```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean absolute error, mean absolute percentage error, mean squared
df=pd.read csv('/content/height weight.csv')
print(df.head())
print('*'*50)
print(df.tail())
       Height Weight
    0
         1.47
               52.21
         1.50
               53.12
    1
    2
         1.52 54.48
    3
               55.84
         1.55
         1.57
    4
               57.20
    ****************
        Height Weight
    10
         1.73
               66.28
    11
         1.75 68.10
    12
         1.78 69.92
                72.19
    13
         1.80
    14
          1.83
                74.46
df.describe()
```

	Height	Weight
count	15.000000	15.000000
mean	1.650667	62.078000
std	0.114235	7.037515
min	1.470000	52.210000
25%	1.560000	56.520000
50 %	1.650000	61.290000
75 %	1.740000	67.190000
max	1.830000	74.460000

```
df.isna().sum()
```

0 Height Weight 0 dtype: int64

```
x=df.iloc[:,:-1].values
y=df.iloc[:,-1].values
xtr,xts,ytr,yts=train test split(x,y,test size=0.30,random state=42)
```

```
plt.scatter(x,y)
plt.xlabel('height')
plt.ylabel('Weight')
plt.title('Height-Weight graph')
```

Text(0.5, 1.0, 'Height-Weight graph')


```
model=LinearRegression()
model.fit(xtr,ytr)
ypr=model.predict(xts)
```

dfl=pd.DataFrame({'actual':yts,'predicted':ypr,'difference':yts-ypr})
df1

	actual	predicted	difference
0	64.47	65.035797	-0.565797
1	68.10	68.136508	-0.036508
2	52.21	50.772524	1.437476
3	72.19	71.237220	0.952780
4	58.57	58.834374	-0.264374

```
plt.scatter(xtr,ytr)
plt.plot(xts,ypr,color='r')
plt.xlabel('height')
plt.ylabel('Weight')
plt.title('Height-Weight graph')
```

Text(0.5, 1.0, 'Height-Weight graph')

mse is 0.6730959475011951

print('RMSE is '.rmse)

rmse=np.sqrt(mean_squared_error(yts,ypr))

rmse

Height-Weight graph 75 70 65 Weight 60 55 50 1.50 1.55 1.60 1.65 1.70 1.75 1.80 height

```
# y=mx+c
print('slope is ',model.coef_)
print('constant is ',model.intercept_)

slope is [62.01422981]
    constant is -40.388393810032014

# mean absolute error
print('MAE is',mean_absolute_error(yts,ypr))

MAE is 0.6513870508715769

# mean absolute error percentage
print('MAE percentage is ',mean_absolute_percentage_error(yts,ypr))

MAE percentage is 0.010911368997744855

# mean squared error
print('mse is ',mean_squared_error(yts,ypr))
```

RMSE is 0.8204242484844015

```
#r2 score
print('r2 score ',r2_score(yts,ypr))
```

r2 score 0.986463232472019

Colab paid products - Cancel contracts here