進捗報告

今週行ったこと 1

• 初期個体について、全ての機器に対し起動状態 で、cmaesの実験を回した.

問題設定 2

ガスタービン一台, ボイラー台, ターボ式冷凍機 一台,蒸気吸収式冷凍機二台の5つの機器からなる 24 時刻運用問題である. 120 次元の変数 x が存在す るが、24時刻としてそれぞれ5つの機器の熱生成量 及びガス消費量を表すためである. 以下の表1に変 数説明を表す.

表 1: 変数説明

変数	変数の定義域	変数の意味
x_t	1.5~5.0	ターボ式冷凍機の熱生成量
x_{s1}	4.5~15.0	蒸気吸収式冷凍機1の熱生成量
x_{s2}	4.5~15.0	蒸気吸収式冷凍機2の熱生成量
x_g	1103~3679	ガスタービンのガス消費量
x_b	8.02~803	ボイラーのガス消費量

なお,変数の定義域は動かした場合のものであり, 停止している場合は当然0となる.

2.1 実験1

CMA-ES を用いて全機器起動状態で実験した. な お,実験パラメータは表2の通りである.

表 2: 実験パラメータ	
パラメータ	値
sigma(初期標準偏差)	0.05
入力変数の次元	120
最大世代数	2800
一世代の個体数	2400
ρ(ペナルティ関数の係数)	1e+10

機器の起動・停止状態を制約違反が許される形に したうえで, 初期解を設定し実験を行った.

図1,2にそれぞれ目的関数と y 軸が片対数の制 約違反関数の遷移を示す.

図 1: 目的関数 (seed=0)

図 2: 制約違反関数 (seed=0)

今回は初期で全ての x_q を起動したため、ガスター ビン起動状態での探索が進み,目的関数が約413万 まで小さくすることができた. また, ガスタービン の起動状態を既知解と比較してみると、CMA-ESで 稼働率が10%未満になっている部分と既知解の停 止している時刻が一致した.

そこで、この結果を受けて、それぞれのxの可能 範囲について稼働率rが10%を切ったら、機器を停 止させるようにした.

$$r = \frac{x - x_{min}}{x_{max} - x_{min}}$$

2.2 実験2

実験1での探索結果を初期解として、上式から稼働率が10%未満を停止させた状態から探索を行った. その結果を図3、図4に示す.

図 3: 目的関数 (seed=0)

図 4: 制約違反関数 (seed=0)

実験結果は表3の通りである.

表 3: 実験結果

手法	目的関数値	制約違反合計
CMA-ES	4134650.843	9.64e-08
CMA-ES(一部停止)	4086060.314	5.35e-08
既知解	3999635.845	6.43e-12

 x_g に関しては初期解で起動停止状態を制御して探索できるが、その他については起動状態で探索してしまうため、停止状態で固定して変数から除いて探索する.

3 今後の展望

変数 x から一部の変数を定数として固定し、探索を進める。