

Anna Jaśkowska Jerzy Meldizon

Zadania do ćwiczeń rachunkowych z fizyki Część 2

Lublin 2013

Zadania do ćwiczeń rachunkowych z fizyki Część 2

Podręczniki – Politechnika Lubelska

Politechnika Lubelska Wydział Budownictwa i Architektury ul. Nadbystrzycka 40B 20-618 Lublin

Anna Jaśkowska Jerzy Meldizon

Zadania do ćwiczeń rachunkowych z fizyki Część 2

Recenzent: dr Robert Borc, Politechnika Lubelska

Publikacja wydana za zgodą Rektora Politechniki Lubelskiej

© Copyright by Politechnika Lubelska 2013

ISBN: 978-83-63569-98-3

Wydawca: Politechnika Lubelska

ul. Nadbystrzycka 38D, 20-618 Lublin

Realizacja: Biblioteka Politechniki Lubelskiej

Ośrodek ds. Wydawnictw i Biblioteki Cyfrowej

ul. Nadbystrzycka 36A, 20-618 Lublin

tel. (81) 538-46-59, email: wydawca@pollub.pl

www.biblioteka.pollub.pl

Druk: TOP Agencja Reklamowa Agnieszka Łuczak

www.agencjatop.pl

Elektroniczna wersja książki dostępna w Bibliotece Cyfrowej PL <u>www.bc.pollub.pl</u> Nakład: 100 egz.

Spis treści

Wstęp	7
Grawitacja	
Zadania z rozwiązaniami	g
Zadania uzupełniające	43
Ruch drgający i falowy	53
Zadania z rozwiązaniami	53
Zadania uzupełniające	
Fizyka cząsteczkowa, przemiany gazowe, termodynamika	131
Zadania z rozwiązaniami	131
Zadania uzupełniające	187
Wyprowadzenie wzoru barometrycznego	205
Wyprowadzenie wzoru $c_p - c_v = \frac{R}{\mu}$	209

Wstęp

Niniejsze opracowanie pt. "Zadania do ćwiczeń rachunkowych z fizyki. Część II" zostało pomyślane, jako pomoc dydaktyczna dla studentów pierwszych lat studiów wszystkich kierunków. Ze względu na stale zmniejszającą się liczbę godzin przeznaczoną na ćwiczenia rachunkowe z fizyki, praca zawiera także pewną ilość zadań z rozwiązaniami, w tym rozwiązania w oparciu o rachunek różniczkowy i całkowy oraz równania różniczkowe, co pozwoli studentowi na głębsze i samodzielne przestudiowanie sposobu tych rozwiązań.

Autorzy mają nadzieję, że praca ta, udostępniona dla studentów w podręcznej bibliotece uczelni, przyczyni się do szybszego opanowania przez nich sztuki rozwiązywania zadań, tzw. "obiegowych" z fizyki, jak też zaciekawi niektórych problematyką praw fizyki występujących w przyrodzie i technice. Zadania uzupełniające (bez rozwiązań), zostały dobrane w taki sposób, aby można je było rozpracować w oparciu o te rozwiązane.

Książka pt. "Zadania do ćwiczeń rachunkowych z fizyki. Część II" jest kontynuacją wcześniejszego opracowania I części, która zawiera takie działy, jak: Wektory, pola skalarne i wektorowe, Kinematykę punktu materialnego oraz Dynamikę. Część II natomiast zawiera: Grawitację, Ruch drgający i falowy, Fizykę cząsteczkową, przemiany gazowe i termodynamikę.

Autorzy będą wdzięczni za wszelkie krytyczne uwagi oraz dostrzeżone błędy.

Autorzy

Rozdział I

Grawitacja

Zadania z rozwiązaniami

1.1. Obliczyć, w jakiej odległości od środka Ziemi pojazd kosmiczny lecący z Ziemi na Księżyc będzie przyciągany z jednakową siłą przez Ziemię i przez Księżyc. Masa Księżyca jest 81 razy mniejsza od masy Ziemi a odległość Księżyca od Ziemi wynosi d = 380 000 km.

Rozwiązanie

Przypuśćmy, że szukane miejsce znajduje się w odległości x od środka Ziemi, co jest pokazane na **rys. 1.1**.

Rys 1.1. W punkcie A pojazd kosmiczny jest jednakowo przyciągany zarówno przez Ziemię jak i przez Księżyc

Wtedy w oparciu o prawo powszechnego ciążenia możemy napisać następujące równanie:

$$G\frac{M_z m}{x^2} = G\frac{M_K m}{(d-x)^2},$$

gdzie

G jest stałą grawitacji,

 M_Z , M_K masą Ziemi i Księżyca odpowiednio, m masą pojazdu kosmicznego.

Po przekształceniach mamy:

$$\frac{M_{Z}}{M_{K}} = \frac{x^{2}}{\left(d-x\right)^{2}},$$

stad

$$\frac{x}{d-x} = \sqrt{\frac{M_Z}{M_K}},$$

ostatecznie

$$x = \frac{9}{10} d,$$

x = 342000 km.

1.2. Dwie gwiazdy o masach m₁ i m₂ znajdują się w odległości L od siebie. Znaleźć natężenie pola grawitacyjnego w punkcie A znajdującym się w odległości r₁ i r₂ odpowiednio od pierwszej i drugiej gwiazdy.

Rozwiązanie

Natężenie pola grawitacyjnego w punkcie A $(\vec{\gamma}_w)$ jest sumą wektorową dwóch natężeń: natężenia pochodzącego od gwiazdy o masie $m_1(\vec{\gamma}_1)$ oraz natężenia od gwiazdy o masie $m_2(\vec{\gamma}_2)$. Pokazane jest to na **rys. 1.2**.

$$\vec{\gamma}_{W} = \vec{\gamma}_{1} + \vec{\gamma}_{2},$$

$$\gamma_{W} = \sqrt{\gamma_{1}^{2} + \gamma_{2}^{2} - 2 \gamma_{1} \gamma_{2} \cos \alpha}$$

$$(1.1)$$

Rys. 1.2. Natężenie pola grawitacyjnego pochodzącego od dwóch gwiazd w punkcie A jest sumą wektorową natężeń pól od poszczególnych gwiazd

Kąt α należy wyznaczyć w funkcji kąta β :

$$2\alpha + 2\beta = 360^{\circ}$$
 stąd

$$\alpha = 180^{\circ} - \beta$$

Wzór (1.1) przyjmie teraz postać:

$$\gamma_{\rm W} = \sqrt{\gamma_1^2 + \gamma_2^2 + 2\gamma_1\gamma_2\cos\beta} \ ,$$

gdzie

$$\gamma_1 = G \frac{m_1}{r_1^2} \cdot \gamma_2 = G \frac{m_2}{r_2^2} \cdot$$

natomiast $cos\beta$ znajdujemy z trójkąta ABC:

$$L^{2} = r_{1}^{2} + r_{2}^{2} - 2 r_{1}r_{2} \cos \beta ,$$

stąd

$$\cos \beta = \frac{-L^2 + r_1^2 + r_2^2}{2 r_1 r_2}.$$

Ostatecznie szukane natężenie pola grawitacyjnego wyrazi się wzorem:

$$\gamma_{\rm w} = G \sqrt{\frac{m_1^2}{r_1^4} + \frac{m_2^2}{r_2^4} - \frac{m_1 m_2}{r_1^3 r_2^3} \left(L^2 - r_1^2 - r_2^2\right)} \ . \label{eq:gamma_w}$$

1.3. Sztuczny satelita krąży wokół Ziemi po orbicie eliptycznej takiej, że wielka półoś a_1 tej elipsy jest mniejsza o $\Delta a = 1000$ km od wielkiej półosi $a_2 = 10~000$ km drugiego satelity. Obliczyć okres obiegu drugiego satelity T_2 , jeżeli okres pierwszego wynosi $T_1 = 96$ min.

Rozwiązanie

W oparciu o trzecie prawo Keplera możemy napisać:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3},$$

ale wielka półoś danego satelity jest mniejsza od wielkiej półosi drugiego satelity o Δa , co możemy zapisać: $a_1 = a_2 - \Delta a$.

Uwzględniając powyższe, otrzymamy:

$$T_2 = T_1 \sqrt{\frac{a_2^3}{\left(a_2 - \Delta a\right)^3}} ,$$

 $T_2 = 112 \text{ min.}$

1.4. Obliczyć na jakiej wysokości nad powierzchnią Ziemi, natężenie pola grawitacyjnego Ziemi jest k = 9 razy mniejsze niż na powierzchni. Promień Ziemi R = 6400 km.

Rozwiązanie

Wychodzimy stąd, że wartość liczbowa natężenie pola grawitacyjnego Ziemi wyraża się wzorem:

$$\gamma = G \frac{M}{R^2},\tag{1.2}$$

gdzie M jest masą Ziemi,

R promień Ziemi.

Z treści zadania wynika, że

$$\frac{\gamma}{k} = G \frac{M}{(R+h)^2}$$

gdzie h jest szukaną wysokością nad powierzchnią Ziemi.

Po podzieleniu stronami powyższych równań oraz po przekształceniach otrzymamy:

$$h = R(\sqrt{k} - 1),$$

$$h = 2 R.$$

1.5. Okres wahań pewnego wahadła wynosi T. Obliczyć ile wynosiłby okres wahań tego wahadła na planecie o promieniu 4 razy mniejszym od promienia Ziemi. Przyjąć, że Ziemia i planeta są jednorodnymi kulami o tej samej gęstości.

Rozwiązanie

Okres wahań wahadła na Ziemi i na planecie wyrazi się odpowiednio:

$$T_z = 2 \pi \sqrt{\frac{L}{g_z}},$$

$$T_{p} = 2 \pi \sqrt{\frac{L}{g_{p}}}.$$

Po podzieleniu powyższych wzorów stronami będziemy mieli:

$$T_{\rm p} = T_{\rm z} \sqrt{\frac{g_{\rm z}}{g_{\rm p}}} \cdot$$

Przyjmując przybliżenie, że przyśpieszenie ziemskie i danej planety są odpowiednio równe natężeniu grawitacyjnemu Ziemi i tej planety (przy zaniedbaniu ruchu wirowego obu ciał), możemy napisać:

$$g_z = G \frac{M_z}{R_z^2}, g_p = G \frac{M_p}{R_p^2}$$

oraz, że

$$M_z = \frac{4}{3} \pi R_z^3 \rho, M_p = \frac{4}{3} \pi R_p^3 \rho.$$

Po uwzględnieniu powyższych zależności i po przekształceniach otrzymamy:

$$T_p = T_z \sqrt{\frac{R_z}{R_p}} ,$$

$$T_{\scriptscriptstyle p} = 2~T_{\scriptscriptstyle z}$$
 .

1.6. Czas trwania doby na jednorodnej, kulistej planecie o gęstości ρ i promieniu R wynosi T. Obliczyć na jakiej wysokości nad biegunem tej planety ciężar danego ciała będzie taki sam jak na równiku. Stała grawitacji G.

Rozwiązanie

Ciężar ciała nad biegunem na wysokości x nad daną planetą wyrazi się następującym wzorem:

$$Q_b = G \frac{M m}{(R + x)^2} \cdot$$

Natomiast ciężar ciała na równiku jest sumą wektorową siły grawitacji i siły odśrodkowej bezwładności

$$\overrightarrow{Q_r} = \overrightarrow{F_g} + \overrightarrow{F_b} \; .$$

Wartość Q_r wynosi:

$$Q_{r} = G \frac{M m}{R^{2}} - m \omega^{2} R,$$
 (1.3)

gdzie m ω^2 R jest siłą odśrodkową bezwładności.

Uwzględniając, że
$$M = \frac{4}{3} \pi R^3 \rho$$
 oraz, że $\omega = \frac{2 \pi}{T}$

i porównując ciężar ciała nad biegunem na wysokości x z ciężarem ciała na równiku danej planety, możemy wyliczyć szukaną wysokość:

$$G\frac{M m}{(R+x)^2} = G\frac{M m}{R^2} - m \omega^2 R$$

Z powyższego równania wyznaczamy szukaną wysokość:

$$x = R \left[\sqrt{\frac{G \rho T^2}{G \rho T^2 - 3 \pi}} - 1 \right].$$

1.7. Określić zależność ciężaru ciała od szerokości geograficznej Ziemi.

Rozwiązanie

Ciężar ciała, czyli siła z jaką ciało spada na Ziemię, na biegunie równa się sile grawitacji:

$$F = G \frac{M_Z m}{R_Z^2} \cdot$$

Natomiast z powodu ruchu obrotowego Ziemi wokół swojej osi, ciężar ten jest zmniejszony o siłę odśrodkową bezwładności, która wzrasta w miarę zbliżania się do równika i na równiku osiąga wartość maksymalną. Zależność ciężaru od szerokości geograficznej wyrazi się więc równaniem wynikającym z twierdzenia cosinusów (rys. 1.3).

Zatem:

$$Q_{\phi} = \sqrt{F_g^2 + F_b^2 - 2F_g F_b \cos \phi} ,$$

$$F_g = G \frac{M m}{R^2} ,$$

$$F_b = m \omega^2 r$$
,

gdzie R to promień Ziemi,

ω prędkość kątowa ruchu obrotowego Ziemi,

r odległość danego ciała od osi obrotu Ziemi, która zależy od szerokości geograficznej (**rys. 1.3**) i wyraża się następującym wzorem:

 $r = R\cos\varphi$,

 φ jest szerokością geograficzną.

Rys. 1.3. Ciężar ciała na danej szerokości geograficznej równy jest sumie wektorowej siły grawitacji oraz siły bezwładności. Jego wartość wynika z tzw. cosinusów. Wynika stąd, że wektor ciężaru nie jest skierowany do środka Ziemi, z wyjątkiem bieguna i równika

1.8. Na równiku planety-Ziemia ciała ważą o 1/290 mniej niż na biegunie. Średnia gęstość Ziemi wynosi $\rho=5517~kg/m^3,$ stała grawitacji $~G=6,67\cdot 10^{-11}~\frac{N~m^2}{kg^2}\cdot$

Obliczyć okres obrotu Ziemi dookoła własnej osi, zakładając, że Ziemia jest jednorodną kulą.

Rozwiązanie

Ciężar ciała na równiku można wyliczyć z następującego równania:

$$F_{\rm r} = G \frac{M m}{R^2} - m \omega^2 R.$$

Na równiku, ma dane ciało ważyć mniej o 1/290 niż na biegunie. Warunek ten zapisujemy w postaci następującego równania:

$$G\frac{M m}{R^2} - m \omega^2 R = G\frac{M m}{R^2} - \frac{1}{290}G\frac{M m}{R^2}$$

lub

$$\omega^2 R = \frac{1}{290} G \frac{M}{R^2}$$

Wyrażając masę Ziemi w zależności od jej gęstości:

$$M = \frac{4}{3} \pi R^3 \rho$$

oraz względniając, że $\omega = \frac{2 \pi}{T}$, obliczymy szukany okres obrotu planety-Ziemia.

$$T = \sqrt{\frac{870 \pi}{G \rho}},$$

T = 24 godz.

1.9. Sztuczny satelita ma krążyć dookoła Ziemi po okręgu na wysokości H nad powierzchnią Ziemi i nie spaść na nią. Obliczyć z jaką powinien być wyrzucony prędkością oraz jaki będzie jego okres obiegu. Wykonać obliczenia przy założeniu, że H << R $_Z$, gdzie R $_Z$ jest promieniem Ziemi. Przyjąć g = 9,8 m/s 2 , R $_Z$ = 6400 km.

Rozwiązanie

W sytuacji, w której satelita ma krążyć dookoła Ziemi po orbicie kołowej i nie spaść na nią, siła grawitacji musi stanowić siłę dośrodkową:

$$G\frac{M m}{\left(R_Z + H\right)^2} = \frac{m v_I^2}{R_Z + H}$$

skąd $v_1 = \sqrt{\frac{GM}{R_z + H}}$

Uwzględniając, że $g_Z = \frac{G\ M}{R_z^2}$ otrzymujemy:

$$v_I = R_Z \sqrt{\frac{g_Z}{R_Z + H}} \cdot$$
 Gdy H << R_Z to $v_I = \sqrt{g_Z R_Z}$. (1.4)

Po podstawieniu wartości liczbowych otrzymamy:

$$v_{I} = 7.9 \frac{km}{s}$$
.

Otrzymaliśmy pierwszą prędkość kosmiczną.

W celu obliczenia okresu obiegu sztucznego satelity wychodzimy ze wzoru na okres ruchu po okręgu:

$$T = \frac{2 \pi}{\omega}.$$

Uwzględniając, że $\omega = \frac{v}{R_z + H}$,

będziemy mieli $T = \frac{2 \pi (R_z + H)}{v}$.

Zakładając, że H << R_Z i podstawiając za v wyrażenie $\sqrt{g_Z} \ R_Z$ otrzymamy:

$$T = 2 \pi \sqrt{\frac{R_z}{g_z}}$$

Po podstawieniu wartości liczbowych otrzymamy: T = 1 godz. 24 min.

1.10. Obliczyć, w jakiej odległości h od powierzchni Ziemi należy umieścić sztucznego satelitę, aby nie zmieniał swego położenia względem Ziemi (satelita stacjonarny). Dany jest promień Ziemi $R_z = 6370$ km, okres obrotu Ziemi T = 24 godz., g = 9,81 m/s².

Rozwiązanie

Satelita stacjonarny to taki, który utrzymuje się nad Ziemią w płaszczyźnie równika. Oznacza to, że jego prędkość kątowa równa się prędkości kątowej Ziemi, a siłę dośrodkową stanowi siła grawitacji na szukanej wysokości. Zatem:

$$m \omega^2 r = G \frac{M m}{r^2}$$

gdzie r jest promieniem orbity sztucznego satelity:

$$\frac{4 \pi^2}{T^2} r^3 = G M$$

skad

$$r = \sqrt[3]{\frac{G M T^2}{4 \pi^2}}$$

albo

$$r = \sqrt[3]{\frac{GMR_Z^2T^2}{R_Z^2 4 \pi^2}},$$

$$r = \sqrt[3]{\frac{g \ R_z^2 \ T^2}{4 \ \pi^2}} \ .$$

$$r = 42,1 \cdot 10^3 \text{ km}.$$

Ostatecznie szukana odległość od powierzchni Ziemi będzie:

$$h = r - R_Z$$

h = 35730 km.

1.11. Obliczyć masę Ziemi wiedząc, że Księżyc jest oddalony od Ziemi na odległość r = 384~000 km, a jego okres obiegu dookoła Ziemi wynosi T = 27,3 dni.

Rozwiązanie

Siła przyciągania grawitacyjnego Księżyca (m) przez Ziemię (M) stanowi siłę dośrodkową utrzymującą Księżyc na orbicie. Możemy więc napisać:

$$GM\frac{m}{r^2} = \frac{m v^2}{r},$$

uwzględniając, że
$$v = \frac{2 \pi}{T} r$$
,

otrzymamy
$$G\frac{M}{r} = \frac{4 \pi^2}{T^2} r^2$$
,

stąd GM =
$$\frac{4 \pi^2}{T^2} r^3$$
.

Ostatecznie
$$M = \frac{4 \pi^2}{T^2} \frac{r^3}{G}$$
.

Po podstawieniu wartości liczbowych otrzymamy:

$$M = 6 \cdot 10^{24} \text{ kg}.$$

1.12. Obliczyć, prędkość liniową Ziemi w jej ruchu dookoła Słońca. Masa Słońca jest $M_S = 2 \cdot 10^{30}$ kg, a średnia odległość Ziemi od Słońca wynosi $r = 15 \cdot 10^7$ km.

Rozwiązanie

Siła przyciągania Ziemi przez Słońce stanowi siłę dośrodkową w jej ruchu:

$$G\frac{M_s m}{r^2} = \frac{m v^2}{r},$$

gdzie r – odległość Ziemi od Słońca.

Z powyższego równania wyznaczamy szukaną prędkość liniową Ziemi:

$$v = \sqrt{\frac{G M_s}{r}},$$

$$v = 29.8 \frac{km}{s} \approx 30 \frac{km}{s}$$

1.13. Obliczyć, ile będzie ważyć na Księżycu człowiek, który na Ziemi waży F = 900 N. Masa Księżyca jest n = 81 razy mniejsza od masy Ziemi, a promień Księżyca jest k = 3,7 razy mniejszy od promienia Ziemi.

Rozwiązanie

Ciężar ciała na Księżycu wyrazi się wzorem:

$$F = m g_K$$

gdzie m jest masą danego człowieka, g_K – przyśpieszeniem grawitacyjnym na powierzchni Księżyca, które wynosi:

$$g_{K} = G \frac{M_{K}}{R_{K}^{2}} \cdot$$

Uwzględniając dane w treści zadania:

$$g_K = g_Z \frac{k^2}{n} \,.$$

Po podstawieniu wartości liczbowych, przyjęciu $g_Z = 10 \frac{m}{s^2}$ oraz m = 90 kg otrzymamy:

$$F = 152 N.$$

1.14. Obliczyć wartość natężenia pola grawitacyjnego (przyśpieszenie grawitacyjne) na powierzchni Słońca. Promień Słońca jest k = 108 razy większy od promienia Ziemi a średnia gęstość Słońca n = 4 razy mniejsza od średniej gęstości Ziemi.

Rozwiązanie

Wartość natężenia pola grawitacyjnego na powierzchni Słońca wyraża się wzorem:

$$\gamma_{\rm s} = G \frac{M_{\rm s}}{R_{\rm s}^2},$$

gdzie

$$M_{\rm S} = \frac{4}{3}\pi R_{\rm S}^3 \rho_{\rm S},$$

$$\rho_{\rm S} = \frac{\rho_{\rm Z}}{\rm n}$$

$$R_s = kR_Z$$
.

Mamy wiec
$$\gamma_s = G \frac{4}{3} \pi \frac{R_s^3}{R_s^2} \rho_s$$

$$\gamma_{\rm s} = G \frac{4}{3} \pi \frac{{\rm k}^3 {\rm R}_{\rm Z}^3}{{\rm k}^2 {\rm R}_{\rm Z}^2} \frac{\rho_{\rm Z}}{\rm n}$$

ale

$$\frac{4}{3}\pi R_Z^3 \rho_Z = M_Z$$

więc

$$\gamma_{\rm s} = G M_{\rm Z} \frac{1}{R_{\rm Z}^2} \frac{k}{n},$$

$$\gamma_{\rm s} = \frac{\rm k}{\rm n} {\rm g}_{\rm Z}$$

$$\gamma_{\rm S} = 27 \, \rm g_{\rm Z}$$

1.15. Obliczyć natężenie pola grawitacyjnego pochodzącego od powłoki kulistej o promieniu a i gęstości powierzchniowej σ, w punkcie P odległym o r od środka powłoki. Rozpatrzyć dwa przypadki a) gdy r > a oraz b) r<a.</p>

Rozwiązanie

a) Przypadek gdy r > a

Wychodzimy z twierdzenia Gaussa dla natężenia pola grawitacyjnego: $\Psi\gamma=-4\pi\,{\rm GM}$, tzn. strumień natężenia pola grawitacyjnego przez zamkniętą powierzchnię S jest wprost proporcjonalny do sumarycznej masy ciał wewnątrz tej powierzchni (A. Januszajtis, *Fizyka dla politechnik*, Tom II).

Strumień elementarny:

$$d\Psi = \vec{\gamma} \cdot \vec{ds}$$
 (rys.1.4).

Rys. 1.4. Strumień elementarny natężenia pola grawitacyjnego wyraża się wzorem $d\Psi = \vec{\gamma} \cdot \vec{ds}$ Natomiast strumień całkowity będzie: $\Psi = \oint_s \vec{\gamma} \cdot \vec{ds}$

$$\Psi_{\gamma} = \oint_{S} \vec{\gamma} \cdot \vec{ds} = \oint \gamma \cdot ds \cdot \cos 180^{\circ}$$
 (1.5)

Na mocy twierdzenia Gaussa mamy:

$$\Psi_{\gamma} = \oint_{S} \gamma \cdot ds \cdot cos 180^{\circ} = -4 \pi G M$$

zatem

$$-\gamma \cdot 4 \pi r^2 = -4 \pi G M$$

stad

$$\gamma = \frac{G M}{r^2}.$$

Natężenie pola grawitacyjnego wytworzonego przez powłokę kulistą, dla r > a jest takie samo jakby cała masa powłoki była umieszczona w jej środku.

Jeżeli
$$M=4~\pi~a^2\sigma$$
 , to $\gamma=\frac{G~4~\pi~a^2\sigma}{r^2}$.

b) gdy r < a.

W tym przypadku powierzchnia o promieniu r nie obejmuje żadnej masy, więc:

$$\gamma \cdot 4 \pi r^2 = 0$$

Natężenie pola grawitacyjnego wewnątrz powłoki kulistej jest równe zeru. Jest to pokazane na wykresie na **rys. 1.5**.

Rys. 1.5. Natężenie pola grawitacyjnego wewnątrz powłoki kulistej jest równe zeru

Możemy wykazać inną metodą, że natężenie pola grawitacyjnego wewnątrz powłoki kulistej jest równe zeru. W tym celu rozpatrujemy punkt materialny o masie m umieszczony w dowolnym miejscu wewnątrz powłoki kulistej o promieniu a i grubości da. Następnie, wycinamy dwa stożki o jednakowych kątach bryłowych i wierzchołkach, gdzie znajduje się punkt materialny o masie m. Stożki te wycinają na powłoce kulistej elementarne powierzchnie $ds_1=d\Omega\ r_1^2$ oraz $ds_2=d\Omega\ r_2^2$. Widać to na **rys. 1.6**.

Rys. 1.6. Dwa stożki o jednakowych kątach bryłowych wycinają powierzchnie ds₁ i ds₂

Masy odpowiednich fragmentów powłoki ds₁ i ds₂ będą:

$$dm_1 = ds_1 dr \sigma = d\Omega r_1^2 dr \sigma$$
,

$$dm_2 = ds_2 dr \sigma = d\Omega r_2^2 dr \sigma$$
.

Siły grawitacji działające ze strony wyżej wymienionych mas na punkt materialny o masie m wyrażają się wzorami:

$$dF_1 = \frac{G \ d\Omega \ r_i^2 \ dr \ \sigma \ m}{r_i^2} = G \ d\Omega \ dr \ \sigma \ m \, , \label{eq:final_final}$$

$$dF_2 = \frac{G \ d\Omega \ r_2^2 \ dr \ \sigma \ m}{r_2^2} = G \ d\Omega \ dr \ \sigma \ m \ .$$

Siły te są jednakowe i przeciwnie skierowane, a więc się redukują, tzn, że natężenie pola grawitacyjnego wewnątrz powłoki kulistej jest równe zeru.

1.16. Obliczyć natężenie pola grawitacyjnego wytworzonego przez jednorodną kulę o promieniu a i gęstości objętościowej *ρ* w punkcie odległym od środka kuli o odległość r. Rozpatrzyć dwa przypadki, a) gdy r > a oraz b) gdy r < a.

Rozwiązanie

a) Przypadek gdy r > a.

Podobnie jak w zadaniu poprzednim korzystamy z twierdzenia Gaussa: kulę pełną o promieniu a i gęstości objętościowej ρ otaczamy sferą kulistą o promieniu r (**rys. 1.7**). Mamy:

$$-4 \pi r^2 \gamma = -4 \pi G M$$

Rys. 1.7. Kulę pełną o promieniu a otaczamy sferą kulistą o promieniu r

stąd
$$\gamma = \frac{G M}{r^2}$$
.

Natężenie pola grawitacyjnego pochodzące od kuli pełnej jest takie samo jak od powłoki kulistej. Natomiast wewnątrz pełnej kuli natężenie nie jest równe zeru.

b) Gdy r < a.

Wewnątrz kuli pełnej sfera o promieniu r < a obejmuje pewną masę tym mniejszą im jest mniejsze r.

Mamy wiec

$$-4 \pi r^2 \gamma = -4 \pi G M$$
,

jeśli uwzględnić, że

$$M = \frac{4}{3}\pi r^3 \rho,$$

otrzymamy

$$r^2 \gamma = G \frac{4}{3} \pi r^3 \rho,$$

ostatecznie

$$\gamma = \frac{4}{3} \pi r G \rho$$
.

Natężenie pola grawitacyjnego wewnątrz pełnej kuli jest wprost proporcjonalne do odległości od środka kuli, co jest pokazane na wykresie na **rys. 1.8**.

Rys. 1.8. Natężenie pola grawitacyjnego od pełnej kuli, wewnątrz i na zewnątrz tej kuli

1.17. Jednorodna kula wytwarza pole grawitacyjne, którego natężenie na powierzchni kuli wynosi g. Natężenie to zmienia się, jeżeli wydrążymy w niej dwie kule styczne do siebie i do powierzchni danej kuli o średnicach równych promieniowi danej kuli i środkach leżących w płaszczyźnie równika (**rys. 1.9**). Obliczyć natężenie pola grawitacyjnego w punkcie A na biegunie kuli oraz w punkcie B, C i D na równiku.

Rozwiązanie

Oznaczymy przez $\stackrel{\rightarrow}{\gamma}_1$ i $\stackrel{\rightarrow}{\gamma}_2$ natężenia pól grawitacyjnych wytwarzanych przez małe kule 1 i 2.

Rys. 1.9. Natężenie pola grawitacyjnego w punkcie A będzie różnicą wektorową pomiędzy natężeniem \vec{g} , a wypadkowym wektorem z dwóch wektorów $\overset{\rightarrow}{\gamma}_1$ i $\overset{\rightarrow}{\gamma}_2$

 $\stackrel{
ightarrow}{\gamma}$ – natężenie wypadkowe wytwarzane przez te kule,

 γ_A – szukane natężenie pola grawitacyjnego w punkcie A wytworzone przez część kuli oznaczoną ciemniejszym kolorem (**rys. 1.9**).

Natężenie to wyrazi się wzorem:

$$\vec{\gamma}_{A} = \vec{g} - (\vec{\gamma}_{1} + \vec{\gamma}_{2}). \tag{1.6}$$

Wzór ten jest słuszny dla dowolnego punktu na powierzchni dużej kuli.

Obliczanie dla punktu A.

Wartość natężenia pola grawitacyjnego wytworzonego przez małą kulę i w punkcie A wyrazi się wzorem:

$$\gamma_1 = G \frac{m}{r^2}, \qquad (1.7)$$

gdzie $m = \frac{4}{3} \pi r_o^3 \rho$ jest masą małej kuli, którą należy wyrazić w funkcji

promienia R dużej kuli, uwzględniając, że $r_{o} = \frac{R}{2}$:

$$m = \frac{4}{3} \pi \frac{R^3}{8} \rho = \frac{M}{8}$$

r – jest odległością punktu A od środka małej kuli,

r₀ – jest promieniem małej kuli,

 ρ – jest gęstością dużej kuli,

M – jest masą dużej kuli.

Podstawiając do wzoru (1.7) wartość na m oraz, że $g = G \frac{M}{R^2}$ otrzymamy:

$$\gamma_1 = \frac{g R^2}{8 r^2},$$
 (1.8)

ale dla punktu A jest $r^2 = R^2 + \frac{R^2}{4} = \frac{5}{4}R^2$,

gdy wartość na r² wstawimy do (1.8) otrzymamy:

$$\gamma_1 = \frac{1}{10} g. \tag{1.9}$$

Natężenie wypadkowe $\vec{\gamma}$ pola grawitacyjnego w punkcie A pochodzące od dwóch małych kul wyliczymy jako wektor wypadkowy dwóch natężeń $\vec{\gamma}_1$ i $\vec{\gamma}_2$ (rys. 1.9).

$$\vec{\gamma} = \vec{\gamma}_1 + \vec{\gamma}_2$$
.

Z rys. 1.9. widać, że:

$$\frac{\gamma}{2} = \gamma_1 \cos \alpha ,$$

biorąc pod uwagę trójkąt APO otrzymamy:

$$\cos\alpha = \frac{R}{\sqrt{R^2 + \frac{R^2}{4}}} = \frac{2}{\sqrt{5}}.$$

Uwzględniając wzór (1.9) dostaniemy:

$$\gamma = \frac{2 \text{ g}}{5 \sqrt{5}}.$$

Szukane natężenie pola grawitacyjnego w punkcie A będzie różnicą dwóch wektorów (wzór 1.6):

$$\vec{\gamma}_A = \vec{g} - \vec{\gamma}$$
.

Natomiast wartość liczbowa szukanego natężenia pola grawitacyjnego w punkcie A będzie równe:

$$\gamma_{\rm A} = g - \frac{2 g}{5\sqrt{5}},$$

$$\gamma_{\rm A} = g \left(1 - \frac{2}{5\sqrt{5}} \right)$$

Po wyliczeniu otrzymamy:

$$\gamma_{\rm A} = 0.82 {\rm g}.$$

b) Obliczanie dla punktu B.

Korzystając ze wzoru (1.7) na natężenie pola grawitacyjnego pochodzącego od małej kuli 1 w punkcie A: $\gamma=G\frac{m}{r^2}~$ dla punktu B przy uwzględnieniu, że

$$r = r_o = \frac{R}{2}$$
 oraz $m = \frac{M}{8}$, otrzymamy:

$$\gamma_{\rm B 1} = \frac{1}{2} g.$$

Natomiast w punkcie B natężenie pola grawitacyjnego od kuli 2, uwzględniając, że $r=\frac{3}{2}$ R oraz, że $m=\frac{M}{8}$ otrzymamy:

$$\gamma_{\rm B 2} = G \frac{\rm m}{\rm r^2} = \frac{1}{18} {\rm g} .$$

Wartość wektora wypadkowego w punkcie B wyrazi się wzorem:

$$\gamma_{\rm B} = \frac{1}{2} \ {\rm g} + \frac{1}{18} \ {\rm g} = \frac{5}{9} {\rm g} \cdot$$

Jest to natężenie pola grawitacyjnego pochodzące od dwóch małych kul.

Ostatecznie, wartość liczbowa natężenie pola grawitacyjnego w punkcie B będzie wynosić:

$$\gamma_{\rm B} = g - \frac{5}{9} g$$

$$\gamma_{\rm B} = \frac{4}{9} \, \mathrm{g}$$

$$y_{\rm B} = 0.44 \, {\rm g}.$$

Natężenie pola grawitacyjnego w punkcie C $\overset{\rightarrow}{\gamma}_{\rm C}$ (na równiku) jest takie samo jak w punkcie D $\overset{\rightarrow}{\gamma}_{\rm D}$ i równa się (ze względu na symetrię) natężeniu pola w punkcie A $\overset{\rightarrow}{\gamma}_{\rm A}$.

1.18. Na półkuli północnej na szerokości geograficznej $\varphi=45^\circ$ płynie rzeka z południa na północ z prędkością v = 1 $\frac{m}{s}$. Obliczyć ciśnienie wywierane przez wodę na brzeg rzeki, jeżeli jej szerokość wynosi b = 100 m. Gęstość wody można przyjąć $\rho=1000$ $\frac{kg}{m^3}$. Określić, na który brzeg rzeki działa siła Coriolisa.

Rozwiązanie

Wychodzimy ze wzoru na siłę Coriolisa:

$$\vec{F}_c = 2 \text{ m } \vec{v} \text{ x } \vec{\omega}$$
.

 \overrightarrow{v} – prędkość rzeki, a $\overrightarrow{\omega}$ prędkość kątowa ruchu obrotowego Ziemi.

W zapisie skalarnym:

$$F_C = 2 \text{ m } \omega \text{ v } \sin \angle (\vec{v}, \vec{\omega}).$$

Kąt między wektorami \overrightarrow{v} i $\overrightarrow{\omega}$ wynosi φ , co widać na **rys. 1.10**.

Rys. 1.10. Prędkość danego ciała \vec{v} rozkłada się na dwie składowe prędkości: prostopadłą do kierunku prędkości kątowej ruchu obrotowego Ziemi: $v_{\perp} = v \sin \phi$ oraz równoległą do tego kierunku $v_{II} = v \cos \phi$

Zatem

$$F_c = 2 \text{ m v } \omega \sin \varphi$$
.

Siła Coriolisa działa prostopadle do płaszczyzny wektorów \vec{v} i $\vec{\omega}$, zwrot jej określa reguła śruby prawoskrętnej. Jak widać z **rys. 1.10**, siła Coriolisa skierowana jest za kartkę, a więc działa na prawy brzeg rzeki.

Z drugiej strony, siła ta może być wyrażona za pomocą ciśnienia p i pola powierzchni S brzegu rzeki, na którą określona ilość wody wywiera ciśnienie p:

$$F = p S$$
.

Masę wody natomiast możemy obliczyć jako iloczyn gęstości i objętości wody:

$$m = V \rho$$
,

gdzie V = Sb.

Wstawiając powyższe do wzoru na siłę Coriolisa otrzymamy:

$$F_c = 2 S b \rho v \omega sin \varphi$$
,

$$p = \frac{F_c}{S} = 2 b \rho v \omega \sin \varphi$$
,

$$p = 10,2 \frac{N}{m^2}$$

1.19. Obliczyć pracę podczas przenoszenia ciała o masie m₀ w pomyślanym tunelu ze środka Ziemi na jej powierzchnię oraz energię potencjalną w dowolnym punkcie wewnątrz Ziemi.

Rozwiązanie

Siła działająca na ciało próbne o masie m_0 w tunelu wewnątrz Ziemi pochodzi tylko od kuli o promieniu r (**rys. 1.11**), ponieważ jak wykazano w zadaniu 1.15 nie ma oddziaływania pomiędzy zewnętrzną powłoką a masą m_0 . Warstwę Ziemi o grubości (R-r) można traktować jako sumę powłok kulistych.

$$F_{g} = G \frac{m_{0}m}{r^{2}},$$

gdzie m jest masą kuli o promieniu r,

$$m = \frac{4}{3} \pi r^3 \rho,$$

 ρ jest średnią gęstością Ziemi, którą wyznaczamy w funkcji masy całej Ziemi M:

Rys. 1.11. Na ciało o masie m_0 w pomyślanym tunelu przez środek Ziemi działa siła grawitacji pochodząca tylko od kuli o promieniu r

$$M = \frac{4}{3} \pi R^3 \rho,$$

skąd

$$\rho = \frac{3}{4} M \frac{1}{\pi R^3},$$

będzie więc

$$m = \frac{M r^3}{R^3}.$$

Siła przyciągania grawitacyjnego przez kulę o promieniu r wyrazi się teraz wzorem:

$$F_g = G \frac{m_0 M r^3}{r^2 R^3},$$

ostatecznie

$$F_{g} = G \frac{m_{0}M}{R^{3}} r.$$

Jest więc ta siła wprost proporcjonalna do odległości od środka Ziemi, co jest pokazane na **rys. 1.12**.

