

ALLEVIATING THE COST OF BAYESIAN CALIBRATION WITH EMBEDDED MODEL ERROR

(USING GAUSSIAN PROCESS SURROGATES AND MULTILEVEL MCMC)

Arun Hegde

(ahegde@sandia.gov)

Cosmin Safta Habib Najm

Elan Weiss Wolfgang Windl

OVERVIEW

- Motivating example: Bayesian calibration for interatomic potentials
- Review two model error frameworks
 - Additive model error
 - Embedded model error

- Computational strategy for Gaussian embedded model error
 - Likelihood approximation
 - Gaussian Process (GP) surrogates with Gaussian inputs
 - Sparse GPs & multilevel MCMC for inference
- Case study: calibrating an EAM potential with embedded model error

MOTIVATING EXAMPLE: CALIBRATING INTERATOMIC POTENTIALS

Design of advanced energy storage devices often requires materials simulations at the *atomistic* level.

For practical scale systems, density functional theory (DFT) based simulations are untenable, motivating the use of empirical methods involving **interatomic potentials**.

Given their empirical nature, **effective calibration of such models** requires careful consideration of the **model error***.

^{*}Hegde, A., Weiss, E., Windl, W., Najm, H., & Safta, C. "Bayesian calibration of interatomic potentials for binary alloys." *Computational Materials Science* 214 (2022): 111660.

MOTIVATING EXAMPLE: CALIBRATING INTERATOMIC POTENTIALS

5-parameter RAMPAGE* Embedded Atom Method (EAM) potential.

$$E_{i} = \frac{1}{2} \sum_{j \neq i} V_{\alpha\beta}(r_{ij}) + F_{\alpha} \left(\sum_{j \neq i} \rho_{\alpha\beta}(r_{ij}) \right)$$

$$V_{AB}(r) = D \left(e^{-2\alpha(r - r_{eq})} - 2e^{-\alpha(r - r_{eq})} \right)$$

$$\rho_{BA}(r) = r^{6} \left(e^{-S_{A}r} + 2^{9}e^{-2S_{A}r} \right)$$

$$\rho_{AB}(r) = r^{6} \left(e^{-S_{B}r} + 2^{9}e^{-2S_{B}r} \right)$$

*L. Ward, A. Agrawal, K.M. Flores, and W. Windl. Rapid production of accurate embedded-atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619

Model output: **102** quantities of interest (QoIs) total. 17 compositions ranging from **3%** Au to **97%** Au For each composition, 6 physical properties:

- lattice parameter
- mixing enthalpy
- elastic constants C11, C12, C44
- bulk modulus

Indexing the 102 different QOIs:

finite composition space $x \in \mathcal{X}$ physical properties $i \in \{\text{lat}, \text{mix}, \text{C}_{11}, \text{C}_{12}, \text{C}_{44}, \text{bulk}\}$

BAYESIAN CALIBRATION WITH ADDITIVE MODEL ERROR

$$y(x_i) = \mathcal{M}(x_i; \theta) + \epsilon(x_i)$$
DFT data simulation model error

$$p(\theta, \epsilon | y) = \frac{p(y | \theta, \epsilon)p(\theta, \epsilon)}{p(y)}$$

Principal objective is to jointly infer the unknown parameters and the model error given DFT data.

BAYESIAN CALIBRATION WITH ADDITIVE MODEL ERROR

Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(3), 425-464.

TRANSFERABILITY TO NEW PREDICTION DOMAINS

An additive error model **does not always** transfer to new prediction domains, particularly when the new prediction QoIs differ from the calibration QoIs

TRANSFERABILITY TO NEW PREDICTION DOMAINS

An additive error model does not always transfer to new prediction domains, particularly when the new prediction QoIs differ from the calibration QoIs

EMBEDDED MODEL ERROR: MULTIVARIATE GAUSSIAN

Simplified form of embedded model error -- model error added to the model parameters

- Full uncertainty representation model error entirely <u>transferable</u> to new prediction domains
- Predictions constrained by the model predictive distributions supported only by values realizable by the model.
 - predictions with uncertainties satisfy the model constraints (e.g., conservation laws), but **also** inherit the biases of the model.

