

Art of Problem Solving 2014 Romania Team Selection Test

Romania Team Selection Test 2014

Day 1	
1	Let ABC be a triangle, let A' , B' , C' be the orthogonal projections of the vertices A , B , C on the lines BC , CA and AB , respectively, and let X be a point on the line AA' .Let γ_B be the circle through B and A , centred on the line BC , and let γ_C be the circle through C and A , centred on the line BC .The circle γ_B meets the lines AB and BB' again at A and A , respectively, and the circle A meets the lines A and A are collinear.
2	Let $n \geq 2$ be an integer. Show that there exist $n+1$ numbers $x_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}$, so that $\{x_1^3\} + \{x_2^3\} + \cdots + \{x_n^3\} = \{x_{n+1}^3\}$, where $\{x\}$ is the fractionary part of x .
3	Let $A_0A_1A_2$ be a scalene triangle. Find the locus of the centres of the equilateral triangles $X_0X_1X_2$, such that A_k lies on the line $X_{k+1}X_{k+2}$ for each $k=0,1,2$ (with indices taken modulo 3).
4	Let k be a nonzero natural number and m an odd natural number . Prove that there exist a natural number n such that the number m^n+n^m has at least k distinct prime factors.
5	Let n be an integer greater than 1 and let S be a finite set containing more than $n+1$ elements. Consider the collection of all sets A of subsets of S satisfying the following two conditions: (a) Each member of A contains at least n elements of S . (b) Each element of S is contained in at least n members of A . Determine $\max_A \min_B B $, as B runs through all subsets of A whose members cover S , and A runs through the above collection.
Day 2	
1	Let ABC be a triangle and let X,Y,Z be interior points on the sides BC , CA , AB , respectively. Show that the magnified image of the triangle XYZ under a homothety of factor 4 from its centroid covers at least one of the vertices A , B , C .

Art of Problem Solving

2014 Romania Team Selection Test

Let a be a real number in the open interval (0,1). Let $n \geq 2$ be a positive integer and let $f_n \colon \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = x + \frac{x^2}{n}$. Show that

$$\frac{a(1-a)n^2 + 2a^2n + a^3}{(1-a)^2n^2 + a(2-a)n + a^2} < (f_n \circ \cdots \circ f_n)(a) < \frac{an+a^2}{(1-a)n + a}$$

where there are n functions in the composition.

- Betermine all positive integers n such that all positive integers less than n and coprime to n are powers of primes.
- Let f be the function of the set of positive integers into itself, defi ned by f(1) = 1, f(2n) = f(n) and f(2n+1) = f(n) + f(n+1). Show that, for any positive integer n, the number of positive odd integers m such that f(m) = n is equal to the number of positive integers less or equal to n and coprime to n.

[mod: the initial statement said less than n, which is wrong.]

Day	3
-----	----------

- Let ABC be an isosceles triangle, AB = AC, and let M and N be points on the sides BC and CA, respectively, such that $\angle BAM = \angle CNM$. The lines AB and MN meet at P. Show that the internal angle bisectors of the angles BAM and BPM meet at a point on the line BC.
- For every positive integer n, let $\sigma(n)$ denote the sum of all positive divisors of n (1 and n, inclusive). Show that a positive integer n, which has at most two distinct prime factors, satisfies the condition $\sigma(n) = 2n 2$ if and only if $n = 2^k(2^{k+1} + 1)$, where k is a non-negative integer and $2^{k+1} + 1$ is prime.
- 3 Determine the smallest real constant c such that

$$\sum_{k=1}^{n} \left(\frac{1}{k} \sum_{j=1}^{k} x_j \right)^2 \le c \sum_{k=1}^{n} x_k^2$$

for all positive integers n and all positive real numbers x_1, \dots, x_n .

Let n be a positive integer and let A_n respectively B_n be the set of nonnegative integers k < n such that the number of distinct prime factors of gcd(n, k) is

Art of Problem Solving

2014 Romania Team Selection Test

even (respectively odd). Show that $|A_n| = |B_n|$ if n is even and $|A_n| > |B_n|$ if n is odd.

Example: $A_{10} = \{0, 1, 3, 7, 9\}, B_{10} = \{2, 4, 5, 6, 8\}.$

Day 4	
1	Let $\triangle ABC$ be an acute triangle of circumcentre O . Let the tangents to the circumcircle of $\triangle ABC$ in points B and C meet at point P . The circle of centre P and radius $PB = PC$ meets the internal angle bisector of $\angle BAC$ inside $\triangle ABC$ at point S , and $OS \cap BC = D$. The projections of S on AC and AB respectively are E and F . Prove that AD , BE and CF are concurrent. Author: Cosmin Pohoata
2	Let p be an odd prime number. Determine all pairs of polynomials f and g from $\mathbb{Z}[X]$ such that $f(g(X)) = \sum_{k=0}^{p-1} X^k = \Phi_p(X).$
3	Let $n \in \mathbb{N}$ and S_n the set of all permutations of $\{1, 2, 3,, n\}$. For every permutation $\sigma \in S_n$ denote $I(\sigma) := \{i : \sigma(i) \leq i\}$. Compute the sum $\sum_{\sigma \in S_n} \frac{1}{ I(\sigma) } \sum_{i \in I(\sigma)} (i + \sigma(i))$.
Day 5	
1	Let ABC a triangle and O his circumcentre. The lines OA and BC intersect each other at M ; the points N and P are defined in an analogous way. The tangent line in A at the circumcircle of triangle ABC intersect NP in the point X ; the points Y and Z are defined in an analogous way. Prove that the points X , Y and Z are collinear.
2	Let m be a positive integer and let A , respectively B , be two alphabets with m , respectively $2m$ letters. Let also n be an even integer which is at least $2m$. Let a_n be the number of words of length n , formed with letters from A , in which appear all the letters from A , each an even number of times. Let b_n be the number of words of length n , formed with letters from B , in which appear all the letters from B , each an odd number of times. Compute $\frac{b_n}{a_n}$.

3

Art of Problem Solving

2014 Romania Team Selection Test

Let n a positive integer and let $f: [0,1] \to \mathbb{R}$ an increasing function. Find the value of :

$$\max_{0 \le x_1 \le \dots \le x_n \le 1} \sum_{k=1}^n f\left(\left|x_k - \frac{2k-1}{2n}\right|\right)$$