Theoretische Physik 3 Elektrodynamik

Wintersemester 2021/2022

von Kyano Levi bei Professor Holger Stark

Inhaltsverzeichnis

1	Einle	eitung	1
	1.1	Geschichte]
	1.2	Inhalt]
	1.3	Grundlegende Konstanten der Elektrodynamik	2
	1.4	Grundlegende Formeln der Elektrodynamik	2
2	Elen	mente der Vektoranalysis	3
	2.1	Vektoranalysis	
		2.1.1 Gradient und Nabla-Operator	3
		2.1.2 Divergenz eines Vektorfeldes	3
		2.1.3 Rotation eines Vektorfeldes	4
		2.1.4 Fundamentalsatz der Vektoranalysis (Helmholtz-Theorem)	-
	2.2	Integration von Feldern	-
		2.2.1 Linienintegrale	
		2.2.2 Satz von Stokes	1
		2.2.3 Satz von Gauß	6
3	Elek	ktrostatik	7
•	3.1	Bemerkungen zur elektrischen Ladung	7
	3.2	Coulombsches Gesetz und elektrisches Feld	8
	J	3.2.1 Coulombsches Gesetz	8
	3.3	Feldgleichungen der Elektrostatik	Ć
	0.0	3.3.1 Grundlagen	Ć
		3.3.2 Feldgleichungen der Elektrostatik	í
			L(
			[]
			L 1
		9	12
			13
			LE
	3.4		LE
	3.5	Randwertprobleme der Elektrostatik	15
			LE
			16
			16
			16
	3.6		18
			Į
			20

In halts verzeichn is

4	Elek	trische Felder in Materie	23
	4.1	Mikroskopische Gleichungen der Elektrostatik und Mittelung	23
		4.1.1 Glättungsfunktion	23
	4.2	Makroskopische Gleichungen der Elektrostatik	24
	4.3	Randbedingungen von Dielektrika und Anwendungen	26
		4.3.1 Randbedingungen und Polarisationsladung	26
		4.3.2 Entelektrisierungsfelder	27
		4.3.3 Clausius-Mosotti-Formel	29
	4.4	Elektrostatische Energie im Dielektrikum	31
5	Mag	gnetostatik	33
	5.1	Strom, Stromdichte und Kontinuitätsgleichung	33
	5.2	Leiter und Magnetfeld	34
	5.3	Grundgleichungen der Magnetostatik	36
	5.4	Kleine Stromverteilungen: Der magnetische Dipol	38
		5.4.1 Felder kleiner Stromverteilungen	38
		5.4.2 Kraft, Drehmoment und Energie	41
	5.5	Magnetische Felder in Materie	41
		5.5.1 Einführung der Vakuumsverschiebungsstromdichte	41
		5.5.2 Einführung der Magnetisierung	42

1 Einleitung

1.1 Geschichte

- 1785 Charles Augustin de Coulomb: Entdeckung des Coulombsches Gesetzes.
- 1800 Alessandro Volta: Erfindung der erstern Batterie, die Voltasche Säule.
- 1820 Hans Christian Ørsted: Das Ørstedsche Gesetz beschreibt, dass elektrische Ströme ein Magnetfeld erzeugen.
- 1820-25 André-Marie Ampère: Entdeckung der Grundlagen der Magnetostatik durch Messungen.
- 1831 Michael Faraday: Beschreibung der magnetischen Induktion.
- 1852 Michael Faraday: Formulierung des Nahwirkungsstandpunktes (Beschreibung elektrischer Phänomene über Felder statt Kräfte).
- 1864 James Clerk Maxwell: Formulierung der Maxwell-Gleichungen als fundamentale Feldgleichungen des elektromagnetischen Feldes und Nutzung von elektrischen und magnetischen Hilfsfeldern für die physikalische Beschreibung in Materie sowie Äußerung der Vermutung, dass Licht eine elektromagnetische Welle ist.
- 1886 Heinrich Hertz: Nachweis elektromagnetischer Wellen und Postulierung eines Äthers als hypothetisches Ausbreitungsmedium.
- 1881 Michelson-Morley-Experiment: Konstanz der Lichtgeschwindigkeit unabhängig von Beobachter und Quelle ⇒ ein absolutes Bezugssystem Äther existiert nicht.
- 1905 Albert Einstein: spezielle Relativitätstheorie.

1.2 Inhalt

Der Inhalt dieser Vorlesung gliedert sich in folgende Abschnitte:

- Einleitung
- Elemente der Vektoranalysis
- Elektrostatik
- Elektrische Felder in Materie

1 Einleitung

- Magnetostatik
- Grundgleichungen der Elektrodynamik: Die Maxwellschen Gleichungen
- Spezielle Relativitätstheorie
- Ebene elektromagnetische Wellen
- Elektromagnetische Felder bei vorgegebenen Ladungen und Strömen

1.3 Grundlegende Konstanten der Elektrodynamik

Für Konstanten deren Wert per Definition festgelegt wurde, wird ein ≡-Zeichen verwendet.

Konstante	Wert
Vakuumlichtgeschwindigkeit	$c_0 \equiv 299792458\mathrm{ms^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 8,8541878128 \cdot 10^{-12}\mathrm{AsV^{-1}m^{-1}}$
Magnetische Feldkonstante	$\mu_0 = 1,25663706212\cdot 10^{-6}\mathrm{NA^{-2}}$

1.4 Grundlegende Formeln der Elektrodynamik

Maxwellsche Feldgleichungen

$$\nabla \cdot \mathbf{D} = \rho_f, \quad \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \mathbf{j}_f + \frac{\partial \mathbf{D}}{\partial t}$$

Materialgleichungen

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}, \quad \mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$

In linearen und isotropen Medien gilt

$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}, \quad \mathbf{B} = \mu_0 \mu_r \mathbf{H}$$

Im Vakuum gilt

$$\mathbf{D} = \varepsilon_0 \mathbf{E}, \quad \mathbf{B} = \mu_0 \mathbf{H}$$

Relationen von Lichtgeschwindigkeit, Feldkonstanten und Brechungsindex:

$$c_0 = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$
$$n = \frac{c_0}{c}$$

In linearen, isotropen Medien gilt

$$n = \sqrt{\varepsilon_0 \mu_0}$$

Gradient

$$\nabla \frac{1}{r} = -\frac{\mathbf{r}}{r^3}$$

Elektrisches Potential und elektrisches Feld:

$$\mathbf{E} = -\nabla \phi, \quad \phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$

2 Elemente der Vektoranalysis

2.1 Vektoranalysis

2.1.1 Gradient und Nabla-Operator

Der Gradient eines skalaren Feldes U ist definiert über das totale Differential:

$$dU = \operatorname{grad} U \cdot d\mathbf{r} = \nabla U \cdot d\mathbf{r}$$

Der Gradient steht senkrecht auf den Äquipotentiallinien. Für kartesische Koordinaten gilt

$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z} = \sum_i \mathbf{e}_i \nabla_i,$$

während für krummlinige allgemein gilt, dass

$$\nabla = \sum_{i} \mathbf{e}_{i} \frac{1}{|\partial \mathbf{r}/\partial x_{i}|} \frac{\partial}{\partial x_{i}}.$$

2.1.2 Divergenz eines Vektorfeldes

Die Divergenz eines Vektorfeldes a wird beschrieben durch

$$\operatorname{div} \mathbf{a} (\mathbf{r}) = \nabla \cdot \mathbf{a} (\mathbf{r}).$$

Sie gibt die Quellenhaftigkeit von \mathbf{a} an. In kartesischen Koordinaten ist div $\mathbf{a} = \sum_i \nabla_i a_i$.

Abb. 2.1

Betrachte zum Verständnis ein kleines Volumen ΔV bei **r**. Die Normalen $\hat{\nu}$ zeigen überall nach außen. Der Fluss aus ΔV heraus ist

$$q(r) \Delta V$$
,

wobei $q(r) = \text{div } \mathbf{a}$. Wir können sagen, dass

$$q\left(\mathbf{r}\right) = \operatorname{div} \mathbf{a} = \begin{cases} > 0, & \text{Quelle von } \mathbf{a} \\ < 0, & \text{Senke von } \mathbf{a} \\ = 0, & \text{was reinfließt, fließt raus} \end{cases}.$$

2.1.3 Rotation eines Vektorfeldes

Die Rotation eines Vektorfeldes a ist definiert als

$$\operatorname{rot} \mathbf{a} (\mathbf{r}) = \nabla \times \mathbf{a} (\mathbf{r})$$

Abb. 2.2

und es wird auch als das Wirbelfeld von **a** bezeichnet. Wieder ist die Darstellung in kartesischen Koordinaten einfach: $(\operatorname{rot} \mathbf{a})_i = \varepsilon_{ijk} \partial_{x_i} a_k$.

Wir schauen uns ein kleines orientiertes Flächenelement Δf an. Dann ist die Verwirbelung/Zirkulation um Δf

$$\sum_{C} \mathbf{a} \cdot \hat{\mathbf{t}}_{C} \Delta r_{C} = \operatorname{rot} \mathbf{a} \cdot \Delta f$$

mit Tangentialvektor $\hat{\mathbf{t}}_C$ und Parallelkomponente $\mathbf{a} \cdot \hat{\mathbf{t}}_C$. Wir bezeichnen $\omega = \operatorname{rot} \mathbf{a}$ als lokale Wirbelstärke.

Allgemein gilt, dass Gradientenfelder wirbelfrei sind,

$$\mathbf{a} = \operatorname{grad} U \Leftrightarrow \operatorname{rot} \mathbf{a} = 0 \quad \text{bzw.} \quad \operatorname{rot} (\operatorname{grad} U) = 0$$

und Wirbelfelder quellenfrei sind,

$$\operatorname{div} \mathbf{B} = 0 \iff \mathbf{B} = \operatorname{rot} \mathbf{A} \quad \operatorname{bzw.} \quad \operatorname{div} (\operatorname{rot} \mathbf{A}) = 0.$$

Wir definieren ferner den Laplace-Operator als

$$\Delta \equiv \nabla^2 \equiv \nabla \cdot \nabla,$$

für den in kartesischen Koordinaten gilt:

$$\nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2.$$

2.1.4 Fundamentalsatz der Vektoranalysis (Helmholtz-Theorem)

Das Helmholtz-Theorem besagt, dass Quellen und Wirbel ein Vektorfeld $\mathbf{a}(\mathbf{r})$ eindeutig bestimmen. Ein Vektorfeld kann also in ein Rotationsfeld und ein Wirbelfeld aufgeteilt werden:

$$\mathbf{a} = \underbrace{\mathbf{a}_t}_{\substack{\omega = \text{rot } \mathbf{a} = \text{rot } \mathbf{a}_t \\ \text{div } \mathbf{a}_t = 0 \\ \text{Wirbel!}}} + \underbrace{\mathbf{a}_l}_{\substack{\rho = \text{div } \mathbf{a} = \text{div } \mathbf{a}_l \\ \text{rot } \mathbf{a}_l = 0 \\ \text{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{r \text{tot } \mathbf{a}_r = \text{div } \mathbf{a}_r = 0 \\ \text{Randbedingungen}}}$$

Eine zusätzliche, sowohl quellen- als auch wirbelfreie Komponente kann vorkommen, um Randbedingungen zu erfüllen oder einen konstanten Untergrund zu addieren.

Ebene Transversalwellen $(e^{i\mathbf{k}\cdot\mathbf{r}} \perp \mathbf{k})$ sind zum Beispiel quellenfrei, ebene Longitudinalwellen $(e^{i\mathbf{k}\cdot\mathbf{r}} \parallel \mathbf{k})$ sind dagegen wirbelfrei, denn

$$\operatorname{div}\left(e^{i\mathbf{k}\cdot\mathbf{r}}\right) = i\mathbf{k}\cdot e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \operatorname{rot}\left(e^{i\mathbf{k}\cdot\mathbf{r}}\right) = i\mathbf{k}\times e^{i\mathbf{k}\cdot\mathbf{r}}.$$

2.2 Integration von Feldern

2.2.1 Linienintegrale

$$\int_{C} \mathbf{a} (\mathbf{r}) \cdot d\mathbf{r} = \int_{C} \mathbf{a} (\mathbf{r} (s)) \cdot \frac{d\mathbf{r}}{ds} ds$$

Abb. 2.3

Parameterdarstellung: $\mathbf{r} = \mathbf{r}(s) \to d\mathbf{r} = \frac{d\mathbf{r}}{ds}ds$ mit der Bogenlänge s.

Für rotationsfreie (Einschränkung, siehe Satz von Poincaré) Felder ist das Linienintegral zwischen zwei Punkten wegunabhängig:

$$\oint \mathbf{a} \cdot d\mathbf{r} = 0 \iff \mathbf{a}(\mathbf{r}) = \nabla \varphi \iff \text{rot } \mathbf{a} = \mathbf{0}.$$

2.2.2 Satz von Stokes

$$\underbrace{\int_{F} \operatorname{rot} \mathbf{a} \cdot d\mathbf{f}}_{F \text{ luss von rot } \mathbf{a} \text{ durch } F} = \underbrace{\oint_{C = \partial F} \mathbf{a} \cdot d\mathbf{r}}_{Z \text{ irkulation von } \mathbf{a} \text{ entlang } C = \partial F}$$

2 Elemente der Vektoranalysis

Abb. 2.4

Die Kurve C ist dabei stets so orientiert, dass sie der Rechte-Hand-Regel folgt. Von außen (die Seite, nach der der Normalenvektor d \mathbf{f} zeigt) betrachtet geht die Kurve gegen den Uhrzeigersinn.

2.2.3 Satz von Gauß

$$\underbrace{\int_{V} \operatorname{div} \mathbf{a} \cdot \operatorname{dV}}_{\text{Quellen von } \mathbf{a} \text{ in } V} = \underbrace{\int_{\partial V} \mathbf{a} \cdot \operatorname{d} f}_{\text{Fluss von } \mathbf{a} \text{ durch}}_{\partial V \text{aus } V \text{heraus}}$$

Aus den Satz von Gauß abgeleiteten Formen:

- $\mathbf{a} = g\mathbf{e}_i \to \int_V \frac{\partial}{\partial x_i} g dV = \int_{\partial V} g df_i$
- $g = a_j \to \int_V \operatorname{rot} \mathbf{a} dV = \int_{\partial V} d\mathbf{f} \times \mathbf{a}$
- Greensche Identitäten (diese finden ihre Anwendung in der Potentialtheorie, hierzu wird $\nabla^2 \varphi$ verwendet). $\mathbf{a}_1 = \varphi \nabla \psi, \mathbf{a}_2 = \psi \nabla \varphi$.
 - o 1. Identität: $\int \nabla \cdot \mathbf{a}_1 dV$

$$\int_{V} \left(\nabla \varphi \cdot \nabla \psi + \varphi \nabla^{2} \psi \right) dV = \int_{\partial V} \varphi \nabla \psi \cdot df$$

o 2. Identität: $\int (\nabla \cdot \mathbf{a}_1 - \nabla \cdot \mathbf{a}_2) \, dV$ (Greenscher Satz)

$$\int_{V} \left(\varphi \nabla^{2} \psi - \psi \nabla^{2} \varphi \right) dV = \int_{\partial V} \left(\varphi \nabla \psi - \psi \nabla \varphi \right) \cdot df$$

3 Elektrostatik

Die Elektrostatik behandelt elektrische Felder ruhender oder langsam bewegter elektrischer Ladungen. In den folgenden Kapiteln werden die Grundgesetze der Elektrostatik aus dem Coulomb-Gesetzabgeleitet.

3.1 Bemerkungen zur elektrischen Ladung

Es gibt zwei Arten von Ladungen: positive und negative Ladung. Die Ladung ist eine diskrete Größe und nimmt stets ein ganzzahliges Vielfaches der sogenannten Elementarladung e_0 an:

$$e_0 = 1,602176624 \cdot 10^{-19} \,\mathrm{C}$$

Diese wurde zuerst bei dem Millikan-Versuch bestimmt. So trägt zum Beispiel das Proton die Ladung $+e_0$ und das Elektron die Ladung $-e_0$. Quarks haben zwar Bruchteile der Elementarladung, treten aber nie frei, sondern nur in Kombinationen auf, die ein Vielfaches der Elementarladung bilden.

