

Minimal Transportation Simulation

Minimal Transportation Simulation

ALEXIS PIBRAC

INTERNSHIP FEB-MAY 2016

PR. CHEN JIANGHANG
PR. WANG XIAOLEI
PR. BILAL FAROOQ
ALEXIS PIBRAC

Plan

- 1. Presentation of the study
- 2. The simulation tool
- 3. Some results
- 4. What's next

Plan

1. Presentation of the study

- 2. The simulation tool
- 3. Some results
- 4. What's next

The dynamic transportation systems

STATIC

- Personal cars
- Metro/subways/bus/train
- Walk/bike

DYNAMIC

- Taxi
- Uber style
- Ridesharing
- Carsharing
- Driverless car float?

Transportation simulations

Transportation simulations

- Number of users
- Efficiency
- Price
- Side effects
- Vehicule kilometers travelled saving
- ...

Dynamic transportation systems

The efficiency depends on the number of users.

Dynamic transportation systems

The installation and efficiency are dynamic.

Transportation simulations

...already exist

But designed for STATIC modes, can't accept DYNAMIC ones.

The Schelling approach

« Dynamic models of segregation », 1971

The Schelling approach

SEGREGATION IS

Analysed at a macroscopic level

Dependant on the network

Dependant on individual behaviors

The Schelling approach

SEGREGATION IS

Analysed at a macroscopic level

Dependant on the network

Dependant on individual behaviors

DYNAMIC TRANSPORTATION SYSTEM

EFFICIENCY IS

Analysed at a macroscopic level

Dependant on the network

Dependant on individual behaviors

Our approach

Our approach

Our simulation

Chosen transportation system: Dynamic Ride-Sharing

Chosen transportation system: « Shanghai platform »

Plan

1. Presentation of the study

2. The simulation tool

- 3. Some results
- 4. What's next

- In Python
- Agent based
- Discrete event simulation

- In Python
- Agent based
- Discrete event simulation

- In Python
- Agent based
- Discrete event simulation

- In Python
- Agent based
- Discrete event simulation

- In Python
- Agent based
- Discrete event simulation

Core

- System's functions
- Graphs and display tools

Matching Platform

- One kind of dynamic system + description of agents
- Particular functions to prepare the simulation

Execution of Simulations

- Config.py (parameters)
- Execution

The tool: Core

The tool: Core

The tool: matching platform

The tool: Parameters

Config.py

```
12 #DIMENSION OF THE NETWORK
13 speed = 25 / 3.6 # 25 km/h
14 radius = 25 * 1000 # 25km
15 end = 3 * 3600 # 3h
17 #GENERAL VALUES
18 N driver=2000# [100000]# [2000,4000,5000]#,6000,7000,8000,9000,10000,20000,30000,50000]
19 N passenger=2000#[100000]# [2000,4000,5000]#,6000,7000,8000,9000,10000,20000,30000,50000]
20
21 #DRIVERS CARACTERISTICS
22 first watching before first departure = 5 * 60
23 window_size_of_departure = 15 * 60
24 time_elasticity = 5 * 60
25 fuel_cost = 0.6/1000#0.5RMB per kilometer
26 watching repetition average = 60 # -> random
27 watching repetition variance = 10
28 time_perception_average = 5/60 # = 24 * 50/100 / 3600 #50% of average income, in second -> random
29 time perception variance = 3/60 #10% percent
31 #PASSENGERS CARACTERISTICS
32 publishing_advance = 20 * 60
33
34 #PLATFORM CARACTERISTICS
35 def benefits(origin,destination,network):
       """Shanghai pricing"""
      distance=network.travel_distance(origin,destination) / 1000 # in meter
    if distance < 3: #3 first km fixprice
39
          return 11#in RMB
    if distance < 20:#until 20km at 1.5RMB / km
          return 6.5 + distance * 1.5 # 11 + (distance - 3) * 1.5
    return 16.5 + distance # 28.5 + (distance - 20) *1 # 28.5 = 3 + (20 - 3) * 1.5
```

Plan

- 1. Presentation of the study
- 2. The simulation tool

3. Some results

4. What's next

Basic simulations

Time = 3h

Radius = 25km

Perceived speed = 25km/h

20 000 drivers

20 000 passengers

Shanghai's fuel cost and ride price

Platform reliability and efficiency

Several simulations launched with different parameters

Reliability

against

Number of users

Vehicule kilometers traveled saving

against

Number of users

Reliability

against

Fuel cost

Reliability

against

Average watching tempo

Number of matches

against

Number of match

against

Average speed

Customer analysis

One simulation analysed

Different customers are compared

Reliability for a driver

against

Reliability for a driver

against

Driver's watching tempo

Reliability for a driver

against

Driver's trip length

Detour

against

Vehicule kilometer traveled saving

against

Reliability for a passenger

against

Passenger's trip length

Reliability against trip length

DRIVERS

1200 1000 0.8 800 0.6 600 0.4 400 0.2 200 50000 10000 20000 30000 40000 Ox Oy Dx Dy

PASSENGERS

Interpretation

Goal:

- Efficiency VS number of users
- Efficiency VS incentives

0

Interpretation

Relation depends on (System + network)

Interpretation

There is a particular law for the system (using only some average network particularities).

Plan

- 1. Presentation of the study
- 2. The simulation tool
- 3. Some results
- 4. What's next

With the « Shanghai platform »

- More simulations more different scenarios more analysis
- Fit the curves
- Spot and analyse unexpected effects

New platforms

- Implement and test new platforms
- Improve the realism and utility of the tool

Thank you for your attention

Thank you for your attention

ALEXIS.PIBRAC@GMAIL.COM