Homework 5

blem 11. (569) 570 571 mod 571 = (569) (570 571) mod 570

since 571 is prime, we can use Fermat's little Theorem
570 571 = (570) (570) · · · (570) 113 disjuisible by by 570, 50 570 mod 570 = 0 => 569 570 mod 570 mod 571 = 569 mod 571 using a calculator, we can brute force calculate the following: 56 mod 9= 15625 mod 9= 1 mod 9 =78'' = 6k+2 for some $k \in \mathbb{Z}$ 8" mod 6 = 8589934592 mod 6 = 2 mod 6 =) $56k+2 \mod 9 = 56k 5^2 \mod 9$ = $(56k \mod 9) (25 \mod 9) \mod 9$ = $(56m \mod 9)^k (7 \mod 9)$ = (2 K mod 9) 7 2014 mod 31 = 7 2014 mod 30 mod 31 . Transfer mod 9 = 17 mod 9 = 74 mod 3/10 mos nos evil 5 bill 9 3/1 = 2401 mod 3/4 10 15000 = 140 mod 310 /1000 11

of with a coal bits it would take about 2000 calls

```
Problem 2
1. N=p where p is 1024 bits
  E(x) = x^e \mod p = y

D(y) = D(E(x)) = y^d \mod p = x

e is relatively prime to p-1, so gcd(e, p-1) = 1

d is still the inverse of e \mod p-1 \implies d = e^{-1} \mod p-1
         => de = 1 mod p-1
  You can find I with egcd (N-1, e), which
   has to equal I since N-18 e are coprime
                   egcd(N-1,e)=1=a(N-1)+be (mod N-1)
                                        = be (mod N-1)
                                    => b=e-1=d /
  Theorem: D(E(x)) = x mod N
Proof: We need to show (xe) = x mod N for all x \( [0, N-1] \)
 · since ed = I mod (p-1)
  ed = 1 + k(p-1) for some k \in \mathbb{Z}

=) x^{ed} - x = x^{1+k(p-1)} - x = x(x^{k(p-1)} - 1) should equal 0

Case, x is a multiple of p. So x(x^{k(p-1)} - 1) mod p = 0
  case: x is not a multiple of p. so x = 0 mod p.
           But xp-1 = 7 modp (Fermat's little Theorem)
       = (x^{p-1})^k \equiv 1 \mod p
= \frac{1}{2} (x^{p-1})^{k} - 1 = 0 \mod p
2. Yes. Eve can compute all easily with just the egad, as explained above. Since e and N-1 are coprime, egad (e, N-1) = 1 = a(N-1) + be
                                               1 \equiv be \mod (W-1)
                 => d=e- = b from EGCD algorithm.
  The EGCD algorithm, like the GCD, decreases the problem size at least
   by a factor of two every two recursive calls (see Note 5),
   So it fakes at most an calls to stop. For
   P with n=1024 bits, it would take about 2000 calls,
   which is O(n).
```

3. Given d, Eve can recover x using the mod exponent algorithm from lecture rote 5. The decryption function D(y) = yd mod p could take a very long time to compute for very large d, so we can exploit repeated squaring in the mod-exp algorithm. For repeated squaring, the recursive call reduces the exponent by a factor of 2, so the iterations count is equal to the bits n in d. The computation is O(n)

4. Since the total computation is just finding d & recovering x with egad and mod-exp, it takes O(np) + O(nd) time for eve to decrypt the message, where $n_p = bits$ in p and nd = bits in d. Assuming d and p are roughly the same bit length, the total computation scales with the problem size. So for p = 1024, it would take about 1000 operations, which on any computer would not take very long (certainty not as long as 2^{1024}). Ever can recover the message quickly

