Leçon 125. Extensions de corps. Exemples et applications.

1. Généralités sur les extensions de corps

1.1. Sur-corps et notion de degré

- 1. DÉFINITION. Une extension de corps est la donnée de deux corps K et L et d'un morphisme de corps $K \longrightarrow L$. On dira que le corps L est un sur-corps de K.
- 2. Remarque. Le morphisme $K \longrightarrow L$ sera souvent omis et l'extension sera notée sous la forme L/K.
- 3. EXEMPLE. Pour un corps K, l'application identité $K \longrightarrow K$ définie une extension. Le corps ${\bf C}$ est une extension de ${\bf R}$.
- 4. PROPOSITION. Soit $\iota\colon K\longrightarrow L$ une extension de corps. Alors la loi de composition externe $(\lambda,x)\in K\times L\longmapsto \lambda\cdot x\coloneqq\iota(\lambda)x\in L$ munit l'ensemble L d'une structure de K-espace vectoriel.
- 5. DÉFINITION. Une extension L/K est finie si le K-espace vectoriel L est de dimension finie. Dans ce cas, son $degr\acute{e}$ est la dimension de ce dernier, notée [L:K].
- 6. Exemple. Les extensions C/R et Q(i)/Q sont degré 2.
- 7. Remarque. Dans le cas où les corps K et L sont finis, l'extension L/K est finie et on peut écrire $|L|=|K|^{[L:K]}$.
- 8. Théorème (de la base téléscopique). Soient M/L et L/K deux extensions. Soient $(e_i)_{i\in I}$ une base du K-espace vectoriel L et $(f_j)_{j\in J}$ une base du L-espace vectoriel M. Alors la famille $(e_if_j)_{(i,j)\times I\times J}$ est une base du K-espace vectoriel M.
- 9. COROLLAIRE (multiplicativité du degré). Soient M/L et L/K deux extensions finies. Alors [M:K]=[M:L][L:K].
- 10. DÉFINITION. Une extension L/K est $monog\`ene$ s'il existe un existe un élément $\alpha \in L$ tel que le corps L soit le plus petit sous-corps $K(\alpha)$ de L contenant l'élément α .
- 11. Théorème (de l'élément primitif). Soient K un corps de caractéristique nulle et L/K une extension finie. Alors il existe un élément $\alpha \in K$ tel que $L = K[\alpha]$.
- 12. Remarque. Le résultat reste vrai si corps K est fini.

1.2. Extensions algébriques

- 13. DÉFINITION. Soit L/K une extension. Un élément $\alpha \in L$ est algébrique sur L s'il existe un polynôme non constant $P \in K[X]$ tel que $P(\alpha) = 0$. Dans ce cas, l'ensemble $\{P \in K[X] \mid P(\alpha) = 0\}$
- est un idéal de K[X], donc il admet une unique générateur unitaire $\pi_{\alpha} \in K[X]$, appelée le polynôme minimal de l'élément α sur K. Dans le cas contraire, l'élément α est transcendant sur K.
- 14. Remarque. Le polynôme π_{α} est irréductible sur K.
- 15. EXEMPLE. Tout élément de K est algébrique sur K. Le nombre $\sqrt{2}$ est algébrique sur \mathbf{Q} , mais le nombre π y est transcendant.
- 16. DÉFINITION. Une extension L/K est algébrique si et seulement si tout élément du corps L est algébrique sur K.

- 17. PROPOSITION. Soient L/K une extension et $\alpha \in L$ un élément transcendant. Alors $K[\alpha] \simeq K[X]$ et $K(\alpha) \simeq K(X)$.
- 18. Théorème. Soient L/K une extension et $\alpha \in L$ un élément. Alors les points suivants sont équivalents :
 - l'élément α est algébrique sur K;
 - $-K[\alpha] = K(\alpha);$
 - le K-espace vectoriel $K[\alpha]$ est de dimension finie.
- 19. COROLLAIRE. Tout extension finie est algébrique.
- 20. Théorème. Soit L/K une extension. Alors l'ensemble des éléments de L algébriques sur K est un sous-corps de L.
- 21. Remarque. L'ensemble $\overline{\mathbf{Q}}$ des nombres complexes algébriques sur \mathbf{Q} est donc un sous-corps de \mathbf{C} . Mais cette extension n'est pas fini.
- 22. Remarque. Soient L/K une extension et $\alpha, \beta \in L$ deux éléments algébriques sur K. Alors un polynôme annulateur de l'élément $\alpha + \beta$ est le polynôme

$$\operatorname{Res}_X(\pi_{\alpha}(X), \operatorname{Res}_Y(\pi_{\beta}(Y), Z - X - Y)) \in K[Z].$$

