

中华人民共和国国家计量检定规程

JJG 229-2010 .

工业铂、铜热电阻

Industry Platinum and Copper Resistance Thermometers

工业铂、铜热电阻检定规程

Verification Regulation of Industry Platinum and Copper Resistance Thermometers JJG 229—2010 代替 JJG 229—1998

本规程经国家质量监督检验检疫总局于2010年9月6日批准,并自2011年3月6日起施行。

归 口 单 位:全国温度计量技术委员会

主要起草单位:上海市计量测试技术研究院

参加起草单位:中国计量科学研究院

浙江省计量科学研究院

美国福禄克公司

大连久茂自动化仪器公司

杭州春江仪表有限公司

本规程由全国温度计量技术委员会负责解释

工业馆、铜热电阻检定规程

本规程主要起草人:

朱家良(上海市计量测试技术研究院)

姚丽芳 (上海市计量测试技术研究院)

参加起草人:

金志军(中国计量科学研究院)

周连琴 (浙江省计量科学研究院)

陈 宇 (美国福禄克公司)

汤韶剑(大连久茂自动化仪器公司)

吴大德 (杭州春江仪表有限公司)

DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE PARTY.

SEE AN EL PROPERTY OF THE STREET, STR

DESCRIPTION OF THE RESERVE AND ADDRESS.

原公京等新刊第

DISCUSSION DESIGNATION OF STREET

DESCRIPTION OF THE PERSON NAMED IN

目 录

1 范围		(1)
2 引用文献		(1)
3 定义及术语		(1)
4 概述		(1)
4.1 组成		(1)
4.2 温度特性		(2)
5 计量性能要求		(2)
5.1 允差		(2)
5.2 稳定性	********	(2)
6 通用技术要求	*******	(3)
6.1 外观	*******	(3)
A STATE OF THE PARTY OF THE PAR		
	*******	(4)
		(4)
		(5)
7.3 检定方法	*******	(6)
7.4 检定结果的处理	******	(11)
7.5 检定周期		(11)
附录 Α Δα 允许范围		(12)
附录 B 温度/电阻关系表 ····································	*******	(15)
附录 C 检定记录格式		(20)
附录 D 检定证书和检定结果通知书内页格式		(21)
附录 E 工业铂热电阻测量结果的不确定度评估 ······		(22)

工业铂、铜热电阻检定规程

范围

本规程适用于-200 ℃~+850 ℃整个或部分温度范围使用的温度系数 α 标称值为 3.851×10⁻³℃ 的工业铂热电阻和-200 ℃~+850 ℃整个或部分温度范围使用的温 度系数α标称值为4.280×10 ℃的工业铜热电阻(以下简称热电阻)的首次检定、 ISOOH 'DNIHST HOUSE. 后续检定和使用中检验。

引用文献

本规程引用下列

Industrial platinum resistance theren meters and platinum IEC 60751 (4 [业铂热电阻及其传感器] temperature sensors

JB/T 8623 1997 工业铜热电阻技术条件及分度表 引用时, 应证意使用上述引用文献的现行有效版本。

定义及术悟

3. 1 oresistance thermometer

由一个或多个感温电阻元件组成的,带引线、保护管和接线端上的则温仪器。

3.2 标称电阻值 Ro nominal resistance Ro

热电阻(或感温元件)在0℃时的期望电阻值。其阻值通常有:10 Ω、50 Ω、 100 Ω、500 Ω、1000 Ω、它由制造商申明并标于热电阻上。感温元件常以其标称电阻 值表征,例如 全 Pt100 的感温元件, 具有作中阻值为 100 Ω; /(cm) 的感温元件, 其 标称电阻值为 3000。

3.3 工业热电阻电阻比值 W! relative resistance W!

工业热电阻(或感温元件) 在温度 t 的电阻值 R, 与 0/6 的电阻值 R。之比。其中 Wiso为标称电阻比值。与电阻温度系数 a 有直接对应关系。

3. 4 标准铂电阻电阻比值 W relative resistance W ... 标准铂电阻温度计在温度。的电阻值及与在水口相点的电阻值及中之比。

3.5 电阻温度系数 temperature coefficient of resistance

单位温度变化引起电阻值的相对变化。感温元件和热电阻的电阻温度系数用α表 示,即

$$\alpha = \frac{R_{100} - R_0}{R_0 \cdot 100} \text{°C}^{-1} = (W_{100}^1 - 1) \times 10^{-2} \text{°C}^{-1}$$

概述

4.1 组成

工业铂、铜热电阻由装在保护套管内的一个或多个铂、铜热电阻感温元件组成,包

括内部连接线以及用来连接电测量仪表的外部端子(不包括测量、显示装置)。可含安装固定用的装置和接线盒,但不含可分离的保护管或安装套管。

4.2 温度特性

4.2.1 工业铂热电阻 (PRT)

工业铂热电阻电阻值与温度之间的函数关系为 -200 ℃~0 ℃。

$$W_t^1 = R_t/R_0 = 1 + At + Bt^2 + C(t - 100)t^3$$

$$dW_t^1/dt = A + 2Bt - 300Ct^2 + 4Ct^3$$

0 °C ~850 °C;

$$W_t^1 = R_t/R_0 = 1 + At + Bt^2$$

 $dW_t^1/dt = A + 2Bt$; $(dW_t^1/dt)_{t=0} = 0.0039083$;
 $(dW_t^1/dt)_{t=100} = 0.0037928$

式中: $A=3.9083\times10^{-1}$ °C⁻¹; $B=-5.7750\times10^{-7}$ °C⁻²; $C=-4.1830\times10^{-12}$ °C⁻¹

4.2.2 工业铜热电阻 (CRT)

工业铜热电阻电阻值与温度之间的函数关系为 -50 ℃ \sim 150 ℃:

$$W_t^1 = R_t/R_0 = 1 + \alpha t + \beta t (t - 100) + \gamma t^2 (t - 100)$$

$$dW_t^1/dt = (\alpha - 100\beta) + 2(\beta - 100\gamma)t + 3\gamma t^2$$

$$(dW_t^1/dt)_{t=0} = 0.004 289 3; (dW_t^1/dt)_{t=100} = 0.004 283 0$$

式中: $\alpha = 4.280 \times 10^{-3} \, ^{\circ} \, ^{\circ} \, ^{\circ};$ $\beta = -9.31 \times 10^{-8} \, ^{\circ} \, ^{\circ} \, ^{\circ} \, ^{\circ};$ $\gamma = 1.23 \times 10^{-9} \, ^{\circ} \, ^{\circ} \, ^{\circ} \, ^{\circ}$

4.2.3 温度/电阻表 (分度表)

当 R_0 为各标称电阻值时,可将上述函数关系制成相应的温度/电阻表(分度表)。 铂热电阻标称电阻值为 $100~\Omega$ 的分度表见附录 B_0 其他类型铂热电阻的分度表只要 将该分度表中的电阻值乘以 $\frac{R_0}{100~\Omega}$ 即可(此处的 R_0 为其他类型铂热电阻的标称电阻值)。 铜热电阻分度表亦是如此得到。

附录 B 分度表中的电阻值是按上述函数关系计算,并修约到小数点后第二位得到的。对于允差等级高于 AA 级的铂热电阻,分度表中的电阻值应修约到小数点后第三位。

5 计量性能要求

5.1 允差

允差等级是与有效温度范围相对应的。在有效温度范围内, 热电阻的电阻值通过分度表查算出的温度 t 与真实温度的最大偏差不得超过表 1 给定的允差值。表 1 适用于任

何标称电阻值的热电阻。对于特定的热电阻,若其有效温度范围小于该表规定的范围,应给予说明。

热电阻	允差	有效温度	La Me las	
类型	等级	线绕元件	膜式元件	允差值
	AA	-50~+250	0~+150	±(0.100 ℃+0.001 7 t)
PRT	A	-100~+450	-30~+300	±(0.150 °C+0.002 t)
FK1	В	-196~+600	-50~+500	±(0.30 ℃+0.005 t)
	C	-196~+600	-50~+600	±(0.6°C+0.010 t)
CRT		-50~+150		±(0.30°C+0.006 t)

表 1 热电阻的允差等级和允差值

若特殊的允差等级与表 1 给出的允差等级不同,制造商须特别加以注明,包括相应的有效温度范围。铂热电阻推荐的特殊允差等级应是 B 级允差值的分数或倍数(如: $\frac{1}{10}B$ 级、 $\frac{1}{5}B$ 级、3B 级等)。

5.2 稳定性

铂热电阻在经历最高工作温度 672 h后,其 R。值的变化换算成温度后不得大于表 1 规定的 0 ℃允差的绝对值。

6 通用技术要求

6.1 外观

- 6.1.1 热电阻各部分装配正确、可靠、无缺件,外表涂层应牢固,保护管应完整无损,不得有凹痕、划痕和显著锈蚀;
- 6.1.2 感温元件不得破裂,不得有明显的弯曲现象;
- 6.1.3 根据测量电路的需要, 热电阻可以有两、三或四线制的接线方式, 其中 A 级和 AA 级的热电阻必须是三线制或四线制的接线方式。
- 6.1.4 每支热电阻在其保护套管上或在其所附的标签上至少应有下列内容的标识:
 - 类型代号
 - 标称电阻值 R。
 - 有效温度范围
 - 感温元件数
 - 允差等级
 - 制造商名或商标
 - 生产年月

