

Alexander Panchenko

FROM UNSUPERVISED INDUCTION OF LINGUISTIC STRUCTURES FROM TEXT TOWARDS APPLICATIONS IN DEEP LEARNING

Text: sparse symbolic representation

AUDIO

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

TEXT

0 0 0 0.2 0 0.7 0 0 0

Word, context, or document vectors SPARSE

Text: sparse symbolic representation

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

TEXT

Word, context, or document vectors SPARSE

Image source:

https://www.tensorflow.org/tutorials/word2vec

Graph: sparse symbolic representation

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

GRAPH

Nodes, edges, weights

SPARSE

Embedding graph into a vector space

From a survey on graph embeddings [Hamilton et al., 2017]:

Learning with an "autoencoder"

From a survey on graph embeddings [Hamilton et al., 2017]:

Some established approaches

From a survey on graph embeddings [Hamilton et al., 2017]:

Туре	Method	Decoder	Similarity measure	Loss function (ℓ)
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [45]	$\begin{aligned} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 \\ \mathbf{z}_i^\top \mathbf{z}_j \\ \mathbf{z}_i^\top \mathbf{z}_j \\ \mathbf{z}_i^\top \mathbf{z}_j \end{aligned}$	$\mathbf{A}_{i,j}$ $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2,, \mathbf{A}_{i,j}^k$ general	$\begin{aligned} & \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) \cdot s_{\mathcal{G}}(v_i, v_j) \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \end{aligned}$
Random walk	DeepWalk [47]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$	$-s_{\mathcal{G}}(v_i,v_j)\log(ext{DEC}(\mathbf{z}_i,\mathbf{z}_j))$
	node2vec [28]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$ (biased)	$-s_{\mathcal{G}}(v_i,v_j)\log(ext{DEC}(\mathbf{z}_i,\mathbf{z}_j))$

Graph embeddings using similarities

An submitted joint work with Andrei Kutuzov and Chris Biemann:

- Given a tree (*V*, *E*)
- Leackock-Chodorow (LCH) similarity measure:

$$sim(v_i, v_j) = -\log \frac{shortest_path_distance(v_i, v_j)}{2h}$$

Graph embeddings using similarities

An submitted joint work with Andrei Kutuzov and Chris Biemann:

- Given a tree (*V*, *E*)
- Leackock-Chodorow (LCH) similarity measure:

$$sim(v_i, v_j) = -\log \frac{shortest_path_distance(v_i, v_j)}{2h}$$

Jiang-Conrath (JCN) similarity measure:

$$sim(\mathbf{v}_i, \mathbf{v}_j) = 2 \frac{\ln P_{lcs}(\mathbf{v}_i, \mathbf{v}_j)}{\ln P(\mathbf{v}_i) + \ln P(\mathbf{v}_i)}$$

Graph embeddings using similarities

path2vec: Approximating Structural Node Similarities with Node Embeddings:

$$J = \frac{1}{|T|} \sum_{(\mathbf{v}_i, \mathbf{v}_i) \in T} (\mathbf{v}_i \cdot \mathbf{v}_j - sim(\mathbf{v}_i, \mathbf{v}_j))^2,$$

where:

- $sim(v_i, v_j)$ the value of a 'gold' similarity measure between a pair of nodes v_i and v_i ;
- \mathbf{v}_i an embeddings of node;
- T training batch.

Speedup: graph vs embeddings

Computation of 82,115 pairwise similarities:

Model	Running time
LCH in NLTK	30 sec.
JCN in NLTK	6.7 sec.
FSE embeddings	0.713 sec.
path2vec and other float vectors	0.007 sec.

Results: goodness of fit

Spearman correlation scores with WordNet similarities on SimLex999 noun pairs:

	Selection of synsets			
Model	JCN-SemCor	JCN-Brown	LCH	
WordNet	1.0	1.0	1.0	
Node2vec	0.655	0.671	0.724	
Deepwalk	0.775	0.774	0.868	
FSE	0.830	0.820	0.900	
path2vec	0.917	0.914	0.934	

Results: SimLex999 dataset

Spearman correlations with human SimLex999 noun similarities:

Model	Correlation
Raw WordNet JCN-SemCor	0.487
Raw WordNet JCN-Brown	0.495
Raw WordNet LCH	0.513
node2vec [Grover & Leskovec, 2016]	0.450
Deepwalk [Perozzi et al., 2014]	0.533
FSE [Subercaze et al., 2015]	0.556
path2vec JCN-SemCor	0.526
path2vec JCN-Brown	0.487
path2vec LCH	0.522

Results: SimLex999 dataset

JCN (left) and LCH (right):

Results: word sense disambiguation

WSD: each column lists all the possible synsets for the corresponding word.

Results: word sense disambiguation

F1 scores on Senseval-2 word sense disambiguation task:

Model	F-measure				
WordNet JCN-SemCor		0.620			
WordNet JCN-Brown	0.561				
WordNet LCH	0.547				
node2vec [Grover & Leskovec, 2016]	0.501				
Deepwalk [Perozzi et al., 2014]	0.528				
FSE [Subercaze et al., 2015]	0.536				
path2vec					
Batch size:	20	50	100		
JCN-SemCor	0.543	0.543	0.535		
JCN-Brown	0.538	0.515	0.542		
LCH	0.540	0.535	0.536		

- Grover, A. & Leskovec, J. (2016).

 Node2vec: Scalable feature learning for networks.

 In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855–864).: ACM.
- Hamilton, W. L., Ying, R., & Leskovec, J. (2017).
 Representation learning on graphs: Methods and applications.

 IEEE Data Engineering Bulletin, September 2017.
- Perozzi, B., Al-Rfou, R., & Skiena, S. (2014).

 Deepwalk: Online learning of social representations.

 In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701–710).: ACM.
- Subercaze, J., Gravier, C., & Laforest, F. (2015).
 On metric embedding for boosting semantic similarity computations.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) (pp. 8–14).: Association for Computational Linguistics.