

PCT/JP03/11453 03.10.03 09 MAR 2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 9月10日

出 願 番 号 Application Number:

特願2002-264157

[ST. 10/C]:

[JP2002-264157]

出 願 人
Applicant(s):

トヨタ自動車株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

REC'D 2 1 NOV 2003

PCT

WIPO

特許庁長官 Commissioner, Japan Patent Office 2003年11月 6日

【書類名】

特許願

【整理番号】

1024516

【提出日】

平成14年 9月10日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

F01N 3/02

F01N 3/08

【発明の名称】

内燃機関の排気浄化装置

【請求項の数】

22

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

仲野 泰彰

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

田中 俊明

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

広田 信也

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

見上 晃

【特許出願人】

【識別番号】

000003207

【氏名又は名称】

トヨタ自動車株式会社

【代理人】

【識別番号】

100077517

【弁理士】

【氏名又は名称】

石田 敬

【電話番号】

03-5470-1900

【選任した代理人】

【識別番号】 100092624

【弁理士】

【氏名又は名称】 鶴田 準一

【選任した代理人】

【識別番号】 100082898

【弁理士】

【氏名又は名称】 西山 雅也

【手数料の表示】

【予納台帳番号】 008268

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0211566

【プルーフの要否】 要

【発明の名称】 内燃機関の排気浄化装置

【特許請求の範囲】

【請求項1】 リーン空燃比のもとで燃焼が行われているときに発生するNOXを排気通路内に配置された排気浄化触媒によって浄化するようにした内燃機関の排気浄化装置において、上記排気浄化触媒の触媒担体として担体表面上に塩基点の存在する担体を用い、該担体表面上に、NOXを吸収しうるNOX吸収剤の層を形成することなく貴金属触媒を分散して担持させ、貴金属触媒の表面全体が酸素被毒を受ける前に排気浄化触媒に流入する排気ガスの空燃比をリーンからリッチに一時的に切換えるようにした内燃機関の排気浄化装置。

【請求項2】 上記触媒担体がアルミナからなる請求項1に記載の内燃機関の排気浄化装置。

【請求項3】 上記触媒担体の内部にアルカリ金属、アルカリ土類金属又は 希土類を含有せしめ、それによって触媒担体表面上の塩基点の数を増大するか又 は塩基点における塩基性を強めるようにした請求項2に記載の内燃機関の排気浄 化装置。

【請求項4】 上記貴金属触媒が白金からなる請求項1に記載の内燃機関の 排気浄化装置。

【請求項5】 貴金属触媒の酸素被毒を継続的に解消するために排気ガスの空燃比がリーンからリッチに繰返し切換えられ、このときのリーン時間に対するリッチ時間の割合は、排気浄化触媒の温度が200℃から250℃のときにNO X 浄化率が90パーセント以上となる割合に設定されている請求項1に記載の内燃機関の排気浄化装置。

【請求項6】 貴金属触媒の酸素被毒を継続的に解消するために排気ガスの空燃比がリーンからリッチに繰返し切換えられ、この空燃比のリーンからリッチへの切換作用は排気浄化触媒の温度が許容温度以上のときには禁止される請求項1に記載の内燃機関の排気浄化装置。

【請求項7】 貴金属触媒の酸素被毒量を算出するための手段を具備し、算出された酸素被毒量が予め定められた許容値を越えたときに排気ガスの空燃比が

【請求項8】 貴金属触媒の酸素被毒量を推定するための手段を具備し、推定された酸素被毒量が予め定められた許容値を越えたときに排気ガスの空燃比がリーンからリッチに切換えられる請求項1に記載の内燃機関の排気浄化装置。

【請求項9】 排気浄化触媒から流出する排気ガス中のNOX 濃度を検出するためのNOX 濃度センサを具備し、NOX 濃度センサにより検出されたNOX 濃度が設定値を越えたときに貴金属触媒の酸素被毒量が許容値を越えたと判断される請求項8に記載の内燃機関の排気浄化装置。

【請求項10】 貴金属触媒の酸素被毒が解消されたか否かを判断する手段を具備し、貴金属触媒の酸素被毒が解消されたと判断されたときに排気ガスの空燃比がリッチからリーンに切換えられる請求項1に記載の内燃機関の排気浄化装置。

【請求項11】 排気浄化触媒から流出する排気ガスの空燃比を検出するための空燃比センサを具備し、排気浄化触媒に流入する排気ガスの空燃比がリーンからリッチに切換えられた後、排気浄化触媒から流出する排気ガスの空燃比がリッチになったときに貴金属触媒の酸素被毒が解消されたと判断される請求項10に記載の内燃機関の排気浄化装置。

【請求項12】 排気ガス中に含まれるNOX およびSOX は排気浄化触媒において貴金属触媒により酸化された後に触媒担体上に保持される請求項1に記載の内燃機関の排気浄化装置。

【請求項13】 貴金属触媒の酸素被毒を解消すべく排気浄化触媒に流入する排気ガスの空燃比がリーンからリッチに一時的に切換えられたときに触媒担体上に保持されているNOX が触媒担体上から放出され還元される請求項12に記載の内燃機関の排気浄化装置。

【請求項14】 触媒担体表面の塩基性の強さを、触媒担体表面上にSOXが硫酸イオンの形で保持される強さに設定した請求項12に記載の内燃機関の排気浄化装置。

【請求項15】 触媒担体表面上に保持されたSOX を触媒担体表面上から 放出させる際には排気浄化触媒の温度がSOX 放出温度まで上昇せしめられた後 、排気浄化触媒の温度を SO_X 放出温度に維持しつつ排気ガスの空燃比がリッチとされ、該 SO_X 放出温度がほぼ 500 $\mathbb{C}\sim550$ \mathbb{C} である請求項 14 に記載の内燃機関の排気浄化装置。

【請求項16】 上記排気浄化触媒に代えて機関排気通路内にパティキュレートフィルタを配置し、上記触媒担体がパティキュレートフィルタ上にコーティングされている請求項1に記載の内燃機関の排気浄化装置。

【請求項17】 機関排気通路内にパティキュレートフィルタを配置し、パティキュレートフィルタの上流又は下流の排気通路内に上記排気浄化触媒を配置した請求項1に記載の内燃機関の排気浄化装置。

【請求項18】 機関排気通路内に、NOX を選択的に還元する機能を有しNOX を吸収する機能を有さないNOX 選択還元触媒を配置し、該NOX 選択還元触媒の上流又は下流の排気通路内に上記排気浄化触媒を配置した請求項1に記載の内燃機関の排気浄化装置。

【請求項19】 NOX 選択還元触媒上流の排気通路内に排気浄化触媒を配置すると共にNOX 選択還元触媒と排気浄化触媒間の排気通路内に尿素水溶液を供給するための尿素供給弁を具備し、排気浄化触媒により高いNOX 浄化率が得られるときには排気ガスの空燃比がリーンからリッチに繰返し切換えられ、NOX 選択還元触媒により高いNOX 浄化率が得られるときには尿素供給弁から尿素水溶液が供給される請求項18に記載の内燃機関の排気浄化装置。

【請求項20】 機関排気通路内に還元剤を供給することによって排気ガスの空燃比をリッチにするようにした請求項1に記載の内燃機関の排気浄化装置。

【請求項21】 機関が、再循環排気ガス量を増大していくと煤の発生量が次第に増大してピークに達し、再循環排気ガス量を更に増大すると煤がほとんど発生しなくなる機関からなり、再循環排気ガス量を煤の発生量がピークとなる量よりも増大した状態で燃焼室内における空燃比をリッチにすることにより排気ガスの空燃比をリッチにするようにした請求項1に記載の内燃機関の排気浄化装置

【請求項22】 機関が、再循環排気ガス量を増大していくと煤の発生量が 次第に増大してピークに達し、再循環排気ガス量を更に増大すると煤がほとんど 発生しなくなる機関からなり、排気浄化触媒の温度を上昇すべきときには再循還排気ガス量を煤の発生量がピークとなる量よりも増大させる請求項1に記載の内燃機関の排気浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は内燃機関の排気浄化装置に関する。

[0002]

【従来の技術】

リーン空燃比のもとで燃焼が行われているときに排気ガス中に含まれる NO_X を浄化するための触媒として、アルミナからなる担体の表面上にアルカリ金属或いはアルカリ土類からなる NO_X 吸収剤の層を形成し、更に白金のような貴金属触媒を担体表面上に担持した触媒が公知である(例えば特許文献 1 参照)。この触媒では、排気ガスの空燃比がリーンのときには排気ガス中に含まれる NO_X は白金により酸化されて硝酸塩の形で NO_X 吸収剤内に吸収される。次いで排気ガスの空燃比が短時間リッチにされるとこの間に NO_X 吸収剤に吸収されていた NO_X が放出されると共に還元され、次いで再び排気ガスの空燃比がリーンに戻されると NO_X 吸収剤への NO_X の吸収作用が開始される。