Es gilt strenge Ladungserhaltung:

In einem abgeschlossenen System bleibt die Summe aller Ladungen konstant.

Eine Ladung auf einem infinitesimalen Raum wird als Punktladung bezeichnet. In der Elektrostatik und der Elektrodynamik wird häufig mit der Ladungsdichte ρ gerechnet. Für eine einzige Punktladung q (zum Beispiel ein Proton oder Elektron) am Ort \mathbf{r}_0 gilt für die Ladungsdichteverteilung

$$\rho\left(\mathbf{r}\right) = q\delta\left(\mathbf{r} - \mathbf{r}_0\right).$$

Daraus lässt sich die Ladungsdichte für viele Punktladungen q_i an Orten \mathbf{r}_i verallgemeinern:

$$\rho\left(\mathbf{r}\right) = \sum_{i} q_{i} \delta\left(\mathbf{r} - \mathbf{r}_{i}\right)$$

Im Grenzwert für kleinste Abstände kann man schließlich auch mit kontinuierlichen Ladungsdichten rechnen:

 $\rho\left(\mathbf{r}\right) = \frac{\mathrm{d}Q}{\mathrm{d}V}$

Die gesamte Ladung in einem Volumen V ist also

$$Q = \int_{V} d^{3} \mathbf{r} \rho \left(\mathbf{r} \right).$$

3.2 Coulombsches Gesetz und elektrisches Feld

Im Alltag machen wir die Erfahrung, dass sich gleichnamige (also zum Beispiel zwei positive) Ladungen abstoßen, während zwischen ungleichnamigen Ladungen eine anziehende Kraft wirkt. Diese Kraft ist ein Vektor im Sinne der Newtonschen Mechanik und unterliegt also dem Superpositionsprinzip.

3.2.1 Coulombsches Gesetz

Die Kraft, die eine Ladung q_2 am Ort \mathbf{r}_2 auf eine Ladung q_1 am Ort \mathbf{r}_1 ausübt (siehe Abb. 3.1), berechnet sich durch

$$\mathbf{F}_1 = kq_1q_2 \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3} = -\mathbf{F}_2.$$
 (3.1)

Dieser Zusammenhang ist als Coulombsches Gesetz bekannt und wurde experimentell gefunden. Die Proportionalitätskonstante k ist dabei

$$k = \frac{1}{4\pi\varepsilon_0}.$$

Abb. 3.1: Die Kraft auf zwei Punktladungen q_1 und q_2 an Orten \mathbf{r}_1 und \mathbf{r}_2 wird durch das Coulombsche Gesetz beschrieben und ist invers proportional zum Qudrat des Abstands $|\mathbf{r}_1 - \mathbf{r}_2|$.

mit Dielektrizitätskonstante $\varepsilon_0 = 8,854\,187\,812\,8\cdot 10^{-12}\,\mathrm{F}\,\mathrm{m}^{-1}$. Das Coulombsche Gesetz hat die gleiche Form wie das Newtonsche Gravitationsgesetz, aber hier kann die Kraft auch abstoßend wirken, weil die Ladung anders als die Masse negativ sein kann. Genauso wie beim Gravitationsgesetz ist die Kraft antiproportional zum Quadrat des Abstands der Ladungen.

Mithilfe des Coulombschen Gesetzes können wir nach dem Superpositionsprinzip die Kraft auf eine Testladung q_0 am Ort \mathbf{r}_0 durch mehrere Ladungen q_i bestimmen:

$$\mathbf{F} = \frac{q_0}{4\pi\varepsilon_0} \sum_{i} q_i \frac{\mathbf{r}_0 - \mathbf{r}_i}{\left|\mathbf{r}_0 - \mathbf{r}_i\right|^3}$$
(3.2)

Dieser Ansatz ist der Fernwirkungsstandpunkt (die Kraft wirkt über die Ferne hinweg). Seit Veröffentlichung der Relativitätstheorie ist aber bekannt, dass sich nichts schneller als mit Vakuumlichtgeschwindigkeit bewegen kann – also auch keine Kraftwirkung.

8

¹ Es ist möglich, dass die Proportionalität nicht exakt $\mathbf{F} \propto r^{-2}$ ist, aber es ist durch Experimente bestätigt worden, dass für einen Ansatz $F \propto r^{-2-\varepsilon}$ zumindest $\varepsilon < 3 \cdot 10^{-16}$ ist und für einen Ansatz $F \propto e^{-\frac{r}{\xi}} r^{-2}$ (siehe sogenanntes Yukawa-Potential) wenigstens $\xi > 1 \cdot 10^8$ m.

Daher führt man den sogenannten Nahwirkungsstandpunkt ein, bei dem man man ein elektrisches Feld \mathbf{E} betrachtet, das durch Ladungen q_i erzeugt wird (\mathbf{E} zeigt weg von positiven Ladungen und hin zu den negativen):

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} q_i \frac{\mathbf{r}_0 - \mathbf{r}_i}{|\mathbf{r}_0 - \mathbf{r}_i|^3}, \quad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} d^3 \mathbf{r}'$$
(3.3)

Damit ergibt sich die folgende Kraft auf eine Testladung q_0 :

$$\mathbf{F} = q_0 \mathbf{E} \left(\mathbf{r}_0 \right) \tag{3.4}$$

3.3 Feldgleichungen der Elektrostatik

3.3.1 Grundlagen

Wir definieren zunächst das elektrostatische Potential:

$$\mathbf{E} = -\nabla \phi, \quad \phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$
(3.5)

Weil \mathbf{E} ein Potentialfeld ist, ist rot $\mathbf{E} = 0$. Das elektrostatische Feld ist also wirbelfrei.

Zum Beispiel ist das Potential einer Punktladung $\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$ nach obiger Formel²:

$$\phi\left(\mathbf{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

Die Quellen des elektrischen Feldes werden durch die Divergenz von E beschrieben,

$$\operatorname{div} \mathbf{E} = -\nabla^{2} \phi = -\frac{1}{4\pi\varepsilon_{0}} \int \rho\left(\mathbf{r}'\right) \underbrace{\nabla^{2} \frac{1}{|\mathbf{r} - \mathbf{r}'|}}_{\stackrel{!}{=} -4\pi\delta\left(\mathbf{r} - \mathbf{r}'\right)} d^{3} r' = \frac{1}{\varepsilon_{0}} \rho\left(\mathbf{r}\right).$$

3.3.2 Feldgleichungen der Elektrostatik

Die soeben gefundenen Zusammenhänge werden als Feldgleichungen der Elektrostatik bezeichnet:

$$div \mathbf{E} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
(3.6)

$$\cot \mathbf{E} = 0 \tag{3.7}$$

Die erste Gleichung wird als Gaußsches Gesetz bezeichnet und beschreibt die elektrische Ladung als Quelle des elektrischen Feldes. Die zweite beschreibt die Wirbelfreiheit des elektrostatischen Feldes.

$$\nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|} = -\frac{1}{|\mathbf{r} - \mathbf{r}'|^2} \nabla \left| \mathbf{r} - \mathbf{r}' \right| \stackrel{\nabla r = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}}}{=} -\frac{\mathbf{r} - \mathbf{r}'}{\left| \mathbf{r} - \mathbf{r}' \right|^3}$$

² Hinweis: Es gilt

Mit $\mathbf{D} = \varepsilon_0 \mathbf{E}$ im Vakuum kann man das Gaußsche Gesetz auch umformulieren zu

$$\operatorname{div} \mathbf{D} = \rho(\mathbf{r}). \tag{3.8}$$

Zu beiden Feldgleichungen gibt es integrale Formulierungen:

$$\int_{V} d^{3}\mathbf{r} \operatorname{div} \mathbf{E} = \int_{\partial V} \mathbf{E} \cdot d\mathbf{f} = \frac{1}{\varepsilon_{0}} \int d^{3}\mathbf{r} \rho \left(\mathbf{r}\right) \Rightarrow \left| \int_{\partial V} \mathbf{E} \cdot d\mathbf{f} = \frac{1}{\varepsilon_{0}} Q \right|$$

Der Fluss aus einem Volumen V heraus ist proportional zu der Gesamtladung. Die elektrische Ladungsdichte ist die Quelle des elektrischen Feldes.

Betrachte als Beispiel eine Punktladung, die das Feld $\mathbf{E} = \frac{1}{4\pi\varepsilon_0} q \frac{\mathbf{r} - \mathbf{r}_0}{|\mathbf{r} - \mathbf{r}_0|^3} = \frac{1}{4\pi\varepsilon_0} q \frac{\hat{\mathbf{R}}}{R^2}$ erzeugt:

$$\int_{\partial V_K} \mathbf{E} \cdot d\mathbf{f} = \frac{q}{4\pi\varepsilon_0} \int_{\partial V_K} \frac{\hat{\mathbf{R}}}{R^2} \cdot \hat{\mathbf{R}} R^2 d\Omega = \frac{q}{4\pi\varepsilon_0} \int_{\partial V_K} d\Omega = \frac{q}{\varepsilon_0}$$

Für die andere Feldgleichung betrachten wir das Arbeitsintegral, also die von einer Punktladung q verrichtete Arbeit gegen die elektrische Kraft $\mathbf{F}_{\mathrm{el}} = q\mathbf{E}$.

$$W = -q \int_{C} \mathbf{E} \cdot d\mathbf{r} = q \int_{C} \nabla \phi \cdot d\mathbf{r} = q \int_{C} d\phi = q \left[\phi(2) - \phi(1) \right]$$

Insbesondere gilt

$$\oint \mathbf{E} \cdot d\mathbf{r} = 0 \tag{3.9}$$

Die Feldlinien des elektrostatischen Feldes sind nicht geschlossen, es gibt keine Zirkulation in der Elektrostatik, rot $\mathbf{E} = 0$.

3.3.3 Potentialgleichung

Aus dem Gaußschen Gesetz können wir die folgende Poisson-Gleichung ableiten, die für $\rho=0$ zu einer Laplace-Gleichung wird:

$$\nabla^2 \phi = -\frac{1}{\varepsilon_0} \rho \tag{3.10}$$

Zur Lösung einer linearen Differentialgleichung können wir die Methode der Greenschen Funktion verwenden. Dabei drücken wir die Lösung allgemein als Faltung der Ladungsdichte mit einer sogenannten Greenschen Funktion aus,

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') d^3 \mathbf{r}'.$$
 (3.11)

Durch Vergleich mit der Bestimmungsgleichung des elektrischen Potentials können wir die Greensche Funktion für diese Differentialgleichung ablesen:

$$G\left(\mathbf{r} - \mathbf{r}'\right) = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$
(3.12)

Insbesondere gilt für eine Punktladung $\rho(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_0)$, dass $\phi(\mathbf{r}) = G(\mathbf{r} - \mathbf{r}_0)$ und damit, dass

$$\nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = -4\pi\delta \left(\mathbf{r} - \mathbf{r}_0\right).$$

Abb. 3.2: Äquipotentiallinien und elektrische Feldlinien von zwei ungleichnamigen Ladungen.

3.3.4 Feldlinien

Als Äquipotentiallinien bzw. -flächen werden die Linien/Flächen gleichen Potentials, $\phi = \text{const}$ bezeichnet. Die Feldlinien stehen senkrecht auf den Äquipotentialflächen, weil $\mathbf{E}(\mathbf{r}) = -\nabla \phi$. In Abb. 3.2 sind die Äquipotentiallinien und die Feldlinien einer positiven und einer negativen Ladung dargestellt.

3.3.5 Elektrostatische Energie

Die potentielle Energie einer Ladung q am Ort \mathbf{r} im Feld $\mathbf{E} = -\nabla \phi$ ist definiert über einen Referenzpunkt $\phi_1 = 0$, der zum Beispiel im Unendlichen liegt (aber je nach Anwendung auch an anderen Punkten liegen kann):

$$U\left(\mathbf{r}\right) = q\phi\left(\mathbf{r}\right) \tag{3.13}$$

Zum Beispiel ist die potentielle Energie von zwei Punktladungen

$$U = q_1 \phi_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\mathbf{r}_1 - \mathbf{r}_2|}.$$

Die elektrostatische Energie U von N Punktladungen im eigenen Feld kann dann in zwei Schritten bestimmt werden.

• Bestimme die Energie von q_i im Feld von q_j (j = 1, ..., i - 1):

$$U_i(\mathbf{r}_i) = q_i \sum_{j=1}^{i-1} \phi_j = \frac{q_i}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

• Bringe N Ladungen sukzessive an ihren Ort:

$$U = \sum_{i=2}^{N} U_i(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|} = \frac{1}{8\pi\varepsilon_0} \sum_{i\neq j}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Für eine kontinuierliche Ladungsverteilung ergibt sich

$$U = \frac{1}{8\pi\varepsilon_0} \int d^3\mathbf{r} d^3\mathbf{r}' \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{2} \int d^3\mathbf{r} \rho(\mathbf{r}) \phi(\mathbf{r})$$

Bemerkungen:

• Den zusätzlichen Faktor von $\frac{1}{2}$ erhält man, weil $\phi(\mathbf{r})$ von $\rho(\mathbf{r})$ selbst erzeugt wird und die gegenseitige Wirkung von je zwei Ladungen die gleiche ist.

• Für beschränkte ρ ist $\mathbf{r} \to \mathbf{r}'$ wohl definiert, da $\mathrm{d}^3 r = r^2 \mathrm{d} r \mathrm{d} \Omega$.

Es ist auch möglich, die Energie durch das Feld $\mathbf{E}(\mathbf{r})$ auszudrücken:

$$U = \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} \phi \nabla^2 \phi \stackrel{\text{partielle Int.}}{=} \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} \nabla \phi \cdot \nabla \phi = \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} |\mathbf{E}|^2$$

Damit lässt sich die Energiedichte in der Elektrostatik folglich schreiben als

$$u(\mathbf{r}) = \frac{\varepsilon_0}{2} |\mathbf{E}(\mathbf{r})|^2 = \frac{1}{2} \mathbf{E} \cdot \mathbf{D}.$$

3.3.6 Homogen geladene Kugel

Abb. 3.3: Links: Äquipotentiallinien und elektrische Feldlinien einer homogen geladenen Kugel mit Radius R. Rechts: Die Ladungsdichte ist konstant ρ_0 innerhalb (r < R) und gleich 0 außerhalb der Kugel.

Auf der homogen geladenen Kugel V_r ist die Ladungsdichte $\rho(\mathbf{r})$ innerhalb der Kugel konstant ρ_0 und außerhalb der Kugel gleich 0 (siehe Abb. 3.3). Das Problem ist kugelsymmetrisch und hängt nur von der Radialrichtung ab.

Abb. 3.4: Links: Elektrisches Feld einer homogen geladenen Kugel. Das Feld steigt im Inneren linear an und fällt im Äußeren mit r^{-2} ab. Rechts: Das Potential fällt im Äußeren genauso ab wie das Potential einer Punktladung.

Feld und Potential können zum Beispiel über das Gaußsche Gesetz berechnet werden:

$$\int_{V_r} d^3 r' \frac{\rho(r)}{\varepsilon_0} = \int_{V_r} d^3 r' \operatorname{div} \mathbf{E} = \int_{\partial V_r} \mathbf{E} \cdot d\mathbf{f} \implies 4\pi r^2 E(r) = \frac{1}{\varepsilon_0} \int_0^r dr' r'^2 \rho(r')$$

$$\Rightarrow E(r) = \frac{Q}{4\pi\varepsilon_0} \begin{cases} \frac{r}{R^2}, & r < R \\ \frac{1}{r^2}, & r \ge R \end{cases} \xrightarrow{\text{Integration}} \phi(r) = \frac{Q}{4\pi\varepsilon_0} \begin{cases} \frac{1}{R} \left(\frac{3}{2} - \frac{r^2}{2R^2}\right), & r < R \\ \frac{1}{r}, & r \ge R \end{cases}$$

Beide Größen sind in Abb. 3.4 dargestellt. Bemerkenswert ist, dass für $r \geq R$ das elektrische Feld $\mathbf{E}(\mathbf{r}) = E(r) \cdot \mathbf{e}_r$ gerade dem Feld einer Punktladung Q im Mittelpunkt der Kugel entspricht.

