2. Sucesos y Probabilidad

- **Experimentos y sucesos**
- Probabilidad
- Independencia de sucesos
- 4. Probabilidad condicional
- 5. T^{ma} de Probabilidad Total y T^{ma} de Bayes

Experimentos aleatorios

- Experimento determinista
 - Proceso: mismas condiciones → mismos resultados
- Experimento aleatorio
 - Proceso: condiciones imposibles de reproducir exactamente igual → diferentes resultados
 - Imposible de predecir

Teoría matemática de la probabilidad

Espacio muestral

- Experimento aleatorio: proceso, susceptible de repetirse, por el que obtenemos un resultado impredecible.
- Un **resultado** o caso es un elemento ω del conjunto Ω de todos los resultados posibles, llamado **espacio muestral**.
 - Ej: experimento consistente en lanzar un dado.

Un resultado posible es obtener un 3.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- El espacio muestral de un experimento aleatorio puede ser finito o infinito.
 - Ej: lanzar una moneda hasta obtener una cara.

$$\Omega = \{c, xc, xxc, xxxc, ...\}$$

Sucesos aleatorios

- Un **suceso** es un (conjunto de resultados) subconjunto del espacio muestral: $A \subseteq \Omega$
 - Ej: lanzamiento de un dado, A es obtener número par: $A = \{2, 4, 6\}$
- Un suceso A se ha **verificado** o cumplido si el resultado obtenido en el experimento $\omega \in A$.
 - Ej: en el ejemplo anterior, si obtenemos un 6, se ha cumplido *A*; si obtenemos un 3, entonces no.
- Suceso conjunto vacío \emptyset , en el que no ocurre ningún resultado y por tanto es imposible.
- Suceso Ω , que contiene todos los resultados posibles y por tanto es seguro que se cumple.

Universidad de Alicante

Unión de sucesos

- Suceso **unión**, $A \cup B$, es el suceso que se verifica cuando lo hace uno de ellos o los dos.
 - Ej: lanzando un dado, sea *A* el suceso obtener cifra par, y *B* el suceso obtener cifra mayor que 3.

Por tanto $A = \{2, 4, 6\}$ y $B = \{4, 5, 6\}$

El suceso unión $A \cup B = \{2, 4, 5, 6\}$

Representación mediante diagramas de Venn:

Ω

Intersección de sucesos

- Suceso **intersección**, $A \cap B$, es el suceso que se verifica cuando lo hacen ambos a la vez.
 - Ej: lanzando un dado, sea *A* el suceso obtener cifra par, y *B* el suceso obtener cifra mayor que 3.

Por tanto $A = \{2, 4, 6\}$ y $B = \{4, 5, 6\}$

El suceso intersección $A \cap B = \{4, 6\}$

Representación mediante diagramas de Venn:

Ω

Propiedades de la unión e intersección

- Propiedades de la **unión** de sucesos:
 - $A \cup B = B \cup A$
 - $A \cup A = A$
 - $A \cup \emptyset = A$
 - $A \cup \Omega = \Omega$
- Propiedades de la **intersección** de sucesos:
 - $A \cap B = B \cap A$
 - $A \cap A = A$
 - $A \cap \emptyset = \emptyset$
 - $A \cap \Omega = A$

Sucesos incompatibles

- Dos sucesos A y B son **incompatibles** si $A \cap B = \emptyset$.
- Más de dos sucesos son incompatibles si lo son dos a dos.
 - Ej: ¿son incompatibles los sucesos *A*, *B* y *C*?

Ejemplo 1

Ejemplo 2

Suceso complementario

• Suceso **complementario** de A es el suceso \bar{A} que se verifica si y sólo si no se verifica A.

Propiedades:

•
$$A \subseteq B \to \bar{B} \subseteq \bar{A}$$

•
$$\bar{\bar{A}} = A$$

•
$$\overline{\emptyset} = \Omega$$

•
$$\overline{\Omega} = \emptyset$$

•
$$A \cup \bar{A} = \Omega$$

•
$$A \cap \bar{A} = \emptyset$$

Diferencia de sucesos

Diferencia de sucesos $A \setminus B$ es el suceso que se cumple cuando se cumple A pero no B. Es decir, $A \setminus B$ consta de los elementos que contiene A menos los que comparte con B.

