SRM 548 - 599

题目选做

$\underline{\mathrm{Part}\ \mathrm{B}\ \text{-}\ \mathrm{Medium}}$

$frank_c1$

December 30, 2016

Contents

1	Vol	ume I	4
	1.1	SRM 548 KingdomAndDice	4
	1.2	SRM 549 MagicalHats	4
	1.3	SRM 550 CheckerExpansion	4
	1.4	SRM 551 ColorfulWolves	5
	1.5	SRM 552 FoxAndFlowerShopDivOne	5
	1.6	SRM 553 TwoConvexShapes	5
	1.7	SRM 554 TheBrickTowerMediumDivOne	5
	1.8	SRM 555 XorBoard	6
	1.9	SRM 556 LeftRightDigitsGame2	6
	1.10	SRM 557 Incubator	6
2	Vol	II	7
2		ume II	7
2	Vol : 2.1	SRM 558 Ear	7
2			7
2	2.1	SRM 558 Ear	7
2	2.1 2.2	SRM 558 Ear SRM 559 HatRack	7 7 7
2	2.1 2.2 2.3	SRM 558 Ear SRM 559 HatRack SRM 560 DrawingPointsDivOne	7 7 7 8
2	2.1 2.2 2.3 2.4	SRM 558 Ear	7 7 7 8
2	2.1 2.2 2.3 2.4 2.5	SRM 558 Ear	7 7 7 8 8 8
2	2.1 2.2 2.3 2.4 2.5 2.6	SRM 558 Ear SRM 559 HatRack SRM 560 DrawingPointsDivOne SRM 561 CirclesGame SRM 562 CheckerFreeness SRM 563 SpellCards	7 7 7 8 8 8 8
2	2.12.22.32.42.52.62.7	SRM 558 Ear SRM 559 HatRack SRM 560 DrawingPointsDivOne SRM 561 CirclesGame SRM 562 CheckerFreeness SRM 563 SpellCards SRM 564 AlternateColors2	7 7 7 8 8 8 9 9

3	Volu	ume III	11
	3.1	SRM 568 EqualSums	11
	3.2	SRM 569 TheJediTest	11
	3.3	SRM 570 CentaurCompany	11
	3.4	SRM 571 MagicMolecule	12
	3.5	SRM 572 EllysBulls	12
	3.6	SRM 573 SkiResorts	12
	3.7	SRM 574 PolygonTraversal	13
	3.8	SRM 575 TheSwapsDivOne	13
	3.9	SRM 576 TheExperiment	13
	3.10	SRM 577 EllysChessboard	14
4	Vol	ume IV	15
Ī	4.1	SRM 578 WolfInZooDivOne	
	4.2	SRM 579 TravellingPurchasingMan	
	4.3	SRM 580 ShoutterDiv1	
	4.4	SRM 581 TreeUnion	
	4.5	SRM 582 ColorfulBuilding	
	4.6	SRM 583 TurnOnLamps	
	4.7	SRM 584 Excavations	
	4.8	SRM 585 LISNumber	
	4.9	SRM 586 History	17
	4.10	SRM 587 TriangleXor	17
5		ume V	18
	5.1	SRM 588 KeyDungeonDiv1	
	5.2	SRM 589 GearsDiv1	
	5.3	SRM 590 XorCards	
	5.4	SRM 591 PyramidSequences	
	5.5	SRM 592 LittleElephantAndPermutationDiv1	
	5.6	SRM 593 MayTheBestPetWin	
	5.7	SRM 594 FoxAndGo3	
	5.8	SRM 596 BitwiseAnd	
	5.9	SRM 596 BitwiseAnd	
	0.10	Saw 397 ConvexPolygonGame	21

