Библиотека элементов программного интерфейса для обработки графов

ЦЕЛИ

Создание библиотеки элементов программного интерфейса для обработки графов для системы с дискретным набором команд.

ЗАДАЧИ

- -Анализ и исследование программной модели процессора с набором команд дискретной математики
- -Анализ программного интерфейса процессора обработки структур
- -Анализ технологий хранения и обработки графов
- -Исследование принципов обработки графовых моделей систем с дискретным набором команд
- -Разработка графовых моделей хранения графов для таких систем
- -Разработка программной части компонентов системы
- -Разработка симулятора для программного интерфейса процессора обработки структур
- -Разработка библиотеки для обработки ультраграфов для систем с дискретным набором команд
- -Обеспечение качества и надёжности

квали	Выпускна фикационна		ота	Библиотека элементов програм обработки гр			интерф	ейса для
	магистр	σα				Лит.	Масса	Масштаδ
Изм. Лист	№ докум.	Подпись	Дата		П			
Разраб.	Кирьяненко А.В.	Jun /	25.05.2020	Цели и задачи				
Провер.	Попов А.Ю.		25.05.2020	•				
Т.контроль	Еремин О.Ю.	0				Лист 1		Листов 10
Реценз.						METII	117	
Н.контроль					1			Баумана
Утв.						гр	уппа ИУ	D-4 IM

Анализ технологий хранения и обработки графов

Вооst — собрание библиотек классов, использующих функциональность языка С++ и предоставляющих удобный кроссплатформенный высокоуровневый интерфейс для решения различных задач программирования (работа с данными, алгоритмами, файлами, потоками и т. п.).
Свободно распространяются по лицензии Boost Software License вместе с исходным кодом.

Boost Graph Library предоставляет гибкую и эффективную реализацию концепций графов.

Можно выбрать представление графа:

- список смежности (adjacency_list);
- матрица смежности (adjacency_matrix).

В библиотеке имеется большая база алгоритмов, среди которых:

- поиск в ширину;
- поиск в глубину;
- алгоритм Беллмана-Форда;
- алгоритм Дейкстры;
- алгоритм Прима;
- алгоритм Краскала;
- нахождение компонент связности графа;
- задача о максимальном потоке;
- обратный алгоритм Катхилла-Макки;
- алгоритм топологической сортировки.

Neo4j – графовая система управления базами данных с открытым исходным кодом, реализованная на Java. По состоянию на 2019 год считается самой распространённой графовой СУБД.

Язык запросов – Сурћег

Интерфейс программирования приложений для СУБД реализован для многих языков программирования, включая Java, Python, Clojure, Ruby, PHP, также реализовано API в стиле REST.

LEDA – это библиотека классов С++ от AlgoSol для эффективной обработки типов данных и алгоритмов. LEDA предоставляет алгоритмическую базу в области графовых и сетевых задач, геометрических вычислений, комбинаторной оптимизации и других.

Также LEDA включает интерфейс для ввода и вывода графов для различных платформ, что позволяет делать визуализацию графов, и анимацию работы графовых алгоритмов.

Выпускная квалификационная работа		та	, ,				ЦΗП	перфе	εύτα δης
магистр	σα				/lum	:	/	Масса	Масштаδ
№ докум.	Подпись	Дата	Augaus movuoaosuu ynguouug u						
Кирьяненко А.В.	They!	25.05.2020	•						
Ποποβ Α.Ю.		25.05.2020	оораоотки графоо						
Еремин О.Ю.	O				Лис	cm 2		//	истов 10
					МГ	711		μэ	Farmana
					11//				_
	ФИК АЦИОНН МА РИСТР № докум. Кирьяненко А.В. Попов А.Ю.	фикационная рабо магистра № докум. Подпись Кирьяненко А.В.	ФИКАЦИОННАЯ РАБОТА МАГИСТРА № докум. Подпись Дата Кирьяненко А.В. 25.05.2020 Попов А.Ю. 25.05.2020	фикационная работа магистра № докум. Подпись Дата Кирьяненко А.В. 25.05.2020 Попов А.Ю. 25.05.2020 Z5.05.2020 Обработки графов	фикационная работа магистра № докум. Подпись Дата Кирьяненко А.В. 25.05.2020 Попов А.Ю. 25.05.2020 Еремин О.Ю.	ФИКАЦИОННАЯ РАБОТА МАГИСТРА № докум. Подпись Дата Кирьяненко А.В. 25.05.2020 Попов А.Ю. 25.05.2020 Еремин О.Ю. Ответний пострания и пос	фикационная работа Магистра № докум. Подпись Дата Кирьяненко А.В. 2505.2020 Попов А.Ю. 2505.2020 Еремин О.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Топов А.Ю. 2505.2020 Тобработки графов Лит 2	фикационная работа магистра № докум. Подпись Дата Кирьяненко А.В. 25.05.2020 Попов А.Ю. 25.05.2020 Еремин О.Ю. О 1000 Обработки графов МГТУ им.	ФИКАЦИОННАЯ РАБОПА МАЗИСТРА № докум. Подпись Дата Кирьяненко А.В. 25:05:2020 Попов А.Ю. 25:05:2020

