

SEMESTER 1 IN-CLASS TEST 2020/2021

MODULE: EE458 - Control Systems Analysis

PROGRAMME(S):

ECE BEng Electronic & Computer Engineering

ME B.Eng. in Mechatronic Engineering

ECSAO Study Abroad (Engineering & Computing) ECSA Study Abroad (Engineering & Computing)

YEAR OF STUDY: 4

EXAMINER(S):

Dr. Mingming Liu (Internal) (Ext:8492)
Dr. William O'Connor (External) External
Dr. Josep R. Casas (External) External
Dr. Simon Watson (External) External

TIME ALLOWED: 1 Hour + extra time allowance for the online exam

INSTRUCTIONS: Answer Question 1.

Marks will be lost if all necessary work in not clearly shown. Marks will be lost if **Matlab** figures are not clearly labelled.

This exam is total of 25 marks.

5% marks of penalty will apply for late online submission.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO.

The use of programmable or text storing calculators is expressly forbidden.

Please note that where a candidate answers more than the required number of questions, the examiner will mark all questions attempted and then select the highest scoring ones.

Requirements for this paper:

1. Log Tables

INSTRUCTIONS FOR COMPUTER-BASED WORK

IMPORTANT: PLEASE READ THIS SHEET CAREFULLY BEFORE COMMENCING THIS EXAM.

GENERAL:

- Set up your own directory (including your student name and ID) in H: \temp
- All Matlab-based coding scripts must be saved as m-files. Other formats are not accepted.
- All m-files, script files, SIMULINK files, plot files and diary files (with extension txt) must be saved to the network drive H:\
- The scanned answer booklet file must be a single pdf file. Other formats are not accepted.
- All coding files must be zipped to a single file (.zip or .rar format). Files must be
 uploaded to a specific Loop submission portal along with your scanned answer
 booklet file (a single pdf file).
- Save your work regularly. No credit is given for work that has been 'lost'.
- It is your responsibility to ensure that all your work has been saved and submitted successfully within the given exam time.

SAVING PLOTS:

- The plot must be generated to your satisfaction in the Figure window. Do not minimize this window.
- Save your plot as type * . fig only. Other formats are not acceptable.
- N.B. Make sure that you save your plot to h:\temp\.... Make sure that you use a unique name for the plots.

DIARY FILES:

- It is recommended that you use a separate diary file for each part of a question.
- To open/start a diary file, at the MATLAB Command Prompt, type:

```
>> diary h:\temp\examnum\diary1.txt
>> diary on
```

To close a diary file, at the MATLAB Command Prompt, type: >> diary off

USEFUL MATLAB FUNCTIONS:

abs	acos	angle	asin	atan	axis
bandwidth	bode	break	c2d	cd	clear
clf	close	conv	cos	det	eig
else	evalfr	exit	exp	feedback	figure
find	for	function	grid	help	if
imag	impulse	inv	isstable	label	length
log	log10	logspace	lsim	margin	max
mean	min	norm	nyquist	ones	open
ode45	pi	pinv	plot	pole	poly
print	pzmap	quit	rand	rank	real
residue	rlocfind	rlocus	roots	round	semilogx
series	sign	sim	sin	size	sqrt
SS	ssdata	step	subplot	sum	tan
text	tf	tf2ss	tfdata	title	while
who	xlabel	ylabel	zeros	zgrid	zpk
zpkdata	zoom				

• **Please note**: the use of solve(), stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

[See Appendix for applicable formulae]

Q1(a) [3, 2, 2, 2, 9 Marks Total]

The block diagram for a control system is shown in **Figure Q1a**:

Figure Q1a

- (i) Derive the mathematical expression for system's transfer function $T(s) = \frac{Y(s)}{R(s)}$ in terms of $G_1(s)$, $G_2(s)$, $G_3(s)$ and $H_1(s)$.
- (ii) Let $G_1(s) = \frac{1}{s+1}$, $G_2(s) = \frac{1}{(s+2)(s+1)}$, $G_3(s) = \frac{1}{s+2}$, and $H_1(s) = 1$. Find out the exact expression for the closed-loop transfer function T(s). To do this, you may either use **Matlab** or present your derivation steps on the paper. If using **Matlab**, please include your codes and comments in the coding script.
- (iii) Present the order and type of the system T(s).
- (iv) Use **Matlab** to check the stability of the system and comment on your results.

Q1(b) [2, 2, 2, 6 Marks Total]

Given the system set-up in Q1(a)(ii):

- (i) Use the Final Value Theorem (FVT) to calculate the steady-state error of the system with a unit step input.
- (ii) Use **Matlab** to measure the steady-state error and justify your finding with the result obtained in **Q1(b)(i)**.
- (iii) Present the steady-state error if the test input signal has been changed to $R(s) = \frac{6}{s}$

Given a typical feedback control system presented in Figure Q1c:

Figure Q1c

Let $C(s) = \frac{k}{s+1}$, $G(s) = \frac{2}{(s+2)(s+a)}$, and H(s) = p. a, k are both positive parameters.

- (i) Derive the mathematical expression for system's closed-loop transfer function $T(s) = \frac{Y(s)}{R(s)}$ in terms of s, a, k.
- (ii) Calculate the sensitivity S_k^T .
- (iii) Given your result in **Q1(c)(ii)**, let s = 0 and fix a, discuss the impact of increasing k on the sensitivity value S_k^T .

Note: if your student ID is even number, choose p = 2, otherwise choose p = 1.

Q 1(d) [3 Marks]

Given the closed-loop system setup in $\mathbf{Q1(c)(i)}$ and let a=1. Find the value of k to yield a steady-state output of 0.3 for a unit step input.

[End of Question 1]

APPENDIX

Please note the use of solve, stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

Selection of Laplace and Z-Transforms

<i>f(t)</i>	F(s)	F(z),	
	1	T	
1		$1 - z^{-1}$	
	1	Tz^{-1}	
t	$\frac{\overline{s^2}}{s^2}$	$\overline{(1-z^{-1})^2}$	
	2	$T^2z^{-1}(1+z^{-1})$	
t ²	$\frac{\overline{s^3}}{s^3}$	$\frac{1}{(1-z^{-1})^3}$	
	1	1	
e^{-aT}	$\frac{\overline{s+a}}{s+a}$	$\overline{1 - e^{-aT}z^{-1}}$	
	1	$\frac{1 - e^{-aT}z^{-1}}{Te^{-aT}z^{-1}}$	
te^{-aT}	$\overline{(s+a)^2}$	$\overline{(1-e^{-aT}z^{-1})^2}$	

Product Rule:

$$y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Quotient Rule:

$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Chain Rule:

$$y = u(v(x)) \Rightarrow \frac{dy}{dx} = \frac{du}{dv}\frac{dv}{dx}$$

[End of Appendices]