Lecture VIII - Splines

Splines

Arbitrarily long, smooth, curves, which only locally react to changes in control points.

Arbitrarily long, smooth, curves, which only locally react to changes in control points.

Splines from Bezier curves

- Bézier curves can be glued together
- Also called Béziergons or polyBézier
- Not automatically smooth!

Splines from Bezier curves

- To ensure continuity
 - $-C^{0}$: last control point of first piece must be same as first control point of second piece
 - $-G^1$: last two control points of first piece must align with the first two control points of the second piece
 - $-C^1$: distances must be the same as well

B-spline curves

- Idea: use copies of the same blend function for every control point
- Cannot sum to 1 everywhere
- Result: Approximates all control points, will not pass through first and last control point

B-spline curves

 A linear combination of the control points

$$\mathbf{f}(t) = \sum_{i=1}^{n} \mathbf{p}_{i} b_{i}(t)$$

- The $b_i(t)$ are the basis functions (blend functions) and show how to blend the points
- To confuse people, the basis functions are often also called are B-splines themselves

the contribution of point \mathbf{p}_i to the curve depending on the parameter value t

B-splines and B-spline curves

B-splines and B-spline curves

B-splines and B-spline curves

B-spline curves

- A B-spline curve of n points and parameter value k
 - − is C ^{k-2} continuous
 - is made of polynomials of degree k 1
 - has local control: any location on the curve is determined by only k control points
 - is bounded by the convex hull of the control points
 - has the variation diminishing property:
 any line intersects the B-spline
 curve at most as often
 as that line intersects
 the control polygon

Types of B-splines

- Uniform linear B-splines
- Uniform quadratic B-splines
- Uniform cubic B-splines
- Non-uniform B-splines
- NURBS (non-uniform rational B-splines)

☐ To define the B-splines is to define the B-spline curve

Uniform linear B-splines

Basis functions are piecewise linear, for example:

$$b_{i,2}(t) = \begin{bmatrix} t-i & i \le t \le i+1 \\ 2-t+i & i+1 \le t \le i+2 \\ 0 & \text{otherwise} \end{bmatrix}$$

15

Uniform linear B-splines, knots

- A knot (for a uniform linear B-spline, or any type of B-spline) is a parameter value where the definition of the function of some B-spline changes
- Also: the corresponding point on the curve

Uniform linear B-splines, knots

Uniform linear B-splines

Basis functions are piecewise linear, for example:

$$b_{i,2}(t) = \begin{bmatrix} t-i & i \le t \le i+1 \\ 2-t+i & i+1 \le t \le i+2 \\ 0 & \text{otherwise} \end{bmatrix}$$

- The B-spline curve can be used for parameter values $t \in [2, n+1]$ (the t where the $b_{i,2}(t)$ sum up to 1), given points $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$
- The B-spline curve is just the polygonal line through the control points; only two B-splines are non-zero for any t

- Uniform quadratic B-splines b_{i,3}(t) have knots at i, i+1,
 i+2, and i+3
- They are shifted copies of each other

Quadratic B-spline curve

control points defining this piece of curve between the knots

- At the 4 knots, the left and right derivatives are equal
 - \rightarrow C^1 continuous B-splines
 - \rightarrow C^1 continuous B-spline curve

- At the 4 knots, the left and right derivatives are equal
 - \rightarrow C^1 continuous B-splines
 - \rightarrow C^1 continuous B-spline curve
- Starting at t = 3, the B-splines sum up to exactly 1

- Suppose *n* control points
- Then we have *n* B-splines and *n*+3 knots
- The B-spline curve has n-2 quadratic pieces, starting at the 3^{rd} knot and ending at the $n+1^{st}$ knot

 What is the starting point and what is the ending point of the uniform quadratic B-spline curve using control points

$$p_1, p_2, ..., p_n$$
?

Uniform cubic B-splines

- Uniform cubic B-splines b_{i,4}(t) have knots at i, i+1,
 i+2, i+3 and i+4
- They are shifted copies of each other

Uniform cubic B-splines

$$b_{i,4}(t) = \begin{bmatrix} \frac{1}{6}u^3 & \text{if } t \in [i, i+1] & u = t - i \\ \frac{1}{6}(-3u^3 + 3u^2 + 3u + 1) & \text{if } t \in [i+1, i+2]u = t - (i+1) \\ \frac{1}{6}(3u^3 - 6u^2 + 4) & \text{if } t \in [i+2, i+3]u = t - (i+2) \\ \frac{1}{6}(-u^3 + 3u^2 - 3u + 1) & \text{if } t \in [i+3, i+4]u = t - (i+3) \\ 0 & \text{otherwise} \end{bmatrix}$$

Uniform cubic B-splines

- Every location on the B-spline curve is determined by four control points and their B-splines
- Starting at the 4th knot, t = 4, the B-spline curve can be used, because the B-splines sum up to 1
- A cubic B-spline is C^2 continuous (the 1st and 2nd derivatives from the left and right are the same at the knots, and everywhere else too of course)
 - \rightarrow a cubic B-spline *curve* is C^2 continuous

Cox-de Boor recurrence

 Cox-de Boor recurrence for defining B-splines with parameter k:

$$b_{i,1}(t) = \begin{bmatrix} 1 & \text{if } i \leq t < i+1 \\ 0 & \text{otherwise} \end{bmatrix}$$

$$b_{i,k}(t) = (t-i)/(k-1) \cdot b_{i,k-1}(t) + (i+k-1-t)/(k-1) \cdot b_{i+1,k-1}(t)$$

The recurrence shows that parameter k B-splines are a weighted interpolation of parameter k-1 B-splines, with weights linearly dependent on t

