In [846]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

Data Preprocessing

In [847]:

```
df = pd.read_csv("train_data.csv")
df.head(3)
```

Out[847]:

	ID	HealthServiceArea	Gender	Race	TypeOfAdmission	CCSProcedureCode	APRS
0	1	New York City	F	Other Race	Newborn	228	
1	2	New York City	М	Black/African American	Newborn	228	
2	3	New York City	М	Other Race	Newborn	220	
4							•

In [848]:

```
#Drop the columns ID and HealthServiceArea
df.drop(columns = ['ID', 'HealthServiceArea'],inplace=True,axis=1)
df.head(3)
```

Out[848]:

	Gender	Race	TypeOfAdmission	CCSProcedureCode	APRSeverityOflIInessCode	Pa
0	F	Other Race	Newborn	228	1	
1	M	Black/African American	Newborn	228	1	
2	М	Other Race	Newborn	220	1	
4						•

EDA (Exploratory Data Analysis

In [849]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 59966 entries, 0 to 59965 Data columns (total 14 columns):

Column Non-Null Count Dtype _____ 0 Gender 59966 non-null object 1 Race 59966 non-null object 59966 non-null object 2 TypeOfAdmission 3 CCSProcedureCode 59966 non-null int64 4 APRSeverityOfIllnessCode 59966 non-null int64 5 PaymentTypology 59966 non-null object 6 BirthWeight 59966 non-null int64 7 EmergencyDepartmentIndicator 59966 non-null object AverageCostInCounty 59966 non-null int64 9 AverageChargesInCounty 59966 non-null int64 10 AverageCostInFacility 59966 non-null int64 11 AverageChargesInFacility 59966 non-null int64 12 AverageIncomeInZipCode 59966 non-null int64 59966 non-null int64

dtypes: int64(9), object(5) memory usage: 6.4+ MB

13 LengthOfStay

The data has categorical columns:

- 1.Gender
- 2.Race
- 3.TypeOfAdmission
- 4.PaymentTypology
- 5. Emergency Depearment Indicator

Even though the columns CCSProcedureCode and APRSeverityofIllnessCode are numeric, they seem to be categorical in nature which must be verified

In [850]:

df.describe()

Out[850]:

	CCSProcedureCode	APRSeverityOfIllnessCode	BirthWeight	AverageCostInCounty	Α۱
count	59966.000000	59966.000000	59966.000000	59966.000000	
mean	155.404229	1.254594	3336.298903	2372.806690	
std	89.541978	0.546207	446.244475	639.755096	
min	-1.000000	1.000000	2500.000000	712.000000	
25%	115.000000	1.000000	3000.000000	2041.000000	
50%	220.000000	1.000000	3300.000000	2533.000000	
75%	228.000000	1.000000	3600.000000	2785.000000	
max	231.000000	4.000000	7500.000000	3242.000000	
4					•

Few observations from the description statistics:

- 1. The average LengthOfStay(LOS) is 2.53 and the min=1 and max=10
- 2. The average Average Costln County is 2372 and Avergae Charges In County is 7979 . whats the correlatio between these two?

It would be interesting to observe the correlation between these and the LengthOfStay(LOS)

Class imbalance investigation

In [851]:

```
#Getting and idea of the LengthOfStay
col_values = df['LengthOfStay'].values
df.groupby(['LengthOfStay']).count()
```

Out[851]:

	Gender	Race	TypeOfAdmission	CCSProcedureCode	APRSeverityOfIlInessCoc
LengthOfStay					
1	8895	8895	8895	8895	889
2	25000	25000	25000	25000	2500
3	16000	16000	16000	16000	1600
4	7504	7504	7504	7504	75(
5	1342	1342	1342	1342	134
6	557	557	557	557	5!
7	346	346	346	346	34
8	145	145	145	145	14
9	97	97	97	97	•
10	80	80	80	80	{
4					•

The examples with < 4 days is 49895 and 10,071 >=4 days.

- 1. (< 4 days) => 83.36 %
- 2. (>=4 days) => 16.64 %

This resembles a good amount of class imbalance . Hence even need to think of decision trees as a mechanism for the same

In [852]:

```
#So Lets change the LengthOfStay
def change_los(x):
    if x < 4:
        return 0
    return 1
df['LengthOfStay'] = df['LengthOfStay'].apply(change_los)</pre>
```

```
In [853]:
```

So the above change was successful and this confirms our previous undesrtanding that the datasets contains more samples of LOS < 4

49895

10071

4989

1007

49895

10071

NULL values investigation

49895

10071 10071

49895

0

1

```
In [855]:
```

```
df.isnull().any()
Out[855]:
Gender
                                 False
Race
                                 False
TypeOfAdmission
                                 False
CCSProcedureCode
                                 False
APRSeverityOfIllnessCode
                                 False
PaymentTypology
                                 False
BirthWeight
                                 False
EmergencyDepartmentIndicator
                                 False
AverageCostInCounty
                                 False
AverageChargesInCounty
                                 False
AverageCostInFacility
                                 False
AverageChargesInFacility
                                 False
AverageIncomeInZipCode
                                 False
                                 False
LengthOfStay
dtype: bool
```

So the dataset doesnot contain any NULL values

**Data visualization, Attribute correlation and dependence

In [856]:

```
plt.figure(figsize=(60,60))
#plt.figure(figsize=(6,6))
for i,col in enumerate(df.columns):
    plt.subplot(6,6,i+1)
    plt.hist(df[col],alpha=0.3, color= 'b',density=True)
    plt.title(col)
    plt.xticks(rotation='vertical')
```


In [857]:

```
df[['Race','Gender']].groupby(['Race']).count()
```

Out[857]:

	Race
8183	Black/African American
526	Multi-racial
18314	Other Race
32943	White

Gender

Key takeaways from the sample given:

Race

412

- 1. Definitely the classes are imbalanced with respect to LengthofStay as the measure
- 2.Females are 48.34 % and males form 51.66 % of the samples
- 3.Whites are 54.94% ,30.54% other race and 13.65% Black/African American and remaining Multi racial

```
In [859]:
```

```
df[['Race','TypeOfAdmission']].groupby(['TypeOfAdmission']).count()
Out[859]:
```

