

MÉTHODES DE SIMPLIFICATION

TABLES DE KARNAUGH

Architecture des Ordinateurs 1 Mme AMGHAR D

INTRODUCTION

Simplification de fonctions logiques:

L'objectif de la simplification des Logic Function est la réduction :

- ✓ Du nombre de termes (produits ou sommes) dans la fonction; (mintermes, maxtermes)
- ✓ Du nombre de variables dans le terme.
- Ce qui permet de réduire le nombre de portes logiques(logic gates), par conséquent le coût du circuit.

On distingue principalement 3 méthodes de simplification:

- √ Algébrique (utilisation de règles);
- √Graphique (utilisation du tableau de Karnaugh);
- ✓ Programmable (Quine-McCluskey).

MÉTHODE ALGÉBRIQUE:

Méthode algébrique:

Cette méthode repose sur utilisation des propriétés rencontrées jusque là (lois de morgane....), sans une démarche spécifique.

Elle est donc très intuitive, et nécessite pas mal d'entraînement pour conduire à des résultats intéressants.

Exemple: Soit la fonction suivante à simplifier:

$$S = a.b + \bar{a}.c + b.c$$

$$S = a.b + \bar{a}.c + b.c.1$$

$$S = a.b + \bar{a}.c + b.c.(a + \bar{a})$$

$$S = a.b + \bar{a}.c + b.c.a + b.c.\bar{a}$$

$$S = a.b.(1 + c) + \bar{a}.c.(1 + b) = a.b + \bar{a}.c$$

MÉTHODE ALGÉBRIQUE:

Etapes de conception d'un circuit:

- ✓ Comprendre le fonctionnement du (système) circuit; lequel est souvent décrit textuellement .
- ✓ Définir les variables d'entrée;
- ✓ Définir la (ou les) variable(s) de sortie;
- ✓ Etablir les tables de vérité;
- ✓ Ecrire les **expressions algébriques** (truth table);
- ✓ Simplifier algébriquement (en utilisant les règles);
- √Faire le **schéma** (avec un minimum de portes).

septembre 2013 ARCHITECTURE DES ORDINATEURS 1CP 4

MÉTHODE ALGÉBRIQUE:

Exemple:

Soit à réaliser un système de contrôle d'ouverture /fermeture de serrure.

On dispose de 3 clés, où au moin 2 ouvrent la serrure.

Solution: nous avons 3 variables d'entrée A, B et C représentant les clés et une sortie S pour la commande d'ouverture/fermeture.

A = 1 → Clé 1 utilisée, A = 0 sinon.

 $S = 1 \rightarrow Serrure ouverte, S = 0 sinon.$

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
S	0	0	0	1	0	1	1	1

$$S = \bar{A}.B.C + A.\bar{B}.C + A.B.\bar{C}+A.B.C$$

La table de Karnaugh est une façon compacte de représenter une table de vérité.

- Le nombre de cases d'une **table de Karnaugh** est égal au nombre total de combinaisons possibles d'entrée (qui est égal au nombre de lignes d'une table de vérité).
- Pour **n** variables le nombre de cases d'une table de Karnaugh est **n^2**

On note:

- Chaque case de la table de Karnaugh correspond à une rangée de la table de vérité.
- •Un '1' placé dans une case de la table de Karnaugh correspond à un minterme de la fonction.
- Un '0' placé dans une case de la table de Karnaugh correspond à un maxterme de la fonction.
- Deux mintermes ou maxtermes représentés par deux cases djacentes ne diffèrent que par un seul bit. Le codage est effectué en BINAIRE REFLECHI(codage Gray).

Méthode graphique : (Tableau de Karnaugh):

Termes adjacents:

Soit une fonction à 2 entrées: $F(a,b) = a.b + a.\bar{b}$

- On constate que la variable b appartient aux 2 termes avec a constante,
- •donc la mise en facteur $a(b+\bar{b})$ et l'application de la règle $(b+\bar{b}=1)$, permet l'élimination de la variable **b**.

Deux mots binaires sont dits **adjacents** s'ils ne diffèrent que par la complémentarité d'une, et seulement une, variable.

Exemple: Les mots $ab\bar{c}$ et abc sont adjacents,

alors:

$$ab\bar{c} + abc = ab(c + \bar{c}) = ab$$

Le tableau de Karnaugh est une forme de table de vérité mettant en évidence (graphiquement) les termes adjacents.

Codage Gray

Exemple: Fonction à 2 variables d'entrée

Soit u truth table à 2 variables:

	T	V
а	р	F
0	0	
0	1	
1	0	
1	1	

Où la case correspond à l'état de la fonction de sortie.

