МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Машиностроительный факультет

Кафедра «Информатика»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе по дисциплине «Информатика»

на тему: «КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. РАСЧЁТЗАЗЕМЛИТЕЛЯ»

Исполнитель: студент гр. 3НР-21

Богушевич. А.С.

	1 y KO	водитель: преподаватель Процкая М.А.
	Дата проверки: Дата допуска к защите: Дата защиты: Оценка работы:	
Подписи членов комиссии		
по защите курсовой работы:		

Гомель 2022

СОДЕРЖАНИЕ

Вве	едение	3				
1.	Математическое моделирование технического объекта	4				
	1.1 Компьютерное моделирование, общий обзор	4				
	1.2 Применение численных методов в моделировании	5				
	1.3 Численный метод половинного деления и его реализация в					
	MathCad	8				
2.	Алгоритмический анализ задачи	10				
	2.1 Полная постановка задачи	10				
	2.2 Описание математической модели	10				
	2.3 Анализ исходных и результирующих данных	12				
3.	Описание реализации задачи	14				
	3.1 Описание реализации базовой модели в MathCad					
	3.2 Выводы по результатам исследований	17				
Зак	лючение	18				
Список использованных источников						
При	иложение А. Построение базовой модели	20				

№ докум.

Подпись

Дата

Изм.

Лист

Лист

ВВЕДЕНИЕ

Выполнение и защита курсовой работы для студентов второго курса является одной из важнейших форм учебной работы, основными целями которой является выработка навыков самостоятельной работы, закрепление знаний по пройденному курсу дисциплины и выработка умения применять эти знания в практической работе по выбранной специальности.

Во все времена инженерам, исследователям был необходим удобный и достаточно эффективный инструмент для решения своих задач. В этот «инструментальный» ряд можно включить логарифмическую линейку, арифмометр, калькулятор, универсальную ЭВМ, персональный компьютер. При использовании вычислительной техники встала проблема реализации алгоритмов решения в виде так называемых программ.

С тех пор, как в нашу жизнь внедрились системы компьютерной математики, наиболее популярным методом создания математической модели каких-либо объектов стало компьютерное моделирование. Практически все серьёзные разработки в той или иной отрасли науки и производства нуждается в трудоёмких математических расчётах. Для облегчения этой работы были разработаны такие программы, как MathCAD, MatLab, Mathematica, Maple. Данные программы пользуются огромной популярностью во всем мире.

Компьютерное моделирование — процесс вычисления компьютерной модели (иначе численной модели) на одном или нескольких вычислительных узлах. Реализует представление объекта, системы, понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию. Включает набор данных, характеризующих свойства системы и динамику их изменения со временем

Так как мы будем работать в программе MathCAD, рассмотрим ее особенности ниже.

MathCAD — это мощная и гибкая универсальная система компьютерной математики, предназначенная для автоматизации решения массовых математических задач в самых различных областях науки, техники и образования, позволяющая проводить разнообразные научные и инженерные расчёты.

В данной курсовой работе будет показан и разобран пример использования системы MathCAD в исследовании математической модели.

Изм.	Лист	№ докум.	Подпись	Дата	

1 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕХНИЧЕСКОГО ОБЪЕКТА

1.1 Компьютерное моделирование, общий обзор

Компьютерное моделирование [9] (англ. Computational simulation), построение с помощью компьютеров и компьютерных устройств символьных и физических моделей объектов, изучаемых в науке (физике, химии), создаваемых в технике (напр., в авиастроении, робототехнике), медицине (в имплантологии, томографии), искусстве (в архитектуре, музыке) и др. областях деятельности людей.

Компьютерное моделирование позволяет многократно сократить затраты на разработку моделей по сравнению с некомпьютерными методами моделирования и проведением натурных испытаний. Оно делает возможным построение символьных компьютерных моделей объектов, для которых невозможно построить физические модели (например, моделей объектов, изучаемых в климатологии). Служит эффективным средством моделирования сложных систем в технике, экономике и др. областях деятельности. Является технологической основой систем автоматизированного проектирования (САПР).

Физические компьютерные модели изготавливаются на основе символьных моделей и являются прототипами моделируемых объектов (деталей и узлов машин, строительных конструкций и др.). Для изготовления прототипов могут быть применены 3D-принтеры, реализующие технологии послойного формирования неплоских объектов. Символьные модели прототипов могут быть

разработаны с помощью САПРов, 3D-сканеров или цифровых камер и фотограмметрического программного обеспечения.

