Code and Named Entity Recognition on StackOverflow

Tabassum et al., 2020, https://arxiv.org/abs/2005.01634

Team members: Changheng Liou, Zhiying Cui

Goal

Named entity recognition on text with codes

- 8 code entities: CLASS, VARIABLE, DATATYPE, FUNCTION...
- 12 natural language entities: APPLICATION, UI ELEMENT, ALGORITHM, OS, DEVICE...

Example:

Not an easy task

Ambiguous word: list can be variable name and data structure

Overview

- Annotated 1237 threads on StackOverflow
- Customized tokenizer
 - std::vector<int> -> ['std', ':', ':', 'vector', '<', 'int', '>']

Code Recognizer

- A token is a code or not regardless of context

- Entity Segmenter

- A token is a given name entity in the given sentence
- Word Representation (BERT[1])

SoftNER Model Overview

Fig 1. SoftNER Model [2]

- Vector representation: BERT + Code recognizer + Entity Segmenter
- Attention network

Train Code Recognizer

Parameters

- Learning rate: 0.0015
- Epochs: 70
- Word vector dimension: 300
- Hidden layer dimension: 30

Process

- Get features from Gigaword corpus and Stack Overflow archives
- Transform each n-gram probability into a k-dimensional vector using Gaussian binning
- Concatenate the output with pre-trained FastText[3] character-level embeddings

test									
P:	79.08	375	R:	78.7879	F:	78.9374			
			p:	recision		recall	f1-	score	support
		0		0.92		0.93		0.92	736
	1			0.79		0.79		0.79	264
accuracy								0.89	1000
	macro	avg		0.86		0.86		0.86	1000
wei	ghted	avg		0.89		0.89		0.89	1000

Our training results

	P	R	\mathbf{F}_1
Token Frequency	33.33	2.25	4.22
Most Frequent Label	82.21	58.59	68.42
Our Code Recognition Model	78.43	83.33	80.80
 Character ngram LMs 	64.13	84.51	72.90
 Word ngram LMs 	67.98	72.96	70.38
 FastText Embeddings 	76.12	81.69	78.81

Table 5: Evaluation results and feature ablation of our code recognition model on SOLEXICON *test* set of 1000 manually labeled unique tokens, which are sampled from the *train* set of StackOverflow NER corpus.

Training results in paper[2]

Fig.2 Train Code Recognizer

Evaluation

Train SoftNER Model

- Input: vectors extracted from Code Recognizer and Entity Segmenter
- 1 epoch costs more than 4 hours with a CPU (100 epoches)

	P	R	\mathbf{F}_1
Test set			
Feature-based CRF	71.77	39.70	51.12
Ril STM-CRF (FI MoVerflow)	73.03	64.82	68 68
Attentive BiLSTM-CRF (ELMoVerflow)	78.22	78.59	78.41
Fine-tuned BEKT		45.92	
Fine-tuned RERTOverflow	68 77	67 47	68 12
SoftNER (BERTOverflow)	78.42	79.79	79.10
Dev set			
Feature-based CRF	66.85	46.19	54.64
BiLSTM-CRF (ELMoVerflow)	74.44	68.71	71.46
Attentive BiLSTM-CRF (ELMoVerflow)	79.43	80.00	79.72
Fine-tuned BERT	79.57	46.42	58.64
Fine-tuned BERTOverflow	72.11	70.51	71.30
SoftNER (BERTOverflow)	78.81	81.72	80.24

Table 2: Evaluation on the *dev* and *test* sets of the StackOverflow NER corpus. Our SoftNER model outperforms the existing approaches.

