#### Pandas 라이브러리 IRIS 데이터 셋 실습해보기

- 데이터 처리와 분석을 위한 파이썬 라이브러리
- R의 data.frame과 유사하게 설계한 DataFrame이라는 데이터 기반으로 만들어짐.
- 데이터 분석시에 속도도 빠르고 많은 기능을 가지고 있어, 머신러닝 데이터 분석을 수행시에 많이 사용됨.
- 데이터를 읽고, 쓰기가 비교적 용이함.
- 참조 url : https://pandas.pydata.org/

#### 학습 내용

- Iris데이터 셋을 이용한 다양한 데이터 처리를 알아보자.
- 하나/둘이상의 열 선택
- 조건(하나 또는 두개 이상)을 이용한 행 선택
- [].unique() 중복값 제외
- [].value counts() 각 값의 빈도수 확인
- 행의 index를 초기화 시키기 [].reset\_index()
- 특징간 상관계수 확인하기 [].corr()
- 자료형 변경 astype()
- 결측치 채우기 fillna()
- 히트맵으로 상관계수 확인 sns.heatmat()
- 특징간 상관관계 확인 sns.pairplot()

### 목차

- 01. 데이터 준비
- 02. 행,열 선택
- 03. 중복값을 제외한 값 확인 [].unique()
- 04. 중복값을 제외한 값의 빈도수 확인 [].value\_counts()
- 05. 조건식을 이용하여 해당 하는 컬럼 가져오기
- 06. reset\_ index로 인덱스를 초기화 시키기
- 07. sort\_values()를 이용한 정렬
- 08. astype를 이용한 데이터 자료형 변환
- 09. 결측치 채우기 fillna()

### 01 데이터 준비

#### 목차로 이동하기

In [37]: import pandas as pd
 import seaborn as sns
 import numpy as np

```
print(pd.__version__)
iris = sns.load_dataset("iris")
iris
```

#### 2.1.4

| Out[37]: | sepal_length | sepal_width | petal_length | petal_width | species |
|----------|--------------|-------------|--------------|-------------|---------|
|----------|--------------|-------------|--------------|-------------|---------|

|     | sepai_iength | sepai_width | petai_iengtii | petai_width | species   |
|-----|--------------|-------------|---------------|-------------|-----------|
| 0   | 5.1          | 3.5         | 1.4           | 0.2         | setosa    |
| 1   | 4.9          | 3.0         | 1.4           | 0.2         | setosa    |
| 2   | 4.7          | 3.2         | 1.3           | 0.2         | setosa    |
| 3   | 4.6          | 3.1         | 1.5           | 0.2         | setosa    |
| 4   | 5.0          | 3.6         | 1.4           | 0.2         | setosa    |
| ••• |              |             |               |             |           |
| 145 | 6.7          | 3.0         | 5.2           | 2.3         | virginica |
| 146 | 6.3          | 2.5         | 5.0           | 1.9         | virginica |
| 147 | 6.5          | 3.0         | 5.2           | 2.0         | virginica |
| 148 | 6.2          | 3.4         | 5.4           | 2.3         | virginica |
| 149 | 5.9          | 3.0         | 5.1           | 1.8         | virginica |

150 rows × 5 columns

# 02. 행,열 선택

#### 목차로 이동하기

```
Out[39]: 0
             5.1
             4.9
        1
        2
              4.7
        3
              4.6
        4
              5.0
        145
              6.7
        146
             6.3
        147
             6.5
        148
              6.2
        149
              5.9
        Name: sepal_length, Length: 150, dtype: float64
In [40]: # sepal_width에서 petal_width열 선택 - (1) (다중 컬럼 선택)
        iris[ ['sepal_length', 'petal_length', 'petal_width'] ]
```

Out[40]: sepal\_length petal\_length petal\_width

| 3]: |     | sepal_length | petal_length | petal_width |
|-----|-----|--------------|--------------|-------------|
|     | 0   | 5.1          | 1.4          | 0.2         |
|     | 1   | 4.9          | 1.4          | 0.2         |
|     | 2   | 4.7          | 1.3          | 0.2         |
|     | 3   | 4.6          | 1.5          | 0.2         |
|     | 4   | 5.0          | 1.4          | 0.2         |
|     | ••• |              |              | •••         |
|     | 145 | 6.7          | 5.2          | 2.3         |
|     | 146 | 6.3          | 5.0          | 1.9         |
|     | 147 | 6.5          | 5.2          | 2.0         |
|     | 148 | 6.2          | 5.4          | 2.3         |
|     | 149 | 5.9          | 5.1          | 1.8         |

150 rows  $\times$  3 columns

```
In [41]: # sepal_width에서 petal_width열 선택 - # (2) (다중 컬럼 선택) - [].loc[행전체선택 , 시작:끝] iris.loc[:, 'sepal_length':'petal_width']
```

| Out[41]: |     | sepal_length | sepal_width | petal_length | petal_width |
|----------|-----|--------------|-------------|--------------|-------------|
|          | 0   | 5.1          | 3.5         | 1.4          | 0.2         |
|          | 1   | 4.9          | 3.0         | 1.4          | 0.2         |
|          | 2   | 4.7          | 3.2         | 1.3          | 0.2         |
|          | 3   | 4.6          | 3.1         | 1.5          | 0.2         |
|          | 4   | 5.0          | 3.6         | 1.4          | 0.2         |
|          | ••• |              | •••         |              |             |
|          | 145 | 6.7          | 3.0         | 5.2          | 2.3         |
|          | 146 | 6.3          | 2.5         | 5.0          | 1.9         |
|          | 147 | 6.5          | 3.0         | 5.2          | 2.0         |
|          | 148 | 6.2          | 3.4         | 5.4          | 2.3         |
|          | 149 | 5.9          | 3.0         | 5.1          | 1.8         |

