CLAIM AMENDMENTS

1	 (currently amended) A chemical sensor having
2	<pre>comprising:</pre>
3	a substrate;
4	a first metallization plane arranged on [[a]] the
5	substrate; (1) and in which
6	an electrode structure (IDT) is formed in the first
7	metallization plane,
8	a passivation layer [[(6)]] applied to the first
9	metallization plane and structured formed with contact holes,
10	[[and]]
11	a <pre>chemical-sensitive ceramic layer [[(9)]] on the</pre>
12	passivation layer [[(6)]] and in the contact holes and capable of
13	changing electrical properties when contacted by predetermined
14	chemicals; and (7), characterized in that
15	a bond-promoting layer (8) is provided which is
16	configured as a second metallization plane and is located between
17	the passivation layer [[(6)]] and the ceramic layer [[(9)]].
1	2. (currently amended) The chemical sensor according to
2	claim 1 characterized in that wherein the second metallization
3	plane is so applied that it comes to lie in the contact holes
4	[[(7)]] upon the first metallization plane.

1

2

3

4

5

6

7

- 3. (currently amended) The chemical sensor according to claim 1, characterized in that a further comprising

 another passivation layer (10) is located between the bond-promoting layer 8 and the ceramic layer [[(9)]] and so structured that the [[body]] bond-promoting layer [[(8)]] is partially passivated.
- 4. (currently amended) The chemical sensor according to claim 1 characterized in that wherein two coplanar electrodes are formed in the electrode structure [[(IDT)]] of the first metallization plane , two coplanar electrodes (IDT1, IDT2) are formed by structuring and the second metallization plane does not lie at a defined electrical potential.
 - 5. (currently amended) The chemical sensor according to claim 1 characterized in that wherein the electrode structure [[(IDT)]] of the first metallization plane forms a first electrode [[(IDT1)]] and the second metallization plane is configured as a second electrode [[(IDT2)]] and lies at a defined electrical potential so that the sensitive ceramic layer [[(9)]] is provided with a vertical electrode.

1

2

3

- 6. (currently amended) The chemical sensor according to claim 5 1 characterized in that wherein the first and second electrodes [[(IDT 1, IDT 2)]] are configured as interdigitating electrodes.
- 7. (currently amended) The chemical sensor according to claim 1 characterized in that wherein a heating structure and a temperature-measuring structure are formed in the first metallization plane [[,]] in addition to the electrode structure (IDT) a heating structure (4) and a temperature measuring structure (5) are formed.
- 8. (currently amended) The chemical sensor according to claim 7 1 characterized in that wherein the structures [[(4, 5, IDT)]] of the <u>first</u> metallization <u>plane</u> are formed on the front side of an Si-substrate [[(1)]] which has a membrane [[(3)]].
- 9. (currently amended) The chemical sensor according to claim 1 characterized in that wherein the material for the second metallization plane is Au, Cr/Au, Pt, Pd, W or Sn.
 - 10. (currently amended) The chemical sensor according to claim 1 characterized in that wherein the application of the sensitive ceramic layer is effected by silk screening, dispenser application or an ink jet process.