In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
 df

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	1
0	2013- 11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	1
1	2013- 11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	
2	2013- 11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	
3	2013- 11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	1
4	2013- 11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	1
209875	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	1
209876	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	1
209877	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	4.0	75.0	NaN	NaN	NaN	NaN	1
209878	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	11.0	52.0	NaN	NaN	NaN	NaN	1
209879	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	75.0	3.0	NaN	NaN	NaN	1

209880 rows × 14 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209880 entries, 0 to 209879
Data columns (total 14 columns):

Ducu	CO Cumiii	(coca c I+ cocamins,	, •
#	Column	Non-Null Count	Dtype
0	date	209880 non-null	object
1	BEN	50462 non-null	float64
2	CO	87018 non-null	float64
3	EBE	50463 non-null	float64
4	NMHC	25935 non-null	float64
5	NO	209108 non-null	float64
6	N0_2	209108 non-null	float64
7	0_3	121858 non-null	float64
8	PM10	104339 non-null	float64
9	PM25	51980 non-null	float64
10	S0 <u>2</u>	86970 non-null	float64
11	TCH	25935 non-null	float64
12	T0L	50317 non-null	float64
13	station	209880 non-null	int64
dtype	es: float	64(12), int64(1),	object(1)

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	TOL
17286	2013- 08-01 01:00:00	0.4	0.2	0.8	0.28	1.0	24.0	79.0	35.0	8.0	3.0	1.49	1.5
17310	2013- 08-01 02:00:00	0.5	0.2	0.9	0.28	1.0	16.0	93.0	60.0	18.0	3.0	1.61	4.(
17334	2013- 08-01 03:00:00	0.5	0.2	1.1	0.29	1.0	14.0	90.0	38.0	12.0	3.0	1.71	2.8
17358	2013- 08-01 04:00:00	0.6	0.2	1.2	0.26	1.0	12.0	84.0	30.0	8.0	3.0	1.44	2.8
17382	2013- 08-01 05:00:00	0.3	0.2	0.8	0.25	1.0	15.0	72.0	25.0	7.0	3.0	1.40	1.7
209622	2013- 02-28 14:00:00	1.1	0.3	0.3	0.27	3.0	17.0	64.0	5.0	5.0	2.0	1.41	9.0
209646	2013- 02-28 15:00:00	1.3	0.4	0.3	0.27	2.0	16.0	66.0	6.0	5.0	1.0	1.40	9.0
209670	2013- 02-28 16:00:00	1.1	0.3	0.3	0.27	1.0	17.0	65.0	5.0	4.0	1.0	1.40	0.7
209694	2013- 02-28 17:00:00	1.0	0.3	0.4	0.27	1.0	18.0	64.0	5.0	5.0	1.0	1.39	0.7
209718	2013- 02-28 18:00:00	1.0	0.3	0.4	0.27	1.0	22.0	62.0	6.0	6.0	1.0	1.39	0.7

7315 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7f9d822f5150>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: v LinearRegression LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7f9d92470940>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.32
                  888
          1.33
                  843
          1.34
                  729
          1.31
                  719
          1.35
                  556
          2.39
                     1
          2.22
                     1
          2.29
                     1
          2.38
                     1
          2.80
          Name: TCH, Length: 114, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 5718 2.0 1597

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7f9d924dab30>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

In [18]: rr=Ridge(alpha=1)
 rr.fit(x_train,y_train)

In [19]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[19]: <matplotlib.collections.PathCollection at 0x7f9d9256b550>

In [20]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [21]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[21]: ▼ ElasticNet ElasticNet()

In [22]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x7f9d9240b4f0>

In [23]: ens=en.score(x_test,y_test)

