

Comparison of Reinforcement Learning for Direct and Indirect Locomotion Control in Target Tracking with Snake-like Robots

Julian Schmitz

Technical University of Munich

Department of Informatics

Bachelor's Thesis

Munich, 05. October 2018

Agenda

- Motivation
- Methodology
- Approach
- Results
- Conclusion

Motivation – Reinforcement Learning

Motivation - Reinforcement Learning in Robotics

https://blog.openai.com/learning-dexterity/

Motivation - Reinforcement Learning in Robotics

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

Motivation - Snake-like robots

http://biorobotics.ri.cmu.edu/projects/modsnake/pictures.html

https://biorob.epfl.ch/salamandra

- Small diameter
- Good locomotion capabilities

Agenda

- Motivation
- Methodology
- Approach
- Results
- Conclusion

Methodology - Scene

Methodology - Observation

24 rows cropped from this image

Element	Observation Size
Vision sensor image	32
Current joint angles	8
Target joint angles	8
Head module speed	1
Total	49

Methodology - Reward

Methodology – Training Scenario

Methodology – Evaluation Scenario

Methodology - Proximal Policy Optimization (PPO)

$\max_{\theta} \hat{E}$

Traditional Policy Gradient Loss

$$L^{PG}(\theta) = \hat{E}_t \left[\log \pi_{\theta}(a_t|s_t) \hat{A}_t \right]$$

Probabilities of output Estimate value

Estimate > Average → Increase Probability

of this output

Problem: Destructively large policy updates

Trust Region Methods

$$L^{PG}(\theta) = \hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \hat{A}_t \right]$$
$$r(\theta)$$

PPO clips $r(\theta)$ between $1 - \epsilon$ and $1 + \epsilon$

- Easy implementation
- Relatively sample efficient
- Avoid high policy updates

of the policy network

Agenda

- Motivation
- Methodology
- Approach
- Results
- Conclusion

Approach – Indirect Locomotion Control

Observation

Reinforcement Learning Agent

Direction

Approach – Indirect Locomotion Control

[2] Shigeo Hirose. Biologically inspired robots: snake-like locomotors and manipulators.

Approach – Direct Locomotion Control

Observation

Reinforcement Learning Agent

Locomotion

Approach – Direct Locomotion Control

Agenda

- Motivation
- Methodology
- Approach
- Results
- Conclusion

Results - Tracking Accuracy

Results - Comparison

Results - Comparison

Results – Demonstration Indirect Agent

Results – Demonstration Direct Agent

Agenda

- Motivation
- Methodology
- Approach
- Results
- Conclusion

Conclusion

- Both approaches successfully tracked the target in the training scenario
- Direct agent achieved higher target tracking accuracy and robustness
- Indirect agent performed unstable movement
- Indirect is more transparent and human operators can intervene

Future work:

- Proposal: RL locomotion, human steering
- Control all parameters of the slithering gait
- Rich environments with obstacles
- Applications for snake-like robots with 3D locomotion

Thank you for your attention

References

https://blog.openai.com/learning-dexterity/

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

http://biorobotics.ri.cmu.edu/projects/modsnake/pictures.html

https://biorob.epfl.ch/salamandra

[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal Policy Optimization Algorithms. 7 2017. URL http://arxiv.org/abs/

1707.06347.

[2] Shigeo Hirose. Biologically inspired robots: snake-like locomotors and manipulators.

Oxford University Press, 1993. ISBN 0198562616.

PPO Resources

PPO Paper: https://arxiv.org/abs/1707.06347 [1]

TRPO Paper: https://arxiv.org/abs/1502.05477

Arxiv Insights: https://www.youtube.com/watch?v=5P7I-xPq8u8

OpenAl blog: https://blog.openai.com/openai-baselines-ppo/

Deep RL Bootcamp - Lecture 5: https://youtu.be/xvRrgxcpaHY

Direct Agent 1st Episode

Methodology – Communication Overview

Training – Mean Reward

Training – Mean Episode Length

Training – Episodes per Iteration

Results - Comparison

