cmb-map-fit

November 30, 2020

1 Week 13 Problem Set attempt

Ethan Marx, Haochen Wang, Geoffrey Mo8.942 Fall 2020 Commit: https://github.com/EthanMarx/cmb-map-making/commit/1766d0bfa895f725cf5f7522d0669de2177ce820

```
[1]: import cmb_utils
     import numpy as np
     import pyfftw
     import pyfftw.interfaces.numpy_fft as fft
     from scipy.interpolate import interp1d
     from scipy import linalg as LA
     from scipy.integrate import trapz
     from scipy.special import jv
     import matplotlib.pyplot as plt
     import camb
     import fiducial_parameters as fp
     import importlib
[2]: pix_width = 0.0015707 # radians
     cmb_data = np.load('cmb_analysis_pset_data.npz')
[3]: for key in cmb_data.keys():
         print(key)
    test_signal
    test_white_noise
    test_red_noise
    test_x
    test_y
    data_small
    x_small
    y_small
    data_large
    x_large
    y_large
```

```
[4]: cmb_data['test_red_noise'].shape
```

[4]: (65536,)

2 1. Map making

2.1 1.1 Operators

All steps in this section are already provided in the starter code (cmb_utils). Section 1.1 in the pset is rather an explanation for what the starter code (more speficially the NoisePointingModel class) does.

2.2 1.2 Estimating the time stream noise power spectrum

First, we choose a data set to be processed.

```
[5]: dt_test = cmb_data['test_signal'] + cmb_data['test_white_noise'] +□

→ cmb_data['test_red_noise'] # test data

x_test = np.round(cmb_data['test_x']/pix_width).astype(int) # x coordinates of□

→ the test data, starting with 0

y_test = np.round(cmb_data['test_y']/pix_width).astype(int) # y coordinates of□

→ the test data, starting with 0

nx_test = np.amax(x_test) + 1 # Map size in x direction (plus 1 counting the□

→ Oth index)

ny_test = np.amax(y_test) + 1 # Map size in y direction (plus 1 counting the□

→ Oth index)

nt_test = len(x_test) # total number of data points
```

```
[6]: print(nx_test, ny_test, nt_test)
```

32 32 65536

1. FFT d_t and divide by $\sqrt{n_t}$ to obtain d_{ω} .

```
[7]: dt = dt_test
    x = x_test
    y = y_test
    nx = nx_test
    ny = ny_test
    nt = nt_test
```

```
[8]: d_omega = fft.rfft(dt)/np.sqrt(nt) # fft with real data as input omega = fft.rfftfreq(nt)*2*np.pi # angular frequencies
```

2. The quantity $d_{\omega}d_{\omega}^*$ is then a noisy estimate for $P_{\eta}(\omega)$.

```
[9]: P_eta_unbinned = d_omega*np.conjugate(d_omega)
```

```
[10]: plt.plot(omega[:], P_eta_unbinned[:])
   plt.title("Unbinned noise power spectrum estimate")
   plt.yscale('log')
   plt.xlabel(r'Angular frequency $\omega$')
   plt.ylabel(r'$P_\eta$')
```

/Users/gmo/miniconda3/envs/cosmo-perturb/lib/python3.7/sitepackages/numpy/core/_asarray.py:83: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)

[10]: Text(0, 0.5, '\$P_\\eta\$')

3. Accumulate the estimate over bins in ω to reduce uncertainty

```
[11]: n_omega = len(omega) # number of frequencies
bins = np.linspace(omega[0], omega[-1], num = int(n_omega/100), endpoint = □

→True) # bin edges, each bin contains about 100 points

P_eta_binned = np.histogram(omega, bins, weights=P_eta_unbinned)[0]/np.

→histogram(omega, bins)[0]

bin_centers = np.array([(bins[i] + bins[i+1])/2 for i in range(len(bins) -1)])
```

```
[12]: plt.plot(bin_centers[:], P_eta_binned[:])
   plt.title("Binned noise power spectrum estimate")
   plt.yscale('log')
   plt.xlabel(r'Angular frequency $\omega$')
   plt.ylabel(r'$P_\eta$')
```

/Users/gmo/miniconda3/envs/cosmo-perturb/lib/python3.7/sitepackages/numpy/core/_asarray.py:83: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)

[12]: Text(0, 0.5, '\$P_\\eta\$')

