Statistical Test Results for RQ1-RQ4 (COMPLEMENTS RESULTS in SECTION 5)

NEGIN AYOUGHI, DAVID DEWAR, SHIVA NEJATI AND MEHRDAD SABETZADEH

Table 1. Statistical tests for **RQ1** comparing **AMPL-based variants** and **Python-based variants** based on (a) execution success rate (Success) and zero relative-error rates (#Zero/#Exec) using the Z-test; and (b) based on relative-error using the Mann-Whitney U test. Blue cells indicate significant improvements of AMPL-based over Python-based variants. No significant difference with Python-based variants outperforms AMPL-based variants.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

	Variant					Public				Industry			
LLM	Structuring	Refinement		ıccess		o/#Exec		iccess		o/#Exec			
			Z	p-value	Z	p-value	Z	p-value	Z	p-value			
	Unstructured	One-off	-5.31	1.00	3.15	0.00	-2.34	0.99	0.83	0.20			
Gemini 1.5-Flash	Offstructured	Refinement	3.02	0.00	-1.64	0.95	-1.10	0.86	0.04	0.48			
Gennin 1.5-Flash	Structured	One-off	-0.32	0.63	-0.67	0.75	-2.61	1.00	0.78	0.22			
	Structureu	Refinement	6.64	0.00	2.12	0.02	0.00	0.50	0.00	0.50			
	Unstructured	One-off	-8.56	1.00	2.05	0.02	0.00	0.50	-0.94	0.83			
GPT-40	Offstructured	Refinement	-3.72	1.00	2.30	0.01	0.27	0.40	0.47	0.32			
Gr 1-40	Structured	One-off	-2.76	1.00	-3.60	1.00	-4.39	1.00	0.63	0.27			
		Refinement	6.24	0.00	-2.74	1.00	-0.55	0.71	2.82	0.00			
	Unstructured	One-off	-4.82	1.00	0.69	0.25	-1.39	0.92	-0.09	0.53			
Gemini 2.5-Pro	Offstructured	Refinement	-1.06	0.86	-3.49	1.00	-0.47	0.68	-0.19	0.57			
Gennin 2.5-F10	Structured	One-off	-2.62	1.00	0.32	0.38	-2.09	0.98	1.65	0.05			
	Structureu	Refinement	2.20	0.01	2.68	0.00	0.00	0.50	-0.34	0.63			
	Unstructured	One-off	-4.33	1.00	3.73	0.00	-1.13	0.87	-0.69	0.76			
o4-mini	Offstructured	Refinement	0.26	0.40	1.15	0.13	0.31	0.38	-0.35	0.64			
04-mm	Structured	One-off	3.71	0.00	-1.35	0.91	-0.55	0.71	0.51	0.30			
	Structured	Refinement	7.77	0.00	-4.77	1.00	0.31	0.38	0.07	0.47			

(b) Comparing the variants based on the relative-error metric

	Variant	Public	Dataset	INDUSTRY Dataset		
LLM	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	Unstructured One-off		0.23	0.47	0.53	0.50
Gemini 1.5-Flash	Clistituctureu	Refinement	1.00	0.58	0.93	0.57
Gennin 1.5-Masn	Structured	One-off	0.99	0.58	0.86	0.54
	Structured	Refinement	0.00	0.41(S)	0.56	0.51
	Unstructured	One-off	0.13	0.46	0.57	0.51
GPT-40	Olistiacturea	Refinement	0.04	0.45(N)	0.32	0.45
Gr 1-40	Structured	One-off	1.00	0.60	0.50	0.48
		Refinement	0.98	0.56	0.01	0.32(M)
	Unstructured	One-off	0.23	0.48	0.84	0.56
Gemini 2.5-Pro	Unstructured	Refinement	1.00	0.57	0.51	0.50
Gennin 2.5-F10	Structured	One-off	0.11	0.47	1.00	0.50
	Structured	Refinement	0.00	0.42(S)	0.72	0.53
	Unstructured	One-off	0.01	0.45(N)	0.68	0.53
o4-mini	Olistiacturea	Refinement	0.17	0.48	0.48	0.50
04-111111	Structured	One-off	0.82	0.52	0.17	0.47
	Structured	Refinement	1.00	0.59	0.49	0.50

Table 2. Statistical tests for **RQ2** comparing **structured variants** and **unstructured variants** based on (a) execution success rate (Success) and zero relative-error rates (#Zero/#Exec) using the Z-test; and (b) based on relative-error using the Mann-Whitney U test. Blue cells indicate significant improvements of structured over unstructured variants. No significant difference with unstructured variants outperforms structured variants.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

