



PATENT  
0465-1063P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: PARK, Eung Chul et al. Conf.: 7995  
Appl. No.: 10/682,039 Group: Unassigned  
Filed: October 10, 2003 Examiner: Unassigned  
For: POLYCRYSTALLINE MGO DEPOSITION  
MATERIAL HAVING ADJUSTED SI  
CONCENTRATION

L E T T E R

Commissioner for Patents  
P.O. Box 1450  
Alexandria, VA 22313-1450

January 23, 2004

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicants hereby claim the right of priority based on the following application:

| <u>Country</u> | <u>Application No.</u> | <u>Filed</u>     |
|----------------|------------------------|------------------|
| JAPAN          | 2002-296861            | October 10, 2002 |

A certified copy of the above-noted application is attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By   
Joseph A. Kolasch, #22,463

P.O. Box 747  
Falls Church, VA 22040-0747  
(703) 205-8000

JAK: bmp  
0465-1063P

Attachment

(Rev. 09/30/03)

日本国特許庁  
JAPAN PATENT OFFICE

Bindi, Stewart, Koland & Bindi, LLP  
703/205-8000  
Filed: 10-10-2003  
USSN: 10/682,039  
PARK et al.  
Docket # 0465-1063P

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日  
Date of Application: 2002年10月10日

出願番号  
Application Number: 特願 2002-296861

[ST. 10/C]: [JP 2002-296861]

出願人  
Applicant(s): 三菱マテリアル株式会社  
エルジー エレクトロニクス インコーポレーテッド

2003年10月28日

特許庁長官  
Commissioner,  
Japan Patent Office

今井康夫



【書類名】 特許願

【整理番号】 P02MB032K

【提出日】 平成14年10月10日

【あて先】 特許庁長官 殿

【国際特許分類】 C04B 35/04  
C01F 5/02  
C23C 14/30

【請求項の数】 4

【発明者】

【住所又は居所】 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内

【氏名】 桜井 英章

【発明者】

【住所又は居所】 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内

【氏名】 豊口 銀二郎

【発明者】

【住所又は居所】 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内

【氏名】 黒光 祥郎

【発明者】

【住所又は居所】 大韓民国 ソウル ヨンドンポク ヨードードン20 エルジー エレクトロニクス インコーポレーテッド内

【氏名】 パク エンチュル

【特許出願人】

【識別番号】 000006264

【氏名又は名称】 三菱マテリアル株式会社

## 【特許出願人】

【識別番号】 596066770

【氏名又は名称】 エルジー エレクトロニクス インコーポレーテッド

## 【代理人】

【識別番号】 100085372

## 【弁理士】

【氏名又は名称】 須田 正義

## 【手数料の表示】

【予納台帳番号】 003285

【納付金額】 21,000円

## 【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 Si 濃度を調整した多結晶MgO蒸着材

【特許請求の範囲】

【請求項 1】 プラズマディスプレイパネルの保護膜用多結晶MgO蒸着材において、

MgO純度が99.9%以上かつ相対密度が90%以上の多結晶MgOの焼結ペレットからなり、

前記多結晶MgO中に含まれるSiの濃度が30 ppm以上500 ppm未満であることを特徴とする多結晶MgO蒸着材。

【請求項 2】 多結晶MgO蒸着材中に含まれるSiの濃度が220～480 ppmである請求項1記載の多結晶MgO蒸着材。

【請求項 3】 多結晶MgO蒸着材中に含まれるSiの濃度が250～450 ppmである請求項1記載の多結晶MgO蒸着材。

【請求項 4】 多結晶MgO蒸着材中に含まれるSiの濃度が280～350 ppmである請求項1記載の多結晶MgO蒸着材。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、AC型のプラズマディスプレイパネルの保護膜材料として用いられるMgO膜の材料となる多結晶MgO蒸着材に関する。更に詳しくは、広い温度範囲で応答性の良好なMgO膜並びにこれらを用いたプラズマディスプレイパネルの材料となる多結晶MgO蒸着材に関するものである。