Es soll nun die Energiedichte $u(\mathbf{r})$ für die homogen geladene Kugel berechnet werden:

$$u\left(\mathbf{r}\right) = \frac{\varepsilon_0}{2} \left|\mathbf{E}\right|^2 = \frac{Q^2}{32\pi^2 \varepsilon_0} \begin{cases} \frac{r^2}{R^6}, & r < R\\ \frac{1}{r^4}, & r \ge R \end{cases}$$

Daraus ergibt sich die elektrostatische Energie ("Selbstenergie" einer homogen geladenen Kugel)

$$U = 4\pi \int_0^\infty dr u(r) r^2 = \frac{1}{4\pi\varepsilon_0} \frac{3}{5} \frac{Q^2}{R}.$$

Diese Rechnung lässt über die Ruheenergie eines Elektrons eine Abschätzung für den Elektronenradius zu (sogenannter klassischer Elektronenradius):

$$U \stackrel{!}{=} m_e c^2 \approx 0.5 \,\text{MeV} \implies R_e = 1.7 \cdot 10^{-15} \,\text{m}$$

Allerdings liegt die Compton-Wellenlänge $\lambda_e = \frac{h}{m_e c} = 2 \cdot 10^{-12} \,\mathrm{m}$ schon weit über diesem Radius, sodass Quanteneffekte hier nicht vernachlässigbar sind.

3.3.7 Extremalprinzip und Kapazitäten

In der Elektrostatik sind Leiter stets Äquipotentialflächen, d.h. $\phi = \mathrm{const}$ und daher $\mathbf{E} = -\nabla \phi = \mathbf{0}$ entlang des Leiters. Sonst würde ein Strom fließen, weil sich die freien Elektronen im Leiter aufgrund des nicht-verschwindenden Feldes bewegen würden.

Abb. 3.5: Konfiguration von elektrischen Leitern L_i mit Ladungen Q_i und Potentialen ϕ_i .

Betrachte den Fall von n Leitern mit Volumina L_i , einer Ladung Q_i und den Potentialen ϕ_i , wie schematisch in Abb. 3.5 gezeigt.

Es soll untersucht werden, wie aus der Ladungsverteilung die Potentiale und das elektrische Feld bestimmt werden können.

Theorem von Thomson:

Die Ladungsdichten $\rho_{i}\left(\mathbf{r}\right)$ in Leitern i stellen sich so ein, dass die Gesamtenergie minimal wird.

Beweis:

$$U = \frac{1}{8\pi\varepsilon_0} \sum_{ij} \int_{L_i} d^3 \mathbf{r}_i \int_{L_j} d^3 \mathbf{r}_j \frac{\rho_i(\mathbf{r}_i) \rho_j(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Minimierung unter der Nebenbedingung $\int_{L_i} d^3 \mathbf{r} \rho_i(\mathbf{r}) = Q_i$ führt auf

$$\frac{\partial}{\partial \rho_k(\mathbf{r})} \left(U - \sum_i \phi_i \int_{L_i} d^3 \mathbf{r}_i \rho_i(\mathbf{r}) \right) = 0$$

wobei in Voraussicht die Lagrange-Parameter als ϕ_i bezeichnet werden, weil sich mit

$$\partial_{\rho_k(\mathbf{r})} \sum_i \int \rho_i(\mathbf{r}) f_i(\mathbf{r}) d^3 r = f_k(\mathbf{r})$$

ergibt, dass

$$\phi_{k} = \frac{1}{4\pi\varepsilon_{0}} \sum_{j} \int_{L_{j}} d^{3}\mathbf{r}_{j} \frac{\rho_{j}(\mathbf{r}_{j})}{|\mathbf{r}_{k} - \mathbf{r}_{j}|}, \quad \mathbf{r}_{k} \in L_{k}$$

was gerade der Bestimmungsgleichung für das Potential ϕ_k als Potential von L_k entspricht. Da das Vorgehen der Minimierung der Gesamtenergie auf das richtige Potential führt, ist das Theorem bestätigt.

Kapazitäten

Die Potentiale ϕ_i lassen sich linear über die Ladungen Q_i zerlegen,

$$\phi_i = \sum_j p_{ij} Q_j,$$

weil einerseits gilt, dass $\nabla^2 \phi = -\rho/\varepsilon_0$ und andererseits ϕ linear in ρ ist. Dieser Zusammenhang lässt sich invertieren,

$$Q_i = \sum_j C_{ij} \phi_j,$$

wobei dann die Vorfaktoren C_{ij} als Kapazitäten mit der Einheit $[C_{ij}] = 1 \,\mathrm{C}\,\mathrm{V}^{-1} = 1 \,\mathrm{F}$ definiert werden. Aus dem Ausdruck für die elektrostatische Energie

$$U = \frac{1}{2} \sum_{i} \underbrace{\int_{L_i} d^3 \mathbf{r}_i \rho_i (\mathbf{r}_i) \phi_i}_{Q_i = \sum_{j} C_{ij} \phi_j} = \frac{1}{2} \sum_{ij} \phi_i C_{ij} \phi_j$$

folgt die Symmetrie $C_{ij} = C_{ji}$.

So gilt zum Beispiel für einen Plattenkondensator allgemein

$$C = \frac{Q}{V}, \quad U = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

für einen Plattenkondensator mit parallelen Platten der Fläche A und Abstand d

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d},$$

für einen Zylinderkondensator der Länge L und mit Radien $r_1 < r_2$

$$C = 2\pi\varepsilon_0\varepsilon_r \frac{L}{\ln\frac{r_2}{r_1}}$$

und schließlich für einen Kugelkondensator mit Radien $r_1 < r_2$

$$C = 4\pi\varepsilon_0\varepsilon_r \left(\frac{1}{r_1} - \frac{1}{r_2}\right)^{-1} = 4\pi\varepsilon_0\varepsilon_r \frac{r_1r_2}{d}.$$

Abb. 3.6 bildet diese drei einfachen Kondensatorgeometrien ab.

Abb. 3.6: Schematische Darstellung eines Plattenkondensators mit parallelen, ebenen Platten (Links), eines Zylinderkondensators (Mitte) und eines Kugelkondensators (Rechts). Auf den Platten ist das Potential jeweils ϕ_1 und ϕ_2 .

3.3.8 Maxwellscher Spannungstensor

3.4 Randbedingungen des elektrischen Feldes auf Grenzflächen

. . .

3.5 Randwertprobleme der Elektrostatik

Meist sind bei der Lösung von elektrostatischen Problemen der Poisson-Gleichung

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

in einem Volumen V noch die Randbedingungen auf ∂V zu berücksichtigen.

3.5.1 Eindeutigkeit der Lösung

Allgemein sind drei verschiedene Arten von Randbedingungen möglich.

3 Elektrostatik

- 1. Dirichlet-Randbedingung: Das Potential ist auf dem Rand vorgegeben, $\phi|_{\partial V}$.
- 2. Neumann-Bedingung: Die Normalenableitung der Lösung wird auf dem Rand vorgegeben, $\mathbf{n} \cdot \nabla \phi|_{\partial V} = \frac{\partial \phi}{\partial n}\Big|_{\partial V}$
- 3. Cauchy-Bedingung: a(1) + b(2) ist vorgegeben.

Zum Beispiel kommt die Dirichlet-Randbedingung bei Oberflächen von Leitern vor, von denen wir ja bereits wissen, dass dort das Potential konstant gleich 0 ist.

Für Dirichlet- und Neumann-Randbedingungen ist die Lösung der Poisson-Gleichung eindeutig.

Der Beweis ist einfach, denn seien ϕ_1 und ϕ_2 zwei unterschiedliche Lösungen, dann erfüllt $\phi_d = \phi_1 - \phi_2$ die Gleichung $\nabla^2 \phi_2 = 0$ mit der Randbedingung

$$\begin{cases} \phi_d|_{\partial V} &= 0\\ \frac{\partial \phi_d}{\partial n}\Big|_{\partial V} &= 0 \end{cases},$$

da $\phi_{1,2}$ die gleichen Randbedingungen erfüllen. Mit der zweiten Greenschen Identität folgt

$$\int_{V} \left(\varphi \nabla^{2} \psi + \nabla \varphi \cdot \nabla \psi \right) dV = \int_{\partial V} \varphi \nabla \psi \cdot d\mathbf{f}.$$

Setze nun $\varphi = \psi = \phi_d$:

$$\int_{V} (\nabla \phi_d)^2 \, \mathrm{d}V = 0$$

Da nun aber der Integrand stets positiv ist, folgt $\nabla \phi_d = 0$ und also ohne Beschränkung der Allgemeinheit $\phi_d = \text{const} = 0$.

3.5.2 Methode der Greenschen Funktion

3.5.3 Aussagen zur Potentialtheorie

3.5.4 Lösungen zur Laplace-Gleichung in Kugelkoordinaten

Die Laplace-Gleichung ist eine zentrale Gleichung in der Physik. In der Elektrostatik gilt sie zum Beispiel im ladungsfreien Raum, aber sie spielt auch für viele andere Modelle eine große Rolle. In kartesischen Koordinaten nimmt die Gleichung die Form

$$\nabla^2 \phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \phi = 0$$

an. Die Lösung lässt sich in Eigenfunktionen des Laplace-Operators zerlegen. Diese sind zum Beispiel für den kartesischen Fall ebene Wellen.

Für kugelsymmetrische Problem bietet es sich an in Kugelkoordinaten zu rechnen. In Kugelkoordinaten lässt sich der Laplace-Operator in Radial- und Winkelanteil zerlegen:

$$\nabla^2 \phi = \nabla_r^2 \phi + \frac{1}{r^2} \nabla_{\varphi,\vartheta}^2 \phi$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \phi + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \varphi \frac{\partial}{\partial \vartheta} \phi - \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \phi$$

Zur Lösung wird ein Produktansatz gemacht,

$$\phi(r, \varphi, \vartheta) = R(r) Y(\varphi, \vartheta).$$

Eingesetzt in die Laplace-Gleichung ergibt sich

$$Y\nabla_r^2 R + \frac{R}{r^2}\nabla_{\varphi,\vartheta}^2 Y = 0 \iff \frac{r^2}{R}\nabla_r^2 R = -\frac{1}{Y}\nabla_{\varphi,\vartheta}^2 Y = \text{const}$$

und hieraus erhält man separat die radialen Eigenfunktionen

$$R(r) = \alpha r^{l} + \beta r^{-(l+1)}$$

und die bereits aus der Quantenmechanik bekannten Kugelflächenfunktionen $Y_{lm}(\varphi, \vartheta)$ für den Winkelanteil nach der Eigenwertgleichung

$$\nabla_{\varphi,\vartheta}^2 Y_{lm} = -l\left(l+1\right) Y_{lm}.$$

Die Gesamtlösung setzt sich dann zusammen aus dem Radial- und Winkelanteil:

$$\phi\left(r,\varphi,\vartheta\right) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \underbrace{\left(\alpha_{lm}r^{l} + \beta_{lm}r^{-(l+1)}\right)}_{\text{Radialanteil}} \underbrace{Y_{lm}\left(\varphi,\vartheta\right)}_{\text{Winkelanteil}}$$

Für zylindersymmetrische Probleme ist die φ -Abhängigkeit aufgehoben und es brauchen nur Funktionen mit m=0 betrachtet zu werden.

Für die Kugelflächenfunktionen von zwei Vektoren $\mathbf{r}_1 = (r_1, \varphi_1, \vartheta_1)$ und $\mathbf{r}_2 = (r_2, \varphi_2, \vartheta_2)$ gilt das folgende Additionstheorem:

$$\sum_{m=-l}^{l} Y_{lm} (\varphi_1, \vartheta_1) Y_{lm}^* (\varphi_2, \vartheta_2) = \frac{2l+1}{4\pi} P_l (\cos \angle (\mathbf{r}_1, \mathbf{r}_2))$$

Die Greensche Funktion kann mit diesem Additionstheorem nach den Kugelflächenfunktionen entwickelt werden

$$\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\vartheta}} = \sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_l\left(\cos\vartheta\right), \quad r_{>} = \max\left(r,r'\right), \quad r_{<} = \min\left(r,r'\right)$$

Abb. 3.7: Für Probleme mit komplexen Geometrien kann mithilfe einer konformen Abbildung z die Lösung aus der Lösung für den kugelsymmetrischen Fall abgeleitet werden.

Obwohl die Wahl der Kugelkoordinaten nur für wenige Probleme sinnvoll ist, kann die Lösung für das kugelförmige Problem durch konforme Abbildungen auf komplexere Geometrien angewandt werden (Abb. 3.7).

3.6 Multipolentwicklung

Bei der Multipolentwicklung klassifiziert man bestimmte Ladungsverteilungen nach sogenannten Momenten (Dipolmoment, Quadrupolmoment, ...). Zum Beispiel beschreibt das Dipolmoment zwei räumlich voneinander getrennte Ladungen unterschiedlichen Vorzeichens. Auch ein nach außen insgesamt elektrisch neutraler Körper kann ein Dipolmoment aufweisen, nämlich wenn die Schwerpunkte von der positiven und negativen Ladung nicht zusammenfallen. Ein prominentes mikroskopisches Beispiel ist das Wassermolekül (Abb. 3.8), bei dem das Sauerstoffatom eine bedeutend größere Elektronegativität besitzt als die Wasserstoffatome und dadurch eine Ladungsverschiebung der gebundenen Elektronen zum Sauerstoffatom hin bewirkt. Dadurch besitzt dieses lokal eine Ladung von $-0.8\,\mathrm{eV}$, während die Wasserstoffatome eine Ladung von je $0.4\,\mathrm{eV}$ tragen.

Das Dipolmoment **p** ist ein Vektor und per Definition von der negativen Ladung zur positiven gerichtet. Die Einheit des Dipolmoments ist 1 Debye = $3.34 \cdot 10^{-30}$ C m.

Abb. 3.8: Das Wassermolekül ist ein Dipol, bei dem das Sauerstoffatom eine negative Partialladung trägt, während die Wasserstoffatome aufgrund ihrer geringeren Elektronegativität entsprechend positiv geladen sind.

