

## DataSweeper Technology Inc (DTI)

DTI added Providence Bank, located in the Bahamas, to its client portfolio.

The bank wants to minimize the risks involved in its credit card client portfolio.

DTI's first mandate is to develop a machine learning model that can predict whether a credit card applicant will be approved or denied and identify the applicant attributes that have a major impact on the decision.

The decision of approving a credit card is mainly dependent on the personal and financial background of the applicant. Factors like, age, gender, income, employment status, credit history and other attributes all carry weight in the approval decision.



## Question (it refers to the team wants to answer with the data)

1. Based on the dataset, what are the standard requirements for an individual to be approved for a credit card?

- 2. Can the model minimize the following risks:
  - Loss from not approving the good applicant
  - Loss resulting from approving a non-credit worthy candidate



## Project Plan

DTI assigned a team of four Data Scientists to this project with Lucas C. as the lead.

#### The project plan is as follows:

- 1. Pre-Analysis of the data to decide which technologies to use
- 2. Pre-processing of two datasets provided by Providence Bank
- 3. Analysis of the demographics of the datasets
- 4. Run different Machine Learning models on the dataset
- 5. Decide which Machine Learning model is best suited for the bank
- 6. Present findings and recommendations to the bank



## Dataset

The dataset used for the analysis is from kaggle and can be accessed at **Credit Card Approval Prediction** 

The Dataset contains two files:

Demographics & application data - "application\_record.csv"

This data has been provided by the applicants at the time of the credit card application. It contains demographic information including gender, car & real estate ownership, income level, education, occupation, marital status, contact information.

Credit Bureau data - "credit\_record.csv"

Data obtained from the credit bureau showing payment experience and the date of the last data extraction.

## Technology Stack

#### **Project: Credit Card Approval Prediction**

**Technology Stack** 

Dataset: downloaded from



https://www.kaggle.com/rikdifos/credit-card-approval-prediction/code

**Exploratory Data Analysis** 









Database, Data Wrangling & Feature Engineering







Machine Learning Pipeline



Dashboard Presentation









DataSweeper\_Project

# **Data Exploration**



## DATASET DEMOGRAPHICS Gender Distribution & Realty Ownership

These charts show the gender distribution and realty ownership status of all applicants in the datasets being used for the models.





## DATASET DEMOGRAPHICS Applicants Income Type & Occupation

Applicants income type and occupation are displayed in the following charts





## DATASET DEMOGRAPHICS Applicants Salary Range

The datasets provided have a high number of applicants skewed towards high salaries.



## MACHINE LEARNING



**Data Processing** 

Clean the data Joins → pgAdmin Merge → Pandas



**Features** 

Random Oversampling SVM Decision Tree Random Forest



**Training & Testing Sets** 

Y value → X value →



**Model Choice** 

?



**Accuracy Scores** 

Training  $\rightarrow$  Testing  $\rightarrow$ 

# Data

# Analysis

## GOOD APPLICANTS DEMOGRAPHICS Gender Distribution & Realty Ownership

An analysis of the "good applicants" show that the distribution follows the same demographics as the whole population. This is depicted in the following charts.





## GOOD APPLICANTS DEMOGRAPHICS Income Type & Occupation





## DATABASE



## **Machine Learning Models**



Extract & Transform:
Jupyter Notebook, Python, Pandas

## Machine Learning Models

The DTI team cleaned the data and processed it in different Machine Learning models to determine which model best fits the requirements of the bank.

