Homework Assignments

- Homework 1 (due October 19, 2020, 8 pm): 2 exercises out of 1.1-1.3, 2 exercises out of 2.1-2.3, exercise 3.1, and 1 exercise out of 3.2-3.3.
- Homework 2 (due November 9, 2020, 8 pm): 1 exercise out of 4.1-4.2, exercise 4.3, exercises 5.1-5.2, exercise 6.1, and 1 exercise out of 6.2-6.3.
- Homework 3 (due December 7, 2020, 8 pm): exercises 7.1-7.3, exercises 8.1-8.2, and exercises 9.1-9.2.
- Homework 4 (due January 11, 2021, 8 pm): exercises 11.1-11.2, 1 exercise out of 12.1-12.2, and exercise 13.1.

Exercises are added to homework assignments on a weekly basis. The solutions to the exercises corresponding to a homework assignment will be published after the deadline.

Submission instructions

The solutions can be written by hand, scanned, and then sent by e-mail to the following addresses according to your group (repeaters should send the file to the address corresponding to the group they chose to attend the seminar with):

- 911 and 915: lorinczi@math.ubbcluj.ro
- 912, 913, 914, and 917: examen.analiza.reala@gmail.com
- 916: adrian.viorel2020@gmail.com

IMPORTANT:

- E-mail subject: HWi Surname Forename Group. (Note that $i \in \{1, 2, 3, 4\}$.)
- File name: Surname-Forename-Group.pdf.
- Do not include more exercises than required.
- Late submissions are not accepted.
- Send a single pdf file (not a link to the file, attach it). If you forget to attach the file or attach a wrong or an incomplete file, you will not be allowed to resubmit the homework after the deadline. It is the student's responsibility to attach the correct file.

Seminar 1

Exercise 1.1. Prove that for every $n \in \mathbb{N}$, $n \ge 2$, we have $\sum_{m=1}^{n} \frac{1}{\sqrt{m}} > \sqrt{n}$.

Exercise 1.2. Let x > 0 and $n \in \mathbb{N}$. Use the inequality $G(x_1, \ldots, x_m) \leq A(x_1, \ldots, x_m)$ for some appropriate choice of $m \in \mathbb{N}$ and of real numbers $x_1, \ldots, x_m > 0$ to deduce that:

a)
$$\frac{x^n}{1+x+\ldots+x^{2n}} \le \frac{1}{2n+1};$$

b)
$$1 + (n+1)x \le (1+x)^{n+1}$$
.

Exercise 1.3. Prove that for every $n \in \mathbb{N}$ with $n \geq 2$ and for any numbers $x_1, x_2, \ldots, x_n \in [-1, \infty)$ all of the same sign, we have

$$(1+x_1)(1+x_2)\cdot\ldots\cdot(1+x_n)\geq 1+x_1+x_2+\ldots+x_n$$
 (the generalized Bernoulli inequality).

Seminar 2

Exercise 2.1. For each set A_i from below find $\mathrm{lb}(A_i)$ and $\mathrm{ub}(A_i)$ (as subsets of \mathbb{R}), $\min(A_i)$ and $\max(A_i)$ (if they exist), and $\inf(A_i)$ and $\sup(A_i)$ (in $\overline{\mathbb{R}}$):

$$A_{1} = [-8, \pi) \cap \mathbb{Z}, \qquad A_{3} = \left\{ x + \frac{1}{x} \mid x \in \mathbb{R}, x < 0 \right\},$$

$$A_{2} = \left\{ 2^{m} + n! \mid m, n \in \mathbb{N} \right\}, \qquad A_{4} = \left\{ \frac{n}{1 - n^{2}} \mid n \in \mathbb{N}, n \ge 2 \right\}.$$

Exercise 2.2. Find two sets $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ such that the following conditions are simultaneously met:

- (i) one of the sets is unbounded (but not an interval) and the other is finite;
- (ii) $\sup A = \inf B = 2 \in A$;
- (iii) for every $a \in A$ and every $b \in B$, there exists $c \in \mathbb{R}$ with a < c < b.

Is it possible to choose B the finite set?