6	Volume VI				
	6.1	SRM 598 FoxAndFencing	22		
	6.2	SRM 599 FindPolygons	22		
7	Con	\mathbf{n} ment	23		

1 Volume I

1.1 SRM 548 KingdomAndDice

- 1.1.1 题目大意
- 1.1.2 算法讨论

1.2 SRM 549 MagicalHats

1.2.1 题目大意

有一个 $w \times h$ 的棋盘, 上面有 n 个位置是帽子。

有 m 枚硬币, 第 i 枚硬币的价值是 c_i 。

每枚硬币都会藏在一顶帽子下。一顶帽子至多藏一枚硬币。

现在你和魔术师玩游戏, 共 k 轮。初始硬币分布由魔术师决定。

每一轮开始时,你可以指定一个尚未揭开的帽子,要求魔术师揭开它。

接着魔术师可以先用神奇的魔法重新调整硬币的分布,再揭开它。

如果这顶帽子下有一枚硬币,则你就获得了这枚硬币的价值,且魔术师以后调整硬币分布时就不可考虑它。 此外,魔术师保证任何时刻的硬币分布满足

- 对于每一行,这一行中的帽子数和硬币数之和是偶数。
- 对于每一列,这一列中的帽子数和硬币数之和是偶数。

你的目标是令获得硬币的总价值最大。魔术师的目标是令总价值最小。

求你至多能获得的最大总价值是多少呢?如果不可能完成游戏,返回-1。

 $1 < w, h < 13, 1 < m, k < n < 13, 1 < c_i < 10^4$

1.2.2 算法讨论

1.3 SRM 550 CheckerExpansion

1.3.1 题目大意

有一个无穷大的棋盘, 开始所有格子都是空的。

Alice 和 Bob 轮流在棋盘上涂色。Alice 执红、Bob 执蓝。

第一轮 Alice 在 (0,0) 上涂上红色。在之后的每一轮,玩家可以在格子 (x,y) 上涂色,当且仅当在 (x-2,y) 和 (x-1,y-1) 中恰有一格涂有对手的颜色,而另一格是空的。

