EXAMEN FINAL DE TOPOLOGÍA, 2º MATEMÁTICAS

Lunes, 20 de junio de 2005

Apellidos y Nombre:	
D.N.I.:	Grupo:

1) Se consideran los siguientes subconjuntos de \mathbb{R}^2 con la topología usual:

$$C = [-1, 1] \times [-1, 1] \setminus \{(x, x) : -1 \le x \le 1\}$$
 y $D = \{(1/n, 1/n) : n \in \mathbb{N}\}$

- a) Obtener razonadamente el interior, la adherencia y la frontera de $C \cup D$.
- b) Decidir justificadamente si $C \cup \{(0,0)\}$ es conexo y si es compacto.
- 2) Resolver los siguientes apartados:
- a) Dado un conjunto X y $A \subset X$, se define $\mathcal{T} = \{C : A \subset C \subset X\} \cup \{\emptyset\}$. Demostrar que \mathcal{T} es una topología sobre X y probar que $\overline{A} = X$.
- b) Dar un ejemplo de un espacio topológico X y un subconjunto $A \subset X$ tal que A sea compacto y \overline{A} no lo sea. *Indicación*: aplicar el apartado anterior.
- c) Dada una función continua $f:[0,1] \longrightarrow \mathbb{R}^2$ tal que f(0)=(-1,1) y f(1)=(1,2), demostrar que para cualquier $r \in [-1,1]$ existe $p \in [0,1]$ tal que f(p) tiene a r como su primera coordenada.
- 3) Decidir si algunos de los siguientes subespacios de \mathbb{R}^2 (con la topología usual) son homeomorfos:

a)
$$(\mathbb{Q} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$$
, b) $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$,

c)
$$(\mathbb{R} \times \mathbb{Q}) \cup (\{0\} \times \mathbb{R}),$$
 d) $([0,1] \times \{0\}) \cup \bigcup_{n=1}^{\infty} (\{\frac{1}{n}\} \times [0,\frac{1}{n}]).$

- 4) Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- a) Si K es compacto, entonces $K \cup \{x\}$ también lo es (x es un punto arbitrario).
- b) Si dos espacios topológicos tienen el mismo grupo fundamental, son homeomorfos.
- c) La intersección de conexos es conexa.
- d) $\mathbb Q$ es compacto en $\mathbb R$ con la cofinita.

SOLUCIONES¹

1) a) (1.25) El interior de $C \cup D$ es el siguiente subconjunto de \mathbb{R}^2 :

$$(-1,1) \times (-1,1) \setminus \{(x,x) : -1 \le x \le 1\}$$

porque son los únicos puntos (x, y) de \mathbb{R}^2 para los cuales existe un $\epsilon > 0$ tal que la bola de centro (x, y) y radio ϵ está completamente contenida en $C \cup D$.

La adherencia o cierre de $C \cup D$ viene dada por el siguiente subconjunto de \mathbb{R}^2 :

$$\overline{C \cup D} = [-1, 1] \times [-1, 1],$$

dado que son los únicos puntos de \mathbb{R}^2 que satisfacen que toda bola centrada en ellos tiene intersección distinta del vacío con $C \cup D$.

La frontera de $C \cup D$, $Fr(C \cup D)$, sabemos que consiste en los puntos de intersección de la adherencia de $C \cup D$ y de la adherencia de su complementario en \mathbb{R}^2 . Por otra parte, también sabemos que viene dada por los puntos de $\overline{C \cup D}$ que no pertenecen al interior de $C \cup D$, de donde obtenemos directamente que

$$\operatorname{Fr}(C \cup D) = \{(\pm 1, y) : -1 \le y \le 1\} \cup \{(x, \pm 1) : -1 \le x \le 1\} \cup \{(x, x) : -1 \le x \le 1\}$$

b) (1.25) Veamos que $A = C \cup \{(0,0)\}$ es conexo. Si consideramos los siguientes subconjuntos convexos de A (es decir, el segmento que une dos puntos cualesquiera del subconjunto está contenido en el subconjunto) que, en particular, son conexos por ser conexos por caminos:

$$A_1 = \{(x, y) \in [-1, 1] \times [-1, 1] : x < y\}; \quad A_2 = \{(x, y) \in [-1, 1] \times [-1, 1] : x > y\},$$

se obtiene de manera obvia que

$$\overline{A_1} = \{(x,y) \in [-1,1] \times [-1,1] : x \le y\}; \quad \overline{A_2} = \{(x,y) \in [-1,1] \times [-1,1] : x \ge y\}$$

que también son conexos y, dado que

$$A_i \subset A_i \cup \{(0,0)\} \subset \overline{A_i},$$

 $A_i \cup \{(0,0)\}$ es conexo para i=1,2. Como $A=(A_1 \cup \{(0,0)\}) \cup (A_2 \cup \{(0,0)\})$, A es conexo por ser unión de conexos con intersección distinta del vacío.

