

Fundamental Thus F'(x)dx= F(b)-F(a) enupun)> $\int_{C} \frac{1}{2\pi} f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(b))$ Dar-Py) dA = J. Part Qdy
Dar borrown ((KILLIX $\iint_{S} \sqrt[3]{x} + d\vec{s} = \iint_{S} \vec{r} \cdot d\vec{r}$ ∭ 7.7 du= M p. d s G S bounday, Special Scenarios (f P= ₹ f then F is conservation. and curl 7=8 but, if carl == 0, is F consenutive? Curl test - if carl ?= 0 . F smooth on 3spna domain of & has property that every

Divergenu	L test:
	F 13 smudh m 3 space.
	Doman of & Satisfies:
	Every closed surface is the boundary of a sold
	that is in the domain of P
	diviteo
	flux PBa Curl Field => F= \$\frac{1}{2} \times \text{G}
Recal!	if P= Tx3 then dovF=0
	but corvers is not true. We have to add
	assume for these ex dNF=0 and F13 smooth.
0	
	De all avoid
	y y y ans.
PS x	
	sphere in domain F 15 a carl field.
	But bull (Aside Contains the origin
	Not in domain!
20.3 m	(taghes book:
	Do gruen domains supply Cord or div Test?
(3)	all points (x, y, z) such that x>0
	Curl teat V
	a divisor

(2 (+ g, s+ 2 f) - (4 t)	K(S+96E)
= Yest Yy + Yze	
Laplucion of P	
of Cand We did a A W	
dis (A- grad 4) 2 along 4254	
how can we choose Y so that	
At grady was zer div.	
$dv\bar{A} + \Delta V = 0 \Rightarrow \Delta V = -diJA$	
the A is in Coulomb gauge.	