23.4 氢原子的量子

电子质量m,电量-e,与核距离为r

势能
$$U(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

三维定态薛定谔方程

$$\left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r} \right] \psi = E\psi$$

球坐标下的薛定谔方程

作变换 $\psi(x,y,z) \rightarrow \psi(r,\theta,\varphi)$ 有

$$\frac{1}{r^{2}} \left(\frac{\partial}{\partial r} r^{2} \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}} + \frac{2m}{\hbar^{2}} \left(E + \frac{e^{2}}{4\pi \varepsilon_{0} r} \right) \psi = 0$$

分离变量法, 令 $\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$

$$\frac{d^2\Phi}{d\varphi^2} + m_l^2\Phi = 0$$

$$\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta \frac{d\Theta}{d\theta}) + [l(l+1) - \frac{m_l^2}{\sin^2\theta}]\Theta = 0$$

$$\frac{1}{r^2} \frac{d}{dr} (r^2 \frac{dR}{dr}) + [\frac{2m}{\hbar^2} (E + \frac{e^2}{4\pi\epsilon_0 r}) - \frac{l(l+1)}{r^2}]R = 0$$

一维定态问题
$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x)$$
 一维无限深势阱

三维定态问题
$$\psi(r,\theta,\varphi) = \psi_{n,l,m_l}(r,\theta,\varphi)$$
 氢原子

量子数	名称	取值	物理意义					
n	主量子数	1,2,3,	能量是量子化 $E_n = -\frac{1}{n^2} \frac{me^4}{8\varepsilon_0^2 h^2} = -\frac{13.6eV}{n^2}$					
1	轨道 量子数	0,1,2,, <i>n</i> -1	"轨道"角动量是量子化 $L = \sqrt{l(l+1)}\hbar$					
m_l	磁量子数	$0, \pm 1, \pm 2, \dots, \pm l$	角动量的空间取向是量子化 $L_z = m_l \hbar$,					

角动量的量子化

角动量L在Z轴的投影 L_Z 只有 2l+1

每个角动量与Z轴的夹角

$$\cos \theta = \frac{L_Z}{L} = \frac{m_l \hbar}{\sqrt{l(l+1)}\hbar} = \frac{m_l}{\sqrt{l(l+1)}}$$

$$\theta = \arccos \frac{m_l}{\sqrt{l(l+1)}}$$

$$L = \sqrt{l(l+1)}\hbar$$

$$L_z = m_l \hbar, \quad m_l = 0, \pm 1, ..., \pm l$$

角动量的空间取 向是量子化的

假设氢原子处于l=3状态,求轨道角动量L及其与z轴方向的夹角 θ 和投影值 L_z 。

 $\theta = 30.0^{\circ}, 54.8^{\circ}, 72.3^{\circ}, 90.0^{\circ}, 107^{\circ}, 125^{\circ}, 150^{\circ}$

量子数的思考

波尔理论

思考:

氢原子的势场是 球对称的,为什 么电子轨道只能 在平面上?

 \square 当l=0, $m_l=0$ 时,电子分布呈球对称,角动量为零

n越大, 电子向 外分布的概率越 大, 能级越高。

 (n,l,m_l)

能级简并

口当1/40时,电子分布不再呈球对称,角动量不为零。

(2,1,-1)+(2,1,0)+(2,1,1)呈球对称,在没有外磁场下,无法区分这三个定态,它们对应同样的能级——能级简并。

塞曼效应

原子的光谱线在外磁场中出现分裂的现象。

电子环电流: $I = Q/t = ev/2\pi r$

轨道磁矩:
$$\mu = IS = \frac{ev}{2\pi r} \pi r^2 = \frac{evr}{2}$$

电子的角动量: L = mvr

轨道磁矩矢量式: $\bar{\mu} = -\frac{e}{2m}\bar{L}$

电子磁矩与磁场的相互作用能:

$$U = -\vec{\mu} \cdot \vec{B} = -\mu_z B = m_l \frac{e\hbar}{2m} B$$

 $=-\frac{e}{2m}m_l\hbar$

电子磁矩与磁场的相互作用能: $U_{m_l} = m_l \frac{e\hbar}{2m} B$

磁场中氢原子能量: $E_{nm_l} = E_n + U_{m_l}$

$$= -\frac{1}{n^2} \frac{me^4}{8\varepsilon_0^2 h^2} + m_l \frac{e\hbar}{2m} B$$

在外磁场作用下,原来的一个能 级将分裂成2/+1个能级。

辐射光谱频率:

$$v = \frac{E_{n'm'_{l}} - E_{nm_{l}}}{h} = \frac{E_{n'} - E_{n}}{h} + \frac{U_{m'_{l}} - U_{m_{l}}}{h}$$

$$= v_{0} + \Delta m_{l} \frac{eB}{4\pi m}$$

选择定则: $\Delta m_l = 0,\pm 1$

$$1 \frac{1}{l=0} 0 - -13.6 \text{eV}$$

波尔 理论

思考:

氢原子细窄电子 轨道模型对应是 怎样的量子数?

