

Data Models and Mathematical Foundations

Pooja T S

Computer Applications

Data Models and Mathematical Foundations

Logical Equivalence, Implication, Quantifiers

Pooja T S

Computer Applications

Database and its Applications Boolean Expressions - Introduction

- ► A **Boolean expression** is a logical statement that can have only two values:
 - True (T)
 - False (F)
- Propositions like "2+2=4" or "It is raining" can be represented as Boolean expressions.
- ► Logical connectives (AND, OR, NOT, etc.) combine these expressions to form compound statements.
- Truth tables are used to evaluate Boolean expressions under all possible truth values of their variables.

What is a Truth Table?

- A **truth table** is a tabular method used in logic to list all possible truth values of propositions and their combinations.
- Purpose:
 - Shows how compound statements behave under all conditions.
 - Helps determine whether a statement is always true, always false, or sometimes true.
- Key points:
 - Each proposition is either True (T) or False (F).
 - For n propositions, table has 2ⁿ rows.
 - Columns represent simple or compound statements.

Database and its Applications Logical Connectives

- Connectives combine propositions into compound statements.
- Common connectives:
 - Negation: $\neg P \rightarrow$ "not P"
 - Conjunction: P ∧ Q → "P and Q"
 - Disjunction: P ∨ Q → "P or Q"
 - Implication: $P \Rightarrow Q \rightarrow$ "If P then Q"
 - Biconditional: P ⇔ Q → "P if and only if Q"

Database and its Applications Steps to Build a Truth Table

- \triangleright Step 1: List the simple propositions (P, Q, R).
- Step 2: Write all possible combinations of truth values.
- Step 3: Add columns for compound expressions.
- Step 4: Fill values row by row using logic rules.
- Number of rows = 2^n for *n* propositions.

PES

Truth Tables - Basics

- Used to formally define logical connectives.
- \triangleright Example: Conjunction $(P \land Q)$

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Class Exercise - Truth Tables

- ► Task: Construct the truth tables for the following connectives:
 - Negation $(\neg P)$
 - Disjunction (P ∨ Q)
 - Implication $(P \Rightarrow Q)$
 - Biconditional (P ⇔ Q)
- ► Instructions:
 - Use two variables P and Q.
 - List all possible truth value combinations.
 - Fill in the results for each connective.
- Discussion:
 - Compare your tables with a partner.
 - Be prepared to explain why each row is true or false.

Database and its Applications Logical Equivalence - Definition

4□ > 4個 > 4 = > 4 = > = 9 < 0</p>

- Two formulas are **logically equivalent** if they have the same truth values under all interpretations.
- Notation: $P \equiv Q$
- **Example Laws:**
 - Commutativity: $P \lor Q \equiv Q \lor P$
 - Associativity: $(P \land Q) \land R \equiv P \land (Q \land R)$
 - De Morgan's: $\neg (P \land Q) \equiv \neg P \lor \neg Q$

Database and its Applications Logical Equivalence - Example Proof

- ▶ Verify: $\neg(P \lor Q) \equiv \neg P \land \neg Q$
- ► Truth Table:

Р	Q	$\neg (P \lor Q)$	¬P	$\neg P \land \neg Q$
Т	Т	F	F	F
Т	F	F	F	F
F	Т	F	Т	F
F	F	Т	Т	Т

ightharpoonup Columns match ightharpoonup formulas are equivalent.

Database and its Applications Logical Implication - Definition

- $ightharpoonup P \Rightarrow Q$ means: If P is true, then Q must also be true.
- Only false when P is true and Q is false.
- **Equivalent form:**

$$P \Rightarrow Q \equiv \neg P \lor Q$$

- Database example:
 - If a student is enrolled in DBMS, then that student must exist in Student table.

Database and its Applications Logical Implication - Truth Table

Р	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

▶ Note: Implication holds whenever P is false.

Quantifiers - Basics

- Predicate logic adds variables and quantifiers.
- Universal Quantifier (∀):
 - $\forall x \ P(x) \rightarrow$ "For all x, P(x) holds"
- Existential Quantifier (∃):
 - $\exists x \ P(x) \rightarrow$ "There exists some x such that P(x) holds"

Database and its Applications Quantifiers - Negation Laws

- ► Negating quantifiers changes their form:
 - $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$
 - $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$
- **Example:**
 - "Not all students passed DBMS"

 "There exists a student who did not pass DBMS."

Database and its Applications Quantifiers – Examples

Example 1 (Universal):

$$\forall x \; Student(x) \rightarrow Enrolled(x, DBMS)$$

Meaning: Every student is enrolled in DBMS.

Example 2 (Existential):

$$\exists x \; Enrolled(x, OS)$$

Meaning: At least one student is enrolled in OS.

Example 3 (Combined):

$$\forall c \exists p Teaches(p, c)$$

Meaning: Every course has at least one professor.

Database and its Applications Applications in Databases

- Logical Equivalence:
 - Used for query rewriting and optimization.
- Logical Implication:
 - Used in expressing dependencies and constraints.
- Quantifiers:
 - Map to SQL constructs:
 - ∃ → EXISTS
 - ∀ → expressed via NOT EXISTS

Database and its Applications Summary

- Logical Equivalence:
 - Two formulas always have same truth values.
- Logical Implication:
 - If P is true, then Q must also be true.
- Quantifiers:
 - ∀: property holds for all elements.
 - ∃: property holds for at least one element.
 - Negation rules switch quantifiers.
- ▶ All three are foundational for database queries and constraints.

Thank You

Pooja T S
Assistant Professor
Department of Computer Applications
poojats@pes.edu

080-26721983 Extn: 233