Analisi 1

DAVIDE BORRA

Indice

T	Lim			1
	1.1	Interv	${ m alli~in}~\mathbb{R}$	1
		1.1.1	Intorni	1
	1.2	Defini	zione di limite	4
		1.2.1	Asintoti	6
	1.3	Contin	uità	6
	1.4	Primi	teoremi sui limiti	6
		1.4.1	Teorema di unicità del limite	7
		1.4.2	Teorema di permanenza del segno	7
		1.4.3	Teorema del confronto (o dei due carabinieri)	8
	1.5		o dei limiti	9
		1.5.1	Funzioni continue e funzioni elementari	9
		1.5.2	Algebra dei limiti	9
		1.5.3	Mediante il teorema del confronto	10
		1.5.4	Forme di indecisione (o forme indeterminate)	10
		1.5.5	Forme di indecisione $0^0, \infty^0, 1^\infty$	13
		1.5.6	Limiti Notevoli	14
	1.6		e parametri	17
	1.7		uità e discontinuità	18
	1.1	1.7.1	Discontinuità di prima specie o di salto	18
		1.7.1	Discontinuità di seconda specie	18
		1.7.2 $1.7.3$	Discontinuità di terza specie o eliminabili	18
		1.7.4	Continuità e funzioni inverse	19
	1.8		ni sulle funzioni continue	20
	1.0	1.8.1		20
		1.8.2		
		1.8.3	Teorema dell'esistenza degli zeri (o di Bolzano)	
		1.8.3	reorema dei vaiori intermedi (o di Darboux)	20
2	Der	ivate		21
_	2.1	Defini	ione	
		2.1.1	Problema classico	
		2.1.2	Calcolo della derivata mediante definizione	
	2.2		te fondamentali	
	2.2	2.2.1	Funzione costante	
		2.2.1 $2.2.2$	Funzione identità	
		2.2.2	Funzione potenza	
		2.2.3 $2.2.4$	Funzione seno	
		2.2.4 $2.2.5$		$\frac{24}{24}$
		2.2.6	Funzione esponenziale	$\frac{24}{24}$
		2.2.0 $2.2.7$	Funzione logaritmo	$\frac{24}{25}$
	2.3		ů	$\frac{25}{25}$
	2.3	_	zioni con le derivate	
		2.3.1	Linearità rispetto al prodotto	25
		2.3.2	Linearità rispetto alla somma	25
		2.3.3	Derivata del prodotto	25
		2.3.4	Derivata del rapporto	26
	0.4	2.3.5	Derivata della funzione composta (chain rule)	26
	2.4		te notevoli /2	27
		2.4.1	Funzione tangente	27
		2.4.2	Funzione cotangente	27

2.5	Legam	e tra continuità e derivabilità	27
	2.5.1	Continuità delle funzioni derivabili	27
	2.5.2	Studi di continuità e derivabilità	39
2.6	Punti	di non derivabilità	96
	2.6.1	Punto angoloso)(
	2.6.2	Cuspide	36
	2.6.3	Flesso a tangente verticale	3(
	2.6.4	Punto a tangente verticale	3(

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

ii Davide Borra

Capitolo 1

Limiti

1.1 Intervalli in \mathbb{R}

DEF. Un insieme $A \subset \mathbb{R}$ si dice **intervallo** se corrisponde ad una semiretta (**illimitato**) o ad un segmento (**limitato**) della retta reale

Inoltre:

- si dice **chiuso** se gli estremi sono inclusi nell'intervallo;
- si dice aperto se gli estremi sono esclusi nell'intervallo.

Gli intervallo limitati corrispondono a segmenti di retta reale di estremi a e b (b > a), lunghezza b - a (detta ampiezza dell'intervallo), centro $\frac{b+a}{2}$ e raggio $\frac{b-a}{2}$.

1.1.1 Intorni

DEF. Dato numero reale x_0 , un intorno completo di x_0 è un qualunque intervallo aperto contenente x_0

$$I(x_0) =]x_0 - \delta_1; x_0 + \delta_2[$$
 (con $\delta_1, \delta_2 \in \mathbb{R}_0^+$)

- Intorno destro: $I^+(x_0) =]x_0; x_0 + \delta[$
- Intorno sinistro: $I^-(x_0) =]x_0 \delta; x_0[$

Intorni circolari

DEF. Dati un numero reale x_0 e un numero reale positivo δ , un intorno circolare di x_0 di raggio δ è l'intervallo aperto $I_{\delta}(x_0)$ di centro x_0 e raggio δ

$$I_{\delta}(x_0) =]x_0 - \delta; x_0 + \delta[$$

Intorni di ∞

DEF. Dati due numeri reali $a \in b$ con a < b si definisce

- intorno di $-\infty$ un qualsiasi intervallo illimitato inferiormente $]-\infty; a[$
- intorno di $+\infty$ un qualsiasi intervallo illimitato superiormente $b; +\infty$
- intorno di ∞ l'unione di un intorno di $-\infty$ e di un intorno di $+\infty$: $]-\infty; a[\cup]b; +\infty[$

Insiemi limitati e illimitati, maggiorante, minorante, estremi superiore e inferiore, massimo, minimo.

È possibile definire come limitati/illimitati anche insiemi che non sono intervalli.

Analisi 1 Limiti - Intervalli in $\mathbb R$

DEF (Insiemi limitati). Un insieme $X \subseteq R$ non vuotoè detto

• superiormente limitato se è possibile determinare un qualsiasi numero reale α tale che $\forall x \in X, x \leq \alpha$. α è detto maggiorante di X.

- inferiormente limitato se è possibile determinare un qualsiasi numero reale β tale che $\forall x \in X, x \ge \beta$. β è detto minorante di X.
- limitato se è limitato sia superiormente che inferiormente.

DEF (Insiemi illimitati). Un insieme $X \subseteq R$ non vuoto è detto

- superiormente illimitato se $\forall \alpha \in \mathbb{R}, \exists x \in X : x > \alpha$
- inferiormente illimitato se $\forall \beta \in \mathbb{R}, \exists x \in X : x < \beta$
- illimitato si è illimitato sia inferiormente che superiormente.

Se un insieme è limitato superiormente/inferiormente è possibile definire minimo e massimo è possibile quindi definire massimo e minimo di un insieme (attenzione, non è detto che tutti gli insiemi limitati ammettano massimo/minimo.)

DEF (Massimo). Dati un insieme $X \subseteq R$ e un numero reale M, esso si dice **massimo** di X se

- i) $\forall x \in X, M \ge x$ (è maggiorante)
- ii) $M \in X$ (appartiene all'insieme).

Si indica $M = \max X$.

DEF (Minimo). Dati un insieme $X \subseteq R$ e un numero reale m, esso si dice **minimo** di X se

- i) $\forall x \in X, m \leq x$ (è minorante)
- ii) $m \in X$ (appartiene all'insieme)

Si indica $M = \min X$.

Tuttavia non è possibile determinare massimo e minimo per, ad esempio, intervalli aperti. Abbiamo quindi bisogno di qualcos'altro che funzioni sempre, definiamo quindi gli estremi inferiore e superiore di un insieme.

 \mathbf{DEF} (Estremo superiore). Dato un insieme X superiormente limitato, si dice **estremo superiore** di X il minimo dei suoi maggioranti

$$\inf X = \min \{ M \in \mathbb{R} : M \text{ è maggiorante di } X \}$$

Se X è superiormente illimitato, si definisce sup $X=+\infty$.

Caratterizzazione di sup X Si dimostra che la seguente definizione di sup è equivalente alla precedente: dato un insieme X superiormente limitato, un numero reale M si dice estremo superiore di X se e solo se

- i) $\forall x \in X, M \ge x$ (è maggiorante)
- ii) $\forall \varepsilon > 0 \exists x \in X : x > M \varepsilon$ (è il minore dei maggioranti)

 \mathbf{DEF} (Estremo inferiore). Dato un insieme X inferiormente limitato, si dice **estremo inferiore** di X il massimo dei suoi minoranti

$$\inf X = \max\{m \in \mathbb{R} : m \text{ è minorante di } X\}$$

Analisi 1 Limiti - Intervalli in $\mathbb R$

Se X è inferiormente illimitato, si definisce inf $X = -\infty$.

