

Trabajo Práctico

Inferencia Bayesiana con Aplicaciones en Ciencias Cognitivas Primer Cuatrimestre de 2016

Integrante	LU	Correo electrónico
Axel Straminsky	769/11	axelstraminsky@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

${\rm \acute{I}ndice}$

1.	Introducción	3
2.	Problema 1: Modelo y Representación Gráfica	3
3.	Problema 2: Implementación e Inferencia	4
4.	Problema 3: Modificaciones al Modelo	8

1. Introducción

El objetivo de este Trabajo Práctico es simular

2. Problema 1: Modelo y Representación Gráfica

Escriba un modelo que capture el problema enunciado. Realice una representación gráfica del modelo propuesto, utilizando la convención para identificar nodos latentes, observados y deterministicos.

Figura 1: modelo 1

Donde Φ representa el prior de la moneda cargada (Uniforme(0,1) ya que no se sabe cómo esta cargada) y Ψ el prior para las monedas no cargadas, el cual elegí representarlo como una Beta(1000, 1000), para que la función esté lo más concentrada posible alrededor de 1/2, como se puede observar en la Figura 2. Por último, Θ_i es igual a Φ o Ψ según el resultado de la categórica C, que decide cuál de las 3 monedas es la cargada, y K_i es la binomial que representa la cantidad de caras obtenidas por cada moneda luego de 10 tiradas.

Figura 2: Beta(1000,1000)

3. Problema 2: Implementación e Inferencia

Implemente el modelo en su sistema de inferencia predilecto, y obtenga muestras de la posterior para las variables relevantes. Explicite cuáles fueron los parámetros elegidos para el algoritmo de muestreo.

- Realice histogramas de las distintas variables, utilizando un mismo gráfico cuando sea posible/razonable.
- Reporte la media y el desvío estándar para todas las variables inferidas.
- Compute la probabilidad a posteriori de que cada una de las monedas sea la moneda cargada.

Para implementar este modelo utilizé MatJAGS junto con Matlab R2016a. Las variables relevantes a muestrear son C (qué moneda es la cargada) y los distintos Θ (la probabilidad de salir cara de cada moneda). Los parámetros para el algoritmo de muestreo son:

- nchains = 2 (cantidad de cadenas)
- nburnin = 100 (burn-in examples)
- nsamples = 5000 (cant. de samples)
- thin = 2 (cada cuánto sampleo)

Los histogramas para cada una de las variables de interes son los siguientes:

Figura 3: theta 1

Con media = 0.4975 y std = 0.0190

Figura 4: theta 2

Con media = $0.4981~\mathrm{y}$ std = 0.0152

Figura 5: theta 3

Con media = 0.9131 y std = 0.0866

Las diferencias y similitudes entre las posterior de cada moneda se pueden apreciar mejor en el siguiente gráfico conjunto:

Figura 6: theta 1, 2, y 3

Se puede ver que Θ_1 y Θ_2 están prácticamente solapados con media alrededor de 0,5, mientras que Θ_3 , como resultó ser la moneda cargada, tiene una distribución con mucho peso en valores cercanos al 1.

En cuanto a la variable categórica C, podemos observar su resultado en el siguiente gráfico:

Figura 7: categórica

De donde se puede ver claramente que la probabilidad de que la tercera moneda sea la cargada es prácticamente 1, mientras que la probabilidad de que las monedas 1 y 2 sean las cargadas es muy cercana a 0.

4. Problema 3: Modificaciones al Modelo

Discuta cómo modificaría el modelo si en lugar de saber que hay una moneda cargada, nos dicen que cada moneda puede estar cargada o no con probabilidad 1/2 independientemente de las otras monedas. Provea el modelo y su representación gráfica para este caso.

La modificación que hay que realizarle al modelo es sencilla: la variable categórica C se reemplaza por 3 variables bernoulli C_1 , C_2 y C_3 con parámetro 1/2 (una para cada Θ), las cuales deciden para cada moneda si ésta va a estar cargada o no. La representación gráfica de este modelo se puede ver en la siguiente Figura:

$$\Psi \sim Beta(1000, 1000)$$

$$\Phi \sim Beta(1, 1)$$

$$\Theta_i = \begin{cases} \Phi & \text{si } c = i \\ \Psi & \text{si } c \neq i \end{cases}$$

$$C \sim Bernoulli(1/2)$$

$$K_i \sim Binomial(n, \theta_i)$$

Figura 8: modelo 2