Econométrie Financière M2 272 IEF TD3 Value-at-Risk et Expected Shortfall

Année universitaire 2020-2021

On estime deux mesures de risque :

- 1. la Value-at-Risk (VaR),
- 2. l'Expected Shortfall (ES).

La VaR est définie comme la perte potentielle minimum que subit un portefeuille dans $\alpha\%$ des pires cas, pour un horizon de temps donné. L'ES est la valeur moyenne anticipée de ces pertes dans $\alpha\%$ des pires cas, sur un horison de temps donné ¹.

On dispose des cotations des actions de Apple et de Exxon sur la période du 04/01/2016 au 31/12/2019 et l'on considère le portefeuille équipondéré de ces deux titres. On estime la VaR et l'ES de ce portefeuille à un horizon d'un jour par différentes méthodes. Les données figurent dans le fichier apple exxon.xlsx

1 Présentation et analyse descriptive des données

- Après avoir importé les données, vous calculerez les rendements des deux actifs et le rendement du portefeuille équipondéré de ces deux titres.
- Faites les représentations graphiques suivantes :
- graphique des rendements des actifs et du portefeuille,
- histogramme des rendements des actifs et du portefeuille. Pour chaque série de rendement, vous calculerez

Pour les rendements des actifs et du portefeuille, calculez et commentez les statistiques suivantes :

- moyenne, médiane, maximum, minimum
- variance ou écart type annualisé
- skewness et kurtosis
- statistique du test de Jarque et Bera et sa probabilité critique
- Autocorrélogramme des rendements (jusqu'à l'ordre 15)
- Autocorrélogramme des rendements au carré (jusqu'à l'ordre 15)

^{1.} cf. Jondeau et al., 2000. Financial Modeling Under Non-Gaussian Distribution, édition Springer. chapitre 8 : Risk Management and VaR.

2 Estimation de la VaR et de l'ES à partir de l'historique.

On calcule la VaR et l'ES du portefeuille uniquement en appliquant la méthode suivante :

- On note $\{r_1^p, r_2^p, ..., r_t^p, ..., r_T^p\}$ les T observations du rendement du portefeuille r_t^p .
- ullet A partir des T observations, construisez T-N+1 sous-échantillons emboités de taille N de $\{r_1^p,...,r_N^p\}$ à $\{r_{T-N+1}^p,...,r_T^p\}$ • Chacun des sous-échantillons est utilisé pour estimer la fonction de répartition (cdf) des
- rendements.
- On considère par exemple le $t-N+1^{\grave{e}me}$ sous-échantillon $\{r^p_{t-N+1},...,r^p_t\}$ et l'on classe les N rendements par ordre croissant.
- Les N rendements classés par ordre croissant sont notés $\{\tilde{r}^p_{t-N+1,t},...,\tilde{r}^p_{t,t}\}$ avec $\tilde{r}^p_{t-N+1,t} \leq$ $\ldots, \leq \tilde{r}_{t,t}^p$.
- La $VaR_{\alpha,t}$ avec une probabilité α est le quantile d'ordre α du sous-échantillon classé par ordre croissant. Elle correspond à la $\alpha N^{\grave{e}me}$ statistique d'ordre $\tilde{r}_{\alpha N,t}^{\ 2}$.
- Alors, la VaR à la date t pour la date t+1 est

$$VaR_{\alpha,t} = -\tilde{r}_{\alpha N,t}$$

• L'ES est estimée par la moyenne des rendements observés inférieurs à $\tilde{r}_{\alpha N,t}$:

$$ES_{\alpha,t} = -\frac{1}{\alpha N} \sum_{i=1}^{\alpha N} \tilde{r}_{i,t}$$

- 1. Calculez les $VaR_{\alpha,t}$ et $ES_{\alpha,t}$ avec $N=100, \alpha=1\%$ et $\alpha=5\%$.
- 2. Faites la représentation graphique de $VaR_{\alpha,t}$ sur un même graphique pour les deux valeurs de α et commentez.
- 3. Faites de même la représentation graphique de $ES_{\alpha,t}$ sur un même graphique.

^{2.} On choisit ici N tel $\alpha N^{\grave{e}me}$ est un nombre entier.

