Nome:	; № de aluno:	; Turma:	;
Curso: LEIC TIEFTC TIEIM TIERT TIMES	T □ MEIC □ MERCM □	Docente: VA □ IS □	IF □ RR □

Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

(LEIC/LEETC/LEIM/LEIRT/MEIC/MEET/MERCM)

Redes de Internet - 1º Teste - 08/11/2018

•	As perguntas de escolha múltipla podem ter uma ou mais respostas certas. Assinalar todas as respostas certas e erradas com V ou F, respetivamente.
•	As perguntas de desenvolvimento devem ser resolvidas nas costas da folha. A folha de ajuda deve ser manuscrita, não impressa, não pode conter perguntas e/ou respostas, ter o número do aluno e ser assinada, tal como todas as folhas de rascunho que utilizar.
1)	Tendo em conta os modos de comutação de um <i>switch</i> :
	 □ No modo cut-through se existirem erros de CRC são corrigidos antes de ser reenviados. □ No modo cut-through se existirem erros de CRC na trama estes serão reenviados. # □ No modo store and forward o switch inicia o reenvio da trama após receber 64 bits. □ No modo modified-cut-through o switch inicia o reenvio da trama após receber 512 bits. # □ No modo modified-cut-through o swittch espera apenas que chegue o endereço destino antes de começar a reenviar a trama.
2)	Considere o processo de encaminhamento e o processo de aprendizagem dos switches:
	 □ Quando o <i>switch</i> recebe uma trama <i>broadcast</i> pela porta <i>n</i> reenvia por todas as portas menos a <i>n</i>. # □ Quando o <i>switch</i> recebe uma trama pela porta <i>n</i> atualiza a tabela <i>FDB</i> usando o endereço de origem. # □ Quando o <i>switch</i> recebe uma trama pela porta <i>n</i> reenvia sempre por todas as portas menos a porta <i>n</i>. □ Quando o <i>switch</i> recebe uma trama <i>unicast</i> pela porta <i>n</i> actualiza a tabela <i>FDB</i> usando o endereço de destino. □ Quando o <i>switch</i> recebe uma trama pela porta <i>n</i> atualiza a tabela <i>FDB</i> usando os endereços de origem e destino.
3)	O principal fator tido em conta na eleição da <i>root bridge</i> é:
	☐ A prioridade # ☐ O root path cost ☐ O endereço MAC ☐ Todas os outras respostas
4)	Assumindo que o STP acabou de ser <i>enabled</i> numa porta ponto-a-ponto, <i>non-edge</i> , de uma <i>bridge/switch</i> , qual o tempo que demora a porta, assumindo valores por omissão, a passar ao estado de <i>forwarding</i> ?
	 □ Blk+List+Learn: 15 s □ Blk+List+Learn: 20 s □ Blk+List+Learn: 30 s □ Blk+List+Learn: 50s Blocking: 20 s, Learning: 15 s, Listening: 15 s, https://learningnetwork.cisco.com/docs/DOC-27086
5)	Numa porta de um switch que utilize STP a diferença entre os estados de learning e de listening é:
	 □ O listening deixa passar as tramas de dados e o learning não □ O learning deixa passar as tramas de dados e o listening não □ O listening aprende onde estão as máquinas (MAC) e preenche a tabela de comutação da bridge/switch □ O learning aprende onde estão as máquinas (MAC) e preenche a tabela de comutação da bridge/switch #
6)	Relativamente aos mecanismos de resolução de <i>loops</i> na camada 2:
	 □ Loops na camada 2 são mais destrutivos que na camada 3 # □ O MST e PVSTP+ permitem executar balanceamento de tráfego em certas topologias # □ A principal vantagem do 802.1w para o 802.1s é o tempo de convergência # □ O extended BID reduziu o número de combinações possíveis para o valor da prioridade

Nome:	; № de aluno:	; Turma:	;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐ MER	см 🗆	Docente: VA \square , JS \square ,	JF □, RR □
7) No caso do uso das VLAN IEEE802.1Q:			
☐ Podem existir troços de redes sem tramas "tagged" #			
☐ A tag possui um campo identificador da VLAN de 12 b	oit#		
☐ Um switch sem suporte de VLAN deixas as tramas pas	ssar sem serem modifi	cadas#	

8) Na rede da figura o algoritmo utilizado é o STP. O *switch* 0 indica no campo prioridade do BPDU um valor 17, o *switch* 1 indica no campo prioridade do BPDU um valor de 15 e o *switch* 2 indica no campo prioridade do BPDU um valor de 2. As portas do *hub* são todas FastEthernet. As interfaces têm todas prioridade igual sendo numeradas desde a Fa0/1 (1) até à Fa0/24 (24) e Gi1/1 (25) aGi1/2 (26). As ligações a 100Mbps têm um custo de 19, as a 1.000Mbps um custo de 4. Assuma que o valor do MAC *address* é proporcional ao número do *switch*.