注:

- 1. 如果用符号来表达这些信息, 其标识应便于识别。
- 2. 检定标记应置于热电阻的保护套管上或所附的标签上。

注: 1. 在 600 ℃到 850 ℃范围的允差应由制造商在技术条件中确定。

^{2. 1} 为温度的绝对值,单位为℃。

6.2 绝缘电阻

感温元件与外壳,各感温元件之间的绝缘电阻均应符合如下规定:

- a) 常温绝缘电阻, 热电阻处于温度 15 $^{\circ}$ C \sim 35 $^{\circ}$ C, 相对湿度 45% \sim 85%的环境时, 绝缘电阻应不小于 100 M Ω ;
 - b) 高温绝缘电阻, 热电阻在上限工作温度的绝缘电阻应不小于表 2 规定的值。

表 2 最小绝缘电阻值

最小绝缘电阻值/MΩ
NIHOT 20
2
75 5

7 计量器具控制

计量器具控制包括首次检定、后续一定和使用中检验。

7.1 检定条件

7.1.1 检定设备 0

检定时所需的标准仪器及配套设备报被检热电阻的类型可从表 3 中参考选择。选用的原则为:检定时用的标准器、电测仪器以及配套设备引入的扩展不确定度(置信概率 p=95%)换算成温度值应不大于被检热电阻允差绝对值的 1/4 (AA 级以上的为 1/3)。

4 - 8	1,500,000	25	****	13			16.7	10.
表 3	标准	仪	器	及	鼆	喓	馊	띢

序号	仪器设备各种	技术要求	用途	王备 注
1	标准铂电阻温度并	-196 ℃ -+160 ℃ 二等	用比较法检定时的参考。	一亦可用满足不确 定度要求的其他标 准温度计
2	电测仪器 (电桥或可测量电阻的数字多用表)	等级 B级及以下用 0.005级及以上等级 B级及以下用 0.005级及以上 等级 测量范围应与标准铂电阻、被 检热电阻的电阻值范围相适应 保证标准器和被检热电阻的分辨力换算成温度后不低于 0.001℃ 如测量 Pt100的分辨力不低于 0.1 mΩ	沙里热电阻和标准铂电阻阻值的仪器	电测仪器提供给 热电阻的测量电流 应保证功耗引起的 温升尽可能小, 会对不确定度评定 带来显著影响

表 3 (续)

		表の(狭)		
序号	仪器设备名称	技术要求	用途	备 注
3	转换开关	接触电势≤1.0 µV	多支热电阻检定用转换器	
4	冰点槽	U≤0.04 ℃, k=2 制冰的水和加入冰槽的水必须 纯净。冰水混合物必须压紧以消 除气泡。水面应低于冰面(10~ 20) mm	产生0°C的 恒温装置	亦可用满足不定度要求的恒温槽
5	恒温槽	温度范围: -50 ℃~+300 ℃ 水平温场≪0.01 ℃ 垂直温场≪0.02 ℃ 10 min 变化不大于 0.04 ℃	温度は的恒温装置	应有足够的置。 深度。保证在允定 检定时的热损失。 被忽略;同时,还。 须满足标准温度; 插人深度的要求
6	高温炉	温度范围 t: 300 ℃~850 ℃ 测量区域温差不大于热电阻上限温度允差的 1/8	高温源,检 定 300 ℃以上 的上限温度用	可用符合要求的其他高温源
7	水三相点瓶及其保温容器		核查标准铂 电阻温度计的 R ₀ 用	用同一台电测行器测量 R ₀ 和 R; R ₀ 可显著减小测量 不确定度
8	液氮杜瓦瓶或液氮比较仪		低温源,检定一196℃下限温度用	
9	绝缘电阻表	直流电压 10 V~100 V 10 级	测量热电阻 的绝缘电阻	

7.1.2 环境条件 环境温度: 15 ℃~35 ℃。电测设备应符合相应的环境要求。

相对湿度: 30%~80%。

7.2 检定项目

首次检定、后续检定和使用中检验的检定项目见表 4。

表 4 检定项目

检定工	页目	首次检定	后续检定	使用中检验
外又	N. Control of the con	+	4	
绝缘电阻	常温	+	1919	+
PER PER PER	高温	*		

表 4 (续)

1000	检定项目	首次检定	后续检定	使用中检验		
	稳定性	*				
4	0℃点	+	+	+		
允差	允差等级规定的上限(或下限) 温度或 100 ℃点(应首选 100 ℃)	+	+			

注:

- 1. 表中"十"表示应检定,"一"表示可不检定,"*"表示当用户要求时应进行检定。
- 2. 在 R_0 和 R_{100} 合格,而电阻温度系数 α 不符合要求时 (详见 7.3.5),仍应进行允差等级规定的上限温度的检定。

7.3 检定方法

7.3.1 外观检查

按 6.1.1~6.1.4 的要求检查热电阻和感温元件的保护套管外部,应无肉眼可见的损伤。同时按 6.1.4 的要求检查标识、检定标记等,确定热电阻是否符合管理性的要求。

7.3.2 绝缘电阻的测量

- a) 常温绝缘电阻的测量。应把热电阻的各接线端短路,并接到一个直流 100 V 的 兆欧表的一个接线端, 兆欧表的另一接线端应与热电阻的保护管连接, 测量感温元件与保护管之间的绝缘电阻; 有两个感温元件的热电阻, 还应将两热电阻的各接线端分别短路, 并接到一个直流 100 V 的兆欧表的两个接线端, 测量感温元件之间的绝缘电阻。
- b) 高温绝缘电阻的测量。测量方法与上述相同,所用的直流电压应不超过 10 V, 热电阻应在最高工作温度保持 2 h 后进行绝缘电阻的测量。
 - 注:若热电阻的保护套管由绝缘材料制成,不需检查保护管与感温元件之间的绝缘电阻。

7.3.3 稳定性试验

先在冰点槽中测量热电阻 0 ℃的电阻值 R_0 ,然后将热电阻在最高工作温度保持 672 h。此后再次测量 0 ℃的电阻值,热电阻 R_0 的变化应不超过 0 ℃允差的要求。

7.3.4 允差的检定

7.3.4.1 检定点的选择

各等级热电阻的检定点均应选择 0 ℃和 100 ℃,并检查 α 的符合性。当 Δα 不符合要求时,仍须进行上限(或下限)温度的检定(首选上限)。

注:上述上、下限温度指的是表1中相应允差等级有效温度范围的上、下限温度。如制造商注明的有效温度范围小于表中规定的上、下限温度,按制造商注明的选择。

7.3.4.2 热电阻阻值的测量方法

热电阻(包括感温元件)和标准铂电阻的电阻值测量均应采用四线制的测量方法。 感温元件的电阻值应从其连接点起计算,热电阻的电阻值应从整支热电阻的接线端子起 计算。 在测量二线制的热电阻时,也应接成四线制进行。应考虑从感温元件连接点到热电阻端子间内引线的电阻值,若制造商提供引线的电阻值,则测量结果应扣除引线电阻值。否则,引线电阻应包括在感温元件内。

在测量三线制的热电阻时,为消除引线电阻 r 的影响,可分别按图 1(a) 和图 1(b) 的接线方法测量,得到 R_a 和 R_b 。由于 $R_a=R_t+r$, $R_b=R_t+2r$,则三线制热电阻的电阻值为 $R_t=2R_a-R_b$ 。

图 1 三线制热电阻测试接线方法

电测仪器可以选用符合测量准确度要求的电桥或数字多用表。为削弱热电势的影响,用数字多用表测量电阻时应采取电流换向,取平均值。考虑恒温槽温度随时间变化的因素,应在尽可能短的时间内采用交替测量热电阻和标准铂电阻的办法,交替重复不少于4次(包括电流换向),分别取平均值作为测量结果。

7.3.4.3 R。的检定

在冰点槽(或具有 0 ℃的恒温槽,偏差不超过±0.2 ℃)中测量热电阻的电阻值,并与标准器测量冰点槽的温度进行比较,计算其 0 ℃的偏差值 Δt_0 。

对保护管可拆卸的热电阻,为缩短热平衡时间,可将感温元件连同引出线一并从内衬管和保护管中取出,放置在内径略大于感温元件直径的玻璃试管中,管口用脱脂棉塞紧,插入冰点槽,被一层不小于 30 mm 的冰水混合物所包围,在测量前必须将冰水混合物压紧以消除气泡,测量中也要始终维持该状态。保护管不可拆卸的热电阻,检定时必须要有足够的热平衡时间,待测量数据稳定后方可读数。

如果使用0℃恒温槽,热电阻应有足够的插入深度,尽可能减少热损失。

检定 AA 级以上的热电阻,为减小测量不确定度,建议在水三相点瓶中测量,通过计算得到 R。值。

 R_0 的计算 (方法步骤):

a) 冰点槽偏离 0 ℃的值 Δti 由标准铂电阻温度计测量得到。 其值按公式 (1) 计算:

$$\Delta t_i^* = \left(\frac{R_i^*}{R_{ip}^*} - W_0^{\rm S}\right) / (dW_i^{\rm S}/dt)_{t=0}$$
(1)

