

(a|b)*abb

4190.409 Compilers, Spring 2016

Recap: Basic Structure of a Compiler

- Basic Structure of a Compiler
 - Lexical Analysis
 - 2. Syntax Analysis
 - 3. Semantic Analysis
 - 4. Optimization
 - 5. Code Generation

acknowledgements: contains adapted material from the Dragon Book / Alex Aiken

Lexical Analysis Contents

- Lexical Specification
- Finite Automata
- From Regular Expressions to NFA
- From NFA to DFA
- Minimizing the Number of States in a DFA
- Simulating an NFA

acknowledgements: contains adapted material from the Dragon Book / Alex Aiken

Lexical Analysis Contents

- Formally:
 - input: character stream of source program
 - process:
 - split stream into lexemes according to the grammar of the language
 - build attributed tokens
 - output: token stream
 - a token contains the token name (id) and the token attributes
 - < token name, attribute values >

Example:

- 1. lexeme "position" → token <id, 1>
- 2. lexeme "=" → token <=>
- 3. lexeme "initial" → token <id, 2>
- 4. lexeme "+" → token <+>
- 5. lexeme "rate" → token <id, 3>
- 6. lexeme " \star " \rightarrow token $<\star>$
- 7. lexeme "60" → token <number, 60>

$$\langle id, 1 \rangle \ll \langle id, 2 \rangle \ll \langle id, 3 \rangle \ll \langle number, 60 \rangle$$

Input stream is not as easy to read:

```
\t \t \ position =\n\t\t\t\t\tinitial +\trate * 60;
```

 a stream of characters from a source file, including tabs, newlines, and spaces

```
$ cat example.cpp
#include <iostream>
using namespace std;

template <class T>
class A {
   T *ref;

   public:

   void setref(T *r);
   T* getref(void);
};

...

   cout << *j << endl;
   return 0;
}</pre>
```

```
$ od -c exmple.cpp
0000000
0000020
0000040
                                                \n
0000060
0000100
0000120
                                р
0000140
0000160
0000200
0000220
0000240
0000260
0000300
0000320
                                                \n
0000340
0000560
                                  \n
0000600
                 \n
                       } \n
                              \n
```

Tokens, Patterns, and Lexemes

- Token
 - <token name/id, optional attribute>
 - often, the optional attribute is the lexeme
- Pattern
 - rule defining the possible lexemes of a token
- Lexeme
 - sequence of characters that matches the pattern of a token
- Example: C identifiers
 - pattern: "an identifier starts with a letter or an underscore, then continues with letters, numbers, or underscores."
 - lexemes: "i", "k", "_tmp", "_private1", "__tmp_value", "_1", "_", "if", "while", ...
 - tokens: <id, "i">, <id, "k">, <id, "_tmp">, ...

Typical Token Classes

- Token classes
 - identifiers
 - keywords
 - integers
 - operators
 - separators
 - whitespace

Role of Lexical Analysis

- Tokenize the substrings from the input according to role
- Deliver tokens to the parser

Basic Algorithm for Lexical Analysis

getNextToken()
 given: patterns that define the input language

lexeme = '';

while (input stream not empty) do begin
 append next character in input stream to lexeme;

if (lexeme matches a pattern) then begin
 return token<token id, lexeme>
 end
end

Lookahead in Lexical Analysis

Identifiers vs. Keywords

```
elsewhere = iffiness * 60;
```

=, <, >, <=, >=, ==, <<, >>

```
if (a == b)
```

```
Template<int> a;
Template<Template<int>> b;
```

Lookahead in Lexical Analysis

- Input string is read left-to-right, tokens are recognized as we go
- A lookahead is often required to decide whether a token has ended

is one character enough?

Lexical Analysis Caveats

FORTRAN I

whitespace is insignificant

these are all the same:

VARIABLE, VA RI AB LE, VARI A

BLE

Loop or variable?

is the lookahead bounded?

Lexical Analysis Caveats

PL/1

keywords are not reserved

```
IF ELSE THEN ELSE = THEN ELSE THEN = ELSE
```

Unbounded lookahead

Pattern Specification for Lexical Analysis

- Lexical structure of input is specified by the set of patterns that define the lexemes of the language
- Regular expressions well-suited for this purpose
 - easy to specify patterns
 - build an NFA, then a DFA from a regexp
 - format for specification for automatic LA generators (Lex/Flex/...)

