Fechadura digital para controle e monitoramento para unidades de terapia intensiva

Igor Sousa Nunes de Oliveira 15/0011971 UnB - FGA Brasília, Brasil igorsno97@gmail.com

João Vitor Rodrigues Baptista 15/0013329 UnB - FGA Brasília, Brasil jvrbaptista@live.com

I. INTRODUÇÃO

O controle de acessos ou mesmo a restrição de pessoas a algum ambiente é algo muito comum no cotidiano e que de forma mais comum são utilizadas catracas, portas giratórias entre outras maneiras para o controle do ambiente ou mesmo como permissão para entrada ou saída de pessoas em um ambiente controlado.

Partindo dessa situação foi feito uma fechadura de liberação de acessos digital para o controle do ambiente com uma aplicação em uma unidade de terapia intensiva.

Usando por meio de identificadores de rádio frequência (RFID), pode ser montado um meio de controle e monitoramento que da mesma maneira que possa se manter um ambiente seguro, possa de maneira prática manter a transição de pessoas em ambientes controlados, a fim de se manter em controle de infecções, doenças entre diversos outros além de ter um maior controle sobre diversas informações desde a entrada de um acompanhante até mesmo os remédios entregues a cada paciente por monitorização dos horários.

II. JUSTIFICATIVA

A segurança é fundamental para verificar as pessoas que adentram um recinto restrito ou de acesso controlado e pessoas desconhecidas que podem tentar entrar no lugar, por isso deve ser feito o monitoramento de horários de quem entra e sai do local, evitando possíveis invasões, o que pode ser bastante perigoso em diversos casos, onde se tem diversas doenças infectocontagiosas, pacientes com grande risco.

Portanto em um ponto de vista prático sobre o projeto se torna interessante por poder defender a integridade dos pacientes que estão normalmente sobre situações mais complicadas e dessa maneira poder ter um acréscimo na qualidade apresentada em tais unidades.

III. OBJETIVOS

Identificar as pessoas que entram e saem além de poder monitorar os tempos de acessos de cada pessoa individualmente e armazenar em um arquivo de registro. Barrar a entrada de pessoas que não possuem cadastro no recinto de maneira prática, tornando o ambiente mais seguro e propício à melhora dos pacientes e de riscos minimizados. Cadastrar de forma rápida novas pessoas e descadastrar de forma eficiente.

IV. TABELA DE MATERIAIS UTILIZADOS

Tabela 1 – Lista de Materiais utilizados

UND	MATERIAIS	FABRICANTE	Preço
1	Placa MSP430	Texas Instruments	R\$ 100,00
1	RFID MÓDULO	NXP	R\$ 15,00
	RC522		
-	JUMPERS	-	R\$ 30,00
2	Prezilhas	-	R\$ 2,00
-	Estrutura		R\$ 50,00
1	Módulo Relé 5V 1	-	R\$ 7,00
	Canal		
1	Mini Trava Elétrica	-	R\$ 35,00
	Solenóide 12V		
1	Fonte de 12V		R\$ 15,00

V. VIABILIDADE EM RALAÇÃO AO CUSTO

Com um custo de materiais em torno de R\$ 250,00 nota-se a possibilidade de real construção de um produto, observando que se todas as compras fossem realizadas em maior quantidade e com antecedência esse preço poderia ser fortemente reduzido, o que o traria certa competitividade em relação a produtos comercialmente vendidos que realizam a mesma função, ou mesmo utilizam de apenas uma codificação mais simples sem cadastro.

VI. HARDWARE E SOFTWARE

A. Descrição do Hardware

RFID costumam ser utilizados para controle de acesso e identificação de pessoas e equipamentos, seja por meio de crachás ou etiquetas aplicadas aos produtos.

Cada transponder do leitor RFID tem a sua própria identificação (ID), e essa identificação que ira será utilizada para montar um controle de acesso que irá ler o ID do cartão e

exibir as informações de acesso via serial para o computador. Com pequenas alterações no programa é possível acionar as outras portas do MSP430 e ligar o modulo rele para acionar a trava eletrônica. [1][3]

Figura 1 - Diagrama de bloco dos hardwares

Na figura 1 é mostrado como estão conectado os hardwares utilizados no projeto. Foi necessário a utilização de uma fonte externa de 12V para abrir a tranca. Para a comunicação serial a MSP430 deve estar conectada a um computador via USB.

