Wireless Communication Systems @CS.NCTU

Lecture 2: Modulation and Demodulation

Reference: Chap. 5 in Goldsmith's book

Instructor: Kate Ching-Ju Lin (林靖茹)

Transmitter

Receiver

Modulation

From Wikipedia:

The process of varying one or more properties of a periodic <u>waveform</u> with a modulating signal that typically contains information to be transmitted.

Example 1

= bit-stream?

(a) 10110011

(b) 00101010

(c) 10010101

Example 2

= bit-stream?

(a) 01001011 (b) 00101011 (c) 11110100

Example 3

= bit-stream?

(a) 11010100

(b) 00101011

(c) 01010011

(d) 11010100 or 00101011

Types of Modulation

Amplitude ASK

Frequency FSK

Phase PSK

Modulation

Map bits to signals

Demodulation

Map signals to bits

Analog and Digital Modulation

- Analog modulation
 - Modulation is applied continuously
 - Amplitude modulation (AM)
 - Frequency modulation (FM)

- Digital modulation
 - An analog carrier signal is modulated by a discrete signal
 - Amplitude-Shift Keying (ASK)
 - Frequency-Shift Keying (FSK)
 - Phase-Shift Keying (PSK)
 - Quadrature Amplitude
 Modulation (QAM)

Advantages of Digital Modulation

- Higher data rate (given a fixed bandwidth)
- More robust to channel impairment
 - Advanced coding/decoding can be applied to make signals less susceptible to noise and fading
 - Spread spectrum techniques can be applied to deal with multipath and resist interference
- Suitable to multiple access
 - Become possible to detect multiple users simultaneously
- Better security and privacy
 - Easier to encrypt

Modulation and Demodulation

- Modulation
 - Encode a bit stream of finite length to one of several possible signals
- Delivery over the air
 - Signals experience fading and are combined with AWGN (additive white Gaussian noise)
- Demodulation
 - Decode the received signal by mapping it to the closest one in the set of possible transmitted signals

Band-pass Signal Representation

General form

$$s(t) = a(t)cos(2\pi f_c t + \phi(t))$$
 amplitude frequency phase

- Amplitude is always non-negative
 - Or we can switch the phase by 180 degrees
- Called the canonical representation of a band-pass signal

a(t)

 $2\pi f_c t + \phi(t)$

Band-Pass Signal Transmitter

$$s(t) = s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$$

Band-Pass Signal Receiver

In-phase and Quadrature Components

$$s(t) = a(t)\cos(2\pi f_c t + \phi(t))$$

$$= a(t)[\cos(2\pi f_c t)\cos(\phi(t)) - \sin(2\pi f_c t)\sin(\phi(t))]$$

$$= s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$$

- $s_I(t) = a(t)\cos(\phi(t))$: In-phase component of s(t)
- $s_Q(t) = a(t)\sin(\phi(t))$: Quadrature component of s(t)

Amplitude:
$$a(t) = \sqrt{s_I^2(t) + s_Q^2(t)}$$

Phase:
$$\phi(t) = \tan^{-1}(\frac{s_Q(t)}{s_I(t)})$$

Band-Pass Signal Representation

$$s(t) = s_I(t)\cos(2\pi f(t)t) - s_Q(t)\sin(2\pi f(t)t)$$

We can also represent s(t) as

$$s(t) = \Re[s'(t)e^{2j\pi f_c t}]$$

$$exp(i\theta) = cos(\theta) + jsin(\theta)$$

- s'(t) is called the complex envelope of the band-pass signal
- This is to remove the annoying $e^{2j\pi f_c t}$ in the analysis

Types of Modulation

$$s(t) = A\cos(2\pi f_c t + \phi)$$

- Amplitude
 - M-ASK: Amplitude Shift Keying

- Frequency
 - M-FSK: Frequency Shift Keying

- Phase
 - M-PSK: Phase Shift Keying

- Amplitude + Phase
 - M-QAM: Quadrature Amplitude Modulation

Amplitude Shift Keying (ASK)

- A bit stream is encoded in the amplitude of the transmitted signal
- Simplest form: On-Off Keying (OOK)

$$- '1' \rightarrow A=1, '0' \rightarrow A=0$$

M-ASK

M-ary amplitude-shift keying (M-ASK)

$$s(t) = \begin{cases} A_i \cos(2\pi f_c t) & \text{, if } 0 \le t \le T \\ 0 & \text{, otherwise,} \end{cases}$$

where $i = 1, 2, \cdots, M$

 A_i is the amplitude corresponding to bit pattern i

Example: 4-ASK

Map '00', '01', '10', '11' to four different amplitudes

Pros and Cons of ASK

- Pros
 - Easy to implement
 - Energy efficient
 - Low bandwidth requirement
- Cons
 - Low data rate
 - bit-rate = baud rate
 - High error probability
 - Hard to pick a right threshold

Bandwidth is the difference between the upper and lower frequencies in a continuous set of frequencies.

