Esercizio S3-L1

Tabella Monotasking

Secondi	P1	P2	Р3	P4
0-1				
1-2				
2-3				
3-4				
4-5				
5-6				
6-7				
7-8				
8-9				
9-10				
10-11				
11-12				
12-13				
13-14				
14-15				

Legenda:

- Esecuzione
- Attesa (I/O)
- Pronto
- Terminato

Spiegazione:

1. Secondi 0-3:

• P1 è in esecuzione (■) per i primi 3 secondi, mentre P2, P3 e P4 sono pronti (■) in attesa di essere eseguiti.

2. Secondi 3-5:

• P1 entra in uno stato di attesa () per operazioni di I/O nei secondi 3-5. Durante questo tempo, P2, P3 e P4 rimangono pronti (), ma nessuno di loro viene ancora eseguito.

3. Secondi 5-6:

P1 torna in esecuzione () al secondo 5, e P2, P3 e P4 rimangono pronti ().

4. Secondi 6-8:

 P1 termina l'esecuzione (■) al secondo 6. P2 inizia a essere eseguito (■) dal secondo 6 all'8. Durante questo periodo, P3 e P4 rimangono pronti (■).

5. Secondi 8-9:

P2 passa in attesa (□) per operazioni di I/O al secondo 8, e P3 inizia l'esecuzione
 (□) mentre P4 rimane pronto (□).

6. Secondi 9-10:

P2 torna dall'attesa e termina l'esecuzione (■). P3 continua la sua esecuzione (■)
 e P4 rimane pronto (■).

7. Secondi 10-15:

 P3 termina l'esecuzione (■) al secondo 10, e P4 inizia la sua esecuzione (■) dal secondo 10 al 14. Al secondo 14, P4 termina (■), completando l'esecuzione di tutti i processi.

Riassunto

- P1: Inizia in esecuzione, entra in attesa per I/O, poi riprende e termina.
- **P2**: Inizia dopo P1, entra in attesa per I/O, poi riprende e termina.
- P3: Inizia dopo P2 e termina al secondo 10.
- P4: Esegue dopo P3 e termina al secondo 14.

Schedulazione Multitasking

Secondi	P1	P2	Р3	P4
0-1				
1-2				
2-3				
3-4				
4-5				
5-6				
6-7				

Secondi	P1	P2	Р3	P4
7-8				
8-9				
9-10				
10-11				
11-12				

Legenda:

- Esecuzione
- Attesa (I/O)
- Pronto
- Terminato

Spiegazione:

1. Secondi 0-3:

P1 è in esecuzione (■) per i primi 3 secondi, mentre P2, P3 e P4 sono pronti (■)
ma non ancora eseguiti.

2. Secondi 3-5:

P1 entra in attesa per operazioni di I/O () al secondo 3, e P2 inizia la sua esecuzione () dal secondo 3 al secondo 5. P3 e P4 restano pronti ().

3. Secondi 5-6:

P1 torna dall'attesa e riprende l'esecuzione () al secondo 5, mentre P2 entra in attesa per operazioni di I/O (). P3 e P4 rimangono pronti ().

4. Secondi 6-7:

P1 e P2 terminano l'esecuzione (■) al secondo 6. P3 inizia la sua esecuzione (■) mentre P4 rimane pronto (■).

5. Secondi 7-12:

- P3 termina l'esecuzione (■) al secondo 7. P4 inizia a essere eseguito (■) dal secondo 7 e continua fino al secondo 11.
- Al secondo 12, P4 entra in attesa per operazioni di I/O (

Riassunto

- P1: Inizia in esecuzione, entra in attesa per I/O, riprende e termina al secondo 6.
- P2: Inizia dopo P1, entra in attesa per I/O al secondo 5 e termina al secondo 6.

- P3: Inizia dopo P2 e termina al secondo 7.
- **P4**: Esegue dopo P3 e termina la sua esecuzione al secondo 11, entrando poi in attesa al secondo 12.

Scheduling Time Sharing

Secondi	P1	P2	P3	P4
0-1				
1-2				
2-3				
3-4				
4-5				
5-6				
6-7				
7-8				
8-9				
9-10				
10-11				
11-12				
12-13				
13-14				
15-16				
17-18				
19-20				
20-21				
21-22				
23-24				

Legenda:

- Esecuzione
- Pronto

Spiegazione:

1. Secondi 0-3:

• P1 è in esecuzione () per i primi 3 secondi, mentre P2, P3, e P4 sono pronti () ma non vengono ancora eseguiti.

2. Secondi 3-5:

P1 diventa pronto () e P2 prende il controllo, entrando in esecuzione () per i successivi 2 secondi. P3 e P4 rimangono pronti ().

3. Secondi 5-6:

P2 torna nello stato pronto () e P3 inizia la sua esecuzione (), con P1, P2, e P4 ancora pronti.

4. Secondi 6-10:

P3 termina la sua esecuzione () e P4 prende il controllo, entrando in esecuzione () per i prossimi 4 secondi (fino a 10 secondi), mentre P1, P2, e P3 rimangono pronti ().

5. Secondi 10-13:

Dopo il ciclo di P4, P1 ritorna in esecuzione (■) per altri 3 secondi, con P2, P3, e P4 nuovamente pronti (■).

6. Secondi 13-16:

P1 diventa pronto () e P2 riprende l'esecuzione () per altri 3 secondi. P1, P3, e
 P4 rimangono pronti ().

7. Secondi 17-18:

P2 torna pronto () e P3 riprende l'esecuzione () per altri 2 secondi. P1, P2, e
 P4 rimangono pronti ().

8. Secondi 19-24:

Infine, P4 riprende e rimane in esecuzione () per gli ultimi 6 secondi del periodo (fino a 24 secondi), mentre P1, P2, e P3 rimangono pronti ().

Riassunto

- P1 e P2 si alternano per 3 secondi di esecuzione seguiti da periodi di attesa, riprendendo ciclicamente.
- P3 segue uno schema simile, con periodi di esecuzione più brevi rispetto a P1 e P2.
- P4 ha due fasi di esecuzione, una delle quali è più lunga (6 secondi consecutivi).

Time-Sharing - The Best

 Distribuzione equa: Ogni processo ha la possibilità di eseguire per un periodo prima di cedere il controllo ad altri.

- Riduzione dei tempi di attesa: Questo schema riduce i tempi di attesa percepiti dagli
 utenti, poiché i processi sembrano eseguire "contemporaneamente" grazie alla rapida
 alternanza tra di essi.
- **Efficienza**: Il sistema mantiene tutti i processi attivi, alternando l'esecuzione per massimizzare l'utilizzo della CPU.

Considerazioni ulteriori

Tutto dipende dalla CPU, dalla frequenza, dai core e quindi dai thread.

- Un computer con un i7 esegue 1600 processi al secondo.
- Un computer con un i9 esegue 2400 processi al secondo.
- Un computer quantistico esegue un triliardo di processi al secondo.