Binary Relations

Cunsheng Ding

HKUST, Hong Kong

September 27, 2015

1 / 21

Contents

- Binary Relations
- Equivalence Relations
- Partial Orders
- Total Orders

Binary Relations

Definition 1

- Let A and B be two sets. A <u>binary relation</u> B from A to B is a subset of $A \times B$. A binary relation on A is a subset of $A \times A$.
- ② Given an ordered pair $(x,y) \in A \times B$, we say that x is related to y by R, written x R y, if and only if $(x,y) \in R$.

Example 2

Let $A = \{Alice, Jim\}$ and $B = \{Math, Biology\}$. Assume that

Student	Course
Alice	Math, Biology
Jim	Math

Then the students and modules involved can be described by the following relation: $R = \{(Alice, Math), (Alice, Biology), (Jim, Math)\}.$

Ways to describe a Binary Relation (1)

- 1 In terms of a subset of $A \times B$ (see Example 2).
- Arrow diagram.

Example 3

The arrow diagram representation of the binary relation of Example 2 is the following:

Ways to describe a Binary Relation (2)

Example 4

Write the following relation *R* in terms of ordered pairs.

Solution:

$$A = \{1,2,3,4,5\}$$

$$R = \{(1,1),(2,2),(3,3),(4,4),(5,5),(3,5),(5,4),(4,3)\}$$

The Inverse Relation

Definition 5

Let R be a relation from X to Y. The <u>inverse</u> of R, denoted by R^{-1} , is the relation from Y to X defined by

$$R^{-1} = \{(y,x) \mid (x,y) \in R\}$$

Example 6

Let $X = \{2,3,4\}$ and $Y = \{3,4,5,6,7\}$. Define

$$R = \{(2,4),(2,6),(3,3),(3,6),(4,4)\}$$

Then

$$R^{-1} = \{(4,2), (6,2), (3,3), (6,3), (4,4)\}$$

6/21

The Composition of Relations

Definition 7

Let R_1 be a relation from X to Y, and R_2 be a relation from Y to Z. The <u>composition</u> of R_1 and R_2 is denoted by $R_2 \circ R_1$ or simply $R_2 R_1$, is the relation from X to Z defined as

$$R_2R_1 = \{(x,z) \mid (x,y) \in R_1 \text{ and } (y,z) \in R_2, \text{ for some } y \in Y.\}$$

Example 8

Let
$$X = Y = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 and $Z = \{u, s, t\}$, and let

$$R_1 = \{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\},$$

$$R_2 = \{(2,u),(4,s),(4,t),(6,t),(8,u)\}$$

Then

$$R_2R_1 = \{(1,u),(1,t),(2,s),(2,t),(3,s),(3,t),(3,u)\}$$

Reflexive Relations

Definition 9

A binary relation R on a set A is <u>reflexive</u> if and only if $(a, a) \in R$ for all $a \in A$.

Example 10

Let $A = \{1, 2, 3, 4\}$ and let

$$R = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}.$$
 Is R reflexive?

Example 11

Let \mathbb{R} be the set of real numbers and let $R = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$. Then R is reflexive.

Example 12

$$R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 0\}$$
 is not a reflexive relation.

Proof.

$$(0,0) \notin R$$
.

Symmetric Relations

Definition 13

A binary relation R on a set A is <u>symmetric</u> if and only if for all $a, b \in A$, $(a,b) \in R$ implies $(b,a) \in R$.

Example 14

$$R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$
 is a symmetric relation on R .

Example 15

Let $A = \{1,2,3\}$, $R = \{(1,1),(2,2)\}$. Then R is symmetric, but not reflexive.

Example 16

$$R = \{(x,y) \in \mathbb{R}^2 \mid x^2 \ge y\}$$
 is not a symmetric relation on R .

Proof.

$$(2,1) \in R$$
 but $(1,2) \notin R$.

Transitive Relations

Definition 17

A binary relation on R on a set A is <u>transitive</u> if and only if for all $a,b,c\in A$, $(a,b)\in R$ and $(b,c)\in R$ implies that $(a,c)\in R$.

Example 18

 $R = \{(x,y) \in \mathbb{R}^2 \mid x \le y\}$ is a transitive relation on \mathbb{R} .

Proof.

Let $(x,y) \in R$ and $(y,z) \in R$. Then $x \le y$ and $y \le z$. Hence $x \le z$ and $(x,z) \in R$.

Example 19

 $R = \{(a,b),(b,a),(a,a)\}$ is not a transitive relation on $\{a,b\}$.

Proof.

 $(b,a) \in R$, $(a,b) \in R$, but $(b,b) \notin R$.

Equivalence Relations (1)

Definition 20

An <u>equivalence relation</u> on a set *A* is a binary relation *R* on *A* which is reflexive, symmetric and transitive.

- (a) Many people use \sim to denote an equivalence relation.
- (b) To prove that *R* is an equivalence relation, we need to prove reflexivity, symmetry, and transitivity.
- (c) To prove that *R* is NOT an equivalence relation, we need to prove one of the reflexivity, symmetry, and transitivity does not hold.

Example 21

The relation \leq on the real numbers is not an equivalence relation.

Proof.

The relation \leq is not symmetric. For example, $(3,7) \in R$, but $(7,3) \notin R$.

Equivalence Relations (2)

Example 22

Let $R = \{(x,y) \mid (x,y) \in \mathbb{Z}^2 \text{ and } 3 \mid (x-y)\}$. Then R is an equivalence relation on \mathbb{Z} .

Proof.

Reflexivity: Since 3 divides x - x = 0 for any $x \in \mathbb{Z}$, by definition, $(x, x) \in R$. **Symmetry:** Let $(x, y) \in R$, we want to prove $(y, x) \in R$.

$$(x,y) \in R$$
 implies $3 \mid (x-y)$ implies $3 \mid (y-x)$ implies $(y,x) \in R$.

