Graph Theory and Network Models in Landscape Genetics

What is a graph?

Object (points, **nodes**, vertices)

Melanie Murphy
Associate Professor, University of Wyoming

1

3

5

2

4

What is a graph?

Links indicate functional connectivity (Urban et al 2009) Implicit and explicit relationship to metapopulations

What is a graph?

Relationship (lines, edges, arcs)

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

Site Data

6

Inherently Network in Structure

Configuration High quality Low qua habitat habitat Low quality

Functional Connectivity Hypotheses

14

13

Network "Assumptions"

- Nodes easily defined/delineated
- Measuring (gene) flow
- · Connections reasonable estimate of this process

15

- Reduce problem to relevant edges
- · Identify connections with highest gene flow

Network Optimization

- Can avoid overlapping connections
- Avoid long edges

Network Topology - What is connected?

(Murphy et al. 2010; Murphy & Evans 2011)

16

Rule-based networks

17 18

Sensitivity Analysis of Spatial Genetic Networks (DGS 2010)

(Naujokaitis-Lewis et al. 2013; Conservation Genetics)

20

Results for Graph Function: Sensitivity of Landscape Variables

True value

Landscape Genetics of Wetland Grasshopper 0.6 ♦HABITAT 0.5 □WATER △ROADS 0.3 *FOREST 0.2 ×SETTLEMENTS ONONE Gabriel graph All pairs 0-3 km 0-3 km Gabriel (Keller et al. 2013, Molecular Ecology)

22

Hypothesized or model based

21

Hypothesis Based Network

23 24

Model-Based Networks: Population Graphs

(Dyer and Nason 2004; Dyer 2015)

Model-Based Networks: Population Graphs

- Prune edges not adding to structure
- Nodes scaled to genetic variation
- Edges scaled to genetic distance
- Relatively assumption free

Sonoran Desert Cactus

(Lophocereus schottii)

(Dyer and Nason 2004; Dyer 2015)

26

Population Graphs

(Dyer and Nason 2004; Dyer 2015)

28

27

29

25

Valley Oak (Sork et al. 2010)

Cross-species graph comparison

A B B C D D (Fortuna et al. 2009; PNAS)

Graph Metrics

31 32

33

36

Graph Metrics

39 40

Degree Number of nodes linked to a node

(Chapter 10, Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

Betweenness Number of times node is the shortest path

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

45

Betweenness

46

Mean Betweenness

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

48

53 54

Trade-offs

Quantity

		Large	Small
Quality	High	Singly constrained	Doubly constrained
	Low	unconstrained	

(Fotheringham & O'Kelly 1988)

60

"Calibration" of Gravity Equation

 $T_{ij} = k v_i^{\mu} w_{ij}^{\alpha} c_{ij}^{-\beta}$

Unconstrained

 $InT_{ii} = Ink + In(\mu v_i) + In(\alpha w_{ii}) - In(\beta c_{ii})$

Linear regression – OLS MLE

(Fotheringham & O'Kelly 1988)

61

"Calibration" of Gravity Equation

 $T_{ij} = k v_i^{\mu} w_{ij}^{\alpha} c_{ij}^{-\beta}$

Doubly Constrained

 $InT_{jj} + InT_{ji} - InT_{jj} - InT_{ij} = \beta(Inc_{ji} + Inc_{ji} - Inc_{ji} - Inc_{jj})$ MLE

(Fotheringham & O'Kelly 1988)

63

65

Processes Effecting Landscape Connectivity Distance (Arens et al 2007) Fish (Brilled and Peterson 2001) Site Productivity Ridgelines (Funk et al 2005) Temperature/Moisture (Bartelt and Peterson 2005) Cover (Bartelt and Peterson 2005)

"Calibration" of Gravity Equation

 $T_{ij} = k v_i^{\mu} w_{ij}^{\alpha} c_{ij}^{-\beta}$

Singly Constrained

 $InT_{ij} = Ink_i + (In(\mu v_i) + In(\alpha w_{ij}) - In(\beta c_{ij}))$

Mixed Effects Models MI F

(Fotheringham & O'Kelly 1988)

62

64

Validation

Significance test (1000 randomization); Sensitivity to missing sites (Jackknife)

66

Local and landscape factors influence functional connectivity in an amphibian metapopulation

Stream Distance Primary productivity (SAVI) eDNA

1-D_{PS} Model K ΔAIC_C AIC_C Weight ΔΒΙС BIC Weight 0.43 Streamdist 0.00 0.00 0.42 Predation 2.45 0.13 2.45 0.12 IBD 3.47 0.08 1.45 0.20 2 3.39 3.39 0.08 Hydroperiod 0.08 Stepping stone 2 3.81 0.06 3.81 0.06 Landscape 4.59 4.59 0.04 0.04 moisture Vegetation 5.18 0.03 7.20 Global 11 5.25 0.03 23.48 0.00 Connectedness 5.26 5.26 0.03 Abundance 5.41 0.03 5.41 0.03 null Water 9.65 0.00 Topography 6.90 0.01 8.93 0.00 0.00 Productivity 9.42

80

82

Snatial	Autoregressive	
Spatial	/ lutor cgr coorvc	IVIOGCI

- Probabilistic distribution
- No a priori weights or edge location
- Estimate resistance component parameters
- Spatially correlated residuals permitted
- Can account for missing values
- Prediction

81

Data format	Resistance covariates	A priori assumptions	Assumption- based outcomes	Resistance aggregation	Model
Contiguous	Node-based Size, habitat quality, vegetation cover, distance between centroids	First-order neighborhood structure Rook, queen, percentage of boundary shared	Resistance Covariates		Model-based Estimates for
Non- contiguous	Node- or/and Edge-based Habitat quality,	Edge location Euclidean distance, buffered Euclidean distance	Resistance Covariates	None	individual resistance covariates
	vegetation cover, distance between node boundaries or centroids	Resistance values Expert opinion, literature review, empirical data, animal movement rates	Edge location Least-cost path, buffered least- cost path, multiple-least- cost path, Circuit-scape	Sum, difference, weighted product, mean, geometric mean, median of resistance values	Model-based Estimate for overall resistance values

(Peterson et al. 2019, Ecological Monographs)

Q=	b) Prec (D _W -ρ	eision m W),				c) (Covari Σ =		natrix	
	\mathbf{V}_{1}	${\rm V_2}$	V_j	V_4			V_1	${\rm V_2}$	V_3	V_4
V_1	8.0	-0.9	-2.7	-3.6	V ₁	0	.55	0.49	0.46	0.47
$Q_{CAR} = V_2$	-0.9	1.0	0	0	Σ = V ₂	0	.49	1.44	0.42	0.42
V ₃	-2.7	0	5.0	-1.8	$\Sigma_{CAR} = \frac{V_2}{V_3}$	0	.46	0.42	0.62	0.46
V_4	-3.6	0	-1.8	6.0	V,	0	.47	0.42	0.46	0.59
(I) F		orrelatio				e) (Correla	tuon n	iaurix	
$\mathbf{k}_{i,j} .=\mathbf{c}$						Cor	$r_{Lj} = \sum_{i,j} x_{Lj}$	$/\sqrt{\Sigma_{i,i}}$		
$\mathbf{k}_{i,j} _{\cdot} = cc$						Con	$rr_{i,j} = \sum_{i,j} V_i$	$\sqrt{\Sigma_{i,i}}$ V_2		V ₄
$\mathbf{k}_{i,j} .=cc$ V_1	$\operatorname{err}(arepsilon_{i .},arepsilon_{j}$	_{/ .}) = -($Q_{i,j}/\sqrt{Q}$	$i,i\mathbf{Q}_{f,f}$		Con			$\overline{\Sigma_{j,j}}$	V ₄
V ₁	$\operatorname{vr}(arepsilon_{i \parallel}, arepsilon_{j})$	V ₂	$Q_{i,j}/\sqrt{Q}$ V_3	V_4			V ₁	V ₂	$\Sigma_{j,j}$ V_3	_
V_1	ν ₁	V_2 0.32	V_3 0.43	V ₄ 0.52	Corroun	V ₁	V ₁	V ₂	Σ _{j,j} V ₃ 0.80	0.83

85 86

Recommendations

- Clearly ID research questions
- Choose an adequate study design
- Sensitivity test (missing nodes, band width)

(Murphy et al 2015; Landscape Genetics: Concepts, Methods, Applications)

Lab – Columbia Spotted Frog

- Part 1 Conceptual overview of graph metrics.
- Part 2 Gravity model analysis

87

• Part 3 – Gravity models and model selection with your own models

Graphs in Landscape Genetics

- Pairwise geneflow data inherently graph-like in structure
- Inferences from graph structure
- Topological comparison (hypothesis testing)
- Modeling flow through a network

88

Intermediate — direction, flow

Extreme Case

Objects — location, size, shape, composition

Relationships — location, size, shape, width, length

Are Graphs Spatial?

Classic Graph Theory – abstract

(Dileo et al. 2014; Molecular Ecology)

92

Aspatial

Spatial

94

93

Graph Structure: Sampling and Network Indices

o Sampling strategy significant, small effect size

Graph Structure: Sampling and Network Indices

o Sampling strategy significant, small effect size ☐ Gabriel ... Gabriel ...

Presence = A low high Absence = A (Kiesecker)

