Discrete Structures :: CS 207 :: Autumn 2021

Problem Set 5

Released: September 20, 2021

1. Equivalence Closure

- (a) Show that the transitive closure of the symmetric closure of the reflexive closure of a relation R is the smallest equivalence relation that contains R.
- (b) Give an example such that the symmetric closure of the transitive closure of the reflexive closure of a relation R is not an equivalence relation.
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as f((x,y)) = (y,y-x). Then define f^{-1} , or show that there is no unique inverse for f.
- 3. Define a relation \sim on the set of all functions from \mathbb{R} to \mathbb{R} by the rule $f \sim g$ if and only if there is a $z \in \mathbb{R}$ such that f(x) = g(x) for every $x \geq z$. Prove that \sim is an equivalence relation.
- 4. If functions $f: A \to B$ and $g: B \to C$ are such that $g \circ f$ is onto, then prove that g is onto. Use precise mathematical notation to prove this, starting from the definitions of onto and composition.
- 5. Suppose $f:A\to B$ and $g:B\to C$ are such that $g\circ f$ is one-to-one. Is f necessarily one-to-one? Is g necessarily one-to-one? Justify.
- 6. Suppose $f: A \to A$ is a function and $f \circ f$ is a bijection. Is f necessarily a bijection?
- 7. Given a function $f: A \to B$, define another function $f': \mathcal{P}(A) \to \mathcal{P}(B)$ (where $\mathcal{P}(A)$ stands for the power-set of A), as follows: for any $S \subseteq A$, $f'(S) = \{f(x) | x \in S\}$. Show that $f'(S \cap T) \subseteq f'(S) \cap f'(T)$. Give an example of f and S, T such that $f'(S \cap T) \neq f'(S) \cap f'(T)$.
- 8. Given a function $f: A \to B$, we define another function $\operatorname{inv}_f: \mathcal{P}(B) \to \mathcal{P}(A)$ as follows: for any $S \subseteq B$, $\operatorname{inv}_f(S) = \{x | f(x) \in S\}$. Now, given functions $f: A \to B$ and $g: B \to C$, express $\operatorname{inv}_{g \circ f}$ in terms of inv_f and inv_g . Justify.
- 9. Construct a bijection $f: \mathbb{Z} \to \mathbb{Z}^+$.
- 10. Construct a bijection $f: \mathbb{Z}^2 \to \mathbb{Z}$.

CS 207 :: Autumn 2021 :: Problem Set 5