Biostatistics Week I

Ege Ülgen, MD, PhD

6 October 2022

Statistics

- The study of data
- A discipline concerned with
 - Collecting data for a certain purpose
 - Analysis of the collected data
 - Reaching conclusions based on the analysis

Statistics

Collection
Organization
Analysis
Interpretation
Presentation

Biotatistics

- Does a novel drug affect survival in pancreatic cancer?
- Which mutation is most likely the cause of an inherited disease?
- Can health status of advanced AIDS patients be improved by a novel treatment?

Descriptive/Inferential Statistics

- Descriptive Statistics
 - Organization of collected data, calculation of mean and dispersion, presentation as tables, graphics, etc.
- Inferential Statistics
 - Building hypothesis concerning the population based on sample findings, hypothesis testing, interpretation.

Population vs. Sample

Population

- All subjects under consideration that have the same properties
- E.g., everyone living in Istanbul

N = 15.52 million (as of 31 Dec 2019)

Sample

- A proportion of the population (ideally randomly selected)
- E.g., n = 500, 1000, 5000, ...
 (n might be decided based on sample size calculations)

Terminology/Notation

	Sample Statistic	Population Parameter
Size	n	N
Mean	$\bar{x} = \frac{\sum x}{n}$	$\mu = \frac{\sum X}{N}$
Variance	$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$	$\sigma^2 = \frac{\sum (X-\mu)^2}{N}$
Standard Deviation	$s = \sqrt{s^2}$	$\sigma = \sqrt{\sigma^2}$
Proportion	$\widehat{p} = \frac{n \text{ of successes}}{n \text{ of trials}}$	$p = \frac{N \text{ of successes}}{N \text{ of trials}}$

Data/Variable

• Items of information, often numeric, that are collected through observation

- Age
- Gender
- Ethnicity
- Systolic blood pressure
- Treatment type

• • •

Example Study

- Main question
 - Can the health status of advanced AIDS patients be improved by a novel drug treatment?
- Sub-questions
 - Are there differences between treatments in terms of health benefits?
 - Do health benefits differ with respect to gender?
 - Do health benefits differ with respect to age?

- Randomized clinical trial
- 1178 patients
 - 289, 288, 293, and 308 patients per treatment arm
- Data collection at baseline (week = 0)
- 5 more follow-ups with 8-week intervals

- Variables
 - Identification number
 - Treatment arm
 - Age
 - Gender
 - CD4 cell count at each follow-up
 - Time of follow-up (in weeks since baseline)

First 5 patients' data, out of 1,178 (only for the first two weeks)

id	treatment	age	gender	week_1	cd4_1	week_2	cd4_2
1	trt2	36.43	male	0	22	7.57	20
2	trt4	47.85	male	0	21	8.00	48
4	trt3	36.60	male	0	61	7.14	60
5	trt1	35.95	male	0	35	8.00	30
6	trt2	38.40	\mathtt{male}	0	10	7.29	10

«Clean» Data

country	year	cases	population	
Afghanstan	100	45	18.57071	
Afghanistan	2000	2666	20!95360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174!04898	
China	1999	212258	1272915272	
Chin	200	21 66	1280 28583	
variables				

values

Variable Types

Discrete/Categorical/Qualitative

- Measured in a discrete manner
- Nominal: no natural ordering. E.g., eye color, zip-code
- **Dichotomous/binary**: only takes two values. E.g., dead/alive, female/male
- Ordinal: natural ordering. E.g., agree/neutral/disagree, bad/fair/good
- Count: counted values. E.g., number of tumor occurrences in one month

Variable Types

Continuous/Quantitative

- Measured in a continuous manner
- Interval: real number (+/- including 0). E.g., temperature, location
- Ratio: positive values (0 indicates none). E.g., height, age, daily calcium consumption (mg).

id	treatment
1	trt2
2	trt4
4	trt3
5	trt1
6	trt2

Discrete - nominal

age 36.43 47.85 36.60 35.95 38.40

> Contin.ratio

gender male male male male

Discrete – nominal /binary

week_1	cd4_1	week_2	cd4_2
0	22	7.57	20
0	21	8.00	48
0	61	7.14	60
0	35	8.00	30
0	10	7.29	10

Discrete - count Contin. - ratio

Same variable – different classifications

- 1. Time after study entry 0, 1.2, 2.5, 3.1, 4.6, 5.2, 6.6, 7.1, 8 weeks Continuous ratio
- Time after study entry
 4 weeks, ≥ 4 weeks
 Categorical binary
- Time after study entry
 2 weeks, ≥ 2 and < 4 weeks, ≥ 4 weeks
 Categorical ordinal
- 4. Time after study entry
 -4.6, -3.4, -2.1, -1.5, 0, 0.6, 2, 2.5, 3.4 weeks
 Continuous interval