细窄电子轨道 \Rightarrow 角动量最大 \Rightarrow /最大 $L = \sqrt{l(l+1)}\hbar$

□电子处于半径为 r~r+d r 的球壳内的概率

$$dW(r,\theta,\varphi) = \left| \psi(r,\theta,\varphi) \right|^2 \frac{dV}{dV} = \left| R_{n,l}(r) \right|^2 r^2 dr$$

径向概率密度:
$$P_{n,l}(r) = \frac{dW}{dr} = |R_{n,l}(r)|^2 r^2$$

径向概率密度 $P_{n,l}(r) = \left| R_{n,l}(r) \right|^2 r^2$

$$a_0 = \frac{h^2 \varepsilon_0}{\pi m e^2} = 5.29 \times 10^{-11} m$$
 玻尔半径

$$\frac{l=0}{r/a_0}$$
 $R_{10}(r) = \left(\frac{1}{a_0}\right)^{3/2} 2e^{-\frac{1}{a_0}r}$ 峰值位置: $r=a_0$

$$R_{21}(r) = \left(\frac{1}{2a_0}\right)^{3/2} \frac{1}{a_0\sqrt{3}} r e^{-\frac{1}{2a_0}r}$$

峰值位置: $r = 4a_0$

$$n = 3$$

$$l = 2 r/a_0$$

$$25$$

 $l=2 r/a_0$ 峰值位置: $r=9a_0$

玻尔的氢原子轨道半径: 李 南程 工大 空

$$r = n^2 a_0$$

道上出现的概率最大。

回归经典

结论:波尔理论不同定态n的电子轨道实际上是量子态(n, l=n-1)概率密度最大的地方。当n很大,l取n-1时, $L = \sqrt{l(l+1)}\hbar \approx n\hbar$,角动量回到波尔模型。

- □为什么波尔理论能得到正确的能级? 能级简并
- □为什么波尔理论对多电子原子不成立? 电子耦合

未完的故事

思考: 三个量子数 (n, l, m_l) 就可以完整地描述电子的状态吗?

$$U = -\vec{\mu} \cdot \vec{B} = -\mu_z B$$

$$F_Z = -\frac{dU}{dz} = \mu_Z \cdot \frac{\partial B}{\partial z}$$

 无磁场

 有磁场

斯特恩-盖拉赫实验

$$\mu_z = -\frac{e}{2m}L_z = -\frac{e}{2m}m_l\hbar$$

现象:基态银原子束经过非均匀磁场后分裂 成两束,在底片上留下两条感光条纹。

2*l*+1个

电子的自旋

1927年费浦斯-泰勒实验:

基态的氢原子 (l=0) 现象: 氢原子束分裂为两束

猜测:

- □电子有除了轨道磁矩之外的一种未知磁矩。
- □该磁矩在外磁场方向只有两种取向。

1925年,乌伦贝克和哥德斯密特提出电子自旋假设:电子除了具有轨道角动量外还具有内禀角动量。这是由于电子绕自身轴旋转所引起的,故称为自旋角动量,简称自旋。

电子的自旋

自旋量子数

$$s = \frac{1}{2}$$

电子自旋角动量

$$S = \sqrt{s(s+1)}\hbar = \frac{\sqrt{3}}{2}\hbar$$

自旋角动量在外 磁场方的分量

原子在z方向(磁场

方向) 所受到的力:

$$S_z = m_s \hbar = \pm \frac{1}{2} \hbar$$

自旋磁矩: $\bar{\mu}_S = -\frac{e}{\bar{S}}$

$F_{z} = \vec{\mu}_{S} \cdot \frac{\partial \vec{B}}{\partial z} = \mu_{Sz} \cdot \frac{\partial B}{\partial z} = \pm \frac{e\hbar}{2m} \frac{\partial B}{\partial z}$

自旋磁量子数

$$m_s = \pm 1/2$$

四个量子数

电子的运动状态由4个量子数决定

- 口主量子数 n (n = 1, 2, 3, ...) 用于确定原子中电子能量的主要部分;
- 口轨道量子数l(l=0, 1, 2, ..., n-1),用于确定电子的轨道角动量;
- 口轨道磁量子数 m_l ($m_l = 0$, ±1, ±2, ..., ±l),用于确定轨道角动量的空间取向。
- 口自旋磁量子数 m_s ($m_s = \pm 1/2$),用于确定自旋角动量的空间取向。

