Duality

Lecture 6

October 8, 2025

Quiz

Recap From Last Time & Today's Plan

Last time...

 $\bullet \ \, \text{Separating Hyperplane Thm} \, \Rightarrow \, \text{Farkas Lemma} \, \Rightarrow \, \text{Strong duality}$

Agenda for today:

- Two motivating applications
- Implications of strong duality
- Optimality conditions and primal/dual simplex
- Complementary slackness
- Global sensitivity & Shadow prices as marginal costs
- One more application: network revenue management

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?

Application in Robust Optimization

• Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \le b,$$
 (2)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : \, \mathsf{C} a \leq d \}$$
 (3)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

Application in Robust Optimization

• Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \le b,$$
 (2)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : \, \mathsf{C} a \leq d \}$$
 (3)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

Strong Duality

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$

Strong Duality

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$

Theorem (**Strong Duality**)

If (P) has an optimal solution, so does (D), and their optimal values are equal.

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	Possible	Impossible	Impossible
	Unbounded	Impossible	Impossible	Possible
	Infeasible	Impossible	Possible	?

Strong Duality and Theorems of Alternative

• Strong duality allows you to **prove** various "theorems of alternative"

Example (Farkas Lemma)

Prove that exactly one of the following is true:

- (i) $\exists x \geq 0$ such that Ax = b,
- (ii) $\exists \lambda$ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^TA \le c^T$$

• (P) achieves optimality at a **basic feasible solution** x:

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
 $(\mathcal{D}) \max \lambda^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, ..., n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (4a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (4b)

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \geq 0 \qquad \qquad \lambda^TA \leq c^T$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, \ldots, n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (4a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (4b)

• (\mathcal{D}): same basis B can also be used to determine **a dual vector** λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
 $(\mathcal{D}) \max \lambda^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, \ldots, n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (4a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (4b)

• (\mathcal{D}): same basis B can also be used to determine **a dual vector** λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

- The dual objective value corresponding to λ is: $\lambda^T b = c_B^T A_B^{-1} b = c^T x$
- λ is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - \lambda^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_{B}^{\mathsf{T}} A_{B}^{-1} A \ge 0$ (5)

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \geq 0 \qquad \qquad \lambda^TA \leq c^T$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, ..., n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(\mathcal{P})$$
: $x_B := A_B^{-1}b \ge 0$ (4a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (4b)

• (\mathcal{D}): same basis B can also be used to determine **a dual vector** λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

- The dual objective value corresponding to λ is: $\lambda^T b = c_B^T A_B^{-1} b = c^T x$
- λ is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - \lambda^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (5)

Primal optimality \Leftrightarrow Dual feasibility

Simplex terminates when finding a dual-feasible solution!

Solve (\mathcal{P}) or (\mathcal{D}) ?

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
$$Ax = b, \quad x \ge 0$$

 $(\mathcal{D}) \ \max \ \lambda^{\mathsf{T}} b$ $\lambda^{\mathsf{T}} A \leq c^{\mathsf{T}}$

Solve (P) or (D)?

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
$$Ax = b, \quad x \ge 0$$

$$(\mathcal{D}) \max \lambda^{\mathsf{T}} b$$
$$\lambda^{\mathsf{T}} A \le c^{\mathsf{T}}$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathcal{P}) or (\mathcal{D}) ?
- Suppose we have x^* , λ^* and must now solve a **larger** problem, i.e., with extra decisions or extra constraints.
- Any preference between primal and dual simplex?
- Modern solvers include primal and dual simplex and allow concurrent runs

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Theorem (Complementary Slackness)
$$x \in P \text{ and } \lambda \in D \text{ are optimal solutions for } (\mathcal{P}) \text{ and } (\mathcal{D}), \text{ respectively, if and only if:} \\ \lambda_i(a_i^\mathsf{T} x - b_i) = 0, \ i = 1, \dots, m \\ (\lambda^\mathsf{T} A_j - c_j) x_j = 0, \ j = 1, \dots, n.$$

• Follows from primal/dual feasibility and $c^{T}x = b^{T}\lambda$

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Theorem (Complementary Slackness)

 $x \in P$ and $\lambda \in D$ are optimal solutions for (P) and (D), respectively, if and only if:

$$\lambda_i(a_i^{\mathsf{T}}x - b_i) = 0, i = 1, ..., m$$

 $(\lambda^{\mathsf{T}}A_j - c_j)x_j = 0, j = 1, ..., n.$

- Follows from primal/dual feasibility and $c^{T}x = b^{T}\lambda$
- Interesting insight: non-binding constraint ⇒ dual variable is zero

Important consequence of duality: alternative representation of all polyhedra

Definition

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.
- 3. Any ray d that satisfies $a_i^T d = 0$ for n-1 linearly independent a_i is called an extreme ray of P.