Problem 3 $\varphi(n) = |\{i: 1 \le i \le n, \gcd(n, i) = I\}|$ For m, n such that $\gcd(m, n) = I, \varphi(mn) = \varphi(m) \cdot \varphi(n)$ 1. Let p be a prime number. $\phi(p) = |\{i| \le i \le p, \gcd(p, i) = 1\}|$ Since all integers less than p are coprine with P, and there are p-1 numbers less than p and greater than or equal to I, 3. Let p be a prime number and a \(\int Z^{\pm}, \alpha \rightarrow \rightarrow \text{mod p}^2 \text{ from port 1, \$\pi(\rho) = \rho - 1} \\ \alpha^{\phi(\rho)} \text{ mod p} = \alpha^{-1} \text{ mod p} = \frac{1}{2} \text{ mod p} \end{arrow} 2. Let p be prime and k be a positive integer. What is $\emptyset(p^k)$? This is just all the numbers up to p^k minus all the multiples of p. For p^k , there are p^{k-1} multiples of p less than p^k . So $\lfloor \varnothing(p^k) = p^k - p^{k-1} \rfloor$ 4. b with prime Footors $p_1, p_2, p_3, \cdots, p_K$. $b = p^{\alpha_1}, p_{\alpha_2}, \cdots, p_K$. $gcd(a_1b) = 1$ given, show $a^{\alpha(b)} = 1 \mod p_i$. Since a is coprime with b, it is also coprime with all factors of b, and all $p_i^{\alpha(a_1)}$ are coprime with P_{i} for $j \neq i$. Using the theorem mentioned earlier: $\alpha(P_{i}, \alpha_{1}, P_{2}, \alpha_{2}, \dots, P_{k}) = \alpha(P_{k}, \alpha_{1}) \alpha(P_{2}, \alpha_{2}) \cdots \alpha(P_{k}, \alpha_{k})$ $= \alpha(P_{i}, \alpha_{1}, P_{2}, \alpha_{2}, \dots, P_{k}, \alpha_{k}) \cdots \alpha(P_{k}, \alpha_{k}) \cdots \alpha(P_{k}, \alpha_{k}) \cdots \alpha(P_{k}, \alpha_{k}, P_{k}, \alpha_{k})$ $= Q(P^{d-1})(P_1-1)\cdots(P_k^{d_k-1})(P_k-1)$ for any i, this can be rewritten a K(Pi-1) For KEZ ak(P-1) = (ap-1) = 1 mod p = 1 mod p; / using FLI Problem 4]

1. No matter what you flip, your friend can make you stand in line. If you flip heads, then your friend can decide heads means you have to stand in line. If you flip fails, your friend can also decide tails means you stand in line. It's not a fair methood since your friend decides after you toss.

decide on the rules first, and then encrypt them with RSA, using a public key of his choosing. Your friend can then send you the encrypted message and public key, but you won't know the rules before or after your toss the coin. So you toss the coin and tell your friend the actual result, since you have no incentive to lie without knowing the assignment of heads and toils. Once your friend knows what the coin toss result was, he can send you the private key to decrypt the message. Since RSA encryption is a bijection, there's no may for the decryption is a bijection, there's no may for the decryption he give you anything other than the original message, and since the rules were decided before the foss, there's no may your friend is deciding unfairly, even if you choose to lie about the foss result

3. The problem's that since everyone knows the settle only has two elements, its easy for any one to figure out the message even without doing a proper decryption using the private key. Here's how: Suppose I'm frying to send my friend the result of the coin foss-"heads" - with a public key that he knows and you know. Even without the private key, my friend can guess the coin toss and encrypt his guess with the public key. If his encrypted message is the same as the one I sent, he correctly guessed heads. If its different, he knows he incorrectly guessed tails, and knows the message is heads. Anyone with the public key can "decrypt" the message IF there are only two possible messages. This can be fixed by making the message into a string, such as "I tossed heads", which increases the bits in the message and makes the set of possible messages so large that you can't use a brute force guess/check decryption 4. According to professor Sahai on piazza, we can interpret this question as saying there are 2 groups, where I representative from either group must stand in line. For part 2, it would have been the same if the coin tosser encrypts the toss result. For n>2, we can have the coin fosser encrypt the message and send it to everyone, including the people on his side. Since there are no rules get, he has no reason to lie, and even if he does it won't affect the rules. All n people can verify that they have the same encrypted message, so the coin fosser is not saying one thing to his throughout another thing to the other. Now the otherside can make a decision on the rules, they do, the coin tosser can reveal the private key.

