CHAPTER HIGHLIGHTS

Aqueous Solutions and the Concept of pH

Vocabulary

self-ionization of water pH pOH

- Pure water undergoes self-ionization to give 1.0×10^{-7} M H_3O^+ and 1.0×10^{-7} M OH^- at 25° C.
- pH = $-\log[H_3O^+]$; pOH = $-\log[OH^-]$; at 25°C, pH + pOH = 14.0.
- At 25°C, acids have a pH of less than 7, bases have a pH of greater than 7, and neutral solutions have a pH of 7.
- If a solution contains a strong acid or a strong base, the [H₃O⁺], [OH⁻], and pH can be calculated from the molarity of the solution. If a solution contains a weak acid or a weak base, the [H₃O⁺] and the [OH⁻] must be calculated from an experimentally measured pH.

Determining pH and Titrations

Vocabulary

acid-base indicators transition interval pH meter titration equivalence point end point standard solution primary standard

- The pH of a solution can be measured using either a pH meter or acid-base indicators.
- Titration uses a solution of known concentration to determine the concentration of a solution of unknown concentration.
- To determine the end point of a titration, one should choose indicators that change color over ranges that include the pH of the equivalence point.
- When the molarity and volume of a known solution used in a titration are known, then the molarity of a given volume of an unknown solution can be found.