MSBD 5004 Homework 3

Pranav A, 20478966

Problem 1.1.

Let $r^{(0)} = b$ For the first iteration,

$$j_1 = 4$$
 $\omega^{(1)} = \{4\}$
 $r^{(1)} = [0, 0, 1]^T$

For the second iteration,

$$j_2 = 3$$

$$\omega^{(2)} = \{3, 4\}$$

So we find best approximation of b using $[a_3, a_4]$, by solving

$$\min_{x} ||b - [a_3, a_4]^T [x_3, x_4]||_2^2$$

Thus $[x_3, x_4] = [a_3, a_4]^{\dagger} b$, where $[a_3, a_4]^{\dagger}$ is the pseudoinverse, which is $[x_3, x_4] = [1, \sqrt{2}]$ The result is $x = [0, 0, 1, \sqrt{2}]^T$.

Problem 1.2.

Let $x^{(0)} = [0, 0, 0, 0]^T$ For the first iteration,

$$\alpha^{(0)} = 0.5558$$

$$x^{(1)} = [0.556, 0, 0, 0.78567]^T$$

For the second iteration,

$$\alpha^{(1)} = 0.91928$$

$$x^{(2)} = [0, 0, 0.9192, 1.0023]^T$$

Problem 2.

(It is assumed that the question is asking us to solve for mutual coherence, not mutual incoherence.)

Given the matrix $\mathbf{A} = [\mathbf{I} \ \mathcal{F}]$, the inner product $\mathbf{A}^T \mathbf{A}$ will be analyzed, which generates the following block matrix:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I}^T \mathbf{I} & \mathbf{I}^T \mathcal{F} \\ \mathcal{F}^T \mathbf{I} & \mathcal{F}^T \mathcal{F} \end{bmatrix}$$

Here we are looking for largest off-diagonal entry, because the mutual coherence looks at the argmax of the dot products of two vectors.

Clearly the vector in \mathcal{F} which will be largest would be $\frac{1}{\sqrt{N}}[1, 1, 1, \cdots, 1]$. When this vector is multiplied by any of the **I** vector, the result will be $\frac{1}{\sqrt{N}}$

Hence, $\mu(\mathbf{A}) = \frac{1}{\sqrt{N}}$, where N is the dimension of the \mathcal{F} matrix.

Problem 3.

The given objective function is a non-smooth convex function. Hence, the subgradient approach will be taken.

Analyzing subdifferential at $x \neq A^{\dagger}b$ we get (A^{\dagger}) stands for pseudoinverse),

$$\partial f(x) = \frac{A^T(Ax - b)}{||Ax - b||_2}$$

Clearly, this subdifferential won't exist at $x \neq A^{\dagger}b$.

However, the supremum of this subdifferential is ||A||, hence the subgradient at that point will not exceed this supremum.

So, subdifferential at $x = A^{\dagger}b$ is,

$$\partial f(x) = \{g| ||g||_2 < ||A||\}$$

Now, projected subgradient approach will be taken.

Algorithm 1 Projected Subgradient Descent

for
$$k = 1, 2, 3 \cdots$$
 do

$$y^{(k)} \leftarrow x^{(k)} - \alpha_k g_k$$

$$x^{(k+1)} \leftarrow \max(0, y^{(k)})$$

Here,

- 1. α_k is the step size.
- 2. g_k is the subgradient
- 3. max is the entrywise-max operator (which is the projection on $x \succeq 0$)

Notes

- 1. This given solution of the assignment follows the HKUST honour code. Although assignment has been discussed with other peers, the solutions are my own.
- 2. Kindly give feedback on this assignment on how to write up the solutions more elegantly.