[0003]

一方、排気ガス中には SO_X も含まれており、 NO_X 吸収剤には NO_X に加えて SO_X も吸収される。この場合 SO_X は硫酸塩の形で吸収される。ところがこの硫酸塩は硝酸塩に比べて分解しずらく、排気ガスの空燃比を単にリッチにしただけでは分解しない。従って NO_X 吸収剤内には SO_X の吸収量が次第に増大し、それに伴なって NO_X を吸収しえなくなる。従ってこのような NO_X 吸収剤を用いた場合には時折 SO_X を放出させる必要がある。ところで硫酸塩は触媒の温度が600 C以上になると分解しやすくなり、このとき排気ガスの空燃比をリッチにすると NO_X 吸収剤から SO_X が放出される。従ってこのような NO_X 吸収剤を用いた場合において NO_X 吸収剤から SO_X を放出させるときには触媒の温度が500 C以上に維持されかつ排気ガスの空燃比がリッチに維持される。

さて、このような NO_X 吸収剤の層を設けると NO_X に加えて必ず SO_X も吸収されるので SO_X が吸収されるのを阻止するためにはこのような NO_X 吸収剤の層を設けないようにすればよいことになる。そこでアルミナからなる担体上に白金のみを担持するようにした触媒が提案されている(特許文献 2 参照)。この特許文献 2 にはアルミナからなる担体上に白金のみを担持した場合でも空燃比がリーンのときに触媒に NO_X が捕獲され、空燃比を交互にリーンとリッチに切換えれば NO_X を浄化しうることが記載されている。

[0005]

また、リーン空燃比のもとで燃焼が行われているときに発生する NO_X を浄化しうる触媒として、ゼオライト上に遷移金属或いは貴金属を担持したリーン NO_X 触媒が知られている。このリーン NO_X 触媒は排気ガス中のHCと NO_X を吸収して NO_X を還元する機能を有するが酸素が吸着すると NO_X の浄化性能が著しく低下する。そこでこの吸着酸素を離脱させるためにリーン NO_X 触媒に流入する排気ガスの空燃比を周期的にリッチにするようにした内燃機関が公知である(特許文献3参照)。このリーン NO_X 触媒はリーン空燃比のもとで燃焼が行われているときであっても NO_X を還元することができるという特徴を有するが、排気ガス中に NO_X 還元用のHCを供給する必要があり、耐熱性が低く、50パーセント以下の浄化率しか得られないという欠点を有している。

[0006]

【特許文献1】

特許第2600492号公報

【特許文献2】

特開平11-285624号公報

【特許文献3】

特許第3154110号公報

[0007]

【発明が解決しようとする課題】

さて、本発明者等は担体上にNOX 吸収剤の層を形成した触媒の研究を進める

一方で、担体上にNOX 吸収剤の層を有していない触媒についても研究を進めてきた。その結果、担体上にNOX 吸収剤の層を有しない触媒、例えばアルミナからなる担体上に白金のみを担持した触媒では、リーン空燃比のもとで燃焼が行われているときに空燃比を一時にリッチにすると触媒温度が 250 ℃以下の低温のときに 90 パーセント以上のNOX 浄化率が得られることが判明したのである。

[0008]

その理由について種々の角度から検討を重ねた結果、次のような結論に達した。即ち、概略的に言うと白金は本来的に低温での活性を有しており、排気ガス中に含まれる NO_X は白金の表面上において直接分解され、或いは選択的に還元される。また、アルミナからなる担体の表面には塩基点が存在し、白金の表面上で酸化された NO_X が NO_2 の形で担体表面上に吸着し、或いは硝酸イオン NO_3 の形で担体表面上の塩基点上に保持される。 NO_X の浄化が行われる際にはこれら種々の作用が同時に行われており、その結果 90 パーセント以上の高い浄化率が得られる。

[0009]

ところで、アルミナからなる担体上に白金のみを担持した触媒をリーン空燃比の排気ガスにさらしておくと NO_X 浄化率が次第に低下していく。これは白金の表面が酸素原子により覆われ、即ち白金の表面が酸素被毒を受け、それによって一方では白金表面での NO_X 直接分解や NO_X の選択還元が生じにくくなったことに基因している。事実、このとき空燃比を一時的にリッチにすると白金表面を覆っている酸素原子がH CやC Oの酸化のために消費され、即ち白金表面の酸素被毒が解消され、次いで空燃比がリーンに戻されると再び NO_X の直接分解や NO_X の選択還元が良好に行われる。

[0010]

一方、白金表面が酸素原子によって覆われると NO_X は白金表面上において酸化されやすくなり、従って担体上に吸着され、或いは保持される NO_X の量は増大する。それにもかかわらず NO_X 浄化率が低下するということは、 NO_X の浄化作用に対しては NO_X の直接分解或いは NO_X の選択還元が支配的であることになる。従ってアルミナからなる担体上に白金のみを担持した場合には白金の表

面全体が酸素被毒を生じないようにすることが最重要課題であり、従って白金の 表面全体が酸素被毒を受ける前に排気ガスの空燃比を一時的にリーンからリッチ に切換えることが必要となる。

[0011]

なお、排気ガスの空燃比をリーンからリッチに一時的に切換えると担体上に吸着している NO_X 或いは担体上に保持されている硝酸イオン NO_3 -はHCおよびCOによって還元される。即ち、白金表面の酸素被毒を解消すべく排気ガスの空燃比を一時的にリーンからリッチに切換えると担体上に吸着され或いは保持されている NO_X は除去され、従って空燃比がリッチからリーンに戻されると再び NO_X の吸着作用或いは硝酸イオン NO_3 -の保持作用が開始される。

[0012]

上述したようにアルミナからなる担体上に白金のみを担持した場合にNOXの高い浄化率を確保するには白金の表面全体が酸素被毒を生じないようにすることが必要である。しかしながら特許文献2および3のいずれもこのことに関して何ら示唆していない。即ち、特許文献2は、NOXが浄化されるのは全てNOXの吸着作用に基因しているとの前提に立って検討した結果を示しており、白金の酸素被毒がNOXの浄化率を支配することに気付いていない。従って当然のことながら特許文献2は250℃以下の低温でもって高が浄化率を得られることについては何ら示唆していない。

[0013]

また、引用文献 3 はゼオライトからなるリーン NO_X 触媒を対象としており、このリーン NO_X 触媒への酸素の吸着が NO_X 浄化率に影響を与えることを開示しているものの、白金表面の酸素被毒が NO_X 浄化率を支配することについては何ら示唆していない。このゼオライトには塩基点が存在しないためにアルミナを用いたときとは NO_X の浄化の仕方が異なっているばかりでなく 5 0 パーセント以上の NO_X 浄化率を得ることは困難であり、従って特許文献 3 は 2 5 0 $\mathbb C$ 以下で 9 0 パーセント以上の高い浄化率を得られることを示唆する文献とはなり得ない。

[0014]

本発明は、白金表面、即ち貴金属表面の酸素被毒が NO_X の浄化率を支配することをつきとめ、これに基づいて高い NO_X 浄化率を確保するようにした内燃機関の排気浄化装置を提供することにある。

$[0\ 0.1\ 5]$

【課題を解決するための手段】

即ち、1番目の発明では、リーン空燃比のもとで燃焼が行われているときに発生するNOXを排気通路内に配置された排気浄化触媒によって浄化するようにした内燃機関の排気浄化装置において、排気浄化触媒の触媒担体として担体表面上に塩基点の存在する担体を用い、担体表面上に、NOXを吸収しうるNOX吸収剤の層を形成することなく貴金属触媒を分散して担持させ、貴金属触媒の表面全体が酸素被毒を受ける前に排気浄化触媒に流入する排気ガスの空燃比をリーンからリッチに一時的に切換えるようにしている。

[0016]

2番目の発明では1番目の発明において、触媒担体がアルミナからなる。

[0017]

3番目の発明では2番目の発明において、触媒担体の内部にアルカリ金属、アルカリ土類金属又は希土類を含有せしめ、それによって触媒担体表面上の塩基点の数を増大するか又は塩基点における塩基性を強めるようにしている。

[0018]

4番目の発明では1番目の発明において、貴金属触媒が白金からなる。

[0019]

5番目の発明では1番目の発明において、貴金属触媒の酸素被毒を継続的に解消するために排気ガスの空燃比がリーンからリッチに繰返し切換えられ、このときのリーン時間に対するリッチ時間の割合は、排気浄化触媒の温度が200℃から250℃のときにNOX 浄化率が90パーセント以上となる割合に設定されている。