式中: R_i^* , R_{ip}^* —标准铂电阻在冰点槽和水三相点测得的电阻值, Ω , $W_i^s = \frac{R_i^*}{R_{ip}^*}$; W_0^s , $(dW_i^s/dt)_{i=0}$ —标准铂电阻 0 $^{\circ}$ 0 时的电阻比值和电阻比值对温度的变化率。

注: 检定 AA 级热电阻时, R_n 的电阻值必须在三相点瓶中用电测仪器重新测量, 有利于改善测量不确定度(检定 A 级热电阻时如果使用 0.02 级的测量仪器, 必须重测 R_n 才能满足测量不确定度的要求)。检定其他等级的热电阻时如果对该电阻值没有异议, 可直接从标准铂电阻的检定证书中获得。

b) 测量被检热电阻在冰点槽的电阻值R, 计算热电阻的R'。。

R'。由公式(2)计算得到:

$$R_0' = R_1 - \Delta t_1^* \cdot (\mathrm{d}R/\mathrm{d}t)_{t=0} \tag{2}$$

式中:(dR/dt), 一一被检热电阻在0℃时,电阻值对温度的变化率, $\Omega/$ ℃;

其中: Pt100的 (dR/dt),=0=0.390 83 Ω/℃;

Cu100 的 $(dR/dt)_{t=0} = 0.42893 \Omega/^{\circ}C$ 。

R'。的计算结果修约到 1 m Ω ; AA 级以上修约到 0.1 m Ω 。

c) 计算被检热电阻 0 ℃的温度偏差 △to。

R'。值对应的温度与 0 ℃的差值 Δt 。可按公式 (3) 计算,其值应符合相应允差等级的要求:

$$\Delta t_0 = \frac{R'_0 - R_0}{(dR/dt)_{t=0}} \tag{3}$$

式(3)也可表示为

$$\Delta t_0 = \frac{R_i - R_0}{(\mathrm{d}R/\mathrm{d}t)_{t=0}} - \Delta t_i^* = \Delta t_i - \Delta t_i^*$$

式中: △ti—由被检热电阻在冰点槽中测得的偏离 0 ℃的差, ℃;

Δt₁*——标准铂电阻温度计在冰点槽中测得的偏离 0 ℃的差,℃。

7.3.4.4 R100和 R,的检定

在 100 ℃的恒温槽中测量热电阻的电阻值,并与标准器测量的温度进行比较,计算其 100 ℃的偏差值 Δt₁₀₀。其他温度点的检定也是如此。

可拆卸热电阻的检定与 R。的检定一样,可将感温元件放置在玻璃试管中,检定温度高于 400 ℃时应放置在石英试管中。

热电阻检定时在恒温槽中应有足够的插入深度,尽可能减少热损失。合适的插入深度,是在热平衡后继续增加插入深度 1 cm,在重新达到热平衡后电阻值的变化不应超过允差的 5%。如制造商另有规定,则按规定的插入深度进行检定。

若温度 t 高于 500 ℃,则不应把热电阻快速地从槽中移到室温的空气中,而应以小于 1 ℃/min 的速率随槽冷却至 500 ℃,然后再从控温槽中取出。

恒温槽的温度应控制在检定点附近,不应超过±2℃,同时要求 10 min 之内变化不超过±0.02℃。

R100的计算 (方法步骤):

a) 恒温槽偏离 100 ℃的温度 Δti 由标准铂电阻温度计测量得到。

偏离 100 ℃的值 Δti 按公式 (4) 计算:

$$\Delta t_{\rm h}^* = \left(\frac{R_{\rm h}^*}{R_{\rm tp}^*} - W_{100}^{\rm S}\right) / (dW_i^{\rm S}/dt)_{t=100} \tag{4}$$

式中: $R_{\rm h}^*$ 一标准铂电阻在约 100 $^{\circ}$ 的恒温槽中测得的电阻值, Ω , $W_{\rm h}^{\rm s}=\frac{R_{\rm h}^*}{R_{\rm tp}}$;

Wioo, (dWi/dt),-100 ─ 标准铂电阻 100 ℃的电阻比值和电阻比值随温度的变化率。

b) 测量被检热电阻在 100 ℃恒温槽中的电阻值 Rh, 计算热电阻的 R'100。

热电阻的 R'_{100} 由公式 (5) 计算得到:

$$R'_{100} = R_h - \Delta t_h^* \cdot (dR/dt)_{t=100}$$
 (5)

式中: R_h—被检热电阻在约 100 ℃的恒温槽测得的电阻值, Ω;

(dR/dt),-100 一被检热电阻在 100 ℃时, 电阻值对温度的变化率, Ω/℃;

其中: Pt100 的 $(dR/dt)_{t=100}$ = 0.379 28 Ω /℃;

Cu100 的 $(dR/dt)_{t=100}$ = 0.428 30 Ω /°C。

 R'_{100} 的计算结果修约到 1 mΩ; AA 级以上等级修约到 0.1 mΩ。

c) 计算被检热电阻 100 ℃的温度偏差 Δ/400。

计算 R'100 与 100 ℃标称值 Ruc 的差) 并接受或 (ii) 换算成温度值 Δt100, 应符合相应允差等级的要求:

式 (6) 也可表式为
$$\Delta t_{100} = \frac{R'_{100} - R_{100}}{(dR/dt)_{t=100}}$$

$$\Delta t_{100} = \frac{R_h - R_{100}}{(dR/dt)_{t=100}} - \Delta t_h = \Delta t_h - \Delta t_h$$
(6)

式中: △th 由被检热电阻在100℃恒温槽中测得的偏离100℃的差,℃;

△ti 一标准铂电阻温度计在 100℃恒温槽中测得的偏离 100℃的差,℃。

7.3.4.5 R。和 R 。 电阻值的合格判断

热电阻的元差可以换算成相应的电阻值表示。表 5 列出了 Pt100 和 Cu100 符合允差要求的 R₀和 R₁₀范围。因此,0 ℃和 100 ℃允差检定的合格判断也可以直接从公式 (2) 和公式 (5) 计算得到的值,通过查表 5 来判断电阻值是否在允差范围内。

表 5 Pt100 和 Cu100 符合允差要求的 Ro和 R100 范围

检定点	E E	至 P1100 标称值及允差/Ω						
	AA	Δ	B	0/9	允差/Ω			
R_0	±0.039	100.000 ±0.059	100.000 ±0.417	100/000 ±0.230	100.000 ±0.129			
R_{100}	138.506 ±0.102	138.506 ±0.133	138.506 ±0.303	138: 106 ± . 607	142.800 ±0.385			

注:

- 1. 标称电阻值不为 $100~\Omega$ 的其他熟电阻(2000) 即可。 将上述表格中的数值乘以 $\frac{R_o}{100~\Omega}$ 即可。
- 2. 上述的合格判断方法可以作为受检热电阻是否合格的一种判据。
- 3、制造商出厂合格的判据和用户拒收的不合格判据,依据 IEC 60751 (2008) 标准的要求必须考虑测量不确定度的因素,即制造商出厂检验的测量结果选加扩展不确定度后均落在允差带里面方可认定为合格;用户验收的测量结果选加扩展不确定度后全部落在允差带外面方可认定为不合格。

7.3.5 实际电阻温度系数α的要求

在 R'_0 和 R'_{100} 符合允差要求的条件下,还应检查 α 的符合性。被检热电阻的实际电

阻温度系数 α ,可以用 R'。和 R'100 值按 α 的定义计算获得。当 α 偏离标称值的大小(即 $\Delta\alpha$)符合表 6 要求时,该热电阻的允差检定项目合格。否则还应进行上限(或下限)温度的检定才能最终得出允差检定项目是否合格的结论。

对于B级、C级的薄膜铂热电阻,上限温度大于300℃时,应有制造商型式试验合格的信息。否则,应进行上限温度的检定。

表 6 给出了各允差等级热电阻的 $\Delta\alpha$ 允许范围,该范围与热电阻在 0 $\mathbb C$ 的偏差 Δt_0 有关。附录 A 描述了 $\Delta\alpha$ 与 Δt_0 的关系。

表 6 Δα的允许范围 (与Δt。有关)

