Construct a nondeterministic finite automaton accepting {ab, ba}, and use it find a deterministic automaton accepting the same set.

Construct a nondeterministic finite automaton accepting the set of all strings ver $\{a, b\}$ ending in aba. Use it to construct a DFA accepting the same set of trings.

The transition table of a nondeterministic finite automaton M is given in Table 2.25. Construct a deterministic finite automaton equivalent to M.

Table 2.25 Transition Table for Exercise 2.7

State	10 juo na	doing faithe	an (1.2)
$\rightarrow q_0$	9194	q 4	9293
91	playings, not	94	
92			9293
$\overline{q_3}$		94	

- 8. Construct a DFA equivalent to the NDFA given in Fig. 2.8.
- 9. $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$ is a nondeterministic finite automaton, where δ is given by

$$\delta(q_1, 0) = \{q_2, q_3\} \quad \delta(q_1, 1) = \{q_1\}$$

$$\delta(q_2, 0) = \{q_1, q_2\} \quad \delta(q_2, 1) = \emptyset$$

$$\delta(q_3, 0) = \{q_2\} \quad \delta(q_3, 1) = \{q_1, q_2\}$$

Construct an equivalent DFA.

14. Construct a minimum state automaton equivalent to a given automaton M whose transition table is given in Table 2.28.

Table 2.28 FA of Exercise 2.14

States	Input	
	a	b
$\rightarrow q_0$	90	93
q_1	92	95
92	93	94
93	90	95
94	90	96
95	91	94
(96)	91	93