Система компьютерного моделирования — это человеко-машинный комплекс, в котором построение моделей осуществляется с помощью компьютерных программ, реализующих математические и экспертные методы моделирования. В режиме вычислительного эксперимента исследователь имеет возможность, изменяя исходные данные, за относительно короткое время получить и сохранить в системе компьютерного моделирования большое число вариантов модели объекта.

Уточнение представлений об исследуемом объекте и совершенствование методов его моделирования могут сделать необходимым изменение программных средств системы компьютерного моделирования, а аппаратные средства при этом могут остаться без изменений.

Изм.	Лист	№ докум.	Подпись	Дата	

Высокая результативность компьютерного моделирования в науке, технике и др. областях деятельности стимулирует развитие аппаратных средств (включая суперкомпьютеры) и программного обеспечения.

В наши дни компьютерные модели – быстро растущая часть арсенала информационных ресурсов.

1.2 Применение численных методов в компьютерном моделировании

В широком смысле под численным методом понимается совокупность дискретной модели, реализуемой на компьютере, и вычислительного алгоритма, позволяющего решить дискретизированную задачу. Одной и той же математической модели можно поставить в соответствие множество дискретных моделей и вычислительных алгоритмов, т. Е. численных методов. При выборе численного метода необходимо учитывать две группы требований:

- дискретная модель должна быть адекватной математической модели;
- численный метод должен быть корректным и реализуемым на компьютере.

Для обеспечения адекватности дискретная модель должна обладать свойствами сходимости численного метода, выполнения дискретных аналогов сохранения и качественно правильного поведения решения. Сходимость численного метода, например, означает, что при уменьшении шага разбиения интервала интегрирования точность численного интегрирования возрастает.

Различные математические модели [] являются выражением физических

законов сохранения, поэтому для дискретной модели законы сохранения также должны выполняться. Качественно правильное поведение дискретной модели означает, что из-за дискретного характера поведения модели не теряются некоторые детали поведения реальной системы. Корректность численного метода означает, что дискретная задача должна быть однозначно разрешимой и устойчивой к погрешностям исходных данных и погрешностям вычислений. Реализуемость численного метода на компьютере ограничена объемом памяти и быстродействием компьютера. Вычислительный алгоритм должен предъявлять разумные требования к ресурсам компьютера. Например, математически корректный метод Крамера решения систем линейных алгебраических уравнений абсолютно неприменим для решения реальных задач: если принять, что каждая арифметическая операция выполняется за 10?6с, то для решения системы с 20 неизвестными методом Крамера потребуется более миллиона лет.

В то же время простейшим методом Гаусса эта система будет решена за доли секунды. В узком смысле под численными методами понимают методы приближённого решения математических задач, сводящиеся к выполнению конечного числа элементарных операций над числами. В качестве элементарных операций фигурируют арифметические действия, выполняемые обычно

					Лист
					5
Изм.	Лист	№ докум.	Подпись	Дата	

приближённо, а также вспомогательные операции - записи промежуточных результатов, выборки из таблиц и т.п. Числа задаются ограниченным набором цифр в некоторой позиционной системе счисления (десятичной, двоичной и т.п.).

Таким образом, в численных методах числовая прямая заменяется дискретной системой чисел (сеткой); функция непрерывного аргумента заменяется таблицей её значений в сетке; операции анализа, действующие над непрерывными функциями, заменяются алгебраическими операциями над значениями функций в сетке.

Алгоритмы решения многих физических задач, для которых не удается получить ответ в виде формулы, основаны на следующей процедуре: строится бесконечный процесс, сходящийся к искомому решению. Он обрывается на некотором шаге (вычисления нельзя продолжать бесконечно), и полученная таким образом величина приближенно принимается за решение рассматриваемой задачи.

С помощью математического моделирования решение научно - технической задачи сводится к решению математической задачи, являющейся ее моделью. Для решения математических задач используются следующие основные группы методов: графические, аналитические и численные.

Графические методы в ряде случаев позволяют оценить порядок искомой величины. Основная идея этих методов состоит в том, что решение находится путём геометрических построений. Например: для нахождения корней уравнения f(x)=0 строится график функции y=f(x), точки пересечения которого с осью абсцисс и будут искомыми корнями.

