Corso di Laurea in Ingegneria Informatica

"Basi di dati" a.a. 2019-2020

Docente: Gigliola Vaglini Docente laboratorio SQL: Francesco Pistolesi

1

Lezione 6

Dal modello concettuale al modello logico

Obiettivo

 "tradurre" in modo automatico lo schema concettuale in uno schema logico che rappresenti gli stessi dati in maniera corretta ed efficiente

3

3

Dati di ingresso e uscita del tool di traduzione automatica

- · Ingresso:
 - schema concettuale
 - modello logico scelto
 - informazioni sul carico applicativo (dimensione dei dati)
- Uscita:
 - schema logico

4

Non è una traduzione immediata

Motivazioni

- 1. semplificare la traduzione
 - alcuni aspetti non sono direttamente rappresentabili
- 2. Tenere in considerazione i requisiti di prestazione
 - "ottimizzare" le prestazioni

6

Attività di di ristrutturazione

- 1. Eliminazione delle generalizzazioni
- 2. Eliminazione degli attributi multivalore
- 3. Analisi ed eventuale eliminazione delle ridondanze
- 4. Partizionamento/accorpamento di entità e relationship

7

7

Le gerarchie nel modello relazionale

- Il modello relazionale non può rappresentare direttamente le generalizzazioni
- Le gerarchie vanno sostituite con entità e relazioni
 - Semplificare la traduzione

8

Tre possibilità

- a. accorpamento delle figlie della generalizzazione nel genitore
- b. accorpamento del genitore della generalizzazione nelle figlie
- C. sostituzione della generalizzazione con relazioni

9

9

Come scegliere

- la scelta fra le alternative si può fare basandosi sul numero e il tipo degli accessi fatti alle singole entità per eseguire le operazioni
- è possibile seguire alcune semplici regole generali

16

Regole generali

- a. conviene se gli accessi al padre e alle figlie sono contestuali
- b. conviene se gli accessi sono solo alle figlie e sono distinti dall'una all'altra
- C. conviene se si effettuano accessi separati alle entità figlie e al padre
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

17

17

Attività di di ristrutturazione

- 1. Eliminazione delle generalizzazioni
- 2. Eliminazione degli attributi multivalore
- 3. Analisi ed eventuale eliminazione delle ridondanze
- 4. Partizionamento/accorpamento di entità e relationship

20

Come rappresentarli

- Ripetere le tuple con ogni valore diverso dell'attributo
- Una sola tupla dimensionata al numero massimo di numeri di telefono possibili
- Spreco di memoria in entrambi i casi e possibili inconsistenze nel primo caso

22

Attività di di ristrutturazione

- 1. Eliminazione delle generalizzazioni
- 2. Eliminazione degli attributi multivalore
- 3. Analisi ed eventuale eliminazione delle ridondanze
- 4. Partizionamento/accorpamento di entità e relationship

24

Ridondanza

 Una ridondanza in uno schema E-R è una informazione significativa, ma derivabile da altre

25

25

Forme di ridondanza in uno schema E-R

- · attributi derivabili:
 - da altri attributi della stessa entità (o associazione)
 - da attributi di altre entità (o associazioni)
- associazioni derivabili dalla composizione di altre associazioni (presenza di cicli)

Motivazione

- si deve decidere se eliminare le ridondanze eventualmente presenti o mantenerle/inserirle in base ad una valutazione del costo delle operazioni
- Vantaggi
 - semplificazione delle interrogazioni
- Svantaggi
 - appesantimento degli aggiornamenti
 - maggiore occupazione di spazio

31

31

Ottimizzare le prestazioni

- Per ottimizzare abbiamo bisogno prima di analizzare le prestazioni
- Ma:
 - Come si possono valutare le prestazioni su uno schema concettuale?

Indicatori per valutare le prestazioni

- Consideriamo degli "indicatori" dei parametri che caratterizzano le prestazioni
 - spazio: numero di occorrenze previste
 - tempo: numero di occorrenze (di entità e relationship) visitate per portare a termine un'operazione

33

33

Tavola dei volumi

Concetto	Tipo	Volume
Sede	E	10
Dipartimento	E	80
Impiegato	E	2000
Progetto	E	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

35

35

Esempio di valutazione di costo

- Operazione:
 - trovare tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su uno schema di navigazione

Tavola degli accessi

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	L
Afferenza	Relazione	1	L
Dipartimento	Entità	1	L
Partecipazione	Relazione	3	L
Progetto	Entità	3	L

38

Tavola dei volumi e operazioni

Concetto	Tipo	Volume
Città	E	200
Persona	Е	1000000
Residenza	R	1000000

- Operazione 1: memorizza una nuova persona con la relativa residenza, supponendo che la città sia già presente (500 volte al giorno)
- Operazione 2: stampa tutti i dati di una città (incluso il numero di abitanti) (2 volte al giorno)