TypeOfAdmission				
Elective	154			
Emergency	659			
Newborn	58741			

Urgent

The large number of observations are related to Newborn (97.96%) with next highest being Emergencies followed by Urgent and the Elective samples are very less

In [860]:

```
#Exploring birthweight distribution
plt.hist(df['BirthWeight'],alpha=0.3, color= 'b',density=True)
```

Out[860]:

In [861]:

```
print("Max=",df['BirthWeight'].max())
print("Min=",df['BirthWeight'].min())
```

Max= 7500 Min= 2500

So the birth weight of 7500 looks like an outlier and we cannot assume the distribution is skewed rather anything above 5000 must be assumned to be an outlier condition

In [862]:

```
plt.hist(df['CCSProcedureCode'],alpha=0.5,color='r',density='True')
```

Out[862]:

In [863]:

```
df[['CCSProcedureCode','LengthOfStay']].groupby(['CCSProcedureCode']).count()
```

Out[863]:

CCSProcedureCode

LengthOfStay

19886

2981

769	-1
11189	0
13628	115
740	216
10773	220

228

231

So the CCS procedure code is kind of fixed and we can assume that only specific codes . We can assume its ordinal in nature

In [864]:

```
plt.hist(df['APRSeverityOfIllnessCode'],alpha=0.5,color='g',density='True')
```

Out[864]:

In [865]:

```
string='APRSeverityOfIllnessCode'
df[['CCSProcedureCode',string]].groupby([string]).count()
```

Out[865]:

CCSProcedureCode

APRSeverityOfIlInessCode

47953	1
8760	2
3252	3
1	4

A lot of examples from the training set fall into Category of APRS Severity Illness Code

In [866]:

```
#Exploring Payment Typology
plt.figure(figsize=(15,15))
plt.hist(df['PaymentTypology'],alpha=0.5,color='r',density='True')
```

Out[866]:

In [867]:

```
string='PaymentTypology'
df[['CCSProcedureCode',string]].groupby([string]).count()
```

Out[867]:

CCSProcedureCode

Pa۱	/me	nt٦	σv	olo	oav

12073	Blue Cross/Blue Shield
849	Federal/State/Local/VA
545	Managed Care, Unspecified
28723	Medicaid
44	Medicare
118	Miscellaneous/Other
15608	Private Health Insurance
1984	Self-Pay
22	Unknown

In [868]:

```
plt.hist(df['EmergencyDepartmentIndicator'],alpha=0.5,color='r',density='True')
```

Out[868]:

*So the severity code even though specified in numerical attribute its ordinal in nature
The EmergencyDepartmentIndicator data shows most cases are not emergency in nature

So far in our analysis

1. Race,Gender,PaymentTypology,TypeOfadmission and EmergencyIndicator are nominal in nature , whereas APRSCode and CCSprocedure code seem to be ordinal in nature The dataset has class imbalance and also mainly contains data of the newborns and non-emergency cases

In [869]:

```
plt.hist(df['AverageCostInCounty'],alpha=0.5,color='r',density='True')
```

Out[869]:

In [870]:

```
plt.hist(df['AverageChargesInCounty'],alpha=0.5,color='r',density='True')
```

Out[870]:

In [871]:

```
plt.hist(df['AverageChargesInFacility'],alpha=0.5,color='r',density='True')
```

Out[871]:

In [872]:

```
plt.hist(df['AverageCostInFacility'],alpha=0.5,color='r',density='True')
```

Out[872]:

In [873]:

```
plt.hist(df['AverageIncomeInZipCode'],alpha=0.5,color='r',density='True')
```

Out[873]:

lets focus on now changing the data accordingly and perform scaling etc before we send it to the model

Data Correlation

In [874]:

```
import seaborn as sns
plt.figure(figsize=(30,30))
for i,col in enumerate(df.columns):
    plt.subplot(6,5,i+1)
    sns.scatterplot(data=df,y=col,x='LengthOfStay')
    plt.title(col)
plt.xticks(rotation='vertical')
plt.show()
```


The scatterplot does not reveal any major distribution differences from the attributes influencing LOS

In [875]:

```
string='Race'
df.groupby([string,'LengthOfStay'])['Gender'].count()
```

Out[875]:

LengthOfStay		
0	6431	
1	1752	
0	449	
1	77	
0	15189	
1	3125	
0	27826	
1	5117	
	0 1 0 1 0	

Name: Gender, dtype: int64

In [876]:

```
string='Gender'
df.groupby([string,'LengthOfStay'])['Gender'].count()
```

Out[876]:

Gendei	r Lengtl	hOfStay	
F	0		24449
	1		4538
M	0		25446
	1		5532
U	1		1
Name:	Gender,	dtype:	int64

If its a female, there is 97.85 chance of length of stay being less than 4 days if its a male 82% chance of length stay being less than 4 days

In [877]:

```
string='PaymentTypology'
df.groupby([string,'LengthOfStay'])[string].count()
```

Out[877]:

PaymentTypology	LengthOfStay	
Blue Cross/Blue Shield	0	9952
	1	2121
Federal/State/Local/VA	0	747
	1	102
Managed Care, Unspecified	0	445
	1	100
Medicaid	0	24128
	1	4595
Medicare	0	39
	1	5
Miscellaneous/Other	0	97
	1	21
Private Health Insurance	0	12736
	1	2872
Self-Pay	0	1739
	1	245
Unknown	0	12
	1	10
	•	

Name: PaymentTypology, dtype: int64

The next step is to identify the correlation

In [878]:

Some observations from the heatmap regarding the relationship between variables:

- 1. The Average Charges In County and Average Charges in Facility share a very strong correlation
- 2. Average CostIn County and Average Charges In County share a little higher correlation around 0.75
- 3. Average Costin Facility and Average Costin County 0.5
- 4. Average Charges in Facility and Average Cost In County 0.25
- 5.The LengthofStay and APRSSeverityOfIllnessCode seem to share some amount +ve correlation aroun 0.25 and all the others
- 6.share less than 0.25 correlation and BirthWeight seems to have -ve correlation Ofcourse we have not mapped the relation of other categorical variables yet !!!

