Devoir libre no 1

Exercice 1

1. Déterminer la valeur de vérité des propositions suivantes

P:
$$((\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}) \text{ ou "4 est premier})$$
 Q: $(2, 3 \notin \mathbb{N} \text{ et } |1 - \sqrt{2}| = 1 - \sqrt{2}).$
R: $((\forall x \in \mathbb{R}), x^3 \ge x^2).$ S: $(\exists n \in \mathbb{N}), n^2 - 6n + 9 = 0).$

- 2. On considère la proposition suivante : $T: (\forall x \in \mathbb{R}), 3x^2 4x + 2 \leq 0$
 - (a) Donner la négation de T.
 - (b) Déterminer la valeur de vérité de la proposition T.
- 3. En utilisant le raisonnement par équivalence, montrer que pour tout $a \in [3; +\infty[$ et $a \in [-1; +\infty[$ on a : $[\sqrt{a-3} + \sqrt{b+1} = \frac{a+b}{2}] \iff [a=4 \text{ et } b=0]$
- 4. En utilisant le raisonnement par la contraposée ,montrer que :

$$\forall x \in \mathbb{R}^+ : (x \neq 1) \Rightarrow \left(\frac{3-x}{1+\sqrt{x}} \neq 2-\sqrt{x}\right).$$

5. En utilisant le raisonnement par récurrence , montrer que : $\forall n\in\mathbb{N}^*:\ 2+4+\cdots+2n=n(n+1).$

Exercice 2

On considère la fonction f définie par $f(x) = \frac{x^2 + x + 1}{x^2 + 1}$.

- 1. Déterminer D_f le domaine de définition de la fonction f.
- 2. Montrer que f est bornée sur $\mathbb R$ par $\frac{1}{2}$ et $\frac{3}{2}$.
- 3. Est-ce que $\frac{1}{2}$ et $\frac{3}{2}$ sont des extremums de f sur \mathbb{R} ?.
- 4. (a) Soient x et y deux réels tels que $x \neq y$. Montrer que $\frac{f(x) f(y)}{x y} = \frac{1 xy}{(x^2 + 1)(y^2 + 1)}$.
 - (b) Déduire les variations de la fonction f sur les intervalles $[1; +\infty[, [-1; 1]$ et $]-\infty; -1]$.

Exercice 3

1. Soit h une fonction périodique définie par $:h(x)=2\sin(3x-\pi).$ déterminer la période de h.

Exercice 4

On considère la fonction numérique f définie sur \mathbb{R} par $f(x) = -2x^3 + \frac{3}{2}x - \frac{1}{2}$ et la droite d'équation $y = -\frac{1}{2}x - \frac{1}{2}$,et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ est la suivante :

- 1. Résoudre graphiquement dans \mathbb{R} l'équation f(x) = 0.
- 2. Résoudre graphiquement dans \mathbb{R} l'équation $f(x) = -\frac{1}{2}x \frac{1}{2}$.
- 3. Résoudre graphiquement dans $\mathbb R$ l'inéquation $f(x) \leq -\frac{1}{2}x \frac{1}{2}.$

Correction du devoir libre nº 1

Exercice 1

- 1. Déterminer la valeur de vérité des propositions suivantes
 - Déterminer la valeur de vérité P : $((\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}))$ ou 4 est premier). La valeur de vérité de $(\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3})$ est vraie, et celle de (4 est premier) est fausse. Alors, la valeur de vérité de P est vraie.

Déterminer la valeur de vérité $Q:(2,3 \notin \mathbb{N} \text{ et } |1-\sqrt{2}|=1-\sqrt{2}).$ La valeur de vérité de $(2,3 \notin \mathbb{N})$ est vraie, et celle de $(|1-\sqrt{2}|=1-\sqrt{2})$ est

Alors, la valeur de vérité de Q est fausse.

Déterminer la valeur de vérité R : $((\forall x \in \mathbb{R}), x^3 \ge x^2)$.

Pour $x = \frac{1}{2}$, on a $x^3 = \frac{1}{8} < x^2 = \frac{1}{4}$.

Alors, la valeur de vérité de R est fausse.