Types of Modulation

$$s(t) = A\cos(2\pi f_c t + \phi)$$

- Amplitude
 - M-ASK: Amplitude Shift Keying

- Frequency
 - M-FSK: Frequency Shift Keying

- Phase
 - M-PSK: Phase Shift Keying

- Amplitude + Phase
 - M-QAM: Quadrature Amplitude Modulation

Frequency Shift Keying (FSK)

- A bit stream is encoded in the frequency of the transmitted signal
- Simplest form: Binary FSK (BFSK)

$$- '1' \rightarrow f = f_1, '0' \rightarrow f = f_2$$

M-FSK

M-ary frequency-shift keying (M-FSK)

$$s(t) = \begin{cases} A\cos(2\pi f_{c,i}t) & \text{, if } 0 \le t \le T \\ 0 & \text{, otherwise,} \end{cases}$$

where $i = 1, 2, \cdots, M$

 $f_{c,i}$ is the center frequency corresponding to bit pattern i

- Example: Quaternary Frequency Shift Keying (QFSK)
 - Map '00', '01', '10', '11' to four different frequencies

Pros and Cons of FSK

- Pros
 - Easy to implement
 - Better noise immunity than ASK
- Cons
 - Low data rate
 - Bit-rate = baud rate

■ BW(min) =
$$N_b + N_b$$

Types of Modulation

$$s(t) = A\cos(2\pi f_c t + \phi)$$

- Amplitude
 - M-ASK: Amplitude Shift Keying

- Frequency
 - M-FSK: Frequency Shift Keying

- Phase
 - M-PSK: Phase Shift Keying

- Amplitude + Phase
 - M-QAM: Quadrature Amplitude Modulation

Phase Shift Keying (PSK)

- A bit stream is encoded in the phase of the transmitted signal
- Simplest form: Binary PSK (BPSK)

$$- '1' \rightarrow \phi = 0, '0' \rightarrow \phi = \pi$$

Constellation Points for BPSK

- '1' $\to \phi = 0$
- $\cos(2\pi f_c t + 0)$ $= \cos(0)\cos(2\pi f_c t)$ $sin(0)sin(2\pi f_c t)$ $= s_i \cos(2\pi f_c t) - s_o \sin(2\pi f_c t) = s_i \cos(2\pi f_c t) - s_o \sin(2\pi f_c t)$

• cos(2πf_ct+π) $= \cos(\pi)\cos(2\pi f_c t)$ $sin(\pi)sin(2\pi f_c t)$

$$(s_i, s_Q) = (1, 0)$$

 $(1) \rightarrow 1 + 0i$

$$(s_1, s_Q) = (-1, 0)$$

 $(0) \rightarrow -1 + 0i$

Demodulate BPSK

- Map to the closest constellation point
- Quantitative measure of the distance between the received signal s' and any possible signal s
 - Find |s'-s| in the I-Q plane

Demodulate BPSK

- Decoding error
 - When the received signal is mapped to an incorrect symbol (constellation point) due to a large error
- Symbol error rate
 - P(mapping to a symbol s_i , $j\neq i \mid s_i$ is sent)

Given the transmitted symbol s₁

 \rightarrow incorrectly map s' to $s_0=(-1+0)\rightarrow$ '0', when the error is too large

SNR of BPSK

SNR: Signal-to-Noise Ratio

- Example:
 - Say Tx sends (1+0i) and Rx receives (1.1 0.01i)
 - SNR?

SER/BER of BPSK

• BER (Bit Error Rate) = SER (Symbol Error Rate)

$$SER = BER = P_b \qquad \begin{array}{c} \text{Minimum distance of any two cancellation points} \\ = Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = Q(\sqrt{2SNR}) \end{array}$$

From Wikipedia:

Q(x) is the probability that a normal (Gaussian) random variable will obtain a value larger than x standard deviations above the mean.

$$Q(x) = rac{1}{\sqrt{2\pi}} \int_x^\infty \exp\!\left(-rac{u^2}{2}
ight) du.$$

Constellation point for BPSK

• Say we send the signal with phase delay π

$$\begin{aligned} &\cos(2j\pi f_c t + \pi) \\ &= \cos(2j\pi f_c t)\cos(\pi) - \sin(2j\pi f_c t)\sin(\pi) \\ &= -1 * \cos(2j\pi f_c t) - 0 * \sin(2j\pi f_c t) \\ &= (-1 + 0i)e^{2j\pi f_c t} \longrightarrow \text{Band-pass representation} \end{aligned}$$