Praca natomiast, jaką trzeba wykonać ażeby przenieść ciało o masie m_0 w fikcyjnym tunelu przechodzącym przez środek Ziemi, ze środka Ziemi na jej powierzchnię równa się polu pod wykresem siły:

$$W = \frac{1}{2}R\frac{G M m_0}{R^2},$$

ostatecznie

$$W = \frac{1}{2} \frac{G M m_0}{R} .$$

Rys. 1.12. Praca potrzebna do przeniesienia ciała o masie m_0 ze środka Ziemi na jej powierzchnię jest równa polu pod wykresem siły

Praca ta jest jednocześnie równa przyrostowi energii potencjalnej a więc różnicy pomiędzy energią potencjalną na powierzchni Ziemi a energią potencjalną w środku Ziemi.

$$W = \Delta E_{p} = E_{pz} - E_{po}. \tag{1.10}$$

Z powyższego równania obliczamy energię potencjalną w środku Ziemi:

$$E_{po} = E_{pz} - W$$
.

Uwzględniając wzory na E_{pz} i W, otrzymamy:

$$E_{po} = -G \frac{M m_0}{R} - \frac{1}{2} G \frac{M m_0}{R},$$

$$E_{po} = -\frac{3}{2} G \frac{M m_0}{R}.$$
(1.11)

Wynik ten jest analogiczny ze wzorem na potencjał grawitacyjny w środku pełnej kuli o promieniu R, gdy przyjmiemy za m_0 jeden kilogram, gdyż potencjał jest równy grawitacyjnej energii potencjalnej jednostki masy.

W celu obliczenia energii potencjalnej w dowolnym punkcie wewnątrz Ziemi należy określić pracę potrzebną na przeniesienie ciała o masie m_0 ze środka Ziemi do dowolnego punktu oddalonego od środka Ziemi o odległość r.

Praca ta jest równa polu trójkąta OAB co widać na rys. 1.12.

$$W_2 = \frac{1}{2} r G \frac{M m_0 r}{R^3},$$

$$W_2 = \frac{1}{2} G \frac{M m_0 r^2}{R^3}.$$

Energia potencjalna grawitacji w funkcji odległości od środka Ziemi będzie sumą energii potencjalnej w środku Ziemi plus praca określona powyższym wzorem:

$$E_{pr} = E_{po} + W_2$$

lub

$$E_{pr} = -\frac{3}{2}G\frac{M m_0}{R} + \frac{1}{2}G\frac{M m_0 r^2}{R^3}.$$

Pierwszy człon powyższego równania określa energię potencjalną grawitacji w środku kuli ziemskiej, a drugi pracę jaką trzeba wykonać aby przenieść ciało o masie m ze środka Ziemi do punktu r < R.

Rys. 1.13. Zależność energii potencjalnej grawitacji od odległości od środka kuli ziemskiej

1.20. Wzór na pracę siły zewnętrznej równoważącej siłę pola grawitacyjnego podczas przeniesienia ciała o masie m z powierzchni Ziemi na wysokość h wynosi:

$$W = G m M \left(\frac{1}{R_z} - \frac{1}{R_z + h} \right)$$

R_Z jest promieniem Ziemi,

M masą Ziemi,

G stałą grawitacji.

Często jednak posługujemy się wzorem przybliżonym: W = m g h.

Do jakiej wysokości nad Ziemię można stosować ten wzór, aby błąd względny popełniony przy obliczeniach pracy za pomocą wzoru przybliżonego był mniejszy od 0,1%?

Rozwiązanie

Dokładną wartość pracy wyrażamy wzorem:

$$W_d = G M m \left(\frac{1}{R_z} - \frac{1}{R_z + h} \right) = G M m \frac{h}{R_z (R_z + h)}$$
 (1.12)

Dla h<<R_Z wzór dokładny przechodzi we wzór przybliżony:

$$W_{p} = G M m \frac{h}{R_{Z}^{2}}, \qquad (1.13)$$

ponieważ

$$g = \frac{G M}{R_Z^2}$$

więc

$$W_p = m g h$$
.

Szukany błąd wyrazi się wzorem:

$$\delta = \frac{\Delta W}{W_d} = \frac{W_p - W_d}{W_d} < 10^{-3}$$

lub

$$\frac{W_p}{W_d} - 1 < 10^{-3}$$
.

Korzystając ze wzorów (1.12) i (1.13) otrzymamy:

$$\frac{G M m \frac{h}{R_z^2}}{G M m \frac{h}{R_z(R_z + h)}} - 1 < 10^{-3},$$

stad

$$\frac{R_z + h}{R_z} - 1 < 10^{-3}$$

lub

$$1 + \frac{h}{R_z} - 1 < 10^{-3}$$

Ostatecznie, szukana wysokość wyrazi się wzorem:

$$h < R_Z \cdot 10^{-3} .$$

Przyjmując, że $R_Z = 6374$ km, będziemy mieli:

1.21. Obliczyć z jaką prędkością początkową należy wyrzucić ciało ażeby wyszło poza obszar przyciągania ziemskiego (druga prędkość kosmiczna). Przyjąć g = 10 m/s².

Rozwiązanie

Korzystamy z zasady zachowania energii: Suma energii kinetycznej i potencjalnej jest stała:

$$\frac{\mathrm{m} \ \mathrm{v}_{\mathrm{II}}^2}{2} + \left(-G \frac{\mathrm{M} \ \mathrm{m}}{\mathrm{R}_{\mathrm{Z}}} \right) = 0$$

lub

$$\frac{\mathrm{m} \, \mathrm{v}_{\mathrm{II}}^2}{2} + \left(-\mathrm{G} \frac{\mathrm{M} \, \mathrm{m} \, \mathrm{R}_{\mathrm{Z}}}{\mathrm{R}_{\mathrm{Z}}^2} \right) = 0 \, \mathrm{v}$$

ale

$$\frac{G\,M}{R_Z^2} = g\,.$$

Mamy wiec:

$$v_{II} = \sqrt{2 g R_Z} .$$

$$v_{II} = 11,3 \frac{km}{s}$$
.

Drugą prędkość kosmiczną można także wyznaczyć w oparciu o to, że energia kinetyczna jaką nadamy ciału będzie zużyta na pracę wykonaną przeciwko sile pola grawitacyjnego:

$$\frac{m v_{II}^2}{2} = G M m \left(\frac{1}{R_z} - \frac{1}{r} \right),$$

gdy r dąży do nieskończoności, otrzymujemy drugą prędkość kosmiczną:

$$v_{_{\rm II}} = \sqrt{2~g~R_{_{\rm Z}}}$$
 .

1.22. Obliczyć pracę jaką należy wykonać, aby ciało o masie m = 100 kg przenieść z powierzchni Ziemi na wysokość równą promieniowi Ziemi R_Z = 6400 km. Przyjąć g = 10 m/s².

Rozwiązanie

Szukaną pracę wyliczymy ze wzoru:

$$W = G M m \left(\frac{1}{R_z} - \frac{1}{r} \right)$$

lub

$$W = G M m \frac{R_z^2}{R_z^2} \left(\frac{1}{R_z} - \frac{1}{r} \right) \cdot$$

Przyjmując

$$\frac{GM}{R_z^2} = g$$

oraz, że $r = 2R_Z$ otrzymamy:

$$W = \frac{1}{2}g m R_z,$$

$$W = 3.2 \cdot 10^9 \text{ J}.$$

1.23. Obliczyć drugą prędkość kosmiczną (prędkość ucieczki) z powierzchni planety Mars, jeżeli średnica Marsa wynosi $2R_M$ = 700 km, stosunek masy Marsa do masy Ziemi k = 0,11. Dany jest też promień Ziemi R_z = 6400 km oraz przyśpieszenie ziemskie g_0 = 10 m/s².

Rozwiązanie

Energia kinetyczna z jaką wyrzucamy ciało do góry, będzie zużyta na pracę przeciwko sile pola grawitacyjnego na Marsie:

$$\frac{m v^2}{2} = G M_M m \left(\frac{1}{R_M} - \frac{1}{r} \right),$$

gdy $r \rightarrow \infty$, wówczas:

$$v = \sqrt{\frac{2 G M_{M}}{R_{M}}} \cdot$$

Ponieważ w treści zadania jest dany promień Ziemi i przyśpieszenie ziemskie, to stałą grawitacji wyrażamy za pomocą tych wielkości:

$$g_0 = \frac{G M_z}{R_z^2},$$

stad

$$G = \frac{g_0 R_z^2}{M_z}$$

Mamy więc

$$v = \sqrt{\frac{2 \ g_0 R_z^2 \ M_M}{M_z \ R_M}} \ .$$

Uwzględniając, że $\frac{M_{\rm M}}{M_{\rm Z}}=$ k, ostatecznie otrzymamy:

$$v = R_{_z} \sqrt{2 \ g_{_0} \ k \frac{1}{R_{_M}}} \ . \label{eq:v_scale}$$

Po podstawieniu wartości liczbowych:

$$v = 5.15 \frac{km}{s}$$
.

1.24. Sztuczny satelita krążący na wysokości $h_1 = R_Z/8$ nad Ziemią (R_Z promień Ziemi), na skutek tarcia o rozrzedzoną atmosferę stopniowo przechodzi na orbitę znajdującą się na wysokości $h = R_Z/10$ (**rys. 1.14**). Obliczyć przyrost temperatury satelity, jeżeli wykonany był z miedzi i jeżeli 50% wydzielonej energii cieplnej zostało oddane atmosferze. Do obliczeń przyjąć promień Ziemi $R_Z = 6400$ km, ciepło właściwe miedzi $c_w = 400$ J/kgK.

Rozwiązanie

Odległość satelity od środka Ziemi na wysokości h₁ można wyrazić wzorem:

$$r_1 = R_Z + \frac{R_Z}{8}$$

$$r_1 = \frac{9}{8} R_Z$$

Rys. 1.14. Sztuczny Księżyc na skutek tarcia o rozrzedzoną atmosferę przechodzi z orbity o promieniu r_1 na orbitę o promieniu r_2

Natomiast na wysokości h_2 będzie: $r_2 = \frac{11}{10} R_Z$.

Na sztucznego satelitę działają dwie siły: siła tarcia i siła grawitacji. Praca siły wypadkowej działającej na ciało równa się sumie prac poszczególnych sił działających na to ciało.

Zatem: $W_W = W_T + W_g$.

Jednocześnie praca siły wypadkowej działającej na ciało równa się przyrostowi energii kinetycznej tego ciała:

$$W_W = \Delta E_k$$
,

możemy więc napisać:

$$\Delta E_{k} = W_{T} + W_{g}. \tag{1.14}$$

Praca siły pola grawitacyjnego przy przesunięciu ciała z punktu 1 do punktu 2, (**rys. 1.13**) równa się ubytkowi energii potencjalnej:

$$W_{g \to 2} = -G \frac{M m}{r_1} - \left(-G \frac{M m}{r_2}\right) = -G M m \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

lub

$$W_{g \to 2} = -G M m \frac{(r_2 - r_1)}{r_1 r_2}.$$
 (1.15)

Przyrost energii kinetycznej ΔE_k wyrazi się wzorem:

$$\Delta E_{k} = \frac{m v_{2}^{2}}{2} - \frac{m v_{1}^{2}}{2}. \tag{1.16}$$

Korzystając z warunku, że siła grawitacji stanowi siłę dośrodkową otrzymamy:

$$\frac{mv^2}{r} = G \frac{Mm}{r^2}.$$

Po pomnożeniu powyższego równania przez czynnik $\left(\frac{r}{2}\right)$ otrzymamy:

$$\frac{m v^2}{2} = G \frac{M m}{2 r}$$

Wzór (1.16) przyjmie teraz postać:

$$\Delta E_{k} = \frac{GMm}{2r_{2}} - \frac{GMm}{2r_{1}} = \frac{GMm}{2} \left(\frac{1}{r_{2}} - \frac{1}{r_{1}}\right)$$

lub

$$\Delta E_{k} = GMm \frac{(r_{1} - r_{2})}{2r_{1}r_{2}}.$$

$$(1.17)$$

Znając wartość ΔE_k i W_g obliczymy pracę siły tarcia W_T korzystając ze wzoru (1.14):

$$W_T = \Delta E_k - W_g$$
.

Wartości ΔE_k i $W_{g1\rightarrow 2}$ przedstawione są wzorami (1.17) i (1.15), zatem:

$$W_{T} = GMm \frac{(r_{1} - r_{2})}{2 r_{1} r_{2}} + GMm \frac{(r_{2} - r_{1})}{r_{1} r_{2}} \cdot$$

Po sprowadzeniu do wspólnego mianownika:

$$W_{T} = GMm \frac{\left(r_{2} - r_{1}\right)}{2 r_{1} r_{2}} \cdot$$

Po podstawieniu odpowiednio za r_1 i r_2 wartości $\frac{9}{8}$ R_Z i $\frac{11}{10}$ R_Z , otrzymamy:

$$W_{T} = -GMm \frac{1}{99 R_{Z}}$$

Uwzględniając, że $g = \frac{G M}{R_z^2}$ będziemy mieli:

$$W_{T} = -\frac{1}{99} R_{Z} m g$$

Praca sił tarcia równa się ubytkowi energii wewnętrznej, która zamienia się na ciepło. Część tej energii powoduje ogrzanie satelity, a część ($\eta=0.5$) rozprasza się do atmosfery. Możemy więc napisać:

$$\frac{1}{99}R_Z m g - \eta \frac{1}{99}R_Z m g = m c_w \Delta T$$

albo

$$\frac{1}{99} R_Z g(1-\eta) = c_w \Delta T$$

i ostatecznie

$$\Delta T = \frac{\frac{1}{99} R_z g(1-\eta)}{c_w}.$$

Po podstawieniu wartości liczbowych otrzymamy:

$$\Delta T = 808 \text{ K}.$$

Zadania uzupełniające

1.25. Obliczyć natężenie pola grawitacyjnego w środku kwadratu o boku a = 1 m, jeżeli w narożach tego kwadratu znajdują się kule żelazne o masach: $m_1 = 20$ kg, $m_2 = 10$ kg, $m_3 = 20$ kg, $m_4 = 5$ kg (**rys. 1.15**).

Rys. 1.15. Natężenie pola grawitacyjnego w środku kwadratu jest sumą wektorową natężeń grawitacyjnych pochodzących od czterech kul

Odp.

$$\left| \vec{\gamma}_k \right| = G \frac{2}{a^2} (m_2 - m_4),$$

$$\left| \vec{\gamma}_{k} \right| = 66.7 \cdot 10^{-11} \frac{N}{kg}$$

1.26. Obliczyć okres T obiegu planetoidy krążącej wokół Słońca po orbicie eliptycznej o wielkiej półosi a_1 większej od wielkiej półosi orbity Ziemi o $\Delta a = 4,5\cdot 10^8$ km. Wielka półoś orbity eliptycznej Ziemi jest równa $a_z = 1,5\cdot 10^8$ km. Odp.

$$T = T_{z} \sqrt{\left(\frac{a_{z} + \Delta a}{a_{z}}\right)^{3}},$$

$$T = 8 \text{ lat}$$
, (bo $T_z = 1 \text{ rok}$).

1.27. Obliczyć natężenie pola grawitacyjnego na powierzchni Marsa, wiedząc, że stosunek masy Marsa do masy Ziemi $\frac{M_{\rm M}}{M_{\rm Z}}=0,\!11\,$ a promień planety Marsa

$$R_{\rm M} = 3350 \text{ km}, \, Rz = 6400 \text{ km}, \, \gamma_{\rm Z} = 9,81 \, \, \frac{\rm N}{\rm kg} \, \, . \label{eq:RM}$$

Odp.

$$\gamma_{\rm M} = 3.9 \, \frac{\rm N}{\rm kg}$$
.

1.28. Przyśpieszenie grawitacyjne na powierzchni Marsa wynosi $g_M = 0.4 g_Z$. Obliczyć jaki jest ciężar człowieka na powierzchni Marsa, jeżeli na powierzchni Ziemi wynosi P = 900 N.

Odp.
$$P_M = 360 \text{ N}.$$

1.29. Obliczyć masę planety Mars jeżeli przyśpieszenie grawitacyjne na Marsie wynosi $g_M = 0.4~g_Z~(g_Z~jest~przyśpieszeniem grawitacyjnym na powierzchni Ziemi i wynosi 9,81 m/s²). Promień Marsa przyjąć <math>R_M = 3400~km$.

Odp.

$$m_{\rm M} = \frac{0.4 \, g_{\rm Z} \, R_{\rm M}^2}{G},$$

$$m_{\rm M} = 6.8 \cdot 10^{23} \, {\rm kg}.$$

1.30. Wokół Marsa krążą dwa jego księżyce: Phobos, który krąży po orbicie o promieniu $R_F = 9.4 \cdot 10^3$ km oraz Deimos z orbitą $R_D = 2.35 \cdot 10^4$ km. Obliczyć okresy obiegów księżyców dookoła Marsa, jeżeli masa Marsa wynosi $M = 6.4 \cdot 10^{23}$ kg.

$$T = 2 \pi R \sqrt{\frac{R}{G M}},$$

$$T_F = 7,7 h,$$

$$T_D = 30.4 h.$$

1.31. Obliczyć jakie przyśpieszenie grawitacyjne występuje na powierzchni Księżyca obiegającego Ziemię, jeżeli jego masa jest n = 81 razy mniejsza od masy Ziemi, a promień Księżyca wynosi $R_{\rm K}=1700$ km. Promień Ziemi $R_{\rm z}=6400$ km.

Odp.
$$g_K = 1/6 g_Z$$
.

1.32. Obliczyć, na jakiej głębokości h pod powierzchnią Ziemi przyśpieszenie grawitacyjne ma wartość równą k = 0,25 wartości przyśpieszenia grawitacyjnego na powierzchni Ziemi.

Odp.
$$h = R_Z(1-k)$$
.

1.33. Pierwszy sztuczny satelita Ziemi krążył wokół Ziemi na wysokości h = 947 km. Obliczyć jaką musiał mieć prędkość liniową, jeżeli masa Ziemi wynosi $M_Z = 5.9 \cdot 10^{24}$ kg. Promień Ziemi r = 6400 km.

Odp.

$$v = \sqrt{\frac{G M}{r + h}},$$

$$v = 7300 \ \frac{m}{s} \cdot$$

1.34. Okres drgań wahadła matematycznego na powierzchni Ziemi wynosi $T_0 = 1,5$ s. Obliczyć, jaki będzie okres drgań tego wahadła umieszczonego na wysokości h = 2 R/3 nad poziomem Ziemi (R – promień Ziemi).

$$T = T_0 \frac{R + h}{R},$$

$$T = 2.5 \text{ s}.$$

1.35. Masa planety Uran jest n = 14,5 razy większa od masy Ziemi, a promień Urana jest k = 4 razy większy od promienia Ziemi. Obliczyć, jaki jest stosunek wartości natężenia pola grawitacyjnego przy powierzchni Urana do wartości natężenia pola grawitacyjnego przy powierzchni Ziemi.

Odp.

$$s = \frac{n}{k^2}$$
, $s = 0.9067$.

1.36. Na równiku pewnej planety ciało waży 2 razy mniej niż na biegunie. Gęstość planety wynosi $\rho = 3 \cdot 10^3 \ \frac{\text{kg}}{\text{m}^3}$. Obliczyć okres obrotu tej planety dookoła własnej osi.

Odp.

$$T = \sqrt{\frac{6 \pi}{G \rho}}, \qquad T = 9696 \text{ s.}$$

1.37. Na równiku pewnej planety ciało waży o 1/10 mniej niż na biegunie. Obliczyć okres obrotu tej planety dookoła własnej osi, jeżeli jej gęstość wynosi ρ i zakładamy, że planeta jest jednorodną kulą

Odp.

$$T = \sqrt{\frac{30 \ \pi}{G \ \rho}} \ .$$

1.38. Obliczyć średnią gęstość planety, na której doba wynosi T = 6h, jeżeli na jej równiku ciężar ciała jest mniejszy o 10% niż na biegunie. Dana jest stała grawitacji G.

$$\rho = \frac{30 \pi}{\text{G T}^2}, \qquad \rho = 3.03 \cdot 10^3 \frac{\text{kg}}{\text{m}^3}.$$

1.39. Obliczyć okres obiegu sztucznego księżyca Ziemi, jeżeli jego odległość od powierzchni Ziemi jest równa podwójnemu promieniowi Ziemi. Zakładamy, że sputnik porusza się po okręgu. Dane jest przyśpieszenie ziemskie $g_z = 10 \text{ m/s}^2$ i promień Ziemi $R_Z = 6400 \text{ km}$.

Odp.

$$T = 2 \pi \sqrt{\frac{27 R_z}{g_z}}$$
, $T = 7,25 h.$

1.40. Obliczyć prędkość liniową z jaką porusza się Księżyc wokół Ziemi, jeżeli jego odległość od Ziemi wynosi r = 384 000 km. Masa Ziemi M_Z = 5,96 \cdot 10²⁴ kg.

Odp.

$$v = \sqrt{\frac{G M_Z}{r}}$$
, $v = 1.02 \frac{km}{s}$.

1.41. Obliczyć ile razy szybciej niż obecnie powinna obracać się Ziemia dookoła swojej osi , ażeby ciała na równiku były w stanie nieważkości, jeżeli dany jest promień Ziemi R_Z =6 400 km, okres obrotu Ziemi dookoła osi T_Z = 86 160 s oraz przyśpieszenie ziemskie $g = 10 \text{ m/s}^2$.

Odp.

$$n = \frac{T_Z}{2 \pi} \sqrt{\frac{g}{R_Z}}, \quad n = 17 \text{ razy szybciej}.$$

1.42. Obliczyć ilość obiegów satelity dookoła Ziemi w ciągu doby, jeżeli porusza się on po orbicie kołowej o promieniu $r=7340\,\mathrm{km}$. Promień Ziemi $R_Z=6400\,\mathrm{km}$.

$$n = \frac{R_Z}{2 \pi} \sqrt{\frac{g}{r^3}}$$
, $n = 14$ obiegów.

1.43. Asteroida porusza się wokół planety po orbicie kołowej z prędkością liniową v=6 km/s. Promień planety wynosi $R_p=10^4$ km, a natężenie pola grawitacyjnego przy jej powierzchni ma wartość $\gamma=14,4$ $\frac{m}{s^2}$. Obliczyć promień orbity tej asteroidy.

Odp.

$$r = \frac{R_p^2 \ \gamma}{v^2}$$
, $r = 40\ 000 \text{ km}$.

1.44. Obliczyć natężenie pola grawitacyjnego od jednorodnego pręta o długości L i gęstości liniowej λ w odległości r od tego pręta, w kierunku prostopadłym do niego.

Odp.

$$\gamma = \frac{2 G \lambda}{r}.$$

1.45. Obliczyć stosunek ciężaru pewnego ciała na biegunie do ciężaru tego samego ciała na równiku planety w kształcie kuli o gęstości ρ i o okresie obiegu wokół własnej osi T. Dana jest stała grawitacji G.

Odp.

$$S = \frac{G T^2 \rho}{G T^2 \rho - 3 \pi}.$$

1.46. Statek kosmiczny wznoszący się pionowo w górę ruchem jednostajnie przyśpieszonym osiągnął wysokość h = 3000 m w czasie t = 10 s. Obliczyć przeciążenie kosmonauty w tym statku w stosunku do przyśpieszenia ziemskiego g. (Przeciążenie przyjęto uważać jako krotność standardowego przyśpieszenia ziemskiego).

$$a = 6 g$$
.

1.47. Przyśpieszenie grawitacyjne na powierzchni Ziemi wynosi g_Z. Jakie będzie przyśpieszenie grawitacyjne na planecie o takiej samej masie co Ziemia, ale o dwukrotnym promieniu ziemskim?

Odp.
$$g_p = \frac{1}{4} g_Z$$

1.48. Pewna planeta opisuje okrąg dookoła Słońca z prędkością v = 35 km/s. Obliczyć okres obiegu tej planety, jeżeli dana jest stała grawitacji $G=6,67\cdot 10^{-11}~\frac{N~m^2}{kg^2}$ i masa Słońca $M=1,97\cdot 10^{30}~kg$.

Odp.

$$T = \frac{2 \pi G M}{v^3}$$
, $T = 223 dni$.

1.49. W kuli jednorodnej o promieniu R wydrążono obszar o dwukrotnie mniejszym promieniu. Wydrążenie to jest styczne do danej kuli. Natężenie pola grawitacyjnego na powierzchni kuli w punkcie styczności kuli dużej i wydrążonej w punkcie A wynosi g (po wydrążeniu małej kuli). Obliczyć wartość natężenia pola w punkcie O oraz pracę przeniesienia ciała o masie m ze środka kuli O na jej powierzchnią w punkcie A. (**rys. 1.16**).

Rys. 1.16. W dużej jednorodnej kuli o promieniu R wydrążono kulę o promieniu r = R/2 styczną w punkcie A.

Odp.
$$\gamma_0 = g$$
, $W = m g R$.

1.50. Obliczyć pierwszą prędkość kosmiczną dla Jowisza, jeżeli wiadomo, że orbita kołowa księżyca Jowisza, Ganimedesa, ma promień $R_G=1.0\cdot 10^6$ km i obiega on planetę w czasie $T_G=7.15$ dób ziemskich. Promień Jowisza wynosi $R_I=70000$ km.

Odp.

$$v_{IJ} = \frac{2 \pi R_G}{T_G} \sqrt{\frac{R_G}{R_J}},$$

$$v_{IJ} = 38.4 \frac{km}{s}.$$

1.51. Obliczyć masę Słońca jeżeli znany jest okres obiegu Ziemi dookoła Słońca (T = 365 dni) oraz promień orbity Ziemi ($r = 1,5 \cdot 10^{11}$ m).

Odp.

$$m_S = \frac{4 \pi^2 r^3}{T^2 G}$$
, $m_s = 1,97 \cdot 10^{30}$ kg.

1.52. Znaleźć dla szerokości geograficznej φ = 30° szybkość wody w rzece płynącej na północnej półkuli z południa na północ, jeżeli na tej szerokości geograficznej każdy metr sześcienny wody działa na prawy brzeg rzeki siłą F = 0,1 N/m³.

Odp.

$$v = \frac{F}{2 \rho \omega \sin \varphi}$$
, $v = 1,4 \text{ m/s}.$

1.53. Lokomotywa o masie m = 500 ton rozwija prędkość v = $100 \frac{\text{km}}{\text{h}}$. Obliczyć siłe Coriolisa działającą w kierunku poziomym na prawa szyne na trasje

siłę Coriolisa działającą w kierunku poziomym na prawą szynę, na trasie Poznań – Warszawa na szerokości geograficznej $\varphi=53,3^{\circ}$.

Odp.
$$F = 2 \text{ mv } \omega \sin \varphi$$
, $F = 1620 \text{ N}$.

1.54. Jaką pracę należy wykonać aby wystrzelić sztucznego satelitę o masie m = 500 kg na orbitę odległą od powierzchni Ziemi o h = 1600 km. Można przyjać promień Ziemi $R_Z = 6400 \text{ km}$, a przyśpieszenie grawitacyjne $g = 10 \text{ m/s}^2$.

Odp.

W = m g R_z
$$\frac{R_z + 2 h}{2(R_z + h)}$$
, W = 1,9 · 10¹⁰ J.

1.55. Obliczyć jaką minimalną pracę należy wykonać, ażeby sztuczny księżyc krążący wokół Ziemi po okręgu o promieniu r₀ wynieść poza pole przyciągania grawitacyjnego Ziemi. Dana jest masa Ziemi M_Z, masa sztucznego księżyca m i stała grawitacji G.

Odp.

$$W_{\it min} = \frac{G~M_{_Z}~m}{2~r_{_0}} \, \cdot \label{eq:wmin}$$

1.56. Obliczyć drugą prędkość kosmiczną dla Księżyca oraz określić ile razy różni się ona od 2-giej prędkości kosmicznej Ziemi. Przyjmujemy, że promień Ziemi jest 4 razy większy od promienia Księżyca, a masa Ziemi jest 80 razy większa od masy Księżyca.

Masa Ziemi wynosi $M_Z = 6x10^{24} \ kg$, a promień Ziemi $R_Z = 6400 \ km$.

Odp.

$$v = \sqrt{\frac{G M_z}{10 R_z}}$$
, $\frac{v_Z}{v_K} = 4.5$.

v = 2.5 km/s.

1.57. Dana jest planeta, będącą jednorodną kulą o promieniu R Przyśpieszenie grawitacyjne na powierzchni tej planety wynosi g. Obliczyć potencjał grawitacyjny na powierzchni tej planety.

Odp.
$$V = -g R$$
.

- **1.58.** Mała planeta w kształcie kuli ma promień $R_p = 10$ km i średnią gęstość $\rho = 5000$ kg/m³.
 - a) Obliczyć prędkość ucieczki z powierzchni tej planety,
 - b) obliczyć natężenie pola grawitacyjnego w pobliżu jej powierzchni,
 - c) obliczyć ciężar człowieka na tej planecie, jeżeli na Ziemi waży on $Q=800~\rm N$. Przyjąć przyśpieszenie ziemskie $g_0=9,81~\rm m/s^2$.

Odp.

a)

$$v = 2 R_p \sqrt{\frac{2 \pi \rho G}{3}}, \quad v = 0.017 \frac{km}{s},$$

b)

$$g_p = \frac{4 \pi \rho G R_p}{3}, \qquad g_p = 0.014 \frac{m}{s^2},$$

c)

$$Q_{p} = \frac{Q g_{p}}{g_{0}}, \qquad Q_{p} = 1,12 N.$$

1.59. Obliczyć, ile razy wartość drugiej prędkości kosmicznej dla Ziemi jest większa od wartości prędkości liniowej sztucznego satelity poruszającego się po orbicie kołowej o promieniu r = 8 Rz.

Odp.
$$n = 4$$
.

1.60. Obliczyć stałą grawitacji G, jeżeli dany jest promień Ziemi R = 6370 km, średnia gęstość Ziemi $\rho = 5.5 \cdot 10^3$ kg/m³ i przyśpieszenie grawitacyjne $g_Z = 9.81$ m/s².

$$G = \frac{3 g}{4 \pi R \rho},$$

$$G = 6.67 \cdot 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}.$$

Rozdział II

Ruch drgający i falowy

Zadania z rozwiązaniami

2.1. Ciało zostało wprawione w ruch harmoniczny z amplitudą A=25~cm i okresem drgań T=2~s. Obliczyć prędkość i przyśpieszenie w punkcie odległym od położenia równowagi o odległość x=15~cm.

Rozwiązanie

Wychylenie z położenia równowagi w ruchu harmonicznym wyraża się wzorem:

$$x = A\sin\omega t$$
, (2.1) gdzie A jest amplitudą,

 ω prędkością kątową, która wyraża się wzorem:

$$\omega = \frac{2 \pi}{T}.$$

Prędkość w ruchu harmonicznym otrzymamy przez różniczkowanie wychylenia po czasie:

$$v_x = \frac{dx}{dt}$$
,

$$V_x = A\omega \cos \omega t$$
 (2.2)

lub

$$v_x = A \omega \sqrt{1 - \sin^2 \omega t}$$
.

Uwzględniając (2.1) otrzymamy:

$$v_x = \omega A \sqrt{1 - \frac{x^2}{A^2}},$$

 $v_x = 20\pi = 62.8 \text{ cm/s}.$

Przyśpieszenie otrzymamy obliczając pochodną prędkości po czasie:

$$a_x = -\omega^2 A \sin \omega t, \qquad (2.3)$$

ale $A \sin \omega t = x$,

więc
$$a_x = -\omega^2 x$$
 (2.4)
 $a_x = -15 \pi^2 \text{ cm/s}^2 = -147.9 \text{ cm/s}^2.$

2.2. Punkt materialny porusza się ruchem harmonicznym, którego prędkość maksymalna jest $V_m = 20$ m/s, a przyśpieszenie maksymalne $a_m = 80$ m/s². Obliczyć okres i częstość drgań w tym ruchu.

Rozwiązanie

Prędkość i przyśpieszenie będą miały wartości maksymalne, gdy $\cos \omega t$ we wzorze (2.2) i $\sin \omega t$ we wzorze (2.3) przyjmą wartości 1. Wtedy otrzymamy:

$$v_m = A \omega$$
,

$$a_{\rm m} = |-\omega^2 A|$$
.

Rugując z powyższych dwóch równań amplitudę A, będzie:

$$a_{\rm m} = \omega v_{\rm m}$$

lub

$$a_{m} = \frac{2 \pi}{T} v_{m}$$

skad

$$T = 2 \pi \frac{v_m}{a_m}$$

Po podstawieniu wartości liczbowych otrzymamy:

$$T = \frac{\pi}{2}s = 1,57s.$$

Częstość drgań jest odwrotnością okresu:

$$v = \frac{2}{\pi} = 0,64$$
Hz.

2.3. Punkt materialny porusza się ruchem harmonicznym. W odległości d od położenia równowagi jego przyśpieszenie wynosiło a. Obliczyć okres drgań w tym ruchu.

Rozwiązanie

Przyśpieszenie wyraża się wzorem

$$a_x = -\omega^2 A \sin \omega t$$

ale $A \sin \omega t = d$,
wiec $a = -\omega^2 d$

lub

$$a = \left| -\frac{4 \pi^2}{T^2} d \right|.$$

Bierzemy wartość bezwzględną przyśpieszenia, gdyż chodzi nam o wartość liczbową przyśpieszenia a nie o jego zwrot.

Z przekształcenia powyższego wzoru otrzymamy:

$$T = 2 \pi \sqrt{\frac{d}{a}} [s].$$

2.4. Punkt materialny porusza się ruchem harmonicznym. W odległościach x_1 i x_2 od położenia równowagi jego prędkości wynoszą odpowiednio v_1 i v_2 . Obliczyć amplitudę drgań i częstość kołową.

Rozwiązanie

Wychylenia punktów z położenia równowagi wyrażają się wzorami:

$$x_1 = A \sin \omega t_1,$$

 $x_2 = A \sin \omega t_2.$

Prędkości otrzymamy obliczając pochodne z wychyleń po czasie:

$$v_1 = \frac{dx_1}{dt} = A \omega \cos \omega t_1$$
,

$$v_2 = \frac{dx_2}{dt} = A \omega \cos \omega t_2$$

lub

$$\mathbf{v}_1 = \mathbf{A}\omega\sqrt{1 - \sin^2\omega \ \mathbf{t}_1} \ ,$$

$$\mathbf{v}_2 = \mathbf{A}\omega\sqrt{1 - \sin^2\omega \, \mathbf{t}_2} \, .$$

Uwzględniając wzór (2.1) otrzymamy:

$$v_{1} = A\omega\sqrt{1 - \frac{x_{1}^{2}}{A^{2}}} = \omega\sqrt{A^{2} - x_{1}^{2}},$$
(2.5)

$$v_2 = A\omega\sqrt{1 - \frac{x_2^2}{A^2}} = \omega\sqrt{A^2 - x_2^2}.$$

Po podzieleniu stronami powyższych dwóch równań i po podniesieniu do kwadratu otrzymamy:

$$\frac{\mathbf{v}_1^2}{\mathbf{v}_2^2} = \frac{\mathbf{A}^2 - \mathbf{x}_1^2}{\mathbf{A}^2 - \mathbf{x}_2^2},$$

skąd wyznaczamy szukaną amplitudę:

$$A = \sqrt{\frac{v_1^2 x_2^2 - v_2^2 x_1^2}{v_1^2 - v_2^2}} \; .$$

W celu wyznaczenia częstości kołowej ω , korzystamy ze wzoru (2.5) wstawiając za A obliczoną wartość, zatem:

$$\mathbf{v}_{1} = \omega \sqrt{\frac{\mathbf{v}_{1}^{2} \mathbf{x}_{2}^{2} - \mathbf{v}_{2}^{2} \mathbf{x}_{1}^{2}}{\mathbf{v}_{1}^{2} - \mathbf{v}_{2}^{2}} - \mathbf{x}_{1}^{2}} \cdot$$

Po przekształceniu otrzymamy:

$$\omega = \sqrt{\frac{v_1^2 - v_2^2}{x_2^2 - x_1^2}} .$$

2.5. Wzór na wychylenie w ruchu harmonicznym znamy w postaci: $x = C \sin(\omega t + \varphi_0)$. Wielkości C i φ_0 są amplitudą i fazą początkową odpowiednio. Wzór ten może być przedstawiony za pomocą innego, następującego wzoru: $x = A \cos \omega t + B \sin \omega t$.

Wykazać, że wzory te są równoważne.

Rozwiązanie

Wzór

$$x = C \sin(\omega t + \varphi_0)$$

rozwijamy zgodnie ze wzorem trygonometrycznym na sinus sumy kątów:

$$x = C \sin(\omega t) \cos \varphi_0 + C \cos(\omega t) \sin \varphi_0$$
.

Wprowadzamy następujące oznaczenia dla $\cos \varphi_0$ i $\sin \varphi_0$, które nie zależą od czasu t:

$$\cos\varphi_0 = \frac{B}{C}, \sin\varphi_0 = \frac{A}{C},$$

gdzie C jest amplitudą drgań, A, B - stałe.

Mamy więc

$$x = C(\sin\omega t) \frac{B}{C} + C(\cos\omega t) \frac{A}{C}$$

a ostatecznie:

$$x = A \cos \omega t + B \sin \omega t. \tag{2.6}$$

2.6. Punkt materialny wykonuje drgania harmoniczne z okresem T=2 s. W chwili początkowej punkt znajdował się w położeniu równowagi i miał prędkość $v_0=20$ m/s. Napisać równanie ruchu.

Rozwiązanie

Jeśli wyjdziemy ze wzoru:

$$x = A \cos \omega t + B \sin \omega t$$

to w oparciu o treść zadania dla t = 0, mamy x = 0, gdy A = 0. Wtedy powyższe równanie dla dowolnego t przyjmie postać:

$$x = B \sin \omega t$$
.

Wyliczając prędkość jako pochodną x po czasie otrzymamy:

$$v = \frac{dx}{dt} = B\omega\cos\omega t$$
,

ale dla t = 0, $v = v_0$. Zatem z przekształcenia wzoru mamy:

$$B = \frac{v_0}{\omega} \cdot$$

Ostatecznie równanie ruchu będzie miało postać:

$$x = \frac{V_0}{\omega} \sin \omega t$$
.

Po podstawieniu liczb otrzymamy:

$$x = \frac{20}{\pi} \sin \pi t.$$

2.7. Punkt materialny porusza się ruchem harmonicznym o okresie drgań T = 0,8 s i amplitudzie A = 5 cm. Obliczyć średnią prędkość punktu na drodze S = 0,5 A, licząc: a) od położenia równowagi, b) od położenia skrajnego.