Caratterizzazione di inf X Si dimostra che la seguente definizione di inf è equivalente alla precedente: dato un insieme X inferiormente limitato, un numero reale m si dice estremo inferiore di X se e solo se

- i) $\forall x \in X, m \le x$ (è minorante)
- ii) $\forall \varepsilon > 0 \exists x \in X : x < m + \varepsilon$ (è il maggiore dei minoranti)

Punti di accumulazione e punti isolati

DEF (Punto isolato). Sia $x_0 \in X \subseteq \mathbb{R}$, allora x_0 si definisce punto isolato di X se esiste un intorno $I(x_0)$ che non contiene altri elementi di X.

DEF (Punto di accumulazione). Sia $X \subseteq \mathbb{R}$, allora $x_0 \in \mathbb{R}$ si definisce punto di accumulazione di X se ogni intorno completo $I(x_0)$ contiene altri infiniti elementi di X, equivalentemente se ogni intorno completo $I(x_0)$ contiene almeno un altro elemento di X.

DEF (Insieme derivato). Dato un insieme $A \subseteq R$, si definisce **insieme derivato** di A, l'insieme DA contenente tutti e soli i suoi punti di accumulazione.

Esempio 1.1.1.

Dato l'insieme

$$A = \left\{ x \in \mathbb{R} \mid x = \frac{n+1}{n}, n \in \mathbb{N}_{>0} \right\}$$

- a) precisare se è limitato,
- b) rappresentarlo graficamente,
- c) determinare $\sup A$ e $\inf A$, specificando se sono massimo e minimo,
- d) indicare punti di accumulazione e punti isolati.
- a) Cominciamo espandendo alcuni elementi dell'insieme

$$A = \left\{1, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots\right\}$$

Osserviamo facilmente che è limitato inferiormente superiormente

b) Anche qui calcoliamo i primi elementi, in modo da poterli rappresentare:

c) Dal disegno si vede chiaramente che

$$\sup A = 2 = \max A,$$

inoltre osserviamo che

$$x = \frac{n+1}{n} = \frac{n}{n} + \frac{1}{n} = 1 + \frac{1}{n} \xrightarrow[n \to +\infty]{} 1$$

quindi

$$\inf A = 1$$
 $\nexists \min A$

d) Osserviamo che qualsiasi punto dell'insieme consideriamo esiste un suo intorno (ad esempio l'intorno circolare di raggio $\frac{1}{2}$), per cui tutti i punti dell'insieme sono punti isolati. Osserviamo inoltre che i punti si "addensano" intorno a 1, per cui ogni intorno di 1 contiene almeno un punto dell'insieme, per cui x=1 è un punto di accumulazione per l'insieme A.

1.2 Definizione di limite

DEF (Definizione unificata di limite). Sia $f: X \subset \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}^*$ punto di accumulazione per X, allora $l \in \mathbb{R}^*$ si dice limite per x che tende a x_0 di f(x) e si scrive

$$\lim_{x \to x_0} f(x) = l \qquad \left(f(x) \xrightarrow[x \to x_0]{} l \right)$$

se

$$\forall I(l) \ \exists I(x_0) : \ f(x) \in I(l) \ \forall x \in I(x_0) \setminus \{x_0\}$$

Definiamo inoltre i limiti destro e sinistro, che si ottengono sostituendo nella definizione precedente a $I(x_0)$,

 $\begin{array}{ll} \text{Limite sinistro:} & \lim_{x\to x_0^-} f(x) = l \quad I^-(x_0) \\ \text{Limite destro:} & \lim_{x\to x_0^+} f(x) = l \quad I^+(x_0) \end{array}$

Analogamente definiamo i limiti per eccesso e per difetto, che si ottengono sostituendo nella definizione precedente a I(l),

Limite per eccesso: $\lim_{x \to x_0} f(x) = l^+$ $I^+(l)$ Limite per difetto: $\lim_{x \to x_0} f(x) = l^ I^-(l)$

Vediamo ora qualche applicazione delle definizioni di limite a casi particolari:

• Limite $+\infty$ per $x \to x_0$: $\lim_{x \to x_0} f(x) = +\infty$

$$\forall M > 0 \; \exists \delta > 0 \; : \; f(x) > M \; \forall x \in]x_0 - \delta, x_0 + \delta[$$

• Limite finito per $x \to +\infty$: $\lim_{x \to +\infty} f(x) = l$

$$\forall \varepsilon > 0 \ \exists c > 0 : |f(x) - l| < \varepsilon \ \forall x \in]c, \infty[$$

• Limite $+\infty$ per $x \to +\infty$: $\lim_{x \to +\infty} f(x) = +\infty$

$$\forall M > 0 \ \exists c > 0 : \ f(x) > M \ \forall x \in]c, \infty[$$

• Limite finito per $x \to x_0$: $\lim_{x \to x_0} f(x) = l$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : |f(x) - l| < \varepsilon \ \forall x \in]x_0 - \delta, x_0 + \delta[$$

Esempio 1.2.1.

Verificare il seguente limite mediante definizione:

$$\lim_{x \to -\infty} \frac{2x - 1}{x + 1} = 2$$

Cominciamo determinando il dominio: dom $f=x+1\neq 0 \iff x\neq -1$. Ora rappresentiamo il grafico della funzione, osserviamo che si tratta di un'omografica con asintoti y = 2 e x = -1:

Recuperiamo la definizione di limite

$$\forall \varepsilon > 0 \ \exists I(-\infty) \ : \ \left| \frac{2x-1}{x+1} - 2 \right| < \varepsilon \ \forall x \in I(-\infty)$$

e svolgiamo la disequazione.

$$\begin{cases} \left| \frac{2x-1}{x+1} - 2 \right| < \varepsilon \\ x \neq -1 \end{cases}$$

$$\begin{cases} \left| \frac{2x-1}{x+1} - 2 \right| < \varepsilon \\ x \neq -1 \end{cases} \leqslant \left| \frac{2x-1-2x-2}{x+1} \right| < \varepsilon$$

$$\begin{cases} -\frac{3}{x+1} < \varepsilon \\ -\frac{3}{x+1} > -\varepsilon \\ x \neq 0 \end{cases}$$

$$\begin{cases}
-\frac{3}{x+1} < \varepsilon \\
-\frac{3}{x+1} > -\varepsilon
\end{cases} \qquad \begin{cases}
\frac{-3 - \varepsilon x - \varepsilon}{x+1} < 0 \\
\frac{-3 + \varepsilon x + \varepsilon}{x+1} > 0 \\
x \neq 0
\end{cases}$$

Separando le due disequazioni

$$\mathrm{I)} \quad \frac{-3 - \varepsilon x - \varepsilon}{x + 1} < 0$$

$$-3 - \varepsilon x - \varepsilon > 0$$

$$x < -1 - \frac{3}{-}$$

$$x + 1 > 0$$

$$r > -1$$

II)
$$\frac{-3 + \varepsilon x + \varepsilon}{x + 1} > 0$$

Analisi 1 Limiti - Continuità

$$-3 + \varepsilon x + \varepsilon > 0 \qquad x > -1 + \frac{3}{\varepsilon}$$

$$x + 1 > 0 \qquad x > -1$$

$$x < -1 \quad \forall \quad x > -1 + \frac{3}{\varepsilon}$$

In conclusione

$$\begin{cases} x < -1 - \frac{3}{\varepsilon} \lor x > 1 \\ x < -1 \lor x > -1 + \frac{3}{\varepsilon} \end{cases} \qquad x < -1 - \frac{3}{\varepsilon} \lor x > -1 + \frac{3}{\varepsilon}$$
$$x \neq -1$$

Che contiene un intorno di $-\infty$, $I(-\infty) = \left] -\infty, -1 - \frac{3}{\varepsilon} \right[$. Il limite è quindi verificato.

1.2.1 Asintoti

Tipologia	Condizioni	Asintoto
Asintoto verticale	$\lim_{x \to x_0} f(x) = \infty$	$x = x_0$
Asintoto orizzontale	$\lim_{x \to \infty} f(x) = l$	y = l
Asintoto obliquo	CN: $\lim_{x \to \infty} f(x) = \infty$ $m = \lim_{x \to \infty} \frac{f(x)}{x} \qquad q = \lim_{x \to \infty} [f(x) - mx]$	y = mx + q

NB.: Una funzione può avere anche infiniti asintoti verticali, ma al massimo due tra asintoti orizzontali e asintoti obliqui (uno destro e uno sinistro).

1.3 Continuità

DEF. Sia f(x) una funzione definita in un intervallo $a; b \in x_0$ un punto appartenente all'intervallo. f(x) è continua in x_0 se e solo se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

La funzione è inoltre continua in a; b[se è continua in ogni punto x_0 dell'intervallo.

