R Basics Fundamental Techniques in Data Science

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

The R Statistical Programming Language

Open-Source Software What is R?

Using R

Project Management

Data I/O

Writing Data

Functions

Iteration

Attribution

This course was originally developed by Gerko Vink. You can access the original version of these materials on Dr. Vink's GitHub page: https://github.com/gerkovink/fundamentals. The course materials

have been (extensively) modified. Any errors or inaccuracies introduced via these modifications are fully my own responsibility and shall not be taken as representing the views and/or beliefs of Dr. Vink. You can see

Gerko's version of the course on his personal website: www.gerkovink.com/fundamentals

What is "Open-Source"?

R is an open-source software project, but what does that mean?

- Source code is freely available to anyone who wants it.
 - Free Speech, not necessarily Free Beer
- Anyone can edit the original source code to suit their needs.
 - Ego-less programming
- Many open source programs are also "freeware" that are available free of charge.
 - R is both open-source and freeware

What is R?

R is a holistic (open-source) software system for data analysis and statistical programming.

- R is an implementation of the S language.
 - Developed by John Chambers and colleagues
 - Becker and Chambers (1984)
 - Becker, Chambers, and Wilks (1988)
 - Chambers and Hastie (1992)
 - Chambers (1998)
- Introduced by Ihaka and Gentleman (1996).
 - Currently maintained by the *R Core Team*.
- Support by thousands of world-wide contributors.
 - Anyone can contribute an R package to the Comprehensive R Archive Network (CRAN)
 - Must conform to the licensing and packaging requirements.

What is R?

I prefer to think about R as a *statistical programming language*, rather than as a data analysis program.

- R IS NOT its GUI (no matter which GUI you use).
- You can write R code in whatever program you like (e.g., RStudio, EMACS, VIM, Notepad, directly in the console/shell/command line).
- R can be used for basic (or advanced) data analysis, but its real strength is its flexible programming framework.
 - Tedious tasks can be automated.
 - Computationally demanding jobs can be run in parallel.
 - R-based research wants to be reproducible.
 - Analyses are automatically documented via their scripts.

What is RStudio?

RStudio is an integrated development environment (IDE) for R.

- · Adds a bunch of window dressing to R
- Also open-source
- Both free and paid versions

R and RStudio are independent entities.

- You do not need RStudio to work with R.
- You are analyzing your data with R, not RStudio
 - RStudio is just the interface through which you interact with R.

Getting R

You can download R, for free, from the following web page:

• https://www.r-project.org/

Likewise, you can freely download RStudio via the following page:

• https://www.rstudio.com/

How R Works

R is an interpreted programming language.

- The commands you enter into the R *Console* are executed immediately.
- You don't need to compile your code before running it.
- In this sense, interacting with R is similar to interacting with other syntax-based statistical packages (e.g., SAS, STATA, Mplus).

How R Works

R mixes the *functional* and *object-oriented* programming paradigms.

FUNCTIONAL

- R is designed to break down problems into functions.
- Every R function is a first-class object.
- R uses pass-by-value semantics.

OBJECT-ORIENTED

- Everything in R is an object.
- R functions work by creating and modifying R objects.
- The R workflow is organized by assigning objects to names.

Interacting with R

When working with R, you will write *scripts* that contain all of the commands you want to execute.

- There is no "clicky-box" Tom-foolery in R.
- Your script can be run interactively or in "batch-mode", as a self-contained program.

The primary purpose of the commands in your script will be to create and modify various objects (e.g., datasets, variables, function calls, graphical devices).

Getting Help

Everything published on the Comprehensive R Archive Network (CRAN), and intended for R users, must be accompanied by a help file.

- If you know the name of the function (e.g., anova()), then execute ?anova Or help(anova).
- If you do not know the name of the function, type ?? followed by your search criterion.
 - For example, ??anova returns a list of all help pages that contain the word "anova".

The internet can also tell you almost everything you'd like to know.

- Sites such as http://www.stackoverflow.com and http://www.stackexchange.com can be very helpful.
- If you google R-related issues, include "R" somewhere in your search string.

Packages

Packages give R additional functionality.

- By default, some packages are included when you install R.
- These packages allow you to do common statistical analyses and data manipulation.
- Installing additional packages allows you to perform state-of-the-art statistical analyses.

Packages

These packages are all developed by R users, so the throughput process is very timely.

