Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Estimation	1
	1.1. Modèle statistique, estimateurs	1
	1.2. Inégalité de Cramér Rao	1
	1.3. Maximum de vraisemblance	
	1.4. Méthode des moments	2
	1.5. Estimation de Bayésienne	2
	1.6. Intervalles de confiance	2
2.	Tests Statistiques	2

1. Estimation

1.1. Modèle statistique, estimateurs

Définition 1.1.1:

- Biais : $b_n(\theta) = E(\hat{\theta}_n) \theta \in \mathbb{R}^p$ Variance : $v_n(\theta) = E\left[\left(\hat{\theta}_n E(\hat{\theta}_n)\right)^2\right]$ Matrice de covariance : $E\left[\left(\hat{\theta}_n E(\hat{\theta}_n)\right)\left(\hat{\theta}_n E(\hat{\theta}_n)\right)^T\right]$ Erreur quadratique moyenne (MSE) : $e_n(\theta) = E\left[\left(\hat{\theta}_n \theta\right)^2\right] = v_n(\theta) + b_n^2(\theta)$
- un estimateur $\hat{\theta}_n$ est convergent si $\lim_{n \to +\infty} b_n(\theta) = \lim_{n \to +\infty} v_n(\theta) = 0$

1.2. Inégalité de Cramér Rao

Théorème 1.2.1:

$$\mathrm{Var}\Big(\hat{\theta}_n\Big) \geq \frac{\big[1 + b_n'(\theta)\big]^2}{(-E\Big\lceil \frac{\partial^2 \ln(L(X_1,\dots,X_n;\theta))}{\partial \theta^2}\Big)]}) = \mathrm{BCR}(\theta)$$

- BCR : Borne de Cramér-Rao
- Hypothèses:
 - 1. log-vraisemblance deux fois dérivable
 - 2. suport de la loi indépendant de θ

1.3. Maximum de vraisemblance

- 1.4. Méthode des moments
- 1.5. Estimation de Bayésienne
- 1.6. Intervalles de confiance
- 2. Tests Statistiques