Nonlinear Control Theory Lecture 14. Feedback Stabilization II.

Leiture 14. Television station
· Passivity approach · Passivity approach · Arstein - Sontag's theorem . The existence of almost smooth and that globally asymptotically stabilizes the system. * Back stepping . Sn = fig)+gin) 3 m pretend" 3 is the control input of the n-system design asymptotic stabilizing control and the corresponding Lyapunov function.
Clidine mode control:
Recall in the first leature, we discussed the solution definition of ODE. $ \hat{x} = f(x) $ $ \frac{1}{x} = f$
Some systems can not be stabilized using C^2 feedback controller. Ex! Recall in Lecture 12, by Brockett necessary condition, we know for unicycle: $\dot{x} = v\cos\theta$ there does not exist C^2 feedback controller that asymptotically $\dot{y} = v\sin\theta$ stabilizes it.
- legical conduction just does not exist.
For some systems, classical starts. Expected the brick on a frictional ramp.
V=0 in finite-time and maintains V=0. But this means $V=0$ \Rightarrow sin $\theta=0$ \Rightarrow $\theta=0$. Contradiction. V=0 \Rightarrow there is no classical solutions to this system.
We need extensions of sulution concepts!

Det (Absolute continuous functions) The function $Y: [a,b] \mapsto \mathbb{R}$ is absolute continuous if, $\forall \Sigma > 0$, $\exists S > 0$, such that, for each finite collection $\{(a_1,b_1), \cdots, (a_n,b_n)\}$ of disjoint open intervals contained in [a, b] with $\sum_{i=1}^{n} (b_i - a_i) < S$, it holds $\sum_{i=1}^{n} |Y(b_i) - Y(a_i)| < \varepsilon$ continuous differentiable => Lipschitz continuous => Absolute continuous Caratheodory solution Longhly speaking, are absolutely continuous curves that sutisfy $\chi(t) = \chi(t_0) + \int_{t_0}^{t} f(\chi(\tau))d\tau, t>t_0$ Lebesgue integral. It relax the requirement that the solution must follow the vector field out all times, namely, the differential equation x=f(x) need not to be satisfied on a set of measure zero. Fillipor solutions Zelax $\dot{x} = f(x)$ into a differential inclusion $\dot{x} \in F(x)$, where $f: \mathbb{R}^n \mapsto \underline{\mathcal{B}}(\mathbb{R}^n)$ collection of all subsets of Rn. is a set-valued map. It maps a point to a set, Det (Fillipou set-valued map) Let $\mathcal{B}(\mathbb{R}^n)$ denote the collection of subsets in \mathbb{R}^n . For $f:\mathbb{R}^n\mapsto\mathbb{R}^n$, the Fillipov set-valued map $F[f]: \mathbb{R}^n \mapsto \mathcal{B}(\mathbb{R}^n)$ is defined by:

 $F[f](\pi) := \bigcap_{S>0} \bigcap_{MSD=0} \bigcup_{S} f(B_S(X) \setminus S) \}$, $\pi \in \mathbb{R}^n$.

Lebesque measure con vex closore/convex hull "longth", "area", "volume"

$$|Ex| = f(-s_{2}^{2}n)(x) = \begin{cases} -1, & x > 0 \\ [-1, 1], & x = 0 \end{cases}$$

