Patent Abstract for Patent No. 371906 (Switzerland)

Mounting plate for optical elements, thereby characterized that the optical element contains a majority into the same bored recesses, into which metal cups fit in and cemented it is, whereby these cups are fastened to springy carrying members, whose other end is fastened to the equipment housing, which carrying members compensate caused relative motions between the optical element and the housing by variations in temperature.

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Klassierung:

42 h, 34/09

Gesuchsnummer:

76841 59

Anmeidungsdatum:

11. August 1959, 18% Uhr

Priorität:

Niederlande, 11. August 1958

(230410)

Patent erteilt

15. September 1963

Patentschrift veröffentlicht: 31. Oktober 1963

HAUPTPATENT

N. V. Optische Industrie «De Oude Delft», Delft (Niederlande)

Halterung für optische Elemente

Ir. Cornelis Otto Jonkers, Wassenaar (Niederlande), ist als Erfinder genannt worden

Die Erfindung bezieht sich auf eine Halterung für optische Elemente, wie z. B. Spiegel und Linsen.

Gewisse neuzeitliche optische Geräte, z.B. Flugzeugkameras, verlangen sehr genaue Verfahren zur s Befestigung der Teile des optischen Systems im Gerätegehäuse. Schwierigkeiten können verursacht werden sowohl durch die gewünschte Höhengenauigkeit als auch durch die Form und Lage der optisch wirksamen Flächen und durch die stets zunehmenden 10 Abmessungen und das Gewicht der optischen Elemente, bedingt durch die zunehmenden Brennweiten und zugehörigen Öffnungsweiten des optischen Systems.

Viel Sorgfalt ist aufzuwenden, um sicherzustellen, 15 daß die wirksamen Oberflächen der Elemente durch die Halterung nicht deformiert werden, wenn diese Elemente im Gerät angebracht werden. Solche Deformationen können auftreten als Folge des Eigengewichtes der Elemente oder der Klemmkräfte, aus-20 geübt auf die Elemente, durch die Halterung selbst.

Um das Durchhängen großer Spiegel unter ihrem Eigengewicht sehr gering zu halten, werden solche Spiegel oft nicht mehr längs ihres Außendurchmessers gehaltert, sondern vorzugsweise an drei Stellen, die 25 so gewählt sind, daß das Durchhängen an keiner Stelle einen gewissen, zulässigen Wert überschreitet. In diesen Fällen kann ein beträchtlicher Gewinn an Gewicht erhalten werden, indem die Dicke des Spiegelkörpers herabgesetzt wird und ein Lichtverlust ver-30 ursacht durch Teile der Halterung, welche einiges einfallendes Licht abdecken, wird in Kauf genommen.

Um Deformationen, verursacht durch die Klemmung zu vermeiden, wurde im Schweizer Patent Nr. 345179 vorgeschlagen, kleine Halbkugeln als as Klemmelemente zu verwenden, welche mit ihrer Basis federnd gegen die Oberfläche des optischen Elementes und mit ihrer kugeligen Fläche in konischen Vertiefungen, die mit dem Gehäuse des Gerätes verbunden sind, getragen werden. Der wesentliche Punkt ist dabei, daß die in den Vertiefungen liegenden 40 Halbkugeln etwas um ihr Zentrum gekippt werden können, wenn das optische Element so befestigt wird, daß durch die Halbkugeln keine exzentrischen Klemmkräfte auf das optische Element ausgeübt wer-

Eine sehr wichtige Anforderung an die Halterung ist, daß Temperaturänderungen, Stöße, Erschütterungen oder Lageänderungen des Gerätes keinen dauernden Einfluß auf die Form oder Zentrierung des optischen Elementes haben. Die Halterung solfte daher so 50 sein, daß nach einer Störung eine Rückkehr des optischen Elementes in die Ausgangslage gestattet wird, welcher Art diese Störung auch sei.

Die Praxis hat gezeigt, daß die Halterung, beschrieben im Schweizer Patent Nr. 345179 die oben 53 angeführten Anforderungen nicht voll erfüllt. Es hat sich gezeigt, daß bei großen Spiegeln, welche mittels Halbkugeln gemäß diesem Patent gehaltert werden, geringe seitliche Verschiebungen des Spiegelkörpers und daraus sich ergebende Dezentrierung des Spiegels 50 während normalen Arbeitsbedingungen senwer vermeidbar sind. Es ist festzuhalten, daß, obschon solche Verschiebungen im allgemeinen sehr klein sind (von der Größenordnung von einigen Zehn Mikron), deren Einfluß auf die Bildqualität bei gewissen Gerätetypen 65 erheblich ist.

Die bekannte Halterung ergab außerdem keine genau definierte Einstellung des optischen Elementes. Nach vorübergehenden Änderungen der Temperatur oder nach Stößen oder Erschütterungen wird die ur- 10 sprüngliche Lage nicht wieder vollständig hergestellt, wodurch sich eine geringe und bleibende Herabsetzung der Bildqualität ergeben kann.

