Recurrent Neural Networks III

Dr. Parlett-Pelleriti

Text Processing

Standardization

The cat in the hat sat at the table and ate a bat.

The cat in the hat sat at the table and ate a bat.

the cat in the hat sat at the table and ate a bat

the cat in the hat sat at the table and ate a bat

the cat in the hat sat at the table and ate a bat

the cat in the hat sat at the table and ate a bat

Out of Vocab Token

the cat in the hat sat at the table and ate a **platypus**

Out of Vocab Token

the cat in the hat set the table and ate a platypus

the 0 cat 0 0 in 0 hat 0 sat 0 at table 0 and 0 ate 0 0 а bat 0

the cat in the hat sat at the table and ate a **platypus**

the 0 cat 0 0 in 0 hat 0 sat 0 at table 0 and 0 ate 0 0 а bat 0 [UNK]

the cat in the hat sat at the table and ate a **platypus**

The cat in the hat sat at the table and ate a bat.

[1,0,0,0,0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0,0,0,0]

... [0,0,0,0,0,0,0,0,0,0,0,1]

Miscellaneous Text Processing

Stems

I was sitting on the bench and I thought that it was a nice place to sit and think about life.

I was [sit] on the bench and I [think] that it was a nice place to [sit] and [think] about life.

Bag-Of-Words

The cat in the hat sat at the table and ate a bat

Set vs. Sequence

The cat in the hat sat at the table and ate a bat

Sequence


```
['i', 'i was', 'was', 'was sitting', 'sitting', 'sitting on', 'on', 'on the', 'the', 'the bench', 'bench', 'bench and', 'and', 'and i', 'i', 'i thought', 'thought', 'thought', 'that', 'that it', 'it', 'it was', 'was', 'was a', 'a', 'a nice', 'nice', 'nice place', 'place', 'place to', 'to', 'to sit', 'sit', 'sit and', 'and', 'and think', 'think', 'think about', 'about' life']
```

TF-IDF

term frequency, inverse document frequency

$$tf = \frac{\text{frequency of word}}{\text{\# of words in document}}$$

$$idf = \frac{\text{\# of Documents}}{\text{\# of Documents that contain word}}$$

$$tfidf = tf * idf$$

Cosine Similarity of Word Counts

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Image from: https://deepai.org/machine-learning-glossary-and-terms/cosine-similarity

Word Embeddings

Embeddings

$\lceil 0.1 \rceil$		[0.2]
0.2		0.4
0.4		0.5
0.2		0.9
0.6		0.3
aoraeous	·	pvthon

Word2Vec NN

- **Problem**: Fill in the Blank
- Use context to learn words' meanings
- Side Effect: Word Embeddings!

The cat ate

The cat ate

CBOW vs. Skip Gram

- Continuous Bag of Words: Predict target word from context words
- Skip Gram: Predict context words from target word

the The cat ate 0.4 0.2 0 0.05 0 0.05 0 0 0.2 0 0 0.1 0 0 cat 0 0.1 0 0 0.1 0 0.5 0.1 0 0.1 0 0.1 0

ate

Word Embedding Example

This is a word embedding for the word "king" (GloVe vector trained on Wikipedia):

```
[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ]
```

Word Embedding Example

We need high dimensional embeddings so we have more set of the state o flexibility for words to be similar in different dimensions

Other Word Embeddings

- Word2vec
- GloVe
- Train your own during GD

Transformer Models You Might Know

- BERT
- GPT
- Language Translations