Deep Dive #10 - Quantum Mechanics

Its a good day to be a physics major!

Question 1:

(1a) (20 points) Find all the eigenvalues and eigenfunctions in the problem above.

$$\Psi''(x)+rac{2mE}{\hbar^2}\Psi(x)=0 \ \lambda=rac{2mE}{\hbar^2}$$

Can energy be negative? In this situation that would yield an exponential Ψ function which cannot be zero at two points. For E=0 this is trivial, so we'll consider E>0

The characteristic polynomial is

$$r^2+rac{2mE}{\hbar^2}=0$$
 $r=\pm irac{\sqrt{2mE}}{\hbar}$

This yields

$$egin{aligned} \Psi(x) &= c_+ \cos(rac{\sqrt{2mE}}{\hbar}x) + c_- \sin(rac{\sqrt{2mE}}{\hbar}x) \ \Psi(0) &= 0 \implies 0 = c_+ \cos(0) \implies c_+ = 0 \ \Psi(L) &= 0 \implies 0 = c_- \sin(rac{\sqrt{2mE}}{\hbar}L) \end{aligned}$$

With $c \neq 0$, we have $\sin(n\pi) = 0$ this gives us

$$egin{aligned} rac{\sqrt{2mE}}{\hbar}L &= n\pi \ rac{\sqrt{2mE}}{\hbar} &= rac{n\pi}{L} \ rac{2mE}{\hbar^2} &= \left(rac{n\pi}{L}
ight)^2 \end{aligned}$$

Thus all eigenvalues are $\left(\frac{n\pi}{L}\right)^2$, and the allowed energies are

$$E=\frac{n^2\pi^2\hbar^2}{2mL^2}$$

and the eigenfunctions are

$$y_n(x) = \sin(\sqrt{\lambda_n}x) = \sin(\frac{n\pi}{L}x)$$

for $c_- = 1$ (eigenfunctions can be scaled)

(1b)

$$L=a=3 \ lpha=1,2,3,\ldots,n \implies \lambda_n=\left(rac{\pi}{3}
ight)^2,\left(rac{2\pi}{3}
ight)^2,\left(rac{3\pi}{3}
ight)^2,\ldots\left(rac{n\pi}{L}
ight)^2$$

(2a) (20 points) Split the solution function ψ as follows,

$$\psi(x) = \begin{cases} \psi_1(x) & \text{for } 0 \leqslant x \leqslant a, \\ \psi_2(x) & \text{for } x \geqslant a, \end{cases}$$

Show that if you split the Schrödinger differential equation in the same way you can write it as

$$\psi_1'' = -k^2 \psi_1, \qquad 0 \leqslant x \leqslant a,$$

$$\psi_2'' = \kappa^2 \psi_2, \qquad x \geqslant a,$$

where k and κ are appropriate positive constants given in terms of m, \hbar , V_0 , and |E|. Find the formulas for k > 0 and $\kappa > 0$ in terms of the mass m, Planck constant \hbar , potential $V_0 > 0$, and energy |E| > 0. Also find one the boundary condition for ψ_1 and one boundary condition for ψ_2 , obtained from the boundary conditions on ψ at x = 0 and at $x \to \infty$.

For x < a, E - V > 0 and we are in the well. For x > a, E - V < 0 we are outside the well, classically impossible.

Schrodigers equation can be split in the same way as V(x)

$$\psi''(x) = \begin{cases} \frac{2m}{\hbar^2} (-V_0 - E) \, \psi(x) & \text{for } 0 \le x \le a \\ -\frac{2m}{\hbar^2} E \psi(x) & \text{for } x \ge a \end{cases}$$

Remember that E<0 and can be represented correctly as E=-|E|

$$\psi''(x) = \begin{cases} -\frac{2m}{\hbar^2} (V_0 - |E|) \, \psi(x) & \text{for } 0 \le x \le a \\ \frac{2m}{\hbar^2} |E| \psi(x) & \text{for } x \ge a \end{cases}$$

This gets us our k-values

$$-k^2 = -rac{2m}{\hbar^2}(V_0 - |E|)$$
 $\kappa^2 = rac{2m}{\hbar^2}|E|$

Also
$$\psi_1(0) = \psi_2(\infty) = 0$$

2b

To be precise, there is one condition $E=-\lvert E \rvert$

The characteristic polynomial for ψ_1 yields

$$egin{aligned} r_1^2 &= -k^2 \ r_1 &= \pm ik \ \psi_1(x) &= c_+ \cos(kx) + c_- \sin(kx) \end{aligned}$$

And for ψ_2 yield

$$r_2^2=\kappa^2$$

$$r_2=\pm\kappa^2$$

$$\psi_2(x)=c_0e^{\kappa x}+c_1e^{-\kappa x}$$

From applying boundary condtions we see

$$\psi_1(0)=0 \implies c_+=0 \ \psi_2(\infty)=0 \implies c_0=0$$

There's another condition at x = a, but we get to that later

proportional to an exponential; let's call the proportionality factor d. The third part of the problem is to match the functions ψ_1 and ψ_2 found in (2b) at x = 0. Impose the matching conditions

$$\psi_1(a) = \psi_2(a), \qquad \psi_1'(a) = \psi_2'(a).$$

From these equations find a relation between k and κ and between the scaling factor for ψ_1 , which we called it c, and the scaling factor for ψ_2 , which we called it d, of the form

$$\frac{k}{\kappa} = -f(ka), \qquad d = c g(k, \kappa) e^{\kappa a},$$

Find the functions f(ka) and $g(k,\kappa)$. These functions do not depend on c or d.

Lets do it.

$$\psi_1(a) = c\sin(k*a)$$
 $\psi_2(a) = de^{-\kappa a}$
 $\psi_1'(a) = ck\cos(k*a)$
 $\psi_2'(a) = -d\kappa e^{-\kappa*a}$
 $\implies ck\cos(k*a) + d\kappa e^{-\kappa*a} = 0$
 $\implies c\sin(k*a) - de^{-\kappa a} = 0$
 $\kappa(c\sin(k*a) - de^{-\kappa a})$

We can add the zeroes together

$$ck\cos(k*a) + d\kappa e^{-\kappa*a} + c\kappa\sin(k*a) - \kappa de^{-\kappa a} = 0$$
$$ck\cos(k*a) = -c\kappa\sin(k*a)$$
$$\frac{k}{\kappa} = -\frac{\sin(ka)}{\cos(ka)} - f(ka)$$

g is simple

$$de^{-\kappa a} = c\sin(k*a)$$

$$d = \frac{c\sin(k*a)}{e^{-\kappa a}} = c\sin(k*a)e^{\kappa a}$$

$$g(k) = \sin(k*a)$$

Wait, is it simple?

$$\implies ck\cos(k*a) + d\kappa e^{-\kappa*a} = 0$$

$$d\kappa e^{-\kappa*a} = -ck\cos(k*a)$$

$$d = c(-\frac{k}{\kappa}\cos(k*a))e^{\kappa a}$$

$$g(k,\kappa) = -\frac{k}{\kappa}\cos(k*a)$$

I'm not quite sure if the first formula is correct, but I'll leave it in anyways since I know the second one is what we were going for.

(3) there are two -9.2, -3.2, also trivially 0?