MATH 425A HW5, DUE 09/27/2022, 6PM

JUAN SERRATOS

Chapter 3. §2.

Exercise 0.1 (2.5.). Finish the proof of Proposition 2.6., by proving that

$$\operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y) \subseteq \operatorname{Int}_X(U) \qquad (U \subseteq Y \subseteq X)$$

Proof. Suppose $U \subseteq Y \subseteq X$, where (X,d) is a metric space. Let $s \in \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y)$. Then there is some ball $B_Y(s,\alpha) \subseteq U$ and $\alpha > 0$, and there is also another ball $B_X(s,\beta) \subseteq Y$ with $\beta > 0$. We want to show that there is some ball $B_X(s,\gamma) \subseteq U$ with $\gamma > 0$. We will pick our needed ball based on two cases: whether $\alpha \geq \beta$ or $\alpha < \beta$.

Suppose $\beta = \alpha$. Then we have that given $B_Y(s,\beta) = B_X(s,\beta) \cap Y = B_X(s,\beta)$ as $B_X(s,\beta)$ is contained in Y. But as $\beta = \alpha$, then $B_Y(s,\beta) = B_Y(s,\alpha) \subseteq U$. Hence we have that the ball $B_X(s,\beta) = B_Y(s,\beta)$ is contained in U.

Suppose that $\alpha > \beta$. Let us take $t \in B_X(s,\beta)$. So we have that $t \in X$ and $d(s,t) < \beta$. We already know that $B_X(s,\beta) \subseteq Y$, and so $t \in Y$ as well. But as $\beta < \alpha$, then $d(t,s) < \beta < \alpha$, and $t \in B_Y(s,\alpha)$. Hence $B_X(s,\beta) \subseteq B_Y(s,\alpha)$. As $B_Y(s,\alpha) \subseteq U$, we thus have that $B_X(s,\beta) \subseteq U$.

Suppose that $\alpha < \beta$. Now pick $\gamma \in \mathbf{R}$ such that $0 < \gamma < \alpha$, which is valid since by the density property and the fact that we assumed $\alpha > 0$. Then consider $B_X(s,\gamma) = \{t \in X : d(s,t) < \gamma\}$. If $t \in B_X(s,\gamma)$, then $t \in X$ such that $d(s,t) < \gamma$, but as $0 < \gamma < \alpha$, we have that $d(s,t) < \alpha$ as well, and so $t \in B_X(s,\alpha)$. But as $\gamma < \alpha < \beta$, then we clearly also have that $d(s,t) < \beta$, i.e. $t \in B_X(s,\beta)$. But as $B_X(s,\beta) \subseteq Y$, we have that $t \in Y$. Thus $t \in B_Y(s,\alpha)$, which is indeed contained in U by hypothesis. Thus $B_X(s,\gamma) \subseteq U$.

Exercise 0.2 (2.6.). As in Example 2.4, let $X = \mathbb{R}^2$, $Y = [-1, 3] \times [2, 4]$, and let d denote the Euclidean metric on $X = \mathbb{R}^2$. Let p = (3, 4) and let q = (2, 4).

- (a) Arguing directly from the definition of an interior point (i.e., without using Proposition 2.6, show that q is an interior point of $B_Y(p,2)$ with respect to Y, but q is not an interior point of $B_Y(p,2)$ with respect to X). In addition, draw a picture on a piece of graph paper that illustrates the idea of your proof.
- (b) Give a short argument that re-establishes your conclusion from (a) but relies instead on Proposition 2.6.

Proof. (a) Firstly, we claim that $q = (2,4) \in B_Y(p,2) = B_Y((3,4),2)$. This is easy to see since $d(p,q) = d((3,4),(2,4)) = \sqrt{(4-4)^2 + (3-2)^2} = 1 < 2$. Now, let $\epsilon = 2 - d(p,q) = 2 - 1 = 1$. We claim that $B_Y(q,\epsilon) = B_Y(q,1) \subseteq B_Y(p,2)$. Let $t \in B_Y(q,1)$, where $t = (t_1,t_2) \in \mathbf{R}^2$. Then $d(q,t) = \sqrt{(2-t_1)^2 + (4-t_2)^2} < 1$. If $t \in B_Y(p,2)$, then we need that $d = (p,t) = \sqrt{(3-t_1)^2 + (4-t_2)^2} < 2$; we claim that $t \in B_Y(p,2)$. By the triangle inequality, we have that $d(p,t) \le d(t,q) + d(q,p) = d(t,q) + 1$. But as d(t,q) < 1, then we have that d(t,q) + 1 < 2, and hence d(p,t) < 2. Therefore $t \in B_Y(p,2)$, and we have that $B_Y(q,1) \subseteq B_Y(p,2)$. Thus q is an interior point of $B_Y(p,2)$.

