NOM: Groupe: Groupe:

Examen Electronique

Outils d'analyse de circuits : Définitions, Lois et Théorèmes [SI-S1-ELEC-1-OAC]

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. JUSTIFIEZ VOS REPONSES. Si vous manquez de place, vous pouvez utiliser le verso des pages.

<u>Exercice 1.</u> Questions de cours (2,5 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- Q1. Qu'est-ce qu'un courant électrique?
 - a- Une différence de potentiels
- c- Un déplacement de charges électriques
- b- Un déplacement ordonné de charges électriques
- d- Une dissipation de chaleur
- Q2. Une branche dans un circuit électrique est :
 - a- Une portion de circuit comprenant un seul générateur
 - b- Un fil reliant deux dipôles
 - c- Une portion de circuit comprenant une seule résistance
 - d- Une portion d'un circuit située entre deux nœuds consécutifs
- Q3. Quelle est l'unité d'une tension électrique ?
 - a- Des Watts (W)
- c- Des Ohms (Ω)
- b- Des Ampères (A)
- d- Des Ohms fois des Ampères (Ω, A)

- Q4. L'intensité du courant qui entre dans un dipôle passif est supérieure à l'intensité de celui qui en ressort.
 - a- VRAI

- b- FAUX
- Q5. Soit le circuit ci-contre. Choisir l'affirmation correcte :

b-
$$R_2$$
 et R_3 sont en parallèle

c-
$$R_3$$
 et R_7 sont en parallèle

d- $R_{\rm 5}$ et $R_{\rm 6}$ sont en parallèle

Exercice 2. Lois fondamentales

(6,5 points)

Soit le circuit ci-contre.

On donne:

$$E=6V$$
 , $U_{AB}=V_A-V_B=4V$ $I_1=10mA$, $I_3=2mA$, $I_4=7mA$ $R_2=2k\Omega$.

- 1. Dans ce circuit, combien y-a-t-il de :
 - a. Nœuds ?
- b. Branches ?
- c. Mailles ?
- 2. Flécher les différentes tensions sur le schéma en respectant les conventions.

On notera U_i , la tension aux bornes de la résistance R_i (c'est-à-dire $U_1=$ tension aux bornes de R_1 , $U_2=$ tension aux bornes de $R_2...$)

3. Quelle est la valeur de la résistance R_3 ?

EPIT	A / InfoS1	Octobre 2024
	4. Calculer l'intensité du courant qui t aux bornes de ${\cal R}_2$.	raverse R_2 . En déduire la tension
	5. Donner l'expression de la tension ${\it U}$ valeur.	$_4$ aux bornes de R_4 puis donner sa

Exercice 3. Equivalences Thévenin/Norton (11 points)

1. Soient les 2 circuits ci-dessous.

a. Déterminer les expressions de E_{th} et de R_{th} - en justifiant vos réponses par des schémas intermédiaires - pour que les 2 circuits ci-dessus soient équivalents.

EPITA / InfoS1 Octobre 2024

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton. Justifiez votre réponse.