[0020]

6番目の発明では1番目の発明において、貴金属触媒の酸素被毒を継続的に解消するために排気ガスの空燃比がリーンからリッチに繰返し切換えられ、この空

[0021]

7番目の発明では1番目の発明において、貴金属触媒の酸素被毒量を算出する ための手段を具備し、算出された酸素被毒量が予め定められた許容値を越えたと きに排気ガスの空燃比がリーンからリッチに切換えられる。

[0022]

8番目の発明では1番目の発明において、貴金属触媒の酸素被毒量を推定する ための手段を具備し、推定された酸素被毒量が予め定められた許容値を越えたと きに排気ガスの空燃比がリーンからリッチに切換えられる。

[0023]

9番目の発明では8番目の発明において、排気浄化触媒から流出する排気ガス中の NO_X 濃度を検出するための NO_X 濃度センサを具備し、 NO_X 濃度センサにより検出された NO_X 濃度が設定値を越えたときに貴金属触媒の酸素被毒量が許容値を越えたと判断される。

[0024]

10番目の発明では1番目の発明において、貴金属触媒の酸素被毒が解消されたか否かを判断する手段を具備し、貴金属触媒の酸素被毒が解消されたと判断されたときに排気ガスの空燃比がリッチからリーンに切換えられる。

[0025]

11番目の発明では10番目の発明において、排気浄化触媒から流出する排気 ガスの空燃比を検出するための空燃比センサを具備し、排気浄化触媒に流入する 排気ガスの空燃比がリーンからリッチに切換えられた後、排気浄化触媒から流出 する排気ガスの空燃比がリッチになったときに貴金属触媒の酸素被毒が解消され たと判断される。

[0026]

12番目の発明では1番目の発明において、排気ガス中に含まれるNOX およびSOX は排気浄化触媒において貴金属触媒により酸化された後に触媒担体上に保持される。

[0027]

13番目の発明では12番目の発明において、貴金属触媒の酸素被毒を解消すべく排気浄化触媒に流入する排気ガスの空燃比がリーンからリッチに一時的に切換えられたときに触媒担体上に保持されているNOXが触媒担体上から放出され還元される。

[0028]

14番目の発明では12番目の発明において、触媒担体表面の塩基性の強さを、触媒担体表面上にSOXが硫酸イオンの形で保持される強さに設定している。

[0029]

15番目の発明では14番目の発明において、触媒担体表面上に保持されたS O_X を触媒担体表面上から放出させる際には排気浄化触媒の温度が SO_X 放出温度まで上昇せしめられた後、排気浄化触媒の温度を SO_X 放出温度に維持しつつ排気ガスの空燃比がリッチとされ、 SO_X 放出温度がほぼ500 $C\sim550$ C ある。

[0030]

16番目の発明では1番目の発明において、排気浄化触媒に代えて機関排気通路内にパティキュレートフィルタを配置し、触媒担体がパティキュレートフィルタ上にコーティングされている。

[0031]

17番目の発明では1番目の発明において、機関排気通路内にパティキュレートフィルタを配置し、パティキュレートフィルタの上流又は下流の排気通路内に上記排気浄化触媒を配置している。

[0032]

18番目の発明では1番目の発明において、機関排気通路内に、 NO_X を選択的に還元する機能を有し NO_X を吸収する機能を有さない NO_X 選択還元触媒を配置し、 NO_X 選択還元触媒の上流又は下流の排気通路内に排気浄化触媒を配置している。

[0033]

19番目の発明では18番目の発明において、NOX選択還元触媒上流の排気

通路内に排気浄化触媒を配置すると共にNOX 選択還元触媒と排気浄化触媒間の排気通路内に尿素水溶液を供給するための尿素供給弁を具備し、排気浄化触媒により高いNOX 浄化率が得られるときには排気ガスの空燃比がリーンからリッチに繰返し切換えられ、NOX 選択還元触媒により高いNOX 浄化率が得られるときには尿素供給弁から尿素水溶液が供給される。

[0034]

20番目の発明では1番目の発明において、機関排気通路内に還元剤を供給することによって排気ガスの空燃比をリッチにするようにしている。

[0035]

21番目の発明では1番目の発明において、機関が、再循環排気ガス量を増大していくと煤の発生量が次第に増大してピークに達し、再循環排気ガス量を更に増大すると煤がほとんど発生しなくなる機関からなり、再循環排気ガス量を煤の発生量がピークとなる量よりも増大した状態で燃焼室内における空燃比をリッチにすることにより排気ガスの空燃比をリッチにするようにしている。

[0036]

22番目の発明では1番目の発明において、機関が、再循環排気ガス量を増大していくと煤の発生量が次第に増大してピークに達し、再循環排気ガス量を更に増大すると煤がほとんど発生しなくなる機関からなり、排気浄化触媒の温度を上昇すべきときには再循還排気ガス量を煤の発生量がピークとなる量よりも増大させるようにしている。

[0037]

【発明の実施の形態】

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。

[0038]

図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に 夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排 気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボ チャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は エアクリーナ8に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁9が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置10が配置される。図1に示される実施例では機関冷却水が冷却装置10内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気浄化触媒11を内蔵したケーシング12に連結される。排気マニホルド5の集合部出口には排気マニホルド5内を流れる排気ガス中に例えば炭化水素からなる還元剤を供給するための還元剤供給弁13が配置される。

[0039]

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路14を介して互いに連結され、EGR通路14内には電子制御式EGR制御弁15が配置される。また、EGR通路14周りにはEGR通路14内を流れるEGRガスを冷却するための冷却装置16が配置される。図1に示される実施例では機関冷却水が冷却装置16内に導びかれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管17を介して燃料リザーバ、いわゆるコモンレール18に連結される。このコモンレール18内へは電子制御式の吐出量可変な燃料ポンプ19から燃料が供給され、コモンレール18内に供給された燃料は各燃料供給管17を介して燃料噴射弁3に供給される。

[0040]

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒11には排気浄化触媒11の温度を検出するための温度センサ20が取付けられ、この温度センサ20の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、ケーシング12の出口に連結された排気管21内には必要に応じて各種のセンサ22が配置される。アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は

対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁駆動用ステップモータ9、EGR制御弁15、および燃料ポンプ19に接続される。

[0041]

図1に示す排気浄化触媒11はモノリス触媒からなり、この排気浄化触媒11 の基体上には触媒担体が担持されている。図2はこの触媒担体50の表面部分の断面を図解的に示している。図2に示されるように触媒担体50の表面上には貴金属触媒51が分散して担持されている。本発明では触媒担体50として担体50の表面上に塩基性を示す塩基点の存在する担体が用いられており、本発明による実施例では触媒担体50としてアルミナが用いられている。また、本発明による実施例では貴金属触媒51として白金が用いられている。

[0042]

[0043]

その理由について種々の角度から検討した結果、NOX の浄化が行われる際には、白金51の表面におけるNOX の直接分解作用或いはNOX の選択還元作用や、触媒担体50上へのNOX の吸着作用或いは触媒担体50上におけるNOX の保持作用が同時並列的に生じており、これら作用が同時並列的に生じることによって90パーセント以上の高いNOX 浄化率が得られるとの結論に達したのである。

. [0044]

即ち、白金51は本来的に低温での活性を有しており、NOX の浄化が行われる際に生じている第1の作用は、排気ガスの空燃比がリーンのときに排気ガス中のNOX が白金51の表面においてNとOとに解離された状態で白金51の表面上に吸着され、解離されたNがN2 となって白金51の表面から脱離する作用、即ちNOX の直接分解作用である。この直接分解作用によって一部のNOX の浄化作用が行われている。

[0045]

NOX の浄化が行われる際に生じている第2の作用は、排気ガスの空燃比がリーンのときに白金51の表面上に吸着したNOが排気ガス中のHC又は触媒担体 50上に吸着しているHCによって選択的に還元される作用である。このNOX 選択還元作用によって一部のNOX の浄化作用が行われている。

[0046]

一方、排気ガス中のNOX、即ちNOは白金51の表面で酸化されて NO_2 となり、更に酸化されると硝酸イオン NO_3 -となる。NOX の浄化が行われる際に生じている第3の作用は NO_2 が触媒担体50上に吸着する作用である。この吸着作用によって一部のNOX の浄化作用が行われる。また、アルミナからなる触媒担体50の表面上には塩基点が存在し、NOX の浄化が行われる際に生じている第4の作用は硝酸イオン NO_3 -が触媒担体10の表面上の塩基点において保持される作用である。この保持作用によって一部のNOX の浄化作用が行われる。

[0047]

このようにNOX の浄化が行われる際にはこれら種々の作用が同時に行われており、その結果90パーセント以上の高い浄化率が得られることになる。

[0048]

