29. Симетрична и алтернативна група. Теорема на Кейли. Теорема за хомоморфизмите на групи

1. Симетрична група S_n - представяне на елементите като произведение на независими цикли.

Деф: Симетрична група на множество М:

 $S(M) = \{ \varphi \mid \varphi : M \to M - \text{биекция} \}$ е симетрична група на множеството M.

Деф: Симетрична група от степен n:

Нека $|\mathsf{M}|=n,\ M=\{1,2,...,n\},\ \varphi\in S(M).$ $\varphi\left(\begin{smallmatrix}1&2&...&n\\i_1&i_2&...&i_n\end{smallmatrix}\right), \varphi$ - биекция \Rightarrow i_1 ... i_n е пермутация на числата 1 ... n $S(M)=S_n$ - симетрична група от степен n . Елементите на симетричната група се наричат **пермутации**. $|S_n|=n!$

Деф: Цикъл

$$\varphi \in S_n$$
, φ е цикъл с дължина k : $\varphi = (i_1, i_2, ..., i_k)$, когато $\varphi(i_1) = i_2$, $\varphi(i_2) = i_3$, ..., $\varphi(i_{k-1}) = i_k$, $\varphi(i_k) = i_1$ и $\varphi(j) = j$ за $j \notin \{i_1, ..., i_k\}$.

Деф: Независими цикли

$$\varphi(i_1,...,i_k)$$
, $\psi(j_1,...,j_s)$, φ и ψ са независими цикли, когато $\{i_1,...,i_k\} \cap \{j_1,...,j_k\} \neq \emptyset$.

Теорема: \forall ел. от S_n ($\phi \neq id$) може да се представи като произведение на независими цикли и това представяне е единствено с точност до реда на множителите. **Д-во**:

$$arphi\in S_n, arphi
eq id, \qquad M_{arphi}=\{t\mid arphi(t)
eq t\}\subset\{1,2,\ldots,n\}$$
 Индукция по $m_{arphi}=|M_{arphi}|$

- $m_{\varphi}=1$ невъзможно, защото $\varphi(t)\neq t\Rightarrow \varphi(t)=u\neq t\Rightarrow \varphi(u)\neq u$
- $m_{\varphi}^{\varphi}=2$ и $M_{\varphi}=\{t,u\}$ $\varphi(t)=u$ и $\varphi(u)=t$ и $\varphi(s)=s$ за $s\neq t\Rightarrow \varphi=(u,t)$
- Нека $m_{\varphi}>2$ и да допуснем, че е доказано твърдението за всички стойности, за които $2\leq m_{th}< m_{\varphi}$.
- Стъпка:

$$i_1\in M_{\varphi}\colon \varphiig(i_1ig)
eq i_1,\ i_2=\, \varphiig(i_1ig),\ i_3= \varphiig(i_2ig),...,i_t=\, \varphi(i_{t-1})$$
 $i_1,i_2,...i_t,i_{t+1},...$ - безкрайна редица с елементи от S_n

От един момент нататък има повторения. Нека $i_t=i_s\Rightarrow \varphi(i_{t-1})=\varphi(i_{s-1})\Rightarrow i_t$

 $i_{t-1}=i_{s-1}\Rightarrow i_{t-2}=i_{s-2}\Rightarrow\cdots$ Първото число, което се повтаря в редицата е $i_1\Rightarrow \underbrace{i_1,\ldots,i_k}$, $i_1,\ldots,i_k,i_1,\ldots,i_k,\ldots$

Разглеждаме цикъла $\psi=(i_1,...,i_k)$ върху числата $i_1,...,i_k$ и φ и ψ действат по един и същи начин

$$\begin{array}{c} \varphi_1(i_1)=i_1\\ \varphi_1=\psi^{-1}\circ\varphi & \varphi_1(i_2)=i_2\\ \vdots\\ \varphi_1(i_k)=i_k\\ \text{Ако }j\not\in\{i_1,\ldots,i_k\}\Rightarrow\varphi_1(j)=\psi^{-1}\Big(\varphi(j)\Big)=\varphi(j)\Rightarrow\varphi(j)\not\in\{i_1,\ldots,i_k\}\\ \text{ Щом }j\not\in\{i_1,\ldots,i_k\}\Rightarrow\varphi(j)\not\in\{i_1,\ldots,i_k\}, \text{ защото иначе }j\text{ щеше да}\in\{i_1,\ldots,i_k\}\\ \Rightarrow M_{\varphi_1}=M_{\varphi}\{i_1,\ldots,i_k\} \ m_{\varphi_1}=m_{\varphi}-k \end{array}$$

Прилагаме индукцията за $\varphi_1 = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_{\mathcal{S}}$ - независими цикли.