Универсальный микропроцессор

Микропроцессор Leonhard

Универсальный процессор

Оперативная память

программы алгоритм основной Объекты и скалярные данные

Структур обработки структур

Сшруктуры Структуры

- Обрабатывает числа.
- Аппаратно реализует арифметическую и логическую обработку.
- Обработка сложных моделей данных (деревьев. графов) выполняется на конвейере микропроцессора последовательно.
- Использует 03У для хранения программ, данных структур данных, множеств и т.д.
- Распределение памяти для хранения структур данных осуществляется программно.

Универсальный процессор

Процессор обработки структур

Алгоритмы обработки структур

Оперативная память

программы алгоритм основной Объекты и скалярные данные Память структур

Структуры данных

- Обрабатывает множества.
- Аппаратно реализует математический аппарат дискретной математики.
- Микроархитектура Leonhard обеспечивает параллельную обработку множеств, структур данных, графов.
- Использует независимую память для хранения структур данных, множеств, графов.
- Распределение памяти осуществляется аппаратными механизмами микропроцессора Leonhard.

квали	Выпускна фикационна		ота	Библиотека элементов програм обработки гр		ЦΗ	терфе	ρύτα δης
	магистр	σα		Схема структурная системы с	Лит.		Масса	Масштад
Изм. Лист	№ докум.	Подпись	Дата	аппаратной поддержкой				
Разраб.	Кирьяненко А.В.	Jun-	25.05.2020	,		ı		
Провер.	Ποποβ Α.Ю.		25.05.2020	операций дискретной				
Т.контроль	Еремин О.Ю.	Ò		матиматики	Лист .	3	Л	истов 10
Реценз.					МГТЬ	l um	ı. Н.Э. I	Баумана

Программная модель процессора с набором команд дискретной математики

Формат данных Leonhard x64

Структура	Ключ	Значение		
3 бита	64 бита	64 бита		

Команды дискретной математики:

- Search (SRCH) поиск значения по ключу.
- -Insert (INS) вставляет пару ключ-значение в структуру. SPU обновляет значение, если указанный ключ уже находится в структуре.
- -Delete (DEL) удаляет указанный ключ из структуры данных.
- -Neighbors (NSM, NGR) поиск соседнего ключа, который меньше (или больше) заданного и возвращает его значение.
- Maximum / minimum (MAX, MIN) поиск первого или последнего ключа в структуре данных.
- -Cardinality (CNT) определяет количество ключей, хранящихся в структуре.
- AND, OR, NOT выполняют объединения, пересечения и дополнения в двух структурах данных.
- -**Срезы (LS, GR, LSEQ, GREQ) -** извлекают подмножество одной структуры данных в другую.
- -Переход к следующему или предыдущему (NEXT, PREV) находят соседний (следующий или предыдущий) ключ в структуре данных относительно переданного ключа (исходный ключ должен обязательно присутствовать в структуре).
- Удаление структуры (DELS) очищает все ресурсы, используемые заданной структурой.
- Squeeze (SQ) дефрагментирует блоки памяти DSM, используемые структурой.
- Jump (JT) указывает SPU код ветвления, который должен быть синхронизирован с CPU.