Regular Expressions

Nomenclature for Parts of a String

- For a string s =compiler,
 - prefix resulting string obtained by removing 0 or more symbols from the end of s
 - c, com, compiler, ε
 - suffix resulting string obtained by removing 0 or more symbols from the start of s
 - r, ler, compiler, ε
 - substring resulting string obtained by removing any prefix and suffix from s
 - compiler, ompiler, omp, ile, ε
 - subsequence formed by deleting zero or more not necessarily consecutive symbols of s
 - cmlr, cpe, compiler, ε
 - proper prefix, suffix substring resulting string is neither s nor ε

Alphabet, String, and Language

- Alphabet Σ
 - any finite set of symbols
 - examples

```
\ { 0, 1 }, { a, b, c, d }
\ { "<", ">", "+", "-", ".", ",", "[", "]" }
\ { ■, □, ♠, ▶, ▼, ♥, ♠, ●, ⓒ, ♪, ♬ }
```

- String s
 - aka "word", "sentence"
 - a finite sequence of symbols drawn from the alphabet
 - length of string |s| = number of symbol occurrences in s
 - empty string ε , with $|\varepsilon| = 0$
 - concatenation for strings x, y, denoted xy = appending y to x
 - exponentiation of a string s: $s^0 = \varepsilon$, $s^1 = s$, $s^2 = ss$, $s^3 = sss$, ...

Alphabet, String, and Language

- Language
 - any countable set of strings over some fixed alphabet Σ
 - examples
 - set of all strings containing exactly 4 symbols from the alphabet
 - set of all syntactically well-formed C programs
 - set of all grammatically correct English sentences
 - Ø
 - **\ 3 **
 - note: there is no meaning ascribed to the strings in the language

Operations on Languages

Four most important operations on languages

Operation	Notation	Definition
Union	$L \cup M$	$L \cup M = \{s \mid s \subseteq L \text{ or } s \subseteq M \}$
Concatenation	LM	$LM = \{ st \mid s \subseteq L \text{ and } t \subseteq M \}$
Kleene closure	L^*	$L^* = \bigcup_{i=0,\infty} L^i$
Positive closure	L ⁺	$L^+ = \bigcup_{i=1,\infty} L^i$

Operations on Languages

Example

For

$$L = \{ A, B, ..., Z, a, b, ..., z \}$$

 $D = \{ 0, 1, ..., 9 \}$

- L \cup D = { A, B, ..., Z, a, b, ..., z, 0, 1, ..., 9 }
- LD = { A0, A1, ..., A9, B0, B1, ..., B9, ..., Z0, Z1, ..., Z9 }
- $L^* = \text{set of all strings of letters (including } \epsilon)$
- L^+ = set of all strings of letters (excluding ε)
- $L(L \cup D)^* = \text{set of all strings of letters and digits beginning with a letter}$

Regular Expressions

- Built recursively over some alphabet Σ
 - basis
 - ε is a regexp, $L(ε) = {ε}$
 - if $a \subseteq \Sigma$, then **a** is a regexp, and $L(\mathbf{a}) = \{a\}$
 - induction for regexps r and s, denoting the languages L(r) and L(s)
 - (r)|(s) is a regexp denoting $L(r) \cup L(s)$
 - (r)(s) is a regexp denoting L(r)L(s)
 - $(r)^*$ is a regexp denoting $(L(r))^*$
 - (r) is a regexp denoting L(r)
- Operator precedence
 - * > concatenation > |
 - all left-associative

Regular Expressions

Examples

```
let \Sigma = \{a, b\}.
```

- **a**|**b** denotes {a, b}
- (a|b)(a|b) denotes {aa, ab, ba, bb}
- a* denotes {ε, a, aa, aaa, aaaa, ... }
- (a|b)* denotes {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}
- **a**|**a*****b** denotes {a, b, ab, aab, aaab, ...}

Algebraic Laws for Regular Expressions

Law (Axiom)	Description	
$r \mid s = s \mid r$	is commutative	
$r(s \mid t) = (r \mid s) \mid t$	is associative	
r(st) = (rs)t	concatenation is associative	
r(s t) = rs rt $(s t)r = sr tr$	concatenation distributes over	
$\varepsilon \mathbf{r} = \mathbf{r} \varepsilon = \mathbf{r}$	ϵ is the identity element for concatenation	
$r^* = (r \varepsilon)^*$	relation between * and ε: ε is guaranteed in a closure	
$r^{**}=r^*$	* is idempotent	

