

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Coupling Circuits

Frequency Selective Circuits

 η : coupling factor

Inductive Coupling Resonance

Inductive Coupling Resonance

Primary Equivalent Circuit + Secondary Equivalent Circuit

 $R_{11} + jX_{11} = Z_{11}$

Primary Circuit

Primary Circuit

$$\dot{V}_1 = Z_{11}\dot{I}_1 - j\omega M\dot{I}_2$$

$$\dot{I}_1 = \frac{\dot{V}_1}{7 + \frac{(\omega M)^2}{2}}$$

Secondary Circuit

$$\dot{V}_1 = Z_{11}\dot{I}_1 - j\omega M\dot{I}_2$$
 $0 = Z_{22}\dot{I}_2 - j\omega M\dot{I}_1$

$$\frac{\dot{V}_{1}}{1 + \frac{(\omega M)^{2}}{Z_{22}}} \qquad \dot{I}_{2} = \frac{j\omega M \frac{V_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

 $Z_{22} = R_{22} + jX_{22}$

Primary Circuit

Secondary Circuit

$$\dot{V}_1 = Z_{11}\dot{I}_1 - j\omega M\dot{I}_2$$
 $0 = Z_{22}\dot{I}_2 - j\omega M\dot{I}_1$

$$0 = Z_{22}\dot{I}_2 - j\omega M\dot{I}_1$$

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$

$$\dot{I}_{2} = \frac{j\omega M \frac{V_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

 $R_{11} + jX_{11} = Z_{11}$

Primary Circuit

$$Z_{22} = R_{22} + jX_{22}$$

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$

 $R_{11} + jX_{11} = Z_{11}$

Primary Circuit

$$\dot{I}_{2} = \frac{j\omega M \frac{\dot{V}_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

 $Z_{22} = R_{22} + jX_{22}$

$$\frac{(\omega M)^2}{Z_{22}} = Z_{f1} = R_{f1} + jX_{f1}$$
 Reflected Impedance

$$egin{aligned} \dot{I}_1 &= rac{\dot{V}_1}{Z_{11}} + rac{(\omega M)^2}{Z_{22}} & \dot{I}_2 &= rac{j\omega Mrac{V_1}{Z_{11}}}{Z_{22}} + rac{(\omega M)^2}{Z_{11}} \ & Z_{22} &= R_{22} + jX_{22} \ & Secondary Circuit \end{aligned}$$

$$rac{(\omega M)^2}{Z_{22}} = Z_{f1} = R_{f1} + jX_{f1}$$
 Reflected Impedance

Note: Z_{f1} Not solid impedance, but effect

$$egin{aligned} \dot{I}_1 &= rac{\dot{V}_1}{Z_{11} + rac{(\omega M)^2}{Z_{22}}} & \dot{I}_2 &= \ R_{11} + j X_{11} &= Z_{11} \ Primary Circuit & Z_{22} &= R_{11} \ \end{pmatrix}$$

$$egin{aligned} \dot{I}_2 &= rac{j\omega M}{Z_{11}} rac{\dot{V}_1}{Z_{11}} \ Z_{22} &+ rac{(\omega M)^2}{Z_{11}} \ Z_{22} &= R_{22} + jX_{22} \ ext{Secondary Circuit} \end{aligned}$$

 C_2

$$Z_{f1} = \frac{(\omega M)^2}{Z_{22}}$$
 Ref

Reflected Impedance

$$\dot{I}_{1}=rac{\dot{V}_{1}}{Z_{11}+rac{(\omega M)^{2}}{Z_{22}}} \qquad \dot{I}_{2}=rac{j\omega Mrac{\dot{V}_{1}}{Z_{11}}}{Z_{22}+rac{(\omega M)^{2}}{Z_{11}}} \ Z_{22}=R_{22}+jX_{22} \ ext{Secondary Circuit}$$

$$Z_{f1} = rac{(\omega M)^2}{Z_{22}}$$
 Reflected Impedance $Z_{f2} = rac{(\omega M)^2}{Z_{11}}$ Reflected Impedance