 $\psi^{-1}\circ \varphi= au_1\circ \cdots \circ au_S\Rightarrow \varphi=\psi\circ au_1\circ \cdots \circ au_S\Rightarrow \psi, au_1, \dots, au_S$ са независими цикли

Единственост:

$$\varphi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_s \\ \varphi = \psi_1 \circ \psi_2 \circ \cdots \circ \psi_r$$
 — независими цикли,
$$M_{\varphi} = M_{\tau_1} \cup M_{\tau_2} \cup \cdots \cup M_{\tau_s} \\ M_{\varphi} = M_{\psi_1} \cup M_{\psi_2} \cup \cdots \cup M_{\psi_r}$$

$$M_{\varphi} \cup M_{\tau_2} \cup \cdots \cup M_{\tau_s} = M_{\psi_1} \cup M_{\psi_2} \cup \cdots \cup M_{\psi_r}$$
 Нека $i_1 \in M_{\varphi}$, преномерираме т.ч. $i_1 \in M_{\tau_1}$, $i_1 \in M_{\psi_1}$. $\tau_1(i_1) = \varphi(i_1) = \psi(i_1) = i_2$
$$\tau_1 = \begin{pmatrix} i_1, i_2, \overline{\varphi(i_2)}, \dots \end{pmatrix} \setminus \psi_1 = \begin{pmatrix} i_1, i_2, \overline{\varphi(i_2)}, \dots \end{pmatrix} \setminus \psi_1 = \begin{pmatrix} i_1, i_2, \overline{\varphi(i_2)}, \dots \end{pmatrix} \setminus \psi_1 = \begin{pmatrix} i_1, i_2, \overline{\varphi(i_2)}, \dots \end{pmatrix} \setminus \psi_1 = \psi_1 \Rightarrow \tau_2 \circ \cdots \circ \tau_s = \psi_2 \circ \cdots \circ \psi_r$$
 и след краен брой стъпки $\Rightarrow s = r \Rightarrow \tau_p = \psi_p, \ p = 1, \dots, r$

2. Спрягане на елементите на S_n

Деф: Спрегнат елемент

 (G, \cdot) - група, $a \sim b$, казваме, че елементът а е **спрегнат** с елемента b, когато $\exists c: b = c^{-1}ac$.

Лема:
$$\varphi = (i_1, \dots, i_t), \tau \in S_n$$

$$\psi = \tau^{-1} \cdot \varphi \cdot \tau$$

$$\tau^{-1}(i_1) \overset{\tau}{\to} i_1 \overset{\varphi}{\to} i_2 \overset{\tau^{-1}}{\to} \tau^{-1}(i_2)$$

$$\tau^{-1}(i_2) \overset{\tau}{\to} i_2 \overset{\varphi}{\to} i_3 \overset{\tau^{-1}}{\to} \tau^{-1}(i_3)$$

$$\psi = \tau^{-1} \varphi \tau = (\tau^{-1}(i_1), \tau^{-1}(i_2), \dots, \tau^{-1}(i_t))$$

$$\psi = \mu \varphi \mu^{-1} = (\mu(i_1), \mu(i_2), \dots, \mu(i_t))$$

$$\tau^{-1} = \mu$$

Спрягане на произведение: $\mu \varphi_1 \varphi_2 \dots \varphi_s \mu^{-1} = (\mu \varphi_1 \mu^{-1})(\mu \varphi_2 \mu^{-1}) \dots (\mu \varphi_s \mu^{-1})$

