Amendment to the Claims:

Listing of the Claims

The listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1 and 2 (Cancelled)

Claim 3 (Currently Amended): A rapid dissolving reinforcing filler composition for organic systems comprising an effective amount of surface-modified, aerosol doped-pyrogenically produced oxides wherein the dopants are selected from cerium, aluminum, potassium or salts or oxides thereof, wherein the pyrogenically produced oxides are selected from the group consisting of SiO₂, Al₂O₃, TiO₂, B₂O₃, ZrO₂, In₂O₃, ZnO, Fe₂O₃, Nb₂O₅, V₂O₅, WO₃, SnO₂ and GeO₂, and wherein the surface modification is a hydrophobic surface obtained by spraying the pyrogenic oxides, where the BET surface is between 40 and 217 m²/g and the dopant is homogeneously distributed within the pyrogenically produced oxide, with one or several compounds selected from the following groups:

- a) Organosilanes having either formula $(RO)_3Si(C_nH_{2n+1})$ or $(RO)_3Si(C_nH_{2n-1})$, wherein R = alkyl, and n = 1 20;
- b) Organosilanes having either formula R'_x (RO)_ySi(C_nH_{2n+1}) or (RO)₃Si(C_nH_{2n+1}), wherein

$$R = alkyl,$$

$$R' = alkyl,$$

R' = cycloalkyl

$$n = 1 - 20$$
,

$$x+y = 3$$
,

$$x = 1$$
 or 2, and

$$y = 1 \text{ or } 2;$$

c) Halogen organosilanes having either formula X_3 Si(C_nH_{2n+1}) or X_3 Si(C_nH_{2n-1}),

$$X = Cl$$
 or Br , and

$$n = 1 - 20;$$

d) Halogen organosilanes having either formula X_2 (R') $Si(C_nH_{2n+1})$ or

$$X_{2}\left(R'\right)Si(C_{n}H_{2n-1})$$
 , wherein

$$X = Cl \text{ or } Br$$

$$n = 1 - 20;$$

e) Halogen organosilanes having formula X (R')₂ Si(C_nH_{2n+1}) or

$$X(R')_2 Si(C_nH_{2n-1})$$
, wherein

$$X = Cl \text{ or } Br;$$

```
R' = alkyl or cycloalkyl, and
         n = 1 - 20;
         f) Organosilanes having the formula (RO)<sub>3</sub>Si(CH<sub>2</sub>)<sub>m</sub>-R'
         R = alkyl,
         m = 0 or 1-20, and
         R' = methyl-, aryl-, -C_6H_5, substituted phenyl groups,
                   -C<sub>4</sub>F<sub>9</sub>, OCF<sub>2</sub>-CHF-CF<sub>3</sub>, -C<sub>6</sub>F<sub>13</sub>, -O-CF<sub>2</sub>-CHF<sub>2</sub>,
         -NH<sub>2</sub>, =N<sub>3</sub>, -SCN, -CH=CH<sub>2</sub>, -NH- CH<sub>2</sub>-CH<sub>2</sub>-NH<sub>2</sub>,
                   -N-(CH_2-CH_2-CH_2NH_2)_2,
         -OOC(CH_3)C = CH_2,
                   -OCH_2-CH(O) CH_2,
         -NH-CO-N-CO-(CH_2)_5,
                   -NH-COO-CH_3, -NH-COO-CH_2-CH_3, -NH-(CH_2)_3Si(OR)_3,
                   -SH or
         -NR'R''R''', wherein R' = alkyl, or aryl; R'' = H, alkyl, aryl; and R''' = H, alkyl, aryl,
benzyl, or C_2H_4N(R^{"})_2, wherein R^{"}=H, or alkyl;
         g) Organosilanes having the formula (R'')<sub>x</sub> (RO)<sub>y</sub> Si(CH<sub>2</sub>)<sub>m</sub>-R', wherein
         R"
                   = alkyl or cycloalkyl,
```

x+y = 2,

x = 1 or 2,

$$y = 1 \text{ or } 2,$$

 $m = 0 \text{ or } 1 \text{ to } 20, \text{ and }$

R' = methyl-, aryl, $-C_6H_5$, substituted phenyl groups,

$$-N-(CH_2-CH_2-NH_2)_2$$
,

-OOC
$$(CH_3)C = CH_2$$
,

$$C_2H_4N(R^{"})_2$$
, wherein $R^{"}=H$, or alkyl;

h) Halogen organosilanes having the formula $X_3Si\ (CH_2)_m$ -R', wherein

$$X = Cl \text{ or } Br,$$

$$m = 0 \text{ or } 1 - 20$$
,

R' = methyl-, aryl, $-C_6H_5$, substituted phenyl groups

$$-C_4F_9$$
, $-OCF_2$ -CHF-CF₃, $-C_6F_{13}$, $-O$ -CF₂-CHF₂,

$$-N-(CH_2-CH_2-NH_2)_2$$
,

```
-OOC (CH<sub>3</sub>)C = CH<sub>2</sub>,
-OCH<sub>2</sub>-CH(O) CH<sub>2</sub>,
-NH-CO-N-CO-(CH<sub>2</sub>)<sub>5</sub>,
-NH-COO-CH<sub>3</sub>, -NH-COO-CH<sub>2</sub>-CH<sub>3</sub>, -NH-(CH<sub>2</sub>)<sub>3</sub>Si(OR)<sub>3</sub>, or
-SH;
```

i) Halogen organosilanes having the formula (R)X₂Si(CH₂)_m-R', wherein

(j) Halogen organosilanes having the formula (R)₂X Si(CH₂)_m-R', wherein

-SH;

X = Cl or Br,

R = alkyl,

m = 0 or 1 - 20, and

R' = methyl-, aryl-, $-C_6H_5$, substituted phenyl groups,

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂,

-NH₂, -N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NH_2)_2$,

-OOC (CH_3) $C = CH_2$,

-OCH₂-CH(O) CH₂,

-NH-CO-N-CO- $(CH_2)_5$,

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-(CH₂)₃Si(OR)₃ or

-SH;

(k) Silazanes having the formula

$$R'R_2Si-N-SiR_2R'$$
 H

wherein R = alkyl, and

R' = alkyl or vinyl; or

(l) Cyclic polysiloxanes D 3, D 4 or D 5,

where 1) D3 has the formula:

2) D4 has the formula:

$$CH_3$$
 CH_3 CH_3
 H_3C O CH_3
 CH_3 CH_3
 CH_3 CH_3

and 3) D5 has the formula:

m) Polysiloxanes or silicone oils having any one of the formula

,
$$Si(CH_3)_2OH$$
, $Si(CH_3)_2$ (OCH₃) or

$$Si(CH_3)_2$$
 (C_nH_{2n+1}), wherein n=1-20,

wherein,

$$R = alkyl, aryl, (CH2)n-NH2 or H,$$

$$R' = alkyl, aryl, (CH2)n-NH2 or H,$$

R''= alkyl, aryl,
$$(CH_2)_n$$
-NH₂ or H,
R'''= alkyl, aryl, $(CH_2)_n$ -NH₂ or H.

Claim 4 (Currently amended): A method of producing aerosol doped, surface-modified pyrogenically produced oxides, comprising placing aerosol doped-pyrogenically produced oxides, where the BET surface is between 40 and 217 m²/g and the dopant is homogeneously distributed within the pyrogenically produced oxide, in a suitable mixing container, spraying the oxides with water and/or acid and then spraying the oxides under intensive mixing with the surface-modification reagent or a mixture of several surface-modification reagents under conditions where oxygen is excluded, to form the aerosol doped, surface-modified, pyrogenically produced oxides, wherein the dopants are selected from cerium, aluminum, potassium, or salts or oxides thereof, wherein the oxides are selected from the group consisting of SiO₂, Al₂O₃, TiO₂, B₂O₃, ZrO₂, In₂O₃, ZnO, Fe₂O₃, Nb₂O₅, V₂O₅, WO₃, SnO₂ and GeO₂, wherein the surface-modification reagent or a mixture of several surface-modification reagents are selected from the following groups:

