Asymptotic Behavior

Algorithm: Design & Analysis
[2]

In the last class...

- Goal of the Course
- Algorithm: the Concept
- Algorithm Analysis: the Contents
- Average and Worst-Case Analysis
- Lower Bounds and the Complexity of Problems

Asymptotic Behavior

- Asymptotic growth rate
- The Sets O, Ω and Θ
- Complexity Class
- An Example: Maximum Subsequence Sum
 - Improvement of Algorithm
 - Comparison of Asymptotic Behavior
- Another Example: Binary Search
 - Binary Search Is Optimal

How to Compare Two Algorithm?

- Simplifying the analysis
 - assumption that the total number of steps is roughly proportional to the number of basic operations counted (a constant coefficient)
 - only the leading term in the formula is considered
 - constant coefficient is ignored
- Asymptotic growth rate
 - large n vs. smaller n

Relative Growth Rate

 Ω (g):functions that grow at least as fast as g

 Θ (g):functions that grow at the same rate as g

O(g):functions that grow no faster as g

The Set "Big Oh"

Definition

- Giving $g: \mathbb{N} \to \mathbb{R}^+$, then $\bigcirc(g)$ is the set of $f: \mathbb{N} \to \mathbb{R}^+$, such that for some $c \in \mathbb{R}^+$ and some $n_0 \in \mathbb{N}$, $f(n) \le cg(n)$ for all $n \ge n_0$.
- A function $f \in O(g)$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$
 - Note: c may be zero. In that case, $f \in o(g)$, "little Oh"

Example

Using L'Hopital's Rule

Let $f(n)=n^2$, $g(n)=n\lg n$, then:

$$f \notin O(g), \text{ since } \lim_{n \to \infty} \frac{n^2}{n \lg n} = \lim_{n \to \infty} \frac{n}{\lg n} = \lim_{n \to \infty} \frac{n}{\frac{\ln n}{\ln 2}} = \lim_{n \to \infty} \frac{1}{\frac{1}{\ln n}} = \infty$$

$$g \in O(f), \text{ since } \lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\ln n}{n \ln 2} = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0$$

For your reference: L'Hôpital's rule

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

with some constraints

Logarithmic Functions and Powers

Which grows faster?

$$\log_2 n$$
 or \sqrt{n} ?

So, $log_2 n \in O(\sqrt{n})$

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{\log_2 e}{n}}{\frac{1}{2\sqrt{n}}} = (2\log_2 e) \lim_{n \to \infty} \frac{\sqrt{n}}{n} = 0$$

The Result Generalized

The log function grows more slowly than *any* positive power of *n*

$$\lg n \in o(n^{\alpha})$$
 for any $\alpha > 0$

By the way:

The power of *n* grows more slowly than any exponential function with base greater than 1

$$n^k \in o(c^n)$$
 for any $c>1$

Dealing with big-O correctly

We have known that : $\log n \in o(n^{0.0001})$

(since
$$\lim_{n\to\infty} \frac{\log n}{n^{\varepsilon}} = 0$$
 for any $\varepsilon > 0$)

However, which is larger: $\log n$ and n^{ε} , if $n = 10^{100}$?

Factorials and Exponential Functions

- n! grows faster than 2^n for positive integer n.

$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{2e}\right)^n = \infty$$

Stirling' s formular :
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

The Sets Ω and Θ

- Definition
 - Giving $g: N \rightarrow R^+$, then $\Omega(g)$ is the set of $f: N \rightarrow R^+$, such that for some $c \in R^+$ and some $n_0 \in N$, $f(n) \ge cg(n)$ for all $n \ge n_0$.
- A function $f \in \Omega(g)$ if $\lim_{n\to\infty} [f(n)/g(n)] > 0$
 - Note: the limit may be infinity
- Definition
 - Giving $g:N \rightarrow R^+$, then $\Theta(g) = \Theta(g) \cap \Omega(g)$
- A function $f \in \Theta(g)$ if $\lim_{n\to\infty} [f(n)/g(n)] = c,0 < c < \infty$

Properties of O, Ω and Θ

- Transitive property:
 - If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$
- Symmetric properties
 - $f \in O(g)$ if and only if $g \in \Omega(f)$
 - $f \in \mathcal{O}(g)$ if and only if $g \in \mathcal{O}(f)$
- Order of sum function
 - $O(f+g)=O(\max(f,g))$

Complexity Class

- Let S be a set of $f: \mathbb{N} \to \mathbb{R}^*$ under consideration, define the relation \sim on S as following: $f \sim g$ iff. $f \in \Theta(g)$ then, \sim is an equivalence.
- Each set $\Theta(g)$ is an equivalence class, called complexity class.
- We usually use the simplest element as possible as the representative, so, $\Theta(n)$, $\Theta(n^2)$, etc.

