3^{-n} Decimal Problem

Ting-Yo Kuo

1 Outline

1.1 Difinition of Problem

Consider a problem:

Definition

For $n \in \mathbb{N}$, define

$$A_n = \frac{1}{3^n 10^{3^k}}$$

and

$$A = \sum_{n=1}^{\infty} A_n$$

Definition

Given a real number $a = 0.a_1a_2a_3... \in [0,1)$ which does not end with repeating 9 and $n \in \mathbb{N}$, the *n*-th term of *a* is a_n .

Now given $n \in \mathbb{N}$, find the *n*-th to (n+9)-th terms of A? Consider $n=10^2, 10^8, 10^{16}$.

1.2 Outline of Solution

Since n is at most 10^{16} , it's sufficient to approximate A to be $\sum_{n=1}^{33} A_n$. Then we find k-th term of A by finding around k-th terms of A_n and sum them all. For $k \leq 16$, we find it in directly way, by finding its repetend. For k > 16, let a = 16, b = k - 16, then simulating 3^b divides the repetend of $1/3^a$. With some regularity, we can jump with the length 3^{a-2} when simulating. In conclusion, we get a solution with time complexity $O(\sqrt{n})$, which is good enough to halt in 1 minutes.

2 Properties of the repetend of $1/3^k$

Fact

- 1. If $a \in \mathbb{Q}$, then a has a repeating decimal representation.
- 2. If the repetend of $1/3^n = 0.a_1 \dots a_k \overline{a_{k+1} \dots a_{k+l}}$, then k = 0.
- 3. Long division algorithm

Definition

When $a \in [0,1)$ is in the form $0.a_1a_2...a_k\overline{a_{k+1}a_{k+1}...a_{k+l}}$ with least k and l, and $a_{k+1},...,a_{k+l}$ not all zero, $a_{k+1}...a_{k+l}$ is called the **repetend** of a. The length of the repetend of a is l.

Property

The length of the repetend of 1/3 is 1. For $n \ge 2$, the length of the repetend of $1/3^n$ is 3^{n-2} .

Proof. Induction on n. $1/3 = 0.\overline{3}$ and $1/9 = 0.\overline{1}$ are trivial. For $1/3^n$, we generate the repetend of $1/3^n$ by 3 dividing the repetend of $1/3^{n-1}$. Let the repetend of $1/3^{n-1} = 0.\overline{a_1 \dots a_{3l}}$ and $1/3^{n-2} = 0.\overline{b_1 \dots b_l}$. If $a_1 \dots a_{3l} = 0 \pmod{3}$, then $b_1 \dots b_l b_1 \dots b_l b_1 \dots b_l = 0 \pmod{9}$, thus $b_1 \dots b_l = 0 \pmod{3}$. Then the length of the repetend of $1/3^{n-1}$ can be l < 3l, a contradiction. If $a_0 \dots a_{3l} = 1 \pmod{3}$, then $a_1 \dots a_{3l} a_1 \dots a_{3l} = 10 \dots 01 = 2 \pmod{3}$. And $a_1 \dots a_{3l} a_1 \dots a_{3l} a_1 \dots a_{3l} = 10 \dots 010 \dots 01 = 3 = 0 \pmod{3}$. Hence the length of the repetend of $1/3^n$ is a factor of 9l. On the other hand, it is similar for the case $a_1 \dots a_{3l} = 2 \pmod{3}$. Also, it is larger than 3l, therefore, it is exactly 9l. By induction, $9l = 3^{n-2}$.

Property

Let $n, m \in \mathbb{N}, n \geq \max\{2, m\}$, then

$$10^{3^{n-2}} = 1 \pmod{3^m}$$

Proof. Induction on m. Clear for m = 3, 9. Given m, let n = m - 2. By induction, $10^{3^{n-3}} = 1 \pmod{3^{m-1}}$, then $10^{3^{n-2}} = 10^{3^{n-3}}10^{3^{n-3}}10^{3^{n-3}}$. Thus $10^{3^{n-2}} = 1 \pmod{3^m}$. And it's clear for $n > \max\{2, m\}$.

3 Algorithm to solve the problem

```
Algorithm

Find the repetend of 3^{-n}, brutal method.

Let V := \emptyset, d := 1, A = ()

while d \notin V do

V := V \cup \{d\}

d := 10d

Let a \in \mathbb{N} \cup \{0\} be maximum such that a3^n \leq d

A := (A, a)

d := d - a3^n

end while

return A
```

```
Algorithm

Find the repetend of 3^{-n}, with the fact that the length of the repetend of 3^{-n} is 3^{n-2}.

Let d:=1, A=()
for i:=1 to 3^{n-2} do
d:=10d
Let a\in\mathbb{N}\cup\{0\} be maximum such that a3^n\leq d
A:=(A,a)
d:=d-a3^n
end for
```

The above 2 algorithms are allowable for $n \leq 17$, at the limit of time and space.

4 Derivation for n > 17

return A

Consider n > 17, we can't store the whole repetend, but we still can find specified terms. If we want to find k-th term. It's equivalent to find the remainder of $10^{k-1} \% 3^n$. then do one step of long division.

Let m = 17, l = n - 17. Factor 10^{k-1} into

$$10^{m-2} \dots 10^{m-2} 10^{k-1-N(m-2)}$$
,

where 10^{m-2} repeat N times and N is the maximum that $N(m-2) \leq k-1$. Let $a_1 \dots a_{3^{m-2}}$ be the repetend of 3^{m-2} . Notice that $1/3^n = 1/3^m 1/3^l = 0.\overline{a_1 \dots a_{3^{m-2}}}/3^l$.

Thus

$$10^{k-1} \pmod{3^n}$$

$$=10^{m-2} \dots 10m - 210^{k-1-N(m-2)} \pmod{3^n}$$
(1)

Definition