Параметры Leonhard x64

Параметр	Значение
Максимальный размер команды в локальной памяти команд СП (LCM)	144 бит
Максимальный размер команды из ЦП	160 бит
Максимальный размер результата из СП в ЦП	64 бит
Количество разрядов поля ключа	64 бит
Количество разрядов поля значения	64 бит
Расположение байт в памяти	Младший байт по младшему адресу
Размер внешней памяти структур	4 ГБайта
Максимальное количество ключей в структуре	100 663 296
Кратность вершины В+ дерева	8
Количество ключей на нижнем уровне дерева	6
Максимальное количество хранимых структур	7

квали	Выпускна фикационна		отα	Библиотека элементов программного интерфейса для обработки графов				
магистра					Лит.	Мас	сса	Масштаδ
Изм. Лист	№ докум.	Подпись	Дата	Программная модель				
Разраб.	Кирьяненко А.В.	Jung!	25.05.2020	процессора с набором команд				
Провер.	Попов А.Ю.		25.05.2020	дискретной математики				
Т.контроль	Еремин О.Ю.				Лист 4		Л	истов 10
Реценз.					METU		u	Farmana
Н.контроль					МГТУ им. Н.Э. Ба <u>і</u> группа ИУ6-4		_	
4тв					2/	iyiiiiu	סצוע	-4 111

Модели хранения графов для систем с дискретным набором команд

Модель для ориентированного остовного графа

Ключ		Значение
id вершины	00	Данные вершины
id вершины	id смежной вершины	

Модель для взвешенного ориентированного остовного графа

Ключ			Значение
id вершины	00		Данные вершины
id вершины	00	id смежной вершины	Вес ребра
id вершины	Bec	id смежной вершины	

Модель для ориентированного мультиграфа

Ключ		Значение		
00	id ребра	id смежной вершины 1	id смежной вершины 2	
id вершины	00		Данные вершины	
id вершины	id ребра	id смежной вершины		

Модель для взвешенного ориентированного мультиграфа

Ключ				Значение
00	id ребра	id смежной вершины 1	id смежной вершины 2	
id вершин	00			Данные вершины
id вершины	Bec	id ребра	id смежной вершины	

Модель для гиперграфа

Ключ		Значение		
id вершины	00	Данные вершины		
id вершины	id ребра			
Ключ		Значение		
id ребра	00	Вес ребра		
id ребра	id вершины			

Модель для ультраграфа

Ключ			Значение
0	id вершины	00	Данные вершины
Бит инцидентности	id вершины	id ребра	
Ключ	Значение		
0	id ребра	00	Вес ребра
Бит инцидентности	id ребра	id вершины	

Модель для взвешенного ультраграфа

Ключ				Значение
0	00			Общее кол-во вершин
0	id вершины	00		Данные вершины
0	id вершины	11		Кол-во входящих ребер
Бит инцидентности	id вершины	Вес ребра	id ребра	
1	id вершины	11	•	Кол-во исходящих ребер

Ключ	Значение		
0	00		Общее кол-во ребер
0	id ребра	00	Вес ребра
0	id ребра	11	Кол-во вершин, в кот. входит ребро
Бит инцидентности	id ребра	id вершины	
1	id ребра	11	Кол-во вершин, из кот. выходит ребро

Модель ультраграфа с атрибутами для ребер

Ключ					Значені	ие
0	00		Общее вершин	кол-во		
0	id вершины	00			Данные	вершины
0	id вершины	11			Кол-во ребер	входящих
Бит инцидентности	id вершины	id атрибута	Значение атрибута	id ребра		
1	id вершины	11			Кол-во г ребер	исходящих

Ключ				Значение
0	00			Общее кол-во ребер
0	id ребра	00	id атрибута	Значение атрибута
0	id ребра	11		Кол-во вершин, в кот. входит ребро
Бит инцидентности	id ребра	id вершины	00	
1	id ребра	11	•	Кол-во вершин, из кот. выходит ребро

Реализованная модель ультраграфа

Ключ		Значение		
id	Бит	id	id	
графа	инцидентности	вершины	ребра	
id графа	0	0 0		Общее кол-во вершин
id графа	0	id вершины	0 0	Данные вершины
id графа	0	id вершины	1 1	Кол-во исходящих ребер
id графа	1	id вершины	1 1	Кол-во входящих ребер

Ключ				Значение
id графа	Бит инцидентности	id ребра	id вершины	
id графа	0	0 0		Общее кол-во ребер
id графа	0	id ребра	0 0	Данные ребра
id графа	0	id ребра	1 1	Кол-во вершин, из кот. выходит ребро
id графа	1	id ребра	1 1	Кол-во вершин, в кот. входит ребро