Rozwiązanie

Średnia prędkość wyraża się wzorem:

a)
$$v_{\text{sr}} = \frac{0.5A}{t_1}$$
,

gdzie t_1 jest czasem liczonym od położenia równowagi do połowy amplitudy. Czas ten wyliczamy w sposób następujący:

$$\frac{1}{2}A = A\sin\omega t_1,$$

stad

$$\frac{2 \pi}{T} t_1 = \frac{\pi}{6},$$

więc

$$t_1 = \frac{T}{12}$$

i ostatecznie $v_{\text{śr 1}} = 37,5 \text{ cm/s}.$

b)
$$v_{\text{sr }2} = \frac{0.5A}{t_2}$$
,

gdzie t₂ jest czasem liczonym od skrajnego położenia:

$$\frac{1}{2}A = A\sin(\omega t_2 + \frac{\pi}{2})$$

lub

$$\frac{1}{2}A = A\cos\omega t_2.$$

Czas t₂ wyliczamy analogicznie jak w przypadku **a**):

$$t_2 = \frac{T}{6},$$

więc

$$v_{\text{śr }2} = 18,7 \text{ cm/s}.$$

2.8. Punkt materialny uczestniczy jednocześnie w dwóch ruchach harmonicznych skierowanych: $x_1 = 8 \sin (\omega t + \pi/6)$, $x_2 = 6 \sin (\omega t + \pi/2)$. Znaleźć amplitudę, fazę początkową ruchu wypadkowego i napisać jego równanie. (Patrz: "Kurs fizyki" I, Jaworski i in. Rozdz. o składaniu drgań wzdłuż prostej).

Rozwiązanie

Składanie drgań o jednakowym kierunku znacznie się upraszcza jeśli drgania przedstawi się w postaci wektorów amplitud na płaszczyźnie (**rys. 2.1**). Tak otrzymany schemat nosi nazwę diagramu wektorowego. Wskaz, jest wektorem o długości równej amplitudzie drgań, a jego kierunek tworzy z osią x kąt równy fazie drgań.

Rys. 2.1. Amplituda A jest wypadkową dwóch amplitud: amplitudy A_1 oraz amplitudy A_2 .

By zilustrować treść zadania weźmy ciężarek na sprężynie. Punkt zawieszenia sprężyny jest poddany drganiom resorów wagonu. Zatem ciężarek wykonuje ruch drgający, który składa się z dwóch drgań w jednym kierunku, drgań własnych i drgań resorów.

Wartość długości amplitudy wypadkowej A można wyliczyć z twierdzenia cosinusów:

$$A = \sqrt{A_1^2 + A_2^2 - 2 A_1 A_2 \cos \beta}$$

Zrys. 2.1 wynika, że

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_1 - \varphi_2)}.$$

Po podstawieniu wartości liczbowych z zadania otrzymamy:

$$A = \sqrt{148}$$
 cm = 12,2 cm.

Tangens kata φ wyliczamy ze wzoru:

tg
$$\varphi = \frac{y_1 + y_2}{x_1 + x_2}$$
 (patrz **rys. 2.1**)

gdzie y₁, y₂, x₁, x₂ są określone przez funkcje sinus i cosinus.

Zatem
$$tg\varphi = \frac{A_1 \sin\varphi_1 + A_2 \sin\varphi_2}{A_1 \cos\varphi_1 + A_2 \cos\varphi_2}$$
.

Po podstawieniu wartości liczbowych otrzymamy:

tg
$$\varphi$$
 = 1,445.

Równanie drgania wypadkowego będzie miało postać:

$$x = \sqrt{148} \sin(\omega t + \arctan, 445),$$

$$x = \sqrt{148} \sin(\omega t + 0.3\pi).$$

2.9. Punkt materialny uczestniczy jednocześnie w dwóch ruchach harmonicznych wzajemnie prostopadłych o jednakowych amplitudach, okresach i tych samych fazach początkowych równych zeru: x = Asinωt, y = Asinωt. Znaleźć ruch wypadkowy.

Met. I (wykreślna)

Rysujemy dwa okręgi styczne do dwóch sąsiednich boków kwadratu o boku równym średnicy okręgów. Następnie, rzutujemy ruch jednostajny punktu po okręgach na pole kwadratu. Punkty przecięcia się prostych w kwadracie wyznaczają tor punktu (w tym przypadku będzie to prosta).

Rys. 2.2. Dwa ruchy jednostajne po dwóch okręgach stycznych do kwadratu rzutowane na pole tego kwadratu dają szukany tor ruchu wypadkowego (w tym przypadku – prostą).

Met. II (rachunkowa)

Z powyższych dwóch równań należy wyrugować parametr t (czas). W tym celu wystarczy podzielić stronami obydwa równania:

$$\frac{y}{x} = 1$$
lub
$$y = x.$$

Ruch wypadkowy będzie odbywać się po prostej y = x nachylonej do osi 0X pod kątem 45° z amplitudą:

$$A_{w} = A\sqrt{2}$$
.

Jeżeli amplitudy ruchów harmonicznych składowych są różne, np. A i B odpowiednio, to wypadkowy ruch odbywać się będzie po prostej nachylonej do osi OX pod kątem różnym od 45° takim, że

$$tg\alpha = \frac{A}{B}$$
.

2.10. Punkt materialny uczestniczy jednocześnie w dwóch ruchach harmonicznych wzajemnie prostopadłych o jednakowych amplitudach, okresach ale różniące się fazami początkowymi o π/2:

$$x = A \sin \omega t$$
,

$$y = A \sin(\omega t + \frac{\pi}{2}).$$

Znaleźć ruch wypadkowy.

Rozwiąznie

Metoda I (graficzna). Postępujemy podobnie jak w zadaniu poprzednim.

Rys. 2.3. Punkty przecięcia prostych pochodzących od rzutowania punktów z okręgów, układają się na torze ruchu wypadkowego. W tym przypadku na okręgu o promieniu A, co widać na rysunku

Metoda II (rachunkowa)

Z powyższych równań należy wyrugować parametr t (czas). W tym celu drugie równanie przekształcamy, korzystając ze wzoru redukcyjnego, następnie

podnosimy do kwadratu obie strony równań:

$$x^2 = A^2 \sin^2 \omega t$$
,

$$y^2 = A^2 \cos^2 \omega t$$

i dodajemy stronami:

$$x^2 + y^2 = A^2.$$

Ruch wypadkowy odbywa się więc po okręgu o promieniu A.

Jeżeli amplitudy byłyby różne, to wypadkowy ruch punktu odbywałby się po elipsie. Jeżeli dwa ruchy harmoniczne różnią się okresami i fazami początkowymi, to torami ruchu wypadkowego są krzywe różnego kształtu zwane krzywymi Lissajous. **Rys. 2.4** (zad. 2.11).

2.11. Punkt materialny uczestniczy jednocześnie w dwóch ruchach harmonicznych wzajemnie do siebie prostopadłych o jednakowych amplitudach i jednakowych fazach początkowych ale o różnych okresach: $T_1 = 1$ s oraz $T_2 = 2$ s:

$$x = A \sin 2\pi t$$
,

 $y = A \sin \pi t$.

Znaleźć ruch wypadkowy.

Rozwiązanie

Wyrugowanie parametru t, z obydwóch powyższych równań, w celu wyznaczenia równania toru ruchu wypadkowego, prowadzi do skomplikowanej zależności y = f(x). Dlatego też w takich przypadkach stosujemy metodę wykreślną. Zaznaczamy wychylenie punktu z położenia równowagi co 1/8 s.

Rys. 2.4 Punkty przecięcia się prostych w polu kwadratu wyznaczają krzywą Lissajous

2.12. Jeżeli maksymalna energia kinetyczna punktu wykonującego drgania harmoniczne wynosi E₀ , to jaka będzie jej wartość w odległości ¾ amplitudy od położenia równowagi?

Rozwiązanie

Wartość energii kinetycznej w dowolnym punkcie amplitudy wyraża się wzorem:

$$E_k = \frac{m \ v^2}{2}$$

gdzie $v = \omega A \cos \omega t$.

Mamy wiec

$$E_k = \frac{m}{2} A^2 \omega^2 \cos^2 \omega t . \qquad (2.8)$$

Funkcję $\cos \omega$ t zamieniamy na $\sin \omega$ t:

$$\cos^2 \omega t = 1 - \sin^2 \omega t$$
.

Wzór (2.8) przyjmie teraz postać:

$$E_{k} = \frac{m \omega^{2} A^{2}}{2} (1 - \sin^{2} \omega t)$$

ale

$$x = A \sin \omega t$$

lub

$$\frac{3}{4}A = A \sin \omega t.$$

Stad

$$\sin \omega t = \frac{3}{4}$$

Energia kinetyczna rozpatrywanego punktu wyrazi się teraz wzorem:

$$E_{k} = \frac{m \ \omega^{2} A^{2}}{2} \left(1 - \frac{9}{16} \right).$$

Wyrażenie $\frac{\text{m }\omega^2\text{A}^2}{2} = \text{E}_0$ jest energią maksymalną, więc ostatecznie

szukana energia kinetyczna będzie:

$$E_k = \frac{7}{16} E_0$$
.

2.13. Probówka o masie m₁ i polu przekroju S zawiera nieco rtęci o masie m₂ i pływa w wodzie w pozycji pionowej (**rys. 2.5**). Po wychyleniu z położenia równowagi w kierunku pionowym, probówka wykonuje drgania. Obliczyć okres drgań, jeżeli gęstość wody przyjmiemy ρ, a wszelkie opory pominiemy.

Rozwiązanie

Rys. 2.5. Na probówkę zanurzoną w wodzie na dodatkową głębokość x (w stosunku do położenia równowagi) działa dodatkowa siła wyporu skierowana do góry, która pełni rolę siły sprężystości w ruchu harmonicznym

Probówka w stanie równowagi:

$$mg = F_{wyp} = \rho V_0 g$$
. gdzie V_0 – objętość zanurzonej próbówki w stanie równowagi.

W przypadku dodatkowego zanurzenia probówki w stosunku do położenia równowagi, pojawia się dodatkowa siła wyporu, która będzie stanowić siłę sprężystości, działającą przeciwnie do wychylenia, zwaną siłą zwracającą. W przypadku w/w probówki siła ta jest określona prawem Archimedesa:

$$F_x = -V \rho g$$

gdzie

ρ jest gęstością cieczy,

V objętością dodatkowego zanurzenia probówki,

ale V = S x, mamy wiec:

$$F_x = -S \times \rho g$$
.

I-szy sposób:

Korzystając z 2-giej zasady dynamiki możemy napisać równanie różniczkowe ruchu harmonicznego:

$$m\frac{d^2x}{dt^2} = -S\rho gx, (2.9)$$

gdzie

$$\mathbf{m} = \mathbf{m}_1 + \mathbf{m}_2 .$$

Równanie (2.9) można zapisać w postaci:

$$\frac{d^2x}{dt^2} + \frac{S \rho g}{m_1 + m_2} x = 0.$$

Jest to szukane równanie różniczkowe ruchu ciała drgającego. Współczynnik przy x jest równy ω_0^2 .

Mamy więc

$$\frac{4 \pi^2}{T^2} = \frac{S \rho g}{m_1 + m_2},$$

skad

$$T = 2\pi \sqrt{\frac{m_1 + m_2}{S \rho g}} .$$

II-gi sposób:

Siłę zwracającą porównujemy z siłą w ruchu harmonicznym określoną jako iloczyn masy danego ciała przez jego przyśpieszenie uzyskiwane w ruchu harmonicznym:

$$F_x=ma_x$$
,

$$F_x = -S\rho gx$$
,

$$a_x = -\omega^2 x$$
,

$$a_{x} = -\frac{4 \pi^{2}}{T^{2}} x$$

$$-S\rho gx = -m\frac{4\pi^2}{T^2}x,$$

$$gdzie m = m_1 + m_2$$
.

Szukany okres drgań wyrazi się wzorem:

$$T = 2\pi \sqrt{\frac{m_1 + m_2}{S \rho g}} .$$

2.14. W rurce zgiętej w kształcie litery U znajduje się nieco rtęci o długości L. Obliczyć okres drgań rtęci, gdy zostanie ona wytrącona z położenia równowagi oraz napisać kinematyczne równanie ruchu drgającego rtęci, jeżeli największa różnica poziomów rtęci wynosi h = 2 x (**rys. 2.6**).

Rozwiązanie

Rys. 2.6. Siłą kierującą w tym przypadku jest ciężar słupka rtęci o wysokości h = 2x

Siłą kierującą w tym zadaniu jest ciężar słupka rtęci spowodowany różnicą poziomów tj. $h=2\,x$, gdzie x jest wychyleniem rtęci z położenia równowagi w górę i w dół odpowiednio w jednym i drugim ramieniu.

Zatem siła ta, skierowana zawsze przeciwnie do wychylenia wyrazi się wzorem:

$$F_x = -S 2 \times \rho g$$

gdzie S - jest polem przekroju poprzecznego rurki,

 ρ - jest gęstością rtęci,

x - wychyleniem z położenia równowagi liczonym od środka drgań. Zgodnie z drugą zasadą dynamiki, możemy napisać:

$$m\frac{d^2x}{dt^2} = -S2\rho gx$$

lub

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{2 \mathrm{S} \rho \mathrm{g}}{\mathrm{m}} x = 0,$$

gdzie m jest masą całej rtęci, którą należy wyrazić w funkcji długości słupa tej rtęci L:

$$m = L S \rho$$
.

Mamy więc

$$\frac{d^2x}{dt^2} + \frac{2g}{L}x = 0, (2.10)$$

skad

$$\frac{2 g}{L} = \frac{4 \pi^2}{T^2}$$

Szukany okres drgań wyrazi się wzorem:

$$T = 2 \pi \sqrt{\frac{L}{2 g}}.$$

W celu uzyskania kinematycznego równania ruchu należy rozwiązać równanie (2.10). Rozwiązaniem tego równania jest w ogólnym przypadku funkcja:

$$x = A \cos \omega t + B \sin \omega t$$
.

Tutaj otrzymamy:

$$x = A\cos\sqrt{\frac{2g}{L}}t + B\sin\sqrt{\frac{2g}{L}}t,$$

dla t = 0, otrzymamy x = A, ale x = h/2 (patrz rys. 2.6), więc A = h/2.

W celu określenia drugiej stałej B należy wziąć pod uwagę prędkość

$$v = \frac{dx}{dt} = -\frac{h}{2}\sqrt{\frac{2 g}{L}} sin\sqrt{\frac{2 g}{L}}t + B\sqrt{\frac{2g}{L}}cos\sqrt{\frac{2 g}{L}}t \cdot$$

Z warunków początkowych mamy dla t = 0, prędkość v = 0. Wtedy z powyższego równania ${\bf B}={\bf 0}.$

Zatem szukane równanie kinematyczne ruchu będzie miało postać:

$$x = \frac{h}{2} \cos \sqrt{\frac{2 g}{L}} t$$

2.15. Na dwóch rolkach o jednakowych promieniach, odległych od siebie o 2 L położono symetrycznie deskę o masie m. Rolki obracają się do siebie w przeciwnych kierunkach jak pokazuje **rys. 2.7.** Obliczyć okres drgań deski po wychyleniu jej z położenia równowagi, jeżeli współczynnik tarcia pomiędzy rolkami a deską jest jednakowy i wynosi *μ*.

Rozwiązanie

Rys. 2.7. Siłą zwracającą będzie tutaj siła tarcia tym większa im będzie większy nacisk deski na rolkę, wynikający z przesunięcia deski

Po wytrąceniu deski z położenia równowagi siłą zwracajcą będzie tutaj wypadkowa sił tarcia ze strony obu rolek.

Współrzędna wektora siły wypadkowej wynosi:

$$F_x = -(T_2 - T_1).$$

Ponieważ

$$T_1 = \mu N_1 i T_2 = \mu N_2$$
, to
 $F_x = -\mu (N_2 - N_1)$, (2.11)

gdzie N₁, N₂ są siłami nacisku rolki pierwszej i drugiej na deskę.

Momenty sił działające na deskę względem środka jej masy S, są równe sobie w dowolnej chwili, czyli przy dowolnym wychyleniu deski, a więc i w momencie maksymalnego wychylenia deski z położenia równowagi. Zatem możemy napisać:

$$N_1(L + x) = N_2(L - x).$$

Po przekształceniu, otrzymamy:

$$L (N_2 - N_1) = x (N_2 + N_1)$$
 lub

uo

$$N_2 - N_1 = \frac{x}{L} (N_1 + N_2)$$

Wynik ten wstawiamy do równania (2.11). Jest to współrzędna x-owa siły kierującej:

$$F_{x} = -\frac{\mu x}{L} \left(N_{1} + N_{2} \right)$$

ale

$$N_1 + N_2 = m g$$
wiec

$$F_x = -\frac{\mu x}{I} m g$$

Wynik ten wstawiamy do wzoru:

$$m a = F_x$$

czyli

$$m \frac{d^2x}{dt^2} = -\frac{\mu x}{L} m g,$$

$$\frac{d^2x}{dt^2} + \frac{\mu x}{L} g = 0.$$

Stąd

$$\frac{\mu g}{L} = \omega^2 = \frac{4 \pi^2}{T^2},$$

ostatecznie więc

$$T = 2\pi \sqrt{\frac{L}{\mu g}} \cdot$$

2.16. W cylindrze zamkniętym na obu końcach i napełnionym gazem dwuatomowym, znajduje się tłok, który rozdziela gaz na dwie połowy (rys. 2.8). Ciśnienie gazu na obydwie strony tłoka wynosi p = 10⁵ N/m². Tłok wytrącony z położenia równowagi na niewielką odległość zaczyna drgać. Przemianę w gazie można traktować jako adiabatyczną. Obliczyć okres drgań, jeżeli masa tłoka wynosi m = 1,5 kg, odległość tłoka od denka (w przypadku równowagi) L = 0,2 m, pole powierzchni tłoka S = 10⁻² m², a wykładnik adiabatyczny κ = 1,4. Tarcie tłoka o ścianki cylindra pomijamy.

Rozwiązanie

Rys. 2.8. Po wychyleniu tłoka z położenia równowagi będzie na niego działać siła wypadkowa, która będzie siłą zwracającą

Po wychyleniu tłoka z położenia równowagi, wypadkowa siła działająca na tłok wyrazi się wzorem:

$$\begin{aligned} F_w &= F_1 - F_2,\\ \text{gdzie} &\quad F_1 &= F_0 + dF,\\ F_2 &= F_0 - dF, \end{aligned}$$

a $F_0 = pS$, gdzie F_0 jest siłą działająca na tłok przed jego przesunięciem, więc

$$F_w = F_0 + dF - F_0 + dF,$$

$$F_w = 2dF$$

ale

$$dF = S dp$$

więc

$$F_w = 2 \text{ S dp},$$
 (2.12)

gdzie: dp jest zmianą ciśnienia spowodowaną zmianą objętości, którą można wyliczyć z przemiany adiabatycznej:

$$pV^K = C$$
.

Po zlogarytmowaniu będziemy mieli:

$$ln p + K lnV = ln C$$
.

Po zróżniczkowaniu otrzymamy:

$$\frac{\mathrm{d}p}{p} + K \frac{\mathrm{d}V}{V} = 0,$$

skad

$$dp = -K p \frac{dV}{V}$$
.

Równanie (2.12) przyjmie teraz postać:

$$F_W = -2 S K p \frac{dV}{L S}$$

gdzie dV = S x.

Siła F_w jest siłą kierującą, więc równanie różniczkowe ruchu harmonicznego tłoka przyjmie postać:

$$m\frac{d^2x}{dt^2} = -2 S K p \frac{S x}{L S}$$

lub

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{2 \mathrm{S} \mathrm{K} \mathrm{p}}{\mathrm{m} \mathrm{L}} \mathrm{x} = 0,$$

więc

$$\frac{4 \pi^2}{T^2} = \frac{2 S K p}{m L}$$
,

skąd

$$T = 2 \pi \sqrt{\frac{m L}{2 S p K}},$$

$$T = 0.065 \text{ s}.$$

2.17. Punkt materialny porusza się w pomyślanym tunelu przechodzącym przez środek Ziemi. Obliczyć okres drgań oraz prędkość, z jaką przechodzi ten punkt materialny przez środek Ziemi, jeżeli dany jest promień Ziemi R i przyśpieszenie ziemskie na powierzchni Ziemi g_o. Ziemię traktujemy jako kulę o stałej gęstości.

Rozwiązanie

Rys. 2.9. Przyśpieszenie ziemskie wewnątrz Ziemi jest wprost proporcjonalne do odległości od środka Ziemi

Należy obliczyć przyśpieszenie ziemskie w odległości r od środka Ziemi (rys. 2.9).

$$\vec{g}_0 = -G \frac{M}{R^3} \vec{R}, \quad M = \rho \cdot V = \rho \frac{4}{3} \pi R^3$$

natomiast

$$\vec{g}_{r} = -G \frac{M_{r}}{r^{3}} \vec{r}, \quad M_{r} = \rho \cdot V_{r} = \rho \frac{4}{3} \pi r^{3}$$

gdzie M jest masą całej kuli ziemskiej a M_r masą kuli o promieniu r. Warstwa zewnętrzna powłoki kulistej poza kulą o promieniu r nie wpływa na przyśpieszenie g_r (zad. 1.20).

Mamy więc na powierzchni Ziemi:

$$\vec{g}_o = -G \frac{\rho \frac{4}{3} \pi R^3}{R^3} \vec{R}$$
, a po uproszczeniu: $\vec{g}_o = -G \rho \frac{4}{3} \pi \vec{R}$,

natomiast wewnątrz Ziemi:

$$\vec{g}_r = -G \frac{\rho \frac{4}{3} \pi r^3}{r^3} \vec{r}$$
, a po uproszczeniu: $\vec{g}_r = -G \rho \frac{4}{3} \pi \vec{r}$.

Wartości g₀ i g_r wynoszą:

$$g_{\scriptscriptstyle 0} = G \frac{4}{3} \pi \rho R \ \text{oraz} \ g_{\scriptscriptstyle r} = G \frac{4}{3} \pi \rho r \, . \label{eq:g0}$$

Po podzieleniu stronami tych równań, otrzymamy:

$$\frac{g_0}{g_r} = \frac{R}{r},$$

skad

$$g_{r} = g_{0} \frac{r}{R}. \tag{2.13}$$

Jeśli oś OX biegnie od środka Ziemi ku powierzchni (z zerem w środku), to siła zwracająca wynosi:

$$F = -m \frac{g_0}{R} x \cdot$$

Równanie różniczkowe ruchu punktu w fikcyjnym tunelu ziemskim będzie miało postać:

$$m\frac{d^2x}{dt^2} = -m g_0 \frac{x}{R}$$

lub

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{g_0}{R} x = 0,$$

$$\omega_0^2 = \frac{g_0}{R},$$

stad

$$T = 2 \pi \sqrt{\frac{R}{g_0}}.$$

Podczas ruchu ciała w stronę środka Ziemi, prędkość jest:

$$-v = \frac{dx}{dt}$$

lub

$$v = -\frac{dx}{dt}\frac{dv}{dv} = -\frac{dr}{dv}\cdot\frac{dv}{dt}$$
 (2.14)

ale

$$\frac{dv}{dt} = a = g_r$$

lub (na mocy 2.13):

$$\frac{dv}{dt} = g_0 \frac{r}{R} \cdot$$

Zastępując r przez x, równanie (2.14) można przekształcić następująco:

$$vdv = -g_0 \frac{x}{R} dx.$$

Powyższe równanie całkujemy stronami:

$$\int\limits_{0}^{v_{max}}v\ dv=-\frac{g_{0}}{R}\int\limits_{R}^{0}x\ dx\,,$$

$$\frac{1}{2}v^2 = -\frac{g_0}{R}\frac{1}{2}x^2\bigg|_{R}^{0},$$

$$v^2 = -\frac{g_0}{R} \Big(-R^2 \, \Big) \cdot$$

Ostatecznie, wartość prędkości w środku Ziemi wyrazi się wzorem:

$$v_{max} = \sqrt{g_0 R}$$
.

2.18. Obliczyć okres drgań wahadła matematycznego o długości L, gdy dane jest przyśpieszenie grawitacyjne g.

Rozwiązanie

Wartość siły zwracającej F (rys. 2.10) w ruchu kulki wahadła wyraża się wzorem:

 $F = m g \sin \alpha. (2.15)$

Rys. 2.10. Siłą kierującą w ruchu kulki wahadła jest składowa siły ciężkości kulki \vec{F}_1 w kierunku stycznej do toru

Dla małych kątów α (α≤7°) możemy przyjąć, że

$$sin\alpha = \frac{x}{L}$$
.

Wtedy łuk OA jest w przybliżeniu równy wychyleniu x. Wzór (2.15) w zapisie współrzędnych przyjmie postać:

$$F_x = -m g \frac{x}{L}$$
.

Zgodnie z drugą zasadą dynamiki możemy napisać następujące równanie:

$$m\frac{d^2x}{dt^2} = -m g \frac{x}{L}$$

lub

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{g}}{\mathrm{L}} x = 0,$$

Mamy więc

$$\frac{4 \pi^2}{T^2} = \frac{g}{L}.$$

Skąd ostatecznie otrzymamy szukany okres drgań:

$$T = 2 \pi \sqrt{\frac{L}{g}}.$$

II-gi sposób oparty na zasadzie zachowania energii:

Suma energii potencjalnej i kinetycznej w dowolnym punkcie toru kulki wahadła jest wielkością stałą, (siły oporu pomijamy) i wynosi:

$$m g h + \frac{m v^2}{2} = const$$

gdzie

 $h = L - L \cos \alpha$.

Mamy więc

m g L
$$(1-\cos\alpha) + \frac{1}{2}$$
 m $\left(\frac{ds}{dt}\right)^2 = \text{const.}$ (2.16)

Należy prędkość $v = \frac{ds}{dt}$ wyrazić w funkcji kąta α :

 $s = L\alpha$, (s jest długości łuku).

$$\frac{\mathrm{ds}}{\mathrm{dt}} = L \frac{\mathrm{d}\alpha}{\mathrm{dt}}$$
.

Równanie (2.16) przyjmie teraz postać:

g L
$$(1-\cos \alpha) + \frac{1}{2} L^2 \left(\frac{d\alpha}{dt}\right)^2 = \text{const.}$$

Pochodna względem czasu w powyższym równaniu będzie równać się zeru:

$$g \ L \ sin\alpha \ \frac{d\alpha}{dt} + \frac{1}{2} \ L^2 2 \frac{d^2 \alpha}{dt^2} \frac{d\alpha}{dt} = 0 \cdot$$

Dla małych kątów $\sin \alpha = \alpha$ (α wyrażamy w mierze łukowej) więc:

$$L\frac{d^2\alpha}{dt^2} + g \alpha = 0$$

lub

 $\frac{d^2\alpha}{dt^2} + \frac{g}{L}\alpha = 0$, (współczynnik przy α jest równy ω^2), więc:

$$\frac{4 \pi^2}{T^2} = \frac{g}{L}$$

stąd

$$T = 2 \pi \sqrt{\frac{L}{g}}$$

2.19. Wagon z zawieszonym na suficie wahadłem matematycznym porusza się po torze poziomym z przyśpieszeniem a. Obliczyć okres drgań tego wahadła jeżeli jego długość wynosi L, a kąt wychylenia z położenia równowagi jest niewielki (α <7°).

Rozwiązanie

Rys. 2.11. Na kulkę wahadła działają dwie siły: jej ciężar \overrightarrow{mg} oraz siła bezwładności \overrightarrow{F}_b

W układzie związanym z wagonem na kulkę wahadła zawieszonego u sufitu tego wagonu działają dwie siły: ciężar kulki \vec{mg} i siła bezwładności \vec{F}_b . Nitka

wahadła ustawi się w kierunku siły wypadkowej (**rys. 2.11**), której wartość bezwzględna wyrazi się wzorem:

$$F_{w} = \sqrt{(m a)^{2} + (m g)^{2}}$$
 (2.17)

Wokół tego kierunku kulka wahadła wykonuje drgania.

Wprowadzamy układ współrzędnych w ten sposób, że oś OY pokrywa się z kierunkiem siły wypadkowej \vec{F}_W (Rys. 2.11).

Siłą kierującą będzie tutaj składowa styczna siły wypadkowej \vec{F}_W wyrażona przez współrzędną:

$$F_1 = \sqrt{\left(m \ a\right)^2 + \left(m \ g\right)^2} \cdot sin\alpha.$$

Dla małych kątów: $\sin \alpha = \frac{x}{L}$ i \vec{F}_1 możemy wyrazić przez jej współrzędną:

$$F_x = -m\sqrt{a^2 + g^2} \cdot \frac{x}{L} \cdot$$

Równanie różniczkowe ruchu kulki wahadła we wprowadzonym układzie współrzędnych będzie miało postać:

$$m\frac{d^2x}{dt^2} = -\frac{m}{L}\sqrt{a^2 + g^2} \cdot x$$

lub

$$\frac{d^2x}{dt^2} + \frac{1}{L}\sqrt{a^2 + g^2} x = 0.$$

Ale

$$\frac{1}{L}\sqrt{a^2+g^2} = \omega_0^2 = \frac{4 \pi^2}{T^2},$$

więc szukany okres drgań będzie:

$$T = 2 \pi \sqrt{\frac{L}{\sqrt{a^2 + g^2}}} .$$

2.20. Wózek zaopatrzony w statyw, na którym zawieszono wahadło matematyczne stacza się swobodnie po równi pochyłej nachylonej do poziomu pod kątem α . Obliczyć okres wahań tego wahadła, jeżeli jego długość wynosi L, a tarcie i opory ruchu pomijamy.

Rozwiązanie

W układzie związanym z wózkiem na kulkę wahadła będą działać dwie siły: jej ciężar \overrightarrow{mg} i siła bezwładności \overrightarrow{F}_b . Wartość wypadkowej tych sił wyrazi się wzorem: $Fw=m\ g\ cos\alpha.$

Rys. 2.12. Ciężar kulki \overrightarrow{mg} i siła bezwładności \overrightarrow{F}_b dają siłę wypadkową \overrightarrow{F}_W

Kulka wahadła będzie się wahać wokół tej siły wypadkowej (**Rys. 2.12**), natomiast siła kierująca wyrazi się wzorem:

$$Fx = -m g \cos \alpha \sin \theta$$
,

gdzie θ jest kątem wychylenia od kierunku siły wypadkowej (od kierunku prostopadłego do równi).

Dla małych wartości kąta θ można przyjąć, że

$$sin \ \theta = \frac{x}{L}.$$

Równanie różniczkowe ruchu kulki wahadła będzie miało postać:

$$m\frac{d^2x}{dt^2} = -m g \cos \alpha \frac{x}{L}$$

lub

$$\frac{d^2x}{dt^2} + g \frac{\cos\alpha}{L} \cdot x = 0,$$

stad

$$\frac{4 \pi^2}{T^2} = \frac{g}{L} \cos \alpha .$$

Ostatecznie będziemy mieli:

$$T = 2 \pi \sqrt{\frac{L}{g \cos \alpha}}.$$

2.21. Znaleźć minimalną częstość drgań równi pochyłej, w kierunku prostopadłym do jej powierzchni, przy której znajdujące się na niej ciało zacznie się zsuwać, jeżeli dany jest kąt nachylenia równi α = 10°, amplituda drgań A = 10 cm, współczynnik tarcia statycznego k = 0,4.

Rozwiązanie

Ciało nie zsuwa się z drgającej równi pochyłej, gdy składowa siły ciężkości równoległa do równi ($P=mg \sin \alpha$) jest mniejsza lub w granicznym przypadku równa maksymalnej wartości siły tarcia statycznego ($T_{sm}=kR_g$), przy wychyleniu z położenia równowagi równym amplitudzie w jego górnym położeniu, czyli:

 $mgsin\alpha \leq kR_g$,

gdzie R_g – siła nacisku równi pochyłej na ciało. Z II zasady dynamiki dla tego położenia mamy:

$$mg\cos\alpha - R_g = m4\pi^2 v^2 A,$$

skad

 $Rg = mg\cos\alpha - m4\pi^2\nu^2A.$

Wyjściowa nierówność przyjmuje postać,

$$\operatorname{mg} \sin \alpha \leq \operatorname{k} (\operatorname{mg} \cos \alpha - \operatorname{m} 4\pi^2 v^2 \operatorname{A}).$$

Po rozwiązaniu tej nierówności otrzymujemy:

$$v \leq \frac{1}{2 \pi} \sqrt{\frac{g\left(k \cos \alpha - \sin \alpha\right)}{k A}} \; , \quad v = 1 \; s^{-1}.$$

Ciało zacznie zsuwać się z równi, jeśli v przekroczy wartość 1 1/s.

2.22. Wyprowadzić wzór na okres drgań wahadła fizycznego. Dany jest moment bezwładności wahadła (względem punktu zaczepienia) I, odległość środka ciężkości od osi obrotu r₀, masa wahadła m oraz przyśpieszenie ziemskie g.

Rozwiązanie

Wahadło fizyczne – dowolna bryła zawieszona powyżej środka ciężkości (Rys. 2.13).

Rys. 2.13. Dowolna bryła zawieszona powyżej jej środka ciężkości stanowi wahadło fizyczne

Siłę ciężkości \overrightarrow{mg} rozkładamy na dwie składowe: radialną \overrightarrow{F}_r oraz na styczną \overrightarrow{F}_s do toru, zakreślonego przez środek ciężkości bryły. Składowa styczna powoduje ruch harmoniczny wahadła i wyrazi się wzorem:

$$F_S = - \text{ mg sin} \varphi$$
.

Znak minus, oznacza, że siła styczna jest przeciwnie skierowana do wychylenia.

Dla małych kątów sin $\phi = \phi$ (w mierze łukowej) zatem:

$$F_S = - mg \varphi$$
.

Podobnie moment siły względem osi obrotu jest przeciwnie skierowany do wychylenia kątowego $\vec{\varphi}$ i wynosi:

$$M=\text{-mg } r_0\,\phi \text{.}$$

Z drugiej zasady dynamiki dla ruchu obrotowego bryły, ten sam moment siły równa się:

$$M = \frac{d^2 \varphi}{dt^2} I,$$

gdzie I jest momentem bezwładności bryły względem osi obrotu O. Przez porównanie powyższych momentów sił otrzymujemy równanie różniczkowe ruchu harmonicznego wahadła fizycznego:

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}t^2} + \frac{\mathrm{m} \mathrm{g} \mathrm{r}_0}{\mathrm{I}} \varphi = 0 .$$

Współczynnik przy kącie φ równy jest ω_0^2 ;

$$\frac{4 \pi^2}{T^2} = \frac{m g r_0}{I},$$

stad

$$T^2 = 4 \pi^2 \frac{I}{m g r_0}$$

albo

$$T = 2 \pi \sqrt{\frac{I}{m g r_0}}$$
 (2.18)

2.23. Do końców pręta o masie m₁ = 60 g i długości L = 0,5 m przymocowano dwie kulki o masach m₂ = 90 g i m₃ = 70 g o znikomo małych rozmiarach. Pręt ten zawieszono tak, że może on wykonywać drgania wokół osi przechodzącej przez jego środek (**rys. 2.14**). Obliczyć okres drgań tak utworzonego wahadła fizycznego. Przyjąć g = 10 m/s².

Rozwiązanie

Należy wyznaczyć środek ciężkości utworzonego wahadła fizycznego i jego odległość od osi obrotu. W tym celu korzystamy z równości momentów sił względem środka ciężkości: (co najłatwiej uczynić gdy pręt ułożymy w pozycji poziomej):

Rys. 2.14. Kulki razem z prętem tworzą wahadło fizyczne

$$\begin{split} \overrightarrow{M_{F_3}} + \overrightarrow{M_{F_1}} + \overrightarrow{M_{F_2}} &= 0 \\ F_3 \left(\frac{L}{2} + r_0 \right) + F_1 r_0 - F_2 \left(\frac{1}{2} - r_0 \right) &= 0 \\ m_3 g \left(\frac{L}{2} + r_0 \right) + m_1 g r_0 &= m_2 g \left(\frac{L}{2} - r_0 \right), \\ m_3 \frac{L}{2} + m_3 r_0 + m_1 r_0 &= m_2 \frac{L}{2} - m_2 r_0, \\ skąd \\ r_0 &= \frac{L}{2} \frac{\left(m_2 - m_3 \right)}{m_1 + m_2 + m_3}. \end{split}$$

Należy jeszcze obliczyć całkowity moment bezwładności względem osi obrotu: wiedząc, że moment bezwładności samego pręta względem osi przechodzącej przez jego środek wynosi:

$$I = \frac{1}{12} m_1 L^2 .$$

Zatem całkowity moment bezwładności będzie równy:

$$I = \frac{1}{12}m_1L^2 + m_2\frac{L^2}{4} + m_3\frac{L^2}{4}$$

lub

$$I = \frac{1}{12} L^2 (m_1 + 3 m_2 + 3 m_3)$$
.

Otrzymane wartości na r_0 i na I wstawiamy do wzoru na okres wahań wahadła fizycznego (2.18).

$$T = 2 \pi \sqrt{\frac{m_1 + 3 m_2 + 3 m_3}{6 g(m_2 - m_3)} L},$$

$$T = 2,95 \text{ s.}$$

2.24. Jednorodna kula o promieniu R_0 może wykonywać drgania swobodne wokół poziomej osi przechodzącej przez jeden z punktów O na powierzchni kuli. Obliczyć okres drgań.

Rozwiązanie

Rys. 2.15. Kula o promieniu R_0 zawieszona w punkcie styczności, wytrącona z położenia równowagi wykonuje drgania harmoniczne

Wychodzimy ze wzoru na okres drgań wahadła fizycznego:

$$T = 2 \pi \sqrt{\frac{I}{m g r_0}},$$

gdzie I jest momentem bezwładności względem punktu zaczepienia:

$$I = I_0 + m R_0^2$$
,

$$I = \frac{2}{5} m R_0^2 + m R_0^2$$
,

$$I = \frac{7}{5} m R_0^2$$

Mamy wiec:

$$T = 2 \pi \sqrt{\frac{7}{5} \frac{m R_0^2}{m g R_0}},$$

$$T = 2 \pi \sqrt{\frac{7}{5} \frac{R_0}{g}}.$$

2.25. Arkusz blachy w kształcie kwadratu o boku a, waha się wokół poziomej osi przechodzącej wzdłuż jednej z krawędzi kwadratu (**rys. 2.16**). Obliczyć okres drgań.

Rozwiązanie

Rys. 2.16. Momentem zwracającym jest moment siły ciężaru arkusza blachy względem osi obrotu

Korzystamy ze wzoru na okres drgań wahadła fizycznego

$$T = 2 \pi \sqrt{\frac{I}{m g r_0}},$$

gdzie I jest momentem bezwładności względem osi obrotu, który wyprowadzamy w sposób następujący:

Dzielimy arkusz blachy na paski równoległe do osi obrotu. Szerokość paska wynosi dr, a jego odległość od osi obrotu wynosi r (**rys. 2.16**). Moment bezwładności jednego paska względem osi obrotu wyraża się wzorem:

$$dI = dm r^2$$
,
 $gdzie$
 $dm = a dr b \rho$,
 b jest grubością blachy,
 ρ – gęstość materiału.

