Лекция 1.

Введение в Вариационное Исчисление.

Fominyh A. V. 2023

Задача Дидоны

Задача о брахистохроне

2023

Задача о якорной цепи

Определение линейного (векторного) пространства.

Непустое множество L элементов x, y, z, ... называется **линейным**, или **векторным**, пространством, если оно удовлетворяет следующим условиям:

Для любых двух элементов $x,\ y\in L$ однозначно определен третий элемент $x+y\in L$, называемый их суммой, причем

- x + y = y + x
- x + (y + z) = (x + y) + z
- ullet в L существует такой элемент 0, что x+0=x для всех $x\in L$,
- ullet для каждого $x\in L$ существует такой элемент -x, что x+(-x)=0.

Для любого числа λ и любого элемента $x \in L$ определен элемент $\lambda x \in L$, причем

- $2 1 \cdot x = x,$

7 / 20

Лекция 1.

Примеры линейных пространств

- \mathbb{R}^n
- \circ C[a,b].
- ① Пространство l_2 . Элементами являются последовательности чисел $x=(x_1,x_2,\dots,x_n,\dots)$ такие, что $\sum\limits_{n=1}^{\infty}|x_n|^2<\infty.$
- Множество полиномов степень которых равна n.
- ullet Множество $P^1[0,T]$ непрерывных и кусочно непрерывно дифференцируемых функций $x:[0,T] o \mathbb{R}.$

Определение метрического пространства

Метрическим пространством называется пара (X, ρ) , состоящее из некоторого множества X элементов и расстояния ρ , т. е. *неотрицательной, действительной функции* $\rho(x,y)$, определенной для любых $x,y\in X$ и подчиненной следующим трем аксиомам:

- $\rho(x,y) = \rho(y,x).$

Примеры метрических пространств

0. Пространство изолированных точек

$$\rho(x,y) = \left\{ \begin{array}{ll} 0, & \text{если } x = y; \\ 1, & \text{если } x \neq y. \end{array} \right.$$

- **3** \mathbb{R}^n : $\rho_1(x,y) = \sum_{j=1}^n |x_j y_j|$.

- $C[a,b]: \rho(f,g) = \max_{a \le t \le b} |f(t) g(t)|.$
- ② Пространство I_2 последовательностей чисел $x = (x_1, x_2, \dots, x_n, \dots)$ таких, что $\sum\limits_{n=1}^{\infty} |x_n|^2 < \infty$: $\rho(x,y) = \sqrt{\sum\limits_{i=1}^{\infty} (x_i y_i)^2}$.
- $oldsymbol{\circ}$ Пространство $C_2[a,b]$ непрерывных функций с квадратичной метрикой $ho(f,g)=\sqrt{\int\limits_a^b(f(t)-g(t))^2\,dt}.$

Определение линейного метрического пространства

Линейное пространство X на котором введена метрика инвариантная по отношению к сдвигу, т. е. $\rho(x+z,y+z)=\rho(x,y)$, будем называть линейным метрическим пространством.

Определение нормированного пространства

Нормированным пространством называется пара $(X, ||\cdot||)$, состоящее из некоторого линейного пространства X и нормы $||\cdot||$, т. е. неотрицательной, действительной функции ||x||, определенной для любого $x \in X$ и подчиненной следующим трем аксиомам:

- $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X.$
- $| | | \lambda x | | = | \lambda | | | x | |$ для любых числа λ и $x \in X$.

Связь нормированного и линейно метрического пространства

Замечание 1

Любое нормированное пространство является метрическим с метрикой

$$\rho(x,y):=\|x-y\|.$$

Замечание 2

Если речь идет об одном и том же нормированном и линейном метрическом пространстве, то по умолчанию считаем что норма и метрика в нем согласованы (метрика порождена нормой).

Шар в метрическом пространстве

Пусть задано линейное метрическое пространство X. Открытым шаром с центом в точке $x_0 \in X$ радиуса $r \in R$ называется множество

int
$$B_r(x_0) = \{x \in X \mid \rho(x, x_0) < r\}.$$

Пусть задано линейное метрическое пространство X. Замкнутым шаром с центом в точке $x_0 \in X$ радиуса $r \in R$ называется множество

$$B_r(x_0) = \{x \in X \mid \rho(x, x_0) \leqslant r\}.$$

Шар в нормированном пространстве

Пусть задано нормированное пространство X. Открытым шаром с центом в точке $x_0 \in X$ радиуса $r \in R$ называется множество

int
$$B_r(x_0) = \{x \in X \mid ||x - x_0|| < r\}.$$

Пусть задано нормированное пространство X. Замкнутым шаром с центом в точке $x_0 \in X$ радиуса $r \in R$ называется множество

$$B_r(x_0) = \{x \in X \mid ||x - x_0|| \leqslant r\}.$$

Примеры функционалов

- **1** J(x) = ||x||
- $J(x) = \langle c, x \rangle = \sum_{i=1}^n c_i x_i$ на множестве \mathbb{R}^n .
- $J(x) = \int_a^b x(t) dt$ на множестве C[a, b].
- $J(x) = \max_{t \in [a,b]} |x(t)|$ на множестве C[a,b].

Линейные функционалы

Лемма.

Пусть в линейном метрическом пространстве X задан линейный функционал J(x). Если этот функционал является непрерывным в точке $x_0 \in X$, то он является непрерывным на всем пространстве X.

Линейные функционалы

Теорема

Пусть в нормированном линейном метрическом пространстве X задан линейный функционал J(x). Этот функционал является непрерывным на X тогда и только тогда, когда он ограничен в шаре $B_1(0)$, т. е. для всех $x \in B_1(0)$ справедливо $|J(x)| \leqslant r < \infty$ и при этом выполняется неравенство $|J(x)| \leqslant r \|x\|$ для всех $x \in X$.

Литература.

- Иглин С. П. Математические расчеты на базе MatLab. 2005. СПб.: БХВ-Петербург. 620 с.
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. 1976. Москва: Наука. 543 с.