

2023~2024 学年秋季学期《大学物理实验》

实验报告

得 分	评阅人

题	目:	实验三 光电效应
学	院:	<u>先进制造学院</u>
专业班	级:	智能制造工程 221 班
学生姓	名:	<u>朱紫华</u>
学	号:	5908122030
指导老	师:	全祖赐老师

二〇二三年十月制

光电效应测普朗克常量实验预习报告

一、实验目的

- 1、研究光电管的伏安特性及光电特性;
- 2、比较不同频率光强的伏安特性曲线与遏制电压;
- 3、了解光电效应的规律,加深对光的量子性的理解;
- 4、验证爱因斯坦方程并测定普朗克常量。

二、实验仪器

FB807型光电效应(普朗克常数)测定仪。

三、实验原理

1、光电效应现象: 金属表面受到适当频率的光照射而释放出电子:

2、实验规律:

- ①每一种金属都存在一个临界频率(红限频率)水
- 当入射光的频率 v 低于截止频率 v₀时,无论光强多大都没有光电子产生;
- 当入射光的频率 v 高于截止频率 v₀时,产生光电效应;不同金属截止频率不同。
- 2、光电效应中产生光电子初速度(初动能)与光强无关,而与入射光的频率成正比;
- 3、发生光电效应时,光电流大小(单位时间内从金属表面放出的光电子数目)与照射光强度成正比;
- 4、瞬时效应: 只要 $v > v_0$, 无论光强如何,都会立即引起光电子发射(弛豫时间 Δ $t < 10^{-9} s$, 约为零)。

3、经典理论存在困难

- ①**物理认为**: 光是一种电磁波,电磁波的能量决定了它的强度即只与电磁波的振幅有关,而与电磁波的频率无关;
- ②**红限问题**:按经典理论,无论何种频率的入射光,只要强度足够大,就能使电子具有足够的能量逸出金属,与实验结果不符;
- ③**瞬时性问题**:按经典理论,电子逸出金属所需的能量,需要有一定的时间来积累,一直积累到足以使电子逸出金属表面为止,与实验结果不符。

4、爱因斯坦光子理论

- ①光子假设: 光是由能量为 hv 的光子组成的粒子流,光强决定于单位时间通过单位面积的光子数;
- ②爱因斯坦方程: 当光子照射金属时,金属中的电子全部吸收光子的能量 hv,电子把光子能量的一部分变成它逸出金属表面所需的功 A,另一部分转化为光电子

的动能 $\frac{1}{2}mv_m^2$, 即: $hv = \frac{1}{2}mv_m^2 + A$ (1)

逸出功 $A = hv_0$ 与金属的种类有关,每种金属都存在一个极限频率。 在 A, K 两端加上反向电压,回路中光电流随电压增大而减小,存在遏制电压 Ua 满足: $eU_a = \frac{1}{2} mv_m^2$ (2)

结合式 (1) (2) 可求出遏止电压 $Ua = \frac{h}{e}V - \frac{A}{e}$

实验时用不同频率的单色光照射阴极,测出相应的遏制电压作出 Ua-V 图,由图中直线斜率可求出普朗克常数 h。

图 1: 实验电路图

图二: I-Uak曲线图

图三: Ua-V 曲线图

四、实验内容及步骤

1、连接仪器

调节光电管暗箱到遮光位置,接通测试仪及汞灯电源,预热 20 分钟;调节光电管与汞灯距离 40cm 并保持,连接光电管暗箱电压输入端与测试仪电压输出端;将"电流量程"选择开关置于合适档位;对测定仪进行调零。

2、测量截止电压

- ①工作电压转换按钮于释放状态,在不接输入信号的状态下对微电流测量装置调零,再把装滤色片的转盘放在挡光位,即指示"0"对准上面的白点,在此状态下测量光电管的暗电流;
- ②把 365nm 的滤色片转到窗口(通光口),将电压表显示值调节为-1.999V,用电压粗调和细调旋钮,逐步升高工作电压(即减小负电压绝对值)。当光电管输出电流 I 为零时,记录对应的工作电压 U_{AK} ,即为 365nm 单色光的遏止电位。
- ③按顺序依次换上 405nm, 436nm, 546nm, 577nm 的滤色片, 重复以上测量步骤并记录各单色光的遏止电位 U_{AK} 。

3、测光电管伏安特性曲线

将"电流量程"转换至×10⁻¹⁰ A档,其余操作步骤与"测量截止电压"类同,不过此时要把每一个工作电压和对应的电流值加以记录,以便画出饱和伏安特性曲线,并对该特性进行研究分析.

