# Computational Statistics HW 4

#### Liam Carpenter

#### December 2021

## Problem 1

#### 1

At time step n we suppose there are i balls in the left bin, ie.  $X_n = i$ . Then at time step n + 1 we can have X = i + 1 or X = i - 1.

$$P(X_{n+1}=i+1|X_{n-1}=i)=P(\text{a ball on the left side is chosen})$$
 
$$=P(\bigcup_{k=1}^{i}\text{Ball k Chosen})$$
 
$$=\sum_{k=1}^{m}\frac{1}{m}$$
 
$$=\frac{i}{m}$$
 
$$\Longrightarrow P(X_{n+1}=i-1)=1-\frac{i}{m}$$
 In this we can see that the dependency of  $n+1$  is strictly upon the sta

From this we can see that the dependency of n+1 is strictly upon the state of  $X_n$  and therefore  $X_n$  is a Markov chain, with a state space  $\mathcal{X} = \{0, 1, 2, \dots, m\}$ 

#### 2

The transition probabilities  $p_{i+1,i}=P(X_n=i|X_{n-1}=i+1)=\frac{m-i+1}{m}, p_{i,i-1}=P(X_n=i|X_{n-1}=i+1)=\frac{i-1}{m}$  and 0 otherwise.

### 3

We write our transition matrix P as

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 1/m & 0 & (m-1)/m & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

 $\pi(i)$  in vector notation is,

$$\left(1/2^m \binom{m}{0} - 1/2^m \binom{m}{1} - \dots - 1/2^m \binom{m}{m}\right)$$

Then each entry of the vector  $P^T \pi^T$  can be written as,

$$(P^T \pi^T)_i = \sum_{j=0}^m P_{i,j}^T \pi(j) = P_{i,i-1}^T \pi(i-1) + P_{i,i+1}^T \pi(i+1)$$

Where i + 1 and i - 1 are defined, else those terms are 0. Then we have for i = 0,

$$(P^T \pi^T)_0 = P_{0,1}^T \pi(1) = \frac{1}{2^m} \left( \frac{1}{m} \frac{m!}{(m-1)!} \right) = \frac{1}{2^m} \binom{m}{0} = (P\pi)_0$$

Similarly for i = m

$$(P^T \pi^T)_m = P_{m,m-1}^T \pi(m-1) = \frac{1}{2^m} \left( \frac{1}{m} \frac{m!}{(m-1)!} \right) = \frac{1}{2^m} \binom{m}{m} = (P\pi)_m$$

And finally for 0 < i < m we get,

$$(P^T \pi^T)_i = \frac{1}{2^m} \frac{i-1}{m} \binom{m}{i-1} + \frac{m-i+1}{m} \binom{m}{i+1} = \frac{1}{2^m} \binom{m}{i} = (\pi P)_i$$

Therefore  $\pi$  is the stationary distribution.

### Problem 2





The expectation of this random variable is just the expectation of the expectation which is the expectation of Exp(1) which is 1.

## Problem 3

1

We generate 50 samples and construct a histogram.



2



Then we use our h's to construct kernel density estimators and plot them and their errors.

3

Finally we compute the optimized error which is approximately 3.33.