

Strutture di controllo

- □Un programma è formato da una sequenza di istruzioni eseguite una dopo l'altra
 - □La CPU non ha una visione di insieme del programma: "vede" solo l'istruzione che deve eseguire e il contenuto dei registri
 - □La CPU esegue una istruzione alla volta nell'ordine riportato in memoria
- □Con i salti si controlla l'ordine di esecuzione perché rimandano il proseguimento di un programma all'indirizzo specificato
 - □Se il **salto è condizionato** l'istruzione che è eseguita dopo un salto è quella che si trova all'indirizzo specificato come destinazione del salto se la condizione è vera; altrimenti si prosegue normalmente con l'istruzione successiva
 - ☐Se il **salto è incondizionato** si prosegue all'indirizzo specificato senza valutare la verità di una condizione

Controllo condizionale

IF (condizione) THEN istruzioni

Il controllo condizionale, ottenuto con l'impiego di una istruzione di salto condizionato, esegue un trasferimento del controllo del codice se una condizione è vera; oppure procede in modalità sequenziale, se la condizione è falsa

In altre parole la struttura di selezione è usata per prendere una decisione ovvero scegliere una alternativa

Formalmente il controllo condizionale è IF (Condizione) THEN {istruzioni}

Controllo condizionale

IF (esempio:calcolo massimo due operandi)

Calcolo del massimo di due operandi


```
.text
         .globl main
main:
                             #lettura val a
         lw $t0,val a
         lw $t1,val b
                             #lettura val b
         move $t2,$t0
                             #Max=a
         bgt $t1,$t0, DO_IF  #Se b>a salta e aggiorna Max
         I OUT IF
                             #salta a fine
DO IF:
         move $t2,$t1
                             #Max=b
OUT IF:
                             #archiviazione del massimo
         sw $t2,massimo
         li $v0,10
                             #terminazione del programma
         syscall
         .data
         val a:.word 45
         val b:.word 55
         massimo:.word 0
```

Controllo condizionale

F (esempio:calcolo massimo due operandi-variante)

Calcolo del massimo di due operandi

.globl main main: #lettura val a lw \$t0,val a lw \$t1,val b #lettura val b move \$t2,\$t0 #Max=a bgt \$t0,\$t1, NO_IF #Se a>b salta e non aggiorna il Max move \$t2,\$t1 #Max=b NO IF: sw \$t2,massimo #archiviazione del massimo li \$v0,10 #terminazione del programma syscall .data val a:.word 45 val b:.word 55 massimo:.word 0

IF (condizione) THEN istruzioni ELSE istruzioni

La struttura di selezione doppia permette di specificare azioni differenti quando la condizione è vera e quando è falsa; cioè è usata per scegliere tra opzioni alternative. In altre parole una selezione doppia esegue un'azione se una condizione è vera e ne esegue un'altra se l'espressione è falsa

Il suo compito è pertanto la selezione tra due azioni differenti

Formalmente la selezione doppia è IF (Condizione) THEN {istruzioni} ELSE{istruzioni}

Calcolo del quadrato se l'operando è un numero pari, del cubo se è un numero dispari


```
.text
          .globl main
main:
          lw $t0,val a
                              #lettura val a
          rem $t1,$t0,2
                              #Calcolo della parità
          begz $t1,THEN
                              #Se pari salto al ramo then...
                              #...altrimenti salto al ramo else
         I ELSE
THEN
          mul $t2,$t0,$t0
                              #calcolo quadrato
         IEND IF
ELSE:
          mul $t2,$t0,$t0
                              #calcolo cubo
          mul $t2,$t2,$t0
END_IF:
          sw $t2,risultato
                              #archiviazione del massimo
          li $v0,10
                     #terminazione del programma
          syscall
          .data
          val a:.word 45
          risultato:.word 0
```

IF THEN ELSE (esempio-variante con condizione negata)

Calcolo del quadrato se l'operando è un numero pari, del cubo se è un numero dispari


```
.globl main
main:
         lw $t0,val a
                              #lettura val a
         rem $t1,$t0,2
                              #Calcolo della parità
          bnez $t1.ELSE
                              #Se pari salto al ramo then...
         mul $t2,$t0,$t0
                              #calcolo quadrato
         IEND IF
ELSE:
         mul $t2,$t0,$t0
                              #calcolo cubo
         mul $t2,$t2,$t0
END IF:
         sw $t2,risultato
                              #archiviazione del massimo
                    #terminazione del programma
         li $v0.10
         syscall
          .data
         val a:.word 45
         risultato:.word 0
```


