The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński 1 , Sławomir Lasota 1 , Ranko Lazić 2 , Jérôme Leroux 3 and Filip Mazowiecki 3

¹University of Warsaw

²University of Warwick

³LaBRI

Rennes 2018

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

 1 University of Warsaw 2 University of Warwick 3 LaBRI

Rennes 2018

[2018/10/16 17:35:31 (14)]

Introduction

Petri Nets, VASS, programs with no zero tests

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^d \times Q$

(d,Q,T), where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

$$(d,Q,T)$$
, where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d=3, $Q=\{p,q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

$$(d,Q,T)\text{, where }T\subseteq Q\times\mathbb{Z}^d\times Q$$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1) \to p(0,1,0) \to q(0,1,0) \to q(0,0,2) \to p(1,0,2)$$

$$(d,Q,T)$$
, where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1) \to p(0,1,0) \to q(0,1,0) \to q(0,0,2) \to p(1,0,2)$$

Notation: $p(0,0,1) \to^* p(1,0,2)$

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

Decide: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

Decide: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Coverability can be reduced to reachability

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

- Coverability can be reduced to reachability
- ullet We can assume $\mathbf{u}=\mathbf{v}=\mathbf{0}$

```
\begin{array}{lll} {\sf x} \mathrel{+}= {\sf m} & ({\sf add} \ m \ {\sf to} \ {\sf variable} \ {\sf x}) \\ {\sf x} \mathrel{-}= {\sf m} & ({\sf subtract} \ m \ {\sf from} \ {\sf variable} \ {\sf x}) \\ {\sf goto} \ L \ {\sf or} \ L' & ({\sf jump} \ {\sf to} \ {\sf either} \ {\sf line} \ L \ {\sf or} \ {\sf line} \ L') \\ {\sf test} \ {\sf x} \mathrel{=} 0 & ({\sf continue} \ {\sf if} \ {\sf variable} \ {\sf x} \ {\sf is} \ {\sf zero}) \\ {\sf halt} \ {\sf if} \ {\sf x}_1, \ldots, {\sf x}_l \mathrel{=} 0 & ({\sf terminate} \ {\sf if} \ {\sf listed} \ {\sf variables} \ {\sf are} \ {\sf zero}). \end{array}
```

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

All variables are initialized to 0, and are never negative

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

All variables are initialized to 0, and are never negative

Example

- 1: x' += B
- 2: **goto** 6 **or** 3
- 3: x += 1 x' -= 1
- 4: y += 2
- 5: **goto** 2
- 6: **halt if** x' = 0.

$$\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}$$

All variables are initialized to 0, and are never negative

Example

1:
$$x' += B$$

2: $goto 6 or 3$
3: $x += 1$ $x' -= 1$
4: $y += 2$
5: $goto 2$
6: halt if $x' = 0$.

$$\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}$$

All variables are initialized to 0, and are never negative

Example

1:
$$x' += B$$

2: **goto** 6 **or** 3
3: $x += 1$ $x' -= 1$
4: $y += 2$
5: **goto** 2
6: **halt if** $x' = 0$

A complete run ends with x = B, y = 2B

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

$$p(0,0,1) \to^* p(1,0,2)$$
?

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.


```
\begin{array}{c} {\bf z} \mathrel{+}{=} \; 1 \\ {\bf loop} \\ {\bf loop} \\ {\bf y} \mathrel{+}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 1 \\ {\bf loop} \\ {\bf y} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{+}{=} \; 2 \\ {\bf x} \mathrel{+}{=} \; 1 \\ {\bf x} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 2 \\ {\bf halt if } \; {\bf x}, {\bf y}, {\bf z} \mathrel{=} 0. \end{array}
```

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

DECIDE: Does it have a complete run (executing halt)?