150 rows × 4 columns

```
In [42]: # width에 해당하는 컬럼만 반복을 통해 가져올 수 있음.
#: 전후로 생략 가능
iris.iloc[0:3, 0:2]
```

| Out[42]: |   | sepal_length | sepal_width |
|----------|---|--------------|-------------|
|          | 0 | 5.1          | 3.5         |
|          | 1 | 4.9          | 3.0         |
|          | 2 | 4.7          | 3.2         |

# 실습

• iris의 각 열의 중복을 제외한 값들은 몇개씩이 있을까?

```
In [43]: iris.columns

Out[43]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'], dtype='object')

In [44]: for one in iris.columns: print("컬럼명: ", one) print(iris[one].value_counts())
```

```
컬럼명 : sepal_length
sepal_length
5.0
    10
5.1
      9
6.3
       9
5.7
       8
6.7
       8
5.8
       7
5.5
       7
6.4
       7
4.9
       6
5.4
       6
6.1
       6
6.0
       6
5.6
       6
4.8
       5
       5
6.5
6.2
       4
7.7
       4
6.9
       4
4.6
       4
       4
5.2
5.9
       3
4.4
       3
       3
7.2
      3
6.8
6.6
      2
4.7
       2
7.6
       1
7.4
       1
7.3
       1
7.0
       1
7.1
      1
5.3
      1
4.3
      1
4.5
      1
7.9
      1
Name: count, dtype: int64
컬럼명 : sepal_width
sepal_width
3.0
      26
2.8
      14
3.2
      13
3.4
      12
3.1
      11
2.9
      10
2.7
      9
2.5
       8
3.5
       6
3.3
       6
3.8
       6
2.6
       5
2.3
       4
       4
3.6
3.7
       3
2.4
       3
2.2
       3
       2
3.9
4.4
       1
4.0
       1
```

```
4.1
    1
4.2
       1
2.0
       1
Name: count, dtype: int64
컬럼명 : petal_length
petal_length
1.4
      13
1.5
      13
5.1
       8
4.5
       8
1.6
      7
1.3
      7
5.6
       6
       5
4.7
4.9
       5
4.0
       5
4.2
       4
5.0
       4
4.4
       4
4.8
       4
1.7
       4
3.9
       3
4.6
       3
5.7
       3
       3
4.1
5.5
       3
6.1
       3
5.8
       3
3.3
       2
5.4
       2
6.7
       2
       2
5.3
5.9
       2
6.0
       2
1.2
       2
4.3
       2
1.9
       2
3.5
       2
       2
5.2
3.0
       1
1.1
       1
3.7
       1
3.8
       1
6.6
       1
6.3
       1
1.0
       1
6.9
       1
3.6
       1
6.4
       1
Name: count, dtype: int64
컬럼명 : petal_width
petal_width
0.2
      29
1.3
      13
1.8
      12
1.5
      12
1.4
       8
2.3
       8
1.0
       7
```

0.4

7

```
2.0
                6
        0.1
               5
        1.2
                5
        1.9
                5
        1.6
               4
        2.5
                3
        2.2
                3
        2.4
                3
        1.1
               3
        1.7
        0.6
                1
        0.5
                1
        Name: count, dtype: int64
        컬럼명 : species
        species
        setosa
                      50
        versicolor
                      50
                      50
        virginica
        Name: count, dtype: int64
In [45]:
          [len(iris[one].unique()) for one in iris.columns]
Out[45]: [35, 23, 43, 22, 3]
In [46]: [ iris[one].unique() for one in iris.columns]
Out[46]: [array([5.1, 4.9, 4.7, 4.6, 5., 5.4, 4.4, 4.8, 4.3, 5.8, 5.7, 5.2, 5.5,
                 4.5, 5.3, 7., 6.4, 6.9, 6.5, 6.3, 6.6, 5.9, 6., 6.1, 5.6, 6.7,
                 6.2, 6.8, 7.1, 7.6, 7.3, 7.2, 7.7, 7.4, 7.9
           array([3.5, 3., 3.2, 3.1, 3.6, 3.9, 3.4, 2.9, 3.7, 4., 4.4, 3.8, 3.3,
                  4.1, 4.2, 2.3, 2.8, 2.4, 2.7, 2., 2.2, 2.5, 2.6]),
           array([1.4, 1.3, 1.5, 1.7, 1.6, 1.1, 1.2, 1. , 1.9, 4.7, 4.5, 4.9, 4. ,
                 4.6, 3.3, 3.9, 3.5, 4.2, 3.6, 4.4, 4.1, 4.8, 4.3, 5. , 3.8, 3.7,
                  5.1, 3., 6., 5.9, 5.6, 5.8, 6.6, 6.3, 6.1, 5.3, 5.5, 6.7, 6.9,
                 5.7, 6.4, 5.4, 5.2]),
           array([0.2, 0.4, 0.3, 0.1, 0.5, 0.6, 1.4, 1.5, 1.3, 1.6, 1. , 1.1, 1.8,
                 1.2, 1.7, 2.5, 1.9, 2.1, 2.2, 2., 2.4, 2.3]),
           array(['setosa', 'versicolor', 'virginica'], dtype=object)]
```

### 실습해 보기 1

0.3

2.1

7

6

- tips 데이터는 아침, 점심, 저녁 중에 어떤 시간대의 데이터 인가요? (value\_counts() 활용)
- tips 데이터 셋을 불러와 5행부터 10행까지의 데이터를 선택해 보자.
- tips 데이터 셋을 불러와 3열의 데이터를 선택해 보자.

