2024 秋物理化学 I 第四次测验

课堂号: 003154.04 姓名: 学号:

	1																
H 1.008		1															He 4.003
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
Na 22.99	Mg 24.31										Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95	
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	$\operatorname*{Cr}_{52.00}$	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.61	$\operatorname*{As}_{74.92}$	Se 78.96	Br 79.90	Kr 83.80
Rb 85.47	Sr 87.62	Y 88.91	$\operatorname{Zr}_{91.22}$	Nb 92.91	Mo 95.94	Tc [98]	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	$\operatorname*{Cd}_{112.4}$	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
Cs 132.9	Ba 137.3	Ln	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	$\operatorname*{Ir}_{192.2}$	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po [210]	At [210]	Rn [222]
Fr [223]	Ra [226]	An	Rf [267]	Db [268]	Sg [269]	Bh [274]	Hs [277]	Mt [278]	Ds [281]	Rg [282]	Cn [285]	Nh [284]	Fl [289]	Mc [288]	Lv [292]	Ts [294]	Og [294]
		La 138.9	Ce 140.1	Pr 140.9	Nd 144.2	Pm [145]	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0	
		Ac [227]	Th [232]	Pa [231]	U [238]	Np [237]	Pu [239]	Am [243]	Cm [247]	Bk [247]	Cf [251]	Es [252]	Fm [257]	Md [258]	No [259]	Lr [262]	

单项选择 40′ 请将选择题的答案按照相应的题号填入下表.

No.	1	2	3	4	5	6	7	8	9	10
Ans										

1. 硫酸铜溶液可解白磷毒, 反应如下:

$$11\,P_4 + 60\,CuSO_4 + 96\,H_2O \longrightarrow 20\,Cu_3P + 24\,H_3PO_4 + 60\,H_2SO_4,$$

则当生成了 $0.4132 \text{ g Cu}_3\text{P}$ 沉淀时, 反应进度 $\xi =$

- A. $9.322 \times 10^{-5} \text{ mol}$
- B. $3.729 \times 10^{-2} \text{ mol}$
- C. 26.81 mol
- D. 10.73 mol
- 2. 化学反应系统在 p,T 恒定时, 发生 $\Delta\xi=1$ mol 反应, 其引起 Gibbs 能改变 ΔG , 则 ΔG 数值正好等于化学反应的 Gibbs 自由能变 $\left(\frac{\partial G}{\partial \xi}\right)_{p,T}$ 的条件是
 - A. 反应达到平衡
 - B. 系统发生单位反应
 - C. 无穷大系统中发生的单位反应
 - D. 反应物各自都处于标准态
- 3. 对于化学反应等温式 $\Delta_{\rm r}G_{\rm m}=\Delta_{\rm r}G_{\rm m}^{\rm e}+RT\ln Q_a,$ 对于不同标准态, 反应的 $\Delta_{\rm r}G_{\rm m}^{\rm e}$ 随之改变, 而

- A. $\Delta_r G_m$ 改变, Q_a 改变
- B. $\Delta_{\rm r}G_{\rm m}$ 不改变, Q_a 改变
- C. $\Delta_{\rm r}G_{\rm m}$ 改变, Q_a 不改变
- D. $\Delta_{\rm r}G_{\rm m}$ 不改变, Q_a 不改变
- 4. 对于反应 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$, 气体视作理想气体, 则在室温下, $K_p^{\phi}/K_c^{\phi} =$
 - A. 4034
 - B. 40.34
 - C. 4.034×10^{-4}
 - D. 4.034×10^{-2}
- 5. 对于理想气体的反应 $A(g) + B(g) \longrightarrow 2C(g) + D(g)$, 在室温与恒容的容器下进行, 初始时, 容器中仅有 A,B, 分压均为 1 atm, 反应平衡时, A 的分压为 $\frac{1}{3}$ atm, 则该反应在室温下的 $K_c =$
 - A. 0.4360 mol/L
 - B. 436.0 mol/L
 - C. $4.303 \times 10^{-3} \text{ mol/L}$
 - D. $4.303 \times 10^{-6} \text{ mol/L}$
- 6. 固定温度下, 在一容器中放入一定量 $PCl_5(g)$, 发生分解反应 $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$, 欲使得 PCl_5 的解离度增大, 以下操作中可行的是
 - A. 保持体积不变, 加入 PCl₅(g)
 - B. 保持总压不变, 加入 PCl₅(g)
 - C. 保持体积不变, 加入 Ar(g)
 - D. 保持总压不变, 加入 Ar(g)
- 7. 对于反应 $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$, 其不同温度下的标准平衡常数如下

