[320] Unsupervised ML Recap

50

10

Non-Hierarchical Clustering (for example, KMeans)

A	В	С	D
50	50	110	90
•••	•••	•••	•••

...hundreds of rows...

Centroids

	Α	В	С	D
_	250	0	15	12
	45	45	100	102
	0	95	24	80

km.cluster_centers_

Decomposition (for example, PCA)

A	В	С	D
50	50	110	90
•••	•••	•••	•••

...hundreds of rows...

Component Rows

pca.components

Preprocessing: Clustering or Decomposition?

xl	x 2	у
10	5	TRUE
•••	•••	•••

Preprocessing: Clustering or Decomposition?

_xl	x2	у
10	5	TRUE
•••	•••	•••

```
model = Pipeline([
    ????,
    ("lr", LogisticRegression())
])
```


AgglomerativeClustering can show us that the two big clusters contain sub clusters.

After identifying some clusters from initial data, we will need to look at new data points and find what cluster is the best match

Use **KMeans**, because it can do fit and predict on separate datasets. AgglomerativeClustering can only do fit_predict on a single dataset.