### 03. 중복값을 제외한 값 확인 - [].unique()

목차로 이동하기

iris의 꽃의 종류 - 중복 제외하고 어떤 값이 있는지 확인할 수 있을까?

```
In [51]: print(iris.columns)
       Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
              'species'],
            dtype='object')
In [52]: iris['species'].unique()
Out[52]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
        04. 중복값을 제외한 값의 빈도수 확인 - [].value counts()
        목차로 이동하기
In [53]: print(iris.columns)
       Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
              'species'],
            dtype='object')
In [54]: iris['species'].value_counts()
Out[54]: species
        setosa
                     50
        versicolor
                     50
        virginica
                     50
        Name: count, dtype: int64
        05. 조건식을 이용하여 해당 하는 컬럼 가져오기
        목차로 이동하기
In [55]: [x for x in iris.columns if 'sepal' in x]
Out[55]: ['sepal_length', 'sepal_width']
        실습해보기 - species를 제외한 컬럼을 출력하기
In [56]: [x for x in iris.columns if 'species' not in x]
Out[56]: ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
In [57]: # width에 해당하는 컬럼만 반복을 통해 가져올 수 있음.
        iris.loc[:3, [x for x in iris.columns if 'sepal' in x] ]
Out[57]:
           sepal_length sepal_width
        0
                   5.1
                             3.5
        1
                   4.9
                             3.0
        2
                   4.7
                             3.2
        3
                   4.6
                             3.1
```

# 조건을 두고 versicolor 행만 추출해 보자.

In [58]: #iris[ 조건식 ] => 조건에 만족하는 행 추출 iris[ iris['species']=='versicolor']

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 50 | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
| 51 | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
| 52 | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
| 53 | 5.5          | 2.3         | 4.0          | 1.3         | versicolor |
| 54 | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
| 55 | 5.7          | 2.8         | 4.5          | 1.3         | versicolor |
| 56 | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |
| 57 | 4.9          | 2.4         | 3.3          | 1.0         | versicolor |
| 58 | 6.6          | 2.9         | 4.6          | 1.3         | versicolor |
| 59 | 5.2          | 2.7         | 3.9          | 1.4         | versicolor |
| 60 | 5.0          | 2.0         | 3.5          | 1.0         | versicolor |
| 61 | 5.9          | 3.0         | 4.2          | 1.5         | versicolor |
| 62 | 6.0          | 2.2         | 4.0          | 1.0         | versicolor |
| 63 | 6.1          | 2.9         | 4.7          | 1.4         | versicolor |
| 64 | 5.6          | 2.9         | 3.6          | 1.3         | versicolor |
| 65 | 6.7          | 3.1         | 4.4          | 1.4         | versicolor |
| 66 | 5.6          | 3.0         | 4.5          | 1.5         | versicolor |
| 67 | 5.8          | 2.7         | 4.1          | 1.0         | versicolor |
| 68 | 6.2          | 2.2         | 4.5          | 1.5         | versicolor |
| 69 | 5.6          | 2.5         | 3.9          | 1.1         | versicolor |
| 70 | 5.9          | 3.2         | 4.8          | 1.8         | versicolor |
| 71 | 6.1          | 2.8         | 4.0          | 1.3         | versicolor |
| 72 | 6.3          | 2.5         | 4.9          | 1.5         | versicolor |
| 73 | 6.1          | 2.8         | 4.7          | 1.2         | versicolor |
| 74 | 6.4          | 2.9         | 4.3          | 1.3         | versicolor |
| 75 | 6.6          | 3.0         | 4.4          | 1.4         | versicolor |
| 76 | 6.8          | 2.8         | 4.8          | 1.4         | versicolor |
| 77 | 6.7          | 3.0         | 5.0          | 1.7         | versicolor |
| 78 | 6.0          | 2.9         | 4.5          | 1.5         | versicolor |
| 79 | 5.7          | 2.6         | 3.5          | 1.0         | versicolor |
| 80 | 5.5          | 2.4         | 3.8          | 1.1         | versicolor |
| 81 | 5.5          | 2.4         | 3.7          | 1.0         | versicolor |
| 82 | 5.8          | 2.7         | 3.9          | 1.2         | versicolor |

