主动学习理论概要

Steve Hanneke's "Theory of Active Learning" Chapter 2, 4, 5

孟庆鑫

1 基本定义和符号

样本空间 \mathcal{X} 配 σ — 代数 $\mathcal{B}_{\mathcal{X}}$ 使 $(\mathcal{X},\mathcal{B}_{\mathcal{X}})$ 为 Borel 空间, $\mathcal{Y} = \{-1,1\}$ 为标签空间, 对应在 $\mathcal{X} \times \mathcal{Y}$ 上配 σ — 代数 $\mathcal{B} = \mathcal{B}_{\mathcal{X}} \otimes 2^{\mathcal{Y}}$, 并配概率测度 $\mathcal{B}_{\mathcal{X},\mathcal{Y}}$, 记 \mathcal{P} 为 $\mathcal{B}_{\mathcal{X},\mathcal{Y}}$ 对 \mathcal{X} 的边缘分布, 以下均考虑可测情况.

 $\eta(x) \triangleq \mathbb{P}(Y = +1|X = x), \forall x \in \mathcal{X}, (X, Y) \sim \mathcal{P}_{XY},$

h 的错误率 er $(h) \triangleq \mathcal{P}_{XY}((x,y):h(x)\neq y), \forall h: \mathcal{X} \rightarrow \mathcal{Y},$

 $\mathcal{Z} \triangleq \{(X_i, Y_i)\}_{i=1}^{\infty} \stackrel{iid}{\sim} \mathcal{D}_{XY}$,前 m 截断 $\mathcal{Z}_m \triangleq \{(X_i, Y_i)\}_{i=1}^{m}$,未标记数据集 $\mathcal{Z}_X \triangleq \{X_i\}_{i=1}^{\infty}$,并假设 \mathcal{Z}_X 可被完整访问,在主动学习算法中,给定 n,请求观测值 Y_{i_1} ,请求观测值 Y_{i_2} ,依此 …,不超过 n 次请求,算法停止并返回 \hat{h} . 我们感兴趣的是算法 $\mathcal{A}: \mathcal{Z}_n \to \hat{h}$ 作为 n 的函数,其行为特征.

定义 $1 \ \forall \mathcal{A} \$ 为主动学习算法,如果 $\forall \varepsilon > 0, \forall \delta \in [0,1], \forall \mathcal{P}_{XY}, \forall n \geqslant \Lambda(\varepsilon,\delta,\mathcal{P}_{XY}),$ $n \in \mathbb{N}, (\mathcal{A},n)$ 产生了 $\hat{h}, \operatorname{er}(\hat{h}) \leqslant \varepsilon$ 的概率至少为 $1-\delta$,则算法 \mathcal{A} 达到了标签复杂性 Λ .

噪声率 $\nu \triangleq \inf_{h \in \mathbb{C}} \operatorname{er}(h)$, \mathbb{C} 是确定的分类器族, 我们特别关注 $\Lambda(\nu + \varepsilon, \delta, \mathcal{P}_{XY})$. 记 $f^* = \operatorname{arg\,inf}_{h \in \mathbb{C}} \operatorname{er}(h)$, 有 $f^* \in \bar{\mathbb{C}}$ (\mathbb{C} 的闭包), $\nu = \operatorname{er}(f^*)$,

 $\forall 分类器族 \, \mathcal{H}, \forall \varepsilon \in [0,1], \varepsilon - 极小集 \, \mathcal{H}(\varepsilon) \triangleq \big\{ h \in \mathcal{H} \, : \, \operatorname{er}(h) - \inf_{g \in \mathcal{H}} \operatorname{er}(g) \leqslant \varepsilon \big\},$ 中心 h 的 $\varepsilon -$ 球 $B_{\mathcal{H},\mathcal{P}}(h,\varepsilon) \triangleq \{ g \in \mathcal{H} \, : \, \mathcal{P}(x \, : \, g(x) \neq h(x)) \leqslant \varepsilon \},$

 \mathcal{H} 的半径 $R(\mathcal{H}) \triangleq \sup_{h \in \mathcal{H}} \mathcal{P}(x : h(x) \neq f^{\star}(x)) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \inf \{ \varepsilon : \mathcal{H} = B_{\mathcal{H},\mathcal{P}}(f^{\star}, \varepsilon) \},$

分歧域 $\mathcal{D}(\mathcal{H}) \triangleq \{x \in \mathcal{X}: \exists h, g \in \mathcal{H} \text{ s.t. } h(x) \neq g(x)\},$ 一种构造算法的策略是: 从 $\mathcal{D}(\mathcal{H})$ 里抽样本, 请求观测值, 再反过来更新 \mathcal{H} , 分歧率 $\Delta(\mathcal{H}) \triangleq \mathcal{P}(\mathcal{D}(\mathcal{H}))$.