Calcolo del quadrato se l'operando è un numero pari, del cubo se è un numero dispari


```
.globl main
main:
         lw $t0,val a
                              #lettura val a
         rem $t1,$t0,2
                              #Calcolo della parità
         mul $t2,$t0,$t0
                              #calcolo quadrato
          beqz $t1,END_IF
                              #Se pari finisco
         mul $t2,$t0,$t0
                              #calcolo cubo
         mul $t2,$t2,$t0
END IF:
                              #archiviazione del massimo
         sw $t2,risultato
                    #terminazione del programma
         li $v0,10
         syscall
          .data
         val a:.word 45
         risultato:.word 0
```

Annidamento IF THEN ELSE

La struttura a selezione singola e quella a selezione doppia possono essere usate contiguamente creando quello che si chiama **annidamento**.

Questa struttura, ad esempio, è impiegata quando bisogna effettuare test su casi multipli.

Non c'è uno schema definito perché l'annidamento è variabile ed è caratteristico dell'algoritmo in cui si concretizza.

Annidamento IF THEN ELSE

IF THEN ELSE (esempio-calcolo anno bisestile)

Calcolo se un operando corrisponde ad anno bisestile

```
BEGIN
lettura anno
if(anno%400==0) {bisestile=1;}
  else
   {
   if(anno%100==0){bisestile=0;}
     else
     {
      if(anno%4==0) {bisestile=1;}
      else {bisestile=0;}
     }
   }
END
```

```
.globl main
main:
         Ih $t0,anno
         rem $t1,$t0,400
         begz $t1, THEN1
         i ELSE1
THEN1:
         li $t3.1
         jEND IF
ELSE1:
         rem $t1,$t0,100
         beqz $t1, THEN2
         i ELSE2
THEN2:
         li $t3,0
         i END IF
ELSE2:
         rem $t1,$t0,4
         begz $t1, THEN3
         j ELSE3
```


Calcolo se un operando corrisponde ad anno bisestile

OTTIMIZZARE IL CODICE

```
BEGIN
lettura anno
if(anno%400==0) {bisestile=1;}
 else
  if(anno%100==0){bisestile=0;}
    else
     if(anno%4==0) {bisestile=1;}
       else {bisestile=0;}
END
```


Formalmente una struttura di ripetizione è così descritta:

WHILE (condizione) {istruzioni}

WHILE (condizione) { istruzioni}

L'impiego di questo costrutto può comportare un **ciclo infinito**, ovvero la condizione di continuazione non diventa mai falsa e quindi il programma ripete incessantemente il blocco delle istruzioni.

Un ciclo infinito è una condizione da scongiurare eccetto in alcuni (rari) casi

Sommatoria di valori immessi da tastiera con terminazione quando il valore immesso è zero

```
BEGIN
totale=0
leggi x
while{x!=0)
{
    totale=totale+x;
    leggi x
}
END
```

```
.text
.globl main
main:
          li $t0,0
                              # inizializza il registro che ospiterà totale
          li $v0.5
                              # Servizio di lettura intero
          syscall
                              # Chiamata del servizio
          move $t1,$v0
                              # spostamento del valore letto da tastiera
WHILE:
                                #Esegue il CICLO WHILE se
          bnez $t1,DO WHILE
                                 #la condizione è vera
          j EXIT WHILE
DO_WHILE:
          add $t0,$t0,$t1
                              # sommatoria
                              # Servizio di lettura intero
          li $v0,5
                              # Chiamata del servizio
          syscall
          move $t1,$v0
                              # spostamento del valore letto da tastiera
          i WHILE
                              # SALTO CICLO WHILE
EXIT WHILE:
                              # Salva risultato in totale
          sw $t0,totale
          li $v0,10
          syscall
.data
          totale: .word 0
```