При использовании аналитических методов решение задачи удаётся выразить с помощью формул. В частности, если математически задача состоит в решении простейших алгебраических уравнений" дифференциальных уравнений и т.д., то использование известных из курса математики приемов сразу приводит к цели. К сожалению, па практике это слишком редкие случаи.

Главным инструментом для решения сложных математических задач в соответствии с являются численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами; при этом результаты получаются в виде числовых значений. Многие численные методы разработаны давно, однако при вычислении вручную они могли использоваться лишь для решения не слишком трудоёмких задач. При

использовании аналитических методов решение задачи удаётся выразить с помощью формул. В частности, если математически задача состоит в решении простейших алгебраических уравнений" дифференциальных уравнений и т.д., то использование известных из курса математики приемов сразу приводит к цели. К сожалению, па практике это слишком редкие случаи.

Изм.	Лист	№ докум.	Подпись	Дата

Главным инструментом для решения сложных математических задач в соответствии с являются численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами; при этом результаты получаются в виде числовых значений. Многие численные методы разработаны давно, однако при вычислении вручную они могли использоваться лишь для решения не слишком трудоёмких задач.

Система MathCAD разработана фирмой MathSoft(США) и является на данный момент единственной математической системой, в которой описание решения математических задач задается с помощью привычных математических формул и знаков. В названии системы аббревиатура CAD являющаяся сокращением от Computer Aided Design, указывает на принадлежность системы ж системам автоматизированного проектирования.

Вычислительные возможности системы применяются для решения множества задач из области математики, физики, экономики, инженерных расчётов, научных исследований.

Для решения обыкновенных дифференциальных уравнений в системах MathCAD согласно предусмотрены четыре функции, обеспечивающие:

odesolve(x, x2,[m]) - решение одного обыкновенного дифференциального уравнения методом Рунге-Кутта с постоянным (по умолчанию) или адаптивно вычисляемым системой шагом интегрирования;

rkfixed(y0,x1,x2,m,D) - решение уравнений методом Рунге-Кутта с постоянным шагом интегрирования, равным (x2 - x1)/m;

Rkadapt(yO,x1,x2,m,D) - решение уравнений методом Рунге-Кутта с шагом интегрирования, адаптивно выбираемым в зависимости от характера изменения y(x);

Bulstoer(yO,x1,x2,m,D) - решение уравнений методом Булирш-Штоера.

Обозначения основных параметров, которые используются в качестве аргументов большинства встроенных функций:

у - (n x 1) - вектор результирующих переменных (n 1);

у0 - (n х 1) - вектор начальных значений переменных;

х, х1, х2 - аргумент, левая и правая границы его диапазона соответственно;

т - число точек, в которых находится решение внутри интервала (xl, x2);

D(x,y) - $(n \ x \ 1)$ - вектор правых частей системы дифференциальных уравнений первого порядка, соответствующий первым производным вектора y.

Этот вектор должен быть предварительно, до использования какой-либо функции, введен в виде выражения D(x,y): = (правые части уравнений).

При $\pi = 1$ решение ищется для одного дифференциального уравнения.

Результаты решения задач интегрирования систем дифференциальных уравнений с использованием функций rkfixed, Rkadapt, Bulstoer формируются

					Ī
ı.	Лист	№ докум.	Подпись	Дата	

системами MathCAD в виде $(\tau+1)*(\pi+1)$ - матрицы (таблицы), первый столбец которой содержит значения аргументов от x1 до x2, а остальные π ее столбцов образуются значениями элементов вектора у переменных состояний, исследуемой системы. Таким образом, число элементов каждого из столбцов результирующей матрицы определяется параметром τ , введенным в качестве аргумента соответствующей функции.

Функция rkfixed имеет следующие аргументы:

y = Вектор начальных условий размерности , x2 = Граничные точки интервала, на котором ищется решение дифференциальных уравнений. Начальные условия, заданные в векторе <math>y, - это значение решения в точке x1.= Число точек (не считая начальной точки), в которых ищется приближенное решение. (x, y) = Функция, возвращающая значение в виде вектора из п элементов, содержащих первые производные неизвестных функций.

