INTRODUCTION

Preference-inclusion comparison under partial information

Aida Takhmazova HSE Saint Petersburg

Academic advisor - Alexander Nesterov (International Laboratory of Game Theory and Decision Making)

11 June 2020

OUTLINE

Introduction

Model

PRELIMINARIES

MAIN RESULTS

Conclusions

Reforms¹

► Seattle Public Schools in 1999

Model.

- ▶ Boston Public Schools in 2005
- ► Ghanaian Secondary Public Schools in 2007
- ► Chicago Selective High Schools in 2009 and 2010
- ► Primary Public Schools in more than 50 cities and provinces in England and Wales in 2005-2011
- ► Denver Public Schools in 2012

change of mechanism:

- ► change of algorithm Deferred Acceptance $(DA) \Rightarrow Boston (BM)$
- ► change of constraint $k \uparrow$ in DA^k or BM^k

Problem - moving from one manipulable mechanism to another manipulable mechanism or stable mechanism?

¹Abdulkadiroğlu and Sönmez (2003); Abdulkadiroğlu et al. (2005); Pathak and Sönmez (2008); Pathak and Sönmez (2013)

LITERATURE

INTRODUCTION

(parallel results)

- superiority of *DA* to *BM*
- superiority of M^{k+1} to M^k

comparison under complete information

- ▶ less manipulable (Pathak and Sönmez, 2013)
- ▶ more truthful (Decerf and Van der Linden, 2016)
- ▶ more immune (Bonkoungou and Nesterov, 2020)

comparison under partial information

- ▶ obviously manipulable (Bonkoungou and Nesterov, 2019)
- BM is less obviously manipulable with more information
- DA is more obviously manipulable with more information
 - ▶ obviously manipulable (Troyan and Morrill, 2020)
- BM is the only obviously manipulable mechanism

INTRODUCTION

000

- ► In reality, agents have **partial information**: something is known for sure (or fixed), something is unknown
- ▶ When agents begin to report their *truthful* preferences more often:
- under which mechanism?
- under which information?
 - Criterion of truthfulness obvious dominance (Li, 2017)

INTRODUCTION

- ▶ set of students $S := \{s_1, s_2, ..., s_n\}$
- ▶ preference profile $R_S := (R_{s_1}, R_{s_2}, ..., R_{s_n})$
- ▶ set of schools $C := \{c_1, c_2, ..., c_m\}$
- $\blacktriangleright \text{ priority profile } R_C := (R_{c_1}, R_{c_2}, ..., R_{c_m})$
- capacity vector $q = (q_1, q_2, ..., q_m)$
- ▶ information structure I = 0, 1, ..., m

If each student knows his own preferences R_s and priority profile R_C but only the top $I \ge 0$ rows of the preference profile R_{-s} , then the information is denoted as I (Bonkoungou and Nesterov, 2019)

 R_{c_2}

 S_2

 S_1

 S_3

 R_{c_3}

 S_3

s₁ s₂

COMPLETE VS PARTIAL INFORMATION

3 students, 3 schools

INTRODUCTION

ightharpoonup complete information I = 3

$\overline{\mathbf{R}_{s_1}}$	R_{s_2}	R_{s_3}	$\overline{R_{c_1}}$
c_1	c ₂	C 3	s_1
c ₂	c_1	c ₂	s_2
C 3	C 3	c_1	s_3

ightharpoonup partial information I = 1

R_{s_1}	R_{s_2}	R_{s_3}	$\overline{R_{c_1}}$	R_{c_2}	R_{c_3}
c ₁	c ₂	C 3	$\frac{s_{t_1}}{s_1}$	S ₂	$\frac{14_3}{s_3}$
÷	:	:	s_2	s_1	s_1
:	:	:	s_3	s_3	s_2

-

(1)

PARTIAL INFORMATION STRUCTURE

ightharpoonup examples fixing I=1

INTRODUCTION

Abdulkadiroğlu et al. (2005)

Round 1:

INTRODUCTION

- 1) Each *student* applies to the school he reported as his most preferred acceptable school (if any)
- 2) Every *school* rejects the students in excess of its capacity according to its priority
- 3) Each *student* who is not rejected is **assigned** to the *school* he applied to and *capacities are adjusted* accordingly

:

Round 1:

- 1) Each rejected *student* applies to the best acceptable school that did not reject him yet
- 2) and 3) as in Round 1

BOSTON (IMMEDIATE ACCEPTANCE) MECHANISM

assignment is uniquely determined given I = 1

▶ no competition

INTRODUCTION

- ▶ assigned to the most preferred school
- ⇒ no improvement by misreport is possible

DEFERRED ACCEPTANCE MECHANISM

GALE AND SHAPLEY (1962)

Round 1:

INTRODUCTION

- 1) Each *student* applies to the school he reported as his most preferred acceptable school (if any)
- 2) Every *school* rejects the students in excess of its capacity according to its priority
- 3) Each *student* who is not rejected is **TEMPORARILY assigned** to the *school* he applied (could be rejected on any further step)

:

Round 1:

- 1) Each rejected *student* applies to the best acceptable school that did not reject him yet
- 2) and 3) as in Round 1

INTRODUCTION

DEFERRED ACCEPTANCE MECHANISM

assignment is uniquely determined given I = 1

- ► assigned to both top priority and most preferred school
- ⇒ no improvement by misreport is possible

OBVIOUS TRUTHFULNESS

▶ obvious dominance (Li, 2017)

Given mechanism M, preference R_i is **obviously truthful** under information structure *I* for student t_i if for any R'_i :

$$\min_{\hat{R}_{-i}c.w.R_{-i}^{I}} M_{i}(R_{i},\hat{R}_{-i}) \; R_{i} \max_{\hat{R}_{-i}c.w.R_{-i}^{I}} M_{i}(R_{i}^{'},\hat{R}_{-i})$$

INTRODUCTION

▶ preference-inclusion (Arribillaga and Massó, 2015)

Mechanism M_A is **more obviously truthful** than mechanism M_B under information structure I for student s if:

- (i) R_s is o. t. under I for s in $M_B \Rightarrow R_s$ is o. t. under I for s in M_A
- (ii) R_s is o. t. under I for s in $\mathbf{M_A} \neq R_s$ is o. t. under I for s in $\mathbf{M_B}$

Pre-assignment under partial information

$\overline{\mathbf{R}_{s_1}}$	R_{s_2}	R_{s_3}	R_{s_4}	$\overline{\mathbf{R}_{c_1}}$	R_{c_2}	R_{c_3}	R_{c_4}	
c ₁	c_2	c ₃	c_1	$\overline{s_1}$	s_1	s_1	s_1	
:	:	:	c_2	:	s_2	s_2	s_2	(2
:	:	:	c ₃	:	•	s_3	s_3	
:	:	:	C4	:	:	:	S ₄	

 \triangleright $s_1 - c_1$

INTRODUCTION

- \triangleright $s_2 c_2$
- $ightharpoonup s_3 c_3$
- \triangleright $s_4 c_4$

A student s is **pre-assigned** to a school c in mechanism M if c is the first school to which s is (temporarily) assigned without the threat of being rejected on any step given information.

DEFERRED ACCEPTANCE MECHANISM

Proposition 1

INTRODUCTION

For any $k \in \{1,...,m\}$, truth-telling is an obviously dominant strategy in DA^k for student s if and only if under information structure $I \in \{1,...,k\}$ in DA^k :

- (i) *s* is pre-assigned to an *acceptable* school *c* under truth-telling or
- (ii) there exists no $\hat{C} \subseteq C$ of acceptable and guaranteed for s schools

Suppose a student

- ► not pre-assigned ⇒ min(true report)=unassigned
- ► set of guaranteed schools ⇒ max(misreport)=assigned
- ⇒ improvement by misreport

BOSTON MECHANISM

Proposition 2

For any $k \in \{1, ..., m\}$, truth-telling is an obviously dominant **strategy in BM**^k for student s if and only if under information structure $I \in \{1, ..., k\}$ in BM^k :

- (i) s is pre-assigned to *most preferred feasible* school c under truth-telling or
- (ii) there exists no $\hat{C} \subseteq C$ of acceptable and guaranteed for sschools
 - ► top-ranking misreport
 - ► *feasibility* in terms of top-ranking strategies

DEFERRED ACCEPTANCE VS BOSTON

INTRODUCTION

Proposition 1 and 2: student has an obviously truthful strategy in *BM*^k \implies student has an obviously truthful strategy in DA^k

Theorem 1 For any $k \in \{1, ..., m\}$ and fixed information structure $I \in \{1, ..., k\}$, DA^k is more obviously truthful than BM^k under I

COMPARING MECHANISMS UNDER FIXED I

DIFFERENT CONSTRAINTS

INTRODUCTION

constraint $\uparrow \implies$ risk of running out of schools \downarrow

Theorems 2 and 3

For any $k \in \{1, ..., m\}$ and fixed information structure $I \in \{1, ..., k\},$

- ▶ DA^{k+1} is more obviously truthful than DA^k under I
- ► BM^{k+1} is more obviously truthful than BM^k under *I*

COMPARING MECHANISMS UNDER DIFFERENT I

DEFERRED ACCEPTANCE AND BOSTON

INTRODUCTION

Theorems 4 and 5

For any $k \in \{1, ..., m\}$ and information structure $I \in \{1, ..., k\}$

- ▶ DA^k is more obviously truthful under I + 1 than under I
- ▶ BM^k is more obviously truthful under I + 1 than under I