Mamy więc

$$dI = a dr b \rho r^2$$
,

$$I = a b \rho \int_{0}^{a} r^{2} dr,$$

$$I = a b \rho \frac{1}{3} a^3$$

ale

$$a^2 b \rho = m$$
,

stąd

$$I = \frac{1}{3} \text{ m a}^2$$
.

Szukany okres drgań wyrazi się więc wzorem:

$$T = 2 \pi \sqrt{\frac{2 a}{3 g}}$$

2.26. Cylinder pełny i jednorodny o masie m wykonuje małe drgania harmoniczne pod działaniem dwóch jednakowych sprężyn o współczynnikach sprężystości każdej sprężyny k (rys. 2.17). Obliczyć okres drgań, gdy wszelkie tarcia pominiemy.

Rozwiązanie

Na cylinder w punkcie A działają siły pochodzące od dwóch odkształconych sprężyn:

$$F_1 = -kx_1,$$
 $F_2 = -kx_2,$

ale

$$\mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x},$$

to siła działająca na cylinder wynosi:

$$F = F_1 + F_2 = -2kx$$
.

Rys. 2.17. Pod wpływem odkształconych sprężyn, cylinder przetacza się na odcinek x z położenia równowagi ruchem harmonicznym

Zgodnie z drugą zasadą dynamiki dla ruchu obrotowego, moment wypadkowej siły sprężystości względem chwilowej osi obrotu ${\bf O}$ równa się iloczynowi przyśpieszenia kątowego ϵ_0 przez moment bezwładności I_0 .

$$2kx \ 2R = \varepsilon_0 \cdot I_0$$

Uwzględniając, że

$$\varepsilon_0 = \frac{a_0}{2 R},$$

oraz

$$I_0 = \frac{3}{2} m R^2$$

(bo z tw. Steinera mamy: $I_0 = \frac{1}{2} mR^2 + mR^2$).

Otrzymamy: $16 \text{ k x} = 3a_0 \text{ m}$, ale

$$a_0 = \omega^2 2x$$

więc

$$\omega = \sqrt{\frac{8 \text{ k}}{3 \text{ m}}}$$

skad

$$T = \pi \sqrt{\frac{3 \text{ m}}{2 \text{ k}}} .$$

Można też identyczny wynik uzyskać z zasady zachowania energii dla układu dwóch sprężyn i walca: suma wszystkich rodzajów energii jest stała:

$$\frac{1}{2}2 k x^{2} + \frac{m v_{0}^{2}}{2} + \frac{I \omega^{2}}{2} = C$$

gdzie I jest momentem bezwładności walca względem jego osi obrotu.

Prędkość środka cylindra jest dwa razy mniejsza od prędkości punktu A na obwodzie walca, więc:

$$v_0 = \frac{v}{2}$$

oraz

$$\omega = \frac{\mathrm{v}}{2 \mathrm{R}}$$

Mamy zatem:

$$kx^{2} + \frac{m}{2} \frac{v^{2}}{4} + \frac{1}{2} \cdot \frac{1}{2} mR^{2} \frac{v^{2}}{4 R^{2}} = C$$

Następnie, należy zróżniczkować obie strony równania względem czasu:

$$2 \text{ kx } \frac{dx}{dt} + \frac{m}{8} 2 \text{ v} \frac{dv}{dt} + \frac{1}{16} \text{ m } 2 \text{ v} \frac{dv}{dt} = 0.$$

Uwzględniając, że

$$\frac{dv}{dt} = a \cdot \frac{dx}{dt} = v$$

oraz

$$a = -\omega^2 2x$$

otrzymamy

$$2k = \frac{3}{4}\omega^2 m,$$

skąd będzie:

$$\omega = \sqrt{\frac{8 \text{ k}}{3 \text{ m}}}.$$

Ostatecznie

$$T = 2\pi \sqrt{\frac{3m}{8k}} = \pi \sqrt{\frac{3m}{2k}}.$$

2.27. Jednorodna kulka o promieniu r, tocząc się bez poślizgu po wewnętrznej stronie cylindra o promieniu R wykonuje drgania harmoniczne (**rys. 2.18**). Obliczyć okres tych drgań.

Rozwiązanie

Rys. 2.18. Jednorodna kulka o promieniu r, znajdująca się na wewnętrznej powierzchni cylindra o promieniu R odchylona od położenia równowagi wykonuje drgania harmoniczne

Zgodnie z II zasadą dynamiki dla ruchu obrotowego mamy

$$M = I \cdot \varepsilon = mgx' = mgr \sin \alpha = mgr \frac{x}{R - r}$$
.

gdzie:

M jest momentem siły ciężkości względem chwilowej osi obrotu, ε – wartością przyśpieszenia kątowego ruchu obrotowego kulki względem chwilowej osi obrotu. Wartość przyśpieszenia kątowego ma następujący związek z wartością stycznego przyśpieszenia liniowego środka kulki:

$$\varepsilon = \frac{a}{r}$$
.

I – jest momentem bezwładności kulki względem chwilowej osi obrotu, który zgodnie z twierdzeniem Steinera wynosi:

$$I = I_0 + m r^2.$$

I₀ jest momentem bezwładności kulki względem jej środka ciężkości, który przedstawia się wzorem:

$$I_0 = \frac{2}{5} m r^2.$$

Moment siły przedstawi się teraz wzorem:

$$M = \left(\frac{2}{5}mr^2 + mr^2\right) \cdot \frac{a}{r} .$$

Mamy wiec:

$$\frac{7}{5}r^2\left(\frac{a}{r}\right)m = m g r \frac{x}{R-r}$$

Stad

$$a = \frac{5}{7} g \frac{x}{R-r}$$

Wartość przyspieszenia liniowego w ruchu harmonicznym wyraża się wzorem:

$$a = \omega^2 x$$
.

Będzie więc

$$\omega^2 = \frac{5}{7} \frac{g}{R-r},$$

stad

$$\omega = \sqrt{\frac{5}{7} \frac{g}{R-r}}$$

i ostatecznie

$$T = 2 \pi \sqrt{\frac{7(R-r)}{5 g}}.$$

2.28. Kula o promieniu r=5 cm wisi na cienkim druciku o długości L=10 cm (**rys. 2.19**). Obliczyć błąd względny jaki popełniamy traktując powyższe wahadło jako wahadło matematyczne o okresie T i długości $L_0 = L + r$. Moment bezwładności kuli względem punktu zawieszenia obliczamy ze wzoru:

$$I = \frac{2}{5} m r^2 + m (L + r)^2$$
.

Rozwiązanie

Rys. 2.19. Kula zawieszona na druciku stanowi wahadło fizyczne. Należy obliczyć jaki błąd popełniamy, traktując takie wahadło jak wahadło matematyczne

Okres wahadła matematycznego wyraża się wzorem:

$$T_{\rm m} = 2 \pi \sqrt{\frac{L+r}{g}} .$$

Natomiast okres wahadła fizycznego wyraża się wzorem następującym:

$$T = 2 \pi \sqrt{\frac{I}{m g (L + r)}}$$

albo

$$T = 2 \pi \sqrt{\frac{\frac{2}{5} m r^2 + m (L+r)^2}{m g (L+r)}}$$

lub

$$T = 2 \pi \sqrt{\frac{\frac{2}{5}r^2 + (L+r)^2}{g(L+r)}}$$
.

Błąd względny będzie:

$$B = \frac{T - T_m}{T},$$

$$B = \frac{2 \pi \sqrt{\frac{\frac{2}{5}r^{2} + (L+r)^{2}}{g(L+r)}} - 2 \pi \sqrt{\frac{L+r}{g}}}{2 \pi \sqrt{\frac{\frac{2}{5}r^{2} + (L+r)^{2}}{g(L+r)}}}.$$

Po przekształceniach błąd względny wyrazi się wzorem:

$$B = 1 - (L + r) \sqrt{\frac{1}{\frac{2}{5}r^{2} + (L + r)^{2}}} \cdot$$

Po wstawieniu wartości liczbowych otrzymamy:

$$B = 0.022$$
,

$$B = 2.2 \%$$
.

2.29. Jednorodny krążek o promieniu R może obracać się wokół poziomej osi prostopadłej do tarczy przechodzącej przez punkt na obwodzie. Obliczyć okres drgań tłumionych krążka, jeżeli logarytmiczny dekrement tłumienia wynosi δ .

Rozwiązanie

Okres drgań tłumionych wylicza się ze wzoru:

$$\omega = \sqrt{\omega_0^2 - \beta^2} \tag{2.19}$$

gdzie ω_0 jest częstością kołową drgań nietłumionych,

 β jest współczynnikiem tłumienia.

 β T = δ jest logarytmicznym dekrementem tłumienia.

Wzór (2.19) przyjmie teraz postać:

$$\frac{4 \pi^2}{T^2} = \frac{4 \pi^2}{T_0^2} - \frac{\delta^2}{T^2},$$
 (2.20)

gdzie T₀ jest okresem drgań nietłumionych, który wyliczamy ze wzoru:

$$T_0 = 2\pi \sqrt{\frac{I}{m g R}} \cdot$$

I – jest momentem bezwładności względem punktu zawieszenia tarczy, który wyraża się wzorem:

$$I = I_0 + mR^2,$$

$$I = \frac{1}{2}mR^2 + mR^2,$$

$$I = \frac{3}{2}mR^2.$$

Mamy wiec

$$T_0 = 2 \pi \sqrt{\frac{3 R}{2 g}}$$

Szukany okres drgań krążka wyliczymy ze wzoru (2.20):

$$T = \sqrt{\frac{3}{2} \frac{R}{g} \left(4\pi^2 + \delta^2 \right)} \cdot$$

2.30. Zawieszone na sprężynie ciało wydłuża ją o $\Delta x = 9.8$ cm. Obliczyć okres drgań tłumionych, jeżeli dane ciało przesunięto w dół w stosunku do położenia równowagi i puszczono swobodnie. Logarytmiczny dekrement tłumienia drgań wynosi $\delta = 3.1$.

Rozwiązanie

Wychodzimy ze wzoru na częstość drgań kołowych tłumionych, (2.20):

$$\frac{4 \pi^2}{T^2} = \frac{4 \pi^2}{T_0^2} - \frac{\delta^2}{T^2} \cdot$$

 T_0 należy wyznaczyć w zależności od Δx :

$$\omega_{\rm o}^2 = \frac{\rm k}{\rm m}$$

lub

$$\frac{4 \pi^2}{T_0^2} = \frac{k}{m}.$$

Sprężyna wydłuża się pod wpływem zawieszonego na niej ciała o Δx . Możemy więc zapisać:

$$m g = k \Delta x$$
, skad

$$k = \frac{m g}{\Delta x}.$$

Mamy więc

$$\frac{4\pi^2}{T_0^2} = \frac{m g}{\Delta x m}, \text{ stad } T_0^2 = 4\pi^2 \frac{\Delta x}{g}.$$

Równanie (2.20) przyjmie teraz postać:

$$\frac{4\pi^2}{T^2} = \frac{4\pi^2}{4\pi^2} \frac{g}{\Delta x} - \frac{\delta^2}{T^2}$$
, albo $\frac{4\pi^2 + \delta^2}{T^2} = \frac{g}{\Delta x}$,

skąd

$$T = \sqrt{\left(4\pi^2 + \delta^2\right) \frac{\Delta x}{g}} \cdot$$

Po podstawieniu danych wartości liczbowych otrzymamy szukany okres drgań:

$$T = 0.7 \text{ s}.$$

2.31. Amplituda drgań tłumionych wahadła matematycznego zmalała dwa razy w czasie $t_1 = 1$ min. Obliczyć ile razy zmaleje w ciągu czasu $t_2 = 3$ min.

Rozwiązanie

Stąd, że amplituda zmalała 2 razy w ciągu 1 min obliczymy współczynnik tłumienia β :

$$\frac{A_0}{A_0/n} = e^{\beta t}$$

lub

$$2 = e^{\beta t}$$

$$ln 2 = \beta t$$
,

skąd

$$\beta = \frac{\ln 2}{\mathsf{t}_1}.$$

Jeżeli amplituda zmaleje n = 3 razy, to możemy to zapisać w postaci wzoru:

$$\frac{A_0}{A_0} = e^{\frac{\ln 2}{t_1}t_2},$$

skad

$$n=e^{(\ln 2)\,\frac{t_2}{t_1}}\,.$$

Po logarytmowaniu obu stron równania otrzymamy:

$$ln n = (ln 2) \frac{t_2}{t_1}.$$

Ponieważ $\frac{t_2}{t_1} = 3$, otrzymamy:

$$ln n = (ln 2) 3 = 3 ln 2 = 2,07,$$

stąd n = 8.

2.32. Logarytmiczny dekrement tłumienia kamertonu o częstości v=400 Hz wynosi $\delta=0{,}002$. Obliczyć po jakim czasie amplituda drgań kamertonu zmaleje 100 krotnie. Jak zmieni się przy tym energia drgań.

Rozwiązanie

$$\frac{A}{A/100} = e^{\beta t},$$

$$100 = e^{\beta t}$$
,

$$ln\ 100 = \beta t$$
,

stad

$$t = \frac{ln \ 100}{\beta}$$

Współczynnik tłumienia β wyznaczymy z definicji logarytmicznego dekrementu tłumienia drgań:

$$\delta = \beta T$$

lub

$$\delta = \frac{\beta}{\nu},$$

stad

$$\beta = \delta v$$
.

Mamy więc

$$t = \frac{ln \ 100}{\delta \ v}$$
.

Po podstawieniu wartości liczbowych otrzymamy:

$$t = 5,75 \text{ s}.$$

Zmianę energii obliczymy ze wzoru:

$$\frac{E_x}{E} = \frac{\frac{1}{2} k A_x^2}{\frac{1}{2} k A^2} = \frac{1}{100^2} = 10^{-4} \text{ razy}.$$

2.33. Po jakim czasie energia drgań kamertonu o częstości v = 435 Hz zmniejszy się $n = 10^5$ razy, jeżeli logarytmiczny dekrement tłumienia drgań wynosi $\delta = 0,0001$.

Rozwiązanie

Ponieważ energia drgań zależy od amplitudy, więc korzystamy ze wzoru na amplitudę drgań tłumionych:

$$\frac{A_1}{A_2} = \frac{e^{-\beta t}}{e^{-\beta(t+t_x)}} = e^{\beta t_x}.$$
 (2.21)

Ale

$$E_1 = \frac{1}{2} k A_1^2 \text{ skąd } A_1 = \sqrt{\frac{2 E_1}{k}}$$

$$E_2 = \frac{1}{2} k A_2^2 \text{ skąd } A_2 = \sqrt{\frac{2 E_2}{k}}$$
.

Uwzględniając powyższe zależności oraz to, że $E_2 = \frac{E_1}{n}$, równanie (2.21)

przyjmie teraz postać:

$$\sqrt{\frac{2~E_{_1}}{k}} \cdot \sqrt{\frac{k~n}{2~E_{_1}}} = e^{\beta~t_{_x}} \quad , \quad$$

$$\sqrt{n} = e^{\beta t_x},$$

stad

$$n=e^{2\;\beta\;t_x}\;\text{,}\;\;\text{ln}\;n=2\;\beta t_x$$

więc

$$t_x = \frac{\ln n}{2 \delta v}$$
 (gdyż $\beta = \delta v$).

Po podstawieniu wartości liczbowych otrzymamy:

$$t_x = 132 \text{ s.}$$

2.34. Obliczyć logarytmiczny dekrement tłumienia drgań wahadła matematycznego, jeżeli w czasie t=3 min amplituda drgań zmniejszyła się z $A_1=8$ cm do $A_2=6$ cm przy okresie drgań T=2s.

Rozwiązanie

Wychodzimy ze wzoru na stosunek amplitud:

$$\frac{A_2}{A_1} = e^{-\beta t}$$

lub

$$\frac{A_1}{A_2} = e^{\beta t} \cdot$$

$$ln\frac{A_1}{A_2} = \beta t$$

ale
$$\beta = \frac{\delta}{T}$$
,

więc

$$\ln A_1 - \ln A_2 = \frac{\delta}{T} t$$

skąd

$$\delta = \frac{\mathrm{T} (\ln \mathrm{A}_1 - \ln \mathrm{A}_2)}{\mathrm{t}}.$$

Po podstawieniu wartości liczbowych otrzymamy szukany wynik $\delta = 0,0032$.

2.35. Ciało o ciężarze Q=40 N zawieszone na sprężynie wykonuje drgania pod wpływem siły wymuszającej wyrażonej wzorem: F=10 sin 20t. Obliczyć amplitudę drgań oraz maksymalną siłę wywieraną na punkt zaczepienia sprężyny, jeżeli ciężar Q wydłuża sprężynę o $\Delta x=0.02$ m.

Rozwiązanie

Amplituda drgań wymuszonych, gdy opór ośrodka jest zaniedbany wyraża się wzorem:

$$A = \frac{F_0}{k \left| 1 - \frac{\omega_1^2}{\omega_0^2} \right|},$$
 (2.22)

gdzie F_0 jest amplitudą drgań siły wymuszającej,

 ω_1 częstością kołową siły wymuszającej (w naszym przypadku wynosi ona $\omega_1 = 20 \text{ s}^{-1}$),

 ω_0 częstością drgań swobodnych, która wyraża się wzorem $\,\omega_0^2=\frac{k}{m}\,.$

Współczynnik sprężystości k wyliczamy z wydłużenia statycznego sprężyny:

$$Q = k \Delta x,$$

stąd

$$k = \frac{Q}{\Delta x}$$
,

$$k=2000~\frac{N}{m}\,\cdot$$

Mamy więc

$$\omega_0^2 = \frac{Q}{\Delta x m} = \frac{m g}{\Delta x m} = \frac{g}{\Delta x}$$

gdzie $g = 9.8 \text{ m/s}^2$,

stąd

$$\omega_0^2 = 490 \text{ 1/s}^2$$

Szukana amplituda drgań wymuszonych będzie równa:

$$A = \frac{F_0 \Delta x}{Q \left| 1 - \frac{\omega_1^2}{\omega_0^2} \right|}.$$

Z przekształcenia wzoru na amplitudę w ruchu harmonicznym wymuszonym:

$$A = \frac{F_0}{m\sqrt{(\omega_o^2 - \omega_1^2)^2 + 4 \beta^2 \omega_1^2}}$$

gdzie $\beta = 0$, otrzymujemy wzór (2.22).

Po podstawieniu wartości liczbowych otrzymamy

$$A = \frac{0.01}{2 \left| 1 - \frac{400}{490} \right|},$$

$$A = 2.7 \text{ cm}.$$

Maksymalna siła wywierana na punkt zaczepienia sprężyny jest sumą siły sprężystości i ciężaru ciała:

$$F_{max} = k A + Q$$

$$F_{max} = 2000 \frac{N}{m} \cdot 0,027 \text{ m} + 40 \text{ N}$$

$$F_{\text{max}} = 94 \text{ N}.$$

2.36. Silnik elektryczny o masie M łącznie z masą wirnika m został umocowany na sprężystej belce (**rys. 2.20**). Strzałka ugięcia belki pod ciężarem silnika wynosi S. Mimośród wirnika obracającego się z prędkością kątową ω wynosi e. Obliczyć amplitudę drgań wymuszonych silnika oraz wartość prędkości kątowej wirnika, przy której wystąpi rezonans.

Rozwiązanie

Amplitudę drgań wymuszonych, gdy siły oporu są zaniedbane, oblicza się ze wzoru (2.22).

W naszym zadaniu siłą wymuszającą F_0 jest siła odśrodkowa bezwładności wyrażona wzorem:

$$F_0 = m \omega^2 e.$$
 (2.23)

Rzut tej siły na kierunek pionowy będzie równy:

$$F_0 = m \omega^2 e \cos \omega t$$
.

Współczynnik sprężystości belki k wyrażamy za pomocą strzałki ugięcia pod ciężarem silnika

$$Mg = k S,$$
 stąd

$$k = \frac{Mg}{S}$$
.

Rys. 2.20. Siłą wymuszającą drgania jest tutaj siła odśrodkowa ruchu obrotowego wirnika F_0

Natomiast częstość drgań swobodnych wyrazi się wzorem:

$$\omega_0^2 = \frac{k}{M} = \frac{Mg}{SM} = \frac{g}{S}.$$

Równanie ruchu drgającego przy występującej sile wymuszającej drgania będzie:

$$M\frac{d^2y}{dt^2} = -ky + m\omega^2 e \cos\omega t$$

lub

$$\frac{d^2y}{dt^2} + \frac{k}{M}y = \frac{m}{M}\omega^2 e \cos \omega t$$

lub

$$\frac{d^2y}{dt^2} + \frac{g}{S}y = \frac{m}{M} \omega^2 e \cos \omega t.$$
 (2.24)

Gdy nie ma rezonansu to amplituda drgań wymuszonych będzie:

$$A = \frac{m \omega^2 e}{\frac{Mg}{S} \left| 1 - \frac{\omega^2}{\frac{g}{S}} \right|},$$

lub

$$A = \frac{m \omega^2 e}{M \left| \frac{g}{S} - \omega^2 \right|}.$$

Rezonans wystąpi wtedy, gdy częstość siły wymuszającej zrówna się z częstością drgań własnych silnika, która wyraża się wzorem:

$$\omega_0 = \sqrt{\frac{g}{S}}$$

Należy rozwiązać otrzymane równanie różniczkowe (2.24) ruchu drgającego zastępując ω wyrażeniem $\omega_0=\sqrt{\frac{g}{S}}$:

$$\frac{d^2y}{dt} + \frac{g}{S}y = \frac{m}{M}\frac{g}{S} e \cos\left(\sqrt{\frac{g}{S}} \cdot t\right) \cdot$$

W tym przypadku rozwiązaniem będzie następująca funkcja:

$$y = t B cos\left(\sqrt{\frac{g}{S}} \cdot t\right) + t C sin\left(\sqrt{\frac{g}{S}} \cdot t\right),$$

gdzie B, C – stałe, a t – czas.

Należy obliczyć drugą pochodną powyższej funkcji (y") i wstawić do równania (2.24), jak również za y wstawić daną funkcję. Następnie porównać współczynniki przy funkcjach $cos\left(\sqrt{\frac{g}{S}}\cdot t\right)$ i $sin\left(\sqrt{\frac{g}{S}}\cdot t\right)$. Otrzymamy:

$$-2B\sqrt{\frac{g}{S}}=0,$$

stad B = 0.

$$2 \text{ C} \sqrt{\frac{\text{g}}{\text{S}}} = \frac{\text{m}}{\text{M}} \frac{\text{g}}{\text{S}} \text{ e}$$

stąd

$$C = \frac{m}{2 M} \frac{g}{S} e \sqrt{\frac{S}{g}}$$

lub

$$C = \frac{m \omega_0 e}{2 M}$$

Otrzymamy:

$$y = \frac{m \omega_0 e t}{2 M} sin \omega_0 t.$$

Szukana amplituda drgań wymuszonych wyrazi się wzorem (rośnie proporcjonalnie do czasu):

$$A = \frac{m \sqrt{\frac{g}{S}} e t}{2 M}.$$

2.37. Samochód o masie M jedzie ze stałą prędkością v wzdłuż poziomej drogi, której nierówności mają kształt odpowiadającej funkcji:

 $y = A_0 \sin \omega t$, gdzie A_0 jest amplitudą nierówności drogi.

Obliczyć amplitudę drgań wymuszonych samochodu, jeżeli odkształcenie statyczne każdego z czterech resorów pod wpływem ciężaru samochodu wynosi δ. Natomiast połowa długości fali wzdłużnego profilu drogi wynosi L (rys. 2.21). Obliczyć też przy jakiej prędkości samochód wpadnie w rezonans.

Rozwiązanie

W celu rozwiązania zadania należy wyrazić częstość drgań wymuszonych w zależności od v i od L:

$$\omega = \frac{2 \pi}{T}$$
 ale $T = \frac{2 L}{v}$.

Częstość drgań wymuszonych wyrazi się więc wzorem:

$$\omega = \frac{\pi \ v}{L}$$
.

Rys. 2.21. *Na wzniesieniu drogi resory zostają zgniecione siłą* F = ky *lub* $F = kA_0$, $(A_0 \text{ jest amplitudą siły wymuszającej})$

Częstość drgań własnych samochodu wyliczamy z odkształcenia statycznego jednego z czterech resorów:

$$\frac{M}{4}$$
 g = k δ ,

skad

$$k = \frac{M}{4} \frac{g}{\delta} \cdot$$

Wstawiając to do wzoru: $\omega_0^2 = \frac{k}{m}$, gdzie $m = \frac{M}{4}$ otrzymamy:

$$\omega_0^2 = \frac{4 \text{ k}}{\text{M}} = \frac{\text{g}}{\delta}.$$

Szukaną amplitudę drgań wymuszonych otrzymamy ze wzoru (2.22):

$$A = \frac{F_0}{k \left| 1 - \frac{\omega^2}{\omega_0^2} \right|},$$

gdzie F_0 jest amplitudą siły wymuszającej. F_0 równa się sile dającej maksymalne ściśnięcie sprężyny na wzniesieniu drogi i wynosi: $F_0 = k A_0$.

Uwzględniając powyższe zależności otrzymamy:

$$A = \frac{A_0}{\left| 1 - \frac{\pi^2 v^2 \delta}{L^2 g} \right|}.$$

Wartość liczbową szukanej amplitudy wyliczymy dla następujących wartości:

$$A_0 = 0.1 \text{ m},$$

$$v = 15 \frac{m}{s} \left(54 \frac{km}{h} \right),$$

$$L = 0.8 \text{ m},$$

$$\delta = 0.02$$
.

Po podstawieniu do wzoru na A, otrzymamy:

$$A = 1.7 \text{ cm}$$
.

Rezonans wystąpi wtedy gdy częstość drgań wymuszonych $\omega = \frac{\pi \ v}{T}$ zrów-

na się z częstością drgań własnych $\,\varpi_{\scriptscriptstyle 0} = \sqrt{\frac{{\rm g}}{\delta}} :$

$$\frac{\pi v_r}{L} = \sqrt{\frac{g}{\delta}},$$

stąd

$$v_{r} = \frac{L}{\pi} \sqrt{\frac{g}{\delta}} .$$

$$v_r = 5.6 \frac{m}{s}$$

$$v_r = 20.2 \frac{km}{h}$$

2.38. Membrana głośnika drga z częstością f=450~Hz i z amplitudą A=0.9~mm. Napisać równanie fali akustycznej rozchodzącej się od membrany, jeżeli pręd-

kość fali dźwiękowej w powietrzu wynosi $v = 340 \frac{m}{s}$

Rozwiązanie

Szukane równanie ma postać:

$$y = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right), \tag{2.25}$$

gdzie

$$\lambda = \frac{\mathbf{v}}{\mathbf{f}}$$
, $\mathbf{T} = \frac{1}{\mathbf{f}}$.

Mamy więc

$$y = A \sin 2 \pi \left(\frac{x f}{v} - f t \right)$$

Po podstawieniu wartości liczbowych otrzymamy:

$$y = 0.0009 \sin 2\pi (1.32x - 450t).$$

- **2.39.** Drgająca struna o długości L = 12 cm ma węzły co 4cm. Prędkość fali w strunie jest równa u =30 m/s. Obliczyć:
 - a) częstotliwość drgań,
 - b) wszystkie możliwe niższe częstości.

Rozwiązanie

a) Szukaną częstotliwość drgań wyliczymy ze wzoru:

$$\lambda = uT$$

lub

$$\lambda = \frac{\mathbf{u}}{\mathbf{f}}$$

skad

$$f = \frac{u}{\lambda}$$
.

W naszym zadaniu długość fali λ znajdziemy z odległości pomiędzy węzłami (4 cm), co stanowi połowę długości fali. Długość fali λ będzie więc wynosić 8 cm (**rys. 2.22 c'**). Mamy więc:

$$f = \frac{30 \text{ m/s}}{0.08 \text{ m}} = 375 \frac{1}{\text{s}}$$

b) Kolejne niższe częstości drgań struny otrzymamy wtedy gdy wytworzy się inna ilość węzłów. Gdy będzie trzy węzły, dwa w punktach zaczepienia struny i jeden w środku (dwie połówki) (**rys. 2.22 b**'), wtedy będziemy mieli

$$L = 2 \cdot \frac{\lambda_2}{2} ,$$

ale

$$\lambda_2 = u \ T_2 = \frac{u}{f_2} .$$

Rys. 2.22. Odległość od węzła do węzła stanowi połowę długości fali

Mamy więc

$$L = 2 \cdot \frac{u}{2 f_2},$$

skad

$$f_2 = \frac{2 \cdot u}{2 L},$$

$$f_2 = \frac{30 \text{ m/s}}{0.12 \text{ m}} = 250 \text{ Hz}$$

Analogicznie obliczymy częstość drgań struny, gdy będą tylko dwa węzły, w punktach przymocowania struny (**rys. 2.22 a'**):

$$L = \frac{\lambda_1}{2}$$
, ale $\lambda_1 = u \ T_1 = \frac{u}{f_1}$.

Mamy więc

$$L = \frac{1}{2} \cdot \frac{u}{f_1},$$

stąd

$$f_1 = \frac{u}{2L}$$

$$f_1 = \frac{30 \text{ m/s}}{2 \cdot 0.12 \text{ m}} = 125 \text{ Hz}.$$

Możemy też napisać ogólny wzór na częstość drgań w zależności od ilości połówek fal na danej długości struny:

$$L = \frac{n \lambda_n}{2},$$

gdzie $n = 1, 2, 3 \dots n$, stąd

$$\lambda_{\rm n} = \frac{2 \, \rm L}{\rm n}$$

oraz

$$f_{_{n}} = \frac{u}{\lambda_{_{n}}} = \frac{n \cdot u}{2 \ L} \cdot$$

2.40. Znaleźć siłę naciągu stalowej struny o długości L = 0.5 m i średnicy d = 0.2 mm, jeżeli wiadomo, że jest ona zestrojona z kamertonem o częstości drgań f = 435 Hz.

Rozwiązanie

Wzór na okres drgań jednorodnej struny (w przypadku tylko dwóch węzłów, w punktach zaczepienia struny) jest następujący:

$$T = 2 L \sqrt{\frac{m}{F}}$$
,

gdzie L jest długością struny,

m – masą jednostki długości struny,

F – siłą naciągu struny.

Wyprowadzenie wzoru patrz: Halliday "Podstawy Fizyki" t. 2 str. 132, PWN, 2006.

Po przekształceniu będziemy mieli:

$$F = \frac{4 L^2 m}{T^2},$$

albo

$$F = 4 L^2 m f^2,$$

gdzie

$$m = \pi \frac{d^2}{4} \rho L$$

 ρ jest gęstością materiału struny, a L = 0,5 m.

Ostatecznie będziemy mieli:

$$F = \pi d^2 \rho L^3 f^2,$$

$$F = 46N$$
.

2.41. Wychylenie z położenia równowagi punktu znajdującego się w odległości x = 4 cm od źródła dźwięku w chwili t = 1/6 T jest równe połowie amplitudy. Obliczyć długość fali dźwiękowej.

Rozwiązanie

Wychodzimy z ogólnego równania fali (2.25):

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right),\,$$

ale

$$y = \frac{1}{2} A \cdot$$

Mamy więc

$$\frac{1}{2}A = A\sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right).$$

Sinus jest równy $\frac{1}{2}$ gdy kąt wynosi $\frac{\pi}{6}$.

Możemy więc napisać:

$$\frac{\pi}{6} = 2 \pi \left(\frac{t}{T} - \frac{x}{\lambda} \right)$$

Z powyższego równania otrzymamy szukaną długość fali

podstawiając za $t = \frac{T}{6}$ oraz za x = 4 cm.

$$\lambda = 48$$
 cm.

2.42. Okres drgań źródła dźwięku wynosi $T = \frac{1}{17}$ s. Prędkość fali głosowej 340 m/s.

Obliczyć różnicę faz drgań dwóch punktów odległych od źródła dźwięku o $x_1 = 10$ m i $x_2 = 20$ m.

Rozwiązanie

Sposób I

Należy obliczyć długość fali dźwiękowej:

$$\lambda = \nu \cdot T$$

$$\lambda = 20 \text{ m}.$$

Różnicę faz równą 2π będą miały punkty odległe od siebie o długość fali λ = 20 m.

Długość fali $\lambda=20$ m odpowiada różnicy faz 2π , więc odległość $\Delta x=10$ cm będzie odpowiadać różnicy faz π .

$$\Delta \varphi = \pi$$
.

Sposób II

$$\begin{split} y_1 &= A \sin(\omega \ t - k x_1), \\ y_2 &= A \sin(\omega \ t - k x_2), \\ \varphi_2 - \varphi_1 &= \omega t - k x_2 - \omega t + k x_1, \\ \Delta \phi &= k(x_1 - x_2), \\ \text{gdzie } k \text{ jest liczbą falową i wynosi } k = \frac{2 \ \pi}{\lambda} = \frac{2 \ \pi}{v \cdot T} \,. \end{split}$$

Po podstawieniu wartości liczbowych otrzymamy:

$$\Delta \varphi = \pi$$
.

2.43. Dwa samochody poruszają się po autostradzie naprzeciwko siebie z jednakowymi prędkościami v = 108 km/h. Jeden z nich wysyła sygnał o częstości $f_0 = 450$ Hz. Jaką częstość odbierze kierowca drugiego samochodu? Prędkość głosu wynosi $v_g = 340$ m/s.

Rozwiązanie

Częstość drgań jaką odbiera nieruchomy obserwator gdy źródło dźwięku przybliża się do niego zgodnie ze wzorem Dopplera wynosi (wyprowadzenie wzoru Dopplera można znaleźć w podręczniku Cz. Bobrowskiego "Fizyka – Krótki kurs").

$$f_1 = f_0 \frac{v_g}{v_g - U},$$

gdzie v_g – jest prędkością dźwięku,

U – prędkością źródła dźwięku,

 f_0 – częstością drgań źródła, gdy jest ono w spoczynku.

Mamy więc

$$f_1 = f_0 \frac{v_g}{v_\sigma - U_1} ,$$

gdzie U1 jest prędkością jednego pojazdu.

Ale pojazd drugi też jest w ruchu – przybliża się do pojazdu pierwszego. Dla obserwatora, który przybliża się do źródła dźwięku mamy wzór:

$$f_2 = f_0 \frac{v_g + U_2}{v_g},$$

gdzie U2 jest prędkością drugiego pojazdu,

f₀ – częstością drgań źródła, gdy obserwator jest w spoczynku.

W powyższym wzorze częstość f_0 jest zastąpiona sygnałem z pierwszego samochodu, tzn. częstością f_1 .

Mamy wiec

$$f = f_0 \frac{v_g}{v_g - U_1} \frac{v_g + U_2}{v_g}$$

lub

$$f = f_0 \frac{v_g + U_2}{v_g - U_1}$$

Po podstawieniu wartości liczbowych otrzymamy:

$$f = 450 \frac{340 + 30}{340 - 30},$$

f = 536 Hz.

2.44. Źródło dźwięku Z o częstości f_0 = 1000 Hz porusza się w powietrzu w stronę ściany w kierunku prostopadłym do niej (**rys. 2.23**) z prędkością U = 0,17 m/s. Wzdłuż tego kierunku rozmieszczono dwa nieruchome odbiorniki O_1 i O_2 w kolejności O_1 - Z - O_2 - ściana. Który odbiornik będzie rejestrować dudnienia i o jakiej częstości? Prędkość głosu v_g = 343,9 m/s.

Rozwiązanie

Rys. 2.23. Do odbiornika O_2 dochodzą dwie fale: 1) od zbliżającego się źródła dźwięku Z o częstości f_2 , 2) fala odbita od ściany o tej samej częstości f_2 i biegnąca w przeciwną stronę. Do odbiornika O_1 dochodzą też dwie fale: 1) od oddalającego się źródła dźwięku Z o częstości f_1 i 2) fala odbita od ściany o częstotliwości f_2 biegnąca w tą samą stronę co fala od źródła.

W odbiorniku O_2 będzie odbierany sygnał od przybliżającego się źródła dźwięku z częstością $f_2=f_0\frac{v_g}{v_g-U}$ (efekt Dopplera) oraz fala odbita od

W odbiorniku O_1 będzie odbierany sygnał od oddalającego się źródła Z o częstotliwości f_1 (efekt Dopplera) oraz dźwięk odbity od ściany o częstotliwości f_2 . Sygnały te biegną w tę samą stronę i w punkcie O_1 pojawią się tzw. dudnienia o częstotliwości $n = f_2 - f_1$, o ile różnica f_2 i f_1 nie będzie duża (Jaworski i współautorzy – Kurs Fizyki, t. I).

$$n = f_o \frac{v_g}{v_g - U} - f_0 \frac{v_g}{v_g + U},$$

$$n = f_0 v_g \frac{v_g + U - v_g + U}{v_g^2 - U^2},$$

$$n = f_0 v_g \frac{2 U}{v_g^2 - U^2},$$

ale

$$U^2 \ll v_g^2$$
.

ściany o tej samej częstości.

Ostatecznie otrzymamy:

$$n = \frac{2 f_0 U}{v_g},$$

$$n = 1 Hz$$
.

2.45. Obliczyć w jakim czasie dźwięk przebywa drogę L = 1000 m, jeżeli temperatura powietrza zmienia się liniowo od T_1 = 280 K do T_2 = 300 K. Średnia masa molowa powietrza wynosi μ = 29 kg/kmol oraz χ = 1,4. Określić również w jakim czasie przebędzie dźwięk tę odległość bez uwzględnienia zmiany temperatury na tym samym odcinku przyjmując prędkość dźwięku v_g = 332 m/s w temperaturze 0° C.

Rozwiązanie

Prędkość rozchodzenia się fali dźwiękowej w zależności od temperatury wyraża następujący wzór:

$$v = \sqrt{\frac{\chi R T}{\mu}}, \qquad (2.26)$$

gdzie R jest stałą gazową,

T jest średnią arytmetyczną dwóch danych temperatur:

$$T = \frac{T_1 + T_2}{2} \cdot$$

Mamy wiec

$$v = \sqrt{\frac{\chi R (T_1 + T_2)}{2 \mu}}.$$

Szukany czas otrzymamy ze wzoru:

$$t_1 = \frac{L}{v}$$

Po podstawieniu wartości liczbowych otrzymamy:

$$v = 241 \text{ m/s oraz } t_1 = 4,15 \text{ s.}$$

Natomiast bez uwzględnienia zmiany temperatury ośrodka (powietrza) czas otrzymany wynosi:

$$t_2 = 3.01 \text{ s}.$$

2.46. Do studni rzucono swobodnie kamień. Po upływie czasu t = 3 s, usłyszano uderzenie kamienia o wodę. Jaka jest głębokość h tej studni, jeżeli przyjmiemy prędkość dźwięku w powietrzu v = 330 m/s, a przyspieszenie ziemskie g = 9,80 m/s². Nie uwzględniamy oporu powietrza.

