MAF 261 - Estatística Experimental

Prof. Fernando de Souza Bastos

Instituto de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Campus UFV - Florestal

Sumário

- Hipóteses Unilaterais e Bilaterais
- Valor-p ou p-Valor
- Procedimento geral para Testes de Hipóteses
- Significância Estatística versus Significância Prática

Na construção de hipóteses, sempre vamos estabelecer a hipótese nula como uma igualdade, de modo que a probabilidade do erro tipo l, α , pode ser controlada em um valor específico. A hipótese alternativa tanto pode ser unilateral como bilateral, dependendo da conclusão a ser retirada se H_0 é rejeitada. Se o objetivo é fazer uma alegação envolvendo afirmações, tais como maior que, menor que, superior a, excede, no mínimo, e assim por diante, uma alternativa unilateral é apropriada. Se nenhuma direção é implicada pela alegação, ou se a alegação "não igual a" for feita, uma alternativa bilateral deve ser usada

Considere o problema da taxa de queima de um propelente. Suponha que, se a taxa de queima for menor do que 50 centímetros por segundo, desejamos mostrar esse fato com uma conclusão forte. As hipóteses deveriam ser estabelecidas como

$$H_0: \mu = 50$$
cm/s

$$H_1: \mu < 50 cm/s$$

Aqui, a região crítica está na extremidade inferior da distribuição de X. Visto que a rejeição de H_0 é sempre uma conclusão forte, essa afirmação das hipóteses produzirá o resultado desejado se H_0 for rejeitado. Note que, embora a hipótese nula seja estabelecida com um sinal de igual, deve-se incluir qualquer valor de μ não especificado pela hipótese alternativa. Desse modo, falhar em rejeitar H_0 não significa $\mu=50$ centímetros por segundo exatamente, mas somente que não temos evidência forte em suportar H_1 .

Em alguns problemas do mundo real, em que os procedimentos de testes unilaterais sejam indicados, é ocasionalmente difícil escolher uma formulação apropriada da hipótese alternativa. Por exemplo, suponha que um engarrafador de refrigerantes compre 10 garrafas de uma companhia de vidro. O engarrafador quer estar certo de que as garrafas satisfazem as especificações de pressão interna média, que, para as tais garrafas, a resistência mínima é 200g/l. O engarrafador decidiu formular o procedimento de decisão para um lote específico de garrafas como um problema de teste de hipóteses. Há duas formulações possíveis para esse problema:

$$\begin{cases} H_0: \mu = 200g/I \\ H_1: \mu > 200g/I \end{cases} \quad \text{ou} \quad \begin{cases} H_0: \mu = 200g/I \\ H_1: \mu < 200g/I \end{cases}$$
 (1)

Considere a formulação com H_1 : $\mu > 200 g/I$. Se a hipótese nula for rejeitada, as garrafas serão julgadas satisfatórias; se H_0 não for rejeitada, a implicação é que as garrafas não obedecem às especificações e não devem ser usadas. Como rejeitar H_0 é uma conclusão forte, essa formulação força o fabricante de garrafas a "demonstrar" que a resistência média à explosão das garrafas excede a especificação. Agora considere a formulação $H_1: \mu <$ 200g/I. Nessa situação, as garrafas serão julgadas satisfatórias, a menos que H_0 seja rejeitada. Ou seja, concluímos que as garrafas são satisfatórias, a menos que haja forte evidência do contrário.

Qual formulação é a correta? $H_1: \mu > 200 g/I$ ou $H_1: \mu < 200 g/I$?

Qual formulação é a correta? $H_1: \mu > 200g/I$ ou $H_1: \mu < 200g/I$? A resposta é "depende" do objetivo da análise.

Qual formulação é a correta? $H_1: \mu > 200g/I$ ou $H_1: \mu < 200g/I$? A resposta é "depende" do objetivo da análise.

Na formulação de hipóteses unilaterais, devemos lembrar que rejeitar H_0 é sempre uma conclusão forte. Consequentemente, devemos estabelecer uma afirmação acerca do que é importante para fazer uma conclusão forte na hipótese alternativa. Em problemas do mundo real, isso dependerá frequentemente de nosso ponto de vista e experiência com a situação.

Uma maneira de reportar os resultados de um teste de hipóteses é estabelecer que a hipótese nula foi ou não foi rejeitada com um valor especificado de α , ou nível de significância. Isso é chamado de teste de **nível de significância fixo**.

Uma maneira de reportar os resultados de um teste de hipóteses é estabelecer que a hipótese nula foi ou não foi rejeitada com um valor especificado de α , ou nível de significância. Isso é chamado de teste de **nível de significância fixo**.

A abordagem de nível de significância fixo para teste de hipóteses é muito interessante porque conduz diretamente aos conceitos de erro tipo II e potência, que são de valor considerável na determinação de tamanhos apropriados de amostras para usar em testes de hipóteses. Mas a abordagem de nível de significância fixo tem algumas desvantagens.

