Key for Take-Home Assignment 09

The following data was collected during the study of the reaction $A(g) + 2B(g) \longrightarrow AB_2(g)$, which is known to follow the rate law R = k[A][B]. A study of the reaction at different temperatures yields the following values for the reaction's rate constant.

temperature (K)	rate constant (1/(M s))
298	3.89e-02
305	6.16e-02
310	9.61e-02
313	1.48e-01
320	2.25 e - 01
334	7.30e-01
346	1.51e + 00
350	2.14e+00

Use this data to determine the reaction's activation energy, reporting its value in kJ/mol_{rxn} . Your sample id is 14g.

To determine the activation energy we first plot the data $\ln(k)$ as a function of 1/T and complete a regression analysis to find the slope, which is equivalent to $-\frac{E_a}{R}$.

The slope of the line is -8104.15 K^{-1} , which gives an activation energy of 67.4 kJ/mol.