Name: Ishaan Malhotra

Table of Contents

Roll no. : 1610110152	. 1
Instructer: Prof. Vijay Chakka	. 1
Lab 2	
Aim: Plotting data in graphs and few properties	. 1
Question 1	
Question 2	. 6
Question 3	29
Functions	37

Roll no.: 1610110152

Instructer: Prof. Vijay Chakka

Lab 2

Aim: Plotting data in graphs and few properties

```
clc
clear all
close all
```

Question 1

```
A = randAdjMatrix(5);
ran2D = rand(length(A),2);
ran3D = rand(length(A),3);

plot2DGraph(A,ran2D);
title('2D Random Graph');

val = [1,-1,0,1,-1];
plot3Dv2(A,ran3D,val);
title('3D Random Graph with [1,-1,0,1,-1] at vertices');

[V, D] = eig(A);
eigenvalue= diag(D);
plot3Dv2(A,ran3D,eigenvalue);
title('3D Random Graph with eigenvalues at vertices');

for n=1:length(V)
```

```
plot3Dv2(A,ran3D,V(:,n));
  title('3D Random Graph with Vk(n) at vertices');
end
```


3D Random Graph with [1,-1,0,1,-1] at vertices

3D Random Graph with eigenvalues at vertices

3D Random Graph with Vk(n) at vertices

3D Random Graph with Vk(n) at vertices

3D Random Graph with Vk(n) at vertices

3D Random Graph with Vk(n) at vertices

3D Random Graph with Vk(n) at vertices

Question 2

```
complete = [[0 1 1 1];[1 0 1 1];[1 1 0 1];[1 1 1 0]];
ran1_3D = rand(length(complete),3);
[V, D] = eig(complete);
eigenvalue = diag(D);
plot3Dv2(complete,ran1_3D,eigenvalue);
title('3D complete Graph with eigenvalues at vertices');
for n=1:length(V)
    plot3Dv2(complete,ran1_3D,V(:,n));
    title('3D complete Graph with Vk(n) eigenvectors at vertices');
end
bipartite = [[0 0 0 1 1 1 1];[0 0 0 1 1 1 1];[0 0 0 1 1 1 1];[1 1 1 0
 0 0 0];[1 1 1 0 0 0 0];[1 1 1 0 0 0 0];[1 1 1 0 0 0 0]];
ran2_3D = rand(length(bipartite),3);
[V, D] = eig(bipartite);
eigenvalue = diag(D);
plot3Dv2(bipartite,ran2_3D,eigenvalue);
title('3D bipartite Graph with eigenvalues at vertices');
for n=1:length(V)
```

```
plot3Dv2(bipartite,ran2_3D,V(:,n));
    title('3D bipartite Graph with Vk(n) eigenvectors at vertices');
end
regular = [[0 1 1 1];[1 0 1 1];[1 1 0 1];[1 1 1 0]];
ran3 3D = rand(length(regular),3);
[V, D] = eig(regular);
eigenvalue = diag(D);
plot3Dv2(regular,ran3_3D,eigenvalue);
title('3D regular Graph with eigenvalues at vertices');
for n=1:length(V)
    plot3Dv2(regular,ran3_3D,V(:,n));
    title('3D regular Graph with Vk(n) eigenvectors at vertices');
end
star = [[0 1 1 1];[1 0 0 0];[1 0 0 0];[1 0 0 0]];
ran4 3D = rand(length(star),3);
[V, D] = eig(star);
eigenvalue = diag(D);
plot3Dv2(star,ran4_3D,eigenvalue);
title('3D star Graph with eigenvalues at vertices');
for n=1:length(V)
    plot3Dv2(star,ran4_3D,V(:,n));
    title('3D star Graph with Vk(n) eigenvectors at vertices');
end
circular = [[0 1 0 1];[1 0 1 0];[0 1 0 1];[1 0 1 0]];
ran5_3D = rand(length(circular),3);
[V, D] = eig(circular);
eigenvalue = diag(D);
plot3Dv2(circular,ran5_3D,eigenvalue);
title('3D circular Graph with eigenvalues at vertices');
for n=1:length(V)
    plot3Dv2(circular,ran5_3D,V(:,n));
    title('3D circular Graph with Vk(n) eigenvectors at vertices');
end
line = [[0 1 0 0];[1 0 1 0];[0 1 0 1];[0 0 1 0]];
ran6_3D = rand(length(line),3);
[V, D] = eig(line);
eigenvalue = diag(D);
plot3Dv2(line,ran6_3D,eigenvalue);
title('3D line Graph with eigenvalues at vertices');
for n=1:length(V)
    plot3Dv2(line,ran6_3D,V(:,n));
    title('3D line Graph with Vk(n) eigenvectors at vertices');
```

```
end

[A,ran2D] = bucky;

plot2DGraph(A,ran2D);
 title('2D Bucky Graph');

[A,ran3D] = bucky;
A = full(A);
plot3DGraph(A,ran3D);
 title('3D Bucky Graph');

[V, D] = eig(A);

eigenvalue = diag(D);
k = [1,3,30,31,55,60];
for i = 1:length(k)
    plot3Dv2(A,ran3D,V(:,k(i)));
    title('3D Random Graph with eigenvectors at vertices');
end
```