【0002】

【従来の技術】

近年、液晶 (Liquid Crystal Display) をはじめとして、各種の平面ディスプレイの研究開発と実用化はめざましく、その生産も急増している。カラープラズマディスプレイパネル (Plasma Display Panel、以下、PDPという。) についても、その開発と実用化の動きが最近活発になっている。PDPは大型化し易く、ハイビジョン用の大画面壁掛けテレビの最短距離にあり、既に対角40インチ

クラスのPDPが製造されている。PDPは、電極構造の点で金属電極が誘電体ガラス材料で覆われるAC型と、放電空間に金属電極が露出しているDC型とに分類される。

### 【0003】

このAC型PDPの開発の当初は、誘電体ガラス層が放電空間に露出していたため、直接放電に曝され、イオン衝撃のスパッタリングにより誘電体ガラス層の表面が変化して放電開始電圧が上昇していた。そのため、高い昇華熱を持つ種々の酸化物をこの誘電体ガラス層の保護膜とする試みがなされた。この保護膜は直接放電用のガスと接しているために重要な役割を担っている。即ち、保護膜に求められる特性は、①低い放電電圧、②放電時の耐スパッタリング性、③速い放電の応答性、及び④絶縁性である。これらの条件を満たす材料として、MgOが保護膜に用いられる。このMgOからなる保護膜は、誘電体ガラス層の表面を放電時のスパッタリングから守り、PDPの長寿命化に重要な働きをしている。

### 【0004】

しかし、MgO膜を保護膜として用いた場合には、黒ノイズと呼ばれる表示の亂れが多発するという問題があった。黒ノイズとは点灯すべきセル（選択セル）が点灯しないパネル表示の乱れ現象であり、画面のうちの点灯領域と非点灯領域との境界で生じやすいことが知られている。この乱れ現象は、1つのライン又は1つの列における複数の選択セルの全てが点灯しないというものではなく、発生部位が点在することから、黒ノイズの原因はアドレス放電が生じないか、又は生じてもその強度が足りないアドレスミスであると考えられている。

### 【0005】

このような上記諸問題を解決する方策として、真空成膜法によってSiを500～1000重量ppmの範囲内の割合で含んだMgO膜を耐スパッタ性保護膜として利用したPDPが開示されている（例えば、特許文献1参照。）。この特許文献1では、MgO膜中に上記割合でSiを含むことにより、黒ノイズの原因であるアドレスミスを抑制することができる。

また、脂肪酸塩の熱分解によりSiを1000～4000重量ppmの割合で含むMgO膜を形成し、この膜を耐スパッタ性保護膜として利用したPDPが

開示されている（例えば、特許文献2参照。）。この特許文献2に示された技術によると、脂肪酸塩の熱分解により形成されるMgO膜中の微量成分により電気的特性が改善され、二次電子の放出量が増大して残留電荷による実効電圧の低下が補われ、電荷の残留自体が軽減され、残留電荷が速やかに消失するため、黒ノイズの原因であるアドレスミスを抑制することができる。

#### 【0006】

一方、PDPパネルでは、放電セルの形状やパネル駆動時の印加電圧、周波数等の様々な条件が、応答性に影響することが発表されている（例えば、非特許文献1参照。）。この非特許文献1では、PDPの応答性を評価する手法が記載されている。

また、放電セル内に真空紫外線を照射させることにより、応答性が改善することが発表されている（例えば、非特許文献2参照。）。この非特許文献2でも、PDPパネルの応答性を評価する手法が記載されている。

#### 【0007】

##### 【特許文献1】

特許第3247632号公報

##### 【特許文献2】

特開2001-110321号公報

##### 【非特許文献1】

A. Seguin, L. Tessier, H. Doyeux and S. Salavin, "Measurement of Addressing Speed in Plasma Display Devices.", IDW'99, p699-702

##### 【非特許文献2】

R. Ganter, Th. Callegari, N. Posseme, B. Caillier and J.P. Boeuf, "Photoemission in Plasma Display Panel Discharge Cells.", IDW'00, p731-734

#### 【0008】

##### 【発明が解決しようとする課題】

上記特許文献1、特許文献2、非特許文献1及び非特許文献2には、応答性の評価する際に温度条件については特に触れておらず、室温付近の条件における応答性評価を行っていたと考えられる。