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$

$$\dot{I}_{2} = \frac{j\omega M \frac{\dot{V}_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

$$Z_{22} = R_{22} + jX_{22}$$

Secondary Equivalent Circuit

(a) Primary Equivalent Circuit

$$\begin{cases} Z_{f1} = \frac{(\omega M)^2}{Z_{22}} \\ Z_{f2} = \frac{(\omega M)^2}{Z_{11}} \end{cases}$$

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$

(b) Secondary Equivalent Circuit

Reflected Impedance

Reflected Impedance

$$\dot{I}_{2} = \frac{j\omega M \frac{\dot{V}_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

$$Z_{22} = R_{22} + jX_{22}$$

$$\left\{egin{array}{ll} Z_{f1}=rac{(\omega M)^2}{Z_{22}} & ext{Reflected Impedance} \ Z_{f2}=rac{(\omega M)^2}{Z_{11}} & ext{Reflected Impedance} \end{array}
ight.$$

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$
 $\dot{I}_{2} = \frac{j\omega M \frac{\dot{V}_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$

$$\frac{\dot{V}_1}{Z_{11}}$$
 L_2 induced electromotive force

$$\dot{I}_1 = \frac{\dot{V}_1}{Z_{11} + \frac{(\omega M)^2}{Z_{22}}}$$

$$U_2 = \frac{\int \omega M \frac{\dot{V}_1}{Z_{11}}}{(\omega M)^2}$$

$$\frac{\dot{V}_1}{Z_{11}}$$
 L_2 induced electromotive force

$$\dot{I}_{1} = \frac{\dot{V}_{1}}{Z_{11} + \frac{(\omega M)^{2}}{Z_{22}}}$$

$$\dot{V}_2 = j\omega M \frac{V_1}{Z_{11}}$$

$$\dot{I}_{2} = \frac{\dot{J}\omega M \frac{\dot{V}_{1}}{Z_{11}}}{Z_{22} + \frac{(\omega M)^{2}}{Z_{11}}}$$

(b) Secondary Equivalent Circuit

Reflected Impedance:

Negative

$$Z_{f1} = R_{f1} + jX_{f1} = \frac{(\omega M)^2}{R_{22} + jX_{22}}$$

$$= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} + j\frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22}$$

$$\begin{cases} R_{f1} = \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} \\ X_{f1} = \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} \end{cases}$$

(b) Secondary Equivalent Circuit

$$\begin{split} Z_{f1} &= R_{f1} + jX_{f1} = \frac{(\omega M)^2}{R_{22} + jX_{22}} \\ &= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} + j \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} \\ \begin{cases} R_{f1} &= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} & \Rightarrow \text{Positive (Energy Loss)} \\ X_{f1} &= \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} & \Rightarrow \text{Opposite} \\ R_{22}^2 &= \frac{R_{22}^2 + X_{22}^2}{R_{22}^2} X_{22} & \Rightarrow \text{Exp: } X_{22} \text{ Inductive } (X_{22} > 0), X_{f1} \text{ Capacitive} (X_{f1} < 0) \end{cases}$$

Negative

(b) Secondary Equivalent Circuit

$$Z_{f1} = R_{f1} + jX_{f1} = \frac{(\omega M)^2}{R_{22} + jX_{22}}$$

$$= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} + j\frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22}$$

$$\begin{cases} R_{f1} = \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} & \text{if } X_{11} = X_{22} = 0 \\ X_{f1} = \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} & \Rightarrow R_{f1} = \frac{(\omega M)^2}{R_{22}}; \quad X_{f1} = 0 \end{cases}$$
Pure resistance R_{f1} & R_{f1}

Negative

Pure resistance, R_{f1} & R_{22} are reciprocal

(b) Secondary Equivalent Circuit

$$\begin{split} Z_{f1} &= R_{f1} + j X_{f1} = \frac{(\omega M)^2}{R_{22} + j X_{22}} \\ &= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} + j \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} \\ \begin{cases} R_{f1} &= \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} & \text{Proportional to } (\omega M)^2 \\ X_{f1} &= \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} & \text{If } M = 0, \ Z_{f1} = 0 \end{cases} \end{split}$$
 egative