Si parla anche di funzioni

- continue da destra x_0 quando $\lim_{x \to x_0^+} f(x) = f(x_0)$
- continue da sinistra x_0 quando $\lim_{x \to x_0^-} f(x) = f(x_0)$

1.4 Primi teoremi sui limiti

N.B.: I seguenti teoremi valgono per ogni tipologia di limite, sia finito che infinito, e in ogni intorno, sia di un numero reale (anche destro e sinistro) sia di infinito.

1.4.1 Teorema di unicità del limite

Teorema (Unicità del limite). Se una funzione f(x) ha limite finito per x che tende a x_0 , allora tale limite è unico.

$$\lim_{x \to x_0} f(x) = l \qquad \qquad l \text{ è unico}$$

Dimostrazione. Si procede per assurdo. Si supponga che

$$\lim_{x \to x_0} f(x) = l \quad \land \quad \lim_{x \to x_0} f(x) = l'$$

con $l \neq l'$ e l < l'. Siccome ε è una quantità arbitraria è possibile porre

$$0 < \varepsilon < \frac{l - l'}{2}$$

Si applicano ora le definizioni di limite:

$$\forall \varepsilon > 0 \quad \exists I(x_0) : |f(x) - l| < \varepsilon \quad \forall x \in I(x_0), x \neq x_0$$

$$\forall \varepsilon > 0 \quad \exists I(x_0) : |f(x) - l'| < \varepsilon \quad \forall x \in I(x_0), x \neq x_0$$

Siccome l'intersezione di due intorni di x_0 è ancora un intorno di x_0 , devono valere entrambe le definizioni:

$$\begin{cases} l - \varepsilon < f(x) < l + \varepsilon \\ l' - \varepsilon < f(x) < l' + \varepsilon \end{cases}$$

Ricordando che $l - \varepsilon < l' - \varepsilon < l + \varepsilon < l' + \varepsilon$ si ottiene:

$$\begin{split} l' - \varepsilon &< f(x) < l + \varepsilon \\ l' - \varepsilon &< l + \varepsilon \\ -2\varepsilon &< l - l' \\ 2\varepsilon &> l' - l \\ \varepsilon &> \frac{l' - l}{2} \end{split}$$

Assurdo: contrasta con quanto posto all'inizio. L'ipotesi per assurdo è falsa, quindi la tesi è dimostrata.

QED

1.4.2 Teorema di permanenza del segno

Teorema (Permanenza del segno). Se il limite di un funzione per x che tende a x_0 è un numero l diverso da 0, allora esiste un intorno $I(x_0)$ escluso al più x_0 in cui f(x) e l sono entrambi positivi o entrambi negativi.

Dimostrazione. Espando l'ipotesi:

$$\forall \varepsilon > 0 \ \exists I(x_0) : |f(x) - l| < \varepsilon \ \forall x \in I(x_0), x \neq x_0$$

Siccome ε è un numero positivo arbitrario pongo

$$\varepsilon = |l|$$

$$|f(x) - l| < \varepsilon$$

$$-\varepsilon < f(x) - l < \varepsilon$$

$$l - \varepsilon < f(x) < l + \varepsilon$$

• se $l > 0 \rightarrow \varepsilon = l$

$$l - l < f(x) < l + l$$
$$0 < f(x) < 2l$$

da cui la tesi

$$f(x) > 0$$

• se $l < 0 \rightarrow \varepsilon = -l$

$$l + l < f(x) < l - l$$
$$2l < f(x) < 0$$

da cui la tesi

$$f(x) < 0$$

QED

Teorema (Inverso della permanenza del segno). Se una funzione f(x) ammette limite finito l per x che tende a x_0 e in un intorno $I(x_0)$ escluso al più x_0 è

- positiva o nulla, allora $l \geq 0$;
- negativa o nulla, allora $l \leq 0$.

1.4.3 Teorema del confronto (o dei due carabinieri)

Teorema (Confronto). Siano g(x), f(x) e h(x) tre funzioni definite in uno stesso intorno $I(x_0)$, escluso al più x_0 . Se per ogni $x \in I(x_0)$ è verificato che

$$g(x) \le f(x) \le h(x)$$

 ϵ

$$\lim_{x \to x_0} g(x) = l \quad \land \quad \lim_{x \to x_0} h(x) = l$$

allora è verificato che

$$\lim_{x \to x_0} f(x) = l$$

Ipotesi

Tesi

- 1. g(x), f(x) e h(x) tre funzioni definite nello stesso intorno $I(x_0)$
- 2. $\forall x \in I(x_0) \ g(x) \le f(x) \le h(x)$

$$\lim_{x \to x_0} f(x) = l$$

3.
$$\lim_{x \to x_0} g(x) = l \quad \wedge \quad \lim_{x \to x_0} h(x) = l$$

Dimostrazione. Espando l'ipotesi 3:

$$\forall \varepsilon > 0 \ \exists I(x_0) : |g(x) - l| < \varepsilon \ \forall x \in I(x_0), x \neq x_0$$

$$\forall \varepsilon > 0 \ \exists I(x_0) : |h(x) - l| < \varepsilon \ \forall x \in I(x_0), x \neq x_0$$

Di conseguenza

$$l - \varepsilon < g(x) < l + \varepsilon$$

 $l - \varepsilon < h(x) < l + \varepsilon$

da cui, per ipotesi 1,

$$l - \varepsilon < g(x) \le h(x) < l + \varepsilon$$

$$l - \varepsilon < g(x) \le f(x) \le h(x) < l + \varepsilon$$

$$l - \varepsilon < f(x) < l + \varepsilon$$

La precedente scrittura è equivalente a

$$|f(x) - l| < \varepsilon$$

da cui la tesi.

QED

1.5 Calcolo dei limiti

1.5.1 Funzioni continue e funzioni elementari

Il limite per $x \to x_0$ di una funzione f(x) continua in x_0 è il valore della funzione in x_0 ,

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Il limite di una funzione elementare può essere ricavato dall'analisi del suo grafico, ad esempio

$$\lim_{x \to -\infty} x^2 = +\infty \qquad \qquad \lim_{x \to +\infty} x^2 = +\infty$$

1.5.2 Algebra dei limiti

Teorema. Siano f(x), g(x) due funzioni definite in un intorno $I(x_0) \setminus \{x_0\}$ tali che

$$\lim_{x \to x_0} f(x) = l \qquad \qquad \lim_{x \to x_0} g(x) = m$$

 $con \ l, m \in \mathbb{R}, \ x_0 \in \mathbb{R}^*, \ allora$

$$\begin{split} &\lim_{x\to x_0} \left[f(x) + g(x) \right] = l + m \\ &\lim_{x\to x_0} \left[f(x) - g(x) \right] = l - m \\ &\lim_{x\to x_0} \left[f(x) \cdot g(x) \right] = l \cdot m \\ &\lim_{x\to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{l}{m} \\ &\lim_{x\to x_0} \left[\frac{1}{g(x)} \right] = \frac{1}{m} \\ &\lim_{x\to x_0} \left[k \cdot f(x) \right] = k \cdot l \qquad con \ k \in \mathbb{R} \\ &\lim_{x\to x_0} \left[f(x) \right]^n = l^n \qquad con \ n \in \mathbb{R} \setminus \{0\} \end{split}$$

Teorema. Siano f(x), g(x) due funzioni definite in un intorno $I(x_0) \setminus \{x_0\}$ tali che

$$\lim_{x \to x_0} f(x) = l \qquad \qquad \lim_{x \to x_0} g(x) = m$$

 $con \ l, m \in \mathbb{R}^*, \ x_0 \in \mathbb{R}^*, \ allora$

• Somma

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} \left[f(x) + g(x) \right]$
l	$+\infty$	$+\infty$
l	$-\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$-\infty$	F.I.

\bullet Prodotto

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} \left[f(x) \cdot g(x) \right]$
l	∞	∞
∞	∞	∞
0	∞	F.I.

tenendo conto della regola dei segni;

• Rapporto

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right]$
l	∞	0
l	0	∞
∞	l	∞
0	l	0
0	0	F.I.
∞	∞	F.I.

tenendo conto della regola dei segni;

• Potenza

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} \left[f(x) \right]^{g(x)}$
	0	$1 (0^0 F.I.)$
$0 \le l < 1$	$+\infty$	0+
	$-\infty$	$+\infty$
	0	$1 (\infty^0 F.I.)$
$l \ge 1$	$+\infty$	+∞
	$-\infty$	0+

1.5.3 Mediante il teorema del confronto

Esempio 1.5.1.