Coverability if halt is empty

$$\begin{array}{c} {\bf z} \mathrel{+}{=} \; 1 \\ {\bf loop} \\ {\bf loop} \\ {\bf y} \mathrel{+}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 1 \\ {\bf loop} \\ {\bf y} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{+}{=} \; 2 \\ {\bf x} \mathrel{+}{=} \; 1 \\ {\bf x} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 2 \\ {\bf halt \; if \; x,y,z} \mathrel{=} 0. \end{array}$$

Reachability state of art

Reachability state of art

Outline

- High level idea of the proof
- Key construction

Additional command: test x = 0

Additional command: $\mathbf{test} \times = 0$

Reachability becomes undecidable

Additional command: $\mathbf{test} \times = 0$

Reachability becomes undecidable

Let k – size of input

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

If
$$f$$
 is n -EXP, i.e., $f(k) = 2$ n times. Then reachability is $(n-1)$ -EXPSPACE-co

Then reachability is (n-1)-EXPSPACE-complete

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

If
$$f$$
 is $n\text{-EXP},$ i.e., $f(k)=2$

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f = 2-EXP

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $\boldsymbol{B} = \boldsymbol{f}(\boldsymbol{k})$

If
$$f$$
 is n -EXP, i.e., $f(k) = 2$ n times.

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f=2-EXP We can do it for any f=n-EXP

B – bound on the counters

B – bound on the counters

We encode this into programs with no zero tests

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$\mathbf{x}_1' += 1 \quad \cdots \quad \mathbf{x}_l' += 1$$
 $\mathbf{b} -= 1$

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$\mathbf{x}_1' += 1 \quad \cdots \quad \mathbf{x}_l' += 1$$
 $\mathbf{b} -= 1$

Replace $x_i += m$ with $x_i += m$ $x'_i -= m$

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$x'_1 += 1 \quad \cdots \quad x'_l += 1$$
 $b_l -= 1$

Replace $x_i += m$ with $x_i += m$ $x'_i -= m$

Replace $x_i = m$ with $x_i = m$ $x'_i + m$

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

$$x_i' = B - x_i$$

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b} \quad \longleftarrow \quad \mathsf{c} \ \text{is "number of zero tests"} \cdot 2$$

$$x_i' = B - x_i$$

B – bound on the counters

$$b=B,\ c\geq 0,\ d=c\cdot b$$
 c is "number of zero tests" \cdot 2 $x_i'=B-x_i$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1 x'_i -= 1$$

 $d -= 1$

loop

$$x_i = 1$$
 $x'_i += 1$
 $d = 1$

$$c -= 1$$

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$
 c is "number of zero tests" $\cdot 2$ $\mathsf{x}_i' = B - \mathsf{x}_i$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
 $d -= 1$

$$c = 1$$

loop

$$x_i = 1$$
 $x'_i += 1$
 $d = 1$
 $c = 1$

B – bound on the counters

$$\mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b}$$
 c is "number of zero tests" $\cdot 2$ $\mathbf{x}_i' = B - \mathbf{x}_i$ holds because $\mathbf{b} = 0$

Replace **test** $x_i = 0$ with

$$\begin{array}{c} \mathbf{loop} \\ \mathbf{x}_i \mathrel{+}= 1 \end{array}$$

$$x_i += 1 x'_i -= 1$$

 $d -= 1$

$$c -= 1$$

loop

$$x_i = 1$$
 $x'_i += 1$ $d = 1$

c -= 1

B – bound on the counters

$$\begin{array}{ll} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} & \longleftarrow & \mathbf{c} \text{ is "number of zero tests"} \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i & \longleftarrow & \mathbf{holds because b} = 0 \end{array}$$

Replace **test** $x_i = 0$ with

c decreased by 2 and $\mbox{\rm d}$ by at most 2B

B – bound on the counters

$$\begin{array}{lll} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} & & \\ \mathbf{c} \ \text{ is "number of zero tests" } \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i & & \\ & &$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
 $d -= 1$
 $c -= 1$
loop
 $x_i -= 1$ $x'_i += 1$
 $d -= 1$
 $c -= 1$

c decreased by 2 and d by at most 2B

so a false zero test implies $\mathsf{d} \neq 0$

B – bound on the counters

$$\begin{array}{c} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} \end{array} \longleftarrow \begin{array}{c} \mathbf{c} \ \text{is "number of zero tests"} \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i \end{array} \longleftarrow \begin{array}{c} \mathbf{b} = \mathbf{d} \\ \mathbf{b} = \mathbf{d} \end{array}$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
 $d -= 1$
 $c -= 1$
loop
 $x_i -= 1$ $x'_i += 1$
 $d -= 1$

