PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 5/023, A61K 38/04, 31/47, 38/03, C07D 401/12

(11) International Publication Number:

WO 99/47545

(43) International Publication Date: 23 September 1999 (23.09.99)

(21) International Application Number:

PCT/US99/05919

A2

(22) International Filing Date:

19 March 1999 (19.03.99)

(30) Priority Data:

60/078,770

19 March 1998 (19.03.98)

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US

60/078,770 (CON)

Filed on

19 March 1998 (19.03.98)

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WANNAMAKER, Marion, W. [US/US]; 375 Harvard Road, Stow, MA 01775 (US). BEMIS, Guy, W. [US/US]; 256 Appleton Street, Arlington, MA 01572 (US). CHARIFSON, Paul, S. [US/US]; 7 Dartmouth Drive, Framingham, MA 01701 (US). LAUFFER, David, J. [US/US]; 254 Taylor Road, Stow, MA 01775 (US). MULLICAN, Michael, D. [US/US]; 110 Parker Road, Needham, MA 02194 (US). MURCKO, Mark, A. [US/US];

520 Marshall Street, Holliston, MA 01746 (US). WILSON, Keith, P. [US/US]; 6 Longwood Drive, Hopkinton, MA 01748 (US). JANETKA, James, W. [US/US]; 3612 Steams Hill Road, Waltham, MA 02451 (US). DAVIES, Robert, J. [GB/US]; Apartment 2K, 225 Weldon Street, Cambridge, MA 02109 (US). GRILLOT, Anne-Laure [FR/US]; Apartment #3R, 31 Regent Street, Cambridge, MA 02140 (US). SHI, Zhan [CN/US]; Apartment 7, 15 Sheridan Drive, Shrewsbury, MA 01545 (US). FORSTER, Cornelia, J. [US/US]; 8 Nancy Avenue, Pelham, NH 03076 (US).

(74) Agents: HALEY, James, F., Jr.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US) et al.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: INHIBITORS OF CASPASES

(57) Abstract

The present invention relates to novel classes of compounds which are caspase inhibitors, in particular interleukin- 1β converting enzyme ("ICE") inhibitors. This invention also relates to pharmaceutical compositions comprising these compounds. The compounds and pharmaceutical compositions of this invention are particularly well suited for inhibiting caspase activity and consequently, may be advantageously used as agents against interleukin-1- ("IL-1"), apoptosis-, interferon-γ inducing factor- (IGIF), or interferon-γ- ("IFN-γ") mediated diseases, including inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, and degenerative diseases. This invention also relates to methods for inhibiting caspase activity and decreasing IGIF production and IFN- γ production and methods for treating interleukin-1, apoptosis-, and interferon- γ - mediated diseases using the compounds and compositions of this invention. This invention also relates to methods of preparing the compounds of this invention.

What is claimed is:

1. A compound represented by formula I:

5

$$R^{1}$$
 X
 N
 R^{5}
 R^{5}
 R^{6}
 N
 Y

15

wherein:

Y is:

(a)

20

provided that when \mathbf{R}^{7} is -OH then Y can also be:

(b)

25

X is $-C(R^3)_2$ - or $-N(R^3)$ -;

m is 0 or 1;

30

10

15

20

25

 R^2 is -H and each R^3 is independently -H, an amino acid side chain, $-R^8$, alkenyl- R^9 , or alkynyl- R^9 , or each R^3 , together with the atom to which they are bound, form a 3 to 7 membered cyclic or heterocyclic cyclic ring system, or R^2 and one R^3 together with the atoms to which they are bound, form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by $-R^{10}$, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by $-R^{11}$, a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced by $-R^1$;

R⁴ is -H and each R⁵ is independently -H, an amino acid side chain, -R⁸, -alkenyl-R⁹, or -alkynyl-R⁹, or R⁴ and one R⁵ together with the atoms to which they are bound form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced with R¹;

 R^6 is -H;

30

 R^7 is -OH, -OR⁸, or -N(H)OH:

each R⁸ is independently -alkyl, -cycloalkyl,
-aryl, -heteroaryl, -heterocyclyl, -alkylcycloalkyl
-alkylaryl, -alkylheteroaryl, or -alkylheterocyclyl,

wherein a hydrogen atom bound to any -alkyl or
-cycloalkyl carbon atom is optionally replaced by R¹⁰,
a hydrogen atom bound to any -aryl or -heteroaryl
carbon atom is optionally replaced by R¹¹, and a
hydrogen atom bound to any nitrogen atom is optionally
replaced by R¹;

each R⁹ is independently -aryl, -heteroaryl, cycloalkyl, or -heterocyclyl, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom is optionally replaced by R¹;

