AA203 Optimal and Learning-based Control

Course overview, nonlinear optimization

Course mechanics

Teaching team:

- Instructor: Marco Pavone
- CAs: James Harrison and Jonathan Lacotte
- Collaborators: Riccardo Bonalli (Stanford) and Roberto Calandra (FAIR)

Logistics:

- Class info, lectures, and homework assignments on class web page: http://asl.stanford.edu/aa203/
- Forum: https://piazza.com/

Course requirements

- Weekly homework, due Wednesday
- Midterm exam (05/02)
- Final project (more details later)
- Grading:
 - homework 30%
 - midterm 30%
 - final project 35%
 - grading quality 5%

Prerequisites

- Strong familiarity with calculus (e.g., CME100)
- Strong familiarity with linear algebra (e.g., EE263 or CME200)

Outline

1. Problem formulation and course goals

2. Non-linear optimization

3. Computational methods

Outline

1. Problem formulation and course goals

2. Non-linear optimization

3. Computational methods

Problem formulation

- Mathematical description of the system to be controlled
- Statement of the constraints
- Specification of a performance criterion

Mathematical model

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t), \dots, x_n(t), u_1(t), u_2(t), \dots, u_m(t), t)
\dot{x}_2(t) = f_2(x_1(t), x_2(t), \dots, x_n(t), u_1(t), u_2(t), \dots, u_m(t), t)
\vdots
\dot{x}_n(t) = f_n(x_1(t), x_2(t), \dots, x_n(t), u_1(t), u_2(t), \dots, u_m(t), t)$$

Where

- $x_1(t), x_2(t), \ldots, x_n(t)$ are the state variables
- $u_1(t), u_2(t), \ldots, u_m(t)$ are the control inputs

Mathematical model

In compact form

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

- a history of control input values during the interval $[t_0,t_f]$ is called a control history and is denoted by ${\bf u}$
- a history of state values during the interval $[t_0, t_f]$ is called a *state* trajectory and is denoted by **x**

Constraints

• initial and final conditions (boundary conditions)

$$\mathbf{x}(t_0) = \mathbf{x}_0, \qquad \mathbf{x}(t_f) = \mathbf{x}_f$$

constraints on state trajectories

$$\underline{X} \le \mathbf{x}(t) \le \overline{X}$$

control authority

$$\underline{U} \le \mathbf{u}(t) \le \overline{U}$$

and many more...

Constraints

- A control history which satisfies the control constraints during the entire time interval $[t_0, t_f]$ is called an admissible control
- A state trajectory which satisfies the state variable constraints during the entire time interval $\left[t_0,t_f\right]$ is called an admissible trajectory

Performance measure

$$J = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

- h and g are scalar functions
- t_f may be specified or free

Optimal control problem

Find an admissible control **u*** which causes the system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

to follow an *admissible trajectory* **x*** that minimizes the performance measure

$$J = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

Very general problem formulation!

Optimal control problem

Comments:

- minimizer (u*, x*) called optimal trajectory-control pair
- existence: in general, not guaranteed
- uniqueness: optimal control may not be unique
- minimality: we are seeking a global minimum
- for maximization, we rewrite the problem as $\min_{\mathbf{u}} -J$

Form of optimal control

- 1. if $\mathbf{u}^* = \pi(\mathbf{x}(t), t)$, then π is called optimal control law or optimal policy (*closed-loop*)
 - important example: $\pi(\mathbf{x}(t), t) = F \mathbf{x}(t)$
- 2. if $\mathbf{u}^* = e(\mathbf{x}(t_0), t)$, then the optimal control is *open-loop*
 - optimal only for a particular initial state value

Course overview

Course goals

To learn the *theoretical* and *implementation* aspects of main techniques in optimal control and model-based reinforcement learning

Outline

1. Problem formulation and course goals

2. Non-linear optimization

3. Computational methods

Non-linear optimization

Unconstrained non-linear program

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

• f usually assumed continuously differentiable (and often twice continuously differentiable)