•
$$A \setminus B = A \cap \overline{B}$$

- Descomposición en sucesos incompatibles:
 - $A = (A \setminus B) \cup (A \cap B)$
 - $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$

Propiedades

- Leyes de Morgan
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Otras propiedades de la unión y la intersección:
 - Propiedad asociativa
 - Propiedad distributiva
 - Uso de paréntesis

Problema 2.1

- Se lanza un dado. Sea el suceso A, obtener cifra par, y el suceso B, obtener cifra mayor que 3.
 - $A = \{2, 4, 6\}$
 - $B = \{4, 5, 6\}$
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - $A \cup B = \{2, 4, 5, 6\}$
 - $A \cap B = \{4, 6\}$
 - $\bar{A} = \{1, 3, 5\}; \ \bar{B} = \{1, 2, 3\}$
 - $A \setminus B = A \cap \overline{B} = \{2\}; B \setminus A = B \cap \overline{A} = \{5\}$
 - $A = (A \setminus B) \cup (A \cap B) = \{2\} \cup \{4, 6\}$
 - $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A) = \{2\} \cup \{4, 6\} \cup \{5\}$

Problemas

• <u>Problema 2.2</u> Un experimento consiste en lanzar una moneda. Si sale cara, se lanza un dado.

Representa un resultado posible.

Representa un suceso posible.

Representa el espacio muestral.

Problema 2.3 Dos personas A y B juegan a lanzar una moneda.
 Gana el que primero saque cara. Empieza a jugar A.
 Representar el suceso gana A y el suceso gana B.

Probabilidad

- Probabilidad: función que asigna a cada suceso una probabilidad de cumplirse.
- Se representa mediante un número real entre 0 y 1, de forma que 0 sería imposible y 1 sería seguro.
 - Ej: la probabilidad de obtener un 3 en el lanzamiento de un dado es 1/6.

Definición de probabilidad

• Definición: una función de probabilidad es una aplicación

$$P: \mathcal{P}(\Omega) \to \mathbb{R}$$

que cumple:

- $P(A) \ge 0$, para cualquier suceso A.
- $P(\Omega) = 1$
- Para cualquier sucesión infinita de sucesos incompatibles:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Propiedades de la probabilidad

Teorema:

- $0 \le P(A) \le 1$
- $P(\emptyset) = 0$
- $P(\bar{A}) = 1 P(A)$
- Si $A \subseteq B$, entonces $P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Para cualquier sucesión finita de sucesos incompatibles:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

Probabilidad de la unión

Para 2 sucesos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Para 3 sucesos:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Para n sucesos:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

$$-\sum_{i < j} P(A_i \cap A_j)$$

$$+\sum_{i < j < k} P(A_i \cap A_j \cap A_k) + \cdots$$

$$+(-1)^{n+1} P(A_1 \cap A_2 \cap \cdots \cap A_n)$$

Universidad de Alicante

Probabilidad de la descomposición

Probabilidad de la descomposición en sucesos incompatibles:

•
$$P(A) = P(A \setminus B) \cup (A \cap B) = P(A \setminus B) + P(A \cap B)$$

 $\rightarrow P(A \setminus B) = P(A) - P(A \cap B)$

•
$$P(A \cup B) = P((A \setminus B) \cup (A \cap B) \cup (B \setminus A)) =$$

= $P(A \setminus B) + P(A \cap B) + P(B \setminus A)$

Regla de Laplace

• Sea un espacio muestral finito y equiprobable compuesto de n elementos: $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$, entonces:

$$P(\Omega) = 1 \rightarrow P(\{\omega_i\}) = \frac{1}{n}$$

Para un suceso A compuesto de k elementos (incompatibles*):

$$P(A) = P(\{\omega_{a_1}\}) + \dots + P(\{\omega_{a_k}\}) = \frac{1}{n} + \dots + \frac{1}{n} = \frac{k}{n}$$

Regla de Laplace:

$$P(A) = \frac{casos\ favorables}{casos\ posibles}$$

• Ej: lanzamiento de un dado. $A = \{2, 4, 6\}$

•
$$P(A) = P({2}) + P({4}) + P({6}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$$

Problemas

- Problema 2.4 Diez pacientes seleccionados tienen el grupo sanguíneo A, 6 con factor Rh + y 4 con factor Rh -. Probabilidad de que dos personas escogidas al azar compartan el mismo factor Rh.
- Problema 2.5 De una baraja española de 40 cartas se extraen
 - Probabilidad de obtener una pareja.
- **Problema 2.6** Calcular la probabilidad de obtener al menos un 6 al lanzar cinco dados.