UNIT - I CO2 - Partial differentiation

$$1.f(x, y) = x^2 + xyz + z$$
 Find f_X at $(1,1,1)$

2.f(x, y) =
$$\sin(xy) + x^2 \ln(y)$$
 Find f_{yx} at $(0, \frac{\pi}{2})$
a) 33 b) 0 c) 3 d) 1

$$3.f(x, y) = x^2 + y^3$$
; $X = t^2 + t^3$; $y = t^3 + t^9$ Find $\frac{df}{dt}$ at $t=1$.

$$4.f(x, y) = \sin(x) + \cos(y) + xy^2$$
; $x = \cos(t)$; $y = \sin(t)$ Find $\frac{df}{dt}$ at $t = \frac{\pi}{2}$

$$5.f(x, y, z, t) = xy + zt + x^2 yzt; x = k^3; y = k^2; z = k; t = \sqrt{k}$$

Find
$$\frac{df}{dt}$$
 at $k = 1$

6.f(x, y) =
$$\sin(y + yx^2) / 1 + x^2$$
 Value of f_{XY} at (0,1) is

8. If
$$u = x^2 tan^{-1}(y/x) - y^2 tan^{-1}(x/y)$$
 then $\frac{\partial^2 u}{\partial x \partial y}$ is

a)
$$\frac{x^2+y^2}{x^2-y^2}$$

b)
$$\frac{x^2-y^2}{x^2+y^2}$$

a)
$$\frac{x^2+y^2}{x^2-y^2}$$
 b) $\frac{x^2-y^2}{x^2+y^2}$ c) $\frac{x^2}{x^2+y^2}$ d) $\frac{y^2}{x^2+y^2}$

$$d)\frac{y^2}{x^2+y^2}$$

9.If
$$f(x,y)$$
 is a function satisfying euler's theorem then?
a) $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$

b)
$$\frac{1}{x^2} \frac{\partial^2 f}{\partial x^2} + \frac{2}{xy} \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{y^2} \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$

c)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = nf$$

$$d)y^{2}\frac{\partial^{2} f}{\partial x^{2}} + 2xy\frac{\partial^{2} f}{\partial x \partial y} + x^{2}\frac{\partial^{2} f}{\partial y^{2}} = n(n-1)f$$

10.In euler theorem x
$$\partial z/\partial x + y \partial z/\partial y = nz$$
, here 'n' indicates?

a) order of
$$z$$
 b) degree of z c) neither order nor degree d) constant of z

11. For homogeneous function with no saddle points we must have the minimum value as

 $12.f(x, y) = \sin(y/x)x^3 + x^2y$ find the value of $f_X + f_Y$ at (x,y)=(4,4).

- a) 0
- b) 78
- c) $4^2 \cdot 3(\sin(1) + 1)$

 $13.f(x, y) = x^3 + xy^2 + 901$ satisfies the Euler's theorem.

14. If $z = x^n f(\frac{y}{x})$ then?

- a) $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = nz$ b) $\frac{1}{y} \frac{\partial z}{\partial x} + \frac{1}{x} \frac{\partial z}{\partial y} = nz$ c) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$ d) $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = nz$

15.If $z = e^{\frac{x^2 + y^2}{x + y}}$ then, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is?

- a) 0
- b) z ln(z) c) $z^2 ln(z)$
- d) z

16.Relative error in x is?

- a) δx
- b) δx_x
- c) $^{\delta X}/_{x} * 100$
- d) 0

21.If u=x+3y²-z³, v=4x² yz, w=2z²-xy then $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,1,1).

- a) 184

22.If x=rcos θ , y=rsin θ then the value of $\frac{\partial(x,y)}{\partial(r,\theta)}$ is ______ a) 1 b) 0 c) r d) $\frac{1}{r}$

23. If $u + v = e^x \cos y$ and $u - v = e^x \sin y$ the value of $J\left(\frac{u,v}{x,y}\right)$ is _____

- a) e^{2x}
- b) $\frac{e^2x}{2}$ c) $\frac{-e^2x}{2}$ d) 0

24. Which among the following is the definition of Jacobian of u and v w.r.t x and y? a) $J\left(\frac{x,y}{u,v}\right)$ b) $J\left(\frac{u,v}{x,y}\right)$ c) $\frac{\partial(x,y)}{\partial(u,v)}$ d) $\frac{\partial(u,v)}{\partial(x,y)}$

25. Given $f(x,y)=e^X \cos y$, what is the value of the fifth term in Taylor's series near $(1,\frac{\pi}{4})$ where it is expanded in increasing order of degree & by following algebraic identity rule?

