Math 167 (Mathematical Game Theory) University of California, Los Angeles

Aaron Chao

Spring 2022

These are my lecture notes for Math 167 (Mathematical Game Theory) taught by Oleg Gleizer. The main textbook for this class is *Game Theory*, *Alive* by Anna Karlin and Yuval Peres and the supplementary textbook is *A Course in Game Theory* by Thomas Ferguson.

Contents	
Week 1	2
1 Mar 28, 2022 1.1 Impartial Combinatorial Games	. 2 2
2 Mar 30, 2022 2.1 Combinatorial Games (Cont'd)	
3 April 1, 2022 3.1 The Game of Nim (Cont'd)	. 8
Week 2	10
4 Apr 4, 2022 4.1 Two-Person Zero Sum Games (Cont'd)	. 10

1 Mar 28, 2022

1.1 Impartial Combinatorial Games

Definition 1.1 (Impartial combinatorial game)

In an $\underline{\text{impartial combinatorial game}}$,

- Two-person
- Perfect information
- No chance moves
- Win-or-lose outcome

Example 1.2

Suppose

- A pile of *n* chips on the table
- Two players: P1 and P2
- A move consists of removing one, two, or three chips from the pile
- P1 makes the first move, players alternate then
- The player to remove the last chip wins (the last player to move wins. If a player can't move, they lose.)

Method to analyze: backward induction.

Positions:

- N, next player to take a move wins.
- P, previous (second) player to take a move wins.

Graph of the game

Any move from a P position leads to an N position. There always exists a move from an N position to a P position.

Ending condition: the game ends in a finite number of moves, no matter how played. A **T** position is a **P** position.

Definition 1.3 (Normal play vs. misère play)

In a <u>normal play</u>, the last player to move wins. In a <u>misère play</u>, the last player to move loses.

Example 1.4

A misère game, a player can take 1-4 chips.

Every position is either N or P, but not nothing or both.

Example 1.5 (The game of Chomp)

Graph of the game:

- Positions correspond to vertices
- Moves correspond to oriented edges

Definition 1.6 (Strategy)

A function that assigns a move to each position, except for the terminal.

Definition 1.7 (Winning strategy from a position x)

A winning strategy from a position x is a sequence of moves, starting from x, that guarantees a win.

Consider a normal game. Let N_i/P_i be the set of positions from which P1/P2 can win (reach the nearest terminal vertex of the same graph) in at most i moves.

$$\mathbf{P}_0 = \mathbf{P}_1 = \{\text{terminal positions}\}$$

 $\mathbf{N}_{i+1} = \{x : \text{ there is a move from } x \text{ to } \mathbf{P}_i\}$

 $\mathbf{P}_{i+1} = \{y : \text{ each move leads to } \mathbf{N}_i\}$

Note 1.8: $\mathbf{P}_0 = \mathbf{P}_1 \subseteq \mathbf{P}_2 \subseteq \mathbf{P}_3 \dots$

$$\mathbf{N}_1 \subseteq \mathbf{N}_2 \subseteq \mathbf{N}_3 \dots$$

$$\mathbf{N} = \bigcup_{i=1} \mathbf{N}_i, \quad \mathbf{P} = \bigcup_{i=0} \mathbf{P}_i$$

Definition 1.9 (Progressively bounded)

A game is called <u>progressively bounded</u> if for every position x there exists an upper bound B(x) on the number of moves until the game terminates.

2 Mar 30, 2022

2.1 Combinatorial Games (Cont'd)

Recall 2.1 • $P_0 = P_1 = \{\text{terminal positions}\}\$

- $\mathbf{N}_{n+1} = \{x : \text{there is a move from } x \text{ to } \mathbf{P}_n \}$
- $\mathbf{P}_{n+1} = \{y : \text{ each move from } y \text{ leads to } \mathbf{N}_n \}$
- $P_0 = P_1 \subseteq P_2 \subseteq \dots$
- $\mathbf{N}_1 \subseteq \mathbf{N}_2 \subseteq \mathbf{N}_3 \subseteq$
- $\mathbf{P} = \bigcup_{n=0}^{\infty} \mathbf{P}_n$
- $\mathbf{N} = \bigcup_{n=1}^{\infty} \mathbf{N}_n$
- A game is called <u>progressively bounded</u> if for every position x there exists an upper bound B(x) on the number of moves until the game stops.

