Formúlublað - Stærðfræði 2

Heildarafleiða falls $f: \mathbb{R}^n \to \mathbb{R}$ í $\mathbf{x} \in \mathbb{R}^n$ er kallaður stigull og er gefin með

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}) \ \frac{\partial f}{\partial x_2}(\mathbf{x}) \ \dots \ \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

og önnur afleiða f í $\mathbf{x} \in \mathbb{R}^n$ er gefin með Hesse-fylki f í $\mathbf{x} \in \mathbb{R}^n$,

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\mathbf{x}) \end{pmatrix}$$

Heildarafleiða falls $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ í vigrinum \mathbf{x} er Jacobi-fylkið

$$D\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \frac{\partial f_m}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

Stefnuafleiða falls $f: \mathbb{R}^n \to \mathbb{R}$ í punktinum \mathbf{x} í stefnu einingavigursins \mathbf{u} er

$$D_{\mathbf{u}}f(\mathbf{x}) = \mathbf{u} \bullet \nabla f(\mathbf{x}).$$

Keðjureglan: Ef $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ er diffranlegt í $\mathbf{a} \in \mathbb{R}^n$ og $\mathbf{g}: \mathbb{R}^m \to \mathbb{R}^p$ er diffranlegt í $\mathbf{f}(\mathbf{a}) \in \mathbb{R}^m$, þá er samskeytta fallið $\mathbf{g} \circ \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^p$, $(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ diffranlegt í $\mathbf{a} \in \mathbb{R}^n$ og heildarafleiðan er

$$[D(\mathbf{g} \circ \mathbf{f})](\mathbf{a}) = [D\mathbf{g}(\mathbf{f}(\mathbf{a}))][D\mathbf{f}(\mathbf{a})].$$

Útgildi falla: Fall $f : \mathbb{R}^n \to \mathbb{R}$ hefur útgildi í $\mathbf{x} \in \mathbb{R}^n$ ef $\nabla f(\mathbf{x}) = \mathbf{0}$. Nú gildir:

(i) Ef Hesse-fylki f í \mathbf{x} hefur öll eigingildi > 0, þá hefur f staðbundið lággildi í \mathbf{x} .

(ii) Ef Hesse-fylki f í \mathbf{x} hefur öll eigingildi < 0, þá hefur f staðbundið hágildi í \mathbf{x} .

(iii) Ef Hesse-fylki f í \mathbf{x} hefur a.m.k. eitt eigingildi < 0 og a.m.k. eitt eigingildi > 0, þá hefur f hvorki staðbundið hágildi né staðbundið lággildi í \mathbf{x} . (hér er \mathbf{x} kallað söðulpunktur (e. saddle point) f).

Snertiplan: Fall z = f(x, y) hefur snertiplan í punktinum (a, b) gefið með jöfnunni

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Línuleg nálgun: Besta línulega nálgun við fallið $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ í nágrenni \mathbf{z} er

$$\mathbf{y}(\mathbf{x}) = [D\mathbf{f}(\mathbf{z})](\mathbf{x} - \mathbf{z}) + \mathbf{f}(\mathbf{z})$$

Bogalengd: Lengd ferilsins \mathcal{C} í \mathbb{R}^n sem er stikaður með $\mathbf{r}:[a,b]\to\mathbb{R}^n$ er

$$|\mathcal{C}| = \int_{a}^{b} ||\mathbf{r}'(t)|| dt.$$

Ferilheildi: Heildi fallsins $f: \mathbb{R}^n \to \mathbb{R}$ eftir ferlinum \mathcal{C} í \mathbb{R}^n sem er stikaður með $\mathbf{r}: [a,b] \to \mathbb{R}^n$ er

$$\int_{\mathcal{C}} f(\mathbf{x}) ds = \int_{a}^{b} f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt$$

Varðveitið vigursvið: Vigursvið \mathbf{F} er varðveitið ef til er fall ϕ (mætti) þannig að

$$[\nabla \phi]^T = \mathbf{F}$$

Ef \mathbf{F} er varðveitið er $\nabla \times \mathbf{F} = \mathbf{0}$, þ.e.

$$\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z} \quad \text{og} \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} \quad \text{og} \quad \frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$$

Ef \mathbf{F} er varðveitið með mætti ϕ þá er

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \phi(\mathbf{b}) - \phi(\mathbf{a})$$

par sem \mathbf{a} og \mathbf{b} eru upphafs- og endapunktur ferilsins \mathcal{C} .

Ferilheildi vigursviðs: Heildi vigursviðsins $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ eftir ferlinum \mathcal{C} í \mathbb{R}^n sem er stikaður með $\mathbf{r}: [a,b] \to \mathbb{R}^n$ er

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

Flæði vigursviðs F í stefnu normalvigurs n út úr fletinum \mathcal{S} , þar sem \mathcal{S} er stikað með $\mathbf{r}: \mathcal{D} \to \mathbb{R}^3, \, \mathcal{D} \subseteq \mathbb{R}^2$, er

$$\int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \int_{\mathcal{D}} \mathbf{F}(\mathbf{r}(x,y)) \cdot \mathbf{n}(x,y) \, dx \, dy.$$

par sem \mathbf{n} er hornréttur vigur á yfirborðið \mathcal{S} með stefnu upp í gegnum yfirborðið.