Si calcoli il valore di
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

Prima di tutto ricordiamo che per definizione di seno $-1 \le \operatorname{sen} x \le 1$. Siccome stiamo lavorando in un intorno di $+\infty$, possiamo considerare x > 0, quindi posso dividere tutti i membri per x, ottenendo

$$-\frac{1}{x} \le \frac{\operatorname{sen} x}{x} \le \frac{1}{x}.$$

Siamo quindi riusciti a ricostruire nel membro centrale della disequazione la funzione cercata. Calcoliamo ora i limiti degli estremi:

$$\lim_{x\to +\infty}\frac{1}{x}=\left[\frac{1}{+\infty}\right]=0^+ \qquad \lim_{x\to +\infty}-\frac{1}{x}=\left[-\frac{1}{+\infty}\right]=0^-.$$

Di conseguenza, per il teorema del confronto

$$\lim_{x \to +\infty} \frac{\sin x}{x} = 0$$

1.5.4 Forme di indecisione (o forme indeterminate)

Forma di indecisione $+\infty - \infty$

Se si presenta in una funzione polinomiale

Per superare queste forme di indecisione, in generale occorre raccogliere il termine di grado massimo. In alternativa esiste una regola pratica ottenuta tramite l'applicazione della gerarchia degli infiniti. In questo caso

si considera semplicemente il termine di grado massimo perché il contributo degli altri è trascurabile rispetto ad esso.

Esempio 1.5.2.

Calcolare
$$\lim_{x \to +\infty} (x^2 - 3x^4 + 5)$$

$$\lim_{x \to +\infty} (x^2 - 3x^4 + 5) = [-\infty + \infty] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} x^4 \left(\frac{1}{x^2} - 3 + \frac{5}{x^5} \right) = \left[+\infty \left(\frac{1}{x^2} - 3 + \frac{5}{x^5} \right) \right] = [-3(+\infty)] = -\infty$$

infatti sostituendo dopo aver raccolto ottengo che alcuni termini vanno a 0. Oppure, applicando la regola pratica

$$\lim_{x \to +\infty} (x^2 - 3x^4 + 5) = [-\infty + \infty] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} (-3x^4) = -\infty$$

Se si presenta in una funzione irrazionale

In questo caso si procede raccogliendo il termine doi grado massimo nel radicando, portandolo fuori dal segno di radice e poi raccogliendo nuovamente il termine di grado massimo. Oppure si può procedere applicando la gerarchia al radicando e portando fuori dal segno di radice il termine di grado massimo (si ricorda che $\sqrt{x^{2n}} = |x^n|$). A questo punto dovremmo esserci ricondotti al caso precedente.

Esempio 1.5.3.

Calcolare
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - 2x \right)$$

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - 2x \right) = \left[-\infty + \infty \right] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} \left(\sqrt{x^2 \left(1 + \frac{3}{x^2} \right)} - 2x \right) = \lim_{x \to +\infty} \left(|x| \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right) = \lim_{x \to +\infty} \left(x \sqrt{1 + \frac{3}{x^2}} - 2x \right$$

oppure, applicando la regola pratica,

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - 2x \right) = \left[-\infty + \infty \right] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} \left(\sqrt{x^2} - 2x \right) = \lim_{x \to +\infty} (|x| - 2x) = \lim_{x \to +\infty} (x - 2x) = \lim_{x \to +\infty} -x = -\infty$$

Se il termine sotto radice è il quadrato del termine fuori In questo caso, se procedo come nel precedente si origina un'altra forma di indecisione, per cui la soluzione è razionalizzare.

Esempio 1.5.4.

Calcolare
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - 2x \right)$$

$$\lim_{x \to +\infty} \left(\sqrt{4x^2 + 3} - 2x \right) = \left[-\infty + \infty \right] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} \frac{\left(\sqrt{4x^2 + 3} - 2x \right) \left(\sqrt{4x^2 + 3} + 2x \right)}{\sqrt{4x^2 + 3} + 2x} = \lim_{x \to +\infty} \frac{4x^2 + 3 - 4x^2}{\sqrt{4x^2 + 3} + 2x} = \lim_{x \to +\infty} \frac{3}{\sqrt{4x^2 + 3} + 2x} = \left[\frac{3}{+\infty + \infty} \right] = 0^+$$

Forma di indecisione $0 \cdot \infty$

Per risolvere questa forma di indecisione è necessario modificare l'espressione analitica della funzione di partenza in modo da rimuovere l'origine della forma di indecisione.

Esempio 1.5.5.

Calcolare
$$\lim_{x \to \frac{3}{2}\pi} \operatorname{sen}^2\left(\frac{3}{2}\pi - x\right) \operatorname{tg}^2 x$$

$$\lim_{x \to \frac{3}{8}\pi} \operatorname{sen}^2\left(\frac{3}{2}\pi - x\right) \operatorname{tg}^2 x = \left[\operatorname{sen} 0 \cdot \operatorname{tg} \frac{3}{2}\pi\right] = \left[0 \cdot \infty\right] \stackrel{\mathrm{FI}}{=}$$

Ricordando che (per gli angoli associati) sen² $\left(\frac{3}{2}\pi - x\right) = \left[\operatorname{sen}\left(\frac{3}{2}\pi - x\right)\right]^2 = \left[-\cos x\right]^2 = \cos^2 x$, è possibile riscrivere la funzione come

$$=\lim_{x\to\frac{3}{2}\pi}\cos^2 x \ \operatorname{tg}^2 x=\lim_{x\to\frac{3}{2}\pi}\operatorname{eos}^2 \widehat{x}\cdot\frac{\operatorname{sen}^2 x}{\operatorname{cos}^2 \widehat{x}}=\left[\operatorname{sen}^2\left(\frac{3}{2}\pi\right)=1\right]$$

Forma di indecisione $\frac{\infty}{\infty}$

Si procede raccogliendo il termine di grado massimo (o applicando la gerarchia) sia a numeratore che a denominatore e poi semplificando.

Se si presenta in una funzione razionale fratta

Esempio 1.5.6.

Calcolare
$$\lim_{x \to +\infty} \frac{3x^4 - 5x^3 + 2x - 1}{5 - 2x^4 - 3x^2}$$

$$\lim_{x \to +\infty} \frac{3x^4 - 5x^3 + 2x - 1}{5 - 2x^4 - 3x^2} = \left[\frac{\infty}{\infty}\right] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} \frac{\cancel{\mathscr{K}} \left(3 - \frac{5}{x} + \frac{2}{x^2} - \frac{1}{x^4}\right)}{\cancel{\mathscr{K}} \left(\frac{5}{x^4} - 2 - \frac{3}{x^2}\right)} = \left[\frac{3 - \cancel{5} \times \cancel{+} \cancel{+} \times \cancel{-} \cancel{+} \times \cancel{-}}{\cancel{\cancel{+} \times}}\right] = -\frac{3}{2}$$

oppure

$$\lim_{x\to+\infty}\frac{3x^4-5x^3+2x-1}{5-2x^4-3x^2}=\left[\frac{\infty}{\infty}\right]\stackrel{\mathrm{FI}}{=}\lim_{x\to+\infty}\frac{3x^4}{-2x^4}=-\frac{3}{2}$$

N.B.: Anche se sia a numeratore che a denominatore si presentano forme di indecisione $-\infty + \infty$ prevale la forma di indecisione $\frac{\infty}{\infty}$

Se si presenta in una funzione irrazionale fratta

Esempio 1.5.7.

$$Calcolare \lim_{x \to +\infty} \frac{1 + \sqrt{x^2 + 1}}{x}$$

$$\lim_{x \to +\infty} \frac{1 + \sqrt{x^2 + 1}}{x} = \left[\frac{\infty}{\infty}\right] \stackrel{\text{FI}}{=} \lim_{x \to +\infty} \frac{1 + \sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x}}}{x} = \lim_{x \to +\infty} \frac{1 + |x|\sqrt{1 + \frac{1}{x}}}{x} = \lim_{x \to +\infty$$

oppure

$$\lim_{x\to +\infty}\frac{1+\sqrt{x^2+1}}{x}=\left[\frac{\infty}{\infty}\right]\stackrel{\mathrm{FI}}{=}\lim_{x\to +\infty}\frac{1+\sqrt{x^2}}{x}=\lim_{x\to +\infty}\frac{1+|x|}{x}=\lim_{x\to +\infty}\frac{1+x}{x}=\lim_{x\to +\infty}\frac{x}{x}=1$$

Forma di indecisione $\frac{0}{0}$

Funzioni razionali fratte

In generale si risolve scomponendo e semplificando

Esempio 1.5.8.