Sommatoria di valori immessi da tastiera con terminazione quando il valore immesso è zero

```
BEGIN
totale=0
leggi x
while{x!=0)
{
    totale=totale+x;
    leggi x
}
END
```

```
.text
.globl main
main:
          li $t0,0
                              # inizializza il registro che ospiterà totale
          li $v0.5
                              # Servizio di lettura intero
          syscall
                              # Chiamata del servizio
          move $t1,$v0
                              # spostamento del valore letto da tastiera
WHILE:
                                 #Esce dal CICLO WHILE se
          begz $t1,END WHILE
                                  #la condizione è falsa
          add $t0,$t0,$t1
                              # sommatoria
          li $v0,5
                              # Servizio di lettura intero
                              # Chiamata del servizio
          svscall
          move $t1,$v0
                              # spostamento del valore letto da tastiera
          i WHILE
                              # SALTO CICLO WHILE
END WHILE:
          sw $t0,totale
                              # Salva risultato in totale
          li $v0,10
          syscall
.data
totale: .word 0
```

Ripetizione forzata

Formalmente una struttura di ripetizione forzata è così descritta:

DO {istruzioni} WHILE (condizione)

Ripetizione forzata

Indovina un numero magico compreso tra 0 e 5

```
Begin
System_Random(Magic;0,5);
do
{
Insert(operando);
} while (operando!=Magic)
End
```

```
.text
.globl main
main:
          li $v0,42 #Richiesta servizio di generazione di un numero
                    #causale
          li $a0.1
                   #Identificatore del numero casuale
          li $a1,5
                   #Estremo superiore: range[0;5]
          syscall
                  #Attivazione del servizio
          move $s0,$a0 #ln $s0 è copiato il numero aleatorio (Magic)
DO:
          li $v0.5
                    #Richiesta servizio lettura di un intero da tastiera
         syscall
                    #Attivazione del servizio
          move $t0,$v0 #Spostamento operando inserito dall'utente
                              #Ripetizione del ciclo se il valore
          bne $t0,$s0,DO
                              #immesso dall'utente è diverso
                              #dal numero aleatorio
          li $v0,10
          syscall
```


Iterazione

FOR

La struttura FOR gestisce una iterazione controllata da un contatore. Quindi il numero di iterazioni è strettamente correlato alla veridicità di una condizione in cui il contatore svolge un ruolo determinante

In altre parole il FOR esegue n volte un blocco di istruzioni

Iterazione

FOR

Formalmente una struttura di iterazione controllata da un contatore è così descritta:

FOR (inizializzazione *contatore*; condizione; incremento *contatore*) {istruzioni}

La struttura FOR inizializza il contatore di controllo ad un valore prestabilito (contatore=init). In seguito è analizzato il presupposto di continuazione del ciclo (condizione). Se la condizione è soddisfatta si esegue l'istruzione, o il blocco di istruzioni, associato. Il valore del contatore è poi manipolato (incremento) e si valuta nuovamente la condizione. L'iterazione termina quando la condizione non è verificata, cioè nel caso di fallimento del test di continuazione

Iterazione

FOR (esempio: media sei valori)

Media (per interi) di 6 numeri

```
BEGIN
tot=0;
for (cont=0;cont<6; cont=cont+1)
{
    Read(operando);
    tot=tot+operando;
}
media=tot/6;
END
```

```
.eqv CONT $t0 #Associazione della variabile contatore al registro $s0
.egv LIMITE $t1 #Associazione della variabile limite al registro $s1
.eqv INCR $t2 #Associazione della variabile incremento al registro $s2
.text
.qlobl main
main:
           li CONT.0
                       #Inizializzazione del contatore
           li LIMITE,6 #Estremo superiore del numero di iterazioni da fare
           li INCR,1
                       #Assegnazione del passo di incremento
           li $t4.0
                       #Inizializzazione della variabile tot
           bgeCONT, LIMITE, END FOR #Analisi del contatore: il superamento del limite
FOR:
                                      #conclude il FOR
           li $v0,5
                       #Richiesta del servizio di lettura di un intero da tastiera
                       #Attivazione del servizio
           syscall
           move $t3,$v0
                                  #Copia dell'operando immesso dall'utente
           add $t4, $t4,$t3
                                  #Calcolo tot=tot+val
           add CONT, CONT, INCR #Incremento contatore
           i FOR
                                   #Ripetizione del ciclo
END FOR:
           div $t6,$t4,6 #Calcolo della media (arrotondamento all'intero superiore)
           sw $t6, media
           li $v0,10
           syscall
.data
media: .word 0
```