Маthcad включает ряд функций для вычисления регрессии. Обычно эти функции создают кривую или поверхность определенного типа, которая в некотором смысле минимизирует ошибку между собой и имеющимися данными. Функции отличаются прежде всего типом кривой или поверхности, которую они используют, чтобы аппроксимировать данные согласно.

В отличие от функций интерполяции эти функции не требуют, чтобы аппроксимирующая кривая или поверхность проходила через точки данных. Функции регрессии гораздо менее чувствительны к ошибкам данных, чем функции интерполяции. Конечный результат регрессии - функция, с помощью которой можно оценить значения в промежутках между заданными точками.

Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая и т.п.

Линейная регрессия в системе Mathcad выполняется по векторам аргумента X и отсчетов Y функциями:

- intercept(X,Y) вычисляет параметр а, смещение линии регрессии по вертикали;
- slope(X,Y) вычисляет параметр b, угловой коэффициент линии регрессии.

1.3 Численный метод половинного деления и его реализация в MathCad

Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого) при нахождении корня уравнения f(x)=0 состоит в делении пополам отрезка [a;b], где находится корень. Затем анализируется изменение знака функции на половинных отрезках, и одна из границ отрезка [a;b] переносится в его

					Лист
					8
Изм.	Лист	№ докум.	Подпись	Дата	

середину. Переносится та граница, со стороны которой функция на половине отрезка знака не меняет. Далее процесс повторяется. Итерации прекращаются при выполнении одного из условий: либо длина интервала [a; b] становится меньше заданной погрешности нахождения корня е, либо значение функции сравнимо с погрешностью расчетов [8].

Пусть:

- 1. Функция y=F(x) определена и непрерывна на отрезке [a; b];
- 2. F(a)*F(b)<0;

Требуется найти корень на отрезке с точностью е

Разделим отрезок [a; b] пополам точкой c = (a + b)/2, как показано на рисунке 1.

Рисунок 1.1 - Построение последовательного приближения по методу половинного деления

Если F(c) не равно 0, то возможны два случая:

- 1) F(x) меняет знак на отрезке [a; c];
- (2) F(x) меняет знак на отрезке (c; b).

Выбираем тот отрезок, на котором функция меняет знак. Если F(x) меняет знак на отрезке [a; c], то b:=c; если F(x) меняет знак на отрезке [c; b], то a:=c.

Условие окончания счета: b - a < e.

Корень уравнения: x = (a + b)/2.

Погрешность метода: dx = (b - a)/2.

Рассмотрим положительные стороны метода половинного деления

- надежность;
- не требует приведения к специальному виду;
- не требует дифференцируемости функции;
- устойчивость к ошибкам округления.

Рассмотрим отрицательные стороны метода половинного деления

- медленная сходимость;
- метод не применим для корней четной кратности;

					Лист
			·		9
Изм.	Лист	№ докум.	Подпись	Дата	

 метод половинного деления практически неудобен для вычисления корня с большой точностью ручным способом, так как требует большого объема вычислительной работы.

Но он легко реализуется на ЭВМ.

2 АЛГОРИТМИЧЕСКИЙ АНАЛИЗ ЗАДАЧИ

2.1 Полная постановка задачи

- 1. Задавшись параметрами h и d, указанными в таблице исходных данных, найти радиус r, обеспечивающий требуемое сопротивление заземления R. Доказать графически, что значение r найдено верно.
- 2. Найти значение радиуса r, используя численный метод, указанный в таблице исходных данных, при решении уравнения. Выполнить графическую интерпретацию результатов расчётов. Сравнить полученное значение с рассчитанным в пункте 1.
- 3. Рассчитать значение радиуса г для 7 значений из диапазона значений варьируемого параметра, указанного в таблице исходных данных. Построить сводный график зависимости полученных значений радиуса г от варьируемого параметра.
- 4. Подобрать сплайновую интерполирующую зависимость по результатам расчётов. Построить график исходной и интерполирующей функции на одном поле.
- 5. Выполнить расчёт по индивидуальному заданию. Дать графическую интерпретацию результатов расчётов.

2.2 Описание математической модели. Анализ исходных данных и результатов

Исходные данные выбираются из таблиц исходных значений.

Индуктивность катушки задана уравнением.

Варьируемый параметр – пункт 3.

При нахождении значения радиуса r будем использовать метод половинного деления.