Figura 2 - Esquemático de ligação do RFID e rele.

A figura 2 mostra como estão feitas as ligações de pino entre o modulo RFID e o micro controlador, a comunicação entre os dois é via SPI como toda troca de dados acontece sempre em ambas as direções tornando a implementação do código mais simples. [13]

Trava solenoide de 12V: O principio básico da trava não esta atrelado a uma tensão de 12V, a partir de uma determinada corrente a trava já funciona de forma desejável. Portanto, a

trava funciona de modo normalmente fechado e quando excitada com uma corrente maior ela abre.

B. Descrição do Software

O projeto foi iniciado em códigos usando a plataforma "Energia". Primeiro foi usado o código livre do RFID usando comunicação SPI com as conexões ilustradas na imagem 2.[12]

Em seguida foi implementado o display usando bibliotecas do Energia e a comunicação serial para registro no computador.[2][10][11]

Então o código foi passado para CCS sendo escrito em C, onde não foi possível usar o display, pois necessitava de portas que já eram usadas para a comunicação SPI e UART. Porem foi adicionado três novos modos no projeto, Comando pelo computador via serial, Cadastro e Descadastro.

Para melhor ilustrar o funcionamento do software, foi construído alguns diagramas lógicos nas imagens 3, 4, 5 e 6. Para mostrar de maneiras simples a ideia lógica de cada modo de operação.

Figura 3 – Diagrama de software do modo de leitura.

O modo de leitura não precisa receber nem um comando serial, onde o modulo RFID recebe um conjunto de caracteres de um cartão e julga se a informação esta cadastrada. Quando o cartão não está cadastrado ele mostra uma mensagem serial de "Acesso negado" e volta para o modo de leitura.

Uma vez que a informação recebida esta cadastrada nos registradores, o sistema entra em um modo de diferenciação entre entrada saída através da função e Func Printar(ENTRADA, Contador) e abre a trava. De modo que, sempre que o cartão é passado pela primeira vez (ENTRADA = 0) o sistema julga como estar entrando no ambiente e escreve "Entrada do cadastro: X", por outro lado, quando o cartão é passado pela segunda vez, julga-se como saindo do ambiente (ENTRADA = "1") e escreve "Saída do cadastro: X". Os valores de ENTRADA são atribuídos uma vez que foi lido, se for "0" passa a ser "1" e se for "1" passa a ser "0".

Figura 4 - Diagrama de software para o modo de comando.

O modo de comando pelo computador tem o objetivo de controlar a trava através de comandos enviados serialmente. O usuário do sistema deve pressionar "1" até o modo de comando ser acionado chamando a função "comandos_pc()". Dentro do modo de comando, existem três opções; Abrir o rele pressionado "A", Fechar o rele pressionando "F" e voltar para o modo de leitura pressionando "S".

Figura 5 - Diagrama de software para o modo de cadastro.

O modo de cadastro tem como objetivo registrar novos cadastros usando a propria memoria do MSP430. Para acessar esse modo basta pressionar o botão "2" até o modo ser ativado. Quando ativo, basta aproximar o cartão do leito RFID que automaticamente as informações serão salvas em registradores e será incrementado um novo registrador para o próximo cadastro. Para sair desse modo basta pressionar "S".

Figura 6 - Diagrama de software para o modo de descadastro.

Uma vez que o registrador esta salvo com um registro e o usuário deseja apagar esse registro, basta pressionar a entrada "3" até ativar o modo, então pressionar o numero correspondente ao cadastro que o usuário deseja apagar e o registrador será zerado e na próxima vez que for lido ele o cartão passar será exibido uma mensagem de "Acesso negado..."