Calcolare
$$\lim_{x\to 2} \frac{3x^2 - 6x}{x^2 - 4}$$

$$\lim_{x\to 2}\frac{3x^2-6x}{x^2-4}=\left[\frac{0}{0}\right]\stackrel{\mathrm{FI}}{=}\lim_{x\to 2}\frac{3x\cancel{(x-2)}}{\cancel{(x-2)}(x+2)}=\left[\frac{6}{4}\right]=\frac{3}{2}$$

Funzioni irrazionali fratte

In generale si risolve razionalizzando, scomponendo e semplificando

Esempio 1.5.9.

Calcolare
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x^2-3x-4}$$

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 3x - 4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{FI}}{=} \lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x^2 - 3x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - 4}{\cancel{x} - \cancel{x} - \cancel{x}} = \lim_{x \to 4} \frac{1}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x} - \cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\cancel{x}}{(x + 1)(\sqrt{x} + 2)} = \lim_{x \to$$

Esempio 1.5.10.

Calcolare
$$\lim_{x \to 27^+} \frac{x - 27}{\sqrt[3]{x} - 3}$$

$$\lim_{x \to 27^+} \frac{x - 27}{\sqrt[3]{x} - 3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{FI}}{=} \lim_{t \to 3^+} \frac{t^3 - 27}{t - 3} = \lim_{t \to 3^+} \frac{\cancel{(t - 3)}(t^2 + 3t + 9)}{\cancel{t - 3}} = \lim_{t \to 3^+} (t^2 + 3t + 9) = 27$$
Pongo
$$t = \sqrt[3]{x} \qquad x \to 27^+$$

$$x = t^3 \qquad t \to 3^+$$

1.5.5 Forme di indecisione 0^0 , ∞^0 , 1^∞

Generalmente si risolvono applicando l'uguaglianza

$$[f(x)]^{g(x)} = e^{g(x) \ln f(x)}$$

e successivamente applicando all'esponente i metodi risolutivi visti in precedenza.

Esempio 1.5.11.

Calcolare
$$\lim_{x\to 0^+} (2x)^{\frac{2}{\ln(2x)}}$$

$$\lim_{x \to 0^+} (2x)^{\frac{2}{\ln(2x)}} = \left[0^{\frac{2}{-\infty}}\right] = \left[0^0\right] \stackrel{\text{FI}}{=} \lim_{x \to 0^+} e^{\frac{2}{\ln(2x)}\ln(2x)} = e^2$$

Esempio 1.5.12.

Calcolare
$$\lim_{x \to +\infty} x^{\frac{1}{\ln x}}$$

$$\lim_{x\to +\infty} x^{\frac{1}{\ln x}} = \left[\infty^0\right] \stackrel{\mathrm{FI}}{=} \lim_{x\to +\infty} e^{\frac{1}{\ln x}\ln x} = e$$

Esempio 1.5.13.

Calcolare $\lim_{x \to 0^+} \left(\frac{x^2}{4}\right)^{\frac{1}{3 \ln x}}$

$$\begin{split} \lim_{x \to 0^+} \left(\frac{x^2}{4}\right)^{\frac{1}{3 \ln x}} &= \left[0^{\frac{1}{-\infty}}\right] = \left[0^0\right] \stackrel{\text{FI}}{=} \lim_{x \to 0^+} e^{\ln\left(\frac{x^2}{4}\right) \frac{1}{3 \ln x}} = \lim_{x \to 0^+} e^{\frac{\ln x^2 - \ln 4}{3 \ln x}} = \\ &= \lim_{x \to 0^+} e^{\frac{2 \ln x}{3 \ln x} - \frac{\ln 4}{3 \ln x}} = \left[e^{\frac{2}{3} + 0}\right] = e^{\frac{2}{3}} \end{split}$$

1.5.6 Limiti Notevoli

 $\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1$

Dimostrazione.

$$\frac{\sin -x}{-x} = \frac{-\sin x}{-x} = \frac{\sin x}{x}$$

Siccome la funzione è pari la dimostrazione si svolge solo per $x \to 0^+$. Sulla circonferenza goniometrica considero un angolo x. Siccome $x \to 0^+$ posso imporre la condizione $0 < x < \frac{pi}{2}$ Per definizione si ha che

Figura 1.1: La situazione utilizzata per la dimostrazione

$$\widehat{PA} = x$$

$$\overline{PB} = \operatorname{sen} x$$

 $\overline{TA} = \operatorname{tg} x$

Come è chiaramente visibile dalla Figura 1.1 si ha che

$$\operatorname{sen} x < x < \operatorname{tg} x$$

da cui

$$\frac{\operatorname{sen} x}{\operatorname{sen} x} < \frac{x}{\operatorname{sen} x} < \frac{\operatorname{tg} x}{\operatorname{sen} x}$$

$$1 < \frac{x}{\operatorname{sen} x} < \frac{\operatorname{tg} x}{\operatorname{sen} x}$$

$$1 < \frac{\operatorname{sen} x}{x} < \cos x$$

Si calcolano ora i limiti delle funzioni che limitano quella studiata

$$\lim_{x \to 0^+} 1 = 1 \qquad \lim_{x \to 0^+} \cos x = 1$$

da cui per il teorema del confronto

$$\lim_{x \to 0^+} \frac{\operatorname{sen} x}{x} = 1$$

Siccome la funzione è pari vale anche per $x \to 0^-$

QED

Osservazioni:

- vale il reciproco: $\lim_{x\to 0} \frac{x}{\sin x} = 1$
- vale la generalizzazione: $\lim_{f(x)\to 0} \frac{\operatorname{sen} f(x)}{f(x)} = 1$
- asintotico associato: sen $x \sim x$ in I(0)

$$\bullet \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

Dimostrazione. Per definizione tg $x = \frac{\sin x}{\cos x}$, quindi

$$\lim_{x\to 0}\frac{\operatorname{tg} x}{x} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{x\to 0}\frac{\operatorname{sen} x}{x\cos x} = \lim_{x\to 0}\frac{1}{\cos x} = 1$$

QED

Osservazioni:

- vale il reciproco: $\lim_{x\to 0} \frac{x}{\operatorname{tg} x} = 1$
- vale la generalizzazione: $\lim_{f(x)\to 0} \frac{\operatorname{tg} f(x)}{f(x)} = 1$
- asintotico associato: $\operatorname{tg} x \sim x$ in I(0)

$$\bullet \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Dimostrazione.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{$$

Per la prima relazione fondamentale della goniometria

$$= \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin x}{1 + \cos x} = \left[\frac{0}{2} \right] = 0$$

QED

Osservazioni:

- NON vale il reciproco
- vale la generalizzazione: $\lim_{f(x)\to 0} \frac{1-\cos f(x)}{f(x)} = 1$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Dimostrazione.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos^2 x)} = \lim_{x \to 0} \frac{$$

Per la prima relazione fondamentale della goniometria

$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)} = \lim_{x \to 0} \frac{1}{1 + \cos x} = \frac{1}{2}$$

QED

Osservazioni:

– vale il reciproco:
$$\lim_{x\to 0} \frac{x^2}{1-\cos x} = 1$$

– vale la generalizzazione:
$$\lim_{f(x) \to 0} \frac{1 - \cos f(x)}{[f(x)]^2} = 1$$

– asintotico associato:
$$\cos x \sim 1 - x^2$$
 in $I(0)$

$$\bullet \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Osservazioni:

- NON vale il reciproco
- vale la generalizzazione

$$\lim_{x \to +\infty} \left(1 + \frac{k}{x}\right)^x = e^k$$

Osservazioni:

- NON vale il reciproco
- vale la generalizzazione

$$\lim_{x \to 0^+} (1 + kx)^{\frac{1}{x}} e^k$$

Osservazioni:

- NON vale il reciproco
- vale la generalizzazione

$$\bullet \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e = \frac{1}{\ln a} \qquad \text{con } a > 0$$

Dimostrazione.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \log_a e = \frac{\ln e}{\ln a} = \frac{1}{\ln a}$$
QED

Particolarizzazione: $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

Osservazioni:

- vale il reciproco
- vale la generalizzazione
- asintotico associato: $\ln x \sim x 1$ in I(0)

$$\bullet \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \text{con } a > 0$$

Dimostrazione. Pongo $t = a^x - 1$, quindi $e^x = t + 1$ e di conseguenza $x = \log_a(t+1)$. Inoltre, se $x \to 0$, $t \to 0$

$$\lim_{x\to 0}\frac{a^x-1}{x}=\lim_{t\to 0}\frac{t}{\log_a(t+1)}=\ln a$$

QED

Particolarizzazione: $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

Osservazioni:

- vale il reciproco
- vale la generalizzazione
- asintotico associato: $e^x \sim x + 1$ in I(0)

•
$$\lim_{x \to 0} \frac{(1+x)^k - 1}{x} = k$$

Osservazioni:

- vale il reciproco
- vale la generalizzazione
- asintotico associato: $(1+x)^k \sim 1 + kx$ in I(0)

1.6 Limiti e parametri

Esempio 1.6.1.

