Universidade do Minho

11 de novembro de 2022

1º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 1h45min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b, c\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	c	Δ
0				$(1, \Delta, D)$
1	(1, a, D)	(1, a, D)		(2,b,D)
2		(2, c, D)	(2, c, D)	$(3, \Delta, E)$
3	(3, a, E)	(3,b,E)	(3, c, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \times A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0,\underline{\Delta}bab\Delta bbcb).$
- c) Identifique o domínio D da função g.
- **d**) Para cada elemento $(u, v) \in D$, determine a palavra g(u, v).
- **2.** Seja A o alfabeto $\{a,b\}$. Considere a linguagem

$$L = \{wba^n : w \in A^*, n \in \mathbb{N}_0, |w|_b = n\}.$$

- Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina. A linguagem L é recursiva?
- 3. Considere o problema $Uni\tilde{a}o Total$: dadas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 de alfabeto A, será que $L(\mathcal{T}_1) \cup L(\mathcal{T}_2) = A^*$?
 - a) Mostre que o problema Aceita Tudo se reduz a União Total.
 - b) Conclua que o problema *União Total* é indecidível.

4. Seja $A = \{a, b, c\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}abaacaab, \underline{\Delta})$ e diga se a palavra abaacaab é aceite por \mathcal{T} .
- b) Para que palavras $u \in A^*$, $(0, \underline{\Delta}u, \underline{\Delta})$ é uma configuração de ciclo?
- c) Para que palavras $v \in A^*$, a partir de $(0, \underline{\Delta}v, \underline{\Delta})$ pode ser computada uma configuração de rejeição?
- d) Identifique a linguagem L reconhecida por \mathcal{T} .
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se $L\subseteq A^*$ é uma linguagem regular e $\mathcal T$ é uma máquina de Turing que reconhece L, então $\mathcal T$ é um algoritmo.
 - **b)** A palavra $x^2yxyxyxy^2x^2yxy^2yx^2yx^2y^2$ é o código de alguma máquina de Turing.
 - c) A função característica χ_L da linguagem $L=a^*ba^*$ é Turing-computável.
 - d) Dadas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , se \mathcal{T}_1 aceita uma palavra w e \mathcal{T}_2 aceita a palavra vazia, então a composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$ reconhece a palavra w.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 4,5 \text{ valores } (1+1+1,25+1,25) \\ \textbf{2.} & 3,5 \text{ valores } (2,5+1) \\ \textbf{3.} & 3 \text{ valores } (2+1) \\ \textbf{4.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \\ \textbf{5.} & 4 \text{ valores } (1+1+1+1) \end{cases}$$