□ × 1, (¬ 1−) 6.
Name: \_

Jerry

**HL1** Assignment #20

1. Dividing  $2x^3 + 5x^2 + ax + 7$  by x+3 gives a remainder of 16. What is the value of a?

$$f(-3) = 2 \cdot (-27) + 5 \cdot 9 - 3 \alpha + 7 = 16$$

$$-54 + 45 + 7 - 3 \alpha = 16$$

$$3 \alpha = -18$$

$$\alpha = -6$$

2. Without the calculator solve  $8^{2x+1} = 16^{2x-3}$ .

$$2^{6x+3} = 2^{6x-12}$$

$$6x+3 = 8x-12$$

$$2x = 15$$

$$x = \frac{15}{2}$$

3. A curve has equation  $y = x^3 + px^2 + px$ . For what values of p does this curve have no stationary points?

$$y' = 3x^{2} + 2px + p$$
 $0 = 4p^{2} - 4p \cdot 3 = 4p^{2} - 12p < 0$ 
 $p^{2} - 3p < 0$ 
 $p(p-3) < 0$ 
 $p(p-3) < 0$ 
 $p < 0 < p < 3$ 



4. A sector of a circle has perimeter 24 cm. Use calculus to find the maximum area of the sector.

$$C = 2r + \frac{\theta}{2\pi} \cdot 2\pi r$$

$$A' = 2\theta \cdot \frac{(\theta+2)^2 - \theta \cdot 2(\theta+2) \cdot 1}{(\theta+2)^4}$$

$$= 2r + \theta r$$

$$= 2\theta \cdot \frac{2\theta}{(\theta+2)^4}$$

$$= \frac{2\theta \cdot (\theta+2)^4}{(\theta+2)^4}$$

$$\therefore R_{max} = \frac{2\theta \times 2}{4^2}$$

$$\therefore r = \frac{\theta}{\theta+2}$$

$$\Rightarrow \frac{\theta}{(\theta+2)^2}$$

$$\therefore \theta = \frac{2\theta \cdot (\theta+2)^4}{(\theta+2)^4}$$

$$\therefore R_{max} = \frac{2\theta \times 2}{4^2}$$

$$\Rightarrow \frac{\theta}{(\theta+2)^4}$$

$$\Rightarrow \frac{\theta}{(\theta+2)^4}$$

$$\therefore \theta = \frac{2\theta \cdot (\theta+2)^4}{(\theta+2)^4}$$

$$\therefore R_{max} = \frac{2\theta \times 2}{4^2}$$

$$\Rightarrow \frac{\theta}{(\theta+2)^4}$$

$$\Rightarrow \frac$$

1.0=2.

5. The circles with centres A and C each have radius  $8\,\mathrm{cm}$  and are intersected by the square ABCD. Find the area of the shaded region.

Ashaded = 
$$\left(\frac{8 \times 2}{\sqrt{12}}\right)^2 - \frac{1}{2} \cdot \pi \cdot 8^2$$
  
=  $\frac{128 - 32\pi}{2} \cdot (cm^2)$ 

6. When the binomial  $(2 + ax)^{10}$  is expanded, the coefficient of the term in  $x^3$  is 414720. Find the value of a.

$$2^{7} \cdot (a \times )^{3} \cdot (3^{9}) \xrightarrow{3 \times 4}$$

$$= 2^{7} \cdot 3 \cdot 3^{3} \cdot \frac{10 \times 10^{4}}{3 \times 10^{4}}$$

$$= 2^{9} \cdot 3 \cdot 10 \cdot a^{3} \times 3^{3}$$

$$= 414720$$



7. A fair tetrahedral die is thrown three times. If event R is the sum of the three scores is 9 and event S is the product of the three scores is 16, determine whether events R and S are independent.

R: 1,4,4 
$$\rightarrow 3$$
 :.  $p(R) = \frac{10}{64}$  /  
2,3,4  $\rightarrow 6$   
3,3,3  $\rightarrow 1$ 

S: 1, 4, 4 
$$\rightarrow$$
 3  
 $2$ , 2, 4  $\rightarrow$  3  
 $2$ ,  $2$ , 4  $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$ ,  $4$   $\rightarrow$  3  
 $2$ ,  $2$ ,  $4$ ,  $4$ ,  $4$   $\rightarrow$  3

8. The following shape is made from wire. It has both vertical and horizontal lines of symmetry. The ends of the shape are at the vertices of a square with a side length of 10. Find the minimum length of the wire.