求在 t 轮后, 以 (x,y) 为顶点, 大小为 $w \times h$ 的区域的涂色情况。

 $1 \le t \le 10^{12}, 0 \le x, y \le 10^{12}, 1 \le w, h \le 50$

1.3.2 算法讨论

1.4 SRM 551 ColorfulWolves

1.4.1 题目大意

有一种狼,有n种可能的毛色。

给定矩阵 A, 如果 $A_{i,j} = 1$, 则狼可以从毛色 i 变成毛色 j, 否则不可以。

狼在每一天晚上都会变换毛色。

如果他现在无法变成另一种毛色,他就会永远停留在这种毛色。

否则, 他会变成他能够变成的编号最小的毛色。

你想要狼从毛色 1 变成毛色 n。你可以将某些 $A_{i,j}$ 修改为 0 来到达目标。

求至少需要多少对 (i,j) 才能在某天令他的毛色变为 n。如果不可能,返回 -1。

1 < n < 50

1.4.2 算法讨论

1.5 SRM 552 FoxAndFlowerShopDivOne

- 1.5.1 题目大意
- 1.5.2 算法讨论

1.6 SRM 553 TwoConvexShapes

1.6.1 题目大意

有一个 $n \times m$ 的网格,格子上有黑白两种颜色。

现在有一些格子的颜色尚未确定。你需要确定染色方案,满足

- 对于具有某一种颜色的所有格子,这些格子是连通的。
- 对于所有的行和列,相同颜色的格子在其中必须是连续的一段。

求有多少种合法的染色方案。答案对 109+7 取模。

 $1 \le n, m \le 50$

1.6.2 算法讨论

1.7 SRM 554 TheBrickTowerMediumDivOne

1.7.1 题目大意

给定 n 座塔,第 i 座塔的高度为 a_i 。

对于 $1 \le i < n$,第 i 座与第 i+1 座塔之间的距离至少为 $\max(a_i, a_{i+1})$ 。

现在允许你重新排列这 n 座塔, 使第 1 座塔和第 n 座塔之间的距离最短。

输出重新排列后的下标。如果存在多解、输出字典序最小的方案。

 $1 \le n, a_i \le 47$

1.7.2 算法讨论

1.8 SRM 555 XorBoard

- 1.8.1 题目大意
- 1.8.2 算法讨论

1.9 SRM 556 LeftRightDigitsGame2

1.9.1 题目大意

给定 n 个字符, 均是数字。第 i 个字符是 a_i 。

你有一个空串 s。现在你需要从 1 到 n 依次考虑每个字符。

对于当前考虑的字符 c,你可以将其添加到 s 的左边或右边。

在考虑所有的字符后, 你就得到了一个 n 位的数字串。注意, 这个数字串不应该包含前导 0。

现在给定一个 n 位不包含前导 0 的数字串 X。

求所有可以通过上述方法形成的数字串中,不小于 X 且最小的串是什么?如果不存在,返回空串。 1 < n < 50

1.9.2 算法讨论

1.10 SRM 557 Incubator

1.10.1 题目大意

有 n 个普通的女孩。

她们之间有爱恋的关系。具体地,如果 $A_{i,j} = 1$,则称女孩 j 是女孩 i 的爱人。

现在你可以按次序选择若干女孩 k 令其变成魔法少女。

在某人成为魔法少女后,会发生下列事件。

- 女孩 k 会保护她的所有爱人。
- 所有因这一条和上一条被保护的女孩都会保护她们的爱人。

求一种方案,令满足既是魔法少女又没有被保护的女孩数量最多。输出最大的数量。

 $1 \le n \le 50$

2 Volume II

2.1 SRM 558 Ear

2.1.1 题目大意

平面上有 n 个红点和 m 个蓝点。

红点的纵坐标均为 0, 蓝点的纵坐标均是正整数。

现在需要选四个红点 A, B, C, D 和两个蓝点 P, Q, 满足

- 点 *A*, *B*, *C*, *D* 的横坐标递增。
- $\angle PAD, \angle PDA, \angle QBC, \angle QCB < 90^{\circ}$
- 点 Q 严格在 $\triangle PAD$ 内。

求有多少种不同的方案呢?

 $1 \le n, m \le 300$,所有整数均在 [1,10000] 内,保证没有红点横坐标相同,没有蓝点横坐标或纵坐标相同

2.1.2 算法讨论

2.2 SRM 559 HatRack

2.2.1 题目大意

给定一棵 n 个点的树。

你需要确定树根和每个点的父亲及其儿子的排列方式。

求有多少种不同的方法,将其排列成一棵完全二叉树。

 $2 \le n \le 51$

2.2.2 算法讨论

2.3 SRM 560 DrawingPointsDivOne

2.3.1 题目大意

你在玩一个游戏。开始平面上有若干个点。

游戏可以持续若干轮。每一轮开始时,你将平面上所有点标记为黑点。在这一轮中,你将在所有黑点形成的 1×1 的正方形中心画一个红点。最后擦除所有的黑点。

现在给定在若干轮后平面上现有的 n 个点。

求游戏至多进行了多少轮。如果不存在最大值,返回-1。

 $1 \le n \le 50, |x_i|, |y_i| \le 70$,不存在重复的点

2.3.2 算法讨论

2.4 SRM 561 CirclesGame

2.4.1 题目大意

Alice 和 Bob 在玩游戏。

现在他们有 n 个圆, 第 i 个圆的圆心在 (x_i, y_i) , 半径是 r_i 。

保证圆与圆之间不相交,但是可能存在包含关系。

双方轮流执行下述操作

- 选择一个内部没有任何关键点的圆。
- 在圆的内部放置一个关键点。

如果轮到某玩家时,无法完成上述操作,则判其负。

求如果双方都采取最优策略,是否先手必胜。

 $1 \le n \le 50, |x_i|, |y_i| \le 10000, 1 \le r_i \le 10000$

2.4.2 算法讨论

2.5 SRM 562 CheckerFreeness

2.5.1 题目大意

平面上有 n 个白点和 m 个黑点。不存在三点共线,没有两点坐标完全相同。 求是否存在四个点可以形成一个凸四边形,且四边形上相邻点的颜色均不相同。

 $1 \le n, m \le 222$,所有整数均在 $[1, 10^7]$ 内

2.5.2 算法讨论

2.6 SRM 563 SpellCards

2.6.1 题目大意

你有n张卡片,从左到右编号为1,2,...,n。

第 i 张卡片有两种属性值 a_i, b_i 。

现在你需要按如下规则考虑卡片攻击敌人。设当前最左边的卡片是 x。

- 如果当前至少有一张卡片, 你可以将当前在最右边的卡片移动到最左边。
- 如果当前至少有 b_x 张卡片, 你可以使用卡片 x 对敌人造成 a_x 点伤害, 同时最左边 b_x 张卡片被删除。

求至多可以对敌人造成多少点伤害?

