

Sistemas de Informação II

Parte 1 - Relatório de Pesquisa

OLAP e as suas ferramentas

Discentes:

- José Miguel Veiga Tinoco 2017016341
- Nuno Alexandre Batista Mira Braga 2006006197
- Oleksandra Kukharska 2020151174

ÍNDICE

Int	troduç	ção		. 1
1.	Arqı	uitetı	ura e Tipos de <i>OLAP</i>	. 2
	1.1.	MOI	LAP	. 2
	1.1.	1.	Vantagens	. 3
	1.1.	2.	Desvantagens	. 3
	1.2.	ROL	AP	. 4
	1.2.	1.	Condições específicas de implementação	. 4
	1.3.	ноі	_AP	. 5
	1.4.	Con	nparação entre os diferentes tipos de OLAP	. 7
2.	Con	npon	entes de uma Ferramenta OLAP	. 8
	2.1.	Cub	os OLAP e estrutura multidimensional	. 8
	2.2.	Dim	ensões, medidas e fatos	. 8
	2.3.	Оре	erações OLAP: Drill-Down, Roll-Up, Slice, Dice e Pivot	. 9
	2.4. Scher	-	uemas de dados: Star Schema, Snowflake Schema e Galaxy	10
3.	Р	rinci	pais ferramentas OLAP do mercado	12
;	3.1.	Mic	rosoft SQL Server Analysis Services	12
	3.1.	1.	Funcionalidades	12
	3.1.	2.	Vantagens	13
;	3.2.	Ora	cle OLAP	13
	3.2.	1.	Principais funcionalidades e vantagens	13
	3.2.	2.	Exemplos de aplicação	14
;	3.3.	IBM	Cognos	14
	3.3.	1.	Principais funcionalidades	14
	3.3.	2.	Exemplos de aplicação	15
;	3.4.	SAP	Business Warehouse	15
	3.4.	1.	Funcionalidades	15
	3.4.	2.	Vantagens	16
;	3.5.	Ferr	ramentas de Visualização e Operação de dados	16

3.5.1.	Power BI	16
3.5.1.	1. Exemplos de empresas que aplicam	16
3.5.2.	Tableau	17
3.5.2.	1. Exemplos de produtos	17
3.5.2.2	2. Exemplos de empresas que trabalham com Tabl	eau 17
3.5.3.	Comparação entre Power BI e Tableau	18
3.5.3.	1. Semelhanças	18
3.5.3.2	2. Diferenças	18
3.6. Con	mparação entre as ferramentas	19
4. Proces	esso de Implementação de OLAP	22
4.1. Inte	egração de OLAP com DataWarehouse	22
4.2. ETL	de dados	23
4.3. Mod	delação dimensional e criação de cubos OLAP	24
5. Análise o	de artigos científicos	26
5.1. Seto	or Financeiro	26
5.1.1.	Building an effective data warehousing for financial s	ector 26
5.1.2.	Data Warehouse and OLAP Technology Applied in the	Financial
Analysis	of Listed Company	27
5.2. Set	or da Saúde	27
5.2.1.	On-line Analytical Processing (OLAP) Operation for O	-
	are	
5.2.2.	The technology of using a data warehouse to support in health care	
	or do Comércio	
5.3.1.	Implementing online analytical processing in hotel c	
	ship management	
5.3.2.	Designing a data warehouse system for sales and dis	tribution
company	y	29
5.4. Con	mparação entre os Casos de Estudo	29
6. Desaf	fios e Limitações das Ferramentas OLAP	31
Conclusão		32

Referências	. 33	;
-------------	------	---

Índice de Figura

Figura 1 Topologia do sistema para a implementação de cubos OLAP	2
Figura 2 Arquitetura MOLAP	4
Figura 3 Arquitetura ROLAP	5
Figura 4 Arquitetura HOLAP	6
Figura 5 Microsoft SQL Server logótipo	12
Figura 6 Oracle logótipo	13
Figura 7 IBM Cognos logótipo	14
Figura 8 SAP Business Warehouse logótipo	15
Figura 9 Power BI logótipo	
Figura 10 Tableau logótipo	17
Figura 11 Estrutura de uma DataWarehouse	22
Figura 12 Camadas do DataWarehouse	22
Figura 13 Exemplo de um modelo de dados dimensional	24
Figura 14 Modelo dimensional	25
Figura 15 Modelo multidimensional	25
Índice de Tabela	
Tabela 1 Comparação entre os diferentes tipos de OLAP	7
Tabela 2 Comparação entre as ferramentas OLAP	

Este trabalho é elaborado na unidade curricular do 1º semestre de Sistemas de Informação II, da Licenciatura de Engenharia Informática do Instituto Politécnico de Coimbra, e tem por objetivo estudar a importância das ferramentas de *Online Analytical Processing* (OLAP) na área de *Business Intelligence* (BI), e o seu papel no apoio à tomada de decisões em diferentes setores, uma vez que as ferramentas de OLAP fornecem respostas rápidas a consultas complexas.

Ao longo do trabalho, irão ser explorados diferentes tipos de OLAP, nomeadamente *Multidimensional Online Analytical Processing* (MOPAL), *Relational Online Analytical Processing* (ROLAP) e *Hybrid Online Analytical Processing* (HOLAP), bem como as suas vantagens e desvantagens, e uma visão comparativa entre os três. São abordados, ainda, os principais componentes das ferramentas OLAP, como cubos de dados, estruturas multidimensionais e operações como *Drill-Down*, *Roll-Up*, *Slice*, *Dice* e *Pivot*, que possibilitam uma análise detalhada dos dados.

Além disso, serão analisadas as principais ferramentas de OLAP no mercado atual, incluindo *Microsoft SQL Server Analysis Services*, *Oracle OLAP*, *IBM Cognos*, *SAP Business Warehouse*, *Tableau* e *Power BI*, com uma análise comparativa entre elas. O processo de implementação de OLAP, que envolve a integração com *Data Warehouse* (DW), ETL de dados e modelação dimensional, será também explorado, de forma a entender como estas ferramentas são incorporadas em ambientes corporativos.

Para ilustrar a aplicação prática, este trabalho aborda análise de artigos científicos em que foram feitas implementações de ferramentas OLAP nos setores financeiro, saúde e comércio, destacando a importância desses sistemas para melhorar a eficiência e a qualidade das decisões nesses contextos. Por fim, são discutidos os desafios e limitações das ferramentas OLAP.

Essa análise procura consolidar uma compreensão abrangente sobre o impacto das ferramentas OLAP no BI e seu papel como facilitadoras no processo de consulta de dados, contribuindo para o desenvolvimento contínuo das práticas empresariais baseadas em informações.

1. Arquitetura e Tipos de OLAP

O OLAP é uma tecnologia de *software* utilizada para analisar e organizar bases de dados empresariais de grandes dimensões, de forma que as empresas examinem os seus dados a partir de diferentes perspetivas, tendo para tal uma topologia específica, como mostra a Figura 1.

Figura 1 Topologia do sistema para a implementação de cubos OLAP

Fonte: Microsoft (2024d)

Estas empresas recolhem e armazenam informação de várias fontes, tais como sites, aplicações, Inteligência Artificial (IA) e sistemas internos. O papel do OLAP é combinar e agrupar esses dados em categorias, de modo a fornecer perceções úteis para o planeamento estratégico. O que diferencia do *Online Transaction Processing (OLTP)* que é um sistema que permite o gerenciamento e processamento de transações em tempo real, sendo utilizado em aplicativos que requerem operações rápidas e eficientes em bases de dados, como sistemas de vendas, reservas, e-commerce, e aplicativos financeiros (IBM, n.d.).

