SOLUTION NOTES FOR EXAMINERS AND SUPERVISORS ONLY

ECAD 2000 Paper 4 Question 5 (SWM)

(a) In Verilog continuous assignment is effectively a wire connection.
For example:
 wire x1,x2,y,z;
 assign x1 = y && z;
 assign x2 = x1;
will result in x1 always being the combinational AND of y and z.
 x2 had the identical value to x1.

Non-blocking assignment is register based assignment.
For example:
 reg x1 x2:

reg x1,x2;
wire y,z;
always @(posedge clock) begin
x1 <= y && z;
x2 <= x1;
end

will result in x1 being assigned the result of y AND z at the next clock edge. The state of x2 will be one clock cycle behind x1.

(b) In RandomBitsA:

In RandomBitsB shift_reg really is a shift register made up of a D-latch for each bit in shift_reg.

(to comply with the question a circuit diagram of this is required)

(c) RandomBitsA is likely to oscillate asynchronously with respect to the clock.

To compute the output of RandomBitsB, let us assume that shift_reg starts in state 4'b0000:

current state	newbit	next state
0000	1	0001
0001	0	0010

	0010	0	0100
	0100	1	1001
	1001	1	. 0011
	0011	1	. 0111
	0111	1	. 1111
	1111	0	1110
	1110	1	. 1101
	1101	1	. 1011
	1011	0	0110
	0110	0	1100
	1100	0	1000
	1000	0	0000
other	states:		
	0101	0	1010
	1010	1	. 0101