					Лисп
					10
М.	Лист	№ докум.	Подпись	Дата	

Рисунок 2.1 – Заземлитель в форме кольца

- h глубина грунта;
- r радиус кольца;
- R сопротивление заземлителя;
- d диаметр проводника, из которого изготовлено кольцо.

Таблица 1.

Исходные данные для расчета

$N_{\underline{o}}$	<i>h</i> , м	d, м	R, Ом
1	1,1	0,02	25

Таблица 2.

Значение ширины металлической полоски.

Первый опыт	d =0,02
Второй опыт	d=0,023
Третий опыт	d=0,025
Четвёртый опыт	d=0,028
Пятый опыт	d=0,03
Шестой опыт	d=0,033
Седьмой опыт	d=0,035

Уравнение индуктивности катушки имеет вид:
$$R = \frac{1}{4\pi^2 r G} \frac{\pi r}{h} + \ln(\frac{16r}{d}),$$

где h – глубина грунта;

r – радиус кольца;

R – сопротивление заземлителя;

d – диаметр проводника, из которого изготовлено кольцо;

G – электропроводность грунта

					Ли
					1
Изм.	Лист	№ докум.	Подпись	Дата	

Рисунок 2.2 – Графическая схема решения

Изм.	Лист	№ докум.	Подпись	Дата

3 ОПИСАНИЕ РЕАЛИЗАЦИИ ЗАДАЧИ

3.1 Описание реализации базовой модели в Mathcad

Задаём начальные значения:

$$h := 1.1$$

$$d := 0.02$$

$$G := 0.03$$

$$r := 0,0.01..1.5$$

Создаём вектор f(R).

Вписываем в него правую часть уравнения:

$$\mathbf{f}(\mathbf{r}) := \frac{1}{4 \cdot \pi^2 \cdot \mathbf{r} \cdot G} \cdot \left(\frac{\pi \cdot \mathbf{r}}{h} + \ln \left(\frac{16 \cdot \mathbf{r}}{d} \right) \right) - R$$

где r -радиус кольца;

G – электропроводность грунта;

h – глубина расположения кольца;

d – диаметр проводника, из которого изготовлено кольцо.

Находим значение радиуса r, обеспечивающих заданное сопротивление заземлителя.

Рисунок 3.1 - График значения радиуса г

$$r := 0.25$$

 $kor := root(f(r),r)$

kor = 0.187

Находим значение радиуса, используя метод половинного деления, при решении уравнения.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3.2 – График значения радиуса, найденного при помощи метода половинного деления.

Получаем результат:

$$\begin{aligned} \text{PolDel}(f,a,b,cps) &:= & \begin{vmatrix} \text{while} & \left| b-a \right| > cps \\ \\ c \leftarrow \frac{a+b}{2} \\ \\ a \leftarrow c & \text{if } f(a) \cdot f(c) > 0 \\ \\ b \leftarrow c \\ \\ \frac{a+b}{2} \end{aligned}$$

$$pd := PolDel(f, 0.16, 0.2, 0.0000001)$$

Рассчитываем значение радиуса г для 7 значений из заданного диапазона: 0,02-0,035. Представляем в виде матрицы:

kor =
$$\begin{pmatrix} 0.187 \\ 0.181 \\ 0.177 \\ 0.171 \\ 0.168 \\ 0.163 \\ 0.161 \end{pmatrix}$$

Рисунок 3.3 — Матрица полученных значений при использовании варьируемого параметра

					Лист
					15
Изм.	Лист	№ докум.	Подпись	Дата	

$$\mathbf{d} = \begin{pmatrix} 0.02 \\ 0.023 \\ 0.025 \\ 0.028 \\ 0.03 \\ 0.033 \\ 0.035 \end{pmatrix}$$

Рисунок 3.4 — Значения варьируемого параметра Строим сводный график зависимости полученных значений параметра R от варьируемого параметра.

Рисунок 3.5 — Сводный график зависимости значения радиуса R от варьируемого параметра.

Подбираем сплайновую интерполирующую зависимость по результатам расчетов.

$$K1 := lspline(d, kor)$$

 $x := 0.02, 0.0225...0.035$
 $S1(x) := interp(K1, d, kor, x)$

Строим график исходной и интерполирующей функций на одном поле.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3.6 – График исходной и интерполирующей функций на одном поле

3.2 Выводы по результатам исследований

При выполнении работы была применены система MathCad для исследования математической модели устройства для измерения индуктивности. Были получены графики зависимости значений радиуса R от варьируемого параметра; построен график исходной и интерполирующей функций на одном поле.

Изм. Лися	т № докум.	Подпись	Дата

ЗАКЛЮЧЕНИЕ

Так как выполнение и защита курсовой работы для студентов второго курса является одной из важнейших форм учебной работы, мною была выполнена курсовая работа.

В данном курсовом проекте были выполнены все поставленные цели: ознакомились с программой MathCAD, научились создавать и исследовать математические модели по заданным исходным данным. Так же была решена задача об исследовании математической модели устройства для измерения индуктивности. Мной был показан и разобран пример использования системы MathCAD в исследовании математической модели.

Целью данной работы было проведение расчета параметра R_2 в зависимости от варьируемого параметра.

Для этого мной было проведено 10 опытов расчета R_2 с изменением варьируемого параметра R_1 , который находится в диапазоне от 0.75 до 0.95.

В заключение данной работы, следует сделать вывод, что достоинство программного комплекса заключается в том, что с помощью него мы можем промоделировать множество ситуаций, которые могут произойти с моделью. Изучить параметры, которые коренным образом влияют на характеристики системы. Так же с помощью него можно достаточно точно определить индуктивность катушки, интересующую нас.

Применение компьютерной математики существенно расширяет возможности автоматизации всех этапов математического моделирования, а провести исследование проблемы, также позволяют анализ данных, тестирование, проверку существования моделирование, решения, оптимизацию, документирование и оформление результатов. Они позволяют сосредоточить основное внимание на существе проблемы, оставляя в стороне технику классической математики, детали вычислительных методов и алгоритмических процедур, нюансы языков программирования и команд операционной системы. Поэтому с уверенностью можно сказать, что данные системы могут значительно облегчить работу студентов, конструкторов, ученых и всех тех, кто имеет дело со сложными и трудоемкими математическими вычислениями. Факт этого заключается в том, что на сегодняшний день новейшие разработки компьютерного математического моделирования находят широкое применение в самых разных сферах человеческой деятельности.

Изм.	Лист	№ докум.	Подпись	Дата

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Новиков A.A. MathCAD for Windows. М/ук 2477. Гомель, ГГТУ, 2000 г.
- 2. Математические модели. [Электронный ресурс]. Режим доступа: http://www.orenipk.ru/kp/distant-vk/docs/2-1-1/inf/inf-mat-mod.html— Дата доступа: 29.11.2020;
- 3. Плис А.И. Сливина Н.А. MathCAD 14: Математический практикум. М.: Наука, 2008г. 682с.
- 4. Алексеев Е.Р., Чеснокова О.В.Основы работы в математическом пакете MathCAD: Учебное пособие. Донецк: Донецкий национальный технический университет, 2012. 187 с.
- 5. Основы программирования: Учебно-методическое пособие учебное пособие Самарского Государственного Университета, И.Н. Никонов 2001 74c.
- 6. Применение численных методов в компьютерном моделировании. [Электронный ресурс]. Режим доступа: https://studbooks.net/2035786/informatika/obschiy obzor programmnyh sredstv_kompyuternogo_modelirovaniya
- 7. Метод половинного деления. [Электронный ресурс]. Режим доступа: https://studbooks.net/2322862/informatika/metod_polovinnogo_deleniya
- 8. Компьютерное моделирование, общий обзор. [Электронный ресурс]. Режим доступа: https://bigenc.ru/technology_and_technique/text/4010577

Изм.	Лист	№ докум.	Подпись	Дата

ПРИЛОЖЕНИЕ А. Построение базовой модели в MathCad

Задание 1

$$h := 1.1$$

$$d := 0.02$$

$$R := 25$$

$$G := 0.03$$

$$r := 0,0.01...1.5$$

$$f(r) := \frac{1}{4 \cdot \pi^2 \cdot r \cdot G} \cdot \left(\frac{\pi \cdot r}{h} + \ln\left(\frac{16 \cdot r}{d}\right)\right) - R$$

$$\frac{200}{150}$$

$$\frac{1}{100}$$

$$\frac{1}{100}$$

Рисунок А.1 - График значения радиуса г, обеспечивающего заданное сопротивление заземлителя

