Political blog classification, with GCN

Introduction and problem description

Objective: to classify political blogs as 'liberal' or 'conservative'.

Dataset: Polblogs

Theoretical references: Graph Convolutional Networks

Tools used: Python and its libraries

Data preprocessing

Dataset loading and analysis

- Collection of the political blogs that were most active in 2004 in the run-up to the US presidential elections.
- Zip folder containing a text document and a GML file
- Igraph library
- Grafo consisting of 1490 vertices e 19090 edges
- Node attributes: id, label, value, source
- Presence of isolated vertices

Dataset visualization

- networkx and matplotlib libraries
- Liberal blogs in blue, conservative blogs in red

Complete graph

Graph without isolated vertices

Text embeddings creation

- Web Scraping with BeautifulSoup
 - Classes: «post-body entrycontent», «entry-body», «post»
 - o 460 blog unreachable
- Text to embeddings with Bert
- PCA
 - 134 dimensions

Data preparation

- Object of «Data» type by torch_geometric
 - x, edge_index, y
- Data shuffle to avoid bias

```
    data.y
    tensor([0., 0., 0., ..., 1., 1.], dtype=torch.float64)
    tensor([0., 0., 0., ..., 1., 0., 0.])
```

- Split in training set, validation set, test set
 - train_test_split di sklearn
 - RandomNodeSplit not used because limited aboud seed and stratification

GNN introduction

Insight into GCNs

$$m{h}_v^{(k)} = f^{(k)} \left(W^{(k)} \cdot rac{\sum\limits_{u \in \mathcal{N}(v)} h_u^{(k-1)}}{|\mathcal{N}(v)|} + B^{(k)} \cdot m{h}_v^{(k-1)}
ight)$$
 for all $v \in V$.

Node v 's embedding at step k .

Node v 's embedding at step $k-1$.

Color Codes:

- \blacksquare Embedding of node v.
- \blacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.
- Node aggregation $m_i^{(l)} = \sum_{j \in N(i)} \frac{1}{\sqrt{d_i d_j}} h_j^{(l-1)}$
- Node update

$$h_i^{(l)} = \sigma\left(W^{(l)}m_i^{(l)}\right)$$

First architecture

Model definition

• Inspired to <u>Semi-Supervised Classification with Graph Convolutional Networks</u>

$$ReLU(x) = (x)^{+} = max(0,x)$$

Sigmoid(x) =
$$\sigma(x) = \frac{1}{1 + exp(-x)}$$

Training and performance evalutation

Cost function: BCE

$$l_n = -w_n[y_n \log x_n + (1 - y_n) \log (1 - x_n)]$$

Optimization algorithm: Adam

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t} \qquad \hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}} \qquad \theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{\hat{v}_{t}} + \epsilon} \hat{m}_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2} \qquad \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$\hat{m_t} = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v_t}} + \epsilon} \hat{m_t}$$

- Test set accuracy: 77.5%
- Learning curves

Architecture improvement

Architectural changes

- Added normalization layers
- Added linear layers

Training loop changes

Weights initialization according to Xavier (Glorot)

$$w \propto \frac{np.random.randn()}{n_{in} + n_{out}}$$
 $\mathcal{N}(0, \sigma^2)$ $\sigma = gain \times \sqrt{\frac{2}{n_{in} + n_{out}}}$

- Early stopping
- AdamW

New model training

- Grid search with following hyperparameters:
 - Number and dimension of Convolutional Layers
 - Number and dimension of Linear Layers
 - Dropout probability
 - Learning rate
 - Weight decay

Validation

- Best model showed 87% accuracy on validation set.
 - 4 convolutional layers with 16 neurons each one
 - 2 linear layers with 16 and 8 neurons
 - Dropout probability equal to 30%
 - Learning rate 0.01
 - Weight decay 1e-04

Test set results

• Predictions on random 20 samples from test set

```
First 20 rows test output:
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.93, Percentage for Conservative: 0.07
Percentage for Liberal: 0.85, Percentage for Conservative: 0.15
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.58, Percentage for Conservative: 0.42
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.91, Percentage for Conservative: 0.09
                                                                      Prediction: 0, Target: 0
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
Percentage for Liberal: 0.81, Percentage for Conservative: 0.19
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
                                                                      Prediction: 0, Target: 1
Percentage for Liberal: 0.88, Percentage for Conservative: 0.12
Percentage for Liberal: 0.90, Percentage for Conservative: 0.10
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.92, Percentage for Conservative: 0.08
                                                                      Prediction: 0, Target: 0
Percentage for Liberal: 0.86, Percentage for Conservative: 0.14
                                                                      Prediction: 0, Target: 1
Percentage for Liberal: 0.06, Percentage for Conservative: 0.94
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.10, Percentage for Conservative: 0.90
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.05, Percentage for Conservative: 0.95
                                                                      Prediction: 1, Target: 1
Percentage for Liberal: 0.92, Percentage for Conservative: 0.08
                                                                      Prediction: 0, Target: 0
```

Confusion matrix, classification report and ROC curve

Test set Classification Report:

	precision	recall	f1-score	support
0 1	0.81 0.85	0.86 0.79	0.83 0.82	152 146
accuracy macro avg weighted avg	0.83 0.83	0.82 0.83	0.83 0.82 0.83	298 298 298

Critical Aspects

- Input to BERT for unreachable websites
- Choose of dimensionality reduction technique
- Isolated nodes management

Points of improvement

- Use a dataset without unreachable websites
- Explore other techniques to obtain text documents from the blogs
- Explore other techniques of text embeddings creation
- Use other layer types
- Train with cross validation

Isolated nodes exclusion

Model training on the new dataset

- The graph dataset has 266 isolated nodes
- Both two architectures are trained with the filtered input
- The first model showed a 88.16% accuracy
- In the validation phase of the second model, the same hyperparameters were selected; the only exception was the dropout at 50% instead of 30%.
- The best model selected in the validation phase achieved an accuracy of 88.57%.

Test set Classification Report:

	precision	recall	f1-score	support
0	0.88	0.88	0.88	118
1	0.89	0.89	0.89	127
accuracy			0.89	245
macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89	245 245

Thank you for your attention