One Conjecture on Firm Size Distribution under Firm Dynamic Setting

Shu HU

RSE, ANU

Advisor: John Stachurski

Overview

- Introduction
- Markov Matrix/Chain
- 3 Aperiodicity, Irreducibility, Stationary Distribution
- 4 Firm Dynamic (Entry/Exit) Model
- 5 Carvalho & Grassi's Double Pareto Theory
- One Conjecture
- What's next

1.1 Introduction: Power Law Distribution

- The so-called Power Law distribution, or Pareto distribution is very common in both natural and social research.
- For example, the Famous Zipf's Law.

Power Law Distribution

If a random variable X follows Pareto distribution, then its counter cumulative function (survival function) should be given by

$$Pr(X > x) = C \cdot (x)^{-\delta} \tag{1}$$

- C is a constant
- $\delta > 0$ is a positive parameter.

1.2 Introduction: Firm Size Distribution

 Research on Firm Size Distribution is important to both theoretical development and practical applications.

Literature 1: Firm Size Distribution

- Analysis on relationships among firm size distribution, Gibrat's Law and Pareto Distribution attract lots of attention (Gibrat, 1931; Champernowne, 1953; Simon, 1955; Córdoba).
- The distribution of U.S. firm sizes closely follows the Pareto distribution (Axtell, 2001, 2011)
- This fact can also be found in many other countries (Graricano and etc., 2016, AER; Mueller and etc., 2017, AER; etc.).

1.3 Introduction: Firm Dynamics and My Question

- However, it is more realistic to analyse the firm size distribution under firm dynamic setting (Hopenhayn, 1992).
- My Economic Question arises from the above thought:
 - How prevalent the Pareto distribution and firm size distribution are in Hopenhayn's entry-exit model?

Literature 2: Firm Dynamics

- Hopenhayn (1992) developed a standard and famous firm dynamics model with continuum number of firms in his paper.
- Carvalho & Grassi (2019) analyze this setup with a finite but possibly large number of firms.

2.1 Markov Matrix

Definition. Markov (Stochastic) Matrix

A **Markov matrix** (or stochastic matrix) is an $n \times n$ square matrix $P = (p_{i,j})$ such that

- Each element of P is nonnegative $(p_{i,j} \ge 0)$;
- Each row of P sums to 1, i.e.,

$$p_{i,1} + p_{i,2} + \cdots + p_{i,n} = 1$$

for all $i \in \{1, \ldots, n\}$

2.2 Markov Chain 1

Definition. State Space

Let S be a finite set with n elements $\{x_1, \ldots, x_n\}$, where the set S is called the **state space** and x_1, \ldots, x_n are the **state values**.

Definition. Markov Property

For any date t and any state $y \in S$,

$$\mathcal{P}\{X_{t+1} = y | X_t\} = \mathcal{P}\{X_{t+1} = y | X_t, X_{t-1}, ...\}$$

2.2 Markov Chain 2

Definition. Markov Chain

A **Markov chain** $\{X_t\}$ on S is a sequence of random variables on S (from probability sample space Ω) that have the **Markov property**.

Dynamics of a Markov chain

The dynamics of a Markov chain $\{X_t\}$ are fully determined by the set of values

$$P(x,y) = \mathcal{P}\{X_{t+1} = y | X_t = x\} \ (x,y \in S)$$

where

• P(x,y) is the (x,y) element of the Markov matrix P.

2.3 Markov Matrix & Markov Chain: An Example

Entry/Exit

- Consider a firm who, at any given time t, is either entrant (state 0) or incumbent (state 1).
- Suppose that, over a one month period,
 - An entrant enter the industry with probability 0.5.
 - An incumbent exit the industry with probability 0.5.

2.3 Markov Matrix & Markov Chain: An Example

Applications:

- Sample space: $\Omega = \{entrant, incumbent\};$
- State space: $S = \{0, 1\}$;
- Markov Chain: $\{X_t\}$ where
 - X_t is a random variable $X_t : \Omega \to S$:
 - $X_t(entrant) = 0$
 - $X_t(incumbent) = 1$.