 $1 \le n, b_i \le 50, 1 \le a_i \le 10^5$

2.6.2 算法讨论

2.7 SRM 564 AlternateColors2

2.7.1 题目大意

有r个红球,g个绿球,b个蓝球。 某机器人会按如下程序循环执行

- 如果有红球剩余, 摧毁一个红球。
- 如果有绿球剩余, 摧毁一个绿球。
- 如果有蓝球剩余, 摧毁一个蓝球。

现在知道 n = r + g + b, 且第 k 个摧毁的是红球。

求有多少合法的三元组 (r,g,b) 满足题意。

 $1 \le k \le n \le 10^5$

2.7.2 算法讨论

2.8 SRM 565 TheDivisionGame

2.8.1 题目大意

设有一个可重自然数集S。

有两人在玩游戏,轮流操作。

轮到某个玩家时,他可以选择 S 中的一个整数 X,并选择一个 X 的约数 Y (Y > 1),将 X/Y 代替 X。如果轮到某玩家时不能操作,则这名玩家判负。

求有多少整数对 (A,B) 满足 S = [A,B] 时先手必胜,且 $L \le A \le B \le R$ 。

 $2 \le L \le 10^9, L \le R \le L + 10^6$

2.8.2 算法讨论

2.9 SRM 566 PenguinEmperor

2.9.1 题目大意

有n个点,点i与点i+1相邻,点1与点n相邻。

现在你在点 1。在第 i 步你可以顺时针或逆时针走 i 个位置。

求在 k 步后又回到点 1 的路径总数。答案对 $10^9 + 7$ 取模。

 $1 \le n \le 350, 1 \le k \le 10^{18}$

2.9.2 算法讨论

2.10 SRM 567 StringGame

2.10.1 题目大意

给定 n 个小写英文字母串,所有串的长度均为 m。

现在甲乙在玩游戏。

甲在所有串中挑选一个串 X 和一种小写英文字母字典序 S。

接着甲可以重新排列 X 的字母顺序,乙可以重新排列除 X 以外所有串的字母顺序。

现在我们需要将 X 与其他所有的串按照选定的字典序 S 比较。

如果 X 严格小于其他任何一个串,则甲胜,否则乙胜。

求对于 $i \in [1, n]$,如果甲选定的串是 s_i 且双方都运用最优的策略,甲是否能够胜利? $1 \le n, m \le 50$

3 Volume III

3.1 SRM 568 EqualSums

3.1.1 题目大意

定义 $n \times n$ 的矩阵 A 是优秀的、当且仅当存在常数 k、满足对于任意 n 元排列 P、都有

$$\sum_{i=1}^{n} A[i, P_i] = k$$

现在给定矩阵 A 的一部分,存在一些不确定的元素。求有多少可能的矩阵 A 是优秀的。答案对 10^9+7 取模。数据保证答案一定是有限的。

 $1 \le n \le 50$

3.1.2 算法讨论

3.2 SRM 569 TheJediTest

3.2.1 题目大意

有 n 个位置在举办考试,第 i 个位置上有 a_i 个学生。

对于一个位置,如果有x个学生,则需要 $\begin{bmatrix} x \\ t \end{bmatrix}$ 个考官。

现在可以令一些学生向左移动一个位置或向右移动一个位置。

求最少共需要多少个考官。

 $1 \le n \le 20, 0 \le a_i \le 10^8, 1 \le k \le 10^8$

3.2.2 算法讨论

3.3 SRM 570 CentaurCompany

3.3.1 题目大意

有一棵 n 个点的树。

你需要把点集等概率随机分成两部分,端点属于不同部分的边将不再存在。

现在同一部分的点可能不连通。现在你需要添加一些边将它们连通。

对于某一点,免费的度数为1。后续每增加1度数,将增加1点花费。

对于所有可能的情况,你都会采取最少的花费。求花费的期望。

 $2 \le n \le 36$

3.3.2 算法讨论

3.4 SRM 571 MagicMolecule

3.4.1 题目大意

给定 n 个点的简单无向图 G。 点有权值,第 i 个点的权值是 a_i 。 我们称一个点集是优秀的当且仅当

- 设点集中有 m 个点, 则 $3m \ge 2n$ 。
- 点集的导出子图是一个完全图。

求所有优秀的点集中,权值和最小是多少。 $2 \le n \le 50, 1 \le a_i \le 10^5$

3.4.2 算法讨论

3.5 SRM 572 EllysBulls

3.5.1 题目大意

有一个 m 位的数字串 t。

现在给定 $n \uparrow m$ 位数字串。第 $i \uparrow n$ 个串是 s_i ,我们知道 s_i 和 t 有 a_i 个对应位置上相同的。求是否能唯一确定串 t 呢?如果存在多解或无解,判断之。如果存在唯一的解,输出该解。 $1 \le n \le 50, 2 \le m \le 9$

3.5.2 算法讨论

3.6 SRM 573 SkiResorts

3.6.1 题目大意

给定 n 个点的简单无向图。第 i 个点的高度为 a_i 。

点 i 可以直接到达点 j 当且仅当存在边 (i,j) 且 $a_i \ge a_j$ 。

现在你可以改变一些点的高度。对于某一点,如果从高度 x 改成 y,花费为 |x-y|。 求如果图中需要存在一条 1 到 n 的合法路径,所需花费的最小值。

 $2 \le n \le 50, 0 \le a_i \le 10^9$

3.6.2 算法讨论

3.7 SRM 574 PolygonTraversal

3.7.1 题目大意

有一个正 n 边形, 顶点顺时针标号为 1,2,...,n。

给定 m 元序列 P, P 中元素互不相同。

对于 $1 \le i < m$, 引一条 P_i 到 P_{i+1} 的射线。

现在我们需要从 P_m 开始,构造一条合法的路径。合法路径的构造方法如下:

设当前点为 X,可以选定任意一个尚未访问过的点 Y,引一条 X 到 Y 的射线,满足这条射线至少穿越一条存在的射线,并从 X 移动到 Y。

设我们最后到达点 E,我们再引一条 E 到 P_1 的射线。注意这条射线也需要满足至少穿越一条存在的射线。 求有多少种不同的合法路径呢?

 $4 \le n \le 18, 2 \le m \le n - 1, 1 \le P_i \le n$

3.7.2 算法讨论

3.8 SRM 575 TheSwapsDivOne

3.8.1 题目大意

给定一个 n 元数组 A。

现在可以执行 k 次操作。每次操作等概率随机选取两个位置 p,q,将 A_p,A_q 交换。

在 k 次操作执行结束后,我们会等概率地随机选取一个区间 [l,r] $(1 \le l \le r \le n)$,并计算区间的和。 求计算所得的区间和的期望。