CONSISTENCY WITH EXISTING LITERATURE

COMPARISON UNDER FIXED INFORMATION

INTRODUCTION

- 1. DA^k is more obviously truthful than BM^k
- 2. DA^{k+1} is more obviously truthful than DA^k
- 3. BM^{k+1} is more obviously truthful than BM^k
 - reinforced the main conclusion regarding the Boston and constrained DA comparison
 - ► reinforced conclusions under *fixed* partial information

INTRODUCTION

Consistency with existing literature

COMPARISON UNDER DIFFERENT INFORMATION

- 4. BM^k is more obviously truthful under I + 1 than under I
- 5. DA^k is more obviously truthful under I + 1 than under I
 - $ightharpoonup DA^k$ is more obviously manipulable (Bonkoungou and Nesterov, 2019) and more obviously truthful under I + 1than under I
 - new results under *not fixed* partial information

- ► Deferred Acceptance mechanism incentivize students to be more truthful compared to Boston mechanism
- longer constraint incentivize students to be more truthful under both mechanisms
- ► more **information** announced/available incentivize student to be more truthful under Boston mechanism
- more information announced/available provides no clear incentive to students under Deferred Acceptance mechanism (accordingly to current research)

INTRODUCTION

Aida Takhmazova HSE Saint Petersburg

Academic advisor - Alexander Nesterov (International Laboratory of Game Theory and Decision Making)

11 June 2020

REFERENCES

- Abdulkadiroğlu, A., Pathak, P., Roth, A., and Sönmez, T. (2005). The Boston public school match. American Economic Review, 95(2):368–371.
- Abdulkadiroğlu, A. and Sönmez, T. (2003). School choice: A mechanism design approach. American Economic Review, 93(3):729–747.
- Arribillaga, R. and Massó, J. (2015). Comparing generalized median voter schemes according to their manipulability. *Theoretical Economics*, 11:547–586.
- Bonkoungou, S. and Nesterov, A. (2019). Incentives in matching markets under partial information. Working paper, Higher School of Economics, St. Petersburg.
- Bonkoungou, S. and Nesterov, A. (2020). Comparing school choice and college admission mechanisms by their immunity to strategic admissions. Higher School of Economics Research Paper No. WP BRP, 222.
- Decerf, B. and Van der Linden, M. (2016). Manipulability and tie-breaking in constrained school choice. Technical report, SSRN working paper.
- Gale, D. and Shapley, L. (1962). College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9–15.
- Li, S. (2017). Obviously strategy-proof mechanisms. American Economic Review, 107(11):3257-3287.
- Pathak, P. and Sönmez, T. (2008). Comparing mechanisms by their vulnerability to manipulation. *Unpublished mimeo*. MIT.
- Pathak, P. and Sönmez, T. (2013). School admissions reform in Chicago and England: Comparing mechanisms by their vulnerability to manipulation. American Economic Review, 103:80–106.
- Troyan, P. and Morrill, T. (2020). Obvious manipulations. Journal of Economic Theory, 185.

PATHAK AND SÖNMEZ (2013)

MANIPULABLE

DECERF AND VAN DER LINDEN (2016)

TRUTHFUL

BONKOUNGOU AND NESTEROV (2020)

IMMUNE

BONKOUNGOU AND NESTEROV (2019)

OBVIOUSLY MANIPULABLE

Troyan and Morrill (2020)

OBVIOUSLY MANIPULABLE

DA^k vs BM^{k+1}

<u>Case 1</u>. If BM^{k+1} is obviously truthful under given I it does not imply that DA^k is obviously truthful under I.

- ▶ Suppose that student s is pre-assigned to his k + 1'th preferred school in BM^{k+1} under $I \Longrightarrow BM^{k+1}$ is obviously truthful for s under I.
- ▶ It can be the case that student s is rejected from every school under truth-telling in DA^k under I but he cannot be rejected from his k + 1'th preferred school which provides an incentive to misreport $\implies DA^k$ is not obviously truthful for s under I.

DA^k vs BM^{k+1}

Case 2. If DA^k is obviously truthful under given I it does not imply that BM^{k+1} is obviously truthful under I.

- ▶ Suppose that student *s* is pre-assigned to some school *c* in DA^k under $I \Longrightarrow DA^k$ is obviously truthful for s under I.
- ▶ It can be the case that student *s* is rejected from all schools in BM^{k+1} under I because he applies too late but he has a strong incentive to misreport c as his most preferred school $\implies BM^{k+1}$ is not obviously truthful for s under I.

