

Transverse polarization measurement of Λ hyperons in pNe collisions at $\sqrt{s_{\mathrm{NN}}} = 68.4$ GeV with the LHCb detector

LHCb collaboration[†]

Abstract

A measurement of the transverse polarization of the Λ and $\overline{\Lambda}$ hyperons in pNe fixed-target collisions at $\sqrt{s_{\rm NN}}=68.4$ GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay $\Lambda \to p\pi^-$ together with its charge conjugated process, the integrated values measured are

$$\begin{split} P_{\varLambda} &= 0.029 \pm 0.019 \, (\mathrm{stat}) \pm 0.012 \, (\mathrm{syst}) \, , \\ P_{\overline{\varLambda}} &= 0.003 \pm 0.023 \, (\mathrm{stat}) \pm 0.014 \, (\mathrm{syst}) \, . \end{split}$$

Furthermore, the results are shown as a function of the Feynman x variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.

Submitted to JHEP

© 2024 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.

[†]Authors are listed at the end of this paper.

1 Introduction

The spontaneous transverse polarization of Λ hyperons was first observed in 1976 in unpolarized fixed-target collisions of protons with an energy of 300 GeV and a beryllium target [1]. This result was in contradiction with the expectation that the large number of final states in high-energy particle production would suppress polarization effects and showed that spin effects contribute significantly even at high-energy. A polarizing fragmentation function, denoted by D_{1T}^{\perp} , has been proposed in Refs. [2–4] to account for the polarized production of Λ hyperons. The mechanism involving the D_{1T}^{\perp} function is the same as that used in the framework of the transverse-momentum-dependent unpolarized fragmentation functions (TMDs) to describe the fragmentation of an unpolarized quark into a transversely polarized hadron. The spin and azimuthal asymmetries observed at sufficiently large energy scales cannot be explained by asymmetries at the level of the hard partonic process, instead their origin must lie in soft processes. By maintaining an explicit dependence on the intrinsic partonic motion, TMDs account for spin and momentum correlations at the soft level, potentially explaining the observed asymmetries. Since these functions arise from soft mechanisms, they are difficult to calculate from first principles. Hence, just as with collinear parton distribution functions and fragmentation functions, one possible approach is to determine them from experimental data. Several attempts were made to describe Λ polarization, both on the theoretical and experimental sides, at different accelerators and center-of-mass energies. Particularly relevant are the measurements from the STAR experiment at RHIC [5] and Belle at KEKB [6]. None of these results led to a fully satisfactory answer, and the mechanism giving rise to Λ polarization is still unclear. In this paper, a measurement of transverse Λ and Λ polarization is presented, using the LHCb experiment in a fixed-target configuration. The polarization is determined using proton-neon (pNe) data collected in 2017 from collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\rm NN}} = 68.4 \, {\rm GeV}$, generated by a 2.5 TeV proton beam incident on neon nuclei at rest and corresponding to an integrated luminosity of 24.9 nb⁻¹. The hyperons are reconstructed through the decays $\Lambda \to p\pi^-$ and $\bar{\Lambda} \to \bar{p}\pi^+$. The results are obtained as a function of the transverse momentum (p_T) of the hyperon, the pseudorapidity (η) , the rapidity (y) and the Feynman variable $x_{\rm F} = \frac{2 \cdot p_{\rm L}}{\sqrt{s_{\rm NN}}}$ (where $p_{\rm L}$ is the longitudinal momentum of the particle), as a non trivial dependence of the polarization on these variables has been reported in other publications [7].

2 The LHCb detector

The LHCb detector [8,9] is a single-arm forward spectrometer, designed for the study of particles containing c or b quarks, covering the pseudorapidity range $2 < \eta < 5$. The detector includes: a silicon-strip vertex locator (VELO), three tracking stations of silicon-strip detectors and straw drift tubes, two ring-imaging Cherenkov detectors (RICH) that are able to discriminate between different species of charged hadrons, a calorimeter system consisting of scintillating-pad and preshower detectors, electromagnetic and hadronic calorimeters, and a muon detector composed of alternating layers of iron and multiwire proportional chambers. The System for Measuring the Overlap with Gas (SMOG) [10] enables the injection of gases with a pressure of $\mathcal{O}(10^{-7})$ mbar in the beam pipe section inside the VELO, allowing LHCb to operate as a fixed-target experiment. The SMOG

system thus provides a unique opportunity to study proton-nucleus and nucleus-nucleus collisions with various gaseous targets using the LHC beams. In this configuration, the LHCb acceptance extends to the negative rapidity hemisphere, due to the boost induced by the high-energy proton beam, which points to the positive-z direction.

3 Data sample and analysis strategy

The pNe sample was taken during the pp data-taking period. Fixed-target events were collected only when a bunch in the beam pointing towards the LHCb detector crossed the interaction region without a corresponding bunch in the beam pointing to the opposite direction. To suppress the remaining pp background, the z-coordinate of the pNe primary vertex (PV) is required to lie in the fiducial region $z_{PV} \in [-200, -100] \cup [100, 150] \,\mathrm{mm}.^1$ Furthermore, events with more than four hits in the VELO stations upstream of the interaction region are rejected. The online event selection is performed by a trigger [11], that requires at least one track reconstructed in the VELO. Since the Λ reconstruction requires two tracks, this trigger condition does not bias the measurement. In the offline selection, the Λ candidates are required to be reconstructed from proton and pion tracks with opposite charge, forming a vertex with a good-quality fit. Protons and pions are required to have a minimum transverse momentum of 100 MeV/c and a minimum momentum of 2 GeV/c. Particle identification (PID) requirements based on the information from the RICH detectors are applied to select protons. Finally, to suppress the contribution of nonprompt Λ hyperons, the impact parameter of the Λ candidate with respect to the PV is required to be less than 1.5 mm, which reduces this contribution to about 5%. Figure 1 shows the $p\pi^-$ and $\bar{p}\pi^+$ invariant-mass distributions obtained after all the selection criteria have been applied. The distributions are fitted with the convolution of a Cauchy and a Gaussian function to describe the signal shape and a first-order polynomial to model the background.

Figure 1: Invariant-mass distributions for (left) Λ and (right) $\overline{\Lambda}$ candidates after all selection requirements are applied. The fit result is overlaid on the data.

 $^{^{1}}z_{\text{PV}} = 0$ is the z coordinate of the center of the pp interaction region.

The decays $\Lambda \to p\pi^-$ and $\bar{\Lambda} \to \bar{p}\pi^+$ exhibit significant parity violation, resulting in large asymmetries in the angular distribution of their decay particles. In particular, the angular distribution of the proton in the Λ rest frame is given by

$$\frac{dN}{d\cos\theta} = \frac{dN_0}{d\cos\theta} (1 + \alpha P_A \cos\theta),\tag{1}$$

where θ is the angle between the proton momentum and the normal to the production plane spanned by the beam and the Λ momentum directions, $\frac{dN_0}{d\cos\theta}$ is the decay distribution for unpolarized Λ hyperons, P_{Λ} is the magnitude of the Λ polarization, and α is the value of the parity-violating decay asymmetry for the Λ hyperon. The magnitude of the polarization is determined from a fit to the angular distribution of the proton in 10 bins of $\cos\theta$.

4 Simulation and efficiencies

Efficiencies are estimated using samples of fully simulated events. The simulated decays are reconstructed and analyzed using the same software tools as those used to process the data. In the simulation, Λ hyperons are generated using PYTHIA [12] with a specific LHCb configuration [13] and with colliding-proton beam momentum equal to the momentum per nucleon of the beam and target in the centre-of-mass frame. The decays of unstable particles are described by EVTGEN [14], in which final-state radiation is generated using PHOTOS [15]. The four-momentum of the Λ decay particles is then embedded into pNe minimum bias events that are generated with the EPOS event generator [16]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [17,18] as described in Ref. [19].

After reconstruction, the simulated samples are weighted to improve agreement with data. Weights are calculated as the ratio between the normalized data and simulated distributions as a function of $p_{\rm T}$, η and $z_{\rm PV}$ with

$$w(p_{\mathrm{T}}, \, \eta, \, z_{\mathrm{PV}}) = w(p_{\mathrm{T}}, \, \eta) \cdot w(z_{\mathrm{PV}}), \tag{2}$$

where $w(p_{\rm T},\eta)$ is evaluated in 6 intervals of transverse momentum between 300 and 2500 MeV/c and 7 intervals of pseudorapidity between 2 and 5. The weights $w(z_{\rm PV})$ are evaluated in 6 intervals between -200 and 150 mm, ignoring the region between -100 and 100 mm outside the fiducial region considered in the analysis. Through the weighting procedure, the simulation is corrected on average by 6% as a function of transverse momentum and pseudorapidity, and by 4% as a function of $z_{\rm PV}$, for both Λ and $\bar{\Lambda}$ hyperons. Accounting for efficiency factors, Eq. 1 is modified to

$$\frac{dN}{d\cos\theta} = \frac{dN_0}{d\cos\theta} (1 + \alpha P_A \cos\theta) \times \epsilon(\cos\theta) \times \epsilon_{\text{PID}},\tag{3}$$

where ϵ_{PID} is the particle identification efficiency for the protons, estimated from dedicated calibration data samples and computed as a function of the proton kinematics. The $\epsilon(\cos\theta)$ term is the product of acceptance, reconstruction and selection efficiencies. It is determined using simulation as $\epsilon(\cos\theta) = f_{\text{rec}}(\cos\theta)/f_{\text{gen}}(\cos\theta)$, where f indicates the $\cos\theta$ distribution for generated candidates (f_{gen}) , without any detector effect, or for fully reconstructed candidates (f_{rec}) , with detector effects included. As the polarization effects

Figure 2: Efficiency-corrected $\cos \theta$ distributions, for (left) Λ and (right) $\overline{\Lambda}$ hyperons. The result of the fit is overlaid (red line).

are not included in the simulation, the generated $\cos\theta$ distribution is uniform. Since only the shape of the distribution is relevant, the efficiency is proportional to the reconstructed $\cos\theta$ distributions, and the generated one is ignored. To correct the angular distributions in data, in each $\cos\theta$ bin, the normalized number of candidates in the data is divided by the normalized number of candidates in the simulated reconstructed sample.