Trovare per quale valore di a la funzione

$$f(x) = \begin{cases} 2x^2 - ax + 1 & x \le -1\\ \frac{ax - 1}{x + 2} & x > 1 \end{cases}$$

è continua in $x_0 = -1$.

Ricordando la definizione di continuità, dobbiamo determinare a tale che

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0).$$

Calcoliamo quindi

$$\lim_{x \to -1^{-}} 2x^{2} - ax + 1 = 3 + a \qquad \lim_{x \to -1^{-}} \frac{ax - 1}{x + 2} = -a - 1$$
$$f(-1) = 2(-1)^{2} - a(-1) + 1 = 3 + a$$

Imponiamo l'uguaglianza

$$\begin{cases} 3+a=3+a \\ -a-1=3+a \end{cases} -a-1=3+a \qquad 2a=-4 \qquad \boxed{a=-2}$$

Esempio 1.6.2.

Determinare il valore di

$$\lim_{x \to +\infty} \frac{(x-2)^n}{x^2 + 3x - 10}$$

al variare di $n \in \mathbb{N}$.

• se
$$n = 0$$
, $\lim_{x \to +\infty} \frac{1}{x^2 + 3x - 10} = \left[\frac{1}{+\infty}\right] = 0^+$

• se
$$n = 1$$
, $\lim_{x \to +\infty} \frac{x-2}{(x-2)(x+5)} = \left[\frac{1}{+\infty}\right] = 0^+$

• se
$$n = 2$$
, $\lim_{x \to +\infty} \frac{(x-2)^{\frac{d}{2}}}{(x-2)(x+5)} = \left[\frac{\infty}{\infty}\right] \stackrel{FI}{=} 1$

• se
$$n > 2$$
, $\lim_{x \to +\infty} \frac{(x-2)^{n^{l^{n-1}}}}{(x-2)(x+5)} = \left[\frac{\infty}{\infty}\right] \stackrel{FI}{=} +\infty$

1.7 Continuità e discontinuità

1.7.1 Discontinuità di prima specie o di salto

DEF (Punti di discontinuità di prima specie). Un punto x_0 è un punto di discontinuità di prima specie per la funzione f(x) quando, per $x \to x_0$ il limite destro e il limite sinistro sono finiti ma diversi.

$$\lim_{x \to x_0^-} f(x) = l_1 \qquad \lim_{x \to x_0^+} f(x) = l_2 \qquad l_1 \neq l_2.$$

La differenza $|l_1 - l_2|$ è detta salto

Figura 1.2: Discontinuità di prima specie

1.7.2 Discontinuità di seconda specie

DEF (Punto di discontinuità di seconda specie). Un punto x_0 si dice punto di discontinuità di seconda specie per la funzione f(x) quando, per $x \to x_0$, almeno uno dei due limiti, destro o sinistro, di f(x) è finito o infinito.

Figura 1.3: Discontinuità di seconda specie

1.7.3 Discontinuità di terza specie o eliminabili

DEF (Punto di discontinuità di terza specie). Un punto x_0 si dice punto di discontinuità di terza specie per la funzione f(x) quando esiste ed è finito il limite per $x \to x_0$ e f(x) non è definita o assume un valore diverso da quello del limite:

$$x_0 \notin \operatorname{dom} f \quad \lor \quad f(x_0) \neq l$$

Figura 1.4

Discontinuità: tipologie e co	ondizioni
Prima specie	$\lim_{x \to x_0^-} f(x) = l_1 \qquad \lim_{x \to x_0^+} f(x) = l_2$ $l_1 \neq l_2 salto = l_1 - l_2 $
Seconda specie	$\lim_{x \to x_0^{\pm}} f(x) = \infty \lor \lim_{x \to x_0^{\pm}} f(x) = \nexists$
Terza specie	$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$ $f(x_0) \neq l \forall f(x_0) = \nexists$

1.7.4 Continuità e funzioni inverse

Continuità della funzione inversa

Teorema (Continuità della funzione inversa). Se y = f(x) è una funzione biiettiva e continua in un intervallo D, allora la funzione inversa f^{-1} è continua nel codominio di f.

Ipotesi
$$f: D \to C \text{ biiettiva e continua in D}$$
 $Tesi$
$$f^{-1}: C \to D \text{ continua in C}$$

Condizione di invertibilità per funzioni continue

Teorema (Invertibilità di funzioni continue). Sia I un intervallo (limitato o illimitato) e $f: I \to \mathbb{R}$ una funzione continua in I. Allora essa è invertibile se e solo se è strettamente monotona.

$$\begin{array}{ll} \textit{Ipotesi} & \textit{Tesi} \\ f: I \to \mathbb{R} \text{ continua e strettamente monotona in } I & f \ \grave{\text{e}} \text{ invertibile} \end{array}$$

1.8 Teoremi sulle funzioni continue

1.8.1 Teorema di Weistrass

Teorema (Weistrass). Se f è una funzione continua in un intervallo limitato e chiuso [a;b], allora essa assume in tale intervallo il massimo assoluto e il minimo assoluto.

Ipotesi
$$f:[a;b] \to \mathbb{R}$$
 continua in $[a;b]$

$$\exists c, d \in [a, b] : f(c) = min\{f\} \land f(d) = max\{f\}$$

1.8.2 Teorema dell'esistenza degli zeri (o di Bolzano)

Teorema (Bolzano). Se f è continua in un intervallo limitato e chiuso [a;b] e negli estremi di tale intervallo assume valori di segno opposto, allora esiste almeno un punto c interno all'intervallo in cui f(c) = 0.

Ipotesi

1.
$$f:[a;b] \to \mathbb{R}$$
 continua in $[a;b]$

$$\exists c \in [a;b] : f(c) = 0$$

2.
$$f(a) \cdot f(b) < 0$$

1.8.3 Teorema dei valori intermedi (o di Darboux)

Teorema (Darbaux). Se f è una funzione continua in un intervallo limitato e chiuso [a;b], allora essa assume almeno una volta tutti i valori compresi tra il massimo e il minimo.

Ipotesi

1.
$$f:[a;b] \to \mathbb{R}$$
 continua in $[a;b]$

$$\exists x \in [a, b] : f(x) = k \forall k \in [m; M]$$

2.
$$m = min\{[a; b]\}$$
 $M = max\{[a; b]\}$

Capitolo 2

Derivate

2.1 Definizione

Consideriamo una funzione ed un punto appartenente ad essa, vorremmo avere uno strumento che, localmente, ci permetta di valutare la velocità di variazione della funzione, ovvero che in ogni punto ci dica quanto cresce la funzione. Per le rette esiste uno strumento del genere, il coefficiente angolare, che è definito come

Figura 2.1

$$m = \frac{\Delta y}{\Delta z}$$

Proviamo quindi a definire qualcosa di simile per una funzione qualsiasi:

DEF (Rapporto incrementale). Sia $f:]a,b[\to \mathbb{R} , x_0 \in]a,b[$, definiamo **rapporto incrementale** di f tra il punto x_0 e il punto $x_1 = x_0 + h$ (con $h \neq 0$) la grandezza :

$$R.I. = \frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$

Tuttavia questo strumento ci da informazioni sulla crescita media della funzione nell'intervallo $[x_0, x_1]$, a noi serve qualcosa di relativo al solo punto x_0 , per cui facciamo avvicinare x_1 a x_0 , quindi otteniamo

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Definiamo quindi la derivata, ovvero lo strumento che ci permette di conoscere localmente la velocità di variazione di una funzione:

Analisi 1 Derivate - Definizione

DEF (Derivata). Data una funzione $f:[a,b] \to \mathbb{R}$, f il limite per $x_1 \to x_0$ del rapporto incrementale tra x_1 e x_0 , se esiste ed è finitl, si definisce **derivata prima della funzione** in x_0

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

In quanto limite, la derivata esiste solo se esistono limite destro e sinistro e sono uguali. Definiamo quindi derivata sinistra e destra

$$f'_{-}(x_0) = \lim_{h \to x_0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} \qquad f'_{+}(x_0) = \lim_{h \to x_0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$

2.1.1 Problema classico

Il concetto di derivata nasce anche per risolvere un problema classico della matematica: nota una funzione e un suo punto $P(x_0, f(x_0))$, determinare l'equazione della retta tangente alla curva in P.