☐ As tramas MAC Ethernet transportam um valor diferente no campo Type (0x8100) #

[3 x] Preencha a tabela com os valores da configuração após estabilização da topologia ativa. Na coluna RPC coloque o custo total e entre parêntesis as várias parcelas que contribuíram para esse custo com início na *root bridge*, exemplo: [42 = 19+4+19].

Porta	PC	RPC	DPC	Troço/ segmento	RP	DP	Block
SW0//Fa0/1							
SW0//Fa0/2							
SW0//Gi1/1							
SW1//Fa0/1							
SW1//Fa0/2							
SW1// Gi1/1							
SW2//Fa0/1							
SW2//Fa0/2							
SW2// Gi1/1							

Nota: As colunas que tem de preencher obrigatoriamente são RPC, DP, RP, Block.

Nome:	; Nº de aluno:	; Turma:	;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐	MERCM □	Docente: VA \square , JS \square ,	JF □, RR □
9) Qual dos switches da figura é eleito root bridge?			
☐ Switch0☐ Switch1☐ Switch2 #☐ Nenhum devido a existir um hub			
10) Para garantir que o switch 1 da figura como root br	idge poderia?		
 □ Colocar a prioridade do switch 1 a 0 # □ Colocar a prioridade dos switches 0 e 2 a 1 □ Colocar a prioridade do switch 1 a 36864 □ Colocar a prioridade dos switches 0 e 2 ao valor p □ Diminuir o root path cost (RPC) para o switch 1 cost 		g-tree cost n"	
11) Assumindo o <i>switch</i> 0 da figura como <i>root bridge</i> , qu (estável) entre o <i>switch</i> 0 e o <i>switch</i> 2 seria feito via	_		ho na árvore
 □ Mantendo como está □ Aumentando a prioridade do switch 1 □ Passando o custo da interface Gi1/1 do switch 2 prioridade □ Passando os custos das interfaces Fa0/1 e Fa0/2 prioridade □ Passando os custos das interfaces Fa0/1 e Fa0/2 prioridade 	do <i>switch</i> 0 para 30		
12) No RSTP uma <i>edge port</i> , num estado estável, pode:			
 □ Ser ligada a um servidor # □ Estar no estado blocking □ Ser ligada a outro switch □ Receber BPDU sem que se altere a sua funcionali 	dade		
13) No RSTP:			
 □ Os BPDU são enviados em tramas de broadcast □ O estado learning serve para ser construída a top □ Utiliza os mesmos timers do STP mas com valores □ As ligações ponto-a-ponto as portas designated sã (shared) # 	s muito inferiores	para <i>forwarding</i> do que a	s partilhadas
Considere a seguinte topologia de rede composta por redos switches se encontram ligadas na VLAN de omis	são. Considere ainda qu	ue existem ligações <i>Gigo</i>	abitEthernet,

FastEthernet e Ethernet assinaladas na legenda da figura. Assuma ainda que os switches têm os endereços MAC da tabela e que todos têm a prioridade por omissão.

Switch	Endereços MAC
SW1	00-00-60-75-6D-81
SW 2	00-00-60-75-6D-82
SW3	00-00-60-75-6D-83
SW 4	00-00-60-75-6D-84
SW 5	00-00-60-75-6D-85

Gigabit Ethernet Fast Ethernet Ethernet

Nome:	; Nº de aluno:	; Turma:	;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐ M	MERCM □	Docente: VA □, JS □, JF [□, RR □
.4) Tendo a topologia da figura anterior em consideraçã dentro da mesma rede local (mesmo bloco IP) e inte	•	- ·	
 □ Nenhuma das máquinas consegue fazer ping para □ A máquina A consegue fazer Ping para qualquer da □ Qualquer troca de mensagens entre as máquinas e □ A máquina A só consegue fazer Ping para outra a r □ Considerando as tabelas de ARP vazias, se a má necessita enviar tramas de ARP primeiro # 	as outras máquinas # é feita por entrega indi máquina se for configu	rado um <i>router</i> na rede	máquina
.5) Tendo a topologia da figura anterior em consideraçã endereços IP e máscaras: A:100.100.21.17/29, B:1 interligadas através dos switches à mesma VLAN, s desativado.	.00.100.21.25/29, C:10	00.100.21.22/29, D:100.100.	21.28/29
 □ A máquina A consegue fazer <i>Ping</i> para a máquina □ A máquina A consegue fazer <i>Ping</i> para a máquina □ Todas as máquinas conseguem fazer <i>Ping</i> a todas a □ Para a máquina A fazer <i>Ping</i> à máquina B precisa d □ Para a máquina A fazer <i>Ping</i> à máquina C precisa d 	C # as outras le enviar mensagem at		
.6) Tendo a topologia da figura anterior em consideração proceder para colocar as máquinas A e D numa VLAN que possam comunicar entre si.	•	· · · · · · · · · · · · · · · · · · ·	•
Portas ligadas aos PC configuradas como access e e aos PC associadas à VLAN a que cada um deles esta passar as VLAN dos PC; router com subinterfaces da p se encontram os PC; dois blocos de endereçamento configurar o default gateway com o IP do par route irrelevante para a topologia final (duas árvores sobre VLAN de	á associado; porta que orta que liga ao <i>switch</i> IP distintos, cada um a r/VLAN em cada máqu	e liga ao <i>router</i> como <i>trunk</i> e associadas a cada uma das V associado a uma das VLAN. N aina. Nota: O facto de se usa a VLAN, isto ignorando outras	e a deixa LAN onde Máquinas r PVSTP é

