Experimental Approaches in Computer Science

Dror Feitelson Hebrew University

Lecture 10 – Experiments with People

- Computer systems are developed by people
- Computer systems are maintained by people
- Computer systems are used by people
- These are not the same people
- It is hard to anticipate what other people will think and do

People are different from each other, and they are different from you!

Need to experiment to find out

Areas of application

- Empirical software engineering
 - How do people design systems?
 - What are generally good procedures?
- Usability testing in HCI
 - How do people use systems?
 - What are generally good interface design guidelines?
- User perception of system performance
 - What do users care about?

Recurring questions

- Which processes and techniques work best
 - Example: testing vs. code inspection
 - Example: detailed design vs. extreme programming
 - Example: wide menus vs. deep menus
- Variation between experienced and novice programmers / users
 - How to make it transparent for newbies
 - How to make it efficient for experienced users
 - Can both use the same mechanisms?

Experimental techniques

- Observation and data analysis
 - See how users behave on their own
- Controlled experiments
 - See how users perform predefined tasks
 - See how user behavior changes when a specific system parameter is changed
- Interviews and surveys
 - Try to understand why users behave the way they do

Observing User Behavior

Question: what do users care about?

- Response time
 - This is how much time the user has to wait
- Slowdown
 - Response time normalized by actual execution time
 - This reflects the deviation from what could be expected in advance
- Optimizing for one may be different from optimizing for the other

Idea: look at user behavior

- Use logs of system activity
- Look at the activity of each user separately
- For each user job, tabulate its performance
 - This is expected to affect subsequent user actions
- Then tabulate the actual behavior
 - For example, the think time till the next job is submitted
- Correlate the performance with the behavior to see the effect

- Actual data is from parallel jobs on supercomputers
- Results: response time has consistent effect on think times, slowdown does not

Alternative view: with higher response times, probability to continue interactive session is reduced (measured as think time < 20 min.)

Contextual inquiry: detailed observation of a small number of people during their normal work

- What are the real problems
- What are the real needs
- Where can you bring real value
- A deep level of requirements elicitation
 - Users often don't know to articulate what they need
 - What they want is not always what they need
 - What they need may not be computer related (e.g. solve the problem of coffee always being spilled on the printout)

Actually doing it

- You are the apprentice learning from the user who is the master (even if you know more)
 - Not interviewer, guest, or reviewer
- Take notes about actions done, their sequence, and tools/artifacts used
- Understand what the users did and why
 - Model the flow of information
 - Model the sequence of operations
 - Model the environment and interactions with it

Controlled Experiments with Users

Steps in a user study:

- 0) Define the system's goals what services does it provide?
- 1) Create a set of tasks that are performed in order to meet these goals
- 2) Get people who are representative of the system's users
- 3) Watch them try to perform the tasks

applicable to customers of a web site as well as developers of a new application

Why does this thing exist?

- User perspective: What are the specific goals of using this system, that differentiate it from other systems?
- System perspective: What are the key features of the system that make it valuable?

Write a short description of what this is all about

- A couple of sentences
- Will be used as introduction to testers

Selecting tasks for a usability study

- Too many, so can't test all
- Make a list of tasks and rate by importance to the product on a scale of 1 to 5
- Now rate by the degree of doubt that the designers have about them, again 1 to 5
- Multiply the two ratings and sort
- Test the top-ranking tasks: those that are important and most require user input

Defining the tasks

- Define the goals, not the procedure
 - Want to find out what procedure users will use
- Be specific about exactly what's needed
- Create a reasonable sequence
- Don't use words that appear in the user interface
- Together they shouldn't take too much time
 - Estimate how long it will take you (an expert who knows the system)
 - Multiply by 3 to 10

Getting people for the study

- Recruiting: finding some people
 - Based on general demographics and mix
 - Age, gender, income level, computer usage level
- Screening: finding the right people
 - Filter out those that match the demographics but are probably not useful
 - Interested (but not predisposed) in the system, maybe use similar system
 - Articulate about expressing what they think
 - Available on the planned test dates
 - Not working in the industry

Conducting a user session

- Explain that the user is helping to test the system, as opposed to the system testing the user
 - There are no wrong answers
 - If you don't understand it is OK, and in fact our main goal is to know about it
 - Analogous to people hired to watch a show pilot
- The user should say out load what he is trying to do and why
 - Again, don't be ashamed
 - Best to videotape the whole process
 - The study organizer is in the background only

Experimental aspects

- Measure the time to perform different tasks
 - Average of each task across users
 - Average of each user across tasks
- Record on video for later analysis
 - Screenshots
 - User behavior and expressions

Experimental plan

- Better to have multiple small studies than one huge study
- Number of subjects can be as low as 5-6
 - Enough to get feel for results, not necessarily good statistics
- Conduct a pilot session
 - Find out suitability for different user demographics
 - Verify that tasks are reasonable
 - Verify that description of system and tasks are understandable

Conducting Interviews

Important issues

- Population being interviewed
 - Question of sampling bias: you want generally representative users
 - Question of required sample size
- Phrasing of the questions
 - Questions should be neutral so as not to affect results
 - Question order is also important
 - Imperative to pre-test the questions on a small sample to detect and correct problems
- Statistical analysis of results

Unstructured interview

- Completely free exchange
- Used as an exploratory tool in initial stages of a study, when the researcher doesn't know much yet
- Semi-structured interview
 - basically follow a pre-defined outline of questions
 - allow user to expand on various topics
 - also on-line questionaire where questions depend on previous answers
- Structured interview
 - Filling out a pre-defined questionaire

Questionaire structure

- Title
- Short introduction what is this about
- Demographics questions who is answering
- Start with the easy questions
- Leave sensitive questions to the end

- Questions types:
 - Multiple choice or a scale
 - Numeric (how many times a day do you sneeze?)
 - Open text (what do you do in the morning?)
- When giving choices, always include "N/A", "other", etc.
- Provide text explanations in addition to scale
- Desirable scale is debatable
 - Number of points is 5 to 10
 - Even forces a decision, odd allows an undecided middle response

Characters on the computer screen are:

1 2 3 4 5 6 7 8 9 N/A hard to read easy to read

Image of characters are:

1 2 3 4 5 6 7 8 9 N/A fuzzy sharp

Character shapes (fonts) are:

1 2 3 4 5 6 7 8 9 N/A barely legible very legible