A7 Graphs P3

1	Sketch the graph of $y = \sec x$, for $0 \le x \le 2\pi$.	[3]						
		9709/03/M/J/04						
2								
2	(i) By sketching a suitable pair of graphs, show that the equation							
	$\csc x = \frac{1}{2}x + 1,$							
	where x is in radians, has a root in the interval $0 < x < \frac{1}{2}\pi$.	[2]						
		9709/3/M/J/05						
3	(i) By sketching a suitable pair of graphs, show that the equation							
	$2\cot x = 1 + e^x,$							
	where x is in radians, has only one root in the interval $0 < x < \frac{1}{2}\pi$.	[2]						
		9709/03/M/J/06						
4	(i) By sketching a suitable pair of graphs, show that the equation							
	$2 - x = \ln x$							
	has only one root.	[2]						
		9709/03/O/N/07						
5	(i) By sketching suitable graphs, show that the equation							
	$4x^2 - 1 = \cot x$							
	has only one root in the interval $0 < x < \frac{1}{2}\pi$.	[2]						
		9709/31/O/N/10						
6	(i) By sketching a suitable pair of graphs, show that the equation							
	$\cot x = 1 + x^2,$							

where *x* is in radians, has only one root in the interval $0 < x < \frac{1}{2}\pi$.

[2]

- 7 (i) By sketching a suitable pair of graphs, show that the equation $\sec x = 3 - \frac{1}{2}x^2,$ where x is in radians, has a root in the interval $0 < x < \frac{1}{2}\pi$. [2] 9709/31/O/N/11 (i) By sketching each of the graphs $y = \csc x$ and $y = x(\pi - x)$ for $0 < x < \pi$, show that the equation 8 $\csc x = x(\pi - x)$ has exactly two real roots in the interval $0 < x < \pi$. [3] 9709/31/M/J/14 9 (i) Sketch the curve $y = \ln(x+1)$ and hence, by sketching a second curve, show that the equation $x^3 + \ln(x+1) = 40$ has exactly one real root. State the equation of the second curve. [3] 9709/33/O/N/14 Sketch the graph of $y = e^{ax} - 1$ where a is a positive constant. [2] 9709/33/O/N/15 (i) By sketching a suitable pair of graphs, show that the equation 11 $5e^{-x} = \sqrt{x}$ has one root. [2] 9709/31/M/J/16
- 12 (i) By sketching a suitable pair of graphs, show that the equation

$$\operatorname{cosec} \frac{1}{2}x = \frac{1}{3}x + 1$$

has one root in the interval $0 < x \le \pi$.

9709/31/O/N/16

[2]

13	(i)	Prove the identity	$v \tan(45^\circ + x)$	$) + \tan(45^{\circ} - x)$	$\equiv 2 \sec 2x$.	[4]
. •	\ . . /	I TOVE THE IMENTER	, tuil is in	/ 1 tall 15 %	j=2 see $2x$.	1 .

(ii) Hence sketch the graph of
$$y = \tan(45^\circ + x) + \tan(45^\circ - x)$$
 for $0^\circ \le x \le 90^\circ$. [3]

9709/31/O/N/17

14 (i) By sketching a suitable pair of graphs, show that the equation $x^3 = 3 - x$ has exactly one real root. [2]

9709/31/O/N/18

15 (i) By sketching a suitable pair of graphs, show that the equation $ln(x + 2) = 4e^{-x}$ has exactly one real root. [2]

9709/33/O/N/19