Problem 1. Section 3.6 #218

We know from memorized trig derivatives that $\frac{dy}{du} = \sec^2(u)$, and compute $\frac{du}{dx} = 9$. Thus $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \sec^2(u) \cdot 9$, but we can substitute in u = 9x + 2 to get $\left| \frac{dy}{dx} = 9\sec^2(9x + 2) \right|$.

Problem 2. Section 3.6 #224

We can decompose this as $y = \tan(u)$ and $u = \sec(x)$. Then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \sec^2(u) \sec(x) \tan(x)$, which substituting in for u gives $|\sec^2(\sec(x))\sec(x)\tan(x)|$

Problem 3. Section 3.6 #232

We see $y = \frac{1}{u}$ and $u = \sin^2(x)$. We can find $\frac{dy}{du}$ using the power rule, and $\frac{du}{dx}$ using the chain rule, to get that $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = -\frac{1}{u^2}(2\sin(x))\cos(x)$, which substituting for u yields $\frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{2\cos(x)}{\sin^3(x)}$

Let $y = \sqrt(u)$ and $u = 6 + \sec(\pi x^2)$. We find $\frac{dy}{du}$ with the power rule, and $\frac{du}{dx}$ with the sum rule and chain rule, to get that $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{1}{2\sqrt{u}} \sec(\pi x^2) \tan(\pi x^2) 2\pi x$, which substituting for u yields $\left[\frac{dy}{dx} = \frac{\pi x \sec(\pi x^2) \tan(\pi x^2)}{\sqrt{6 + \sec(\pi x^2)}}\right]$.

for
$$u$$
 yields
$$\frac{dy}{dx} = \frac{\pi x \sec(\pi x^2) \tan(\pi x^2)}{\sqrt{6 + \sec(\pi x^2)}}.$$

Section 3.6 #240 Problem 5.

First let's compute $\frac{dy}{dx}$. We can compute the chain rule to see that $\frac{dy}{dx} = 2(f(u)+3x)(f'(u)u'+3)$. Evaluating this at x=2, we get $18=2(f(4)+6)(f'(4)\cdot 10+3)=(2)(12)(10f'(4)+6)$, so $f'(4) = \left| -\frac{9}{40} \right|$

Problem 6. Section 3.6 #250

First compute $h'(x) = 3(1+g(x))^2(g'(x))$, and then plug in a=2 to get $h'(2)=3(1+g(x))^2(g'(x))$ $g(2)^{2}(g'(2))$, which from the chart shows $h'(2) = 3(1+1)^{2}(-1) = \boxed{-12}$.

Problem 7. Section 3.6 #256

(a) We see
$$\frac{dA}{dr} = 2\pi r$$
. Similarly, $\frac{dr}{dt} = \frac{200}{(t+7)^3}$. Thus $\frac{dA}{dt} = 2\pi r \frac{200}{(t+7)^3} = 2\pi r \frac{100}{(t+7)^2} \frac{200}{(t+7)^3}$