Machine Learning for Satellite Imaging

Praveen Pankajakshan, PhD

Principal Data Science Manager, Corteva Agriscience

Introductory Comments

- This presentation is for educational purposes only.
- Information provided is intended to initiate discussions
- This presentation makes considerable use of public sources of information. Every attempt is made to cite the sources.
- Any mention of a company, public-sector organization, individual, or technology is neither an endorsement nor criticism of the stated party or technology

12/22/2019

SUSTAINABLE CITIES

Performance $\propto f(G, E, M)$

What is Machine Learning?

Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, improves with experience E

-Mitchell 1997

Prerequisites for this course

- Linear Algebra
- Basic of image processing
- Python programming
- Google Account

Dataset

http://tiny.cc/91oxhz

Unsupervised Learning

- Dataset (**E**): $X = (x_1, x_2, ..., x_n)$
- Task (**T**): To find the interesting structures in the data (No lables)

K-means

- Given a set of points: X: $(x_1, x_2, ..., x_n)$
- Objective function to minimize: $\min_{\{l_c\}_{c=1}^k} \sum_{c=1}^k \sum_{x \in l_c} \|x \mu_c\|_2^2 \text{, where } \mu_c = \frac{1}{|l_c|} \sum_{x \in l_c} x$
- 1. Choose the number of clusters: *k*
- 2. Assign X to the k clusters
- 3. M: Calculate the mean of each cluster and assign cluster centers to it
- 4. E: Reassign X to the clusters based on Euclidean distances

$$l^*(i) = argmin_c \|\boldsymbol{x}_i - \boldsymbol{\mu}_c\|_2^2$$

Optimal Cluster Number

Supervised Learning

Example Object Identification

• X: Pixel values

• y: Bounding box

Feature Engineering

• Example: Normalized difference vegetation index (NDVI)

Feature Engineering

• Example: Normalized difference Water index (NDWI)

$$NDWI = \frac{B - NIR}{B + NIR}$$

Feature Engineering

• Example: Normalized Difference Drought Index (NDDI)

$$NDDI = \frac{NDVI - NDWI}{NDVI + NDWI}$$

Dimensionality Reduction

- Reducing the dimensions of the feature space is called
 - Dimensionality Reduction
 - Feature Elimination
 - Feature Extraction

Steps for PCA

• Find the sample mean

$$\mu = \frac{1}{N} \sum_{i} x_{i}$$

- Compute the Covariance $C = \frac{1}{N}XX^T = \frac{1}{N}\sum_i (x_i \mu)(x_i \mu)^T$
- Find the Eigen values and vectors for C $VC = \Lambda C$
- Arrange them and transform $Y = V^T X$

Supervised Learning

- X: input $(E) \in \Re^M \times \Re^N$
- y: Output $(T) \in \mathbb{R}^M$
- Regression: when Y is a continuous variable
- Classification: when Y is discrete

Supervised Learning

Example Image Classification

- X: Pixel values
- y: Class that the images belong to

Human-Centered AI

Explainable Model and Trust

Direct Explainability

Post-hoc

(a) Checker board pattern

(b) Output activation as a mask on the

Technology

Science

Collaboration

Thank You!

Acknowledgements

- Parmita Ghosh, Sonal Bakiwala, Chaitanyam Potnuru, Harshit Lohani, Vivek Singh Bhadouria, Nitin Kandpal
- Jochen Scheel, Siva Prasad Kumpatla, Anu Swatantran, John Van Hemert, Brent Myers, Manny Ruidiaz, Jeremiah Barr
- Data Science and Informatics members