Regular Definitions

- For notational convenience
- Given an alphabet Σ , a regular definition is a sequence of definitions of the following form

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$\vdots$$

$$d_n \rightarrow r_n$$

where

- each d_i is a new symbol (not in Σ , and $d_i \neq d_j$ for $i \neq j$)
- each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, d_3, \dots d_{i-1}\}$

Regular Definitions

Example

C identifiers

letter_
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z | _
digit \rightarrow 0 | 1 | 2 | ... | 9
ident \rightarrow letter_ (letter_ | digit)*

Unsigned integer or floating point numbers

```
digit \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9

digits \rightarrow digit digit*

optFract \rightarrow . digits \mid \varepsilon

optExp \rightarrow (E(+|-|\varepsilon) digits) | \varepsilon

number \rightarrow digits optFract optExp
```

Extensions of Regular Expressions

- Instance counting
 - one or more

$$r^+ = rr^*$$

zero or one

$$r? = r \mid \epsilon$$

n instances

$$r^n = \underbrace{r \dots r}_{n \text{ times}}$$

- Character classes
 - replace a series of | with [], and for logical sentences use a₁|a₂|...|a_n = [a₁a₂...a_n] [abcdefghijklmnopqrstuvwxyz] = [a-z]

Regular Definitions

- Example using the extensions
 - C identifiers

```
letter_ \rightarrow [A-Za-z_]
digit \rightarrow [0-9]
ident \rightarrow letter_ ( letter_ | digit )*
```

Unsigned integer or floating point numbers

```
digits \rightarrow [0-9]<sup>+</sup>
number \rightarrow digits (. digits)? (E [+-]? digits)?
```

Recap: Languages

Language

- any countable set of strings over some fixed alphabet Σ
- important: there is no meaning ascribed to the strings in the language
- operations on languages

Operation	Notation	Definition
Union	$L \cup M$	$L \cup M = \{s \mid s \subseteq L \text{ or } s \subseteq M \}$
Concatenation	LM	$LM = \{ st \mid s \subseteq L \text{ and } t \subseteq M \}$
Kleene closure	L*	$L^* = \cup_{ i=0,\infty} L^i$
Positive closure	L ⁺	$L^+\!= \cup_{i=1,\infty} L^i$

Recap: Regular Expressions

- Built recursively over some alphabet Σ
 - basis
 - ε is a regexp, $L(ε) = {ε}$
 - if $a \subseteq \Sigma$, then **a** is a regexp, and $L(\mathbf{a}) = \{a\}$
 - induction for regexps r and s, denoting the languages L(r) and L(s)
 - (r)|(s) is a regexp denoting $L(r) \cup L(s)$
 - (r)(s) is a regexp denoting L(r)L(s)
 - $(r)^*$ is a regexp denoting $(L(r))^*$
 - (r) is a regexp denoting L(r)
- Operator precedence
 - * > concatenation > |
 - all left-associative

Recap: Regular Expressions

Regular Definitions

- definitions of the form $d_i \rightarrow r_i$ where
 - each d_i is a new symbol (not in Σ , and $d_i \neq d_j$ for $i \neq j$)
 - each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, d_3, \dots d_{i-1}\}$

Extensions of Regular Expressions

- counting
 - one or more: $r^+ = rr^*$
 - > zero or one: $r? = r \mid \epsilon$
 - ightharpoonup n instances: $r^n = r...r$
- character classes:
 - range: $a_1|a_2|...|a_n = [a_1a_2...a_n]$, [abcdefghijklmnopqrstuvwxyz] = [a-z]

32

excluded range: [^a-c] = complement of [a-c]

Recap: RegExp and Languages

- L(α) is function that gives meaning to α
- For regular expressions $L: \exp \rightarrow \operatorname{set} \text{ of strings over } \Sigma$
- Separation of syntax (notation) and semantics (meaning)
 - treat syntax as a separate issue
 - syntax ↔ semantics is not 1:1
 - many-to-one, but never one-to-many

Lexical Specification

Specifying Syntax through Regular Expressions

- Two Goals of Lexical Analysis given a string s (the program source) and a regular expression R
 - determine $s \in L(R)$ and
 - tokenize *s* into substrings

