This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Unbonded Brace™

Nippon Steel Corporation's Unbonded Brace™ is a high-performance structural lem nt for earthquake resista

Unbonded Brace™Concept

Nippon Steel Corporation's Unbonded Brace is a structural brace element consisting of a steel core plate surrounded by mortar and enclosed in a steel tube. It provides very stable, repeatable and symmetric hysteretic behavior in the inelastic range and does so without buckling.

A membrane called the unbonding material, between the core plate and the mortar, ensures that axial forces in the core plate do not transfer to the mortar and the steel tube. This ingenious combination of components produces a seismic structural element with stable and symmetric tension-compression hysteretic behavior.

Unbonded Brace Hysteretic Behavior

High Performance and Quality at an Economical Price

Unbonded Braces are manufactured to the highest quality standards. The thickness of the unbonding material layer is very tightly controlled in the fabrication process to ensure a uniform clearance between the core plate and the surrounding mortar. This, along with other key details, ensures that

Prior to shipmen

yielding of the brace core plate is uniform along its length, and that Unbonded Braces achieve higher performance than any other comparable structural elements. The Unbonded Brace is an efficient combination of economic materials: steel and concrete mortar.

BCJ Approvai*

"License Number BCJ-S-1278 (The Building Center Japan is part of the Ministry of Construction, similar in function to ICBO)

Nippon Steel's Unbonded Brace received a "BA" classification approval from BCJ as both a selsmic control member and a structural element, and as a result can be used to achieve designs that are more economical than regular structural eystems.

(Japanese patents issued; U.S. patent pending)

The essence of the Unbonded Brac ™ is a brace that do sn't brickle, is highly ductile, and v ry eff ctively absorbs seismic n rgy.

Unbonded Brace™ Performance

- Hysteresis loops in tension and compression have equal strength and rigidity, in the pre- and post-yield rances.
- (2) in full-scale shaking table dynamic tests, Unbonded Braces show stable hysteretic behavior at deformations up to ±7% brace adal strain.
- (3) In low-cycle fatigue tests, Unbonded Braces mathtain stable behavior for over 200 cycles at en axial strain of ±0.75% (approximately equal to 1% story drift).

Application to "Damage Tolerant" Structures

Unbonded Braces are designed to operate in the plastic range under seismic loading, and therefore earthquake energy is concentrated in the Unbonded Braces while the primary structural frame is designed to remain essentially elastic. As a result, an economical design can be achieved for the primary frame and it can remain undamaged, even after a severe earthquake. If necessary, only the Unbonded Braces need to be replaced after a severe earthquake, achieving a higher level of safety for the building and easier post-earthquake recovery.

Damage Controlled Design

	Conventional Design Damage Controlled De		trolled Design	
	Primary Franse Elastic	THE RESERVE OF THE STATE OF		
Small Earthquake		Elestic	Plastic (Energy Absorption)	
Severe Earthquake	Plastic (Plastic at Beam Brds)	Elastic	Plastic (Energy Absorption)	

Type of Unbonded Brace	Type of Core Plate		Material Specification
Stenderd Type	Flat Plate (-)	0	JIS SS400 (similar to ASTM A36) JIS SM490 (similar to ASTM A572/50) JIS SM520 (similar to ASTM A572/60) JIS SM400 (similar to ASTM A38, but with lower and upper limits on Fy and Fu) JIS SN490 (similar to ASTM A992/50)
	Cruciform (+)	4	

The xc lient performance of Unbond d Braces™ has been d monstrat d in numerous test programs.

Full-Scale Dynamic Shaking Table Tests*

*Building Research Institute Laboratory, Tsukuba, Japan

The JMA Kobe Observatory ground motion (Kobe, 1995) was applied at maximum velocities from 10 to 70 cm/s (4 to 27.8 in/s), and the Unbonded Brace showed stable hysteretic behavior for axial strains as high as 7.5%.

The El Centro ground motion (California, 1940) was applied at maximum velocities from 5 to 90 cm/s (2 to 35.4 in/s) and the Unbonded Brace showed stable hysteretic behavior for axial strains as high as 7.2%.

●Typical Result, Full-Scale Shaking Table Tast

Maximum story drift (tension: 1/67, compression: 1/65)

Fatigue Resistance

Under low-cycle fatigue testing, Unbonded Braces show stable hysteretic behavior for 200 cycles under a deformation corresponding to 1% story drift.

●Low-Cycle Fatigue

Response Measurement Device

Optional Measurement Device: Maximum Deformation Meter

If it is required to monitor the seismic behavior of installed Unbonded Braces, Nippon Steel optionally provides a simple mechanical device (requiring no electrical power for operation) that records the maximum brace deformation in an earthquake.

Unbond d Braces™ hav be n applied to numerous large and high-quality structur s.

Unbonded Brace Applications in Japan (through 2000)

> High-rise Buildings (over 15 stories) Low-rise Buildings (less than 15 stories)-- 70 buildings - Over 160 buildings

 Exposed Braces
with Cast End Connections 2000 Toyota Stadium, Aichi Design: K. Kurokawa, Ove Arup Japan

Exposed, Fire Protected, Welded Connections and Circular Tube **Unbonded Braces** I. K. Bulkling, Tokyo Design: Nikken Sekkei

PVery Large Unbonded Braces (22 m, 72.5 ft long) 1998

Osaka International Convention Centre, Osaka Design: K. Kurokewa, Ove Arup Japan

Car Parking Structure Minatomachi Plaza, Kanagawa Design: Endo Associates

●Damage Tolerant Design Application Sankyo Tokyo Headquarters, Tokyo Design: Plantec, Alpha Structural Design

Braced Frame Structural System

Core Plate

JIS SS400 (similar to ASTM A36)

JIS SM490 (similar to ASTM A572/50)

JIS SM520 (similar to ASTM A572/60)

JIS SN400 (similar to ASTM A36, but with lower and upper limits on Fy and Fu)

JIS SN490 (similar to ASTM A992/50) * Minimum core plate thickness is 19mm (3/4 in.).

Steel Tube

JIS STKR400, STK400, Thickness: 3.2 mm to 16 mm

Width or Diameter: 100 to 500 mm (larger sizes are possible upon request)

Mortar

As per Nippon Steel Technical Specification

Design of Steel Tube

As per Nippon Steel Technical Specification

Contacts

USA

■Sales

Mitsui & Co. (U.S.A.), Inc.

601 S. Figueroa St., Suite 1900, Los Angeles, CA 90017

Keiichi Furihata

tet:

213-896-1145

fax: 213-688-7935 e-mail: kfurihat@los.mitsui.com

Technical Information Seismic Isolation Engineering, Inc.

P.O. Box 11243, Oakland, CA 94611-0243

lan Aiken, Ph.D., P.E.

tel:

510-595-7498

510-595-7499

e-mail: ida@siecorp.com

website: www.siecorp.com

Japan

Manufacturing

Steel Structure Div., Nippon Steel Corporation

2-6-3, Otemachi, Chiyoda-ku, Tokyo

tel:

+81-3-3275-6671

fax:

+81-3-3275-5978

e-mail: kimura.isao1@eng.nsc.co.jp