AERO 632: Design of Advance Flight Control System

Preliminaries

Raktim Bhattacharya

Aerospace Engineering, Texas A&M University.

Preliminaries

- Signals & Systems
- Laplace transforms
- Transfer functions from ordinary linear differential equations
- System interconnections
- Block diagram algebra simplification of interconnections
- General feedback control system interconnection.

Signals & Systems

Signals & Systems

- \blacksquare Actuator applies u(t)
- Sensor provides y(t)
- lacktriangle Feedback controller takes y(t) and determines u(t) to achieve desired behavior
- The controller is typically implemented as software, running in a micro controller
- Imperfections exist in real world
 - sensors have noise
 - actuators have irregularities
 - ightharpoonup plant P is not fully known

System Response to u(t)

Given plant P and input u(t), what is y(t)?

- P is defined in terms of ordinary differential equations
- $\mathbf{v}(t)$ is the forced + initial condition response.

Linear Dynamics

Signals & Systems

0000

$$m\ddot{x}+c\dot{x}+kx=u(t)$$
 dynamics
$$y(t)=x(t) \ {
m measurement}$$

Nonlinear Dynamics

$$\ddot{x} - \mu(1-x^2)\dot{x} + x = u(t) \text{ dynamics}$$

$$y(t) = x(t) \text{ measurement}$$

In this class we focus on linear systems

Linear Systems

Signals & Systems

- Dynamics is defined by linear ordinary differential equation
- Super position principle applies

$$\begin{array}{c} u_1(t) \mapsto y_1(t) \\ u_2(t) \mapsto y_2(t) \Longrightarrow (u_1(t) + u_2(t)) \mapsto (y_1(t) + y_2(t)) \end{array}$$

Laplace Transforms

Laplace Transforms

Given signal u(t), Laplace transform is defined as

$$\mathcal{L}\left\{u(t)\right\} := \int_0^\infty u(t)e^{-st}dt$$

Exists when

$$\lim_{t\to\infty}|u(t)e^{-\sigma t}|=0, \text{ for some }\sigma>0$$

Very useful in studying linear dynamical systems and designing controllers

Properties Laplace Transforms

Linear operator

Additive

$$\mathcal{L}\{u_1(t) + u_2(t)\} = \int_0^\infty (u_1(t) + u_2(t)) e^{-st} dt$$

$$= \int_0^\infty u_1(t) e^{-st} dt + \int_0^\infty u_2(t) e^{-st} dt$$

$$= \mathcal{L}\{u_1(t)\} + \mathcal{L}\{u_2(t)\}$$

Superposition

$$\mathcal{L}\left\{au(t)\right\} = a\mathcal{L}\left\{u(t)\right\}, \ a \text{ is a constant}$$

Properties (contd.)

Signals & Systems

- **1.** $U(s) := \mathcal{L}\{u(t)\}$
- **2.** $\mathcal{L}\{au_1(t)+bu_2(t)\}=a\mathcal{L}\{u_1(t)\}+b\mathcal{L}\{u_2(t)\}=aU_1(s)+bU_2(s)$
- 3. $\frac{1}{s}U(s) \iff \int_{0}^{t}u(\tau)d\tau$
- **4.** $U_1(s)U_2(s) \iff u_1(t) * u_2(t)$ Convolution
- **5.** $\lim_{s \to 0} sU(s) \iff \lim_{t \to \infty} u(t)$ Final value theorem
- **6.** $\lim sU(s) \iff u(0^+)$ Initial value theorem
- 7. $-\frac{dU(s)}{ds} \iff tu(t)$
- **8.** $\mathcal{L}\left\{\frac{du}{dt}\right\} \Longleftrightarrow sU(s) su(0)$
- **9.** $\mathcal{L}\{\ddot{u}\} \iff s^2U(s) su(0) \dot{u}(0)$

