LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 15: Algebraic description of projections

▶ We recall: Definition 12.1. Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Lecture 15: Algebraic description of projections

▶ We recall: Definition 12.1. Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Example 12.2: Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Lecture 15: Algebraic description of projections

▶ We recall: Definition 12.1. Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Example 12.2: Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

► Then

$$S^{\perp} = \{ \left(egin{array}{c} c \ c \ c \end{array}
ight) : c \in \mathbb{R} \}.$$

▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.
- ▶ It is easy to see that if $x \in S$ then $x \in (S^{\perp})^{\perp}$. Therefore $S \subseteq (S^{\perp})^{\perp}$.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.
- ▶ It is easy to see that if $x \in S$ then $x \in (S^{\perp})^{\perp}$. Therefore $S \subseteq (S^{\perp})^{\perp}$.
- We have already seen that orthogonal complement of any non-empty subset is a subspace. In particular, $(S^{\perp})^{\perp}$ is a subspace.

▶ Consider $V = \mathbb{R}^3$ with standard inner product.

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

► Take $V_1 = (V_0)^{\perp}$.

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

- ► Take $V_1 = (V_0)^{\perp}$.
- ► Clearly,

$$V_1 = \{ \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} : x_3 \in \mathbb{R} \}.$$

We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.

- We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

- We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

▶ We want to show that this is a general phenomenon.

▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.

- Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \ldots, v_k\}$ is a basis for V and so no extension is required.

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \ldots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \ldots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

▶ If $V = M_{k+1}$ then $\{v_1, \ldots, v_{k+1}\}$ is a basis for V and we are done. If not, take $v_{k+2} \in V \setminus M_{k+1}$ and continue the induction process.

▶ The process terminates after a finite number of steps as *V* is finite dimensional and so it can have at most dim (*V*) linearly independent elements.

- ► The process terminates after a finite number of steps as V is finite dimensional and so it can have at most dim (V) linearly independent elements.
- ▶ Therefore $V = M_n$ for some n and $\{v_1, \ldots, v_n\}$ is a basis for V.

▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.
- Now apply the Gram-Schmidt procedure on $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ to get an ortho-normal basis $\{e_1, \ldots, e_n\}$ of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.
- Now apply the Gram-Schmidt procedure on $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ to get an ortho-normal basis $\{e_1, \ldots, e_n\}$ of V.
- ▶ It is an elementary exercise to see that $e_j = v_j$ for $1 \le j \le k$ as v_1, \ldots, v_k are already orthonormal. ■

Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \operatorname{span} \{v_{k+1}, \dots, v_n\}.$$

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

▶ We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{ span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- ► The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \le i \le k$ and $(k+1) \le j \le n$

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \operatorname{span} \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1=(V_0)^{\perp}$ and $\{v_{k+1},\ldots,v_n\}$ is an ortho-normal basis of V_1 .
- ► The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \le i \le k$ and $(k+1) \le j \le n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .
- ▶ This shows $\langle x, y \rangle = 0$ for all $x \in V_0$ and $y \in V_1$. Hence $V_1 \subseteq (V_0)^{\perp}$.

▶ Suppose $x \in V_0^{\perp}$.

- ▶ Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.

- ▶ Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{i=1}^{n} \langle v_i, x \rangle v_i$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \le j \le k$.

- ► Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.

- ► Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{i=1}^{n} \langle v_i, x \rangle v_i$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{i=k+1}^{n} \langle v_i, x \rangle v_i$ and therefore $x \in V_1$.
- ▶ This proves $(V_0)^{\perp} \subseteq V_1$ and completes the proof of our claim.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

- ▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.
- ▶ If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

- ▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.
- ▶ If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \ldots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \ldots, v_n\}$ of V.
- Now we know that any $x \in V$ decomposes as

$$x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$$

▶ Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- ► We have,

$$y+z=y'+z'.$$

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- ▶ Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y + z = y' + z'.$$

▶ Therefore y - y' = z' - z. As $y, y' \in V_0$, $y - y' \in V_0$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y+z=y'+z'.$$

- ▶ Therefore y y' = z' z. As $y, y' \in V_0$, $y y' \in V_0$.
- Also as $z, z' \in V_0^{\perp}$, $y y' = z' z \in V_0^{\perp}$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y+z=y'+z'.$$

- ► Therefore y y' = z' z. As $y, y' \in V_0$, $y y' \in V_0$.
- Also as $z, z' \in V_0^{\perp}$, $y y' = z' z \in V_0^{\perp}$.
- ► Hence $\langle y y', y y' \rangle = 0$. Consequently y = y' and z' = z. This proves the uniqueness.

Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$
- Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$
- Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v.

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$
- Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- ▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v.
- As shown in the previous lecture this is related to Cauchy-Schwarz inequality.

Example 13.1: Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.

- Example 13.1: Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- We first analyze the case when n = 3. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

- Example 13.1: Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- ▶ We first analyze the case when n = 3. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

One can see that

$$\left\{ \left(\begin{array}{c} 1\\ -1\\ 0 \end{array} \right), \left(\begin{array}{c} 1\\ 0\\ -1 \end{array} \right) \right\}$$

is a basis for V_0 .

- Example 13.1: Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- ▶ We first analyze the case when n = 3. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

One can see that

$$\left\{ \left(\begin{array}{c} 1\\ -1\\ 0 \end{array} \right), \left(\begin{array}{c} 1\\ 0\\ -1 \end{array} \right) \right\}$$

is a basis for V_0 .

Let us apply Gram-Schmidt on this to get an orthonormal basis for V_0 .

► We get the first vector as

$$v_1=\left(egin{array}{c} 1/\sqrt{2} \ -1/\sqrt{2} \ 0 \end{array}
ight).$$

► We get the first vector as

$$v_1 = \left(egin{array}{c} 1/\sqrt{2} \ -1/\sqrt{2} \ 0 \end{array}
ight).$$

Now take

$$w_{2} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \langle \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \rangle \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \end{pmatrix}.$$

► Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

► Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

• $\{v_1, v_2\}$ is an ortho-normal basis for V_0 .

Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

- $\{v_1, v_2\}$ is an ortho-normal basis for V_0 .
- ▶ Given $x \in \mathbb{R}^3$, it decomposes as y + z, where $y \in V_0$, $z \in V_0^{\perp}$.

$$y = \langle v_1, x \rangle v_1 + \langle v_2, x \rangle v_2$$

$$= \frac{x_1 - x_2}{\sqrt{2}} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} + \frac{(x_1 + x_2 - 2x_3)}{\sqrt{6}} \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2x_1 - x_2 - x_3 \\ -x_1 + 2x_2 - x_3 \\ -x_1 - x_2 + 2x_3 \end{pmatrix}$$

$$z = \frac{1}{3} \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}.$$

$$z = \frac{1}{3} \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}.$$

► For general n, with $\overline{x} = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$,

$$y = \begin{pmatrix} x_1 - \overline{x} \\ x_2 - \overline{x} \\ \vdots \\ x_n - \overline{x} \end{pmatrix}, \quad z = \begin{pmatrix} \overline{x} \\ \overline{x} \\ \vdots \\ \overline{x} \end{pmatrix}$$

► For general n, with $\overline{x} = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$,

$$y = \begin{pmatrix} x_1 - \overline{x} \\ x_2 - \overline{x} \\ \vdots \\ x_n - \overline{x} \end{pmatrix}, \quad z = \begin{pmatrix} \overline{x} \\ \overline{x} \\ \vdots \\ \overline{x} \end{pmatrix}$$

▶ It is easy to see that $y \in V_0$, $z \in (V_0)^{\perp}$ and x = y + z.

Projection as a linear map

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

where x = y + z, with $y \in V_0, z \in (V_0)^{\perp}$.

Projection as a linear map

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

where x = y + z, with $y \in V_0, z \in (V_0)^{\perp}$.

Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .

Projection as a linear map

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

where x = y + z, with $y \in V_0, z \in (V_0)^{\perp}$.

- Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ Theorem 13.3: Under the set up as above,

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

- Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ Theorem 13.3: Under the set up as above,
- ▶ (i) P is a linear map. (ii) Px = x if and only if $x \in V_0$ and Px = 0 if and only if $x \in (V_0)^{\perp}$.

