Technische Universität Dresden

Fakultät Elektrotechnik und Informationstechnik Institut für Regelungs- und Steuerungstheorie

Studienarbeit

Modellbildung und Reglerentwurf für ein Brückenkransystem

vorgelegt von: Konstantin Wrede

geboren am: 19. Januar 1998 in Sondershausen

Betreuer: M.Sc. Tommy Wohlfahrt

Dipl.-Ing. Fabian Paschke Dr.-Ing. Carsten Knoll

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Dipl.-Math. K. Röbenack

Tag der Einreichung: 30. September 2022

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die von mir am heutigen Tage an der Fakultät Elektrotechnik und Informationstechnik eingereichte Studienarbeit zum Thema

Modellbildung und Reglerentwurf für ein Brückenkransystem

selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, wurden als solche kenntlich gemacht.

Dresden, 30. September 2022

Konstantin Wrede

Kurzfassung

An dieser Stelle fügen Sie bitte eine deutsche Kurzfassung ein.

Abstract

Please insert the English abstract here. $\,$

Inhaltsverzeichnis

V	Verzeichnis der wichtigsten Abkürzungen und Symbole		
\mathbf{A}	bbild	ungsverzeichnis	VIII
Ta	abelle	enverzeichnis	1
1	Ein	leitung	2
2	Syst	tem- und Problembeschreibung	3
	2.1	Reales Demonstratorsytem	3
	2.2	Problembeschreibung und Zielsetzung	5
3	Ana	alytische Modellbildung	6
	3.1	Allgemeine Modellannahmen	6
	3.2	Modellierung mittels Lagrange-Formalismus	6
		3.2.1 Lagrange-Gleichungen erster Art	7
		3.2.2 Lagrange-Gleichungen zweiter Art	7
	3.3	Generierung und Simulation von DAE-Systemen	8
	3.4	Analytisches Modell des Einzelkrans	10
	3.5	Analytisches Modell des Doppelkrans	12
		3.5.1 Ansatz über ein DAE-System (Lagrange 1)	12
		3.5.2 Ansatz über ein ODE-System (Lagrange 2)	15
	3.6	Systemidentifikation	18
4	Flac	chheitsanalyse	19
	4.1	Definition differenzieller Flachheit	19
	4.2	Flachheitsanalyse von Mehrgrößensystemen	20
	4.3	Anwendung Flachheitsanalyse am Einzelkran	21
	4.4	Anwendung Flachheitsanalyse am Doppelkran	23
5	Ste	uerungs- und Regelungsentwurf	25
	5.1	Regelung zur Stabilisierung von Ruhelagen	25
	5.2	Trajektorienplanung für den flachen Ausgang	25
	5.3	Trajektorienfolgeregelung	26
		5.3.1 Vektorieller relativer Grad	26
		5.3.2 Statische Rückführung	27

	5.3.3	Zustandsrückführung aus Fehlerdynamik	28
	5.3.4	Dynamische Erweiterung	28
	5.3.5	Quasi-statische Rückführungen	33
	5.3.6	Exact feedforward linearization	36
6		Ausblick ick	
			10
Li	iteratur		44

Verzeichnis der wichtigsten Abkürzungen und Symbole

Die Folgende Liste enthält Abkürzungen sowie Symbole, welche in dieser Arbeit kapitelübergreifend verwendet werden.

Vektor- oder matrixwertige Größen werden durch dicke Symbole dargestellt.

Abkürzung/Symbol	Bedeutung
DAE	Differenzial-algebraische Gleichungen,
	von engl. differential algebraic equations
DGL, ODE	(gewöhnliche) Differenzialgleichung,
	von engl. ordinary differential equation
$oldsymbol{ au},\mathbf{u}$	Systemeingang
$oldsymbol{ heta} = (\mathbf{q}, \mathbf{p})^T$	Konfigurationskoordinaten
p	nicht direkt aktuierte Koordinaten
q	direkt aktuierte Koordinaten
X	Systemzustand
У	flacher Ausgang

Abbildungsverzeichnis

1	Konstruktionsmodell des Doppelkransystems	3
2	Doppelkran-Demonstratorsystem mit Laufkatzen und Last	4
3	Planare Geometrie des Einzelkransystems	10
4	Planare Geometrie des Doppellkransystems im DAE-Modell	13
5	Planare Geometrie des Doppellkransystems im ODE-Modell	16
6	Trajektorien Ruhelagenüberführung mit Regelung über dynamische Erweiterung	31
7	Zwiebelschalendiagramm Ruhelagenüberführung mit Regelung über dynamische Erweiterung	32
8	Trajektorien Ruhelagenüberführung mit Regelung über exact feedforward linearization (Pseudoinverse)	38
9	Eigenwerte der Jacobimatrix bei Trajektorienfolge mit Regelung über exact feedforward linearization (Selektionsmatrix)	40
10	Trajektorien Ruhelagenüberführung mit Regelung über exact feedforward	
	linearization (Selektionsmatrix)	41

Tabellenverzeichnis

1	Physikalische Parameter des Doppelkrandemonstratorsystems	18
2	Relative Grade der Ausgänge und explizites Auftreten der Eingänge	27
3	Auftreten der Eingänge τ_i bei Ableitungsordnung k der Ausgänge u_i	33

Kapitel 1

Einleitung

Heute existierenden Anwendungen wird ein zentrales Management für die Steuerung der IoT-Geräte und der Kollaboration eingesetzt. Durch das agile Zusammenwirken der einzelnen Teilsysteme ist einerseits eine besonders hohe Flexibilität und Wandlungsfähigkeit der Produktion möglich. Andererseits sind die IoT-Geräte durch den zentralistischen Ansatz in hohem Maße von der Verfügbarkeit und Verlässlichkeit der Vernetzung abhängig. Besonders bei mobilen IoT-Geräten stellt die drahtlose Vernetzung auf den letzten Metern bis zu Maschine eine große Herausforderung dar. Darüber hinaus ist dieser Ansatz mit steigender Zahl der Maschinen und Komplexität der Software immer schlechter beherrschbar.

Im Rahmen vorangegangener studentischer Arbeiten ist am Fraunhofer-Institut für Integrierte Schaltungen IIS, Institutsteil Entwicklung Adaptiver Systeme EAS [6] in Dresden ein Demonstratorsystem entwickelt worden. Mit diesem System sollen perspektivisch Vorteile von Regelungsstrategien auf verteilten Recheneinheiten gegenüber einer zentralen Messgrößenverarbeitung und Stellgrößenberechnung untersucht werden. Außerdem ist damit der Einfluss von Störungen und Verzögerungen der Kommunikation zwischen den Recheneinheiten zu evaluieren.

Für diese Aufgabe soll das Regelungskonzept der Flachheit angewandt werden. Die flachheitsbasierte Trajektorienplanung und Folgeregelung bietet für sogenannte flache Systeme durch möglichst vollständige Modellierung des zu optimierenden Systems die Möglichkeit, Bewegungsvorgänge präzise so zu definieren und zu korrigieren, dass Schwingungen gar nicht erst auftreten. Focus auf MIMO!

In dieser Studienarbeit soll eine analytische Modellbildung durchgeführt werden sowie eine zentrale Referenzregelstrategie entworfen werden. Die dabei ermittelten Ansätze zur (Vor-) Steuerung und Folgeregelung sind simulativ zu verifizieren.

Kapitel 2

System- und Problembeschreibung

2.1 Reales Demonstratorsytem

 ${\bf Abbildung} \ {\bf 1} - {\bf Konstruktions modell} \ {\bf des} \ {\bf Doppelkran-Demonstrator systems} \ {\bf ohne} \ {\bf Verkabelung}.$

Das Demonstratorsystem besteht aus zwei Brückenkränen, die eine gemeinsame Last in der vertikalen Ebene anheben. Abbildung 1 stellt ein Modell des Aufbaus dar, das während des Konstruktionsprozesses entstanden ist. Die Kräne befinden sich auf zwei horizontalen Führungsschienen und verfügen jeweils über einen Raspberry Pi 4B¹ als

¹Spezifikationen: 8GB DDR4 RAM, 64-bit ARM64 SoC, 5.0 GHz WLAN, Bluetooth 5.0, BLE, Gigabit Ethernet; Betriebsystem: Ubuntu 20.04 [3]

Hauptrecheneinheit sowie einen STM32-Mikrocontroller² für die Motoransteuerungen und Messungen. Beide Raspberry Pis können über eine LAN-Verbindung miteinander kommunizieren.

Die Kräne sind als Laufkatzen entlang der Schienen sowie Seilwinden darauf mit jeweils einem Gleichstrommotor aktuiert. Auf den STM32-Mikrocontrollern ist bereits eine unterlagerte Strom- beziehungsweise Kraftregelung für diese Motoren implementiert. Messungen der Seillängen und Kranpositionen auf der Schiene erfolgen mittels Inkrementalgebern nach einem anfänglichen Kalibrierungsvorgang. Die Seilwinkel zur Horizontalen werden mittels mitschwingender Potentiometer bestimmt. Abbildung 2 zeigt eine Fotografie der realen Anordnung des Demonstrators.

Abbildung 2 – Reale Anordnung des Doppelkran-Demonstratorsystems mit Laufkatzen und Last.

²Spezifikationen: STM32F303K8 mit 32-bit Arm Cortex-M4, 64 kB Flash-Speicher, 12-bit ADCs [11]

2.2 Problembeschreibung und Zielsetzung

Bei der Bewegung von Containern in Häfen ist ein ruckarmer und gegenüber der Horizontalen stabiler Transport notwendig. Ziel dieser Studienarbeit ist es deshalb, bezüglich des vorhandenen Demonstratorsystems eine zentrale Referenzregelstrategie zu entwerfen. Damit soll unter Vorgabe von Sollposen eine Planung von Trajektorien der Last in der Ebene und Folgeregelung zur Überführung dieser zwischen verschiedenen Ruhelagen ermöglicht werden. Diese Überlegungen sollen auf Basis einer Modellierung des Krans als Mehrkörpersystems geschehen.

Kapitel 3

Analytische Modellbildung

3.1 Allgemeine Modellannahmen

In der folgenden Modellierung wird das Demonstratorsystem nur planar betrachtet, also die Bewegung aller Komponenten nur in der vertikalen Ebene berücksichtigt. Diese Annahme ist gerechtfertigt, weil die Laufkatzen nur entlang einer Achse verfahren können und die Lagerung bzw. Aufhängung der Last ein Schwingen dieser senkrecht zur vertikalen Ebene unterdrückt. Die Seile werden aufgrund ihrer geringen Dicke als masselos im Vergleich zu den Laufkatzen sowie der Last angenommen und nicht mit einem Trägheitsmoment versehen. Die Last wird trotz ihrer Aussparungen mit einer homogenen Masseverteilung modelliert. Für eine exakte Beschreibung wären Konstruktionsdaten oder eine Demontage mit Vermessung der Teilkomponenten notwendig. Zur Reduktion weiterer Komplexität wird auf die Abbildung dissipativer Kräfte im System verzichtet.

Die Modellbildung erfolgt in mehreren Stufen. Zunächst ist es möglich mittels der Lagrange-Gleichungen erster Art einen Einzelkran darzustellen, woraus ein gewöhnliches Differenzialgleichungssystem (DGL-System, engl. ODE system) folgt. Alternativ kann ein Ansatz mit Lagrange-Gleichungen zweiter Art gewählt werden, wodurch sich ein Differenzial-algebraisches Gleichungssystem (DAE-System, von engl. differential algebraic equations) ergibt. Ausgehend davon und aufgrund der geringen Komplexität der Terme des Einzelkrans, kann diese prinzipielle Methodik verifiziert werden und ein Transfer der Erkenntnisse auf die Modellierung des Doppelkransystems erfolgen.

Nun wird ein kurzer theoretischer Überblick zu beiden erwähnten Arten des Lagrange-Formalismus gegeben.

3.2 Modellierung mittels Lagrange-Formalismus

Die Dynamik mechanischer Systeme lässt sich über Differenzialgleichungen, den sogenannten Lagrange-Gleichungen beschreiben. Dabei wird eine Menge aus n auftretenden

und zeitlich veränderlichen Koordinaten als Konfigurationskoordinaten oder Systemgrößen $\boldsymbol{\theta} = (\theta_1, ..., \theta_n)^T$ bezeichnet. Die zeitlichen Änderungsraten dieser werden im Vektor der (Konfigurations-)Geschwindigkeiten $\dot{\boldsymbol{\theta}}$ zusammengefasst. Anfänglich wurde der Literatur [9, S.10] folgend eine Unterteilung der Systemgrößen in "aktive" und "passive" Koordinaten vorgenommen. Im Verlauf dieser Arbeit ist bemerkt worden, dass die Aufgliederung $\boldsymbol{\theta} = (\mathbf{q}, \mathbf{p})^T$ in die direkt aktuierten Koordinaten \mathbf{q} und nicht direkt aktuierten Koordinaten \mathbf{p} eine treffendere Bezeichnung darstellt. [9, S.7]

Die kinetische Energie eines Systems wird im Folgenden durch die Funktion T sowie die potentielle Energie durch V beschrieben. Die Lagrange-Funktion kann damit folgendermaßen definiert werden:

$$L(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = T(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) - V(\boldsymbol{\theta}). \tag{3.1}$$

Eine stark automatisierte Durchführung dieses Formalismus ist unter Nutzung des Python-Pakets symbtools [12] möglich.

3.2.1 Lagrange-Gleichungen erster Art

Mit den Lagrange-Gleichungen erster Art können Problemstellungen mit Zwangsbedingungen und -kräften dargestellt werden:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \theta_i} = \tilde{Q}_i + Q_i, \quad i = 1, ..., n.$$
(3.2)

Die sich auf die jeweilige Koordinate θ_i beziehende Stellkraft $Q_i = f_i - D_i$ entspricht der verallgemeinerten Kraft, welche sich aus der äußeren (Stell-)Kraft f_i sowie internen Reibungskraft D_i zusammensetzt [2, S. 49].

Es können nun m holonome Zwangsbedingungen $g_1(\boldsymbol{\theta}) = ... = g_m(\boldsymbol{\theta}) = 0$ eingeführt werden, aus denen die Zwangskraft \tilde{Q}_i in Richtung der Koordinate θ_i folgt:

$$\tilde{Q}_i = \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial \theta_i}.$$
(3.3)

In dieser Beziehung bezeichnet λ_i den jeweiligen Lagrange-Multiplikator.

3.2.2 Lagrange-Gleichungen zweiter Art

Die Lagrange-Gleichungen zweiter Art beschreiben bezüglich der Lagrange-Gleichungen erster Art den Spezialfall ohne Zwangsbedingungen, also m=0. Zwangskräfte müssen

dabei nicht explizit bestimmt werden. Die Bewegungsgleichungen können folgendermaßen aus der Lagrange-Funktion abgeleitet werden:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \theta_i} = Q_i, \quad i = 1, ..., n.$$
(3.4)

Zur Bestimmung der Komponenten Q_i der verallgemeinerten Kraft wird das Prinzip der virtuellen Arbeit herangezogen [13]:

$$\delta W = \sum_{k=1}^{l} \mathbf{F}_{k} \cdot \frac{\partial \mathbf{r}_{k}}{\partial \theta_{1}} \delta \theta_{1} + \ldots + \sum_{k=1}^{l} \mathbf{F}_{k} \cdot \frac{\partial \mathbf{r}_{k}}{\partial \theta_{n}} \delta \theta_{n}.$$
 (3.5)

Dabei entspricht $\mathbf{r_k}$ bei einem System von l (massebehafteten) Teilchen dem Richtungsvektor zum k-ten Partikel, $\mathbf{F_k}$ der jeweils entlang dieses Richtungsvektors angewandten Stellkraft, $\delta \mathbf{r_k}$ der virtuellen Verschiebung des Partikels im Raum und $\delta \boldsymbol{\theta}_i$ der virtuellen Verschiebung der Koordinate θ_i , welche der Beziehung

$$\delta \mathbf{r_k} = \sum_{i=1}^{n} \frac{\partial \mathbf{r_k}}{\partial \theta_i} \delta \theta_i. \tag{3.6}$$

genügt.