热电阻类型	α 标称值 /°C-1	等级 (上限温度)	$\Delta t_{ m o}/^{\circ}{ m C}$	Δα/10 ⁻¹ °C ⁻¹				
71			+0.10	4.0~-10.0				
	S THE RES	167-	0.00	7.0~-7.0				
	. /	AA	-0.10	10.0~-4.0				
		(250 ℃)	(-7.0-30Δt ₀)×10 ⁻⁶ ℃ ⁻¹ ≪Δ 上限温度为 150 ℃ (薄 (-8.5-40Δt ₀)×10 ⁻⁶ ℃ ⁻¹ ≪Δ	膜铂热电阻),应取:				
		ALTONOMIC .	+0.15	3.6~-10.4				
	COL ST. ST. D. MAN		0.00	7.0~-7.0				
		(450 ℃)	-0.15	10.4~-3.6				
 由热电阻	1热电阻 0.003 851	DOLL HARLI	$(-7.0-23\Delta t_0)\times 10^{-6}\text{C}^{-1} \leq \Delta$	$\alpha \leq (7.0 - 23\Delta t_0) \times 10^{-6} \text{°C}^-$				
			+0.30	8~-20				
		В	0.00	14~-14				
		(600°C)	-0.30	20~-8				
			$(-14-21\Delta t_0)\times 10^{-6} \text{°C}^{-1} \leqslant \Delta \alpha \leqslant (14-21\Delta t_0)\times 10^{-6} \text{°C}^{-1}$					
			+0.60	19~-45				
		C	0.00	32~-32				
	WEALE	(600 °C)	-0.60	45~-19				
			$(-32-21\Delta t_0)\times 10^{-6}$ °C ⁻¹ $\leq \Delta$	$\alpha \leq (32-21\Delta t_0) \times 10^{-6} ^{\circ} \! \text{C}^{-1}$				
	THE TANK	THE RES	+0.30	20~-48				
組 和 由 四	0.004.280	THE BUILDING	0.00	$34 \sim -34$				
铜热电阻	0.004 280	(150 ℃)	-0.30	48~-20				
			$(-34-47\Delta t_0) \times 10^{-6} ^{\circ}\text{C}^{-1} \leqslant \Delta$	$a \leq (34 - 47\Delta t_0) \times 10^{-6} ^{\circ} \! ^{\circ} \! ^{\circ} \! ^{-1}$				

注:R'。对应的 Δt 。在上述范围内时, $\Delta \alpha$ 的取值可以按表中的范围函数计算得到,其中AA 级和A 级修约至 10^{-7} ,B 级、C 级和铜热电阻修约至 10^{-6} 。

7.4 检定结果的处理

按本规程要求检定合格的热电阻,出具该等级合格的检定证书;检定不合格的出具 检定结果通知书,并注明不合格项目。

作为出厂检定及用户验收的检定结果应给出判定依据和测量不确定度。

7.5 检定周期

热电阻的检定周期可根据使用条件、频繁程度和重要性来确定,最长不得超过 1年。

附录A

Δα 允许范围

 $\Delta \alpha$ 的允许范围与实测的 R。有关,即与 Δt 。有关。图 A. 1~图 A. 5 是各类热电阻 $\Delta \alpha = f(\Delta t_0)$ 极限函数的图形,描述了 $\Delta \alpha$ 的允许范围。可以从实际测得的 Δt 。查得或计算 $\Delta \alpha$ 的允许范围。

图 A.2 A 级热电阻 Δα 的取值范围

图 A. 2 中 $\Delta \alpha$ 的极限函数为 $(-7.0-23\Delta t_0) \times 10^{-4}$ $\mathbb{C}^{-1} \leqslant \Delta \alpha \leqslant (7.0-23\Delta t_0) \times 10^{-4}$ \mathbb{C}^{-1} 。例如: $\Delta t_0 = 0.00$ \mathbb{C} 时, $\Delta \alpha$ 的上、下限范围为 7.0×10^{-6} $\mathbb{C}^{-1} \sim -7.0 \times 10^{-6}$ \mathbb{C}^{-1} 。

图 A. 3 中 $\Delta \alpha$ 的极限函数为 ($-11-21\Delta t_0$) \times 10^{-6} $^{\circ}$ $^$

图 A.4 C级热电阻 Δα 的取值范围

图 A. 4 中 $\Delta \alpha$ 的极限函数为 $(-32-21\Delta t_0) \times 10^{-6} \text{ \mathbb{C}^{-1}} \leqslant \Delta \alpha \leqslant (32-21\Delta t_0) \times 10^{-6} \text{ \mathbb{C}^{-1}}$ 。例如: $\Delta t_0 = 0.00 \text{ \mathbb{C}}$ 时, $\Delta \alpha$ 的上、下限范围为 $32 \times 10^{-6} \text{ \mathbb{C}^{-1}} \sim -32 \times 10^{-6} \text{ \mathbb{C}^{-1}}$ 。

图 A. 5 铜热电阻 Δα 的取值范围

图 A. 5 中 $\Delta \alpha$ 的极限函数为 $(-34-47\Delta t_0) \times 10^{-6}$ $\mathbb{C}^{-1} \leq \Delta \alpha \leq (34-47\Delta t_0) \times 10^{-6}$ \mathbb{C}^{-1} 。例如: $\Delta t_0 = 0.00$ \mathbb{C} 时, $\Delta \alpha$ 的上、下限范围为 34×10^{-6} $\mathbb{C}^{-1} \sim -34 \times 10^{-6}$ \mathbb{C}^{-1} 。

附录B

温度/电阻关系表

B. 1 Pt100 铂热电阻 (α=3.851×10⁻³℃⁻¹) 的温度/电阻关系表

t/°C	电阻值/Ω										1190
17.0	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	t/℃
-200	18. 52										-200
-190	22. 83	22, 40	21. 97	21.54	21. 11	20. 68	20. 25	19. 82	19. 38	18. 95	-19
-180	27. 10	26. 67	26. 24	25, 82	25. 39	24. 97	24. 54	24. 11	23. 68	23. 25	-180
-170	31, 34	30.91	30, 49	30.07	29. 64	29. 22	28. 80	28. 37	27.95	27. 52	-17
-160	35. 54	35. 12	34. 70	34. 28	33. 86	33. 44	33. 02	32.60	32. 18	31.76	-16
-150	39, 72	39.31	38. 89	38. 47	38, 05	37. 64	37. 22	36. 80	36. 38	35. 96	-15
-140	43, 88	43. 46	43.05	42.63	42. 22	41.80	41. 39	40.97	40.56	40.14	-14
-130	48.00	47, 59	47, 18	46.77	46.36	45. 94	45. 53	45. 12	44.70	44. 29	-13
-120	52. 11	51.70	51. 29	50.88	50, 47	50.06	49.65	49. 24	48. 83	48. 42	-12
-110	56. 19	55, 79	55. 38	54.97	54. 56	54. 15	53, 75	53. 34	52. 93	52. 52	-11
-100	60. 26	59. 85	59. 44	59.04	58. 63	58. 23	57, 82	57.41	57.01	56.60	-10
-90	64.30	63. 90	63. 49	63.09	62. 68	62. 28	61.88	61.47	61.07	60.66	-90
-80	68. 33	67. 92	67. 52	67.12	66. 72	66.31	65. 91	65. 51	65. 11	64.70	-80
-70	72. 33	71.93	71.53	71.13	70, 73	70. 33	69. 93	69. 53	69. 13	68. 73	-70
-60	76. 33	75. 93	75, 53	75. 13	74. 73	74. 33	73. 93	73.53	73. 13	72. 73	-60
-50	80.31	79. 91	79. 51	79.11	78. 72	78. 32	77.92	77. 52	77. 12	76. 73	-50
-40	84. 27	83. 87	83. 48	83.08	82. 69	82. 29	81.89	81, 50	81.10	80.70	-40
-30	88. 22	87. 83	87.43	87.04	86. 64	86. 25	85. 85	85. 46	85.06	84. 67	-30
-20	92. 16	91.77	91.37	90. 98	90. 59	90. 19	89. 80	89. 40	89. 01	88. 62	-20
-10	96.09	95. 69	95. 30	94. 91	94. 52	94. 12	93. 73	93. 34	92. 95	92. 55	-10
0	100.00	99. 61	99. 22	98. 83	98. 44	98.04	97.65	97. 26	96.87	96.48	0
190					电阻	值/Ω					
t/℃	0	Ĩ	2	3	4	5	6	7	8	9	t/℃
0	100.00	100. 39	100.78	101, 17	101.56	101. 95	102, 34	102.73	103. 12	103. 51	0
10	103. 90	104. 29	104.68	105.07	105.46	105. 85	106. 24	106.63	107.02	107.40	10

