Advanced Parallel School 2022 Quantum Computing – Day 2 Quantum Error Correction

Mengoni Riccardo, PhD

15 Feb 2022

Common sources of errors in QC

- Coherent quantum errors: Gates which are incorrectly applied
- Environmental decoherence: errors due to the interaction with the external environment
- Initialization errors: failing to prepare the correct initial state
- Qubit loss

Classical Error Correction

Classical error correction employs redundancy.

The simplest way is to store the information multiple times, and just take a majority vote if these copies are later found to disagree

$$\bigcirc \longrightarrow \bigcirc \bigcirc \bigcirc$$

Quantum Error Correction

It is possible to reuse **redundancy** in **quantum error correction**. However, there are some complications:

- No-cloning Theorem
- Qubits are susceptible to both bit-flips (**X-errors**) and phase-flips (**Z-errors**). (Classically, only bit-flip errors)
- Measuring affects the quantum state. Detecting errors must not compromise encoded information

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

These algorithms assume to have ideal qubits that are not subjected to noise and errors

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

- Require error corrected (faulttolerant) quantum computers with about 1 million or 100 thousands of qubits
- Will be availabe in 10-20 years

Quantum Error Correction

It is possible to reuse **redundancy** in **quantum error correction**. However, there are some complications:

- No-cloning Theorem
- Qubits are susceptible to both bit-flips (**X-errors**) and phase-flips (**Z-errors**). (Classically, only bit-flip errors)
- Measuring affects the quantum state. Detecting errors must not compromise encoded information

No Cloning theorem

It does NOT exist an universal cloning machine which is a unitary transformation such that

$$(4)(4) = (4)(4)$$

$$\forall (\Psi) \in \mathcal{H} \text{ and } (\mathcal{A}) \in \mathcal{H} \text{ fixed}$$

No Cloning theorem: proof

Suppose such universal cloning machine exists and apply it to two states like below

$$U(\Psi_{2})(d) = (\Psi_{1})(\Psi_{2})$$
 $U(\Psi_{2})(d) = (\Psi_{2})(\Psi_{2})$

No Cloning theorem: proof

Suppose such universal cloning machine exists and apply it to two states like below

$$U(\Psi_{2})(d) = (\Psi_{1})(\Psi_{2})$$
 $U(\Psi_{2})(d) = (\Psi_{2})(\Psi_{2})$

Consider a scalar product between the terms of the eqn.s above

$$\langle a | \langle \Psi_2 | U^{\dagger} U | \Psi_4 \rangle | a \rangle = \langle \Psi_2 | \langle \Psi_2 | \Psi_4 \rangle | \Psi_4 \rangle$$

No Cloning theorem: proof

Suppose such universal cloning machine exists and apply it to two states like below

$$U(\Psi_{2})(d) = (\Psi_{2})(\Psi_{2})$$

$$U(\Psi_{2})(d) = (\Psi_{2})(\Psi_{2})$$

Consider a scalar product between the terms of the eqn.s above

No Cloning theorem: proof

Suppose such universal cloning machine exists and apply it to two states like below

$$() | \Psi_{1} \rangle | \alpha) = | \Psi_{1} \rangle | \Psi_{1} \rangle$$

Consider a scalar product between the terms of the eqn.s above

Contradiction

(true only for orthogonal states)

$$\begin{cases} \langle \Psi_{2} | \Psi_{2} \rangle = 0 \\ \langle \Psi_{1} | \Psi_{2} \rangle = 1 \end{cases}$$

Repetition codes

This techniques use **redundancy**, **entanglement** and **syndrome measurements** to **correct** single qubits bit-flip and phase-flip errors which may occur with some probability *p*

Bit-flip error code

Encoding

Syndrome Measurement

$$(\exists_1 \exists_2)$$
 $(\exists_1 \exists_3)$

Bit-flip errors code

Initial state

$$|\Psi\rangle = 2 |0\rangle + \beta |1\rangle$$

 $|\Psi\rangle |0\rangle$

Bit-flip error codes

Step by step analysis (two qubit case)

Encoding

$$|0\rangle \longrightarrow |0_L\rangle = |00\rangle$$
 $|1\rangle \longrightarrow |1_L\rangle = |11\rangle$