定义 2 $\forall r_0 > 0, \forall h$ 对 \mathbb{C} 在 \mathcal{P} 下的分歧率为

$$\theta_h(r_0) = \sup_{r > r_0} \frac{\Delta(B(h, r))}{r}.$$

特殊的, 当 $h = f^*$ 时记为 $\theta(r_0)$, 称为分类器族 \mathbb{C} 在 \mathcal{L}_{XY} 下的分歧率.

情况 1 $\exists a \in [1, \infty), \alpha \in [0, 1], \forall h \in \mathbb{C}$,

$$\mathcal{P}(x:h(x) \neq f^{\star}(x)) \leq a(\operatorname{er}(h) - \operatorname{er}(f^{\star}))^{\alpha}.$$

例 1 $\mathcal{X} = [0,1]$, $\mathbb{C} = \left\{ \mathbb{1}^{\pm}_{[z,1]} : z \in (0,1) \right\}$. 注意到 \mathbb{C} 同构于 $z \in (0,1)$, 问题等价于 从 (0,1) 上查找分段点, 可采用类似二分查找策略. 相较于被动学习, 可以带来指数级的提升.

2 标签复杂度下界

给定分布 \mathcal{P} , \mathbb{C} 的 ε - 覆盖数 $\mathcal{N}(\varepsilon,\mathcal{P}) \triangleq \min \{ |\mathcal{H}| : \bigcup_{h \in \mathcal{H}} B(h,\varepsilon) = \mathbb{C} \}$.

定理 1 $\forall \mathcal{P}, \forall \Lambda$ (主动学习算法所达到的), $\forall \varepsilon > 0, \exists \mathcal{P}_{XY}$ 与 \mathcal{P} 相容, 且

$$\Lambda(\varepsilon, \delta, \mathcal{P}_{XY}) \geqslant \left[\log_2\left((1-\delta)\mathcal{N}(2\varepsilon, \mathcal{P})\right)\right].$$

考虑噪声情况的下界,有下面的定理.

定理 2 任给 $\gamma \in (0,1), \delta \in \left(1,\frac{1}{4}\right), n \in \mathbb{N}, \ \ p_0 = \frac{1}{2} - \frac{\gamma}{2}, p_1 = \frac{1}{2} + \frac{\gamma}{2}.$ 给定 $\hat{t}: \{0,1\}^n \to \{0,1\}$ (可能是随机的).如果

$$n < 2 \left| \frac{1 - \gamma^2}{2\gamma^2} \ln \left(\frac{1}{8\delta(1 - 2\delta)} \right) \right|,$$

则对 $t \sim \text{Bernoulli}\left(\frac{1}{2}\right), B_1|t, \dots, B_n|t \stackrel{iid}{\sim} \text{Bernoulli}(p_t), B_1, \dots, B_n 与 \hat{t}$ 独立, 则 $\hat{t}(B_1, \dots, B_n) \neq t$ 的概率大于 δ .

定理 3 存在全局常量 $q \in \mathbb{R}^+$ 使得: 如果 $|\mathbb{C}| \ge 3$, 则 $\forall \Lambda, \forall \nu \in \left(1, \frac{1}{2}\right)$, 以及充分小的 $\varepsilon, \delta > 0$, $\exists \mathcal{P}_{XY}$, $\operatorname{er}(f^*) = \nu$, 使得

$$\Lambda(\nu + \varepsilon, \delta, \mathcal{P}_{XY}) \geqslant q\left(\frac{\nu^2}{\varepsilon^2}\right)\left(d + \text{Log}\left(\frac{1}{\delta}\right)\right),$$

