

Skript Einführung in die Funktionalanalysis

Mitschrift der Vorlesung "Einführung in die Funktionalanalysis" von Prof. Dr. Wilhelm Winter

Jannes Bantje

7. November 2014

Aktuelle Version verfügbar bei:

GitHub (inklusive Sourcecode)
https://github.com/JaMeZ-B/latex-wwu♂

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Einführung in die Funktionalanalysis, WiSe 2014", gelesen von Prof. Dr. Wilhelm Winter. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com om notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss!

Vorlesungshomepage

https://wwwmath.uni-muenster.de/u/wilhelm.winter/wwinter/funktionalanalysis.html

¹zB. https://try.github.io/levels/1/challenges/1亿, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1.	Metrische Räume und der Satz von Baire						
	1.1.	Definition: Metrischer Raum	1				
	1.2.	Definition: Offen, abgeschlossen und Abschluss	1				
	1.3.	Definition: Stetigkeit, gleichmäßige Stetigkeit, Isometrie	1				
	1.4.	Definition: Cauchy-Folge und Vollständigkeit	1				
	1.5.	Satz: Existenz einer eindeutigen Vervollständigung metrischer Räume	2				
	1.6.	Definition: Raum der beschränkten, stetigen Abbildungen	3				
	1.7.	Bemerkung: $d_{W,X}$ als Metrik auf $C(W,X)$	3				
	1.8.	Proposition: X vollständig $\Rightarrow C - B(W, X)$ und $C8W, X$ vollständig $\dots \dots \dots$	3				
	1.9.	Proposition über eine Folge von Bällen	4				
	1.10.	Satz von Baire	4				
		Bemerkungen zum Satz von Baire	5				
		Korollar: Satz der gleichmäßigen Beschränktheit	6				
2	Norm	nierte Räume, Hahn-Banach Sätze	7				
۷.	2.1.	Definition: Topologischer Vektorraum	7				
	2.2.	Proposition: Unterräume topologischer Vektorräume sind topologische Vektorräume	7				
	2.3.	Proposition: Normierte Vektorräume sind topologische Vektorräume	7				
	2.3.	Proposition: Stetigkeit einer linearen Abbildung zwischen topologischen Vektorräumen	7				
	2.5.	Definition: Stetige Funktionale und Operatoren	8				
	2.5.	Bemerkung: Vektorraumstruktur auf $L(X,Y)$, Algebrastruktur auf $L(X,X)$	8				
	2.7.	Proposition: Stetigkeit linearer Abbildungen zwischen normierten Vektorräumen	8				
	2.7.	Definition: Operatornorm	8				
	2.9.	Propostion: $L(X,Y)$ ist ein normierter Raum mit der Operatornorm	9				
		Definition: Normierte \mathbb{K} -Algebra	9				
		Beispiele für normierte Algebren	9				
		Proposition: Norm auf dem Produkt normierter Räume	9				
		Proposition und Definition: Norm auf dem Quotientenraum	10				
			10				
		Beispiel für eine Banachalgebra	11				
			11				
		Definition: Sublineare Abbildung	11				
		Beispiele für sublineare Abbildungen \dots	11				
		Proposition: Die sublinearen Abbildungen $\mathcal{S}(X)$ sind nach unten induktiv geordnet	12				
		Proposition	12				
		Satz von Hahn-Banach					
		Satz (Hahn-Banach): Existenz einer linearen Fortsetzung	13				
		Satz	13				
		Satz	14				
		Definition: Konvexe Teilmenge eines \mathbb{K} -Vektorraums	14				
		Satz	14				
	2.27.	Satz	15				
3.	-	Operatoren zwischen Banachräumen. Die Sätze von der offenen Abbildung und vom abge-					
		ssenen Graphen	16				
	3.1.	Proposition: Y vollständig $\Rightarrow L(X,Y)$ ist vollständig $\dots \dots \dots \dots \dots$	16				
	3.2.	Corollar: Der Dualraum ist vollständig, $L(X,X)$ ist Banachalgebra, falls X Banachraum					
		ist	16				
	3.3	Definition und Proposition: lineare Isometrie $\iota_X:X\to X^{**}$	16				

Inhaltsverzeichnis

	3.5.	Definition und Proposition	18					
Α.	Anha		19					
Index								
Abbildungsverzeichnis								
То	do list	±	В					

//Inhaltsverzeichnis

1. Metrische Räume und der Satz von Baire

1.1. Definition

Ein **metrischer Raum** ist ein Paar (X,d), wobei X eine Menge und $d: X \times X \to [0,\infty)$ ist, sodass

14 Okt

1)
$$d(x,y) = 0 \iff x = y \ \forall x, y \in X$$

2)
$$d(x,y) = d(y,x) \ \forall x,y \in X$$

3)
$$d(x,z) \le d(x,y) + d(y,z) \ \forall x, y, z \in X$$

1.2. Definition

Sei (X, d) ein metrischer Raum

• Eine Teilmenge $U\subseteq X$ heißt **offen**, falls für jedes $x\in U$ ein $\varepsilon>0$ existiert, so dass

$$B(x,\varepsilon) := \{ y \in X \mid d(x,y) < \varepsilon \} \subset U$$

- Eine Teilmenge $A \subset X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist (als Teilmenge von X).
- $\mathcal{T}X := \{U \subset X \mid U \text{ offen}\}$ ist die Topologie auf X (die von der Metrik d induziert wird)
- Falls $W \subset X$ eine Teilmenge ist, dann bezeichnet \overline{W} den **Abschluss** von W, d.h. die kleinste abgeschlossene Teilmenge von X, die W enthält. Es gilt

$$\overline{W} = \bigcap_{A \subset X \text{abg.}, W \subset A} A$$

Für metrische Räume gilt: $\overline{W}=\{\lim_n x_n\,|\, (x_n)_n\subset W \text{ konvergente Folge}\}$. Warum gilt $W\subset \overline{W}$?

1.3. Definition

Eine Abbildung $f:X \to Y$ zwischen zwei metrischen Räumen (X,d_X) und (Y,d_Y) heißt

- stetig in $x \in X$, falls $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x,x') < \delta \Longrightarrow d_Y\big(f(x),f(x')\big) < \varepsilon$
- stetig, falls f an jedem Punkt $x\in X$ stetig ist. (Äquivalent: Für jede offene Menge V in Y ist $f^{-1}(V)$ offen in X)
- gleichmäßig stetig, falls $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, x' \in X : d_X(x, x') < \delta \Longrightarrow d_Y \big(f(x), f(x') \big) < \varepsilon.$
- f heißt Isometrie, falls $\forall x, x' \in X : d_X(x, x') = d_Y(f(x), f(x'))$.

automatisch injektiv

• f heißt **isometrischer Isomorphismus**, falls f bijektiv und isometrisch ist.

 f^{-1} auch

1.4. Definition

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) heißt **Cauchy**, falls

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, k > N : d(x_n, x_k) < \varepsilon.$$

(X,d) heißt **vollständig**, falls jede Cauchy-Folge in X konvergiert.

1.5. Satz

Sei (X,d) ein metrischer Raum. Dann existiert ein vollständiger metrischer Raum (\tilde{X},\tilde{d}) und eine Isometrie $\iota:X\hookrightarrow \tilde{X}$, sodass $\overline{\iota(X)}=\tilde{X}$ (d.h. $\iota(X)$ ist dicht in \tilde{X}). (\tilde{X},\tilde{d}) heißt **Vervollständigung** von (X,d) und ist eindeutig bis auf isometrische Isomorphie.

Beweis

Eindeutigkeit: Angenommen, (\hat{X},\hat{d}) ist ein weiterer vollständiger metrischer Raum und $\kappa: X \to \hat{X}$ eine Isometrie mit $\overline{\kappa(X)} = \hat{X}$. Definiere $\gamma: \hat{X} \to \hat{X}$ wie folgt: Falls $y \in \hat{X}$, wähle eine Folge $(x_n)_{n \in \mathbb{N}}$ in X, sodass $y = \lim_{n \to \infty} \kappa(x_n)$. Setze nun

$$\gamma(y) := \lim_{n \to \infty} \iota(x_n) \in \tilde{X}$$

Zu zeigen: γ ist ein isometrischer Isomorphismus.

