

Weighted Naive Bayes

Eshwar Moorthy, John Kim

Naive Bayes Summary

Independent vs Dependent

Independent events

- Outcomes don't affect each other
- $\bullet \quad P(A \cap B) = P(A) \cdot P(B)$
- Probabilities remain constant

Dependent events

- Outcomes do affect each other
- $P(A \cap B) = P(A) \cdot P(B \mid A)$
- One probability affects the other

Vs

Naive Bayes Independence Assumption

Naive Bayes

makes the assumption that all features are independent of each other for easier calculations

Prior Methods to Tackle Dependent Features in Naive Bayes

O1 TAN

Tree-Augmented Naive Bayes

03 CLL

Conditional Log Likelihood Optimization **LBR** 02

Lazy Bayesian Rules

MSE 04

Mean Squared Error Optimization **Datasets**

What is Conditional Mutual Information (CMI)?

Datasets	Description
Balance-scale	4 features The average CMI is 0
Cancer	10 features
	The average CMI is 0.06
Vote	17 features
	The average CMI is 0.11

Methods

Default Naive Bayes

$$P(class = y \mid X) = P(class = y) * \prod_{i=1}^{\# of \ features} P(X_i \mid class = y)$$
 (1)

$$P(class = y \mid X; w) = \gamma_{yx}(w) = P(class = y) * \prod_{i=1}^{\text{# of features}} P(X_i \mid class = y)^{w_i} (2)$$

$$LCP(w) = \sum_{i=1}^{\# \ of \ features} log(\frac{\gamma_{yx}(w)}{\# \ of \ labels})$$

$$Logarithmic \quad i=1 \quad \sum_{y'=1}^{K} \gamma_{y'x}(w)$$

$$Conditional \quad Probability$$

Weighted Naive Bayes

(3)

Results and Analysis

Conclusion

Modified Naive Bayes

- Accuracies were higher
- Model's predictive power increased
- Dependency was accounted for

Applications/Further Research

- Can be used during datasets with some features requiring user input
 - Dependency with those features
- Hybrid models working with large size datasets
- Minimize run time

Vs

Source Citations

Alleviating naive Bayes attribute independence assumption ... (n.d.). https://jmlr.org/papers/volume14/zaidi13a/zaidi13a.pdf

Shushrut. (2019, April 28). Balance scale. Kaggle. https://www.kaggle.com/datasets/mysticvalley/balance-scale

Webb, G. I., Boughton, J. R., & Wang, Z. (2017, July 21). Not so naive bayes: Aggregating one-dependence estimators - machine learning. SpringerLink. https://link.springer.com/article/10.1007/s10994-005-4258-6

scipy for backpropagation to get optimal weights and scikit-learn for Decision Tree classifier