Negative

(b) Secondary Equivalent Circuit

$$Z_{f2} = R_{f2} + jX_{f2} = \frac{(\omega M)^2}{R_{11} + jX_{11}}$$

$$= \frac{(\omega M)^2}{R_{11}^2 + X_{11}^2} R_{11} + j\frac{-(\omega M)^2}{R_{11}^2 + X_{11}^2} X_{11}$$

$$(\omega M)^2$$

Positive (Energy Loss)
$$\leftarrow$$

$$\begin{cases} R_{f2} = \frac{(\omega M)^{-}}{R_{11}^{2} + X_{11}^{2}} R_{11} \\ X_{f2} = \frac{-(\omega M)^{2}}{R_{11}^{2} + X_{11}^{2}} X_{11} \end{cases}$$

Exp: X_{11} Inductive $(X_{11}>0)$, X_{f2} Capacitive $(X_{f2}<0)$ Negative

(b) Secondary Equivalent Circuit

Applicable to pure reactance coupling system
$$=\frac{(\omega M)^2}{R_{11}+jX_{11}}$$

$$=\frac{(\omega M)^2}{R_{11}^2+X_{11}^2}R_{11}+j\frac{-(\omega M)^2}{R_{11}^2+X_{11}^2}X_{11}$$

$$\begin{cases} R_{f2}=\frac{(\omega M)^2}{R_{11}^2+X_{11}^2}R_{11}\\ \frac{(\omega M)^2}{R_{11}^2+X_{11}^2}X_{11} \end{cases}$$

$$\begin{cases} R_{f2}=\frac{(\omega M)^2}{R_{11}^2+X_{11}^2}X_{11}\\ \frac{(\omega M)^2}{R_{11}^2+X_{11}^2}X_{11} \end{cases}$$
 Negative

 $\begin{cases} R_{f1} = \frac{(\omega M)^2}{R_{22}^2 + X_{22}^2} R_{22} \\ X_{f1} = \frac{-(\omega M)^2}{R_{22}^2 + X_{22}^2} X_{22} \end{cases}$

Coupling Circuit—Resonance

Resonance: Reactance=0 $X_{11} = \omega L_1 - \frac{1}{2}$

Primary Resonance
$$(X_{11} = 0)$$

Primary Equivalent Resonance $(X_{11} + X_{f1} = 0)$

Match: Optimal Power
Transmission

$$(R_{11}=R_{f1})$$

Primary Equivalent Circuit

Primary Circuit Secondary Circuit

Coupling Circuit—Resonance (Classification)

Partial Complex Resonance (Best Complete Resonance)

Primary PR Secondary PR

(1) Partial Resonance

	Primary Partial Resonance	Secondary Partial Resonance
Equivalent Circuit	Z_{11} R_{11} X_{11} X_{11} X_{11} X_{f1} X_{f1} X_{f1} X_{f1} X_{f1}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Definition	$X_{11} + X_{f1} = 0$	$X_{22} + X_{f2} = 0$
Physical Significance	Primary Equivalent Resonance ≠ Primary Resonance	Secondary Equivalent Resonance ≠ Secondary Resonance

$$(X_{11}=0)$$

$$(X_{22}=0)$$

(2) Complex Resonance = Partial Resonance + Matching

(a) Primary Equivalent Circuit (b) Secondar Equivalent Circuit

Definition:

 \succ Primary Equivalent Resonance $(X_{11}+X_{f1}=0)$ & Matching $(R_{11}=R_{f1})$

$$\neq$$
 Primary Resonance $(X_{11} = 0)$

(3) Complete Resonance

 \triangleright Complete Resonance \Leftrightarrow Primary Resonance $(X_{11} = 0)$ & Secondary Resonance $(X_{22} = 0)$

$$(X_{11} + X_{f1} = 0)$$

$$(X_{22} + X_{f2} = 0)$$

 \succ Complete Resonance+ Matching $(R_{11}=R_{f1};\;R_{22}=R_{f2})\Leftrightarrow$ Optimal Complete Resonance

Summary—Coupling Circuit (Resonance)

- > Partial, Complex, Complete (Optimal Complete) Resonance
 - > Complex Resonance = Partial Resonance + Matching
 - Domail Complete Resonance = Complete Resonance+
 Matching (special case of complex resonance)

Q: Relationship