We claim that q is not an interior point of $B_Y(p,2)$ with respect to X, i.e. we cannot find a ball $B_X(q,\alpha) \subseteq B_Y(p,2)$ with $\alpha > 0$. The simple reason of this is the fact that

Date: September 24, 2022

Department of Mathematics, University of Southern California.

the ball of such a hypothetical $B_X(q,\alpha)$ is 'too big' to be contained in $B_Y(p,2)$. To show that this sort of containment isn't possible, we shall find such an element that is in $B_X(q,\alpha)$ but not in $B_Y(p,2)$. Suppose that an open ball $B_X(q,\alpha)$, where $\alpha>0$ exists, and let $B_X(q,\alpha)\subseteq B_Y(p,2)$. Now suppose that $\alpha\geq 2$. Then pick s=(2,5), and so $\sqrt{(2-2)+(4-5)^2}=1<\alpha$; thus we have that $s\in B_X(q,\alpha)$ but is not in $B_Y(p,2)$ since $s\notin Y=[-1,3]\times[2,4]$. Now suppose that $\alpha<2$. Then as $\alpha>0$, we can find $\gamma\in \mathbf{R}$ such that $0<\gamma<\alpha$. Consider $s=(2,4+\gamma)$, which is clearly not in Y. But $\sqrt{(2-2)^2+(4-(4+\gamma))^2}=\sqrt{\gamma^2}=\gamma<\alpha$, and so $s\in B_X(q,\alpha)$, but yet once again $s\notin B_Y(p,2)$ since $s\notin Y$. Therefore the initial claim follows.

(b) Using Proposition 2.6., to establish our conclusion, we use the fact that $\operatorname{Int}_X(B_Y(p,2))=\operatorname{Int}_Y(B_Y(p,2))\cap\operatorname{Int}_X(Y)$. Thus q is not an interior point of $B_Y(p,2)$ if and only if q is not in $\operatorname{Int}_Y(B_Y(p,2))\cap\operatorname{Int}_X(Y)$. From (a) we've already established that q is an interior point of $B_Y(p,2)$ with respect to Y, and so we must show that $q\notin\operatorname{Int}_X(Y)$. We argue in aim of contradiction. Suppose that $q\in\operatorname{Int}_X(Y)$. So then there exists some ball $B_X(q,\gamma)$ for some $\gamma>0$ with $B_X(q,\gamma)\subseteq Y$; we want to show that there exists some $s\in B_X(q,\gamma)$ such that $s\notin Y$. As $\gamma>0$, then we can find some $\beta\in\mathbf{R}$ such that $0<\beta<\gamma$. Now pick $s=(2,4+\beta)$. Then $s\notin Y=[-1,3]\times[2,4]$ as $4+\beta>4$. But $s\in X=\mathbf{R}^2$ and $d(s,q)=\sqrt{(2-2)^2+(4-(4+\beta))^2}=\beta<\gamma$, and thus $s\in B_X(q,\gamma)$. Therefore we have a contradiction and $q\notin\operatorname{Int}_X(Y)$. Hence we have that $q\notin\operatorname{Int}_X(B_Y(p,2))$ by Proposition 2.6.

FIGURE 1. The illustration of the proof given for part (a) of Exercise 2.6.

Exercise 0.3 (2.7.). Let (X, d) be a metric space, and let U be a subset of X. Use Proposition 2.9 to prove that $Int_X(U)$ is open in X.

Proof. We want to show that $\operatorname{Int}_X(U) \subseteq \operatorname{Int}_X(\operatorname{Int}_X(U))$. So let $t \in \operatorname{Int}_X(U)$. Then $t \in U$ with $B(t,r) \subseteq U$ for some r > 0. Now let $y \in B(t,r)$, but as open balls are open then

 $y \in \operatorname{Int}(B(t,r))$, and so we can find an another open ball $y \in B(t,\epsilon) \subseteq B(t,r)$. All together, we have that $B(t,\epsilon) \subseteq B(t,r) \subseteq U$. Thus if we have some point $y \in B(t,r)$ then $y \in \operatorname{Int}(U)$, and hence $B(t,r) \subseteq \operatorname{Int}(U)$. Therefore $\operatorname{Int}(U)$ is an open set.

Exercise 0.4 (2.8.). Let (X,d) be a metric space. Assume that $U \subseteq Y \subseteq X$, and additionally that Y is open in X. Prove that U is open in Y if and only if U is open in X. (Note: There at least two possible solutions; one uses Theorem 2.13, the other uses Exercise 2.5.)

Proof. Suppose that U is open in Y. Then $U = Y \cap V$ for some open set $V \subseteq X$. But as finite intersections of open sets are open, and $Y \subseteq X$ and $V \subseteq X$ are both open in X, then $U = Y \cap V$ is open in X by Theorem 2.13. Now suppose that U is open in X. Then $U = Y \cap U$ as $U \subseteq Y$, but as U and Y are both open in X, then by Theorem 2.13 U is open in Y as well.

 $Email\ address{\rm : jserrato@usc.edu}$

Department of Mathematics, University of Southern California, Los Angeles, CA 90007