

IE 33000: Probability and Statistics in Engineering II (Fall 2022) School of Industrial Engineering, Purdue University

Homework 8

Instruction: There are 2 problems in total.

1) Problems 1 and 2 – 50 points Due December 5, 2022 (11:59 pm)

For all problems, provide both hand-written solutions and R codes (for 30 points bonus), wherever applicable.

Problem 1

The level of cholesterol (in mg/dL) is an important index for human health. The sample size is n = 5. The following summary statistics are obtained from cholesterol measurements:

$$\sum_{i=1}^{30} \overline{x}_i = 140.03 \qquad \sum_{i=1}^{30} r_i = 13.63 \qquad \sum_{i=1}^{30} s_i = 5.10$$

- (a) Find control limits for \bar{X} and R charts.
- (b) Repeat part (a) for \overline{X} and S charts.

Problem 2

In the following data, the syringe length is measured during a pharmaceutical manufacturing process. The following table provides data (in inches) for 20 samples each of size 5.

Sample	x_1	x_2	x_3	<i>X</i> 4	X5
1	4.960	4.946	4.950	4.956	4.958
2	4.958	4.927	4.935	4.940	4.950
3	4.971	4.929	4.965	4.952	4.938
4	4.940	4.982	4.970	4.953	4.960
5	4.964	4.950	4.953	4.962	4.956
6	4.969	4.951	4.955	4.966	4.954
7	4.960	4.944	4.957	4.948	4.951
8	4.969	4.949	4.963	4.952	4.962
9	4.984	4.928	4.960	4.943	4.955
10	4.970	4.934	4.961	4.940	4.965
11	4.975	4.959	4.962	4.971	4.968
12	4.945	4.977	4.950	4.969	4.954
13	4.976	4.964	4.970	4.968	4.972
14	4.970	4.954	4.964	4.959	4.968
15	4.982	4.962	4.968	4.975	4.963
16	4.961	4.943	4.950	4.949	4.957
17	4.980	4.970	4.975	4.978	4.977
18	4.975	4.968	4.971	4.969	4.972
19	4.977	4.966	4.969	4.973	4.970
20	4.975	4.967	4.969	4.972	4.972

A3=0.577
C4=0.94
D3=0
M=00
N=5

- (a) Using all the data, find control limits for \bar{X} and R charts, construct the chart, and plot the data. Is this process in statistical control?
- (b) Use the control limits from part (a) to identify out-of-control points.
- (c) Repeat part (a) for \bar{X} and S charts.

$$\overline{X} = \underbrace{\frac{30}{6}}_{i=1} \overline{X}_{i} \qquad \overline{r} = \underbrace{\frac{20}{6}}_{i=1} \overline{x}_{i} \qquad \overline{s} = \underbrace{\frac{20}{6}}_{i=1} \underline{s}_{i} \\
= 0.000$$

$$= 41.96$$

$$X Chart$$

$$CL = 0.000$$

$$= 0.000$$

$$CL = 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$= 0.0000$$

$$=$$

A I would

Say this

process isn't

in control based

the to points on next

Out out the pose Charas


```
### Problem 3 ###
q1 xbar = 140.03
q1_r = 13.63
q1_s = 5.1
m = 30
n = 5
q1 \times dbar = q1 \times dbar / m
q1 rbar = q1 r / m
q1\_sbar = q1\_s / m
## X and R Charts Limits ##
# X Chart Limits #
q1 xr x CL = q1 xdbar
q1_xr_x_UCL = q1_xr_x_CL + 0.577 * q1_sbar
q1 xr x LCL = q1 xr x CL - 0.577 * q1 sbar
# R Chart Limits #
q1 \times r \cdot CL = q1 \cdot rbar
q1 \times r \cdot r \cdot UCL = 2.11 * q1 \cdot rbar
q1 \times r \cdot r \cdot LCL = 0 * q1 \cdot rbar
## X and S Charts Limits ##
# X Chart Limits #
q1 \times x \times CL = q1 \times dbar
q1 \times x \times UCL = q1 \times x \times CL + (3 * q1 sbar) / (0.94 * sqrt(n))
q1 \times x \times LCL = q1 \times x \times CL - (3 * q1 sbar) / (0.94 * sqrt(n))
# S Chart Limits #
q1 \times s \times CL = q1 \times sbar
q1 xs s UCL = q1 sbar + (3 * q1 sbar * sqrt(1-0.94^2))/0.94
q1 \times s \times LCL = q1 \times sar - (3 \times q1 \times sar \times sqrt(1-0.94^2))/0.94
q1 xs s LCL = 0 #the previous row will give you a negative
### Problem 2 ###
library(qcc)
data \leftarrow matrix(data = c(4.960, 4.946, 4.950, 4.956, 4.958,
                 4.958, 4.927, 4.935, 4.940, 4.920,
                 4.971, 4.929, 4.965, 4.952, 4.938,
                 4.940, 4.982, 4.970, 4.953, 4.960,
                 4.964, 4.951, 4.953, 4.962, 4.956,
                 4.969, 4.951, 4.955, 4.966, 4.954,
                 4.960, 4.944, 4.957, 4.948, 4.951,
                 4.969, 4.949, 4.963, 4.952, 4.962,
                 4.984, 4.928, 4.960, 4.943, 4.955,
                 4.970, 4.934, 4.961, 4.940, 4.965,
                 4.975, 4.959, 4.962, 4.971, 4.968,
                 4.945, 4.977, 4.950, 4.969, 4.954,
                 4.976, 4.964, 4.970, 4.968, 4.972,
                 4.970, 4.954, 4.964, 4.959, 4.968,
                 4.982, 4.962, 4.968, 4.975, 4.963,
                 4.961, 4.943, 4.950, 4.949, 4.957,
                 4.980, 4.970, 4.975, 4.978, 4.977,
                 4.975, 4.968, 4.971, 4.969, 4.972,
                 4.977, 4.966, 4.969, 4.973, 4.970,
                 4.975, 4.967, 4.969, 4.972, 4.972), nrow = 20, ncol = 5)
```

```
XbarChart = qcc(data, type = "xbar", nsigmas = 5)
RChart = qcc(data, type = "R", nsigmas = 5)
SChart = qcc(data, type = "S", nsigmas = 5)
```