Für die Multipolentwicklung wird das Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

nach den sogenannten Momenten der Ladungsverteilung entwickelt. Führe dazu zunächst eine Taylorentwicklung für den Ausdruck $1/|\mathbf{r} - \mathbf{r}'|$ um \mathbf{r} durch ($|\mathbf{r}| = r$, Einsteinsche Summenkonvention):

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} - x_i' \partial_i \frac{1}{r} + \frac{1}{2} x_i' x_j' \partial_i \partial_j \frac{1}{r} + \dots + \frac{(-1)^n}{n!} x_{i_1}' \dots x_{i_n}' \partial_{i_1} \dots \partial_{i_n} \frac{1}{r}$$

Damit lässt sich das Potential nähern als

$$\phi(\mathbf{r}) \approx \frac{1}{4\pi\varepsilon_{0}} \left(\int d^{3}\mathbf{r}' \frac{\rho(\mathbf{r})}{r} - \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i} \partial_{i} \frac{1}{r} + \frac{1}{2} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i} x'_{j} \partial_{i} \partial_{j} \frac{1}{r} + \dots \right)$$

$$+ \frac{(-1)^{n}}{n!} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i_{1}} \dots x'_{i_{n}} \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \right)$$

$$= \frac{1}{4\pi\varepsilon_{0}} \left(\frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r})}_{q} - \partial_{i} \frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i}}_{p_{i}} + \frac{1}{6} \partial_{i} \partial_{j} \frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r}) \left(3x'_{i} x'_{j} - r'^{2} \delta_{ij}\right)}_{Q_{ij}} + \dots \right)$$

$$+ \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \underbrace{\frac{(-1)^{n}}{n!} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i_{1}} \dots x'_{i_{n}}}_{M_{i_{1} \dots i_{n}}} \right)$$

$$= \frac{1}{4\pi\varepsilon_{0}} \left(\frac{q}{r} - p_{i} \partial_{i} \frac{1}{r} + \frac{1}{6} Q_{ij} \partial_{i} \partial_{j} \frac{1}{r} + \dots + M_{i_{1} \dots i_{n}} \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \right).$$

Dabei identifizieren wir das Dipolmoment als Tensor erster Stufe

$$p_i = \int d^3 \mathbf{r}' \rho(\mathbf{r}) x_i',$$

das Quadrupolmoment als Tensor zweiter Stufe

$$Q_{ij} = \int d^{3}\mathbf{r}' \left(3x'_{i}x'_{j} - r'^{2}\delta_{ij}\right) \rho\left(\mathbf{r}\right),\,$$

bei dem standardmäßig noch der Term $-r'^2\delta_{ij}$ hinzugefügt wird, welcher aber nicht zu $\phi(\mathbf{r})$ beiträgt, weil

$$\delta_{ij}\partial_i\partial_j\frac{1}{r} = \sum_i \partial_i^2\frac{1}{r} = \nabla^2\frac{1}{r} = 0$$

und schließlich das n-te Multipolmoment

$$M_{i_1...i_n} \propto \int \mathrm{d}^3 \mathbf{r}' \rho(\mathbf{r}) \, x'_{i_1} \dots x'_{i_n}.$$

Mit den Identitäten

$$\partial_i \frac{1}{r} = -\frac{1}{r^2} \partial_i r = -\frac{x_i}{r^3}, \quad \partial_i \partial_j \frac{1}{r} = \frac{3x_i x_j}{r^5} - \frac{\delta_{ij}}{r^3},$$

(wobei der Term δ_{ij}/r^3 irrelevant ist wegen $\delta_{ij}Q_{ij}=Q_{ii}=0$) erhält man dann für das Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{\mathbf{p} \cdot \mathbf{r}}{r^3} + \frac{1}{2} Q_{ij} \frac{x_i x_j}{r^5} + \dots \right).$$

3.6.1 Diskussion der Multipolmomente

1. Monopol (Potential/Feld einer Punktladung $\rho_m = q\delta(\mathbf{r})$)

$$\phi_{\mathrm{m}}\left(\mathbf{r}\right) = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r} \to \mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\varepsilon_{0}} \frac{\mathbf{r}}{r^{3}}$$

2. Dipol:

$$\phi_{d} = -\frac{1}{4\pi\varepsilon_{0}} \mathbf{p} \cdot \nabla \frac{1}{r} = \frac{1}{4\pi\varepsilon_{0}} \frac{\mathbf{p} \cdot \mathbf{r}}{r^{3}} \propto \frac{1}{r^{2}}$$

$$E_{i} = \frac{1}{4\pi\varepsilon_{0}} p_{j} \nabla_{i} \nabla_{j} \frac{1}{r} = \frac{1}{4\pi\varepsilon_{0}} \frac{p_{j}}{r^{3}} \left(\frac{3x_{i}x_{j}}{r^{2}} - \delta_{ij} \right) \propto \frac{1}{r^{3}}$$

Wir sehen, dass das Feld eines Dipols mit r^{-3} abnimmt, während dasjenige eines Monopols nur mit r^{-2} abfällt. Die Felder der einzelnen Ladungen heben sich im Fernfeld zum Teil auf.

Die Ladungsdichte eines elementaren Dipols ist

$$\rho_{\mathrm{d}}\left(\mathbf{r}\right) = q\left(\delta\left(\mathbf{r} - \frac{\mathbf{d}}{2}\right) - \delta\left(\mathbf{r} + \frac{\mathbf{d}}{2}\right)\right),$$

woraus sich ein Dipolmoment von

$$\mathbf{p} = q\mathbf{d} \parallel \mathbf{d}$$

ergibt.

Man kann auch einen sogenannten Punktdipol betrachten – ein idealisiertes Objekt, bei dem der Abstand \mathbf{d} gegen 0 geht:

$$\mathbf{p} = \lim_{\substack{d \to 0 \\ ad < \infty}} q\mathbf{d}, \quad \rho_{\mathrm{d}}\left(\mathbf{r}\right) = -\mathbf{p} \cdot \nabla \delta\left(\mathbf{r}\right), \quad \phi_{\mathrm{d}} = -\frac{1}{4\pi\varepsilon_{0}}\mathbf{p} \cdot \nabla \frac{1}{r}$$

3 Elektrostatik

3. Quadrupol:

$$\phi_{\mathbf{Q}} = \frac{1}{4\pi\varepsilon_0} \frac{1}{6} Q_{kl} \nabla_k \nabla_l \frac{1}{r} = \frac{1}{4\pi\varepsilon_0} \frac{1}{2} Q_{kl} \frac{x_k x_l}{r^5} \propto \frac{1}{r^3}$$

$$E_i = -\frac{1}{4\pi\varepsilon_0} \frac{1}{6} Q_{kl} \nabla_i \nabla_k \nabla_l \frac{1}{r} = \frac{1}{4\pi\varepsilon_0} \frac{Q_{kl}}{2} \frac{5x_i x_k x_l - r^2 \left(\delta_{kl} x_i + \delta_{il} x_k + \delta_{ik} x_l\right)}{r^7}$$

Abb. 3.9: Elementare Quadrupole können in zwei verschiedenen Konfigurationen auftreten.

Es gibt zwei elementare Quadrupole (mit $\mathbf{p} = 0$), die in Abb. 3.9 zu sehen sind.

Wird der Bezugspunkt/Aufpunkt verschoben, so ändern sich im Allgemeinen die Multipolmomente, aber das erste Moment, das bei der Multipolentwicklung einer Ladungsverteilung ungleich 0 ist, bleibt unverändert.

Das niedrigste, nicht-verschwindende Multipolmoment in der Entwicklung ist unabhängig vom Bezugspunkt.

Man kann auch sphärische Multipolmomente mithilfe von Kugelflächenfunktionen ausdrücken.

3.6.2 Energie von Multipolen im äußeren Feld

Die Energie von Multipolen in einem externen Potential $\phi_e(\mathbf{r})$ kann aus der bereits bekannten Formel für die Energie einer beliebigen Ladungsverteilung $\rho(\mathbf{r})$ abgeleitet werden,

$$U = \int_{V} d^{3}\mathbf{r}\rho(\mathbf{r}) \phi_{e}(\mathbf{r}).$$

Wir nehmen an, dass die Änderung von ϕ_e in V nur klein ist und erhalten durch eine Taylor-Entwicklung

$$U = \int d^{3}\mathbf{r}\rho\left(\mathbf{r}\right) \left[\phi_{e}\left(0\right) + \mathbf{r}\nabla\phi_{e}\left(0\right) + \frac{1}{2}x_{i}x_{j}\nabla_{i}\nabla_{j}\phi_{e}\left(0\right) + \ldots\right]$$
$$= q\phi\left(0\right) - \mathbf{p}\cdot E_{e}\left(0\right) - \frac{1}{6}Q_{ij}\nabla_{j}E_{e}^{(i)}\left(0\right) + \ldots$$

Die Energie der Multipole ist also durch die n-fache Ableitung des Potentials $\nabla^n \phi$ bestimmt. Diese Rechnung erlaubt wegen der Taylor-Entwicklung eine beliebige Wahl des Bezugspunkts.

Als typisches Beispiel soll die Wechselwirkung zweier Dipole betrachtet werden. Die potentielle Energie kann berechnet werden, indem der Dipol \mathbf{p}_2 wie oben beschrieben in das Feld des Dipols \mathbf{p}_1 gesetzt wird (oder umgekehrt):

$$U_{\mathrm{DD}} = -\mathbf{p}_{2} \cdot \mathbf{E}_{1} \left(\mathbf{r} \right) = -\frac{1}{4\pi\varepsilon_{0}} \frac{1}{r^{3}} \left(\frac{3 \left(\mathbf{r} \cdot \mathbf{p}_{1} \right) \left(\mathbf{r} \cdot \mathbf{p}_{2} \right)}{r^{2}} - \mathbf{p}_{1} \cdot \mathbf{p}_{2} \right)$$

Abb. 3.10: Links: Schematische Darstellung zweier Dipole \mathbf{p}_1 , \mathbf{p}_2 mit Abstand \mathbf{r} . Weitere Abbildungen: Spezielle Anordnungen zweier Dipole, für die die Energie extremal wird.

Diese wird minimal für $\mathbf{p}_1 \parallel \mathbf{p}_2 \parallel \mathbf{r}$ und maximal für $\mathbf{p}_1 \parallel \mathbf{p}_2 \perp \mathbf{r}$. Diese Konfigurationen sind in Abb. 3.10 zusammengestellt. Für antiparallele \mathbf{p}_1 und \mathbf{p}_2 und $\mathbf{p}_1, \mathbf{p}_2 \perp \mathbf{r}$ wird außerdem ein lokales Minimum erreicht. Aus diesem Grund bilden Dipolmoleküle auch häufig Molekülketten.

Zuletzt sollen noch Drehmomente auf Multipole diskutiert werden.

$$\mathbf{M} = \int d^{3}\mathbf{r}\mathbf{r} \times \underbrace{\rho\left(\mathbf{r}\right)\mathbf{E}_{e}\left(\mathbf{r}\right)}_{\text{Kraftdichte}} \Rightarrow M_{i} = \int d^{3}\mathbf{r}\varepsilon_{ijk}x_{j}\rho\left(\mathbf{r}\right) \underbrace{\underbrace{E_{e}^{(k)}\left(\mathbf{r}\right)}_{\approx E_{e}^{(k)}\left(0\right) + x_{l}\nabla_{l}E_{e}^{(k)}\left(0\right)}_{\approx E_{e}^{(k)}\left(0\right) + x_{l}\nabla_{l}E_{e}^{(k)}\left(0\right)}$$

$$\Rightarrow M_{i} = (\mathbf{p} \times \mathbf{E}_{e})_{i} + \frac{1}{3}\varepsilon_{ijk}Q_{jl}\nabla_{l}E_{e}^{(k)}$$

Insbesondere dreht das Drehmoment \mathbf{M} einen Dipol parallel zu \mathbf{E} , da $\mathbf{M}=0$ für $\mathbf{p}\parallel\mathbf{E}_e$ und

$$U = -\mathbf{p} \cdot \mathbf{E}_e = -pE_e \cos \vartheta \implies M = -\frac{\partial U}{\partial \vartheta} = -pE_e \sin \vartheta = -|\mathbf{p} \times \mathbf{E}_e|.$$

4 Elektrische Felder in Materie

In diesem Kapitel werden die makroskopischen Gleichungen der Elektrostatik in Materie beschrieben und erläutert.

4.1 Mikroskopische Gleichungen der Elektrostatik und Mittelung

Bis jetzt haben wir nur freie Ladungen betrachtet. Die Ladungsdichte $\rho(\mathbf{r})$ erzeugt ein elektrisches Feld $\mathbf{E}(\mathbf{r})$. In Materie sind zusätzlich auch gebundene Ladungen vorhanden, die mit dem Feld wechselwirken. Das können (nach außen hin elektrisch neutrale) Atome, geladenen Ionen, permanente Dipole (oder Multipole) sein (z.B. $\mathrm{H}_2\mathrm{O}$), sowie Dipole sein, die durch ein äußeres elektrisches Feld induziert werden.

Um diese Wechselwirkung zu beschreiben, wird eine Mittelung der mikroskopischen Gleichungen

$$\operatorname{div} \mathbf{e} = \frac{1}{\varepsilon_0} \rho(\mathbf{r}), \quad \operatorname{rot} \mathbf{e} = 0$$

durchgeführt. Wir haben bisher einzelne Ladungen durch δ -Funktionen in der Ladungsdichte beschrieben. Dadurch kommt es zu starken räumlichen Ladungsschwankungen. Für eine makroskopische Betrachtung in Größenordnungen von Nanometern wenden wir eine räumliche Mittelung bzw. Glättungsfunktion auf die Ladungsdichteverteilung an.

4.1.1 Glättungsfunktion

Um eine stark variierende Funktion $F(\mathbf{r},t)$ zu mitteln, wird sie mit einer sogenannten Glättungsfunktion f gefaltet. Dabei kann es sich z.B. um eine Gauß-Funktion handeln:

$$F\left(\mathbf{r},t\right) \xrightarrow{\text{Mittelung}} \langle F\left(\mathbf{r},t\right) \rangle = \int f\left(\left|\mathbf{r}-\mathbf{r}'\right|\right) F\left(\mathbf{r}',t\right) d^{3}\mathbf{r}'$$

Für eine Punktladung $F(\mathbf{r}) = F_0 \delta(\mathbf{r} - \mathbf{r}_0)$ ist dann zum Beispiel $\langle F \rangle = F_0 f(\mathbf{r} - \mathbf{r}_0)$.

Für die Mittelung gelten die folgenden Eigenschaften:

1. Die Mittelung der konstanten Funktion F = 1 ist genau dann konstant 1, wenn die Glättungsfunktion über den gesamten Raum auf 1 normiert ist,

$$\langle 1 \rangle = 1 \iff \int d^3 \mathbf{r} f = 1.$$

2. $\partial_i \langle F \rangle = \langle \partial_i F \rangle$.

4.2 Makroskopische Gleichungen der Elektrostatik

Mithilfe der Glättung kann man das makroskopische E-Feld als

$$\mathbf{E}(\mathbf{r},t) = \langle \mathbf{e}(\mathbf{r},t) \rangle$$

schreiben. Für die Ladungsdichte erhält man

$$\langle \rho(\mathbf{r}) \rangle = \langle \rho_f(\mathbf{r}) + \rho_b(\mathbf{r}) \rangle = \langle \rho_f(\mathbf{r}) \rangle + \langle \rho_b(\mathbf{r}) \rangle \equiv \rho_F + \rho_B.$$

Die gebundenen Ladungen werden als Summe der Ladungsdichten einzelner Moleküle geschrieben:

$$\rho_b(\mathbf{r}) = \sum_n \rho_n(\mathbf{r}), \rho_n(\mathbf{r}) = \sum_i q_i \delta(\mathbf{r} - \mathbf{r}_i) = \sum_i q_i \delta(\mathbf{r} - (\mathbf{r}_n + \mathbf{r}_{ni}))$$

mit neuen Bezugspunkten \mathbf{r}_n für die einzelnen Moleküle. Für die Mittelung wird dann eine Taylor-Entwicklung um diese neuen Bezugspunkte \mathbf{r}_n durchgeführt:

$$\langle \rho_n (\mathbf{r}) \rangle = \sum_i q_i f (\mathbf{r} - (\mathbf{r}_n + \mathbf{r}_{ni}))$$

$$= \sum_i q_i \left[f (\mathbf{r} - \mathbf{r}_n) - \mathbf{r}_{ni} \cdot \nabla f (\mathbf{r} - \mathbf{r}_n) + \frac{1}{2} (\mathbf{r}_{ni})_k (\mathbf{r}_{ni})_l \nabla_k \nabla_l f (\mathbf{r} - \mathbf{r}_n) + \dots \right]$$

Daraus können die molekularen Dipolmomente bestimmt werden:

$$q_n = \sum_i q_i$$
 (Molekulare Ladung)
$$\mathbf{p}_n = \sum_i q_i \mathbf{r}_{ni}$$
 (Molekulares Dipolmoment)
$$(\mathbf{Q}_n)_{kl} = 3 \sum_i q_i (\mathbf{r}_{ni})_k (\mathbf{r}_{ni})_l$$
 (Molekulares Quadrupolmoment)

(vgl. Multipolmomente einer kontinuierlichen Ladungsverteilung, aber hier jetzt diskret). Insgesamt ergibt sich eine Verschmierung punktförmiger molekularer Multipole:

$$\langle \rho_n (\mathbf{r}) \rangle = q_n f (\mathbf{r} - \mathbf{r}_n) - \mathbf{p}_n \cdot \nabla f (\mathbf{r} - \mathbf{r}_n) + \frac{1}{6} (\mathbf{Q}_n)_{kl} \nabla_k \nabla_l f (\mathbf{r} - \mathbf{r}_n)$$
$$= \langle q_n \delta (\mathbf{r} - \mathbf{r}_n) \rangle - \nabla \cdot \langle p_n \delta (\mathbf{r} - \mathbf{r}_n) \rangle + \frac{1}{6} \nabla_k \nabla_l \langle (\mathbf{Q}_n)_{kl} \delta (\mathbf{r} - \mathbf{r}_n) \rangle$$

und für die gemittelte gebundene Ladungsdichte:

$$\langle \rho_b(\mathbf{r}) \rangle = \rho_m(\mathbf{r}) - \nabla \cdot \mathbf{P}(\mathbf{r}) + \nabla_k \nabla_l Q_{kl} + \dots$$

mit der makroskopischen Ladungsdichte (Monopoldichte)

$$\rho_{\rm m}\left(\mathbf{r}\right) = \left\langle \sum_{n} q_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right\rangle,$$

der Polarisation (Dipolmomentdichte)

$$\mathbf{P}\left(\mathbf{r}\right) = \left\langle \sum_{n} \mathbf{p}_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right
angle$$

und so weiter.

