08/22/2025: Definition

CSCI 246: Discrete Structures

Textbook reference: Sec 3, Scheinerman

Today's Agenda

- Overview / Q & A (\approx 5 mins)
- Group exercises (\approx 25 mins)
- Discussion (\approx 20 minutes)

Integers

Definition. The set of *integers*, denoted \mathbb{Z} , is given by

$$\mathbb{Z} \triangleq \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

That is, the integers are the positive whole numbers, the negative whole numbers, and zero.

Random group assignments

Aaron Christensen: 3 Aidan Sinclair: 13 Brendan Kellv: 1 Buggy Garza: 6 Cedric Jefferson: 17 Conner Brost: 7 Connor Graville: 3 David Knauert: 1 David Oswald: 4 Flias Martin: 5 Ericson O'Guinn: 8 Frik Halverson: 7 Francis Rush: 9 Garrett Miller: 15 George Cutler: 16 Georgia Franks: 2 Gregor Schmidt: 3

Hakyla Riggs: 6 Izavah Abavomi: 11 Jacob Ketola: 10 Jacob Ruiz: 17 Jaden Hampton: 5 Jeremy Ness: 10 Jonah Day: 1 Karter Gress: 8 Kyle Hoerner: 10 Landry Clarke: 4 Leon BirdHat: 5 Lillian Ziegler: 11 Matthew Rau: 9 Micah Miller: 14 Michael Pitman: 15 Nathan Campbell: 11 Nathan Hoolev: 15 Nicholas Rugani: 8 Noah Andersson: 14 Olivia Greuter: 12 Peter Van Vleet: 14 Pierce Dotson: 9 Quinn Carlson: 2 Ridlev Christoferson: 16 Riley Smith: 6 Sierra Holleman: 13 Tanner Gramps: 7 Timothy True: 13 Titus Sykes: 12 Trey Randall: 4 William Grant: 16 William Sheldon: 12 Zachary Reller: 2

Group exercises

- 1. Please determine which of the following are true or false; use Definition 3.2 to explain your answers: (a) $3 \mid 100$, (b) $3 \mid 99$, (c) $-3 \mid 3$, (d) $-5 \mid -5$, (e) $-2 \mid -7$, (f) $0 \mid 4$, (g) $4 \mid 0$, (h) $0 \mid 0$.
- 2. None of the following is a prime. Explain why they fail to satisfy Definition 3.5. Which of the numbers is composite? (a) 21, (b) 0, (c) π , (d) $\frac{1}{2}$, (e) -2, (f) -1.
- 3. Define what it means for an integer to be a *perfect square*. For example, the integers 0,1,4,9, and 16 are perfect squares. Your definition should begin:

An integer x is a *perfect square* provided ...

4. Here is a possible alternative to Definition 3.2: We say that a is divisible by b provided $\frac{a}{b}$ is an integer. Explain why this alternative definition is different from Definition 3.2.

Here, *different* means that the definitions specify *different* concepts. So to answer this question, you should find integers a and b such that a is divisible by b according to one definition, but a is not divisible by b according to the other definition.

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

Solution.

a. 3 | 100?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

Solution.

a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why?

6

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

Solution.

a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)

6

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. 3 | 99?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3\mid 100?$ False. There is no integer c such that 3c=100. (Why? Note that there is exactly one number $c=\frac{100}{3}=33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3\mid 100?$ False. There is no integer c such that 3c=100. (Why? Note that there is exactly one number $c=\frac{100}{3}=33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3\mid 100?$ False. There is no integer c such that 3c=100. (Why? Note that there is exactly one number $c=\frac{100}{3}=33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2\mid -7$? False. There is no integer c such that -2c=-7. (The number $c=\frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. 0 | 4?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. $0 \mid 4$? False. There is no integer c such that 0c = 4. (Why?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. $0 \mid 4$? False. There is no integer c such that 0c = 4. (Why? Note that 0c = 0 for all c.)

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. $0 \mid 4$? False. There is no integer c such that 0c = 4. (Why? Note that 0c = 0 for all c.)
- g. 4 | 0?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. 0 | 4? False. There is no integer c such that 0c = 4. (Why? Note that 0c = 0 for all c.)
- g. $4 \mid 0$? True. There is an integer c = 0 such that 4c = 0.

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. $0 \mid 4$? False. There is no integer c such that 0c = 4. (Why? Note that 0c = 0 for all c.)
- g. 4 | 0? True. There is an integer c = 0 such that 4c = 0.
- h. 0 | 0?

