ξ . (10分) 设 ξ . ξ _n. $n=1,2,\ldots$ 是定义在概率空间 (Ω . \mathcal{F} . P) 上的随机变量, ξ 服从泊松分布 $P(\lambda)$ 面 ξ _n 服从 n- 電伯努利分布 $B(n,p_n)$ 。证则: 若 $\lim_{n\to\infty} \mathbf{E}\xi_n = \lambda$,则 $\xi_n \overset{\boldsymbol{\iota}}{=} \xi$ (依分布收敛)。

后明: $E_n = n_n \rightarrow \lambda \stackrel{?}{>} n \rightarrow \infty$.

电泊松定理和 $b(R; n, r_n) \rightarrow \frac{\lambda^k}{k!} e^{-\lambda}$ 载 $F_n(k) \rightarrow F_g(k)$ 战 $n \rightarrow \infty$.

图图, $S_n \stackrel{L}{\longrightarrow} g$.

四. (10分) 设随机变量 ξ 具 (连续的分布函数F(x)。证则: $\theta = F(\xi)$ 服从均匀分 $\pi U[0,1]$ 。

i を 定义 $F^{-1}(y) = \sup_{x \in F(x) < y}$ $\{0 < y\} = P\}$ $\{0$

· · b~ U[0.4].