

# The Problem with MLPs for Images

# Their strength becomes a weakness:

• MLPs works well for very small images (e. g. MNIST).

# Fail in modern images:

- They are 1D: requite a flat vector as input.
- Parameter explosion:
  - For a image resolution of 12 Mpixels (e. g.  $12 \cdot 1024 \times 1024$ )
  - Input layer:  $n_{input} \approx 12 \cdot 10^6$  neurons.
  - hidden\_1:  $n_1 = 10^4$  neurons.
  - $\#\mathbf{W}^{[1]} \approx 12 \cdot 10^6 \cdot 10^4 \approx 10^{10}$



<u>credits</u>

A new architecture is needed: respect 2D images and is far more parameter-efficient

# **A New Inspiration: The Visual Cortex**

# Once again: look to the brain

- Perception is processed in zones non-related to conscious activity.
  - We "sense" unconsciously.
  - We cannot express it using rules. e. g. find a cat in an image.
- Specialized areas in the brain for each sense:
  - Visual cortex, Auditive cortex, ...
- Successive brain areas form a preprocessing pipeline:
  - Before reaching brain areas of conscious activity.
- There are brain zones that combine information from different senses.



# **Visual Cortex Neurophysiology**

# Hubel & Torsten (Nobel Prize '81)

- Local receptive fields:
  - Mapping retina -> cortex: small neuron groups "see" specific regions of the visual field.
  - Overlapping fields cover the entire visual field.
- Simple feature detection: some neurons specialized to detect very simple patterns.
  - E. g. vertical lines, horizontal lines, orientations.
- Hierarchical composition: Other groups of neurons react to combinations of simple patterns.
  - E.g. shapes, textures, objects.





### The Birth of the CNN

# Constraints on architectures (LeCun, NY, 1998):

- Idea:
  - We have, a priori knowledge of the task.
  - Constraints on model architecture, based on this knowledge.
- Expected impact:
  - A significant reduction of parameters.
  - Improve of model generalization capacity.

#### Applicable in images?

- Flattening -> loss of neighborhood info.
- It makes sense to define a grid.
- Good idea to extract local features and combine them.



5

Χ

Χ

Χ

### First CNN: LeNet-5

## LeNet-5 (LeCun, 1989-1998):

- Task: handwritten digit recognition.
- Released a reference dataset: MNIST.
- Applied the novel backpropagation technique to images problems.
- Foundation of current CNNs.

#### A model ahead of its time:

- Computational power (GPUs) needed wasn't widely available yet.
- When GPUs appeared: explosion of interest in CNNs:
  - In AlexNet (2012): variation of LeNet
  - Won the ImageNet: image recognition challenge.
  - Since then, CNNs the de facto standard for image classification.



6

credits

### The Basic Blocks of a CNN

## Two main parts:

- A classification block:
  - Standard MLP predicting the class.
  - Based on the flattened 1D-array it receives.
  - Idea: inject in this 1D-array as much info as possible.
- A new "preprocessing block" before the MLP:
  - Idea: perform a feature extraction in 2D.
  - Inspired in the visual cortex ideas.

Two new types of layers: Convolutional layer

**Pooling layer** 



# **The Convolutional Layer**

# Emulate local receptive fields:

- Goal: avoid losing pixel neighborhood info.
- Perform operations in 2D: no flattening.
- Each neuron of the (conv) layer:
  - Not connected to all pixels (neurons) of the input.
  - Only looks a small local patch  $(f_W, f_H)$ .

#### Convolution: Human Interpretation

- All pixels (i, j) of the convolutional layer are traversed.
- The patch is applied and shifted.
- The global resulting effect is a convolution.





# **Convolution Operation with Kernels**

3x3

# Renaming the 2D operation: convolution

- Input image= matrix of values in range 0-255 (grayscale)
- Convolutional layer: 2D-dense layer with all weights zero except for the concrete patch.
- **Kernel** (or filter): 3x3, 5x5, 7x7. *Dim(Kernel)* << *Dim(Imagen)*
- Convolution:  $H = I \otimes K$ , element-wise product of both matrices and a final sum of all its elements.
  - Output layer: Feature Map.

