福建省部分达标学校 2023~2024 学年第一学期期中质量监测

高二化学试卷

本试卷满分100分,考试用时75分钟。

注意事项:

- 1. 答卷前, 考生务必将考号、学校、姓名、班级填写清楚。
- 2. 每小题得出答案后,填入答案卷中。
- 3. 考试结束, 考生只将答案交回, 试卷自己保留。

相对原子质量:H-1 O-16 S-32 K-39 Fe-56

第 「 券 选择题(共 48 分)

- 一、选择题(本题共 12 小题,每小题 4 分。每小题只有一个选项符合题意)
- 1. 下列民俗、诗句、谚语等包含吸热反应的是
 - A. 千锤万凿出深山,烈火焚烧若等闲
 - B. 民间焰火之最——确山打铁花
 - C. 只要功夫深,铁杵磨成针
 - D. 冰,水为之,而寒于水
- 2. 下列说法正确的是
 - A. 向稀盐酸中加入少量蒸馏水,该溶液中氢离子浓度降低,能用平衡移动原理加以解释
 - B. 同温同压下, $H_{\mathfrak{g}}(g)$ + $Cl_{\mathfrak{g}}(g)$ = 2HCl(g)在光照和点燃条件的 ΔH 不同
 - C. 反应 3C(s)+CaO(s)—— $CaC_{g}(s)+CO(g)$ 在常温下不能自发进行,说明该反应的 $\Delta H > 0$
 - D. 恒温恒压容器中发生反应 $N_2+O_2 \Longrightarrow 2NO$, 若在容器中充入 He, 正、逆反应的速率均 不变
- 3. 某装置示意图如图,下列说法正确的是

- A. 盐桥中 Cl⁻进入 CuSO₄ 溶液
- C. 负极发生的反应是 $Zn^{2+} + 2e^-$ —— Zn D. Zn^{2+} 既是电极反应物,也是离子导体

B. 电流从铜电极流向锌电极

4. 关于下列各装置图的叙述中,不正确的是

- A. 用装置①精炼铜,则 a 极为粗铜,电解质溶液为 CuSO4 溶液
- B. 装置②的总反应是 Cu+2Fe³⁺ —— Cu²⁺ +2Fe²⁺
- C. 装置③中钢闸门应与外接电源的负极相连
- D. 装置④中的铁钉不易被腐蚀
- 5. N_2 O 和 CO 是环境污染性气体,可在 Pt_2 O⁺表面转化为无害气体,其反应为 N_2 O(g) + CO(g) \Longrightarrow CO₂(g) + N_2 (g) ΔH ,有关化学反应的物质变化过程如图 1 所示,能量变化过程如图 2 所示,下列说法正确的是

- A. 由图 1、2 可知 $\Delta H = \Delta H_1 + \Delta H_2 = \Delta E_2 \Delta E_1$
- B. 反应中加入 Pt₂O+可使反应的焓变减小
- C. 由图 2 可知正反应的活化能小于逆反应的活化能
- D. 1 mol N₂O 和 1 mol CO 的总能量小于 1 mol CO₂ 和 1 mol N₂ 的总能量
- 6. 下列图示装置不能达到实验目的的是

- A. 图 1:验证温度对化学平衡的影响
- B. 图 2:测定锌与稀硫酸的反应速率
- C. 图 3:验证 FeCl₃ 溶液对 H₂O₂ 分解有催化作用
- D. 图 4. 研究浓度对反应谏率的影响

7. 已知: 2H₂S(g)+O₂(g)——S₂(s)+2H₂O(l) ΔH=-632 kJ·mol⁻¹。H₂S 燃料电池的示意图如图。下列说法正确的是

- A. 电极 a 为电池的正极
- B. 电极 b 上发生的电极反应为 $O_2 + 2H_2O + 4e^-$ 4OH-
- C. 电路中每通过 4 mol 电子,电池内部释放 632 kJ 热能
- D. 每 34 g H₂S 参与反应,有 2 mol H⁺经质子膜进入正极区
- 8. 如图所示电解装置中,通电后石墨电极 [[上有 O₂ 生成,Fe₂O₃ 逐渐溶解,下列判断正确的是

