나란 스터디 - GPU/CUDA 프로그래밍 입문 스터디

강의 개요

북클럽 나란에서는 프로그래밍 기초 지식을 가진 초보자를 대상으로 CUDA와 GPU 병렬 프로그래밍을 함께 공부하는 스터디 그룹을 시작합니다. CUDA by Example (2010, Sanders & Kandrot) 책과 Udemy – The Complete Course of CUDA Programming (2025) 강의를 활용하여 스레드, 블록, 메모리 관리, 스트림 등 핵심 CUDA 개념을 배웁니다. 모든 토론과 협업은 북클럽 나란 (www.cyberseowon.com)과 Slack (krbookclub.slack.com)에서 진행될 예정입니다. AI 프로그래밍을 배워보고 싶으신 분들 모두 환영합니다.

- 기간: 2025년 9월 6일(오리엔테이션) ~ 11월 1일 (8주)
- 주당 시간: 7~8시간 (책 읽기 2시간, 강의 0.5~1시간, 코딩 2~3시간, 리뷰 2시간)
- 사전 요구 지식: C/C++ 기초, GPU 경험 불필요

강의 자료

- 책: <u>CUDA by Example</u> (2010, Jason Sanders & Edward Kandrot)
- Udemy: The Complete Course of CUDA Programming
- 도구: NVIDIA GPU 또는 Google Colab (T4 GPU, 무료), CUDA Toolkit 12.x
- 보조 자료: NVIDIA CUDA C++ Programming Guide (https://docs.nvidia.com), CUDA Samples (https://github.com/NVIDIA/cuda-samples), Nsight Compute Profiling Guide

진행방식

• 주간 읽기, 강의 시청, 코딩 실습, Slack 토론, 주간 리뷰

참가비

- 책 구매 및 강의비: 대략 \$90 (개인별 부담, 오리엔테이션 때 Udemy 프로모션 정보 공유 예정)
- 스터디 그룹 참가비: \$50 (동기 부여를 위한 참가비로 모임을 끝까지 마무리하시면 환불해드립니다.)

학습 목표

- CUDA 병렬 프로그래밍 모델(스레드, 블록, 그리드) 이해
- 기본 CUDA 커널 작성(예: 벡터 덧셈, 히스토그램)
- 메모리 관리(글로벌, 공유, 상수)와 스트림 적용

- Nsight를 활용한 간단한 CUDA 프로그램 프로파일링 및 최적화 (선택)
- 최종 프로젝트(예: 이미지 블러)로 책과 강의 실습 통합

주차별 계획

주차	날짜	책 챕터	Udemy 강의	주요 주제	활동	과제
오리 엔테 이션	2025.9.6	-	Introduction to Parallel Computing and CUDA programming (0.5h)	스터디 소개, 환경 설정	스터디 목표 공유, CUDA Toolkit/Colab 설정, Slack 가입	환경 설정 완료, Slack 채널에서 인사
1	2025.9.1	1~2 (~40p)	CUDA Programming Basics (1h 13min)	CUDA 개요, 환경 설정, 벡터 덧셈	챕터 1~2 읽기, 벡터 덧셈 코딩, Colab 설정 확인	Slack 채널에서 GPU vs CPU 토론
2	2025.9.2 0	3 (~30p)	CUDA Thread Execution (1h)	스레드, 블록, 그리드, 행렬 덧셈	챕터 3 읽기, 행렬 덧셈 코딩, 스레드 인덱싱 실습	블록 크기 실험, Slack 채널에서 결과 공유
3	2025.9.2 7	4 (~30p)	Memory Management and Optimization Techniques (1h)	글로벌/ 공유 메모리, 병렬 합계	챕터 4 읽기, 병렬 합계 코딩, 메모리 전송 테스트	메모리 사용 비교, Slack 토론

4	2025.10. 4	5 (~30p)	Advanced CUDA Programming Techniques (0.5h)	공유 메모리, 동기화, 히스토그 램	챕터 5 읽기, 히스토그램 코딩, syncthreads 적용	뱅크 충돌 분석, Slack 토론
5	2025.10. 11	6~7 (~50p)	CUDA Performance Analysis and Optimization (0.5h)	상수 메모리, 스트림, 이벤트	챕터 6~7 읽기, 스트림 기반 커널, 이벤트 테스트	스트림 vs 비스트림 시간 비교, Slack 토론
6	2025.10. 18	8 (~30p)	CUDA Thread Execution (1h 11min)	원자 연산, 병렬 리덕션	챕터 8 읽기, 원자 히스토그램, 리덕션 코딩	원자 vs 비원자 성능 비교, Slack 토론
7	2025.10. 25	9~10 (~50p)	CUDA Case Studies & Project (1h 15min)	그래픽스 상호운용 , 다중 GPU	챕터 9~10 읽기, 다중 GPU 코드(AWS EC2), 강의 실습	다중 GPU 확장성 토론, Slack 채널
8	2025.11.1	11 (~20p)	CUDA Case Studies & Project (0.5h)	이미지 블러 프로젝트 , 최적화	챕터 11 읽기, 이미지 블러 구현, Nsight 프로파일링	프로젝트 발표, SNS 포스트 (#CUDA)

주간 활동

- 읽기 (2시간): 책 챕터 읽고 주요 개념 요약, 슬랙에 공유
- 강의 (0.5~1시간): Udemy 강의 시청, 강의 제공 플레이그라운드 또는 Google Colab으로 실습. 진도를 슬랙에 공유
- 코딩 (2~3시간): 책 예제(예: 히스토그램)와 강의 실습(예: 행렬 곱셈) 구현, 코드를 슬랙에 공유
- 리뷰 (2시간): 북클럽 나란 Slack 채널에서 해당 주차 내용 리뷰 발표

도구 및 설정

- 환경: CUDA Toolkit 12.x 설치 (https://developer.nvidia.com/cuda-downloads). GPU 없는 경우 Google Colab(T4 GPU, 무료) 또는 AWS EC2 G4(~\$0.5~\$1/시간) 사용.
- 협업: 북클럽 나란 Slack 채널에서 토론
- 프로파일링 (선택): Nsight Systems/Compute로 성능 분석 (https://developer.nvidia.com/nsight-systems).

연락처

• 스터디 리더: @바람 (admin@cyberseowon.com)

• 북클럽 나란: <u>www.cyberseowon.com</u>

• Slack: krbookclub.slack.com

참가 신청폼

- 참가를 원하시는 분들은 다음 참가 신청폼을 작성해주세요.
- https://bit.ly/4mhBEjl