1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №1 по курсу «Моделирование» на тему: «Изучение случайных величин»

Вариант №1

Студент $\frac{\text{ИУ7-73Б}}{(\Gamma \text{руппа})}$	(Подпись, дата)	В. П. Авдейкина (Фамилия И.О.)
Руководитель	(Подпись, дата)	<u>И.В.Рудаков</u> (Фамилия И.О.)

СОДЕРЖАНИЕ

1	Аналитическая часть	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
2	Практическая часть .																							1	5

1 Аналитическая часть

Говорят, что непрерывная случайная величина X имеет **равномерное распределение на отрезке** [a,b], если ее функция плотности распределения имеет вид (1):

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b]; \\ 0, & \text{иначе.} \end{cases}$$
 (1)

Функция распределения при этом равна (2):

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & x \in [a, b]; \\ 1, & x > b. \end{cases}$$
 (2)

Обозначение: $X \sim R[a, b]$.

Равномерное распределение используется при рассмотрении равновероятных событий. Примеры: время ожидания транспорта, ошибки округления в пределах цены деления.

Говорят, что случайная величина X имеет распределение Пуассона с параметром $\lambda>0$, если X принимает значения $0,1,2,\ldots,e$ с вероятностями

$$P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{R}_0.$$
 (3)

Функция распределения:

$$F(x) = \frac{\lambda^x}{x!} e^{-\lambda} \tag{4}$$

Функция плотности распределения:

$$f(x) = \sum_{i=0}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$$
 (5)

Обозначение: $X \sim \Pi(\lambda)$.

Пуассоновское распределение используется при рассмотрении потока событий, наступающих независимо друг от друга с фиксированной средней интенсивностью λ . Примеры: поток сетевых пакетов, попытки входа в систему.

2 Практическая часть

На рисунке 1 представлены графики функций распределения и плотности равномерно распределенной величины (в случае $a=0,\,b=5$).

Равномерное распределение

Рисунок 1 — Равномерное распределение ($a=0,\,b=5$)

На рисунке 2 представлены графики функций распределения и плотности случайной величины, имеющей распределение Пуассона при $\lambda=4.$

Распределение Пуассона

Рисунок 2 — Распределение Пуассона ($\lambda=4$)