Die gesamte virtuelle Arbeit des Systems dieser Teilchen kann also ebenso durch

$$\delta W = Q_1 \delta \theta_1 + \ldots + Q_n \delta \theta_n = \sum_{k=1}^l \delta \mathbf{r}_k^T \mathbf{F}_k$$
 (3.7)

dargestellt werden, wobei sich die Komponenten der verallgemeinerten Kraft zu

$$Q_{i} = \sum_{k=1}^{l} \left(\frac{\partial \mathbf{r}_{k}}{\partial \theta_{i}} \right)^{T} \mathbf{F}_{k} = \frac{\partial \delta W}{\partial \delta \theta_{i}}, \quad i = 1, \dots, n$$
(3.8)

ergeben.

3.3 Generierung und Simulation von DAE-Systemen

DAE-Systeme sind ODE-Systeme, welche um algebraische Gleichungen (AGL, auch Nebenbedingungen) ergänzt werden. Diese Nebenbedingungen können zur Darstellung von Zwangsbedingungen der Lagrange-Gleichungen erster Art genutzt werden. DAE-Systeme lassen sich typischerweise in einer semi-expliziten Form darstellen:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z}, \mathbf{u}, t) \tag{3.9}$$

$$\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{z}, t),\tag{3.10}$$

wobei \mathbf{x} dem Systemzustand, \mathbf{z} den algebraischen Variablen (weitere Systemgrößen, die in den Systemgleichungen ohne Ableitung vorkommen), \mathbf{u} dem Systemeingang sowie t der Zeit entspricht. [8, S.137]

Eine Möglichkeit zu Klassifikation von DAE-Systemen ist der differenzielle Index $i_{\rm d}$. Dieser entspricht der minimalen Anzahl an Differenziationen $\frac{d}{dt}$ der AGL ${\bf g}$ (Zwangsbedingungen), damit unter Einbeziehung der DGL ein explizites DGL-System aus dem DAE-System entsteht. Ein gewöhnliches DGL-System besitzt also den differenziellen Index $i_{\rm d}=0$. Die Differenziation der AGL mit dem Resultat eines DAE-Systems mit kleinerem Index wird als Indexreduktion bezeichnet. [8, S.139]

Für die Simulation von DAE-Systemen ist die numerische Integration dieser Gleichungssysteme notwendig. Die in dieser Arbeit untersuchten mechanischen Systeme sind solche mit starrer Kopplung als Zwangsbedingungen vom Index $i_d = 3$ und können für den Zustandsvektor $\mathbf{x} = (\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})^T$ über folgende Bewegungsgleichungen mittels der Matrizen \mathbf{M} , \mathbf{C} , \mathbf{K} , \mathbf{G} und \mathbf{B} beschrieben werden:

$$\mathbf{0} = \mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{G}(\boldsymbol{\theta})\mathbf{z} - \mathbf{B}(\boldsymbol{\theta})\mathbf{u}$$
(3.11a)

$$\mathbf{0} = \mathbf{g}(\boldsymbol{\theta}). \tag{3.11b}$$

[8, S.240]

Zur Integration davon gibt es verschiedene Möglichkeiten [7, Kap. 8]:

- Indexreduktion auf Index $i_d = 2$ und anschließende Integration über ein implizites¹ Verfahren
- Indexreduktion auf Index $i_d = 1$ und anschließende Integration über ein explizites² Verfahren mit AGL-Löser oder ein implizites Verfahren
- Index
reduktion auf Index $i_{\rm d}=0$ und anschließende Integration über ein explizites oder implizites Verfahren.

Die im Python-Paket symbtools [12] enthaltene Bibliothek modeltools führt die Reduktion von Index-3-Systemen auf Index-1-Systeme durch. Zur numerischen Berechnung kann daraufhin der Solver ODASSL des Python-Pakets assimulo [1] verwendet werden.

Zur Erfüllung der AGL zu Simulationsbeginn müssen konsistente Anfangswerte $\mathbf{x}(0)$ und $\mathbf{z}(0)$ bestimmt werden. Bei DAE-Systemen mit Index $i_{\rm d} \geq 2$ kann $\mathbf{x}(0)$ nicht mehr frei gewählt werden, da $\mathbf{z}(0)$ nicht mehr allein aus AGL bestimmbar ist. Es ist notwendig, zusätzliche algebraische Bedingungen an \mathbf{x} und \mathbf{z} aus den DGL abzuleiten. Die Bibliothek modeltools berechnet konsistente Anfangswerte mit der Funktion calc_consistent_init_vals. Falls es andernfalls zu inkonsistenten Anfangswerten

¹ Auf der linken und rechten Seite der zu integrierenden Gleichungen sind die gesuchten Näherungswerte von $\mathbf{x}(t_{i+1})$ an der Stelle t_{i+1} enthalten.

²Zur Berechnung des Näherungswertes von $\mathbf{x}(t_{i+1})$ an der Stelle t_{i+1} wird einzig der zuletzt berechnete Näherungswert von $\mathbf{x}(t_i)$ an der Stelle t_i benötigt.

kommt, folgen daraus Simulationsfehler in den ersten Schritten oder sogar vollständig falsche Ergebnisse. [8, S.207]

3.4 Analytisches Modell des Einzelkrans

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness notebooks/ODE flatness analysis single crane.ipynb] zu finden.

Mittels der Lagrange-Gleichungen zweiter Art wird in diesem Abschnitt ein ODE-Modell des Einzelkrans erzeugt. Dabei wird entsprechend der Erläuterungen aus Abschnitt 3.2.2 vorgegangen. Diese Modellierung hat gegenüber den Lagrange-Gleichungen erster Art den Vorteil, dass durch die generalisierte Kraft ${\bf Q}$ gerade die Stellkraft im Seil gut abgebildet werden kann sowie eine Vielzahl verschiedener Integrationsverfahren für eine effiziente Lösung des ODE-Systems nutzbar ist. Abbildung 3 zeigt die Konfiguration des Einzelkransystems.

Abbildung 3 – Planare Geometrie des Einzelkransystems mit Systemgrößen, Systemparametern und Kräften.

Als direkt aktuierte Koordinate wird nur die x-Verschiebung q_1 der Laufkatzenposition ($\mathbf{B}_1 = \mathbf{G}_1 = \mathbf{S}_1$) ausgewählt, als nicht direkt aktuierte Koordinaten die x- und y-Auslenkungen (p_1, p_2) der Last \mathbf{S}_2 aus dem Ursprung. Die variable Seillänge wird mit l_1 bezeichnet, die durch die Koordinaten auch mittels

$$l_1 = \sqrt{(p_1 - q_1)^2 + p_2^2} \tag{3.12}$$

ausgedrückt werden kann.

Die Position der beiden Massenschwerpunkte kann somit wie folgt durch die Koordinaten

beschrieben werden:

$$\mathbf{S}_1 = \begin{pmatrix} q_1 \\ 0 \end{pmatrix}, \quad \mathbf{S}_2 = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}. \tag{3.13}$$

Damit ist es möglich die kinetische und potentielle Energie des Systems zu formulieren:

$$T = \frac{m_1 \dot{\mathbf{S}}_1^T \dot{\mathbf{S}}_1 + \frac{m_2}{2} \dot{\mathbf{S}}_2^T \dot{\mathbf{S}}_2 = \frac{m_1 \dot{q}_1^2}{2} + \frac{m_2 \dot{p}_1^2}{2} + \frac{m_2 \dot{p}_2^2}{2}$$
(3.14)

$$V = m_2 g \mathbf{S}_2^T \mathbf{e}_y = m_2 g p_2. \tag{3.15}$$

Die Systemgleichungen können durch die Lagrange-Gleichungen zweiter Art (3.4) zunächst in Abhängigkeit der Komponenten der generalisierten Kraft Q_i bestimmt werden:

$$-Q_1 + m_2 \ddot{p}_1 = 0 (3.16a)$$

$$-Q_2 + gm_2 + m_2\ddot{p}_2 = 0 (3.16b)$$

$$-Q_3 + m_1 \ddot{q}_1 = 0. (3.16c)$$

Die Eingangskomponenten τ_1 , τ_2 des Systems entsprechen den unterlagert geregelten Kräften der Motoren der Laufkatze bzw. der Seilwinde. Sie können über Stellkräfte vektoriell dargestellt werden:

$$\mathbf{F}_1 = \begin{pmatrix} \tau_1 \\ 0 \end{pmatrix}, \quad \mathbf{F}_2 = \begin{pmatrix} \frac{\tau_2(p_1 - q_1)}{l_1} \\ \frac{p_2 \tau_2}{l_1} \end{pmatrix}. \tag{3.17}$$

Durch die Anwendung des Prinzips der virtuellen Arbeit nach Gleichung (3.7) und (3.8) ist es möglich, die generalisierte Kraft durch diese Stellkräfte bzw. den Systemeingang auszudrücken:

$$\mathbf{Q} = \begin{pmatrix} \frac{\tau_2(p_1 - q_1)}{l_1} \\ \frac{p_2 \tau_2}{l_1} \\ \tau_1 - \frac{\tau_2(p_1 - q_1)}{l_1} \end{pmatrix}. \tag{3.18}$$

Durch einsetzen dieser generalisierten Kraft in die Gleichungen (3.16) lässt sich ein abschließender Satz an Systemgleichungen des Einzelkrans bilden:

$$m_2\ddot{p}_1 - \frac{\tau_2(p_1 - q_1)}{l_1} = 0$$
 (3.19a)

$$gm_2 + m_2\ddot{p}_2 - \frac{p_2\tau_2}{l_1} = 0 (3.19b)$$

$$m_1\ddot{q}_1 - \tau_1 + \frac{\tau_2(p_1 - q_1)}{l_1} = 0.$$
 (3.19c)

3.5 Analytisches Modell des Doppelkrans

Aufbauend auf der Modellierung eines Einzelkrans wird in diesem Abschnitt eine Erweiterung des Systems auf ein Doppelkransystem in Analogie zum realen Demonstrator vorgenommen. Aufgrund der an beiden Laufkatzen befestigten Last liegt zunächst alternativ zum vorherigen Vorgehen die Nutzung der Lagrange-Gleichungen erster Art nahe. Bei dieser wird mittels algebraischer Zwangsbedingungen ein DAE-System erzeugt. Allerdings ist dabei die Beschreinung der Aktuierung der Seilwinden anspruchsvoller, da bereits für eine konstante Seillänge die bei der Katzfahrt auftretenden dynamischen Seilkräfte kompensiert werden müssen, ohne dass es dafür eine explizite resultierende Gesamtkraft gibt, die zu Null gesetzt werden kann. Beim realen Demonstrator sperrt ein Schneckengetriebe der Seilwinde im stromfreien Fall die Hubaktuierung. Auch bei einem Doppelkransystem ist wieder eine Modellierung mit den Lagrange-Gleichungen zweiter Art möglich.

3.5.1 Ansatz über ein DAE-System (Lagrange 1)

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, double_crane_notebooks/DAE_double_crane_cartesian.ipynb] zu finden.

Mittels der Lagrange-Gleichungen erster Art wird im Folgenden ein DAE-Modell des Doppelkrans erzeugt. Dabei wird entsprechend Abschnitt 3.2.1 vorgegangen. Schließlich ergibt sich hierbei ein komplexerer Satz an Systemgleichungen, die typischerweise weniger effizient zu simulieren sind als bei einem ODE-System. Daher wird dieser Ansatz in weiteren Kapiteln nicht weiter verfolgt. Eine Dokumentation dieser Modellierung ist trotzdem sinnvoll. Durch die Einprägung von Zwangsbedingungen kann die kinematische Kette³ wegen der gemeinsamen Last intuitiv abgebildet werden. Es wird zunächst einzig eine horizontale Aktuierung der Laufkatzen durch den Eingang $\boldsymbol{\tau} = (\tau_1, \tau_2)^T$ betrachtet. Für eine effiziente Simulation mit aktuierten Seilwinden, welche für diesen Ansatz nicht mehr im Rahmen dieser Studienarbeit durchgeführt wird, wäre gerade bei konstanten Seillängen eine Umformulierung des Problems mit den Seillängen als Stellgröße sinnvoll. (Quelle: Buch von Rudolf S.21 -> Nextcloud Flachheit/fotos ???) Abbildung 4 zeigt die Konfiguration dieses Doppelkransystems.

Als direkt aktuierte Koordinate werden nur die x-Verschiebungen q_1 und q_2 der Laufkatzenpositionen ($\mathbf{B}_1 = \mathbf{G}_1 = \mathbf{S}_1$, $\mathbf{B}_2 = \mathbf{G}_4 = \mathbf{S}_5$) ausgewählt, als nicht direkt aktuierte Koordinaten die absolute Position (p_1, p_2) des Gelenks $\mathbf{G}_2 (= \mathbf{S}_2)$ sowie (p_3, p_4) des Gelenks $\mathbf{G}_3 (= \mathbf{S}_4)$.

³Bezeichnung, die auf den Vergleich des Systems mit einem Viergelenk aus der Literatur abzielt, durch die gemeinsame Last wird die Kette "geschlossen"

Abbildung 4 – Planare Geometrie des Doppellkransystems im DAE-Modell mit Systemgrößen, Systemparametern und Kräften.

Für konstante Seillängen können folgende Zwangsbedingungen formuliert werden:

$$l_1 - \sqrt{p_2^2 + (p_1 - q_1)^2} = 0 (3.20)$$

$$l_2 - \sqrt{p_4^2 + (-l_0 + p_3 - q_2)^2} = 0. {(3.21)}$$

Die konstante Lastlänge wird durch

$$2s_3 = \sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}$$
(3.22)

ausgedrückt.