Nome:	; Nº de aluno:	; Turma:	;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC		Docente: VA □, JS □,	, JF □, RR □

17) Para a rede da figura seguinte:

Defina na tabela os endereços IP dos *routers* em cada rede.

Sub-rede	Rede	R1	R2	R3
LAN1	200.0.0.0/25			
LAN2	200.0.0.128/26			
LAN3	200.0.0.192/27			
LAN4	200.0.0.224/28			
Série E1	200.0.0.240/30			
Série E3	200.0.0.244/30			

18) [2 x] Na rede da figura anterior, sabendo que o protocolo de encaminhamento usado é o RIPv2, indique o conteúdo da tabela de encaminhamento dos *routers* R1 e R2 após de estabilizado o algoritmo. **Nota:** Neste exercício assuma que o custo/métrica de atingir uma rede com ligação direta ao *router* é de 1.

	Rede	Próximo router	Interface	Métrica
	200.0.0.0/25		e0	1
	200.0.0.128/26	0.0.0.0	e1	1
	200.0.0.192/27	200.0.0.2	e0	2
R1	200.0.0.224/28	200.0.0.130	e1	2
	200.0.0.240/30	0.0.0.0	s0.1	1
	200.0.0.244/30	200.0.0.2	e0	2
	200.0.0.244/30	200.0.0.130	e1	2
	Rede	Próximo router	Interface	Métrica
	200.0.0.0/25	0.0.0.0	e0	1
	200.0.0.128/26	200.0.0.246	s0.1	2
	200.0.0.192/27	0.0.0.0	e1	1
R2	200.0.0.224/28	200.0.0.246	s0.1	2
	200.0.0.240/30	200.0.0.1	e0	2
	200.0.0.244/30		s0.1	1
	200.0.0.128/26	200.0.0.1	e0	2

Nome:	; Nº de aluno:	; Turma:;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐	I MERCM □	Docente: VA \square , JS \square , JF \square , RR \square
19) Na rede da figura anterior não seria possível usar o	protocolo de encaminha	mento RIPv1
 □ Porque existem ligações do tipo série em uso □ Porque existem redes a funcionar com débitos d □ Porque algumas das sub-redes usam máscaras d □ Falso dado ser possível porque o endereço 200.0 	iferentes da por omissão	
20) Em relação ao RIPv2:		
 ☐ É classless V ☐ "Corre" sobre UDP V ☐ Usa timers (hold down) para evitar loops V ☐ Usa broadcast para enviar todas as suas mensag ☐ Podem existir uma rota com 20 routers num dor 		
21) No RIP o mecanismo para evitar que um <i>router</i> recebeu designa-se por:	reenvie informação de <i>ro</i>	uting por uma interface por onde a
 ☐ Hold down timer ☐ Split horizon update V ☐ Algoritmo de Dijkstra ☐ Split Horizon with poisoned reverse 		
22) Em OSPF, em quais dos seguintes casos é eleito um	n Designated Router?	
 □ Rede stub Ethernet □ Ligações série ponto-a-ponto □ Segmento Ethernet com 5 routers ligados a ele \(\bigcup \) □ Rede NBMA com 4 ligações em que todos conse 		os V
23) Em OSPF, o algoritmo Dijkstra para calcular as mell	hores rotas dentro de uma	a área é aplicado sobre:
☐ LSA tipo 1 V ☐ LSA tipo 2 V ☐ LSA tipo 3 ☐ LSA tipo 4 ☐ LSA tipo 5		
24) No caso de haver apenas uma área OSPF num dom	inio OSPF (AS):	
 □ Não existem LSA tipo 3 V □ Não existem LSA tipo 4 V □ Não existem LSA tipo 5 □ Não existem LSA tipo 7 V 		
25) Em OSPF todos os <i>routers</i> criam o mapa (LSDB) de:		
 □ Todo o domínio (AS) OSPF □ Das áreas em que possui interfaces V □ Da área 0 e da área em que são routers interiore □ Da área 0 e das áreas em que existem ASBR 	s	
26) Em OSPF, se dois <i>routers</i> são vizinhos entre si:		
 ☐ São adjacentes entre si ☐ Atualizam entre si as suas LSDB ☐ Os seus tempos entre mensagens Hello são igual ☐ A área a que dizem pertencer tem de ser a mesn ☐ Possuem LSDB (mapas da área) iguais para as área 	na V	