EFEKT ENERGETYCZNY REAKCJI CHEMICZNEJ

1. Układ – wszystkie substancje biorące udział w reakcji

Otoczenie – wszystko poza układem

Układ termodynamiczny – część przestrzeni oddzielona od otoczenia rzeczywistą lub abstrakcyjną granicą

- Otwarty wymiana (między układem a otoczeniem) energii i masy (np. szklanka z wrzątkiem)
- Zamknięty wymiana tylko energii (np. przykryte naczynie z wrzątkiem)
- **Izolowany** nie ma wymiany ani energii, ani masy (np. termos)
- 2. Cechą charakterystyczną układu termodynamicznego jest stan termodynamiczny układu opisany przez parametry p, V, n, T (ciśnienie, objętość, liczba moli, temperatura). Ewolucyjnie stan dąży do minimalizacji energii.

Funkcje stanu – wielkości fizyczne, które zależą od opisanych parametrów. Ich wartość zależy od aktualnego stanu, nie od drogi (od historii).

Najważniejsza funkcja stanu to energia wewnętrzna (U).

- Mikro (U) suma energii kinetycznej i potencjalnej, oddziaływań międzycząsteczkowych, energii ruchu postępowego, obrotowego, drgającego atomów w cząsteczce oraz cząsteczek atomowych
- **Makro** zdolność układu do oddawaniu ciepła do otoczenia, zależy od temperatury, masy i rodzaju substancji (stan skupienia)
- **3. Przemiana termodynamiczna** każda zmiana stanu termodynamicznego (p, V, n, T) układu Rozrywanie wiązań dostarczanie energii, powstawanie wiązań oddawanie energii

Jeśli

- p = const => przemiana izobaryczna
- T = const => przemiana izotermiczna
- V = const => przemiana izochoryczna

Jeśli wymiana energii występuje na sposób pracy, to jest to przemiana adiabatyczna

4. ΔH – różnica energii między początkiem a końcem reakcji, nie zależy od drogi reakcji, ale tylko od stanu początkowego i końcowego (energia przekazywana w formie ciepła)

Jeśli n = 1 i p = const, to ΔH^0 => standardowa entalpia molowa

Zmiana standardowej entalpii układu H^0 podczas tworzenia = taka sama wartość entalpii ze znakiem przeciwnym podczas rozkładu. H^0 [kJ]

H – entalpia – całkowita energia układu. Funkcja stanu, czyli zależna od p, V, n, T

Energia układu H = U + pV

Energia aktywacji to energia potrzebna do rozpoczęcia reakcji chemicznej. Energia układu jest najwyższa w stanie aktywacji.

Zmiany energii – $\Delta E = f(t)$

Rys. 47. Wykres zmian energii w trakcie reakcji: a) endotermicznej, b) egzotermicznej.

-	Egzergizne Endoergizne
figurn	· lerepnique waly · toperene loke · straplane pary walny · paroune cooly · resulting pary · Sulting suchego labe
	· rozurgani spir tu ing · stynkuk urati staligo po int pourst podarcanin · topnieme metali
rlahyz	· oldy chance la mirlose · fotosynter- · realize solve z soly · termirly rozletad cyclasyn wopene Coloss · spolosing recury · syntero ozona 2 tlenem · horser met-in · respuresone soli ~ a solve
	· sorre metal · electrolish voly

SZYBKOŚĆ REAKCJI CHEMICZNEJ

1. Szybkość reakcji: $V=\pm \frac{\Delta C}{\Delta t}$ (+ i – odpowiednio do stężenia produktów i stężenia substratów)

Szybkość reakcji zależy od:

- Stężenia c / => v /
- Temperatury T ✓ => ∨ ✓
- Ciśnienia p ✓ => v ∖ (jeżeli produkty są gazowe)
- Rozdrobnienia substratów im większe tym reakcje szybsze
- **+ katalizator** przy użyciu katalizatora niższa reakcja aktywacji w odniesieniu do konkretnego H w konkretnym czasie. Katalizator nie zużywa się w trakcie przemiany

- + inhibitor spowolnienie przebiegu reakcji
- 2. Katalizator samochodowy to filtr w układzie wydechowym, który oczyszcza spaliny, rozkładając szkodliwe substancje na mniej groźne. W jego wnętrzu znajdują się metale szlachetne (np. platyna, pallad, rod), które katalizują reakcje chemiczne:
 - tlenki azotu (NOx) rozkładają się na azot i tlen,
 - tlenek węgla (CO) i węglowodory (HC) zamieniają się w wodę i dwutlenek węgla.

Katalizator zaczyna działać efektywnie dopiero po odpowiednim nagrzaniu, a jego praca jest kontrolowana przez sondy lambda monitorujące skład spalin. Dzięki temu spalin jest mniej szkodliwy dla środowiska.