Die Position der Massenschwerpunkte und Gelenke kann somit wie folgt durch die Koordinaten beschrieben werden:

$$\mathbf{S}_{1} = \begin{pmatrix} q_{1} \\ 0 \end{pmatrix}, \ \mathbf{S}_{2} = \begin{pmatrix} p_{1} \\ p_{2} \end{pmatrix}, \ \mathbf{S}_{3} = \frac{1}{2}(\mathbf{S}_{2} + \mathbf{S}_{4}) = \frac{1}{2}\begin{pmatrix} p_{1} + p_{3} \\ p_{2} + p_{4} \end{pmatrix},$$

$$\mathbf{S}_{4} = \begin{pmatrix} p_{3} \\ p_{4} \end{pmatrix}, \ \mathbf{S}_{5} = \begin{pmatrix} l_{0} + q_{2} \\ 0 \end{pmatrix}.$$
(3.23)

Es ist notwendig, dass alle abgeleiteten Koordinaten in der kinetischen Energie T vorhanden sind, damit die Massenmatrix $\mathbf{M}(\boldsymbol{\theta})$ in Gleichung (3.11) regulär ist [9,

S. 7]. Dies wäre bei einer Modellierung der Last mit homogener Masseverteilung und homogenem Trägheitsmoment nicht der Fall. Deshalb wird die Last durch ein System aus drei Massen (m_2, m_3, m_4) beschrieben, das sich unter Einhaltung der folgenden Zusammenhänge simulativ äquivalent verhält:

$$m_{\rm ges} = m_2 + m_3 + m_4 \tag{3.24}$$

$$m_2 = m_4 \tag{3.25}$$

$$J = m_2 s_3^2 + m_4 s_3^2 = 2m_2 s_3^2 (3.26)$$

$$\Rightarrow m_2 = m_4 = \frac{J}{2s_2^2} \tag{3.27}$$

$$\Rightarrow m_3 = m_{\text{ges}} - m_2 - m_4. \tag{3.28}$$

Die Größen $m_{\rm ges}$ und J beziehen sich auf die in Abschnitt 3.6 identifizierten Systemparameter, die so auch bei der Modellbildung des Doppelkrans als ODE-System genutzt wurden.

Somit ist es möglich, die kinetische und potentielle Energie des Systems zu formulieren:

$$T = \frac{m_1}{2} \dot{\mathbf{S}}_1^T \dot{\mathbf{S}}_1 + \frac{m_2}{2} \dot{\mathbf{S}}_2^T \dot{\mathbf{S}}_2 + \frac{m_3}{2} \dot{\mathbf{S}}_3^T \dot{\mathbf{S}}_3 + \frac{m_4}{2} \dot{\mathbf{S}}_4^T \dot{\mathbf{S}}_4 + \frac{m_5}{2} \dot{\mathbf{S}}_5^T \dot{\mathbf{S}}_5$$

$$= \frac{m_1 \dot{q}_1^2}{2} + \frac{m_2 \dot{p}_2^2}{2} + \frac{m_2 \dot{p}_2^2}{2} + \frac{m_3 \cdot 0.25 \left(\dot{p}_1 + \dot{p}_3\right)^2}{2} + \frac{m_3 \cdot 0.25 \left(\dot{p}_2 + \dot{p}_4\right)^2}{2}$$

$$+ \frac{m_4 \dot{p}_3^2}{2} + \frac{m_4 \dot{p}_4^2}{2} + \frac{m_5 \dot{q}_2^2}{2}$$

$$V = (m_2 \ g \ \mathbf{S}_2^T + m_3 \ g \ \mathbf{S}_3^T + m_4 \ g \ \mathbf{S}_4^T) \mathbf{e}_y$$

$$= g \left(m_2 p_2 + m_3 \left(0.5 p_2 + 0.5 p_4\right) + m_4 p_4\right). \tag{3.30}$$

Unter Nutzung der Lagrange-Multiplikatoren λ_i ist es mittels der Lagrange-Gleichungen

zweiter Art (3.2) möglich die Systemgleichungen auszudrücken als:

$$-\frac{\lambda_1 p_1}{\sqrt{p_2^2 + (p_1 - q_1)^2}} + \frac{\lambda_1 q_1}{\sqrt{p_2^2 + (p_1 - q_1)^2}} - \frac{\lambda_2 p_1}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}} + \frac{\lambda_2 p_3}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}} + m_2 \ddot{p}_1 + 0.25 m_3 \ddot{p}_1 + 0.25 m_3 \ddot{p}_3 = 0$$
(3.31a)

$$gm_2 + 0.5gm_3 - \frac{\lambda_1 p_2}{\sqrt{p_2^2 + (p_1 - q_1)^2}} - \frac{\lambda_2 p_2 + \lambda_2 p_4}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}}$$

$$+ m_2 \ddot{p}_2 + 0.25 m_3 \ddot{p}_2 + 0.25 m_3 \ddot{p}_4 = 0 \tag{3.31b}$$

$$\frac{\lambda_2 (p_1 - p_3)}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}} + \frac{\lambda_3 (l_0 - p_3 + q_2)}{\sqrt{p_4^2 + (l_0 - p_3 + q_2)^2}}$$
(3.31c)

$$+\frac{m_3(0.5\ddot{p}_1+0.5\ddot{p}_3)}{2}+m_4\ddot{p}_3=0\tag{3.31d}$$

$$0.5gm_3 + gm_4 + \frac{\lambda_2 p_2}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}} - \frac{\lambda_2 p_4}{\sqrt{(p_1 - p_3)^2 + (p_2 - p_4)^2}}$$

$$-\frac{\lambda_3 p_4}{\sqrt{p_4^2 + (l_0 - p_3 + q_2)^2}} + 0.25 m_3 \ddot{p}_2 + 0.25 m_3 \ddot{p}_4 + m_4 \ddot{p}_4 = 0$$
(3.31e)

$$\frac{\lambda_1 (p_1 - q_1) + \sqrt{p_2^2 + (p_1 - q_1)^2} (m_1 \ddot{q}_1 - \tau_1)}{\sqrt{p_2^2 + (p_1 - q_1)^2}} = 0$$
(3.31f)

$$\frac{-\lambda_3 \left(l_0 - p_3 + q_2\right) + \sqrt{p_4^2 + \left(l_0 - p_3 + q_2\right)^2} \left(m_5 \ddot{q}_2 - \tau_2\right)}{\sqrt{p_4^2 + \left(l_0 - p_3 + q_2\right)^2}} = 0.$$
(3.31g)

3.5.2 Ansatz über ein ODE-System (Lagrange 2)

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness notebooks/ODE flatness analysis.ipynb] zu finden.

Mittels der Lagrange-Gleichungen zweiter Art wird im Folgenden ein ODE-Modell des Doppelkrans erzeugt. Dabei wird entsprechend Abschnitt 3.2.2 vorgegangen. Abbildung 5 zeigt die Konfiguration dieses Doppelkransystems.

Als direkt aktuierte Koordinate werden zunächst nur die x-Verschiebungen q_1 und q_2 der Laufkatzenpositionen ($\mathbf{B}_1 = \mathbf{G}_1 = \mathbf{S}_1$, $\mathbf{B}_2 = \mathbf{G}_6 = \mathbf{S}_3$) ausgewählt, als nicht direkt aktuierte Koordinaten die absolute Position (p_1, p_2) des Lastschwerpunkts (\mathbf{S}_2) sowie die Orientierung der Last p_3 gegenüber der Horizontalen. Die variable Seillänge wird

Abbildung 5 – Planare Geometrie des Doppellkransystems im ODE-Modell mit Systemgrößen, Systemparametern und Kräften.

mit l_1 sowie l_2 bezeichnet, die durch die Koordinaten auch mittels

$$l_1 = \sqrt{(p_2 - s_2 \sin(p_3))^2 + (p_1 - q_1 - s_2 \cos(p_3))^2}$$
(3.32)

$$l_2 = \sqrt{(p_2 + s_2 \sin(p_3))^2 + (-l_0 + p_1 - q_2 + s_2 \cos(p_3))^2}$$
(3.33)

ausgedrückt werden kann.

Die Position der Massenschwerpunkte und Gelenke kann somit wie folgt durch die Koordinaten beschrieben werden:

$$\mathbf{S}_{1} = \begin{pmatrix} q_{1} \\ 0 \end{pmatrix}, \ \mathbf{S}_{2} = \begin{pmatrix} p_{1} \\ p_{2} \end{pmatrix}, \ \mathbf{S}_{3} = \begin{pmatrix} l_{0} + q_{2} \\ 0 \end{pmatrix}, \ \mathbf{G}_{3} = \begin{pmatrix} p_{1} - s_{2}\cos(p_{3}) \\ p_{2} - s_{2}\sin(p_{3}) \end{pmatrix}, \ \mathbf{G}_{4} = \begin{pmatrix} p_{1} + s_{2}\cos(p_{3}) \\ p_{2} + s_{2}\sin(p_{3}) \end{pmatrix}.$$
 (3.34)

Damit ist es möglich, die kinetische und potentielle Energie des Systems zu formulieren:

$$T = \frac{m_1}{2} \dot{\mathbf{S}}_1^T \dot{\mathbf{S}}_1 + \frac{m_2}{2} \dot{\mathbf{S}}_2^T \dot{\mathbf{S}}_2 + \frac{J_2}{2} \dot{p}_3^2 + \frac{m_3}{2} \dot{\mathbf{S}}_3^T \dot{\mathbf{S}}_3$$

$$= \frac{J_2 \dot{p}_3^2}{2} + \frac{m_1 \dot{q}_1^2}{2} + \frac{m_2 \dot{p}_1^2}{2} + \frac{m_2 \dot{p}_2^2}{2} + \frac{m_3 \dot{q}_2^2}{2}$$
(3.35)

$$V = m_2 g \mathbf{S}_2^T \mathbf{e}_y = m_2 g p_2. (3.36)$$

Die Systemgleichungen können durch die Lagrange-Gleichungen zweiter Art (3.4) zunächst in Abhängigkeit der Komponenten der generalisierten Kraft Q_i bestimmt werden:

$$-Q_1 + m_2 \ddot{p}_1 = 0 (3.37a)$$

$$-Q_2 + gm_2 + m_2\ddot{p}_2 = 0 (3.37b)$$

$$J_2\ddot{p}_3 - Q_3 = 0 (3.37c)$$

$$-Q_4 + m_1 \ddot{q}_1 = 0 (3.37d)$$

$$-Q_5 + m_3 \ddot{q}_2 = 0. ag{3.37e}$$

Uber die Komponenten des Systemeingangs τ und normierte Richtungsvektoren der Führungsschiene bzw. der Seile können die vektoriellen Stellkräfte dargestellt werden:

$$\mathbf{F}_{1} = \begin{pmatrix} \tau_{1} \\ 0 \end{pmatrix}, \ \mathbf{F}_{2} = \begin{pmatrix} \tau_{2} \\ 0 \end{pmatrix}, \ \mathbf{F}_{3} = \begin{pmatrix} \frac{\tau_{3}(p_{1} - q_{1} - s_{2}\cos(p_{3}))}{l_{1}} \\ \frac{\tau_{3}(p_{2} - s_{2}\sin(p_{3}))}{l_{1}} \end{pmatrix}, \ \mathbf{F}_{4} = \begin{pmatrix} \frac{\tau_{4}(-l_{0} + p_{1} - q_{2} + s_{2}\cos(p_{3}))}{l_{2}} \\ \frac{\tau_{4}(p_{2} + s_{2}\sin(p_{3}))}{l_{2}} \end{pmatrix}. \tag{3.38}$$

Durch die Anwendung des Prinzips der virtuellen Arbeit ist es möglich, die generalisierte Kraft durch diese Stellkräfte bzw. den Systemeingang auszudrücken (Abkürzungen $s_x := \sin x \text{ und } c_x := \cos x$:

$$\mathbf{Q} = \begin{pmatrix} \frac{\tau_4(-l_0+p_1-q_2+s_2c_{p_3})}{l_2} + \frac{\tau_3(p_1-q_1-s_2c_{p_3})}{l_1} \\ \frac{\tau_4(p_2+s_2s_{p_3})}{l_2} + \frac{\tau_3(p_2-s_2s_{p_3})}{l_1} \\ \frac{s_2\tau_4(p_2+s_2s_{p_3})c_{p_3}}{l_2} - \frac{s_2\tau_4(-l_0+p_1-q_2+s_2c_{p_3})s_{p_3}}{l_2} - \frac{s_2\tau_3(p_2-s_2s_{p_3})c_{p_3}}{l_1} + \frac{s_2\tau_3(p_1-q_1-s_2c_{p_3})s_{p_3}}{l_1} \\ \tau_1 - \frac{\tau_3(p_1-q_1-s_2c_{p_3})}{l_2} \\ \tau_2 - \frac{\tau_4(-l_0+p_1-q_2+s_2c_{p_3})}{l_2} \end{pmatrix} . \quad (3.39)$$

Durch Einsetzen dieser generalisierten Kraft in die Gleichungen (3.37) lässt sich ein abschließender Satz an Systemgleichungen des Doppelkrans bilden:

$$m_2\ddot{p}_1 - \frac{\tau_4\left(-l_0 + p_1 - q_2 + s_2\cos\left(p_3\right)\right)}{l_2} - \frac{\tau_3\left(p_1 - q_1 - s_2\cos\left(p_3\right)\right)}{l_1} = 0$$
 (3.40a)

$$gm_2 + m_2\ddot{p}_2 - \frac{\tau_4 (p_2 + s_2 \sin(p_3))}{l_2} - \frac{\tau_3 (p_2 s_2 \sin(p_3))}{l_1} = 0$$
(3.40b)

$$J_{2}\ddot{p}_{3} - \frac{s_{2}\tau_{4}\left(p_{2} + s_{2}\sin\left(p_{3}\right)\right)\cos\left(p_{3}\right)}{l_{2}} + \frac{s_{2}\tau_{4}\left(-l_{0} + p_{1} - q_{2} + s_{2}\cos\left(p_{3}\right)\right)\sin\left(p_{3}\right)}{l_{2}}$$

$$J_{2}\ddot{p}_{3} - \frac{s_{2}\tau_{4}(p_{2} + s_{2}\sin(p_{3}))\cos(p_{3})}{l_{2}} + \frac{s_{2}\tau_{4}(-l_{0} + p_{1} - q_{2} + s_{2}\cos(p_{3}))\sin(p_{3})}{l_{2}} + \frac{s_{2}\tau_{3}(p_{2} - s_{2}\sin(p_{3}))\cos(p_{3})}{l_{1}} - \frac{s_{2}\tau_{3}(p_{1} - q_{1} - s_{2}\cos(p_{3}))\sin(p_{3})}{l_{1}} = 0$$
 (3.40c)

$$m_1\ddot{q}_1 - \tau_1 + \frac{\tau_3(p_1 - q_1 - s_2\cos(p_3))}{l_1} = 0$$
(3.40d)

$$m_3\ddot{q}_2 - \tau_2 + \frac{\tau_4\left(-l_0 + p_1 - q_2 + s_2\cos(p_3)\right)}{l_2} = 0.$$
 (3.40e)

Alternativ kann das Doppelkransystem für spätere regelungstechnische Untersuchungen auch eingangsaffin im Zustandsraum beschrieben werden:

3.6 Systemidentifikation

Die meisten in den Modellen vorkommenden Systemparameter sind geometrischer Natur oder Massen und lassen sich durch Messungen mit einem Lineal oder einer Wage empirisch bestimmen. Lediglich für das Trägheitsmoment der Last J ist eine direkte experimentelle Bestimmung (z.B. durch einen Pendelversuch) zu aufwendig. Daher wird dieser Parameter unter der Annahme eines Quaders mit homogener Masseverteilung und Rotationsachse durch seinen Mittelpunkt in der vertikalen Ebene nach [14] berechnet :

$$J = \frac{1}{12}m_2((2s_2)^2 + h^2). \tag{3.42}$$

Dabei entspricht h der Höhe der Last, $2s_2$ der Lastlänge und m_2 der Masse der Last. Die numerische Belegung der Systemparameter ist in Tabelle 1 zusammengefasst.

