Лабораторная работа 2.3.1 «Получение и измерение вакуума»

Балдин Виктор, Б01-303

19 февраля 2024 г.

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1 Теоретическая часть

1.1 Процесс откачки

Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда имеем:

$$-VdP = \left(PW - \sum Q_i\right)dt\tag{1}$$

При достижении предельного вакуума устанавливается $P_{\rm np}$, и dP=0. В таком случае:

$$W = \frac{\sum Q_i}{P_{\text{ID}}} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm g}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V}t\right)$$
(3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

1.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При переходе к высокому вакууму столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками.

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{P_2 - P_1}{l} \tag{5}$$

Если труба соединяет установку с насосом, то давлением P_1 у его конца можно пренебречь. Давление в сосуде $P = P_2$. Тогда пропускная способность трубы:

$$C_{\rm TP} = \left(\frac{dV}{dt}\right)_{\rm TP} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

2 Экспериментальная установка

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ΦB), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ΦH) и соединительных кранов ($K_1, K_2, \ldots K_6$) (Puc. 1). Кроме того, в состав установки входят: реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема экспериментальной установки

3 Ход работы

3.1 Определение объема форвакуумной и высоковакуумной частей установки

- 1. Атмосферное давление равно $P_{\rm A} = (748 \pm 1)$ торр.
- 2. Впустим в установку атмосферный воздух через краны К1 и К2.
- 3. Закроем краны K5 и K6, запрем $V_{\text{зап}} = 50 \text{ см}^3$ воздуха.
- 4. Закроем краны K1 и K2, включим форвакуумный насос. Подключим установку к форвакуумному насосу краном K2 и откачаем ее до давления 10^{-2} торр.
- 5. Повернув рукоятку крана K2, отсоединим установку от форвакуумного насоса. Откроем кран K1.
- 6. Перекрыв К3, отделим ВБ от ФБ.
- 7. Закроем К4.
- 8. Откроем К5, измерим уровень масла слева и справа, которые дадут нам давление P_1 . Из закона Бойля-Мариотта $V_{\Phi B} = V_{\text{зап}} P_{\text{A}}/P_1$.
- 9. Аналогичным методом измерим объем $V_{\text{вв}}$, открыв кран K3.
- 10. Повторим все измерения еще раз. Все результаты в таблице. Погрешность измерения уровня примем $\Delta h = 0.1$ см.

h_1 , cm	h_2 , cm	P_1 , торр	h_3 , cm	h_4 , cm	P_2 , Topp
34,6	6,2	18,6	29,6	11,4	11,8
34,5	6,1	18,6	29,8	11,4	12,0

Таблица 1: Таблица показаний масляного манометра

11. Получим $V_{\Phi \text{B}} = (2010 \pm 40) \text{ см}^3$, $V_{\text{BB}} = (1150 \pm 30) \text{ см}^3$. Относительная погрешность может быть вычислена в обоих случаях как $\varepsilon_V = \varepsilon_P + \varepsilon_{P_{\text{A}}}$. $\varepsilon_{V_{\Phi \text{B}}} = 0.2$, $\varepsilon_{V_{\text{BB}}} = 0.3$.

3.2 Получение высокого вакуума и измерение скорости откачки

- 12. Установим ток в лампе $I_0 = 0.6$ A.
- 13. После того, как давление упало ниже $3\cdot 10^{-2}$ торр, закроем K6 и установим ток $I_{\rm max}=1,29$ А для нагревания масла.
- 14. Когда давление достигнет 10^{-3} торр, включим ионизационный манометр.
- 15. По достижении $1.6 \cdot 10^{-4}$ торр начнем дегазацию.
- 16. Получаем предельное давление $P_{\rm np} = 5.6 \cdot 10^{-5}$ торр.

- 17. Остановим откачку и откроем кран K3. Снимем зависимость P(t) в процессе ухудшения, а затем в процессе улучшения вакуума.
- 18. Все результаты представим на графиках:

Рис. 2: Откачка 1

Рис. 3: Ухудшение вакуума 1

Рис. 4: Откачка 2

Рис. 5: Ухудшение вакуума 2