- Main objective of the analysis that specifies whether your model will be focused on prediction or interpretation.
 - > The main objective of this model is to predict the quality of wine
- Brief description of the data set you chose and a summary of its attributes.
 - > The dataset chosen for this report was red wine quality from UCI repository
 - ➤ There are 12 attributes:
 - fixed acidity
 - volatile acidity
 - citric acid
 - residual sugar
 - chlorides
 - free sulfur dioxide
 - total sulfur dioxide
 - density
 - pH
 - sulphates
 - alcohol
 - Output variable (based on sensory data): quality (score between 0 and 10)
- Brief summary of data exploration and actions taken for data cleaning and feature engineering.
 - > There were no null values and the data set was perfectly clean

Univariate analysis

• Bivariate analysis

Alcohol vs quality

Chloride vs quality

Citric acid vs quality

Fixed acidity vs quality

Free sulfur dioxide vs quality

pH vs quality

Residual sugar vs quality

Sulphates vs quality

Total sulfur dioxide vs quality

Volatile acidity vs quality

Free sulfur vs total sulfur

Correlation heat map

•	Summary of training at least three classification models which should be variations that cover
	using a simple logistic regression as a baseline and other classification methods. Preferably, all
	use the same training and test splits, or the same cross-validation method.
	> I used the following classification method for choosing the best model suitable for this
	problem: -
	♦ Logistic regression
	♦ KNN classifier
	◆ Decision tree

♦ Pruned decision tree

♦ Support vector machine with 4 different kernels

♦ Random forest

♦ AdaBoost

♦ Bagging

♦ Naïve Bayes

♦ Gradient boost

> Following where the classification report and confusion matrix of the models: -

Logistic regression

Classification	n Report			
	precision	recall	f1-score	support
1	0.78	0.73	0.76	267
0	0.69	0.74	0.71	213
accuracy			0.74	480
macro avg	0.73	0.74	0.73	480
weighted avg	0.74	0.74	0.74	480

KNN classifier

Classificatio	n Report precision	recall	f1-score	support
1 0	0.77 0.76	0.83 0.69	0.80 0.72	267 213
accuracy macro avg weighted avg	0.76 0.76	0.76 0.76	0.76 0.76 0.76	480 480 480

Naïve Bayes Classifier

Classification Report					
	precision	recall	f1-score	support	
1	0.77	0.78	0.78	267	
0	0.72	0.70	0.71	213	
accuracy			0.75	480	
macro avg	0.74	0.74	0.74	480	
weighted avg	0.75	0.75	0.75	480	

Decision tree

Classificatio	precision	recall	f1-score	support
1	0.77	0.83	0.80	267
0	0.76	0.69	0.72	213
accuracy			0.77	480
macro avg	0.77	0.76	0.76	480
weighted avg	0.77	0.77	0.77	480

Pruned Decision tree

AdaBoost Classifier

Classification Report

	precision	recall	f1-score	support
1	0.79	0.76	0.77	267
0	0.71	0.74	0.72	213
accuracy			0.75	480
macro avg	0.75	0.75	0.75	480
weighted avg	0.75	0.75	0.75	480

Random Forest

Classification Report precision recall f1-score support							
	<u>-</u>						
	1 0.83	0.84	0.83	267			
	0.80	0.78	0.79	213			
accurac	У		0.81	480			
macro av	g 0.81	0.81	0.81	480			
weighted av	g 0.81	0.81	0.81	480			

Gradient Boost

Classificatio	n Report			
	precision	recall	f1-score	support
1	0.81	0.78	0.79	267
0	0.73	0.78	0.76	213
accuracy			0.78	480
macro avg	0.77	0.78	0.78	480
weighted avg	0.78	0.78	0.78	480

Bagging Classifier

Classific	atio	n Report precision	recall	f1-score	support
	1	0.82 0.75	0.79 0.79	0.81 0.77	267 213
accur macro weighted	a v g	0.79 0.79	0.79 0.79	0.79 0.79 0.79	480 480 480

SVM (Linear kernel)

Classificatio	n Report			
	precision	recall	f1-score	support
1	0.78	0.67	0.72	267
0	0.65	0.76	0.70	213
accuracy			0.71	480
macro avg	0.71	0.71	0.71	480
weighted avg	0.72	0.71	0.71	480

SVM(rbf Kernel)

Classific	catio	n Report			
		precision	recall	f1-score	support
	1	0.63	0.88	0.73	267
	0	0.70	0.35	0.47	213
accuracy				0.65	480
macro	avg	0.67	0.62	0.60	480
weighted	a v g	0.66	0.65	0.62	480

- Insights derived from these models whereas follows:
 - The best model for this dataset was random forest because it has most accuracy of 80 compared to other model at 95% confidence level
 - The classification report also shows that it has higher F1 score and good recall and precision compared to other models

- Suggestions for next steps in analyzing this data, which may include suggesting revisiting this
 model adding specific data features to achieve a better explanation or a better prediction.
 - > This model can be further improved by Hyperparameter tuning
 - > The PCA approach can also help in improve the accuracy further
 - This model can also be compared with other algorithms like Gridsearch CV or Randomsearch CV etc.