ところで、アルミナからなる触媒担体 50 上に白金 51 のみを担持した排気浄化触媒 11 をリーン空燃比の排気ガスにさらしておくと NO_X 浄化率が次第に低下していく。これは白金 51 の表面が酸素原子により覆われ、即ち白金 51 の表面が酸素被毒を受け、それによって一方では白金 51 の表面における NO_X の直接分解や NO_X の選択還元が生じにくくなったことに基因している。即ち、白金

[0049]

ところがこのとき空燃比を一時的にリッチにすると白金51の表面を覆っている酸素原子がH C や C O の酸化のために消費され、即ち白金51の表面の酸素被毒が解消され、従って空燃比がリーンに戻されると再びN O χ の選択還元が良好に行われるようになる。

[0050]

ところで白金51の表面が酸素原子によって覆われると NO_X は白金51の表面上において酸化されやすくなり、従って触媒担体50上に吸着され、或いは保持される NO_X の量は増大する。それにもかかわらず NO_X 浄化率が低下するということは、 NO_X の浄化作用に対しては NO_X の直接分解或いは NO_X の選択還元が支配的であることになる。従ってアルミナからなる触媒担体50上に白金51のみを担持した場合には白金51の表面全体が酸素被毒を生じないようにすることが最重要課題であり、従って白金51の表面全体が酸素被毒を受ける前に排気ガスの空燃比を一時的にリーンからリッチに切換えることが必要となる。

[0051]

次にこのことについて実験結果を参照しつつ説明する。

[0052]

図3は還元剤供給弁13から還元剤をt2時間の時間間隔をおいてt1時間だけ噴射し、それによって排気浄化触媒11に流入する排気ガスの空燃比(吸気通路、燃焼室2および排気浄化触媒上流の排気通路に供給された空気の量と、燃料および還元剤の量との比)がt2時間だけリーンに維持された後t1時間だけリッチにされる場合を示している。

[0053]

図4は、アルミナからなる触媒担体50上に白金51のみを担持した排気浄化 触媒11において白金51の表面全体が酸素被毒を受ける前に排気浄化触媒11

[0054]

図4から排気浄化触媒11の温度TCが250 C以下の低温で90パーセント以上のほぼ100パーセントに近い NO_X 浄化率が得られることがわかる。なお、排気浄化触媒11の温度TCが200 C以下になると NO_X 浄化率は若干低下するが排気浄化触媒11の温度TCが150 Cまで低下しても NO_X 浄化率は80パーセント以上であり、依然として高いことがわかる。また、排気浄化触媒110温度TCが250 Cよりも高くなると NO_X 浄化率は徐々に低下する。即ち、排気浄化触媒110温度TCが高くなると NO_X 净化率は徐々に低下する。の選択還元作用も生じずらくなるために NO_X 浄化率は徐々に低下する。

[0055]

なお、白金51の担持量が3 (g)を越えていくら増やしてもNOX 浄化率はほとんど増大しないが白金51の担持量は3 (g) よりも少くするとNOX 浄化率が低下する。

[0056]

また、図4は図3において排気ガスの空燃比がリーンであるリーン期間 t 2 を 6 0 秒とし、排気ガスの空燃比がリッチとされるリッチ時間 t 1 を 3 秒とした場合を示している。この場合、リッチ時間 t 1 として 3 秒あれば白金 5 1 の表面の酸素被毒を完全に解消することができるので酸素被毒を解消するという点からみるとリッチ時間 t 1 を 3 秒以上にしても意味がない。これに対し、リッチ時間 t 1 を 3 秒より短くするとN O X 浄化率は次第に低下する。

[0057]

また、貴金属触媒 5 1 としては白金に加えてロジウムを用いることもできる。 この場合には、図 4 において NO_X 浄化率が 9 0 パーセント以上になる温度TC

[0058]

このように貴金属触媒 51の表面全体が酸素被毒を受ける前に排気浄化触媒 11に流入する排気ガスの空燃比をリーンからリッチに一時的に切換えると 90パーセント以上の NO_X 浄化率を得ることができる。なお、このように排気ガスの空燃比をリーンからリッチに一時的に切換えると触媒担体 50 上に吸着している NO_2 或いは触媒担体 50 上に保持されている硝酸イオン NO_3 は 10 は 10 は 10 は 10 で 10

[0059]

前述したようにアルミナからなる触媒担体 50上に白金 51のみを担持した場合には、 NO_X の浄化率に対して NO_X の直接分解および NO_X の選択還元が支配的となる。しかしながら触媒担体 50への NO_2 の吸着作用および触媒担体 50上における硝酸イオン NO_3 -の保持作用も NO_X の浄化に寄与している。ところで従来より排気ガス中に NO_2 が存在すればいかなる触媒であっても多かれ少なかれ NO_2 が触媒に吸着することが知られている。本願発明による実施例では前述したように排気ガス中のNOは白金 51において酸化されて NO_2 が生成され、斯くして NO_2 が排気浄化触媒 11上に吸着されることになる。

[0060]

これに対して硝酸イオンNO $_3$ -はいかなる触媒であっても保持されるわけではなく、硝酸イオンNO $_3$ -を触媒上に保持させるには触媒の表面が塩基性を呈することが必要となる。本願発明による実施例では前述したように触媒担体50がアルミナからなるために触媒担体50の表面上に塩基性を有する塩基点が存在し、斯くして硝酸イオンNO $_3$ -は触媒担体50の表面に存在する塩基点において保持されることになる。

[0061]

ところでアルミナからなる触媒担体 50の表面に存在する塩基点の塩基性はそれほど強くなく、従って硝酸イオンNO3-に対する保持力もさほど強くない。従って排気浄化触媒 11の温度 T Cが上昇すると排気浄化触媒 11 に保持されているNOX は排気浄化触媒 11 から脱離せしめられる。図 4 に示されるように排気浄化触媒 11 の温度 T Cが上昇するにつれてNOX 浄化率が次第に低下するのはこのようなNOX の脱離作用が存在しているからでもある。

[0062]

[0063]

一方、このように塩基点の塩基性を高めると硝酸イオンNO $_3$ -に対する保持力が強くなる。従って硝酸イオンNO $_3$ -は排気浄化触媒11の温度TCが上昇しても離脱しずらくなり、従って塩基点の塩基性を高めると図4において高温側におけるNO χ 净化率が高くなる。

[0064]

ところで排気ガス中にはSО2 も含まれており、このSО2 は白金51におい

て酸化されて SO_3 となる。次いでこの SO_3 は白金5 1上において更に酸化されて硫酸イオン SO_4^{2-} となる。触媒が塩基性を有すると硫酸イオン SO_4^{2-} は触媒上に保持され、しかもこの硫酸イオン SO_4^{2-} は硝酸イオン NO_3 -に比べて触媒上に保持されやすい。従って硝酸イオン NO_3 -が触媒上に保持されれば硫酸イオン SO_4^{2-} も必ず触媒上に保持される。本発明による実施例では硝酸イオン NO_3 -が触媒担体 SO_4^{2-} も必ず触媒上に保持され、従って本発明による実施例では硫酸イオン SO_4^{2-} も触媒担体 SO_4^{2-} も触媒担体 SO_4^{2-} も触媒担体 SO_4^{2-} も触媒担体 SO_4^{2-} も触媒担体 SO_4^{2-} も触媒担体 SO_4^{2-} もかった。

[0065]

一方、冒頭で述べたように触媒担体上にアルカリ金属又はアルカリ土類金属からなる NO_X 吸収剤の層を形成すると SO_X は NO_X 吸収剤の層内で硫酸塩を形成する。ところがこの硫酸塩は分解しずらく、触媒の温度を600 C以上に上昇させた状態で排気ガスの空燃比をリッチにしないと SO_X を触媒から放出させることができない。

[0066]

しかしながら本願発明の実施例においてアルミナからなる触媒担体 50 の表面上に存在する塩基点の塩基性は NO_X 吸収剤の塩基性に比べて極めて低く、従って SO_X は触媒担体 50 の表面上の塩基点において硫酸塩の形ではなく、硫酸イオン SO_4^{2-} の形で保持される。しかもこの場合、硫酸イオン SO_4^{2-} に対する保持力はかなり小さい。

[0067]

このように硫酸イオンS O_4^{2-} に対する保持力が小さいと硫酸イオンS O_4^{2-} は低い温度で分解し、離脱するようになる。事実、本発明による実施例では排気 浄化触媒 1 1 の温度 T C をほぼ 5 0 0 $\mathbb C$ まで上昇させ、排気ガスの空燃比をリッチにすれば排気浄化触媒 1 1 に保持された S O_X を排気浄化触媒 1 1 から放出させることができる。

