Ex. 06

Sejam $X_1,\,X_2,\,X_3$ variáveis aleatórias cuja distribuição conjunta é dada por:

$$P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_1 = 1, X_2 = 0, X_3 = 1) = P(X_1 = 0, X_2 = 1, X_3 = 1) = \frac{1}{3}$$

(a) Mostre que X_1 , X_2 , X_3 são permutáveis.

Para toda permutação dos índices 1, 2, 3, ou seja, $\pi: \{1,2,3\} \to \{1,2,3\}$ e para todo valor x_1, x_2, x_3, \dots

$$P(X_{\pi(1)} = x_1, X_{\pi(2)} = x_2, X_{\pi(3)} = x_3) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

Permutando X, temos

$$P(X_1 = 1, X_2 = 1, X_3 = 0) = \frac{1}{3}$$

$$P(X_1 = 1, X_2 = 0, X_3 = 1) = \frac{1}{3}$$

$$P(X_1 = 0, X_2 = 1, X_3 = 1) = \frac{1}{3}$$

Além disso, como a soma das probabilidades é 1, isso implica que

$$P(X_1 = 1, X_2 = 0, X_3 = 0) = P(X_1 = 0, X_2 = 0, X_3 = 1) = P(X_1 = 0, X_2 = 1, X_3 = 0) =$$

= $P(X_1 = 1, X_2 = 1, X_3 = 1) = P(X_1 = 0, X_2 = 0, X_3 = 0) = 0$

Logo, pela definição de permutabilidade, X_1, X_2, X_3 são permutáveis.

(b) Prove que se $X_4 \in \{0,1\}$ é uma outra variável aleatória, então X_1, X_2, X_3, X_4 não são permutáveis.

Para $X_4=1$ com probabilidade p, e $X_4=0$ com probabilidade 1-p temos a distribuição conjunta

$$P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 1) = P(X_4 = 1 | X_1 = 1, X_2 = 1, X_3 = 0)P(X_1 = 1, X_2 = 1, X_3 = 0) =$$

$$= P(X_4 = 1 | X_1 = 1, X_2 = 1, X_3 = 0)\frac{1}{3}$$

Permutando os valores,

$$P(X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0) = P(X_4 = 0 | X_1 = 1, X_2 = 1, X_3 = 1)P(X_1 = 1, X_2 = 1, X_3 = 1) =$$

= $P(X_4 = 0 | X_1 = 1, X_2 = 1, X_3 = 1)0 = 0$

Ou seja, essas duas probabilidades só serão iguais se $P(X_4=1|X_1=1,X_2=1,X_3=0)=0$ Por outro lado, tomando $X_4=0$ e a distribuição conjunta

$$P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 0) = P(X_4 = 0 | X_1 = 1, X_2 = 1, X_3 = 0) P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_4 = 0 | X_1 = 1, X_2 = 1, X_3 = 0) \frac{1}{3}$$

E, permutando,

$$P(X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 1) = P(X_4 = 1 | X_1 = 1, X_2 = 0, X_3 = 0)P(X_1 = 1, X_2 = 0, X_3 = 0) = 0$$

 $P(X_4 = 1 | X_1 = 1, X_2 = 0, X_3 = 0)0 = 0$

Da mesma forma, essas duas probabilidades só serão equivalentes se $P(X_4 = 1 | X_1 = 1, X_2 = 0, X_3 = 0) = 0$. No entanto, é impossível que $P(X_4 = 1 | X_1 = 1, X_2 = 0, X_3 = 0) = 0$ e $P(X_4 = 0 | X_1 = 1, X_2 = 1, X_3 = 0) = 0$ ao mesmo tempo.

Logo, por contradição, X_1, X_2, X_3, X_4 não são permutáveis.