Now lets look at the applying logistic Regression model to see the classification model performance :

Step 1: Lets convert the categorical variables using one-hot encoding:

In [879]:

```
#Can we remove the unknown example as it might be an outlier and also unwanted extra co
lun for processing
from sklearn.preprocessing import OneHotEncoder

def convert_to_categorical(df,colname):
    OneHotEncoder_race = OneHotEncoder(handle_unknown='ignore')
    OneHotEncoder_race.fit(df[[colname]])
    one_hot_ = OneHotEncoder_race.transform(df[[colname]]).toarray()
    #print(one_hot_.shape,OneHotEncoder_race.categories_)

for i in range(len(OneHotEncoder_race.categories_[0])):
    df[colname+'_'+ str(OneHotEncoder_race.categories_[0][i])] = one_hot_[:,i]
    fd = df.drop([colname],axis=1)
    return fd
```

```
In [880]:
```

```
df = convert_to_categorical(df,'Gender')
df=convert_to_categorical(df,'Race')
df=convert_to_categorical(df,'TypeOfAdmission')
df=convert_to_categorical(df,'PaymentTypology')
df=convert_to_categorical(df,'EmergencyDepartmentIndicator')
listofzeros= [0]* df.shape[0]
df.insert(21,'PaymentTypology_Department Of Corrections',listofzeros)
df.insert(19,'TypeOfAdmission_Trauma',listofzeros)
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59966 entries, 0 to 59965
Data columns (total 33 columns):

υατα #	Columns (total 33 columns):	Non-Null Count	Dtype
		Non-Nati Counc	осуре
0	CCSProcedureCode	59966 non-null	int64
1	APRSeverityOfIllnessCode	59966 non-null	int64
2	BirthWeight	59966 non-null	int64
3	AverageCostInCounty	59966 non-null	int64
4	AverageChargesInCounty	59966 non-null	int64
5	AverageCostInFacility	59966 non-null	int64
6	AverageChargesInFacility	59966 non-null	int64
7	AverageIncomeInZipCode	59966 non-null	int64
8	LengthOfStay	59966 non-null	int64
9	Gender_F	59966 non-null	float64
10	Gender_M	59966 non-null	float64
11	Gender_U	59966 non-null	float64
12	Race_Black/African American	59966 non-null	float64
13	Race_Multi-racial	59966 non-null	float64
14	Race_Other Race	59966 non-null	float64
15	Race_White	59966 non-null	float64
16	TypeOfAdmission_Elective	59966 non-null	float64
17	TypeOfAdmission_Emergency	59966 non-null	float64
18	TypeOfAdmission_Newborn	59966 non-null	float64
19	TypeOfAdmission_Trauma	59966 non-null	int64
20	TypeOfAdmission_Urgent	59966 non-null	float64
21	PaymentTypology_Blue Cross/Blue Shield	59966 non-null	float64
22	PaymentTypology_Department Of Corrections	59966 non-null	int64
23	PaymentTypology_Federal/State/Local/VA	59966 non-null	float64
24	PaymentTypology_Managed Care, Unspecified	59966 non-null	float64
25	PaymentTypology_Medicaid	59966 non-null	float64
26	PaymentTypology_Medicare	59966 non-null	float64
27	PaymentTypology_Miscellaneous/Other	59966 non-null	float64
28	PaymentTypology_Private Health Insurance	59966 non-null	float64
29	PaymentTypology_Self-Pay	59966 non-null	float64
30	PaymentTypology_Unknown	59966 non-null	float64
31	EmergencyDepartmentIndicator_N	59966 non-null	float64
32	EmergencyDepartmentIndicator_Y	59966 non-null	float64
	es: float64(22), int64(11)		
memoi	ry usage: 15.1 MB		

memery arrager == 1.5

```
In [881]:
```

```
df.shape
```

Out[881]:

(59966, 33)

Splitting the dataset

```
In [882]:
```

```
with pd.option_context('mode.chained_assignment',None):
    train_data,test_data = train_test_split(df,test_size=0.2,shuffle=True,random_state=
0)
with pd.option_context('mode.chained_assignment',None):
    train_data,val_data = train_test_split(train_data,test_size=0.25,shuffle=True,rando
m_state=0)
print(train_data.shape,val_data.shape,test_data.shape)

(35979, 33) (11993, 33) (11994, 33)
```

In [883]:

```
train_X = train_data.drop(['LengthOfStay'],axis=1).to_numpy()
train_y = train_data['LengthOfStay'].to_numpy()

test_X = test_data.drop(['LengthOfStay'],axis=1).to_numpy()
test_y = test_data['LengthOfStay'].to_numpy()

val_X = val_data.drop(['LengthOfStay'],axis=1).to_numpy()
val_y = val_data['LengthOfStay'].to_numpy()
```

In [884]:

```
from sklearn.metrics import f1_score
from sklearn.metrics import *
def print_f1_scores(clf,train_X,train_y,val_X,val_y,tag):
   train_pred = clf.predict(train_X)
   val_pred = clf.predict(val_X)
    train_f1 = balanced_accuracy_score(train_y,train_pred)
             = balanced accuracy score(val y,val pred)
    print("Train
                   balanced accuracy score:{:.3f}".format(train f1))
   print("Train
                            accuracy score:{:.3f}".format(accuracy score(train y,train
pred)))
    print(tag," balanced accuracy score:{:.3f}".format(val f1))
                         accuracy score:{:.3f}".format(accuracy score(val y,val pred)))
    print(tag,"
def print classification report(model,X,y,tag=" "):
    pred = model.predict(X)
    label 0=tag+" "+"L0"
   label_1=tag+"_" +"L1"
    label names = [label 0,label 1]
    print(classification_report(y,pred,target_names=label_names))
```

Logistic Regression, without scaling and regularization

In [885]:

