

Mobiles are banned:

USN:	N	4	6	D	0			Γ
C.31.4.	w		-		N.	W.		l.

DEPARTMENT OF MATHEMATICS

Sub Code:	MAM11	Sub:	ADVANCED CALCULUS	Tests	01 30
	9.30 to 10.30 am			1 CSU	
a me:		Term:	30-11-2022 TO 10-03-2023	Marks:	
Date		7.0			
Date.	19-1-2023	Semester:	Cections:	M, N, O, P	

Note: Answer any TWO full questions. Each main question carries 15 marks

Q.No.		Questions		CO's	Mark
1.	a)	Write the formula for the derivative of are length in Cartesian form.	Level	100	1000
	b)	If $u = \sin^{-1} \left[\frac{ax + by}{\sqrt{x^n + y^n}} \right]$, prove that $xu_x + yu_y = \left(1 - \frac{n}{2} \right) \tan u$.	12	CO2	3
	(c)	Derive the expression for radius of curvature in Cartesian form.			
	d)	If $x = r \cos \phi \sin \theta$, we use $\phi = 0$.	L3	COI	5
		$\frac{\partial(x,y,z)}{\partial(r,\phi,\theta)} = r^2 \sin \theta.$ then show that	и	CO2	5
2.	(a)	State Euler's theorem on homogenous function for two and three independent variables.	LI	CO2	2
	(c)	Show that $\frac{ds}{d\theta} = r\sqrt{8r-3}$ for the curve $2r\cos^2\theta = 1$.	12	COI	3
		Find the values of the constants a , b , c such that $\tilde{F} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is conservative. Also find its scalar potential.	L3	CO2	5
1	d)	Find the angle of intersection of the following pair of curves $r = \frac{a\theta}{1+\theta} & r = \frac{a}{1+\theta^2}$ Write the relation between Cartesian and Polar coordinates.	L5	COI	5
T		Find the directional desiration of deal 2	LI	COI	2
	b)	Find the directional derivative of $\phi = x^2 - 2xy + z^3$ at the point $(1, -2, -1)$ along the vector $2\vec{i} - 4\vec{j} + 4\vec{k}$.	1.2	CO2	3
	a)	Find the pedal equation to the curve $r^* = a^* \cos n\theta$.			,
		If $\vec{A} = xz^3\hat{i} - 2x^2yz\hat{j} + 2yz^4\hat{k}$ find (a) $\nabla \cdot \vec{A}$; (b) $\nabla \times \vec{A}$; (c) $\nabla \cdot (\nabla \times \vec{A})$	IJ	COI	5
	1:	it (1,-1,1).	LA	The same of	