Damit ergibt sich jetzt insgesamt die gemittelte mikroskopische Ladungsdichte

$$\langle \rho\left(\mathbf{r}\right)\rangle = \langle \rho_{f}\left(\mathbf{r}\right)\rangle + \langle \rho_{b}\left(\mathbf{r}\right)\rangle = \underbrace{\rho_{F}\left(\mathbf{r}\right) + \rho_{m}\left(\mathbf{r}\right) - \nabla \cdot \mathbf{P}\left(\mathbf{r}\right) + \nabla_{k}\nabla_{l}Q_{kl}\left(\mathbf{r}\right)}_{\rho_{\mathrm{Mi}}\left(\mathbf{r}\right)}$$

und es folgt für die makroskopischen Feldgleichungen

$$\langle \operatorname{div} \mathbf{e} \rangle = \frac{1}{\varepsilon_0} \langle \rho(\mathbf{r}) \rangle, \quad \langle \operatorname{rot} \mathbf{e} \rangle = \mathbf{0}$$

$$\operatorname{div} \mathbf{E} = \frac{1}{\varepsilon_0} \left(\rho_{\operatorname{Ma}}(\mathbf{r}) + \rho_{\operatorname{Mi}}(\mathbf{r}) \right) = \frac{1}{\varepsilon_0} \left(\rho_{\operatorname{Ma}}(\mathbf{r}) - \nabla \cdot \mathbf{P}(\mathbf{r}) + \nabla_k \nabla_l Q_{kl}(\mathbf{r}) \right)$$

und

$$rot \mathbf{E} = \mathbf{0}$$
.

An dieser Stelle führen wir jetzt das sogenannte dielektrische Verschiebungsfeld \mathbf{D} ein:

$$\mathbf{D}(\mathbf{r}) = \varepsilon_0 \mathbf{E}(\mathbf{r}) + \mathbf{P}(\mathbf{r}) - \nabla Q(\mathbf{r})$$

Dabei ist die Idee, dass höhere Multipole der Ladungen jetzt in dem Hilfsfeld \mathbf{D} stecken. In der Regel wird übrigens bereits das Quadrupolmoment vernachlässigt.

Damit können die makroskopischen Feldgleichungen jetzt geschrieben werden als

$$\operatorname{div} \mathbf{D} = \rho_{\mathrm{Ma}} \left(\mathbf{r} \right), \quad \mathrm{rot} \, \mathbf{E} = 0.$$

Die Quellen des dielektrischen Verschiebungsfeldes sind also die makroskopischen Ladungsdichten und nicht die höheren Multipolmomente. Außerdem ist \mathbf{D} nur ein Hilfsfeld, das fundamentale Feld ist das elektrische Feld \mathbf{E} .

Die Polarisation P wird zur Darstellung in der Regel nach E entwickelt,

$$P_i(\mathbf{E}) = \varepsilon_0 \chi_{ij}^{(1)} E_j + \varepsilon_0 \chi_{ijk}^{(2)} E_j E_k + \dots,$$

wobei $\chi_{ij}^{(1)}, \chi_{ijk}^{(2)}, \ldots$ die hier neu eingeführten elektrischen Suszeptibilitätstensoren sind. Im linearen, isotropen Medium gilt

$$\mathbf{P}(\mathbf{E}) = \varepsilon_0 \chi \mathbf{E}$$
,

wobei χ ein Skalar ist. Das trifft hauptsächlich auf Gase, Flüssigkeiten und kubischen Kristalle zu. In anisotropen Medien ist $\chi^{(1)}$ ein Tensor zweiter Stufe und für nicht-lineare Medien werden noch höhere Suszeptibilitäten $\chi^{(n)}$ relevant, die Tensoren der Stufe (n+1) sind. Diese sind besonders wichtig in der nicht-linearen Optik. Im Allgemeinen ist die Polarisation nicht parallel zum elektrischen Feld und nur im linearen und isotropen Fall ist $\mathbf{P} \parallel \mathbf{E}$.

Häufig wird auch der dielektrische Tensor ε eingeführt:

$$\mathbf{D}(\mathbf{r}) = \varepsilon_0 \mathbf{E}(\mathbf{r}) + \mathbf{P}(\mathbf{r}) \equiv \varepsilon \mathbf{E}(\mathbf{r}), \quad \varepsilon \equiv \varepsilon_0 \left(1 + \chi^{(1)}\right)$$

Dieser ist uns für den linearen, isotropen Fall wiederum schon bekannt als Dielektrizitätskonstante oder Permittivität $\varepsilon_r = \chi + 1$.

Eine andere Beschreibung erfolgt mithilfe der atomaren Polarisierbarkeit α (im Allgemeinen ebenfalls ein Tensor zweiter Stufe), die das molekulare Dipolmoment mit dem elektrischen Feld verbindet,

$$\mathbf{p} = \varepsilon_0 \alpha \mathbf{E}.$$

Mit der Dipoldichte n = N/V lässt sich die Polarisation schreiben als

$$\mathbf{P} = \varepsilon_0 n \alpha \mathbf{E}, \quad \chi^{(1)} = n \alpha.$$

Polarisation kann in einem Medium auftreten als permanente, ausgerichtete Dipole (in ferroelektrischen Materialien), die durch die Kristallstruktur bedingt sind, als induzierte Polarisation durch Ausrichtung von ungeordneten permanenten Dipolen gegen die thermische Bewegung oder durch Verschiebung von Ladungen innerhalb des Mediums (typisch für Dielektrika).

4.3 Randbedingungen von Dielektrika und Anwendungen

4.3.1 Randbedingungen und Polarisationsladung

Die Randbedingungen bei Übergängen zwischen zwei Medien lassen sich ähnlich herleiten wie in Kapitel 3.4. Betrachte zunächst die Tangentialkomponente des elektrischen Feldes, wie in Abb. 4.1 dargestellt. Da rot $\mathbf{E} = \mathbf{0}$, erhält man die folgende Randbedingung für die Tangentialkomponente:

$$\hat{\mathbf{t}} \cdot \left(\mathbf{E}^{(2)} - \mathbf{E}^{(1)} \right) = 0 \iff \mathbf{E}_{\parallel}^{(1)} = \mathbf{E}_{\parallel}^{(2)}$$

Abb. 4.1: Übergang zwischen zwei Dielektrika. Die Felder \mathbf{E} , \mathbf{D} und \mathbf{P} ändern sich auf der Grenzfläche, an welcher sich eine Flächenladungsdichte σ ausbildet.

Für die Normalkomponente von **D** folgt aus div $\mathbf{D} = \rho_{\mathrm{Ma}}$

$$\hat{\mathbf{n}} \cdot (\mathbf{D}^{(2)} - \mathbf{D}^{(1)}) = D_{\perp}^{(2)} - D_{\perp}^{(1)} = \sigma$$

mit makroskopischer Flächenladungsdichte σ auf der Grenzfläche¹. Dieser Zusammenhang lässt sich mithilfe von $D_{\perp}^{(i)}=\varepsilon_0 E_{\perp}^{(i)}+P_{\perp}^{(i)}$ auch kombiniert über das elektrische Feld und die Polarisation ausdrücken als

$$E_{\perp}^{(2)} - E_{\perp}^{(1)} = \frac{1}{\varepsilon_0} \left(\sigma + P_{\perp}^{(1)} - P_{\perp}^{(2)} \right).$$

Für den Spezialfall $\sigma = 0$ wird in

$$E_{\perp}^{(2)} - E_{\perp}^{(1)} = \frac{1}{\varepsilon_0} \left(P_{\perp}^{(1)} - P_{\perp}^{(2)} \right) \equiv \frac{1}{\varepsilon_0} \sigma_p$$

die Polarisationsladung σ_p definiert. Es gibt also aufgrund des Sprungs der Polarisation auf der Grenzfläche einen Sprung der Normalkomponente E_{\perp} . Das führt auf ein Brechungsgesetz (Abb. 4.2):

 $^{^1\,}$ Für lineare, isotrope Dielektrika gilt insbesondere $\varepsilon_2 E_\perp^{(2)} = \varepsilon_1 E_\perp^{(1)} + \sigma.$

Beim Übergang zum dielektrisch dünneren Medium wird das elektrische und das dielektrische Feld zum Lot hin gebrochen.

Abb. 4.2: Die elektrischen Felder werden beim Übergang in Medien mit anderer Permittivität gebrochen, ähnlich zu der optischen Brechung.

Diese Brechung ist ganz ähnlich zur optischen Brechung (wenn auch genau umgekehrt, denn dort wird das Licht beim Übergang in das optisch dichtere Medium zum Lot hin gebrochen). Es gilt

$$\mathbf{E}_{\parallel}^{(1)} = \mathbf{E}_{\parallel}^{(2)}, \quad E_{\perp}^{(2)} = \frac{\varepsilon_1}{\varepsilon_2} E_{\perp}^{(1)}.$$

Diese Randbedingungen ermöglichen auch eine Messung von \mathbf{D} und \mathbf{E} , indem eine Probeladung in einen schmalen Spalt im zu vermessenden Dielektrikum eingebracht wird, wie in Abb. 4.3 zu sehen.

Abb. 4.3: Indem eine Probeladung in einem schmalen Spalt in ein Dielektrikum gebracht wird, können mithilfe der Randbedingungen die elektrischen Felder in diesem gemessen werden. Wird der Spalt senkrecht zu den Feldlinien gesetzt, so erfährt die Probeladung gerade die Kraft, die aus dem äußeren Feld $\mathbf{E}_0 = \mathbf{D}/\varepsilon_0$ resultiert, was eine Messung der dielektrischen Verschiebung \mathbf{D} ermöglicht. Bei einer parallelen Ausrichtung spürt die Ladung nur das Feld $\mathbf{E}_0 = \mathbf{E}$.

4.3.2 Entelektrisierungsfelder

Wird ein Dielektrikum einem äußeren elektrischen Feld \mathbf{E}_0 ausgesetzt, erzeugt die Polarisation ein sogenanntes Entelektrisierungs- oder Polarisationsfeld, welches das äußere Feld abschwächt. Der Grund sind Oberflächenladungen durch Polarisation.

Das Entelektrisierungsfeld soll exemplarisch für eine dielektrische Kugel in einem homogenen äußeren Feld berechnet werden (Abb. 4.4).

Da es keine freien Ladungen gibt, also $\rho_{\rm Ma}=0$, ist die Laplace-Gleichung $\nabla^2\phi=0$ zu lösen. Aufgrund der Axialsymmetrie um die z-Achse wird als Lösungsansatz eine Linearkombination aus Legendre-

4 Elektrische Felder in Materie

Abb. 4.4: Eine dielektrische Kugel in einem ursprünglich homogenen äußeren Feld \mathbf{E}_0 beeinflusst die Feldlinien, weil die Randbedingungen erfüllt werden müssen. Innerhalb der Kugel ist das Feld homogen.

Polynomen erster Ordnung für die Beschreibung der Potentiale ϕ_i innerhalb und ϕ_a außerhalb der Kugel verwendet:

$$\phi_{i,a} = \sum_{l=0}^{\infty} \left(a_l^{(i,a)} r^l + b_l^{(i,a)} r^{-(l+1)} \right) P_l \left(\cos \vartheta \right)$$

Aus Betrachtungen für die Grenzfälle können die Koeffizienten $a_l^{(i,a)}$ und $b_l^{(i,a)}$ ermittelt werden:

- i) Im Unendlichen $(r \to \infty)$ verschwindet die Störung durch die dielektrische Kugel und das Feld ist homogen, $E_0 \mathbf{e}_z = -\nabla \phi_a$. Das Potential nimmt dort also die Form $\phi_a (r \to \infty) = -E_0 z = -E_0 r \cos \vartheta$ an. Durch einen Koeffizientenvergleich erhält man $a_1^{(a)} = -E_0, a_{l>1}^{(a)} = 0$.
- ii) Im Mittelpunkt (r=0) darf das Potential nicht divergieren, sodass $b_l^{(i)}=0$ für alle l.
- iii) An der Grenzfläche (r=R) muss gelten, dass $E_{\parallel}^{(i)}=E_{\parallel}^{(a)}$ und $\varepsilon_r E_{\perp}^{(i)}=E_{\perp}^{(a)}$. Einsetzen und Lösen des Gleichungssystems führt auf

$$a_1^{(i)} = -\frac{3}{\varepsilon_r + 2} E_0, \quad b_1^{(a)} = \frac{\varepsilon_r - 1}{\varepsilon_r + 2} R^3 E_0, \quad a_{l>1}^{(i)} = 0, \quad b_{l>1}^{(a)} = 0.$$

Mit den Ersetzungen $r\cos\vartheta=z=\mathbf{r}\cdot\mathbf{e}_z$ und dem Dipolmoment $\mathbf{p}=\frac{4}{3}\pi R^3\mathbf{P}$ erhält man schließlich

$$\phi_i = -\frac{3}{\varepsilon_r + 2} \mathbf{E}_0 \cdot \mathbf{r}, \quad \phi_a = -\mathbf{E}_0 \cdot \mathbf{r} + \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot \mathbf{r}}{r^3}$$

und

$$\mathbf{E}^{(i)} = \frac{3}{\varepsilon_r + 2} \mathbf{E}_0, \quad \mathbf{E}^{(a)} = \mathbf{E}_0 - \frac{1}{4\pi\varepsilon_0} \nabla \frac{\mathbf{p} \cdot \mathbf{r}}{r^3}.$$

Im Innern der Kugel ist also das elektrische Feld homogen und die (lineare) Polarisation ist

$$\mathbf{P} = \varepsilon_0 \chi \mathbf{E}^{(i)} = 3\varepsilon_0 \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \mathbf{E}_0.$$

Das innere Feld lässt sich auch umformulieren zu

$$\mathbf{E}^{(i)} = \mathbf{E}_0 - \frac{1}{3\varepsilon_0} \mathbf{P},$$

also der Summe des ursprünglichen äußeren Feldes und eines abschwächenden Feldes $\mathbf{E}' \equiv \mathbf{P}/3\varepsilon_0$ – dem abschirmenden Entelektrisierungsfeld (Abb. 4.5).