```
#Basic Logistic Regression
from sklearn.metrics import plot_confusion_matrix
clf = LogisticRegression(random_state=0,solver='liblinear',max_iter=1000,class_weight=
'balanced').fit(train_X,train_y.ravel())
plot_confusion_matrix(clf,val_X,val_y)
print_f1_scores(clf,train_X,train_y,val_X,val_y,"Validation")
print_classification_report(clf,val_X,val_y,"validation")
print_f1_scores(clf,train_X,train_y,test_X,test_y,"Test LogReg ")
print_classification_report(clf,test_X,test_y,"Test LogReg ")
plot_roc_curve(clf,test_X,test_y)
```

balanced accuracy score:0.648

accuracy	score:0.6	95	
alanced accur	acy score	:0.640	
accur	acy score	:0.690	
precision	recall	f1-score	support
0.89	0.72	0.79	10001
0.28	0.56	0.38	1992
		0.69	11993
0.59	0.64	0.59	11993
0.79	0.69	0.72	11993
	precision 0.89 0.28	alanced accuracy score accuracy score precision recall 0.89 0.72 0.28 0.56	0.28 0.56 0.38 0.69 0.59 0.64 0.59

Train balanced accuracy score:0.648
Train accuracy score:0.695
Test logPeg balanced accuracy score:0

Test LogReg balanced accuracy score:0.648
Test LogReg accuracy score:0.693

	precision	recall	f1-score	support
Test LogReg _L0	0.89	0.72	0.79	9943
Test LogReg _L1	0.30	0.58	0.39	2051
accuracy			0.69	11994
macro avg	0.59	0.65	0.59	11994
weighted avg	0.79	0.69	0.73	11994

Out[885]:

Train

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7fea9b39c2e8>

In Summary:

- 1. The train and validation accuracy score are very close to each other around 0.640 and hence removing any need for regularization and even the test accuracy score is 0.651
- 2. The precision for label 0.90 and label 0.30. The precision is low for label 0.90 owing to less class imbalance
- 3. And the AUC is 0.70 which is like 70%
- 4. The f1score is low for label1 and around 0.80 for label0

Logistic Regression, Regularized but not scaling

In [886]:

```
clf_l1 = LogisticRegression(penalty='l1',C=0.75,random_state=0,solver='liblinear',max_i
ter=1000,class_weight='balanced').fit(train_X,train_y.ravel())
plot_confusion_matrix(clf_l1,val_X,val_y)
print_f1_scores(clf_l1,train_X,train_y,val_X,val_y,"Validation LogReg L1")
print_classification_report(clf_l1,val_X,val_y,"validation LogReg L1")
print_f1_scores(clf_l1,train_X,train_y,test_X,test_y,"Test LogReg L1")
print_classification_report(clf_l1,test_X,test_y,"Test LogReg L1")
plot_roc_curve(clf_l1,test_X,test_y)
```

Train balanced accuracy score:0.648
Train accuracy score:0.695

Validation LogReg L1 balanced accuracy score:0.640 Validation LogReg L1 accuracy score:0.690

	precision	recall	f1-score	support
validation LogReg L1_L0	0.89	0.71	0.79	10001
validation LogReg L1_L1	0.28	0.57	0.38	1992
accuracy			0.69	11993
macro avg	0.59	0.64	0.59	11993
weighted avg	0.79	0.69	0.72	11993

Train balanced accuracy score:0.648
Train accuracy score:0.695

Test LogReg L1 balanced accuracy score:0.650
Test LogReg L1 accuracy score:0.694

0 0	precision	recall	f1-score	support
Test LogReg L1_L0	0.89	0.72	0.79	9943
Test LogReg L1_L1	0.30	0.58	0.39	2051
accuracy			0.69	11994
macro avg	0.60	0.65	0.59	11994
weighted avg	0.79	0.69	0.73	11994

Out[886]:

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7fea9b39c7b8>

In [887]:

```
clf_12 = LogisticRegression(penalty='12',C=0.75,random_state=0,solver='liblinear',max_i
ter=1000,class_weight='balanced').fit(train_X,train_y.ravel())
plot_confusion_matrix(clf_12,val_X,val_y)
print_f1_scores(clf_12,train_X,train_y,val_X,val_y,"Validation LogReg L2")
print_classification_report(clf_12,val_X,val_y,"validation LogReg L2")
print_f1_scores(clf_12,train_X,train_y,test_X,test_y,"Test LogReg L2")
print_classification_report(clf_12,test_X,test_y,"Test LogReg L2")
plot_roc_curve(clf_12,test_X,test_y)
```

Train balanced accuracy score:0.648
Train accuracy score:0.695

Validation LogReg L2 balanced accuracy score:0.640 Validation LogReg L2 accuracy score:0.690

	precision	recall	f1-score	support
validation LogReg L2_L0	0.89	0.71	0.79	10001
validation LogReg L2_L1	0.28	0.57	0.38	1992
accuracy			0.69	11993
macro avg	0.59	0.64	0.59	11993
weighted avg	0.79	0.69	0.72	11993

Train balanced accuracy score:0.648
Train accuracy score:0.695

Test LogReg L2 balanced accuracy score:0.650
Test LogReg L2 accuracy score:0.693

	precision	recall	f1-score	support
Test LogReg L2_L0	0.89	0.72	0.79	9943
Test LogReg L2_L1	0.30	0.58	0.39	2051
accuracy			0.69	11994
macro avg	0.60	0.65	0.59	11994
weighted avg	0.79	0.69	0.73	11994

Out[887]:

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7fea9b39c860>

Regularization does not help further improve scores as already we observe that both validation and train accuracy and performance metrics are same

**Scaling the attributes and fitting

In [888]:

```
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler
```

In [889]:

```
MinMaxScaler_Train = MinMaxScaler().fit(train_X)
train_X_scale= MinMaxScaler_Train.transform(train_X)
val_X_scale = MinMaxScaler_Train.transform(val_X)
test_X_scale= MinMaxScaler_Train.transform(test_X)
```

In [890]:

```
clf_scale = LogisticRegression(random_state=0,solver='liblinear',max_iter=1000,class_we
ight='balanced').fit(train_X_scale,train_y.ravel())
plot_confusion_matrix(clf_scale,val_X_scale,val_y)
print_f1_scores(clf_scale,train_X_scale,train_y,val_X_scale,val_y,"Validation LogReg Mi
nMaxScale")
print_classification_report(clf_scale,val_X_scale,val_y,"Validation LogReg MinMaxScale")
print_f1_scores(clf_scale,train_X_scale,train_y,test_X_scale,test_y,"Test LogReg MinMax
Scale")
print_classification_report(clf_scale,test_X_scale,test_y,"Test LogReg MinMaxScale")
print_classification_report(clf_scale,test_X_scale,test_y,"Test LogReg MinMaxScale")
plot_roc_curve(clf_scale,test_X_scale,test_y)
```

Train balanced accuracy score:0.648
Train accuracy score:0.696

Validation LogReg MinMaxScale balanced accuracy score:0.640 Validation LogReg MinMaxScale accuracy score:0.690

	precision	recall	t1-score	support
Validation LogReg MinMaxScale_L0	0.89	0.72	0.79	10001
Validation LogReg MinMaxScale_L1	0.28	0.57	0.38	1992
accuracy			0.69	11993
macro avg	0.59	0.64	0.59	11993
weighted avg	0.79	0.69	0.72	11993

Train balanced accuracy score:0.648
Train accuracy score:0.696

Test LogReg MinMaxScale balanced accuracy score:0.651
Test LogReg MinMaxScale accuracy score:0.694

	precision	recall	f1-score	support
Test LogReg MinMaxScale_L0	0.89	0.72	0.80	9943
Test LogReg MinMaxScale_L1	0.30	0.59	0.40	2051
accuracy	,		0.69	11994
macro avg	0.60	0.65	0.60	11994
weighted avg	0.79	0.69	0.73	11994

Out[890]:

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7fea9ac7f630>

In [891]:

```
StandardScaler_Train = StandardScaler().fit(train_X)
train_X_std= StandardScaler_Train.transform(train_X)
val_X_std = StandardScaler_Train.transform(val_X)
test_X_std = StandardScaler_Train.transform(test_X)
clf_std = LogisticRegression(random_state=0,solver='liblinear',max_iter=1000,class_weig
ht='balanced').fit(train_X_std,train_y.ravel())
print_f1_scores(clf_std,train_X_std,train_y,val_X_std,val_y,"Validation LogReg Standard
Scale")
plot_confusion_matrix(clf_std,val_X_std,val_y)
print_classification_report(clf_std,val_X_std,val_y,"Validation LogReg StandardScale")
print_f1_scores(clf_std,train_X_std,train_y,test_X_std,test_y,"Test LogReg StandardScale")
print_classification_report(clf_std,test_X_std,test_y,"Test LogReg StandardScale")
print_classification_report(clf_std,test_X_std,test_y,"Test LogReg StandardScale")
plot_roc_curve(clf_std,test_X_std,test_y)
pred_test_y = clf_std.predict(test_X_std)
```

Train balanced accuracy score:0.648
Train accuracy score:0.696

Validation LogReg StandardScale balanced accuracy score:0.640
Validation LogReg StandardScale accuracy score:0.690

t	precision	recall	f1-score	suppor
Validation LogReg StandardScale_L0 1	0.89	0.72	0.79	1000
Validation LogReg StandardScale_L1 2	0.28	0.56	0.38	199
accuracy			0.69	1199
macro avg	0.59	0.64	0.59	1199
weighted avg	0.79	0.69	0.72	1199
3				

Train balanced accuracy score:0.648
Train accuracy score:0.696

Test LogReg StandardScale balanced accuracy score:0.651
Test LogReg StandardScale accuracy score:0.694

	precision	recall	f1-score	support
Test LogReg StandardScale_L0	0.89	0.72	0.80	9943
Test LogReg StandardScale_L1	0.30	0.59	0.40	2051
accuracy			0.69	11994
macro avg	0.60	0.65	0.60	11994
weighted avg	0.79	0.69	0.73	11994

The logistic regression Summary:

- 1.The precision for L0 is good whereas the precision for LOS =1 is not that great with this model.*Primarily this is due to class imbalance*
- 2. The AUC is around 0.70

Random Forest

Since we saw class imbalance we will look at Random forest and see if they help improve the prediction for the minorty class as well

Random forest with max_depth=16

In [892]:

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(max depth=16, random state=0)
rf.fit(train X, train y)
print f1 scores(rf,train X,train y,val X,val y, "RF Validation")
print_f1_scores(rf,train_X,train_y,test_X,test_y,"RF Test ")
print_classification_report(rf, val_X, val_y,tag="RF Validation")
print_classification_report(rf,test_X,test_y,tag="RF Test ")
       balanced accuracy score:0.689
Train
Train
                 accuracy score:0.895
RF Validation
               balanced accuracy score:0.576
RF Validation
                         accuracy score:0.844
```

Train balanced accuracy score:0.689 Train accuracy score:0.895 RF Test balanced accuracy score:0.569 RF Test accuracy score:0.837 precision recall f1-score support RF Validation L0 0.86 0.98 0.91

10001 RF Validation _L1 1992 0.61 0.17 0.27 accuracy 0.84 11993 macro avg 0.73 0.58 0.59 11993 weighted avg 0.82 0.84 0.81 11993

	precision	recall	f1-score	support
RF Test _L0	0.85	0.98	0.91	9943
RF Test _L1	0.58	0.16	0.25	2051
accuracy			0.84	11994
macro avg	0.72	0.57	0.58	11994
weighted avg	0.80	0.84	0.80	11994

-> The precision is quite good around 0.85 for label 0 and around 0.58 for label 1 which is pretty good

Random forest with min_samples_split =4

^{-&}gt; Label0 f1score is higher around 0.91 and around 0.27 for Label1. Label1's precision has imporved

^{-&}gt; The balanced accuracy score and accuracy score seem to differ, but we see that with accuracy score of almost 0.844 on validation dataset