#### Each model is evaluated based on:

- Confusion Matrix performance measurement showing 4 quadrants
  - True Negative: prediction indicates "Bad" applicant and applicant is actually "Bad"
  - 2. False Positive (referred to as a Type 1 Error): prediction indicates "Good" applicant and applicant is actually "Bad"
  - 3. False Negative (referred to as a Type 2 Error): prediction indicates "Bad" and actual applicant is actually "Good"
  - 4. True Positive: prediction indicates "Good" applicant and applicant is actually "Good"
- Classification Reports -
  - Precision for all the applicants classified as "Good" or "Bad" how many are actually "Good" or "Bad" respectively
  - Recall from the "Good", what percentage were predicted correctly
  - Accuracy from the applicants classifications, what percentage were predicted correctly
  - F1-Score a combination of precision and recall. A high F1 score is an indication that the predictions have low quantities
    of false "Good" and false "Bad"

The following charts is an illustration of the above metrics for each model.

# RANDOM OVERSAMPLING Logistic Regression

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7868    | 0.5400 | 0.6405   | 7079    |
| 1            | 0.2350    | 0.4912 | 0.3179   | 2036    |
| accuracy     | 0.5291    | 0.5291 | 0.5291   | 0       |
| macro avg    | 0.5109    | 0.5156 | 0.4792   | 9115    |
| weighted avg | 0.6635    | 0.5291 | 0.5684   | 9115    |

#### Random Oversampling Logistic Regression Confusion Matrix



# RANDOM OVERSAMPLING Decision Tree

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.8756    | 0.7514 | 0.8087   | 7079    |
| 1            | 0.4211    | 0.6287 | 0.5043   | 2036    |
| accuracy     | 0.7240    | 0.7240 | 0.7240   | 0       |
| macro avg    | 0.6483    | 0.6900 | 0.6565   | 9115    |
| weighted avg | 0.7740    | 0.7240 | 0.7407   | 9115    |

#### Random Oversampling Decision Tree Confusion Matrix



## RANDOM OVERSAMPLING Random Forest

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.8742    | 0.7591 | 0.8126   | 7079    |
| 1            | 0.4255    | 0.6203 | 0.5048   | 2036    |
| accuracy     | 0.7281    | 0.7281 | 0.7281   | 0       |
| macro avg    | 0.6499    | 0.6897 | 0.6587   | 9115    |
| weighted avg | 0.7740    | 0.7281 | 0.7439   | 9115    |





## RANDOM OVERSAMPLING Random Forest - Feature Importance



# RANDOM OVERSAMPLING Gradient Boosted Tree

Actual

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.8742    | 0.7591 | 0.8126   | 7079    |
| 1            | 0.4255    | 0.6203 | 0.5048   | 2036    |
| accuracy     | 0.7281    | 0.7281 | 0.7281   | 0       |
| macro avg    | 0.6499    | 0.6897 | 0.6587   | 9115    |
| weighted avg | 0.7740    | 0.7281 | 0.7439   | 9115    |

#### Random Oversampling Gradient Boosted Tree Confusion Matrix



## SMOTE OVERSAMPLING Logistic Regression

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7843    | 0.5179 | 0.6238   | 7079    |
| 1            | 0.2315    | 0.5049 | 0.3174   | 2036    |
| accuracy     | 0.5150    | 0.5150 | 0.5150   | 0       |
| macro avg    | 0.5079    | 0.5114 | 0.4706   | 9115    |
| weighted avg | 0.6608    | 0.5150 | 0.5554   | 9115    |

#### SMOTE Oversampling Logistic Regression Confusion Matrix



# SMOTE OVERSAMPLING Decision Tree

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.8547    | 0.8375 | 0.8460   | 7079    |
| 1            | 0.4720    | 0.5049 | 0.4879   | 2036    |
| accuracy     | 0.7632    | 0.7632 | 0.7632   | 0       |
| macro avg    | 0.6633    | 0.6712 | 0.6670   | 9115    |
| weighted avg | 0.7692    | 0.7632 | 0.7660   | 9115    |



## SMOTE OVERSAMPLING Random Forest

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.8591    | 0.8448 | 0.8519   | 7079    |
| 1            | 0.4898    | 0.5182 | 0.5036   | 2036    |
| accuracy     | 0.7718    | 0.7718 | 0.7718   | 0       |
| macro avg    | 0.6744    | 0.6815 | 0.6777   | 9115    |
| weighted avg | 0.7766    | 0.7718 | 0.7741   | 9115    |

