

Tamanho (x)	Custo R\$ (mil) (y)
2104	460
1416	232
1534	315
852	178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Tamanho em ha (x)

Reconhecimento de padrões e aprendizagem computacional

Regressão Linear

Introdução

Tamanho (x)	Custo R\$ (mil) (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's: Parameters

Como escolher os parâmetros??

Introdução

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Introdução

Como escolher os parâmetros??

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorrect:

⇒ temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

⇒ $\theta_0 := \text{temp0}$
⇒ temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
⇒ $\theta_1 := \text{temp1}$

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```


$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Regressão Linear

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

0(11)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Regressão Linear

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) =$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) =$$

$$j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=$$

Regressão Linear

Gradient descent algorithm

repeat until convergence {

$$\begin{array}{l} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) \cdot x^{(i)} \end{array} \end{array} \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \end{array}$$

Regressão Linear

Regressão Linear

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$J(\theta_0, \theta_1)$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

Regressão Linear

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

Reconhecimento de padrões e aprendizagem computacional

Regressão Linear Múltipla

Múltiplas variáveis

Tamanho (x)	Custo R\$ (mil) (y)
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Múltiplas variáveis – Exemplo do preço de uma casa

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Múltiplas variáveis

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Para simplificar e facilitar o uso da equação: $x_0 = 1$.

Múltiplas variáveis - Gradiente descendente

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $heta_j:= heta_j-lpha rac{\partial}{\partial heta_j}J(heta_0,\dots, heta_n)$ $\}$ (simultaneously update for every $j=0,\dots,n$)

Múltiplas variáveis - Gradiente descendente

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\underbrace{\frac{\partial}{\partial \theta_0} J(\theta)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

```
New algorithm (n \ge 1):
Repeat {
 \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
                              (simultaneously update \theta_j for
                               j = 0, ..., n
     \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}
     \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1 \\ m}} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
     \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}
```


Gradiente descendente – "Truques para melhorá-lo"

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Gradiente descendente – "Truques para melhorá-lo"

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{5}$$

$$-0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5$$

Para ficar mais próximo a $\begin{vmatrix} 0,5 \end{vmatrix}$ pode-se utilizar o "range" no quociente da normalização. $x_i := \frac{x_i - \mu_i}{s_i}$

Gradiente descendente - "Truques para melhorá-lo"

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

"Debugging": como garantir que a descida do gradiente esteja funcionando corretamente?

Como escolher a taxa de aprendizado "a"?

Gradiente descendente – "Truques para melhorá-lo"

Garantir que a descida do gradiente esteja funcionando corretamente.

Gradiente descendente – "Truques para melhorá-lo"

Para resumir:

Se α é muito pequeno: convergência lenta.

Se α é muito grande: pode não diminuir a cada iteração e, portanto, pode não convergir.

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

m = 4.

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

RESUMINDO:

Gradiente descendente	Equação normal
Precisa escolher alfa	Não há necessidade de escolher alfa
Precisa de muitas iterações	Não há necessidade de iterar
$\bigcirc (k n^2)$	O (n^3), precisa calcular inverso de X^TX
Funciona bem quando n é grande	Lento se n for muito grande

Com a equação normal, o cálculo da inversão é complexo...

Portanto, se tivermos um número muito grande de recursos, a equação normal será lenta.

Na prática, quando n excede 10.000, pode ser um bom momento para passar de uma solução normal para um processo iterativo.

Tarefa COLAB

1. Próxima aula