King Saud University

College of Science

Department of Mathematics

Exercises 151 Math

(3,3) Methods of Proof

"Mathematical Induction"

(STRONG INDUCTION)

Malek Zein AL-Abidin

1442ه 2021

Exercises

1. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 3$$
, $a_2 = 6$, $a_n = a_{n-1} + a_{n-2}$ (*) $\forall n \ge 3$

Prove that $3 \mid a_n \text{ for all positive integers } n$, $\forall n \geq 1$

Solution: Let P(n) be the proposition, P(n): $3|a_n$, $\Rightarrow a_n = 3c : c \in \mathbb{N}$

BASIS STEP: When
$$n=1 \Rightarrow 3| a_1: a_1=3=3(1) \Rightarrow : P(1)$$
 is true

When
$$n = (2) \Rightarrow 3 \mid a_2 : a_2 = 6 = 3(2) \Rightarrow \therefore P(2)$$
 is true.

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$a_{k+1} = 3c \Rightarrow 3 \mid a_{k+1} \pmod{\text{our goal}}$$
?

$$a_{k+1}=3c \Rightarrow 3|a_{k+1} \text{ (our goal) ??}$$
 from (*) $\Rightarrow a_{k+1}=a_k+a_{k-1} \text{ (***)}$

P(k) & P(k-1) both are true, (from inductive hypothesis **) \Rightarrow

from
$$P(k) \Rightarrow 3 \mid a_k \Rightarrow a_k = 3c_1 : c_1 \in \mathbb{N}$$

from
$$P(k-1) \Rightarrow 3 | a_{k-1} \Rightarrow a_{k-1} = 3c_2 : c_2 \in \mathbb{N}$$

$$a_{k+1} = a_k + a_{k-1} = 3c_1 + 3c_2 = 3(c_1 + c_2) = 3c$$

: $c = (c_1 + c_2) \in \mathbb{N}$

$$\therefore a_{k+1} = 3c \implies 3|a_{k+1} \implies P(k+1) \quad \text{is true . } \#$$

$$a_1=8$$
 , $a_2=4$, $a_n=a_{n-1}+\ a_{n-2}$: $\forall n\geq 3$

Prove that a_n is even for $\forall n \geq 1$.

Solution:

$$a_0=1$$
 , $a_1=2$, $a_n=4a_{n-1}-3a_{n-2}$ (*) $: \forall n\geq 2$
 Prove that $a_n=3^n-1$ for all integers $n. \ \forall n\geq 0$

Solution:

Let
$$P(n)$$
:

BASIS STEP: When
$$n = 0 \implies$$
When $n = (1) \implies$

<u>INDUCTIVE STEP</u>: Let $k \ge 1$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from~(*)~\Rightarrow$$

P(k) & P(k-1) both are true, (from inductive hypothesis **) ⇒ from P(k) ⇒

from
$$P(k-1) \Rightarrow$$

$$a_0 = 9$$
, $a_1 = 15$, $a_2 = 3$ $a_n = \frac{a_{n-1} a_{n-2} a_{n-3}}{9} + 6$: $\forall n \ge 3$ (*)

Prove that $3|a_n|$ for all integers n. $\forall n \geq 0$

Solution:

Let P(n):

BASIS STEP: When
$$n = 0 \implies$$

When
$$n = 1 \Rightarrow$$

When
$$n = (2) \Rightarrow$$

<u>INDUCTIVE STEP</u>: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from (*) \Rightarrow$$

$$P(k)$$
, $P(k-1)$ & $P(k-2)$ all are true, (from inductive hypothesis **)

from
$$P(k) \Rightarrow$$

from
$$P(k-1) \Rightarrow$$

from
$$P(k-2) \Rightarrow$$

$$u_1 = 2$$
, $u_2 = 4$, $u_n = \frac{2u_{n-1} + u_{n-2} + 8}{3}$: $\forall n \ge 3$ (*)

Prove that $u_n = 2n$ for all positive integers n. $\forall n \ge 1$ Solution:

Let
$$P(n)$$
:

BASIS STEP: When
$$n = 1 \implies$$
 When $n = (2) \implies$

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from (*) \Rightarrow$$

∴ P(k) & P(k-1) both are true, (from inductive hypothesis **) \Rightarrow from $P(k) \Rightarrow$ from $P(k-1) \Rightarrow$

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2} + 2a_{n-3} : \forall n \ge 3$ (*)
Prove that $a_n \le 3^n$ for all integers $n \ge 0$.

Solution:

Let P(n):

BASIS STEP: When
$$n = 0 \implies$$
When $n = 1 \implies$
When $n = (2) \implies$

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from (*) \Rightarrow$$

$$P(k)$$
, $P(k-1)$ & $P(k-2)$ all are true, (from inductive hypothesis **) ⇒ from $P(k)$ ⇒ from $P(k-1)$ ⇒

from $P(k-2) \Rightarrow$

$$a_0=1\ ,\quad a_1=2\quad ,\quad a_n=4a_{n-1}-4a_{n-2}\quad : \forall n\geq 2\quad (*)$$
 Prove that
$$a_n=2^n \qquad \text{for all integers } n\geq 0\ .$$

Solution:

Let
$$P(n)$$
:

BASIS STEP: When
$$n = 0 \implies$$
When $n = (1) \implies$

<u>INDUCTIVE STEP</u>: Let $k \ge 1$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)
Our goal is to show that $P(k+1)$ is also true ?

$$from (*) \Rightarrow$$

$$P(k)$$
 & $P(k-1)$ both are true, (from inductive hypothesis **) ⇒ from $P(k)$ ⇒ from $P(k-1)$ ⇒

$$a_1 = 1$$
, $a_2 = 5$, $a_{n+1} = 2a_n + 3 a_{n-1} : \forall n \ge 2$ (*)

Prove that $3^n \le a_{n+1} \le 2 \cdot 3^n$ for all positive integers n.

Solution:

Let
$$P(n)$$
:

BASIS STEP: When
$$n = 1 \implies$$

When
$$n = (2) \Rightarrow$$

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), \dots, P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from (*) \Rightarrow$$

P(k) & P(k-1) both are true, (from inductive hypothesis **) \Rightarrow

from
$$P(k) \Rightarrow$$

from
$$P(k-1) \Rightarrow$$

$$a_0=1$$
 , $a_1=1$, $a_n=2a_{n-1}+a_{n-2}: \forall n\geq 2$ (*) Prove that a_n is odd for all integers $n\geq 0$

Solution:

Let
$$P(n)$$
:

BASIS STEP: When
$$n = 0 \implies$$

When $n = (1) \implies$

INDUCTIVE STEP: Let $k \ge 1$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$from \ (*) \ \Rightarrow$$

P(k) & P(k-1) both are true, (from inductive hypothesis **) \Rightarrow

from
$$P(k) \Rightarrow$$

from
$$P(k-1) \Rightarrow$$