

1. (currently amended). A compound of the formula I:

wherein

A is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R₁₁)(R₁₂), N(R₁₃)(R₁₄), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R₁₅)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R₁₁, R₁₂, R₁₃, R₁₄, R₁₅ are each independently H, (C₁-C₆)-alkyl or a heterocycle;

n is [[0 or]] 1;

m is 0, 1, 2, 3, 4, 5 or 6;

R₁ is R₈, (C₁-C₆)-alkylene-R₈, (C₂-C₆)-alkenylene-R₉, (SO₂)-R₈, (SO₂)-(C₁-C₆)-alkylene-R₈, (SO₂)-(C₂-C₆)-alkenylene-R₉, (C=O)-R₈, (C=O)-(C₁-C₆)-alkylene-R₈, (C=O)NH-R₈, (C=O)-(C₂-C₆)-alkenylene-R₉, (C=O)-NH-(C₁-C₆)-alkylene-R₈, (C=O)-NH-(C₂-C₆)-alkenylene-R₉, COO-R₈, COO-(C₁-C₆)-alkylene-R₈, COO-(C₂-C₆)-alkenylene-R₉, alkynylene-R₉ or (C₁-C₄-alkyl)-heterocycle, wherein the alkylene component of said (C₁-C₆)-alkylene-R₈, (C₂-C₆)-alkenylene-R₉, (SO₂)-(C₁-C₆)-

alkylene-R8, $(SO_2)-(C_2-C_6)$ -alkenylene-R9, $(C=O)-(C_1-C_6)$ -alkylene-R8, $(C=O)-(C_2-C_6)$ -alkenylene-R9, $(C=O)-NH-(C_1-C_6)$ -alkylene-R8, $(C=O)-NH-(C_2-C_6)$ -alkenylene-R9, $COO-(C_1-C_6)$ -alkylene-R8, $COO-(C_2-C_6)$ -alkenylene-R9 and alkynylene-R9 groups is optionally substituted by F;

R8, R9 are each independently H, F, Cl, Br, I, OH, CF_3 , aryl, heterocycle or (C_3-C_8) -cycloalkyl, wherein said aryl, heterocycle and (C_3-C_8) -cycloalkyl groups are optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF_3 , NO_2 , CN, OCF_3 , O- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, NH_2 , $CON(R11)(R12)$, $N(R13)(R14)$, SO_2-CH_3 , COOH, $COO-(C_1-C_6)$ -alkyl or $CONH_2$;

R2 is NH_2 , NO_2 , $N(R13)(R14)$, $NH-SO_2-CH_3$, $NH-SO_2-R12$, $NR11-SO_2-R12$, $N(CO)R11$, $NHCONR11$, $N(C_1-C_6$ -alkyl) $N^+(C_1-C_4$ -alkyl) $_3$ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom;

R3, R4, R5 are each independently H, F, Cl, Br, I, OH, CF_3 , NO_2 , CN, OCF_3 , O- (C_1-C_6) -alkyl, O- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, S- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_3-C_8) -cycloalkyl, O- (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkenyl, O- (C_3-C_8) -cycloalkenyl, (C_2-C_6) -alkynyl, aryl, O-aryl (C_1-C_8) -alkylene-aryl, O- (C_1-C_8) -alkylene-aryl, S-aryl, N((C_1-C_6) -alkyl) $_2$, SO_2-CH_3 , COOH, $COO-(C_1-C_6)$ -alkyl or CO-N((C_1-C_6) -alkyl) $_2$;

R6 is H, F, Cl, Br, I, OH, CF_3 , NO_2 , CN, OCF_3 , O- (C_1-C_6) -alkyl, O- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, S- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_3-C_8) -cycloalkyl, O- (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkenyl, O- (C_3-C_8) -cycloalkenyl, (C_2-C_6) -alkynyl, (C_0-C_8) -alkylene-aryl, O- (C_0-C_8) -alkylene-aryl, S-aryl, N((C_1-C_6) -alkyl) $_2$, SO_2-CH_3 , COOH, $COO-(C_1-C_6)$ -alkyl or CO-N((C_1-C_6) -alkyl) $_2$;

and pharmaceutically acceptable salts thereof.

2. (original). The compound of Claim 1 having the following structure Ia

Ia

wherein

A is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or a heterocycle;

m is 0, 1, 2, 3, 4, 5 or 6;

R1 is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)-alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8, (C=O)NH-R8, (C=O)-(C₂-C₆)-alkenylene-R9, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9, alkynylene-R9 or (C₁-C₄-alkyl)-heterocycle;

R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)-cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-

(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂;

R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N⁺(C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom;

R3, R4, R5 are each independently H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, S-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₈)-cycloalkyl, O-(C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, O-(C₃-C₈)-cycloalkenyl, (C₂-C₆)-alkynyl, aryl, O-aryl (C₁-C₈)-alkylene-aryl, O-(C₁-C₈)-alkylene-aryl, S-aryl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;

R6 is H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, S-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₈)-cycloalkyl, O-(C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, O-(C₃-C₈)-cycloalkenyl, (C₂-C₆)-alkynyl, aryl, O-aryl, (C₁-C₈)-alkylene-aryl, O-(C₁-C₈)-alkylene-aryl, S-aryl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;

and pharmaceutically acceptable salts thereof.

3. (original). The compound of Claim 2 wherein

A is aryl wherein said aryl is optionally substituted by F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or heterocycle;

m is 1;

R1 is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)-alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8,

(C=O)NH-R8, (C=O)-(C₂-C₆)-alkenylene-R9, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9, alkynylene-R9 or (C₁-C₄-alkyl)-heterocycle;

R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)-cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are optionally mono-, di-, or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂;

R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N⁺(C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H

R4, R5 are each independently H, F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R6 is H;

and pharmaceutically acceptable salts thereof.

4. (original). The compound of Claim 3 wherein

A is aryl, wherein said aryl group is optionally substituted by F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or heterocycle;

m is 1;

R1 is (C₁-C₆)-alkyl or (C₁-C₆)-alkylene-R8;

R8, R9 are each independently F, Cl, Br, I, OH or CF₃;

R2 is NH₂, NO₂, CN, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N⁺(C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H;

R4 is F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R5 is H, F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R6 is H;

and pharmaceutically acceptable salts thereof.

5. (original). A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.

6. (canceled).

7. (canceled).

8. (canceled).

9. (original). A method of treating obesity comprising administering to a patient in need thereof a compound of Claim 1.

10. (canceled).

11. (canceled).

12. (canceled).

13. (original). A method of reducing weight in mammals comprising administering to a patient in need thereof a compound of Claim 1.

14. (canceled).

15. (canceled).