Appendix

A.1 Extending the pointwise normal reach to the non-manifold setting 378

- Federer (1959) introduces reach for arbitrary subsets of Euclidean space. In this situation $T_x \mathcal{M}$ and $N_x \mathcal{M}$ 379
- denote the tangent- and normal cone. 380
- **Definition A.1.** Let $\mathcal{M} \subset \mathbb{R}^D$ denote an arbitrary subset and let $x \in \mathcal{M}$. Then $v \in \mathbb{R}^D$ is a tangent vector for \mathcal{M} at \mathbf{x} if either v = 0 or if for every $\varepsilon > 0$ exists $\mathbf{y} \in \mathcal{M}$ with 381

$$0 < \|\mathbf{y} - \mathbf{x}\| < \varepsilon \quad \text{and} \quad \left\| \frac{\mathbf{y} - \mathbf{x}}{\|\mathbf{y} - \mathbf{x}\|} - \frac{v}{\|v\|} \right\| < \varepsilon.$$
 (23)

Let $T_{\mathbf{x}}\mathcal{M}$ denote the set of tangent vectors for \mathcal{M} at \mathbf{x} . A vector $w \in \mathbb{R}^D$ is a normal vector for \mathcal{M} at \mathbf{x} if

$$\langle w, v \rangle \le 0 \text{ for all } v \in T_{\mathbf{x}} \mathcal{M}.$$
 (24)

- Let $N_{\mathbf{x}}\mathcal{M}$ denote the set of all normal vectors for \mathcal{M} at \mathbf{x} . 384
- We can extend theorem 2.4 and Lemma 2.6 to the general situation as defined by Federer. To extend Theorem 2.4 385
- it is sufficient to prove that for any $v \in N_{\mathbf{x}}\mathcal{M}$ and $u \in \mathbb{R}^D$, $||P_v(u)|| \leq d(u, T_{\mathbf{x}}\mathcal{M})$. 386
- **Lemma A.2.** For any $v \in N_{\mathbf{x}}\mathcal{M}$ and $u \in \mathbb{R}^D$ with $\langle v, u \rangle \geq 0$, $||P_v(u)|| \leq d(u, T_{\mathbf{x}}\mathcal{M})$. 387
- *Proof.* For a subset $A \subset \mathbb{R}^D$, $\operatorname{dual}(A) = \{v \in \mathbb{R}^D : \langle a, v \rangle \leq 0 \text{ for all } a \in A\}$. First we prove that $d(u, \operatorname{dual}(v)) = \|P_v(u)\|$. Note that we can write $u = u_v + u_{v^\perp}$, where $u_v = P_v(u)$ and $u_{v^\perp} \in v^\perp$. Then 388
- 389

$$d(u, \operatorname{dual}(v)) = \inf_{w \in \operatorname{dual}(v)} \|u - w\| = \inf_{w \in \operatorname{dual}(v)} \|u_v + u_{v^{\perp}} - w\|$$

$$= \inf_{w \in \operatorname{dual}(v)} \|u_v\| + \|u_{v^{\perp}} - w\| - 2\langle u_v, w \rangle.$$
(25)

- As $\langle u_v,w\rangle\leq 0$, it follows that the infimum is achieved when $w=u_{v^\perp}$. By the definition of the dual it follows that $\mathrm{dual}(v)\supset \mathrm{dual}(N_\mathbf{x}\mathcal{M})\supset T_\mathbf{x}\mathcal{M}$. Hence $d(u,T_\mathbf{x}\mathcal{M})=\inf_{w\in T_\mathbf{x}\mathcal{M}}\|u-w\|\geq \inf_{w\in T_\mathbf{x}\mathcal{M}}\|u-w\|$ 390
- 391
- $\inf_{w \in \text{dual}(v)} ||u w|| = ||P_u(v)||.$ 392
- To extend lemma 2.6 note that if $r_{max}(x) > 0$, then $T_{\mathbf{x}}\mathcal{M}$ is convex (Federer, 1959, Thm 4.8 (12)). Let $\mathbf{y} \in \mathcal{M}$. 393
- If $\mathbf{y} \mathbf{x} \in T_{\mathbf{x}} \mathcal{M}$ then $R(\mathbf{x}, \mathbf{y}) = \infty$. Otherwise, as $T_{\mathbf{x}} \mathcal{M}$ is a convex cone, there exists $n \in N_{\mathbf{x}} \mathcal{M}$ such that $\langle n, \mathbf{y} \mathbf{x} \rangle \geq 0$. In that case $\langle n, \mathbf{x} \mathbf{y} \rangle = \|P_n(\mathbf{y} \mathbf{x})\|$, so applying Lemma 2.5 gives the result. 394
- 395
- Though the theory can be extended to general subspaces, the manifold assumption is important for the exper-396
- imental setup. An important assumption for the estimator (16) is that the Jacobian spans the entire tangent 397
- space. If this is not the case, this estimator does not estimate the pointwise normal reach. The reason being, the
- 398 length of the projection onto the orthogonal complement of the Jacobian is not necessarily the distance to the 399
- tangent space. It is clear that when we want to study the uniqueness of latent representations, if the decoder is 400
- not injective, it automatically has areas without unique representations. So if the decoder is not injective, we 401
- should already be wary about trusting the latent representations.