BITS-PILANI, HYDERABAD CAMPUS SUMMER TERM 2021-2022 Course Handout (Part II)

Date: 28/05/2022

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. BIO F417

Course Title: Biomolecular Modeling

Instructor in Charge: DEBASHREE BANDYOPADHYAY

1. Course description:

Biomolecular Conformations, Structural genomics and proteomics, protein folding, Forcefield, Simulation, Conformational analysis, ab initio structure prediction, comparative modeling, usage of modeling packages.

2. Scope and objective of the course:

The course is designed to provide students the first-hand experience of potential utility of biomolecular modeling especially in structure-function elucidation, and in cellular and structural biology. It describes the functionality, advantages, and limitations of standard computing strategies for the simulation of biomolecules.

- **3. Text Book:** "Molecular modeling: Principles and Applications" By Andrew R Leach, 2nd Edition, 2001, Pearson Education Lim.
- **4. Reference Book:** (1) "Molecular Modeling and Simulation An Interdisciplinary Guide" By Tamar Schlick, Springer, New York, 2002
- (2) "Principles of protein structure" By Schulz, G.E. and Schirmer, R.H., New York, Springer-Verlag, 1979
- (3) "An Introduction to Computational Biochemistry" By C. Stan Tsai, Wiley-Liss, Inc, 2002.
- (4) "Bioinformatics: genes, proteins and computers" Edited by C. Orengo, D. Jones, J. Thronton, BIOS Scientific Publishers Ltd., UK, 2003.

5. Course Plan:

5. Course Plan:					
Lecture	Learning Objectives	Topics to be covered	Chapter in the		
No.		_	Text Book		
1-2	Introduction	What is modeling? Scope and	R-1 (1-2)		
		application of modeling in modern			
		biology			
3-4	Protein structure and	Protein structural hierarchy, Structural	R-1 (3-4)		
	conformation	motifs, classification			
5-7	Conformation and	Conformational Flexibility, Canonical	R-1 (5-6)		
	Variability in DNA	DNA Forms, DNA Sequence Effects,			
	structures	DNA local geometry, base pair			
		parameters, base step parameters, DNA			
		stiffness			
8	Molecular graphics Introduction to graphic representation,		R-3 (4)		
		Representation of molecular structure:			
		macromolecules Database of			
		macromolecular structures			
9-10	Visualization and	Usages of freely available visualization	Class-notes/		
	modeling packages	packages like VMD, Rasmol, Pymol,	websites		

		SpdbViewer , Chimera, Cn3D	
11-12	Protein structure	First principle methods for predicting	T(10)
	prediction and protein	protein structure, comparative modeling,	R-4 (8-9)
	folding problem	threading, CASP	
13-14	Advanced homology	Refined structure modeling by	User guide to
	modelling	incorporation of experimentally derived	MODELLER
		spatial restraints	
15-16	Forcefield	Forcefields in understanding protein	T (4)
		structures (salt bridge, long range	
		interactions etc.)	
17-21	Molecular mechanics	Theory and hands on sessions in	T(5), class
		Molecular Mechanics	notes
22-27	Molecular dynamics	Basic and Advanced MD simulation	T (6-7), class
		techniques, simulated annealing, parallel	notes
		tempering	
28-29	Molecular Dynamics:	Exposure to NAMD software and usage	User guide of
	Hands-on session		NAMD
30-36	Quantum chemical	Basic quantum mechanics, H-F	T(2-3)
	approaches	approximation, Basis set, application of	
		quantum chemistry in Biological	
		systems	
37-38	Quantum Chemistry:	GAMESS software and application of	User guide of
	Hands-on session	GAMESS to calculate optimized	GAMESS
		structure and energy of amino acids	
39-42	Monte Carlo	Basics of Monte Carlo Sampling	T(8)
	Simulation		

T=Text book, R=Reference book

6. Evaluation scheme:

Components	Duration	Date &Time	Weightage	Nature of
			(%)	Component
Midsem	90	25/6 3:30-5:00PM	30%	Closed Book
	minutes			
Continuous		To be announced	30%	Open book
evaluation				
(Assignments,				
projects, etc.)				
Comprehensive	3 Hours	22/7 AN	40%	Closed book
Examination				

- **7.** Chamber Consultation Hour: To be announced in the class.
- **8.** Notices: Notices, if any concerning the course will be displayed on the departmental notice board and CMS
- **9.** Make up Policy: Make up will only be given on genuine ground.
- **10.** Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge BIO F417