5 Results and systematic uncertainties

The proton angular distributions, after efficiency correction, are shown in Fig. 2. The function $f(\cos \theta) = A(1 + \alpha P_{\Lambda} \cos \theta)$ is fitted to the data distributions, where $\alpha = 0.746 \pm 0.007$ for Λ and $\alpha = -0.757 \pm 0.004$ for $\bar{\Lambda}$ are fixed to their world average value [20]. The magnitude of the polarization is given by the free parameter of the fit shown in Fig. 2.

Several sources of systematic uncertainties are considered. The fit to the invariantmass distribution is repeated using a double-sided Crystal Ball function [21] instead of the convolution of a Cauchy and a Gaussian function for the signal shape, and a second-order polynomial instead of a first-order one for the background, and the values of the polarization are determined again. The systematic uncertainty is determined as the deviations of these results with respect to those of the default fit. Uncertainties related to the weighting procedure applied to the simulation are taken into consideration by carrying out 100 trials, randomly varying each weight within its uncertainty, calculating new values for the polarization, and taking as systematic uncertainty the largest difference in the polarization values compared to the default one. The choice of the variables used to weight the simulation is also considered; the uncertainty is calculated as the difference between the results obtained by using the track multiplicity and those obtained using the Λ pseudorapidity in the calculation of the weights. The choice of binning for the angular distributions affects the fit results. This is taken into account by repeating the polarization measurements using 5 bins instead of 10 in the angular distribution. Another contribution is associated with the estimation of PID efficiencies. An alternative approach is used, where the particle identification efficiencies are directly estimated from the simulation rather than using dedicated calibration samples. Another systematic uncertainty contribution arises from nonprompt Λ hyperon contamination in the data sample, which is estimated

Table 1: Contributions of systematic uncertainties on the polarization measurement for Λ and $\overline{\Lambda}$ hyperons.

Source	Λ	$\overline{\varLambda}$
Signal estimation	0.007	0.001
Background estimation	0.001	0.010
Kinematic weights	0.001	0.001
Multiplicity dependence	0.001	0.004
Binning of $\cos \theta$ distributions	0.007	0.006
PID efficiencies	0.002	0.005
Nonprompt contamination	0.005	0.002

from simulation to account for 5% of the total yield. To estimate an upper limit on the nonprompt contamination, the impact parameter requirement (which retains approximately 50% of the nonprompt signal) is removed, the measurement is repeated and the difference with the baseline value is taken as systematic uncertainty. The systematic uncertainty due to the external parameter α is found to be negligible. The total systematic uncertainty is computed as the sum in quadrature of each contribution shown in Table 1. The systematic contributions are found to be small and the measurement is dominated by statistical uncertainties. The statistical effect on each systematic contribution is not negligible as reflected in the differences between Λ and $\bar{\Lambda}$ hyperons. The final polarization measurements are

$$P_{\Lambda} = 0.029 \pm 0.019 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \,,$$

 $P_{\bar{\Lambda}} = 0.003 \pm 0.023 \,(\text{stat}) \pm 0.014 \,(\text{syst}) \,.$

The polarization measurements have also been performed in bins of $p_{\rm T}$, η , y and $x_{\rm F}$. The results are shown in Fig. 3 and listed in Table 2. Other experiments with different energies and collision systems have measured the Λ polarization. In its fixed-target configuration, the LHCb experiment covers an energy and kinematic range that is largely unexplored. Figure 4 compares and shows the agreement between the results of this paper with measurements from other experiments, including ATLAS [22], an experiment at the M2 beam-line at Fermilab [23], the E799 experiment [24], NA48 [25], and HERA-B [26]. The measurements reported here, and those from HERA-B, cover negative values of $x_{\rm F}$, so the results are first transformed using the following symmetry of the transverse polarization $P_{\Lambda}(-x_{\rm F}) = -P_{\Lambda}(x_{\rm F})$, and then compared with the other measurements.

6 Conclusions

A measurement of transverse polarization of Λ and $\bar{\Lambda}$ hyperons in pNe collisions at $\sqrt{s_{\rm NN}}=68.4\,{\rm GeV}$ by the LHCb experiment is presented. This analysis exploits the innovative and unique fixed-target apparatus at LHC. The measurement in a new collision system and region of phase space can provide additional insights on the mechanism of Λ polarization, which can still not be calculated in quantum chromodynamics. The polarization is measured through the decay $\Lambda \to p\pi^-$ and its charge conjugate, and is studied both as integrated values and in different bins of four kinematic variables: $p_{\rm T}$, η , $x_{\rm F}$, and y.

The integrated results are

$$P_{\Lambda} = 0.029 \pm 0.019 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \,,$$

$$P_{\bar{\Lambda}} = 0.003 \pm 0.023 \,(\text{stat}) \pm 0.014 \,(\text{syst}) \,.$$

The polarization values obtained in this analysis are compatible with previous measurements, in particular with the HERA-B results which cover a similar $x_{\rm F}$ interval. The agreement is noteworthy considering the different experiments and colliding systems.

Figure 3: Polarization as a function of (a) $p_{\rm T}$, (b) η , (c) $x_{\rm F}$ and (d) y. Blue (red) symbols are for Λ ($\overline{\Lambda}$). In each plot the data is integrated over the $0.3 < p_{\rm T} < 3$ GeV/c and/or $2 < \eta < 5$ kinematic range.

Figure 4: Comparison of polarization as a function of $x_{\rm F}$ for Λ hyperons obtained in experiments with different energies and with different colliding systems.

Table 2: Polarization in bins of p_T , η , x_F , and y for Λ and $\bar{\Lambda}$. The first uncertainties are statistical and the second are systematic.

	P_{\varLambda}	$P_{ar{\varLambda}}$
$p_{\rm T} \; [{\rm MeV}/c]$		
[300, 600]	$0.044 \pm 0.035 \pm 0.013$	$-0.026 \pm 0.044 \pm 0.015$
[600, 850]	$-0.039 \pm 0.033 \pm 0.016$	$0.023 \pm 0.042 \pm 0.027$
[850, 1150]	$0.023 \pm 0.038 \pm 0.015$	$0.004 \pm 0.047 \pm 0.015$
[1150, 3000]	$0.063 \pm 0.042 \pm 0.031$	$0.029 \pm 0.054 \pm 0.021$
$\overline{\eta}$		
[2.00, 3.65]	$0.080 \pm 0.040 \pm 0.016$	$-0.047 \pm 0.057 \pm 0.011$
[3.65, 4.00]	$0.044 \pm 0.036 \pm 0.012$	$0.053 \pm 0.045 \pm 0.033$
[4.00, 4.30]	$-0.043 \pm 0.038 \pm 0.024$	$-0.020 \pm 0.047 \pm 0.014$
[4.30, 5.00]	$-0.004 \pm 0.035 \pm 0.014$	$0.043 \pm 0.042 \pm 0.020$
$x_{ m F}$		
[-0.250, -0.060]	$0.116 \pm 0.040 \pm 0.015$	$0.006 \pm 0.057 \pm 0.030$
[-0.060, -0.040]	$0.005 \pm 0.036 \pm 0.025$	$-0.018 \pm 0.045 \pm 0.023$
[-0.040, -0.025]	$-0.009 \pm 0.037 \pm 0.020$	$0.002 \pm 0.045 \pm 0.026$
[-0.025, 0.100]	$-0.022 \pm 0.036 \pm 0.017$	$0.038 \pm 0.042 \pm 0.008$
\overline{y}		
[2.0, 3.1]	$0.107 \pm 0.040 \pm 0.011$	$0.031 \pm 0.057 \pm 0.044$
[3.1, 3.4]	$0.021 \pm 0.036 \pm 0.013$	$-0.009 \pm 0.046 \pm 0.025$
[3.4, 3.7]	$-0.019 \pm 0.037 \pm 0.010$	$-0.023 \pm 0.045 \pm 0.013$
[3.7, 5.0]	$-0.023 \pm 0.036 \pm 0.016$	$0.038 \pm 0.042 \pm 0.018$

Acknowledgements

We thank Umberto D'Alesio for the fruitful discussions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MCID/IFA (Romania); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), and Polish WLCG (Poland). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia): Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); Minciencias (Colombia); EPLANET, Marie Skłodowska-Curie Actions, ERC and NextGenerationEU (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); AvH Foundation (Germany); ICSC (Italy); GVA, XuntaGal, GENCAT, Inditex, InTalent and Prog. Atracción Talento, CM (Spain); SRC (Sweden); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).