Theorem 2.2

In a progressively bounded impartial full information combinatorial game, all positions are in $\mathbb{N} \cup \mathbb{P}$. Thus, for every position there exists a winning strategy.

Proof. Let $B(x) \leq n$. Let us prove by induction that $x \in \mathbb{N}_n \cup \mathbb{P}_n$.

Base: n = 0

x is a terminal vertex $\implies x \in \mathbf{P}_0 = \mathbf{P}_1$.

Inductive hypothesis by \mathbf{P}_0 : $B(x) \leq n \implies x \in \mathbf{N}_n \cup \mathbf{P}_n$.

Inductive step: Show that $B(x) \leq n+1 \implies x \in \mathbf{N}_{n+1} \cup \mathbf{P}_{n+1}$

Consider a move $x \to y$ and $B(y) \le n$. Hence, $y \in \mathbf{N}_n \cup \mathbf{P}_n$. So either

Case 1: Each move from x leads to $y \in \mathbf{N}_n \implies x \in \mathbf{P}_{n+1}$.

Case 2: There exists a move from x to $y \notin \mathbf{N}_n$. Thanks to the inductive typo, $y \in \mathbf{N}_n \cup \mathbf{P}_n$ so $y \in \mathbf{P}_n \implies x \in \mathbf{N}_{n+1}$.

2.2 The Game of Nim

- Several piles, each containing finitely many chips.
- A move: a player can remove any number of chips, from one to all from any pile
- P1 and P2 alternate taking moves
- The player to take the last chip wins

Example 2.3

We have two piles. The general case for k piles, we state: (x_1, x_2, \ldots, x_k) .

Nim-Sum:

Consider $x \oplus y$. We rewrite x and y as binary numbers and perform long addition of x_2 and y_2 without carry-over, i.e. mod 2.

Example 2.4

Note 2.5: Nim is a progressively bounded game.

Theorem 2.6 (Bouton)

A position $x = (x_1, x_2, \dots, x_k)$ is a **P** position $\iff x_1 \oplus x_2 \oplus \dots \oplus x_k = 0$.

3 April 1, 2022

3.1 The Game of Nim (Cont'd)

Recall 3.1 $x = (x_1, x_2, ..., x_k)$ Theorem (Bouton) says $x \in \mathbf{P} \iff x_1 \oplus x_2 \oplus \cdots \oplus x_k = 0$.

Proof of Theorem 2.6. We have

Terminal position: $x = (0, 0, \dots 0) \in \mathbf{P}$ Let $x \in \mathbf{N}$. Then there exists a move $x \to y \in \mathbf{P}$.

Find the left-most (most significant) column with an odd number of 1's. Change any number that has a 1 in the column so that there is an even number of 1's in every column. The 1 in the most significant position becomes a 0 which implies the number becomes smaller. So this is a legal move.

We have $x \in \mathbf{P} \implies$ any move $x \to y \in \mathbf{N}$ where

$$x = (x_1, x_2, \dots, x_k) \mapsto y = (x'_1, x_2, \dots, x_k)$$

such that

$$x_1' < x_1 \text{ and } x_1 \oplus x_2 \oplus \cdots \oplus x_k = 0.$$

If

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k = 0$$

then

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k = 0$$

then $x'_1 = x_0$, a contradiction. Hence

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k \neq 0 \implies y \in \mathbf{N}.$$

Example 3.2

$$x_1 = 7$$
$$x_2 = 10$$
$$x_3 = 15$$

So we have that $(7, 10, 15) \mapsto (5, 10, 15)$

3.2 Subtraction Nim

Extra condition: A player can remove at most n chips.