#### SMOTE Oversampling Random Forest Confusion Matrix



# SMOTE OVERSAMPLING Gradient Boosted Tree

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7924    | 0.6286 | 0.7011   | 7079    |
| 1            | 0.2486    | 0.4273 | 0.3144   | 2036    |
| accuracy     | 0.5837    | 0.5837 | 0.5837   | 0       |
| macro avg    | 0.5205    | 0.5280 | 0.5077   | 9115    |
| weighted avg | 0.6709    | 0.5837 | 0.6147   | 9115    |

#### SMOTE Oversampling Gradient Boosted Tree Confusion Matrix



## RANDOM UNDERSAMPLING Logistic Regression

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7924    | 0.6286 | 0.7011   | 7079    |
| 1            | 0.2486    | 0.4273 | 0.3144   | 2036    |
| accuracy     | 0.5837    | 0.5837 | 0.5837   | 0       |
| macro avg    | 0.5205    | 0.5280 | 0.5077   | 9115    |
| weighted avg | 0.6709    | 0.5837 | 0.6147   | 9115    |



# UNDERSAMPLING Cluster Centroids

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7924    | 0.6286 | 0.7011   | 7079    |
| 1            | 0.2486    | 0.4273 | 0.3144   | 2036    |
| accuracy     | 0.5837    | 0.5837 | 0.5837   | 0       |
| macro avg    | 0.5205    | 0.5280 | 0.5077   | 9115    |
| weighted avg | 0.6709    | 0.5837 | 0.6147   | 9115    |

#### Undersampling Cluster Centroids Confusion Matrix



# COMBINATION SAMPLING SMOTEENN

#### Classification Report

|              | Precision | Recall | f1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.7924    | 0.6286 | 0.7011   | 7079    |
| 1            | 0.2486    | 0.4273 | 0.3144   | 2036    |
| accuracy     | 0.5837    | 0.5837 | 0.5837   | 0       |
| macro avg    | 0.5205    | 0.5280 | 0.5077   | 9115    |
| weighted avg | 0.6709    | 0.5837 | 0.6147   | 9115    |

#### SMOTEENN Combination Sampling Confusion Matrix



## **Dashboard Description**

Tools: JavaScript, HTML

#### Interactive element(s)Features:

- Age
- Education
- Occupation
- Net income
- Number of family members



#### Credit Card Approval Prediction Dashboard

Using personal information and data submitted by credit card applicants, the model will predict the probability of future defaults and credit card borrowings.

### **Approve or not?**

The objective of this project is to help a financial institution to decide whether to issue a credit card to an applicant. Using personal information and data submitted by credit card applicants, the model will predict the probability of future defaults and credit card borrowings.



| Filter Search |
|---------------|
| Enter Date    |
| 1/10/2010     |
| Enter City    |
| Toronto       |
| Enter State   |
| ON            |
| Enter coutry  |
| Canada        |
| Enter a Shape |
| cicle         |
|               |