- a) Organosilanes having either formula $(RO)_3Si(C_nH_{2n+1})$ or $(RO)_3Si(C_nH_{2n-1})$, wherein R = alkyl, and n = 1 20;
- b) Organosilanes having either formula R'_x (RO)_ySi(C_nH_{2n+1}) or (RO)₃Si(C_nH_{2n+1}), wherein

$$R = alkyl,$$

$$R' = alkyl,$$

$$R' = cycloalkyl$$

$$n = 1 - 20$$
,

$$x+y = 3$$
,

$$x = 1$$
 or 2, and

$$y = 1 \text{ or } 2;$$

c) Halogen organosilanes having either formula X_3 Si(C_nH_{2n+1}) or X_3 Si(C_nH_{2n-1}), wherein

$$X = Cl$$
 or Br , and

$$n = 1 - 20;$$

d) Halogen organosilanes having either formula X_2 (R') $Si(C_nH_{2n+1})$ or

$$X_2$$
 (R') $Si(C_nH_{2n-1})$, wherein

$$X = Cl \text{ or } Br$$

$$n = 1 - 20;$$

e) Halogen organosilanes having formula X (R')₂ Si(C_nH_{2n+1}) or

$$X(R')_2 Si(C_nH_{2n-1})$$
, wherein

$$X = Cl \text{ or } Br;$$

```
R' = alkyl or cycloalkyl, and
n = 1 - 20;
f) Organosilanes having the formula (RO)<sub>3</sub>Si(CH<sub>2</sub>)<sub>m</sub>-R'
R = alkyl,
m = 0 or 1-20, and
R' = methyl-, aryl-, -C_6H_5, substituted phenyl groups,
         -C<sub>4</sub>F<sub>9</sub>, OCF<sub>2</sub>-CHF-CF<sub>3</sub>, -C<sub>6</sub>F<sub>13</sub>, -O-CF<sub>2</sub>-CHF<sub>2</sub>,
-NH_2, =N_3, -SCN, -CH=CH_2, -NH- CH_2-CH_2-NH_2,
         -N-(CH_2-CH_2-CH_2NH_2)_2,
-OOC(CH_3)C = CH_2,
         -OCH_2-CH(O) CH_2,
-NH-CO-N-CO-(CH_2)_5,
         -NH-COO-CH<sub>3</sub>, -NH-COO-CH<sub>2</sub>-CH<sub>3</sub>, -NH-(CH<sub>2</sub>)<sub>3</sub>Si(OR)<sub>3</sub>,
         -SH or
-NR'R''R''', wherein R' = alkyl, or aryl; R'' = H, alkyl, aryl; and R''' = H, alkyl, aryl,
benzyl, or C_2H_4N(R'''')_2, wherein R'''' = H, or alkyl;
g) Organosilanes having the formula (R'')_x (RO)_y Si(CH_2)_m-R', wherein
R"
         = alkyl or cycloalkyl,
x+y = 2,
x = 1 \text{ or } 2,
```

$$\begin{split} y &= 1 \text{ or } 2, \\ m &= 0 \text{ or } 1 \text{ to } 20, \text{ and} \\ R' &= \text{methyl-, aryl, -C}_6H_5, \text{ substituted phenyl groups,} \\ &- C_4F_9, - \text{OCF}_2\text{-CHF-CF}_3, - \text{C}_6F_{13}, - \text{O-CF}_2\text{-CHF}_2, \\ &- \text{NH}_2, -\text{N}_3, \text{SCN, -CH= CH}_2, -\text{NH-CH}_2\text{-CH}_2\text{-NH}_2, \\ &- \text{N-(CH}_2\text{-CH}_2\text{-NH}_2)_2, \\ &- \text{OOC (CH}_3\text{)C = CH}_2, \\ &- \text{OCH}_2\text{-CH(O) CH}_2, \\ &- \text{NH-CO-N-CO-(CH}_2)_5, \\ &- \text{NH-COO-CH}_3, -\text{NH-COO-CH}_2\text{-CH}_3, -\text{NH-(CH}_2)_3\text{Si(OR)}_3, \\ &- \text{SH or} \end{split}$$

