ACM 100c

Fundamental solutions for linear second order ODE's

Dan Meiron

Caltech

January 12, 2014

Fundamental sets of solutions

 As we stated earlier because we're considering linear second order ODE we know the solution appears in the form

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x),$$

• Here $y_1(x)$ and $y_2(x)$ are homogeneous solutions satisfying

$$y_1'' + p(x)y_1' + q(x)y_1 = 0$$

$$y_2'' + p(x)y_2' + q(x)y_2 = 0$$

• And $y_P(x)$ is the particular solution which satisfies

$$y_P'' + p(x)y_P' + q(x)y_P = r(x).$$

 So we have a two parameter set of solutions but the key question is whether this is enough to solve the general IVP?

Fundamental sets of solutions

We focus first on the homogeneous IVP problem

$$y'' + p(x)y' + q(x)y = 0$$
 $y(x_0) = y_0, y'(x_0) = y'_0.$

Definition

Two solutions of the homogeneous problem $y_1(x)$ and $y_2(x)$ are called a *fundamental set* if every solution of the initial value problem can be expressed as a linear combination of $y_1(x)$ and $y_2(x)$.

Fundamental sets of solutions

• To determine if two solutions form a fundamental set, we need to show that for every solution $y = \phi(x)$ we can find two constants c_1 and c_2 such that

$$\phi(x) = c_1 y_1(x) + c_2 y_2(x).$$

• Both y_1 and y_2 satisfy the homogeneous ODE but we also have to satisfy the conditions of the IVP so we also want

$$c_1 y_1(x_0) + c_2 y_2(x_0) = y_0 c_1 y_1'(x_0) + c_2 y_2'(x_0) = y_0'.$$

- If we can solve this 2 \times 2 system we can get c_1 and c_2 and thus our solution $\phi(x)$.
- This is the analog to the condition for existence of the solutions for IVP's in the first order case.

The Wronskian

• If we can solve this 2×2 system

$$c_1 y_1(x_0) + c_2 y_2(x_0) = y_0 c_1 y_1'(x_0) + c_2 y_2'(x_0) = y_0'.$$

we can get c_1 and c_2 and thus our solution $\phi(x)$.

 We know from linear algebra that the above equations have unique solutions provided the determinant

$$\left|\begin{array}{cc} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{array}\right| = y_1(x_0)y_2'(x_0) - y_2(x_0)y_1'(x_0) \neq 0$$

for all x_0 in the interval $\alpha < x < \beta$.

This determinant is called the Wronskian

Example

Consider the ODE

$$y'' + y = 0 \qquad -\infty < x < \infty$$

This ODE has two solutions

$$y_1(x) = \sin(x)$$
 $y_2(x) = \cos(x)$

If we calculate the determinant

$$W(y_1,y_2) = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix}$$

we see that this is given by

$$\begin{vmatrix} \sin(x) & \cos(x) \\ \cos(x) & -\sin(x) \end{vmatrix} = -1$$

• This determinant never vanishes and so these two solutions form a fundamental set for the ODE over any finite interval.

Abel's theorem

Theorem

If the functions p(x) and q(x) in

$$y'' + p(x)y' + q(x)y = 0$$
 $y(x_0) = y_0, y'(x_0) = y'_0.$

are continuous on the interval $\alpha < x < \beta$ and if $y_1(x)$ and $y_2(x)$ are solutions of the homogeneous ODE

$$y'' + p(x)y' + q(x)y = 0,$$

then the Wronskian $W(y_1, y_2)$ is either zero everywhere in the interval or else is never zero in the interval.

Implications of Abel's theorem

- This means the following
- If the coefficient functions p(x) and q(x) are continuous on the interval $\alpha < x < \beta$
- And $y_1(x)$ and $y_2(x)$ are solutions of the homogeneous ODE

$$y'' + p(x)y' + q(x)y = 0,$$

• And if there exists at least one point where $W(y_1, y_2) \neq 0$ then any solution of the ODE can be expressed as

$$y = c_1 y_1(x) + c_2 y_2(x).$$

Building a fundamental set of solutions

- This result also lets us build fundamental sets of solutions at any point x_0 in the interval $\alpha < x < \beta$.
- There are lots of ways to do this but one way is to solve the two IVPs

$$y_1'' + p(x)y_1' + q(x)y_1 = 0$$
 $y_1(x_0) = 1$ $y_1'(x_0) = 0$ $y_2'' + p(x)y_2' + q(x)y_2 = 0$ $y_2(x_0) = 0$ $y_2'(x_0) = 1$

- By construction $W(y_1, y_2) = 1$ at $x = x_0$.
- So as long as the coefficient functions are smooth in the interval of interest the Wronskian cannot vanish there so y₁ and y₂ form a fundamental set.

Proof of Abel's theorem

- The proof of Abel's theorem is based on the fact that even if we don't know y_1 and y_2 we can explicitly solve for $W(y_1, y_2)$.
- To see this consider the two equations

$$y_1'' + py_1' + qy_1 = 0$$

 $y_2'' + py_2' + qy_2 = 0$

and multiply the first by y_2 and the second by y_1 .

Subtract one from the other to get

$$(y_1y_2''-y_2y_1'')+p(x)(y_1y_2'-y_2y_1')=0$$

Proof of Abel's theorem

Now note that

$$W(x) = y_1 y_2' - y_2 y_1'$$

$$\frac{dW(x)}{dx} = y_1 y_2'' - y_2 y_1''.$$

So the equation

$$(y_1y_2''-y_2y_1'')+p(x)(y_1y_2'-y_2y_1')=0$$

becomes

$$\frac{dW}{dx} + p(x)W = 0,$$

Proof of Abel's theorem

• But this is a first order ODE we can solve:

$$W(y_1, y_2) = c \exp \left[-\int^x p(t)dt\right],$$

where c is some arbitrary constant.

- Since the integral is in the exponential the only way the Wronskian could go to zero from this part of the expression is if the integral blows up somehow.
- But that would mean p(x) certainly is not continuous in the interval of interest and we had assumed it was continuous.
- We can clearly see that the Wronskian can never vanish unless c=0 and in that case it's zero everywhere.