しかしながら、PDPの保証温度は製造メーカーによっては、最低温度で0℃、更に好ましくは-15℃、最高温度で70℃、更に好ましくは90℃と上下幅が大きい。そこで、本発明者は、-15℃～90℃の広い温度範囲にわたって放電応答性評価を行い、更に、詳細な調査を行ったところ、応答性には温度依存性があることを突き止めた。具体的には、ある温度での放電応答時間が閾値を越えると、書き込み放電不良が生じてパネルがちらつく問題があった。また放電応答性が悪い場合、アドレス期間を長くする必要があり、その結果サステイン期間が短くなり、十分なパネルの輝度が得られないため、従来はパネル輝度を改善するためにデュアルスキヤンを施すことによって、輝度を補っていた。しかしデュアルスキヤンには多くのアドレスIC数が必要となるため、回路コストが高くなる問題があった。

### 【0009】

本発明の目的は、広い温度範囲にわたって良好な放電応答性が得られる多結晶MgO蒸着材を提供することにある。

本発明の別の目的は、アドレス期間を短縮し、サステイン期間を延長することにより、パネル輝度の向上したPDPの材料となる多結晶MgO蒸着材を提供することにある。

本発明の更に別の目的は、パネル輝度の低下なしに大幅なアドレスIC数の削減を図ることができるPDPの材料となる多結晶MgO蒸着材を提供することにある。

### 【0010】

#### 【課題を解決するための手段】

請求項1に係る発明は、PDPの保護膜用多結晶MgO蒸着材の改良であり、その特徴ある構成は、MgO純度が99.9%以上かつ相対密度が90%以上の多結晶MgOの焼結ペレットからなり、多結晶MgO中に含まれるSiの濃度が30ppm以上500ppm未満であることを特徴とする。

請求項1に係る発明では、多結晶MgO中に含まれるSiの濃度が上記範囲内のMgO蒸着材を成膜したMgO膜は広い温度範囲にわたって良好な放電応答性が得られる。

**【0011】**

請求項2に係る発明は、請求項1に係る発明であって、多結晶MgO蒸着材中に含まれるSiの濃度が220～480ppmである多結晶MgO蒸着材である。

請求項3に係る発明は、請求項1に係る発明であって、多結晶MgO蒸着材中に含まれるSiの濃度が250～450ppmである多結晶MgO蒸着材である。

請求項4に係る発明は、請求項1に係る発明であって、多結晶MgO蒸着材中に含まれるSiの濃度が280～350ppmである多結晶MgO蒸着材である。

**【0012】**

請求項1ないし4いずれか記載の多結晶MgO蒸着材を成膜したMgO膜は広い温度範囲にわたって良好な放電応答性が得られる。

**【0013】**

請求項1ないし4いずれか記載の多結晶MgO蒸着材を成膜したMgO膜を用いたPDPは、広い温度範囲で良好な応答性が得られ、アドレス期間を短縮し、サステイン期間を延長することができるため、パネルの輝度が向上できる。一方、必要十分なパネル輝度を確保できるため、パネル輝度の低下なしに大幅なアドレスIC数の削減を図ることができる。

**【0014】****【発明の実施の形態】**

次に本発明の実施の形態を説明する。

本発明者は、多結晶MgO蒸着材及びこの蒸着材を用いて成膜されたMgO膜中の不純物種及びその含有量における放電応答性への影響を詳細に調査したところ、多結晶MgO中に含まれるSi濃度が大きく影響することを確認した。また多結晶MgO中のSi濃度が増加するほど概して放電応答性は良好となるが、更に増加すると逆に劣化することから、製品への適用を考えた場合、最適なSi濃度範囲が存在することが判った。このような温度依存性が存在する要因はSi添加により二次電子放出能が向上するからである。

## 【0015】

本発明のSi濃度を調整した多結晶MgO蒸着材は、PDPの保護膜用蒸着材の改良であり、MgO純度が99.9%以上かつ相対密度が90%以上の多結晶MgOの焼結ペレットからなる。その特徴ある構成は、多結晶MgO中に含まれるSiの濃度が30ppm以上500ppm未満である。