c decreased by $2\ \mathrm{and}\ \mathrm{d}$ by at most 2B

so a false zero test implies $\mathsf{d} \neq 0$

Extend **halt** with b, d = 0

This is the challenge

The main construction

to obtain b, c and d

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

If B is fixed, just start the program with:

$$b += B$$

loop

$$c += 1 d += B$$

 ${\cal B}$ – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

b
$$+= B \leftarrow$$
 "gadget for ratio B " loop c $+= 1$ d $+= B$

 ${\cal B}$ – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

If B is fixed, just start the program with:

b
$$+= B$$

"gadget for ratio B "

loop

c $+= 1$ d $+= B$

But in general we want
$$B=2$$

$$\binom{2^k}{n}$$
 times

 ${\cal B}$ – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

If B is fixed, just start the program with:

But in general we want B=2 $n \times 2^{n}$

For this we need an iterative construction

 \boldsymbol{B} – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

If B is fixed, just start the program with:

b
$$+= B$$

"gadget for ratio B "

loop

c $+= 1$ d $+= B$

But in general we want
$$B=2$$
 n times.

For this we need an iterative construction

Some variables will be bounded and allowed to be 0-tested

Gadget for ratio B = n**-EXP**

 ${\sf b}=B,\ {\sf c}\geq 0,\ {\sf d}={\sf c}\cdot {\sf b}$ allows for 0-tests on variables bounded by B

 $\mathbf{b}=B,\ \mathbf{c}\geq 0,\ \mathbf{d}=\mathbf{c}\cdot\mathbf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

 $\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \geq 0, d = c \cdot b$$

 $\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \geq 0, d = c \cdot b$$

How to use the lemma:

 $b=B,\ c\geq 0,\ d=c\cdot b$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

ullet By the previous slide we can start with B linear in the input

 $b=B,\ c\geq 0,\ d=c\cdot b$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

- ullet By the previous slide we can start with B linear in the input
- ullet Afterwards lift the gadget n times

 $\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \geq 0, d = c \cdot b$$

How to use the lemma:

- ullet By the previous slide we can start with B linear in the input
- ullet Afterwards lift the gadget n times

A program proving the lemma is what's left

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

• We want e.g.: x += i

- We want e.g.: x += i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - 4: **loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0

- We want e.g.: x += [i]
 - 1: **loop**

2:
$$x += 1$$
 $i -= 1$ $i' += 1$

- 3: **test** i = 0
- **4: loop**
- 5: i += 1 i' -= 1
- 6: **test** i' = 0

- We want e.g.: x += i or x -= i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - **4: loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0

- We want e.g.: x += i or x -= i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - 4: **loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0
- Or loop at most b times < body>
 (b has no bound)

- We want e.g.: x += i or x -= i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - **4: loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0
- Or loop at most b times < body>
- (b has no bound)

loop
$$b = 1 \quad b' += 1$$
 loop

$$b' -= 1$$
 $b += 1$ $< body>$

B – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

B – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

Auxiliary variables x, y, k, i (to check correctness)

B – previous bound Output: b = B!, c > 0, $d = c \cdot b$ Auxiliary variables x, y, k, i (to check correctness)

$$b += 1$$
, $k += B$
 $loop$
 $c += 1$ $d += 1$ $x += 1$ $y += 1$
 $i += 1$ $k -= 1$
 $< main\ loop >$
 $loop$

$$x -= i y -= 1$$

halt if y, k = 0

 ${\cal B}$ – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

Auxiliary variables x, y, k, i (to check correctness)

loop

$$x -= i y -= 1$$

 $\mathbf{halt} \ \mathbf{if} \ \mathbf{y}, \mathbf{k} = 0$

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

Auxiliary variables x, y, k, i (to check correctness)

$$x = i \quad y = 1$$

halt if v, k = 0

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

Auxiliary variables x, y, k, i (to check correctness)

$$x = i$$
 $y = 1$

halt if y, k = 0

Invariants i + k = B. $b \cdot c = d$

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

Auxiliary variables x, y, k, i (to check correctness)