Brief Summary

- Statistics is a discipline concerned with collection, organization, analysis and interpretation of data
- The aim is to infer information regarding the population using sample data
- There are two kinds of variables:
 - Categorical nominal, binary, ordinal, count
 - Continuous interval, ratio

The Big Picture

Exploratory Data Analysis (EDA)

- Examining Distributions exploring data one variable at a time
- Examining Relationships exploring data two variables at a time

• Eye colors of 10 individuals:

• Eye colors of 10 individuals:

Eye Color	Frequency
Blue	4
Brown	4
Green	2

• Eye colors of 10 individuals:

Eye Color	Frequency	Relative Freq.
Blue	4	4/10 = 0.4
Brown	4	4/10 = 0.4
Green	2	2/10 = 0.2

• Eye colors of 10 individuals:

Eye Color	Frequency	Relative Freq.	%
Blue	4	4/10 = 0.4	40
Brown	4	4/10 = 0.4	40
Green	2	2/10 = 0.2	20

Bar Chart of Eye Color Frequencies

Avoid using pie charts!

Contingency table/Cross tabulation/Crosstab

Tables in which two categorical variables are investigated together

	Male	Female
No education	4	10
Primary school	3	5
High school	2	8
Bachelor's degree	7	9

Frequency Tables – Continuous Variable

Cholesterol levels of 40 patients:

Original data

```
213, 174, 193, 196, 220, 183, 194, 200, 192, 200, 200, 199, 178, 183, 188, 193, 187, 181, 193, 205, 196, 211, 202, 213, 216, 206, 195, 191, 171, 194, 184, 191, 221, 212, 221, 204, 204, 191, 183, 227
```

Sorted data

```
171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227
```

Interval	Frequency	Relative Freq.	%
[170-180)	3	3/40 = 0.075	7.5
[180-190)	7	7/40 = 0.175	17.5
[190-200)	13	13/40 = 0.325	32.5
[200-210)	8	8/40 = 0.200	20.0
[210-220)	5	5/40 = 0.125	12.5
[220-230)	4	4/40 = 0.100	10.0

Bar Chart of Cholesterol Levels

Histogram

Histogram

Histogram

FIGURE 2.8

Characteristics of data detected by histograms. (a) symmetry, (b) degree of spread and where values are concentrated, and (c) gaps in data and data far from others.

Table 2.9 Class Frequencies of Systolic Blood Pressure of Two Groups of Male Workers

	Number of workers		
Blood pressure	Aged 30-40	Aged 50-60	
Less than 90	3	1	
90–100	17	2	
100-110	118	23	
110–120	460	57	
120-130	768	122	
130-140	675	149	
140–150	312	167	
150-160	120	73	
160-170	45	62	
170–180	18	35	
180-190	3	20	
190–200	1	9	
200–210		3	
210-220		5	
220-230		2	
230–240		1	
Total	2540	731	

Table 2.10 Relative Class Frequencies of Blood Pressures

	Percentage of workers		
Blood pressure	Aged 30-40	Aged 50-60	
Less than 90	0.12	0.14	
90–100	0.67	0.27	
100–110	4.65	3.15	
110–120	18.11	7.80	
120-130	30.24	16.69	
130-140	26.57	20.38	
140–150	12.28	22.84	
150-160	4.72	9.99	
160–170	1.77	8.48	
170–180	0.71	4.79	
180-190	0.12	2.74	
190-200	0.04	1.23	
200-210		0.41	
210-220		0.68	
220-230		0.27	
230–240		0.14	
Total	100.00	100.00	

FIGURE 2.10
Relative frequency polygons for the data of Table 2.10.

Brief Summary

- In one-variable EDA,
 - We may summarize a categorical variable using frequency, relative frequency and/or percentage tables
 - We may visually display a categorical variable using bar charts, etc.

