

Anatomia do BitTorrent: a Ciência da Computação por trás do protocolo

Paulo Cheadi Haddad Filho — ~paulochf Orientador: José Coelho de Pina — ~coelho

Objetivo

- ► estudar o protocolo do BitTorrent
- ▶ identificar seu caráter interdisciplinar na Computação pelo estudo de seus componentes internos
- ▶ ilustrar a implementação desses componentes utilizando o códigofonte do cliente Transmission

Introdução

- ▶ redes peer-to-peer (P2P): redes de arquitetura descentralizada (sem um servidor central) e distribuída entre vários nós da rede (peers)
- ▶ Napster foi a primeira rede P2P, em 1999

História do BitTorrent

- ► lançado por Bram Cohen em 2001
- ▶ protocolo P2P **mais usado no mundo**, que gera \approx 23% do tráfego de upload, \approx 17% de download e \approx 10% de todo o tráfego na América Latina [1]
- ▶ usado por **Twitter** [2] e **Facebook** [3] para distribuir os códigos dos seus sites para seus servidores
- ▶ baseado em trocas justas de arquivos e comunicação eficiente entre peers
- ▶ peers **sugadores** (*leechers*) e **semeadores** (*seeders*), pertencentes a um **enxame** (*swarm*), **trocam partes** de um torrent entre si
- ▶ **listas de peers** mantidas por **rastreadores** (*trackers*) e, geralmente, pelos próprios *peers*

Transmission

- programa cliente de código aberto para o protocolo BitTorrent
- ► escrito nas linguagens C e C++
- várias plataformas: daemon (serviço de segundo plano), roteadores, linha de comando e aplicação em janela

BitTorrent: visão do usuário e áreas da Computação

- 1. busca de conteúdo em sites buscadores de torrent
- 2. obtenção do arquivo .torrent desejado
- **3.** computador do usuário se comunica com rastreadores (*trackers*), que mantêm listas dos *peers* que estão compartilhando os arquivos do torrent obtido
- 4. o tracker devolve uma lista de peers aleatória
- **5.** computador do usuário inicia comunicação com os *peers* da lista, e começa a receber deles os arquivos pertencentes àquele torrent

Buscador de torrent Peer (nó da rede) Arquivos torrent Fracker (rastreador) Filmes em comum Swarms (enxames)

Trocas das partes de um arquivo torrent em um swarm

Funcionamento do BitTorrent

- 1. busca de conteúdo em sites buscadores de torrent
- **2. obtenção** do arquivo .torrent, que é um **dicionário de dados** sobre os arquivos desejados, onde estão contidas informações como *announces* (endereços de *trackers*), número de partes e lista dos arquivos
- **3. cliente BitTorrent** usa o *announce* para fazer um pedido de *peers*, usando uma **requisição HTTP GET** e passando dois identificadores: um seu e o do torrent

Ex: http://tracker.publicbt.com:80/announce?info_
hash=<hash-do-torrent>&peer_id=<hash-do-cliente>

4. o **tracker adiciona** o *peer* requisitante à sua lista e **devolve** para ele um dicionário contendo: uma **lista aleatória de outros peers** para aquele identificador de torrent, quantidades de *seeders* e *leechers*, entre outros dados

Ex: {'complete': 1, 'downloaded': 11, 'incomplete': 6, 'interval': 1732, 'min interval': 866, 'peers': {lista-de-hash-ids-de-peers}}

- **5.** o **cliente**, para entrar no *swarm*, **envia mensagens** para cada um dos *peers* recebidos, até obter uma resposta
- **5.1** quando **obtém resposta**, **adiciona o endereço** desta à sua "lista de contatos", que é acessível por outros *peers*, e implementada como uma tabela hash especial, do algoritmo Kademlia. Esse algoritmo faz com que uma busca por *novos peers* seja distribuída entre os que já são conhecidos, formando assim uma grande "lista telefônica". Essa estrutura de dados é chamada de **tabela hash distribuída (DHT)**
- **5.2** após o primeiro contato, o **cliente entra** no *swarm* e **recebe** uma parte aleatória do torrent, se tornando um *leecher*
- 5.3 como leecher, o cliente entra no "jogo de trocas" do swarm, onde só recebe uma parte do torrent se fornecer outra
 5.4 ao término do download, o usuário se torna um seeder,

passando a unicamente fornecer partes do torrent

ABC no BCC: disciplinas relacionadas

- ▶ Desenv. de Algoritmos, Estrutura de Dados, Análise de Algoritmos: tabela hash (DHT), listas ligadas, árvores e estruturas compostas
- ▶ **Prog. para Redes**: protocolos de rede HTTP e UDP, segurança SSL, conexões de rede IPv4 e IPv6, roteamento (NAT PMP), troca de mensagens entre *peers*, descoberta de *peers* locais (Multicast)
- ► Intro. à Criptografia: integridade e privacidade de dados (SHA-1, RC4)
- ➤ Sistemas Operacionais, Prog. Concorrente, Intro. à Comp. Paralela e Distribuída: threads, DHT, leitura e escrita de partes de arquivo, retomada de download (download resume)
- ► Lab. de Programação 1–2: organização do código, Automake, Autoconf, testes de código

Referências

- [1] Sandvine Inc. Global Internet Phenomena Report 1H 2013, 2013. http://macaubas.com/wp-content/uploads/2013/05/Sandvine_ Global_Internet_Phenomena_Report_1H_2013.pdf
- de julho de 2013. TorrentFreak

 http://torrentfreak.com/

[2] Ernesto. BitTorrent Makes Twitter's Server Deployment 75x Faster, 16

- bittorrent-makes-twitters-server-deployment-75-faster-100716/
- [3] Ernesto. Facebook Uses BitTorrent, and They Love It, 25 de junho de 2013. TorrentFreak http://torrentfreak.com/ facebook-uses-bittorrent-and-they-love-it-100625/
- [4] Wikipedia. **Timeline of file sharing** Wikipedia, The Free Encyclopedia, 2013. http://en.wikipedia.org/wiki/Timeline_of_file_sharing
- [5] Matheus B. Lehmann, Rodrigo B. Mansilha, Marinho P. Barcellos e Flávio Roberto Santos. "Swarming: como BitTorrent revolucionou a Internet". Em Atualizações em Informática. PUC-Rio. Vol. 1. Rio de Janeiro, 2011. Cap. 6, pp. 209–258

IME-USP Rede Linux IME: ~paulochf E-mail: paulochf@gmail.com