15. Tutorium – Logik

WiSe 2022/23

Stand: 27. Januar 2023

Besprochen in der Woche vom [nicht besprochen].

Aufgabe 1

Sei $\sigma = \{f\}$ eine Signatur mit einem 2-stelligen Funktionssymbol und sei

$$\varphi := \forall x \forall y \forall z \ (f(f(x,y),z) = f(x,f(y,z)) \land f(x,y) = f(y,x)).$$

Zeigen Sie, dass $\operatorname{Mod}(\varphi)$ zwei nicht-isomorphe σ -Strukturen mit Universum \mathbb{Z} enthält.

Aufgabe 2

Zeigen oder widerlegen Sie, dass folgende Regeln korrekt sind.

(i)
$$\frac{\Phi, \varphi \Rightarrow \Delta, \psi}{\Phi \Rightarrow \Delta, \varphi \rightarrow \psi}$$

(ii)
$$\frac{\Phi \Rightarrow \Delta, \psi, \varphi}{\Phi \Rightarrow \Delta, \psi \land \varphi}$$

Aufgabe 3

Sei $\sigma = \{L, A, S, v, a, k_1, k_2\}$ eine Signatur, wobei v, a, k_1, k_2 Konstantensymbole sind, L, S 1-stellige Relationssymbole sind und A ein 2-stelliges Relationssymbol ist.

Zeigen Sie, unter **ausschließlicher** Verwendung der Regeln des Sequenzenkalküls, dass die folgende Sequenz gültig ist. Insbesondere sind Äquivalenzumformungen nicht erlaubt.

$$\forall y L(y) \land \exists x (L(x) \to A(k_1, a) \lor S(v)), k_1 = k_2 \Rightarrow \exists w A(k_2, w), S(v).$$

Aufgabe 4

Sei $\sigma = \{G, \cdot\}$ eine Signatur, wobei G ein 1-stelliges Relationssymbol und \cdot ein 2-stelliges Funktionssymbol ist. Sei $\mathcal{A} = \{\mathbb{Z}, G^{\mathcal{A}}, \cdot^{\mathcal{A}}\}$ eine σ -Struktur, wobei $G^{\mathcal{A}} = \{2x \mid x \in \mathbb{Z}\}$ und $\cdot^{\mathcal{A}}$ als die übliche Multiplikation mit ganzen Zahlen interpretiert wird.

Geben Sie ohne Begründung Formeln φ_1, φ_2 und φ_3 an, für die gilt:

(i)
$$\varphi_1(\mathcal{A}) = \{1\}$$

(ii)
$$\varphi_2(A) = \{-1\}$$

(iii)
$$\varphi_3(\mathcal{A}) = \{s2^k \mid k \in \mathbb{N} \text{ und } s \in \{1, -1\}\}$$

Aufgabe 5

Sei $\sigma = \{E\}$ eine Signatur, wobei E ein 2-stelliges Relationssymbol ist. Die σ -Strukturen \mathcal{A} und \mathcal{B} werden wie folgt graphisch dargestellt.

- (i) Geben Sie ohne Begründung einen Homomorphismus $h: \mathcal{A} \to_{\text{hom}} \mathcal{B}$.
- (ii) Zeigen Sie: Die Duplikatorin gewinnt das Spiel $\mathfrak{G}_2(\mathcal{A}, \mathcal{B})$.
- (iii) Geben Sie ohne Begründung eine Formel $\varphi \in FO[\sigma]$ minimalen Quantorenrangs an, für die gilt: $\mathcal{A} \models \varphi$ und $\mathcal{B} \not\models \varphi$.

Aufgabe 6

Sei $\sigma=\{E\}$ eine Signatur mit einem zweistelligen Relationssymbol E. Ermitteln Sie für die folgenden Paare von σ -Strukturen jeweils das minimale $m\in\mathbb{N}$, sodass der Herausforder eine Gewinnstrategie im m-Runden Ehrenfeucht-Fraïssé-Spiel zwischen den beiden Strukturen besitzt.

Aufgabe 7

Sei $\rho := \{V, E, I\}$ eine Signatur, wobei I ein zweistelliges Relationssymbol ist und V und E einstellige Relationssymbole sind.

Für einen ungerichteten Graphen G definieren wir die Inzidenzkodierung von G als die ρ -Struktur $\mathcal{I}(G) = (V(G) \cup E(G), V^{\mathcal{I}(G)} := V(G), E^{\mathcal{I}(G)} := E(G), I^{\mathcal{I}(G)})$, wobei $I^{\mathcal{I}(G)} := \{(v, e) \mid e \in E(G) \text{ und } v \in e\}$.

Sei G ein beliebiger ungerichteter Graph und A eine beliebige ρ -Struktur. Geben Sie für $i \in \{1, 2, 3, 4\}$ jeweils eine FO[σ]-Formel φ_i an, sodass gilt

- (i) $\varphi_1(\mathcal{I}(G)) = \{ u \in V(G) \mid u \text{ hat keine Nachbarn.} \}$
- (ii) $\varphi_2(\mathcal{I}(G)) = \{(u, v) \mid u, v \in V(G) \text{ und } \{u, v\} \text{ ist eine dominierende Menge.} \}$
- (iii) $\mathcal{I}(G) \models \varphi_3$ genau dann, wenn kein Knoten in G mehr als zwei Nachbarn besitzt.
- (iv) $\mathcal{A} \models \varphi_4$ genau dann, wenn \mathcal{A} die Inzidenzkodierung eines ungerichteten Graphen ist.

Erklären Sie Ihre Antwort jeweils kurz.