Support Vector Machine

Jaeyoon Han 2016-08-09

Support Vector Machine

서포트 벡터 머신(Support Vector Machine, SVM)은 1990년대에 개발된 분류 기법입니다. 현재 가장 일반적인 상황에서 좋은 성능을 보이는 비선형 분류기 중 하나입니다. 하지만, 그 기본 개념이 굉장히 어렵기 때문에 본 강의에서는 서포트 벡터 머신이 나오게 된 역사를 차근차근 되짚어보도록 하겠습니다.

History of SVM

1962, Maximal Margin Classifier

일반적인 유클리드 공간에 대해서 **초평면(Hyperplane)**을 정의해봅시다. 간단하게 원점(Origin)이 어디인지 알 수 없는 평면을 초평면이라고 합니다. 2차원 공간에서의 초평면은 선이 되죠. 이 초평면은 기존의 공간을 반으로 나눕니다.

위 이미지는 초평면 $1+2X_1+3X_2=0$ 을 나타내고 있습니다. 윗쪽 파란색 영역은 해당 초평면에 대해서 $1+2X_1+3X_2>0$ 인 점들의 집합이고, 보라색 영역은 $1+2X_1+3X_2<0$ 인 점들의 집합입니다.

두 개의 클래스로 나뉘어진 어떤 데이터 포인트들이 유클리드 공간에 놓여져 있다고 생각해봅시다. 이 때, 해당 데이터 포인트들에 대해서 클래스를 완벽하게 나눌 수 있는 초평면이 있다고 가정해보죠. 이 초평면을 **분리 초평면(Sepration Hyperplane)**이라고 합니다. 이러한 분리 초평민이 존재한다면, 무한히 많은 분리 초평면이 존재할겁니다. 이미 존재하는 분리 초평면에서 1mm만 움직여도 분리 초평면이 되기 때문이죠. 이 중에서, 가장 적절한 분리 초평면은 데이터로부터 가장 거

리가 먼 분리 초평면일겁니다. 앞으로 이 성질을 갖는 초평면을 **최대 마진 초평면(Maximal Margin Hyperplane)**이라고 부를겁니다. 이 최대 마진 초평면을 이용한 분류기가 바로 **최대 마진 분류기(Maximal Margin Classifier)**입니다. 최대 마진 초평면과 관련된 여러 가지 용어는 PPT 자료에 첨부하였습니다.

최대 마진 분류기의 문제는 일반적인 상황에서 모든 데이터를 올바르게 나눌 수 없다는 점입니다. 모든 데이터에 대해서 완벽 하게 분리할 수 있는 분리 초평면이 존재할 때만 최대 마진 분류기가 존재하죠. 이제 여기서, 조금의 타협을 보도록 하겠습니 다.

1996, Soft Margin Classifier

오분류된 데이터 일부를 허용할 수 있는 모델을 생각해보겠습니다. 이 때, '일부'의 정의를 잘 내리면 단단한(Robust) 모델을 만들 수 있을 것 같습니다. 그렇게 나온 개념이 바로 **슬랙 변수(Slack variable)**입니다. 슬랙 변수는 데이터 포인트의 위치를 나타냅니다.

- e = 0: 올바르게 분류되었다.
- 1 > e > 0: 올바르게 분류되었으나, 마진을 넘어서는 범위에 있다.
- *e* > 1 : 올바르게 분류되지 않았다.

이제 각각의 데이터 포인트에 대해서 슬랙 변수값을 구한 후 모두 더합니다. 이 더한 값이 얼마나 많은 변수들이 오분류되었는 지 말해줄겁니다.

하지만 이 값이 너무 커버리면 제대로 분류가 되지 않는 모델이 나올겁니다. 따라서 이 값에 한계를 주는 최대 비용 (Maximum Cost)를 설정해줍니다. 서포트 벡터 머신에서 가장 중요한 Tuning Parameter인 C입니다. 이 값에 따라서 모델이 굉장히 많이 바뀌게 됩니다.