ABC-BASED LIKELIHOOD APPROXIMATION

ABC = Approximate Bayesian Computation

Challenge: the corresponding likelihood does not have a closed form.

Workaround: use an ABC-based approximate likelihood strategy*

$$p_{\mathrm{ABC}}(y|x,\theta,S) = \frac{1}{\nu\sqrt{2\pi}} \prod_{x,i}^{N} \exp\left(-\frac{\frac{\mathsf{nominal error}}{(\mu(x_i) - y(x_i))^2 + (\sigma(x_i) - \gamma|\mu(x_i) - y(x_i)|)^2}}{2\nu^2}\right)$$

$$\mu(x_i) = \mathbb{E}_{\lambda \sim \mathcal{N}(\theta, S)}[\mathcal{M}(x_i; \lambda)]$$

$$\sigma(x_i) = \sqrt{\mathbb{E}_{\lambda \sim \mathcal{N}(\theta, S)}[(\mathcal{M}(x_i; \lambda) - \mu(x_i))^2]}$$

ABC-BASED LIKELIHOOD APPROXIMATION

ABC = Approximate Bayesian Computation

Challenge: the corresponding likelihood does not have a closed form.

Workaround: use an ABC-based approximate likelihood strategy*

$$p_{\mathrm{ABC}}(y|x,\boldsymbol{\theta},S) = \frac{1}{\nu\sqrt{2\pi}} \prod_{x,i}^{N} \exp\left(-\frac{\frac{\mathsf{nominal error}}{(\mu(x_i) - y(x_i))^2 + (\sigma(x_i) - \gamma|\mu(x_i) - y(x_i)|)^2}}{2\nu^2}\right)$$

Expensive! Many model evaluations (samples) required per likelihood evaluation.

$$\mu(x_i) = \mathbb{E}_{\lambda \sim \mathcal{N}(\theta, S)}[\mathcal{M}(x_i; \lambda)]$$

$$\sigma(x_i) = \sqrt{\mathbb{E}_{\lambda \sim \mathcal{N}(\theta, S)}[(\mathcal{M}(x_i; \lambda) - \mu(x_i))^2]}$$

COST OF A SINGLE ABC-LIKELIHOOD EVALUATION

surrogate encompassing this boxed region.

GP SURROGATES WITH GAUSSIAN INPUTS

Computational expense of the simulation often necessitates the use of cheaper-to-evaluate surrogate models of the θ -to- $\mathcal{M}(x_i;\theta)$ map.

When the surrogate models are Gaussian processes (GPs) with Gaussian/RBF kernels,

$$k(\theta, \theta'; \nu) = \sigma_k^2 \exp\left(-\frac{1}{2}(\theta - \theta')^T \Gamma^{-1}(\theta - \theta')\right)$$

The GP prediction equations at a new parameter value are Gaussian with mean:

training data: $\{(\theta^j, q^j)\}_{i=1}^M$

$$m_{\star}(\theta) = m(\theta) + K(\theta, \Theta)\beta$$
 with $\beta = (K(\Theta, \Theta) + \sigma_n^2 I)^{-1}(q - m(\Theta))$

 σ_n^2 is from the GP likelihood (additive noise)

and variance:

$$\sigma_{\star}^{2}(\theta) = \sigma_{k}^{2} - K(\theta, \Theta)(K(\Theta, \Theta) + \sigma_{n}^{2}I)^{-1}K(\Theta, \theta)$$