$T/^{\circ}$ C	600	896	1000	1200
$K^{\scriptscriptstyle \oplus}$	2.45×10^{-3}	1.00	3.92	29.1

则以下说法正确的是

- A. 该反应为放热反应
- B. 该反应的焓变在此区间内不为定值
- C. 其分解温度低于 896 °C
- D. 1200 ℃ 时, 其解离压为 29.1 kPa.
- E. A, B, C, D 的说法均不正确.
- 8. 以 A 代表 Na₂HPO₄, 则反应 A·12 H₂O(s) \longrightarrow A·7 H₂O(s)+5 H₂O(g), A·7 H₂O(s) \longrightarrow A·2 H₂O(s)+5 H₂O(g), A·2 H₂O(s) \longrightarrow A(s)+2 H₂O(g) 的平衡时水蒸气分压分别为 $0.02514p^{\circ}, 0.0191p^{\circ}, 0.0129p^{\circ}$. 已知 298.15 K 时水的饱和蒸汽压为 3.1684 kPa, 现一地区温度为 298.15 K, 相对湿度稳定在 45%, 现有一 A·7 H₂O(s) 样品置于空气中,则其稳定组成的可能性最大者为
 - A. A(s)
 - B. $A \cdot 2 H_2 O(s)$

- C. $A \cdot 7 H_2 O(s)$
- D. $A \cdot 12 H_2O(s)$
- 9. 以下关于化学平衡的论述错误的是
 - A. 对于一个化学反应, 已知 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\bullet}=5$ kJ/mol, 无法判断其在等温等压下反应的进行方向.
 - B. 实际气体以逸度表示的标准平衡常数 K_f° 与系统的压强无关.
 - C. 对于合成氨反应 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$, 在 p,T 恒定时, 其使得平衡时 NH_3 摩尔分数最大的投料比是 1:3.
 - D. 对于在 T,V 恒定时的化学反应, 平衡常数的判据不再适用.
 - E. A, B, C, D 的说法中存在错误.
- 10. 硫氢化铵是一种可溶于水的无色盐, 其不稳定, 在熔化前就会分解为气体, 方程式为

$$NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g),$$

在温度 T 的恒容中, 分解反应达平衡时, 气相 (视作理想气体) 的压强称为硫氢化铵的分解压, 分解反应的标准浓度平衡常数记为 K_c° , 则以下说法错误的是

- A. 若反应初始时仅有 NH₄HS(s), 则分解压 $p_1 = 2c^{\circ}RT\sqrt{K_c^{\circ}}$.
- B. 若体系初始时, 存在压强 p_0 的 Kr(g), 则分解压 $p_2 = p_1 + p_0$.
- C. 若体系初始时, 存在压强 p_0 的 NH₃(g), 则分解压 $p_3 = \sqrt{p_0^2 + 4K_c^{\circ}(c^{\circ}RT)^2}$.
- D. 若体系初始时, 存在压强 p_0 的 $H_2S(g)$, 则分解压 $p_4 < p_2$.
- E. A, B, C, D 的说法中存在错误.

解答题 60'(+24') 第 14 题为附加题, 试卷总分不超过 100'.

