https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exiden Help

Prediction theory

Assignment Project Exam Help

https://eduassistpro.github.

Outline

- Statistical model for binary outcomes
- Assimplifier and IID model

 As

 - https://eduassistpro.github.

Statistical model for binary outcomes

- Example: coin toss
- Assignation with heads probability $\theta \in [0,1]$

https://eduassistpro.gith@b.

► Goal: correctly predict outcome

Optimal prediction

- ▶ Suppose $Y \sim \text{Bernoulli}(\theta)$.
- Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat, edu_assist_pr

3 / 32

Learning to make predictions

- \blacktriangleright If θ unknown:
- Assume we have data: outcomes of previous coin tosses

 Assignational terrelation victor was to translate to the control of the

https://eduassistpro.github.

Plug-in principle and IID model

- Plug-in principle:
- Assignment in Projectim Extina Help
 - https://eduassistpro.github.
 - ► IID model: Observations & (unseen) o A dide Wee Chaty edu_assist_pr
 - Crucial modeling assumption that ma

▶ When is the IID assumption not reasonable? ...

Statistical models

- ▶ Parametric statistical model $\{P_{\theta} : \theta \in \Theta\}$

Assignment Property Let Exam Help

https://eduassistpro.github.i

for the distribution.

Maximum likelihood estimation (1)

- ightharpoonup Likelihood of parameter θ (given observed data)

Assignmented stratect Exam Help Choose θ with highest likelihood

https://eduassistpro.github.

Maximum likelihood estimation (2)

- Coin toss example

https://eduassistpro.github.

Back to plug-in principle

▶ We are given data $y_1, \ldots, y_n \in \{0, 1\}^n$, which we model using the IID model from before

As significant for θ in formula for optimal prediction:

https://eduassistpro.github.

Analysis of the plug-in prediction (1)

- ► How good is the plug-in prediction?

Assignment in the IID model, where the IID model, where Help

Y is the outcome to predict

https://eduassistpro.github.

Analysis of the plug-in prediction (2)

Theorem:

 $\begin{array}{l} \Pr(\hat{Y} \neq Y) \leq \min\{\theta, 1-\theta\} + \frac{1}{2} \cdot |\theta - 0.5| \cdot e^{-2n(\theta - 0.5)^2}. \\ \text{Assign the true is the probability that the } \hat{\theta}_{\text{MLE}} \text{ is on the opposite side of } 1/2 \text{ as } \theta. \end{array}$

https://eduassistpro.github.

Figure 1: $\Pr(S > n/2)$ for $S \sim$

n=40

Figure 2: $\Pr(S > n/2)$ for $S \sim$

Statistical model for labeled data in binary classification

- ► Example: spam filtering
- Labeled example: $(x,y) \in \mathcal{X} \times \{0,1\}$ $Assign{figure}{l} Pare (i.e. the low up (tapal)) pare property is not necessarily the space of inputs itself (e.g., space of all pare).$
 - https://eduassistpro.github.
 - ightharpoonup X has some marginal probability d

A Condition of probability edu_assist_probability edu_assist_probability

 $\eta\colon \mathcal{X} \to [0,1]$ is a function, sometim regression function or conditional mean function (since $\overline{\mathbb{E}[Y\mid X=x]=\eta(x)}$).

Error rate of a classifier

For a classifier $f: \mathcal{X} \to \{0, 1\}$, the <u>error rate</u> of f (with respect to the distribution of (X, Y)) is $Assignment \Pr_{err(f)} \Pr_{i=1}^{F} \Pr_{f}(X) \neq \Pr_{f}(X)$

https://eduassistpro.github.

where the labeled example assist_pressure of the labeled example.

▶ Caution: This notation $\operatorname{err}(f)$ does not make explicit the dependence on (the distribution of) the random example (X,Y). You will need to determine this from context.

Conditional expectations (1)

- ightharpoonup Consider any random variables A and B.
- lacktriangle Conditional expectation of A given B:

Assignment Project Exam Help

► Law of iterated expectations (a.k.a. tower property):

https://eduassistpro.github.

Conditional expectations (2)

- Example: roll a fair 6-sided die
- Assignative flour bershown facing up

 Assignative flour bershown facing up

 is random variable with

https://eduassistpro.github.