References

- G. Bunce et al., Λ⁰ hyperon polarization in inclusive production by 300-GeV protons on beryllium, Phys. Rev. Lett. 36 (1976) 1113.
- [2] D. Boer, C. J. Bomhof, D. S. Hwang, and P. J. Mulders, *Spin asymmetries in jet-hyperon production at LHC*, Phys. Lett. **B659** (2008) 127.
- [3] D. Boer, Transverse Lambda polarization at LHC, arXiv:0907.1610.
- [4] P. J. Mulders and R. D. Tangerman, The complete tree-level result up to order 1/Q for polarized deep-inelastic leptoproduction, Nuclear Physics **B461** (1996) 197–237.
- [5] T. Gao, Measurement of transverse polarization of $\Lambda/\overline{\Lambda}$ within jet in pp collisions at STAR, arXiv:2402.01168.
- [6] Y. Guan et al., Observation of transverse $\Lambda/\overline{\Lambda}$ hyperon polarization in e^+e^- annihilation at Belle, Physical Review Letters **122** (2019) 042001, arXiv:1808.05000.
- [7] A. Airapetian, N. Akopov, and Z. Akopov, Transverse polarization of Λ hyperons from quasireal photoproduction on nuclei, Phys. Rev. **D90** (2014) 072007.
- [8] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
- [9] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
- [10] LHCb collaboration, R. Aaij et al., Precision luminosity measurements at LHCb, JINST 9 (2014) P12005, arXiv:1410.0149.
- [11] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
- [12] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
- [13] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. **331** (2011) 032047.
- [14] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
- [15] P. Golonka and Z. Was, *PHOTOS Monte Carlo: a precision tool for QED correctionsin Z and W decays*, The European Physical Journal **C45** (2006) 97.
- [16] T. Pierog et al., EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C92 (2015) 034906.
- [17] Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

- [18] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
- [19] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. **331** (2011) 032023.
- [20] Particle Data Group, R. L. Workman *et al.*, *Review of particle physics*, Prog. Theor. Exp. Phys. **2022** (2022) 083C01.
- [21] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
- [22] ATLAS collaboration, G. Aad et al., Measurement of the transverse polarization of Λ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, Phys. Rev. **D91** (2015) 032004, arXiv:1412.1692.
- [23] B. Lundberg et al., Polarization in inclusive Λ and $\bar{\Lambda}$ production at large p_T , Phys. Rev. **D40** (1989) 3557.
- [24] E. J. Ramberg et al., Polarization of Λ and $\overline{\Lambda}$ produced by 800-GeV protons, Phys. Lett. **B338** (1994) 403.
- [25] NA48 collaboration, A. Tkachev, A measurement of the transverse polarization of Λ hyperons produced in inelastic pN-reactions at 450 GeV proton energy, Nucl. Phys. B Proc. Suppl. 75 (1999) 45.
- [26] HERA-B collaboration, I. Abt et al., Polarization of Λ and $\overline{\Lambda}$ in 920-GeV fixed-target proton-nucleus collisions, Phys. Lett. **B638** (2006) 415, arXiv:hep-ex/0603047.