- 11. 在 293.2 \sim 303.2 K 时, $O_2(g)$ 溶于水的溶解热可视作定值, $\Delta_{\rm sol}H_{\rm m}^{\circ}=-13.04$ kJ/mol. 对于 293.2 K 时, $O_2(g)$ 溶于水的 Henry 常数 $k_m=3.93\times 10^6$ kPa·kg·mol⁻¹.
- (1) 以气相 p^{\diamond} , 溶液相 m^{\diamond} 为标准态, 计算 293.2 K 时, $O_2(g)$ 溶解过程的标准平衡常数 K^{\diamond} .
- (2) 计算 303.2 K 时, O₂(g) 在水中的溶解度 (以质量摩尔浓度表示, 空气视作 1 atm, 氧气含量 20.942%).

12. 将一定量的 $Cd(AlCl_4)_2(s)$ 置于体积恒定为 V 的密闭容器中, 加热到温度 T 下使之全部蒸发为气态, 发生如下分解反应 (其中 K° 表示标准分压平衡常数):

$$\operatorname{Cd}(\operatorname{AlCl}_4)_2(g) \longrightarrow \operatorname{CdCl}_2(s) + 2\operatorname{AlCl}_3(g),$$
 (1)

$$2 \operatorname{AlCl}_3(g) \longrightarrow \operatorname{Al}_2 \operatorname{Cl}_6(g),$$
 (2)

当反应达平衡后迅速冷却体系 (即平衡不发生移动), 分离得到固体 $Cd(AlCl_4)_2(s)$ 物质的量为 n_1 , 固体 $AlCl_3(s)$ 物质的量为 n_2 , 气体视作理想气体.

- (1) 利用题目中除 K_2° 的其它物理量及可能需要的物理常数, 给出 K_2° 的表达式.
- (2) 若反应在 1 L 的反应釜中进行, 温度为 545.1 K, 测得分离后固体 $Cd(AlCl_4)_2(s)$ 1.145 $\mu mol, AlCl_3(s)$ 5.154 mmol. 已知反应

$$Cd(AlCl_4)_2(g) \longrightarrow CdCl_2(s) + Al_2Cl_6(g)$$

的标准分压平衡常数为 1145.14, 计算该温度下的 K_2° .

13. 对于乙烯水合反应

$$C_2H_4(g) + H_2O(g) \longrightarrow C_2H_5OH(g),$$

取标准态为 p[⋄],则标准摩尔 Gibbs 自由能变与温度的关系

$$\frac{\Delta_{\mathrm{r}}G_{\mathrm{m}}^{\diamond}[T]}{\mathrm{J}\cdot\mathrm{mol}^{-1}} = -34585 + 26.4\frac{T}{\mathrm{K}}\ln\frac{T}{\mathrm{K}} + 45.19\frac{T}{\mathrm{K}}.$$

- (1) 导出反应的标准摩尔熵变与标准摩尔焓变 $\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\bullet}[T], \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\bullet}[T].$
- (2) 计算 573 K, 总压为 $10p^{\circ}$ 时, 反应的平衡常数 $K_p^{\circ}, K_c^{\circ}, K_x$.

14. (附加) 体积为 V_1 的 $H_2O(l)$ 中具有质量 m 的 I_2 分子, 现有总体积为 V_2 的 $CCl_4(l)$, 已知 I_2 在二者中的分配系数

$$K = \frac{\text{CCl}_4 + \text{I}_2 \text{ 的质量浓度}}{\text{H}_2\text{O} + \text{I}_2 \text{ 的质量浓度}},$$

现定义萃取效率

$$\eta = \frac{\mathrm{H_2O} \ \mathrm{中原f} \ \mathrm{I_2} \ \mathrm{质} \mathbb{L} - \mathrm{H_2O} \ \mathrm{中萃取后} \ \mathrm{I_2} \ \mathrm{质} \mathbb{L}}{\mathrm{H_2O} \ \mathrm{中原f} \ \mathrm{I_2} \ \mathrm{质} \mathbb{L}} \times 100\%.$$

- (1) 利用 V_2 体积的 $CCl_4(l)$, 一次性萃取上述 I_2 的水溶液, 计算此时萃取效率 η_1 .
- (2) 每次使用 $V_2/3$ 体积的 $CCl_4(l)$, 分三次萃取上述 I_2 的水溶液, 计算此时的萃取效率 η_2 .
- (3) 通过计算给出萃取效率的理论最大值 η_{max} .