Injektivität: Seien $y, y' \in \hat{X}$ mit $\gamma(y) = \gamma(y')$. Dann existieren Folgen $(x_n)_n, (x'_n)_n$ in X mit

$$\lim_{n \to \infty} \iota(x_n) = \lim_{n \to \infty} \iota(x'_n)$$

Existenz: Konstruktion von (\tilde{X}, \tilde{d}) : Setze $Y := \{(x_n)_{n \in \mathbb{N}} \mid (x_n)_n \text{ ist Cauchy-Folge in } X\}$. Definiere

$$(x_n)_n \sim (x'_n) : \iff \lim_{n \to \infty} d(x_n, x'_n) = 0$$

 \sim ist eine Äquivalenzrelation auf Y. Definiere nun $\tilde{X}:=Y/\sim$ und $\tilde{d}:\tilde{X}\times\tilde{X}\to[0,\infty)$ durch

$$\tilde{d}([(x_n)_n],[(x'_n)_n]) := \lim_{n \to \infty} d(x_n,x'_n)$$

 \widetilde{d} ist eine wohldefiniert, d.h. falls $[(x_n)_n]=[(y_n)_n]$ und $[(x_n')_n]=[(y_n')_n]$, dann ist

$$\lim_{n \to \infty} d(x_n, x_n') = \lim_{n \to \infty} d(y_n, y_n').$$
 (leichte Übung)

Weiter ist $\left(d(x_nx_n')\right)_n$ eine Cauchy-Folge in dem vollständigen Raum $[0,\infty)$ und somit konvergent: Sei dazu $\varepsilon>0$. Dann existiert ein $N\in\mathbb{N}$, sodass $d(x_n,x_m)\leq \frac{\varepsilon}{2}$ und $d(x_n',x_m')\leq \frac{\varepsilon}{2}$ für alle $n,m\geq N$. Dann gilt nach der Vierecksungleichung (siehe Anhang A.1)

$$\left| d(x_n, x_n') - d(x_m, x_m') \right| \le d(x_n, x_m) + d(x_n', x_m') \le \varepsilon$$

Einbettung von X: Definiere nun $\iota:X\to \tilde{X}$ durch $x\mapsto [(x,x,x,\ldots)]\in \tilde{X}.$ ι ist Isometrie, da

$$\tilde{d}(\iota(x),\iota(y)) = \lim_{n\to\infty} d(x,y) = d(x,y)$$

Sei nun $[(x_n)_n]\in \tilde{X}$ und $\varepsilon>0$. Da $(x_n)_n$ eine Cauchy-Folge ist, gibt es ein $N\in\mathbb{N}$, sodass für alle $n,m\geq N$ gilt $d(x_n,x_m)<\varepsilon$. Dann gilt

$$\tilde{d}(\iota(x_N), [(x_n)_n]) = \lim_{n \to \infty} d(x_N, x_n) < \varepsilon$$

Vollständigkeit von (\tilde{X},\tilde{d}) : Sei $(\overline{x}^m)_m$ eine Cauchyfolge in \tilde{X} .

$$\Longrightarrow \forall \varepsilon>0: \exists M(\varepsilon) \in \mathbb{N}: \forall m,m'>M: \tilde{d}\Big(\overline{x}^m,\overline{x}^{m'}\Big)<\frac{\varepsilon}{3}$$

Wenn $\overline{x}^m=[(x_n^m)_n]$ und $\overline{x}^{m'}=\Big[(x_n^{m'})_n\Big]$, dann gilt also für alle $m,m'>M(\varepsilon)$

$$\lim_{n \to \infty} d\left(x_n^m, x_n^{m'}\right) < \frac{\varepsilon}{3}$$
 [*]

Achtung Wortspiel: Beweis vervollständigen ;-D

 $\overline{x} \in \tilde{X}$

Für alle m ist $(x_n^m)_n$ eine Cauchyfolge, also gilt

$$\forall m : \exists N(m) : \forall n, n' \ge N(m) : d(x_n^m, x_{n'}^m) < \frac{1}{m}$$
 [**]

Setze nun $z_n:=x^n_{N(n)}$. Behauptung: $(z_n)_n$ ist eine Cauchyfolge. Sei $\varepsilon>0$. Dann gilt für $n,m>N=\max\{M(\varepsilon),\frac3\varepsilon\}$ für ein k>N(m),N(n)

$$d(z_n,z_m) = d\left(x_{N(n)}^n,x_{N(m)}^m\right) \leq \underbrace{d\left(x_{N(n)}^n,x_k^n\right)}_{\stackrel{[\stackrel{\longleftarrow}{\bullet}]}{<}\frac{1}{n}<\frac{1}{N}\leq \frac{\varepsilon}{3}} + \underbrace{d\left(x_k^n,x_k^m\right)}_{\stackrel{\stackrel{\longleftarrow}{\bullet}]}{<}\frac{1}{m}<\frac{1}{N}\leq \frac{\varepsilon}{3}} + \underbrace{d\left(x_k^n,x_{N(m)}^m\right)}_{\stackrel{\stackrel{\longleftarrow}{\bullet}}{<}\frac{1}{m}<\frac{1}{N}\leq \frac{\varepsilon}{3}} < \varepsilon$$

 $d(z_n, z_m)$ ist unabhängig von k, also kann man kbeliebig groß wählen

 $\Rightarrow (z_n)_n$ ist eine Cauchyfolge, also

$$\forall \varepsilon > 0 : \exists N_z(\varepsilon) : \forall n, m > N_z(\varepsilon) : d(z_n, z_m) < \varepsilon$$
 [#]

Es bleibt zu zeigen: $\lim_{m \to \infty} \overline{x}^m = [(z_n)_n]$. Sei dazu $\varepsilon > 0$. Dann gilt für $m \ge \max\left\{\frac{2}{\varepsilon}, N_z(\varepsilon)\right\}$

$$\tilde{d}\left(\overline{x}^m, [(z_n)_n]\right) = \lim_{n \to \infty} d\left(x_n^m, x_{N(n)}^n\right) \leq \lim_{n \to \infty} \left(\underbrace{d\left(x_n^m, x_{N(m)}^m\right)}_{\stackrel{[^{\star \bullet}]}{<} \frac{1}{m} \leq \frac{\varepsilon}{2}} + \underbrace{d\left(x_{N(m)}^m, x_{N(n)}^n\right)}_{=d(z_m, z_n) \stackrel{[^{\bullet}]}{<} \frac{\varepsilon}{2}}\right) < \varepsilon$$

Also gilt $\overline{x}^m \xrightarrow{m \to \infty} [(z_n)_n]$ und (\tilde{X}, \tilde{d}) ist vollständig.

1.6. Definition

Sei (W,\mathcal{T}) ein topologischer Raum und (X,d) ein metrischer Raum. Sei

$$C_b(W, X) = \{ f : W \to X \mid f \text{ stetig und beschränkt} \}$$

versehen mit der Metrik $d_{W,X}$, definiert durch

$$d_{W,X}(f,g) = \sup_{t \in W} d(f(t), g(t))$$

1.7. Bemerkung

Auf $C(W,X)=\{f:W\to X \text{ stetig}\}$ ist $d_{W,X}$ eine **erweiterte Metrik**, d.h. der Wert ∞ ist möglich. $\tilde{d}_{W,X}:=\min\{1,d_{W,X}\}$ ist eine "echte" Metrik auf C(W,X).

1.8. Proposition

Falls X vollständig ist, dann sind $C_b(W,X)$ und C(W,X) vollständig (bezüglich $d_{W,X}$ bzw. $\tilde{d}_{W,X}$).

Beweis

Sei $(f_n)_n$ eine Cauchy-Folge in $C_b(W,X)$, also

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m > N : \sup_{t \in W} d(f_n(t), f_m(t)) < \varepsilon$$

 \Rightarrow für alle t ist $\left(f_n(t)\right)_n$ eine Cauchyfolge in X. Da X vollständig ist, existiert ein $x_t \in X$ sodass $f_n(t) \xrightarrow{n \to \infty} x_t$. Definiere $f(t) := x_t$ punktweise.

Vorbereitung: Es gilt $\forall \varepsilon > 0 : \exists N_t \text{ sodass } d(x_t, f_{N_t}(t)) \leq \varepsilon$. Weiter ist

$$\sup_{t \in W} d(f_n(t), f_m(t)) \le \varepsilon \ \forall n, m \ge N_t$$

$$\Rightarrow \forall t : d(f_n(t), f_m(t)) \le \varepsilon \ \forall n, m \ge N$$

Beweis zu Ende führen

1.9. Proposition

Sei (X,d) ein vollständiger metrischer Raum und $(\overline{B}(x_n,\varepsilon_n))_{n\in\mathbb{N}}$ mit $\overline{B}(x_{n+1},\varepsilon_{n+1})\subseteq \overline{B}(x_n,\varepsilon_n)$ und $\varepsilon_n \xrightarrow{n\to\infty} 0$. Dann existiert genau ein Punkt in $\bigcap_{n\in\mathbb{N}} \overline{B}(x_n,\varepsilon_n)$.

Beweis

Existenz: Behauptung: Die Folge der Mittelpunkte $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge: Sei $\varepsilon>0$. Finde $N\in\mathbb{N}$, sodass $\varepsilon_n\leq \varepsilon$ für alle $n\geq N$. Dann gilt für alle $n\geq M$

$$d(x_n, x_m) \le \varepsilon_m \le \varepsilon,$$

da $x_n \in \overline{B}(x_m, \varepsilon)$ ist. Da X vollständig ist, existiert ein $x \in X$ mit $x_n \xrightarrow{n \to \infty} x$.

Behauptung: $x\in\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$. Wähle dazu ein $N\in\mathbb{N}$. Dann ist $(x_n)_{n\geq N}$ eine Cauchy-Folge in $\overline{B}(x_N,\varepsilon_N)$. $\overline{B}(x_N,\varepsilon_N)$ ist ein abgeschlossener Teilraum von X und somit vollständig. Also ist $x\in\overline{B}(x_N,\varepsilon_N)$. Da N beliebig war, gilt $x\in\overline{B}(x_n,\varepsilon_n)$ für jedes $n\in\mathbb{N}$.

Eindeutigkeit: Es seien $x,y\in\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$, also $x,y\in\overline{B}(x_n,\varepsilon_n)$ für alle $n\in\mathbb{N}$. Dann gilt

$$d(x,y) \le d(x,x_n) + d(x_n,y) \le 2 \cdot \varepsilon_n \xrightarrow{n \to \infty} 0$$

für jedes $n \in \mathbb{N}$ und somit $d(x,y) = 0 \Leftrightarrow x = y$.

1.10. Satz von Baire²

Es gelten folgende äquivalente Formulierungen:

- a) Sei (X,d) ein vollständiger metrischer Raum und A_0,A_1,\ldots eine Folge abgeschlossener Teilmengen. Falls $\bigcup_{n\in\mathbb{N}}A_n$ eine offene Kugel enthält, so auch eines der A_n .
- b) In einem vollständigen metrischen Raum hat eine abzählbare Vereinigung von abgeschlossenen Mengen ohne innere Punkte keine inneren Punkte.
- c) In einem vollständigen metrischen Raum ist ein abzählbarer Durchschnitt von dichten offenen Mengen wieder dicht.

