

# planetmath.org

Math for the people, by the people.

## sheaf of sections

Canonical name SheafOfSections
Date of creation 2013-03-22 15:46:36

Last modified on 2013-03-22 15:46:36

Owner guffin (12505) Last modified by guffin (12505)

Numerical id 7

Author guffin (12505)
Entry type Definition
Classification msc 55R25
Related topic VectorBundle
Defines Sheaf of Sections

#### 0.1 Presheaf Definition

Consider a rank r vector bundle  $E \to M$ , whose typical fibre is defined with respect to a field k. Let  $\{U_{\alpha}\}$  constitute a cover for M. Then, sections of the bundle over some  $U \subset M$  are defined as continuous functions  $U \to E$ , which commute with the natural projection map  $\pi: E \to M$ ;  $\pi \circ s = id_M$ . Denote the space of sections of the bundle over U to be  $\Gamma(U, E)$ . The space of sections is a vector space over the field k by defining addition and scalar multiplication pointwise: for  $s, t \in \Gamma(U, E)$ ,  $p \in U$  and  $a \in k$ 

$$(s+t)(p) \equiv s(p) + t(p) \qquad (a \cdot s)(p) \equiv a \cdot s(p).$$

Then, this forms a presheaf  $\mathcal{E}$ , a functor from  $((top_M))$  to the category of vector spaces, with restriction maps the natural restriction of functions.

### 0.2 Sheaf Axioms

It is easy to see that it satisfies the sheaf axioms: for U open and  $\{V_i\}$  a cover of U,

- 1. if  $s \in \mathcal{E}(U)$  and  $s|_{V_i} = 0$  for all i, then s = 0.
- 2. if  $s_i \in \mathcal{E}(V_i)$  for all i, such that for each i, j with  $V_i \cap V_j \neq \emptyset$ ,  $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ , then there is an  $s \in \mathcal{E}(U)$  with  $s|_{V_i} = s_i$  for all i.

The first follows from the fact that for any U, there is always at least one element of  $\mathcal{E}(U)$ , the zero section, and that the transition functions of the bundle are linear maps. The second follows by the construction of the bundle.

## 1 Sheafification

We may also see the vector bundle by applying associated sheaf construction to the presheaf  $U \mapsto \Gamma(U, E)$ . First though, we show that the stalk of the sheaf  $\mathcal{E}$  at a point is isomorphic to the fibre of the bundle E at the point. Let [s, U] be a germ at  $p \in M$   $(p \in U \subset M)$ , and define a map  $\psi : \mathcal{E}_p \to E_p$  by

$$\psi: [s, U] \mapsto s_p.$$

First, we show that the map is a vector space homomorphism. Consider two germs [s, U] and [t, V] in  $\mathcal{E}_p$ . These map to  $s_p$  and  $t_p$  respectively. We add the germs by finding an open set  $W \in U \cap V$  and adding the restrictions of the sections;

$$[s, U] + [t, V] \equiv [s|_W + t|_W, W].$$

Of course,  $p \in W$ , so we have  $\psi(s|_W + t|_W) = s_p + t_p$ , since the restriction maps are simply restriction of functions. Now, it is easy to show that  $\psi$  is injective. Assume  $\psi([t, V]) = \psi([s, U]) = s_p$ . Then

$$\psi([t, V]) - \psi([s, U]) = s_p - s_p$$
  
$$\psi([t, V] - [s, U]) = 0$$
  
$$[t, V] = [s, U]$$

Now, we show that  $\psi$  is surjective. For  $s_p \in E_p$ , let  $U \subset M$  open be isomorphic to some subset  $U_{\mathbb{R}}$  of  $\mathbb{R}^m$ . Then,  $\Gamma(U, E)$  is the set of continuous maps  $U \to V_E$ , where  $V_E$  is the typical fibre of E;

$$\Gamma(U, E) = \bigoplus_{i=1}^{r} \mathcal{C}_{U_{\mathbb{R}}}^{\infty}.$$

Then let [s, U] be the constant function  $s: U_{\mathbb{R}} \mapsto s_x$ , and we have constructed an isomorphism  $\psi$  between  $\mathcal{E}_p$  and  $E_p$ .

To construct the Étalé space, take the disjoint union of stalks,  $\operatorname{Sp\acute{e}}(\mathcal{E}) = \coprod_{p \in M} \mathcal{E}_p$ , and endow it with the following topology: the open sets shall be of the form

$$U_s = \{s_p | s \in \Gamma(U, \mathcal{E}), p \in U \subset M\},\$$

collection of germs of sections at points in  $U \subset M$ .

Then, the associated sheaf to  $\mathcal{E}$  is the presheaf which assigns continuous maps  $\Gamma(U, \operatorname{Sp\'e}(\mathcal{E}))$  to each open U. These are maps where the preimage of  $U_s$  is open. Clearly, this implies that  $\Gamma(U, E) \subset \Gamma(U, \operatorname{Sp\'e}(\mathcal{E}))$ . To go the other way, note that open sets of  $\operatorname{Sp\'e}(\mathcal{E})$  are the images of continuous maps  $U \to E$ . An open subset of  $\operatorname{Sp\'e}(\mathcal{E})$  may be written as a union of  $U_t$ ;  $U_{ts} \equiv \{t_p, s_p | p \in U\}$ . Then, by single-valuedness of maps, a continuous map  $U \to \operatorname{Sp\'e}(\mathcal{E})$  must map to  $U_t$  for some  $t \in \Gamma(U, E)$ , so we have  $\Gamma(U, E) \supset \Gamma(U, \operatorname{Sp\'e}(\mathcal{E}))$ .