Image: convolutional layer input

5x5

| 2  | 9  | 11 | 22 | 42 |           |        |     |   |      |             |         |        |
|----|----|----|----|----|-----------|--------|-----|---|------|-------------|---------|--------|
| 12 | 43 | 2  | 0  | 65 |           | 0      | 0   | 1 |      | 88          | 67      | 134    |
| 9  | 87 | 65 | 2  | 90 | $\otimes$ | 1      | 0   | 0 | =    | 55          | 94      | 132    |
| 21 | 21 | 44 | 7  | 2  |           | 0      | 0   | 1 |      | 107         | 25      | 134    |
| 45 | 2  | 21 | 2  | 0  |           | Kernel |     |   |      | Feature map |         |        |
|    |    |    |    |    | _         |        | 3x3 |   | conv | olutio      | onal la | yer ot |



# **Convolution Step by Step**

convolution 43<sub>0</sub> 65<sub>1</sub> 87<sub>0</sub> 

| 2               | 9               | 11              | 22 | 42 |   | 100 | nvoluti | on |
|-----------------|-----------------|-----------------|----|----|---|-----|---------|----|
| 12 <sub>0</sub> | 43 <sub>0</sub> | 2 <sub>1</sub>  | 0  | 65 |   | 88  |         |    |
| 91              | 87 <sub>0</sub> | 65 <sub>0</sub> | 2  | 90 | = | 55  |         |    |
| 21 <sub>0</sub> | 21 <sub>0</sub> | 44              | 7  | 2  |   |     |         |    |
| 45              | 2               | 21              | 2  | 0  |   |     |         |    |

Kernel

| 0 | 0 | 1 |
|---|---|---|
| 1 | 0 | 0 |
| 0 | 0 | 1 |

| 2               | 9               | 11              | 22 | 42 |   | cor | nvoluti | on |
|-----------------|-----------------|-----------------|----|----|---|-----|---------|----|
| 12              | 43              | 2               | 0  | 65 |   | 88  |         |    |
| 9 <sub>0</sub>  | 87 <sub>0</sub> | 65              | 2  | 90 | = | 55  |         |    |
| 21 <sub>1</sub> | 21 <sub>0</sub> | 44 <sub>0</sub> | 7  | 2  |   | 107 |         |    |
| 45 <sub>0</sub> | 2 <sub>0</sub>  | 21,             | 2  | 0  |   |     |         |    |

| 2  | 9 <sub>0</sub>  | 11 <sub>0</sub> | 22 <sub>1</sub> | 42 |   | convolution |    |  |  |
|----|-----------------|-----------------|-----------------|----|---|-------------|----|--|--|
| 12 | 43 <sub>1</sub> | 2 <sub>0</sub>  | 00              | 65 |   | 88          | 67 |  |  |
| 9  | 87 <sub>0</sub> | 65 <sub>0</sub> | 2               | 90 | = | 55          |    |  |  |
| 21 | 21              | 44              | 7               | 2  |   | 107         |    |  |  |
| 45 | 2               | 21              | 2               | 0  |   |             |    |  |  |

# **The Purpose: Feature Extraction**



Identity kernel

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

Feature map 1



Outline kernel

|   | -1 | -1 | -1 |
|---|----|----|----|
| 3 | -1 | 8  | -1 |
|   | -1 | -1 | -1 |

Feature map 2



Sobel left



|           | 1 | 0 | -1 |
|-----------|---|---|----|
| $\otimes$ | 2 | 0 | -2 |
|           | 1 | 0 | _1 |

Feature map 3





Sobel bottom



Feature map 4



Lighten kernel



0 0  $\otimes$ 0 0 0

Feature map 5





Darken kernel

| à |           | 0 | 0   | 0 |
|---|-----------|---|-----|---|
|   | $\otimes$ | 0 | 0,5 | 0 |
|   |           | 0 | 0   | 0 |

Feature map 6



credits

# **Stacking of Feature Maps**

# More than one kernel can be applied:

- Apply as many kernels as needed.
- Each kernel has its own weights

NN learns the weight during training to extract useful features



# **Superpowers of Convolutional Layers**

# Sparse weights:

- Dense layers: neuron "has weights with" every neuron in the prev. layer.
- Conv layers: neuron has only weights to a patch of the previous layer.

# Parameter (weights) sharing:

- Dense layers: In general, weight values are different.
- Conv layers: weights are shared by all neurons in the layer.

### Equivariance to translation:

- Kernel can detect the feature in any area of the image (under translation).
- Non-equivariance under other transformations (e. g. rotation).