Training results in paper[2]

```
I 0 0
      If 0
                                                                                    would 0 0
                                                            would
                                                                                    have 0 0
         would
                                                            have
                                                                                    200
          have
                                                                0
                                                                                    tables Name Name
      2 0
                                                            tables 0
tables B-Data_Structure
                       tables 0
                                                                                    How 0 0
                                                            How 0
                                                                                    do 0 0
CODE_BLOCK B-Code_Block
                       CODE_BLOCK B-Code_Block
                                                            do 0
                                                                                    I 0 0
                    I-Code_Block
: I-Code_Block
                                                            get 0
Q 4780 I-Code Block
                    Q 4780 I-Code Block
                                                                                    get 0 0
                                                            this
  I-Code Block
                    I-Code Block
                                                                                    this 0 0
      I-Code Block
                         I-Code Block
                    code
                                                                                    result 0 0
                                                            result 0
omitted I-Code Block
                    omitted I-Code_Block
                                                            The 0
for I-Code Block
                 for I-Code Block
                                                                                    The 0 0
                                                            following
annotation I-Code Block
                       annotation I-Code_Block
                                                                                    following 0 0
   I-Code_Block
                    I-Code_Block
                                                            query
                                                                                    query 0 0
                                                            needs
                                                                                    needs 0 0
               Part of training dataset
```

If 0 0

```
test: epoch: 1 P: 70.58 R: 70.22 F1: 70.4
test: epoch: 2 P: 74.94 R: 74.81 F1: 74.87
test: epoch: 3 P: 73.19 R: 72.73 F1: 72.96
```

Running log of prediction on test dataset in each epoch

Fig.3 Training SoftNER Model

Extend the Work - Evaluate the model's performance on Leetcode

We have data, we have the models, we can try:

- Crawl the text dataset from Leetcode discussion
- Use Code Recognizer and Entity Segmenter to extract the features
- Predict the named entities with SoftNER

```
(py36) root@buddy:~/Project# cat leetcode-discuss.txt
https://leetcode.com/problems/meeting-rooms-ii/discuss/67855/Explanation-of-%22Supe
r-Easy-Java-Solution-Beats-98.8%22-from-%40pinkfloyda
Explanation of \"Super Easy Java Solution Beats 98.8%\" from @pinkfloyda
The solution is proposed by @pinkfloyda at [\"Super Easy Java Solution Beats 98.8%\
"][1] , which is amazing. Here I would like to explain why it works a little bit.
The code from @pinkfloyda: ```
                                    public class Solution {
                                                                    public int minM
                                                int[] starts = new int[intervals.le
eetingRooms(Interval[] intervals) {
                   int[] ends = new int[intervals.length];
                                           starts[i] = intervals[i].start;
i<intervals.length: i++) {
        ends[i] = intervals[i].end;
                                                               Arrays.sort(starts)
            Arrays.sort(ends):
                                            int rooms = 0;
                                                                       int endsItr
                for(int i=0; i<starts.length; i++) {</pre>
                                                                      if(starts[i]
ends[endsItr])
                                                            else
 endsItr++:
                                                                   }``` To underst
                                       return rooms:
and why it works, first let\'s define two events: Meeting Star<u>ts Meeting Ends Ne</u>xt
 we acknowledge three facts: The numbers of the intervals give chronological order
s When an ending event occurs, there must be a starting event has happened before t
hat, where \"happen before\" is defined by the chronological orders given by the ir
tervals Meetings that started which haven\'t ended yet have to be put into differen
t meeting rooms, and the number of rooms needed is the number of such meetings So,
what this algorithm works as follows: for example, we have meetings that span alo
ng time as follows:
      Then, the start time array and end time array after sorting appear like foll
                                       | Initially, 'endsItr' points to the first
end event, and we move `i` which is the start event pointer. As we examine the star
```

Fig.4 Text data in Leetcode discussion

Discussion

Conclusions

- Understand the architecture of SoftNER model
- Trained the two models

Challenges and Solutions

- Bugs in source codes, such as encoding problem, commented or deleted code blocks
 - Debug codes
- Some files are missing, such as fasttext file, word frequency file, Entity Segmenter model
 - Contact the author

Remaining problems and Future work

- Not fully functional: Entity Segmenter
- Add or change embeddings to see how it works

Thank you!

Changheng Liou Email: cl5533@nyu.edu

Zhiying Cui Email: zc2191@nyu.edu