Selective Inference for Poisson Charles Zheng (and Jonathan Taylor)

1 Discrete Knots

Data S is a poisson process N with points in \mathcal{X} and intensity

$$\frac{d\lambda(\beta)}{d\mu} = \exp\left(\sum_{j=1}^{p} \beta_j h_j(x)\right)$$

Take the change-point model where $h_x(x) = I\{x \in [u_j, 1]\}.$

2 Continuous Knots

2.1 Nonrandomized problem

Let $\vartheta(x)$ be the step function

$$\vartheta(x) = \sum_{i=1}^{K} w_{\theta_i} I\{x \in [\theta_i, 1]\}.$$

Here $K \in \{0, 1, ...\}$ and $\theta_i \in [0, 1]$.

Data S is a poisson process N with points in \mathcal{X} and intensity

$$\frac{d\lambda(\beta)}{d\mu} = \exp(\vartheta(x))$$

Define the total-variation norm

$$||\vartheta||_{TV} = \min_{f,g} ||f||_{\infty} + ||g||_{\infty}$$
 subject to f,g increasing; $\vartheta = f - g$

Suppose we observe $x_1, \ldots, x_N \in [0, 1]$ where $x_i \sim F$.

Despite the fact that ϑ has an infinite-dimensional parameter space, it is possible to find the global minimum of the following problem

minimize
$$_{\vartheta}\Lambda(\vartheta) - \sum_{i=1}^{n} \vartheta(x_i) + \lambda ||\vartheta||_{TV}$$

because defining $h_t = I\{x \in [t,1]\}$, the minimizing ϑ is given by

$$\vartheta(x) = \sum_{i=1}^{p} w_{x_i} h_{x_i}(x)$$

where w_{x_i} are determined by

minimize
$$_{w}\Lambda(w) - \sum_{i=1}^{n} \sum_{j=1}^{n} w_{x_{j}} h_{x_{j}}(x_{i}) + \lambda ||w||_{1}$$

2.2 Randomized problem

Since the parameter space of ϑ is over continuous functions, the randomization parameter ω must parameterize a random functional of [0,1].

2.2.1 Scheme 1

One example: $\omega = (p, w)$ where $p \in [0, 1]^m$ and $w \in \mathbb{R}^m$. Then define the random functional $\Omega(\vartheta) = \sum_{i=1}^m w_i \vartheta(\omega_i)$.

In any case, the random optimization becomes

minimize
$$_{\vartheta}\Lambda(\vartheta) - \sum_{i=1}^{n} \vartheta(x_i) + \lambda ||\vartheta||_{TV} - \Omega(\vartheta) + \frac{\epsilon}{2} ||\vartheta||_{TV}^{2}$$

2.2.2 Scheme 2

Another example which is a special case of the above. Sample $\omega_i \sim Q$ for $i=1,\ldots,m$. Consider the optimization

minimize
$$_{\vartheta}\Lambda(\vartheta) + \Lambda_{\omega} - \sum_{i=1}^{n} \vartheta(x_i) + \sum_{i=1}^{n} \vartheta(\omega_i) + \lambda ||\vartheta||_{TV}$$

where

$$\tilde{\Lambda}(\vartheta) = \log \left[\int_{\mathcal{X}} \left[\exp(\vartheta(x)) - 1 \right] \mu(dx) \right]$$

This is just the original continuous optimization problem except augmenting the observed data with sampled points ω .

2.3 Support of Selective Distribution

We would like to condition on the event where the nonzero knots from x are $\hat{E}^x = \{z \in \{x_i\} : w_z \neq 0\} = E^x$ and the nonzero knots from ω are $\hat{E}^\omega = \{z \in \{\omega_i\} : w_z \neq 0\} = E^\omega$ and where $z_{\hat{E}} = s_E = s_{E^x \cup E^\omega}$.

Let z_1^x, \ldots, z_k^x denote the nonzero knots from $\{x\}$ and $z_1^\omega, \ldots, z_\ell^\omega$ the nonzero knots from $\{\omega\}$. If we test the hypothesis that $H_{0,j|E}: w_{z_j} = 0$,

then we will also condition on the sufficient statistics

$$t_i^x = \sum_{i=1}^n h_{z_i^x}(x_i) = \sum_{\ell=1}^n I(x_{\ell} < z_i^x)$$

$$t_i^{\omega} = \sum_{\ell=1}^n I(x_{\ell} < z_i^{\omega})$$

Furthermore, we can condition on n, the observed number of points.

Let us find the distribution of augmented data $\tilde{S} = \{x\} \cup \{\omega\}$ conditional on all these conditions. A first step is to identify the support.

The support of \tilde{S} consists of datasets with n observed points and m randomly added points. The condition of having knots $\{z^x\}, \{z^\omega\}$, means that all instances of \tilde{S} in the support must contain the points $\{z^x\} \subset \{x\}$ and $\{z^\omega\} \subset \{\omega\}$. Let $z_{(1)}, \ldots, z_{(k+\ell)}$ denote the sorted elements of $\{z\}$, and [i] defined where $z_{([j])} = z_j^x$. The condition on t_i means that the number of points in $(z_{(i)}, z_{(i+1)})$ is fixed, for all $i \notin \{[j] - 1, [j]\}$, and that the number of points in $(z_{[j]-1}, z_{[j]+1})$ is fixed. This defines the support of the selective distribution of \tilde{S} .

2.4 Minimal λ

In order to compute or sample from the selective distribution, it will be useful to be able to compute on arbitrary intervals (a, b) the function $\lambda_{(a,b)}^*(y_1, \ldots, y_\ell)$ with argument $(y_1, \ldots, y_\ell) \in [0, 1]^\ell$ defined to be the minimal λ such that

$$\text{minimize}_{\vartheta} \Lambda(I_{(a,b)} \vartheta) - \sum_{i=1}^{\ell} \vartheta(y_i) + \lambda ||I_{(a,b)} \vartheta||_{TV}$$

has a nonconstant solution. The nonconstant solution takes the form $\vartheta(x) = \beta_0 I_{[0,a]\cup[b,1]}(x) + \beta_1 I_{(a,y_i)}(x) + \beta_2 I_{[y_i,1]}(x)$. Hence $\lambda_{(a,b)}^*(y_1,\ldots,y_\ell)$ is given by the same as the minimal λ where

$$\text{minimize}_{\beta_1,\beta_2,i} \log[(e^{\beta_1}-1)\mu((a,y_i)) + (e^{\beta_2}-1)\mu([y_i,b))] - (i\beta_1 + (\ell-i)\beta_2) + \lambda|\beta_1 - \beta_2|$$

has a solution with $\beta_1 \neq \beta_2$.

Q: Shouldn't we be able to decompose the likelihood along the split??