Coherence Modeling of Asynchronous Conversations: A Neural Entity Grid Approach

Tasnim Mohiuddin¹, Shafiq Joty¹, and Dat Tien Nguyen²
¹Nanyang Technological University, ²University of Amsterdam

Our Contributions

Extend the existing neural grid model, propose a novel coherence model for written asynchronous conversations (e.g., forums, emails), and show its applications in coherence assessment and thread reconstruction tasks.

Entity Grid and Its Extensions

Barzilay and Lapata (2008)

- ► Model grammatical role transmission of nouns (heads of NPs) across sentences
- ► Represent documents as distributions defined over **entity transition** (vectors of 4^k transitions probabilities $\{S, O, X, -\}^k$)
- ► Assessment of text coherence as a ranking problem in an SVM preference ranking framework

Table: Entity grid representation for a WSJ article.

Nguyen and Joty (2017)

- ► A neural version of the grid models
- ► Transform each grammatical role in grid into distributed representation, then employ 1D convolution to model entity transitions
- ► Train in end-to-end fashion on target tasks

Figure: Neural entity grid model proposed by Nguyen and Joty (2017)

Limitations of entity grid models and their extensions

- ► Do not consider any lexical information regarding the entities
- ► Only focus on monologic discourse (e.g., news article)

Lexicalized Neural Entity Grid

- ► Attach the entity name with the grammatical roles
- ► Initialize entity-role embeddings randomly, or with pre-trained word embeddings for the entity

Coherence Models for Asynchronous Conversations

Figure: Conversational Neural Grid model for assessing coherence in asynchronous conversations

- ► Key hypothesis: In coherent conversations, entities exhibit certain local patterns in the conversation tree in terms of their distribution and syntactic realization
- ► Model conversational discourse structure using tree representation
- ► A 3D grid (entities, tree-depth and paths) for representing entity roles
- ► Employ 2D convolution to model two-dimensional spatial entity transitions in a conversation tree

Baselines:

- ► Temporal: disregarding tree structure, and consider a conversation as a monologue
- ► Path-level: disregarding left-to-right (breadth) structure of a tree
- Consider each path in a conversation separately
- Coherence score is computed by averaging scores of its paths

Thread Reconstruction Task

- ▶ **Goal:** building a predictive model to uncover the thread structure of a conversation from its posts \triangleright A model can recover the tree structure in Figure (a) from the sequence of posts (p1, p2, ..., p5)
- ► Training: a *tree-level* coherence model that distinguishes a gold tree (original reply structure) from a set of false candidate trees (respecting chronological order of the comments but false reply structure)
- ► Inference: selecting the structure with the highest coherence score

Dataset

	Sections	# Doc.	Avg. # Sen.	# Pairs
Train	00-13	1,378	21.5	26,422
Test	14-24	1,053	22.3	20,411

Table: Statistics on the WSJ dataset

	#Thread	Avg Com	Avg Sen	#Pairs (tree)	#Pairs (path)
Train	2,400	6.01	28.76	47,948	106,122
Test	750	5.75	27.79	14,986	33,852
Dev	675	6.27	30.70	13,485	28,897
Total	3,825	5.98	28.77	76,419	168,871

Table: Statistics on the CNET dataset

Experimental Results

Table: Discrimination results on the WSJ dataset.

	Model	Emb.	Std (F_1)	Inv (F_1)
I	Grid (E&C)	_	81.60	75.78
	Ext. Grid (E&C)	_	84.95	80.34
II	Neural Grid (N&J)	Random	84.36	83.94
	Ext. Neural Grid (N&J)	Random	85.93	83.00
III	Lex. Neural Grid	Random	87.03 [†]	86.88 [†]
	Lex. Neural Grid	Google	88.56 [†]	88.23 [†]

Table: Discrimination results on the CNET dataset

Conv. Rep	Model	Emb.	Std (F_1)	Inv (F_1)
Temporal	Neural Grid (N&J)	random	82.28	70.53
	Lex. Neural Grid	random	86.63	80.40
	Lex. Neural Grid	Google	87.17	80.76
Path-level	Neural Grid (N&J)	random	82.39	75.68 [†]
	Lex. Neural Grid	random	88.13	88.38 [†]
	Lex. Neural Grid	Google	88.44	89.31 [†]
Tree-level	Neural Grid (N&J)	random	83.98 [†]	77.33 [†]
	Lex. Neural Grid	random	89.87 [†]	89.23 [†]
	Lex. Neural Grid	Google	91.29 [†]	90.40 [†]

Evaluation on Thread Reconstruction

Table: Thread reconstruction results

	Thread-level	Edge-level	
	Acc	$\overline{F_1}$	Acc
All-previous	27.00	52.00	61.83
All-first	25.67	48.23	58.19
COS-sim	27.66	50.56	60.30
Conv. Entity Grid	30.33 [†]	53.59 [†]	62.81 [†]

Conclusion

Our contribution

- Extend existing neural grid model by lexicalizing its entity transitions
- ► Adapt the model to conversational discourse
- ► Design a 3D grid representation for capturing spatio-temporal entity transitions in a conversation tree
- ➤ Yield state-of-the-art results on standard coherence assessment tasks in monologues and conversations

Future work:

► Generate new conversations based on coherence degree

Code and Data

https://ntunlpsg.github.io/demo/project/coherence/n-coh-acl18/