Derive Maxwell's equations from field theory viewpoint

YILUN LIN

June 2025

This note aims to derive the Maxwell's equations in classical electrodynamics from the axiomatic field theory viewpoint. The derivation starts with the well-known expression of the Lagrangian \mathcal{L} of a electromagnetic field in field theory and proceeds in three steps:

- 1. Assumptions and Lagrangian;
- 2. Variation \longrightarrow Euler-Lagrange Equations \longrightarrow Inhomogeneous Maxwell's equations;
- 3. Bianchi Identity of the Field Strength Tensor \longrightarrow Homogeneous Maxwell's equations.

1 Lagrangian Density

- (a) Basic field variable: The electromagnetic field is described by the four-potential $A_{\mu}(\vec{x})$ in field theory.
- (b) Definition of the strength of field:

$$\mathbf{F}_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad \mathbf{F}^{\mu\nu} = \mathbf{g}^{\mu\alpha}\mathbf{g}^{\nu\beta}\mathbf{F}_{\alpha\beta}. \tag{1.1}$$

(c) Construct the Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} - j^{\mu} A_{\mu}. \tag{1.2}$$

Note:

- 1. The kinetic term $-\frac{1}{4}\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}$ ensures the correct field dynamics and energy-momentum tensor.
- 2. The second term in (1.2) enforces coupling to sources and yields charge conservation $\partial_{\mu}j^{\mu}=0$ by gauge invariance.

2 Variation and Inhomogeneous Maxwell's Equations

It should be noted that the action

$$S = \int d^4x \, \mathcal{L} \tag{2.1}$$

must be stationary on the boundary of the region.

While the Euler-Lagrange equations read

$$\frac{\partial \mathcal{L}}{\partial A_{\mu}} - \partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} A_{\mu})} = 0, \tag{2.2}$$

thus

$$\partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} A_{\mu})} \frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0. \tag{2.3}$$

Firstly, we compute

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\mu})} = -\frac{1}{4} \cdot 2 \, \mathbf{F}_{\rho\sigma} \frac{\partial \mathbf{F}^{\rho\sigma}}{\partial(\partial_{\nu}A_{\mu})}$$

$$= -\frac{1}{2} \, \mathbf{F}^{\rho\sigma} (\delta^{\nu}_{\rho}\delta^{\mu}_{\sigma} - \delta^{\nu}_{\sigma}\delta^{\mu}_{\rho})$$

$$= -\mathbf{F}^{\nu\mu}.$$
(2.4)

and since

$$\frac{\partial \mathcal{L}}{\partial A_{\mu}} = -j^{\mu}, \tag{2.5}$$

substituting into the Euler-Lagrange equations gives

$$\partial_{\nu}(-\mathbf{F}^{\nu\mu}) - (-j^{\mu}) = 0$$

$$\partial_{\nu}\mathbf{F}^{\nu\mu} = j^{\mu}.$$
 (2.6)

These are the inhomogeneous set of the Maxwell's equations (i.e.Gauss's law and the Ampere-Maxwell law):

$$\nabla \cdot \mathbf{E} = \rho \,, \tag{2.7}$$

$$\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{j} . \tag{2.8}$$

3 Bianchi Identity and Homogeneous Maxwell's Equations

Since $\mathbf{F}_{\mu\nu}$ is antisymmetric by definition (1.1), we always have the identity

$$\partial_{\lambda} \mathbf{F}_{\mu\nu} + \partial_{\mu} \mathbf{F}_{\nu\lambda} + \partial_{\nu} \mathbf{F}_{\lambda\mu} = 0. \tag{3.1}$$

This identity is exactly the homogeneous set of Maxwell's equations:

$$\nabla \cdot \mathbf{B} = 0 , \qquad (3.2)$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0. \tag{3.3}$$

We have already derived the classical Maxwell's equations from field theory viewpoint.

QED.