Hausdorff's Maximality Theorem

Jae Won Choi

June 29, 2021

Hausdorff's maximality theorem (or Zorn's lemma) is used often in graduate level real analysis course. Because the proof is a bit convoluted, most courses use it without proving it and professors usually direct us to the proof in Rudin's real and complex analysis [1]. There is a two page appendix that proves the Hausdorff's maximality theorem. Just like most of the proofs in the book, the proof is very dense and it took me a long time to understand it. Below I provide an easy to follow proof in multiple steps.

First we prove the following lemma:

Lemma. Suppose \mathcal{F} is a nonempty collection of subsets of a set X such that the union of every subchain of \mathcal{F} belongs to \mathcal{F} . Suppose g is a function which associates to each $A \in \mathcal{F}$ a set $g(A) \in \mathcal{F}$ such that $A \subset g(A)$ and g(A) - A consists of at most one element. Then there exists an $A \in \mathcal{F}$ for which g(A) = A.

Proof. Fix $A_0 \in \mathcal{F}$. Call a subcollection \mathcal{F}' of \mathcal{F} a tower if \mathcal{F}' has the following three properties:

- $A_0 \in \mathcal{F}'$
- The union of every subchain of \mathcal{F}' belongs to \mathcal{F}'
- If $A \in \mathcal{F}'$, then also $q(A) \in \mathcal{F}'$

The family of all towers is nonempty because if \mathcal{F}_1 is the collection of all $A \in \mathcal{F}$ such that $A_0 \subset A$, then \mathcal{F}_1 is a tower. Let \mathcal{F}_0 be the intersection of all towers.

Step 1: \mathcal{F}_0 is a tower

We want to show that \mathcal{F}_0 satisfies all three properties listed above.

- (a) Suppose $\{\mathcal{F}'_n\}_n$ is a set of all towers in \mathcal{F} , then $\mathcal{F}_0 = \bigcap \mathcal{F}'_n$. Since $A_0 \in \mathcal{F}'_n$ for all $n, A_0 \in \mathcal{F}_0$.
- (b) Suppose Φ is a subchain in \mathcal{F}_0 then Φ is a subchain in \mathcal{F}'_n for all n, and since the union of subchain is in all \mathcal{F}'_n , \mathcal{F}_0 also contains the union of subchain.
 - (c) If $A \in \mathcal{F}_0$, then $A \in \mathcal{F}'_n$ $\forall n$, and since $g(A) \in \mathcal{F}'_n$ for all $n, g(A) \in \mathcal{F}_0$.

Step 2: \mathcal{F}_0 is a subchain of \mathcal{F}

Let Γ be the collection of all $C \in \mathcal{F}_0$ such that every $A \in \mathcal{F}_0$ satisfies either $A \subset C$ or $C \subset A$:

$$\Gamma = \{ C \in \mathcal{F}_0 : A \subset C \text{ or } C \subset A \text{ for every } A \in \mathcal{F}_0 \}.$$

For each $C \in \Gamma$, let $\Phi(C)$ be the collection of all $A \in \mathcal{F}_0$ such that either $A \subset C$ or $g(C) \subset A$:

$$\Phi(C) = \{ A \in \mathcal{F}_0 : A \subset C \text{ or } q(C) \subset A \}.$$

Step 2.1: Γ and $\Phi(C)$ satisfy tower properties (a) and (b)

Both Γ and $\Phi(C)$ satisfy condition (a) since $A_0 \subset \Gamma$ and $A_0 \subset \Phi(C)$ for all $C \in \Gamma$. In addition, by construction, if a subchain is in Γ , then it is a subchain in \mathcal{F}_0 which contains the union of the subchain. Since every element of the subchain is either contained or contains every set in \mathcal{F}_0 , the union of all elements must also be either contained or contains every set in \mathcal{F}_0 . Hence the union of the subchain is in Γ . Similarly, if a subchain exists in $\Phi(C)$, then the union of subchain exists in \mathcal{F}_0 . Since each element in $\Phi(C)$ is either contained by C or contains g(C), there are three possibilities:

- i all elements are contained by C
- ii all elements contain g(C)
- iii some elements are contained by C, some contain g(C)

Clearly for (i) and (ii), the union of the subchain must also either be contained by C or contains g(C), so it is in $\Phi(C)$. For (iii), since $C \subset g(C)$, the union of subchain must contain g(C), hence it is in $\Phi(C)$.