Beweis

Zunächst die Äquivalenz:

a)⇒b): Klar, da b) Kontraposition von a) ist.

b) \Rightarrow **c)**: Sei $U_n \subseteq X$ offen und dicht $\Rightarrow X \setminus U_n \subseteq X$ abgeschlossen und hat somit keine inneren Punkte. Aus b) folgt nun

$$\bigcup_{n\in\mathbb{N}}X\setminus U_n=X\setminus\bigcap_{n\in\mathbb{N}}U_n$$

hat keine inneren Punkte. Also ist $\bigcap_{n\in\mathbb{N}}U_n$ dicht in X.

c)⇒a): ebenso.

Wir wollen nun a) durch Widerspruch beweisen, d.h. wir nehmen an, dass gilt: Jede offene Kugel schneidet $X\setminus A_k$ für jedes $k\in\mathbb{N}$. Dazu wollen wir Folgen $(x_k)_{k\in\mathbb{N}}\subset X$, $(\varepsilon_k)_{k\in\mathbb{N}}\subset (0,1]$ finden mit

(i)
$$\varepsilon_k < \frac{1}{k+1}$$
,

(ii)
$$\overline{B}(x_{k+1}, \varepsilon_{k+1}) \subset (X \setminus A_k) \cap B(x_k, \varepsilon_k) \subset \overline{B}(x_k, \varepsilon_k)$$
,

²nach René Louis Baire, https://de.wikipedia.org/wiki/René_Louis_Baire ☑

(iii)
$$\overline{B}(x_k, \varepsilon_k) \subset \bigcup_{n \in \mathbb{N}} A_n$$

für $k \in \mathbb{N}$. Dann gilt

$$\bigcup_{n\in\mathbb{N}}A_n\stackrel{\text{(iii),(ii)}}{\supset}\bigcap\overline{B}(x_k,\varepsilon_k)\stackrel{\text{(ii)}}{\subset}\bigcap_{k\in\mathbb{N}}(X\setminus A_k)\cap B(x_k,\varepsilon_k)\subset\bigcap_{k\in\mathbb{N}}X\setminus A_k=X\setminus\left(\bigcup_{k\in\mathbb{N}}A_k\right)$$

Aber wegen (i) und (ii) existiert nach Proposition 1.9 ein $x\in\bigcap_{k\in\mathbb{N}}\overline{B}(x_k,\varepsilon_k)$. ot

Wir suchen also eine Abbildung $\overline{c}: \mathbb{N} \to X \times (0,1], k \mapsto (x_k, \varepsilon_k)$ mit (i),(ii),(iii) für $k \in \mathbb{N}$. Setze

$$\begin{split} P_m &:= \left\{ c: \{0,\dots,m\} \to X \times (0,1] \, \middle| \, \begin{array}{l} \text{(i),(iii) gilt für } k \in \{0,\dots,m\}, \\ \text{(ii) gilt für } k \in \{0,\dots,m-1\} \end{array} \right\} \\ P_\infty &:= \left\{ c: \mathbb{N} \to X \times (0,1] \, \middle| \, \text{(i),(iii) gilt für } k \in \mathbb{N} \right\} \end{split}$$

Die Menge $P := (\bigcup_{m \in \mathbb{N}} P_m) \cup P_{\infty}$ ist partiell geordnet bezüglich \prec :

$$c \prec c' \text{ falls } m \leq m' \text{ und } c' \big|_{\{0,\dots,m\}} = c, \text{ bzw.} c' = c \text{ falls } m = m' = \infty$$

P ist nicht leer, denn nach Vorraussetzung existiert (x_0, ε_0) mit $0 < \varepsilon_0 < 1$ und $\overline{B}(x_0, \varepsilon_0) \subset \bigcup_{n \in \mathbb{N}} A_n$, d.h. $0 \mapsto (x_0, \varepsilon_0) \in P_0$. Jede total geordnete Teilmenge $\emptyset \neq \Gamma$ von P besitzt eine obere Schranke:

• Falls Γ ein $c \in P_{\infty}$ enthält, so ist c obere Schranke.

warum?

- Ebenso falls Γ ein $c \in P_{\overline{m}}$ enthält und $\Gamma \cap P_{m'} = \emptyset$ für alle $\overline{m} < m' \in \mathbb{N} \cup \{\infty\}$.
- Falls $\Gamma \subset \bigcup_{\mathbb{N}} P_m$, aber $\Gamma \not\subset \bigcup_{m \leq \overline{m}} P_m$ für jedes \overline{m} , so definieren wir eine obere Schranke in P_{∞} durch Einschränkung.

wie genau?

Mit dem Lemma von Zorn folgt, dass P ein maximales Element \overline{c} besitzt. Behauptung: $\overline{c} \in P_{\infty}$ wie gewünscht:

Falls $\overline{c} \in P_m$ für ein $m \in \mathbb{N}$, so gilt nach Annahme, dass $(X \setminus A_m) \cap B(x_m, \varepsilon_m) \neq \emptyset$. Dann existiert aber $(x_{m+1}, \varepsilon_{m+1}) \in X \times (0, 1]$ mit $\varepsilon_{m+1} < \frac{1}{m+2}$ und

$$\overline{B}(x_{m+1}, \varepsilon_{m+1}) \subset (X \setminus A_m) \cap B(x_m, \varepsilon_m)$$

Definiere $\overline{\overline{c}}: \{0, \dots, m+1\} \to X \times (0,1]$ durch

$$k \longmapsto \begin{cases} (x_k, \varepsilon_k), & \text{falls } k = m+1 \\ \overline{c}(k), & \text{falls } k \in \{0, \dots, m\} \end{cases}$$

dann gilt $\overline{c} \prec \overline{\overline{c}} \in P_{m+1}$. mathsection zur Maximalität von \overline{c} .

1.11. Bemerkungen

(i) Die Aussage gilt auch für lokalkompakte Hausdorffräume.

(Übung)

- (ii) Tatsächlich genügt eine schwächere Form des Auswahlaxioms(DC); das abzählbare Auswahlaxiom jedoch nicht.
- (iii) Falls X **separabel** ist (d.h. falls eine abzählbare dichte Teilmenge von X existiert), dann lässt sich der Satz auch ohne (AC) beweisen. (Übung)

1.12. Korollar: Satz der gleichmäßigen Beschränktheit

Sei (X,d) ein vollständiger metrischer Raum. Sei $F\subset C(X,\mathbb{R})$ eine Menge, die **punktweise gleichmäßig beschränkt** ist, d.h. für jedes $x\in X$ existiert $K_x\in\mathbb{R}$, sodass

$$|f(x)| \le K_x \ \forall f \in F.$$

Dann existieren $\emptyset \neq U \subset X$ offen und $K \in \mathbb{R}$ so, dass

$$|f(x)| \le K \ \forall x \in U, f \in F$$

Beweis

Definiere

$$X \supset A_n := \left\{ x \in X \, \middle| \, |f(x)| \le n \forall f \in F \right\} = \bigcap_{f \in F} f^{-1} \bigl([-n, n] \bigr)$$

Also sind die $A_n\subset X$ abgeschlossen. Es ist $\bigcup_{n\in\mathbb{N}}A_n=X$, wegen der Voraussetzung von punktweiser gleichmäßiger Beschränktheit. Außerdem enthält dies eine nichtleere offene Menge. Also existiert ein n und $U\subset X$ nichtleer und offen mit $U\subset A_n$.

2. Normierte Räume, Hahn-Banach Sätze

2.1. Definition

Sei X ein \mathbb{K} -Vektorraum mit einer Topologie \mathcal{T} . Wir sagen X ist ein **topologischer Vektorraum**, falls Addition und Skalarmultiplikation stetig sind:

$$\begin{array}{ll} +: X \times X \to X &, & (x,y) \mapsto x + y \\ \cdot: \mathbb{K} \times X \to X &, & (\lambda,x) \mapsto \lambda \cdot x \end{array}$$

2.2. Proposition

Sei X ein topologischer \mathbb{K} -Vektorraum und $Y\subset X$ ein Untervektorraum. Dann sind Y und \overline{Y} topologische Vektorräume mit der Unterraumtopologie.

Beweis

- ullet Klar für Y.
- Zu zeigen: \overline{Y} ist ein Untervektorraum. Seien $x_0,y_0\in\overline{Y}$ und sei U eine offene Menge in X mit $x_0+y_0\in U$. Dann existieren offene Mengen V,W von X mit $x_0\in V,y_0\in W$ und $V+W\subset U$, da die Addition stetig ist. Da $x_0\in\overline{Y}$ und $x_0\in V$, existiert $x_1\in Y$ mit $x_1\in V$. Analog existiert $y_1\in Y$ mit $y_1\in W$. Daher ist $x_1+y_1\in Y\cap U$. Da U eine beliebige offene Umgebung um x_0+y_0 , folgt $x_0+y_0\in\overline{Y}$.

Skalarmultiplikation genauso.

2.3. Proposition

Ein normierter Vektorraum $(X, \|.\|)$ ist ein topologischer Vektorraum bezüglich der von $\|.\|$ induzierten Topologie.

