1 | inner product

def

An *inner product* on V is a function that takes each ordered pair (u,v) of elements of V to a number $\langle u,v\rangle\in$ and has the following properties

- positivity $\langle v, v \rangle \ge 0 \forall v \in V$
- definiteness $\langle v, v \rangle = 0 \iff v = 0$
- additivity in first slot $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle \forall u,v,w,\in V$
- homogeneity in first slot $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \forall \lambda \in u, v \in V$
- conjugate symmetry $\langle u,v\rangle=\overline{\langle v,u\rangle} \forall u,v\in V$
 - Over the reals, this is equal to $\langle u, v \rangle = \langle v, u \rangle$

2 | motivation

2.1 | The norm of a complex number $\|z\|$ should be non-negative, so we can define it as

$$||z|| = \sqrt{|z_1|^2 + \dots + |z_n|^2}$$

Since the square of the absolute value is just a complex number times a conjugate, and because the norm squared should be the inner product of z with itself, maybe the inner product of $w, z \in {}^n$ should equal

$$w_1\overline{z_1} + \cdots + w_n\overline{z_n}$$

2.2 | positivity: we want inner product to be the size of the vector, so it should be a positive and real number

2.3 | notation

For a complex scalar $\lambda\in$, $\lambda\geq0$ means λ is real and non-negative $\langle u,v\rangle$ denotes an inner product.

3 | intuition

- 3.1 | additivity/homogeneity in the first slot also implies additivity in the second slot, and 'conjugate homogeneity in the second slot'
- 3.2 | we want the norm to be a real scalar, so we need to take the complex conjugate of the second one
- 3.2.1 |so, the Euclidean inner product is conjugate the second, then dot product

$$\langle u, v \rangle = u\overline{z}$$

Taproot • 2021-2022 Page 1