Uvod v računalništvo (UvR)

Osnovni gradniki: binarna števila, booleanova logika in vrata

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: Invitation to Computer Science, poglavje 4

v1.0 Št. leto 2013/14

Cilji predavanja

- Znati pretvarjati med desetiškimi in dvojiškimi števili
- Znati ustrezno predstavljati negativna števila
- Znati razložiti kako so števila, znaki, zvok in slike predstavljeni v računalniku
- Zgraditi tabele pravilnosti za Booleove izraze in ugotoviti kdaj so resnični alineresnični
- Opisati relacijo med Booleovo logiko in računalniškimi vezji
- Konstruirati logična vezja, analizirati preprosta vezja in določiti tabele pravilnosti
- Opisati namen in delovanje nadzornih vezij multiplekserja in dekoderja

Uvod

- Kako delujejo računalniki?
 - Nizkonivojsko delovanje računalnikov

- prenosniki, osebni računalniki
- strežniki, superračunalniki
- igralne konzole, mobilni telefoni, MP3 predvajalniki
- kalkulatorji
- vgrajeni sistemi v igračah, avtomobilih, mikrovalovkah,.

Predstavitev informacije

- Kako lahko elektronski stroj predstavi informacijo?
- Ključne zahteve:
 - jasnost
 - nedvoumnost
 - zanesljivost
- Zunanja predstavitev prirejena človeku
 - desetiška števila
 - znaki na tipkovnici
- Notranja predstavitev prirejena računalniku
 - dvojiška števila
 - dvojiške kode za znake

Predstavitev informacije

Dvojiški številski sistem

- Dvojiški številski sistem osnova 2
- Desetiški sistem:
 - 10 števk: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Vsako mesto ustreza potenci št. 10
 - $1943 = 1 * 10^3 + 9 * 10^2 + 4 * 10^1 + 3 * 10^0$
- Dvojiški sistem
 - 2 števki: 0, 1
 - Vsako mesto ustreza potenci št. 2
 - $1101 = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 13$

Binarna števila

Binary	Decimal	Binary	Decimal
0	0	10000	16
1	1	10001	17
10	2	10010	18
11	3	10011	19
100	4	10100	20
101	5	10101	21
110	6	10110	22
111	7	10111	23
1000	8	11000	24
1001	9	11001	25
1010	10	11010	26
1011	11	11011	27
1100	12	11100	28
1101	13	11101	29
1110	14	11110	30
1111	15	11111	31

Binary-to-decimal conversion table

Dvojiški številski sistem

- Pretvarjanje iz dvojiškega v desetiški sistem
 - seštej potence števila 2, kjer je števka 1
- Pretvarjanje iz desetiškega v binarni sistem
 - število deli z dva dokler se da in si zapomni ostanke
- Fiksna dolžina binarnih števil maksimalno število, ki je lahko še predstavljeno
 - aritmetični preliv (ang. arithmetic overflow)
- Dvojiško seštevanje:
 - 0+0=0, 0+1=1, 1+0=1, 1+1=0 in ena dalje

Negativna binarna števila

- Notacija predznak in vrednost
 - prvi bit za predznak, ostali za vrednost
 - +5 = 0101, -5 = 1101
 - 0 = 0000 and 1000 dve ničli!
 - precej nepraktično
 - dvoumna predstavitev
 - težje računanje
- Dvojiški komplement
 - za negativna števila obrni vsak bit in dodaj ena
 - \bullet +5 = 0101, -5 = 1010 + 1 = 1011
 - 0 = 0000, -0 = 1111 + 1 = 0000 ena ničla!
 - precej bolj praktično
 - nedvoumna predstavitev
 - lažje računanje
 - seštevanje in odštevanje: se vrtimo po številskem krogu

