Gibbs paradox

Before the NI correction

$$S(E_1V_1N) = Nk_8 ln(V_1D_1) + N_2 l_8 ln(V_2D_2)$$

So Sinifial = N_1k_8 ln(V_1D_1) + N_2 l_8 ln(V_1D_2),

Sifinal = Nikeln (VD) + Nzkeln (VDz), V=Vi+Vz 05 mix = Sanal - Sinitial

D= (TIEME) 3/2

If $V=zV_1=zV_2$, $\Delta S_{mix}=Nk_8\ln 2$ So far so good, but what if the two gases are actually identical, The entropy should not change?

Let as ree what happens after the N! correction.

 $S(E_1V_1N) = NH_8 \ln \left(\frac{V}{N} \in I \right)$ Care I: Non-identical gas

 $S_{\text{initial}} = N_1 k_B \ln \left(\frac{V_1}{N_1} e \square_1 \right) + N_2 k_B \ln \left(\frac{V_2}{N_2} e \square_2 \right) S_{\text{mix}}$ $S_{\text{final}} = N_1 k_B \ln \left(\frac{V_1}{N_1} e \square_1 \right) + N_2 k_B \ln \left(\frac{V_2}{N_2} e \square_2 \right) S_{\text{mix}}$

Cove II: Identical gaves with the same density
$$n = \frac{N_1 = N_2}{V_1} = \frac{N_1 + N_2}{V_2}$$

$$V_1 + V_2$$

$$\Delta S_{mix} = (N_1 + N_2) k_B ln \frac{V_1 + V_2}{N_1 + N_2} - N_1 k_B ln \frac{V_1}{N_1} - N_2 k_B ln \frac{V_2}{N_2}$$

= - (N,+Nz) L8 ln n + (N,+Nz) L8 ln n = 0

$$n = \frac{N_1}{V_1} = \frac{N_2}{V_2} = \frac{N_1 + N_2}{V_1 + V_2}$$

$$\Delta S_{max} = (N_1 + N_2) k_B l_B V_1 + V_2 - N k_B l_B V_1$$

Canonical enemble In a micro canonical ewemble, the system is isolated from the rest of the universe. Consequently, the energy E of the system can be precisely specified. The temperature

Tisthen a derived quantity.
"Heat Lath"

. .

But would it is easier to control for the temperature T by putting our system of interest in a thermal contact with a large "reservoir" of temperature T (after which our system will quickly equilibrate to have the same temperature T).

	System	Reservoir
Microstate	M ₅	MR
Hamiltonian	H_{s}	HR
Energy	Hs(µs)=E5	HR(MR)=ER
<u> </u>)	

(Large reversit)
$$E_5 << E_R$$

Our first main goal is to derive the probability that the system 5 is in a microstate usuith energy E= H(us).

We start by arsuning that the combined system 5+R is isolated from the rest of the universe. Therefore, the joint state (point probability distribution) can be described by the microcanonical evenble (Joint) PSR (M5,MR) = 1 . { 1, Hs(µs)+HR(µR) PDF) PSR (M5,MR) = 0, otherwise We want the un conditional probability for the state of the system $P_{S}(\mu_{S}) = \int d\Gamma_{R} P_{SR}(\mu_{S},\mu_{R})$ = $\frac{S_R(E_{tot}-E_S)}{S_R(E_{tot})}$ the numerator is proportional to Integrating over all microstates of R in the avemble a e SR(Etot-Es)/kp in Taylor expand the entropy around Since Etot>> Es me Recall Taylor expansion in ID: $f(x) = f(a) + (x-a) \frac{df}{dx} \left| + \frac{(x-a)^2}{dx^2} \frac{d^2f}{dx^2} \right| + \dots$ $S_R(E_{tot} - E_S) \approx S_R(E_{tot}) - E_S \frac{\partial S_R}{\partial E_R} = S_R(E_{tot}) - E_S$ $\Rightarrow p_S(\mu_S) \propto e^{-E_S/k_BT}$ since $S_R(E_{tot})$ is independent of the microstate μ_S

Dropping the 5 subscript, we conclude that the probability that The system in contact with a heat bath at temperature T to be in a microstate u with energy H(n) is given by $P(M) = \frac{e^{-H(M)} h_0 T}{2}$ $Z = \sum_{M} e^{-H(M)} h_0 T$ Function

Continuous coordinates exomple
$$Z = \int_{j=1}^{N} d^3q j d^3p j e^{-\left[\sum_{j=1}^{N} p_j^2/2m + V(q_j)\right]/k_BT}$$

It will be handy to define B = 1/kBT

	Macrostate	p(M)	Tree energy			
Micro-		L CL if H(m)=F				
Canonica)	$(E,\stackrel{\rightarrow}{\times})$	o, otherwise	2=KBlus			
Canonical	$(\neg \neg $		F=-KoTINZ			
All of there and we will be don't for the state of						

All of thermodynamics "stide down" from there normalization factors we gave the fancy name "partition Functions" This is the reason the complexity of calculating the partition function is a big deal and is a subject of study in classical and quantum computer science.

Mean energy

(E) =
$$\sum E_j P_j = \sum E_j e^{-\beta E_j} = -\partial \ln 2$$

The variance is related to the specific heat

The variance is related to the specific heat

$$NC_V = 2\langle E \rangle = 2\langle E \rangle d\beta = -\frac{1}{k_B T^2} 2\langle E \rangle = \frac{1}{k_B T^2} 2\langle E \rangle = \frac{1}{2} 2\langle E \rangle = \frac$$

$$= -\langle E^2 \rangle + \langle E \rangle^2 = -\sigma_E^2$$

$$\Rightarrow N_{CV} = \frac{1}{k_B T^2} \frac{\partial^2 \ln^2}{\partial \beta^2} = \frac{\sigma_E^2}{k_B T^2}$$

Every fluctuation vanishes in the limit N >00.

Therefore fluctuation vanishes in the limit N >00.

The Canonical and microcanonical ensembles give the same result unless Condinate the transition of (and half of this course)

Entropy
$$S = -k_B \sum_j p_j \ln p_j = -k_B \sum_j p_j \ln \left(\frac{e^{-pE_j}}{2}\right)$$

$$= -k_B \left[-\beta \sum_j p_j E_j - \sum_j p_j \ln 2\right] = \frac{(E)}{2} + k_B \ln 2$$

$$\left(\frac{e^{-pE_j}}{2}\right)$$

$$\left(\frac{e^{-pE_j}}{2}\right$$

= 52(E)e^{-BE} = 1 e^{-BF}(E)

Diain S once we have
$$F$$
.

$$\frac{\partial F}{\partial T}|_{N_{1}V} = -l_{8}\frac{\partial}{\partial T}(T|_{N_{2}})$$

$$= -l_{8}|_{N_{2}} - l_{8}T\frac{\partial}{\partial T}$$

$$= -l_{8}|_{N_{2}} - l_{8}T\frac{\partial}{\partial T}$$

meaning that p(E) peaks when the free energy is minimum. Easy to obtain 5 once we have F:

 $S = -\frac{\partial F}{\partial T}|_{N_{1}V} = -\frac{\partial F}{\partial T}|_{$

But - kBT 2 lnz = - koT 2 lnz dB = (E) $\frac{\partial F}{\partial T}\Big|_{N_{i}V} = -\left(\frac{\langle E \rangle}{T} + k_{g} \ln 2\right) = -5$