Heildi yfir flöt: Heildi falls g(x, y, z) yfir flötinn S, sem er stikaður með $\mathbf{r} : \mathcal{D} \to \mathbb{R}^3$, $\mathcal{D} \subseteq \mathbb{R}^2$, er

$$\int_{S} g(x, y, z) dS = \int_{D} g(\mathbf{r}(u, v)) \|\mathbf{n}(u, v)\| du dv$$

þar sem \mathbf{n} er hornréttur vigur á yfirborðið \mathcal{S} .

Stikun yfirborða:

Yfirborð stikað með $\mathbf{r}(u, v)$ hefur normalvigur

$$\mathbf{n}(u,v) = \frac{\partial \mathbf{r}}{\partial u}(u,v) \times \frac{\partial \mathbf{r}}{\partial v}(u,v)$$

Yfirborð z = f(x, y):

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + f(x,y)\mathbf{k}$$

hefur normalvigur

$$\mathbf{n}(x,y) = -\frac{\partial f}{\partial x}\mathbf{i} - \frac{\partial f}{\partial y}\mathbf{j} + \mathbf{k}$$

og
$$\|\mathbf{n}(u, v)\| = \sqrt{\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2 + 1}.$$

Kúluskel $x^2 + y^2 + z^2 = R^2$

$$\mathbf{r}(\phi, \theta) = \begin{pmatrix} R \sin \phi \cos \theta \\ R \sin \phi \sin \theta \\ R \cos \phi \end{pmatrix}$$

hefur normalvigur

$$\mathbf{n}(\phi, \theta) = \begin{pmatrix} R^2 \sin^2 \phi \cos \theta \\ R^2 \sin^2 \phi \sin \theta \\ R^2 \sin \phi \cos \phi \end{pmatrix}$$

og $\|\mathbf{n}(\phi, \theta)\| = R^2 \sin \phi$.

Sívalningur $x^2 + y^2 = R^2$

$$\mathbf{r}(\theta, z) = \begin{pmatrix} R\cos\theta \\ R\sin\theta \\ z \end{pmatrix}$$

hefur normalvigur

$$\mathbf{n}(\theta, z) = \begin{pmatrix} R\cos\theta \\ R\sin\theta \\ 0 \end{pmatrix}$$

og $\|\mathbf{n}(\theta, z)\| = R$.

Tvöföld heildi: Heildi falls f(x, y) yfir svæði $\mathcal{D} \subseteq \mathbb{R}^2$ er:

$$\int_{\mathcal{D}} f(x,y) dA$$

Breytuskipti:

$$\mathbf{F}(u,v) = \left(\begin{array}{c} x(u,v) \\ y(u,v) \end{array}\right)$$

$$dA = dx dy = |\det(D\mathbf{F}(u, v))| du dv$$

Pólhnit:

$$\mathbf{F}(r,\theta) = \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix} , dA = r dr d\theta$$

Preföld heildi: Heildi falls f(x, y, z) yfir rúmskika $\mathcal{R} \subseteq \mathbb{R}^3$ er:

$$\int_{\mathcal{R}} f(x, y, z) dV$$

Breytuskipti:

$$\mathbf{F}(u, v, w) = \begin{pmatrix} x(u, v, w) \\ y(u, v, w) \\ z(u, v, w) \end{pmatrix}$$

 $dV = dx\,dy\,dz = \left|\det(D\mathbf{F}(u,v,w))\right|du\,dv\,dw$

Sívalningshnit:

$$\mathbf{F}(r,\theta,z) = \begin{pmatrix} r\cos\theta \\ r\sin\theta \\ z \end{pmatrix}$$

 $dV = dx \, dy \, dz = r \, dr \, d\theta \, dz$

Kúluhnit:

$$\mathbf{F}(\rho, \theta, \phi) = \begin{pmatrix} \rho \cos \theta \sin \phi \\ \rho \sin \theta \sin \phi \\ \rho \cos \phi \end{pmatrix}$$

$$dV = dx \, dy \, dz = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$

Setning Green: Látum $\mathbf{F}: \mathcal{D} \to \mathbb{R}^2$, $\mathcal{D} \subseteq \mathbb{R}^2$, vera vigursvið. Þá gildir

$$\int_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x}(x, y) - \frac{\partial F_1}{\partial y}(x, y) \right) dA = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

þar sem \mathcal{C} er röndin á \mathcal{D} er pósitívt stikuð.

Setning Stoke: Látum \mathcal{S} vera stikaðan flöt og \mathcal{C} vera ferilinn sem er rönd \mathcal{S} og $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ vera vigursvið. Látum áttunina á \mathcal{C} ákvarðast af áttun \mathcal{S} skv. hægri handar reglu. Þá er

$$\int_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

Setning Gauss: Látum \mathcal{S} vera stikaðan flöt sem er lokaður og $\mathcal{V} \subset \mathbb{R}^3$ vera rúmmálið sem \mathcal{S} lokar inni og $\mathbf{F}: \mathcal{V} \to \mathbb{R}^3$ vera vigursvið. Látum \mathcal{S} vera stikað þannig að normallinn $\mathbf{n}(u,v)$ bendir alltaf út úr svæðinu \mathcal{V} . Þá er

$$\int_{\mathcal{V}} \nabla \cdot \mathbf{F} \, dV = \int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$