Števila s plavajočo vejico

- Znanstvena notacija
 - Znanstvena notacija z osnovo 10: 1.35 × 10⁻⁵
 - Osnova 2: $3.25_{10} = 11.01_2 = 1.101 \times 2^1$
- Mantisa in eksponent: ±M × 2^{±E}
 - Pretvorimo število v znanstveno notacijo
 - normaliziramo
 - pomaknemo mantiso za binarno vejico in ustrezno povečamo eksponent
- Primer:
 - predznak in vrednost
 - 16 bitov: mantisa: 1+9 bitov, eksponent 1+5 bitov
 - $5,75_{10} = 101.11_2 = 101.11 \times 2^0 = ,10111 \times 2^3$
 - 0101110000000011

Predstavitev znakov

- Preslikava znakov v binarne kode
- ASCII (8 bitov, 256 znakov)
- Unicode (16 bitov, 65.536 znakov)
- Primer: UvR = 01010101 01110110 01010010

Keyboard Character	Binary ASCII Code	Integer Equivalent	Keyboard Character	Binary ASCII Code	Integer Equivalent					
(blank)	00100000	32	Р	01010000	80					
!	00100001	33	Q	01010001	81	:	: 00111010	: 00111010 58	: 00111010 58 j	: 00111010 58 j 01101010
а	00100010	34	R	01010010	82	;	; 00111011	; 00111011 59	; 00111011 59 k	; 00111011 59 k 01101011
#	00100011	35	S	01010011	83	<	< 00111100	< 00111100 60	< 00111100 60 I	< 00111100 60 I 01101100
\$	00100100	36	Т	01010100	84	=	= 00111101	= 00111101 61	= 00111101 61 m	= 00111101 61 m 01101101
%	00100101	37	U	01010101	85	>	> 00111110	> 00111110 62	> 00111110 62 n	> 00111110 62 n 01101110
&	00100110	38	V	01010110	86	?	? 00111111	? 00111111 63	? 00111111 63 o	? 00111111 63 o 01101111
	00100111	39	W	01010111	87	@	@ 01000000	@ 01000000 64	@ 01000000 64 p	@ 01000000 64 p 01110000
	00101000	40	X	01011000	88	Α	A 01000001	A 01000001 65	A 01000001 65 q	A 01000001 65 q 01110001
)	00101001	41	У	01011001	89	В	B 01000010	B 01000010 66	B 01000010 66 r	B 01000010 66 r 01110010
*	00101010	42	Z	01011010	90	C	C 01000011	C 01000011 67	C 01000011 67 s	C 01000011 67 s 01110011
+	00101011	43]	01011011	91	D	D 01000100	D 01000100 68	D 01000100 68 t	D 01000100 68 t 01110100
,	00101100	44	Ĭ	01011100	92	E	E 01000101	E 01000101 69	E 01000101 69 u	E 01000101 69 u 01110101
_	00101101	45]	01011101	93	F	F 01000110	F 01000110 70	F 01000110 70 v	F 01000110 70 v 01110110
	00101110	46	Ž.	01011110	94	G	G 01000111	G 01000111 71	G 01000111 71 w	G 01000111 71 w 01110111
1	00101111	47	_	01011111	95	Н	H 01001000			
0	00110000	48	8	01100000	96	1	I 01001001	I 01001001 73	I 01001001 73 y	I 01001001 73 y 01111001
1	00110001	49	a	01100001	97	J	J 01001010			
2	00110010	50	ь	01100010	98	K	K 01001011	K 01001011 75	K 01001011 75 {	K 01001011 75 { 01111011
3	00110011	51	С	01100011	99	L	L 01001100	L 01001100 76	L 01001100 76 :	L 01001100 76 : 01111100
4	00110100	52	d	01100100	100	M	M 01001101			
5	00110101	53	e	01100101	101	Ν				
6	00110110	54	f	01100110	102	0	0 01001111	O 01001111 79	O 01001111 79	O 01001111 79
7	00110111	55	9	01100111	103					
8	00111000	56	h	01101000	104		74-54-64 No. 10 No.		2000000	200000
9	00111001	57	i	01101001	105	ASCII co	ASCII conversion table	ASCII conversion table	ASCII conversion table	ASCII conversion table

Predstavitev podatkov

- Dve pojavni obliki informacije
 - Analogna ali zvezna obsega neskončno število vrednosti
 - Digitalna ali diskretna obsega končno št. vrednosti

