Análisis de datos ómicos

PEC 2

Análisis de datos de ultrasecuenciación

Índice

Contenido

1.ABSTRACT	2
2.OBJETIVOS	2
3.MATERIALES Y MÉTODOS	2
Datos	2
Métodos	3
Proceso	4
Visualización	5
Expresión diferencial de genes	7
Anotaciones	12
Análisis de significación biológica	13
4.RESULTADOS	14
5.DISCUSIÓN	18

1. ABSTRACT

Análisis de muestras de tejidos del tiroides con diferentes niveles de infiltración, mediante estudio de datos de expresión (RNA-seq) utilizando RStudio/Bioconductor. Se han realizado tres comparaciones de grupos dos a dos, partiendo de una tabla de conteo y un archivo de metadatos.

2. OBJETIVOS

El objetivo del estudio consiste en un análisis de expresión diferencial de genes, buscando patrones de expresión y genes diferencialmente expresados en las muestras de tejidos. Se buscarán entre los resultados de las tres comparaciones patrones utilizando diferentes gráficos, y se crearán tres tablas de resultados de genes diferencialmente expresados.

3. MATERIALES Y MÉTODOS

Datos

Con el estudio se realiza un análisis de varias muestras de tejidos del tiroides, donde se compararán tres tipos de infiltración de un total de 292 muestras, pertenecientes a tres grupos:

- Not infiltrated tissues (NIT):236 samples
- Small focal infiltrates (SFI):42 samples
- Extensive lymphoid infiltrates (ELI): 14 samples

Se extraerán 10 muestras aleatorias de cada grupo.

Métodos

Se compararán tres grupos, SFI-NIT, ELI-NIT, ELI-SFI, con diferentes niveles de infiltración. El análisis se centra en los datos de expresión (RNA-seq)

- 1) El procedimiento de análisis consiste en un "pipeline" que consta de los siguientes pasos:
 - a. Definición de los datos.
 - b. Preprocesado de los datos: filtraje y normalización.
 - c. Identificación de genes diferencialmente expresados.
 - d. Anotación de los resultados.
 - e. Busca de patrones de expresión y agrupación de las muestras (comparación entre las distintas comparaciones)
 - f. Análisis de significación biológica ("Gene Enrichment Analysis")
- 2) Para el estudio se ha utilizado el software RStudio, programa open source, en su versión 1.3.959. Se ha optado por usar el programa R/Bioconductor, con el paquete DESeq2.
- 3) El análisis RNA-seq consiste en los siguientes pasos:

Ilustración del proceso

El análisis que se realiza a continuación se centra en la parte bioinformática, ya que partimos de tablas de contajes.

Proceso

Se muestra en detalle la primera comparación, de las otras dos se mostrarán los resultados para no ser repetitivos y no alargar el documento innecesariamente, ya que el proceso es el mismo para las tres.

En primer lugar, debemos modificar y adaptar los datos a lo pedido en el ejercicio.

Cargamos los archivos y los modificamos, filtrándolos y seleccionando 10 muestras aleatorias de cada grupo.

Se muestra uno de los archivos countdata obtenidos para la comparación ELI-NIT

Una vez obtenidos los archivos se procede al análisis de los datos.

Como se explicó más arriba se ha usado el paquete de R/Bioconductor "DESeq2".

Visualización

El primer paso es crear un dataset con los datos para comenzar el análisis estadístico, para ello se ha usado la función "DESeqDataSetFromMatrix ". Se obtiene:

```
class: DESeqDataSet
dim: 6 20
metadata(1): version
assays(6): counts mu ... replaceCounts replaceCooks
rownames(6): ENSG00000223972 ENSG00000227232 ... ENSG00000268020
    ENSG00000240361
rowData names(23): baseMean baseVar ... maxCooks replace
colnames(20): GTEX-11072-2326-SM-5BC7H GTEX-11TUW-0226-SM-5LU8X ...
    GTEX-ZPU1-0426-SM-4WWCA GTEX-ZT9X-0226-SM-51MT2
colData names(11): Experiment SRA_Sample ... sizeFactor replaceable
```

A continuación, prefiltraremos y normalizaremos los datos, eliminando los valores 0 y 1, para reducir el tamaño del archivo y agilizar los cálculos.

De los transcritos iniciales nos quedamos con:

[1] 56202

[1] 41436

El siguiente paso será, en primer lugar, realizar varios gráficos para una primera visualización de los datos; y, en segundo lugar, realizar el análisis de expresión diferencial mediante paquetes estadísticos.

