Steel Supplier Analysis

Регрессионный анализ

Загружаем данные в объект Data. Frame и добавляем количество несломанных мечей для каждой партии, а также процент сломавшихся в последний месяц мечей к количеству несломанных.

```
steel <- read.csv("production-data.csv")
steel <- steel %>%
  group_by(unsullen.id, production.date) %>%
  mutate(
    unbroken = lag(cumsum(produced) - cumsum(defects)),
    broke_perc = defects / unbroken
)
```

Найдем средние значения процента сломавшихся мечей по кузнецам.

```
steel.sum <- steel %>%
  group_by(supplier, production.date, report.date) %>%
  filter(production.date != report.date) %>%
  summarize(
   mean = mean(broke_perc)
)
```

Найдем среднее геометрическое значения процента сломавшихся мечей по времени использования меча, а также для каждой партии найдем отклонение от этого среднего.

```
steel.sum <- steel.sum %>%
  group_by(supplier, report.date - production.date) %>%
  mutate(
    memean = exp(mean(log(mean))),
    deviation = mean/memean
)
```

Выведем наглядную зависимость процента сломавшихся мечей от месяца репорта и месяца производства.

```
steel.time <- steel.sum %>%
  ungroup() %>%
  select(supplier, report.date, production.date, deviation) %>%
  spread(report.date, deviation)
  options(knitr.kable.NA = '')
View(steel.time)
```

Все значения близки к единице. Получили, что процент сломавшихся мечей не зависит от месяца ведения войны и не зависит от месяца поступления стали. В такой случае достаточно наблюдать зависимость процента сломанных мечей от времени их использования отдельно по каждому производителю.

```
steel.sword.life <- steel %>%
  group_by(supplier, report.date - production.date) %>%
  filter(report.date - production.date != 0) %>%
  summarize(
    defects.sum = sum(defects),
    swords.sum = sum(unbroken),
    risk = defects.sum/swords.sum
)
```


По полученному графику можно сделать предположение о том, что в Westeros. Inc вероятность поломки меча постоянная во времени, а в Нагру. Со первые три месяца низкая, а потом резко возрастает и остается постоянной. Вычислим эти вероятности, а также среднюю производительность кузнецов.

```
risk.west <- mean(
  (steel.sword.life %>%
    filter(supplier == "westeros.inc")
   )$risk
  )
risk.harp.1 <- mean(</pre>
  (steel.sword.life %>%
    filter(supplier == "harpy.co") %>%
    slice(1:3)
   )$risk
risk.harp.2 <- mean(</pre>
  (steel.sword.life %>%
     filter(supplier == "harpy.co") %>%
     slice(4:6)
  )$risk
)
```

```
swords.mean <- mean(
  (steel %>%
    filter(produced != 0)
  )$produced
)
```

Построение предсказания

В рамках принятой модели найдем количество несломанных мечей в каждый месяц при выборе одного из поставщиков.

По графику видно, что при поставках Harpy.Co у нас всегда будет больше целых мечей, чем при поставках Westeros.Inc. Проверим полученные результаты, для этого введем численную характеристику пользы поставщиков. Выразим ее как время работы всех мечей в течение горизонта планирования.

Достаточно найти матожидание исправности меча для каждого из поставщиков. Выберем для этого распределение Бернулли с модификациями. Первая модификация – изменение вероятности поломки меча из стали Нагру. Со спустя 3 месяца эксплуатации. Вторая – мы условимся, что в конце горизонта планирования все мечи ломаются, так как их полезность становится равной нулю.

```
expect.west <- function(n) {</pre>
  prob.west <- rep(risk.west, n)</pre>
  prob.west \leftarrow c(\text{prob.west*}(1-\text{risk.west})^(0:(n-1)), (1-\text{risk.west})^(n))
  mean.west <- sum(prob.west*(1:(n+1)))</pre>
  return(mean.west)
}
expect.west.all = mean(sapply((1:9), expect.west))
expect.harp <- function(n) {</pre>
  prob.harp <- c(risk.harp.1, risk.harp.1*(1-risk.harp.1),</pre>
                   risk.harp.1*(1-risk.harp.1)^2)
  temp <- rep(risk.harp.2*(1-risk.harp.1)^3, 6)</pre>
  prob.harp <- c(prob.harp, temp*(1-risk.harp.2)^(0:5))</pre>
  prob.harp <- head(prob.harp, n)</pre>
  if(n == 1) {
    prob.harp <- c(prob.harp, 1-risk.harp.1)</pre>
  } else if(n == 2) {
```

```
prob.harp <- c(prob.harp, (1-risk.harp.1)^2)
} else {
    prob.harp <- c(prob.harp, (1-risk.harp.1)^3*(1-risk.harp.2)^(n-3))
}
mean.harp <- sum(prob.harp*(1:(n+1)))
    return(mean.harp)
}
expect.harp.all = mean(sapply((1:9), expect.harp))

print(expect.harp.all)

## [1] 4.949132
print(expect.west.all)</pre>
```

[1] 4.660751

Мы получили, что мечи из стали Harpy. Со долговечнее на \sim 0.3 месяца, а значит, именно эту компанию нужно выбрать в качестве эксклюзивного поставщика.