Transitivity: For any $(x,y) \in R$ and $(y,z) \in R$, we now prove $(x,z) \in R$.

$$(x,y) \in R$$
 implies $3 \mid (x-y)$ implies $(x-y) = 3k_1$ for some k_1 $(y,z) \in R$ implies $3 \mid (y-z)$ implies $(y-z) = 3k_2$ for some k_2

Hence
$$x - z = (x - y) + (y - z) = 3(k_1 + k_2)$$
. Thus $3 \mid (x - z)$. By definition, $(x, z) \in R$.

Partitions on A

Definition 23

A <u>partition</u> of a set A is a collection of disjoint **nonempty** subsets of A whose union is A. These disjoint sets are called <u>cells</u> (or <u>blocks</u>). The cells are said to partition A.

Example 24

Let $A = \{0, 1, 2, 3, 4, 5, 6\}$. Then

- $\{\{0,1\},\{2,3,4\},\{5,6\}\}$ is a partition of A.
- ② $\{\{0\},\{1,2,3,4,5,6\}\}$ is also a partition of A.

Equivalence Relation Induced by a Partition (1)

Let A be a set and let $\{A_1, A_2, \dots, A_n\}$ be a partition of A. Define a binary relation R by

a R b iff a and $b \in A_i$ for some i

This is a binary relation.

Example 25

Let $A = \{1,2,3\}$ and let $\{\{1\},\{2,3\}\}$ be a partition on A. The equivalence relation R induced by this partition is:

$$R = \{(1,1),(2,3),(3,2),(2,2),(3,3)\}$$

Equivalence Relation Induced by a Partition (2)

Let *A* be a set and let $\{A_1, A_2, \dots, A_n\}$ be a partition of *A*. Define a binary relation *R* by

a R b iff a and $b \in A_i$ for some i

Theorem 26

The above R is an equivalence relation defined on A.

Proof.

- Reflexivity: a and a in the same subset implies that a R a.
- Symmetry:

a R b implies
$$\{a,b\} \subseteq A_i$$
 implies $\{b,a\} \subseteq A_i$ implies b R a

③ Transitivity: Assume that a R b and b R c. Then a and b are in the same subset A_i , and b and c are in the same subset A_j . If $i \neq j$, then $b \in (A_i \cap A_j)$. This is contrary to $A_i \cap A_j = \emptyset$. Therefore i = j and a R c.

Partition Induced by an Equivalence Relation

Definition 27

Let R be an equivalence relation on a set A. The equivalence class containing a, denoted \overline{a} , is defined by

$$\overline{a} = \{ x \in A \mid x R a \}.$$

It is straightforward to prove the following.

Theorem 28

Let R be an equivalence relation on a set A. The set $\{\overline{a} \mid a \in A\}$ of distinct equivalence classes forms a partition of A.

Antisymmetric Relations

Definition 29

A binary relation R on a set A is <u>antisymmetric</u> if and only if for all $a, b \in A$, $(a,b) \in R$ and $(b,a) \in R$ implies that a = b.

Example 30

Let *S* be any set and let A = P(S) be the power set of *S*, then

$$R = \{(X, Y) \mid X, Y \in P(S), X \subseteq Y\}$$

is an antisymmetric relation on P(S).

Warning: "Antisymmetric" \neq "not Symmetric".

Example 31

 $R = \{(1,2),(2,3),(3,3),(2,1)\}$ defined on $A = \{1,2,3\}$ is not symmetric, but neither is it antisymmetric.

Partial Orders

Definition 32

- A partial order R on a set A is a reflexive, antisymmetric, transitive relation on A.
- 2 A partially ordered set, is a pair (A, R), where R is a partial order on A.

Example 33

The binary relation \leq on the set of real numbers is a partial order.

Proof.

- **1** Reflexivity: $a \le a$.
- 2 Antisymmetry: $a \le b$, $b \le a$ implies that a = b.
- **3** Transitivity: $a \le b$, $b \le c$ implies that $a \le c$.

Total Orders

Definition 34

Let (A, R) be a partially ordered set. Elements a and b of A are said to be comparable if and only if either a R b or b R a.

 $(P(S),\subseteq)$ is a partially ordered set. Note that $\{a\} \not\subseteq \{b,c\}, \{b,c\} \not\subseteq \{a\}.$

Definition 35

Let R be a partial order. If for every $a, b \in A$, either a R b or b R a, then R is called a <u>total order</u>, and (A, R) is called a totally ordered set.

Example 36

 (\mathbb{R}, \leq) is a totally ordered set, and \leq is a total order on \mathbb{R} .

The Greatest and Least Elements

Definition 37

- A greatest element g of a partially ordered set (A, R) is an element such that a R g for every element $a \in A$.
- ② A <u>least element</u> I of a partially ordered set (A, R) is an element such that I R a for every element $a \in A$.

Example 38

Let *S* be a set, and let P(S) be the power set. Then $(P(S), \subseteq)$ is a partially ordered set. Then

- 0 is the least element;
- S is the greatest element.

Remark: Least and greatest elements are comparable with every element.

Question 39

Are the greatest and least elements unique, if they exist?

Comments on Binary Relations

- Binary relations are an important part of discrete mathematics.
- Functions that will be covered in the sequel are special binary relations.
- Also graphs can also be viewed as binary relations.
- Many of the things in our daily life can be viewed as binary relations, for examples, love and hate.

Question 40

Let A be the set of students in this classroom, and let <u>Love</u> be the binary relation defined on A.

- Is this relation reflexive?
- 2 Is this relation symmetric?
- Is this relation antisymmetric?
- Is this relation transitive?