第三章 导数、微分、边际与弹性

_	、选择题 (选择正确	角的选项)		
1.	已知生产某商品 <i>Q</i> 需求将 ().	单位,需求函数为 Q	$P = 16 - \frac{P}{3}, \stackrel{\text{def}}{=} P = 8 \text{ Fg}$	十, 若价格上涨 1%, 则
	(A) 减少 0.8%	(B) 增加 0.8%	(C) 减少 0.2%	(D) 增加 0.2%
2.	函数 $f(x) = \frac{x^2 - x}{x^2 - 1} \sqrt{1 + \frac{1}{x^2}}$ 的第一类间断点的个数为 ().			
	(A) 0	(B) 1	(C) 2	(D) 3
3.	设 $Q = f(p)$ 为需求函数, 其中 p 为价格 (单位: 元 / 吨), Q 为需求量 (单位: 吨). 若价格为 100 元 / 吨时的需求弹性为 $\eta(100) = -\frac{100}{f(100)}$, $f'(100) = 0.25$, 则当价格			
	调整为101元/吨时,需求量将约().			
	(A) 增加 25%	(B) 增加 0.25%	(C) 减少 25%	(D) 减少 0.25%
4.	函数 $y = \sin x $ 在 $x = 0$ 处是 ().			
	(A) 无定义		(B) 有定义, 但不过	连续
	(C) 连续但不可导		(D) 连续且可导	
5.	设 $y = x + \sin x$, dy 是 y 在 $x = 0$ 点的微分,则当 $\Delta x \rightarrow 0$ 时,有 ().			
	(A) dy 与 Δx 相比是等价无穷小			
	(B) dy 与 Δx 相比是同阶 (非等价) 无穷小			
	(C) dy 是比 Δx 高阶的无穷小			
	(D) dy 是比 Δx 低層	阶的无穷小		

(B) $-\ln 2 dx$ (C) 2 dx (D) $\ln 2 dx$

6. 设函数 $y = (1 + \cos x)^{\arcsin x}$, 则微分 $dy|_{x=0} = ($).

(A) -2 dx

- **7**. 设需求函数 $Q = 3000e^{-0.125p}$, 则当价格 p = 10, 且上涨 1% 时,需求量 Q 约 () (A) 减少 1.25% (B) 增加 1.25% (C) 减少 125% (D) 增加 125% **8.** 设 f(x) 的定义域为 [0,1], 则函数 $f\left(x+\frac{1}{4}\right)+f\left(x-\frac{1}{4}\right)$ 的定义域为 (). (B) $\left[-\frac{1}{4}, \frac{5}{4}\right]$ (C) $\left[-\frac{1}{4}, \frac{1}{4}\right]$ (D) $\left[\frac{1}{4}, \frac{3}{4}\right]$
- **9.** 设函数 $f(x) = \sin 2x + 3^x$, 则导数值 f'(0) = (). (A) $\ln 3 - 2$ (B) $\ln 3 + 2$ (C) 1 (D) $\ln 3 + 1$
- **10.** 设 $f(x) = 3^x + x^2 + \ln 3$, 则 f'(1) 等于 (). (B) $\frac{1}{3}$ (C) $\frac{3}{\ln 3} + 2$ (D) $3\ln 3 + 2$ (A) 3 ln 3
- **11.** 设 f(x) 在 x = 1 处可导,则 $\lim_{x \to 0} \frac{f(x+1) f(1-x)}{x} = ($) (A) f'(1)(B) 2f'(1) (C) 0 (D) f'(2)
- **12.** 某需求函数为 Q = -100P + 3000,那么当 P = 20 时需求的价格弹性 $E_d = ($) (A) 2(B) 1000 (C) -100(D) -2
- **13.** 设 $f(x) = 2^x + \ln 2$, 则 f'(1) 等于 (). (B) $2\ln 2 + \frac{1}{2}$; (C) $\frac{2}{\ln 2}$; (D) $\frac{2}{2\ln 2} + \frac{1}{2}$. (A) 2ln2;
- **二、填空**题(请将答案写在横线上)

(A)[0,1]

