

เลขที่นั่	งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2558

วิชา ENE 240 การวัดทางไฟฟ้าและอิเล็กทรอนิกส์	(Electrical	and	Electronic	Measurement)
ภาควิชา วิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม	ชั้นปีที่ 2 (ปกติ)			
สอบ วันจันทร์ที่ 16 พฤษภาคม พ.ศ. 2559			เวลา 13.00	- 16.00 น.

คำสั่ง

- 1. ข้อสอบวิชานี้มี 5 ข้อ 6 หน้า (รวมใบปะหน้า) คะแนนรวม 40 คะแนน
- 2. ไม่อนุญาตให้นำหนังสือประกอบการเรียนเข้าห้องสอบ
- 3. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

คำเตือน/คำแนะนำ

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำ และควรอ่านคำถามให้รอบคอบก่อนเริ่มทำการคำนวณ เพื่อไม่ให้เสียเวลากับการคำนวณที่ไม่มีประโยชน์

ข้อสอบข้อ	ที่	1	2	3	4	5	คะแนนรวม
คะแนนเต็	1	8	8	8	8	8	40
คะแนนที่ไ	ค้						

ผู้ช่วยศาสตราจารย์ ดร.วีรพล จิรจริต (โทร. 0-2470-9070) ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผู้ช่วยศาสตราจารย์ ดร.สุวัฒน์ ภัทรมาลัย)

รักษาการหัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1.2) ถ้าจะทำให้วงจรบริดจ์ดังกล่าวสมดุล R_3 ควรมีค่าเท่าไร

2. 2.1) จากวงจร Kelvin double bridge ดังรูปจงคำนวณหาค่า R_1 และ R_3 ขณะบริดจ์สมดุล (6 คะแนน)

2.2) จงอธิบายว่าวงจรบริดจ์ดังกล่าวใช้สำหรับการวัดในกรณีใด

3. 3.1) จงวาดรูปวงจรบริดจ์แบบ Maxwell-Wien สำหรับวัดค่าความเหนี่ยวนำไฟฟ้า และคำนวณหาค่า L_4 R_4 แกะ Q-factor เมื่อกำหนดให้ $R_1=10$ k Ω $C_1=1$ μ F $R_2=400$ Ω $R_3=500$ Ω และ f=1 kHz ขณะบริดจ์สมดุล (4 คะแนน)

4

3.2) จากวงจรบริดจ์กระแสสลับดังรูป จงคำนวณหาค่า C_4 R_4 และ D-factor ขณะบริดจ์สมดุล (4 คะแนน)

4. 4.1) จากวงจร Q-meter ดังรูป ขณะที่ยังไม่ต่อตัวเก็บประจุไม่ทราบค่า จะต้องทำการปรับค่าตัวเก็บประจุเป็น 500 pF โดยมี Q-factor เป็น 180 ที่ความถี่เรโซแนนซ์ เมื่อต่อตัวเก็บประจุไม่ทราบค่าเข้าไปในวงจร จะต้อง ทำการปรับค่าตัวเก็บประจุเป็น 320 pF โดยมี Q-factor เป็น 110 ที่ความถี่เรโซแนนซ์ จงคำนวณหาค่า $C_{\rm x}$ $R_{\rm x}$ และ D-factor (6 คะแนน)

4.2) จากวงจรวัตต์มิเตอร์ดังรูป จงคำนวณหาร้อยละความผิดพลาดของการวัดนี้

ชื่อ-สกุลรหัสประจำตั	ĭ2 <i>€</i> .
5. 5.1) จงอธิบายการทำงานของวงจร ramp converter	(3 คะแนน)
5.2) จงอธิบายการทำงานของวงจร successive approximation	(3 คะแนน)
5.27 WOOD TOTT TO THE BOOK OF THE SUCCESSIVE APPROXIMATION	(21146664)

5.3) จงเปรียบเทียบข้อเค่นและข้อด้อยของวงจร ramp converter และวงจร successive approximation