

SOUTHWEST JIAOTONG UNIVERSITY

高数作业

知识点总结

学院: 电气工程学院

专业: 电子信息工程

学生姓名: _____MG____

学 号: __2024111878__

指导教师: 陈桂玲

2023年12月24日 I科EX

目录

1	摘要		3						
2	不定								
	2.1								
		2.1.1 原函数与不定积分的概念	3						
		2.1.2 不定积分的性质	4						
	2.2	换元积分法	4						
		2.2.1 第一换元积分法	4						
		2.2.2 第二换元积分法	4						
	2.3	分部积分法	5						
	2.4	有理函数的不定积分	5						
		2.4.1 有理函数的不定积分	5						
3	定积	· · · · · · · · · · · · · · · · · · ·	6						
	3.1	定积分的概念与性质	6						
		3.1.1 定积分的概念	6						
	3.2	微积分基本公式	7						
		3.2.1 积分上限函数及其导数	7						
		3.2.2 微积分基本定理	7						
	3.3	定积分的换元积分法和分部积分法	7						
		3.3.1 定积分的换元积分法	7						
		3.3.2 定积分的分部积分法	8						
	3.4	反常积分	8						
		3.4.1 无穷区间上的反常积分	8						
		3.4.2 无界区间上的反常积分	8						
		3.4.3 反常积分敛散性的判别法	8						
		3.4.4 反常积分的 Cauchy 主值	8						
4	定积	只分的应用。	9						
	4.1	几个概念	9						
	4.2	几种方法	9						
5	微分	↑方程	10						
	5.1	微分方程的几种类型	10						
	5.2	解微分方程的几种方法	10						
6	结语		11						

1 摘要

临近期末,陈桂林老师发布高数论文——知识点总结(第四章至第七章前三节)期末大作业。学生认为数学的解题思路是活的,对应不同题目有不同思路,同一道题目亦有不同思路,然而针对题目采取知识点的总结会导致本论文内容过多,故本论文决定采取对书上的定义定理以及一些方法进行汇总,方便期末复习时对定义定理进一步加深印象。最后决定采用 LATEX 的形式完成论文也是对 LATEX 写作能力的一次锻炼。

2 不定积分

2.1 不定积分的概念与性质

2.1.1 原函数与不定积分的概念

定理 4.1 (原函数存在定理) 若函数 f(x) 在区间 I 上连续,则在区间 I 上存在可导函数 F(x),使得对任意一 $x \in I$ 都有 F'(x) = f(x). 简单来说: 连续函数一定存在原函数.

定理 4.2(原函数之间的关系定理) 如果函数 f(x) 在区间 I 上存在原函数,那么其任意两个原函数之间只相差一个常数项.

定义 4.2 (不定积分的定义) 函数 f(x) 在区间 I 上的全体原函数所形成的 函数族称为 f(x) 在区间 I 上的不定积分, 记作 $\int f(x)dx$. 其中记号 " \int " 称为积分号,f(x) 称为被积函数,f(x)dx 称为被积表达式,x 称为积分变量,C 称为积分常数.

2.1.2 不定积分的性质

定理 4.3 (不定积分的定义)

- 1. 微分运算与积分运算互为逆运算.
 - (1) $[\int f(x)dx]'=f(s)$ 或 $d[\int f(x)dx]=f(x)dx$.
 - (2) $\int F'(x)dx = F(x) + C$ 或 $\int dF(x) = F(x) + C$; 特别地,有 $\int dx = x + C$.
- 2. 被积函数中不为零的常数因子可以移到积分号的前面,即

$$\int kf(x)dx=k\int f(x)dx(k 为非零常数).$$

3. 两个函数的和(或差)的不定积分等于各个函数的不定积分的和(或差),即

$$\int [f(x)\pm g(x)]dx = \int f(x)dx + \int g(x)dx.$$

2.2 换元积分法

2.2.1 第一换元积分法

定理 4.4(第一类换元积分法) 设 $\int f(u)du=F(u)+C$. 如果 $u=\varphi$ 具有连续导数,那么

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C.$$

2.2.2 第二换元积分法

定理 4.5(第二类换元积分法) 设 y=f(x), $f=\varphi(t)$ 及 $x'=\varphi'(t)$ 均为连续函数,且 $\varphi'(t) \neq 0$,并设 $t=\varphi^{-1}(x)$ 为 $x=\varphi(t)$ 的反函数,若 F(t) 是 $f(\varphi(t))\varphi'(t)$ 的一个原函数,则

$$\int\! f(x) dx = \int\! f(\varphi(t)) \varphi'(t) dt = F(t) + C = F(\varphi^{-1}(t)) + C.$$

