Clinton Hawkes

CS-225: Discrete Math for CS

Homework 5 Part 2

Exercise Set 5.4: Problem# 2, 3, 10

2.

Prove that b_n is divisible by 4 for all integers $n \ge 1$.

Base Case: Show that b_1 , b_2 and b_3 are divisible by 4.

 $b_1 = 4$ //given and divisible by 4

 $b_2 = 12$ //given and divisible by 4

We need to show b_3 is divisible by 4. Using $b_k = b_{k-2} + b_{k-1}$ to find the value,

$$P(3) = b_{3-2} + b_{3-1} = b_1 + b_2 = 4 + 12 = 16$$
 //divisible by 4

All three examples are true, so we assume b_i is divisible by 4 for all integers $1 \le i \le k$.

<u>Induction:</u> Show that P(k+1) is divisible by 4.

$$P(k+1) = b_{(k+1)-2} + b_{(k+1)-1}$$

$$= b_{k-1} + b_k$$

Since we already assume b_k is divisible by 4, and we assume b_{k-1} is divisible by 4, we can write these as $b_k = 4r$ and $b_{k-1} = 4q$ for some integers r and q. This is by the property of integer division.

$$P(k+1) = 4q + 4r$$
 //using substitution

$$= 4(q + r)$$
 //by distributive law

This proves P(k+1) is divisible by 4 according to the property of integer division. Since both the basis step and the inductive step are proved, b_n is divisible by 4 for all integers $n \ge 1$.

3.

Prove c_n is even for all integers $n \ge 0$.

Base Case: Show c₀ and c₁ and c₂ are even

 $c_0 = 2$ even //given

 $c_1 = 2$ even //given

 $c_2 = 6$ even //given

Assume c_i is even for all integers $0 \le i \le k$.

Induction: Show P(k+1) is even

$$P(k+1) = 3c_{(k+1)-3} = 3c_{k-2}$$

Since we already assume c_{k-2} is even, we can write it as $c_{k-2} = 2a$, for some integer a. Then,

$$P(k+1) = 3(2a)$$
 //using substitution

$$P(k+1) = 2(3a)$$
 //commutative law

By the definition of even numbers, P(k+1) is even. Since both the basis step and the inductive step have been proved, c_n is even for all integers $n \ge 0$

10.

Prove that P(n) for $n \ge 14$ can be obtained using a combination of 3 and 5 cent coins.

Base Case: Show P(14), P(15), and P(16) are true.

$$P(14) = 3(3) + 5(1)$$
 //true

$$P(15) = 3(0) + 5(3)$$
 //true

$$P(16) = 3(2) + 5(2)$$
 //true

We assume P(i) is true for $14 \le i \le k$

<u>Induction:</u> Show P(k+1) is true.

$$P(k+1) = 3(a) + 5(b)$$
 for some integers a and b. //induction hypothesis

If we a look at k+1, we see that it can be written as [(k+1)-3+3] without changing the value of k+1. Reducing it further, we get (k-2)+3.

In our assumption we assume P(i), for $14 \le i \le k$, can be obtained using a combination of 3 and 5 cent coins. P(k-2) falls within this assumption, so we know P(k-2) is a combination of 3 and 5 cent coins. To obtain the value of P(k+1), we need to add a 3 cent coin to P(k-2), so P(k+1) = P(k-2) + 3. Because P(k-2) is true, and because 3 is the same value of a 3 cent coin, P(k+1) is true and can be represented by a combination of 3 and 5 cent coins.

Since both the basis step and the inductive step have been proven true, P(n) for $n \ge 14$ can be obtained using a combination of 2 and 5 cent coins.