Important Signals

Signals & Systems

- **1.** $\mathcal{L}\left\{\delta(t)\right\} = 1 \ \delta(t)$ is impulse function
- **2.** $\mathcal{L}\left\{1(t)\right\} = \frac{1}{s} \; 1(t)$ is unit step function at t=0
- **3.** $\mathcal{L}\{t\} = \frac{1}{s^2}$
- **4.** $\mathcal{L}\left\{\sin(\omega t)\right\} = \frac{\omega}{s^2 + \omega^2}$ **5.** $\mathcal{L}\left\{\cos(\omega t)\right\} = \frac{s}{s^2 + \omega^2}$

Transfer Functions

Spring Mass Damper System

Equation of Motion

Signals & Systems

$$m\ddot{x} + c\dot{x} + kx = u(t)$$

Take $\mathcal{L}\{\cdot\}$ on both sides

$$\mathcal{L}\left\{m\ddot{x}+c\dot{x}+kx\right\} = \mathcal{L}\left\{u(t)\right\}$$

$$m\mathcal{L}\left\{\ddot{x}\right\}+c\mathcal{L}\left\{\dot{x}\right\}+k\mathcal{L}\left\{x\right\} = \mathcal{L}\left\{u(t)\right\}$$

$$m\left(s^2X(s)-sx(0)-\dot{x}(0)\right)+c\left(sX(s)-x(0)\right)+kX(s) = U(s)$$

$$(ms^2+cs+k)X(s)=U(s)\ \dot{x}(0)\ \text{and}\ x(0)\ \text{are assumed to be zero}$$

Transfer Function

$$u(t)$$
 P $y(t)$

$$(ms^2 + cs + k)X(s) = U(s) \implies \frac{X(s)}{U(s)} = \frac{1}{ms^2 + cs + k}$$

Choose output $y(t) = x(t) \implies Y(s) = X(s)$.

Therefore

$$P(s) := \frac{Y(s)}{U(s)} = \frac{1}{ms^2 + cs + k}$$
 Transfer function

Transfer Function (contd.)

In general

$$P(s) = \frac{N(s)}{D(s)}$$

where N(s) and D(s) are polynomials in s

- \blacksquare Roots of N(s) are the zeros
- \blacksquare Roots of D(s) are the poles determine stability

Response to u(t)

Given

– input signal u(t) and transfer function P(s).

Determine

- output response y(t)
- 1. Laplace transform $U(s) := \mathcal{L} \left\{ u(t) \right\}$

- 2. Determine Y(s) := P(s)U(s)
- 3. Laplace inverse

$$y(t) := \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \{P(s)U(s)\}$$

System Interconnection

System Interconnection 000000

Block Diagram

Representation of System Interconnections

- Series
- Parallel
- Feedback
- A simple example
- A complex example

Series Connection

Parallel Connection

Feedback Connection

Simple Example

Complex Example

System Interconnection 0000000

Frequency Response

Response to Sinusoidal Input

$$\xrightarrow{u(t)} \mathbb{P} \xrightarrow{y(t)}$$

- Let $u(t) = A_u \sin(\omega t)$
- Vary ω from 0 to ∞

A linear system's response to sinusoidal inputs is called the system's frequency response

Response to Sinusoidal Input

Example

■ Let
$$P(s) = \frac{1}{s+1}, u(t) = \frac{\sin(t)}{\sin(t)}$$

$$y(t) = \frac{1}{2}e^{-t} - \frac{1}{2}\cos(t) + \frac{1}{2}\sin(t)$$

$$= \underbrace{\frac{1}{2}e^{-t}}_{\text{natural response}} + \underbrace{\frac{1}{\sqrt{2}}\sin(t - \frac{\pi}{4})}_{\text{forced response}}$$

- Forced response has form $A_u \sin(\omega t + \phi)$
- \blacksquare A_u and ϕ are functions of ω

Generalization

In general

$$Y(s) = G(s) \frac{\omega_0}{s^2 + \omega_0^2}$$

$$= \frac{\alpha_1}{s - p_1} + \dots + \frac{\alpha_n}{s - p_n} + \frac{\alpha_0}{s + j\omega_0} + \frac{\alpha_0^*}{s - j\omega_0}$$

$$\implies y(t) = \underbrace{\alpha_1 e^{p_1 t} + \dots + \alpha_n e^{p_n t}}_{\text{natural}} + \underbrace{A_y \sin(\omega_0 + \phi)}_{\text{forced}}$$

Forced response has same frequency, different amplitude and phase.

