Data Abstraction

Essentials of Programming Languages (Chapter 2)

I appreciate Dr. Shirin Baghoolizadeh for her helps for preparing this presentation.

Specifying Data via Interfaces

- We do not want to be concerned with representations of data types
 - manipulation files
 - arithmetic operations...
- We may also decide to change the representation of the data
- Data abstraction divides a data type into:
 - an interface: It tells us
 - what the data of the type represents
 - what the operations on the data are
 - what properties these operations may be relied on to have
 - an implementation: It provides
 - a specific representation of the data
 - code for the operations that make use of that data representation

[v]: The representation of data v

- Data type of natural numbers:
 - The interface is to consist of four procedures: zero, is-zero?, successor, and predecessor

$$(\texttt{zero}) = \lceil 0 \rceil$$

$$(\texttt{is-zero?} \lceil n \rceil) = \begin{cases} \texttt{#t} & n = 0 \\ \texttt{#f} & n \neq 0 \end{cases}$$

$$(\texttt{successor} \lceil n \rceil) = \lceil n + 1 \rceil & (n \geq 0)$$

$$(\texttt{predecessor} \lceil n + 1 \rceil) = \lceil n \rceil & (n \geq 0)$$

Client Program

- The client code manipulates the new data only through the operations specified in the interface
 - This code is representation-independent
- A sample of client program, manipulating natural numbers:

No matter what representation is in use

Interfaces

- Most interfaces contain
 - some *constructors*
 - for building elements of the data type
 - some *observers*
 - for extract information from values of the data type
- Zero, successor, and predecessor are constructors and is-zero? is observer

Some representations for natural numbers:

- 1) Unary representation:
- natural number *n* is represented by a list of n #t's
- 0 is represented by (), 1 is represented by (#t), 2 is represented by (#t #t), ...

```
\begin{bmatrix} 0 \end{bmatrix} = () \\
[n+1] = (\#t . [n])
```

In this representation, we can satisfy the specification by writing

```
(define zero (lambda () '()))
(define is-zero? (lambda (n) (null? n)))
(define successor (lambda (n) (cons #t n)))
(define predecessor (lambda (n) (cdr n)))
```

- 2) Scheme number representation:
 - we simply use Scheme's internal representation of numbers

```
(define zero (lambda () 0))
(define is-zero? (lambda (n) (zero? n)))
(define successor (lambda (n) (+ n 1)))
(define predecessor (lambda (n) (- n 1)))
```

3) Bignum representation:

- Numbers are represented in base N, for some large integer N
- The representation becomes a list consisting of numbers between 0 and N-1
 - with least-significant bigit first
- This representation makes it easy to represent integers that are much larger than can be represented in a machine word

$$\lceil n \rceil = \begin{cases} () & n = 0 \\ (r \cdot \lceil q \rceil) & n = qN + r, \ 0 \le r < N \end{cases}$$

So if
$$N = 16$$
, then $\lceil 33 \rceil = (1 \ 2)$ and $\lceil 258 \rceil = (2 \ 0 \ 1)$, since

$$258 = 2 \times 16^{0} + 0 \times 16^{1} + 1 \times 16^{2}$$

Opaque vs. Transparent

- Types can be divided into:
 - Opaque types
 - The representation of a type is hidden, so it cannot be exposed by any operation (including printing)
 - Transparent types
- Scheme does not provide a standard mechanism for creating new opaque types
 - we define interfaces and rely on the writer of the client program to be discreet and use only the procedures in the interfaces

Representation Strategies for Data Types

Consider a data type of *environments*.

