

Visualizing Relationships

- The simplest way of gauging whether a relationship exists between two continuous variables is by graphing the nature of their relationship.
 - For example, is there a relationship between how old people are and how much empathy they feel toward others?

Participant	Age	Empathy	
1	50	5	
2	15	4	
3	35	7	
4	80	10	
5	65	9	

Quantifying Relationships

Covariance

- Is how people deviate from the mean of age (X) related to how people deviate from the mean of empathy (Y)?
- Do the two variables *covary*?

• Sample:
$$cov_{XY} = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{n-1} = \frac{SP}{n-1}$$

• Population:
$$cov_{XY} = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{N} = \frac{SP}{N}$$

• Where n (or N) is the number of pairs of scores

Calculating Covariance

Participant	Age	Empathy	Age - M _{Age}	Empathy - M_{Emp}	(Age – M_{Age})*(Empathy – M_{Emp})
1	50	5	1	-2	1*-2 = -2
2	15	4	-34	-3	-34*-3 = 102
3	35	7	-14	0	-14*0 = 0
4	80	10	31	3	31*3 = 93
5	65	9	16	2	16*2 = 32
	$M_{Age} = 49$	$M_{\rm Emp} = 7$			SP = 225

$$cov_{XY} = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{n - 1} = \frac{SP}{n - 1} = \frac{225}{5 - 1} = 56.25$$

Question: What are the units of this measure of covariance?

Interpreting Covariance

- Covariance is expressed in the units of the original variables
 - How can you gauge the strength of the relationship in this way? What is a high, or a low, covariance in years-empathy units?
 - Difficult to compare covariances across studies because not in standardized units

- Correlations are standardized covariances and thus are easier to compare across studies and to make judgments about the strength of a relationship.
 - Covariances are still important to know because they are used as the basis for more advanced analyses (especially covariance matrices)

Correlations

A **correlation** is a quantitative measure of the linear relationship between two continuous variables.

The formula for Pearson's correlation coefficient (r)

$$\gamma = \frac{\Sigma(X - M_X)(Y - M_Y)}{\sqrt{\Sigma(X - M_X)^2 \Sigma(Y - M_Y)^2}} = \frac{SP}{\sqrt{(SS_X)(SS_Y)}} = \frac{\text{degree to which X and Y covary}}{\text{degree to which X and Y vary separately}}$$

The denominator makes r unitless and stay within the range of -1 to +1

Interpreting Correlations

- Direction: The sign of the correlation indicates the direction of the relationship
 - <u>Positive (+)</u>: as values tend to increase (or decrease) on the X variable, they also tend to increase (or decrease) on the Y variable
 - Negative (-): as values tend to increase on the X variable, they tend to decrease on the Y variable
 - None: There is no systematic relationship between the two variables

Interpreting Correlations

- Strength: the numerical value of the correlation indicates the strength of the linear relationship between the variables
- The closer the points are to lying perfectly on the pattern of a straight line, the stronger the relationship
 - The strength of the relationship increases as the correlation approaches ± 1
 - The strength decreases as the correlation approaches 0

Calculating Correlations

Question: How would you describe the direction and strength of this correlation?

$$\gamma = \frac{\Sigma(X - M_{\chi})(Y - M_{Y})}{\sqrt{\Sigma(X - M_{\chi})^{2}\Sigma(Y - M_{Y})^{2}}} = \frac{SP}{\sqrt{(SS_{X})(SS_{Y})}} = \frac{225}{\sqrt{(2570)(26)}} = 0.87$$

Age	Empathy	Age - M _{Age}	Empathy - M _{Emp}	(Age - M _{Age}) * (Empathy - M _{Emp})	$(Age - M_{age})^2$	$(Empathy - M_{Emp})^2$
50	5	1	-2	-2	1	4
15	4	-34	-3	102	1156	9
35	7	-14	0	0	196	0
80	10	31	3	93	961	9
65	9	16	2	32	256	4
$M_{Age} = 49$	$M_{\rm Emp} = 7$			SP = 225	$SS_X = 2570$	SS _Y = 26

Potential issues with correlations

1. Nonlinearity: When there is a nonlinear relationship, using Pearson's correlation will give misleading results

2. Outliers: outliers in the data can severely affect the measure of the correlation between two variables

Potential issues with correlations

3. Restriction of range: when the range of the variable on the x-axis or y-axis is restricted, you may not see a relationship that exists across a wider range of values on the X or Y variable.

Average Minutes Spent Studying per Exam

- Step 1: Visualize the relationship between the two variables using a scatterplot
 - Pearson's correlation assumes that the nature of the relationship between the variables is linear
 - Other assumptions of the test include: 1) The X and Y variables are normally distributed, 2) participants are independent, 3) the variability in scores on Y is approximately the same across the range of X

- Step 2: State the null hypothesis
 - $H_0: \rho = 0$
 - $H_1: \rho \neq 0$

- Step 3: Specify alpha (your willingness to make a Type I error) prior to inspecting the data
- Step 4: Construct a sampling distribution representing the results one would expect to obtain if the null hypothesis is true

• Step 5: Calculate the correlation between your two variables

$$\gamma = \frac{\Sigma(X - M_{\chi})(Y - M_{Y})}{\sqrt{\Sigma(X - M_{\chi})^{2}\Sigma(Y - M_{Y})^{2}}} = \frac{SP}{\sqrt{(SS_{X})(SS_{Y})}} = \frac{225}{\sqrt{(2570)(26)}} = 0.87$$

- Step 6: Determine whether the correlation is significant or non-significant by either
 - Comparing the correlation to an r-critical value based on n-2 degrees of freedom
 - n = number of pairs of scores
 - Or using R to obtain a p-value

- Step 7: Calculate the effect size, r^2
 - The proportion of variability in Y that is related to X
- For our example:
 - $r^2 = (0.87)^2 = .7569$
 - Approximately 76% of the variation in empathy scores is associated with empathy's relationship to age

Conventions for r^2

Small = 0.02

Medium = 0.13

Large = 0.26

Covariance & Correlations in R

Covariance in R

```
age <- c(50,15,35,80,65)
empathy <- c(5,4,7,10,9)
cov(age,empathy)</pre>
```

```
> cov(age,empathy)
[1] 56.25
```

If you have more than two continuous variables, you can produce a **covariance** (or **correlation**) matrix (you'll discuss this in lab this week!)

Covariance & Correlations in R

> Correlation in R

```
age <- c(50,15,35,80,65)
empathy <- c(5,4,7,10,9)
cor(age,empathy)
```

> cor(age,empathy)
[1] 0.8704208

Question: What does the confidence interval mean? Testing the significance of a correlation

```
corr.test(age,empathy)
Call:corr.test(x = age, y = empathy)
Correlation matrix
[1] 0.87
Sample Size
[1] 5
These are the unadjusted probability values.
  The probability values adjusted for multiple tests are in the p.adj object.
[1] 0.05
corr_age_emp <- corr.test(age,empathy)</pre>
corr_age_emp$p
   corr_age_emp$p
[1] 0.05489211
  corr_age_emp$ci
              lower
                                    upper
NA-NA -0.05104602 0.8704208 0.9913709 0.05489211
[1] 0.7576324
```

APA-Style Reporting

• Although the correlation between age and empathy was strong and positive, it was non-significant, r(3) = 0.87, p = .055, 95%CI[-0.05, 0.99], $r^2 = 0.76$.