3D complete Graph with eigenvalues at vertices

3D complete Graph with Vk(n) eigenvectors at vertices

3D complete Graph with Vk(n) eigenvectors at vertices

3D complete Graph with Vk(n) eigenvectors at vertices

3D complete Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with eigenvalues at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D bipartite Graph with Vk(n) eigenvectors at vertices

3D regular Graph with eigenvalues at vertices

3D regular Graph with Vk(n) eigenvectors at vertices

3D regular Graph with Vk(n) eigenvectors at vertices

3D regular Graph with Vk(n) eigenvectors at vertices

3D regular Graph with Vk(n) eigenvectors at vertices

3D star Graph with eigenvalues at vertices

3D star Graph with Vk(n) eigenvectors at vertices

3D star Graph with Vk(n) eigenvectors at vertices

3D star Graph with Vk(n) eigenvectors at vertices

3D star Graph with Vk(n) eigenvectors at vertices

3D circular Graph with eigenvalues at vertices

3D circular Graph with Vk(n) eigenvectors at vertices

3D circular Graph with Vk(n) eigenvectors at vertices

3D circular Graph with Vk(n) eigenvectors at vertices

3D circular Graph with Vk(n) eigenvectors at vertices

3D line Graph with eigenvalues at vertices

3D line Graph with Vk(n) eigenvectors at vertices

3D line Graph with Vk(n) eigenvectors at vertices

3D line Graph with Vk(n) eigenvectors at vertices

3D line Graph with Vk(n) eigenvectors at vertices

3D Bucky Graph

3D Random Graph with eigenvectors at vertices

Question 3

```
B = [[0,1,1];[1,0,1];[1,1,0]];
complete = [[0 1 1 1];[1 0 1 1];[1 1 0 1];[1 1 1 0]];
K1 = kronecker(complete,B);
C1 = cartesian(complete,B);
ran1 = rand(length(K1),2);
ran1_3D = rand(length(K1),3);
bipartite = [[0 0 0 1 1 1 1];[0 0 0 1 1 1 1];[0 0 0 1 1 1 1];[1 1 1 0
 0 0 0];[1 1 1 0 0 0 0];[1 1 1 0 0 0 0];[1 1 1 0 0 0 0]];
K2 = kronecker(bipartite,B);
C2 = cartesian(bipartite,B);
ran2 = rand(length(K2),2);
ran2_3D = rand(length(K2),3);
regular = [[0 1 1 1];[1 0 1 1];[1 1 0 1];[1 1 1 0]];
K3 = kronecker(regular,B);
C3 = cartesian(regular,B);
ran3 = rand(length(K3),2);
ran3_3D = rand(length(K3), 3);
star = [[0 1 1 1];[1 0 0 0];[1 0 0 0];[1 0 0 0]];
K4 = kronecker(star,B);
C4 = cartesian(star,B);
ran4 = rand(length(K4), 2);
ran4_3D = rand(length(K4),3);
circular = [[0 1 0 1];[1 0 1 0];[0 1 0 1];[1 0 1 0]];
K5 = kronecker(circular,B);
C5 = cartesian(circular,B);
ran5 = rand(length(K5),2);
ran5 3D = rand(length(K5),3);
line = [[0 \ 1 \ 0 \ 0];[1 \ 0 \ 1 \ 0];[0 \ 1 \ 0 \ 1];[0 \ 0 \ 1 \ 0]];
K6 = kronecker(line,B);
C6 = cartesian(line,B);
ran6 = rand(length(K6),2);
ran6 3D = rand(length(K6),3);
plot2DGraph(K1,ran1);
title('Kronecker of Complete Graph');
plot2DGraph(K2,ran2);
title('Kronecker of Bipartite Graph');
plot2DGraph(K3,ran3);
title('Kronecker of Regular Graph');
plot2DGraph(K4,ran4);
title('Kronecker of Star Graph');
```

```
plot2DGraph(K5,ran5);
title('Kronecker of Circular Graph');
plot2DGraph(K6,ran6 3D);
title('Kronecker of Line Graph');
plot3DGraph(K1,ran1_3D);
title('Kronecker ofComplete Graph');
plot3DGraph(K2,ran2_3D);
title('Kronecker of Bipartite Graph');
plot3DGraph(K3,ran3 3D);
title('Kronecker of Regular Graph');
plot3DGraph(K4,ran4_3D);
title('Kronecker of Star Graph');
plot3DGraph(K5,ran5 3D);
title('Kronecker of Circular Graph');
plot3DGraph(K6,ran6_3D);
title('Kronecker of Line Graph ');
plot(graph(K1));
title('Using Matlab function plot(graph(A))');
plot(graph(K2));
title('Using Matlab function plot(graph(A))');
plot(graph(K3));
title('Using Matlab function plot(graph(A))');
plot(graph(K4));
title('Using Matlab function plot(graph(A))');
plot(graph(K5));
title('Using Matlab function plot(graph(A))');
plot(graph(K6));
title('Using Matlab function plot(graph(A))');
```