其中 $\text{Log}(x) \triangleq \max\{\ln(x), 1\}, x \geq 0.$ 进一步, $\forall a \in [4, \infty), \alpha \in (0, 1]$, 以及充分小的 $\varepsilon, \delta > 0, \exists \mathcal{P}_{XY}$ 满足情况 1, 则有

$$\Lambda\left(\nu+\varepsilon,\delta,\mathcal{P}_{XY}\right)\geqslant qa^{2}\left(\frac{1}{\varepsilon}\right)^{2-2\alpha}\left(d+\operatorname{Log}\left(\frac{1}{\delta}\right)\right).$$

3 基于分歧的主动学习

3.1 CAL

Cohn, Atlas, Ladner 给出了通用主动学习算法可实现的例子:

Algorithm 1 : CAL(n) :

- 1: $m \leftarrow 0, Q \leftarrow \emptyset$
- 2: while $|Q| < n \& m < 2^n$, do
- $m \leftarrow m + 1$
- 4: if $\forall y \in \mathcal{Y}, \exists h \in \mathbb{C}$ s.t. $er_{Q \cup \{(X_m, y)\}}(h) = 0$, then
- 5: request label Y_m ; $Q \leftarrow Q \cup \{(X_m, Y_m)\}$
- 6: **return** any $\hat{h} \in \mathbb{C}$ s.t. $\operatorname{er}_O(\hat{h}) = 0$

注意第 4 行的逻辑含义是: 不论对 X_m 打上何种标签, 分类器族 \mathbb{C} 对 \mathbb{Q} 形成的分布都有分类器可接受, 这意味着 X_m 的标签无法断言, 需要请求 Y_m . 算法 1 可做如下等价:

Algorithm 2 : CAL(n) :

- 1: $m \leftarrow 0, t \leftarrow 0, V \leftarrow \mathbb{C}$
- 2: while $t < n \& m < 2^n$, do
- $m \leftarrow m + 1$
- 4: if $X_m \in \mathcal{D}(V)$, then
- 5: request label Y_m ; $V \leftarrow \{h \in V : h(X_m) = Y_m\}$; $t \leftarrow t + 1$
- 6: **return** any $\hat{h} \in V$

定理 4 CAL 达到了标签复杂性 Λ , 使得对可实现的 \mathcal{P}_{XY} , $\forall \varepsilon, \delta > 0$, 有

$$\Lambda\left(\varepsilon,\delta,\mathcal{P}_{XY}\right)\lesssim\theta\left(\varepsilon\right)\left(d\log\left(\theta\left(\varepsilon\right)\right)+\log\left(\frac{\log\left(1/\varepsilon\right)}{\delta}\right)\right)\log\left(\frac{1}{\varepsilon}\right).$$

符号 \lesssim 在 $u(\varepsilon,\delta) \lesssim v(\varepsilon,\delta)$ 里指 $\exists c \in \mathbb{R}^+$ 且与 \mathbb{C} , \mathcal{R}_Y 或其他问题特定变量都无 关, 并满足 $u(\varepsilon,\delta) \leqslant cv(\varepsilon,\delta)$, $\forall \varepsilon,\delta \in (0,1)$. 定理 4 与 ε 渐近相关的界为

$$\mathcal{O}\left(\theta\left(\varepsilon\right)\operatorname{Log}\left(\frac{1}{\varepsilon}\right)\operatorname{Log}\left(\theta\left(\varepsilon\right)\operatorname{Log}\left(\frac{1}{\varepsilon}\right)\right)\right).$$

定理 5 $\forall m \in \mathbb{N} \cup \{0\}, \forall r \in (0,1), \mathbb{E}\left[\Delta\left(V_m^{\star}\right)\right] \geqslant (1-r)^m \Delta\left(B\left(f^{\star},r\right)\right)$. 进一步, 这意味着 $\forall \varepsilon \in (0,1),$

$$\mathbb{E}\left[N\left(\left\lceil\frac{1}{\varepsilon}\right\rceil\right)\right] \geqslant \frac{\theta\left(\varepsilon\right)}{2}.$$

定理 6 $\forall n \in \mathbb{N}, \forall r \in (0,1), \mathbb{E}\left[\Delta\left(V_{M(n)}^{\star}\right)\right] \geqslant \Delta\left(B\left(f^{\star},r\right)\right) - nr.$ 进一步, 这意味着 $\forall n \in \mathbb{N}, \forall \varepsilon \in (0,1),$

$$n \leqslant \frac{\theta(\varepsilon)}{2} \Longrightarrow \mathbb{E}\left[\Delta\left(V_{M(n)}^{\star}\right)\right] \geqslant \frac{\Delta\left(B\left(f^{\star},r\right)\right)}{2}.$$

