V-3 BROUÉ'S ABELIAN DEFECT GROUP CONJECTURE

Let $k = \overline{\mathbb{F}_{\ell}}$ and $G \nvDash a finite group G :$

(i) The restriction map $H^*(G_k) \longrightarrow H^*(D_k)$ is surjective.

(ii) If D is abelian the restriction map inclues an isomorphism

 $H^*(G,k) \xrightarrow{\sim} H^*(N_G(D),k)$ [Mislin]

 $H^*(G,k) = Ext_{kG}^*(k,k)$ can be computed in the derived category of the principal block (recall that $Ext_{kG}(k,k) = Hom_{D^b(kG)}(k,k[i])$)

Generalization to other representations and other blacks:

Conj: let B be a block of kG with abelian defect D

b be the Brower correspondent for NG(D)

Then D'(B-mod) = D'(b-mod)

Rmk: Disa Sylow I-subgroup when Bis the principal block $=> H'(G_{,k}) \sim H'(N_{G}(\dot{D}),k)$ But the restriction functor does not include a derived equipmence in general. BADGC was proved in the following cases: . G l-sdrable . D cyclic . D : 7/27 x 7/27 . G = Gln(9) and In + few other coses Problem: finding suitable hilling complexes 2) Consequences of the conjecture Recall that # In B = rkz Ko(B-mod) When BADGC holds, one gets #IrkB = # Irkb (Baver characters) #IrkB = #IrkB (adinary characters) I actually a bijection with signs + numerical consequences depending on the version of the conj

	1	(12)(3/4)	(123)	(12345)	(12354)			s	٢	r ²
			١			1	J]	l	1
γ ₃	3		•	d	え	- Y,	-2	•	٠d	+ ∝
ኢ'	3		•	る	ď	- T,	<u>- 2</u>	•	<u>+</u> ح	+ ∝
γ,	4		J	-1	-1	- T,	-1	+1	-1	- J
11/4	15/	////////	//////		//////					

with
$$\alpha = \frac{1+15}{2}$$
 and $\overline{\alpha} = \frac{1-15}{2}$

3) Finite reductive groups

Now G connected reductive group $/\mathbb{F}_p$ and $F: G \rightarrow G$ Frobenius We assume $K \supseteq \overline{\mathbb{Q}}_{\ell}$ with $l \neq p$

For constructing ordinary characters of G^F we used the cohomology groups $H_c^i(\widetilde{X}(w),K)$

There are remions over the and Fe but they encode limited homological information for the representations of GF

Better: a bounded complex of (GG^F, GT^{WF}) -bimodules $RF_{c}(\tilde{X}(w), G)$

such that

- $H_c^{i}(\widetilde{X}(w), \Lambda) \sim H^{i}(R\Gamma_c(\widetilde{X}(w), 0) \otimes_{G} \Lambda)$ For any ring $\Lambda \in \{K, 0, k\}$
- . The terms of $R\Gamma_c(\widehat{X}(w), 0)$ are finitely generated and projective as $0G^F$ and $0T^{wF}$ modules
- $R\Gamma_c(\widetilde{X}(w), 0)$ is well defined up to quanti-isomorphism

=> triangulated function

$$D^{\mathsf{L}}(\mathsf{GT}^{\mathsf{WF}}) \longrightarrow D^{\mathsf{L}}(\mathsf{GG}^{\mathsf{F}})$$

$$C^{\bullet} \longmapsto \mathsf{R}\Gamma_{\mathsf{C}}(\widetilde{\mathsf{X}}(\mathsf{W}),\mathsf{O}) \otimes_{\mathsf{GT}^{\mathsf{WF}}} C^{\bullet}$$

Let D be a Sylow l-subap of G^F

T' max torus s.t D S T^F (exists if l > h)

as abelian defect!

Assume
$$C_{G}(D) = T^{3}$$

$$N_{G^{F}}(D) = N_{G^{F}}(T')$$

$$= V_{G^{F}}(T')$$

