第六章 时序逻辑电路

主要要求:

- 熟练掌握时序逻辑电路的描述方法;
- 掌握时序逻辑电路的分析、设计;

■ 掌握寄存器计数器等典型时序逻辑部件的功能和应用。

6.1 概 述

- 一、时序逻辑电路的特点
- 1. 功能上: <u>任一时刻的输出不仅取决于该时刻的输入,还</u> 与电路原来的状态有关。

- 2. 电路结构上
 - ①包含存储电路和组合电路
 - ②存储器状态和输入变量共同决定输出

一、组合电路与时序电路的区别

无记忆

某一给定时刻的输出,取决于该时刻的输入.

有记忆

某一给定时刻的输出, 取决于该时刻的输入 以及前一时刻电路的状态 (触发器的状态)

二、时序电路的结构与功能描述方法

时序逻辑电路可以用三个方程组来描述:

- 1. 输出方程 Y = F(X, Q)
- 2. 驱动方程 Z = G(X,Q)
- 3. 状态方程 $Q^* = H(Z,Q)$

三、时序电路分类

1. 同步时序电路

同步: 电路中所有触发器使用同一时钟脉冲, 各触发器状态同时发生变化。

2. 异步时序电路

异步: 各触发器的时钟脉冲不统一, 触发器状态变化的时间也不一致。

6.2 时序逻辑电路的分析

BCD一七段显示译码器

A3A2A1A0	abcdefg	LED
0000	1111110	
0001	0110000	-
0010	1101101	υ,
0011	1111001	υr
0100	0110011	
0101	1011011	,
0110	1011111	2
0111	1110000	8
1000	1111111	
1001	1111011	8
1010	1110111	9
1011	0011111	8
1100	1001110	δ
1101	0111101	[
1110	1001111	3
1111	1000111	g

۶

时序逻辑电路的分析

6.2 时序电路的分析方法

分析: 找出给定时序电路的逻辑功能

即找出在输入和CLK作用下,电路的次态和输出。

6.2.1 同步时序电路的分析方法

- 一般步骤:
- 1. 列方程
 - ①驱动方程。
 - ②状态方程。
 - ③输出方程。
- 2. 状态转换表
- 3. 状态转换图
- 4. 时序图
- 5. 状态机流程图

6.2 时序逻辑电路的分析

已知电路 _______发现逻辑功能

例:分析图示电路的逻辑功能。

1.写方程

1) 驱动方程:

$$\begin{cases} J_1 = & K_1 = \ J_2 = & K_2 = \ J_3 = & K_3 = \end{cases}$$

3) 输出方程:

$$Y =$$

2) 代入JK触发器的特性方程($Q^* = JQ' + KQ$), 得状态方程:

$$\begin{cases} Q_1^* = \\ Q_2^* = \\ Q_3^* = \end{cases}$$

2.列状态转换表

Q_3	Q_2	Q_1	clk	Q ₃ *	Q ₂ *	Q ₁ *	Υ
0	0	0	1	0	0	1	0
0	0	1		0	1	0	0
0	1	0	 	0	1	1	0
0	1	1	Ţ	1	0	0	0
1	0	0	Ţ	1	0	1	0
1	0	1	Ţ	1	1	0	0
1	1	0	<u></u>	0	0	0	1
1	1	1	Ţ	0	0	0	1

现在状态下的Y

CLK	Q_3	Q_2	Q_1	Y
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	0	0	0	0
0	1	1	1	1
1	0	0	0	0

 $Q_3Q_2Q_Y$

$000 \xrightarrow{/0} 001 \xrightarrow{/0} 010 \xrightarrow{/0} 011$ $111 \xrightarrow{/0} 101 \xrightarrow{/0} 100$

4.分析电路功能

计数长度为7的计数器 七进制<mark>计数器</mark>

Y是指示信号, 每计7个数,就输出一个1

5.检查自启动

7个有效状态,1个无效状态"111";经过一个时钟后能自动进入有效循环,所以能自启动

6. 画时序图