C값이 크면: 과소적합(Underfitting)
C값이 작으면: 과적합(Overfitting)

이 모델을 우리는 소프트 마진 분류기(Soft Margin Classifier) 또는 서포트 벡터 분류기(Support Vector Classifier) 라고 부릅니다. 이렇게 유연한 모델을 만들었지만, 결국 이런 문제는 언제나 발생합니다. 어떻게 해결해야 할까요?

1992, Kernel Trick

많은 머신러닝 연구자들은 위 이미지와 같은 문제를 해결하기 위해서 여러 가지 방법을 고안했습니다. 그 중에서 지금까지도 널리 쓰이는 해결법은 수학에서 나왔습니다. 바로 **커널 트릭(Kernel Trick)**입니다.

커널 트릭이란 어떤 변수 공간에 **커널 함수(Kernel function)**을 사용하여 그 공간을 확장시키는 방법입니다. 복잡하게 말하자면 커널 함수를 사용해서 데이터의 경계를 결정하는 결정경계면을 계산하고 클래스를 분류합니다. 커널 트릭을 사용하면 복잡한 형태의 데이터라도 결정경계면을 계산하여 클래스를 올바르게 분류할 수 있습니다. 다양한 커널 함수가 있지만 자주 사용하는 네 가지만 알아보도록 하겠습니다.

- 1. Linear Function : $K_l(x_i, x_i) = \langle x_i, x_i \rangle$
- 2. Polynomial Kernel : $K_p(x_i, x_i) = (\gamma \cdot \langle x_i, x_i \rangle + r)^d$
- 3. Gaussian Radial Basis Kernel : $K_r(x_i, x_i) = e^{-\gamma \cdot |x_i x_j|^2}$, where $\gamma > 0$
- 4. Sigmoid Kernel: $K_s(x_i, x_i) = \tanh(\gamma \cdot \langle x_i, x_i \rangle + r)$

여기서 γ , r, d 값은 정해줘야 하는 파라미터로 이 값들에 따라서 결정경계면에 큰 차이가 생깁니다.

Toy Data


```
svm.fit <- svm(y ~ ., data = toy, kernel = 'linear', cost = 10, scale = FALSE)
summary(svm.fit)</pre>
```

plot(svm.fit, toy, grid = 100)

SVM classification plot


```
library(mlr)
toy.task <- makeClassifTask(id = "Toy", data = toy, target = "y")
learner <- makeLearner("classif.svm", kernel = "linear", cost = 10, scale = FALSE)
print(plotLearnerPrediction(learner, toy.task))</pre>
```

classif.svm: kernel=linear; cost=10; scale=FALSE Train: mmce= 0.1; CV: mmce.test.mean= 0.1


```
make.grid = function(x, n = 75) {
        grange = apply(x, 2, range)
        x1 = seq(from = grange[1, 1], to = grange[2, 1], length = n)
        x2 = seq(from = grange[1, 2], to = grange[2, 2], length = n)
        expand.grid(X1 = x1, X2 = x2)
}
xgrid = make.grid(x)
ygrid = predict(svm.fit, xgrid)
beta = drop(t(svm.fit$coefs) %*% x[svm.fit$index, ])
beta0 = svm.fit$rho
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = 0.2)
points(x, col = y + 3, pch = 19)
points(x[svm.fit$index, ], pch = 5, cex = 2)
abline(beta0/beta[2], -beta[1]/beta[2])
abline((beta0 - 1)/beta[2], -beta[1]/beta[2], lty = 2)
abline((beta0 + 1)/beta[2], -beta[1]/beta[2], lty = 2)
```



```
svm2 < - svm(y \sim ., data = toy2, kernel = 'radial', gamma = 2, cost = 1, scale = FALSE)
plot(svm2, toy2)
```

