#### ECE408/CS483/CSE408 Spring 2025

Applied Parallel Programming

# Lecture 10: Machine Learning and Deep Learning

#### Course Reminders

- Lab 4 is due this week
- Midterm 1 is on Tuesday, March 4<sup>th</sup>
  - 7-10pm, in-person, in ECEB
  - Includes materials from lectures 1-12 and labs 1-4
- Project Milestone 1: Baseline CPU/GPU implementation
  - Released, see GitHub

## Objective

- To understand the application areas for machine learning.
- To learn the basic strategy for machine learning applications.
- To understand the extension to deep learning (mostly a research pitch).
- To learn about a Multi-Layer Perceptron.

#### Perspective is Important

- Chips are cheaper than ever
- Unlike humans, digital systems offer
  - high-speed computation,
  - low capital investment
     (purchase vs. training a human), and
  - negligible operations cost (no salary!)
- If computer outperforms (or even matches) a human, use a computer
- Industry has done so for 40-50 years now

#### Evolution of Computer Power/Cost



Computing has evolved under the premise that some day, computing machines will be able to mimic general human intelligence.

From a computing power perspective, Moore's Law has fueled the idea of the intelligent machine. Hardware has gotten 2x faster every 18 months.

The software, though, has been a vexing open question.

https://jetpress.org/volume1/moravec.htm

Hans Moravec, 1997

#### What is Machine Learning?

- Machine learning: important method of building applications whose logic is not fully understood
- Typically by example:
  - use labeled data (matched input-output pairs)
  - to represent desired relationship
- Iteratively adjust program logic to produce desired/approximate answers (called training)

## Types of Learning Tasks

- classification
  - Map each input to a category
  - Ex: object recognition, chip defect detection
- regression
  - Numerical prediction from a sequence
  - Ex: predict tomorrow's temperature
- transcription
  - Unstructured data into textual form
  - Ex: optical character recognition

## More Advanced Learning Tasks

#### translation

 Convert a sequence of symbols in one language to a sequence of symbols in another

#### structured output

- Convert an input to a vector with important relationships between elements
- Ex: natural language sentence into grammatical structure

#### others

 Anomaly detection, synthesis, sampling, imputation, denoising, density estimation, genetic variant calling

# Why Machine Learning Now?

#### Computing Power

 GPU computing hardware and programming interfaces such as CUDA has enabled very fast research cycle of deep neural net training

#### Data

- Lots of cheap sensors, cloud storage, IoT, photo sharing, etc.

#### Needs

 Autonomous Vehicles, Smart Devices, Security, Societal Comfort with Tech, Health Care

# Test Cycle Time is Important

You've all written code...

- code, test, code, test, code, test
- integrate, test, test, test
- and test again!

But how long is the code, test cycle? Depends what you're building.

What's your longest?

## Your Cycle Times are Probably Small

- In college, 10k lines took ½ hour to compile on my PC.
- In grad. school, 100k lines took
  - $-\frac{1}{2}$  hour to compile on my workstation, or
  - 2 minutes on our cluster (research platform)
- In ECE 435 (networking lab), students needed
  - ½ hour to reinstall Linux after a bad bug
  - (Ever had a good bug?)
- Gene sequencing / applications can take two weeks

  We're all a little spoiled...

## Why Machine Learning Again?

- In 2007, programmable GPUs accelerated the training cycle
- Today, new chip designs for learning applications have further accelerated
- Led to a resurgence of interest
  - in Computer Vision, Speech Recognition, Document Translation,
     Self Driving Cars, Data Science...
  - all tasks that human brains solve regularly, but
     for which we have struggled to express solutions systematically.

## Many Problems are Still Hard

- Speed is not a panacea
- Many tasks still require human insight
  - for network structure and feature selection
  - for effective input and output formats, and
  - for production of high-quality labeled data.
- Other trends sometimes help: ubiquitous computing enables crowdsourcing, for example.

