		•			
	,				
•					
				•	
	•				
					•
	٠				
					a f
•					

	Reg. No.													
--	----------	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2018

		15CS302J - OPERATI	NG SYSTEMS	
Note:				
(i)	over to hall invigilator at	t the end of 45 th minute.	n first 45 minutes and OMR sheet should be ha	ınded
(ii)	Part - B and Part - C sh	ould be answered in answe	er booklet.	
Time: T	hree Hours		Max. Marks:	100
		$PART - A (20 \times 1 =$	= 20 Marks)	
		Answer ALL Qu	,	
1.	contains the a	address of an instruction	to be fetched.	
	(A) Stack pointer		B) Program counter	
	(C) Index register	(D	D) Instruction register	
2.	contains the m	ost frequently used fund	ctions in the operating system, at a given	time
		perating system currently	· · ·	
	(A) Scheduling	(B	Setup time	
	(C) Kernel	(D	D) Fixes	
3.	The central are behind	the simple batch proces	ssing scheme was the use of a piece of softw	ware
	known as	1 1		
	(A) Interrupts	(B	3) Timer	
	(C) Memory protection	on (D	O) Monitor	
4.	contains the in	struction most recently f	fetcher	
	(A) Instruction registe	er (B	B) Data register	
	(C) Address register	(D) Index register	
5.	When the operating sy	stem creates a process	at the explicit request of another process,	, the
	action is referred to as			
	(A) Process creation	(B	B) Process termination	
	(C) Process batch	(D) Process spawning	
6.			er is referred to as the parent process and	the
	spawned process is refe	•		
	(A) Induced process	-	3) Log process	
	(C) Child process	(D	D) Batch process	
7.	consists of the	contents of processor re	gisters	
	(A) Processor state in	formation (B	B) Processor block information	
	(C) Processor control	information (D) Processor word information	
8.	With a the opera	iting system determine i	if the error or exception condition is fatal.	
	(A) Interrupt) Fault	
	(C) Mode	(D) Trap	

Page 1 of 3 11MF15CS302J

9.		sses a	re unable to proceed because each is waiting
	for one of the others to do something.	~	
	(A) Dead lock	` ,	Saturation
	(C) Enter critical	(D)	Exit critical
10.	A semaphore may only take on the	value	es 0 and 1
	(A) Strong	(B)	Weak
	(C) Binary	(D)	Hexadecimal
11.	A situation in which a runnable process is it is able to proceed, it is never choses is re		ooked indefinitely by the schedules although
	(A) Dead lock		Mutual exclusion
	(C) Par begin	` ′	Starvation
	(C) Tar begin	(D)	Starvation
12.	The process that has been blocked the lon definition includes this policy is called as	gest i	s released from the first, a semaphore whose
	(A) Strong semaphore		Wait semaphore
	(C) Binary semaphore	(D)	Primitive semaphore
13.	the same size as that process, this technique	e is	process is loaded into a partition of exactly
	(A) Paging		Dynamic partitioning
	(C) Fixed partitioning	(D)	Simple paging
14.	declines and this phenomenon is referred a	ıs	d more fragmental and memory utilization
	(A) Segmentation	` '	Paging
	(C) Exclusion	(D)	External fragmentation
15.	One technique for overcoming external fra	gmen	tation is
	(A) Placement	(B)	Paging
	(C) Compaction	(D)	Fragmentation
16.	is an actual location is main mem	ory	
	(A) Physical address	-	Logical address
	(C) Net address	. ,	Primary address
17.	module controls the exchange of	data 1	between main memory and an I/O module.
17.	(A) I/O function		Direct memory access
	(C) I/O programmer	. ,	Local memory access
18.	devices stores information in h	locks	that are usually of fixed, and transfers are
	made one block at a time		
	(A) Stream oriented	(B)	File system
	(C) Buffering	(D)	Block oriented
19.	A process now transfers data to one buffer technique is referred as	r whil	e the operating system empties the other, this
	(A) Double buffering	(B)	Single buffering
	(C) Multi buffering	` '	Uni buffering
		. /	-

20.	devices transfer	data ir	and	out as	a stream	of bytes,	with no	block structures

(A) Single buffer

(C) Double buffer

(B) Stream oriented

(D) Circulated buffering

PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions

- 21. List out the structural elements of a computer to execute a program.
- 22. With a flow chart explain how a simple interrupt processing is processed.
- 23. List out any four reasons for process creation.
- 24. Explain about scheduling and state information which is an attribute of process control information.
- 25. List out the three degrees of awareness between processes.
- 26. Identify the difference between page and segment.
- 27. Define seek time and rotational latency.

PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions

28. a. Theorize in detail about interrupts and its types.

(OR)

- b. Compare multiprocessing batch system and time sharing systems.
- 29. a. With its transition diagram explain in detail about five state model.

(OR)

- b. List out the attribute of process control information and explain in detail.
- 30. a. Explain the challenges faced by operating system in achieving concurrency in multiprogramming and multiprocessing.

(OR)

- b. Theorize the semaphore mechanism and explain briefly with an example.
- 31. a. List out the memory partitioning techniques and explain in detail.

(OK

- b. Discuss how logical to physical address translation is happening is paging and explain in detail about paging with example.
- 32. a. What is buffering? List out the various I/O buffering schemes and discuss in detail.

(OR)

b. Identify the criteria for choosing a file organization and outline the fundamental file organization in detail.

* * * *