What is claimed is:

1

n^2	1. A hiodegradable wellbore fluid comprising:	
SJOF	an oleaginous phase substantially composed of a linear paraffin have	ing 11-18
4	carbon atoms,	
5	a non-oleaginous phase containing a salt of a biodegradable anion, and	
6	an emulsifying agent in a concentration capable of forming an invert	emulsion
7	suitable for use as a drilling fluid.	
8	2. The fluid of claim 1 wherein the oleaginous phase comprises f	rom about
9	30 to 99% by volume of the fluid and wherein the non-oleaginous phase comp	rises from
10	about 1% to about 70% by volume of the fluid.	
11	3. The fluid of claim 2 wherein the non-oleaginous phase is substar	itially free
12	of halogen ions.	
13	4. The fluid of claim 2 wherein the non-oleaginous phase is select	eted from,
14	fresh water, a brine containing organic or inorganic dissolved salts, a liquid of	containing
15	water-miscible organic compounds, and combinations thereof.	
16	5. The fluid of claim 1 wherein the emulsifying agent is eurisic digl	yceride.
17	6. The fluid of claim 1 further comprising a weighting agent sele	cted from
18	the group consisting of calcium carbonate, hematite, ilmenite, barite, mullite	e, gallena,
19	magnanese oxides, iron oxides and combinations thereof.	
20	7. The fluid of claim 1 further comprising a fluid-loss reducing ager	ıt.
21	8. The fluid of claim 1 further comprising a viscosifying agent.	
22	9. The fluid of claim 8 wherein the viscosifying agent is an organop	hilic clay.
23	10. A method of producing a biodegradable wellbore fluid, the	e method
24	comprising:	
25	blending an oleaginous phase substantially composed of a linear parafi	in having
26	11-18 carbon atoms, a non-oleaginous phase containing a salt of a biodegrada	ble anion
27	and substantially free of halogen ions, and an emulsifying agent in a con-	centration
28	capable of forming an invert emulsion suitable for use as a drilling fluid, in	amounts
29	sufficent so as to produce a biodegradable wellbore fluid.	

A method of drilling a wellbore comprising,

27

28

29

30

GL	attaching a drilling bit to a length of drill pipe,
اللا	rotating the drilling bit so as to form the wellbore,
2	
3	ciculating a drilling fluid through the drill pipe and the wellbore so as to remove
4	the cuttings from around the drilling bit and out of the wellbore, and
5	separating the cuttings from the drilling fluid,
6	wherein the drilling fluid is a biodegradable wellbore fluid including an
7	oleaginous phase substantially composed of a linear paraffin having 11-18 carbon atoms,
8	a non-oleaginous phase contains a salt of a biodegradable anion, and an emulsifying agent
9	in a concentration capable of forming an invert emulsion suitable for use as a drilling
10	fluid.
11	12. The method of claim 11, wherein the oleaginous phase is substantially free
12	of halogen ion.
13	13. The method of claim 11 further comprising bioremediating the cuttings
14	after separating the cuttings from the drilling fluid.
15	14. The method of claim 13 wherein the bioremediating of the cuttings is
16	carried out using a method selected from: landfarming, reacting in a bioreactor,
17	conventional composting, vermiculture composting and combinations thereof.
18	A method of bioremediating wellbore cuttings comprising:
19	drilling a subterranean well using a drilling fluid including an oleaginous phase
20	substantially composed of a linear paraffin having 11-18 carbon atoms, a non-oleaginous
21	phase contains a salt of a biodegradable anion, and an emulsifying agent in a
22	concentration capable of forming an invert emulsion suitable for use as a drilling fluid;
23	removing the cuttings from the well;
24	transporting the cuttings to a remediation site;
25	blending the cuttings with nutrients to create a treatment feed, and
26	bioreplediating said treatment feed so as to subtantially bioremediate the cutting.

The method of claim 15, wherein the non-oleaginous phase is substantially 16. free of halogen ions.

The method of claim 15 wherein the treatment feed is formed into a slurry 17. and the slurry is placed in a bioreactor and bacteria perform the bio-remediation.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

29

~IX	
Subt	18. The method-of claim 15 wherein the treatment feed is pretreated in a
2	compost vessel prior to being formed into a slurry.
3	19. A soil amendment comprising:
4	drill cuttings from a wellbore, wherein said wellbore was drilled using a drilling
5	fluid including an oleaginous phase substantially composed of a linear paraffin having 11-
6	18 carbon atoms, a non-oleaginous phase containing the salt of a biodegradable anion,

20. The soil amendment of claim 19, wherein the non-oleaginous phase is substantially free of halogen ion.

suitable for use as a drilling fluid, and a bulking agent.

and an emulsifying agent in a concentration capable of forming an invert emulsion

- 21. The soil amendment of claim 20 wherein the drill cuttings are formed into a drill cuttings slurry and the drill cuttings slurry is placed in a bioreactor and bacteria perform the bio-remediation.
- 22. The method of claim 20 wherein the non-oleaginous phase is substantially free of halide ions.
- 23. The soil amendment of claim 20 wherein the bulking agent is selected from sawdust, wood shavings, rice hulls, canola husks, shredded newsprint/paper; shredded coconut hulls, cotton seed hulls, and mixtures of these
- 24. The soil amendment of claim 20 wherein the emulsifying agent is eurisic diglyceride.
- A method comprising biodegrading by vermicomposting drilling cuttings coated with a drilling fluid, wherein the drilling fluid formulation includes a linear paraffin having 11-18 carbon atoms, a non-oleaginous phase, and an emulsifying agent.
- 76. The method of claim 25 further comprising mixing the drilling cuttings with a compostable waste material so as to provide a compostable balance of nitrogen and carbon content.
- 27. The method of claim 25 wherein the nitrogen and carbon content have a ratio of about 2:1 to about 100:1.
 - 28. The method of claim 25 wherein the nitrogen and carbon content have a ratio-of-about 25:1.