表 (续)

t/°C					电阻	值/Ω					i/°C
40	0	1	2	3	4	5	6	7	8	9	1/ 0
20	107. 79	108. 18	108, 57	108.96	109.35	109.73	110.12	110.51	110.90	111. 29	20
30	111. 67	112.06	112.45	112.83	113. 22	113.61	114.00	114. 38	114.77	115. 15	30
40	115.54	115.93	116.31	116.70	117.08	117. 47	117.86	118. 24	118.63	119.01	40
50	119.40	119.78	120.17	120.55	120-04	121.32	121.71	122.09	122. 47	122. 86	50
60	123. 24	123.63	124.01	121-39	OH: 78	125, 16	AHA)	125.93	126, 31	126. 69	60
70	127. 08	127.46	127, 64	128,22	128. 61	128, 99	129.37	124.3	130. 13	130. 52	70
80	130. 90	131. 28	181:56	132.04	132, 42	132.80	133, 18	133.57	238. 95	134. 33	80
90	134. 71	135.0	28/47	135.85	136, 23	13 61	136. 99	137. 37	100	138. 13	90
100	138. 51	138 8	129.26	139.64	140,02	140. 10	14078	141.16	14	141.91	100
110	142. 29	14.4	143.05	143. 43	113.80	144. 18	141.76	144. 94	145.31	145. 69	110
120	146.07	183	146. 82	147. 20	147.57	147.05	148. 33	148.70	149. 08	149.46	120
130	149. 83	50021	150. 58	150.96	151-33	151.71	152.08	152. 46	152. 88	151.21	130
140	153. 58	52.96	154. 33	154. 71	155.08	155/3/6	155 83	156. 20	156. 58	156. 95	140
150	157. 33	3770	158.07	158. 45	1 8 82	159. 19	159 6	159.94	160.31	10. 68	150
160	161.05	6D,43	161.80	162. 17	162.54	162,91	D68, 29	163.66	164.08	16 . 40	160
170	164. 77	19	165. 51	165. 89	166, 26	166.63	167.00	167. 37	167.	08.11	170
180	168. 48	168.65	169. 22	169.59	159, 96	170.39	170, 70	171.07	171/8	771.80	180
190	172. 17	172.50	1 2. 91	173. 28	1 3 65	174.02	174 8	174. 75	17	175. 49	190
200	175. 86	176. 2	176. 59	176.96	177, 33	177, 60	76.96	178. 43	158.19	179. 16	200
210	179.53	179. 89	180026	180.63	180.99	181.36	181. 72	182/09	182. 46	182. 82	210
220		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					18			186. 47	220
230	186. 84	187. 20	187. 56	10 31	188.29	188.66	10,986	î 59. 38	189. 75	190, 11	230
240	190. 47	190. 84	191. 20	191.56	191. 92	102 20	192. 65	193. 01	193. 37	193. 74	240
250	194. 10	194.46	194. 82	195. 18	195. 55	195. 91	196. 27	196. 63	196. 99	197. 35	250
260	197.71	198. 07	198. 43	198. 79	199. 15	199.51	199. 87	200, 23	200.59	200.95	260
270	201. 31	201.67	202.03	202. 39	202. 75	203.11	203. 47	203. 83	204. 19	204. 55	270
280	204. 90	205. 26	205. 62	205. 98	206. 34	206.70	207. 05	207.41	207.77	208. 13	280
290	208. 48	208. 84	209. 20	209.56	209. 91	210. 27	210. 63	210. 98	211. 34	211.70	290
300	212. 05	212. 41	212. 76	213. 12	213. 48	213. 83	214. 19	214.54	214.90	215. 25	300

表 (续)

t/°C	12				电阻	值/Ω					1/°C
17 0	0	1	2	3	4	5	6	-7	8	9	t/°C
310	215. 61	215.96	216, 32	216. 67	217. 03	217. 38	217.74	218.09	218. 44	218. 80	310
320	219. 15	219. 51	219.86	220. 21	220. 57	220. 92	221. 27	221.63	221.98	222. 33	320
330	222. 68	223.04	223. 39	223.74	224.09	224. 45	224. 80	225. 15	225. 50	225. 85	330
340	226. 21	226. 56	226. 91	227. 26	227. 61	227. 96	228. 31	228.66	229.02	229. 37	340
350	229. 72	230.07	230. 42	230.77	231. 12	231. 47	231. 82	232. 17	232. 52	232. 87	350
360	233. 21	233. 56	233. 91	234. 26	234. 61	234. 96	235. 31	235. 66	236.00	236. 35	360
370	236. 70	237. 05	237. 40	237.74	238. 09	238. 44	238. 79	239. 13	239, 48	239. 83	370
380	240. 18	240. 52	240, 87	241. 22	241.56	241.91	.242. 26	242.60	242. 95	243. 29	380
390	243. 64	243, 99	244. 33	244.68	245.02	245.37	245.71	246.06	246.40	246. 75	390
400	247. 09	247. 44	247. 78	248. 13	248. 47	248. 81	249.16	249.50	249. 85	250. 19	400
410	250. 53	250. 88	251. 22	251.56	251.91	252. 25	252. 59	252. 93	253. 28	253. 62	410
420	253. 96	254. 30	254.65	254. 99	255. 33	255. 67	256. 01	256.35	256.70	257.04	420
430	257. 38	257. 72	258.06	258. 40	258. 74	259. 08	259. 42	259.76	260.10	260. 44	430
440	260.78	261. 12	261.46	261.80	262. 14	262. 48	262. 82	263.16	263.50	263. 84	440
450	264. 18	264. 52	264.86	265. 20	265. 53	265.87	266. 21	266.55	266. 89	267. 22	450
460	267. 56	267. 90	268. 24	268. 57	268. 91	269. 25	269.59	269.92	270. 26	270.60	460
470	270.93	271. 27	271.61	271.94	272. 28	272.61	272.95	273. 29	273.62	273.96	470
480	274. 29	274.63	274.96	275.30	275. 63	275.97	276.30	276.64	276.97	277. 31	480
490	277. 64	277. 98	278. 31	278.64	278. 98	279.31	279.64	279.98	280. 31	280. 64	490
500	280. 98	281. 31	281.64	281. 98	282. 31	282. 64	282. 97	283. 31	283. 64	283. 97	500
510	284. 30	284. 63	284. 97	285. 30	285. 63	285. 96	286. 29	286. 62	286. 95	287. 29	510
520	287. 62	287. 95	288. 28	288. 61	288. 94	289. 27	289. 60	289. 93	290. 26	290. 59	520
530	290. 92	291. 25	291. 58	291. 91	292. 24	292.56	292. 89	293. 22	293. 55	293. 88	530
540	294, 21	294.54	294. 86	295, 19	295. 52	295. 85	296. 18	296.50	296. 83	297. 16	540
550	297. 49	297. 81	298. 14	298. 47	298. 80	299. 12	299. 45	299. 78	300.10	300. 43	550
560	300.75	301.08	301.41	301.73	302.06	302.38	302.71	303. 03	303.36	303. 69	560
570	304. 01	304. 34	304.66	304. 98	305. 31	305.63	305. 96	306. 28	306.61	306. 93	570
580	307. 25	307. 58	307. 90	308. 23	308. 55	308. 87	309, 20	309, 52	309, 84	310. 16	580

表 (续)

t/°C	电阻值/Ω								t/°C		
1/0	0	1	2	3	4	5	6	7	8	9	2/ 0
590	310.49	310.81	311.13	311. 45	311.78	312. 10	312. 42	312.74	313.06	313. 39	590
600	313. 71	314.03	314. 35	314. 67	314.99	315. 31	315.64	315.96	316. 28	316.60	600
610	316.92	317. 24	317.56	317. 88	318. 20	318. 52	318.84	319.16	319.48	319.80	610
620	320.12	320. 43	320.75	321.07	321. 39	321.71	322. 03	322. 35	322. 67	322. 98	620
630	323. 30	323. 62	323.94	324. 26	324. 57	324. 89	325. 21	325, 53	325. 84	326. 16	630
640	326. 48	326. 79	327.11	327.43	327.74	328.06	328. 38	328. 69	329.01	329. 32	640
650	329. 64	329.96	330. 27	330.59	330. 90	331. 22	331.53	331. 85	332. 16	332. 48	650
660	332. 79	333. 11	333. 42	333.74	334.05	334. 36	334. 68	334. 99	335. 31	335, 62	660
670	335. 93	336. 25	336.56	336.87	337. 18	337.50	337. 81	338. 12	338. 44	338. 75	670
680	339.06	339. 37	339.69	340.00	340.31	340.62	340.93	341. 24	341.56	341. 87	680
690	342. 18	342. 49	342.80	343.11	343. 42	343.73	344.04	344. 35	344. 66	344.97	690
700	345. 28	345. 59	345.90	346. 21	346. 52	346.83	347.14	347.45	347.76	348.07	700
710	348. 38	348. 69	348. 99	349.30	349.61	349. 92	350. 23	350. 54	350.84	351. 15	710
720	351. 46	351.77	352. 08	352.38	352. 69	353.00	353. 30	353. 61	353. 92	354. 22	720
730	354. 53	354. 84	355. 14	355. 45	355. 76	356.06	356. 37	356. 67	356. 98	357. 28	730
740	357. 59	357. 90	358. 20	358. 51	358. 81	359. 12	359. 42	359. 72	360.03	360. 33	740
750	360. 64	360.94	361. 25	361.55	361. 85	362. 16	362. 46	362. 76	363.07	363. 37	750
760	363. 67	363. 98	364. 28	364. 58	364. 89	365. 19	365. 49	365. 79	366.10	366. 40	760
770	366. 70	367.00	367. 30	367.60	367. 91	368. 21	368. 51	368. 81	369.11	369. 41	770
780	369. 71	370.01	370. 31	370.61	370.91	371. 21	371.51	371.81	372. 11	372, 41	780
790	372. 71	373. 01	373. 31	373. 61	373. 91	374. 21	374. 51	374. 81	375. 11	375. 41	790
800	375. 70	376.00	376.30	376.60	376. 90	377. 19	377. 49	377. 79	378. 09	378. 39	800
810	378. 68	378. 98	379. 28	379.57	379, 87	380. 17	380, 46	380.76	381.06	381. 35	810
820	381.65	381. 95	382. 24	382. 54	382. 83	383. 13	383. 42	383. 72	384.01	384. 31	820
830	384. 60	384. 90	385. 19	385, 49	385. 78	386.08	386. 37	386. 67	386. 96	387, 25	830
840	387. 55	387. 84	388. 14	388. 43	388, 72	389. 02	389. 31	389, 60	389. 90	390. 19	840
850	390, 48		LE INC	di une	18.808		1475				850

