Introduction to Deep Learning

Mnacho Echenim

Grenoble INP-Ensimag

2022-2023

Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 1 / 24 >

Feature preprocessing

- The range of input parameters can be very diverse
 - ▶ One way of improving a neural network is to have a uniform representation of inputs
 - ► Force inputs to have comparable ranges
- Two main techniques
 - ▶ Data normalization, or min-max normalization
 - * Preprocess training data to collect min and max values along each dimension, obtain the vectors m and M of minima and maxima, respectively
 - ► Data standardization
 - * Impose the distribution of training data to have a mean of 0 and standard
 - \star Compute the mean μ and standard deviation σ of the training data

Notes	
Notes	
Notes	
Votes	
Notes	
Notes	
Notes	
Jotes	
lotes	
lotes	
lotes	
lotes	
Notes	
lotes	
lotes	
Jotes	
Jotes	
lotes	
Jotes	
Jotes	
lotes	
Notes	
lotes	
Notes	

An input standardizing layer

- Constructor parameters:
 - ► Mean of the training input
 - ► StdDev of the training input
 - Underlying layer
- Forward propagation
 - Standardize the input
 - ► Invoke forward propagation on the underlying layer with the standardized input
- Backpropagation
 - ▶ Deferred to the underlying layer
- Parameter update
 - ▶ Deferred to the underlying layer

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

< 4 / 24 > 2022-2023

Faster training with input standardization

- Compute mean μ and stddev σ of training data S
- Construct preprocessed training data $S' = \left\{ \frac{x \mu}{\sigma} \mid x \in S \right\}$
- Construct input standardizing layer with two modes:
 - lacktriangleright Training mode: input is fed to underlying layer with no modification ightarrow less costly
 - ▶ Testing mode: input is standardized before being fed to underlying layer
- Train network with S'
- Set mode to Testing to evaluate network performance

Notes			
Notes			

Batch normalization: Presentation

- "One of the most exciting recent innovations in optimizing deep neural networks" (Deep Learning book)
- Original design: optimization of the training phase of a neural network
 - ► Especially for very deep neural networks
- Impressive results:
 - ▶ With the at the time best-performing ImageNet classification network
 - ▶ Matched its performance with 14 times less training steps

Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 7 / 24 >

Features

- Larger learning rates can be applied
- More activation functions can be used
- The initialization of parameters is less of a problem
- Batch normalization also improves generalization
 - ▶ Regularization techniques such as Dropout are less necessary
- But more computations are required
 - ▶ Not trivial to implement efficiently

2022-2023

-		
-		
-		
Notes		

On Internal Covariate Shift

- Neural networks rely on the assumption that the distribution of data is the same during the training and testing phase
 - Optimal parameters for the training phase should work well on the testing phase

Question

How does this distribution of data evolve within hidden layers?

- Example: a neural network with 2 hidden layers
 - ► The output is $\alpha^2 = f_2(f_1(\alpha^0; \theta^1); \theta^2)$
 - α^0 has distribution \mathcal{D}_0 , α^1 has distribution $\mathcal{D}_1(\mathcal{D}_0, \theta^1)$
- Gradient descent:
 - $\theta^1 \leftarrow \theta^1 \eta \nabla_{\theta^1} \mathcal{C}$: optimization w.r.t. distribution \mathcal{D}_0
 - $\theta^2 \leftarrow \theta^2 \eta \nabla_{\theta^2} \mathcal{C}$: optimization w.r.t. distribution \mathcal{D}_1
- But after the update of θ^1 , the distribution for α^1 is $\mathcal{D}_1' \neq \mathcal{D}_1$; the optimization of θ^2 may not be efficient

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023

3 < 9 / 24

Principle of Batch Normalization

- Goal: reduce internal covariate shift
- How: by applying a technique similar to input standardization to hidden layers
 - ► The parameter updates of preceding layers then have less efect on a given layer

Params: γ , β

Input : $(\alpha_{(1)}, \dots, \alpha_{(M)})$, an input mini-batch

$$\begin{array}{l} {\scriptstyle 1} \quad \mu \leftarrow \frac{1}{M} \sum\nolimits_{m=1}^{M} \alpha_{(m)}; \\ {\scriptstyle 2} \quad \sigma \leftarrow \sqrt{\frac{1}{M} \sum\nolimits_{m=1}^{M} (\alpha_{(m)} - \mu)^2}; \end{array}$$

 $_3$ for m ← 1 to M do

4
$$\widehat{\alpha_{(m)}} \leftarrow \frac{\alpha_{(m)} - \mu}{\sigma};$$
5 $\chi_{(m)} \leftarrow \widehat{\gamma_{\alpha_{(m)}}} + \beta;$

6 end

⁷ return $(\chi_{(1)},\ldots,\chi_{(M)})$

Algorithm 1: Batch normalization algorithm

Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 10 / 24 >

Notes			
Notes			

Remarks on batch normalization computations

• A batch normalization layer has a weights matrix $\Omega = \mathbf{Id}$ and an activation function $\Phi : \mathbb{R}^{n \times M} \to \mathbb{R}^{n \times M}$, for which each column depends on the entire batch

• At Line 4 of the algorithm, it is standard to replace σ by $\sqrt{\sigma^2 + \epsilon}$, with $\epsilon \approx 10^{-3}$

All operations on vectors are applied componentwise

ullet γ and eta are not hyperparameters, they are parameters to be learned

 \bullet Because $\Omega = Id$, computations for backpropagation and gradient descent can be carried out componentwise

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

Backpropagation in batch normalization

- ullet During backpropagation, the batch norm layer receives $\left[
 abla_{\chi_{(m)}} \mathcal{C} \right]_i$ as an input, where $m \in \llbracket 1, M \rrbracket$ and $i \in \llbracket 1, n \rrbracket$
- The quantities to compute are:
 - $\triangleright \nabla_{\gamma}C$, for the update of γ
 - $\triangleright \nabla_{\beta} C$, for the update of β
 - $ightharpoonup
 abla_{a_{(i)}} \mathcal{C}$, where $j \in \llbracket 1, M
 rbracket$, for the backpropagation to the previous layer

Votes			
otes			

Backpropagation in batch normalization (2)

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 13 / 24 >

Backpropagation in batch normalization (3)

Notes		
Notes		
-		

Where should batch normalization be applied?