Segue de seguida, uma descrição de cada um dos tipos de OLAP.

1.1. MOLAP

O MOLAP, é um processo em *SQL Server Analysis Services* (SQL SAS), que armazena agregações e uma cópia dos dados de origem numa estrutura multidimensional otimizada para maximizar o desempenho das consultas. Essa estrutura pode estar no mesmo computador onde a partição está definida ou noutro servidor de *Analysis Services*. Como a estrutura MOLAP contém uma cópia dos dados, as consultas são resolvidas sem aceder diretamente aos dados de origem, resultando em tempos de resposta curtos.

Departamento de Engenharia Informática e Sistemas Licenciatura em Engenharia Informática Sistemas de Informação II

Politécnico de Coimbra

Contudo, à medida que os dados de origem mudam, o armazenamento MOLAP precisa de ser processado periodicamente para refletir as atualizações, o que pode ser feito de forma completa ou incremental. Entre um processamento e o próximo, existe um período de latência durante o qual os dados MOLAP podem não estar totalmente atualizados. É possível atualizar objetos no armazenamento MOLAP sem colocar o cubo ou a partição offline, exceto em situações que exigem alterações estruturais. Para minimizar o tempo de inatividade, pode-se processar cubos num servidor temporário e sincronizar os objetos processados com o servidor de produção. Também é possível usar cache pró-ativo para reduzir a latência e manter alta disponibilidade, aproveitando o desempenho do armazenamento MOLAP (Microsoft, n.d.).

1.1.1. Vantagens

- Alta Velocidade nas Consultas: Devido à pré-agregação e ao armazenamento especializado, as consultas são extremamente rápidas;
- <u>Eficiência no Armazenamento:</u> Compressão e estruturação otimizadas reduzem o espaço necessário para armazenar grandes volumes de dados;
- <u>Facilidade de Navegação Multidimensional:</u> Operações intuitivas e bem suportadas para explorar os dados em diferentes níveis.

1.1.2. Desvantagens

- <u>Limitação no Volume de Dados:</u> Como os dados são pré-agregados, a quantidade de informações que pode ser armazenada e processada é limitada pela capacidade de armazenamento;
- Complexidade na Atualização de Dados: Atualizações em grandes volumes de dados podem ser complexas, pois muitas agregações precisam ser recalculadas.

Data Warehouse ou Data Mart

Cubo

Armazena cópia da tabela fato e dimensões

Armazena agregações

Dados MOLAP

Agregações

MOLAP

Figura 2 Arquitetura MOLAP

Fonte: Palitot (2007)

1.2. ROLAP

O ROLAP, armazena as agregações da partição em exibições indexadas na base de dados relacional da fonte de dados, sem fazer cópia dos dados de origem no SQL SAS, como mostra a Figura 3. Quando a cache de consulta não contém os resultados, o ROLAP consulta diretamente as exibições, o que geralmente torna as respostas mais lentas do que nos modos MOLAP ou HOLAP. Embora o processamento também seja mais lento, o ROLAP permite visualização de dados em tempo real e economiza espaço ao lidar com grandes volumes de dados que são raramente consultados, como dados históricos. Quando uma partição em modo ROLAP utiliza o *SQL Server* como fonte de dados, o *SQL SAS* tenta criar exibições indexadas para armazenar as agregações. Se não for possível criar essas exibições, as tabelas de agregação não serão geradas (*Microsoft, n.d.*).

1.2.1. Condições específicas de implementação

- Medidas: Não use funções de agregação Min ou Max;
- <u>Tabelas de esquema:</u> Cada tabela deve ser física e aparecer apenas uma vez (não uma exibição);
- Qualificação de nomes: cada tabela e todas devem ter o mesmo proprietário;
- Colunas de medidas: Não podem ser anuláveis;
- <u>Configurações das tabelas:</u> Devem estar com <u>ANSI_NULLS</u> e <u>QUOTED_IDENTIFIER</u> ativados;

- <u>Limite de chave de índice</u>: O tamanho da chave de índice não pode exceder 900 bytes;
- <u>Vistas indexadas:</u> As sessões que as criam devem ativar ARITHABORT,
 <u>CONCAT_NULL_YIELDS_NULL</u>, <u>QUOTED_IDENTIFIER</u>, <u>ANSI_NULLS</u>,
 <u>ANSI_PADDING</u>, <u>ANSI_WARNING</u>, e desativar <u>NUMERIC_ROUNDABORT</u>.

ROLAP

Figura 3 Arquitetura ROLAP

Fonte: Palitot (2007)

1.3. HOLAP

O HOLAP combina características dos modos MOLAP e ROLAP, como mostra a Figura 4. Tal como no MOLAP, as agregações da partição são armazenadas numa estrutura multidimensional no SQL SAS, Microsoft (2023). No entanto, o HOLAP não armazena uma cópia dos dados de origem. Para consultas que acedem apenas a dados agregados, o desempenho do HOLAP é equivalente ao do MOLAP. Mas, para consultas que precisam de aceder a dados detalhados, o HOLAP procura essa informação diretamente na base de dados relacional, o que pode tornar as respostas mais lentas. As partições HOLAP ocupam menos espaço do que as partições MOLAP, pois não contêm os dados de origem, e respondem mais rapidamente que as partições ROLAP em consultas resumidas. O HOLAP é indicado para cubos que exigem respostas rápidas em consultas agregadas sobre grandes volumes de dados. No entanto, para consultas que acedem a dados no nível mais detalhado (por exemplo, ao calcular médias), o MOLAP costuma ser a opção preferível para melhor desempenho (*Microsoft*, *n.d.*).

HOLAP

Figura 4 Arquitetura HOLAP

Fonte: Palitot (2007)

Polité¶:.4: Co Comparação entre os diferentes tipos de OLAP

Nesta secção, é feita uma comparação entre os tipos MOLAP, ROLAP e HOLAP, quanto ao armazenamento, desempenho em consultas, escalabilidade, flexibilidade, espaço de armazenamento, uso ideal e atualização dos dados.

Tabela 1 Comparação entre os diferentes tipos de OLAP

Característica	MOLAP	ROLAP	HOLAP	
Armazenamento Base de dados relacionais (tabelas)		Estruturas multidimensionais (cubos)	Estruturas multidimensionais para agregações; dados detalhados na base relacional	
Desempenho em Consultas	Lento em consultas complexas	Rápido, pois os dados são pré-processados	Rápido em consultas agregadas; mais lento em consultas detalhadas, pois acesa à base de dados relacional	
Escalabilidade	Alta, lida bem com grandes volumes	Limitado pela memória para armazenar cubos	Alta, pois os dados detalhados não são armazenados no cubo	
Flexibilidade	Alta, permite consultas dinâmicas variadas	Menor, pois depende de estruturas fixas	Flexível em consultas agregadas e flexibilidade limitada para dados detalhados	
Espaço de Armazenamento	Menor, pois não usa estrutura multidimensional	Maior, pois armazena dados e agregações no cubo	Menor que o MOLAP, pois armazena apenas agregações	
Uso ideal	Grandes volumes de dados e alta flexibilidade nas consultas	Consultas rápidas em dados pré- processados, geralmente em volumes menores	Consultas rápidas em dados agregados de grandes volumes, com menos uso de espaço	
Atualização de Imediata, acede diretamente à base de dados		Mais lenta, exige atualização do cubo	Rápida para agregações; acesa à base de dados relacional para dados detalhados	

2. Componentes de uma Ferramenta OLAP

As ferramentas *OLAP* são fundamentais em sistemas de análise de dados e BI, permitem uma exploração rápida e interativa de grandes volumes de dados. Estas ferramentas possibilitam aos utilizadores finais a realização de consultas complexas, obtendo conhecimentos que auxiliam na tomada de decisões. As principais funcionalidades e componentes das ferramentas *OLAP* estão organizados em uma estrutura que permite a visualização e manipulação dos dados em diferentes perspetivas.

