Mathematik für Informatik II - Tutorium - Woche 5

Es sei
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

- 1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, sodass $S^{-1}AS$ eine Diagonalmatrix ist.
- 3. Berechnen Sie A^n für $n \in \mathbb{N}$.

Führen Sie die obigen Schritte auch für die folgende Matrix durch, falls möglich:

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.

Charakteristisches Polynom:

$$P_{A}(\lambda) = \det(A - \lambda I)$$

$$= (-1 - \lambda)^{2}(-2 - \lambda) + (-(-2 - \lambda))$$

$$= (-2 - \lambda)((-1 - \lambda)^{2} - 1)$$

$$= (-2 - \lambda)(\lambda^{2} + 2\lambda + 1 - 1)$$

$$= (-2 - \lambda)\lambda(\lambda + 2)$$

$$= -\lambda(\lambda + 2)^{2}$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.

Charakteristisches Polynom: $P_A(\lambda) = -\lambda(\lambda+2)$

Eigenwerte & algebraische Vielfachheit:

$$\begin{cases} \lambda_1 = 0 & \text{mit alg. Vielfachheit 1} \\ \lambda_2 = -2 & \text{mit alg. Vielfachheit 2} \end{cases}$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.

Geometrische Vielfachheit:

Uberlegung zu $\lambda_1 = 0$:

$$A - 0I = A \rightsquigarrow \ker \left(\begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \right) = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle \Rightarrow \text{ geom. Vielfachheit 1}$$

Uberlegung zu $\lambda_2 = -2$:

$$A - (-2)I = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \ker \left(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \right) = \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle \Rightarrow \text{ geom. VFH 2}$$

5/23

2. Bestimmen Sie eine invertierbare Matrix S, sodass $S^{-1}AS$ eine Diagonalmatrix ist.

Diagonalisierbarkeit: $D = SAS^{-1} \Rightarrow A = S^{-1}DS$, wobei D Diagonalmatrix mit $d_{ii} = \lambda_i$. Es folgt

$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Weiterhin ist die i-te Spalte von S ein Eigenvektor zu dem i-ten Eigenwert von A.

$$S = egin{pmatrix} 0 & -1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{pmatrix}$$

2. Bestimmen Sie eine invertierbare Matrix S, sodass $S^{-1}AS$ eine Diagonalmatrix ist.

Diagonalisierbarkeit: $A = SDS^{-1}$

$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, S = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Weiterhin berechnen wir S^{-1} zu

$$S^{-1} = rac{1}{2} egin{pmatrix} 0 & 2 & 0 \ -1 & 0 & 1 \ 1 & 0 & 1 \end{pmatrix}$$

3. Berechnen Sie A^n für $n \in \mathbb{N}$.

Beachte:
$$A^n = (SDS^{-1})^n = (SDS^{-1})(SDS^{-1}) \cdots (SDS^{-1}) = SD^nS^{-1}$$
.

$$A^{n} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{n} & 0 & 0 \\ 0 & (-2)^{n} & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = (-1)^{n} \begin{pmatrix} 2^{n-1} & 0 & -2^{n-1} \\ 0 & 2^{n} & 0 \\ -2^{n-1} & 0 & 2^{n-1} \end{pmatrix}$$

- 1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, sodass $S^{-1}AS$ eine Diagonalmatrix ist.
- 3. Berechnen Sie A^n für $n \in \mathbb{N}$.

Führen Sie die obigen Schritte auch für die folgende Matrix durch, falls möglich:

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von B.

Charakteristisches Polynom:

$$P_B(\lambda) = \lambda^2 + 1$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von B.

Charakteristisches Polynom: $P_B(\lambda) = \lambda^2 + 1$

Eigenwerte & algebraische Vielfachheit:

$$\begin{cases} \lambda_1 = i & \text{mit alg. Vielfachheit 1} \\ \lambda_2 = -i & \text{mit alg. Vielfachheit 1} \end{cases}$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von B.

