Monday, November 26, 2018 4:06 PM

Today: Unsupervised Learning

Clustering

Given data $\left\{x_n\right\}_{n=1}^N$ and some integer K, we would like to separate the data into prototypes (or centroids) of clusters $\left\{\mu_k\right\}_{k=1}^K$

eg

- Identifying communities within social networks
- Finding topics in news stories
- Grouping similar sequences into gene families

K-means

- guess locations of centroids (often wrong, initially), assign data points based on distance to centroids
- · then update centroids to average positions of each cluster
- then update the clusters based on distance again
- · then update centroids
- etc

Intuition: data points assigned to cluster k should be close to μ_k , the prototype

Distortion measure (objective/cost function)

$$\begin{split} &J(\{r_{nk}\},\{\mu_k\}) = \sum_n \Box \sum_k r_{nk} \|x_n - \mu_k\|_2^2 \\ &\text{where } r_{nk} \in \{0,1\} \\ &r_{nk} = 1 \ iff \ A(x_n) = k \end{split}$$

K-means objective is to find $\{r_{nk}\}$, $\{\mu_k\}$ that minimize objective function minimization is NP-hard (it's not convex) so we'll rely on a heuristic:

Lloyd's algorithm

- · often just called the K-means algorithm
- 1. initialize $\{\mu_k\}$ to some values
- 2. Assume the current value of $\{\mu_k\}$ fixed, minimize J over $\{r_{nk}\}$, which leads to the following cluster assignment rule:

a.
$$r_{nk} = 1$$
 if $k = argmin_j \|x_n - \mu_j\|_2^2$

- b. $r_{nk} = 0$ otherwise
- 3. assume current value of $\{r_{nk}\}$ fixed, minimize J over $\{\mu_k\}$, which leads to the following rule to update the prototypes of the clusters

a.
$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

4. stop if the objective function J stays the same or return to step 2

Application: vector quantization

lossy compression of image - clustering pixels and vector quantizing them to produce an image with pixels of limited colors (K colors)

- Does the K-means algorithm converge?
 - o ves
- How long does it take to converge?
 - o in the worst case, exponential in number of data points
 - o in practice, very quick

Properties of K-means algorithm

- how good is the K-means solution?
 - o converges to a local minimum
 - o solution depends on initialization
 - o in practice, run many times with different initializations and pick the best
 - K-means++ is a neat approximation algorithm that has theoretical guarantees on the final value of the objective
 - still no guarantee we reach the global minimum, but we'll get close

Other practical issues

- choosing K
 - o increasing K always decreases optimal value of K-means objective
 - analogous to overfitting in supervised learning
 - o a heuristic pick the k that has a relatively low optimal value but isn't too high
 - o information criteria that effectively regularize more complex models

K-medoids

- K-means is sensitive to outliers
- in some applications we want the prototypes to be one of the points
- leads to K-medoids

Algorithm:

- 1. initialize $\{\mu_k\}$ by randomly selecting K of the N points
- 2. Assume the current value of $\{\mu_k\}$ fixed, minimize J over $\{r_{nk}\}$, which leads to the following cluster assignment rule:

a.
$$r_{nk} = 1 \text{ if } k = argmin_j \|x_n - \mu_j\|_2^2$$

- b. $r_{nk} = 0$ otherwise
- 3. assume current value of $\{r_{nk}\}$ fixed, update the prototype of cluster K. in K-mediods, the prototype for a cluster is the data point that is closest to all other data points in the cluster

a.
$$k^* = argmin_{mr_{mk}=1} \sum_{n} r_{nk} \|x_n - x_m\|_2^2$$

b.
$$\mu_{\nu} = \chi_{\nu}^*$$

4. stop if the objective function J stays the same or return to step 2

What about a probabilistic interpretation of clustering?

Gaussian mixture models - we'll use a mixture of multiple Gaussian models (normal distributions) on our data

formal definition: Gaussian mixture model of K Gaussians has the following density function for x

$$p(x) = \sum_{k=1}^{K} \omega_k N(x|\mu_k, \Sigma_k)$$

where μ_k and Σ_k are mean and covariance matrices of kth component

GMM as marginal distribution of a joint distribution

Consider the following joint distribution p(x, z) = p(z)p(x|z)

where z is a discrete random variable taking values between 1 and K

Denote $\omega_k = p(z = k)$

now assume the conditional distributions are Gaussian distributions

$$p(x|z=k) = N(x|\mu_k, \Sigma_k)$$

then the marginal distribution of x is

$$p(x) = \sum_{k=1}^{K} \omega_k N(x|\mu_k, \Sigma_k)$$

Parameter estimation for Gaussian mixture models

Assume we have labels z. We have complete data D' and incomplete data D. given D', the maximum likelihood estimation of the θ is given by

$$\theta = argmax \, log P(D') = \sum_{n} log \, p(x_n, z_n)$$

The complete likelihood is decomposable

$$\sum_{k} \sum_{n: z_n = k} \log p(z_n) p(x_n | z_n)$$

where we have grouped data by its values z_n . Let's introduce a binary variable γ_{nk} to indicate whether z_n = k

$$\sum_{k} \sum_{n} \gamma_{nk} \log p(z=k) p(x_n|z=k)$$

... some more math that is hard to write down (see slides)

Back to incomplete data

We can guess z_n using its posterior probability. Compute this with Bayes' Theorem. In order to do this, we assume we know the parameters θ

Estimation with soft γ_{nk}

define $\gamma_{nk} = p(z_n = k | x_n)$

- recall that γ_{nk} binary
 - "soft" assignment of x_n to kth component
 - each x_n is assigned to a component fractionally according to $p(z_n=k|x_n)$
 - now we get the same expression for MLE as before
 - but we're cheating by using θ

Iterative procedure

- 1. initialize theta
- 2. compute γ_{nk}
- 3. recompute theta
- 4. repeat