B. 2 Cu100 铜热电阻 (α=4.280×10⁻³℃⁻¹) 的温度/电阻关系表

t/°C	电阻值/Ω								. 1901		
1/ 0	0	-1.	-2	-3	-4	-5	-6	-7	-8	-9	t/°C
-50	78. 48										-50
-40	82, 80	82. 37	81.94	81.51	81.07	80.64	80. 21	79.78	79.35	78. 92	-40
-30	87.11	86.68	86. 25	85. 82	85. 39	84. 96	84. 52	84.06	83.66	83. 23	-30
-20	91.41	90. 98	90. 55	90.12	89.69	89. 26	88. 83	88. 40	87.97	87.54	-20
-10	95. 71	95. 28	94. 85	94. 42	93, 99	93. 56	93.13	92.70	92.27	91.84	-10
0	100.00	99. 57	99.14	98. 71	98. 28	97. 85	97, 42	97.00	96. 57	96.14	0
100	1 4 4	491			电阻	值/Ω	1			.7/ h T	
t/℃	0	1	2	3	4	5	6	7	8	9	t/°C
0	100.00	100.43	100.86	101. 29	101, 72	102.14	102.57	103.00	103.42	103, 86	0
10	104. 29	104.72	105. 14	105. 57	106.00	106.43	106.86	107. 29	107.72	108. 14	10
20	108. 57	109.00	109.43	109.86	110. 28	110.71	111. 14	111.57	112.00	112. 42	20
30	112. 85	113, 28	113.71	114. 14	114. 56	114. 99	115. 42	115.85	116. 27	116.70	30
40	117. 13	117.56	117.99	118. 41	118.84	119.27	119.70	120. 12	120. 55	120. 98	40
50	121. 41	121.84	122, 26	122. 69	123. 12	123. 55	123. 97	124. 40	124. 83	125. 26	50
60	125. 68	126. 11	126.54	126. 97	127.40	127. 82	128. 25	128. 68	129.11	129. 53	60
70	129.96	130, 39	130. 82	131. 24	131. 67	132.10	132. 53	132. 96	133, 38	133. 81	70
80	134. 24	134. 67	135.09	135. 52	135.95	136.38	136.81	137. 23	137.66	138. 09	80
90	138, 52	138, 95	139.37	139. 80	140.23	140.66	141.09	141. 52	141.94	142. 37	90
100	142.80	143, 23	143.66	144.08	144.51	144. 94	145. 37	145.80	146. 23	146.66	100
110	147.08	147.51	147.94	148. 37	148.80	149.23	149.66	150.09	150. 52	150. 94	110
120	151. 37	151.80	152. 23	152.66	153. 09	153. 52	153. 95	154. 38	154.81	155. 24	120
130	155. 67	156. 10	156. 52	156. 95	157. 38	157. 81	158. 24	158. 67	159.10	159. 53	130
140	159. 96	160, 39	160.82	161, 25	161.68	162.12	162. 55	162. 98	163. 41	163. 84	140
150	164. 27										150

附录C

检定记录格式

计量标准器			热电	阻 1	热电图	热电阻 2	
标	准器名称			送检单位		送检单位	
	编号	NAME OF	17,714	样品名称		样品名称	
电视	则设备名称	diam'r	or Foreign	型号规格	a	型号规格	
编号				样品编号		样品编号	
环均	6温、湿度	°C	%RH	制造厂		制造厂	
柞	金定地点	m-m- M		等级	PHILIP.	等级	
1	证书 R _{up}	Ω		样品状态		样品状态	
	实测 Rp		Ω	外观	BERT	外观	
	W_0			证书编号		证书编号	
	dW_o/dt	°C-1			MITTER STATE		
	W_{100}	THE PERSON	ing to any	to the order	at a say		
C	dW_{100}/dt	en i le le	.C-1		millo ibel		
GH I	项目	R_i^*	$R_{\rm h}^*$	R_{\circ}	R_{100}	R_0	R_{100}
	1	n. 121 147	THE BUSINESS	A SHIP IN A	11 26 311		
测	2	a mila		100			
量	3						
值	4						
$/\Omega$	5	Friday.					
	6		THE RESERVE	TO HILLS			
7	平均值/Ω						
修正	E值 Δt*/℃						
换算	成电阻值/Ω						
R_*	修正后 R_i/Ω	renat su-	-11-131	MARKET			1007
$R_{\rm b}$	修正后 R,/Ω	th at life					
21	$R_{\rm k} - R_{\rm b}/\Omega$			THE RESERVE			
	$\Delta t/\Omega$						
α/	×10 ⁻³ °C ⁻¹	-	- 1				
常温纸	绝缘电阻/MΩ	KERLT-					
松	定结论						
*	不确定度 U, k	=2					

*:必要时给出。

检定员:	计算:	复核:	核验:	检定日期:	
132 VE 374 1	FEST +	500 100	Art was 7		

附录 D

检定证书和检定结果通知书内页格式

D.1 检定证书内页格式

不合格项目:

附录E

工业铂热电阻测量结果的不确定度评估

E.1 被测对象

铂热电阻 Pt100。AA级(或A级、B级及C级),测量点:0℃和100℃,允许偏差见表 E.1。

允许偏差/℃ 检定点 C /°C B A AA ± 0.6 ±0.10 ± 0.15 ± 0.30 0 ±1.6. ± 0.27 ± 0.35 ± 0.80 100

表 E.1 允许偏差

E. 2 测量标准

E. 2.1 二等标准铂电阻温度计

二等标准铂电阻温度计证书给出的参数见表 E. 2。

表 E. 2 二等标准铂电阻温度计证书给出的(及推算出的)参数

0 °C	0.999 968	0.003 989 8
100 ℃	1. 392 727	0.003 870 0

E. 2. 2 电测设备

HY2003A 热电阻测量仪,测量范围 (0~220) Ω,分辨力 0.1 mΩ, MPE: \pm (0.01%读数+1.0 mΩ)。

E. 3 测量方法

用比较法进行测量。将二等标准铂电阻温度计与被检铂热电阻同时插入冰点和 100 ℃的恒温槽中待温度稳定后通过测量标准与被检的值,由标准算出实际温度然后通过公式计算得出被检的实际值 R'_0 和 R'_{100} 。

E. 4 数学模型

检定点0℃,测量误差的数学模型:

$$\Delta t_0 = \frac{R_i - R_0}{(dR/dt)_{t=0}} - \frac{W_i^{\rm S} - W_0^{\rm S}}{(dW_t^{\rm S}/dt)_{t=0}} = \Delta t_i - \Delta t_i^*$$
 (E. 1)

检定点 100 ℃,测量误差的数学模型:

$$\Delta t_{100} = \frac{R_{\rm h} - R_{100}}{(dR/dt)_{t=100}} - \frac{W_{\rm h}^{\rm S} - W_{100}^{\rm S}}{(dW_{t}^{\rm S}/dt)_{t=100}} = \Delta t_{\rm h} - \Delta t_{\rm h}^{*}$$
 (E. 2)

式中符号的含义同正文。从数学模型中可以观察到,0°C检定点的输入量有: R_1 , R_2 , R_3 , R_4 , R_5 , R_6 ,

 $(dR/dt)_{t=0}$ 、 $(dR/dt)_{t=100}$ 、 $(dW_t^s/dt)_{t=0}$ 、 $(dW_t^s/dt)_{t=100}$ 的不确定度很小,可以忽

略不计。

E. 5 输入量 Δt_i 、 Δt_b 的标准不确定度 $u(\Delta t_i)$ 和 $u(\Delta t_b)$ 的评定

有 4 个主要不确定度来源: R,、R,测量重复性,插孔之间的温差,电测设备,测量电流引起的自热。

- E. 5.1 测量的重复性 $u(R_{11})$ 和 $u(R_{12})$ ——A 类不确定度
 - 以 A 级铂热电阻的三组 24 次重复性试验为例:
 - a) 检定 0 ℃时的合并样本标准差 s,为

$$s_p = \sqrt{\frac{1}{3} \sum_{i=1}^{3} s_i^2} = 6.14 \times 10^{-1} \Omega$$

实际测量以 4 次测量值平均值为测量结果,所以 $u(R_{\rm II}) = \frac{s_{\rm P}}{\sqrt{4}} = 3.07 \times 10^{-4} \, \Omega$ 。换

算成温度:
$$u(\Delta t_{i1}) = \frac{u(R_{i1})}{(dR/dt)_{t=0}} = \frac{3.07 \times 10^{-4}}{0.39083} = 0.79 \text{ mK}, \nu_1 = 69$$
。

b) 检定 100 ℃时的合并样本标准差 s_p为

$$s_p = \sqrt{\frac{1}{3} \sum_{i=1}^{3} s_i^2} = 4.34 \times 10^{-3} \Omega$$

实际测量以 4 次测量值平均值为测量结果,所以 $u(R_{\rm hl}) = \frac{s_{\rm p}}{\sqrt{4}} = 2.17 \times 10^{-3} \Omega$ 。换