20

15

each R10 is independently -OH, -SH, -F, -Cl, -Br, -I, -NO₂, -CN, -NH₂, -CO₂H, -C(0)NH₂, -N(H)C(0)H, -N(H)C(O)NH2, -perfluoroalkyl, -O-alkyl, -O-aryl, -O-alkylaryl, -N(H)alkyl, -N(H)aryl, -N(H)-alkylaryl, 25 $-N(alkyl)_2$, -C(0)N(H)alkyl, $-C(0)N(alkyl)_2$, -N(H)C(O)alkyl, -N(H)C(O)Oalkyl, -N(H)C(O)Oaryl,-N(H)C(O)Oalkylaryl, -N(H)C(O)Oheteroaryl, -N(H)C(O)Oalkylheteroaryl, -N(H)C(O)Ocycloalkyl, $-N(H)C(O)N(H)alkyl, -N(H)C(O)N(alkyl)_2,$ 30 -N(H)C(O)N(H) aryl, -N(H)C(O)N(H) alkylaryl, -N(H)C(O)N(H)heteroaryl, -N(H)C(O)N(H)alkylheteroaryl, -N(H)C(O)N(H)cycloalkyl, -S-alkyl, -S-aryl, -S-alkylaryl, -S(0)2alkyl, -S(0)alkyl, -C(0)alkyl, -CH2NH2, -CH2N(H)alkyl, or -CH2N(alkyl)2, -alkyl,

-cycloalkyl, -aryl, -heteroaryl, -heterocyclyl, -alkylcycloalkyl -alkylaryl, -alkylheteroaryl, or -alkylheterocyclyl, wherein a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹ and a hydrogen atom bound to any nitrogen atom is optionally replaced by R¹; and

each R¹¹ is independently -OH, -SH, -F, -Cl, -Br, -I, -NO₂, -CN, -NH₂, -CO₂H, -C(O)NH₂, -N(H)C(O)H, -N(H)C(O)NH₂, -alkyl, -cycloalkyl, -perfluoroalkyl, -O-alkyl, -O-alkyl, -N(H)alkyl, -N(H)aryl, -N(H)-alkylaryl, -N(alkyl)₂, -C(O)N(H)alkyl, -C(O)N(alkyl)₂, -N(H)C(O)alkyl, -N(H)C(O)N(H)alkyl, -N(H)C(O)N(alkyl)₂, -S-alkyl, -S-aryl, -S-alkylaryl, -S(O)₂alkyl, -S(O)₃alkyl, -C(O)₃alkyl, -C(

2. A compound represented by formula I:

20

$$R^{1}$$
 X N R^{5} R^{5} R^{6} N Y

30

35

wherein:

Y is:

PCT/US99/05919

provided that when R^6 is not hydrogen, R^6 and Y, together with the nitrogen to which they are bound, form a ring (g):

(g)

X is $-C(R^3)_2$ - or $-N(R^3)$ -;

m is 0 or 1;

10

15

20

25

5

 R^2 is -H and each R^3 is independently -H, an amino acid side chain, $-R^8$, alkenyl- R^9 , or alkynyl- R^9 , or each R^3 , together with the atom to which they are bound, form a 3 to 7 membered cyclic or heterocyclic cyclic ring system, or R^2 and one R^3 together with the atoms to which they are bound, form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by $-R^{10}$, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally

- 278 -

replaced by $-R^{11}$, a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced by $-R^1$;

R⁴ is -H and each R⁵ is independently -H, an amino acid side chain, -R⁸, -alkenyl-R⁹, or -alkynyl-R⁹, or R⁴ and one R⁵ together with the atoms to which they are bound form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced with R¹;

15 R^6 is -H;

each R⁸ is independently -alkyl, -cycloalkyl, -aryl, -heteroaryl, -heterocyclyl, -alkylcycloalkyl -alkylaryl, -alkylheteroaryl, or -alkylheterocyclyl, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom is optionally replaced by R¹;

25

30

20

5

10

each R⁹ is independently -aryl, -heteroaryl, cycloalkyl, or -heterocyclyl, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom is optionally replaced by R¹;