La **Table de vérité** utilise le **code binaire naturel** pour énumérer toutes les combinaisons possibles d'entrées afin de générer l'équation d'une fonction.

- Par contre, La **TK** utilise le **code de Gray**, lequel est élaboré à partir des deux caractéristiques suivantes:
- La transition d'une combinaison à la suivante implique qu'un, et seulement un, bit change d'état.
- ❖ Le code est cyclique.

Table de codes Gray:

Code Gray à 1 bit	Code Gray à 2 bits	Code Gray à 3 bits
0	00	000
1	01	001
	11	011
	10	010
		110
		111
		101
		100

Tables de karnaugh à deux variables : est un tableau à 2² c.à.d. 4 cases

a	b	F
0	0	
0	1	
1	0	
1	1	

Tables de karnaugh à deux variables :

Exemple:

	a	b	F
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

Tables de karnaugh à trois variables : est un tableau à 2³ c.à.d. 8 cases.

Il y a deux possibilités : forme horizontale ou verticale.

Les deux formes sont équivalentes.

√ab c	00	01	11	10
0	$\overline{a}.\overline{b}.\overline{c}$	$\overline{a}.b.\overline{c}$	$a.b.\overline{c}$	$a.\overline{b}.\overline{c}$
	0	2	6	4
1	$\overline{a}.\overline{b}.c$	\overline{a} .b.c	a.b.c	$a.\overline{b}.c$
	1	3	7	5

bca	0	1	
00	$\bar{a}\bar{b}\bar{c}$	$aar{b}ar{c}_{4}$	
01	$\overline{a}\overline{b}c_1$	$a\overline{b}c_{5}$	100 est adjacent
11	1 3	abc_{7}	à 11 <u>0</u>
10	$\bar{a}b\bar{c}_{_{2}}$	$ab\bar{c}_{6}$	

Tables de karnaugh à trois variables :

Exemple:

A	В	C	F
0	0	0	0
0	O	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	O	1	O
1	1	0	1
1	1	1	0

F(A, B, C)BC0 0 01 0 11 10

Horizontal

Tables de karnaugh à quatre variables : est un tableau à 2^4 c.à.d. 16 cases

cd ab	00	01	11	10
00	$\overline{a}.\overline{b}.\overline{c}.\overline{d}$	$\overline{a}.b.\overline{c}.\overline{d}$	<i>a.b.</i> c . d 12	$a.\overline{b}.\overline{c}.\overline{d}$
01	$\overline{a}.\overline{b}.\overline{c}.d$ 1	ā.b.c.d 5	<i>a.b.</i> c . <i>d</i> 13	$a.\overline{b}.\overline{c}.d$
11	$\overline{a}.\overline{b}.c.d$	ā.b.c.d 7	<i>a.b.c.d</i> 15	$a.\overline{b}.c.d$
10	$\overline{a}.\overline{b}.c.\overline{d}$	\overline{a} .b.c. \overline{d}	<i>a.b.c.</i> d 14	$a.\overline{b}.c.\overline{d}$ 10

Tables de karnaugh à quatre variables :

A	В	\boldsymbol{C}	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Tables de karnaugh à cinq variables : est un tableau à 2^5 c.à.d. 32 cases

Tables de karnaugh à cinq variables :

Exemple:

XYZ • TU •	000	001	1 011	010	2 110	111	3 101	100
00	1	1	0	0	1	1	0	0
01	1	1	0	0	1	1	0	0
11	0	0	1	1	0	0	1	1
10	0	0	1	1	0	0	1	1

- Lorsque toute la fonction est représentée dans la table, on procède à des regroupements de "1" qui se situent les uns à côté des autres.
- Puisque la table de Karnaugh utilise un code de Gray, ces groupements identifient des termes adjacents.

Cases adjacentes:

Rechercher dans le TKarnaugh les cases adjacentes qui contiennent des '1'.

C'est-à-dire les cases dont une seule variable d'entrée change d'état. Ce sont les cases qui sont cote à cote .

Exemples:

Ab cd	00	01	11	10
00		*		
01	*	1	*	
11		*		
10				

Ab cd	00	01	11	10
00	*	1	*	
01		*		
11				
10		*		

Ab cd	00	01	11	10
00	*			
01				
11	*			
10	1	*		*

Pour représenter une fonction logique sous forme SDP (Sommes De Produits) standards par la table de Karnaugh, on suit les étapes suivantes :

- Déterminer la valeur binaire de chaque terme produit de la fonction.
- Pour chaque minterme de la fonction, on met un 1 dans la case lui correspondant dans la table.

