Draft Handout 6: Support Vector Machines

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim. To introduce the Support Vector Machines as a procedure. Motivation, set-up, description, computation, and implementation. We focus on the classical treatment.

Reading list & references:

- (1) Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
 - Ch. 15 (pp. 167-170, 171-172, 176-177) Support Vector Machine
- (2) Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.
 - Ch. 7.2 Sparse Kernel Machines/Maximum marginal classifiers

1. Intro and motivation

Note 1. Support Vector Machines (SVM) is a ML procedure for learning linear predictors in high-dimensional feature spaces with regards the sample complexity challenges.

Definition 2. Let $w \neq 0$. Hyperplane of space $\mathcal{X} \subseteq \mathbb{R}^d$ is called the sub-set

$$S = \left\{ x \in \mathbb{R}^d : \langle w, x \rangle + b = 0 \right\}.$$

It separates \mathcal{X} in two half-spaces

$$S = \left\{ x \in \mathbb{R}^d : \langle w, x \rangle + b > 0 \right\}$$

and

$$S = \left\{ x \in \mathbb{R}^d : \langle w, x \rangle + b < 0 \right\}$$

Definition 3. Halfspace (hypothesis space) is hypotheses class \mathcal{H} designed for binary classification problems, $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$ defined as

$$\mathcal{H} = \left\{ x \longmapsto \text{sign}\left(\langle w, x \rangle + b\right) : w \in \mathbb{R}^d, b \in \mathbb{R} \right\},$$

where b is called bias.

Definition 4. Each $h \in \mathcal{H}$ has form $h_{w,b}(x) = \text{sign}(\langle w, x \rangle + b)$, it takes an input in $\mathcal{X} \subseteq \mathbb{R}^d$ and returns an output in $\mathcal{Y} = \{-1, +1\}$. We may refer to it as halfspace (w, b) as this is the only parameter need to fully determine it.

Note 5. Let $S = \{(x_i, y_i)\}_{i=1}^m$ be a training set of examples with $x_i \in \mathbb{R}^d$ the features and $y_i \in \{-1, +1\}$ the labels.

Note 6. The training set S is linearly separable if there exists a halfspace (w, b) such that for all i = 1, ..., n

$$y_i = \operatorname{sign}(\langle w, x_i \rangle + b)$$

or equivalently

$$y_i\left(\langle w, x_i \rangle + b\right) > 0$$

Note 7. Let the loss be $\ell((w,b),z) = 1$ $(y_i \neq \text{sign}(\langle w, x_i \rangle + b))$, and hence the Empirical Risk Function be $R_S(w,b) = \frac{1}{m} \sum_{i=1}^m \ell((w,b),z_i)$. The Empirical Risk Minimisation (ERM) halfspace (w^*,b^*) is

$$(w^*, b^*) = \underset{w,b}{\operatorname{arg \, min}} (R_S(w, b)) = \underset{w,b}{\operatorname{arg \, min}} \left(\frac{1}{m} \sum_{i=1}^m \ell((w, b), z_i) \right)$$

Example 8. Figure (1.1; Left) shows two different separating hyper-planes for the same data set, Figure (1.1; Right) shows the maximum margin hyper-plane: the margin γ is the distance from the hyper-plane (solid line) to the closest points in either class (which touch the parallel dotted lines). It is reasonable to prefer as a predictive rule the hyperplane on the right.

FIGURE 1.1

Definition 9. Margin of a hyper-plane with respect to a training set is defined to be the minimal distance between a point in the training set and the hyper-plane.

Note 10. Support Vector Machines (SVM) aims at learning the maximum margin separating hyperplane. The rational is that if a hyperplane has a large margin, then it will still separate the training set even if we slightly perturb each instance.

2. HARD SUPPORT VECTOR MACHINE

Note 11. Hard Support Vector Machine (Hard-SVM) is the learning rule in which we return an ERM hyperplane that separates the training set with the largest possible margin.

Algorithm 12. (Hard-SVM) Given a linearly separable training sample $S = \{(x_i, y_i)\}_{i=1}^m$ the Hard-SVM rule for the binary classification problem is: Solve

(2.1)
$$\left(\tilde{w}, \tilde{b}\right) = \underset{(w,b)}{\operatorname{arg\,min}} \|w\|_{2}^{2}$$

(2.2)
$$subject\ toy_i\left(\langle w, x_i \rangle + b\right) \ge 1,\ \forall i = 1,...,m$$

Page 2 Created on 2023/03/01 at 21:55:27

by Georgios Karagiannis

Scale

$$\hat{w} = \frac{\tilde{w}}{\|\tilde{w}\|}, \text{ and } \hat{b} = \frac{\tilde{b}}{\|\tilde{b}\|}$$

Note 13. Following we show why Algorithm 12 serves it purpose.

Fact 14. The distance between a point x and the hyperplane defined by (w,b) with ||w|| = 1 is $|\langle w, x \rangle + b|$.

Proof. We skip it. \Box

Note 15. Essentially Hard-SVM in Algorithm 12 searches for the hyperplane with minimum norm w among all those that separate the data and have distance not less than 1.