Variant				Pur	BLIC		Industry			
LLM	Language	Refinement	Success		#Zero/#Exec		Success		#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	One-off	2.63	0.00	-2.98	1.00	0.00	0.50	0.00	0.50
Gemini 1.5-Flash	AMIL	Refinement	0.96	0.17	6.06	0.00	1.69	0.04	-0.21	0.58
Gennin 1.5-Flash	Python	One-off	-2.39	0.99	0.75	0.22	0.29	0.39	0.07	0.47
	Fymon	Refinement	-2.79	1.00	1.88	0.03	0.61	0.27	-0.18	0.57
	AMPL	One-off	2.44	0.00	-2.65	1.00	-1.39	0.92	0.21	0.41
GPT-40	AWIL	Refinement	5.73	0.00	-3.58	1.00	0.00	0.50	1.91	0.03
Gr 1-40	Python	One-off	-3.53	1.00	3.02	0.00	3.16	0.00	-1.50	0.93
	Fymon	Refinement	-4.25	1.00	1.47	0.07	0.81	0.21	-0.49	0.69
	AMPL	One-off	0.67	0.25	-3.65	1.00	-1.06	0.85	1.83	0.03
Gemini 2.5-Pro		Refinement	0.31	0.38	3.13	0.00	0.38	0.35	0.42	0.34
Gennin 2.5-110	Python	One-off	-1.62	0.95	-3.54	1.00	-0.33	0.63	0.23	0.41
	Fymon	Refinement	-2.92	1.00	-3.04	1.00	-0.09	0.53	0.58	0.28
	AMPL	One-off	1.92	0.03	-2.15	0.98	0.00	0.50	1.44	0.07
o4-mini	AWIFL	Refinement	2.15	0.02	-2.95	1.00	0.00	0.50	0.00	0.50
04-111111	Drythan	One-off	-6.07	1.00	2.89	0.00	-0.58	0.72	0.37	0.36
	Python	Refinement	-5.80	1.00	3.14	0.00	0.00	0.50	0.41	0.34

(b) Comparing the variants based on the relative-error metric

	Variant		Public	Dataset	INDUSTRY Datase		
LLM	Language Refinement		p-value	\hat{A}_{12}	p-value	\hat{A}_{12}	
	AMPL	One-off	1.00	0.54	1.00	0.50	
Gemini 1.5-Flash	AMPL	Refinement	0.00	0.34(M)	0.04	0.41(S)	
Gennin 1.5-Masn		One-off	0.49	0.50	0.34	0.47	
	Python	Refinement	0.11	0.47	0.58	0.51	
		One-off	0.95	0.56	1.00	0.50	
GPT-40	AMPL	Refinement	1.00	0.57	0.07	0.39	
Gr 1-40		One-off	0.01	0.44(S)	0.79	0.57	
	Python	Refinement	0.17	0.47	0.78	0.57	
		One-off	1.00	0.58	0.18	0.46	
Gemini 2.5-Pro	AMPL	Refinement	0.00	0.42(S)	0.55	0.51	
Gennin 2.5-F10		One-off	1.00	0.59	0.48	0.50	
	Python	Refinement	1.00	0.58	0.32	0.47	
		One-off	0.99	0.55	0.54	0.50	
o4-mini	AMPL	Refinement	1.00	0.56	0.44	0.49	
04-111111		One-off	0.07	0.46	0.85	0.53	
	Python	Refinement	0.03	0.46(N)	0.52	0.50	

Table 3. Statistical tests for RQ3 comparing refinement variants and one-off variants based on (a) execution success rate (Success %) and zero relative-error rates (#Zero/#Exec) using the Z-test; and (b) based on relative-error using the Mann-Whitney U test. Blue cells \blacksquare indicate significant improvements of refinement over one-off variants. No significant difference with one-off variants outperforms refinement variants.

(a) Comparing the variants based on the Success % and #Zero/#Exec metrics

Variant				Pub		Industry				
LLM	Language	Structuring	Success %		#Zero/#Exec		Success %		#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	Unstructured	10.68	0.00	-4.91	1.00	1.55	0.06	-1.00	0.84
Gemini 1.5-Flash	AWIFL	Structured	9.10	0.00	3.49	0.00	3.16	0.00	-1.19	0.88
Geiiiiii 1.5-Fiasii	Python	Unstructured	2.71	0.00	-0.31	0.62	0.29	0.39	-0.30	0.62
	Fymon	Structured	2.30	0.01	0.69	0.24	0.61	0.27	-0.56	0.71
	AMPL	Unstructured	7.13	0.00	-0.63	0.73	1.81	0.03	-0.11	0.58
GPT-40	AWIFL	Structured	10.15	0.00	-0.77	0.78	3.13	0.00	1.13	0.13
GF 1-40	Python	Unstructured	2.23	0.01	-0.60	0.73	1.50	0.06	-1.58	0.94
		Structured	1.48	0.07	-2.13	0.98	-0.89	0.81	-0.72	0.76
	AMPL	Unstructured	5.13	0.00	-3.74	1.00	0.79	0.21	-0.69	0.75
Gemini 2.5-Pro	AWIL	Structured	4.80	0.00	3.04	0.00	2.19	0.01	-2.04	0.98
Gennin 2.5-110	Python	Unstructured	1.43	0.08	0.25	0.40	-0.15	0.56	-0.66	0.75
	1 yulon	Structured	0.08	0.47	0.75	0.22	0.09	0.46	-0.30	0.62
	AMPL	Unstructured	5.45	0.00	-0.29	0.62	1.43	0.08	0.37	0.36
o4-mini	AWIFL	Structured	5.53	0.00	-0.88	0.81	1.43	0.08	-1.16	0.88
04-111111	Python	Unstructured	0.92	0.18	2.53	0.01	0.00	0.50	-0.41	0.66
	rymon	Structured	1.15	0.12	2.43	0.01	0.58	0.28	-0.37	0.64

