CUÁDRICAS

Son las superficies más simples en \mathbb{R}^3 después de los planos (corresponden a las cónicas de \mathbb{R}^2). Su ecuación general es:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Kz + N = 0$$

1. Cuádricas con centro

1.1. Elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

En particular, si a = b = c = r, $x^2 + y^2 + z^2 = r^2$ <u>esfera</u>

de radio r .

Secciones principales:

$$x = 0$$
 $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ elipse

$$y = 0$$
 $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$ elipse

$$z = 0$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ elipse

1.2. Hiperboloide de una hoja

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Secciones principales:

$$x = 0 \qquad \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{hipérbola}$$

$$y = 0$$
 $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ hipérbola

$$z = 0 \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \text{elipse}$$

1.3. Hiperboloide de dos hojas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Secciones principales:

$$x = 0 \qquad -\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{no existe}$$

$$y = 0$$

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$
 hipérbola

$$z = 0$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 hipérbola

2. Cuádricas sin centro

2.1 Paraboloide elíptico

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

Secciones principales:

$$x = 0$$
 $y^2 = 2qz$ parábola

$$y = 0$$
 $x^2 = 2pz$ parábola

$$z = 0$$
 (0,0) un punto

2.2. Paraboloide hiperbólico

$$\frac{x^2}{2p} - \frac{y^2}{2q} = z$$

Secciones principales:

$$x = 0$$

$$y^2 = -2qz$$

$$y = 0$$

$$x^2 = 2 pz$$

$$z = 0$$

$$z = 0$$
 $\frac{x}{\sqrt{2p}} + \frac{y}{\sqrt{2q}} = 0$ $\frac{x}{\sqrt{2p}} - \frac{y}{\sqrt{2q}} = 0$

3. Cuádricas degeneradas

3.1. Conos

$$Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz = 0$$

3.2. Cilindros

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
Cilindro elíptico

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
Cilindro hiperbólico

$$x^2 - 2ay = 1$$

Cilindro parabólico