A2B32DAT Datové sítě

Ing. Pavel Bezpalec, Ph.D.

Katedra telekomunikační techniky FEL ČVUT v Praze

Bezpalec@fel.cvut.cz

WAN - vlastnosti

- ü Geograficky rozlehlá datová síť
- ü Používá spodní tři vrstvy OSI modelu
- ü Používá datové spoje se sériovým rozhraním
- ü Poskytuje spojení
 - pevné
 - komutované
- ü Je tvořena sítěmi LAN
- ü Přenáší všechny typy provozu
 - telefonní
 - datový

Rozlehlost sítě

ü R – parametr rozlehlosti datové sítě

pro sítě LAN R à 1

• pro sítě WAN: R > 1

$$R_{LAN} < R_{MAN} < R_{WAN}$$

$$R = \frac{D_p}{8B} v_p$$

WAN – technologie

- üVyhrazené (pronajaté) okruhyüPřepojování okruhůüPřepojování (komutace) zpráv
 - celá datová zpráva od úč. A se uloží v nejbližším telco uzlu, je opatřena adresami a čeká na odbavení k úč. B
- üPřepojování (komutace) paketů
 - · rozdělení zprávy na menší části, pakety

WAN – stavební prvky sítě

ü Router

• základní prvek, směrovač provozu na 3. vrstvě (IP, X.25 ...)

üWAN switch

• základní prvek, přepínač provozu na 2. vrstvě (MPLS, FrameRelay, ATM ...)

ü Modem, TA

zařízení pro přenos dat v telefonních sítích (POTS, ISDN)

ü Komunikační server

koncentrátor komutovaného přístupu

WAN – fyzická vrstva

- ü Popisují elektrické, mechanické, protokolové a funkční charakteristiky pro služby WAN sítí
- ü Popis rozhraní mezi DTE a DCE
- ü Synchronní nebo asynchronní

WAN – spojová vrstva

ü Definuje zapouzdření protokolových jednotek vyšší vrstvy

- HDLC (základní zapouzdření)
- PPP
- MLPS
- FrameRelay
- ISDN LAPD
- X.25 LAPB

WAN – síťová vrstva, paket

ü datová jednotka, která se pro účely směrování v datové síti přenáší jako celek

ü délka paketu není obecně omezena

Frame Relay – vlastnosti

- ü Přenosová rychlost
 - 64 kbit/s až 2,048 Mbit/s
- ü Proměnná délka rámce
 - do 8189 oktetů
- ü Přenos po dvoubodových datových okruzích
- ü Služba se spojením
 - nejčastěji po stálých virtuálních okruzích
- ü Detekce chyb v rámcích
 - oprava chyb je funkcí DTE
- ü Transparentní přenos
 - kódově nezávislý
- ü Multiprotokolová plaforma
 - podporuje různé typy síťových protokolů (IP, IPX ...)

- 2a tvorba rámců, detekce chyb, adresování
- 2b přizpůsobení pro síť. vrstvu
- rozdělení na podvrstvy
- ITU-T Q.922 Annex A
- protokol LAP-F (vychází z HDLC)
- 2 spojová vrstva
- 1 fyzická vrstva

Frame Relay – virtuální okruhy

- **ü** PVC (Permanent Virtual Circuit)
 - pevný virtuální okruh
 - přidělen poskytovatelem služby
 - není třeba sestavovat spojení pro každý přenos dat
 - funkční stavy
 - přenos dat mezi DTE a DCE
 - čekání spojení je aktivní avšak bez přenosu dat
- ü SVC (Semi-permanent Virtual Circuit)
 - přepínaný virtuální okruh
 - pro spojeni v B- i v D-kanále ISDN
 - nepoužívá se

- ü FRAD (Frame-Relay Access Device)
 - přístupový směrovač
 - mapování IP adresy a DLCI
- **ü** DLCI (Data-Link Connection Identifier)
 - identifikátor virtuálního kanálu
 - mezi uživatelem a FRAD
 - pouze lokální význam !!!
 - přiděluje provozovatel sítě

ü iARP

- dynamický protokol
- mapování IP adresy a DLCI

Frame Relay – DLCI

ATM - úvod

- ü navržena jako univerzální přenosová technologie
- ü navržena a standardizována ITU-T pro realizaci širokopásmové sítě B-ISDN
- ü založena na principu paketového přenosu dat se sestavením spojení
 - kompromis mezi "světem telekomunikací" a "počítačů"

