Les fiches récap de l'école O'clock

Système de Gestion de Bases de Données Relationnelles

Dernière modification: 14 mai 2023

Système de Gestion de Bases de Données Relationnelles

SGBDR = Relational DataBase Manager System (RDBMS) en anglais.

Les tables

- Une table appartient à une base de données.
- Elle est identifiée par son nom.
- Colonnes = champs de la table (nom & type).
- Lignes = enregistrements de la tables, **uniques**.

Exemple, table computer

reference	name	price	description	category
PC-013HP	HP 14-r206 Intel	255.30	Processeur	рс

T-838AR	Archos 50 Neon	98.27	Ecran 5"HD	phone
PC-016HP	HP 14-t408 Intel	480.30	Processeur	рс

category est un champ ou colonne.

PC-013HP est l'identifiant unique de la ligne de données, de l'enregistrement.

Principaux types de données

La liste complète des types de données.

Pour rappel 1 byte = 1 octet = 256 valeurs.

Nombres

• UNSIGNED sans signe: 128

• SIGNED avec signe: -128 ou (+)128

• X^Y signifie X puissance Y.

Nature	Type SQL	UNSIGNED	SIGNED	Taille (octet
Entiers	TINYINT	[0 à 255]	[-128 à 127]	:
Entiers	SMALLINT	[0 à 65,535]	[-32,768 à 32,767]	1
Entiers	MEDIUMINT	[0 à 16,777,215]	[-8,388,608 à 8,388,607]	(
Entiers	INT	[0 à 4,294,967,295]	[-2,147,483,648 à 2,147,483,647]	2
Entiers	BIGINT	[0 à (2^64 - 1)	[-2^63 à (2^63 - 1)]	{
Flottants	FLOAT	[0 à 3.402823466E+38]	[-1.175494351E- 38 à 3.402823466E+38]	

Caractères

Nature	Type SQL	Note	Taille (octet)
Chaîne de caractères	VARCHAR	Peut contenir jusqu'à 65,535 caractères (ou moins si encodage des caractères sur plusieurs octets : 21,844 en UTF-8) depuis MySQL 5.0.3	Longeur de la chaîne maximum + 1
Chaîne de caractères	CHAR	Maximum de 255 caractères, idéal pour stocker des valeurs de taille systématiquement identique	Longueur de la chaîne
Chaîne de caractères	TEXT	Chaînes de 65,535 caractères, sensible à la casse	Longueur + 2
Chaîne binaire (séquence d'octets)	BLOB	65,535 caractères, insensible à la casse	Longueur + 1

Avec MySQL, l'utilisation des types TEXT et BL0B est à éviter car cela peut entraîner des problèmes de performance.

Dates

Nature	Type SQL	Note	Taille (octet)
Date au format AAAA-MM-JJ	DATE	De 1000-01-01 à 9999-12-31	3
Date et heure au format	DATETIME	De 1000-01-01 00:00:00 à	8

AAAA-MM-JJ HH:MM:SS		9999-12-31 23:59:59	
Heure au format HH:MM:SS	TIME	De -838:59:59 à 838:59:59	3
Année à 2 ou 4 chiffres	YEAR	De 1901 à 2155 ou 0000 (4 chiffres)	1
Date sous forme numérique	TIMESTAMP	Commence le 1970-01-01 00:00:00	

Contraintes

NOT NULL

La contrainte la plus fréquente, elle garantit qu'à aucun moment dans le cycle de vie de la donnée (insertion, mise à jour et suppression) sa valeur ne sera nulle. Attention, cette contrainte n'empêche pas de stocker une chaîne vide dans une colonne de texte ou 0 dans une colonne numérique.

Rappel: chaine vide!= null et 0!= null

INDEX

Permet d'ajouter une référence à un champ qui rend son indexation plus efficace et améliore la vitesse de recherche de MySQL pour ce champ.

UNIQUE

Permet de déclarer un champ pour lequel toutes les valeurs devront être uniques. Par exemple un champ email *UNIQUE* permet de garantir l'unicité d'une adresse email enregistrée.

PRIMARY

Permet d'identifier sans équivoque un enregistrement. Doit être UNIQUE et NOT NULL . Très souvent (mais pas obligatoire) associé à un attribut **Al** (Auto Increment) sur un champ fréquemment nommé id .

PRIMARY KEY: Clé primaire permet d'identifier sans équivoque un enregistrement

FOREIGN KEY: **Clé étrangère** référence à une clé d'une autre table

Al : Auto Increment permet d'automatiquement définir une valeur numérique partant de 1 et en l'incrémentant à chaque enregistrement. Premier enregistrement 1, 2ème enregistrement 2, etc... pour tous les enregistrements suivants.

Relations

Partant de cet exemple simple de boutique :

Les **clients** possèdent une **fiche client** avec leur adresse de facturation et de livraison ainsi que leur date de naissance.

Les clients peuvent passer des commandes.

Les **commandes** possèdent un montant total, une date et un listing de tous les **produits** qu'elles contiennent.

Les **produits** possèdent un nom et un prix unitaire.

1:1 one to one

1 client possède 1 seule fiche client et 1 fiche client ne correspond qu'à 1 client

Le lien entre notre **client** et notre **fiche client** est assuré par une clé étrangère dans la table clients grâce au champ clients.fiche_id faisant référence à la table fiches_client et au champ fiches_client.id

1:n one to many

1 **client** peut passer *n* (plusieurs) **commandes** et plusieurs **commandes** peuvent être passées par 1 même **client**

Le lien entre notre **client** et ses **commandes** est assuré par une clé étrangère dans la table commandes grâce au champ commandes client_id faisant référence à la table clients et au champ clients.id

n:n **many to many**

n (plusieurs) **produits** peuvent appartenir à n **commandes** et n (plusieurs) **commandes** peuvent avoir n (plusieurs) **produits**

Le lien entre nos **commandes** et ses **produits** est assuré par une table d'association commande_produit qui va regrouper des clés étrangères. produit_id fait référence à la table produits et au champ produits.id et commande_id fait référence à la table commandes et au champ commandes.id

Outils de conception et de visualisation

MCD (Conceptuel)

AnalyseSI (mac/win/linux)

Outil JAVA de conception visuelle.

Looping MCD (win / linux & mac + wine)

Outil de conception visuelle. Fonctionne très bien avec Wine sous Linux ou Mac.

MLD/MPD (Logique et Physique)

MySQL Workbench (mac/win/linux)

Outil de conception très complet, à utiliser surtout pour les bases de données complexes.

Sequel PRO (mac)

Outil de gestion de bases de données.

Heidi SQL (win)

Outil de gestion de bases de données.

phpMyAdmin (web)