Lexical Specification

- 1. Specify a regular expression for each syntactic category
 - **Keyword** = 'if' | 'else' | 'then' | ...
 - **Number** = digit+ optFract optExp
 - **Identifier** = letter (letter | digit)*
 - **Op** = '+' | '-' | '*' | '/' | ...
 - **RelOp** = '<=' | '==' | '>=' | ...
 - **LPar** = '('
 - **RPar** = ')'
 - Whitespace = $[\n\t]$
 - •

Lexical Specification

Form the lexical specification of the language

```
R = Keyword \mid Number \mid Identifier \mid Op \mid RelOp \mid LPar \mid RPar \mid Whitespace \mid ...
= R_1 \mid R_2 \mid ...
```

simply the union of all regular expressions

Lexical Analysis

- Given: R matching all lexemes for all tokens, i.e., our language Input: $x_1x_2...x_n$
- 1. For $1 \le i \le n$ check

$$\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_i \subseteq L(R)$$

2. Since R is the union of all R_i

$$\exists j: \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_i \subseteq L(R_j)$$

3. Delete $x_1x_2...x_i$ from input and go to 1

- Ambiguities
 - how much input should be consumed?

$$x_1...x_i \subseteq L(R)$$

$$x_1...x_j \subseteq L(R)$$

$$i \neq j$$

- examples
 - tmp vs tmp1
 - else VS elsewhere
 - = VS ==

Rule: always pick the longer one ("maximal munch")

- Ambiguities
 - which token should be generated?

$$\mathbf{x}_1...\mathbf{x}_i \subseteq L(R)$$
 $\mathbf{x}_1...\mathbf{x}_i \subseteq L(R_k)$
 $\mathbf{x}_1...\mathbf{x}_i \subseteq L(R_l)$
 $k \neq l$

example

else vs else (keyword vs identifier)

Rule: priority ordering amongst the R_k ; and choose the one listed first

- Ambiguities
 - what if no rule matches?

$$x_1...x_i \notin L(R)$$

Several possibilities:

- print error directly in lexical analyzer
- add a rule to the end of the specification that catches any input not in the specification

Error = "all strings not in the specification"

implemented as 'wildcard' & put last

→ problem here: recovery

Finite Automata

Regular Expressions and Finite Automata

- Specification = Regular Expression (RE)
- Implementation = Finite Automata (FA)
- REs and FA are closely related
 - both describe regular languages
 - convert from one into the other

Finite Automata

- A finite automaton consists of
 - a set of input symbols Σ
 - does not include the empty string ε
 - a finite set of states S
 - a start state $s_0 \subseteq S$
 - a set of final (or accepting) states $F \subseteq S$
 - a transition function $f: S \times (\Sigma \cup \varepsilon) \to S$

state	a	b	3
0	{0, 1}	Ø	Ø
1	Ø	2	Ø
2	Ø	0	Ø

Finite Automata

- Transitions in FA
 - the transition function $f: S \times (\Sigma \cup \varepsilon) \to S$ defines where to go from the current state and the next input symbol
 - example

- state 0 on input a → state 0
- state 0 on input b → state 1

- Acceptance
 - if there exists some path that leaves the FA is in an accepting state at the end
 of the input

Nondeterministic Finite Automata (NFA)

- Can have several transitions (edges) out of a state on the same input symbol
- Can have ε transitions
 - move from one state to the other without consuming any input

Deterministic Finite Automata (DFA)

- Can have exactly one transition (edge) out of a state on the same input symbol
- No ε transitions
 - must consume an input symbol on every transition

(a|b)*abb

state	a	b
0	1	0
1	1	2
2	1	3
3	1	0

Simulating a DFA

Simulating a DFA is straightforward

int f = DFA("aababb", 0, m);
if (f == 3) printf("accept");
else printf("nope");

	state	a	b
	0	1	0
	1	1	2
\rightarrow (s_i)	3) 2	1	3
	3	1	0

NFA vs DFA

A DFA takes exactly one, well-defined path through the state graph for any given input

- An NFA can "choose"
 - an NFA can conceptually be in any number of states
 simulate all possible paths through the NFA in parallel

NFA vs DFA

NFA Example NFA accepting the same regular expression as the DFA before

input: aababb

input	state set
	{ 0 }
a	{0, 1}
a	{0, 1}
b	{0, 2}
a	{0, 1}
b	{0, 2}
b	{0, 3 }

An NFA is typically in a *set* of states, not one *single* state.

