SEQUENCE LISTING

<110>	Wei	ss, Antho	ony	S.				
<120>	Pro	tease Sus	ce	ptibility I	I			
<130>	GHC	11USA						
<140> <141>		09/743,81 1-04-26	.8					
<150> <151>		PP4723 8-07-17						
<150> <151>		/AU99/005 9-07-19	80					
<160>	106							
<170>	Pate	entIn ver	sic	on 3.2				
<210><211><211><212><213>	1 210 DNA Home	sapiens	3					
<400> atgggtg	1 99cg	ttccgggt	.gc	tatcccgggt	ggegtteegg	gtggtgtatt	ctacccaggc	60
gcgggt	ctgg	gtgcactg	199	cggtggtgcg	ctgggcccgg	gtggtaaacc	gctgaaaccg	120
gttccag	ggcg	gtctggca	ıgg	tgctggtctg	ggtgcaggtc	tgggcgcgtt	cccggcggtt	180
accttco	ccgg	gtgctctg	ıgt	tccgggtggc	gttgcagacg	cagctgctgc	gtacaaagcg	240
gcaaagg	gcag	gtgcgggt	ct	gggcggggta	ccaggtgttg	gcggtctggg	tgtatctgct	300
ggcgcag	gttg	ttccgcag	lGG	gggtgcaggt	gtaaaaccgg	gcaaagttcc	aggtgttggt	360
ctgccgg	ggcg	tatacccg	ıgg	tggtgttctg	ccgggcgcgc	gtttcccagg	tgttggtgta	420
ctgccgg	ggcg	ttccgacc	gg:	tgcaggtgtt	aaaccgaagg	caccaggtgt	aggcggcgcg	480
ttcgcgg	ggta	tcccgggt	gt	tggcccgttc	ggtggtccgc	agccaggcgt	tccgctgggt	540
tacccga	atca	aagcgccg	aa	gcttccaggt	ggctacggtc	tgccgtacac	caccggtaaa	600
ctgccgt	tacg	gctacggt	CC	gggtggcgta	gcaggtgctg	cgggtaaagc	aggctaccca	660
accggta	actg	gtgttggt	CC	gcaggctgct	gcggcagctg	cggcgaaggc	agcagcaaaa	720
ttcggcg	gcgg	gtgcagcg	gg	tgttctgccg	ggcgtaggtg	gtgctggcgt	tccgggtgtt	780
ccaggtg	gcga	tcccgggc	at	cggtggtatc	gcaggcgtag	gtactccggc	ggccgctgcg	840

```
gctgcggcag ctgcggcgaa agcagctaaa tacggtgcgg cagcaggcct ggttccgggt
                                                                      900
ggtccaggct tcggtccggg tgttgtaggc gttccgggtg ctggtgttcc gggcgtaggt
                                                                      960
gttccaggtg cgggcatccc ggttgtaccg ggtgcaggta tcccgggcgc tgcggttcca
                                                                     1020
ggtgttgtat ccccggaagc ggcagctaag gctgctgcga aagctgcgaa atacggagct
                                                                     1080
cgtccgggcg ttggtgttgg tggcatcccg acctacggtg taggtgcagg cggtttccca
                                                                     1140
ggtttcggcg ttggtgttgg tggcatcccg ggtgtagctg gtgttccgtc tgttggtggc
                                                                     1200
gtaccgggtg ttggtggcgt tccaggtgta ggtatctccc cggaagcgca ggcagctgcg
                                                                     1260
gcagctaaag cagcgaagta cggcgttggt actccggcgg cagcagctgc taaagcagcg
                                                                     1320
gctaaagcag cgcagttcgg actagttccg ggcgtaggtg ttgcgccagg tgttggcgta
                                                                     1380
gcaccgggtg ttggtgttgc tccgggcgta ggtctggcac cgggtgttgg cgttgcacca
                                                                     1440
ggtgtaggtg ttgcgccggg cgttggtgta gcaccgggta tcggtccggg tggcgttgcg
                                                                     1500
gctgctgcga aatctgctgc gaaggttgct gcgaaagcgc agctgcgtgc agcagctggt
                                                                     1560
ctgggtgcgg gcatcccagg tctgggtgta ggtgttggtg ttccgggcct gggtgtaggt
                                                                     1620
gcaggggtac cgggcctggg tgttggtgca ggcgttccgg gtttcggtgc tgttccgggc
                                                                     1680
gcgctggctg ctgcgaaagc ggcgaaatac ggtgcagcgg ttccgggtgt actgggcggt
                                                                     1740
ctgggtgctc tgggcggtgt tggtatcccg ggcggtgttg taggtgcagg cccagctgca
                                                                     1800
gctgctgctg cggcaaaggc agcggcgaaa gcagctcagt tcggtctggt tggtgcagca
                                                                     1860
ggtctgggcg gtctgggtgt tggcggtctg ggtgtaccgg gcgttggtgg tctgggtggc
                                                                     1920
atcccgccgg cggcggcagc taaagcggct aaatacggtg cagcaggtct gggtggcgtt
                                                                     1980
ctgggtggtg ctggtcagtt cccactgggc ggtgtagcgg cacgtccggg tttcggtctg
                                                                     2040
tccccgatct tcccaggcgg tgcatgcctg ggtaaagctt gcggccgtaa acgtaaataa
                                                                     2100
tgatag
                                                                     2106
<210>
       2
<211>
       1992
<212>
       DNA
<213> Homo sapiens
<400>
atgggtggcg ttccgggtgc tgttccgggt ggcgttccgg gtggtgtatt ctacccaggc
                                                                       60
gcgggtttcg gtgctgttcc gggtggcgtt gcagacgcag ctgctgcgta caaagcggca
```

