Week 4

Juan Patricio Carrizales Torres Section 9: Some Fundamental Properties of Logical Equivalences

August 09, 2021

Problem 58. Verify the following laws stated in Theorem 18:

(A) Let P, Q and R be statements. Then

$$P \vee (Q \wedge R)$$
 and $(P \vee Q) \wedge (P \vee R)$ are logically equivalent.

Solution a. The logical equivalence $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ is one of the *Distributive Laws* of Theorem 18. Both compound statements $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent since they have the same truth values for all combinations of truth values for component statements P, Q and R. This is shown in the next truth table:

P	Q	R	$Q \wedge R$	$P \lor Q$	$P \vee R$	$P \lor (Q \land R)$	$(P \vee Q) \wedge (P \vee R)$
Т	Т	Т	Т	Т	Τ	T	T
\mathbf{T}	F	$\mid T \mid$	F	Т	Τ	T	Τ
\mathbf{F}	Т	Γ	Т	Т	${ m T}$	T	T
\mathbf{F}	F	$\mid T \mid$	F	F	${ m T}$	F	F
\mathbf{T}	Т	F	F	Т	Τ	Т	Т
\mathbf{T}	F	F	F	Т	${ m T}$	T	T
\mathbf{F}	Т	F	F	Т	\mathbf{F}	F	F
\mathbf{F}	F	F	F	F	\mathbf{F}	F	F

(B) Let P and Q be statements. Then

$$\sim (P \lor Q)$$
 and $(\sim P) \land (\sim Q)$ are logically equivalent.

Solution b. The logical equivalence $\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$ is one of *De Morgan's Laws* of Theorem 18. Since the compound statements $\sim (P \vee Q)$ and $(\sim P) \wedge (\sim Q)$ have the same truth values for all combinations of truth values for the component statements P and Q, these two compound statements are logically equivalent. This can be seen in the truth table below:

P	Q	$\sim P$	$\sim Q$	$P \vee Q$	$\sim (P \vee Q)$	$(\sim P) \land (\sim Q)$
Т	Τ	F	F	Τ	F	F
Τ	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}
F	T	${ m T}$	\mathbf{F}	${ m T}$	${ m F}$	${ m F}$
\mathbf{F}	F	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$

Problem 59. Write negations of the following open sentences:

(A) Either x = 0 or y = 0.

Solution a. Consider the following open sentences:

$$P(x): x = 0 \text{ and } Q(y): y = 0$$

The open sentence (A) is a disjunction of P(x) and Q(x), $P(x) \vee Q(y)$: either x=0 or y=0. Using $De\ Morgan's\ Laws$ of Theorem 18, we get the following logical equivalence $\sim (P(x) \vee Q(y)) \equiv (\sim P(x)) \wedge (\sim Q(y))$. Therefore, the negation of the open sentence (A) is:

$$(\sim P(x)) \wedge (\sim Q(y))$$
: Both $x \neq 0$ and $y \neq 0$

(B) The integers a and b are both even.

Solution b. Consider the following open sentences:

P(a): the integer a is even. and Q(b): the integer b is even.

The conjunction $P(a) \wedge Q(b)$: The integers a and b are both even. represents the open sentence (B). With the help of De Morgan's Laws from Theorem 18, we get the following logical equivalence $\sim (P(a) \wedge Q(b)) \equiv (\sim P(a)) \vee (\sim Q(b))$. Thus, the negation of the open sentence (B) is:

 $(\sim P(a)) \lor (\sim Q(b))$: Either the integer a is odd or the integer b is odd.

Problem 60. Consider the implication: If x and y are even, then xy is even. Before answering the excercises, let's consider the following open sentences:

$$P(x): x$$
 is even., $Q(y): y$ is even. and $R(x,y): xy$ is even.

The following open sentence represents the implication of problem 60:

$$(P(x) \wedge Q(y)) \Rightarrow R(x,y)$$
: If x and y are even, then xy is even.

(A) State the implication using "only if."

Solution a. $(P(x) \land Q(y)) \Rightarrow R(x,y)$: Both x and y are even only if xy is even

(B) State the converse of the implication.

Solution b. $R(x,y) \Rightarrow (P(x) \land Q(y))$: If xy is even, then x and y are even.

(C) State the implication as a disjunction (see Theorem 17).

Solution c. Using Theorem 17 and *De Morgan's Laws*, the implication of problem 60 can be stated as a disjunction by the following string of logical equivalences:

$$(P(x) \land Q(y)) \Rightarrow R(x,y) \equiv \sim (P(x) \land Q(y)) \lor R(x,y)$$

$$\equiv ((\sim P(x)) \lor (\sim Q(y))) \lor R(x,y)$$

The implication of problem 60 as a disjunction states the following:

$$((\sim P(x)) \lor (\sim Q(y))) \lor R(x,y)$$
: Either x or y is odd, or xy is even.

(D) State the negation of the implication as a conjunction (see Theorem 21(a))

Solution d. Using Theorem 21(a), the negation of the implication of problem 60 can be stated as a conjunction:

$$\sim ((P(x) \land Q(y)) \Rightarrow R(x,y)) \equiv (P(x) \land Q(y)) \land (\sim R(x,y))$$

This conjunction declares the following:

$$(P(x) \land Q(y)) \land (\sim R(x,y))$$
: Both x and y are even, and xy is odd.

