Geometría de Curvas y Superficies

Trabajo grupal Marzo 2025

Universidad de Oviedo

Enunciado

Un toro es la superficie de revolución generada por una circunferencia al girar alrededor de un eje situado en su mismo plano y que no la corta.

Figure 1: Parametrización de un toro en \mathbb{R}^3 Sean $a, b \in \mathbb{R}$ con 0 < a < b.

Consideremos el toro cuya curva generatriz es la circunferencia de centro en el punto (a,0,0) y radio b situada en el plano y=0. Dicha circunferencia gira alrededor del eje z.

(i) Usando como parámetros $u \in (0, 2\pi)$, ángulo de giro del punto inicial respecto del eje $x, y \ v \in (0, 2\pi)$, ángulo de giro de dicho punto respecto del eje z, obtener una parametrización del toro, como superficie de revolución, de la forma

$$X: U = (0, 2\pi) \times (0, 2\pi) \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto X(u, v) = (x(u, v), y(u, v), z(u, v))$$

(ii) Con ayuda de dicha parametrización, obtener una ecuación cartesiana de la superficie generada, es decir, de modo que el toro se pueda expresar en la forma

$$\mathbb{T} = \{ (x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0 \}$$

noindent donde F es una función que hay que determinar.

- (iii) Determinar si X es una carta del toro de clase $C^k (k \ge 1)$.
- (iv) Determinar el plano tangente al toro y el vector unitario normal en cada punto regular $p = X(q), q \in U$ del soporte X(U)