Step 2.2: $\Phi(C)$ satisfies tower property (c), hence $\Phi(C)$ is a tower

Fix $C \in \Gamma$ and suppose $A \in \Phi(C)$. We want to show that $g(A) \in \Phi(C)$. If $A \in \Phi(C)$ there are three possibilities:

- i $A \subset C$ and $A \neq C$: If A is a proper subset of C (i.e. $C \setminus A$ has at least one element), then C cannot be a proper subset of g(A) (i.e. $\#(g(A) \setminus C) \geq 1$) otherwise $\#(g(A) \setminus A) \geq 1 + \#(C \setminus A) = 2$ which contradicts the assumption that $g(A) \setminus A$ has at most one element. Since $C \in \Gamma$ (i.e. $C \subset A$ or $A \subset C \ \forall A \in \mathcal{F}_0$) and $C \not\subset g(A)$, $g(A) \subset C$. Then by definition of $\Phi(C)$, $g(A) \in \Phi(C)$.
- ii A = C: If A = C, then g(A) = g(C) and $g(C) \subset g(C) = g(A)$ so $g(A) \in \Phi(C)$.
- iii $g(C) \subset A$: If $g(C) \subset A$, then $g(C) \subset g(A)$ since $A \subset g(A)$. Thus, $g(A) \in \Phi(C)$.

In all three cases, $g(A) \in \Phi(C)$ so $\Phi(C)$ is a tower.

Step 2.3: $\Phi(C) = \mathcal{F}_0$ for all $C \in \Gamma$

By construction, $\Phi(C) \subset \mathcal{F}_0$. Additionally, by definition, \mathcal{F}_0 is the smallest tower, and since $\Phi(C)$ is a tower, $\mathcal{F}_0 \subset \Phi(C)$. Therefore, $\mathcal{F}_0 = \Phi(C)$ for all $C \in \Gamma$.

Step 2.4: Γ satisfies tower property (c), hence Γ is a tower

Since $\Phi(C) = \mathcal{F}_0$, it implies that for all $A \in \mathcal{F}_0$, by definition of $\Phi(C)$, either $A \subset C$ or $g(C) \subset A$. Since $C \subset g(C)$, we can rewerite it as $A \subset g(C)$ or $g(C) \subset A$. This is the definition of Γ , hence $g(C) \in \Gamma$. Since $C \in \Gamma \implies g(C) \in \Gamma$, Γ satisfies property (c) and it is a tower.

Step 2.5: $\Gamma = \mathcal{F}_0$

Since Γ is a tower and \mathcal{F}_0 is the smallest tower, $\Gamma \supset \mathcal{F}_0$. By construction, $\Gamma \subset \mathcal{F}_0$. Hence $\Gamma = \mathcal{F}_0$.

Step 2.6: \mathcal{F}_0 is totally ordered

By construction, Γ is totally ordered: let C_1, C_2 be elements in Γ . Then for all $A \in \mathcal{F}_0$, either $A \subset C_1$ or $C_1 \subset A$, and $A \subset C_2$ or $C_2 \subset A$. So we have four possibilities:

- i $A \subset C_1$ and $A \subset C_2$ for all $A: C_1, C_2 \in \mathcal{F}_0$ and \mathcal{F}_0 is a tower, so C_1, C_2 are the union of \mathcal{F}_0 hence $C_1 = C_2$.
- ii $A \subset C_1$ and $C_2 \subset A$ for some $A \implies C_2 \subset C_1$
- iii $C_1 \subset A$ and $A \subset C_2$ for some $A \implies C_1 \subset C_2$
- iv $C_1 \subset A$ and $C_2 \subset A$ for all A: Since \mathcal{F}_0 is a tower, $A_0 \in \mathcal{F}_0$, hence if $C_1 \subset A$ and $C_2 \subset A$ for all A, then $C_1 = C_2 = A_0$.