Déterminer la valeur de vérité S : $(\exists n \in \mathbb{N}), n^2 - 6n + 9 = 0$.

On considère, dans N, l'équation (E): $n^2 - 6n + 9 = 0$.

On a
$$(E) \iff n^2 - 2 \times n \times 3 + 3^2 = 0$$

 $\iff (n-3)^2 = 0$
 $\iff n-3 = 0$
 $\iff n = 3 \in \mathbb{N}$

Alors, la valeur de vérité de S est vraie.

- 2. On considère la proposition suivante : $T: (\forall x \in \mathbb{R}), 3x^2 4x + 2 \leq 0$
 - (a) Donner la négation de T. La négation de T est $\overline{T}: (\exists x \in \mathbb{R}), 3x^2 - 4x + 2 > 0.$
 - (b) Déterminer la valeur de vérité de la proposition T.

Pour x = 0, on a $3x^2 - 4x + 2 = 2$ et 2 > 0.

Alors, la valeur de vérité de \overline{T} est vraie.

D'où, la valeur de vérité de T est fausse.

3. En utilisant le raisonnement par équivalence, montrer que pour tout $a \in [3; +\infty[$ et $a \in [-1; +\infty[$ on a : $[\sqrt{a-3} + \sqrt{b+1} = \frac{a+b}{2}] \iff [a=4 \text{ et } b=0].$

4. En utilisant le raisonnement par la contraposée ,montrer que :

$$\forall x \in \mathbb{R}^+ : (x \neq 1) \Rightarrow \left(\frac{3-x}{1+\sqrt{x}} \neq 2-\sqrt{x}\right).$$
 Soit $x \in \mathbb{R}^+$, il suffit de montrer que $\left(\frac{3-x}{1+\sqrt{x}} = 2-\sqrt{x}\right) \Rightarrow (x=1).$

On a
$$\left(\frac{3-x}{1+\sqrt{x}}=2-\sqrt{x}\right)$$
 \Longrightarrow $(3-x=(2-\sqrt{x})(1+\sqrt{x}))$ \Longrightarrow $(3-x=-x+\sqrt{x}+2)$ \Longrightarrow $(\sqrt{x}=1)$ \Longrightarrow $(x=1)$ D'où $\forall x \in \mathbb{R}^+: (x \neq 1) \Rightarrow \left(\frac{3-x}{1+\sqrt{x}} \neq 2-\sqrt{x}\right)$.

5. En utilisant le raisonnement par récurrence ,montrer que :

$$\forall n \in \mathbb{N}^* : 2 + 4 + \dots + 2n = n(n+1).$$

Pour n = 1, on a 2 = 1(1 + 1).

Soit $n \in \mathbb{N}^*$.

Supposons que $2+4+\cdots+2n=n(n+1)$,

et montrons que $2 + 4 + \cdots + 2n + 2(n+1) = (n+1)(n+2)$.

On a
$$2+4+\cdots+2n+2(n+1)=n(n+1)+2(n+1)$$

= $(n+1)(n+2)$

D'où, par principe de récurrence, on a $\forall n \in \mathbb{N}^*$: $2+4+\cdots+2n=n(n+1)$.

Exercice 2

On considère la fonction f définie par $f(x) = \frac{x^2 + x + 1}{x^2 + 1}$.

1. Déterminer D_f le domaine de définition de la fonction f.

On a $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\} = \mathbb{R}$.

2. Montrer que f est bornée sur \mathbb{R} par $\frac{1}{2}$ et $\frac{3}{2}$.

Soit
$$x \in \mathbb{R}$$
, on a $f(x) - \frac{1}{2} = \frac{x^2 + 2x + 1}{2(x^2 + 1)} = \frac{(x+1)^2}{2(x^2 + 1)}$.

Puisque
$$\forall x \in \mathbb{R} : (x+1)^2 \ge 0 \text{ et } 2(x^2+1) > 0, \text{ alors } \forall x \in \mathbb{R} : \frac{(x+1)^2}{2(x^2+1)} \ge 0.$$

Donc
$$\forall x \in \mathbb{R} : f(x) \ge \frac{1}{2}$$
.

D'où la fonction f est minorée par $\frac{1}{2}$.

