Multi-Layer High-Q Capacitors

These lines of multilayer capacitors have been developed for High-Q and microwave applications.

- The **S-Series** (R07S, R14S, R15S) capacitors give an ultrahigh Q performance, and exhibit NP0 temperature characteristics
- The **L-Series** (R05L) capacitors give mid-high Q performance, and exhibit NP0 temperature characteristics.
- The **E-Series** (S42E, S48E, S58E) capacitors give excellent high-Q performance from HF to Microwave frequencies. Typical uses are high voltage, high current applications. They are offered in chip (Ni barrier or Non-Magnetic Pt.-Ag) or in Non-Magnetic leaded form.
- RoHS compliance is standard for all unleaded parts (see termination options box).

How to Order

Low ESR / High-Q Capacitor Selection Chart

EIA Size					RF Power Applications								
	EIA 3	DIZE	0201	(R05)	0402	0603	0805	0805	1111		2525	3838	
Cap. Value		NPO NPO (R05L) (R05G)		(R07S)	(R14S)	(R14S) (R15S)		(R15G) (S42E)		(S48E)	(S58E)		
Capac pF	itance Code												
0.1	OR1												
0.2	0R2		25 V	25 V	200 V	250 V			500V	1500V			
0.3	0R3		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V			
0.4	0R4		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V			
0.5	0R5		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V		
0.6	0R6		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
0.7	0R7		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
0.8	0R8		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
0.9	0R9		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.0	1R0		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.1	1R1	^	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.2	1R2	Α	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.3	1R3		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.4	1R4	В	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.5	1R5		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.6	1R6	C	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.7 1.8	1R7		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
1.0	1R8 1R9	D	25 V 25 V	25 V 25 V	200 V 200 V	250 V 250 V	250 V 250 V	1000V	500V	1500V 1500V	2500V 2500V	3600V 3600V	7200V
2.0	2R0		25 V	25 V	200 V	250 V	250 V	1000V 1000V	500V 500V	1500V	2500V 2500V	3600V	7200V 7200V
2.1	2R1		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
2.2	2R2		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
2.4	2R4		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
2.7	2R7		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
3.0	3R0		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
3.3	3R3		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
3.6	3R6		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
3.9	3R9		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
4.3	4R3		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
4.7	4R7		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
5.1	5R1	V ++	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
5.6	5R6	A**	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
6.2	6R2	В	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
6.8	6R8		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
7.5	7R5	$\mid C \mid$	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
8.2	8R2	D	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
9.1	9R1		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
10	100		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
11	110		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
12	120	F	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
13	130		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
15	150	G	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
16	160	G	25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
18	180		25 V	25 V	200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
20 22	200	J	25 V		200 V 200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
22	220 240		25 V 25 V		200 V	250 V 250 V	250 V 250 V	1000V 1000V	500V 500V	1500V 1500V	2500V 2500V	3600V 3600V	7200V 7200V
27	270	K	25 V		200 V	250 V	250 V	1000V	500V	1500V	2500V 2500V	3600V	7200V
30	300		25 V		200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V
33	330		25 V		200 V	250 V	250 V	1000V	500V	1500V	2500V	3600V	7200V

Consult factory for Non-Standard values.
**A tolerance only available for R07S (0402) and R14S(0603) caps