LHCb collaboration

```
R. Aaij<sup>36</sup>, A.S.W. Abdelmotteleb<sup>55</sup>, C. Abellan Beteta<sup>49</sup>, F. Abudinén<sup>55</sup>,
T. Ackernley<sup>59</sup>, A. A. Adefisoye<sup>67</sup>, B. Adeva<sup>45</sup>, M. Adinolfi<sup>53</sup>, P. Adlarson<sup>79</sup>,
C. Agapopoulou<sup>13</sup>, C.A. Aidala<sup>80</sup>, Z. Ajaltouni<sup>11</sup>, S. Akar<sup>64</sup>, K. Akiba<sup>36</sup>,
P. Albicocco<sup>26</sup>, J. Albrecht<sup>18</sup>, F. Alessio<sup>47</sup>, M. Alexander<sup>58</sup>, Z. Aliouche<sup>61</sup>,
P. Alvarez Cartelle<sup>54</sup>, R. Amalric<sup>15</sup>, S. Amato<sup>3</sup>, J.L. Amey<sup>53</sup>, Y. Amhis<sup>13,47</sup>,
L. An<sup>6</sup> D, L. Anderlini<sup>25</sup> D, M. Andersson<sup>49</sup> D, A. Andreianov<sup>42</sup> D, P. Andreola<sup>49</sup> D,
M. Andreotti<sup>24</sup> \bigcirc, D. Andreou<sup>67</sup> \bigcirc, A. Anelli<sup>29,p</sup> \bigcirc, D. Ao<sup>7</sup> \bigcirc, F. Archilli<sup>35,v</sup> \bigcirc,
M. Argenton<sup>24</sup>, S. Arguedas Cuendis<sup>9</sup>, A. Artamonov<sup>42</sup>, M. Artuso<sup>67</sup>,
E. Aslanides<sup>12</sup>, R. Ataide Da Silva<sup>48</sup>, M. Atzeni<sup>63</sup>, B. Audurier<sup>14</sup>, D. Bacher<sup>62</sup>,
I. Bachiller Perea<sup>10</sup>, S. Bachmann<sup>20</sup>, M. Bachmayer<sup>48</sup>, J.J. Back<sup>55</sup>,
P. Baladron Rodriguez<sup>45</sup>, V. Balagura<sup>14</sup>, W. Baldini<sup>24</sup>, H. Bao<sup>7</sup>,
J. Baptista de Souza Leite<sup>59</sup>, M. Barbetti<sup>25,m</sup>, I. R. Barbosa<sup>68</sup>, R.J. Barlow<sup>61</sup>,
M. Barnyakov<sup>23</sup>, S. Barsuk<sup>13</sup>, W. Barter<sup>57</sup>, M. Bartolini<sup>54</sup>, J. Bartz<sup>67</sup>,
J.M. Basels<sup>16</sup>, G. Bassi<sup>33</sup>, B. Batsukh<sup>5</sup>, A. Bay<sup>48</sup>, A. Beck<sup>55</sup>, M. Becker<sup>18</sup>,
F. Bedeschi<sup>33</sup> D, I.B. Bediaga<sup>2</sup> D, S. Belin<sup>45</sup> D, V. Bellee<sup>49</sup> D, K. Belous<sup>42</sup> D, I. Belov<sup>27</sup> D,
I. Belyaev<sup>34</sup>, G. Benane<sup>12</sup>, G. Bencivenni<sup>26</sup>, E. Ben-Haim<sup>15</sup>, A. Berezhnoy<sup>42</sup>,
R. Bernet <sup>49</sup> , S. Bernet Andres <sup>43</sup> , A. Bertolin <sup>31</sup> , C. Betancourt <sup>49</sup> , F. Betti <sup>57</sup> , J.
Bex<sup>54</sup>, Ia. Bezshyiko<sup>49</sup>, J. Bhom<sup>39</sup>, M.S. Bieker<sup>18</sup>, N.V. Biesuz<sup>24</sup>, P. Billoir<sup>15</sup>,
A. Biolchini<sup>36</sup>, M. Birch<sup>60</sup>, F.C.R. Bishop<sup>10</sup>, A. Bitadze<sup>61</sup>, A. Bizzeti, T. Blake<sup>55</sup>,
F. Blanc<sup>48</sup>, J.E. Blank<sup>18</sup>, S. Blusk<sup>67</sup>, V. Bocharnikov<sup>42</sup>, J.A. Boelhauve<sup>18</sup>,
O. Boente Garcia<sup>14</sup>, T. Boettcher<sup>64</sup>, A. Bohare<sup>57</sup>, A. Boldyrev<sup>42</sup>, C.S. Bolognani<sup>76</sup>,
R. Bolzonella<sup>24,l</sup> N. Bondar<sup>42</sup> D, F. Borgato<sup>31,q</sup> D, S. Borghi<sup>61</sup> D, M. Borsato<sup>29,p</sup> D,
J.T. Borsuk<sup>39</sup>, S.A. Bouchiba<sup>48</sup>, T.J.V. Bowcock<sup>59</sup>, A. Boyer<sup>47</sup>, C. Bozzi<sup>24</sup>,
A. Brea Rodriguez<sup>48</sup>, N. Breer<sup>18</sup>, J. Brodzicka<sup>39</sup>, A. Brossa Gonzalo<sup>45</sup>, J. Brown<sup>59</sup>,
D. Brundu<sup>30</sup>, E. Buchanan<sup>57</sup>, A. Buonaura<sup>49</sup>, L. Buonincontri<sup>31,q</sup>, A.T. Burke<sup>61</sup>,
C. Burr<sup>47</sup>, A. Butkevich<sup>42</sup>, J.S. Butter<sup>54</sup>, J. Buytaert<sup>47</sup>, W. Byczynski<sup>47</sup>,
S. Cadeddu<sup>30</sup>, H. Cai<sup>72</sup>, R. Calabrese<sup>24,l</sup>, S. Calderon Ramirez<sup>9</sup>, L. Calefice<sup>44</sup>,
S. Cali<sup>26</sup> D, M. Calvi<sup>29,p</sup> D, M. Calvo Gomez<sup>43</sup> D, P. Camargo Magalhaes<sup>2,z</sup> D, J.
I. Cambon Bouzas<sup>45</sup>, P. Campana<sup>26</sup>, D.H. Campora Perez<sup>76</sup>,
A.F. Campoverde Quezada<sup>7</sup>, S. Capelli<sup>29</sup>, L. Capriotti<sup>24</sup>, R. Caravaca-Mora<sup>9</sup>,
A. Carbone<sup>23,j</sup>, L. Carcedo Salgado<sup>45</sup>, R. Cardinale<sup>27,n</sup>, A. Cardini<sup>30</sup>,
P. Carniti<sup>29,p</sup>, L. Carus<sup>20</sup>, A. Casais Vidal<sup>63</sup>, R. Caspary<sup>20</sup>, G. Casse<sup>59</sup>,
J. Castro Godinez<sup>9</sup>, M. Cattaneo<sup>47</sup>, G. Cavallero<sup>24,47</sup>, V. Cavallini<sup>24,l</sup>, S. Celani<sup>20</sup>,
D. Cervenkov<sup>62</sup>, S. Cesare<sup>28,o</sup>, A.J. Chadwick<sup>59</sup>, I. Chahrour<sup>80</sup>, M. Charles<sup>15</sup>,
Ph. Charpentier<sup>47</sup>, E. Chatzianagnostou<sup>36</sup>, C.A. Chavez Barajas<sup>59</sup>, M. Chefdeville<sup>10</sup>,
C. Chen<sup>12</sup>, S. Chen<sup>5</sup>, Z. Chen<sup>7</sup>, A. Chernov<sup>39</sup>, S. Chernyshenko<sup>51</sup>,
V. Chobanova<sup>78</sup>, S. Cholak<sup>48</sup>, M. Chrzaszcz<sup>39</sup>, A. Chubykin<sup>42</sup>, V. Chulikov<sup>42</sup>,
P. Ciambrone<sup>26</sup>, X. Cid Vidal<sup>45</sup>, G. Ciezarek<sup>47</sup>, P. Cifra<sup>47</sup>, P.E.L. Clarke<sup>57</sup>
M. Clemencic<sup>47</sup>, H.V. Cliff<sup>54</sup>, J. Closier<sup>47</sup>, C. Cocha Toapaxi<sup>20</sup>, V. Coco<sup>47</sup>,
J. Cogan<sup>12</sup> D, E. Cogneras<sup>11</sup> D, L. Cojocariu<sup>41</sup> D, P. Collins<sup>47</sup> D, T. Colombo<sup>47</sup> D,
A. Comerma-Montells<sup>44</sup>, L. Congedo<sup>22</sup>, A. Contu<sup>30</sup>, N. Cooke<sup>58</sup>, I. Corredoira <sup>45</sup>,
A. Correia<sup>15</sup>, G. Corti<sup>47</sup>, J.J. Cottee Meldrum<sup>53</sup>, B. Couturier<sup>47</sup>, D.C. Craik<sup>49</sup>,
M. Cruz Torres<sup>2,9</sup> D, E. Curras Rivera<sup>48</sup> D, R. Currie<sup>57</sup> D, C.L. Da Silva<sup>66</sup> D, S. Dadabaev<sup>42</sup> D,
L. Dai<sup>69</sup>, X. Dai<sup>6</sup>, E. Dall'Occo<sup>18</sup>, J. Dalseno<sup>45</sup>, C. D'Ambrosio<sup>47</sup>, J. Daniel<sup>11</sup>,
A. Danilina<sup>42</sup>, P. d'Argent<sup>22</sup>, A. Davidson<sup>55</sup>, J.E. Davies<sup>61</sup>, A. Davis<sup>61</sup>,
O. De Aguiar Francisco<sup>61</sup>, C. De Angelis<sup>30,k</sup>, F. De Benedetti<sup>47</sup>, J. de Boer<sup>36</sup>,
K. De Bruyn<sup>75</sup>, S. De Capua<sup>61</sup>, M. De Cian<sup>20,47</sup>, U. De Freitas Carneiro Da Graca<sup>2,b</sup>,
E. De Lucia<sup>26</sup>, J.M. De Miranda<sup>2</sup>, L. De Paula<sup>3</sup>, M. De Serio<sup>22,h</sup>, P. De Simone<sup>26</sup>,
```

```
F. De Vellis<sup>18</sup>, J.A. de Vries<sup>76</sup>, F. Debernardis<sup>22</sup>, D. Decamp<sup>10</sup>, V. Dedu<sup>12</sup>,
L. Del Buono<sup>15</sup> D, B. Delaney<sup>63</sup> D, H.-P. Dembinski<sup>18</sup> D, J. Deng<sup>8</sup> D, V. Denysenko<sup>49</sup> D,
O. Deschamps<sup>11</sup> D, F. Dettori<sup>30,k</sup> D, B. Dey<sup>74</sup> D, P. Di Nezza<sup>26</sup> D, I. Diachkov<sup>42</sup> D,
S. Didenko<sup>42</sup>, S. Ding<sup>67</sup>, L. Dittmann<sup>20</sup>, V. Dobishuk<sup>51</sup>, A. D. Docheva<sup>58</sup>,
C. Dong<sup>4</sup>, A.M. Donohoe<sup>21</sup>, F. Dordei<sup>30</sup>, A.C. dos Reis<sup>2</sup>, A.D. Dowling<sup>67</sup>,
W. Duan<sup>70</sup> D, P. Duda<sup>77</sup> D, M.W. Dudek<sup>39</sup> D, L. Dufour<sup>47</sup> D, V. Duk<sup>32</sup> D, P. Durante<sup>47</sup> D, M.
M. Duras<sup>77</sup>, J.M. Durham<sup>66</sup>, O. D. Durmus<sup>74</sup>, A. Dziurda<sup>39</sup>, A. Dzyuba<sup>42</sup>,
S. Easo<sup>56</sup> D, E. Eckstein<sup>17</sup>, U. Egede<sup>1</sup> D, A. Egorychev<sup>42</sup> D, V. Egorychev<sup>42</sup> D,
S. Eisenhardt<sup>57</sup>, E. Ejopu<sup>61</sup>, L. Eklund<sup>79</sup>, M. Elashri<sup>64</sup>, J. Ellbracht<sup>18</sup>, S. Ely<sup>60</sup>,
A. \operatorname{Ene}^{41} \bigcirc, E. \operatorname{Epple}^{64} \bigcirc, J. \operatorname{Eschle}^{67} \bigcirc, S. \operatorname{Esen}^{20} \bigcirc, T. \operatorname{Evans}^{61} \bigcirc, F. Fabiano<sup>30,k</sup>\bigcirc,
L.N. Falcao<sup>2</sup>, Y. Fan<sup>7</sup>, B. Fang<sup>72</sup>, L. Fantini<sup>32,r,47</sup>, M. Faria<sup>48</sup>, K. Farmer<sup>57</sup>,
D. Fazzini<sup>29,p</sup> , L. Felkowski<sup>77</sup> , M. Feng<sup>5,7</sup> , M. Feo<sup>18,47</sup> , M. Fernandez Gomez<sup>45</sup>
A.D. Fernez<sup>65</sup>, F. Ferrari<sup>23</sup>, F. Ferreira Rodrigues<sup>3</sup>, M. Ferrillo<sup>49</sup>, M. Ferro-Luzzi<sup>47</sup>,
S. Filippov<sup>42</sup> D, R.A. Fini<sup>22</sup> D, M. Fiorini<sup>24</sup>, D, K.M. Fischer<sup>62</sup> D, D.S. Fitzgerald<sup>80</sup> D,
C. Fitzpatrick<sup>61</sup>, F. Fleuret<sup>14</sup>, M. Fontana<sup>23</sup>, L. F. Foreman<sup>61</sup>, R. Forty<sup>47</sup>,
D. Foulds-Holt<sup>54</sup>, M. Franco Sevilla<sup>65</sup>, M. Frank<sup>47</sup>, E. Franzoso<sup>24,l</sup>, G. Frau<sup>61</sup>,
C. Frei<sup>47</sup>, D.A. Friday<sup>61</sup>, J. Fu<sup>7</sup>, Q. Fuehring<sup>18</sup>, Y. Fujii<sup>1</sup>, T. Fulghesu<sup>15</sup>,
E. Gabriel<sup>36</sup>, G. Galati<sup>22</sup>, M.D. Galati<sup>36</sup>, A. Gallas Torreira<sup>45</sup>, D. Galli<sup>23,j</sup>,