算成温度:
$$u(\Delta t_{h1}) = \frac{u(R_{h1})}{(dR/dt)_{t=0}} = \frac{2.17 \times 10^{-4}}{0.37928} = 0.57 \text{ mK}, \nu_1 = 69$$
。

E. 5. 2 插孔之间的温差引入的标准不确定度 $u(\Delta t_{12})$ 和 $u(\Delta t_{h2})$ ——B 类不确定度 冰点槽插孔之间的温差很小,可以忽略不计。

水沸点槽插孔之间的温场均匀性不超过 0.01 °C; 检定过程中温度波动不超过 ± 0.02 °C/10 min, 因标准和被检的时间常数不同,估计将有不大于 0.01 °C 的迟滞。均服从均匀分布, $k=\sqrt{3}$ 。因此:

$$u(\Delta t_{\rm h2}) = \frac{0.01\sqrt{2}}{\sqrt{3}} = 8.16 \text{ mK}$$

估计相对不确定度为 20%,则其自由度 12=12。

E. 5. 3 电测设备引入的标准不确定度 $u(\Delta t_{13})$ 和 $u(\Delta t_{13})$ ——B 类不确定度

热电阻测量仪的测量误差是主要的不确定度来源,四端转换开关杂散电势引起的不确定度相对很小(换算成电阻,不超过±1 mΩ),可以忽略不计。

检定 0 ℃时, 热电阻测量仪的不确定度区间半宽为 100 Ω × 0.01% + 0.001 = 0.011 0 Ω, 在区间内可认为均匀分布, $k = \sqrt{3}$ 。则

$$u(R_{i3}) = \frac{0.011 \text{ 0}}{\sqrt{3}} = 6.35 \times 10^{-3} \Omega$$

换算成温度:
$$u(\Delta t_{i3}) = \frac{6.35 \times 10^{-3}}{0.39083} = 16.25 \text{ mK}$$

检定 100 ℃时, 电阻测量仪的不确定度区间半宽为 138.51 Ω×0.01%+0.001=

 0.01485Ω , 在区间内可认为均匀分布, $k=\sqrt{3}$ 。则

 $u(R_{13}) = 8.57 \times 10^{-3} \Omega$

换算成温度:

$$u(\Delta t_{h3}) = \frac{8.57 \times 10^{-3}}{0.379 \ 28} = 22.60 \text{ mK}$$

估计相对不确定度均为10%,则其自由度 13=50。

E. 5. 4 自热引入的标准不确定度 $u(\Delta t_{ii})$ 和 $u(\Delta t_{bi})$ ——B 类不确定度

电测设备供感温元件的测量电流为 1 mA, 根据实际经验感温元件一般有约 2 mΩ 的影响。可作均匀分布处理, $k=\sqrt{3}$ 。则

 $u(R_{\mathbb{R}}) = u(R_{\mathbb{R}}) + 11 + 15$

换算成温度: u(Δt_{ii}) = 3 5 mK

 $u(\Delta t_{\rm bi}) = 3 - 94 \text{ mK}$

估计相对不确定度均为20%、则其自由度以=12。

E. 5. 5 $u(\Delta t_i)$ 和 $u(\Delta t_i)$ 的计算

由于上述4个不确定度之间相互独立,因此合成为

 $u(\Delta t_1) = \sqrt{0.79} + 18.25^2 + 2.95^3 = 16.53 \text{ mK}$ $v_{\text{eff}} = 53.3$

 $u(\Delta t_h) = \sqrt{0.57} + 8.16^{2} + 22.60 + 3.04^{2} = 24.23 \text{ mK}$ v_{eff}

E. 6 输入量 Δt_i 和 Δt_i 的标准不确定度 $m(\Delta t_i)$ 种 $m(\Delta t_i)$ 的评定

主要有4个不确定度来源:标准铂电阻的复现性和电阻比值的周期稳定性,电测设 备的测量误差,测量电流引起的自热。

E. 6. 1 二等标准铂电阻复现性引入的标准下确定度 $u(\Delta t_0)$ 和 $u(\Delta t_0)$ ——B类不确 定度

按规程要求, 承三相点处为 U, = 5 mK, * 2.58; 水沸点附近为 C, k=2.58。因此, $k(\Delta t_h)=1.94 \text{ mK}; u(\Delta t_{hi})=1.32 \text{ mK}$ 。

估计相对不确定度为5%,则其国由度以 =100。

E. 6.2 电测设备引入的标准不确定度 ((A)) 和 ((A)) ——B 类不确定度

电测设备在水子和点、冰点槽和100℃恒温槽内测量某标准铂电阻温度计和被检热 电阻的电阻值见表 E. 3

电测设备的测量值(含允差检定结果

检定点	标准铂电阻温度计R;	文 工业铂热电阻 R,
水三相点	CH1 24.844 0 0	
冰点槽内	124 8 1019 17 ROL	100, 037 8 Ω
100 ℃油槽内	34.600 5 12	138. 538 0 Ω

允差检定结果如下:

修正值:
$$\Delta t^* = \frac{0.999956 - 0.999968}{0.0039898} = -3.08 \text{ mK}$$
 $\Delta t^*_h = \frac{1.3927105 - 1.392727}{0.0038700} = -0.426 \text{ mK}$

測量偏差:
$$\Delta t_o = \frac{100.0378-100.000}{0.39083} + 0.00308=0.098$$
 © $R_o = 100.0383\Omega$

$$\Delta t_{100} = \frac{138,538 \ 0 - 138,505 \ 5}{0,379 \ 28} + 0.004 \ 26 = 0.090 \ C$$
 $R_{100} = 138,539 \ 6 \ \Omega$

温度系数: α=0.003 848 659 ℃ 1, Δα=-1.89×10 ° ℃ 1。符合 A 级要求。

a) 同一台电测设备测量 R_i^* 和 R_{ip}^* 的不确定度评估

因 $W_i^s = \frac{R_i^s}{R_{ip}^s}$,用同一台电测设备测量 R_i^s 和 R_{ip}^s 时,测量结果具有相关性。对 W_i^s 的 全微分:

$$\begin{split} \mathrm{d}W_{t}^{\mathrm{S}} &= \frac{\mathrm{d}R_{t}^{*}}{R_{\mathrm{tp}}^{*}} - \frac{R_{t}^{*} \cdot \mathrm{d}R_{\mathrm{tp}}^{*}}{R_{\mathrm{tp}}^{*2}} = \frac{1}{R_{\mathrm{tp}}^{*}} (0.01\%R_{t}^{*} + 0.001) - \frac{W_{t}^{\mathrm{S}}}{R_{\mathrm{tp}}^{*}} (0.01\%R_{\mathrm{tp}}^{*} + 0.001) \\ &= \frac{0.001 \times (1 - W_{t}^{\mathrm{S}})}{R_{\mathrm{tp}}^{*}} \end{split}$$

 W_i^s 的最大误差为 $\pm \frac{0.001 \times (1-W_i^s)}{R_{ip}^s}$,估计为均匀分布, $k=\sqrt{3}$,则

检定 0 °C 时:
$$u(W_i^s) = \frac{0.001 \times \left(1 - \frac{24.8429}{24.8440}\right)}{24.8440\sqrt{3}} = \frac{0.001 \times 3.22 \times 10^{-5}}{24.8440\sqrt{3}} = 1.03 \times 10^{-9}$$

$$u(\Delta t_{i2}^*) = \frac{1.03 \times 10^{-9}}{(dW_i^s/dt)_{t=0}} = \frac{1.03 \times 10^{-9}}{0.0039898} = 0.000258 \text{ mK}$$

检定 100 ℃时:
$$u(W_{\rm h}^{\rm S}) = \frac{0.001 \times \left(1 - \frac{34.6005}{24.8440}\right)}{24.8440\sqrt{3}} = \frac{0.001 \times 0.4732128}{24.8440\sqrt{3}} = 1.10 \times 10^{-5}$$

$$u(\Delta t_{\rm h2}^*) = \frac{1.10 \times 10^{-5}}{({\rm d}W_t^{\rm S}/{\rm d}t)_{t=100}} = \frac{1.10 \times 10^{-5}}{0.003 \ 870 \ 0} = 2.84 \ {\rm mK}$$

估计相对不确定度为10%,则其自由度以=50。

b) R_i 由电测设备测量,而 R_i 直接引用检定证书中的给出值时的不确定度评估 $W_i^s = \frac{R_i^s}{R_{ip}^s}$,由于 R_i 和 R_{ip} 是用不同电测设备测量的,测量误差之间互不相关。因此, dW_i^s 可用方差合成的办法得到:

$$(dW_{i}^{S})^{2} = \left(\frac{dR_{i}^{*}}{R_{ip}^{*}}\right)^{2} + \left(\frac{R_{i}^{*} \cdot dR_{ip}^{*}}{R_{ip}^{*2}}\right)^{2}$$

$$= \left[\frac{1}{R_{ip}^{*}}(0.01\%R_{i}^{*} + 0.001)\right]^{2} + \left[\frac{W_{i}^{S}}{R_{ip}^{*}} \cdot \Delta t_{ip} \cdot R_{ip}^{*} \cdot \left(\frac{dW_{i}^{S}}{dt}\right)_{i=ip}\right]^{2}$$