Tabelle 1 – F	nysikalische Parameter des Doppelkrandemonstratorsystems.
D 4	D :1 : ODEM 11 W

Parameter	Bezeichnung im ODE-Modell	Wert
Masse Laufkatze 1	m_1	0,45 kg
Masse Laufkatze 2	m_3	0,45 kg
Masse Last	m_2	0.557 kg
Länge Last	$2s_2$	$0.15 \mathrm{m}$
Höhe Last	h	$0.09 \ {\rm m}$
Initialer Laufkatzenabstand	l_0	$0.3 \mathrm{m}$
Trägheitsmoment Last	J_2	$0,00455~\mathrm{kgm^2}$

Kapitel 4

Flachheitsanalyse

wären ein paar einführende Worte zur flachheitsbasierten Steuerung und Folgeregelung, die sich für nichtlineare Mehrgrößensysteme anbietet, an dieser Stelle sinnvoll?

4.1 Definition differenzieller Flachheit

Ein System der Form $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u})$ mit $\mathbf{F}, \mathbf{x} \in \mathbb{R}^n$ und $\mathbf{u} \in \mathbb{R}^m$ heißt (differenziell) flach, falls ein m-Tupel $y := (y_1, ..., y_m)^T$ sowie glatte Funktionen $\mathbf{\Psi}, \boldsymbol{\theta}$ existieren, so dass

$$\mathbf{x} = \mathbf{\Psi}(\mathbf{y}, \dot{\mathbf{y}}, ..., \mathbf{y}^{(n_x)}) \text{ mit } n_x < \infty \text{ und}$$
 (4.1)

$$\mathbf{u} = \boldsymbol{\theta}(\mathbf{y}, \dot{\mathbf{y}}, ..., \mathbf{y}^{(n_u)}) \text{ mit } n_u < \infty \text{ gilt.}$$
 (4.2)

Dabei ist y ein flacher Ausgang.

Aus der Existenz eines flachen Ausgangs folgt, dass die Systemgrößen bestehend aus dem Zustand \mathbf{x} und Eingang \mathbf{u} eindeutig aus dem flachen Ausgang \mathbf{y} und einer endlichen Anzahl dessen Zeitableitungen berechnet werden können, also keine Differenzialgleichungen durch Integration dafür gelöst werden müssen. Eine alternative Formulierung des Flachheitsbegriffs verzichtet auf die Angabe der gleichen Dimension m von Eingang und flachem Ausgang, fordert aber die differenzielle Unabhängigkeit der Komponenten von \mathbf{y} .

Die Existenzbedingungen eines flachen Ausgangs sind bei Eingrößensystemen bekannt, allerdings ist der systematische Flachheitsnachweis und die Berechnung eines flachen Ausgangs bei Mehrgrößensystemen im Allgemeinen nicht abschließend gelöst. [10, S. 185]

4.2 Flachheitsanalyse von Mehrgrößensystemen

Im Folgenden wird ein prinzipielles praktisches Vorgehen zur Bestimmung flacher Ausgänge von Mehrgrößensystemen sowie zur Parametrisierung der Systemgrößen anhand solcher flachen Ausgänge skizziert. Für eine mathematisch fundierte und systematische Herangehensweise sei auf den Beitrag [4] verwiesen.

Es sei ein nichtlineares Mehrgrößensystem der Form aus Abschnitt 4.1 gegeben. Dieses sei affin bezüglich des Eingangs **u** und könne mittels der Systemgleichungen eliminiert werden, so dass ein autonomes System aus p = n - m Gleichungen folgt. Diese Gleichungen werden wiederum zur Elimination p übriger Zustandskomponenten genutzt, so dass sich ein flacher Ausgang **y** der Dimension n - p = m ergibt.

Zur Auswahl einer geeigneten Systemgleichung und Eingangskomponente für die Elimination bietet sich die Bildung der Jacobi-Matrix \mathbf{J}_i der zu diesem Zeitpunkt noch i verbleibenden Systemgleichungen bezüglich des Eingangs $\mathbf{u}_{m-(n-i)}$ an. Dabei sind die zu den Matrixzeilen korrespondierenden Gleichungen geeignet, in denen nur ein isolierter Spalteneintrag $\varepsilon \neq 0$ steht, also weitere Einträge der Spalte Null sind:

$$\mathbf{J}_{i} = \begin{pmatrix}
* & \cdots & * & 0 & * & \cdots & * \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
* & \cdots & * & 0 & * & \cdots & * \\
* & \cdots & * & \varepsilon & * & \cdots & * \\
* & \cdots & * & 0 & * & \cdots & * \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
* & \cdots & * & 0 & * & \cdots & *
\end{pmatrix}.$$
(4.3)

Falls keine solche Spalte zu finden ist, kann eine Transformation der Systemgleichungen durch die Multiplikation mit der Matrix \mathbf{T}_i durchgeführt werden. Diese Transformation soll der folgenden Beziehung genügen:

$$\mathbf{T}_{i}\mathbf{J}_{i} = \begin{pmatrix} \mathbf{I}_{m-(n-i)} \\ \mathbf{0}_{(n-m)\times(m-(n-i))} \end{pmatrix}. \tag{4.4}$$

Dabei kann \mathbf{T}_i über das linke Orthokomplement \mathbf{J}_i^{L+} und die linke Pseudoinverse \mathbf{J}_i^{L+} der Jacobi-Matrix folgendermaßen gebildet werden [4, Abschnitt 2.1.2]:

$$\mathbf{J}_i^{L+} \mathbf{J}_i = \mathbf{I}_i \tag{4.5}$$

$$\mathbf{J}_i^{L\perp} \mathbf{J}_i = \mathbf{0}_{(n-m)\times(m-(n-i))} \tag{4.6}$$

$$\Rightarrow \mathbf{T}_i = \begin{pmatrix} \mathbf{J}_i^{L+} \\ \mathbf{J}_i^{L\perp} \end{pmatrix}. \tag{4.7}$$

Nachdem die Eingangskomponenten aus den Systemgleichungen eliminiert wurden, kann die Behandlung der anderen noch vorhandenen Systemgrößen analog durch Bildung der

Jacobi-Matrix bezüglich dieser erfolgen. Der flache Ausgang \mathbf{y} besteht aus der Menge an Systemgrößen, welche im Idealfall nach Elimination aller Gleichungen übrig ist. Der Flachheitsnachweis für ein System ist erbracht, wenn mittels der Zusammenhänge aus den Systemgleichungen entsprechend Abschnitt 4.1 alle Systemgrößen (insbesondere auch der Systemeingang) allein durch $(\mathbf{y}, \dot{\mathbf{y}}, \ddot{\mathbf{y}}, ...)$ parametrisiert sind.

Bei nichtlinearen Systemen ist es allerdings oft nicht direkt möglich, alle Gleichungen direkt zu eliminieren, so dass Freiheitsgrade bestehen. Diese stellen eine Schwierigkeit der Flachheitsanalyse im Mehrgrößenfall dar. Der skizzierte Alogrithmus ist deshalb nur als hinreichend zur Bestimmung eines flachen Ausgangs, aber nicht als notwendig zu betrachten.

Anm. bez. ParametriSIerung vs Parametrierung: Ich hatte mal gelesen, dass ersteres für die symbolische Darstellung mit Parametern genutzt wird, zweiteres für die Belegung der Parameter durch konkrete numerische Werte. Ich finde allerdings gerade keine Quelle dafür ...

4.3 Anwendung Flachheitsanalyse am Einzelkran

BITTE ABSCHNITT NOCH EINMAL KOMPLETT LESEN.

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness_notebooks/ODE_flatness_analysis_single_crane.ipynb] zu finden.

Aus der analytischen Modellbildung des Einzelkransystems mit den Lagrange-Gleichungen zweiter Art in Abschnitt 3.4 folgen die drei Systemgleichungen (3.19a), (3.19b) und (3.19c), welche als Grundlage des Flachheitsnachweises dienen.

Zunächst wird die Jacobi-Matrix dieser Gleichungen bezüglich $\boldsymbol{\tau} = (\tau_1, \tau_2)^T$ gebildet:

$$\mathbf{J}_{3} = \begin{pmatrix} 0 & -\frac{p_{1}-q_{1}}{\sqrt{p_{2}^{2}+(p_{1}-q_{1})^{2}}} \\ 0 & -\frac{p_{2}}{\sqrt{p_{2}^{2}+(p_{1}-q_{1})^{2}}} \\ -1 & \frac{p_{1}-q_{1}}{\sqrt{p_{2}^{2}+(p_{1}-q_{1})^{2}}} \end{pmatrix}. \tag{4.8}$$

Dabei ist zu erkennen, dass in der ersten Spalte der Jacobi-Matrix die Eingangskomponente τ_1 isoliert vorkommt, also durch die korrespondierende dritte Systemgleichung (3.19c) bestimmt werden kann. Dementsprechend kann die letzte Zeile von \mathbf{J}_3 eliminiert werden. Eine Parametrisierung $\tau_1 = \operatorname{func}(p_1, p_2, q_1, \ddot{q}_1, \tau_2)$ ist möglich.

Die verbleibenden ersten beiden Systemgleichungen (3.19a) und (3.19b) enthalten jeweils die Eingangskomponente τ_2 . So kann ohne Einschränkung auf diese Wahl die zweite Gleichung (3.19b) zur Elimination von τ_2 genutzt werden. Eine Parametrisierung $\tau_2 = \text{func}(p_1, p_2, \ddot{p}_2, q_1)$ erfolgt.

Die letzte verbleibende Systemgleichung (3.19a) weist nach Substitution des zuvor eliminierten τ_1 und τ_2 nur noch die Systemgrößen bzw. Ableitungen $p_1, \ddot{p}_1, p_2, \ddot{p}_2, q_1$ auf. Daher bietet sich die Elimination der allein algebraisch auftretenden Größe q_1 an. Als Kandidat für einen flachen Ausgang folgt $\mathbf{y} = (p_1, p_2)^T$. Mit diesem ist nun die konkrete Parametrisierung aller Systemgrößen durchzuführen.

Eine erste Parametrisierung von τ_2 ergibt sich zu:

$$\tau_2 = \frac{m_2 (g + \ddot{p}_2) \sqrt{p_2^2 + (p_1 - q_1)^2}}{p_2}.$$
 (4.9)

Es ist zu bemerken, dass dabei die Koordinate q_1 neben den Komponenten des flachen Ausgangs und seinen Ableitungen enthalten ist. Durch Einsetzen dieser vorläufigen Darstellung von τ_2 in Gleichung (3.19a) ergibt eine flache Parametrisierung von q_1 :

$$q_1 = \frac{p_1 (g + \ddot{p}_2) - p_2 \ddot{p}_1}{g + \ddot{p}_2}.$$
 (4.10)

Durch Einsetzen davon in Gleichung erfolgt eine flache Parametrisierung von τ_2 :

$$\tau_2 = \frac{m_2 \sqrt{\frac{p_2^2 (g + \ddot{p}_2)^2 + (-gp_1 - p_1 \ddot{p}_2 + p_1 (g + \ddot{p}_2) + p_2 \ddot{p}_1)^2}{(g + \ddot{p}_2)^2}} (g + \ddot{p}_2)}{p_2}.$$
(4.11)

Um abschließend die zuerst eliminierte Eingangskomponente τ_1 ebenso auszudrücken, wird nach Gleichung (3.19c) die zweite zeitliche Ableitung \ddot{q}_1 benötigt:

$$\ddot{q}_{1} = \frac{-2\ddot{p}_{2}(g + \ddot{p}_{2})(p_{1}\ddot{p}_{2} - p_{2}\ddot{p}_{1} - \ddot{p}_{1}\dot{p}_{2} + \dot{p}_{1}(g + \ddot{p}_{2}))}{(g + \ddot{p}_{2})^{3}} + \frac{(g + \ddot{p}_{2})^{2}(p_{1}\ddot{p}_{2} - p_{2}\ddot{p}_{1} - 2\ddot{p}_{1}\dot{p}_{2} + 2\ddot{p}_{2}\dot{p}_{1} - \ddot{p}_{1}\ddot{p}_{2} + \ddot{p}_{1}(g + \ddot{p}_{2}))}{(g + \ddot{p}_{2})^{3}} - \frac{(p_{1}(g + \ddot{p}_{2}) - p_{2}\ddot{p}_{1})(\ddot{p}_{2}(g + \ddot{p}_{2}) - 2\ddot{p}_{2}^{2})}{(g + \ddot{p}_{2})^{3}}.$$

$$(4.12)$$

Daraus folgt:

$$\tau_{1} = \frac{-m_{1}2\ddot{p}_{2}(g + \ddot{p}_{2})(p_{1}\ddot{p}_{2} - p_{2}\ddot{p}_{1} - \ddot{p}_{1}\dot{p}_{2} + \dot{p}_{1}(g + \ddot{p}_{2}))}{(g + \ddot{p}_{2})^{3}} + \frac{-m_{1}(g + \ddot{p}_{2})^{2}(-p_{1}\ddot{p}_{2} + p_{2}\ddot{p}_{1} + 2\ddot{p}_{1}\dot{p}_{2} - 2\ddot{p}_{2}\dot{p}_{1} + \ddot{p}_{1}\ddot{p}_{2} - \ddot{p}_{1}(g + \ddot{p}_{2}))}{(g + \ddot{p}_{2})^{3}} + \frac{-m_{1}(p_{1}(g + \ddot{p}_{2}) - p_{2}\ddot{p}_{1})(\ddot{p}_{2}(g + \ddot{p}_{2}) - 2\ddot{p}_{2}^{2})}{(g + \ddot{p}_{2})^{3}} + \frac{m_{2}\ddot{p}_{1}(g + \ddot{p}_{2})^{3}}{(g + \ddot{p}_{2})^{3}}$$

$$(4.13)$$

Die Parametrisierung aller Systemgrößen durch $\mathbf{y} = (p_1, p_2)^T$ zeigt, dass es sich dabei um einen flachen Ausgang handelt.

4.4 Anwendung Flachheitsanalyse am Doppelkran

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness_notebooks/ODE_flatness_analysis.ipynb] zu finden.

Aus der analytischen Modellbildung des Doppelkransystems mit dem Lagrange-Formalismus zweiter Art im Unterabschnitt 3.5.2 folgen die fünf Systemgleichungen (3.40a) bis (3.40e), welche als Grundlage des Flachheitsnachweises dienen.

Zunächst wird die Jacobi-Matrix dieser Gleichungen bezüglich $\tau = (\tau_1, \tau_2, \tau_3, \tau_4)^T$ gebildet (Abkürzungen $s_x := \sin x$ und $c_x := \cos x$):

$$\mathbf{J}_{5} = \begin{pmatrix} 0 & 0 & -\frac{p_{1}-q_{1}-s_{2}c_{(p_{3})}}{l_{1}} & -\frac{-l_{0}+p_{1}-q_{2}+s_{2}c_{(p_{3})}}{l_{2}} \\ 0 & 0 & -\frac{p_{2}-s_{2}s_{(p_{3})}}{l_{1}} & -\frac{p_{2}+s_{2}s_{(p_{3})}}{l_{2}} \\ 0 & 0 & \frac{s_{2}\left(p_{2}-s_{2}s_{(p_{3})}\right)c_{(p_{3})}}{l_{1}} -\frac{s_{2}\left(p_{1}-q_{1}-s_{2}c_{(p_{3})}\right)s_{(p_{3})}}{l_{1}} & -\frac{s_{2}\left(p_{2}+s_{2}s_{(p_{3})}\right)c_{(p_{3})}}{l_{2}} + \frac{s_{2}\left(-l_{0}+p_{1}-q_{2}+s_{2}c_{(p_{3})}\right)s_{(p_{3})}}{l_{2}} \\ -1 & 0 & \frac{p_{1}-q_{1}-s_{2}c_{(p_{3})}}{l_{1}} & 0 \\ 0 & -1 & 0 & \frac{-l_{0}+p_{1}-q_{2}+s_{2}c_{(p_{3})}}{l_{2}} \end{pmatrix}.$$

Dabei ist zu erkennen, dass in den ersten beiden Spalten der zu den Systemgleichungen korrespondierenden Jacobi-Matrix zwei Eingangsgrößen τ_1 und τ_2 jeweils isoliert vorkommen. Für deren Bestimmung ergeben sich keine redundanten Gleichungen. Dementsprechend können die letzten beiden Zeilen von \mathbf{J}_5 eliminiert werden. Eine vorläufige Parametrisierung $\tau_1 = \text{func}(p_1, p_3, q_1, \ddot{q}_1, \tau_3)$ und $\tau_2 = \text{func}(p_1, p_3, q_2, \ddot{q}_2, \tau_4)$ ist möglich.

