

Dahl hysteresis modeling and position control of piezoelectric digital manipulator. Supplementary material

Gerardo Flores, Member, IEEE, and Micky Rakotondrabe, Member, IEEE

SIMULATION STUDY

The simulation environment is Matlab Simulink with 30 seconds of simulation time and an automatic solver with variable-step. The system parameters used for simulation correspond to the actuator in [?] with hysteresis model of [?]. They are shown in Table I.

TABLE I: Set of system parameters used in the simulation. The super-index $(\cdot)^n$ means nominal value.

Parameter	Value	Parameter	Value
m_p (g)	$m_p^n = 0.1828$	c_p (N/s/m)	$c_p^n = 2.5973 \times 10^3$
d_p (N/V)	$d_p^{\dot{n}} = 0.0468$	k_p (N/m)	$k_p^n = 2.6065 \times 10^4$
γ	$\gamma^n = 0.01$	α	$\alpha^{n} = 1.1773 \times 10^{6}$
β	$\beta^n = 121.9874$		

The control parameters are as described in Table II.

TABLE II: Set of control parameters used in the simulation.

Parameter	Value	Parameter	Value
l_1	2×10^{3}	ϵ	0.0001
l_2	1×10^{6}	k_1	25
l_3	3×10^{5}	k_2	14
l_4	0.1		

The desired trajectory is $x_1^d=80\sin\frac{2\pi}{10}t$ with first-time and second derivatives, $\dot{x}_1^d=x_2^d$ and $\ddot{x}_1^d=\dot{x}_2^d$, respectively. The unknown exogenous force F(t) is chosen as,

$$F(t) = 50e^{-0.08(t-0.03)}\mathcal{H}(t-6) + 100$$

$$80e^{(-0.05(t-1))}\mathcal{H}(t-12) + 56e^{(-0.03(t-1.3))}\mathcal{H}(t-22),$$
(1)

where $\mathcal{H}(\cdot)$ is the Heaviside step function. A picture of $F(t)/m_p$ is depicted in Fig. 3.

The closed-loop system response under the effect of the proposed control, i.e., $u(\hat{x}_1, \hat{x}_2, \hat{\Delta})$ with a structure similar to the u of Proposition ??, is depicted in Fig. 1. There are

slight differences near zero in finite points due to the minor differences in the unknown signal Δ and its estimate $\hat{\Delta}$. Besides, the observer errors (e_1,e_2) are depicted in Fig. 2. Notice how the high-gains l_1,l_2 produce a rapid convergence to zero. The unknown term $\Delta(x,t)=-\frac{\gamma}{m_p}\operatorname{sgn}(x_2)z-\frac{1}{m_p}F(t)$ and its estimate with the proposed observer is depicted in Fig. 3, where it is shown that despite the abrupt changes the convergence is achieved.

Fig. 1: The tracking errors (??) under the proposed control and a zoom near zero. Recall that only $y = x_1$ is the only available output.

Fig. 2: The observer errors (e_1, e_2) from (??) and a zoom near zero. The error magnitude can be minimized by choosing higher gains.

Finally, the control response $u(\hat{x}_1,\hat{x}_2,\hat{\Delta})$ is depicted in Fig. 4. In the same figure, the closed-loop response map, y vs. y_d , shows a perfectly linear response, as expected.

Fig. 3: On the LHS is the unknown term $\Delta(x,t)$ of (??) and its estimate $\hat{\Delta}$ obtained with the observer (??). On the RHS is the unknown exogenous force $F(t)/m_p$ in (??).

Fig. 4: The control algorithm described by $u(\hat{x}_1, \hat{x}_2, \hat{\Delta})$, and the closed-loop response map showing a clear linear behavior.