2. Markov Matrix & Markov Chain: An Example

Markov Chain in this Example (Continued)

- Transition probabilities: P(0,1) = 0.5 and P(1,0) = 0.5.
 - In Markov Matrix form

$$P = \begin{pmatrix} P(0,0) & P(0,1) \\ P(1,0) & P(1,1) \end{pmatrix} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$

3.1 Irreducibility

Definition. Two States Communicate

Let P be a fixed stochastic matrix.

Two states x and y communicate with each other if there exist a positive integer n such that

$$P^{n}(x,y) > 0$$
 and $P^{n}(y,x) > 0$

Definition. Irreducibility

The stochastic matrix P is called **irreducible** if all its states communicate with each other.

3.2 Aperiodicity

Definition. Period

The period of a state x is the greatest common divisor of the set of integers

$$D(x) = \{ j \ge 1 | P^{j}(x, x) > 0 \}$$

Definition. Aperiodicity

A stochastic matrix is called aperiodic if the period of its every state is 1.

3.3 Stationary Distribution 1

Distribution and its Dynamics

Suppose that

- $\{X_t\}$ is a Markov chain with stochastic matrix P.
- the distribution of X_t is known to be ψ_t .

Then the distribution of X_{t+m} is updated by

$$\psi_{t+m} = \psi_t P^m$$

where

• where P^m is the m-th power of P.

3.3 Stationary Distribution 2

Definition. Stationary Distribution

A distribution ψ^* on S is called stationary for P if

$$\psi^* = \psi^* P$$

Proposition 1

Every stochastic matrix P has at least one stationary distribution.

3.3 Stationary Distribution 3

Proposition 2

If a Markov matrix P is both aperiodic and irreducible, then

- P has exactly one stationary distribution ψ^*
- For any initial distribution ψ_0 , we have

$$\|\psi_0 P^t - \psi^*\| \to 0 \text{ as } t \to \infty$$

3.4 Aperiodicity, Irreducibility, Stationary Distribution: Example

Employment/Unemployment Transition Example

• States 0 and 1 of P communicate with each other since we can find positive integer n=1 such that

$$P^{(1)}(0,1) = P(0,1) = 0.5 > 0$$
 and $P^{(1)}(1,0) = P(1,0) = 0.5 > 0$

• P is irreducibility since we can find positive integer n=1 such that

$$P^{(1)}(0,1) = 0.5 > 0$$
 and $P^{(1)}(1,0) = 0.5 > 0$
 $P^{(1)}(0,0) = 0.5 > 0$ and $P^{(1)}(1,1) = 0.5 > 0$

3.4 Aperiodicity, Irreducibility, Stationary Distribution: Example

Example (Continued)

• For *P*, the period of state 0 is 1 and the period of the states, since for all positive intergers *n*, we have

$$P^{(n)}(0,0) > 0$$
 and $P^{(n)}(1,1) > 0$

• P is aperiodic since the period of P's every state is 1.

4. Firm Dynamic (Entry/Exit) Model

Basic Setup

- Firm size state space: $\varphi^s \in \{\varphi^1, \dots, \varphi^S\} = \Phi$
- Firm size threshold: $\varphi^{s^*} \in \{\varphi^1, \dots, \varphi^S\} = \Phi$
- Entrants' firm size follows a distribution

$$G = (G(\varphi^1), G(\varphi^2), \cdots, G(\varphi^S))$$

- $0 < G(\varphi^s) < 1$ $\sum_{s=1}^{S} G(\varphi^s) = 1$

4. Firm Dynamic (Entry/Exit) Model

Basic Setup

ullet Incumbents' firm size distribution evolves following a Markov chain on the firm size state space Φ with transition matrix

$$P = \begin{pmatrix} a+b & c & 0 & \cdots & \cdots & 0 & 0 \\ a & b & c & \cdots & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a & b & c \\ 0 & 0 & 0 & \cdots & 0 & a & b+c \end{pmatrix}$$

where

- 0 < a, b, c < 1.
- a + b + c = 1.

That is, incumbents' firm size is Pareto distributed.