In [893]:

```
rf = RandomForestClassifier(min samples split=4, random state=0)
rf.fit(train_X, train_y)
print_f1_scores(rf,train_X,train_y, val_X, val_y,"RF Validation ")
print_f1_scores(rf,train_X,train_y,test_X,test_y,"RF Test ")
print_classification_report(rf, val_X, val_y,tag="RF Valdation ")
print_classification_report(rf,test_X,test_y,tag="RF Test ")
Train
        balanced accuracy score:0.812
Train
                 accuracy score:0.931
RF Validation
                balanced accuracy score:0.590
RF Validation
                         accuracy score:0.825
Train balanced accuracy score:0.812
Train
                 accuracy score:0.931
RF Test
          balanced accuracy score:0.587
RF Test
                   accuracy score:0.820
                               recall f1-score
                  precision
                                                  support
RF Valdation _L0
                       0.86
                                 0.94
                                           0.90
                                                    10001
                                           0.31
                                                     1992
RF Valdation _L1
                       0.45
                                 0.24
                                           0.83
                                                    11993
        accuracy
      macro avg
                       0.66
                                 0.59
                                           0.61
                                                    11993
   weighted avg
                       0.79
                                 0.83
                                           0.80
                                                    11993
                           recall f1-score
              precision
                                              support
 RF Test L0
                   0.86
                             0.94
                                       0.90
                                                 9943
 RF Test _L1
                   0.45
                             0.23
                                       0.31
                                                 2051
    accuracy
                                       0.82
                                                11994
                   0.65
                             0.59
                                       0.60
                                                11994
   macro avg
                   0.79
weighted avg
                             0.82
                                       0.80
                                                11994
```

Hyperparameter-Tuning using min_samples_splits

In [894]:

```
from sklearn.metrics import *
train_acc_balanced=list()
val acc balanced =list()
train acc = list()
val acc = list()
test_acc = list()
train_class = list()
val_class = list()
for split in [2,4,6,8,10,12,14]:
    rf = RandomForestClassifier(min samples split=split, random state=0)
    rf.fit(train_X, train_y)
    pred_train_y = rf.predict(train X)
    pred_val_y = rf.predict(val_X)
    pred_test_y = rf.predict(test_X)
    train_acc_balanced.append(balanced_accuracy_score(train_y,pred_train_y))
    val_acc_balanced.append(balanced_accuracy_score(val_y,pred_val_y))
    train_acc.append(accuracy_score(train_y,pred_train_y))
    val_acc.append(accuracy_score(val_y,pred_val_y))
    test_acc.append(accuracy_score(test_y,pred_test_y))
    train_class.append(classification_report(train_y,pred_train_y))
    val_class.append(classification_report(val_y,pred_val_y))
    string = "RF Validation " + str(split) + " "
    print_classification_report(rf, val_X, val_y, tag=string)
    string = "RF Test
                           " + str(split) + " "
    print_classification_report(rf,test_X,test_y,tag=string)
    plot_roc_curve(rf,test_X,test_y)
```

			_	
	precision	recall	f1-score	support
DE Validation 2 10	0.86	0.92	0.89	10001
RF Validation 2 _L0				
RF Validation 2 _L1	0.40	0.25	0.31	1992
accuracy			0.81	11993
macro avg	0.63	0.59	0.60	11993
weighted avg	0.78	0.81	0.80	11993
weighted avg	0.70	0.01	0.00	11000
	precision	recall	f1-score	support
RF Test 2 _L0	0.86	0.92	0.89	9943
_	0.40	0.25	0.31	
RF Test 2 _L1	0.40	0.25	0.31	2051
accuracy			0.81	11994
macro avg	0.63	0.59	0.60	11994
weighted avg	0.78	0.81	0.79	11994
	precision	recall	f1-score	support
	p. 002520		500.0	зарро. с
RF Validation 4 L0	0.86	0.94	0.90	10001
—				
RF Validation 4 _L1	0.45	0.24	0.31	1992
accuracy			0.83	11993
macro avg	0.66	0.59	0.61	11993
weighted avg	0.79	0.83	0.80	11993
	precision	recall	f1-score	support
RF Test 4 L0	0.86	0.94	0.90	9943
RF Test 4 L1	0.45	0.23	0.31	2051
M 1636 4 _E1	0.45	0.25	0.51	2031
20011201			0 01	11004
accuracy			0.82	11994
macro avg	0.65	0.59	0.60	11994
weighted avg	0.79	0.82	0.80	11994
	precision	recall	f1-score	support
RF Validation 6 L0	0.86	0.96	0.91	10001
RF Validation 6 L1	0.50	0.22	0.30	1992
14114410 0	0.50	0.11	0.50	
accuracy			0.83	11993
macro avg	0.68	0.59		11993
weighted avg	0.80			11993
weighted avg	0.00	0.05	0.00	11000
	precision	recall	f1-score	support
RF Test 6 L0	0.86	0.96	0.90	9943
RF Test 6 L1	0.51			2051
M 1636 0 _E1	0.51	0.22	0.51	2031
2661172614			0.83	11994
accuracy	0.60	0.50		
macro avg	0.68			
weighted avg	0.80	0.83	0.80	11994
	precision	recall	f1-score	support
RF Validation 8 _L0	0.86		0.91	10001
RF Validation 8 _L1	0.54	0.21	0.30	1992
accuracy			0.84	11993
macro avg	0.70	0.59	0.61	