4. Interpolate/extrapolate the result to any ω .

```
[13]: # Before we interpolate, we have to add the first and last data point.

Otherwise interpolator will return "out of range"

first = np.sum(P_eta_unbinned[0:20])/20 # estimate for P_eta at omega[0], 20 is_u arbitrarily chosen

last = np.sum(P_eta_unbinned[-20:])/20 # estimate for P_eta at omega[-1]

omega_for_interp = np.insert(np.append(bin_centers, omega[-1]), 0, omega[0])

P_eta_for_interp = np.insert(np.append(P_eta_binned, last), 0, first)
```

```
[14]: P_eta_interp = interp1d(omega_for_interp, P_eta_for_interp)
P_eta_final = P_eta_interp(omega) # use interpolator to get P_eta at orignial

→ omegas but now it is much smoother
```

```
[15]: plt.plot(omega, P_eta_final)
   plt.title("Noise power spectrum estimate")
   plt.yscale('log')
   plt.xlabel(r'Angular frequency $\omega$')
   plt.ylabel(r'$P_\eta$')
```

/Users/gmo/miniconda3/envs/cosmo-perturb/lib/python3.7/sitepackages/numpy/core/_asarray.py:83: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)

[15]: Text(0, 0.5, '\$P_\\eta\$')

2.3 1.3 Noise covariance inverse

Obtain C_N^{-1}

```
[16]: model_test = cmb_utils.NoisePointingModel(x_test, y_test, nx_test, ny_test,__
      →P_eta_final)
      CN_inv_test = model_test.map_noise_inv()
      CN_inv_test.shape
     x-index 0
     x-index 1
     x-index 2
     x-index 3
     x-index 4
     x-index 5
     x-index 6
     x-index 7
     x-index 8
     x-index 9
     x-index 10
     x-index 11
     x-index 12
     x-index 13
     x-index 14
     x-index 15
     x-index 16
     x-index 17
     x-index 18
     x-index 19
     x-index 20
     x-index 21
     x-index 22
     x-index 23
     x-index 24
     x-index 25
     x-index 26
     x-index 27
     x-index 28
     x-index 29
     x-index 30
     x-index 31
[16]: (32, 32, 32, 32)
     Reshape C_N^{-1} into a 2D matrix.
[17]: CN_inv_test_reshape = np.reshape(CN_inv_test, (nx*ny, nx*ny))
      CN_inv_test_reshape.shape
[17]: (1024, 1024)
```

Invert to obtain C_N .

```
[18]: CN_test = LA.inv(CN_inv_test_reshape)

[19]: plt.figure(figsize=(18,5))
    plt.subplot(131)
    plt.imshow(CN_inv_test_reshape)
    plt.colorbar()
    plt.title(r'$C_N^{-1}$')
    plt.subplot(132)
    plt.imshow(CN_test)
    plt.colorbar()
    plt.title(r'$C_N$')
    plt.subplot(133)
    plt.subplot(133)
    plt.imshow(np.dot(CN_test,CN_inv_test_reshape))
```

[19]: Text(0.5, 1.0, '\$C_N^{-1}*C_N\$')

plt.title(r'\$C_N^{-1}*C_N\$')

plt.colorbar()

Get the signal estimate with D&S (14.30)

```
[20]: N_inv_d_test = model_test.apply_noise_weights(dt)
out = np.zeros((nx, ny), dtype=float)
P_T_N_inv_d_test = model_test.grid_data(N_inv_d_test, out)
```

```
[21]: P_T_N_inv_d_test.shape
```

[21]: (32, 32)

```
[22]: s_hat_test = np.dot(CN_test, P_T_N_inv_d_test.flatten())
s_hat_test = np.reshape(s_hat_test, (nx, ny))
```

```
[23]: plt.figure(figsize=(8,8))
    plt.imshow(s_hat_test)
    plt.colorbar()
    plt.title('Test data map estimate')
```

[23]: Text(0.5, 1.0, 'Test data map estimate')

3 1.4 Testing

Check the result with test signal only and construct the map with D&S (14.33)

```
[24]: dt_signal = cmb_data['test_signal']

[25]: s_hat_test_signal = np.zeros((nx, ny), dtype=float)
    m = np.zeros((nx, ny), dtype=float)
    np.add.at(s_hat_test_signal, (x, y), dt_signal)
    np.add.at(m, (x, y), 1)
    s_hat_test_signal = s_hat_test_signal/m
```

```
[26]: plt.figure(figsize=(8,8))
    plt.imshow(s_hat_test_signal)
    plt.colorbar()
    plt.title('Test_signal-only_map')
```

[26]: Text(0.5, 1.0, 'Test signal-only map')


```
[27]: plt.figure(figsize=(18,5))
   plt.subplot(131)
   plt.imshow(s_hat_test)
   plt.colorbar()
   plt.title('Test data map estimate')
   plt.subplot(132)
   plt.imshow(s_hat_test_signal)
```

```
plt.colorbar()
plt.title('Test signal map')
plt.subplot(133)
plt.imshow(s_hat_test - s_hat_test_signal)
plt.colorbar()
plt.title('Noise in test data map estimate')
```