Exercise 2.3. Decide which of the following sets are neighborhoods of 0. Justify.

$$A_1 = (-1, 0] \cup \{1\},$$
 $A_3 = \mathbb{R},$ $A_2 = \left[1 - \frac{3}{2}, 1 + \frac{3}{2}\right] \cup (3, 4),$ $A_4 = \mathbb{R} \setminus \mathbb{Q}.$

Seminar 3

Exercise 3.1. Find the limit (as $n \to \infty$) of the sequence whose general term $x_n, n \in \mathbb{N}$, is given below:

a)
$$\frac{n+\sin(n^2)}{\cos(n)-3n}$$
, b) $(n^2+n)^{-\frac{n}{n+1}}$, c) $\left(1+\frac{1}{n^3+2n^2}\right)^{n-n^3}$, d) $\frac{1\cdot 1!+2\cdot 2!+\ldots+n\cdot n!}{(n+1)!}$, e) $\sqrt[n]{1+2+\ldots+n}$, f) $n\left(\left(1+\frac{1}{n}\right)^{1+\frac{1}{n}}-1\right)$.

Exercise 3.2. For $n \in \mathbb{N}$, let $a_n, b_n \in \mathbb{R}$ such that $a_n \leq b_n$ and $\lim_{n \to \infty} (b_n - a_n) = 0$. Suppose, in addition, that $\forall n \in \mathbb{N}$, $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$. By the Nested Interval Property, $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.

Can $\bigcap_{n=1}^{\infty} [a_n, b_n]$ contain more than one point?

Exercise 3.3. Let (x_n) be a sequence in \mathbb{Z} . If (x_n) is convergent, is it eventually constant (i.e., $\exists n_0 \in \mathbb{N}$ such that $\forall m, n \in \mathbb{N}$ with $m, n \geq n_0$ we have $x_m = x_n$)?

Seminar 4

Exercise 4.1. Define the sequence (x_n) by $x_1 \in (0,1)$ and $x_{n+1} = x_n - x_n^2$, $n \in \mathbb{N}$. Prove that the sequence (x_n) converges and find its limit. Then study the convergence of the sequence $(n \cdot x_n)$ (for this, one could apply the Stolz-Cesàro Theorem for the sequences (a_n) and (b_n) defined, for $n \in \mathbb{N}$, by $a_n = n$ and $b_n = 1/x_n$, respectively).

Exercise 4.2 (Koch snowflake). Define a sequence (S_n) of polygons such that S_1 is an equilateral triangle of side length 1 and, for $n \in \mathbb{N}$, S_{n+1} is obtained from S_n by adding to the middle third of each side an equilateral triangle pointing outwards (and removing this middle third). Denote by a_n the area of S_n . Determine the sequence (a_n) and study if it is convergent.

Exercise 4.3. Find the sum of the following series and specify whether they are convergent or divergent:

a)
$$\sum_{n>1}^{3} \left(-\frac{\pi}{4}\right)^n$$
, b) $\sum_{n>0} \frac{2^{3n}}{5^{n-1}}$, c) $\sum_{n>1} \frac{1}{4n^2-1}$, d) $\sum_{n>1} \ln\left(1+\frac{1}{n}\right)$, e) $\sum_{n>1} \frac{3n-2}{2^n}$.

Seminar 5

Exercise 5.1. Study if the following series are convergent or divergent:

a)
$$\sum_{n\geq 1} \left(1 - \frac{1}{n}\right)^n$$
, b) $\sum_{n\geq 1} \sin\frac{1}{n^{5/4}}$, c) $\sum_{n\geq 1} \frac{\sqrt{n}}{n\sqrt[3]{n} + 2}$, d) $\sum_{n\geq 1} \frac{n!}{3 \cdot 5 \cdot \ldots \cdot (2n+1)}$, e) $\sum_{n\geq 1} \frac{n^3 5^n}{2^{3n+1}}$, f) $\sum_{n\geq 1} \frac{2 \cdot 5 \cdot \ldots \cdot (3n-1)}{3 \cdot 6 \cdot \ldots \cdot (3n)}$.