1.3. Clôture algébrique

- 23. DÉFINITION. Un corps K est algébriquement clos si tout polynôme non constant de K[X] admet une racine dans K.
- 24. Proposition. Soit K un corps. Alors les points suivants sont équivalents :
 - le corps K est algébriquement clos;
 - tout polynôme de K[X] est scindé;
 - les polynômes irréductibles de K[X] sont les polynômes de degré un;
 - toute extension algébrique L/K vérifie L=K.
- 25. THÉORÈME (d'Alembert-Gauss). Le corps C est algébriquement clos.
- 26. Théorème. Le corps $\overline{\mathbf{Q}}$ est algébriquement clos.
- 27. DÉFINITION. Une clôture d'un corps K est une extension algébrique L/K telle que le corps L soit algébriquement clos.
- 28. Théorème. Un corps K admet une clôture algébrique et il est unique à isomorphismes de corps qui conserve K près.

2. Construction d'extensions par adjonction de racines

2.1. Corps de rupture et de décomposition

- 29. DÉFINITION. Soient K un corps et $P \in K[X]$ un polynôme irréductible sur K. Un corps de rupture du polynôme irréductible P sur K est une extension L/K s'écrivant sous la forme $L = K(\alpha)$ pour un élément $\alpha \in L$ vérifiant $P(\alpha) = 0$.
- 30. THÉORÈME. Soit $P \in K[X]$ un polynôme irréductible sur K. Alors il admet un corps de rupture sur K. De plus, deux tels corps sont isomorphes au corps K[X]/(P).
- 31. EXEMPLE. Le corps $\mathbf{C} \simeq \mathbf{R}[X]/(X^2+1)$ des complexes est un corps de rupture du polynôme X^2+1 sur \mathbf{R} .

– le polynôme P soit scindé sur L;

- le corps L est minimal pour le point ci-dessus.

33. Théorème. Tout polynôme de K[X] admet un corps de décomposition sur K, unique à isomorphismes près.

34. EXEMPLE. Le corps $\mathbf{Q}(\sqrt[3]{2},j)$ est un corps de décomposition du polynôme X^3-2 sur \mathbf{Q} .

2.2. Construction des corps finis

35. Théorème. Soient p un nombre premier et $n \in \mathbb{N}^*$ un entier non nul. Alors il existe un unique corps de cardinal $q := p^n$ à isomorphisme près et il s'agit du corps de décomposition du polynôme $X^q - X$ sur \mathbf{F}_p . On le note \mathbf{F}_q .

36. Exemple. Attention, le corps \mathbf{F}_q ne correspond pas à l'anneau $\mathbf{Z}/q\mathbf{Z}$.

37. EXEMPLE. Le corps \mathbf{F}_4 s'obtient comme le quotient $\mathbf{F}_2[X]/\langle X^2+X+1\rangle$.

38. THÉORÈME. Le groupe \mathbf{F}_q^{\times} est isomorphe au groupe cyclique $\mathbf{Z}/(q-1)\mathbf{Z}$.

39. Théorème. Soient $m, n \in \mathbb{N}^*$ deux entiers non nuls. Alors il existe un morphisme de corps $\mathbf{F}_{p^m} \longrightarrow \mathbf{F}_{p^n}$ si et seulement si $m \mid n$.

40. THÉORÈME. Soit $n \in \mathbf{N}^*$ un entier non nuls. Alors l'ensemble $\bigcup_{k \in \mathbf{N}^*} \mathbf{F}_{p^{k!}}$ est une clôture algébrique du corps \mathbf{F}_{p^n} .