Exemple:

$$F(A,B,C) = \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C$$
 (1ere FC)
0 1 1 1 0 1 1 1 0 1 1 1

Donc: ABC 00 01 11 10 0 0 0 1 0 1 1 1

$$F(A,B,C) = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C) \text{ (2eme FC)}$$

$$(0 \quad 0 \quad 0)(0 \quad 0 \quad 1)(0 \quad 1 \quad 0)(1 \quad 0 \quad 0)$$

Donc A 00 01 11 10 0 0 0 1 1 1 1

Simplification:

première étape:

Il s'agit de réaliser des groupements de '1' pour la DCF(des '0' pour la CCF), en respectant les règles suivantes:

- ✓ Des groupements différents peuvent utiliser plusieurs fois le même 1;
- ✓ Les groupements ne doivent pas contenir de '0';
- √ Tous les '1' doivent être contenus dans un groupement;
- ✓ Les groupements doivent être les plus grands possibles;
- \checkmark La dimension du groupement est une puissance de 2 (2, 4, 8, 16).

Remarque: Un groupement de '1' à 2ⁿ cases permet de supprimer (simplifier) n variables.

Deuxième étape : Détermination des termes produit minimisés

Chaque groupe de « 1 » de 2^k cases adjacentes donne un terme produit de n-k variables où les k variables qui changent de complémentarité sont éliminées et les variables qui ne changent pas sont retenues.

- En regroupant les cases adjacentes par 2, on supprime une variable des termes correspondants.
- Pour supprimer deux variables, il faut disposer de 4 cases adjacentes.
- Pour en supprimer 3 il faut 8 cases adjacentes, etc...

Troisième étape : Détermination de la forme disjonctive minimisée

Additionnez tous les termes de produits déterminés à partir de la table de Karnaugh pour former l'expression minimisée de la SDP.

Exemple:

$$f(a,b) = \bar{a}b + \bar{a}\bar{b} + ab$$

A	0	1
b		
0	\bigcap	0
1		
	\bar{a}	h

$$f = \bar{a} + b$$

Exemple 1 : groupez les 1 des tables de karnaugh suivantes

ab	00	01	11	10
c				
0	1	0	1	0
1	0	<u> </u>	1	0

Exemple 1 : Déterminez le terme de chaque groupe

Exemple 1 :Déterminez la SDP minimisée

ab	00	01	11	10
С				
0		0	1	0
1	0		1	0
	/ - _			
ā	$ar{b}ar{c}$	bc	ab	

$$f(a,b,c) = \bar{a}\bar{b}\bar{c} + bc + ab$$

Exemple 2 : groupez les 1 des tables de karnaugh suivantes

Ab	00	01	11	10
c				
0	1	1	0	1
1	1	0	1	1

Exemple 2 : Déterminez le terme de chaque groupe

Exemple 2 : Déterminez la SDP minimisée

$$f(a,b,c) = \bar{a}\bar{c} + ac + \bar{b}$$

Ab	00	01	11	10
С				
0	1	1	0	1
1	1	0	1	
			ac	
	$\bar{a}\bar{c}$			
		<i>-b</i> ⋅		

Exemple 3 : groupez les 1 des tables de karnaugh suivantes

cd	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

Exemple 3 : Déterminez le terme de chaque groupe

-			•	
cd	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

Exemple 3 : Déterminez la SDP minimisée

cd	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

$$f(a,b,c) = \bar{b}\bar{d}$$

Exemple 4 : groupez les 1 des tables de karnaugh suivantes

cd	00	01	11	10
00	1	1	0	0
01	1	1	1	
11	0	0	0	0
10	0	0	1	1

Exemple 4 : Déterminez le terme de chaque groupe

_			- <u>-</u>		
cd	00	01	11	10	
00	1	1	0	0	
01	1	1	1		$-\bar{c}d$
11	0	0	0	0	
10	0	0	1	1	
	$\bar{a}\bar{c}$			$ac\bar{d}$	

Exemple 4 : Déterminez la SDP minimisée

cd	00	01	11	10	
00	1	1	0	0	
01	1	1	1		$-\bar{c}d$
11	0	0	0	0	
10	0	0	1	1	
	$\bar{a}\bar{c}$			acd	

$$f(a,b,c) = \bar{a}\bar{c} + ac\bar{d} + \bar{c}d$$

Exemple 5 : groupez les 1 des tables de karnaugh suivantes

ab	00	01	11	10
cd				
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

Exemple 5 : Déterminez la SDP minimisée

ab	00	01	11	10
cd				
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

$$f(a,b,c) = \overline{b}$$

Exemple 6 : groupez les 1 des tables de karnaugh suivantes

ab cd	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

Exemple 6 : Déterminez le terme de chaque groupe

ab cd	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	O	0	0

Exemple 6 : Déterminez la SDP minimisée

ab -	00	01	11	10
cd				
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	O	0	0