κέ	Вали	Выпускно фикационна		та	Библиотека элементов програм обработки гр		UHM	ерфе	νύςα δη
		магистр	α			Лит.	M	асса	Масштас
Изм.	Лист	№ докум.	Подпись	Дата	Модели хранения графов для				
Разр	ραδ.	Кирьяненко А.В.	Kuy	25.05.2020	систем с дискретным набором				
Пров	вер.	Ποποβ Α.Ю.	1	25.05.2020	команд				
Т.конп	проль	Еремин О.Ю.)			Лист 5		Λl	истов 10
Рец	енз.					METU		ם ע	Farmana
Н.конг	проль								Баумана

Диаграмма классов программного интерфейса процессора обработки структур

группа ИУ6-41М

Концепции представления графов

boost::graph_traits<G>::

boost::graph_traits<G>::

std::pair<edge_iterator, edge_iterator> edges(g)

edges_size_type num_edges(g)

Выражение

edge_iterator

edges_size_type

vertex_descriptor

vertex_descriptor

Graph

source(e, g)

target(e, g)

BidirectionalGraph	IncidenceGraph
	AdjacencyGraph
/ertexAndEdgeListGraph	VertexListGraph
CrrcximalageListarapii	EdgeListGraph

AdjacencyMatrixGraph)

UltraGraph

MutableGraph

PropertyGraph

Концепция графа списка ребер (EdgeListGraph)

Описание

Итератор по всем ребрам.

количества ребер в графе.

Количество ребер в графе д.

Возвращает сток для ребра e.

Целочисленный тип для обозначения

обеспечивающий доступ ко всем ребрам.

Возвращает диапазон итераторов,

Возвращает источник для ребра e.

Выражение	Описание
<pre>boost::graph_traits<g>:: out_edge_iterator</g></pre>	Итератор по исходящим ребрам.
<pre>boost::graph_traits<g>:: degree_size_type</g></pre>	Целочисленный тип степени вершины.
<pre>std::pair<out_edge_iterator, out_edge_iterator=""> out_edges(v, g)</out_edge_iterator,></pre>	Возвращает диапазон итераторов, обеспечивающий доступ к исходящим ребрам вершины <i>u</i> в графе <i>g</i> .
vertex_descriptor source(e, g)	Возвращает дескриптор источника для e .
vertex_descriptor target(e, g)	Возвращает дескриптор стока для e .

Концепция абстрактного графа (Graph)

BidirectionalUltraGraph

MutableUltraGraph

MutablePropertyGraph

Выражение	Описание
boost::graph_traits <g>:: vertex_descriptor</g>	Тип дескриптора вершины.
boost::graph_traits <g>:: edge_descriptor</g>	Тип дескриптора ребра.
boost::graph_traits <g>::</g>	Указывается является ли граф
directed_category	ориентированным.
boostgraph twoits(C)	Здесь описывается, допускает ли класс графа
boost::graph_traits <g>:: edge parallel category</g>	вставку параллельных ребер (ребер с
	одинаковым источником и стоком).
boost::graph_traits <g>::</g>	Здесь описываются способы посещения
traversal_category	вершин и ребер графа.

Концепция матрицы смежности (AdjacencyMatrix)

Выражение	Описание
std::pair <edge descriptor,<="" td=""><td>Возвращает пару, состоящую из флага,</td></edge>	Возвращает пару, состоящую из флага,
bool> edge(u, v, g)	указывающего, существует ли ребро между
	и и v в графе g, и дескриптора ребра.

Концепция графа смежности (AdjacencyGraph)

Выражение	Описание
<pre>boost::graph_traits<g>:: adjacency_iterator</g></pre>	Итератор по смежным вершинам.
std::pair <adjacency_iterato< td=""><td>Возвращает диапазон итераторов,</td></adjacency_iterato<>	Возвращает диапазон итераторов,
r, adjacency_iterator>	обеспечивающий доступ к смежным
adjacent_vertices(v, g)	вершинам для вершины v в графе g .

Концепция графа инцидентности (IncidenceGraph)

Концепция двунаправленного графа (BidirectionalGraph)

Выражение	Описание
boost::graph_traits <g>:: in_edge_iterator</g>	Итератор по входящим ребрам.
std::pair <in_edge_iterator, in_edge_iterator> in_edges(v, g)</in_edge_iterator, 	Возвращает диапазон итераторов, обеспечивающий доступ к входящим ребрам для вершины <i>v</i> в графе <i>g</i> .
degree_size_type in_degree(v, g)	Возвращает количество входящих ребер.
degree_size_type degree(e, g)	Возвращает степень вершины.