Proof. (Sketch of the proof of Algorithm 12)

(1) Based on Note 11, and Fact 14, the closest point in the training set to the separating hyperplane has distance

$$\min_{i} (|\langle w, x_i \rangle + b|)$$

hence, by definition, the Hard-SVM hypothesis should be such as

(2.3)
$$(w^*, b^*) = \underset{(w,b):||w||=1}{\operatorname{arg max}} \left(\min_{i} (|\langle w, x_i \rangle + b|) \right)$$
 subject to $y_i (\langle w, x_i \rangle + b) > 0, \ \forall i = 1, ..., m$

(2) If there is a solution in (2.3) then (2.3) is equivalent to

(2.4)
$$(w^*, b^*) = \arg\max_{(w,b):||w||=1} \left(\min_{i} \left(y_i \left(\langle w, x_i \rangle + b \right) \right) \right)$$

(3) Next we show that 2.4 is equivalent to the output of Algorithm 12; i.e. $(w^*, b^*) = (\hat{w}, \hat{b})$. Let $\gamma^* := \min_i (|\langle w^*, x_i \rangle + b^*|)$. Firstly, because

$$y_i\left(\langle w^*, x_i \rangle + b^*\right) \ge \gamma^* \iff y_i\left(\langle \frac{w^*}{\gamma^*}, x_i \rangle + \frac{b^*}{\gamma^*}\right) \ge 1$$

 $\left(\frac{w^*}{\gamma^*}, \frac{b^*}{\gamma^*}\right)$ satisfies condition (2.2). Secondly, I have $\|w_0\| \leq \left\|\frac{w^*}{\gamma^*}\right\| = \frac{1}{\gamma^*}$ because of (2.1) and because of $\|w^*\| = 1$. Hence, for all i = 1, ..., m, it is

$$y_i \left(\langle \hat{w}, x_i \rangle + \hat{b} \right) = \frac{1}{\|w_0\|} y_i \left(\langle w_0, x_i \rangle + b_0 \right) \ge \frac{1}{\|w_0\|} \ge \gamma^*$$

Hence (\hat{w}, \hat{b}) is the optimal solution of (2.4).

Definition 16. Homogeneous halfspaces in SVM is the case where the halfspaces pass from the origin; that is when the bias term in 2.2 is zero b = 0.

3. Soft Support Vector Machine

Note 17. Hard-SVM assumes the strong assumption that the training set is linearly separable.

Page 3 Created on 2023/03/01 at 21:55:27 by Georgios Karagiannis

Note 18. Soft Support Vector Machine (Soft-SVM) aims to relax the strong assumption of Hard-SVM that the training set is linearly separable, with purpose to be extend the scope of application. Soft-SVM is given below.

Algorithm 19. (Soft-SVM) Given a linearly separable training sample $S = \{(x_i, y_i)\}_{i=1}^m$ the Hard-SVM rule for the binary classification problem is: Solve

(3.1)
$$(w^*, b^*, \xi^*) = \underset{(w,b,\xi)}{\operatorname{arg min}} \left(\lambda \|w\|_2^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$

(3.2)
$$subject\ toy_i\left(\langle w^*, x_i \rangle + b^*\right) \ge 1 - \xi_i,\ \forall i = 1, ..., m$$

(3.3)
$$\xi_i \ge 0, \ \forall i = 1, ..., m$$

Note 20. To relax the linearly separable training set assumption, Soft-SVM relies on replacing the "harder" constraint (2.2) with the "softer" one in 3.2 through the introduction of non-negative unknown quantities $\{\xi_i\}_{i=1}^m$ controlling how much the separability assumption (2.2) is violated. Soft-SVM learns all (w, b, ξ) via the minimization part in (3.1) where the trade off between the two terms is controlled via the user specified parameter λ .

Proposition 21. Consider the hinge loss function

$$\ell\left(\left(w,b\right),z\right) = \max\left(0,1-y\left(\left\langle w,x\right\rangle + b\right)\right)$$

and hence the Empirical Risk Function

$$R_S((w,b)) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y_i(\langle w, x_i \rangle + b))$$

Then the solution of Algorithm 19 is equivalent to the regularization problem

$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg \, min}} \left(R_S \left((w, b) \right) + \lambda \|w\|_2^2 \right)$$

Proof. In Algorithm 19, we consider

(3.4)
$$\operatorname*{arg\,min}_{(w,b)} \left(\min_{\xi} \left(\lambda \|w\|_{2}^{2} + \frac{1}{m} \sum_{i=1}^{m} \xi_{i} \right) \right)$$

Consider (w,b) fixed and focus on the inside minimization. From 3.2, it is $\xi_i \geq 1 - y_i (\langle w^*, x_i \rangle + b^*)$, and from 3.3, it is $\xi_i \geq 0$. If $y_i (\langle w, x_i \rangle + b) \geq 1$, the best assignment in 3.4 is $\xi_i = 0$ because it is $\xi_i \geq 0$ from 3.3. If $y_i (\langle w, x_i \rangle + b) \leq 1$, the best assignment in 3.4 is $\xi_i = 1 - y_i (\langle w, x_i \rangle + b)$ because I need to minimize w.r.t ξ . Hence $\xi_i = \max(1 - y_i (\langle w, x_i \rangle + b))$.

Note 22. Hence the Soft-SVM is a binary classification problem with hinge loss function and regularization term biasing toward low norm separators.

Note 23. Given Proposition 21, Soft-SVM in Algorithm 19 can be learned via a variation of batch SGD, eg online SGD (batch size m = 1) with recursion

$$\varpi^{(t+1)} = \varpi^{(t)} - \eta_t v_t$$

Created on 2023/03/01 at 21:55:27

where
$$v_t = \begin{cases} y\langle \varpi, \chi \rangle & \text{if } y\langle \varpi, \chi \rangle \ge 1 \\ -y\chi & \text{otherwise} \end{cases}$$
, $\varpi = (b, w)^{\top}$ and $\chi = (1, x)^{\top}$.

Algorithm 24. (SGD for Soft-SVM)