罗电子原子的壳层结构模型

主壳层	具有相同主量子数n的电子构成一个	个壳层
	/	, , , , , , , ,

n	1	2	3	4	5	6	7
	K	L	M	N	O	P	Q

次壳层

l	0	1	2	3	4	5	6
	S	p	d	f	g	h	i

□泡利不相容原理

在一个原子中不可能有两个或两个以上的电子处于相同的状态,即不可能具有相同的四个量子数。

给定的主量子数(王壳层)n

轨道量子数 l 取值: 0, 1, 2, ..., n-1, 共 n个;

磁量子数 m_l 取值: 0, ±1,±2,...,±l,共 2l+1个;

自旋磁量子数 m_s 取值: 1/2, -1/2, 共2个。

最多容纳电子数:
$$Z_n = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$

$$m = 1$$
 $l = 0$ $m_l = 0$ $m_s = 1/2$, $-1/2$

K壳层——s次壳层: 两个电子 $1s^2$ $(1,0,0,\frac{1}{2})$ 和 $(1,0,0,-\frac{1}{2})$

$$m = 2$$
, $l = 0 \longrightarrow m_l = 0$ $m_s = 1/2$, $-1/2$ $2s^2$

$$l=1 \longrightarrow m_l=-1, 0, 1, m_s=1/2, -1/2$$

L壳层 (n=2) 共有八个电子。

▶原子壳层和次壳层上最多可能容纳的电子数

1	0	1	2	3	4	5	6	7
n	S	p	d	f	g	h	i	\mathbb{Z}_n
1, K	2	_	1		_	_		2
2, L	2	6						8
3, M	2	6	10		_	_		18
4, N	2	6	10	14	_			32
5, O	2	6	10	14	18	_	_	50
6, P	2	6	10	14	18	22		72
7, Q	2	6	10	14	18	22	26	98

元素周期表

馬族	IA ₁				元	素	周	其	抈	表							N. Carlotte		电子层	0 族 电子数
1	1 H *** 1.008	II A	552	子序数 - 素名称	-92	U	元素符号 指放射性		<u>je elle</u>	金属	金 周		III A 13	IV A 14	V A 15	VI A 16	VII A 17	2 He 31 4.003	K	2
2	3 Li 俚 ^{2s¹}	4 Be 敏 2s ²	注	*的是一	— 铂 5f ² 6d ² 238.	78 — 指 相 报	可能的电 对原子质 为该放射	种元素半		过渡,	心素		5 B 側 2s ² 2p ¹ 10.81	6 C 颜 2s ² 2p ² 12 01	7 N 氮 2s ² 2p ³	8 O %, 2s ² 2p ⁴ 16,00	9 F 級 2s ² 2p ³ 19,00	10 Ne % 2s*2p* 20.18	L K	8 2
3	11 Na 納 3s ¹ 22.99	12 Mg 镁 3s ² 24.31	III B	IV B	VB 5	VIB 6	同位素的 VIIB 7	质量数) 8	VIII 9	10	Т В 11	II B 12	13 AI 留 3s ² 3p ¹ 26. 98	14 Si 5‡ 3s=3p ² 28, 09	15 P 構 3s-3p ³ 30. 97	16 S 硫 3s ³ 3p ³ 32-06	17 Cl (a) 3s/3p ³ 35, 45	18 Ar %, 3s/3p/ 39, 95	M L K	8 8 2
4	19 K 即 4s ¹ 39.10	20 Ca ¹ / _{4s} [‡] 40.08	21 Sc 抗 3d ¹ 4s ² 44.96	22 Ti 钛 3d ² 4s ² 47.87	23 V 机 3d ³ 4s ² 50.94	24 Cr 铬 3d'4s' 52.00	锯	26 Fe 铁 3d ⁶ 4s ² 55.85	27 Co 钻 3d'4s ² 58.93	28 Ni 100 3d*4s ² 58.69	29 Cu 铜 3d ¹¹ 4s ¹ 63.55	30 Zn \$\psi\psi\psi\psi\square 3d^04s^2 65.41	31 Ga 線 4s ² 4p ¹ 69.72	32 Ge 辖 4s ² 4p ² 72.64	33 As 6# 4s ² 4p ³ 74.92	34 Se 個 4s ³ 4p ³ 78,96	35 Br 淡 4si4p ⁹ 79.90	36 Kr 50 4s ² 4p ⁶ 83.80	N M L K	8 18 8 2
5	37 Rb 铷 5s ¹ 85.47	38 Sr 怎 5s ² 87.62	39 Y {Z 4d ¹ 5s ² 88.91	40 Zr 错 4d ² 5s ² 91.22	41 Nb 铌 4d ¹ 5s ¹ 92.91	钼	43 Te 锝 4d ⁵ 5s ² (98)	44 Ru #1 4d'5s' 101.1	45 Rh 程 4d*5s ¹ 102.9	46 Pd 但 4d ¹⁰ 106.4	47 Ag 银 4d ¹⁰ 5s ¹ 107.9	48 Cd 編 4d ¹¹ 5s ² 112.4	49 In 問 5s ² 5p ¹ 114.8	50 Sn \$\frac{43}{5s^25p^2} 118.7	51 Sb 锑 5s ² 5p ³ 121.8	52 Te 58 ³ 5p ³ 127.6	53 I 碘 5s ² 5p ⁴ 126.9	54 Xe fil 5s'5p' 1313	O M L K	8 18 18 8 2
6	55 Cs 铯 6s ¹ 132. 9	56 Ba fyl 6s ² 137. 3	57~71 La~Lu 镧 系	72 Hf 恰 5d ² 6s ² 178.5	73 Ta 但 5d ³ 6s ² 180.9	74 W 约 5d ⁴ 6s ² 183.8	75 Re 铼 5d ⁵ 6s ² 186.2	76 Os 银 5d ⁶ 6s ² 190.2	77 Ir 铱 5d ² 6s ² 192.2	78 Pt 铂 5d%s ¹ 195.1	79 Au 金 5d ¹⁰ 6s ¹ 197.0	80 Hg 表 5d ¹⁰ 6s ² 200,6	81 TI 管 6s ² 6p ³ 204.4	82 Pb 4[] 6s ² 6p ² 207.2	83 Bi ₩ 6s²6p² 209.0	84 Po 41- 68 ² 6p ⁴ (209)	85 At 版 68 ³ 6p ⁵ 1210)	86 Rn 6s ² 6p ⁴ (222)	P O N L K	8 18 32 18 8 2
7	87 Fr	88 Ra 部 7s²	89~103 Ac~Lr 锕系	104 Rf 指* (6d-7s-)	批*	镕*	铍*	108 Hs 儒*	109 Mt 使*	110 Uun 鍅*	轮*	112 Uub		•••	177	la si				·(e