Beweis

Es gilt

$$\|(x+y) - (x'+y')\|_X \le \|x-x'\|_X + \|y-y'\|_X$$

Daher ist $+: X \times X \to X$ gleichmäßig stetig bezüglich der Norm $\|(z,z')\|_{X \times X} = \|z\|_X + \|z'\|_X$ auf $X \times X$. Ähnlich folgt

$$\|\lambda x - \lambda' x'\|_{X} = \|\lambda(x - x') + (\lambda - \lambda')x'\|_{X} \le |\lambda| \cdot \|x - x'\|_{X} + |\lambda - \lambda'| \cdot \|x'\|_{X}$$

Daher ist $\cdot : \mathbb{K} \times X \to X$ stetig, denn falls $(\lambda_i)_{i \in I}$ ein Netz in \mathbb{K} , $(x_i)_{i \in I}$ ein Netz in X mit $\lambda_i \to \lambda$, $x_i \to x$, dann $\lambda_i x_i \to \lambda x$.

2.4. Proposition

Seien X,Y topologische Vektorräume, $T:X\to Y$ linear. Dann sind äquivalent:

- (1) T ist stetig.
- (2) T ist stetig in 0.
- (3) T ist stetig in einem Punkt \overline{x} .

Beweis

 $(1) \Rightarrow (2) \Rightarrow (3)$ ist klar. Wir zeigen $(3) \Rightarrow (1)$:

Für $y\in X$ definiere $L_y:X\to X$, $x\mapsto y+x$. Dann ist L_y bijektiv und stetig. Da auch L_{-y} stetig ist, ist L_y ein Homöomorphismus. Sei nun T in \overline{x} stetig. Sei $x_0\in X$. Wir zeigen: T ist stetig in x_0 . Setze $y:=\overline{x}-x_0$. Dann ist

$$T(x) = T(x+y-y) = T(-y) + T(x+y) = L_{T(-y)} \circ T \circ L_y(x)$$

Da $L_y(x_0)=\overline{x}$, T stetig in \overline{x} ist und L_y , $L_{T(-y)}$ stetig sind, ist somit T stetig in x_0 .

2.5. Definition

Für topologische Vektorräume X,Y definieren wir

$$L(X,Y) = \{T : X \to Y \mid T \text{ linear und stetig}\}$$

Wir schreiben $X' := L(X, \mathbb{K})$ für den **Dualraum** von X. Die Elemente von X' heißen (stetige) **Funktionale**. Die Elemente von L(X, X) heißen (stetige) **Operatoren** auf X.

2.6. Bemerkung

L(X,Y) und $L(X,\mathbb{K})=X'$ sind Vektorräume, wobei die Vektorraumstruktur punktweise definiert ist. L(X,X) ist sogar eine Algebra mittels Komposition.

2.7. Proposition

Seien X,Y normierte Vektorräume, $T:X\to Y$ linear. Dann ist T stetig genau dann, wenn ein $\mu\geq 0$ existiert, sodass

$$\|T(x)\|_Y \leq \mu \cdot \|x\|_X \quad \forall x \in X$$

Ein stetiger Operator zwischen normierten Vektorräumen heißt deswegen auch beschränkt

Beweis

" \Leftarrow ": Klar: Wenn $x_n \to 0$, dann $T(x_n) \to 0$, denn $\|T(x_n)\| \le \mu \|x_n\| \to 0$

" \Rightarrow ": Angenommen T ist stetig. Dann setzen wir

$$\mu := \sup \biggl\{ \frac{1}{\|x\|_X} \cdot \|T(x)\|_Y \, \bigg| \, x \in X \setminus \{0\} \biggr\}$$

Falls $\mu=\infty$, dann existieren $x_n\in X$ mit $\frac{1}{\|x_n\|_X}\cdot\|T(x_n)\|_Y\geq n$. Betrachte $x_n':=\frac{1}{n\cdot\|x_n\|_X}\cdot x_n$, dann $\|x_n'\|=\frac{1}{n}$, also $x_n'\to 0$. Aber es gilt $T(x_n')\not\to 0$, denn

$$||T(x_n')||_Y = \frac{1}{n \cdot ||x_n||_X} \cdot ||T(x_n)||_Y \ge 1$$

für alle $n, \not z$ zur Stetigkeit von T. Also $\mu < \infty$.

2.8. Definition

Seien X,Y normierte Vektorräume, $T \in L(X,Y)$. Die **Norm** (oder **Operatornorm**) von T ist

$$\|T\| = \sup \biggl\{ \frac{1}{\|x\|_X} \cdot \|T(x)\|_Y \, \bigg| \, x \in X \setminus \{0\} \biggr\} = \sup \Bigl\{ \|T(x)\|_Y \, \bigg| \, x \in X \text{ mit } \|x\|_X = 1 \Bigr\}$$

Nach 2.7 ist $||T|| < \infty$ und $||Tx||_Y \le ||T|| \cdot ||x||_X$ für alle $x \in X$.

³Aus der linearen Algebra: $X^* = \operatorname{Hom}(X,\mathbb{R}) = \{T: X \to Y \mid T \text{ linear}\}$. Die Elemente von X^* heißen Funktionale

2.9. Proposition

Seien X,Y normierte Räume, betrachte L(X,Y) mit $\|.\|$. Dann ist L(X,Y) ein normierter Raum.

Beweis

- $||T|| \ge 0$ für alle $T \in L(X, Y)$.
- Es gilt

$$\begin{split} \|T\| = 0 \iff \forall x \in X, \|x\|_X = 1 : \|Tx\|_Y = 0 \iff \forall x \in X, \|x\|_X = 1 : Tx = 0 \\ \iff \forall x \in X : Tx = 0 \\ \iff T = 0 \end{split}$$

• Sei $\lambda \in \mathbb{K}$, $T \in L(X,Y)$. Dann gilt

$$\|\lambda \cdot T\| = \sup_{\|x\|_{Y} = 1} \|\lambda \cdot T(x)\|_{Y} = \sup_{\|x\|_{Y} = 1} |\lambda| \cdot \|Tx\|_{Y} = |\lambda| \cdot \sup_{\|x\|_{Y} = 1} \|Tx\|_{Y} = |\lambda| \cdot \|T\|_{Y}$$

• Seien $T_1, T_2 \in L(X, Y)$ und $x \in X$ mit $||x||_X = 1$. Dann gilt

$$||(T_1 + T_2)(x)||_Y = ||T_1x + T_2x||_Y \le ||T_1x||_Y + ||T_2x||_Y$$

Damit folgt weiter

$$||T_1 + T_2|| = \sup_{\|x\|_X = 1} ||(T_1 + T_2)(x)||_Y \le \sup_{\|x\|_X = 1} (||T_1 x||_Y + ||T_2 x||_Y)$$

$$\le \sup_{\|x\|_X = 1} \sup_{\|x'\|_X = 1} (||T_1 x||_Y + ||T_2 x||_Y)$$

$$= ||T_1|| + ||T_2||$$

2.10. Definition

Eine \mathbb{K} -Algebra heißt **normiert**, falls A mit einer Norm $\|.\|$ versehen ist, so dass $(A, \|.\|)$ ein normierter Vektorraum und

$$||ab|| \le ||a|| \cdot ||b|| \quad \forall a, b \in A$$

Falls A unital ist, d.h. es existiert ein Einselement 1_A , dann gilt $||1_A|| \le 1$.

Bemerkung

Wenn $||1_A|| < 1$, dann $||1_A|| = ||1_A \cdot 1_A|| \le ||1_A|| \cdot ||1_A|| \Rightarrow ||1_A|| = 0$. Also $1_A = 0$ und damit $A = \{0\}$.

2.11. Beispiele

- (i) $C(\Omega,\mathbb{K})$, wobei Ω ein kompakter Hausdorffraum und die Multiplikation punktweise ist. Betrachte $\|.\|_{\infty}$. Für $f,g:\Omega \to K$ gilt dann $\|f\cdot g\|_{\infty} \leq \|f\|_{\infty} \cdot \|g\|_{\infty}$
- (ii) L(X,X), für X ein normierter Raum, mit $\|.\|$. Für $S,T\in L(X,X)$ gilt

$$\|ST\| = \sup_{\|x\|_X = 1} \|S(T(x))\|_X \le \sup_{\|x\|_X = 1} \left(\|S\| \cdot \|Tx\|_X \right) = \|S\| \cdot \|T\|.$$

2.12. Proposition

Seien X,Y normierte Räume. Dann ist $X\times Y$ ein normierter Raum mit

$$\begin{split} \|(x,y)\|_1 &:= \|x\|_X + \|y\|_Y \quad \text{für } (x,y) \in X \times Y \\ \text{oder} \quad \|(x,y)\|_\infty &:= \max\{\|x\|_X, \|y\|_Y\} \end{split}$$

Beide Normen sind äquivalent.

2.13. Proposition und Definition

Sei X ein normierter Raum und $Y\subseteq X$ ein abgeschlossener Unterraum. Dann ist $X/Y=\{x+Y\mid x\in X\}$ ein normierter Raum mit

$$||x + Y||_{X/Y} := \inf\{||x + y||_X | y \in Y\}$$

Die Quotientenabbildung $q: X \twoheadrightarrow X/Y$, $x \mapsto x + Y$ ist stetig, linear und $||q|| \le 1$ und offen, d.h. bildet offene Mengen in X auch offene Mengen in X/Y ab.

Bemerkung

Daraus folgt, dass Normtopologie und Quotiententopologie auf X/Y gleich sind.

