Laboratório 2 - Planejamento e Análise de Experimentos (MAE0316)

Caio M. de Almeida - 15444560 Eduardo Yukio G. Ishihara - 15449012 Gustavo S. Garone - 15458155 Ian B. Loures - 15459667 João Victor G. de Sousa - 15463912

Banco sem tratamento "none"

Itens a, b e c.

Abaixo, um sumário da ANOVA para o modelo simples (I) (considerando apenas o tratamento)

```
Df Sum Sq Mean Sq F value Pr(>F)
                             17.39 4.27e-09 ***
Treatment
          3 10769
                       3590
Residuals
           96 19817
                        206
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e seus coeficientes:
Call:
lm(formula = Longevity ~ Treatment, data = dat2)
Residuals:
  Min 1Q Median 3Q Max
-35.76 -8.76 1.46 9.01 32.20
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     64.800
                                2.874 22.551 < 2e-16 ***
                    -8.040
                                 4.064 -1.978 0.0507.
Treatment1 virgin
Treatment8 pregnant -1.440
                                4.064 -0.354
                                                0.7239
                                 4.064 -6.418 5.24e-09 ***
Treatment8 virgin
                    -26.080
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.37 on 96 degrees of freedom
Multiple R-squared: 0.3521,
                             Adjusted R-squared: 0.3318
F-statistic: 17.39 on 3 and 96 DF, p-value: 4.273e-09
Agora, para o modelo com interação (II)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)				
Туре	1	6675	6675	32.335	1.4e-07	***			
Partners	1	2372	2372	11.489	0.00102	**			
Type:Partners	1	1722	1722	8.343	0.00479	**			
Residuals	96	19817	206						
Signif. codes	: 0) '***'	0.001 '	**' 0.01	'*' 0.0 <u>5</u>	5 '.'	0.1	'	' 1

e seus coeficientes:

Call:

lm(formula = Longevity ~ Type * Partners, data = dat2)

Residuals:

Min 1Q Median 3Q Max -35.76 -8.76 1.46 9.01 32.20

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	64.800		2.874	22.551	< 2e-16	***
Typevirgem	-8.040		4.064	-1.978	0.05074	
Partners8	-1.440		4.064	-0.354	0.72386	
Typevirgem:Partners8	-16.600		5.747	-2.888	0.00479	**
Signif codes: 0 '*	**' 0 001	'** [']	0 01	'*' 0 05	''01	' ' 1

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Residual standard error: 14.37 on 96 degrees of freedom Multiple R-squared: 0.3521, Adjusted R-squared: 0.3318 F-statistic: 17.39 on 3 and 96 DF, p-value: 4.273e-09

Notamos semelhanças no resultado do teste de hipótese (evidências de efeito do tratamento), nos valores dos coeficientes e na soma de quadrados dos resíduos. Notamos que o modelo com interação apresenta individualmente os resultados para os fatores, ao invés de agrupar tudo como tratamento, o que pode ser benéfico na análise.

Da tabela ANOVA com modelo com interações, concluímos que os parceiros, os tipos, e a interação entre parceiro e tipo são estatisticamente significantes para o modelo a $\alpha=5\%$ de significância.

Item d

Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wilk:

Shapiro-Wilk normality test

data: residuos W = 0.98972, p-value = 0.6419

Para o teste de Levene:

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 3 0.4027 0.7514
96

Para o teste de Bartlett

Bartlett test of homogeneity of variances

data: Longevity by Type
Bartlett's K-squared = 0.32431, df = 1, p-value = 0.569

Bartlett test of homogeneity of variances

data: Longevity by Partners
Bartlett's K-squared = 1.0564, df = 1, p-value = 0.304

Bartlett test of homogeneity of variances

data: Longevity by interaction(Type, Partners)
Bartlett's K-squared = 1.6876, df = 3, p-value = 0.6397

Concluímos que o modelo pode ser aplicado, pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal. Conferimos um sumário do modelo:

Call:

lm(formula = Longevity ~ Type * Partners, data = dat2)

Residuals:

Min 1Q Median 3Q Max -35.76 -8.76 1.46 9.01 32.20

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	64.800		2.874	22.551	< 2e-16	***
Typevirgem	-8.040		4.064	-1.978	0.05074	
Partners8	-1.440		4.064	-0.354	0.72386	
Typevirgem:Partners8	-16.600		5.747	-2.888	0.00479	**
Signif. codes: 0 '*:	**' 0.001	'** [']	0.01	'*' 0.05	'.' 0.1	' ' 1

Residual standard error: 14.37 on 96 degrees of freedom Multiple R-squared: 0.3521, Adjusted R-squared: 0.3318 F-statistic: 17.39 on 3 and 96 DF, p-value: 4.273e-09

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Item e

Temos um modelo cela de referência:

$$L_{ijk} = \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}$$

Esse modelo descreve a longevidade como combinação dos efeitos do tipo τ , dos parceiros β e sua interação $\tau\beta$. Como concluímos que apenas os parâmetros de interação e intercepto são significantes, podemos dizer que a exposição a oito moscas virgens afeta a longevidade de uma mosca quando comparado à cela de referência (exposição a uma mosca prenha). Também, como observamos na análise da interação dos fatores, há evidências para afirmar que existe efeito sobre a longevidade da mosca quando fica com números diferentes de parceiros do mesmo tipo. Por exemplo, quando fica com várias parceiras virgens. Como a interação é significativa, notamos também que se trata de um modelo não aditivo.

Item f

Faremos a ANOVA para o modelo de dois fatores, mas, dessa vez sem interação:

```
Df Sum Sq Mean Sq F value
                                          Pr(>F)
              1
                  6675
                          6675
                                  30.06 3.32e-07 ***
Type
             1
                  2372
                                  10.68
                                          0.0015 **
Partners
                          2372
Residuals
            97
                 21540
                           222
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

e seus coeficientes:

Notamos semelhanças no resultado do teste de hipótese (evidências de efeito do tratamento), nos valores de alguns coeficientes e na soma de quadrados dos resíduos. Notamos que o modelo com interação apresenta individualmente os resultados para os fatores, ao invés de agrupar tudo como tratamento, o que pode ser benéfico na análise.

Da tabela ANOVA com modelo com interações, concluímos que os parceiros, os tipos, e a interação entre parceiro e tipo são estatisticamente significantes para o modelo a $\alpha=5\%$ de significância.

ltem g Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, maiores no QQ-Plot do que com o modelo anterior, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wilk:

Shapiro-Wilk normality test

data: residuos W = 0.98076, p-value = 0.1522

Concluímos que o modelo pode ser aplicado, pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal. Conferimos um sumário do modelo:

Call:

lm(formula = Longevity ~ Type + Partners, data = dat2)

Residuals:

Min 1Q Median 3Q Max -31.61 -10.89 1.05 10.79 28.39

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              68.950
                          2.581
                                 26.714 < 2e-16 ***
                                -5.483 3.32e-07 ***
Typevirgem
             -16.340
                          2.980
Partners8
              -9.740
                          2.980 -3.268
                                          0.0015 **
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.9 on 97 degrees of freedom
Multiple R-squared: 0.2958,
                                Adjusted R-squared: 0.2813
F-statistic: 20.37 on 2 and 97 DF, p-value: 4.112e-08
```

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Item h

Temos um modelo cela de referência:

$$L_{ijk} = \tau_i + \beta_j + \epsilon_{ijk}$$

de seguintes coeficientes

Esse modelo descreve a longevidade como combinação do efeito do tipo τ e dos parceiros β . Como concluímos que todos os parâmetros são estatisticamente significantes nesse modelo, podemos dizer que tanto o número de parceiros como seu tipo afetam a longevidade das moscas quando comparado à cela de referência (uma mosca prenha).

Item i

Call:

lm(formula = Longevity ~ Type * Partners, data = dat2)

Residuals:

Min 1Q Median 3Q Max -35.76 -8.76 1.46 9.01 32.20

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                   2.874 22.551 < 2e-16 ***
(Intercept)
                       64.800
                       -8.040
                                   4.064
                                         -1.978 0.05074 .
Typevirgem
                                         -0.354 0.72386
Partners8
                       -1.440
                                   4.064
Typevirgem:Partners8
                     -16.600
                                   5.747
                                         -2.888 0.00479 **
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.37 on 96 degrees of freedom
Multiple R-squared: 0.3521,
                                Adjusted R-squared: 0.3318
F-statistic: 17.39 on 3 and 96 DF, p-value: 4.273e-09
Call:
lm(formula = Longevity ~ Type + Partners, data = dat2)
Residuals:
   Min
           1Q Median
                         3Q
                               Max
-31.61 -10.89
                1.05 10.79
                             28.39
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              68.950
                          2.581 26.714 < 2e-16 ***
                                -5.483 3.32e-07 ***
Typevirgem
             -16.340
                          2.980
Partners8
              -9.740
                          2.980 -3.268
                                          0.0015 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.9 on 97 degrees of freedom
Multiple R-squared: 0.2958,
                                Adjusted R-squared:
F-statistic: 20.37 on 2 and 97 DF, p-value: 4.112e-08
```

