

Data Analysis with Python

House Sales in King County, USA

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Variable	Description
id	A notation for a house
date	Date house was sold
price	Price is prediction target
bedrooms	Number of bedrooms
bathrooms	Number of bathrooms
sqft_living	Square footage of the home
sqft_lot	Square footage of the lot
floors	Total floors (levels) in house
waterfront	House which has a view to a waterfront
view	Has been viewed
condition	How good the condition is overall
grade	overall grade given to the housing unit, based on King County grading system
sqft_above	Square footage of house apart from basement
sqft_basement	Square footage of the basement
yr_built	Built Year
yr_renovated	Year when house was renovated
zipcode	Zip code
lat	Latitude coordinate

Variable Description

long

Longitude coordinate

sqft_living15 Living room area in 2015(implies— some renovations) This might or might not have affected the lotsize area

sqft_lot15 LotSize area in 2015(implies— some renovations)

You will require the following libraries:

In [1]:

```
%config Completer.use_jedi= False
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Module 1: Importing Data Sets

Load the csv:

In [2]:

```
file_name='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperS
df=pd.read_csv(file_name)
```

We use the method head to display the first 5 columns of the dataframe.

In [3]:

```
df.head()
```

Out[3]:

	Unnamed: 0	id	date	price	bedrooms	bathrooms	sqft_living	sqft_
0	0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	56
1	1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	72
2	2	5631500400	20150225T000000	180000.0	2.0	1.00	770	100
3	3	2487200875	20141209T000000	604000.0	4.0	3.00	1960	50
4	4	1954400510	20150218T000000	510000.0	3.0	2.00	1680	80

5 rows × 22 columns

Question 1

Display the data types of each column using the function dtypes, then take a screenshot and submit it, include your code in the image.

In [4]:

df	ď	t١	٧ľ	эe	S

Out[4]:

Unnamed: 0	int64
id	int64
date	object
price	float64
bedrooms	float64
bathrooms	float64
sqft_living	int64
sqft lot	int64
floors	float64
waterfront	int64
view	int64
condition	int64
grade	int64
sqft_above	int64
sqft_basement	int64
yr_built	int64
yr_renovated	int64
zipcode	int64
lat	float64
long	float64
sqft_living15	int64
sqft_lot15	int64
dtype: object	

We use the method describe to obtain a statistical summary of the dataframe.

In [5]:

df.describe()

Out[5]:

	Unnamed: 0	id	price	bedrooms	bathrooms	sqft_living	
count	21613.00000	2.161300e+04	2.161300e+04	21600.000000	21603.000000	21613.000000	2.1
mean	10806.00000	4.580302e+09	5.400881e+05	3.372870	2.115736	2079.899736	1.5
std	6239.28002	2.876566e+09	3.671272e+05	0.926657	0.768996	918.440897	4.1
min	0.00000	1.000102e+06	7.500000e+04	1.000000	0.500000	290.000000	5.2
25%	5403.00000	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.0
50%	10806.00000	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.6
75%	16209.00000	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.0
max	21612.00000	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.6

8 rows × 21 columns

Module 2: Data Wrangling

Question 2

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

In [6]:

```
df.drop('id', axis= 1, inplace= True)
df.drop('Unnamed: 0', axis= 1, inplace= True)
df.describe()
```

Out[6]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	
count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21
mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	
std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	
min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	
4							•

We can see we have missing values for the columns bedrooms and bathrooms

In [7]:

```
print("number of NaN values for the column bedrooms :", df['bedrooms'].isnull().sum())
print("number of NaN values for the column bathrooms :", df['bathrooms'].isnull().sum())
```

```
number of NaN values for the column bedrooms : 13
number of NaN values for the column bathrooms : 10
```

We can replace the missing values of the column 'bedrooms' with the mean of the column 'bedrooms' using the method replace(). Don't forget to set the inplace parameter to True

In [8]:

```
mean=df['bedrooms'].mean()
df['bedrooms'].replace(np.nan,mean, inplace=True)
```

We also replace the missing values of the column 'bathrooms' with the mean of the column 'bathrooms' using the method replace(). Don't forget to set the inplace parameter top True

In [9]:

```
mean=df['bathrooms'].mean()
df['bathrooms'].replace(np.nan,mean, inplace=True)
```

In [10]:

```
print("number of NaN values for the column bedrooms :", df['bedrooms'].isnull().sum())
print("number of NaN values for the column bathrooms :", df['bathrooms'].isnull().sum())
number of NaN values for the column bedrooms : 0
```

number of NaN values for the column bedrooms : 0 number of NaN values for the column bathrooms : 0

Module 3: Exploratory Data Analysis

Question 3

Use the method value_counts to count the number of houses with unique floor values, use the method .to frame() to convert it to a dataframe.

In [11]:

```
df.value_counts('floors').to_frame()
```

Out[11]:

0

1.0 10680

2.0 8241

1.5 1910

3.0 613

2.5 161

3.5 8

Question 4

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

In [12]:

