LaPIS Diagnostic Test Workbook - Mathematics

Name : Thulasirajan R R

Class: 7

Section : B

School : AKV Public School

Login ID : AKV150

Thulasirajan R R's Performance Report

Score: 16/40 Percentage: 40.0%

Thulasirajan R R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign	
Teacher's Feedback to Student						
	Class Teacher S	Signature	Princi	pal Signature		

Mensuration

Topics to be Improved Area Area of rectangle

Hi, here in this video you will learn **Area**

Question: 1

Find which of the shaded portion in the given shape represent it's area.

......

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = $\underline{\hspace{1cm}}$.

The area of garden = ___ x ___ = __ cm^2

 $\underline{Question:\ 3}$

Shade the possible dimension of the door whose area is 500 m^2

$$50 \ m \ imes \ 10 \ m$$

$$\boxed{25 \ m \ \times \ 25 \ m}$$

$$25 m \times 20 m$$

.....

$$30~m~\times~20~m$$

1	n	eı		er	
А	$I \iota$	51	w	C1	•

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Range	Finding the range	
Chance of probability	Basis of probability	

Hi, here in this video you will learn Range

Question:	4
•	•

Answer:

The difference between highest value and lowest value is _____.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 5

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

......

......

.....

......

$$\frac{51+20}{2}$$

Answer:

 $Range = _$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 6

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of $5 = \underline{\hspace{1cm}}$

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 7

Identify the sure events and impossible events

(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is
event. ${\it Question: 8}$
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
$\underline{Question:~9}$
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Geometry

Topics to be Improved		
Types of triangle	Basics of types of triangle (sides)	
Transversal angle made by transversal	Basics of Transversal angle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Related angles	Basic of angles	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	

Hi, here in this video you will learn **Types of triangle**

$Question : \ 1$	1	9
------------------	---	---

Polygon with three sides is called as ______.

Answer:

A polygon is a simple $___$ (open / closed) curve made up of only line segments.

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides :

Question: 11

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question:	<i>12</i>
-----------	-----------

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

Answer:

The shape of the park is _____

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is ______.

The possible length of third side is ______.

Hi, here in this video you will learn Basics of Transversal angle

Question: 13

.....

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

.....

Question: 14

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

......

$\underline{\textit{Question: 15}}$

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of ∠a is and its value is Corresponding angle of ∠a is and its value is
Hi, here in this video you will learn Pythagoras property
Question: 16
In a right angled triangle, square of the = sum of the squares of th legs.
$\underline{Answer:}$
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs).
Pythagoras theorem states that
Question: 17
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
m
Pythagoras theorem states that square of the = sum of the squares of its
Given: Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle.
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ $= +)^2$
Therefore, hypotenuse of the triangle is
Question: 18
Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.
Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = $___$, length of diagonal = $__$

By Pythagoras theorem, $(____)^2 = (____)^2 + (____)^2$ $= ___ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

Question: 19

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

.....

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 20

Mark and find the number of vertices, edges and faces in a cube.

Answer:	A	ns	11)	er	:
---------	---	----	-----	----	---

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces in a cube. vertices, edges and faces.
$\underline{Question:~21}$	
How many vertices	edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and ______ faces. Hi, here in this video you will learn Related Angles Question: 22

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 23

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ _____, and its complement angle is _____.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

......

......

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is _____.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Criteria of congruence

Question: 28

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are ______(identical/non-identical) in shapes and size.

Example: Square and Rectangle are (congruent/not congruent).
Question: 29
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 30

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved			
Exponents	Solving exponents		
Fractions	Division of fraction, Multiplication of fractions		
Law of Exponents	Law of Exponents		
Operations on rational numbers	Division of rational numbers		
Positive and negative rational numbers	Identification of positive rational numbers		

Hi, here in this video you will learn Exponents and power

Question: 31	

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 32

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
 , base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 33

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Division on fractions

Question: 34

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

$$\frac{32}{7}$$

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 35

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 36	
Find the half of the fraction $\frac{12}{40}$.	
Answer:	
To find half of a number, divide the number by	
$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	
Then the answer is	
Hi, here in this video you will learn Law of exponents	
<u>Question: 37</u>	
$(x)^0$ is equal to	
Answer:	
(Exponents/Base) tells us how many times a number should be muto get the desired result.	ultiplied by itself
In $(x)^0$ base =	
Power =	
Any number or variable with power zero is equal to Therefore, $(x)^0$ equal to	
Question: 38	
i. $a^m \times a^n = \underline{\hspace{1cm}}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$	
Answer:	
Multiplication of two numbers with same base with different power, their exponents———————————————————————————————————	s are
Division of two numbers with same base with different power, their exponents are _(added/ subtracted).	
<u>Question: 39</u>	
Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$	
a+n+x bmy 1 $ab+mn+xy$ 0 anx $b+m+y$	y

Answer:

Any number with power zero is equal to ______ (One/ Zero).

Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

.....

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 42

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 43

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 44

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 45

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

.....

