Estrategias para Machine Learning

Estrategias para Machine Learning

Referencias:

• Andrew Ng. "Machine Learning Yearning". Draft, 2018. http://www.mlyearning.org/

Disclaimer

Método iterativo

Vimos:

- Setup
- Primera iteración

3. Experiment

Ajuste de Hiperparámetros

3. Experiment

1. Idea 3.1. Hyperparameter tuning 2. Code

Ajuste de Hiperparámetros

Opciones:

- Búsqueda manual.
- Búsqueda exhaustiva (grid-search): todas las combinaciones posibles de valores.
- Aleatoria (randomized): sampleando valores o combinaciones.
- Development vs. Cross Validation

Ajuste de Hiperparámetros

Estrategias:

- ¡Leer documentación!
- Empezar con búsqueda manual. Elegir parámetros más relevantes.
- Seguir con búsqueda exhaustiva. Probar pocas combinaciones.
- Iterar.
- Guardar mejores configuraciones (no sólo la mejor).

Evaluación

Evaluación: Sesgo y Varianza

- **Sesgo (bias):** Error en el conjunto de entrenamiento.
- **Varianza (variance):** Error en el conjunto de development.
- **Error total:** bias + variance.
- Hacer Machine Learning = Bajar el error total.

Evaluación: Sesgo

- **Sesgo alto:** el clasificador **ni siquiera** es capaz de aprender los datos de entrenamiento.
 - Anda peor que un sistema que memoriza los puntos de entrenamiento.
- ¿Cuánto quiere decir alto?
 - Depende del problema y de los valores a los que aspiramos.
 - Normalmente el sesgo **se puede reducir a cero. Se puede pero no necesariamente se quiere.**
- PRIMER OBJETIVO DEL ML: CONTROLAR EL SESGO.

Evaluación: Reducción de Sesgo

• El sistema no logra aprender el conjunto de entrenamiento. No es lo suficientemente "expresivo" (underfitting).

Soluciones:

- Modelo más grande: agregar parámetros, capas, componentes, etc.
- Modelo menos regularizado: salir del underfitting.
- Features más expresivos: más dimensiones.
- Modelo nuevo: clasificador diferente, otra arquitectura.

Evaluación: Varianza

- Sesgo bajo control: Puedo hacerlo tan bajo como quiera.
- Varianza alta: No generaliza. No "aprende". Memoriza. (overfitting)
- ¿Cuánto es varianza alta?
 - Nuevamente, depende del problema y de nuestros objetivos.
 - Con el sesgo controlado, la varianza es directamente proporcional al error total.
 - Con el sesgo controlado, **varianza cero = sistema perfecto.**
- NUEVO OBJETIVO: Bajar la varianza tanto como se pueda. = HACER ML.

Evaluación: Reducción de Varianza

- El sistema no logra generalizar a partir del conjunto de entrenamiento.
- Posibles soluciones:
 - Más datos de entrenamiento. No hay de dónde aprender.
 - o Mejores features: Facilitar al modelo el acceso a información valiosa.
 - o Bajar expresividad: Regularización, early stopping, menos params., etc.
 - Modelo nuevo: clasificador diferente, otra arquitectura.

Análisis de Error

Análisis de Error (Error Analysis)

- ¿En qué se equivoca el modelo?
- Inspeccionar elementos mal clasificados.
- ¿Porqué se clasifica mal?
 - Ver la probabilidad / score de la clase correcta.
 - Ver features activos. Ver valores cercanos en instancias de entrenamiento.
 - Ver qué modificaciones del elemento hacen que se clasifique bien.
- Inspeccionar elementos **peor** clasificados (en base a prob/score)

Análisis de Error (Error Analysis)

- Hacer una lista de ejemplos mal clasificados. (e.g., 50 de dev)
- Inspeccionar cada ejemplo. Identificar fuentes de error.
- Para cada fuente de error, identificar importancia y costo estimado.

Audio clip	Loud background noise	User spoke quickly	Far from microphone	Comments
1	~			Car noise
2	~		V	Restaurant noise
3		V	V	User shouting across living room?
4	~			Coffeeshop
% of total	75%	25%	50%	

Análisis de Error (Error Analysis)

- Subdivisón de development:
 - Eyeball dev set (~100 instancias)
 - Blackbox dev set (el resto)
 - Rotar cada tanto!
- Errores en el dataset:
 - Evaluar su impacto.
 - Si es importante, corregir en **todos** los datasets.

Inspección del Modelo

Inspección del Modelo

- Estudiar los parámetros del modelo una vez aprendido.
- Features más influyentes para cada clase.
- Fronteras de decisión.

Inspección del Modelo

- Modelos fácilmente inspeccionables:
 - Decision Trees
 - Naive Bayes: probabilidad de cada feature dada la clase (y prior de la clase)
 - Logistic Regressions: score de cada feature para cada clase (y bias o intercept)
- Más complicado:
 - o Random Forests: son muchos árboles para ver!
 - **SVMs:** ver con qué features está más alineado el hiperplano.
 - Redes Neuronales: usar inputs para ver cómo reacciona la red.

Fork (Bifurcación)

Bifurcación

- Empezar a mantener dos o más sistemas diferentes en simultáneo.
- Cada uno tiene su ciclo de experimentación.
- Con el tiempo, las configuraciones divergen.
- Ejemplo:
 - o SVM / LR
 - Red neuronal: MLP / RNN / CNN

Retrospectivas

Ablation Tests 1. Idea: **Retune hiperparameters** Reconsider Old Ideas 4. Evaluate 3. Experiment 2. Code

Retrospectivas

- Revisar ideas previas, tanto las aceptadas como las rechazadas.
- Ablation Tests: medir el impacto de cada componente del sistema actual.
- Hiperparameter retuning: Volver a hacer ajuste de hiperparámetros
- Reconsiderar viejas ideas

Aumentación de Datos (Data Augmentation)

- Generar datos artificiales en base a los datos que tenemos.
- Las transformaciones deben preservar las etiquetas
- Imágenes: rotación, escala, espejado, cambio de color, etc.
- Texto: más dificil! sinónimos, traducción bidireccional, etc.