- · Newly developed functions and software are readily available
- Software implementations of new methods can be quickly disseminated
- This efficiency differs from other mainstream software (e.g., SPSS, SAS, MPlus) where new methodology may take years to be implemented.

A list of available packages can be found on CRAN.

Installing & Loading Packages

Install a package (e.g., **mice**):

```
install.packages("mice")
```

There are two ways to load a package into R

```
library(stats)
require(stats)
```


Project Management

Getting a handle on three key concepts will dramatically improve your data analytic life.

- 1. Working directories
- 2. Directory structures and file paths
- 3. RStudio projects

DATA I/O

R Data & Workspaces

R has two native data formats.

```
## Load the built-in 'bfi' data from the 'psychTools' package
data(bfi, package = "psychTools")
## Access the documentation for the 'bfi' data
?psychTools::bfi
## Define the directory holding our data
dataDir <- "../../data/"
## Load the 'boys' data from the R workspace
## '../../data/bous.RData'
load(paste0(dataDir, "boys.RData"))
## Load the 'titanic' data stored in R data set
## '../../data/titanic.rds'
titanic <- readRDS(pasteO(dataDir, "titanic.rds"))</pre>
```

Delimited Data Types

NOTES:

- The read.csv() function assumes the values are separated by commas.
- For EU-formatted CSV files—with values delimited by semicolons—we can use the read.csv2() function.

Reading data in from other stats packages can be a bit tricky. If we want to read SAV files, there are two popular options:

```
• foreign::read.spss()
```

haven::read_spss()

```
## View the results:
mtcars1[1:3]
$mpg
 [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8
[12] 16.4 17.3 15.2 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5
[23] 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
$cyl
 [29] 8 6 8 4
$disp
 [1] 160.0 160.0 108.0 258.0 360.0 225.0 360.0 146.7 140.8
[10] 167.6 167.6 275.8 275.8 275.8 472.0 460.0 440.0 78.7
[19] 75.7 71.1 120.1 318.0 304.0 350.0 400.0 79.0 120.3
[28] 95.1 351.0 145.0 301.0 121.0
```

```
head(mtcars2)
  mpg cyl disp hp drat wt qsec
                                                 am
1 21.0 6 160 110 3.90 2.620 16.46 V-Shaped Manual
2 21.0 6 160 110 3.90 2.875 17.02 V-Shaped Manual
3 22.8 4 108 93 3.85 2.320 18.61 Straight Manual
4 21.4 6 258 110 3.08 3.215 19.44 Straight Automatic
5 18.7 8 360 175 3.15 3.440 17.02 V-Shaped Automatic
6 18.1 6 225 105 2.76 3.460 20.22 Straight Automatic
 gear carb
    4
3
    3
```

```
head(mtcars3)

mpg cyl disp hp drat wt qsec vs am gear carb

1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
```

```
## Load the packages:
library(haven)
library(labelled)
## Use haven::read spss() to read '../../data/mtcars.sav' into a tibble
mtcars4 <- read_spss(paste0(dataDir, "mtcars.sav"))</pre>
head(mtcars4)
# A tibble: 6 x 11
   mpg cyl disp hp drat wt qsec vs
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+lb> <dbl+l>
1 21
          6 160 110 3.9 2.62 16.5 0 [V-Sh~ 1 [Man~
2 21
          6 160 110 3.9 2.88 17.0 0 [V-Sh~ 1 [Man~
3 22.8 4 108 93 3.85 2.32 18.6 1 [Stra~ 1 [Man~
4 21.4
          6 258 110 3.08 3.22 19.4 1 [Stra 0 [Aut"
5 18.7 8 360 175 3.15 3.44 17.0 0 [V-Sh~ 0 [Aut~
 18.1
          6
              225 105 2.76 3.46 20.2 1 [Stra~ 0 [Aut~
# i 2 more variables: gear <dbl>, carb <dbl>
```

haven::read_spss() converts any SPSS variables with labels into labelled vectors.