Effect of the Asymptotic Behavior

algorithm		1	2	3	4
Run time in <i>ns</i>		$1.3n^{3}$	$10n^2$	47nlogn	48n
time for size	10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷	1.3s 22m 15d 41yrs 41mill	10ms 1s 1.7m 2.8hrs 1.7wks	0.4ms 6ms 78ms 0.94s 11s	0.05ms 0.5ms 5ms 48s 0.48s
max Size in time	sec min hr day	920 3,600 14,000 41,000	10,000 77,000 6.0×10 ⁵ 2.9×10 ⁶	$ \begin{array}{c} 1.0 \times 10^{6} \\ 4.9 \times 10^{7} \\ 2.4 \times 10^{9} \\ 5.0 \times 10^{10} \end{array} $	2.1×10 ⁷ 1.3×10 ⁹ 7.6×10 ¹⁰ 1.8×10 ¹²
time for 10 times size		×1000	×100	×10+	×10

on 400Mhz Pentium II, in C

from: Jon Bentley: Programming Pearls

Searching an Ordered Array

- The Problem: Specification
 - Input:
 - an array *E* containing *n* entries of numeric type sorted in non-decreasing order
 - a value *K*
 - Output:
 - *index* for which K=E[index], if K is in E, or, -1, if K is not in E

Sequential Search: the Procedure

- The Procedure
 - Int seqSearch(int[] E, int n, int K)
 - 1. **Int** ans, index;
 - 2. Ans=-1; // Assume failure
 - 3. **For** (index=0; index<n; index++)
 - 4. If (K = E[index]) ans=index;//success!
 - 5. **break**;
 - 6. **return** ans

Searching a Sequence

- For a given *K*, there are two possibilities
 - K in E (say, with probability q), then K may be any one of E[i] (say, with equal probability, that is 1/n)
 - K not in E (with probability 1-q), then K may be located in any one of gap(i) (say, with equal probability, that is 1/(n+1))

Improved Sequential Search

Since *E* is sorted, when an entry larger than *K* is met, no nore comparison is needed

Roughly n/2

- Worst-case complexity: *n*, unchanged
- Average complexity

$$A(n) = qA_{succ}(n) + (1 - q)A_{fail}(n)$$

 $A_{succ}(n) = \sum_{i=0}^{n-1} \left(\frac{1}{n}\right)(i+1) = \frac{n+1}{2}$

$$A_{fail}(n) = \sum_{i=0}^{n-1} \left(\frac{1}{n+1}\right)(i+1) + \left(\frac{1}{n+1}\right)n = \frac{n}{2} + \frac{n}{n+1}$$

$$A(n) = \frac{q(n+1)}{2} + (1-q) \left(\frac{n}{2} + \frac{n}{n+1} \right) \text{ Note: } A(n) \in \Theta(n)$$
$$= \frac{n}{2} + \left(\frac{n}{n+1} + q \left(\frac{1}{2} - \frac{n}{n+1} \right) \right) = \frac{n}{2} + O(1)$$

Divide and Conquer

- If we compare *K* to every *j*th entry, we can locate the small section of *E* that may contain *K*.
 - To locate a section, roughly n/j steps at most
 - To search in a section, j steps at most
 - So, the worst-case complexity: (n/j)+j, with j selected properly, $(n/j)+j\in\Theta(\sqrt{n})$
- However, we can use the same strategy in the small sections recursively

Choose
$$j = \sqrt{n}$$

Binary Search

```
int binarySearch(int[] E, int first, int last, int K)
   if (last<first)
       index=-1;
   else
       int mid=(first+last)/2
       if (K==E[mid])
           index=mid;
       else if (K<E[mid])</pre>
           index=binarySearch(E, first, mid-1, K)
       else if (K<E[mid])
           index=binarySearch(E, mid+1, last, K)
   return index;
```

Worst-case Complexity of Binary Search

- Observation: with each call of the recursive procedure, only at most half entries left for further consideration.
- At most $\lfloor \lg n \rfloor$ calls can be made if we want to keep the range of the section left not less than 1.
- So, the worst-case complexity of binary search is $\lfloor \lg n \rfloor + 1 = \lceil \lg(n+1) \rceil$

Average Complexity of Binary Search

Observation:

- for most cases, the number of comparison is or is very close to that of worst-case
- particularly, if n=2^k-1, all failure position need exactly k comparisons

Assumption:

- all success position are equally likely (1/n)
- $n=2^k-1$

Aver For your reference : Arithmetic - Geometric Series

$$\sum_{i=1}^{k} i2^{i} = \sum_{i=1}^{k} i(2^{i+1} - 2^{i})$$

Avera
$$i=$$

$$A_{q}$$
 (

$$A_1(x)$$

Average
$$k=1$$
 $k=1$ $k=$

$$A_{q}() = (k \cdot 2^{k+1} - 2) - \sum_{i=2}^{k} 2^{i} = (k \cdot 2^{k+1} - 2) - (2^{k+1} - 4)$$

$$=(k-1)\cdot 2^{k+1}+2^{k-1}$$

$$\frac{(k-1)(n+1)+1}{n} = \lg(n+1)-1+O\left(\frac{\log n}{n}\right)$$

$$A_0 = \lg(n+1)$$

$$A_q(n) = \lg(n+1) - q$$

Decision Tree

- A decision tree for *A* and a given input of size *n* is a binary tree whose nodes are labeled with numbers between 0 and *n*-1
 - Root: labeled with the index first compared
 - If the label on a particular node is *i*, then the left child is labeled the index next compared if *K*<*E*[*i*], the right child the index next compared if *K*>*E*[*i*], and no branch for the case of *K*=*E*[*i*].

