

Mediation

Part 4 of Summary of the Harvard Workshop on Causal Modelling

Chris Oldmeadow CReDITSS, HMRI 2019-10-14

Mediation

- (1) Indirect effect of A on Y through M
- (2) Direct effect of A on Y (effect that is not through M)

Standard approach (The difference method)

- Total effect: $E[Y|A=a,C=c]=lpha_0+lpha_1A+\dots$
- Indirect effect: $E[Y|A=a,C=c,M=m]=eta_0+eta_1A+\dots$

Direct effect = Total effect - Indirect effect

Problem 1: Mediator outcome confounding

Adjusting for M creates collider stratification bias

Problem 2: Exposure-mediator interactions

Counterfactual framework for mediation

Some definitions

- Y_a : counterfactual **outcome** when exposure A is set to level a
- M_a : be the counterfactual value of the **mediator** when exposure A is set to level a
- Y_{am} : counterfactual outcome when exposure A is set to a and M to m

Total effect

 $Y_{1M_1} - Y_{0M_0}$

Nested counterfactuals

 Y_{aM_a*}

For example:

 Y_{0M_1}

The counterfactual outcome had you not received the treatment, but mediator at the counterfactual value it would have been had you received treatment.

A	М	Y	M_0	M_1	Y_{0M_0}	Y_{1M_1}	Y_{0M_1}	Y_{1M_0}
0	0	1	0		1			
1	0	1		0		0		
1	1	0		1		0		

Controlled Direct effect (CDE)

The difference in counterfactual outcomes when (A=1) compared to (A=0), when (M) is fixed at (m)

$$E[CDE(m)|c] = E[Y|A = 1, m, c] - E[Y|A = 0, m, c]$$

Natural Direct Effect (NDE)

Changing the treatment, but fixing the mediator at whatever level it would be had you not changed the treatment

$$E[NDE|C] = E[Y_{1,M_0} - Y_{0,M_0}|C] \ = \Sigma_m \{ E[Y|A=1,m,c] - E[Y|A=0,m,c] \} P(M=m|A=0,c)$$

Natural Indirect Effect (NIE)

Fixing the treatment, the effect you see by changing the mediator, as if you had changed the treatment without actually changing the treatment itself

$$E[NIE|C] = E[Y_{1,M_1} - Y_{1,M_0}|C] \ = \Sigma_m E[Y|A=1,m,c] \{ P(M=m|A=1,c) - P(M=m|A=0,c) \}$$

Proportion mediated

Total effect = NIE + NDE

PM = NIE/TE

- is imprecise (ie wide confidence intervals)
- Use the CI for the NIE to decide if there is any mediation occurring

Identification: Parametric regression equations

- ullet Fit a regression model $E[Y|A,M,C]= heta_0+ heta_1a+ heta_2m+ heta_3am+eta_3c$
- Fit a regression model $E[M|A,C]=eta_0+eta_1a+eta_2c$
- compute analytically

Analytic solutions

- $CDE = \theta_1 + \theta_3 m(a a^*)$
- $\bullet \ \ NDE = \theta_1 + \theta_3(\beta_0 + \beta_1 a^\star + \beta_3 c)(a a^\star)$
- $NIE = \theta_2 imes eta_1 + heta_3 imes eta_1 a(a-a^\star)$

Monte Carlo Simulation (Very similar to chained regression equations for MI)

- 1. Fit model for M|A,C and Y|M,A,C using observed data
- 2. For each treatment level (eg A=0 and 1):
 - simulate the potential values for M|A
 - simulate the potential values for Y conditional on M and the value for A -average over these

Confidence intervals taken from the percentiles form the bootstrapped samples

Assumptions^{1,2}

- 1. No unmeasured exposure-outcome confounders
- 2. No unmeasured mediator-outcome confounders
- 3. No unmeasured exposure-mediator confounders
- 4. There is no mediator-outcome confounder that is affected by exposure

How do we deal with L when trying to estimate the CDE?

- Do we control for L 🕾
- If we dont then confounding bias
- if we do then we eliminate some of the effect of A through pathways other than M
- Seem familiar??

Marginal Structural Model for mediation

- Weight for p(A|C)
- weight for p(M|A,C,L)
- overall weight =

Sensitivity analysis

• E-value = RR + sqrt(RR*(RR-1)).

The minimum confounding risk ratio (RR{UY} and RR{AU}) that would explain away any effect and its CI

Thanks

Slides created via the R package **xaringan**. DAGs created via the R packages **Dagitty** and **ggdag**