Week 9 - Linear Algebra

1. Use Sage to solve the following system of equations:

$$\begin{cases} 10x + 2y = 0\\ 2x - y = 154 \end{cases}$$

2. **TICKABLE** Note that the above system of equations is equivalent to the following systems of equations:

$$\begin{cases} 10a + 2b = 0\\ 2a - b = 154 \end{cases}$$

$$\begin{cases} 10m + 2n = 0\\ 2m - n = 154 \end{cases}$$

In essense the only thing that defines the system of equations is the cofficients:

$$\begin{pmatrix} 10, 2, 0 \\ 2, -1, 154 \end{pmatrix}$$

We can of course seperate the right hand side of our equation and perhaps include those elements in a vector. Our system can now be represented as:

$$\begin{pmatrix} 10, 2 \\ 2, -1 \end{pmatrix} \begin{pmatrix} 0 \\ 154 \end{pmatrix}$$

Let us attempt to represent the above system in Sage.

The following defines b as a vector:

$$b = vector(0,154)$$

The representation of coefficients is a well defined mathematical object called a \mathtt{matrix} . The following code defines A as a matrix:

$$A = matrix([[10, 2], [2, -1]])$$

If we define a vector ${\tt X}$ as a vector of the symbolic variables:

$$X = vector([x, y])$$

We can **multiply** A by X:

A * X

Verify that $X = (x_0, y_0)$ where (x_0, y_0) is the solution to our system of equations (obtained in (1)).

3. **TICKABLE** In linear algebra (you will study this next semester) a matrix equation is an equation of the form:

$$AX = b$$

or

$$XA = b$$

If we define A and b as in question 2 we can solve this equation quite simply using the solve_right or solve_left methods. The following obtains a solution to the equation AX = b:

A.solve_right(b)

Note that A\b is shorthand for A.solve_right

Use the above to solve the following system of equations using matrix notation:

$$\begin{cases} 4x - 2y + 3z = 10 \\ -x - 5y - 8z = 9 \\ x + y + z = 1 \end{cases}$$

4. For reasons that will become clear, the following definition of matrix multiplication is required:

$$(AB)_{ij} = \sum_{j'} \sum_{i'} A_{ij'} B_{i'j}$$

For 2×2 matrices this is equivalent to:

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

As an example create the following two matrices in Sage:

Attempt to multiply these matrices by hand and carry out their multiplication in Sage:

A*B

Repeat the exercise by multiplying the following pairs of matrices:

1.
$$A = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 4 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 0 & 144 \\ -2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 0 \\ -1 & -17 \end{pmatrix}$

4.
$$A = \begin{pmatrix} 0 & -1 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1/3 & 1/3 \\ -1 & 0 \end{pmatrix}$$

5. **TICKABLE** The previous exercise shows that when considering matrix multiplication there exists a matrix which does not have a multiplicative affect: "the identity matrix".

The identity matrix of size $n \times n$ is denoted by \mathbb{I}_n . The following Sage code gives \mathbb{I}_n :

identify_matrix(4)

Note also, that the previous exercise showed that we can sometimes find a matrix B such that $AB = \mathbb{I}_n$. Finding such a matrix is referred to as 'invering' A and if certain properties hold (you will see this in further details next semester) this matrix is denoted A^{-1} .

If we recall the matrix equation AX = b and if we assume that A^{-1} exists then multiplying both sides by A^{-1} gives:

$$A^{-1}AX = A^{-1}b \Rightarrow \mathbb{I}_n X = A^{-1}b \Rightarrow X = A^{-1}b$$

In Sage we can obtain A^{-1} (if it exists) with the following code:

A.inverse()

Thus another approach to solving AX = b is:

A.inverse()*b

Use this approach to solve the systems of equations we have considered so far.

6. TICKABLE Recalling your basic python knowledge. Lists can be used to hold any sort of object. Obtain a list of the inverses of the following matrices (when the inverse exists, you might need to look up information on try and except):

$$\begin{pmatrix} \frac{1}{2} & 0 & 0 & -1 & 1\\ -1 & -1 & 1 & -\frac{1}{2} & 2\\ 0 & -1 & 0 & -2 & 0\\ 0 & 0 & \frac{1}{2} & -1 & 0\\ -1 & 0 & -2 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -1 & 0 & 0 & -1\\ 2 & 1 & 0 & 1 & 1\\ -2 & 0 & 1 & 2 & 2\\ -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 0 & \frac{1}{2} & -1 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\\ -2 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & 1\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2\\ 2 & 0 \end{pmatrix}$$

For every matrix in this list and the original list obtain the result of the det method. This gives the determinant of the matrices. It is a very important quantity that will be explained next semester.

7 TICKABLE The random_matrix command can be used to obtain a random matrix:

```
random_matrix(ZZ, 5) # Gives a random square matrix of size 5 in \mathbb{Z} random_matrix(QQ, 5) # Gives a random square matrix of size 5 in \mathbb{Z}
```

Using this attempt to conjecture a connection between the determinant of a matrix and it's :

8. TICKABLE The file W09_D01.txt contains 4 columns of data:

For each row of data, obtain the solution to the system of equations:

$$\begin{cases} ax + by = c \\ dx + fy = g \end{cases}$$

Write to file a new data set containing the following columns:

A, B, C, D

Where A is the number of the original data set, B and C are the solutions to the system of equation in question: B=x,C=y. D is the 'norm of the solution vector': $D=\sqrt{C^2+B^2}$. Write the data to file in such a way as it is sorted by D (attempt to do this without the inbuilt sort method). If there is no solution to the system of equations set B=C=D=False. The data set is a randomly sampled set of problems, how often does a solution exist? What is the mean value of D?

9. The file W09_D02.txt contains 20 rows and 20 columns of numbers. This file represents a matrix. Invert the matrix, what is it's determinant? What is the determinant of it's inverse?