COLLE 1 = NOMBRES COMPLEXE, SOMMES ET PRODUITS

Connaître son cours:

- 1. Rappeler les formules de Euler pour tous $\theta \in \mathbb{R}$ et linéariser $\sin^3(\theta)$.
- 2. Donner les racines 4-ième de -i et donner une interprétation à l'aide d'un polynôme de $\mathbb{C}[X]$.
- 3. Soient a, b deux nombres réels tels que a, b et $a + b \notin \frac{\pi}{2} + \pi \mathbb{Z}$. Exprimer $\tan(a + b)$ en fonction de $\tan a$ et $\tan b$.

Nombres complexes:

Exercice 1.

Soit a,b,c et d des complexes de module 1. Montrer que $|ab-cd| \le |a-c| + |b-d|$.

Exercice 2.

Soit $n \in \mathbb{N} \setminus \{0\}$.

Résoudre l'équation $\Re e(z^n) = \Im m(z^n)$.

Exercice 3.

Soit z et z' des complexes de module au plus 1. Montrer que

$$min(|z+z'|, |z-z'|) \le \sqrt{2}.$$

Exercice 4.

Montrer que, pour tout $z \in \mathbb{C}$, $|z-1| \le |z-j| + |z-j^2|$.

Sommes et produits :

Exercice 5. (Le noyau de Dirichlet)

Soit $x \in \mathbb{R}$ tel que $x \neq 0[2\pi]$ et $n \in \mathbb{N}^*$. Calculer et simplifier $D_n(x) = \sum_{k=-n}^n e^{ikx}$

Exercice 6. (Formule de Bernoulli)

Pour tous $a, b \in \mathbb{C}$ et tout $n \in \mathbb{N}$,

1. Rappeler démontrer la formule de Bernoulli qui permet de factoriser l'expression $a^{n+1} - b^{n+1}.$

Niveau: Première année de PCSI

2. En déduire que si l'entier n est composé, alors $2^n - 1$ l'est également.

Exercice 7.

Pour tout $z \in \mathbb{C}$ et n dans \mathbb{N}^* simplifier l'expression :

$$\sum_{k=0}^{n} kz^k$$

Pour |z| < 1, déterminer la limite de la somme précédente lorsque n tend vers $+\infty$.