5

11

12

13

14

15

16

17

25

26

27

- 30. The method of claim 25 wherein the drilling fluid further includes a weighting agent.
- The method of claim 25 wherein the non-oleaginous fluid is selected from fresh water, sea water, a brine containing organic or inorganic dissolved salts, a liquid containing water-miscible organic compounds, and combinations thereof.
- 9 32. The method of claim 25 wherein the emulsifying agent is a eurisic 10 diglyceride.
 - A method for biodegrading drilling cuttings coated with a drilling fluid, the method comprising: exposing the drilling cuttings to a vermicomposting environment for a sufficient period of time to permit the worms to biodegrade the organic components of the drilling fluid.
 - 34. The method of claim 33 wherein the drilling fluid is formulated to include a linear paraffin having 11-18 carbon atoms a non-oleaginous phase, and an emulsifying agent.
- 18 35. The method of claim 33 further comprising mixing the drilling cuttings 19 with a compostable waste material so as to provide a compostable balance of nitrogen 20 and carbon content.
- 21 36. The method of claim 33 wherein the nitrogen and carbon content have a 22 ratio of about 2:1 to about 100:1.
- 23 37. The method of claim 33 wherein the nitrogen and carbon content have a ratio of about 25:1.
 - 38. The method of claim 33 wherein the vermicomposting is carried out in a bioreactor selected from a bin vermicomposter, a rotating drum vermicomposter, windrows and combinations of these.
- 28 39. The method of claim 33 wherein the drilling fluid further includes a weighting agent.

SI	40. The method of claim 33 wherein the non-oleaginous fluid is selected from fresh water sea water, a brine containing organic or inorganic dissolved salts, a liquid
2	fresh water sea water, a brine containing organic or inorganic dissolved salts, a liquid
3	containing water-miscible organic compounds, and combinations thereof.

- 41. The method of claim 33 wherein the emulsifying agent is a eurisic diglyceride.
- 42. A method of vermicular bio-remediation of oil contaminated solids, the method comprising providing the oil contaminated solids to a vermicular bioreactor, and allowing the worms within the vermicular bioreactor to biodegrade the oil contaminated solids.
- 43. The method of claim 42 wherein the drilling fluid is formulated to include a linear paraffin having 11-18 carbon atoms, a non-pleaginous phase, and an emulsifying agent.
- 44. The method of claim 42 further comprising mixing the drilling cuttings with a compostable waste material so as to provide a compostable balance of nitrogen and carbon content.
- 45. The method of claim 42 wherein the nitrogen and carbon content have a ratio of about 2:1 to about 100:1.
- 46. The method of claim 42 wherein the nitrogen and carbon content have a ratio of about 25:1.
- 47. The method of claim 42 wherein the vermiculture bioreactor is selected from a bin vermicomposter, a rotating drum vermicomposter, windrows and combinations of these
- 48. The method of claim 42 wherein the drilling fluid further includes a weighting agent.
 - 49. The method of claim 42 wherein the drilling fluid further includes a fluid loss control agent.
 - 50. The method of claim 42 wherein the non-oleaginous fluid is selected from fresh water, sea water, a brine containing organic or inorganic dissolved salts, a liquid containing water-miscible organic compounds, and combinations thereof.

22

23

24

Sub	51. The method of claim 42 wherein the emulsifying agent is a eurisic
2	diglyceride.
3	A vermiculture feed composition comprising: oil contaminated solids, a
4	bulking agent, and a compostable nitrogen source.
5	53. The vermiculture feed composition of claim 52 wherein the oil
6	contaminated solids are selected from drift cuttings, drilling mud, oil contaminated soil,
7	and combinations thereof.
8	54. The vermiculture feed composition of claim 52 wherein the bulking agent
9	is selected from sawdust, wood shavings, rice hulls, canola husks, shredded
10	newsprint/paper; shredded coconat hulls, cotton seed hulls, and mixtures of these.
11	55. The vermiculture feed composition of claim 52 wherein the compostable
12	nitrogen source is selected from yard wastes, household wastes, farm wastes, food
13	preparation wastes, food processing wastes, paunch material, rumen material, animal
14	rendering wastes, sewage sludge, and mixtures of these.
15	56. The vermiculture feed compositions of claim 52 wherein the compositions
16	have a carbon to nitrogen ratio of about 25:1 and a moisture content of about 75% by
17	weight.
18	57. The vermiculture feed compositions of claim 52 wherein the composition
19	further includes pretreated or pre-composted materials.
20	58. The vermiculture composition of claim 52 wherein the composition is pre-

treated of pre-composed prior to being used in vermiculture.

A vermicast composition comprising vermicast and biodegraded drill