

Welcome to

PES University

Ring Road Campus, Bengaluru

10 June 2020

PESU Center for Information Security, Forensics and Cyber Resilience

APPLIED CRYPTOGRAPHY

Lecture 6

Classical ciphers cryptanalysis

Without key get the secret data

- This video focus on cryptanalysis
- hacker wants to recover key or plaintext
- hacker is not bound by any rules
 - For example, hacker might attack the implementation, not the algorithm itself

- A cryptosystem is secure if the best know attack is to try all possible keys
- Cryptosystem is insecure if any shortcut attack is known
- By this definition, an insecure system might be harder to break than a secure system!

Cryptanalysis attack

Cryptanalytic Attacks

- Ciphertext only
 - only know algorithm & ciphertext, is statistical, know or can identify plaintext
- Known plaintext
 - know/suspect plaintext & ciphertext
- Chosen plaintext
 - select plaintext and obtain ciphertext
- Chosen ciphertext
 - select ciphertext and obtain plaintext
- Chosen text
 - select plaintext or ciphertext to en/decrypt

Ciphertext-Only Attack

• Ciphertext-only attack: only know algorithm & ciphertext, is statistical, know or can identify plaintext

know/suspect plaintext & ciphertext

select plaintext and obtain ciphertext

select ciphertext and obtain plaintext

Theoretical Cryptanalysis

- Think that a cipher has a 100 bit key
 - Then keyspace is of size 2¹⁰⁰
- Think there is a shortcut attack with "work" equal to testing about 2⁸⁰ keys
- If hacker can test 2³⁰ per second
 - Then she finds key in 36 million years
 - Better than 37 trillion, but not practical

Applied Cryptanalysis

- Classic (pen and paper) ciphers
 - Transposition, substitution, etc.
 - Same principles appear in later sections
- World War II ciphers
 - Enigma, Purple, Sigaba
- Stream ciphers
 - Shift registers, correlation attack, ORYX, RC4, PKZIP

- Study of cryptanalysis gives insight into all aspects of crypto
- Gain insight into attacker's mindset
 - "black hat" vs "white hat" mentality
- Cryptanalysis is more fun than cryptography
 - Cryptographers are boring
 - Cryptanalysts are cool
- But cryptanalysis is hard

- try all possible keys and test each to see if it is correct
 - Exhaustive key search
- To prevent an exhaustive key search, a cryptosystem must have a large keyspace
 - Must be too many keys for Trudy to try them all in any reasonable amount of time

PES UNIVERSITY

Cryptanalysis of Caesar cipher

• https://www.khanacademy.org/computing/computer -science/cryptography/cryptochallenge/a/crypto-clue-1

Cryptanalysis of the Columnar Transposition Cipher

- The first step in attacking a columnar transposition cipher is to try all possible short keywords. If we check all keywords up to a length of 9 or so, we don't have to wait very long.
- For every keyword permutation we score the deciphered text, then choose the text with the highest score as our best candidate.
- The number of possible rearrangements of a length N key is N! (N factorial). This number grows very quickly as N gets larger.

Next Class

Mandatory reading for the next class

https://brilliant.org/courses/probability/

S Rajashree

Computer Science and Engineering

PES University, Bengaluru

10 June 2020