Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Найти граф замыкания неориентированного графа.

Выполнил: Е. В. Пшенов

Студент группы 321702

Проверил: Н. В. Малиновская

Содержание

1	Введение	2
2	Список понятий	2
3	Тестовые примеры 3.1 Тест 1	4
	3.2 Tecr 2	5
	3.4 Tect 4	7
4	Пример работы алгоритма в семантической памяти	8
	4.1 Краткое описание:	8 9
5	Заключение	15
6	Список источников	16

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти граф замыкания неориентированного графа.

2 Список понятий

1. *Неориентированный граф* (абсолютное понятие)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен

Рис. 1: Абсолютное понятие неориентированного графа

2. *Замыканием* графа называется такой набор рёбер, который содержит все возможные пути между всеми парами вершин.

Рис. 2: Абсолютное понятие графа замыкания

3 Тестовые примеры

3.1 Tect 1

Вход: Найти граф замыкания данного неориентированного графа.

Рис. 3: Вход теста 1

Рис. 4: Выход теста 1

3.2 Tect 2

Вход: Найти граф замыкания данного неориентированного графа.

Рис. 5: Вход теста 2

Рис. 6: Выход теста 2

3.3 Тест 3

Вход: Найти граф замыкания данного неориентированного графа.

Рис. 7: Вход теста 3

Рис. 8: Выход теста 3

3.4 Tect 4

Вход: Найти граф замыкания данного неориентированного графа.

Рис. 9: Вход теста 4

Рис. 10: Выход теста 4

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Создание неориентированного графа(рис.11).
- 2. Создаём пременную $Count\ V$, которая будет хранить в себе количество вершин, имеющих хотя бы 1 ребро (рис.12).
- 3. Задаём начальную точку вхождения в граф и конечную (рис.13).
- 4. Создание всех возможных рёбер для вершины А (рис.14).
- 5. Просмотр добавленных рёбер для вершины А (рис.15).
- 6. Создание всех возможных рёбер для вершины В (рис. 16).
- 7. Просмотр добавленных рёбер для вершины В (рис.17).
- 8. Создание всех возможных рёбер для вершины С (рис.18).
- 9. Просмотр добавленных рёбер для вершины С (рис.19).
- 10. Создание всех возможных рёбер для вершины D
- 11. Просмотр добавленных рёбер для вершины D
- 12. Создание всех возможных рёбер для вершины Е
- 13. Просмотр добавленных рёбер для вершины Е
- 14. Создание всех возможных рёбер для вершины F
- 15. Просмотр добавленных рёбер для вершины F
- 16. Создаём переменную $Count\ E$, которая будет хранить в себе количество всех рёбер конечного графа (рис.20).
- 17. Проверка на замыкание вершин конечного графа (рис.21).
- 18. Выводим полученный результат (рис.22).

4.2 Демонстрация на тесте 5:

Рис. 11: Вход теста 5. Действие 1

1. Создаём пременную $Count\ V$, которая будет хранить в себе количество вершин, имеющих хотя бы 1 ребро. Если вершина не будет иметь ребро, в последующем алгоритме она использоваться не будет;

Рис. 12: Действие 2

2. Задаём начальную точку вхождения в граф и конечную, игнорируя вершины без рёбер;

Рис. 13: Действие 3.Задаём начальную точку вхождения в граф и конечную

3. На данном этапе создаём все возможные рёбра для началной вершины, то есть вершины А;

Рис. 14: Действие 4.Создание всех возможных рёбер для вершины А

4. После создания всех рёбер для вершины A просматриваем граф полностью для того, чтобы удостовериться в правильности выполнения задания;

Рис. 15: Действие 5. Просмотр добавленных рёбер для вершины А

5. Продолжаем так до тех пор, пока не дойдём до конечной вершины, то есть до вершины F. Ниже представлены подробные пути перехода от одного действия к другому;

Рис. 16: Действие 6. Создание всех возможных рёбер для вершины В

Рис. 17: Действие 7

Рис. 18: Действие 8 .Создание всех возможных рёбер для вершины С

Рис. 19: Действие 9. Просмотр добавленных рёбер для вершины B

6. Так как после вершины C добавлять рёбра некуда из-за уже заполненного графа, то перейдём к созданию переменной $Count\ E$, которая будет хранить в себе количество всех рёбер конечного графа.

Рис. 20: Действие 10-16

7. Для того, чтобы правильно получить граф замыкания, необходимо, чтобы конечное количество рёбер было верным. Для этого воспользуемся формулой нахождения максимального количества рёбер для данного графа с количеством вершин $Count\ E = Count\ V\ (Count\ v\ -\ 1)/2$

Рис. 21: Действие 17. Проверка на замыкание вершин конечного графа

8. Проверку на замыкание вершин наш граф прошёл, а это значит, что мы можем спокойно получить правильный граф по итогу выполненного алгоритма.

Рис. 22: Действие 18. Выводим полученный результат

5 Заключение

В рамках данной темы были рассмотрены ключевые аспекты формализации и обработки информации с использованием семантических сетей, а также задача нахождения графа замыкания для неориентированного графа. Освоение навыков формализации и обработки информации с помощью семантических сетей, а также методов работы с графами, является важным направлением в развитии компетенций, связанных с управлением и анализом данных. Полученные знания и умения могут найти применение в широком спектре прикладных задач, от информационных систем до интеллектуального анализа данных.

6 Список источников

- [1] Д.Кормен. Алгоритмы. Построение и анализ. Москва, 2015. 1328 с.
- [2] Кофман А. Введение в теорию нечетких множеств. /Под ред. С. И. Травкина. М.: Радио и связь, 1982.
- [3] Нечипуренко, М. И. Алгоритмы и программы решения задач на графах и сетях/ М.И. Нечипуренко, В.К. Попков, С.М. Майнагашев и др. Новосибирск: Наука. Сиб. отд-ние, 1990. 515 с.
- [4] Касьянов, В. Н. Графы в программировании: обработка, визуализация и применение / В. Н. Касьянов, В. А. Евстигнеева. СПб. : БХВ-Петербург, 2003.