Твърдение: Ако φ е представен като независими цикли

$$\begin{split} \varphi &= \psi_1 \circ \psi_2 \circ \cdots \circ \psi_s = \left(i_1^{(1)}, \dots, i_{\tau_1}^{(1)}\right) \left(i_1^{(2)}, \dots, i_{\tau_2}^{(2)}\right) \dots \left(i_1^{(s)}, \dots, i_{\tau_s}^{(s)}\right) \\ \mu \varphi \mu^{-1} &= \left(\mu \psi_1 \mu^{-1}\right) \circ \cdots \circ \left(\mu \psi_s \mu^{-1}\right) = \left(\mu (i_1^{(1)}), \dots, \mu (i_{\tau_1}^{(1)})\right) \dots \left(\mu (i_1^{(s)}), \dots, \mu (i_{\tau_s}^{(s)})\right) \end{split}$$

3. Транспозиции и представяне на елементите като произведение на транспозиции **Деф**: Цикъл с дължина 2 се нарича **транспозиция**: $\tau = (x, y), \tau^2 = id$

 ${\it Tвърдениe}$: Всеки елемент на S_n може да се представи като произведение на транспозиции $(i_1, ..., i_k) = (i_1, i_k) ... (i_1, i_5) (i_1, i_4) (i_1, i_3) (i_1, i_2)$ Има най-различни представяния:

$$j \notin \{i_1, ..., i_k\}$$
 $(j, i_1)(j, i_k) ... (j, i_5)(j, i_4)(j, i_3)(j, i_2)(j, i_1)$

Св-ва:

- 1. (b,c)(a,x)=(a,x)(b,c), когато (a,x) и (b,c) са независими (различни числа)
- 2. $(a,b)(a,x) = \varphi = (a,x,b) = (b,x)(a,b)$ $\varphi(x) = b, \ \varphi(a) = x, \ \varphi(b) = a$ 3. $\psi = (b,x)(a,x) = (a,b,x) = (a,x)(a,b)$ $\psi(a) = b, \psi(x) = a, \psi(b) = x$
- 4. $\tau = (a, x)(a, x) = id$ $\tau(a) = a, \tau(x) = x$

Теорема: S_n

- а) Ако $\tau_1 \circ \cdots \circ \tau_k = id$ и τ_1, \ldots, τ_k са транспозиции, тогава k е четно число
- b) Ако $\varphi = \tau_1 ... \tau_k = \mu_1 ... \mu_s$ и τ_i , μ_i са транспозиции, тогава $k \equiv s \pmod{2}$

Деф: Четен и нечетен елемент на S_n

Нека
$$\varphi = \tau_1 ... \tau_k \ (\tau_i - \text{транспозиции})$$
 φ е четен елемент на S_n , ако k е четно число φ е нечетен елемент на S_n , ако k е нечетно число

id - четна пермутация (елемент от S_n)

$$\varphi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$
. φ е четна пермутация $\Leftrightarrow i_1, \dots, i_n$ е четна пермутация

(т.е. има четен брой инверсии)

 $(i_1, ..., i_k)$ е четна пермутация $\Leftrightarrow k$ е нечетно число.

4. Алтернативна група

Деф: Алтернативна група

$$A_n = \{ \varphi \in S_n \mid \varphi - \text{четна пермутация} \}$$

 $B_n = \{ \varphi \in S_n \mid \varphi - \text{нечетна пермутация} \}$

 $A_n < S_n$ - алтернативна група

- четна · четна = четна (пермутация)
- $\varphi = \tau_1 \dots \tau_s$ транспозиции, $\varphi^{-1} = \tau_s \tau_{s-1} \dots \tau_1$, φ четна $\Rightarrow \varphi^{-1}$ четна
- Id четна

5. Теорема на Кейли

Деф: Теорема на Кейли

Всяка група G е изоморфна на подгрупа на симетричната група S(G)

$$|G| = n \quad \Rightarrow \quad G \cong H < S_n$$

Д-во:

Нека
$$(G,\cdot)$$
, $S(G) = \{\varphi \colon G \to G \mid \varphi - \mathsf{биекция}\}$ $a \in G \quad \varphi_a \colon G \to G \quad \varphi_a(x) = ax \in G \quad (x \in G)$ $\varphi_a(x) = \varphi_a(y) \Leftrightarrow ax = ay \Leftrightarrow a^{-1}(ax) = a^{-1}(ay) \Leftrightarrow x = y \text{ (инекция)}$ $t \in G \quad \varphi_a(x) = t \Rightarrow ax = t \Rightarrow x = a^{-1}t \Rightarrow t = \varphi_a(a^{-1}t) \text{ (сюрекция)}$ $\Rightarrow \varphi_a \text{ - биекция т.e. } \varphi_a \in S(G)$

$$H = \{ \varphi_a \mid a \in G \} \subset S(G)$$

$$(\varphi_a \circ \varphi_b)(x) = \varphi_a(\varphi_b(x)) = \varphi_a(bx) = abx = (ab)x = \varphi_{ab}x$$

$$\Rightarrow (\varphi_a \circ \varphi_b) = \varphi_{ab} \in H$$

$$(\varphi_a)^{-1} = \varphi_{a^{-1}} \text{ ot } \varphi_{a^{-1}} \circ \varphi_a(x) = a^{-1}(ax) = x = id$$

$$\Rightarrow H < S(G)$$

Ще докажем, че $G \cong H$. Φ : $G \to H < S(G)$

$$\Phi(a) = \varphi_a
\Phi(a) \circ \Phi(b) = \Phi(ab) \qquad \varphi_a \circ \varphi_b = \varphi_{ab}$$

$$a o \Phi(a) = \varphi_a$$
 $b o \Phi(b) = \varphi_b$ $\varphi_a = \varphi_b \Leftrightarrow \varphi_a(x) = \varphi_b(x), \forall x \in G$ $\Leftrightarrow a = b \Rightarrow \Phi$ е инекция

$$H = \{ \varphi_a = \Phi(a) \mid a \in G \} \Rightarrow \Phi$$
 е сюрекция

 \Rightarrow Ф е изоморфизъм \Rightarrow G \cong H < S(G)

6. Хомоморфизъм при групи, ядро и образ

$$\mathbf{\mathcal{A}e\phi}$$
: $\left(\mathsf{G}_{1},\cdot\right)$ $\left(\mathsf{G}_{2},*\right)$ $\varphi(a.b)=\varphi(a)*\varphi(b)$, φ е хомоморфизъм

Св-ва: на хомоморфизмите $\varphi:G_1 \to G_2$

1.
$$\varphi(e_1) = e_2 \quad e_1 \in G_1, \quad e_2 \in G_2$$

$$\varphi(e_1, e_1) = \varphi(e_1) * \varphi(e_1)$$

$$\varphi(e_1) = \varphi(e_1) * \varphi(e_1) / \varphi(e_1)^{-1}$$

$$e_2 = (\varphi(a))^{-1}$$

2.
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$

 $\varphi(e_1) = e_2$
 $\varphi(e_1) = \varphi(a. a^{-1}) = \varphi(a) * \varphi(a^{-1}) = e_2 \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1}$

Деф: Ядро и образ

$$arphi$$
 — хомоморфизъм, $G_1 o G_2$, (G_1,\cdot) , $(G_2,*)$ $\textit{Ker } oldsymbol{\varphi} = \{ \ a \in G_1 \ \big| \ \varphi(a) = e_2 \} \subset G_1$ - ядро $\textit{Im } oldsymbol{\varphi} = \{ \ \varphi(a) \ \big| \ a \in G_1 \} \subset G_2$ - образ

Твърдение: φ : $G_1 \to G_2$ хомоморфизъм, тогава $Ker \ \varphi < G_1$, $Im \ \varphi < G_2$

Деф: Съседни класове

$$(G,\cdot)$$
 $H < G$, $a \in G$ $(L,+)$, $T < L$, $a \in L$ $aH = \{ax \mid x \in H\}$ — ляв съседен клас $Ha = \{xa \mid x \in H\}$ — десен съседен клас $aH \subset G$, $Ha \subset G$ $T + a = \{x + a \mid x \in T\}$ — десен съседен клас $T + a = \{x + a \mid x \in T\}$ — десен съседен клас

 $Ae\phi$: H < G. Броят на левите съседни класове на H в G се нарича **индекс** на H в G, пишем |G:H|

Следствие:

- 1. $H < G \mid H \mid |G|$ (дели), $|G:H| \mid |G|$
- 2. $a \in G$, |G| < ∞ ⇒ |a| | |G|, |a| реда на ел. а
- 3. Ако |G| = p просто число \Rightarrow G е циклична група