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 83 | 6.0          | 2.7         | 5.1          | 1.6         | versicolor |
| 84 | 5.4          | 3.0         | 4.5          | 1.5         | versicolor |
| 85 | 6.0          | 3.4         | 4.5          | 1.6         | versicolor |
| 86 | 6.7          | 3.1         | 4.7          | 1.5         | versicolor |
| 87 | 6.3          | 2.3         | 4.4          | 1.3         | versicolor |
| 88 | 5.6          | 3.0         | 4.1          | 1.3         | versicolor |
| 89 | 5.5          | 2.5         | 4.0          | 1.3         | versicolor |
| 90 | 5.5          | 2.6         | 4.4          | 1.2         | versicolor |
| 91 | 6.1          | 3.0         | 4.6          | 1.4         | versicolor |
| 92 | 5.8          | 2.6         | 4.0          | 1.2         | versicolor |
| 93 | 5.0          | 2.3         | 3.3          | 1.0         | versicolor |
| 94 | 5.6          | 2.7         | 4.2          | 1.3         | versicolor |
| 95 | 5.7          | 3.0         | 4.2          | 1.2         | versicolor |
| 96 | 5.7          | 2.9         | 4.2          | 1.3         | versicolor |
| 97 | 6.2          | 2.9         | 4.3          | 1.3         | versicolor |
| 98 | 5.1          | 2.5         | 3.0          | 1.1         | versicolor |
| 99 | 5.7          | 2.8         | 4.1          | 1.3         | versicolor |

In [59]: # 조건을 만족하는 행 추출. Loc 이용 iris.loc[ iris['species']=='versicolor']

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 50 | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
| 51 | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
| 52 | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
| 53 | 5.5          | 2.3         | 4.0          | 1.3         | versicolor |
| 54 | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
| 55 | 5.7          | 2.8         | 4.5          | 1.3         | versicolor |
| 56 | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |
| 57 | 4.9          | 2.4         | 3.3          | 1.0         | versicolor |
| 58 | 6.6          | 2.9         | 4.6          | 1.3         | versicolor |
| 59 | 5.2          | 2.7         | 3.9          | 1.4         | versicolor |
| 60 | 5.0          | 2.0         | 3.5          | 1.0         | versicolor |
| 61 | 5.9          | 3.0         | 4.2          | 1.5         | versicolor |
| 62 | 6.0          | 2.2         | 4.0          | 1.0         | versicolor |
| 63 | 6.1          | 2.9         | 4.7          | 1.4         | versicolor |
| 64 | 5.6          | 2.9         | 3.6          | 1.3         | versicolor |
| 65 | 6.7          | 3.1         | 4.4          | 1.4         | versicolor |
| 66 | 5.6          | 3.0         | 4.5          | 1.5         | versicolor |
| 67 | 5.8          | 2.7         | 4.1          | 1.0         | versicolor |
| 68 | 6.2          | 2.2         | 4.5          | 1.5         | versicolor |
| 69 | 5.6          | 2.5         | 3.9          | 1.1         | versicolor |
| 70 | 5.9          | 3.2         | 4.8          | 1.8         | versicolor |
| 71 | 6.1          | 2.8         | 4.0          | 1.3         | versicolor |
| 72 | 6.3          | 2.5         | 4.9          | 1.5         | versicolor |
| 73 | 6.1          | 2.8         | 4.7          | 1.2         | versicolor |
| 74 | 6.4          | 2.9         | 4.3          | 1.3         | versicolor |
| 75 | 6.6          | 3.0         | 4.4          | 1.4         | versicolor |
| 76 | 6.8          | 2.8         | 4.8          | 1.4         | versicolor |
| 77 | 6.7          | 3.0         | 5.0          | 1.7         | versicolor |
| 78 | 6.0          | 2.9         | 4.5          | 1.5         | versicolor |
| 79 | 5.7          | 2.6         | 3.5          | 1.0         | versicolor |
| 80 | 5.5          | 2.4         | 3.8          | 1.1         | versicolor |
| 81 | 5.5          | 2.4         | 3.7          | 1.0         | versicolor |
| 82 | 5.8          | 2.7         | 3.9          | 1.2         | versicolor |

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 83 | 6.0          | 2.7         | 5.1          | 1.6         | versicolor |
| 84 | 5.4          | 3.0         | 4.5          | 1.5         | versicolor |
| 85 | 6.0          | 3.4         | 4.5          | 1.6         | versicolor |
| 86 | 6.7          | 3.1         | 4.7          | 1.5         | versicolor |
| 87 | 6.3          | 2.3         | 4.4          | 1.3         | versicolor |
| 88 | 5.6          | 3.0         | 4.1          | 1.3         | versicolor |
| 89 | 5.5          | 2.5         | 4.0          | 1.3         | versicolor |
| 90 | 5.5          | 2.6         | 4.4          | 1.2         | versicolor |
| 91 | 6.1          | 3.0         | 4.6          | 1.4         | versicolor |
| 92 | 5.8          | 2.6         | 4.0          | 1.2         | versicolor |
| 93 | 5.0          | 2.3         | 3.3          | 1.0         | versicolor |
| 94 | 5.6          | 2.7         | 4.2          | 1.3         | versicolor |
| 95 | 5.7          | 3.0         | 4.2          | 1.2         | versicolor |
| 96 | 5.7          | 2.9         | 4.2          | 1.3         | versicolor |
| 97 | 6.2          | 2.9         | 4.3          | 1.3         | versicolor |
| 98 | 5.1          | 2.5         | 3.0          | 1.1         | versicolor |
| 99 | 5.7          | 2.8         | 4.1          | 1.3         | versicolor |

