6. Пусть $x_n, n \in \mathbb{N}$, — ограниченная величина, $y_n, n \in \mathbb{N}$, — б.м.в. Тогда $z_n = x_n y_n, n \in \mathbb{N}$, — б.м.в.

<u>Доказательство</u>. Найдем для $\forall \varepsilon > 0$ такое $N(\varepsilon) \in \mathbb{N}$, что $\forall n > N(\varepsilon)$ ($|y_n| < \frac{\varepsilon}{M}$). Тогда для $\forall n > N(\varepsilon)$ выполняется неравенство $|z_n| = |x_n y_n| < \varepsilon$, то есть $\lim_{n \to \infty} z_n = 0$.

7. Пусть $x_n, n \in \mathbb{N}$, -6.м.в., $y_n, n \in \mathbb{N}$, -6.м.в. Тогда $z_n = x_n + y_n, n \in \mathbb{N}$, 6.м.в. Доказательство. Найдем для $\forall \varepsilon > 0$ такое $N_1(\varepsilon) \in \mathbb{N}$, что $\forall n > N_1(\varepsilon)$ ($|x_n| < \frac{\varepsilon}{2}$) и такое $N_2(\varepsilon) \in \mathbb{N}$, что $\forall n > N_2(\varepsilon)$ ($|y_n| < \frac{\varepsilon}{2}$) . Тогда при $\forall n > N(\varepsilon) = \max\{N_1(\varepsilon), N_2(\varepsilon)\}$ ($|z_n| < \varepsilon$).

Арифметические свойства пределов

Для упрощения доказательств этих свойств приведем новое определение предела последовательности, эквивалентное данному выше: число a называется пределом последовательности x_n , $n \in \mathbb{N}$, тогда и только тогда, когда $x_n = a + x_n'$, где $x_n' - \delta$.м.в. (Доказать эквивалентность определений самостоятельно).

1.Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то $\lim_{n\to\infty} (x_n + y_n) = a + b$. Доказательство. Так как $x_n = a + x'_n$ и $y_n = b + y'_n$, то $x_n + y_n = a + b + (x'_n + y'_n)$, причем выражение в скобках — б.м.в. согласно седьмому элементарному свойству.

2. Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то $\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$. <u>Доказательство</u>. Так как $x_n = a + x'_n$ и $y_n = b + y'_n$, то $x_n \cdot y_n = a \cdot b + (b \cdot x'_n + a \cdot y'_n + x'_n \cdot y'_n)$, причем выражение в скобках — б.м.в. согласно шестому и седьмому элементарным свойствам.

3. Если $\lim_{n\to\infty} x_n = a$ и $a \neq 0$, то $\exists \lim_{n\to\infty} \frac{1}{x_n} = \frac{1}{a}$.

<u>Доказательство</u>. Так как $x_n = a + x'_n$, то $\left| \frac{1}{x_n} - \frac{1}{a} \right| = \frac{|x'_n|}{|a||x'_n + a|}$. Чтобы показать, что выражение $\frac{|x'_n|}{|a||x'_n + a|}$ – б.м.в., согласно шестому элементарному свойству достаточно показать, что $\frac{1}{|x'_n + a|}$ – ограниченная величина при достаточно больших значениях $n \in \mathbb{N}$. Имеем $\frac{1}{|x'_n + a|} = \frac{1}{|-(-x'_n) + a|} \le \frac{1}{|a| - |-x'_n|}$. Пусть число $N_0 \in \mathbb{N}$ таково, что $|x'_n| < \frac{|a|}{2}$ при $\forall n > N_0$. Следовательно, $\frac{1}{|x'_n + a|} < \frac{2}{|a|}$ при $\forall n > N_0$ и $\frac{|x'_n|}{|a||x'_n + a|}$ – б.м.в. Теперь остается применить шестое элементарное свойство и новое определение предела.

<u>Следствие</u>. Согласно 2-му и 3-му арифметическим свойствам очевидным является следующее утверждение: если $\lim_{n \to \infty} x_n = a \neq 0$ и $\lim_{n \to \infty} y_n = b$, то $\lim_{n \to \infty} (\frac{y_n}{x_n}) = \frac{b}{a}$.