Per farlo, è possibile introdurre un secondo punto $Q(x_0 + h, f(x_0 + h))$ e calcolare la retta passante per i due punti (secante). Sappiamo che l'equazione della retta passante per due punti è data da

$$PQ: \qquad \frac{x - x_P}{x_Q - x_P} = \frac{y - y_P}{y_Q - y_P}$$

sostituendo otteniamo

$$\frac{y - f(x_0)}{f(x_0 + h) - f(x_0)} = \frac{x - x_0}{x_0 + h - x_0}.$$

Riconducento quindi la scrittura all'equazione della retta per un punto noto il coefficiente angolare orreniamo

$$y - f(x) = \frac{f(x_0 + h) - f(x_0)}{h}(x - x_0)$$

Si ricava quindi che il rapporto incrementale è il il coefficiente angolare della retta secante PQ. Inoltre, la derivata prima si ricava quando avviciniamo al limite P e Q, per cui è il coefficiente angolare della retta tangente nel punto P.

2.1.2 Calcolo della derivata mediante definizione

Esempio 2.1.1.

Calcolare la derivata di y = 4x - 9 mediante definizione.

$$y' = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to x_0} \frac{[4(x + h) - 9] - [4x - 9]}{h} = \lim_{h \to 0} \frac{\cancel{4x} + 4h - \cancel{9} - \cancel{4x} + \cancel{9}}{h} = \lim_{h \to 0} \frac{\cancel{4h}}{\cancel{h}} = 4$$

Esempio 2.1.2

Calcolare la derivata di $y = -x^2 + 4x$ mediante definizione

$$y' = \lim_{h \to 0} \frac{f(x+h) - f(x_0)}{h} = \lim_{h \to 0} \frac{-(x+h)^2 + 4(x+h) + x^2 - 4x}{h} =$$

$$= \frac{\cancel{x}^2 - h^2 - 2hx + \cancel{x}x + h + \cancel{x}^2 - \cancel{x}x}{h} = \lim_{h \to 0} \frac{\cancel{h}(\cancel{x} - 2x + 4)}{\cancel{h}} = -2x + 4$$

2.2 Derivate fondamentali

2.2.1 Funzione costante

Funzione	Derivata
y = k	y'=0

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{k - k}{h} = \lim_{h \to 0} 0 = 0$$

N.B.: Non è una forma di indecisione perchè la funzione è già 0 prima di calcolare il limite.

QED

2.2.2 Funzione identità

Funzione	Derivata
y = x	y'=1

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{x + h - x}{h} = \lim_{h \to 0} \frac{h}{h} = \begin{bmatrix} 0\\0 \end{bmatrix} \stackrel{FI}{=} 1$$

QED

2.2.3 Funzione potenza

Funzione	Derivata
$y = x^{\alpha} \qquad (\alpha \in \mathbb{R})$	$y' = \alpha x^{\alpha - 1}$

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{(x+h)^{\alpha} - x^{\alpha}}{h} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{h \to 0} \frac{\left[x\left(1 + \frac{h}{x}\right)\right]^{\alpha} - x^{\alpha}}{h} = \lim_{h \to 0} \frac{x^{\alpha}\left[\left(1 + \frac{h}{x}\right)^{\alpha} - 1\right]}{\frac{h}{x}} \stackrel{=}{=} \alpha x^{\alpha - 1}$$

QED

Derivata della funzione radice quadrata

Per la derivata delle funzioni potenza, si ricava la derivata della funzione radice quadrata:

Funzione	Derivata
$y = \sqrt{x} = x^{\frac{1}{2}}$	$y' = \frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$

2.2.4 Funzione seno

Funzione	Derivata
$y = \operatorname{sen} x$	$y' = \cos x$

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{FI}{=} \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} = \lim_{h \to 0} \left(\sin x \left[\frac{\cos h - 1}{h} \right] + \cos x \left[\frac{\sin h}{h} \right] \right) \stackrel{=}{=} \cos x$$

QED

2.2.5 Funzione coseno

Funzione	Derivata
$y = \cos x$	$y' = -\sin x$

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \begin{bmatrix} 0\\0 \end{bmatrix} \stackrel{FI}{=} \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} =$$
$$= \lim_{h \to 0} \left(\cos x \left[\frac{\cos h - 1}{h} \right] - \sin x \left[\frac{\sin h}{h} \right] \right) \stackrel{=}{=} - \sin x$$

QED

2.2.6 Funzione esponenziale

Funzione	Derivata
$y = a^x$	$y' = a^x \ln a$
$y = e^x$	$y'=e^x$

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{h \to 0} \frac{a^x a^h - a^x}{h} = \lim_{h \to 0} a^x \boxed{\frac{a^h - 1}{h}}_{LN = \ln a} \stackrel{=}{=} a^x \ln a$$

QED

2.2.7 Funzione logaritmo

Funzione	Derivata
$y = \log_a x$	$y' = \frac{1}{x} \log_a e$
$y = \ln x$	$y'=rac{1}{x}$

Dimostrazione.

$$y' = \lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{FI}{=} \lim_{h \to 0} \frac{\log_a\left(\frac{x+h}{h}\right)}{h} = \lim_{h \to 0} \underbrace{\begin{bmatrix} \log_a\left(1 + \frac{x}{h}\right) \\ \frac{h}{x} \end{bmatrix}}_{LN = \log_a e} \cdot \frac{1}{x} \stackrel{=}{=} \frac{1}{x} \log_a e$$

QED

2.3 Operazioni con le derivate

2.3.1 Linearità rispetto al prodotto

La derivata è lineare rispetto al prodotto per costanti, quindi possiamo "portare fuori" le costanti dalla derivata. In simboli $(k \in \mathbb{R})$:

$$y = k \cdot f(x)$$
 $y' = k \cdot f'(x).$

Esempio 2.3.1.

Calcolare la derivata delle seguenti funzioni:

a)
$$f(x) = \sqrt{2} \sin x$$

$$b) \ g(x) = 3\ln x$$

a)
$$f'(x) = \sqrt{2}\cos x$$

b)
$$g'(x) = \frac{3}{x}$$

2.3.2 Linearità rispetto alla somma

La derivata è lineare rispetto alla somma, per cui la derivata della somma di due funzioni è la somma delle derivare delle funzioni stesse:

$$y = f(x) + g(x)$$
 $y' = f'(x) + g'(x)$.

Esempio 2.3.2.

Calcolare la derivata delle seguenti funzioni

$$a) y = 5x^3 + e^x$$

b)
$$y = -\frac{1}{2}x^2 + x + 1$$

a)
$$y = 15x^2 + e^x$$

b)
$$y = -x + 1$$

2.3.3 Derivata del prodotto

La derivata del prodotto di due funzioni NON è il prodotto delle derivate delle funzioni, ma si ottiene sommando la derivata della prima moltiplicata per la seconda e la derivata della seconda moltiplicata per la prima:

$$y = f(x)g(x) \qquad \qquad y' = f'(x)g(x) + f(x)g'(x)$$

Esempio 2.3.3.

Calcolare la derivata delle seguenti funzioni

a)
$$y = x^2 \cdot \cos x$$

$$b) \ y = x \cdot e^x \cdot \ln x$$

a)
$$y' = 2x\cos x + x^2\sin x$$

b)
$$y' = 1 \cdot e^x \cdot \ln x + x \cdot e^x \cdot \ln x + x \cdot e^x \cdot \frac{1}{x}$$

2.3.4 Derivata del rapporto

Analogamente, la derivata del rapporto NON è il rapporto delle derivate ma

$$t = \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$

Da questa formula segue anche la formula della derivata del reciproco:

$$y = \frac{1}{f(x)}$$
 $y = \frac{f'(x)}{[f(x)]^2}$

Esempio 2.3.4.

Calcolare la derivata delle seguenti funzioni

$$a) \ y = \frac{5+x}{2x^2}$$

$$b) \ \ y = \frac{1}{2x^3 + 3}$$

a)
$$y = \frac{1 \cdot (2x^2) - (5+x)(4x)}{2x^2}$$

b)
$$y = \frac{6x^2}{(2x^3+3)^2}$$

2.3.5 Derivata della funzione composta (chain rule)

Per derivare una funzione composta bisogna procedere "a guscio": osservando la funzione da derivare, procedere dall'interno verso l'esterno derivando ogni strato e moltiplicando il tutto:

$$y = f(g(x)) y' = f'(g(x)) \cdot g'(x)$$

Esempio 2.3.5.