Bayes classifier

► Optimal classifier (Bayes classifier):

Assignment Project/Exam Help where η is the conditional mean function

https://eduassistpro.github.

```
Write error rate as \operatorname{err}(f^*) = \operatorname{Pr}^* / /Y}]

Conditional on X, probability of mis

Conditional on X, probability of mis

So, optimal error rate is
```

```
\begin{split} \operatorname{err}(f^{\star}) &= \mathbb{E}[\mathbf{1}_{\{f^{\star}(X) \neq Y\}}] \\ &= \mathbb{E}[\mathbb{E}[\mathbf{1}_{\{f^{\star}(X) \neq Y\}} \mid X]] \\ &= \mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}]. \end{split}
```

Example: spam filtering

- ightharpoonup Suppose input x is a single (binary) feature, "is email all-caps?"
- Assignment Project Exam Help
 What does it mean for the Bayes classifier f* to be optimal?

https://eduassistpro.github.

Learning prediction functions

- ▶ What to do if η is unknown?
- Assigned tre large to that we want x action $x_1, y_1, \ldots, (x_n, y_n)$ and $x_i = (x_i, y_i)$ for $i = 1, \ldots, n$.
 - ▶ IID model: $Z_1, ..., Z_n, Z$ are iid random variables

https://eduassistpro.glthub.

Performance of nearest neighbor classifier

- Study in context of IID model
- Assume $\eta(x) \approx \eta(x')$ whenever x and x' are close.

Assignation of the problem assumption comes in (via effort of the problem). To be the problem of Let (X,Y) be the "test" example, and suppose $(X_{\hat{i}},Y_{\hat{i}})$ is the

https://eduassistpro.github. $\eta(X) \approx \eta(X_{\hat{i}}).$

- Prediction is Y_i , true label is Y.

 Condition of X_i what is X_i was X_i when X_i was X_i
- ► Conclusion: expected error rate is
 - $\mathbb{E}[\operatorname{err}(\operatorname{NN}_S)] \approx 2 \cdot \mathbb{E}[\eta(X)(1 \eta(X))]$ for large n ▶ Recall that optimal is $\mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}]$.
 - ▶ So $\mathbb{E}[\operatorname{err}(\operatorname{NN}_S)]$ is at most twice optimal.
 - Never exactly optimal unless $\eta(x) \in \{0,1\}$ for all x.

Test error rate (1)

- ▶ How to estimate error rate?
- ► IID model:

Assignment Y Project (X_1, X_1) (X_1, Y_1) (X_1, Y_1) (X_1, Y_1) (X_1, Y_1) (X_1, Y_1) (X_1, Y_1)

https://eduassistpro.github.

- Hence, test examples are independe important
- ► waddlikWeChat edu_assist_pr
 - ightharpoonup Caution: since \hat{f} depends on traini
 - ► Convention: When we write $\operatorname{err}(\hat{f})$ where \hat{f} is random, we really mean $\operatorname{Pr}(\hat{f}(X) \neq Y \mid \hat{f})$.
 - ▶ Therefore $err(\hat{f})$ is a random variable!

Test error rate (2)

▶ Conditional distribution of $S := \sum_{i=1}^m \mathbf{1}_{\{\hat{f}(X_i') \neq Y_i'\}}$ given training data:

Assignment Project Weex: am Help

https://eduassistpro.github.

Add WeChatedu_assist_pr

is close to ε when m is large

- How accurate is the estimate? Depends on the (conditional) variance!
 - $ightharpoonup \operatorname{var}(rac{1}{m}S\mid\operatorname{training\ data})=rac{arepsilon(1-arepsilon)}{m}$
 - ▶ Standard deviation is $\sqrt{\frac{\varepsilon(1-\varepsilon)}{m}}$

Confusion tables

- ► True positive rate (recall): $Pr(f(X) = 1 \mid Y = 1)$

Assignment Project Exam Help

https://eduassistpro.github.

 $y = 1 \parallel \#$ false negatives

ROC curves

- ► Receiver operating characteristic (ROC) curve

Assignandorizatio Province sifiles xam Help

https://eduassistpro.github.

 \bullet (FPR₂, TPR₂) Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr

More than two outcomes

- \blacktriangleright What if there are K>2 possible outcomes?

Assignment of probability vector $\theta = (\theta_1, \dots, \theta_K)$

https://eduassistpro.github.

 $\hat{y} := \arg \max$ Add WeChat edu_assist_pr

Statistical model for multi-class classification

▶ Statistical model for labeled examples (X, Y), where Y takes values in [K]

Assignment Psecific distribution and armitelp vector $\eta(x) = (\eta(x)_1, \dots, \eta(x)_K)$

▶ Conditional probability function: $\eta(x)_k := \Pr(Y = k \mid X = x)$

https://eduassistpro.github.

Potential downsides of the IID model

► Example: Train OCR digit classifier using data from Alice's handwriting, but eventually use on digits written by Bob.

Assignment variety less on digits written by Bob. Assignment variety Exam Help

https://eduassistpro.github.

Match with the certificative duties wrassist_pr