S. Gambetta<sup>57</sup>, M. Gandelman<sup>3</sup>, P. Gandini<sup>28</sup>, B. Ganie<sup>61</sup>, H. Gao<sup>7</sup>, R. Gao<sup>62</sup>,
Y. Gao<sup>8</sup>, Y. Gao<sup>6</sup>, Y. Gao<sup>8</sup>, M. Garau<sup>30,k</sup>, L.M. Garcia Martin<sup>48</sup>,
P. Garcia Moreno<sup>44</sup>, J. García Pardiñas<sup>47</sup>, K. G. Garg<sup>8</sup>, L. Garrido<sup>44</sup>, C. Gaspar<sup>47</sup>,
R.E. Geertsema<sup>36</sup>, L.L. Gerken<sup>18</sup>, E. Gersabeck<sup>61</sup>, M. Gersabeck<sup>61</sup>, T. Gershon<sup>55</sup>,
Z. Ghorbanimoghaddam<sup>53</sup>, L. Giambastiani<sup>31,q</sup>, F. I. Giasemis<sup>15,e</sup>, V. Gibson<sup>54</sup>,
H.K. Giemza<sup>40</sup>, A.L. Gilman<sup>62</sup>, M. Giovannetti<sup>26</sup>, A. Gioventù<sup>44</sup>,
P. Gironella Gironell<sup>44</sup>, C. Giugliano<sup>24,l</sup>, M.A. Giza<sup>39</sup>, E.L. Gkougkousis<sup>60</sup>,
F.C. Glaser<sup>13,20</sup>, V.V. Gligorov<sup>15,47</sup>, C. Göbel<sup>68</sup>, E. Golobardes<sup>43</sup>, D. Golubkov<sup>42</sup>,
A. Golutvin<sup>60,42,47</sup>, A. Gomes<sup>2,a,†</sup>, S. Gomez Fernandez<sup>44</sup>, F. Goncalves Abrantes<sup>62</sup>,
M. Goncerz<sup>39</sup>, G. Gong<sup>4</sup>, J. A. Gooding<sup>18</sup>, I.V. Gorelov<sup>42</sup>, C. Gotti<sup>29</sup>,
J.P. Grabowski<sup>17</sup>, L.A. Granado Cardoso<sup>47</sup>, E. Graugés<sup>44</sup>, E. Graverini<sup>48,t</sup>
L. Grazette<sup>55</sup>, G. Graziani, A. T. Grecu<sup>41</sup>, L.M. Greeven<sup>36</sup>, N.A. Grieser<sup>64</sup>,
L. Grillo<sup>58</sup>, S. Gromov<sup>42</sup>, C. Gu<sup>14</sup>, M. Guarise<sup>24</sup>, M. Guittiere<sup>13</sup>, V. Guliaeva<sup>42</sup>,
P. A. Günther<sup>20</sup>, A.-K. Guseinov<sup>48</sup>, E. Gushchin<sup>42</sup>, Y. Guz<sup>6,42,47</sup>, T. Gys<sup>47</sup>,
K. Habermann<sup>17</sup>, T. Hadavizadeh<sup>1</sup>, C. Hadjivasiliou<sup>65</sup>, G. Haefeli<sup>48</sup>, C. Haen<sup>47</sup>,
J. Haimberger<sup>47</sup>, M. Hajheidari<sup>47</sup>, M.M. Halvorsen<sup>47</sup>, P.M. Hamilton<sup>65</sup>,
J. Hammerich<sup>59</sup>, Q. Han<sup>8</sup>, X. Han<sup>20</sup>, S. Hansmann-Menzemer<sup>20</sup>, L. Hao<sup>7</sup>,
N. Harnew<sup>62</sup>, M. Hartmann<sup>13</sup>, J. He<sup>7,c</sup>, F. Hemmer<sup>47</sup>, C. Henderson<sup>64</sup>,
R.D.L. Henderson<sup>1,55</sup>, A.M. Hennequin<sup>47</sup>, K. Hennessy<sup>59</sup>, L. Henry<sup>48</sup>, J. Herd<sup>60</sup>,
P. Herrero Gascon<sup>20</sup>, J. Heuel<sup>16</sup>, A. Hicheur<sup>3</sup>, G. Hijano Mendizabal<sup>49</sup>, D. Hill<sup>48</sup>,
S.E. Hollitt<sup>18</sup>, J. Horswill<sup>61</sup>, R. Hou<sup>8</sup>, Y. Hou<sup>11</sup>, N. Howarth<sup>59</sup>, J. Hu<sup>20</sup>, J. Hu<sup>70</sup>,
W. Hu<sup>6</sup> D, X. Hu<sup>4</sup> D, W. Huang<sup>7</sup> D, W. Hulsbergen<sup>36</sup> D, R.J. Hunter<sup>55</sup> D, M. Hushchyn<sup>42</sup> D,
D. Hutchcroft<sup>59</sup>, D. Ilin<sup>42</sup>, P. Ilten<sup>64</sup>, A. Inglessi<sup>42</sup>, A. Iniukhin<sup>42</sup>, A. Ishteev<sup>42</sup>, A. Ishteev<sup>42</sup>
K. Ivshin<sup>42</sup>, R. Jacobsson<sup>47</sup>, H. Jage<sup>16</sup>, S.J. Jaimes Elles<sup>46,73</sup>, S. Jakobsen<sup>47</sup>,
E. Jans<sup>36</sup>, B.K. Jashal<sup>46</sup>, A. Jawahery<sup>65,47</sup>, V. Jevtic<sup>18</sup>, E. Jiang<sup>65</sup>, X. Jiang<sup>5,7</sup>
Y. Jiang<sup>7</sup>, Y. J. Jiang<sup>6</sup>, M. John<sup>62</sup>, D. Johnson<sup>52</sup>, C.R. Jones<sup>54</sup>, T.P. Jones<sup>55</sup>,
S. Joshi<sup>40</sup>, B. Jost<sup>47</sup>, N. Jurik<sup>47</sup>, I. Juszczak<sup>39</sup>, D. Kaminaris<sup>48</sup>, S. Kandybei<sup>50</sup>,
Y. Kang<sup>4</sup>, C. Kar<sup>11</sup>, M. Karacson<sup>47</sup>, D. Karpenkov<sup>42</sup>, A. Kauniskangas<sup>48</sup>,
J.W. Kautz<sup>64</sup>, F. Keizer<sup>47</sup>, M. Kenzie<sup>54</sup>, T. Ketel<sup>36</sup>, B. Khanji<sup>67</sup>, A. Kharisova<sup>42</sup>,
S. Kholodenko<sup>33,47</sup>, G. Khreich<sup>13</sup>, T. Kirn<sup>16</sup>, V.S. Kirsebom<sup>29,p</sup>, O. Kitouni<sup>63</sup>,
S. Klaver<sup>37</sup>, N. Kleijne<sup>33,s</sup>, K. Klimaszewski<sup>40</sup>, M.R. Kmiec<sup>40</sup>, S. Koliiev<sup>51</sup>,
L. Kolk<sup>18</sup>, A. Konoplyannikov<sup>42</sup>, P. Kopciewicz<sup>38,47</sup>, P. Koppenburg<sup>36</sup>,
```

```
M. Korolev<sup>42</sup>, I. Kostiuk<sup>36</sup>, O. Kot<sup>51</sup>, S. Kotriakhova, A. Kozachuk<sup>42</sup>,
P. Kravchenko<sup>42</sup>, L. Kravchuk<sup>42</sup>, M. Kreps<sup>55</sup>, P. Krokovny<sup>42</sup>, W. Krupa<sup>67</sup>,
W. Krzemien<sup>40</sup>, O.K. Kshyvanskyi<sup>51</sup>, J. Kubat<sup>20</sup>, S. Kubis<sup>77</sup>, M. Kucharczyk<sup>39</sup>,
V. Kudryavtsev<sup>42</sup>, E. Kulikova<sup>42</sup>, A. Kupsc<sup>79</sup>, B. K. Kutsenko<sup>12</sup>, D. Lacarrere<sup>47</sup>,
A. Lai<sup>30</sup>, A. Lampis<sup>30</sup>, D. Lancierini<sup>54</sup>, C. Landesa Gomez<sup>45</sup>, J.J. Lane<sup>1</sup>,
R. Lane<sup>53</sup>, C. Langenbruch<sup>20</sup>, J. Langer<sup>18</sup>, O. Lantwin<sup>42</sup>, T. Latham<sup>55</sup>,
F. Lazzari<sup>33,t</sup>, C. Lazzeroni<sup>52</sup>, R. Le Gac<sup>12</sup>, R. Lefèvre<sup>11</sup>, A. Leflat<sup>42</sup>,
S. Legotin<sup>42</sup> D, M. Lehuraux<sup>55</sup> D, E. Lemos Cid<sup>47</sup> D, O. Leroy<sup>12</sup> D, T. Lesiak<sup>39</sup> D,
B. Leverington<sup>20</sup>, A. Li<sup>4</sup>, H. Li<sup>70</sup>, K. Li<sup>8</sup>, L. Li<sup>61</sup>, P. Li<sup>47</sup>, P.-R. Li<sup>71</sup>, Q.
Li<sup>5,7</sup>, S. Li<sup>8</sup>, T. Li<sup>5,d</sup>, T. Li<sup>70</sup>, Y. Li<sup>8</sup>, Y. Li<sup>5</sup>, Z. Lian<sup>4</sup>, X. Liang<sup>67</sup>,
S. Libralon<sup>46</sup>, C. Lin<sup>7</sup>, T. Lin<sup>56</sup>, R. Lindner<sup>47</sup>, V. Lisovskyi<sup>48</sup>, R. Litvinov<sup>30,47</sup>, D,
F. L. Liu<sup>1</sup>, G. Liu<sup>70</sup>, K. Liu<sup>71</sup>, S. Liu<sup>5,7</sup>, Y. Liu<sup>57</sup>, Y. Liu<sup>71</sup>, Y. L. Liu<sup>60</sup>,
A. Lobo Salvia<sup>44</sup>, A. Loi<sup>30</sup>, J. Lomba Castro<sup>45</sup>, T. Long<sup>54</sup>, J.H. Lopes<sup>3</sup>,
A. Lopez Huertas<sup>44</sup>, S. López Soliño<sup>45</sup>, C. Lucarelli<sup>25,m</sup>, D. Lucchesi<sup>31,q</sup>,
M. Lucio Martinez<sup>76</sup> , V. Lukashenko<sup>36,51</sup> , Y. Luo<sup>6</sup> , A. Lupato<sup>31</sup> , E. Luppi<sup>24,l</sup> , E. Luppi
K. Lynch<sup>21</sup>, X.-R. Lyu<sup>7</sup>, G. M. Ma<sup>4</sup>, R. Ma<sup>7</sup>, S. Maccolini<sup>18</sup>, F. Machefert<sup>13</sup>,
F. Maciuc<sup>41</sup>, B. Mack<sup>67</sup>, I. Mackay<sup>62</sup>, L. M. Mackey<sup>67</sup>, L.R. Madhan Mohan<sup>54</sup>, M.
M. Madurai<sup>52</sup>, A. Maevskiy<sup>42</sup>, D. Magdalinski<sup>36</sup>, D. Maisuzenko<sup>42</sup>,
M.W. Majewski<sup>38</sup>, J.J. Malczewski<sup>39</sup>, S. Malde<sup>62</sup>, L. Malentacca<sup>47</sup>, A. Malinin<sup>42</sup>,
T. Maltsev<sup>42</sup>, G. Manca<sup>30,k</sup>, G. Mancinelli<sup>12</sup>, C. Mancuso<sup>28,13,o</sup>,
R. Manera Escalero<sup>44</sup>, D. Manuzzi<sup>23</sup>, D. Marangotto<sup>28,0</sup>, J.F. Marchand<sup>10</sup>,
R. Marchevski<sup>48</sup>, U. Marconi<sup>23</sup>, S. Mariani<sup>47</sup>, C. Marin Benito<sup>44</sup>, J. Marks<sup>20</sup>,
A.M. Marshall<sup>53</sup>, G. Martelli<sup>32,r</sup>, G. Martellotti<sup>34</sup>, L. Martinazzoli<sup>47</sup>,
M. Martinelli<sup>29,p</sup>, D. Martinez Santos<sup>45</sup>, F. Martinez Vidal<sup>46</sup>, A. Massafferri<sup>2</sup>,
R. Matev<sup>47</sup>, A. Mathad<sup>47</sup>, V. Matiunin<sup>42</sup>, C. Matteuzzi<sup>67</sup>, K.R. Mattioli<sup>14</sup>,
A. Mauri<sup>60</sup>, E. Maurice<sup>14</sup>, J. Mauricio<sup>44</sup>, P. Mayencourt<sup>48</sup>, M. Mazurek<sup>40</sup>,
M. McCann<sup>60</sup>, L. Mcconnell<sup>21</sup>, T.H. McGrath<sup>61</sup>, N.T. McHugh<sup>58</sup>, A. McNab<sup>61</sup>,
R. McNulty<sup>21</sup>, B. Meadows<sup>64</sup>, G. Meier<sup>18</sup>, D. Melnychuk<sup>40</sup>, F. M. Meng<sup>4</sup>,
M. Merk<sup>36,76</sup>, A. Merli<sup>48</sup>, L. Meyer Garcia<sup>65</sup>, D. Miao<sup>5,7</sup>, H. Miao<sup>7</sup>,
M. Mikhasenko<sup>17,f</sup> D. A. Milanes<sup>73</sup> D. A. Minotti<sup>29,p</sup> D. E. Minucci<sup>67</sup> D. T. Miralles<sup>11</sup> D.
B. Mitreska<sup>18</sup>, D.S. Mitzel<sup>18</sup>, A. Modak<sup>56</sup>, A. Mödden <sup>18</sup>, R.A. Mohammed<sup>62</sup>,
R.D. Moise<sup>16</sup> D, S. Mokhnenko<sup>42</sup> D, T. Mombächer<sup>47</sup> D, M. Monk<sup>55,1</sup> D, S. Monteil<sup>11</sup> D,
A. Morcillo Gomez<sup>45</sup> , G. Morello<sup>26</sup> , M.J. Morello<sup>33,8</sup> , M.P. Morgenthaler<sup>20</sup>
A.B. Morris<sup>47</sup>, A.G. Morris<sup>12</sup>, R. Mountain<sup>67</sup>, H. Mu<sup>4</sup>, Z. M. Mu<sup>6</sup>,
E. Muhammad<sup>55</sup>, F. Muheim<sup>57</sup>, M. Mulder<sup>75</sup>, K. Müller<sup>49</sup>, F. Muñoz-Rojas<sup>9</sup>,