aaggcaggtg	cgggtctggg	cggggtacca	ggtgttggcg	gtctgggtgt	atctgctggc	180
gcagttgttc	cgcagccggg	tgcaggtgta	aaaccgggca	aagttccagg	tgttggtctg	240
ccgggcgtat	acccgggttt	cggtgctgtt	ccgggcgcgc	gtttcccagg	tgttggtgta	300
ctgccgggcg	ttccgaccgg	tgcaggtgtt	aaaccgaagg	caccaggtgt	aggcggcgcg	360
ttcgcgggta	tcccgggtgt	tggcccgttc	ggtggtccgc	agccaggcgt	tccgctgggt	420
tacccgatca	aagcgccgaa	gcttccaggt	ggctacggtc	tgccgtacac	caccggtaaa	480
ctgccgtacg	gctacggtcc	gggtggcgta	gcaggtgctg	cgggtaaagc	aggctaccca	540
accggtactg	gtgttggtcc	gcaggctgct	gcggcagctg	cggcgaaggc	agcagcaaaa	600
ttcggcgcgg	gtgcagcggg	tttcggtgct	gttccgggcg	taggtggtgc	tggcgttccg	660
ggtgttccag	gtgcgatccc	gggcatcggt	ggtatcgcag	gcgtaggtac	tccggcggcc	720
gctgcggctg	cggcagctgc	ggcgaaagca	gctaaatacg	gtgcggcagc	aggcctggtt	780
ccgggtggtc	caggcttcgg	tccgggtgtt	gtaggcgttc	cgggtttcgg	tgctgttccg	840
ggcgtaggtg	ttccaggtgc	gggcatcccg	gttgtaccgg	gtgcaggtat	cccgggcgct	900
gcgggtttcg	gtgctgtatc	cccggaagcg	gcagctaagg	ctgctgcgaa	agctgcgaaa	960
tacggagctc	gtccgggcgt	tggtgttggt	ggcatcccga	cctacggtgt	aggtgcaggc	1020
ggtttcccag	gtttcggcgt	tggtgttggt	ggcatcccgg	gtgtagctgg	tgttccgtct	1080
gttggtggcg	taccgggtgt	tggtggcgtt	ccaggtgtag	gtatctcccc	ggaagcgcag	1140
gcagctgcgg	cagctaaagc	agcgaagtac	ggcgttggta	ctccggcggc	agcagctgct	1200
aaagcagcgg	ctaaagcagc	gcagttcgga	ctagttccgg	gcgtaggtgt	tgcgccaggt	1260
gttggcgtag	caccgggtgt	tggtgttgct	ccgggcgtag	gtctggcacc	gggtgttggc	1320
gttgcaccag	gtgtaggtgt	tgcgccgggc	gttggtgtag	caccgggtat	cggtccgggt	1380
ggcgttgcgg	ctgctgcgaa	atctgctgcg	aaggttgctg	cgaaagcgca	gctgcgtgca	1440
gcagctggtc	tgggtgcggg	catcccaggt	ctgggtgtag	gtgttggtgt	tccgggcctg	1500
ggtgtaggtg	caggggtacc	gggcctgggt	gttggtgcag	gcgttccggg	tttcggtgct	1560
gttccgggcg	cgctggctgc	tgcgaaagcg	gcgaaatacg	gtgctgttcc	gggtgtactg	1620
ggcggtctgg	gtgctctggg	cggtgttggt	atcccgggcg	gtgttgtagg	tgcaggccca	1680
gctgcagctg	ctgctgcggc	aaaggcagcg	gcgaaagcag	ctcagttcgg	tctggttggt	1740
gcagcaggtc	tgggcggtct	gggtgttggc	ggtctgggtg	taccgggcgt	tggtggtctg	1800

ggtggcatcc cgccggcggc ggcagctaaa gcggctaaat acggtgcagc aggtctgggt	1860
ggcgttctgg gtggtgctgg tcagttccca ctgggcggtg tagcggcacg tccgggtttc	1920
ggtctgtccc cgatcttccc aggcggtgca tgcctgggta aagcttgcgg ccgtaaacgt	1980
aaataatgat ag	1992
<210> 3 <211> 2210 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (9)(2201)	
<pre><400> 3 gatccatg ggt ggc gtt ccg ggt gct atc ccg ggt ggc gtt ccg ggt ggt</pre>	50
gta ttc tac cca ggc gcg ggt ctg ggt gca ctg ggc ggt ggt gcg ctg Val Phe Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu 15 20 25 30	98
ggc ccg ggt ggt aaa ccg ctg aaa ccg gtt cca ggc ggt ctg gca ggt Gly Pro Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly 35 40 45	146
gct ggt ctg ggt gca ggt ctg ggc gcg ttc ccg gcg gtt acc ttc ccg Ala Gly Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro 50 55 60	194
ggt gct ctg gtt ccg ggt ggc gtt gca gac gca gct gct gcg tac aaa Gly Ala Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys 65 70 75	242
gcg gca aag gca ggt gcg ggt ctg ggc ggg gta cca ggt gtt ggc ggt Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly 80 85 90	290
ctg ggt gta tct gct ggc gca gtt gtt ccg cag ccg ggt gca ggt gta Leu Gly Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val 95 100 105 110	338
aaa ccg ggc aaa gtt cca ggt gtt ggt ctg ccg ggc gta tac ccg ggt Lys Pro Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly 115 120 125	386
ggt gtt ctg ccg ggc gcg cgt ttc cca ggt gtt ggt gta ctg ccg ggc Gly Val Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly	434