SVM classification plot


```
xgrid = make.grid(x)
names(xgrid) <- c("x.1", "x.2")
ygrid <- predict(svm2, xgrid)
plot(xgrid, col = as.numeric(ygrid), pch = 20, cex = 0.2)
points(x, col = y, pch = 19)</pre>
```



```
func = predict(svm2, xgrid, decision.values = TRUE)
func = attributes(func)$decision
xgrid = make.grid(x)
names(xgrid) <- c("x.1", "x.2")
ygrid <- predict(svm2, xgrid)
plot(xgrid, col = as.numeric(ygrid), pch = 20, cex = 0.2)
points(x, col = y, pch = 19)
points(svm2$SV, pch = 5, cex = 1.5)

px1 <- unique(xgrid$x.1)
px2 <- unique(xgrid$x.2)
contour(px1, px2, matrix(func, 75, 75), level = 0, add = TRUE, col = "red")
contour(px1, px2, matrix(func, 75, 75), level = 1, add = TRUE, col = "black")</pre>
```



```
toy.task <- makeClassifTask(id = "Toy", data = toy2, target = "y")
learner <- makeLearner("classif.svm", kernel = "radial", cost = .5, gamma = 1, scale = FALSE)
print(plotLearnerPrediction(learner, toy.task))</pre>
```

classif.svm: kernel=radial; cost=0.5; gamma=1; scale=FALSE Train: mmce=0.085; CV: mmce.test.mean=0.11

Diabetes Diagnostics

```
library(e1071)
library(rpart)
library(mlbench)
library(MASS)
library(dplyr)
```

```
data(Pima.tr)
data(Pima.te)
str(Pima.tr)
```

```
'data.frame': 200 obs. of 8 variables:
$ npreg: int 5 7 5 0 0 5 3 1 3 2 ...
$ glu : int 86 195 77 165 107 97 83 193 142 128 ...
$ bp : int 68 70 82 76 60 76 58 50 80 78 ...
$ skin : int 28 33 41 43 25 27 31 16 15 37 ...
$ bmi : num 30.2 25.1 35.8 47.9 26.4 35.6 34.3 25.9 32.4 43.3 ...
$ ped : num 0.364 0.163 0.156 0.259 0.133 ...
$ age : int 24 55 35 26 23 52 25 24 63 31 ...
$ type : Factor w/ 2 levels "No", "Yes": 1 2 1 1 1 2 1 1 1 2 ...
```

```
str(Pima.te)
```

```
'data.frame': 332 obs. of 8 variables:
$ npreg: int 6 1 1 3 2 5 0 1 3 9 ...
$ glu : int 148 85 89 78 197 166 118 103 126 119 ...
$ bp : int 72 66 66 50 70 72 84 30 88 80 ...
$ skin : int 35 29 23 32 45 19 47 38 41 35 ...
$ bmi : num 33.6 26.6 28.1 31 30.5 25.8 45.8 43.3 39.3 29 ...
$ ped : num 0.627 0.351 0.167 0.248 0.158 0.587 0.551 0.183 0.704 0.263 ...
$ age : int 50 31 21 26 53 51 31 33 27 29 ...
$ type : Factor w/ 2 levels "No","Yes": 2 1 1 2 2 2 2 1 1 2 ...
```

summary(Pima.tr)

```
glu
                                                  skin
   npreg
                                   bр
Min. : 0.00
              Min. : 56.0
                             Min. : 38.00
                                             Min. : 7.00
1st Qu.: 1.00
               1st Qu.:100.0
                              1st Qu.: 64.00
                                             1st Qu.:20.75
Median : 2.00
              Median :120.5
                             Median : 70.00
                                             Median :29.00
Mean : 3.57
                             Mean : 71.26
              Mean
                    :124.0
                                             Mean :29.21
3rd Qu.: 6.00
               3rd Qu.:144.0
                              3rd Qu.: 78.00
                                             3rd Qu.:36.00
Max. :14.00
              Max.
                     :199.0
                             Max. :110.00
                                             Max. :99.00
    bmi
                   ped
                                              type
                                   age
Min.
      :18.20
              Min.
                     :0.0850
                             Min.
                                     :21.00
                                             No :132
1st Qu.:27.57
              1st Qu.:0.2535
                             1st Qu.:23.00
                                             Yes: 68
Median :32.80
              Median :0.3725 Median :28.00
Mean :32.31
              Mean
                    :0.4608
                              Mean :32.11
3rd Qu.:36.50
              3rd Qu.:0.6160 3rd Qu.:39.25
Max. :47.90
              Max. :2.2880 Max.
                                     :63.00
```

summary(Pima.te)

```
glu
                                                   skin
   npreg
                                    bр
Min. : 0.000
               Min. : 65.0
                              Min. : 24.00
                                              Min. : 7.00
               1st Qu.: 96.0
1st Qu.: 1.000
                              1st Qu.: 64.00
                                              1st Qu.:22.00
Median : 2.000
                             Median : 72.00
              Median :112.0
                                              Median :29.00
Mean : 3.485
               Mean :119.3
                              Mean : 71.65
                                                   :29.16
                                              Mean
3rd Qu.: 5.000
               3rd Qu.:136.2
                              3rd Qu.: 80.00
                                              3rd Qu.:36.00
Max. :17.000
               Max. :197.0
                              Max. :110.00
                                              Max. :63.00
    bmi
                   ped
                                   age
                                              type
                                     :21.00
                                             No :223
Min. :19.40
              Min. :0.0850
                            Min.
1st Qu.:28.18
              1st Qu.:0.2660
                              1st Qu.:23.00
                                             Yes:109
Median :32.90
              Median :0.4400
                             Median :27.00
Mean :33.24
              Mean :0.5284
                              Mean :31.32
3rd Qu.:37.20
              3rd Qu.:0.6793
                              3rd Qu.:37.00
Max. :67.10
              Max. :2.4200
                              Max. :81.00
```

test_labels <- Pima.te\$type</pre>

```
library(caret)
linear.tune <- tune.svm(type ~ ., data = Pima.tr, kernel = "linear", cost = c(0.001, 0.001, 0.1, 1,
5, 10))
summary(linear.tune)

best.linear <- linear.tune$best.model
linear.test <- predict(best.linear, Pima.te)
confusionMatrix(linear.test, test_labels)</pre>
```

```
radial.tune <- tune.svm(type ~., data = Pima.tr, kernel = "radial", gamma = c(0.1, 0.5, 1, 2, 3, 4)
, cost = c(0.001, 0.001, 0.1, 1, 5, 10))
summary(radial.tune)
best.radial <- radial.tune$best.model
radial.test <- predict(best.radial , Pima.te)
confusionMatrix(radial.test, test_labels)</pre>
```

With Scaling

```
train_n <- data.frame(apply(Pima.tr[, -8], 2, scale), type = Pima.tr$type)
test_n <- data.frame(apply(Pima.te[, -8], 2, scale), type = Pima.te$type)</pre>
```

```
linear.tune <- tune.svm(type ~ ., data = train_n, kernel = "linear", cost = c(0.001, 0.001, 0.1, 1,
5, 10))
summary(linear.tune)

best.linear <- linear.tune$best.model
linear.test <- predict(best.linear, test_n)
confusionMatrix(linear.test, test_labels)</pre>
```

```
radial.tune <- tune.svm(type ~., data = train_n, kernel = "radial", gamma = c(0.1, 0.5, 1, 2, 3, 4)
, cost = c(0.001, 0.001, 0.1, 1, 5, 10))
summary(radial.tune)
best.radial <- radial.tune$best.model
radial.test <- predict(best.radial , test_n)
confusionMatrix(radial.test, test_labels)</pre>
```