Проведение 7 опытов для установления влияние варьируемого параметра (диаметра проводника, из которого изготовлено кольцо) на значение радиуса г:

On IT 1
ORIGIN:= 1

$$G := 0.03$$
 $R := 25$ $h := 1.1$ $d_1 := 0.02$
 $f(r) := \frac{1}{4 \cdot \pi^2 \cdot r \cdot G} \cdot \left(\frac{\pi \cdot r}{h} + \ln \left(\frac{16 \cdot r}{d_1} \right) \right) - R$
 $r := 0.25$
 $kor_1 := root(f(r), r)$
 $kor_1 = 0.187$

					Лист
			·		20
Изм.	Лист	№ докум.	Подпись	Дата	

OTHER 2
ORIGIN:= 1

$$G := 0.03$$
 $R := 25$ $h := 1.1$ $d_2 := 0.023$
 $f(r) := \frac{1}{4 \cdot \pi^2 \cdot r \cdot G} \cdot \left(\frac{\pi \cdot r}{h} + \ln\left(\frac{16 \cdot r}{d_2}\right)\right) - R$
 $r := 0.25$

$$kor_2 := root(f(r),r)$$

$$kor_2 = 0.181$$

$$kor_3 := root(f(r),r)$$

$$kor_3 = 0.177$$

$$\begin{split} & \underbrace{\mathbf{f}}_{\text{c}} := 0.03 \qquad \underset{\mathbf{k}}{\mathbb{R}} := 25 \qquad \underset{\mathbf{k}}{\underline{\mathbf{h}}} := 1.1 \qquad \mathbf{d}_4 := 0.028 \\ & \underbrace{\mathbf{f}}_{\text{c}} (\mathbf{r}) := \frac{1}{4 \cdot \pi^2 \cdot \mathbf{r} \cdot \mathbf{G}} \cdot \left(\frac{\pi \cdot \mathbf{r}}{\mathbf{h}} + \ln \left(\frac{16 \cdot \mathbf{r}}{\mathbf{d}_4} \right) \right) - R \end{split}$$

$$kor_4 := root(f(r), r)$$

$$kor_{\Delta} = 0.171$$

$$\underbrace{ORIGIN}_{} := 1$$

$$\begin{aligned} & \underbrace{\mathbf{f}}_{\text{CM}} := 0.03 & \underbrace{\mathbf{R}}_{\text{S}} := 25 & \underbrace{\mathbf{h}}_{\text{S}} := 1.1 & d_{5} := 0.03 \\ & \underbrace{\mathbf{f}}_{\text{CM}} (\mathbf{r}) := \frac{1}{4 \cdot \pi^{2} \cdot \mathbf{r} \cdot \mathbf{G}} \cdot \left(\frac{\pi \cdot \mathbf{r}}{\mathbf{h}} + \ln \left(\frac{16 \cdot \mathbf{r}}{d_{5}} \right) \right) - R \end{aligned}$$

$$kor_5 := root(f(r), r)$$

$$kor_5 = 0.168$$

Изм.	Лист	№ докум.	Подпись	Дата

Onыt 6
ORIGIN:= 1

$$G := 0.03$$
 $R := 25$ $h := 1.1$ $d_6 := 0.033$
 $f(r) := \frac{1}{4 \cdot \pi^2 \cdot r \cdot G} \cdot \left(\frac{\pi \cdot r}{h} + \ln \left(\frac{16 \cdot r}{d_6} \right) \right) - R$
 $r := 0.25$
 $kor_6 := root(f(r), r)$
 $kor_6 = 0.163$

Onbit 7

ORIGIN:= 1

$$G := 0.03$$
 $R := 25$ $h := 1.1$ $d_7 := 0.035$
 $f(r) := \frac{1}{4 \cdot \pi^2 \cdot r \cdot G} \cdot \left(\frac{\pi \cdot r}{h} + \ln\left(\frac{16 \cdot r}{d_7}\right)\right) - R$
 $r := 0.25$
 $kor_7 := root(f(r), r)$
 $kor_7 = 0.161$

Рисунок A.2 – Сводный график зависимости значения радиуса r от варьируемого параметра

Лист

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок $A.3 - \Gamma$ рафик исходной и интерполирующей функций на одном поле

Изм.	Лист	№ докум.	Подпись	Дата