Application of Information Theory, Lecture 1 Basic Definitions and Facts Handout Mode

Iftach Haitner

Tel Aviv University.

October 28, 2014

The entropy function

X — Discrete random variable (finite number of values) over \mathcal{X} with probability mass $p = p_X$. The entropy of X is defined by:

$$H(X) := -\sum_{x \in \mathcal{X}} \Pr[X = x] \cdot \log_2 \Pr[X = x]$$

taking $0 \log 0 = 0$.

- $\blacktriangleright H(X) = -\sum_{x} p(x) \log p(x) = \mathsf{E}_{X} \log \frac{1}{p(X)} = \mathsf{E}_{Y=p(X)} \log \frac{1}{Y}$
- H(X) was introduced by Shannon as a measure for the uncertainty in X
 — number of bits requited to describe X, information we don't have about X.
- When using the natural logarithm, the quantity is called nats ("natural")
- ▶ Entropy is a function of p (sometimes refers to as H(p)).

Examples

- 1. $X \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$:
 - (i.e., for some $x_1 \neq x_2 \neq x_3$, $P_X(x_1) = \frac{1}{2}$, $P_X(x_2) = \frac{1}{4}$, $P_X(x_3) = \frac{1}{4}$)

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} = \frac{1}{2} + \frac{1}{4}\cdot 2 + \frac{1}{4}\cdot 2 = 1\frac{1}{2}.$$

- **2.** $H(X) = H(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}).$
- **3.** *X* is uniformly distributed over $\{0,1\}^n$:

$$H(X) = -\sum_{i=1}^{2^n} \frac{1}{2^n} \log \frac{1}{2^n} = -\log \frac{1}{2^n} = n.$$

- n bits are needed to describe X
- n bits are needed to create X
- **4.** $X = X_1, ..., X_n$ where X_i are iid over $\{0, 1\}$, with $P_X(1) := Pr[X = 1] = \frac{1}{3}$.
- **5.** $X \sim (p, q), p + q = 1$
 - $H(X) = H(p,q) = -p \log p q \log q$
 - H(1,0)=(0,1)=0
 - ► $H(\frac{1}{2},\frac{1}{2})=1$
 - ▶ h(p) := H(p, 1 p) is continuous

Axiomatic derivation of the entropy function

Any other choices for defining entropy?

Shannon function is the only symmetric function (over probability distributions) satisfying the following three axioms:

- **A1** Continuity: H(p, 1 p) is continuous function of p.
- **A2** Normalization: $H(\frac{1}{2}, \frac{1}{2}) = 1$
- A3 Grouping axiom:

$$H(p_1, p_2, \ldots, p_m) = H(p_1 + p_2, p_3, \ldots, p_m) + (p_1 + p_2)H(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2})$$

Why A3?

Not hard to prove that Shannon's entropy function satisfies above axioms, proving this is the only such function is more challenging.

Let *H* be a function that satisfying the above axioms.

We prove (assuming additional axiom) that H is the Shannon function.

Generalization of the grouping axiom

Fix $p = (p_1, \dots, p_m)$ and let $S_k = \sum_{i=1}^k p_i$.

Grouping axiom: $H(p_1, p_2, ..., p_m) = H(S_2, p_3, ..., p_m) + S_2 H(\frac{p_1}{S_2}, \frac{p_2}{S_2}).$

Claim 1 (Generalized grouping axiom)

$$H(p_1,p_2,\ldots,p_m)=H(S_k,p_{k+1},\ldots,p_m)+S_k\cdot H(\frac{p_1}{S_k},\ldots,\frac{p_k}{S_k})$$

Proof: Let
$$h(q) = H(q, 1 - q)$$
.
 $H(p_1, p_2, ..., p_m) = H(S_2, p_2, ..., p_m) + S_2 h(\frac{p_2}{S_2})$ (1)
 $= H(S_3, p_3, ..., p_m) + S_3 h(\frac{p_3}{S_3}) + S_2 h(\frac{p_2}{S_2})$
 \vdots
 $= H(S_k, p_{k+1}, ..., p_m) + \sum_{i=2}^k S_i h(\frac{p_i}{S_i})$

Hence,

$$H(\frac{p_1}{S_k}, \dots, \frac{p_k}{S_k}) = H(\frac{S_{k-1}}{S_k}, \frac{p_k}{S_k}) + \sum_{i=1}^{k-1} \frac{S_i}{S_k} h(\frac{p_i/S_k}{S_i/S_k}) = \frac{1}{S_k} \sum_{i=1}^{k} S_i h(\frac{p_i}{S_i})$$
(2)

Claim follows by combining the above equations.

Further generalization of the grouping axiom

Let
$$1 = k_1 < k_2 < \ldots < k_q < m$$
 and let $C_t = \sum_{i=k_t}^{k_{t+1}-1} p_i$ (letting $k_{q+1} = m+1$).