# **Convolutional Layer Parameters: Padding**

# Convolution alters image shape:

- No-padding: loss of  $(f_H 1)$  rows and  $(f_W 1)$  columns.
- Zero-padding:
  - Add zeros around the border of the image.
  - Goal: maintain original image size after convolution.



| 2 <sub>0</sub> | 9 <sub>0</sub>  | 11             | 22 | 42 |   |    |     |  |
|----------------|-----------------|----------------|----|----|---|----|-----|--|
| 12             | 43 <sub>0</sub> | 2 <sub>0</sub> | 0  | 65 |   | 88 |     |  |
| 9 <sub>0</sub> | 87 <sub>0</sub> | 65             | 2  | 90 | = |    |     |  |
| 21             | 21              | 44             | 7  | 2  |   |    |     |  |
| 45             | 2               | 21             | 2  | 0  |   |    | 3x3 |  |



| 00 | 00             | 0,              | 0  | 0  | 0  | 0 |  |
|----|----------------|-----------------|----|----|----|---|--|
| 0  | 2 <sub>0</sub> | 9 <sub>0</sub>  | 11 | 22 | 42 | 0 |  |
| 00 | 12             | 43 <sub>0</sub> | 2  | 0  | 65 | 0 |  |
| 0  | 9              | 87              | 65 | 2  | 90 | 0 |  |
| 0  | 21             | 21              | 44 | 7  | 2  | 0 |  |
| 0  | 45             | 2               | 21 | 2  | 0  | 0 |  |
| 0  | 0              | 0               | 0  | 0  | 0  | 0 |  |



# **Convolutional Layer Parameters: Stride**

# Control kernel "jumping":

- Typically, stride = 1.
- If stride > 1, output size < original image size.</li>
- ∘ If necessary,  $S_V$ : vertical stride  $\neq S_H$ : horizontal stride.



| 00 | 00             | 0               | 0  | 0  | 0  | 0 |   |
|----|----------------|-----------------|----|----|----|---|---|
| 01 | 2 <sub>0</sub> | 9 <sub>0</sub>  | 11 | 22 | 42 | 0 |   |
| 00 | 12             | 43 <sub>0</sub> | 2  | 0  | 65 | 0 |   |
| 0  | 9              | 87              | 65 | 2  | 90 | 0 | = |
| 0  | 21             | 21              | 44 | 7  | 2  | 0 |   |
| 0  | 45             | 2               | 21 | 2  | 0  | 0 |   |
| 0  | 0              | 0               | 0  | 0  | 0  | 0 |   |

| 12 | Stride = 2 |  |  |  |  |  |  |
|----|------------|--|--|--|--|--|--|
|    |            |  |  |  |  |  |  |
|    |            |  |  |  |  |  |  |
|    |            |  |  |  |  |  |  |

| 0   | 0               | 0               | 0  | 0  | 0  | 0 |
|-----|-----------------|-----------------|----|----|----|---|
| 0   | 2               | 9               | 11 | 22 | 42 | 0 |
| 00  | 12 <sub>0</sub> | 43 <sub>1</sub> | 2  | 0  | 65 | 0 |
| 0_1 | 9 <sub>0</sub>  | 87 <sub>0</sub> | 65 | 2  | 90 | 0 |
| 00  | 21 <sub>1</sub> | 21 <sub>0</sub> | 44 | 7  | 2  | 0 |
| 0   | 45              | 2               | 21 | 2  | 0  | 0 |
| 0   | 0               | 0               | 0  | 0  | 0  | 0 |



### **From Matrices to Tensors**

# Images representation:

- Grayscale image: 1 x 2D-array.
- Color image: 3 x 2D-arrays (or channels).
  - 1 channel for each color: Red (R), Green (G), Blue (B).
- Extra channels depending on the problem:
  - E. g. satellite images: multiple additional infrared channels.