- An environment associates a value with each element of a finite set of variables
- An environment is a function whose domain is a finite set of variables, and whose range is the set of all Scheme values
- environment $env = \{(var_1, val_1), \dots, (var_n, val_n)\}$ The interface to this data type has three procedures, specified as follows:

```
 \begin{array}{ll} (\texttt{empty-env}) & = \lceil \emptyset \rceil \\ (\texttt{apply-env} \lceil f \rceil \ \textit{var}) & = f(\textit{var}) \\ (\texttt{extend-env} \ \textit{var} \ \textit{v} \ \lceil f \rceil) & = \lceil g \rceil, \\ \\ \text{where} \ \textit{g}(\textit{var}_1) = \left\{ \begin{array}{ll} \textit{v} & \text{if} \ \textit{var}_1 = \textit{var} \\ f(\textit{var}_1) & \text{otherwise} \end{array} \right.
```

Environment

For example, the expression

defines an environment e such that e(d) = 6, e(x) = 7, e(y) = 8, and e is undefined on any other variables.

In this example, empty-env and extend-env are the constructors, and apply-env is the only observer

Environment

We can obtain a representation of environments by observing that every environment can be built by starting with the empty environment and applying extend-env n times, for some $n \ge 0$, e.g.,

So every environment can be built by an expression in the following grammar:

```
Env-exp ::= (empty-env)
::= (extend-env Identifier Scheme-value Env-exp)
```

A data-structure representation of environments

```
Env = (empty-env) \mid (extend-env Var SchemeVal Env)
Var = Sym
empty-env : () \rightarrow Env
(define empty-env
  (lambda () (list 'empty-env)))
extend-env : Var \times SchemeVal \times Env \rightarrow Env
(define extend-env
  (lambda (var val env)
     (list 'extend-env var val env)))
```

A data-structure representation of environments

```
apply-env : Env \times Var \rightarrow SchemeVal
(define apply-env
                                                                        (extend-env Var SchemeVal Env)
                                                  Env = (empty-env)
  (lambda (env search-var)
    (cond
      ((eqv? (car env) 'empty-env)
       (report-no-binding-found search-var))
      ((eqv? (car env) 'extend-env)
       (let ((saved-var (cadr env))
              (saved-val (caddr env))
             (saved-env (cadddr env)))
         (if (eqv? search-var saved-var)
           saved-val
           (apply-env saved-env search-var))))
      (else
        (report-invalid-env env))))
(define report-no-binding-found
  (lambda (search-var)
    (eopl:error 'apply-env "No binding for ~s" search-var)))
(define report-invalid-env
  (lambda (env)
    (eopl:error 'apply-env "Bad environment: ~s" env)))
```

Procedural Representation

```
Env = Var \rightarrow SchemeVal
empty-env : () \rightarrow Env
(define empty-env
  (lambda ()
     (lambda (search-var)
       (report-no-binding-found search-var))))
extend-env : Var \times SchemeVal \times Env \rightarrow Env
(define extend-env
  (lambda (saved-var saved-val saved-env)
     (lambda (search-var)
       (if (eqv? search-var saved-var)
         saved-val
         (apply-env saved-env search-var)))))
apply-env : Env \times Var \rightarrow SchemeVal
(define apply-env
  (lambda (env search-var)
     (env search-var)))
```

```
apply-env : Env \times Var \rightarrow SchemeVal
(define apply-env
  (lambda (env search-var)
    (cond
      ((eqv? (car env) 'empty-env)
       (report-no-binding-found search-var))
      ((eqv? (car env) 'extend-env)
       (let ((saved-var (cadr env))
              (saved-val (caddr env))
              (saved-env (cadddr env)))
          (if (eqv? search-var saved-var)
           saved-val
          (apply-env saved-env search-var))))
      (else
        (report-invalid-env env)))))
(define report-no-binding-found
  (lambda (search-var)
    (eopl:error 'apply-env "No binding for ~s" search-var)))
(define report-invalid-env
  (lambda (env)
    (eopl:error 'apply-env "Bad environment: ~s" env)))
```

Interfaces for Recursive Data Types

```
Lc\text{-}exp ::= Identifier

::= (lambda (Identifier) Lc\text{-}exp)

::= (Lc\text{-}exp Lc\text{-}exp)
```

The definition of occurs-free? in section 1.2.4 is not as readable as it might be

