PA e PG PROGRESSÃO GEOMÉTRICA

AULA 1 - P.G. - DEFINIÇÃO

Definição

As P.G.s (Progressões Geométricas) são sequências nas quais cada termo, a partir do segundo, é igual ao anterior somado multiplicado por uma constante q. Chamamos esta constante de razão da P.G.

$$a_n = q. a_{n-1}$$

Como consequência da definição, para encontrarmos a razão q de uma P.G., basta calcularmos a razão entre um termo e seu antecessor:

$$q = \frac{a_k}{a_{k-1}}$$

Para que possamos construir a P.G., basta termos um termo qualquer da P.G. e sua razão, pois, a partir disso, é possível descobrirmos todos seus outros termos.

AULA 2 - P.G. - CLASSIFICAÇÃO

As PGs podem ser classificadas em cinco categorias: crescentes, constantes, decrescentes, alternantes ou estacionárias.

Crescente

Uma P.G. é crescente quando seus termos aumentam. Isto acontece quando:

- $a_1 > 0$ e q > 1 (Ex: 1, 2, 4, $a_1 < 0$ e 0 < q < 1 (Ex: -8, -4, -2, -1,...) (Ex: 1, 2, 4, 8,...)

Constante

Uma P.G. é constante quando seus termos são todos iguais (Ex: 3, 3, 3, 3, ...). Isto acontece quando:

- $a_1 = 0$ e qualquer q (Ex: 0,0,0,0,...)
- Qualquer a_1 e q = 1(Ex: 5,5,5,5,...)

Decrescente

Uma P.G. é crescente quando seus termos diminuem. Isto acontece quando:

- $a_1 > 0 \text{ e } 0 < q < 1 \text{(Ex: 8,4,2,1,...)}$ $a_1 < 0 \text{ e q} > 1$ (Ex: -2,-4,-8,-16,...)

Alternantes

Uma P.G. é alternante quando os sinais de seus termos se alternam. Isto acontece quando:

(Ex: 1,-2, 4, -8, ...) Qualquer a_1 e q < 0

Estacionárias

Uma P.G. é estacionária quando $a_1 \neq 0$ e todos os outros termos são 0. Isto acontece quando:

• $a_1 \neq 0$ e q = 0 (Ex: 2,0,0,0,...)

AULA 3 - P.G. - TERMO GERAL DE UMA P.G.

Dada uma P.G. de termo a_1 e razão q, podemos calcular o valor do termo n da P.G. através da fórmula do termo geral:

$$a_n = a_1 \cdot q^{n-1}$$

AULA 4 - P.G. - REPRESENTAÇÃO PRÁTICA

Em alguns tipos de problemas, é útil representar uma P.G. com a seguinte notação:

Para 3 termos

$$(\frac{x}{a}, x, x, q)$$

Para 5 termos

$$(\frac{x}{q^2}, \frac{x}{q}, x, x, q, x, q^2)$$

Para 4 termos

$$(\frac{x}{a^3}, \frac{x}{a}, x. a, x. a^3)$$

Onde: $q = a^2$

AULA 5 - P.G. - PRODUTO DE TERMOS EQUIDISTANTES

1

PA e PG PROGRESSÃO GEOMÉTRICA

Produto de termos equidistantes dos extremos

O produto de dois termos equidistantes dos extremos de uma P.G. finita é igual ao produto dos extremos.

$$a_1. a_n = a_2. a_{n-1} = a_3. a_{n-2} = \cdots$$

Termos consecutivos

Considerando-se três termos consecutivos de uma P.G., o termo do meio é a média geométrica dos outros dois.

$$|a_k| = \sqrt{a_{k-1}.a_{k+1}}$$

AULA 6 - P.G. - SOMA DOS n TERMOS DE UMA P.G.

Se a razão q de uma P.G. for 1, a P.G. será constante. Neste caso, a soma dos n termos da P.G. pode ser calculada por:

$$S_n = n.a_1$$

Já no caso de uma P.G. com $q \neq 1$, a soma dos n termos pode ser calculada por:

$$S_n = a_1 \cdot \frac{q^n - 1}{q - 1}$$

AULA 7 - P.G. - SOMA DOS INFINITOS TERMOS DE UMA P.G.

Seja uma P.G. infinita com -1 < q < 1. A soma dos infinitos termos da P.G. pode ser calculada por:

$$S_n = \frac{a_1}{1 - q}$$