Službeni podsjetnik iz kolegija Visokofrekvencijska elektronika

Funkcija kuta protjecanja:

<i>θ</i> [°]	f ₀	f_1	f_2	f ₃	F ₀	F ₁	h _i		<i>θ</i> [°]	f_0	f_1	f_2	f_3	F ₀	F ₁	hi
0	0,000	0,000	0,000	0,000	0,000	0,000	2,00		51	0,186	0,344	0,269	0,169	0,069	0,128	1,85
1	0,004	0,007	0,007	0,007	5,6E-07	1,1E-06	2,00		52	0,190	0,350	0,270	0,166	0,073	0,134	1,84
2	0,007	0,015	0,015	0,015	4,5E-06	9,0E-06	2,00		53	0,193	0,355	0,271	0,163	0,077	0,141	1,84
3	0,011	0,022	0,022	0,022	1,5E-05	3,0E-05	2,00		54	0,197	0,361	0,273	0,160	0,081	0,149	1,83
4	0,015	0,030	0,030	0,029	3,6E-05	7,2E-05	2,00		55	0,200	0,366	0,274	0,157	0,085	0,156	1,82
5	0,019	0,037	0,037	0,037	7,0E-05	0,00014	2,00		56	0,204	0,371	0,274	0,153	0,090	0,164	1,82
6	0,022	0,044	0,044	0,044	0,00012	0,00024	2,00		57	0,208	0,376	0,275	0,150	0,094	0,171	1,81
7	0,026	0,052	0,052	0,051	0,00019	0,00039	2,00		58	0,211	0,381	0,275	0,146	0,099	0,179	1,81
8	0,030	0,059	0,059	0,058	0,00029	0,00058	2,00		59	0,215	0,386	0,276	0,142	0,104	0,187	1,80
9	0,033	0,066	0,066	0,065	0,00041	0,00082	2,00		60	0,218	0,391	0,276	0,138	0,109	0,196	1,79
10	0,037	0,074	0,073	0,072	0,00056	0,0011	1,99		61	0,221	0,396	0,276	0,134	0,114	0,204	1,79
11	0,041	0,081	0,080	0,079	0,00075	0,0015	1,99		62	0,225	0,401	0,275	0,129	0,119	0,212	1,78
12	0,044	0,088	0,087	0,085	0,0010	0,0019	1,99		63	0,228	0,405	0,275	0,125	0,125	0,221	1,77
13	0,048	0,096	0,094	0,092	0,0012	0,0025	1,99		64	0,232	0,410	0,274	0,120	0,130	0,230	1,77
14	0,052	0,103	0,101	0,098	0,0015	0,0031	1,99		65	0,235	0,414	0,274	0,116	0,136	0,239	1,76
15	0,055	0,110	0,108	0,104	0,0019	0,0038	1,99		66	0,239	0,419	0,273	0,111	0,142	0,248	1,75
16	0,059	0,117	0,115	0,110	0,0023	0,0045	1,98		67	0,242	0,423	0,272	0,106	0,148	0,258	1,75
17	0,063	0,125	0,121	0,116	0,0027	0,0054	1,98		68	0,246	0,427	0,270	0,101	0,154	0,267	1,74
18	0,067	0,132	0,128	0,122	0,0033	0,0065	1,98		69	0,249	0,431	0,269	0,096	0,160	0,277	1,73
19	0,070	0,139	0,134	0,127	0,0038	0,0076	1,98		70	0,252	0,436	0,268	0,092	0,166	0,287	1,73
20	0,074	0,146	0,141	0,132	0,0045	0,0088	1,98		71	0,256	0,440	0,266	0,087	0,173	0,296	1,72
21	0,078	0,153	0,147	0,137	0,0052	0,0102	1,97		72	0,259	0,444	0,264	0,082	0,179	0,306	1,71
22	0,081	0,160	0,153	0,142	0,0059	0,0117	1,97		73	0,263	0,447	0,262	0,077	0,186	0,317	1,70
23	0,085	0,167	0,159	0,147	0,0068	0,0133	1,97		74	0,266	0,451	0,260	0,072	0,193	0,327	1,70
24	0,089	0,174	0,165	0,151	0,0077	0,0151	1,97		75	0,269	0,455	0,258	0,067	0,200	0,337	1,69
