# Parameter Extraction and Circuit Fabrication 2DA1201Y PNP TRANSISTOR

Group - 2 Adrija Bera (210071) Aniket Sen (210134) Devendra Saini (241040608) Pratyush Amrit (210762)

### Parameters extraction using reverse engineering

#### 1. Estimation of Ideality factor

since  $I_C = I_0 \exp rac{V_{EB}}{NV_T}$  taking log both sides

$$\Rightarrow V_{EB} = 2.303nV_T \log I_C - 2.303nVT \log I_0$$

$$y = mx + c$$

$$m = 2.303nV_T, \ y = V_{EB} \& \ x = \log I_C$$

m = 0.0807 & n=1.07

 $Ideality factor n \approx 1$ 



Figure 8:  $V_{BE(ON)}$  vs.  $I_C$ 

#### 2. Power limit variation with temperature



Figure 4: Derating curve

- R<sub>θ,J,A</sub> is the thermal resistance from the junction to ambient, measured in °C/W.
- T<sub>junction</sub> is the temperature at the junction of the transistor.

From graph, Thermal resistance is 83 'C/W

# Estimation of doping

$$W_{BC} = \sqrt{\frac{2\epsilon_s \left(V_{in} + V_{CBO}\right)}{q} \left(\frac{1}{N_{DB}} + \frac{1}{N_{AC}}\right)}$$

$$W_{BC} pprox \sqrt{rac{2\epsilon_s \left(V_{in} + V_{CBO}
ight)}{qN_{AC}}} \; ; \; Assuming \; N_{DB} > 10N_{AC}$$

#### Maximum Ratings (@TA = +25°C, unless otherwise specified.)

| Characteristic               | Symbol           | Value | Unit |
|------------------------------|------------------|-------|------|
| Collector-Base Voltage       | V <sub>CBO</sub> | -120  | V    |
| Collector-Emitter Voltage    | V <sub>CEO</sub> | -120  | V    |
| Emitter-Base Voltage         | V <sub>EBO</sub> | -7    | V    |
| Continuous Collector Current | l <sub>C</sub>   | -800  | mA   |
| Peak Pulse Current (Note 6)  | I <sub>CM</sub>  | -3    | Α    |
| Base Current                 | IB               | -160  | mA   |

To avoid Avalanche breakdown just at the boundary,  $V_o + V_{CBO} = \frac{1}{2} E_{crit} W_{BC}$ 

$$V_o + V_{CBO} = \frac{1}{2} E_{crit} W_{BO}$$

Figure 9: Maximum Ratings of the device

Where,  $V_{CBO} = 120 \text{ V}$  is much greater than Built in potential across base-collector  $V_o \approx 0.7V$  &  $E_{crit} \approx 5x10^5$  V/cm for silicon. Hence,

$$V_{CBO} = \frac{1}{2} \left( E_{crit}^2 \frac{\epsilon_s}{q} \right) \left( \frac{1}{N_{AC}} \right)$$

Therefore, on substituting corresponding value we can estimate  $N_{AC}$ 

$$N_{AC} = 6.74 \times 10^{15} \ cm^{-3}$$

$$W_{EB} \approx \sqrt{\frac{2\epsilon_s \left(V_o + V_{EB}\right)}{qN_{DB}}} \; ; \; Assuming \; N_{AE} > 10N_{DB}$$

Where,  $V_{EBO} = 7$  V Built in potential across emitter-base  $V_o \approx 0.8V \Rightarrow V_{EBO} + V_o \approx 7.8V$ . Hence,

$$V_{EBO} + V_o = \frac{1}{2} E_{crit}^2 \frac{\epsilon_s}{aN_{DB}}$$
  $N_{DB} = 1.29 \times 10^{17} cm^{-3}$ 