- 279 -

```
each R<sup>10</sup> is independently -OH, -SH, -F, -Cl,
          -Br, -I, -NO<sub>2</sub>, -CN, -NH<sub>2</sub>, -CO<sub>2</sub>H, -C(0)NH<sub>2</sub>, -N(H)C(0)H,
          -N(H)C(O)NH2, -perfluoroalkyl, -O-alkyl, -O-aryl,
          -O-alkylaryl, -N(H)alkyl, -N(H)aryl, -N(H)-alkylaryl,
   5
         -N(alkyl)_2, -C(0)N(H)alkyl, -C(0)N(alkyl)_2,
         -N(H)C(O) alkyl, -N(H)C(O) Oalkyl, -N(H)C(O) Oaryl,
         -N(H)C(O)Oalkylaryl, -N(H)C(O)Oheteroaryl,
         -N(H)C(O)Oalkylheteroaryl, -N(H)C(O)Ocycloalkyl,
         -N(H)C(O)N(H) alkyl, -N(H)C(O)N(alkyl)_2,
         -N(H)C(O)N(H)aryl, -N(H)C(O)N(H)alkylaryl,
  10
         -N(H)C(O)N(H)heteroaryl, -N(H)C(O)N(H)alkylheteroaryl,
         -N(H)C(O)N(H)cycloalkyl, -S-alkyl, -S-aryl,
         -S-alkylaryl, -S(0)2alkyl, -S(0)alkyl, -C(0)alkyl,
         -CH_2NH_2, -CH_2N(H) alkyl, or -CH_2N(alkyl)_2, -alkyl,
         -cycloalkyl, -aryl, -heteroaryl, -heterocyclyl,
. 15
         -alkylcycloalkyl -alkylaryl, -alkylheteroaryl, or
         -alkylheterocyclyl, wherein a hydrogen atom bound to
         any -aryl or -heteroaryl carbon atom is optionally
         replaced by R11 and a hydrogen atom bound to any
 20
         nitrogen atom is optionally replaced by R1; and
                    each R<sup>11</sup> is independently -OH, -SH, -F, -Cl,
         -Br, -I, -NO<sub>2</sub>, -CN, -NH<sub>2</sub>, -CO<sub>2</sub>H, -C(O)NH<sub>2</sub>, -N(H)C(O)H,
         -N(H)C(O)NH2, -alkyl, -cycloalkyl, -perfluoroalkyl, -O-
 25
         alkyl, -O-aryl, -O-alkylaryl, -N(H)alkyl, -N(H)aryl,
         -N(H) -alkylaryl, -N(alkyl)_2, -C(O)N(H) alkyl,
         -C(O)N(alkyl)_2, -N(H)C(O)alkyl, -N(H)C(O)N(H)alkyl,
         -N(H)C(O)N(alkyl)2, -S-alkyl, -S-aryl, -S-alkylaryl,
         -S(0)_{2}alkyl, -S(0)_{2}alkyl, -C(0)_{2}alkyl, -CH_{2}NH_{2},
         -CH<sub>2</sub>N(H) alkyl, or -CH<sub>2</sub>N(alkyl)<sub>2</sub>;
 30
                    R^{12} is -C(0) alkyl, -C(0) cycloalkyl,
        -C(O)alkyenyl, -C(O)alkylaryl, -C(O)alkylheteroaryl,
        -C(O)heterocyclyl, or -C(O)alkylheterocyclyl; and
```

 $$\rm R^{13}$ is -H, -alkyl, -aryl, -alkylaryl or -alkylheteroaryl.

3. A compound represented by formula I:

$$R^2$$
 X R^5 R^5 R^6 X Y

wherein:

Y is:

10 (a)

(b)

15

m is 0 or 1;

 $X is -C(R^3)_2$ -

10

15

20

25

R² is -H and each R³ is independently -H, an amino acid side chain, -R⁸, alkenyl-R⁹, or alkynyl-R⁹, or each R³ together with the atom to which they are bound, form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by -R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by -R¹¹, a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced by -R¹;

R⁴ is -H and each R⁵ is independently -H, an amino acid side chain, -R⁸, -alkenyl-R⁹, or -alkynyl-R⁹, or R⁴ and one R⁵ together with the atoms to which they are bound form a 3 to 7 membered cyclic or heterocyclic ring system, wherein a hydrogen atom bound to any -alkyl or -cycloalkyl carbon atom is optionally replaced by R¹⁰, a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹, and a hydrogen atom bound to any nitrogen atom of the ring system is optionally replaced with R¹;

30

- 282 -

 R^7 is -OH, -OR⁸, -N(H)OH, or -N(H)S(O)₂R⁸;

each R⁸ is independently -alkyl, -cycloalkyl,

-aryl, -heteroaryl, -heterocyclyl, -alkylcycloalkyl
-alkylaryl, -alkylheteroaryl, or -alkylheterocyclyl,
wherein a hydrogen atom bound to any -alkyl or
-cycloalkyl carbon atom is optionally replaced by R¹⁰,
a hydrogen atom bound to any -aryl or -heteroaryl

carbon atom is optionally replaced by R¹¹, and a
hydrogen atom bound to any nitrogen atom is optionally
replaced by R¹;

each R⁹ is independently -aryl, -heteroaryl,

cycloalkyl, or -heterocyclyl, wherein a hydrogen atom
bound to any -alkyl or -cycloalkyl carbon atom is
optionally replaced by R¹⁰, a hydrogen atom bound to
any -aryl or -heteroaryl carbon atom is optionally
replaced by R¹¹, and a hydrogen atom bound to any
nitrogen atom is optionally replaced by R¹;

each R¹⁰ is independently -OH, -SH, -F, -Cl,
-Br, -I, -NO₂, -CN, -NH₂, -CO₂H, -C(O)NH₂, -N(H)C(O)H,
-N(H)C(O)NH₂, -perfluoroalkyl, -O-alkyl, -O-aryl,

