$10_{52} \ (K10a_{80})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2u^{29} + u^{28} + \dots + b - 1, \ u^{31} + 2u^{30} + \dots + a - 3, \ u^{32} + 2u^{31} + \dots - 5u - 1 \rangle$$

 $I_2^u = \langle b - 1, -u^2 + a + u - 2, \ u^3 - u^2 + 2u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^{29} + u^{28} + \dots + b - 1, \ u^{31} + 2u^{30} + \dots + a - 3, \ u^{32} + 2u^{31} + \dots - 5u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} - 4u^{5} - 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{31} - 2u^{30} + \dots + u + 3 \\ -2u^{29} - u^{28} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{31} - 2u^{30} + \dots + 6u + 4 \\ -u^{29} - u^{28} + \dots + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{31} - 2u^{30} + \dots + 4u + 4 \\ -u^{29} - u^{28} + \dots + 2u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} = u^{31} + 2u^{30} + 16u^{29} + 30u^{28} + 116u^{27} + 201u^{26} + 500u^{25} + 783u^{24} + 1406u^{23} + 1926u^{22} + \\ 2640u^{21} + 3005u^{20} + 3188u^{19} + 2713u^{18} + 2078u^{17} + 811u^{16} + 52u^{15} - 886u^{14} - 904u^{13} - \\ 890u^{12} - 388u^{11} - 158u^{10} + 98u^9 - 10u^7 - 104u^6 - 38u^5 - 21u^4 + 42u^3 + 21u^2 + 6u - 9 \end{array}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{32} - u^{31} + \dots + 4u + 8$
c_2, c_9, c_{10}	$u^{32} - 4u^{31} + \dots + 2u - 1$
<i>c</i> ₃	$u^{32} + 6u^{31} + \dots - 29u + 19$
c_4, c_7, c_8	$u^{32} + 2u^{31} + \dots - 5u - 1$
<i>C</i> ₅	$u^{32} - 2u^{31} + \dots - 91u - 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{32} - 21y^{31} + \dots - 400y + 64$
c_2, c_9, c_{10}	$y^{32} - 32y^{31} + \dots + 10y + 1$
<i>c</i> ₃	$y^{32} + 18y^{31} + \dots - 14597y + 361$
c_4, c_7, c_8	$y^{32} + 30y^{31} + \dots - 17y + 1$
c_5	$y^{32} + 6y^{31} + \dots - 2025y + 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.533924 + 0.635384I		
a = -1.44678 + 1.16510I	-8.33717 + 3.47045I	-6.19300 - 0.53804I
b = -0.03219 + 1.54133I		
u = -0.533924 - 0.635384I		
a = -1.44678 - 1.16510I	-8.33717 - 3.47045I	-6.19300 + 0.53804I
b = -0.03219 - 1.54133I		
u = -0.737398 + 0.363177I		
a = 1.39466 - 1.92116I	-7.36935 - 7.82848I	-4.18330 + 6.10894I
b = 0.33070 - 1.92317I		
u = -0.737398 - 0.363177I		
a = 1.39466 + 1.92116I	-7.36935 + 7.82848I	-4.18330 - 6.10894I
b = 0.33070 + 1.92317I		
u = 0.121416 + 1.191480I		
a = 0.222642 - 0.520130I	-1.84659 + 2.03195I	-0.06352 - 4.09496I
b = -0.646759 - 0.202123I		
u = 0.121416 - 1.191480I		
a = 0.222642 + 0.520130I	-1.84659 - 2.03195I	-0.06352 + 4.09496I
b = -0.646759 + 0.202123I		
u = 0.772369		
a = -0.383393	-2.56303	-3.36180
b = 0.296121		
u = 0.321817 + 1.204360I		
a = -0.378231 + 0.177725I	-6.26853 + 3.96490I	-7.15642 - 4.13069I
b = 0.335766 + 0.398330I		
u = 0.321817 - 1.204360I		
a = -0.378231 - 0.177725I	-6.26853 - 3.96490I	-7.15642 + 4.13069I
b = 0.335766 - 0.398330I		
u = -0.046033 + 1.276630I		
a = 0.169895 + 1.097880I	-4.89788 - 1.11555I	-6.11098 - 0.26189I
b = 1.40941 - 0.16635I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.046033 - 1.276630I		
a = 0.169895 - 1.097880I	-4.89788 + 1.11555I	-6.11098 + 0.26189I
b = 1.40941 + 0.16635I		
u = -0.637579 + 0.336310I		
a = -1.77319 + 1.89857I	-1.10997 - 4.05552I	-1.42840 + 6.80075I
b = -0.49204 + 1.80683I		
u = -0.637579 - 0.336310I		
a = -1.77319 - 1.89857I	-1.10997 + 4.05552I	-1.42840 - 6.80075I
b = -0.49204 - 1.80683I		
u = 0.573185 + 0.380549I		
a = -0.567444 - 0.158963I	-3.48280 + 1.78898I	-3.34736 - 3.66370I
b = 0.264757 + 0.307056I		
u = 0.573185 - 0.380549I		
a = -0.567444 + 0.158963I	-3.48280 - 1.78898I	-3.34736 + 3.66370I
b = 0.264757 - 0.307056I		
u = 0.214793 + 1.351600I		