 $2 \le n \le 2209, 1 \le k \le 10^6, 0 \le A_i \le 9$

3.8.2 算法讨论

3.9 SRM 576 TheExperiment

3.9.1 题目大意

有 n 个水龙头, 第 i 个水龙头每分钟滴 a_i 单位的水。

你可以有层次地放置 m 片无标号的海绵在水龙头下面。每片海绵恰好覆盖连续 L 个水龙头。

由于海绵之间存在高低关系,所以一个水龙头滴的水只会被它下方第一个覆盖它的海绵吸收。

现在要求每片海绵每分钟吸收 [A, B] 个单位的水。

求有多少种不同的方案。答案对 109+9 取模。

我们认为两种方案不同,当且仅当存在一片海绵能够接到的水龙头集合不同。

 $1 \le L \le n \le 300, 1 \le m \le 300, 1 \le A \le B \le 2700$

3.9.2 算法讨论

3.10 SRM 577 EllysChessboard

3.10.1 题目大意

给定 $n \times m$ 的目标棋盘 A。

若 $A_{i,j}$ 是 #, 则我们需要在位置 (i,j) 上放置一块石头。

现在有一个空棋盘,我们需要安排放置石头的顺序。

每放置一块石头,需要付出一定花费。

- 如果当前棋盘为空,不需要付出花费。
- 如果当前棋盘不为空, 花费为所有石头距离待放置石头的曼哈顿最远距离。

求总花费的最小值是多少。

 $1 \leq n, m \leq 8$

4 Volume IV

4.1 SRM 578 WolfInZooDivOne

4.1.1 题目大意

有 n 个位置,每个位置至多可能有一头狼。

现在我们知道 m 条信息,第 i 条信息说明第 L_i 到第 R_i 个位置上恰好有 2 匹狼。

求合法的狼的分布的方案数。答案对 109+7 取模。

 $1 \le n, m \le 300, 1 \le L_i \le R_i \le n$

4.1.2 算法讨论

4.2 SRM 579 TravellingPurchasingMan

4.2.1 题目大意

有n个商店,前m个商店是有趣的。

对于第 i 个有趣的商店,在 $[s_i, t_i]$ 时间允许交易,交易需要持续 c_i 时间。

商店之间有若干条道路。第 i 条道路说明商店 u_i 和 v_i 之间有一条所需时间为 w_i 的道路。 求最多可以在多少个有趣的商店完成一次交易。

 $1 \le n \le 50, 1 \le m \le \min(n, 16), 1 \le w_i \le 604800, 0 \le s_i < t_i \le 604800, 1 \le c_i \le 604800$

4.2.2 算法讨论

4.3 SRM 580 ShoutterDiv1

4.3.1 题目大意

有 n 只兔子, 第 i 只兔子将在 $[s_i, t_i]$ 时间上网。

在开始时,每只兔子的空间里都有一篇自己的自我介绍,且只能访问自己的空间。

所有可能同时在线的兔子都是朋友,即拥有访问相互空间的权限。

对于某只兔子,他在上网的时间内,可以无限次转发自己可以访问的空间中的自我介绍。

求如果要使每只兔子都看到所有人的自我介绍,至少共需要多少次转发呢?或指出不可能。

 $1 \le n \le 2500, 0 \le s_i \le t_i \le 9999$

4.3.2 算法讨论

4.4 SRM 581 TreeUnion

4.4.1 题目大意

给定两棵树 A, B, 都有 n 个点。

现在等概率随机生成一个排列 p,我们在所有 A_i 和 B_{p_i} 之间连边,形成一个新的图 G。 求 G 中 k 元环数量的期望。

 $2 \le n \le 300, 3 \le k \le 7$

4.4.2 算法讨论

4.5 SRM 582 ColorfulBuilding

4.5.1 题目大意

有 n 座建筑,从左到右编号为 1,2,3,...,n。第 i 座建筑颜色为 c_i 。 已知这些建筑的高度分别为 1,2,3,...,n,但是建筑不一定按照高度顺序排列。 现在你在最左边向右观察建筑的数量。有两种原因会影响你的观察结果

- 如果对于建筑 i, 存在 j < i 有 $h_i > h_i$, 则你无法观察到建筑 i。
- 如果对于两个相邻的可观察到的建筑 i,j,有 $c_i = c_j$,则你会认为它们是一座建筑。

现在你观察到了L座建筑。

求可能有多少种不同的建筑的排布顺序呢?答案对 10^9+9 取模。

 $1 \le L \le n \le 1296, 1 \le c_i \le 2704$

4.5.2 算法讨论

4.6 SRM 583 TurnOnLamps

4.6.1 题目大意

给定一棵 n 个点的树。

每一条边上有一灯。灯i 初始状态为 a_i 。

有一些灯是重要的。具体地,如果 $b_i = 1$,则灯 i 是重要的。

现在你可以执行若干次操作,每一次操作可以选择一条路径上所有的灯,将它们的状态反转。

求至少需要多少次操作才能让所有重要的灯同时亮起。注意,我们并不关注其他灯的状态。

 $2 \le n \le 50, a_i, b_i \in \{0, 1\}$

- 4.6.2 算法讨论
- 4.7 SRM 584 Excavations
- 4.7.1 题目大意
- 4.7.2 算法讨论
- 4.8 SRM 585 LISNumber
- 4.8.1 题目大意

