An Introduction to Knowledge Tracing

Geoffrey Converse

University of Iowa

February 4, 2021

Outline

- 1 Overview
- 2 Mathematical Setup
- 3 Time-series neural networks
- 4 Literature
- 5 New Approaches

High-level view

- Given a sequence of responses to an (online) assessment
- Each exercise is associated with a latent concept
- How does the student's mastery of each concept progress throughout the exam?
- Applications include feedback evaluation, intelligent tutoring systems

Notation

- \blacksquare N students, indexed by j
- \blacksquare n available items, indexed by i
- lacktriangleq K concepts, indexed by k
- $lue{L}$ maximum length response sequence, each timestep indexed by t
 - If a student answers < L questions, then pad their sequence
 - If a student answers > L questions, then split into two sequences
- Interactions are presented as tuple (q_t, c_t)

 - $c_t \in \{0,1\}$ indicates correct/incorrect
 - 2n possible interactions can one-hot encode (q_t, c_t)

Data Example

- Set L = 4, n = 6
- Student a answers questions $\{1,4,2\}$
 - $X_a = \{(PAD, PAD), (1,0), (4,1), (2,1)\}$
- Student b answers questions $\{2, 5, 3, 1, 6\}$
 - $X_{b_1} = \{(PAD, PAD), (2,0), (5,1), (3,1)\}$
 - $X_{b_2} = \{(PAD, PAD), (PAD, PAD), (1, 0), (6, 1)\}$
- PAD inputs are ignored
- One-hot encode each interaction in vector of length 12
 - $(1,0) \to v_{10} = [1,0,0,0,0,0,0,0,0,0,0]$
 - $(4,1) \to v_{41} = [0,0,0,0,0,0,1,0,0,0,0]$
- Multiply with embedding matrix

$$A \in \mathbb{R}^{h \times 2n} : \rightarrow x_{10} = A v_{10}$$

■ Student a's input to neural network: $[PAD, x_{10}, x_{41}, x_{21}]$

Goal

- Given a student's responses $\{(q_1, c_1), \ldots, (q_t, c_t), (q_{t+1}, ?)\},$ infer c_{t+1}
- Try to approximate

$$P(c_{t+1} = 1 | q_1, c_1, \dots, q_t, c_t, q_{t+1})$$

■ Mask future interactions while training

Recurrent Neural Networks

- Input vectors x_1, \ldots, x_L
- lacksquare Outputs $m{y}_1,\ldots,m{y}_L$
- Hidden states h_1, \ldots, h_L

$$m{h}_t = anh(\,W^{hx}m{x}_t + \,W^{hh}h_{t-1} + \,b^h)$$
 $m{y}_t = \sigma(\,W^{yh}m{h}_t + \,b^y)$

In knowledge tracing: True y_1 is given in x_2 Time-series neural networks

Long Short-Term Memory networks

LSTM

- Forget content: $\mathbf{f}_t = \sigma(W_1[\mathbf{x}_t, \mathbf{h}_{t-1}] + b_1)$
- Input content: $\mathbf{w}_t = \sigma(W_2[\mathbf{x}_t, \mathbf{h}_{t-1}] + b_2)$ and $\mathbf{a}_t = \tanh(W_3[\mathbf{x}_t, \mathbf{h}_{t-1}] + b_3)$
- Update cell state: $C_t = (f_t \times C_{t-1}) + (w_t \times a_t)$ elementwise
- Output gate $\boldsymbol{h}_t = \sigma(W_4[\boldsymbol{x}_t, \boldsymbol{h}_{t-1}] + b_4) \times \tanh(W_5 \boldsymbol{C}_t + b_5)$

Deep Knowledge Tracing

- Really just applied RNN / LSTM to knowledge tracing application
- Input x_t is the embedding of (q_t, c_t)
- Output y_t is the predicted probability that $c_{t+1} = 1$

Dynamic Key-Value Memory Networks

Figure 1: Architecture of DKVMN

DKVMN

- *K* concepts (memory slots)
- \blacksquare hidden dimension h
- Stored memory matrix at time t: M_t^v
- Embed question (no response) with $k_t = A \cdot q_t$
- Embed question + response with $v_t = B \cdot (q_t, c_t)$
- Trainable parameters: $A, B, M^k, W_1, b_1, W_2, b_2, W_e, b_e, W_a, b_a$

DKVMN

READ:

- correlation weight $w_t(i) = \operatorname{Softmax}(k_t^{\top} M^k(k))$
- read content $r_t = \sum_{i=1}^K w_t(i) M^v(i)$
- feed forward: $p_t = \sigma(W_2 \cdot (W_1[r_t, k_t] + b_1) + b_2)$

WRITE:

- Erase vector: $e_t = \sigma(W_e v_t + b_e)$
- Add vector: $a_t = \tanh(W_a v_t + b_a)$
- Update memory:

$$M_t^v(i) = (M_{t-1}^v(i) \cdot [1 - w_t(i)e_t]) + w_t(i)a_t$$

Self-Attentive Knowledge Tracing

Main mechanism: calculating "attention"

■ For each interaction embedding x_t , calculate query, key, and value vectors:

$$q_t = W^Q x_t, \quad k_t = W^K x_t, \quad v_t = W^V x_t, \quad \text{matrices} \in \mathbb{R}^{h \times h}$$

lacktriangle Calculate the correlation weight between interaction t and all previous exercises:

$$w_{ti} = \operatorname{Softmax}\left(\frac{q_t^{\top} k_i}{\sqrt{h}}\right), \quad i \leq t$$

■ Multiply w_{ti} by correponding value vectors:

$$A_{ti} = w_{ti}v_i$$
$$h_t = \sum_{i \le t} A_{ti}$$

SAKT

Figure 2: SAKT architecture

 h_t is sent through feed forward network to make prediction about next interaction

IRT-inspired knowledge tracing

Figure 3: Proposed model incorporating IRT with KT

References

- [1] Corbett and Anderson. "Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge." User Modeling and User-Adapted Interaction, 1995. Volume 4, pages 253-278.
- [2] Piech, Bassen, Huang, Ganguli, Shami, Guibas, Shol-Dickstein. "Deep Knowledge Tracing." Advances in Neural Information Processing Systems, 2015.
- [3] Zhang, Shi, King, Yeung. "Dynamic Key-Value Memory Networks for Knowledge Tracing." International World Wide Web Conference, 2017. Pages 765-774.
- [4] Pandey and Karypis. "A Self-Attentive model for Knowledge Tracing."