

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	:	Alan F. Jankowski et al	Docket No. :	IL-10692B
Serial No.	;	10/783230	Art Unit :	1745
Filed	:	February 19, 2004	Examiner :	Keith Walker
For	:	METHOD FOR FABRICATION OF ELECTRODES		

AMENDMENT

Assistant Commissioner for Patents Alexandria, VA 22313-1450

Dear Sir:

In response to the Office Action mailed, June 09, 2005, please amend the above-referenced application.

IN THE CLAIMS:

1. (Currently Amended) An A fuel cell including a solid electrolyte and an electrode comprising a conductive material having a plurality of pores wherein said pores are tapered having a first pore opening smaller in size than a second pore opening, said electrode having a pore size distribution wherein at least 90%

of the total pore volume is in pores of diameter from about 10% below the size of the mode pore diameter to about 10% above the size of the mode pore diameter.

- 2. (Previously Presented) The electrode of claim 1, wherein said pore sizes are in the range of about 0.1 μm to about 10 μm as measured by scanning electron microscopy
- 3. (Previously Presented) The electrode of claim 1, wherein said first pore opening is up to about a factor of 10 smaller in size than said second pore opening, wherein said pore openings are measured by scanning electron microscopy
- 4. (Currently Amended) A fuel cell <u>including a solid electrolyte and</u> comprising at least one electrode comprising a conductive material having a plurality of pores wherein said pores are tapered having a first pore opening smaller in size than a second pore opening, said electrode having a pore size distribution wherein at least 90% of the total pore volume is in pores of diameter from about 10% below the size of the mode pore diameter to about 10% above the size of the mode pore diameter.
- 5. (Previously Presented) The fuel cell of claim 4, , wherein said first pore opening is up to about a factor of 10 smaller in size than said second pore opening, wherein said pore openings are measured by scanning electron microscopy.

- 6. (Previously Presented) The fuel cell of claim 4, wherein the pore sizes are in the range of about 0.1 μ m to about 10 μ m as measured by scanning electron microscopy
- 7. (Currently Amended) A fuel cell stack comprising at least one fuel cell including a solid electrolyte and having at least one electrode comprising a conductive material having a plurality of pores wherein said pores are tapered having a first pore opening smaller in size than a second pore opening, said electrode having a pore size distribution wherein at least 90% of the total pore volume is in pores of diameter from about 10% below the size of the mode pore diameter to about 10% above the size of the mode pore diameter.
- 8. (Previously Presented) The fuel cell stack of claim 7, wherein said first pore opening is up to about a factor of 10 smaller in size than said second pore opening, wherein said pore openings are measured by scanning electron microscopy.
- 9. (Previously Presented) The fuel cell stack of claim 7, wherein the pore sizes are in the range of about 0.1 μm to about 10 μm as measured by scanning electron microscopy