煤	,四)	哥	や ニッ	74	<u>k-Jr</u>																					
Ph	2- PP	, 2	しい	Fi	nd	n ·	1.V-	5 5	t.	ev	exy	(n·	·)	of 1	her	n C	are	ind	epe	nd	ant	= bu	νt	not	all	
				of	£	her	η.																			_
	Co	nsio	lei	th	e f	o Us	win	g 1	ΛY	. V S	, :															_
		3 ₁ .	32	,	, 3.	n-1,	Žn.	4.	ŧ.	5 Σ 1=1	3:	= \ ,	3.0	εıR												_
	Fo	n e	ver	y (1	1-I) 어	th	л Д	CCTE	e in	de	en	dar	rt,	buł	t th	eir	4u	m i	55	loctio	- 1				_
	90	o t	he se	2 N	۲.	v.5	are	ทอ	t i	nde	per	n da	nt.													_
LZ.	Fi	nd	inci	den	1 5	Λ1- [\2 A	nd	٨3	s:t	. [a	nd 1	k 1	χης	ind	epe	nde	₩							_
	Λ	ıar	ıdΛ	3 U	1e	ind	epe	nde	ent	1	but	, Λι	ana	/ اد	\2U/	13 (XYE	not	: in	de	pen	de	nt			
	C	0r4	ide	ra	fa	mil	y u	jith	ιtν	vo	kid	, را	one	2 i5	you	ang	er o	mc	(()	ne c	the	۷ ه	ne	old	21.	_
	L	eŧ	۲۸-	- {	Th	اه ما	de	r ki	d i4	s C	g'n	113														_
			۸z	= {	וך	ne 1	yo u	nge:	r þ	<id< td=""><td>is</td><td>v G</td><td>irl³</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></id<>	is	v G	irl ³													_
			Λ3	= {	T۱	ωo	ki d	ታ	۵۷د	th	g 51	ù me	ક કહ	λŽ												_
	=7	,	۸، ۵	ind	Λ	2 l	nde	per	rde	mt	,															_
			Λι (mc	(Λ:	3 is	n Ue	per	nde	nt																
			PL1	n)=	<u> </u>	P	(/ 2() N3)=	<u>3</u> 4	,	P(۷، ۷	LN:	zUΛ	((چ	= 4	; ‡	Pι	(۱ <i>۱</i>	P(A	2U.	٨3))		
	Ξ	.7	۷٬ د	ınd	1	\2U	٨3	not	in	deq	RΝ	der	Ή													_
																										_

LEd: dEA3 are independent <=> } For dEA, For Ed3 are independent To prove the events U Ed (BEB) are independent. We just need to prove that & B'SB. B'= {B.B2, ... Bn3 finite events U Ed (= 1,2,...n) are independent. <=> IT P { U Ed} = P { O U Ed} By Exclusion Exp: P { U Ed} = \(\sum_{\text{CAB}} \); P(Ed) - \(\sum_{\text{disd}} \); P(Ed) \(\text{Ed} \) \(\text{Disc} \) + \(\cdots \) = Z P(Ed) - Z P(Ed) P(Ed) + ··· Thus TP 1 U Ed 3 = TT [\(\Sigma\) P(Ed) - \(\Sigma\) P(Ed) P(Ed2) + \(\cdot\) deABi 2d. dz3EABi On the other hand P { n U | Ed 3 = P { U (Ed, n Edzn...n Edn)}} (d1, d2, ..., dn) \(\int_{i=1}^{\text{T}} \) B; = Z PEEdINEd2N ... NEdn3- ... Compare RHS of the two equations, they are the same. X and f(x) independent <=> F, (xo) Fz[f(xo)] = F3 [xof(xo)] &xoE|R where F1. F2. F3 are relatively d.f. of x1 f vx) and (x, f vx) But we know that F. (xo)= FZ[f(xo)] = F3[xof(xo)] as. for xo Thus FUX) & (0,13 => X is constant with probability one

and when so
$$X$$
 and $f(x)$ are independent

$$\bigcap_{j=1}^{\infty} F_j = \lim_{n \to \infty} \bigcap_{j=1}^{n} F_j$$
So $P(\bigcap_{j=1}^{\infty} F_j) = P(\bigcap_{n \to \infty} F_j) = \lim_{n \to \infty} P(\bigcap_{j=1}^{n} F_j)$

$$P(|V|E) = \sum_{i=1}^{n} P(E) = \sum_{i=1}^{n} P(E) P(E)$$

$$P(\bigcup_{j \in I} E_j) = \sum_{j \in I} P(E_j) - \sum_{j \in I} P(E_j) P(E_j) + \cdots + (-1)^{n-1} \prod_{j \in I} P(E_j)$$

 $= 1 - \frac{\pi}{\Pi} (1 - P(E_j))$

=> FMW) = P{M<x3 = P{X1<x1, X2<x1..., X1<x3

 $F_{M}(x) = \prod_{i=1}^{n} P(x_i \leq x) = F_{i}(x_i)F_{2}(x_i) \cdots F_{n}(x_i)$

The same way we can get the minimum

Since X1.72, -, In are independent, this becomes

 $\Rightarrow P(U_{E_j}) = \lim_{n \to \infty} [I - \prod_{j=1}^{n} (I - P(E_j))] = [-\prod_{j=1}^{\infty} (I - P(E_j))]$

Denote M= max {x,, x2, ..., xn3, m= min { x1, x2, ..., xn3

$$\Sigma P(E_i) - \Sigma P(E_i) P(E_i)$$

$$n$$
 $\Sigma P(F) - \Sigma P(F) P(F) + \frac{1}{2}$

For
$$V(X) = V = \frac{1}{12} [1-F(V_1)]$$

17. $P(V_1) = F(V_1) > 0$ (25 $n > +\infty$)

By $P(V_2) = F(V_1) > \sum_{j=1}^{n} P(E_j) - \sum_{1 \le j \le k \le n} P(E_j) = P(E_j) = \sum_{1 \le j \le k \le n} P(E_j)$

A subset E of D will be called a "finite-product set" iff it's of the form $E = \stackrel{\infty}{\underset{n=1}{X}} F_n$ where each $F_n \in \mathcal{F}_n$ and all but a finite number of these Fis are equal to the corresponding sins. Thus WEE <=> WREFn, n>1 Define a set function Pon To as follows. u) First. VE as finite-product set, let: PLE) = TT PalFa) where all but a finite number of the factors on the right side are equal to one. (2) Next, if EEFo and E= U ELK) where the Ecki's are disjoint finite-product sets, we put PLE) = \(\frac{\sqrt{\text{P}}}{\sqrt{\text{E}}}\) P(E(k)) If a given set E in To has two representations of the form above. Then it is not difficult to see that the two definitions of PLE) agree. Hence the set function P is uniquely defined on F. and it is clearly positive with P(s)=1, and additive on Fo by definition.

