Trigonometric Sum and Difference Formulas in \mathbb{C}

Matt McCarthy

June 2016

1 Background

Definition 1. Let $f: \mathbb{C} \to \mathbb{C}$, where f(x+iy) = u(x,y) + iv(x,y), be a function such that $\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$, and $\partial v/\partial y$ exist and are continuous on some disk $D \subseteq \mathbb{C}$ with a nonzero radius. If f satisfies the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

then f is said to be analytic on D. Furthermore, the largest subset of \mathbb{C} on which f is analytic is called f's domain of analyticity. If the domain of analyticity is \mathbb{C} , then f is said to be entire.

Theorem 1. Let f be analytic on a disk D, then the Taylor series for f converges for all $z \in D$.

2 Solution

2.1 Analyticity of e^z

Proposition 2. e^z is entire.

Proof. Let z = x + iy. We want to find \mathbb{R} -valued functions u, v such that $e^{x+iy} = u(x,y) + iv(x,y)$.

$$e^{z} = e^{x+iy}$$

$$= e^{x}e^{iy}$$

$$= e^{x}\cos y + ie^{x}\sin y$$

$$= u(x, y) + iv(x, y)$$

Taking partial derivatives yields the following.

$$\begin{array}{lll} \partial u/\partial x = & e^x \cos y & \partial v/\partial y = & e^x \cos y \\ \partial u/\partial y = & -e^x \sin y & -\partial v/\partial x = & -e^x \sin y \end{array}$$

Therefore e^z satisfies the Cauchy-Riemann equations. Furthermore, since the equations hold for all $z \in \mathbb{C}$, e^z is entire.

Proposition 3. Let $z \in \mathbb{C}$. Then

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Proof. Since e^z is entire, its Taylor series converges everywhere in \mathbb{C} . Take each right hand side, and replace e^{iz} and e^{-iz} with their respective Taylor expansions. Doing so will yield the Taylor expansion of $\cos z$ and $\sin z$ respectively. The details are left as an exercise.

Trigonometric Sum Identities 2.2

Theorem 4. Let $z, w \in \mathbb{C}$. Then $\sin(z+w) = \cos z \sin w + \sin z \cos w$.

Proof. Consider $\cos z \sin w + \sin z \cos w$.

$$\begin{split} \cos z \sin w + \sin z \cos w &= \left(\frac{e^{iz} + e^{-iz}}{2}\right) \left(\frac{e^{iw} - e^{-iw}}{2i}\right) + \left(\frac{e^{iz} - e^{-iz}}{2i}\right) \left(\frac{e^{iw} + e^{-iw}}{2}\right) \\ &= \frac{e^{i(z+w)} + e^{i(w-z)} - e^{i(z-w)} - e^{-i(z+w)}}{4i} + \frac{e^{i(z+w)} - e^{i(w-z)} + e^{i(z-w)} - e^{-i(z+w)}}{4i} \\ &= \frac{2e^{i(z+w)} - 2e^{-i(z+w)}}{4i} \\ &= \frac{e^{i(z+w)} - e^{-i(z+w)}}{2i} \\ &= \sin(z+w) \end{split}$$

Theorem 5. Let $z, w \in \mathbb{C}$. Then $\cos(z+w) = \cos z \cos w - \sin z \sin w$.

Proof. Consider $\cos z \cos w - \sin z \sin w$.

$$\begin{split} \cos z \cos w - \sin z \sin w &= \left(\frac{e^{iz} + e^{-iz}}{2}\right) \left(\frac{e^{iw} + e^{-iw}}{2}\right) - \left(\frac{e^{iz} - e^{-iz}}{2i}\right) \left(\frac{e^{iw} - e^{-iw}}{2i}\right) \\ &= \frac{e^{i(z+w)} + e^{i(w-z)} + e^{i(z-w)} + e^{-i(z+w)}}{4} + \frac{e^{i(z+w)} - e^{i(w-z)} - e^{i(z-w)} + e^{-i(z+w)}}{4} \\ &= \frac{e^{i(z+w)} + e^{-i(z+w)}}{2} \\ &= \cos(z+w) \end{split}$$

References

[1] John M. Howie. Complex Analysis. Springer. ISBN: 978-1-85233-733-9.