1	What	is claimed is:
2		
3	1.	An electrical semiconductor device comprising:
4		a substrate of relatively high resistivity material of one conductivity type having opposing
5		first and second surfaces, the first surface being etched;
6		a layer of relatively low resistivity material of the one conductivity type and having one
7		surface substantially contiguous to the first surface of the substrate; and
8		an epitaxial region of relatively low resistivity material of a conductivity type opposite to
9		the one conductivity type and having one surface substantially contiguous to the
10		second surface of the substrate.
11		
12 <u>5</u>	2.	The device of claim 1 wherein the layer is diffused into the first surface of the substrate.
14U 15U	3.	The device of claim 1 wherein the layer is epitaxially grown onto the first surface of the substrate.
12 13 14 15 16 17 18 19 20 21	4.	The device of claim 1 wherein the epitaxial region includes a stress-relieving dopant.
19 20	5.	The device of claim 4 wherein the stress-relieving dopant is germanium.
21	6.	An electrical semiconductor device comprising:
22		an epitaxial layer of relatively high resistivity material of one conductivity type and
23		having opposing first and second surfaces;
24		a substrate of relatively low resistivity material of a conductivity type opposite to the one
25		conductivity type and having a surface substantially contiguous to the first surface
26		of the epitaxial layer; and
27		a dopant region of relatively low resistivity material of the one conductivity type having a
28 29		surface substantially contiguous to the second surface of the epitaxial layer.
30	7.	The device of claim 6 wherein the second surface is etched, and the dopant region is
31		diffused into the second surface of the epitaxial layer.

i		
2	8.	The device of claim 6 wherein the second surface is etched, and the dopant region is
3		epitaxially grown onto the second surface of the epitaxial layer.
4		
5	9.	The device of claim 6 wherein a silicon oxide mask is applied to the first surface of the
6		substrate and the layer is diffused through the silicon oxide mask and into the second
7		surface of the substrate.
8		
9	10.	The device of claim 6 wherein the epitaxial region includes a stress-relieving dopant.
10		
11	11.	The device of claim 10 wherein the stress-relieving dopant is germanium.
12=		
13	12.	An electrical semiconductor device comprising:
14		an epitaxial layer of relatively high resistivity material of one conductivity type and
15		having opposing first and second surfaces, the epitaxial layer further having a
16		dopant material permeated throughout the layer;
17		a substrate of relatively low resistivity material of a conductivity type opposite to the one
13 14 15 16 17 18 19 20 20 18 19 19 19 19 19 19 19 19 19 19 19 19 19		conductivity type and having a surface substantially contiguous to the first surface
19		of the epitaxial layer; and
20		a region of relatively low resistivity material of the one conductivity type having a
21		surface substantially contiguous to the second surface of the epitaxial layer.
22		
23	13.	The device of claim 12 wherein the dopant is a stress-relieving dopant.
24		
25	14.	The device of claim 13 wherein the stress-relieving dopant is germanium.
26		
27	15.	The device of claim 12 wherein a silicon oxide mask is applied to the second surface of
28		the epitaxial layer and the region is diffused through the silicon oxide mask and into the
29		second surface of the epitaxial layer.
30		

A method for fabricating an electrical semiconductor device comprising:

KC-752801-1 9

31

16.

1		selecting a substrate of relatively low conductive material of one conductivity type, the
2		substrate having opposing first and second surfaces;
3		etching the first surface of the substrate;
4		diffusing a region of high conductivity material of the one conductivity type into the first
5		surface of the substrate; and
6		growing an epitaxial layer of high conductivity material onto the second surface of the
7		substrate, the epitaxial layer having a conductivity type opposite to the one
8		conductivity type.
9		
10	17.	A method for fabricating an electrical semiconductor device comprising:
11		preparing a substrate of relatively low conductivity material of one conductivity type, the
12=		substrate having opposing first and second surfaces;
13		etching the first surface of the substrate;
14		growing a first epitaxial layer of high conductivity material of the one conductivity type
1 5		onto the first surface of the substrate; and
16		growing a second epitaxial layer of high conductivity material onto the second surface of
12 13 14 15 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20		the substrate, the second epitaxial layer having a conductivity type opposite to the
18		one conductivity type.
19		
	18.	A method for fabricating an electrical semiconductor device comprising:
21		selecting a substrate of relatively high conductivity material of one conductivity type, the
22		substrate having a first surface;
23		growing an epitaxial layer onto the first surface of the substrate, the epitaxial layer having
24		opposing first and second surfaces, with the first epitaxial surface being
25		substantially contiguous to the first surface of the substrate, and being of a low
26		conductivity material of a conductivity type opposite to the one conductivity type;
27		introducing a dopant material to the epitaxial layer;
28		applying a silicon oxide layer to the second epitaxial surface;
29		creating a silicon oxide mask by etching portions of the silicon oxide layer to expose
30		portions of the second epitaxial surface; and

KC-752801-1 10

1		diffusing a high conductivity layer through the mask and into the second epitaxial layer,
2		the diffused layer being of a conductivity type opposite to the one conductivity
3		type
4		
5	19.	The device of claim 18 wherein the dopant material is a stress-relieving dopant material.
6		
7	20.	The device of claim 18 wherein the stress-relieving dopant material is germanium.
8		
9	21.	An electrical semiconductor device comprising:
10		a first layer of relatively high resistivity material of one conductivity type having
11		opposing first and second surfaces;
12		a second layer of relatively low resistivity material of a conductivity type opposite to the
		one conductivity type and having one surface substantially contiguous to the first
1 4 .		surface of the substrate;
15		a region of relatively low resistivity material of the one conductivity type and having one
1 6		surface substantially contiguous to the second surface of the substrate; and
17		a substantially centrally located well formed in the first layer such that the distance
18		between the region and the second layer is reduced at the location of the well.

KC-752801-1 11