

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC512 Elementos de Lógica Digital

Mux / Demux

Prof.Dr. Danilo Spatti

São Carlos - 2020

- Principais circuitos da escala média de integração (MSI).
- Tem por finalidade realizar a seleção de múltiplas entradas ou múltiplas saídas.
- Utilizados quando se possui diversas linhas de dados que devem ser selecionadas individualmente.

Mux

 Seleciona um dos sinais de entrada e o direciona para a saída.

- Aceita diversos dados digitais de entrada e seleciona um deles, em um certo instante, para a saída.
- O roteamento do sinal de entrada desejado para a saída é controlado pelas entradas de seleção.

Mux

 O número de informações que as entradas de seleção podem comutar é 2ⁿ, onde n é o número de entradas de seleção.

Ex:

- 2 entradas de dados 1 entrada de seleção
- > 4 entradas de dados 2 entradas de seleção
- > 16 entradas de dados 4 entradas de seleção

Mux

 Implementação de um Mux de duas entradas e uma saída (2:1)

Mux

S	Z
0	Z = I1
1	Z = I0

 $Z = SIO + \bar{S}I1$

Mux 8:1

Lógica Digital

S	eleçã	Saída				
S2	S1	S0	Jaiua			
0	0	0	IO			
0	0	1	I1			
0	1	0	I2			
0	1	1	I3			
1	0	0	I4			
1	0	1	I5			
1	1	0	I6			
1	1	1	I7			

Simbologia

- Inverso do Mux: recebe uma única entrada e a distribui por várias saídas, conforme a entrada de seleção.
- Entrada de dados é transmitida apenas para uma das saídas, conforme determinado pelo código de seleção de entrada.
- O roteamento do sinal de saída desejado para a entrada é controlado pelas entradas de seleção.

Demux

Características (III)

 Implementação de um Demux de uma entrada e duas saídas (1:2)

S	Z					
0	ZO = I					
1	Z1 = I					

- $Z0 = \bar{S}I$
- \blacksquare Z1 = SI

Demux 1:8

Seleção			Saídas							
S2	S1	S0	Z 7	Z 6	Z 5	Z 4	Z3	Z 2	Z 1	ZO
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

$$Z0 = I(\overline{S0} \, \overline{S1} \, \overline{S2})$$

Simbologia

14

Características (I)

- Além de selecionar sinais, o multiplexador pode ser usado para a implementação de funções lógicas.
- Utiliza-se as portas de seleção como entrada de dados.
- Diretamente implementado da Tabela Verdade (FPGA e CPLD).

Características (II)

- Também é possível se utilizar Demux para a criação de funções lógicas.
- Por exemplo, as funções abaixo podem ser implementada por 1 Demux 1:8.
- $F1 = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C$
- $F2 = ABC + AB\overline{C}$

Características (II)

- $F1 = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C$
- $F2 = ABC + AB\bar{C}$

- Através de multiplexadores de baixa capacidade, pode-se formar MUX de maior capacidade.
- Ex: MUX de 8 entradas construído a partir de dois Mux de 4 entradas e um outro Mux de duas entradas.

Características (II)

- Circuito que tem apenas uma saída ativa (alta ou baixa), de acordo com o produto fundamental correspondente colocado na entrada.
- Confeccionar um Decoder Binário / Octal de 3 bits.

Confeccionar um Decodificador Binário / Octal

			I							
С	В	Α	7	6	5	4	3	2	1	0
<u></u> 0	0	0	0	0	0	0	0	0	0	1
□ 0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0			0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

22

Lógica Digital

Confeccionar um Decodificador Binário / Octal

spatti@icmc.usp.br

