bjt_ce_amp_2.sqproj

Description

Figure 1: (a) BJT common-emitter amplifier, (b) small-signal equivalent circuit.

The purpose of this exercise it to find the output resistance of a common-emitter amplifier shown in Fig. 1 (a) in the mid-band frequency regime. The small-signal equivalent circuit of the amplifier is shown in Fig. 1 (b). If the output resistance of the BJT r_o is large, $R_o \approx R_C$. Our goal is to verify this by simulation.

The small-signal circuit of the amplifier can be represented by that shown inside the dashed rectangle in Fig. 2. Let us connect a load resistance R_L at the output. The output voltage is,

Figure 2: Equivalent representation of the circuit in Fig. 1 (b).

If $R_L \to \infty$, $v_o \to A_V v_s$, and if $R_L = R_o$, $v_o = A_V v_s/2$. This gives us the following procedure for finding R_o :

- 1. Vary R_L from ∞ (or a sufficiently large value) to a small value (say, 10 times smaller than the expected value of R_o), and plot $|\mathbf{V}_o|$ versus $\log R_L$.
- 2. Denote the maximum value of $|\mathbf{V}_o|$ by V_m . From the plot, find R_L for which $|\mathbf{V}_o|$ is $V_m/2$. The resistance thus obtained is the same as R_o .

Exercise Set

- 1. Perform DC simulation of the amplifier.
- 2. Obtain the gain versus frequency response of the amplifier, and find the midband range.
- 3. Set the frequency in the midband range. Obtain R_o by simulation, as described above, and compare it with its expected value.