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

- Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ► Theorem 13.3: Under the set up as above,
- (i) P is a linear map. (ii) Px = x if and only if $x \in V_0$ and Px = 0 if and only if $x \in (V_0)^{\perp}$.
- ▶ (iii) $P(V) = V_0$.

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

- Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ► Theorem 13.3: Under the set up as above,
- (i) P is a linear map. (ii) Px = x if and only if $x \in V_0$ and Px = 0 if and only if $x \in (V_0)^{\perp}$.
- (iii) $P(V) = V_0$.
- ightharpoonup (iv) $P = P^2 = P^*$.

▶ Definition 13.2: Let V_0 be a subspace of a finite dimensional inner product space V. Then the projection on to V_0 , is the map

$$P: V \rightarrow V$$

defined by

$$P(x) = y$$

- Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ► Theorem 13.3: Under the set up as above,
- (i) P is a linear map. (ii) Px = x if and only if $x \in V_0$ and Px = 0 if and only if $x \in (V_0)^{\perp}$.
- $(iii) P(V) = V_0.$
- $P = P^2 = P^*$.
- $(v) P_{V_1} = I P \text{ where } V_1 = (V_0)^{\perp}.$

▶ Proof. If $V_0 = \{0\}$ then P = 0 and all the properties mentioned above are easy to see.

- Proof. If $V_0 = \{0\}$ then P = 0 and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.

- ▶ Proof. If $V_0 = \{0\}$ then P = 0 and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.
- ▶ (i). Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis of V_0 . Extend it to an orthonormal basis $\{v_1, v_2, \ldots, v_n\}$ of V.
- ▶ Then we know that

$$P(x) = \sum_{j=1}^{k} \langle v_j, x \rangle v_j.$$

(Note that P does not depend upon the choice of this basis!)

- ▶ Proof. If $V_0 = \{0\}$ then P = 0 and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.
- ▶ (i). Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis of V_0 . Extend it to an orthonormal basis $\{v_1, v_2, \ldots, v_n\}$ of V.
- ▶ Then we know that

$$P(x) = \sum_{j=1}^{k} \langle v_j, x \rangle v_j.$$

(Note that P does not depend upon the choice of this basis!)

➤ Since the inner product is linear in the second variable, *P* is a linear map. This proves (i).

▶ (ii). We know that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$. Therefore Px = x implies

$$\sum_{j=k+1}^{n} \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

▶ (ii). We know that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$. Therefore Px = x implies

$$\sum_{j=k+1}^{n} \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

▶ The converse is easy to see from the definition of *P*.

▶ (ii). We know that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$. Therefore Px = x implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of *P*.
- Now if Px = 0, then $\sum_{j=1}^{k} \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^{\perp}$.

▶ (ii). We know that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$. Therefore Px = x implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of *P*.
- Now if Px = 0, then $\sum_{j=1}^{k} \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^{\perp}$.
- ▶ Conversely if $x \in (V_0)^{\perp}$, then $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$, and consequently Px = 0.

▶ (ii). We know that $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$. Therefore Px = x implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of *P*.
- Now if Px = 0, then $\sum_{j=1}^{k} \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^{\perp}$.
- ▶ Conversely if $x \in (V_0)^{\perp}$, then $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$, and consequently Px = 0.
- ► This proves (ii).

• (iii). We want to show $P(V) = V_0$.

- ightharpoonup (iii). We want to show $P(V) = V_0$.
- From the formula given for P, $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since Px = x for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).

- ightharpoonup (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P, $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since Px = x for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).

- (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P, $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since Px = x for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- \blacktriangleright (iv). If $x = \sum_{j=1}^{n} c_j v_j$, then $Px = \sum_{j=1}^{k} c_j v_j$.

- ightharpoonup (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P, $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since Px = x for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- (iv). If $x = \sum_{j=1}^{n} c_j v_j$, then $Px = \sum_{j=1}^{k} c_j v_j$.
- ► Now $P(P(x)) = P(\sum_{j=1}^{k} c_j v_j) = \sum_{j=1}^{k} c_j v_j = Px$.

