02 January 2023 12:38







- The k-step ahead forecast is given by combining the level estimate at time t (Lt) and trend estimate at time t (Tt):  $F_{t+k} = L_t + kT_t$
- The level and trend are updated by the equations:

$$L_{t} = \alpha y_{t} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$U_{t} = U_{t}$$





## FRED-NROUST.csv

| Model                              | RMSE                 |  |  |
|------------------------------------|----------------------|--|--|
| SES                                | 0.033868423955341384 |  |  |
| Holt's Linear                      | 0.017038778525156884 |  |  |
| Holt's Exponential                 | 0.016618469464718837 |  |  |
| Additive Trend                     | 0.005611647380117347 |  |  |
| Multiplicative Trend               | 0.005449834442543947 |  |  |
| Holt-Winters Additive              | 0.03363932722649928  |  |  |
| Holt-Winters Multiplicative        | 0.030497159323824734 |  |  |
| Damped Holt-Winters Additive       | 0.014981092470453976 |  |  |
| Damped Holt-Winters Multiplicative | 0.01597452974533468  |  |  |

## BUNDESBANK-BBK01\_WT5511.csv

Differencia:

$$y_1 - y_{t-1}$$
 $y_2 - y_1$ 
 $y_2 - y_1$ 
 $y_3 - y_2$ 
 $y_3 - y_2$ 
 $y_4 - y_3$ 
 $y_4 - y_3$ 
 $y_5 - y_4$ 
 $y_5 - y_4$ 
 $y_5 - y_5$ 
 $y_6 - y_5$ 
 $y_6 - y_5$ 
 $y_6 - y_5$ 

Differencia:

 $y_1 - y_2 - y_1$ 
 $y_2 - y_1$ 
 $y_3 - y_2$ 
 $y_4 - y_3$ 
 $y_5 - y_4$ 
 $y_5 - y_4$ 



Simple Moving Average Model (MA Model) 
$$y_t = \mu + \epsilon_t + \theta \epsilon_{t-1} : \text{order 1}$$
 
$$y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} : \text{order 2}$$

$$y_t = \mu + \epsilon_t + 0, \epsilon_{t-1} + 0_2 \epsilon_{t-2} + \cdots + 0_q \epsilon_{t-q} : order q$$

ARMA Model

Seasonal ARIMA

## FRED-NROUST.csv

Test: Last 8 observations

Package sktime

forecaster = make\_reduction(regressor, window\_length=12)

|                   | $X_{i}$               | Xz             | XIZ                 | Y               |
|-------------------|-----------------------|----------------|---------------------|-----------------|
| y <sub>2</sub>    | 3,                    | 72             | <br>912             | y 13            |
|                   | y_                    | y <sub>3</sub> | <br>y <sub>l3</sub> | 914             |
| $\mathcal{I}_{n}$ | <b>9</b> <sub>3</sub> | y <sub>4</sub> | <br>914             | y <sub>15</sub> |