

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Unit 0: Overview

- Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▶ Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▼ Unit 7: Bayesian inference

Unit 7: Bayesian inference > Problem Set 7b > Problem 4 Vertical: LLMS estimation

■ Bookmark

Problem 4: LLMS estimation

(3/3 points)

Let X=U+W with $\mathbf{E}[U]=m$, $\mathrm{var}(U)=v$, $\mathbf{E}[W]=0$, and $\mathrm{var}(W)=h$. Assume that U and W are independent.

1. The LLMS estimator of U based on X is of the form $\hat{U}=a+bX$. Find a and b. Express your answers in terms of m, v, and h using standard notation .

$$a =$$
 (h*m)/(v+h)

2. Suppose we further assume that U and W are normal random variables and then construct \hat{U}_{LMS} , the LMS estimator of U based on X, under this additional assumption. Would \hat{U}_{LMS} be the identical to \hat{U} , the LLMS estimator developed without the additional normality assumption in part (1)?

You have used 1 of 2 submissions

DISCUSSION

Click "Show Discussion" below to see discussions on this problem.

Unit overview

Lec. 14: Introduction to **Bayesian inference** Exercises 14 due Apr 06, 2016 at 23:59 UT 🗗

Lec. 15: Linear models with normal noise Exercises 15 due Apr 06, 2016 at 23:59 UT 4

Problem Set 7a Problem Set 7a due Apr 06, 2016 at 23:59 UTC

Lec. 16: Least mean squares (LMS) estimation Exercises 16 due Apr 13, 2016 at 23:59 UT 🗗

Lec. 17: Linear least mean squares (LLMS) estimation

Exercises 17 due Apr 13, 2016 at 23:59 UT (2)

Problem Set 7b

Problem Set 7b due Apr 13, 2016 at 23:59 UTC

Solved problems

Additional theoretical material

Unit summary

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