| id<br>[PK] character varying (10) | code_gender<br>character varying (2) | flag_own_car<br>character varying (2) | flag_own_realty character varying (2) | cnt_children<br>integer | amt_income_total real | name_income_type<br>character varying (40) | name_education_type<br>character varying (40) | name_family_status<br>character varying (40) |
|-----------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------|-----------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------|
| 5008805                           | М                                    | Υ                                     | Υ                                     | 0                       | 4.275                 | Working                                    | Higher education                              | Civil marriage                               |
| 5008806                           | М                                    | Υ                                     | Υ                                     | 0                       | 1.125                 | Working                                    | Secondary / secondary spec                    | Married                                      |
| 5008808                           | F                                    | N                                     | Υ                                     | 0                       | 2.7                   | Commercial associate                       | Secondary / secondary spec                    | Single / not married                         |
| 5008809                           | F                                    | N                                     | Υ                                     | 0                       | 2.7                   | Commercial associate                       | Secondary / secondary spec                    | Single / not married                         |
| 5008810                           | F                                    | N                                     | Υ                                     | 0                       | 2.7                   | Commercial associate                       | Secondary / secondary spec                    | Single / not married                         |
| 5008811                           | F                                    | N                                     | Y                                     | 0                       | 2.7                   | Commercial associate                       | Secondary / secondary spec                    | Single / not married                         |
| 5008812                           | F                                    | N                                     | Υ                                     | 0                       | 2.835                 | Pensioner                                  | Higher education                              | Separated                                    |
| 5008813                           | F                                    | N                                     | Υ                                     | 0                       | 2.835                 | Pensioner                                  | Higher education                              | Separated                                    |
| 5008814                           | F                                    | N                                     | Y                                     | 0                       | 2.835                 | Pensioner                                  | Higher education                              | Separated                                    |
| 5008815                           | М                                    | Υ                                     | Υ                                     | 0                       | 2.7                   | Working                                    | Higher education                              | Married                                      |
| 5112956                           | М                                    | Υ                                     | Y                                     | 0                       | 2.7                   | Working                                    | Higher education                              | Married                                      |
| 5008819                           | М                                    | Υ                                     | Υ                                     | 0                       | 1.35                  | Commercial associate                       | Secondary / secondary spec                    | Married                                      |
| 5008820                           | М                                    | Υ                                     | Y                                     | 0                       | 1.35                  | Commercial associate                       | Secondary / secondary spec                    | Married                                      |
| 5008821                           | M                                    | Υ                                     | Υ                                     | 0                       | 1.35                  | Commercial associate                       | Secondary / secondary spec                    | Married                                      |
| 5008822                           | М                                    | Υ                                     | Υ                                     | 0                       | 1.35                  | Commercial associate                       | Secondary / secondary spec                    | Married                                      |
| 5008823                           | М                                    | Υ                                     | Υ                                     | 0                       | 1.35                  | Commercial associate                       | Secondary / secondary spec                    | Married                                      |

## Providence Bank Credit Card Approval Model

## **Approve or not?**

The objective of this project is to help a financial institution to decide whether to issue a credit card to an applicant. Using personal information and data submitted by credit card applicants, the model will predict the probability of future defaults and credit card borrowings.

| Please enter your details                    |
|----------------------------------------------|
| Age (Please enter in years)                  |
|                                              |
| Education                                    |
| Please select                                |
| Occupation                                   |
| Please select                                |
| Net Income (please enter annual salary)      |
| 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| Number of family members                     |
| Please select including yourself             |
| Do you own property                          |
| Please Select                                |

| Age Education |                  | Occupation         |    | come  | No. of Family<br>Members | Own<br>Realty | Approved 1 /<br>Denied 0 |  |
|---------------|------------------|--------------------|----|-------|--------------------------|---------------|--------------------------|--|
| 33            | Higher Education | No Occupation Type | \$ | 4,275 | 2                        | Y             | 1                        |  |

# WHAT WOULD WE DO DIFFERENTLY?



## The Team





- Database schema
- Data cleaning & pre-processing
- Model Visualizations
- Google slides
- Dashboard



Samir Rifi

- Dataset sourcing
- Database
- Dashboard



Jane Huang

- Communications specialist
- Github Repository
- Google slides
- Dashboard
- AWS



Lucas Chandra

- GitHub Repository
- Database
- Data cleaning & pre-processing
- Machine learning models

# QUESTIONS



# CITATIONS

Slide 1 Background picture:

https://wowplus.net/these-are-the-new-upcoming-changes-toyour-credit-score-and-credit-cards/ (sept,2021)

Slide 4 pictures:

https://godmen.org/2021/02/20/best-credit-card-offers-what-are-the-best-offers/ (sept,2021)

Data:

https://www.kaggle.com/rikdifos/credit-card-approval-prediction