Beweis

- a) X/Y ist ein Vektorraum mit (x + Y) + (x' + Y) = (x + x') + Y.
- b) Sei $\overline{x} = x + Y \in X/Y$. Es gilt
 - $\|\overline{x}\| \ge 0$ Klar für alle $\overline{x} \in X/Y$
 - Angenommen $\|\overline{x}\|_{X/Y}=0$, d.h. $\inf_{y\in Y}\|x+y\|_X=0$. Also existiert eine Folge $(y_n)_n\subset Y$ mit $\|x+y_n\|_X\xrightarrow{n\to\infty}0\Rightarrow y_n\xrightarrow{n\to\infty}-x$. Also ist -y und damit auch y in Y, da Y abgeschlossen ist. Damit ist $\overline{x}=0$
- c) Sei $0 \neq \lambda \in \mathbb{K}$, $x \in X$. Dann gilt

$$\|\lambda\cdot\overline{x}\|_{\scriptscriptstyle X/Y} = \inf_{y\in Y} \|\lambda x + y\|_X = \inf_{y\in Y} \|\lambda x + \lambda y\|_X = \inf_{y\in Y} |\lambda|\cdot\|x + y\|_X = |\lambda|\cdot\|\overline{x}\|_{\scriptscriptstyle X/Y}$$

d) Seien $\overline{x}, \overline{y} \in X/Y$. Dann gilt

$$\begin{split} \|\overline{x} + \overline{y}\|_{X/Y} &= \inf_{z \in Y} \|x + y + z\|_X = \inf_{z, z' \in Y} \|x + y + z + z'\|_X \leq \inf_{z, z' \in Y} \Bigl(\|x + z\|_X + \|y + z'\|_X \Bigr) \\ &= \|\overline{x}\|_{X/Y} + \|\overline{y}\|_{X/Y} \end{split}$$

Damit ist $||.||_{X/Y}$ eine Norm auf X/Y.

e) Linearität von q ist klar. Es gilt

$$\|\overline{x}\|_{X/Y} = \inf_{y \in Y} \|x + y\|_X \le \|x\|_X$$

Also

$$\|q\| = \sup_{\|x\|_X = 1} \|q(x)\|_{{\scriptscriptstyle X/Y}} \leq \sup_{\|x\|_X = 1} \|x\|_X = 1$$

f) Zu zeigen: q ist offen. Sei $x\in X$, $\varepsilon>0$. Betrachte die offene Kugel $B(x,\varepsilon)\subset X$. Wir zeigen $B(\overline{x},\varepsilon)\subset q(B(x,\varepsilon))$. Sei also $\overline{z}=z+Y$ in $B(\overline{x},\varepsilon)$. Dann gilt $\|\overline{x}-\overline{z}\|_{X/Y}<\varepsilon$, worauf folgt

$$\inf_{y \in Y} \|x - z + y\|_X < \varepsilon$$

 $\Rightarrow \text{ es existiert } y \in Y: \|x-z+y\|_X < \varepsilon. \text{ Es gilt } \overline{z} = \overline{z-y} \in q(B(x,\varepsilon)) \text{, da } z-y \in B(x,\varepsilon).$ Sei $V \subset X$ offen, zeige $q(V) \subset X/Y$ offen. Für $x \in V$ finde $\varepsilon > 0$, sodass $B(x,\varepsilon) \subset V$. Dann folgt $B(\overline{x},\varepsilon) \subseteq q\big(B(x,\varepsilon)\big) \subseteq q(V)$.

2.14. Definition

Ein **Banachraum** ist ein vollständiger, normierter Raum. Eine **Banachalgebra** ist eine vollständige normierte Algebra.

2.15. Beispiel

 $C(\Omega, \mathbb{K})$, wobei Ω ein kompakter Hausdorffraum ist, ist eine Banachalgebra.

2.16. Proposition

Produkte und Quotienten (nach abgeschlossenen Unterräumen) von Banachräumen sind wieder Banachräume.

Beweis

Produkt $X \times Y$: Es gilt $\|(x,y)\|_{\infty} = \max\{\|x\|,\|y\|\}$. Sei $((x_n,y_n))_n \subset X \times Y$ eine Cauchyfolge. Dann sind $(x_n)_n$ und $(y_n)_n$ Cauchyfolgen und es gilt $x_n \to x$ und $y_n \to y$ und somit auch $(x_n,y_n) \to (x,y)$.

Quotient X/Y: Sei X ein Banachraum und $Y \subseteq X$ ein abgeschlossener Unterraum.

Falls $\overline{x}, \overline{y} \in X/Y$, so existiert $y' \in X$, sodass $\overline{y} = \overline{y'}$ und

$$||x - y'||_X \le 2 \cdot ||\overline{x} - \overline{y}||_{X/Y}$$

Sei nun $(\overline{x}_n)_n$ eine Cauchyfolge in $^X\!/_Y$. Es gibt eine Teilfolge $(\overline{x}_{n_k})_k$, sodass

$$\sum_{k=1}^{\infty} \left\| \overline{x}_{n_{k-1}} - \overline{x}_{n_k} \right\|_{X/Y} < \infty$$

Falls $(\overline{x}_{n_k})_k$ konvergiert, dann auch $(\overline{x}_n)_n$. Wir dürfen also Œannehmen, dass $\sum_{n=1}^\infty \lVert \overline{x}_{n-1} - \overline{x}_n \rVert < \infty$. Wähle $x_1' \in \overline{x}_1$. Wähle induktiv $x_n' \in X$ mit

$$||x'_{n-1} - x'_n||_X \le 2 \cdot ||\overline{x_{n-1}} - \overline{x_n}||_{X/Y}$$

und $x_n' \in \overline{x}_n$. Dann gilt $\sum_{n=1}^\infty \left\| x_{n-1}' - x_n' \right\|_X < \infty$. Daher ist $(x_n')_n$ eine Cauchyfolge in X. Also existiert $x \in X$ mit $x_n \to x$. Dann $\overline{x}_n \to \overline{x}$.

2.17. Definition

Sei X ein \mathbb{R} -Vektorraum. Eine Abbildung $\varphi: X \to \mathbb{R}$ heißt **sublinear**, falls gilt:

(i)
$$\varphi(\lambda \cdot x) = \lambda \cdot \varphi(x)$$
, für $x \in X$, $\lambda \in [0, \infty)$

(ii)
$$\varphi(x+y) \leq \varphi(x) + \varphi(y)$$
, für $x, y \in X$.

Setze $S(X) := \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ sublinear} \}$. S(X) ist partiell geordnet mit

$$\varphi \leq \psi : \iff \varphi(x) \leq \psi(x), \quad x \in X$$

2.18. Beispiele

- (i) Halbnormen sind sublinear.
- (ii)

$$0 = \varphi(0) = \varphi(x - x) = \leq \varphi(x) + \varphi(-x).$$

2.19. Proposition

Sei X ein \mathbb{R} -Vektorraum. $\mathcal{S}(X)$ ist nach unten induktiv geordnet, d.h. jede nichtleere total geordnete Teilmenge besitzt eine untere Schranke.

Reweis

Sei $\emptyset \neq (\varphi_i)_I \subseteq \mathcal{S}(X)$ total geordnet. Setze $\varphi(x) := \inf_{i \in I} \varphi_i(x)$, dann gilt

$$-\varphi_i(-x) \le \varphi_i(x) \implies -\varphi(x) \le \varphi(x) \le \varphi_i(x) < \infty$$

ebenso $-\varphi(x) \leq \varphi(-x) \leq \varphi_i(-x)$ für $x \in X$, $i \in I$. Insbesondere gilt $-\infty < \varphi(x) < \infty$, $x \in X$. Die Sublinearität von φ und $\varphi \leq \varphi_i$, $i \in I$ sind klar (Warum?).

2.20. Proposition

Sei X ein \mathbb{R} -Vektorraum und $\varphi \in \mathcal{S}(X)$. Dann ist φ in $\mathcal{S}(X)$ minimal genau dann, wenn φ linear ist.

Beweis

" \Leftarrow ": Sei $\psi \leq \varphi$ mit ψ sublinear und φ linear. Dann folgt $\psi(x) \leq \varphi(x)$ und $\psi(-x) \leq \varphi(-x)$ für $x \in X$.

$$\implies -\psi(x) \le \psi(-x) \le \varphi(-x) = -\varphi(x)$$

Daraus folgt $\varphi(x) \leq \psi(x)$ und somit muss $\varphi = \psi$ gelten. Also ist φ minimal.

" \Rightarrow ": Sei $\varphi \in \mathcal{S}(X)$ minimal. Zu $\overline{x} \in X$ definiere $\varphi_{\overline{x}} : X \to \mathbb{R}$ durch

$$\varphi_{\overline{x}}(x) := \inf_{\lambda > 0} \left(\varphi(x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \right)$$

mit (ii) aus 2.17

Es gilt $\varphi_{\overline{x}}(x) \in (-\infty, \infty)$, denn für $x \in X, \lambda \geq 0$ ist

$$-\varphi(-x) \le \varphi(x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \le \varphi(x)$$

 $\varphi_{\overline{x}}$ ist sublinear:

(i) Sei $\mu > 0$. Dann gilt für $x \in X$.

$$\varphi_{\overline{x}}(\mu \cdot x) = \inf_{\lambda \ge 0} \left(\varphi(\mu \cdot x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \right) = \inf_{\lambda \ge 0} \mu \cdot \left(\varphi\left(x + \frac{\lambda}{\mu} \cdot \overline{x}\right) - \frac{\lambda}{\mu} \cdot \varphi(\overline{x}) \right)$$

$$= \mu \cdot \inf_{\lambda' \ge 0} \left(\varphi(x + \lambda' \cdot \overline{x}) - \lambda' \varphi(\overline{x}) \right)$$

$$= \mu \cdot \varphi_{\overline{x}}(x)$$

 $\varphi_{\overline{x}}(0 \cdot x) = 0$ ist klar.

