CS & IT BENGING

Computer Network

Error Control

By - Abhishek Sir

Lecture No. - 04

Recap of Previous Lecture

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Pw

Example 2:

$$G(X) = X^3 + X + 1$$
 Divisor

$$M(X) = X^7 + X^4 + X^3 + X^2 + 1$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

$$X^7 + X^5 + 1$$

$$X^{3} + X + 1$$
 $X^{10} + X^{7} + X^{6} + X^{5} + X^{3}$
 $X^{10} + X^{8} + X^{7}$

Modulo 2 division [bit-wise X-OR]

$$X^8 + X^6 + X^5 + X^3$$

 $X^8 + X^6 + X^5$

$$X^3$$

 $X^3 + X + 1$
 $X + 1$

Pw

Example 2:

$$G(X) = X^3 + X + 1$$

$$M(X) = X^7 + X^4 + X^3 + X^2 + 1$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

[M(X) * X³] [Modulo-2 Division] [G(X)]

$$R(X) = 0*X^2 + 1*X^1 + 1*X^0 = \times + 1$$

Pw

Example 2:

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

$$R(X) = X + 1$$

Transmitter transmit:

$$M(x) \star x^3 + R(x)$$

$$X^{10} + X^7 + X^6 + X^5 + X^3 + X + 1$$

Example 2:

$$G(X) = X^3 + X + 1$$

DIVISOR
$$= 1011$$

$$M(X) =$$

$$X^7 + X^4 + X^3 + X^2 + 1$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

[M(X) * X³] [Modulo-2 Division] [G(X)]

1011 10011000

1 0 1 1

Modulo 2 division [bit-wise X-OR]

1 0 1 1 1 1 1

Pw

Example 2:

$$G(X) = X^3 + X + 1$$
 DIVISOR = 1011

$$M(X) = X^7 + X^4 + X^3 + X^2 + 1$$
 DATA = 10011101

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

10011101000

[M(X) * X³] [Modulo-2 Division] [G(X)]

$$R(X) = 0*X^2 + 1*X^1 + 1*X^0$$

CRC = 011

Example 2:

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

$$R(X) = 0*X^2 + 1*X + 1*X^0$$

Transmitter transmit:
$$(M(x)*X^3)+R(x)$$

$$X^{10} + X^7 + X^6 + X^5 + X^3 + X + 1$$

MSP

else

Receiver protocol:

R'(X): Remainder at receiver (of above equation)

if R'(X) == ZERO:

then Receiver concluded "No any error detected"

Receiver concluded "Error detected"

Example 2:

Transmitter transmited:

$$X^{10} + X^7 + X^6 + X^5 + X^3 + X + 1$$

10011101011

Receiver received:

$$X^{10} + X^7 + X^6 + X^5 + X^3 + X + 1$$

10011101011

$$G(X) = X^3 + X + 1$$

Pw

1 0 1 1 1 0 0 0

$G(X) = X^n + ... + 1$ where n > 0

Receiver

Sender (Transmitter)

#Q. for this message using the divisor polynomial $x^5 + x^4 + x^2 + 1$ is

- (A) 01110
 - (B) 01011
 - (C) 10101
 - (D) 10110

#Q. The message 11001001 is to be transmitted using the CRC polynomial $x^3 + 1$ to protect it from errors. The message that should be transmitted is:

[GATE 2007]

#Q. A computer network uses polynomials over GF(2) for error checking with 8 bits as information bits and uses $x^3 + x + 1$ as the generator polynomial to generate the check bits. In this network, the message 01011011 is transmitted as:

- (A) 01011011010
- (B) 01011011011
- (C) <u>01011011101</u>
- (D) 01011011100

#Q. Consider the cyclic redundancy check (CRC) based error detecting scheme having the generator polynomial X^3+X+1 . Suppose the message $m_4m_3m_2m_1m_0=11000$ is to be transmitted. Check bits $c_2c_1c_0$ are appended at the end of the message by the transmitter using the above CRC scheme. The transmitted bit string is denoted by $m_4m_3m_2m_1m_0c_2c_1c_0$. The value of the checkbit sequence $c_2c_1c_0$ is:

Example 2:

$$G(X) = X^3 + X + 1$$

AT Sender (Transmitter)

Input = 10011101000

Input = 100111010111

"No any error detected"

else

Receiver concluded

"Error detected"

CASE I: No any error

Transmitter transmit: [M(X) * Xⁿ] + [R(X)]

Receiver received: $[M(X) * X^n] + [R(X)]$

Receiver protocol:

[M(X) * $X^n + R(X)$] [Modulo-2 Division] [G(X)]

Above equation will definitely lead "zero remainder"

Receiver conclude: "No any error detected" /

CASE II: Error Included

Transmitter transmit:

$$[M(X) * X^n] + [R(X)]$$

Receiver received:

$$[M(X) * Xn] + [R(X)] + [E(X)]$$

E(X): Error Polynomial Function

→ Coefficient are either Zero or One

Data: m bits CRC: n bits

Codeword: (m + n) bits

Degree(E(X)) < (m+n)

THANK - YOU