R. Murta<sup>60</sup> D, P. Naik<sup>59</sup> D, T. Nakada<sup>48</sup> D, R. Nandakumar<sup>56</sup> D, T. Nanut<sup>47</sup> D, I. Nasteva<sup>3</sup> D,
M. Needham<sup>57</sup>, N. Neri<sup>28,o</sup>, S. Neubert<sup>17</sup>, N. Neufeld<sup>47</sup>, P. Neustroev<sup>42</sup>,
J. Nicolini<sup>18,13</sup> D. Nicotra<sup>76</sup> D. E.M. Niel<sup>48</sup> D. N. Nikitin<sup>42</sup> D. P. Nogarolli<sup>3</sup> D. P. Nogga<sup>17</sup>,
N.S. Nolte<sup>63</sup> D, C. Normand<sup>53</sup> D, J. Novoa Fernandez<sup>45</sup> D, G. Nowak<sup>64</sup> D, C. Nunez<sup>80</sup> D, H. N.
Nur<sup>58</sup>, A. Oblakowska-Mucha<sup>38</sup>, V. Obraztsov<sup>42</sup>, T. Oeser<sup>16</sup>, S. Okamura<sup>24</sup>, D,
A. Okhotnikov<sup>42</sup>, O. Okhrimenko<sup>51</sup>, R. Oldeman<sup>30,k</sup>, F. Oliva<sup>57</sup>, M. Olocco<sup>18</sup>,
C.J.G. Onderwater<sup>76</sup>, R.H. O'Neil<sup>57</sup>, J.M. Otalora Goicochea<sup>3</sup>, P. Owen<sup>49</sup>,
A. Oyanguren<sup>46</sup>, O. Ozcelik<sup>57</sup>, K.O. Padeken<sup>17</sup>, B. Pagare<sup>55</sup>, P.R. Pais<sup>20</sup>,
T. Pajero<sup>47</sup>, A. Palano<sup>22</sup>, M. Palutan<sup>26</sup>, G. Panshin<sup>42</sup>, L. Paolucci<sup>55</sup>,
A. Papanestis<sup>56</sup>, M. Pappagallo<sup>22,h</sup>, L.L. Pappalardo<sup>24,l</sup>, C. Pappenheimer<sup>64</sup>,
C. Parkes<sup>61</sup>, B. Passalacqua<sup>24</sup>, G. Passaleva<sup>25</sup>, D. Passaro<sup>33,8</sup>, A. Pastore<sup>22</sup>,
M. Patel<sup>60</sup>, J. Patoc<sup>62</sup>, C. Patrignani<sup>23,j</sup>, A. Paul<sup>67</sup>, C.J. Pawley<sup>76</sup>,
A. Pellegrino<sup>36</sup>, J. Peng<sup>5,7</sup>, M. Pepe Altarelli<sup>26</sup>, S. Perazzini<sup>23</sup>, D. Pereima<sup>42</sup>, H.
Pereira Da Costa<sup>66</sup>, A. Pereiro Castro<sup>45</sup>, P. Perret<sup>11</sup>, A. Perro<sup>47</sup>, K. Petridis<sup>53</sup>,
A. Petrolini<sup>27,n</sup>, J. P. Pfaller<sup>64</sup>, H. Pham<sup>67</sup>, L. Pica<sup>33</sup>, M. Piccini<sup>32</sup>,
```

```
B. Pietrzyk<sup>10</sup>, G. Pietrzyk<sup>13</sup>, D. Pinci<sup>34</sup>, F. Pisani<sup>47</sup>, M. Pizzichemi<sup>29,p</sup>,
V. Placinta<sup>41</sup>, M. Plo Casasus<sup>45</sup>, F. Polci<sup>15,47</sup>, M. Poli Lener<sup>26</sup>, A. Poluektov<sup>12</sup>,
N. Polukhina<sup>42</sup>, I. Polyakov<sup>47</sup>, E. Polycarpo<sup>3</sup>, S. Ponce<sup>47</sup>, D. Popov<sup>7</sup>,
S. Poslavskii<sup>42</sup>, K. Prasanth<sup>57</sup>, C. Prouve<sup>45</sup>, V. Pugatch<sup>51</sup>, G. Punzi<sup>33,t</sup>, S.
Qasim<sup>49</sup>, Q. Q. Qian<sup>6</sup>, W. Qian<sup>7</sup>, N. Qin<sup>4</sup>, S. Qu<sup>4</sup>, R. Quagliani<sup>47</sup>,
R.I. Rabadan Trejo<sup>55</sup>, J.H. Rademacker<sup>53</sup>, M. Rama<sup>33</sup>, M. Ramírez García<sup>80</sup>,
V. Ramos De Oliveira<sup>68</sup>, M. Ramos Pernas<sup>55</sup>, M.S. Rangel<sup>3</sup>, F. Ratnikov<sup>42</sup>,
G. Raven<sup>37</sup> D, M. Rebollo De Miguel<sup>46</sup> D, F. Redi<sup>28,i</sup> D, J. Reich<sup>53</sup> D, F. Reiss<sup>61</sup> D, Z. Ren<sup>7</sup> D,
P.K. Resmi<sup>62</sup>, R. Ribatti<sup>48</sup>, G. R. Ricart<sup>14,81</sup>, D. Riccardi<sup>33,8</sup>, S. Ricciardi<sup>56</sup>,
K. Richardson<sup>63</sup>, M. Richardson-Slipper<sup>57</sup>, K. Rinnert<sup>59</sup>, P. Robbe<sup>13</sup>,
G. Robertson<sup>58</sup>, E. Rodrigues<sup>59</sup>, E. Rodriguez Fernandez<sup>45</sup>, J.A. Rodriguez Lopez<sup>73</sup>,
E. Rodriguez Rodriguez<sup>45</sup>, A. Rogovskiy<sup>56</sup>, D.L. Rolf<sup>47</sup>, P. Roloff<sup>47</sup>, V. Romanovskiy<sup>42</sup>, M. Romero Lamas<sup>45</sup>, A. Romero Vidal<sup>45</sup>, G. Romolini<sup>24</sup>,
F. Ronchetti<sup>48</sup>, T. Rong<sup>6</sup>, M. Rotondo<sup>26</sup>, S. R. Roy<sup>20</sup>, M.S. Rudolph<sup>67</sup>,
T. Ruf<sup>47</sup>, M. Ruiz Diaz<sup>20</sup>, R.A. Ruiz Fernandez<sup>45</sup>, J. Ruiz Vidal<sup>79,aa</sup>,
A. Ryzhikov<sup>42</sup>, J. Ryzka<sup>38</sup>, J. J. Saavedra-Arias<sup>9</sup>, J.J. Saborido Silva<sup>45</sup>, R. Sadek<sup>14</sup>, R. Sa
N. Sagidova<sup>42</sup>, D. Sahoo<sup>74</sup>, N. Sahoo<sup>52</sup>, B. Saitta<sup>30,k</sup>, M. Salomoni<sup>29,p,47</sup>, D.
C. Sanchez Gras<sup>36</sup> D, I. Sanderswood<sup>46</sup> D, R. Santacesaria<sup>34</sup> D, C. Santamarina Rios<sup>45</sup> D,
M. Santimaria<sup>26,47</sup>, L. Santoro <sup>2</sup>, E. Santovetti<sup>35</sup>, A. Saputi<sup>24,47</sup>, D. Saranin<sup>42</sup>, A. S.
Sarnatskiy<sup>75</sup>, G. Sarpis<sup>57</sup>, M. Sarpis<sup>61</sup>, C. Satriano<sup>34,u</sup>, A. Satta<sup>35</sup>, M. Saur<sup>6</sup>,
D. Savrina<sup>42</sup>, H. Sazak<sup>16</sup>, L.G. Scantlebury Smead<sup>62</sup>, A. Scarabotto<sup>18</sup>, S. Schael<sup>16</sup>,
S. Scherl<sup>59</sup> , M. Schiller<sup>58</sup> , H. Schindler<sup>47</sup> , M. Schmelling<sup>19</sup> , B. Schmidt<sup>47</sup> ,
S. Schmitt<sup>16</sup>, H. Schmitz<sup>17</sup>, O. Schneider<sup>48</sup>, A. Schopper<sup>47</sup>, N. Schulte<sup>18</sup>,
S. Schulte<sup>48</sup>, M.H. Schune<sup>13</sup>, R. Schwemmer<sup>47</sup>, G. Schwering<sup>16</sup>, B. Sciascia<sup>26</sup>,
A. Sciuccati<sup>47</sup>, S. Sellam<sup>45</sup>, A. Semennikov<sup>42</sup>, T. Senger<sup>49</sup>, M. Senghi Soares<sup>37</sup>,
A. Sergi<sup>27</sup>, N. Serra<sup>49</sup>, L. Sestini<sup>31</sup>, A. Seuthe<sup>18</sup>, Y. Shang<sup>6</sup>, D.M. Shangase<sup>80</sup>,
M. Shapkin<sup>42</sup>, R. S. Sharma<sup>67</sup>, I. Shchemerov<sup>42</sup>, L. Shchutska<sup>48</sup>, T. Shears<sup>59</sup>,
L. Shekhtman<sup>42</sup>, Z. Shen<sup>6</sup>, S. Sheng<sup>5,7</sup>, V. Shevchenko<sup>42</sup>, B. Shi<sup>7</sup>, Q. Shi<sup>7</sup>,
Y. Shimizu<sup>13</sup>, E. Shmanin<sup>42</sup>, R. Shorkin<sup>42</sup>, J.D. Shupperd<sup>67</sup>, R. Silva Coutinho<sup>67</sup>,
G. Simi<sup>31,q</sup> D, S. Simone<sup>22,h</sup> D, N. Skidmore<sup>55</sup> D, T. Skwarnicki<sup>67</sup> D, M.W. Slater<sup>52</sup> D,
J.C. Smallwood<sup>62</sup> D, E. Smith<sup>63</sup> D, K. Smith<sup>66</sup> D, M. Smith<sup>60</sup> D, A. Snoch<sup>36</sup> D,
L. Soares Lavra<sup>57</sup>, M.D. Sokoloff<sup>64</sup>, F.J.P. Soler<sup>58</sup>, A. Solomin<sup>42,53</sup>, A. Solowev<sup>42</sup>, A. Solowev<sup>42</sup>,
I. Solovyev<sup>42</sup>, R. Song<sup>1</sup>, Y. Song<sup>48</sup>, Y. Song<sup>4</sup>, Y. S. Song<sup>6</sup>,
F.L. Souza De Almeida<sup>67</sup>, B. Souza De Paula<sup>3</sup>, E. Spadaro Norella<sup>28,0</sup>,
E. Spedicato<sup>23</sup>, J.G. Speer<sup>18</sup>, E. Spiridenkov<sup>42</sup>, P. Spradlin<sup>58</sup>, V. Sriskaran<sup>47</sup>,
F. Stagni<sup>47</sup> D, M. Stahl<sup>47</sup> D, S. Stahl<sup>47</sup> D, S. Stanislaus<sup>62</sup> D, E.N. Stein<sup>47</sup> D, O. Steinkamp<sup>49</sup> D,
O. Stenyakin<sup>42</sup>, H. Stevens<sup>18</sup>, D. Strekalina<sup>42</sup>, Y. Su<sup>7</sup>, F. Suljik<sup>62</sup>, J. Sun<sup>30</sup>,
L. Sun<sup>72</sup>, Y. Sun<sup>65</sup>, D. S. Sundfeld Lima<sup>2</sup>, W. Sutcliffe<sup>49</sup>, P.N. Swallow<sup>52</sup>,
F. Swystun<sup>54</sup>, A. Szabelski<sup>40</sup>, T. Szumlak<sup>38</sup>, Y. Tan<sup>4</sup>, M.D. Tat<sup>62</sup>, A. Terentev<sup>42</sup>,
F. Terzuoli<sup>33</sup>, w, 47 , F. Teubert<sup>47</sup>, E. Thomas<sup>47</sup>, D.J.D. Thompson<sup>52</sup>, H. Tilquin<sup>60</sup>,
V. Tisserand<sup>11</sup>, S. T'Jampens<sup>10</sup>, M. Tobin<sup>5,47</sup>, L. Tomassetti<sup>24,l</sup>, G. Tonani<sup>28,0,47</sup>
X. Tong<sup>6</sup> D, D. Torres Machado<sup>2</sup> D, L. Toscano<sup>18</sup> D, D.Y. Tou<sup>4</sup> D, C. Trippl<sup>43</sup> D, G. Tuci<sup>20</sup> D,
N. Tuning<sup>36</sup> D, L.H. Uecker<sup>20</sup> D, A. Ukleja<sup>38</sup> D, D.J. Unverzagt<sup>20</sup> D, E. Ursov<sup>42</sup> D,
A. Usachov<sup>37</sup>, A. Ustyuzhanin<sup>42</sup>, U. Uwer<sup>20</sup>, V. Vagnoni<sup>23</sup>, G. Valenti<sup>23</sup>,
N. Valls Canudas<sup>47</sup> D, H. Van Hecke<sup>66</sup> D, E. van Herwijnen<sup>60</sup> D, C.B. Van Hulse<sup>45,y</sup> D,
R. Van Laak<sup>48</sup>, M. van Veghel<sup>36</sup>, G. Vasquez<sup>49</sup>, R. Vazquez Gomez<sup>44</sup>,
P. Vazquez Regueiro<sup>45</sup>, C. Vázquez Sierra<sup>45</sup>, S. Vecchi<sup>24</sup>, J.J. Velthuis<sup>53</sup>,
M. Veltri<sup>25,x</sup>, A. Venkateswaran<sup>48</sup>, M. Vesterinen<sup>55</sup>, M. Vieites Diaz<sup>47</sup>,
X. Vilasis-Cardona<sup>43</sup>, E. Vilella Figueras<sup>59</sup>, A. Villa<sup>23</sup>, P. Vincent<sup>15</sup>, F.C. Volle<sup>52</sup>,
D. vom Bruch<sup>12</sup>, N. Voropaev<sup>42</sup>, K. Vos<sup>76</sup>, G. Vouters<sup>10,47</sup>, C. Vrahas<sup>57</sup>,
```

```
J. Wagner<sup>18</sup>, J. Walsh<sup>33</sup>, E.J. Walton<sup>1,55</sup>, G. Wan<sup>6</sup>, C. Wang<sup>20</sup>, G. Wang<sup>8</sup>,
```

