Topología elemental Problemas

Íker Muñoz Martínez

Índice general

1.	Lista 0: Para Empezar	5
	1.1. Número 0.1	5
	1.2. Número 0.2	5
	1.3. Número 0.3	5
	1.4. Número 0.4	6
	1.5. Número 0.5	6
2.	Lista 1: Espacios Topológicos	7
3.	Lista 2: Aplicaciones continuas	9
4.	Lista 3: Construcción de topologías	11
5.	Lista 4: Separación	13
6.	Lista 5: Numerabilidad	15
7.	Lista 6: Compacidad	17
8.	Lista 7: Conexión	19
9.	Lista 8: Conexión por caminos	21
10	.Lista 9: Homotopía	23
11	Lista 10: Borsuk y sus variantes	25

Lista 0: Para Empezar

Número 0.1

Enunciado

 $Comprobar\ las\ leyes\ distributivas\ para\ la\ unión\ y\ la\ intersección\ de\ conjuntos,\ y\ las\ leyes\ de\ De\ Morgan.$

Solución:

dgerhgsre

Número 0.2

Enunciado

Se consideran una aplicación $f: A \to B$ y subconjutos $A_0 \subset A, B_0 \subset B$.

- (1) Demostrar que $A_0 \subset f^{-1}(f(A_0))$ y que se da la igualdad si f es inyectiva.
- (2) Demostrar que $f(f^{-1}(B_0)) \subset B_0$ y que se da la igualdad si f es sobreyectiva.

Solución:

Número 0.3

Enunciado

Se consideran una aplicación $f: A \to B$ y colecciones de subconjutos $A_i \subset A, B_i \subset B$.

- (1) Probar que f^{-1} conserva inclusiones, uniones, intersecciones y diferencias
 - (a) Si $B_i \subset B_j$, entonces $f^{-1}(B_i) \subset f^{-1}(B_j)$
 - (b) $f^{-1}(\bigcup_i B_i) = \bigcup_i f^{-1}(B_i)$
 - (c) $f^{-1}(\bigcap_{i} B_{i}) = \bigcap_{i} f^{-1}(B_{i})$

(d)
$$f^{-1}(B_i \setminus B_j) = f^{-1}(B_i) \setminus f^{-1}(B_j)$$

- (2) Demostrar que f conserva solamente las uniones y las inclusiones:
 - (a) Si $A_i \subset A_j$, entonces $f(A_i) \subset f(A_j)$
 - (b) $f(\bigcup_i A_i) = \bigcup_i f(A_i)$
 - (c) $f(\bigcap_i A_i) \subset \bigcap_i f(A_i)$; se da la igualdad si f es inyectiva.
 - (d) $f(A_i \setminus A_j) \supset f(A_i) \setminus f(A_j)$; se da la igualdad si f es inyectiva.

Solución:

Número 0.4

Enunciado

Probar que el conjunto \mathbb{Q} de los números racionales es numerable. Probar que el intervalo [0,1] no es numerable, y que por tanto no lo es \mathbb{R} .

Solución:

dgerhgsre

Número 0.5

Enunciado

(Distancias en \mathbb{R}^n) Comprobar que cada una de las siguientes es una distancia en \mathbb{R}^n y estudiar como son las bolas en cada una de ellas.

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2} \qquad \rho_1(x,y) = \sum_{i} |x_i - y_i| \qquad \rho_2(x,y) = \max_{i} |x_i - y_i|$$

Para la primera, utilizar la desigualdad triangular o de Minkowsky

$$\sqrt{\sum_{i} (a_i + b_i)^2} \le \sqrt{\sum_{i} a_i^2} + \sqrt{\sum_{i} b_i^2}$$

Solución:

dgerhgsre

Lista 1: Espacios Topológicos

Lista 2: Aplicaciones continuas

Lista 3: Construcción de topologías

Lista 4: Separación

Lista 5: Numerabilidad

Lista 6: Compacidad

Lista 7: Conexión

Lista 8: Conexión por caminos

Lista 9: Homotopía

Lista 10: Borsuk y sus variantes