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

$$P = \operatorname{conv}(\{x^{1}, \dots, x^{k}\}) + \operatorname{cone}(\{w^{1}, \dots, w^{r}\})$$
$$= \left\{ \sum_{i=1}^{k} \mu_{i} x^{i} + \sum_{i=1}^{r} \theta_{j} w^{j} : \mu \geq 0, e^{\mathsf{T}} \mu = 1, \theta \geq 0 \right\}.$$

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

$$P = \operatorname{conv}(\{x^{1}, \dots, x^{k}\}) + \operatorname{cone}(\{w^{1}, \dots, w^{r}\})$$
$$= \left\{ \sum_{i=1}^{k} \mu_{i} x^{i} + \sum_{i=1}^{r} \theta_{j} w^{j} : \mu \geq 0, e^{\mathsf{T}} \mu = 1, \theta \geq 0 \right\}.$$

Note: It is **not** "easy" (i.e., poly-time) to switch between these representations

Dual Variables As Marginal Costs

(
$$\mathcal{P}$$
) min $c^T x$ (\mathcal{D}) max $\lambda^T b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^T A \le c^T$$

- Solved the LP and obtained x^* and λ^*
- Want to show that λ^* is the **gradient of the optimal cost with respect to** b "almost everywhere"
- Related to sensitivity analysis
 How do the optimal value and solution depend on problem data A, b, c?

Global Dependency On b, c

$$(\mathcal{P}) \ \min \ c^\mathsf{T} x \qquad \qquad (\mathcal{D}) \ \max \ \lambda^\mathsf{T} b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad \lambda^\mathsf{T} A \leq c^\mathsf{T}$$

- What to show that the **optimal value** (when finite) **as a function of** b is
- What to show that the optimal value (when finite) as a function of c is

Global Dependency On b, c

(
$$\mathcal{P}$$
) min $c^T x$ (\mathcal{D}) max $\lambda^T b$
 $Ax = b, \quad x \ge 0$ $\lambda^T A \le c^T$

- What to show that the optimal value (when finite) as a function of b is piecewise linear and convex
- What to show that the optimal value (when finite) as a function of c is piecewise linear and concave

Convex and Concave Functions

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex** if X is a convex set and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0, 1].$$
 (6)

A function is **concave** if -f is convex.

Convex and Concave Functions

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex** if X is a convex set and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0, 1].$$
 (6)

A function is **concave** if -f is convex.

Equivalent definition in terms of epigraph:

$$epi(f) = \{(x, t) \in X \times \mathbb{R} : t \ge f(x)\}$$
(7)

f is convex if and only if epi(f) is a convex set.

Global Dependency On b

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m:P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)

Global Dependency On b

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)\neq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^{\star}(b)$ denote the optimal objective; assume $p^{\star}(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^{\star}(b)$ denote the optimal objective; assume $p^{\star}(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m:P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^{\star}(b)$ denote the optimal objective; assume $p^{\star}(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

• Strong duality: $p^*(b) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^Tb : \lambda^TA \le c^T\}$

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)\neq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Strong duality: $p^*(b) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- If $\lambda^1, \lambda^2, \dots, \lambda^r$ are the extreme points of D, then: $p^*(b) = \max_{i=1,\dots,r} b^T \lambda^i, \forall b \in S$

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)\neq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^{\star}(b)$ denote the optimal objective; assume $p^{\star}(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Strong duality: $p^*(b) = \min\{c^\mathsf{T}x : Ax = b, \ x \ge 0\} = \max\{\lambda^\mathsf{T}b : \lambda^\mathsf{T}A \le c^\mathsf{T}\}$
- If $\lambda^1, \lambda^2, \dots, \lambda^r$ are the extreme points of D, then: $p^*(b) = \max_{i=1,\dots,r} b^T \lambda^i, \forall b \in S$