(ii) Zu $x, y \in X$, $\varepsilon > 0$ wähle $\lambda_x, \lambda_y \geq 0$ mit

$$\varphi_{\overline{x}}(x) \ge \varphi(x + \lambda_x \cdot \overline{x}) - \lambda_x \cdot \varphi(\overline{x}) - \varepsilon$$
$$\varphi_{\overline{x}}(y) \ge \varphi(y + \lambda_y \cdot \overline{x}) - \lambda_y \cdot \varphi(\overline{x}) - \varepsilon$$

Setze $\lambda := \lambda_x + \lambda_y$, dann gilt

$$\varphi_{\overline{x}}(x) + \varphi_{\overline{x}}(y) \ge \varphi(x + \lambda_x \cdot \overline{x}) + \varphi(y + \lambda_y \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) - 2\varepsilon$$
$$\ge \varphi(x + y + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) - 2\varepsilon$$
$$\ge \varphi_{\overline{x}}(x + y) - 2\varepsilon$$

Da $\varepsilon > 0$ beliebig war, gilt $\varphi_{\overline{x}}(x) + \varphi_{\overline{x}}(y) \ge \varphi_{\overline{x}}(x+y)$. Also ist $\varphi_{\overline{x}}$ sublinear.

 $arphi_{\overline{x}} \leq arphi$ ist klar. Da arphi minimal ist, folgt $arphi_{\overline{x}} = arphi$. Wir erhalten

$$\varphi(x) + 1 \cdot \varphi(\overline{x}) \le \varphi(x + 1 \cdot \overline{x}) \le \varphi(x) + 1 \cdot \varphi(\overline{x})$$

für jedes $x, \overline{x} \in X$. Also ist φ additiv und somit linear.

2.21. Satz von Hahn-Banach

Sei X ein \mathbb{R} -Vektorraum und $\varphi \in \mathcal{S}(X)$. Dann existiert $\psi : X \to \mathbb{R}$ linear mit $\psi \leq \varphi$.

X ist nicht zwangsweise endlichdimensional!

Beweis

Sei $\mathcal{S}_{\varphi}:=\{\varphi'\in\mathcal{S}(X)\,|\,\varphi'\leq\varphi\}\ni\varphi.$ Nach Proposition 2.19 ist $\mathcal{S}(X)$ und damit auch \mathcal{S}_{φ} nach unten induktiv geordnet. Nach dem Lemma von Zorn enthält \mathcal{S}_{φ} ein minimales Element $\psi.$ ψ ist auch minimal in $\mathcal{S}(X)$ (Warum?)

Also ist ψ linear nach Proposition 2.20.

Wichtige Folgerungen: Fortsetzungs- und Trennungssätze.

2.22. Satz

Sei X ein \mathbb{R} -Vektorraum und $\varphi:X\to\mathbb{R}$ sublinear. Sei $Y\subset X$ ein linearer Unterraum und $\psi:Y\to\mathbb{R}$ linear mit $\psi\leq\varphi|_{Y}$. Dann existiert $\overline{\psi}:X\to\mathbb{R}$ linear mit $\overline{\psi}|_{Y}=\psi$ und $\overline{\psi}\leq\varphi$.

Beweis

Definiere $\tilde{\varphi}: X \to \mathbb{R}$ durch $\tilde{\varphi}(x) := \inf_{y \in Y} (\varphi(x-y) + \psi(y)), x \in X$. Es gilt

$$\varphi(x-y) + \psi(y) > \varphi(-y) - \varphi(-x) - \psi(-y) > -\varphi(-x) > -\infty$$
 $\forall x \in X, y \in Y$

Also ist $\tilde{\varphi}$ wohldefiniert. $\tilde{\varphi}$ ist sublinear: vergleiche 2.20. Nach Satz von Hahn-Banach (2.21) existiert ein $\overline{\psi}:X\to\mathbb{R}$ linear mit $\overline{\psi}\leq \tilde{\varphi}$. Aus 2.20 folgt, dass $\overline{\psi}$ minimal in $\mathcal{S}(X)$ ist. Ebenso ist $\overline{\psi}\big|_Y$ minimal in $\mathcal{S}(Y)$. Also gilt

$$\overline{\psi} \le \tilde{\varphi}|_{Y} \le \psi \quad \Rightarrow \quad \psi = \overline{\psi}|_{Y} \qquad \qquad \Box$$

2.23. Satz

Sei nun X ein \mathbb{K} -Vektorraum und $p:X\to\mathbb{R}$ eine Halbnorm. Sei $Y\subset X$ ein Untervektorraum und $\psi:Y\to\mathbb{K}$ linear mit $|\psi(y)|\le p(y)$ für $y\in Y$. Dann existiert $\overline{\psi}:X\to\mathbb{K}$ linear mit $\overline{\psi}|_Y=\psi$ und

$$|\overline{\psi}(x)| \le p(x)$$
 für $x \in X$

Beweis

Sei zunächst $\mathbb{K}=\mathbb{R}$. p ist sublinear und es gilt $\psi\leq p\big|_Y$. Nach 2.22 existiert eine lineare Fortsetzung $\overline{\psi}:X\to\mathbb{R}$ mit $\overline{\psi}\leq p$. Es gilt auch

$$-\overline{\psi}(x) = \overline{\psi}(-x) \le p(-x) = p(x) \implies |\overline{\psi}(x)| \le p(x) \quad \text{für } x \in X$$

Sei nun $\mathbb{K}=\mathbb{C}$. Definiere $\psi_1:=\operatorname{Re}(\psi):Y\to\mathbb{R}$. ψ_1 ist \mathbb{R} -linear (warum?). Es gilt $|\psi_1(y)|\leq |\psi(y)|\leq p(y)$, $y\in Y$. Es existiert also ein $\overline{\psi}_1:X\to\mathbb{R}$ \mathbb{R} -linear mit

$$\overline{\psi}_1(y) = \psi_1(y), \ y \in Y \quad \text{ und } \quad |\overline{\psi}_1(x)| \le p(x), \ x \in X$$

Definiere jetzt $\overline{\psi}:X\to\mathbb{C}$ durch $\overline{\psi}(x):=\overline{\psi}_1(x)-i\cdot\overline{\psi}_1(i\cdot x),\,x\in X.$ Dann ist $\overline{\psi}$ \mathbb{C} -linear (warum?). Weiter gilt $\overline{\psi}(y)=\psi(y)$ für $y\in Y.$ ($\mathrm{Re}(\overline{\psi}\big|_Y)=\mathrm{Re}(\psi)$ und $\overline{\psi}\big|_Y$ und ψ sind beide \mathbb{C} -linear).

Zu $x \in X$ wähle $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ und

$$|\overline{\psi}(x)| = \lambda \cdot \overline{\psi}(x) = \overline{\psi}(\lambda \cdot x) = \overline{\psi}_1(\lambda \cdot x) \le p(\lambda \cdot x) = |\lambda| \cdot p(x) = p(x)$$

2 24 Satz

Sei X ein normierter \mathbb{K} -Vektorraum, $Y\subset X$ ein Unterraum und $\psi:Y\to\mathbb{K}$ linear und stetig. Dann existiert eine lineare Fortsetzung $\overline{\psi}:X\to\mathbb{K}$ mit $\left\|\overline{\psi}\right\|_{L(X,\mathbb{K})}=\left\|\psi\right\|_{L(Y,\mathbb{K})}$.

Beweis

Definiere eine Halbnorm durch $p(x):=\|x\|\cdot\|\psi\|$. Nach Satz 2.23 besitzt ψ eine lineare Fortsetzung $\overline{\psi}$ mit $\left|\overline{\psi(x)}\right|\leq p(x)=\|\psi\|\cdot\|x\|$, $x\in X$. Es folgt $\left\|\overline{\psi}\right\|\leq \|\psi\|$. $\|\psi\|\leq \left\|\overline{\psi}\right\|$ ist trivial, da $\psi\big|_Y=\overline{\psi}$.

2.25. Definition

Sei X ein \mathbb{K} -Vektorraum. Sei $M \subset X$ eine Teilmenge. M heißt **konvex**, falls für $a,b \in M, \lambda \in [0,1]$ gilt

$$(1 - \lambda) \cdot a + \lambda \cdot b \in M$$

Ist X ein topologischer Vektorraum und $M\subset X$ konvex, so ist auch \overline{M} konvex. (warum?) Ist $N\subset X$ eine beliebige Teilmenge, so ist

$$\operatorname{conv}(N) := \bigcap_{\substack{N \subset M \subset X\\ M \text{ konvey}}} M$$

conv(N) ist konvex. (warum?)