## Many Problems Have Systematic Solutions

Example: building a Boolean function from a truth table

| Input |   |   |        |
|-------|---|---|--------|
| a     | ь | c | output |
| 0     | 0 | 0 | 0      |
| 0     | 0 | 1 | 1      |
| 0     | 1 | 0 | 1      |
| 0     | 1 | 1 | 0      |
| 1     | 0 | 0 | 1      |
| 1     | 0 | 1 | 0      |
| 1     | 1 | 0 | 0      |
| 1     | 1 | 1 | 1      |



#### What if We Lack a Truth Table?

- Make enough observations to construct a rule
  - $-000 \rightarrow 0$
  - $-011 \rightarrow 0$
  - $-100 \to 1$
  - $-110 \rightarrow 0$

• If we cover all input patterns, we can construct a truth table!

## Many Problems are Too Large

- The logic formulation of a 32x32-pixel (small) image recognition problem involves
  - − 1024\*8 bit input,
  - which will have a truth table of  $2^{8196}$  entries
- If we managed to collect and label 1 billion ( $\sim 2^{32}$ ) images as training data
  - We cover only  $2^{32} / 2^{8196} = 1 / 2^{8164}$  of the truth table
  - Solution learning processes that exploits features

#### Features in our logic example

| Input |   |   |        |
|-------|---|---|--------|
| a     | ь | С | output |
| 0     | 0 | 0 | 0      |
| 0     | 0 | 1 | 1      |
| 0     | 1 | 0 | 1      |
| 0     | 1 | 1 | 0      |
| 1     | 0 | 0 | 1      |
| 1     | 0 | 1 | 0      |
| 1     | 1 | 0 | 0      |
| 1     | 1 | 1 | 1      |

Feature 1: bit patterns with odd number of 1's result in output 1

Feature 2: bit patterns with even number of 1's result in output 0

#### Types of Problems



# Types of Problems



#### Chess as an AI Success (1)

- Easy to formalize
  - 64 locations, 32 pieces
  - Well-defined, allowable moves
- Score each leaf in a tree of possible board positions
- Proceed down path that results in best position



Image taken from https://www.r-bloggers.com/2022/07/programming-a-simple-minimax-chess-engine-in-r/

## Chess as an AI Success (2)



Deep Blue defeated Gary Kasparov in 1997

- Hard to perform
  - − ~30 legal moves per position
  - 1,015 moves for 10-ply lookahead
  - 30 years of compute at 1M positions/sec
- Heuristics, pruning, parallel search, fast computers

### Cyc: Extending Rule-based Systems to the Real World

- Comprehensive ontology and knowledge base of common sense
- Cyc reasons about formal statements about the world



#### Cyc: A Simple Example



# Cyc: FredWhileShaving



# Cyc: FredWhileShaving



## Types of Problems



# The "Machine Learning" Approach

#### **Challenge**

Hard to formalize the problem.

#### **Solution**

Don't formalize the problem.

Let the machine learn from

experience.

## Classic Machine Learning

- Humans choose features
- Learn how features are associated with outputs



#### You may have heard of...

- Naïve Bayes: features as independent contributors to output
- Logistic Regression:
  - learn how to weight each feature's contribution to output,
  - usually through gradient descent\*

<sup>\*</sup>more on this topic later in these slides

#### Data Representation is important!



### Data Representation is important!



$$\Theta = \arctan(y/x)$$

$$r = \operatorname{sqrt}(x^2 + y^2)$$

#### Different Features for Different Tasks



#### Which Data Features are Relevant

- Detecting a car in an image
- Cars have wheels → presence of a wheel?
- Can we describe pixel values that make up a wheel?
  - Circle-shaped?
  - Dark around perimeter?
- But what about?
  - Occlusion, perspective, shadows, white-walled tires, ...

# Identify Factors of Variation that Explain Data

- Unobserved objects or forces that affect observed quantities
- Mental constructs that provide simplifying explanations or inferred causes
- Ex: speech
  - Age, sex, accent, words being spoken
- Ex: car
  - Position, color, angle of sun
- Many factors influence each piece of observed data

## Representation Learning Approach

#### **Challenge**

Which data features are relevant?

#### **Solution**

Learn the features too!