SAFE SET

$\overline{\mathbf{R}_{s_1}}$	R_{s_2}	R_{s_3}	R_{s_4}	$\overline{\mathbf{R}_{c_1}}$	R_{c_2}	R_{c_3}	R_{c_4}		
c_1	c_2	c ₃	c_1	s_1	s_1	s_1	s_1		
÷	:	:	c_2	:	s_2	s_2	s_2	((2)
:	:	:	c_3	÷	:	s_3	s_3		
:	÷	:	C 4	:	:	:	S ₄		

$ightharpoonup DA^k$ or BM^k

	c ₁	c ₂	c ₃	c ₄
Step 1	s_1, s_4	s_2	S 3	
Step 2	$\overline{s_1}$	s_2, s_4	S 3	
Step 3	$\overline{s_1}$	s ₂	S ₃ , S ₄	
Step 4	s_1	s ₂	s_3	S ₄

SAFE SET

$\overline{\mathrm{R}_{s_1}}$	R_{s_2}	R_{s_3}	R_{s_4}	$\overline{\mathbf{R}_{c_1}}$	R_{c_2}	R_{c_3}	R_{c_4}	
c_1	c_2	c ₃	c_1	$\overline{s_1}$	s_1	s_1	s_1	
:	:	:	c_2	:	s_2	s_2	s_2	(2)
÷	:	:	c ₃	:	:	s_3	s_3	
:	:	:	C4	:	:	:	Sa	

- $ightharpoonup s_1 c_1$
- $ightharpoonup s_2 c_2$
- \triangleright $s_3 c_3$
- \triangleright s_4 c_4

A set \hat{C} forms **safe set** for student s in mechanism M if $\hat{C} \subseteq C$ protects s from being unassigned under information structure I when report of s includes \hat{C} (Decerf and Van der Linden, 2016)

Deferred Acceptance Mechanism DA^3

R_{s_1}	R_{s_2}	R_{s_3}	R_{s_4}	R_{c_1}	R_{c_2}	R_{c_3}	R_{c_4}
c ₁	c_1	c_1	c ₄	s_1	s_1	s_1	s_4
:	:	c ₂	÷	:	s_2	s_3	:
:	:	c_3	:	:	s_3	÷	:
:	:	C ₄	:	:	:	:	:

Completion 1								
R_{s_1}	R_{s_2}	R_{s_3}	R_{s_4}					
c_1	c_1	c_1	C ₄					
:	c_2	c_2	:					
:	:	C3	:					

	c_1	c ₂	c ₃	C4
Step 1	s_1, s_2, s_3			S ₄
Step 2	s ₁	s_2, s_3		S ₄
Step 3	s ₁	S ₂	S 3	S4

DEFERRED ACCEPTANCE MECHANISM

R_{s_1}				R_{c_1}	R_{c_2}	R_{c_3}	R_{c_4}
c_1	c_1	c_1	C ₄	s_1	s_1	s_1	s_4
:	:	c_2	÷ :	÷	s_2	s_3	:
:	:	c ₃	:	:	s_3	:	:
÷	÷	c_4	÷	÷	÷	÷	:

Completion 2								
R_{s_1}	R_{s_2}	R'_{s_3}	R_{s_4}					
c_1	c_1	c ₂	c_4					
:	c_3	:	:					
:	:	:	:					

	c ₁	c ₂	C 3	C4
Step 1	s_1, s_2	S 3		S ₄
Step 2	s_1	s_3	s_2	S ₄

DEFERRED ACCEPTANCE MECHANISM

R_{s_1}	R_{s_2}	R_{s_3}	R_{s_4}	R_{c_1}	R_{c_2}	R_{c_3}	R_{c_4}
c_1	c_1	c ₁	C4	s_1	s_1	s_1	S ₄
:	:	c_2	÷	:	s_2	s_3	:
:	:	c ₃	÷	:	s_3	:	:
:	÷	C ₄	:	:	:	:	÷

- ► Completion $1 s_3$ to c_3
- ► Completion 2 s_3 to c_2
- \implies trut-telling is not obviously truthful for s_3

BOSTON MECHANISM as in Completion 1

R_{s_1}	R_{s_2}	R_{s_3}	R_{s_4}	R_{c_1}	R_{c_2}	R_{c_3}	R_{c_4}
c_1	c_1	c_1	c ₄	s_1	s_1	s_1	s_4
÷	c ₂	c ₂	÷	:	s_2	s_3	:
÷	:	c ₃	:	÷	s_3	÷	÷
:	:	C ₄	:	:	:	:	:

R_{s_1}	R_{s_2}	R_{s_3}	R_{s_4}
c_1	c_1	c ₂	C ₄
:	c ₂	:	:
:	:	:	:

	c ₁	C2	C 3	c ₄
Step 1	$\overline{s_1, s_2}$	S 3		S ₄
Step 2	$\overline{s_1}$	s ₃ , s ₂		