Greedy Algorithms: The Fractional Knapsack

Dr. Krishna Gopal Dhal
Assistant Professor
Dept. of Computer Science and Application
Midnapore College (Autonomous)

Introduction to Greedy Algorithm

- A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current subsolution.
- Final output is an optimal solution.
- Greedy algorithms don't always yield optimal solutions but, when they do, they're usually the simplest and most efficient algorithms available.

The Knapsack Problem...

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Solution:

2 pd	2 pd
A	C
\$100	\$80

Solution:

The Fractional Knapsack Problem: Formal Definition

• Given K and a set of n items:

weight	w_1	<i>W</i> 2	 Wn
value	<i>v</i> ₁	<i>V</i> 2	 Vn

• Find: $0 \le x_i \le 1$, i = 1, 2, ..., n such that

$$\sum_{i=1}^{n} x_i w_i \le K$$

and the following is maximized:

$$\sum_{i=1}^{n} x_i v$$

Greedy Solution for Fractional Knapsack

Greedy Solution for Fractional Knapsack

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.
- Sort the items by decreasing ρ_i . Let the sorted item sequence be $1, 2, \ldots, i, \ldots n$, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.
 - If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Running time: $O(n \log n)$.

Greedy Solution for Fractional Knapsack

- Observe that the algorithm may take a fraction of an item.
 This can only be the last selected item.
- We claim that the total value for this set of items is the optimal value.