Obschon eine volle Erklärung dieser Wirkungen schwierig ist, kann mit großer Wahrscheinlichkeit gesagt werden, daß bei der bekannten Halterung die Reibungsverbindung zwischen den Halbkugeln und 5 der Glasoberfläche mindestens zum Teil für dieselben verantwortlich ist, da sie einerseits dem optischen Element gestatten, leicht seitlich verschoben zu werden und anderseits die vollständige Rückkehr des optischen Elementes in die Ursprungslage nach Stößen usw. erschwert.

Es ist ein Hauptzweck der Erfindung, eine Halterung für ein optisches Element zu schaffen, bei dem die obenerwähnten Unzulänglichkeiten vermieden sind. Ein weiterer Zweck der Erfindung ist, eine Halterung für optische Spiegel zu schaffen, welche keinen Lichtverlust, veranlaßt durch einzelne, in den Weg der auf den Spiegel fallenden Lichtstrahlen liegende Teile verursacht.

Gemäß vorliegender Erfindung weist ein optisches
20 Eiement eine Mehrzahl von Vertiefungen, vorzugsweise drei, auf, welche in das optische Element gebohrt sind, sich aber zweckmäßig nicht bis zur gegenüberliegenden Oberfläche erstrecken. In diese Vertiefungen sind Metallnäpfe eingesetzt und in das umgebende Glas eingekittet. Federnde Tragglieder, vorzugsweise Blattfedern, sind einenends an den Metallnäpfen befestigt und andernends am Gehäuse des
Gerätes, um durch Temperaturschwankungen bedingte Relativbewegungen zwischen dem optischen
30 Eiement und dem Gehäuse zu kompensieren.

In der beiliegenden Zeichnung ist ein Ausführungsbeispiel des Erfindungsgegenstandes dargestellt, und zwar zeigt:

Fig. 1 einen Axialschnitt eines Teiles eines optiss schen Gerätes mit einem darin angebrachten Spiegel, Fig. 2 eine Rückansicht des Spiegelkörpers in Fig. 1,

Fig. 3 eine Einzelheit der Fig. 1 in größerem Maß-

Fig. 4 eine Variante der Halterung nach der Erfindung, teilweise in Ansicht und teilweise im Schnitt.

In Fig. 1 ist der Spiegel 3 am Deckel 1 des Gerätegehäuses 2 befestigt. Der Spiegel 3 ist auf seiner konkaven Oberfläche mit einem reflektierenden Überzug versehen und besitzt Meniskusform. Er ist von drei zylindrischen Näpfen 4, 5 und 6 getragen, welche in zylindrische Bohrungen, die in die konvexe Rückseite des Spiegels 3 gebohrt sind, eingekittet sind. Die Nüpfe besitzen einen dünnen Wandteil 13 und einen verhältnismäßig dicken Bodenteil (Fig. 3). Das Glas in den Bohrungen ist nicht ganz entfernt, so daß ein zentraler Block 14 erhalten wird, der sich längs der Innenseite des Wandteiles des Napfes erstreckt. Der Durchmesser dieser Blöcke ist vorzugsweise so gewählt, daß die Näpfe bei normalen Temperaturen lose in die zylindrische Ringput einsetzbar ist.

Jeder der Näpfe 4, 5 und 6 ist an seinem Boden mit einer Nute versehen, in welcher Blattfedern 7, 8 oder 9 befestigt sind, z. B. durch Löten. Die andern

Enden der Federn sind in gleicher Weise starr in Nuten von Halteplatten befestigt, von denen in Fig. 1 nur zwei, nämlich die Platten 10 und 11, sichtbar sind. Diese Platten sind in der Fig. 2 nicht dargestellt, da diese Figur einen Querschnitt durch die Blattfedern 7, 8 und 9 darstellt.

Wie am besten aus Fig. 3 ersichtlich ist, sind die Halteplatten, wie 10 und 11, mittels Schrauben 15 und 16 am Deckel des Gerätegehäuses befestigt. Um zu verhüten, daß im Spiegel 3 Spannungen auftreten, wenn derseice befestigt wird, ist das nachstehende Vorgehen empfehlenswert. Nach dem Befestigen der Halteplatter 10, 11 zusammen mit den damit verbundenen Blanfedern und Näpfen, die provisorisch am Deckel 1 befestigt wurden, wird der mit den Bohrungen versehene Spiegel auf gute Passung geprüft. Wenn die Näpfe nicht leicht in die Bohrungen gleiten, wird die Lage der Näpfe durch geringe seitliche Verschiebung der Platten, durch Verformung der gegenüberliegenden Seiten der Platten und des Deckels oder durch Unterlagen oder dergleichen verändert, bis alle Näpfe leicht in die Behrungen hineingleiten. Erst dann werden die Halteplatten definitiv befestig. und der Spiegel an den Näpfen festgekittet.

