

R0=R0(SOC,T) Vd at R0 = I at R0 * R0(SOC,T) P0 due to R0 = Vd*(I at R0)

R1=R1(SOC,T) Vd at R1 = I at R1 * R1(SOC,T) P1 due to R1 = Vd*(I at R1)

SoC(T)=SoC(T-1) +/- int(Idt/C*3600)OCV=Em(SOC,T)

 $mCpdT/dt = P_loss + h*A(Tamb-T)$

T =integral (P_loss + h*A(Tamb-T)/mCp)

m= mass of cell

Cp= Cell heat capacity

P_Loss = Total power loss

h = heat exchange coefficient

A = Area of cell

Tamb = Ambient temp in K

Vt = Vocv - V_R0 - V_R1
V_R0 = R0*I_R0
V_R1 = R1*I_R1