Our interface will have constructors and two kinds of observers: predicates and extractors

An Interface for Lambda calculus expressions

The constructors are:

```
var-exp : Var \rightarrow Lc-exp
```

lambda-exp : $Var \times Lc$ -exp $\rightarrow Lc$ -exp

app-exp : Lc- $exp \times Lc$ - $exp \rightarrow Lc$ -exp

The predicates are:

```
var-exp? : Lc-exp \rightarrow Bool : Lc-exp \rightarrow Bool app-exp? : Lc-exp \rightarrow Bool
```

Finally, the extractors are

```
var-exp->var: Lc-exp \rightarrow Varlambda-exp->bound-var: Lc-exp \rightarrow Varlambda-exp->body: Lc-exp \rightarrow Lc-expapp-exp->rator: Lc-exp \rightarrow Lc-expapp-exp->rand: Lc-exp \rightarrow Lc-exp
```

```
Lc\text{-}exp ::= Identifier

::= (lambda (Identifier) Lc\text{-}exp)

::= (Lc\text{-}exp Lc\text{-}exp)
```

Occurs-free?

```
Lc-exp ::= Identifier
occurs-free? : Sym \times LcExp \rightarrow Bool
                                                ::= (lambda (Identifier) Lc-exp)
(define occurs-free?
                                                ::= (Lc-exp \ Lc-exp)
  (lambda (search-var exp)
     (cond
       ((var-exp? exp) (eqv? search-var (var-exp->var exp)))
       ((lambda-exp? exp)
        (and
          (not (eqv? search-var (lambda-exp->bound-var exp)))
          (occurs-free? search-var (lambda-exp->body exp))))
       (else
         (or
           (occurs-free? search-var (app-exp->rator exp))
           (occurs-free? search-var (app-exp->rand exp)))))))
```

Interfaces for Recursive Data Types

Designing an interface for a recursive data type

- 1. Include one constructor for each kind of data in the data type.
- 2. Include one predicate for each kind of data in the data type.
- 3. Include one extractor for each piece of data passed to a constructor of the data type.

A Tool for Defining Recursive Data Types

```
(require (lib "eopl.ss" "eopl"))
(define-datatype type-name type-predicate-name
  { (variant-name { (field-name predicate) }*) }+)
          (define-datatype binaryTree binaryTree?
                  (null-node)
                  (leaf-node (datum number?))
                  (interior-node (key symbol?)
                                 (left-child binaryTree?)
                                 (right-child binaryTree?)))
```

A Tool for Defining Recursive Data Types

```
(define T1 (leaf-node 23))
(define T2 (leaf-node 11))
(define T3 (interior-node 'bob T1 T2))
(define T4 (interior-node 'top T3 (null-node)))
```


Lc-exp (define-datatype)

```
(define-datatype lc-exp lc-exp?
   (var-exp
        (var identifier?))
   (lambda-exp
        (bound-var identifier?)
        (body lc-exp?))
   (app-exp
        (rator lc-exp?)
        (rand lc-exp?)))
```

```
Lc\text{-}exp ::= Identifier

::= (lambda (Identifier) Lc\text{-}exp)

::= (Lc\text{-}exp Lc\text{-}exp)
```

```
The constructors are:
                 : Var \rightarrow Lc-exp
 var-exp
 lambda-exp : Var \times Lc-exp \rightarrow Lc-exp
                  : Lc-exp \times Lc-exp \rightarrow Lc-exp
 app-exp
The predicates are:
 var-exp? : Lc-exp \rightarrow Bool
 lambda-exp? : Lc-exp \rightarrow Bool
 app-exp? : Lc\text{-}exp \rightarrow Bool
                              : Lc-exp \rightarrow Var
var-exp->var
lambda-exp->bound-var : Lc-exp \rightarrow Var
lambda-exp->body : Lc-exp \rightarrow Lc-exp
                              : Lc-exp \rightarrow Lc-exp
app-exp->rator
                              : Lc-exp \rightarrow Lc-exp
app-exp->rand
```