Exercise 5.2. Let (x_n) and (y_n) be two sequences of positive numbers. Suppose that the series $\sum_{n\geq 1} \frac{x_n}{y_n}$ and $\sum_{n\geq 1} y_n$ are both convergent. Is the series $\sum_{n\geq 1} \sqrt{x_n}$ convergent as well?

Seminar 6

Exercise 6.1. Study if the following series are absolutely convergent, semi-convergent or divergent:

a)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\sqrt{n+1}}$$
, b) $\sum_{n\geq 1} \frac{n}{n^2+1} \cos(n\pi)$.

Exercise 6.2. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous such that $f(x) = g(x), \forall x \in [0, 1] \cap \mathbb{Q}$. Prove that $f(x) = g(x), \forall x \in [0, 1]$. Is it enough solely to assume that f and g are continuous on $[0, 1] \setminus \{\alpha\}$ for some $\alpha \in [0, 1] \cap (\mathbb{R} \setminus \mathbb{Q})$?

Exercise 6.3. Find all continuous functions $f: \mathbb{R} \to \mathbb{N}$ and all continuous functions $f: \mathbb{N} \to \mathbb{R}$.

Seminar 7

Exercise 7.1. Find the n^{th} derivative $(n \in \mathbb{N})$ of the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x \sin x$.

Exercise 7.2. Compute the following limits:

a)
$$\lim_{x \to \infty} \frac{x + \ln x}{x \ln x}$$
, b) $\lim_{\substack{x \to 0 \\ x > 0}} x \ln \sin x$, c) $\lim_{\substack{x \to 0 \\ x > 0}} (\sin x)^x$.

Exercise 7.3. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 3x^2 + 5x + 1$. Find the third Taylor polynomial $T_3(x)$ of f at 1.

Seminar 8

Exercise 8.1. Prove that the function $f:(0,\infty)\to\mathbb{R}$, $f(x)=1/x^2$, can be expanded as a Taylor series around 1 on [1,2) and find the corresponding Taylor series expansion.

Exercise 8.2. Let $z \in \mathbb{R}^n$, r > 0, and $\varepsilon \in (0, 2]$. Prove that if $x, y \in \overline{B}(z, r)$ such that $||x - y|| \ge \varepsilon r$, then $||z - \frac{x + y}{2}|| \le r\sqrt{1 - \frac{\varepsilon^2}{4}}$.

Seminar 9

Exercise 9.1. In each the following cases, study if the function $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous at 0_2 :

a)
$$f(x,y) = \begin{cases} \frac{xy + x^2y\ln(x^2 + y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq 0_2\\ 0 & \text{if } (x,y) = 0_2, \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{e^{-\frac{1}{x^2+y^2}}}{x^4+y^4}, & \text{if } (x,y) \neq 0_2\\ 0 & \text{if } (x,y) = 0_2. \end{cases}$$

(One could show first that $x^4 + y^4 \ge (x^2 + y^2)^2/2$ for all $x, y \in \mathbb{R}$.)

Exercise 9.2. Find the second order partial derivatives of the following functions:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \sin(x \sin y)$, b) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = (1+x^2)ye^z$.

Seminar 10

No homework.

Seminar 11

Exercise 11.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq 0_2\\ 0 & \text{if } (x,y) = 0_2. \end{cases}$$

Study the continuity and the partial differentiability of f at 0_2 .

Exercise 11.2. Let $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = e^{2x+y}\cos(3z)$. Find the gradient and the Hessian matrix of f at $(0,0,\pi/6)$.

Seminar 12

Exercise 12.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + y^3 - 3xy$. Find the local extremum points of f and specify their type.

Exercise 12.2. Let $f:(0,\infty)\times\mathbb{R}\to\mathbb{R}$, $f(x,y)=x(y^2+\ln^2x)$. Find the local extremum points of f and specify their type.

Seminar 13

Exercise 13.1. Let $\alpha, \beta \in \mathbb{R}$ and $f: [1, \infty) \to \mathbb{R}$, $f(x) = \frac{x^{\alpha} \arctan x}{1 + x^{\beta}}$. Study the improper integrability f on its domain.