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.3923674796819595

Out[24]: 0.3927671300897322

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 5718
                 1597
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7f9d30433c70>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
                                                                                                            plt.figure(figsize=(80,40))
                                                                                                              plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out [38]: [Text(0.5375, 0.9285714285714286, 'NMHC <= 0.275 \ngini = 0.328 \nsa
                                                                                                              mples = 3238\nvalue = [4060, 1060]\nclass = Yes'),
                                                                                                                          Text(0.3390625, 0.7857142857142857, 'TOL <= 1.05 \ngini = 0.09 \nsa
                                                                                                               mples = 2599\nvalue = [3927, 194]\nclass = Yes'),
                                                                                                                          Text(0.196875, 0.6428571428571429, 0_3 \le 45.5  gini = 0.031\nsa
                                                                                                               mples = 1960 \cdot \text{nvalue} = [3090, 50] \cdot \text{nclass} = \text{Yes'}
                                                                                                                          Text(0.1, 0.5, 'PM10 \le 17.5 \setminus 1.5 
                                                                                                               = [309, 33] \setminus class = Yes'),
                                                                                                                        Text(0.05, 0.35714285714285715, '0_3 \le 20.5 \setminus injini = 0.123 \setminus injini = 
                                                                                                               es = 191\nvalue = [283, 20]\nclass = Yes'),
                                                                                                                          Text(0.025, 0.21428571428571427, 'S0 2 \le 1.5 \neq 0.335 
                                                                                                               les = 30\nvalue = [37, 10]\nclass = Yes'),
                                                                                                                        Text(0.0125, 0.07142857142857142, 'gini = 0.497 \setminus samples = 9 \setminus sample
                                                                                                               ue = [7, 6] \setminus \text{nclass} = \text{Yes'},
                                                                                                                          Text(0.0375, 0.07142857142857142, 'gini = 0.208\nsamples = 21\nva
                                                                                                               lue = [30, 4] \setminus class = Yes'),
                                                                                                                        Text(0.075, 0.21428571428571427, 'PM10 <= 5.5 \setminus gini = 0.075 \setminus g
                                                                                                               les = 161 \cdot \text{nvalue} = [246, 10] \cdot \text{nclass} = \text{Yes'},
                                                                                                                       Text(0.0625, 0.07142857142857142, 'gini = 0.0\nsamples = 46\nvalu
                                                                                                           print("Linear:", lis)
print("Lasso:", las)
In [39]:
                                                                                                               print("Ridge:", rrs)
                                                                                                               print("ElasticNet:",ens)
                                                                                                               print("Logistic:",los)
                                                                                                               print("Random Forest:",rfcs)
```

Linear: 0.40767907025541705 Lasso: -0.00029951584872067727 Ridge: 0.3923674796819595

ElasticNet: 0.10978052070818145 Logistic: 0.7890660592255125 Random Forest: 0.946484375

Best Model is Random Forest

Out[40]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	T(
0	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	3.0	10.0	NaN	NaN	NaN	3.0	NaN	N
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	
2	2014- 06-01 01:00:00	0.3	NaN	0.1	NaN	2.0	6.0	NaN	NaN	NaN	NaN	NaN	-
3	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	79.0	NaN	NaN	NaN	NaN	N
4	2014- 06-01 01:00:00	NaN	NaN	NaN	NaN	1.0	6.0	75.0	NaN	NaN	4.0	NaN	N
210019	2014- 09-01 00:00:00	NaN	0.5	NaN	NaN	20.0	84.0	29.0	NaN	NaN	NaN	NaN	N
210020	2014- 09-01 00:00:00	NaN	0.3	NaN	NaN	1.0	22.0	NaN	15.0	NaN	6.0	NaN	N
210021	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	13.0	70.0	NaN	NaN	NaN	NaN	N
210022	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	38.0	42.0	NaN	NaN	NaN	NaN	N
210023	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	26.0	65.0	11.0	NaN	NaN	NaN	N

210024 rows × 14 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210024 entries, 0 to 210023
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
		24.002.4	
0	date	210024 non-null	object
1	BEN	46703 non-null	float64
2	CO	87023 non-null	float64
3	EBE	46722 non-null	float64
4	NMHC	25021 non-null	float64
5	NO	209154 non-null	float64
6	N0_2	209154 non-null	float64
7	0_3	121681 non-null	float64
8	PM10	104311 non-null	float64
9	PM25	51954 non-null	float64
10	S0_2	87141 non-null	float64
11	TCH	25021 non-null	float64
12	T0L	46570 non-null	float64
13	station	210024 non-null	int64
dtyp	es: float	64(12), int64(1),	object(1)

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	то
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	1.
6	2014- 06-01 01:00:00	0.1	0.2	0.1	0.23	1.0	5.0	80.0	4.0	3.0	2.0	1.21	0.
25	2014- 06-01 02:00:00	0.2	0.2	0.1	0.11	4.0	21.0	63.0	9.0	6.0	5.0	1.36	0.
30	2014- 06-01 02:00:00	0.2	0.2	0.1	0.23	1.0	4.0	88.0	7.0	5.0	2.0	1.21	0.
49	2014- 06-01 03:00:00	0.1	0.2	0.1	0.11	4.0	18.0	66.0	9.0	7.0	6.0	1.36	0.
209958	2014- 08-31 22:00:00	0.2	0.2	0.1	0.22	1.0	28.0	96.0	61.0	15.0	3.0	1.28	0.
209977	2014- 08-31 23:00:00	1.1	0.7	0.7	0.19	36.0	118.0	23.0	60.0	25.0	9.0	1.27	6.
209982	2014- 08-31 23:00:00	0.2	0.2	0.1	0.21	1.0	17.0	90.0	28.0	14.0	3.0	1.27	0.
210001	2014- 09-01 00:00:00	0.6	0.4	0.4	0.12	6.0	63.0	41.0	26.0	15.0	8.0	1.19	4.
210006	2014- 09-01 00:00:00	0.2	0.2	0.1	0.23	1.0	30.0	69.0	18.0	13.0	3.0	1.30	0.

13946 rows × 14 columns

In [43]: df3=df3.drop(["date"],axis=1)

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression()
li.fit(x_train,y_train)

Out[46]:
v LinearRegression()