Heatmap

Plot-PCA

Expresión diferencial de genes

Se ha utilizado la función DESeq para este paso. Se obtiene:

	row <chr></chr>	baseMean <dbl></dbl>	log2FoldChange <dbl></dbl>	IfcSE <dbl></dbl>	stat <dbl></dbl>	pvalue <dbl></dbl>	padj <dbl></dbl>	
1	ENSG00000223972	2.7623352	0.2580906	0.6140587	0.42030280	0.6742643	0.999794	
2	ENSG00000227232	774.2449210	-0.1945517	0.2087884	-0.93181272	0.3514333	0.999794	
3	ENSG00000243485	2.0531693	0.8789200	0.7065835	1.24390111	0.2135360	0.999794	
4	ENSG00000237613	1.7962436	0.6875734	0.7256347	0.94754758	0.3433598	0.999794	
5	ENSG00000268020	0.5826471	-0.1015649	1.1217965	-0.09053773	0.9278599	NA	
6	ENSG00000240361	1.1449497	-0.0874194	0.8352989	-0.10465643	0.9166484	0.999794	
6 r	6 rows							

Ordenamos en función del p-valor.

Podemos seguir dos criterios diferentes más restrictivos a la hora de considerar genes significativamente diferenciados.

1) Bajando el umbral de la tasa de detección falsa:

FALSE TRUE 28500 82

2) Si queremos elevar el umbral del log2:

FALSE TRUE 21336 16

Por lo tanto, si consideramos que una fracción de 10% de falsos positivos es aceptable, podemos considerar que todos los genes con un valor p ajustado por debajo del 10% a 0,1 son significativos. ¿Cuántos genes de este tipo hay?

[1] 107

Colocamos la tabla de resultados en estos genes y luego la ordenamos por la estimación de cambio de pliegue log2 para obtener los genes significativos con la regulación descendente más fuerte:

log2 fold change (MLE): Group SFI vs NIT Wald test p-value: Group SFI vs NIT DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	1fcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000211950	125.6517	6.15338	1.216330	5.05897	4.21528e-07	6.05957e-04
ENSG00000211670	55.5411	5.97609	1.358290	4.39971	1.08393e-05	6.67792e-03
ENSG00000211934	366.1685	5.96189	0.976632	6.10454	1.03097e-09	3.11228e-05
ENSG00000231475	220.4259	5.94893	1.125562	5.28529	1.25503e-07	2.58803e-04
ENSG00000211973	489.0421	5.67600	1.040012	5.45763	4.82536e-08	1.61853e-04
ENSG00000211959	578.0581	5.57921	1.011176	5.51754	3.43772e-08	1.48254e-04

Visualizamos los resultados, añadiendo la variable sexo, para identificar posibles relaciones.

Vemos los "plot-counts"

Volcano plot

MA-plot

Gene clustering

Visualizamos un clúster de los genes de más variación. Usaremos la transformación de estabilización de la varianza(vst), que integra el paquete DESeq2 y permite mejor tratamiento para los datos que generalmente tienen el mismo rango de varianza en diferentes rangos de los valores medios. Podemos añadir la variable "sex" para ver la relación.

Estimamos los parámetros de dispersión:

Anotaciones

Se preparan los paquetes necesarios y se instalan. En este caso:

library("AnnotationDbi")

library(org.Hs.eg.db)

log2 fold change (MAP): Group SFI vs NIT Wald test p-value: Group SFI vs NIT DataFrame with 6 rows and 7 columns

ont 10.7	baseMean	log2FoldChange	1fcSE	pvalue	padj	symbol
entrez	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<character></character>
<pre><character> ENSG00000211934</character></pre>	366.169	2.41682e-06	0.00144270	1.03097e-09	3.11228e-05	NA
NA ENSG00000240041	136.387	3.08080e-06	0.00144270	5.21696e-09	7.87448e-05	NA
NA ENSG00000211663	313.320	3.17248e-06	0.00144270	9.61120e-09	9.67143e-05	NA
NA ENSG00000211966	303.101	1.76164e-06	0.00144269	1.84026e-08	1.24882e-04	NA
NA ENSG00000241755	144.267	3.16994e-08	0.00144269	2.06840e-08	1.24882e-04	NA
NA ENSG00000211900 NA	100.618	2.23248e-06	0.00144269	3.02414e-08	1.48254e-04	NA

En este paso se han descargado ficheros de anotaciones del genoma humano para asociar los resultados de transcritos diferencialmente expresados con el gen asociado correspondiente. Se añaden dos columnas, "symbol" y "entrez".

Observamos que en algunos casos obtenemos valores NA, no disponibles.

Se exportan tres ficheros txt con los resultados de las anotaciones asociados a los transcritos diferencialmente expresados.

Análisis de significación biológica.

Gene Enrichment Analysis.

1.SFI-NIT

2.ELI-NIT

3.ELI-SFI

4. RESULTADOS

Se comparan los resultados gráficamente para ver las relaciones:

SFI-NIT

ELI-NIT

ELI-SFI

1ª Comparación

2ª Comparación

3ª Comparación

SFI-NIT

ELI-NIT

ELI-SFI

5. DISCUSIÓN

La parte del análisis de significación biológica no es muy completa por la dificultad de trabajar y modificar archivos con R. Si bien tiene ventajas a la hora de manejar grandes cantidades de datos para tareas de filtrado, cálculos y selección, puede ser frustrante al principio al realizar la preparación de los datos.