- (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P, $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since Px = x for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- \blacktriangleright (iv). If $x = \sum_{j=1}^{n} c_j v_j$, then $Px = \sum_{j=1}^{k} c_j v_j$.
- ► Now $P(P(x)) = P(\sum_{j=1}^{k} c_j v_j) = \sum_{j=1}^{k} c_j v_j = Px$.
- ► Hence $P^2(x) = P(x)$ for every x, or $P^2 = P$.

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

Note that $\langle y_i, z_j \rangle = 0$ for all i, j.

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

- Note that $\langle y_i, z_i \rangle = 0$ for all i, j.
- Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

- Note that $\langle y_i, z_i \rangle = 0$ for all i, j.
- Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

- Note that $\langle y_i, z_i \rangle = 0$ for all i, j.
- Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

Consequently,

$$\langle Px_1, x_2 \rangle = \langle x_1, Px_2 \rangle$$

for all x_1, x_2 in V.

Suppose x_1, x_2 are in V. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^{\perp}.$$

- Note that $\langle y_i, z_j \rangle = 0$ for all i, j.
- Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

Consequently,

$$\langle Px_1, x_2 \rangle = \langle x_1, Px_2 \rangle$$

for all x_1, x_2 in V.

▶ This shows that $P^* = P$ from the defining property of the adjoint of P.

▶ (v). If $x = \sum_{j=1}^{n} c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

▶ (v). If $x = \sum_{j=1}^{n} c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

From these formulae, it is easy to see that $P_{V_1} = 1 - P_{V_0}$.

▶ (v). If $x = \sum_{j=1}^{n} c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- From these formulae, it is easy to see that $P_{V_1} = 1 P_{V_0}$.
- ▶ This completes the proof Theorem 13.2.

• (v). If $x = \sum_{j=1}^{n} c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- From these formulae, it is easy to see that $P_{V_1} = 1 P_{V_0}$.
- ▶ This completes the proof Theorem 13.2.
- ▶ Remark 13.4: Observe that $P_{\{0\}} = 0$ and $P_V = I$. In particular,

$$P_V(x) = x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

independent of the choice of the basis.

• (v). If $x = \sum_{j=1}^{n} c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- From these formulae, it is easy to see that $P_{V_1} = 1 P_{V_0}$.
- This completes the proof Theorem 13.2.
- ▶ Remark 13.4: Observe that $P_{\{0\}} = 0$ and $P_V = I$. In particular,

$$P_V(x) = x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

independent of the choice of the basis.

▶ We have just revisited our formula for the expansion of x in terms of an orthonormal basis.

Notation: Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A,B) := \inf\{d(a,b) : a \in A, b \in B\}$$

$$d(a,B) := \inf\{d(a,b) : b \in B\}.$$

Notation: Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A,B) := \inf\{d(a,b) : a \in A, b \in B\}$$

and

$$d(a,B) := \inf\{d(a,b) : b \in B\}.$$

We may informally call d(A, B) as the distance between A, B and d(a, B) as the distance between a and B. But note that now we may have d(A, B) = 0 without having A = B.

Notation: Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A,B) := \inf\{d(a,b) : a \in A, b \in B\}$$

$$d(a,B) := \inf\{d(a,b) : b \in B\}.$$

- We may informally call d(A, B) as the distance between A, B and d(a, B) as the distance between a and B. But note that now we may have d(A, B) = 0 without having A = B.
- In general, d(a, B) may not be attained at any point in B. Also when it is attained it may not be at some unique point in B.