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

Answer:

• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 47
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \Box$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 48
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Comparing Quantities

Topics to be Improved			
Equivalent ratios	Basic of proportion		
Percentage	Basic of percentage		
Simple interest	Calculation of simple interest		

Hi, here in this video you will learn Basics of proportion
Question: 49
If a:b and c:d are equivalent ratio, then it can be expressed as
Answer:
A (proportion / ratio) is used to express (one/two) equivalent ratios. Standard form to express proportion is
Question: 50
Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent?

$\underline{Answer:}$

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
<u>Question: 51</u>

If a: b:: c: d is proportion, shade the correct expression

$\boxed{a = \frac{bc}{d}}$ $\boxed{c = \frac{ad}{b}}$ $\boxed{ad=cd}$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms. Therefore, a \times d = , then a = and c =
Hi, here in this video you will learn Basics of percentage
Question: 52
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 53
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form

apples.

Answer:

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

		apples in a basket. n apples are			
Fraction f	form (of rotten apples in a basket =	=	_	
Convert it	into a	a percent= x	% =	=	
Hi, here	in t	his video you will learn	Simp	le Interest	
Question:	: 55				
Match the					
	101101				
		Column A		Column B	
i		Principle(P)	a	Interest calculated based or	n this
i		Amount (A)	b	Total sum you borrow	
		Rate (R)	С	Number of years	
1	v [Γime period (T)	d	Total sum with interest	
Interest cal Total sum: Number of <i>Question</i> :	lculat you b years	ulating simple interest =ed based on orrow is known as is Total su Rs 1200 in a bank. After three	 m witl	n interest is	the interest she
earned.	ica i	ts.1200 iii a bank. Affer tine	c year	s, she received Its.1020. I hid	the interest site
$\underline{Answer:}$					
If Amount	and p		la for	, Time period =	
Question:	: 57				
The simple	inter	est on Rs.5000 for 3 years is	Rs.135	50. Find the rate of interest.	
$\underline{Answer:}$					
		, Time period = $_{-}$		\dots , Principal = \dots	·
Rate of int	erest	$= \frac{\underline{\qquad} \times 100}{\text{Principal x} \underline{\qquad}}$			

Substituting values in the formula,

Rate of interest $= \frac{x \cdot 100}{\text{Principal x}}$

 $Rate\ of\ interest = \underline{\hspace{1cm}}$

Therefore, the rate of interest is ______ %

Algebra

Topics to be Improved		
Basics of simple equation	Formating of simple equation, Solving of simple equation	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	

Hi, here in this video you will learn **Solving an equation using** application

Question: 58

......

Box B contains times the number of chocolates in Box A
--

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 59

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is _____

Ques	stion: 60				
_		vo statements $(<,>,=)$ Add 9 to the product of			
\underline{Ansv}	wer:				
		S	Sum of $2a$ and	19 =	
				d 2 =	
		Add 9 to the pro	oduct of a and	d 2 =	
There	efore, sum of $2a$	and $9 \square$ Add 9 to the	e product of a	and 2	
Hi,	here in this v	ideo you will learn	Subtracti	on on expression	
		expressions $a + b + c$	and $b + c + c$	d	
\underline{Ansv}					
_	-	sions are and _ et added only if they ar		iko / Unliko) torms	
	_	$essions = \underline{\qquad} + \underline{\qquad}$,	.ke/ Offike) terms.	
The a	answer is	_			
Ques	stion: 62				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	f boys in school A and	B is		
(ii)	Total number of	f students in school B i	s		
(iii)	How many more	e teachers are there in s	school B than	school A?	
()	J				
\underline{Ansv}	<u>wer:</u>				
(i)	Number of boys	in school A =	-,		
` '	Number of boys	in school $B = \underline{\hspace{1cm}}$	_•		
	Total number of	f boys in school A and	school B is _	+ =	·

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 63

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
3a - 5b \\
\hline
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

Hi, here in this video you will learn **Addition on expression**

Question: 64

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 65

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$_{7n^2+}$ r \square _	$_2$	= (7	+ - 2	\ _{m2} =
$r^2 + 1$	2	('	\ \ \ _	$\int r^2$

Question: 66

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: _____.
- (ii) How many icecreams Sam have more than Ram:

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

 $Ram's chocolate + Sam's chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

Hi, here in this video you will learn Solving an equation

Question: 67

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 68

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times$$
____+ $3 =$ ____

 $7 \times$ ____+3 = ____ Therefore, ______ is the number that can be placed in a box to make the equation correct. Question: 69 Arrange the terms in the descending order when the value of x is 2. $5x \times 1$ x+3 2x-4Answer: The given expression are ______. The value of x is ____ substituting value of x $2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ $2x - 4 = 2 \times$ _____ - 4 = _____ $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$ Arranging in descending order: ____, ____, ____, ____. Their respective algebraic terms are ____, ____, ____, ____, ____. Hi, here in this video you will learn **Types of expression** Question: 70 There are _____ terms in the expression 7x + 3y + m + 5. Answer: In algebraic expression, _____ (variables/ terms) are connected together with operations of addition. The terms in the expression are $____$, $____$, and $____$. Therefore, there are ______ terms in the expression.

Question: 71

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

1.	The terms in expression $8x^2 + 0$ are
	Here, expression has term and it is a

.....

2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
Question:~72
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.