Predstavitev zvoka

- Zvok je analogni pojav
 - amplituda
 - perioda
 - frekvenca

Predstavitev zvoka

- Analogno-digitalna pretvorba
 - vzročenje
 - frekvenca vzorčenja
 - št. vzorcev/sek
 - kvantizacija
 - bitna globina
 - št. nivojev

Predstavitev zvoka

Reprodukcija

- približek z uporabo shranjenih diskretnih vzorcev
- digitalno-analogna konverzija

CD kvaliteta:

- 44.1 kHz
- 16 bit
- Avdio formati
 - WAV, AAC, WMA, MIDI
 - MP3

Predstavitev slike

- Vzorčenje slike
 - shranjevanje barve ali intenzitete na diskretnih intervalih v dveh dimenzijah
 - slikovni elementi (piksli)
- Ločljivost slike
 - št. slikovnih elementov
- Barvna globina
 - št. barvnih (intenzitetnih) nivojev
- Rastrske slike
 - 2D matrika števil!

Predstavitev slike

Intenzitene slike

- Barvne slike (RGB)
 - kombinacija rdeče, zelene in modre barve
 - en (ali več) bytov na barvni kanal
 - barvne palete
- Video: 25 slik/sek
- Ogromne količine podatkov => kompresija

Stiskanje podatkov

- Kliko prostora potrebujemo, da shranimo:
 - 300 stranski roman
 - 60 sekund zvočnega posnetka
 - slika velikosti 4.000 x 3.000 slikovnih elementov
- Nujna stiskanje (kompresija) podatkov
 - brezizgubno
 - run-length encoding
 - kode s spremenljivo dolžino
 - izgubno
 - izpusti se tisti del podatkov, ki ga človek slabše zazna
 - različne stopnje stiskanja
 - kompromis med kvaliteto in velikostjo
 - JPG, MP3, MPEG,...
 - Stopnja stiskanja
 - tudi 20:1 in več

Stiskanje podatkov

- Stiskanje s kodami s spremenljivo dolžino
 - bolj pogoste znake kodiramo s krajšimi kodami

4-bit Encoding	Variable Length Encoding
0000	00
0001	10
0010	010
0011	110
0100	0110
0101	0111
0110	11100
0111	11101
1000	11110
1001	111110
1010	1111110
1011	1111111
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Shranjevanje binarnih podatkov

- Desetiški sistem zahteva deset stabilnih stanj
 - zelo nerobustno!
- Dvojiški sistem zahteva samo dve stabilni stanji
 - bistabilno okolje
 - zelo robustno!
- Zahteve za binarni računalnik:
 - dve stabilni energijski stanji
 - ločeni z veliko energijsko mejo
 - možno je zaznati v katerem stanju se nahaja naprava
 - možno je preklapljati med stanjema
- Različne možnosti
 - stikalo za luč vklopljeno/izklopljeno
 - napolnjeno/nenapolnjeno
 - -5V/+5V
 - pozitivno/negativno nabito
 - magnetizirano/nemagnetizirano
 - magnetizirano v smeri/v obratni smeri urinega kazalca

Shranjevanje binarnih podatkov

Primer: magnetno jedro

1955-1975

tok: teče/ne teče

magnetno polje: levo/desno

Tranzistorji

- Elektronsko preklapljanje med stanjema
 - v miljardinki sekunde
- Narejen iz polprevodnikov
 - zelo majhen
 - poceni izdelava
 - GB podatkov
- Fotografsko tiskanje
 - integrirana vezja
 - čipi

Simplified model of a transistor

Tiskanja vezja in čipi

Booleova logika

- Pravila za delo z dvema vrednostima
 - True/false, T/F
 - **1/0**

- (Logično) načrtovanje strojne opreme
 - Booleovi izrazi se lahko pretvorijo v vezja

Booleovi operatorji

- IN (AND, &, , ∧): produkt oz. konjunkcija
- ALI (OR, |, +, V): vsota ali disjunkcija
- NE (NOT, \sim , \neg , $\overline{}$, `): negacija