Die dargestellte Halterung besitzt die folgender Vorteile. Reibungsklemmung ist voilständig vermie den, so da3 dauernde Lageanderungen des Spiegel verunmöglicht werden. Trotzdem wird beim Auftrete: von Relativbewegungen zwischen dem Spiegel undem Gehäuse, die durch Temperaturänderungen her vorgerufen werden, das Entstehen von größeren Span nungen leicht durch die Blattfedern 7, 8 und 9 ve: hindert. Wie aus Fig. 2 ersichtlich ist, sind diese Blatt federn auf einem Kreis 12 angeordnet, dessen Zer trum in der optischen Achse des optischen Elemente liegt, und zwar derart, daß sie leicht in radialer Rica tung gebogen werden können. Da die Verbindun zwischen den Blattfedern und dem Spiegel mittels d Näpfe ganz starr ist, wird der Spiegel, nach vorübe gehender Verstellung, stets genau in die Ausgangsla zurückkehren.

Der Spiegel ist an drei Stellen gelagert, die a einem Kreise liegen, der einen kleineren Durchmess besitzt als der Spiegel, wodurch Deformationen undem Eigengewicht des Spiegels herabgesetzt werde Auf jeden Fall besitzt die Halterung keine Tei welche an der Vorderseite des Spiegels in die in de selben einfallenden Lichtstrahlen ragen, so daß Lichtstrahlen verhuste vermieden werden.

Fig. 4 zeigt eine Variante der Halterung, welch für große Linsen und Spiegelkörper mit zylindrisch Mantelfläche anwendbar ist. Wie aus der Fig. 4 sichtlich ist, ist das optische Element an drei Stell um 120° voneinander abstehend, an seiner Manfläche gehalten. In zylindrischen Bohrungen, die rain die Mantelfläche des Elementes gebohrt sind, s Näpfe 18, 19, 20 eingekittet. Am Boden dieser Näsind Blattfedern 21, 22 und 23 angebracht, welch Ebenen tangential zum Spiegel liegen und die ihren andern Eaden am zicht dargestellten Ger

gehäuse, mittels Schrauben oder anderer Mittel, befestigt sind. Aus Fig. 4 ist wiederum ersichtlich, daß
durch Temperaturschwankungen bedingte Relativbewegungen zwischen Spiegel und Halterung durch
s Verformung der Blattfedern 21, 22 und 23 kompensiert werden und dank der starren Verbindung zwischen den Blattfedern und den Elementen keine
Dezentrierung des Elementes verursachen können.

Die Verbindung ist sehr stabil und widersteht
Temperaturschwankungen sehr gut. Die dünne Wand
der Näpfe erlaubt Schwankungen durch Ausdehnung
oder Zusammenziehung zwischen den Näpfen und
dem sie umgebenden Glas zu kompensieren, wodurch
ein Lösen des Kittes und starke Beanspruchungen im
optischen Element vermieden werden.

PATENTANSPRUCH

Halterung für optische Elemente, dadurch gekennzeichnet, daß das optische Element eine Mehrzahl in dasselbe gebohrte Vertiefungen enthält, in welche Metallnäpfe eingepaßt und -gekittet sind, wobei diese Nüpfe an federnden Traggliedern befestigt sind, deren anderes Ende am Gerätegehäuse befestigt ist, welche Tragglieder durch Temperaturschwankungen bedingte Relativbewegungen zwischen dem optischen Element und dem Gehäuse kompensieren.

UNTERANPSRUCHE

1. Haltering nach Patentanspruch, für einen an der Vorderseite verspiegelten Spiegel, dadurch gekennzeichnet, daß die Vertiefungen in die Rückseite des Spiegels gebohrt sind, wobei die Näpfe im Vergleich zu ihrer Wandstärke einen dicken Boden besitzen, während die mit dem einen Ende am Boden der Näpfe befestigten und als Blattfedern ausgebildeten Traggiieder mit ihrem andern Ende am Gehäuse befestigt sind.

2. Halterung nach Patentanspruch, für optische Elemente mit einer zylindrischen Mantelfläche, dadurch gekennzeichnet, daß diese Mantelfläche eine Mehrzahl von in diese Fläche in radieler Richtung gebohrten Vertiefungen aufweist, in welche die Näpfe seingepaßt und gekittet sind, wobei diese Näpfe beingepaßt und gekittet sind, wobei diese Näpfe beingen und als Tragglieder ausgebildete Blattfedern mit ihrem einen Ende am Boden der Näpfe befestigt sind, welche Blattfedern in Tangentialebenen zum Umfang des optischen Elementes liegen und andernends am Gehäuse befestigt sind.

3. Halterung nach Patentanspruch, dadurch gekennzeichnet, daß die Vertiefungen im optischen Element kreisringförmige Nuten sind mit einer Breite 50 größer als die Wandstärke der Näpfe.

> N.V. Optische Industrie «De Oude Delft» Verweter: Kirchhofer, Ryffel & Co., Zürich

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.