Rozwiązanie

Mierzony czas t składa się z dwóch czasów: t_1 czasu potrzebnego na spadnięcie kamienia do wody i czasu t_2 potrzebnego na przebycie dźwięku od lustra wody do ucha obserwatora.

Mamy więc: $t = t_1 + t_2$.

$$h = \frac{g t_1^2}{2} \text{ stand } t_1 = \sqrt{\frac{2 h}{g}},$$

$$h = v t_2 \text{ stad } t_2 = \frac{h}{v}.$$

Mamy więc:

$$t = \sqrt{\frac{2 h}{g}} + \frac{h}{v} \cdot$$

Z równania powyższego możemy wyznaczyć szukaną głębokość studni h. W tym celu przekształcamy to równanie w sposób następujący:

$$\left(t - \frac{h}{v}\right)^2 = \frac{2h}{g}.$$

Następnie, otrzymujemy równanie kwadratowe z niewiadomą h:

$$gh^2 - 2v h (tg + v) + t^2 v^2 g = 0.$$

Rozwiązaniem tego równania będzie:

$$h_{1,2} = \frac{v \ \left(t \ g \ + \ v\right) \pm v \sqrt{v^2 + 2 \ t \ g \ v}}{g} \ .$$

Po podstawieniu wartości liczbowych otrzymamy:

$$h = 40.2 \text{ m}.$$

Drugi wynik jest nierealny (ok. 24 km).

2.47. Obliczyć prędkość rozchodzenia się fali dźwiękowej (podłużnej) w belce stalowej, której gęstość wynosi $\rho = 7860 \text{ kg/m}^3$, a moduł Younga $E = 21 \cdot 10^{10} \text{ N/m}^2$.

Rozwiązanie

Prędkość rozchodzenia się fali dźwiękowej (podłużnej) w ciałach stałych w formie prętów czy drutów wyraża się wzorem:

$$\mathbf{v} = \sqrt{\frac{\mathbf{E}}{\rho}} \,, \tag{2.27}$$

gdzie E jest modułem Younga, ρ – gęstością danego materiału.

$$v = \sqrt{\frac{21 \cdot 10^{10} \text{ N/m}^2}{7860 \text{ kg/m}^3}} = 5100 \text{ m/s}.$$

Uwaga! jeżeli pręt czy drut jest rozciągnięty siłą F, to w powyższym wzorze moduł Younga zastąpiony jest siłą F, a gęstość ρ gęstością liniową ρ_1 :

$$v = \sqrt{\frac{F}{\rho_1}} {.} {(2.28)}$$

Gdy ośrodkiem w którym rozchodzi się fala dźwiękowa jest ciecz, to moduł Younga zastąpiony jest modułem ściśliwości cieczy k:

$$v = \sqrt{\frac{k}{\rho}} {.} {(2.29)}$$

2.48. Płaska fala dźwiękowa rozchodzi się wzdłuż osi OX. Współczynnik tłumie-

nia fali wynosi $\gamma = 2.3 \cdot 10^{-4} \frac{1}{\text{cm}}$. W punkcie początkowym osi OX poziom

głośności wynosił $i_1=60$ fonów. Znaleźć poziom głośności w odległości równej r=50 m licząc od początku osi OX oraz znaleźć taką odległość x, przy której nie będzie słychać głosu.

Rozwiązanie

W fali płaskiej, straty energii są tylko z powodu pochłaniania przez ośrodek energii. Wtedy amplituda drgań maleje według wzoru:

$$A=A_0\,e^{-\gamma r}$$
 (patrz: Fizyka – Poradnik encyklopedyczny – Jaworski, Detłaf, PWN 1995) lub

$$\frac{A}{A_0} = e^{-\gamma r} \cdot$$

Po podniesieniu obu stron ostatniego równania do kwadratu otrzymamy:

$$\left(\frac{A}{A_0}\right)^2 = e^{-2\gamma r}.$$

Energia fali jest wprost proporcjonalna do kwadratu amplitudy ($E\sim A^2$). Możemy więc wyrażenie (A/A_0)² zastąpić stosunkiem natężeń fali I_2/I_1 (natężeniem fali nazywamy stosunek ilości energii przenikającej przez daną powierzchnię do wielkości tej powierzchni i do czasu, w ciągu którego energia ta przeniknie przez daną powierzchnię).

Mamy więc

$$\frac{I_2}{I_1} = \frac{E_2}{E_1} = \left(\frac{A_2}{A_1}\right)^2 = e^{-2 \gamma r},$$
skąd
$$I_2 = I_1 e^{-2 \gamma r}.$$
(2.30)

Poziom głośności dźwięku (zgodnie z prawem Webera-Fechnera) jest proporcjonalny do logarytmu stosunku jego natężenia I do natężenia tego samego dźwięku na progu słyszalności I_0 i wyraża się wzorem:

$$i_1 = 10 \log \frac{I_1}{I_0},$$

$$i_2 = 10 \log \frac{I_2}{I_0} .$$

Jeżeli odejmiemy stronami powyższe równania:

$$i_2 - i_1 = 10 \log \frac{I_2}{I_0} - 10 \log \frac{I_1}{I_0}$$

$$i_2 - i_1 = 10 \log \frac{I_2}{I_1}$$
,

i uwzględnimy wzór (2.30), otrzymamy:

$$i_2 - i_1 = 10 \log \frac{I_1 e^{-2 \gamma r}}{I_1},$$

$$i_2 = i_1 + 10 \log e^{-2 \gamma r}.$$
(2.31)

Ponieważ we wzorze (2.30) występuje liczba e, będąca podstawą logarytmu naturalnego więc logarytm dziesiętny należy zamienić na logarytm naturalny (ln), zgodnie ze wzorem: $log x = \frac{ln x}{2,3}$.

$$i_2 = i_1 + 10 \frac{\ln e^{-2 \gamma r}}{2.3},$$

$$i_2 = i_1 + \frac{10 (-2 \gamma r)}{2.3}.$$
(2.32)

Po podstawieniu wartości liczbowych otrzymamy:

$$i_2 = 50$$
 fonów.

Odległość x, przy której nie słychać dźwięku obliczymy podstawiając do równania (2.32) wartości: $i_2 = 0$ oraz r = x.

Mamy więc

$$0 = i_1 + 10 \frac{(-2 \ \gamma \ x)}{2.3}$$

Wstawiając wartości i1 = 60 fonów oraz γ = 2,3 · 10⁻² m⁻¹ otrzymamy:

$$x = 300 \text{ m}.$$

2.49. Natężenie fali dźwiękowej wynosi $I = 1 \frac{W}{m^2}$. Ilu dB odpowiada to natężenie?

Rozwiązanie

Poziom natężenia dźwięku (głośność) określa się logarytmem dziesiętnym ze stosunku nat ężenia danego dźwięku do natężenia progowego I_0 i wyraża się w belach (1 B) lub w decybelach (1B = 10 dB).

$$i = log \frac{I}{I_0}$$

gdzie

 $I_0 = 10^{-12} \frac{W}{m^2}$ jest natężeniem progowym (próg słyszalności).

$$i = log \frac{1 W/m^2}{10^{-12} W/m^2} = log 10^{12}$$
,

i = 12 beli.

Zadania uzupełniające

2.50. Punkt materialny wykonujący drgania harmoniczne o okresie drgań T jest w chwili początkowej $t_0 = 0$ w maksymalnej odległości od położenia równowagi. Obliczyć po upływie jakiego czasu odległość ta zmaleje do połowy.

Odp.
$$t = \frac{T}{6}$$
.

2.51. Punkt materialny drga ruchem harmonicznym o okresie T. Obliczyć po upływie jakiego czasu prędkość będzie równa połowie prędkości maksymalnej oraz po upływie jakiego czasu przyśpieszenie będzie równe połowie przyśpieszenia maksymalnego.

Odp.
$$t_1 = \frac{T}{6}$$
, $t_2 = \frac{T}{12}$.

2.52. Punkt materialny drga ruchem harmonicznym z okresem drgań T = 3 s, Obliczyć fazę początkową tego ruchu, jeżeli po czasie t = 0,5 s wychylenie było równe połowie amplitudy.

Odp.
$$\varphi_0 = \frac{\pi}{6} = 30^\circ$$
.

2.53. Punkt materialny wykonuje drgania harmoniczne z amplitudą A = 1,5 cm

i maksymalną prędkością $\,{\rm v_m}=94.2\frac{{\rm cm}}{{\rm s}}\,.$ Obliczyć okres drgań tego ruchu. Odp. T = 0,1 s.

2.54. Punkt materialny drga ruchem harmonicznym z amplitudą A=0.5 m. W chwili początkowej $t_0=0$ znajduje się w położeniu równowagi. Dla fazy równej 60^0 ma prędkość v=3.14 $\frac{m}{s}$. Obliczyć okres drgań tego ruchu.

Odp.
$$T = 0.5 \text{ s.}$$

2.55. Skok tłoka w cylindrze samochodowym wynosi h = 10 cm. Jaka jest jego maksymalna prędkość, gdy wykonuje on n = 3000 obrotów na minutę.

Odp.
$$V_m = 16 \frac{m}{s}$$
.

2.56. Punkt materialny wykonuje drgania harmoniczne z częstością $v=10~{\rm s}^{-1}$ i amplitudą A = 12 cm. Obliczyć jakie będzie wychylenie z położenia równowagi po czasie t = 21 s.

Odp.
$$x = 6$$
 cm.

2.57. Punkt materialny porusza się ruchem harmonicznym o amplitudzie A i okresie T i ma w pewnej chwili prędkość v. Obliczyć dla tej chwili wartość przyśpieszenia tego punktu.

Odp.
$$a = \frac{2 \pi}{T^2} \sqrt{4 \pi^2 A^2 - v^2 T^2}$$
.

2.58. Znaleźć okres i amplitudę drgań ruchu punktu określonego równaniem x = 3sint 2t – cos2t.

Odp.
$$A = \sqrt{10}$$
, $T = \pi = 3.14$ s.

2.59. Znaleźć amplitudę i fazę początkową ruchu harmonicznego w wyniku złożenia dwóch jednakowo skierowanych drgań danych równaniami:

$$x_1 = 4 \cos \left(5 \omega t + \frac{\pi}{2} \right),$$

$$x_2 = 3 \cos \left(5 \omega t + \frac{\pi}{4} \right).$$

Odp.
$$A = \sqrt{42}$$
, $tg\varphi = 2.9$.

2.60. Dodać graficznie dwa względem siebie prostopadłe ruchy harmoniczne o jednakowych amplitudach i okresach, ale różniących się fazą początkową $\phi_0 = 60^{\circ}$.

Odp. Ruch wypadkowy odbywa się po elipsie.

2.61. Ciało porusza się ruchem harmonicznym. Obliczyć ile razy energia kinetyczna tego ciała jest większa od energii potencjalnej w połowie amplitudy.

Odp.
$$\frac{E_k}{E_p} = 3$$
.

2.62. Obliczyć współczynnik odkształcenia sprężyny, wiedząc, że maksymalna energia kinetyczna drgań ciała zawieszonego na tej sprężynie jest wynosi E = 1 J, a amplituda A = 5 cm.

Odp.
$$k = \frac{2 E}{A^2}$$
, $k = 800 N/m$.

2.63. Punkt materialny wykonuje ruch harmoniczny zgodnie z równaniem: $x = A \cos \omega t$. Obliczyć stosunek energii kinetycznej punktu do jego energii potencjalnej po upływie czasu $t = \frac{T}{12}$ s od chwili rozpoczęcia ruchu.

Odp.
$$\frac{E_k}{E_p} = \frac{1}{3}$$
.

2.64. Ciało o masie m = 2 kg spadło z wysokości h = 0,5 m na szalkę wagi sprężynowej o współczynniku sprężystości k = 1600 N/m i nie odrywając się od niej wykonywało drgania harmoniczne. Obliczyć największe skrócenie sprężyny, jeżeli masę szalki i sprężyny pomijamy.

Odp.
$$\Delta x = \frac{m g}{h} \sqrt{1 + \frac{2 k h}{mg}}$$
,
 $\Delta x = 0.12 m$.

2.65. Kulka miedziana zawieszona na sprężynie wykonuje drgania. Obliczyć, ile razy zmieni się okres drgań, jeżeli w miejsce kulki miedzianej zawiesimy kulkę aluminiową o takim samym promieniu. Gęstość miedzi wynosi $\rho_{\text{Cu}} = 890 \frac{\text{kg}}{\text{m}^3}$,

aluminium
$$\rho_{Al} = 270 \frac{\text{kg}}{\text{m}^3}$$
.

Odp.
$$\frac{T_{Al}}{T_{Cu}} = \sqrt{\frac{\rho_{Al}}{\rho_{Cu}}} = 0.55$$
.

2.66. Skala wagi sprężynowej ma zakres od 0 do 320 N i przy maksymalnym obciążeniu rozciągnie się o 20 cm. Obliczyć masę ciała, które zawieszone na tej wadze wykonuje drgania o częstości v=2 $\frac{1}{s}$.

Odp.
$$m = 10,1 \text{ kg}$$
.

2.67. Ciężarek o masie M zawieszony na końcu sprężyny pionowej wykonuje drgania o okresie T_0 . Obliczyć, jaki będzie okres drgań ciężarka gdy dołożymy do niego drugi ciężarek o masie m.

Odp.
$$T = T_0 \sqrt{1 + \frac{M}{m}}$$
.

2.68. Punkt materialny o masie m posiadający ładunek elektryczny q znajduje się na prostej poziomej pomiędzy dwoma jednoimiennymi ładunkami Q odległymi od siebie o odległość 2L. W chwili początkowej punkt materialny znajdował się w środku odległości 2L. Po wychyleniu w którąkolwiek stronę naładowany punkt materialny będzie drgał. Obliczyć okres tych drgań, przy założeniu, że wychylenie z położenia równowagi jest dużo mniejsze niż L.

Odp.
$$T = \pi \sqrt{\frac{L^3 m}{k q Q}}$$
, gdzie $k = \frac{1}{4\pi\epsilon_0}$.

2.69. Areometr o masie m = 0,14 kg wykonuje drgania pionowe w cieczy o okresie T = 3 s. Obliczyć gęstość tej cieczy jeżeli średnica rurki areometru wynosi d = 0,8 cm.

Odp.
$$\rho = \frac{16 \pi \text{ m}}{\text{T}^2 \text{d}^2 \text{g}}, \ \rho = 1230 \ \frac{\text{kg}}{\text{m}^3}.$$

2.70. W naczyniach połączonych o różnych przekrojach poprzecznych S_1 i S_2 znajduje się rtęć o masie m. Obliczyć okres drgań, gdy została ona wprowadzona w ruch drgający. Gęstość rtęci wynosi ρ .

Odp.
$$T = 2 \pi \sqrt{\frac{m\left(1 + \frac{S_1}{S_2}\right)}{4 \rho g S_1}}$$
.

2.71. Walec o masie m i polu przekroju S pływa w pozycji pionowej pomiędzy dwiema cieczami o gęstościach ρ_1 i ρ_2 . W stanie równowagi granica pomiędzy górną i dolną częścią przebiega przez środek walca. Obliczyć okres drgań walca po wytrąceniu go z położenia równowagi.

Odp.
$$T = 2 \pi \sqrt{\frac{m}{S g(\rho_1 - \rho_2)}}$$
.

2.72. Punkt materialny porusza się w fikcyjnym tunelu przechodzącym w odległości a od środka Ziemi, rozpoczynając ruch z powierzchni Ziemi bez prędkości początkowej. Napisać równanie różniczkowe ruchu punktu, obliczyć okres drgań.

Odp.
$$\frac{d^2x}{dt^2} + \frac{g_0}{R}x = 0$$
, $T = 2 \pi \sqrt{\frac{R}{g_0}}$.

2.73. Obliczyć okres drgań wahadła matematycznego o długości L=20cm wahającego się w polu elektrycznym skierowanym pionowo do góry o wartości E=5 N/C, jeżeli masa kulki wynosi m=0.01 kg, a ładunek elektryczny dodatni q=50 μ C. Przyśpieszenie ziemskie można przyjąć g=10 m/s².

Odp.
$$T = 2 \pi \sqrt{\frac{m L}{m g - E q}}$$
, $T = 1,1 s$.

2.74. Cienki żelazny drążek o długości L = 1 m waha się dookoła poziomej osi i prostopadłej do drążka, przechodzącej przez punkt odległy od jego końca o odległość d = 0,25 m. Obliczyć okres wahań tego drążka.

Odp.
$$T = 2 \pi \sqrt{\frac{2(L^2 - 3L d + 3 d^2)}{3 g(L - 2 d)}}$$
, $T = 1.5 s.$

2.75. Pręt o masie m = 200 g i długości L = 1,5 m osadzono na poziomej osi przechodzącej przez jego środek i prostopadłej do pręta. Obliczyć o jakiej masie ciężarek należy umocować na jednym z jego końców, ażeby okres drgań tego wahadła fizycznego wynosił T = 2 s.

Odp.
$$m_x = \frac{2 \pi^2 m L}{3 T^2 g - 6 \pi^2 L}$$
, $m_x = 190 g$.

2.76. Obliczyć zredukowaną długość wahadła fizycznego jako cienkiego pręta o długości L = 90 cm, jeżeli oś obrotu przechodzi przez jeden z jego końców.

Odp.
$$L_x = \frac{2}{3} L$$
, $L_x = 60 \text{ cm}$

2.77. Po wewnętrznej gładkiej powierzchni kuli o promieniu R = 12 cm ślizga się niewielki przedmiot wykonując drgania harmoniczne. Obliczyć okres drgań przedmiotu jeżeli kula umieszczona jest w windzie poruszającej się w dół z przyśpieszeniem a = ½ g. Promień wewnętrzny kuli R jest o wiele większy od rozmiaru przedmiotu. Przyspieszenie ziemskie można przyjąć g = 10 m/s².

Odp.
$$T = 2 \pi \sqrt{\frac{3 R}{2 g}}$$
, $T = 0.8 s$

2.78. Pełną kulę o masie m = 2 kg przywiązano do poziomej nieważkiej sprężyny, w ten sposób, że może się ona toczyć bez poślizgu po poziomej powierzchni. Współczynnik sprężystości sprężyny można wyznaczyć stąd, że siła F = 1,25 N rozciąga sprężynę na odległość x = 0,25 m. Napisać równanie różniczkowe ruchu kuli i obliczyć okres drgań.

Odp.
$$\frac{d^2x}{dt^2} + \frac{5}{7} \frac{k}{m} x = 0$$
,
 $T = 2 \pi \sqrt{\frac{7}{5} \frac{m}{k}}$,
 $T = 4.7 \text{ s.}$

2.79. Obliczyć logarytmiczny dekrement tłumienia drgań wahadła matematycznego o długości L = 1 m, jeżeli w ciągu czasu t = 1min amplituda wahań zmalała do połowy.

Odp.
$$\delta = \frac{\ln 2}{t} 2 \pi \sqrt{\frac{L}{g}}, \quad \delta = 0.023.$$

2.80. Amplituda drgań kamertonu zmniejszyła się n = 100 razy po upływie czasu t = 15 s. Obliczyć współczynnik tłumienia drgań.

Odp.
$$\beta = \frac{\ln n}{t}$$
, $\beta = 0.3 \text{ s}^{-1}$.

2.81. Obliczyć logarytmiczny dekrement tłumienia drgań wahadła matematycznego o długości L=50 cm, jeżeli po czasie t=5 min jego energia całkowita zmniejszyła się $n=4\cdot 10^4$ razy.

Odp.
$$\delta = \frac{2 \pi}{\sqrt{\frac{4 t^2 g}{L (\ln n)^2} - 1}}, \quad \delta = 0,025.$$

2.82. Obliczyć logarytmiczny dekrement tłumienia drgań ruchu harmonicznego tłumionego, jeżeli w ciągu czasu t = 10 s trwania ruchu energia zmalała do połowy, a okres drgań tłumionych wynosił T = 2 s.

Odp.
$$\delta = \frac{\ln 2}{10}, \ \delta = 0.069.$$

2.83. Logarytmiczny dekrement tłumienia drgań wahadła matematycznego jest równy $\delta = 0,2$. Obliczyć ile razy zmaleje amplituda tego wahadła w ciągu jednego całkowitego okresu drgań.

Odp.
$$n = 1,23$$
.

2.84. Ciało wykonuje drgania o okresie T = 0,1 s. Obliczyć współczynnik tłumienia drgań (β) jeżeli w ciągu czasu t = 10 s amplituda drgań zmalała do wartości 0,9 amplitudy początkowej oraz znaleźć logarytmiczny dekrement tłumienia drgań.

Odp.
$$\beta = \frac{\ln 10 - \ln 9}{10}, \quad \beta = 0.01.$$

 $\delta = \beta T, \quad \delta = 0.001.$

2.85. Ciało o masie m = 1 kg zaczepione do sprężyny o współczynniku sprężystości $k = 200 \frac{N}{m}$, wykonuje drgania w cieczy. Obliczyć okres drgań w cieczy i współczynnik tłumienia, jeżeli siła oporu jest wprost proporcjonalna do prędkości, a amplituda drgań zmalała 12 krotnie po 6-ciu okresach.

Odp.
$$T = \frac{1}{6} \sqrt{(36 \cdot 4 \pi^2 + ln^2 \cdot 12) \frac{m}{k}}$$
, $T = 0.45 \text{ s.}$
$$\beta = \frac{ln2}{6 \text{ T}}, \quad \beta = 0.92.$$

2.86. Amplituda drgań tłumionych zmalała w ciągu czasu t = 5 s od wartości $A_1 = 3$ cm do wartości $A_2 = 1$ cm. Obliczyć po upływie jakiego czasu t_1 amplituda zmaleje do wartości $A_3 = 0,5$ cm, licząc od amplitudy A_2 .

Odp.
$$t_1 = \frac{\ln 2}{\ln 3} \cdot 5$$
, $t_1 = 3.1 \text{ s.}$

2.87. Obliczyć amplitudę drgań wymuszonych ciała o masie M=1 kg zawieszonego na sprężynie o współczynniku sprężystości k=400 N/m, jeżeli sinusoidalna siła wymuszająca drgania ma amplitudę $F_0=16$ N i okres T=0.5 s. Opory ruchu pomijamy.

Odp.
$$A = 6.5 \text{ cm}$$
.

2.88. Obliczyć prędkość wagonu kolejowego, przy której wystąpi rezonans na skutek uderzeń w miejscu łączenia się szyn, jeżeli ugięcie statyczne resorów wynosi $\Delta L = 5$ cm, a długość szyn jest L = 12 m.

Odp.
$$v_r = \frac{L}{2 \pi \sqrt{\frac{\Delta L}{g}}}, \quad v_r = 96 \frac{km}{h}.$$

2.89. Na ciało o masie m = 6 kg przyczepione do dolnego końca pionowej sprężyny o współczynniku sprężystości $k=150\,$ N/m działa siła wymuszająca sinusoidalna. Obliczyć częstość rezonansową, jeżeli siła oporu jest proporcjonalna do prędkości i wynosi $F_T=80\,$ N, przy prędkości równej $v=2\,$ m/s.

Odp.
$$f_r = \frac{5}{6 \pi} Hz$$
, $f_r = 0.26 Hz$.

2.90. Znaleźć rezonansową częstość drgań jeżeli przy częstościach siły wymuszającej $f_1 = 300 \text{ Hz}$ i $f_2 = 400 \text{ Hz}$ amplitudy drgań wymuszanych są jednakowe.

Odp.
$$f_r = \sqrt{\frac{f_1^2 + f_2^2}{2}}$$
, $f_r = 354$ Hz.

2.91. W jakiej odległości od źródła drgań o okresie T = 10⁻³ s w chwili t = T/2, przesunięcie cząstki drgającej od położenia równowagi jest równe połowie amplitudy, jeżeli szybkość rozchodzenia się fali jest równa 340 m/s.

Odp.
$$x = \frac{5 \text{ v T}}{12}$$
, $x = 14 \text{ cm}$.

2.92. Znaleźć wychylenie z położenia równowagi (y) punktu w chwili t = T/6 jeżeli punkt ten znajduje się w odległości $x = \frac{\lambda}{12}$ od źródła drgań o amplitudzie A = 5 cm. Odp. y = 2,5 cm.

2.93. Wychylenie z położenia równowagi punktu znajdującego się w odległości x=100~cm od źródła drgań jest równa $\frac{\sqrt{3}}{2}$ amplitudy. Odliczyć okres drgań fali, jeżeli daną odległość fala przebywa w czasie t=2 s a długość fali $\lambda=50~cm$.

Odp.
$$T = \frac{6 \lambda t}{6 x + \lambda}$$
, $T = 0.92 s$.

2.94. Wychylenie z położenia równowagi punktu znajdującego się w odległości x=100~cm od źródła drgań jest równe $\frac{\sqrt{2}}{2}$ amplitudy. Obliczyć w jakim czasie przebiegnie tę odległość fala, której okres drgań wynosi T=2~s, a prędkość jej rozchodzenia się wynosi $V=1,5\frac{m}{s}$.

Odp.
$$t = \frac{vT + 8x}{8v}$$
, $t = 0.91 \text{ s.}$

2.95. Jaka jest długość fali, jeżeli różnica faz punktów odległych o $\Delta x = 0,025$ m wynosi $\Delta \varphi = \frac{\pi}{6}$?

Odp.
$$\lambda = 0.3 \text{ m}$$
.

2.96. Na jeziorze wzbudzono falę, która dobiegła do stromego brzegu po upływie czasu t=1 min. Odległość pomiędzy grzbietami fali wynosiła $\lambda=1,5$ m, a czas pomiędzy kolejnymi uderzeniami grzbietów fal o brzeg wynosi T=2 s. Obliczyć w jakiej odległości x od brzegu wzbudzono falę.

Odp.
$$x = \frac{\lambda}{T} t$$
, $x = 45 \text{ m}$.

2.97. Dwa kamertony o częstościach $f_0 = 680$ Hz poruszają się względem nieruchomego obserwatora. Jeden kamerton oddala się, a drugi przybliża się do obserwatora z taką samą prędkością. Obserwator rejestruje dudnienia o częstości n = 3 Hz. Obliczyć prędkość kamertonów, jeżeli prędkość dźwięku w powietrzu wynosi v = 340 m/s.

Odp.
$$U = \frac{n}{2} \frac{v}{f_0}$$
, $U = 0.75 \frac{m}{s}$.

2.98. Gwizdek wysyłający fale o częstości $f_0 = 540$ drgań/s obraca się po kole o promieniu r = 70 cm z prędkością kątową $\omega = 15$ rad/s. Jaka jest najniższa oraz najwyższa częstość dźwięku słyszanego przez słuchacza znajdującego się w znacznej odległości i będącego w spoczynku?

Rozważyć przypadek, gdy koło oraz słuchacz znajdują się na tej samej płaszczyźnie. Przyjąć prędkość fali głosowej w powietrzu v = 330 m/s.

Odp.
$$f_1 = f_0 \frac{v}{v - \omega r}$$
, $f_1 = 557.8 \text{ s}^{-1}$. $f_2 = f_0 \frac{v}{v + \omega r}$, $f_2 = 523.3 \text{ s}^{-1}$.

2.99. Podczas powstawania fali stojącej w rurze Kundta obserwuje się n = 6 strzałek. Słup powietrza ma wtedy długość L = 0,41 m, a stalowy pręt o długości d = 1 m jest umocowany w środku. Obliczyć prędkość rozchodzenia się dźwięku w stali, jeżeli prędkość fali głosowej w powietrzu wynosi 343 m/s.

Odp.
$$v_s = v_p \frac{d n}{L}$$
, $v_s = 5019 \text{ m/s}$.

2.100. Jaka jest prędkość rozchodzenia się fali w linie kauczukowej o długości L = 2 m i masie m = 0,06 kg naprężonej siłą F = 500N.

Odp.
$$v = \sqrt{\frac{F L}{m}}$$
, $v = 130 \text{ m/s}$.

2.101. Ile dudnień na sekundę daje wraz z kamertonem naciągnięta stalowa struna, jeżeli częstość drgań kamertonu wynosi f=430 Hz, siła naciągu struny F=100 N, długość struny L=0.5 m, a średnica struny d=0.3 mm. Gęstość materiału struny $\rho=7700$ kg/m³.

Odp.
$$n = f - \frac{1}{L d} \sqrt{\frac{F}{\pi \rho}}$$
, $n = 5 s^{-1}$.

2.102. Głębokość morza mierzona jest za pomocą echosondy. Jaka jest głębokość morza jeżeli odstęp czasu między wysłaniem, a odbiorem sygnału wynosi $\Delta t = 2,5$ s. Moduł ściśliwości adiabatycznej wynosi $k = 2,1\cdot 10^9 \frac{N}{m^2}$, a gęstość wody morskiej $\rho = 1,03\cdot 10^3 \frac{kg}{m^3}$.

Odp.
$$h = \frac{t}{2} \sqrt{\frac{k}{\rho}}$$
, $h = 1778 \text{ m}$.

2.103. Ile wynosi moduł Younga metalu, jeżeli jego gęstość równa jest $\rho = 8,6\cdot 10^3 \ \frac{kg}{m^3}, \text{ a prędkość dźwięku w tym metalu jest } v = 4700 \ \frac{m}{s}.$

Odp.
$$E = v^2 \rho$$
, $E = 1.9 \cdot 10^{11} \text{ N/m}^2$.

2.104. Jakie jest natężenie fali dźwiękowej wyrażonej w W/m² hałasu o 70 dB przejeżdżającej ciężarówki?

Odp.
$$I = 10^{-5} \frac{W}{m^2}$$
.

2.105. Ile razy dźwięk 50 dB ma większe natężenie od dźwięku 20 dB?

Odp.
$$\frac{I_1}{I_2} = 1000$$
.

Rozdział III

Fizyka cząsteczkowa, przemiany gazowe, termodynamika

Zadania z rozwiązaniami

3.1. Obliczyć ile cząsteczek powietrza znajduje się w 1 cm³ przy ciśnieniu p = 10^{-4} mm Hg (p = 0,013 Pa) i w temperaturze t = 27° X. Dana jest liczba Avogadra N_A = $6\cdot10^{26}$ cz/kmol (ilość cząsteczek gazu w jednym kmolu).

Rozwiązanie

Objętość jednego kmola gazu w warunkach normalnych wynosi: $V_0 = 22,4 \text{ m}^3.$

Ilość cząsteczek w 1 m³ w warunkach normalnych wyliczamy dzieląc liczbę Avogadra przez objętość jednego kilomola

$$\begin{split} n_0 &= \frac{N_A}{V_0}, \\ n_0 &= \frac{6 \times 10^{26} \text{ cz/kmol}}{22,4 \text{ m}^3}, \\ n_0 &= 0,27 \cdot 10^{26} \text{ cz/m}^3, \\ n_0 &= 2,7 \cdot 10^{19} \text{ cz/cm}^3. \end{split}$$

Otrzymaliśmy liczbę Loschmidta (ilość cząsteczek gazu w 1 cm³ w warunkach normalnych). W celu obliczenia liczby cząsteczek przy dowolnym ciśnieniu, w dowolnej objętości i temperaturze, należy skorzystać z równania Clapeyrona dla jednego mola gazu:

$$pV = R T$$
,

gdzie R jest stałą gazową, która może być wyrażona przez ciśnienie, objętość i temperaturę w warunkach normalnych za pomocą wzoru:

$$R = \frac{p_0 V_0}{T_0}$$

Mamy więc

$$V = \frac{p_0 V_0}{T_0} \frac{T}{p} \,. \tag{3.1}$$

Ilość cząsteczek w dowolnych warunkach w jednostce objętości wyrazi się wzorem:

$$n' = \frac{N_A}{V}.$$

Uwzględniając (3.1) mamy

$$n' = \frac{N_A T_0 p}{V_0 T p_0}.$$
 (3.2)

Wyrażenie (3.2) jest ogólnym wzorem na ilość cząsteczek w jednostce objętości w zależności od ciśnienia i temperatury.

Ale

$$\frac{N_A}{V_0} = n_0 ,$$

więc

$$\mathbf{n'} = \mathbf{n_0} \frac{\mathbf{T_0} \mathbf{p}}{\mathbf{T} \mathbf{p_0}} \,. \tag{3.3}$$

Uwzględniając wartości liczbowe podane w treści zadania otrzymamy:

$$n' = 3.2 \cdot 10^{12} \frac{cz}{cm^3}$$

Natomiast dla ciśnienia $p = 10^5 \text{ Pa}$) i w temperaturze $t = 20^{\circ}\text{C}$ będziemy mieli:

$$n' = 2.5 \cdot 10^{19} \frac{cz}{cm^3}$$
.

Dla ciśnienia p = 100 Pa i temperatury t = 20°X mamy:

$$n' = 251 \cdot 10^{19} \frac{cz}{cm^3}$$
.

3.2. Ile cząsteczek azotu znajduje się w objętości $V = 50 \text{ cm}^3$ pod ciśnieniem $p = 10^{-7}$ mm Hg i w temperaturze $t = 17^{\circ}$ X. Znaleźć też gęstość tego gazu.

Rozwiązanie

Ilość cząsteczek azotu w 1 cm³ w podanych warunkach wyliczamy ze wzoru (3.3):

$$n' = n_0 \frac{T_0 p}{T p_0}$$
, $gdzie n_0 = 2,7 \cdot 10^{19} cz/m^3$.

Natomiast w dowolnej objętości V ilość cząsteczek będzie V razy większa:

$$n' = 2.7 \cdot 10^{19} \frac{T_0 p}{T p_0} \frac{cz}{cm^3} V$$
, gdzie $p_0 = 760 \text{ mm Hg.}$

Uwzględniając wartości liczbowe otrzymamy:

$$n' = 16.7 \cdot 10^{10} \frac{cz}{cm^3} = 16.7 \cdot 10^{16} \frac{cz}{m^3}$$

W celu znalezienia gęstości azotu, należy obliczyć masę jednej cząsteczki. Jest ona równa ilorazowi masy jednego kilomola przez ilość cząsteczek w jednym kilomolu:

$$m_o = \frac{\mu}{N_A}$$

$$m_0 = \frac{28 \frac{kg}{kmol}}{6 \cdot 10^{26} \frac{cz}{kmol}},$$

$$m_0 = 4,66 \cdot 10^{-26} \frac{\text{kg}}{\text{cz}}.$$

Szukana gęstość równa się iloczynowi masy jednej cząsteczki przez liczbę cząsteczek w $1~{\rm m}^3$.

$$\rho = \mathbf{m}_0 \; \mathbf{n}',$$

$$\rho = 7.78 \cdot 10^{-9} \frac{\text{kg}}{\text{m}^3}$$

Podczas, gdy w warunkach normalnych gęstość azotu wynosi

$$\rho = 1,25 \text{ kg/m}^3$$
.

3.3. Obliczyć ile cząsteczek znajduje się w kropelce wody (H_2O) o masie m=1 g oraz w 5-ciu gr siarkowodoru (H_2S) .

Rozwiązanie

Kmol wody ma masę m = 18 kg, więc

$$18 \text{ kg}$$
 – $6 \cdot 10^{26} \text{ cząsteczek}$

Stad

$$x = \frac{6 \cdot 10^{26} \cdot 0,001}{18} = 3,3 \cdot 10^{19} \text{ cz.}$$

Analogicznie wyliczamy ilość cząsteczek w 5-ciu gramach H₂S: Kmol siarkowodoru ma masę 34 kg, więc

0,005 kg - x cz.

Stąd

$$x = 8.8 \cdot 10^{22} \text{ cz.}$$

3.4. Ile cząsteczek rtęci znajduje się w 1 m³ powietrza w pomieszczeniu skażonym rtęcią, aż do stanu nasycenia w temperaturze T = 293 K, jeżeli ciśnienie pary nasyconej rtęci w tej temperaturze jest równe 10⁻³ mm Hg.

Rozwiązanie

Szukaną liczbę cząsteczek rtęci wyliczymy z ciśnienia pary rtęci korzystając ze wzoru (3.3):

$$n = n_0 \frac{T_0 p}{T p_0}$$

Po podstawieniu wartości liczbowych otrzymamy:

$$n = 3.3 \cdot 10^{19} \text{ cz/m}^3$$
.

3.5. Powietrze jest mieszaniną azotu i tlenu. Obliczyć ilość cząsteczek azotu i tlenu w 25 m³ w warunkach normalnych, jeżeli dana jest gęstość powietrza w warunkach normalnych d_0 = 1,29 kg/m³. Masa cząsteczkowa azotu μ_N = 28,02 kg/kmol, a masa cząsteczkowa tlenu μ_O = 31,98 kg/kmol. Ciśnienie wynosi p = 10,13·10⁴ Pa.

Rozwiązanie

Wychodzimy z równania Clapeyrona dla mieszaniny gazów:

$$p V = \left(\frac{m_N}{\mu_N} + \frac{m_0}{\mu_0}\right) R T, \qquad (3.4)$$

gdzie

$$\frac{m_{_{\rm N}}}{\mu_{_{\rm N}}}$$
 = $n_{_{\rm N}}$ jest liczbą kmoli azotu,

$$\frac{\mathrm{m_{ox}}}{\mu_{\mathrm{ox}}} = \mathrm{n_{ox}}$$
 jest liczbą kmoli tlenu.

Mamy więc

$$p = \frac{n_N + n_{ox}}{V} RT. \tag{3.5}$$

Potrzebne jest jeszcze jedno równanie. Będzie nim równanie na określenie gęstości:

$$d_0 = \frac{m_N + m_{ox}}{V} {3.6}$$

Masy azotu i tlenu możemy wyrazić za pomocą liczby kmoli:

$$m_N = \mu_N \cdot n_N$$
,

$$\mathbf{m}_{0\mathbf{X}} = \mu_{0\mathbf{X}} \cdot \mathbf{n}_{0\mathbf{X}},$$

więc równanie (3.6) przyjmie teraz postać:

$$d_o = \frac{\mu_N \cdot n_N + \mu_{ox} \cdot n_{ox}}{V}.$$
(3.7)

Równanie (3.5) i (3.7) stanowią układ równań, z których należy wyznaczyć $n_{\rm N}$ i $n_{\rm ox}.$

Z równania (3.7) wyznaczamy n_{0X} .

$$n_{ox} = \frac{V d_o - \mu_N \cdot n_N}{\mu_{ox}}$$
(3.8)

i wstawiamy do równania (3.5):

$$p = \left(n_{N} + \frac{V d_{0} - \mu_{N} \cdot n_{N}}{\mu_{ox}}\right) \frac{R T}{V}.$$

Z powyższego równania po odpowiednich przekształceniach otrzymamy liczbę kmoli azotu (n_N) :

$$n_{N} = \frac{V(p\mu_{ox} - d_{0}RT)}{RT(\mu_{ox} - \mu_{N})}.$$

Po podstawieniu wartości liczbowych otrzymamy:

$$n_N = 0.87$$
 kmoli.