Since this is true for any pair in Γ , Γ is totally ordered, hence \mathcal{F}_0 is totally ordered.

Step 2.7: There exists $A \in \mathcal{F}_0$ for which g(A) = A

Let A be the union of \mathcal{F}_0 . Since \mathcal{F}_0 is a tower, $A \in \mathcal{F}_0$. By property (c), $g(A) \in \mathcal{F}_0$. Since A is the largest member of \mathcal{F}_0 , $A \supset g(A)$. Since $A \subset g(A)$ by definition of g, we get A = g(A).

Recall that

Definition. A choice function for a set X is a function f which associates to each nonempty subset E of X an element of $E: f(E) \in E$. In more informal terminology, f chooses an element out of each nonempty subset of X.

The Axiom of Choice. For every set there is a choice function.

Now we prove the main result:

Theorem. (Hausdorff's Maximality Theorem) Every nonempty partially ordered set P contains a maximal totally ordered subset.

(Before the proof, here is a quick example of what a collection of totally ordered set looks like:

$$a_n = \{\phi_1, \phi_2, \phi_3, \dots, \phi_n\}$$

$$b_n = \{\psi_1, \psi_2, \psi_3, \dots, \psi_n\}$$

$$P = \{a_n | n \in \mathbb{N}\} \cup \{b_n | n \in \mathbb{N}\}$$

If \mathcal{F} is the collection of all totally ordered subsets of P, then $\{a_{12}, a_1, a_{2748}, a_{52}\} \in \mathcal{F}$ since $a_1 \leq a_{12} \leq a_{52} \leq a_{2748}$ but $\{a_4, b_{26}, a_5\} \notin \mathcal{F}$.

Example of \subseteq -chain: $\{\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}, \dots\}\}$

Proof. Step 1: Construct \mathcal{F} , a non-emtpy collection of subsets of a set P

Let \mathcal{F} be the collection of all totally ordered subsets of P. Since every subset of P which consists of a single element in totally ordered \mathcal{F} is not empty.

Step 2: Union of any chain of totally ordered sets is totally ordered

Let (I, \leq) be some totally ordered set of indices, and let $\{X_i : i \in I\} \subseteq \mathcal{F}$ be a \subseteq -chain of members in \mathcal{F} . In other words, each $X_i \subset P$ is totally ordered by \subseteq and for any $i, j \in I$ we have $X_i \subseteq X_j$ iff $i \leq j$. Now we want to show that $\bigcup_{i \in I} X_i$ is totally ordered. Let $x, x' \in \bigcup_{i \in I} X_i$, then there are $i, j \in I$ such that $x \in X_i$ and $x' \in X_j$. Without loss of generality, let $i \leq j$ which implies $X_i \subseteq X_j$ and thus $x, x' \in X_j$. Since X_j is totally ordered by \subseteq , we have that $x \subseteq x'$ or $x' \subseteq x$. Since x, x' are arbitrary, we see that $\bigcap_{i \in I} X_i$ is totally ordered.

(Example of \subseteq -chain: $\{\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}, \dots\} = \{X_1, X_2, X_3, \dots\}$ where $X_i \subseteq X_j$ iff $i \leq j$. Then for any $a_k, a_\ell \in \bigcup_{i \in I} X_i$, either $a_k \subseteq a_\ell$ or $a_\ell \subseteq a_k$)

Step 3: Construct a function g (defined in previous lemma)

Let f be a choice function for P. If $A \in \mathcal{F}$, let A^* be the set of all x in teh complement of A such that $A \cup \{x\} \in \mathcal{F}$. If $A^* = \emptyset$, put $g(A) = A \cup \{f(A^*)\}$. If $A^* \neq \emptyset$, put g(A) = A.

Step 4: Apply previous lemma

By the lemma, $A^* = \emptyset$ for at least one $A \in \mathcal{F}$, and any such A is a maximal element of \mathcal{F} .

References

[1] Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., USA, 1987.