Obtained with a Control-X

$$()_{cx} |\Psi\rangle|_{0} = 2|00\rangle + \beta|11\rangle$$

= $2|0_{L}\rangle + \beta|1_{L}\rangle$

Assume a bit-flip error on the first qubit

Assume a bit-flip error on the first qubit

Assume a bit-flip error on the first qubit

$$|0\rangle_{A} = \left(\frac{|0\rangle_{A} + |1\rangle_{A}}{\sqrt{2}}\right)$$

Control gate for syndrome measurement

$$(|10\rangle + |10\rangle) \left(\frac{|0\rangle_{A} + |1\rangle_{A}}{\sqrt{2}}\right) \qquad |2\rangle = |0\rangle$$

$$|2\rangle = |1\rangle = -|1\rangle$$

$$|0\rangle = |0\rangle$$

$$|0\rangle = |0\rangle$$

$$|0\rangle = |1\rangle$$

$$|0\rangle_{A}\left(\frac{d|10\rangle+\beta|01\rangle}{\sqrt{2}}\right)-|1\rangle_{A}\left(\frac{d|10\rangle+\beta|01\rangle}{\sqrt{2}}\right)$$

Control gate for syndrome measurement

$$(|10\rangle + |10\rangle) \left(\frac{|0\rangle_{A} + |1\rangle_{A}}{\sqrt{2}}\right) \qquad |2\rangle = |0\rangle$$

$$|2\rangle = |0\rangle$$

$$|2\rangle = |1\rangle = -|1\rangle$$

$$|0\rangle = |0\rangle$$

$$|0\rangle = |0\rangle$$

$$|0\rangle_{A}\left(\frac{d|10\rangle+\beta|01\rangle}{\sqrt{2}}\right)-|1\rangle_{A}\left(\frac{d|10\rangle+\beta|01\rangle}{\sqrt{2}}\right)=$$

Bit-flip error codes

Step by step analysis (two qubit case)

$$\frac{10}{10} + \frac{10}{10} = \frac{10}{10} + \frac{10}{10} = \frac{10$$

Bit-flip error codes

Step by step analysis (two qubit case)

$$\frac{10}{10} + \beta |01\rangle \left(\frac{10}{10} - 11/A\right) + \frac{1}{10} \left(\frac{11}{10} + \beta |01\rangle\right) |11\rangle_{A}$$

Measuring the state of the ancillary qubit in 12, will reveal that a bit-flip error has occurred

$$\frac{100}{100} + \frac{100}{100} = \frac{100}{100} + \frac{100}{100} = \frac{100}{100} =$$

Measuring the state of the ancillary qubit in 🗐 will reveal that a bit-flip error has occurred

We need 3 qubits in the encoding to perfectly locate where bit-flip error has occurred

Bit-flip error codes

Step by step analysis (two qubit case)

	(Z_1Z_2)	$(2,2_3)$	
outcome	+1	+1	error on none qubits
outcome	– 1	+1	error on first qubit
outcome	+1	-1:	error on third qubit
outcome	- 1	-1:	error on second qubit

We need 3 qubits in the encoding to perfectly locate where bit-flip error has occurred

Assume a no error on the first qubit

$$\left(\frac{100}{100}\right) + \beta \left(\frac{11}{100}\right) \left(\frac{100}{100}\right) + \frac{11}{100}\left(\frac{100}{100}\right) + \beta \left(\frac{11}{100}\right) \left(\frac{100}{100}\right) + \beta \left(\frac{11}{100}\right) + \beta \left(\frac{11}$$

$$\frac{H_A}{D}$$
 $(d | 00) + \beta | 11) | 0)_A$

$$\left(\frac{100}{100} + \beta | 11) \left(\frac{10}{\sqrt{2}} + \frac{11}{2} \right) \xrightarrow{H_A}$$

Measuring the state of the ancillary qubit in 0 reveals that no error has occurred

Phase-flip errors code

Encoding

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|-\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

Syndrome Measurement

$$(X_1X_2)_{1}(X_2X_3)$$

Phase-flip errors code

Phase-flip error codes

Step by step analysis (two qubit case)

Initial state

$$|\Psi\rangle = 2 |0\rangle + \beta |1\rangle$$

 $|\Psi\rangle |0\rangle$

Phase-flip error codes

Step by step analysis (two qubit case)