Por exemplo, no problema anterior, do propelente, podemos dizer que H_0 : $\mu=50$ foi rejeitada com um nível de significância de 0,05. Essa forma de conclusão é frequentemente inadequada, porque ela não dá ideia, a quem vai tomar a decisão, a respeito de se o valor calculado da estatística de teste estava apenas nas proximidades da região de rejeição ou se estava muito longe dessa região.

Na estatística clássica, o valor-p (também chamado de nível descritivo ou probabilidade de significância), é a probabilidade de se obter uma estatística de teste igual ou mais extrema que aquela observada em uma amostra, sob a hipótese nula.

Por exemplo, em testes de hipótese, pode-se rejeitar a hipótese nula a 5% caso o valor-p seja menor que 5%. Assim, uma outra interpretação para o valor-p, é que este é o menor nível de significância com que se rejeitaria a hipótese nula. Em termos gerais, um valor-p pequeno significa que a probabilidade de obter um valor da estatística de teste como o observado é muito improvável, levando assim à rejeição da hipótese nula. Assim, um valor-p carrega muita informação sobre o peso da evidência contra H_0 ; logo, quem for tomar a decisão pode tirar uma conclusão com qualquer nível especificado de significância.

O valor-P é o menor nível de significância que conduz à rejeição da hipótese nula H_0 , com os dados fornecidos. Em outras palavras, o valor-P é o nível de significância observado. Uma vez que o valor P seja conhecido, a pessoa que vai tomar a decisão pode determinar quão significativos são os dados, sem o analista de dados impor, formalmente, um nível pré-selecionado de significância.

Considere o teste bilateral de hipóteses para a taxa de queima

$$H_0: \mu = 50 cm/s$$

$$H_1: \mu \neq 50$$
cm/s

com n=16 e $\sigma=2,5$. Suponha que a média amostral observada seja $\bar{X}=51,3$ centímetros por segundo. A Figura abaixo mostra uma região crítica para esse teste, com valores críticos em 51,3 e no valor simétrico 48,7. O valor P do teste é a probabilidade acima de 51,3 mais a probabilidade abaixo de 48,7. O valor P é fácil de calcular depois da estatística de teste ser observada.

Figura: O valor-p é a área da região sombreada, quando $\bar{x}=51.3$

Valor
$$-p = 1 - P(48.7 < \bar{X} < 51.3)$$

= $1 - P\left(\frac{48.7 - 50}{2.5/\sqrt{16}} < Z < \frac{51.3 - 50}{2.5/\sqrt{16}}\right)$
= $1 - P(-2.08 < Z < 2.08)$
= $1 - 0.962 = 0.038$

O valor P nos diz que, se a hipótese nula $H_0 = 50$ for verdadeira, a probabilidade de se obter uma amostra aleatória, cuja média seja no mínimo tão longe de 50 quanto de 51,3 (ou de 48,7), será igual a 0,038. Por conseguinte, uma média amostral observada de 51,3 é um evento razoavelmente raro, se a hipótese nula H_0 for realmente verdadeira. Comparado com o nível de significância "padrão" de 0,05, nosso valor P observado é menor; desse modo, se estivéssemos usando um nível de significância fixo de 0,05, a hipótese nula seria rejeitada. De fato, a hipótese nula H_0 : $\mu=50$ seria rejeitada em qualquer nível de significância maior ou igual a 0,038.

Operacionalmente, uma vez calculado o valor P, tipicamente o comparamos a um nível de significância predefinido usado para tomar decisão. Geralmente, esse nível de significância predefinido é 0,05. No entanto, na apresentação de resultados e conclusões, é prática padrão reportar o valor P observado, juntamente com a decisão que é feita em relação à hipótese nula.

Claramente, o valor P fornece uma medida da credibilidade da hipótese nula. Especificamente, ele é o risco de você tomar uma decisão incorreta ao rejeitar a hipótese nula H_0 . O valor P não é a probabilidade de a hipótese nula ser falsa, nem é a probabilidade 1-P de a hipótese nula ser verdadeira. A hipótese nula é verdadeira ou falsa (não há probabilidade associada a isso) e assim a interpretação apropriada do valor P é em termos do risco de rejeitar erroneamente a hipótese nula H_0 .

Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{\circ}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{oldsymbol{eta}}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .
- ullet Hipótese alternativa, H_1 : Especifique uma hipótese alternativa apropriada, H_1 .

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{2}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .
- ullet Hipótese alternativa, H_1 : Especifique uma hipótese alternativa apropriada, H_1 .
- Statística de teste: Determine uma estatística apropriada de teste.

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{0}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .
- ullet Hipótese alternativa, H_1 : Especifique uma hipótese alternativa apropriada, H_1 .
- Statística de teste: Determine uma estatística apropriada de teste.
- ullet Rejeita H_0 se: Estabeleça os critérios de rejeição para a hipótese nula.