(Looking ahead)

Deep Learning: a deep hierarchy of features

# Machine Learning

• Ability to acquire knowledge by extracting patterns from data

### Deep Learning

A type of representation learning

 Representations expressed in terms of other representations



### Deep Learning Approach

Hard to formalize the problem?

Which data features are relevant?

#### **Solution**

Don't formalize the problem

Let the machine learn from

experience

Hierarchy of concepts to capture simple and complicated features

Learn the hierarchy too!

#### Evolution of ML Output **Mapping from** Output **Features Layers of Mapping from** Output **Abstract Features Features Hand-Designed Hand-Designed Simple Features Program Features** Input Input Input **Classic Machine Rule-based Systems Deep Learning** Learning

### Let's Look at Classification

#### In a classification problem, we model

- a function mapping an input vector to a set of C categories:  $F: \mathbb{R}^N \to \{1, ..., C\}$ ,
- where the function *F* is unknown.

### We approximate F using a set of functions f

- parametrized by a (large) set of weights,  $\theta$
- that map from a vector of N real values\*
   to an integer value representing a category:
- for category i,  $prob(i) = f(x, \theta)$

# Linear Classifier (Perceptron)

• our formulation:  $y = f(x, \theta)$ 

$$\Theta = \{W, b\}$$
$$y = sign(W \cdot x + b)$$



The perceptron

The neuron



• Dot product + Scalar addition:



### Can we learn XOR with a Perceptron?



### Multiple Layers Solve More Problems

#### What if input dimensions are AND and OR?



### Perceptron



| x[1] | x[0] | AND           | OR            | XOR           |
|------|------|---------------|---------------|---------------|
| 0    | 0    | -1 (-1.5 < 0) | -1 (-0.5 < 0) | -1 (-2.0 < 0) |
| 0    | 1    | -1 (-0.5 < 0) | 1 (0.5 > 0)   | ?             |
| 1    | 0    | -1 (-0.5 < 0) | 1 (0.5 > 0)   | ?             |
| 1    | 1    | 1 (0.5 > 0)   | 1 (1.5 > 0)   | 1 (2.0 > 0)   |

XOR is not a linear combination of AND and OR functions.

| x[1] | x[0] | AND | OR | XOR         |
|------|------|-----|----|-------------|
| 0    | 0    | -1  | -1 | -1 (-3 < 0) |
| 0    | 1    | -1  | +1 | 1 (1 > 0)   |
| 1    | 0    | -1  | +1 | 1 (1 > 0)   |
| 1    | 1    | +1  | +1 | -1 (-1 < 0) |

$$OR = sign(x[0] + x[1] - 0.5)$$

AND = 
$$sign(x[0] + x[1] - 1.5)$$

sign() function adds non-linearity to "reposition" data points for the next layer.



45

### Multi-Layer Perceptron – data repositioning



| x[1] | <b>x[0]</b> | AND | OR | XOR         |
|------|-------------|-----|----|-------------|
| 0    | 0           | -1  | -1 | -1 (-3 < 0) |
| 0    | 1           | -1  | +1 | 1 (1 > 0)   |
| 1    | 0           | -1  | +1 | 1 (1 > 0)   |
| 1    | 1           | +1  | +1 | -1 (-1 < 0) |

### Generalize to Fully-Connected Layer



Linear Classifier: Input vector  $\mathbf{x} \times$  weight vector  $\mathbf{w}$  to produce scalar output  $\mathbf{y}$ 



Fully-connected: Input vector  $\mathbf{x} \times$  weight  $\mathbf{matrix} \ \mathbf{w}$  to produce  $\mathbf{vector}$  output  $\mathbf{y}$ 

### Multilayer Terminology



 $W_k[i, j]$ : weight between  $i^{th}$  input and  $j^{th}$  output of the  $k^{th}$  layer

 $W_1$  is [4x4],  $b_1$  is [4x1]

 $W_2$  is [4x3],  $b_2$  is [3x1]

Probability that input is class k[i]

## How to determine the weights?

- Look at observational data to determine the weights?
- Pick some random values?
- Start with something that partially works?

• With enough *labeled* data, we can automatically *encode* the relationship between inputs and outputs.