Szukaną liczbę cząsteczek azotu w objętości V otrzymamy z iloczynu liczby kilomoli (n_N) przez liczbę Avogadra:

$$n'_{N} = 0.87 \text{ kmoli} \cdot 6 \cdot 10^{26} \text{ cz/kmol}$$

 $n'_{N} = 5.2 \cdot 10^{26} \text{ cz.}$

Liczbę kilomoli tlenu (n_{ox}) otrzymamy z równania (3.8):

$$n_{ox} = 0.213$$
 kmoli.

Szukaną liczbę cząsteczek tlenu w objętości V otrzymamy z iloczynu liczby kilomoli n_{ox} przez liczbę Avogadra:

$$n'_{ox} = 0,213 \text{ kmoli} \cdot 6 \cdot 10^{26} \text{ cz/kmol}$$

 $n'_{ox} = 1,23 \cdot 10^{26} \text{ cz}.$

Stosunek liczby cząsteczek azotu do liczby cząsteczek tlenu wynosi w przybliżeniu

$$\frac{n_{N}}{n_{ox}} = 4 \cdot$$

3.6. Naczynie zawiera mieszaninę azotu m₁ = 7 g i tlenku węgla o masie m₂ = 11g w temperaturze T = 290 K i pod ciśnieniem p = 10⁵ Pa. Obliczyć gęstość tej mieszaniny zakładając, że gazy te można uważać za doskonałe.

Rozwiązanie

Szukana gęstość gazów wyraża się wzorem:

$$d = \frac{m_1 + m_2}{V}.$$

Objętość znajdziemy z równania Clapeyrona dla mieszaniny gazów:

$$p V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) RT,$$

gdzie μ_1 i μ_2 to masy molowe tlenku węgla i azotu lub

$$V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) \frac{R T}{p},$$

więc

$$d = \frac{(m_1 + m_2)p}{(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2})RT} .$$

Po podstawieniu wartości liczbowych otrzymamy:

$$d = 1,162 \frac{kg}{m^3}$$
.

3.7. Balon o objętości V = 0,25 m³ jest napełniony mieszaniną dwutlenku węgla i pary wodnej w temperaturze t =327°C. Liczba cząsteczek CO₂ wynosi $N_1 = 6,6 \cdot 10^{21}$, a pary wodnej $N_2 = 0,9 \cdot 10^{21}$. Obliczyć ciśnienie p mieszaniny gazów oraz jej masę cząsteczkową μ . Dane masy molowe: $\mu_1 = 44$ kg/kmol dla CO₂ oraz $\mu_2 = 18$ kg/kmol dla pary wodnej.

Rozwiązanie

Wystarczy skorzystać z równania Clapeyrona dla mieszaniny gazów:

$$pV = (n_1 + n_2) RT$$
, gdzie n_1 i n_2 są liczbami kmoli.

Ale

$$n_1 = \frac{N_1}{N_A},$$

$$n_2 = \frac{N_2}{N_A},$$

gdzie N₁ i N₂ są liczbami cząsteczek.

Mamy więc

$$p V = \left(\frac{N_1}{N_A} + \frac{N_2}{N_A}\right) R T$$

i ostatecznie

$$p = \left(N_1 + N_2\right) \frac{R T}{V N_{\Delta}},$$

$$p = 249 \text{ Pa}.$$

Sumaryczną masę cząsteczkową mieszaniny gazów wyliczyć można ze wzoru:

$$\mu = \frac{\mathrm{m_{ca}}}{\mathrm{n}}$$

gdzie n jest całkowitą liczbą kmoli, a m_{ca} jest całkowitą masą mieszaniny:

$$\mu = \frac{\mathbf{m}_1 + \mathbf{m}_2}{\mathbf{n}_1 + \mathbf{n}_2} \,, \tag{3.9}$$

gdzie $m_{1,}$ m_{2} są masami poszczególnych gazów, które należy wyrazić za pomocą ilości cząsteczek:

$$\mathbf{m}_1 = \mathbf{m}'_0 \cdot \mathbf{N}_1$$

$$m_2 = m_0 \cdot N_2$$

gdzie m_0 m_0 są masami pojedynczych cząsteczek gazów CO_2 i pary wodnej odpowiednio.

Masa jednej cząsteczki wyrazi się wzorem:

$$m'_{0} = \frac{\mu_{1}}{N_{A}}$$
.

Otrzymamy więc:

$$m_{_1} = \frac{\mu_{_1}}{N_{_A}} N_{_1} \ m_{_2} = \frac{\mu_{_2}}{N_{_A}} N_{_2} \cdot$$

Natomiast liczby kilomoli n_1 i n_2 mogą być wyrażone za pomocą wzorów:

$$n_1 = \frac{m_1}{\mu_1} \quad n_2 = \frac{m_2}{\mu_2}$$

Podstawiając do wzoru (3.9) otrzymane wartości na m_1 , m_2 , n_1 , n_2 otrzymamy:

$$\mu = \frac{\mu_1 N_1 + \mu_2 N_2}{N_1 + N_2},$$

$$\mu = 41 \frac{\text{kg}}{\text{kmol}}$$
.

3.8. W zbiorniku o objętości V = 40 dcm³ znajduje się azot o masie m_1 = 50 g i tlen o masie m_2 = 10 g. Obliczyć, do jakiej temperatury można ogrzać mieszaninę tych gazów, jeżeli ścianki zbiornika wytrzymują maksymalne ciśnienie $p = 2 \cdot 10^5$ Pa. Dane są: stała gazowa $R = 8.31 \cdot 10^3$ $\frac{J}{\text{kmol} \cdot \text{K}}$ oraz masy molowe tlenu i azotu $\mu_1 = 32$ $\frac{\text{kg}}{\text{kmol}}$ $\mu_2 = 28$ $\frac{\text{kg}}{\text{kmol} \cdot \text{K}}$.

Rozwiązanie

Szukaną temperaturę wyliczymy z równania Clapeyrona:

$$pV = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) RT,$$

stąd

$$T = \frac{pV}{\left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) R},$$

$$T = 459 \text{ K}.$$

3.9. Suche powietrze składa się z 23,1% tlenu (w stosunku do całej masy), 75,6% azotu i 1,3% argonu. Udział pozostałych gazów jest zaniedbywanie mały. Obliczyć średnią masę cząsteczkową powietrza.

Rozwiązanie

Całkowita ilość kmoli mieszaniny równa się sumie kmoli poszczególnych składników:

$$\frac{M}{\mu_{x}} = \frac{23.1 \text{ M}}{100 \mu_{1}} + \frac{75.6 \text{ M}}{100 \mu_{2}} + \frac{1.3 \text{ M}}{100 \mu_{3}},$$
(3.10)

gdzie M jest masą całkowitą mieszaniny,

 $\mu_1 = 32 \text{ kg/kmol}$,

 $\mu_2 = 28 \text{ kg/kmol}$,

 $\mu_3 = 40 \text{ kg/kmol}.$

Podstawiając powyższe liczby do równania (3.10) i odpowiednio przekształcając otrzymamy:

 $\mu_x = 28.9 \text{ kg/kmol} = 29 \text{ kg/kmol}.$

3.10. Gęstość gazu znajdującego się pod ciśnieniem $p = 2 \cdot 10^5$ Pa i w temperaturze $t = 27^{\circ}$ C wynosi d = 2,6 kg/m³. Obliczyć masę jednego kmola tego gazu.

Rozwiązanie

Korzystamy z równania Clapeyrona:

$$pV = \frac{m}{\mu}RT,$$

skąd

$$p = \frac{m}{V} \frac{RT}{\mu}$$
,

lub

$$p = d \frac{RT}{\mu}$$
.

Otrzymamy więc

$$\mu = d \frac{RT}{p}$$

 $\mu = 32 \text{ kg/kmol}.$

3.11. W dwóch naczyniach o objętościach $V_1=4$ dcm³ oraz $V_2=5$ dcm³ znajdują się dwa różne gazy, pod ciśnieniem $p_1=0,2\cdot 10^6$ Pa i pod ciśnieniem $p_2=0,1\cdot 10^6$ Pa odpowiednio. Obliczyć ciśnienie mieszaniny gazów powstałej przy połączeniu obu naczyń, rurką o znikomej objętości, jeżeli temperatura pozostanie stała.

Rozwiązanie

Po połączeniu obu naczyń każdy z gazów zajmie objętość równą sumie objętości obu naczyń, a ich ciśnienia bedą odpowiednio p_1 i p_2 . Możemy więc zastosować prawo Boyle'a – Mariotte'a:

$$p_1V_1 = p_1'(V_1 + V_2),$$

$$p_2V_2 = p_2'(V_1 + V_2)$$

gdzie p_1 ' i p_2 ' są ciśnieniami parcjalnymi obu gazów po rozprężeniu do objętości $V_1 + V_2$:

$$p_1' = \frac{p_1 V_1}{V_1 + V_2}$$
,

$$p_2' = \frac{p_2 V_2}{V_1 + V_2}$$
.

Po dodaniu stronami powyższych dwóch równań będziemy mieli:

$$p_1' + p_2' = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2}$$
,

ale korzystając z prawa Daltona możemy napisać, że

$$p_1' + p_2' = p$$
.

Mamy więc ostatecznie:

$$p = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2} \cdot$$

Po podstawieniu wartości liczbowych otrzymamy:

$$p = 1,44 \cdot 10^5 \text{ Pa.}$$

3.12. Do zbiornika o pojemności $V = 5 \text{ m}^3$ zawierającego suche powietrze w temperaturze $t = 25^{\circ}\text{C}$ wprowadzono masę m = 50 g wody. Obliczyć względną wilgotność w tym zbiorniku. Ciśnienie pary nasyconej w temperaturze 25°C wynosi $p_n = 3167 \text{ Pa}$.

Rozwiązanie

Wprowadzona masa wody, po pewnym czasie zamienia się w parę. Dla pary jako substancji lotnej można skorzystać z równania Clapeyrona, przyjmując, że nie jest ona parą nasyconą

$$pV = \frac{m}{\mu} RT$$
,

skąd ciśnienie pary będzie

$$p = \frac{m}{\mu} \frac{RT}{V} \,. \tag{3.11}$$

Ciśnienie to jest mniejsze od ciśnienia pary nasyconej p_n w tej temperaturze więc możemy napisać wzór na wilgotność względną:

$$w_{w} = \frac{p}{p_{n}}$$

Uwzględniając równanie (3.11) otrzymamy:

$$\mathbf{w}_{w} = \frac{\mathbf{m} \ \mathbf{RT}}{\mu \ \mathbf{V} \ \mathbf{p}_{n}},$$

$$w_w = 0.43$$
,

$$w_w = 43\%$$
.

Jeżeli $p > p_n$ to tylko część wody wyparuje, a ciśnienie będzie równe ciśnieniu pary wodnej w danej temperaturze.

3.13. Obliczyć wysokość góry, jeżeli ciśnienie atmosferyczne na jej szczycie wynosi ¾ wartości ciśnienia na poziomie morza. Zakładamy, że temperatura pozostaje stała i wynosi t = 0°C. Przyjąć ln 1,5 = 0,405.

Rozwiązanie

Ciśnienie atmosferyczne maleje z wysokością według wzoru barometrycznego (którego wyprowadzenie jest w Aneksie I):

$$p = p_0 \exp\left(-\frac{mgh}{kT}\right),\tag{3.12}$$

gdzie p jest ciśnieniem atmosferycznym na wysokości h,

p₀ jest ciśnieniem atmosferycznym na poziomie morza,

m jest masą jednej cząsteczki powietrza, która wyraża się wzorem: $m=\mu/N_A$, k jest stałą Boltzmanna daną wzorem: $k=R/N_A$.

Uwzględniając powyższe oraz to, że p = $\frac{2}{3}$ p₀, wzór (3.12) przyjmie postać:

$$\frac{2}{3} = exp\left(-\frac{\mu \text{ g h}}{\text{RT}}\right),\,$$

lub

$$\frac{3}{2} = exp\left(\frac{\mu \text{ g h}}{\text{RT}}\right).$$

W celu wyznaczenia z powyższego równania szukanej wysokości h, należy zlogarytmować obie strony powyższego równania:

$$\ln 1,5 = \frac{\mu \text{ g h}}{\text{RT}}$$

(ln – oznacza logarytm naturalny o podstawie "e"), skąd

$$h = \frac{RT \cdot ln1,5}{\mu g},$$

$$h = 3,2 \cdot 10^3 \text{ m}.$$

3.14. Obliczyć ciśnienie jakie panuje na wysokości lotów samolotów odrzutowych, tj. na wysokości h = 10 000 m, jeżeli przyjmiemy średnią temperaturę t = -3°C.

Rozwiązanie

Korzystamy ze wzoru barometrycznego w postaci:

$$p = p_0 \exp\left(-\frac{g \mu h}{RT}\right),$$

gdzie p₀ jest ciśnieniem powietrza na poziomie morza.

Po podstawieniu wartości liczbowych otrzymamy:

$$p = 760 \exp(-1,272)$$

lub

$$p = \frac{760}{exp(1,272)},\tag{3.13}$$

Wyrażenie $x = \exp(1,272)$ wyliczymy za pomocą logarytmów naturalnych:

$$\ln x = 1,272,$$

stąd
$$x = 3,57$$
.

Uwzględniając powyższe wyliczenia, otrzymamy szukaną wartość ciśnienia: $p=213 \ \text{mm}$ Hg.

Co stanowi około 1/3 ciśnienia normalnego.

3.15. Obliczyć prędkość najbardziej prawdopodobną molekuł azotu i tlenu w temperaturze t = 27 °C.

Rozwiązanie

Znajdujemy tę prędkość z wykresu rozkładu prędkości według Maxwella, w którym na osi poziomej jest prędkość, a na osi pionowej – liczba cząsteczek, których prędkości znajdują się w przedziale od v do v+dv, tzn. dN/N, (N jest liczbą wszystkich cząsteczek). Wielkość ta wyraża się wzorem:

$$\frac{dN}{N} = \left[\frac{m}{2 \pi k T}\right]^{\frac{3}{2}} e^{-\frac{m v^2}{2 k T}} 4 \pi v^2 dv.$$
 (3.14)

Wyprowadzenie tego wzoru jest w I.W. Sawieliew, *Kurs Fizyki*, Tom I, *Mechanika i Fizyka Cząsteczkowa*, PWN.

Wykres tej funkcji przedstawiony jest na **rys. 3.1**.

Rys. 3.1. Maxwelowski rozkład prędkości cząsteczek gazu, gdzie v_n jest prędkością najbardziej prawdopodobną

W celu obliczenia prędkości najbardziej prawdopodobnej v_n , należy wyznaczyć pochodną funkcji (3.14) względem v i porównać ją do zera. (Tak się wyznacza ekstremum funkcji).

Otrzymamy wtedy

$$\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} \left[e^{-\frac{m v^2}{2 k T}} \left(-2 \frac{m v}{2 k T}\right) 4 \pi v^2 + e^{-\frac{m v^2}{2 k T}} 4 \pi 2 v \right] = 0,$$

$$-\frac{mv}{kT} \cdot 4\pi v^2 + 4\pi 2v = 0$$

gdzie v jest tu szukaną prędkością najbardziej prawdopodobną v_n i wynosi:

$$v_n = \sqrt{\frac{2 k T}{m}},$$

ale uwzględniając, że $\mu = mN_A$, masa jednej cząsteczki wyniesie:

$$m = \frac{\mu}{N_A}$$
.

Biorąc pod uwagę, że

$$k = \frac{R}{N_A}$$

otrzymamy:

$$v_{n} = \sqrt{\frac{2 R T}{\mu}}. \tag{3.15}$$

Podstawiając za μ masę cząsteczkową azotu (28 kmoli) oraz masę cząsteczkową tlenu (32 kmoli) otrzymamy:

$$v_{nN} = 420 \frac{m}{s}$$

$$v_{n0} = 396 \frac{m}{s} \cdot$$

Zależność pomiędzy prędkością najbardziej prawdopodobną, a średnią kwadratową otrzymamy w sposób następujący:

Średnią kwadratową (M. Skorko – Fizyka PWN) mnożymy i dzielimy przez dwa:

$$\overline{v} = \sqrt{\frac{3 R T 2}{\mu 2}}.$$

Otrzymamy:

$$\overline{v} = v_n \sqrt{\frac{3}{2}}$$
.

3.16. Obliczyć średnią drogę swobodną cząsteczek powietrza w temperaturze t = 20°C przy ciśnieniu p = 10⁵ Pa, jeżeli przyjmiemy że średnia średnica cząsteczki powietrza wynosi d = 3·10⁻¹⁰ m.

Rozwiązanie

Średnią drogą swobodną nazywamy odległość jaką przebiegnie cząsteczka od jednego zderzenia do następnego. Wyraża się ona wzorem (wyprowadzenie w podręczniku: Podstawy Fizyki, PWN, t. II, D. Halliday i inni):

$$\overline{\lambda} = \frac{1}{\pi d^2 n_0 \sqrt{2}}, \qquad (3.16)$$

gdzie n₀ jest liczbą cząsteczek w jednostce objętości, którą wyznaczamy w funkcji ciśnienia z podstawowego wzoru teorii kinetyczno molekularnej:

$$p = \frac{2}{3} n_0 \overline{E},$$

porównując powyższy wzór ze wzorem na ciśnienie z równania Clapeyrona mamy:

$$\overline{E} = \frac{3}{2} k T$$

lub

$$\overline{E} = \frac{3 R}{2 N_A} T.$$

Wstawiając powyższy wzór do wzoru na ciśnienie otrzymamy:

$$p = n_0 \, \frac{RT}{N_A} \,,$$

skad

$$n_0 = \frac{pN_A}{RT}.$$

Szukana droga swobodna wyrazi się więc wzorem:

$$\lambda = \frac{RT}{\sqrt{2} \pi d^2 p N_A},$$

$$\lambda = 9.8 \cdot 10^{-8} \text{ m.} \approx 10 \cdot 10^{-8} = 10^{-7} \text{ m.}$$

3.17. Średnia droga swobodna cząsteczek powietrza w warunkach normalnych wynosi $\lambda = 10^{-7}$ m. Obliczyć jaka będzie średnia droga swobodna przy ciśnieniu $p_2 = 10^{-5}$ mm Hg. Temperatura nie ulega zmianie.

Rozwiązanie

Średnia droga swobodna cząsteczek gazu, jest odwrotnie proporcjonalna do ciśnienia. Możemy więc skorzystać z ogólnego wzoru na wielkości odwrotnie proporcjonalne:

$$\mathbf{x}_1\mathbf{y}_1=\mathbf{x}_2\mathbf{y}_2.$$

Na wykresie powyższa zależność przedstawia się w postaci hiperboli równobocznej (**rys. 3.2**).

Rys. 3.2. Wielkości odwrotnie proporcjonalne przedstawiają się na wykresie jako hiperbola równoboczna

Możemy więc napisać:

$$p_1 \lambda_1 = p_2 \lambda_2,$$
 stąd

$$\lambda_2 = \lambda_1 \frac{p_1}{p_2}$$
,

$$\lambda_2 = 7,6 \text{ m}.$$

3.18. Obliczyć ile cząsteczek powietrza znajduje się w 1 m³ komory aparatury próżniowej, w której średnia droga swobodna cząsteczek wynosi $\lambda = 7$ m.

Rozwiązanie

Wychodzimy ze wzoru na średnią drogę swobodną:

$$\lambda = \frac{1}{\sqrt{2} \pi d^2 n_0},$$

skąd

$$n_0 = \frac{1}{d^2 \lambda \pi \sqrt{2}} \quad ,$$

$$n_0 = 3,57 \cdot 10^{17} \frac{cz}{m^3}$$

3.19. W pewnym zbiorniku należy zmniejszyć ciśnienie powietrza za pomocą pompy tłokowej tak aby wynosiło $p_k = 10^2$ Pa. Obliczyć ile suwów musi wykonać tłok pompy, jeżeli objętość zbiornika wynosi $V_1 = 0.5$ m³, pojemność samej pompy $V_0 = 0.05$ m³, ciśnienie początkowe natomiast wynosiło $p_1 = 10^5$ Pa (**rys. 3.3**).

Rozwiązanie

Możemy stosować prawo Boyle'a Mariotte'a do każdego suwu tłoka z pozycji 1 do pozycji 2. Wtedy ma miejsce zwiększenie objętości przy stałej masie gazu.

Dla suwu pierwszego możemy napisać następujące równanie:

$$V_1 p_1 = (V_1 + V_0) p_2,$$
stad

$$p_2 = \frac{V_1 p_1}{V_1 + V_0} \, \cdot$$

Dla suwu drugiego:

$$V_1 p_2 = (V_1 + V_0) p_3$$
, stąd

$$p_3 = \frac{V_1 p_2}{V_1 + V_0} .$$

albo

$$p_3 = \frac{V_1}{V_1 + V_0} \ \frac{V_1}{V_1 + V_0} p_1 \ .$$

Rys. 3.3. Przesunięcie tłoka z pozycji 1 do pozycji 2 powoduje zwiększenie objętości powietrza, ale masa pozostaje bez zmiany.

Dla suwu trzeciego:

$$V_1 p_3 = (V_1 + V_0) p_4$$
, stąd

$$p_4 = \frac{V_1 p_3}{V_1 + V_0} ,$$

albo

$$p_4 = \frac{V_1}{V_1 + V_0} \cdot \frac{V_1}{V_1 + V_0} \cdot \frac{V_1}{V_1 + V_0} p_1$$

albo

$$p_4 = \left(\frac{V_1}{V_1 + V_0}\right)^3 p_1.$$

Ogólnie dla suwu n-tego, ciśnienie końcowe p_k będzie wynosić:

$$p_k = \left(\frac{V_1}{V_1 + V_0}\right)^n p_1 \cdot$$

Po zlogarytmowaniu powyższego równania otrzymamy

$$\log \frac{p_k}{p_1} = n \log \frac{V_1}{V_1 + V_0},$$

skąd

$$n = \frac{log \frac{p_k}{p_1}}{log \frac{V_1}{V_1 + V_0}} \,, \label{eq:normalization}$$

$$n = 74$$
.

3.20. Na skutek chwilowego otwarcia kranu aparatury próżniowej, powietrze wtargnęło do jej wnętrza, spowodowało to wzrost ciśnienia o $\Delta p = 0.5 \cdot 10^5$ Pa. Obliczyć masę powietrza, które wtargnęło do aparatury, jeżeli jej objętość wynosiła $V = 30 \text{ dcm}^3$, a temperatura $t = 17^{\circ}\text{C}$ cały czas pozostała stała.

Rozwiązanie

Wychodzimy z równania Clapeyrona dla dowolnej masy gazu:

$$pV = \frac{m}{\mu}RT.$$

W tym przypadku zmiana ciśnienia spowodowana została zmianą masy co możemy zapisać w sposób następujący:

$$(p + \Delta p) V = \frac{m + \Delta m}{u} RT$$

Po odjęciu stronami powyższych dwóch równań otrzymamy:

$$\Delta p \ V = \frac{\Delta m}{\mu} RT$$
,

skad

$$\Delta m = \frac{\Delta p \ V \ \mu}{RT},$$

$$\Delta m = 0.018 \text{ kg}.$$

3.21. Rurkę cienką w kształcie litery U zatopioną na jednym końcu i zawierającą rtęć w obu ramionach na jednakowym poziomie ustawiono pionowo pod kloszem pompy próżniowej. Wysokość zamkniętego w tej rurce powietrza wynosiła $h_1=25$ cm. Początkowe ciśnienie równe ciśnieniu zewnętrznemu wynosiło $p_1=10^5$ Pa. Obliczyć jakie było ciśnienie pod kloszem, po wypompowaniu przez pompę pewnej ilości powietrza, jeżeli różnica poziomów rtęci w obu ramionach ustaliła się na $\Delta h=0.04$ m (**rys. 3.4**). Gęstość rtęci można przyjąć za $\rho=1.4\cdot10^4$ kg/m³ przy stałej temperaturze.

Rozwiązanie

Rys. 3.4. Po zmniejszeniu ciśnienia pod kloszem różnica poziomów rtęci w rurce wyniosła Δh .

Przed wypompowaniem powietrza spod klosza, iloczyn ciśnienia i objętości w rurce równa się iloczynowi ciśnienia i objętości tej samej masy powietrza zamkniętej w rurce po zmniejszeniu ciśnienia do p_2 pod kloszem, przy stałej temperaturze:

$$p_1 h_1 S = (\rho g \Delta h + p_2) \left(h_1 + \frac{\Delta h}{2} \right) S.$$

Z powyższego równania wyznaczamy szukane ciśnienie p2:

$$p_2 = \frac{h_1 p_1 - h_1 \rho g \Delta h - \frac{\Delta h}{2} \rho g \Delta h}{h_1 + \frac{\Delta h}{2}},$$

$$p_2 = 0.86 \cdot 10^5 \text{ Pa.}$$

3.22. Balon o objętości $V=150~m^3$ wypełniony został ogrzanym powietrzem o temperaturze $T_1=350~K$ i pod ciśnieniem $p_1=900~h$ Pa. Obliczyć siłę nośną tego balonu, jeżeli temperatura otoczenia wynosi $T_2=280~K$, a ciśnienie powietrza otaczającego balon jest takie samo jak wewnątrz balonu ($p_2=900~h$ Pa). Gęstość powietrza w warunkach normalnych wynosi $\rho_0=1,29~kg/m^3$. Masa powłoki balonu z wyposażeniem wynosi m=20~kg.

Rozwiązanie

Siła nośna balonu (F) jest sumą wektorową siły wyporu (W) wynikającą z prawa Archimedesa i ciężaru balonu (Q) (**rys. 3.5**):

$$\vec{F} = \vec{W} + \vec{Q}$$

W zapisie skalarnym będziemy mieli:

$$F = W - Q.$$
 (3.17)

Rys. 3.5. Wartość siły nośnej balonu jest różnicą liczbową pomiędzy wartością siły wyporu balonu (W) a wartością jego całkowitego ciężaru (Q)

W oparciu o prawo Archimedesa wartość siły wyporu wyrazi się wzorem:

$$W = V \rho_z g$$
,

gdzie

V – objętość balonu,

 ρ_z - gęstość otaczającego powietrza,

natomiast wartość Q to całkowity ciężar balonu, który jest sumą ciężarów: kosza z wyposażeniem, powłoki balonu i ogrzanego powietrza wewnątrz tej powłoki.

Równanie (3.17) przyjmie teraz postać:

$$F = V\rho_z g - (mg + V\rho_w g), \qquad (3.18)$$

gdzie ρ_w – gęstość ogrzanego powietrza znajdującego się wewnątrz balonu.

Należy teraz wyznaczyć gęstości ρ_z i ρ_w w funkcji ρ_0 , temperatury i ciśnienia. W tym celu korzystamy z równania Clapeyrona:

$$p_1 V = \frac{m_w}{\mu} R T_1,$$
 (3.19)

gdzie

m_w - masa powietrza wewnątrz balonu,

p₁ – jego ciśnienie,

T₁ – temperatura ogrzanego powietrza wypełniającego balon o objętości V,

 μ – masa molowa powietrza.

Równanie (3.19) przekształcamy następująco:

$$p_1 = \frac{m_w}{V u} R T_1.$$

Wyrażenie $\frac{m_{_{\rm W}}}{V} = \rho_{_{\rm W}}$ jest gęstością powietrza wewnątrz balonu.

Podobnie równanie Clapeyrona możemy napisać dla warunków normalnych:

$$p_{\scriptscriptstyle 0} V_{\scriptscriptstyle 0} = \frac{m_{\scriptscriptstyle 0}}{\mu} R T_{\scriptscriptstyle 0} \quad , \quad$$

gdzie m_0 jest masą powietrza w warunkach normalnych. Mamy więc

$$p_0 = \frac{m_0}{V_0 \mu} R T_0$$

$$\frac{\mathbf{m}_0}{\mathbf{V}_0} = \rho_0$$
 – jest gęstością powietrza w warunkach normalnych.

Będziemy więc mieli następujący stosunek ciśnień:

$$\frac{p_{_1}}{p_{_0}} = \frac{\rho_{_w}}{\rho_{_0}} \frac{T_{_1}}{T_{_0}},$$

skąd

$$\rho_{\rm w} = \rho_0 \, \frac{p_1}{p_0} \frac{T_0}{T_1} \, \cdot \label{eq:rhow}$$

Analogicznie otrzymamy gęstość tej samej objętości powietrza na zewnątrz balonu:

$$\rho_{z} = \rho_{0} \frac{T_{0}}{T_{2}} \frac{p_{2}}{p_{0}} \cdot$$

Równanie (3.18) przyjmie teraz postać

$$F = V \rho_0 \frac{T_0}{T_2} \frac{p_2}{p_0} g - V \rho_0 \frac{T_0}{T_1} \frac{p_1}{p_0} g - m g$$

lub

$$F = V \rho_0 \frac{T_0}{p_0} g \left(\frac{p_2}{T_2} - \frac{p_1}{T_1} \right) - m g.$$

Przyjmując, że $p_1 = p_2 = p$ (ciśnienie wewnątrz balonu jest takie samo jak na zewnątrz) otrzymamy:

Ostatecznie

$$F = V \rho_0 p \frac{T_0}{p_0} g \left(\frac{1}{T_2} - \frac{1}{T_1} \right) - mg$$

F = 139 N.

3.23. W zamkniętym zbiorniku o objętości V=2 m³ znajduje się m=32 kg powietrza o temperaturze $t_1=17\,^{\circ}\text{C}$. Po ogrzaniu izochorycznym ciśnienie gazu wzrosło do wartości $p_2=15\cdot10^5$ N/m². Obliczyć ilość ciepła pobranego przez powietrze, jeżeli ciepło właściwe powietrza przy stałej objętości wynosi

$$c_v = 729 \text{ J/kg K}$$
 oraz $\frac{c_p}{c_v} = 1.4$.

Rozwiązanie

Szukaną ilość ciepła wyliczymy ze wzoru:

$$Q = mc_v (T_2 - T_1). (3.20)$$

Nieznaną temperaturę T₂ otrzymamy z równania stanu gazu doskonałego:

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2},$$

skąd, ponieważ $V_1 = V_2$, otrzymamy:

$$T_2 = T_1 \frac{p_2}{p_1} \cdot$$

Równanie (3.20) przyjmie teraz postać:

$$Q = m c_v \left(T_1 \frac{p_2}{p_1} - T_1 \right) \cdot$$

Nieznane ciśnienie p₁ wyliczymy z równania Clapeyrona:

$$p_{\scriptscriptstyle 1}V = \frac{m}{\mu}RT_{\scriptscriptstyle 1}$$

lub

$$p_1 = \frac{m}{V\mu} RT_1 \cdot$$

Mamy wiec

$$Q = m c_v T_1 \left(\frac{p_2 V \mu}{m R T_1} - 1 \right) \cdot$$

Po zlikwidowaniu nawiasu i po uwzględnieniu, że

$$\frac{R}{\mu} = c_p - c_v \tag{3.21}$$

(Wyprowadzenie tego wzoru jest w Aneksie II) otrzymamy:

$$Q = \frac{p_2 V}{\frac{c_p}{c_v} - 1} - m c_V T_1,$$

$$Q = 734,9 \text{ kJ}.$$

3.24. W zamkniętym zbiorniku o objętości V = 35 dm³ znajduje się dwuatomowy gaz o gęstości ρ = 1,3 kg/m³. Gdy dostarczono pewną ilość ciepła w ilości Q = 1662 J do tego gazu, jego temperatura wzrosła o ΔT = 50 K. Obliczyć masę cząsteczkową tego gazu, jeści c_p/c_v = 1,4.

Rozwiązanie

Szukaną masę cząsteczkową wyliczymy z równania zgodnie ze wzorem (3.21).

$$R = \mu(c_p - c_v),$$

skąd

$$\mu = \frac{R}{c_p - c_v}$$

lub

$$\mu = \frac{R}{c_v \left(\frac{c_p}{c_v} - 1\right)}.$$

Nieznane ciepło właściwe gazu c_v otrzymamy ze wzoru na ilość ciepła dostarczonego do układu:

$$Q = m c_v \Delta T,$$

skąd

$$c_{v} = \frac{Q}{m \Delta T},$$

gdzie

$$m = \rho V$$
.

Szukana masa cząsteczkowa gazu wyrazi się wzorem:

$$\mu = \frac{R \rho V \Delta T}{Q \left(\frac{c_p}{c_v} - 1\right)},$$

$$\mu = 28 \frac{\text{kg}}{\text{kmol}}$$

3.25. Jakiej grubości powinna być drewniana ściana budynku, ażeby dawała ona taką samą stratę ciepła jak ściana z cegły o grubości d = 40 cm. Różnica temperatur jest taka sama na zewnątrz budynku i wewnątrz dla obu ścian. Współczynniki przewodnictwa cieplnego cegły i drewna wynoszą odpowiednio:

$$K_c = 0.70 \frac{W}{m \text{ K}}, K_d = 0.175 \frac{W}{m \text{ K}}.$$

Rozwiązanie

Ilość ciepła przenikającego przez ścianę wyraża się wzorem:

$$\frac{dQ}{dt} = -K \frac{dT}{dx} S \cdot$$

Przez dwie ściany ma przechodzić ta sama ilość ciepła, więc możemy napisać:

$$-K_{c} \frac{dT}{d}S = -K_{d} \frac{dT}{x}S$$

Z powyższego równania wyznaczamy szukaną grubość ściany x:

$$x = \frac{K_d}{K_c} d,$$

x = 10 cm.

3.26. Obliczyć współczynnik przewodnictwa cieplnego powietrza w temperaturze $t = 17^{\circ}\text{C}$ i pod normalnym ciśnieniem $p = 10^{5} \frac{N}{m^{2}}$, jeżeli dane jest ciepło właś-

ciwe powietrza w stałej objętości $c_v = 729$ J/kg K, średnia średnica cząsteczki powietrza d = $3 \cdot 10^{-10}$ m i masa cząsteczkowa $\mu = 29$ kg/kmol.

Rozwiązanie

Współczynnik przewodnictwa cieplnego gazów wyraża się następującym wzorem, (M. Skorko, Fizyka: Rozdz. Fizyka molekularna):

$$K = \frac{1}{3} - \frac{1}{v} \lambda \rho c_v, \qquad (3.22)$$

gdzie v jest prędkością średnią ruchu cieplnego cząsteczek, którą należy przedstawić za pomocą prędkości średniej kwadratowej:

$$\overline{v} = 0.931 \sqrt{\frac{3 R T}{\mu}}$$
 (3.23)

gdzie

$$\sqrt{\frac{3\mathrm{RT}}{\mu}}$$
 jest prędkością średnią kwadratową.

Średnia droga swobodna cząsteczek danego gazu $\overline{\lambda}$ wyraża się wzorem:

$$\overline{\lambda} = \frac{1}{\sqrt{2\pi} d^2 n_0}, \qquad (3.24)$$

gdzie n_0 – ilość cząsteczek w jednostce objętości w warunkach normalnych, będzie równa:

$$n_0 = \frac{N_A}{V} ,$$

ale korzystając ze wzoru Clapeyrona (pV = RT) będziemy mieli:

$$n_0 = \frac{N_A p}{R T} . ag{3.25}$$

Uwzględniając powyższe zależności otrzymamy:

$$K = \frac{1}{3} 0.921 \sqrt{\frac{3 R T}{\mu}} \frac{1}{\sqrt{2} \pi d^2 n_0} \rho c_V$$

lub

$$K = \frac{1}{3} 0.921 \sqrt{\frac{3 R T}{\mu}} \frac{R T}{\sqrt{2} \pi d^2 N_A p} \rho c_V.$$

Gęstość gazu ρ określa wzór:

$$\rho = \frac{\mathrm{m}}{\mathrm{V}}$$

Gęstość należy wyrazić za pomocą temperatury, ciśnienia i masy cząsteczkowej gazu, korzystając z równania Clapeyrona dla dowolnej masy gazu:

$$pV = \frac{m}{\mu} R T$$

będzie więc

$$\rho = \frac{p V \mu}{V R T} = \frac{p\mu}{RT}$$

Ostatecznie szukany współczynnik przewodnictwa cieplnego powietrza będzie:

$$K = 0.307 \sqrt{\frac{3 R T}{\mu}} \frac{\mu c_V}{\sqrt{2} \pi d^2 N_A}$$

$$K = 1.3 \cdot 10^{-2} \frac{W}{mK}$$

3.27. Obliczyć współczynnik dyfuzji cząsteczek powietrza znajdującego się pod ciśnieniem $p=10^4 \, \frac{N}{m^2}\,$ i temperaturze $t=17^{\circ} C$ (290 K), jeżeli przyjmiemy, że średnica cząsteczki powietrza wynosi $d=3\cdot 10^{-10}\, m$.

Rozwiązanie

Ogólny wzór na transport masy jest następujący:

$$\frac{dM}{dt} = -D \frac{d\rho}{dx} S,$$

gdzie $\frac{d\rho}{dx}$ jest zmianą gęstości na drodze dx,

D – współczynnik dyfuzji, który wyraża się wzorem:

$$D = \frac{1}{3} - \overline{\lambda}.$$

Wyprowadzenie powyższego wzoru znajduje się w podręczniku B. Jaworskiego i współautorów "Kurs fizyki" t. 1 " Mechanika, podstawy fizyki cząsteczkowej i termodynamiki".

 $\overline{\lambda}$ – średnia droga swobodna cząsteczek powietrza, która wyraża się wzorem (3.24),

 $\stackrel{-}{v}$ – prędkość średnia ruchu cieplnego cząsteczek, którą wyznaczamy w zależności od prędkości średniej kwadratowej:

$$\bar{v} = 0.931 \, v_{kw}$$

lub

$$\overline{v} = 0.931 \sqrt{\frac{3 R T}{\mu}}$$
 (3.26)

Uwzględniając powyższe, współczynnik dyfuzji powietrza wyrazi się wzorem:

$$D = \frac{1}{3}0,931 \sqrt{\frac{3RT}{\mu}} \frac{1}{\sqrt{2} \pi d^2 n_0}$$

Należy jeszcze wyznaczyć n_0 w funkcji ciśnienia i temperatury. W tym celu korzystamy ze wzoru (3.25) i ostatecznie otrzymujemy:

$$D = 0.307 \sqrt{\frac{3RT}{\mu}} \frac{1}{\sqrt{2\pi} d^2} \frac{RT}{N_A p},$$

$$D = 1.6 \cdot 10^{-4} \frac{m^2}{s}.$$
3.27)

- 3.28. Obliczyć ile razy zmieni się współczynnik dyfuzji gazu dwuatomowego, jeżeli w wyniku przemiany:
 - a) izotermicznej,
 - b) adiabatycznej,

gaz ten zwiększy swoją objętość, a jego ciśnienie zmniejszy się dwukrotnie.