Local and global minima

• A vector \mathbf{x}^* is said an unconstrained *local* minimum if $\exists \epsilon > 0$ such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} | ||\mathbf{x} - \mathbf{x}^*|| < \epsilon$$

• A vector \mathbf{x}^* is said an unconstrained *global* minimum if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n$$

• \mathbf{x}^* is a strict local/global minimum if the inequality is strict

Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors

• Assume $f \in C^1$, by using Taylor series expansion

$$f(\mathbf{x}^* + \Delta \mathbf{x}) - f(\mathbf{x}^*) \approx \nabla f(\mathbf{x}^*)' \Delta \mathbf{x}$$

• If $f \in C^2$

$$f(\mathbf{x}^* + \Delta \mathbf{x}) - f(\mathbf{x}^*) \approx \nabla f(\mathbf{x}^*)' \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x}$$

Necessary conditions for optimality

• We expect that if \mathbf{x}^* is an unconstrained local minimum, the first order cost variation due to a small variation $\Delta \mathbf{x}$ is nonnegative, i.e.,

$$\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} = \sum_{i=1}^n \frac{\partial f(\mathbf{x}^*)}{\partial x_i} \Delta x_i \ge 0$$

• By taking Δx to be positive and negative multiples of the unit coordinate vectors, we obtain conditions of the type

$$\frac{\partial f(\mathbf{x}^*)}{\partial x_i} \ge 0$$
, and $\frac{\partial f(\mathbf{x}^*)}{\partial x_i} \le 0$

Equivalently we have the necessary condition

$$\nabla f(\mathbf{x}^*) = 0$$
 (\mathbf{x}^* is said a stationary point)

4/1/19

Necessary conditions for optimality

 Of course, also the second order cost variation due to a small variation Δx must be non-negative

$$\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x} \ge 0$$

• Since $\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} = 0$, we obtain $\Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*)' \Delta \mathbf{x} \geq 0$. Hence

 $\nabla^2 f(\mathbf{x}^*)$ has to be positive semidefinite

NOC – formal

Theorem: NOC

Let \mathbf{x}^* be an unconstrained local minimum of $f: \mathbb{R}^n \to \mathbb{R}$ and assume that f is C^1 in an open set S containing \mathbf{x}^* . Then

$$\nabla f(\mathbf{x}^*) = 0$$

(first order NOC)

If in addition $f \in C^2$ within S,

 $abla^2 f(\mathbf{x}^*)$ positive semidefinite

(second order NOC)

SOC

Assume that x*satisfies the first order NOC

$$\nabla f(\mathbf{x}^*) = 0$$

• and also assume that the second order NOC is strengthened to

$$\nabla^2 f(\mathbf{x}^*)$$
 positive definite

• Then, for all $\Delta \mathbf{x} \neq 0$, $\Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*)' \Delta \mathbf{x} > 0$. Hence, f tends to increase strictly with small excursions from \mathbf{x}^* , suggesting SOC...

SOC

Theorem: SOC

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 in an open set S. Suppose that a vector $\mathbf{x}^* \in S$ satisfies the conditions

$$\nabla f(\mathbf{x}^*) = 0$$
 and $\nabla^2 f(\mathbf{x}^*)$ positive definite

Then \mathbf{x}^* is a strict unconstrained local minimum of f

Special case: convex optimization

A subset C of \mathbb{R}^n is called convex if

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in C, \quad \forall \mathbf{x}, \mathbf{y} \in C, \forall \alpha \in [0, 1]$$

Let C be convex. A function $f: C \to \mathbb{R}$ is called convex if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

Let $f: C \to \mathbb{R}$ be a convex function over a convex set C

- A local minimum of f over C is also a global minimum over C. If in addition
 f is strictly convex, then there exists at most one global minimum of f
- If f is in C^1 and convex, and the set C is open, $\nabla f(\mathbf{x}^*) = 0$ is a necessary and sufficient condition for a vector $\mathbf{x}^* \in C$ to be a global minimum over C