[0068]

前述したように触媒担体上に NO_X 吸収剤の層を形成した場合には触媒の温度を600 C以上に上昇させないと NO_X 吸収剤から NO_X が放出されない。しかしながら排気ガス温の低い圧縮着火式内燃機関において触媒の温度を600 C以

ページ: 20/

上に上昇させかつSOX の放出作用が行われている間触媒の温度を600 C以上に維持しておくことはかなり難しい。しかしながら排気ガス温の低い圧縮着火式内燃機関であっても触媒の温度をほぼ500 Cに上昇させることは容易であり、また触媒の温度をほぼ500 Cに維持することも容易である。即ち、SOX を放出させるのに必要な触媒の温度を600 C以上からほぼ500 Cまで低下できるということは極めて大きな意味がある。本発明は、アルミナからなる触媒担体500 表面上に白金51 のみを担持した場合に白金51 の表面全体が酸素被毒を受けないようにすれば極めて高いNOX 浄化率を得られることを見い出したことに大きな意味があるが、SOX を放出させるのに必要な排気浄化触媒110 温度をほぼ500 C まで低下できることを見い出したことも極めて大きな意味がある。

[0069]

ところで前述したように触媒担体 50にランタンL a 或いはバリウムB a 等の添加物 52 を添加することによって触媒担体 50 の表面の塩基点の塩基性を高めると排気ガスの空燃比がリーンのときに触媒担体 50 上に保持される NO_X 量を増大することができ、斯くして特に高温側での NO_X 浄化率を高めることができる。しかしながら触媒担体 50 の表面の塩基点の塩基性を高めると触媒担体 50 上に保持される SO_X 量が増大し、しかも SO_X に対する保持力が増大する。その結果、 SO_X を放出させるのに必要な排気浄化触媒 11 の SO_X 放出温度が上昇する。

[0070]

この場合、SOX 放出温度が高くなりすぎると排気浄化触媒11の温度をSOX 放出温度まで上昇させるのが困難となり、従って塩基点の塩基性を高めるといっても、容易にSOX の放出作用を行うことができるか否かの観点から限度がある。即ち、圧縮着火式内燃機関において比較的容易に排気浄化触媒11の温度を上昇しうる限度はほぼ550であり、従って触媒担体50にランタンLa或いはバリウムBa等の添加物52を添加する場合には添加物52の添加量をSOX 放出温度がほぼ550 Cとなる量以下とすることが好ましい。

[0071]

なお、触媒担体50としてはアルミナばかりでなく、触媒担体表面に塩基点が

[0072]

次にNOX およびSOX の処理について具体的な実施例に基づいて説明する。

[0073]

まず初めに、貴金属触媒、例えば白金51の酸素被毒量を算出し、算出された酸素被毒量が予め定められた許容値を越えたときに排気ガスの空燃比をリーンからリッチに切換え、それによって白金51の酸素被毒を解消するようにした第1 実施例について説明する。

[0074]

図5 (A) に示されるように単位時間当りの白金51の酸素被毒量Wは排気ガス中の酸素濃度に比例する。また、図5 (B) に示されるように単位時間当りの白金51の酸素被毒量Wは排気浄化触媒11の温度が高くなるほど増大する。ここで排気ガス中の酸素濃度および排気浄化触媒11の温度は機関の運転状態から定まり、即ちこれらは燃料噴射量Qと機関回転数Nの関数であり、従って単位時間当りの白金51の酸素被毒量Wは燃料噴射量Qと機関回転数Nの関数となる。第1実施例では燃料噴射量Qと機関回転数Nに応じた単位時間当りの白金51の酸素被毒量Wが予め実験により求められており、この酸素被毒量Wが燃料噴射量Qと機関回転数Nの関数として図5 (C) に示すようにマップの形で予めROM32内に記憶されている。

[0075]

[0076]

一方、排気浄化触媒 1 1 上に保持されている S O X 量の積算値 Σ S O X も算出されており、この S O X 量の積算値 Σ S O X が許容値 S X を越えると排気浄化触

媒11からの SO_X 放出作用が行われる。即ち、まず初めに排気浄化触媒11の温度TCが SO_X 放出温度TXに達するまで上昇せしめられる。この SO_X 放出温度TXは触媒担体51に添加剤 52が添加されていないときにはほぼ500 であり、触媒担体51に添加剤 52が添加されているときには添加剤 52の添加量に応じたほぼ500 ℃から550 ℃の間の温度である。

[0077]

排気浄化触媒 11 の温度 T CがS O χ 放出温度 T X に達すると排気浄化触媒 1 1 に流入する排気ガスの空燃比がリーンからリッチに切換えられ、排気浄化触媒 11 からの S O χ の放出が開始される。S O χ が放出されている間、排気浄化触媒 11 の温度 T C は S O χ 放出温度 T X 以上に保持され、排気ガスの空燃比はリッチに維持される。次いで S O χ 放出作用が完了すると排気浄化触媒 11 の昇温 作用は停止され、排気ガスの空燃比がリーンに戻される。

[0078]

[0079]

排気浄化触媒11の温度TCを上昇させるのに有効な方法の一つは燃料噴射時期を圧縮上死点以後まで遅角させる方法である。即ち、通常主燃料 Q_m は図7において、(I)に示されるように圧縮上死点付近で噴射される。この場合、図7の(II)に示されるように主燃料 Q_m の噴射時期が遅角されると後燃え期間が長くなり、斯くして排気ガス温が上昇する。排気ガス温が高くなるとそれに伴って排気浄化触媒11の温度TCが上昇する。

[0080]

また、排気浄化触媒 1 1 の温度 T C を上昇させるために図 7 の(III)に示されるように主燃料 Q_m に加え、吸気上死点付近において補助燃料 Q_v を噴射することもできる。このように補助燃料 Q_v を追加的に噴射すると補助燃料 Q_v 分だけ燃焼せしめられる燃料が増えるために排気ガス温が上昇し、斯くして排気浄化

触媒11の温度TCが上昇する。

[0081]

[0082]

また、排気浄化触媒11の温度TCを上昇させるために図7の(IV)に示されるように主燃料 Q_m に加え、膨張行程中又は排気行程中に補助燃料 Q_p を噴射することもできる。即ち、この場合、大部分の補助燃料 Q_p は燃焼することなく未燃HCの形で排気通路内に排出される。この未燃HCは排気浄化触媒11上において過剰酸素により酸化され、このとき発生する酸化反応熱によって排気浄化触媒11の温度TCが上昇せしめられる。

[0083]

図8は白金51の酸素被毒を解消すべきことを示す被毒解消フラグと SO_X を放出すべきことを示す SO_X 放出フラグの制御ルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。

[0084]

図8を参照するとまず初めにステップ100において図5(C)に示されるマップから単位時間当りの酸素被毒量Wが算出される。次いでステップ101では酸素被毒量Wを Σ Wに加算することによって酸素被毒量の積算値 Σ Wが算出される。次いでステップ102では酸素被毒量の積算値 Σ Wが許容値WXを越えたか否か、即ち白金51の表面全体が酸素被毒を受ける少し前であるか否かが判別される。 Σ W \leq WXのときにはステップ104にジャンプする。これに対して Σ W>WXのときにはステップ103に進んで被毒解消フラグがセットされ、次いで

ページ: 24/

ステップ104に進む。

[0085]

ステップ104では燃料噴射量Qに定数kを乗算した値 $k\cdot Q$ が ΣSOX に加算される。燃料中には一定量のイオウが含まれており、従って単位時間当りに排気浄化触媒11に保持される SO_X 量は $k\cdot Q$ で表わすことができる。従って $k\cdot Q$ に ΣSOX を加算することによって得られる ΣSOX は排気浄化触媒11上に保持された SO_X 量の積算値を表わしている。次いでステップ105では SO_X 量の積算値 ΣSOX が許容値SXを越えたか否かが判別される。 $\Sigma SOX \leq SX$ のときには処理サイクルを完了し、 $\Sigma SOX > SX$ になるとステップ106に進んで SO_X 放出フラグがセットされる。

[0086]

次に図9を参照しつつ還元剤の供給制御ルーチンについて説明する。

[0087]

図9を参照するとまず初めにステップ200において被毒解消フラグがセットされているか否かが判別される。被毒解消フラグがセットされていないときにはステップ208にジャンプする。これに対し被毒解消フラグがセットされているときにはステップ201に進んで排気浄化触媒11の温度が許容温度TLよりも低いか否かが判別される。この許容温度TLは例えばNOχ 浄化率が30パーセントになる排気浄化触媒11の温度TCであってアルミナからなる触媒担体50上に白金51のみを担持したときにはこの許容温度TLはほぼ400℃である。TC≧TLのとき、即ち排気ガスの空燃比をリッチにしても高いNOχ 浄化率を得られないときにはステップ208にジャンプする。即ち、排気浄化触媒11の温度TCがほぼ400℃を越えると空燃比のリーンからリッチへの切換作用が禁止される。これに対してTC<TLのとき、即ち排気ガスの空燃比をリッチにすれば高いNOχ 浄化率を得られるときにはステップ202に進む。

