→ \$\ Apresentação

Curso: Machine Learning

Aluna: Camila Perazzo

Atividade de desempenho dos Modelos Através da Engenharia de Features - 05/06/2023.

Questões da atividade

- 1) Nesta atividade, utilize o k-Nearest Neighbor para verificar o desempenho do algoritmo de acordo com a engenharia de features empregada.
- 2) Compare os resultados obtidos em todos os processos do item anterior e justifique as diferenças obtidas através dos conceitos de engenharia de features.

1) Utilize o dataset ionosphere presente na pasta datasets para realizar uma tarefa de classificação binária.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from \ sklearn.metrics \ import \ accuracy\_score, \ recall\_score, \ precision\_score, \ f1\_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion matrix
from \ sklearn.feature\_selection \ import \ Variance Threshold
#Preparando o Ambiente
import pandas as pd
#Importando o arquivo de dados
df = pd.read_csv('/content/ionosphere.data', header=None)
\#Verificando o formato do conjunto de dados
print("Shape do conjunto de dados: ",df.shape)
     Shape do conjunto de dados: (351, 35)
df.head(5)
```

		0	1	2	3	4	5	6	7	8	9	• • •	25	26	27	28
	0	1	0	1.00	-0.06	0.85	0.02	0.83	-0.38	1.00	0.04		-0.51	0.41	-0.46	0.21
	1	1	0	1.00	-0.19	0.93	-0.36	-0.11	-0.94	1.00	-0.05		-0.27	-0.20	-0.18	-0.19
	2	1	0	1.00	-0.03	1.00	0.00	1.00	-0.12	0.89	0.01		-0.40	0.59	-0.22	0.43
	3	1	0	1.00	-0.45	1.00	1.00	0.71	-1.00	0.00	0.00		0.91	0.52	1.00	1.00
	4	1	0	1.00	-0.02	0.94	0.07	0.92	-0.23	0.77	-0.16		-0.65	0.13	-0.53	0.02
5	ro	ws	× 3	5 colur	mns											
4																-

O conjunto de dados da **ionosphere** contém recursos obtidos de sinais de radar focados na camada de ionosfera da atmosfera da Terra. A tarefa é determinar se o sinal mostra a presença de algum objeto ou apenas ar vazio, classificando-o como bom (*g*) ou ruim (*b*).

2) Separe os dados de entrada e saída considerando que a coluna de índice 34 corresponde ao label dos dados de cada linha.

```
# Verificando o número de classes
df[34].unique()
     array(['g', 'b'], dtype=object)
# Separe os dados de entrada e saída
X = df.drop(34, axis=1, inplace=False)
y = df[34].replace({'g':0,'b':1}).copy()
# Exemplo de exibição dos dados separados
print("Dados de entrada:")
print(X.head())
print("Dados de saída:")
print(y.head())
     Dados de entrada:
                      3
                           4
                                5
                                      6
                                            7
                                                 8
                                                       9
                                                                 24
           0 1.00 -0.06 0.85 0.02 0.83 -0.38 1.00 0.04 ... 0.57 -0.51
           0 1.00 -0.19 0.93 -0.36 -0.11 -0.94 1.00 -0.05 ... -0.20 -0.27 -0.20
            0 1.00 -0.03 1.00 0.00 1.00 -0.12 0.89 0.01 ... 0.58 -0.40 0.59
           0 1.00 -0.45 1.00 1.00 0.71 -1.00 0.00 0.00 ... 1.00 0.91 0.52
        1 0 1.00 -0.02 0.94 0.07 0.92 -0.23 0.77 -0.16 ... 0.03 -0.65 0.13
         27
              28
                    29
                          30
                               31
                                     32
     0 -0.46 0.21 -0.34 0.42 -0.54 0.19 -0.45
     1 -0.18 -0.19 -0.12 -0.17 -0.06 -0.14 -0.02
     2 -0.22 0.43 -0.17 0.60 -0.24 0.56 -0.38
     3 1.00 1.00 -0.20 0.26 1.00 -0.32 1.00
     4 -0.53 0.02 -0.62 -0.06 -0.60 -0.05 -0.66
     [5 rows x 34 columns]
     Dados de saída:
         0
     1
         1
         a
         1
     Name: 34, dtype: int64
```

3) Separe os dados em dados de treinamento e teste utilizando a proporção 70% e 30%, respectivamente, e random state = 0.