2.1. Cubos OLAP e estrutura multidimensional

Cubos *OLAP* e estruturas multidimensionais são centrais para soluções de BI em grandes volumes de dados, permitem que dados sejam organizados em várias dimensões, como tempo, produto e região, o que facilita uma análise aprofundada e em diversos níveis, o que torna as respostas a consultas rápidas e eficientes.

No contexto do SQL SAS, é composto de várias dimensões e medidas, que possibilitam o agrupamento lógico e a filtragem dos dados para análises específicas. Por exemplo, na análise de vendas, as dimensões como data, local ou categoria de produto ajudam a segmentar as informações, enquanto as medidas, como o total de vendas, representam os valores a serem analisados. Para otimizar o desempenho, o SQL SAS, permite o uso de partições e agregações. As partições dividem grandes volumes de dados em segmentos menores, facilita o processamento paralelo e torna as consultas mais rápidas e eficientes. As agregações, por sua vez, pré-calculam combinações de dados comuns, reduzindo a necessidade de cálculos repetidos em cada consulta. No modo MOLAP, o SQL SAS armazena esses dados num formato otimizado, permite acesso direto aos dados processados sem precisar consultar a base de dados original a cada consulta, o que diminui o tempo de resposta, e proporciona uma experiência de análise fluida e responsiva (*Microsoft, 2024*).

2.2. Dimensões, medidas e fatos

No modelo *OLAP*, há três elementos principais que estruturam o cubo para permitir uma análise flexível e robusta (*Microsoft, 2024*):

- Dimensões: Permitem organizar e analisar dados. Cada dimensão pode ter hierarquias (ex.: ano > trimestre > mês > dia), possibilita que o utilizador explore as informações em diferentes níveis de detalhe;
- Medidas: Representam os valores numéricos ou métricas de interesse, como total de vendas ou lucro. São calculadas a partir dos fatos, com agregações como soma, média ou contagem, sendo utilizadas para responder a questões de análise quantitativa;
- Fatos: São os dados centrais que o cubo OLAP procura investigar e são armazenados na tabela de fatos. Estão associados a dimensões por meio de chaves estrangeiras, como uma tabela de vendas que se liga às dimensões de data, produto e localização. A tabela de fatos contém informações transacionais, as suas medidas são extraídas e calculadas com base nesses dados.

Esses componentes fazem do *OLAP* uma ferramenta poderosa para responder a perguntas de negócios, e ao centralizar as informações de BI, cubos OLAP no SQL SAS evitam discrepâncias e garantem consistência nos relatórios analíticos. Além disso, cubos *OLAP* são compatíveis com ferramentas de visualização amplamente usadas, como *Power BI* e *Excel*, que facilitam a análise e comunicação dos dados.

2.3. Operações OLAP: Drill-Down, Roll-Up, Slice, Dice e Pivot

Segundo *TutorialsPoint* (n.d.), as operações OLAP são ferramentas analíticas essenciais para explorar dados multidimensionais em cubos, facilita o uso de consultas e a visualização de dados em diversos níveis de granularidade. No ambiente OLAP da Microsoft, há cinco operações fundamentais permitem a exploração aprofundada dos dados:

- **Drill-Down** e **Roll-Up**: Permitem navegar para níveis mais detalhados ou agregados em uma hierarquia. *Drill-Down* permite expandir os dados para ver detalhes específicos, como descer de vendas anuais para mensais;
- Roll-Up: Reverte o processo, consolida dados detalhados para níveis de resumo, como passar de dados mensais para anuais. Esse recurso é

utilizado nas ferramentas *Excel* e o *Power BI* para visualização de dados em *PivotTables*;

- **Slice**: Permite focar numa "fatia" específica dos dados ao fixar um valor numa dimensão, como selecionar vendas num determinado ano ou região, e isolar esse subconjunto para análise mais detalhada;
- Dice: Cria uma sub-cubo ao aplicar filtros em múltiplas dimensões, permite, por exemplo, selecionar vendas de um ano específico para uma categoria de produto numa determinada região;
- Pivot: Permite a reconfiguração dos eixos numa visualização de dados para examinar diferentes perspetivas, como alternar entre a visualização de vendas por produto e por região. Esse recurso facilita a compreensão e revela padrões ao reposicionar dimensões sem modificar o cubo subjacente.

As operações fazem parte de uma abordagem multidimensional para análise de dados através de ferramentas como o *SQL SAS*, facilita na criação de relatórios complexos e visualizações dinâmicas essenciais para BI.

2.4. Esquemas de dados: Star Schema, Snowflake Schema e Galaxy Schema

No modelo multidimensional de dados para soluções OLAP, os esquemas de dados *Star, Snowflake* e *Galaxy* desempenham papéis fundamentais, segundo *Rajasekaran* e *Saravanan* (2020), os esquemas têm as seguintes características:

- Star Schema: É um dos modelos mais utilizados pela sua simplicidade e eficiência de desempenho. Organiza os dados de forma desnormalizada, com uma tabela de fatos centralizada e conectada a várias tabelas de dimensões. Cada tabela de dimensão está diretamente relacionada à tabela de fatos por meio de uma chave primária, o que facilita consultas rápidas, já que as junções são minimizadas, o que traz vantagens para consultas agregadas de grandes volumes de dados. Esse modelo é frequentemente escolhido em soluções como o SQL SAS, uma vez que otimiza o processamento de grandes volumes de dados;
- Snowflake Schema: É uma variação do Star Schema, com a diferença de que as tabelas de dimensões são normalizadas, ou seja, subdivididas em tabelas

Departamento de Engenharia Informática e Sistemas Licenciatura em Engenharia Informática Sistemas de Informação II

Politécnico de Coimbra

adicionais, o que cria uma estrutura em "floco de neve". As tabelas de dimensões são mais detalhadas, permitindo uma modelagem mais precisa, mas isso pode aumentar a complexidade das consultas e afetar o desempenho. O método é útil em casos onde se procura reduzir as redundâncias e o uso eficiente de espaço, mas em contrapartida pode exigir mais junções durante as consultas;

 Galaxy Schema: Este modelo é usado em ambientes mais complexos, onde múltiplas tabelas de fatos compartilham dimensões comuns. É adequado para sistemas de análise cruzada de várias áreas, como um ambiente com dados de vendas e inventário. Embora ofereça flexibilidade e suporte para múltiplas fontes de dados, esse esquema costuma ser mais complexo de gerenciar.