 We can use the labelled::unlabelled() function to remove the value labels.

```
mtcars5 <- unlabelled(mtcars4)</pre>
head(mtcars5)
# A tibble: 6 x 11
        cyl disp
                   hp drat wt
                                 asec vs
                                          am
   mpg
 <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
 21
          6 160
                  110 3.9 2.62 16.5 V-Shaped Manual
 21
         6 160 110 3.9 2.88 17.0 V-Shaped Manual
 22.8 4 108 93 3.85 2.32 18.6 Straight Manual
4 21.4
      6 258 110 3.08 3.22 19.4 Straight Automa~
 18.7 8 360 175 3.15 3.44 17.0 V-Shaped Automa~
 18.1
             225 105 2.76 3.46 20.2 Straight Automa~
 i 2 more variables: gear <dbl>, carb <dbl>
```

```
mtcars4$am[1:20]
<labelled<double>[20]>: Transmission type
 [1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Labels:
 value
        label
    O Automatic
         Manual
mtcars5$am[1:20]
 [1] Manual Manual Manual Automatic Automatic
 [6] Automatic Automatic Automatic Automatic Automatic
[11] Automatic Automatic Automatic Automatic Automatic
[16] Automatic Automatic Manual Manual
                                           Manual
Levels: Automatic Manual
```

We have two good options for loading data from Excel spreadsheets:

```
• readxl::read_excel()
```

openxlsx::read.xlsx()

```
## Check the results from read.xlsx():
str(titanic3)
'data frame': 887 obs. of 8 variables:
$ survived : chr "no" "yes" "yes" "yes" ...
$ class : chr "3rd" "1st" "3rd" "1st" ...
         : chr "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence H
$ name
$ sex
         : chr "male" "female" "female" "female" ...
            : num 22 38 26 35 35 27 54 2 27 14 ...
$ age
$ parents_children: num  0  0  0  0  0  0  1  2  0 ...
$ fare
               : num 7.25 71.28 7.92 53.1 8.05 ...
## Compare:
all.equal(as.data.frame(titanic2), titanic3)
[1] TRUE
```

Workspaces & Delimited Data

All of the data reading functions we saw earlier have complementary data writing versions.

To write SPSS data, the best option is the haven::write_sav()
function.

```
write_sav(mtcars2, paste0(dataDir, "mctars2.sav"))
```

write_sav() will preserve label information provided by factor variables and the 'haven_labelled' class.

The **openxisx** package provides a powerful toolkit for programmatically building Excel workbooks in R and saving the results.

• Of course, it also works for simple data writing tasks.

FUNCTIONS

R Functions

Functions are the foundation of R programming.

- Other than data objects, almost everything else that you interact with when using R is a function.
- Any R command written as a word followed by parentheses, () , is a function.

```
o mean()
o library()
o mutate()
```

Infix operators are aliased functions.

```
0 <-
0 + , - , *
0 > , < , ==</pre>
```

User-Defined Functions

We can define our own functions using the function() function.

```
square <- function(x) {
   out <- x^2
   out
}</pre>
```

After defining a function, we call it in the usual way.

```
square(5)
[1] 25
```

One-line functions don't need braces.

```
square <- function(x) x^2
square(5)
[1] 25</pre>
```

User-Defined Functions

Function arguments are not strictly typed.

```
square(1:5)
[1] 1 4 9 16 25
square(pi)
[1] 9.869604
square(TRUE)
[1] 1
```

But there are limits.

```
square("bob") # But one can only try so hard
Error in x^2: non-numeric argument to binary operator
```

Functions can take multiple arguments.

```
mod <- function(x, y) x %% y
mod(10, 3)</pre>
[1] 1
```

Sometimes it's useful to specify a list of arguments.

```
getLsBeta <- function(datList) {
   X <- datList$X
   y <- datList$y

   solve(crossprod(X)) %*% t(X) %*% y
}</pre>
```

```
X <- matrix(runif(500), ncol = 5)
datList <- list(y = X %*% rep(0.5, 5), X = X)
getLsBeta(datList = datList)

    [,1]
[1,]    0.5
[2,]    0.5
[3,]    0.5
[4,]    0.5
[5,]    0.5</pre>
```

Functions are first-class objects in R.

We can treat functions like any other R object.