```
# Separe os dados em treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```

→ 4) Estabeleça arbitrariamente o número de vizinhos k = 5, inicialmente

```
k = 5
# Criar uma instância do classificador k-NN
knn = KNeighborsClassifier(k)
# Treinar o modelo com os dados de treinamento
knn.fit(X_train, y_train)
# Realizar a classificação dos dados de teste
y_pred = knn.predict(X_test)
# Verificando as predições visualmente
fig, ax = plt.subplots()
ax.scatter(X_test.index, X_test.loc[:,12], c = y_test, s = 80)
ax.scatter(X\_test.index,\ X\_test.loc[:,12],\ c = y\_pred,\ marker = 'x',\ s = 100)
ax.set_xlabel('indice')
ax.set_ylabel('Dados da Coluna 12')
ax.set_title('Dados Preditos pelo Modelo de KNN')
ax.legend(['Dados de Teste', 'Predições'],loc='best')
plt.show()
```


▼ 5) Realize a classificação e obtenha os seguintes resultados:

```
(a) Acurácia.
```

- (b) Precisão.
- (c) Recall.
- (d) F1-Score.
- (e) Plote a matriz de confusão obtida

```
# Calcular a acurácia
acuracia = accuracy_score(y_test, y_pred)
print("Acurácia:", acuracia)
# Calcular a precisão
precisao = precision_score(y_test, y_pred)
print("Precisão:", precisao)
# Calcular o recall
recall = recall_score(y_test, y_pred)
print("Recall:", recall)
# Calcular o F1-score
f1 = f1_score(y_test, y_pred)
print("F1-Score:", f1)
     Acurácia: 0.839622641509434
     Precisão: 0.9354838709677419
     Recall: 0.6590909090909091
     F1-Score: 0.77333333333333333
```

Gerando o Classification Report
report = classification_report(y_test, y_pred)
print(report)
print('Accuracy :', accuracy_score(y_test,y_pred))
print('Precision Score :', precision_score(y_test,y_pred))
print('Recall Score :', recall_score(y_test,y_pred))
print('F1 Score :', f1_score(y_test,y_pred))

	precision	recall	f1-score	support
0	0.80 0.94	0.97 0.66	0.88 0.77	62 44
-	0.54	0.00	0.77	
accuracy			0.84	106
macro avg	0.87	0.81	0.82	106
weighted avg	0.86	0.84	0.83	106

Accuracy: 0.839622641509434
Precision Score: 0.9354838709677419
Recall Score: 0.6590909090909091
F1 Score: 0.7733333333333333

```
# Plotar a matriz de confusão
matriz_confusao = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(matriz_confusao, annot=True, fmt='d', cmap='Blues')
plt.title("Matriz de Confusão")
plt.xlabel("Classe Preditiva")
plt.ylabel("Classe Verdadeira")
plt.show()
```


6) Repita todo o processo dos itens 1 até 5 utilizando o método de Seleção de Features por limiar de variância, considerando o limiar de 35%.

```
# Lendo o arquivo
df2 = pd.read_csv("/content/ionosphere.data", delimiter=',', header=None)
# Criando as variáveis que irão receber os atributos e os labels
X = df2.drop(34, axis=1, inplace=False)
y = df2[34].replace({'g':0,'b':1}).copy()
# Estabelecendo o limiar de variância de 35%
# VarianceThreshold: responsável por remover as features que não atendem ao limiar de variância definido
selector = VarianceThreshold(threshold=threshold )
# Selecionando as features
X_selected_features = selector.fit_transform(X)
# Criando a variável que irá receber as features selecionadas
selected_features = X.columns[selector.get_support(indices=True)]
# Fazendo um print das features selecionadas
print(selected_features)
     Int64Index([12, 14, 16, 18, 20, 22], dtype='int64')
# Demonstrando graficamente
# Calcular a variância das colunas do DataFrame
variancias = df2.var(numeric_only=True)
fig, ax = plt.subplots(figsize=(8, 4))
# Plotar o gráfico de dispersão
sns.scatterplot(x=variancias.index, y=variancias)
# Adicionar a linha horizontal tracejada em y=0.3
plt.axhline(y=0.35, color='red', linestyle='--')
plt.xticks(range(0, 34, 1), rotation='vertical')
# Exibir o gráfico
plt.xlabel("Indice das Colunas", size = 10)
plt.ylabel("Variância", size = 10)
plt.show()
```

```
0.4 -
0.3 -
0.2 -
0.1 -
```

Separando dataset em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X_selected_features, y,test_size=0.3, random_state=0)