NFA vs DFA

- NFA and DFA both recognize the set of same languages (regular languages)
 - for each NFA recognizing a certain language, a corresponding DFA exists
 - and vice-versa

- NFA and DFA differ in construction complexity and recognizing speed
 - space/time tradeoff
 - construction:
 - NFAs are more compact
 - execution:
 - DFAs are faster

From Regular Expressions to NFA

- Inductive construction of an NFA from a regular expression
 - input: regular expression
 - output: NFA
 - method: break down RE into base components and compose according to the following basic rules

- base:
 - for ε:

• for input $\mathbf{a} \subseteq \Sigma$:

- Inductive construction of an NFA from a regular expression (cont'd)
 - given: the NFA N(s), N(t) for regular expressions s, t

- composition:
 - r = s|t:

r = st:

- Inductive construction of an NFA from a regular expression (cont'd)
 - composition:
 - $r = s^*$:

r = (s):

Example: (a|b)*abb

Example: (a|b)*abb (cont'd)

- Properties of NFA constructed by Thompson's algorithm
 - N(r) has at most twice as many states as there are operators and operands in r
 - N(r) has one start state and one accepting state
 - Each state of N(r) other than the accepting state has either one outgoing transition on a symbol in Σ or up to two outgoing transitions, both on ε .

From NFA to DFA

Conversion of an NFA to a DFA

Basic idea create a state in the DFA that comprises all possible states of the NFA after seeing a certain input string s

Example: s = ab...

- start: NFA = { 0 }
 → DFA state 0
- after a: NFA = { 0,1 }
 → DFA state 01
- after b: NFA = { 2,3,4,0 } → DFA state 0234
- ...

Conversion of an NFA to a DFA

An NFA can be in many different states at any time

- start: NFA = { 0 }
- after a: NFA = { 0,1 }
- after b: NFA = { 2,3,4,0 }

• ...

- Maximum number of different state sets
 - NFA with N states
 - subset S
 - |S| ≤ N
 - number of distinct sets: 2^N-1
 - big, but finite → can construct a DFA that simulates the NFA

ε-closure

 \blacksquare ϵ -closure(s): ϵ -closure of a state s

set of NFA states reachable from NFA state s by following only ϵ -transitions

set of NFA states reachable from some NFA state $s \subseteq T$ by following only ϵ -transitions

63

ε-closure

Computing ε -closure(T):

```
set \varepsilon-closure (set T)
  stack ← all states in T
  S \leftarrow T
  while (!stack.empty()) {
     t = stack.pop()
     for (each state u with an edge t \stackrel{\epsilon}{\rightarrow} u) {
        if (u ∉ S) {
           S \leftarrow S \cup \{u\}
           stack.push(u)
  return S
```

ε-closure

Example

- ϵ -closure({0}) = { 0, 1, 2, 4, 7 }
- ε -closure({5}) = { 5, 6, 7, 1, 2, 4 }
- ε -closure({3,9}) = { 1, 2, 3, 4, 6, 7, 9 }

- Construct a transition table Dtran for DFA D.
 - NFA N
 - > states S
 - start state $s_0 \subseteq S$
 - accepting states $F \subseteq S$
 - transition function $f: S \times (\Sigma \cup \varepsilon) \rightarrow S$

Operations

Operation	Return value
move(T, a)	set of NFA states to which there is a transition on input symbol a from some state $s \in T$
ε -closure(T)	set of NFA states reachable from some state $s \in T$ on ϵ -transitions alone

- Construct a transition table Dtran for DFA D.
 - DFA D

 - start state ε -closure(s_0)
 - ightharpoonup accepting states that include at least one accepting state of N
 - transition function $Dtran: S \times \Sigma \rightarrow S$
 - Dtran simulates all possible moves NFA N can make on any input string in parallel

$$Dtran(T, a) = \varepsilon$$
-closure(move(T, a))

Subset construction algorithm:

```
Dstates \leftarrow \{\varepsilon - \text{closure}(s0)\}
while (\exists an unmarked state T in Dstates) {
  mark T;
  for (each input symbol a \in \Sigma) {
     U = \varepsilon-closure (move (T, a))
     if (U ∉ Dstates) {
        Dstates ← Dstates U {U}
     Dtrans[T, a] \leftarrow U
```


