Communication System

Communication System – Input

Communication System - Output

Communication System

Speech to Text

Response Refiner

Vector Embedding

Text to Speech

Function Calling

Location Refiner

Input Function

Output Function

Communication System: Speech to Text

- Uses PyAudio mic stream with wakeword:
 - "Hey JIMBO": Joint Interactive Mobility Bot and Observer
- Speech Recognition module
 - Dynamically adjusts recorder for ambient noise
- Real-time transcriptions working using OpenAI whisper
 - Local instances were tested, but produced slow results with high word error rate (WER)
 - Uses English model to improve speed/accuracy

(**L**))

Communication System: Vector Embedding

- JSON architecture with system function descriptions and examples coded for semantic similarity
- Sends to google embeddings model for vectorization
- Command relevancy subscriber
 - Picks up transcriptions from queue
 - Sends to embedding model for vectorization
 - Cosine similarity between embeddings
 - Thresholding to determine command relevancy
- If relevant, sends to function calling module
- Otherwise, respond to query and ask for clarification

(**L**)

Communication System: Function Calling

– Name

- Definition
- Parameters
- Response parsed for actual function call:
 - global_nav → location refinement
 - change_speed → motion controller
 - describe_env → image captioning (w/- Gemini Vision)
 - system_stop/system_go → motion controller

Function Set:

global_nav

change_speed

describe_env

system_stop

system_go

Communication System: Function Calling Demo

Communication System: Response Refinement

- Implemented response refinement with context injection
 - Input: command + obstacle context
 - Ex: "Walk 10m, then turn right" + [['car', 'Left'], ['pedestrian', 'Front Right']]
 - Output: Refined response to user
 - Ex: "We're going to keep walking straight for a few more steps, and then we're going to be turning right. There is a car directly to our left and a pedestrian in front of us towards the right. I'll let you know before we need to turn."
- Model tuned on visual guide best practices
 - Support strategies for remote guides in assisting people with visual impairments for effective indoor navigation (Kamikubo et al., 2020)
 - Ex: Using clock syntax to describe orientation
 - Most important: providing context to instructions
- Originally used images as context
 - Created significant hallucinations

Communication System: Text to Speech

- Built-in methods were tested, but more "human" voice was desired
- Using turbo v2 model for minimal latency
- Voice synthesis highly customizable

Communication System: Location Refiner

- Assumes 1-mile search radius
- Outputs top result with GPS location
- Can include additional search params (i.e. accessibility)

(**L**)

Timing Results

Module	Model Source	Avg Execution Time (s)			
Input Functions					
Speech to Text (Transcription)	OpenAl Whisper	0.838			
Vector Embeddings	Google Embeddings	0.212			
Function Calling – global_nav	Google Gemini	1.984			
Function Calling – describe_env	Google Gemini	9.145			
Function Calling - other	Google Gemini	1.568			
INPUT TOTAL (avg function calling)		5.282			
INPUT TOTAL (avg w/o describe_env)		2.826			
Output Functions					
Response Refinement	Google Gemini	1.837			
Text to Speech	ElevenLabs	1.906			
OUTPUT TOTAL		3.743			
TOTAL (avg w/o describe_env)		6.569			

Communication System: Conclusions

- 10-second audio updates:
 - Addressed through AudioResponse calls throughout system
 - Input Comms < 10s</p>
 - describe_env not necessary, but "nice to have" (9.145s)
 - Avg input time w/o describe_env: 2.826s
- 30-second end-to-end time:
 - Avg input + output time: 6.569s
 - Response Refiner (RR) not necessary for all calls
 - Avg total time w/o RR: 4.732s
- Timing results fall well within requirement threshold
 - Performance increases when only using core features

Communication Timing

The system shall communicate with the user in near real-time achieving a **30-second** end-to-end response time with audio updates at **most 10-second intervals**.

Global Planner

Global Planner Implementation

- Leverages Google Maps API
- Takes in starting location and destination
- Outputs walking route:
 - Discretized into legs separated by waypoints
 - Waypoints contain location information
 - Waypoints converted from GPS to ENU Cartesian coords
 - Waypoints then sent to local planner

Origi wayp		Intermediate waypoint	Intermediate waypoint	Destination waypoint
Route	Leg	Leç	g	Leg

Simulation Results

Global Planner + Communication

Simulation World – Downtown Worcester

Webots Environment

Simulation Flow

*Loops for each user input

Simulation Demo Video