$$|f(x)| = \begin{cases} -1, & x < 0 \end{cases}$$

$$|f(x)| = \begin{cases} -1, & x < 0 \end{cases}$$

$$|f(x)| = \begin{cases} -1, & x < 0 \end{cases}$$

$$|f(x)| = \begin{cases} -1, & x < 0 \end{cases}$$

Thm (Existence of Fillipov Solution) If f: R" > R" is measurable and locally essentially bounded, $f'(E) \in \mathcal{B}(\mathbb{R}^n).$ $\exists c \text{ s.t. } M(\{x \in \mathbb{Z}; |f(\mathbb{Z})| > c\}) = 0.$ then for all XoER", there exists a Fillipor solution with initial condition X(0)=X0 Thus (Uniqueness of Fillipor Solution) Let fix) be measurable and locally essentially bounded. Assume YXER", I 1x and 8 >0, such that for almost every 1, 72 + BE(T), (3,-32) (x,-x2) = 1x 11x1-7211 holds for all 3, E FIF](X,) and 32 E FIF](X2) Then, $\forall x_0 \in \mathbb{R}^n$, $\dot{\chi} = f(x)$, $\chi(0) = \chi_0$ has a unique Fillipov solution with the initial condition $\chi(t) = \chi_0$. Sliding mode control. , where h and g are unknown linear functions. EX Consider x1 = 72 $\dot{x}_1 = h(x) + f(x)u$ f(x) ≥ fo > 0, yx. Idea: design a control law that constrains the system motion on the manifol $S = \alpha_1 \gamma_1 + \gamma_2 = 0$. On the manifold, the motion reads $x_1 = -a_1x_1$. Hence if we choose $a_1 > 0$, This would guarantee $X_1(t) \rightarrow 0 \Rightarrow X_2(t) = -a_1 X_1(t) \rightarrow 0$ as $t \rightarrow \infty$. Q: How can we bring the trajectory to the manifold s and remains in there? $\dot{s} = a_1 \dot{\chi}_1 + \dot{\chi}_2 = a_1 \dot{\chi}_2 + h(x) + f(x) \cdot u$ Suppose the unknown h and g function satisfies $\left|\frac{a_1\pi_0 + h(x)}{g(x)}\right| \leq f(x)$, $\forall x \in \mathbb{R}^2$ then choose $V = \frac{1}{2}S^2$ and $\dot{V} = S \cdot \dot{S} = S \cdot (a_1 \pi_2 + h(x) + g(x) \cdot u) = S[a_1 \pi_2 + h(x)] + S \cdot g(x) \cdot u$ ≤ 1s1, 1a, x2 + h(x) + s g(x) U ≤ 1s1. g(x) P(x) + s g(x) U Candry-Swartz Taking $u = -\beta(x)$ sqn(s) (This control will only be used for S\$0, otherwise we will have to analyze using Fillipov's frame work) and let $\beta(x) > \beta(x) + \beta_0$, $\beta_0 > 0$.

This yields: $v \leq g(x) s p(x) + g(x) s \cdot u = g(x) s p(x) + g(x) \cdot s [-\beta(x) s gn(s)]$
$\sim 200 \text{ (c) } ($
$= -g(x) S \cdot \beta_0 = -g_0 \cdot \beta_0 \cdot S $ (3(x) > g_0 > 0)
Dennite W= JoV > nt
≤ -3080 $\sqrt{\frac{D}{h \rightarrow 01}} \frac{h}{h}$
By comparison Lemma, W(SH) = W(SIO)) - go fot. [N) row ria properly specking the above inequality implies. W= TEISI
Not very rigorously speaking, the above inequality implies,
Not very rigorously speaking, the above inequality implies, with the speaking the above inequality implies, with the state of the trajectory reaches the manifold S=0 in finite time. 1. the trajectory reaches the manifold S=0, it cannot beave it. (V≤-9-Sols) 2. Dave the trajectory reaches the manifold S=0, it cannot beave it. (V≤-9-Sols)
Hence, the entire motion consists:
readile the manifold S=0 in finite Time.
2. Shiding on the manifold, whose dynamics is governed of 1= -a, 1, S=0" is called = shiding manifold"
Ory against a and ed Chief of Williams
Note! The above argument is not entirely rigorous. It is only used for the sold use similar of the idea be hind soliding mode control. In the following, we will still use similar presentation to illustrate the ideas. If one want to be rigorous, one should use Lyapuna stability theorems as nell as Lasalle's invariance principle for Fillipur framework variation will not cover this in this lecture.
Chattering problems Chattering problems Due to imperfect switching devices and delays, chattering is a problem that sliding mode control suffers. Mode control suffers. When wields O low control accuracy
Due to imperfect switching devices and orders,
mode control suffers. Mode control suffers. So 'Zig-Zag" motion. yields @ low control accuracy high heat loss would wear out
Zig-Zas more. On high heat loss
the endwance of the physical system
Ex) sliding made control for inverted pendulum. Xi = Xz
$x_2 = -(\frac{70}{k})^3$
$u = -k \operatorname{sgn}(\underline{a_1 X_1 + X_2})$
sliding manifold.