ü řešení pro LAN i WAN

- implementace ve WAN bez problémů
- implementace v LAN s jistým omezením
 - ATM neumí broadcast
 - emulace LAN

ATM – virtuální kanály a cesty

ü identifikace komunikačního kanálu

- identifikátor virtuálního kanálu VCI
 - součást jediné virtuální cesty
 - přepojování: ATM switch (ATM ústředna)
- indetifikátor virtuální cesty VPI
 - přepojování: ATM cross connect (digitální ATM rozvaděč)

ATM – příklad virtuálního spojení

<u>Digitální rozvaděč ATM</u> přepíná VP. nemění VC

ATM – třídy služeb

t ř ída služby	А	В	С	D	
služba	Ş	á	beze spojová		
synchronizace terminál ů	ar	סר	ne		
p ř enosová rychlost	konstantní				
přístupový bod	SAP 1	SAP 2	SAP 3	SAP 4	

ü třída A

 přenos zakódovaných analogových signálů

ü třída B

 přenos video signálů s proměnnou přenosovou rychlostí

ü třída C

 přenos dat "přepojováním paketů"

ü třída D

- bezespojová služba
- směrovací informace je v záhlaví

MPLS - MultiProtocol Label Switching

- ü Nová alternativa přenosu IP paketů sítí WAN
- ü Přepíná pakety po definované cestě na základě návěstí v doplněném záhlaví protokolu MPLS
- ü Aplikovatelná pro různé protokoly a technologie
 - Eth, FR, ATM, IP ...
- ü Vypracována organizací IETF
- ü Přiblížení přenosových rychlostí IP sítí ke spojově orientovaným technologiím (ATM, FR)
- ü Další vývoj
 - MPλS
 - G-MPLS

- ü Vlastnosti
 - přepínání × směrování
 - vytváření virtuálních privátních sítí
 - VPN Virtual Private Network
 - řízení provozu
 - Traffic Engineering
 - zajištění kvality služby
 - QoS Quality of Service

Využití technologie MPLS

MPLS - výhody, nevýhody

- + směrování probíhá pouze v hraničních směrovačích sítě
- + přepínání podle návěstí (*label switching*) zvyšuje přenosovou kapacitu
- + poskytuje kvalitu služby (QoS)
- zakrývá spojovou vrstvu a rozdíly mezi různými protokoly spojové vrstvy

- přidána další vrstva
- směrovač musí "rozumět" technologii MPLS

Kvalita služby v sítích LAN, WAN

Internet a kvalita služby

üInternet je síť "dobré vůle" üpravidla provozu Internetu (z r. 1970)

- žádnému provozu nebude odmítnut přístup
- se vším provozem se bude zacházet stejně
- jediná garance princip best effort
 - přenos co nejlepším způsobem s rovnou příležitostí

üKvalita služby (QoS) dle ITU-T E.800

 "souhrnný výsledek výkonnosti služby, který určuje stupeň spokojenosti uživatele služby"

QoS v Internetu

ü Charakteristiky QoS pro Internet

zpoždění

- LATENCY
- doba od odeslání dat k příjmu
- rozptyl

- **JITTER**
- variabilita zpoždění
- pásmo

- **BANDWIDTH**
- kapacita pro přenos dat
- ztrátovost informace INFORMATION LOSS
 - četnost ztracených paketů PLR (Packet Loss Rate)
- pohotovost

- **AVAILABILITY**
- procentní pohotovost služby za určitou dobu

Obecné metody zajištění QoS

üPředimenzování spoje

• 1Gbit/s, 10Gbit/s, 40Gbit/s, 100Gbit/s ...

üRezervace pásma

ATM, IntServ

üPoužití prioritních schémat

ATM, MPLS, DiffServ

IntServ – integrované služby

- ü IntServ služba sítě
 - na základě požadavku síť vyhradí požadované pásmo pro aplikaci
- ü Pouze jednosměrná rezervace
 - konverzace = dvě rezervace
- ü Náročná signalizace mezi uzly sítě
 - zvýšení režie
- ü Musí podporovat všechny uzly sítě
- **ü** Nezajišťuje prioritizaci
- ü Není dostatečně škálovatelná
- ü Do paketového přenosu se zavádí okruhy

- ü RSVP protokol na rezervaci prostředků
 - Resource ReSerVation Protocol
- ü Nese požadavky o rezervaci napříč celou sítí
 - specifikace provozní, o kvalitě služby, zdrojích sítě
- ü Nepodporuje směrování
 - na směrovacích protokolech je závislý
- ü Podpora pro multicast
- ü Agregace požadavků
- ü Dobrá kompatibilita
 - IPv4, IPv6