Estes modelos são fundamentais para estruturar dados de maneira que sejam acessíveis e possam ser consultados eficientemente, cada um tem as suas particularidades para suportar diferentes tipos de análises e otimizações no processamento de dados multidimensionais.

3. Principais ferramentas OLAP do mercado

As ferramentas OLAP podem ser classificadas em diferentes tipos, com base na sua arquitetura. Neste ponto serão abordadas as ferramentas *Microsoft SQL Server Analysis Services*, *Oracle OLAP, IBM Cognos, SAP Business Warehouse, Power BI* e *Tableau*.

Após uma breve caracterização das mesmas, será importante proceder a uma comparação das suas características, nomeadamente das suas vantagens e eventuais desvantagens.

3.1. Microsoft SQL Server Analysis Services

Figura 5 Microsoft SQL Server logótipo

Segundo Scholten (2024), o SQL SSAS é uma plataforma de análise de dados do Microsoft SQL Server voltada para soluções de BI e DW, permite a criação de cubos de dados multidimensionais e modelos tabulares, facilita a análise e o processamento de grandes volumes de dados.

3.1.1. Funcionalidades

- <u>Integração de OLAP e MOLAP</u>: Permite um desempenho elevado, compactação de dados e consultas rápidas;
- Modos de Armazenamento: Existem dois modos principais:
 - MOLAP: Utiliza armazenamento especializado para dados multidimensionais, ideal para grande volume de dados;
 - Modo Tabular: Utiliza o mecanismo de análise VertiPaq em memória, proporciona um desempenho rápido nas consultas e é adequado para modelos de dados mais complexos.

• Integração com Ferramentas Microsoft: Integrado ao Power BI e ao Microsoft Excel, facilita a criação de relatórios interativos e dashboards;

3.1.2. Vantagens

- <u>Desempenh</u>o: Oferece alta velocidade para processar grandes volumes de dados, especialmente no modo MOLAP;
- <u>Escalabilidade e Flexibilidade</u>: Adapta-se a diferentes tipos de projetos, desde ambientes simples até implementações empresariais complexas;
- <u>Segurança</u>: É possível gerenciar permissões e controlar o acesso a dados, permite acesso a informação sensível, apenas a utilizadores autorizados.

3.2. Oracle OLAP

Figura 6 Oracle logótipo

Oracle OLAP uma ferramenta de processamento analítico online, que permite a análise multidimensional de grandes volumes de dados, direcionada para organizações/ empresas que precisam de análise de dados avançada e complexa. Esta ferramenta pode ser utilizada para criar cubos de dados multidimensionais, facilita a análise e a visualização de dados em várias dimensões e a extração de grandes volumes de dados de forma rápida e eficiente (Vlamis, n.d.).

3.2.1. Principais funcionalidades e vantagens

- Organização de dados em modelos multidimensionais, com cubos OLAP;
- Consultas rápidas, com resposta em tempo útil;
- Ferramentas de visualização e relatórios;
- Integração com outras ferramentas (ex.: SQL);
- Processamento de grandes volumes de dados, com otimização do tempo/ velocidade e detalhe de resposta.

3.2.2. Exemplos de aplicação

- Análise do desempenho do mercado financeiro;
- Análise de vendas numa perspetiva multidimensional;
- Análise de dados de Marketing;
- Gestão de stock e/ou inventário.

3.3. IBM Cognos

Figura 7 IBM Cognos logótipo

O IBM Cognos Analytics é uma ferramenta que fornece uma gama completa de recursos de BI, desenvolvida para ajudar as empresas/ organizações a recolher, analisar e visualizar dados, de forma a tomar decisões mais informadas. Esta ferramenta oferece um conjunto de funcionalidades, incluindo relatórios, análise de dados, análise *ad hoc*, painéis e *dashboards*, *scorecards*, planeamento e orçamento, bem como a visualização de dados. O Cognos Analytics permite a monitorização do desempenho do negócio, análise de tendências e mensuração de resultados, facilitando a tomada de decisões (IBM, 2024).

3.3.1. Principais funcionalidades

- Permite a criação de relatórios financeiros, operacionais e analíticos, de forma fácil e eficiente, com opções para personalização e distribuição;
- Permite a criação de dashboards interativos, que fornecem uma visão em tempo real, do desempenho da empresa, acompanhados de visualizações gráficas dinâmicas;
- Permite gerir funções como planeamento financeiro, orçamento, previsões e análise de desempenho;
- Permite a consulta Ad-hoc, não exigindo conhecimento aprofundado de programação ou SQL, apresentando uma interface intuitiva e de fácil utilização;

- Permite a integração e compatibilidade com diversas fontes de dados (Ex.: bancos de dados SQL, Oracle e SAP ou até plataformas de cloud, como Amazon Redshift e Google BigQuery);
- Oferece segurança no acesso e partilha dos dados.

3.3.2. Exemplos de aplicação

- Empresas de Retalho;
- Mercado/Indústria Financeira;
- Análise de vendas;
- Campanhas de Marketing;
- Segmentação de clientes.

3.4. SAP Business Warehouse

Figura 8 SAP Business Warehouse logótipo

O Business Warehouse (SAP BW), é uma solução de software de inteligência empresarial desenvolvida pela SAP AG. Esta ferramenta é fundamental para a gestão e análise de dados empresariais, permite que as empresas recolham, armazenem, processem e analisem informações de diversas fontes numa única base de dados (*Microsoft, 2024b*).

3.4.1. Funcionalidades

Esta ferramenta oferece uma vasta gama de funcionalidades, incluindo extração de dados, transformação, carregamento, modelação de dados, criação de relatórios e análises destas funcionalidades permitem às empresas obter uma visão abrangente das suas operações comerciais e tomar decisões informadas com dados precisos e oportunos.

3.4.2. Vantagens

Alguns dos principais benefícios do SAP BW incluem a melhoria da eficiência operacional, otimização dos processos comerciais, tomada de decisões mais informadas, capacidade de prever tendências futuras e integração com outras soluções de software empresarial da SAP. Outra característica do SAP BW é o facto de ser escalado para gerir volumes e complexidade de dados crescentes sem que o seu desempenho seja afetado. Técnicas como indexação e particionamento garantem um tratamento eficiente dos dados dados (Microsoft, 2024b).

3.5. Ferramentas de Visualização e Operação de dados

Nesta secção serão abordadas as ferramentas de Power BI e Tableau, que são dois dos principais softwares de BI que oferecem visualização interativa, painéis personalizados e integração com diversas fontes de dados.

3.5.1. Power BI

Figura 9 Power BI logótipo

Power BI é uma ferramenta de BI e visualização de dados da Microsoft, que ajuda o utilizador a converter dados de várias fontes de dados em painéis interativos e relatórios de BI. Permite aos utilizadores ligarem-se a várias fontes de dados, limpar e transformar dados, criar cálculos personalizados e visualizar dados através de tabelas, gráficos e quadros (*Microsoft.* (2024c).

3.5.1.1. Exemplos de empresas que aplicam

- Nestlé
- L'Oréal
- Pepsico
- Unicef

3.5.2. Tableau

Figura 10 Tableau logótipo

O Tableau é uma ferramenta de visualização de dados e de BI, que permite aos utilizadores ligar, visualizar e partilhar dados de uma forma altamente interativa e intuitiva. Permite que os utilizadores analisem e explorem rapidamente grandes e complexos conjuntos de dados, com uma interface de arrastar e largar (*drag and drop*), sem necessitar de conhecimentos de codificação ou programação.