```
sns.boxplot(x= 'waterfront', y= 'price', data= df)
```

Out[12]:

<AxesSubplot:xlabel='waterfront', ylabel='price'>

Question 5

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price.

In [13]:

```
sns.regplot(x='sqft_above', y='price', data= df)
```

Out[13]:

<AxesSubplot:xlabel='sqft_above', ylabel='price'>

We can use the Pandas method corr() to find the feature other than price that is most correlated with price.

In [14]:

```
df.corr()['price'].sort_values()
```

Out[14]:

zipcode	-0.053203
long	0.021626
condition	0.036362
yr_built	0.054012
sqft_lot15	0.082447
sqft_lot	0.089661
<pre>yr_renovated</pre>	0.126434
floors	0.256794
waterfront	0.266369
lat	0.307003
bedrooms	0.308797
sqft_basement	0.323816
view	0.397293
bathrooms	0.525738
sqft_living15	0.585379
sqft_above	0.605567
grade	0.667434
sqft_living	0.702035
price	1.000000
Name: price,	dtype: float6

Module 4: Model Development

We can Fit a linear regression model using the longitude feature 'long' and caculate the R^2.

```
In [15]:
```

```
X = df[['long']]
Y = df['price']
lm = LinearRegression()
lm.fit(X,Y)
lm.score(X, Y)
```

Out[15]:

0.00046769430149007363

Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.

In [16]:

```
from sklearn.linear_model import LinearRegression
x= df[['sqft_living']]
y= df[['price']]
mod= LinearRegression()
mod.fit(x,y)
mod.score(x,y)
```

Out[16]:

0.4928532179037931

Question 7

Fit a linear regression model to predict the 'price' using the list of features:

In [17]:

```
features =["floors", "waterfront","lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"bathrooms",'
```

Then calculate the R^2. Take a screenshot of your code.

```
In [18]:
```

```
X = df[features]
Y = df['price']
lm.fit(X,Y)
lm.score(X,Y)
```

Out[18]:

0.6576546282972422

This will help with Question 8

```
'scale'

'polynomial'

'model'

The second element in the tuple contains the model constructor

StandardScaler()

PolynomialFeatures(include_bias=False)

LinearRegression()

In [19]:

Input=[('scale',StandardScaler()),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomial', PolynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('polynomialFeatures(include_bias=False)),('
```

Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features, and calculate the R^2.

```
In [20]:
```

```
pipe=Pipeline(Input)
pipe.fit(X,Y)
pipe.score(X,Y)

Out[20]:
```

0.7501473274286601

Module 5: Model Evaluation and Refinement

Import the necessary modules:

```
In [21]:
```

```
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
print("done")
```

done

We will split the data into training and testing sets:

In [22]:

```
features =["floors", "waterfront","lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"bathrooms","
X = df[features]
Y = df['price']

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.15, random_state=1)

print("number of test samples:", x_test.shape[0])
print("number of training samples:",x_train.shape[0])
```

```
number of test samples: 3242
number of training samples: 18371
```

Question 9

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R^2 using the test data.

In [23]:

```
from sklearn.linear_model import Ridge
```

In [24]:

```
RigeMod=Ridge(alpha=0.1)
RigeMod.fit(x_train, y_train)
RigeMod.score(x_test, y_test)
```

Out[24]:

0.6478759163939112

Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.

In [25]:

```
Polyr = PolynomialFeatures(degree=2)
x_train_Polyr = Polyr.fit_transform(x_train)
x_test_Polyr = Polyr.fit_transform(x_test)

RigeMod2=Ridge(alpha=0.1)
RigeMod2.fit(x_train_Polyr, y_train)
RigeMod2.score(x_test_Polyr, y_test)
```

Out[25]:

0.7002744262014625

Once you complete your notebook you will have to share it. Select the icon on the top right a marked in red in the image below, a dialogue box should open, and select the option all content excluding sensitive code cells.

You can then share the notebook via a URL by scrolling down as shown in the following image:

About the Authors:

Joseph Santarcangelo (https://www.linkedin.com/in/joseph-s-50398b136/?
utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=N
SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork202353262021-01-01) has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Other contributors: Michelle Carey (https://www.linkedin.com/in/michelleccarey/?

utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=N

SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork202353262021-01-01), Mavis Zhou (https://www.linkedin.com/in/jiahui-mavis-zhou-a4537814a?

utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=N

SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork202353262021-01-01)

Change Log

Change Description	Changed By	Version	Date (YYYY-MM-DD)
Coverted Data describtion from text to table	Aije Egwaikhide	2.2	2020-12-01
Changed markdown instruction of Question1	Lakshmi Ho ll a	2.1	2020-10-06
Added lab to GitLab	Malika Singla	2.0	2020-08-27

© IBM Corporation 2020. All rights reserved.

In []:			