RSVP – průběh rezervace

ü Postup rezervace – od přijímače ke zdroji

- 1. RESV požadavek na vytvoření, zrušení nebo změnu rezervace
- 2. PATH potvrzení, zmítnutí rezervace, výzva k aktualizaci, chybová hlášení ...
- 3. vlastní přenos dat

DiffServ – diferencované služby

- ü Prioritní systém
 - · rozčlenění služeb dle nároku na prostředky
- ü Používá pole TOS z paketu IPv4, nebo DS z IPv6
 - pole DSCP kód služby, 6 bitů è 64 tříd provozu

Porovnání: IntServ ´ DiffServ

IntServ

- ü velmi dobré garance
- ü účast všech směrovačů
- ü vyšší nároky na směrovače
 - paměť
 - výpočetní výkon
 - složitost
- ü uplatnění
 - podnikové sítě

DiffServ

- **ü** třídy provozu jsou definovány sítí
 - není třeba signalizace
 - klasifikaci provozu provádí koncový systém
- ü jednodušší na správu
- ü složitost mechanismu se posouvá na okraj sítě
- **ü** uplatnění
 - páteřní sítě

Dotazy

Zkouška

ü Forma zkoušky: test, cca 25 otázek

- typu výběr z x možných
- volná odpověď
- jednoduchý výpočet

ü Znalosti ke zkoušce

- problematika přednášek
- problematika cvičení

37 – 40	Α
33 – 36	В
29 – 32	С
25 – 28	D
21 – 24	Ε
0 – 20	F

ü Celkové hodnocení

zkouška (max. 30 bodů) + cvičení (max. 10b)

Zkouškové termíny

Datum	Začátek	Konec	Místo	Par.	Uzávěrka (celková)	Uzávěrka odhlášení	Kapacita	Obsazení
4.1.2011	9:00	12:00	T2:C3-54		3.1.2011		50	34
10.1.2011	9:00	12:00	T2:C3-132		9.1.2011		50	39
18.1.2011	9:00	12:00	T2:C3-54		17.1.2011		40	7
20.1.2011	9:00	12:00	T2:B3-703		19.1.2011		20	10
25.1.2011	9:00	12:00	T2:B3-601		24.1.2011		0	0
27.1.2011	9:00	12:00	T2:B3-703		26.1.2011		20	11
1.2.2011	9:00	12:00	T2:B3-703		31.1.2011		0	0
3.2.2011	9:00	12:00	T2:B3-703		2.2.2011		20	0

© 2010 České vysoké učení technické v Praze, Fakulta elektrotechnická

Právní doložka (licence) k tomuto Dílu (elektronický materiál)

České vysoké učení technické v Praze (dále jen ČVUT) je ve smyslu autorského zákona vykonavatelem majetkových práv k Dílu či držitelem licence k užití Díla. Užívat Dílo smí pouze student nebo zaměstnanec ČVUT (dále jen Uživatel), a to za podmínek dále uvedených.

ČVUT poskytuje podle autorského zákona, v platném znění, oprávnění k užití tohoto Díla pouze Uživateli a pouze ke studijním nebo pedagogickým účelům na ČVUT. Toto Dílo ani jeho část nesmí být dále šířena (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), rozmnožována (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), využívána na školení, a to ani jako doplňkový materiál. Dílo nebo jeho část nesmí být bez souhlasu ČVUT využívána ke komerčním účelům. Uživateli je povoleno ponechat si Dílo i po skončení studia či pedagogické činnosti na ČVUT, výhradně pro vlastní osobní potřebu. Tím není dotčeno právo zákazu výše zmíněného užití Díla bez souhlasu ČVUT. Současně není dovoleno jakýmkoliv způsobem manipulovat s obsahem materiálu, zejména měnit jeho obsah včetně elektronických popisných dat, odstraňovat nebo měnit zabezpečení včetně vodoznaku a odstraňovat nebo měnit tyto licenční podmínky.

V případě, že Uživatel nebo jiná osoba, která drží toto Dílo (Držitel díla), nesouhlasí s touto licencí, nebo je touto licencí vyloučena z užití Díla, je jeho povinností zdržet se užívání Díla a je povinen toto Dílo trvale odstranit včetně veškerých kopií (elektronické, tiskové, vizuální, audio a zhotovených jiným způsobem) z elektronického zařízení a všech záznamových zařízení, na které jej Držitel díla umístil.