Soit
$$x \in \mathbb{R}$$
, on a $f(x) - \frac{3}{2} = \frac{-x^2 + 2x - 1}{2(x^2 + 1)} = \frac{-(x - 1)^2}{2(x^2 + 1)}$.

Puisque
$$\forall x \in \mathbb{R} : -(x-1)^2 \le 0 \text{ et } 2(x^2+1) > 0, \text{ alors } \forall x \in \mathbb{R} : \frac{-(x-1)^2}{2(x^2+1)} \le 0.$$

Donc
$$\forall x \in \mathbb{R} : f(x) \le \frac{3}{2}$$
.

D'où la fonction f est majorée par $\frac{3}{2}$.

3. Est-ce que $\frac{1}{2}$ et $\frac{3}{2}$ sont des extremums de f sur \mathbb{R} ?

D'après la question 2, on a f est bornée sur \mathbb{R} par $\frac{1}{2}$ et $\frac{3}{2}$.

De plus, on a
$$f(-1) = \frac{1}{2}$$
 et $f(1) = \frac{3}{2}$.

Donc $\frac{1}{2}$ est la valeur minimale de f sur \mathbb{R} , et $\frac{3}{2}$ sa valeur maximale.

4. (a) Soient x et y deux réels tels que $x \neq y$. Montrer que $\frac{f(x)-f(y)}{x-y} = \frac{1-xy}{(x^2+1)(y^2+1)}$.

(b) Déduire les variations de la fonction f sur les intervalles $[1; +\infty[, [-1; 1]$ et $]-\infty; -1]$.

D'après la question 4.a, le signe $\frac{f(x)-f(y)}{x-y}$ est celui de 1-xy.

Soient x et y de $[1; +\infty[$.

On a
$$x \ge 1$$
 et $y \ge 1 \Longrightarrow xy \ge 1$

$$\Longrightarrow 1 - xy \le 0$$

$$\Longrightarrow \frac{f(x) - f(y)}{x - y} \le 0$$

Donc f est décroissante sur $[1; +\infty[$.

Soient x et y de [-1;1].

On a
$$|x| \le 1$$
 et $|y| \le 1 \Longrightarrow |xy| \le 1$

Donc f est croissante sur [-1;1].

Soient x et y de $]-\infty;-1]..$

On a
$$x \le -1$$
 et $y \le -1 \Longrightarrow xy \ge 1$
 $\Longrightarrow 1 - xy \le 0$
 $\Longrightarrow \frac{f(x) - f(y)}{x - y} \le 0$

Donc f est décroissante sur $]-\infty;-1]..$

Exercice 3

1. Soit h une fonction périodique définie par $:h(x)=2\sin(3x-\pi).$

Déterminer la période de h.

Soit
$$x \in \mathbb{R}$$
, on a $h(x)=2\sin(3x-\pi)$
 $=2\sin(3x-\pi+2\pi)$
 $=2\sin(3x+2\pi-\pi)$
 $=2\sin\left(3\left(x+\frac{2\pi}{3}\right)-\pi\right)$
 $=h\left(x+\frac{2\pi}{3}\right)$

Donc $\forall x \in \mathbb{R} : x + \frac{2\pi}{3} \in \mathbb{R} \text{ et } h\left(x + \frac{2\pi}{3}\right) = h(x),$

D'où, h est périodique, de période $\frac{2\pi}{3}$.

Exercice 4

On considère la fonction numérique f définie sur \mathbb{R} par $f(x) = -2x^3 + \frac{3}{2}x - \frac{1}{2}$ et la droite d'équation $y = -\frac{1}{2}x - \frac{1}{2}$, et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ est la suivante :

- 1. Résoudre graphiquement dans \mathbb{R} l'équation f(x) = 0. On a $S = \{-1, 0, 5\}$.
- 2. Résoudre graphiquement dans $\mathbb R$ l'équation $f(x)=-\frac{1}{2}x-\frac{1}{2}$. On a $S=\{-1;0;1\}$.
- 3. Résoudre graphiquement dans \mathbb{R} l'inéquation $f(x) \leq -\frac{1}{2}x \frac{1}{2}$. On a $S = [-1, 0] \cup [1, +\infty[$.