$$N_{DB} = 1.29 \times 10^{17} \ cm^{-3}$$

$$N_{AE} = 7 \times 10^{18} \ cm^{-3}$$
  $N_{AE} > 10 N_{DB}$  assuming,

# Current Gain ( $\alpha$ f and $\beta$ ), Base width

From the  $h_{FE}$  Vs  $-I_C$  graph at  $T=25 \cdot C$  we have,

$$\beta = 175$$
 Since,  $\beta = \frac{\alpha_f}{1 - \alpha_F} \Rightarrow \alpha_f = \frac{175}{176} = 0.9943$ 

$$\alpha_f = \frac{I_C}{I_E} \approx \frac{I_{Cp}}{I_{Ep} + I_{En}} = B\gamma \quad B = 1 - \frac{{W_B}^2}{2{L_p}^2}, where \ {L_p}^2 = D_P \tau_p \quad \gamma = \left[1 + \frac{D_n W_B N_{DB}}{D_P W_E N_{AE}}\right]^-$$

Assuming  $\gamma \approx 1$  as observed from its expression, from Base transport factor  $B \approx 1 - \frac{W_B^2}{2L_p^2}$ 

$$\Rightarrow \frac{W_B^2}{2L_p^2} = 5.7 \times 10^{-3}$$

Typically,  $L_p \approx 100 \mu m \ to \ 300 \mu m \ \Rightarrow W_B \approx 10.67 \mu m \ to \ 30 \mu m$ , Assuming  $L_p = 125 \mu m$ 

$$\frac{W_B^2}{2L_p^2} = 5.7 \times 10^{-3} \Rightarrow W_B = 13.34 \mu m$$

$$\tau_d=\frac{W_B^{~2}}{2D_p}$$
 , generally  $~D_p\approx 5~cm^2s^{-1}~to~20~cm^2s^{-1}~$  Assuming  $~D_p=15cm^2/s$ 



Figure 10:  $h_{FE}$  Vs - $I_C$ 

$$\tau_d = 62ns \Rightarrow W_B = 13.63 \mu m$$

 $W_B = 13.7 \mu m$ 

which

also ensures base is safe from Punch-through.

### Cross-Sectional Area A & other parameters

From figure 8,  $I_C = 2mA$  at  $V_{EB} = 0.6V$  & T=25°C in forward bias,

$$I_C pprox I_E \ \& \ I_E = rac{qAD_p {n_i}^2}{N_{DB} W_B} \exp \left(rac{V_{EB}}{V_t}
ight)$$

$$I_E = K \exp\left(\frac{V_{EB}}{V_t}\right), K = \frac{qAD_p n_i^2}{N_{DB}W_B} \Rightarrow K = 1.95 \times 10^{-13} A$$

hence, the cross-sectional area A is given by,  $D_p \approx 5~cm^2 s^{-1}~to~20~cm^2 s^{-1}$  Assuming  $D_p = 15cm^2/s^{-1}$ 

$$A = \frac{kN_{DB}}{qn_i^2} (\frac{W_B}{D_P}) \Rightarrow A = 6.5mm^2$$

$$g_m = rac{g_m}{2\pi(C_\pi + C_\mu)}$$
  $g_m = rac{eta_o}{r_\pi}$ 

From graph of  $h_{\rm FE}$  vs.  $I_C$ , at 25°C,  $\beta$  = 175. Also,

$$r_{\pi} = rac{V_A}{I_C} \Rightarrow \boxed{r_{\pi} = 2.45 K\Omega}$$
  $(C_{\pi} + C\mu) = rac{g_m}{2\pi f_T} \Rightarrow \boxed{C_{ ext{parasitic}} = 71 pF}$ 



Figure 8:  $V_{BE(ON)}$  vs.  $I_C$ 



Figure 11: Circuit used for  $f_T$  calculation of transistor

### Circuit Diagram and Parameters calculations



From  $h_{FE}$  vs.  $I_C$  plot as shown in figure 8,

$$\beta = 175$$

From  $V_{BE(ON)}$  vs.  $I_C$  plot, assuming forward active mode of operation

$$V_{EB(ON)} = 0.7V \Rightarrow I_C = 100mA.$$

$$\Rightarrow I_B = \frac{I_C}{\beta} \approx 0.57 mA$$

Let's say, we wish to obtain  $V_{CE}$  = -5V for forward active mode  $\Rightarrow$   $V_E = 5V \Rightarrow V_B = 4.3V, V_{EB} = 0.7V$ .