多結晶MgO中に含まれるSiの濃度が上記濃度範囲の割合で含まれた本発明のMgO蒸着材は、SiがMgOマトリックスの粒界及び粒内にサブミクロン～5μm程度の粒状の析出物として存在する。EPMA (Electron Probe MicroAnalyzer) 分析を用いた測定結果によると、本発明のMgO蒸着材中にはSiがCaSiO<sub>4</sub>やCaMgSi<sub>2</sub>O<sub>4</sub>、MgSiO<sub>3</sub>等の複合酸化物やSiO<sub>2</sub>の形態で存在していることが判った。

## 【0016】

多結晶MgO中に含まれるSiの濃度が下限値未満であったり、上限値以上であれば低温での応答性に不具合が生じる。好ましいSi濃度は220～480ppm、より好ましくは250～450ppmである。更に好ましくは280～350ppmである。

## 【0017】

本発明のMgO蒸着材を例えば、電子ビーム蒸着法により成膜したMgO膜に含まれるSiは、X線回折 (XRD、X-ray Diffractmeter) による測定の結果、MgO以外の物質、即ちMgO蒸着材中に存在していた上記複合酸化物のような物質は確認されなかった。更に、本発明のMgO膜中のMgOの格子定数は通常のMgOの格子定数よりも若干小さくなっていた。このことから、Mgよりもイオン半径の小さいSiがMgO格子内に取り込まれて存在していると推定できる。

## 【0018】

このように構成された本発明のMgO蒸着材の製造方法を説明する。

先ず純度が99.9%以上の高純度MgO粉末と多結晶MgO中に含まれるSiの濃度が30ppm以上500ppm未満になる量の高純度シリカ粉末とバインダと有機溶媒とを混合して、濃度が30～75重量%のスラリーを調製する。

好ましくは40～65重量%のスラリーを調製する。スラリーの濃度を30～75重量%に限定したのは、75重量%を越えると上記スラリーが非水系であるため、安定した混合造粒が難しい問題点があり、30重量%未満では均一な組織を有する緻密なMgO焼結体が得られないからである。MgO粉末の平均粒径は0.1～5.0  $\mu\text{m}$ の範囲内にあることが好ましい。MgO粉末の平均粒径を上記範囲内に規定したのは、下限値未満であると粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製することが困難となる問題点があり、上限値を越えると、微細構造の制御が難しく、緻密な焼結体ペレットが得られない問題点があるからである。

### 【0019】

シリカ粉末はSi存在量の偏在の防止とMgOマトリックスとの反応性及びSi化合物の純度を考慮した場合、1次粒子径がナノスケールのシリカ粒子を添加することが好ましく、特に気相法で得られた比表面積が50～300  $\text{m}^2/\text{g}$ の超微粉シリカ（エロジル）を用いるのが好ましい。

バインダとしてはポリエチレングリコールやポリビニールブチラール等を、有機溶媒としてはエタノールやプロパノール等を用いることが好ましい。バインダは0.2～5.0重量%添加することが好ましい。

### 【0020】

また高純度粉末とバインダと有機溶媒との湿式混合、特に高純度粉末と分散媒である有機溶媒との湿式混合は、湿式ボールミル又は攪拌ミルにより行われる。湿式ボールミルでは、ZrO<sub>2</sub>製ボールを用いる場合には、直径5～10mmの多数のZrO<sub>2</sub>製ボールを用いて8～24時間、好ましくは20～24時間湿式混合される。ZrO<sub>2</sub>製ボールの直径を5～10mmと限定したのは、5mm未満では混合が不十分となることからであり、10mmを越えると不純物が増える不具合があるからである。また混合時間が最長24時間と長いのは、長時間連続混合しても不純物の発生が少ないからである。

攪拌ミルでは、直径1～3mmのZrO<sub>2</sub>製ボールを用いて0.5～1時間湿式混合される。ZrO<sub>2</sub>製ボールの直径を1～3mmと限定したのは、1mm未満では混合が不十分となることからであり、3mmを越えると不純物が増える不