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{0}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .
- ullet Hipótese alternativa, H_1 : Especifique uma hipótese alternativa apropriada, H_1 .
- Statística de teste: Determine uma estatística apropriada de teste.
- lacktriangle Rejeita H_0 se: Estabeleça os critérios de rejeição para a hipótese nula.
- Cálculos: Calcule quaisquer grandezas amostrais necessárias, substitua-as na equação para a estatística de teste e calcule esse valor.

- Parâmetro de interesse: A partir do contexto do problema, identifique o parâmetro de interesse.
- $oldsymbol{2}$ Hipótese nula, H_0 : Estabeleça a hipótese nula H_0 .
- ullet Hipótese alternativa, H_1 : Especifique uma hipótese alternativa apropriada, H_1 .
- Statística de teste: Determine uma estatística apropriada de teste.
- lacktriangle Rejeita H_0 se: Estabeleça os critérios de rejeição para a hipótese nula.
- Cálculos: Calcule quaisquer grandezas amostrais necessárias, substitua-as na equação para a estatística de teste e calcule esse valor.

Notamos previamente que é muito útil reportar os resultados de um teste de hipóteses em termos do valor P, porque ele carrega mais informação que a simples afirmação "rejeita H_0 " ou "falha em rejeitar H_0 ". Ou seja, a rejeição de H_0 com nível de significância igual a 0,05 é muito mais significativa se o valor da estatística de teste estiver bem na região crítica, excedendo em muito o valor crítico de 5%, do que se ele estiver excedendo pouco esse valor.

Mesmo um valor pequeno de P pode ser difícil de interpretar do ponto de vista prático, quando estamos tomando decisões, pois, enquanto um valor pequeno de P indica significância estatística no sentido de que H_0 deve ser rejeitada em favor de H_1 , o desvio real de H_0 que foi detectado pode ter pouca (se alguma) significância prática (engenheiros gostam de dizer "significância de engenharia"). Isso é particularmente verdade quando o tamanho da amostra n é grande.

Por exemplo, considere o problema da taxa de queima de propelente, em que testamos H_0 : $\mu = 50$ centímetros por segundo versus H_1 : $\mu \neq 0$ 50 centímetros por segundo, com $\sigma = 2,5$. Se supusermos que a taxa média é realmente 50,5 centímetros por segundo, então esse não será um desvio sério de H_0 : $\mu=50$ centímetros por segundo, no sentido de que se a média realmente for 50,5 centímetros por segundo, não haverá efeito prático observável no desempenho do sistema de escape da aeronave. Em outras palavras, concluir que $\mu=50$ centímetros por segundo quando ela é realmente 50,5 centímetros por segundo é um erro que não é caro e não tem significância prática. Para um tamanho de amostra razoavelmente grande, um valor verdadeiro de $\mu=50,5$ centímetros por segundo conduzirá a um X da amostra que está perto de 50,5 centímetros por segundo e não queremos que esse valor de \bar{X} proveniente da amostra resulte na rejeição de H_0 .

O quadro a seguir mostra o valor P para testar H_0 : $\mu=50$, quando observamos $\bar{X}=50,5$ centímetros por segundo e a potência do teste com $\alpha=0,05$, quando a média verdadeira é 50,5 para vários tamanhos n de amostra:

	Valor-p	poder $(lpha=0.05)$
n	para	quando $\mu=$ 50.5
	$\bar{x} = 51.5$	for verdadeira
10	0.527	0.097
25	0.317	0.170
50	0.157	0.293
100	0.046	0.516
400	6.3×10^{-5}	0.979
1000	2.5×10^{-10}	1.000

A coluna de valor P nesse quadro indica que, para tamanhos grandes de amostra, o valor amostral observado de $\bar{X}=50,5$ fortemente sugere que H_0 : $\mu = 50$ deve ser rejeitada, embora os resultados observados da amostra impliquem que, de um ponto de vista prático, a média verdadeira não difere muito do valor usado na hipótese H_0 : $\mu = 50$. A coluna de potência indica que se testarmos uma hipótese com um nível de significância fixo, e mesmo se houver pouca diferença prática entre a média verdadeira e o valor usado na hipótese, uma amostra de tamanho grande conduzirá, quase sempre, à rejeição de H_0

A moral dessa demonstração é clara:

A moral dessa demonstração é clara:

Seja cuidadoso quando interpretar os resultados do teste de hipóteses quando a amostra tiver tamanho grande, visto que qualquer pequeno desvio do valor usado na hipótese, H_0 , será provavelmente detectado, mesmo quando a diferença for de pouca ou nenhuma significância prática.

Essa aula foi retirada, com pequenas modificações, do livro:

D. C. Montgomery e G. C. Runger. *Estatística Aplicada E Probabilidade Para Engenheiros*. Grupo Gen-LTC, São Paulo, 6 edition, 2016.