Университет ИТМО

Операционные системы Лабораторная работа №1

Выполнил:

Астраханцев В.И.

Группа:

P33122

Преподаватель:

Покид А.В.

г. Санкт-Петербург 2020 г. Разработать программу на языке С, которая осуществляет следующие действия

- Создает область памяти размером А мегабайт, начинающихся с адреса В (если возможно) при помощи С=(malloc, mmap) заполненную случайными числами /dev/urandom в D потоков. Используя системные средства мониторинга определите адрес начала в адресном пространстве процесса и характеристики выделенных участков памяти. Замеры виртуальной/физической памяти необходимо снять:
- 1. До аллокации
- 2. После аллокации
- 3. После заполнения участка данными
- 4. После деаллокации
- Записывает область памяти в файлы одинакового размера Е мегабайт с использованием F=(блочного, некешируемого) обращения к диску. Размер блока ввода-вывода G байт. Преподаватель выдает в качестве задания последовательность записи/чтения блоков H=(последовательный, заданный или случайный)
- Генерацию данных и запись осуществлять в бесконечном цикле.
- В отдельных I потоках осуществлять чтение данных из файлов и подсчитывать агрегированные характеристики данных J=(сумму, среднее значение, максимальное, минимальное значение).
- Чтение и запись данных в/из файла должна быть защищена примитивами синхронизации K=(futex, cv, sem, flock).
- По заданию преподавателя изменить приоритеты потоков и описать изменения в характеристиках программы.

Для запуска программы возможно использовать операционную систему Windows 10 или Debian/Ubuntu в виртуальном окружении.

Измерить значения затраченного процессорного времени на выполнение программы и на операции ввода-вывода используя системные утилиты.

Отследить трассу системных вызовов.

Используя stap построить графики системных характеристик

Вариант:

A=162;B=0x5931EDDF;C=mmap;D=25;E=34;F=nocache;G=30;H=seq;I=75;J=sum;K=cv

Адрес начала в адресном пространстве процесса и характеристики выделенных участков памяти:

Адрес Кб	RSS	Dirty	Mode Mapping
000000005931e000	158204	0	0 rw [anon]
0000559960b6d000	4	4	0 r lab
0000559960b6e000	4	4	0 r-x lab
0000559960b6f000	4	4	0 r lab
0000559960b70000	4	4	4 r lab
0000559960b71000	4	4	4 rw lab
0000559960d8a000	132	4	4 rw [anon]
00007f671fac4000	12	8	8 rw [anon]
00007f671fac7000	148	144	0 r libc-2.31.so
00007f671faec000	1504	768	0 r-x libc-2.31.so
00007f671fc64000	296	124	0 r libc-2.31.so
00007f671fcae000	4	0	0 libc-2.31.so
00007f671fcaf000	12	12	12 r libc-2.31.so
00007f671fcb2000	12	12	12 rw libc-2.31.so
00007f671fcb5000	16	16	16 rw [anon]
00007f671fcb9000	28	28	0 r libpthread-2.31.so
00007f671fcc0000	68	68	0 r-x libpthread-2.31.so
00007f671fcd1000	20	0	0 r libpthread-2.31.so
00007f671fcd6000	4	4	4 r libpthread-2.31.so
00007f671fcd7000	4	4	4 rw libpthread-2.31.so
00007f671fcd8000	24	12	12 rw [anon]
00007f671fcfc000	4	4	0 r ld-2.31.so
00007f671fcfd000	140	140	0 r-x ld-2.31.so
00007f671fd20000	32	32	0 r ld-2.31.so
00007f671fd29000	4	4	4 r ld-2.31.so
00007f671fd2a000	4	4	4 rw ld-2.31.so
00007f671fd2b000	4	4	4 rw [anon]
00007ffd3b401000	132	12	12 rw [stack]
00007ffd3b454000	12	0	0 r [anon]
00007ffd3b457000	4	4	0 r-x [anon]
ffffffffff600000	4	0	0x [anon]
всего Кб 160848	1428	104	

Замеры виртуальной/физической памяти:

```
До аллокации
2640 632 <mark>Lab</mark>
```

После аллокации 160844 632 <mark>Lab</mark>

После заполнения данными 259164 102732 <mark>lab</mark>

После деаллокации 1673824 2048 <mark>lab</mark> Измерить значения затраченного процессорного времени на выполнение программы и на операции ввода-вывода используя системные утилиты:

real 0m15,968s user 0m8,077s 0m8,136s

% time	seconds	usecs/call	calls	errors	syscall
93,53	289,334866	572940	505	81	futex
5,91	18,283134	28	639226	6	read
0,39	1,214217	46	26112		pwrite64
0,15	0,468722	468722	1		clock_nanosleep
0,00	0,012682	125	101		clone
0,00	0,009214	37	245		write
0,00	0,004974	43	115		mprotect
0,00	0,002916	25	116		mmap
0,00	0,002199	24	91		madvise
0,00	0,002146	26	81		openat
0,00	0,001962	19	101		set_robust_list
0,00	0,001568	19	81		close
0,00	0,001187	15	78		fstat
0,00	0,000587	15	38		munmap
0,00	0,000029	9	3		stat
0,00	0,000000	0	1	1	ioctl
100.00	309,340403		666895	88	total

Трасса системных вызовов:

```
**TAFTER THEMBORY ALLOCATION.NT, 24 > 24
**Normory filting...\NT, 22 > 22
**Normory filting...\NT, 22 > 22
**L, 8392794, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_STACK, -1, 0) = 0x7f8c3bc67000
**(0x7f8c3bc68000, 8388608, PROT_READ|PROT_WRITE) = 0
**Idd_stack=0x7f8c3c466fb0, flags=ctone_vml|ctone_files|ctone_sighand|ctone_thread|ctone_sysvsem|ctone_settls|ctone_parent_settid|ctone_child_cleartid, parent_tid=[11644], tls=
6x7700, child_tidptr=0x7f8c3c466fb0, ANONYMOUS|MAP_STACK, -1, 0) = 0x7f8c3b466800
**(0x7f8c3bc467000, 338608), PROT_READ|PROT_WRITE) = 0
**Idd_stack=0x7f8c3bc65fb0, flags=ctone_vml|ctone_files|ctone_sighand|ctone_thread|ctone_sysvsem|ctone_settls|ctone_parent_settid|ctone_child_cleartid, parent_tid=[11645], tls=
6x7600, child_tidptr=0x7f8c3bc69f00) = 11645
**(0x7f8c3bc65000, NROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_STACK, -1, 0) = 0x7f8c3ac65000
**(0x7f8c3bc65000, NROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_STACK, -1, 0) = 0x7f8c3ac66000
**(0x7f8c3ac65000, NROT_RAD_PRIVATE|MAP_ANONYMOUS|Map_STACK, -1, 0) = 0x7f8c3ac66000
**(0x7f8c3ac65000, NROT_RAD_PRIVATE|MAP_ANONYMOUS|Map_STACK, -1, 0) = 0x7f8c3ac66000
**(0x7f8c3ac65000, NROT_RAD_PRIVATE|MAP_ANONYMOUS|Map_STACK, -1, 0) = 0x7f8c3ac66000
**(0x7f
```

Используя stap построить графики системных характеристик:

starting probe										
^C name	opens	reads	MB tot	B avg	writes	MB tot	B avg			
lab	124	911082	3713	4273	1139	0	18			

Вывод:

В ходе выполнения данной лабораторной работы я разработал многопоточную программу на языке С, произвел обмен данными между памятью и файлами, попробовал примитивы синхронизации mutex и condition vars. Опробовал некоторые системы утилиты анализа производительности Linux.