# **Computational Analysis of Sound and Music**



### Music Information Retrieval – Music Transcription 2/2

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de



# **Outline**

- Drum Transcription
- Polyphonic Music Transcription



#### **Motivation**

- Rhythmic Foundation
  - Drum sets and percussion instruments serve as the rhythmic backbone of music
    - Meter
    - Tempo
    - Structure
  - Provide a steady pulse and groove that guides other musicians and engages listeners
- Percussion instruments offer varied timbres and tonal qualities music







#### **Vocabulary**

- Drum class vocabulary
  - Bass drum (kick drum)
  - Snare drum
  - Hi-hat



#### Sound characteristics





#### **Timbre**

- Temporal coherence (same metrum)
- Spectral overlap (HH-SN, SN-KD)





#### **Traditional Methods**

Building blocks



#### **Traditional Methods**

Non-negative matrix factorization (NMF)



- Non-negative matrix factor deconvolution (NMFD)
  - Convolutive approximation of X





#### **DL-based Approach**

- Onset-and-Frames (OaF-Drums) Model [Callender, 2020]
  - Joint prediction of note onset & velocity values
  - 12s long LogMel spectrograms (10 ms resolution, 250 Mel frequency bins)
  - Regularization (for better generalization)
    - Dropout (at multiple levels)
    - Mixup (2 random pairs)
    - Shuffled mixup (randomly concatenate 1 s excerpts to 12 s



#### **DL-based Approach**

- Network architecture
  - CRNN model
  - Pooling only across frequency (keep time resolution!)
  - Sigmoid output activation function

| Layer                 | Size     | Filters  | Stride |
|-----------------------|----------|----------|--------|
| Log Mel Spectrogram   | 250 bins | Titters  | Stride |
| Conv                  | 16       | 3x3      | 1x1    |
| BatchNorm             |          | 0.10     |        |
| Conv                  | 16       | 3x3      | 1x1    |
| BatchNorm             |          |          |        |
| MaxPool               |          | 1x2      | 1x2    |
| Dropout               |          | Keep 25% |        |
| Conv                  | 32       | 3x3      | 1x1    |
| BatchNorm             |          |          |        |
| MaxPool               |          | 1x2      | 1x2    |
| Dropout               |          | Keep 25% |        |
| Dense                 | 256      |          |        |
| Dropout               |          | Keep 50% |        |
| Bidirectional LSTM    | 64       |          |        |
| LSTM Dropout          |          | Keep 50% |        |
| Dense                 | 88       |          |        |
| Sigmoid Cross Entropy |          |          |        |

Fig-M4-8



# **Outline**

- Drum Transcription
- Polyphonic Music Transcription



#### **Motivation**

- Related tasks
  - Multipitch Estimation
    - Frame-wise view → Identify all pitches
  - Streaming (into voices)
  - Polyphonic transcription
    - Further segmentation into note events



#### **Traditional Method**

- Decomposition with Non-Negative Matrix Factorization (NMF)
  - One basis function per pitch (F0 + harmonics)



Fig-M4-10



#### **DL-based Method**

- Onset and Frames (OaF) Piano Transcription [Hawthorne, 2018]
  - Separate modelling of note onset times and note pitch values
  - **CRNN** architecture
  - Onset informs pitch







#### **DL-based Method**

Example







#### **DL-based Method**

Online Demo



### Onsets and Frames: Dual-Objective Piano Transcription





For example, have you ever made a recording of yourself improvising at the piano and later wanted to know exactly

Fig-M4-13



#### **DL-based Method**

- Music Transcription with Transformers [Hawthorne, 2021]
  - Single-instrument or multi-instrument Transcription
  - Model predicts MIDI event tokes (onset, velocity, pitch)



Fig-M4-14

Online Demo



# **Programming session**



Fig-A2-13



#### References

#### **Images**

```
Fig-M4-1: [Wu et al., 2018], p. 1, Fig. 1
Fig-M4-2: [Wu et al., 2018], p. 2, Fig. 2
Fig-M4-3: [Wu et al., 2018], p. 3, Fig. 3
Fig-M4-4: [Wu et al., 2018], p. 6, Fig. 4
Fig-M4-5: [Wu et al., 2018], p. 15, Fig. 5
Fig-M4-6: [Wu et al., 2018], p. 16, Fig. 6
Fig-M4-7: [Callender et al., 2020], p. 3, Fig. 1
Fig-M4-8: [Callender et al., 2020], p. 10, Tab. 11
Fig-M4-9: https://labsites.rochester.edu/air/projects/multipitch/MPET.png
Fig-M4-10: http://d-kitamura.net/demo/defNMF/nmf en.png
Fig-M4-11: [Hawthorne et al., 2018], p. 3, Fig. 1
Fig-M4-12: [Hawthorne et al., 2018], p. 5, Fig. 2
Fig-M4-13: Screenshot <a href="https://magenta.tensorflow.org/onsets-frames">https://magenta.tensorflow.org/onsets-frames</a>
Fig-M4-14: https://magenta.tensorflow.org/assets/transcription-with-transformers/architecture_diagram.png
```



### References

#### **Audio**

Aud-M4-1: szegvari, "DrumJam Conga Solo Sample Ethno Music Drums 119bpm\_2022-07-15\_19.12.40.wav", Website <a href="https://freesound.org/people/szegvari/sounds/641823/">https://freesound.org/people/szegvari/sounds/641823/</a>, CCO 1.0 licence, 2022



#### References

#### References

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Wu, C.-W., Dittmar, C., Southall, C., Vogl, R., Widmer, G., Hockman, J., Müller, M., & Lerch, A. (2018). A Review of Automatic Drum Transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 9, pp. 1457-1483.

Callender, L., Hawthorne, C., & Engel, J. (2020). Improving Perceptual Quality of Drum Transcription with the Expanded Groove MIDI Dataset. arXiv:2004.00188.

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J., Oore, S., & Eck, D. Onsets and Frames (2018). Dual-Objective Piano Transcription. arXiv:1710.11153

Hawthorne, C., Simon, I., Swavely, R., Manilow, E., & Engel, J. (2021). Sequence-to-Sequence Piano Transcription with Transformers. Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Online.

