Experiment 7

Aim: Write Verilog codes to create T flip flop, SR flip flop, D flip flop and verify it using a testbench.

Theory:

T Flip-Flop (Toggle Flip-Flop):

The T flip-flop is also known as a toggle flip-flop because it toggles its output (Q) based on the input (T). Here's the truth table for a T flip-flop:

	Prev	rious	Next			
Т	Q	Q'	Q	Q'		
0	0	1	0	1		
0	1	0	1	0		
1	0	1	1	0		
1	1	0	0	1		

SR Flip-Flop (Set-Reset Flip-Flop):

The SR flip-flop has two inputs, S (Set) and R (Reset). It can be used to set (S=1) or reset (R=1) the flip-flop. Here's the truth table:

Truth Table of SR Flip Flop

D Flip-Flop (Data Flip-Flop):

The D flip-flop has a single data input (D) and a clock input (CLK). It stores the value of the D input on the rising edge of the clock signal. Here's the truth table:

Clock	D	Q	Q'	Description
↓ » 0	X	Q	Q'	Memory
				no change
1 × 1	0	0	1	Reset Q » 0
1 × 1	1	1	0	Set Q » 1

Code:

Behavioural Verilog code for T flip flop:

```
module TFF(
  input CLK,
  input T,
  input reset,
  output Q,
  output Q_bar
);
  reg Q, Q_next;
  always @(posedge CLK or posedge reset) begin
    if (reset) begin
       Q \le 1'b0;
    end else begin
       Q \le T ? \sim Q : Q;
    end
  end
  assign Q bar = \simQ;
endmodule
```

Testbench for T flip flop:

```
module testbench_TFF;
reg CLK;
reg T;
reg reset;
wire Q;
wire Q_bar;
// Instantiate the T flip-flop
TFF UUT (
  .CLK(CLK),
  .T(T),
  .reset(reset),
  .Q(Q),
  .Q_bar(Q_bar)
);
initial begin
  // Initialize inputs
```

```
CLK = 0;
  T = 0;
  reset = 0;
  // Apply a reset pulse
  reset = 1;
  #10 \text{ reset} = 0;
  // Test cases
  #5 T = 1; // Toggling input, Q should change
  #5 T = 0; // T is 0, Q should remain the same
  #5 T = 1; // Toggling input again, Q should change
  // Test cases
  #5 T = 1; // Toggling input, Q should change
  #5 T = 0;
  #5 T = 1;
  $finish;
end
always begin
  #5 CLK = ~CLK; // Toggle the clock every 5 time units
end
endmodule
```

RTL Schematic:

Function Verification:

Post synthesis schematic:

Post power report:

Post synthesis timing summary:

Post utilization/ area summary:

Post implementation schematic:

Post implementation power report:

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.042 W **Design Power Budget: Not Specified** Process: typical **Power Budget Margin:** N/A Junction Temperature: 28.8°C 56.2°C (29.6 W) Thermal Margin: 25.0 °C Ambient Temperature: Effective &JA: 1.9°C/W Power supplied to off-chip devices: 0 W

Post implementation timing summary:

Post implementation utilization/ area summary:

Code:

Behavioural Verilog code for SR flip flop:

```
module sr flip flop (
  input CLK,
  input S,
  input R,
  output Q,
  output Q bar
);
reg Q, Q bar;
always @(posedge CLK) begin
  if (R && S) begin
     // Invalid condition, both set and reset are active
     Q \le 1'b0;
     Q bar \leq 1'b1;
  end else if (R) begin
     // Reset is active
     Q \le 1'b0;
     Q bar \leq 1'b1;
  end else if (S) begin
     // Set is active
     Q \le 1'b1;
     Q bar \leq 1'b0;
  end else begin
     // No action
```

```
Q <= Q;
Q_bar <= Q_bar;
end
end
endmodule
```

Testbench for SR flip flop:

```
module testbench;
reg CLK;
reg S;
reg R;
wire Q;
wire Q_bar;
sr_flip_flop uut (
  .CLK(CLK),
  .S(S),
  .R(R),
  .Q(Q),
  .Q_bar(Q_bar)
);
initial begin
  CLK = 0;
  S = 0;
  R = 0;
  #5 R = 1;
  #5 S = 1;
  #5 R = 0;
  #5 S = 0;
  #5 R = 1;
  #5 S = 1;
  #5 R = 0;
  #5 S = 0;
  #5 $finish;
end
always begin
  #2 CLK = \simCLK;
end
```

endmodule

RTL Schematic:

Function Verification:

Post synthesis schematic:

Post power report:

Summary

Post synthesis timing summary:

Post utilization/ area summary

Post implementation schematic:

Post implementation power report:

Post implementation timing summary:

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
3 Path 1	00	2	1	1	Q_15_reg/C	Q_15	3.997	2.703	1.295	00	
→ Path 2	00	2	1	1	Q_bar_15_reg/C	Q_bar_15	3.991	2.720	1.272	00	
→ Path 3	00	1	1	3	S_15	Q_15_reg/D	1.669	0.787	0.881	00	input port clock
3 Path 4	co	1	1	2	R_15	Q_15_reg/R	1.570	0.814	0.756	co	input port clock
→ Path 5	00	1	1	2	R_15	Q_bar_15_reg/S	1.570	0.814	0.756	00	input port clock
→ Path 6	00	1	1	3	S_15	Q_15_reg/CE	1.522	0.787	0.734	00	input port clock
→ Path 7	00	1	1	3	S_15	Q_bar_15_reg/CE	1.522	0.787	0.734	00	input port clock

Post implementation utilization/ area summary:

Code:

Behavioural Verilog code for D flip flop:

```
module d_flip_flop (
    input CLK,
    input D,
    input en,
    output Q,
    output Q_bar
);

reg Q, Q_bar;

always @(posedge CLK) begin
```

```
if (en) begin
    Q <= D;
    Q_bar <= ~D;
end
end
endmodule</pre>
```

Testbench for D flip flop:

```
module testbench;
reg CLK;
reg D;
reg en;
wire Q;
wire Q bar;
d flip flop uut (
  .CLK(CLK),
  .D(D),
  .en(en),
  .Q(Q),
  .Q_bar(Q_bar)
);
initial begin
  CLK = 0;
  D = 0;
  en = 0;
  #5 en = 1;
  #5 D = 1;
  #5 D = 0;
  #5 D = 1;
  #5 en = 0;
  #5 $finish;
end
always begin
  #2 CLK = \simCLK;
end
```

endmodule

RTL Schematic:

Function Verification:

Post synthesis schematic:

Post power report:

Post synthesis timing summary:

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
3 Path 1	00	2	2	1	Q_15_reg/C	Q_15	3.419	2.836	0.584	00	
→ Path 2	co	2	2	1	Q_bar_15_reg/C	Q_bar_15	3.419	2.836	0.584	00	
→ Path 3	co	2	3	2	D_15	Q_bar_15_reg/D	1.466	0.883	0.584	00	input port clock
→ Path 4	co	1	2	2	en_15	Q_15_reg/CE	1.413	0.830	0.584	00	input port clock
→ Path 5	00	1	2	2	D_15	Q_15_reg/D	1.413	0.830	0.584	00	input port clock
→ Path 6	co	1	2	2	en_15	Q_bar_15_reg/CE	1.413	0.830	0.584	00	input port clock

Post utilization/ area summary:

Post implementation schematic:

Post implementation power report:

Summary

Post implementation timing summary:

Post implementation utilization/ area summary:

Conclusion:

• In this experiment, we written Verilog code for a circuit of T flip flop, SR flip flop, D flip flop verified its output and Schematic using its test bench and we got desired output.