25	0,092	0,181	0,171	0,155	0,0086	0,0170	1,96		76	0,273	0,458	0,256	0,062	0,207	0,348	1,68
26	0,096	0,188	0,177	0,159	0,010	0,019	1,96		77	0,276	0,462	0,253	0,057	0,214	0,358	1,67
27	0,100	0,195	0,182	0,162	0,011	0,021	1,96		78	0,279	0,465	0,251	0,052	0,221	0,369	1,67
28	0,103	0,202	0,188	0,166	0,012	0,024	1,95		79	0,283	0,469	0,248	0,047	0,229	0,379	1,66
29	0,107	0,208	0,193	0,169	0,013	0,026	1,95		80	0,286	0,472	0,245	0,043	0,236	0,390	1,65
30	0,111	0,215	0,198	0,171	0,015	0,029	1,95		81	0,289	0,475	0,242	0,038	0,244	0,401	1,64
31	0,114	0,222	0,203	0,174	0,016	0,032	1,94		82	0,293	0,478	0,239	0,033	0,252	0,412	1,63
32	0,118	0,229	0,208	0,176	0,018	0,035	1,94		83	0,296	0,481	0,236	0,029	0,260	0,423	1,63
33	0,122	0,235	0,213	0,178	0,020	0,038	1,93		84	0,299	0,484	0,233	0,024	0,268	0,434	1,62
34	0,125	0,242	0,217	0,180	0,021	0,041	1,93		85	0,302	0,487	0,230	0,020	0,276	0,445	1,61
35	0,129	0,248	0,221	0,181	0,023	0,045	1,93		86	0,306	0,490	0,226	0,016	0,284	0,456	1,60
36	0,132	0,255	0,226	0,183	0,025	0,049	1,92		87	0,309	0,492	0,223	0,012	0,293	0,467	1,60
37	0,136	0,261	0,230	0,183	0,027	0,053	1,92		88	0,312	0,495	0,219	0,008	0,301	0,478	1,59
38	0,140	0,267	0,234	0,184	0,030	0,057	1,91		89	0,315	0,498	0,216	0,004	0,310	0,489	1,58
39	0,143	0,274	0,237	0,184	0,032	0,061	1,91		90	0,318	0,500	0,212	0,000	0,318	0,500	1,57
40	0,147	0,280	0,241	0,185	0,034	0,065	1,91		95	0,334	0,511	0,193	-0,017	0,363	0,555	1,53
41	0,151	0,286	0,244	0,184	0,037	0,070	1,90		100	0,349	0,520	0,173	-0,030 -0.045	0,410	0,610	1,49
42	0,154	0,292 0,298	0,248	0,184	0,040	0,075 0,080	1,90		110 120	0,379 0,406	0,532	0,131	-0,045 -0,046	0,508	0,713	1,40
43	0,158 0,161		0,251 0,253	0,183	0,042	0,080	1,89		130	0,406	0,536 0,535	0,092		0,609	0,804	1,32
44 45	0,165	0,304		0,182 0.181	0,045		1,89		140	0,431		0,058	-0,037 -0.024	0,708	0,879	1,24 1 17
45 46	0,165	0,310 0,316	0,256 0,259	0,181 0,180	0,048 0,051	0,091 0,096	1,88 1,88		150	0,453	0,529 0,520	0,032 0,014	-0,024 -0,012	0,800 0,881	0,935 0,971	1,17 1,10
		0,316														
47 48	0,172 0,176	0,322	0,261 0,263	0,178 0,176	0,055 0,058	0,102 0,108	1,87 1,86		160 170	0,487 0,496	0,511 0,503	0,004 0,001	-0,004 -0,001	0,944 0,985	0,991 0,999	1,05 1,01
48	0,176	0,328	0,265	0,176	0,058	0,108	1,86		180	0,496	0,503	0,001	0,000	1,000	1,000	1,01
									100	0,300	0,300	0,000	0,000	1,000	1,000	1,00
50	0,183	0,339	0,267	0,172	0,065	0,121	1,85	l								