$$C = 10 - 20 + 4 \sqrt{a^2 + 15}$$

$$C' = -2 + 4 \cdot \frac{1}{2} (a^2 + 15)^{-\frac{1}{2}} \cdot 20$$

$$= -2 + \frac{4a}{\sqrt{a^2 + 15}}$$

$$= -2 + \frac{4a}{\sqrt{a^{2}+15}}$$

$$= \frac{a}{\sqrt{a^{2}+15}} = \frac{2}{4} = \frac{1}{2}$$

$$\therefore 2a = \sqrt{a^{2}+15}$$

$$4a' = a' + 15$$

$$a = \pm \frac{\sqrt{3}}{3} \cdot 5 \text{ (negative x)}$$

$$\therefore \text{ (min = 10 - 2 \cdot \frac{5\sqrt{3}}{3} + 4 \sqrt{\frac{25+75}{3}}$$

$$= 10 - \frac{10}{3}\sqrt{3} \cdot 4$$

= 10 + 1013



9. The curve  $y = \frac{ax-b}{x^2-1}$  where  $a, b \in \mathbb{R}$  has a stationary point at (3,1). Sketch the curve indicating any key features.

$$y' = \frac{a(x^{2}-1) - (ax-b)(2x)}{(x^{2}-1)^{2}}$$

$$= \frac{ax^{2}-a - 2ax^{2}+2bx}{(x^{2}-1)^{2}}$$

$$y' = 0$$
Then  $-ax^{2}+2bx-a=0$ 

$$-a \cdot 9 + bb-a=0$$

$$0bb = \frac{10a}{8} = 1$$

$$0bb = 3a-8$$

$$0bb = 3a-8$$

$$0bb = 3a-8$$

$$0bb = 10$$

$$y' = \frac{6 \times -10}{x^2 - 1}$$

$$y' = -6 \times \frac{1}{x^2 - 1}$$

$$y' = 0 \Rightarrow x = \frac{1}{3}, x_2 = 3$$

$$x = \frac{1}{3}, x_3 = 3$$

$$(3.1) = 7 \text{ stationary point}$$

$$(\frac{3}{3}, 0) = x$$

10. Research the sum of an infinite geometric series. Hence find the sums of the two possible infinite geometric series with first term 18 and third term 8.



## Solutions to HL1 Assignment #20

- 1. By the remainder theorem p(-3) = -54 + 45 3a + 7 = 16, whence a = -6.
- 2. We have  $8 \cdot 2^{6x} = 2^{8x-2}$ , whence 2x = 15 or  $x = \frac{15}{2}$ .
- 3. Here  $y' = 3x^2 + 2px + p$ . Notice y' is quadratic with  $\Delta = 4p^2 12p$ . Solving  $\Delta < 0$  gives  $p \in ]0, 3[$ .
- 4. Denote the radius of the sector by r, the central angle's radian measure by  $\theta$  and the area by A. Then we have  $2r + r\theta = 24$  and  $A = \frac{1}{2}r^2\theta$ , whence  $A = 12r r^2$ , 0 < r < 12. Next A' = 12 2r and solving A' = 0 gives r = 6. Since A'' = -2 < 0 for all r, we conclude r = 6 gives the maximum area of  $36 \text{ cm}^2$ .
- 5. The shaded area can be thought of as a square of side length  $8\sqrt{2}$  cm minus a half circle of radius 8 cm. This gives the area as  $32(4-\pi)$  cm<sup>2</sup>.
- 6. By the binomial theorem  $\binom{10}{3} \cdot 2^7 \cdot a^3 = 414720$ , whence a = 3.
- 7. Considering a sample space of 64 ordered triples we have n(R) = 10, n(S) = 6 and  $n(R \cap S) = 3$ . So  $P(R \mid S) = \frac{3}{6} \neq \frac{10}{64} = P(R)$ , whence events R and are not independent.
- 8. Denote the length of the central leg by x, the length of an oblique leg by y and the total length by t. Then t = x + 4y and  $y^2 = 25 + \frac{1}{4}(10 x)^2$ , 0 < x < 10. Then we conclude

$$t = x + 2\sqrt{10^2 + (10 - x)^2}$$

- . Using the GDC gives  $t_{\rm min} = 27.3$  (3 s.f).
- 9. By the quotient rule  $y' = \frac{a(x^2-1)-2x(ax-b)}{(x^2-1)^2}$ . Next y(3) = 1 and y'(3) = 0, whence -10a + 6b = 0 and 3a b = 8. Solving simultaneously gives a = 6 and b = 10.
- 10. Here  $r^2 = \frac{4}{9}$ , whence  $r = \pm \frac{2}{3}$ . So the required sums are

$$S_{\infty} = \frac{18}{1 - \frac{2}{3}} = 54$$
 and  $S'_{\infty} = \frac{18}{1 + \frac{2}{3}} = \frac{54}{5}$ .