GP SURROGATES WITH GAUSSIAN INPUTS

Surrogate model:
$$\mathcal{M}(x_i; \lambda) \longrightarrow \mathcal{N}(m_{\star}(\lambda), \sigma_{\star}^2(\lambda))$$

with embedding: $\lambda \sim \mathcal{N}(\theta, S)$

induces a pushforward density on the surrogate output

If the embedded model error is Gaussian, then we can analytically* compute the quantities that appeared in the ABC-likelihood,

$$m_{x_i}(\theta, S) = \mu(x_i) = \beta^T \ell$$

$$v_{x_i}(\theta, S) = \sigma^2(x_i) = \sigma_k^2 + \sigma_n^2 - \operatorname{trace}((K(\Theta, \Theta) + \sigma_n^2 I)^{-1} L)$$
$$+ \operatorname{trace}((L - \ell \ell^T) \beta \beta^T)$$

where $\ell \in \mathbb{R}^M$ and $L \in \mathbb{R}^{M \times M}$ require $\mathcal{O}(M)$ and $\mathcal{O}(M^2)$ computations (with respect to the surrogate model training data).

^{*}Candela, J. Q., Girard, A., Larsen, J., & Rasmussen, C. E. (2003, April). Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). (Vol. 2, pp. II-701). IEEE.

REDUCTION THROUGH SPARSE GPS AND MULTI-LEVEL MCMC

Challenge: each ABC-likelihood evaluation requires N surrogate evaluation, where each surrogate costs $\mathcal{O}(M^2)$ to <u>evaluate</u>.

Strategy: Build reduced-cost surrogate models via inducing point (pseudo data) approximations to GPs.

• Evaluation cost $\mathcal{O}(J^2)$ where J is the number of inducing points.

increasing fidelity, increasing evaluation cost

leads to likelihoods of varying fidelity

use multi-level MCMC algorithms for inference, e.g., multi-level delayed-acceptance (MLDA)*

*Lykkegaard, M. B., Dodwell, T. J., Fox, C., Mingas, G., & Scheichl, R. (2023). Multilevel delayed acceptance MCMC. SIAM/ASA Journal on Uncertainty Quantification, 11(1), 1-30.

CASE STUDY: CALIBRATING POTENTIALS WITH EMBEDDED ERROR

Case 1: Embedding model error into the 5 parameters *individually* v.s.

Case 2: Embedding into all 5 parameters *simultaneously* (includes all correlations between model parameters)

Case 1 Setup

- model parameters + univariate embedding
- 102 Qols
- ABC-Likelihood w/ GP surrogates
- Adaptive MCMC
 - resulted in low autocorrelations, effective sample size > 2000

Case 2 Setup

- model parameters + multivariate embedding
- 102 Qols
- ABC-Likelihood w/ GP surrogates
- Adaptive MCMC: very high autocorrelations, even after > 1 week of sampling
 - Sparse GPs + Multilevel MCMC (MLDA)
 - 3 levels (w/ 500 and 1000 inducing points)
 - Very low autocorrelations, effective sample size > 2000

Individual embedding

- Embeddingdependent predictive capabilities
- Compositiondependent trends
- Full embedding generally provides better coverage of the data

Full embedding

165

In comparison with the additive model error, this uncertainty is fully transferable.

Individual embedding

- Embeddingdependent predictive capabilities
- Compositiondependent trends

Even with the full embedding, the model struggles to predict the DFT data at low compositions gold – reflects limitations of the underlying potential model.

SUMMARY

- UQ & calibration for interatomic potential models
- Embedded model error (Gaussian embedding)
 - ABC-likelihoods & GP surrogates
 - Further reduction through sparse GPs & multilevel MCMC
- Case study: predictive utility of embedded model error
 - Full uncertainty representation new predictions account for the calibrated model error
 - Depicted uncertainties are fully transferable to new prediction settings
 - Predictions constrained by the model predictions with uncertainties satisfy the model constraints, and in doing so also inherit the biases of the model.
 - Embedding-dependence and composition-dependence in predictions
 - Inability to predict certain Qols within uncertainty
 - Combined, these findings provide <u>new and useful diagnostic information</u> that was not present in our prior work.

