PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000199906 A

(43) Date of publication of application: 18.07.00

(51) Int. CI

G02F 1/1339 G02F 1/13

APANESE PATENT OFFICE

(21) Application number: 10377153

(22) Date of filing: 29.12.98

(71) Applicant:

CASIO COMPUT CO LTD

(72) Inventor:

CHIBA YASUSHI

(54) MANUFACTURING APPARATUS FOR LIQUID CRYSTAL ELEMENTS

(57) Abstract:

PROBLEM TO BE SOLVED: To make surface distribution of respective substrates uniform, even if there are variations in the pressurization distribution on a pressurizing means

SOLUTION: A pair of glass substrates holding a sealing material are formed as one set of a substrate body 10. Plural sets of the substrate bodies 10 are laminated and are arranged on a base plate 8. An auxiliary plate 20 is arranged on the substrate body 10 of the uppermost part and a pressure distributing member 21 including fluid is arranged between the auxiliary plate 20 and a pressurizing plate 12. The pressurizing plate 12 is pressurized via coil springs 13 by a pressurizing member 22 in this state. Accordingly, when the pressurizing plate 12 is pressurized, the substrate bodies 10 of the respective sets are pressurized via the pressure distributing member 21, and at this time, even if the variations in the pressurization distribution are induced on the pressurizing means side by factor, such as deformity and uneven contact of the pressurizing plate 12 and the change in the spring constants of the coil springs 13, the fluid in the pressure distributing member 21 flows according to the variations for absorbing the variations in the pressurization distribution, and therefore, the surface pressure distribution of the respective substrates 2 and 3 is made uniform.

COPYRIGHT: (C)2000,JPO

BEST AVAILABLE COPY

Disclaimer:

This English translation is produced by machine translation and may contain errors. The JPO, the NCIPI, and those who drafted this document in the original language are not responsible for the result of the translation.

Notes:

- 1. Untranslatable words are replaced with asterisks (****).
- 2. Texts in the figures are not translated and shown as it is.

Translated: 20:36:58 JST 01/09/2006

Dictionary: Last updated 12/22/2005 / Priority:

FULL CONTENTS

[Claim(s)]

[Claim 1] The sealant which forms the space for enclosing liquid crystal between the substrates of a couple is made to pinch between the substrates of said couple. As the substrate of these couples is made into 1 set and the substrate of 1 or more sets of said couples is piled up at least, make the outermost side of these substrates counter said pressurizing plate between pressurizing plates, and it arranges. By pressurizing the substrate of 1 or more sets of said couples by a force means through said pressurizing plate in this state The manufacturing installation of the liquid crystal device characterized by having arranged the pressure distribution member which connotes a fluid among the substrates of 1 or more sets of said couples between the outermost substrate and said pressurizing plate which counters this in the manufacturing installation of the liquid crystal device which joins the substrate of 1 or more sets of said couples through said sealant. [Claim 2] The manufacturing installation of the liquid crystal device according to claim 1 characterized by having a heating means to form said sealant with thermosetting adhesive and to heat with the curing temperature of said sealant.

[Claim 3] Said fluid of said pressure distribution member is the manufacturing installation of the liquid crystal device according to claim 1 characterized by being the matter which has thermal resistance, such as silicone oil and silicone gel.

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the manufacturing installation of the liquid crystal device for joining the substrate of the couple of a liquid crystal device in more detail about the manufacturing installation of a liquid crystal device.

[0002]

[Description of the Prior Art] Conventionally, the liquid crystal device 1 forms the transparent electrode 4 and 5 in the transparent glass substrate 2 of a couple, and the opposed face of 3, respectively, as shown in <u>drawing 2</u>. By forming the sealant 6 in the glass substrate 2 of these couples, and the periphery section between three, and joining

the glass substrate 2 of a couple, and 3 by this sealant 6, the glass substrate 2 of a couple and the space enclosed by the sealant 6 among three are formed, and it has composition which encloses liquid crystal 7 in this space. In this case, the sealant 6 consists of thermosetting adhesives, such as epoxy system resin.