S-list (define-datatype)

```
(define-datatype s-list s-list?
  (empty-s-list)
  (non-empty-s-list
    (first s-exp?)
    (rest s-list?)))
(define-datatype s-exp s-exp?
  (symbol-s-exp
    (sym symbol?))
  (s-list-s-exp
    (slst s-list?)))
```

$$S$$
-list ::= ($\{S$ -exp $\}$ *)
 S -exp ::= S ymbol | S -list

Cases

```
There is also a cases expression that gives you access to the
variant fields of an object constructed with define-datatype.
The format of this is
       (cases type object
               (variant1 (data fields) exp1)
               (variant2 (data fields) exp2)
               etc.)
```

Cases

Occurs-free (cases)

```
occurs-free? : Sym \times LcExp \rightarrow Bool
(define occurs-free?
  (lambda (search-var exp)
    (cases lc-exp exp
      (var-exp (var) (eqv? var search-var))
      (lambda-exp (bound-var body)
         (and
           (not (eqv? search-var bound-var))
           (occurs-free? search-var body)))
       (app-exp (rator rand)
         (or
           (occurs-free? search-var rator)
           (occurs-free? search-var rand)))))
```

Domain-specific language

- The form define-datatype is an example of a *domain-specific language*
- A domain-specific language is a small language for describing a single task
- In this case, the task was defining a recursive data type
- Such a language may lie inside a general-purpose language, as define-datatype does, or it may be a standalone language

Abstract Syntax and Its Representation

- A grammar usually specifies a particular representation of an inductive data type
 - Such a representation is called concrete syntax, or external representation

```
Lc\text{-}exp ::= Identifier

::= proc Identifier => Lc\text{-}exp

::= Lc\text{-}exp (Lc\text{-}exp)
```

- To process such data, we need to convert it to an internal representation
 - The define-datatype form provides a convenient way of defining such an internal representation.
 - We call this abstract syntax
 - Terminals such as parentheses need not be stored, because they convey no information

Abstract syntax tree

It is convenient to visualize the internal representation as an abstract syntax tree

(lambda (x) (f (f x)))

Abstract Syntax Tree

- Each internal node of the tree is labeled with the associated production name
- Edges are labeled with the name of the corresponding nonterminal occurrence
- Leaves correspond to terminal strings

Create an Abstract Syntax

- To create an abstract syntax for a given concrete syntax, we must name each production of the concrete syntax and each occurrence of a nonterminal in each production
- It is straightforward to generate define-datatype declarations for the abstract syntax. We create one define-datatype for each nonterminal, with one variant for each production.

Parsing

- If the concrete syntax is a set of strings of characters, it may be a complex undertaking to derive the corresponding abstract syntax tree
- This task is called parsing and is performed by a parser
- Because writing a parser is difficult in general, it is best performed by a tool called a parser *generator*
- A parser generator takes as input a grammar and produces a parser

Converting a Concrete Syntax to Abstract Syntax

If the concrete syntax is given as a set of lists, the parsing process is considerably simplified

```
parse-expression : SchemeVal \rightarrow LcExp
(define parse-expression
  (lambda (datum)
    (cond
      ((symbol? datum) (var-exp datum))
      ((pair? datum)
       (if (eqv? (car datum) 'lambda)
          (lambda-exp
            (car (cadr datum))
            (parse-expression (caddr datum)))
          (app-exp
            (parse-expression (car datum))
            (parse-expression (cadr datum)))))
      (else (report-invalid-concrete-syntax datum)))))
```

Converting an Abstract Syntax to Concrete Syntax

It is usually straightforward to convert an abstract syntax tree back to a list-and-symbol representation. If we do this, the Scheme print routines will then display it in a list-based concrete syntax. This is performed by unparse-lc-exp:

Interpreter Recipe

The Interpreter Recipe

- 1. Look at a piece of data.
- 2. Decide what kind of data it represents.
- 3. Extract the components of the datum and do the right thing with them.