Dr. Denton Bobeldyk

CIS 365 Artificial Intelligence

Informed Search

Week in Review

Blackboard Check-in

Artificial Intelligence Informed Search

Judea Pearl -Possible to teach effective Problem Solving Skills?

State Space Search

- * Do we have to search through every possible state to find the state we are looking for?
- * Can we use some 'knowledge' to help us determine which paths to search?

State Space Search

* Can we arrive at a quasi-optimal (instead of optimal) solution with a significant cost reduction?

State Space (Review)

* What is the state space for traveling to the coffee shop from class?

* Pathfinding and graph traversal algorithm that finds the shortest path from a starting node to a goal node in a weighted graph or grid.

- * Heuristic Function h(n)
 - * Estimates the cost to reach the goal from the current node

- * Heuristic Function h(n)
 - * What are some examples of heuristic functions (as well as problems to apply them too!!!)

A* Algorithm Group Exercise (10 minutes)

- * Create a heuristic for each of the following:
 - * Tic Tac Toe
 - * Pathfinding to get to your next class
 - * Which video game you should purchase
 - * Potential Spouse

- * Problem Representation:
 - * The problem is typically represented as a graph where nodes represent states or locations, and edges represent connections between these states, each with an associated cost (or weight).

* Cost Functions

- * g(n): The cost of the path from the starting node to node n
- * h(n): A heuristic function that estimates the cost from node n to the goal node.
- * f(n): The total estimated cost of the cheapest path from the start node to the goal node passing through n:

$$f(n) = g(n) + h(n)$$

- * Heuristic Function h(n)
 - * Estimates the cost to reach the goal from the current node
 - * 'Admissable' if it never overestimates the true cost to reach the goal. This ensures that A* finds the optimal path
 - * 'Consistent/Monotonic' if for every node n and successor n', the estimated cost of h(n) is no greater than the step cost from n to n' plus h(n')

* 'Consistent/Monotonic' if for every node n and successor n', the estimated cost of h(n) is no greater than the step cost from n to n' plus h(n')

$$h(n) <= h(n') + cost(n',n)$$

Hill Climbing

- * Initial State (can be chosen at random or assigned based on some prior knowledge
- * Evaluation current state is evaluated using an objective/heuristic function
- * Generate Neighbors generate neighbor states based on the current state
- * Select the 'best' neighbor
- * Move to the neighbor
- * Repeat
- * Termination: When the state of the neighbors generated isn't better than the current state

Hill Climbing Types

- * Simple Hill Climbing Evaluates one neighbor at a time, moves to the first neighbor that improves the objective function
- * Steepest-Ascent Hill Climbing evaluates all neighbors, selects the one that provides the greatest improvement in the objective function
- * Stochastic Hill Climbing selects a random neighbor to move to, rather than the best one
- * Random Restart Hill Climbing randomly reset the starting point and perform the hill climbing algorithm

Hill Climbing Challenges

- * Local Optima can get stuck in a state where all neighboring states do not improve the objective function even though a better solution exists in the space
- * Plateaus objective function may encounter a flat region where it doesn't change significantly
- * Global Optima no guarantee to find the global optima (similar to the local optima challenge)

Hill Climbing Applications

- * Optimization Problems
- * Pathfinding

Informed Search Algorithms

https://www.educative.io/answers/what-are-informed-search-algorithms

AI Course Project

- * Break into your small group
- * Discuss what types of topics you may be interested in
- * Brainstorm what types of projects you would be interested in working on
 - * Discuss with the instructor

Al Ethics Presentation

- * Finish the signup sheet
- * Ethical concerns involving NLP and LLM

Informed Search Assignment

* Review the assignment