Abb. 4.5: Entelektrisierungsfeld/Polarisationsfeld einer dielektrischen Kugel in einem homogenen äußeren elektrischen Feld.

Für den allgemeinen, nicht kugelsymmetrischen Fall sind Entelektrisierungsfeld \mathbf{E}' und Polarisation nicht parallel. Dann gilt

$$\mathbf{E}' = -\frac{1}{\varepsilon_0} \lambda \mathbf{P}$$

Abb. 4.6

mit dem Entelektrisierungstensor λ . Für die Kugel ist natürlich $\lambda=1/3$, für eine zum äußeren Feld orthogonale Platte dagegen $\lambda=1$ und für eine zum äußeren Feld parallele Platte $\lambda=0$. Für einen langen Zylinder, der orthogonal zum Feld steht ist $\lambda=1/2$ (siehe Abb. 4.6).

Für komplexere dielektrische Körper in einem homogenen äußeren Magnetfeld ist ${\bf P}$ nicht homogen.

4.3.3 Clausius-Mosotti-Formel

Im Kapitel 4.2 wurde bereits die molekulare Polarisierbarkeit α eingeführt. Diese beschreibt das induzierte Dipolmoment eines Moleküls in Abhängigkeit von dem lokalen elektrischen Feld

$$\mathbf{p} = \varepsilon_0 \alpha \mathbf{E}_{loc}$$

Die Clausius-Mosotti-Formel beschreibt, wie die molekulare Polarisierbarkeit mit der (makroskopischen) Dielektrizität ε_r zusammenhängt:

$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{1}{3}n\alpha$$

Die Formel wird hergeleitet aus der in Abb. 4.7 dargestellten Geometrie. Ein äußeres elektrisches Feld \mathbf{E}_0 durchdringt das Medium mit $\varepsilon_r > 1$. Dort ist also das Feld $\mathbf{E} = \mathbf{E}_0/\varepsilon_r$. Im Medium befindet sich ein mikroskopischer Dipol \mathbf{p} . Durch dessen Existenz ist auch eine Polarisation \mathbf{P} vorhanden, die das

Abb. 4.7: Ein Dipol **p** befindet sich in einem Medium mit $\varepsilon_r > 1$. Ein äußeres elektrisches Feld \mathbf{E}_0 liegt an (lokal homogen). Im Dielektrikum ist die Feldstärke $\mathbf{E} = \mathbf{E}_0/\varepsilon_r$. Es wird ein kleiner, kugelförmiger Bereich um den Dipol herum betrachtet, innerhalb dessen alle Dipole des Mediums berücksichtigt werden. Der Dipol **p** ruft eine Polarisation **P** hervor.

Feld innerhalb des Mediums verändert. Um jetzt das lokale Feld beim Dipol zu bestimmen, legen wir eine kleine Hohlkugel um den Dipol herum. Außerhalb dieser Kugel rechnen wir makroskopisch mit der Polarisation, aber innerhalb der Kugel betrachten wir vorsichtshalber die einzelnen Dipole des Dielektrikums (z.B. Dipole auf Gitterplätzen im Festkörper). Der Bereich außerhalb ist also das kontinuierliche Dielektrikum, während innen diskrete Dipole liegen.

Das lokale elektrische Feld hat verschiedene Beiträge: zum einen das Feld ${\bf E}$ im Medium, dann das Feld, das durch die Oberflächenladung (von der Polarisation erzeugt) an der Kugel hervorgerufen wird (sog. Lorentzfeld) und schließlich das Feld, das aus den Dipolen um ${\bf p}$ herum resultiert:

$$\mathbf{E}_{loc} = \mathbf{E} + \mathbf{E}_{\sigma} + \mathbf{E}_{dip}$$

Die zweite Komponente lässt sich sofort bestimmen, da es genau dem Entelektrisierungsfeld $\frac{1}{3\varepsilon_0}$ **P** entspricht, nur mit verkehrtem Vorzeichen, weil das Dielektrikum jetzt außerhalb der Kugel liegt und nicht innerhalb. Für kubische Gitter, Flüssigkeiten und Gase ist aufgrund der Isotropie $\mathbf{E}_{\text{dip}} = 0$.

Damit kann die Polarisation über die Dipoldichte n ausgerechnet werden:

$$\mathbf{P} = n\mathbf{p} = \varepsilon_0 n\alpha \mathbf{E}_{\text{loc}} = \varepsilon_0 n\alpha \left(\mathbf{E} + \frac{1}{3\varepsilon_0} \mathbf{P} \right)$$

Diese Gleichung kann umgestellt und mit $\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$ verglichen werden, sodass man

$$\chi = \frac{n\alpha}{1 - \frac{1}{3}n\alpha}$$

bzw.

$$\varepsilon_r = 1 + \chi = \frac{1 + \frac{2}{3}n\alpha}{1 - \frac{1}{2}n\alpha}$$

erhält. Umformen führt dann auf die Clausius-Mosotti-Formel,

$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{1}{3}n\alpha,$$

die eine nichtlineare Beziehung zwischen ε_r und α beschreibt².

² In der Optik ist diese Formel ebenfalls von Bedeutung. Sie wird dort für den Brechungsindex $\overline{n} = \sqrt{\varepsilon_r}$ geschrieben und als Lorenz-Lorentz-Formel bezeichnet.

Für Gase $(n\alpha \ll 1)$ ist

$$\chi = n\alpha \implies \varepsilon_r = 1 + n\alpha,$$

die Beziehung wird also linear aufgrund der Vernachlässigung des Lorentzfeldes \mathbf{E}_{σ} . In allgemeinen (nicht kubischen) Kristallen spielen die Beiträge von \mathbf{E}_{dip} allerdings eine Rolle.

4.4 Elektrostatische Energie im Dielektrikum

Die (Selbst-) Energie einer makroskopischen Ladungsverteilung $\rho=\rho_{\rm Ma}$ im Vakuum ist bekanntermaßen

 $U_{\text{Selbst}} = \frac{1}{2} \int d^3 \mathbf{r} \rho(\mathbf{r}) \phi(\mathbf{r})$

und entspricht gerade der Arbeit, die aufzubringen ist, um die Ladungsverteilung aus dem Unendlichen zusammenzubringen. Im Dielektrikum verändert sich diese Energie, weil es auch Arbeit kostet, die Polarisation im Dielektrikum zu erzeugen.

Die Berechnung erfolgt analog zu der im Vakuum. Die Änderung von U durch Hinzufügen einer zusätzlichen Ladungsdichte $\delta \rho$ bei $\phi(\mathbf{r})$ berechnet sich durch

$$\delta U = \int_{V} d^{3} \mathbf{r} \phi(\mathbf{r}) \, \delta \rho(\mathbf{r}).$$

Mit $\nabla \cdot \mathbf{D} = \rho \implies \delta \rho = \nabla \cdot \delta \mathbf{D}$ und partieller Integration folgt

$$\delta U = \int_{V} d^{3}\mathbf{r}\phi(\mathbf{r}) \nabla \cdot \delta \mathbf{D} = \int_{\partial V} \phi(\mathbf{r}) \, \delta \mathbf{D} \cdot d\mathbf{S} - \int_{V} d^{3}\mathbf{r} \nabla \phi(\mathbf{r}) \, \delta \mathbf{D} = \int d^{3}\mathbf{r} \mathbf{E}(\mathbf{r}) \cdot \delta \mathbf{D}.$$

Das Volumen kann so gewählt werden, dass das Dielektrikum gänzlich innerhalb liegt, sodass der Oberflächenterm bei der partiellen Integration verschwindet.

Im linearen Dielektrikum, $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} \Rightarrow \mathbf{E} \cdot \delta \mathbf{D} = \frac{1}{2} \delta (\mathbf{E} \cdot \mathbf{D})$, erhält man durch Integration (Einbringen der ganzen Ladungsdichte ρ_{Ma} in das Medium)³

$$U_{\text{Selbst}} = \frac{1}{2} \int d^3 \mathbf{r} \mathbf{E} \cdot \mathbf{D} = \frac{1}{2} \int d^3 \mathbf{r} \rho_{\text{Ma}} (\mathbf{r}) \phi (\mathbf{r})$$

bzw. (wieder mit partieller Integration)

$$U_{\text{Selbst}} = -\frac{1}{2} \int d^{3}\mathbf{r} \nabla \phi(\mathbf{r}) \cdot D = \frac{1}{2} \int d^{3}\mathbf{r} \phi(\mathbf{r}) \nabla \cdot \mathbf{D}.$$

Die schon hergeleitete Formel

$$u = \frac{1}{2}\mathbf{E} \cdot \mathbf{D}$$

für die Energiedichte gilt für lineare Dielektrika genauso wie für das Vakuum.

Nun soll noch der Fall betrachtet werden, in dem ein lineares Dielektrikum in ein bereits bestehendes Feld \mathbf{E}_0 eingebracht wird. Hier gilt jetzt

$$U = -\frac{1}{2} \int \mathrm{d}^3 \mathbf{r} \mathbf{P} \cdot \mathbf{E}_0.$$

³ Diese Gleichung hat dieselbe Form wie die im Vakuum, nur dass jetzt die makroskopische Ladungsdichte ρ_{Ma} als Summe der gemittelten freien Ladungsdichte und Monopoldichte eingesetzt wird.

4 Elektrische Felder in Materie

Das entspricht also gerade der Dipolenergie von $\mathbf{P}d^3\mathbf{r}$ im Feld \mathbf{E}_0 . Der Faktor 1/2 kommt zustande, weil die Polarisation \mathbf{P} durch das äußere Feld erst induziert wird.

Außerdem wird das Dielektrikum in Gebiete mit stärkerem Feld oder höherer Polarisation gezogen, weil dann die potentielle Energie abnimmt. Die wirkende Kraft berechnet sich aus dem Potential,

$$\mathbf{F} = \nabla U$$
.

Dieses Prinzip findet eine sehr wichtige Anwendung in der optischen Pinzette.

5 Magnetostatik

In den vorigen Kapiteln haben wir uns mit der Elektrostatik beschäftigt und gesehen, wie Ladungen dem Coulombgesetz gehorchen und ein elektrisches Feld hervorrufen, das die Grundgleichungen rot $\mathbf{E} = 0$ und div $\mathbf{D} = 0$ erfüllt.

In der Magnetostatik betrachten wir jetzt stationäre (also nicht zeitabhängige) Ströme und die Kraftwirkung, die sie hervorrufen. Es wird ein Magnetfeld und die Stromdichte eingeführt, was schließlich auf eine integrale und differentielle Formulierung der Grundgesetze der Magnetostatik führt.

Es gibt Ähnlichkeiten zwischen der Elektro- und Magnetostatik, wie zum Beispiel das Abstandsverhalten und die Symmetrie einiger Formeln, aber auch wesentliche Unterschiede, unter Anderem in den Kraftrichtungen und Potentialen.

5.1 Strom, Stromdichte und Kontinuitätsgleichung

Der elektrische Strom I ist als zeitliche Änderung der Ladung definiert,

$$I = \frac{\mathrm{d}q}{\mathrm{d}t}.$$

Die Einheit ist der Ampère. Aus der Ladungserhaltung folgt, dass der Strom konstant entlang eines Drahts ist.

Außerdem wird die Stromdichte als Strom pro Querschnittsfläche A

$$\mathbf{j} = \frac{\text{Strom}}{\text{Fläche}} = \frac{I}{A} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} \xrightarrow{\Delta f \mathrm{d}s = \mathrm{d}^3 r} \mathbf{j} \mathrm{d}^3 \mathbf{r} = I \mathrm{d}\mathbf{r}$$

definiert. Dabei ist d \mathbf{r} als Leiterelement und Id \mathbf{r} als gerichtetes Stromelement zu verstehen. Es gilt also

$$I = \int_A \mathbf{j} \cdot \mathrm{d}\mathbf{A},$$

bzw. für eine gleichmäßig auf A verteilte Stromdichte

$$I = \mathbf{j} \cdot \mathbf{A}$$
.

Die Stromdichte lässt sich auch ausdrücken durch das Produkt aus Ladungsdichte und Geschwindigkeit,

$$\mathbf{j} = \rho \mathbf{v},$$

was eine mikroskopische Definition analog zu der der Ladungsdichte erlaubt 1 :

$$\mathbf{j} = \sum_{i} q_{i} \mathbf{v}_{i} \delta\left(\mathbf{r} - \mathbf{r}_{i}\right)$$

¹ Zur Erinnerung: $\rho = \sum_{i} q_{i} \delta \left(\mathbf{r} - \mathbf{r}_{i} \right)$.

5 Magnetostatik

Die Stromdichte zeigt damit in dieselbe Richtung wie der Geschwindigkeitsvektor einer positiven Ladung.

Zur Herleitung der Kontinuitätsgleichung betrachten wir die zeitliche Änderung der Ladung in einem Volumen V:

 $\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}^{3}\mathbf{r} \rho\left(\mathbf{r}, t\right) = \int_{V} \mathrm{d}^{3}\mathbf{r} \frac{\partial}{\partial t} \rho\left(\mathbf{r}, t\right)$

Wegen der Ladungserhaltung entspricht dies gerade dem Fluss der Stromdichte aus der Volumenoberfläche ∂V heraus:

 $\int_{V} d^{3}\mathbf{r} \frac{\partial}{\partial t} \rho(\mathbf{r}, t) = -\int_{\partial V} \mathbf{j} \cdot d\mathbf{f} = -\int_{V} d^{3}\mathbf{r} \operatorname{div} \mathbf{j},$

woraus sich die Kontinuitätsgleichung ergibt:

$$\frac{\partial}{\partial t}\rho + \operatorname{div}\mathbf{j} = 0$$

In der Magnetostatik ist $\partial_t \rho = 0$ und damit

$$\operatorname{div} \mathbf{j} = 0.$$

5.2 Leiter und Magnetfeld

Auf Erde kommen im Wesentlichen zwei natürliche bekannte Magnetfelder vor: dasjenige der Erde und das Magnetfeld von speziellen Mineralen, wie zum Beispiel Magnetit. Hans Christian Ørsted entdeckte im 19. Jahrhundert, dass auch stromdurchflossene Leiter ein Magnetfeld erzeugen und André-Marie Ampère entdeckte fast zeitgleich, dass ein Magnetfeld eine Kraftwirkung auf Leiter hervorruft.

Auf ein stromdurchflossenes Volumenelement $dV = d^3\mathbf{r}$ in einem Magnetfeld **B** wirkt nach dem folgenden Gesetz eine Kraft²:

$$d\mathbf{F} = (\mathbf{i} \times \mathbf{B}) dV$$

Die Gesamtkraft auf einen ausgedehnten Leiter V ergibt sich durch Integration:

$$\mathbf{F} = \int_{V} \mathbf{j} \times \mathbf{B} \mathrm{d}V$$

Im Spezialfall für einen dünnen Leiter C und ein Leiterelement d \mathbf{r} (d $V = dAd\mathbf{r}$) gilt

$$d\mathbf{F} = Id\mathbf{r} \times \mathbf{B}$$

$$\mathbf{F} = \int_{V} \mathbf{j} \times \mathbf{B} dA d\mathbf{r} = \int_{A} j dA \cdot \int_{C} d\mathbf{r} \times \mathbf{B}$$

$$= I \int_{C} d\mathbf{r} \times \mathbf{B}.$$
(5.1)

Wir untersuchen zunächst die magnetische Flussdichte einiger speziellen geometrischen Anordnungen. Es gilt für ein Leiterelement $d\mathbf{r}'$ (dargestellt in Abb. 5.1):

$$d\mathbf{B} = \frac{\mu_0}{4\pi} I d\mathbf{r}' \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

 $^{^2\,}$ vergleichlich mit ${\bf F}=q{\bf E},$ also Produkt aus Quelle und Feld in der Elektrostatik.

Abb. 5.1: Stromelement Id**r** und Magnetfeld **B** eines Leiterelements d**r**.