130		135	140	
gtt eeg aee ggt ge Val Pro Thr Gly Al 145	ca ggt gtt aaa la Gly Val Lys 150	ccg aag gca Pro Lys Ala	cca ggt gta gg Pro Gly Val G 155	gc ggc 482 Ly Gly
gcg ttc gcg ggt at Ala Phe Ala Gly II 160	cc ccg ggt gtt le Pro Gly Val 165	ggc ccg ttc Gly Pro Phe	ggt ggt ccg ca Gly Gly Pro G 170	ag cca 530 n Pro
ggc gtt ccg ctg gg Gly Val Pro Leu Gl 175	jt tac ccg atc ly Tyr Pro Ile 180	aaa gcg ccg Lys Ala Pro 185	aag ctt cca go Lys Leu Pro G	gt ggc 578 Y Gly 190
tac ggt ctg ccg ta Tyr Gly Leu Pro Ty 19	yr Thr Thr Gly	aaa ctg ccg Lys Leu Pro 200	tac ggc tac gg Tyr Gly Tyr Gl	y Pro
ggt ggc gta gca gg Gly Gly Val Ala Gl 210	gt gct gcg ggt Ly Ala Ala Gly	aaa gca ggc Lys Ala Gly 215	tac cca acc go Tyr Pro Thr Gl 220	gt act 674 y Thr
ggt gtt ggt ccg ca Gly Val Gly Pro Gl 225	ag gct gct gcg In Ala Ala Ala 230	gca gct gcg Ala Ala Ala	gcg aag gca go Ala Lys Ala Al 235	ca gca 722 .a Ala
aaa ttc ggc gcg gg Lys Phe Gly Ala Gl 240	gt gca gcg ggt Ly Ala Ala Gly 245	gtt ctg ccg Val Leu Pro	ggc gta ggt gg Gly Val Gly GI 250	gt gct 770 y Ala
ggc gtt ccg ggt gt Gly Val Pro Gly Va 255	ct cca ggt gcg al Pro Gly Ala 260	atc ccg ggc Ile Pro Gly 265	atc ggt ggt at Ile Gly Gly Il	c gca 818 e Ala 270
ggc gta ggt act co Gly Val Gly Thr Pr 27	o Ala Ala Ala	gcg gct gcg Ala Ala Ala 280	gca gct gcg gc Ala Ala Ala Al 28	a Lys
gca gct aaa tac gg Ala Ala Lys Tyr Gl 290	gt gcg gca gca .y Ala Ala Ala	ggc ctg gtt Gly Leu Val 295	ccg ggt ggt co Pro Gly Gly Pr 300	a ggc 914 o Gly
ttc ggt ccg ggt gt Phe Gly Pro Gly Va 305	t gta ggc gtt al Val Gly Val 310	ccg ggt gct Pro Gly Ala	ggt gtt ccg gg Gly Val Pro Gl 315	gc gta 962 y Val
ggt gtt cca ggt gc Gly Val Pro Gly Al 320	eg ggc atc ccg a Gly Ile Pro 325	Val Val Pro	ggt gca ggt at Gly Ala Gly Il 330	c ccg 1010 e Pro
ggc gct gcg gtt cc Gly Ala Ala Val Pr 335	a ggt gtt gta TO Gly Val Val 340	tcc ccg gaa Ser Pro Glu 345	gcg gca gct aa Ala Ala Ala Ly	g gct 1058 s Ala 350
gct gcg aaa gct gc	g aaa tac gga	gct cgt ccg	ggc gtt ggt gt	t ggt 1106

Ala	Ala	Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	
ggc	atc Ile	ccg Pro	acc Thr 370	tac Tyr	ggt Gly	gta Val	ggt Gly	gca Ala 375	ggc Gly	ggt Gly	ttc Phe	cca Pro	ggt Gly 380	ttc Phe	ggc Gly	1154
gtt Val	ggt Gly	gtt Val 385	ggt Gly	ggc Gly	atc Ile	ccg Pro	ggt Gly 390	gta Val	gct Ala	ggt Gly	gtt Val	ccg Pro 395	tct Ser	gtt Val	ggt Gly	1202
ggc Gly	gta Val 400	ccg Pro	ggt Gly	gtt Val	ggt Gly	ggc Gly 405	gtt Val	cca Pro	ggt Gly	gta Val	ggt Gly 410	atc Ile	tcc Ser	ccg Pro	gaa Glu	1250
gcg Ala 415	cag Gln	gca Ala	gct Ala	gcg Ala	gca Ala 420	gct Ala	aaa Lys	gca Ala	gcg Ala	aag Lys 425	tac Tyr	ggc Gly	gtt Val	ggt Gly	act Thr 430	1298
ccg Pro	gcg Ala	gca Ala	gca Ala	gct Ala 435	gct Ala	aaa Lys	gca Ala	gcg Ala	gct Ala 440	aaa Lys	gca Ala	gcg Ala	cag Gln	ttc Phe 445	gga Gly	1346
cta Leu	gtt Val	ccg Pro	ggc Gly 450	gta Val	ggt Gly	gtt Val	gcg Ala	cca Pro 455	ggt Gly	gtt Val	ggc Gly	gta Val	gca Ala 460	ccg Pro	ggt Gly	1394
gtt Val	ggt Gly	gtt Val 465	gct Ala	ccg Pro	ggc Gly	gta Val	ggt Gly 470	ctg Leu	gca Ala	ccg Pro	ggt Gly	gtt Val 475	ggc Gly	gtt Val	gca Ala	1442
cca Pro	ggt Gly 480	gta Val	ggt Gly	gtt Val	gcg Ala	ccg Pro 485	ggc Gly	gtt Val	ggt Gly	gta Val	gca Ala 490	ccg Pro	ggt Gly	atc Ile	ggt Gly	1490
ccg Pro 495	ggt Gly	ggc Gly	gtt Val	gcg Ala	gct Ala 500	gct Ala	gcg Ala	aaa Lys	tct Ser	gct Ala 505	gcg Ala	aag Lys	gtt Val	gct Ala	gcg Ala 510	1538
aaa Lys	gcg Ala	cag Gln	ctg Leu	cgt Arg 515	gca Ala	gca Ala	gct Ala	ggt Gly	ctg Leu 520	ggt Gly	gcg Ala	ggc	atc Ile	cca Pro 525	ggt Gly	1586
ctg Leu	ggt Gly	gta Val	ggt Gly 530	gtt Val	ggt Gly	gtt Val	ccg Pro	ggc Gly 535	ctg Leu	ggt Gly	gta Val	ggt Gly	gca Ala 540	Gly 999	gta Val	1634
ccg Pro	ggc Gly	ctg Leu 545	ggt Gly	gtt Val	ggt Gly	gca Ala	ggc Gly 550	gtt Val	ccg Pro	ggt Gly	ttc Phe	ggt Gly 555	gct Ala	ggc Gly	gcg Ala	1682
gac Asp	gaa Glu 560	ggt Gly	gta Val	cgt Arg	cgt Arg	tcc Ser 565	ctg Leu	tct Ser	cca Pro	gaa Glu	ctg Leu 570	cgt Arg	gaa Glu	ggt Gly	gac Asp	1730

```
ccg tcc tct tcc cag cac ctg ccg tct acc ccg tcc tct cca cgt gtt
                                                                     1778
Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val
575
                    580
                                        585
ccg ggc gcg ctg gct gct gcg aaa gcg gcg aaa tac ggt gca gcg gtt
                                                                     1826
Pro Gly Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val
                595
                                    600
ccg ggt gta ctg ggc ggt ctg ggt gct ctg ggc ggt gtt ggt atc ccg
                                                                     1874
Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro
            610
                                615
ggc ggt gtt gta ggt gca ggc cca gct gca gct gct gct gcg gca aag
                                                                     1922
Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys
                            630
gca gcg gcg aaa gca gct cag ttc ggt ctg gtt ggt gca gca ggt ctg
                                                                     1970
Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu
    640
                        645
ggc ggt ctg ggt gtt ggc ggt ctg ggt gta ccg ggc gtt ggt ggt ctg
                                                                     2018
Gly Gly Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Leu
                    660
ggt ggc atc ccg ccg gcg gcg gca gct aaa gcg gct aaa tac ggt gca
                                                                     2066
Gly Gly Ile Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala
gca ggt ctg ggt ggc gtt ctg ggt ggt ggt cag ttc cca ctg ggc
                                                                     2114
Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly
            690
                                695
ggt gta gcg gca cgt ccg ggt ttc ggt ctg tcc ccg atc ttc cca qqc
                                                                     2162
Gly Val Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly
        705
                            710
                                                715
ggt gca tgc ctg ggt aaa gct tgc ggc cgt aaa cgt aaa taatgatag
                                                                    2210
Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
                        725
<210>
       4
<211>
       731
<212>
       PRT
<213>
      Homo sapiens
<400>
Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe
                                    10
                                                        15
Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro
```

