Fundamentos de aprendizaje automático Clasificadores basados en vectores soportes Segunda parte

Juan Miguel Santos
Centro de investigación y desarrollo en informática aplicada
(CIDIA)

Universidad Nacional de Hurlingham 2023

Diferencias entre procesamiento máquina de Von Newman y sistemas biológicos

- Uno o unos pocos procesadores con gran poder de procesamiento.
 Muchísimos (miles de millones) procesadores con procesamiento 'simple'.
- Escasas conexiones estables entre procesadores, mediadas por buses o por acceso a memoria compartida.
 Conexión del tipo masiva (una neurona puede estar conectada hasta con otras 10000 neuronas) que puede ser cambiantes en el tiempo.

Diferencias entre procesamiento máquina de Von Newman y sistemas biológicos

- Tiempos de conmutación y transmisión de información muy breves.
 - Los tiempos de conmutación y transmisión son parte de la dinámica del sistema.
- Memoria localizada en dispositivos de almacenamiento.
 Memoria distribuida en la estructura de la red neuronal (conjetura de Hebb como una posible explicación).
- Reducida tolerancia a fallas si una parte es dañada.
 Pueden re-estructurarse en caso de daños.
- Máquinas que se programan.
 Aprendizaje por ejemplos.

Perceptron simple. Modelo de neurona

Redes neuronales artificiales

El modelo de neurona que propusieron fue:

Perceptron simple unidad escalón

- Simplificación de la estructura de una neurona.
- Entrada (usualmente notada como ξ ó x).
- Exitación e inhibición. Pesos sinápticos (usualmente notados como w).
- Estado de exitación (usualmente notado como h).
- Estado de activación (usualmente notado como O).
- Función de activación (función escalón con imagen en $\{-1,1\}$ o $\{0,1\}$).
- Umbral (usualmente notado como u ó w_0).

Perceptron simple. Un problema para resolver

Regla de actualización perceptron simple

 Δw = η * Error * x donde el Error = salida deseada - salida real, y x es un patrón de entrenamiento

Algoritmo perceptron simple

Pseudocódigo

```
i \leftarrow 0
Inicializar w en ceros;
error \leftarrow 1
error\_min \leftarrow p * 2
while error > 0 \land i < COTA
     Elegir al azar un ejemplo x' siendo su salida deseada y'
     exitacion \leftarrow x' * w
     activacion \leftarrow signo(exitacion)
     \Delta w \leftarrow \eta * (y' - activacion) * x'
     w \leftarrow w + \Delta w:
     error = CalcularError(x, y, w, p);
     if error < error_min
          error min ← error
          w_-min \leftarrow w
     end
     i \leftarrow i + 1
end
```

Algoritmo perceptron simple

- Una época es cuando fueron expuestos al perceptrón todos los ejemplos del conjunto de entrenamiento.
- p es la cantidad de ejemplos del conjunto de entrenamiento.
- x es el conjunto de entrenamiento donde a cada ejemplo se le agrega una componente = 1 (aumenta en 1 la dimensión donde se representa el ejemplo).
- y es la salida deseada (clase).
- w es el vector de pesos 'sinápticos' que incluye el umbral (el w tiene la misma dimensión que los ejemplos - con el '1' incluído).
- signo() es la función de activación.

Algoritmo perceptron simple

• Mostrar implementación (sólo parte de perceptron) ...

Algoritmo perceptron simple para hiperplano óptimo

 Mostrar implementación (determinación de hiperplano óptimo) ...

¿Cómo encontrar el hiperplano óptimo?

- Fijarse en el puntos alrededor del hiperplano
- Buscar las combinaciones de candidatos a vectores de soporte
- Evaluar los hiperplanos obtenidos y conservar el que maximiza el margen.

```
C++ y Python
#include ( iostream)
#include \langle opencv2/core.hpp \rangle
#include \langle opencv2/imgproc.hpp \rangle
#include \langle opencv2/imgcodecs.hpp \rangle
#include \langle opencv2/highgui.hpp \rangle
#include \( \text{ opencv2/ml.hpp} \)
using namespace cv;
using namespace cv::ml;
using namespace std:
```

C++ y Python

```
• Inicialización
Ptr⟨SVMe⟩ svm = SVM::create();
svm→setType(SVM::C_SVC);
svm→setC(0.1);
svm→setKernel(SVM::LINEAR);
svm→setTermCriteria(TermCriteria(
TermCriteria::MAX_ITER, (int)1e7, 1e-6));
```

C++ y Python

donde

- SetKernel() puede recibir como argumento LINEAR=0, POLY=1, RBF=2, ...,
- setType() puede recibir como argumento C_SVC donde la C es un factor de penalidad por mal clasificación,
- setTermCriteria() puede recibir un valor de tolerancia o una cantidad de iteraciones para resolver un caso parcial de la optimización cuadrática. El valor por defecto es TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON)

C++ y Python

- Entrenamiento
 svm—train(trainData, ROW_SAMPLE, labels);
- Testeo
 Mat sv = svm→getUncompressedSupportVectors();
 float r = svm→predict(testeo); donde testeo es una
 observación de test.

MatLab, (R2016b)

SVM = svmtrain(X, Y) donde

- las filas de X son los ejemplos,
- las columnas de X son los atributos,
- Y son las clases de los ejemplos de X
- SVM es una estructura que contiene información acerca del clasificador entrenado y los vectores de

SVM = svmtrain(X, Y, 'kernel_function', tipo) donde tipo puede ser: 'linear', 'quadratic', 'polynomial', 'rbf',

```
MatLab, (R2016b)
SVM = svmtrain(X, Y, 'kernel_function', tipo,
'boxconstraint', C)
donde C puede ser un escalar positivo o un vector de valores
positivos (de las misma dimensión que las filas de X).
SVM = svmtrain(X, Y, 'kernel_function', tipo,
'boxconstraint', C, 'showplot', mostrar)
donde mostrar es verdadero (true) o falso (false). Si la
cantidad de columnas de X es distinto de 2, 'showplot' es
siempre falso.
```

MatLab, (R2016b)

grupos = **svmclassify**(SVM, test) donde

- SVM es la estructura obtenida por svmtrain(), test es una matriz de observaciones para testeo,
- grupos (que tiene la misma cantidad de filas que test) es el valor predicho por el clasificador.

grupos = **svmclassify**(SVM, test, **'SHOWPLOT'**, true) clasifica y muestra el resultado de la clasificación.