Discussion

- Optimality conditions are important to filter candidates for global minima
- They often provide the basis for the design and analysis of optimization algorithms
- They can be used for sensitivity analysis

Outline

1. Problem formulation and course goals

2. Non-linear optimization

3. Computational methods

Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point \mathbf{x}^0 (initial guess) and successively generate vectors $\mathbf{x}^1, \mathbf{x}^2, \dots$ such that f is decreased at each iteration, i.e.,

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k), \qquad k = 0, 1, \dots$$

The hope is to decrease f all the way to the minimum

Gradient methods

Given $\mathbf{x} \in \mathbb{R}^n$ with $\nabla f(\mathbf{x}) \neq 0$, consider the half line of vectors

$$\mathbf{x}_{\alpha} = \mathbf{x} - \alpha \nabla f(\mathbf{x}), \quad \forall \alpha \geq 0$$

From first order Taylor expansion (α small)

$$f(\mathbf{x}_{\alpha}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})'(\mathbf{x}_{\alpha} - \mathbf{x}) = f(\mathbf{x}) - \alpha \|\nabla f(\mathbf{x})\|^2$$

So for α small enough $f(\mathbf{x}_{\alpha})$ is smaller than $f(\mathbf{x})$!

Gradient methods

Carrying this idea one step further, consider the half line of vectors

$$\mathbf{x}_{\alpha} = \mathbf{x} + \alpha \, \mathbf{d}, \qquad \forall \alpha \geq 0$$

where $\nabla f(\mathbf{x})'\mathbf{d} < \mathbf{0}$ (angle $> 90^{\circ}$)

By Taylor expansion

$$f(\mathbf{x}_{\alpha}) \approx f(\mathbf{x}) + \alpha \nabla f(\mathbf{x})' \mathbf{d}$$

For small enough α , $f(\mathbf{x} + \alpha \mathbf{d})$ is smaller than $f(\mathbf{x})$!

Gradient methods

Broad and important class of algorithms: gradient methods

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \, \mathbf{d}^k, \qquad k = 0, 1, \dots$$

where if $\nabla f(\mathbf{x}^k) \neq 0$, \mathbf{d}^k is chosen so that

$$\nabla f(\mathbf{x}^k)'\mathbf{d}^k < 0$$

and the stepsize α is chosen to be positive

Gradient descent

Most often the stepsize is chosen so that

$$f(\mathbf{x}^k + \alpha^k \, \mathbf{d}^k) < f(\mathbf{x}^k), \qquad k = 0, 1, \dots$$

and the method is called gradient descent. "Tuning" parameters:

- selecting the descent direction
- selecting the stepsize

Selecting the descent direction

General class

$$\mathbf{d}^k = -D^k \nabla f(\mathbf{x}^k), \quad \text{where } D^k > 0$$

(Obviously, $\nabla f(\mathbf{x}^k)'\mathbf{d}^k < 0$)

Popular choices:

- Steepest descent: $D^k = I$
- Newton's method: $D^k = \left(\nabla^2 f(\mathbf{x}^k)\right)^{-1}$ provided $\nabla^2 f(\mathbf{x}^k) > 0$

Selecting the stepsize

• Minimization rule: α^k is selected such that the cost function is minimized along the direction \mathbf{d}^k , i.e.,

$$f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) = \min_{\alpha \ge 0} f(\mathbf{x}^k + \alpha \mathbf{d}^k)$$

- Constant stepsize: $\alpha^k = s$
 - the method might diverge
 - convergence rate could be very slow
- Diminishing stepsize: $\alpha^k \to 0$ and $\sum_{k=0}^{+\infty} \alpha^k = \infty$
 - it does not guarantee descent at each iteration

Discussion

Aspects:

- convergence (to stationary points)
- termination criteria
- convergence rate

Non-derivative methods, e.g.,

coordinate descent

Next time

Constrained non-linear optimization

min
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$