FIN4104/4911 Quantitative Analysis for Financial Decisions

Chapter 6: Correlation and Regression

Our Schedule

Week	Date	Subject		
1	07/06/68	Course Introduction		
2	14/06/68	TVOM		
3	21/06/68	Statistical Concepts & Probability Concepts		
4	28/06/68	Sampling and Estimation		
5	05/07/68	Hypothesis Testing		
6	12/07/68	No Class (Long Holiday)		
7	19/07/68	Correlation Analysis and Regression		
8	26/07/68	No Class (Long Holiday)		
	02/08/68	Mid-Term		
9	09/08/68	No Class (Long Holiday)		
10	16/08/68	Multiple Linear Regression Analysis		
11	23/08/68	Time-Series Analysis		
12	30/08/68	Modern Quantitative Finance		
13	06/09/68	Technical Analysis + Data Visualization and Presentation		
14	13/09/68	Group Presentation		
15	20/09/68	Programme close and Revision		
16	27/09/68	End		
		Final Exam Week		

Mid-term Exam

- There are 12 questions for mid-term exam.
 - 10 Short answers
 - Essay Questions: Select 2 questions out of 3 questions to answer
- Total raw score is 25 scores.
- Scope of exam as following:
 - TVOM, Discounted cash flow
 - Statistical Concepts
 - Probability Concepts
 - Common Probability Distribution
 - Sampling and Estimation
 - Hypothesis Testing

Course Outline

Correlation

Regression

Classification

 The Graph that shows the relationship between the observation of two series of data.

- Correlation coefficient is a measure of how closely related two data series are.
- Correlation coefficient measures the direction and extent of linear association.

- Correlation can be used in measurement of level of risk diversification.
- When we invest in two stocks without perfectly positive correlation, the risk of combined portfolio will be lower than average risk of individual stock

Testing the significance of a correlation coefficient

- We want to test if a non-zero correlation between two variables is the result of chance
- In this test we assume that both variables are distributed normally and test whether or not the correlation is significantly different from zero
- The test statistic here is calculated using the following formula, the t tables and n-2 degrees of freedom:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Where r is the calculated correlation coefficient from the samples

·Formula-

As n increases we are more likely to reject a false NULL:

- 1. Degrees of freedom increases and critical statistic falls
- 2. Numerator increases and test statistic rises

Example: Testing the significance of a correlation coefficient

- Sample of 82 observations and a correlation coefficient (r) of 0.7. Test whether the correlation coefficient is significant at a 5% significance level.
 - $H_0: r = 0$
 - H_a : $r \neq 0$ (Note: This is a 2-sided test)
- Test statistic is:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.7\sqrt{82-2}}{\sqrt{1-0.49}} = \frac{6.26}{0.71} = 8.82$$

- Critical statistic is:
 - Using Student-t tables with degrees of freedom = n 2 = 82 2 = 80 and p = 0.025 we get 1.99
- Given that: Test statistic > Critical statistic we would reject H0
- The correlation coefficient is statistically significant

Other Issues: Nonparametric Inference

Parametric tests

- Tests of parameters or tests that make assumptions about the distribution of the population
- E.g., z-test, t-test, chi-square test, or F-test

Non-parametric tests are used in three situations when:

Data does not meet distributional assumptions

- It is not normally distributed
- May want to test hypothesis concerning a population mean when we are dealing with a small sample from a non-normal population

Data is given in ranks

E.g. ranking of investment managers

Characteristics being tested is not a population parameter

 E.g. testing whether a sample is random or not

Linear Regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_1, X_2, \ldots X_p$ is linear.
- True regression functions are never linear!

• although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Linear Regression

• We assume a model

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

where β_0 and β_1 are two unknown constants that represent the *intercept* and *slope*, also known as *coefficients* or parameters, and ϵ is the error term.

• Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future sales using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

where \hat{y} indicates a prediction of Y on the basis of X = x. The *hat* symbol denotes an estimated value.

Assumptions of Linear Regression

- The relationship between dependent variable and independent variable is linear.
- The independent variable is not random
- The expected value of the error term is 0
- The variance of the error term is the same for all observation
- The error term is uncorrelated
- The error term is normally distributed

Estimation of the parameters

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X. Then $e_i = y_i \hat{y}_i$ represents the ith residual
- We define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.

• The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$ are the sample means.

Example

The least squares fit for the regression of sales onto TV. In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Assessing the accuracy of coefficient estimates

• The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

where $\sigma^2 = \text{Var}(\epsilon)$

• These standard errors can be used to compute *confidence* intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1).$$

Confidence Intervals

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample)

Hypothesis Testing

• Standard errors can also be used to perform *hypothesis* tests on the coefficients. The most common hypothesis test involves testing the *null hypothesis* of

 H_0 : There is no relationship between X and Y

versus the $alternative\ hypothesis$

 H_A : There is some relationship between X and Y.

• Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0,$$

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

Hypothesis Testing

• To test the null hypothesis, we compute a *t-statistic*, given by

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)},$$

- This will have a t-distribution with n-2 degrees of freedom, assuming $\beta_1 = 0$.
- Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

Results

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Assessing overall accuracy

• We compute the Residual Standard Error

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

where the residual sum-of-squares is $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

• R-squared or fraction of variance explained is

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where TSS = $\sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

• It can be shown that in this simple linear regression setting that $R^2 = r^2$, where r is the correlation between X and Y:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$

Quantity	Value
Residual Standard Error	3.26
R^2	0.612
F-statistic	312.1

Classification

• Qualitative variables take values in an unordered set C, such as:

```
eye color\in {brown, blue, green} email\in {spam, ham}.
```

- Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$.
- Often we are more interested in estimating the *probabilities* that X belongs to each category in C.

Example: Credit Card Default

Can we use Linear Regression?

Suppose for the **Default** classification task that we code

$$Y = \begin{cases} 0 & \text{if No} \\ 1 & \text{if Yes.} \end{cases}$$

Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?

Linear VS Logistic Regression

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate $\Pr(Y=1|X)$ well. Logistic regression seems well suited to the task.

Logistic Regression

Let's write p(X) = Pr(Y = 1|X) for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

 $(e \approx 2.71828 \text{ is a mathematical constant [Euler's number.]})$ It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.

Maximum Likelihood

We use maximum likelihood to estimate the parameters.

$$\ell(\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)).$$

This *likelihood* gives the probability of the observed zeros and ones in the data. We pick β_0 and β_1 to maximize the likelihood of the observed data.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Making Predictions

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

Making Predictions

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Measure the accuracy

- The results from logit model range from 0-1 (0%-100%).
- However, the results we actually need should be exactly 1 or 0.
- We need to set the cut-off.
- For example at cut-off of 0.5
 - Any result less than 0.5 will be treated as 0
 - Any result more than or equal to 0.5 will be treated as 1