具合があるからである。また混合時間が最長1時間と短いのは、1時間を越えると原料の混合のみならずボール自体が摩損するため、不純物の発生の原因となり、また1時間もあれば十分に混合できるからである。

### 【0021】

次に上記スラリーを噴霧乾燥して平均粒径が50～250μm、好ましくは50～200μmの混合造粒粉末を得る。この造粒粉末を所定の型に入れて所定の圧力で成形する。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましく、所定の型は一軸プレス装置又は冷間静水圧成形装置（CIP（Cold Isostatic Press）成形装置）が用いられる。一軸プレス装置では、造粒粉末を750～2000kg/cm<sup>2</sup>、好ましくは1000～1500kg/cm<sup>2</sup>の圧力で一軸加圧成形し、CIP成形装置では、造粒粉末を1000～3000kg/cm<sup>2</sup>、好ましくは1500～2000kg/cm<sup>2</sup>の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。

### 【0022】

更に成形体を所定の温度で焼結する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1350℃以上、好ましくは1400～1800℃の温度で1～10時間、好ましくは2～8時間行う。これにより相対密度が90%以上の焼結体ペレットが得られる。上記焼結は大気圧下で行うが、ホットプレス（HP）焼結や熱間静水圧プレス（HIP、Hot Isostatic Press）焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1350℃以上の温度で1～5時間行うことが好ましい。

このようにして得られた焼結ペレットの多結晶MgO蒸着材を用い、基板表面にMgO膜を形成する。

### 【0023】

図1に本発明のPDPの内部構造を示す斜視図を示す。

面放電形式のAC型PDP10では通常、フロントガラス基板11の画面横方向にサステイン電極12とスキャン電極13が対をなして平行に配置されている。またリアガラス基板14の画面縦方向にはアドレス電極16が配置されている

。このサステイン電極 12 とスキャン電極 13 の間隙は放電ギャップと呼ばれており、この間隙は約  $80 \mu\text{m}$  に選定されている。またフロントガラス基板 11 とリアガラス基板 14 は  $100 \sim 150 \mu\text{m}$  程度の高さの隔壁 17 によって隔てられ、この隔壁 17 の壁面及び底部には蛍光体粉末 18 が塗布されている。カラー表示の場合には、ライン方向に並ぶ 3 つの放電空間を形成する隔壁 17 の背面及び底部に 3 色 (R、G、B) の蛍光体 18G、18B、18R がそれぞれ塗布されて 3 つのサブピクセル (単位発光領域) を形成し、これらを 1 ピクセルとしている。フロントガラス基板 11、リアガラス基板 14 及び隔壁 17 で形成された放電空間 19 にはガスが封入される。この封入ガスには、Ne (ネオン) や Xe (キセノン) 等の不活性ガスの混合ガスが使用される。

#### 【0024】

サステイン電極 12 及びスキャン電極 13 を被覆する誘電体ガラス層 21 の表面には、放電時の放電ガスによるイオン衝撃を低減するため、耐スパッタ性の高い保護膜 22 が設けられる。PDP では保護膜 22 の材質及び膜質が放電特性に大きな影響を与えるため、この保護膜は放電電極として作用する。この保護膜材料は耐スパッタ性に優れ、かつ二次電子放出係数の高い絶縁物である本発明の MgO 膜を用いる。

#### 【0025】

このように構成されたマトリクス表示形式の AC 型 PDP では、フロントガラス基板 11 とリアガラス基板 14 との間に設けられた放電空間 19 内で対向するサステイン電極 12 及びスキャン電極 13 とアドレス電極 16 との間にプラズマ放電を生じさせ、この放電空間 19 内に封入されているガスから発生する紫外線を放電空間 19 内に設けた蛍光体 18 に当てることにより表示を行う。表示素子であるセルの点灯状態の維持 (サステイン) にはメモリ効果が利用されている。表示に際しては、先ず、ある画像のサステインの終了から次の画像のアドレッシング (書き込み) までの間に画面全体の壁電荷の消去 (リセット) を行う。次に点灯 (発光) すべきセルのみに壁電荷を蓄積させるライン順次のアドレッシング (書き込み) を行う。その後に全てのセルに対して一斉に交番極性の放電開始電圧より低い電圧 (サステイン電圧) を印加する。壁電荷の存在するセルでは、壁電圧