A principal diferença a ser notada é que, no modelo com interação, o efeito significativo recai sobre a interação em si, enquanto o efeito individual (exposição à mosca virgem e a oito parceiros) foram apresentados como não significantes. Por outro lado, no modelo aditivo sem interação, tanto o tipo quando a exposição a mais parceiras são ditas como estatisticamente significantes. Notamos que, conforme esperado, o intercepto da cela de referência é o mesmo. Também notamos que o coeficiente estimado para interação é bastante similar ao do efeito da exposição à moscas virgens, além de que a soma dos coeficientes de ambos é igual.

Escolheríamos o modelo com interação. Do ponto de vista estatístico, notamos que a interação é significativa, fornecendo um modelo melhor ajustado. Dum ponto de vista biológico, considerando o comportamento reprodutivo da *Drosophila*, esperamos que o encontro com

mais virgens tenha um impacto maior na longevidade do que o encontro apenas com uma, e o modelo com interação nos permite visualizar isso mais claramente.

Exercício 2

Item a

Reparametrizaremos conforme a dica, uma vez que, como discutido, não seria possível estimar todos os parâmetros com a parametrização padrão da cela de referência. Posteriormente, discutiremos a parametrização por médias

Item b

```
Call:
lm(formula = Longevity ~ Partners * Type, data = dat)
Residuals:
    Min    1Q Median    3Q    Max
```

-35.76 -8.76 0.20 11.20 32.44

Coefficients: (4 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 63.560 2.962 21.461 < 2e-16 *** -0.200 4.188 -0.048 0.96199 Partners8 Partners1 1.240 4.188 0.296 0.76770 -8.040 4.188 -1.920 0.05728 . Typevirgem Typeprenha NANANANA Partners8:Typevirgem -16.600 5.923 -2.803 0.00591 ** Partners1:Typevirgem NANANANAPartners8:Typeprenha NA NANANAPartners1:Typeprenha NANANANA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.81 on 120 degrees of freedom Multiple R-squared: 0.3121, Adjusted R-squared: 0.2892 F-statistic: 13.61 on 4 and 120 DF, p-value: 3.516e-09

