

Algoritmos de Aproximação para Problemas NP-completos em Grafos Planares

Lucas de Oliveira Silva - 220715

Introdução

Problema Exemplo

Conjunto Independente Máximo (CI)

Instância: Grafo G = (V, E).

Problema Exemplo

CONJUNTO INDEPENDENTE MÁXIMO (CI)

Instância: Grafo G = (V, E).

Objetivo: $S \subseteq V$ tal que |E(G[S])| = 0, com |S| máximo.

Dificuldade

Teorema ([GJ79])

O problema do Conjunto Independente Máximo é NP-difícil, mesmo em grafos cúbicos e planares.

Limitante de Aproximação

Teorema ([Hå99])

Seja n o número de vértices de um grafo, e $\varepsilon > 0$.

Limitante de Aproximação

Teorema ([Hå99])

Seja n o número de vértices de um grafo, e $\varepsilon > 0$.

Limitante de Aproximação

Teorema ([Hå99])

Seja n o número de vértices de um grafo, e $\varepsilon > 0$.

Não existe aproximação com fator $O(n^{\varepsilon-1})$ para CI, a menos que P=NP.

Algoritmo para Árvores

Teorema (folclore)

Seja T uma árvore. É possível computar um conjunto independente máximo de T em tempo polinomial.

Preliminares

Grafos Outerplanares

Grafos *k*-outerplanares

Exemplo para k = 3:

CI em **Grafos** *k*-outerplanares

Lema (1)

Existe um algoritmo por PD que resolve CI em grafos k-outerplanares em tempo $2^{O(k)} \cdot n$.

Esboço da Prova

Esboço da Prova

Demonstração.

Lema ([Bod98])

Grafos k-outerplanares têm largura arbórea no máximo 3k-1.

Esboço da Prova

Demonstração.

Lema ([Bod98])

Grafos k-outerplanares têm largura arbórea no máximo 3k-1.

Lema ([CFM+15])

Seja G um grafo com n vértices e largura arbórea $\leq k$. Então, CI em G pode ser resolvido em tempo $2^k \cdot k^{O(1)} \cdot n$.

Resultado Principal

Teorema Principal

Teorema (1 [Bak83])

Existe um PTAS para CI em grafos planares, com tempo $O(2^{O(1/\varepsilon)} \cdot n)$.

Observação

Observação

Assim como ogros, grafos planares têm camadas!

Exemplo

Exemplo

Exemplo

Dado
$$G = (V, E)$$
 planar e $\varepsilon > 0$, definimos:

-
$$k = \lceil 1/\varepsilon \rceil$$
;

- $k = \lceil 1/\varepsilon \rceil$;
- Para $0 \le i < k$, seja $S_i = \{L_j \mid j \equiv i \pmod{k}\}$

- $k = \lceil 1/\varepsilon \rceil$;
- Para $0 \le i < k$, seja $S_i = \{L_j \mid j \equiv i \pmod{k}\}$
 - Ex.: $k=4 \Rightarrow S_1=L_1 \cup L_5 \cup L_9 \cup \dots$

- $k = \lceil 1/\varepsilon \rceil$;
- Para $0 \le i < k$, seja $S_i = \{L_j \mid j \equiv i \pmod{k}\}$
 - Ex.: $k=4\Rightarrow S_1=L_1\cup L_5\cup L_9\cup\ldots$
- $G_i = G[V S_i].$

Solucionando *G_i*

Aplicamos o Lema 1 em cada componente.

Solução Ótima para Gi

Para cada i, geramos uma solução ótima X_i de G_i .

O tempo total gasto é $2^{O(k)} \cdot n = 2^{O(1/\epsilon)} \cdot n$.

Aproximação para G

Basta retornar o X_{α} de maior cardinalidade!