Problem 5. Write Your own Problem -Modular arithmetic & Basic algebra in mod math The Chinese remainder theorem says that there exists a number number a when divided by given sequence of integers gives another sequence of given integers. In other words, suppose n, na, ", nk are positive integers and all coprime to each other. Then given a sequence of integers a, az, az, az, ..., ax, There exists an x such that X solves! $X \equiv 0$, mod n, $X \equiv a_2$ mod n_2 X = ak mod 1k Show that such a number exists for an example of K=3, and generate an algorithm that can determine x. Solution: Consider n=2 n2=5 n3=7 and $a_1 = 2$ $a_2 = 3$ $a_3 = 6$ (chosen randomly) $X \equiv 2 \mod 2$ $\chi = 3 \mod 5$ $X \equiv 6 \mod 7$ Congruence classes! X = {0, 4, 6, 8, 10, 12, 14, 16, 8).} X = 18 mod 70 Using algebra. x-2+2t X = 3+55 X=6+74 these can be substituted into the mod equations to get the same result,

We want to solve x = a; (modn;) For i=1,:., t · Define N= n, na...nk · n; and N'm; are always coprime. Using EGCD, we can find a; and b; such that $GCD(N_i, N_{n_i}) = I = q_i n_i + b_i N_{n_i}$ call $C_i = b_i N/n_i$ => Dini + Ci = 1 so C; mod ni = 1. But for ni where j =i C; mod 1 = 0 => C; = 1 mod n; $C_i \equiv 0 \mod n_i$ j $\neq i$ Then \times is just the sum of a_ic_i $\chi = \sum a_i c_i$

6. Midterm question 3: For p>1, p-1 is its own inverse

Direct Proof: $(p-1)(p-1) \mod p$ $= (-1)(-1) \mod p$ $= (-1)^2 \mod p$ $= 1 \mod p$ $= (p-1)^2 = 1 \mod p$ Hence p-1 is its own inverse 7. Midlerm Question 4: $21^{-1} \mod 31$? $21 \cdot a = 1 \mod 31 = \{1, 32, 63, 94, 125, 156\}$ $21 \cdot 3 = 63 = 1 \mod 31$ I got the inverse by listing multiples of 21, and looked for the first one that is congruent mod 31 21-1 mod 31 = 3 mod 31

	m Question						P. JVI, 12	
	emon (trainer					7	375 14.	
	A 233							
التحقيق	B 13	2	2	CH	+ B			
-	0 32		3	B (CA		-2/4	
Pokémo Trainer	n-optimal:	$\{(A,2),(C,A),(C,$	B,1),	(C,3	(+ra	(poke	mon proposi	opose e)
) A	2314		28/	4 BC	2	7.3		
	1324	14 15	100	BA	1			
	3214	3	DE	SCI	+			
0	4213		AC) B (Cont			
Dan	Mighting gal	Proposals						
1	A					gas .		
	В	7 6					,	
116	C	-12.4.30	- Iko					
	0	123					,	
2	A	MY						
	В	(3)						
	C	9						
	0	(D)						
3	A	(A)						
0	B	8	7.5		,			
	C.	3	all o					
	0	1(A)	15					
-U	4	6						
	2	(3)				-		
	C							
	n	(3)						
	U	3						
	one gets	rejected		nce				

Proce by Induction: \$ H; = H, + Hz+. + H, = (n+1) H, - N Base Cose: $n=1 \Rightarrow \frac{1}{2}H$; =H, =(1+1)H, -1=2H, -1=21Induction Hypothesis. Assume true for N=k. So £H; = H, +H2+ +Hk = (K+1)Hk-k Induction step'. Show that k+1 is true following the hypothesis $\frac{5}{5}H_{j} = \frac{5}{5}H_{j} + H_{k+1} = (k+1)H_{k} - k + H_{k+1}$ $= (k+1)H_k - k + (H_k + \frac{1}{k+1})$ $= K H_{k} + H_{k} + H_{k} - K + \frac{1}{k+1}$ $= K H_{k} + 2H_{k} - K + \frac{1}{k+1}$ $= (K+2) H_{k} + \frac{K(K+1)}{k+1} + \frac{1}{k+1} - \frac{K+2}{k+1}$ $= (K+2) H_{k} + \frac{K+2}{k+1} + \frac{1}{K+1} + \frac{1}{K+1} + \frac{1}{K+1}$ $= (K+2) (H_{k} + \frac{1}{k+1}) + 1 - K^{2} - K - K - 2$ $=(k+2)H_{k+1}-\frac{k^2+2k+1}{k+1}$ = (K+2) H_K+1 - (K+1)(K+1) $=(k+a)+|_{k+1}-(k+1)$ Thus by induction In Eti; = (n+1) +1, -n