h) Halogen organosilanes having the formula X₃Si (CH₂)_m-R', wherein

-NR'R''R''', wherein R' = alkyl or aryl; R'' = H,

alkyl, or aryl; and R'" = H, alkyl, aryl, benzyl, or

 $C_2H_4N(R'''')_2$, wherein R'''' = H, or alkyl;

$$X = Cl \text{ or } Br,$$

$$m = 0 \text{ or } 1 - 20,$$

R' = methyl-, aryl, -C₆H₅, substituted phenyl groups
$$-C_4F_9, -OCF_2-CHF-CF_3, -C_6F_{13}, -O-CF_2-CHF_2,$$

$$-NH_2, -N_3, SCN, -CH=CH_2, -NH-CH_2-CH_2-NH_2,$$

$$-N-(CH_2-CH_2-NH_2)_2,$$

```
-OOC (CH<sub>3</sub>)C = CH<sub>2</sub>,
-OCH<sub>2</sub>-CH(O) CH<sub>2</sub>,
-NH-CO-N-CO-(CH<sub>2</sub>)<sub>5</sub>,
-NH-COO-CH<sub>3</sub>, -NH-COO-CH<sub>2</sub>-CH<sub>3</sub>, -NH-(CH<sub>2</sub>)<sub>3</sub>Si(OR)<sub>3</sub>, or
-SH;
```

i) Halogen organosilanes having the formula (R)X₂Si(CH₂)_m-R', wherein

-SH;

(j) Halogen organosilanes having the formula (R)₂X Si(CH₂)_m-R', wherein

X = Cl or Br,

R = alkyl,

m = 0 or 1 - 20, and

R' = methyl-, aryl-, $-C_6H_5$, substituted phenyl groups,

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂,

-NH₂, -N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NH_2)_2$,

-OOC (CH_3) $C = CH_2$,

 $-OCH_2-CH(O)$ CH_2 ,

-NH-CO-N-CO-(CH₂)₅,

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-(CH₂)₃Si(OR)₃ or

-SH;

(k) Silazanes having the formula

R'R2Si-N-SiR2R'

Η

wherein R = alkyl, and

R' = alkyl or vinyl; or

(l) Cyclic polysiloxanes D 3, D 4 or D 5,

where 1) D3 has the formula:

2) D4 has the formula:

$$CH_3$$
 CH_3 CH_3
 H_3C O CH_3
 CH_3 CH_3
 CH_3

m) Polysiloxanes or silicone oils having any one of the formula

,
$$Si(CH_3)_2OH$$
, $Si(CH_3)_2$ (OCH₃) or $Si(CH_3)_2$ (C_nH_{2n+1}), wherein n=1-20,

wherein,

$$R = alkyl, aryl, (CH_2)_n-NH_2 \text{ or } H,$$
 $R' = alkyl, aryl, (CH_2)_n-NH_2 \text{ or } H,$
 $R'' = alkyl, aryl, (CH_2)_n-NH_2 \text{ or } H,$
 $R''' = alkyl, aryl, (CH_2)_n-NH_2 \text{ or } H.$

Claims 5 and 6 (Cancelled).

Claim 7 (Currently amended) The method of claim 4 further comprising re-mixing the surface modification agent(s) and the aerosol doped, surface-modified, pyrogenically produced oxides for 15 to 30 minutes and tempering at a temperature of 100 to 400 °C for a period of 1 to 6 hours.

Claim 8 (Previously presented) The surface-modified, pyrogenically produced oxides according to claim 3 wherein the cyclic polysiloxanes is D 4.

Claims 9 -12 (Cancelled)

Claim 13 (New) The surface-modified, pyrogenically produced oxides according to claim 3 wherein the dopant is aluminum oxide and the pyrogenically produce oxide is silica.

Claim 14 (New) The method according to claim 4 wherein the dopant is aluminum oxide and the pyrogenically produce oxide is silica.