Rapport d'Évaluation Comparative

1 Description des tests

Les tests ont été réalisés pour évaluer les performances du produit matrice-vecteur en parallèle avec **MPI** et en séquentiel. Le programme utilisé pour ces tests est basé sur la classe CSRMatrix et implémente une multiplication matrice-vecteur (SpMV) pour des matrices creuses générées à l'aide d'une Laplacienne.

1.1 Configuration des tests

- Matrices : Les tailles des matrices (NX) testées sont 50, 100, 150 et 200. - Parallélisation MPI : Les calculs parallèles utilisent de 1 à 12 processus MPI (NP). - Métriques mesurées : - Temps d'exécution séquentiel (SpMV Time). - Temps d'exécution parallèle (MPISpMV Time). - Accélération : $A = \frac{\text{SpMV Time}}{\text{MPISpMV Time}}. - \text{Efficacité} : E = \frac{A}{\text{NP}}.$

2 Résultats des tests

2.1 Tableau des temps d'exécution

Le tableau ci-dessous présente les temps d'exécution mesurés pour différentes tailles de matrices (NX) et différents nombres de processus (NP).

\overline{NX}	NP	Norme ——y——	SpMV Time (s)	MPISpMV Time (s)	Accélération	Efficacité
50	1	44092.9	1.4066e-05	1.5353e-05	0.916	0.916
50	2	44092.9	1.454 e - 05	8.198e-06	1.774	0.887
50	4	44092.9	1.4212 e-05	4.225 e-06	3.364	0.841
50	8	44092.9	1.6647e-05	2.412e-06	6.902	0.862
50	12	44092.9	1.5066e-05	1.898e-06	7.939	0.662
100	1	349557	5.2267 e-05	5.8044e-05	0.900	0.900
100	2	349557	5.5661 e-05	3.1252 e-05	1.780	0.890
100	4	349557	5.9355 e - 05	1.5964 e - 05	3.718	0.930
100	8	349557	5.7377e-05	8.565 e-06	6.700	0.837
100	12	349557	5.9366e-05	5.536e-06	10.728	0.894
150	1	1.1762e + 06	0.00011986	0.000133725	0.896	0.896
150	2	1.1762e + 06	0.000134254	7.0384e-05	1.908	0.954
150	4	1.1762e + 06	0.000135546	3.6236 e - 05	3.741	0.935
150	8	1.1762e + 06	0.000138103	1.9965e-05	6.915	0.864
150	12	1.1762e + 06	0.000136305	1.2949e-05	10.524	0.877
200	1	2.78383e + 06	0.000222544	0.000239607	0.929	0.929
200	2	2.78383e + 06	0.000260929	0.000144436	1.807	0.903
200	4	2.78383e + 06	0.000262563	6.2339 e-05	4.211	1.053
200	8	2.78383e + 06	0.000294527	3.1266e-05	9.421	1.178

Table 1: Temps d'exécution et performances

2.2 Courbes de performance et d'accélération

Les courbes suivantes montrent les performances mesurées (temps d'exécution) et l'accélération obtenue pour différentes tailles de matrices.

Figure 1: Temps d'exécution en fonction de NP

Figure 2: Accélération obtenue en fonction de NP

3 Analyse des résultats

Les résultats montrent une amélioration significative des performances grâce à la parallélisation avec MPI. Cependant, l'efficacité diminue avec l'augmentation du nombre de processus, particulièrement pour les petites matrices (NX=50). La scalabilité est meilleure pour les matrices plus grandes (NX=150 et NX=200).

4 Conclusion

Ce rapport met en évidence les avantages et limites de la parallélisation avec MPI. Pour améliorer davantage les performances, des stratégies comme l'optimisation des communications inter-processus pourraient être explorées.