

- Part 1: Concepts & Representation -

Administrivia

- **Exam 2** Wednesday, November 5
 - Make-up exams must be scheduled **before** the exam is given in class; no make-ups afterward
- Study Guide will be posted today/tonight
- ▶ HW5 solutions will be posted Sunday after the 48-hour late window closes
- **Lab** Monday (2119/2122 Shelby)
 - Ask questions about exam and homework then

Place Values & Radix Point

Place values for decimal numbers with a fractional part:

Place values for binary numbers with a fractional part:

- So $1011.0011_2 = 2^3 + 2^1 + 2^0 + 2^{-3} + 2^{-4} = 8 + 2 + 1 + 1/8 + 1/16 = 11^3/16$
- Terminology: the "." is called a
 - decimal point when you're writing a decimal number (2014.51)
 - **binary point** when you're writing a binary number (1011.0011₂)
 - radix point in general

- ▶ Integer part: (we did this back in Lecture 2)
 - Divide by 2 until quotient is 0
 - Write remainders in reverse
- Fractional part:
 - Multiply fractional part by 2 (ignoring integer part) until product is 0 or sufficient digits have been obtained
 - Write integer parts in order

- Recall that 1/3 does not have a finite decimal representation (1/3 = 0.3333333333...)
- Some numbers do not have a finite binary representation
 - \blacktriangleright Example: $1/10 = 0.000110011..._2$

$$.1 \times 2 = 0.2$$

 $.2 \times 2 = 0.4$
 $.4 \times 2 = 0.8$
 $.8 \times 2 = 1.6$
 $.6 \times 2 = 1.2$
 $.2 \times 2 = 0.4$

In general, a fraction has a finite binary representation if the denominator has
 2 as the only prime factor

Activity 16 #3

Fixed-Point Representation

- A fixed-point binary representation uses a fixed number of bits f after the radix point to represent approximations to real numbers (actually, rational numbers)
 - Store *integers* in registers/memory, but treat the value as though the low f bits are fractional bits
 - Example: Suppose AL contains 00111011₂
 - The underlying integer value is $59 = 00111011_2$
 - If f = 4, pretend there's a radix point to the right of bit 4, so AL represents $0011.1011_2 = 3^{11}/_{16}$
 - If f = 2, pretend there's a radix point to the right of bit 2, so AL represents $001110.11_2 = 14^3/4$
 - Note: float/double variables in C/Java are different: use *floating-point* representation (future lecture)
- Fixed-point arithmetic can be done using *integer* arithmetic and bitwise operations
 - ▶ Useful for performance integer operations are faster than floating-point operations
 - Also useful on processors that do not have a floating point unit
 - E.g., low-cost embedded microprocessors and microcontrollers

Activity 16 #4

Q-Notation for Fixed Point Numbers

- Notation: $\mathbf{Q}f$ denotes a representation with f fractional bits
 - \triangleright Q31 indicates a representation with 31 fractional bits (Q = "quantity of fractional bits")
 - ▶ Q15 indicates a representation with 15 fractional bits
- Alternative Notation:* **Qm.f** denotes a representation with
 - one sign bit
 - ► *m* integer ("magnitude") bits
 - f fractional bits
 - ightharpoonup ... Total number of bits is 1 + m + f
- Examples: Suppose AL contains 00111011₂
 - ▶ Q4 or Q3.4 Pretend there's a radix point to the right of bit 4, so AL represents $0011.1011_2 = 3^{11}/_{16}$
 - Q2 or Q5.2 Pretend there's a radix point to the right of bit 2, so AL represents $001110.11_2 = 14^3/4$