## Forward and Backward Propagation

- Forward (inference)
  - Given parameters  $\theta$  and input x, produce label y

- Backward (training)
  - Need a way to assess correctness (loss function)
  - Example:  $(x y)^2$
  - Find  $\Theta$ , such that loss is minimized over all input data

### Forward Propagation (Inference)



# Backward Propagation (Training)



### Example: Digit Recognition

Let's consider an example.

- handwritten digit recognition:
- given a 28 × 28 grayscale image,
- produce a number from 0 to 9.

### Input dataset

• **60,000** images



MNIST dataset

• Each labeled by a human with correct answer.

# MultiLayer Perceptron (MLP) for Digit Recognition



This network has

- 784 nodes on input layer (L0)
- 10 nodes on hidden layer (L1)
- 10 nodes on output layer (L2)

784\*10 weights + 10 biases for L1 10\*10 weights + 10 biases for L2

A total of 7,960 parameters

Each node represents a function, based on a linear combination of inputs + bias

Activation function "repositions" output value.

Sigmoid, sign, ReLU are common... 54

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

### How Do We Determine the Weights?

#### First layer of perceptron:

- 784 (28<sup>2</sup>) inputs, 1024 outputs, fully connected
- $[1024 \times 784]$  weight matrix W
- [1024 x 1] bias vector **b**

### Use labeled training data to pick weights.

#### Idea:

- given enough labeled input data,
- we can approximate the input-output function.

### Forward and Backward Propagation

#### Forward (inference):

- given input x (for example, an image),
- use parameters  $\Theta$  (W and b for each layer)
- to compute probabilities k[i] (ex: for each digit i).

### Backward (training):

- given input x, parameters  $\theta$ , and outputs k[i],
- compute error *E* based on target label *t*,
- then adjust  $\theta$  proportional to E to reduce error.

# Neural Functions Impact Training

Recall perceptron function:  $y = sign (W \cdot x + b)$ 

To propagate error backwards,

- use chain rule from calculus.
- Smooth functions are useful.



Sign is not a smooth function.

## One Choice: Sigmoid/Logistic Function

Until about 2017,

• sigmoid / logistic function most popular

$$f(x) = \frac{1}{1+e^{-x}}$$
 (f:  $\mathbb{R} \to (0,1)$ )

for replacing sign.



• Once we have f(x), finding df/dx is easy:

$$\frac{df(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = f(x) \frac{e^{-x}}{(1+e^{-x})} = f(x)(1-f(x))$$

(Our example used this function.)

### Today's Choice: ReLU

In 2017, most common choice became

- rectified linear unit / ReLU / ramp function  $f(x) = \max(0, x)$  (f:  $\mathbb{R} \rightarrow \mathbb{R}^+$ ) which is much faster (no exponent required).
- A smooth approximation is softplus/SmoothReLU

$$f(x) = \ln (1 + e^x) \quad (f: \mathbb{R} \to \mathbb{R}^+)$$

which is the integral of the logistic function.

• Lots of variations exist. See for example Wikipedia for an overview and discussion of tradeoffs.



### Use Softmax to Produce Probabilities

### How can sigmoid / ReLU produce probabilities?

They can't.

- Instead, given output vector  $\mathbf{Z} = (\mathbf{z}[0], ..., \mathbf{z}[\mathbf{C}-1])^*$ ,
- we produce a second vector  $\mathbf{K} = (\mathbf{k}[0], ..., \mathbf{k}[\mathbf{C}-1])$
- using the softmax function

$$k[i] = \frac{e^{z[i]}}{\sum_{j=0}^{C-1} e^{z[j]}}$$

Notice that the k[i] sum to 1.

\*Remember that we classify into one of C categories.

### Softmax Derivatives Needed to Train

We also need the derivatives of softmax,

$$\frac{dk[i]}{dz[m]} = k[i](\delta_{i,m} - k[m]),$$

where  $\delta_{i,m}$  is the Kronecker delta (1 if i = m, and 0 otherwise).

### Forward and Backward Propagation



### **ANY MORE QUESTIONS?**