Biol-360 Bioinformatics

Review

Local versus

Practical BLASTing

Protein searches
Types of BLAST
E-value

Summary

Reading for

BLAST Scores and Practical BLASTing

Lec'07'slides

Outline for today

Review

Practical
BLASTing
Protein searches

rtey steps

Reading for

1 Review

Local versus global alignment

2 Practical BLASTing

Protein searches
Types of BLAST
E-value

Key steps

3 Summary

4 Reading for next class

Review

Local versus global alignmen

Practical BLASTing

Protein search Types of BLA E-value Key steps

Summary

Reading for next class Review
 Local versus global alignment

Practical BLASTing Protein searches Types of BLAST E-value Key steps

- Summary
- 4 Reading for next class

Review

Local versus global alignment

Practical BLASTing

Protein search Types of BLA E-value Key steps

Summary

Reading for next class Review
 Local versus global alignment

Practical BLASTing Protein searches Types of BLAST E-value Key steps

- Summary
- 4 Reading for next class

Review: Local versus global alignment

Local versus global alignment

local alignment (BLAST) when: Use

 Searching databases for biologically related sequences Human catggccctgtggatgcgcctcctgcccctgctggcgctgctggccc

Mouse catggccctgtggatgcgcttcctgcccctgctggccctgctcttcc

Analyzing multidomain proteins

Use multiple alignment (CLUSTALW, etc) when:

Aligning several members of a protein family (soon...)

```
P1
   GLGIEIIGTLQLVLCVLATTDR.RRRDLGG
   AVTVELFLTMQLVLCIFASTDE.RRGDNLG
P2
P3
   GFFDQFIGTAALIVCVLAIVDPYNNPVPRG
   GLLVELIITFQLVFTIFASCDS.KRTD
```

```
P1
     SAPI.
P3
P4
```

P4

Review: Calculating alignment score

Review

Local versus global alignment

Practical

Protein searche
Types of BLAS

C.....

Reading for next class + identical positions

- penalties from amino acid substitution matrix
- gap opening penalties
- gap extension penalties
- = alignment score

```
human
guineaPig
```

```
PASSTSSTAPFENNFFNESMNE
PASN...TVPFETNFFND.LIE
25 30 35 40
```

- \mathbf{X} acidic (-)
- X basic (+)
- X polar uncharged
- X hydrophobic nonpolar

Review

Local versus global alignmen

Practical BLASTing

Protein search Types of BLAS E-value Key steps

Summary

Reading for next class Review
 Local versus global alignment

Practical BLASTing Protein searches Types of BLAST E-value Key steps

- Summary
- 4 Reading for next class

Review

Local versus
global alignmen

Practical BLASTing

Protein searche: Types of BLAS E-value Key steps

Summar

Reading fo

BLAST =

Basic:

Local: versus global. BLAST align fragments of query

Alignment: like, uh, why we're here

Search: BLAST aligns your query against large database,

looks for best alignments

Tool:

When do we use BLAST?

- Find homologues (orthologs & paralogs)
- Find other proteins with conserved domains
- Find repeating domains in same protein (like a dotplot)

Review

Local versus global alignmen

Practical BLASTing

Protein searches
Types of BLAST
E-value
Key steps

Summary

Reading for next class Review Local versus global alignment

Practical BLASTing Protein searches Types of BLAST E-value Key steps

- Summary
- 4 Reading for next class

BLAST works on DNA or protein sequences

Review

Local versus
global alignment

BLASTing
Protein searches
Types of BLAST

Types of BLA E-value Key steps

Summary

Reading fo next class Blast can search by DNA or translated amino acid sequence.

- Protein searching is usually better
- Deep question: Why?
 - Hint 1: Think about genetic code and degeneracy
 - Hint 2: Think about substitution matrices and amino acid properties
 - Hint 3: Think about evolution of DNA sequences
- When would you use a DNA BLAST search instead?