4. Firm Dynamic (Entry/Exit) Model

Basic Setup

 Law of motion for stationary all firm size distribution between incumbents and entrants:

$$\mathbb{Q}(\varphi^{s}, = \varphi^{s+1}) = P(\varphi^{s}, \varphi^{s+1}) \mathbb{1}\{\varphi^{s} \ge \varphi^{s^{*}}\} + G(\varphi^{s+1}) \mathbb{1}\{\varphi^{s} < \varphi^{s^{*}}\}$$

$$(2)$$

- Q is the evolution Markov matrix for all firms at the stationary.
- Stationary firm size distribution $\mu^* = (\mu_1^*, \cdots, \mu_S^*)$ is given by

$$\mu^* = \mu^* \mathbb{Q}$$

5. Carvalho & Grassi's Double Pareto Theory

Proposition 3

Suppose that we follow Basic Firm Dynamics Setups.

If the entrant's firm size follows a Pareto distribution G, that is,

$$G_{s} = K_{e}(\varphi^{s})^{-\delta_{e}} \tag{3}$$

then as $S \to \infty$, the stationary firm size distribution $\mu^* = (\mu_1^*, ..., \mu_S^*)$ will uniquely converges point-wise to a Pareto distribution

$$\sum_{i>s} \mu_i^* = \Pr\{\varphi > \varphi^s\} = C \cdot (\varphi^s)^{-\delta}$$
 (4)

- C is a constant
- $\delta > 0$: pinned down by a, c, φ

6.1 One Conjecture

Proposition 4 (My Conjecture)

Suppose that we follow Basic Firm Dynamics Setup.

If the entrant's firm size follow any distribution G,

then as $S \to \infty$, the stationary firm size distribution $\mu^* = (\mu_1^*, ..., \mu_S^*)$ will uniquely converges point-wise to a Pareto distribution

$$\sum_{i>s} \mu_i^* = \Pr\{\varphi > \varphi^s\} = C \cdot (\varphi^s)^{-\delta}$$
 (5)

- C is a constant
- $\delta > 0$: pinned down by a, c, φ

6.2 Proof of Stationary Distribution's Uniqueness

I have proved the uniqueness of stationary firm size distribution in **Proposition 4**

Basic Idea of the Proof

Existence

I show that Q is a Markov matrix, regardless of s^* and G. By **Proposition 1**, this distribution exist.

Uniqueness

I show that Q is **irreducible** and **aperiodic**, regardless of s^* and G. By **Proposition 2**, this distribution is unique.

6.3 Simulation: Goal and Expectation

Goal of the Simulation

- Graphically examine whether the stationary firm size distribution is also Pareto under my conjecture, by log-log plots.
- Log-log plots

The Log-log plot is necessary but insufficient evidence for a power law relationship.

Expectation for the Simulations' Results

• The right-hand tail of double-log stationary firm size distribution will look like a straight line with a negative slope.

6.3 Simulation: Why this Expectation

Reason:

 Recall my conjecture (Proposition 4), if the stationary firm size distribution will converges to a Pareto distribution, then it will have this form

$$\sum_{i>s} \mu_i^* = \Pr\{\varphi > \varphi^s\} = C \cdot (\varphi^s)^{-\delta}$$

Take the log terms for both sides of the above equation, we will get

$$\log \sum_{i>s} \mu_i^* = \log Pr\{\varphi > \varphi^s\} = \log C - \delta \cdot \log(\varphi^s)$$

• Since $\delta > 0$, then $\log \mu_s^*$ will be linear in $\log(\varphi^s)$ with a negative slope $-\delta$ on the right-hand tail of the firm size distribution.

6.3 Simulation: Algorithm

Algorithm

• Step 1:

Generate Q by considers Incumbents' evolution P and 9 different types of Entrants' distribution G.

• Step 2:

Calculate the counter cumulative distribution, $Pr\{\varphi > \varphi^s\}$ of stationary firm size distribution by the iteration method and etc, and plot them against firm size state values φ^s .

• Step 3:

Calculate the log term of the counter cdfs, $\log Pr\{\varphi > \varphi^s\}$, and plot them against the log term of the firm size state values $\log \varphi^s$ for each entrant's type.

6.3 Simulation: Algorithm

Algorithm (Continued)

• Step 4:

Focus on the Right-hand tails of the double-log-term distributions, and plot them.

6.3 Simulation: Value Assignments

Simulation: Value Assignments

Parameters	Value
S	1000
s^*	50
а	0.6129
С	0.3870
h	1.57
arphi	1.1
S1	171
S2	86
α	0.7
β	0.2

Note: For the simulation, unless I intentionally mention, I will use $(S, s^*, a, c, \varphi, \alpha, \beta) = (1000, 50, 0.6129, 0.3870, 1.1, 0.7, 0.2)$ from the above table.