- 1. Seja $O \subseteq V$ uma solução ótima;
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \ge \left(1 \frac{1}{k}\right)|O| \ge (1 \varepsilon) \cdot OPT$

- 1. Seja $O \subseteq V$ uma solução ótima
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \geq \left(1 \frac{1}{k}\right) |O| \geq (1 \varepsilon) \cdot OPT$

- **1.** Seja $O \subseteq V$ uma solução ótima
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \geq (1 \frac{1}{k}) |O| \geq (1 \varepsilon) \cdot OPT$

- **1.** Seja $O \subseteq V$ uma solução ótima
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \ge |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \geq (1 \frac{1}{k}) |O| \geq (1 \varepsilon) \cdot OPT$

- **1.** Seja $O \subseteq V$ uma solução ótima
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \geq (1 \frac{1}{k}) |O| \geq (1 \varepsilon) \cdot OPT$

- 1. Seja $O \subseteq V$ uma solução ótima
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \ge \left(1 \frac{1}{k}\right)|O| \ge (1 \varepsilon) \cdot OPT$.

- 1. Seja $O \subseteq V$ uma solução ótima;
- **2.** S_0, \ldots, S_{k-1} particionam V;
- **3.** Algum *i* satisfaz $|O \cap S_i| \leq |O|/k$;
- **4.** $O \setminus S_i$ é independente em G_i ;
- **5.** Então $|X_{\alpha}| \geq |O \setminus S_i| = |O| |O \cap S_i|$;
- **6.** Portanto, $|X_{\alpha}| \geq (1 \frac{1}{k}) |O| \geq (1 \varepsilon) \cdot OPT$.

Conclusão

Teorema ([Bak83])

Teorema ([Bak83])

Existe um PTAS para os seguintes problemas em grafos planares:

1. Conjunto Independente Máximo;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;
- 3. Partição em Triângulos;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;
- 3. Partição em Triângulos;
- 4. H-Emparelhamento Máximo;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;
- 3. Partição em Triângulos;
- 4. H-Emparelhamento Máximo;
- 5. Cobertura por Vértices Mínima;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;
- 3. Partição em Triângulos;
- 4. H-Emparelhamento Máximo;
- 5. Cobertura por Vértices Mínima;
- 6. Conjunto Dominante Mínimo;

Teorema ([Bak83])

- 1. Conjunto Independente Máximo;
- 2. Maximum Tile Salvage;
- 3. Partição em Triângulos;
- 4. H-Emparelhamento Máximo;
- 5. Cobertura por Vértices Mínima;
- 6. Conjunto Dominante Mínimo;
- 7. Conjunto Dominante de Arestas Mínimo.

Limitações

A técnica de Shifting/Baker é eficaz para problemas "locais" ...

Limitações

A técnica de Shifting/Baker é eficaz para problemas "locais" ...

... mas falha em casos como TSP ou Árvore de Steiner.

Generalização

Decomposição por contração em grafos livres de H [DHK11].

Aplicação

Teorema ([DHK11])

Existe um PTAS para o TSP em grafos ponderados livres de H.

Exercício. Assuma que existe um algoritmo que resolve o empacotamento máximo de triângulos vértice-disjuntos em grafos k-outerplanares em tempo $f(k) \cdot n^{O(1)}$.

Exercício. Assuma que existe um algoritmo que resolve o empacotamento máximo de triângulos vértice-disjuntos em grafos k-outerplanares em tempo $f(k) \cdot n^{O(1)}$.

Utilizando *shifting*, construa um PTAS para o problema em grafos planares.

Exercício. Assuma que existe um algoritmo que resolve o empacotamento máximo de triângulos vértice-disjuntos em grafos k-outerplanares em tempo $f(k) \cdot n^{O(1)}$.

Utilizando *shifting*, construa um PTAS para o problema em grafos planares.

Obrigado a todos pela atenção... Alguma Dúvida?

Bibliografia

[Bak83] Brenda S Baker Approximation algorithms for np-complete problems on planar graphs. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 265–273, 1983. [Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1):1-45, 1998. [CFM⁺15] Marek Cygan, Fedor V Fomin, Daniel Marx, Saket Saurabh, Lukasz Kowalik, Daniel Lokshtanov, and Marcin Pilipczuk. Parameterized Algorithms. Springer International Publishing, Cham, Switzerland, 1 edition, July 2015. [DHK11] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction decomposition in H-minor-free graphs and algorithmic applications. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC '11, page 441-450, New York, NY, USA, 2011. Association for Computing Machinery. [GJ79] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, NY, April 1979. [Hå99] Johan Håstad Clique is hard to approximate within $n^{1-\epsilon}$. Acta Mathematica, 182(1):105-142, 1999.