Facial Expression Recognition(FER)

Presented by : Future Co. 18 April 2023

Facial Emotion Recognition (FER)

- The technology that analyses facial expressions from both static images and videos in order to reveal information on one's emotional state.
- Machine Learning/Deep Learning
- Model : Convolutional Neural Network (Cnn)

Why Facial Emotion Recognition?

- According to a market research report by Markets and Markets, the Emotion recognition market size is projected
- to grow from USD 19.5 billion in 2020 to USD 37.1 billion by 2026, at a Compound Annual Growth Rate (CAGR) of 11.3%.

Use Cases of Facial Expression Recognition

- Market research
 - moment-by-moment facial expressions and emotions (facial coding) automatically vs verbal Surveys
- Safe and personalized cars
 - Drivers Facial Expression
- Virtual Assistances
 - Siri
 - Alexa
- Video games testing
 - Gamers real time FER

- Law enforcement, surveillance, and monitoring
- Children Safety and surveillance
 - Schools
 - Daycares
- Marketing, advertising, media, entertainment, and PR(Public Relations)
 - Retail
 - Malls
- More in-depth interviews
 - \circ HR

Overview

Project Goal: Create Machine Learning Model to analyze people's faces (pictures) to see how a person is feeling.

Use of the model: To assist service providers' customer satisfaction analyses. Which can be used in childcare centers or retail shops to analyze if overall customers leaving the facility satisfied or not.

Data source: Kaggle.com

(https://www.kaggle.com/datasets/debanga/facial-expression-recognition-c hallenge?select=fer2013.tar)

About Dataset

- Dataset has 48x48 pixel greyscale images of faces. With 7 different categories with set of 28709 examples (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). Which reduced to detect only "Happy" or "Sad".
- The dataset was prepared by Pierre-Luc Carrier and Aaron Courville.
- The model is able to scan the people's faces in 48x48 pixel images and read how the person is feeling at that moment ("Happy" or "Sad").

Overview of Models

```
Model 1
65/65 - 1s - loss: 0.5456 - accuracy: 0.9595 - 1s/epoch - 17ms/step
Loss: 0.5456086993217468, Accuracy: 0.9595121741294861
Model 2
65/65 - 4s - loss: 0.7153 - accuracy: 0.5854 - 4s/epoch - 68ms/step
Loss: 0.7153261303901672, Accuracy: 0.5853658318519592
Model 3
65/65 - 2s - loss: 0.4645 - accuracy: 0.7707 - 2s/epoch - 35ms/step
Loss: 0.46449288725852966, Accuracy: 0.7707316875457764
```

Testing The Models

Model A 1/1 [=======] - 0s 125ms/step Prediction: [[1.000000e+00 2.374486e-14]] Image Emotion is: Happy Model B 1/1 [========] - 0s 135ms/step Prediction: [[0.82696974 0.17303026]] Image Emotion is: Happy Model C 1/1 [=======] - 0s 148ms/step Prediction: [[0.96389186 0.03610811]] Image Emotion is: Happy

Is Mona Lisa "Happy" or "Sad"?

Is Mona Lisa "Happy" or "Sad"?

Model A

Prediction: [[4.6123390e-05 9.9995387e-01]]

Using Images outside our Dataset

Building an image scaler to pre-process and predict an image from the internet

Conclusion

- Model can perform with more accuracy if it is trained with more data
- Accuracy rate can be increased using more complex models
- Model can use AWS (cloud services) to be more accessible and robust
- Overall service industry organizations can benefit from the model for analysing customer satisfaction
- Limitation: The person's facial expression could be different depending on unique type. The model is running only based on the dataset. The team members are not experts in facial or emotions.

References

- Data source: Kaggle.com
 - (https://www.kaggle.com/datasets/debanga/facial-expression-recognition-chall enge?select=fer2013.tar)
- Real-time emotion recognition: Potential use cases and challenges ,Article
 - https://indiaai.gov.in/article/real-time-emotion-recognition-potential-use-cases

-and-challenges

Thank You!!!