Computer Music: Representations and Models

Students:

Donà Stefano

Ostan Paolo

Parrinelli Sofia

Professor:

Augusto Sarti

Introduction:

Creation of a self-generating music environment initiated by user interaction through the combination of different melodic and rhythmic music styles and different instruments.

Combining different components the user can build a visual and musical environment.

Problem statement

- The generative model to develop has to present the following characteristics in order to work with the Computer music system to be integrated in:
 - It must be able to generate melodies starting from an high level of abstraction user input
 - It must create different styles of music following user preferences
 - It must translate the music created into some notation readable by the system
- Main musical components needed:
 - Harmony
 - Melody
 - Bass
 - Rhythm

Our solution

- ► Music source based on the work of a human composer
- Subdivision in four different music styles that follow specific compositive rules
- ► Generative model based on Markov Chain
- ► Match musical styles to graphical elements

4 ENVIRONMENTS:

- ▶ 1. Mountain
 - predominant use for melody of constitutive notes of the chords
 - use of a more rhythmic style and a more lyric style alternated
 - ▶ large use of VI-V-I turnarounds, with some modulations

- ▶ 2. Desert
 - use of harmonic, phrygian, dominant phrygian and double harmonic scales
 - ► large use of fourth turnarounds
 - musical syncopations

- ▶ 3. Seaside
 - ▶ lot of emphasis on current harmony notes
 - creation of loops similar to each other, one can be the variation of the other, for example one with the same melody but headless
 - ▶ large use of minor harmonies, use of weak cadences
 - Use of static long notes

- ▶ 4. City
 - use of syncopations and rhythmic lags
 - ▶ melodic phrases similar to lo-fi music, industrial music, psychedelic
 - use of phrygian mode, with recurrent minor harmonies

Markov Chain

- Generative Model
- Weighted Arcs connect bars and specify the probability of transition between states
- Stochastic model allows to create melodies
- ► Each node is a basic component and contains all the information that constitute one bar

Nodes

Musical Nodes represented as database elements

Leadsheet grammar IMPRO-VISOR LEADSHEET NOTATION

MELODY

NOTE

Lower-case letter

OCTAVE

octave above the middle one

octave below the middle one

DURATION

1 4/4 note

Z 2/4 note

4 1/4 note

8

1/8 note

16

1/16 note

Leadsheet grammar IMPRO-VISOR LEADSHEET NOTATION

CHORDS

EXAMPLE

Chord: Am

Melody: { r16 a4 g#16 f16 g#16 f16 e16 c16 bb-16 a-4}

Music generation and scheduling

Musical Nodes are composed into a melody through the generation algorithm

Melody is parsed and turned into a list of schedulable musical events

Musical events are played by the selected instrument when scheduled to the Transport Time of the system

Chords: | Am | G | C | **Melody**: { c8. c16 a-8 a-4. a-8 a-8\n b-8 b-8 b-8 b-2 r8\n c2 r4 e4\n}

Notes Scheduling

duration: "8n." note: "c3" time: "0:0:0" duration: "1n" duration: "16n" note: "c3" time: "0:0:3" notes: ["A2", "C3", "E3"] time: "0:0:0" duration: "8n" note: "a2" time: "0:1:0" duration: "4n." note: "a2" time: "0:1:2" duration: "8n" note: "a2" time: "0:3:0» duration: "8n" note: «a2" time: "0:3:2" duration: "8n" note: "b2" time: "1:0:0" duration: "1n" duration: "8n" note: "b2" time: "1:0:2" notes: ["G2", "B2", "D3"] duration: "8n" note: "b2" time: "1:1:0" time: "1:0:0" duration: "2n" note: "b2" time: "1:1:2" duration: "2n" note: "c3" time: "2:0:0" duration: "1n" duration: "4n" note: "e3" time: "2:3:0»

notes: ["C3", "E3", "G3"]

Chords Scheduling

time: "2:0:0"

Conclusions and Future Development

- ▶ The project implemented aims at two categories of users:
 - The listener who passively enjoys the generated music
 - The composer who can exploit the developed system to project generative musical environment starting from his composition
- Possible improvements:
 - More nodes in music generation
 - More styles associated with graphical elements
 - Possibility of changing musical database allowing different composers to exploit the same creative concept

THANKS FOR THE ATTENTION

Students: Stefano Donà

Paolo Ostan Sofia Parrinelli (stefano2.dona@mail.polimi.it)
(paolo.ostan@mail.polimi.it)
(sofia.parrinelli@mail.polimi.it)