Definindo o número de vizinhos
k = 5
Criando a variável que irá receber o modelo kNN
knn = KNeighborsClassifier(k)
Treinamento do modelo
knn.fit(X_train,y_train)

Criando a variável que irá receber os dados de teste previstos $y_pred = knn.predict(X_test)$

Verificando as predições visualmente
fig, ax = plt.subplots(figsize=(5, 4))
ax.scatter(range(1,X_test.shape[0]+1), X_test[:,0], c = y_test, s = 80)
ax.scatter(range(1,X_test.shape[0]+1), X_test[:,0], c = y_pred, marker = 'x', s= 100)
ax.set_xlabel('indice')
ax.set_ylabel('Dados da Coluna 12')
ax.set_title('Dados Preditos pelo Modelo de KNN')
ax.legend(['Dados de Teste', 'Predições'],loc='best')
plt.show()

Gerando o Classification Report
report_thr = classification_report(y_test, y_pred)
print(report_thr)
print('Accuracy :', accuracy_score(y_test,y_pred))
print('Precision Score :', precision_score(y_test,y_pred))
print('Recall Score :', recall_score(y_test,y_pred))
print('F1 Score :', f1_score(y_test,y_pred))

	precision	recall	f1-score	support
	•			
0	0.78	0.95	0.86	62
1	0.90	0.61	0.73	44
accuracy			0.81	106
macro avg	0.84	0.78	0.79	106
weighted avg	0.83	0.81	0.80	106

```
# Plote a matriz de confusão com os dados selecionados
matriz_confusao_variancia = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(matriz_confusao_variancia, annot=True, fmt='d', cmap='Blues')
plt.title("Matriz de Confusão com Seleção de Features por Variância")
plt.xlabel("Classe Preditiva")
plt.ylabel("Classe Verdadeira")
plt.show()
```


- 7) Repita todo o processo itens 1 até 5 utilizando o método de Extração de Features por Análise de
- Componentes Principais (PCA), considerando a porcentagem de informação a ser mantida no prolema de 85%.

```
from sklearn.decomposition import PCA
# Criando as variáveis que irão receber os atributos e os labels
X = df2.drop(34, axis=1, inplace=False)
y = df2[34].replace({'g':0,'b':1}).copy()
# Transformando dados com o PCA
pca = PCA(n_components= .85)
X_new = pca.fit_transform(X)
# Separando dataset em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.3,random_state=0)
# Definindo o número de vizinhos
# Criando a variável que irá receber o modelo kNN
knn = KNeighborsClassifier(k).fit(X_train,y_train)
# Criando a variável que irá receber os dados de teste previstos
y_pred = knn.predict(X_test)
# Gerando o Classification Report
report_PCA = classification_report(y_test, y_pred)
print(report_PCA)
print('Accuracy :', accuracy_score(y_test,y_pred))
print('Precision Score :', precision_score(y_test,y_pred))
print('Recall Score :', recall_score(y_test,y_pred))
print('F1 Score :', f1_score(y_test,y_pred))
                   precision
                                recall f1-score
                                                    support
                0
                                   0.97
                        0.83
                                             0.90
                                                         62
                        0.94
                                   0.73
                                             0.82
                                                         44
         accuracy
                                             0.87
                                                        106
                                                        106
                        0.89
                                   0.85
                                             0.86
        macro avg
                                             0.86
                                                        106
     weighted avg
     Accuracy: 0.8679245283018868
     Precision Score: 0.9411764705882353
     Recall Score : 0.72727272727273
     F1 Score: 0.8205128205128205
# Plote a matriz de confusão com os dados selecionados
matriz_confusao_variancia = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
\verb|sns.heatmap| (\verb|matriz_confusao_variancia, annot=True, fmt='d', cmap='Blues')| \\
plt.title("Matriz de Confusão com Extração de Features por PCA")
```

```
plt.xlabel("Classe Preditiva")
plt.ylabel("Classe Verdadeira")
plt.show()
```



```
# Informações do PCA
# Obter o percentual de informação explicada
variance_ratio = pd.DataFrame(pca.explained_variance_ratio_.reshape(-1,1))
explained_variance = sum(variance_ratio[0]) * 100
# Plotar o gráfico de dispersão da variância das novas colunas
plt.figure(figsize=(5, 3))
sns.scatterplot(x=variance_ratio.index, y=variance_ratio[0])
# Adicionar a linha horizontal tracejada em y=0.3
plt.axhline(y=0.35, color='red', linestyle='--')
# Definir os valores do eixo x com passo de 1 em 1
plt.xticks(range(0, 15, 1))
print(f'\nVariancia Total Explicada: {explained_variance:.2f}%')
# Exibir o gráfico
plt.xlabel("Indice das Colunas", size = 10)
plt.ylabel("Variância", size = 10)
plt.show()
```