10. Midterm Question 7	
IF P => Q, then Q => P False	
Proof by counterexample:	
truth table	
PQP=>QQ=>P	
TIT - TIME TO SEE THE TOWN SHOWN	
T T T E	
T F F F T T STORY A STAN THE S	
FFIFIT	
When P is false and Q is true, P=>Q but	
Q => P, so the statement is false	
THE PARTY OF THE PROPERTY OF THE PARTY OF TH	
11. Midlern Question 8: It p is prime, then (p-1) = (p-1)! mod p	
11. Midlem Question 8: If p is prime, then (p-1) = (p-1)! mod p Since p is prime, all numbers less than p are	
coprime with p, so {1,2,, p-18 all	
have gcd with p equal to I. Hence all elements in {1,2,, p-1} have a multiplicative	
elements in {1,2,, p-1} have a multiplicative	
Inverse mod P. We know I is its own	
p-1 is its own inverse. Now since every	
p-l is its own inverse. Now since every	
integer less than p has an inverse mod p, we	
can reduce $(p-1) = (p-1)(1)(p-1)(p-1)(p-1)(p-2)$	
In order to pull p-1 8 = $(p-1)(1)(1)(1)$	
$7 \text{ out of } (p-1)^{1}$ = $(p-1)(1) = p-1$	
In order to pull p-1 & = $(p-1)(1)(1)(1)$ I out of $(p-1)!$, = $(p-1)(1) = p-1$ We need to prove $(p-1)$ and I are the only numbers modp	
That are were out inverse, suppose there is a number to such that	
$k^2 \equiv 1 \mod p$	
$k^2 = 1 \mod p$ $= k^2 - 1 = 0 \mod p$	
$(k-1)(k+1) = 0 \mod p$	
$(k-1) \operatorname{nodp} = 0 (k+1) \operatorname{modp} = 0$	
$\Rightarrow k = l \mod p \Rightarrow k = -l \equiv p - l \pmod p$	
$= 2 k = 1 \mod p = 3 k = -1 = p - 1 \pmod p$ hence I and p-1 are the only numbers modp	
that are self inverses.	

12. Midterm Ovestion 9 EGCD(x,y): return EGCD(y,x)
if y=0: return (x,1,0 (d,a,b) = ECGD(y,x-y)return (d,a,a-b)Proof of Termination: If y=0, then the algorithm returns the correct base case, since y=0 is divisible by x xx so d= x(1) + o(0). Any other input will make a recursive call. EGCD is intended for x ≥ y such that he recursive call always reduces the problem size or returns the base case. If y=x, then the next recursive call is the base case. If yex, we already know that the recursive calls first argumenty?s less than x and x-y is less than x. Since we are working with natural numbers, y =x-1, so the recursion reduces the First argument by at least 2 every recursive call. Thus it tokes at most x recursions to return to a base Case. Since we have an upper bound in computations, the algorithm ends. The algorithm will also terminate for yox since the First ".F" clause will return EGCO with switched arguments, and so by the proof above it ends. Correct EGO: the triple integers (d, a, a-b) are the final return of the algorithm. It is correct by direct proof:

(d, b, a-b) -> d = ax + (a-b) y and since EGCD(x,y) = EGCD(y,x-y) $(d,a,b) \rightarrow d=a(y)+b(x-y)$ = ay+6x-y

Midtern Question 10 31x + 21y = 1010 since gcd(31,21) = 1 = 21a + 316for some $x, y \in Z^+$ => 2/a+3/6 = 1 =7 21(3) + 3(-2) = 1x 1010 => 21(3030) + 3(-2020) = 1010 +k(a(-31)+3(21)=0)21(y)+31(x)=1010 k has to beless than 100... try a few values: 3069 21(3030) + 3(-2020) = 1010+ 21 (+3007) + 31 (2037) = ZOZO $= y = 23 \quad x = 17$ 21(23) + 31(17) = 1010

Midtern 14. Problem 11 Improvement Lemma for Troll Women: IF on day k troll W receives a proposal from M, on all days after k W has someone M* that she likes at least as much as M. on that day k itself. Proof by Contradiction! Suppose for the sake of contradiction on day j>k that W has M = (or no one) that she scored less than M on day k. j is the first such day that w has such M -. By the well ordering principle, on day j-1, someone better tran M-, Earl him M*, who is at least as good as M (he could be it as well) proposed to W. Since W said "maybe" to M*, her score for him is higher than any other proposer, and if there were others that proposed, Mrs score increases by 5 points. If so, any man she likes less than Mt on day j-1 can never be with her, since there score can never increase as they awtomatically are rejected because on day will propose again. Thus M- could never actually receive a may be. Contradiction.