Основные свойства пределов последовательностей

Прежде, чем сформулируем первое основное свойство, дадим новое Определение. Последовательность $x_{n_k}, k \in \mathbb{N}$, называется подпоследовательностью последовательности $x_n, n \in \mathbb{N}$, если $n_k, k \in \mathbb{N}$, монотонно возрастающая последовательность натуральных чисел. Например, $x_3, x_7, x_{23}, ..., x_{3+4+16+...+4^{k-1}},$ подпоследовательность последовательности $x_1, x_2, x_3, x_4,, x_n, ...$

- 1.Из любой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.
- 2. Любая монотонная ограниченная последовательность сходится.

3. Лемма о вложенных отрезках.

Пусть $a_n, n \in \mathbb{N}$, и $b_n, n \in \mathbb{N}$, — последовательности концов последовательно вложенных друг в друга отрезков ($[a_n,b_n]\subset [a_{n-1},b_{n-1}]$), причем $\lim_{n\to\infty}(b_n-a_n)=0$. Тогда $\bigcap_{k=1}^\infty[a_k,b_k]=\{a\}$. (То есть, пересечением

последовательно вложенных друг в друга отрезков с длинами, стремящимися к нулю, является точка).

<u>Доказательство</u>. Очевидно, что последовательности $a_n, n \in \mathbb{N}$, и $b_n, n \in \mathbb{N}$, монотонны, причем первая неубывающая, а вторая невозрастающая. Первая ограничена сверху (например, числом b_1), вторая — снизу (например, числом a_1). Согласно второму основному свойству $\exists \lim_{n \to \infty} a_n = a$ и $\exists \lim_{n \to \infty} b_n = b$. Имеем $b = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = a$. Таким образом, предельный отрезок, лежащий во всех отрезках, вырождается в точку a. Из условия последовательной вложимости отрезков $\bigcap_{k=1}^n [a_k, b_k] = [a_n, b_n]$. Поэтому $\bigcap_{k=1}^\infty [a_k, b_k] = \lim_{n \to \infty} \bigcap_{k=1}^n [a_k, b_k] = \lim_{n \to \infty} [a_k, b_k] = \lim_{n \to \infty} [a_n, b_n] = \{a\}$.

 $\prod_{k=1}^{n} [\alpha_k, \sigma_k] = \prod_{n \to \infty} [\alpha_k, \sigma_k] = \prod_{n \to \infty} [\alpha_n, \sigma_n] = \{\alpha\}$

Примеры применения основных свойств.

1.Покажем, что $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$. Обозначим $y_n = n^{\frac{1}{n}} - 1$. Имеем $y_n \ge 0$, $n \in \mathbb{N}$. В соответствии с формулой бинома

$$n = (1 + y_n)^n = 1 + ny_n + \frac{n(n-1)}{2!}y_n^2 + \dots + y_n^n.$$

Следовательно, $n-1>\frac{n(n-1)}{2}\,y_n^2$ или $y_n<\sqrt{\frac{2}{n}}$. Из соотношения $0\leq y_n<\sqrt{\frac{2}{n}}$, применяя теорему о двух полицейских, получим $\lim_{n\to\infty}y_n=0$, откуда следует $\lim_{n\to\infty}n^{\frac{1}{n}}=1$.

2.Неперово число

<u>Утверждение</u>. $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n$.

Рассмотрим последовательность $x_n = (1 + \frac{1}{n})^n, n \in \mathbb{N}$. Пользуясь формулой бинома Ньютона, представим общий член последовательности в виде $x_n = 1 + \frac{n}{n} + \frac{n(n-1)}{2 \cdot n^2} + \frac{n(n-1)(n-2)}{2 \cdot 3 \cdot n^3} + \ldots + \frac{n!}{n! \cdot n^n} =$ $= 2 + \frac{1}{2}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \ldots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \cdot \ldots \cdot (1 - \frac{n-1}{n}).$

Очевидно, что все слагаемые после числа 2 в последнем выражении положительные, их число равно n-1 и при увеличении n сами слагаемые будут увеличиваться, а к имеющимся слагаемым будут добавляться новые, то есть x_n растет с ростом n. Оценим общий член

последовательности x_n сверху с применением формулы суммы геометрической прогрессии:

$$x_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{2 \cdot 2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} =$$

$$= 2 + \frac{1}{2} \cdot \frac{1 - (1/2)^{n-1}}{1 - 1/2} < 2 + 1 = 3.$$

Таким образом, наша последовательность монотонно возрастает и ограничена сверху. Следовательно, в соответствии со вторым основным свойством пределов числовых последовательностей существует предел этой последовательности, который принято обозначать e. Это число называется неперовым числом, находится между числами 2 и 3 и приблизительно равно 2,71828.

Итак,
$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$
.