Notation: Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A,B) := \inf\{d(a,b) : a \in A, b \in B\}$$

$$d(a,B) := \inf\{d(a,b) : b \in B\}.$$

- We may informally call d(A, B) as the distance between A, B and d(a, B) as the distance between a and B. But note that now we may have d(A, B) = 0 without having A = B.
- In general, d(a, B) may not be attained at any point in B. Also when it is attained it may not be at some unique point in B.
- ► Example 14.1: Take $V = \mathbb{R}^2$. Take a = (1,0). Consider $B_1 = \{(x_1, x_2) : x_1 < 0\}$ and $B_2 = \{(x_1, x_2) : |x_1 1| \ge 1\}$

Notation: Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A,B) := \inf\{d(a,b) : a \in A, b \in B\}$$

$$d(a,B) := \inf\{d(a,b) : b \in B\}.$$

- We may informally call d(A, B) as the distance between A, B and d(a, B) as the distance between a and B. But note that now we may have d(A, B) = 0 without having A = B.
- In general, d(a, B) may not be attained at any point in B. Also when it is attained it may not be at some unique point in B.
- Example 14.1: Take $V = \mathbb{R}^2$. Take a = (1,0). Consider $B_1 = \{(x_1, x_2) : x_1 < 0\}$ and $B_2 = \{(x_1, x_2) : |x_1 1| \ge 1\}$
- ▶ Then $d(a, B_1) = 1$ is not attained at any point. $d(a, B_2) = 1$ gets attained at two points.

Best approximation property

▶ Theorem 14.2: Let V_0 be a subspace of an inner product space V. Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that $d(x, v) = d(x, V_0)$.

Best approximation property

▶ Theorem 14.2: Let V_0 be a subspace of an inner product space V. Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that $d(x, v) = d(x, V_0)$.

▶ This theorem tells us that Px is the unique 'best approximation' for x in V_0 .

Best approximation property

▶ Theorem 14.2: Let V_0 be a subspace of an inner product space V. Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that $d(x, v) = d(x, V_0)$.

- ▶ This theorem tells us that Px is the unique 'best approximation' for x in V_0 .
- ▶ Proof: Suppose x = y + z, is the unique decomposition of x, with $y \in V_0$, $z \in V_0^{\perp}$.

▶ We have Px = y. Now consider any $v \in V_0$. Due to orthogonality of y - v and z, we get

▶ We have Px = y. Now consider any $v \in V_0$. Due to orthogonality of y - v and z, we get

$$||x - v||^2 = ||(y + z) - v||^2$$

= $\langle (y - v) + z, (y - v) + z \rangle$
= $||(y - v)||^2 + ||z||^2$.

▶ We have Px = y. Now consider any $v \in V_0$. Due to orthogonality of y - v and z, we get

$$||x - v||^2 = ||(y + z) - v||^2$$

= $\langle (y - v) + z, (y - v) + z \rangle$
= $||(y - v)||^2 + ||z||^2$.

► Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at v = y.

▶ We have Px = y. Now consider any $v \in V_0$. Due to orthogonality of y - v and z, we get

$$||x - v||^2 = ||(y + z) - v||^2$$

= $\langle (y - v) + z, (y - v) + z \rangle$
= $||(y - v)||^2 + ||z||^2$.

► Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at v = y.

► This proves the theorem.

▶ We have Px = y. Now consider any $v \in V_0$. Due to orthogonality of y - v and z, we get

$$||x - v||^2 = ||(y + z) - v||^2$$

= $\langle (y - v) + z, (y - v) + z \rangle$
= $||(y - v)||^2 + ||z||^2$.

► Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at v = y.

- ► This proves the theorem.
- Note that we are using the 'Pythagoras theorem' of inner product spaces.

▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and
- ► $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}.$

- lacktriangle Consider the Example 13.1, where $V=\mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}.$

$$V_1=(V_0)^\perp=\{\left(egin{array}{c}c\c\c\c\c\end{array}
ight):c\in\mathbb{R}\}.$$

- lacktriangle Consider the Example 13.1, where $V=\mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}.$

$$V_1=(V_0)^\perp=\{\left(egin{array}{c}c\c\c\c\c\end{array}
ight):c\in\mathbb{R}\}.$$

▶ Let P_1 be the projection onto V_1 .

- lacktriangle Consider the Example 13.1, where $V=\mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}.$

$$V_1=(V_0)^\perp=\{\left(egin{array}{c}c\c\c\c\c\end{array}
ight):c\in\mathbb{R}\}.$$

- ▶ Let P_1 be the projection onto V_1 .
- ► Then $P_1 x = \frac{1}{n} (x_1 + \dots + x_n) =: \overline{x}$.