Cox-de Boor recurrence

Closed uniform B-spline curves

• Simply repeat the first k - 1 points as the last points

- quadratic: $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n \rightarrow \mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n, \mathbf{p}_1, \mathbf{p}_2$

- cubic: $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, ..., \mathbf{p}_n \rightarrow \mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$

- Consider quadratic B-spline curves, in the figure:
 - Five B-splines of control points
 - -5+3=8 knots (t=1, 2, ..., 8), useful in interval [3, 6]

- Consider quadratic B-spline curves, in the figure:
 - Suppose p₁ is repeated
 - 9 knots, useful interval [3, 7]

- Consider quadratic B-spline curves, in the figure:
 - Suppose p₁ is repeated
 - 9 knots, useful interval [3, 7]
 - The B-spline curve starts at p₁ at knot 3

- Consider quadratic B-spline curves, in the figure:
 - Suppose p₃ is repeated
 - 9 knots, useful interval [3, 7]

- Consider quadratic B-spline curves, in the figure:
 - Suppose p₃ is repeated
 - 9 knots, useful interval [3, 7]
 - The B-spline curve passes through point p₃

- A degree k 1 B-spline curve will pass through the first and last control points if each occurs k – 1 times
- Similarly, we can make it pass through an intermediate control point by having k-1 copies of that control point
- The level of continuity at an intermediate repeated control point decreases

- On the parameter interval [4,5], only \mathbf{p}_2 and \mathbf{p}_3 have a non-zero B-spline
 - → the curve is a line segment!
- Also on parameter interval [5,6]

quadratic B-spline curve

Non-uniform B-splines

- Uniform B-splines have knots at 1, 2, 3, ..., but generally knots can have any parameter value
 → non-uniform B-splines
- The knot vector $\mathbf{t} = [t_1, ..., t_{n+k}]$ is a sequence of nondecreasing values specifying where the knots for the parameter t occur

Cox-de Boor recurrence

• Cox-de Boor recurrence for defining B-splines with parameter k and knot vector $\mathbf{t} = [t_1, \dots, t_{n+k}]$:

$$b_{i,1}(t) = \begin{bmatrix} 1 & \text{if } t_i \leq t < t_{i+1} \\ 0 & \text{otherwise} \end{bmatrix}$$

$$b_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} b_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} b_{i+1,k-1}(t)$$

The recurrence shows that parameter k B-splines are a weighted interpolation of parameter k-1 B-splines, with weights linearly dependent on t

Cox-de Boor recurrence

- Repeating a knot means that one sequence of control points no longer occurs
 - For example, for quadratic B-spline curves, the part between knots 4 and 5 (was based on points \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4)
 - The curve part before (based on points $\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3$) directly connects to the curve part after (based on points $\mathbf{p}_3 \mathbf{p}_4 \mathbf{p}_5$)
 - The B-splines get different shapes to accommodate the missing part (because the B-splines must still be continuous and sum up to 1)

- Repeating a knot means that one sequence of control points no longer occurs
 - For example, for quadratic B-spline curves, the part between knots 4 and 5 (was based on points \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4)

46

- Repeating a knot means that one sequence of control points no longer occurs
 - For example, for quadratic B-spline curves, the part between knots 4 and 5 (was based on points \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4)

47

- Repeating a knot means that one sequence of control points no longer occurs
 - For example, for quadratic B-spline curves, the part between knots 4 and 5 (was based on points \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4)

quadratic B-spline curve

quadratic B-spline curve with repeated knot

- Repeating a control point creates line segments on either side, but repeating a knot does not have this effect on quadratic Bspline curves
- Repeating a knot twice (three same knots in a sequence) creates a discontinuity in a quadratic
 B-spline curve
 - Two consecutive curve parts have no point in common
 - The curve part before the two disappearing parts (e.g., based on points \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3) is disconnected from the curve part after those parts (based on points \mathbf{p}_4 \mathbf{p}_5 \mathbf{p}_6)

quadratic B-spline curve

quadratic B-spline curve

- In cubic B-spline curves
 - a double knot gives C¹ / G¹
 continuity
 - a triple knot gives C^o / G^o
 continuity
 - a quadruple knot disconnects the curve
 - a triple knot at the start lets
 p₁ be the start of the curve
 - a triple knot at the end lets
 p_n be the end of the curve

- Cubic B-splines for a B-spline curve passing through its endpoints, knot vector [1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8]
- The first three and last three B-splines are different from the standard cubic B-spline shape

Non-uniform rational B-splines

- Standard B-splines cannot have weights
- Rational B-splines can have weight

$$f(u) = \frac{\sum_{i=1}^{k} b_i(u) w_i p_i}{\sum_{i=1}^{k} b_i(u) w_i}$$

- Can be combined with knot vectors
 - → non-uniform rational B-splines (NURBS)
- More flexible
- More complicated

Example: Circle as NURBS

- Knot vector: [0,0,0,1,1,1]
- Quadratic blending functions
- Weights are 1 or $\frac{1}{2}\sqrt{2}$

Example: Circle as NURBS

- Knot vector: [0,0,0,1,1,1]
- Quadratic blending functions
- Weights are 1 or $\frac{1}{2}\sqrt{2}$
- f(0) = (1,0)
- f(1) = (0,1)
- $f(1/2) = (1/2\sqrt{2}, 1/2\sqrt{2})$
- Try other values yourself!

Summary

- B-spline curves are defined by B-splines and provide great flexibility in curve design
- They exist of any order (degree) and continuity
- Repeating control points or knots allows interpolation instead of approximation
- B-spline surfaces are a direct generalization
- Even more general are NURBS:
 Non-Uniform Rational B-Splines
 - defined using ratios of two polynomials
 - allow conic sections (circles, ellipses, hyperbolas)