[0088]

ステップ202では排気ガスの空燃比を例えば13程度のリッチ空燃比とするのに必要な還元剤の供給量が算出される。次いでステップ203では還元剤の供給時間が算出される。この還元剤の供給時間は通常10秒以下である。次いでス

テップ204では還元剤供給弁13からの還元剤の供給が開始される。次いでステップ205ではステップ203において算出された還元剤の供給時間が経過したか否かが判別される。還元剤の供給時間が経過していないときにはステップ208にジャンプし、このとき還元剤の供給が続行されて排気ガスの空燃比が13程度のリッチ空燃比に維持される。これに対し、還元剤の供給時間が経過したとき、即ち白金51の酸素被毒が解消されたときにはステップ206に進んで還元剤の供給が停止され、次いでステップ207に進んで∑Wおよび被毒解消フラグがクリアされる。次いでステップ208に進む。

[0089]

ステップ208ではSOX 放出フラグがセットされているか否かが判別される。SOX 放出フラグがセットされていないときには処理サイクルを完了する。これに対してSOX 放出フラグがセットされているときにはステップ209に進んで排気浄化触媒11の昇温制御が行われる。即ち、燃料噴射弁3からの燃料噴射パターンが図7の(II)から(IV)に示すいずれかの噴射パターンに変更される。燃料噴射パターンが図7の(II)から(IV)に示すいずれかの噴射パターンに変更される。燃料噴射パターンが図7の(II)から(IV)に示すいずれかの噴射パターンに変更されると排気ガス温が上昇し、斯くして排気浄化触媒11の温度が上昇する。次いでステップ210に進む。

[0090]

ステップ210では温度センサ20により検出された排気浄化触媒11の温度 TCがSOx 放出温度TX以上になったか否かが判別される。TC<TXのときには処理サイクルを完了する。これに対してTC≥TXになるとステップ211に進んで排気ガスの空燃比を例えば14程度のリッチ空燃比とするのに必要な還元剤の供給量が算出される。次いでステップ212では還元剤の供給時間が算出される。この還元剤の供給時間は数分程度である。次いでステップ213では還元剤供給弁13からの還元剤の供給が開始される。次いでステップ214ではステップ212において算出された還元剤の供給時間が経過したか否かが判別される。還元剤の供給時間が経過していないときには処理サイクルを完了し、このとき還元剤の供給が続行されて排気ガスの空燃比が14程度のリッチ空燃比に維持される。これに対し、還元剤の供給時間が経過したとき、即ち排気浄化触媒11

に保持されている SO_X の放出が完了したときにはステップ215 に進んで還元剤の供給が停止される。次いでステップ216 では排気浄化触媒11 の昇温作用が停止され、次いでステップ217 に進んで SO_X ,SWおよび SO_X 放出フラグがクリアされる。

[0091]

図11および図12に第2実施例を示す。この第2実施例では排気管21内に配置されたセンサ22として、排気ガス中の NO_X 濃度を検出することのできる NO_X 濃度センサが用いられる。この NO_X 濃度センサ22は図11 (B) に示されるように NO_X 濃度に比例した出力電圧Vを発生する。

[0092]

白金51の酸素被毒が進むと NO_X の浄化率が次第に低下し、その結果排気ガス中の NO_X 濃度が次第に増大する。従って貴金属触媒、例えば白金51の酸素被毒量は排気ガス中の NO_X 濃度から推定することができる。この第2実施例では排気ガス中の NO_X 濃度から推定された酸素被毒量が予め定められた許容値を越えたとき、即ち図11(A)に示されるように NO_X 濃度センサ22の出力電圧Vが設定値V X を越えたときに排気ガスの空燃比がリーンからリッチに切換えられる。

[0093]

図12はこの第2実施例における還元剤の供給制御ルーチンを示している。

[0094]

図12を参照すると、まず初めにステップ300においてNOX 濃度センサ22の出力電圧Vが設定値VXを越えたか否かが判別される。V≦VXのときには図10のステップ208にジャンプする。これに対してV>VXになるとステップ301に進んで排気ガスの空燃比を例えば13程度のリッチ空燃比とするのに必要な還元剤の供給量が算出される。次いでステップ302では還元剤の供給時間が算出される。この還元剤の供給時間は通常10秒以下である。次いでステップ303では還元剤供給弁13からの還元剤の供給が開始される。次いでステップ303では還元剤供給弁13からの還元剤の供給が開始される。次いでステップ304ではステップ302において算出された還元剤の供給時間が経過したか否かが判別される。還元剤の供給時間が経過していないときには図10のステッ

プ208にジャンプし、このとき還元剤の供給が続行されて排気ガスの空燃比が 13程度のリッチ空燃比に維持される。これに対し、還元剤の供給時間が経過したとき、即ち白金51の酸素被毒が解消されたときにはステップ305に進んで 還元剤の供給が停止され、次いで図10のステップ208に進む。

[0095]

なお、この第2実施例でも図8に示すフラグの制御ルーチンが使用されるがこの第2実施例では酸素被毒量Wを算出する必要がないので、図8に示すフラグの制御ルーチンではステップ104からステップ106のみが実行される。また、第2実施例では上述したように図12に示すルーチンに続いて図10に示すルーチンが実行されるが図10に示すルーチンにおけるステップ217では Σ SOX およびSOX 放出フラグのみがクリアされる。

[0096]

図13および図14に第3実施例を示す。この第3実施例では貴金属触媒、例えば白金51の酸素被毒を解消するために排気ガスの空燃比がリッチにされたときに白金51の酸素被毒が解消されたか否かを判断し、白金51の酸素被毒が解消されたと判断されたときに排気ガスの空燃比がリッチからリーンに切換えられる。

[0097]

具体的に言うとこの第3実施例では排気管21内に配置されたセンサ22として排気浄化触媒11から流出する排気ガスの空燃比を検出するための空燃比センサが用いられる。図13に示されるように排気浄化触媒11に流入する排気ガスの空燃比(A/F)inがリーンからリッチに切換えられると、即ち還元剤供給弁13から還元剤が供給されると還元剤、即ち炭化水素は白金51上の酸素によって酸化され、白金51上に酸素が存在する間、排気浄化触媒11から流出する排気ガスの空燃比(A/F)outはほぼ理論空燃比に維持される。次いで白金51上の酸素がなくなると炭化水素は排気浄化触媒11を通り抜けるので排気浄化触媒11から流出する排気ガスの空燃比(A/F)outはリッチになる。従って排気浄化触媒11に流入する排気ガスの空燃比(A/F)inがリーンからリッチに切換えられた後、排気浄化触媒11から流出する排気ガスの空燃比(A/F)inがリーンからリッチに切換えられた後、排気浄化触媒11から流出する排気ガスの空燃比(A/F)inがリーンからリッチに切換えられた後、排気浄化触媒11から流出する排気ガスの空燃比(A/F)inがリーンから

/F) outがリッチになったときに白金51の酸素被毒が解消されたと判断することができる。

[0098]

図14はこの第3実施例における還元剤の供給制御ルーチンを示している。

[0099]

図14を参照すると、まず初めにステップ400において被毒解消フラグがセットされているか否かが判別される。被毒解消フラグがセットされていないときには図10のステップ208にジャンプする。これに対し被毒解消フラグがセットされているときにはステップ401に進んで排気ガスの空燃比を例えば13程度のリッチ空燃比とするのに必要な還元剤の供給量が算出される。次いでステップ402に進んで還元剤供給弁13からの還元剤の供給が開始される。次いでステップ403では空燃比センサ22により検出された排気ガスの空燃比(A/F)outがリッチになったか否かが判別される。空燃比(A/F)outがリッチでないときには図10のステップ208にジャンプする。これに対して空燃比(A/F)outがリッチになると、即ち白金51の酸素被毒が解消されるとステップ404に進んで還元剤の供給が停止され、次いでステップ405に進んで∑Wおよび被毒解消フラグがクリアされる。次いで図10のステップ208に進む。

[0100]

次に排気浄化触媒 1 1 に代えてパティキュレートフィルタを用いた第 4 実施例について説明する。

[0101]