8) Considerando os dados transformados através do uso da PCA, repita todo o processo dos itens 1 a 5, mas aplique a técnica de Validação Cruzada por k-fold para encontrar o número de vizinhos mais próximos ideal para o problema. Considere variar k de 1 até 20, e considere o número de pastas do k-fold (o parâmetro cv da função cross_val_score) igual a 5.

```
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score
import numpy as np
def highlight_greaterthan(s, threshold, column):
    is_max = pd.Series(data=False, index=s.index)
    is_max[column] = s.loc[column] >= threshold
    return ['background-color: yellow' if is_max.any() else '' for v in is_max]
# Criando as variáveis que irão receber os atributos e os labels
X = df2.drop(34, axis=1, inplace=False)
y = df2[34].replace({'g':0,'b':1}).copy()
```

```
X_new = PCA(n_components=0.85).fit_transform(X)
# Separando dataset em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.3,random_state=0)
dados = []
for k in range(1,21):
  # Criando a variável que irá receber o modelo kNN
  knn = KNeighborsClassifier(k).fit(X_train,y_train)
  scores = cross_val_score(knn, X, y, cv=5)
 # Criando a variável que irá receber os dados de teste previstos
 y_pred = knn.predict(X_test)
  dados.append([k,
                np.mean(scores),
                np.std(scores),
                accuracy_score(y_test,y_pred),
                precision score(y test,y pred),
                recall_score(y_test,y_pred),
                f1_score(y_test,y_pred),
                ])
df_result = pd.DataFrame(dados, columns =['Valor_K','Mean_Cross_Val_Score','STD_Cross_val_Score','Accuracy_Score','Precision_Score','Rec
def pintar_maior_valor_por_coluna(dataframe):
  # Obtém o maior valor de cada coluna
 maiores_valores = dataframe.max()
  # Cria um estilo para pintar o maior valor de cada coluna
  def destaque maior valor(valor):
    return ['background-color: yellow; color: black' if v else '' for v in np.isin(valor, maiores_valores)]
  estilo = dataframe.style.apply(destaque_maior_valor)
  return estilo
# Chame a função e atribua o resultado a uma variável
estilo_destacado = pintar_maior_valor_por_coluna(df_result.drop(['Valor_K'],axis=1))
# Exiba o DataFrame com os maiores valores destacados
estilo destacado
```

	Mean_Cross_Val_Score	STD_Cross_val_Score	Accuracy_Score	Precision_Score	Re
0	0.843300	0.041413	0.915094	0.972973	
1	0.797666	0.055426	0.858491	1.000000	
2	0.831871	0.063589	0.896226	0.945946	
3	0.806278	0.037836	0.839623	0.935484	
4	0.826197	0.038804	0.867925	0.941176	
5	0.803421	0.031785	0.820755	0.931034	
6	0.820483	0.032215	0.849057	0.937500	
7	0.809095	0.023363	0.849057	0.937500	
8	0.823300	0.034790	0.849057	0.937500	
9	0.814809	0.028591	0.849057	0.937500	
10	0.828974	0.037569	0.849057	0.937500	
11	0.800563	0.015690	0.849057	0.937500	
12	0.829054	0.035006	0.849057	0.937500	
13	0.814809	0.032593	0.849057	0.937500	
14	0.831871	0.039932	0.849057	0.937500	
15	0.817626	0.030702	0.849057	0.937500	
16	0.834728	0.034644	0.849057	0.937500	
17	0.809014	0.034971	0.849057	0.937500	
18	0.826157	0.038962	0.849057	0.937500	
19	0.809095	0.034625	0.849057	0.937500	•

```
# Verificando visualmente
plt.plot(df_result.index+1, df_result['Mean_Cross_Val_Score'],label='Mean_Cross_Val_Score')
plt.plot(df_result.index+1, df_result['STD_Cross_val_Score'],label='STD_Cross_val_Score')
plt.plot(df_result.index+1, df_result['Accuracy_Score'], label='Accuracy_Score')
plt.plot(df_result.index+1, df_result['Precision_Score'],label='Precision_Score')
```

```
plt.plot(df_result.index+1, df_result['Recall_Score'], label='Recall_Score')
plt.plot(df_result.index+1, df_result['F1_Score'], label='F1_Score')
plt.xticks(range(1, 21, 1), rotation='vertical')
plt.xlabel("Iteração", size = 10)
plt.ylabel("Valor", size = 10)
plt.legend(loc='right')
plt.show()
```


