

MATHEMATICS METHODS Unit 1 2022 Investigation 1 Take Home Section

|--|

Validation Test: Monday 9th May 2022

Weighting: 8%

Transformations of Functions

INSTRUCTIONS:

- It is recommended you work in small groups after school hours and come to tutoring.
- The Take Home part is not worth any marks.
- The Take Home part may be used in the validation test.
- You are encouraged to use your ClassPad to help you to complete the Take Home part.
- No calculators will be allowed in the validation test.

Introduction:

A **function** is an equation for which any x that can be plugged into the equation will yield exactly one y out of the equation. We can draw a graph of a function on the Cartesian plane.

There are certain actions we can perform on a function that change the graph in specific ways. These are called **TRANSFORMATIONS**.

TRANSFORMATIONS include:

- 1. Translations: (horizontal or vertical)
- 2. Dilations: (horizontal or vertical)
- 3. Reflections: (horizontal or vertical)

Function Notation:

Function notation is the way a function is written. It is meant to be a precise way of giving information about the function without a rather lengthy written explanation.

The most popular function notation is f(x) which is read "f of x".

This is NOT the multiplication of f times x.

$$f(x) = 3x + 1$$

Traditionally, functions are referred to by single letter names, such as *f*, *g*, *h* and so on. Any letter(s), however, may be used to name a function. Examples:

$$f(x) = x^2 + 1$$
 $g(x) = x - 7$ $h(b) = 3b^2 - 2b + 1$ $S(t) = \frac{1}{2}t^2 - 3t + 1$

1. The function $f(x)=x^3-x$ is graphed below.

Use your Classpad to investigate how each of the following changes to $f(x)=x^3-x$ affects the graph. Make sure you consider both **positive** and **negative** numbers. It is recommended that you draw your results on graph paper.

- a) Adding a number (constant) to the function. Eg. Adding 2 to the function $f(x)=x^3-x$ results in $f(x)+2=x^3-x+2$.
- b) Adding a number to the variable. Eg. Adding the number 2 to the x value in the function $f(x)=x^3-x$ so that every x in the function has been replaced by (x+2). This results in the transformed function: $f(x+2)=(x+2)^3-(x+2)$
- c) Multiplying the function by a constant Eg. If the function is multiplied by 2, f(x) transforms to 2f(x). Thus using $f(x)=x^3-x$ our transformed function becomes $2f(x)=2x^3-2x$.
- d) Multiplying the variable by a number. Eg Multiplying the variable by 2 using $f(x)=x^3-x$ our transformed function becomes $f(2x)=\mathbf{i}$ which simplifies to $8x^3-2x$. Consider also multiplying the variable by a fraction <1 Eg. Multiplying the variable by $\frac{1}{2}$ using $f(x)=x^3-x$ our transformed function becomes $f(\frac{x}{2})=\mathbf{i}$ which simplifies to $\frac{x^3}{8}-\frac{x}{2}$.
- 2. Investigate the transformation from Q1 above with other graphs such as:
 - a) $f(x) = \sqrt{x}$
 - b) $f(x) = \frac{1}{x} \text{ or } f(x) = x^{-1}$

c) $f(x)=x^2$

PRACTICE PROBLEMS 1

- a) Drawn to the right is the graph of $f(x)=x^4-3x^2+x$
- i. Using the terminology for transformations from page 1, describe the transformation on f(x)if the equation becomes

$$f(x)+3=x^4-3x^2+x+3$$

ii. Add the sketch of f(x)+3 to the same set of axes.

- b) Drawn to the right is the graph of $f(x)=x^3-7x^2+14x-8$
 - Write down the new equation for f(x+1)i.

- Fully describe the transformation. iii.
- a)

PRACTICE PROBLEMS 2

Draw each transformation on the original axes shown.

$$f(x) \rightarrow f(x+4)$$

$$f(x) \rightarrow f(x)+1$$

$$f(x) \rightarrow f(x-2)$$

$$f(x) \to f(x-1)-4$$

PRACTICE PROBLEMS 3
Draw each transformation on the original axes shown.

$$f(x) \rightarrow f(2x)$$

$$f(x) \to f\left(\frac{1}{3}x\right)$$

$$f(x) \rightarrow 2f(x)$$

$$f(x) \rightarrow \frac{1}{2}f(x)$$

PRACTICE PROBLEMS 4

For each of the following:

- Use your classpad or otherwise to draw each of these original functions.
- Write down the new equation according to the transformation shown. b
- Sketch the graph of both the original function and the transformation on the axes provided. С

f(x)=(x-1)(x-2)(x-4) with transformation $f(x) \rightarrow 2f(x)$. $2f(x)=\mathcal{E}_{-}$

 $f(x)=x^3-3x$ with transformation $f(x) \rightarrow -f(x)$. $f(x) \to -f(x).$ $-f(x) = \mathcal{L}$

 $f(x) = \frac{1}{x-3}$ with transformation

$$f(x) \to f(x)+2$$

$$f(x)+2=i$$

$$f(x)+2=$$

 $f(x) = \sqrt{x-4}$ with transformation

$$f(x) \rightarrow f(x+2)$$

$$f(x+2) = \mathcal{E}$$

$$f(x)=(x+1)(x+2)(x-1)$$
 with transformation $f(x) \rightarrow f(x-1)$
$$f(x-1)=\mathcal{E}$$

$$f(x-1)=i$$

$$f(x)=(x+1)^2(x+2)(x-1)$$
 with transformation $f(x) \rightarrow f(-x)$ $f(-x)=\mathbf{c}$

$$f(-x)=$$

Sketch the graphs of the following transformations:

$$f(x) \rightarrow 2f(x)$$

$$f(x) \to f(-x)$$

For each of the following, describe the transformation in words AND using function notation (e.g. $f(x) \to 2f(x)$ or $f(x) \to f(x-3)$)

$$f(x) \rightarrow$$

$$f(x) \rightarrow$$

$$f(x) \rightarrow \underline{\hspace{1cm}}$$

$$f(x) \rightarrow \underline{\hspace{1cm}}$$

PRACTICE PROBLEMS 5

Describe *in order* the transformations shown by the following functions:

1.
$$f(x) \to -f(x)+3$$

2.
$$f(x) \to 2f(x)-1$$

3.
$$f(x) \rightarrow f(x-1)+4$$

4.
$$f(x) \to 2f(x-3)$$

5.
$$x^2(x-5) \rightarrow (x-2)^2(x-2-5)-1$$

6.
$$\frac{1}{x+3} \rightarrow \frac{1}{2x+6} + 5$$

7.
$$\sqrt{x} \rightarrow 2\sqrt{x-4}$$

8.
$$x^3(x-1) \rightarrow 4(x+1)^3 x$$

PRACTICE PROBLEMS 6
Describe *in order* the transformation that take place from graph 1 to graph 3 in each case:

1.

2.

PRACTICE PROBLEMS 7

Describe the transformation(s) that take place to create the second graph from the first:

1.

2.

3.