F(a,b,c,d)=d

d

Exercice:

Utilisez une table de karnaugh pour minimiser le SDP suivante :

$$f(a,b,c) = \bar{a}bc + a\bar{b}c + \bar{a}\bar{b}c + \bar{a}\bar{b}\bar{c} + a\bar{b}\bar{c}$$

Ab	00 01		11	10	
0	1	0	0	1	
1		1	0	1	

$$f = \overline{b} + \overline{a}c$$

Exercice

 Déterminez la SDP minimisée de l'expression donnée par la table de Karnaugh suivante :

$$f = b + a\bar{c}d + \bar{a}c$$

Exercice: Simplifiez par la table de Karnaugh

L'expression logique suivante : $f(a, b, c, d) = \sum m(0,4,5,6,7,8,9,10,11,13,14,15)$

$$f = \overline{a}\overline{c}\overline{d} + bd + bc + a\overline{b}$$

Termes redondants:

Définition:

- •Un terme est dit redondant si toutes les cases qu'il couvre dans une table de Karnaugh sont déjà couvertes par un autre terme.
- Ce terme peut être enlevé de l'équation sans changer la table de vérité.

Termes redondants:

Exemple: Simplifions en somme de produits la fonction logique suivante:

In forme est la plus simple: $f(a,b,c)=b\bar{c}+ac$

- En créant la table de vérité d'une fonction, on écrit 1 si la fonction est true, puis on rempli de 0.
- Certains circuits logiques peuvent être conçus tels que la valeur de la fonction pour certaines combinaisons de valeurs de variables n'a pas d'importance ou bien physiquement impossibles.

Conditions indifférentes:

Exemple:

•un chariot ne peut être en contact avec les capteurs de position a et b en même temps, alors la position a=1 et b=1 est impossible.

- •Qu'arrive t'il si certaines combinaisons ne sont pas possibles ?
- On donne à ces combinaisons, dites **conditions indifférentes**, la valeur x (au lieu de 0 ou 1) dans la table de vérité,
- on utilise aussi ø ou .

а	b	С	f(a, b, c)	а	b	С	f(a, b, c)
0	0	0	0	1	0	0	X
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	Х	1	1	1	1

- Les mintermes ou maxtermes qui ont des conditions indifférentes sont exprimées avec un d.
- Les conditions indifférentes permettent de faire des groupements plus gros dans les diagrammes de Karnaugh.
- On utilise seulement ceux qui permettent des plus gros regroupements.

а	b	С	f(a, b, c)	а	b	С	f(a, b, c)
0	0	0	0	1	0	0	X
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	Х	1	1	1	1

Ab	00	01	11	10	
0	0	0	1	x	C
1	0	×	1	1	

$$f(a,b,c)=a$$

Conditions indifférentes:

Exemple 2: Simplifiez la fonction suivante

$$F(w,x,y,z) = \sum m(1,2,3,7,11,15) + d(0,5)$$

$$F(w, x, y, z) = \overline{w}\overline{x} + yz$$

ab cd	00	01	11	10	
00	/x	0	0	0	
01	1	х	0	0	
11		1	1	1	D4
10	1	0	0	0	

Conditions indifférentes:

Exemple 3: Simplifiez la fonction suivante

$$F(A,B,C,D) = \sum_{i=1}^{n} m(0,4,10,14) + d(1,2,3,5,6,11,15)$$

$$F(A,B,C,D) = \bar{a}\bar{c} + c\bar{d}$$

ab cd	00	01	11	10
cd				
00	1	1	0	0
91	X	x	0	0
11	X	0	X	x
10	X	X	1	1

Table de karnaugh CCF:

Pour un PDS sous forme standard, on place un 0 pour chaque terme de somme de l'expression sur la table de Karnaugh.

- Déterminez la valeur binaire de chaque terme de somme contenu dans le PDS standard. C'est la valeur binaire pour laquelle le terme vaut 0.
- Pour chaque terme de somme évalué, placez un 0 dans la table de Karnaugh dans la case correspondante.

Exemple:

Utilisez la table de Karnaugh pour minimiser le PDS standards suivant :

$$f = a(\overline{b} + c)$$