Puede probarse directamente que A es conexo por caminos y, por tanto, conexo dado que $A_i \cup \{(0,0)\}$ son subconjuntos convexos; y dados dos puntos de A, $(x_1,y_1) \in A_1$ y $(x_2,y_2) \in A_2$, si hacemos el producto (composición) del camino que consiste en el segmento de recta que une (x_1,y_1) con (0,0), y el camino que consiste en el segmento de

¹Los números entre paréntesis indican el baremo de calificación.

recta uniendo (0,0) con (x_2,y_2) , obtenemos un camino en A uniendo (x_1,y_1) con (x_2,y_2) , que era el caso que faltaba por probar.

Para ver que A no es compacto, recordamos que en \mathbb{R}^n con la métrica usual, un subconjunto es compacto si y sólo si es cerrado y acotado. Pero A no es cerrado porque

$$A \neq \overline{A} = [-1, 1] \times [-1, 1],$$

luego A no es compacto.

- **2)** a) Para probar que \mathcal{T} es una topología sobre X hay que comprobar las siguientes propiedades:
 - i) $\emptyset, X \in \mathcal{T}$, lo cual se deduce de la definición dada.
- ii) Las uniones arbitrarias de elementos de \mathcal{T} pertenecen a \mathcal{T} : dados $U_{\alpha} \in \mathcal{T}$ (se puede suponer $U_{\alpha} \neq \emptyset$, ya que el vacío no añade nada a la unión), se tiene que para todo α , $A \subset U_{\alpha} \subset X$ y, por lo tanto, $A \subset \cup_{\alpha} U_{\alpha} \subset X$ luego $\cup_{\alpha} U_{\alpha} \in \mathcal{T}$.
- iii) Las intersecciones finitas de elementos de \mathcal{T} pertenecen a \mathcal{T} : dados $U_i \in \mathcal{T}$ (de nuevo supuestos no vacíos, en otro caso la intersección sería vacía), para todo $i = 1, \ldots, n$, se tiene que $A \subset U_i \subset X$, luego $A \subset \bigcap_{i=1}^n U_i \subset X$ y, por lo tanto, $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

Por último, para demostrar que $\overline{A} = X$ hay que probar que para todo $x \in X$, se tiene que $x \in \overline{A}$. Sea $x \in X$ y sea U cualquier abierto de la topología \mathcal{T} conteniendo a x. Ahora bien, si $U \in \mathcal{T}$, entonces se tiene que $A \subset U$ y, por lo tanto, $U \cap A \neq \emptyset$ luego $x \in \overline{A}$ para todo $x \in X$, como queríamos demostrar.

b) Un ejemplo de una topología sobre un conjunto X con un subconjunto A compacto tal que \overline{A} no sea compacto, puede obtenerse usando la toplogía definida en el apartado a), y considerando A cualquier subconjunto no vacío de un conjunto X tal que $X \setminus A$ contenga infinitos elementos distintos, denotémoslos por $\{x_i\}_{i=1}^{\infty}$. Tendríamos A compacto porque para cualquier colección de abiertos de X que cubran A, como cada abierto contiene a A, tal y como definimos la topología, basta tomar uno de ellos para tener una colección finita que cubra A. Por otra parte, ya sabemos que $\overline{A} = X$, y si tomamos el recubrimiento abierto de X dado por

$$\{U = A, U' = X \setminus \{x_i\}_{i=1}^{\infty}, U_j = A \cup \{x_j\}\}_{j=1}^{\infty}$$

no existe un subrecubrimiento finito por lo que \overline{A} no es compacto. Más concreto es, por ejemplo, tomar $X = \mathbb{R}$ con la topología descrita en el apartado a) para $A = \{0\}$ y como recubrimiento abierto de \mathbb{R} para el cual no existe un subrecubrimiento finito $\{(-n,n)\}_{n\in\mathbb{N}}$.

c) Dada una función continua $f:[0,1]\to\mathbb{R}^2$, como la topología producto de $\mathbb{R}\times\mathbb{R}$ coincide con la topología usual de \mathbb{R}^2 , si denotamos por $\pi_i:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ la proyección

en cada factor, sabemos que f es continua si y sólo si $\pi_i \circ f := f_i$ es continua para cada i = 1, 2. Dado que [0, 1] es conexo, porque lo es cualquier intervalo de la recta real, si aplicamos el teorema de los valores intermedios a la función continua $f_1 : [0, 1] \to \mathbb{R}$ obtenemos el resultado pedido en el enunciado del apartado.