2.3 分部积分法

定理 4.6 (分部积分公式) 设函数 u=u(x),v=v(x) 的导函数连续,则

2.4 有理函数的不定积分

2.4.1 有理函数的不定积分

定义 4.3(有理函数的定义) 形如

$$\frac{P(x)}{Q(x)} \!=\! \frac{a_0 x^m \!+\! a_1 x^{m-1} \!+\! \cdots \!+\! a_m}{b_0 x^n \!+\! b_1 x^{n-1} \!+\! \cdots \!+\! b_n}$$

(其中 n,m 为正整数, a_0 , a_1 ,..., a_m 及 b_0 , b_1 ,..., b_n 为实常数,且 a_0 0, b_0 0) 的函数称为**有理函数** (也称为**有理分式**). 当 n>m 时,称 $\frac{P(x)}{Q(x)}$ 为真分式; 当 n≤m 时,称 $\frac{P(x)}{Q(x)}$ 为假分式.

推论 对于真分式 $\frac{P(x)}{Q(x)}$ 可以展开成如下的求和表达式:

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{l} \left(\sum_{k=1}^{k_j} \frac{a_{jk}}{(x - x_j)^k} \right) + \sum_{j=1}^{n} \left(\sum_{k=1}^{m_j} \frac{b_{jk}x + c_{jk}}{(x^2 + p_j x + q_j)^k} \right)$$
(1)

其中 a_{jk},b_{jk},c_{jk} 是唯一确定的实数,而

$$Q(x) = (x - x_1)^{k_1} \dots (x - x_l)^{k_l} (x^2 - p_1 x + q_1)^{m_1} \dots (x^2 - p_n x + q_n)^{m_n}$$
 (2)

3 定积分

3.1 定积分的概念与性质

3.1.1 定积分的概念

定理 5.1 (函数可积的充分条件)

- 1. 若函数 f(x) 在闭区间 [a,b] 上连续,则 f(x) 在 [a,b] 上可积.
- 2. 若函数 f(x) 在闭区间 [a,b] 上除去有限多个间断点外处处连续,且在 [a,b] 上有界,则 f(x) 在 [a,b] 上可积.
- 3. 若函数 f(x) 在闭区间 [a,b] 上有界且单调,则 f(x) 在 [a,b] 上可积.

定理 5.2 (定积分的性质)

1. **几何度量性质:** 如果在区间 [a,b] 上 f(x)≡1, 那么

$$\int_{a}^{b} 1dx = \int_{a}^{b} f(x)dx = b - a. \tag{3}$$

2. **线性性质**:设 k_1,k_2 均为常数,则

$$\int_{a}^{b} [k_1 f(x) + k_2 g(x)] dx = k_1 \int_{a}^{b} f(x) dx + k_2 \int_{a}^{b} g(x) dx \tag{4}$$

- 3. 积分区间的可加性.
- 4. **保号性:** 如果在区间 [a,b] 上恒有 $f(x) \ge 0$, 那么 $\int_a^b f(x) dx \ge 0$.
- 5. **估值定理**设 M 和 m 分别是函数 f(x) 在区间 [a,b] 上的最大值和最小值,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a). \tag{5}$$

6. **积分中值定理**:如果函数 f(x) 在区间 [a,b] 上连续,那么在 [a,b] 上至少存在一点 ξ , 使得下式成立:

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a). \tag{6}$$

推论 1 (单调性) 如果在区间 [a,b] 上恒有 $f(x) \le g(x)$, 那么

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx. \tag{7}$$

推论 2 (绝对值不等式)

$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)| \, dx (a < b). \tag{8}$$

3.2 微积分基本公式

3.2.1 积分上限函数及其导数

定理 5.3(积分上限函数的导数公式) 若函数 f(x) 在区间 [a,b] 上连续,则积分上限函数 $\phi(x)=\int_a^x f(t)dt$ 在 [a,b] 上可导,并且它的导数

$$\phi'(x) = \frac{d}{dx} \int_a^x f(t)dt = f(x)(a \le x \le b). \tag{9}$$

3.2.2 微积分基本定理

定理 5.4(微积分基本定理) 设函数 f(x) 在区间 [a,b] 上连续,若函数 F(x) 是 f(x) 在区间 [a,b] 上的一个原函数,则

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{10}$$

3.3 定积分的换元积分法和分部积分法

3.3.1 定积分的换元积分法

定理 5.7(定积分的换元积分法) 设函数 y=f(x) 在区间 [a,b] 上连续,函数 $x=\phi(t)$ 满足下列条件:

(1)
$$\phi(\alpha)=a,\phi(\beta)=b;$$

(2) x= $\phi(t)$ 在 $[\alpha,\beta]($ 或 $[\beta,\alpha])$ 上具有连续导数,且其值域 R_{ϕ} =[a,b],则有

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt.$$
(换元积分公式) (11)

注: "换元必换限"

3.3.2 定积分的分部积分法

$$\int_{a}^{b} u'v dx = [uv]_{a}^{b} - \int_{a}^{b} uv' dx.$$
 (12)

注: "边积边代限"

3.4 反常积分

3.4.1 无穷区间上的反常积分

定义 5.2 (无穷区间上的反常积分的敛散性) 无穷区间**连续**, 存在积分极限,则反常积分**收敛**, 否则**发散**.

3.4.2 无界区间上的反常积分

瑕点 如果函数 y=f(x) 在点 a 的任一邻域内都无界,则点 a 称为 y=f(x) 的瑕点(奇点),也称为无穷间断点.

定义 5.3(无界函数的反常积分的敛散性) 对于无界函数,在其瑕点邻域内,若存在积分极限,则反常积分收敛,否则发散.

3.4.3 反常积分敛散性的判别法

定理 5.8(无穷区间上的反常积分的直接比较判别法) 设函数 f 和 g 在区间 $[a,+\infty)$ 上连续,且对所有的 $x \ge a$,有 $0 \le f(x) leqg(x)$.

- 1. 若 $\int_a^{+\infty} g(x) dx$ 收敛, 则 $\int_a^{+\infty} f(x) dx$ 收敛.
- 2. 若 $\int_a^{+\infty} f(x) dx$ 发散, 则 $\int_a^{+\infty} g(x) dx$ 发散.

3.4.4 反常积分的 Cauchy 主值

对于在瑕点邻域不可积分的无界函数,可以对其积分值赋予 Cauchy 主值的 定义,用符号 **V.P.** "Valeur principale"表示. 即,在这种情况下,通常说**反** 常积分在主值的意义下存在.

4 定积分的应用

4.1 几个概念

- 1. 面积.
- 2. 体积.
- 3. 弧长.
- 4. 曲率.

注: 具体概念不展开论述.

4.2 几种方法

- 1. 定积分的微元法(定义法).
- 2. 求面积的矩形法,求面积的柱壳法、截面法.
- 3. 不同坐标系下的积分(直角坐标,极坐标,复平面).

注: 具体方法不展开论述.

5 微分方程

5.1 微分方程的几种类型

变量可分离微分方程 对于以下形式的微分方程:

$$y' = f(x,y) \quad \vec{\boxtimes} \quad \frac{dy}{dx} = f(x,y). \tag{13}$$

可以写成以下形式:

$$P(x,y)dx + Q(x,y)dy = 0. (14)$$

齐次方程 若一节微分方程可化为:

$$\frac{dy}{dx} = \phi(\frac{y}{x}). \tag{15}$$

的形式,则这种方程为齐次方程.

伯努利方程 方程

$$\frac{dy}{dx} + P(x)y = Q(x)y'', (n \neq 0, 1)$$
(16)

称为伯努利 (Bernoulli) 方程.

5.2 解微分方程的几种方法

两边对称积分法 对于形如 f(x)dx=g(y)dy 的微分方程,可以两边同时进行不定积分,得到该微分方程的解.

一阶线性微分方程的公式法 对于形如 y'+P(x)y=Q(x) 的一阶线性微分方程,有如下通解:

$$y = Ce^{-\int P(x)dx} + e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx}dx.$$
 (17)

注: 推导过程(常数变易法)在此不做阐述.

6 结语

数山有路勤为径,学海无涯苦作舟.