- A. a 是电源的正极
- B. 通电一段时间后,向石墨电极 Ⅱ 附近滴加石蕊溶液,出现蓝色
- C. Cl⁻通过阴离子交换膜移动到石墨电极 Ⅱ
- D. 当 0. 01 mol Fe₂O₃ 完全溶解时,至少产生气体 336 mL(标准状况下)
- 9. 对于可逆反应: $A_2(g) + 3B_2(g) \Longrightarrow 2AB_3(g) \Delta H < 0$,下列描述平衡移动的图像正确的是

10. 对利用甲烷消除 NO₂ 污染进行研究, $CH_4 + 2NO_2 \longrightarrow N_2 + CO_2 + 2H_2O_3$ 。在 2 L 密闭容器中,控制不同温度,分别加入 0. 50 mol CH_4 和 1. 2 mol NO_2 ,测得 $n(CH_4)$ 随时间变化的有关实验数据如下表。下列说法正确的是

组别	温度	时间/min n/mol	0	10	20	40	50
1	T_1	$n(\mathrm{CH_4})$	0.50	0.35	0. 25	0.10	0.10
2	T_2	n(CH ₄)	0.50	0.30	0.18		0.15

- A. 组别①中,0~20 min 内,NO₂ 的降解速率为 0. 025 mol L⁻¹ min⁻¹
- B. 由实验数据可知实验控制的温度 $T_1 > T_2$
- $C.40 \min$ 时,表格中 T_2 对应反应已经达到平衡状态
- D. 平衡常数: $K(T_2) > K(T_1)$
- 11. 工业上用 Na₂ SO₃ 溶液吸收硫酸工业尾气中的 SO₂, 并通过电解方法实现吸收液的循环再生。其中阴、阳 离子交换膜组合循环再生机理如图所示,下列有关说 法正确的是

- A. X 应为直流电源的正极
- B. 电解过程中阴极区氢氧根离子浓度降低
- C. 图中的 b%>a%
- D. SO_3^{2-} 在电极上发生的反应为 $SO_3^{2-} + 2OH^- 2e^- \longrightarrow SO_4^{2-} + H_2O$
- 12. 工业用 CO_2 和 H_2 合成乙醇: $2CO_2(g)+6H_2(g)$ \Longrightarrow $C_2H_5OH(g)+3H_2O(g)$ 。保持压强为 5 MPa,向密闭容器中投入一定量 CO_2 和 H_2 发生上述反应, CO_2 的平衡转化率与温度、投料比 $m\left[\frac{n(H_2)}{n(CO_2)}\right]$ 的关系如图所示。下列说法正确的是

A. $\Delta H > 0$

- B. $m_1 < m_2 < m_3$
- C. 若 $m_3 = 3$,则 400 K 时 H_2 的平衡转化率为 50%
- D. 投料比 m=1 时,容器内 CO_2 的体积分数不再改变则反应达到平衡状态

第 Ⅱ 卷 非选择题(共 52 分)

二、非选择题

13. (12分)

(1)在一定温度下,向体积为 2 L 的恒容密闭容器中充入一定量的 A、B 发生化学变化(除物质 D 为固体外,其余的物质均为气体),各物质的含量随时间的变化情况如图所示,回答下列问题:

- ①写出该反应的化学方程式:
- ② $0\sim2$ min 内用 D 表示的化学反应速率 v(D)=。
- ③该反应在 2 min 时改变了某一条件,则该条件可能为。
- (2)甲醇既是重要的化工原料,又可作为燃料,工业上将 CO₂ 催化加氢生产甲醇,发生如下 反应:

反应 $[:3H_2(g)+CO_2(g)\longrightarrow CH_3OH(g)+H_2O(g)$ $\Delta H_1=-49 \text{ kJ} \cdot \text{mol}^{-1}$ K_1 反应 $[:H_2(g)+CO_2(g)\longrightarrow CO(g)+H_2O(g)$ ΔH_2 K_2

