Course 2

Chapter 1. Scanning

```
INPUT: source program
OUTPUT: PIF + ST
Algorithm Scanning v1
While (not(eof)) do
    detect (token);
    classify(token);
    codify(token);
End while
```

Codify

May be codification table
 OR
 code for identifiers and constants

- Identifier, constant => Symbol Table (ST)
- **PIF** = Program Internal Form = array of pairs
- pairs (token, position in ST)

identifier, constant

```
Algorithm Scanning v2
While (not(eof)) do
     detect (token);
     if token is reserved word OR operator OR separator
          then genPIF(token, 0)
                                                       a=a+b
          else
          if token is identifier OR constant
                                                        FIP
                                                       (id,1)
                then index = pos(token, ST);
                                                        (=,0)
                                                       (id,1)
                      genPIF(token, index)
                                                        (+,0)
               else message "Lexical error"
                                                       (id,2)
          endif
                                                        ST
     endif
endwhile
```

Remarks:

genPIF = adds a pair (token, position) to PIF

- Pos(token,ST) searches token in symbol table ST; if found then return position; if not found insert in ST and return position
- Order of classification (reserved word, then identifier)
- If-then-else imbricate => detect error if a token cannot be classified

Visibility domain (scope)

- Each scope separate ST
- Structure -> inclusion tree


```
Example:
Int main(){
... int a;
void f()
  {float a;
   ... int h() {...}
void g()
  {char a;
```

Formal Languages

- basic notions-

Examples of languages

- natural (ex. English, Romanian)
- programming (ex. C,C++, Java, Python)
- formal

```
A formal language is a set Ex.: L = \{a^nb^n | n>0\} L = \{ab, aabb, aaabbb, ...\} L' = \{01^n | n>=0\} L' = \{0, 01, 011, ...\}
```

Example

```
a boy has a dog
```

```
S \rightarrow PV

P \rightarrow a N

N \rightarrow boy \text{ or } N \rightarrow dog

(N \rightarrow boy | dog)

V \rightarrow QC

Q \rightarrow has

C \rightarrow BN

B \rightarrow a
```

- $A \rightarrow \alpha = rule$
- S,P,V,N,Q,C,B = nonterminal symbols
- a, boy,dog,has = terminal symbols

Remarks

- Sentence = word, sequence (contains only terminal symbols); denoted w.
- 2. S⇒PV⇒a NV⇒a NQC⇒a N has C sentential form

In general :
$$w=a_1a_2...a_n$$

3. The rule guarantees syntactical correctness, but <u>not</u> the semantical correctness (*A dog has a boy*)

Grammar

- **Definition**: A (formal) **grammar** is a 4-tuple: $G=(N,\Sigma,P,S)$ with the following meanings:
 - N set of <u>nonterminal</u> symbols and |N| < ∞
 - Σ set of <u>terminal</u> symbols (alphabet) and $|\Sigma| < \infty$
 - P finite set of <u>productions</u> (rules), with the propriety: $P\subseteq (N\cup\Sigma)^* \ N(N\cup\Sigma)^* \ x \ (N\cup\Sigma)^*$
 - S∈N <u>start symbol</u> /axiom

Remarks:

- 1. $(\alpha,\beta) \in P$ is a production denoted $\alpha \rightarrow \beta$
- 2. $N \cap \Sigma = \emptyset$

```
A* = transitive and
reflexive closure =
\{a,aa,aaa,...\} \{a^0\}
A = \{a\}
A+ = \{a,aa,aaa,...\}
X<sup>0</sup> = \epsilon
```

Binary relations defined on $(N \cup \Sigma)^*$

Direct derivation

$$\alpha \Rightarrow \beta$$
, $\alpha,\beta \in (N \cup \Sigma)^*$ *if* $\alpha = x1xy1$, $\beta = x1yy1$ *and* $x \rightarrow y \in P$ (x is transformed in y)

k derivation

$$\alpha \stackrel{k}{\Rightarrow} \beta$$
, $\alpha, \beta \in (N \cup \Sigma)^*$ sequence of k direct derivations $\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_{k-1} \Rightarrow \beta$, $\alpha, \alpha_1, \alpha_2, ... \alpha_{k-1}, \beta \in (N \cup \Sigma)^*$