[0003] In such a liquid crystal device 1, there are some which were constituted as the glass substrate 2 of a couple and 3 were shown in <u>drawing 3</u> as a manufacturing installation for joining by the sealant 6, for example. That is, on the base plate 8 which is the pedestal of this manufacturing installation, the bottom elastic plate 9 which consists of heat-resistant rubber etc. is arranged. On this bottom elastic plate 9, the glass substrate 2 of a couple with which the sealant 6 intervened, and 3 are used as 1 set of board bodies 10, and two or more sets of 1 set of these board bodies 10 are laminated. On 1 set of this laminated topmost part of board bodies 10, the pressurizing plate 12 is arranged through the upside elastic plate 11 which consists of heat-resistant rubber etc., and the pressure portion material 14 is arranged through two or more coiled spring 13 on this pressurizing plate 12. In addition, this manufacturing installation is equipped with a heating means (not shown) to heat with the curing temperature of the sealant 6.

[0004] [this manufacturing installation] by pressurizing the pressurizing plate 12 through two or more coiled spring 13 by the pressure portion material 14 The glass substrate 2 of the couple of each class and 3 are joined at once by pressurizing at once two or more sets of board bodies 10 laminated through the upside elastic plate 11, heating by a heating means in this state, and stiffening the glass substrate 2 of the couple of each class, and the sealant 6 between three.

[0005]

[Problem(s) to be Solved by the Invention] however, [such a conventional manufacturing installation] The pressurizing plate 12 is pressurized through two or more coiled spring 13 by the pressure portion material 14. [with factors, such as deformation of the pressurizing plate 12 and change of the spring constant by degradation of per piece or the coiled spring 13,] when pressurizing at once two or more sets of board bodies 10 laminated through the upside elastic plate 11 If dispersion arises in the application-of-pressure distribution by the side of the force means of the pressure portion material 14, the coiled spring 13, etc. There is a problem that planar pressure distribution of the board body 10 of each class laminated in connection with this will become an ununiformity, and the glass substrate 2 of the couple of each class after heating and the gap G between three will become an ununiformity for this reason.

[0006] Even if the technical problem of this invention has dispersion in the application-of-pressure distribution by the side of a force means, it is planar pressure distribution of each substrate being made to homogeneity, and enabling it to form the gap between the substrates of a couple in homogeneity by this.

[0007]

[Means for Solving the Problem] This invention makes the sealant which forms the space for enclosing liquid crystal between the substrates of a couple pinch between the substrates of said couple. As the substrate of these couples is made into 1 set and the substrate of 1

or more sets of said couples is piled up at least, make the outermost side of these substrates counter said pressurizing plate between pressurizing plates, and it arranges. By pressurizing the substrate of 1 or more sets of said couples by a force means through said pressurizing plate in this state In the manufacturing installation of the liquid crystal device which joins the substrate of 1 or more sets of said couples through said sealant, it is characterized by having arranged the pressure distribution member which connotes a fluid among the substrates of 1 or more sets of said couples between the outermost substrate and said pressurizing plate which counters this. Since the pressure distribution member which connotes a fluid among the substrates of 1 or more sets of couples between the outermost substrate and the pressurizing plate which counters this has been arranged according to this invention When a pressurizing plate is pressurized by a force means, it will be pressurized by the substrate of 1 or more sets of couples through a pressure distribution member, and at this time For example, even if dispersion arises in application-of-pressure distribution with deformation of a pressurizing plate and factors, such as per piece, at the force means side, in order for the fluid in a pressure distribution member to flow according to the dispersion and to absorb dispersion in application-of-pressure distribution, Planar pressure distribution of each substrate can be made into homogeneity, and, thereby, the gap between the substrates of a couple can be formed in homogeneity. [0008] In this case, by having a heating means to form a profit according to claim 2 and a sealant with thermosetting adhesive, and to heat with the curing temperature of this sealant After it pressurized by the force means and the pressure distribution member has maintained planar pressure distribution of each substrate at homogeneity, it can heat with the curing temperature of a sealant by a heating means, a sealant can be stiffened, and, for this reason, the gap between the substrates of a couple can be formed in homogeneity with a sufficient precision. When [moreover,] the fluid of a profit according to claim 3 and a pressure distribution member is the matter which has thermal resistance, such as silicone oil and silicone gel Even if it pressurizes each substrate by a force means and heats by a heating means in this state at the curing temperature of a sealant, there is almost no pressure variation by the thermal expansion of a fluid, and, for this reason, it can pressurize by the about 1 constant-pressure force during heating. [0009]

