Seminár 4

Téma

Algebraické výrazy, rovnice a nerovnosti II – nerovnosti

Úlohy a riešenia

Úloha 4.1. [58-S-1] Dokážte, že pre ľubovoľné nezáporné čísla a,b,c platí

$$(a+bc)(b+ac) > ab(c+1)^2.$$

Zistite, kedy nastane rovnosť.

Úloha 4.2. [66-I-1-N1] Dokážte, že pre ľubovoľné reálne čísla x, y a z platia nerovnosti

- a) $2xyz \le x^2 + y^2z^2$,
- b) $(x^2 y^2)^2 \ge 4xy(x y)^2$.

Úloha 4.3. [66-I-1-N2] Dokážte, že pre ľubovoľné kladné čísla a, b platí nerovnosť

$$\frac{a}{b^2} + \frac{b}{a^2} \ge \frac{1}{a} + \frac{1}{b}.$$

Úloha 4.4. [62-I-2-N1] Dokážte, že pre ľubovoľné kladné čísla a, b, c platí nerovnosť

$$\left(a + \frac{1}{b}\right)\left(b + \frac{1}{c}\right)\left(c + \frac{1}{a}\right) \ge 8$$

a zistite, kedy prechádza v rovnosť.

Úloha 4.5. [66-I-1] Dokážte, že pre ľubovoľné reálne číslo a platí nerovnosť

$$a^2 + \frac{1}{a^2 - a + 1} \ge a + 1.$$

Určte, kedy nastáva rovnosť.

Úloha 4.6. [59-I-5] Dokážte, že pre ľubovoľné kladné reálne čísla a,b platí

$$\sqrt{ab} \le \frac{2(a^2 + 3ab + b^2)}{5(a+b)} \le \frac{a+b}{2},$$

a pre každú z oboch nerovností zistite, kedy prechádza na rovnosť.

Domáca práca