In [60]: # 조건을 만족하는 행 추출. Loc 이용 iris.loc[iris['species']=='versicolor', : ]

| Out[60]: |    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----------|----|--------------|-------------|--------------|-------------|------------|
|          | 50 | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
|          | 51 | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
|          | 52 | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
|          | 53 | 5.5          | 2.3         | 4.0          | 1.3         | versicolor |
|          | 54 | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
|          | 55 | 5.7          | 2.8         | 4.5          | 1.3         | versicolor |
|          | 56 | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |
|          | 57 | 4.9          | 2.4         | 3.3          | 1.0         | versicolor |
|          | 58 | 6.6          | 2.9         | 4.6          | 1.3         | versicolor |
|          | 59 | 5.2          | 2.7         | 3.9          | 1.4         | versicolor |
|          | 60 | 5.0          | 2.0         | 3.5          | 1.0         | versicolor |
|          | 61 | 5.9          | 3.0         | 4.2          | 1.5         | versicolor |
|          | 62 | 6.0          | 2.2         | 4.0          | 1.0         | versicolor |
|          | 63 | 6.1          | 2.9         | 4.7          | 1.4         | versicolor |
|          | 64 | 5.6          | 2.9         | 3.6          | 1.3         | versicolor |
|          | 65 | 6.7          | 3.1         | 4.4          | 1.4         | versicolor |
|          | 66 | 5.6          | 3.0         | 4.5          | 1.5         | versicolor |
|          | 67 | 5.8          | 2.7         | 4.1          | 1.0         | versicolor |
|          | 68 | 6.2          | 2.2         | 4.5          | 1.5         | versicolor |
|          | 69 | 5.6          | 2.5         | 3.9          | 1.1         | versicolor |
|          | 70 | 5.9          | 3.2         | 4.8          | 1.8         | versicolor |
|          | 71 | 6.1          | 2.8         | 4.0          | 1.3         | versicolor |
|          | 72 | 6.3          | 2.5         | 4.9          | 1.5         | versicolor |
|          | 73 | 6.1          | 2.8         | 4.7          | 1.2         | versicolor |
|          | 74 | 6.4          | 2.9         | 4.3          | 1.3         | versicolor |
|          | 75 | 6.6          | 3.0         | 4.4          | 1.4         | versicolor |
|          | 76 | 6.8          | 2.8         | 4.8          | 1.4         | versicolor |
|          | 77 | 6.7          | 3.0         | 5.0          | 1.7         | versicolor |
|          | 78 | 6.0          | 2.9         | 4.5          | 1.5         | versicolor |
|          | 79 | 5.7          | 2.6         | 3.5          | 1.0         | versicolor |
|          | 80 | 5.5          | 2.4         | 3.8          | 1.1         | versicolor |
|          | 81 | 5.5          | 2.4         | 3.7          | 1.0         | versicolor |
|          | 82 | 5.8          | 2.7         | 3.9          | 1.2         | versicolor |

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 83 | 6.0          | 2.7         | 5.1          | 1.6         | versicolor |
| 84 | 5.4          | 3.0         | 4.5          | 1.5         | versicolor |
| 85 | 6.0          | 3.4         | 4.5          | 1.6         | versicolor |
| 86 | 6.7          | 3.1         | 4.7          | 1.5         | versicolor |
| 87 | 6.3          | 2.3         | 4.4          | 1.3         | versicolor |
| 88 | 5.6          | 3.0         | 4.1          | 1.3         | versicolor |
| 89 | 5.5          | 2.5         | 4.0          | 1.3         | versicolor |
| 90 | 5.5          | 2.6         | 4.4          | 1.2         | versicolor |
| 91 | 6.1          | 3.0         | 4.6          | 1.4         | versicolor |
| 92 | 5.8          | 2.6         | 4.0          | 1.2         | versicolor |
| 93 | 5.0          | 2.3         | 3.3          | 1.0         | versicolor |
| 94 | 5.6          | 2.7         | 4.2          | 1.3         | versicolor |
| 95 | 5.7          | 3.0         | 4.2          | 1.2         | versicolor |
| 96 | 5.7          | 2.9         | 4.2          | 1.3         | versicolor |
| 97 | 6.2          | 2.9         | 4.3          | 1.3         | versicolor |
| 98 | 5.1          | 2.5         | 3.0          | 1.1         | versicolor |
| 99 | 5.7          | 2.8         | 4.1          | 1.3         | versicolor |

두개의 조건 - setosa 중에 sepal\_length이 평균 이상인 것들 만 추출해보기.