O Tableau pode ligar-se a várias fontes de dados, incluindo bases de dados, folhas de cálculo, plataformas de grandes volumes de dados e serviços em *cloud*. Também permite que os utilizadores executem tarefas de limpeza e transformação de dados, criem cálculos personalizados e gerem informações utilizando funcionalidades de análise avançadas.

3.5.2.1. Exemplos de produtos

- <u>Tableau Desktop</u>: Criar e publicar visualizações;
- <u>Tableau Server</u>: Partilhar dados e visualizações numa organização;
- <u>Tableau Prep:</u> Preparar e limpar dados antes da análise.

3.5.2.2. Exemplos de empresas que trabalham com Tableau

- Paypal
- Nissan
- Cisco
- Walmart

3.5.3. Comparação entre Power BI e Tableau

3.5.3.1. Semelhanças

- Visualização Interativa: Ambas as ferramentas oferecem recursos de visualização interativa que permitem ao utilizador explorar os dados por meio de seleções, filtros e outros controles;
- <u>Transformação de Dados:</u> Tanto o Power BI quanto o Tableau possibilitam a transformação e limpeza de dados, permite ao utilizador, preparar os seus dados antes da análise;
- Suporte à Linguagem de Consulta: Ambas suportam linguagem de consulta como o SQL para a manipulação de dados mais avançados e personalizados.

3.5.3.2. Diferenças

- <u>Interface de utilizador</u>: o Tableau tem uma interface mais fácil de utilizar e intuitiva; Power BI pode levar um pouco mais de tempo a aprender;
- <u>Integração de dados</u>: o Power BI tem uma integração mais estreita com os produtos *Microsoft*, como o *Excel* e o *SQL Server*, enquanto o Tableau pode ligarse a uma gama mais vasta de fontes de dados;
- Preços: o Power BI é mais acessível; o Tableau pode ser mais caro, especialmente para soluções de nível empresarial;
- <u>Personalização</u>: o Tableau oferece opções de personalização mais avançadas para painéis e visualizações, enquanto o Power BI é mais limitado nesse aspeto;
- Aplicação móvel: o Power BI tem uma aplicação móvel mais robusta para dispositivos iOS e Android, enquanto a aplicação móvel do Tableau é mais limitada em termos de funcionalidade.

Em última análise, a escolha entre o Power BI e o Tableau depende das necessidades específicas do utilizador e da sua organização. O Power BI pode ser mais adequado para ambientes centrados na Microsoft, enquanto o Tableau pode ser mais adequado para organizações com necessidades de integração de dados mais complexas ou requisitos de personalização avançados (DataCamp, 2024).

3.6. Comparação entre as ferramentas

Nesta secção, será feita uma comparação entre algumas das ferramentas de OLAP, tendo em consideração algumas características, como, Modelação dos Dados, Funcionalidade Principais, Integração e Conetividade, Facilidade de Uso e o Público-Alvo.

Tabela 2 Comparação entre as ferramentas OLAP

Ferramenta	Modelação de Dados	Funcionalidades Principais	Integração e Conetividade	Facilidade de Uso	Público-Alvo
Microsoft SQL Server Analysis Services (SSAS)	Modelos OLAP e Tabulares.	 Cubos OLAP para análise multidimensional; Modelação tabular com DAX; Suporte para MDX e DAX; Processamento de grandes volumes de dados. 	 Integração nativa com SQL Server e ferramentas Microsoft (Power BI, Excel). 	Complexo para iniciantes, requer configuração técnica.	Empresas que necessitam de análise de Bl integrada
Oracle OLAP	 Modelo Multidimensional Integrado com Oracle Database 	 Cubos multidimensionais; Consultas OLAP rápidas com SQL padrão; Agregações e hierarquias complexas. 	 Conectividade com outras ferramentas BI e Oracle Analytics Cloud Acessível via SQL e OLAP DML. 	 É fácil para usuários Oracle; requer conheciment o SQL para exploração avançada. 	Empresas que já utilizam o Oracle Database e precisam de análises detalhadas.

IBM Cognos Analytics	 Modelação sem modelo multidimensional dedicado; uso de meta dados e Framework Manager para modelação. 	 Relatórios e dashboards personalizados; IA para sugestões e insights. 	 Integração com IBM Cloud, bases de dados diversas e fontes de dados externas. Compatível com outras ferramentas IBM. 	• Fácil de usar para dashboards, mas relatórios podem exigir alguma formação.	Empresas que necessitam de relatórios avançados e governança de dados.
SAP Business Warehouse (SAP BW)	 Modelação Dimensional e Estrela. 	 Suporte nativo para SAP ERP; Processamento de grandes volumes com HANA; Relatórios complexos e dashboards; Ferramentas de ETL integradas. 	 Integração nativa com SAP ERP, HANA, e SAP Analytics Cloud Conexões possíveis com Power BI e Tableau. 	 Médio a alto, dependendo da experiência em SAP. A configuração é complexa 	 Empresas que usam o ecossistema SAP e precisam de uma solução robusta de BI integrada.
Tableau	Modelo Self- ServiceNão exige modelação	 Dashboards interativos e visualizações ricas Exploração de dados intuitiva 	Suporte a múltiplas fontes de dados, incluindo bases de dados, cloud, e Excel	Muito fácil; interface intuitiva e orientada para visualizações	Utilizadores finais, analistas de dados e empresas que valorizam visualização de dados

	dimensional	- Análise visual rápida e	Integração com fontes		
	complexa	compartilhamento de	SQL, Salesforce, Google		
		dados	Sheets		
Power BI	Modelo Self-Service	- Dashboards e relatórios	Integração nativa com	Muito fácil; interface	Utilizadores finais,
	- Modelo tabular com DAX	interativos	SQL Server, Excel,	orientada para	analistas e pequenas a
		- Integração com Microsoft	SharePoint, Dynamics	utilizadores finais	grandes empresas com
		365 e Azure	365 e outras fontes	Intuitiva para	o ecossistema Microsoft
		- Análise de dados com IA		empresas no	
				ecossistema	
				Microsoft	

4. Processo de Implementação de OLAP

Nesta secção, é abordada a forma como é implementado o OLAP no DW para estruturar e organizar grandes volumes de dados.

4.1. Integração de OLAP com DataWarehouse

Segundo SAP (n.d.), um DW é um sistema de armazenamento digital que liga e harmoniza grandes quantidades de dados provenientes de muitas fontes diferentes. A sua finalidade consiste em alimentar BI, relatórios e funções analíticas, bem como apoiar requisitos de regulamentos, para que as empresas consigam transformar os seus dados em informação e tomar decisões inteligentes e baseadas em dados. DW armazena dados atuais e históricos num único lugar e funciona como a única fonte fidedigna de uma organização, a estrutura de um DW é apresentada na Figura 11.

Figura 11 Estrutura de uma DataWarehouse

Fonte: SAP

Um DW típico inclui 3 camadas, como se apresenta na Figura 12.

