Metode Runge-Kutta pentru rezolvarea ecuațiilor diferențiale

Noțiuni teoretice

Fiind date:

- intervalul $I = [x_0, x_0 + a] \subset R$
- funcția continuă $f: I \times R \to R$ care asociază fiecarui punct (x, y) din domeniul de definiție un număr real f(x,y)
- ecuația diferențială y' = f(x, y)

problema diferențială de ordinul 1 constă în determinarea funcției $y:I\to R$ astfel încât pentru $\forall x\in I$ avem relația:

$$y'(x) = f(x, y(x))$$

Problema diferențială de ordinul 1 cu condiții inițiale (numită și problema Cauchy) constă în rezolvarea ecuației diferențiale y'(x) = f(x, y(x)) știind condiția inițială $y(x_0) = y_0, y_0 \in R$.

În cele ce urmează, presupunem că funcția f satisface condiția Lipschitz, fapt ce asigură existența și unicitatea soluției problemei Cauchy:

$$\forall x \in I, \forall u, v \in \mathbb{R}^n, \exists L > 0$$
 astfel încât $|f(x, u) - f(x, v)| < L |u - v|$

Metode de tip Runge-Kutta

O metodă numerică folosită pentru rezolvarea ecuțiilor diferențiale este metoda Runge-Kutta. Această metodă este o metodă cu pași separați, caracterizată prin

faptul că aproximația soluției la pasul următor i+1 ține cont doar de informația de la pasul curent i, astfel:

$$\begin{cases} y_0 = \lambda_h \\ y_{i+1} = y_i + h f_h(x_i, y_i), & i = 0, 1, \dots \end{cases}$$

și având condițiile de consistență:

$$\lim_{h \to 0} \lambda_h = \lambda; \quad \lim_{h \to 0} f_h = f.$$

Funcția $f_h(x,y)$ se determină urmând paşii:

• considerăm punctele distincte

$$x_{ij} = x_{i0} + u_j h$$

care împart intervalul $I = [x_i, x_{i+1}]$ în q subintervale, unde $u_j \in [0, 1], u_0 = 0$, $u_q = 1;$

• se calculează aproximațiile soluției în punctele introduse x_{ij} folosind relațiile:

$$\begin{cases} y_{i0} = y_i \\ y_{ij} = y_i + h \sum_{l=0}^{j-1} K_{jl} f(x_{il}, y_{il}), \quad j = 1:q \end{cases}$$

Pentru a determina punctele introduse x_{ij} și constantele K_{jl} se impune condiția ca în dezvoltarea Taylor a lui y_{ij} după puterile lui h, termenii astfel obtinuți să coincidă cu cât mai mulți termeni din dezvoltarea Taylor a soluției exacte. O metoda Runge-Kutta este de ordin p, dacă în cele două dezvoltări termenii coincid până la h^p inclusiv. Mai mult, numărul subintervalelor q definește ranqul metodei Runge-Kutta.

Metoda Runge-Kutta de ordin 1 și rang 1 este:

$$\begin{cases} y_{i0} = y_i \\ y_{i1} = y_i + hu_1 f(x_{i0}, y_{i0}) \end{cases}$$

Metoda Runge-Kutta de ordin 2 și rang 2 este:

$$\begin{cases} y_{i0} = y_i \\ y_{i1} = y_i + hu_1 f(x_{i0}, y_{i0}) \\ y_{i2} = y_i + h(1 - \frac{1}{2u_1}) f(x_{i0}, y_{i0}) + \frac{h}{2u_1} f(x_{i1}, y_{i1}) \end{cases}$$

$$135$$

Particularizând valoarea lui $u_1 \in [0, 1]$ obţinem:

• metoda tangentei ameliorate, pentru $u_1 = \frac{1}{2}$:

$$\begin{cases} x_{i1} = x_{i0} + u_1 h = x_i + \frac{h}{2} \\ y_{i1} = y_i + \frac{h}{2} f(x_i, y_i) \\ y_{i+1} = y_i + h f(x_{i1}, y_{i1}) \end{cases}$$

• metoda Heun, pentru $u_1 = \frac{2}{3}$:

$$\begin{cases} x_{i1} = x_i + \frac{2}{3}h \\ y_{i1} = y_i + \frac{2}{3}hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{4}f(x_i, y_i) + \frac{3h}{4}f(x_{i1}, y_{i1}) \end{cases}$$

• metoda Euler-Cauchy, pentru $u_1 = 1$:

$$\begin{cases} x_{i1} = x_i + h \\ y_{i1} = y_i + h f(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i), f(x_{i1}, y_{i1})] \end{cases}$$

În mod uzual, se utilizează o metodă Runge-Kutta de ordin 4 pentru care avem relația:

$$y_{i+1} = y_i + \frac{K_1 + 2K_2 + 2K_3 + K_4}{6}$$

unde:

$$K_1 = hf(x_i, y_i)$$

$$K_2 = hf(x_i + \frac{h}{2}, y_i + \frac{K_1}{2})$$

$$K_3 = hf(x_i + \frac{h}{2}, y_i + \frac{K_2}{2})$$

$$K_4 = hf(x_i + h, y_i + K_3)$$

Probleme propuse

Problema 1

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda tangentei ameliorate. Programul primește ca date de intrare: a,b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Date de intrare:	Date de ieşire:	
		$\begin{bmatrix} 0.5 \end{bmatrix}$
		0.215691
		-0.074489
		-0.421686
		-0.883347
a = 0, b = 3, n = 10, y0 = 0.5, @functie	y =	-1.521975
		-2.390099
		-3.495294
		-4.751827
		-5.952477
		-6.811686

unde am considerat funcția f(x, y) definită astfel:

```
function rez = functie(x, y)
rez = y*sin(x)-1;
endfunction
```

Listing 1: Exemplu de funcție de integrat.

Problema 2

Să se scrie program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Runge-Kutta de ordin 4. Programul primește ca date de intrare: a,b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de

puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Date de intrare:	Date de ieşire:	
	[0.5]	
	0.213770	
	-0.079085	
	-0.431524	
	-0.902985	
a = 0, b = 3, n = 10, y0 = 0.5, @functie	y = -1.557599	
	-2.447435	
	-3.575427	
	-4.847639	
	-6.051285	
	[-6.905223]	

Problema 3

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Euler-Cauchy. Programul primește ca date de intrare: a, b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Problema 4

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Heun. Programul primește ca date de intrare: a,b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Problema 5

Să se scrie un program OCTAVE care să rezolve un sistem de 2 ecuații diferențiale de ordin 1 folosind metoda Runge-Kutta de ordin 4. Ambele ecuații diferențiale se

rezolvă pe intervalul delimitat de parametrii a şi b, într-un număr de n puncte; y10, y20 reprezintă condiția inițială a primei ecuații diferențiale, respectiv celei de-a doua; f1, f2 reprezintă prima funcție a sistemului, respectiv cea de-a doua funcție. Programul va avea ca rezultat vectorii y1 şi y2 (vectorul aproximațiilor soluției asociată primei ecuații diferențiale, respectiv celei de-a doua).

 $function \ [y1\ y2] = \texttt{Runge_Kutta4_sistem}(a,\,b,\,n,\,y10,\,y20,\,f1,\,f2)$