25

Gly	Gly	Lys 35	Pro	Leu	Lys	Pro	Val 40	Pro	Gly	Gly	Leu	Ala 45	Gly	Ala	Gly
Leu	Gly 50	Ala	Gly	Leu	Gly	Ala 55	Phe	Pro	Ala	Val	Thr 60	Phe	Pro	Gly	Ala
Leu 65	Val	Pro	Gly	Gly	Val 70	Ala	Asp	Ala	Ala	Ala 75	Ala	Tyr	Lys	Ala	Ala 80
Lys	Ala	Gly	Ala	Gly 85	Leu	Gly	Gly	Val	Pro 90	Gly	Val	Gly	Gly	Leu 95	Gly
Val	Ser	Ala	Gly 100	Ala	Val	Val	Pro	Gln 105	Pro	Gly	Ala	Gly	Val 110	Lys	Pro
Gly	Lys	Val 115	Pro	Gly	Val	Gly	Leu 120	Pro	Gly	Val	Tyr	Pro 125	Gly	Gly	Val
Leu	Pro 130	Gly	Ala	Arg	Phe	Pro 135	Gly	Val	Gly	Val	Leu 140	Pro	Gly	Val	Pro
Thr 145	Gly	Ala	Gly	Val	Lys 150	Pro	Lys	Ala	Pro	Gly 155	Val	Gly	Gly	Ala	Phe 160
Ala	Gly	Ile	Pro	Gly 165	Val	Gly	Pro	Phe	Gly 170	Gly	Pro	Gln	Pro	Gly 175	Val
Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val

Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala
Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	Gly	Ile
Pro	Thr 370	Tyr	Gly	Val	Gly	Ala 375	Gly	Gly	Phe	Pro	Gly 380	Phe	Gly	Val	Gly
Val 385	Gly	Gly	Ile	Pro	Gly 390	Val	Ala	Gly	Val	Pro 395	Ser	Val	Gly	Gly	Val 400
Pro	Gly	Val	Gly	Gly 405	Val	Pro	Gly	Val	Gly 410	Ile	Ser	Pro	Glu	Ala 415	Gln
Ala	Ala	Ala	Ala 420	Ala	Lys	Ala	Ala	Lys 425	Tyr	Gly	Val	Gly	Thr 430	Pro	Ala
Ala	Ala	Ala 435	Ala	Lys	Ala	Ala	Ala 440	Lys	Ala	Ala	Gln	Phe 445	Gly	Leu	Val
Pro	Gly 450	Val	Gly	Val	Ala	Pro 455	Gly	Val	Gly	Val	Ala 460	Pro	Gly	Val	Gly
Val	Ala	Pro	Gly	Val	Gly	Leu	Ala	Pro	Gly	Val	Gly	Val	Ala	Pro	Gly

Page 9

475

Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 505 510

Gln Leu Arg Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly 515 520 525

Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly 530 535 540

Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu 545 550 555 560

Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser 565 570 575

Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly 580 585 590

Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly 595 600 605

Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly 610 615 620

Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala 625 630 635 640

Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly 645 650 655

Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly 660 665 670

Ile Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly 675 680 685

Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val 690 695 700

Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala 705 710 715 720

Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 725 730

<210> 5

<211> 698

<212> PRT

<213> Homo sapiens

<400> 5

Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe
5 10 15

Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro 20 25 30

Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35 40 45

Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala 50 55 60

Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala 65 70 75 80

Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly
85 90 95

Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro
100 105 110

Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val 115 120 125

Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro 130 135 140

Thr 145	Gly	Ala	Gly	Val	Lys 150	Pro	Lys	Ala	Pro	Gly 155	Val	Gly	Gly	Ala	Phe 160
Ala	Gly	Ile	Pro	Gly 165	Val	Gly	Pro	Phe	Gly 170	Gly	Pro	Gln	Pro	Gly 175	Val
Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val
Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala
Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	Gly	Ile

