ECCSISTING. nnovation Challenge 2025

Team Cubit

Optimizing supply chain

Research & insights

Solution & Approach

B2B & B2C Analysis

Layout & Man-Model

Infrastructure Blueprint

Problem statement

- A mid-sized Indian brand currently fulfills all B2B and D2C orders from a centralized Mother Warehouse (MW) located in Indore (assumed).
- The company seeks to explore regional fulfillment using RDCs (Regional Distribution Centers) to optimize cost and service.

Assumptions

- Mother Warehouse (MW) Location: it is assumed to be located in Indore, based on guidance received from the Edgistify organizing team regarding synthetic data usage.
- **Distance b/w cities**: Distances between MW and delivery cities are considered as-the-crow-flies road distances
- **Data**; All demand data is assumed to represent monthly order quantities per city (B2C + B2B combined).
- **Overhead Price**: MW overhead is modeled as a variable cost per unit (₹1–₹2/unit), while RDCs have fixed monthly labor + storage costs.

RDC Cost								
City	Local RDC transit cost/unit	RDC labor cost	RDC Storage cost					
Ahmedabad	10	1100	850					
Bangalore	10	1400	1000					
Chennai	10	1150	880					
Delhi	10	1300	950					
Guwahati	10	1000	800					
Hyderabad	10	1300	900					
Kolkata	10	1250	920					
Mumbai	10	1200	900					

Key Statistics

MONTHLY DEMAND PER CITY:

NOTABLE AND TRANSIT COST:

Distance of Cities from MW

*Note: we have assumed the mother warehouse to be in indore

The RDC Shift

We propose a shift from the current One-to-Many centralized model to a Hub-and-Spoke fulfillment network — selectively deploying Regional Distribution Centers (RDCs) in cities that meet our volume-based break-even criteria.

ONE TO MANY MODEL:

Edgistify.

Research & insights

Solution & Approach

B2B & B2C Analysis

Layout & Man-Model

Infrastructure Blueprint

EIC 2025

OUR SOLUTION

We propose a hybrid model where only orders above the break-even volume are fulfilled via Regional Distribution Centers (RDCs)

- orders below the break -even point continue to be fulfilled from the Mother Warehouse (Indore) to avoid unnecessary RDC costs.
- This approach ensures RDCs are utilized only where they yield cost efficiency.

City	Break-even Qty	Orders Above BE	Orders Below BE	% of orders above threshold	Recommend RDC?	Comments
Ahmedabad	490	12	616	2%	NO	Fulfill from MW
Bangalore	400	168	509	25%	Yes	Setup RDC
chennai	315	378	255	60%	Yes	Setup RDC
Delhi	410	455	135	77%	Yes	Setup RDC
Guwahati	210	215	413	34%	Yes	Setup RDC
Hyderabad	435	534	90	86%	Yes	Setup RDC
Kolkata	304	328	288	53%	Yes	Setup RDC
Mumbai	420	505	99	84%	Yes	Setup RDC

*Break-even volume shows the point where fulfilling from RDCs becomes more cost-effective than the Mother Warehouse

Approach: Finding the Break-even Point

⊗ Final Fulfillment Strategy

- Deploy RDCs in 6 cities exceeding break-even volume
- Retain MW fulfillment in low-volume zones
- Target monthly savings of ₹8.77L (↓ 4%)
- Enable scalable, regionally optimized network

Average Volume(Above BE) V/S BE

Cost-Saving Overview

Fulfilling orders via RDCs in cities where volume exceeds the breakeven point results in monthly savings of ₹8.77 lakh

Edgistify.

EIC 2025

Solution & Approach

400

B2B & B2C Analysis

Layout & Man-Model

Infrastructure Blueprint

Understanding Demand Type

While our RDC rollout was primarily volume-driven,

Research & insights

individual customers for personal use. Examples include online retail, groceries,

and consumer electroncis.

Order Type Segmentation: B2B vs B2C

b2bb2c

B2B

48%

B2B vs B2C Orders in Proposed RDC Cities

products or services to other

manufacturing supplies, and

corporate services.

businesess. Examples wholesale,

ideal for RDC routing of bulk, high-volume orders.

• Guwahati, Chennai, and Kolkata show strong B2B volumes — these cities are

Understanding order types (B2B/B2C) didn't influence current rollout decisions but strengthens our long-term strategic lens.

Edgistify. **EIC 2025**

Research & insights

Solution & Approach

B2B & B2C Analysis

Layout & Man-Model

Infrastructure Blueprint

Mother Warehouse Layout

Why this layout supports 3× scale:

- Modular zone-based design allows lateral expansion
- · Vertical racking enables higher SKU density
- Buffer space reserved for overflow & automation
- Process flow prevents congestion under high load

Mother Warehouse Features

Suitable for slow-

moving buffer stock.

Vertical Racking

Racking increases the keeping units.

Buffer Space

Space is reserved for overflow and automation.

Process Flow

Flow prevents congestion during peak times.

Ideal for slow-moving

overstock items.

Storage Zone Type vs. Racking Type

Man Model (avg v/s peak)

• We modelled peak manpower based on the expected 3× future throughput

ROLE	AVERAGE (CURENT)	PEAK x3 (FUTURE)	
no. of picker	93	279	
no. of packer	154	462	
no. of unloader	46	138	
total labour	293	879	
no of supervisor	12	36	

ASSUMPTIONS IN MAN MODEL 🗸

- Average Order: 46,178 units/day
- 1 picker can handle 500 orders/shift
- 1 Packer can handle 300 orders/shift
- 1 Unloader: can handle 1,000 orders/shift
- Supervisor Ratio: 1 per 25-30 workers
- Shift Planning:
 - Avg: 1 shift/day
 - Peak: 2-3 shifts for full load handling
- Scaling: Linear scaling assumed

EIC 2025

Research & insights

Solution & Approach

B2B & B2C Analysis

Layout & Man-Model

Infrastructure Blueprint

Process Flow & Shift Capacity

Streamlining Warehouse Operations: A Process Flow

*A Warehouse Management System (WMS) is a software platform used to manage and optimize day-to-day warehouse operation

Warehouse Operations Across Shifts

Shift 1: 45,000 units/day (current+base peak) Shift 2: +45,000 units/day (peak day)

Shift 3: +45,000 units/day (only during surges)

8 AM - 4 PM

4 PM - 12 AM

12 AM - 8 AM

Infrastructure Blueprint: Tech & Equipment

Technology Stack for Warehouse Operations

Warehouse equipment categorized by movement distance and automation level

Packing Tables

Provides

Trolleys Manually moves

items within zones

Prints labels for orders and customers

Barcode

Scanners

Moves pallets between dock and storage

THANKYOU