Naga Nitish Chamala

Blacksburg, VA 24060 • naga@vt.edu • (248) 212-3516 • naganitish.com • LinkedIN

Technical Summary

Highly motivated researcher with expertise in CFD, multiphase flows, and thermal analysis, demonstrated through advanced numerical simulations, model development, and experimental validation. Proficient in industry-standard software (ANSYS Fluent/CFX/Icepak, OpenFOAM, StarCCM+) and programming languages (C++, Python). Proven ability to optimize designs and improve performance in complex fluid and thermal systems.

Education

Ph.D. in Aerospace and Ocean Engineering | Virginia Tech | Jan 2021 - Dec 2025 | CGPA: 3.7

Notable Courses: Verification and Validation in Scientific Computations, Data Analysis in Fluid Dynamics, Turbulence Modeling and Simulation

M.Tech. in Thermal & Fluids | Amrita Vishwa Vidyapeetham | 2017-19 | CGPA: 8.88/10

Honors: Graduated with Silver Medal for academic excellence.

Notable Courses: Aerodynamics, Computational Methods in Thermal & Fluids, Advanced Heat Transfer, Design of Heat Exchange Equipments

B.Tech. in Mechanical engineering | JNTUH | 2017

Honors: Winner of Vishnu Karting Championship, 2016, lead the team as Design Lead.

Skills					
C++	ICEM-CFD	MATLAB	StarCCM+	ANSYS Fluent	Thermal Analysis
Python	ANSYS CFX	Solidworks(CAD)	ANSYS Icepak	OpenFOAM	Machine Learning
Bash	Linux	Data Analysis			

Projects

CFD Analysis of Through-Chip Microchannel Cooling for 3D Integrated Circuits | Virginia Tech

- Executed a Computational Fluid Dynamics (CFD) analysis to optimize thermal management in high-power 3D ICs using a novel Through-Chip Microchannel (TCMC) architecture.
- The baseline simulation confirmed the design's capability to dissipate 14.1 kW/cm² while keeping temperature rise below 60 K at a 1 MPa inlet pressure.
- Extended the analysis to square microchannels, which yielded a 12% improvement in thermal performance but resulted in an 18% increase in required pumping power.
- Identified a key performance trade-off, concluding that square channels provide superior heat dissipation where a moderate increase in parasitic energy consumption is acceptable.

Comparative Thermal Analysis of EV Battery Cold Plates using Ansys Fluent | Virginia Tech

- Conducted a CFD project in Ansys Fluent to evaluate the thermal-hydraulic performance of convex vs. U-shaped liquid cooling plates for an EV battery.
- Analysis was run at a constant heat flux of 1000 W/m² and a coolant mass flow rate of 0.025 kg/s to simulate a 1C discharge rate.
- The convex structure demonstrated superior hydraulic performance, achieving a 22.7% reduction in pressure drop compared to the U-shaped design while maintaining similar peak temperatures.
- Concluded the convex structure is more efficient for balancing cooling effectiveness with system efficiency, noting a similar design is used in the Lucid Air.

Optimization of Heat Sink for Cooling a Chip | Amrita Vishwa Vidyapeetham

- Optimized a heat sink for a chip with 100W/cm² by varying base thickness, fin height, fin thickness, number of fins, and fan proximity using Ansys Icepak, obtaining a 15% drop in max temperature.
- Identified and addressed high thermal spread resistance by implementing a vapor chamber and heat pipes.
- Achieved a total of ~40% drop in max temperature using a vapor chamber as a heat spreader.

Advanced Flow Diagnostics for Multiphase Flows Using Machine Learning | Virginia Tech

• Pioneered a novel application of RAFT (Recurrent All-Pairs Field Transforms) optical flow to achieve the first-ever simultaneous velocity measurements of both liquid and vapor phases in cloud cavitation.

- Developed and utilized synthetic datasets to fine-tune a deep learning model to overcome the challenge of sparse particle seeding, resulting in a 50% reduction in End-Point Error (EPE).
- The custom-tuned RAFT model outperformed traditional velocimetry algorithms (PIVLab, Farneback), which failed in these conditions, by a factor of 30x.
- Established critical guidelines concluding that high spatial and temporal data resolution are paramount for the successful application of optical flow in complex multiphase systems.

Comprehensive CFD Modeling of Cloud Cavitation in a Venturi | Virginia Tech

- Performed a systematic evaluation of CFD methodologies for simulating cloud cavitation in a venturi geometry using OpenFOAM (interPhaseChangeFoam solver with Merkle cavitation model).
- Compared the predictive accuracy of various approaches, including incompressible vs. compressible solvers, 2D RANS vs. 3D RANS, and high-fidelity 3D Large Eddy Simulations (LES).
- Assessed the influence of geometric scaling on flow physics by rigorously benchmarking simulation strategies against experimental observations.
- Identified the key capabilities and critical limitations of current-generation CFD tools in capturing complex, transient cavitation physics.

Implementing Verification and Validation Framework on an OpenFOAM solver | Virginia Tech

- Verified and validated an OpenFOAM solver for 2D steady-state incompressible laminar flow using the Roy-Oberkampf framework.
- Estimated the predictive uncertainty of the solver by considering aleatory and epistemic inputs separately.
- Quantified numerical uncertainty using Richardson extrapolation and Roache's Grid Convergence Index (GCI).
- Achieved a model form uncertainty (d) of 0.8472 using the Area Validation Metric and demonstrated the importance of considering all sources of uncertainty.

Experience

CFD Engineer | Hydro Pneumatic Engineers Pvt Ltd | Hyderabad, India | Aug 2019 - Nov 2020

- Contributed to the development of an in-house Scramjet engine by optimizing the intake to minimize spillage for operating speeds.
- Significantly improved nozzle design by employing the Method of Characteristics, resulting in a 10% increase in thrust and a 3% reduction in length.
- Optimized fuel injectors position for better combustion efficiency and lower drag.
- All simulations were performed using ICEM-CFD and ANSYS Fluent software.

Conferences

- Unraveling Cloud Cavitation: Role of Rayleigh-Taylor Instability, presented at 77th Annual Meeting of the Division of Fluid Dynamics 2024.
- *Numerical uncertainty due to parallelization in an unsteady cloud cavitation*, presented at 76th Annual Meeting of the Division of Fluid Dynamics 2023.
- A Comparative Study of Transport Equation Models for Prediction of Cloud Cavitation in a Venturi, presented at The 8th World Congress on Momentum, Heat and Mass Transfer 2023. DOI: 10.11159/icmfht23.121
- *Numerical simulation on flow through a double forward-facing step*, accepted in International Conference on Applied Mechanics and Optimisation 2019 AIP Proceedings. https://doi.org/10.1063/1.5120212
- Simulation of Scramjet Combustor using Quasi-1D and 3D CFD models, presented at 21st Annual CFD Symposium, NAL, 2019

Journal

- High-Fidelity, Two-Phase Velocimetry in Cloud Cavitation using a Fine-Tuned Recurrent All-Pairs Field Transforms Optical Flow Network. Submitted to Experiments in Fluids. **Under Review.**
- Study of Shedding Mechanisms in Cloud Cavitation and the scale effects on dynamics. Submitted to Journal of Fluid Mechanics. **Under Review.**