$U \sim V = \{z \in \mathbb{R}^n : s_i^{\mathsf{T}} z \leq r_i - h_V(s_i), \quad i = 1, \dots, N\}.$ (2.4) Proof The result (2.4) is valid if N = 1 since then by result (i) of Theorem 2.1, $U \sim V = \bigcap_{v \in V} \{z : s_1^{\mathsf{T}} (z + v) \leq r_1\} = \{z : s_1^{\mathsf{T}} z + h_v(s_1) \leq r_1\}.$ Recursive application of result (vi) in Theorem 2.1 proves (2.4) for N > 1. Remark 2.2 If $h_V(s_i)$ is not defined $(s_i^{\mathsf{T}} v)$ is unbounded from above on V) for some $i = 1, \dots, N$, then $U \sim V$ is empty. If $h_V(s_i)$ is defined for $i = 1, \dots, N$ it is still possible that $U \sim V = \emptyset$. In this case emptyness can be checked by the usual linear programming test for

for $i = 1, \ldots, N$. Then,

max $\alpha \geq 0$. Remark 2.3 Suppose (2.3) is a nonredundant characterization of U, i.e., the removal of any one of the N inequalities changes U. It is still possible that (2.4) is a redundant characterization of $U \sim V$. Redundant inequalities can be sequentially eliminated by applying linear programming. For example, if $\max s_1^T z < r_1 - h_V(s_1)$ for all z such

feasibility: maximize α over those $(z, \alpha) \in \mathbb{R}^{n+1}$ which satisfy $s_i^T z + \alpha \le r_i - h_V(s_i)$, i = 1, ..., N; $U \sim V \ne \emptyset$ if and only if

that $s_i^T z < r_i - h_V(s_i)$, i = 2, ..., N, the first inequality may be removed. Remark 2.4 It is not assumed that either U or V is bounded. Moreover, (2.4) can be applied numerically to a wide class of V. It is only necessary to have a procedure for computing the $h_V(s_i)$; see, for

instance, the next to the last paragraph in Section 1.