$$\mathsf{b} \mathrel{+}= 1, \quad \mathsf{k} \mathrel{+}= B$$

$$\mathsf{loop}$$

$$c += 1$$
 $d += 1$ $x += 1$ $y += 1$ \leftarrow $c, d, x, y := c \cdot B!$

$$i += 1$$
 $k -= 1$

$$<$$
main $loop> \leftarrow$ c := c/(B - 1)!, d,x := $d \cdot B$, b := $b \cdot B$!, k = 0, i = B

loop

$$x = i \quad y = 1$$

halt if
$$y, k = 0$$

Invariants
$$\mathbf{i} + \mathbf{k} = B$$
, $\mathbf{b} \cdot \mathbf{c} = \mathbf{d}$ $\prod_{i=1}^{k-1} \frac{i+1}{i} = k$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

$$\begin{aligned} & \text{Invariants} \\ & \text{i} + \text{k} = B, & \text{b} \cdot \text{c} = \text{d} \end{aligned}$$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

Invariants i + k = B, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

```
1: loop
```

3:
$$c = |i| c' += 1$$

5:
$$d = [i] \quad d' + [i+1] \quad x = [i] \quad x' + [i+1]$$

7:
$$b = 1 \quad b' + = |i + 1|$$

9:
$$b' -= 1 b += 1$$

11:
$$c' -= 1 \quad c += 1$$

13:
$$d' -= 1$$
 $d += 1$ $x' -= 1$ $x += 1$

14:
$$k = 1 \quad i += 1$$

Invariants i + k = B, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

```
1: loop
       loop
          c = |i| \quad c' += 1
                                       c' := c \cdot \frac{1}{\cdot}, d' := d \cdot \frac{i+1}{\cdot}
           loop at most b times
              d = |i| d' += |i+1| x = |i| x' += |i+1|
 5:
       loop
 6:
           b = 1 b' + |i + 1|
7:
 8:
       loop
           b' -= 1 b += 1
 9.
       loop
10:
           c' -= 1 c += 1
11:
12:
           loop at most b times
              d' -= 1 d += 1 x' -= 1 x += 1
13:
14:
       k = 1 i += 1
```

Invariants i + k = B. $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

```
1: loop
```

$$c = [i]$$
 $c' += 1$

5:
$$d = \begin{bmatrix} i \end{bmatrix} d' + = \begin{bmatrix} i+1 \end{bmatrix} \times - = \begin{bmatrix} i \end{bmatrix} \times' + = \begin{bmatrix} i+1 \end{bmatrix}$$

7:

9.

$$b = 1 \quad b' + = \boxed{i+1}$$

$$\mathsf{b}' := \mathsf{b} \cdot (\mathsf{i} + 1)$$

 $c' := c \cdot \frac{1}{\cdot}, d' := d \cdot \frac{i+1}{\cdot}$

$$b' -= 1$$
 $b += 1$

11:
$$c' -= 1 \quad c += 1$$

13:
$$d' = 1$$
 $d + 1$ $x' = 1$ $x + 1$

14:
$$k = 1$$
 $i += 1$

14:

$\begin{aligned} & \text{Invariants} \\ & \text{i} + \text{k} = B, & \text{b} \cdot \text{c} = \text{d} \end{aligned}$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

```
1: loop
        loop
            c = |i| \quad c' += 1
                                            c' := c \cdot \frac{1}{\cdot}, d' := d \cdot \frac{i+1}{\cdot}
 4:
            loop at most b times
                d = [i] d' + [i+1] x = [i] x' + [i+1]
 5:
        loop
 6:
                                                \mathsf{b}' := \mathsf{b} \cdot (\mathsf{i} + 1)
            b = 1 \quad b' + = |i + 1|
 7:
 8:
        loop
            b' -= 1 b += 1
 9.
                                            if any loop not maximal
        loop
10:
                                                  then x < y \cdot B
            c' -= 1 c += 1
11:
12:
            loop at most b times
                d' = 1 d = 1 x' = 1 x + 1
13:
```

k = 1 i += 1

Several applications and corollaries

e.g. satisfiability of FO2 on data words

Several applications and corollaries
 e.g. satisfiability of FO2 on data words

• We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed)

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?
- This originated from studying 1-Pushdown-VASS

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?
- This originated from studying 1-Pushdown-VASS
 So maybe it's good to study restrictions of generalizations of etc...