反应 $: CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g) \Delta H_3 = -90 \text{ kJ} \cdot \text{mol}^{-1} K_3$

- ① $\Delta H_2 =$ _____kJ·mol⁻¹;相同条件下,反应Ⅲ的平衡常数 $K_3 =$ _____(用平衡常数 K_1 , K_2 表示)。
- ②采用真空封管法制备磷化硼纳米颗粒,成功实现了高选择性电催化还原 CO₂ 制备甲醇,该反应历程如图所示。

上述合成甲醇的反应速率较慢,要使反应速率加快,主要降低下列变化中 (填字

母)的能量变化。

A.
$$\cdot$$
 CO \rightarrow \cdot OCH

B.
$$\cdot$$
 CO+ \cdot OH \rightarrow · CO+ \cdot H₂O

C.
$$\cdot$$
 OCH₂ \rightarrow \cdot OCH₃

D.
$$\bullet$$
 OCH₃ \rightarrow \bullet CH₃OH

14. (12分)

为探讨化学平衡移动原理与氧化还原反应规律的联系,某同学通过改变浓度研究 " $2Fe^{3+}(aq)+2I^{-}(aq)$ —— $2Fe^{2+}(aq)+I_{2}(aq)$ "反应中 Fe^{3+} 和 Fe^{2+} 的相互转化。实验如下:

步骤	操作	现象		
步骤 1	向盛有 3 mL 0.005 mol・L ⁻¹ (pH 约为 1)的 Fe ₂ (SO ₄) ₃	溶液呈棕黄色		
	溶液中加入 3 mL 0.01 mol • L ⁻¹ 的 KI 溶液			
步骤 2	将棕黄色溶液分成三等份			
步骤 3	向第一份溶液滴人数滴 0.01 $\operatorname{mol} \cdot \operatorname{L}^{-1}\operatorname{AgNO}_3$ 溶液	产生黄色沉淀,溶液颜色变浅		
步骤 4	向第二份溶液加入 $1 \text{ mL } 1 \text{ mol} \cdot L^{-1}\text{FeSO}_4$ 溶液	溶液颜色变浅		
步骤 5	向第三份溶液加人 $1 \text{mL H}_2\text{O}$	溶液颜色变浅,比步骤4略深		

(1)请你回答上述的反应中是否存在限度?	(填"是"或"否"),并说明理由:

- (2)请写出常温下该反应 2Fe³⁺+2I⁻←→2Fe²⁺+I₂ 的平衡常数表达式:
- (3)该同学利用" $2Fe^{3+} + 2I^- \Longrightarrow 2Fe^{2+} + I_2$ "反应设计成原电池,装置如图所示,a、b 均为石墨电极,请你写出检验负极产物的方法:

- (4)待步骤1的实验中溶液颜色不再改变时,再进行步骤2、3,目的是使步骤1的反应达到
- (5)步骤 5 是步骤 4 的对比试验,目的是排除步骤 4 中 造成的影响。
- (6)步骤3和步骤4的颜色变化表明平衡逆向移动,Fe²⁺向Fe³⁺转化。用化学平衡移动原理解释原因:____。

15. (14分)

"绿水青山就是金山银山",近年来,绿色发展、生态保护成为中国展示给世界的一张新"名

片"。烟道气和汽车尾气(NO_x、NH₃等)是造成雾霾天气的原因之一,对这些排放气的处理 以及再利用是化学工作者研究的重要课题。请思考并回答下列问题:

(1)N₂O₅ 在一定条件下可发生分解: 2N₂O₅(g) \Longrightarrow 4NO₂(g) + O₂(g) ,一定温度下,在恒容 密闭容器中充入一定量 N₂O₅ 进行该反应,能判断反应已达到化学平衡状态的是 (填字母)。