[Embodiment of the Invention] With reference to drawing 1, one embodiment of the manufacturing installation of the liquid crystal device of this invention is explained hereafter. In addition, the same sign is given to the same part as the conventional parallel shown in drawing 2 and drawing 3, and the explanation is omitted. Drawing 1 is the front view having shown the manufacturing installation of the liquid crystal device. On the base plate 8 (it is equivalent to one pressurizing plate) which is a pedestal in this drawing Like the 1st embodiment, the bottom elastic plate 9 is arranged, on this bottom elastic plate 9, the glass substrate 2 of a couple with which the sealant 6 intervened, and 3 are used as 1 set of board bodies 10, and two or more sets of 1 set of these board bodies 10 are laminated. On 1 set of this laminated topmost part of board bodies 10, the pressure distribution member 21 is arranged through the auxiliary plate 20. The pressure distribution member 21 has the

composition of having connoted the fluid free [floating] in the saccate package inside of the body. A fluid has a fluidity, and also has thermal resistance, and consists of matter, such as silicone oil and silicone gel, for example, and the heat-resistant temperature is [pressure resistance] about two 0.4 kg/cm at about 180 degrees C. In addition, the auxiliary plate 20 has prevented the space where it is monotonous, and is formed more greatly than the glass substrate 2 of each class and the size of 3, and the glass substrate 2 of a couple and the liquid crystal 7 in 3 which have rigidity are enclosed, and a corresponding part bending by the pressure distribution member 21.

[0010] Moreover, like the 1st embodiment, the pressurizing plate 12 (it is equivalent to the pressurizing plate of another side) is arranged, and the pressure portion material 22 is arranged through two or more coiled spring 13 on this pressurizing plate 12 at the pressure distribution member 21 top. In this case, the clamp arm 23 is attached to the both ends of the pressure portion material 22 rotatable, respectively. [these clamp arm 23] when the pressure portion material 22 pressurizes the pressurizing plate 12 through two or more coiled spring 13 and becomes a constant pressure The hook section 23a of the soffit section of each clamp arm 23 engages with the catching part 8a prepared on the base plate 8, and it is constituted so that this may maintain the application-of-pressure state of a constant pressure. In addition, this manufacturing installation is held in a heating furnace (not shown) with an application-of-pressure state, and when the curing temperature 6 of the sealant 6, for example, a sealant, is epoxy system resin, it is heated at about 140 degrees C.

[0011] [the state where used as 1 set of board bodies 10 the glass substrate 2 of a couple with which the sealant 6 intervened, and 3 in the manufacturing installation of such a liquid crystal device, and two or more sets of 1 set of these board bodies 10 were made to laminate] It arranges between the bottom elastic plate 9 on a base plate 8, and the auxiliary plate 20. If the pressure distribution member 21 is arranged between this auxiliary plate 20 and pressurizing plate 12 and the pressurizing plate 12 is pressurized through two or more coiled spring 13 by the pressure portion material 14 in this state, two or more sets of board bodies 10 laminated through the pressure distribution member 21 and the auxiliary plate 20 will be pressurized. [with factors, such as deformation of the pressurizing plate 12 and change of the spring constant by degradation of per piece or the coiled spring 13,] at this time Even if dispersion arises in application-of-pressure distribution at the force means side of the pressure portion material 22, the coiled spring 13, etc., in order for the fluid in the pressure distribution member 21 to flow according to the dispersion and to absorb dispersion in application-of-pressure distribution, The planar pressure distribution 2 of two or more sets of laminated board bodies 10, i.e., the glass substrate of each class, and planar pressure distribution of 3 can be made into homogeneity.