Definition. Let a and b be integers. We say a is divisible by b, written $b \mid a$, provided there is an integer c such that bc = a.

- a. $3 \mid 100$? False. There is no integer c such that 3c = 100. (Why? Note that there is exactly one number $c = \frac{100}{3} = 33\frac{1}{3}$ that satisfies the equation, but this c is not an integer.)
- b. $3 \mid 99$? True. There is an integer c = 33 such that 3c = 99.
- c. $-3 \mid 3$? True. There is an integer c = -1 such that -3c = 3.
- d. $-5 \mid -5$? True. There is an integer c = 1 such that -5c = -5.
- e. $-2 \mid -7$? False. There is no integer c such that -2c = -7. (The number $c = \frac{7}{2}$ uniquely satisfies the equation, but c is not an integer.)
- f. 0 | 4? False. There is no integer c such that 0c = 4. (Why? Note that 0c = 0 for all c.)
- g. 4 | 0? True. There is an integer c = 0 such that 4c = 0.
- h. $0 \mid 0$? True. There is an integer c such that 0c = 0. In fact, there are *infinitely* many integer-valued solutions!

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

Solution.

a. 21?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

Solution.

a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1,21\}$.

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1,21\}$.
- b. 0? This is not prime since 0 < 1.

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? This is not prime since -2 < 1.

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? This is not prime since -2 < 1.
- f. -1?

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? This is not prime since -2 < 1.
- f. -1? This is not prime since -1 < 1.

Solution to group exercise #2 (first part)

Problem. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Definition. An integer p is called *prime* provided that p > 1 and the only positive divisors of p are p and 1.

Solution.

- a. 21? This is not prime since $3 \mid 21$, and $3 \notin \{1, 21\}$.
- b. 0? This is not prime since 0 < 1.
- c. π ? This is not prime since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? This is not prime since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? This is not prime since -2 < 1.
- f. -1? This is not prime since -1 < 1.

Remark. In the above, I used the shorthand notation $x \notin A$, which means that x is not a member of the set A.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

Solution.

a. 21?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

Solution.

a. 21? Composite, since 3 \mid 21, and 1 < 3 < 21.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since 3 \mid 21, and 1 < 3 < 21.
- b. 0?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since 3 \mid 21, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3\mid 21$, and 1<3<21.
- b. 0? Not composite, since 0 < 1.
- c. π ?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since 3 \mid 21, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? Not composite, since -2 < 1.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? Not composite, since -2 < 1.
- f. -1?

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? Not composite, since -2 < 1.
- f. -1? Not composite, since -1 < 1.

Problem. None of the following numbers is prime. Which is composite?

Definition. An integer a is called *composite* provided that there is an integer b such that 1 < b < a and $b \mid a$.

Solution.

- a. 21? Composite, since $3 \mid 21$, and 1 < 3 < 21.
- b. 0? Not composite, since 0 < 1.
- c. π ? Not composite, since $\pi \notin \mathbb{Z}$.
- d. $\frac{1}{2}$? Not composite, since $\frac{1}{2} \notin \mathbb{Z}$.
- e. -2? Not composite, since -2 < 1.
- f. -1? Not composite, since -1 < 1.

Remark. Note from the definition that the integer a can be composite only if a > 1. We use this fact to answer parts b, e, and f.

Problem. Define what it means for an integer to be a *perfect square*. For example, the integers 0,1,4,9, and 16 are perfect squares.

Problem. Define what it means for an integer to be a *perfect square*. For example, the integers 0,1,4,9, and 16 are perfect squares.

Solution. An integer x is a *perfect square* provided there is an integer y such that $x = y^2$.

Problem. Here is a possible alternative to Definition 3.2: We say that a is *divisible* by b provided $\frac{a}{b}$ is an integer. Explain why this alternative definition is different from Definition 3.2.

Here, different means that the definitions specify different concepts. So to answer this question, you should find integers a and b such that a is divisible by b according to one definition, but a is not divisible by b according to the other definition.

Problem. Here is a possible alternative to Definition 3.2: We say that a is *divisible* by b provided $\frac{a}{b}$ is an integer. Explain why this alternative definition is different from Definition 3.2.

Here, different means that the definitions specify different concepts. So to answer this question, you should find integers a and b such that a is divisible by b according to one definition, but a is not divisible by b according to the other definition.

Solution. Consider a=b=0. Then, $a\mid b$ according to Definition 3.2 (as we discovered in group exercise #1h). However, $\frac{a}{b}$ is not an integer.