

Modern Data Project Team

Data Architect (Design & Architect)

Data Engineer (Ingestion, Data Pipeline, ETL/ELT)

Analytics Engineer (Data Modelling, Transformation)

Bl Analyst / Data Analyst (Business Logic)

Project Manager (Project Governance, Stakeholder Management)

Analytics Engineer Skills

1 SQL Mastery

Data Transformation

Data Warehouse

Data Modelling

2

Data Orchestration

Business Intelligence Tools

Version Control

Communication

3

Programming

CI / CD

Data Engineering
Principles

Security & Governance

The Modern Data Stack in the Al Era

What is a Database?

A. SQL Databases

- I. OLTP: Relational Database
 - Used for transaction focused tasks, retail applications, CRM
 - Row based storage
 - Data is structured
 - Optimized for insert and update operations
 - Required to be available 24/7
 - Straightforward queries which return small number of rows
 - Highly normalized with many tables
 - Minimize data redundancies (no duplicate data)
 - Optimized for data collection not for aggregations
 - · Should not be used for reporting
 - OLTP systems are ACID compliant
 - o Strong consistency ensuring integrity of the transactions
 - One transaction needs to be successful before another one begins

- II. OLAP: Online Analytical Processing
 - Efficiently process big data
 - Answer analytical queries
 - Building blocks of Business Intelligence tools
 - Columnar based
 - Only needs to read in relevant data
 - Data derived from OLTP databases (plus third-party sources)
 - Copy of transaction data
 - De-normalized with fewer tables (Facts & Dimensions)
 - Queries usually have less joins to increase performance and speed
 - Insert & Update speed is less important
 - Complex aggregations

OLTP vs OLAP Summary (Recreate table)

B. NoSQL Databases

- I. "Not Only" SQL
 - Non-relational database
 - Able to handle different types of data other than RDBMS
 - Designed to handle large volume of distributed data
 - Suitable for use-cases where fast horizontal scaling is important
 - Appropriate for unstructured and semi-structured data
 - Usually has simpler schema
 - Goal is NoSQL not to replace SQL but to work together
 - Many types of NoSQL databases exist for different use cases
- I. Key Value Stores
 - Simple, only stores key-value pairs
 - Retrieves values by associated keys
 - Suitable when speed is of most important
 - Data is not complex

- Use cases
 - Shopping cart
 - Storing user sessions
 - o Game session management
 - o API reply stored in cache
 - o Product recommendation

II. Document Stores

- Non-relational database designed to store and query JSON-like documents
- Stores each record and data within a single document
- No requirement to create a schema before you load data
- Can scale horizontally very well via sharding
- Common: JSON documents
- Use cases
 - Catalogs
 - Web applications / Ecommerce
 - o IoT
 - Realtime Analytics

III. Wide Columns

- Stores data in flexible columns instead of rows
- Highly scalable and able to handle ambiguous and complex data types
- Names and format of the columns can vary across rows in same table
- Not optimized for joins should not be used for:
 - o If database requirement changes frequently
 - Ad-hoc query patterns
 - o High level of aggregation
- Use cases
 - Real time data / Analytics
 - o Time Series
 - Trading data
 - o IoT

IV. Graph Databases

- Purpose built database to store and navigate relationships
- Relationships are first-class citizens and it is stored alongside the data in the model
- Data entities are stored in nodes, relationships are stored in edges, information associated to nodes are properties
- Queries are very fast due to relationships not being calculated during query time instead it is stored in the database
- Use cases
 - o Recommendation Engines
 - Fraud Detection
 - o Social Networks
 - o Logistics
 - Metadata Management
 - Natural Language Processing

V. Search Engine Databases

- Database dedicated to search of data in form of web search or full-text search
- Data is stored in JSON document form and is schema-less
- Uses indexes to categorize the similar characteristics among data
- Solves searching of textual content in databases by allowing natural language search
- Use cases
 - Full-text search
 - o Time Series Data
 - Logging and Analysis
 - o Auto Suggestion / Auto Completing