### In NN frameworks:

- 3D-tensors: [height, width, channels]
- Mini-batch: [batchsize, height, width, channels]



#### Grayscale (2D-Tensor)

| 2 | 7 | 1 | 6 | 0 | 0 |
|---|---|---|---|---|---|
| 9 | 9 | 2 | 6 | 1 | 8 |
| 1 | 4 | 9 | 8 | 7 | 3 |
| 0 | 4 | 2 | 5 | 0 | 6 |
| 6 | 3 | 0 | 3 | 3 | 1 |
| 7 | 5 | 1 | 3 | 7 | 4 |

Colour-3 channels (3D-Tensor)

|   |          |   |   |   | ı |   |
|---|----------|---|---|---|---|---|
|   | <u> </u> |   |   |   |   | ) |
| 2 | 7        | 1 | 6 | 0 | 0 | 3 |
| 9 | 9        | 2 | 6 | 1 | 8 | 3 |
| 1 | 4        | 9 | 8 | 7 | 3 | 5 |
| 0 | 4        | 2 | 5 | 0 | 6 | L |
| 6 | 3        | 0 | 3 | 3 | 1 | 1 |
| 7 | 5        | 1 | 3 | 7 | 4 | • |

# **Convolution with Multiple Channels**

### Convolutions on volume:

- #channels image = #channels kernels
- Σ(each kernel "channel" acts on its associated image channel).
- Output = 1 feature map.



# Multiple Channels & Multiple Kernels



# **Convolutional Layer: Whole Picture**



19

# **Pooling Layer**

# Subsampling:

- Goal: reduce spatial dimensions of feature maps.
  - Smaller and more robust.
- Operation: similar to a convolution. Slide an aggregator window.
- Applied separately to each channel of a feature map.
- # input channels = # output channels.

#### Layer parameters:

- No-trainable weights.
- Stride > 1, to reduce output size. Typ. stride = 2.







#### Max Pooling

| 8 | 5 | 2 | 7 |   |   |
|---|---|---|---|---|---|
| 1 | 6 | 0 | 3 | 8 | 7 |
| 2 | 4 | 7 | 1 | 5 | 8 |
| 5 | 1 | 8 | 0 |   |   |

# **Types of Pooling**

## Common pooling layers:

- Older: AvgPool2D.
  - Averaging: less info is lost.
- Most common: MaxPool2D.
  - Preserves stronger features.
  - Sends clearer signals to the next layer.
- Lately: GlobalAvgPool2D.
  - Highly destructive.
  - Return a unique value. Not a feature map.
  - Useful as an output layer.



credits

#### Capture small invariances:

- Translations, rotations and scaling:
  - 1. Useful in classification problems
  - 2. Non-useful in segmentation problems

21

# **Putting it all Together**

 $\otimes$ 



**Training:** nothing to learn. All weights = 1

POOL LAYER: SUBSAMPLES 2:1

feature maps (n channels)



(n channels)

=

1 1

Stride = 2

Pool kernel



6x6x5

### **A Typical CNN Architecture**



# Stacking layers:

- Combining conv & pool layers
- Typ: (Conv + pool)<sub>1</sub> ..... (Conv + pool)<sub>2</sub>

# As you progress:

- Spatial dimensions get smaller.
- Number of kernels gets larger.

**23** 

## Reference Challenge

# ImageNET challenge (2010):

- ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
- 1.2M images (up to 256 pixels).
- Classification problem.
- #clases = 10.000

#### Winner model: top-5 error rate

- Classifier outputs probability of each class.
- Classes with top-5 probabilities are selected.
- % times correct class is not among them.
- Also exists top-1 rate.

#### ImageNet Challenge classification error



<u>credits</u>



#### **FIRST HIT OF CNNs**

# AlexNet (2012, error 16%):

- Based on LeNet-5.
- First conv stacking without pooling.
- # layers = 5 conv + 3 dense
- # params = 60M
- Dropout 50%.
- Data augm.: brightness, shifting and flipping.

#### ZF Net (2013, error 12%)

- Hyperparameters tuning:
  - #feature maps
  - kernel size, stride.





### 2<sup>nd</sup> SIGNIFICANT ADVANCE

# • GoogleNet (2014, error 7%):

- Innovation: Inception module.
- # layers = 22 (much deeper)
- # params = 6M



3x3 + 1(S) => Kernel 3x3 + Stride=1 + "Same"





#### 2014 SILVER MEDAL: VGGNet

# VGGNet (2014, error 7.3%):

- A very simple classical.
- Stacking de 2 conv + pooling.
- # layers = 16, 19 conv + 2 dense.
- VGG16, VGG19, ...
- # params = 140M.

# ResNet (2015, error 3.6%):

- Innovation: residual nets.
- # layers = 152.
- # params = 11M.