[0012] Thus, when two or more sets of laminated board bodies 10 are pressurized and it becomes a constant pressure, the hook section 23a of each clamp arm 23 of the pressure portion material 22 will be stopped by the catching part 8a of a base plate 8, and the state where two or more board bodies 10 of the group were pressurized by the constant pressure by this will be maintained. And it holds in a heating furnace with this state, it heats in this

heating furnace with the curing temperature (for example, about 140 degrees C) of the sealant 6, and the sealant 6 is stiffened. Since the fluid of the pressure distribution member 21 consists of silicone oil, silicone gel, etc. which have thermal resistance at this time, the heat-resistant temperature is about 180 degrees C and the pressure variation by the thermal expansion of a fluid hardly arises, Planar pressure distribution of two or more sets of board bodies 10 which could maintain the application-of-pressure state of the about 1 constant-pressure force during heating, and were laminated by the pressure distribution member 21 also in heating for this reason is uniform. And the glass substrate 2 of each class and the sealant 6 between three can be stiffened with the application-of-pressure state of a constant pressure maintained, and, thereby, the glass substrate 2 of a couple and the gap G between three can be formed in homogeneity with a sufficient precision. [0013] In addition, in the above-mentioned embodiment between the bottom elastic plate 9 on a base plate 8, and the auxiliary plate 20 by the side of the pressurizing plate 12 Although the case where made the glass substrate 2 of a couple with which the sealant 6 intervened, and two or more sets of board bodies 10 which make 3 1 set laminate, and two or more sets of these laminated board bodies 10 were pressurized at once was described Not only this but 1 set of the glass substrate 2 of a couple with which the sealant 6 intervened, for example and 3 are arranged, and you may make it pressurize it. Moreover, in the above-mentioned embodiment, although the matter of a silicone system was used as a fluid of the pressure distribution member 21, as long as it has not only this but thermal resistance, you may use fine particles, such as liquids, such as oil, semisolids, such as grease, and particles, etc., for example.

[0014] Moreover, although the glass substrate 2 and 3 were used as a substrate of the couple of the liquid crystal device 1 in the above-mentioned embodiment Although the transparent film which consists not only of this but of synthetic resin could be used and epoxy adhesive was used as a sealant 6, you may use photo-setting resins, such as not only this but ultraviolet-rays hardenability resin. In this case, what is necessary is just to use the Mitsuteru gunner stage which replaces with a heating means and irradiates light, such as ultraviolet rays. Furthermore, although the pressure portion material 14 is the composition which pressurizes the pressurizing plate 12 through two or more coiled spring 13 as a force means in the above-mentioned embodiment, you may be the load plate of specified weight, for example not only this but, and actuators, such as an oil hydraulic cylinder, may be used.

[0015]

[Effect of the Invention] As explained above, according to this invention, the substrate of the couple which pinched the sealant is made into 1 set. As the substrate of at least 1 or more sets of couples is piled up, when arranging between pressurizing plates, Since the pressure distribution member which connotes a fluid among the substrates of 1 or more sets of couples between the outermost substrate and the pressurizing plate which counters this has been arranged When a pressurizing plate is pressurized by a force means, it will be pressurized by the substrate of 1 or more sets of couples through a pressure distribution member, and at this time For example, even if dispersion arises in application-of-pressure

distribution with deformation of a pressurizing plate and factors, such as per piece, at the force means side, in order for the fluid in a pressure distribution member to flow according to the dispersion and to absorb dispersion in application-of-pressure distribution, Planar pressure distribution of each substrate can be made into homogeneity, and, thereby, the gap between the substrates of a couple can be formed in homogeneity. After [in this case,] it pressurized by the force means and the pressure distribution member has maintained planar pressure distribution of each substrate at homogeneity by having a heating means to form a sealant with thermosetting adhesive and to heat with the curing temperature of this sealant It can heat with the curing temperature of a sealant by a heating means, a sealant can be stiffened, and, for this reason, the gap between the substrates of a couple can be formed in homogeneity with a sufficient precision. When [moreover,] the fluid of a pressure distribution member is the matter which has thermal resistance, such as silicone oil and silicone gel Even if it pressurizes each substrate by a force means and heats by a heating means in this state at the curing temperature of a sealant, there is almost no pressure variation by the thermal expansion of a fluid, and, for this reason, it can pressurize by the about 1 constant-pressure force during heating.