25 -O-alkylaryl, -N(H)alkyl, -N(H)aryl, -N(H)-alkylaryl,
-N(alkyl)₂, -C(O)N(H)alkyl, -C(O)N(alkyl)₂,
-N(H)C(O)alkyl, -N(H)C(O)Oalkyl, -N(H)C(O)Oaryl,
-N(H)C(O)Oalkylaryl, -N(H)C(O)Oheteroaryl,
-N(H)C(O)Oalkylheteroaryl, -N(H)C(O)Ocycloalkyl,
-N(H)C(O)N(H)alkyl, -N(H)C(O)N(alkyl)₂,
-N(H)C(O)N(H)aryl, -N(H)C(O)N(H)alkylaryl,
-N(H)C(O)N(H)heteroaryl, -N(H)C(O)N(H)alkylheteroaryl,
-N(H)C(O)N(H)cycloalkyl, -S-alkyl, -S-aryl,
-S-alkylaryl, -S(O)₂alkyl, -S(O)₃alkyl, -C(O)₃alkyl,

-CH₂NH₂, -CH₂N(H)alkyl, or -CH₂N(alkyl)₂, -alkyl, -cycloalkyl, -aryl, -heteroaryl, -heterocyclyl, -alkylcycloalkyl -alkylaryl, -alkylheteroaryl, or -alkylheterocyclyl, wherein a hydrogen atom bound to any -aryl or -heteroaryl carbon atom is optionally replaced by R¹¹ and a hydrogen atom bound to any nitrogen atom is optionally replaced by R¹; and

each R¹¹ is independently -OH, -SH, -F, -Cl,
-Br, -I, -NO₂, -CN, -NH₂, -CO₂H, -C(O)NH₂, -N(H)C(O)H,
-N(H)C(O)NH₂, -alkyl, -cycloalkyl, -perfluoroalkyl, -Oalkyl, -O-aryl, -O-alkylaryl, -N(H)alkyl, -N(H)aryl,
-N(H)-alkylaryl, -N(alkyl)₂, -C(O)N(H)alkyl,
-C(O)N(alkyl)₂, -N(H)C(O)alkyl, -N(H)C(O)N(H)alkyl,
-N(H)C(O)N(alkyl)₂, -S-alkyl, -S-aryl, -S-alkylaryl,
-S(O)₂alkyl, -S(O)alkyl, -C(O)alkyl, -CH₂NH₂,
-CH₂N(H)alkyl, or -CH₂N(alkyl)₂;

provided that if one R³ is -H, then the other
R³ is not -H.

20

. A compound represented by formula I:

$$R^2$$
 R^4
 R^5
 R^6
 R^6

wherein:

25 Y is:

- 284 -

m is 0 or 1;

5 $X \text{ is } -C(\mathbb{R}^3)_2$

 $R^{1} \text{ is } H, -R^{8}, -C(0)R^{8}, -C(0)C(0)R^{8}, -S(0)_{2}R^{8},$ $-S(0)R^{8}, -C(0)OR^{8}, -C(0)N(H)R^{8}, -S(0)_{2}N(H)-R^{8},$ $-S(0)N(H)-R^{8}, -C(0)C(0)N(H)R^{8}, -C(0)CH=CHR^{8},$ $-C(0)CH_{2}OR^{8}, -C(0)CH_{2}N(H)R^{8}, -C(0)N(R^{8})_{2}, -S(0)_{2}N(R^{8})_{2},$ $-S(0)N(R^{8})_{2}, -C(0)C(0)N(R^{8})_{2}, -C(0)CH_{2}N(R^{8})_{2}, -CH_{2}R^{8},$ $-CH_{2}-\text{alkenyl}-R^{8}, \text{ or } -CH_{2}-\text{alkynyl}-R^{8};$

R² is -H and each R³ is independently -H, an
amino acid side chain, -R⁸, alkenyl-R⁹, or alkynyl-R⁹,
or each R³ together with the atom to which they are
bound, form a 3 to 7 membered cyclic or heterocyclic
ring system, wherein a hydrogen atom bound to any
-alkyl or -cycloalkyl carbon atom is optionally
replaced by -R¹⁰, a hydrogen atom bound to any -aryl or
-heteroaryl carbon atom is optionally replaced by -R¹¹,
a hydrogen atom bound to any nitrogen atom of the ring
system is optionally replaced by -R¹;

 R^4 is -H and each R^5 is independently -H, an amino acid side chain, $-R^8$, -alkenyl- R^9 , or -alkynyl- R^9 , or R^4 and one R^5 together with the atoms