Quantitative trait prediction using GCAE

Richel Bilderbeek 2022-03-05

https://github.com/richelbilderbeek/science_presentation_20220305

Introduction

Goal

Predict

Method: GCAE

Genomic Convolutional Auto Encoder Dimensionality reduction

What an auto-encoder does

Latent layer with dimension reduced data

GCAE is an auto-encoder

GCAE is highly tunable

GCAE can do non-linear dimensionality reduction

GCAE cannot do rare alleles

GCAE may do trait prediction

Untested quantitative trait prediction extension

Analogy

Predict the number of horses, spaceships, etc.

Protein concentrations

What has been done

GCAE

Can actually run with trait prediction

Can run on Bianca

gcaer works with GCAE

Tested to be correct

Proper error messages

Extend functionality

nsphs_ml_qt does experiments

Scripts re-used in many contexts

Works locally, on Rackham, on Bianca

You can run these today

First experiment

Simulate simplest dataset Run GCAE as-is Evaluate performance

First experiment: simulated dataset

1 monogenic trait with $H^2 = h^2 = 1$ 1k individuals

For PLINK users: why not just use 0, 1 and 2 for trait values?

MAF = 0.499

chr	id	posg	pos	ref	alt
:	:	:	:	:	:
1	snp_1	0	1	Α	C

FID	IID	additive
:	- :	:
A	1	9.424778
Α	2	6.283185
Α	3	3.141593
Α	4	9.424778
ļΑ	5	9.424778

		snp_1
	:	:
	1	0
Ī	2	1
_	3	2
	4	0
	5	0

fam	id	pat	mat	sex	pheno
:	:	:	:	:	:
İΑ	1	0	0	1	-9
İΑ	2	0	0	1	-9
Α	3	0	0	1	-9
Α	4	0	0	1	-9
Α	5	0	0	1	-9

First experiment: PLINK results

PLINK measures association perfectly

CHR	SNP	BP	NMISS	BETA	SE	R2	T	PΙ
:	:	:	:	:	:	:	:	:
1	snp_1	1	1000	-3.142	0	1	-116700000	0

FID	IID	additive
:	:	:
Α	1	9.424778
Α	2	6.283185
Α	3	3.141593
Α	4	9.424778
ĺΑ	5	9.424778

	snp_1
:	:
1	0
2	1
3	2
4	0
5	0

First experiment: expected GCAE predictions

First experiment: GCAE predictions

First experiment: conclusions

Proof of concept works, prediction underperforms

Hypothesis:

Decision

Tune the network to the problem

try a simpler neural network GCAE focused

Tune the problem to the network

try harder problems application focused

First NSPHS experiment

Use NSPHS and first protein concentration

Pick 100k random variants

Adrenomedullin

Run GCAE as-is Evaluate performance

First NSPHS experiment: results

Runs!
60 hours
1k epochs
Unsure about learning trajectory

First NSPHS: conclusion

The result is just noise

The gene for adrenomedullin is monogenic, 52 amino acids

But hey, it works!

First NSPHS: conclusion

* [] Use the SNPs known to have an association, e.g. 0.5 Mb downstream and upstream around known cis-regulatory elements, #5

Learning

Learning proceeds until death and only then does it stop

Learning trajectory

Trait prediction can only be trained well after dimensionality reduction is good

Dimensionality reduction score

Ausmees, Kristiina, and Carl Nettelblad. "A deep learning framework for characterization of genotype data." G3 12.3 (2022): jkac020. https://doi.org/10.1093/g3journal/jkac020

Caveats in application

We cannot assign clusters:

NSPHS is ≈1 cluster, i.e. Karesuando and Soppero

All we care about is that dimensionality reduction has reached equilibrium

Using 2 clusters anyway may allow us to do so

Maybe we only care about the trait predictions

Dimension reduction quality: other way

[] Plot the genotype concordance through time, #17

Trait prediction score

How well are phenotypes predicted?

... in time?

... comparable between protein concentrations?

Trait prediction score 1/2: MSE

MSE: Mean squared error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Mean (vertical distance to identity line)²

Scale matters

Trait prediction score 2/2: NMSE

NMSE: Normalized Mean Squared Error

```
mean <- mean(true_values)
sd <- sd(true_values)
testthat::expect_true(sd > 0.0)
normalized_true_values <- (true_values - mean) / sd
normalized_estimated_values <- (estimated_values - mean) / sd</pre>
```

Progress: get learning trajectory

[x] Plot the F1 scores through time, #6

Progress: get learning trajectory

[x] Plotphenotypepredictionthrough time,#21[] Plot NMSEthrough time, #7

Conclusion

The autoencoder needs a hard problem

Hence, use NSPHS with useful genetic regions

Conclusion

Need to determine when GCAE is done learning

Hence, need to select/devise measures for that

Conclusion

The autoencoder then probably needs tuning

With a latent layer of 2 neurons (hence 2 dimensions), the autoencoder may underfit challenging data

Discussion

We cannot predict where/where the autoencoder outperforms existing methods ...

but it will be when:

Data of sufficient complexity

Non-linear relations between the principal components

Common alleles

(Noisy data)

Questions?

https://github.com/richelbilderbeek/science_presentation_20220305 https://youtu.be/ldwPcy263IU