[Brief Description of the Drawings]

[Drawing 1] The front view having shown one embodiment of the manufacturing installation of the liquid crystal device of this invention.

[Drawing 2] The expanded sectional view of a liquid crystal device.

[Drawing 3] The front view having shown the manufacturing installation of the conventional liquid crystal device.

[Description of Notations]

- 1 Liquid Crystal Device
- 2, 3 Glass substrate
- 6 Sealant
- 8 Base Plate
- 12 Pressurizing Plate
- 13 Coiled Spring
- 21 Pressure Distribution Member
- 22 Pressure Portion Material

[Drawing 1]

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-199906 (P2000-199906A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7		識別記号	FΙ	•		テーマコード(参考)
G02F	1/1339	505	G 0 2 F	1/1339	505	2H088
•	1/13	101	•	1/13	101	2H089

審査請求 未請求 請求項の数3 FD (全 4 頁)

	• • • • • • • • • • • • • • • • • • • •
(21)出願番号	特爾平10-377153

(22)出願日 平成10年12月29日(1998.12.29)

(71)出願人 000001443

カシオ計算機株式会社

東京都渋谷区本町1丁目6番2号

(72)発明者 千葉 靖

東京都八王子市石川町2951番地の5 カシ

才計算機株式会社八王子研究所内

(74)代理人 100074985

弁理士 杉村 次郎

Fターム(参考) 2H088 FA01 FA20 FA30 WA17

2H089 NA45 NA48 NA60 QA14

(54) 【発明の名称】 液晶素子の製造装置

(57)【要約】

【課題】 加圧手段側に加圧分布のばらつきがあって も、各基板の面圧分布を均一にする。

【解決手段】 シール材を挟持した一対のガラス基板を 1 組の基板体 1 0 とし、この基板体 1 0 を複数組積層させてベースプレート 8 上に配置し、その最上部の基板体 1 0 上に補助プレート 2 0 を配置し、この補助プレート 2 0 と加圧プレート 1 2 との間に流動体を内包してなる 圧力分散部材 2 1 を配置し、この状態で加圧部材 2 2 によりコイルばね 1 3 を介して加圧プレート 1 2 が加圧されると、圧力分散部材 2 1 を介して各組の基板体 1 0 が加圧され、このときに加圧プレート 1 2 の変形や片当たり、またはコイルばね 1 3 のばね定数の変化などの要因により、加圧手段側に加圧分布のばらつきが生じても、そのばらつきに応じて圧力分散部材 2 1 内の流動体が流動して加圧分布のばらつきを吸収するため、各基板 2、3 の面圧分布を均一にできる。

10

【特許請求の範囲】

【請求項1】一対の基板間に液晶を封入するための空間 を形成するシール材を前記一対の基板間に挾持させ、こ れら一対の基板を1組とし、少なくとも前記1組以上の 一対の基板を重ね合わせるようにして加圧プレート間に それら基板の最外面を前記加圧プレートに対向させて配 置し、この状態で前記加圧プレートを介して前記 1 組以 上の一対の基板を加圧手段で加圧することにより、前記 1組以上の一対の基板を前記シール材を介して接合する 液晶素子の製造装置において、

前記1組以上の一対の基板のうち、最外部の基板とこれ に対向する前記加圧プレートとの間に、流動体を内包し てなる圧力分散部材を配置したことを特徴とする液晶素 子の製造装置。

【請求項2】前記シール材を熱硬化性接着剤で形成し、 前記シール材の硬化温度で加熱する加熱手段を備えてい ることを特徴とする請求項1記載の液晶素子の製造装

【請求項3】前記圧力分散部材の前記流動体は、シリコ ーンオイルやシリコーンゲルなどの耐熱性を有する物質 であることを特徴とする請求項1記載の液晶素子の製造 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、液晶素子の製造 装置に関し、更に詳しくは液晶素子の一対の基板を接合 させるための液晶素子の製造装置に関する。

[0002]