3) Sea A, B, C y D los espacios de los respectivos apartados.

La función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por f(x,y) = (y,x) es continua (sus coordenadas son las proyecciones π_2 y π_1) y coincide con su inversa, por tanto es un homeomorfismo. Cuando se restringe f a A, su imagen es C, lo que implica que A y C son homeomorfos (0.5). En lo sucesivo nos podemos olvidar de C y razonar siempre con A.

D es compacto por ser cerrado y acotado en \mathbb{R}^2 (si uno quiere comprobar que D es cerrado sin apelar a ningún dibujo, se puede escribir $D = \bigcap_{m=1}^{\infty} K_m$ con $K_m = [0,1] \times \{0\} \cup [0,\frac{1}{m}] \times [0,\frac{1}{m}] \cup \bigcup_{n=1}^{m} (\{\frac{1}{n}\} \times [0,\frac{1}{n}])$, que es una intersección de cerrados). Como A y B no son acotados, no son compactos, y D no es homeomorfo a D (0'75) y D no es homeomorfo a D (0'5).

Sea $T = ((\mathbb{Q} - \{0\}) \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$. Este subespacio es conexo por arcos, porque cada (q, r) se puede unir con (q, 0), mediante $\gamma(t) = (q, (1 - t)r)$, y cualquier (r, 0) se puede unir con el origen, mediante $\gamma(t) = ((1 - t)r, 0)$. Es decir, el origen se puede conectar con todos los puntos de T y viceversa. La conexión de T y la inclusión $T \subset A - \{(0, 2005)\} \subset \overline{T} = \mathbb{R}^2$ prueban que $A - \{(0, 2005)\}$ es conexo, mientras que B se desconecta al quitarle cualquier punto, por tanto $A \setminus B$ no son homeomorfos (0.75).

Nota: Es falso que $A - \{(0,0)\}$ tenga cuatro componentes conexas y también lo es que $A - \{(0,0),(1,0)\}$ tenga siete.

4) a) (0'75) V. Sea $\bigcup_{\alpha \in I} \mathcal{U}_{\alpha} \supset K \cup \{x\}$, en particular $\bigcup_{\alpha \in I} \mathcal{U}_{\alpha} \supset K$ y por la compacidad de K se pueden hallar $\mathcal{U}_{\alpha_1} \cup \cdots \cup \mathcal{U}_{\alpha_N} \supset K$. Además, $x \in \bigcup \mathcal{U}_{\alpha} \Rightarrow$ existe $\mathcal{U}_{\alpha_0} = \mathcal{U}_{\alpha_0}(x)$, entonces $\bigcup_{j=0}^N \mathcal{U}_{\alpha_j}$ es el subrecubrimiento finito deseado.

Nota: Hay que partir de un recubrimiento <u>arbitrario</u> de $K \cup \{x\}$ y probar que tiene un subrecubrimiento finito. No es válido ni especificar uno en particular (o una topología), ni partir de uno de K y añadirle el abierto que deseemos.

- b) (0'75) **F.** [-1,1] y \mathbb{R} se pueden retraer al origen mediante R(t,x) = (1-t)x, con lo que su grupo fundamental es el trivial. Sin embargo no son homeomorfos porque el primero es compacto y el segundo no.
- c) (0'5) **F.** S^1 y $\mathbb{R} \times \{0\}$ son conexos, como subespacios de \mathbb{R}^2 con la usual, y sin embargo $S^1 \cap (\mathbb{R} \times \{0\}) = \{(-1,0)\} \cup \{(1,0)\}$ no lo es.
- d) (0'5) V. Sea $\bigcup \mathcal{U}_{\alpha} \supset \mathbb{Q}$ con $\mathcal{U}_{\alpha} \in \mathcal{T}_{cof.}$. Elijamos $\mathcal{U}_{\alpha_0} \neq \emptyset$, entonces $\mathbb{Q} \mathcal{U}_{\alpha_0}$ es finito (porque $\mathbb{R} \mathcal{U}_{\alpha_0}$ lo es), digamos de cardinal k. Escogiendo \mathcal{U}_{α_j} que contenga al j-ésimo posible punto de $\mathbb{Q} \mathcal{U}_{\alpha_0}$, se concluye $\bigcup_{j=0}^k \mathcal{U}_{\alpha_j} \supset \mathbb{Q}$.