- **1.** 设函数 y = f(x) 由方程 $e^{2x+y} \cos(xy) = e-1$ 所确定, 则曲线 y = f(x) 在 (0,1)处的切线方程为 _____.
- **2.** 设函数 $f(x) = \frac{1}{3x+2}$, 对正整数 n, 则 $f^{(n)}(0) = _____.$
- 3. 设产量为 Q, 单价为 P, 厂商成本函数为 C(Q) = 100 + 13Q, 需求函数为 Q(P) = 100 + 13Q $\frac{800}{P+3}$ - 2,则厂商取得最大利润时的产量为 ______.
- **4.** 设函数 $f(x) = (1 + \cos x)^{\frac{1}{x}}$, $dy|_{x=\frac{\pi}{2}} = \underline{\hspace{1cm}}$.

5. 设
$$\begin{cases} x = f'(t) \\ y = t f'(t) - f(t) \end{cases}$$
 ,其中 $f(t)$ 具有二阶导数,且 $f''(t) \neq 0$,则 $\frac{d^2 y}{dx^2} =$ ______.

6. 设函数
$$f(x) = x(\sin x)^{\cos x}$$
, 则 $f'(\frac{\pi}{2}) =$ _____.

- **7.** 设商品的需求函数为 Q = 100 5P, 其中 Q, P 分别表示需求量和价格. 如果商品需求弹性的绝对值大于 1, 则商品的价格的取值范围是
- **8.** 设曲线 $f(x) = x^n, n \in N$ 在点(1,1)处的切线与 x 轴相交于(ξ_n ,0),则极限 $\lim_{n \to \infty} f(\xi_n)$ = .
- **9.** 由参数方程 $\begin{cases} x = 2\cos t \\ y = 2\sin^3 t \end{cases}$ 所确定的曲线在 $t = \frac{\pi}{4}$ 处的切线方程是______.
- **10.** 设 $y = f(\sqrt{x})f^2(x) + f(e)$, 其中 f(x) 在 R 上可导,则 y' =_____.
- **11.** 设函数 $y = xe^x$, 对正整数 n, n 阶导数 $y^{(n)} =$
- **12.** 某商品的需求函数为 Q = 400 100P, 则 P = 2 时的需求弹性为 . .
- **13.** 设函数 $y = \frac{x}{\ln x}$, 则导数 $y' = \underline{\hspace{1cm}}$.
- **14.** 曲线 $\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在 t = 1 的对应点处的切线方程是 ______.
- **15.** $\forall y = (1 + \sin x)^x$, $||y'||_{x=\pi} = \underline{\hspace{1cm}}$.
- **16.** 已知某商品的需求函数为 $Q = 16 \frac{P}{3}(P)$ 为价格, Q 为需求量), 当价格 P = 8 时, 若价格上涨 1%, 则需求量将下降约
- **17.** 曲线 $y + xe^y = 1$ 在点 P(0,1) 处的切线方程是 . .
- **18.** 已知某商品的需求函数为 Q = 3000 100P, (P 为价格,Q 为需求量), 当价格 P = 20 时, 若价格上涨 1%, 则需求量将下降 ______.
- **19.** 设函数 $f(x) = xe^x$, 对正整数 n, 则 $f^{(n)}(0) = _____.$

- **20.** 设函数 $y = \frac{x \sin x}{1 + x}$, 则微分 dy =______.
- **21.** 曲线 $y = xe^x$ 在点 (0,0) 处切线的方程是 _____.
- **22.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是 ______.
- **23.** 设生产某产品 Q 单位的总成本为 $C(Q) = 1100 + \frac{Q^2}{1200}$,则生产 1800 个单位产品时的边际成本是
- **24.** 曲线 $y = xe^x$ 在拐点处切线的斜率是
- **25.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是_____.
- 三、计算题(请给出必要的步骤)
- **1.** 设 $y = f\left(\frac{1}{x}\right) e^{-f(x)}$, 其中 f(x) 可导, 求 dy.
- **2.** 设函数 y = y(x) 由参数方程 $\begin{cases} x = t \ln(t+1) \\ y = t^3 + t^2 \end{cases}$ 所确定, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **3.** 设 f(x) 是可导函数, 求函数 $y = f(\tan x) \cdot \arcsin[f(x)] + e^2$ 的导数.
- **4.** 设函数 $f(x) = \begin{cases} \frac{\varphi(x) \cos x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$, 其中 $\varphi(t)$ 具有连续的二阶导数, 且 $\varphi(0) = 1$
 - (1) 确定 a 的值, 使 f(x) 在点 x = 0 处可导, 并求 f'(x);
 - (2) 讨论 f'(x) 在点 x = 0 处的连续性.
- - (1) k 为何值时, f(x) 有极限;
 - (2) k 为何值时, f(x) 连续;