【従来の技術】従来、液晶素子1は、図2に示すよう に、一対の透明なガラス基板2、3の対向面にそれぞれ 30 透明電極4、5を形成し、これら一対のガラス基板2、 ・3間における周縁部にシール材6を設け、このシール材 6により一対のガラス基板2、3を接合することによ り、一対のガラス基板2、3間にシール材6で囲われた 空間を形成し、この空間内に液晶7を封入する構成にな っている。この場合、シール材6は、エポキシ系樹脂な どの熱硬化性接着剤からなっている。

【0003】このような液晶素子1において、一対のガ ラス基板2、3をシール材6で接合するための製造装置 としては、例えば、図3に示すように構成されたものが ある。すなわち、この製造装置の基台であるベースプレ ート8上には、耐熱ゴムなどからなる下側弾性板9が配 置されている。この下側弾性板9上には、シール材6が 介在された一対のガラス基板2、3を1組の基板体10 とし、この1組の基板体10が複数組積層される。この 積層された最上部の1組の基板体10上には、耐熱ゴム などからなる上側弾性板11を介して加圧プレート12 が配置されており、この加圧プレート12上には、複数 のコイルばね13を介して加圧部材14が配置されてい る。なお、この製造装置は、シール材6の硬化温度で加 50 熱する加熱手段(図示せず)を備えている。

【0004】この製造装置では、加圧部材14により複 数のコイルばね13を介して加圧プレート12を加圧す ることにより、上側弾性板 1 1を介して積層された複数 組の基板体10を一度に加圧し、この状態で加熱手段に より加熱して各組の一対のガラス基板2、3間のシール 材6を硬化させることにより、各組の一対のガラス基板 2、3を一度に接合している。

[0005]

【発明が解決しようとする課題】しかしながら、このよ うな従来の製造装置では、加圧部材14により複数のコ イルばね13を介して加圧プレート12を加圧し、上側 弾性板11を介して積層された複数組の基板体10を一 度に加圧する際、加圧プレート12の変形や片当たり、 あるいはコイルばね13の劣化によるばね定数の変化な どの要因により、加圧部材14およびコイルばね13な どの加圧手段側における加圧分布にばらつきが生じる と、これに伴って積層された各組の基板体10の面圧分 布が不均一になり、このため加熱後における各組の一対 のガラス基板2、3間のギャップGが不均一になってし まうという問題がある。

【0006】この発明の課題は、加圧手段側の加圧分布 にばらつきがあっても、各基板の面圧分布を均一にで き、これにより一対の基板間のギャップを均一に形成で きるようにすることである。

[0.007]

40

【課題を解決するための手段】この発明は、一対の基板 間に液晶を封入するための空間を形成するシール材を前 記一対の基板間に挾持させ、これら一対の基板を1組と し、少なくとも前記 1 組以上の一対の基板を重ね合わせ るようにして加圧プレート間にそれら基板の最外面を前 記加圧プレートに対向させて配置し、この状態で前記加 圧プレートを介して前記 1 組以上の一対の基板を加圧手 段で加圧することにより、前記1組以上の一対の基板を 前記シール材を介して接合する液晶素子の製造装置にお いて、前記1組以上の一対の基板のうち、最外部の基板 とこれに対向する前記加圧プレートとの間に、流動体を 内包してなる圧力分散部材を配置したことを特徴とす る。この発明によれば、1組以上の一対の基板のうち、 最外部の基板とこれに対向する加圧プレートとの間に流 動体を内包してなる圧力分散部材を配置したので、加圧 手段により加圧プレートを加圧すると、圧力分散部材を 介して1組以上の一対の基板が加圧されることになり、 このときに、例えば加圧プレートの変形や片当たりなど の要因により、加圧手段側において加圧分布にばらつき が生じても、そのばらつきに応じて圧力分散部材内の流 動体が流動して加圧分布のばらつきを吸収するため、各 基板の面圧分布を均一にすることができ、これにより一 対の基板間のギャップを均一に形成することができる。 【0008】この場合、請求項2に記載のごとく、シー