Claim 2 (Generalized⁺⁺ grouping axiom)

$$H(p_1, p_2, \dots, p_m) = H(C_1, \dots, C_q) + C_1 \cdot H(\frac{p_1}{C_1}, \dots, \frac{p_{k_2-1}}{C_1}) + \dots + C_q \cdot H(\frac{p_{k_q+1}}{C_q}, \dots, \frac{p_m}{C_q})$$

Proof: Follow by the extended group axiom and the symmetry of $H \square$

Implication: Let
$$f(m) = H(\underbrace{\frac{1}{m}, \dots, \frac{1}{m}})$$

- ► $f(3^2) = 2f(3) = 2H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ ⇒ $f(3^n) = nf(3)$.
- f(mn) = f(m) + f(n)
 - $\implies f(m^k) = kf(m)$

$$f(m) = \log m$$

We give a proof under the additional axiom

A4
$$f(m) < f(m+1)$$

(you can Google for a proof using only A1-A3)

- ▶ For $n \in \mathbb{N}$ let $k = \lfloor n \log 3 \rfloor$.
- ▶ By A4, $f(2^k) < f(3^n) < f(2^{k+1})$.
- ▶ By grouping axiom, k < nf(3) < k + 1.

$$\implies \frac{\lfloor n \log 3 \rfloor}{n} < f(3) < \frac{\lfloor n \log 3 \rfloor + 1}{n} \text{ for any } n \in \mathbb{N}$$

- $\implies f(3) = \log 3.$
 - Proof extends to any integer (not only 3)

$$H(p,q) = -p\log p - q\log q$$

- For rational p, q, let $p = \frac{k}{m}$ and $q = \frac{m-k}{m}$, where m is the smallest common multiplier.
- ▶ By grouping axiom, $f(m) = H(p,q) + p \cdot f(k) + q \cdot f(m-k)$.
- ► Hence,

$$H(p,q) = \log m - p \log k - q \log(m-k)$$

$$= p(\log m - \log k) + q(\log m - \log(m-k))$$

$$= -p \log \frac{m}{k} - q \log \frac{m-k}{m} = -p \log p - q \log q$$

▶ By continuity axiom, holds for every p, q.

$$H(p_1, p_2, \dots, p_m) = -\sum_i^m p_i \log p_i$$

We prove for m = 3. Proof for arbitrary m follows the same lines.

- For rational p_1, p_2, p_3 , let $p_1 = \frac{k_1}{m}, q = \frac{k_2}{m}$ and $p_3 = \frac{k_3}{m}$, where $m = k_1 + k_2 + k_3$ is the smallest common multiplier.
- $f(m) = H(p_1, p_2, p_3) + p_1 f(k_1) + p_2 f(k_2) + p_3 f(k_3)$
- ► Hence,

$$H(p_1, p_2, p_3) = \log m - p_1 \log k_1 - p_2 \log k_2 - p_3 \log k_3$$

$$= -p_1 \log \frac{k_1}{m} - p_2 \log \frac{k_2}{m} - p_3 \frac{k_3}{m}$$

$$= -p_1 \log p_1 - p_2 \log p_2 - p_3 \log p_3$$

▶ By continuity axiom, holds for every p₁, p₂, p₃.

$$0 \leq H(p_1, \ldots, p_m) \leq \log m$$

Tight bounds

►
$$H(p_1,...,p_m) = 0$$
 for $(p_1,...,p_m) = (1,0,...,0)$.
► $H(p_1,...,p_m) = \log m$ for $(p_1,...,p_m) = (\frac{1}{m},...,\frac{1}{m})$.

- Non negativity is clear.
- ▶ A function *f* is concave if $\forall t_1, t_2, \lambda \in [0, 1] \le 1$ $\lambda f(t_1) + (1 - \lambda)f(t_2) \le f(\lambda t_1 + (1 - \lambda)t_2)$
- $\implies \text{ (by induction) } \forall t_1, \dots, t_k, \lambda_1, \dots, \lambda_k \in [0, 1] \text{ with } \sum_i \lambda_i = 1$ $\sum_i \lambda_i f(\lambda_i t_i) \le f(\sum_i \lambda_i t_i)$
- \implies (Jensen inequality): $E f(X) \le f(E X)$ for any random variable X.
 - ▶ $\log(x)$ is (strictly) concave for x > 0, since its second derivative $\left(-\frac{1}{x^2}\right)$ is always negative.
 - ► Hence, $H(p_1, ..., p_m) = \sum_i p_i \log \frac{1}{p_i} \le \log \sum_i p_i \frac{1}{p_i} = \log m$
 - ► Alternatively, for X over $\{1, ..., m\}$, $H(X) = E_X \log \frac{1}{P_X(X)} \le \log E_X \frac{1}{P_X(X)} = \log m$

$$H(g(X)) \leq H(X)$$

Let X be a random variable, and let g be over $Supp(X) := \{x : P_X(x) < 0\}.$

► $H(Y = g(X)) \le H(X)$. Proof:

$$H(X) = -\sum_{x} P_{X}(x) \log P_{X}(x) = -\sum_{y} \sum_{x: g(x)=y} P_{X}(x) \log P_{X}(x)$$

$$\geq -\sum_{y} P_{Y}(y) \max_{x: g(x)=y} \log P_{X}(x)$$

$$\geq -\sum_{y} P_{Y}(y) \log P_{Y}(y) = H(Y)$$

▶ If *g* is injective, then H(Y) = H(X).

Proof:
$$p_X(X) = P_Y(Y)$$
.

▶ If g is non-injective (over Supp(X)), then H(Y) < H(X).

Proof: ?

- ► $H(X) = H(2^X)$.
- ▶ $H(X) < H(\cos(X))$, if $0, \pi \in \text{Supp}(X)$.

Notation

- ► $[n] = \{1, ..., n\}$
- $ightharpoonup P_X(x) = Pr[X = x]$
- ► Supp(X) := { $x : P_X(x) < 0$ }
- For random variable X over \mathcal{X} , let p(x) be its density function: $p(x) = P_X(x)$.

In other words, $X \sim p(x)$.

For random variable Y over \mathcal{Y} , let p(y) be its density function: $p(y) = P_Y(y)...$