ITSE321 Software Construction

بناء البرمجيات

المحاضر: د. رضوان حسين erudwan@yahoo.com

التعبيرات النظامية/الاعتيادية

REGULAR EXPRESSIONS

LEXEME PATTERNS

نمط المفردات

- المفردات التي يجزءها محلل المفردات إلى بطاقات tokens تتبع قواعد rules تصف فئات/أنواع المفردات الموجودة بالبرنامج المصدري.
 - هذه القواعد تسمى أنماط المفردات
 - النمط: هو وصف للشكل الذي تأخذه المفردات في بطاقة ما a token وهو بُنية مركبة complex تتوافق عليها مفردات عديدة
 - بطاقة الكلمات المحجوزة تتبع نمطاً <keyword>

 ﴿ سلسلة من الحروف
 - بطاقة المعرفات/المتغيرات تتبع نمطاً <identifier>
 - ح سلسلة من الحروف والأرقام ولا تبدأ برقم، وليست كلمة محجوزة

EXAMPLES OF TOKENS

أمثلة للبطاقات

```
int Index;
Index = 2 * count +17;
```

Lexemes	Tokens
int	type
Index	identifier
=	assignment
2	int_constant
*	operation
Count	identifier
+	operation
17	int_constant
·,	semicolon

مواصفات نمط المفردات

- نحتاج لصياغة قادرة على التعبير عن أنماط البطاقات
- التعبيرات النظامية Regular Expressions تستخدم لوصف نمط صياغة المفردات
 - مفردات أي لغة يعبر عنها من خلال الحروف الهجائية لتلك اللغة
- ❖ اللغة العربية, حروفها الهجائية التي تشكل جميـــع كلماتها هي أ − ي
 - a z, A Z هي alphabet بنجليزية, حرفها الهجائية

GREEK ALPHABET

ALPHA Al-fah

GAMMA

Eε

BETA Bay-tah Gam-ah

DELTA Del-tah

EPSILON Ep-si-lon

ZETA Zay-tah

Kκ

 $M\mu$

ETA Ay-tah THETA Thay-tah IOTA Eye-o-tah

KAPPA Cap-ah

LAMBDA Lamb-da

MU Mew

NU New

XI Zeye (if it stands alone) or Zee (if followed by a letter)

OMICRON Om-i-cron

PI Pie

RHO Row

Σσς

SIGMA Sig-mah

TAU Taw

UPSILON Oop-si-lon

PHI Fee (if stands alone) or Feye (if followed by a letter)

CHI Keye

PSI Sigh $\Omega \omega$

OMEGA O-may-gah

ALPHABET

الحروف الهجائية للغة

- تعتمد التعبيرات النظامية Regular Expressions على مبادئ مادة التراكيب المنفصلة Discrete Structures
 - يعبر عن الحروف الهجائية للغة بالرمز الإغريقي سيقما ٢
- حيث Σ عبارة عن فئة محدودة finite تحتوي على جميع الرموز (حروف وأرقام) وأيضاً العلامات (الفواصل, النقاط, وغيرها) التي يمكن أن تشكل جملة في لغة ما
 - $\Sigma = \{a-z, A-Z\}$ اللغة الإنجليزية:

مفردات فئة هجائية

a, b, c, d فئة الحروف a, b, c, d

• Σ ={a,b,c,d}

- المفردات الممكنة من الهجائية ∑ هي:
 - a •
 - aa
 - aaa •
 - aabbccdd
 - **d** •
 - abab •
 - cccccccccccccccc •
- وهكذا, أي تركيبة من الحروف الأربعة a, b, c, d

- إذن يمكننا أن نصنع لغة ما لها شكل معين
 - نحدد ماهي رموزها الهجائية
- ونحدد كيف تشكل تلك الرموز
 - لتصنع مفردات اللغة

FORMAL LANGUAGES

اللغات الشكلية

- الهجائية ∑: سيقما هي فئة محدودة finite تحتوي على كل مدخلات inputs الهجائية العجائية كالله العلامات symbols
- نهاية الهجائية Σ^* Closure سيقما ستار هي فئة كل المفردات الممكنة empty string (إبسيلون) ϵ المفردة الخالية ϵ (إبسيلون) ويشمل ذلك المفردة الخالية
 - سيقما ستار Σ^* سيقما ستار formal language L اللغة الرسمية
- فهي فئة المفردات ذات المعنى في اللغة, كجزء من جميع المفرات الممكنة
 سيقما ستار *Σ

عمليات اللغات الشكلية

الاتحاد بين لغتين L و Union M و فئة المفردات التي تنتمي على الأقل لأحد اللغتين L أو M , "على الأقل" تعني أن بعض المفردات قد تنتمي لكلا اللغتين .

$$L \cup M = \{s | s \in L \text{ or } s \in M\}$$
$$L \cup M = \{s | s \in L \vee s \in M\}$$

- مثال
- $L = \{abb, baa, aba, bab\}, M = \{doo, ree, mee, baa\}$
 - $L \cup M = \{abb, baa, aba, bab, doo, ree, mee\}$

عمليات اللغات الشكلية

التقاطع بين لغتين L و Intersection M و Lادات التي تنتمي إلى كلا اللغتين.

$$L \cap M = \{s | s \in L \text{ and } s \in M\}$$

$$L \cap M = \{s | s \in L \land s \in M\}$$

- مثال:
- $L = \{a, aa, aaa, aaaa\}, M = \{bd, bbdd, bdbd\}$
 - $L \cap M = \{ \mathcal{E} \}$ إبسيلون: وهي فئة خالية

عمليات اللغات الشكلية

• L المفردات على التشكيل دات على التشكيل المفردات على التشكيل المعتين L

• مثال:

- $L = \{a, aa\}, M = \{bd, bbdd\}$
 - $LM = \{abd, abbdd, aabd, aabbdd\}$

عمليات اللغات الشكلية

فئة فليين للغة L (Kleene closure) مسماة عن شخص اسمه كليين: فئة •

كل المفردات الناتجة من لصق 0 مفردة أو أكثر من مفردات لغة ما L

$$L^* = \cup_{i=0}^{\infty} L^i$$

عندما L^0 , L^0 عندي لصق صفر من مفردات اللغة L وهو يساوي فئة خالية $\{\varepsilon\}$ وهي تعني لاشئ.

 $L^* = \{arepsilon\} \cup \{wz \mid w \in L$ $\land z \in L^*\}$

 $L = \{at, bat, cat\}$ مثلاً:

 $L^* = \left\{ egin{array}{c} arepsilon, at, atat, atbat, atcat, \\ bat, batat, batbat, \\ batcat, catat, catbat, \\ atbatcat, batatcat, catatbat, ... \end{array}
ight\}$

أي أن L^* هي فئة كل احتمالات لصق لمفردات اللغة بمافيها الفئة الخالية

LANGUAGE **OPERATIONS**

عمليات اللغات الشكلية

نهاية إجابية للغة L (Positive closure): فئة كل المفردات الناجمة عن i لصق مفردة واحدة أو أكثر من مفردات لغة ما $_{\perp}$, أي لا يوجد فئة خالية

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

$$L = \{at,bat,cat\}$$
 عنگز: $L^+ = \{at,atat,bat,cat,atbat,atcat,batat,batcat, \\ catat,catbat, \\ atbatcat,batatcat,catatbat, ... \}$

أي فئة كل احتمالات لصق لمفردات اللغة ولكن بدون الفئة الخالية asain, University of Tripoli

عمليات اللغات الشكلية

الامتداد المحدود Finite exponential: فئة n للمفردات الناجمة عن

 L^n يساوي L لصق عدد محدد لمفردات لغة ما

$$,L^{0}=\{\varepsilon\}$$
 تكون $n=0$ عندما

$$L^n = L^{n-1}L$$
 و کلما کانت $n > 0$ فإن

$$L^4 = L^3 L$$
 عندما $n = 4$ فإن $L^4 = L^2 L L$ $L^4 = L L L L L$

عمليات اللغات الشكلية

$$L^n=L^{n-1}L$$
 عندما $n>0$ قإن $n=0$, وكلما كانت $n>0$ قإن $n=0$ عندما مثلاً اللغة

$$L = \{a, b, c, dd, ee, ff\}$$

عندما
$$n=1$$
 , $L^1=L=\{a,\ b,\ c,\ dd,\ ee,\ ff\}$

$$n=2$$
 , $L^2=LL=\left\{ \begin{array}{c} \\ \end{array}
ight.$

$$n=3, L^3=LLL=\Big\{$$

عمليات اللغات الشكلية

• مثلاً:

L هي فئة الحروف الإنجليزية الصغيرة والكبيرة

 $\boldsymbol{L} = \{\boldsymbol{A}, \boldsymbol{B}, \dots, \boldsymbol{Z}, \boldsymbol{\alpha}, \boldsymbol{b}, \dots \boldsymbol{z}\}$

و D هي فئة الأرقام

 $D = \{0, 1, \dots 9\}$

فإن $L(L \cup D)^*$ تعبر عن فئة كل المفردات من حروف وأرقام وتبدأ

بحرف ويعتبر هذا تعبيراً عن نمط صياغة المعرفات

(أسماء المتغيرات identifiers)

REGULAR EXPRESSIONS

التعبيرات النظامية

- التعبيرات النظامية هي صياغة مختصرة لوصف نص المفردات
- المعرفات في لغات البرمجة عبارة عن حرف متبوع بصفر أو أكثر من الحروف أو الأرقام
- Identifier → letter (letter | digit)*
- $ID \rightarrow L(L \cup D)^*$

- المُعرِف → حرف (حرف إرقم)*
- العمود | يعبر عن الاتحاد، وينطق أيضاً "أو" or
 - الأقواس () تستخدم لتجميع التعبيرات الجزئية
- النجمة * : تعني حدوث صفر أو أكثر من مابين الأقواس، Kleene Closure

REGULAR EXPRESSIONS

التعبيرات النظامية

- التعبيرات النظامية يتم بناؤها بالتكرار recursively من خلال تعبيرات نظامية صغيرة، وذلك باتباع قواعد معينة rules وهي:
- 1. إبسيلون ε تعبير نظامي يشير denotes إلى اللغة $L(\varepsilon)$ وتساوي $\{\varepsilon\}$, وهي فئة خالية لاتحتوي على نص
- 2. إذا كانت α هي رمز في الهجائية Σ , فإن α تكون تعبيراً نظامياً يشير إلى الفئة α وهي تحتوي على النص α
- L(a) حرف من حروف سيقما, فإن وجدت لوحدها فهي تعبير نظامي للغة التي تساوي $\{a\}$ كلغة من مفردة واحدة بطول رمز واحد

REGULAR **EXPRESSIONS**

التعبيرات النظامية

تقليدياً, تكتب التعبيرات بالخط العريض, مثل a, وتكتب الرموز بالخط المائل

a لغة التعبير النظامي

$$L(a) = \{a\}$$
 .a العادي, مثل

- بما أن التعبيرات الكبيرة تتألف من تعبيرات نظامية صغيرة, فهذه 4 تعبيرات جزئية أساسية:
 - $L(r) \cup L(s)$ هو تعبير "أو" ويشير إلى اتحاد اللغتين (r)|(s) هو 1.
 - L(r)L(s) هو تعبير يشير إلى لصق اللغتين (r)(s) .2
 - $(L(r))^*$ هو تعبير يشير إلى (r)* .3
 - L(r) هو تعبير عن اللغة (r) .4

REGULAR EXPRESSIONS PRECEDENCE

أسبقيات التعبيرات النظامية

- التعبيرات النظامية تحتوي أقواس يمكن الاستغناء عنها بشرط اتباع أسبقيات مشغلاتها
 - المشغل * له الأسبقية الأعلى
 - للصق concatenation الأسبقية الثانية
 - المشغل أو | له الأسبقة الأخيرة
 - طبعاً قراءة التعبيرات من اليسار إلى اليمين

 $a|b^*c$ وأ $a|(b^*c)$ بالتعبير $a|(b)^*(c))$ وأ $a|b^*c$ ملصقة بها a b closure وهي: a أو ملصقة بها a

{a, c, bc, bbc, bbbc, bbbbc, bbbbbc, bbbbbc, ...} =

أمثلة التعبيرات النظامية

- (a|b)(a|b) ما هي لغة التعبير •
- b و a او b التصق مع a أو b إلتصق مع a أو b •
- (a|b)(a|b) هل يمكنك كتابة تعبير آخر يعطي نفس اللغة الناتجة من التعبير و
 - aa|ab|ba|bb
 - a^* ما هى لغة التعبير •
 - الشئ, و كل احتمالات لصق a مع نفسها $\{ oldsymbol{arepsilon}, a,aa,aaa,aaaa,aaaa, ... \}$
 - $(a|b)^*$ ما هي لغة التعبير •
- b او احتمالات a الشئ, و كل احتمالات $\{arepsilon,aa,bb,aaa,bbb,aaa,bbb,...\}$
 - $a|a^*b$ ما هي لغة التعبير •
- b المفردة a و 0 أو عدد من a ملصق مع {a,b,ab,aab,aaab, ...}

خواص التعبيرات النظامية

مثل رياضي	وصف	قانون المسلَّمة Axiom
3+6 =3+6	تبدیلیة commutative	r s=s r
4+(3+6) = (ترابطية associative ترابطية	r (s t)=(r s) t
	اللصق ترابطية	(rs)t = r(st)
4 (3+6) = (4	اللصق توزيعي على (4x3+4x6	r(s t) = rs rt $(s t)r = sr tr$
3+0 = 3 0+3 = 3	adentity محايد للصق	$egin{aligned} arepsilon r &= r \ r &= r \end{aligned}$
	علاقة ع مع *	$oldsymbol{r}^* = (oldsymbol{r} oldsymbol{arepsilon})^*$
	* تكرارها كحدوثها مرة واحدة idempotent	$r^{**}=r^*$

REGULAR DEFINITIONS

تعريفات نظامية

• يمكن كتابة صيغة لتعريفات نظامية على النحو التالي:

- $d_1 \rightarrow r_1$
- $d_2 \rightarrow r_2$
- •
- $d_n o r_n$ عبارة عن اسم لتعريف definition عبارة عن اسم d_i على تعبير نظامى r_i
 - فئة هجائيات هذه التعريفات تتكون من جميع الرموز التي تعبر عنها التعريفات $\Sigma \cup \{d_1,d_2,\dots,d_n\}$ التعريفات

REGULAR DEFINITIONS

أمثلة لتعريفات نظامية

```
letter \rightarrow (a|b|c|...|z|A|B|C|...|Z)
       digit \rightarrow (0|1|2|3|4|5|6|7|8|9)
         id \rightarrow letter(letter|digit) *
         integer \rightarrow (+|-|\varepsilon)digit
         decimal \rightarrow integer.digit
real \rightarrow (integer|decimal)E(+|-)digit
```

REGULAR DEFINITIONS

اختصارات للتعريفات نظامية

$$letter \rightarrow (a|b|c|...|z|A|B|C|...|Z)$$

$$letter \rightarrow [a-zA-Z]$$
 یمکن أن تختصر:

$$digit \rightarrow (0|1|2|3|4|5|6|7|8|9)$$

$$digit
ightarrow [0-9]$$
 یمکن أن تختصر:

REGULAR DEFINITIONS

أمثلة لتعريفات نظامية

$$if \rightarrow if$$

 $then \rightarrow then$

 $else \rightarrow else$

$$relop \rightarrow <|>|=|<=|>=|<>$$

while → while

 $int \rightarrow int$

تمارين التعبيرات النظامية

REGULAR EXPRESSION Exercises