Scaling Factor

- The value of a fixed point data type is the value of the underlying integer, multiplied by a constant **scaling factor** (sometimes denoted by *S*)
 - \blacktriangleright Example: $1.110_2 = 1110_2 \times 2^{-3}$
- ▶ A Qm.f fixed-point number has f fractional bits \Rightarrow scaling factor $S = 2^{-f}$
- Examples: Suppose AL contains 00111011₂
 - Q4/Q3.4: Scaling factor is 2^{-4} , so AL represents $00111011_2 \times 2^{-4} = 0011.1011_2 = 3^{11}/_{16}$
 - Q2/Q5.2: Scaling factor is 2^{-2} , AL represents $00111011_2 \times 2^{-4} = 001110.11_2 = 14^3/4$
- Scaling factor applies to negative numbers too
 - ▶ The 8 bits 11111111 form the 8-bit two's complement representation of **-1**
 - The 8 bits 111111111 form the 8-bit Q5.2 representation of $-1/4 = -1 \times 2^{-2}$

Example: Q1.2

- **Example:**
 - ▶ Q1.2 \Rightarrow 4 total bits with 2 fractional bits
 - So scaling factor is $2^{-2} = \frac{1}{4}$
 - ▶ 4-bit two's complement integers and Q1.2 values shown:
 - ▶ Each Q1.2 integer is the corresponding integer value \times 2⁻²

```
Integer
            Bits
                      Q1.2
                      1^{3}/_{4}
                                  7/4
            0111
                              =
                              =
            0110
                      1^{1}/_{2}
                      I^{1}/_{4}
                              =
            0101
            0100
                              =
                      ^{3}/_{4}
                              =
            0011
                             =
=
            0010
            0001
            0000
            -\frac{1}{2} = -\frac{2}{4}
            1110
  -2
                      -3/_4 = -3/_4
            1101
                             = -4/4
            1100
                      -1^{1}/_{4} = -\frac{5}{4}
            1011
                      -1^{1}/_{2} = -6/_{4}
            1010
  -6
                     -1^{3}/_{4} = -7/_{4}
            1001
  -7
                      -2 = -8/4
            1000
  –8
```


- One way to find the **range** of representable values (minimum/maximum values):
 - Find minimum and maximum for underlying integer type
 - Multiply by scaling factor
- The **resolution** ε is the smallest positive magnitude that can be represented
 - Example: Smallest Q2-representable positive number is $\varepsilon = .01_2 = 0.25$, so Q2 has a resolution of $^{1}/_{4}$
- ▶ In general, Q*m*.*f* has
 - Range: $[-2^m, 2^m 2^{-f}]$
 - ▶ Resolution: 2^{-f}

Integer	Bits	Q1.2		
7	0111	³ / ₄	=	7/4
6	0110	/ ₂	=	6/4
5	0101	/ ₄	=	⁵ / ₄
4	0100	I	=	4/4
3	0011	³ / ₄	=	3/4
2	0010	1/2	=	² / ₄
I	0001	1/4	=	1/4
0	0000	0	=	0/4
-I	1111	- ¹ / ₄	=	$-1/_{4}$
– 2	1110	$-^{1}/_{2}$	=	$-\frac{2}{4}$
- 3	1101	-3/4	=	-3/4
-4	1100	– I	=	-4/4
– 5	1011	$-1^{1}/_{4}$	=	$-\frac{5}{4}$
– 6	1010	$-1^{1}/_{2}$	=	-6/4
-7	1001	$-1^{3}/_{4}$	=	-7/4
–8	1000	–2	=	-8/4

Rounding Fixed-Point Numbers (1)

- ▶ Recall rounding decimal numbers:
 - To nearest integer: $3.5 \Rightarrow 4 \qquad 3.4 \Rightarrow 3$
 - To nearest 1/10: $3.75 \Rightarrow 3.8$ $3.64 \Rightarrow 3.6$
 - Identify place you want to round to
 - Add 1 in that position if next digit is ≥ 5
 - Drop subsequent digits
- Rounding binary numbers is similar
 - Identify place you want to round to
 - ▶ Add 1 in that position if the next bit is 1
 - Drop subsequent bits
 - To nearest integer: $010.1 \Rightarrow 011$ $010.0 \Rightarrow 010$
 - To nearest 1/2: $011.01 \Rightarrow 011.1 \quad 011.11 \Rightarrow 100.0$

Rounding Fixed-Point Numbers (2)

