International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

robots

Slovenščina — 1.0

Maritin mlajši brat je pustil igrače ležati povsod po sobi. K sreči je Marita izdelala robote za pospravljanje igrač. Sedaj bi rada, da ji pomagaš ugotoviti, kateri roboti naj pospravijo katere igrače.

V sobi je T igrač. Teža i-te igrače znaša W[i], njena velikost pa S[i]. Vse teže in velikosti so cela števila. Roboti so dveh vrst: *šibki* in *mali*.

- Marita ima A šibkih robotov. Nosilnost i tega šibkega robota znaša X[i]. To pomeni, da lahko nese poljubno igračo, ki tehta *strogo* manj kot X[i]. Velikost igrače ni pomembna.
- Marita ima B malih robotov. Velikostna omejitev i tega malega robota znaša [Y[i]]. To pomeni, da lahko nese poljubno igračo z velikostjo, strogo manjšo od [Y[i]]. Teža igrače ni pomembna.

Vsak Maritin robot pospravi po eno igračo v eni minuti. Različni roboti lahko hkrati pospravljajo različne igrače.

Tvoja naloga je ugotoviti, ali lahko Maritini roboti pospravijo vse igrače. Če je to mogoče, moraš ugotoviti še najkrajši čas, v katerem lahko opravijo svoje delo.

Primera

Za prvi primer predpostavimo, da ima Marita tri (A = 3) šibke robote z nosilnostmi (X = [6, 2, 9], dva (B = 2) mala robota z velikostnima omejitvama (Y = [4, 7]) in (T = 10) igrač s sledečimi podatki:

Številka igrače	0	1	2	3	4	5	6	7	8	9
Teža igrače	4	8	2	7	1	5	3	8	7	10
Velikost igrače	6	5	3	9	8	1	3	7	6	5

Najkrajši čas, v katerem lahko roboti pospravijo vse igrače, znaša 3 minute:

	Šibki robot 0	Šibki robot 1	Šibki robot 2	Mali robot 0	Mali robot 1
Prva minuta	igrača 0	igrača 4	igrača 1	igrača 6	igrača 2
Druga minuta	igrača 5		igrača 3		igrača 8
Tretja minuta			igrača 7		igrača 9

Za drugi primer predpostavimo, da ima Marita dva (A = 2) šibka robota z nosilnostima X = [2, 5], enega (B = 1) malega robota z velikostno omejitvijo Y = [2] in tri (T = 3) igrače s sledečimi podatki:

Številka igrače	0	1	2
Teža igrače	3	5	2
Velikost igrače	1	3	2

Nobeden od robotov ne more nesti igrače s številko 1 (s težo 5 in velikostjo 3), zato roboti ne morejo pospraviti vseh igrač.

Implementacija

Oddaj datoteko, v kateri je implementirana funkcija putaway () po sledečih navodilih:

Tvoja funkcija: putaway()

Opis

Ta funkcija naj izračuna najmanjše število minut, v katerih lahko roboti pospravijo vse igrače. Če tega ne morejo storiti, naj funkcija vrne -1.

Parametri

- A: Število šibkih robotov.
- B: Število malih robotov.
- T: Število igrač.
- X: Polje dolžine A, ki vsebuje nosilnosti posameznih šibkih robotov.
- Y: Polje dolžine B, ki vsebuje velikostne omejitve posameznih malih robotov.
- W: Polje dolžine T, ki vsebuje teže posameznih igrač.
- S: Polje dolžine T, ki vsebuje velikosti posameznih igrač.
- *Vrača*: Najmanjše število minut, v katerih lahko roboti pospravijo vse igrače, oziroma -1, če tega ne morejo storiti.

Vzorčni klic funkcije putaway()

Sledeči klic funkcije putaway ustreza prvemu primeru:

Parameter	Vrednost						
A	3						
В	2						
T	10						
х	[6, 2, 9]						
Y	[4, 7]						
W	[4, 8, 2, 7, 1, 5, 3, 8, 7, 10]						
S	[[6, 5, 3, 9, 8, 1, 3, 7, 6, 5]]						
Vrne	3						

Sledeči klic funkcije putaway ustreza drugemu primeru:

Parameter	Vrednost
A	2
В	1
T	3
x	[2, 5]
Y	[2]
W	[3, 5, 2]
S	[1, 3, 2]
Vrne	-1

Omejitve

• Časovna omejitev: 3 sekunde

• Prostorska omejitev: 64 MiB

■ 1 ≤ T ≤ 1 000 000

■ $0 \le A, B \le 50000 \text{ in } 1 \le A + B$

Podnaloge

Podnaloga	Točke	Dodatne vhodne omejitve
1	14	T = 2 in A + B = 2 (natanko dve igrači in dva robota)
2	14	B = 0 (vsi roboti so šibki)
3	25	T ≤ 50 in A + B ≤ 50
4	37	T ≤ 10 000 in A + B ≤ 1000
5	10	(Brez)

Preizkušanje

Vzorčni ocenjevalnik na tvojem računalniku bere vhod iz datoteke robots.in, ki mora biti sledeče oblike:

```
vrstica 1: A B T
vrstica 2: X[0] ... X[A-1]
vrstica 3: Y[0] ... Y[B-1]
naslednjih T vrstic: W[i] S[i]
```

Prvemu primeru ustreza datoteka sledeče oblike:

```
3 2 10
6 2 9
4 7
4 6
8 5
2 3
7 9
1 8
5 1
3 3
8 7
7 6
10 5
```

Če je A = 0 ali B = 0, potem je pripadajoča vrstica (vrstica 2 ali vrstica 3) prazna.

Jezikovne opombe

```
C/C++ Potrebuješ #include "robots.h".

Pascal Definiraj unit Robots. Oštevilčenje vseh polj se prične z 0 in ne z 1.
```

Za primere si oglej predloge rešitev na tvojem računalniku.