Figura 7 - Registradores usados na comunicação UART.[4]

A figura 7 mostra os registradores utilizados para fazer a manipulação do UART no MSP430. O algoritmo consiste em usar esses registradores fazendo interrupção no TX e RX, ou seja, ao receber ou enviar pelo UART, executar um ISR.

```
444
 445
 446 #pragma vector=USCIABOTX VECTOR
      _interrupt void USCIØTX_ISR(void)
 448 {
 450
         if (UC0IFG & UCA0TXIFG)
 451
 452
             //Pega os valores passados nos parâmetros da função
byte* buf = Serial UART.TxBuffer;
 454
             volatile int* i = &Serial_UART.iTx;
volatile byte* lock = &Serial_UART.lockTX;
 455
 456
 457
             (*i)++;
 458
 459
             if (*i < Serial UART.lenghtTX)</pre>
 460
i 461
                  UCA0TXBUF = buf[*i];
 462
 463
 464
                    //Coloca o valor para ser enviado no BUF do TX
 465
i 466
                  while (UCA0STAT & UCBUSY);
 467
                 UC0IE &= ~UCA0TXIE;
 468
 469
                 *lock = 0:
 470
 471
             }
        }
 473 }
474
 475 #pragma vector=USCIABORX VECTOR
      _interrupt void USCIØRX_ISR(void)
 477 {
         if (UC0IFG & UCA0RXIFG)
 479
```

Figura 8 - Parte do código de interrupção TX e RX.

A figura 8 mostra o trecho de código de interrupção para envio de dados pelo Serial UART. Ele usa parâmetros dentro da classe "Serial_UART" para fazer o envio correta das informações.

```
7 void Serial_SPIClass::init()
 8 {
 9
       UCB0CTL1 = UCSWRST | UCSSEL_2;
                                            // Put USCI in reset m
      UCBOCTLO = UCCKPH | UCMSB | UCSYNC | UCMST;
                                                     // Use SPI
10
11
       //P1DIR |= BIT5;
12
13
       P1SEL |= BIT5 + BIT6 + BIT7;
                                                             // Co
14
       P1SEL2 |= BIT5 + BIT6 + BIT7;
                                                         /* Set pi
15
16
      UCB0BR0 = 2:
17
      UCB0BR1 = 0:
18
19
      UCB0CTL1 &= ~UCSWRST:
                                           // release USCI for op
20
21 }
22
23 unsigned char Serial_SPIClass::transfer(unsigned char data)
24 {
25
       UCBOTXBUF = data; // setting TXBUF clears the TXIFG flag
26
       while (UCB0STAT & UCBUSY);
27
       return UCB0RXBUF; // reading clears RXIFG flag
29 }
30
31
32 Serial_SPIClass Serial_SPI;
33
34
```

Figura 9 - Trecho do código SPI.

A outra parte do sistema de monitoramento utiliza o RFID. Assim, considerando que o SPI tem modo de operação fullduplex, o código se torna mais eficiente escrevendo uma função para ler e escrever ao mesmo tempo em que é usada no

modo de cadastro e leitura, a figura 9 mostra o trecho de envio e recebimento do SPI.

```
### COMMINISTRY CAN STATE OF THE TAINED PRODUCT OF TAINED PRODUCT OF THE TAINED PRODUCT OF THE TAINED PRODUCT OF THE
```

Figura 10 - Software para captação dos dados seriais do projeto(Putty).

Para ser feito o monitoramento foi necessário a utilização de um software nomeado "Putty", onde a MSP430 manda e recebe comandos através da comunicação UART. Esse programa foi utilizado, pois por intermédio deste programa é criado um registro de data e hora de cada comando recebido e enviado serialmente.

Os códigos e as figuras estão no GitHub, através do link:

https://github.com/helpthx/Microcontroladores/tree/master/3 T rabalho

VII. REQUISITOS

- Um microcontrolador no qual a escolha de projeto foi o MPS430.
- Um identificador de radiofrequência para fazer o controle de pessoas que possuam permissão para entrar.
- Um sistema de abertura e fechamento da Fechadura.
- Uma estrutura base para fixar os sensores e identificadores.
- Um ambiente onde se possa manter registro de pessoas e de horários de entrada e saída da mesma para monitoração, além de qualquer outro dado que possa ser de interesse ser armazenado no sistema.