- (3) k 为何值时, f(x) 可导.
- **6.** 求由参数方程 $\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$,所确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- 7. 求由方程 $\sin(xy) + \ln(y-x) = x$ 所确定的隐函数 y 在 x = 0 处的导数 y'(0).
- **8.** 已知 $y = x \ln x$, 求 $y^{(n)}$.
- 9. 设函数 $f(x) = \begin{cases} \sin(x^2), & x \le 0 \\ \frac{\ln(1+x)}{1+x}, & x > 0 \end{cases}$
- **10.** $\[\psi f(x) = \begin{cases} b(1+\sin x) + a + 2, & x > 0 \\ e^{ax} 1, & x \le 0 \end{cases} \]$ $\[\text{therefore} \]$ $\[\text{therefore}$
- 11. 已知函数 $\left. \begin{cases} x = \sin t \\ y = \cos 2t \end{cases}, \bar{x} \left. \frac{d^2 y}{dx^2} \right|_{t=\frac{\pi}{6}} \right.$
- **12.** 设 $y = \cos(f^2(x)) + f(\sin 1)$, 其中 f(x) 可微, 求 dy.
- **13.** 设函数 $y = f\left(\arcsin\frac{1}{x}\right) + \left(f(\sin x)\right)^3$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数, 求 $\mathrm{d}y$.
- **14.** 设函数 y = y(x) 由方程 $e^y + xy e^x = 0$ 确定, 试求 $\frac{dy}{dx}$ 与 y''(0).
- **15.** 设函数 $y = f(\sin x) + \cos(f(x))$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数与二阶导数, 求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **16.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \arctan t \\ y = \ln(1 + t^2) \end{cases}$ 所确定, 试求 $\frac{dy}{dx} = \frac{d^2y}{dx^2}$.
- **17.** 设 $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, 确定 a, b 的值使 f(x) 在 x = 0 处可导.

- **18.** 已知函数 $y = x [\sin(\ln x) + \cos(\ln x)]$, 试求 dy.
- **19.** 设函数 y = y(x) 由方程 $x^2y e^{2x} = \sin y$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **20.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = 1 t^2 \\ y = t t^3 \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **21.** 设函数 $y = (x^2 + 1)^3(x + 2)^2x^6$, 试求 y'.
- **22**. 己知函数 $y = \arctan e \sqrt{x}$,试求 dy
- **23.** 设函数 y = y(x) 由方程 $\cos(x+y) = y$ 所确定,试求 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$
- 24. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$
- **25.** 确定 a, b 的值,使得函数 $f(x) = \begin{cases} 2^x, & x \ge 0 \\ ax + b, & x < 0 \end{cases}$ 在 x = 0 处可导。
- **26.** 已知函数 $y = \ln(x + \sqrt{x^2 + 1})$, 试求 dy.
- **27.** 设函数 y = f(x) 由方程 $x y + \frac{1}{2} \sin y = 0$ 所确定, 计求 $\frac{d^2 y}{dx^2}$.
- **28.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = \ln(1+t^2), \\ y = t \arctan t, \end{cases}$ 所确定, 试求 $\frac{d^2y}{dx^2}$.
- **29.** 设函数 $y = \frac{(2x+1)^2\sqrt[3]{3x-2}}{\sqrt[3]{(x-3)^2}}$, 试求 $\frac{dy}{dx}$.
- 四、证明题 (请给出必要的步骤)
- **1.** 已知函数 f(x)在($-\infty$, $+\infty$)上有定义,对任意的实数 x_1 , x_2 , 有 $f(x_1 + x_2) = f(x_1) f(x_2)$, 且 $f(0) \neq 0$, f'(0) = 1, 证明: f'(x) = f(x).