• + derivation

 $\alpha \stackrel{+}{\Rightarrow} \beta$ if \exists k>0 such that $\alpha \stackrel{k}{\Rightarrow} \beta$ (there exists at least one direct derivation)

• * derivation

$$\alpha \stackrel{*}{\Rightarrow} \beta$$
 if $\exists k \ge 0$ such that $\alpha \stackrel{k}{\Rightarrow} \beta$ namely, $\alpha \stackrel{*}{\Rightarrow} \beta \Leftrightarrow \alpha \stackrel{+}{\Rightarrow} \beta$ OR $\alpha \stackrel{0}{\Rightarrow} \beta$ ($\alpha = \beta$)

Definition: Language generated by a grammar $G=(N,\Sigma,P,S)$ is:

$$L(G)=\{w\in\Sigma^*\mid S\stackrel{*}{\Rightarrow}w\}$$

Remarks:

1. $S \stackrel{*}{\Rightarrow} \alpha, \alpha \in (N \cup \Sigma)^* = \text{sentential form}$ $S \stackrel{*}{\Rightarrow} w, w \in \Sigma^* = \text{word / sequence}$ L1 = {a,b,aa} L2 = {c,d,cd} L1L2 = {ac,ad,acd,bc,bd,bcd,aac,aad,aacd}

2. Operations defined for languages (sets):

 $\begin{array}{l} \mathsf{L1} \cup \mathsf{L2} \; , \; \mathsf{L1} \cap \mathsf{L2} \; , \; \mathsf{L1} - \mathsf{L2} \; , \; \overline{L} \; (\mathsf{complement}) \; , \; \mathsf{L}^+ = \bigcup_{k > 0} L^k \; , \; \mathsf{L}^* = \bigcup_{k \geq 0} L^k \; \\ \textit{Concatenation} \colon \mathsf{L=L_1L_2} = \{ \mathsf{w_1w_2} \; | \; \mathsf{w_1} \in \mathsf{L_1} \; , \; \mathsf{w_2} \in \mathsf{L_2} \} \\ \end{array}$

3. |w|=0 (empty word - denoted ε)

Definition: Two grammar G_1 and G_2 are equivalent if they generate the same language $L(G_1)=L(G_2)$

Chomsky hierarchy(based on form $\alpha \rightarrow \beta \in P$)

- type 0 : no restriction
- type 1 : context dependent grammar $(x_1Ay_1 \rightarrow x_1\gamma y_1)$
- type 2 : context free grammar (A $\rightarrow \alpha \in P$, where A \in N and $\alpha \in$ (N $\cup \Sigma$)*
- type 3 : regular grammar (A \rightarrow aB|a \in P)

Remark:

type $3 \subseteq \text{type } 2 \subseteq \text{type } 1 \subseteq \text{type } 0$

Regular grammars

• G = (N, Σ, P, S) right linear grammar if

 $\forall p \in P: A \rightarrow aB \text{ or } A \rightarrow b, \text{ where } A,B \in N \text{ and } a,b \in \Sigma$

- $G = (N, \Sigma, P, S)$ regular grammar if
 - G is right linear grammar and

S->aA| ϵ ; A-> a reg S->aS|aA; A->bS|b reg S->aA; A->aA| ϵ NOT reg S->aA| ϵ ; A->aS NOT reg

- A $\rightarrow \varepsilon \notin P$, with the exception that S $\rightarrow \varepsilon \in P$, in which case S does not appear in the rhs (right hand side) of any other production
- $L(G) = \{w \in \Sigma^* \mid S^* => w\}$ right linear language

Notations

- A,B,C,... nonterminal symbols
- \circ S \in N start symbol
- \circ a,b,c,... $\in \Sigma$ terminal symbol
- $\circ \alpha, \beta, \gamma \in (N \cup \Sigma)^*$ sentential forms
- \circ ϵ empty word
- $\circ x, y, z, w \in \Sigma^*$ words
- X,Y,U,... ∈ $(N \cup \Sigma)$ grammar symbols (nonterminal or terminal)

Problem: The door to the tower is closed by the Red Dragon, using a complicated machinery. Prince Charming has managed to steal the plans and is asking for your help. Can you help him determining all the person names that can unlock the door