Algorithmique et recherche opérationnelle

Nicolas Bourras

September 21, 2020

Contents

0.1	15 Septembre 2020									-											
	0.1.1	Programmes	linéaire	s .																	-

0.1 15 Septembre 2020

Programme pour l'examen :

- 1. Modélisation par PL
- 2. La méthode simplex
- 3. Dualité
- 4. Modélisation par des flots

Note : voir les références sur ametice pour retrouver les exemples.

0.1.1 Programmes linéaires

Cela correspond à miniser ou maximiser des équations linéaires avec l'ajout conditions (contrainte linéaires).

Exemple

Maximiser (todo: liste dans une accolade):

- 1. $x_1 + x_2$
- 2. $x_2 x_1 \leq 1$
- 3. $x_1 + 6x_2 \leq 15$
- 4. $4x_1 x_2 \le 10$
- 5. $x_1, x_2 \ge 0$

-> insérer schéma (1)

Solution optimale : $x_1 = 3, x_2 = 2$; $x_1 + x_2 = 5$.

Forme générale

Maximiser (todo: liste dans une accolade):

- 1. $c_1x_1 + c_2x_2 + ... + c_nx_n$ (fonction d'objectif)
- 2. $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$
- 3. ...
- 4. $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq bn$
- 5. $x1, x2, ..., x_n \ge 0$
- \rightarrow insérer (2)