Lecture 9

/Lecture 91 17/5/2021

Recep: Simple Regression
$$y_i = \beta_0 + \beta_1 \cdot x_i + \epsilon_i$$

$$\beta_0 + \beta_1 \times \mathcal{E}\left(\beta_0 + \beta_1 \times \pm \frac{1-\beta_2}{N-2} S \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xy}}}\right)$$

In general:

$$z_{0}^{T}\beta \in \left(z_{0}^{T}\beta \pm t_{n-p}^{1-\frac{1}{2}} \cdot s\sqrt{z_{0}^{T}(z_{0}^{T}z_{0}^{T}z_{0})}\right)$$

$$w_{1}p_{2} = 1-d$$

$$z_{0} \in \mathbb{R}^{p}$$

$$S^{2} = \frac{1}{n-p}\sum_{i=1}^{n}(y_{i}-y_{i})^{2} = \frac{\|\varepsilon\|^{2}}{n-n}$$

Shu
$$\mathcal{E}\left(\vec{\beta}_0 + \vec{\beta}_1 \times_{n+1} \pm t_{n-2}^{1-d/2} \cdot S \sqrt{1 + \frac{1}{n} + \frac{(\times_{n+1} - \bar{x})}{S_{xx}}}\right)$$

we set a bund if we evaluate this for every $\times_{n+1} \in \mathbb{R}$

Jn+,
$$E(\beta_0 + \beta_1 x_{n+1} \pm \frac{1-\alpha_2}{5_{n-2}} \cdot s) = \frac{1}{m} + \frac{1}{n} + \frac{(x_{n+1} - x_1^2)}{5_{kx}}$$

 $\mu_1 p_1 = 1 - d$

Símultaneous Bands

- Contain (Bo+Bi-X)xER with prol. 1-2

- In p dim, contain $(z^T_{i}\beta)_{z.\in\mathbb{R}^p}$ - From the distribution of $\hat{\beta}$;

 $Pr((\hat{\beta}-\beta)^T(2^T2)^T(\beta^-\beta) \leq s^2 \cdot p \cdot F_{p,n-p}) = 1-\alpha$ This define an ellipsoid in R

- For p=2, Bo and B, lay in an ellipse with prob. 1-d
- If he use $\angle +\beta(x-x)$ for the regression line, then Z^TZ becomes diagonal and the ellipse's axes one aligned with the x & y axes:

Working Hotelling Bands:

Confidence:
$$\vec{\beta_0} + \vec{\beta_1} \times \frac{1}{\sqrt{2F_{2,n-2}^{1-\alpha}}} \cdot S \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}$$

Prediction:
$$\vec{\beta_0} + \vec{\beta_1} \cdot x + \sqrt{2F_{2,n-2}^{1-\alpha}} \cdot S\sqrt{1 + \frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}$$

Avg. of m
Predictions:
$$\vec{\beta_0} + \vec{\beta_1} \propto \pm \sqrt{2F_{2,n-2}^{1-\alpha}} \cdot s\sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(x-\bar{x})^2}{s_{xx}}}$$

(these are wider than earliermentioned bands)

- This is dungerous if there is no leta near the origin
- Also, no interpertation of R2 in this case.

Muliple Regression;
$$x_i \in \mathbb{R}^d$$

Suppose: $Z = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{1d} \\ 1 & 1 & 1 \\ \vdots & & & \\ & &$

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

(fraction of explained variance)

- Note: When using R you must have an intercept term
- R is not additive OSRS/
- No rule of thumb for him large R2 must be
- Increasing the number of predictors never decreases R2

Some Considerations:

- A "true" Bi:

- Depends on what vaniables

une includer

- A "true" by exists for each and every subset of the covariates weak

- Naive Fore-Value Interpertation:

- with $y_i = \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i$, he may whout $\beta_j = \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i$, he may whout $\beta_j = \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i$, he may whout

P; us $\frac{\partial y}{\partial x_j}$ or $\frac{\partial F(y)}{\partial x_j}$.

This is unreliable. For example if $x_2 = x_1^2$, then changing one predictor alone is mt possible.

- Wrong Signs:
- may be due to correlation
Within the duta.

Correlation, Association, Cousulity

- Regression with observational data constants correlation/association, me consulty

- It could be x > y, y > x, or z > (x,y)

Interplay Bedneen Vaniables

- Competing Voriables:
 - β, is significant if X2 is not in the model

 β2 is significant if X1 is not in the model.
- In the house prices example:

 Overall Qual I Overell Cond have
 this property,

You can reject

" $\beta_i = \beta_2 = 0$ "

But not " $\beta_i = 0$ or $\beta_2 = 0$ " $\beta_i = 0$

- Occurs when there is positive correlation between x, & X2

collaborating Variables:

- $\hat{\beta}$, is sig. if x_2 is in the model - $\hat{\beta}_2$ is sig if x_1 is in the model
- This is much more rure than competition
- Example:

 $x_1 = air$ pressure in loc. A $x_2 = air$ pressure in loc. B y = wind in ten gity $A \rightarrow B$ (proportional to $x_1 - x_2$

Simpson's Paradox					
<i></i>	Two	hospitals	A,B		
Mild Cases	l s	1 D	A,B Critical cases	S	D
Hospital S A	50	0	A	22	25
$\frac{1}{\beta}$	30	10	<u></u>	b	ΙD
\					

Portial Correlation

- We hant to look for the connection between height and spelling ability of kids from ages 7-12.

 We get positive correlation, but Kids height I spelling ability change as they grow.
- he regress height on age, and get residuals These residuals are "age-adjusted height"
- he do the same for spelling-level, Letting "age-adjusted spelling."

The correlation bothern the two sorts of residuals is the partial correlation

of height and spelling level, adjusted for uge

Del, Partial Correlation Pijik

Partial correlation of Xi x; adjusting for Xu is the correlation of resid. For x; on Xu and resid. for x; on xu

For Gaussian data:

$$P_{ijlk} = \frac{P_{ij} - P_{in}P_{jk}}{\sqrt{(1-P_{ik}^2)(1-P_{jk}^2)}}$$

(with or without hats)
$$\hat{p}_{ij} = \frac{x_i^T x_j}{\|x_i\| \|x_j\|} \qquad p_{ij} = \frac{Cov(x_i, x_j)}{\sqrt{Var(x_i) Var(x_j)}}$$

$$P_{ij} = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i) Var(X_j)}}$$

he can find partial corr. of (x,y), adjusting for $x_2, ..., x_n$: he regress those predictors out of both x_i and y and find the partial correlation.