(b) Comparing the variants based on the relative-error metric

	Variant		Public	Dataset	Industry Dataset		
LLM	Language	Structuring	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}	
	AMPL	Unstructured	1.00	0.64	0.86	0.58	
Gemini 1.5-Flash	AMIL	Structured	0.00	0.41(S)	0.82	0.56	
Gennin 1.5-1 lasii	Python	Unstructured	0.68	0.51	0.69	0.53	
	1 ython	Structured	0.26	0.48	0.63	0.53	
	AMPL	Unstructured	0.72	0.52	0.40	0.47	
GPT-40	AMIL	Structured	0.78	0.52	0.16	0.41	
Gr 1-40	Python	Unstructured	0.78	0.52	0.88	0.61	
		Structured	0.99	0.56	0.79	0.56	
	AMPL	Unstructured	1.00	0.58	0.72	0.54	
Gemini 2.5-Pro	AWIL	Structured	0.00	0.43(S)	0.98	0.38	
Gennin 2.5-110	Python	Unstructured	0.38	0.49	0.77	0.54	
	rython	Structured	0.21	0.48	0.62	0.52	
	AMPL	Unstructured	0.65	0.51	0.38	0.48	
o4-mini	AWIL	Structured	0.78	0.52	0.88	0.56	
04-111111	Python	Unstructured	0.07	0.47	0.64	0.52	
	1 y 111011	Structured	0.01	0.45(N)	0.67	0.52	

4 • Negin Ayoughi, David Dewar, Shiva Nejati and Mehrdad Sabetzadeh

Table 4. Statistical tests for **RQ4** comparing EXEOS variants when instantiated with **reasoning** LLMs, i.e., Gemini 2.5-Pro and o4-mini, versus when instantiated with **instruction-following** LLMs, i.e., Gemini 1.5-Flash and GPT-4o, based on (a) execution success rate (Success) and zero relative-error rates (#Zero/#Exec) using the Z-test, and (b) relative-error using the Mann-Whitney U test. Blue cells indicate significant improvements in results obtained with reasoning LLMs over those obtained with instruction-following LLMs. No significant difference where instruction-following LLMs outperforms reasoning LLMs.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

Variant			Public				Industry			
Language	Structuring	Refinement	Success %		#Zero/#Exec		Success %		#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	Unstructured	One-off	12.78	0.00	1.34	0.09	2.30	0.01	-0.02	0.51
AMPL		Refinement	8.02	0.00	4.07	0.00	1.99	0.02	0.65	0.26
AWIL	Structured	One-off	11.23	0.00	2.51	0.01	2.58	0.00	1.66	0.05
	Structureu	Refinement	4.10	0.00	2.38	0.01	1.07	0.14	-0.27	0.60
	Unstructured	One-off	9.79	0.00	3.09	0.00	2.59	0.00	0.18	0.43
Python		Refinement	8.03	0.00	5.84	0.00	1.65	0.05	1.00	0.16
	Structured	One-off	8.04	0.00	-0.41	0.66	-0.42	0.66	1.92	0.03
	Structured	Refinement	11.35	0.00	-0.03	0.51	0.43	0.33	2.28	0.01

(b) Comparing the variants based on the relative-error metric

	Variant		Public	Dataset	INDUSTRY Datase		
Language	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}	
	Unstructured	One-off	0.04	0.47(N)	0.40	0.49	
AMPL	Olistructureu	Refinement	0.00	0.42(S)	0.38	0.48	
AMIL	Structured	One-off	0.01	0.45(N)	0.05	0.44	
	Structureu	Refinement	0.01	0.47(N)	0.60	0.51	
	Unstructured	One-off	0.00	0.45(N)	0.41	0.49	
Python	Olistiacturea	Refinement	0.00	0.42(S)	0.19	0.46	
	Structured	One-off	0.76	0.51	0.03	0.42(S)	
	Structured	Refinement	0.62	0.51	0.01	0.39(M)	