Информационные технологии. Лекция 08. Роевой интеллект

Студент группы 2305 Макурин Александр 10 апреля 2023

 $f:X\to Y$ — найти некую функцию отображаения.

 y_i — решение

 $\overline{y_i} = f(x_i)$

 $Err = \sum_{i} (\overline{y_i} - y_i)^2$

 $f = \arg\min Err -$ задача оптимизации.

Или, упрощённо, нужно найти экстремум:

$$f(x,y,z) = \sum \begin{cases} 0, \text{ HeT} \\ 1, \text{ ecth} \end{cases}$$

 $(x \times y) \times z$

Попарное прохождение по координатам.

Рассмотрим |S| > 1 (роевой интеллект). S- популяция.

1 Общая концепция

1. Элементы — частицы.

$$S_{ij} \pm S_{ij+1}$$
$$S_{ij} \neq S_{R_j}$$

$$S_{iT} = S_{RT}$$

- 2. $S = \bigcup S_{sub}$ стратефикация по:
 - поведению
 - связи
- 3. Децентрализовано, по принципу стаи
- 4. \exists косвенный обмен информации: $S_{ij} = f(S_{ij-1}, X_{ij}, \{M\})$
- 5. $S_{ij} \simeq (position)$
- 6. $S_{ij} \neq S_{ij+1}$
- 7. min
- 8. V ?

Пример уменьшения ошибки методом градиентного спуска:

При такой оптимизации можно попасть в локальный минимум функции и не получить оптимального решения.

Форма функции оценки (ошибки) зависит от целевой задачи и моделируемого аппарата.

2 Алгоритм Boids (1986 г) — начало роевого интеллекта

1. При перемещении из определённой точки А в неопределённую точку В:

$$x_{ij} = rac{\sum x_j}{|x_j|}$$
 — пытается находится в центре

2.
$$V = \frac{\sum V_j}{|V_j|} -$$
усредняется

3. $\rho(i,e) \geq \mathrm{const}\ M(x_j,V_{j-1}).\ \rho$ — расстояние.

3 Particle Swarm Optimization (PSO)

- 0. $S = \{S_1, ..., S_n\}$ $S_i = \langle x_{ij}, V_{ij}, \overline{X_i} \rangle$. $\overline{X_i}$ лучшее целевое значение, когда-либо достигнутое этим агентом. $X_i = \arg\min\{x_{ij}\}_0$.
- 1. Есть пространство, случайным образом кидаются элементы, выбираем \overline{X} .
- 2. Для каждой точки ищется $f(x_{ij})$ оптимальное для i_j $\overline{x_j}$.

3.
$$x_{ij+1} = x_{ij} + V_{ij+1}$$
 $V_{ij+1} = \omega V_{ij} + \alpha_1(\overline{x_i} - x_i) \times U + \alpha_2(\overline{x_j} - x_i) \times U$ $\overline{x_j}$ — квазиглобальный экстремум. ωV_{ij} — учёт предыдущих значений. $\overline{x_i} - x_i$ — когнитивная составляющая (насколько верить самим себе). $\overline{x_j} - x_i$ — социальная составляющая. $\omega, \alpha_1, \alpha_2$ — гиперпараметры. U — случайная величина, имеющая нормальное распределение на $[a,b]$ (определяет стохастический характер, нет уверенности, что алгоритм сойдётся). Экспериментально выяснено, что $\omega = 0.7298$.

$$[a,b]=[0,1]-$$
 стандартно. $V_{ij+1}=\omega V_{ij}+lpha_1(\overline{x_i}-x_i)U+\sum Trustt_{ik}(\overline{x_l}-x_i)U$

4 Подробно про муравьиный алгоритм

$$S = \langle X, T \rangle M = (F, R)$$

$$t_{ij}^e = \begin{cases} 0 \\ 1 \end{cases}$$

- 1. F = |верш.|(const)
- 2. $f(x_{ij}) \Rightarrow \overline{x_j}$

3.
$$aT_{kl} = \begin{cases} (\frac{\gamma}{f(x_{ij})})^{\mu}, \, \gamma, \, \mu - \text{гиперпараметры} \\ 0 \end{cases}$$

$$\frac{T_{kl}^{j+1} = T_{kl}^{j} + \Delta}{T_{kl} = min(T_{kl}^{j+1}\lambda, T_{k_1k_2}^{max})}$$

4.
$$\theta = \rho T_{kl}^j + \Delta$$

$$T_{kl}^j = \begin{cases} \theta, \theta \geq T_{min} \\ T_{min}, \theta < T_{min} \end{cases}$$
 ρ — показатель испарения (гиперпараметр), θ — гиперпараметр.

5.
$$p_m = \begin{cases} \frac{(T^{km})^{\alpha}\eta(r_{km})^{\beta}}{\sum (T_{kz})^{\alpha}\eta(r_{kz})^{\beta}} - \text{нормирование относительно ещё не посещённых вершин } \\ 0, \, \text{th} = 1 \end{cases}$$

5 Адекватность поведения при обходе графа. Алгоритм светлячка

 F_i ге (реагирует) F_{e_y} $S, f(x_{ij}), x_{ij}$ — свечение.

- 1. Случайное распределение
- 2. Определение самого яркого $f(x_{ij}) \Rightarrow \overline{x_j}$
- 3. Все стремятся к ярчайшим $x_{ij+1} = x_{ij} + \delta(x_{ij}, x_{kj})(x_{kj} x_{ij}) + \alpha U$. $\delta(a, b)$ притягательность светлячка.

светлячка.
$$\delta = \begin{cases} \frac{\beta}{1+\gamma r}, \overline{x_k} \geq \overline{x_j} \\ 0, \overline{x_k} < \overline{x_j} \end{cases}$$
 $\beta \sim \alpha$ — гиперпараме

 $\beta,\gamma,\overset{\centerdot}{\alpha}$ — гиперпараметры. Если $\delta=0\Rightarrow$ формула самого притягательного светлячка.

Самый светлый движется хаотически.

Вариация алгоритма ведущий — ведомый.