- J. Wang⁶ , J. Wang⁵ , J. Wang⁴ , J. Wang⁷² , M. Wang²⁸ , N. W. Wang⁷
- R. Wang⁵³ D, X. Wang⁸, X. Wang⁷⁰ D, X. W. Wang⁶⁰ D, Y. Wang⁶ D, Z. Wang¹³ D,
- Z. Wang⁴ D, Z. Wang²⁸ D, J.A. Ward^{55,1} D, M. Waterlaat⁴⁷, N.K. Watson⁵² D,
- D. Websdale⁶⁰, Y. Wei⁶, J. Wendel⁷⁸, B.D.C. Westhenry⁵³, D.J. White⁶¹,
- M. Whitehead⁵⁸, A.R. Wiederhold⁵⁵, D. Wiedner¹⁸, G. Wilkinson⁶²,
- M.K. Wilkinson⁶⁴, M. Williams⁶³, M.R.J. Williams⁵⁷, R. Williams⁵⁴,
- F.F. Wilson⁵⁶ D, W. Wislicki⁴⁰ D, M. Witek³⁹ D, L. Witola²⁰ D, C.P. Wong⁶⁶ D,
- G. Wormser¹³, S.A. Wotton⁵⁴, H. Wu⁶⁷, J. Wu⁸, Y. Wu⁶, K. Wyllie⁴⁷, S. Xian⁷⁰,
- Z. Xiang⁵ D, Y. Xie⁸ D, A. Xu³³ D, J. Xu⁷ D, L. Xu⁴ D, L. Xu⁴ D, M. Xu⁵⁵ D, Z. Xu¹¹ D,
- Z. Xu⁷, Z. Xu⁵, D. Yang⁴, K. Yang⁶⁰, S. Yang⁷, X. Yang⁶, Y. Yang^{27,n},
- Z. Yang⁶, Z. Yang⁶⁵, V. Yeroshenko¹³, H. Yeung⁶¹, H. Yin⁸, C. Y. Yu⁶,
- J. Yu⁶⁹, X. Yuan⁵, E. Zaffaroni⁴⁸, M. Zavertyaev¹⁹, M. Zdybal³⁹, C. Zeng^{5,7}
- M. Zeng⁴, C. Zhang⁶, D. Zhang⁸, J. Zhang⁷, L. Zhang⁴, S. Zhang⁶⁹,
- S. Zhang⁶, Y. Zhang⁶, Y. Z. Zhang⁴, Y. Zhao²⁰, A. Zharkova⁴², A. Zhelezov²⁰,
- S. Z. Zheng⁶, X. Z. Zheng⁴, Y. Zheng⁷, T. Zhou⁶, X. Zhou⁸, Y. Zhou⁷,
- V. Zhovkovska⁵⁵ D, L. Z. Zhu⁷ D, X. Zhu⁴ D, X. Zhu⁸ D, V. Zhukov¹⁶ D, J. Zhuo⁴⁶ D,
- Q. Zou^{5,7} D. Zuliani^{31,q} D. G. Zunica⁴⁸ D.

