MA 544: Homework 9

Carlos Salinas

March 19, 2016

PROBLEM 9.1 (WHEEDEN & ZYGMUND §6, Ex. 1)

- (a) Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y : (x,y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that E has measure zero and that for almost every $y \in \mathbb{R}^1$, $\{x : (x,y) \in E\}$ has measure zero.
- (b) Let f(x,y) be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}^1$, f(x,y) is finite for almost every y. Show that for almost $y \in \mathbb{R}^1$, f(x,y) is finite for almost every x.

Proof. (a) That E has measure zero is a consequence of Fubini's theorem. Set $E_x := \{ y : (x,y) \in E \}$ and $E_y := \{ x : (x,y) \in E \}$ then, by Theorem 6.8, we have

$$|E| = \iint_{\mathbb{R}^2} \chi_E \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathbb{R}} \left[\int_{E_x} 1 \, \mathrm{d}y \right] \mathrm{d}x = \int_{\mathbb{R}} \left[\int_{E_y} 1 \, \mathrm{d}x \right] \mathrm{d}y = 0. \tag{9.1}$$

Hence, E has measure zero. Moreover, we see that $\int_{\mathbb{R}} \left[\int_{E_y} 1 \, dx \right] dy = 0$ which means that for a.e. $y \in \mathbb{R}$, E_y has \mathbb{R}^1 -measure zero.

(b) Let E be the set of all pairs $(x,y) \in \mathbb{R}^2$ such that f(x,y) is not finite. By hypothesis, the set E_x has \mathbb{R}^1 -measure zero for a.e. x. Therefore, by part (a) the set E_y has measure zero. Hence, for a.e. y, f(x,y) is finite for a.e. x.

PROBLEM 9.2 (WHEEDEN & ZYGMUND §6, Ex. 3)

Let f be measurable and finite a.e. on [0,1]. If f(x)-f(y) is integrable over the square $0 \le x \le 1$, $0 \le y \le 1$, show that $f \in L[0,1]$.

Proof. Set I := [0,1]. Suppose that $f(x) - f(y) \in L(I \times I)$. Then by Fubini's theorem we have

$$\iint_{I \times I} f(x) - f(y) \, \mathrm{d}x \, \mathrm{d}y = \iint_{I} \left[\iint_{I} f(x) - f(y) \, \mathrm{d}x \right] \, \mathrm{d}y = \iint_{I} \left[\iint_{I} f(x) - f(y) \, \mathrm{d}y \right] \, \mathrm{d}x < \infty. \tag{9.2}$$

Hence, for a.e. $y \in \mathbb{R}$, f(x) - f(y) is integrable so f(x) is integrable.

PROBLEM 9.3 (WHEEDEN & ZYGMUND §6, Ex. 4)

Let f be measurable and periodic with period 1: f(t+1) = f(t). Suppose there is a finite c such that

$$\int_0^1 |f(a+t) - f(b+t)| \, \mathrm{d}t \le c$$

for all a and b. Show that $f \in L[0,1]$. (Set a=x, b=-x, integrate with respect to x, and make the change of variables $\xi=x+t, \eta=-x+t$.)

Proof. Following the hint, write

$$c \ge \int_0^1 \int_0^1 |f(x+t) - f(-x+t)| \, \mathrm{d}x \, \mathrm{d}t$$

making the change of variables $\xi = x + t$, $\eta = -x + t$ and appropriate modification to the bounds of integration, i.e., $0 \le \xi \le 2$, $-1 \le \eta \le 1$ we have

$$= \int_{-1}^{1} \int_{0}^{2} |f(\xi) - f(\eta)| (\det \mathbf{J}(\xi, \eta)) \,\mathrm{d}\xi \,\mathrm{d}\eta$$

by Fubini's theorem

$$= \int_0^2 \int_{-1}^1 |f(\xi) - f(\eta)| (\det \mathbf{J}(\xi, \eta)) \, \mathrm{d}\eta \, \mathrm{d}\xi$$

where $\mathbf{J}(\xi,\eta) = \begin{bmatrix} \frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} \\ \frac{\partial t}{\partial \xi} \frac{\partial x}{\partial t} \frac{\partial \eta}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is the Jacobian of the linear transformation which sends the pair (ξ,η) to $(1/2(\xi-\eta),1/2(\xi+\eta))$, hence we have

$$= \frac{1}{2} \int_0^2 \int_{-1}^1 |f(\xi) - f(\eta)| \,d\xi \,d\eta$$

here we split the integral

$$= \frac{1}{2} \int_0^2 \int_{-\xi}^{\xi} |f(\xi) - f(\eta)| \, d\eta \, d\xi + \frac{1}{2} \int_0^2 \int_{-1+\xi}^{1-\xi} |f(\xi) - f(\eta)| \, d\eta \, d\xi$$

MA 544: Homework 9

PROBLEM 9.4 (WHEEDEN & ZYGMUND §6, Ex. 6)

For $f \in L(\mathbb{R}^1)$, define the Fourier transform \hat{f} of f by

$$\hat{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ixt} dt$$

for $x \in \mathbb{R}^1$. (For complex-valued function $F = F_0 + iF_1$ whose real and imaginary parts F_0 and F_1 are integrable, we define $\int F = \int F_0 + i \int F_1$.) Show that if f and g belong to $L(\mathbb{R}^1)$, then

$$\widehat{(f * g)}(x) = 2\pi \hat{f}(x)\hat{g}(x).$$

Proof.

PROBLEM 9.5 (WHEEDEN & ZYGMUND §6, Ex. 7)

Let F be a closd subset of \mathbb{R}^1 and let $\delta(x) = \delta(x, F)$ be the corresponding distance function. If $\lambda > 0$ and f is nonnegative and integrable over the complement of F, prove that the function

$$\int_{\mathbb{R}^1} \frac{\delta^{\lambda}(y) f(y)}{|x-y|^{1+\lambda}} dt$$

is integrable over F and so is finite a.e. in F. (In case $f = \chi_{(a,b)}$, this reduces to Theorem 6.17.)

Proof.

PROBLEM 9.6 (WHEEDEN & ZYGMUND §6, Ex. 9)

- (a) Show that $M_{\lambda}(x; F) = +\infty$ if $x \notin F$, $\lambda > 0$.
- (b) Let F = [c, d] be a closed subinterval of a bounded open interval $(a, b) \subset \mathbb{R}^1$, and let M_{α} be the corresponding Marcinkiewicz integral, $\lambda > 0$. Show that M_{λ} is finite for every $x \in (c, d)$ and that $M_{\lambda}(c) = M_{\lambda}(d) = \infty$. Show also that $\int M_{\lambda} \leq \lambda^{-1} |G|$, where G = (a, b) [c, d].

Proof.