Концепция ультраграфа (UltraGraph)

Выражение	Описание
<pre>graph_traits<g>:: target_iterator</g></pre>	Итератор по вершинам «стокам».
<pre>std::pair<target_iterator, target_iterator=""> targets(e, g)</target_iterator,></pre>	Возвращает диапазон итераторов, обеспечивающий доступ к стокам для ребра e в графе g .
degree_size_type targets_cnt(e, g)	Возвращает количество вершин «стоков» для ребра e .

Концепция двунаправленного ультраграфа (BidirectionalUltraGraph)

Выражение	Описание
<pre>graph_traits<g>:: source_iterator</g></pre>	Итератор по вершинам «источников».
std::pair <source_iterator, source_iterator> sources(e, g)</source_iterator, 	Возвращает диапазон итераторов, обеспечивающий доступ к источникам для ребра <i>е</i> в графе <i>g</i> .
degree_size_type sources_cnt(e, g)	Возвращает количество вершин «источников» для ребра <i>е</i> .

Концепция графа списка вершин (VertexListGraph)

Выражение	Описание
<pre>boost::graph_traits<g>:: vertex_iterator</g></pre>	Итератор по всем вершинам.
boost::graph_traits <g>::</g>	Целочисленный тип для обозначения
vertices_size_type	количества вершин в графе.
std::pair <vertex_iterator,< td=""><td>Возвращает диапазон итераторов,</td></vertex_iterator,<>	Возвращает диапазон итераторов,
vertex_iterator>	обеспечивающий доступ ко всем
vertices(g)	вершинам в графе g.
vertices_size_type	Количество вершин в графе g.
num_vertices(g)	resin reerse sepanni s rpaqe 8.

Концепция изменяемого графа (MutableGraph)

Выражение	Описание
<pre>vertex_descriptor add_vertex(g)</pre>	Добавляет вершину в граф g .
<pre>void clear_vertex(v, g)</pre>	Удаляет все ребра смежные с вершиной.
<pre>void remove_vertex(v, g)</pre>	Удаляет вершину v из графа g.
std::pair <edge_descriptor, bool> add_edge(u, v, g)</edge_descriptor, 	Вставляет ребро в граф g между вершинами u v. Если граф запрещает параллельные ребра, то флаг устанавливается в значение false.
void remove_edge(u, v, g)	Удаляет все ребра между вершинами.
void remove_edge(e, g)	Удаляет ребро <i>е</i> из графа <i>g</i> .

Концепция изменяемого графа свойств (MutablePropertyGraph)

Выражение	Описание				
vertex_descriptor	Добавляет вершину со свойствами <i>vp</i> в				
add_vertex(vp, g)	граф д.				
std::pair <edge_descriptor,< td=""><td>Добавляет ребро со свойствами ер</td></edge_descriptor,<>	Добавляет ребро со свойствами ер				
bool> add_edge(u, v, ep, g)	между вершинами u и v в граф g .				

Концепция графа свойств (PropertyGraph)

• •					
Выражение	Описание				
boost::property_map <g,< td=""><td>True real correction was real real real real real real real real</td></g,<>	True real correction was real real real real real real real real				
Property>::type	Тип изменяемой карты свойств.				
boost::property_map <g,< td=""><td>True marro congo con record a constant</td></g,<>	True marro congo con record a constant				
Property>::const_type	Тип неизменяемой карты свойств.				
	Возвращает объект карты свойства для				
get (property, g)	графа д.				
act (property a v)	Получить значение свойства для				
get(property, g, x)	вершины или ребра х.				
nut (proporty a v v)	Установить значение свойства для				
put(property, g, x, v)	вершины или ребра х.				

Концепция изменяемого ультраграфа (MutableUltraGraph)

Выражение	Описание
void connect source(e, v, g)	Присоединяет как «источник»
voia commecc_source(e, v, g,	вершину v к ребру e .
void connect target(e, v, g)	Присоединяет как «сток» вершину v к
void connect_target(e, v, g)	ребру е.
void disconnect_source(e, v, g)	Отсоединяет вершину «источник» v
voia disconnect_source(e, v, g)	от ребра e .
moid disconnect tanget(e m g)	Отсоединяет вершину «сток» v от
void disconnect_target(e, v, g)	ребра <i>е</i> .