A. 容器中压强不再变化

B. 气体的平均相对分子质量保持不变

C. $v_{\text{TF}}(O_2) = 2v_{\text{WF}}(N_2O_5)$

D. 气体的密度保持不变

- $(2)K_p$ 是用反应体系中气体物质的分压来表示的平衡常数,即将 K 表达式中平衡浓度用平衡分压代替。已知反应: $NO_2(g)+CO(g)$ \longrightarrow $NO(g)+CO_2(g)$,该反应中正反应速率 $v_{\mathbb{Z}}=k_{\mathbb{Z}}\cdot p(NO_2)\cdot p(CO)$,逆反应速率 $v_{\dot{\mathbb{Z}}}=k_{\dot{\mathbb{Z}}}\cdot p(NO)\cdot p(CO_2)$,其中 $k_{\mathbb{Z}}$ 、 $k_{\dot{\mathbb{Z}}}$ 为速率常数,则 K_p 为 (\mathbb{Z} \mathbb{Z}
- (3)1093 K 时,NO 与 H₂ 以物质的量 2:1 混合,置于某密闭容器中还能发生如下化学反应: $2NO(g)+H_2(g)$ ——N₂O(g)+H₂O(g),实验测得该反应速率方程(以 N₂O 为基准) 为 $v(N_2O)=kp^2(NO) \cdot p(H_2)$, $k=5.6\times10^{-12}$ Pa⁻² · s⁻¹。某时刻测得体系中 NO 的分压为 2.0 kPa,则此时的反应速率为 Pa⁻² · s⁻¹。
- (4)在有氧和新型催化剂作用下, NO_x 和 NH_3 可以反应生成 N_2 ,将一定比例的 O_2 、 NO_x 和 NH_3 通人装有新型催化剂的反应器。测得相同时间内 NO_x 去除率随温度的变化如图 所示:

在 50~250 ℃范围内,NO_x 的去除率先快速上升后变缓,请你说出变缓的主要原因:

(5)工业上可用"氨催化氧化法"生产 NO,以氨气、氧气为原料,在催化剂存在下生成 NO 和 副产物 N_2 的化学方程式如下:

 $[.4NH_3(g)+5O_2(g)-4NO(g)+6H_2O(g)]$

 $[].4NH_3(g)+3O_2(g)=2N_2(g)+6H_2O(g)$

已知:有效转化率=制备目标物质消耗原料的量×100%原料总的转化量

在 1 L 恒容密闭容器中充入 1 mol NH_3 、1. 45 mol 1.0 n/mol O_2 ,在催化剂作用下发生两个竞争反应 I、II,测得不同温度下反应相同时间有关物质的量关系如图

- ①520 ℃时,NH₃ 的有效转化率=____(保留 3 位有效数字)。
- ②工业用氨催化氧化制备 HNO₃,选择的最佳温度是。
- ③520 ℃时,反应 II 的平衡常数 K= (保留 3 位有效数字)。

16. (14分)

所示。

"电化学"与人类生产、生活密不可分。

I. 用蓄电池 $Fe + NiO_2 + 2H_2O$ $\frac{\dot{\text{De}}}{\dot{\text{Te}}} Fe(OH)_2 + Ni(OH)_2$ 为电源,制取少量高铁酸钾 (K_2FeO_4) 。装置如图所示:

- (1)工作时,蓄电池的负极为_____(填"Fe"或"NiO₂"),电解池中的石墨电极为_____极。
- (2)写出蓄电池中 NiO₂ 电极发生的电极反应式:
- (3) 当消耗掉 0.1 mol NiO₂ 时,理论上生成高铁酸钾 g_o
- Ⅱ. 通过电解废旧锂电池中的 LiMn₂O₄ 获得锂盐和 MnO₂,工作原理如图所示。

- (4)上图滤布的作用为____。X电极发生的电极反应式为_____
- (5)上图 II 电解过程中 $c(Mn^{2+})$ 将______(填"增大"、"减小"或"不变",忽略电解过程中溶液体积的变化)。