Figura 12 Camadas do DataWarehouse

Fonte: SAP

- Camada de dados: Os dados são extraídos das suas fontes e depois transformados e carregados na camada inferior através de ferramentas de ETL. A camada inferior consiste no seu servidor de base de dados, data marts e data lakes;
- Camada semântica: Na camada do meio, os servidores de OLAP e de OLTP reestruturam os dados para consultas e funções analíticas rápidas e complexas;
- Camada analítica: A camada superior é a camada do cliente de front-end.
 Inclui as ferramentas de acesso ao DW que permitem aos utilizadores interagirem com os dados, criarem dashboards e relatórios, monitorizarem KPIs, extraírem e analisarem dados, criarem aplicações e muito mais.

A integração de OLAP com DW, fornece uma análise multidimensional eficiente dos dados, permite a realização de consultas complexas de forma rápida e dinâmica.

4.2. ETL de dados

De acordo com SAP (n.d.), ETL significa extrair, transformar, carregar. Em conjunto, estas atividades compõem o processo utilizado para retirar dados da fonte e convertê-los num formato utilizável, para depois os mover para um DW ou outro armazém de dados. O ETL é especialmente útil para dados transacionais, mas outras ferramentas mais avançadas também conseguem gerir diversos tipos de dados não estruturados.

O ETL é crucial para garantir que os dados provenientes de sistemas transacionais, sistemas legados ou outras fontes sejam preparados de maneira eficaz para análises de BI, de acordo com Oracle (n.d.):

- Extração: O ETL identifica os dados e os copia de suas fontes, para que possa transportar os dados para o armazém de dados de destino. Os dados podem vir de fontes estruturadas e não estruturadas, incluindo documentos, e-mails, aplicativos empresariais, bancos de dados, equipamentos, sensores, terceiros e mais;
- Transformação: Como os dados extraídos estão brutos em seu formato original, eles precisam ser mapeados e transformados para prepará-los para o armazém de dados final. No processo de transformação, o ETL valida, autentifica, duplica e/ou agrega os dados de maneiras que tornam os dados resultantes confiáveis e passíveis de consulta;

 Carga: O ETL move os dados transformados para o armazém de dados de destino. Esta etapa pode envolver o carregamento inicial de todos os dados da fonte ou o carregamento das mudanças incrementais nos dados da fonte.
 Os dados podem ser carregados em tempo real ou em lotes programados.

4.3. Modelação dimensional e criação de cubos OLAP

De acordo com Astera. (n.d.), um modelo de dados dimensional é uma forma de organizar e estruturar dados numa base de dados ou DW para facilitar às empresas a análise e a obtenção de insights de seus dados. São particularmente úteis ao lidar com grandes volumes de dados e quando os utilizadores precisam explorar dados de diferentes ângulos ou dimensões, como mostra a Figura 13.

Figura 13 Exemplo de um modelo de dados dimensional

Fonte: Astera

Um cubo OLAP é uma estrutura de dados que elimina as limitações das bases de dados relacionais, fornece uma análise rápida de dados. Os cubos OLAP podem apresentar e somar grandes quantidades de dados, enquanto fornecem aos utilizadores acesso pesquisável a quaisquer pontos de dados para que os dados possam ser agregados, segmentados e em cubos, conforme necessário, para lidar com a maior variedade de perguntas que são relevantes para a área de interesse de um utilizador.

Numa base de dados relacional tradicional, como mostra a Figura 14, os dados são armazenados em tabelas bidimensionais, com linhas e colunas. Cada linha representa uma instância ou um registo, enquanto cada coluna corresponde a uma variável ou

atributo. As consultas são baseadas em SQL e envolve a junção de várias tabelas para recuperar dados de diferentes fontes ou dimensões. Podem enfrentar dificuldades ao lidar com grandes volumes de dados e ao realizar consultas analíticas complexas, como agregações, cálculos de médias ou somas, sobre múltiplas dimensões.

Figura 14 Modelo dimensional

Fonte: (Sá, 2024)

Por outro lado, como se apresenta na Figura 15, um cubo OLAP é estruturado para armazenar dados de maneira multidimensional. Em vez de usar apenas linhas e colunas, um cubo OLAP organiza os dados em várias dimensões, como tempo, produto, localização, entre outras. Cada célula do cubo contém valores agregados ou resumos, permitindo que os utilizadores visualizem e analisem os dados de diferentes ângulos. Essa estrutura facilita a realização de operações analíticas complexas, como *drill-down*, *drill-up*, *slicing* e *dicing*.

Figura 15 Modelo multidimensional

Fonte: (Sá, 2024)

5. Análise de artigos científicos

Neste Capítulo, serão analisados casos de uso referentes ao setor financeiro, de saúde e comércio, quanto à implementação de DW. De forma a consolidar as informações extraídas, é feita uma análise comparativa dos resultados obtidos nos 3 setores.

5.1. Setor Financeiro

Para o Setor Financeiro, são analisados 2 artigos científicos que destacam a aplicação de tecnologias de DW e OLAP para suportar análises financeiras e facilitar a tomada de decisões estratégicas.

5.1.1. Building an effective data warehousing for financial sector

No artigo de Ferreira J., et al., os autores constroem uma DW no Setor Financeiro. Na análise dos resultados, verifica-se que o uso de cubos OLAP foi mais eficiente do que o método tradicional, em ambos os casos de uso em análise.

O caso de uso 1, envolve a estimativa dos saldos de contas para o mês e ano seguintes, a utilização de cubos OLAP reduziu o tempo de consulta em aproximadamente 5,5 horas após um ano, o que representa quase 1 dia útil de trabalho. No caso de uso 2, relacionado ao cálculo do saldo médio das contas em períodos de 1, 2 e 3 anos, o tempo economizado foi de 26,2 horas após um ano, ou seja, mais de 3 dias úteis. A economia de tempo multiplica-se ainda mais, se se considerar a recorrência diária das consultas, resultando numa economia de mais de 4 dias úteis diários somando ambos os casos. De destacar também que à medida que o volume de dados aumenta, em quantidade de anos, o benefício proporcionado pelo OLAP também se intensifica.

A implementação com ferramentas de BI do SQL Server e a visualização em Excel permitiram simplificar e flexibilizar o acesso a grandes volumes de dados, o que facilita análises customizáveis, por exemplo, mês, ano, banco e tipo de negócio.

Essa análise reforça que as ferramentas OLAP representam uma solução essencial para superar desafios do desempenho e flexibilidade em setores que exigem grande volume e complexidade de dados, como o caso do financeiro.

5.1.2. Data Warehouse and OLAP Technology Applied in the Financial Analysis of Listed Company

No estudo de Zhang Q. et al., o objetivo é aplicar as tecnologias de DW e OLAP para análise financeira de empresas, para tal é utilizado o SQL Server 2005. A principal meta é fornecer uma análise multidimensional dos dados financeiros, que permite aos gestores realizar consultas detalhadas e melhorar a tomada de decisões.

As tabelas de fatos contêm medidas financeiras, enquanto as dimensões incluem informações como tempo, empresas e setores. OLAP é usada para criar cubos de dados multidimensionais, que permitem análise flexível dos dados, como solvência, capacidade operacional, rentabilidade e capacidade de desenvolvimento. O exemplo prático mostrou que a análise de dados financeiros, como a rentabilidade das ações de uma empresa no setor de metalurgia, pode ser visualizada de forma clara e precisa, o que facilita decisões estratégicas.