Geometrische Vielfachheit:

Überlegung zu $\lambda_1 = i$:

$$B - iI = \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \rightsquigarrow \ker \left(\begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \right) = \left\langle \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\rangle \Rightarrow \text{ geom. Vielfachheit 1}$$

Überlegung zu $\lambda_2 = -i$:

$$B+iI=\begin{pmatrix}i&1\\-1&i\end{pmatrix}\rightsquigarrow \ker\left(\begin{pmatrix}i&1\\-1&i\end{pmatrix}\right)=\left\langle\begin{pmatrix}i\\1\end{pmatrix}\right\rangle\Rightarrow \text{ geom. Vielfachheit 1}$$

2. Bestimmen Sie eine invertierbare Matrix S, sodass $S^{-1}BS$ eine Diagonalmatrix ist.

Es gilt

$$D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, S = \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}, S^{-1} = \frac{1}{2} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix}$$

3. Berechnen Sie B^n für $n \in \mathbb{N}$.

Wir berechnen

$$B^{n} = \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i^{n} & 0 \\ 0 & (-i)^{n} \end{pmatrix} \frac{1}{2} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix} = \frac{i^{n}}{2} \begin{pmatrix} -1 - (-1)^{n} & i(-1 + (-1)^{n}) \\ i(-1 + (-1)^{n}) & 1 + (-1)^{n} \end{pmatrix}$$

(a) Es sei $G = (g_{ij}) \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltensumme alle 1 sind, d.h.

$$\forall j \in \{1,\ldots,n\} : \left(\sum_{i=1}^n g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

(a) Es sei $G = (g_{ij}) \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltensumme alle 1 sind, d.h.

$$\forall j \in \{1,\ldots,n\} : \left(\sum_{i=1}^n g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

Argument über charakteristisches Polynom sinnvoll? \rightarrow Nein, "zu wenige" Informationen über Matrix, um Nullstellen zu bestimmen.

Stattdessen: Eigenwert besitzt Eigenvektor \rightarrow Argumentiere über Eigenvektor.

(a) Es sei $G = (g_{ij}) \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltensumme alle 1 sind, d.h.

$$\forall j \in \{1,\ldots,n\} : \left(\sum_{i=1}^n g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

Wenn 1 ein Eigenwert ist, existiert ein Eigenvektor zum Eigenwert 1. Sei $v = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}^T$, dann gilt nach Voraussetzung (Spaltensumme ist 1)

$$v^TG = v^T$$
.

Insbesondere folgt

$$v^T G = v^T \iff G^T v = v,$$

und da G, G^T die gleichen Eigenwerte besitzen, folgt die Aussage.

(b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.

(i) $\langle Ax, Ay \rangle = \langle x, y \rangle$, wobei $\langle \cdot, \cdot \rangle$ das kanonische Skalarprodukt bezeichnet.

- (b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.
- (i) $\langle Ax, Ay \rangle = \langle x, y \rangle$, wobei $\langle \cdot, \cdot \rangle$ das kanonische Skalarprodukt bezeichnet.

Kanonisches Skalarprodukt
$$\rightsquigarrow \langle x, y \rangle = x^T y$$

A orthogonal $\Rightarrow A^T A = I$

$$\langle Ax, Ay \rangle = (Ax)^T Ay$$

$$= x^T A^T Ay$$

$$= x^T Iy$$

$$= \langle x, y \rangle$$

(b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.

(ii)
$$\det A \in \{1, -1\}$$

(b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.

(ii)
$$\det A \in \{1, -1\}$$
 A orthogonal $\Rightarrow A^T A = I \Rightarrow A$ invertierbar $\Rightarrow \det A \neq 0$

$$1 = \det I = \det(A^T A) = \det A^T \cdot \det A = (\det A)^2 \implies \det A \in \{1, -1\}$$

(b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.

(iii) Zeigen Sie, dass die orthogonalen Matrizen A mit det A = 1 eine Untergruppe von O(n) bilden. Diese wird mit SO(n) bezeichnet.

(b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$.

(iii) Zeigen Sie, dass die orthogonalen Matrizen A mit det A = 1 eine Untergruppe von O(n) bilden. Diese wird mit SO(n) bezeichnet.

Zu zeigen: Abgeschlossenheit, d.h. $\forall A, B \in SO(n)(AB^{-1} \in SO(n))$, wobei

$$AB^{-1} \in SO(n) \iff \det(AB^{-1}) = 1 \land AB^{-1} \text{ orthogonal}$$

Nun gilt $A \in SO(n) \implies \det A = 1$ und $B \in SO(n) \implies \det B = 1 \land \det B^{-1} = 1$, womit $\det(AB^{-1}) = \det A \cdot \det B^{-1} = 1 \cdot 1 = 1$

Somit ist $AB^{-1} \in SO(n)$, da weiterhin

$$(AB^{-1})^T AB^{-1} = (B^{-1})^T A^T AB^{-1} = I$$