Dieser Zusammenhang ist als Biot-Savartsches Gesetz für Leiter bekannt und ergibt sich aus den Betrachtungen $|d\mathbf{B}| \propto I |d\mathbf{r}'|, |\mathbf{r} - \mathbf{r}'|^{-2}$ und $d\mathbf{B} \perp d\mathbf{r}', \mathbf{r} - \mathbf{r}'$. Hier wird außerdem die magnetische Feldkonstante $\mu_0 \approx 4\pi \cdot 10^{-7} \,\mathrm{N\,A^{-2}}$ eingeführt³. Die Flussdichte ist zwar proportional zu r^{-2} wie beim elektrischen Feld einer Punktladung, aber im Gegensatz können isolierte Stromelemente $Id\mathbf{r}$ nicht existieren.

Für das Feld eines unendlich langen, geraden Leiters gilt

$$B(\rho) = \frac{\mu_0}{4\pi} I \rho \int_{-\infty}^{\infty} \frac{dz}{(\rho^2 + z^2)^{\frac{3}{2}}} = \frac{\mu_0}{4\pi} \frac{I}{\rho},$$

Abb. 5.2: Die Kraft auf parallele, stromdurchflossene Leiter ist anziehend, wenn der Stromfluss in verschiedene Richtungen geht und abstoßend, wenn der Strom in beiden Leiter in der gleichen Richtung fließt.

Diese Gleichung beschreibt das historische Biot-Savartsche Gesetz.

Verwendet man Gleichungen (5.1) und (5.2), so erhält man die Kraft zwischen zwei parallelen Leitern mit Abstand d (siehe Abb. 5.2)

$$\frac{\mathrm{d}\mathbf{F}}{\mathrm{d}z} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d},$$

die orthogonal zum Leiter ist.

Bis zum 20.5.2019 war der Ampère definiert als der Strom, der durch zwei parallele Leiter der Länge 1 m mit 1 m Abstand in gleicher Richtung fließt und eine Anziehungskraft von $1 \cdot 10^{-7}$ N bewirkt.

Heute gilt

$$1A \equiv \frac{1C}{1s}$$
.

 $^{^3}$ Über die Kraft zwischen zwei stromdurchflossene parallele Leiter wurde früher die Einheit Ampère definiert und dabei festgelegt, dass $\frac{\mu_0}{4\pi}=1\cdot 10^{-7}\,\mathrm{N\,A^{-2}},$ aber die magnetische Feldkonstante wurde 2019 umdefiniert auf Basis der Elementarladung und Sekunde, wobei aber die Abweichung extrem gering ist. Damit ist die magnetische Feldkonstante eine experimentell zu ermittelnde Größe geworden.

Zwischen beliebigen Leiterschleifen C_1, C_2 wirkt eine Kraft von

$$\mathbf{F}_{21} = -\mathbf{F}_{12} = -\frac{\mu_0}{4\pi} I_1 I_2 \oint_{C_1} \oint_{C_2} \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3} d\mathbf{r}_1 \cdot d\mathbf{r}_2.$$

5.3 Grundgleichungen der Magnetostatik

Um die Grundgleichungen der Magnetostatik herzuleiten, gehen wir zuerst von dem Stromelement $Id\mathbf{r}$ über in die Stromdichte $\mathbf{j}(\mathbf{r})$ mit $Id\mathbf{r} = \mathbf{j}(\mathbf{r}) d^3\mathbf{r}$.

Die Kraft auf ein Stromgebiet ist das Integral der Kraftdichte

$$\mathbf{F} = \int f(\mathbf{r}) d^3 \mathbf{r} = \int \mathbf{j}(\mathbf{r}) \times \mathbf{B}(\mathbf{r}) d^3 \mathbf{r}.$$

Für eine Punktladung q, die sich mit Geschwindigkeit \mathbf{v} bewegt ($\mathbf{j} = q\mathbf{v}\delta\left(\mathbf{r} - \mathbf{r}\left(t\right)\right)$) gilt speziell

$$\mathbf{F}\left(\mathbf{r}\right) = q\mathbf{v} \times \mathbf{B}\left(\mathbf{r}, t\right)$$

bzw. allgemein mit einem zusätzlichen elektrischen Feld

$$\mathbf{F}(\mathbf{r}) = q(\mathbf{v} \times \mathbf{B}(\mathbf{r}, t) + \mathbf{E}(\mathbf{r}, t)).$$

Diese Gesamtkraft ist die sogenannte Lorentzkraft.

Integration des Biot-Savartschen Gesetzes für Leiter führt auf⁴

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} d^3 \mathbf{r}'.$$

Wie für das elektrische Feld können wir ein Potential einführen – allerdings ist \mathbf{B} kein Potentialfeld und daher ist das magnetische Potential ein Vektorpotential:

$$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r}), \quad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$

Die Divergenz von **B** verschwindet, weil stets gilt, dass $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.

Das Magnetfeld hat keine Quellen, div $\mathbf{B}=0.$

In der integralen Formulierung,

$$\int_{V} \operatorname{div} \mathbf{B} \, \mathrm{d}^{3} \mathbf{r} = \int_{V} \mathbf{B} \cdot \mathrm{d} \mathbf{f} = 0,$$

bedeutet das, dass die magnetischen Feldlinien geschlossen sind. Es gibt folglich keine magnetischen Ladungen, wo die Feldlinien beginnen oder enden.

⁴ vergleichlich mit $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\mathbf{r}) \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|^3} d^3\mathbf{r'}$.

Für die Rotation der elektrischen Flussdichte gilt

$$\operatorname{rot} \mathbf{B} = \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^{2} \mathbf{A}$$

$$= \frac{\mu_{0}}{4\pi} \nabla \int \mathbf{j} (\mathbf{r}') \cdot \nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|} d^{3} \mathbf{r}' - \frac{\mu_{0}}{4\pi} \int \mathbf{j} (\mathbf{r}') \nabla^{2} \frac{1}{|\mathbf{r} - \mathbf{r}'|} d^{3} \mathbf{r}'$$

$$= 0 + \mu_{0} \int \mathbf{j} (\mathbf{r}') \delta (\mathbf{r} - \mathbf{r}') d^{3} \mathbf{r}'$$

$$= \mu_{0} \mathbf{j} (\mathbf{r}).$$
(5.2)

Elektrische Ströme rufen Wirbel in der magnetischen Flussdichte hervor, rot $\mathbf{B} = \mu_0 \mathbf{j}(\mathbf{r})$.

Alternativ kann man sagen, dass die Zirkulation entlang der Oberfläche eines Volumens einem Strom durch das Volumen entspricht,

$$\int_{\partial F} \mathbf{B} \cdot \mathbf{dr} = \mu_0 I.$$

Diese Gleichung ist als Ampèresches Gesetz bekannt. Mit seiner Nutzung kann man leicht das Magnetfeld von einem homogen stromdurchflossenen, zylindrischen Draht mit Radius R bestimmen, wie in Abbildung Abb. 5.3 gezeigt. Wähle dazu eine kreisförmige Kurve C mit Radius r um die z-Achse herum. Aufgrund der Zylindersymmetrie ist das Magnetfeld nur vom Abstand r der z-Achse abhängig und es gilt mit dem Ampèreschen Gesetz

$$B(r) \oint_{C} 1 ds = 2\pi r B(r) = \mu_{0} I(r)$$

$$\Leftrightarrow B(r) = \frac{\mu_{0} I(r)}{2\pi r}.$$

Abb. 5.3: Ein stromdurchflossener, zylindrischer Leiter mit Radius R und Stromdichte r erzeugt ein magnetisches Wirbelfeld. Links: schematische Darstellung, Mitte links: Querschnitt mit gedachter kreisförmiger Kurve C mit Radius r um den Leiter herum, Mitte rechts: Die Stromdichte ist konstant im Leiter und fällt außerhalb auf 0 ab, rechts: im Leiter steigt der Betrag des Magnetfelds linear mit dem Abstand an und fällt außerhalb ab mit r^{-1} .

Der Strom I(r) enthält nur den Strom, der innerhalb der Kurve C fließt. Innerhalb des zylindrischen Leiters $(r \leq R)$ ist die eingeschlossene Fläche gerade πr^2 und damit

$$I(r) = j_0 \pi r^2.$$

Abb. 5.4: Magnetfeld einer lange, stromdurchflossenen Spule.

Außerhalb des Leiters ist I konstant $j_0\pi R^2$, weil sich der Leiter und damit der Stromfluss nur bis r=R erstreckt. Das Magnetfeld ist also

$$B\left(r\right) = \frac{\mu_0}{2} j_0 \begin{cases} r, & r \leq R \\ \frac{R^2}{r}, & r > R \end{cases}$$

und es ist kreisförmig um die z-Achse gerichtet, $\mathbf{B}(r,\varphi) = B(r)\mathbf{e}_{\varphi}$.

Genauso lässt sich das Feld einer unendlich langen Spule berechnen (Abb. 5.4):

$$\oint \mathbf{B} \cdot d\mathbf{r} = LB_0 \stackrel{!}{=} \mu_0 NI$$

$$\Rightarrow B_0 = \mu_0 \frac{N}{L} I, \mathbf{B} = B_0 \mathbf{e}_z$$

Zwischen den Windungen hebt sich das magnetische Feld weg.

Wie aus der Gleichung (5.2) hervorgeht, lässt sich für das Vektorpotential \mathbf{A} wie in der Elektrostatik eine Poissongleichung formulieren,

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{i}$$

und im Potential A (r) findet sich wieder eine Greenschen Funktion

$$\mathbf{A}(\mathbf{r}) = \int d^3 \mathbf{r}' G(\mathbf{r} - \mathbf{r}') \mathbf{j}(\mathbf{r}'), \quad G(\mathbf{r} - \mathbf{r}') = \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{r} - \mathbf{r}'|}.$$

5.4 Kleine Stromverteilungen: Der magnetische Dipol

5.4.1 Felder kleiner Stromverteilungen

Wir führen zunächst wieder eine Entwicklung des magnetischen Potentials nach Momenten der Stromverteilung durch:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 \mathbf{r}' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \approx \frac{\mu_0}{4\pi} \left(\frac{1}{r} \int d^3 \mathbf{r}' \mathbf{j}(\mathbf{r}') + \frac{\mathbf{r}}{r^3} \cdot \int d^3 \mathbf{r}' \mathbf{j}(\mathbf{r}') \mathbf{r}' + \dots \right)$$
(5.3)

Die Auswertung ist allerdings viel komplizierter als für das elektrische Potential und daher beschränken wir uns hier auf die Dipole und vernachlässigen höhere Multipolmomente. Außerdem verwenden wir als Hilfsatz folgende Gleichung, die für beliebige skalare Felder g und f sowie für ein quellenfreies Vektorfeld \mathbf{j} gilt⁵:

$$\int \mathbf{j} \cdot \nabla (gf) \, \mathrm{d}^3 \mathbf{r} = 0. \tag{5.4}$$

Ferner können wir zeigen⁶, dass

$$\int \mathbf{j}(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} = 0,$$

es also keine Strommonopole in $\mathbf{A}(\mathbf{r})$ gibt. Als letzte Vorbereitung werten wir den zweiten Term in Gleichung (5.3) aus

$$\mathbf{r} \cdot \int d^3 \mathbf{r}' \mathbf{j} \left(\mathbf{r}' \right) \mathbf{r}' = x_i \int d^3 \mathbf{r}' x_i' j_k \left(\mathbf{r}' \right).$$

Das Produkt $T = x_i' j_k$ ist ein Tensor zweiter Stufe und lässt sich zerlegen in einen symmetrischen und einen antisymmetrischen Teil, $T_{ik} = \frac{1}{2} (T_{ik} + T_{ki}) + \frac{1}{2} (T_{ik} - T_{ki})$, also

$$\mathbf{r} \cdot \int d^{3}\mathbf{r}' \mathbf{j} \left(\mathbf{r}'\right) \mathbf{r}' = x_{i} \int d^{3}\mathbf{r}' \left(\frac{1}{2} \left(x'_{i} j_{k} + x'_{k} j_{i}\right) + \frac{1}{2} \left(x'_{i} j_{k} - x'_{k} j_{i}\right)\right).$$

Der erste Summand im Integranden (symmetrischer Teil des Tensors) verschwindet nach dem Hilfssatz (5.4) mit $g = x'_i$, $f = x'_k$ und der zweite wird zu

$$\frac{1}{2} \int d^3 \mathbf{r}' \left((\mathbf{r} \cdot \mathbf{r}') \mathbf{j} - (\mathbf{r} \cdot \mathbf{j}) \mathbf{r}' \right) = \frac{1}{2} \int d^3 \mathbf{r}' \left(\mathbf{r}' \times \mathbf{j} \right) \times \mathbf{r}$$

evaluiert.

Nun können wir das magnetische Dipolmoment

$$\mathbf{m} = \frac{1}{2} \int \mathbf{r}' \times \mathbf{j} \left(\mathbf{r} \right) d^3 \mathbf{r}'$$

und das Vektorpotential des magnetischen Dipols

$$\mathbf{A}\left(\mathbf{r}\right) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{r^3}$$

einführen. Daraus ergibt sich (mit weiteren Umformungen) schließlich das Magnetfeld eines Dipols

$$\mathbf{B}(\mathbf{r}) = \operatorname{rot} \mathbf{A} = -\frac{\mu_0}{4\pi} \nabla \frac{\mathbf{m} \cdot \mathbf{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{m}}{r^3},$$

was wieder völlig analog zum elektrischen Dipol ist.

Wir wollen im Folgenden einmal das Dipolmoment zweier einfacher Geometrien berechnen. Das Dipolmoment einer Stromschleife (Abb. 5.5, links) ist einfach (verwende $\mathbf{j}d^3\mathbf{r} = Id\mathbf{r}$)

$$\mathbf{m} = \frac{I}{2} \oint \mathbf{r} \times d\mathbf{r}.$$

Für eine ebene Schleife mit Fläche F und Normalenvektor \mathbf{n} (Abb. 5.5, Mitte) vereinfacht sich dieser Ausdruck zu

$$\mathbf{m} = IF\mathbf{n}$$
.

Abb. 5.5: Links: Magnetfeld eines magnetischen Dipols, Mitte: Ein Kreisstrom erzeugt ein magnetisches Dipolmoment, rechts: starrer Körper, der mit ω rotiert und einer Ladungsverteilung $\rho(\mathbf{r})$ besitzt.

Zuletzt betrachten wir einen starren geladenen Körper, der um eine Rotationsachse ω rotiert (Abb. 5.5, rechts). Die lokale Geschwindigkeit für eine Ladung in diesem Körper ist $\mathbf{v}(\mathbf{r}) = \omega \times \mathbf{r}$. Die rotierenden Ladungen resultieren in einer Stromdichte $\mathbf{j} = \rho \mathbf{v}$, sodass ein Dipolmoment induziert wird:

$$\mathbf{m} = \frac{1}{2} \int d^3 \mathbf{r} \, \rho(\mathbf{r}) \, \mathbf{r} \times \mathbf{v}.$$

Gleichzeitig besitzt der Körper einen Drehimpuls

$$\mathbf{L} = \int d^3 \mathbf{r} \rho_m (\mathbf{r}) \, \mathbf{r} \times \mathbf{v}.$$

Trifft man jetzt die Annahme, dass die Verteilungen von Ladung und Masse im Körper gleich sind,

$$\frac{\rho\left(\mathbf{r}\right)}{\rho_{m}\left(\mathbf{r}\right)} = \frac{q_{\text{ges}}}{m_{\text{ges}}} \equiv \frac{q}{M},$$

dann findet man eine Proportionalität von **m** und **L**:

$$\mathbf{m} = \frac{q}{2M} \mathbf{L}$$

Der Proportionalitätsfaktor $|\mathbf{m}|/|\mathbf{L}|$ wird als gyromagnetisches Verhältnis bezeichnet. Für den Spin gibt es allerdings eine Abweichung, die aus der Relativitätstheorie hervorgeht und es gilt eigentlich

$$\mathbf{m}=g\frac{q}{2M}\mathbf{L}$$

mit einem zusätzlichen Landé-Faktor (oder g-Faktor), dessen Wert von der Teilchensorte abhängt. Für Elektronen ist $g \approx 2$, für Protonen $g \approx 2 \cdot 2$, 79 und für Neutronen $g \approx 2 \cdot (-1,91)$.