Low ESR / High-Q Capacitor Selection Chart

EIA Size					RF Power Applications								
	EIA	Size	0201	(R05)	0402	0603 08	0805 0805		1111		2525	3838	
Cap. Value		NPO (R05L)	NP0 (R05G)	(R07S)	(R14S)	(R15S)	(R15G)	(S42E)		(S48E)	(S58E)		
Capac	citance Code	Toler- ance											
36	360		25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200\
39	390	-	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
43	430	-	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
47	470		25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
51	510	1	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
56	560		25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
62	620	-	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
68	680	-	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
75	750	-	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
82	820	F	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
91	910	- I	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
100	101	1 _ 1	25 V			250 V	250 V	1000V	500V	1500V	2500V	3600V	7200
110	111	$\mid G \mid$	20 V			200 V	250 V	10001	300V	1500V	2500V	3600V	7200
120	121	-					250 V		300V	1000V	2500V	3600V	7200
130	131	J					250 V		300V	1000V	2500V	3600V	7200
150	151	-					250 V		300V	1000V	2500V	3600V	7200
160	161	K					250 V		300V	1000V	2500V	3600V	7200
180	181	r\					250 V		300V	1000V	2500V	3600V	7200
200	201						250 V		300V	1000V	2500V	3600V	1200
220	221						250 V		200V	1000V	2500V	3600V	
	+	-					250 V						
240 270	241 271								200V 200V	1000V	2500V	3600V	
	-	-								1000V	2500V	3600V	
300	301								200V	1000V	1500V	3600V	
330	331								200V	1000V	1500V	3600V	
360	361	_							200V	1000V	1500V	3600V	
390	391								200V	500V	1500V	3600V	
430	431								200V	500V	1500V	2500V	
470	471	4							200V	500V	1500V	2500V	
510	511	_							100V	500V	1000V	2500V	
560	561								100V	500V	1000V	2500V	_
620	621								100V	500V	1000V	2500V	_
680	681					1			50V		1000V	2500V	
750	751					1			50V		1000V	2500V	<u> </u>
820	821	$\mid G \mid$				1			50V		1000V	2500V	
910	911								50V		1000V	1000V	
1000	102	J							50V		1000V	1000V	
1200	122	U									1000V	1000V	
1500	152	1/									500V	1000V	
1800	182] K [500V	1000V	
2200	222										300V	1000V	
2700	272										300V	500V	
3300	332											500V	
3900	392											500V	
4700	472											500V	
5100	512											500V	
10000	103												

Consult factory for Non-Standard values.

DIELECTRIC CHARACTERISTICS

NPO

TEMPERATURE COEFFICIENT: 0 ± 30 ppm /°C, -55 to 125°C

QUALITY FACTOR / DF: Q > 1,000 @ 1KHz (C>1,000pF), Typical 10,000 (C<1,000 pF)

INSULATION RESISTANCE: $>100 \text{ G}\Omega$ @ 25°C,WVDC¹;

125°C IR is 10% of 25°C rating

DIELECTRIC STRENGTH: $500 \text{ V} \le 2.5 \text{ X WVDC}^{1} \text{ Min., } 25^{\circ}\text{C}, 50 \text{ mA max}$

> 1000 V ≤ 1.5 X WVDC¹ Min., 25°C, 50 mA max $> 1500 = 1 \text{ X WVDC}^{1} \text{ Min., } 25^{\circ}\text{C}, 50 \text{ mA max}$

TEST PARAMETERS:: 1MHz ±50kHz, 1.0±0.2 VRMS, 25°C

AVAILABLE CAPACITANCE:

Size 1111: 0.2 - 1000 pF Size 0201: 0.2 - 100 pF Size 2525: 1.0 - 2700 pF Size 0402: 0.2 - 33 pF Size 3838: 1.0 - 5100 pF Size 0603: 0.2 - 100 pF

Size 0805: 0.3 - 220 pF

MECHANICAL & ENVIRONMENTAL CHARACTERISTICS

SPECIFICATION TEST PARAMETERS

SOLDERABILITY: Solder coverage ≥ 90% of metalized areas Preheat chip to 120°-150°C for 60 sec., dip terminals in rosin flux

No termination degradation then dip in Sn62 solder @ 240°±5°C for 5±1 sec

RESISTANCE TO No mechanical damage Preheat device to 80°-100°C for 60 sec. SOLDERING HEAT: Capacitance change: ±2.5% or 0.25pF followed by 150°-180°C for 60 sec. Q>500 I.R. >10 G Ohms Dip in 260°±5°C solder for 10±1 sec

DWV2: 2.5 x WVDC Measure after 24±2 hour cooling period

TERMINAL Termination should not pull off. Linear pull force³ exerted on axial leads soldered to each terminal. ADHESION: Ceramic should remain undamaged.

PCB DEFLECTION: No mechanical damage. Glass epoxy PCB: 0.5 mm deflection Capacitance change: 2% or 0.5pF Max

LIFE TEST: MIL-STD-202, Method 108l Applied voltage: 200% of WVDC1 for capacitors rated at 500 volts DC or less.

No mechanical damage 100% of WVDC¹ for capacitors rated at 1250 volts DC or less.