VIII. RESULTADOS

Foi feita a migração dos códigos da plataforma Energia para o CCS de forma que o modulo RFID e a comunicação UART

fosses totalmente funcionais, porem houve problemas na implantação do display 16x2 pelo fato de necessitar utilizar pinos que já estavam sendo utilizados para as comunicações UART e SPI. Portanto o display foi retirado do projeto. Contudo, foram adicionados novos modos de operações o que deixou o projeto mais completo e aplicável. A comunicação UART está funcionando totalmente porem deve se pressionar os comandos cerca de três vezes para que a MSP430 receba e interprete o comando. Por fim um problema foi a alimentação da fonte de 12V que foi usada para acionar a tranca solenoide, após diversos usos, o relé presente ao sistema começou a ter um pequeno mal funcionamento e dessa maneira a medida em que a fonte estava ligada e o mesmo acionava, uma corrente proveniente da fonte conseguia transpassar o sistema do relé e ao chegar na MSP, onde dependendo de sua intensidade desligava a mesma e resetava o sistema, dessa forma fazendo com que a comunicação serial fosse perdida temporariamente.

Figura 11 - Imagem do protótipo final.

IX. CONCLUSÃO

A segurança é um algo atrelado a qualidade de vida e proveito da mesma, de maneira que a possibilidade de existir sistemas que aumentam a segurança de um ambiente sempre podem ser viáveis principalmente se forem de baixo custo e com boa eficiência.

Após a conclusão desse trabalho foi notada a possibilidade de mudanças no projeto proposto e em melhorias de hardware de maneira que o mesmo pudesse se tornar um produto com grande acessibilidade entre outros. Diante do exposto o aprendizado relacionado a este desenvolvimento foi de fato uma boa visão sobre o processo de análise de um problema, solução do mesmo e a possibilidade da iniciativa empreendedora ligada a este meio.

REFERENCIAS

- (11) https://www.filipeflop.com/blog/controle-acesso-leitor-rfid-arduino/ Acesso em: 29 de março de 2018.
- (2) https://www.filipeflop.com/blog/controlando-um-lcd-16x2-com-arduino/> Acesso em: 29 de março de 2018.
- [3] <https://www.filipeflop.com/blog/acionando-trava-eletrica-com-rfid/> Acesso em: 29 de março de 2018.
- [4] Xanthium. Imagem do diagrama dos registradores para UART no MSP430. Disponível em:http://www.xanthium.in/sites/default/files/site-images/serial-commsp430-uart/uart-msp430-block-dia.jpg Acesso em 10/06/2018.
- [5] Davies, J., MSP430 Microcontroller Basics, Elsevier, 2008.
- [6] Energia. Mapeamento dos pinos. Disponível em http://energia.nu/pin-maps/>30 de março de 2018.
- [7] GLOVER, B.; BHATT, H. Fundamentos de RFID. Rio de Janeiro: Alta Books, 2007. 228 pp.
- [8] LAHIRI, Sandip. RFID Sourcebook. IBM Press, 2005.
- [9] PULHLMANN, Embarcados. Introducao a tecnologia de identificacao RFID. Disponivel em: https://www.embarcados.com. br/introducao-atecnologia-de-identificacao-rfid/. Acesso em 03/04/2018.
- [10] MSP430 Launchpad interface with 162 LCD Display; Disponivel em: http://karuppuswamy.com/wordpress/2015/03/12/ msp430-launchpad-interface-with-16x2-lcd-display/. Acesso em 01/05/2018.
- [11] 162 LCD interfacing in 4 bit mode; Disponivel em: https://learningmsp430.wordpress.com/2013/11/16/ 16x2-lcd-interfacing-in-4-bit-mode/. Acesso em 01/05/2018.
- [12] CardReaderRFIDRC522; Disponivel em: https://github.com/fmilburn3/CardReader RFID RC522. Acesso em 01/05/2018.
- Comunicação SPI Parte 1; Disponivel em: https://www.embarcados.com.br/spi-parte-1/ Acesso em 05/06/2018.