Problem 61. For a real number x, let P(x) : $x^2 = 2$. and Q(x) : $x = \sqrt{2}$. State the negation of the biconditional $P \Leftrightarrow Q$ in words (see Theorem 21(b)).

Solution. From Theorem 21(b) we can use the following logical equivalence $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$. The biconditional $\sim (P(x) \Leftrightarrow Q(x))$ is logically equivalent to the following:

$$(P(x) \land (\sim Q(x))) \lor (Q(x) \land (\sim P(x)))$$
: Either $x^2 = 2$ and $x \neq \sqrt{2}$, or $x = \sqrt{2}$ and $x^2 \neq 2$

Problem 62. Let P and Q be statements. Show that $(P \vee Q) \wedge (\sim (P \wedge Q)) \equiv \sim (P \Leftrightarrow Q)$.

Solution. In order to show the logical equivalence $(P \lor Q) \land (\sim (P \land Q)) \equiv \sim (P \Leftrightarrow Q)$, we will be using the laws of Theorem 18, Theorem 21(b) and the following logical equivalences [1]:

1. Identity Laws

a
$$P \wedge T \equiv P$$

b
$$P \vee F \equiv P$$

2. Negation Laws

a
$$P \wedge (\sim P) \equiv F$$

b
$$P \vee (\sim P) \equiv T$$

Due to the commutative properties of the conjunctions and disjunctions, the *Identity Laws* and *Negation Laws* are commutative (e.g., $P \wedge T \equiv T \wedge P \equiv P$). Now we show the logical

equivalence:

$$(P \lor Q) \land (\sim (P \land Q)) \equiv (P \lor Q) \land ((\sim P) \lor (\sim Q))$$

Distributive Laws

$$\equiv ((P \lor Q) \land (\sim P)) \lor ((P \lor Q) \land (\sim Q))$$

Commutative Laws

$$\equiv ((\sim P) \land (P \lor Q)) \lor ((\sim Q) \land (P \lor Q))$$

Distributive Laws

$$\equiv (((\sim P) \land P) \lor ((\sim P) \land Q)) \lor (((\sim Q) \land P) \lor ((\sim Q) \land Q))$$

Negation Laws

$$\equiv (F \vee ((\sim P) \wedge Q)) \vee (((\sim Q) \wedge P) \vee F)$$

Identity Laws

$$\equiv ((\sim P) \land Q) \lor ((\sim Q) \land P)$$

Commutative Laws

$$\equiv ((\sim Q) \land P) \lor ((\sim P) \land Q)$$
$$\equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$$

Theorem 21(b)

$$\equiv \sim (P \Leftrightarrow Q)$$

Problem 63. Let $n \in \mathbb{Z}$. For which implication is its negation the following? The integer 3n + 4 is odd and 5n - 6 is even.

Solution. We consider the logical equivalence $\sim (P \Rightarrow Q) \equiv P \land (\sim Q)$ from Theorem 21(a) and we derive the following open sentences from the negation stated in problem 63.

$$P(n): 3n+4$$
 is odd. and $Q(n): 5n-6$ is odd.

Therefore, P(n) and Q(n) are the hypothesis and conclusion of the implication in question, respectively.

$$P(n) \Rightarrow Q(n)$$
: If $3n + 4$ is odd, then $5n - 6$ is odd.

It's important to note that if we consider the commutative laws of disjunction in the logical equivalence from Theorem 21(a) (e.g., $P \land (\sim Q) \equiv (\sim Q) \land P \equiv \sim (P \Rightarrow Q)$) we could get 2 possible answers for this problem (including the one we have shown).

Problem 64. For which biconditional is its negation the following? n^3 and 7n + 2 are odd or n^3 and 7n + 2 are even.

Solution. We consider the logical equivalence $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$ from Theorem 21(b) and we derive the following open sentences from the negation stated in problem 64.

$$P(n): n^3$$
 is odd. and $Q(n): 7n + 2$ is even.

Therefore, the biconditional in question is the following:

$$P(n) \Leftrightarrow Q(n) : n^3$$
 is odd if and only if $7n + 2$ is even.

Due to the commutative properties of conjunctions and disjunctions, we could get 2 different combinations of open sentences P(n) and Q(n) by changing the order of the conjunctions in the disjunction of the logical equivalence from Theorem 21(b) (e.g., $(P \land (\sim Q)) \lor (Q \land (\sim P)) \equiv (Q \land (\sim P)) \lor (P \land (\sim Q))$). For each of the 2 different ways to order the conjunctions we can get another combination of open sentences P(n) and Q(n) by changing the order of the elements of the first conjunction (e.g., $(Q \land (\sim P)) \lor (P \land (\sim Q)) \equiv ((\sim P) \land Q) \lor (P \land (\sim Q))$). Therefore, 2+2=4 combinations of open sentences for the biconditional can be derived. However, due to the commutative nature of the biconditional (e.g., $P \Leftrightarrow Q \equiv Q \Leftrightarrow P$), every two possible combinations of open sentences P(n) and Q(n) will yield the same biconditional. Thus, only 2 possible different answers can be derived for the biconditional.

References

[1] GeeksforGeeks, Mathematics Propositional Equivalences, Apr 02, 2019. Retrieved Aug 04, 2021.