がサステイン電圧に重畳するので、セルに加わる実効電圧が放電開始電圧を越えて放電が生じる。サステイン電圧の印加周波数を高くすることで、見かけ上連続的な点灯状態が得られる。

### 【0026】

上記アドレッシング（書き込み）では、リアガラス基板のアドレス電極とフロントガラス基板のスキャン電極間で書き込み放電を行うことにより壁電荷の蓄積が行われる。例えば、従来より用いられている解像度がVGA (Visual Graphics Array) クラスで256階調表現（8サブフィールド）のPDPでは、書き込み放電が $3\ \mu\text{s}$ で行われた場合、480ラインを順次書き込む必要があるため、駆動時間の約10%が壁電荷の消去に、約70%が画像データの書き込みに費やされ、実際に画像を表示する時間は残りの約20%程度しか存在しないことになる。PDPの場合、パネルの輝度はこの画像表示時間が長いほど明るく認識される。パネル輝度を改善するためにはアドレス電極を駆動するアドレスIC数を2倍にして、画像の上下部を別々に書き込む（デュアルスキャン）ことで書き込み時間を短縮し画像表示時間を延ばすことができる。しかしこの方法を用いると、回路コストが増加する問題がある。

### 【0027】

これに対して、本発明のMgO蒸着材を用いて成膜されたMgO膜は、広い温度範囲にわたって良好な放電応答性が得られるため、書き込み放電の時間を短縮することができる。従って、この保護膜を使用した本発明のPDPは、画像表示時間を延ばすことができるため、パネル輝度を向上できる。一方、パネル輝度の低下なしに大幅なアドレスIC数の削減も図ることができる。

### 【0028】

#### 【実施例】

次に本発明の実施例を比較例とともに詳しく説明する。

#### ＜実施例1＞

多結晶MgO蒸着材としてMgO純度99.95%、相対密度98%、多結晶MgO中に含まれるSiの濃度が300 ppmの焼結ペレットを用意した。ペレットの大きさは5mmφ、1.6mm厚である。また、表面にITO電極と銀電

極を積層させて電極を形成し、更にこの電極を覆うように誘電体ガラス層を形成したガラス基板を用意した。

このガラス基板に形成された誘電体ガラス層の上に、電子ビーム蒸着法により、膜厚が8000 Åで結晶配向性が(111)のMgO膜を形成した。成膜条件は到達真空度が $1.0 \times 10^{-4}$  Pa、酸素ガス分圧が $1.0 \times 10^{-2}$  Pa、基板温度が200°C、成膜速度が20 Å/秒である。

### 【0029】

#### ＜実施例2＞

多結晶MgO蒸着材としてMgO純度99.91%、相対密度94%、多結晶MgO中に含まれるSiの濃度が250 ppmの焼結ペレットを用いた以外は実施例1と同様の方法によりMgO膜を形成した。

#### ＜実施例3＞

多結晶MgO蒸着材としてMgO純度99.93%、相対密度92%、多結晶MgO中に含まれるSiの濃度が400 ppmの焼結ペレットを用いた以外は実施例1と同様の方法によりMgO膜を形成した。

#### ＜実施例4＞

多結晶MgO蒸着材としてMgO純度99.95%、相対密度95%、多結晶MgO中に含まれるSiの濃度が450 ppmの焼結ペレットを用いた以外は実施例1と同様の方法によりMgO膜を形成した。

### 【0030】

#### ＜実施例5＞

多結晶MgO蒸着材としてMgO純度99.98%、相対密度98%、多結晶MgO中に含まれるSiの濃度が30 ppmの焼結ペレットを用いて実施例1と同様の方法によりMgO膜を形成し、形成したMgO膜を用いてPDPモジュールを作製した。作製したモジュールをADS(Address Display Separation)方式により駆動させ、実機にてアドレス放電時の応答時間を評価した。