So the best approximation for $x = (x_1, ..., x_n)$ among constant sequences is $(\overline{x}, ..., \overline{x})$.

- So the best approximation for $x = (x_1, ..., x_n)$ among constant sequences is $(\overline{x}, ..., \overline{x})$.
- In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^{n} (x_j - c)^2 = \sum_{j=1}^{n} (x_j - \overline{x})^2.$$

- So the best approximation for $x = (x_1, ..., x_n)$ among constant sequences is $(\overline{x}, ..., \overline{x})$.
- In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^{n} (x_j - c)^2 = \sum_{j=1}^{n} (x_j - \overline{x})^2.$$

▶ This value is n times the variance of the tuple $\{x_1, \ldots, x_n\}$. In other words,

$$\inf_{c \in \mathbb{R}} \frac{1}{n} \sum_{j=1}^{n} (x_j - c)^2 = \text{Var } \{x_1, \dots, x_n\},$$

and the infimum gets attained only at \overline{x} .

- So the best approximation for $x = (x_1, ..., x_n)$ among constant sequences is $(\overline{x}, ..., \overline{x})$.
- In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^{n} (x_j - c)^2 = \sum_{j=1}^{n} (x_j - \overline{x})^2.$$

▶ This value is n times the variance of the tuple $\{x_1, \ldots, x_n\}$. In other words,

$$\inf_{c \in \mathbb{R}} \frac{1}{n} \sum_{j=1}^{n} (x_j - c)^2 = \text{Var } \{x_1, \dots, x_n\},$$

and the infimum gets attained only at \overline{x} .

Exercise: Work out more examples.

▶ Example 14.3: Consider $V = \mathbb{R}^2$. Let $V_0 = \{c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} : c \in \mathbb{R}\}$ where θ is a fixed real number. Write down the matrix of the projection onto V_0 .

- Example 14.3: Consider $V=\mathbb{R}^2$. Let $V_0=\{c\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}:c\in\mathbb{R}\}$ where θ is a fixed real number. Write down the matrix of the projection onto V_0 .
- ► Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} . \left(\cos \theta \sin \theta \right) .$$

- Example 14.3: Consider $V=\mathbb{R}^2$. Let $V_0=\{c\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}:c\in\mathbb{R}\}$ where θ is a fixed real number. Write down the matrix of the projection onto V_0 .
- ► Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} . \left(\cos \theta \sin \theta \right) .$$

▶ Then for any vector $x \in \mathbb{R}^2$,

$$Px = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = v \langle v, x \rangle = \langle v, x \rangle \cdot v,$$

- Example 14.3: Consider $V=\mathbb{R}^2$. Let $V_0=\{c\left(\begin{matrix}\cos\theta\\\sin\theta\end{matrix}\right):c\in\mathbb{R}\}$ where θ is a fixed real number. Write down the matrix of the projection onto V_0 .
- ► Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} . \left(\cos \theta \sin \theta \right) .$$

▶ Then for any vector $x \in \mathbb{R}^2$,

$$Px = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = v \langle v, x \rangle = \langle v, x \rangle \cdot v,$$

where

$$v = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
.

▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- ► Therefore *P* given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- Therefore P given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

▶ You may verify $P = P^2 = P^*$ and $P(\mathbb{R}^2) = V_0$.

▶ Theorem 15.1: Let V be a finite dimensional inner product space. Then a linear map $P:V\to V$ is a projection if and only if

$$P=P^2=P^*.$$

▶ Theorem 15.1: Let V be a finite dimensional inner product space. Then a linear map $P:V\to V$ is a projection if and only if

$$P = P^2 = P^*.$$

Proof: We have already seen that if P is a projection then $P = P^2 = P^*$.

Theorem 15.1: Let V be a finite dimensional inner product space. Then a linear map P: V → V is a projection if and only if

$$P = P^2 = P^*.$$

- Proof: We have already seen that if P is a projection then $P = P^2 = P^*$.
- Now suppose $P: V \rightarrow V$ is a linear map such that

$$P=P^2=P^*.$$

Theorem 15.1: Let V be a finite dimensional inner product space. Then a linear map P: V → V is a projection if and only if

$$P = P^2 = P^*$$
.