When *G* is uniformly distributed with pmf

$$G(\varphi^s) = \frac{1}{S}, where \ s \in \{1, 2, ..., S\}$$
 (6)

Log-log Stationary Firm Size Distributon with Uniformly Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Uniformly Distributed Entrants

When G is is Zipf distributed with pmf

$$G(\varphi^s) = \frac{1}{(s)^a} \frac{1}{H_{S,a}} \tag{7}$$

•
$$H_{S,a} = \sum_{n=1}^{S} (\frac{1}{n^a});$$

Right-hand Tail of Log-log Stationary Firm Size Distributon with Zipf Distributed Entrants

When G is is Logarithmic (series) distributed with pmf

$$G(\varphi^s) = -\frac{p^s}{s \log(1-p)}, \text{ where } s \in \{1, 2, \cdots, S\}$$
 (8)

where

ullet 0 < p < 1: probability of success in each trial;

Log-log Stationary Firm Size Distributon with Logarithmic (series) Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Logarithmic (series) Distributed Entrants

When G is is Binomial distributed with pmf,

$$G(\varphi^s) = {\binom{S-1}{s}} p^s (1-p)^{S-1-s}$$
 (9)

where

- $s \in \{0, 1, 2, \cdots, S-1\}$
- 0 .

Notice: Parameters Change

- S = S1
- p = 0.8

Log-log Stationary Firm Size Distributon with Binomial Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Binomial Distributed Entrants

When G is Poisson distributed with pmf,

$$G(\varphi^s) = e^{-\lambda} \frac{\lambda^{s-1}}{(s-1)!}, \text{ where } s \in \{1, 2, \cdots, S\}$$
 (12)

where

- 0
- $Sp = \lambda \geq 0$.

Notice: Parameters Change

• S = S1

Right-hand Tail of Log-log Stationary Firm Size Distributon with Poisson Distributed Entrants

When *G* is Geometric distributed with pmf,

$$G(\varphi^s) = (1-p)^{s-1}p, \text{ where } s \in \{1, ..., S\}$$
 (13)

where

• 0 : probability of success in each trial;

Notice: Parameters Change

• p = 0.01

Log-form Stationary Firm Size Distributon with Geometric Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Geometric Distributed Entrants

When G is Negative Binomial distributed with pmf,

$$G(\varphi^s) = \frac{\Gamma(s+S)}{\Gamma(S)\Gamma(s+1)} p^S (1-p)^s, \tag{14}$$

where

- $s \in \{0, 1, 2, \cdots, S-1\}$
- ullet 0 < p < 1: probability of success in each trial.

Notice: Parameters Change

- S = S2
- p = 0.5

Log-log Stationary Firm Size Distributon with Negative Binomial Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Negative Binomial Distributed E

When G is Beta-Binomial distributed with pmf,

$$G(\varphi^{s}) = {S-1 \choose s} \frac{B(s+\alpha, S-1-s+\beta)}{B(\alpha, \beta)}$$
(15)

where

- $s \in \{0, 1, 2, \cdots, S-1\}$
 - $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$,
 - Γ: the Gamma Function,
 - $\Gamma(n) = (n-1)!$,
 - $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$,
 - $\alpha > 0$
 - β > 0

Notice: Parameters Change

• *S* = *S*2

Log-log Stationary Firm Size Distributon with Beta Binomial Distributed Entrants

Right-hand Tail of Log-log Stationary Firm Size Distributon with Beta Binomial Distributed Entra

When *G* is Benford distributed with pmf,

$$G(\varphi^s) = \log_{S+1}(1 + \frac{1}{s}), \text{ where } s \in \{1, \dots, S\}$$
 (16)

Right-hand Tail of Log-log Stationary Firm Size Distributon with Benford Distributed Entrants

7. What's Next

- Work on my Conjecture and prove that
 - The stationary firm size can be Pareto, given whatever entrants' distributions.
- Work on other interesting parts of the firm dynamic model.
- Find data in the real world, employ empirical tools to analyze quantitative implications of the model and my conjecture.

The End. Thank You!