$$f_1(\theta) = \frac{\theta - \sin \theta \cos \theta}{\pi (1 - \cos \theta)}$$

$$f_2(\theta) = \frac{2\sin^3\theta}{3\pi(1-\cos\theta)}$$

$$f_0(\theta) = \frac{\sin \theta - \theta \cos \theta}{\pi (1 - \cos \theta)}$$

$$f_3(\theta) = \frac{2\sin^3\theta\cos\theta}{3\pi(1-\cos\theta)}$$

L-četveropol (za $R_1 > R_2$)

$$X_{\rm p} = \pm R_1 \sqrt{\frac{R_2}{R_1 - R_2}}$$

$$X_{\rm s} = \mp \sqrt{R_2 \left(R_1 - R_2 \right)}$$

$$X_{p} = \pm R_{1} \sqrt{\frac{R_{2}}{R_{1} - R_{2}}} \qquad X_{s} = \mp \sqrt{R_{2}(R_{1} - R_{2})} \qquad Q = Q_{1} = \frac{R_{1}}{X_{p}} = Q_{2} = \frac{X_{s}}{R_{2}} = \sqrt{\frac{R_{1}}{R_{2}} - 1}$$

Pi-četveropol

$$X_1 = \frac{R_1}{Q}$$

$$X_2 = \frac{R_2}{\sqrt{\frac{R_2}{R_1}(1+Q^2)-1}}$$

$$X_{1} = \frac{R_{1}}{Q} \qquad X_{2} = \frac{R_{2}}{\sqrt{\frac{R_{2}}{R_{1}}(1+Q^{2})-1}} \qquad X_{3} = \frac{R_{1}}{1+Q^{2}} \left(Q + \sqrt{\frac{R_{2}}{R_{1}}(1+Q^{2})-1}\right)$$

LS-četveropol

$$X_{1} = QR'_{1} - X'_{0} = QR'_{1} \left(1 - \frac{R_{1}}{QX_{0}}\right)$$

$$X_{1} = QR_{1}' - X_{0}' = QR_{1}' \left(1 - \frac{R_{1}}{QX_{0}}\right) \qquad X_{2} = \frac{R_{2}}{\sqrt{\frac{R_{1}R_{2}}{X_{0}^{2}} + \frac{R_{2}}{R_{1}} - 1}} \qquad X_{L} = QR_{1}' \left(1 + \frac{R_{2}}{QX_{2}}\right)$$

T-četveropol

$$X_{\rm L} = QR_{\rm l}$$

$$X_{s} = R_{2} \sqrt{\frac{R_{1}}{R_{2}}(1+Q^{2})-1}$$

eropol
$$X_{\rm L} = QR_1$$
 $X_{\rm s} = R_2 \sqrt{\frac{R_1}{R_2}(1+Q^2)-1}$ $X_{\rm p} = \frac{R_1(1+Q^2)}{Q} \frac{1}{1-\frac{X_{\rm s}}{QR_2}}$

Klasa D – protutaktni spoj

Pojačala s pravokutnom strujom

$$\begin{aligned} \textbf{Realno BJT:} & U_{\text{cm}} = \pi \left(U_{\text{CC}} - U_{\text{s}} \right) & I_{\text{Rm}} = \frac{\pi}{R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right) \\ I_{\text{CC}} = \frac{\pi^2}{2 \, R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right) & P_{\text{k}} = \frac{\pi^2}{2 \, R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right)^2 \\ P_{\text{CC}} = \frac{\pi^2}{2 \, R_{\text{p}}} \, U_{\text{CC}} \left(U_{\text{CC}} - U_{\text{s}} \right) & \end{aligned}$$

$$\begin{aligned} \textbf{Realno FET:} & U_{\text{dm}} &= \ \pi \, U_{\text{DD}} \frac{R_{\text{DD}}}{R_{\text{DD}} + r_{\text{Ds(u)}}} & I_{\text{DD}} &= \ \frac{\pi^2}{2 \, R_{\text{p}}} \, U_{\text{DD}} \frac{R_{\text{DD}}}{R_{\text{DD}} + r_{\text{Ds(u)}}} \\ P_{\text{k}} &= \frac{\pi^2}{2 \, R_{\text{p}}} \, U_{\text{DD}}^2 \left(\frac{R_{\text{DD}}}{R_{\text{DD}} + r_{\text{Ds(u)}}} \right)^2 & P_{\text{DD}} &= \frac{\pi^2}{2 \, R_{\text{p}}} \, U_{\text{DD}}^2 \, \frac{R_{\text{DD}}}{R_{\text{DD}} + r_{\text{Ds(u)}}} \\ R_{\text{DD}} &= \ \frac{2 \, R_{\text{p}}}{\pi^2} & R_{\text{D$$

Pojačala s pravokutnim naponom

$$\begin{aligned} \text{Realno BJT:} & U_{\text{Rm}} = \frac{4}{\pi} \left(U_{\text{CC}} - U_{\text{s}} \right) & I_{\text{Rm}} = \frac{4}{\pi R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right) \\ I_{\text{CC}} = \frac{8}{\pi^2 R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right) & P_{\text{CC}} = \frac{8}{\pi^2 R_{\text{p}}} U_{\text{CC}} \left(U_{\text{CC}} - U_{\text{s}} \right) \\ P_{\text{k}} = \frac{8}{\pi^2 R_{\text{p}}} \left(U_{\text{CC}} - U_{\text{s}} \right)^2 & P_{\text{CC}} = \frac{8}{\pi^2 R_{\text{p}}} U_{\text{CC}} \left(U_{\text{CC}} - U_{\text{s}} \right) \\ P_{\text{DD}} = \frac{8}{\pi^2 R_{\text{p}}} \frac{U_{\text{DD}}^2}{R_{\text{p}} + r_{\text{De(D)}}} & P_{\text{DD}} = \frac{8}{\pi^2} \frac{U_{\text{DD}}^2}{R_{\text{p}} + r_{\text{De(D)}}} \end{aligned}$$