Calcolare la derivata delle seguenti funzioni

$$a) y = [f(x)]^{\alpha}$$

$$b) y = \operatorname{sen} f(x)$$

c)
$$y = a^{f(x)}$$

$$d) \ y = \operatorname{sen}(\ln(2x))$$

$$e) \ y = \frac{\sin(2x)}{\cos(3x)}$$

$$f) \ y = \cos(x) \cdot \ln(x^2 + 3x)$$

Calcolare la derivata delle seguenti funzioni

a)
$$y' = \alpha [f(x)]^{\alpha - 1} \cdot f'(x)$$

b)
$$y' = f'(x) \cdot \cos f(x)$$

c)
$$y' = a^{f(x)} \cdot \ln a \cdot f'(x)$$

d)
$$y' = \cos(\ln(2x)) \cdot \frac{1}{2x} \cdot 2$$

e)
$$y' = \frac{[2\cos(2x)] \cdot \cos(3x) - \sin(2x) \cdot [-3\sin(3x)]}{[\cos(3x)]^2}$$

f)
$$y' = -\operatorname{sen}(x) \cdot \ln(x^2 + 3x) + \cos(x) \cdot \frac{1}{x^2 + 3x} \cdot (2x + 3)$$

2.4 Derivate notevoli /2

2.4.1 Funzione tangente

Funzione	Derivata
$y = \operatorname{tg} x$	$y' = \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x$

Dimostrazione.Ricordiamo che $y=\operatorname{tg} x=\frac{\operatorname{sen} x}{\cos x},$ quindi

$$y' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$
$$= 1 + \frac{\sin^2 x}{\cos^2 x} = 1 + \operatorname{tg}^2 x$$

QED

2.4.2 Funzione cotangente

Funzione	Derivata
$y = \cot x$	$y' = -\frac{1}{\operatorname{sen}^2 x} = -1 - \operatorname{cotg}^2 x$

 $Dimostrazione. \ {\rm Ricordiamo} \ {\rm che} \ y = {\rm cotg} \ x = \frac{\cos x}{\sin x}, \ {\rm quindi}$

$$y' = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$$
$$= -1 - \frac{\cos^2 x}{\sin^2 x} = -1 - \cot^2 x$$

QED

2.5 Legame tra continuità e derivabilità

2.5.1 Continuità delle funzioni derivabili

Teorema (Continuità delle funzioni derivabili). Se una funzione f(x) è derivabile in un punto x_0 , allora essa è anche continua in x_0 .

Ipotesi Tesi
$$f$$
 derivabile in x_0 , $\exists \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$ f continua in x_0 , $\lim_{x \to x_0} f(x) = f(x_0)$

QED

Dimostrazione.

$$f(x_0+h) = f(x_0+h) \implies$$

$$f(x_0+h) = f(x_0+h) - f(x_0) + f(x_0) \implies \text{(se } h \neq 0)$$

$$f(x_0+h) = \frac{f(x_0+h) - f(x_0)}{h} \cdot h + f(x_0) \implies \text{(limite)}$$

$$\lim_{h \to 0} f(x_0+h) = \lim_{h \to 0} \left[\frac{f(x_0+h) - f(x_0)}{h} \cdot h + f(x_0) \right] \implies \text{(separo perchè i limiti sono finiti)}$$

$$\lim_{h \to 0} f(x_0+h) = \lim_{h \to 0} \left[\frac{f(x_0+h) - f(x_0)}{h} \cdot h \right] + \lim_{h \to 0} f(x_0) \implies \text{(separo perchè i limiti sono finiti)}$$

$$\lim_{h \to 0} f(x_0+h) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} \cdot \lim_{h \to 0} h + \lim_{h \to 0} f(x_0) \implies \text{(calcolo i limiti)}$$

$$\lim_{h \to 0} f(x_0+h) = f'(x_0) \cdot 0 + f(x_0) \implies \text{(sostituisco ponendo } x = x_0 + h)$$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Osservazione (1). L'insieme delle funzioni derivabili è un sottoinsieme delle funzioni continue. Esistono funzioni continue ma non derivabili, mentre tutte le funzioni derivabili sono continue.

Osservazione (2). La continuità è condizione necessaria ma non sufficiente della derivabilità, per cui una funzione per essere derivabile deve essere continua, ma non è detto che una funzione continua sia derivabile.

2.5.2 Studi di continuità e derivabilità

Esempio 2.5.1.

Studiare continuità e derivabilità della funzione $y = \sqrt{4 - |x| + 3x}$ in $x_0 = 0$

Prima di tutto apriamo la scrittura sulla definizione di modulo

$$y = \begin{cases} \sqrt{4 - x + 3x} & x \ge 0 \\ \sqrt{4 + x + 3x} & x < 0 \end{cases} = \begin{cases} \sqrt{4 + 2x} & x \ge 0 \\ \sqrt{4 + 4x} & x < 0. \end{cases}$$

Controlliamo ora i domini dei tratti

$$\operatorname{dom}\sqrt{4+2x} = \{x \in \mathbb{R} \mid x \ge -2\}$$

$$\operatorname{dom} \sqrt{4+4x} = \{x \in \mathbb{R} \,|\, x \ge -1\}$$

e integriamo nella definizione della funzione

$$y = \begin{cases} \sqrt{4+2x} & x \ge 0\\ \sqrt{4+4x} & -1 \le x < 0 \end{cases}$$

Ora possiamo procedere con lo studio di continuità in $x_0 = 0$. Calcoliamo i limiti da sinistra e destra e il valore della funzione in x_0 :

$$f(0) = 2$$

$$\lim_{x \to 0^{-}} \sqrt{4 + 4x} = 2$$

$$\lim_{x \to 0^{+}} \sqrt{4 + 2x} = 2.$$

Siccome sono uguali, otteniamo che la funzione è continua in $x_0 = 0$. Procediamo quindi con lo studio di derivabilità:

Ricorda. Una funzione è derivabile in un punto se la derivata destra e la derivata sinistra sono finite e uguali.

Per ora sappiamo calcolare derivata destra e sinistra solo mediante definizione. A breve acquisiremo uno strumento che ci permetterà di calcolarle più agevolmente.

$$f'_{-}(x) = \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\sqrt{4+4h} - 2}{h} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{FI}{=} \lim_{h \to 0} \frac{\cancel{4} + 4\cancel{h} - \cancel{4}}{\cancel{h} \left(\sqrt{4+4h} + 2\right)} = 1$$

$$f_-'(x) = \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\sqrt{4+2h} - 2}{h} = \left[\frac{0}{0}\right] \stackrel{FI}{=} \lim_{h \to 0} \frac{\cancel{4} + 2\cancel{h} - \cancel{4}}{\cancel{k}\left(\sqrt{4+2h} + 2\right)} = \frac{1}{2}.$$

Di conseguenza, siccome derivata destra e sinistra sono diverse, la funzione non è derivabile in $x_0 = 0$.

2.6 Punti di non derivabilità

Quando una funzione in un punto x_0 è continua ma non derivabile, possiamo classificare il tipo di punto di non derivabilità in base alla derivata destre e sinistra.

2.6.1 Punto angoloso

Quando la derivata sinistra e la derivata destra in un punto x_0 sono finite e diverse oppure una è infinita e l'altra finita, la funzione presenta un punto angoloso:

Figura 2.2: Punti angolosi

2.6.2 Cuspide

Quando la derivata destra e la derivata sinistra in un punto x_0 sono infinite e diverse (una $+\infty$ e l'altra $-\infty$), la funzione presenta una cuspide:

Figura 2.3: Punti angolosi

2.6.3 Flesso a tangente verticale

Quando la derivata destra e la derivata sinistra in un punto x_0 sono infinite e uguali (entrambe $+\infty$ o entrambe $-\infty$), la funzione presenta un flesso a tangente verticale:

Figura 2.4: Flessi a tangente verticale

2.6.4 Punto a tangente verticale

Questo non è propriamente un punto di non derivabilità perchè la funzione non è neanche continua, ma se in un punto x_0 la funzione esiste solo in un intorno destro e non in un intorno sinistro, è continua da destra e la derivata destra è infinita (o viceversa), la funzione presenta un punto a tangente verticale:

Figura 2.5: Punto a tangente verticale

30