Capacitance change: ±3.0% or 0.3 pF Temperature: 125°±3°C

Q>500 I.R. >1 G Ohms Test time: 1000+48-0 hours DWV2: 2.5 x WVDC1

THERMAL CYCLE: 5 cycles of: 30±3 minutes @ -55°+0/-3°C, No mechanical damage. 2-3 min. @ 25°C, 30±3 min. @ +125°+3/-0°C, Capacitance change: ±2.5% or 0.25pF

Q>2000 I.R. >10 G Ohms 2-3 min. @ 25°C

DWV2: 2.5 x WVDC Measure after 24±2 hour cooling period

HUMIDITY, No mechanical damage. Relative humidity: 90-95%

Capacitance change: ±5.0% or 0.50pF max. Temperature: 40°±2°C Q>300 I.R. ≥ 1 G-Ohm Test time: 500 +12/-0 Hours DWV2: 2.5 x WVDC1 Measure after 24±2 hour cooling period

HUMIDITY.

Applied voltage: 1.5 VDC, 50 mA max. No mechanical damage. LOW VOLTAGE:

Capacitance change: ±5.0% or 0.50pF max. Relative humidity: 85±2% Temperature: 40°±2°C Q>300 I.R. = 1 G-Ohm min. Test time: 240 +12/-0 Hours

DWV2: 2.5 x WVDC Measure after 24±2 hour cooling period

VIBRATION: No mechanical damage. Capacitance change: ±2.5% or 0.25pF Cycle performed for 2 hours in each of three perpendicular directions

Q>1000 I.R. ≥ 10 G-Ohm Frequency range 10Hz to 55 Hz to 10 Hz traversed DWV²: 2.5 x WVDC¹ in 1 minute. Harmonic motion amplitude: 1.5mm

1 - WVDC - Working Voltage DC.

² - DWV - Dielectric Withstanding Voltage.

 3 - 0402 \geq 2.0lbs, 0603 \geq 4.0lbs (min).

⁴ - Whichever is less.

STEADY STATE:

MECHANICAL **C**HARACTERISTICS

Size	Size Units		Width	Thickness	End Band	
EIA 0201	In	.024 ±.001	.012 ±.001	.012 ±.001	.008 Max.	
Metric (0603)	mm	(0.60 ±0.03)	(0.30 ±0.03)	(0.30 ± 0.03)	(0.20 Max.)	
EIA 0402	In	.040 ±.004	.020 ±.004	.020 ±.004	.010 ±.006	
Metric (1005)	mm	(1.02 ±0.1)	(0.51 ±0.1)	(0.51 ± 0.1)	(0.25 ±.15)	
EIA 0603	In	.062 ±.006	.032 ±.006	.030 +.005/003	.014 ±.006	
Metric (1608)	mm	(1.57 ±0.15)	(0.81 ±0.15)	(0.76 +.1308)	$(0.35 \pm .15)$	
EIA 0805	In	.080 ±.008	.050 ±.008	.040 ±.006	.020 ±.010	
Metric (2012)	mm	(2.03 ±0.20)	(1.27 ±0.20)	(1.02 ±.15)	$(0.50 \pm .25)$	

HORIZONTAL AND VERTICLE ORIENTED CAPACITORS

Horizontal Electrode Orientation

Vertical Electrode Orientation

APPLICATIONS & FEATURES

Size: EIA 0201, 0402

Performance: SRF's up to 20 GHz, Ultra High Q, Tight tolerance, Ultralow ESR

Termination: Ni/Au, Ni/Sn, Ni/SnPb

Applications: High Frequency Wireless Communications, Portable Wireless Products, Battery Powered

Products

RoHS Compliant

BENIFITS OF USING ORIENTED CAPACITORS

- Consistent Orientation Improved repeatability of production circuits.
- Consistent Orientation More consistent filter performance.
- Vertical Orientation The elimination of parallel frequencies.
- Vertical Orinetation Lower inductance for a given capacitor.
- Horizontal Orientation Lower coupling between adjacent capacitors.

E-SERIES **T**ERMINATIONS AND **L**EADS

CHIP DIMENSIONS

Termination	Size	Units	L	Tol	W	Tol	Т	E/B	Tol
S42E	CADE	In	0.110	+.020010	0.110	+/015	0.102 Max.	0.015 Typ.	+/- 0.008
	342E	mm	2.79	+0.51 -0.25	2.79	+/- 0.38	2.59 Max.	0.38 Typ.	+/- 0.20
V,T U,C	V,T S48E	In	0.230	+.025010	0.250	+/015	0.150 Max.	0.025 Typ.	
U.C 540E	mm	5.84	+0.63 -0.25	6.35	+/- 0.38	3.81 Max.	0.63 Typ.		
-,-	S58E	In	0.380	+.015010	0.380	+/010	0.170 Max.	0.025 Typ.	
	300E	mm	9.65	+0.38 -0.25	9.65	+/- 0.25	4.32 Max.	0.63 Typ.	