Теорема: на Лагранж

Ако
$$(G, \cdot)$$
 е крайна група $|G| < \infty$ и $H < G$, тогава $|G| = |H|$. $|G: H|$

Твърдение: φ : $G_1 \to G_2$ хомомоморфизъм, $a \in G_1$, $H = Ker \varphi < G_1$

$$\varphi(b) = \varphi(a) \Leftrightarrow b \in aH
\varphi(b) = \varphi(a) \Leftrightarrow b \in Ha$$

$$\Rightarrow aH = Ha$$

Деф: G - група, H < G, H е нормална подгрупа на G, когато aH = Ha, $\forall a \in G$, пишем $H \triangleleft G$

Деф: (G,·), $H \triangleleft G, G/H = \{ aH | a \in G \} G/H$ е група и се нарича **факторгрупа**

- Факторгрупата не е подгрупа на *G*

Теорема: за хомоморфизмите при групи

Нека $\varphi:G_1 \to G_2$ е хомоморфизъм, тогава:

- \circ Ker $\varphi \triangleleft G_1$
- \circ Im $\varphi \cong G_1/Ker \varphi$

Д-во:

$$H = Ker \varphi$$
.

$$\varphi(a) = \varphi(b) \Leftrightarrow b \in aH \Leftrightarrow b \in Ha \text{ } u \text{ } aH = Ha \text{ } \forall a \text{ } \Rightarrow Ker \text{ } \varphi \triangleleft G$$

$$\varphi(a) = \varphi(b) \Leftrightarrow aH = bH$$

$$\psi: G_1/Ker \varphi \to Im \varphi \qquad \psi(aH) = \varphi(a)$$

$$aH = bH \Rightarrow \varphi(a) = \varphi(b)$$

$$\psi(aH) = \psi(bH) \Leftrightarrow \varphi(a) = \varphi(b)$$

$$\psi(aH \cdot cH) = \psi(acH) = \varphi(ac) = \varphi(a) \cdot \varphi(c) = \psi(aH) \cdot \psi(cH)$$

$$x \in Im \ \varphi \Rightarrow \exists d \in G_1 \colon \varphi(d) = x = \psi(dH)$$
 - сюрекция $\psi(mH) = \psi(tH) \Leftrightarrow \varphi(m) = \varphi(t) \Leftrightarrow t \in mH \Leftrightarrow t \ Ker \ \varphi = m \ Ker \ \varphi$ - инекция $\Rightarrow \psi$ е биекция

 \Rightarrow ψ е изоморфизъм \Rightarrow $G_1/Ker \varphi \cong Im\varphi$

Допълнително инфо

Св-ва: на съседните класове

- 1. $aH < G \Leftrightarrow a \in H \Leftrightarrow aH = H$ $Ha < G \Leftrightarrow a \in H \Leftrightarrow Ha = H$

2.
$$b \in aH \Leftrightarrow bH \equiv aH$$
 $c \in Ha \Leftrightarrow Ha \equiv Hc$
3. $aH \cap bH = \begin{cases} \emptyset, & \text{ako } b \notin aH \\ aH = bH, & \text{ako } b \in aH \end{cases}$ $Ha \cap Hb = \begin{cases} \emptyset, & \text{ako } b \notin Ha \\ Ha = Hb, & \text{ako } b \in Ha \end{cases}$
4. $G = \bigcup_{a \in G} aH = a_1H \cup a_2H \cup \cdots \cup a_sH$

$$4. \quad G = \bigcup_{a \in G} aH = a_1 H \cup a_2 H \cup \dots \cup a_s H$$

- 5. $aH = bH \Leftrightarrow b \in aH \Leftrightarrow a^{-1}b \in H$ 6. Ako $|H| < \infty \Rightarrow |aH| = |H| = |Ha|$: $ah_1 = ah_2 \Leftrightarrow h_1 = h_2 \Leftrightarrow h_1a = h_2a$
- 7. Нека $H < G L_H = \{aH \mid a \in G\}$ $R_H = \{Ha \mid a \in G\}$, тогава L_H и R_H са равномощни, т.е. \exists биекция от L в R
- 8. Броят на левите съседни класове = броят на десните съседни класове