|     | sepal_length | sepal_width | petal_length | petal_width | species    |
|-----|--------------|-------------|--------------|-------------|------------|
| 50  | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
| 51  | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
| 52  | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
| 54  | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
| 56  | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |
| 58  | 6.6          | 2.9         | 4.6          | 1.3         | versicolor |
| 61  | 5.9          | 3.0         | 4.2          | 1.5         | versicolor |
| 62  | 6.0          | 2.2         | 4.0          | 1.0         | versicolor |
| 63  | 6.1          | 2.9         | 4.7          | 1.4         | versicolor |
| 65  | 6.7          | 3.1         | 4.4          | 1.4         | versicolor |
| 68  | 6.2          | 2.2         | 4.5          | 1.5         | versicolor |
| 70  | 5.9          | 3.2         | 4.8          | 1.8         | versicolor |
| 71  | 6.1          | 2.8         | 4.0          | 1.3         | versicolor |
| 72  | 6.3          | 2.5         | 4.9          | 1.5         | versicolor |
| 73  | 6.1          | 2.8         | 4.7          | 1.2         | versicolor |
| 74  | 6.4          | 2.9         | 4.3          | 1.3         | versicolor |
| 75  | 6.6          | 3.0         | 4.4          | 1.4         | versicolor |
| 76  | 6.8          | 2.8         | 4.8          | 1.4         | versicolor |
| 77  | 6.7          | 3.0         | 5.0          | 1.7         | versicolor |
| 78  | 6.0          | 2.9         | 4.5          | 1.5         | versicolor |
| 83  | 6.0          | 2.7         | 5.1          | 1.6         | versicolor |
| 85  | 6.0          | 3.4         | 4.5          | 1.6         | versicolor |
| 86  | 6.7          | 3.1         | 4.7          | 1.5         | versicolor |
| 87  | 6.3          | 2.3         | 4.4          | 1.3         | versicolor |
| 91  | 6.1          | 3.0         | 4.6          | 1.4         | versicolor |
| 0.7 | 6.0          | 2.0         | 4.2          | 4.2         |            |

• 실습해 보기 - 전체 petal\_length 평균 이상인 것중에 setosa 종류만 가져와보기.그리고 몇개가 존재하는지 알아보자.

4.3

1.3 versicolor

# 실습해 보기 2

97

6.2

2.9

Out[62]:

- tips 데이터는 점심 데이터 셋만 가져와 tips\_lunch 데이터 셋을 만들어보자.
- tips 데이터의 tip의 평균보다 높은 데이터를 조건으로 가져와 tip\_over의 데이터 셋을 만들어보자.

# 06. reset\_ index로 인덱스를 초기화 시키기

#### 목차로 이동하기

In [63]: ### 조건식을 이용하여 데이터를 추출하고, index를 초기화 시켜 보자.
iris\_versi = iris[ iris['species']=='versicolor'].reset\_index(drop=True)
iris\_versi

| Out[63]: |    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----------|----|--------------|-------------|--------------|-------------|------------|
|          | 0  | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
|          | 1  | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
|          | 2  | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
|          | 3  | 5.5          | 2.3         | 4.0          | 1.3         | versicolor |
|          | 4  | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
|          | 5  | 5.7          | 2.8         | 4.5          | 1.3         | versicolor |
|          | 6  | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |
|          | 7  | 4.9          | 2.4         | 3.3          | 1.0         | versicolor |
|          | 8  | 6.6          | 2.9         | 4.6          | 1.3         | versicolor |
|          | 9  | 5.2          | 2.7         | 3.9          | 1.4         | versicolor |
|          | 10 | 5.0          | 2.0         | 3.5          | 1.0         | versicolor |
|          | 11 | 5.9          | 3.0         | 4.2          | 1.5         | versicolor |
|          | 12 | 6.0          | 2.2         | 4.0          | 1.0         | versicolor |
|          | 13 | 6.1          | 2.9         | 4.7          | 1.4         | versicolor |
|          | 14 | 5.6          | 2.9         | 3.6          | 1.3         | versicolor |
|          | 15 | 6.7          | 3.1         | 4.4          | 1.4         | versicolor |
|          | 16 | 5.6          | 3.0         | 4.5          | 1.5         | versicolor |
|          | 17 | 5.8          | 2.7         | 4.1          | 1.0         | versicolor |
|          | 18 | 6.2          | 2.2         | 4.5          | 1.5         | versicolor |
|          | 19 | 5.6          | 2.5         | 3.9          | 1.1         | versicolor |
|          | 20 | 5.9          | 3.2         | 4.8          | 1.8         | versicolor |
|          | 21 | 6.1          | 2.8         | 4.0          | 1.3         | versicolor |
|          | 22 | 6.3          | 2.5         | 4.9          | 1.5         | versicolor |
|          | 23 | 6.1          | 2.8         | 4.7          | 1.2         | versicolor |
|          | 24 | 6.4          | 2.9         | 4.3          | 1.3         | versicolor |
|          | 25 | 6.6          | 3.0         | 4.4          | 1.4         | versicolor |
|          | 26 | 6.8          | 2.8         | 4.8          | 1.4         | versicolor |
|          | 27 | 6.7          | 3.0         | 5.0          | 1.7         | versicolor |
|          | 28 | 6.0          | 2.9         | 4.5          | 1.5         | versicolor |
|          | 29 | 5.7          | 2.6         | 3.5          | 1.0         | versicolor |
|          | 30 | 5.5          | 2.4         | 3.8          | 1.1         | versicolor |
|          | 31 | 5.5          | 2.4         | 3.7          | 1.0         | versicolor |