Inputs			Output a AND b
	a	ь	(also written a · b)
	False	False	False
	False	True	False
	True	False	False
	True	True	True

Input	ts	Output a OR b
a b		(also written a + b)
False	False	False
False	True	True
True	False	True
True	True	True

Input		Output NOT a	
	a	(also written \overline{a})	
F	alse	True	
Т	rue	False	

Tabela pravilnosti

Definira rezultat (T/F) za vse možne kombinacije vhodov

Primer: (a • b) + (a • ~b)

а	b	~b	(a • b)	(a • ∼b)	(a • b) + (a • ∼b)
true	true	false	true	false	true
true	false	true	false	true	true
false	true	false	false	false	false
false	false	true	false	false	false

Booleova vrata

- Vrata: elektronska naprava, ki na osnovi vhodnih vrednosti proizvede izhodne vrednosti
- Vrata lahko ustrezajo Booleovim operatorjem:

Vrata NOT

Vrata NOT: en tranzistor

Vrata AND

- Vrata NAND: dva tranzistorja
- Vrata AND: tri tranzistorji

Construction of NAND and AND gates

- (a) A two-transistor NAND gate
- (b) A three-transistor AND gate

Vrata OR

- Vrata NOR:
 - dva tranzistorja
- Vrata OR:
 - tri tranzistorji

(b) A three-transistor OR gate

Abstrakcija

- Pri načrtovanju vezij bomo abstrahirali elektronske podrobnosti
 - načrtovali bomo z AND, OR, in NOT vrati in Booleovo logiko

Gradnja računalniških vezij

- Vezje
 - ima vhodne povezave
 - vsebuje vrata povezana s povezavami
 - ima izhodne povezave
- Izhod je odvisen samo od trenutnega vhoda
 - ni stanj

- Sekvenčna vezja vsebujejo tudi povratne zanke
 - vrednost je odvisna tudi od prejšnjega vhoda

Algoritem za konstrukcijo vezij

- Obstaja več algoritmov
- Algoritem vsota produktov
 - 1. Izdelaj tabelo pravilnosti
 - 2. Izdelaj podizraze z vrati AND in NOT
 - 3. Poveži podizraze z vrati OR
 - 4. Izdelaj diagram vezja

Algoritem vsota produktov

- Korak 1: Izdelaj tabelo pravilnosti
 - vedeti moramo kaj naj dobimo na izhodu pri določenem vhodu

а	b	С	Output1	Output2
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Algoritem vsota produktov

- Korak 2: Izdelaj podizraze z vrati AND in NOT
 - poišči vrstice z vrednostjo 1 (najprej gledamo za Output1)

а	b	С	Output1	Output2
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

za vsako tako vrstico izdelaj podizraz:

•
$$a = 0$$
, $b = 1$, $c = 0$: ($\sim a \cdot b \cdot \sim c$)

•
$$a = 1, b = 1, c = 0$$
: $(a • b • ~c)$

Algoritem vsota produktov

- Korak 3: Poveži podizraze z vrati OR
 - (~a b ~c) + (a b ~c)
- Korak 4: Izdelaj diagram vezja
 - iz dobljenega izraza

- Vse skupaj ponovi še za drugi izhod (Output2)
- Optimizacija vezij

Algoritem vsota produktov

- Construct the truth table describing the behavior of the desired circuit
- While there is still an output column in the truth table, do Steps 3 through 6
- Select an output column
- Subexpression construction using AND and NOT gates
- Subexpression combination using OR gates
- Circuit diagram production
- 7. Done

The sum-of-products circuit construction algorithm

Primer: Vezje za primerjanje

- Vezje CE (Compare-for-equality)
- Primerjanje dveh števil
- Zelo pogosto uporabno
- vhod: dve nepredznačeni dvojiški števili
- izhod: 1, če sta identični, 0 sicer
- Začni z verzijo za en bit
- Razširi jo za poljubno število bitov

Primer: Vezje za primerjanje

Tabela pravilnosti za en bit:

а	b	Output
0	0	1
0	1	0
1	0	0
1	1	1

- Booleov izraz: (a b) + (~a ~b)
- Vezje za en bit:
 - 1-CE

Primer: Vezje za primerjanje

- Vezje za N bitov
- Popari istoležne bite
- Na vsakem paru poženi 1-CE
- Poveži vse skupaj z vrati AND

alništvo. Osnovni gradniki

- Vezje za seštevanje
- Seštej dve binarni števili
- Vhod: dve nepredznačeni N-bitni dvojiški števili
- Izhod: eno nepredznačeno N-bitno dvojiško število (vsota)
- Primer:

- Začni z enobitnim seštevalnikom (1-ADD)
- Razširi ga za N bitov

Enobitni seštevalnik 1-ADD

vhod: dve števili in prenos

izhod: vsota in prenos

Tabela pravilnosti

Inputs		Out	Outputs		
aį	b _i	c _i	sį	c _{i+1}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Izraza za seštevek in prenos:

$$s_{i:} (\sim a_i \cdot \sim b_i \cdot c_i) + (\sim a_i \cdot b_i \cdot \sim c_i) + (a_i \cdot \sim b_i \cdot \sim c_i) + (a_i \cdot b_i \cdot c_i)$$

•
$$c_{i+1}$$
: $(\sim a_i \cdot b_i \cdot c_i) + (a_i \cdot \sim b_i \cdot c_i) + (a_i \cdot b_i \cdot \sim c_i) + (a_i \cdot b_i \cdot c_i)$

Vezje za izhod s_i (vsota) v 1-ADD

- Celotno vezje 1-ADD
 - S
 - C_{i+1}

Celotno vezje – povežemo posamezne seštevalnike 1-ADD

Kontrolna vezja

- Kontrolna verzija sprejemajo odločitve, določajo vrstni red operacij, izbirajo vrednosti podatkov
- Izbirnik
 - Multiplekser
 - izbere enega izmed mnogih vhodov
- Dekodirnik
 - Dekoder
 - pošlje na izhod en signal izbran z vhodom

Izbirnik

- Izbere enega izmed mnogo vhodov
 - 2^N vhodnih linij
 - N izbirnih linij
 - 1 izhodna linija
- Vsaka vhodna linija ustreza vzorcu vrednosti na izbirnih linijah
- Vrednost izbranega vhoda prenese na izhod
- Primer: 2-vhodni MUX

Dekodirnik

- Pošlje signal na en izhod izbran z vrednostjo na vhodnih linijah
- Vsaka izhodna linija ustreza vzorcu vrednosti na vhodnih linijah
- Izbrani izhod ima vrednost 1, vsi ostali izhodi pa 0
- Primer:
- dekodirnik 2-v-4

Uporaba dekodirnika

- Izbira izhoda glede na vzorec na vhodu
- Primer:
 - Izberi en aritmetični ukaz, podan s kodo za ta ukaz
 - Koda aktivira izhodno linijo, le-ta aktivira ustrezno aritmetično vezje

Uporaba izbirnika

- Izbira vrednosti podatka iz množice, kot to določa vzorec na izbirnih linijah
- Veliko podatkov pride v izbirnik, samo eden izbrani pride ven
- Primer: izbira pravega registra

Povzetek

- Računalniki uporabljajo binarno predstavitev, ker je robustna
- Veliko vrst podatkov lahko predstavimo (vsaj aproksimiramo) v digitalni obliki z binarnimi števili
- Booleova logika opisuje kako zgraditi in delati z izrazi, ki so bodisi pravilni ali nepravilni
- S tranzistorji lahko zgradimo logična vrata, ki se obnašajo kot Booleovi operatorji
- Z logičnimi vrati lahko gradimo vezja, ki ustrezajo Booleovim izrazom
- Vsota produktov je algoritem za načrtovanje vezij
 - iz specifikacije zgradi vezje
- Lahko zgradimo vezja za osnovne algoritmične naloge:
 - primerjave (primerjalnik)
 - aritmetiko (seštevalnik)
 - nadzor (izbirnik, dekodirnik)