NAME: ROLL NO:

CS738: Advanced Compiler Optimizations Mid Semester Examination, 2018-19 I

Max Time: 2 Hours Max Marks: 95

NOTE:

• There are total **3** questions on **3 pages**.

- Write your name and roll number on the question paper and the answer book.
- Presenting your answers properly is your responsibility. You lose credit if you can not present your ideas clearly, and in proper form. Please DO NOT come back for re-evaluation saying, "What I actually meant was ...".
- Be precise and write clearly. Remember that somebody has to read it to evaluate!

Notations

- CFG stands for control flow graph.
- $\mathsf{IN}(S)$ denotes the program point before the statement S. $\mathsf{OUT}(S)$ denotes the program point after the statement of S.
- PRED(S) denotes the set of predecessors, and SUCC(S) denotes the set of successors of S.
- In a CFG, $x \xrightarrow{+} y$ denotes a path from node x to node y, having one or more edges. Both x and y are considered to be a part of the path.
- DF⁺(φ) denotes the Iterated Dominance Frontier of the set of CFG nodes φ .
- 1. Prove the following statement:

[15[5+10]]

For any non-null path $p: X \xrightarrow{+} Z$ in a CFG, there exists a node $X' \in \{X\} \cup \mathrm{DF}^+(\{X\})$ on p that dominates Z. Moreover, unless X dominates every node on p, the node X' can be chosen in $\mathrm{DF}^+(\{X\})$.

- (a) X dominates every node in p. Clearly X dominates Z.
- (b) X does not dominate every node in p. Suppose the sequence of nodes in the path p is $n_0(=X), n_1, n_2, \ldots, n_k(=Z)$. Since X does not dominate all nodes in p, some of the nodes in p will be in $\mathrm{DF}^+(\{X\})$ (WHY?). Let n_j be the node in $\mathrm{DF}^+(\{X\})$ such that it has the highest value of j. We claim that $X' = n_j$, i.e., n_j dominates Z. Suppose n_j does not dominate $Z = (n_k)$. Then, $\exists i, j < i \leq k$ such that n_j does not dominate n_i . Choose smallest such i. We have, parent of n_i dominated by n_j , but n_i is not (strictly) dominated by n_j . This gives us:

$$n_i \in \mathrm{DF}(\{n_j\})$$

 $\Rightarrow n_i \in \mathrm{DF}^+(\{n_j\})$
 $\Rightarrow n_i \in \mathrm{DF}^+(\{X\})$

But this contradicts the fact that j is the largest index such that $n_j \in \mathrm{DF}^+(\{X\})$.

Page #2 CS738 Roll No:

2. Shortest Use Distance of A Definition.

[35[25+8+2]]

Let a definition d define a variable x at a program point π_d . Let program point π_u contain a use of x on some path from π_d to Exit, such that x is not redefined between π_d and π_u . The number of instructions between π_d and π_u is a **use distance** of d. If there is no use of x corresponding to d on some path from π_d to Exit, then the use distance on that path is ∞ .

The shortest use distance (SUD) of d is defined as the minimum over all use distances of d.

Figure ?? shows an example program CFG, having variables A, B and C. SUDs for various definitions for this example are:

Stmt	Var	SUD
S1	A	∞
S2	A	2
S3	В	1
S6	С	1

Figure 1: An Example Program

- (a) Design a data-flow analysis to compute SUDs for definitions present in a program. Recall that you have to talk about the 4 components $\langle D, S, \wedge, F \rangle$. Describe the lattice $\langle S, \wedge \rangle$ in details, with the help of a lattice diagram. You also need to describe flow functions for various statements of interest.
- (b) Is your analysis guaranteed to terminate? Justify.
- (c) Give one application of this analysis.

Page #3 CS738 Roll No:

Block #1 is the Entry block.

- (a) Draw the dominator tree for the graph.
- (b) Calculate the dominance frontier for each block.
- (c) Convert the flow graph to minimal SSA form. Show the important steps in conversion.