1. Norsk: En bygning har dimensjoner 5,0 m X 10,0 m X 3,0 m høy. Volumet er V = 150 m³. Totalt areal på vegger og tak er A_{vegg} = 140 m². Innetemperaturen er T_{inn} = 25°C og utetemperaturen er T_{out} = 10°C (vi ignorerer varmetapet gjennom vinduer foreløpig) Luftens tetthet er: ρ = 1,29 kg/m³ Varmekapasiteten ved konstant lufttrykk er: c_p = 1000 J /(kg °C)

Veggene og taket er 3 lag med materiale:

- 1: treverk med d_w = 2,0 cm med varmeledningsevne k_w = 0,08 (J/sm°C)
- 2: Isolasjon med $d_i = 20,0$ cm med termisk ledningsevne $k_i = 0,03$ (J/sm°C)
- 3: treverk med $d_w = 2.0$ cm med varmeledningsevne $k_w = 0.08$ (J/sm°C)
- a) Beregn R-verdien for vegger og tak.
- b) Beregn varmetapet per tid på grunn av ledning gjennom vegger og tak.

Fasit: 293 W

c) Hvis luften i bygningen skiftes ut hver 2. time, hvor stor er varmetapet per tid på grunn av konveksjon?

Fasit: 403 W

d) Hva er den totale varmetilførselen som trengs for å holde inne temperatur på t_{inn} = 25°C

English: A building has dimensions 5.0 m X 10.0 m X 3.0 m high. The volume is $V = 150 \text{ m}^3$. The total area of the walls and ceiling is $A_{vegg} = 140 \text{ m}^2$. The inside temperature is $T_{in} = 25 \text{ °C}$ and the outside temperature is $T_{out} = 10 \text{ °C}$ (we ignore the heat loss through windows for now) The density of air is: $\rho = 1.29 \text{ kg/m}^3$

The heat capacity at constant pressure of air is: $c_p = 1000 \text{ J}/(\text{kg }^{\circ}\text{C})$

The walls and ceiling are 3 layers of material:

- 1: wood $d_w = 2.0$ cm with thermal conductivity $k_w = 0.08$ (J/sm°C)
- 2: Insulation $d_i = 20.0$ cm with thermal conductivity $k_i = 0.03$ (J/sm°C)
- 3: wood $d_w = 2.0$ cm with thermal conductivity $k_w = 0.08$ (J/sm°C)
- a) Calculate the R-value for the walls and ceiling.
- b) Calculate the rate of heat loss due to conduction through the walls and ceiling.
 Fasit: 293 W
- c) If the air in the building is replaced every 2 hours, what is the rate of heat loss due to convection?

Fasit: 403 W

d) What is the total heat input needed to maintain the inside temperature of Tin = 25°C

- 2. Norsk: En bygning varmes opp med varmtvann som sirkulerer i radiatorer for å levere varme til rommene. Radiatorene har et samlet areal på $A_r = 10,0 \text{ m}^2$ og strålingsemissivitet e = 0,95. Vannet i radiatorene varmes opp av en oljefyr som varmer opp vannet til $T_B = 80^{\circ}$ C. Temperaturen i bygget holdes på $T_{inn} = 20^{\circ}$ C.
 - a) Hva er varmehastigheten som kan leveres til bygget gjennom radiatorene som varmes opp av oljefyr ($T_B = 80.0 \, ^{\circ}\text{C}$)?

Fasit: 4394 W

b) Oljefyren i bygget erstattes med en varmepumpe som varmer opp vannet i radiatorene til T_{hp} = 60°C. Hva er varmen som kam leveres til huset med varmepumpen som bruker samme radiatorsystem?

English: A building is heated with hot water circulating in radiators to supply heat to the rooms. The radiators have a total area of $A_r = 10.0 \text{ m}^2$ and radiation emissivity e = 0.95. The water in the radiators is heated by a boiler which heats the water to $T_B = 80^{\circ}$ C. The temperature in the building is kept at $T_{in} = 20^{\circ}$ C.

a) What is the rate of heat that can be delivered to the building through the radiators heated by the boiler ($T_B = 80.0 \, ^{\circ}\text{C}$)?

Fasit: 4394 W

b) The boiler in the building is replaced with a heat pump which heats the water in the radiators to T_{hp} = 60°C. What is the rate of heat delivered to the house with the heat pump using the same radiator system?