$$5)$$
 $f(x) = x^4 - 5$ over

- · Q · Q(V5') · D(iV5')

Let $\omega = 5^{1/4}$, $Z = e^{2\pi i/4}$, then f splits in $F := \mathcal{O}(\omega, Z)$ as $f(x) = \frac{4}{17}(x - \omega Z^{j})$. We can embed these roots in ${\Bbb C}$ to find some automorphisms of ${\Bbb F}/{\Bbb Q}$:

$$r_2$$
 r_4 where $r_j = \omega z^j$, so we can define $r_5 = \omega z^j$, so we can define $r_6 = \omega z^j$.

Then Υ corresponds to the cycle (1,3) in Sym($\{r_j\}$) \cong S₄, which has order2, and σ corresponds to (1,2,3,4), which has order 4; thus $G:=\langle \Upsilon, \sigma \rangle \Rightarrow |G|=8$.

Claim: $G = Gal(F/Q) \& G \cong D_4 = \langle s,r | s^2 = r^4 = e, (sr)^2 = e \rangle$.

Since F splits f(x) by construction, F/Q is separable, and since (claim) $[F:Q]=8<\infty$, it is also normal & thus a Galois extension, so we have $[F:Q]=\{F:Q\}=\#Gal(F/Q)=8$.

Since $(7,\sigma) \leq Gal(F/B)$, it must be the entire group. To see that [F:B] = 8, we can note that $[\mathbb{Q}(\omega,\zeta)] = [\mathbb{Q}(\omega,\zeta)] [\mathbb{Q}(\omega)] [\mathbb{Q}(\omega)] [\mathbb{Q}(\omega)]$

$$(3, 2) \cdot (3) \cdot ($$

We can immediately note that $\gamma \sigma = (13)(1234) = (12)(34) \neq (14)(23) = \sigma \gamma$, so G is non-abelian.

Moreover, G contains 2 elts of order 2, namely $\gamma \& \sigma \gamma$, so $G \not\cong \mathbb{Q}_8$, so we must have $G \cong \mathbb{D}_4$.

(This follows since they have the same # of generators, satisfy the same relations, & are the same size.)

So $Gal(F/Q) \cong D_4$.

(w)

 $\omega = 5^{1/4} \Rightarrow \omega^2 = \sqrt{5}$ $(min(\sqrt{5}, Q) = \chi^2 - 5)$

Noting that $[Q(w^2):Q]=2$, by the Galois correspondence, [Gal(F/Q):Gal(F/Q(w))]=4, so we are looking for an index 4 subgroup of $\langle \tau, \sigma \rangle$ that fixes $\mathcal{Q}(\omega)$. Noting that τ corresponds to

Complex conjugation and order(τ)=2, we have $\langle \tau \rangle \subseteq G$. We also find that σ^2 fixes $\mathbb{Q}(\omega^2)$, since $\sigma^2(a+b\omega^2)=a+b\,\sigma(\sigma(\omega)^2)=a+b\,\sigma\big((i\omega^2)=a+b\,\sigma\big(-\omega^2\big)=a-b\,\sigma(\omega)^2=a-b\,(i\omega)^2=a+b\omega^2$

and since order $(\sigma^2)=2$, we have $|\langle \gamma, \sigma^2 \rangle|=4$, so $G:=\langle \gamma, \sigma \rangle$ has index 2 & fixes $G(\omega)$, so we must have

Q(iw)

Gal(F/Q
$$\omega$$
)= $\langle \Upsilon, \sigma^2 \rangle$.
($\cong \mathbb{Z}_2 \times \mathbb{Z}_2$)

Noting that [Q(iw):Q] = 4 since min(iw, Q) = X^4-5 , we look for a subgroup of Gal(F/Q) of index 4 (& thus order 2) that fixes Q(iw). The subgroup (702) does the trick, since Thus $G_{al}(F/Q(i\omega)) = \langle \tau \sigma^2 \rangle \cong \mathbb{Z}_2$

$f'(x) = x^3 - 2$ over Q $\omega = 2^{\sqrt{3}}$

$$\omega = 2^{\sqrt{3}}$$

Factor $f(x)=(x-\omega)(x-3\omega)(x-3\omega)$ where $g_3=e^{2\pi i/3}$, then $F:=Q(\omega,g_3)$ is the splitting field of

- f(x), and [F:Q]=[F:Ow][O(w):Q] • $[Q(\omega), Q] = 3$, since min $(\omega, Q) = x^3 - 2$.
- [F : $\mathbb{Q}(\omega)$] = 2 since $\min(3_3, \mathbb{Q}(\omega)) = \overline{\Phi}_3 = \cancel{x} + x + 1$.
- So $[F:Q] = 6 = |G| := |G_0|(F/Q)| \Rightarrow G \in \{Z_6, S_3\}.$

 $\sigma: \begin{cases} \omega \mapsto \zeta_s \omega & \sim \\ \zeta_s \mapsto \zeta_s' \end{cases}$ (123)

We can produce at least two automorphisms fixing $(0,) \rightarrow (12)$

And we can check

$$(12)(123) = (1)(23)$$

$$(123)(12) = (13)(2) \neq (12)(123)$$

So G contains a non-abelian subgroup $\langle \tau, \sigma \rangle$ & thus $G \cong S_3$

$f(x) = (x^2 - 2)(x^2 - 5) / Q$

Noting that $\chi^2-5=(\chi+\omega_5)(\chi-\omega_5)$ where $\omega_5=5^{1/2}$, the splitting field of fix will be $L := \mathbb{Q}(\omega, \mathcal{Z}_3, \omega_5) = \mathbb{Q}(2^{3}, e^{2\pi i/5})(\sqrt{5}).$

Claim: [L:0]=[L:0(ω, Z_3)][0(ω, Z_3):0]=2.6=12.

The only new content is that $[L: \mathbb{Q}(\omega, Z_3)] = 2$, i.e. $\min(\sqrt{5}, \mathbb{Q}(\omega, Z_3)) = x^2 - 5$.

The degree could not be higher, since $E \subseteq F \Rightarrow \min(d,F) \mid \min(a,E) \mid$ and $\min(\sqrt{5},Q) = x^2 - 5$. But it could not be 1, since $\sqrt{5} \in Q(3^3, \mathbb{Z}_3)$.

So $G:=G_{al}(L/Q) \ge S_3$ as a subgroup by the previous problem, and is thus a nonabelian group of order 12. We can produce a new automorphism $y: \begin{cases} \sqrt{5} & \mapsto -\sqrt{5} \\ 3_4 & \mapsto & 3_4 \\ \omega & \mapsto & \omega \end{cases}$

Thus $\langle \gamma \rangle$ is a subgroup of order 2, $\langle \gamma \rangle \cap \langle \tau, \sigma \rangle = \{e\}$, and $|\langle \gamma \rangle| \cdot |\langle \sigma, \tau \rangle| = 2 \cdot 6 = 12 = 161$, and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$

