LPC82X 培训资料

循环冗余检查CRC

MAY, 2016

内容

- CRC引擎概述
- CRC寄存器描述及配置

CRC引擎概述

CRC引擎特征

- 支持三种多项式算法:
 - -CRC-CCITT: $x^{16} + x^{12} + x^5 + 1$
 - $-CRC-16: x^{16} + x^{15} + x^2 + 1$
 - -CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- 可编程的种子数设置
- 输入数据宽度:字节(8bit)、半字(16bit)、字(32bit)
- CRC的输入和输出数据可以位反正和1的补码

CRC功能框图

CRC寄存器描述及配置

CRC寄存器描述

•和CRC相关的寄存器只有4个:

-MODE: 配置CRC的模式(包括多项式、位序等)

-SEED: CRC计算的种子

-SUM: CRC计算结果

-WR_DATA: 要计算CRC的数据寄存器

CRC基本配置

- 使能CRC引擎时钟
 - -调用Chip_CRC_Init()函数使能CRC引擎时钟
 - •注:使用CRC之前一定要记得使能CRC引擎的时钟。

CRC功能描述

• CRC算法的标准设置如下表

CRC多 项式	种子	输入位序 反转	输入数据 1的补码	输出位 序反转	输出1的 补码	CRC_MODE寄存器	CRC_SEED寄存器
CCITT	0xFFFF	NO	NO	NO	NO	0x0000 0000	0x0000 FFFF
CRC16	0x0000	YES	NO	YES	NO	0x0000 0015	0x0000 0000
CRC32	0xFFFF FFFF	YES	NO	YES	YES	0x0000 0036	0xFFFF FFFF

SECURE CONNECTIONS FOR A SMARTER WORLD