Fiche d'exercices nº 7

Fonctions vectorielles à une variable

Exercice 1.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f:\mathbb{R}\to E$ dérivable en 0. On suppose

$$\forall x \in \mathbb{R}, \ f(2x) = 2f(x)$$

Montrer que f est linéaire

Exercice 2.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{C}^1([a,b[,E).$ Montrer que f admet un prolongement de classe \mathcal{C}^1 à [a,b] si, et seulement si, f' a une limite en b.

Exercice 3.

Soit $f: [0,1] \to E$ dérivable à droite en 0 et vérifiant f(0) = 0. Déterminer la limite quand $n \to +\infty$ de

$$S_n = \sum_{k=1}^n f(k/n^2)$$

Exercice 4.

Soit f de classe C^2 sur $\mathbb R$ telle que f et f'' soient bornées. Montrer, à l'aide d'une formule de Taylor, que

$$||f'||_{\infty}^2 \le 4||f||_{\infty}||f''||_{\infty}$$

Exercice 5.

Soit $f: [0,1] \to E$ de classe \mathcal{C}^2 telle que

$$f(0) = f'(0) = f'(1) = 0$$
 et $||f(1)|| = 1$

Montrer en écrivant deux formules de Taylor que $||f''||_{\infty} \ge 4$.

Exercice 6.

Soit $k \in]0,1[$ et $f:\mathbb{R} \to E$, avec E un espace vectoriel normé de dimension finie, continue en 0 et vérifiant :

$$\lim_{x\to 0}\left(\frac{f(x)-f(kx)}{x}\right)=L\in E$$

a) On fixe $\varepsilon > 0$. Montrer qu'il existe $\eta > 0$ tel que

$$\forall i \in \mathbb{N}, \quad 0 < |x| \leqslant \eta \Rightarrow \left\| \frac{f(k^i x) - f(k^{i+1} x)}{x} - k^i L \right\| \leqslant \varepsilon k^i$$

b) En déduire que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]-\eta, \eta[$,

$$\left\| \frac{f(x) - f(k^n x)}{x} - \frac{1 - k^n}{1 - k} L \right\| \leqslant \varepsilon \frac{1 - k^n}{1 - k}$$

c) Montrer que f est dérivable en 0 et exprimer f'(0) en fonction de L et k.

Exercice 7.

Soit A une \mathbb{K} -algèbre de dimension finie et U(A) son groupe des éléments inversibles. Soit $f: I \to A$ dérivable en $a \in I$. On suppose que $f(a) \in U(A)$.

Montrer qu'il existe un voisinage V de a tel que pour tout $t \in I \cap V$, $f(t) \in U(A)$. Montrer que la fonction $f^{-1}: t \mapsto (f(t))^{-1}$ est dérivable en a et qu'on a :

$$(f^{-1})'(a) = -[f(a)]^{-1}f'(a)[f(a)]^{-1}$$

Exercice 8.

Soit $P \in \mathbb{K}_n[X]$ fixé et $f : \mathbb{R} \to \mathbb{K}_n[X]$ définie par f(t) = P(tX). À l'aide des applications composantes de f suivant la base canonique de $\mathbb{K}_n[X]$, montrer que f est dérivable sur \mathbb{R} et calculer sa fonction dérivée.

Exercice 9.

Soit
$$f:]-1,1[\to \mathbb{R}^2$$
 définie par $f(t)=\left(\frac{1}{\sqrt{1-t^2}},2t\right)$ et soit $s:\mathbb{R}^2\to\mathbb{R}$ définie par $s(x,y)=x+y$. Calculer $s\left(\int_0^{\frac{1}{2}}f(t)\mathrm{d}t\right)$.

Exercice 10.

Soit $f \in \mathcal{C}([a,b],\mathbb{C}^*)$. Montrer que $\left| \int_{[a,b]} f \right| = \int_{[a,b]} |f|$ si, et seulement si f(x) est d'argument constant sur [a,b].

Exercice 11.

Soit f une application continue par morceaux et croissante d'un segment [a, b] vers \mathbb{R} . Pour tout entier n > 0, on pose

$$R_n = \int_{[a,b]} f - \sum_{k=0}^{n-1} \frac{b-a}{n} f\left(a + k \frac{b-a}{n}\right).$$

Montrer que pour tout $n \in \mathbb{N}$, $0 \le R_n \le \frac{b-a}{n} (f(b) - f(a))$.

Exercice 12.

Montrer que la fonction f définie sur \mathbb{R} par :

$$f(x) = \int_0^{\sin^2 x} \arcsin(\sqrt{t}) dt + \int_0^{\cos^2 x} \arccos(\sqrt{t}) dt$$

est constante.

Exercice 13.

Trouver le minimum de $\int_0^1 (f'')^2$ quand f décrit l'ensemble des fonctions de classe C^2 de [0,1] dans \mathbb{R} vérifiant f(0) = f(1) = 0 et $f'(0) = \alpha$, où α est un réel donné.