201202	•			assigiri	
	weighted avg	0.81	0.84	0.81	11993
		precision	recall	f1-score	support
RE	Test 8 _L0	0.85	0.96	0.91	9943
	Test 8 _L1	0.53		0.30	
KΓ	_	0.55	0.20		2051
	accuracy				11994
	macro avg	0.69	0.58	0.60	11994
	weighted avg	0.80	0.83	0.80	11994
		precision	recall	f1-score	support
RF	Validation 10 _L0	0.86	0.97	0.91	10001
	Validation 10 L1			0.30	1992
NΓ	validation 10 _Li	0.57	0.20	0.30	1992
	accuracy			0.84	11993
	macro avg	0.71	0.59	0.60	11993
	weighted avg	0.81	0.84	0.81	11993
		precision	recall	f1-score	support
RF	Test 10 _L0	0.85	0.97	0.91	9943
	Test 10 _L1			0.30	2051
IXI	10	0.57	0.20		
	accuracy			0.84	11994
	macro avg	0.71	0.58	0.60	11994
	weighted avg	0.81	0.84	0.80	11994
		precision	recall	f1-score	support
RF	Validation 12 L0	0.86	0.97	0.91	10001
	Validation 12 L1		0.19		1992
IXI	validation 12 _Li	0.33	0.13		
	accuracy			0.84	11993
	macro avg	0.72	0.58	0.60	11993
	weighted avg	0.81	0.84	0.81	11993
		precision	recall	f1-score	support
RF	Test 12 L0	0.85	0.97	0.91	9943
	Test 12 _L1				
IXI	12 _L1	0.57	0.10		
	accuracy			0.84	
	macro avg	0.71	0.58	0.59	11994
	weighted avg	0.80	0.84	0.80	11994
		precision	recall	f1-score	support
RF	Validation 14 L0	0.86	0.98	0.91	10001
	Validation 14 L1				
NΓ	**************************************	0.02	0.19		
	accuracy			0.85	11993
	macro avg	0.74	0.58	0.60	11993
	weighted avg				
		precision	recall	f1-score	support
RF	Test 14 _L0			0.91	
RF	Test 14 _L1	0.60	0.18	0.28	2051
	_				

accuracy 0.84 11994 macro avg 0.73 0.58 0.60 11994 weighted avg 0.81 0.84 0.80 11994

Plot the training and validation accuracy across min splits

In [895]:

```
splits=[2,4,6,8,10,12,14]
plt.plot(splits,train_acc,'r--')
plt.plot(splits,val_acc,'b--')
plt.plot(splits,test_acc,'g--')
plt.xlabel('min_splits')
plt.ylabel('accuracy score')

plt.show()
```


We observe that the label precision goes upto 0.60 at a split of 14 . Lets also observe the RF classifier behavior varying max_depth

Hyperparameter-Tuning using max_depth

In [896]:

```
from sklearn.metrics import *
train_acc_balanced=list()
val acc balanced =list()
test acc balanced = list()
train acc=list()
val_acc =list()
train_class = list()
val_class = list()
test_acc = list()
for depth in [4,6,8,10,12,14]:
    rf = RandomForestClassifier(max_depth=depth, random_state=0)
    rf.fit(train_X, train_y)
    pred_train_y = rf.predict(train_X)
    pred_val_y = rf.predict(val_X)
    pred_test_y = rf.predict(test_X)
    train acc_balanced.append(balanced_accuracy_score(train_y,pred_train_y))
    val_acc_balanced.append(balanced_accuracy_score(val_y,pred_val_y))
    test_acc_balanced.append(balanced_accuracy_score(test_y,pred_test_y))
    train_acc.append(accuracy_score(train_y,pred_train_y))
    val_acc.append(accuracy_score(val_y,pred_val_y))
    test_acc.append(accuracy_score(test_y,pred_test_y))
    train_class.append(classification_report(train_y,pred_train_y))
    val class.append(classification_report(val_y,pred_val_y))
    string = "RF Validation " + str(depth) + " "
    print classification_report(rf, val_X, val_y, tag=string)
    string = "RF Test
                            " + str(depth) + " "
    print_classification_report(rf,test_X,test_y,tag=string)
    plot_roc_curve(rf,test_X,test_y)
```

	precision	recall	f1-score	support
	-			
RF Validation 4 _L0	0.83	1.00	0.91	10001
RF Validation 4 _L1	1.00	0.00	0.00	1992
accuracy			0.83	11993
macro avg	0.92	0.50	0.46	11993
weighted avg	0.86	0.83	0.76	11993
	precision	recall	f1-score	support
RF Test 4 _L0	0.83	1.00	0.91	9943
RF Test 4 _L1	1.00	0.00	0.00	2051
accuracy			0.83	11994
macro avg	0.91	0.50	0.45	11994
weighted avg	0.86	0.83	0.75	11994
	precision	recall	f1-score	support
RF Validation 6 L0	0.84	1.00	0.91	10001
RF Validation 6 L1	0.79	0.06	0.10	1992
-				
accuracy			0.84	11993
macro avg	0.81	0.53	0.51	11993
weighted avg	0.83	0.84	0.78	11993
	precision	recall	f1-score	support
RF Test 6 L0	0.83	1.00	0.91	9943
RF Test 6 L1	0.72	0.04	0.08	2051
_				
accuracy			0.83	11994
macro avg	0.78	0.52	0.50	11994
weighted avg	0.81	0.83	0.77	11994
	precision	recall	f1-score	support
RF Validation 8 _L0	0.84	0.99	0.91	10001
RF Validation 8 _L1	0.74	0.07	0.13	1992
accuracy			0.84	11993
macro avg	0.79	0.53		
	0.83			
	precision		f1-score	
RF Test 8 _L0	0.84	0.99	0.91	9943
RF Test 8 _L1	0.73	0.07	0.12	2051
accuracy			0.84	11994
macro avg	0.78	0.53		11994
weighted avg	0.82			
	precision	recall	f1-score	support
RF Validation 10 L0	0.85	0.99	0.91	10001
RF Validation 10 _L1			0.19	1992
accuracy			0.84	
macro avg	0.78	0.55	0.55	11993