#### ＜実施例6＞

多結晶MgO蒸着材としてMgO純度99.98%、相対密度98%、多結晶MgO中に含まれるSiの濃度が300 ppmの焼結ペレットを用いて実施例1

と同様の方法により MgO 膜を形成し、実施例 5 と同様に PDP モジュールを作製した。作製したモジュールを ADS 方式により駆動させ、実機にてアドレス放電時の応答時間を評価した。

### 【0031】

#### ＜比較例 1＞

多結晶 MgO 蒸着材として MgO 純度 99.96%、相対密度 98%、多結晶 MgO 中に含まれる Si の濃度が 25 ppm の焼結ペレットを用いた以外は実施例 1 と同様の方法により MgO 膜を形成した。

#### ＜比較例 2＞

多結晶 MgO 蒸着材として MgO 純度 99.90%、相対密度 95%、多結晶 MgO 中に含まれる Si の濃度が 550 ppm の焼結ペレットを用いた以外は実施例 1 と同様の方法により MgO 膜を形成した。

#### ＜比較例 3＞

多結晶 MgO 蒸着材として MgO 純度 99.0%、相対密度 95%、多結晶 MgO 中に含まれる Si の濃度が 240 ppm の焼結ペレットを用いた以外は実施例 1 と同様の方法により MgO 膜を形成した。

#### ＜比較例 4＞

多結晶 MgO 蒸着材として MgO 純度 99.98%、相対密度 98%、多結晶 MgO 中に含まれる Si の濃度が 1000 ppm の焼結ペレットを用いて実施例 1 と同様の方法により MgO 膜を形成し、実施例 5 と同様に PDP モジュールを作製した。作製したモジュールを ADS 方式により駆動させ、実機にてアドレス放電時の応答時間を評価した。

### 【0032】

#### ＜比較試験及び評価＞

実施例 1～4 及び比較例 1～3 で得られた MgO 膜を有するガラス基板を用いてテスト基板をそれぞれ作製した。具体的には、先ず、MgO 膜を有するガラス基板をフロントガラス基板とした。次に、銀電極と白色誘電体ガラス層を積層させて形成した後、その上に高さが 150 μm、ピッチが 360 μm の隔壁（リブ）を形成したリアガラス基板を用意した。これらのリアガラス基板とフロントガ

ラス基板を対向するように配置させた。フロントガラス基板、リアガラス基板、隔壁により形成された放電空間には、Ne-4%Xe混合ガスを放電ガスとして注入した。

### 【0033】

このようにして得られたテスト基板を用い、-15°C、0°C、25°C、50°C、70°C及び90°Cの各温度条件における擬似的なアドレス放電試験、即ち2枚のガラス基板間の対向放電試験を行った。試験条件は、放電ガス圧を150Torr即約 $2.0 \times 10^4$ Pa、印加電圧を250V、周波数を10Hzとした。このような条件で試験を行い、放電によって放出される近赤外線を光電子増倍管により検知し、電圧を印加してから発光が終了するまでの時間を応答時間として評価した。なお、この応答時間には統計的な発光ばらつきを含む。図2に試験結果をそれぞれ示す。なお、図2において、太線で設定された閾値は、同様の条件で成膜したMgO膜を用いて作製された42インチパネルを用いて実際に応答性を評価して得た結果との比較から、500μsと設定した。

### 【0034】

図2より明らかなように、本発明で規定したMgO純度より低い純度のMgOを用いた比較例3では、室温付近での試験結果が閾値を大きく越える結果となり、純度の低いMgO蒸着材を用いると応答性が悪くなることが判る。本発明のSi濃度範囲よりもSi濃度が低い比較例1及びSi濃度が高い比較例2では、-15°Cにおいて閾値を越える応答時間となった。この結果からMgO中のSi濃度が本発明で規定した下限値(30ppm)よりも低い場合、及び上限値(500ppm)よりも高い場合、低温条件での応答性に難があることが判った。これらの閾値を越える応答時間の結果から、比較例1～3と同様の条件で成膜したMgO膜を用いて、実際に42インチパネルを作製し、このパネルを駆動した場合、書き込みエラーが生じ、パネルにちらつきが確認されると推定することができる。これに対してMgO中のSi濃度が本発明の濃度範囲(30ppm以上500ppm未満)内である実施例1～4では、-15°Cから90°Cの広い温度範囲にわたって閾値以下の応答時間となっており、応答性が極めて良好であることが判る。