We find pile sizes mod n + 1, i.e.

$$(x_1, x_2, \dots, x_k) \mapsto (x_1 \mod n + 1, x_2 \mod n + 1, \dots, x_k \mod n + 1)$$

Now we find the Nim-sum and make a move.

$$x \bmod n + 1 = \underbrace{(x_1 \bmod n + 1, x_2 \bmod n + 1, \dots, x_k \bmod n + 1)}_{(x_1 \bmod n + 1)_2 \oplus (x_2 \bmod n + 1)_2 \oplus \dots \oplus (x_k \bmod n + 1)_2} \implies \begin{cases} = 0 \iff \mathbf{P} \\ \neq 0 \iff \mathbf{N} \end{cases}$$

Example 3.3

We have x = (12, 13, 14) and n = 3. So,

$$(12 \mod 4, 13 \mod 4, 14 \mod 4) \equiv (0, 1, 2) = (0_2, 1_2, 10_2)$$

So

$$\begin{array}{ccc}
 & 0 & 0 \\
 & 0 & 1 \\
 & 1 & 0 \\
\hline
 & 1 & 1
\end{array}
\neq 0$$

so we take away one chip from the third pile

So we have that $(12, 13, 14) \mapsto (12, 13, 13)$.

Note 3.4: You can always make a legal move $\mathbb{N} \to \mathbb{P}$ by removing $i \leq n$ chips from a pile.

Note 3.5: To move from **P** to **P**, you need to remove n+1 chips from a pile. Not allowed! Hence, any move from **P** is to **N**.

Example 3.6

We have x = (12, 13, 13), with n = 3. So

$$x \mod 4 = (0, 1, 1)$$

therefore

$$\begin{array}{c}
0\\
1\\
1\\
0
\end{array}$$

3.3 Two-Person Zero Sum Games (Strategic Form)

We have

- P1: a non-empty set of strategies S1
- P2: a non-empty set of strategies S2
- A: S1 \times S2 $\rightarrow \mathbb{R}$, the min function for P1 (payoff matrix)

Note 3.7: Since the game is zero-sum, a win for P1 is a loss for P2. A(i, j) can be ≤ 0 , so works both ways.

Pure strategies:

A game. P1 chooses the strategy S1i. Simultaneously, P2 chooses the strategy S2j. P1 wins a_{ij} .

Lemma 3.8

 $\min_{j} \max_{i} a_{ij} \ge \max_{i} \min_{j} a_{ij}$

We will continue in the next lecture.

4 Apr 4, 2022

4.1 Two-Person Zero Sum Games (Cont'd)

Lemma 4.1

 $\max_{1 \le i \le m} \min_{1 \le j \le n} a_{ij} \le \min_{1 \le i \le m} \max_{1 \le j \le n} a_{ij}$

Example 4.2

Chooser (P1), Hider (P2).

	L1	R2
L	1	0
R	0	2

We have

$$\max_{1 \leq p \leq 0} \min\{p, 2-2p\}$$

$$p = 2 - 2p$$
$$3p = 2$$
$$2$$

Now $\min_{0 \le q \le 1} \max\{q, 2 - 2q\}$

Let us generalize $A \in \mathbb{R}^{n \times m}$, an $n \times m$ matrix (the payoffs).

$$\Delta_m = \left\{ \mathbf{p} \in \mathbb{R}^m : p_1 \ge 0, p_2 \ge 0, \dots, p_m \ge 0, \sum_{i=1}^m p_i = 1 \right\}$$

$$\Delta_n = \left\{ \mathbf{q} \in \mathbb{R}^n : q_1 \ge q_2 \ge 0, \dots, q_n \ge 0, \sum_{j=1}^n q_j = 1 \right\}$$

Expected gain for P1: $(\mathbf{p})^T A \mathbf{q}$

	q_1	q_2		q_n
p_1	a_{11}	a_{12}		a_{1n}
p_2	a_{21}	a_{22}		a_{2n}
:	:	:	٠.	:
p_m	a_{m1}	a_{m2}		a_{mn}

So

$$(\mathbf{p})^t A \mathbf{q} = p_i (a_i q_1 + a_{i2} q_2 + \dots + a_{in} q_n) =$$

A mixed strategy for P1 is a point $\mathbf{p} \in \Delta_m$. A mixed strategy for P2 is a point $\mathbf{q} \in \Delta_n$.

Expected gain for P1:

If P1 employs the strategy P, then the worst case payoff is

$$\min_{q \in \Delta_n} \mathbf{p}^T A \mathbf{q} = \min \sum_{i=1}^m a_{ij} p_i$$

$$\max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} \mathbf{p}^T A \mathbf{q}$$