- state transitions for A
 - a: ε-closure(move(A,a)) = ε-closure($\{3,8\}$) = $\{1,2,3,4,6,7,8\}$ = B
 - b: ε-closure(move(A,b)) = ε-closure($\{5\}$) = $\{1,2,4,5,6,7\}$ = C
- state transitions for B
 - a: ε-closure(move(B,a)) = ε-closure($\{3,8\}$) = $\{1,2,3,4,6,7,8\}$ = B
 - b: ε-closure(move(B,b)) = ε-closure($\{5,9\}$) = $\{1,2,4,5,6,7,9\}$ = D
- state transitions for C
 - a: ε-closure(move(C,a)) = ε-closure($\{3,8\}$) = $\{1,2,3,4,6,7,8\}$ = B
 - b: ε-closure(move(C,b)) = ε-closure($\{5\}$) = $\{1,2,4,5,6,7\}$ = C

- state transitions for D
 - a: ε-closure(move(D,a)) = ε-closure($\{3,8\}$) = $\{1,2,3,4,6,7,8\}$ = B
 - b: ε-closure(move(D,b)) = ε-closure($\{5,10\}$) = $\{1,2,4,5,6,7,10\}$ = E
- state transitions for E
 - a: ε-closure(move(E,a)) = ε-closure($\{3,8\}$) = $\{1,2,3,4,6,7,8\}$ = B
 - b: ε-closure(move(E,b)) = ε-closure($\{5\}$) = $\{1,2,4,5,6,7\}$ = C

- Example (cont'd)
 - Dstates = { A, B, C, D, E }
 - Dtrans

DFA	NFA	a	b
\overline{A}	{0,1,2,4,7}	В	C
В	{1,2,3,4,6,7,8}	В	D
C	{1,2,4,5,6,7}	В	C
D	{1,2,4,5,6,7,9}	В	E
E	{1,2,4,5,6,7, 10 }	В	C

DFA for (a|b)*abb

Minimizing the Number of States of a DFA

Minimizing the Number of States of a DFA

The subset construction algorithm may lead to DFAs with superfluous states

DFA for (a|b)*abb (subset construction)

start A a B b D b E

minimum state DFA for (a|b)*abb

Minimum State DFA

- For any regular language, there is a unique minimum state DFA
- Construction of the minimum state DFA is possible from any DFA for the same language
- Idea: merge functionally equivalent states

Distinguishable States

- Distinguishable and undistinguishable states
 - string x distinguishes state s from state t if only one of the states reached from s and t by following the path with label x is an accepting state.
 - examples:
 - string ba does not distinguish states A and C
 - string bb distinguishes states B and C
 - the empty string ε distinguishes accepting from non-accepting states

 state s is distinguishable from state t if there is some string that distinguishes the two states.

- State-minimization algorithm
 - partition the states of a DFA into groups of undistinguishable states
 - merge each group into a single state
 - these states make up the minimum-state DFA
 - input: original DFA D
 - output: minimum-state DFG D'
 - operation
 - ▶ initial partition: { accepting states of D }, { non-accepting states of D }
 - step: if an input a distinguishes a group in the current partition, split the group into smaller subgroups until for no group and no input symbol the group is split further

Partitioning

```
\begin{array}{l} \Pi \;\leftarrow\; \{\; \text{S-F, F}\; \} \\ \\ \text{do } \{ \\ \Pi_{\text{new}} \;\leftarrow\; \Pi \\ \text{for (each group $G$ of $\Pi$)} \; \{ \\ \text{partition $G$ into subgroups such that two states $s$ and $t$} \\ \text{are in the same subgroup iff $\forall a \in \Sigma$, the transitions } \\ \text{for states $s$ and $t$ on $a$ go to states in the same } \\ \text{group in $\Pi$} \\ \text{replace $G$ in $\Pi_{\text{new}}$ by the set of all subgroups} \\ \} \\ \text{while } (\Pi_{\text{new}} \neq \Pi) \end{array}
```

- Generating states
 - for each group in Π choose one state as the representative for that group. Each representative forms a state in the minimum-state DFA D'
 - start state of D'
 representative of the group containing the start state of D
 - accepting states of D' representative of group(s) containing an accepting state of D
 - transitions of D'
 let s be the representative of some group G in Π. In D, state s has a transition on input a to state t; t is represented by r in D'. Then there is a transition from s to r on a in D'.

