Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Week 03

Segmentation Basics

Majid Mirmehdi | majid@cs.bris.ac.uk

Examples of Image Segmentation

Image Segmentation ...

... is the process of spatial subsectioning of a (digital) image into multiple <u>partitions of pixels</u> (i.e. segments or regions) according to given criteria.

Example: segmentation of an image into locally coherent regions

Motivation: Why Segment Images?

- Image Simplification

- an image may contain millions of pixels but only a few regions

Higher-level Object Description

- regions tend to belong to the same class of object
- regions may provide object properties (e.g. shape, colour, ...)

Input for Content Classifiers

- region descriptions can be input data for higher level classifiers, e.g. Bayesian Classifiers or Neural Networks.

Why Segment Images?

Image Segmentation

Perfect segmentation is difficult to achieve:

- a pixel may straddle the "real" boundary of objects such that it partially belongs to two or more objects
- effects of noise, non-uniform illumination, occlusions etc. give rise to the problem of over-segmentation and under-segmentation

Images from craftofcoding.wordpress.com

Example of Over-Segmentation

Original image

Over-segmentation

Over-segmentation: pixels belonging to the same region [object] are classified as belonging to different regions [objects]

Example of Under-Segmentation

Original image

Under-segmentation

Under-segmentation: pixels belonging to different regions [objects] are classified as belonging to the same region [object]

Concepts of Segmentation I

Thresholding Methods

- pixels are categorized based on intensity
- only useful when sufficient contrast exists

Edge-based Methods

region boundaries are constructed from edgemaps

Region-based Methods

- region growing from seed pixels
- region splitting and merging for efficient spatial encoding

Concepts of Segmentation II

Clustering and Statistical Methods

- global, often histogram based image partitioning, e.g. K-means, Gaussian Mixture Model

Topographic Methods (out of scope in this unit)

- stepwise simplifications that take spatially wider (topographical) image configurations into account e.g. watershed transform, variational based methods

Thresholding Example

- If the image contains a dark object on a light background
 - choose a threshold value, T
 - for each pixel
 - if the brightness at that pixel is less than
 T, it is a pixel of interest
 - otherwise it is part of the background

- The value of the threshold is very important
 - if too high → background pixels classified as foreground
 - If too low → foreground pixels classified as background

T = 128

T = 96

T = 64

Using Histograms to Stipulate Regions

To find a threshold, we can use an image histogram:

- count how many pixels in the image have each value
- for simple images it shows peaks and valleys around regions of the image

The seal image shows three regions

- one below $T_1 = 80$
- one above T_2 = 142
- one between the two thresholds

Threshold Selection Algorithm

- 1. Select an initial estimate for the threshold T
- 2. Segment the image using *T.* This will produce two groups of pixels: G_1 consisting of all pixels with grey levels >T and G_2 consisting of pixels with grey values $\leq T$.
- 3. Compute the average grey level values m_1 and m_2 for the pixels in regions G_1 and G_2 .
- 4. Compute a new threshold value: $T = (m_1 + m_2)/2$
- 5. Repeat steps (2.) through (4.) until convergence

Split & Merge Segmentation – Divide & Conquer

Homogenity function H

$$H(Region A) = 1$$
 (homogeneous)

$$H(Region B) = 0$$
 (inhomogeneous)

Segmentation Result

Split & Merge Segmentation – Divide & Conquer

- 1. Start with R_0 that represents the entire image
- 2. If $H(R_i) = 0$ (inhomogeneous) then {split area into 4 blocks (quadtree splitting) and process each area with step (2.)}
- 3. Merge all subregions that pairwise satisfy $H(R_i \cup R_j) = 1$ (homogenous)

Segmentation Result

Split & Merge – Summary

Conceptual Summary:

- Iteratively decompose an image into regions of a maximally sized selected shape (e.g. rectangle) that do not satisfy a homogeneity condition. (split step)
- Then merge regions that together satisfy a homogeneity condition. (merge step)

Some Comments:

- Using quadtrees, the results of split and merge tend to be *blocky*.
- Can have an adaptive homogeneity condition that, for instance, changes depending on the region size.

Example *H*

- $H(R_i)$ =1 if at least 80% of the pixels in R_i have the property $|z_i - m_i| < 2\sigma_i$ where z_i is the grey level of the j^{th} pixel in R_i , m_i is the mean grey level of the region and σ_i is the standard deviation of the grey levels in R_i
- If $H(R_i)=1$ then set all the pixels in R_i to value m_i

Split & Merge – Bristol Video Scene Segmentation

Original Video

Segmentation Result

- Images are segmented using a Split-And-Merge technique. (Note the blocky nature of the regions!)
- Regions are then labelled by a Neural Network to associate the segments with semantics (colouration).
- This project dates back to around 20 years ago!

Clustering for image segmentation

K-means clustering – theoretical view

It minimises the following objective function:

$$\Theta(clusters, data) = \sum_{j \in clusters} \left[\sum_{i \in j^{th} cluster} \mathbf{x}_i - \mathbf{\mu}_j \right]^2$$

function KMeans(Features, K) randomly initialise K vectors $\mu_1 \dots \mu_K$; repeat

 \Longrightarrow assign each $x \in Features$ to the nearest μ_j

recompute each μ_j as the mean of the features assigned to it

until no change in $\mu_1 \dots \mu_K$

return $\mu_1 \dots \mu_K$

Ask user how many clusters they'd like (e.g., *K*=5)

- Ask user how many clusters they'd like (e.g., K=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to (thus each centre "owns" a set of datapoints)

- Ask user how many clusters they'd like (e.g., K=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to
- 4. Each centre finds the centroid of the points it owns...
- 5. ...and jumps there

- 1. Ask user how many clusters they'd like (e.g., *K*=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to
- Each centre finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. Repeat from 3 until terminated!

Reflection on the K-means Algorithm

What does it do?

- K-means attempts to find a configuration $\mu_1 \dots \mu_K$ that minimises within-cluster scatter: total squared distance between point x_i and centroid μ_i in j^{th} cluster:

$$\sum_{i} \left\| \mathbf{x}_{i} - \mathbf{\mu}_{j} \right\|^{2}$$

 This is equivalent to maximising the between-cluster scatter (total squared distance between each cluster centroid and the global centroid of all points)

Does it work?

- 1. The algorithm terminates.
- 2. It finds a local optimum from which no further improvement is possible by making local changes.
- 3. It does not necessarily find a global optimum.

Next week

Toby Perrett will continue the video led tos on the Basics of Object Detection, including.

- Integral Images
- Viola Jones method for face detection