5.2. Setor da Saúde

Para o setor da saúde são analisados 2 artigos científicos que abordam o uso de DW e OLAP para a análise de dados de pacientes com cancro. O foco em dados oncológicos nos estudos reflete a necessidade de ferramentas que permitam uma análise rápida e precisa, e auxiliem nas decisões clínicas e administrativas.

5.2.1. On-line Analytical Processing (OLAP) Operation for Outpatient Healthcare

O estudo de Al Taleb T, el al., apresenta uma arquitetura para um DW com dados de duas fontes distintas, nomeadamente, saúde ambulatorial e ficheiros Excel de hospitais. O objetivo é fornecer armazenamento, funcionalidades e capacidade de resposta a consultas. A análise de dados é facilitada pelo uso de OLAP, a arquitetura proposta utiliza um modelo em estrela. O uso do SSAS (SQL Server Analysis Services) e SSRS (SQL Server Reporting Services) para criar e visualizar esses cubos é descrito como uma solução eficiente para fornecer respostas rápidas às consultas.

O artigo também discute as opções de armazenamento de cubos, comparando MOLAP, ROLAP e HOLAP. O MOLAP é descrito como adequado para dados que são consultados com mais frequência, com alto desempenho e um armazenamento otimizado. O ROLAP é mais adequado para grandes conjuntos de dados que não são consultados com frequência, permite acesso em tempo real dos dados.

O artigo detalha a implementação de vários cubos para responder a questões específicas dos gestores da saúde, como o número de infeções por doença, a distribuição de médicos, a receita de hospitais e até a análise de doenças sanguíneas. Cada cubo utiliza fatos, como número de pacientes ou médicos, e dimensões, como doença, gênero e hospital.

O uso de OLAP permite que os gestores do setor da saúde obtenham insights detalhados e rápidos, o que facilita a identificação de problemas, o desenvolvimento de políticas eficazes e a melhoria dos serviços de saúde.

5.2.2. The technology of using a data warehouse to support decision-making in health care

No estudo de Sonawane P., são combinadas tecnologias OLAP e modelos multidimensionais para as decisões clínicas e administrativas. Para a implementação, é desenvolvido um DW voltado para dados relacionados com o cancro, com um modelo em estrela, na ferramenta SQL Server 2008.

O modelo multidimensional adotado para permite a visualização e análise de dados de forma dinâmica, possibilitando a criação de cubos de dados, hierarquias e dimensões para analisar variáveis como custos, tratamentos e procedimentos médicos.

O artigo destaca que, embora as bases de dados operacionais sejam essenciais para as operações diárias, elas não são suficientes para a tomada de decisões estratégicas. A implementação de um DW bem estruturado, com modelo multidimensional, pode proporcionar aos gestores e profissionais de saúde uma visão integrada e detalhada das informações, facilitando a análise e a decisão de forma mais eficiente e eficaz.

5.3. Setor do Comércio

Para o setor do comércio são analisados 2 artigos científicos, um voltado para a gestão de relacionamento com clientes no setor hoteleiro e o outro para uma empresa de vendas e distribuição.

5.3.1. Implementing online analytical processing in hotel customer relationship management

No estudo de Taufik M, et al., é apresentado um sistema CRM baseado em OLAP para análise de dados de clientes no setor hoteleiro. O objetivo do estudo visa segmentar clientes, com base em dados geográficos e demográficos, e extrair dados transacionais de hotéis ao longo de três anos, através do processo ETL e uso de um modelo em estrela,

com tabelas de fatos e dimensões. A partir dessa estrutura, o sistema utiliza operações OLAP, como *slicing* e *dicing*, para visualizar os dados de diferentes perspetivas. O estudo também testou a velocidade de acesso aos dados e a precisão das consultas, utilizando uma amostra de 100 a 5000 registos de clientes.

O estudo conclui que a implementação é uma abordagem eficaz para a análise de dados de clientes no setor hoteleiro. A capacidade de segmentar os clientes de acordo com as suas características geográficas e demográficas e analisar atividades oferece aos gestores uma ferramenta poderosa para a tomada de decisões estratégicas. Além disso, o sistema mostrou-se eficiente em termos de velocidade e precisão, o que o torna adequado para uso em tempo real.

5.3.2. Designing a data warehouse system for sales and distribution company

O estudo de Ragulan B., et al., propõe um modelo de design de DW para uma empresa de vendas e distribuição. O modelo proposto inclui o processo de ETL e OLAP, e utiliza um modelo em estrela. O design do DW visa tornar as consultas mais rápidas, aumentar a disponibilidade dos dados, fornecer análises de tendências históricas e proteger informações cruciais.

A implementação envolve a organização de dados de vendas, com tabelas dimensionais para produtos, clientes e datas, conectadas à tabela de fatos de pedidos. O artigo também explora como diferentes dimensões de tempo, localização e produto são utilizadas para análise de vendas. O processo de ETL e o uso de ferramentas OLAP permitem uma análise eficiente e precisa dos dados, ajuda os gestores a tomar decisões mais informadas e oportunas.

5.4. Comparação entre os Casos de Estudo

A partir da análise dos artigos científicos nos diferentes setores, constatou-se que em todos eles o OLAP mostrou vantagens na redução do tempo de consulta e no processamento de dados complexos, especialmente em setores como o financeiro, onde a economia de horas de trabalho é expressiva.

As escolhas entre MOLAP, ROLAP e HOLAP destacam-se nos estudos de saúde, onde cada tipo é utilizado conforme a frequência e volume de consultas. A escolha do armazenamento ideal possibilita um uso mais eficiente e alinhado às necessidades do setor. Nos setores financeiro e de saúde, a capacidade de gerar relatórios customizáveis

Departamento de Engenharia Informática e Sistemas Licenciatura em Engenharia Informática Sistemas de Informação II

Politécnico de Coimbra

e visualizar dados sob diferentes perspetivas são essenciais para a tomada de decisões rápidas e bem-informadas.

Essa comparação evidencia que a integração de DW e OLAP possibilita ganhos significativos nos três setores, ao facilitar a análise de dados complexos e promover a eficiência na tomada de decisões. Esses benefícios são maximizados quando o DW é adaptado às particularidades de cada setor, com modelos de dados e ferramentas ajustados às necessidades específicas de análise e operação.

6. Desafios e Limitações das Ferramentas OLAP

Cuzzocrea et al. (2014) mencionam um conjunto de desafios à pesquisa em DW e OLAP sobre *Big Data*, como:

- Tamanho: As tabelas de fatos podem provocar problemas computacionais;
- Complexidade: O número de dimensões pode ser excessivo;
- **Design**: As consultas por parte dos utilizadores podem tornar-se exaustivas, se o design não for adequado;
- **Usabilidade**: Cubos de dados OLAP devem ser processados e gerenciados para extrair e construir análises úteis;
- **Ferramentas de Desenvolvimento**: Ferramentas adequadas para apoiar o design e o desenvolvimento de cubos de dados OLAP.

Conclusão

Neste trabalho, explorámos a implementação de OLAP no contexto de BI, destacando a importância para a análise de um número elevado de dados e a tomada de decisões estratégicas em diferentes setores empresariais.

Foi abordada a integração de OLAP com DW, em que se verificou como as ferramentas de BI podem organizar, transformar e analisar dados provenientes de diversas fontes, facilitar a visualização de informações complexas e a geração de *insights* valiosos.

