Collapse Quotient construction $\delta(9, Z) \in F$ o equivalence classes treated as single states

to an equivalence relation = M on > ** MN relation = on Ex for a language L (1) $\chi = y \Rightarrow \forall \alpha \in \Sigma \left[\chi \alpha = y \alpha \right]$ right congruence $\left(\begin{array}{cc} (2) & \chi \equiv \mathcal{Y} \end{array} \right) = \left(\begin{array}{cc} \chi \in L & \chi \in L \end{array} \right) \equiv \text{refinen } L$ MN (3) = in of finite index

Construction: Given an MN relation = for L, to construct a DFA $M = (Q, \Sigma, S, S, S, F)$ such that $\mathcal{L}(M \equiv) = L$. $Q = \{ [x] \mid x \in \Sigma^* \} \rightarrow \text{finite by (3)}$ S = [E] $F = \{[x] \mid x \in L\} \rightarrow well-define \forall y (2)$ $F = \begin{cases} [x] \\ S(x), \alpha \end{cases} = [x\alpha] \rightarrow well-defind by (1)$ $\chi \in \mathcal{L}(M_{\pm}) \Leftrightarrow \widehat{S}(S, \kappa) \in F \Leftrightarrow \widehat{S}([\epsilon], \kappa) \in F \Leftrightarrow [x] \in F$ $\chi \in \mathcal{L}(M_{\pm}) \Leftrightarrow \widehat{S}(S, \kappa) \in F \Leftrightarrow \widehat{S}([\epsilon], \kappa) \in F \Leftrightarrow [x] \in F$ There two countractions are inverses of one another

$$\Xi \mapsto M \equiv \mapsto \Xi_{M} \equiv S([\epsilon], y)$$

$$\chi \equiv_{M} y \Leftrightarrow S([\epsilon], x) = S([\epsilon], y)$$

$$\chi \equiv [x] = [y] \qquad f: Q \rightarrow Q$$

$$\chi \equiv y \qquad f([x]) = S(x, x)$$

$$M = (Q_M, \Sigma, S_M, S_M, F_M)$$
 $N = (Q_N, \Sigma, S_N, S_N, F_N)$
 M and N^r are called isomorphic if there exists a bijective map $f: Q_M \rightarrow Q_N^r$ such that

$$(1) \quad f(S_M) = S_N^r$$

$$(2) \quad f(F_M) = F_N^r$$

$$(3) \quad f(S_M(P, a)) = S_N(f(P), a)$$
 $\forall P \in Q_M \text{ and } \forall a \in \Sigma$

Def: Let L'be any language (not necessarily regular). Define an prelation = m follows.
equivalence $\chi = y \Rightarrow \forall z \in \Sigma^* \left[\chi z \in L \Rightarrow yz \in L \right]$ Theorem: = Lisan MN relation for L. Proof: = refiner L Take Z= E in the defin. $\chi = L \rightarrow [\chi \in L \Rightarrow \Upsilon \in L]$ = L nation right congruence Z = a W $\mathcal{X} = \mathcal{Y} \Rightarrow \forall \alpha \in \Sigma \forall w \in \Sigma^* \left[\frac{2 \cdot \alpha w}{2 \cdot \alpha w} \in L \right] \Rightarrow \forall \alpha \in \Sigma \forall \alpha \in \Sigma^* \left[\frac{2 \cdot \alpha w}{2 \cdot \alpha w} \in L \right]$

Doen nuch a relation exist for L? Yes. Equality relation. -> The fruent MN relation for L. We are interested in the coarsest MNI relation for L. with an few equir classes as Theorem: = L'is the coarsest MN relation for L. Proof: Let = be any MN' relation for L. $TST: \chi = y \Rightarrow \chi = y$ R=y > YZEZ* Creneralize right congrhence for = [x2 = y7] By refinement property => ASEZ* [XSE] E C EL =) X=LY \$726L]

Equivalence classer of = L Equivalence classer of = Myhiss-Nerode theorem

Let L C 5 x. Then the following are equivalent

- (1) Lis regular
- (2) L has an MN relation
- (3) = [n of finite index.
 - $(1) \Rightarrow (2)$ L = L(M) Counder $\equiv M$
 - (2) => (3) Let \equiv be an MN relation for L \equiv \subseteq \subseteq L is not finer than \equiv
 - $(3) \Rightarrow (1)$ Do the construction $= L \rightarrow M = L$

Application 1 M = (Q, E, S, A, F) be a collapsed DFA in thont unreachable ntates $L = \mathcal{L}(M)$ Then = = L $x = y \Rightarrow \forall z \in \Sigma^* \left[xz \in L \Rightarrow yz \in L \right]$ $\forall \forall z \in \Sigma^* \left[\hat{S} \left(\hat{S}(s, x), z \right) \in F \right]$ $(3, 2) \approx \begin{cases} (3, 2), (3, 2) \in F \end{cases}$ $(3, 2) \approx \begin{cases} (3, 2), (3, 2) \in F \end{cases}$ $(4) \approx \begin{cases} (3, 2), (3, 2) \in F \end{cases}$ $(5, 2) \approx \begin{cases} (3, 2), (3, 2) \in F \end{cases}$ $(5, 2) \approx \begin{cases} (3, 2), (3, 2) \in F \end{cases}$

{abn n>0} in not regular. Ablahication 2 abe $i \neq j$ $ab \in L$ a 6 & L $a \neq a$ are all distinct $\begin{bmatrix} a^{0} \end{bmatrix}$, $\begin{bmatrix} a^{1} \end{bmatrix}$, $\begin{bmatrix} a^{2} \end{bmatrix}$, $\begin{bmatrix} a^{3} \end{bmatrix}$, -... =, in not of finite index Lin not vegular.