→ Questão 2

F1 Score : 0.73

```
# Avaliando critérios de eficiência das classificações
# KNN Simples
print('KNN Simples')
lines = report.split('\n')
print('Accuracy :', float(lines[-4].split()[1]))
print('Precision Score :', float(lines[-6].split()[1]))
print('Recall Score :',float(lines[-6].split()[2]))
print('F1 Score :', float(lines[-6].split()[3]))
# KNN com Seleção de Features por variância
print('\nKNN Variancia > 0,35')
lines = report_thr.split('\n')
print('Accuracy :', float(lines[-4].split()[1]))
print('Precision Score :', float(lines[-6].split()[1]))
print('Recall Score :',float(lines[-6].split()[2]))
print('F1 Score :', float(lines[-6].split()[3]))
# KNN com PCA
print('\nKNN PCA')
lines = report_PCA.split('\n')
print('Accuracy :', float(lines[-4].split()[1]))
print('Precision Score :', float(lines[-6].split()[1]))
print('Recall Score :',float(lines[-6].split()[2]))
print('F1 Score :', float(lines[-6].split()[3]))
# KNN com PCA e k-fold
print('\nKNN PCA com k-fold p/ maior acurácia, recall e f1-score')
print('Accuracy : %.2f' % df_result['Accuracy_Score'][0])
print('Precision Score : %.2f' % df_result['Precision_Score'][0])
print('Recall Score : %.2f' % df_result['Recall_Score'][0])
print('F1 Score : %.2f' % df_result['F1_Score'][0])
     KNN Simples
     Accuracy: 0.84
     Precision Score : 0.94
     Recall Score : 0.66
     F1 Score : 0.77
     KNN Variancia > 0,35
     Accuracy: 0.81
     Precision Score : 0.9
     Recall Score : 0.61
```

F1 Score : 0.89

KNN PCA
Accuracy: 0.87
Precision Score: 0.94
Recall Score: 0.73
F1 Score: 0.82

KNN PCA com k-fold p/ maior acurácia, recall e f1-score
Accuracy: 0.92
Precision Score: 0.97
Recall Score: 0.82

Ao comparar os resultados obtidos nos diferentes processos de engenharia de features, podemos observar diferenças significativas nas métricas de desempenho do modelos de classificação:

- Entre todos os métodos utilizados, o que apresentou melhores métricas de eficiência na classificação dos dados de teste foi o último método, que utilizou um número de vizinhos igual a 1.
- Ao comparar o método simples de classificação com o método de seleção de features com base na variância acima de 0.35, observamos uma queda em todos os parâmetros de eficiência. Essa redução pode ser atribuída à exclusão de features importantes, mesmo que sua variância seja inferior a 0.35. No entanto, é importante ressaltar que o número de colunas foi reduzido de 34 para apenas 6. Nesse caso, é necessário analisar o custo-benefício da eficiência do modelo em relação ao custo computacional obtido.
- Já ao comparar o método simples com a aplicação do PCA para redução da dimensionalidade, observamos uma melhora em quase todos os parâmetros de eficiência. O resultado do PCA resultou em um cenário com apenas 14 features, representando 86% dos dados originais. Mesmo com a redução do cenário, os parâmetros de eficiência do modelo foram aprimorados.
- Ao utilizar o PCA em conjunto com a técnica de k-fold, observamos uma melhora significativa em todos os parâmetros de eficiência.
 Embora o k-fold não tenha uma melhora progressiva nos parâmetros de eficiência, a definição adequada do hiperparâmetro foi decisiva para o resultado obtido.
- Visando obter uma eficiência ainda maior no modelo, poderiam ser realizados mais tratamentos nos dados de entrada do sistema.
 Apesar de estarem normalizados e não apresentarem valores faltantes, os dados ainda podem conter repetições, outliers e desbalanceamento das classes alvo nos dados de treinamento. Esses aspectos podem ser abordados para aprimorar ainda mais o desempenho do modelo.

Em resumo, as diferenças nos resultados obtidos nos diferentes métodos de engenharia de features podem ser explicadas pelas escolhas feitas em relação à seleção de features, redução de dimensionalidade e avaliação do modelo. Cada método tem seu impacto específico no desempenho do modelo, e é importante considerar suas vantagens e desvantagens em relação ao problema em questão.

✓ 0s conclusão: 23:53