算法实现题 9-7 实现算法 greedySetCover (习题 9-13)

★问题描述:

集合覆盖问题的一个实例〈X,F〉由一个有限集 X 及 X 的一个子集族 F 组成。子集族 F 覆盖了有限集 X。也就是说 X 中每一元素至少属于 F 中的一个子集,即 $X = \bigcup_{S \in F} S$ 。对于 F 中的一个子集 $C \subseteq F$,若 C 中的 X 的子集覆盖了 X,即 $X = \bigcup_{S \in C} S$,则称 C 覆盖了 X。集合覆盖问题就是要找出 F 中覆盖 X 的最小子集 $X \in C^*$,使得 $X \in C^*$ 使得 $X \in C^*$ 电视识 $X \in C^*$ 电阻力 $X \in C^*$ 电视识 $X \in C^*$ 电阻 $X \in$

设计并实现算法 greedySetCover,使其计算时间为 $O\left(\sum_{s \in F} |s|\right)$ 。

★编程任务:

实现集合覆盖问题的近似算法 greedySetCover。

★数据输入:

由文件 input.txt 给出输入数据。第一行有 2 个正整数 n 和 m,分别表示有限集 X 中元素个数和子集族 F 中子集个数。 $X=\{0,1,\cdots,n-1\}$, $F=\{f_0,f_1,\cdots,f_{m-1}\}$ 。接下来的 m 行中,每行对应于 F 中一个子集 f_i 。第一个数是子集 f_i 中元素个数 k_i ,接着的 k_i 个数表示 f_i 中的元素。

★结果输出:

程序运行结束时,将计算出的最小覆盖子集输出到文件 output.txt。第 2 行是最小覆盖子集数。第 2 行是最小覆盖子集。

输入文件示例	输出文件示例
input.txt	output.txt
12 6	4
6 0 1 2 3 4 5	0 4 2 1
4 0 3 6 9	
4 1 4 7 10	
4 4 5 7 8	
4 2 5 8 11	
2 9 10	