Plotting with R

Descriptive analysis and basic statistics in biomedical studies using R and Markdown

Juan R Gonzalez juanr.gonzalez@isglobal.org

BRGE - Bioinformatics Research Group in Epidemiology ISGlobal - Barcelona Institute for Global Health http://brge.isglobal.org

Plotting

Plotting

- Simple plotting:
 - plot, hist, pairs, boxplot, ...
- Adding to existing plots:
 - points, lines, abline, legend, title, mtext, ...
- ► Interacting with graphics:
 - locator, identify
- Three dimensional data:
 - contour, image, persp, ...
- ► To see the many possibilities that R offers:

```
demo(graphics)
```

Basic plotting function is plot(). Possible arguments to plot() include:

- x, y (y may be omitted)
- ightharpoonup xlim = c(lo, hi), ylim = c(lo, hi)
- xlab = "x", ylab = "y" labels for x- and y-axes respectively
- ▶ type = "c" type of plot ("p", "l", "b", "h", "S", ...)
- "lty = n" line type (if lines used)
- "lwd = n" line width
- "pch = v" plotting character(s)
- "col = v" colour to be used for everything.

library(MASS) head(Cars93)

	Manufacturer	Madal	Tema	Min Doise	Desira	Mars David	an MDC as	: + MT	C himbers
1			9.1	Min.Price	15.9	18		25	G.nighway
2		Integra	Midsize		33.9	38.		25 18	25
3	Acura Audi	_			29.1	32		20	
_			Compact						26
4	Audi		Midsize		37.7	44	-	19	26
5	BMW		Midsize	23.7		36	-	22	30
6			Midsize	14.2	15.7	17	-	22	. 31
AirBags DriveTrain Cylinders EngineSize Horsepower RPM									
1		None	Front		-	1.8		6300	
	Driver & Pass		Front			3.2		5500	
3		conly	Front			2.8		2 5500	
4	Driver & Pass	senger	Front	: 6	5	2.8	17:	2 5500)
5	Drive	conly	Rear	. 4	Ŀ	3.5	208	3 5700)
6	Drive	conly	Front	; 4	ŀ	2.2	110	5200)
Rev.per.mile Man.trans.avail Fuel.tank.capacity Passengers Length Wheelbase									
1	2890		Yes		13	3.2	5	177	102
2	2335		Yes		18	3.0	5	195	115
3	2280		Yes		16	3.9	5	180	102
4	2535		Yes		2:	1.1	6	193	106
5	2545		Yes		2:	1.1	4	186	109
6	2565		No		16	3.4	6	189	105
	Width Turn.ci	ircle Rea	ar.seat.r	oom Luggae	e.roor	n Weight	Origin		Make
1	68	37		26.5	1:				Integra
2	71	38	3	80.0	15	3560	non-USA	Acur	a Legend
3	67	37	2	8.0	14	1 3375	non-USA		Audi 90
4	70	37	3	31.0	17		non-USA		Audi 100
5	69	39		7.0	13		non-USA		BMW 535i
6	69	41		8.0	16				Century

plot(Cars93\$Weight, Cars93\$EngineSize)

Add x and y axes labels and a title.
plot(Cars93\$Weight, Cars93\$EngineSize, ylab="Engine Size",
xlab="Weight", main="My plot")

My plot

My plot


```
plot(Cars93$Weight, Cars93$EngineSize, ylab="Engine Size",
xlab="Weight", main="My plot")
# Add points to the plot
points(x=min(Cars93$Weight), y=min(Cars93$EngineSize), pch=16, c
```

My plot


```
plot(Cars93$Weight, Cars93$EngineSize, ylab="Engine Size",
xlab="Weight", main="My plot")

# Add text to the plot.
text(x=2000, y=5, "some text")

# Add text under main title.
mtext(side=3, "sub-title", line=0.45)

# Add a legend
legend("bottomright", legend=c("Data Points"), pch="o")
```



```
plot(Cars93$Weight, Cars93$EngineSize, ylab="Engine Size",
xlab="Weight", main="My plot")

# Add regression line
mod <- lm(EngineSize ~ Weight, data=Cars93)
abline(mod)</pre>
```

My plot

13 / 38

levels(Cars93\$Origin)

[1] "USA" "non-USA"

Multiple figures

```
# Will create 4 plots on the same page.
# Two in each row and two in each column.
par(mfrow=c(2,2))
plot(Cars93$Weight, Cars93$EngineSize,
     xlab="Weight", ylab="Engine Size")
plot(sqrt(Cars93$Weight), sqrt(Cars93$EngineSize),
     xlab=expression(sqrt(Weight)),
     ylab=expression(sqrt("Engine Size")))
plot(log(Cars93$Weight), log(Cars93$EngineSize),
     xlab=expression(log(Weight)),
     ylab=expression(log("Engine Size")))
plot(Cars93$Weight^0.1, Cars93$EngineSize^0.1,
     xlab=expression(Weight^0.1),
     ylab=expression("Engine Size"^0.1) )
```

```
par(mfrow=c(1,1)) # Resets to create a single plot per page.
```