図15(A)および(B)にこのパティキュレートフィルタ11の構造を示す。なお、図15(A)はパティキュレートフィルタ11の正面図を示しており、図15(B)はパティキュレートフィルタ11の側面断面図を示している。図15(A)および(B)に示されるようにパティキュレートフィルタ11はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路60,61を具備する。これら排気流通路は下流端が栓62により閉塞された排気ガス流入通路60と、上流端が栓63により閉塞された排気ガス流入通路60と、上流端が栓63により閉塞された排気ガス流出通路61とにより構

成される。なお、図15 (A) においてハッチングを付した部分は栓63を示している。従って排気ガス流入通路60および排気ガス流出通路61は薄肉の隔壁64を介して交互に配置される。云い換えると排気ガス流入通路60および排気ガス流出通路61は各排気ガス流入通路60が4つの排気ガス流出通路61によって包囲され、各排気ガス流出通路61が4つの排気ガス流入通路60によって包囲されるように配置される。

[0102]

パティキュレートフィルタ11は例えばコージライトのような多孔質材料から 形成されており、従って排気ガス流入通路60内に流入した排気ガスは図15(B)において矢印で示されるように周囲の隔壁64内を通って隣接する排気ガス 流出通路61内に流出する。

[0103]

この実施例では各排気ガス流入通路60および各排気ガス流出通路61の周壁面、即ち各隔壁64の両側表面上および隔壁64内の細孔内壁面上にはアルミナからなる触媒担体の層が形成されており、この触媒担体上に貴金属触媒が担持されている。なお、この実施例では貴金属触媒として白金Ptが用いられている。

[0104]

この実施例においてもアルミナからなる触媒担体上に白金が担持されており、 第1実施例と同じ還元剤の供給制御が行われる。従ってこの実施例においても図 4に示されるNOX 浄化率が得られる。

[0105]

また、この実施例では排気ガス中に含まれるパティキュレートがパティキュレートフィルタ11内に捕獲され、捕獲されたパティキュレートは排気ガス熱によって順次燃焼せしめられる。もし多量のパティキュレートがパティキュレートフィルタ11上に推積した場合には噴射パターンが図7の噴射パターン(II)から(IV)のいずれかに切換えられ、排気ガス温が上昇せしめられる。それにより推積したパティキュレートが着火燃焼せしめられる。

[0106]

図16および図17に圧縮着火式内燃機関の夫々別の実施例を示す。

[0107]

図16に示す実施例では排気浄化触媒11上流の排気通路内に排気浄化触媒11と同じ排気浄化触媒、又はパティキュレートフィルタ、又は NO_X を選択的に還元する機能を有し NO_X を吸収する機能を有さない NO_X 選択還元触媒23が配置されており、図17に示す実施例では排気浄化触媒11下流の排気通路内にパティキュレートフィルタ、又は NO_X を選択的に還元する機能を有し NO_X を吸収する機能を有さない NO_X 選択還元触媒23が配置されている。

[0108]

排気浄化触媒11上流の排気通路内に排気浄化触媒11と同じ排気浄化触媒23よりも温度が低くなるために上流側の排気浄化触媒23の温度が高くなってNOx浄化率が低下したときに下流側の排気浄化触媒11において高いNOx浄化率を得ることができる。また、パティキュレートフィルタ23は貴金属触媒および触媒担体を有さないものであってもよいし、貴金属触媒および触媒担体を有するものであってもよい。また、NOx選択還元触媒23としてはCuーゼオライト触媒を用いることができる。ただし、Cuーゼオライト触媒23は耐熱性が低いのでCuーゼオライト触媒23は排気浄化触媒11の下流側に配置することが好ましい。なお、図16および図17に示す実施例においても第1実施例と同様な方法で還元剤の供給制御が行われる。

[0109]

図18に圧縮着火式内燃機関の更に別の実施例を示す。

[0110]

この実施例では排気浄化触媒 11 下流の排気通路内にNOX を選択的に還元する機能を有しNOX を吸収する機能を有さないNOX 選択還元触媒 24 が配置される。このNOX 選択還元触媒 24 としては、チタニアを担体とし、この担体上に酸化バナジウムを担持した触媒 V_2 O_5 / T i O_2 (以下、バナジウム・チタニア触媒という)、又はゼオライトを担体とし、この担体上に銅を担持した触媒 Cu/ZSM 5 (以下、銅ゼオライト触媒という)が用いられる。

[0111]

また、NOX 選択還元触媒 24 と排気浄化触媒 11 間の排気通路内に尿素水溶液を供給するための尿素供給弁 25 が配置され、この尿素供給弁 25 には供給ポンプ 26 によって尿素水溶液が供給される。また、吸気通路内には吸入空気量検出器 27 が配置され、排気管 21 内に配置されたセンサ 22 としてNOX 濃度センサが使用される。

[0112]

排気ガスの空燃比がリーンのときに尿素供給弁 25 から排気ガス中に尿素水溶液を供給すると排気ガス中に含まれるNOはNOX 選択還元触媒 24 上において尿素CO(NH2) 2 から発生するアンモニアNH3 により還元される(例えば 2 NH3 + 2 NO+1/2 O2 → 2 N2 + 3 H2 O)。この場合、排気ガス中に含まれるNOX を還元して排気ガス中のNOX を完全に除去するためには一定量の尿素が必要であり、以下、排気ガス中のNOX を還元し完全に除去するために必要な尿素量を、尿素/NOX の当量比が 1 の尿素量という。なお、尿素/NOX の当量比が 1 の尿素量という。なお、尿素/NOX の当量比が 1 のの当量比が 1 であることを以下単に当量比= 1 という。

[0113]

図19の実線は図4に示す値と同じであって排気浄化触媒11による NO_X 浄化率と排気浄化触媒11の温度TCとの関係を示しており、図19の破線は排気ガス中の NO_X 量に対して尿素量が当量比=1となるように尿素水溶液を供給した場合の NO_X 浄化率と NO_X 選択還元触媒24の温度TCとの関係を示している。図19から、排気ガス中の NO_X 量に対して尿素量が当量比=1となるように尿素水溶液が供給された場合、 NO_X 選択還元触媒24の温度TCがほぼ300℃以上になると NO_X 浄化率はほぼ100パーセントとなり、 NO_X 選択還元触媒24の温度TCが低下することがわかる。

[0114]

この実施例では図19において排気浄化触媒11の温度TCが設定温度TL、例えば300℃より低い領域Iでは図8に示すフラグの制御ルーチンおよび図9および図10に示す還元剤の供給制御ルーチンによって還元剤供給弁13からの還元剤の供給制御が行われる。従って領域Iでは排気浄化触媒11により高いN

[0115]

一方、図19においてNO χ 選択還元触媒24の温度TCが設定温度TN(<TL)より高い領域では図20に示す尿素水溶液の供給制御ルーチンにより尿素水溶液が供給され、それによってNO χ 選択還元触媒24によるNO χ の浄化が行われる。

[0116]

即ち、図20を参照するとまず初めにステップ500においてNOX 選択還元触媒24の温度TCが設定温度TN、例えば250℃よりも高いか否かが判別される。TC≦TNのときには処理サイクルを完了する。これに対してTC>TNのときにはステップ501に進んでNOX 濃度センサ22により検出されたNOX 濃度と吸入空気量検出器27により検出された吸入空気量から単位時間当りに燃焼室2から排出されるNOX 量が求められ、このNOX 量に基づいてNOX 量に対し当量比=1となる単位時間当りの尿素量が算出される。次いでステップ502では算出された尿素量から尿素水溶液の供給量が算出され、次いでステップ503ではステップ502において算出された量の尿素水溶液が尿素供給弁13から供給される。従って領域IIではNOX 選択還元触媒24により高いNOX 浄化率が得られる。

[0117]

図19からわかるように領域 I と領域IIの重なる領域では排気浄化触媒 11 による NO_X の浄化作用と NO_X 選択還元触媒 24 による NO_X の浄化作用とが行われ、従ってこの領域における NO_X 浄化率はほぼ 100 パーセントとなる。従って広い温度領域に亘って高い NO_X 浄化率を得ることができる。

[0118]

次に排気浄化触媒11等を昇温し、排気ガスの空燃比をリッチにするのに適し た低温燃焼方法について説明する。

[0119]

図1に示される圧縮着火式内燃機関ではEGR率(EGRガス量/(EGRガ

ス量+吸入空気量))を増大していくとスモークの発生量が次第に増大してピークに達し、更にEGR率を高めていくと今度はスモークの発生量が急激に低下する。このことについてEGRガスの冷却度合を変えたときのEGR率とスモークとの関係を示す図21を参照しつつ説明する。なお、図21において曲線AはEGRガスを強力に冷却してEGRガス温をほぼ90℃に維持した場合を示しており、曲線Bは小型の冷却装置でEGRガスを冷却した場合を示しており、曲線CはEGRガスを強制的に冷却していない場合を示している。

[0120]