For all E-Series Models:

 $\begin{array}{ll} \textbf{OPERATING TEMP:} & -55\ \text{to}\ +125^\circ\text{C} \\ \textbf{INSULATION RESISTANCE:} & >10G\ \Omega\ @\ 25^\circ\text{C} \\ \textbf{TEMPERATURE COEFFICIENT:} & 0 \pm 30\text{ppm}\ /^\circ\text{C}, -55\ \text{to} \\ 125^\circ\text{C} \\ \end{array}$

DISSIPATION FACTOR (TYP.): < 0.05% @ 1 MHz

Drawings not to scale

Lead	Size	LL(min)	Χ	Tol	е	e-Tol			
	S42E	0.25	0.093	+/-0.005	0.004	+/- 0.002			
1		6.40	2.36	+/- 0.13	0.102	+/- 0.051			
	S48E	0.394	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031			
'	340E	10.0	5.5	+/- 0.50	0.220	- 0.050/+ 0.080			
	S58E	0.748	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039			
	330E	19.00	8.90	+/- 0.50	0.250	- 0.050/+ 0.100			
	S42E	0.25	0.093	+/-0.005	0.004	+/- 0.002			
		6.40	2.36	+/- 0.13	0.102	+/- 0.051			
2	S48E	0.394	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031			
2		10.00	5.50	+/- 0.50	0.220	- 0.050/+ 0.080			
	S58E	0.748	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039			
		19.00	8.90	+/- 0.50	0.25	- 0.050/+ 0.100			
	S42E	0.25							
	342E	6.40	0.020in (0.511) diameter wire						
3	S48E	0.394							
٥	348E	10.00		U.UZUII1 (C	1.011) ulai	HELEI MILE			
	CEOE	0.748							
	S58E	19.00							

Lead	Size	LL(min)	Χ	Tol	е	e-Tol			
	S42E	0.352	0.093	+/-0.005	0.004	+/- 0.002			
		8.90	2.36	+/- 0.13	0.102	+/- 0.051			
1	S48E S58E	0.501	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031			
4		12.70	5.50	+/- 0.50	0.220	- 0.050/+ 0.080			
		0.886	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039			
		22.50	8.90	+/- 0.50	0.25	- 0.050/+ 0.100			
	S42E	0.25							
	342E	6.40	0.020in (0.511) diameter wire						
5	S48E	0.394							
ວ		10.00							
	CEOE	0.748							
	S58E	19.00							

SERIES RESONANCE CHART

RF CHARACTERISTICS - L-SERIES

Q vs Frequency: 0201/R05L

ESR vs Capacitance: 0201/R05L

Q vs Capacitance: 0201/R05L

S-Series RF Characteristics versus Frequency

Measurements performed on a Boonton 34A Resonant Coaxial Line and represent typical capacitor performance.

S-Series RF Characterisites versus Capacitance

Measurements performed on a Boonton 34A Resonant Coaxial Line and represent typical capacitor performance.

S42E SERIES RF CHARACTERISTICS VERSUS FREQUENCY

S42E SERIES RF CHARACTERISTICS VERSUS CAPACITANCE

S42E Equivalent Series Resistance vs Capacitance, Typical

S42E Q vs. Capacitance, Typical

Capacitance (pF)

SRF (Shunt Mount), S48E, Typical (Preliminary)

As measured on a 8720C VNA, using a Shunt-Through fixture, and using the S11 magnitude dip to determine the SRF

Current Rating vs. Capacitance, S48E, Typical (Preliminary)

Solid traces show voltage limited current (Vrms)

Dotted traces show power dissipation limited current (Based on 4 Watts Power Dissipation, and 125 degrees C case temp.)

S48E Q vs. Capacitance, Typical (Preliminary)

As measured on a 4287A LCR meter, using a 16092A fixture

S48E ESR vs. Capacitance, Typical (Preliminary)

As measured on a 4287A LCR meter, using a 16092A fixture

*Actual data from Boonton 34A resonant line.

JTI S58E GRAPHICAL DATA

^{*}Actual data from Boonton 34A resonant line.