두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Rokey Dan	제출자 성명	한준모
참여 명단	이호준, 위석환, 장연호, 한준모		
모임 일시	2025 년 2 월 18 일 16 시 30 분 ~ 17 시 30 분(총 1 시간)		
장소	Discord	출석 인원	4
학습목표	Modern Robotics 2 장 상태 공간, 3 장 강체 운동		
학습내용	Modern Robotics: Chapter 2 & 3 Summary		
	Chapter 2: Configuration Space		
	2.1 Introduction to Configuration Space		
	• 로봇의 위치와 자세를 표현하는 방법으로, 일반적으로 구성 공간		
	(Configuration Space, C-space) 개념을 사용함.		
	● 로봇의 자유도 (Degrees of Freedom, DoF)에 따라 C-space 의		
	차원이 결정됨.		
	2.2 Representing Rotations		

- 회전군 SO(2), SO(3)
- 。 SO(2): 2D 회전군, 단순히 하나의 각도로 표현 가능
- SO(3): 3D 회전군, 3×3 직교 행렬로 표현 (Det(R) = 1, R^T R = I)

2.3 Rotation Representations

- 1. Rotation Matrices (회전 행렬)
 - 3×3 직교 행렬로 표현 (SO(3))
- 연산이 직관적이지만 9 개의 요소 중 3 개만 독립적 (redundant)
- 2. Axis-Angle Representation (축-각 표현)
 - 회전축과 회전각을 사용해 표현
- 로드리게스 공식을 활용하여 회전 행렬로 변환 가능
- 3. Exponential Coordinates (지수 좌표 표현)
 - 。 SO(3)의 지수맵을 이용하여 표현
- 선형 보간이 가능하여 연속적인 회전 표현에 유리함
 - 2.4 Homogeneous Transformations
 - SE(3) 변환군

- 위치와 회전을 포함한 변환을 4×4 행렬로 표현
 - T = [Rp] 형태로 나타남 [01]
 - 변환 행렬 연산
 - 변환의 조합: T1 * T2 = T3
 - 역변환: T^(-1) = [R^T -R^T p][01]

Chapter 3: Rigid-Body Motions

3.1 Introduction

- 강체 운동(rigid-body motion)은 회전과 병진 운동의 조합으로 정의됨
 - **특징**: 물체의 형상이 변하지 않음 (비변형)

3.2 Special Euclidean Group SE(3)

- SE(3): 3D 공간에서의 강체 변환을 나타내는 군 (Lie Group)
 - 변환 행렬: T = [Rp][01]

3.3 Exponential Coordinates for Rigid-Body Motion

- SE(3)에서의 지수 좌표 표현은 Twist(꼬임 벡터)를 사용하여 나타냄
 - twist ξ = [ω] 6 차원 벡터로 표현 [v]
 - Twist 의 지수맵:
 - e^[ξθ]를 이용하여 강체 변환을 표현

○ 포화 변환(Pure Translation)과 회전을 포함한 변환을 나타냄

3.4 Screw Motion (나선 운동)

- 나선 운동은 회전과 병진이 결합된 운동 형태
- Pitch 가 0 이면 순수 회전, 무한대면 순수 병진 운동
- 주어진 twist ξ 에 대해 일반적인 강체 운동을 계산할 수 있음

3.5 Product of Exponentials (PoE) Formula

- PoE 공식을 이용하여 로봇 매니퓰레이터의 정방향 운동학을 쉽게 계산 가능
 - 기본적으로 개별적인 joint 변환을 조합하여 최종 변환을 얻음

• 공식:

- 여기서 M 은 초기 자세, ξ 는 각 조인트의 twist

3.6 Summary

- SE(3)를 사용하여 강체 운동을 변환 행렬로 표현할 수 있음
- Exponential Coordinates 와 Twist 를 이용하여 효율적으로 변환을
 계산 가능

	• PoE 공식을 활용하여 로봇 매니퓰레이터의 위치를 빠르게 구할 수 있음			
	2 장은 3 장에 비해 상대적으로 쉬웠지만 3 장에서 선형대수학 적인 내용과			
활동평가	약간의 동역학적 지식이 포함되어 있어 상당히 어려웠다.			
	완벽히 수식을 완벽히 이해하고 증명하지는 못했지만 각각의 변환들이 어떠한			
	뜻을 하는지 이해를 할 수 있었고 좌표변환들이 어떻게 이루어지는지			
	대략적인 흐름을 알 수 있었다. 앞으로도 수학적인 지식이 부족하다고 하여			
	처음부터 끝까지 공부를 하기 보다는 공부해나가면서 하나씩 채워나가고자			
	 한다. 그리고 대략적인 흐름을 이해하면서 로봇이 어떻게 구동 되는지 공부해			
	나갈 예정이다.			
	나갈 예정이다.			
	나갈 예정이다. - 모던 로보틱스 4 장 , 5 장			
	- 모던 로보틱스 4 장 , 5 장			
과제	- 모던 로보틱스 4 장 , 5 장 - 발표 파트			
과제	- 모던 로보틱스 4 장 , 5 장 - 발표 파트 4: 이호준			
과제	- 모던 로보틱스 4 장 , 5 장 - 발표 파트 4: 이호준 5.1.1~5.1.3: 위석환			

향후 계획	02/27 (목) 모여서 각 담당 부분 발표하기 (형식 자유) 이후 03/06 (목) 까지 6, 7 장 공부 예정
첨부 자료	없음.