Goal: Stabilizes the inverted pendulum at $S_1 = \pi/r$, and $x_1 = 0 - S_1$, $x_2 = 0$ Suppose we know it holds for the physical system that) $0.05 \le m \le 0.2$, $0.9 \le l \le 1.1$, $0 \le k_0 \le 0.05$ If we choose $a_i = 1$, and consider the solution in the area $|X_i| \le T$, $|S| = |X_i + X_k| \le T$ $\left| \frac{x_2 - 8 \% \sin(x_1 + S_1) - k \% x_2}{\sqrt{m \ell^2}} \right| = 1 \ell^2 (m - k_3) x_2 - m g_0 \ell \cos x_1$ $\leq \ell^2 |m-k_0| |\chi_2| + mg_0 \ell |\cos \chi_1| \leq \ell^2 |m-k_0| \cdot (271) + mg_0 \ell \leq 3.68$ this is the P(x) in the previous example. TS 2 TH 1, K | ≥ | XX | = | XX | - | 5X | € Therefore, if ne choise K=4>3.68, we should be able to stabilizes the system using the sliding made abutral. But we will still be facing the problem of chattering." To mitigate the chattering, we divide the control into two parts: continuous & snitching components and reduce the amplitude of "switching" Design the control as $u = -\frac{a_1 x_2 + h(x)}{3(x)} + V$ The sliding manifold would hold that $\dot{S} = a_1 x_1 + \dot{x}_2 = a_1 x_2 + h(x) + f(x) \left[-\frac{a_1 x_2 + \hat{h}(x)}{\hat{g}(x)} \right]$ $= a_1 x_1 + \dot{x}_2 = a_1 x_2 + h(x) + f(x) \left[-\frac{a_1 x_2 + \hat{h}(x)}{\hat{g}(x)} \right]$ $= a_1 \left[1 - \frac{g(x)}{\hat{g}(x)} \right] \pi_2 + h(x) - \frac{g(x)}{\hat{g}(x)} h(x) + g(x) V$ S = a(X,+X) = a, x2+ h(x)+ g(x). U and we were looking at the bound $\left| \frac{a_1 x_1 + h(x)}{f(x)} \right| \leq f(x)$ Looking at the bound $\left|\frac{S(x)}{g(x)}\right| \leq g(x)$ and design the "true" control as the old way. Since it is foreseenable that |S(x)| is small, (it is seen as error), the upper bound f2(x) is much smaller than the old upper bound f,(x). Note that if we design the 'true' controller $V = -\beta(x') sgn(s)$ the old way, $\beta(x)$ is chosen such that $\beta(x) \geq \beta(x) + \beta_0$ This means that B(x) closs not have to be that large since P(x) is smaller compared to P. (x). This actually suppresses the amplitude of switching.

Ex In the previous pendulum example, if we choose the norminal parameters as: m=0.125, 2=1, ko=0.075. then $\frac{|S(x)|}{|S(x)|} = \left| \left\{ a_1 \left[1 - \frac{\hat{m} \hat{k}^2}{m \ell^2} \right] x_2 - \frac{g_0}{2} \left(\cos x_1 - \frac{k_0}{m} x_2 + \frac{\hat{m} \hat{k}^2}{m \ell^2} \right) \right\} \cdot m \ell^2 \right|$ = $|(a_1 ml^2 - a_1 ml^2) \chi_2 - g_0 ml \cos \chi_1 - kol^2 \chi_2 + g_0 ml \cos \chi_1 + kol^2 \chi_2|$ = $|(a, ml^2 - a, ml^2 - kol^2 + kol^2) \chi_2 - go(ml - ml) \cos \chi_1|$ We choose a = | and consider the things that happen within $|X_1| \leq T$, $|S| = |X_1 + X_2| \leq T$ and 0.05 \leq m \leq 0.2, 0.9 \leq l \leq 1.1, 0 \leq k $_{0}$ \leq 0.05, we can estimate that $\left|\frac{S(x)}{g(x)}\right| \leq$ 1.83. Hence we can choose $\beta(x) = 2 \ge 1.83$. The overall control $u = \frac{x_2 + \hat{h}(x)}{\hat{g}(x)} + V = -0.1 x_2 + 1.7263 \cos \pi_1 - 28gn(S)$ If you simulate this, the oscillation magnitude in u due to this is smaller than the old control -4 sqn(s) chattering would be much smoller than the old control, Odea: Replace Sqn(.) by sat(.). $\frac{-\xi}{|x|} = \int_{-\infty}^{\infty} x, \quad \text{if } |x| \leq 1$ $Sat(x) = \int_{-\infty}^{\infty} x, \quad \text{if } |x| > 1$ But the slope is very steep.