3. Les extensions de corps en algèbre

3.1. Les polynômes cyclotomiques

41. NOTATION. On considère un corps K de caractéristique $p \geqslant 0$ et un entier n > 0. On suppose que $p \nmid n$.

42. DÉFINITION. Une racine n-ième de l'unité est un élément $\xi \in K$ tel que $\xi^n = 1$. Elle est primitive si $\xi^d \neq 1$ pour d < n. On note $\mu_n(K)$ (resp. $\mu_n^{\times}(K)$) les ensembles de racines n-ième (resp. primitives).

43. DÉFINITION. Soit K_n un corps de décomposition du polynôme X^n-1 sur K. Le n-ième polynôme cyclotomique est le polynôme

$$\Phi_{n,K} := \prod_{\xi \in \mu_n^{\times}(K_n)} (X - \xi) \in K_n[X].$$

44. REMARQUE. Le polynôme $\Phi_{n,K}$ est unitaire de degré $\varphi(n) = |(\mathbf{Z}/n\mathbf{Z})^{\times}|$.

45. Proposition. On a

$$X^n - 1 = \prod_{d|n} \Phi_{d,K}.$$

46. EXEMPLE. On peut calculer $\Phi_{1,\mathbf{Q}}=X-1, \Phi_{2,\mathbf{Q}}=X+1$ et $\Phi_{3,\mathbf{Q}}=X^2+X+1$.

47. THÉORÈME (Wedderburn). Tout corps fini est commutatif.

48. PROPOSITION. On a $\Phi_n := \Phi_{n,\mathbf{Q}} \in \mathbf{Z}[X]$. Soit $\sigma \colon \mathbf{Z} \longrightarrow K$ l'unique morphisme d'anneaux que l'on étend en un morphisme d'anneaux $\sigma \colon \mathbf{Z}[X] \longrightarrow K[X]$ en envoyant l'indéterminée X sur elle-même. Alors $\Phi_{n,K} = \sigma(\Phi_{n,\mathbf{Q}})$.

49. THÉORÈME. Le polynôme $\Phi_n := \Phi_{n,\mathbf{Q}}$ est irréductible sur \mathbf{Z} et donc sur \mathbf{Q} .

50. COROLLAIRE. Soit $\xi \in \mu_n^{\times}(\mathbf{C})$. Alors son polynôme minimal sur \mathbf{Q} est le polynôme Φ_n . En particulier, on a $[\mathbf{Q}(\zeta):\mathbf{Q}]=\varphi(n)$.

3.2. Construction à la règle et au compas

51. NOTATION. On fixe un ensemble $E \subset \mathbf{R}^2$ contenant au moins deux éléments. Notons $F \subset \mathbf{R}$ l'ensemble des abscisses et ordonnées des points de l'ensemble E. On pose $\mathbf{K} := \mathbf{Q}(F)$.

52. DÉFINITION. Un point du plan \mathbb{R}^2 est constructible en une étape à partir de E s'il est une intersection

- d'une droite d'extrémités dans E et d'un cercle de centre dans E;

- de deux droites distincts d'extrémités dans E:

- ou de deux cercles distincts de centres dans E dont les rayons sont des distances entre de points de E.

Il est constructible en n étapes à partir de E s'il existe n points $P_1, \ldots, P_n = P$ du plan tels que, pour tout entier $i \in [1, n]$, le point P_i soit constructible en une étape à partir de l'ensemble $E \cup \{P_1, \ldots, P_i\}$.

53. PROPOSITION. Soit $(p,q) \in \mathbf{R}^2$ un point constructible en une étape à partir de E. Alors le corps $\mathbf{K}(p,q)$ est le corps \mathbf{K} ou une extension quadratique de \mathbf{K} .

54. THÉORÈME. Soit $(p,q) \in \mathbf{R}^2$ un point constructible en une étape à partir des points (0,0) et (1,0). Alors il existe une tour d'extensions $\mathbf{K}_m/\cdots/\mathbf{K}_0$ telle que

- on ait $(p,q) \in \mathbf{K}_m \subset \mathbf{R}$;

- pour tout indice $i \in [1, m-1]$, on a $[\mathbf{K}_{i+1} : \mathbf{K}_i] = 2$.

Michèle Audin. Géométrie. EDP Sciences, 2006.

Josette Calais. Extensions de corps. Ellipses, 2006.

^[3] Xavier Gourdon. Algèbre. 2º édition. Ellipses, 2009

^[4] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.