2.26. Satz

Sei X ein \mathbb{R} -Vektorraum, $\emptyset \neq M \subset X$ konvex, $\varphi \in \mathcal{S}(X)$. Dann existiert $\psi : X \to \mathbb{R}$ linear mit $\psi \leq \varphi$ und

$$\inf_{y \in M} \varphi(y) = \inf_{y \in M} \psi(y)$$
 [*]

Beweis

Setze $\mu := \inf_{y \in M} \varphi(y)$. Falls $\mu = -\infty$, so folgt die Behauptung aus dem Satz von Hahn-Banach 2.21. [*] ist trivialerweise erfüllt. Sei also $\mu \in \mathbb{R}$. Definiere $\tilde{\varphi} : X \to \mathbb{R}$ durch

$$\tilde{\varphi}(x) := \inf_{y \in M, \lambda \geq 0} \bigl(\varphi(x + \lambda \cdot y) - \lambda \cdot \mu \bigr), \quad x \in X$$

Es gilt $\varphi(x+\lambda\cdot y)-\lambda\cdot\mu\geq -\varphi(-x)$, $x\in X$, $y\in M$, $\lambda\geq 0$. Also ist $\tilde{\varphi}(x)\geq -\varphi(-x)>-\infty$. $\tilde{\varphi}$ ist sublinear:

- (i) $\tilde{\varphi}(\gamma \cdot x) = \gamma \cdot \tilde{\varphi}(x)$, für $x \in X$, $\gamma \in \geq 0$, wie in 2.22.
- (ii) Seien $x, z \in X$ und $\varepsilon > 0$. Wähle $y_x, y_z \in M$, $\lambda_x, \lambda_y \geq 0$ mit

$$\tilde{\varphi}(x) \geq \varphi(x + \lambda_x \cdot y_x) - \lambda_x \cdot \mu - \varepsilon \quad \text{ und } \quad \tilde{\varphi}(x) \geq \varphi(z + \lambda_z \cdot y_z) - \lambda_z \cdot \mu - \varepsilon$$

Es folgt

$$\tilde{\varphi}(x) + \tilde{\varphi}(z) \ge \varphi \left(x + z + \lambda_x \cdot y_x + \lambda_z \cdot y_z \right) - (\lambda_x + \lambda_z) \cdot \mu - 2\varepsilon$$

$$= \varphi \left(x + z + (\lambda_x + \lambda_z) \cdot \underbrace{\left(\frac{\lambda_x}{\lambda_x + \lambda_z} \cdot y_x + \frac{\lambda_z}{\lambda_x + \lambda_z} \cdot y_z \right)}_{\in M} \right) - (\lambda_x + \lambda_z) \cdot \mu - 2\varepsilon$$

$$> \tilde{\varphi}(x+z) - 2\varepsilon$$

Nach Hahn-Banach (2.21) existiert $\psi: X \to \mathbb{R}$ linear mit $\psi \leq \tilde{\varphi} \leq \varphi$. Für $y \in M$ gilt

$$-\psi(y) = \psi(-y) \le \tilde{\varphi}(-y) \le \varphi(-y+1 \cdot y) - 1 \cdot \mu = -\mu$$

also $\mu \leq \psi(y) \leq \varphi(y)$, woraus [*] folgt.

2.27. Satz

Sei X ein normierter \mathbb{R} -Vektorraum und $A,B\subset X$ nichtleere konvexe Teilmengen mit

$${\rm dist}(A,B) := \inf\{\|a-b\| \, | \, a \in A, b \in B\} > 0$$

Dann existiert $\psi:X\to\mathbb{R}$ stetig und linear mit $\psi(A)\cap\psi(B)\neq\emptyset$.

Beweis

 $A-B:=\{a-b\,|\,a\in A,b\in B\}\subset X$ ist konvex. (Warum?) Nach Satz 2.26 existiert $\psi:X\to\mathbb{R}$ linear mit $\psi\leq\|.\|$ und

$$0 < \operatorname{dist}(A, B) = \inf_{y \in A - B} ||y|| = \inf_{y \in A - B} \psi(y) = \inf_{a \in A} \psi(a) - \sup_{b \in B} \psi(b).$$

3. Operatoren zwischen Banachräumen. Die Sätze von der offenen Abbildung und vom abgeschlossenen Graphen

3.1. Proposition

Seien X,Y normierte Vektorräume, Y vollständig. Dann ist L(X,Y) vollständig bezüglich $\|.\|_{L(X,Y)}$.

Beweis

Sei $(T_n)_{n\in\mathbb{N}}\subseteq L(X,Y)$ eine Cauchy-Folge bezüglich $\|.\|_{L(X,Y)}$. Für $x\in X$ ist dann auch $(T_nx)_{n\in\mathbb{N}}\subset Y$ Cauchy bezüglich $\|.\|_Y$. (Warum?)⁴ Da Y ein Banachraum ist, folgt $T_nx\xrightarrow{n\to\infty}y$ für ein $y\in Y$. Wir definieren $T:X\to Y$ durch $T(x):=\lim_{n\to\infty}T_n(x)$ für $x\in X$. T ist linear: Klar (Warum?).

T ist stetig: $(T_n)_{n\in\mathbb{N}}$ ist Cauchy, also auch $(\|T_n\|)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Cauchyfolge (Warum?)⁵. Dann existiert $C\geq 0$ mit $\|T_n\|_{L(X,Y)}\leq C$, $n\in\mathbb{N}$, also gilt $\|Tx\|_Y\leq C\cdot\|x\|$, $x\in X$, woraus $\|T\|_{L(X,Y)}\leq C$ und die Stetigkeit von T folgt. Also ist $T\in L(X,Y)$.

Falls $\varepsilon > 0$, so existiert $n_0 \in \mathbb{N}$ mit $\|T_n - T_m\|_{L(X,Y)} < \varepsilon$ für $n, m \ge n_0$. Insbesondere:

$$||(T_n - T_m)x||_Y \le ||T_n - T_m||_{L(X,Y)} \cdot ||x||_X < \varepsilon \cdot ||x||_X$$

für $n, m \ge n_0$, $x \in X$. Weiter gilt

$$||(T_n - T)x||_Y \le ||(T_n - T_m)x||_Y + ||(T_m - T)x||_Y \le ||T_n - T_m||_{L(X,Y)} \cdot ||x||_X + ||(T_m - T)x||_Y$$

$$\le \varepsilon \cdot ||x||_X + \varepsilon \cdot ||x||_X$$

für $n,m\geq n_0$ und m groß genug, $x\in X$. Damit folgt nun $\|T_n-T\|_{L(X,Y)}\leq \varepsilon$ für $n\geq n_0$, also $T_n\to T$ bezüglich $\|.\|_{L(X,Y)}$.

3.2. Corollar

- (i) Der Dualraum X^* eines normierten \mathbb{K} -Vektorraumes X ist vollständig.
- (ii) Falls $\{0\} \neq X$ ein Banachraum ist, so ist L(X,X) eine Banachalgebra.

Beweis

- (i) $X^* = L(X, \mathbb{K})$ und \mathbb{K} ist vollständig. Wende 3.1 an.
- (ii) L(X,X) ist ein Banachraum nach 3.1. L(X,X) ist eine normierte Algebra:

•
$$\|\mathrm{id}_X\|_{L(X,X)}=1$$
 (Warum?)

• Für $S,T\in L(X,X)$, $x\in X$ gilt

$$\left\|(S\circ T)x\right\|_X\leq \left\|S\right\|\cdot \left\|Tx\right\|_X\leq \left\|S\right\|\cdot \left\|T\right\|\cdot \left\|x\right\|_X$$

Also ist
$$||S \circ T|| \le ||S|| \cdot ||T||$$
.

3.3. Definition und Proposition

Sei X ein normierter Raum. Definiere $\iota_X:X \to X^{**} \ \left(=(X^*)^*\right)$ durch

$$x \longmapsto (\varphi \mapsto \varphi(x))$$

für $x \in X$. Die Abbildung ι_X ist eine lineare Isometrie.

$$^{4} \text{mit } \|T_{n}x - T_{m}x\|_{Y} \leq \|T_{n} - T_{m}\| \cdot \|x\|$$

$$^{5} \text{mit } \|T_{n}\| = \|T_{n} - T_{n_{0}} + T_{n_{0}}\| \leq \|T_{n} - T_{n_{0}}\| + \|T_{n_{0}}\|$$

Beweis

Wohldefiniertheit: Die Linearität von $\iota_X(x)$ ist klar. Mit

$$|\iota_X(x)(\varphi)| = |\varphi(x)| \le ||\varphi||_{X^*} \cdot ||x||_X = ||x||_X \cdot ||\varphi||_{X^*}$$

folgt $\varphi \in X^*$ und somit $\|\iota_X(x)\|_{X^{**}} \leq \|x\|_X$, also ist $\iota_X(x)$ stetig.

 ι_X ist linear: Für $\alpha, \beta \in \mathbb{K}, x, y \in X, \varphi \in L(X, \mathbb{K}) = X^*$ gilt

$$\iota_X(\alpha \cdot x + \beta \cdot y)(\varphi) = \varphi(\alpha \cdot x + \beta \cdot y) = \alpha \circ \varphi(x) + \beta \cdot \varphi(y) = \alpha \cdot \iota_X(x)(\varphi) + \beta \cdot \iota_X(y)(\varphi)$$
$$= (\alpha \cdot \iota_X(x) + \beta \cdot \iota_X(y))(\varphi)$$

Isometrie: Es bleibt zu zeigen: $\|\iota_X(x)\|_{X^{**}} \geq \|x\|_X$ für $0 \neq x \in X$. Sei $Y := \mathbb{K} \cdot x$ und $\psi : Y \to \mathbb{K}$ gegeben durch $\psi(\alpha \cdot x) := \alpha \cdot \|x\|_X$. Dann ist $Y \subset X$ ein linearer Unterraum und $\psi(Y) \to \mathbb{K}$ linear mit $\|\psi\| = 1$. Nach Satz 2.24 existiert $\overline{\psi}.X \to \mathbb{K}$ linear mit $\overline{\psi}(x) = \psi(x) = \|x\|_X$ und $\|\overline{\psi}\| = \|\psi\| = 1$. Es gilt

$$\|\iota_X(x)\|_{X^{**}} \ge |\iota_X(x)(\overline{\psi})| = |\overline{\psi}(x)| = \|x\|_X.$$

3.4. Definition und Proposition

Seien X,Y normierte Räume. Definiere eine Abbildung . $^{\mathrm{tr}}L(X,Y) \to L(Y^*,X^*)$ durch $T \mapsto T^{\mathrm{tr}} = (\varphi \mapsto \varphi \circ T)$. . $^{\mathrm{tr}}$ ist eine lineare Isometrie und das Diagramm

$$\begin{array}{ccc} X & \xrightarrow{\iota_X} & X^{**} \\ \downarrow_T & & \downarrow_{T^{\mathrm{tr}\,\mathrm{tr}} = (T^{\mathrm{tr}})^{\mathrm{tr}}} \\ Y & \xrightarrow{\iota_Y} & Y^{**} \end{array}$$

kommutiert für jedes $T \in L(X,Y)$. Für $\iota_{X^*}: X^* \to X^{***}$ und $\iota_X^{\mathrm{tr}}: X^{***} \to X^*$ gilt $\iota_X^{\mathrm{tr}} \circ \iota_{X^*} = \mathrm{id}_{X^*}$.