Binary Search Is Optimal

- If the number of comparison in the worst case is p, then the longest path from root to a leaf is p-1, so there are at most 2^p -1 node in the tree.
- There are at least *n* node in the tree.
 - (We can prove that For all $i \in \{0,1,...,n-1\}$, exist a node with the label i.)
- Conclusion: $n \le 2^p-1$, that is $p \ge \lg(n+1)$

Binary Search Is Optimal

- For all $i \in \{0,1,...,n-1\}$, exist a node with the label i.
- Proof:
 - if otherwise, suppose that i doesn't appear in the tree, make up two inputs E_1 and E_2 , with $E_1[i]=K$, $E_2[i]=K'$, K'>K, for any $j\neq i$, $(0\leq j\leq n-1)$, $E_1[j]=E_2[j]$. (Arrange the values to keeping the order in both arrays). Since i doesn't appear in the tree, for both K and K', the algorithm behave alike exactly, and give the same outputs, of which at least one is wrong, so A is not a right algorithm.

Home Assignment

- pp.63
 - **1.23**
 - **1.27**
 - **1.31**
 - **1.34**
 - **1.37**
 - **1.45**

Maximum Subsequence Sum

- The problem: Given a sequence S of integer, find the largest sum of a consecutive subsequence of S. (0, if all negative items)
 - An example: -2, 11, -4, 13, -5, -2; the result 20: (11, -4, 13)

```
A brute-force algorithm:
MaxSum = 0;
for (i = 0; i < N; i++)
    for (j = i; j < N; j++)
    {
        ThisSum = 0;
        for (k = i; k <= j; k++)
        ThisSum += A[k];
        if (ThisSum > MaxSum)
            MaxSum = ThisSum;
    }
    return MaxSum;
```


More Precise Complexity

The total cost is
$$\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1$$

$$\sum_{i=1}^{j} 1 = j - i + 1$$

$$\sum_{j=i}^{n-1} (j-i+1) = 1+2+...+(n-i) = \frac{(n-i+1)(n-i)}{2}$$

$$\sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2} = \sum_{i=1}^{n} \frac{(n-i+2)(n-i+1)}{2}$$

$$= \frac{1}{2} \sum_{i=1}^{n} i^{2} - (n + \frac{3}{2}) \sum_{i=1}^{n} i + \frac{1}{2} (n^{2} + 3n + 2) \sum_{i=1}^{n} 1$$

$$= \frac{n^3 + 3n^2 + 2n}{6}$$

Decreasing the number of loops

An improved algorithm

```
MaxSum = 0;
for (i = 0; i < N; i++)
{
    ThisSum = 0;
    for (j = i; j < N; j++)
    {
        ThisSum += A[j];
        if (ThisSum > MaxSum)
            MaxSum = ThisSum;
     }
}
return MaxSum;
```


Power of Divide-and-Conquer

Divide-and-Conquer: the Procedure

```
Center = (Left + Right) / 2;
 MaxLeftSum = MaxSubSum(A, Left, Center); MaxRightSum = MaxSubSum(A, Center + 1, Right);
 MaxLeftBorderSum = 0; LeftBorderSum = 0;
 for (i = Center; i >= Left; i--)
 LeftBorderSum += A[i];
 if (LeftBorderSum > MaxLeftBorderSum) MaxLeftBorderSum = LeftBorderSum;
                                                        Note: this is the core part of the
 MaxRightBorderSum = 0; RightBorderSum = 0;
                                                        procedure, with base case and
 for (i = Center + 1; i \le Right; i++)
                                                        wrap omitted.
  RightBorderSum += A[i];
  if (RightBorderSum > MaxRightBorderSum) MaxRightBorderSum = RightBorderSum;
 return Max3(MaxLeftSum, MaxRightSum,
     MaxLeftBorderSum + MaxRightBorderSum);
```

A Linear Algorithm

```
ThisSum = MaxSum = 0;
 for (j = 0; j < N; j++)
  ThisSum += A[j];
  if (ThisSum > MaxSum)
   MaxSum = ThisSum;
  else if (ThisSum < 0)
 ThisSum = 0;
 return MaxSum;
           in O(n)
```

the sequence

This is an example of "online algorithm"

Negative item or subsequence cannot be a prefix of the subsequence we want.