Defi IA

INSA Toulouse Department de Mathématiques Appliquées

December 2021

- Introduction
- 2 Traitement de données
- Choix du réseau
- 4 Conclusion

Introduction

Introduction

Objectif du défi: Prédire aux stations d'observations les cumuls journaliers de précipitation

Données disponibles sur Kaggle:

- ▷ Observations aux stations
- Prévisions des modèles
- ▷ Baseline (utilisée pour évaluer nos réseaux)

- 1 Introduction
- 2 Traitement de données
- Choix du réseau
- 4 Conclusion

Traitement de données

Traitement de données

X_forecast

A partir des coordonnées de chaque station de mesure on en a déduit les coordonnées des mailles correspondantes ainsi que les points de grille vosins à chaque station.

Interpolation spatiale

Les distances entre le point de la station et les points de grille voisins sont calculées.

On a ainsi pour la prevision à la station:

$$dist = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}$$

$$prev = (rac{prevA}{a^2} + rac{prevB}{b^2} + rac{prevC}{c^2} + rac{prevD}{d^2})/dist$$

- Introduction
- 2 Traitement de données
- Choix du réseau
- 4 Conclusion

Choix du réseau

Choix du réseau

Les RNN (Recurrent neural network)

Pour ce défi, on a choisit d'utiliser des RNN.

Un RNN traite les séquences en itérant sur les éléments de séquence et en maintenant un état contenant des informations relatives à ce qu'il a vu jusqu'à présent.

ightarrow Un RNN possède une boucle interne.

Choix du réseau

On a voulu traiter le problème à l'aide de réseaux de neurones.

Différents réseaux testés

- Réseau de neurones Dense, inputs : Xstation
- Réseau de neurones LSTM, inputs : Xstation, Xforecast
- Réseau de neurones LSTM, inputs : Xstation
- Réseau de neurones LSTM, inputs : Xforecast

Entraînement des quatre réseaux

(a) NN Dense , Xstation

(c) NN LSTM , Xstation

(b) NN LSTM , Xstation Xforecast

(d) NN_LSTM , Xforecast 🦠

Choix du réseaux

Choix du réseaux

Optimisation du paramètre du réseau

Paramètres	Valeurs		
Loss	mae	mse	logcosh
Batch size	100	200	400
Epoch numbers	5	10	20

Calcul de score

Mean Absolute Percentage Error (MAPE)

La mesure d'évaluation pour ce concours est le pourcentage d'erreur absolu moyen. Le score MAPE est étroitement lié à un score souvent utilisé dans Météo France pour évaluer la prédiction. Il est donné par :

$$MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

où chaque prévision (F_t) est comparée à la valeur réelle (A_t) pour le t-ième élément parmi n éléments.

- Introduction
- 2 Traitement de données
- Choix du réseau
- 4 Conclusion

Conclusion

Conclusion

Score des réseaux

Réseau	Score (en interne)	
RNN Dense: X_station	44%	
RNN LSTM: X_station	31%	
RNN LSTM: X_station et X_forecast	67%	
RNN LSTM: X_forecast	74%	

- Le meilleur score obtenu n'est pas celui du réseau intialement choisi;
- Difference de score sur Kaggle et en interne: échantillon d'évaluation différent.

Merci pour votre attention!