Bei den übrigen Eingangsgrößen τ_3 , τ_4 gibt es in der darauf bezogenen Jacobimatrix \mathbf{J}_3 zu den ersten drei Systemgleichungen (3.40a), (3.40b) und (3.40c) keine Spalten mehr, in denen diese Eingangskomponenten nur einmal vorkommen:

$$\mathbf{J}_{3} = \begin{pmatrix} -\frac{p_{1} - q_{1} - s_{2}c_{(p_{3})}}{l_{1}} & -\frac{-l_{0} + p_{1} - q_{2} + s_{2}c_{(p_{3})}}{l_{2}} \\ -\frac{p_{2} - s_{2}s_{(p_{3})}}{l_{1}} & -\frac{p_{2} + s_{2}s_{(p_{3})}}{l_{2}} \\ \frac{s_{2}\left(p_{2} - s_{2}s_{(p_{3})}\right)c_{(p_{3})}}{l_{1}} - \frac{s_{2}\left(p_{1} - q_{1} - s_{2}c_{(p_{3})}\right)s_{(p_{3})}}{l_{1}} & -\frac{s_{2}\left(p_{2} + s_{2}s_{(p_{3})}\right)c_{(p_{3})}}{l_{2}} + \frac{s_{2}\left(-l_{0} + p_{1} - q_{2} + s_{2}c_{(p_{3})}\right)s_{(p_{3})}}{l_{2}} \end{pmatrix}.$$

Wegen der nicht-quadratischen Dimension von \mathbf{J}_3 gilt es eine linke Pseudoinverse $\mathbf{J}_3^{L+} \in \mathbb{R}^{2\times 3}$ zu finden:

$$\mathbf{J}_3^{L+}\mathbf{J}_3 = \mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{4.14}$$

sowie das linke Orthokomplement (der Vektorraum aller Zeilen, die orthogonal zu allen Spalten von \mathbf{J}_3 sind) $\mathbf{J}_3^{L\perp} \in \mathbb{R}^{1 \times 3}$:

$$\mathbf{J}_3^{L\perp}\mathbf{J}_3 = \mathbf{0}_{1\times 2} = \begin{pmatrix} 0 & 0 \end{pmatrix}, \tag{4.15}$$

so dass eine Transformation T_3 der übrigen Systemgleichungen erneut Spalten einer korrespondierenden Jacobi-Matrix impliziert mit jeweils nur einem konstanten nicht-

Null-Eintrag:

$$\mathbf{T}_{3}\mathbf{J}_{3} = \begin{pmatrix} \mathbf{J}_{3}^{L+} \\ \mathbf{J}_{3}^{L\perp} \end{pmatrix} \mathbf{J}_{3} = \begin{pmatrix} \mathbf{I}_{2} \\ \mathbf{0}_{1\times 2} \end{pmatrix} = \mathbf{I}_{3\times 2}.$$
 (4.16)

Da beide Matrizen nicht eindeutig sind, kann für ihre Bestimmung der folgende Ansatz gewählt werden:

$$\mathbf{J}_{3}^{L+} = \left(\begin{pmatrix} J_{3,(1,1)} & J_{3,(1,2)} \\ J_{3,(2,1)} & J_{3,(2,2)} \end{pmatrix}^{-1} \mathbf{0}_{2\times 1} \right), \mathbf{J}_{3}^{L\perp} = \begin{pmatrix} J_{3,(2,1)}J_{3,(3,2)} - J_{3,(2,2)}J_{3,(3,1)} \\ -J_{3,(1,1)}J_{3,(3,2)} + J_{3,(1,2)}J_{3,(3,1)} \\ J_{3,(1,1)}J_{3,(2,2)} - J_{3,(1,2)}J_{3,(2,1)} \end{pmatrix}^{T} . \tag{4.17}$$

Aus der Multiplikation der somit gefundenen Transformationsmatrix \mathbf{T}_3 mit den übrigen drei Systemgleichungen lassen sich entsprechend der Anforderungen an ihre Konstruktion anschließend die noch übrigen Eingangskomponenten τ_3 und τ_4 sowie die beiden transformierten Systemgleichungen eliminieren. Eine vorläufige Parametrisierung $\tau_3 = \text{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, q_1, q_2)$ und $\tau_4 = \text{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, q_1, q_2)$ ist möglich.

Die letzte verbliebene Systemgleichung enthält folgende Menge M an Systemgrößen und deren Ableitungen:

$$M = \{ p_1, p_2, p_3, \ddot{p}_1, \ddot{p}_2, \ddot{p}_3, q_1, q_2 \}. \tag{4.18}$$

In dieser Gleichung sind sowohl q_1 als auch q_2 rein algebraisch enthalten. Eine dieser beiden Größen kann also ebenso wie der Eingang τ eliminiert werden. Die übrigen Systemgrößen bilden einen flachen Ausgang $\mathbf{y} = (p_1, p_2, p_3, q_1)^T$ oder alternativ $\tilde{\mathbf{y}} = (p_1, p_2, p_3, q_2)^T$.

Die zur Eliminierung umgeformten Systemgleichungen ermöglichen die Parametrisierung der Systemgrößen durch einen flachen Ausgang, welche konstruktiv entsprechend dieses Flachheitsnachweises bestimmt werden kann. Auf die konkrete Angabe der Parametrisierungen wird aus Praktikabilitätsgründen verzichtet und stattdessen auf das zu Beginn dieses Abschnitts 4.4 erwähnte Jupyter-Notebook verwiesen.

Eine abschließende flache Parametrisierung aller Systemgrößen durch den flachen Ausgang $\mathbf{y} = (p_1, p_2, p_3, q_1)^T$ enthält folgende Zusammenhänge:

$$q_2 = \operatorname{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, \ddot{p}_3, q_1)$$
 (4.19a)

$$\tau_1 = \operatorname{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, \ddot{p}_3, q_1, \ddot{q}_1)$$
(4.19b)

$$\tau_2 = \operatorname{func}(p_1, \dot{p}_1, \ddot{p}_1, p_1^{(3)}, p_1^{(4)}, p_2, \dot{p}_2, \ddot{p}_2, p_2^{(3)}, p_2^{(4)}, p_3, \dot{p}_3, \ddot{p}_3, p_3^{(3)}, p_3^{(4)}, q_1, \dot{q}_1, \ddot{q}_1)$$
(4.19c)

$$\tau_3 = \text{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, \ddot{p}_3, q_1) \tag{4.19d}$$

$$\tau_4 = \text{func}(p_1, \ddot{p}_1, p_2, \ddot{p}_2, p_3, \ddot{p}_3, q_1).$$
 (4.19e)

Kapitel 5

Steuerungs- und Regelungsentwurf

5.1 Regelung zur Stabilisierung von Ruhelagen

- notwendig???

5.2 Trajektorienplanung für den flachen Ausgang

Aufgabe der Trajektorienplanung ist es, Zeitverläufe des flachen Ausgangs vorzugeben, anhand derer später die Eingänge parametriert werden können, um eine Überführung des Kransystems zwischen zwei Ruhelagen zu ermöglichen. An den real vorhandenen Versuchsstand gibt es bisher keine formal spezifizierten Anforderungen bezüglich Grenzwerten von etwa Beschleunigungen oder Geschwindigkeiten, die bei der Abfahrt von Trajektorien auftreten dürfen. Aus physikalischer beziehungsweise technischer Sicht ist es sinnvoll, eine Planung der Referenztrajektorien so vorzunehmen, dass die Stell- bzw. Eingangsgrößen des Systems stetig verlaufen ohne Sprünge.

Aufgrund der einfachen Einprägung von Randbedingungen und Erfüllung von Differenzierbarkeitsbedingungen ist die Wahl eines polynombasierten Trajektorienansatzes sinnvoll. Aus der Flachheitsanalyse in Abschnitt 4.4 ist ersichtlich, dass für den flachen Ausgang $\mathbf{y} = (y_1, y_2, y_3, y_4)^T = (p_1, p_2, p_3, q_1)^T$ der Eingang $\tau_2 = \text{func}(y_1^{(4)}, y_2^{(4)}, y_3^{(4)}, \ddot{y}_4, ...)$ die höchsten Ausgangsableitungen aufweist. Damit für die polynomialen Trajektorien außerdem aus der Ruhelage $(t_0, y_{i,0})$ ein stetig differenzierbarer Übergang der Eingangsgrößenverläufe ohne Sprünge an den Rändern in die Ruhelage $(t_e, y_{i,e})$ gewährleistet

werden kann, müssen demnach folgende Bedingungen erfüllt sein [10, S. 230]:

$$y_{i}(t_{0}) = y_{i,0} \quad \text{für } i = 1, 2, 3, 4$$

$$y_{i}(t_{e}) = y_{i,e} \quad \text{für } i = 1, 2, 3, 4$$

$$\dot{y}_{i}(t_{0}) = \ddot{y}_{i}(t_{0}) = y_{i}^{(3)}(t_{0}) = y_{i}^{(4)}(t_{0}) = 0 \quad \text{für } i = 1, 2, 3$$

$$\dot{y}_{i}(t_{e}) = \ddot{y}_{i}(t_{e}) = y_{i}^{(3)}(t_{e}) = y_{i}^{(4)}(t_{e}) = 0 \quad \text{für } i = 1, 2, 3$$

$$\dot{y}_{4}(t_{0}) = \ddot{y}_{4}(t_{0}) = 0$$

$$\dot{y}_{4}(t_{e}) = \ddot{y}_{4}(t_{e}) = 0.$$
(5.1)

Es ergeben sich Ansatzfunktionen für die Trajektorien des flachen Ausgangs mit jeweiliger Ordnung $\alpha_i = 2N_i - 1$, wobei N_i der Anzahl der Randbedingungen des jeweiligen Ausgangs entspricht:

$$y_i(t) = a_{i,9}t^9 + a_{i,8}t^8 + \dots + a_{i,0} \quad \text{für } i = 1, 2, 3; \ t_0 < t < t_e$$

$$y_4(t) = a_{4,5}t^5 + a_{4,4}t^4 + \dots + a_{4,0} \quad \text{für } t_0 < t < t_e.$$
(5.2)

Die Koeffizienten der Trajektorien $a_{i,j}$ können durch Einsetzen der Randbedingungen und Lösen des resultierenden linearen Gleichungssystems bestimmt werden. In der Simualtion wurde als Implementierung dafür die Funktion condition_poly der Bibliothek symbtools verwendet.

5.3 Trajektorienfolgeregelung

5.3.1 Vektorieller relativer Grad

Es wird ein Mehrgrößensystem mit m Eingangskomponenten $u_1, ..., u_m$ und m Ausgangskomponenten $y_1, ..., y_m$ betrachtet:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}, \quad \mathbf{y} = \mathbf{h}(\mathbf{x}).$$
 (5.3)

Dabei gelte für den Zustand $\mathbf{x} \in \mathbb{R}^n$ sowie für die Vektorfelder $\mathbf{f} : M \to \mathbb{R}^n$, $\mathbf{g} : M \to \mathbb{R}^m$ und die Matrix $\mathbf{g} = (\mathbf{g}_1, ..., \mathbf{g}_m) : M \to \mathbb{R}^{n \times m}$, wobei M eine offene Teilmenge $M \subseteq \mathbb{R}^n$ repräsentiert. Dieses System hat an der Stelle $\gamma \in M$ den vektoriellen relativen Grad $\mathbf{r} = (r_1, ..., r_m)^T$, falls:

- 1. Die Lie-Ableitungen $L_{\mathbf{g}_j}L_{\mathbf{f}}^k h_i(\mathbf{x}) = 0$ für alle \mathbf{x} aus einer Umgebung von $\boldsymbol{\gamma}$ sowie für alle $i, j \in \{1, ..., m\}$ und $k \in \{0, ..., r-2\}$ und
- 2. die sogenannte Entkopplungsmatrix

$$\mathbf{\Lambda} = \begin{pmatrix} L_{\mathbf{g}_1} L_{\mathbf{f}}^{r_1 - 1} h_1(\mathbf{x}) & \dots & L_{\mathbf{g}_m} L_{\mathbf{f}}^{r_1 - 1} h_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ L_{\mathbf{g}_1} L_{\mathbf{f}}^{r_m - 1} h_m(\mathbf{x}) & \dots & L_{\mathbf{g}_m} L_{\mathbf{f}}^{r_m - 1} h_m(\mathbf{x}) \end{pmatrix}$$
(5.4)

im Punkt $\mathbf{x} = \boldsymbol{\gamma}$ regulär ist.

[10, S. 194]

5.3.2 Statische Rückführung

Ziel dieses Ansatzes ist es, die nichtlinearen Eingangs-Ausgangs-Verkopplungen eines Systems mit dem Verhalten

$$\mathbf{y} = \mathbf{\Gamma}(\mathbf{x}) + \mathbf{\Lambda}(\mathbf{x})\mathbf{u} \text{ mit } \mathbf{\Gamma}(\mathbf{x}) = (L_{\mathbf{f}}^{r_1}h_1(\mathbf{x}), ..., L_{\mathbf{f}}^{r_m}h_m(\mathbf{x}))^T$$
 (5.5)

durch eine statische (Zustands-)Rückführung

$$\Gamma(\mathbf{x}) + \Lambda(\mathbf{x})\mathbf{u} \stackrel{!}{=} \mathbf{v} \Rightarrow \mathbf{u} = \Lambda^{-1}(\mathbf{x}) \cdot (\mathbf{v} - \Gamma(\mathbf{x}))$$
 (5.6)

unter Nutzung eines virtuellen Eingangs $\mathbf{v} = (v_1, ..., v_m)^T$ zu kompensieren. Die Zusammensetzung dieses virtuellen Eingangs ist in Unterabschnitt 5.3.3 erklärt. [10, S. 195]

Bei dem vorliegenden Doppelkransystem kann durch Zeitableitungen der jeweiligen Komponente des flachen Ausgangs y_i die damit korrespondierende Komponente des relativen Grades r_i bestimmt werden. Diese entspricht der Ableitungsordnung, bei der das erste mal eine Komponente des Eingangs $\mathbf{u} := \boldsymbol{\tau}$ explizit auftritt. Hierbei werden die Zeitableitungen des Ausgangs durch Lie-Ableitungen entlang des Vektorfelds des Zustandsraummodells des Systems $\boldsymbol{\delta} := \dot{\mathbf{x}} = \mathbf{f} + \mathbf{g}\boldsymbol{\tau}$, welches in Gleichung (3.41) bestimmt wurde, rekursiv erzeugt:

$$y_i^{(k)} = L_{\delta} y_i^{(k-1)}. (5.7)$$

In Tabelle 2 sind die daraus bestimmten relativen Grade sowie die dabei explizit auftretenden Eingänge aufgelistet.