考虑

$$\begin{split} \left\{q_{m} \in \left\{0,1\right\}\right\}_{m=1}^{\infty} \ : \ q_{m} \perp \!\!\! \perp \mathcal{Z} \mid \left\{\left(X_{i}, q_{i} Y_{i}\right)\right\}_{i=1}^{m-1}, \, X_{m} \,, \\ \left\{\hat{h}_{m}\right\}_{m=0}^{\infty} \ : \ \hat{h}_{m} \perp \!\!\! \perp \mathcal{Z} \mid \left\{\left(X_{i}, q_{i} Y_{i}\right)\right\}_{i=1}^{m}, \end{split}$$

随机变量 q_m 的取值表示是否请求 Y_m , CAL 作为一种选择性抽样算法, 由

$$\left(\left\{q_{m}\right\}_{m=1}^{\infty},\left\{\hat{h}_{m}\right\}_{m=0}^{\infty}\right):\,\hat{h}_{m}\in V_{m}^{\star},\,q_{m}=\mathbbm{1}_{\mathcal{D}\left(V_{m-1}^{\star}\right)}(X_{m})$$

确定.

3.2 噪声情况

注意到取得最佳分类器 f^* , 仍然有 $\nu = \operatorname{er}(f^*)$, 下面考虑 CAL 带噪声的情况. 一个具体的算法 (Balcan, Beygelzimer, Langford) 是 A^2 策略的变体, 算法如下. 记 $\delta_m \triangleq \frac{\delta}{\log_2^2(2m)}$, $\delta \in (0,1)$, $m \in \mathbb{N}$.

Algorithm 3 : RobustCAL $_{\delta}(n)$:

- 1: $m \leftarrow 0, i \leftarrow 1, Q_i \leftarrow \emptyset$
- 2: while $|Q_i| < n \& m < 2^n$, do
- 3: $m \leftarrow m + 1$
- 4: if $\forall y \in \mathcal{Y}, \exists h \in \mathbb{C} \text{ s.t. } h(X_m) = y, \forall j < i, \frac{\left(\operatorname{er}_{Q_j}(h) \operatorname{er}_j^*\right)|Q_j|}{U(2^j, \delta_{(2^j)})} \leq 2^j, \text{ then}$
- 5: request label Y_m ; $Q_i \leftarrow Q_i \cup \{(X_m, Y_m)\}$
- 6: if $\log_2(m) \in \mathbb{N}$, then
- 7: $\operatorname{er}_{j}^{*} \longleftarrow \min \left\{ \operatorname{er}_{Q_{j}}(h) : h \in \mathbb{C}, \forall j < i, \left(\operatorname{er}_{Q_{j}}(h) \operatorname{er}_{j}^{*} \right) |Q_{j}| \leqslant U\left(2^{j}, \delta_{(2^{j})}\right) 2^{j} \right\};$
- 8: $i \leftarrow i+1; Q_i \leftarrow Q_{i-1}$
- 9: **return** any $\hat{h} \in \mathbb{C}$ s.t. $\forall j < i, \left(\operatorname{er}_{Q_i}(h) \operatorname{er}_i^* \right) |Q_j| \leqslant U\left(2^j, \delta_{(2^j)}\right) 2^j$

同 CAL 一样, 算法 3 也有等价形式 (算法 4).

定理 7 $\forall \delta \in (0,1)$, RobustCAL $_{\delta}$ 达到了标签复杂度 Λ , 使得 $\forall \mathcal{P}_{XY}, a, \alpha$ 满足情况 $1, \forall \epsilon \in (0,1)$,

$$\Lambda\left(\nu+\varepsilon,\delta,\mathcal{P}_{XY}\right)\lesssim a^{2}\theta\left(a\varepsilon^{\alpha}\right)\left(\frac{1}{\varepsilon}\right)^{2-2\alpha}\left(d\log\left(\theta\left(a\varepsilon^{\alpha}\right)\right)+\log\left(\frac{\log\left(a/\varepsilon\right)}{\delta}\right)\right)\log\left(\frac{1}{\varepsilon}\right).$$

Algorithm 4 : RobustCAL $_{\delta}(n)$:

1:
$$m \leftarrow 0, Q \leftarrow \emptyset, V \leftarrow \mathbb{C}$$

2: while $|Q| < n \& m < 2^n$, do

 $m \longleftarrow m + 1$

if $X_m \in \mathcal{D}(V)$, then

request label Y_m ; $Q \leftarrow Q \cup \{(X_m, Y_m)\}$

if $\log_2(m) \in \mathbb{N}$, then

7:
$$V \longleftarrow \left\{ h \in V : \left(\operatorname{er}_{Q}(h) - \min_{g \in V} \operatorname{er}_{Q}(g) \right) |Q| \leqslant U(m, \delta_{m}) m \right\}$$

8: **return** any $\hat{h} \in V$

进一步,

$$\Lambda(\nu + \varepsilon, \delta, \mathcal{P}_{XY}) \lesssim \theta(\nu + \varepsilon) \left(\frac{\nu^2}{\varepsilon^2} + \operatorname{Log}\left(\frac{1}{\varepsilon}\right)\right) \left(d\operatorname{Log}\left(\theta(\nu + \varepsilon)\right) + \operatorname{Log}\left(\frac{\operatorname{Log}\left(1/\varepsilon\right)}{\delta}\right)\right).$$

4 注

本质上, 基本定义是在指出分类器集合 \mathcal{H} 的拓扑性质. 理想情况, 假设 \mathcal{H} 足 够大,大到任何一种 \mathcal{X} 的二分类标签情况,都对应一簇分类器 $H \subset \mathcal{H}$,这样,一方 面, 将 H 视作等价类集 $\mathcal{C}_{x,x}$ 的点, 一方面记 \mathcal{X} 的幂集 \mathcal{O}_{x} , 并假设 \mathcal{X} 上的测度函 数为 \mathcal{P} ,且不存在非空集零测,这样 $\mathcal{O}_{\mathcal{X}}$ 与 $\mathcal{C}_{\mathcal{X},\mathcal{H}}$ 可以构造等距同构.略去脚标,如下图.

 $\rho_{\mathcal{O}}(o_1, o_2) = \mathcal{P}(o_1 \triangle o_2) = \mathcal{P}(x : c_1(x) \neq c_2(x)) = \rho_{\mathcal{C}}(c_1, c_2)$

 若 $h \in H$, 则 $H = \{ \forall h' \in \mathcal{H} : h'(x) = h(x), \forall x \in \mathcal{X} \}$, $\mathcal{H} \supset H \mapsto c \in \mathcal{C}$. 因为是等距 同构, 与距离相关的定义都可以对等写出, 如 ε- 闭球.

现在考虑分类器族并不足够大, 不足以打散 \mathcal{X} , 可以用 Π 来表示实际的分类器 族, $\Pi \subset \mathcal{H}$, 显然有如图对应的 Σ, Θ, 图中 ν 是标签, 表示 Π 没有一个元素可以做到 完全正确的分类的情况,于是问题等价于求 y 对 Σ 的投影, $\sigma^* = \arg\inf_{\sigma \in \Sigma} \rho_{\mathcal{C}}(\sigma, y) = \arg\inf_{h \in \Pi} \mathcal{P}(x:h(x) \neq y)$, 这与噪声率的定义有出人, 噪声率用 \mathcal{P}_{XY} 定义的.

再次审视度量空间, 必须要求不存在非空集零测, 否则 ρ 是伪度量, 好在按照度量的理解可以弱化到伪度量上. 注意 $\rho_{\mathcal{O}}(o_1,o_2) = \mathcal{P}(o_1 \triangle o_2) = \mathcal{P}(x:c_1(x) \neq c_2(x)) = \rho_{\mathcal{C}}(c_1,c_2)$ 里的对称差 $o_1 \triangle o_2 = o_1 \cup o_2 \setminus o_1 \cap o_2$, 将其扩展到子集 O 上, 有

$$\rho_{\mathcal{O}}\left(O\right) = \mathcal{P}\left(\bigcup_{o \in O} o \setminus \bigcap_{o \in O} o\right) = \mathcal{P}\left(x : \exists c_{1}, c_{1} \in C \text{ s.t. } c_{1}\left(x\right) \neq c_{2}\left(x\right)\right) = \rho_{\mathcal{C}}\left(C\right).$$

这就得到了分歧域和分歧率的定义.