- a) $\frac{-e(x-1)\left(y-\frac{\pi}{4}\right)}{\sqrt{2}}$
- b) $-\sqrt{2}e(x-1)\left(y-\frac{\pi}{4}\right)$

c) $\frac{e(x-1)^2}{\sqrt{2}}$

d) $\frac{e\left(y-\frac{\pi}{4}\right)^2}{\sqrt{2}}$

26. Consider the $f(x, y) = x^2 + y^2 - a$. For what values of a do we have critical points for the function. a) independent of a b) for any real number except zero c) $a \in (0, +\infty)$ d) $a \in (-1, 1)$		
27. $f(x, y) = \sin(x) \cdot \cos(y)$ Which of the following is a critical point? a) $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ b) $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$ c) $\left(0, \frac{\pi}{4}\right)$ d) $(0, 0)$		
28. The point (0,0) in the domain of a) Saddle b) Minima	$f(x, y) = \sin(xy)$ c) Maxim	
29. Maximize the function $x + y - z = a$ a) 0 b) -8		ct to the constraint xy=36. d) No Maxima exists
30.A partial differential equation requires a) exactly one independent variable c) two or more independent variables d) equal number of dependent and independent variables		
31.If $u = e^x(x\cos y - y\sin y)$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} =$ a)0 b)u c)eu d)none		
32.If $x = uv$, $y = u/v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ is, a) $-2u/v$ b) $-2v/u$ c)0 d)1		
33.If $J_1 = \frac{\partial(u,v)}{\partial(x,y)}$, $J_2 = \frac{\partial(x,y)}{\partial(u,v)}$ then J_1J_2 a) 2 b)0	c)1	d)none
34.If $u = x^y$, then $\frac{\partial u}{\partial x}$ is a)0 b) yx^{y-1}	$c)x^y logx$	d)none
35.If $u = x^y$, then $\frac{\partial u}{\partial y}$ is a)0 b) yx^{y-1}	$c)x^y log x$	d)none
36.If $u = x^3 + y^3$, then $\frac{\partial^2 u}{\partial x \partial y}$ is equa a)-3 b)3	l to c)0	d)3x+3y
37.If $u = x^2 + 2xy + y^2 + x + y$ th a)2u b)u		is equal to d)none
38.If $u = log \frac{x^2}{y}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to a)2u b)3u c)u d)1		
39.If $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$, $C = f_{yy}(a, b)$ then $f(x, y)$ will have a maximum at (a,b) if a) $f_x = 0$, $f_y = 0$, $AC < B^2$ and $A < 0$ b) $f_x = 0$, $f_y = 0$, $AC = B^2$ and $A > 0$ c) $f_x = 0$, $f_y = 0$, $AC > B^2$ and $A > 0$ d) $f_x = 0$, $f_y = 0$, $AC > B^2$ and $A < 0$		

40.If
$$z = sin^{-1} \frac{\sqrt{x^2 + y^2}}{x + y}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to a)0 b)1/2 c)1 d)2
41.If $u = sin^{-1}(x/y) + tan^{-1}(y/x)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to a)u b)2u c)3u d)0

42. If an error of 1% is made in measuring its length and breadth, the percentage error in the area of a rectangle is

- a)0.2% b)0.02%
- c)2%
- d)1%

43. $\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$ is a homogeneous function of degree.....
b)2 c)0 d)1/2

44. If u and v are functions of r, s where r, s are functions of x, y then $\frac{\partial(u,v)}{\partial(r,s)} \cdot \frac{\partial(r,s)}{\partial(r,v)} = \dots$

- a) $\frac{\partial(u,v)}{\partial(x,y)}$
- b) $\frac{\partial(u,v)}{\partial(r,s)}$ c) $\frac{\partial(r,s)}{\partial(x,v)}$
- d)none

45. The necessary conditions for a function f(x, y) to have an extreme at (a,b) are.....

- a) $f_x > 0$, $f_y > 0$ b) $f_x < 0$, $f_y > 0$ c) $f_x = 0$, $f_y = 0$ d) $f_x < 0$, $f_y < 0$

46. If $u = (x - y)^4 + (y - z)^4 + (z - x)^4$, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ is a)1

47.If $u = cos^{-1}(x/y) + tan^{-1}(y/x)$ then $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ is a)u b)2u c)0 d)1

48.If u = f(x + ay) + g(x - ay) then $\frac{\partial^2 u}{\partial y^2}$ equals

- a) $\frac{\partial^2 u}{\partial x^2}$ b) $a\frac{\partial^2 u}{\partial x^2}$ c) $a^2\frac{\partial^2 u}{\partial x^2}$ d) $\frac{\partial^2 u}{\partial x \partial y}$

49.If $u = x^4 + y^4 + 3x^2y^2$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

- a)u
- b)3u

50.If u = f(y/x)then

- a) $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = 0$ b) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ c) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$ d) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$

Answers: 1)c 2)d 3.)d 4)b 5)b 6)a 7)a 8.)b 9)a 10)a 11)d 12)c 13)b 14)c 15)b 16)b 17)a 18)a 19)b 20)a 21)a 22)c 23)c 24)b 25)a 26)a 27)c 28)d 29)d 30) 31)a 32)b 33)c 34)b 35)c 36)c 37)d 38) 39)d 40)a 41)a 42)d 43)c 44)a 45)c 46)d 47)c 48)c 49.)c 50)b