Rozwiązanie

a) Należy skorzystać ze wzoru (3.27) na dyfuzję gazów w zależności od ciśnienia dwukrotnie, tj. dla dwóch ciśnień:

$$\begin{split} D_2 &= 0,307 \sqrt{\frac{3 \text{ R T}_2}{\mu}} \ \frac{\text{R T}_2}{\sqrt{2} \ \pi \ \text{d}^2 \ \text{N}_A \ \text{p}_2}, \\ D_1 &= 0,307 \ \sqrt{\frac{3 \text{ R T}_1}{\mu}} \ \frac{\text{R T}_1}{\sqrt{2} \ \pi \ \text{d}^2 \ \text{N}_A \ \text{p}_1}. \end{split}$$

Po podzieleniu stronami powyższych dwóch równań otrzymamy:

$$\frac{D_2}{D_1} = \sqrt{\left(\frac{T_2}{T_1}\right)^3} \frac{p_1}{p_2} . {(3.28)}$$

Uwzględniając, $p_2 = \frac{p_1}{2}$ oraz, że dla przemiany izotermicznej $T_2 = T_1$

będziemy ostatecznie mieli:

$$\frac{D_2}{D_1} = 2.$$

b) Dla przemiany adiabatycznej również korzystamy z równania (3.27) pisząc je dwa razy i dzieląc stronami otrzymamy wzór identyczny jak (3.28).

Natomiast stosunek temperatur wyznaczamy z równania adiabaty i Clapeyrona:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}.$$

Równanie (3.28) przyjmie teraz postać

$$\frac{D_{2}}{D_{1}} = \sqrt{\left(\frac{p_{2}}{p_{1}}\right)^{3\frac{(\gamma-1)}{\gamma}} \left(\frac{p_{1}}{p_{2}}\right)^{2}} ,$$

ale

$$p_2 = \frac{p_1}{2}, \ \gamma = 1,4,$$

więc

$$\frac{D_2}{D_1} = 2 \sqrt{\left(\frac{1}{2}\right)^{\frac{1,2}{1.4}}},$$

lub

$$\frac{D_2}{D_1} = 2 \left[\frac{1}{2} \right]^{\frac{3}{7}} \cdot$$

Robimy podstawienie: $\frac{D_2}{D_1} = x$ i logarytmujemy obie strony równania:

$$\log x = \log 2 + \frac{3}{7} \log \frac{1}{2},$$

$$log 2 = 0,301,$$

$$\log \frac{1}{2} = \log 1 - \log 2,$$

$$log x = 0.301 - \frac{3}{7} 0.301$$
,

$$log x = 0.178$$

Ostatecznie będziemy mieli:

$$x = 1,51.$$

3.29. Cienka płytka płasko-równoległa o powierzchni S znajduje się w strumieniu cieczy płynącej wzdłuż jej powierzchni. Obliczyć współczynnik lepkości cieczy, jeżeli na płytę działa siła F, a gradient prędkości w miejscu, w którym się ona znajduje wynosi K.

Rozwiązanie

Ogólny wzór na siłę wynikającą za zmiany prędkości sąsiednich warstw cieczy jest następujący:

$$F_1 = -\eta \frac{dv}{dx} S$$

W naszym przypadku ciecz opływa dwie powierzchnie płytki, co jest pokazane na **rys. 3.6**, więc $F_1 = F/2$. Z tego wynika, że:

Rys. 3.6. Ciecz opływa płytkę po obu powierzchniach

$$F = -\eta \frac{dv}{dx} S \cdot 2$$

Znak (–) piszemy dlatego, że im dalej od przyłożonej siły, tym prędkość jest mniejsza $v_2 < v_1$ (v_1 jest prędkością strumienia). W naszym przypadku możemy więc pominąć minus.

Uwzględniając, że $\frac{dv}{dx} = K$, wyliczymy szukany współczynnik lepkości

cieczy ze wzoru:

$$\eta = \frac{F}{2 S K}.$$

3.30. Obliczyć współczynnik lepkości cieczy η wiedząc, że okres drgań dowolnej płytki o masie m i polu powierzchni S zawieszonej na sprężynie, ma okres drgań w powietrzu T₀ (zakładamy, że wtedy drgania nie są tłumione). Gdy ta sama płytka będzie wykonywać drgania w badanej cieczy (rys. 3.7), wtedy okres drgań wyniesie T. Zakładamy, że siła tarcia płytki o ciecz jest wprost proporcjonalna do prędkości i wyraża się wzorem:

$$F = 2 S \eta v$$
,
gdzie S jest polem powierzchni płytki,
 η współczynnikiem lepkości,
v prędkością płytki.

Rozwiązanie

Wychodzimy ze wzoru na częstość kołową drgań tłumionych:

$$\omega = \sqrt{\omega_0^2 - \beta^2} \quad , \tag{3.29}$$

gdzie β jest współczynnikiem tłumienia drgań i wyraża się wzorem

$$\beta = \frac{k_2}{2 \text{ m}}.$$

 \mathbf{k}_2 jest współczynnikiem proporcjonalności występującym we wzorze:

$$F = -k_2 v,$$

ale

$$F = -2 S \eta v$$
.

Rys. 3.7. Ciężarek drgający w cieczy natrafia na opór wprost proporcjonalny do prędkości

Z porównania powyższych równań otrzymamy k2:

$$k_2 = 2 S \eta$$
.

Współczynnik tłumienia drgań wyrazi się teraz wzorem:

$$\beta = \frac{2 \text{ S } \eta}{2 \text{ m}}.$$

Otrzymane wielkości wstawiamy do wzoru na częstość kołową drgań tłumionych (3.29).

$$\frac{4 \pi^2}{T^2} = \frac{4 \pi^2}{T_0^2} - \frac{4 S^2 \eta^2}{4 m^2}$$

lub

$$\frac{S^2 \eta^2}{m^2} = \frac{4\pi^2}{T_0^2} - \frac{4\pi^2}{T^2}.$$

Z powyższego równania wyliczamy szukany współczynnik lepkości cieczy:

$$\eta = \frac{2 \pi m}{S T_0 T} \sqrt{T^2 - T_0^2} .$$

3.31. W cylindrze o objętości V znajduje się gaz pod tłokiem o temperaturze T₁. Obliczyć pracę rozprężenia gazu podczas ogrzewania go o ΔT przy stałym ciśnieniu, jeżeli ciężar tłoka wynosi Q, jego powierzchnia S, a ciśnienie atmosferyczne p₀.

Rozwiązanie

Praca w przemianie izobarycznej wykonana przez gaz wyraża się wzorem:

$$W = p (V_2 - V_1),$$
 gdzie (3.30)

$$p = p_0 + \frac{Q}{S} \ .$$

Nieznaną objętość V₂ znajdujemy z przemiany izobarycznej:

$$\frac{p_{1}V_{1}}{T_{1}} = \frac{p_{2}V_{2}}{T_{2}} \cdot$$

uwzględniając, że $p_2 = p_1$ otrzymamy:

$$V_2 = V_1 \frac{T_2}{T_1} \cdot$$

Szukana praca wyrazi się więc wzorem:

$$W = \left(p_0 + \frac{Q}{S}\right) V_1 \frac{\Delta T}{T_1} \cdot$$

3.32. Gaz o masie m oziębiono od temperatury T₁ do temperatury T₂ przy stałym ciśnieniu. Obliczyć pracę wykonaną przez ten gaz oraz zmianę energii wewnętrznej. Dane jest ciepło właściwe gazu przy stałym ciśnieniu c_p i jego masa cząsteczkowa μ oraz stała gazowa R.

Rozwiązanie

Szukaną pracę znajdziemy z równania Clapeyrona:

$$pV = \frac{m}{\mu} RT .$$

Po zróżniczkowaniu obu stron powyższego równania otrzymamy:

$$p dV = \frac{m}{\mu} R dT,$$

ale

$$p dV = W$$

a więc szukana praca wyrazi się wzorem:

$$W = \frac{m}{\mu} R(T_2 - T_1).$$

Zmianę energii wewnętrznej obliczymy z pierwszej zasady termodynamiki:

$$\Delta U = -Q - W,$$

gdzie Q jest ciepłem odebranym od gazu i wyraża się wzorem:

$$Q = - m c_p (T_2 - T_1).$$

Ostatecznie więc szukana zmiana energii wewnętrznej będzie:

$$\Delta U = -m c_p (T_2 - T_1) - \frac{m}{\mu} R(T_2 - T_1),$$

albo

$$\Delta U = -m \left(T_2 - T_1 \right) \left(c_p + \frac{R}{\mu} \right).$$

3.33. Gaz rozprężając się izobarycznie wykonuje pracę W = 600 J. Obliczyć ilość ciepła, które pobiera gaz, jeżeli stosunek ciepła właściwego pod stałym ciśnieniem do ciepła właściwego w stałej objętości wynosi y = 1,4.

Rozwiązanie

Piszemy równanie Clapeyrona dla stanu końcowego i wyjściowego:

$$p V_2 = \frac{m}{\mu} R T_2,$$

$$p V_1 = \frac{m}{\mu} R T_1 \cdot$$

Odejmujemy stronami:

$$p(V_2-V_1)=\frac{m}{\mu} R \Delta T,$$

ale p $(V_2 - V_1)$ = pracy wykonanej przez gaz.

Mamy więc

$$W = \frac{m}{\mu} R \Delta T. \tag{3.31}$$

Z powyższego równania wyznaczamy różnicę temperatur ΔT i wstawiamy ją do wzoru na ilość ciepła:

$$Q = m c_p \Delta T$$
,

więc

$$Q = m c_p \frac{W\mu}{mR}$$

ale

$$R = (c_p - c_v) \cdot \mu \qquad \text{(Aneks II)}.$$

Mamy więc

$$Q = \frac{c_p W \mu}{\left(c_p - c_v\right) \mu} \cdot$$

Po podzieleniu licznika i mianownika przez c_v otrzymamy:

$$Q = \frac{\gamma W}{(\gamma - 1)},$$

gdzie $\gamma = c_p/c_v$,

ostatecznie

$$Q = 2100 J.$$

3.34. Masę m = 0,04 kg gazu ogrzano izobarycznie od temperatury T_0 = 273 K do temperatury T_2 = 373 K. Obliczyć jaki procent dostarczonego ciepła zostało zużyte na wykonanie pracy, a jaki na zmianę energii wewnętrznej, jeżeli ciepło właściwe przy stałym ciśnieniu c_p = 840 J/kgK, a masa cząsteczkowa μ = 44 kg/kmol dla danego gazu.

Rozwiązanie

Całkowite ciepło dostarczone układowi wyraża się wzorem:

$$Q_c = mc_p \Delta T$$
.

Natomiast ciepło zużyte na pracę równa się liczbowo, zgodnie ze wzorem (3.31):

$$Q_1 = \frac{m}{\mu} R \Delta T.$$

Ciepło, które idzie na zmianę energii wewnętrznej zgodnie z pierwszą zasadą termodynamiki:

$$\Delta U = Q - W$$

w warunkach tego zadania będzie:

$$Q_2 = \Delta U = Q_c - Q_1$$
.

Szukany procent ciepła, które idzie na pracę wynosi:

$$K_1 = \frac{Q_1}{Q_c} \cdot 100 \%$$
, $K_1 = 23\%$.

Procent ciepła, które idzie na zmianę energii wewnętrznej jest równy

$$K_2 = \frac{\Delta U}{Q} \cdot 100\%$$
, $K_2 = 77 \%$.

3.35. Do m = 3 kg azotu dostarczono Q = 300·10³ J ciepła, na skutek czego azot rozprężył się izotermicznie w stałej temperaturze t = 7°C. Obliczyć ile razy zmniejszyło się ciśnienie w stosunku do ciśnienia początkowego.

Rozwiązanie

W procesie izotermicznego rozprężania, dostarczone całkowite ciepło idzie na pracę (T=const, więc ΔU =0), więc możemy skorzystać z następującego wzoru:

$$Q = \int_{V_1}^{V_2} p dV \cdot$$

Ciśnienie p w funkcji objętości V wyznaczamy z równania Clapeyrona:

$$p V = \frac{m}{\mu} R T$$

skad

$$p = \frac{m R T}{\mu V}.$$

Mamy więc

$$Q = \frac{m R T}{\mu} \int_{V_1}^{V_2} \frac{dV}{V},$$

$$Q = \frac{m R T}{\mu} ln \frac{V_2}{V_1}.$$

Wyrażenie $\frac{V_2}{V_1}$ możemy zastąpić przez stosunek ciśnień na podstawie pra-

wa Boyle'a Mariotte'a:

$$p_1V_1=p_2V_2,$$

stąd

$$\frac{V_2}{V_1} = \frac{p_1}{p_2} \cdot$$

Otrzymamy zatem:

$$Q = \frac{m R T}{\mu} ln \frac{p_1}{p_2}$$

lub

$$\frac{Q \mu}{m R T} = ln \frac{p_1}{p_2},$$

skąd

$$\frac{p_1}{p_2} = e^{\frac{Q \mu}{m R T}}.$$

Po podstawieniu wartości liczbowych otrzymamy szukany stosunek ciśnień:

$$\frac{p_1}{p_2} = 3,33.$$

3.36. Znaleźć masę molową gazu, który sprężony izotermicznie zwiększył swoje ciśnienie dwa razy. Praca przy tym wyniosła W = 831⋅10³ J, przy temperaturze t = 27°C. Masa gazu była m = 13,5 kg.

Rozwiązanie

Korzystamy ze wzoru na pracę w przemianie izotermicznej (patrz zad. 3.35):

$$W = \int_{V_1}^{V_2} p dV = \frac{mRT}{\mu} ln \frac{V_2}{V_1}$$
.

Stosunek objętości $\frac{V_2}{V_1}$ zastępujemy stosunkiem ciśnień z przemiany izo-

termicznej. Mamy więc

$$\frac{V_2}{V_1} = \frac{p_1}{p_2} ,$$

oraz

$$W = \frac{m R T}{\mu} ln \frac{p_1}{p_2},$$

stąd

$$\mu = \frac{\text{m R T}}{\text{W}} \ln 2,$$

$$\mu = 28 \frac{\text{kg}}{\text{kmol}}$$
.

3.37. Azot o masie m = 2 kg i temperaturze początkowej T_1 = 300 K posiada objętość V_1 = 3 m³. Po sprężeniu adiabatycznym temperatura wzrosła do T_k = 400 K, a ciśnienie zwiększyło się do p_k = 1,61·10⁵ Pa. Obliczyć wykładnik adiabaty

$$K = \frac{c_p}{c_v} \cdot$$

Rozwiązanie

Wychodzimy ze wzoru na przemianę adiabatyczną w postaci:

$$\boldsymbol{p_1}\boldsymbol{V_1^K} = \boldsymbol{p_2}\boldsymbol{V_2^K}$$

lub

$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^K \cdot$$

Wzór przekształcamy w ten sposób ażeby przemianę adiabatyczną wyrazić w funkcji temperatury. W tym celu korzystamy z równania gazu doskonałego:

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

lub

$$\frac{p_1}{p_2} = \frac{T_1}{T_2} \frac{V_2}{V_1} .$$

Mamy więc

$$\frac{T_1}{T_2} \frac{V_2}{V_1} = \left(\frac{V_2}{V_1}\right)^K \cdot$$

Po przekształceniach otrzymamy:

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{K-1}$$
.

W naszym zadaniu zastępujemy V2 objętością końcową Vk:

$$\frac{T_{k}}{T_{l}} = \left(\frac{V_{l}}{V_{k}}\right)^{K-1}.$$
(3.32)

Nieznaną objętość końcową \mathbf{V}_k wyznaczymy z równania Clapeyrona:

$$p_k V_k = \frac{m}{\mu} R T_k$$

skad

$$V_k = \frac{m R T_k}{\mu p_k}.$$

Po podstawieniu wartości liczbowych otrzymamy:

$$V_k = 0.67 \text{ m}^3$$
.

Po zlogarytmowaniu wzoru (3.32) będziemy mieli:

$$(K-1) log \frac{V_1}{V_2} = log \frac{T_k}{T_1},$$

$$K - 1 = \frac{log T_k - log T_1}{log V_1 - log V_k}$$

$$K = \frac{\log T_k - \log T_1}{\log V_1 - \log V_k} + 1$$

$$K = 1,4.$$

3.38. Temperatura bezwzględna źródła ciepła w silniku Carnota jest trzy razy wyższa od temperatury bezwzględnej chłodnicy. Obliczyć jaką część pobranego ciepła oddaje gaz do chłodnicy.

Rozwiązanie

Szukamy
$$\frac{Q_2}{Q_1}$$
.

Gdzie Q_2 oznacza ciepło oddane do chłodnicy, a Q_1 ciepło pobrane od źródła. Dla silnika Carnota współczynnik sprawności wyraża się wzorem:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$

lub

$$\eta = 1 - \frac{Q_2}{Q_1},$$

$$\frac{\mathbf{Q}_2}{\mathbf{Q}_1} = 1 - \eta ,$$

ale

$$\eta = \frac{3 T_2 - T_2}{3T_2} = \frac{2}{3}.$$

Ostatecznie będziemy mieli:

$$\frac{Q_2}{Q_1} = 1 - \frac{2}{3}$$
,

$$\frac{\mathbf{Q}_2}{\mathbf{Q}_1} = \frac{1}{3} \cdot$$

3.39. Temperatura pary wodnej wchodzącej do cylindra maszyny parowej wynosi $T_1 = 400$ K. Para skrapla się w temperaturze $T_2 = 300$ K. Obliczyć pracę wykonaną przez parę, jeżeli pobrana została ilość ciepła $Q_1 = 3000$ J.

Rozwiązanie

Szukaną pracę wyliczymy przez porównanie do siebie dwóch wzorów na sprawność silnika cieplnego Carnota:

$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1},$$

gdzie Q₁ – Q₂ jest szukaną pracą. Mamy więc

$$W = Q_1 \frac{T_1 - T_2}{T_1} \cdot$$

Po podstawieniu wartości liczbowych otrzymamy:

$$W = 750 J.$$

3.40. Silnik cieplny o sprawności $\eta = 40\%$ oddał do chłodnicy $Q_2 = 300$ J. Obliczyć jaką wykonał pracę.

Rozwiązanie

Wychodzimy ze wzoru na sprawność silnika cieplnego

$$\eta = \frac{W}{O_1}$$

skąd

$$W = \eta Q_1.$$

Ciepło pobrane Q1 wyliczymy ze wzoru:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1},$$

więc

$$Q_1 = \frac{Q_2}{1 - \eta} \cdot$$

Szukana praca wyrazi się wzorem:

$$W = \eta \frac{Q_2}{1 - \eta},$$

$$W = 200 J.$$

3.41. Cykl pracy silnika cieplnego o sprawności $\eta = 25\%$ przedstawiony jest na **rys. 3.8**. Obliczyć ciepło oddane do chłodnicy w czasie jednego cyklu.

Rys. 3.8. Praca wykonana przez silnik w czasie jednego cyklu równa jest polu prostokąta ABCD

Rozwiązanie

Pole ABCD obliczamy jako iloczyn AD × AB, zatem praca będzie wynosić:

$$W = 3 \text{ m}^3 \cdot 300 \text{ kPa} = 900 \text{ kJ}.$$

Z definicji sprawności mamy:

$$\eta = \frac{W}{Q_{_1}}$$

gdzie Q_1 jest ciepłem dostarczonym do silnika, stąd

$$Q_1 = \frac{W}{\eta}$$

Ale praca silnika równa się różnicy pomiędzy ciepłem dostarczonym, a oddanym do chłodnicy:

$$W = Q_1 - Q_2$$

lub

$$W = \frac{W}{\eta} - Q_2,$$

skąd

$$Q_2 = \frac{W}{\eta} - W$$

$$Q_2 = 2700 \text{ kJ}.$$

3.42. Obliczyć sprawność silnika Carnota jeżeli przy każdym sprężeniu adiabatycznym dwóch kilomoli gazu dwuatomowego wykonana jest praca $W = 4\cdot10^6$ J, a temperatura źródła ciepła wynosi $T_1 = 400$ K. Dla tego gazu $K = c_p/c_v = 1,4$.

Rozwiązanie

Wychodzimy ze wzoru na sprawność silnika cieplnego idealnego (Carnota):

$$\eta = \frac{T_1 - T_2}{T_1} \cdot$$

Temperaturę T₂ obliczymy znając pracę w przemianie adiabatycznej:

$$W = \int_{V_1}^{V_2} p \ dV \ .$$

W przemianie adiabatycznej korzystamy z równania Poissona:

$$p_{_1}V_{_1}^{_K}=pV^{_K} ,$$

gdzie

$$K = \frac{c_p}{c_v} \cdot$$

Z równania Poissona wyznaczamy ciśnienie p i wstawiamy pod całkę:

$$W = \int\limits_{V_{\scriptscriptstyle L}}^{V_{\scriptscriptstyle 2}} p_{\scriptscriptstyle 1} V_{\scriptscriptstyle 1}^{\scriptscriptstyle K} \, \frac{dV}{V^{\scriptscriptstyle K}} \, \cdot \,$$

Po wykonaniu całkowania otrzymamy:

$$W = \frac{p_1 V_1^K}{1 - K} \left(V_2^{1 - K} - V_1^{1 - K} \right)$$

lub

$$W = \frac{p_1 V_1^K V_1^{1-K}}{1-K} \left[\left(\frac{V_2}{V_1} \right)^{1-K} - 1 \right].$$
 (3.33)

Wyrażenie w nawiasie wyliczymy z równania adiabaty w postaci wyrażonej wzorem (3.32):

$$T_1V_1^{K-1} = T_2V_2^{K-1}$$

lub

$$\left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{\mathbf{K}-1} = \frac{\mathbf{T}_1}{\mathbf{T}_2},$$

skąd

$$\left(\frac{V_2}{V_1}\right)^{1-K} = \frac{T_2}{T_1} .$$

Równanie (3.33) przyjmie teraz postać:

$$W(1-K) = p_1 V_1 \left(\frac{T_2}{T_1} - 1\right),$$

ale $p_1V_1 = 2 RT_1$ (dla dwóch kmoli gazu), więc

$$W(K-1) = 2 RT_1 \left(1 - \frac{T_2}{T_1}\right)$$

Mamy więc

$$\frac{W(K-1)}{2RT_1} = 1 - \frac{T_2}{T_1} \cdot$$

Czyli

$$\eta = \frac{W(K-1)}{2 R T_1},$$

$$\eta = 24\%$$
.

3.43. Na rys. 3.9 przedstawiony jest cykl Otta silnika spalinowego ze spalaniem wewnętrznym. Odcinek (0→1) przedstawia zassanie mieszanki paliwa, (1→2) adiabatyczne sprężenie mieszanki. Na końcu tego procesu następuje zapalenie mieszanki i jej wybuch, co powoduje gwałtowny wzrost ciśnienia i temperatury – odcinek (2→3). Krzywa (3→4) przedstawia adiabatyczne rozprężenie produktów spalania. Przy końcu tego procesu otwiera się zawór wyjściowy i następuje gwałtowny spadek ciśnienia (4→1). Odcinek (1→0) przedstawia usunięcie produktów spalania.

Obliczyć sprawność tego cyklu, jeżeli dany jest wykładnik adiabaty K=1,4 oraz stopień adiabatycznego sprężania $\varepsilon = V_1/V_2 = 2$. Przyjąć, że ciepło pobierane jest w procesie (2 \rightarrow 3), a oddawane do chłodnicy (otoczenia) w procesie (4 \rightarrow 1).

Rozwiązanie

Rys. 3.9. Ciepło pobierane jest w procesie $(2\rightarrow 3)$ a oddawane do chłodnicy w procesie $(4\rightarrow 1)$.

Szukana sprawność silnika wyraża się wzorem:

$$\eta = 1 - \frac{Q_{odd}}{Q_{pobr}}$$

Ciepło oddane w procesie (4→1) wyrazi się wzorem:

$$Q_{odd} = mc_v (T_4 - T_1).$$

Ciepło pobrane w procesie (2→3) będzie:

$$Q_{pobr} = mc_v (T_3 - T_2).$$

Wzór na sprawność silnika przedstawi się teraz następująco :

$$\eta = 1 - \frac{m c_v (T_4 - T_1)}{m c_v (T_3 - T_2)}.$$

Należy wyznaczyć temperatury T_3 i T_2 w funkcji temperatur T_4 i T_1 z procesu adiabatycznego:

$$T_3V_3^{K-1} = T_4V_4^{K-1}$$

$$T_3 = T_4 \left(\frac{V_4}{V_3}\right)^{K-1},$$

ale

$$\frac{V_4}{V_3} = \frac{V_1}{V_2} = \varepsilon$$
 , (co widać na **rys. 3.9**)

więc

$$T_3 = T_4 \varepsilon^{K-1} .$$

Analogicznie

$$T_{2}V_{2}^{K-1} = T_{1}V_{1}^{K-1} ,$$

skąd

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{K-1}$$
 ,

$$T_2 = T_1 \varepsilon^{K-1}.$$

Mamy wiec

$$\eta = 1 - \frac{T_4 - T_1}{T_4 \varepsilon^{K-1} - T_1 \varepsilon^{K-1}} \cdot$$

Ostatecznie

$$\eta = 1 - \frac{1}{\varepsilon^{K-1}} \cdot$$

Wartość liczbową sprawności wyliczamy za pomocą logarytmów naturalnych. W tym celu wprowadzamy następujące oznaczenie:

$$x = 2^{0.4}$$
,

$$lnx = 0,4 ln 2,$$

$$lnx = 0,4 \cdot 0,69,$$

$$lnx = 0,276,$$

$$x = 1,32.$$

Mamy więc

$$\eta = 1 - \frac{1}{1,32},$$

$$\eta = 25\%$$
.

3.44. Przy ogrzewaniu izochorycznym masy m = 10 g azotu jego temperatura bezwzględna wzrosła n = 3 razy. Obliczyć zmianę entropii w tym procesie, jeżeli $c_V = 320$ J/kg K.

Rozwiązanie

Zmianę entropii wyliczamy ze wzoru:

$$\Delta S = \int \frac{dQ}{T} , \qquad (3.34)$$

gdzie dQ jest ciepłem dostarczonym do układu, które przy ogrzewaniu izochorycznym wyraża się wzorem:

$$Q = m c_v dT$$
.

Wzór (3.34) przyjmie teraz postać:

$$\Delta S = m c_v \int_{T_1}^{T_2} \frac{dT}{T} .$$

Po scałkowaniu będziemy mieli:

$$\Delta S = m c_v ln \frac{T_2}{T_1},$$

ale $T_2 = 3T_1$, wiec

$$\Delta S = m c_v \ln 3$$
,

gdzie ln 3 = 1,096,

$$\Delta S = 3.5 \frac{J}{K}$$
.

(Przy oziębieniu zmiana entropii będzie ujemna).

3.45. Wodę o masie 2 kg i temperaturze $t_1 = 90^{\circ}\text{C}$ (363 K) zmieszano adiabatycznie pod normalnym ciśnieniem z wodą o masie 3 kg i temperaturze $t_2 = 10 \, ^{\circ}\text{C}$ (283 K). Obliczyć zmianę entropii, przyjmując ciepło właściwe wody

$$c_{\rm w} = 4184 \ \frac{\rm J}{\rm kgK} \, \cdot$$

Rozwiązanie

Przy mieszaniu się wód o różnych temperaturach, woda o wyższej temperaturze przekazuje ciepło do wody o temperaturze niższej aż do wyrównania temperatur tj. do osiągnięcia temperatury wspólnej – końcowej (t_k) , którą

wyliczamy z bilansu cieplnego:

$$m_1 c_w (t_1 - t_k) = m_2 c_w (t_k - t_2).$$
 (3.35)

Rozwiązując powyższe równanie ze względu na t_k otrzymamy:

$$t_k = 42$$
°C (315K).

Zmianę entropii wyliczymy przy oddawaniu ciepła przez wodę o wyższej temperaturze:

$$\Delta S_{_{1}}=\int\limits_{_{T_{_{1}}}}^{T_{_{K}}}\!\!\frac{dQ}{T}\;\text{,}$$

gdzie

$$dQ = m c_v dT$$

więc

$$\Delta S_{\scriptscriptstyle 1} = m \ c_{\scriptscriptstyle w} \int\limits_{T_{\scriptscriptstyle 0}}^{T_{\scriptscriptstyle k}} \frac{dT}{T} \ . \label{eq:deltaS1}$$

Po scałkowaniu otrzymamy:

$$\Delta S_1 = m c_w ln \frac{T_k}{T_1}.$$

Po podstawieniu wartości liczbowych będziemy mieli:

$$\Delta S_1 = 2 \text{ kg} \cdot 4184 \frac{J}{\text{kg K}} ln \frac{315 \text{ K}}{363 \text{ K}},$$

$$\Delta S_1 = -1184, 4 \frac{J}{K}$$
.

Podobnie obliczamy zmianę entropii wody o niższej temperaturze, która przyjmuje ciepło od wody o temperaturze wyższej:

$$\Delta S_2 = 3 \text{ kg} \cdot 4184 \frac{J}{\text{kg K}} ln \frac{315 \text{ K}}{283 \text{ K}},$$

$$\Delta S_2 = 1344, 3 \frac{J}{K}.$$

Całkowita zmiana entropii wyniesie:

$$\Delta S_{c} = \Delta S_{1} + \Delta S_{2},$$

$$\Delta S_c = 1344,3 - 1184,4,$$

$$\Delta S_{\rm C} = 159 \, \frac{J}{K} \, .$$

II-gi sposób (wykorzystując temperatury średnie arytmetyczne)

$$\Delta S_{C} = \frac{Q}{T_{2 \text{ sr}}} - \frac{Q}{T_{1 \text{ sr}}},$$
gdzie
$$Q = m_{1} c_{w} (t_{1} - t_{k}),$$

$$Q = 2 \text{ kg} \cdot 4184 \frac{J}{\text{kgK}} (363 \text{ K} - 315 \text{ K}),$$

$$Q = 401664 \text{ J}.$$

$$T_{2 \text{ sr}} = \frac{283 + 315}{2} = 299 \text{ K},$$

$$T_{1 \text{ sr}} = \frac{363 + 315}{2} = 339 \text{ K},$$

$$\Delta S_{C} = \frac{401664}{299} - \frac{401664}{339} = 158 \frac{J}{K}.$$

3.46. Dwa litry wody o temperaturze 100°C (373 K) dodano do m = 1 kg lodu o temperaturze $t_1 = -10$ °C (263 K). Obliczyć zmianę entropii, jeżeli ciepło właściwe lodu $L_w = 2100 \frac{J}{kg~K}$, ciepło topnienia lodu $L_t = 34 \cdot 10^4~\frac{J}{kg}$, ciepło właściwe wody $C_w = 4184~\frac{J}{kgK}$.

Rozwiązanie

Obliczamy temperaturę końcową z bilansu cieplnego:

$$m_{w}c_{w}\left(t_{100}-t_{k}\right)=mL_{w}\left(t_{0}-t_{1}\right)+mL_{t}+mc_{w}\left(t_{k}-t_{0}\right).$$

Po przekształceniu i wstawieniu wartości liczbowych otrzymamy:

$$t_k = 38$$
°C (311 K).

Zmiana entropii w tym przypadku jest spowodowana 4-ma procesami: ΔS_1 – związana z oziębieniem wody, ΔS_2 – z ogrzaniem lodu do temperatury topnienia, ΔS_3 – z procesem topnienia lodu oraz ΔS_4 – z ogrzewaniem wody powstałej z lodu do temperatury końcowej.

$$\Delta S_1 = \int\limits_{T_s}^{T_k} \!\! \frac{dQ}{T}$$
 ,

$$\Delta S_{_{1}}=m_{_{w}}c_{_{w}}\int\limits_{T_{_{1}}}^{T_{_{k}}}\!\frac{dT}{T}$$
 ,

$$\Delta S_1 = 2 \text{ kg} \cdot 4184 \frac{J}{\text{kg K}} ln \frac{311 \text{ K}}{373 \text{ K}},$$

$$\Delta S_1 = -1531 \ \frac{J}{K} \ .$$

$$\Delta S_2 = \int\limits_{T_1}^{T_0}\!\!\frac{dQ}{T}$$
 ,

$$\Delta S_2 = m L_w \int_{T}^{T_0} \frac{dT}{T},$$

$$\Delta S_2 = 1 \text{ kg} \cdot 2100 \frac{J}{\text{kg K}} ln \frac{273 \text{ K}}{263 \text{ K}}$$
,

$$\Delta S_2 = 78 \frac{J}{K}.$$

$$\Delta S_{_{3}}=\int\!\!\frac{dQ}{T}$$
 ,

$$\Delta S_{_{3}}=\frac{1}{T}\int\!\!dQ=\frac{Q}{T}$$
 ,

$$\Delta S_3 = \frac{m L_t}{T} ,$$

$$\Delta S_3 = \frac{1 \text{ kg} \cdot 34 \cdot 10^4 \frac{\text{J}}{\text{kg}}}{273 \text{ K}},$$

$$\Delta S_3 = 1245 \frac{J}{K}.$$

$$\Delta S_4 = \int_{T_0}^{T_k} \frac{dQ}{T},$$

$$\begin{split} \Delta S_4 &= mc_w \int_{T_0}^{T_k} \frac{dT}{T} , \\ \Delta S_4 &= mc_w \ln \frac{T_k}{T_0} , \\ \Delta S_4 &= 1 \text{ kg} \cdot 4184 \frac{J}{\text{kg K}} \ln \frac{311 \text{ K}}{273 \text{ K}} , \\ \Delta S_4 &= 544 \frac{J}{K} . \end{split}$$

Całkowita zmiana entropii wyrazi się wzorem:

$$\begin{split} &\Delta S_c = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4, \\ &\Delta S_c = (-1531 + 78 + 1245 + 544) \text{ J/K}, \\ &\Delta S_C = 336 \quad \frac{J}{K} \ . \end{split}$$

3.47. Kamień o masie m = 0,5 kg spada z wysokości h = 10 m na ziemię. Obliczyć zmianę entropii układu kamień – ziemia, jeżeli temperatura powietrza i ziemi jest t =27°C (300K). Opory powietrza pomijamy. Przyjąć g = 10 m/s².

Rozwiązanie

Przy założeniu, że energia potencjalna ciężkości spadającego kamienia zamienia się całkowicie na ciepło, możemy zapisać:

$$\Delta Q = E$$
,

będzie więc

$$\Delta S = \int \frac{dE}{T} ,$$

gdzie dE jest zmianą energii kamień – ziemia.

$$dE = mgh,$$

$$\Delta S = \frac{mgh}{T},$$

$$\Delta S = \frac{0.5 \text{ kg} \cdot 10 \frac{\text{m}}{\text{s}^2} \cdot 10 \text{ m}}{300 \text{ K}},$$

$$\Delta S = \frac{1}{6} \frac{J}{K}.$$

3.48. Podczas izotermicznego rozprężania powietrza w temperaturze T = 17°C (290 K), jego entropia zmieniła się o $\Delta S = 470$ J/K. Obliczyć końcową objętość powietrza, jeżeli początkowa objętość wynosiła $V_p = 0.4$ m³, a początkowe ciśnienie $p_p = 10^5 \frac{N}{m^2}$.

Rozwiązanie

Przy izotermicznym rozprężaniu gazu wykonana praca równa jest ciepłu straconemu przez układ. Możemy więc napisać:

$$\Delta S = \int \frac{p dV}{T}.$$

Ciśnienie p wyznaczamy z równania Clapeyrona:

$$pV = \frac{mRT}{u},$$

skąd

$$p = \frac{m}{\mu} \frac{R T}{V}.$$

Mamy więc

$$\Delta S = \frac{m R}{\mu} \int_{V_p}^{V_k} \frac{dV}{V} .$$

Ale z równania Clapeyrona mamy:

$$mR = \frac{p_p V_p \mu}{T},$$

więc

$$\Delta S = \frac{p_p V_p \mu}{T \mu} \int_{V_p}^{V_k} \frac{dV}{V} .$$

Po scałkowaniu otrzymamy:

$$\Delta S = \frac{p_p V_p}{T} ln \frac{V_k}{V_p},$$

albo

$$ln \frac{V_k}{V_p} = \frac{\Delta S \ T}{p \ V_p} \ . \label{eq:ln_pot}$$

$$ln\frac{V_k}{V_p} = \frac{478\frac{J}{K} \cdot 290 \text{ K}}{10^5 \frac{N}{m^2} \cdot 0.4 \text{ m}^3} = 3.4.$$

 $Z \; \text{tablic znajdujemy} \; \frac{V_k}{V_p} :$

$$\frac{V_k}{V_p} = 3 ,$$

$$V_k = 3.0,4 \text{ m}^3$$

$$V_k = 1.2 \text{ m}^3$$
.

3.49. Obliczyć przyrost entropii w wyniku zmieszania $m_1 = 7$ kg azotu i $m_2 = 1,5$ kg tlenu, przy założeniu, że temperatury i ciśnienia przed zmieszaniem były jednakowe.

Rozwiązanie

Należy obliczyć objętości zajmowane przez gazy przy tym samym ciśnieniu. Jeśli weźmiemy 28 kg azotu (czyli 1 kmol), to w warunkach normalnych zajmuje on 22,4 litra (0,0224 m³). Zatem 7 kg azotu będzie zajmować 5,6 litra, tj. $5,6\cdot 10^{-3}$ m³ (można policzyć szukaną objętość z reguły trzech):

$$7 \text{ kg} - \text{x}$$

$$x = 5.6 l (5.6 \cdot 10^{-3} m^3).$$

Podobnie obliczamy objętość tlenu:

$$x = \frac{1.5}{32} \cdot 22.41$$
,

$$x = 1,05 l (1,1 \cdot 10^{-3} m^3).$$

Przy mieszaniu się gazów, każdy gaz zwiększa swoją objętość do objętości końcowej – wspólnej, a więc o objętość początkową drugiego gazu, zatem wykonuje ogólnie pracę W = p dV. Możemy więc napisać:

$$\Delta S_{N} = \int \frac{p \, dV}{T} ,$$

gdzie $\Delta S_{\rm N}$ jest zmianą entropii dla azotu.