如果一个序列 A 最少可以拆分为 k 个连续严格递增子序列,则记 f(S)=k。 现在给定整数 k 和 n 种数字,数字 i 有 b_i 个。

你需要用上所有的数字形成序列 T,序列 T 是合法的当且仅当 f(T)=k。 求有多少种不同的合法序列。答案对 10^9+7 取模。

 $1 \le n \le 36, 1 \le b_i \le 36, 1 \le k \le 1296$

- 4.8.2 算法讨论
- 4.9 SRM 586 History
- 4.9.1 题目大意
- 4.9.2 算法讨论
- 4.10 SRM 587 TriangleXor
- 4.10.1 题目大意

对于正整数 $x \in [1, n]$, 定义 T_x 为 (0, 1), (n, 1), (x, 0) 为顶点形成的三角形。 求 T_1 xor T_2 xor T_3 ... T_{n-1} xor T_n xor 的面积。答案向下取整。 $1 \le n \le 70000$

5 Volume V

5.1 SRM 588 KeyDungeonDiv1

5.1.1 题目大意

有 n 个房间。

第 i 个房间需要 R_i 把红钥匙, B_i 把绿钥匙打开。

白钥匙既可以作为红钥匙, 又可以作为绿钥匙。

第 i 个房间打开后可以获得 R'_i 把红钥匙, B'_i 把绿钥匙和 W'_i 把白钥匙。

现在你有a 把红钥匙,b 把绿钥匙和c 把白钥匙。

求在挑选若干房间打开后, 你最多能同时持有多少钥匙?

 $1 \le n \le 12, 0 \le R_i, B_i, R_i', B_i', W_i' \le 10$

5.1.2 算法讨论

5.2 SRM 589 GearsDiv1

5.2.1 题目大意

有 n 个齿轮, 第 i 个齿轮的颜色是 c_i , 颜色是 R, G, B 的一种。

齿轮可能会相互连接。同种颜色的齿轮保证不会相连。

给定矩阵 A, 若 $A_{i,j} = 1$, 则齿轮 i 和 j 相连, 否则不相连。

注意到,相互连接的齿轮必须以不同的方向旋转。

现在我们想要让这些齿轮同时运转,而且相同颜色齿轮的旋转方向相同。

求至少需要移去多少齿轮才能达到这个目标。

 $2 \le n \le 50$

5.2.2 算法讨论

5.3 SRM 590 XorCards

5.3.1 题目大意

给定 n 个非负整数, 第 i 个整数是 a_i 。

求有多少种方式选取若干整数,令它们的异或值 $\leq L$ 。

 $1 \le n \le 50, 0 \le a_i, L \le 10^{15}$

5.3.2 算法讨论

5.4 SRM 591 PyramidSequences

5.4.1 题目大意

定义 k 阶金字塔序列是以 2k-2 为周期的循环序列。 该序列前 2k-2 项为 1,2,3...,k-1,k,k-1,...,3,2。 现在有 n 阶金字塔序列 A 和 m 阶金字塔序列 B。 求有多少整数对 (x,y),满足存在 i 使 $A_i=x$ 且 $B_i=y$ 。 $2 \le n, m \le 10^9$

5.4.2 算法讨论

5.5 SRM 592 LittleElephantAndPermutationDiv1

5.5.1 题目大意

定义两个 n 元排列 A, B 的 M 运算如下

$$M(A,B) = \sum_{i=1}^{n} \max(A_i, B_i)$$

给定 n,k, 求有多少对 n 元排列 A,B 满足 $M(A,B) \ge k$ 。答案对 $10^9 + 7$ 取模。 $1 \le n \le 50, 1 \le k \le 2500$