Pro	Thr 370	Tyr	Gly	Val	Gly	Ala 375	Gly	Gly	Phe	Pro	Gly 380	Phe	Gly	Val	Gly
Val 385	Gly	Gly	Ile	Pro	Gly 390	Val	Ala	Gly	Val	Pro 395	Ser	Val	Gly	Gly	Val 400
Pro	Gly	Val	Gly	Gly 405	Val	Pro	Gly	Val	Gly 410	Ile	Ser	Pro	Glu	Ala 415	Gln
Ala	Ala	Ala	Ala 420	Ala	Lys	Ala	Ala	Lys 425	Tyr	Gly	Val	Gly	Thr 430	Pro	Ala
Ala	Ala	Ala 435	Ala	Lys	Ala	Ala	Ala 440	Lys	Ala	Ala	Gln	Phe 445	Gly	Leu	Val
Pro	Gly 450	Val	Gly	Val	Ala	Pro 455	Gly	Val	Gly	Val	Ala 460	Pro	Gly	Val	Gly
Val 465	Ala	Pro	Gly	Val	Gly 470	Leu	Ala	Pro	Gly	Val 475	Gly	Val	Ala	Pro	Gly 480
Val	Gly	Val	Ala	Pro 485	Gly	Val	Gly	Val	Ala 490	Pro	Gly	Ile	Gly	Pro 495	Gly
Gly	Val	Ala	Ala 500	Ala	Ala	Lys	Ser	Ala 505	Ala	Lys	Val	Ala	Ala 510	Lys	Ala
Gln	Leu	Arg 515	Ala	Ala	Ala	Gly	Leu 520	Gly	Ala	Gly	Ile	Pro 525	Gly	Leu	Gly
Val	Gly 530	Val	Gly	Val	Pro	Gly 535	Leu	Gly	Val	Gly	Ala 540	Gly	Val	Pro	Gly
Leu 545	Gly	Val	Gly	Ala	Gly 550	Val	Pro	Gly	Phe	Gly 555	Ala	Val	Pro	Gly	Ala 560
Leu	Ala	Ala	Ala	Lys 565	Ala	Ala	Lys	Tyr	Gly 570	Ala	Ala	Val	Pro	Gly 575	Val
Leu	Gly	Gly	Leu 580	Gly	Ala	Leu	Gly	Gly 585	Val	Gly	Ile	Pro	Gly 590	Gly	Val

Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu 615 Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile 635 Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu 645 650 Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala 660 665 Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys 675 680 685 Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 690 695 <210> 6 <211> 661 <212> PRT <213> Homo sapiens <400> 6 Met Gly Gly Val Pro Gly Ala Val Pro Gly Gly Val Pro Gly Gly Val Phe Tyr Pro Gly Ala Gly Phe Gly Ala Val Pro Gly Gly Val Ala Asp 20 25 Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly 35 40 45 Val Pro Gly Val Gly Gly Leu Gly Val Ser Ala Gly Ala Val Val Pro 50 Gln Pro Gly Ala Gly Val Lys Pro Gly Lys Val Pro Gly Val Gly Leu 65 70

Pro Gly Val Tyr Pro Gly Phe Gly Ala Val Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Ala Phe Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val Pro Leu Gly Tyr Pro Ile Lys 130 135 Ala Pro Lys Leu Pro Gly Gly Tyr Gly Leu Pro Tyr Thr Thr Gly Lys 145 150 160 Leu Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly Ala Ala Gly Lys 165 170 Ala Gly Tyr Pro Thr Gly Thr Gly Val Gly Pro Gln Ala Ala Ala Ala 180 185 Ala Ala Ala Lys Ala Ala Lys Phe Gly Ala Gly Ala Gly Phe 195 200 Gly Ala Val Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val Pro Gly 210 215 Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val Gly Thr Pro Ala Ala 235 Ala Ala Ala Ala Ala Ala Lys Ala Lys Tyr Gly Ala Ala 250 Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val Val Gly 260 265 270 Val Pro Gly Phe Gly Ala Val Pro Gly Val Gly Val Pro Gly Ala Gly 275 280 Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Gly Phe Gly

Page 15

Ala 305	Val	Ser	Pro	Glu	Ala 310	Ala	Ala	Lys	Ala	Ala 315	Ala	Lys	Ala	Ala	Lys 320
Tyr	Gly	Ala	Arg	Pro 325	Gly	Val	Gly	Val	Gly 330	Gly	Ile	Pro	Thr	Tyr 335	Gly
Val	Gly	Ala	Gly 340	Gly	Phe	Pro	Gly	Phe 345	Gly	Val	Gly	Val	Gly 350	Gly	Ile
Pro	Gly	Val 355	Ala	Gly	Val	Pro	Ser 360	Val	Gly	Gly	Val	Pro 365	Gly	Val	Gly
Gly	Val 370	Pro	Gly	Val	Gly	Ile 375	Ser	Pro	Glu	Ala	Gln 380	Ala	Ala	Ala	Ala
Ala 385	Lys	Ala	Ala	Lys	Tyr 390	Gly	Val	Gly	Thr	Pro 395	Ala	Ala	Ala	Ala	Ala 400
Lys	Ala	Ala	Ala	Lys 405	Ala	Ala	Gln	Phe	Gly 410	Leu	Val	Pro	Gly	Val 415	Gly
Val	Ala	Pro	Gly 420	Val	Gly	Val	Ala	Pro 425	Gly	Val	Gly	Val	Ala 430	Pro	Gly
Val	Gly	Leu 435	Ala	Pro	Gly	Val	Gly 440	Val	Ala	Pro	Gly	Val 445	Gly	Val	Ala
Pro	Gly 450	Val	Gly	Val	Ala	Pro 455	Gly	Ile	Gly	Pro	Gly 460	Gly	Val	Ala	Ala
Ala 465	Ala	Lys	Ser	Ala	Ala 470	Lys	Val	Ala	Ala	Lys 475	Ala	Gln	Leu	Arg	Ala 480
Ala	Ala	Gly	Leu	Gly 485	Ala	Gly	Ile	Pro	Gly 490	Leu	Gly	Val	Gly	Val 495	Gly
Val	Pro	Gly	Leu 500	Gly	Val	Gly	Ala	Gly 505	Val	Pro	Gly	Leu	Gly 510	Val	Gly

Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala Leu Ala Ala 515 Lys Ala Ala Lys Tyr Gly Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Leu Gly Val Gly Leu 580 585 Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala 595 605 Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly 610 615 Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe 625 630 640 Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys 645 Gly Arg Lys Arg Lys 660 <210> 7 <211> 571 <212> PRT <213> Homo sapiens <400> 7 Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe 5 Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro

Gly	Gly	Lys 35	Pro	Leu	Lys	Pro	Val 40	Pro	Gly	Gly	Leu	Ala 45	Gly	Ala	Gly
Leu	Gly 50	Ala	Gly	Leu	Gly	Ala 55	Phe	Pro	Ala	Val	Thr 60	Phe	Pro	Gly	Ala
Leu 65	Val	Pro	Gly	Gly	Val 70	Ala	Asp	Ala	Ala	Ala 75	Ala	Tyr	Lys	Ala	Ala 80
Lys	Ala	Gly	Ala	Gly 85	Leu	Gly	Gly	Val	Pro 90	Gly	Val	Gly	Gly	Leu 95	Gly
Val	Ser	Ala	Gly 100	Ala	Val	Val	Pro	Gln 105	Pro	Gly	Ala	Gly	Val 110	Lys	Pro
Gly	Lys	Val 115	Pro	Gly	Val	Gly	Leu 120	Pro	Gly	Val	Tyr	Pro 125	Gly	Gly	Val
Leu	Pro 130	Gly	Ala	Arg	Phe	Pro 135	Gly	Val	Gly	Val	Leu 140	Pro	Gly	Val	Pro
Thr 145	Gly	Ala	Gly	Val	Lys 150	Pro	Lys	Ala	Pro	Gly 155	Val	Gly	Gly	Ala	Phe 160
Ala	Gly	Ile	Pro	Gly 165	Val	Gly	Pro	Phe	Gly 170	Gly	Pro	Gln	Pro	Gly 175	Val
Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val

Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala
Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	Gly	Ile
Pro	Thr 370	Tyr	Gly	Val	Gly	Ala 375	Gly	Gly	Phe	Pro	Gly 380	Phe	Gly	Val	Gly
Val 385	Gly	Gly	Ile	Pro	Gly 390	Val	Ala	Gly	Val	Pro 395	Ser	Val	Gly	Gly	Val 400
Pro	Gly	Val	Gly	Gly 405	Val	Pro	Gly	Val	Gly 410	Ile	Ser	Pro	Glu	Ala 415	Gln
Ala	Ala	Ala	Ala 420	Ala	Lys	Ala	Ala	Lys 425	Tyr	Gly	Val	Gly	Thr 430	Pro	Ala
Ala	Ala	Ala 435	Ala	Lys	Ala	Ala	Ala 440	Lys	Ala	Ala	Gln	Phe 445	Gly	Leu	Val
Pro	Gly 450	Val	Gly	Val	Ala	Pro 455	Gly	Val	Gly	Val	Ala 460	Pro	Gly	Val	Gly
Val 465	Ala	Pro	Gly	Val	Gly 470	Leu	Ala	Pro	Gly	Val 475	Gly	Val	Ala	Pro	Gly 480

Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 Gln Leu Arg Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly 520 Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly 530 535 Leu Gly Val Gly Ala Gly Cys Ser Gly Phe Arg Cys Trp Arg Gly Arg 545 550 555 Arg Cys Thr Ser Phe Pro Val Ser Arg Thr Ala 565 570 <210> 8 <211> 9 <212> PRT <213> Homo sapiens <400> 8 Lys Ala Pro Gly Val Gly Gly Ala Phe <210> 9 <211> 7 <212> PRT <213> Homo sapiens <400> 9 Arg Ala Ala Gly Leu Gly <210> 10 <211> 11 <212> PRT <213> Homo sapiens

<400> 10

```
Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp
<210> 11
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11
Lys Ala Ala Lys Ala Gly Ala Gly Leu
              5
<210> 12
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Ala Gly Ala Gly Leu Gly Gly Val
<210> 13
<211>
      13
<212> PRT
<213> Homo sapiens
<400> 13
Ala Leu Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala
<210> 14
<211> 11
<212> PRT
<213> Homo sapiens
<400> 14
Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val
<210> 15
<211> 11
<212> PRT
<213> Homo sapiens
<400> 15
```

```
Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
<210> 16
<211> 9
<212> PRT
<213> Homo sapiens
<400> 16
Arg Ser Leu Ser Pro Glu Leu Arg Glu
<210> 17
<211> 8
<212> PRT
<213> Homo sapiens
<400> 17
Gly Gln Leu Arg Ala Ala Gly
<210> 18
<211> 8
<212> PRT
<213> Homo sapiens
<400> 18
Val Gln Leu Arg Ala Ala Gly
<210> 19
<211> 8
<212> PRT
<213> Homo sapiens
<400> 19
Ile Gln Leu Arg Ala Ala Gly
<210> 20
<211> 8
<212> PRT
<213> Homo sapiens
```

