Fig. 7 due to varying GPU settings/batch sizes cf. the supplement.

	40-50	% masked	All samples		
Method	FID↓	LPIPS ↓	FID↓	LPIPS ↓	
LDM-4 (ours, big, w/ ft)	9.39	0.246 ± 0.042	1.50	0.137 ± 0.080	
LDM-4 (ours, big, w/o ft)	12.89	0.257 ± 0.047	2.40	0.142 ± 0.085	
LDM-4 (ours, w/ attn)	11.87	0.257 ± 0.042	2.15	0.144 ± 0.084	
LDM-4 (ours, w/o attn)	12.60	0.259 ± 0.041	2.37	$\underline{0.145} \pm 0.084$	
LaMa [88] [†]	12.31	0.243 ± 0.038	2.23	0.134 ± 0.080	
LaMa [88]	12.0	0.24	2.21	<u>0.14</u>	
CoModGAN [107]	10.4	0.26	1.82	0.15	
RegionWise [52]	21.3	0.27	4.75	0.15	
DeepFill v2 [104]	22.1	0.28	5.20	0.16	
EdgeConnect [58]	30.5	0.28	8.37	0.16	

Table 7. Comparison of inpainting performance on 30k crops of size 512×512 from test images of Places [108]. The column 40-50% reports metrics computed over hard examples where 40-50% of the image region have to be inpainted. †recomputed on our test set, since the original test set used in [88] was not available.

Thanks for watching!