TUTORIAL QUESTION

TOPIC 1 PHYSICAL QUANTITIES & UNITS

1.) Find the value of x.

(f)

2.) Find the resultant vector for part (a.) to (e.)

- a.) A displacement of 12 km south followed by a displacement of 5 km east.
- b.) A displacement of 5 km east followed by a displacement of 12 km south. Is there any difference between your answer to this question and the answer to question 1?
- c.) A velocity of 24 ms⁻¹ north and a velocity of 7 ms⁻¹ east.
- d.) A force of 12 N west and a force of 16 N south.
- e.) Displacements of 10 m east and 12 m north east.
- 3.) An aircraft, flying with an engine speed of 400 kmh⁻¹, is set on a course due north, in a wind of speed 60 kmh⁻¹ from the south west. At what speed and in what direction is the aircraft covering the ground?
- 4.) A stone is thrown up at an angle of 20° to the vertical with an initial velocity of 35 ms⁻¹. what are the initial horizontal and vertical components of the velocity of the stone?

- 5.) A train is travelling at 125 mph on a railway line that runs N24°E. Find the horizontal and vertical components of the velocity of the train.
- 6.) The drag coefficient C_D of a car moving with speed v through air of density ρ is given by $C_D = \frac{F}{(\frac{1}{2}\rho v^2 A)}$

where F is the drag force exerted on the car and A is the maximum cross-sectional area of the car perpendicular to the direction of travel. Show that C_D is dimensionless.

- 7.) The experimental measurement of the heat capacity C of a solid as a function of temperature T is to be fitted to the expression $C = \alpha T + \beta T^3$. What are possible units for α and β ?
- 8.) a.) The kilogram, metre and second are base units. Name two other base units.
 - b.) Explain why the unit of energy is said to be a derived unit.
 - c.) The density, ρ and pressure, p of a gas are related by the expression

$$c = \sqrt{\frac{\gamma p}{\rho}}$$

where c and γ are constants.

- i.) Determine the base unit for density ρ
- ii.) Show that the units for pressure p are kgm⁻¹s⁻²
- iii.) Given that constant γ has no unit, determine the unit of c.
- iv.) Suggest what quantity may be represented by the symbol c.
- 9.) Which expression could be correct for the velocity v of ocean waves in terms of ρ the density of seawater, g the acceleration of free fall, h the depth of the ocean and λ the wavelength?
 - A.) $\sqrt{g\lambda}$
- B.) $\sqrt{\frac{g}{h}}$
- C.) $\sqrt{
 ho gh}$
- D.) $\sqrt{\frac{g}{\rho}}$

10.) If p is momentum of an object of mass m, the expression p ² / m has base units identical to					
	A.) energy	B.) force	C.) power	D.) velocity	
11.	11.) Which quantity has different units from the other three?				
	A.) density x volume x velocity				
	B.) rate of change of momentum				
	C.) the Young Modulus x area				
	D.) weight				