<400> 20

```
Leu Gln Leu Arg Ala Ala Gly
<210> 21
<211> 8
<212> PRT
<213> Homo sapiens
<400> 21
Ala Asn Leu Arg Ala Ala Gly
               5
<210> 22
<211> 8
<212> PRT
<213> Homo sapiens
<400> 22
Ala Gly Leu Arg Ala Ala Gly
<210> 23
<211> 8
<212> PRT
<213> Homo sapiens
<400> 23
Ala Val Leu Arg Ala Ala Gly
<210> 24
<211> 8
<212> PRT
<213> Homo sapiens
<400> 24
Ala Ser Leu Arg Ala Ala Gly
<210> 25
<211> 8
<212> PRT
<213> Homo sapiens
<400> 25
```

```
Ala Gln Gly Arg Ala Ala Gly
<210> 26
<211> 8
<212> PRT
<213> Homo sapiens
<400> 26
Ala Gln Val Arg Ala Ala Gly
               5
<210> 27
<211> 8
<212> PRT
<213> Homo sapiens
<400> 27
Ala Gln Ile Arg Ala Ala Gly
<210> 28
<211> 8
<212> PRT
<213> Homo sapiens
<400> 28
Ala Gln Ala Arg Ala Ala Gly
<210> 29
<211> 8
<212> PRT
<213> Homo sapiens
<400> 29
Ala Gln Leu Arg Gly Ala Ala Gly
<210> 30
<211> 8
<212> PRT
<213> Homo sapiens
<400> 30
```

```
Ala Gln Leu Arg Val Ala Ala Gly
<210> 31
<211> 8
<212> PRT
<213> Homo sapiens
<400> 31
Ala Gln Leu Arg Ile Ala Ala Gly
               5
<210> 32
<211> 8
<212> PRT
<213> Homo sapiens
<400> 32
Ala Gln Leu Arg Leu Ala Ala Gly
<210> 33
<211> 8
<212> PRT
<213> Homo sapiens
<400> 33
Ala Gln Leu Arg Ala Gly Ala Gly
<210> 34
<211> 8
<212> PRT
<213> Homo sapiens
<400> 34
Ala Gln Leu Arg Ala Val Ala Gly
<210> 35
<211> 8
<212> PRT
<213> Homo sapiens
<400> 35
```

```
Ala Gln Leu Arg Ala Ile Ala Gly
<210> 36
<211> 8
<212> PRT
<213> Homo sapiens
<400> 36
Ala Gln Leu Arg Ala Leu Ala Gly
<210> 37
<211> 8
<212> PRT
<213> Homo sapiens
<400> 37
Ala Gln Leu Arg Ala Ala Gly Gly
<210> 38
<211> 8
<212> PRT
<213> Homo sapiens
<400> 38
Ala Gln Leu Arg Ala Ala Val Gly
<210> 39
<211> 8
<212> PRT
<213> Homo sapiens
<400> 39
Ala Gln Leu Arg Ala Ala Ile Gly
<210> 40
<211> 8
<212> PRT
<213> Homo sapiens
<400> 40
```

```
Ala Gln Leu Arg Ala Ala Leu Gly
<210> 41
<211> 8
<212> PRT
<213> Homo sapiens
<400> 41
Ala Gln Leu Arg Ala Ala Ala Ala
              5
<210> 42
<211> 8
<212> PRT
<213> Homo sapiens
<400> 42
Ala Gln Leu Arg Ala Ala Ile
<210> 43
<211> 8
<212> PRT
<213> Homo sapiens
<400> 43
Ala Gln Leu Arg Ala Ala Val
<210> 44
<211> 8
<212> PRT
<213> Homo sapiens
<400> 44
Ala Gln Leu Arg Ala Ala Leu
<210> 45
<211> 8
<212> PRT
<213> Homo sapiens
<400> 45
```

```
Val Gly Gly Ala Leu Ala Ala Ala
<210> 46
<211> 8
<212> PRT
<213> Homo sapiens
<400> 46
Gly Pro Gly Ala Leu Ala Ala Ala
<210> 47
<211> 8
<212> PRT
<213> Homo sapiens
<400> 47
Ile Pro Gly Ala Leu Ala Ala Ala
<210> 48
<211> 8
<212> PRT
<213> Homo sapiens
<400> 48
Leu Pro Gly Ala Leu Ala Ala Ala
<210> 49
<211> 8
<212> PRT
<213> Homo sapiens
<400> 49
Ala Pro Gly Ala Leu Ala Ala Ala
<210> 50
<211> 8
<212> PRT
<213> Homo sapiens
<400> 50
```

```
Val Pro Gly Ala Leu Ala Ala Ala
<210> 51
<211> 8
<212> PRT
<213> Homo sapiens
<400> 51
Val Pro Ile Ala Leu Ala Ala Ala
               5
<210> 52
<211> 8
<212> PRT
<213> Homo sapiens
<400> 52
Val Pro Leu Ala Leu Ala Ala
<210> 53
<211> 8
<212> PRT
<213> Homo sapiens
<400> 53
Val Pro Val Ala Leu Ala Ala Ala
<210> 54
<211> 8
<212> PRT
<213> Homo sapiens
<400> 54
Val Pro Gly Ala Gly Ala Ala Ala
<210> 55
<211> 8
<212> PRT
<213> Homo sapiens
<400> 55
```

```
Val Pro Gly Ala Ile Ala Ala Ala
<210> 56
<211> 8
<212> PRT
<213> Homo sapiens
<400> 56
Val Pro Gly Ala Ala Ala Ala Ala
              5
<210> 57
<211> 8
<212> PRT
<213> Homo sapiens
<400> 57
Val Pro Gly Ala Val Ala Ala Ala
<210> 58
<211> 8
<212> PRT
<213> Homo sapiens
<400> 58
Val Pro Gly Ala Leu Gly Ala Ala
<210> 59
<211> 8
<212> PRT
<213> Homo sapiens
<400> 59
Val Pro Gly Ala Leu Ile Ala Ala
<210> 60
<211> 8
<212> PRT
<213> Homo sapiens
<400> 60
```

```
Val Pro Gly Ala Leu Leu Ala Ala
<210> 61
<211> 8
<212> PRT
<213> Homo sapiens
<400> 61
Val Pro Gly Ala Leu Val Ala Ala
               5
<210> 62
<211> 8
<212> PRT
<213> Homo sapiens
<400> 62
Val Pro Gly Ala Leu Ala Gly Ala
<210> 63
      8
<211>
<212> PRT
<213> Homo sapiens
<400> 63
Val Pro Gly Ala Leu Ala Ile Ala
<210> 64
<211> 8
<212> PRT
<213> Homo sapiens
<400> 64
Val Pro Gly Ala Leu Ala Leu Ala
<210> 65
<211> 8
<212> PRT
<213> Homo sapiens
<400> 65
```

```
Val Pro Gly Ala Leu Ala Val Ala
<210> 66
<211> 8
<212> PRT
<213> Homo sapiens
<400> 66
Val Pro Gly Ala Leu Ala Ala Ala
               5
<210> 67
<211> 8
<212> PRT
<213> Homo sapiens
<400> 67
Val Pro Gly Ala Leu Ala Ala Gly
<210> 68
<211> 8
<212> PRT
<213> Homo sapiens
<400> 68
Val Pro Gly Ala Leu Ala Ala Ile
<210> 69
<211> 8
<212> PRT
<213> Homo sapiens
<400> 69
Val Pro Gly Ala Leu Ala Ala Leu
<210> 70
<211> 8
<212> PRT
<213> Homo sapiens
<400> 70
```

<210> 71 <211> 515 <212> PRT <213> Homo sapiens <400> 71 Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe 5 Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro 20 Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85 90 Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro 100 105 Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val 115 120 Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro 130 135 Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Ala Phe 145 155 Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val

Val Pro Gly Ala Leu Ala Ala Val

165

Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val
Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala
Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	Gly	Ile
Pro	Thr 370	Tyr	Gly	Val	Gly	Ala 375	Gly	Gly	Phe	Pro	Gly 380	Phe	Gly	Val	Gly
Val 385	Gly	Gly	Ile	Pro	Gly 390	Val	Ala	Gly	Val	Pro 395	Ser	Val	Gly	Gly	Val 400

Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln
405 410 415

Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala 420 425 430

Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 435 440 445

Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly 450 455 460

Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly 465 470 475 480

Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly
485 490 495

Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 505 510

Gln Leu Arg 515

<210> 72

<211> 49

<212> PRT

<213> Homo sapiens

<400> 72

Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val 1 5 10 15

Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
20 25 30

Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg 35 40 45

Arg

<210> 73

<211> 171

<212> PRT

<213> Homo sapiens

<400> 73

Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser 1 10 15

Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly 20 25 30

Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly
35 40 45

Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly 50 55 60

Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala 65 70 75 80

Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly 85 90 95

Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly 100 105 110

Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly
115 120 125

Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val

Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala 145 150 155 160

Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 165 170

<210> 74

<211> 183

<212> PRT

<213> Homo sapiens

<400> 74

Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val 1 5 10 15

Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val 20 25 30

Gly Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala Leu Ala Ala 35 40 45

Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly 50 55 60

Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala 65 70 75 80

Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala 85 90 95

Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly
100 105 110

Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala 115 120 125

Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val

Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro 145 150 155 160

Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys 165 170 175

Ala Cys Gly Arg Lys Arg Lys 180

<210> 75

<211> 18

<212> PRT

```
<213> bovine tropoelastin
<400> 75
Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Gly Gly
Ala Phe
<210> 76
<211> 17
<212> PRT
<213> mouse tropoelastin
<400> 76
Val Pro Thr Gly Thr Gly Val Lys Ala Lys Ala Pro Gly Gly Gly Ala
Phe
<210> 77
<211> 18
<212> PRT
<213> bovine elastin
<400> 77
Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Gln Val Gly Ala Gly
Ala Phe
<210> 78
<211> 16
<212> PRT
<213> rat tropoelastin
<400> 78
Val Pro Thr Gly Thr Gly Val Lys Ala Lys Val Pro Gly Gly Gly
                                   10
<210> 79
<211>
      15
```

```
<212> PRT
<213> chicken tropoelastin
<400> 79
Val Pro Thr Gly Thr Gly Ile Lys Ala Lys Gly Pro Gly Ala Gly
<210> 80
<211>
      17
<212> PRT
<213> mouse tropoelastin
<400> 80
Lys Ala Ala Ala Lys Ala Gln Tyr Arg Ala Ala Gly Leu Gly Ala
                                   10
Gly
<210> 81
<211> 17
<212> PRT
<213> bovine elastin
<400> 81
Lys Ala Ala Ala Lys Ala Gln Phe Arg Ala Ala Ala Gly Leu Pro Ala
                                   10
Gly
<210> 82
<211> 20
<212> PRT
<213> Artificial
<220>
<223> tropoelastin consensus sequence
<220>
<221> MISC FEATURE
<222> (9)..(9)
<223>
      IS AN AROMATIC OR HYDROPHOBIC RESIDUE
<220>
<221> MISC FEATURE
```

```
<222> (16)..(16)
<223> can be either Pro or Gly
<220>
      MISC FEATURE
<221>
<222>
      (19)..(19)
<223>
      is a hydrophobic residue
<400> 82
Ala Lys Ala Ala Ala Lys Ala Gln Xaa Arg Ala Ala Ala Gly Leu Xaa
Ala Gly Xaa Pro
<210> 83
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221>
      VARIANT
<222>
      (7)..(8)
<223>
      there is a reduced peptide bond between Arg and Ala
<400> 83
Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala
<210> 84
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221>
      VARIANT
<222>
      (7)..(8)
<223>
      there is a reduced peptide bond between Ala and Arg
<400> 84
Ala Gly Leu Gly Ala Ala Ala Arg Leu Gln Ala Lys Ala Ala
<210> 85
<211> 14
<212> PRT
```

```
<213> Homo sapiens
<400> 85
Ala Gly Leu Gly Ala Ala Ala Arg Leu Gln Ala Lys Ala Ala
<210> 86
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (4)..(5)
<223> there is a reduced peptide bond between Ala and Leu
<400> 86
Val Pro Gly Ala Leu Ala Ala Ala
<210> 87
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (4)..(5)
<223> there is a reduced peptide bond between Leu and Ala
<400> 87
Ala Ala Leu Ala Gly Pro Val
<210> 88
<211> 8
<212> PRT
<213> Homo sapiens
<400> 88
Ala Ala Leu Ala Gly Pro Val
<210> 89
<211> 30
```

```
<212> DNA
<213> Artificial
<220>
<223> mutagenic primer
<400> 89
cgggtttcgg tgctgttccg ggcgcgctgg
                                                                       30
<210> 90
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 90
gggtgttggc gttgcaccag
                                                                       20
<210> 91
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 91
tgcacctaca acaccgcccg
                                                                       20
<210> 92
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 92
tgcctttgcc ggtttgtacg
                                                                       20
<210> 93
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 93
```

tccagg	tggc tacggtctgc	20
<210><211><212><213>		
<220> <223>	primer	
<400> gagtac	94 ctac gcctgcgata c	21
<211> <212>	95 20 DNA Artificial	
<220> <223>	primer	
<400> ggagta	95 Ccaa cgccgtactt	20
	96 20 DNA Artificial	
<220> <223>	primer	
<400> gggtgti	96 Eggc gttgcaccag	20
<210><211><211><212><213>	97 20 DNA Artificial	
<220> <223>	primer	
<400> tgcacct	97 Laca acaccgcccg	20
<210><211><212><212><213>	98 20 DNA Artificial	

```
<220>
<223> primer
<400> 98
gcactcacta tagggagacc
                                                                     20
<210> 99
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 99
gccaactcag cttcctttcg
                                                                     20
<210> 100
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 100
taatacgact cactataggg
                                                                     20
<210> 101
<211> 15
<212> PRT
<213> Homo sapiens
<400> 101
Val Val Gly Ser Pro Ser Ala Gln Asp Glu Ala Ser Pro Leu Ser
                                   10
<210> 102
<211> 10
<212> PRT
<213> Homo sapiens
<400> 102
Lys Ala Ala Ala Lys Ala Gly Ala Gly Leu
                                   10
<210> 103
```

```
<211> 12
<212> PRT
<213> Homo sapiens
<400> 103
Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala
<210> 104
<211> 11
<212> PRT
<213> Homo sapiens
<400> 104
Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val
<210> 105
<211> 18
<212> PRT
<213> Homo sapiens
<400> 105
Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Phe Tyr
           5
Pro Gly
<210> 106
<211> 5
<212> PRT
<213> Homo sapiens
<400> 106
Arg Ala Ala Gly
```