

Week 7, March 28th: Power series

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)

- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1.

1. Write $\frac{1}{1+x^2}$ as a power series for |x| < 1.

2. Deduce that for all |x| < 1

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2^{n+1}}}{2^{n+1}}.$$

Exercise 2.

1. Make the partial fraction decomposition of $\frac{x^2+x-3}{(x-2)^2(2x-1)}$.

2. Write $\frac{1}{x-2}$, $\frac{1}{(x-2)^2}$ and $\frac{1}{(2x-1)}$ as a power series. What are the radius of convergence of the series involved?

3. Write $\frac{x^2+x-3}{(x-2)^2(2x-1)}$ as a power series, and precise what is the radius of convergence.

Exercise 3.

1. Calculate the coefficients of the power series which is the product $(\sum \frac{z^{2n}}{(2n)!})(\sum \frac{(-1)^n z^{2n}}{(2n)!})$

Hint: Calculate $(1+i)^{4n}$.

2. Deduce that for all $x \in \mathbb{R}$

$$\cos(x)\cosh(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{(4n)!} x^{4n}.$$

Exercise 4. Let $a \in \mathbb{R}$. Show that there exists a unique function $f : \mathbb{R} \to \mathbb{R}$, which can be written as a power series, solution of the differential equation

$$xy^{\prime\prime} + y^{\prime} + xy = 0.$$

Exercise 5.

1. What is the radius of convergence R, of the power series $\sum \frac{(-1)^{n+1}}{n(2n+1)} z^{2n+1}$?

1

- 2. Express with usual functions the derivative of $f: x \mapsto \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n(2n+1)} x^{2n+1}$, and deduce an expression for f(x) when |x| < 1.
- 3. Show that

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n+1)} = \ln(2) - 2 + \frac{\pi}{2}.$$

Exercise 6.

- 1. For which $z \in \mathbb{C}$ the series $\sum_{n \geq 1} \frac{z^n}{n^2}$ is convergent ?
- 2. Let $f:[-1,1] \to \mathbb{R}$, $x \mapsto \sum_{n=1}^{\infty} \frac{x^n}{n^2}$. Show that f is continuous on [-1,1] and calculate f'(x) for $x \in]-1,1[$.
- 3. Show that there exists $c \in \mathbb{R}$ such that for all $x \in]0,1[$ we have

$$f(x) + f(1-x) = c - \ln(x) \ln(1-x)$$
.

4. Calculate *c*. Deduce the value of $\sum_{n=1}^{\infty} \frac{1}{2^n n^2}$.

2 More involved exercises

Exercise 7.

- 1. Show that a power series $\sum a_n z^n$ have a radius of convergence strictly positive if and only if there exists q > 0 such that $|u_n| \le q^n$ for all $n \in \mathbb{N}$.
- 2. Let $\sum a_n z^n$ be a power series with $a_0 = 1$ and a radius of convergence R > 0. We note

$$f: \{z \in \mathbb{C}, |z| < R\} \to \mathbb{C}, \ z \mapsto \sum_{n=0}^{\infty} a_n z^n.$$

Show that $\frac{1}{f}$ can be written as a power series on $\{z \in \mathbb{C}, |z| < R\}$.

Exercise 8. Let $\sum a_n z^n$ be a power series with radius of convergence 1. We note $f:]-1,1[\to \mathbb{C}, x\mapsto \sum_{n=0}^{\infty}a_nx^n]$. We assume that there exists $S\in\mathbb{C}$ such that $f(x)\to S$ as $x\to 1$ with x<1. We assume also that $a_n=o(\frac{1}{n})$. Show that $\sum a_n$ is convergent and that

$$\sum_{n=1}^{\infty} a_n = S.$$