32

5.8

2.7

3.9

1.2 versicolor

|    | sepal_length | sepal_width | petal_length | petal_width | species    |
|----|--------------|-------------|--------------|-------------|------------|
| 33 | 6.0          | 2.7         | 5.1          | 1.6         | versicolor |
| 34 | 5.4          | 3.0         | 4.5          | 1.5         | versicolor |
| 35 | 6.0          | 3.4         | 4.5          | 1.6         | versicolor |
| 36 | 6.7          | 3.1         | 4.7          | 1.5         | versicolor |
| 37 | 6.3          | 2.3         | 4.4          | 1.3         | versicolor |
| 38 | 5.6          | 3.0         | 4.1          | 1.3         | versicolor |
| 39 | 5.5          | 2.5         | 4.0          | 1.3         | versicolor |
| 40 | 5.5          | 2.6         | 4.4          | 1.2         | versicolor |
| 41 | 6.1          | 3.0         | 4.6          | 1.4         | versicolor |
| 42 | 5.8          | 2.6         | 4.0          | 1.2         | versicolor |
| 43 | 5.0          | 2.3         | 3.3          | 1.0         | versicolor |
| 44 | 5.6          | 2.7         | 4.2          | 1.3         | versicolor |
| 45 | 5.7          | 3.0         | 4.2          | 1.2         | versicolor |
| 46 | 5.7          | 2.9         | 4.2          | 1.3         | versicolor |
| 47 | 6.2          | 2.9         | 4.3          | 1.3         | versicolor |
| 48 | 5.1          | 2.5         | 3.0          | 1.1         | versicolor |
| 49 | 5.7          | 2.8         | 4.1          | 1.3         | versicolor |

# (실습) iris\_tmp의 행의 index를 초기화 시키고, 총 몇 행인지 확인해 보자.

```
In [64]: iris_tmp = iris_tmp.reset_index(drop=True)
    print( iris_tmp.shape )
    iris_tmp.head()
```

(26, 5)

| Out[64]: |   | sepal_length | sepal_width | petal_length | petal_width | species    |
|----------|---|--------------|-------------|--------------|-------------|------------|
|          | 0 | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
|          | 1 | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
|          | 2 | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
|          | 3 | 6.5          | 2.8         | 4.6          | 1.5         | versicolor |
|          | 4 | 6.3          | 3.3         | 4.7          | 1.6         | versicolor |

## 네개의 특성에 대한 상관계수 구해보기

```
In [68]: corr_iris = iris.iloc[ : , 0:4 ].corr()
    corr_iris
```

| Out[68]: |              | sepal_length | sepal_width | petal_length | petal_width |
|----------|--------------|--------------|-------------|--------------|-------------|
|          | sepal_length | 1.000000     | -0.117570   | 0.871754     | 0.817941    |
|          | sepal_width  | -0.117570    | 1.000000    | -0.428440    | -0.366126   |

| sepal_length | 1.000000  | -0.117570 | 0.871754  | 0.817941  |
|--------------|-----------|-----------|-----------|-----------|
| sepal_width  | -0.117570 | 1.000000  | -0.428440 | -0.366126 |
| petal_length | 0.871754  | -0.428440 | 1.000000  | 0.962865  |
| petal_width  | 0.817941  | -0.366126 | 0.962865  | 1.000000  |

# 히트맵

In [69]: sns.heatmap(corr\_iris, annot=True, fmt=".2f")

Out[69]: <Axes: >



In [70]: sns.pairplot(iris, hue='species')

C:\Users\daniel\_wj\anaconda3\Lib\site-packages\seaborn\\_oldcore.py:1119: FutureWa rning: use\_inf\_as\_na option is deprecated and will be removed in a future versio n. Convert inf values to NaN before operating instead. with pd.option\_context('mode.use\_inf\_as\_na', True): C:\Users\daniel\_wj\anaconda3\Lib\site-packages\seaborn\\_oldcore.py:1119: FutureWa rning: use\_inf\_as\_na option is deprecated and will be removed in a future versio n. Convert inf values to NaN before operating instead. with pd.option\_context('mode.use\_inf\_as\_na', True): C:\Users\daniel\_wj\anaconda3\Lib\site-packages\seaborn\\_oldcore.py:1119: FutureWa rning: use\_inf\_as\_na option is deprecated and will be removed in a future versio n. Convert inf values to NaN before operating instead. with pd.option\_context('mode.use\_inf\_as\_na', True): C:\Users\daniel\_wj\anaconda3\Lib\site-packages\seaborn\\_oldcore.py:1119: FutureWa rning: use\_inf\_as\_na option is deprecated and will be removed in a future versio n. Convert inf values to NaN before operating instead. with pd.option\_context('mode.use\_inf\_as\_na', True):

Out[70]: <seaborn.axisgrid.PairGrid at 0x2684d822710>



## 실습해 보기 3

• tips 데이터 셋의 상관계수를 구하고, 이에 대한 heatmap을 활용하여 시각화를 수행 해 보자.

## 07. sort\_values()를 이용한 정렬

#### 목차로 이동하기

In [71]: iris.head()

Out[71]:

|   | sepal_length | sepal_width | petal_length | petal_width | species |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  |

# sepal\_length로 정렬하기

In [72]: iris.sort\_values(by='sepal\_length', ascending=False)

Out[72]:

|     | sepal_length | sepal_width | petal_length | petal_width | species   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 131 | 7.9          | 3.8         | 6.4          | 2.0         | virginica |
| 135 | 7.7          | 3.0         | 6.1          | 2.3         | virginica |
| 122 | 7.7          | 2.8         | 6.7          | 2.0         | virginica |
| 117 | 7.7          | 3.8         | 6.7          | 2.2         | virginica |
| 118 | 7.7          | 2.6         | 6.9          | 2.3         | virginica |
| ••• |              |             |              |             |           |
| 41  | 4.5          | 2.3         | 1.3          | 0.3         | setosa    |
| 42  | 4.4          | 3.2         | 1.3          | 0.2         | setosa    |
| 38  | 4.4          | 3.0         | 1.3          | 0.2         | setosa    |
| 8   | 4.4          | 2.9         | 1.4          | 0.2         | setosa    |
| 13  | 4.3          | 3.0         | 1.1          | 0.1         | setosa    |

