Sort

Arnaud Malapert, Gilles Menez, Marie Pelleau

Master Informatique, Université Côte d'Azur

Sort 2021 - 2022 1 / 14

Popular sorting algorithm

- Insertion sort
- Selection sort
- Bubble sort
- Merge sort
- Quicksort

Sort 2021 - 2022 2 / 14

Popular sorting algorithm

- Insertion sort
- Selection sort
- Bubble sort
- Merge sort
- Quicksort

Sort 2021 - 2022 2 / 14

Using arrays

Sort

Using arrays

Sort

Using arrays

Sort

Using arrays

Using arrays

Using arrays

Sort

Using arrays

Sort

Using arrays

Sort

Using arrays

3

Using linked lists

Using arrays

1 3 4 5 6

Using linked lists

3 | •

Sort

Using arrays

1 3 4 5 6

Using linked lists

Using arrays

1 3 4 5 6

Using linked lists

Sort

3/14

2021 - 2022

Using arrays

1 3 4 5 6

Using linked lists

Using arrays

Using linked lists

Sort

Using arrays

1 3 4 5 6

Using linked lists

Using arrays

1 3 4 5 6

Using linked lists

Using arrays

1 3 4 5 6

Using linked lists

Merging two sorted arrays

1 3 5

2 7 9

Merging two sorted arrays

2 7 9

Merging two sorted arrays

Merging two sorted arrays

2 7 9

Merging two sorted arrays

2 7 9

Merging two sorted arrays

Merging two sorted arrays

2 7 9

Merging two sorted arrays

Merging two sorted arrays

2 **7** 9

1 2 3

Merging two sorted arrays

2 **7** 9

1 2 3 5

Merging two sorted arrays

Merging two sorted arrays

Merging two sorted arrays

2 7 **9**

1 2 3 5 7

Merging two sorted arrays

Merging two sorted arrays

Dichotomic sort

1 5 3 6 4

5 / 14

Sort 2021 - 2022

Dichotomic sort

1 5 3 6 4

Dichotomic sort

Sort

5 / 14

2021 - 2022

Dichotomic sort

2021 - 2022

5 / 14

Dichotomic sort

Sort

5 / 14

Statement

Given N integers indicating the number of students in each of Alice's classes, and N integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

Example

Input:

5

10 80 37 22 109

6 8 8 20 15

Output:

2120

Statement

Given *N* integers indicating the number of students in each of Alice's classes, and *N* integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

What problems can arise?

• What do we know of *N*?

Statement

Given *N* integers indicating the number of students in each of Alice's classes, and *N* integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

What problems can arise?

- What do we know of N?
- Of the number of students?

Statement

Given *N* integers indicating the number of students in each of Alice's classes, and *N* integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

What problems can arise?

- What do we know of N?
- Of the number of students?
- Of the price of the candies?

Statement

Given *N* integers indicating the number of students in each of Alice's classes, and *N* integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

What problems can arise?

- What do we know of N?
- Of the number of students?
- Of the price of the candies?
- How great can the solution be?

Statement

Given *N* integers indicating the number of students in each of Alice's classes, and *N* integers corresponding to the price of a type of candy. Knowing that all students in the same class will receive the same kind of candy, compute the least amount of money Alice must spend to give a candy to each of her students.

What problems can arise?

- What do we know of *N*?
- Of the number of students?
- Of the price of the candies?
- How great can the solution be?
 - → Are integers big enough for the solution?

Solution 1: Homemade

Using two lists or arrays with insertion sort

Solution 2: Integrated

Using two arrays and the sort procedure in your preferred language

```
More test cases
Input:
4
1 10 2 1
1242
5
10 80 37 22 89
6 8 8 20 15
Output:
20
```

2000

Statement

Given an array A of integers. If i < j and A[i] > A[j] then the pair (i,j) is called an inversion of A. Count the number of inversions of A

Example

Input:

23861

Output:

5

Statement

Given an array A of integers. If i < j and A[i] > A[j] then the pair (i,j) is called an inversion of A. Count the number of inversions of A

What problems can arise?

• How great can the array be?

Statement

Given an array A of integers. If i < j and A[i] > A[j] then the pair (i,j) is called an inversion of A. Count the number of inversions of A

What problems can arise?

- How great can the array be?
- How great can the values in the array be?

Statement

Given an array A of integers. If i < j and A[i] > A[j] then the pair (i,j) is called an inversion of A. Count the number of inversions of A

What problems can arise?

- How great can the array be?
- How great can the values in the array be?
- How great can the solution be?

Statement

Given an array A of integers. If i < j and A[i] > A[j] then the pair (i,j) is called an inversion of A. Count the number of inversions of A

What problems can arise?

- How great can the array be?
- How great can the values in the array be?
- How great can the solution be?
 - → Are integers big enough for the solution?

```
Solution 1: Brute Force read n on standard input read the array A on standard input result \leftarrow 0 for i from 0 to n-2 for j from i+1 to n-1 if A[i] > A[j] then result \leftarrow result + 1
```

Solution 2: Using Merge sort

Key idea: if there are no inversions, then during the merge, all the elements of the left array should be added before any element of the right array

Solution 2: Using Merge sort

2 3 8 6 1

11 / 14

Sort 2021 - 2022

Solution 2: Using Merge sort

2 3 8 6 1

Solution 2: Using Merge sort

Sort

Solution 2: Using Merge sort

Sort

2021 - 2022

11 / 14

Solution 2: Using Merge sort

11 / 14

Sort 2021 - 2022

Solution 2: Using Merge sort

Solution 2: Using Merge sort

Solution 2: Using Merge sort

Sort

Solution 2: Using Merge sort

Solution 2: Using Merge sort

Sort

Solution 2: Using Merge sort

Sort

11 / 14

Solution 2: Using Merge sort

Sort

11 / 14

2021 - 2022

Solution 2: Using Merge sort

Sort

Solution 2: Using Merge sort

Solution 2: Using Merge sort

Sort

11 / 14

```
More test cases
Input:
123456
8
51426262
Output:
11
```

Exercise 3: It's a Murder

Statement

Given an array of integers, for each number sum the previous strictly smaller number

Example

Input: Output:

1 15

5

15364

Solution: Elegant

Using Merge sort

Exercise 4: Yodaness Level

Statement

Given a statement as Yoda says it and the same statement as it should be said normally count the number of pairs of words that changed their order

```
Example
Input:
Output:

1 9
6
much to learn you still have
you still have much to learn
```

Solution: Elegant

Using Merge sort