Course Syllabus

Jump to Today

Course Description. This advanced graduate course explores in depth several important classes of algorithms in modern machine learning. We will focus on understanding the mathematical properties of these algorithms in order to gain deeper insights on when and why they perform well. We will also study applications of each algorithm on interesting, real-world settings. Topics include: spectral clustering, tensor decomposition, Hamiltonian Monte Carlo, adversarial training, and variational approximation. We will supplement the lectures with paper discussions and there will be a significant research project component to the class. Prerequisites: Probability (CS 109 (https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS109)), linear algebra (Math 113 (https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=Math113)), machine learning (CS 229 (https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS229)), and some coding experience.

Instructor: James Zou (jamesz@stanford.edu (mailto:jamesz@stanford.edu))

TA: Qijia Jiang (qjiang2@stanford.edu (mailto:qjiang2@stanford.edu))

Lectures: Mondays 2:30-4:20pm in 50-52H

Paper discussions: Fridays 1:30-2:20 in McCullough 122 (starting 4/14).

Office hours: James Mondays 4:30-6pm in Packard 253.

Piazza Page: piazza.com/stanford/spring2017/cs329m/home (http://piazza.com/stanford/spring2017/cs329m/home)

Assignments (see guidelines below):

Project: 50% (team size flexible)

Scribing: 10% (teams of 3-4)

Paper presentation: 20% (teams of 3-4)

Participation (esp. in the paper discussions): 10%

Assignment: 10%

Week	Material & Relevant Reading (subject to change)	Paper Presentatio
Random	Material. Random geometry in high dimensions. Johnson-Lindenstrauss projections. Locality sensitive hashing Relevant reading. 1. http://www.cs.cornell.edu/jeh/bookMay2015.pdf . Chapter 2. 2. Charikar SimHash paper. https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf (https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf)	No Paper Discussion
	Material. SVD as best low rank approximation. Tensor decomposition for mixture of Gaussians. Power method. Relevant reading. 1. http://www.offconvex.org/2015/12/17/tensor-decompositions/ (http://www.offconvex.org/2015/12/17/tensor-decompositions/) 2. https://arxiv.org/pdf/1210.7559.pdf (https://arxiv.org/pdf/1210.7559.pdf)	Spectral meta-learr with-ds=yes (http
Week 3 (4/17): Spectral methods 2	Material. Tensor decomposition for LDA and trees. Spectral clustering. Relevant reading. 1. Moitra chapter 3. http://people.csail.mit.edu/moitra/docs/bookex.pdf (http://people.csail.mit.edu/moitra/docs/bookex.pdf (https://cseweb.ucsd.edu/~sail/papers/smdr_ssl05.pdf (

/27/2018	Syllabus for Topics in Artificial Intelligence: Algorithms of Advanced Machine Learning	
Week 4 (4/24): Sampling.	Material. Review of MCMC. Hamiltonian Monte Carlo.	Firefly Monte Carlo (https://arxiv.org/pd
Hamiltonian	Relevant reading.	carlo (https://gith
Monte Carlo.	1. HMC demos. https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html	
	2. Conceptual overview of HMC. https://arxiv.org/pdf/1701.02434.pdf.	
	3. Stochastic Langevin Dynamics (Teh'11)	
	Material. Basic variational inference and examples. Stochastic variational inference.	
	Relevant reading.	
Week 5 (5/1):	1. Stochastic variational inference. http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf	Black box variation
Variational	(http://www.columbia.edu/∼jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf)	http://www.cs.colun
inference 1	2. VAE. https://arxiv.org/abs/1312.6114 (https://arxiv.org/abs/1312.6114)	(http://www.cs.colur
	3. normalizing flows. http://jmlr.org/proceedings/papers/v37/rezende15.pdf	
	(http://jmlr.org/proceedings/papers/v37/rezende15.pdf)	
1	4. Streaming variational Bayes. https://papers.nips.cc/paper/4980-streaming-variational-bayes.pdf	
	(https://papers.nips.cc/paper/4980-streaming-variational-bayes.pdf)	
M1-0 (5(0)-		Semi-supervised le
Week 6 (5/8):	Material. Stochastic variational inference. Variational auto-encoder.	http://papers.nips.c
Variational inference 2	Material. Stochastic variational inference. variational auto-encoder.	generative-models.
illierence 2		supervised-learning
Week 7 (5/15):		Learning from imba
Project proposal	Project proposal presentation in class.	http://ieeexplore.iee
presentations		(http://ieeexplore.iee
	Material. Adversarial attacks.	
Week 8 (5/22):	material. Adversarial attacks.	Domain adversaria
Robust ML 1:	Relevant reading.	networks. http://jm
adversarial	Explaining and harnessing adversarial examples. https://arxiv.org/pdf/1412.6572.pdf	(http://jmlr.org/pape
training	(https://arxiv.org/pdf/1412.6572.pdf)	
	2. https://blog.openai.com/adversarial-example-research/	
Mask O		
Week 9: Holiday no	Holiday, no class.	No paper discussio
class	Tioliday, no class.	with James.
Week 10 (6/5):	Material. Robust optimization. Covariance shift.	
	Relevant reading.	
robust	Covariate shift adaptation. http://www.jmlr.org/papers/volume8/sugiyama07a/sugiyama07a.pdf	No paper discussio
optimization, covariance	(http://www.jmlr.org/papers/volume8/sugjyama07a/sugjyama07a.pdf)	
shift.	2. Automated ML. https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf	
omi.	(https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf)	
Final Week		
(6/9): Final	Oral presentation in class.	
presentation		

Assignment guidelines.

Scribing: Each student should sign up to scribe one lecture here

(https://docs.google.com/spreadsheets/d/1FTjZs5QszCV5Fzk3QybpJfBgYXGmJhRyexMD_BgCSbc/edit#gid=0). Students scribing the same lecture should work together to produce **one** document using the latex template provided in Files. The latex files and PDF should be emailed to qjiang2@stanford.edu (mailto:qjiang2@stanford.edu) by **Thursday noon of the week of the lecture**. The document will be evaluated for clarity, comprehensiveness and accuracy (i.e. no typos).

Paper presentation: Each student should sign up to present one paper here

(https://docs.google.com/spreadsheets/d/1FTjZs5QSzCV5Fzk3QybpJfBgYXGmJhRyexMD_BgCSbc/edit#gid=0)_. Students presenting the same paper should

work together to prepare a **40** minutes whiteboard talk on the paper (at most two slides is allowed). The talk should be self-contained: give background/motivation, intuition and the key results from the paper that you think are the most interesting. Do not need to cover everything; present derivations if they convey insights. Clarity will be the main evaluation criterion. **All students are expected to read the assigned paper and participate in the discussions.**

Homework assignment: Each student should submit one PDF solution. It's ok to help each other, but each person should complete his/her own assignment.

Final project: This is the main component of the course; start early! This should be an research project that is related to the course material. You are free to select your own topic and work in teams, but please check in with the instructor. The project could be empirical (e.g. applying some of the methods we discuss to your data), theoretical (e.g. proving some algorithmic properties) or developing new methods. Please use the NIPS template provided for the final write-up.

Course Summary:

Date	Details	
Thu May 4, 2017	Problem set (https://canvas.stanford.edu/courses/66218/assignments/76582)	due by 12:05pm