Example

initial partition
 Π ← { {A,B,C,D}, {E} }

- ignore {E} (|{E}| = 1 and can thus not be split further)
- for {A,B,C,D}
 - input a: all states go to B
 → a does not distinguish A,B,C,D on a
 - input b: {A,C} go to C, B goes to D (both in {A,B,C,D}); D goes to E
 → split into {A,B,C} and {D}
- ignore {D}, for {A,B,C}
 - input a: all states go to B
 - input b: {A, C} go to C; B goes to D→ split into {A,C},{B}
- ignore {B}, for {A,C}
 - input a: both states go to B
 - input b: both states go to C

Example

final partition
 Π ← { {A,C}, {B}, {D}, {E} }

pick representatives: A for {A,C}; B, D, E for themselves

start state: A in D → A in D'

accepting states: E in D → E in D'

• transitions:

	minimum-state DFA	a	b
-	A	В	A
	В	В	D
	D	В	E
	E	В	A

Simulating an NFA

Simulating an NFA

Instead of first constructing a DFA, we can directly simulate an NFA

```
set of int NFA(char *input, int s0, int (*move)(set of int, char))
  set of int S = \varepsilon-closure(s0);
  char c = *input++;
                                            set of int mtab[S][\Sigma];
  while (c != '\0')
    S = \varepsilon-closure (move (S, c));
                                            set of int move (set of int s,
    c = *input++;
                                                           char c)
  return S
usage:
set of int f = NFA ("aababb", 0, m);
if (f \cap F) printf("accept");
else printf("nope");
```

Comparison with DFA Simulation

DFA simulation vs NFA simulation.

```
int DFA(char *input, int s0,
        int (*move)(int, char))
{
  int s = s0;
  char c = *input++;
  while (c != '\0') {
    s = move(s, c);
    c = *input++;
  }
  return s
}
int move(int s, char c);
```

Comparison with DFA Simulation

Cost analysis

- NFA
 - conversion of a regular expression r to an NFA: O(|r|)
 - simulation: $O((|n|+|m|) \times |x|) = O(|r| \times |x|)$ (n states, m transitions; observe that $n \le |r|$ and $m \le 2|r|$)

DFA

• subset construction: $O(|r|^3)$ in the typical, $O(|r|^2 2^{|r|})$ in the worst case

ightharpoonup simulation: O(|x|)

Automaton	Initial	Per String
NFA	O(r)	$O(r \times x)$
DFA typical case	$O(r ^3)$	O(x)
DFA worst case	$O(r ^2 2^{ r })$	O(x)

Recap: RE → NFA → DFA → minimal DFA

- RE → NFA: Thompsons Construction Algorithm
 - base rules:

composition rules:

Recap: $RE \rightarrow NFA \rightarrow DFA \rightarrow minimal DFA$

- NFA → DFA: Subset Construction Algorithm
 - idea: states of DFA = state set of NFA

```
Dstates ← {ε-closure(s0)}

while (∃ an unmarked state T in Dstates) {
  mark T;

for (each input symbol a ∈ Σ) {
  U = ε-closure(move(T, a))
  if (U ∉ Dstates) {
    Dstates ← Dstates U {U}
  }
  Dtrans[T, a] ← U
  }
}
```

Recap: RE → NFA → DFA → minimal DFA

- DFA → minimal DFA: State Minimization Algorithm
 - idea: merge states that behave identical for all possible input symbols

```
\begin{array}{l} \Pi \;\leftarrow\; \{\; \text{S-F, F}\; \} \\ \\ \text{do } \{ \\ \Pi_{\text{new}} \;\leftarrow\; \Pi \\ \text{for (each group $G$ of $\Pi$)} \; \{ \\ \text{partition $G$ into subgroups such that two states $s$ and $t$} \\ \text{are in the same subgroup iff $\forall a \in \Sigma$, the transitions} \\ \text{for states $s$ and $t$ on $a$ go to states in the same group in $\Pi$} \\ \text{replace $G$ in $\Pi_{\text{new}}$ by the set of all subgroups} \\ \} \\ \text{while } (\Pi_{\text{new}} \;\neq\; \Pi) \end{array}
```

+ some renaming & fixups after partitioning

That's all very nice, but how do I implement it?