Take $u = -\beta(x) sgn(S) \implies u = -\beta(x) sat(\frac{S}{\Sigma})$, · Continuous " soliding mode control. $V = \frac{1}{2}s^2 \Rightarrow \dot{V} = s \cdot \dot{s} = s(a_1x_1 + h(x) + g(x)u)$ Since $u = -\beta(x)$ sat $(\frac{s}{2}) = -\beta(x)$. $sgn(\frac{s}{2}) = -\beta(x)$ sgn(s) for $|s| \ge \varepsilon$ Therefore, the old analysis using V(x) = \frac{1}{2}s^2 still holds, "reaching" phase. namely, $\dot{V} \leq -g_0 \, \beta_0 |s| \, holds \, for \, |s| \geq 2.$ This means that if the trajectory starts at a point such that |S(0)|=|a,x,(0)+x,(0)| > E, 1SH) would still goes down since i≤-fopo. € <0 until it hits the set |S| ≤ € in finite time, and remains in there S=a,X,+Xz Within $|S| \leq \epsilon$, we have $\dot{x}_1 = \dot{x}_2 = -a_1 x_1 + S$. Let $V_1 = \frac{1}{2} X_1^2 \Rightarrow V_1 = X_1 \cdot X_1 = X_1 (-a_1 X_1 + S) = -a_1 X_1^2 + S \cdot X_1 \leq -a_1 X_1^2 + |S| |X_1|$ $\leq -a_1 x_1^2 + 2|x_1| \leq -(1-\theta_1)a_1 x_1^2$, $\forall |x_1| \geq \frac{\epsilon}{a_1 \theta_1}$, $0 < \theta_1 < 1$ $\Rightarrow V_1 \leq -(1-0_1)a_1 \frac{\xi^2}{a_1^2 0_1^2} = -\frac{1-0_1}{a_1 0_1^2} \xi^2$ This means that the trajectory would reach the set $\Omega_{\epsilon} = \{|x| | \frac{\epsilon}{\alpha_1 \theta_1}, |s| < \epsilon \}$ The idea is not stabilize the origin, but let the trajectory to be bounded in a small set. (the bound could be reduced by reducing E).