¹School of Physics and Astronomy, Monash University, Melbourne, Australia

² Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

³ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

⁴Center for High Energy Physics, Tsinghua University, Beijing, China

⁵Institute Of High Energy Physics (IHEP), Beijing, China

⁶School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

⁷ University of Chinese Academy of Sciences, Beijing, China

⁸ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China

⁹Consejo Nacional de Rectores (CONARE), San Jose, Costa Rica

¹⁰ Université Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France

¹¹ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

¹² Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

¹³ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

¹⁴Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau. France

¹⁵LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France

¹⁶I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

¹⁷ Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany

¹⁸ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

¹⁹ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

²⁰Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

²¹School of Physics, University College Dublin, Dublin, Ireland

²²INFN Sezione di Bari, Bari, Italy

²³INFN Sezione di Bologna, Bologna, Italy

²⁴INFN Sezione di Ferrara, Ferrara, Italy

²⁵INFN Sezione di Firenze, Firenze, Italy

²⁶INFN Laboratori Nazionali di Frascati, Frascati, Italy

²⁷INFN Sezione di Genova, Genova, Italy

²⁸ INFN Sezione di Milano, Milano, Italy

²⁹INFN Sezione di Milano-Bicocca, Milano, Italy

³⁰INFN Sezione di Cagliari, Monserrato, Italy

³¹INFN Sezione di Padova, Padova, Italy

³²INFN Sezione di Perugia, Perugia, Italy

³³INFN Sezione di Pisa, Pisa, Italy

- ³⁴INFN Sezione di Roma La Sapienza, Roma, Italy
- ³⁵INFN Sezione di Roma Tor Vergata, Roma, Italy
- ³⁶Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
- ³⁷Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
- ³⁸ AGH University of Krakow, Faculty of Physics and Applied Computer Science, Kraków, Poland
- ³⁹ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
- ⁴⁰National Center for Nuclear Research (NCBJ), Warsaw, Poland
- ⁴¹ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
- ⁴² Affiliated with an institute covered by a cooperation agreement with CERN
- ⁴³DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain
- ⁴⁴ICCUB, Universitat de Barcelona, Barcelona, Spain
- ⁴⁵Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- ⁴⁶Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia CSIC, Valencia, Spain
- ⁴⁷European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ⁴⁸Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ⁴⁹Physik-Institut, Universität Zürich, Zürich, Switzerland
- ⁵⁰NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
- ⁵¹Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
- ⁵² University of Birmingham, Birmingham, United Kingdom
- ⁵³ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- ⁵⁴ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ⁵⁵Department of Physics, University of Warwick, Coventry, United Kingdom
- ⁵⁶STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
- ⁵⁷School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁵⁸School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁹Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁶⁰Imperial College London, London, United Kingdom
- ⁶¹Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁶²Department of Physics, University of Oxford, Oxford, United Kingdom
- ⁶³ Massachusetts Institute of Technology, Cambridge, MA, United States
- ⁶⁴ University of Cincinnati, Cincinnati, OH, United States
- ⁶⁵ University of Maryland, College Park, MD, United States
- ⁶⁶Los Alamos National Laboratory (LANL), Los Alamos, NM, United States
- ⁶⁷Syracuse University, Syracuse, NY, United States
- ⁶⁸ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ³
- ⁶⁹ School of Physics and Electronics, Hunan University, Changsha City, China, associated to ⁸
- ⁷⁰ Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to ⁴
- ⁷¹Lanzhou University, Lanzhou, China, associated to ⁵
- ⁷²School of Physics and Technology, Wuhan University, Wuhan, China, associated to ⁴
- ⁷³Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ¹⁵
- ⁷⁴Eotvos Lorand University, Budapest, Hungary, associated to ⁴⁷
- ⁷⁵ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ³⁶
- ⁷⁶ Universiteit Maastricht, Maastricht, Netherlands, associated to ³⁶
- ⁷⁷ Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland, associated to ³⁹
- ⁷⁸ Universidade da Coruña, A Coruna, Spain, associated to ⁴³
- ⁷⁹Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to ⁵⁸
- ⁸⁰ University of Michigan, Ann Arbor, MI, United States, associated to ⁶⁷
- ⁸¹Departement de Physique Nucleaire (SPhN), Gif-Sur-Yvette, France
- ^a Universidade de Brasília, Brasília, Brazil
- ^bCentro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio De Janeiro, Brazil
- ^cHangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- ^dSchool of Physics and Electronics, Henan University, Kaifeng, China

- ^eLIP6, Sorbonne Universite, Paris, France
- ^fExcellence Cluster ORIGINS, Munich, Germany
- ^g Universidad Nacional Autónoma de Honduras, Tequcigalpa, Honduras
- ^h Università di Bari, Bari, Italy
- ⁱ Universita degli studi di Bergamo, Bergamo, Italy
- ^j Università di Bologna, Bologna, Italy
- ^k Università di Cagliari, Cagliari, Italy
- ^l Università di Ferrara, Ferrara, Italy
- ^m Università di Firenze, Firenze, Italy
- ⁿ Università di Genova, Genova, Italy
- ^o Università degli Studi di Milano, Milano, Italy
- ^p Università degli Studi di Milano-Bicocca, Milano, Italy
- ^q Università di Padova, Padova, Italy
- ^r Università di Perugia, Perugia, Italy
- ^sScuola Normale Superiore, Pisa, Italy
- ^t Università di Pisa, Pisa, Italy
- ^u Università della Basilicata, Potenza, Italy
- ^v Università di Roma Tor Vergata, Roma, Italy
- ^w Università di Siena, Siena, Italy
- ^x Università di Urbino, Urbino, Italy
- y Universidad de Alcalá, Alcalá de Henares , Spain
- ^z Facultad de Ciencias Fisicas, Madrid, Spain
- ^{aa} Department of Physics/Division of Particle Physics, Lund, Sweden

 $^{^{\}dagger}Deceased$