- ①观察在同一光阑、同一距离条件下 5 条伏安特性曲线(365nm,405nm,436nm,546nm,577nm 的滤波片),记录所测 U_{AK} 及 I 的数据,在坐标纸上作对应波长及光强的伏安特性曲线。
- ②观察同一距离、不同光阑(不同光通量)、某条谱线在的饱和伏安特性曲线。 测量并记录对同一谱线、同一入射距离,而光阑分别为 \$\phi 2mm,4mm,8mm 时对 应的电流值,验证光电管的饱和光电流与入射光成正比。
- ③观察同一光阑下、不同距离(不同光强)、某条谱线在的饱和伏安特性曲线。 在 U_{AK} 为 30V 时,测量并记录对同一谱线、同一光阑时,光电管与入射光在 300mm, 350mm, 400mm 的不同距离对应的电流值,同样可以验证光电管的饱和电流与入射光强成正比。

五、数据记录

1、测量截止电压

波长 λ/nm	365	405	436	546	577
频率 v/(×10 ¹⁴ Hz)	8. 214	7. 408	6. 879	5. 490	5. 196
截止电压 U₀/V	-1. 776	-1. 387	-1. 215	-0. 707	-0. 585

		值	标准误差	t 值	概率> t
截止电压	截距	-1.41444	0. 09031	-15.66128	5. 65785E-4
似 山 电 压	斜率	0. 38395	0.01341	28. 63276	9. 35357E-5

$$k = \frac{h}{v} = 0.38395 \times 10^{-14}, h = 6.15 \times 10^{-34}$$

相对误差 0.03

2、测光电管伏安特性曲线

$\lambda = 365 \mathrm{nm}$	U _{ak} /V	-1	0	1	2	2.5	3. 5	5. 3	7
N = 369μμ	$I/(\times 10^{-11} A)$		70	160	240	270	330	420	510
$\lambda = 436$ nm	U _{ak} /V	-0.1	1	2	3	5	7	9	11. 3
	I/ (×10 ⁻¹¹ A)	10	40	60	80	100	130	160	180

1 - 265nm	U _{ak} /V	8.8	11.5	15. 4	18.9	22.8	25.6	27.0	28. 5
$\lambda = 365$ nm	I/ (×10 ⁻¹¹ A)	600	700	800	900	1000	1050	1070	1100
$\lambda = 436$ nm	U _{ak} /V	13.8	16.8	18. 3	19.8	21.6	23.8	26. 4	
	I/ (×10 ⁻¹¹ A)	190	220	230	240	250	260	270	

3、饱和光电流与入射光强

①同一距离、不同光阑

 U_{AK} = 28.6 V, λ = 577 nm, L= 400 mm

光闌口径Ф (㎜)	2	4	8
饱和电流 I/(×10 ⁻¹⁰ A)	4.8	16. 3	61. 9

②同一光阑、不同距离

 $U_{AK} = 28.6 \text{ V}, \lambda = 577 \text{ nm}, \Phi = 4 \text{ mm}$

距离(mm)	300	350	400
饱和电流 I/ (×10 ⁻¹⁰ A)	35. 8	23. 3	16. 2

可知入射光强越强, 饱和光电流越高

六、误差分析

- 1、人为读数产生的误差。
- 2、仪器的老化。
- 3、仪器并没有完全紧贴导轨,可以左右晃动,这导致会有一定的偏角,而不是垂直射入。

七、实验小结与思考

本次实验在求截止电压与伏安特性曲线时,我们组并没有出现什么问题,且误差不大,且这次我特地没有使用 origin, 首次使用 MATLAB 作图, 就当是锻炼自己。但是在求饱和电流时,哪怕光阑口径换到最大, 也没达到饱和, 这是比较可惜的, 事后去了解了一下其他组, 也都有差不多的情况, 实验中我通过换更小波长的光来进行尝试, 可惜电流是更大了, 但依旧没有饱和。

八、原始数据

	94) 4	D .	当	大	学	物	理	! 实	验	报台	告	
	学生姓	名:		学	号: _			专业	班级:		班级:	编号: _		
1	实验时间,测量截止	间: 电压、	t 分	第_	_周	星期 _		座位号	} :	教	师编号:_		责:	
	波长入/nm	365	405	436	546	577		K	= 0.39	8395 XI	0-14			
	频率v/(xio'	*HZ) 8.21	t 7,408	6.879	5.490	5-196		相	对误差	为 0.03				
	截止电压U.	1171 V	-1.387	-1:45	-1.215	-0.585								
2.	测量光电管	伙实特性	曲线							<u></u>				
	λ=365 nm	UAK/V		0	1	2	2.5	3.5	5.3	7				
	_	I/XÞ"A	20	70	160	240	270	330	420	510				
	2=436nm	UAK/V	-0.	1	2	3.	5	7	9	11:3				
	_	I/CXIO"A	10	40	60	80	100	130	160	180				
				,						1	4			
	2 2/6	UAK/V	8.8	11.5	15:4	1819	22.8	25.6	27,0	28.5	-			
	λ=365mm	I /(xp=nA)	600	700	800	900	1000	1050	10.70	1100				
	λ=436nm	UAKYY	13.8	16.8	18.3	1948	21.6	23-8	26.4	-				
		I (XJA)	190	220	230	240	250	260	270					
		全	3-1				朱文教	紫华岛沿	5908	908122 1220 90812	2030 2029 15 22011			

南昌大学物理实验报告

11 11. July 50	学号:	专业班级:	ではない 日	
学生姓名:	子	至业班级:	班级编号:	
7				

实验时间: ____ 时____分 第___ 周 星期 _____ 座位号: ______ 教师编号: _____ 成绩: ______

3.饱和光电流和入射光强

①同一距离不同光阑

UAK= 28.6V A=577nm, L=400mm

光阑2	2	4	8
饱和光电流	4.8	16.3	61.9

②同一光阑,不同距离

UAX = 28-6 V 7=5770m P=4mm

距割	300	350	400
炮和光 电流I	35.8	23.3	16.2

主建划

2023-10-16

集集集 5908122030 刻分果 5908122029 影锋 5908122015 星鄉縣 59年122011