Beweis

(i) Für $T, S \in L(X, Y)$, $\alpha, \beta \in \mathbb{K}$, $\varphi \in Y^*$ gilt

$$(\alpha \cdot T + \beta \cdot S)^{\mathrm{tr}}(\varphi) = \varphi \circ (\alpha \cdot T + \beta \cdot S)^{\underset{=}{\mathsf{linear}}} \alpha \cdot (\varphi \circ T) + \beta \cdot (\varphi \circ S) = \alpha \cdot T^{\mathrm{tr}}(\varphi) + \beta \cdot S^{\mathrm{tr}}(\varphi) \\ = (\alpha \cdot T^{\mathrm{tr}} + \beta \cdot S^{\mathrm{tr}})(\varphi)$$

(ii) Für $x \in X$, $\psi \in Y^*$ gilt $(\iota_Y T(x))(\psi) = \psi(T(x))$; weiter gilt

$$(T^{\operatorname{tr}\operatorname{tr}}\iota_X(x))(\psi) = ((T^{\operatorname{tr}})^{\operatorname{tr}}\iota_X(x))(\psi) = (\iota_X(x) \circ T\operatorname{tr})(\psi) = \iota_X(x)(T^{\operatorname{tr}}(\psi))$$
$$= T^{\operatorname{tr}}(\psi)(x) = \psi \circ T(x)$$
$$= \iota_Y(T(x))(\psi)$$

 $\Rightarrow T^{\operatorname{tr}\operatorname{tr}}\iota_X(x)=\iota_Y\big(T(x)\big)=\iota_Y\circ T(x). \text{ Also } T^{\operatorname{tr}\operatorname{tr}}\circ\iota_X=\iota_Y\circ T. \text{ Also kommutiert das Diagramm.}$

(iii) Es ist $|(T^{\mathrm{tr}}\psi)(x)| = |\psi T(x)| \leq \|\psi\|_{Y^*} \cdot \|Tx\|_Y \leq \|\psi\|_{Y^*} \cdot \|T\|_{L(X,Y)} \cdot \|x\|_X$. Also ist $\|T^{\mathrm{tr}}\psi\|_{X^*} \leq \|\psi\|_{Y^*} \cdot \|T\|_{L(X,Y)}$ und damit folgt

$$||T^{\mathrm{tr}}||_{L(Y^*,X^*)} \le ||T||_{L(X,Y)}$$

Ebenso ist $\|T^{\mathrm{tr}\,\mathrm{tr}}\|_{L(X^{**},Y^{**})} \leq \|T^{\mathrm{tr}}\|_{L(Y^{*},X^{*})} \leq \|T\|_{L(X,Y)}$. Andererseits gilt $\|T\|_{l(X,Y)} \leq \|T^{\mathrm{tr}\,\mathrm{tr}}\|_{L(X^{**},Y^{**})}$ nach 3.3 und da das Diagramm kommutiert (Warum?).

$$\Rightarrow \|T\|_{L(X,Y)} \leq \left\|T^{\operatorname{tr}}\right\|_{L(Y^*,X^*)} \leq \|T\|_{L(X,Y)}$$

also ist .tr eine Isometrie.

(iv) Für $\varphi \in X^*$, $x \in X$ gilt

$$(\iota_X^{\operatorname{tr}} \circ \iota_{X^*}(\varphi))(x) = \iota_{X^*}(\varphi) \circ \iota_X(x) = \iota_X(x)(\varphi) = \varphi(x)$$

$$\Rightarrow \iota_X^{\operatorname{tr}} \circ \iota_{X^*}(\varphi) = \varphi, \text{ also } \iota_X^{\operatorname{tr}} \circ \iota_{X^*} = \operatorname{id}_{X^*}.$$

3.5. Satz: Prinzip der gleichmäßigen Beschränktheit für Banachräume

Sei X ein Banachraum und Y ein normierter Raum. Sei $M \subset L(X,Y)$, sodass die Menge

$$\left\{x\mapsto \left\|Tx\right\|_{Y} \,\middle|\, T\in M\right\}\subset C(X,\mathbb{R})$$

punktweise gleichmäßig beschränkt ist, d.h. für $x \in X$ existiert $C_x \geq 0$ mit $||Tx||_Y > C_x$, $T \in M$. Dann existiert $C \geq 0$ mit $||T||_{L(X,Y)} \leq C$, $T \in M$.

Beweis

Nach Corollar 1.12 (Prinzip der gleichmäßigen Beschränktheit für metrische Räume) existieren eine offene Kugel $\emptyset \neq B(x_0, \varepsilon) \subset X$ und $K \geq 0$ mit $\|Tx\|_Y \leq K$ für $x \in B(x_0, \varepsilon)$, $T \in M$. Für $x \in X$ mit $||x|| \leq 1$ gilt

$$\begin{aligned} \|Tx\|_X &= \frac{e}{\varepsilon} \cdot \left\| T\left(\frac{\varepsilon}{2} \cdot x\right) \right\|_Y = \frac{2}{\varepsilon} \cdot \left\| T\left(\frac{\varepsilon}{2} \cdot x + x_0 - x_0\right) \right\|_Y \\ &\leq \frac{2}{\varepsilon} \cdot \left(\left\| T\left(\underbrace{\frac{\varepsilon}{2} \cdot x + x_0}_{\in B(x_0, \varepsilon)}\right) \right\|_Y + \left\| T\left(\underbrace{x_0}_{\in B(x_0, \varepsilon)}\right) \right\|_Y \right) \\ &\leq \frac{2}{\varepsilon} (K + K) = \frac{4K}{\varepsilon} \end{aligned}$$

$$\Rightarrow ||T||_{L(X,Y)} \le \frac{4K}{\varepsilon} =: C.$$

3.6. Corollar

Sei Z ein metrischer Raum und $N\subset Z$ eine Teilmenge, so dass gilt: Für alle $\varphi\in Z^*$ existiert $C_{\varphi}\geq 0$ mit $|\varphi(z)| \leq C_{\varphi}$, $z \in N$. Dann ist N beschränkt.

Beweis

 $\iota_Z:Z o Z^{**}$ ist eine Isometrie nach 3.3. Wende Satz 3.5 an mit $X=Z^*$, $X=\mathbb{K}$ und $M=\iota_Z(N)\subset \mathbb{K}$ $Z^{**}=L(Z^*,\mathbb{K})$. Für $\varphi\in X=Z^*$ existiert $C_{\varphi}\geq 0$ mit $|T\varphi|=|\iota_Z(z)(\varphi)|=|\varphi(z)|\leq C_{\varphi}$, wo $T=\iota_Z(z)\in M$ für ein $z\in N$. Nach 3.5 folgt: Es existiert ein $C\geq 0$ mit $\|z\|_Z=\|\iota_Z(z)\|_{Z^{**}}\leq C$,

Tatsache für Übungen: X, Y Banachräume, $T \in L(X, Y)$ surjektiv $\Rightarrow T$ ist offen. Corollar: $T \in L(X, Y)$ bijektiv $\Rightarrow T^{-1}$ stetig.

A. Anhang

A.1. Vierecksungleichung

Sei (X,d) ein metrischer Raum und $x,y,u,v\in X$. Dann gilt

$$|d(x,y) - d(u,v)| \le d(x,u) + d(y,v)$$

Beweis

Einerseits gilt nach der Dreiecksungleichung

$$d(x,y) \leq d(x,u) + d(u,v) + d(v,y) \quad \Longrightarrow \quad d(x,y) - d(u,v) \leq d(x,u) + d(y,v)$$

Andererseits aber auch

$$d(u,v) \leq d(u,x) + d(x,y) + d(y,v) \quad \Longrightarrow \quad d(u,v) - d(x,y) \leq d(x,u) + d(y,v)$$

Insgesamt folgt also die Behauptung.

A. Anhang

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

```
abgeschlossen, 1
Abschluss, 1
Banachalgebra, 10
Banachraum, 10
Cauchy-Folge, 1
Distanz, 15
Dualraum, 8
erweiterte Metrik, 3
Funktionale, 8
gleichmäßig stetig, 1
Isometrie, 1
isometrischer Isomorphismus, 1
konvex, 14
metrischer Raum, 1
normierte K-Algebra, 9
offen, 1
Operator
    beschränkter Operator, 8
Operatoren, 8
Operatornorm, 8
punktweise gleichmäßig beschränkt, 6
separabel, 5
stetig, 1
sublinear, 11
topologischer Vektorraum, 7
Vervollständigung, 2
vollständig, 1
```

Index A

Abbildungsverzeichnis

Todo's und andere Baustellen

Achtung Wortspiel: Beweis vervollständigen ;-D	2
Beweis zu Ende führen	3
hübsch machen	18

B Abbildungsverzeichnis