Encoding

Obtained with a Control-X and Hadamards

$$\left(\frac{10}{\sqrt{12}} + \beta |1\rangle \right) |0\rangle \xrightarrow{U_{CX}} \sqrt{|0\rangle + \beta |1\rangle} + \beta \left(\frac{10\rangle + |1\rangle}{\sqrt{12}} \otimes \frac{|0\rangle + |1\rangle}{\sqrt{12}} \right) + \beta \left(\frac{10\rangle - |1\rangle}{\sqrt{12}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{12}} \right) =$$

$$= \sqrt{1 + 4} + \beta |1 - -\rangle$$

Assume a phase-flip error on the first qubit

Step by step analysis (two qubit case)

Assume a phase-flip error on the first qubit

$$|0\rangle_{A} = \left(\frac{|0\rangle_{A} + |1\rangle_{A}}{\sqrt{2}}\right)$$

Step by step analysis (two qubit case)

Assume a phase-flip error on the first qubit

$$\left(\bigcup_{\epsilon RR} = Z_{1}\right)$$

Step by step analysis (two qubit case)

Control gate for syndrome measurement

syndrome measurement
$$(|A|-+|+|+|+|-|)(\frac{|0\rangle_A + |1\rangle_A}{\sqrt{2}})$$

$$|X|+>= |+>$$

$$|X|->= -|->$$

$$|0\rangle_A - |$$

$$|0\rangle_{A}\left(\frac{\langle (-+)+\beta|+-\rangle}{\sqrt{2}}\right)-|1\rangle_{A}\left(\frac{\langle (-+)+\beta|+-\rangle}{\sqrt{2}}\right)=\left(\langle (-+)+\beta|+-\rangle\right)\left(\frac{|0\rangle_{A}-|1\rangle_{A}}{\sqrt{2}}\right)$$

Step by step analysis (two qubit case)

$$\left(\frac{1-+}{+} + \beta + -\right)\left(\frac{10}{A} - 11\right)_{A}$$

$$\downarrow \pm$$

Step by step analysis (two qubit case)

$$\left(\frac{1-+}{+} + \beta + -\right)\left(\frac{10)_{A} - 11)_{A}}{\sqrt{2}}$$

$$\left(\frac{1}{4} - +\right) + \beta + -\right) \left(\frac{1}{2} - 12)_{A}$$

Measuring the state of the ancillary qubit in 12, will reveal that a phase-flip error has occurred

Step by step analysis (two qubit case)

$$\left(\frac{1-+}{+} + \beta + -\right)\left(\frac{10)_{A} - 11_{A}}{\sqrt{2}}\right)$$

Measuring the state of the ancillary qubit in 12, will reveal that a phase-flip error has occurred

We need 3 qubits in the encoding to perfectly locate where phase-flip error has occurred

Step by step analysis (two qubit case)

	(X_1X_2)	(X_2X_3)	
outcome	+1	+1:	error on none qubits
outcome	- 1	+1:	error on first qubit
outcome	+1	-1:	error on third qubit
outcome	- 1	-1:	error on second qubit

We need 3 qubits in the encoding to perfectly locate where phase-flip error has occurred

Shor Code

Shor code

Nine qubit repetition code

Uses nine qubits to correct both bit-flip and phase-flip errors

Encoding

Encoding 1 Encoding 2
$$|0\rangle \rightarrow |+++\rangle \qquad |0\rangle \rightarrow |00\rangle$$

$$|1\rangle \rightarrow |--\rangle \qquad |1\rangle \rightarrow |111\rangle$$

Shor code

Nine qubit repetition code

Uses nine qubits to correct both bit-flip and phase-flip errors

Shor code

Nine qubit repetition code

Uses nine qubits to correct both bit-flip and phase-flip errors

Encoding

Encoding 1 Encoding 2
$$|0\rangle \rightarrow |+++\rangle \qquad |0\rangle \rightarrow |000\rangle$$

$$|1\rangle \rightarrow |---\rangle \qquad |1\rangle \rightarrow |111\rangle$$

Syndrome Measurement

$$(X_1 X_2 X_3)(X_4 X_5 X_6) \qquad (X_4 X_5 X_6)(X_7 X_8 X_9)$$

$$(Z_1 Z_2)_{1}(Z_2 Z_3)_{1}(Z_4 Z_5)_{1}(Z_5 Z_6)_{1}(Z_7 Z_8)_{1}(Z_8 Z_9)$$

Quantum Computing @ CINECA

CINECA: Italian HPC center

CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