Klasa D - kaskodni spoj

Realno BJT:
$$U_{\rm Rm} = \frac{2}{\pi} (U_{\rm CC} - 2U_{\rm s})$$
 $I_{\rm ctm} = \frac{2}{\pi R_{\rm p}} (U_{\rm CC} - 2U_{\rm s})$ $I_{\rm ctm} = \frac{2}{\pi R_{\rm p}} (U_{\rm CC} - 2U_{\rm s})$ $P_{\rm k} = \frac{2}{\pi^2 R_{\rm p}} (U_{\rm CC} - 2U_{\rm s})^2$ $P_{\rm CC} = \frac{2}{\pi^2 R_{\rm p}} U_{\rm CC} (U_{\rm CC} - 2U_{\rm s})$

$$P_{\rm k} = \frac{2}{\pi^2} \frac{R_{\rm p} U_{\rm DD}^2}{(R_{\rm p} + r_{\rm Ds(u)})^2}$$

$$P_{\rm DD} = \frac{2}{\pi^2} \frac{U_{\rm DD}^2}{R_{\rm p} + r_{\rm Ds(u)}}$$

Klasa E

$$P_{\text{CC}} = U_{\text{CC}} \cdot I_{\text{CC}}$$

 $P_{\text{c}} = U_{\text{s}} \cdot I_{\text{CC}}$

$$u_{\text{cmaks}} = 3,562 U_{\text{CC}} - 2,562 U_{\text{S}}$$

$$\omega L_2 = Q \cdot R_p$$

$$P_{\rm k} = \frac{1}{2} I_{\rm Rm}^2 R_{\rm p} = (U_{\rm CC} - U_{\rm s}) \cdot I_{\rm CC}$$

$$I_{\rm Rm} = 1,862 \cdot I_{\rm CC}$$

$$\omega C_1 = \frac{I_{CC}}{\pi (U_{CC} - U_s)}$$

$$\omega L_2 - \frac{1}{\omega C_2} = 1,152 R_p$$

Realno FET:

$$P_{\rm d} = 1.365 P_{\rm k} \frac{r_{\rm Ds(u)}}{R_{\rm p}}$$

$$\eta = \frac{R_{\rm p}}{R_{\rm p} + 1.365 \cdot r_{\rm Ds(n)}}$$

Klasa F

$$U_{\rm clm} = \frac{4}{\pi} (U_{\rm CC} - U_{\rm s})$$

$$I_{\rm CC} = \frac{I_{\rm ctm}}{\pi} = \frac{8}{\pi^2 R_{\rm c}} (U_{\rm CC} - U_{\rm s}) \qquad \eta = \frac{U_{\rm CC} - U_{\rm s}}{U_{\rm CC}}$$

$$P_{\rm k} = \frac{8}{\pi^2 R_{\rm c}} (U_{\rm CC} - U_{\rm s})^2$$

$$I_{\rm clm} = \frac{4}{\pi R_{\rm c}} (U_{\rm CC} - U_{\rm s})$$

$$\eta = \frac{U_{\rm CC} - U_{\rm s}}{U_{\rm CC}}$$

$$P_{\rm CC} = \frac{8}{\pi^2 R_{\rm c}} (U_{\rm CC} - U_{\rm s}) \cdot U_{\rm CC}$$

$$U_{\rm dlm} = \frac{4 U_{\rm DD}}{\pi} \frac{R_{\rm d}}{R_{\rm d} + 2 r_{\rm Ds(u)}}$$

$$I_{\rm DD} = \frac{I_{\rm dtm}}{\pi} = \frac{8 U_{\rm DD}}{\pi^2} \frac{1}{R_{\rm d} + 2 r_{\rm Ds(u)}} \qquad \eta = \frac{R_{\rm d}}{R_{\rm d} + 2 r_{\rm Ds(u)}}$$

$$P_{\rm k} = \frac{8 U_{\rm DD}^2}{\pi^2} \frac{R_{\rm d}}{(R_{\rm d} + 2 r_{\rm Ds(u)})^2}$$

$$I_{\rm dlm} = \frac{4 U_{\rm DD}}{\pi} \frac{1}{R_{\rm d} + 2 r_{\rm Ds(u)}}$$

$$\eta = \frac{R_{\rm d}}{R_{\rm d} + 2 r_{\rm Ds(u)}}$$

$$P_{\rm DD} = \frac{8 U_{\rm DD}^2}{\pi^2} \frac{1}{R_{\rm d} + 2 r_{\rm Ds(u)}}$$