

Universidade Federal do Pará

Campus Universitário de Castanhal Faculdade de Computação

Estruturas de Dados Pilhas

Prof^a Penha Abi Harb mpenha@ufpa.br

Pilhas

 As pilhas são estruturas baseadas no princípio LIFO (last in, first out), onde os dados que foram inseridos por último na pilha serão os primeiros a serem removidos.

Listas: Filas, Pilhas

- Lista de compras
- Fila de banco

- Arroz
- Feijão Muitas operações
- Macarrão
- Tomate

Pilhas de Livros

FIFO (first in, first out)

LIFO (last in, first out)

Representação de Pilhas

- Há dois tipos possíveis de representação de Pilhas lineares:
- Por Contiguidade (ESTÁTICA):
 - Garantia da precedência dos elementos pela contiguidade física na memória usando arranjos;
- Por Encadeamento (DINÂMICA)
 - Garantia da precedência dos elementos pelo seu encadeamento (contiguidade lógica) usando-se apontadores.

Pilhas

- Existem duas funções que se aplicam a todas as pilhas:
 - PUSH, que insere um dado no topo da pilha
 - POP, que remove o item no topo da pilha

Operações com pilhas

- Inserção de um elemento no topo da pilha
 - PUSH (empilhar)
- Remoção de um elemento no topo da pilha
 - POP (desempilhar)
- Ler o elemento do topo da pilha
- Verificar se a pilha está cheia
 - Overflow
- Verificar se a pilha está vazia

Representação de Pilhas

Inicializando a Pilha - P.Topo = -1;

Representação de Pilhas

Na realidade a remoção de um elemento da pilha é realizada apenas alterando-se a informação da posição do topo.

Implementação de Pilhas: Encadeadas

Implementação de Pilhas: Encadeadas

```
public class noPilha {
  public int valor;
  public noPilha proximo;
}
```


Encadeadas: Operações

Inicialização
Pilha P1 = new Pilha();
P1.inicio = null;
Empilhamento do valor V
void push(int V)
{
noPilha q = new noPilha;
q.valor = V
q.proximo = inicio;

Encadeadas: Operações

Empilhamento do valor V
void push(int V)
{
 noPilha q = new noPilha;
 q.valor = V
 q.proximo = inicio;
 inicio = q;
}

inicio = q;

Encadeadas: Operações

Desempilhando
void pop(){
 if (inicio == NULL)
 System.out.println("Pilha vazia");
 else {
 inicio = inicio.prox;
 }
}

Filas

- As filas são estruturas baseadas no princípio FIFO (first in, first out), em que os elementos que foram inseridos no início são os primeiros a serem removidos.
- Uma fila possui duas funções básicas:
 - ENQUEUE, que adiciona um elemento ao final da fila,
 - DEQUEUE, que remove o elemento no início da fila.

Encadeadas: Operações

Obtendo o Elemento do Topo

void ElementoTopo() {

if (inicio == null) {

System.out.println("Pilha Vazia!");

} else {

System.out.println(inicio.valor);

}

Representação de Filas

- Há dois tipos possíveis de representação de Filas:
- Por Contiguidade (ESTÁTICA):
 - Garantia da precedência dos elementos pela contiguidade física na memória usando arranjos;
- Por Encadeamento (DINÂMICA)
 - Garantia da precedência dos elementos pelo seu encadeamento (contiguidade lógica) usando-se apontadores.

Filas Contiguas

Supondo uma fila com capacidade para 5 elementos.

Filas Contiguas

 Para evitar problemas de não ser capaz de inserir mais elementos na fila, mesmo quando ela não está cheia, as referências primeiro e último circundam até o inicio do vetor, resultando numa fila circular.

Filas Contiguas

 Desta forma a fila simula uma representação circular:

Filas Circulares - vetor

Conseguimos inserir??

Conseguimos remover??

Qual valor será removido?

Filas Circulares - vetor

Conseguimos inserir??

Conseguimos remover??

Consegumos remover?

Onde será inserido?

1.4	2.2	3.5	4	4.5			3.5	4	Τ
0	1	2	3	4	0	1	2	3	Î
ini				fim			ini		t

Implementação de Filas: Encadeadas

- public class noFila {
- // FILAS ENCADEADAS
- public int valor;
- public noFila proximo;

ultimo

- // Ponteiros de controle
- public noFila primeiro;
 - public noFila ultimo;

• }

primeiro

Encadeadas: Operações

Encadeadas: Operações

```
// inserir elementos na FILA
public void inserir(int V){
    noFila q = new noFila();
    q.valor = V;
    q.proximo = null;
    if (primeiro == null){ // fila vazia
        primeiro = q;
        ultimo = q;
    } else{
        ultimo.proximo = q;
        ultimo = q;
    }
}
```


Encadeadas: Operações

Consulta
//Ler o elemento da Fila
public void elemento (){
// verificar se está vazia antes
 System.out.println(primeiro.valor);
}

Podemos também imprimir toda a fila

Filas Circulares - encadeadas