Выпускная квалификационная работа		та	Библиотека элементов програм обработки гр			терфе	ейса для		
		магистр	α			Лит		Масса	Масштаδ
Изм.	Лист	№ докум.	Подпись	Дата	Концепции представления				
Pa	азраб.	Кирьяненко А.В.	Kuy	25.05.2020					
Пр	овер.	Ποποβ Α.Ю.		25.05.2020	<i></i> εραφοβ				
Т.ко	нтроль	Еремин О.Ю.	5			Ли	cm 7	Λ	истов 10
Pe	еценз.					M	T//		<i>F</i> =
Н.ко	нтроль					////		М. П.Э. І Опа ИЦА	Баумана

Диаграмма классов библиотеки элементов программного интерфейса для обработки графов

SpuUltraGraph - id_t _graph_id = 0; - static id_t global_id_sequence; - id t global id; SpuUltraGraphTraits _graph_traits; - FieldsLength<SPU_STRUCTURE_ATTRS> _edge_id_fields_len; FieldsLength<SPU_STRUCTURE_ATTRS> _vertex_fields_len; - FieldsLength<SPU_STRUCTURE_ATTRS> _edge_fields_len; - GraphStructure _vertex_struct; - GraphStructure _edge_struct + explicit SpuUltraGraph(id_t graph_id, const SpuUltraGraphTraits& spu_graph_traits); + id_t get_id() const; + id_t get_global_id() const; + vertex_descriptor add_vertex(); + vertex_descriptor add_vertex(vertex_descriptor id, value_t value); + void put vertex(vertex descriptor id, value t value); + void remove_vertex(vertex_descriptor v); + bool has_vertex(vertex_descriptor id) const; + vertices_size_type num_vertices() const; + vertices_size_type degree(vertex_descriptor v) const; + vertices_size_type out_degree(vertex_descriptor v) const; + vertices_size_type in_degree(vertex_descriptor v) const; + void clear_vertex(vertex_descriptor v, bool remove_edges=true); + void disconnect_source(edge_descriptor e, vertex_descriptor v); + void disconnect_target(edge_descriptor e, vertex_descriptor v); + edge_descriptor add_edge(); + edge_descriptor add_edge(edge_descriptor id, value_t value); + edge_descriptor add_edge(vertex_descriptor from, vertex_descriptor to); + edge_descriptor add_edge(edge_descriptor id, vertex_descriptor from, vertex_descriptor to, value_t value); + void put_edge(edge_descriptor id, value_t value); + void connect_target(edge_descriptor edge, vertex_descriptor vertex); + void connect_source(edge_descriptor edge, vertex_descriptor vertex); + bool has_edge(edge_descriptor id) const; + edge_descriptor get_free_edge_descriptor(weight_t weight) const; + edge_descriptor get_edge_descriptor(id_t edge_id, weight_t weight) const; + weight_t get_weight(edge_descriptor edge) const; + edges_size_type num_edges() const; + edges_size_type source_cnt(edge_descriptor e); + edges_size_type target_cnt(edge_descriptor e); + vertex_descriptor source(edge_descriptor e) const; + vertex_descriptor target(edge_descriptor e) const; + void remove_edge(edge_descriptor edge); + void remove edge(vertex descriptor from, vertex descriptor to); + value_t get_vertex_value(vertex_descriptor v) const; + value_t get_edge_value(edge_descriptor e) const; + edge_descriptor edge(vertex_descriptor from, vertex_descriptor to) const; + Vertices vertices() const; + AdjacentVertices adjacent_vertices(vertex_descriptor v) const; + Edges edges() const; + ParallelEdges parallel_edges(vertex_descriptor from, vertex_descriptor to) const; + OutEdges out_edges(vertex_descriptor v) const; + InEdges in_edges(vertex_descriptor v) const; spu_ug_readable_property_map<PROPERTY, VALUE_T> const SpuUltraGraph *_g; + VALUE_T get(SPU_GRAPH::id_t id);

spu_ug_property_map <PROPERTY, VALUE_T>

- SpuUltraGraph *_g;

+ VALUE_T get(SPU_GRAPH::id_t id);

+ void put(SPU_GRAPH::id_t id, VALUE_T value);