 $\Delta t_{1p} = 10 \text{ mK}$ 为检定周期内 R_{1p} 的稳定性。按上述得到的是 W_i 测量的最大误差,可按均匀分布估计,则

检定 0 ℃时:
$$u(\Delta t_{i2}) = \frac{\sqrt{0.000 \ 140^2 + (0.009 \ 999 \ 68 \times 0.003 \ 988 \ 53)^2}}{0.003 \ 989 \ 8\sqrt{3}} = 21.06 \text{ mK}$$

检定 100 °C 时:
$$u(\Delta t_{h2}^*) = \frac{\sqrt{0.000 \ 180^2 + (0.013 \ 927 \ 27 \times 0.003 \ 988 \ 53)^2}}{0.003 \ 870 \ 0\sqrt{3}} = 28.10 \text{ mK}$$

估计相对不确定度为10%,则其自由度以=50。

E. 6.3 测量电流引起自热带来的标准不确定度 $u(\Delta t_{is}^*)$ 和 $u(\Delta t_{is}^*)$ ——B 类不确定度

二等标准铂电阻温度计在冰点槽的检定过程中自热最大不超过 4 mK,可作均匀分布处理, $k=\sqrt{3}$ 。则 $u(\Delta t_0^2)=2.31$ mK。

检定100℃时,由于在较高温度流动介质的恒温槽中,自热影响可以忽略不计。则

 $u(\Delta t_{\rm hl}^*) = 0.00 \text{ mK}_{\rm s}$

上述估计的相对不确定度为10%,则其自由度以=50。

E. 6.4 标准铂电阻温度计 W_0^s 和 W_0^s 。引入的标准不确定度 $u(\Delta t_0^s)$ 和 $u(\Delta t_0^s)$ 的评定

由于 W_{100}^S 和 W_{100}^S 是二等标准铂电阻温度计检定证书中给出的,引起温度的不确定度可以用周期稳定性来评估 (B类不确定度),分别为 10 mK 和 14 mK,按均匀分布估计 $k=\sqrt{3}$ 。则 $u(\Delta t_{11}^*)=5.77$ mK, $u(\Delta t_{11}^*)=8.08$ mK。

估计相对不确定度为 5%,则其自由度 以 = 100。

E. 6.5 $u(\Delta t_i^*)$ 和 $u(\Delta t_i^*)$ 的计算

由于上述4个不确定度之间相互独立,因此合成为

a) R. 重新测量时的合成结果

检定 0 ℃时; $u(\Delta t_1^*) = \sqrt{1.94^2 + 0.00^2 + 2.31^2 + 5.77^2} = 6.51 \text{ mK}$ $\nu_{\text{eff}} = 152.3$ 检定 100 ℃时; $u(\Delta t_1^*) = \sqrt{1.32^2 + 2.84^2 + 0.00^2 + 8.08^2} = 8.67 \text{ mK}$ $\nu_{\text{eff}} = 128.6$

b) R, 直接用证书给出值时的合成结果

检定 0 ℃时: $u(\Delta t_i^*) = \sqrt{1.94^2 + 21.06^2 + 2.31^2 + 5.77^2} = 22.04 \text{ mK}$ $\nu_{\text{eff}} = 59.8$

检定 100 ℃时: $u(\Delta t_h^*) = \sqrt{1.32^2 + 28.10^2 + 0.00^2 + 8.08^2} = 29.27 \text{ mK}$ $\nu_{\text{eff}} = 58.7$

E.7 合成不确定度

标准不确定度分量汇总见表 E. 4 和表 E. 5。

表 E. 4 0 C 测量的标准不确定度分量汇总

标准不确定度 u(x;)	不确定度来源	标准不确定度值 /mK	灵敏 系数 c;	不确定度分量 c, u(x,)	自由度
$u(\Delta t_i)$. 1	16. 53	53, 3
$u(\Delta t_0)$	测量重复性	0.79			69
$u(\Delta t_{ii})$	插孔间温差	0.00		Programme and the second	12
$u(\Delta t_0)$	电测设备误差	16. 25		Eligiber Amely	50
$u(\Delta t_{0})$	自热影响	2, 95			12
$u(\Delta t_i^*)$			-1	6.51 (R _w 测量得到) 22.04 (R _w 证书给出)	152. 3 59. 8
$u(\Delta t_0^*)$	标准铂电阻复现性	1. 94		THE CASE OF SHARE FROM	100
$u(\Delta t_{ii}^*)$	电测设备误差	0.00 (R ₁₀ 测量得到) 21.06 (R ₁₀ 证书给出)			50
$u(\Delta t_{\alpha}^*)$	自热影响	2. 31	71.14.		50
$u(\Delta t_{ii}^*)$	标准铂电阻稳定性	5. 77			100

标准不确定度 u(x,)	不确定度来源	标准不确定度值 /mK	灵敏 系数	不确定度分量 c _i u(x _i)	自由度
$u(\Delta t_{\rm h})$				24. 23	61.6
$u(\Delta t_{\rm hl})$	測量重复性	0.57			69
$u(\Delta t_{\rm h2})$	插孔间温差	8.16	1		12
$u(\Delta t_{\rm h2})$	电测设备误差	22.60			50
$u(\Delta t_{\mathrm{hi}})$	自热影响	3.04			12
$u(\Delta t_{\rm h}^*)$				8.67 (R ₀ 测量得到) 29.27 (R ₀ 证书给出)	128. 6 58. 7
$u(\Delta t_{\rm hi}^*)$	标准铂电阻复现性	1.32			100
$u(\Delta t_{\rm h2}^*)$	电测设备误差	2.84 (R _w 测量得到) 28.10 (R _w 证书给出)	-1		50
$u(\Delta t_{h1}^*)$	自热影响	0.00			50
$u(\Delta t_{\mathrm{hi}}^*)$	标准铂电阻稳定性	8.08			100

表 E. 5 100 C 测量的标准不确定度分量汇总

由于各不确定度分量之间相互独立。因此,不确定度合成为

a) R₁₀由测量得到时

检定 0 ℃: $u_c(\Delta t_0) = \sqrt{16.53^2 + 6.51^2} = 17.77 \text{ mK}$, $\nu_{eff} = 70.6$, 取整为 50;

检定 100 ℃: $u_c(\Delta t_{100}) = \sqrt{24.23^2 + 8.67^2} = 25.73 \text{ mK}$, $v_{\text{eff}} = 77.7$, 取整为 50。

b) R₁₀由证书直接用证书的给出值时

检定0℃: $u_c(\Delta t_0) = \sqrt{16.53^2 + 22.04^2} = 27.55 \text{ mK}, \nu_{eff} = 107.7, 取整为100;$

检定 100 ℃: $u_c(\Delta t_{100}) = \sqrt{24.23^2 + 29.27^2} = 38.00 \text{ mK}$, $\nu_{eff} = 115.2$, 取整为 100。

E.8 扩展不确定度

a) R₁₀重新测量得到时

取估计值的置信概率为 95%。 $\nu_{eff}=50$,则 $k_{95}=t_{95}(\nu_{eff})=2.01$ 。

检定0℃时: U95=2.01×17.77=36 mK, k95=2.01;

检定 100 ℃时: U₉₅=2.01×25.73=52 mK, k₉₅=2.01。

b) R₁₉直接用证书的给出值时

取估计值的置信概率为 95%。 $\nu_{eff}=100$,则 $k_{95}=t_{95}(\nu_{eff})=1.98$ 。

检定 0 ℃时: U₉₅=1.98×27.55=55 mK, k₉₅=1.98;

检定 100 ℃时: U₉₅=1.98×38.00=75 mK, k₉₅=1.98。

E. 9 测量不确定度评估的说明

从上述的不确定度评估中可以看出,所选的检定设备在检定 A 级以下铂热电阻时可以满足检定结果的扩展不确定度 (k=2) 不大于被检热电阻允许误差的 1/4。对于

A级及以上等级铂热电阻必须用同一个电测设备重新测量 Ru才能满足要求。

对于 AA 级铂热电阻的检定,电测设备必须提高一个等级,至少为 0,005 级或修正后达到 0,005 级后使用,才能满足测量的扩展不确定度 (k=2) 不大于被检热电阻允许误差的 1/4。

THE RESERVE OF THE RESERVE OF THE PARTY OF T

中华人民共和国国家计量检定规程工业铂、铜热电阻JJG 229—2010国家质量监督检验检疫总局发布

中国计量出版社出版 北京和平里西街甲 2 号 邮政编码 100013 电话(010)64275360 http://www.zgjl.com.cn 北京市迪鑫印刷厂印刷 新华书店北京发行所发行 版权所有 不得翻印

880 mm×1230 mm 16 开本 印张 2 字数 40 千字 2010 年 10 月第 1 版 2010 年 10 月第 1 次印刷 印数 1-1 000 统一书号 155026-2537 定价: 32.00 元

