EE2302 Foundations of Information and Data Engineering

Assignment 8 **Due: 11 pm, Nov 11**

Full Mark: 20 points

- 1. (4 marks) The set of all 2×2 real matrices in the form of $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is a vector space. Consider the subset of 2×2 real matrices which satisfy $a_{12} = -a_{21}$. Does it form a subspace? Prove or disprove it.
- 2. (4 points) Determine whether each of the following scalar-valued functions n-vectors is linear. If it is linear, give its inner product representation, i.e., an n-vector α for which $f(x) = \alpha^T x$ for all x. If it is not linear, give specific x, y, α, β for which superposition fails, i.e.,

$$f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$$
.

- a) $f(x) = \max_{k} x_k$
- b) $f(x) = x_n x_1$
- 3. (4 points) What 3 by 3 matrices represent the transformations that
 - a) reflect every vector through the *x-y* plane?
 - b) rotate the x-y-plane through 90^o , leaving the z-axis alone?
- 4. (2 points) Consider the 2-dimensional space and the projection of b on the line through a, where a = (2, 1).
 - a) Determine the corresponding projection matrix.
 - b) Suppose b = (5,5). Determine the result after the projection.
- 5. (6 points) A business sells n products, and is considering changing the price of one of the products to increase its total profits. A business analyst develops a regression model that (reasonably accurately) predicts the total profit when the product prices are changed, given by $\hat{P} = \beta^T x + P$, where the n-vector x denotes the fractional change in the product prices, $x_i = (p_i^{new} p_i)/p_i$. Here P is the profit with the current prices, \hat{P} is the predicted profit with the changed prices, p_i is the current (positive) price of product i, and p_i^{new} is the new price of product i.
 - a) What does it mean if β_3 < 0? (And yes, this can occur.)
 - b) Suppose that you are given permission to change the price of *one* product, by up to 1%, to increase total profit. Which product would you choose, and would you increase or decrease the price? By how much?
 - c) Repeat (b), assuming you are allowed to change the price of two products, each by up to 1%.