GraphStructure std::shared_ptr<AbstractStructure> _struct; + GraphStructure(): _struct(new Structure<>) {} + GraphStructure(std::shared_ptr<AbstractStructure> structure); + void set(std::shared_ptr<Structure<>> structure); + GraphStructure& operator=(std::shared_ptr<AbstractStructure> structure); + status_t insert(key_t key, value_t value, flags_t flags); + status_t del(key_t key, flags_t flags = NO_FLAGS); + pair_t search(key_t key, flags_t flags = P_FLAG); + pair_t min(flags_t flags = P_FLAG); + pair t max(flags t flags = P FLAG); + pair_t next(key_t key, flags_t flags = P_FLAG); + pair_t prev(key_t key, flags_t flags = P_FLAG); + pair t nsm(key t key, flags t flags = P FLAG); + pair_t ngr(key_t key, flags_t flags = P_FLAG); - static inline pair_t check_spu_resp(pair_t resp);

- static inline status_t check_spu_resp_status(status_t resp);

AdjacentEdgesIterator<int I> const SpuUltraGraph * g; vertex_descriptor _v; edge_descriptor _edge; + AdjacentEdgesIterator() : _g(nullptr), _v(0), _edge(0) {} + AdjacentEdgesIterator(const SpuUltraGraph *g, vertex_descriptor v, edge_descriptor edge); + edge_descriptor dereference() const; + bool equal(const AdjacentEdgesIterator& other) const; + void increment();

AdiacentEdges<int I> const GraphStructure *_s; vertex_descriptor _v; + AdjacentEdges(const SpuUltraGraph *g) : _g(g) {} + AdjacentEdgesIterator<I> begin();

+ AdjacentEdgesIterator<I> end(); + AdjacentEdgesIterator<I> rbegin(); + AdjacentEdgesIterator<I> rend();

EdgeVerticesIterator<int I>

const SpuUltraGraph *_g;

edge_descriptor _e;

+ void decrement();

- vertex_descriptor _v;

+ EdgeVerticesIterator(const SpuUltraGraph *g=nullptr, edge_descriptor e=0, vertex descriptor v=0)

+ edge_descriptor dereference() const;

+ bool equal(const EdgeVerticesIterator<I>& other) const;

+ void increment();

+ void decrement();

EdgeVertices<int I>

const SpuUltraGraph *_g;

- edge_descriptor _e;

+ EdgeVertices(const SpuUltraGraph *g, SpuUltraGraph::edge_descriptor e);

+ EdgeVerticesIterator<I> begin();

+ EdgeVerticesIterator<I> end();

+ EdgeVerticesIterator<I> rbegin();

+ EdgeVerticesIterator<I> rend();

StructureIterator

const GraphStructure * s;

- SPU::pair_t _pair; - SPU::key_t _end;

+ StructureIterator(const GraphStructure *structure, SPU::key_t key, SPU::key_t end=0, SPU::status_t status=INIT STATUS);

+ SPU::pair_t dereference() const;

+ bool equal(const StructureIterator &other) const;

+ void increment();

+ void decrement();

StructureRange

const GraphStructure * s;

- SPU::key_t _start, _end;

+ StructureRange(const GraphStructure *structure, key_t start, key_t end);

+ StructureIterator begin();

+ StructureIterator end()

VertexIterator

const GraphStructure *_s; - vertex_descriptor _v;

+ VertexIterator() : _g(nullptr) {}

+ VertexIterator(const SpuUltraGraph *g, vertex_descriptor v=0);

+ vertex_descriptor dereference() const;

+ bool equal(const VertexIterator& other) const;

+ void increment();

+ void decrement();

Vertices

const GraphStructure *_s;

+ Vertices(const SpuUltraGraph *g) : _g(g) {}

+ VertexIterator begin();

+ VertexIterator end()

Edgelterator

const GraphStructure *_s;

- edge_descriptor _edge;

+ EdgeIterator() : _g(nullptr) {}

+ EdgeIterator(const SpuUltraGraph *g, edge_descriptor edge=0);

+ edge_descriptor dereference() const;

+ bool equal(const EdgeIterator& other) const

+ void increment();

+ void decrement();

Edges

const GraphStructure *_s;

+ Vertices(const SpuUltraGraph *g) : _g(g) {}

+ EdgeIterator begin();

+ Edgelterator end()

ParallelEdgesIterator

const SpuUltraGraph *_graph;

- vertex_descriptor _from, _to;

- id_t _edge;