a = 0.225799 + 0.123979I	-3.45767 + 3.36417I	0.37870 - 3.50479I
b = 0.119070 - 0.331821I		
u = 0.214793 - 1.351600I		
a = 0.225799 - 0.123979I	-3.45767 - 3.36417I	0.37870 + 3.50479I
b = 0.119070 + 0.331821I		
u = -0.457656 + 0.423798I		
a = 1.94595 - 1.20331I	-1.72217 + 0.51232I	-4.14141 + 0.14369I
b = 0.38062 - 1.37539I		
u = -0.457656 - 0.423798I		
a = 1.94595 + 1.20331I	-1.72217 - 0.51232I	-4.14141 - 0.14369I
b = 0.38062 + 1.37539I		
u = 0.569557 + 0.125662I		
a = 0.316122 + 0.218549I	1.244440 + 0.519638I	6.41959 - 1.56914I
b = -0.152586 - 0.164201I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.569557 - 0.125662I		
a = 0.316122 - 0.218549I	1.244440 - 0.519638I	6.41959 + 1.56914I
b = -0.152586 + 0.164201I		
u = -0.19027 + 1.43367I		
a = 1.50108 + 0.51525I	-7.59173 - 1.96238I	-7.59391 + 0.I
b = 1.02431 - 2.05401I		
u = -0.19027 - 1.43367I		
a = 1.50108 - 0.51525I	-7.59173 + 1.96238I	-7.59391 + 0.I
b = 1.02431 + 2.05401I		
u = -0.24454 + 1.43301I		
a = -1.68707 - 0.19420I	-6.78693 - 7.28997I	-5.63030 + 6.08966I
b = -0.69085 + 2.37010I		
u = -0.24454 - 1.43301I		
a = -1.68707 + 0.19420I	-6.78693 + 7.28997I	-5.63030 - 6.08966I
b = -0.69085 - 2.37010I		
u = 0.21981 + 1.44034I		
a = -0.396703 - 0.147942I	-9.32026 + 4.72345I	-7.29654 - 3.13438I
b = -0.125890 + 0.603905I		
u = 0.21981 - 1.44034I		
a = -0.396703 + 0.147942I	-9.32026 - 4.72345I	-7.29654 + 3.13438I
b = -0.125890 - 0.603905I		
u = -0.28148 + 1.45411I		
a = 1.58198 - 0.01901I	-13.2076 - 11.5375I	-7.79347 + 6.25344I
b = 0.41766 - 2.30572I		
u = -0.28148 - 1.45411I		
a = 1.58198 + 0.01901I	-13.2076 + 11.5375I	-7.79347 - 6.25344I
b = 0.41766 + 2.30572I		
u = -0.14244 + 1.49315I		
a = -1.134180 - 0.397538I	-15.2480 + 1.1861I	-9.66994 + 0.I
b = -0.75514 + 1.63687I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14244 - 1.49315I		
a = -1.134180 + 0.397538I	-15.2480 - 1.1861I	-9.66994 + 0.I
b = -0.75514 - 1.63687I		
u = -0.270853		
a = 3.43431	-1.22025	-10.0180
b = 0.930194		

II.
$$I_2^u = \langle b-1, -u^2 + a + u - 2, u^3 - u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - u + 2 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - u + 2 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - u + 3 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^2 4u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	u^3
c_2	$(u+1)^3$
c_3, c_5	$u^3 - u^2 + 1$
c_4	$u^3 + u^2 + 2u + 1$
c_{7}, c_{8}	$u^3 - u^2 + 2u - 1$
c_9, c_{10}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	y^3
c_2, c_9, c_{10}	$(y-1)^3$
c_3, c_5	$y^3 - y^2 + 2y - 1$
c_4, c_7, c_8	$y^3 + 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 0.122561 - 0.744862I	-4.66906 + 2.82812I	-5.17211 - 2.41717I
b = 1.00000		
u = 0.215080 - 1.307140I		
a = 0.122561 + 0.744862I	-4.66906 - 2.82812I	-5.17211 + 2.41717I
b = 1.00000		
u = 0.569840		
a = 1.75488	-0.531480	3.34420
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^3(u^{32} - u^{31} + \dots + 4u + 8)$
c_2	$((u+1)^3)(u^{32}-4u^{31}+\cdots+2u-1)$
<i>c</i> ₃	$(u^3 - u^2 + 1)(u^{32} + 6u^{31} + \dots - 29u + 19)$
C4	$(u^3 + u^2 + 2u + 1)(u^{32} + 2u^{31} + \dots - 5u - 1)$
<i>C</i> ₅	$(u^3 - u^2 + 1)(u^{32} - 2u^{31} + \dots - 91u - 17)$
c_{7}, c_{8}	$(u^3 - u^2 + 2u - 1)(u^{32} + 2u^{31} + \dots - 5u - 1)$
c_{9}, c_{10}	$((u-1)^3)(u^{32}-4u^{31}+\cdots+2u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^3(y^{32} - 21y^{31} + \dots - 400y + 64)$
c_2, c_9, c_{10}	$((y-1)^3)(y^{32} - 32y^{31} + \dots + 10y + 1)$
c_3	$(y^3 - y^2 + 2y - 1)(y^{32} + 18y^{31} + \dots - 14597y + 361)$
c_4, c_7, c_8	$(y^3 + 3y^2 + 2y - 1)(y^{32} + 30y^{31} + \dots - 17y + 1)$
<i>C</i> ₅	$(y^3 - y^2 + 2y - 1)(y^{32} + 6y^{31} + \dots - 2025y + 289)$