Pravděpodobnost a statistika - zkoušková písemka 14.6.2021

Jméno a příjmení	1	2	3	ústní	celkem	známka

Úloha 1. (celkem 44 bodů)

Sekretářka vyřídí během dopolední pracovní doby od 7:00 do 12:00 průměrně 25 emailů, 20 telefonátů a 5 zásilek v papírové formě (což odpovídá průměrným počtům daných typů korespondence, která přijde za den, přičemž telefonáty přicházejí pouze v dopolední pracovní době, rovnoměrně a nezávisle na sobě). Emaily jsou z 50% objednávky, z 20% reklamace a zbytek je korespondence jiného druhu. Telefonáty jsou z 80% objednávky, z 10% reklamace a zbytek jsou hovory jiného druhu. Zásilky v papírové formě jsou z 10% objednávky, z 80% reklamace a zbytek je korespondence jiného druhu. Určete pravděpodobnost, že

- a) příští záležitost, kterou bude sekretářka řešit, bude objednávka, (5 bodů)
- b) příští záležitost, kterou bude sekretářka řešit, bude emailová objednávka, (5 bodů)
- c) příští objednávka, kterou bude sekretářka řešit, bude emailová, (5 bodů)
- d) nejdříve pátý email, který sekretářka bude vyřizovat, bude reklamace, (7 bodů)
- e) mezi pěti náhodně otevřenými papírovými obálkami budou alespoň dvě korespondence jiného druhu než objednávka nebo reklamace, (7 bodů)
- f) během 5 minut, kdy jde sekretářka šéfovi uvařit kávu, nebude mít žádný zmeškaný hovor, (7 bodů)
- g) mezi 9:00 a 9:30 přijdou nejvýše tři hovory, přičemž žádný z nich nepřijde během 5 minut, kdy jde sekretářka v této době uvařit šéfovi ranní kávu. (8 bodů)

Úloha 2. (celkem 34 bodů)

Ze 30 studentů, kteří přišli daný den na zkoušku, jich 24 tuto zkoušku úspěšně složilo.

- a) Na základě těchto dat nakreslete empirickou distribuční funkci náhodné veličiny X popisující, zda náhodně vybraný student zkoušku složil (X=1) nebo nesložil (X=0). (6 bodů)
- b) Určete, jaké rozdělení má tato náhodná veličina X, a metodou maximální věrohodnosti určete parametr tohoto rozdělení. (8 bodů)
- c) Určete oboustranný asymptotický 95% interval spolehlivosti pro tento parametr.
 (Hint: Lze využít i vztahu mezi střední hodnotou a rozptylem rozdělení těchto dat.)
 (6 bodů)
- d) Pomocí výsledku z bodu c) otestujte, zda $\mathbb{E}X = 3/4$. (6 bodů)

e) Předpokládejme, že v celém ročníku je úspěšnost složení zkoušky stejná jako na tomto termínu. Určete pravděpodobnost, že ze 100 náhodně vybraných studentů jich zkoušku úspěšně složilo alespoň 75. Použijte CLV. (8 bodů)

Úloha 3. (celkem 22 bodů)

Na veletrhu rodinných domů byl mezi návštěvníky proveden průzkum, v němž organizátor mj. zjišťoval, o jaké typy domů se návštěvníci nejvíce zajímali a jaký je příjem jejich domácností. Na vzorku 1000 návštěvníků bylo zaznamenáno:

$\boxed{\text{příjem}\downarrow\text{typ domu}\rightarrow}$	zděný	standardní dřevostavba	pasivní
vysoký	60	40	100
středně vysoký	150	200	150
průměrný / nižší	90	160	50

- a) Statisticky otestujte na hladině 1%, zda můžeme považovat typ domu, o který se návštěvník zajímá, za závislý na příjmu jeho domácnosti. (8 bodů)
- b) Statisticky otestujte na hladině 5%, zda je o všechny typy domů přibližně stejný zájem. (7 bodů)
- c) Z výše uvedeného vzorku 1000 návštěvníků vybereme podvzorek o velikosti 10 návštěvníků, označíme X počet návštěvníků v tomto podvzorku, kteří se zajímají o zděný dům, a Y počet návštěvníků v podvzorku, kteří se zajímají o pasivní dům. Rozhodněte, zda jsou X a Y nezávislé, a své rozhodnutí stručně, ale řádně matematicky zdůvodněte. (7 bodů)

Ústní část (celkem 10 bodů)

Uvažujte náhodné veličiny X a Y se sdruženou hustotou

$$f(x,y) = \begin{cases} \frac{1}{2} & \text{pro } |x| + |y| \le 1\\ 0 & \text{pro } |x| + |y| > 1 \end{cases}$$

- (i) Určete $P(X > \frac{1}{2}, Y > \frac{1}{2})$.
- (ii) Určete $P(X < \frac{1}{2}, Y < \frac{1}{2})$.
- (iii) Rozhodněte, zda jsou X a Y nezávislé, a své rozhodnutí stručně zdůvodněte.

(Hint: Nakreslete si graf sdružené hustoty ve 2D.)