처리에 따른 칼슘의 변화

성별 / 처리	처리1 (x1)	처리2 (x2)	처리3 (x3)
남(yl)	16.87	19.07	32.45
남(yl)	16.18	18.77	28.71
남(yl)	17.12	17.63	34.65
남(yl)	16.83	16.99	28.79
남(yl)	17.19	18.04	24.46
여(y2)	15.86	17.20	30.54
여(y2)	14.92	17.64	32.41
여(y2)	15.63	17.89	28.97
여(y2)	15.24	16.78	28.46
여(y2)	14.80	16.72	29.65

In [2]:

```
# 세 종류의 호르몬 처리와 성별에 따라 혈액 칼슘값에 차이가 있는지 알아보기 위해 남녀 각 15명씩 선정하여 세 집단으로 나누
#[조건]
#1. 남녀 간의 혈액칼슘값에 차이가 있는가?
#2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가?
#3. 성별과 처리 간의 상호작용(교호작용)이 있는가?
import pandas as pd
from scipy import stats
data = \{x1': [16.87, 16.18, 17.12, 16.83, 17.19, 15.86, 14.92, 15.63, 15.24, 14.80],
    'x2': [19.07, 18.77, 17.63, 16.99, 18.04, 17.20, 17.64, 17.89, 16.78, 16.72],
    'x3': [32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41, 28.97, 28.46, 29.65]}
df = pd.DataFrame(data)
f value1, p value1 = stats.f oneway(df.loc[4].mean(axis=1), df.loc[5:].mean(axis=1))
# 귀무가설: 남녀 간의 혈액칼슘값에 차이가 없다.
# 대립가설: 남녀 간의 혈액칼슘값에 차이가 있다.
print('1. 남녀 간의 혈액칼슘값에 차이가 있는가?')
print(fF-value (gender): {f value1}')
print(fP-value (gender): {p value1}')
alpha = 0.05
if p value1 < alpha:
 print(f'p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")
 print(f'p-value는 {p value1:4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")
f_{value2}, p_{value2} = stats.f_{oneway}(df['x1'], df['x2'], df['x3'])
# 귀무가설: 처리 1,2,3 간의 혈액칼슘값에 차이가 없다.
#대립가설: 처리 1,2,3 간의 혈액칼슘값에 차이가 있다.
print('\n2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가?')
print(fF-value (hormone treatment): {f value2}')
print(fP-value (hormone treatment): {p_value2}')
alpha = 0.05
if p value 2 < alpha:
 print(f'p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")
 print(f'p-value는 {p value2:4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")
_{,p} value3 = stats.f_oneway(df.loc[:4].mean(axis=1), df.loc[5:].mean(axis=1), df['x1'], df['x2'], df['x3'])
# 귀무가설: 성별과 처리 간의 상호작용(교호작용)이 없다.
#대립가설: 성별과 처리 간의 상호작용(교호작용)이 있다.
print('\n3. 성별과 처리 간의 상호작용(교호작용)이 있는가?')
print(fP-value (상호작용(p)): {p_value3}')
alpha = 0.05
if p value3 < alpha:
 print(f'p-value는 {p value3:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")
else:
```

print(f'p-value는 {p value3:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

1. 남녀 간의 혈액칼슘값에 차이가 있는가? F-value (gender): 1.2281053891636358 P-value (gender): 0.2999781499107576 p-value는 0.3000로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가? F-value (hormone treatment): 183.84284815750473 P-value (hormone treatment): 1.8793907468359085e-16 p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

3. 성별과 처리 간의 상호작용(교호작용)이 있는가? P-value (상화작용(p)): 3.5024986934065393e-19 p-value는 0.0000로, 유의 수준 0.05보다 작다.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js