Partiel de Statistique I Université de Lorraine

Intervalles de confiance et estimateur du maximum de vraisemblance

Clément Dell'Aiera - Allan Merino

1 Intervalles de confiance

- 1. Soient $\mu \in \mathbb{R}$, $\sigma > 0$ et $\alpha \in (0,1)$. On observe un *n*-échantillon $\underline{x} = (X_1, ..., X_n)$ de variables iid de loi normale $\mathcal{N}(\mu, \sigma^2)$.
 - (a) Donner un intervalle de confiance de niveau α pour μ , si σ^2 est connu, puis si σ^2 est inconnu.
 - (b) Donner un intervalle de confiance de niveau α pour σ^2 , si μ est connu, puis si μ est inconnu.
- 2. On observe un n-échantillon $\underline{Y} = (Y_1,...,Y_n)$ de variables iid suivant une loi de Bernoulli de paramètre 0 inconnu. Donner un intervalle de confiance pour <math>p au niveau α .

2 Estimateur du maximum de vraisemblance

On observe un n-échantillon $\underline{x}=(X_1,...,X_n)$ de variables iid suivant une loi \mathbb{P}_{θ} de densité :

$$f_{\theta}(x) = \frac{2}{\sqrt{\pi}\theta^{3/2}} x^2 e^{-\frac{x^2}{\theta}}, \text{ pour } \theta > 0.$$

- 1. Décrire le modèle statistique engendré par \underline{x} .
- 2. Calculer un estimateur du maximum de vraisemblance, que l'on notera $\hat{\theta}.$
- 3. Examiner les qualités suivantes de $\hat{\theta}$: efficacité, biais et convergence.

On observe un *n*-échantillon $\underline{x} = (X_1, ..., X_n)$ de variables iid suivant une loi exponentielle de paramètre $\lambda > 0$, de densité

$$g_{\lambda}(x) = \lambda e^{-\lambda x} 1_{x>0}.$$

- 1. Décrire le modèle statistique engendré par \underline{x} .
- 2. Calculer la vraismeblance du modèle.
- 3. Donner un estimateur du maximum de vraisemblance pour λ .

3 Estimation de la fonction de répartition

On se donne un n-échantillon $X_1,..., X_n$ i.i.d suivant une loi donnée par la même fonction de répartition (f.d.r) F sur \mathbb{R} . \mathcal{F} dénote l'ensemble des fonctions de répartition sur \mathbb{R} .

- 1. Décrire l'expérience statistique.
- 2. Le modèle est-il dominé?
- 3. On veut estimer $F(x) = \mathbb{P}(X \leq x)$.
 - (a) On pose $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}$. Calculer $\mathbb{E}[\hat{F}_n(x)]$ et $V[\hat{F}_n(x)]$.
 - (b) Montrer que $\hat{F}_n(x)$ converge presque-sûrement vers F(x).
 - (c) Montrer que, si $l(x,y) = (x-y)^2$ est la perte quadratique,

$$\sup_{F \in \mathcal{F}} \mathbb{E}[l(\hat{F}_n(x), F(x))] = \frac{1}{4n}.$$

- (d) En déduire que $\hat{F}_n(x)$ converge uniformément en norme \mathcal{L}^2 vers F(x), et donc en probabilité.
- 4. (a) Montrer que

$$\mathbb{P}(|\hat{F}_n(x) - F(x)| > t) \le \frac{1}{t^2} Var[\hat{F}_n(x)] \le \frac{1}{4nt^2}$$

(b) Soit $\alpha \in]0;1[$. Déterminer

$$t_{\alpha,n} = \inf\{t > 0 : \frac{1}{4nt^2} \le \alpha\}$$

et en déduire un intervalle de confiance pour F(x) de niveau $1 - \alpha$.

- (c) Comment interpréter $I_{n,\alpha}$? Quelle est sa précision?
- 5. On pose $\xi_n = \sqrt{n} \frac{\hat{F}_n(x) F(x)}{\sqrt{\hat{F}_n(x)(1 \hat{F}_n(x))}}$
 - (a) Déterminer la limite en loi de ξ_n .
 - (b) On note $J_{n,\alpha}$ l'intervalle $[-\phi^{-1}(1-\frac{\alpha}{2});\phi^{-1}(1-\frac{\alpha}{2})]$. Calculer la limite de $\mathbb{P}(\xi_n\in J_{n,\alpha})$ lorque n tend vers ∞ .
 - (c) Donner un intervalle de confiance asymptotique pour $J_{n,\alpha}$, ainsi que sa précision asymptotique.
- 6. Soient Y_j des variables aléatoires réelles indépendantes centrées : $\mathbb{E}Y_j = 0$ et bornées : $a_j \leq Y_j \leq b_j$. On veut démontrer ce que l'on appelle l'inégalité de Hoeffding : pour tout t > 0,

$$\mathbb{P}(\sum Y_j < t) \le e^{-st} \prod e^{\frac{s^2(b_j - a_j)^2}{8}} \quad \forall s > 0.$$

On pose $\Phi_Y(s) = \log \mathbb{E}[e^{s(Y - \mathbb{E}Y)}].$

(a) Montrer que

$$\Phi_Y''(s) = e^{-\Phi_Y(s)} \mathbb{E}[Y^2 e^{sY}] - e^{-2\Phi_Y(s)} (\mathbb{E}[Y e^{sY}])^2.$$

- (b) On définit une nouvelle mesure de probabilité par $\mathbb{Q}(A) = e^{-\Phi_Y(s)}\mathbb{E}[e^{sY}1_A]$ pour tout borélien A. Comment interpréter $\Phi_Y''(s)$ dans ce cadre?
- (c) Montrer alors que $\Phi_Y(s) \le s^2 \frac{(b-a)^2}{8}$.
- (d) En déduire l'inégalité de Hoeffding.
- 7. (a) Soient X_j des v.a. de Bernoulli de paramètre p et $\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$, montrer que

$$\mathbb{P}(|\overline{X}_n - p| > t) \le 2e^{-2nt^2}.$$

- (b) En déduire un intervalle de confiance de niveau 1α pour F(x).
- 8. Comparer les différents intervalles de confiance que vous avez obtenu.