+ ParallelEdgesIterator(const SpuUltraGraph *g, vertex descriptor from, vertex_descriptor to, id_t edge=0);

+ edge_descriptor dereference() const;

+ bool equal(const ParallelEdgesIterator& other) const;

+ void increment();

+ void decrement();

ParallelEdges

- const GraphStructure *_s;

- vertex_descriptor _from, _to;

+ ParallelEdges(const SpuUltraGraph *g, SpuUltraGraph::vertex_descriptor from,

SpuUltraGraph::vertex_descriptor v)

+ EdgeIterator begin();

+ Edgelterator end()

AdjacentVerticesIterator

const GraphStructure *_s;

edge_descriptor _edge;

+ AdjacentVerticesIterator(const SpuUltraGraph *g=nullptr, vertex_descriptor v=0, edge_descriptor e=0, vertex_descriptor

+ vertex_descriptor dereference() const;

+ bool equal(const AdjacentVerticesIterator& other) const;

+ void increment();

+ void decrement();

AdjacentVertices

const GraphStructure *_s;

vertex_descriptor _v;

+ AdjacentVertices(const SpuUltraGraph *g,

vertex_descriptor v) : _g(g), _v(v) {}

+ AdjacentVerticesIterator begin();

+ AdjacentVerticesIterator end();

+ AdjacentVerticesIterator rbegin();

+ AdjacentVerticesIterator rend();

GraphPerformanceTest<G>

+ void (*test_func)(G&) = nullptr;

+ string results_file = "results.csv";

+ size_t avg_iterations_cnt = 10; + bool should_fill = true;

+ bool is_mutable_test = true;

+ pair<edge_t, bool> (*add_edge_func)(vertex_t, vertex_t, G&);

+ size_t start_vertices_cnt = 500;

+ size_t inc_vertices_value = 500;

+ size_t end_vertices_cnt = 100000;

+ size_t edges_per_vertex = 3;

+ GraphPerformanceTest(void (*test_func)(G&), string results_file); + void start();

Выпускная квалификационная работа		та	Библиотека элементов программного интерфейса д обработки графов						
	магистр	na		Диаграмма классов библиотеки	,	/ <i>1um</i> .		Масса	Масштаδ
Изм. Лист	№ докум.	Подпись	Дата	элементов программного					
Разраб.	Кирьяненко А.В.	Kny	25.05.2020	, ,			- 1		
Провер.	Ποποβ Α.Ю.		25.05.2020						
Т.контроль	Еремин О.Ю.			<i> εραφο</i> β		Лисп	n 8	Л	истов 10
Реценз.						мг	TU	и <i>Н</i> Э	Баумана
Ниоитроли					·	111 1	וט כי	۱۱. الــ ۱۱.	Биумини

группа ИУ6-41М

Алгоритм поиска свободного домена

Поиск свободного домена
structure – структура СП;
domain_depth – битность домена;
prefix – постоянная часть перед доменом;
prefix_depth – битность префикса;
min – минимальный домен включительно;
тах – максмальный домен включительно.

Организация хранения данных в СП

	Значение (64 бит)		
Префикс	Домен	Адрес	

Асимптотическая сложность:

$$O(\log_2(2^{D_{domain}}) * \log_8(n)) = O(D_{domain} * \log_8(n))$$

 D_{domain} - битность домена n - количество записей в структуре СП $\log_2(n)$ - асимптотическая сложность команд поиска СП

Алгоритм поиска свободного ID ребра

Тестирование библиотеки элементов программного интерфейса для обработки графов

Параметры тестирования производительности

Параметр	Значение
Вид графа	Граф решетки
Начальное количество вершин	1000
Инкремент количества вершин	1000
Конечное количество вершин	100000
Начальное количество ребер	2000
Инкремент количества ребер	2000
Конечное количество ребер	200000
Количество тестов производительности	99
Количество повторных тестов для подсчета среднего	10
Общее количество тестов	990

Для обеспечения качества и надежности в общем случае было написано 42 юнит-теста. Также для тестирования графовых концепций использовались тесты, предоставляемые библиотекой Boost Graph Library.

Была проведена оценка покрытия тестами, в ходе которой было выяснено, что тесты покрывают 82% исходного кода.

В результате проведенного тестирования было выяснено, что разработанная библиотека для обработки графов соответствует всем предъявляемым требованиям.

Технические характеристики ЭВМ

МГТУ им. Н.Э. Баумана группа ИУ6–41М