鋼系	57 La 锏 5d ¹ 6s ² 138.9	58 Ce 铜 4f ¹ 5d ¹ 6s ² 140.1	59 Pr 错 4f ² 6s ² 140.9	60 Nd 钕 4f ⁶ 6s ² 144.2	61 Pm 4f ⁵ 6s ² (145)	62 Sm 4f'6s ² 150.4	63 Eu 销 4f'6s ² 152.0	64 Gd 4L 4F5d ¹ 6s ² 157.3	65 Tb 44 46'6s ² 158.9	66 Dy 簡 4f ⁿ 6s ² 162.5	67 Ho 铁 4f ² 6s ² 164.9	68 Er 14 46 ² 6s ² 167.3	69 Tm 铥 4f ³ 6s ³ 168.9	4f ¹ 6s ²	71 Lu 销 4P ^{45d⁴6s² 175.0}
铜瓦	89 Ac 101	針	锭	鈾	93 Np 镎 5f'6d'7s ²	報	95 Am 铜* 5f ⁻ 7s ²	Hi*	倍*	98 Cf 網* 5f ¹¹ 7s ²	99 Es 報* 5f**7s²	锁*	们*	102 No	103 Lr 物* (50年)7日

注:

相对原子质量录自2001年 国际原子量表,并全部收4位有 效数字。

王金龙制作

0026172220730164

外层电子的排布

 $3s^23p^5$ $3s^23p^6$

19 K	20 Ca	21 Sc	22 Ti
钾	何 482	領	钛
4s ⁴	40. 08	3d 4s 44.96	3d*4s* 47.87

4s¹

 $4s^2$ $3d^14s^2$ $3d^24s^2$

思考: 为什么电子先占据 4s 态,再占据 3d 态?

能量最小原理

在原子处于正常状态下,每个电子趋于占据最低的能级。

能级: •当1一定时,主量子数n越大,能级越高。

· 当n一定时,轨道量子数l越大,能级越高。

能级判断法则:

(n+0.71) 值较大者相应的能级较高。

例: 4s态
$$(n+0.7l)=4$$

3d态 $(n+0.7l)=3+0.7\times 2=4.4$

·结论: 电子首先占据 4s 态, 再占据 3d 态。

本章作业

新教材 268页	4	6	7	8	14	16	22
旧教材 290页	1	4	7	8	259页 25-21	13	23

注意

- □请同学们自觉完成,不用交。
- □熟悉考试大纲,完成往届考题。

