# Introduction to Database design

# Dennis Thinh Tan Nguyen January 5, 2016

# 1 ER-Diagrams

#### 1.1

```
CREATE TABLE User(
userID int PRIMARY KEY,
name varchar(20),
password varchar(30)
);
```

Figure 1: User DDL

#### 1.2 Follows DDL

```
CREATE TABLE Follows(
userToFollowId int,
followerId int,
PRIMARY KEY (userToFollowId,followerId),
FOREIGN KEY (userToFollowId) REFERENCES User(userID),
FOREIGN KEY (followerId) REFERENCES User(userID)
);
```

Figure 2: Follows DDL

#### 1.3 Tweet DDL

```
CREATE TABLE Tweet(
tweetID int,
text varchar(140),
userNumber int,
dateAdded DATE,
PRIMARY KEY (tweetID),
FOREIGN KEY (userNumber) REFERENCES User(userID),
);
```

Figure 3: Tweet DDL

### 1.4 Explaination of Compose relation

By the assumption that the given E/R diagram is correct, the relation *compose* is not to be created as a table, since the cardinality between User and Tweet is a one-to-many relationship. One can only create the *compose* table if the relation itself contained any attributes or if the cardinality between User and Tweet is a many-to-many relationship. Hence, no table is created for the table *compose*.

# 2 Relational Algebra

#### 2.1

The answear is: 3 - It lists all tuples in the UserProfile table with a reputation greater than or equal to 200.

#### 2.2 List all where reputation greater than 75 expressions

Below is a list of valid expressions that returns titles of questions asked by top users, (i.e., users with a reputation greater than 75.)

- 1
- 3

#### 2.3 Evaluation of vote count greater than 25 expression

**Answer for 1:** - Since the result set is a joined table of the *Answer* table and *Question* table we can list the following attributes:

- UserID
- name
- reputation
- questionID
- title
- voteCount

**Answer for 2** - The tuples returned are tubles where the attribute *vote-count* in the *Answer* table is greater than 25. 5 tuples are returned in this case.

| userID | name    | reputation | guestionID | text | Vote_count |
|--------|---------|------------|------------|------|------------|
| U3     | Jesper  | 44         | Q0         | []   | 44         |
| U2     | Emma    | 131        | Q1         | []   | 131        |
| U4     | Louise  | 200        | Q2         | []   | 118        |
| U5     | Michael | 75         | Q3         | []   | 45         |
| U1     | Jesper  | 44         | Q3         | []   | 87         |

Figure 4: Result set of expression. (Text has been omitted)

# 2.4 Evaluation of division expression

**Answer for 1:** - The attributes in the result set for the given expression are as following

• userID

Answer for 2 - Two tuples are returned that is returned is

| userID | guestionID |  |  |
|--------|------------|--|--|
| U5     | Q2         |  |  |
| U3     | Q2         |  |  |

Figure 5: Resultset of the expression.

## 2.5 Query for super users

```
SELECT userID, MAX(vote_count)
FROM Answer,
Group BY (userID);
```

Figure 6: Query to retrieve super users

# 3 Functional Dependencies

#### 3.1 Canoncial cover

The answer is 3

## 3.2 Deducing functional dependencies

- 1 is true
- 2 is true
- 3 is true
- 4 is false

#### 3.3 Attribute closure of B+

The answear is 4 - The attribute closure for B+ is B,C,F,G

#### 3.4 Attribute closure of A,D+

The answear is 4 - The attribute closure for B+ is A,B,C,D,E,F,G,H

### 4 Normalization

### 4.1 Candidate keys

Below the candidate key

 $\bullet$  WX

Since  $WX = U, U \Longrightarrow VW, VW \Longrightarrow V, V \Longrightarrow XY$ 

#### 4.2 BCNF

No because it is not in 3NF and can there not be in BCNF.

#### 4.3 3NF

No because there is a transitve dependency in the relation. Thus, it violates 3NF.

# 4.4 3NF decomposition

Figure 7: 3NF Decomposition

# 4.5 BCNF decomposition

R1{Z,U} R2{V,X,Y} R3{W,Z} R4{U,W,V)

Figure 8: BCNF decomposition

# 5 Serializability and 2PL

## 5.1 Question about serializability and 2PL

#### Answers

- $\bullet$  true
- $\bullet$  true
- $\bullet$  true
- $\bullet$  true
- $\bullet$  false

### 5.2 Is given schedule serial

No a serial schedule does not exists, since T1 is dependent on T2 and vice versa. See Figur:9 for dependency graph.

# 5.3 Dependency graph



Figure 9: Dependency graph of given schedule

## 5.4 Conflict serializable

Since the dependency graph is cyclic the schedule is not conflict serializable.

# 5.5 Is the schedule produced by 2pl

No, because 2PL guarantees serializability, but this schedule is not serializable. Thus it can not be produced by 2Pl