- Example:
 - language syntax:

keywords \rightarrow else | elif

transition diagram

* = retract input by one character

- Example:
 - language syntax:

```
keywords \rightarrow else | elif id \rightarrow alph (alphanum) *
```

• transition diagram

solve the state of th

"elif"

- Example:
 - language syntax:

```
keywords → else | elif
id → alph (alphanum) *
```

transition diagram

plus install keywords in symbol table

- Example:
 - language syntax:

transition diagram

Direct Implementation

```
TOKEN getRelop()
  TOKEN retToken = new(RELOP);
  while (1) {
    switch (state) {
      case 0: c = nextChar();
              if (c == '<') state = 1;
              else if (c == '=') state = 5;
              else if (c == '>') state = 6;
              else fail();
              break;
      case 5: retToken.attribute = EO;
              return retToken;
      case 6: c = nextChar();
              if (c == '=') state = 7;
              else state = 8;
              break;
      case 8: retract();
              retToken.attribute = GT;
              return retToken;
```


see "Lexical Analysis with Flex", Vern Paxson et al (on eTL)

Example

```
%option noyywrap
응응
"<"
                   { printf("tRelOp (<) \n"); }
"<="
                   { printf("tRelOp (<=)\n"); }
">"
                   { printf("tRelOp (>) \n"); }
                   { printf("tRelOp (%s)\n", yytext); }
">="
" = "
                   { printf("tRelOp (%s)\n", yytext); }
"<>"
                   { printf("tRelOp (%s)\n", yytext); }
응응
int main(void)
 vylex();
 return 0;
```

Example

```
$ flex RelOp.l
$ gcc -o relop lex.yy.c
$ echo "<<<==>=><>" | ./relop
tRelOp (<)
tRelOp (<)
tRelOp (<=)
tRelOp (=)
tRelOp (>=)
tRelOp (>=)
tRelOp (>)
$
```

lex.yy.c

```
static yyconst flex int16 t yy accept[12] =
  { 0,
     0, 0, 8, 7, 1, 5, 3, 2, 6, 4,
  } ;
static yyconst flex int32 t yy ec[256] =
  { 0,
       1, 1, 1, 1, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1,
  } ;
static yyconst flex int32 t yy meta[5] =
  { 0,
     1, 1, 2, 1
  } ;
static yyconst flex int16 t yy base[13] =
     0, 0, 8, 9, 2, 9, 0, 9, 9,
  } ;
```

lex.yy.c (cont'd)

- Often, the lexical structure is easy enough to be implemented without an explicit DFA
 - regular expressions

```
ident: ident = letter ( letter | digit )*
```

number: number = digit (digit)*

operators: operator = '+', '-'

rel. operators: relop = '<', '<='</p>

assume C++ input streams

```
std::istream in
```

- get(): return next character in input stream
- peek(): look at next character in input stream (without removing it)

Skeleton

```
Token* Scanner::Get()
  EToken token = tUndefined;
                                                   initialize token and lexeme
  string lexeme = "";
  char c;
  while (IsWhite(in.peek()) in.get();
                                                 skip over white space
  c = in.get();
  lexeme = c;
  switch (c) {
                                                   state machine (next slide)
  return new Token (token, lexeme);
                                                   return token
```

- Scanning the next token
 - group lexemes that may start with the same letter
 - consume characters as long as the proper prefix is identical
 - use peek() to distinguish the end of a token vs. longer tokens (e.g., "<" vs "<=")

```
switch (c) {
  case '+':
  case '-':
    token = tOperator;
  break;

case '<':
  token = tRelOp;
  if (in.peek() == '=') lexeme += in.get();
  break;</pre>
```

•••

Scanning the next token (cont'd)

```
switch (c) {
  default:
    if (IsLetter(c)) {
      token = tIdent;
      while ((IsLetter(in.peek()) || IsDigit(in.peek()))
        lexeme += in.get();
    } else if (IsDigit(c)) {
      token = tNumber;
      while (IsDigit(in.peek()) lexeme += in.get();
    } else {
      token = tError;
```

- Dealing with keywords
 - regular expressions

```
ident: ident = letter ( letter | digit )*
number: number = digit ( digit )*
operators: operator = '+', '-'
rel. operators: relop = '<', '<='</li>
keywords: keyword = 'begin' | 'end' | 'while' | ...
```

store keywords in a map containing the keyword and the token type

```
map<string, EToken> keyword;
```

and initialize the table with the keywords and their token type

```
keyword['begin'] = tBegin;
keyword['end'] = tEnd;
```

- Dealing with keywords
 - keywords conform to identifiers, so all we need to do is check every time we have seen an identifier: