

## 蛟龙四班 算法复杂度分析、枚举

Mas

Part-1

C++语法回顾

| 数据类型    | 定义标识符                   | 占字节数    | 数值范围                                            | 表示范围                           |
|---------|-------------------------|---------|-------------------------------------------------|--------------------------------|
| 短整型     | short [int]             | 2(16位)  | -32768~32767                                    | $-2^{15}$ ~ $2^{15}$ - $1$     |
| 整型      | [long] int              | 4(32位)  | -2147483648~2147483647                          | $-2^{31}$ ~ $2^{31}$ - $1$     |
| 长整型     | long [int]              | 4(32位)  | -2147483648~2147483647                          | $-2^{31}$ ~ $2^{31}$ - $1$     |
| 超长整型    | long long [int]         | 8 (64位) | $-9223372036854775808 \sim 9223372036854775807$ | $-2^{63}$ $\sim$ $2^{63}$ $-1$ |
| 无符号整型   | unsigned [int]          | 2(16位)  | 0~65535                                         | $0\sim$ 2 <sup>16</sup> -1     |
| 无符号短整型  | unsigned short<br>[int] | 2(16位)  | 0~65535                                         | 0~216-1                        |
| 无符号长整型  | unsigned long [int]     | 4(32位)  | 0~4294967295                                    | $0\sim 2^{32}-1$               |
| 无符号超长整型 | unsigned long long      | 8 (64位) | 0~18446744073709551615                          | $0\sim$ 2 <sup>64</sup> $-1$   |

| 数据类型   | 定义标识符       | 数值范围                   | 占字节数      | 有效位数   |
|--------|-------------|------------------------|-----------|--------|
| 单精度实型  | float       | -3. 4E-38∼3. 4E+38     | 4(32位)    | 6~7位   |
| 双精度实型  | double      | −1. 7E+308~1. 7E+308   | 8 (64位)   | 15~16位 |
| 长双精度实型 | long double | -3. 4E+4932∼1. 1E+4932 | 16 (128位) | 18~19位 |
| 布尔变量   | bool        | 真true或假false之一         | 1 (8位)    |        |

### IO流

### 重定向

在一般情况下,我们都会从控制台(中进行输入stdin和输出stdout,通过文件重定向可以从文件进行输入和输出

- C/CPP
  - 从Xxx.in文件中读入:

```
freopen("xxx.in", "r", stdin);
```

• 向xxx.out文件输出:

freopen("xxx.out", "w", stdout);



### 快速读入

- 一般情况下,C/CPP读取数据都是以字节流的形式读取, 速度较慢
  - C++快读(字符流读入)

```
int read()
   int x = 0, f = 1;
   char ch = getchar();
   while (ch < '0' || ch > '9')
       if (ch == '-')
           f = -1;
       ch = getchar();
   while (ch >= '0' && ch <= '9')
       x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
   return x * f;
```

Part-2 算法复杂度

### 算法复杂度



- TLE:
  - Time Limit Exceeded 程序运行超过了时间限制
- MLE:
  - Memory Limit Exceeded 程序运行时使用了超过内存限制的空间

• 算法的复杂度是用来衡量算法好坏的一个指标,常用时间复杂度和空间复杂度,它们一般都是关于输入数据量的函数,例如O(n),O(n^2),O(log n)





• 时间复杂度只关心算法中最耗时的部分,舍去常数部分,通常用简单的函数O来表示

• 这段代码复杂度为O(n)

• 这段代码复杂度为O(n\*m)

• 这段代码复杂度为O(logn)

for(i=1;i<=n;i++) .....(内部没有循环)

for(i=1;i<=n;i++) for(j=1;j<=m;j++) ......(内部没有循环)

while(n) n /= 2;

### 时间复杂度简单分析



• 时间限制: 1000ms能干些什么?

• 数量级小于等于5e8基本上可以认为在1000ms不会超时

• 如果数量级5e8~1e9中,有一定可能会超时

| 时间复杂度    | 1000ms处理数据量 |
|----------|-------------|
| O(n)     | <=5e8       |
| O(n^2)   | <=10000     |
| O(n^3)   | <= 500      |
| O(n!)    | <= 11       |
| O(2^n)   | <=25        |
| O(nlogn) | < 1e6       |
| O(logn)  | <=1e16      |
| 1        | \           |

### 空间复杂度



- 空间限制: 256MB能干些什么?
- 256MB = 2^8MB = 2^18KB = 2^28 B
- $4B = 1 \uparrow int (32 \triangle)$
- 256MB =  $2^26$  int = 67,108,864  $\uparrow$  int  $\approx 6*10$   $\uparrow$  int
- 结论: 256MB的内存空间最多大约能开的int数组长度为60000000

在函数内声明的基本数据类型都分配在栈上,在函数外声明的数据类型都分配在堆上 主流OJ对于栈内存大小限制为128MB,如果需要分配较多空间,建议写在函数外

Part-3 枚举

### 枚举



枚举就是根据提出的问题, ——列出该问题的所有可能的解。

在逐一列出的过程中,检验每个可能解是否是问题的真正解,如果是就采纳这个解,如果不是就继续判断下一个。

枚举法一般比较直观,容易理解,但由于要检查所有的可能解,因此**运行效率较低**。 能够用枚举法解决的题目往往是最简单的一类题目。

#### 这种题目具有以下特点:

- 1. 解枚举范围是有穷的
- 2. 检验条件是确定的

枚举题解题解题套路

- ·确定枚举范围
- ·写出条件判断表达式



### #87 合数的因子



#### 【题目描述】

输入一个正整数,输出所有的因子。

#### 【输入格式】

一个整数。

#### 【输出格式】

若干个整数,每个整数后面一个空格,最后不换行。

#### 【输入样例】

12

#### 【输出样例】

1 2 3 4 6 12

```
#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
        if (n % i == 0)
            cout << i << " ";
    return 0;
}</pre>
```

范围: 小于1的所有自然数, 也就是1~n

条件: 能把n 除尽的数, 也就是n % i == 0

### #104 知识竞赛



#### 【题目描述】

某次知识竞赛共有 25 题,评分标准如下:答对一题得 8 分,答错 1 题倒扣 5 分,不答题不得分也不扣分。小明答题得分是 60 分,问小明答对、答错、不答对各有多少题?

#### 【输入格式】

输入二个整数 n , m , 分别是题目数量和得分分数。

#### 【输出格式】

输出三个整数,分别是答对、答错、不答的题目数。

#### 【输入样例】

20 55

#### 【输出样例】

10 5 5

- 如何枚举?
- 需要枚举那些变量?
- 时间复杂度是多少?





| 枚举变量 | 含义     | 范围  |
|------|--------|-----|
| i    | 答对题目数量 | 0∼n |
| j    | 答错题目数量 | 0∼n |
| k    | 不答题目数量 | 0~n |

| 变量 | 含义     | 范围      |
|----|--------|---------|
| i  | 答对题目数量 | 0∼n     |
| j  | 答错题目数量 | 0∼n-i   |
| k  | 不答题目数量 | 0∼n-i-j |

| 变量 | 含义     | 范围    |
|----|--------|-------|
| i  | 答对题目数量 | 0~n   |
| j  | 答错题目数量 | 0∼n-i |
|    |        |       |

#### 直接枚举i、j、k

#### 条件:

#### 枚举 i、j、k ,去掉无意义的情况

#### 条件:

#### 枚举 i、j,直接根据条件计算k

#### 条件:

8\*i-5\*j == m

时间复杂度O(n^2)

### #901 铺地毯



#### 题目描述

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1 到 n 。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

#### 输入输出格式

#### 输入格式:

输入共 n+2 行

第一行,一个整数 n ,表示总共有 n 张地毯

接下来的 n 行中,第 i+1 行表示编号 i 的地毯的信息,包含四个正整数 a,b,g,k ,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a,b) 以及地毯在 x 轴和 y 轴方向的长度

第 n+2 行包含两个正整数 x 和 y ,表示所求的地面的点的坐标 (x,y)

#### 输出格式:

输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1

### #874 四方分解



#### 【描述】

有一个定理: 对于任意一个正整数 n , 可以分解为不超过 4 个自然数的平方和。 比如

$$25 = 1^2 + 2^2 + 2^2 + 4^2 = 3^2 + 4^2 = 4^2 + 3^2 = 5^2$$

显然有 4 种方法,但是  $3^2+4^2$  ,  $4^2+3^2$  算 1 种

所以 25 能分解的方法共有 3 种

#### 【输入格式】

-个正整数 n ( $1 \le n \le 32768$ )

#### 【输出格式】

一个整数,代表分解方案数

#### 【样例输入】

25

#### 【样例输出】

直接枚举四个数: 时间复杂度O(n^4)

可以更高效吗?

### #1025 最大公约数和最小公倍数问题



#### 题目描述

輸入二个正整数  $x_0$ ,  $y_0$  (  $2 \leq x_0 \leq 1000000$  ,  $2 \leq y_0 \leq 1000000$  ) , 求出满足下列条件的 P , Q 的个数。 条件:

1. P, Q 是正整数 ;

2. 要求 P, Q 以  $x_0$  为最大公约数 , 以  $y_0$  为最小公倍数。

试求:

满足条件的所有可能的两个正整数的个数。

#### 输入

每个测试文件只包含一组测试数据,每组两个正整数  $x_0$  和  $y_0$  ( $2 \le x_0 < 1000000$ ,  $2 \le y_0 \le 1000000$ )。

#### 输出

对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。

#### 样例输入

3 60

#### 样例输出

4

```
for (int p = x; p <= y; p++)
    for (int q = x; q <= y; q++)
    {
        int g = __gcd(p, q), l = p / g * q;
        if (g == x && l == y)
            ans++;
     }</pre>
```

枚举 p,q, p,q 范围为 x ~ y,分别求出最大公约数和最小公倍数

 $\Rightarrow$  N = y - x,T = min(p,q)

求最大公约数时间复杂度为O(logT)

总时间复杂度近似为 O(N\*N\* logT)





```
性质
```

```
p*q = gcd(p,q) * lcm(p,q)

p*q = x*y
```

枚举 p , 枚举范围为 x ~ y , 步长为 x , 根据性质直接求出 q

```
令 N = ( y - x ) / x, T = min(p,q)
时间复杂度为 O( N*logT )
```

### #1090 两数之和



#### 题目描述

给定一个长度为  $n(n \leq 50000)$  的有序数组,请你求出两个元素之和为 sum 的下标

#### 输入描述

第一行两个整数 n 、 sum 接下来一行 n 个整数

#### 输出描述

两个整数,表示第一个元素的下标和第二个元素的下标(下标从 0 开始) 如果无解则输出 ERROR

#### 输入样例

6 30

1 3 5 9 15 25

#### 输出样例

两重循环枚举,一层确定a[i],另一层查找k-a[i]是 否存在,总时间复杂度O(n\*n)

借助数组有序,查找可用二分查找(O(logn))。总时间复杂度O(n\*logn)

是否有更高效的解法?





#### 题目描述

1、2、 $3\ldots\ldots n$  这  $n(0 < n \le 10^{18})$  个数中有多少个数可以被正整数 b 整除。

#### 输入

第一行包含一个整数  $T(1 \le T \le 10^5)$  每组数据占一行,每行给出两个正整数  $n(0 < n \le 10^{18})$  、  $b(1 \le b \le 10^{18})$  。

#### 输出

输出每组数据相应的结果。

#### 样例输入

3 2 1 5 3 10 4

#### 样例输出

```
2
1
2
```

对于每一次询问,从1~n枚举能被b整除的数总时间复杂度O(T\*n)

是否有更高效的解法?

### 枚举优化的方法



#### **Big-O Complexity Chart**

- 尽可能减少循环的次数
- 尽可能减少枚举的变量(减少循环的层数)
- 用空间换时间
- 对数据进行预处理



Elements



# 谢谢观看