But the price to pay" to reduce ε is that $\operatorname{sat}(\frac{\varsigma}{\varepsilon})$ would be more and more like squ() function, and cause the chattering problem again. So it's a trade-off between control accuracy and chattering. Trajectory tracking for nonholonomic system. Consider the unicycle that is pronholonomic. $\hat{x} = v\cos\theta$ $\hat{y} = v\sin\theta$ $\hat{y} = v\sin\theta$ $\hat{y} = v\sin\theta$ $\hat{y} = v\sin\theta$ The reference trajectory to trouk is given by yd(t) = p(t)gdet) = get) , ostET. Suppose p(t)+q(t)²+0, ∀ t∈[0,T] (this means the reference trajectory stays still at some time t'). In order to track it, we need $\forall d = V_{cl} \cos \theta d$ $\Rightarrow V_{d} = \sqrt{p(t)^{2} + \hat{q}(t)^{2}}, \ \theta d = \cot 2(p(t), \hat{q}(t)).$ $\dot{q}_{d} = V_{dl} \sin \theta d \Rightarrow V_{dl} = \sqrt{p(t)^{2} + \hat{q}(t)^{2}}, \ \theta d = \cot 2(p(t), \hat{q}(t)).$ This is an open-loop control. We want a closed-loop control. Find a reference point (XL, YL) which is in front of the unicycle's orientation with a distance of L, namely, $\begin{bmatrix} \chi_{L} = \chi + L\cos\theta & \Rightarrow & \chi_{L} = V\cos\theta - L\sin\theta \cdot W & \Rightarrow \begin{bmatrix} \chi_{L} \\ \chi_{L} \end{bmatrix} = \begin{bmatrix} \cos\theta & -L\sin\theta \end{bmatrix} \begin{bmatrix} V \\ W \end{bmatrix}$ $\begin{cases} \chi_{L} = \chi + L\sin\theta & \Rightarrow \\ \chi_{L} = V\sin\theta + L\cos\theta \cdot W & \Rightarrow \begin{bmatrix} \chi_{L} \\ \sin\theta & L\cos\theta \end{bmatrix} \begin{bmatrix} V \\ W \end{bmatrix}$ is always invertible, $\Rightarrow \begin{bmatrix} V \\ w \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\frac{1}{2} \sin \theta & \frac{1}{2} \cos \theta \end{bmatrix} \begin{bmatrix} \chi_L \\ \dot{y}_L \end{bmatrix}$ If we choose he and ye as $\dot{x}_{L} = -k(x_{L} - x_{d}) + x_{d}$ $\dot{y}_{L} = -k(x_{L} - x_{d}) + x_{d}$ $\dot{y}_{L} = -k(x_{L} - x_{d}) + x_{d}$ $\dot{y}_{L} - y_{d} = -k(y_{L} - y_{d})$ $\dot{y}_{L} - \dot{y}_{d} = -k(y_{L} - y_{d})$ Je = - k(1/2-1/d) + gd $\Rightarrow \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -t \sin \theta & t \cos \theta \end{bmatrix} \begin{bmatrix} -k(x_L - x_d) + x_d \\ -k(y_L - y_d) + y_d \end{bmatrix}$ > V = coso[-k(X_-Xd)+Xd]+ sin O[-k(Y_2-yd)+yd] = coso[-k(x+Lcoso-xd)+vdcosol/tsino[-k(y+Lsino-yd)+vdsinod) $=-k\left[\cos O\left(x+L\cos O-\chi d\right)+\sin O\left(y+L\sin O-y d\right)\right]+Vd\cos \left(Od-O\right)$

$$= -k \left[L \cos \theta + L \sin^2 \theta + \cos \theta (x - 7d) + \sin \theta (y - yd) \right] + Vod \cos(\theta d - \theta)$$

$$= -k \left(L + \cos \theta \cdot \rho \cdot \cos \phi + \sin \theta \cdot \rho \sin \phi \right) + Vod \cos(\theta d - \theta)$$

$$= -k \left(L - \rho \cos \Delta \phi \right) + Vod \cos(\theta d - \theta)$$

$$= -k \left(L - \rho \cos \Delta \phi \right) + Vod \cos(\theta d - \theta)$$

$$= -\frac{1}{L} \sin \theta \left[-k \left(X_L - X_d \right) + \dot{X}_d \right] + \frac{1}{L} \cos \theta \left[-k \left(Y_L - Y_d \right) + \dot{Y}_d \right]$$

$$= -\frac{1}{L} \sin \theta \left[-k \left(X_L + L \cos \theta - X_d \right) + Vod \cos \theta \right] + \frac{1}{L} \cos \theta \left[-k \left(Y_L + L \sin \theta - Y_d \right) + Vod \sin \theta d \right]$$

$$= -\frac{1}{L} \sin \theta \left[-k \left(X_L + L \cos \theta - X_d \right) \right] + \frac{1}{L} \cos \theta \left[-k \left(Y_L + L \sin \theta - Y_d \right) \right] + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) - \frac{k}{L} \cos \theta \left(Y_L - Y_d \right) + \frac{Vod \sin \theta}{L} \cos \theta + \frac{k Y_d}{L} \cos \theta + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) - \frac{k}{L} \cos \theta \left(Y_L - Y_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) - \frac{k}{L} \cos \theta \left(Y_L - Y_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) - \frac{k}{L} \cos \theta \left(Y_L - Y_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(\theta d - \theta \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_L - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_d - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_d - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_d - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta}{L} \sin \left(X_d - X_d \right)$$

$$= \frac{k}{L} \sin \theta \cdot \left(X_L - X_d \right) + \frac{Vod \sin \theta$$