Ciśnienie p wyliczymy z równania Clapeyrona:

$$p_1V = \frac{m}{\mu} R T$$
,

stad

$$p = \frac{m}{\mu} \frac{R T}{V}.$$

Zatem

$$\Delta S_{_{N}} = \frac{m}{\mu} \ R \ \int\limits_{V_{_{p}}}^{V_{k}} \frac{dV}{V}$$
 ,

$$\Delta S_{_{\mathrm{N}}} = \frac{m}{\mu} \ R \ ln \frac{V_{_{k}}}{V_{_{p}}} \, , \label{eq:deltaS_N}$$

$$\Delta S_{N} = \frac{7}{28} 8.31 \cdot 10^{3} \ln \frac{6.7}{5.6}$$

$$\Delta S_{_{\rm N}} = 373 \frac{J}{K} \, \cdot$$

Analogicznie wyliczamy zmiany entropii przy zwiększeniu objętości tlenu:

$$\Delta S_{o} = \frac{m R}{\mu} ln \frac{V_{k}}{V_{p}},$$

$$\Delta S_0 = \frac{1.5}{32} 8.31 \cdot 10^3 \ln \frac{6.7}{1.1}$$

$$\Delta S_0 = 698 \frac{J}{K}.$$

Całkowita zmiana entropii wynosi:

$$\Delta S_{\rm C} = \Delta S_{\rm N} + \Delta S_{\rm 0},$$

$$\Delta S_{C} = 1071 \frac{J}{K} .$$

3.50. Wykazać, że w procesie odwracalnym przy stałym ciśnieniu zmiana entalpii jest równa zmianie ciepła.

Rozwiązanie

Entalpią nazywamy funkcję stanu wyrażoną wzorem:

$$H = U + pV$$
.

Dla stałego ciśnienia zmiana entalpii równa się:

$$dH = dU + p dV$$
,

ale

$$p dV = dW$$
,

oraz

$$dU = dQ - dW$$
.

Mamy więc:

$$dH = dQ - dW + dW.$$

Zatem

$$dH = dQ$$
.

Zadania uzupełniające

3.51. Obliczyć ile cząsteczek powietrza przypada na 1 cm³ w aparaturze próżniowej, jeżeli ciśnienie w tej aparaturze wynosi p = 10^{-9} mmHg a temperatura t = 27° C. Dana jest liczba Avogadra $N_A = 6 \cdot 10^{25} \frac{cz}{kmol}$.

Odp.

$$n' = 2.7 \cdot 10^{19} \frac{T_0}{T} \frac{p}{p_0}$$
,

$$n' = 3.24 \cdot 10^7 \frac{cz}{cm^3}$$
.

3.52. W aparaturze próżniowej o objętości $V = 10 \text{ dcm}^3$ znajduje się gaz pod ciśnieniem $p = 10^{-6}$ mm Hg i temperaturze $t = 27^{\circ}$ C. Obliczyć ilość cząsteczek gazu w tej aparaturze.

Odp.
$$n' = 3.24 \cdot 10^{14} \text{ cz.}$$

3.53. Obliczyć gęstość powietrza znajdującego się w zbiorniku pod ciśnieniem p = 2 atm i w temperaturze t = 27°C. Masa cząsteczkowa powietrza μ = 29 $\frac{\text{kg}}{\text{kmol}}$ (1 atm = 1,013·10⁵ Pa).

Odp.

$$\rho = 2,36 \frac{\text{kg}}{\text{m}^3} \ .$$

3.54. Obliczyć ile cząsteczek znajduje się w kropelce alkoholu etylowego (C_2H_5OH) o masie m=0.5 mg.

$$n' = 6.5 \cdot 10^{18} \text{ cz.}$$

3.55. Obliczyć ile atomów znajduje się w 360 g aluminium, jeżeli kilomol Al wynosi 27 kg.

Odp.
$$n' = 8 \cdot 10^{24} \text{ atomów.}$$

3.56. Jaka jest średnica balonu w kształcie kuli zawierającego n = $8.1 \cdot 10^{25}$ cząsteczek gazu doskonałego w warunkach normalnych.

Odp.
$$d = 179 \text{ cm}.$$

3.57. Obliczyć ciśnienie p wywierane przez n = 10^9 cząsteczek gazu o objętości $V = 1 \text{ mm}^3$ i temperaturze T = 5000 K.

Odp.
$$p = \frac{n R T}{N V},$$

$$p = 69.3 \cdot 10^{-3} \text{ Pa.}$$

3.58. W naczyniu o objętości $V = 3 \text{ m}^3$ znajduje się $m_1 = 1,4 \text{ kg}$ azotu, $m_2 = 1,6 \text{ kg}$ tlenu i $m_3 = 0,88 \text{ kg}$ dwutlenku węgla w temperaturze T = 300 K. Obliczyć sumaryczne ciśnienie jakie wywierają te gazy na ścianki naczynia.

Odp.
$$p = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2} + \frac{m_3}{\mu_3}\right) \frac{RT}{V} ,$$

$$p = 10^5 \text{ Pa.}$$

3.59. Znaleźć masę cząsteczkową mieszaniny gazów składającej się z 7 kg azotu i 5,5 kg dwutlenku węgla.

Odp.
$$\mu = 33.2 \frac{\text{kg}}{\text{kmol}}.$$

3.60. Mieszaninę złożoną z jednej części wagowej wodoru i ośmiu części tlenu nazywamy mieszaniną piorunującą. Znaleźć gęstość tej mieszaniny w temperaturze t = 27°C i przy ciśnieniu p = 10⁵ Pa.

$$\rho = \frac{9 \text{ p } \mu_1 \ \mu_2}{\text{R T } (\mu_2 + 8 \ \mu_1)},$$

$$\rho = 0.48 \, \frac{\mathrm{kg}}{\mathrm{m}^3} \, .$$

3.61. W zbiorniku o objętości V = 60 m^3 znajduje się powietrze, którego wilgotność względna wynosi $\varphi = 50\%$ przy temperaturze t = 18° C. Obliczyć jak dużo wody należy doprowadzić do zbiornika ażeby para wodna znajdująca się w zbiorniku zamieniła się na nasyconą.

Odp.

$$\Delta m = \frac{V \cdot \mu \cdot p_{\text{nas}}}{RT} (1 - \varphi),$$

$$\Delta$$
m = 0,74 kg.

3.62. We wnętrzu zamkniętego cylindra znajduje się ruchomy tłok, który rozdziela dwa gazy: wodór o masie $m_1 = 4$ g, a z drugiej strony azot o masie $m_2 = 8$ g. Obliczyć jaką część cylindra zajmuje wodór, jeżeli dane są masy cząsteczkowe wodoru i azotu odpowiednio: μ_1 i μ_2 .

$$k = \frac{m_1 \mu_2}{m_1 \mu_2 + m_2 \mu_1}$$
,

$$k = \frac{7}{8}$$
.

3.63. W naczyniu w temperaturze T₁ = 320 K zachodzi reakcja m₁ = 2 g wodoru i m₂ = 1 g tlenu. Po zakończeniu reakcji powstała mieszanina pary wodnej i wodoru, który nie wszedł w reakcję. Mieszanina ta ogrzała się do temperatury T₂ = 660 K. Obliczyć ile razy wzrosło w naczyniu ciśnienie po reakcji.

Odp.

$$\frac{\mathbf{p}_2}{\mathbf{p}_1} = 2.$$

3.64. Balon załogowy wzniósł się na pewna wysokość, na której manometr rtęciowy wskazał ciśnienie mniejsze od ciśnienia na ziemi o 76 mm Hg. Obliczyć tę wysokość, jeżeli na ziemi ciśnienie wynosiło p₀ = 756 mm Hg. Temperatura powietrza wynosiła t = 17°C i nie zmieniała się z wysokością.

Odp.
$$h = 885 \text{ m}$$
.

3.65. Ile razy zmniejszy się ciśnienie atmosferyczne na wysokości h =10000 m, w stosunku do ciśnienia normalnego przy założeniu, że temperatura nie zależy od wysokości i wynosi t = 0°C.

Odp.

$$\frac{p}{p_0} = 0.286$$
.

3.66. Obliczyć masę słupa powietrza na poziomie morza i polu przekroju S=1 m², jeżeli gęstość powietrza na poziomie morza wynosi $\rho_0=1,3$ $\frac{\text{kg}}{\text{m}^3}$, a ciśnienie

 $p_0 = 1,013 \cdot 10^5 \text{ Pa.}$

$$m = \frac{S p_0}{g} ,$$

$$m = 10^4 \text{ kg}.$$

3.67. Obliczyć siłę działającą na szybę o powierzchni $S=6~dm^2$ samolotu odrzutowego lecącego na wysokości h=10000~m. Temperaturę średnią $t=-3~^{\circ}C$ przyjmujemy za stałą. Przyjąć, że ciśnienie wewnątrz samolotu jest równe $p_0=1\cdot 10^5~Pa$ i zaniedbać siłę działającą na szybę samolotu związaną z jego prędkością.

Odp.
$$F = 4320 \text{ N}.$$

3.68. W 1 cm³ i pod ciśnieniem p = $2 \cdot 10^4$ Pa znajduje się n = $5 \cdot 10^{19}$ cząsteczek azotu. Obliczyć prędkość średnią kwadratową oraz prędkość najbardziej prawdopodobną cząsteczek azotu.

Odp.

$$\overline{V} = \sqrt{\frac{3pVN_A}{\mu n}}$$
,

$$\overline{V} = 160 \frac{m}{s}$$
,

$$V_n = 130 \ \frac{m}{s} \, .$$

3.69. Ile razy prędkość średnia kwadratowa cząsteczek wodoru jest większa od szybkości średniej kwadratowej cząsteczek pary wodnej w tej samej temperaturze i pod tym samym ciśnieniem?

$$\frac{\overline{\overline{V}}_{H}}{\overline{\overline{V}}_{H_2O}} = \sqrt{\frac{\mu_{H_2O}}{\mu_{H}}} ,$$

$$\frac{\overline{\overline{V}}_{H}}{\overline{\overline{V}}_{H,O}} = 3.$$

3.70. Obliczyć, w jakiej temperaturze prędkość średnia kwadratowa cząsteczek azotu jest równa prędkości średniej kwadratowej cząsteczek wodoru w temperaturze T = 300 K.

Odp.

$$T_{N} = T_{H} \frac{\mu_{N}}{\mu_{H}} ,$$

$$T_N = 4200 \text{ K}.$$

3.71. W pewnym zbiorniku znajduje się rozrzedzony tlen, którego gęstość wynosi $\rho = 2 \cdot 10^{-6} \, \frac{\text{kg}}{\text{m}^3} \, . \, \text{Obliczyć średnią drogę swobodną cząsteczek tego gazu,} \\ \text{przyjmując średnicę cząsteczki d} = 2 \cdot 10^{-10} \, \text{m}.$

Odp.

$$\overline{\lambda} = \frac{\mu}{\sqrt{2} \pi d^2 \rho N_A}, \quad \overline{\lambda} = 15 \text{ cm}.$$

3.72. Jakie ciśnienie powinno być w zbiorniku w kształcie kuli o średnicy d=1 m zawierającym powietrze w temperaturze $t=20^{\circ}$ C ażeby średnia droga swobodna była równa średnicy zbiornika. Średnica cząsteczki powietrza $d_p=3\cdot 10^{-10}$ m.

Odp.

$$p = \frac{RT}{\sqrt{2} \pi \lambda d^{2}N_{A}},$$

$$p = 10.2 \cdot 10^{-3} \text{ Pa.}$$

3.73. Obliczyć przy jakim ciśnieniu średnia droga swobodna cząsteczek danego gazu będzie n = 500 razy większa niż przy ciśnieniu $p_1 = 10^4$ Pa, jeżeli temperatura pozostaje stała.

$$p_2 = \frac{p_1}{n}$$
, $p_2 = 20 \text{ Pa}$.

3.74. Obliczyć w jakiej temperaturze średnia droga swobodna cząsteczek danego gazu będzie trzykrotnie większa niż w temperaturze T = 300 K, jeżeli ciśnienie pozostaje stałe.

Odp.
$$T = 900 \text{ K}$$
.

3.75. Średnia droga swobodna cząsteczek powietrza w warunkach normalnych wynosi $\lambda = 10^{-7}$ m. Obliczyć jaka będzie średnia droga swobodna w temperaturze $t = 17^{\circ}$ C i pod ciśnieniem $p = 10^{-5}$ mm Hg.

Odp.

$$\lambda = \lambda_0 \, \frac{p_0 T}{p T_0} \, ,$$

$$\lambda = 8.1 \text{ m}.$$

3.76. Dwa zbiorniki o różnych objętościach: jeden o objętości V₁ = 0,004 m³, a drugi o objętości V₂ = 0,002 m³, zawierające powietrze w temperaturze t₀ = 0 °C są połączone długą poziomą rurką o średnicy d = 0,01 m, w której znajduje się kropla rtęci. Obliczyć na jaką odległość przesunie się kropla, jeżeli jeden zbiornik (V₁) zostanie ogrzany do temperatury t₁ = 7°C a drugi (V₂) oziębiony do temperatury t₂ = -3°C. Można przyjąć, że objętość rurki jest mała w stosunku do objętości zbiorników i można nie uwzględniać rozszerzalności samych zbiorników.

Odp.

$$x = \frac{4 V_1 V_2 \Delta T}{\pi d^2 (V_1 T_1 + V_2 T_2)},$$
 $x = 0.6 m.$

3.77. Naczynie w kształcie cylindra o długości L = 0,8 m zostało rozdzielone na dwie równe części nieważkim tłokiem mogącym przesuwać się bez tarcia, ale początkowo zablokowanym. Obliczyć ile razy było większe ciśnienie w jednej części zbiornika w stosunku do drugiej, jeżeli tłok po zwolnieniu, przesunął się na odległość d = 20 cm.

$$n = \frac{L+2 d}{L-2 d}$$
, $n = 3$.

3.78. W cylindrze pod tłokiem znajduje się powietrze o masie $m_1 = 29 \, g$ i temperaturze $T_1 = 273 \, K$. Obliczyć o ile podniesie się tłok, którego masa wynosi $m_2 = 100 \, g$ jeżeli cylinder zostanie wstawiony do wrzącej wody $T_2 = 373 \, K$. Ciśnienie atmosferyczne wynosi $p_0 = 10^5 \, Pa$, powierzchnia tłoka $S = 4 \, dcm^2$.

Odp.

$$\Delta h = \frac{m_1 R (T_2 - T_1)}{\mu (p_0 S + m_2 g)},$$

 $\Delta h = 21$ cm.

3.79. W dwóch naczyniach o jednakowych objętościach znajdują się różne gazy: argon o masie $m_1 = 10$ g w jednym naczyniu i azot o masie $m_2 = 20$ g w drugim naczyniu. Obliczyć stosunek ciśnienia wywieranego na ścianki naczynia przez argon do ciśnienia azotu, jeżeli założymy, że temperatura obu gazów pozostała bez zmiany.

Odp.

$$\frac{p_1}{p_2} = \frac{m_1 \ \mu_2}{m_2 \ \mu_1} \ ,$$

$$\frac{\mathbf{p}_1}{\mathbf{p}_2} = \frac{7}{20} .$$

3.80. Rurka w kształcie litery U zatopiona na jednym końcu, zawierająca rtęć na jednakowym poziomie w obu ramionach została ustawiona pionowo. Rtęć zamyka w zatopionej części rurki słupek powietrza o wysokości h = 20 cm w temperaturze $t_1 = 17^{\circ}\text{C}$ i przy ciśnieniu zewnętrznym $p_1 = 10^{5}$ Pa. Obliczyć różnicę poziomów rtęci w rurce, jeżeli została ona ogrzana (wraz z powietrzem w niej zawartym) do temperatury $t_2 = 27^{\circ}\text{C}$. Rozszerzalność samej rtęci i rurki można pominąć.

Odp.
$$\Delta h = 0.92$$
 cm.

3.81. Gaz został ogrzany przy stałym ciśnieniu od temperatury t₁ = 27°C do temperatury t₂ = 57°C. Obliczyć, o ile procent zwiększyła się objętość tego gazu, jeżeli ciśnienie pozostało stałe.

Odp. o 10%.

3.82. W naczyniu o stałej objętości V znajduje się gaz doskonały. Obliczyć ilość ciepła, którą należy dostarczyć ażeby ciśnienie gazu wzrosło o Δp, jeżeli dany

jest stosunek
$$\frac{c_p}{c_v} = K$$
.

Odp.

$$Q = \frac{V \Delta p}{K - 1}.$$

3.83. W naczyniu o objętości V = 0,8 m³ znajduje się azot w temperaturze t_1 = 27 °C i pod ciśnieniem p_1 = 2,3 · 10⁶ Pa. Gaz ten otrzymał Q = 4,6 · 10³ kJ ciepła. Obliczyć końcową temperaturę t_k i ciśnienie p_k , gdy c_p/c_v = K =1,4.

Odp.

$$T_k = T_1 + \frac{Q T_1(K-1)}{pV},$$
 $p_k = p_1 + \frac{Q}{V}(K-1),$ $T_k = 600 K,$ $p_k = 4.6 \cdot 10^6 Pa.$

3.84. W cylindrze pod tłokiem znajduje się m = 0.1 kg powietrza, które zostało ogrzane izobarycznie o $\Delta T = 20$ K. Obliczyć ciepło pobrane i pracę wykonaną przez to powietrze oraz zmianę energii wewnętrznej, jeżeli ciepło właściwe po-

wietrza przy stałym ciśnieniu wynosi $c_p = 1020 \frac{J}{\text{kgK}}$.

$$Q = m c_p \Delta T, \qquad Q = 2040 \text{ J},$$

$$W = \frac{m}{\mu} R \Delta T, \qquad W = 573 \text{ J},$$

$$\Delta U = Q - W, \qquad \Delta U = 1467 \text{ J}.$$

3.85. W palenisku kotła parowego spala się m = 200 kg paliwa w ciągu jednej godz. Ciepło spalania wynosi q = 41 MJ/kg. Obliczyć straty ciepła w procentach od całkowitej ilości wydzielonego ciepła. Pole powierzchni ścian paleniska wynosi S = 60 m², grubość ścian d = 750 mm. Ich współczynnik przewodnictwa cieplnego K = $0.6 \frac{W}{mK}$. Temperatury wewnętrznych i zewnętrznych ścian są odpowiednio równe: t₁ = 750°C, i t₂ = 50°C.

Odp.

$$\eta = \frac{Q'}{Q} 100\%, \quad \eta = \frac{K(t_1 - t_2) S \tau}{d m q},$$
 $\eta = 1,47\%.$

3.86. W celu obliczenia parametrów systemu grzewczego, należy obliczyć jakie są straty ciepła przez 1 m² ściany budynku w ciągu doby. Grubość ścian d = 50 cm, temperatury wewnętrznej i zewnętrznej strony ściany są odpowiednio równe: t₁ = 18°C i t₂ = -30°C. Współczynnik przewodnictwa cieplnego wynosi K = 0,2 W/mK.

Odp.

$$Q = -K \frac{dT}{dx} S\tau,$$

Q =
$$1,66 \cdot 10^6$$
 J.

3.87. Piec elektryczny o mocy M=2 kW i powierzchni wewnętrznej S=0,25 m² pokryty jest ogniotrwałym materiałem o grubości d=10 cm. Współczynnik przewodnictwa cieplnego tego materiału jest równy K=0,8 $\frac{W}{m~K}$. Jaka jest temperatura zewnętrznej powierzchni pieca, jeżeli temperatura jego wewnętrznej powierzchni jest równa t=1200°C.

$$T_{x} = \frac{kST_{1} - Md}{k S} ,$$

$$T_x = 473 \text{ K}$$
, czyli $t_x = 200 ^{\circ}\text{C}$.

3.88. Wiedząc, że przez każdy cm² ściany drewnianej o grubości d = 10 cm uchodzi na zewnątrz, przy obniżeniu temperatury o 1 stopień – 0,00126 J (0,0003 cal) ciepła na sekundę, obliczyć ile ciepła uchodzi w godzinie przez ścianę drewnianą o tej samej grubości oraz o powierzchni S = 24 m², gdy wewnątrz temperatura tej ściany wynosi t₁ = 15°C, a na zewnątrz t₂ = -5°C.

Odp.
$$Q = 21.8 \text{ MJ/h}.$$

3.89. Współczynnik dyfuzji tlenu w warunkach normalnych jest równy $D_0 = 1,41 \cdot 10^{-5}$ m²/s. Obliczyć współczynnik dyfuzji tego gazu w temperaturze t = 50°C jeżeli ogrzano gaz w stałej objętości.

Odp.

$$D_t = D_0 \sqrt{\frac{T_1}{T_0}} \text{ ,}$$

$$D_{t} = 1,54 \cdot 10^{-5} \frac{m^{2}}{s}.$$

3.90. Średnia droga swobodna cząsteczek helu w warunkach normalnych jest równa $\overline{\lambda}=2,3\cdot 10^{-7}\,\mathrm{m}$. Obliczyć współczynnik dyfuzji helu w tych samych warunkach.

Odp.

D = 307
$$\sqrt{\frac{3 \text{ R T}}{\mu}} \overline{\lambda}$$
, D = 9,45·10⁻⁵ $\frac{\text{m}^2}{\text{s}}$.

3.91. Współczynnik dyfuzji azotu jest równy $D = 1,34 \cdot 10^{-5} \, \text{m}^2/\text{s}$ w temperaturze $t_1 = 7^{\circ}\text{C}$ i pod ciśnieniem $p = 10^{5} \, \text{N/m}^2$. Obliczyć średnicę cząsteczki azotu.

$$d = \sqrt{\frac{0,307 \sqrt{\frac{3 R T}{\mu}} R T}{D \sqrt{2} \pi N_A p}}$$

$$d = 3.1 \cdot 10^{-10} \text{ m}.$$

3.92. Obliczyć współczynnik lepkości dynamicznej dwutlenku węgla w warunkach normalnych, jeżeli współczynnik dyfuzji tego gazu w tych samych warun-

kach jest równy
$$D_0 = 10^{-5} \frac{\text{m}^2}{\text{s}}$$
. Dla CO₂ $\mu = 44 \text{ kg/kmol}$.

Odp.

$$\eta = D_0 \frac{\mu p}{R T},$$

$$\eta = 1.23 \cdot 10^{-5} \frac{\text{N s}}{\text{m}^2}.$$

3.93. Znaleźć współczynnik lepkości dynamicznej powietrza znajdującego się pod ciśnieniem normalnym, ale w temperaturze t = 100°C, jeżeli wiadomo, że w warunkach normalnych współczynnik ten wynosi $\eta_0 = 1,72 \cdot 10^{-5} \frac{\text{N} \cdot \text{s}}{\text{m}^2}$.

Odp.

$$\eta = \eta_0 \sqrt{\frac{T}{T_0}}$$
 ,

$$\eta = 2 \cdot 10^{-5} \frac{\text{N s}}{\text{m}^2}$$

3.94. Obliczyć promień kulki ołowianej, która ma spadać ruchem jednostajnym ze stałą prędkością v = 0,2 m/s w cieczy o gęstości $\rho_c = 1,2 \cdot 10^3 \frac{\text{kg}}{\text{m}^3}$ i współczyn-

nik lepkości
$$\,\eta=0.3\frac{{\rm Ns}}{{\rm m}^2}$$
, jeżeli gęstość ołowiu wynosi $\,\rho=11.2\cdot 10^3\,\frac{{\rm kg}}{{\rm m}^3}\,$.

$$r = \sqrt{\frac{9 \eta v}{2(\rho - \rho_c)}},$$

$$r = 1,62 \cdot 10^{-3} \text{ m}.$$

3.95. Gaz znajdujący się pod ciśnieniem $p_1 = 10^5$ Pa zajmował początkowo objętość $V_1 = 22$ dm³. W wyniku przemiany izobarycznej temperatura gazu wzrosła od $t_1 = 20^{\circ}$ C do $t_2 = 100^{\circ}$ C. Obliczyć pracę wykonaną przez gaz.

Odp.

$$W = p_1 V_1 \left(\frac{T_2 - T_1}{T_1} \right),$$

$$W = 601 \text{ I.}$$

3.96. Gaz dwuatomowy znajdujący się pod ciśnieniem $p_1 = 10^5$ Pa rozszerza się izobarycznie. Obliczyć przyrost objętości gazu, jeżeli w procesie tym zmieniła się energia wewnętrzna gazu o $\Delta U = 6$ kJ.

Odp.

$$dV = \frac{\Delta U(K-1)}{p},$$

 $dV = 24 dcm^3$.

3.97. W naczyniu znajduje się $V_1=1$ dcm³ wrzącej wody pod stałym ciśnieniem zewnętrznym p = 10^5 Pa. Woda wrząc zamieniła się całkowicie w parę o objętości $V_2=1671$ dm³ bez zmiany temperatury i przy stałym ciśnieniu zewnętrznym. Obliczyć jaki procent dostarczonego ciepła, stanowi przyrost energii wewnętrznej związanej ze zmianą stanu skupienia. Ciepło parowania wody wynosi $R=2,26\cdot10^6$ $\frac{J}{kg}$, a gęstość wody $\rho=10^3$ kg/m³.

$$\frac{\Delta U}{Q} = \frac{V_1 \rho R - p(V_2 - V_1)}{V_1 \rho R},$$

$$\frac{\Delta U}{Q} = 92,1\%.$$

3.98. Obliczyć pracę w procesie izotermicznego rozprężania się gazu, jeżeli ciśnienie zmniejszyło się od $p_1 = 9 \cdot 10^5$ Pa do $p_2 = 3 \cdot 10^5$ Pa, a objętość początkowa gazu wynosiła $V_1 = 1$ m³.

Odp.

$$W = p_1 V_1 \ ln \frac{p_1}{p_2},$$

$$W = 990 \cdot 10^3 \text{ J}.$$

3.99. Obliczyć ciepła właściwe c_p i c_v dla powietrza. Dane $c_p/c_v=1,4$ i $R/\mu=c_p-c_v$.

Odp.

$$c_p = 1003 \frac{J}{\text{kg K}},$$

$$c_{v} = 716 \, \frac{J}{\text{kg K}}.$$

3.100. Azot rozpręża się adiabatycznie wykonując pracę wynoszącą W=500~kJ. Obliczyć temperaturę końcową, jeżeli jego temperatura początkowa wynosiła $T_1=400~K$. Masa natomiast m=14~kg. Przyjąć ciepło właściwe azotu przy stałej objętości $c_v=742~J/kg~K$.

Odp.

$$T_k = T_1 - \frac{W}{mc_v} ,$$

$$T_k = 352 \text{ K}.$$

3.101. Do jakiej temperatury oziębi się powietrze mające temperaturę początkową t₁ = 7°C, jeżeli jego objętość zwiększyła się 4 razy, a proces przebiega adiabatycznie. Dla powietrza K=1,4.

Odp.
$$T_k = T_1 \left(\frac{V_1}{V_2}\right)^{k-1}$$
, $T_k = 161K$.

3.102. Obliczyć o ile stopni wzrośnie temperatura m = 1,45 kg powietrza przy adiabatycznym sprężaniu, jeżeli praca przy tym procesie wynosi W = $16,62 \cdot 10^3$ J.

Odp.

$$\Delta T = \frac{\mu W (K-1)}{m R},$$

$$\Delta T = 16 \text{ K}.$$

3.103. Silnik cieplny w ciągu jednego cyklu otrzymuje ciepło w ilości $Q_1 = 1,2$ kJ. Obliczyć pracę wykonaną w jednym cyklu oraz ilość ciepła przekazaną do chłodnicy, jeżeli temperatura źródła ciepła wynosi $t_1 = 127$ °C, a chłodnicy $t_2 = 7$ °C.

Odp. W = 360 J,
$$Q_2$$
 = 840 J.

3.104. Silnik cieplny zasilany ze źródła ciepła o temperaturze 3 razy wyższej od temperatury chłodnicy oddał do chłodnicy Q = 400 J ciepła. Obliczyć jaką wykonał pracę.

Odp.
$$W = 800 J$$
.

3.105. Silnik cieplny o sprawności $\eta = 40\%$ wykonał pracę W = 10 kJ. Obliczyć jaką ilość ciepła pobrał.

Odp.
$$Q_1 = 25 \cdot 10^3 \text{ J.}$$

3.106. Azot o objętości V = 0,04 m³ i masie m = 1 kg ogrzano izochorycznie, co spowodowało wzrost ciśnienia od $p_1 = 2,4 \cdot 10^6$ Pa do $p_2 = 2,8 \cdot 10^6$ Pa. Następnie ogrzano go dalej izobarycznie, potem ostudzono izochorycznie i izobarycznie do stanu początkowego. Obliczyć sprawność tego cyklu, jeżeli temperatura przy końcu drugiego procesu wyniosła $T_3 = 500$ K.

Odp.
$$\eta = 1 - \frac{Q_3 + Q_4}{Q_1 + Q_2}$$
, $\eta = 3,4\%$.

3.107. Gazem roboczym w silniku jest jeden kilomol gazu doskonałego, składającego się z cząstek dwuatomowych, który poddany jest przemianie według cyklu prostokątnego składającego się z dwóch izochor i dwóch izobar tak, że ciśnienie i objętość wzrosło k razy, co jest przedstawione na **rys. 3.10**. Obliczyć sprawność tego silnika, gdy k=3. Dane są: $c_v = \frac{5}{2}$ R i $c_p = \frac{7}{2}$ R.

Rys. 3.10. Cykl składa się z dwóch izochor oraz z dwóch izobar

Odp.

$$\eta = \frac{2(k-1)}{5+7k},$$
dla k = 3 η = 15%.

3.108. Znaleźć sprawność silnika Carnota pracującego z gazem dwuatomowym, jeżeli podczas rozprężania adiabatycznego objętość gazu zwiększyła się od $V_1 = 8 \text{ dm}^3 \text{ do } V_2 = 10 \text{ dcm}^3$. Stosunek $c_p/c_v = 1,4$.

Odp.

$$\eta = 1 - \left(\frac{V_1}{V_2}\right)^{K-1},$$

$$\eta = 8.5\%.$$

3.109. Gaz dwuatomowy został poddany termodynamicznemu procesowi, którego jeden cykl pokazany jest na **rys. 3.11**. Krzywa 1–2 przedstawia sprężenie adiabatyczne, odcinek prostej 2–3 odpowiada spalaniu paliwa przy stałym ciśnieniu p₁ (pobranie ciepła), 3–4 rozprężenie adiabatyczne i 4–1 odprowadzenie ciepła przy stałym ciśnieniu p₂.

Obliczyć sprawność tego cyklu, jeżeli dany jest wykładnik adiabaty K=1,4 oraz stosunek ciśnień $\varepsilon=p_2/p_1=2,5$ uwzględniając tylko ciepło doprowadzone do układu i odprowadzone do chłodnicy.

Rys. 3.11. Cykl przemiany termodynamicznej opisanej w treści zadania

Odp.
$$\eta = 1 - \frac{1}{\varepsilon^{\frac{K-1}{K}}}, \quad \eta = 23\%.$$

3.110. Wieloatomowy gaz doskonały ogrzewany jest w stałej objętości tak, że jego ciśnienie zwiększa się dwa razy. Następnie gaz rozpręża się adiabatycznie, osiągając ciśnienie początkowe i wreszcie w wyniku sprężenia izobarycznego uzyskuje objętość początkową, co jest pokazane na **rys. 3.12**. Dla gazów wieloatomowych K= 1,3. Obliczyć sprawność tego cyklu.

Rys. 3.12. Jeden cykl składa się z izochory, izobary i z adiabaty

$$\eta = 1 - \frac{K\left[\left(\frac{p_2}{p_1}\right)^{\frac{1}{K}} - 1\right]}{\left[\frac{p_2}{p_1} - 1\right]}, \quad \eta = 9\%.$$

3.111. Przy ogrzewaniu m = 20 g argonu, jego temperatura bezwzględna wzrosła n = 3 razy. Obliczyć zmianę entropii podczas ogrzewania izobarycznego, jeśli ciepło właściwe argonu przy stałym ciśnieniu $c_p = 532 \text{ J/kgK}$.

Odp.

$$\Delta S = 11,7 \frac{J}{K}$$
.

3.112. Jeden kilomol helu ogrzany izochorycznie zwiększył swoje ciśnienie n=5 razy. Obliczyć zmianę entropii w czasie tej przemiany, jeżeli ciepło właściwe helu przy stałej objętości wynosi $c_{\rm v}=3140\frac{J}{{\rm kgK}}$, a masa molowa helu $\mu=4~{\rm kg/kmol}.$

$$\Delta S = 20,2 \frac{kJ}{K}.$$

Aneks I

Wyprowadzenie wzoru barometrycznego

Rozpatrujemy ciecz, a nad nią powietrze atmosferyczne. Początek układu współrzędnych obieramy na powierzchni cieczy (**rys. 3.13**).

Rys. 3.13. Na wybrany element cieczy działają siły, które się równoważą

Rozpatrujemy element cieczy o powierzchni S i grubości dh. Wybrany element cieczy jest w równowadze, więc wypadkowa wszystkich sił działających na element równa się zeru:

$$pS + \rho gS dh - S(p + dp) = 0$$

po uproszczeniu

$$dp = \rho g dh. \tag{3.36}$$

Wzór (3.36) całkujemy:

$$\int dp = \int \rho g dh,$$

biorąc granice całkowania odpowiednio: dla ciśnienia od p_0 do p, dla głębokości od 0 do h otrzymamy:

$$\int_{p_0}^p dp = \rho g \int_0^h dy,$$

$$p - p_0 = \rho g h$$
,

skad

$$p = p_0 + \rho g h$$
.

Powyższy wzór pokazuje, że ciśnienie hydrostatyczne rośnie wprost proporcjonalnie wraz z głębokością.

Natomiast, jeżeli będziemy rozpatrywać słup powietrza atmosferycznego nad cieczą np. nad poziomem morza, to w miarę wzrostu wysokości (y) ciśnienie będzie maleć. Stąd we wzorze (3.36) pojawi się znak minus:

$$dp = -\rho g \, dy. \tag{3.37}$$

Gęstość powietrza ρ nie jest stała jak w przypadku cieczy, lecz zależy od wysokości (y).

Należy więc wyrazić gęstość ρ w funkcji y lub w funkcji ciśnienia p:

$$\frac{\rho}{\rho_0} = \frac{p}{p_0} ,$$

stad

$$\rho = \rho_0 \frac{p}{p_0}.$$

Mamy wiec

$$\frac{\mathrm{d}p}{\mathrm{d}y} = -\frac{\rho_0}{p_0} p g,$$

$$\frac{\mathrm{dp}}{\mathrm{p}} = -\frac{\rho_0}{\mathrm{p}_0} \, \mathrm{g} \, \mathrm{dy} \,,$$

$$\int\limits_{p_0}^p \frac{dp}{p} = -\frac{\rho_0}{p_0} g \int\limits_0^h dy \; .$$

Przy całkowaniu należy uwzględnić, że gdy y=0 to $p=p_0$, na wysokości h ciśnienie będzie p.

$$\ln p\Big|_{p_0}^p = -\frac{\rho_0}{p_0} g h,$$

$$ln \frac{p}{p_0} = -\frac{\rho_0}{p_0} g h,$$

$$e^{-\frac{p_0}{p_0}gh} = \frac{p}{p_0}.$$

Ostatecznie będziemy mieli:

$$p = p_0 e^{-\frac{\rho_0 g h}{p_0}}.$$
 (3.38)

W celu uzyskania drugiej formy wzoru barometrycznego korzystamy z podstawowego wzoru teorii kinetyczno molekularnej tj. wzoru na ciśnienie gazu w zależności od średniej energii kinetycznej cząsteczek:

$$p = \frac{2}{3} \frac{n}{V} \overline{E}$$

gdzie

$$\overline{E} = \frac{3}{2} k T$$
.

Po uwzględnieniu powyższego wzoru i po pomnożeniu licznika i mianownika przez m (masę pojedynczej cząsteczki) otrzymamy:

$$p = \frac{n \cdot m}{V \cdot m} k T.$$

Iloczyn n \cdot m jest masą gazu w objętości V, więc

$$\frac{\mathbf{n} \cdot \mathbf{m}}{\mathbf{V}} = \rho$$
,

a ciśnienie wyrazi się wzorem:

$$p = \frac{\rho k T}{m}$$

lub

$$p_0 = \rho_0 \, \frac{k \, T}{m} \, \cdot$$

Otrzymamy więc:

$$p = p_0 \ e^{-\frac{\rho_0 \ g \ h}{\rho_0 \ k \ T}} \ , \label{eq:power_power}$$

lub

$$p = p_0 e^{-\frac{m g h}{k T}}$$

gdzie m jest masą jednej cząsteczki:

$$m = \frac{\mu}{N_A}$$
,

$$k = \frac{R}{N_A}$$
.

Uwzględniając powyższe, otrzymamy

$$p = p_0 e^{-\frac{\mu g h}{R T}}$$
 (3.39)

Ponieważ ilość cząsteczek w jednostce objętości jest wprost proporcjonalna do ciśnienia, więc wzór (3.39) przyjmie postać:

$$n = n_0 e^{-\frac{\mu g h}{R T}}$$
 (3.40)

Aneks II

Wyprowadzenie wzoru
$$c_p - c_v = \frac{R}{\mu}$$

Wychodzimy ze wzoru na I zasadę termodynamiki:

$$\Delta U = Q - W$$

Przyrost energii wewnętrznej równa się ciepłu dostarczonemu do układu minus wykonana praca przez dany układ.

$$m c_v \Delta T = m c_p \Delta T - p \Delta V, \qquad (3.41)$$

Równanie stanu gazu doskonałego ma postać

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
 dla m = const.

Dla przemiany izobarycznej (p – stałe) będziemy mieli:

$$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2} ,$$

stad

$$V_2 = V_1 \frac{T_2}{T_1} \, .$$

Równanie (3.41) można przedstawić w sposób następujący:

$$m c_v \Delta T = m c_p \Delta T - p (V_2 - V_1)$$

i korzystając ze wzoru na V2, otrzymamy:

m
$$c_v \Delta T = m c_p \Delta T - p \left(V_1 \frac{T_2}{T_1} - V_1 \right)$$
,

$$m c_v \Delta T = m c_p \Delta T - p V_1 \left(\frac{T_2}{T_1} - 1 \right),$$

$$m c_v \Delta T = m c_p \Delta T - \frac{pV_1}{T_1} (T_2 - T_1)$$
.

W oparciu o prawo Clapeyrona możemy napisać:

$$\frac{pV_1}{T_1} = \frac{m}{\mu} R .$$

Mamy więc

$$m c_v \Delta T = m c_p \Delta T - \frac{m}{\mu} R \Delta T$$

lub

$$c_{v} = c_{p} - \frac{R}{u} .$$

Ostatecznie otrzymujemy szukany wzór:

$$c_{p} - c_{v} = \frac{R}{\mu} \tag{3.42}$$

Jeżeli zamiast c_p i c_v (ciepła właściwego przy stałym ciśnieniu i przy stałej objętości) będziemy mieli ciepła molowe (c_p i c_v), to wzór (3.42) przyjmie postać:

$$C_{p} - C_{v} = R. ag{3.43}$$