MT Interim Report: Neural Word Alignemnt

Bailey Parker

VIVIAN TSAI

WILLIAM WATSON

Johns Hopkins University bailey@jhu.edu Johns Hopkins University viv@jhu.edu

Johns Hopkins University billwatson@jhu.edu

Abstract

1 Introduction

2 Data Procurement and Processing

- 2.1 Symbol Tokenization
- 2.2 Number Tokenization
- 2.3 Proper Noun Tokenization
- 2.4 Lemmatization Techniques
- 2.5 POS Tagging

3 Model Components

3.1 Preliminary Notation

We begin by stating several operations frequently used in our discussion.

3.1.1 Hadamard Product

To perform element-wise multiplication of two matricies A and B, of equivalent dimensions, we use the hadamard product, defined as the \circ .

$$(A \circ B)_{ij} = A_{ij} \cdot B_{ij} \tag{1}$$

3.1.2 Sigmoid Function

The sigmoid function σ is applied element wise and defined as follows:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2}$$

3.1.3 Hyperbolic Tangent Function

The hyperbolic tangent function tanh is defined as follows:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \tag{3}$$

and is applied element-wise.

3.1.4 Variables

We define our source sequence as s, target sequence as t, and refer to the i-th source token as s_i . We refer to the j-th target token as t_j . We refer to a matrix ψ whose rows represent values related to source tokens s_i and whose columns refer to values realted to target tokens t_i . Hence, ψ is an $|s| \times |t|$ sized matrix.

3.2 Softmax and Log Softmax

The softmax function transforms a vector of values into a probability distirbution. Appliying the softmax function to an n-dimensional input tensor rescales it so that the elements of the n-dimensional output tensor lie in the range (0,1) and sum to 1.

$$\sigma(\mathbf{x})_i = \frac{e^{x_i}}{\sum_j e^{x_j}} \tag{4}$$

For a matrix ψ , the rows correspond to source words s_i and the columns correspond to target words t_j . In addition, when we softmax with respect to the targets, i.e. $\sigma_t(\psi)$, the softmax is applied per column. If applied per row, we denote this as $\sigma_s(\psi)$.

$$\sigma_t(\psi)_{ij} = \frac{e^{\psi_{ij}}}{\sum_k e^{\psi_{kj}}} \tag{5}$$

$$\sigma_s(\psi)_{ij} = \frac{e^{\psi_{ij}}}{\sum_{l} e^{\psi_{ik}}} \tag{6}$$

However, it is sometimes better to work in log-space, and use the log softmax operator for numerical stability.

$$\log \sigma_t(\psi)_{ij} = \log \frac{e^{\psi_{ij}}}{\sum_k e^{\psi_{kj}}}$$
 (7)

$$\log \sigma_s(\psi)_{ij} = \log \frac{e^{\psi_{ij}}}{\sum_k e^{\psi_{ik}}}$$
 (8)

3.3 Word Embeddings

Word Embedding layers allow for a simple lookup table that stores embeddings of a fixed dictionary and size. More specifically, these layers are often used to store word embeddings and retrieve them using indices. The input to the embedding layer is a list of indices, and the output is the corresponding word embeddings. This allows words to be represented numerically to a set embedding dimension size, and thus can be passed onto later layers.

Word Embeddings can be formulated as a weight matrix W_e , where the vector representation of word w_i is the *i*-th row of the matrix, and can be represented as $W_e[w_i]$.

$$W_{e} = \begin{bmatrix} \longleftarrow w_{1} \longrightarrow \\ \vdots \\ \longleftarrow w_{i} \longrightarrow \\ \vdots \\ \longleftarrow w_{n} \longrightarrow \end{bmatrix}$$

$$(9)$$

3.4 Gated Recurrent Units (GRU)

Gated Recurrent Units are a more complex formulation to recurrent layers to process sequences, and improve the vanishing gradient problem found in vanilla RNN layers while using less parameters than a Long Short-Term Memory (LSTM) layer[1]. A GRU makes use of 3 gates: r_t reset gate; z_t update gate; n_t new gate. These 3 gates allow for a blending of the hidden state with new input, and are computed as follows for each input x_t in a sequence \mathbf{x} :

$$r_{t} = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})$$

$$z_{t} = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})$$

$$n_{t} = \tanh(W_{in}x_{t} + b_{in} + r_{t} \circ (W_{hn}h_{t-1} + b_{hn}))$$

$$h_{t} = (1 - z_{t}) \circ n_{t} + z_{t} \circ h_{t-1}$$
(10)

where x_t is input at time t, h_{t-1} is the hidden state of the previous layer at time t-1 or the initial hidden

state at time 0, h_t is the new hidden state at time t, and σ is the sigmoid function.

- 3.5 Bidirectional GRU
- 3.6 Alignment Prior
- 3.7 Batch Matrix Multiplication (BMM)
- 4 Model Descriptions
- 4.1 Dot Aligner
- 4.2 Bidirectional GRU Aligner
- 4.3 Extensions
- 5 Loss Function
- 5.1 Supervised Loss
- 5.2 Unsupervised Alignment Loss
- 6 Ground Truth Alignment Results?
- 7 Current Status
- 8 Future Work

References

 K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014.