A análise de artigos científicos em setores como o financeiro, saúde e comércio, confirmou a aplicabilidade de DW e OLAP para melhorar a eficiência operacional, aumentar a agilidade nas decisões e proporcionar uma visão mais detalhada e precisa dos dados. No setor financeiro, por exemplo, o uso de cubos OLAP resultou numa significativa redução no tempo de consulta, otimizando processos e proporcionando uma análise mais rápida e precisa.

Concluímos que a implementação de OLAP, aliada a um sistema de DW, representa uma solução poderosa para empresas que desejam explorar dados de maneira eficiente e tomar decisões informadas. A escolha da ferramenta adequada deve ser feita de acordo com as necessidades específicas da organização, levando em consideração o ecossistema de TI existente, a complexidade dos dados a serem analisados e os objetivos dos negócios.

Referências

Al Taleb, T. M. J., Hasan, S., & Mahd, Y. Y. (2021). On-line Analytical Processing (OLAP) Operation for Outpatient Healthcare. *Iraqi Journal of Science*, Special Issue, 225-231. Retrieved from https://www.iasj.net/iasj/download/b0e77b6d220d78fd

Astera. (n.d.). *Dimensional modeling guide*. Astera. Retrieved from https://www.astera.com/pt/knowledge-center/dimensional-modeling-guide/

Cuzzocrea, A., Bellatreche, L., & Song, I.-Y. (2014). Data warehousing and OLAP over big data: Current challenges and future research directions. *ResearchGate*. https://www.researchgate.net/publication/262288311_Data_Warehousing_and_OLAP_over_Big_Data_Current_challenges_and_future_research_directions

DataCamp. (2024, August 29). *Power BI vs Tableau: Which is the better business intelligence tool in 2024?* DataCamp. Retrieved November 10, 2024, from https://www.datacamp.com/blog/power-bi-vs-tableau-which-one-should-you-choose

Ferreira, J., Almeida, F., & Monteiro, J. (2015). Building an effective data warehousing for financial sector. *Applied Computational Intelligence and Soft Computing*, 3(1), 20-25. https://pubs.sciepub.com/acis/3/1/4/index.html

IBM. (n.d.). What is OLAP (online analytical processing)? IBM. Retrieved November 10, 2024, from https://www.ibm.com/topics/olap

IBM. (2024, January 23). *Introdução ao Cognos Analytics*. IBM Documentation. Retrieved November 10, 2024, from https://www.ibm.com/docs/pt-br/cognos-analytics/11.1.0?topic=started-getting-cognos-analytics

Microsoft. (2024, November 1). Overview of Service Manager OLAP cubes for advanced analytics. Microsoft Learn. Retrieved November 10, 2024, from https://learn.microsoft.com/en-us/system-center/scsm/olap-cubes-overview?view=sc-sm-2025

Microsoft. (2024b, January 8). *Fundamentos do SAP BW*. Microsoft Learn. Retrieved November 10, 2024, from https://learn.microsoft.com/pt-pt/power-query/connectors/sap-bw/sap-bw-fundamentals

Microsoft. (2024c). *Crie uma cultura orientada por dados com BI para todos*. Microsoft Power Platform. Retrieved November 10, 2024, from https://www.microsoft.com/pt-pt/power-platform/products/power-bi?market=pt

Microsoft. (2024d, novembro 1). *Overview of Service Manager OLAP cubes for advanced analytics*. Microsoft. Recuperado de https://learn.microsoft.com/en-us/system-center/scsm/olap-cubes-overview?view=sc-sm-2025

Microsoft. (2023, maio 8). *Partições – Modos e processamento de armazenamento de partições*. Microsoft. Recuperado de https://learn.microsoft.com/pt-br/analysis-services/multidimensional-models-olap-logical-cube-objects/partitions-partition-storage-modes-and-processing?view=asallproducts-allversions

Microsoft. (n.d.). Dimensions - Storage. Microsoft Learn. Retrieved November 10, 2024, from https://learn.microsoft.com/en-us/analysis-services/multidimensional-models-olap-logical-dimension-objects/dimensions-storage?view=asallproducts-allversions

Oracle. (n.d.). What is ETL? Oracle. Retrieved from https://www.oracle.com/pt/integration/what-is-etl/

Palitot, Á. A. B. (2007). *Análise comparativa de arquiteturas de distribuição de data warehouse* (Trabalho de graduação, Universidade Federal de Pernambuco). Centro de Informática, Universidade Federal de Pernambuco. Recuperado de https://www.cin.ufpe.br/~tg/2006-2/aabp.pdf

Ragulan, B., & Subash, R. (2021). *Designing a data warehouse system for sales and distribution company*. Sri Lanka Institute of Information Technology. https://www.researchgate.net/profile/Ragulan-

Balasingham/publication/349098830 Designing a Data Warehouse System for Sale s_and_Distribution_Company/links/601fc1e2299bf1cc26ac6ffa/Designing-a-Data-Warehouse-System-for-Sales-and-Distribution-Company.pdf

Rajasekaran, K., & Saravanan, P. (2020). Comparative study on data warehouse tables and schema - An overview. *Adalya*, 9(4), 126–132. https://doi.org/10.37896/aj9.4/016

SAP. (n.d.). What is a data warehouse? SAP. Recuperado em 9 de novembro de 2024, de https://www.sap.com/portugal/products/technology-platform/datasphere/what-is-a-data-warehouse.html

Sá, F. (2024). Sistemas de Data Warehousing: Infra-estrutura Informacional e Funcional. [Slides de apresentação]. Curso de Sistemas de Informação II, Instituto Superior de Engenharia de Coimbra.

Scholten, A. (23 de outubro de 2024). *SQL Server Analysis Service (SSAS)*. Softtrader. Disponível em https://softtrader.pt/microsoft-software/sql-server/sql-server-analysis-service-ssas/

Sonawane, P., & Banerjee, S. (2023). *The technology of using a data warehouse to support decision-making in health care*. MIT WPU. Disponível em https://www.researchgate.net/profile/Sudeepta-

Banerjee/publication/374675346_The_Technology_of_Using_a_Data_Warehouse_to_S upport_Decision-Making_in_Health_Care/links/65290d7d0e4a1710e507239b/The-Technology-of-Using-a-Data-Warehouse-to-Support-Decision-Making-in-Health-Care.pdf

Taufik, M., Renaldi, F., & Umbara, F. R. (2021). Implementing online analytical processing in hotel customer relationship management. *IOP Conference Series: Materials Science and Engineering*, 1115(1), 012040. https://doi.org/10.1088/1757-899X/1115/1/012040

TutorialsPoint. (n.d.). *Data Warehousing - OLAP*. TutorialsPoint. https://www.tutorialspoint.com/dwh/dwh_olap.htm

Vlamis, D. (n.d.). *Acelerando os data warehouses*. Oracle. Retrieved November 10, 2024, from https://www.oracle.com/br/technical-resources/articles/datawarehouse/o38olap-11g.html

Zhang, Q., & Zeng, F. (2011). *Data Warehouse and OLAP Technology Applied in the Financial Analysis of Listed Company*. Apresentado na Conferência IEEE, Guilin, China. Guilin University of Electronic and Technology. Disponível em https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6011023&tag=1