Tabelle 2 – Relative Grade der Ausgänge und explizites Auftreten der Eingänge.

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1	2	3	4
-	2	2	2	2
explizities Auftreten von τ_j bei $y_i^{(r_i)}$	$ au_3, au_4$	$ au_3, au_4$	$ au_3, au_4$	τ_1, τ_3
$y_j^{(k)}$ mit minimalem k bis erstes Auftreten von τ_i	$y_4^{(2)}$	$y_{1,2,3}^{(4)}$	$y_{1,2,3,4}^{(2)}$	$y_{1,2,3}^{(2)}$

Das Fehlen von τ_2 bei all diesen Ausgangsableitungen bedeutet für die Entkopplungsmatrix Λ gemäß Gleichung (5.4) eine Singularität, weil ihre Spalte nur Nulleinträge enthält. Der einzige von Null verschiedene Eintrag in der zweiten Spalte \mathbf{g}_2 der Eingangsmatrix

 ${\bf g}$ erfolgt nämlich durch $g_{10,2}=\frac{1}{m_3}$ und die Lie-Ableitungen $L_{\bf f}y_i=\dot{y}_i$ geben nur die zeitliche Ableitung des flachen Ausgangs $\dot{\mathbf{y}} = (\dot{p}_1, \dot{p}_2, \dot{p}_3, \dot{q}_1)^T$ wieder. So folgt für das relevante Produkt $\frac{\partial}{\partial \dot{q}_2} L_{\mathbf{f}} y_i \cdot g_{10,2} = \frac{\partial}{\partial \dot{q}_2} \dot{y}_i \cdot g_{10,2} = 0$ für i = 1, ..., 4, weil $\dot{q}_2 \not\in \dot{\mathbf{y}}$. Allgemeiner gilt, dass ein Eingang τ_j in den Komponenten der Ausgangsableitung $y_i^{(r_i)}$ genau dann nicht explizit auftritt, also die j-te Spalte von Λ eine Nullspalte ist, wenn für alle zugehörigen gemischten Lie-Ableitungen $L_{\mathbf{g}_i}L_{\mathbf{f}}^{r_i-1}y_i=0$ mit i=1,...,m gilt [10, S. 201]:

$$\Lambda = \begin{pmatrix}
0 & 0 & \frac{p_1 - q_1 - s_2 \cos(p_3)}{m_2 \sqrt{(p_2 - s_2 \sin(p_3))^2 + (-p_1 + q_1 + s_2 \cos(p_3))^2}} & \frac{-l_0 + p_1 - q_2 + s_2 \cos(p_3)}{m_2 \sqrt{(p_2 + s_2 \sin(p_3))^2 + (-p_1 + q_1 + s_2 \cos(p_3))^2}} \\
0 & 0 & \frac{p_2 - s_2 \sin(p_3)}{m_2 \sqrt{(p_2 - s_2 \sin(p_3))^2 + (-p_1 + q_1 + s_2 \cos(p_3))^2}} & \frac{p_2 + s_2 \sin(p_3)}{m_2 \sqrt{(p_2 + s_2 \sin(p_3))^2 + (l_0 - p_1 + q_2 - s_2 \cos(p_3))^2}} \\
0 & 0 & \frac{s_2(p_1 \sin(p_3) - p_2 \cos(p_3) - q_1 \sin(p_3))}{J_2 \sqrt{(p_2 - s_2 \sin(p_3))^2 + (-p_1 + q_1 + s_2 \cos(p_3))^2}} & \frac{s_2(l_0 \sin(p_3) - p_1 \sin(p_3) + p_2 \cos(p_3) + q_2 \sin(p_3))}{J_2 \sqrt{(p_2 + s_2 \sin(p_3))^2 + (l_0 - p_1 + q_2 - s_2 \cos(p_3))^2}} \\
\frac{1}{m_1} & 0 & \frac{-p_1 + q_1 + s_2 \cos(p_3)}{m_1 \sqrt{(p_2 - s_2 \sin(p_3))^2 + (-p_1 + q_1 + s_2 \cos(p_3))^2}} & 0
\end{pmatrix}.$$

$$(5.8)$$

Analog gilt dies für den alternativen flachen Ausgang $\tilde{\mathbf{y}} = (p_1, p_2, p_3, q_2)^T$ aufgrund des Fehlens von τ_1 , welches eine erste Nullspalte von Λ impliziert.

Daher ist die Entkopplungsmatrix Λ in dieser Form nie regulär und der vektorielle relative Grad r nie wohldefiniert. Dieses System ist nicht statisch eingangs-ausgangslinearisierbar. Stattdessen wird zur Regelung des Doppelkransystems ein Ansatz mit einer dynamischen Erweiterung oder quasi-statischen Zustandsrückführung verfolgt.

5.3.3 Zustandsrückführung aus Fehlerdynamik

Nach [10, S. 195] kann eine lineare Fehlerdynamik bezüglich des Trajektorienfolgefehlers $e_i := y_i - y_{i,ref}$ mit dem Messwert bzw. simuliertem Wert y_i und dem Wert der Referenztrajektorie $y_{i,ref} = \text{func}(t)$ (und nicht wie in der Literatur an dieser Stelle beschrieben bezüglich einer Abweichung von einem Festwert $y_{i,ref} = const.$) angesetzt werden. Damit können auch die Komponenten des virtuellen Eingangs gewählt werden:

$$e_i^{(r_i)} + c_{i,r_i-1} e_i^{(r_i-1)} + \dots + c_{i,1} \dot{e}_i + c_{i,0} e_i = 0$$
 (5.9)

$$e_i^{(r_i)} + c_{i,r_{i-1}} e_i^{(r_{i-1})} + \dots + c_{i,1} \dot{e}_i + c_{i,0} e_i = 0$$

$$\Leftrightarrow v_i = y_i^{(r_i)} = y_{i,\text{ref}}^{(r_i)} - c_{i,r_{i-1}} e_i^{(r_{i-1})} - \dots - c_{i,1} \dot{e}_i - c_{i,0} e_i.$$

$$(5.9)$$

Die Koeffizienten $c_{i,k},\ k\in {0,1,...,r_i-1}$ sind für eine Stabilisierung des Systems so zu wählen, dass das charakteristische Polynom dieser Gleichung ausschließlich Polstellen mit negativem Realteil aufweist.

5.3.4 Dynamische Erweiterung

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness notebooks/ODE flatness trajectory control simulation dyn.ipynb] zu

finden.

Die Entkopplungsmatrix Λ hat eine Nullspalte, weil τ_2 in keiner Ableitung der Ausgangskomponenten $y_i^{(r_i)}$ explizit auftritt. Somit gilt rang $\Lambda =: k = 3 < m = 4$. Es gilt für eine reguläre Matrix $\tilde{\Lambda}$ zu verhindern, dass die drei sonstigen Eingangskomponenten τ_1 , τ_3 und τ_4 in allen Ausgangsableitungen frühzeitig zur Ableitungsordnung 2 auftreten. Tabelle 2 kann entnommen werden, dass τ_2 das erste Mal in einer der Ausgangsableitungen der Ordnung 4 von y_1 , y_2 oder y_3 auftritt. Daher ist eine Ergänzung aller k = 3 Eingangskomponenten außer τ_2 um jeweils zwei Integratoren vorzunehmen. [10, S. 200]

So treten die neuen Eingangskomponenten ebenso wie τ_2 das erst mal bei der Ableitungsordnung 4 explizit auf. Die Systemgleichungen werden um die folgenden DGL dynamisch erweitert:

$$\dot{\tau}_1 =: \alpha_1
\dot{\tau}_3 =: \alpha_3
\dot{\tau}_4 =: \alpha_4
\dot{\alpha}_1 =: \beta_1
\dot{\alpha}_3 =: \beta_3
\dot{\alpha}_4 =: \beta_4.$$
(5.11)

Daraus folgt die Definition eines neuen Eingangsvektors unter Umsortierung der Komponente τ_2 an die letzte Stelle $\tilde{\boldsymbol{\tau}} = (\beta_1, \beta_3, \beta_4, \tau_2)^T$. Der Zustandsvektor wird auf $\tilde{\mathbf{x}} = (\mathbf{x}, \tau_1, \tau_3, \tau_4, \alpha_1, \alpha_3, \alpha_4)^T$ erweitert. Die Ausgangsableitungen werden erneut gemäß (5.7) rekursiv über Lie-Ableitungen entlang der erweiterten Zustandsgleichungen $\tilde{\boldsymbol{\delta}} = \tilde{\mathbf{f}} + \tilde{\mathbf{g}}\tilde{\boldsymbol{\tau}}$ mit

$$\tilde{\boldsymbol{\delta}} = \begin{pmatrix} \boldsymbol{\delta} \\ \alpha_1 \\ \alpha_3 \\ \alpha_4 \\ \beta_1 \\ \beta_3 \\ \beta_4 \end{pmatrix}, \quad \tilde{\mathbf{f}} = \tilde{\boldsymbol{\delta}}|_{\tilde{\tau}=0}, \quad \tilde{\mathbf{g}} = \frac{\partial \tilde{\boldsymbol{\delta}}}{\partial \tilde{\tau}}$$

$$(5.12)$$

gebildet. Eine alternative Berechnungsvorschrift zur Bestätigung des vorangegangenen Vorgehens ist für die höchsten Zeitableitungen der Ausgangskomponenten $y_i^{(r_i)}$ gemäß [10, S. 195] möglich:

$$y_i^{(r_i)} = L_{\tilde{\mathbf{f}}}^{r_i} y_i + L_{\tilde{\mathbf{g}}_1} L_{\tilde{\mathbf{f}}}^{r_i-1} y_i \beta_1 + L_{\tilde{\mathbf{g}}_2} L_{\tilde{\mathbf{f}}}^{r_i-1} y_i \beta_3 + L_{\tilde{\mathbf{g}}_3} L_{\tilde{\mathbf{f}}}^{r_i-1} y_i \beta_4 + L_{\tilde{\mathbf{g}}_4} L_{\tilde{\mathbf{f}}}^{r_i-1} y_i \tau_2.$$
 (5.13)

Für dieses modifizierte System folgt somit $r_i = 4$ für i = 1, ..., 4. Dieser relative Grad ist für eine Auswahl prototypischer Referenztrajektorien wohldefiniert, da Bedingung 1

aus Abschnitt 5.3.1 erfüllt ist und die Inverse der Entkopplungsmatrix stets existiert, Λ also regulär ist. Dementsprechend ist eine Zustandsrückführung nach Gleichung (5.6) in Abschnitt 5.3.2 möglich. Diese wird als dynamische Rückführung bezeichnet. Prototypische Trajektorien beim Übergang zwischen zwei Ruhelagen mit einem auszuregelnden Anfangsfehler sind in Abbildung 6 dargestellt. Die Zwiebelschalendiagramme in Abbildung 7 zeigen eine geometrische Veranschaulichung des selben Sachverhalts. Dabei ist die Bewegung der vier Gelenke sowie der beiden Seile und der Last, welche diese verbinden dargestellt. Für spätere Simulationszeitpunkte sind diese Momentaufnahmen der Konfiguration des Doppelkransystems dunkler dargestellt.

Ein Nachteil der dynamischen Rückführung ist die höhere Trägheit des Systems beim Ausregeln von Abweichungen von der Solltrajektorie, welche durch die zusätzlichen Integratoren vor den Systemeingängen hervorgerufen werden. So ist es notwendig die Pole der Fehlerdynamik für ein schnelles Ausgleichen von Anfangsfehlern relativ weit links in der komplexen Ebene zu platzieren. Zudem ergeben sich sehr lange Simulationsdauern, welche auch aus den relativ komplexen Stellgesetzen mit mehr als 20'000 Operationen je Eingangsgröße folgen können.

Auf die konkrete symbolische Angabe der Stellgesetze des Systemeingangs wird aus Praktikabilitätsgründen verzichtet und stattdessen auf das zu Beginn dieses Teilabschnitts 5.3.4 erwähnte Jupyter-Notebook verwiesen. Übersichtlicher ist an dieser Stelle eine Angabe von funktionalen Abhängigkeiten:

$$\beta_1 = \operatorname{func}(\mathbf{x}, \tau_1, \tau_3, \tau_4, \alpha_1, \alpha_3, \alpha_4, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \mathbf{y}_{\text{ref}}^{(3)}, \mathbf{y}_{\text{ref}}^{(4)})$$
(5.14a)

$$\beta_3 = \operatorname{func}(\mathbf{x}, \tau_1, \tau_3, \tau_4, \alpha_3, \alpha_4, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \mathbf{y}_{\text{ref}}^{(3)}, \mathbf{y}_{\text{ref}}^{(4)})$$
(5.14b)

$$\beta_4 = \operatorname{func}(\mathbf{x}, \tau_1, \tau_3, \tau_4, \alpha_3, \alpha_4, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \mathbf{y}_{\text{ref}}^{(3)}, \mathbf{y}_{\text{ref}}^{(4)})$$
(5.14c)

$$\tau_2 = \operatorname{func}(\mathbf{x}, \tau_1, \tau_3, \tau_4, \alpha_3, \alpha_4, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \mathbf{y}_{\text{ref}}^{(3)}, \mathbf{y}_{\text{ref}}^{(4)}). \tag{5.14d}$$

Anpassung der Trajektorienplanung

Durch die Einführung von jeweils zwei Integratoren nach den neuen Stellgrößen β_1 , β_3 und β_4 ist an beide Rändern jeder Referenztrajektorie der flachen Ausgangskomponenten y_i auch eine um jeweils zwei Ordnungen höhere Forderung an die stetige Differenzierbarkeit zu stellen. Das Vorgehen nach Abschnitt 5.2 kann erneut analog durchgeführt werden mit jeweils um vier Ordnungen höheren Polynomen der Ausgangstrajektorien in den Gleichungen (5.2).

Abbildung 6 – Prototypische Trajektorien des Doppelkransystems bei der Überführung zwischen zwei Ruhelagen unter der Ausregelung von Anfangsfehlern über die dynamische Erweiterung.

Abbildung 7 – Zwiebelschalendiagramme der Bewegung der vier Gelenke sowie der beiden Seile und der Last für prototypische Trajektorien des Doppelkransystems bei der Überführung zwischen zwei Ruhelagen unter der Ausregelung von Anfangsfehlern über die dynamische Erweiterung.

5.3.5 Quasi-statische Rückführungen

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness_notebooks/ODE_flatness_trajectory_control_simulation_qstat.ipynb] zu finden.

Ebenso wie die dynamische Erweiterung kann eine quasi-statische Zustandsrückführung bei einem nicht wohldefinierten relativen vektoriellen Grad im statischen Ansatz zur Stabilisierung des Systems angesetzt werden. Dafür wird das Vorgehen nach [10, S. 206] im Folgenden nachvollzogen und am Doppelkransystem angewendet. Tabelle 3 stellt für jede Eingangskomponente die Ableitungsordnung jeder Ausgangskomponente von \mathbf{y} gegenüber.

