Lab 07, Experiment 1(e)

Faster Bit Error Measurements in GNU Radio.

We have to calculate BER for both polar and unipolar signal. Below is the flow-graph to calculate the CER in faster way as compared to last question.

Polar Signal

SNR = 2 dB

The BER for SNR = 2dB is $(10)^{(-1.4263)} = 0.037471$

The BER for SNR = 4 dB is $(10)^{(-1.87036)} = 0.013478$

The BER for SNR = 6 dB is $(10)^{(-2.5897)} = 0.002572$

The BER for SNR = 6 dB is $(10)^{(-3.737597)} = 0.00018298$

<u>Unipolar</u>

SNR = 2 dB

The BER for SNR = 2 dB is $(10)^{(-0.567192)} = 0.270899373$

The BER for SNR = 6 dB is $(10)^{(-0.58782)} = 0.258333067$

The BER for SNR = 6 dB is $(10)^{(-0.592506)} = 0.255560659$

The BER for SNR = 6 dB is $(10)^{(-0.600676)} = 0.25079796$