The scientific editing platform TEX_{MACS}

Miguel de Benito

Warning: this file contains dynamic content which will be lost in PDF format.

Please use T_EX_{MACS} to view the original file

- Quick intro.
- Plugins and sessions.
- Collaboration

Plan 2/13

1 **2** 3 4 5 6 7 8 9 10 11 12 13

- Quick intro.
- Plugins and sessions.
- Collaboration

Plan 2/13

1 **2** 3 4 5 6 7 8 9 10 11 12 13

- Quick intro.
- Plugins and sessions.
- Collaboration.

- What it is
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't
 - A frontend to L^AT_EX.
 - A programming language.
 - Your kitchen robot.

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't
 - A frontend to L^AT_EX.
 - A programming language.
 - Your kitchen robot.

- What it is
 - Truly WYSIWYG scientific editing and typesetting platform. Structured editor.
 - Open source, GNU project. All major platforms.
 - Fully extensible.
 - Mainly C++ and SCHEME with mature codebase.
 - Small team (around 20 members, 5-8 active). Lead: Joris van der Hoeven, CNRS.
- What it isn't
 - A frontend to L^AT_EX.
 - A programming language.
 - Your kitchen robot.

$$|\mathbf{e}^{tA_e}| \leq \mathbf{e}^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}$$

Tables:

=b1+b2+b3

Table 1. A shopping list.

$\sin(4x^2)$	
=diff $(a1, x)$	

Table 2. More computations

$$|e^{tA_e}| \leq e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

Tables:

=b1+b2+b3

lable	4.0		

$\sin(4x^2)$	$\cos(4 y^2)$
=diff $(a1, x)$	=diff $(b1, y)$

Table 2. More computations

$$|e^{tA_e}| \leq e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

• Tables:

	=b1+b2+b3
Kekse, 1Pk	2
Bananen, 2Kg	6
Tomaten, 1Kg	

Table	1	Δ	shopping	lic+
rabie	ı.	Н	SHODDINE	IISt.

$\sin(4x^2)$	$\cos(4 y^2)$
=diff $(a1, x)$	=diff $(b1, y)$

Table 2. More computations.

$$|e^{tA_e}| \leq e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

Tables:

$\sin(4x^2)$	$\cos(4y^2)$
=diff $(a1, x)$	=diff $(b1, y)$

Table 1. A shopping list.

Table 2. More computations.

$$|e^{tA_e}| \leq e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

Tables:

$\sin(4x^2)$	$\cos(4y^2)$
$8x\cos(4x^2)$	=diff $(b1, y)$

Table 1. A shopping list.

Table 2. More computations.

$$|e^{tA_e}| \le e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

• Tables:

Tomaten, 1Kg	5
Bananen, 2Kg	6
Kekse, 1Pk	2
	13

$\sin(4x^2)$	$\cos(4 y^2)$
$8x\cos(4x^2)$	$-8y\sin\left(4y^2\right)$

Table 1. A shopping list.

Table 2. More computations.

$$|e^{tA_e}| \leq e^{-t/\varepsilon} \sum_{n=0}^{\infty} \left(\frac{t}{\varepsilon}\right)^n \frac{1}{n!} \gamma^{n\varepsilon+1} = \gamma \exp\left\{\frac{t}{\varepsilon} \left(\gamma^{\varepsilon} - 1\right)\right\}.$$

Tables:

Tomaten, 1Kg	5
Bananen, 2Kg	6
Kekse, 1Pk	2
	13

$\sin(4x^2)$	$\cos(4y^2)$
$8x\cos(4x^2)$	$-8y\sin\left(4y^2\right)$

Table 1. A shopping list.

Table 2. More computations.

• Scripting.

• Scripting.

Let $p(x) = x^2 - 9$ and $q(x) = x^2 + 6x + 9$. Integrate:

$$\int \frac{p(x)}{q(x)} dx = \operatorname{integrate}(p(x)/q(x), x) + C.$$

• Scripting.

Let $p(x) = x^2 - 9$ and $q(x) = x^2 + 6x + 9$. Integrate:

$$\int \frac{p(x)}{q(x)} dx = x - 6 \log(x+3) + C.$$

Sessions.

```
GNUplot] plot [-10:10][-10:10] x+sin(x)
```

Sessions.

```
GNUplot] plot [-10:10][-10:10] x+sin(x)
```

Easy graphs.

		Plo	ot surface		
Function					
f:	$\sin(x)\cos(y)$				
Rar	nge				
x:	-3	_	3		
y:	-3	_	3		

Figure 1. A simple surface plot.

```
--> A = [0, 1; 0, 0]; B = [1; 1]; C = [1, 1];

--> S1 = syslin ('c', A, B, C)

--> x= -6.28:0.1:6.28; y= sin(x); plot (x, y);
```

```
--> A = [0, 1; 0, 0]; B = [1; 1]; C = [1, 1];

--> S1 = syslin ('c', A, B, C)

--> x= -6.28:0.1:6.28; y= sin(x); plot (x, y);
```

```
--> A = [0, 1; 0, 0]; B = [1; 1]; C = [1, 1];

--> S1 = syslin ('c', A, B, C)

S1 = \begin{cases} \dot{X}(t) = \binom{0}{0} X(t) + \binom{1}{1} U(t) \\ Y(t) = (11) X(t) \end{cases}
--> x= -6.28:0.1:6.28; y= sin(x); plot (x, y);
```

```
--> A = [0, 1; 0, 0]; B = [1; 1]; C = [1, 1];

--> S1 = syslin ('c', A, B, C)

S1 = \begin{cases} \dot{X}(t) = \binom{0}{0} X(t) + \binom{1}{1} U(t) \\ Y(t) = (11) X(t) \end{cases}
--> x= -6.28:0.1:6.28; y= sin(x); plot (x, y);
```

Graphics can be embedded too:

```
--> plotout()
-->
```

Graphics can be embedded too:

```
--> plotout()
```

-->

1 2 3 4 5 6 7 8 9 10 11 12 13

```
>>> print "hi guys!"
>>> import matplotlib as mpl
    mpl.use('PS')
    import matplotlib.pyplot as pl
    import numpy as np
    x = np.linspace(0,3,200)
    pl.plot(x, x + np.sin(3*x))
    fig = pl.gcf()
>>> ps_out(fig)
>>>
```

```
1 2 3 4 5 6 7 8 9 10 11 12 13
```

```
>>> print "hi guys!"
hi guys!
>>> import matplotlib as mpl
    mpl.use('PS')
    import matplotlib.pyplot as pl
    import numpy as np
    x = np.linspace(0,3,200)
    pl.plot(x, x + np.sin(3*x))
    fig = pl.gcf()
>>> ps_out(fig)
>>>
```

```
1 2 3 4 5 6 7 8 9 10 11 12 13
```

>>>

```
>>> print "hi guys!"
hi guys!
>>> import matplotlib as mpl
    mpl.use('PS')
    import matplotlib.pyplot as pl
    import numpy as np
    x = np.linspace(0,3,200)
    pl.plot(x, x + np.sin(3*x))
    fig = pl.gcf()
>>> ps_out(fig)
```

pl.plot(x, x+np.sin(pow(x, 4))) ps_out(fig)

Figure. A live figure.

Busy...

Figure. A live figure.

- Embedded computations.
- Remote computations
- Embedded graphics.
- Live documents.
- Very easy to extend.

- Embedded computations.
- Remote computations.
- Embedded graphics.
- Live documents
- Very easy to extend.

- Embedded computations.
- Remote computations.
- Embedded graphics.
- Live documents.
- Very easy to extend

- Embedded computations.
- Remote computations.
- Embedded graphics.
- Live documents.
- Very easy to extend

- Embedded computations.
- Remote computations.
- Embedded graphics.
- Live documents.
- Very easy to extend.

- Converters: XML, HTML, LATEX...
- Tree diff.
- Server side T_EX_{MACS}.
- Huge potential.

- Converters: XML, HTML, LATEX...
- Tree diff.
- Server side T_EX_{MACS}.
- Huge potential.

- Converters: XML, HTML, LATEX...
- Tree diff.
- Server side T_EX_{MACS}.
- Huge potential.

- Converters: XML, HTML, LATEX...
- Tree diff.
- Server side T_EX_{MACS}.
- Huge potential.

• Embedded interpreter.

- Embedded interpreter.
- Code as data + introspection ⇒ rad!

- Embedded interpreter.
- Code as data + introspection ⇒ rad!
- Easy impl. of DSLs.

- Embedded interpreter.
- Code as data + introspection ⇒ rad!
- Easy impl. of DSLs.
- SCHEME sessions (REPL).

- Embedded interpreter.
- Code as data + introspection ⇒ rad!
- Easy impl. of DSLs.
- SCHEME sessions (REPL).

Glad to help

mdbenito@texmacs.org

Many others too

texmacs-users@texmacs.org texmacs-dev@gnu.org

