- 1 The energy of a continuous-time signal x(t) is defined as $\int_{-\infty}^{\infty} |x(t)|^2 dt$.
 - (a) Show that in general, $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)Y^*(\omega)d\omega$.
 - (b) From this, show that the energy of $X(\omega)$ is 2π times the energy of x(t): $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega.$
 - (c) Similarly prove the following. For the continuous time Fourier Series (CTFS): $\frac{1}{T}\int_T |x(t)|^2 = \sum_k |x_k|^2$. For the discrete Fourier Transform (DFT/DTFS): $\frac{1}{N}\sum_{n=0}^{N-1}|x[n]|^2 = \sum_{k=0}^{N-1}|X[k]|^2$. And, finally, for the discrete time Fourier Transform, (DTFT): $\sum_n |x[n]|^2 = \frac{1}{2\pi}\int_{2\pi}|X\Omega|^2$.
- 2 The following are the modulation property of the CTFT and the DTFT repectively. Prove them.

$$x(t)y(t) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta) \star Y(\omega - \theta) d\theta; \qquad x[n]y[n] \leftrightarrow \frac{1}{2\pi} \oint_{2\pi} X(\Theta) Y(\Omega - \Theta) d\Theta$$

- A system with zero initial conditions satisfies the difference equation $y[n] = x[n] \alpha y[n-1]$. If $x[n] \leftrightarrow X(\Omega)$ is applied to it as input, find $Y(\Omega)$ in terms of $X(\Omega)$. Find also the sufficient conditions under which $Y(\Omega)$ will exist. -
- 4 Consider the DFT X[k] of an N-length signal x[n]. Now treat X[n] as a time sequence y[n] and again obtain its DFT Y[k]. Compare x[n] and Y[n]. -
- - (B) Find the DTFT of the following: (a) $x[n] = (-1)^n$; (b) $x[n] = 1 + (-1)^n$; (c) $x[n] = j^n$; (d) $x[n] = \dots, 0, 1, 0, \dots = \delta[n]$.
- 6 If $x[n] \leftrightarrow X(\Omega)$, find the DTFT of the following signals in terms of $X(\Omega)$.
 - (a) ..., $0, x[-2], 0, x[0], 0, x[2], \ldots$, odd members replaced by zero.
 - (b) $\dots, 0, x[-1], 0, x[1], 0, \dots$ even members replaced by zero.
 - (c) ..., -x[-3], x[-2], -x[-1], x[0], -x[1], x[2]..., odd members inverted.
 - (d) ..., x[-3], -x[-2], x[-1], -x[0], x[1], -x[2]..., even members inverted.
- 7 Consider the N-length sequence x[n] and its 2N-length extension x'[n] obtained by padding x[n] with N consecutive zeros at the end. Let their respective DFTs of lengths N and 2N be X[k]; $0 \le k < N-1$ and X'[k]; $0 \le k < 2N-1$. Show that every member of X[k] is to be found at a specific place in X'[k] and find its exact location. As to the remaining N 'new' members in X'[k], show that their computation can be economized in certain ways, instead of merely applying direct approach through the formula.