- Proof: We have already seen that if P is a projection then $P = P^2 = P^*$.
- Now suppose $P: V \rightarrow V$ is a linear map such that

$$P=P^2=P^*.$$

► Take $V_0 = P(V) = \{Px : x \in V\}.$

Theorem 15.1: Let V be a finite dimensional inner product space. Then a linear map P: V → V is a projection if and only if

$$P = P^2 = P^*$$
.

- Proof: We have already seen that if P is a projection then $P = P^2 = P^*$.
- Now suppose $P: V \rightarrow V$ is a linear map such that

$$P=P^2=P^*.$$

- ► Take $V_0 = P(V) = \{Px : x \in V\}.$
- ightharpoonup Clearly V_0 is a subspace of V.

▶ We wish to show that P is the projection onto V_0 .

- ▶ We wish to show that P is the projection onto V_0 .
- ▶ For $x \in V$, take y = Px and z = x Px.

- ▶ We wish to show that P is the projection onto V_0 .
- ▶ For $x \in V$, take y = Px and z = x Px.
- ► Clearly x = y + z and $y \in V_0$.

- ▶ We wish to show that P is the projection onto V_0 .
- For $x \in V$, take y = Px and z = x Px.
- ► Clearly x = y + z and $y \in V_0$.
- lt suffices to show that $z \in V_0^{\perp}$.

▶ Consider any $w \in V_0$. So w = Pv for some $v \in V$.

- ▶ Consider any $w \in V_0$. So w = Pv for some $v \in V$.
- ► Now

$$\langle w, z \rangle = \langle Pv, x - Px \rangle$$

$$= \langle v, P^*(x - Px) \rangle$$

$$= \langle v, P(x - Px) \rangle$$

$$= \langle v, Px - P^2x \rangle$$

$$= \langle v, Px - Px \rangle$$

$$= 0.$$

- ▶ Consider any $w \in V_0$. So w = Pv for some $v \in V$.
- Now

$$\langle w, z \rangle = \langle Pv, x - Px \rangle$$

$$= \langle v, P^*(x - Px) \rangle$$

$$= \langle v, P(x - Px) \rangle$$

$$= \langle v, Px - P^2x \rangle$$

$$= \langle v, Px - Px \rangle$$

$$= 0.$$

lacksquare This shows that $z\in V_0^\perp$. lacksquare

Diagonalization of a projection

▶ Theorem 15.2: Let V_0 be a non-zero finite dimensional subspace of a finite dimensional inner product space V and let P the projection onto V_0 . Then there exists an orthonormal basis $\mathcal B$ such that on $\mathcal B$, the matrix of P is given by

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where I is of order $k \times k$, with $k = \dim(V_0)$.

Diagonalization of a projection

▶ Theorem 15.2: Let V_0 be a non-zero finite dimensional subspace of a finite dimensional inner product space V and let P the projection onto V_0 . Then there exists an orthonormal basis $\mathcal B$ such that on $\mathcal B$, the matrix of P is given by

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where I is of order $k \times k$, with $k = \dim(V_0)$.

▶ Proof: Let $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ be an orthonormal basis for V, where $\{v_1, \ldots, v_k\}$ is an orthonormal basis for V_0 .

Diagonalization of a projection

▶ Theorem 15.2: Let V_0 be a non-zero finite dimensional subspace of a finite dimensional inner product space V and let P the projection onto V_0 . Then there exists an orthonormal basis $\mathcal B$ such that on $\mathcal B$, the matrix of P is given by

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where *I* is of order $k \times k$, with $k = \dim(V_0)$.

- ▶ Proof: Let $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ be an orthonormal basis for V, where $\{v_1, \ldots, v_k\}$ is an orthonormal basis for V_0 .
- $\qquad \qquad \mathsf{Take} \; \mathcal{B} = \{ v_1, \dots, v_n \}.$

Diagonalization of a projection

▶ Theorem 15.2: Let V_0 be a non-zero finite dimensional subspace of a finite dimensional inner product space V and let P the projection onto V_0 . Then there exists an orthonormal basis $\mathcal B$ such that on $\mathcal B$, the matrix of P is given by

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where I is of order $k \times k$, with $k = \dim(V_0)$.