Response to Sinusoidal Input

Generalization (contd.)

For a system P(s) and input

$$u(t) = A_u \sin(\omega_0 t),$$

forced response is

$$y(t) = A_u M \sin(\omega_0 t + \phi),$$

where

$$M(\omega_0)=|P(s)|_{s=j\omega_0}=|P(j\omega_0)|,$$
 magnitude
$$\phi(\omega_0)=\angle P(j\omega_0) \text{ phase}$$

In polar form

$$P(j\omega_0) = Me^{j\phi}.$$

Fourier Analysis

Fourier Series Expansion

Signals & Systems

Given a signal y(t) with periodicity T,

$$y(t) = \frac{a_0}{2} + \sum_{n=1,2,\dots} a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$a_0 = \frac{2}{T} \int_0^T y(t) dt$$
$$a_n = \frac{2}{T} \int_0^T y(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$
$$b_n = \frac{2}{T} \int_0^T y(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

Fourier Series Expansion

Approxime

Fourier Transform

Step function

Fourier transform reveals the frequency content of a signal

Fourier Transform

Step function – frequency content

Signals & Systems

Input Output

Fourier Series Expansion

superposition principle

$$\xrightarrow{\sum_i u_i(t)} \mathsf{P} \xrightarrow{\sum_i y_i(t)}$$

Fourier Transform

$$\xrightarrow{U(j\omega)} \mathsf{P} \xrightarrow{Y(j\omega)}$$

$$u_i(t) = a_i \sin(\omega_i t)$$

$$y_{i_{\text{forced}}}(t) = a_i M \sin(\omega_i t + \phi)$$

$$Y(j\omega) = P(j\omega)U(j\omega)$$

Suffices to study $P(j\omega) |P(j\omega)|, P(j\omega)$

Bode Plot

First Order System

- P(s) = 1/(s+1)
- loglog scale
- $20dB = 10 \log_{10}(100/1)$

- $u(t) = A\sin(\omega_0 t)$

Second Order System

$$\omega_n = 1 \text{ rad/s}$$

$$u(t) = A\sin(\omega_0 t)$$

$$S(j\omega) + T(j\omega) = 1$$

- $P(s) = \frac{1}{(s+1)(s/2+1)}$
- C(s) = 10
- $S = G_{er} = \frac{1}{1+PC} = \frac{1}{1+10P}$
- $T = G_{yr} = \frac{PC}{1+PC} = \frac{10P}{1+10P}$

All transfer functions

With proportional controller

Controller Design Considerations

Design Using Bode Plot of $P(j\omega)C(j\omega)$

Loop Shaping

Signals & Systems

Develop conditions on the Bode plot of the open loop transfer function

- Sensitivity $\frac{1}{1+PC}$
- Steady-state errors: slope and magnitude at $\lim_{\omega} \to 0$
- Robust to sensor noise
- Disturbance rejection
- lacktriangledown Controller roll off \Longrightarrow not excite high-frequency modes of plant
- Robust to plant uncertainty

Look at Bode plot of $L(j\omega) := P(j\omega)C(jw)$

Frequency Domain Specifications

Constraints on the shape of $L(j\omega)$

- Choose $C(j\omega)$ to ensure $|L(j\omega)|$ does not violate the constraints
- Slope ≈ -1 at ω_c ensures $PM \approx 90^\circ$ stable if $PM > 0 \implies /PC > -180^\circ$

Plant Uncertainty

$$P(j\omega) = P_0(j\omega)(1 + \Delta P(j\omega))$$

Sensor Characteristics

Noise spectrum

$$G_{yn} = -\frac{PC}{1 + PC}$$

Reference Tracking

Bandlimited else conflicts with noise rejection

$$G_{yr} = \frac{PC}{1 + PC}$$

$$G_{yn} = -\frac{PC}{1+PC}$$

Disturbance Rejecton

Bandlimited else conflicts with noise rejection

$$G_{yd} = \frac{P}{1 + PC}$$

$$G_{yn} = -\frac{PC}{1 + PC}$$