Illustrate this by the <u>constellation</u>
point (-1 + 0i) in an I-Q plane

Quadrature PSK (QPSK)

• Use four phase rotations $1/4\pi$, $3/4\pi$, $5/4\pi$, $7/4\pi$ to represent '00', '01', '11', 10'

$$A\cos(2j\pi f_c t + \pi/4)$$
= $A\cos(2j\pi f_c t)\cos(\pi/4) - A\sin(2j\pi f_c t)\sin(\pi/4)$
= $1 * \cos(2j\pi f_c t) - 1 * \sin(2j\pi f_c t)$
= $(1+1i)e^{2j\pi f_c t}$

Quadrature PSK (QPSK)

- Use 2 degrees of freedom in I-Q plane
- Represent two bits as a constellation point
 - Rotate the constellations by $\pi/2$
 - Demodulation by mapping the received signal to the closest constellation point
 - Double the bit-rate
- No free lunch:
 - Higher error probability (Why?)

Quadrature PSK (QPSK)

- Maximum power is bounded
 - Amplitude of each constellation point should still be 1

Bits	Symbols
'00'	$1/\sqrt{2}+1/\sqrt{2}i$
'01'	$-1/\sqrt{2}+1/\sqrt{2}i$
10'	1/√2-1/√2i
'11'	-1/√2-1/√2i

Higher Error Probability in QPSK

- For a particular error n, the symbol could be decoded correctly in BPSK, but not in QPSK
 - Why? Each sample only gets half power

Trade-off between Rate and SER

- Trade-off between the data rate and the symbol error rate
 - Denser constellation points
 - → More bits encoded in each symbol
 - → Higher data rate
 - Denser constellation points
 - → Smaller distance between any two points
 - → Higher decoding error probability

SEN and BER of QPSK

• SNR_s: SNR per symbol; SNR_b: SNR per bit

$$SNR_b pprox rac{SNR_s}{\log_2 M}, P_b pprox rac{P_s}{\log_2 M}$$
 QPSK: M=4

SER: The probability that each branch has a bit error

$$SER = P_s = 1 - \left[1 - Q(\sqrt{2SNR_b})\right]^2 = 1 - \left[1 - Q(\sqrt{\frac{2E_b}{N_0}})\right]^2$$
$$= 1 - \left[1 - Q(\sqrt{SNR_s})\right]^2 = 1 - \left[1 - Q(\sqrt{\frac{E_s}{N_0}})\right]^2$$

• BER

$$BER = P_b \approx \frac{P_s}{2}$$

E_s is the bounded maximum power

M-PSK

M-PSK BER versus SNR

Types of Modulation

$$s(t) = A\cos(2\pi f_c t + \phi)$$

- Amplitude
 - M-ASK: Amplitude Shift Keying

₩₩₩₩

- Frequency
 - M-FSK: Frequency Shift Keying

- Phase
 - M-PSK: Phase Shift Keying

- Amplitude + Phase
 - M-QAM: Quadrature Amplitude Modulation

Quadrature Amplitude Modulation

- Change both amplitude and phase
- $s(t) = A\cos(2\pi f_c t + \phi)$

Bits	Symbols
'1000'	s ₁ =3a+3ai
'1001'	s ₂ =3a+ai
'1100'	s ₃ =a+3ai
'1101'	s ₄ =a+ai

expected power: $E[|s_i|^2] = 1$

• 64-QAM: 64 constellation points, each with 8 bits

M-QAM BER versus SNR

Modulation in 802.11

- 802.11a
 - 6 mb/s: BPSK + ½ code rate
 - 9 mb/s: BPSK + 3/4 code rate
 - 12 mb/s: QPSK + ½ code rate
 - 18 mb/s: QPSK + 3/4 code rate
 - 24 mb/s: 16-QAM + ½ code rate
 - 36 mb/s: 16-QAM + 3/4 code rate
 - 48 mb/s: 64-QAM + 3/3 code rate
 - 54 mb/s: 64-QAM + $\frac{3}{4}$ code rate
- FEC (forward error correction)
 - k/n: k-bits useful information among n-bits of data
 - Decodable if any k bits among n transmitted bits are correct

FEC

- Encode bit stream in a redundant way by using an error-correcting code
 - Redundancy allows Rx to <u>recover a limited number of bit</u> <u>errors</u> even <u>without retransmissions</u>
- Code rate: proportion of bits that is useful (non-redundant)
 - k/n: for every k bits useful information, Tx should generate in total n bits; n-k bits are redundant
 - For example, ½ code rate means
 - For every single bit, should send two bits
 - For a 100-bit packet, should send 200 bits
- Correcting capability: the number of errors that can be corrected by the code

Detection

- Map the received signal to one of the possible transmitted signal with the minimum distance
- Find the corresponding bit streams