Tabelle 3 – Auftreten der Eingänge τ_j bei Ableitungsordnung k der Ausgänge y_i .

\overline{k}	$ au_1 ag{7}$	$ au_2$	$ au_3$	$ au_4$
$y_1^{(k)}$	4	4	2	2
$y_2^{(k)}$	4	4	2	2
$y_3^{(k)}$	4	4	2	2
$y_4^{(k)}$	2	>4	2	4
$(y_5^{(k)} = q_2^{(k)})$	>4	2	4	2)

Erneut wird o.B.d.A. der flache Ausgang $\mathbf{y} = (y_1, y_2, y_3, y_4)^T = (p_1, p_2, p_3, q_1)^T$ betrachtet. Die zeitlichen Ausgangsableitungen können wieder rekursiv gemäß Gleichung (5.7) mittels Lie-Ableitungen bezüglich des hierfür erweiterten Zustandsvektors $\tilde{\mathbf{x}} = (\mathbf{x}, \boldsymbol{\tau}, \dot{\boldsymbol{\tau}})^T$ entlang des Vektorfelds der Zustandsgleichungen $\tilde{\boldsymbol{\delta}} = \tilde{\mathbf{f}} + \tilde{\mathbf{g}}\tilde{\boldsymbol{\tau}}$ mit

$$\tilde{\boldsymbol{\delta}} = \begin{pmatrix} \mathbf{f} + \mathbf{g}\boldsymbol{\tau} \\ \dot{\boldsymbol{\tau}} \\ \ddot{\boldsymbol{\tau}} \end{pmatrix} \tag{5.15}$$

generiert werden.

Die Eingangskomponente τ_3 tritt das erste Mal bei $r_1=2$ in \ddot{y}_1 sowie auch in allen sonstigen zweiten Ableitungen des flachen Ausgangs auf. Dies gilt nicht für alle Eingangskomponenten, da der relative vektorielle Grad für $r_i=2$ für i=1,...,4 nicht wohldefiniert ist.

Außerdem tritt τ_4 auch bei $r_3=2$ in \ddot{y}_1 , \ddot{y}_2 und \ddot{y}_3 , nicht aber in \ddot{y}_4 auf. Dies entspricht nicht der in [10, S. 206] dargestellten Form, bei der für das Auftreten von u_2 der Ausgang y_2 noch weiter differenziert werden muss. τ_2 erscheint das erste Mal explizit bei $r_i=4$ in $y_1^{(4)}$, $y_2^{(4)}$ oder $y_3^{(4)}$, τ_1 zuerst bei $r_4=2$ in \ddot{y}_4 .

Eine Definition der neuen virtuellen Eingänge v_i ist so möglich:

$$\ddot{y}_{1} = \ddot{p}_{1} =: v_{1} = \operatorname{func}(\mathbf{x}, \tau_{3}, \tau_{4})
y_{2}^{(4)} = p_{2}^{(4)} =: v_{2} = \operatorname{func}(\mathbf{x}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \dot{\tau}_{3}, \dot{\tau}_{4}, \ddot{\tau}_{3}, \ddot{\tau}_{4})
\ddot{y}_{3} = \ddot{p}_{3} =: v_{3} = \operatorname{func}(\mathbf{x}, \tau_{3}, \tau_{4})
\ddot{y}_{4} = \ddot{q}_{1} =: v_{4} = \operatorname{func}(\mathbf{x}, \tau_{1}, \tau_{3}).$$
(5.16)

Daraus ist ersichtlich, dass durch ein Gleichungssystem aus v_1 , v_3 und v_4 in denen die Eingangskomponenten τ_1 , τ_3 und τ_4 affin auftreten, eine explizite Darstellung dieser Komponenten möglich ist. Dies steht im Gegensatz zur Situation in [10, S. 207], bei der die relativen Grade der Ausgangskomponenten aufsteigend sind, so dass kein Gleichungssystem gelöst werden muss, sondern sukzessives Einsetzen der vorher berechneten Eingänge und die algebraische Umformung der abgeleiteten Ausgänge genügt.

Die Berechnung von τ_2 erfordert einen größeren Aufwand als bei den anderen Eingangskomponenten. Dabei ist die Substitution bisheriger Eingangskomponenten und deren Ableitungen notwendig, welche analog zu Gleichung (5.7) aus den Lie-Ableitungen entlang $\tilde{\boldsymbol{\delta}}$ generiert werden können. Es folgt ein relativ umfangreicher Ausdruck für τ_2 , der zu diesem Zeitpunkt mehr als einhunderttausend Rechenoperationen enthält.

Nach [10, S. 208] können lineare Fehlerdynamiken und daraus \mathbf{v} entsprechend der jeweiligen relativen Grade der Ausgangskomponenten zur Stabilisierung des Systems angesetzt werden. Die Komponenten des virtuellen Eingangs v_1 , v_3 und v_4 sind jeweils nur von den Zustandskomponenten $\tilde{\mathbf{x}}$ abhängig. Die Komponente v_2 hängt allerdings auch von den Ableitungen $\ddot{y}_2 = \ddot{p}_2$ und $y_2^{(3)} = p_2^{(3)}$ ab, welche durch Lie-Ableitungen berechnet werden können:

$$\ddot{p}_2 = \ddot{y}_2 = L_{\tilde{\delta}}\dot{y}_2 = L_{\tilde{\delta}}\dot{p}_2 p_2^{(3)} = y_2^{(3)} = L_{\tilde{\delta}}\ddot{p}_2.$$
(5.17)

Außerdem werden in der Darstellung von τ_2 Ableitungen der Eingangskomponenten v_1 ,

 v_3 und v_4 benötigt, die aus deren Fehlerdynamiken zweiter Ordnung folgen:

$$\ddot{e}_{i} + c_{i,1}\dot{e}_{i} + c_{i,0}e_{i} = 0$$

$$e_{i}^{(3)} + c_{i,1}\ddot{e}_{i} + c_{i,0}\dot{e}_{i} = 0$$

$$e_{i}^{(3)} + c_{i,1}(-c_{i,1}\dot{e}_{i} - c_{i,0}e_{i}) + c_{i,0}\dot{c}_{i} = 0$$

$$e_{i}^{(3)} - c_{i,1}^{2}\dot{e}_{i} + c_{i,0}\dot{e}_{i} - c_{i,0}c_{i,1}e_{i} = 0$$

$$e_{i}^{(3)} + (c_{i,0} - c_{i,1}^{2})\dot{e}_{i} - c_{i,0}c_{i,1}e_{i} = 0$$

$$e_{i}^{(4)} + (c_{i,0} - c_{i,1}^{2})\ddot{e}_{i} - c_{i,0}c_{i,1}\dot{e}_{i} = 0$$

$$e_{i}^{(4)} + (c_{i,0} - c_{i,1}^{2})(-c_{i,1}\dot{e}_{i} - c_{i,0}e_{i}) - c_{i,0}c_{i,1}\dot{e}_{i} = 0$$

$$e_{i}^{(4)} + (c_{i,0}^{3} - 2c_{i,0}c_{i,1})\dot{e}_{i} + (c_{i,0}c_{i,1}^{2} - c_{i,0}^{2})e_{i} = 0$$

$$\Rightarrow \text{ für } i = 1, 3, 4 : \dot{v}_{i} = y_{i}^{(3)} = y_{i,\text{ref}}^{(3)} - (c_{i,0} - c_{i,1}^{2})\dot{e}_{i} + c_{i,0}c_{i,1}e_{i}$$

$$\ddot{v}_{i} = y_{i}^{(4)} = y_{i,\text{ref}}^{(4)} - (c_{i,1}^{3} - 2c_{i,0}c_{i,1})\dot{e}_{i} - (c_{i,0}c_{i,1}^{2} - c_{i,0}^{2})e_{i}.$$

$$(5.18)$$

Die Komponente v_2 ergibt sich nach einem Ansatz vierter Ordnung unter Einbeziehung des Zusammenhangs (5.17):

$$v_2 = y_2^{(4)} = y_{2,\text{ref}}^{(4)} - c_{2,3}(y_2^{(3)} - y_{2,\text{ref}}^{(3)}) - c_{2,2}(\ddot{y}_2 - \ddot{y}_{2,\text{ref}}) - c_{2,1}(\dot{y}_2 - \dot{y}_{2,\text{ref}}) - c_{2,0}(y_2 - y_{2,\text{ref}})$$
(5.19)

Auf die konkrete symbolische Angabe der Stellgesetze des Systemeingangs wird aus Praktikabilitätsgründen verzichtet und stattdessen auf das zu Beginn dieses Abschnitts 5.3.5 erwähnte Jupyter-Notebook verwiesen. Übersichtlicher ist an dieser Stelle eine Angabe von funktionalen Abhängigkeiten:

$$\tau_1 = \operatorname{func}(\mathbf{x}, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \ddot{\mathbf{y}}_{\text{ref}})$$
 (5.20a)

$$\tau_2 = \operatorname{func}(\mathbf{x}, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \ddot{\mathbf{y}}_{\text{ref}}, \mathbf{y}_{\text{ref}}^{(3)}, \mathbf{y}_{\text{ref}}^{(4)})$$
(5.20b)

$$\tau_3 = \operatorname{func}(\mathbf{x}, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \ddot{\mathbf{y}}_{\text{ref}})$$
 (5.20c)

$$\tau_4 = \operatorname{func}(\mathbf{x}, \mathbf{y}_{\text{ref}}, \dot{\mathbf{y}}_{\text{ref}}, \ddot{\mathbf{y}}_{\text{ref}}). \tag{5.20d}$$

Bei der simulativen Untersuchung dieses Ansatzes ergibt sich bereits im reinen Vorsteuerungsfall, also ohne Anfangsfehler oder Störungen des Systems, ein Problem mit Singularitäten in den berechneten Stellgrößen. Wenn im Stellgesetz allerdings nicht alle Zustandskomponenten \mathbf{x} vorkommen, sondern nur solche, welche auch Teil des flachen Ausgangs \mathbf{y} und seiner Ableitungen sind, treten keine Singularitäten auf. Eine Simulation dieses Regelungsansatzes ist daher erschwert und kann erst weiter verfolgt werden, wenn dieses Problem gelöst ist.

Singularitäten in der Nähe von Ruhelagen

In allen Eingangsgrößen treten bei diesem quasi-statischen Rückführungsentwurf in der Nähe von Ruhelagen Singularitäten auf. Diese ergeben sich aufgrund numerischer Effekte. Beim Einsetzen einer zuvor ermittelten Ruhelage entstehen Definitionslücken, sowohl Zähler als auch Nenner der Eingangsgrößen τ werden Null. Es ist nicht auszuschließen, dass diese Lücken durch algebraische Manipulation hebbar sind. Allerdings ist eine weitere händische Untersuchung dieses Zusammenhangs mit hohem Aufwand verbunden und wird im Rahmen dieser Arbeit nicht weiter verfolgt. Die CAS-Bibliothek SymPy bietet mittels des Aufrufs simplify allerdings keine Lösung dieses Problems in den Eingangsgrößen.

Für eine weitere Betrachtung eignen sich die einfacheren Terme des Nenners $N_{1,3,4}$ von τ_1 , τ_3 und τ_4 :

$$N_{1,3,4} = s_2(-4l_0pm_1\sin(pm_3) + 2l_0pm_2\cos(pm_3) + 4l_0qm_1\sin(pm_3) + l_0s_2\sin(2pm_3) + 4pm_1^2\sin(pm_3) - 4pm_1pm_2\cos(pm_3) - 4pm_1qm_1\sin(pm_3) - 4pm_1qm_2\sin(pm_3) + 2pm_2qm_1\cos(pm_3) + 2pm_2qm_2\cos(pm_3) + 4qm_1qm_2\sin(pm_3) - qm_1s_2\sin(2pm_3) + qm_2s_2\sin(2pm_3)).$$
(5.21)

Des Weiteren ist die Fragestellung von Interesse, weshalb sich solche Lücken bei der Konstruktion der Trajektorie in den Ruhelagen ergeben.

5.3.6 Exact feedforward linearization

Eine Implementierung der in diesem Abschnitt durchgeführten Überlegungen ist unter [16, flatness_notebooks/ODE_flatness_trajectory_control_simulation.ipynb] zu finden.

Bei der exact feedforward linearization wird ein Ansatz verfolgt, bei dem statt einer Kompensation der Nichtlinearität mittels Rückführung der gemessenen beziehungsweise simulierten Zustandskomponenten \mathbf{x} wie bei der exakten Eingangs-Ausgangs-Linearisierung die Referenztrajektorie \mathbf{x}_{ref} eingesetzt wird [5].

Heuristisch wird eine Fehlerdynamik der Ordnung zwei für alle Komponenten des Koordinatenvektors $\boldsymbol{\theta} = (p_1, p_2, p_3, q_1, q_2)^T$ (nicht nur solchen, die auch Teil des flachen Ausgangs sind!) angesetzt:

$$\ddot{\boldsymbol{\theta}} = \ddot{\boldsymbol{\theta}}_{ref} - \mathbf{c}_1^T \dot{\mathbf{e}} - \mathbf{c}_0^T \mathbf{e}. \tag{5.22}$$

Aus der Zusammensetzung des Zustandsvektors $\mathbf{x} = (\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})^T$ und der eingangsaffinen Zustandsraumdarstellung in Gleichung (5.3) kann außerdem der Zusammenhang:

$$\ddot{\boldsymbol{\theta}} = \mathbf{f}_{[6,10]}(\boldsymbol{\theta}) + \mathbf{g}_{[6,10]}(\boldsymbol{\theta}) \ \boldsymbol{\tau} \tag{5.23}$$

hergestellt werden. Dabei bedeutet die Indizierung $\bullet_{[i,j]}$, die Auswahl der Zeilen i bis j von \bullet . Da für den Systemeingang $\tau \in \mathbb{R}^4$ und für die Eingangsmatrix $\mathbf{g}_{[6,10]} \in \mathbb{R}^{5\times 4}$ gilt, kann dieser Zusammenhang über die Bildung einer Pseudo-Inversen $\mathbf{g}_{[6,10]}^+$ nach dem Eingangsvektor aufgelöst werden:

$$\boldsymbol{\tau} = \mathbf{g}_{[6,10]}^{+}(\boldsymbol{\theta}) \ (\ddot{\boldsymbol{\theta}}_{ref} - \mathbf{c}_{1}\dot{\mathbf{e}} - \mathbf{c}_{0}\mathbf{e} - \mathbf{f}_{[6,10]}(\boldsymbol{\theta})). \tag{5.24}$$

Durch Einsetzen der Referenztrajektorien der Koordinaten $\boldsymbol{\theta}_{\text{ref}}$ in $\mathbf{g}_{[6,10]}^+(\boldsymbol{\theta})$ und $\mathbf{f}_{[6,10]}(\boldsymbol{\theta})$ wird die exact feedforward linearization realisiert:

$$\boldsymbol{\tau} = \mathbf{g}_{[6,10]}^{+}(\boldsymbol{\theta}_{ref}) \ (\ddot{\boldsymbol{\theta}}_{ref} - \mathbf{c}_{1}\dot{\mathbf{e}} - \mathbf{c}_{0}\mathbf{e} - \mathbf{f}_{[6,10]}(\boldsymbol{\theta}_{ref})). \tag{5.25}$$

Abbildung 8 zeigt prototypische Trajektorien beim Übergang zwischen zwei Ruhelagen mit einem auszuregelnden Anfangsfehler für diesen Regelungsansatz.