3

ル材を熱硬化性接着剤で形成し、このシール材の硬化温度で加熱する加熱手段を備えていることにより、加圧手段で加圧して圧力分散部材により各基板の面圧分布を均一に保った状態で、加熱手段によりシール材の硬化温度で加熱してシール材を硬化させることができ、このため一対の基板間のギャップを精度良く均一に形成できる。また、請求項3に記載のごとく、圧力分散部材の流動体がシリコーンオイルやシリコーンゲルなどの耐熱性を有する物質であることにより、加圧手段で各基板を加圧し、この状態で加熱手段によりシール材の硬化温度で加熱しても、流動体の熱膨張による圧力変化がほとんどなく、このため加熱中においてもほぼ一定圧力で加圧することができる。

[0009]

【発明の実施の形態】以下、図1を参照して、この発明 の液晶素子の製造装置の一実施形態について説明する。 なお、図2および図3に示された従来例と同一部分には 同一符号を付し、その説明は省略する。図1は液晶素子 の製造装置を示した正面図である。この図において、基 台であるベースプレート8(一方の加圧プレートに相当 する)上には、第1実施形態と同様、下側弾性板9が配 置されており、この下側弾性板9上には、シール材6が 介在された一対のガラス基板2、3を1組の基板体10 とし、この1組の基板体10が複数組積層される。この 積層された最上部の1組の基板体10上には、補助プレ ート20を介して圧力分散部材21が配置されている。 圧力分散部材21は、袋状の包装体内に流動体を流動自 在に内包した構成になっている。流動体は、流動性を有 するほかに、耐熱性をも有するもので、例えばシリコー ンオイルやシリコーンゲルなどの物質からなり、その耐 熱温度が180℃程度で、耐圧力が0.4Kg/cm゚ 程度のものである。なお、補助プレート20は、剛性を 有する平板で、各組のガラス基板2、3のサイズよりも 大きく形成され、かつ一対のガラス基板2、3における 液晶 7 が封入される空間と対応する部分が圧力分散部材 21によって撓むのを防いでいる。

【0010】また、圧力分散部材21上には、第1実施形態と同様、加圧プレート12(他方の加圧プレートに相当する)が配置されており、この加圧プレート12上には、複数のコイルばね13を介して加圧部材22が配置されている。この場合、加圧部材22の両端部には、それぞれクランプアーム23が回動可能に取り付けられている。これらクランプアーム23は、加圧部材22が複数のコイルばね13を介して加圧プレート12を加圧して一定圧力になったときに、各クランプアーム23の下端部のフック部23aがベースプレート8上に設けられた係合部8aに係合し、これにより一定圧力の加圧状態を保つように構成されている。なお、この製造装置は、加圧状態のままで加熱炉(図示せず)内に収容され、シール材6の硬化温度、例えばシール材6がエポキ50

シ系樹脂の場合、約140℃で加熱される。

【0011】このような液晶素子の製造装置では、シー ル材6が介在された一対のガラス基板2、3を1組の基 板体10とし、この1組の基板体10を複数組積層させ た状態で、ベースプレート8上の下側弾性板9と補助プ レート20との間に配置し、この補助プレート20と加 圧プレート12との間に圧力分散部材21を配置し、こ の状態で加圧部材14により複数のコイルばね13を介 して加圧プレート12を加圧すると、圧力分散部材21 および補助プレート20を介して積層された複数組の基 板体10が加圧される。このとき、加圧プレート12の 変形や片当たり、あるいはコイルばね13の劣化による ばね定数の変化などの要因により、加圧部材22および コイルばね13などの加圧手段側において加圧分布にば らつきが生じても、そのばらつきに応じて圧力分散部材 2 1 内の流動体が流動して加圧分布のばらつきを吸収す るため、積層された複数組の基板体10の面圧分布、つ まり各組のガラス基板2、3の面圧分布を均一にするこ とができる。