3 Estimation de la VaR avec un modèle GARCH

On estime la VaR et l'ES du portefeuille en utilisant un modèle ARMA-GARCH :

$$\begin{cases} r_t^p = m_t + e_t \\ e_t = \sigma_t z_t \\ \sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i e_{t-i}^2 + \sum_{i=1}^q \sigma_{t-i}^2 \end{cases}$$

- On suppose que $z_t \sim N(0,1)$. La loi conditionnelle des rendements du portefeuille est alors $r_{t+1}^p | I_t \sim N\left(m_{t+1}, \sigma_{t+1}^2\right).$
- La VaR à la date t pour la date t+1 est :

$$VaR_{\alpha,t} = -\left(m_{t+1} + q_{\alpha} \times \sigma_{t+1}\right)$$

où $m_{t+1} = E\left(r_{t+1}^p|I_t\right)$ est la prévision en t de r_{t+1}^p , σ_{t+1} son écart type conditionnelle et q_α le quantile d'ordre α de la loi N(0,1).

• L'ES à la date t pour la date t+1 est égal à :

$$ES_{\alpha,t} = \frac{\varphi(q_{\alpha})}{\alpha} \times \sigma_{t+1} - m_{t+1}$$

où $\varphi(z)$ est la fonction de densité de la loi N(0,1).

- 1. Recherchez le modèle ARMA-GARCH du rendement du portefeuille en supposant $z_t \sim$ N(0,1). Vous vérifierez l'existence d'un effet d'asymétrie. Les critères de validation de votre modèle sont :
 - significativité des coefficients des retards les plus élevés,
 - absence de corrélation des résidus standardisés.
 - absence d'effet ARCH pour les résidus standardisés.
- 2. En remplaçant m_{t+1} par la valeur anticipée en t de r_{t+1}^p et σ_{t+1} par son estimation obtenue du modèle GARCH, calculez la $VaR_{\alpha,t}$ et la $ES_{\alpha,t}$ pour $\alpha = 1\%$ et $\alpha = 5\%$.
- 3. Faites un graphique des $VaR_{\alpha,t}$ et un autre des $ES_{\alpha,t}$ pour $\alpha = 1\%$ et $\alpha = 5\%$.

Estimation de la VaR et de L'ES au niveau désagrégé 4

- On estime la VaR du portefeuille à partir de la modélisation de la matrice des variancecovariance des rendements des actifs du portefeuille.
- Cette approche désagrégée permet notamment d'évaluer l'effet d'une modification de la composition du portefeuille sur la VaR.
- On note $r_t = (r_t^1, r_t^2)'$ le vecteur des rendements des deux actifs du portefeuille.
- On suppose que les rendements suivent une loi normale : $r_t \sim N(m_t, \Omega_t)$ Le rendement du portefeuille $r_t^p = w'r_t = \sum_{i=1}^2 w_i r_t^i$ suit une loi normale $r_t^p \sim N(m_t^p, \sigma_{p,t}^2)$ avec $m_t^p = w' m_t$ et $\sigma_{p,t}^2 = w' \Omega_t w$
- La VaR agrégée à la date t pour la date t+1 est alors :

$$VaR_{\alpha,t} = -\left(m_{p,t+1} + q_{\alpha} \times \sigma_{p,t+1}\right)$$

où q_{α} est le quantile d'ordre α de la loi N(0,1).

• L'ES à la date t pour la date t+1 est alors :

$$ES_{\alpha,t} = \frac{\varphi(q_{\alpha})}{\alpha} \times \sigma_{p,t+1} - m_{p,t+1}$$

où $\varphi(z)$ est la fonction de densité de la loi N(0,1).

- 1. Pour chacun des actifs du portefeuille, vous allez calculer les résidus non standardisés de chacun de leur modèle ARMA respectif : $\hat{e}_{it} = r_{it} \hat{m}_{it}$ et construire la matrice (T, 2) de ces résidus non-standardisés : $[\hat{e}_{1t}, \hat{e}_{2t}]$
- 2. En utilisant le modèle BEKK(1,1), estimez la matrice de variance-covariance $\hat{\Omega}_t$ chaque date et calculez les $VaR_{\alpha,t}$ et les $ES_{\alpha,t}$
- 3. Faites les mêmes calculs en utilisant le modèle DCC(1,1)
- 4. Faites un graphique des $VaR_{\alpha,t}$ et un autre des $ES_{\alpha,t}$ pour $\alpha = 1\%$ et $\alpha = 5\%$.

5 Comparaison des méthodes d'estimation

- On dispose de 3 méthodes d'estimation de la VaR du portefeuille :
- 1. à partir de l'historique
- 2. GARCH + loi normale au niveau agrégé
- 3. MGARCH + loi normale au niveau désagrégé
- 1. Calculez la moyenne de la VaR et de l'ES pour chacune des méthodes d'estimation.
- 2. Comptez le nombre de fois où le rendement du portefeuille r_t^p est inférieur à la $VaR_{\alpha,t}$ pour $\alpha = 1\%$ et $\alpha = 5\%$. Comparez ce nombre à l'effectif attendu et classez les différentes méthodes d'estimation selon leur degré de précision.