5.5.2 算法讨论

5.6 SRM 593 MayTheBestPetWin

5.6.1 题目大意

有 n 只动物参加赛跑,第 i 只动物完成一轮花费的时间 $t_i \in [A_i, B_i]$ 。 现在需要把动物分成 S,T 两组。

两组进行接力赛,一组花费的时间为组内所有动物完成一轮花费时间的总和。

定义 w(S,T) 为 (S,T) 划分方案下两组最大可能的时间差。

对于所有可能的划分方案, 求最小的 w(S,T)。

 $2 \le n \le 50, 1 \le A_i \le B_i \le 10^4$

5.6.2 算法讨论

5.7 SRM 594 FoxAndGo3

5.7.1 题目大意

给定 $n \times n$ 的围棋棋盘。x 代表黑子, o 代表白子, . 代表空格。

现在白方已经放弃、故只有黑方走棋。

现在黑方可以将棋子落在空格上,并把无气的白子移去。

求在走若干步后,棋盘上最多能有多少的空格。

保证现在棋盘上任意白子都至少与一个空格相邻。不存在两个白子相邻。

 $3 \le n \le 50$

5.7.2 算法讨论

5.8 SRM 595 LittleElephantAndRGB

5.8.1 题目大意

给定仅包含字符 R, G, B 的字符串 s。

定义一个串 t 是优秀的当且仅当 t 中存在一个长度不小于 m 且仅包含 $\mathbf G$ 的子串。 求有多少四元组 (a,b,c,d) 满足 $a\leq b< c\leq d,$ 且 s[a:b]+s[c:d] 都是优秀的。 $1\leq n,m\leq 2500$

5.8.2 算法讨论

5.9 SRM 596 BitwiseAnd

5.9.1 题目大意

定义一个正整数集合 S 是优秀的, 当且仅当

- 在 S 中任取两个元素 a,b, 有 a and b > 0.
- 在 S 中任取三个元素 a,b,c, 有 a and b and c=0.

现在给定一个正整数集 T,要求构造一个大小为 n 的 T 的超集 S,且 S 是优秀的。

需要注意,S 中的元素都必须是 $[1,2^{60})$ 的整数。输出时按递增顺序。

如果无解,返回空集。如果有多解,返回字典序最小的解。

保证 T 不存在重复元素,且按递增顺序给定,元素均是 $[1,2^{60})$ 的整数。

 $3 \le n \le 50, 0 \le |T| \le n$

5.9.2 算法讨论

5.10 SRM 597 ConvexPolygonGame

5.10.1 题目大意

给定一个凸 *n* 边形, 顶点以逆时针顺序给出。 有两人在玩游戏。轮到某个玩家时, 他要采取下列操作

- 在当前多边形内, 画一个新的凸多边形。
- 新的多边形的顶点必须是整点,且不能与当前多边形的顶点重合。
- 新的多边形的顶点必须在当前多边形的边上或内部。
- 新的多边形的顶点没有三点共线, 且多边形面积为正。
- 画完新的多边形后,擦去当前多边形。

如果某个玩家无法完成操作,则判其负。 如果两人都采取最优策略,求是否先手必胜。 $3 \leq n \leq 50, |x_i|, |y_i| \leq 10^5, \text{ 不存在三点贡献,多边形面积为正}$

6 Volume VI

6.1 SRM 598 FoxAndFencing

6.1.1 题目大意

甲乙在一条数轴上玩游戏。甲在点 0, 乙在点 d。 甲最大移动距离为 m_1 ,最大攻击距离为 r_1 。 乙对应的参数为 m_2, r_2 。 两人轮流操作。轮到某一玩家时,他可以

- 选定一个距离当前位置不超过最大移动距离的位置并移动过去。
- 检查对方是否在当前位置的最大攻击距离内。如果是,则当前玩家胜利。

求如果双方都采取最优策略, 先手是胜/负还是平局。

 $1 \le d, m_1, r_1, m_2, r_2 \le 10^8$

6.1.2 算法讨论

6.2 SRM 599 FindPolygons

6.2.1 题目大意

给定正整数 L。

要求在平面上画一个周长为 L 的多边形,且边数尽量小。 如果不存在这样的多边形,返回 -1。否则返回最长边和最短边可能的最小差值。 $1 \le L \le 5000$

6.2.2 算法讨论

7 Comment