Let's choose  $V_{\rm BB} = 10$ V.

$$\Rightarrow R_B = \frac{V_{\rm BB} - V_B}{I_B} = 10k\Omega$$

Similarly, let's choose  $V_{\rm EE} = 25$ V.

$$\Rightarrow R_E = \frac{V_{\rm EE} - V_E}{I_C} = 200\Omega$$

Hence, for the values  $\beta = 175, R_E = 0.2k\Omega, R_B = 10k\Omega$ ,

$$V_{\text{CE}} = -5V, I_E = 100mA$$

This fixes  $I_B$  and  $V_B$  as well.

Also, using KCL,

$$\begin{split} I_E &= I_C + I_B \approx I_C = 100 mA \\ \Rightarrow \frac{I_E}{\beta} &= \frac{V_{\text{EE}} - V_E}{\beta R_E} = \frac{V_{\text{BB}} - (V_E - V_{EB})}{R_B} = I_B \end{split}$$

Rearranging terms to get the expression for  $V_E$ ,

$$V_E = \frac{\beta R_E (V_{\text{BB}} + V_{EB}) - V_{\text{EE}} R_B}{\beta R_E - R_B}$$

### Fabrication Process Overview

Si layer



followed after collector region

### Substrate Selection

#### P-substrate requires:

- High resistivity (25  $\Omega$ -cm to 50  $\Omega$ -cm)  $\rightarrow$  doping level :  $10^{15}$  cm<sup>-3</sup>
- Si has (100) orientation → better interfaces, lesser defects



### N-well formation



# Isolating the Active Regions



# PNP Region Formation

| Part of Device  | Lateral view                                                | Top view of Mask used |
|-----------------|-------------------------------------------------------------|-----------------------|
| Sub - Collector | SizNy  p+  SizNy  p+  m-buried layer  p+  p+  p-  pubatrati | 2600                  |
| Collector       | p+ p+ n-buried layer. p+ aubstrate                          | 2600                  |

# PNP Region Formation

| Part of Device                  | Lateral view                              | Top view of Mask used |
|---------------------------------|-------------------------------------------|-----------------------|
| n+ region                       | p+ p  | 2500                  |
| Base (n region)                 | pt mt m mt pt n-busin layer pt- make back | 200 <del>*</del> 2000 |
| Emitter (p <sup>+</sup> region) | p* p*  m-busind logs.  p*- substrate      | 2500                  |

### Resistor Fabrication



Area = 500 um<sup>2</sup> 
$$L = \frac{R \cdot A}{\rho}$$
 Resistivity = 0.1 ohm-cm for a conc<sup>n</sup> of 10<sup>17</sup>cm<sup>-3</sup>

$$L=rac{200\,\Omega\cdot5 imes10^{-6}\,\mathrm{cm}^2}{0.1\,\Omega\cdot\mathrm{cm}}=100\,\mu\mathrm{m}$$

$$L = rac{10,000\,\Omega\cdot5 imes10^{-6}\,\mathrm{cm}^2}{0.1\,\Omega\cdot\mathrm{cm}} = 5000\,\mu\mathrm{m}$$

Followed by etching of the SiO<sub>2</sub> mask and Silicon wafer, the resistance is formed by LPCVD on the substrate with AsH<sub>3</sub> as impurity.



**Mask for Resistance Formation** 

### Metal Contact Formation



### InterConnects

SiO<sub>2</sub> is deposited over the top to separates the active regions from the global interconnect, and electrical contact is made between the interconnect and the active regions in the silicon through openings in that dielectric layer.



Interconnect delay = 0.89\*RC

where, 
$$R = \rho \frac{L}{WH}$$
 and  $C = K_{ox} \epsilon_o \frac{WL}{x_{ox}}$ 

# Final View of the Proposed Structure





**Lateral View** 

Top View

# THANK YOU!