図21の曲線Aで示されるようにEGRガスを強力に冷却した場合にはEGR率が50パーセントよりも少し低いところでスモークの発生量がピークとなり、この場合にはEGR率をほぼ55パーセント以上にすればスモークがほとんど発生しなくなる。一方、図21の曲線Bで示されるようにEGRガスを少し冷却した場合にはEGR率が50パーセントよりも少し高いところでスモークの発生量がピークとなり、この場合にはEGR率をほぼ65パーセント以上にすればスモークがほとんど発生しなくなる。また、図21の曲線Cで示されるようにEGRガスを強制的に冷却していない場合にはEGR率が55パーセントの付近でスモークの発生量がピークとなり、この場合にはEGR率をほぼ70パーセント以上にすればスモークがほとんど発生しなくなる。

[0121]

このようにEGRガス率を55パーセント以上にするとスモークが発生しなくなるのは、EGRガスの吸熱作用によって燃焼時における燃料および周囲のガス温がさほど高くならず、即ち低温燃焼が行われ、その結果炭化水素が煤まで成長しないからである。

[0122]

この低温燃焼は、空燃比にかかわらずにスモークの発生を抑制しつつNOXの発生量を低減することができるという特徴を有する。即ち、空燃比がリッチにされると燃料が過剰となるが燃焼温度が低い温度に抑制されているために過剰な燃料は煤まで成長せず、斯くしてスモークが発生することがない。また、このときNOXも極めて少量しか発生しない。一方、平均空燃比がリーンのとき、或いは

[0123]

一方、この低温燃焼を行うと燃料およびその周囲のガス温は低くなるが排気ガス温は上昇する。このことについて図22(A),(B)を参照しつつ説明する。

[0124]

図22(A)の実線は低温燃焼が行われたときの燃焼室5内の平均ガス温Tgとクランク角との関係を示しており、図22(A)の破線は通常の燃焼が行われたときの燃焼室5内の平均ガス温Tgとクランク角との関係を示している。また、図22(B)の実線は低温燃焼が行われたときの燃料およびその周囲のガス温Tfとクランク角との関係を示しており、図22(B)の破線は通常の燃焼が行われたときの燃料およびその周囲のガス温Tfとクランク角との関係を示している。

[0125]

低温燃焼が行われているときには通常の燃焼が行われているときに比べてEGRガス量が多く、従って図22(A)に示されるように圧縮上死点前は、即ち圧縮行程中は実線で示す低温燃焼時における平均ガス温Tgのほうが破線で示す通常の燃焼時における平均ガス温Tgよりも高くなっている。なお、このとき図22(B)に示されるように燃料およびその周囲のガス温Tfは平均ガス温Tgとほぼ同じ温度になっている。

[0126]

次いで圧縮上死点付近において燃焼が開始されるがこの場合、低温燃焼が行われているときには図22(B)の実線で示されるようにEGRガスの吸熱作用により燃料およびその周囲のガス温Tfはさほど高くならない。これに対して通常の燃焼が行われている場合には燃料周りに多量の酸素が存在するために図22(B)の破線で示されるように燃料およびその周囲のガス温Tfは極めて高くなる。このように通常の燃焼が行われた場合には燃料およびその周囲のガス温Tfは

低温燃焼が行われている場合に比べてかなり高くなるが大部分を占めるそれ以外のガスの温度は低温燃焼が行われている場合に比べて通常の燃焼が行われている場合の方が低くなっており、従って図22(A)に示されるように圧縮上死点付近における燃焼室2内の平均ガス温Tgは低温燃焼が行われている場合の方が通常の燃焼が行われている場合に比べて高くなる。その結果、図22(A)に示されるように燃焼が完了した後の燃焼室2内の既燃ガス温は低温燃焼が行われた場合の方が通常の燃焼が行われた場合に比べて高くなり、斯くして低温燃焼を行うと排気ガス温が高くなる。

[0127]

ところで機関の要求トルクTQが高くなると、即ち燃料噴射量が多くなると燃焼時における燃料および周囲のガス温が高くなるために低温燃焼を行うのが困難となる。即ち、低温燃焼を行いうるのは燃焼による発熱量が比較的少ない機関中低負荷運転時に限られる。図23において領域Iは煤の発生量がピークとなる不活性ガス量よりも燃焼室5の不活性ガス量が多い第1の燃焼、即ち低温燃焼を行わせることのできる運転領域を示しており、領域IIは煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が少ない第2の燃焼、即ち通常の燃焼しか行わせることのできない運転領域を示している。

[0128]

図24は運転領域 I において低温燃焼を行う場合の目標空燃比A/Fを示しており、図25は運転領域 I において低温燃焼を行う場合の要求トルクTQに応じたスロットル弁9の開度、EGR制御弁15の開度、EGR率、空燃比、噴射開始時期 θ S、噴射完了時期 θ E、噴射量を示している。なお、図25には運転領域IIにおいて行われる通常の燃焼時におけるスロットル弁9の開度等も合わせて示している。

[0129]

図24および図25から運転領域Iにおいて低温燃焼が行われているときには EGR率が55パーセント以上とされ、空燃比A/Fが15.5から18程度の リーン空燃比とされることがわかる。なお、前述したように運転領域Iにおいて 低温燃焼が行われているときには空燃比をリッチにしてもスモークはほとんど発

生しない。

[0130]

このように低温燃焼が行われているときにはほとんどスモークを発生させることなく空燃比をリッチにすることができる。従って酸素被毒の解消或いはSORの放出のために排気ガスの空燃比をリッチにすべきときには低温燃焼を行い、低温燃焼のもとで空燃比をリッチにすることもできる。

[0131]

また、上述したように低温燃焼を行うと排気ガス温が上昇する。従ってSORの放出のため或いは推積したパティキュレートを着火燃焼させるために排気ガス温を上昇すべきときに低温燃焼を行わせることもできる。

[0132]

【発明の効果】

高いNOx浄化率を得ることができる。

【図面の簡単な説明】

【図1】

圧縮着火式内燃機関の全体図である。

[図2]

排気浄化触媒の担体表面部分の断面を図解的に示す図である。

【図3】

還元剤供給による排気ガスの空燃比の変化を示す図である。

【図4】

NOX 浄化率を示す図である。

【図5】

単位時間当りの酸素被毒量を示す図である。

【図6】

NOX およびSOX 放出制御のタイムチャートを示す図である。

【図7】

燃料の種々の噴射パターンを示す図である。

【図8】

各フラグを制御するためのフローチャートである。

【図9】

還元剤の供給を制御するためのフローチャートである。

【図10】

還元剤の供給を制御するためのフローチャートである。

【図11】

排気ガスの空燃比制御を説明するための図である。

【図12】

還元剤の供給制御を行うためのフローチャートである。

【図13】

排気ガスの空燃比の変化を示す図である。

【図14】

還元剤の供給を制御するためのフローチャートである。

【図15】

パティキュレートフィルタを示す図である。

【図16】

圧縮着火式内燃機関の別の実施例を示す全体図である。

【図17】

圧縮着火式内燃機関の更に別の実施例を示す全体図である。

【図18】

圧縮着火式内燃機関の更に別の実施例を示す全体図である。

【図19】

NOX 浄化率を示す図である。

【図20】

尿素水溶液の供給を制御するためのフローチャートである。

【図21】

スモークの発生量を示す図である。

【図22】

燃焼室内のガス温等を示す図である。

′【図23】

運転領域I,IIを示す図である。

【図24】

空燃比A/Fを示す図である。

【図25】

スロットル弁開度等の変化を示す図である。

【符号の説明】

- 3 ···燃料噴射弁
- 4…吸気マニホルド
- 5…排気マニホルド
- 7…排気ターボチャージャ
- 11…排気浄化触媒
- 13…還元剤供給弁

【書類名】 図面 【図1】 図1 10 M 7a 12 -18 20 (40 41 37. 35 負荷センサ 32 入力ポ クランク角センサ ROM 42 33 37 RAM 34 出力ポー 38

-36

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

図23

【図24】

【図25】

【書類名】 要約書

【要約】

【課題】 低温時に高いNOX 浄化率を得る。

【解決手段】 リーン空燃比のもとでNOX を浄化するための排気浄化触媒11 の触媒担体として担体表面上に塩基点が存在するアルミナを用いる。アルミナ表面上に、NOX を吸収しうるNOX 吸収剤の層を形成することなく白金を分散して担持させる。白金の表面全体が酸素被毒を受ける前に排気浄化触媒11に流入する排気ガスの空燃比をリーンからリッチに一時的に切換える。

【選択図】 図1

特願2002-264157

出願人履歴情報

識別番号

1. 変更年月日 [変更理由] 住 所 氏 名 [000003207]

1990年 8月27日 新規登録 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.