[Advanced:] The expression command plots mathematical symbols on the x and y axes. For more information 'help(expression)

Improve the figure by

```
par("mar")
[1] 5.1 4.1 4.1 2.1
par(mar=c(5,4,1,2))
par(mfrow=c(2,2))
plot(Cars93$Weight, Cars93$EngineSize,
     xlab="Weight", ylab="Engine Size")
plot(sqrt(Cars93$Weight), sqrt(Cars93$EngineSize),
     xlab=expression(sqrt(Weight)),
     ylab=expression(sqrt("Engine Size")))
plot(log(Cars93$Weight), log(Cars93$EngineSize),
     xlab=expression(log(Weight)),
     ylab=expression(log("Engine Size")))
plot(Cars93$Weight^0.1, Cars93$EngineSize^0.1,
     xlab=expression(Weight^0.1),
     vlab=expression("Engine Size"^0.1) )
```


Histograms

Histograms can be created using the hist command. Let us create a histogram of the car weights from the Cars93 data set:

```
hist(Cars93$Weight, xlab="Weight",
    main="Histogram of Weight", col="red")
```

Histogram of Weight

R automatically chooses the number and width of the bars. Can change this by specifying the number of break points.

Histogram of Weight

Normal curve can be added to the histogram by:

```
y <- Cars93$Weight # put here your variable of interest
hist(y, freq=FALSE)
lines(density(y), col="red")
x <- seq(min(y), max(y), length=100)
lines(x, dnorm(x, mean(y), sd(y)), col="blue")</pre>
```

Histogram of y

Histograms for multiple groups

```
USA.weight <- Cars93$Weight[Cars93$Origin == "USA"]
nonUSA.weight <- Cars93$Weight[Cars93$Origin == "non-USA"]

par(mfrow=c(2,1))
par(mar=c(5,4,1,2))
hist(USA.weight, breaks=10, xlim=c(1500,4500), col="grey")
hist(nonUSA.weight, breaks=10, xlim=c(1500,4500))</pre>
```

```
par(mfrow=c(1,1))
```


Boxplots

boxplot(Cars93\$Weight)

Normal probability (Q-Q) plots

qqnorm(Cars93\$Weight)
qqline(Cars93\$Weight)

Normal Q-Q Plot

Plots for multivariate data

If your data are stored in a data frame with several columns, the pairs command produces pairwise plots of the data in each column, i.e. the data in column 1 vs the data in column 2, column 1 vs column 3, and so on.

```
pairs(Cars93[,1:7])
```


This is limited to 2 grouping variables. More flexible is xyplot in the lattice library.

coplot(Cars93\$MPG.city~Cars93\$Price|Cars93\$Type)

Given: Cars93\$Type

Lattice graphs

```
library(lattice)
xyplot(Cars93$MPG.city~Cars93$EngineSize|Cars93$Type)
```


Other lattice plots

- splom(~ data.frame) # Scatterplot matrix
- bwplot(factor ~ numeric, ...) # Boxplot
- ▶ qqmath(factor ~ numeric, . . .) # Q-Q plot
- ▶ dotplot(factor ~ numeric, . . .) # 1-D display
- stripplot(factor ~ numeric, . . .)
- barchar(character ~ numeric, . . .)
- ▶ histogram(~ numeric, . . .)
- densityplot(~ numeric, ...) # Smoothed version of histogram

2-D and 3-D plots

```
data(volcano)
x \leftarrow 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))</pre>
# Creates a 2-D image of x and y co-ordinates.
image(x, y, volcano, col = terrain.colors(100),
      axes = FALSE)
# Adds contour lines to the current plot.
contour(x, y, volcano, levels = seq(90, 200, by=5),
        add = TRUE, col = "peru")
# Adds x and y axes to the plot.
axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
# Draws a box around the plot.
box()
# Adds a title.
title(main = "Maunga Whau Volcano", font.main = 4)
```

Maunga Whau Volcano

Session info

sessionInfo()

```
R version 3.4.1 (2017-06-30)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252
[3] LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C
[5] LC_TIME=Spanish_Spain.1252
attached base packages:
[1] stats
             graphics grDevices utils
                                         datasets methods base
other attached packages:
[1] lattice 0.20-35 MASS 7.3-47
                                   knitr 1.20
loaded via a namespace (and not attached):
 [1] Rcpp 0.12.12
                     codetools 0.2-15 digest 0.6.12
                                                       rprojroot 1.3-2
 [5] grid 3.4.1
                     backports 1.1.0 magrittr 1.5
                                                       evaluate 0.10.1
 [9] stringi 1.1.6
                     rmarkdown 1.8 tools 3.4.1
                                                       stringr 1.3.0
[13] yaml 2.1.16
                     compiler 3.4.1
                                      htmltools 0.3.6
```