Czas przeznaczony na rozwiązanie sprawdzianu to 90 minut. Każdą odpowiedź należy uzasadnić. Proszę o staranne argumentowanie każdego kroku rozumowania. Spośród poniższych 5 zadań należy wybrać i rozwiązać tylko 4.

(10 pkt) Zadanie 1. Obliczyć masę okręgu powstałego z przecięcia sfery $x^2+y^2+z^2=1$ z nieskończonym stożkiem $z=\sqrt{3}(x^2+y^2)^{1/2}$, jeśli gęstość masy w punkcie x,y,z wynosi $\rho(x,y,z)=|x|+y^2+z^4$ gramów na jednostkę długości.

(10 pkt) **Zadanie 2.** Niech S będzie powierzchnią w \mathbb{R}^3 zadaną warunkami $x+y+z=1,\ x,y,z\geq 0.$ Obliczyć

$$\iint_S x^2 + 2xy \, dS.$$

(10 pkt) Zadanie 3. Niech $v \in \mathbb{R}^2$ będzie ustalonym wektorem jednostkowym. Niech σ oznacz elipsę $x^2 + 4y^2 = 1$ sparametryzowaną dodatnio. Korzystając ze wzoru Greena obliczyć

$$\int_{\sigma} \cos(\angle(v, n)) \, ds,$$

gdzie $n(x), x \in \sigma$, oznacza jednostkowy, zewnętrzny wektor normalny do krzywej σ zaś $\cos(\angle(v, n))$ oznacza cosinus kąta między wektorami v i n.

(10 pkt) **Zadanie 4.** Dla zbioru skończonego S definiujemy F(S) jako przestrzeń liniową wszystkich funkcji o wartościach rzeczywistych na S. Przez wskazanie konkretnego izomorfizmu uzasadnić, że przestrzeń liniowa $\mathcal{T}^2(F(S))$ 2-tensorów na F(S) jest izomorficzna z przestrzenią liniową $F(S \times S)$. Ewentualnie (za połowę punktów) można uzasadnić izomorficzność bez wskazywania konkretnego izomorfizmu.

(10 pkt) **Zadanie 5.** Dla funkcji gładkiej $f: \mathbb{R}^d \to \mathbb{R}^m$ podać definicję odwzorowania $f^*: \Gamma^k(\mathbb{R}^m) \to \Gamma^k(\mathbb{R}^d)$. Następnie dla funkcji gładkich $f_1: \mathbb{R}^n \to \mathbb{R}^m$ i $f_2: \mathbb{R}^d \to \mathbb{R}^n$ udowodnić, że $(f_1 \circ f_2)^* = f_2^* \circ f_1^*$.