Last name _	
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h15 The Special Case of Matrices over $\mathbb R$

For a matrix $A \in \mathbb{R}^{m \times n}$, let the *transpose* of $A, A^t \in \mathbb{R}^{n \times m}$, be the matrix with entries defined by:

$$(A^t)_{i,j} = A_{j,i}.$$

The (square) matrices A^tA and AA^t show up commonly in statistics (variance-covariance matrix), data science, and any time it is useful to compute the very-useful *singular value decomposition*.

- 1. For any $A \in \mathbb{R}^{m \times n}$, AA^t is symmetric. Explain.
- 2. It is an immediate corollary of your previous argument that A^tA is symmetric. Why?
- 3. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find A^t .
- 4. Find AA^t and the characteristic values of AA^t (they are real).
- 5. Find A^tA and the characteristic values of A^tA (they are real).
- 6. We'll prove the following **claim:** The characteristic values of any symmetric matrix $A \in \mathbb{R}^{n \times n}$ are real.

The following steps are a **proof**. Your job will be to explain the steps.

Let $A \in \mathbb{R}^{n \times n}$.

(a) Why is the characteristic polynomial of A, det(xI - A), guaranteed to have n complex roots?

Let $c \in \mathbb{C}$, $\alpha \in \mathbb{C}^{n \times 1}$ ($\alpha \neq 0$) be such that $A\alpha = c\alpha$ (such a pair c, α must exist). And let $\bar{\alpha}$ be the $\mathbb{C}^{n \times 1}$ vector whose entries are the complex conjugates of the entries of α .

- (b) Argue that $\alpha^t \bar{\alpha}$ is real (or more precisely a 1×1 matrix with a real number entry).
- (c) Let \bar{A} be the matrix who entries are the complex conjugates of the entries of A. Explain why $\bar{A} = A$.

Let $\overline{A\alpha}$ be the matrix who entries are the complex conjugates of the entries of $A\alpha$.

(d) Explain why $\overline{A\alpha} = \overline{A}\overline{\alpha}$. (And thus $\overline{A\alpha} = A\overline{\alpha}$).

Let $\overline{c\alpha}$ be the matrix who entries are the complex conjugates of the entries of $c\alpha$.

(e) Explain why $\overline{c}\overline{\alpha} = \overline{c}\overline{\alpha}$.

So,
$$\overline{A\alpha} = \overline{c\alpha}$$
 implies $A\overline{\alpha} = \overline{c}\overline{\alpha}$, and $\alpha^t A\overline{\alpha} = \alpha^t \overline{c}\overline{\alpha} = \overline{c}\alpha^t \overline{\alpha}$.

Also, $A\alpha = c\alpha$ implies $(A\alpha)^t = (c\alpha)^t$, which implies $\alpha^t A = c\alpha^t$, and thus $\alpha^t A \bar{\alpha} = c\alpha^t \bar{\alpha}$.

- (f) Explain why $\bar{c}\alpha^t\bar{\alpha} = c\alpha^t\bar{\alpha}$.
- (g) Explain why $\bar{c} = c$.
- (h) Explain why c must be a real number (and thus every characteristic value of A is real).