Describing a Dataset

- Shape
- Center
- Spread
- Outliers

Shape

- Symmetry/Skewness of the distribution
- Peakedness (modality)
 - The number of peaks (modes) the distribution has

Symmetric, Uniform, Distribution

Describing Distributions

- Shape
- Center
- Spread
- Outliers

Center

- Mean
- Median
 - Mode

Center - Mean

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Cholesterol levels of 40 patients:

213, 174, 193, 196, 220, 183, 194, 200, 192, 200, 200, 199, 178, 183, 188, 193, 187, 181, 193, 205, 196, 211, 202, 213, 216, 206, 195, 191, 171, 194, 184, 191, 221, 212, 221, 204, 204, 191, 183, 227

$$\bar{x} = \frac{213+174+...+227}{40} = 197.625$$

Mean

If
$$y_i = x_i + c$$
 (c is a constant) $\bar{y} = \bar{x} + c$

$$\bar{x} = \frac{213 + 174 + \dots + 227}{40} = 197.625$$

$$\bar{y} = \frac{(213+5)+(174+5)+...+(227+5)}{40} = 202.625$$

Mean

```
If y_i = x_i \times c (c is a constant) \bar{y} = \bar{x} \times c
```

```
x: 1, 2, 3, 4, 5

y: 3 (1 * 3), 6 (2 * 3), 9 (3 * 3), 12 (4 * 3), 15 (5 * 3)

\Rightarrow c = 3

\bar{x} = 3, \ \bar{y} = 9 \Rightarrow \bar{y} = 3 * \bar{x}
```

Mean

• Even a small change in a single value affects the mean

```
213, 174, 193, 196, 220, 183, 194, 200, 192, 200, 200, 199, 178, 183, 188, 193, 187, 181, 193, 205, 196, 211, 202, 213, 216, 206, 195, 191, 171, 194, 184, 191, 221, 212, 221, 204, 204, 191, 183, 227
```

• If the maximal value was 700 (instead of 227), the mean would be 209.45 (instead of 197.625)

Median

- It is calculated as the:
 - middle value of the sorted values (if n is odd)
 - average of two middle values of the sorted values (if n is even)

5, 3, 10, 4
3,
$$\underline{4}$$
, $\underline{5}$, 10 => median = 4.5

Median

Cholesterol levels of 40 patients:

Original data

213, 174, 193, 196, 220, 183, 194, 200, 192, 200, 200, 199, 178, 183, 188, 193, 187, 181, 193, 205, 196, 211, 202, 213, 216, 206, 195, 191, 171, 194, 184, 191, 221, 212, 221, 204, 204, 191, 183, 227

Sorted dataa

171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227

Mean = 197.625 Median = 195.5

Median

```
171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227
```

Mean = 197.625 Median = 195.5

171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, **700**

Mean = 209.45 Median = 195.5

Mode

• The mode is the value that appears most often in a set of data values

• Systolic blood pressures of 12 patients:

90, 80, **100**, 110, **100**, 120, **100**, 90, **100**, 110, 120, 110

Mode = 100

Mean = 102.5

Median = 100

Mean – Median – Mode Relationship

Describing Distributions

- Shape
- Center
- (Measures of position)
- Spread
- Outliers

Quartiles

Quartiles

Recovery duration of 8 patients treated with a novel drug:
 30, 20, 24, 40, 65, 70, 10, 62

10, 20, 24,
$$30$$
, 40, 62, 65, 70 $Q_2 = 35$

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8
 10 20 24 30 40 62 65 70
 $Q_1 = \frac{20+24}{2} = 22$ $Q_3 = \frac{62+65}{2} = 63$.

Quartiles

• Systolic blood pressure measurements of 9 patients: 151, 124, 132, 170, 146, 124, 113, 111, 134

Percentiles - Definition

100 * p percentile (0 ≤ p ≤ 1) is the data value for which:

- at least 100 * p of the data values are less than or equal to it
- at least 100 * (1 − p) of the data values are greater than or equal to it

* If there are two values that satisfy the above conditions, the average of these values is taken as the 100 * p percentile

Percentiles - Algorithm

- Sort values in ascending order
- Calculate n * p
 - If n * p is not an integer, take the smallest integer greater than n * p
 - If n * p is an integer take the average of n * p^{th} and (n * p + 1) th values

Percentiles - Example

- Sorted data: 171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227
- 25th percentile (1st quartile, Q1): 189.5 (40 * 0.25 = 10)
- 50th percentile (median, Q2): 195.5 (40 * 0.5 = 20)
- 75th percentile (3rd quartile, Q3): 205.5 (40 * 0.75 = 30)
- 90th percentile : 218 (40 * 0.9 = 36)
- 95th percentile: 221 (40 * 0.95 = 38)
- 97.5th percentile: 224 (40 * 0.975 = 39)

Describing Distributions

- Shape
- Center
- Spread
- Outliers

Measures of Spread

- The distances of the values to the center differ
 - The degree of these differences constitute the spread of the distribution
- Two distributions may have the same mean/median/mode and differ in terms of spread

Range

• The difference between the maximal and minimal value R = maximum - minimum

e.g., The ages of 12 arthritis patients:

30, 12, 15, 22, 40, 55, 20, 58, 25, 60, 23, 72

$$R = 72 - 12 = 60$$

Inter-Quartile Range

- The range quantifies the variability by using the range covered by all the data
- the Inter-Quartile Range (IQR) measures the spread of a distribution by describing the range covered by the middle 50% of the data

$$IQR = Q3 - Q1$$

Inter-Quartile Range

• Recovery durations of 8 patients in days: 30, 20, 24, 40, 65, 70, 10, 62

10, 20, 24, <u>30</u>, <u>40</u>, 62, 65, 70

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8

10 20 24 30 40 62 65 70

 $Q_1 = \frac{20+24}{2} = 22$ $Q_3 = \frac{62+65}{2} = 63.5$

$$IQR = 63.5 - 22 = 41.5$$

Variance and Standard Deviation

- Variance
 - A measure of how distant observations are from the mean
 - Population variance: σ^2
 - Sample variance: s²
- Because the unit of variance is quadratic, standard deviation is more widely used
- Standard deviation (sd)
 - Defined as the square-root of variance
 - Population sd: σ
 - Sample sd: s

Sample Variance and Standard Deviation

$$s^{2} = \frac{\sum_{j=1}^{n} (x_{j} - \bar{x})^{2}}{n-1}$$

Variance and Standard Deviation

Ages of 6 patients in a study:

10, 15, 22, 26, 31, 40

$$\overline{x} = (10 + 15 + 22 + 26 + 31 + 40) / 6 = 24$$

$$s^2 = \frac{(10-24)^2 + (15-24)^2 + (22-24)^2 + (26-24)^2 + (31-24)^2 + (40-24)^2}{6-1} = 118$$

$$s = \sqrt{s^2} = \sqrt{118} = 10.863$$

Units

- Mean: same unit with the data
- Median: same unit with the data
- Mode: same unit with the data
- Quartiles: same unit with the data
- Percentiles: same unit with the data
- Variance: square of the unit of the data
- Standard deviation: same unit with the data

Describing Distributions

- Shape
- Center
- Spread
- Outliers

Outliers

Extreme observations that are distant from the rest of the data

- For
 - Lower Limit = $Q_1 1.5 * IQR$
 - Upper Limit = $Q_3 + 1.5 * IQR$
- Outliers are defined as any value(s) larger than the upper limit or smaller than the lower limit

Outliers

Any observation (if any) falling in one of these regions will be considered a suspected outlier. Q3 Q1 Μ Max min Q1-1.5 (IQR) Q3+1.5(IQR)

Outliers – Cholesterol Level Example

- Sorted data: 171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227
- 25th percentile (1st quartile, Q_1): 189.5 (40 * 0.25 = 10)
- 75th percentile (3rd quartile, Q_3): 205.5 (40 * 0.75 = 30)
- IQR = 205.5 189.5 = 16
- LL = Q_1 1.5 * IQR = 189.5 1.5 * 16 = 165.5
- UL = Q_3 + 1.5 * IQR = 205.5 + 1.5 * 16 = 229.5

No outliers

Outliers – Cholesterol Level Example (cont.)

- Sorted data: 171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 300
- 25th percentile (1st quartile, Q_1): 189.5 (40 * 0.25 = 10)
- 75th percentile (3rd quartile, Q_3): 205.5 (40 * 0.75 = 30)
- IQR = 205.5 189.5 = 16
- LL = Q_1 1.5 * IQR = 189.5 1.5 * 16 = 165.5
- UL = Q_3 + 1.5 * IQR = 205.5 + 1.5 * 16 = 229.5
- 300 > UL => outlier

Box Plot

Box Plot – Example

• 171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 300

Left-Skewed Right-Skewed Symmetric \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3 $\mathbf{Q}_1 \ \mathbf{Q}_2 \ \mathbf{Q}_3$ $\mathbf{Q}_2 \ \mathbf{Q}_3$

Five-number Summary

- 1. the sample minimum (smallest observation)
- 2. the lower quartile or first quartile
- 3. the median (the middle value)
- 4. the upper quartile or third quartile
- 5. the sample maximum (largest observation)

Brief Summary

- Shape of a distribution can be described using skewness and modality
- Center of a distribution can be described using mean, median, mode
 - Median is more robust to outliers
- Quartiles and percentiles can be used to partition the data
- Variance and standard deviation are the most frequently used measures of spread
- Outliers can be defined based on Q1, Q3 and IQR
- Box plots can be used to display the distribution of a continuous variable
 - displays Q1, median, Q3, outliers