Mathematics Behind Medical Image Reconstruction

Javier A. Salazar II

Phantoms

Shepp-Logan phantom

Real world phantom used for CT performance

XCAT phantom used for 3D scans

Radon Transform

$$Rf(t,\theta) := \int_{s=-\infty}^{s=\infty} f((t\cos(\theta) - s\sin(\theta)), t\sin(\theta) + s\cos(\theta))ds$$

Fourier Transform

$$Ff(\omega) := \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

Time Domain s(t)

Frequency Domain $S(\omega)$

$$F^{-1}g(x) := \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} g(\omega) e^{i\omega x} d\omega$$

Filtering

Filter Design

High-pass filter

High frequencies pass and are amplified while low frequencies are de-emphasized Remove high frequencies [] blur effect

Remove low frequencies

sharpen effect

Back Projection

Reconstructed

Final Results

Back projected image without using filter |w|

Back projected image using filter |w|

Noise artifact residues

Summary