Df Sum Sq Mean Sq F value Pr(>F)

```
Partners
                 2
                     3542
                              1771
                                     8.077 0.000512 ***
                     6675
                              6675
                                    30.440 2.02e-07 ***
Туре
                 1
                                     7.854 0.005914 **
Partners: Type
                 1
                     1722
                              1722
Residuals
               120
                    26314
                               219
Signif. codes:
                   '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Pela tabela ANOVA, concluímos que o tipo, os parceiros e a interação Type:Parceiro são significantes a $\alpha=0.05$ de significância estatística. Percebemos também que apenas $\Delta_2=(\tau\beta)_{22}+(\tau\beta)_{11}-(\tau\beta)_{12}-(\tau\beta)_{21}$ e o intercepto são significantes.

Item c

Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, maiores no QQ-Plot do que com o modelo anterior, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wilk:

Shapiro-Wilk normality test

data: residuos W = 0.98887, p-value = 0.4088

Concluímos que o modelo pode ser aplicado, pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal.

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Item d

Subitem I

Esperaríamos estimar nove parâmetros para o caso atual, com dois Types, dois Partners e um None. Para o caso com três níveis em cada fator, esperaríamos estimar seis parâmetros para os níveis, nove parâmetros para as interações e mais um parâmetro para a cela de referência None

(intercepto), totalizando dezesseis. Generalizando, para dois fatores com n níveis, esperamos $(n+1)^2$ parâmetros para serem estimados no modelo cela de referência.

Subitem II

Encontramos nove parâmetros para serem estimados com o banco original, conforme discutido na dica e no sumário do modelo.

Subitem III

Encontramos nove, e não dezesseis, pois o None age como a cela de referência, não como um nível para os outros fatores. Isto é, não há dados para, por exemplo, uma mosca exposta a 0 virgens ou exposta a 0 grávidas, ou um terceiro tipo que não virgem ou grávida.

Item e

Vamos conferir o sumário do modelo:

Call:

```
lm(formula = Longevity ~ Partners * Type, data = dat)
```

Residuals:

```
Min 1Q Median 3Q Max -35.76 -8.76 0.20 11.20 32.44
```

Coefficients: (4 not defined because of singularities)

	${\tt Estimate}$	Std.	Error	t value	Pr(> t)	
(Intercept)	63.560		2.962	21.461	< 2e-16	***
Partners8	-0.200		4.188	-0.048	0.96199	
Partners1	1.240		4.188	0.296	0.76770	
Typevirgem	-8.040		4.188	-1.920	0.05728	
Typeprenha	NA		NA	NA	NA	
Partners8:Typevirgem	-16.600		5.923	-2.803	0.00591	**
Partners1:Typevirgem	NA		NA	NA	NA	
Partners8:Typeprenha	NA		NA	NA	NA	
Partners1:Typeprenha	NA		NA	NA	NA	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.81 on 120 degrees of freedom Multiple R-squared: 0.3121, Adjusted R-squared: 0.2892 F-statistic: 13.61 on 4 and 120 DF, p-value: 3.516e-09

```
Df Sum Sq Mean Sq F value
Partners
                 2
                     3542
                             1771
                                    8.077 0.000512 ***
                1
                     6675
                             6675
                                   30.440 2.02e-07 ***
Type
Partners: Type
                 1
                     1722
                             1722
                                    7.854 0.005914 **
              120
Residuals
                    26314
                              219
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Interpretaremos apenas os parâmetros significativos a $\alpha=0.05$. Notamos que apenas o intercepto (cela de referência: exposição a nenhuma mosca) e $\Delta_2=(\tau\beta)_{22}+(\tau\beta)_{11}-(\tau\beta)_{12}-(\tau\beta)_{21}$ são significantes. Δ_2 significante indica que há evidências para rejeitar que a soma entre a interação TypeVirgin:Partners1 e TypePregnant:Partners8 subtraida da soma entre a interação TypeVirgin:Partners8 e TypePregnant:Partners1 é nula. Isto é, como o valor estimado é negativo, concluímos que esta diferença Δ_2 afeta negativamente a longevidade das moscas, o que pode indicar um efeito maior do segundo termo da diferença. Como vimos anteriormente, sem inclusão do None, isso pode decorrer por conta do impacto significativo da interação Partners8:TypeVirgin.

Item f

Reparametrizaremos conforme a dica, uma vez que, como discutido, não seria possível estimar todos os parâmetros com a parametrização padrão da cela de referência. Posteriormente, discutiremos a parametrização por médias

```
Call:
lm(formula = Longevity ~ Partners + Type, data = dat)
Residuals:
   Min
           1Q Median
                         3Q
                               Max
-31.61 -10.95
                1.05 10.79
                             32.44
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
              63.560
                          3.044 20.878
                                        < 2e-16 ***
(Intercept)
              -4.350
Partners8
                          4.027 -1.080
                                            0.282
Partners1
               5.390
                          4.027
                                            0.183
                                  1.338
```

```
Typevirgem
             -16.340
                          3.044 -5.367 3.91e-07 ***
Typeprenha
                  NA
                             NA
                                     NA
                                               NA
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.22 on 121 degrees of freedom Multiple R-squared: 0.2671, Adjusted R-squared: F-statistic: 14.7 on 3 and 121 DF, p-value: 3.193e-08