## 【0035】

次に、実施例5、6及び比較例4でそれぞれ作製したモジュールをADS方式により駆動させ、実機にてアドレス放電時の応答時間を評価した。図3にその試験結果をそれぞれ示す。

## 【0036】

図3に示すように、Si濃度が30ppmの実施例5及び300ppmの実施例6では目標応答時間（1μs以下）より、低い応答時間で良好な結果を示していた。これに対してSi濃度が1000ppmの比較例4では、目標応答時間を越えており、応答性に難があることが判った。このように、応答性に関してMgO膜中に含まれるSi濃度には最適濃度範囲が存在することが判る。

## 【0037】

## 【発明の効果】

以上述べたように、本発明のSi濃度を調整した多結晶MgO蒸着材は、PDPの保護膜用蒸着材の改良であり、その特徴ある構成は、MgO純度が99.9%以上かつ相対密度が90%以上の多結晶MgOの焼結ペレットからなり、多結晶MgO中に含まれるSiの濃度が30ppm以上500ppm未満であるところにある。Si濃度を上記範囲内に規定したMgO蒸着材を用いて成膜したMgO膜は広い温度範囲にわたって良好な放電応答性が得られる。またこのMgO膜を用いて作製されたPDPは、パネル輝度の向上を図ることができ、更にはパネル輝度の低下なしに大幅なアドレスIC数の削減を図ることができる。

## 【図面の簡単な説明】

## 【図1】

PDPの内部構造を示す要部断面斜視図。

## 【図2】

実施例1～4及び比較例1～3のMgO膜における応答性と温度との関係を示す図。

## 【図3】

実施例5、6及び比較例4のPDPモジュールにおけるアドレス放電時の応答性とSi濃度との関係を示す図。

## 【符号の説明】

- 1 0 プラズマディスプレイパネル
- 1 1 フロントガラス基板
- 1 2 サステイン電極
- 1 3 スキヤン電極
- 1 4 リアガラス基板
- 1 6 アドレス電極
- 1 7 隔壁（障壁、リブ）
- 1 8 蛍光体
- 1 8 G 蛍光体（緑）
- 1 8 B 蛍光体（青）
- 1 8 R 蛍光体（赤）
- 1 9 放電空間
- 2 1 誘電体ガラス層
- 2 2 保護膜（MgO膜）

【書類名】 図面

【図1】



【図2】



【図3】



【書類名】 要約書

【要約】

【課題】 広い温度範囲にわたって良好な放電応答性が得られる多結晶MgO蒸着材を提供する。パネル輝度の向上したプラズマディスプレイパネル及びパネル輝度の低下なしに大幅なアドレスIC数の削減を図ることができるプラズマディスプレイパネルの材料となる多結晶MgO蒸着材を提供する。

【解決手段】 プラズマディスプレイパネルの保護膜用多結晶MgO蒸着材の改良であり、その特徴ある構成は、MgO純度が99.9%以上かつ相対密度が90%以上の多結晶MgOの焼結ペレットからなり、多結晶MgO中に含まれるSiの濃度が30ppm以上500ppm未満であるところにある。

【選択図】 図1

特願2002-296861

出願人履歴情報

識別番号 [00006264]

1. 変更年月日 1990年12月11日  
[変更理由] 名称変更  
住所変更

住 所 東京都千代田区大手町1丁目6番1号  
氏 名 三菱マテリアル株式会社

2. 変更年月日 1992年 4月10日  
[変更理由] 住所変更

住 所 東京都千代田区大手町1丁目5番1号  
氏 名 三菱マテリアル株式会社

特願 2002-296861

出願人履歴情報

識別番号 [596066770]

1. 変更年月日 1996年 5月14日  
[変更理由] 新規登録  
住 所 大韓民国 ソウル ヨンドンポク ヨードードン 20  
氏 名 エルジー エレクトロニクス インコーポレーテッド