- ▶ Proof: Let $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ be an orthonormal basis for V, where $\{v_1, \ldots, v_k\}$ is an orthonormal basis for V_0 .
- $\qquad \qquad \mathsf{Take} \; \mathcal{B} = \{ v_1, \dots, v_n \}.$
- ▶ We have $Pv_j = v_j$ for $1 \le j \le k$ and $Pv_j = 0$ for $(k+1) \le j \le n$.

Eigenvalues of projections

▶ Theorem 15.3: Let V be a finite dimensional inner product space and let $P: V \to V$ be a projection. Suppose λ is an eigenvalue of P then $\lambda \in \{0,1\}$.

Eigenvalues of projections

- ▶ Theorem 15.3: Let V be a finite dimensional inner product space and let $P: V \to V$ be a projection. Suppose λ is an eigenvalue of P then $\lambda \in \{0,1\}$.
- Proof: This is clear as the characteristic polynomial of the matrix

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where *I* is of order $k \times k$, is given by $p(x) = (x-1)^k x^{n-k}$.

Eigenvalues of projections

- ▶ Theorem 15.3: Let V be a finite dimensional inner product space and let $P: V \to V$ be a projection. Suppose λ is an eigenvalue of P then $\lambda \in \{0,1\}$.
- Proof: This is clear as the characteristic polynomial of the matrix

$$A = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$$

where *I* is of order $k \times k$, is given by $p(x) = (x-1)^k x^{n-k}$.

Note that 0 is the only eigenvalue of a projection P iff P = 0. Similarly 1 is the only eigenvalue of P if and only if P = I.

Continuation

Consequently

$$\langle v_i, Pv_j \rangle = \left\{ egin{array}{ll} \delta_{ij} & ext{ if } 1 \leq i,j \leq k \\ 0 & ext{ otherwise.} \end{array}
ight.$$

Continuation

Consequently

$$\langle v_i, Pv_j \rangle = \left\{ egin{array}{ll} \delta_{ij} & ext{if } 1 \leq i,j \leq k \\ 0 & ext{otherwise.} \end{array} \right.$$

▶ Hence the matrix of P on the orthonormal basis \mathcal{B} is A as above.

▶ Corollary 15.4: Let R be the matrix of a projection map on some orthonormal basis. Then trace (R) = rank (R).

- Corollary 15.4: Let R be the matrix of a projection map on some orthonormal basis. Then trace (R) = rank (R).
- ▶ Proof: Clear from the description of the matrix of *P*.

- Corollary 15.4: Let R be the matrix of a projection map on some orthonormal basis. Then trace (R) = rank (R).
- Proof: Clear from the description of the matrix of P.
- **Example 15.5**: Show that $R: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$R\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \end{pmatrix}$$

is a projection. Write down the matrix of R on standard basis. Find a suitable orthonormal basis such that the entries of the matrix of R on that basis are 0's and 1's.

- Corollary 15.4: Let R be the matrix of a projection map on some orthonormal basis. Then trace (R) = rank (R).
- Proof: Clear from the description of the matrix of P.
- **Example 15.5**: Show that $R: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$R\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \end{pmatrix}$$

is a projection. Write down the matrix of R on standard basis. Find a suitable orthonormal basis such that the entries of the matrix of R on that basis are 0's and 1's.

- Corollary 15.4: Let R be the matrix of a projection map on some orthonormal basis. Then trace (R) = rank (R).
- Proof: Clear from the description of the matrix of P.
- **Example 15.5**: Show that $R: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$R\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \\ \frac{x_1 + x_2 + x_3}{3} \end{pmatrix}$$

is a projection. Write down the matrix of R on standard basis. Find a suitable orthonormal basis such that the entries of the matrix of R on that basis are 0's and 1's.

► END OF LECTURE 15.