```
Df Sum Sq Mean Sq F value
                                          Pr(>F)
Partners
                  3542
                           1771
                                  7.644 0.000748 ***
                  6675
                           6675 28.808 3.91e-07 ***
Type
              1
Residuals
            121
                 28036
                            232
```

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes:

Pela tabela ANOVA, concluímos que o tipo e os parceiros são significantes a $\alpha=0.05$ de significância estatística. Percebemos também que apenas $\Delta_1 = \tau_2 - \tau_1$ e o intercepto são significantes.

Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

Gráfico QQ

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, maiores no QQ-Plot do que com o modelo anterior, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wilk:

Shapiro-Wilk normality test

data: residuos W = 0.98437, p-value = 0.1601

Concluímos que o modelo pode ser aplicado, pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal.

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Esperaríamos estimar cinco parâmetros para o caso atual, com dois Types, dois Partners e um None. Para o caso com três níveis em cada fator, esperaríamos estimar seis parâmetros para os níveis e mais um parâmetro para a cela de referência None (intercepto), totalizando sete parâmetros. Generalizando, para h fatores com n níveis, esperamos n*h+1 parâmetros para serem estimados no modelo cela de referência.

Encontramos cinco parâmetros para serem estimados com o banco original, conforme discutido na dica e no sumário do modelo.

Encontramos cinco, e não sete, pois o None age como a cela de referência, não como um nível para os outros fatores. Isto é, não há dados para, por exemplo, uma mosca exposta a 0 virgens ou exposta a 0 grávidas, ou um terceiro tipo que não virgem ou grávida.

Vamos reconferir o sumário do modelo:

```
Call:
lm(formula = Longevity ~ Partners + Type, data = dat)
Residuals:
   Min
           1Q Median
                         3Q
                               Max
-31.61 -10.95
                1.05 10.79
                            32.44
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
                         3.044 20.878 < 2e-16 ***
(Intercept)
              63.560
Partners8
              -4.350
                          4.027 -1.080
                                           0.282
Partners1
               5.390
                         4.027
                                  1.338
                                           0.183
Typevirgem
             -16.340
                          3.044 -5.367 3.91e-07 ***
Typeprenha
                  NΑ
                             NA
                                     NΑ
                                              NΑ
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.22 on 121 degrees of freedom
Multiple R-squared: 0.2671,
                                Adjusted R-squared:
F-statistic: 14.7 on 3 and 121 DF, p-value: 3.193e-08
             Df Sum Sq Mean Sq F value
                                         Pr(>F)
                  3542
                          1771
                                 7.644 0.000748 ***
Partners
              2
                  6675
                          6675 28.808 3.91e-07 ***
Туре
              1
            121 28036
                           232
Residuals
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Interpretaremos apenas os parâmetros significativos a $\alpha=0.05$. Notamos que apenas o intercepto (cela de referência: exposição a nenhuma mosca) e $\Delta_1=\tau_2-\tau_1$ são significantes. Δ_1 significante indica que há evidências para rejeitar que o efeito τ_1 e τ_2 são iguais. Isto é, como o valor estimado é negativo, concluímos que o efeito τ_2 é maior que o efeito τ_1 . Isso indica que o efeito de exposição à moscas virgens difere da exposição à moscas prenhas, como esperado.

Item g

Escolheríamos o modelo com interação. Reiterando os argumentos anteriores, do ponto de vista estatístico, notamos que a interação é significativa, fornecendo um modelo melhor ajustado. Dum ponto de vista biológico, considerando o comportamento reprodutivo da *Drosophila*, esperamos que o encontro com mais virgens tenha um impacto maior na longevidade do que o encontro apenas com uma, e o modelo com interação nos permite visualizar isso mais claramente.