ACKNOWLEDGEMENTS

Arun Hegde, **Cosmin Safta**, and **Habib Najm** are supported by the U.S. Department of Energy, Office of Science:

- Advanced Scientific Computing Research (ASCR)
- Scientific Discovery through Advanced Computing (SciDAC) program through the FASTMath Institute
- National Energy Research Scientific Computing Center (NERSC)

Elan Weiss and Wolfgang Windl are supported by:

- Air Force Office of Scientific Research (AFOSR) under Contract No.FA9550-19-1-0378
- Ohio Supercomputer Center, Project No. PAS0072

National Energy Research Scientific Computing Center

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the presentation do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

APPENDIX

ILLUSTRATION: PREDICTIONS WITH AND WITHOUT MODEL ERROR

With (left, grey) and without (right, blue) a simple form of additive error (iid Gaussian)

Notably,

- predictions w/o model error under-represent uncertainty.
- predictions with model error provide coverage of the DFT data.

In *new* prediction settings – where additive model error cannot be transferred -- the uncertainty will be considerably under-represented.

^{*}Hegde, A., Weiss, E., Windl, W., Najm, H., & Safta, C. "Bayesian calibration of interatomic potentials for binary alloys." *Computational Materials Science* 214 (2022): 111660.

GP SURROGATES WITH GAUSSIAN INPUTS

Surrogate model:
$$\mathcal{M}(x_i; \lambda) \longrightarrow \mathcal{N}(m_{\star}(\lambda), \sigma_{\star}^2(\lambda))$$

If the embedded model error is Gaussian, then we can analytically* compute the quantities that appeared in the ABC-likelihood

$$m_{x_i}(\theta, S) = \mu(x_i) = \beta^T \ell$$

$$v_{x_i}(\theta, S) = \sigma^2(x_i) = \sigma_k^2 + \sigma_n^2 - \operatorname{trace}((K(\Theta, \Theta) + \sigma_n^2 I)^{-1} L) + \operatorname{trace}((L - \ell \ell^T) \beta \beta^T)$$

$$\ell_i = \sigma_k^2 \frac{1}{\sqrt{\det(\Gamma_A^{-1}S + I)}} \exp\left(-\frac{1}{2}((\lambda_{\mathcal{A}^c} - \theta_{\mathcal{A}^c}^i)^T \Gamma_{\mathcal{A}^c}^{-1}(\lambda_{\mathcal{A}^c} - \theta_{\mathcal{A}^c}^i)\right) \exp\left(-\frac{1}{2}(\theta - \theta_{\mathcal{A}}^i)^T (S + \Lambda_{\mathcal{A}})^{-1}(\theta - \theta_{\mathcal{A}}^i)\right)$$

$$L_{ij} = k(\lambda|_{\lambda_{\mathcal{A}}=\theta}, \theta^{i})k(\lambda|_{\lambda_{\mathcal{A}}=\theta}, \theta^{j})$$

$$\cdot \frac{1}{\sqrt{\det(2\Gamma_{\mathcal{A}}^{-1}S + I)}} \exp\left(2\left(\theta - \frac{1}{2}(\theta_{\mathcal{A}}^{i} + \theta_{\mathcal{A}}^{j})\right)^{T} \Gamma_{\mathcal{A}}^{-1}(2\Gamma_{\mathcal{A}}^{-1} + S^{-1})^{-1}\Gamma_{\mathcal{A}}^{-1}\left(\theta - \frac{1}{2}(\theta_{\mathcal{A}}^{i} + \theta_{\mathcal{A}}^{j})\right)\right).$$

^{*}Candela, J. Q., Girard, A., Larsen, J., & Rasmussen, C. E. (2003, April). Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). (Vol. 2, pp. II-701). IEEE.