R views an unevaluated function as an object with type "closure".

```
class(getLsBeta)
[1] "function"
typeof(getLsBeta)
[1] "closure"
```

An evaluated functions is equivalent to the objects it returns.

```
class(getLsBeta(datList))
[1] "matrix" "array"
typeof(getLsBeta(datList))
[1] "double"
```

We can use functions as arguments to other operations and functions.

```
fun1 <- function(x, y) x + y
## What will this command return?
fun1(1, fun1(1, 1))
[1] 3</pre>
```

Why would we care?

```
s2 <- var(runif(100))
x <- rnorm(100, 0, sqrt(s2))</pre>
```

```
X[1:8,]
           [.1]
                     [.2] [.3]
                                          Γ.4]
                                                    [.5]
[1.] 0.52431382 0.67136447 0.28228726 0.7148383 0.54204681
[2.] 0.01926742 0.11693762 0.09148502 0.6929171 0.88371944
[3.] 0.05100735 0.18432074 0.43547799 0.6097462 0.09026598
[4.] 0.60566972 0.12944127 0.21000143 0.2441917 0.68141473
[5,] 0.48737303 0.94030405 0.23988619 0.4915910 0.36353771
[6.] 0.19941958 0.96670678 0.11455820 0.1243947 0.24253273
[7.] 0.95507804 0.38705829 0.49733535 0.2968470 0.81001800
[8.] 0.11093197 0.07731757 0.84923006 0.8653987 0.61914193
c(1, 3, 6:9, 12)
[1] 1 3 6 7 8 9 12
```

ITERATION

There are three types of loops in R: for, while, and until.

- You'll rarely use anything but the for loop.
- So, we won't discuss while or until loops.

A for loop is defined as follows

```
for(INDEX in RANGE) \{ Stuff To Do with the Current INDEX Value \}
```


For example, the following loop will sum the numbers from 1 to 100.

```
val <- 0
for(i in 1:100) {
    val <- val + i
}
val
[1] 5050</pre>
```


This loop will compute the mean of every column in the 'mtcars' data.

```
means <- rep(0, ncol(mtcars))
for(j in 1:ncol(mtcars)) {
    means[j] <- mean(mtcars[ , j])
}
means

[1] 20.090625 6.187500 230.721875 146.687500 3.596563
[6] 3.217250 17.848750 0.437500 0.406250 3.687500
[11] 2.812500</pre>
```

Loops are often one of the least efficient solutions in R

```
n <- 1e8

t0 <- system.time({
    val0 <- 0
    for(i in 1:n) val0 <- val0 + i
})

t1 <- system.time(
    val1 <- sum(1:n)
)</pre>
```

Both approaches produce the same answer.

```
val0 - val1
[1] 0
```

But the loop is many times slower.

There is often a built in routine for what you are trying to accomplish with the loop.

```
## The appropriate way to get variable means:
colMeans(mtcars)
                 cyl
                          disp
                                        hp
                                                 drat
      mpg
20.090625
            6.187500 230.721875 146.687500
                                            3.596563
       wt
                qsec
                             ٧s
                                        am
                                                 gear
 3.217250 17.848750 0.437500
                                  0.406250
                                             3.687500
     carb
 2.812500
```


Apply Statements

In R, we're usually working with lists and data frames, not vectors and matrices. So, some flavor of apply statement is often preferred to a loop.

There are many flavors of apply statement in R, but the three most common are: apply() , lapply() , and sapply() .

Some Programming Tips

You can save yourself a great deal of heartache by following a few simple guidelines.

- Keep your code tidy.
- Use comments to clarify what you are doing.
- When working with functions in RStudio, use the TAB key to quickly access the documentation of the function's arguments.
- Give your R scripts and objects meaningful names.
- Use a consistent directory structure and RStudio projects.

General Style Advice

Use common sense and BE CONSISTENT.

- Browse the tidyverse style guide.
 - The point of style guidelines is to enforce a common vocabulary.
 - You want people to concentrate on what you're saying, not how you're saying it.
- If the code you add to a project/codebase looks drastically different from the extant code, the incongruity will confuse readers and collaborators.

Spacing and whitespace are your friends.

- a < -c(1,2,3,4,5)
- a <- c(1, 2, 3, 4, 5)
- At least put spaces around assignment operators and after every comma!

References

- Becker, R. A., & Chambers, J. M. (1984). *S: an interactive environment for data analysis and graphics*. Monterey, CA: Wadsworth and Brooks/Cole.
- Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). *The new S language*. London: Chapman & Hall.
- Chambers, J. M. (1998). *Programming with data: A guide to the S language*. New York: Springer Science & Business Media.
- Chambers, J. M., & Hastie, T. J. (1992). *Statistical models in s.* London: Chapman & Hall.
- Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. *Journal of Computational and Graphical Statistics*, *5*(3), 299–314.