Feature Extraction

Selection

Preprocessing

. ор. о осоо

References

Data collection

Profesor: Juan R. Rico

Técnicas de Aprendizaje Automático

Dpto. Lenguajes y Sistemas Informáticos. Universidad de Alicante

Extraction

Typology of data Example

Selection

Preprocessing

References

1. Feature Extraction

Feature extraction

Data collection

Feature Extraction

Example Selection

Preprocessing

· reprocessii

- It is a typical initial phase in machine learning, pattern recognition, or signal processing problems.
- It starts from an initial set of measured data, or this set is designed and built to extract **features** that are intended to be informative and non-redundant.
- These features facilitate subsequent learning and generalization steps.
- Feature extraction is also related to dimensionality reduction (Sarangi et al., 2020).
- Choosing a subset of the initial features is called feature selection (Parsons, 2010), which aims to allow learning while maintaining the properties of the initial set.

Classification of data according to their structure

Data collection

Feature Extraction

Typology of Example

Selection

Preprocessing

Example of Feature Extraction I

Data collection

Feature Extraction Typology of data

Selection

Preprocessing

Example of feature extraction II

Data collection

Feature Extraction Typology of data

Selection

Preprocessing

- The structure of the aforementioned features can be a vector, a string, a tree, or a graph as needed.
- This choice will determine the type of algorithms we will use in classification or regression.
- Examples of representation and usage:
 - Vector (numeric) general classifiers and regressors, L1/L2 distances, or neural networks.
 - Strings classifiers and regressors based on neighborhood, string editing distance.
 - Trees classifiers and regressors based on neighborhood, tree editing distance, or neural networks.
 - Graphs classifiers and regressors based on neighborhood, approximate graph editing distance, now also with neural networks.

Considerations

Data collection

Feature Extraction Typology of data Example

Selection

Preprocessing

- The most common data type in machine learning problems is the structured vector type.
- It is now referred to as tabular data in contrast to problems with unstructured data, which have seen significant growth due to neural networks.
- In this course, we will focus on this type of data, the tabular one.

Feature Extraction

Selection

Preprocessing

References

2. Selection

Feature Selection

Feature Extraction

Preprocessing

- It consists of selecting the most suitable type of features or attributes to **describe** the **objects**, **samples**, or **processes** that we want to characterize.
- The features that have a decisive impact on solving the problem must be identified.
- There are feature selection algorithms that, based on variance, correlations, or specific predictive models, determine in advance which features are most relevant.

Algorithms for feature selection

Data collection

Feature Extraction

Selectio

Preprocessing

References

Following the feature selection methods (Jović et al., 2015), we have:

- **Filter**: They are based on statistical measures such as correlation, chi-square test, and ANOVA (F-value).
- Wrapper: They select features by evaluating combinations of them using a predictive model. Examples include Recursive Feature Elimination (RFE), Backward Feature Elimination (BFE), or Forward Feature Selection (FFS).
- Embedded: They select features by learning their importance during the model training, for example, LASSO regression, Ridge regression or Random Forest.

In Python... I

Data collection

Feature Extraction

Preprocessing

References

Check out Feature Selection in scikit-learn.

from sklearn import feature_selection

Filter Methods

- Remove features with low variance: feature_selection.VarianceThreshold()
- Select top K features based on a classification or regression score: feature_selection.SelectKBest()

In Python... II

Data collection

Feature Extraction

Preprocessing

References

Wrapper Methods

- Recursively eliminate features based on an estimator: feature_selection.RFE()
- Sequentially add features: feature_selection.SequentialFeatureSelector()

Embedded Methods

 Select features based on predictive model importance: feature_selection.SelectFromModel()

Feature Extraction

Selection

References

3. Preprocessing

Feature Preprocessing

Data collection

Feature Extraction Selection

Preprocessi

- The aspects discussed below are related to tabular data (structured) as for unstructured data types like images, text, audio, or video, there are specific techniques to learn with neural networks.
- Once the most important features are selected, it is common to preprocess the data with some techniques to ensure their correct learning before applying a learning algorithm:
 - Numeric values: Use scaling or normalization techniques.
 - **Categorical values**: Apply binarization techniques (dummies or one-hot encoder), indicate that they are distinct or ordinal categories.
 - Missing or unknown values: Remove the variable or sample or use value imputation methods.

In Python... I

Data collection

Feature Extraction

Selection Preprocessi

References

Consult Preprocessing data from scikit-learn or Pandas.

```
from sklearn import preprocessing import pandas as pd
```

Numeric

- Remove the mean and scale to standard deviation: preprocessing.StandardScaler()
- Scale to a specified range, usually between 0 and 1: preprocessing.MinMaxScaler()

In Python... II

Data collection

Feature Extraction

Selection

References

Categorical

 Binarization: Encode categories as a binary vector, using one for the specific category index:
 pd.get_dummies(dataframe)

- **Distinct categories**: To indicate that variables are categorical, we can use: dataframe[column].astype('category')
- Ordinal categories: Create an ordered list with the categories and apply it to the dataframe column:

var_cat=pd.CategoricalDType(list_ordered,ordered=True) and dataframe[column].astype(var_cat)

In Python... III

Data collection

Feature Extraction

Selection

Preprocessii

References

Missing Values

- Assign mean, median, or mode to missing values of the variable: impute.SimpleImputer()
- Use the kNN algorithm on known values to assign missing values: impute.KNNImputer()
- Multivariate imputation that estimates each feature from all the others with a rotation technique:

impute.IterativeImputer()