Simultaneous autoregressive process

James T. Thorson

```
library(tinyVAST)
library(igraph)
```

tinyVAST is an R package for fitting vector autoregressive spatio-temporal (VAST) models using a minimal and user-friendly interface. We here show how it can fit a multivariate second-order autoregressive (AR2) model including spatial correlations using a simultaneous autoregressive (SAR) process specified using *igraph*.

To do so, we first load salmong returns, and remove 0s to allow comparison between Tweedie and lognormal distributions.

We first explore an AR2 process, with independent variation among regions. This model shows a substantial first-order autocorrelation for sockeye and chum, and substantial second-order autocorrelation for pink salmon. An AR(2) process is stationary if $\phi_1 + \phi_2 < 1$ and $\phi_2 - \phi_1 < 1$, and this stationarity criterion suggests that each time-series is close to (but not quite) nonstationary.

```
# Define graph for SAR process
unconnected_graph = make_empty_graph( nlevels(Data$Region) )
V(unconnected_graph)$name = levels(Data$Region)
plot(unconnected_graph)
```



```
# Define SEM for AR2 process
dsem = "
    sockeye -> sockeye, -1, lag1_sockeye
    sockeye -> sockeye, -2, lag2_sockeye

pink -> pink, -1, lag1_pink
    pink -> pink, -2, lag2_pink

chum -> chum, -1, lag1_chum
    chum -> chum, -2, lag2_chum

# Fit tinyVAST model
mytiny0 = fit(
    formula = Biomass_nozeros ~ 0 + Species + Region,
    data = Data,
```

heads	to	from	parameter	start	lag	Estimate	$\operatorname{Std}_\operatorname{Error}$	z_value	p_value
1	sockeye	sockeye	1	NA	-1	0.752	NA	NA	NA
1	sockeye	sockeye	2	NA	-2	0.244	NA	NA	NA
1	pink	pink	3	NA	-1	0.051	NA	NA	NA
1	pink	pink	4	NA	-2	0.910	NA	NA	NA
1	chum	chum	5	NA	-1	0.836	NA	NA	NA
1	chum	chum	6	NA	-2	0.143	NA	NA	NA
2	pink	$_{ m pink}$	7	NA	0	0.547	NA	NA	NA
2	chum	chum	8	NA	0	0.224	NA	NA	NA
2	sockeye	sockeye	9	NA	0	0.531	NA	NA	NA

We also explore an SAR process for adjacency among regions

heads	to	from	parameter	start	lag	Estimate	Std_Error	z_value	p_value
1	sockeye	sockeye	1	NA	-1	1.548	NA	NA	NA
1	sockeye	sockeye	2	NA	-2	-0.546	NA	NA	NA
1	pink	pink	3	NA	-1	0.013	NA	NA	NA
1	pink	pink	4	NA	-2	0.989	NA	NA	NA
1	chum	chum	5	NA	-1	1.785	NA	NA	NA
1	chum	chum	6	NA	-2	-0.787	NA	NA	NA
2	pink	pink	7	NA	0	0.461	NA	NA	NA
2	chum	chum	8	NA	0	0.054	NA	NA	NA
2	sockeye	sockeye	9	NA	0	0.222	NA	NA	NA

We can use AIC to compare these two models. This comparison suggests that spatial adjancency is not a parsimonious way to describe correlations among time-series.

```
# AIC for unconnected time-series
AIC(mytiny0)
#> [1] 48974.32
# AIC for SAR spatial variation
AIC(mytiny)
#> [1] 49584.57
```

Finally, we can plot observations and predictions for the selected model