150 rows × 5 columns

|     | sepal_length | sepal_width | petal_length | petal_width | species   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 131 | 7.9          | 3.8         | 6.4          | 2.0         | virginica |
| 117 | 7.7          | 3.8         | 6.7          | 2.2         | virginica |
| 135 | 7.7          | 3.0         | 6.1          | 2.3         | virginica |
| 122 | 7.7          | 2.8         | 6.7          | 2.0         | virginica |
| 118 | 7.7          | 2.6         | 6.9          | 2.3         | virginica |
| ••• |              |             |              |             |           |
| 41  | 4.5          | 2.3         | 1.3          | 0.3         | setosa    |
| 42  | 4.4          | 3.2         | 1.3          | 0.2         | setosa    |
| 38  | 4.4          | 3.0         | 1.3          | 0.2         | setosa    |
| 8   | 4.4          | 2.9         | 1.4          | 0.2         | setosa    |
| 13  | 4.3          | 3.0         | 1.1          | 0.1         | setosa    |

150 rows × 5 columns

# 08. astype를 이용한 데이터 자료형 변환

목차로 이동하기

```
In [74]: iris.info()
```

Out[73]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

| #   | Column       | Non-Null Count | Dtype   |
|-----|--------------|----------------|---------|
|     |              |                |         |
| 0   | sepal_length | 150 non-null   | float64 |
| 1   | sepal_width  | 150 non-null   | float64 |
| 2   | petal_length | 150 non-null   | float64 |
| 3   | petal_width  | 150 non-null   | float64 |
| 4   | species      | 150 non-null   | object  |
| 1.0 | C7 (C4/4)    | 1 * (/4)       |         |

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

# object를 category로 변경하기

```
In [75]: iris['species'] = iris['species'].astype('category')
    iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

| # | Column       | Non-Null Count | Dtype    |
|---|--------------|----------------|----------|
|   |              |                |          |
| 0 | sepal_length | 150 non-null   | float64  |
| 1 | sepal_width  | 150 non-null   | float64  |
| 2 | petal_length | 150 non-null   | float64  |
| 3 | petal_width  | 150 non-null   | float64  |
| 4 | species      | 150 non-null   | category |
|   |              |                |          |

dtypes: category(1), float64(4)

memory usage: 5.1 KB

# 09. 결측치 채우기 - fillna()

#### 목차로 이동하기

In [76]: iris\_new = iris.copy()
 iris\_new

Out[76]: sepal\_length sepal\_width petal\_length petal\_width species 0 5.1 3.5 1.4 0.2 setosa 4.9 0.2 3.0 1.4 setosa 2 4.7 3.2 0.2 1.3 setosa 3 4.6 3.1 1.5 0.2 setosa 4 5.0 3.6 1.4 0.2 setosa 145 6.7 5.2 2.3 virginica 3.0

2.5

3.0

3.4

3.0

5.0

5.2

5.4

5.1

1.9 virginica

2.0 virginica

2.3 virginica

1.8 virginica

150 rows × 5 columns

6.3

6.5

6.2

5.9

146

147

148

149

In [77]: iris\_new.iloc[ 2:4, 2:3] = np.nan
 iris\_new

| Out[77]: |     | sepal_length | sepal_width | petal_length | petal_width | species   |
|----------|-----|--------------|-------------|--------------|-------------|-----------|
|          | 0   | 5.1          | 3.5         | 1.4          | 0.2         | setosa    |
|          | 1   | 4.9          | 3.0         | 1.4          | 0.2         | setosa    |
|          | 2   | 4.7          | 3.2         | NaN          | 0.2         | setosa    |
|          | 3   | 4.6          | 3.1         | NaN          | 0.2         | setosa    |
|          | 4   | 5.0          | 3.6         | 1.4          | 0.2         | setosa    |
|          | ••• |              |             |              |             |           |
|          | 145 | 6.7          | 3.0         | 5.2          | 2.3         | virginica |
|          | 146 | 6.3          | 2.5         | 5.0          | 1.9         | virginica |
|          | 147 | 6.5          | 3.0         | 5.2          | 2.0         | virginica |
|          | 148 | 6.2          | 3.4         | 5.4          | 2.3         | virginica |
|          | 149 | 5.9          | 3.0         | 5.1          | 1.8         | virginica |

150 rows × 5 columns

```
In [78]: iris_new.isnull().sum()

Out[78]: sepal_length     0
     sepal_width     0
     petal_length     2
     petal_width     0
     species     0
     dtype: int64
```

## 결측값을 평균값으로 채우기

```
In [79]: mean_val = iris_new['petal_length'].mean()
    iris_new['petal_length'] = iris_new['petal_length'].fillna(mean_val)
    iris_new.isnull().sum()
```

Out[79]: sepal\_length 0 sepal\_width 0 petal\_length 0 petal\_width 0 species 0 dtype: int64

### 실습해 보기 4

- tips 데이터 셋의 tip이 높은 순으로 정렬을 시켜, 이를 새로운 데이터 셋으로 만들어 보자.
- 결측치 확인 후, 결측치가 있다면 이를 채워보자.
- last update : 24/06, @by DJ, Lim