

Comparison of Strategies to Inform K-means Clustering

Chris Taylor DTSA 5510

Frame the Problem

- K-means requires selection of k before implementing the algorithm
- Two popular methods for selecting k
 - Elbow Plot
 - "Coarse" according to Géron (2021)
 - Silhouette Score
- How does the use of each method impact the algorithm?

Exploratory Data Analysis

Description of Data

- 210 observations
- Seven geometric properties
 - Area
 - Perimeter
 - Compactness
 - Kernel length
 - Kernel width
 - Asymmetry coefficient
 - Kernel groove length

Histogram of Features

Histogram of Features

Violin Plot of Features

Correlation Between Features

Data Transformation

$$z = \frac{(x - \mu)}{\sigma}$$

Principle Component Analysis

- Target variance = 0.95
- Reduced dataset used for both implementations of k-means

Elbow Plot Informed K-means Clustering

Elbow Plot

Plot of Clusters

Size of Clusters

- Cluster 1 = 65
- Cluster 2 = 70
- Cluster 3 = 75

Silhouette Score Informed Kmeans Clustering

Silhouette Coefficient

Plot of Clusters

Size of Clusters

- Cluster 1 = 80
- Cluster 2 = 130

Comparison of K-means Implementations

Evaluation Metrics

- Two of three metrics favor K-means informed by Silhouette Score
- Adjusted Rand Index incorporates ground truth

	Metric	Elbow Plot	Silhouette Score	Favors
0	Davies-Bouldin Index	0.891967	0.794722	SS
1	Calinski-Harabasz Index	259.837	262.837	SS
2	Adjusted Rand Index	0.773025	0.507477	EP

Conclusion

Conclusion

- K-means informed by Elbow Plot performed better
- Best to explore all options instead of relying on general suggestions
- Future iterations of project could incorporate different dimension reduction techniques