Kronecker ofComplete Graph

Kronecker of Bipartite Graph

Kronecker of Regular Graph

Kronecker of Star Graph

Kronecker of Circular Graph

Functions

```
% To create a random NxN adjacency matrix
%function A = randAdjMatrix(N)
A = []
% Creating upper triangular random matrix
%for i=N:-1:1
    B = [zeros(1,N-i) round(rand(1,i))]
    A = [A;B]
%end
%B = A.' % Taking transpose of upper triangular matrix
A = A - diag(diag(A)) %Making diagonal 0
%A = A + B %Adding transpose to the original triangular matrix
%A = A - diag(diag(A)) %Making diagonal 0
%end
% To plot 2D graph
%function plot2DGraph(A,ran)
%figure
%plot(ran(:,1),ran(:,2),'0') %Creating random points in 2D space
for k = 1: length(A)
    row = A(k,:); %Extracting kth row
응
    for i = 1:length(row)
        if A(k,i) == 1
                                    % If weight is 1
응
응
            x = [ran(k,1) ran(i,1)];
            y = [ran(k,2) ran(i,2)]; %x,y-axes stores random points
응
            k1 = int2str(k);
                                % Converting node number to
                                               string
             text(ran(k,1),ran(k,2),k1)
                                          % Naming the node
             line(x,y);
                                      % Drawing line
        end
ે
    end
%end
%end
% To plot 3D graph
%function plot3DGraph(A,ran)
%figure
%plot3(ran(:,1),ran(:,2),ran(:,3),'O') %Creating random points in 3D
space
for k = 1: length(A)
   row = A(k,:); %Extracting kth row
    for i = 1:length(row)
응
        if A(k,i) == 1
                          % If weight is 1
            x = [ran(k,1) \ ran(i,1) \ ran(k,1)]; %x,y,z-axes stores
random
응
                                                  points
응
            y = [ran(k,2) ran(i,2) ran(k,2)];
             z = [ran(k,3) ran(i,3) ran(k,3)];
```

```
응
             k1 = int2str(k);
                                               %Converting node number
to
응
                                                string
응
             text(ran(k,1),ran(k,2),ran(k,3),k1) % Naming the node
응
             line(x,y,z); % Drawing line
         end
%
     end
%end
%end
% To find kronecker product
%function D = kronecker(A,B)
%C = []
D = []
%for i = 1:length(A)
    C = []
     for j = 1:length(A)
        C = [C A(i,j).*B]
%
    end
응
     D = [D; C]
%end
%end
% To find cartesian product
%function D = cartesian(A,B)
%I1 = eye(length(A))
%I2 = eye(length(B))
%D1 = kronecker(A,I2)
%D2 = kronecker(I1,B)
D = D1 + D2
%end
% To plot vectors on graph
%function plot3Dv2(A,ran,val)
%figure
%plot3(ran(:,1),ran(:,2),ran(:,3),'0')
for k = 1: length(A)
    row = A(k,:);
     for i = 1:length(row)
응
         if A(k,i) == 1
응
응
             x = [ran(k,1) ran(i,1) ran(k,1)];
응
             y = [ran(k,2) ran(i,2) ran(k,2)];
             z = [ran(k,3) ran(i,3) ran(k,3)];
%
응
             k1 = int2str(k-1);
응
             text(ran(k,1),ran(k,2),ran(k,3),k1)
응
             line(x,y,z);
응
         end
응
  end
응
       x1 = [ran(k,1) ran(k,1)];
        y1 = [ran(k,2) ran(k,2)];
응
        z1 = [ran(k,3) (ran(k,3) + val(k))];
```

```
% line(x1,y1,z1)
%end
%end
```

Published with MATLAB® R2018a