25/202	1				assign1	
	weighted	avg	0.83	0.84	0.79	11993
			precision	recall	f1-score	support
RF	Test 10	_L0	0.84	0.99	0.91	9943
RF	Test 10	_L1	0.70	0.11	0.19	2051
	accui	acy			0.84	11994
	macro	avg	0.77	0.55	0.55	11994
	weighted	avg	0.82	0.84	0.79	11994
			precision	recall	f1-score	support
	Validation 12	_	0.85	0.99	0.91	10001
RF	Validation 12	_L1	0.68	0.14	0.23	1992
	accui	-			0.85	11993
	macro	_	0.76	0.56	0.57	11993
	weighted	avg	0.82	0.85	0.80	11993
			precision	recall	f1-score	support
RF	Test 12	_L0	0.85	0.99	0.91	9943
RF	Test 12	_L1	0.66	0.14	0.23	2051
	accui	-			0.84	11994
	macro	_	0.76	0.56	0.57	11994
	weighted	avg	0.82	0.84	0.79	11994
			precision	recall	f1-score	support
RF	Validation 14	_L0	0.85	0.98	0.91	10001
RF	Validation 14	_L1	0.65	0.16	0.25	1992
	accui	acy			0.85	11993
	macro	_	0.75	0.57	0.58	11993
	weighted	avg	0.82	0.85	0.80	11993
			precision	recall	f1-score	support
		_L0	0.85	0.98	0.91	9943
RF	Test 14	_L1	0.62	0.15	0.24	2051
	accui	acy			0.84	11994
	macro	avg	0.74	0.57	0.58	11994
	weighted	avg	0.81	0.84	0.80	11994

In [897]:

```
depths=[4,6,8,10,12,14]
plt.plot(depths,train_acc,'r--')
#validation accuracy
plt.plot(depths,val_acc,'b--')
#test_acc
plt.plot(depths,test_acc,'g--')
plt.xlabel('max_depth')
plt.ylabel('accuracy score')
plt.show()
```


In [898]:

```
depths=[4,6,8,10,12,14]
plt.plot(depths,train_acc_balanced,'r--')
#validation accuracy
plt.plot(depths,val_acc_balanced,'b--')
#test_acc
plt.plot(depths,test_acc_balanced,'g--')
plt.xlabel('max_depth')
plt.ylabel('balanced accuracy score')

plt.show()
```


So at depth 10 we can get a good precision for both the labels around 0.84 and 0.70 for labels 0 and 1 respectively.

We also observe good F1score of 0.91 for label 0 and 0.20 for label1

And also the AUC=0.77 which is slightly also better than the logistic regression fit we saw

Also slightly better than AUC of 0.71 which we see in the case of max_splits tuning

In [899]:

```
rf = RandomForestClassifier(max_depth=10, random_state=0)
rf.fit(train_X, train_y)
pred_test_y = rf.predict(test_X)
plot_roc_curve(rf,test_X,test_y)
pred_test_y = rf.predict(test_X)
```


So we shall choose the randomforest classifier at depth 10 as our model giving slightly better AUC around 0.76

Finally lets generate the prediction

In [900]:

```
#Loading the test data
df_test = pd.read_csv('test_data.csv')
df_test.shape
df_test = df_test.drop(['ID','HealthServiceArea'],axis=1)
df_test = convert_to_categorical(df_test,'Gender')
df_test = convert_to_categorical(df_test,'Race')
df_test = convert_to_categorical(df_test,'TypeOfAdmission')
df_test = convert_to_categorical(df_test,'PaymentTypology')
df_test = convert_to_categorical(df_test,'EmergencyDepartmentIndicator')
df_test.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69177 entries, 0 to 69176
Data columns (total 32 columns):

```
Column
                                               Non-Null Count Dtype
    -----
                                               -----
0
    CCSProcedureCode
                                               69177 non-null int64
1
    APRSeveritvOfIllnessCode
                                               69177 non-null int64
2
    BirthWeight
                                               69177 non-null int64
3
    AverageCostInCounty
                                               69177 non-null int64
4
                                               69177 non-null
    AverageChargesInCounty
                                                              int64
5
    AverageCostInFacility
                                               69177 non-null int64
    AverageChargesInFacility
                                               69177 non-null int64
7
    AverageIncomeInZipCode
                                               69177 non-null int64
                                               69177 non-null float64
8
    Gender F
9
                                               69177 non-null float64
    Gender_M
 10 Gender U
                                               69177 non-null float64
                                               69177 non-null float64
11
    Race_Black/African American
                                               69177 non-null float64
12 Race_Multi-racial
13 Race_Other Race
                                               69177 non-null float64
14 Race White
                                               69177 non-null float64
                                               69177 non-null float64
15 TypeOfAdmission_Elective
16 TypeOfAdmission_Emergency
                                               69177 non-null float64
17 TypeOfAdmission_Newborn
                                               69177 non-null float64
18 TypeOfAdmission_Trauma
                                               69177 non-null float64
 19
    TypeOfAdmission Urgent
                                               69177 non-null float64
                                               69177 non-null float64
20 PaymentTypology_Blue Cross/Blue Shield
21 PaymentTypology Department of Corrections
                                               69177 non-null float64
22 PaymentTypology_Federal/State/Local/VA
                                               69177 non-null float64
 23 PaymentTypology_Managed Care, Unspecified
                                               69177 non-null
                                                              float64
 24 PaymentTypology Medicaid
                                               69177 non-null
                                                              float64
25 PaymentTypology Medicare
                                               69177 non-null float64
 26 PaymentTypology Miscellaneous/Other
                                               69177 non-null float64
27 PaymentTypology_Private Health Insurance
                                               69177 non-null
                                                              float64
28 PaymentTypology Self-Pay
                                               69177 non-null float64
29 PaymentTypology_Unknown
                                               69177 non-null float64
 30 EmergencyDepartmentIndicator N
                                               69177 non-null
                                                              float64
31 EmergencyDepartmentIndicator Y
                                               69177 non-null float64
dtypes: float64(24), int64(8)
memory usage: 16.9 MB
```

In [901]:

```
test_pred=rf.predict(df_test.to_numpy())
print(test_pred.shape)
```

(69177,)

In [902]:

```
unique,counts = np.unique(test_pred,return_counts=True)
print(counts)
```

[68436 741]

In [903]:

```
f = open('s3785704_predictions.csv','w+')
i=1
length = len(test_pred)
f.write('ID,LengthOfStay\n')
for i in range(0,length):
    if i+1 == length:
        string = str(i+1)+ ',' + str(test_pred[i])
    else:
        string = str(i+1)+ ',' + str(test_pred[i]) + '\n'
    f.write(string)
f.close()
```

In [904]:

```
print("Done")
```

Done