International Rectifier

IRFS4115PbF IRFSL4115PbF

HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

G

V _{DSS}	150V
R _{DS(on)} typ.	10.3m Ω
max.	12.1m Ω
I _{D (Silicon Limited}	99A ①
I _{D (Package Limite}	_{ed)} 195A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	99①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	70 ①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	195	A
I _{DM}	Pulsed Drain Current ②	396	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	375	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ④	18	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		⊸ °C
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	220	mJ
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 22a, 22b,	Α
E _{AR}	Repetitive Avalanche Energy ⑤		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case 9 ®		0.4	°C/W
$R_{\theta JA}$	Junction-to-Ambient ® ®		40	C/VV

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	150			٧	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.18		V/°C	Reference to 25°C, I _D = 3.5mA ^②
R _{DS(on)}	Static Drain-to-Source On-Resistance		10.3	12.1	mΩ	$V_{GS} = 10V, I_D = 62A$ (5)
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current	_		20	μΑ	$V_{DS} = 150V, V_{GS} = 0V$
				250		$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R_G	Internal Gate Resistance		2.3		Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	97			S	$V_{DS} = 50V, I_{D} = 62A$
Q_g	Total Gate Charge		77	120	nC	$I_D = 62A$
Q_{gs}	Gate-to-Source Charge		28			$V_{DS} = 75V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		26			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		51			$I_D = 62A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		18		ns	$V_{DD} = 98V$
t _r	Rise Time		73			$I_D = 62A$
t _{d(off)}	Turn-Off Delay Time		41			$R_G = 2.2\Omega$
t _f	Fall Time		39			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		5270		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		490			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		105			f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		460			$V_{GS} = 0V$, $V_{DS} = 0V$ to 120V \bigcirc , See Fig. 11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		530			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current	_		99	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			396	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 62A$, $V_{GS} = 0V$ $\$$
t _{rr}	Reverse Recovery Time		86		ns	$T_J = 25^{\circ}C$ $V_R = 130V$,
			110			$T_J = 125^{\circ}C$ $I_F = 62A$
Q _{rr}	Reverse Recovery Charge		300		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot
			450			$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		6.5		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- ③ Limited by T_{Jmax} , starting T_J = 25°C, L = 0.11mH R_G = 25 Ω , I_{AS} = 62A, V_{GS} =10V. Part not recommended for use above this value .
- ① Calculated continuous current based on maximum allowable junction ④ $I_{SD} \le 62A$, $di/dt \le 1040A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175^{\circ}C$.

 - $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\$
 - \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
 - When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

 - @ $R_{\theta JC}$ value shown is at time zero

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

T_C, Case Temperature (°C) **Fig 9.** Maximum Drain Current vs.

Case Temperature

 $V_{DS,}$ Drain-to-Source Voltage (V) Fig 11. Typical C_{OSS} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of $T_{\rm jmax}$. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

t_{av =} Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ [} 1.3 \cdot \text{BV} \cdot Z_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 16. Threshold Voltage vs. Temperature

Fig. 18 - Typical Recovery Current vs. di_f/dt

Fig. 17 - Typical Recovery Current vs. di_f/dt

Fig. 19 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS						
M B O	MILLIM	ETERS	INC	INCHES			
L	MIN.	MAX.	MIN.	MAX.	O T E S		
Α	4.06	4.83	.160	.190			
A1	0.00	0.254	.000	.010			
b	0.51	0.99	.020	.039			
ь1	0.51	0.89	.020	.035	5		
b2	1,14	1.78	.045	.070			
b3	1,14	1.73	.045	.068	5		
С	0.38	0.74	.015	.029			
c1	0.38	0.58	.015	.023	5		
c2	1.14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	-	.270		4		
Ε	9.65	10.67	.380	.420	3,4		
E1	6.22	_	.245		4		
e	2.54	BSC	.100	BSC			
Н	14,61	15,88	.575	.625			
L	1,78	2.79	.070	.110			
L1	-	1.65	-	.066	4		
L2	1,27	1.78	-	.070			
L3	0.25	BSC	.010				
L4	4.78	5.28	.188	.208			

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2, 4.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE
2, 4.- COLLECTOR
3.- EMITTER

DIODES

1.- ANODE *
2, 4.- CATHODE
3.- ANODE

* PART DEPENDENT.

D²Pak (TO-263AB) Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead — Free"

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1, DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
 - 6. CONTROLLING DIMENSION: INCH.
- 7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

S Y	DIMENSIONS						
Мвог	MILLIM	ETERS	INC	HES	NO T ES		
L	MIN.	MAX.	MIN.	MAX.	S		
Α	4.06	4,83	.160	.190			
A1	2.03	3.02	.080	.119			
ь	0.51	0.99	.020	.039			
ь1	0.51	0.89	.020	.035	5		
b2	1,14	1.78	.045	.070			
b3	1.14	1.73	.045	.068	5		
С	0.38	0.74	.015	.029			
c1	0,38	0.58	.015	.023	5		
c2	1.14	1.65	.045	.065			
D	8,38	9,65	.330	.380	3		
D1	6.86	-	.270	-	4		
Ε	9.65	10.67	.380	.420	3,4		
E1	6.22	-	.245		4		
e	2,54	BSC	.100				
L	13.46	14.10	.530	.555			
L1	-	1.65	-	.065	4		
L2	3.56	3,71	.140	.146			

LEAD ASSIGNMENTS

HEXFET

- 2.- DRAIN
- 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR
 3.- EMITTER
 4.- COLLECTOR

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

LOT CODE 1789 ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

OR

D²Pak (TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

1. COMFORMS TO EIA-418.

2. CONTROLLING DIMENSION: MILLIMETER.

DIMENSION MEASURED @ HUB.

INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903