[27]: Text(0.5, 1.0, 'Noise in test data map estimate')

4 2. Power Spectrum estimation

In this section, we are looking to estimate the band powers, c^{α}

Applying Dodelson 1st edition eqn 11.94 in this context gives:

$$\hat{c}^{\alpha} = c_0^{\alpha} + F_{\alpha\beta}^{-1} \frac{sC^{-1}C_{,\beta}C^{-1}s - Tr(C^{-1}C_{,\beta})}{2}$$
(1)

where

$$F_{\alpha\beta} = \frac{Tr(C_{,\alpha}C^{-1}C_{,\beta}C^{-1})}{2} \tag{2}$$

$$C = C_S + C_N \tag{3}$$

s is our signal map created in the previous part, and c_0^{α} is calculated from a fiducial model, in our case, CAMB

We have already calculated C_N in the previous part, we just need C_S , which enters into the equation for \hat{c}^{α} in two parts:

- 1. C^{-1}
- 2. $C_{,\alpha}$

4.1 2.1 Signal Covariance Matrix

To account for C_S in the calculation of C^{-1} , we will use our fiducial cosmology to fix C_l and apply:

$$C_S = \bar{T}^2 \omega(|\theta_i - \theta_i|, \lambda_\alpha) \tag{4}$$

with

$$\omega(\theta, \lambda_{\alpha}) = \int_{0}^{\infty} \frac{dl}{2\pi} C_{l}(\lambda_{\alpha}) J_{0}(l\theta)$$
 (5)

```
[40]: # Get C_l from CAMB
pars = cmb_utils.fast_camb_settings() # Use this from what Kiyo gave us
results = camb.get_results(pars)

#get dictionary of CAMB power spectra
powers = results.get_cmb_power_spectra(pars, CMB_unit='muK')
totCL = powers['total']
ls = np.arange(totCL.shape[0])
Cls = totCL[:,0] # this goes out to l = 1500 per the settings
```

```
# calculate angular correlation function

# calculate theta values between all pixels
thetas = np.zeros((nx,ny,nx,ny), dtype=float) # initalize array
# FIXME: get the thetas
thetas = thetas.flatten()

Tbar = 2.725e6 # need to calc this, maybe? for now, this is the known value in_
microK
theta_beam = 0.000667 # radians, as specified in pdf
# Eq. 4, 5, and 6 from the pset
C_S = np.array([Tbar**2 * 1/(2*np.pi) * trapz(jv(0, ls * theta) * Cls * np.
exp(-ls**2 * theta_beam**2)) for theta in thetas])
#C_S = np.reshape(C_S, (nx*ny,nx*ny))
```

[48]: thetas

[48]: array([0., 0., 0., ..., 0., 0., 0.])

4.2 2.2 Band Powers

To account for C_S in the calculation of $C_{,\alpha}$ we will use band powers c^{α} as our parameters:

$$C_l^{obs} \approx \sum_{\alpha} c^{\alpha} E_{\alpha}(l)$$
 (6)

where

$$E_{\alpha}(l) = \begin{cases} 1 & l_{\alpha}^{low} \le l < l_{\alpha+1}^{low} \\ 0 & otherwise \end{cases}$$
 (7)

It can then be shown that

$$C_{,\alpha} = \int_0^\infty \frac{dl}{2\pi} E_{\alpha}(l) J_0(l\theta) \tag{8}$$

```
[55]: # create logarithmically spaced l bins to use for bandpowers

lmin = 0

lmax = pars.max_1 # get from CAMB parameters

l_bins = np.logspace(lmin, np.log10(lmax), num=30) # 30 bins as suggested by

→Kiyo
```

[56]: 1 bins

```
[56]: array([1.00000000e+00, 1.28682766e+00, 1.65592543e+00, 2.13089065e+00, 2.74208904e+00, 3.52859603e+00, 4.54069498e+00, 5.84309191e+00, 7.51905231e+00, 9.67572450e+00, 1.24509899e+01, 1.60222783e+01, 2.06179109e+01, 2.65316981e+01, 3.41417231e+01, 4.39345137e+01, 5.65361476e+01, 7.27522786e+01, 9.36196447e+01, 1.20472349e+02, 1.55027151e+02, 1.99493226e+02, 2.56713402e+02, 3.30345907e+02, 4.25098251e+02, 5.47028188e+02, 7.03931005e+02, 9.05837890e+02, 1.16565725e+03, 1.50000000e+03])
```

[]:[