How to prove $p^*(b)$ convex?

$$p^{\star}(b) = \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} = \max\{\lambda^{\mathsf{T}}b : \lambda^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

• At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*

$$p^{\star}(b) = \min \left\{ c^{\mathsf{T}} x : Ax = b, \ x \ge 0 \right\} = \max \left\{ \lambda^{\mathsf{T}} b \, : \, \lambda^{\mathsf{T}} A \le c^{\mathsf{T}} \right\}$$

- At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*
- λ_i^* acts as a **marginal cost** or **shadow price** for the *i*-th constraint r.h.s. b_i
- λ_i allows estimating exact change in p^* in a range around \bar{b}_i

$$p^*(b) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$$

- At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*
- λ_i^* acts as a **marginal cost** or **shadow price** for the *i*-th constraint r.h.s. b_i
- λ_i allows estimating exact change in p^* in a range around \bar{b}_i
- Modern solvers give direct access to λ_i^\star and the range Gurobipy: for constraint c, the attribute c.Pi is λ_i^\star and the range is from c.SARHSLow to c.SARHSUp

$$p^*(b) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$$

- At b where p^* is **not** differentiable, several λ^i are optimal
- All such λ^i are valid **subgradients** of p^*

$$p^*(b) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$$

- At b where p^* is **not** differentiable, several λ^i are optimal
- All such λ^i are valid **subgradients** of p^*

Definition (Subgradient.)

 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ convex function. A vector $g \in \mathbb{R}^n$ is a **subgradient** of f at $\bar{x} \in S$ if $f(x) > f(\bar{x}) + g^T(x - \bar{x}), \quad \forall x \in S.$

- Let $d^{\star}(c)$ denote optimal value as function of c; assume $d^{\star}(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c

- Let $d^*(c)$ denote optimal value as function of c; assume $d^*(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^Tb : \lambda^TA \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual

- Let $d^{\star}(c)$ denote optimal value as function of c; assume $d^{\star}(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual
- $d^*(c)$ is a **concave** function of c on the set $T := \{c : d^*(c) > -\infty\}$
- If for some c the LP has a **unique** optimal solution x^* , then d^* is linear in the vicinity of c and its gradient is x^* .

- Let $d^*(c)$ denote optimal value as function of c; assume $d^*(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual
- $d^*(c)$ is a **concave** function of c on the set $T := \{c : d^*(c) > -\infty\}$
- If for some c the LP has a **unique** optimal solution x^* , then d^* is linear in the vicinity of c and its gradient is x^* .
- The optimal primal solution x^* is a shadow price for the dual constraints
- x^* remains optimal for a range of change in each objective coefficient c_j
- Modern solvers also allow obtaining the range directly Gurobipy: attributes SAObjLow and SAObjUp for each decision variable

Signs of Dual Variables Revisited

- There is a direct connection between:
 - the optimization problem (max/min)
 - the **constraint type** (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!
- What is the sign of the shadow price for a ...
 - \leq constraint in a **minimization** problem ?
 - ≥ constraint in a minimization problem ?
 - ≤ constraint in a maximization problem ?
 - < constraint in a maximization problem ?</pre>
- What is the dependency of the optimal objective on the r.h.s. of a ...
 - \leq constraint in a **minimization** problem ?
 - ≥ constraint in a minimization problem ?
 - ≤ constraint in a **maximization** problem ?
 - \leq constraint in a maximization problem ?

Signs of Dual Variables Revisited

- There is a direct connection between:
 - the optimization problem (max/min)
 - the **constraint type** (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!

• Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A:	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:	:	:	:	:
	Flight leg $ F $	1	1		0

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A :	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
			•		
	:	:	:	:	:
	Flight leg $ F $	1	1		0

Goal: decide how many itineraries of each type to sell to maximize revenue

• Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- $x \le d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- Ax < c capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- Ax < c capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- Ax < c capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- Ax < c capture the constraints on plane capacity
- $x \le d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- Ax < c capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost