SkipDiff

状态: AAAI 2024

单位: 厦门大学

文章链接: https://ojs.aaai.org/index.php/AAAI/article/view/28195

Github 链接: 未开源

目录

摘要	
背景	1
贡献	2
实现	2
实验	3

摘要

传统的 SR 方式都面临着"质量-相似度"之间的取舍。而基于 Diffusion 的 SR 方案表现出了不同的特征,即在实验中发现,在低步数时相似度较高,而高步数时图像质量较好。因此本文提出了一种跳过式超分方案,通过先进行粗略去噪,再进行精细去噪的方案,节约超分过程的时间,并提升效果。

背景

在超分辨率问题中,我们通常使用多种评估方式来量化模型的效果,如针对一致性的 PSNR, SSIM, 或者是针对图像质量的 NIQE, LPIPS。在模型训练中,也因此分为两种,一种以一致性为导向,训练出的模型追求像素级别的相似,但输出的图片往往较为模糊。另一种如 GAN, Flow, 以图像质量为追求, 却会使得图像部分细节发生改变。

而最近出现的 Diffusion,在 SR 任务中表现优秀。并且,如下图所示,在不同的迭代次数下(此处不是同一次迭代的次数,而是将迭代次数设定为某一值后得到的完整输出)有着不同的表现,即,在迭代次数较低时,一致性更高,而在迭代次数增加时,图像质量更高。(图中相似的趋势实际为 NIQE 值越低越好. PSNR 值越高越好导致的)

而迭代次数的不同,实际为去噪时的步长是否够大,因此,本文提出以模糊过程(CSA)和精细过程(FSR)组合而成的同时兼顾一致性和图像质量的超分方案。

贡献

- 1.构建了 SkipDiff 这一同时考虑到一致性和图像质量的超分模型。
- 2.提出了 CSA, FSR 即低/高迭代步数超分组合而成的超分方案。
- 3. 通过实验论证了这一思路的可行性。

实现

本文的流程如上图所示。可以看见,最为基本的 DDPM 流程是从 XT 到 X0 的一条顺序马尔可夫链。而在本文方案中,从 XT 到 XN 这一前半段过程中,会压缩掉一些步骤,进行较为粗糙的预测过程。如之前所发现的,迭代步数低的预测过程可以更好的保留图像的一致性。

而进入下一阶段后,上一阶段的具有一致性但质量较差的输出,则可以进行正常的去噪过程,如橙色部分上方所展现,从 XN 到 XO。不同之处在于,每一次去噪都会经过一个 SPN 结构,即下图所示:

这一结构的作用在于,以图像质量为驱动,去决定本次的迭代是否需要被保留,也就是这一小网络被用于判断本次迭代对图像质量是否有帮助,如果没有,则放弃本次迭代的结果,直接进入下一次迭代。这一过程中使用了 GRU 结构,这是一个单循环 RNN 中的结构,用于保证每一次更改都是朝着目标方向前进的。

实验

Method	Bicubic	FSRNet	PULSE	GCFSR	SR3	IDM	SkipDiff (ours)
PSNR	23.49	24.73	21.37	25.06	24.79	24.08	25.60
SSIM	0.6003	0.7086	0.4839	0.6774	0.6766	0.6798	0.6838
NIQE	13.45	9.55	8.57	6.73	7.30	7.13	6.47
LPIPS	0.5374	0.2179	0.2026	0.1725	0.0992	0.1359	0.0967

八倍人脸图像的实验结果。

Method	Bicubic	DGP (1000)	DDRM (20)	SR3 (100)	SkipDiff (20) (ours)
PSNR	25.60	23.01	26.68	26.38	<u> 26.65</u>
SSIM	0.6594	0.5223	0.7089	0.6871	0.6884
NIQE	8.68	5.31	9.48	5.00	4.95
LPIPS	0.4716	0.2531	0.3499	0.1909	0.1886

四倍自然图像的实验结果。

N	Method	DGP	DDRM	SR3	SkipDiff
7	Time (s)	170.04	2.23	4.17	0.69
F	FLOP (G)	72,197	22,275	17,799	2,848

由于跳过了一些步骤,而且 SPN 结构网络很小,增加的计算量可以基本忽略,所以本方案在所花费时间上也具有一定的优势。

两个不同数据集上的结果分布,可以看出,红星标志代表的 SkipDiff 在两种指标的综合表现上占据了较明显的优势。