- ▶ Equivalently, for decimal numbers:
 - Add .5, .05, .005, etc. ($\frac{1}{2}$ of unit to round to)
 - Drop subsequent digits
 - To nearest integer:

$$3.5 + .5 = 4.0 \implies 4$$

$$3.4 + .5 = 3.9 \implies 3$$

To nearest 1/10:

$$3.75 + .05 = 3.80 \Rightarrow 3.8$$
 $3.64 + .05 = 3.69 \Rightarrow 3.6$

- Equivalently, for binary numbers:
 - Add .1, .01, .001, etc. (1/2) of unit to round to
 - Drop subsequent bits
 - To nearest integer:

$$011.1 + .1 = 100.0 \Rightarrow 100$$
 $011.0 + .1 = 011.1 \Rightarrow 011$

To nearest 1/2: $011.01 + .01 = 011.10 \Rightarrow 011.1$

- \blacktriangleright To convert a fixed-point number with scaling factor R to one with scaling factor S:
 - Multiply the underlying integer value by $R \div S$
 - I.e., multiply by the ratio R/S
 - May require rounding (when converting to a representation with fewer fractional bits)

- Part 2: Arithmetic -

Addition & Subtraction

Exercise: 000001.01_2 $1^{1}/_4$ 00000101_2 5 $+ 0000000.01_2$ $+ 1/_4$ $+ 00000001_2$ + 1

Activity 16 #7

- ▶ To add/subtract fixed-point numbers, use integer addition/subtraction
 - Use add, sub instructions as usual
 - ▶ Flags represent same conditions (overflow, carry, sign, zero) as for integer arithmetic
- Why does it work?
 - Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
 - $n_1 \cdot 2^{-f} + n_2 \cdot 2^{-f} = (n_1 + n_2) \cdot 2^{-f}$
 - So the sum of the integer values is the representation of the fixed-point sum

Multiplication

Exercise: 000001.00₂ 00000100₂ 1

 $\times 000001.00_2 \times 00000100_2 \times 1$

Activity 16 #8

▶ To multiply two **Q***f* fixed-point numbers:

- 1. Multiply the underlying integers (imul), using twice as many bits to store the product
- 2. If product is nonnegative, add $(1 \ll (f-1))$ to the product to ensure correct rounding
- 3. Arithmetic right-shift by f bits
- Summary: $((a \times b) + (1 \ll (f-1))) \gg^s f$
- Why does it work? (Ignoring rounding)
 - Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
 - $n_1 \cdot 2^{-f} \cdot n_2 \cdot 2^{-f} = n_1 \cdot n_2 \cdot 2^{-f} \cdot 2^{-f}$
 - Right-shift by f bits to multiply by 2^f , giving = $n_1 \cdot n_2 \cdot 2^{-f}$

Division

▶ To divide two Qf fixed-point numbers $(a \div b)$:

- 1. Use twice as many bits to store the dividend (a), and left-shift it by f bits
- 2. One way to ensure the quotient is correctly rounded (rounding away from 0):
 - If the quotient will be positive, add $b \div 2$ to the dividend
 - If the quotient will be negative, subtract $b \div 2$ from the dividend
- 3. Perform integer division (idiv), returning the quotient

Summary:
$$((a \ll f) + \operatorname{sgn}(\mathbf{a} \div \mathbf{b}) \cdot (\mathbf{b} \gg^{s} 1)) \div \mathbf{b}$$

$$\operatorname{sgn}(\mathbf{n}) = \begin{cases} -1 & \text{if } \mathbf{n} < 0 \\ 0 & \text{if } \mathbf{n} = 0 \\ 1 & \text{if } \mathbf{n} > 0 \end{cases}$$

- Why does it work? (Ignoring rounding)
 - Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
 - Left-shifting n_1 by f bits multiplies it by 2^f , so this represents $n_1 \cdot 2^{-2f}$

$$\frac{n_1 \cdot 2^{-2f}}{n_2 \cdot 2^{-f}} = \frac{n_1 \cdot 2^f}{n_2 \cdot 2^{2f}} = \frac{n_1 \cdot 2^f}{n_2 \cdot 2^f} = n_1 \cdot n_2 \cdot 2^{-f}$$