Estimation in Domains

Week 5 (4.3)

Stat 260, St. Clair

1/15

Domains

Domain: subpopulations of interest \mathcal{U}_d

ullet We want to estimate a domain parameter: $t_d, ar{y}_{\mathcal{U}_d}, p_d$

2 / 15

Design

We take a SRS of size n from a population ${\cal U}$

ullet **Problem:** n_d , the number of respondents in the domain, varies from sample to sample

Domain estimation: a ratio estimator

• Domain indicator:

$$x_i = egin{cases} 1 & ext{if unit } i ext{ is in the domain} \ 0 & ext{if unit } i ext{ is not in the domain} \end{cases}$$

• Domain sample size:

$$n_d = \sum_{i=1}^n x_i$$

3 / 15

Domain estimation: a ratio estimator

• Domain responses:

$$u_i = x_i y_i = egin{cases} y_i & ext{if unit } i ext{ is in the domain} \ 0 & ext{if unit } i ext{ is not in the domain} \end{cases}$$

• Domain sample mean:

$$ar{y}_d = rac{\sum_{i \in ext{domain}} y_i}{n_d} = rac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i}$$

Domain estimation for a proportion

- Domain Parameter proportion p_d
- Response y_i is an indicator of "success"
- Estimator with a SRS of units: a ratio estimator

$$\hat{p}_d = rac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i} = rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i}$$

- **SE**: same as the mean except $s_d^2 = rac{n_d}{n_d-1} \hat{p}_d (1-\hat{p}_d)$

Domain estimation for a mean

- ullet Domain Parameter mean $ar{y}_{\mathcal{U}_{J}}$
- Estimator with a SRS of units: a ratio estimator

$${ar y}_d = rac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i}$$

• **SE**: when *n* is "large" (or bias about 0)

$$SE(ar{y}_d) pprox \sqrt{\left(1-rac{n}{N}
ight)rac{s_e^2}{nar{x}^2}} = \sqrt{\left(1-rac{n}{N}
ight)\left(rac{n}{n-1}
ight)\left(rac{n_d-1}{n_d}
ight)rac{s_d^2}{n_d}}$$

where s_d is the sample SD of the measurements y_i in the sampled domain.

5/15

Example 1

An economist wants to estimate the average weekly amount spent on food by households containing children in a small town.

A complete list of all 2500 households in the county is available, but identifying those households with children is impossible.

So the economist selects a SRS of 500 households and observes 420 that contain children.

Of the 420 households with children, he records an average of \$120.35 spent on food during a week and a sample SD of \$42.20.

7/15

Example 1(a):

Estimate the average weekly amount of money spent on food by all households with children in the county and compute the standard error of your estimate.

9 / 15

Domain estimation for a total

- Domain Parameter total t_d

Two scenarios:

- **2.** If N_d , population size of the domain, is **unknown**
 - **Estimator**: SRS total estimate with u_i as the response

$$\hat{t}_{\,d}=Nar{u}$$

• SE:

$$SE(\hat{t}_{\,d}) = NSE(ar{u}) = N\sqrt{\left(1-rac{n}{N}
ight)rac{s_u^2}{n}}$$

where s_u is the sample SD of the measurements u_i in the sample and

$$s_u^2 = rac{1}{n-1} \Big[(n_d-1) s_d^2 + n_d ar{y}_d^2 \left(1 - rac{n_d}{n}
ight) \Big]$$

Domain estimation for a total

• Domain Parameter total t_d

Two scenarios:

1. If N_d , population size of the domain, is **known**

$$\hat{t}_d = N_d ar{y}_d, \;\; SE(\hat{t}_d) = N_d SE(ar{y}_d)$$

Example 1(b):

Estimate the total weekly amount of money spent on food by households with children and compute the standard error of your estimate.

11 / 15

Bias of domain mean estimator

Small when n is large or n_d/n is close to 1

Proof

$$SE(ar{y}_d) pprox \sqrt{\left(1-rac{n}{N}
ight)rac{s_e^2}{nar{x}^2}} = \sqrt{\left(1-rac{n}{N}
ight)\left(rac{n}{n-1}
ight)\left(rac{n_d-1}{n_d}
ight)rac{s_d^2}{n_d}}$$

13 / 15

Proof

$$s_u^2 = rac{1}{n-1} \sum_{i=1}^n (u_i - ar{u})^2 = rac{1}{n-1} \Big[(n_d - 1) s_d^2 + n_d ar{y}_d^2 \left(1 - rac{n_d}{n}
ight) \Big]$$