Review

Local versus global alignmen

Practical BLASTing Protein searches Types of BLAST E-value

Summary

Reading for next class 1 Review

Local versus global alignment

2 Practical BLASTing

Protein searches

Types of BLAST

E-value

Key steps

- Summary
- 4 Reading for next class

Types of BLAST database searches

Review Local versus global alignment

Practical
BLASTing
Protein searches
Types of BLAST
E-value

Summary

Reading next class

Туре	Query	Database	Remarks		
blastn	DNA	DNA			
blastp	protein	protein			
blastx	DNA	protein	Tries all 6 reading frames in DNA query		
tblastn	protein	DNA	Tries all 6 DNA reading frames in database		
tblastx	DNA	DNA	All $6 \times 6 = 36$ combinations of reading frames (slow!!)		

When would you use each of these?

BLAST programs illustrated

Types of BLAST

Reading fo

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Things we'll try:

- Get BLAST help
- Simple protein blast against NR database (NP_001612 aryl hydrocarbon receptor)
- 3 Look at taxonomy results
- 4 Look at main results table & E-values
 - Click on **Description** column to see actual alignment
 - Click on **Accession** to see BLAST hit in GenBank
- 5 Examine E-values and bit scores
- 6 Edit and resubmit BLAST parameters

Review

Local versus global alignmen

Practical
BLASTing
Protein searche
Types of BLAS
E-value

Summary

Reading for next class Review

Local versus global alignment

2 Practical BLASTing

Protein searches
Types of BLAST

E-value

Key steps

- Summary
- 4 Reading for next class

How do we evaluate a BLAST hit?

```
Review
Local versus
global alignment
Practical
BLASTing
Protein searches
```

Types of BL E-value Key steps

Summar

Reading for next class

```
F-value
sp|P32871|P11A BOVIN
                      PHOSPHATIDYLINOSITOL 3-KINASE CATALYTI...
                                                                        0.0
sp|P42336|P11A HUMAN
                                                                        0.0
sp|P42337|P11A MOUSE
                                                                   674
                                                                       0.0
                       PHOSPHATIDYLINOSITOL 3-KINASE CATALYT...
sp|P42338|P11B HUMAN
                                                                   338 9e-93
                       PHOSPHATIDYLINOSITOL 3-KINASE CATALYT...
sp|035904|P11D MOUSE
                       PHOSPHATIDYLINOSITOL 3-KINASE CATALYT...
                                                                       7e-91
sp|000329|P11D HUMAN
                       PHOSPHATIDYLINOSITOL 3-KINASE CATALYT...
                                                                        2e-90
                      RIBONUCLEOSIDE DIPHOSPHATE REDUCTASE A...
spiP47473|RIR1 MYCGE
                                                                   34 0.59
```

Definition: E-value

The number of hits we'd expect by chance. Small E-value \rightarrow unlikely by chance \rightarrow likely homology

Example: Database with 1000 DNA sequences:

Query	E-value
Т	~ 1000
TA	fewer
TACCGATGTTGGACGTATTAGCTTAGGAC	~ 0

Review

Local versus

Practical
BLASTing
Protein searches
Types of BLAST
E-value

Summary

Reading fo next class Slightly simplified but shows the key idea:

$$E = m \times n \times 2^{-S}$$

Where:

_	avported number of hits
	expected number of hits
m	database size
n	query size
S	alignment score

S	2^{-S}
1	0.5
5	0.03
10	0.001
50	$9 imes 10^{-16}$
100	8×10^{-31}

Key idea:

 $\textbf{High alignment score} \longrightarrow \textbf{small E value}$

Interpreting E-values

```
the best scores are:
                                                                                             E(86391)
                                           PHOSPHATIDYLINOSITOL 3-KINAS
                                                                           (1068) 2228 493 1.2e-138
                                   P42337 PHOSPHATIDYLINOSITOL 3-KINAS
                                                                           (1068) 2204 488 4.5e-137
                     SW:P11B HUMAN P42338 PHOSPHATIDYLINOSITOL 3-KINAS
                                                                           (1070) 1126 254 1.1e-66
                                                           other sequences
                                                                           (2368)
                                                                                    144
                                                                                               0.028
F-value
                                                                           (346)
                                                                                    116
                                                                                         35
                                                                                                 0.35
                                                                           (2787)
                                                                                    127
                                                                                         37
                                                                                                 0.42
                                           HYPOTHETICAL PROTEIN M.I1051.
                                                                           (513)
                                                                                    112
                                                                                         34
                                                                                                 0.91
                     SW:RIR1 MYCGE P47473 RIBONUCLEOSIDE-DIPHOSPHATE R
                                                                           (721)
                                                                                    106
                                                                                         33
                     SW:YAY1 SCHPO Q10209 HYPOTHETICAL 44.8 KDA PROTEI
                                                                           (392)
                                                                                     99
                                                                                         31
                                                                                                  5.1
                                                                           ( 436)
                                                                                     96
                                                                                         30
                                                                                                  8.8
                     SW:KC47 ORYSA P29620 CDC2+/CDC28-RFLATED PROTEIN
                                                                           ( 424)
                                                                                     95
                                                                                         30
                                                                                                  9.9
```

- Rule of thumb: consider E-values < 0.1 or 0.05 as interesting.
- But also consider annotations

Review

Local versus global alignmen

Practical BLASTing Protein searche

Key steps

Summary

Reading for next class Review

Local versus global alignment

2 Practical BLASTing

Protein searches
Types of BLAST
E-value

Key steps

- Summary
- 4 Reading for next class

Key steps in BLASTing

Review

global alignment

BLASTing
Protein search
Types of BLA

Key steps

Summa

Reading for next class

- ① Choose a BLAST program (blastp, blastn, etc)
- 2 Enter the DNA or protein sequence
- 3 Choose a database
 - nr = non-redundant, default, not as good as RefSeq,
 - RefSeq
 - others
- 4 Adjust parameters (if necessary)
- 6 BLAST
- 6 Evaluate results (low E-values)
- 7 Think like a biologist: Follow interesting leads to PubMed, OMIM, ...

Low-complexity regions cause false hits

Review

Local versus

Practical BLASTing Protein searche

E-value Key steps

Summar

Reading for

core	=	312	bits	(792),	Expect	= 5e-	85		
denti	1 + 1 0		154/2	36 (65	Y) Poet	tivee	-	154/236	(657)

Query:		MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYXXXXXXXXXX	
Sbjct:	1	MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRY MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGWGQP	23
Query:	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
Sbict:	1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTHSQWNKPSKPKTNMKHM HGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGA	83
			20
		RPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV	43
-		VVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV	
Query:		NITIKQHXXXXXXXXXXXXXXXDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFS 299 NITIKQH DVKMMERVVEQMCITQYERESQAYYQRGSSMVLFS	80

BLAST can filter low-complexity regions

Review Local versus

BLASTing

Protein searches

E-value

Key steps

Reading for

Review

Local versus global alignmen

Practical BLASTing

Protein searc Types of BL E-value Key steps

Summary

Reading for next class

Review

Local versus global alignment

2 Practical BLASTing

Protein searches Types of BLAST E-value Key steps

3 Summary

4 Reading for next class

Outline for today

Review

Local versus global alignmen

Practical BLASTing

Protein search Types of BLA: E-value Key steps

Summary

Reading for next class 1 Review

Local versus global alignment

2 Practical BLASTing

Protein searches Types of BLAST E-value Key steps

3 Summary

4 Reading for next class

Review

Local versus global alignmen

Practical BLASTing

Protein search Types of BLA E-value Key steps

Summary

Reading for next class

1 Review

Local versus global alignment

2 Practical BLASTing

Protein searches
Types of BLAST
E-value
Key steps

- 3 Summary
- 4 Reading for next class

Reading for next class

Review

Local versus global alignmen

Practical

Protein searches
Types of BLAST

Key steps

Summary

Reading for next class

Chapter 4

Section "Stand-alone BLAST" to

Section "Using BLAST for gene discovery: find-a-gene"

Pages	Notes			
136-155	Read			