Subauray Content -> Subauray Basics -> Printing Lubauray -> Crenerating All Lubaurays -> Printing all Lubauray Lund. - Approach 1 · Approach 2 - Max Lubauray Lund - Lund of all Lubauray Lund - Lund of all Lubauray Lund

Homework - Even Subarrays.

If you're going
through hell,
keep going.
Winston Churchill
BrainyQuote

Subaneray Basics: -> Continuous paut of an access. -> Single element is a subaculary -> Complete assury is Subassions. 1 2 3 4 5 6 7 8 9 OUL [10] = -2 4 6 3 8 1 4 3 2 -10 indices: {3,4,5,7,83 × indices: {4,5,6,7,8} indices: {2,63 × - Point Sub (aux [7, S, e) & for (1: 1; 1<= e; 1++) { Cirreral triors T.C > OW) S.C > O(1)

// How many	Sub annays.	
en1: au[4]= -1		(4) (441) 2 10 2
0-0:-1	1-1: 3	2-2; 2
0-1:-18	1;2;32	2-8:23
0-2:-132	1:8:323	3-3:8
0-8: -1 8 28		
	=> 10 Sub	arrays.

// Viven o dement, How many Subaways?

OULEND = { 0, 1, 2, 3, 4 ... i, i+1 ... N-2, N-13

Start 20	Staut >1	Start-2	Stew as N-2	Stank at N-1
0 - 0	1-1	2-2	(N-2) - (N-2)	(N-1):(N-1)
0 - 1	1-2	2 -3	(N-2) - (N-1)	
0-2	1-9	2-4		
	•	1	,	
,	•	?		
0-N-1	1-10-1	2-10-1		
[2]	1 ~ 01	N-2	2	

no. of Inparanas in a given

11 Printing all Subaucays 3 2 4 5 6 for (3=0; &< m', 1++) & 2 for le=1, exm', exx) (for (:= b ; ix=e', i++) { Š (C1) pero this 0 0 0 1 د ا 2 0 3 3 0 ١ 1.C -> 0 (w3) 2 J.C -3 0 (1) 3 2 23 2, 4 33 2,4,5 2, 4,5,6 4,5 4,5,6 5 6 6

```
Max Subacces Sums :-
CO1 P 2 8 ] = [Y] rep
To-07 = 283 = 8
[0-1] = 38,23 = 10
[0-2] = \{\{1,2,9\}\} = 19
[50-37] = \{8,2,9,103 = 29\}
[1-1] = {23 = 2
[1-2] = {2,93 = 11
[1-3] = \{2,9,10\} = 21
[2-2] = \{93 = 9
[2-3] = {9,103 = 19
[3-3] = {103 = 10
                 29
```

// Print all Subacceaux Sums
int morosum = - & - Integer, MIN
$= V M N \epsilon$
for (2=0; 2< m; 1++) {
tor(e=1, exm', e++) {
int Sum=0
for (i= b', i<=e', i++) {
Sum + = alex TiZ;
3011772 3336(213)
3 (2011) (
3 (f bum> mordum) E morden=lu
8 marlin=lu
1.C > 0 w3)
$\Delta \cdot c \Rightarrow o(1)$
prefix sum U.e) elle Pf[e]-Pf[b-1]
> else Pf[e]-Pf[b-1]
(1.0×0.002)
1.C-> 0 cm2)
3.23 000)
Kadane's Algorithm: Tic+> 0 (m)
J.C -> O(1),
Advance first lecture.
Homerice 1121 to 1

Wind I	ng all	Sub assay	s Lum	Stouting	or index 2.
€m':-	02157): 7 <u>3</u>	2 3	168	5 7 2 3
[2-2]	> 2		Sur	n=0',	
[2-37) ->	1	toof	3-21, 3	3(mz,'n>
[2~4]) >	4		Suma	Sum tamb
[2-5	,Ω → 1	3		boint	Sum)
[2-6	J 3	13			
[2·?	<i>⇔</i> (4	20	1 3	3	
		index.	` '		
	Juma		·	S	
		-i', J<~			
	1	sume sums		ג טיי	
		foint an	v••)		
	3				

```
all Jub arrivey Juns uning
                  11 Pointing
                                                                                                             carry formand
                                   for (1=0; (<m; )++) {
                                                                                                                                                                                                            1. ( > 0 W2)
                                                    Sum=0;
                                                                                                                                                                                                                3.Co O(1),
                                               3( ** L, 'N> L, (==) 100f
                                                                    Edimo timbe comb
                                                                            Point Gum)
                                                                     3
                                            3
                                                                                          Break
                                                                                                                                                       10:00 pm - 10:10 pm
                                                                                                                                                                                   (14) 1* m-i)
                         Sum of Subarray Suny !-
                                                                                                             0
                                       P ( 1 ) 2 9 = ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P ( 1 ) P 
0-0 -> 583
                                                                                                                                                2-2 -> {9}
                                                                                    8
  0-1 -> $ (123
                                                                                                                                             2-3-389,103-> 19
                                                                                   10
   0-2 -> $ 1,2,93
                                                                                                                                                      3-3 -4103-2 10
                                                                                        19
    0-3 -> {8,2,9,10} 29
                                                                                                                                                                                                                        136
      1-1 -> {2}
     1-2 -> \ 2,93
                                                                                             11
        1-3 -> {2,9,10} 21
```

for (i=0; i<m; i+1) { | Jum=0; | | Jos(3=1); J<m; J+1) { | Lum= Lum+ aunto | | total Lum+= Lum; | | 3

0	In how many subaucusy index & is
	
	present?
	aug = 3 -2 4 -1 2 6
	<u>J</u> e
	0 3 => 4*3 = 12 4
	2 5 Pernible dubasesays.
	(j+1) & (m-i) 2 4 4 3 2 12

Ours) In how many subaverays index i is present?

aus = 3 - 2 4 - 1 2 6

3 e 0 23 1 7

4

Euon Sub averay .	
A -> &2, 4,6,13	<u>6</u>
-> One ou moue suk	Longth,
finst & Lost of	-be Ruom
A = & 0, 1, 2,	3. <u>m</u> -13
7	even,
-> n-1 should be	
-> 0 th should be	
- aug. leng thould	be even.

0 > not worst con
mont comes Om2)
for (i'=0', i'm', i+1) {
if (awiti)==k) subtru Tm
3