Introduction

A Little about Myself

On-Time Performance Forecast Project

What Is On-Time Performance?

- On-time performance (OTP) is one the of key KPIs that are closely monitored in the airline industry. It measures the ability of an airline to be operated on time. Specifically, it is a metric calculating the percentage of on-time flights remaining on the published schedule.
- The OTP used in this project is a daily metric, determined by the number of arrival on-time flights vs. total number of scheduled flights per day, following the 15-minute on-time rule.
 - OTP = (total on-time flights/total scheduled flights)* 100%
- 15-minute on-time rule: a flight that arrives within 15 minutes of its scheduled arrival time is considered on time

Project Background

- My team: a data science/operation research consultancy group
- My internal customers/stakeholder
- Analytics in airline operations: challenges and opportunities
- Opportunities and threats for our team
- Lineup for this project

Why Predicting OTP?

- POC: breaking the ground for predictive analytics in airline operation using weather
- Strategic reasons
- Providing decision-driven insights

Data Cleaning and Wrangling

Data Overview

What factors could impact on-time performance?

- Data considered in this project:
 - Weather forecast data
 - Passenger data: load factors
 - Schedule data: daily number of scheduled flights
 - Seasonality: day of week, month
 - Yesterday's OTP

Working with Weather Data

 Multiple weather forecast data sources to choose from:

- Things to consider when choosing the most suitable weather forecast source:
 - Data quality
 - Data availability
 - Data discrepancy
 - Easiness to obtain

Working with Weather Data

- An example of weather prediction data for one station
- Efforts in understanding the numerous elements in weather forecast data
 - Research
 - Ask domain experts
 - Exploratory analysis

Data Blending

- Querying external data: Python web scraping
- Querying Internal data: SQL
- Blending: Python
- Remember to do sanity check

Modeling

Overview of OTP Model

Seasonality

 Considering the operation differences among days of week and months

Weather

- Weather information includes visibility, wind speed, snow duration and etc. per day
- Using historical weather of 20 stations at different time of day (morning, afternoon, evening, and midnight)

Load factor

- Using historical station-level average load factor per day
- It includes load factors of 20 stations each day

OTF

- Acting as a target for the model to learn from
- Using daily OTP data of three years

Predictive modeling

- Find patterns within data
- Extract data features that well correlate/represent OTP using a model

Machine Learning Models Investigated

	Tree-based models	Gradient Boosting Model
		Random Forest
R	Linear models	Multivariate Linear Regression
		Lasso
		Ridge
	Artificial intelligence	Neural Network

Influential Variables in the Model

Cross Validation

- Variables used vs. data points available for training
 - Why three years of training data?
- Benefits of using cross validation
- RMSE

Final Model

- Factors considered when choosing a model:
 - Performance
 - Model accuracy
 - Dimension reduction
 - Interpretability
 - Time needed to run
- Lasso is the final model implemented in this project

Visualization

Visualization on Model Performance

What plot could be used? Q-Q plot? Scatterplot?

August-October 2017 daily OTP actual vs. prediction

Dashboard Presented to Clients

Deployment

Predicting Tomorrow

- When to run?
- When will the data be ready?
- Channel for showing the prediction

Model Maintenance

- Model retraining frequency
- Process of maintaining the model/dashboard

Business Challenges

Customer Feedback

Future Directions

Further Expand the Project

- Network level OTP—station level OTP flight level OTP (flight delays)
- Real decision-driven models
- More models informing customers of potential upcoming repercussion