【0012】このようにして、積層された複数組の基板 体10が加圧されて一定圧力になると、加圧部材22の 各クランプアーム23のフック部23aがベースプレー ト8の係合部8aに係止され、これにより複数組の基板 体10が一定圧力で加圧された状態を保つことになる。 そして、この状態のまま加熱炉内に収容し、この加熱炉 内でシール材6の硬化温度(例えば約140℃)で加熱 してシール材6を硬化させる。このときには、圧力分散 部材21の流動体が耐熱性を有するシリコーンオイルや シリコーンゲルなどからなり、耐熱温度が180℃程度 であるから、流動体の熱膨張による圧力変化がほとんど 生じないため、加熱中においてもほぼ一定圧力の加圧状 態を保つことができ、このため加熱中でも圧力分散部材 21により積層された複数組の基板体10の面圧分布が 均一で、かつ一定圧力の加圧状態を保ったままで各組の ガラス基板2、3間のシール材6を硬化させることがで き、これにより一対のガラス基板2、3間のギャップG を精度良く均一に形成することができる。

【0013】なお、上記実施形態では、ベースプレート8上の下側弾性板9と加圧プレート12側の補助プレート20との間に、シール材6が介在された一対のガラス基板2、3を1組とする基板体10を複数組積層させ、この積層された複数組の基板体10を一度に加圧する場合について述べたが、これに限らず、例えば、シール材6が介在された一対のガラス基板2、3を1組だけ配置して加圧するようにしても良い。また、上記実施形態では、圧力分散部材21の流動体として、シリコーン系の物質を用いたが、これに限らず、耐熱性を有するものであれば、例えばオイルなどの液体や、グリースなどの半固体、粒子などの粉体などを用いても良い。

【0014】また、上記実施形態では、液晶素子」の一

対の基板として、ガラス基板2、3を用いたが、これに限らず、合成樹脂からなる透明なフィルムを用いても良く、またシール材6として、エポキシ系接着剤を用いたが、これに限らず、紫外線硬化性樹脂などの光硬化性樹脂を用いても良い。この場合には、加熱手段に代えて紫外線などの光を照射する光照射手段を用いれば良い。さらに、上記実施形態では、加圧手段として、加圧部材14が複数のコイルばね13を介して加圧プレート12を加圧する構成であるが、これに限らず、例えば、所定重量の荷重板であってもよく、また油圧シリンダなどのア10クチュエータを用いても良い。

[0015]

【発明の効果】以上説明したように、この発明によれば、シール材を挟持した一対の基板を1組とし、少なくとも1組以上の一対の基板を重ね合わせるようにして加圧プレート間に配置する際、1組以上の一対の基板のうち、最外部の基板とこれに対向する加圧プレートとの間に流動体を内包してなる圧力分散部材を配置したのでも、圧力分により加圧プレートを加圧すると、圧力分にが部材を介して1組以上の一対の基板が加圧されることに、例えば加圧プレートの変形や片当により、このときに、例えば加圧プレートの変形や片当により、かに手段側において加圧分布に対らなどの要因により、加圧手段側において加圧分布に対らつきが生じても、そのばらつきに応じて圧力分散部が大力の流動体が流動して加圧分布のばらつきを吸収することができが生じても、そのばらつきに応じて圧力分散の表をある。との場合、シール材を熱硬化性接着剤で形成し、*

* このシール材の硬化温度で加熱する加熱手段を備えていることにより、加圧手段で加圧して圧力分散部材により各基板の面圧分布を均一に保った状態で、加熱手段によりシール材の硬化温度で加熱してシール材を硬化させることができ、このため一対の基板間のギャップを精度良く均一に形成できる。また、圧力分散部材の流動体がシリコーンオイルやシリコーンゲルなどの耐熱性を有する物質であることにより、加圧手段で各基板を加圧し、この状態で加熱手段によりシール材の硬化温度で加熱しても、流動体の熱膨張による圧力変化がほとんどなく、このため加熱中においてもほぼ一定圧力で加圧することができる。

【図面の簡単な説明】

【図1】この発明の液晶素子の製造装置の一実施形態を示した正面図。

【図2】液晶素子の拡大断面図。

【図3】従来の液晶素子の製造装置を示した正面図。 【符号の説明】

- 1 液晶素子
- 0 2、3 ガラス基板
 - 6 シール材
 - 8 ベースプレート
 - 12 加圧プレート
 - 13 コイルばね
 - 21 圧力分散部材
 - 22 加圧部材

[図1]

[図2]

【図3】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.