CS492 Assignment 2

With demand paging, the best algorithm was least recently used, although it was very similar to the clock algorithm. This is inline with my expectations as both clock and LRU evict pages that are not referenced often, which is a better metric than when the page is loaded into memory. It seems to make sense that larger page sizes lead to less page faults. When programs access a certain memory location often, they will more likely access other locations close to it. With pre-paging, I differentiated between page faults and page swaps. When the extra page was loaded because of pre-paging, I counted it as a page swap but not a page fault. In terms of page faults, pre-paging resulted in much better performance. However there was not a direct trend between page-size and page-faults. The best performance was between 2 and 8 memory locations per page. I would have expected this to be similar to demand paging.

The page replacement algorithms themselves were rather simple to implement. FIFO and LRU were just about the same except that LRU compares last access time instead of load time. Clock was a bit simpler to implement as I didn't have to loop through all of the memory, just wind the clock until an unreferenced page is found.

A completely random access memory trace would probably result in more page faults as the locality would not be preserved. Larger page sizes and pre-paging would not help to reduce page faults.

Alg	Page Size	Prepaging	Page Swaps	Page Faults
Clock	1	0	185409	185409
Clock	2	0	138421	138421
Clock	4	0	114990	114990
Clock	8	0	103636	103636
Clock	16	0	103498	103498
FIFO	1	0	186783	186783
FIFO	2	0	146731	146731
FIFO	4	0	127235	127235
FIFO	8	0	123205	123205
FIFO	16	0	134351	134351
LRU	1	0	185230	185230
LRU	2	0	138364	138364
LRU	4	0	114959	114959
LRU	8	0	103516	103516
LRU	16	0	97977	97977

Alg	Page Size	Prepaging	Page Swaps	Page Faults
Clock	1	1	199794	99918
Clock	2	1	188980	94635
Clock	4	1	186391	93447
Clock	8	1	186352	93671
Clock	16	1	258765	131128
FIFO	1	1	201741	100893
FIFO	2	1	198391	99349
FIFO	4	1	212114	106338
FIFO	8	1	249622	125480
FIFO	16	1	375222	189908
LRU	1	1	199838	99943
LRU	2	1	191138	95720
LRU	4	1	193074	96792
LRU	8	1	191483	96239
LRU	16	1	188875	95787