- There are two possibilities:
 - ► After the activation

$$\left[\overline{\alpha^j}\right]' = \operatorname{BN}\left(\overline{\alpha^j}\right)$$

▶ Between the net input and the activation

$$\left[\overline{\alpha^{j}}\right]' = \Phi\left(\operatorname{BN}\left(\overline{\zeta^{j}}\right)\right)$$

- Original paper by loffe and Zsegedy: apply between the net input and the activation
 - ► But still some debate
 - ► May depend on activation function
 - ▶ It may be worthwhile to test both solutions

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 15 / 24 >

Notes

Mini-batch size

- Trade-off between gradient stability and efficient computation
- Until recently sizes could be very large, up to a few thousand
- Masters, Luschi: Revisiting Small Batch Training for Deep Neural Networks, 2018
 - ▶ Better to choose sizes between 2 and 32

Notes		
Notes		

Adjusting hyperparameters

- Some of them have recommended values it is better to start with
 - lacktriangle Example: exponential decay rates in Adam: recommended values are $ho_1=0.9$ and $\rho_2 = 0.999$
- Some common techniques
 - ▶ Manual search: can be more of an art than a science
 - ► Grid search: systematic search of different combinations of hyperparameters; select the combination that works best
 - ▶ Random search: randomly sample combinations of hyperparameters

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 18 / 24 >

Notes

Dropout recommendation

Dropout should be tuned at the same time as the size of hidden layers

- Turn dropout off (p = 1)
- Adjust layer sizes until the network fits the training data
- Keep the same layer sizes and retrain the network with dropout turned back on

Training, validation and test sets

Data is generally partitioned into 3 sets:

- Training set: used to optimize the parameters of the neural network
- Validation set: used to tune the hyperparameters
 - Learning rate
 - Decay rate
 - ► Momentum parameter
 - ► Architecture of the network
- Test set: used to forecast how well the network will perform on unknown data

Standard partitioning rule

Partition the data as follows:

- 70% for the training set
- 15% for the validation set
- 15% for the test set

INP Ensimag

Natas

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 20 / 24 >

On cross-validation

- Generally recommended when there is not much data available train and test a model
 - Principle: iteratively use every sample in the dataset at some point in the test phase
- Basic algorithm:

Input: A network N, number of folds k and dataset \mathcal{S} 1 create a partition (Π_1,\ldots,Π_k) of \mathcal{S} ; 2 for $i\leftarrow 1$ to k do 3 | train N on $\mathcal{S}\setminus\Pi_i$; 4 | $\mathcal{E}_i\leftarrow \mathsf{validate}(N,\Pi_i)$; 5 end

- 6 return $\frac{\sum_{i=1}^{k} \mathcal{E}_i}{k}$
- Features:
 - Advantage: can reduce overfitting
 - ▶ Drawback: training can take much more time
 - ▶ Many existing variations (leave-one-out, nested, ...)

votes		
Notes		

Open questions

- Why does gradient descent work so well on neural networks?
 - ► The error function is not convex
 - ▶ It is very unlikely that gradient descent will reach the global minimum
 - Yet, for an appropriate neural network architecture, the local minimum yields values that are quite close to the global one
- Why can complicated functions even be approximated?
 - ▶ Why are so many impressive results obtained on quantum mechanics simulations, image processing, speech recognition or games?
 - ▶ The same global algorithm permits to obtain these results; what similarities are there between these functions?
 - ▶ Why are there intuitively simple functions that are difficult to approximate?
 - ★ MLPs are not good at learning equality: https://arxiv.org/pdf/1812.01662.pdf

Mnacho Echenim (Grenoble INP-Ensimag)

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 22 / 24 >

Notes

Resources on deep learning techniques in finance

- B. Huge, A. Savine. Differential Machine Learning
 - https://arxiv.org/pdf/2005.02347.pdf
 - ▶ Principle: supervised learning or values and differentials
 - ► TensorFlow implementation available
- B. Lapeyre, J. Lelong. Neural network regression for Bermudan option pricing
 - https://arxiv.org/pdf/1907.06474.pdf
 - ▶ Principle: use a neural network to approximate the conditional expectations used to price Bermudan options
- S. Becker, P. Cheridito, A. Jentzen. Deep optimal stopping
 - https://arxiv.org/pdf/1804.05394.pdf
 - ▶ Principle: use Reinforcement Learning to compute optimal stopping times (used to price Bermudan options)

Introduction to Deep Learning

2022-2023

Notes			
Notes			

Other resources

- Practical advice for building and debugging a neural network:
 - https://pcc.cs.byu.edu/2017/10/02/ practical-advice-for-building-deep-neural-networks/
 - http://cs231n.github.io/neural-networks-3/
- Seminar by Pierre Courtiol at Collège de France: https://www.college-de-france.fr/site/stephane-mallat/ seminar-2018-02-21-11h15.htm

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 24 / 24 >

lotes	Notes			
lotes				
	Votes			