40

Accessi in presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

41

41

Accessi in assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Relazione	5000	L

42

Costi in presenza di ridondanza

- Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
- Operazione 2: trascurabile.
- · Contiamo doppi gli accessi in scrittura
 - Totale di 3500 accessi al giorno

43

43

Costi in assenza di ridondanza

- Operazione 1: 1000 accessi in scrittura al giorno
- Operazione 2: 10000 accessi in lettura al giorno
- Contiamo doppi gli accessi in scrittura
 - Totale di 12000 accessi al giorno

44

Attività di di ristrutturazione

- 1. Eliminazione delle generalizzazioni
- 2. Eliminazione degli attributi multivalore
- 3. Analisi ed eventuale eliminazione delle ridondanze
- 4. Partizionamento/accorpamento di entità e relationship

45

45

Motivazione

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base al principio che
 - gli accessi si riducono
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme

46

Casi principali

- a. partizionamento di entità
- b. accorpamento di entità/relationship
- C. partizionamento di relationship

47

47

Traduzione verso il modello relazionale

- · idea di base:
 - le entità diventano relazioni sugli stessi attributi
 - le associazioni diventano relazioni sugli identificatori delle entità coinvolte (più gli attributi propri)

54

Relationship molti a molti

- Impiegato (Matricola, Cognome, Stipendio)
- Progetto (<u>Codice</u>, Nome, Budget)
- Partecipazione (<u>Matricola, Codice</u>, DataInizio)
- · con vincoli di integrità referenziale fra
 - Matricola in Partecipazione e (la chiave di) Impiegato
 - Codice in Partecipazione e (la chiave di) Progetto

Nomi più espressivi per gli attributi della chiave della relazione che rappresenta la relationship

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(<u>Codice</u>, Nome, Budget)
Partecipazione (<u>Matricola, Codice</u>, DataInizio)

· diventa

Partecipazione (Impiegato, Progetto, DataInizio)

57

57

Relationship ricorsive

Prodotto(<u>Codice</u>, Nome, Costo)
Composizione (<u>Composto</u>, <u>Componente</u>,
Quantità)

58

Relationship n-arie

Fornitore(PartitaIVA, Nome)

Prodotto(Codice, Genere)

Dipartimento(Nome, Telefono)

Fornitura (<u>Fornitore</u>, <u>Prodotto</u>, <u>Dipartimento</u>, Quantità)

59

59

Relationship uno-a-molti

Giocatore (<u>Cognome, DataNascita</u>, Ruolo) Contratto (<u>CognGiocatore, DataNascG, Squadra</u>, Ingaggio) Squadra (<u>Nome</u>, Città, ColoriSociali)

 Alternative? Essendo la cardinalità di Contratto rispetto a Giocatore (1,1), la chiave delle tabelle Contratto e Giocatore.....

60

Soluzione più compatta

- Giocatore (<u>Cognome</u>, <u>DataNasc</u>, Ruolo, Squadra, Ingaggio)
- Squadra (Nome, Città, ColoriSociali)
- con vincolo di integrità referenziale fra Squadra in Giocatore e la chiave di Squadra
- se la cardinalità minima della relationship è 0 per Giocatore, allora Squadra in Giocatore deve ammettere valore nullo

61

61

Entità con identificatore esterno

Studente (<u>Matricola, Università</u>, Cognome, AnnoDiCorso)

Università (Nome, Città, Indirizzo)

con vincolo ...

62

Relationship uno-a-uno

- varie possibilità:
 - fondere da una parte o dall'altra
 - fondere tutto?

63

63

Un caso fortunato

Impiegato (<u>Codice</u>, <u>Cognome</u>, Stipendio) Dipartimento (<u>Nome</u>, Sede, Telefono, Direttore, DataInizio)

· con vincolo di integrità referenziale, e senza valori nulli

64

Un altro caso

Impiegato (<u>Codice</u>, Cognome, Stipendio)
Dipartimento (<u>Nome</u>, Sede, Telefono)
Direzione (<u>Direttore</u>, <u>Dipartimento</u>, Datainizio)

· con vincoli di integrità referenziale, senza valori nulli

65

65

Schema finale

- Impiegato(Codice, Cognome, Dipartimento, Sede, Data)
- Dipartimento(Nome, Città, Telefono, Direttore)
- Partecipazione(Impiegato, Progetto)
- Progetto(Nome, Budget)
- Sede(Città, Via, CAP)

67

67

Strumenti di supporto

 Esistono sul mercato prodotti CASE cheforniscono un supporto a tutte le fasi della progettazione di basi di dati

68

