學號:B03902084 系級: 資工四 姓名:王藝霖

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何?

			· ·			
Layer (type)	Output Shape	Param #	dropout_4 (Dropout)	(None,	24, 24, 64)	0
conv2d_1 (Conv2D)	(None, 46, 46, 32)	320	average_pooling2d_2 (Average	(None,	12, 12, 64)	0
zero_padding2d_1 (ZeroPaddin	(None, 48, 48, 32)	0	conv2d_5 (Conv2D)	(None,	10, 10, 128)	73856
batch_normalization_1 (Batch	(None, 48, 48, 32)	128	zero_padding2d_5 (ZeroPaddin	(None,	12, 12, 128)	0
activation_1 (Activation)	(None, 48, 48, 32)	0	batch_normalization_5 (Batch	(None,	12, 12, 128)	512
dropout_1 (Dropout)	(None, 48, 48, 32)	0	activation_5 (Activation)	(None,	12, 12, 128)	0
conv2d_2 (Conv2D)	(None, 46, 46, 64)	18496	dropout_5 (Dropout)	(None,	12, 12, 128)	0
zero_padding2d_2 (ZeroPaddin	(None, 48, 48, 64)	0	conv2d_6 (Conv2D)	(None,	10, 10, 128)	147584
batch_normalization_2 (Batch	(None, 48, 48, 64)	256	zero_padding2d_6 (ZeroPaddin	(None,	12, 12, 128)	0
activation_2 (Activation)	(None, 48, 48, 64)	0	batch_normalization_6 (Batch	(None,	12, 12, 128)	512
dropout_2 (Dropout)	(None, 48, 48, 64)	0	activation_6 (Activation)	(None,	12, 12, 128)	0
average_pooling2d_1 (Average	(None, 24, 24, 64)	0	dropout_6 (Dropout)	(None,	12, 12, 128)	0
conv2d_3 (Conv2D)	(None, 22, 22, 64)	36928	average_pooling2d_3 (Average	(None,	6, 6, 128)	0
zero padding2d 3 (ZeroPaddin	(None, 24, 24, 64)	0	conv2d_7 (Conv2D)	(None,	4, 4, 256)	295168
batch_normalization_3 (Batch	(None, 24, 24, 64)	256	zero_padding2d_7 (ZeroPaddin	(None,	6, 6, 256)	0
		0	batch_normalization_7 (Batch	(None,	6, 6, 256)	1024
dropout 3 (Dropout)	(None, 24, 24, 64)	0	activation_7 (Activation)	(None,	6, 6, 256)	0
conv2d 4 (Conv2D)	(None, 22, 22, 64)	36928	dropout_7 (Dropout)	(None,	6, 6, 256)	0
zero_padding2d_4 (ZeroPaddin		0	conv2d_8 (Conv2D)	(None,	4, 4, 256)	590080
batch normalization 4 (Batch		256	zero_padding2d_8 (ZeroPaddin	(None,	6, 6, 256)	0
	(None, 24, 24, 64)	230 0	batch_normalization_8 (Batch			1024
dropout_4 (Dropout)	(None, 24, 24, 64)		activation_8 (Activation)		6, 6, 256)	0
aropout_4 (bropout)	(None, 24, 24, 64)	0	deciration_o (Accivacion)	(110110)	0, 0, 2007	•

activation_8 (Activation)	(None,	6, 6,	256)	0 N
dropout_8 (Dropout)	(None,	6, 6,	256)	0
average_pooling2d_4 (Average	(None,	3, 3,	256)	0
flatten_1 (Flatten)	(None,	2304)	2. (1%) 承上題	,0請用與上述(
dense_1 (Dense)	(None,	1024)	模型架構、: 什麽?	2360320
activation_9 (Activation)	(None,	1024)	(Collabora	ators:)
dropout_9 (Dropout)	(None,	1024)	答:	0
dense_2 (Dense)	(None,	1024)	2 (10/1) 翻宏ダ	1049600
activation_10 (Activation)	(None,	1024)	matrix 分t	WHILL JURNI J I TI'- 170
dropout_10 (Dropout)	(None,	1024)	(Collaborator	
dense_3 (Dense)	(None,	7)	~ 答:	7175
activation_11 (Activation)	(None,	7)	4. (1%) 從(1)(20可以發現. 使
Total params: 4,620,423			maps, 觀察	K模型在做 clas
Trainable params: 4,618,439 Non-trainable params: 1,984			(Collaborator 答:	s <u>:)</u>

大致上是 ccpccpccpcff 的架構(參考 vgg 架構),其中 pooling 使用 average pooling,activation funcation 使用 relu,有加上 batch normalization。訓練時有使用 keras image generator 來翻轉、旋轉、位移圖片。訓練過程的圖如上,validation 取原始資料的 10%,可能是因為 validation 資料數量較小,因此有較大的波動。Kaggle 上的最高分數是取多次 epoch ensemble 後的結果,分別是第62,63,71,74 次 epoch,選取的方式為在 validation 上表現最好的。Kaggle 上的accuracy 為: 0.6883

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

Layer (type)	Output	Shape	Param #		
max_pooling2d_1 (MaxPooling2	(None,	24, 24, 1)	0		
flatten_1 (Flatten)	(None,	Analyze the	Model		
dense_1 (Dense)	(None,	1024)	590848		
batch_normalization_1 (Batch	(None,	1024)	4096		
activation_1 (Activation) Use your train	(None,	1024) set the gradient of input image	0		
dense_2 (Dense)	(None,	1024)	1049600		
batch_normalization_2 (Batch	(None,	1024)	4096		
activation_2 (Activation) ^{6不要} Note 前不要	(None,	7.1024) ^{2.苗成作来父上來} 6例 11.	0		
dense_3 (Dense)	(None,	1024)	1049600		
batch_normalization_3 (Batch	(None,	1024)	4096		
activation_3 (Activation)	(None,	1024)	0	activation_6 (Activation) (None, 512)	0
dense_4 (Dense)	(None,	1024)	1049600	dense 7 (Dense) Propier(None, 256) N/7e The	131328
batch_normalization_4 (Batch	(None,	1024)	4096	batch_normalization_7 (Batch (None, 256)	1024
activation_4 (Activation)	(None,	1024)	0		
dense_5 (Dense)	(None,	512)	524800	activation_7 (Activation) imag(None,cc256) and ing class, we would	
batch_normalization_5 (Batch	(None,	512)	2048	dense_8 (Dense) • Use your traine (None ge7) he gradient of input image	1799 ^{5t} it, or y
activation_5 (Activation)	(None,	512)	0	activation_8 (Activation) (None, 7)	0
dense_6 (Dense)	(None,	512)	262656	Total params: 4,681,735 Trainable params: 4,670,693要直接使用助教的圖來當成作業交上來	
batch_normalization_6 (Batch	(None,	512)	2048	Trainable params: 4,670,983 是月接使用期級的圖來當成作業交上來 Non-trainable params: 10,752使用這張範例圖	

雖然參數差不多多,但結果準確率卻差非常多。 模型架構大概就是用了 6 層 fully connected network,最後參數 4,670,983 和 cnn 的 4,618,439 差不多。Kaggle 上的準確率: 0.365975,相較 cnn 差了非常多。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]

其中,可發現錯誤其實算是平均的,之間差距沒有非常大。其中較大的部分有兩個:1.把 disgust 判斷成 angry 2.把 fear 判斷成 sad。可以想像容易混淆的 class 之間確實是有一定相似度,也造成辨識上的困難。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份

大致上是 focus 在眼睛和嘴巴的部分,對於表情來說的確是重要的,看來 cnn 有抓到重點。

5. (1%) 承(1)(2), 利用上課所提到的 gradient ascent 方法, 觀察特定層的 filter 最容易被哪種圖片 activate。

Output of layer0 (Given image17)

因為圖片資料的處理比較不熟悉,再加上不知道助教手把手教學的 input output 是怎麼樣的形式,和一點 shape 的問題,導致沒辦法做出 filter。Gradient ascent 如果是用數值資料應該能夠處理。猜測這些圖片的 filter 例如右上第二張,應該是比較偏向平面的 texture