```
In [47]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7f9d82aff730>


```
In [48]: lis=li.score(x_test,y_test)
```

```
In [49]: df3["TCH"].value_counts()
```

```
Out[49]: 1.37
                   601
          1.36
                   598
          1.34
                   529
          1.35
                  528
          1.38
                  515
          4.39
                     1
          4.08
                     1
          3.42
                     1
          2.98
                     1
          2.69
          Name: TCH, Length: 184, dtype: int64
```

```
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[50]: 1.0 9997

2.0 3949

Name: TCH, dtype: int64

In []:

Lasso

In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[51]: Lasso
Lasso(alpha=5)

In [52]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7f9d8297ceb0>


```
In [53]: las=la.score(x_test,y_test)
```

Ridge

```
In [54]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[55]: <matplotlib.collections.PathCollection at 0x7f9d829cc9d0>

In [56]: rrs=rr.score(x_test,y_test)

ElasticNet

Out[58]: <matplotlib.collections.PathCollection at 0x7f9d82b49030>


```
In [59]: ens=en.score(x_test,y_test)
```

```
In [60]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.7091386251261051

Out[60]: 0.7047426795616607

Logistic

```
In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[61]: Low
                 9997
                 3949
         High
         Name: TCH, dtype: int64
In [62]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [63]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7f9d3046cb80>
          Low
                                                                       High
                Low
In [65]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [66]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [67]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(g1)
In [68]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
In [71]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: rfcs=grid_search.best_score_
In [73]: rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[74]: [Text(0.5191326530612245, 0.9285714285714286, 'PM25 <= 12.5\ngini</pre>
         = 0.402 \times = 6171 \times = [7045, 2717] \times = Yes'),
          Text(0.2755102040816326, 0.7857142857142857, 'NMHC <= 0.285 \ngini
         = 0.289\nsamples = 4464\nvalue = [5836, 1237]\nclass = Yes'),
          Text(0.14540816326530612, 0.6428571428571429, 'SO_2 \le 8.5 \ngini
         = 0.233 \text{ nsamples} = 4206 \text{ nvalue} = [5776, 898] \text{ nclass} = \text{Yes'},
          Text(0.08163265306122448, 0.5, 'NO_2 \le 25.5 \neq 0.211 \
         es = 4094 \setminus value = [5722, 779] \setminus class = Yes'),
          Text(0.04081632653061224, 0.35714285714285715, 'NO_2 <= 11.5\ngin
         i = 0.084 \setminus s = 2607 \setminus s = [3953, 182] \setminus s = Yes'),
          Text(0.02040816326530612, 0.21428571428571427, 'NO 2 <= 4.5 
         = 0.023\nsamples = 1603\nvalue = [2536, 30]\nclass = Yes'),
          Text(0.01020408163265306, 0.07142857142857142, 'gini = 0.008 \nsam
         ples = 800\nvalue = [1275, 5]\nclass = Yes'),
          Text(0.030612244897959183, 0.07142857142857142, 'gini = 0.038\nsa
         mples = 803\nvalue = [1261, 25]\nclass = Yes'),
          ini = 0.175 \setminus samples = 1004 \setminus samples = [1417, 152] \setminus samples = Yes'),
          Text(0.05102040816326531, 0.07142857142857142, 'gini = 0.05\nsamp
         print("Linear:", lis)
print("Lasso:", las)
In [75]:
         print("Ridge:", rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
```

Linear: 0.7105902856424091 Lasso: -0.0001259044549823951 Ridge: 0.7091386251261051

ElasticNet: 0.43942661468297217 Logistic: 0.7127151051625239 Random Forest: 0.8929522638803524

Best model is Random Forest