Abbildung 8 – Prototypische Trajektorien des Doppelkransystems bei der Überführung zwischen zwei Ruhelagen unter der Ausregelung von Anfangsfehlern über die exact feedforward linearization mit Pseudoinverser.

Vereinfachung mittels Ausgangsselektion

Statt der Nutzung einer Pseudo-Inversen wie in Gleichung (5.25) wird im Folgenden eine Selektion von vier der fünf Gleichungen der Beschleunigungen $\ddot{\boldsymbol{\theta}}$ vorgenommen. Symbolisch wird dies über eine Selektionsmatrix \mathbf{S} dargestellt:

$$\mathbf{S} \cdot \ddot{\boldsymbol{\theta}} = \mathbf{S} \cdot (\ddot{\boldsymbol{\theta}}_{ref} - \mathbf{c}_1^T \dot{\mathbf{e}} - \mathbf{c}_0^T \mathbf{e}) = \mathbf{S} \cdot \mathbf{f}_{[6,10]}(\boldsymbol{\theta}) + \mathbf{S} \cdot \mathbf{g}_{[6,10]}(\boldsymbol{\theta}) \boldsymbol{\tau}. \tag{5.26}$$

Durch die Wahl der letzten vier Gleichungen kann eine direkte Inversion der somit quadratischen Eingangsmatrix $\mathbf{g}_{[7,10]} = \mathbf{S} \cdot \mathbf{g}_{[6,10]}$ erfolgen:

$$\boldsymbol{\tau} = \mathbf{g}_{[7,10]}^{-1}(\boldsymbol{\theta}_{ref}) \cdot \mathbf{S} \cdot (\ddot{\boldsymbol{\theta}}_{ref} - \mathbf{c}_1 \dot{\mathbf{e}} - \mathbf{c}_0 \mathbf{e} - \mathbf{f}_{[6,10]}(\boldsymbol{\theta}_{ref})) \text{ mit } \mathbf{S} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad (5.27)$$

Diese Berechnungsvorschrift der Stellgrößen enthält deutlich weniger Operationen als alle zuvor dargestellten Ansätze. Damit eignet sie sich insbesondere für eine spätere Implementierung auf einem Echtzeitsystemen sowie sehr viel kürzeren Simulationszeiten. Abbildung 10 zeigt, dass sich für Beispieltrajektorien mit Anfangsfehlern ebenso wie bei den vorherigen Ansätzen ein sehr gutes Folgeverhalten sowie eine stationäre Genauigkeit ergibt.

Auf die konkrete symbolische Angabe der Stellgesetze des Systemeingangs wird aus Praktikabilitätsgründen dennoch verzichtet, da jede Eingangskomponente trotzdem mehr als einhundert Rechenoperationen beinhaltet. Stattdessen wird auf das zu Beginn dieses Abschnitts 5.3.6 erwähnte Jupyter-Notebook verwiesen. Übersichtlicher ist an dieser Stelle eine Angabe von funktionalen Abhängigkeiten:

$$\tau_1 = \operatorname{func}(\mathbf{x}, \boldsymbol{\theta}_{\text{ref}}, \dot{\boldsymbol{\theta}}_{\text{ref}}, \ddot{\boldsymbol{\theta}}_{\text{ref}})$$
 (5.28a)

$$\tau_2 = \operatorname{func}(\mathbf{x}, \boldsymbol{\theta}_{\text{ref}}, \dot{\boldsymbol{\theta}}_{\text{ref}}, \ddot{\boldsymbol{\theta}}_{\text{ref}})$$
 (5.28b)

$$\tau_3 = \operatorname{func}(\mathbf{x}, \boldsymbol{\theta}_{\text{ref}}, \dot{\boldsymbol{\theta}}_{\text{ref}}, \ddot{\boldsymbol{\theta}}_{\text{ref}})$$
(5.28c)

$$\tau_4 = \operatorname{func}(\mathbf{x}, \boldsymbol{\theta}_{\text{ref}}, \dot{\boldsymbol{\theta}}_{\text{ref}}, \ddot{\boldsymbol{\theta}}_{\text{ref}}).$$
 (5.28d)

Stabilitätsbetrachtung

Im Folgenden wird die Simulation einer prototypischen Referenztrajektorie mit dem zuletzt vorgestellten Regelungsansatz betrachtet. Die Eigenwerte der Jacobimatrix $\mathbf{J}_{\dot{\mathbf{e}}}$ einer Fehlerdynamik

$$\mathbf{e} := \mathbf{x} - \mathbf{x}_{\text{ref}} \Leftrightarrow \mathbf{x} = \mathbf{e} + \mathbf{x}_{\text{ref}} \tag{5.29}$$

$$\dot{\mathbf{e}} = \dot{\mathbf{x}} - \dot{\mathbf{x}}_{\text{ref}} = \mathbf{f}(\mathbf{e} + \mathbf{x}_{\text{ref}}) + \mathbf{g}(\mathbf{e} + \mathbf{x}_{\text{ref}})\boldsymbol{\tau} - \dot{\mathbf{x}}_{\text{ref}}$$
(5.30)

$$\mathbf{J}_{\dot{\mathbf{e}}} = \frac{\partial \dot{\mathbf{e}}}{\partial \mathbf{e}} \tag{5.31}$$

sind für eine Stabilitätsbetrachtung von Interesse. Abbildung 9 zeigt, dass diese Eigenwerte in diesem Fall im Zeitraum von 5 s bis 9 s einen positiven Realteil aufweisen. Es ist möglich, dass aufgrund des bis dahin abgeklungenen Folgefehlers keine weitere Destabilisierung des Systems stattfindet, sondern eine stationäre Genauigkeit dennoch erreicht wird. Bis zum Ende der Simulationen weisen alle Eigenwerte erneut einen negativen Realteil auf. Formal kann allerdings bereits am Beispiel einer möglichen Referenztrajektorie mit Ljapunows erster (indirekter) Methode gezeigt werden, dass dieser Regelungsansatz zu einem instabilen System zu gewissen Simulationszeitpunkten führt [15, Vorlesung 4]. Eine andere Wahl der Rückführung (keine lineare Dynamik) könnte dieses Problem lösen.

Abbildung 9 – Eigenwerte der Jacobimatrix $J_{\dot{e}}$ bei der Folge einer prototypischen Referenztrajektorie bei der Regelung über exact feedforward linearization mit Selektionsmatrix.

Abbildung 10 – Prototypische Trajektorien des Doppelkransystems bei der Überführung zwischen zwei Ruhelagen unter der Ausregelung von Anfangsfehlern über die exact feedforward linearization mit Selektionsmatrix.

Kapitel 6

Fazit und Ausblick

6.1 Fazit

Für das zu untersuchende Brückenkransystem wurden analytische nichtlineare Modelle unter Nutzung des Lagrange-Formalismus ermittelt. Diese ergaben sich für die Lagrange-Gleichungen erster Art zu DGL- und für die Lagrange-Gleichungen zweiter Art zu DAE-Systemen. Für eine bessere Nachvollziehbarkeit der zugrunde liegenden Methodik wurde dieses Vorgehen zunächst anhand eines Einzelkransystems durchgeführt. Es erfolgte eine Identifikation aller zumeist geometrischen Modellparameter.

Die DGL-Modelle von Einzel- und Doppelkransystem wurden auf differenzielle Flachheit untersucht. Dabei wurde eine systematische Vorgehensweise für Mehrgrößensysteme skizziert. Dieses konnte auf Gleichungsebene anhand des Einzelkransystems veranschaulicht werden. Für das Doppelkransystem wurde aus Praktikabilitätsgründen auf eine explizite Darstellung der umfangreichen Ausdrücke in den Ergebnissen verzichtet. Unter Zuhilfenahme von Computeralgebrasystemen war eine Beschreibung dieser Zusammenhänge sowie Darstellung funktionaler Abhängigkeiten möglich.

Auf Grundlage des für das Doppelkransystem bestimmten flachen Ausgangs konnten polynombasierte Trajektorien der Ausgangskomponenten aufgestellt werden. Diese dienen der Überführung des Systems von einer gegebenen Ruhelage in eine andere. Auf Basis der Parametrisierung der Eingangskomponenten durch den flachen Ausgang war es möglich daraus Stellgrößenverläufe für eine Vorsteuerung abzuleiten. Zur Folgeregelung ist eine statische Rückführung aufgrund eines nicht wohldefinierten vektoriellen relativen Grades nicht möglich. Stattdessen konnte durch eine dynamische Rückführung mit linearen Fehlerdynamiken eine Stabilisierung des Systems bei Anfangsfehlern sowie Einschwingen entlang der Solltrajektorie erzielt werden, allerdings in Verbindung mit einem hohen Komplexitätsgrad des Stellgesetzes. Der Ansatz einer quasi-statischen Rückführung mündete in numerischen Problemen aufgrund von Singularitäten in der Nähe von Ruhelagen, welche im Rahmen dieser Arbeit nicht behoben wurden. Mittels der exact feedforward linearization wurde alternativ ein Regelungsansatz verfolgt, aus welchem ein kompaktes Stellgesetz folgt. Dafür wurde eine kleinere Ordnung der linearen

Fehlerdynamiken angenommen sowie alle Komponenten oder auch eine heuristische Selektion der Zustandskomponenten mit diesen Fehlerdynamiken behaftet. Dieser Ansatz eignete sich während praktischer Untersuchungen ebenso zur Stabilisierung des Systems bei Anfangsfehlern, verstößt aber gegen formale Stabilitätsbedingungen.

Die Durchführung umfangreicher symbolischer Berechnungen wie auch die numerisch simulative Verfikation der ermittelten Steurungs- und Regelungsgesetze erfolgte über Jupyter-Notebooks in Python. Über eine Robustheit der Regelungsansätze wurde keine Aussage getroffen. Gerade bei nichtlinearen Systemen wie dem in dieser Arbeit untersuchten können bereits geringe Modellabweichungen zur Instabilität bei Regelungsansätzen der exakten Linearisierung führen, woraus hohe Genauigkeitsanforderungen für die Modellbildung folgen.

6.2 Ausblick

Für die Untersuchung der Eignung der ermittelten Regelungsansätze am realen Demonstratorsystem ist eine Implementierung dieser auf der vorhandenen Hardware der Raspberry Pis notwendig. Gerade die Einhaltung von Anforderungen an die Echtzeitfähigkeit bei numerisch umfangreichen Stellgesetzen stellt dabei eine Herausforderung dar.

Die flachheitsbasierte Vorsteuerung kann zuerst allein erprobt werden, so dass auch aus Betrachtung der Abweichung von Ist- und Referenztrajektorien auf die Größenordnung der Modellabweichungen geschlossen werden kann. Die Regelungsansätze sollten daraufhin unter Begrenzung von Stellgrößen und Überwachung des gegebenenfalls instabil werdenden Systems getestet werden.

Neben einer vertieften Auseinandersetzung mit der quasi-statischen Rückführung, bei der Singularitäten in den Stellgesetzen gegebenenfalls durch die Hebung von Definitionslücken vermieden werden können, verspricht auch die Nutzung moderner Regelungsansätze aus dem Gebiet des maschinellen Lernens kompaktere sowie robuste Lösungen. Über das sogenannte bestärkende Lernen (englisch reinforcement learning) können sich Agenten für den Übergang zwischen Ruhelagen selbstständig eine Strategie aneignen. Ein Transferlernen aus Stelltrajektorien klassischer Regelungsansätze auf die Agenten wäre zudem denkbar.

Eine Präzisierung des physikalischen Modells durch Einbeziehung von Reibungseffekten könnte vor allem die Effektivität der daraus abgeleiteten Vorsteuerung weiter verbessern. Allerdings ergibt bereits das einfachere aktuelle Modell bei einem flachheitsbasiertem Vorgehen äußerst umfangreiche Terme für die Stellgrößen, so dass die Anpassung zuvor darauf trainierter Agenten über beispielsweise bestärkendes Lernen eine kompaktere Lösung ergeben könnte.

Literatur

- [1] Christian Andersson, Claus Führer und Johan Åkesson. "Assimulo: A unified framework for {ODE} solvers". In: Mathematics and Computers in Simulation 116.0 (2015), S. 26–43. ISSN: 0378-4754. DOI: http://dx.doi.org/10.1016/j.matcom.2015.04.007.
- [2] Torsten Fließbach. Mechanik: Lehrbuch zur Theoretischen Physik I. Spektrum Akademischer Verlag, 2009. DOI: https://doi.org/10.1007/978-3-8274-2188-3-8.
- [3] Raspberry Pi Foundation. <u>Technische Spezifikationen Raspberry Pi 4. Sep. 2022.</u> URL: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/.
- [4] Klemens Fritzsche u. a. "Zur systematischen Bestimmung flacher Ausgänge nichtlinearer Mehrgrößensysteme". In: at Automatisierungstechnik 64.12 (2016), S. 948–960. DOI: doi:10.1515/auto-2016-0079. URL: https://doi.org/10.1515/auto-2016-0079.
- [5] Veit Hagenmeyer und Emmanuel Delaleau. "Exact feedforward linearization based on differential flatness". In: International Journal of Control 76.6 (2003), S. 537–556. DOI: 10.1080/0020717031000089570. eprint: https://doi.org/10.1080/0020717031000089570. URL: https://doi.org/10.1080/0020717031000089570.
- [6] Home page Fraunhofer IIS/EAS. Fraunhofer-Institut fuer Integrierte Schaltungen IIS, Institutsteil Entwicklung Adaptiver Systeme EAS. Juni 2022. URL: https://www.eas.iis.fraunhofer.de/.
- [7] Klaus Janschek. "Skript Elemente der Modellbildung und Simulationstechnik Sommersemester 2020". In: (2020).
- [8] Klaus Janschek. Systementwurf mechatronischer Systeme Methoden Modelle Konzepte. Berlin: Springer, 2010. ISBN: 9783540788768. URL: http://slubdd.de/katalog? TN_libero_mab2)500406929.
- [9] Carsten Knoll. "Regelungstheoretische Analyse- und Entwurfsansaetze fuer unteraktuierte mechanische Systeme". Diss. TU Dresden, 2016. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-209765.
- [10] Klaus Röbenack. Nichtlineare Regelungssysteme. Springer Vieweg Berlin, Heidelberg, 2017. DOI: https://doi.org/10.1007/978-3-662-44091-9.

Literatur 45

[11] STMicroelectronics. <u>Technische Spezifikationen STM32F303K8</u>. Sep. 2022. URL: https://www.st.com/en/microcontrollers-microprocessors/stm32f303k8.html.

- [12] symbtools GitHub Repository. Juni 2022. URL: https://github.com/TUD-RST/symbtools.
- [13] Bruce Torby. "Energy Methods". In: Advanced Dynamics for Engineers (1984).
- [14] Trägheitsmoment. URL: https://de.wikipedia.org/wiki/Tr%C3%A4gheitsmoment#:
 ~:text=Ein%20Quader%2C%20der%20um%20eine%20Achse%20durch%20den%
 20Mittelpunkt%20rotiert%2C%20die%20parallel%20zu%20seinen%20Kanten%
 20c%20liegt..
- [15] Jan Winkler. "Skript Nichtlineare Regelungstechnik 1 Sommersemester 2021". In: (2021).
- [16] Konstantin Wrede. GitHub Repository zu dieser Studienarbeit. Sep. 2022. URL: https://github.com/wredsen/SA-Wrede.