Auch die Erde ist ein magnetischer Dipol, der durch Ströme im flüssigen äußeren Erdkern angetrieben wird. Bemerkenswerterweise ist die Dipolachse leicht gegen die Erdachse geneigt und die Polarität dreht sich rund alle 200.000 Jahre um. Der Mechanismus ist allerdings bis heute nicht genau verstanden.

Beweis: Betrachte $\int_V \nabla \left(gf\mathbf{j}\right) \mathrm{d}^3\mathbf{r}$. Einerseits ist dieser Ausdruck mit dem Satz von Gauß gleich $\int_{\partial V} gf\mathbf{j} \cdot d\mathbf{f}$, was gleich 0 ist, wenn man das Volumen groß genug wählt, dass auf dem Rand $\mathbf{j}\left(\mathbf{r}\right) = \mathbf{0}$ ist. Außerdem findet man mithilfe der Produktregel, dass $\int_V \nabla \left(gf\mathbf{j}\right) \mathrm{d}^3\mathbf{r} = \int_V \mathbf{j} \cdot \nabla \left(gf\right) \mathrm{d}^3\mathbf{r} + \int_V gf\nabla \cdot \mathbf{j} \mathrm{d}^3\mathbf{r}$, wobei der letzte Term aufgrund der Bedingung div $\mathbf{j} = \mathbf{0}$ verschwindet, q.e.d.

⁶ Beweis: Mit der vorigen Formel $\int \mathbf{j} \cdot \nabla (gf) d^3\mathbf{r} = 0$ ist mit g = 1 und $f = x_i$ offensichtlicherweise $\int j_k \cdot \nabla_k x_i d^3\mathbf{r} = \int j_i d^3\mathbf{r} = 0$, q.e.d.

5.4.2 Kraft, Drehmoment und Energie

Die bereits bekannte Kraft auf ein Volumen V mit Stromverteilung $\mathbf{j}(\mathbf{r})$

$$\mathbf{F} = \int \mathbf{j} \left(\mathbf{r} \right) \times \mathbf{B} \left(\mathbf{r} \right) d^3 \mathbf{r}$$

lässt sich nach ${\bf B}$ um ${\bf r}={\bf 0}$ Taylor-entwickeln:

$$\mathbf{F} \approx \int \mathbf{j} (\mathbf{r}) \times (\mathbf{B} (0) + \mathbf{r} \cdot \nabla \mathbf{B} (0) + \ldots) d^{3} \mathbf{r} = (\mathbf{m} \times \nabla) \times \mathbf{B} (0) = \nabla (\mathbf{m} \cdot \mathbf{B})$$

Die potentielle Energie eines Dipols ${f m}$ im magnetischen Feld ${f B}$ ergibt sich daraus durch Integration

$$F = -\nabla U \implies U = -\mathbf{m} \cdot \mathbf{B}.$$

Das Minimum wird für $\mathbf{m} \uparrow \uparrow \mathbf{B}$ erreicht⁷. U enthält aber nicht die Energie um den Dipol \mathbf{m} aufrechtzuerhalten!

Das Drehmoment hat die gleiche Form wie für elektrische Dipole,

$$\mathbf{M} = \mathbf{m} \times \mathbf{B}$$

und auch die Wechselwirkungsenergie für einen Dipol im Feld eines zweiten Dipols ist analog

$$U = -\frac{\mu_0}{4\pi} \frac{3 \left(\mathbf{m}_1 \cdot \hat{\mathbf{r}}\right) \left(\mathbf{m}_2 \cdot \hat{\mathbf{r}}\right) - \mathbf{m}_1 \cdot \mathbf{m}_2}{r^3}.$$

5.5 Magnetische Felder in Materie

Nun behandeln wir magnetische Felder in Materie. Die Vorgehensweise erfolgt analog zu den Kapiteln 4.1 und 4.2. Die freien Ladungen bilden freie Ströme $j_{\rm f}({\bf r},t)$ und gebundene Ladungen fügen jetzt noch gebundene Ströme hinzu ${\bf j}_{\rm b}({\bf r},t)$. Außerdem werden auch magnetische Dipole durch den intrinsischen Spin der Teilchen hinzuaddiert. Die letzten beiden Quellen werden dann gemittelt über eine neue Größe beschrieben: die Magnetisierung.

5.5.1 Einführung der Vakuumsverschiebungsstromdichte

In der Magnetostatik haben wir bisher nur

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}, \quad \nabla \cdot \mathbf{j} = 0$$

gehabt. Aber mit der vollständigen Kontinuitätsgleichung

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \mathbf{j} = 0$$

brauchen wir eine Verallgemeinerung, wenn $\nabla \cdot \mathbf{j} \neq 0$:

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \left(\mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

Das ist das Ampèresche Gesetz mit der Maxwellschen Verallgemeinerung.

 $^{^{7}\,}$ vgl. Funktionsweise von einem Kompass.

5.5.2 Einführung der Magnetisierung

Wie für die Elektrostatik in Kapitel 4.1 und 4.2 beginnen wir, indem wir die mikroskopischen Gleichungen

$$\nabla \times \mathbf{b} = \mu_0 \left(\mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{e}}{\partial t} \right), \quad \nabla \cdot \mathbf{b} = 0$$

mitteln,

$$\mathbf{B}(\mathbf{r},t) = \langle \mathbf{b}(\mathbf{r},t) \rangle, \quad \mathbf{E}(\mathbf{r},t) = \langle \mathbf{e}(\mathbf{r},t) \rangle.$$

Die Stromdichte

$$\mathbf{j}(\mathbf{r},t) = \mathbf{j}_{f}(\mathbf{r},t) + \mathbf{j}_{b}(\mathbf{r},t)$$

mit "freien" Strömen durch einzelne Ladungsträger mit Ladung q_i und Geschwindigkeit v_i

$$\mathbf{j}_{\mathrm{f}}\left(\mathbf{r},t\right) = \sum_{i(f)} q_{i} \mathbf{v}_{i} \delta\left(\mathbf{r} - \mathbf{r}_{i}\left(t\right)\right) \Rightarrow \mathbf{j}_{\mathrm{F}} = \left\langle \mathbf{j}_{\mathrm{f}} \right\rangle.$$

Die gebundenen Ströme werden über alle Moleküle summiert, $\mathbf{j}_{b}(\mathbf{r},t) = \sum_{n} \mathbf{j}_{n}(\mathbf{r},t)$ mit

$$\mathbf{j}_{n}\left(\mathbf{r},t\right) = \sum_{i(n)} q_{i} \mathbf{v}_{i} \delta\left(\mathbf{r} - \mathbf{r}_{i}\right) = \sum_{i(n)} q_{i}\left(\mathbf{v}_{n} + \mathbf{v}_{ni}\right) \delta\left(\mathbf{r} - \left(\mathbf{r}_{n} + \mathbf{r}_{ni}\right)\right)$$

und die Mittelung für das n-te Molekül ist (verwende wieder eine Glättungsfunktion f)

$$\langle \mathbf{j}_n (\mathbf{r}, t) \rangle = \sum_{i(n)} q_i (\mathbf{v}_n + \mathbf{v}_{ni}) f (\mathbf{r} - (\mathbf{r}_n + \mathbf{r}_{ni})).$$

Eine Taylor-Entwicklung um \mathbf{r}_n liefert

$$\langle \mathbf{j}_{n}(\mathbf{r},t)\rangle = \sum_{i(n)} q_{i}(\mathbf{v}_{n} + \mathbf{v}_{ni}) \left[f(\mathbf{r} - \mathbf{r}_{n}) - \mathbf{r}_{ni} \cdot \nabla f(\mathbf{r} - \mathbf{r}_{n}) + \ldots \right].$$

Betrachte zunächst die Terme mit $\sum_{i(n)} q_i \mathbf{v}_{ni}$, die die molekularen Dipolmomente liefern. Der erste Term kann durch ein elektrisches Dipolmoment beschrieben werden:

$$\sum_{i(n)} q_i \mathbf{v}_{ni} = \sum_{i(n)} q_i \frac{\mathrm{d}\mathbf{r}_{ni}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{p}_n$$

Der zweite Term enthält ein magnetisches Moment (verwende wieder die Tensorzerlegung in einen symmetrischen und einen asymmetrischen Anteil):

$$\sum_{i(n)} q_i \left(\mathbf{r}_{ni}\right)_{\beta} \left(\mathbf{v}_{ni}\right)_{\alpha} = \sum_{i(n)} \frac{1}{2} \left[q_i \left(\mathbf{r}_{ni}\right)_{\beta} \left(\mathbf{v}_{ni}\right)_{\alpha} - q_i \left(\mathbf{r}_{ni}\right)_{\alpha} \left(\mathbf{v}_{ni}\right)_{\beta} \right] + \sum_{i(n)} \frac{1}{2} \left[q_i \left(\mathbf{r}_{ni}\right)_{\beta} \left(\mathbf{v}_{ni}\right)_{\alpha} + q_i \left(\mathbf{r}_{ni}\right)_{\alpha} \left(\mathbf{v}_{ni}\right)_{\beta} \right],$$

wobei die Summanden der zweiten Summe verschwinden, weil diese Ströme jeweils auf ein Molekül beschränkt sind ($\nabla \cdot \mathbf{j}_b = 0$). Die erste Summe ist asymmetrisch und lässt sich als Kreuzprodukt schreiben,

$$\sum_{i(n)} q_i (\mathbf{r}_{ni})_{\beta} (\mathbf{v}_{ni})_{\alpha} = \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \left(\sum_{i(n)} q_i (\mathbf{r}_{ni} \times \mathbf{v}_{ni}) \right)_{\gamma},$$

sodass sich ein sinnvolles molekulares magnetisches Dipolmoment ergibt,

$$\mathbf{m}_{n} = \frac{1}{2} \sum_{i(n)} q_{i} \left(\mathbf{r}_{ni} \times \mathbf{v}_{ni} \right).$$

Sammle nun alle bisher ausgewerteten Ausdrücke:

$$\langle (\mathbf{j}_{n} (\mathbf{r}, t))_{\alpha} \rangle = \left(\left(\sum_{i(n)} q_{i} (\mathbf{v}_{n})_{\alpha} \right) + \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{p}_{n})_{\alpha} \right) f (\mathbf{r} - \mathbf{r}_{n})$$

$$- \left(\left(\sum_{i(n)} q_{i} (\mathbf{v}_{n})_{\alpha} (\mathbf{r}_{ni})_{\beta} \right) - \varepsilon_{\alpha\beta\gamma} (\mathbf{m}_{n})_{\gamma} \right) \nabla_{\beta} f (\mathbf{r} - \mathbf{r}_{n})$$

$$= \langle q_{n} (\mathbf{v}_{n})_{\alpha} \delta (\mathbf{r} - \mathbf{r}_{n}) \rangle + \frac{\partial}{\partial t} \langle (\mathbf{p}_{n})_{\alpha} \delta (\mathbf{r} - \mathbf{r}_{n}) \rangle + \varepsilon_{\alpha\beta\gamma} \nabla_{\beta} \langle (\mathbf{m}_{n})_{\gamma} \delta (\mathbf{r} - \mathbf{r}) \rangle$$

$$- \nabla_{\beta} \langle (\mathbf{v}_{n})_{\alpha} (\mathbf{p}_{n})_{\beta} \delta (\mathbf{r} - \mathbf{r}_{n}) \rangle$$

Den letzten Term vernachlässigen wir im Folgenden als Term höherer Ordnung (Details sind im Buch von Jackson, Kap. 6.6, zu finden).

Mit diesen Ergebnissen erhalten wir jetzt schlussendlich die gemittelte Stromdichte der gebundenen Ladungen,

$$\langle \mathbf{j}_{\mathrm{b}} \left(\mathbf{r}, t \right) \rangle = \sum_{\mathbf{r}} \langle \mathbf{j}_{n} \left(\mathbf{r}, t \right) \rangle = j_{\mathrm{M}} \left(\mathbf{r}, t \right) + \frac{\partial}{\partial t} \mathbf{P} \left(\mathbf{r}, t \right) + \nabla \times \mathbf{M} \left(\mathbf{r}, t \right)$$

mit der Stromdichte der gebundenen Ladungen

$$\mathbf{j}_{\mathrm{M}}\left(\mathbf{r},t\right) = \left\langle \sum_{n} q_{n} \mathbf{v}_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right\rangle,$$

der makroskopischen Polarisation

$$\mathbf{P}(r,t) = \left\langle \sum_{n} \mathbf{p}_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right\rangle$$

und der neu eingeführten Magnetisierung (Dichte der magnetischen Dipole)

$$\mathbf{M}(\mathbf{r},t) = \left\langle \sum_{n} \mathbf{m}_{n} \delta(\mathbf{r} - \mathbf{r}_{n}) \right\rangle.$$

Daraus ergibt sich die die gemittelte Stromdichte als Summe der makroskopischen und mikroskopischen Stromdichte,

$$\left\langle \mathbf{j}\left(\mathbf{r},t\right)\right\rangle =\left\langle \mathbf{j}_{\mathrm{f}}\left(\mathbf{r},t\right)\right\rangle +\left\langle \mathbf{j}_{\mathrm{b}}\left(\mathbf{r},t\right)\right\rangle =\underbrace{\mathbf{j}_{\mathrm{F}}\left(\mathbf{r},t\right)+\mathbf{j}_{\mathrm{M}}\left(\mathbf{r},t\right)}_{\mathbf{j}_{\mathrm{Ma}}}+\underbrace{\frac{\partial}{\partial t}\mathbf{P}\left(\mathbf{r},t\right)+\nabla\times\mathbf{M}\left(\mathbf{r},t\right)}_{\mathbf{j}_{\mathrm{M}}\left(\mathbf{r},t\right)}$$

und wir können die makroskopischen Feldgleichungen formulieren:

$$\operatorname{div} \mathbf{B} = 0$$

$$\operatorname{rot} \mathbf{B} = \mu_{0} \left(\mathbf{j}_{\operatorname{Ma}} \left(\mathbf{r}, t \right) + \mathbf{j}_{\operatorname{Mi}} \left(\mathbf{r}, t \right) + \varepsilon_{0} \frac{\partial}{\partial t} \mathbf{E} \left(\mathbf{r}, t \right) \right)$$

$$= \mu_{0} \left(\mathbf{j}_{\operatorname{Ma}} \left(\mathbf{r}, t \right) + \frac{\partial}{\partial t} \mathbf{D} \left(\mathbf{r}, t \right) + \nabla \times \mathbf{M} \left(\mathbf{r}, t \right) \right)$$

Nun führen wir noch das magnetische Feld **H** ein,

$$\mathbf{H}(\mathbf{r},t) = \frac{1}{\mu_0} \mathbf{B}(\mathbf{r},t) - M(\mathbf{r},t) \iff \mathbf{B}(\mathbf{r},t) = \mu_0 \left(H(\mathbf{r},t) + M(\mathbf{r},t) \right)$$

5 Magnetostatik

Die Magnetisierung \mathbf{M} wird also wieder in ein Hilfsfeld integriert, was einen einfacheren Ausdruck für die zweite Feldgleichung erlaubt:

$$rot \mathbf{H} = \mathbf{j}_{Ma} + \frac{\partial}{\partial t} \mathbf{D}$$

Die Wirbel des Magnetfelds ${\bf H}$ sind die makroskopische Stromdichte ${\bf j}_{\rm Ma}$ und der dielektrische Verschiebungsstrom $\partial_t {\bf D}$.

Das fundamentale magnetische Feld ist die magnetische Flussdichte ${\bf B}.$