Log-concavity of Discrete Distributions:

Various Basic Proofs

Nolan R. H. Gagnon

July 20, 2017

1. Theorem If p(t) is the probability mass function (PMF) of a discrete random variable on \mathbb{Z}^+ , then p(t) is log-concave if $\frac{p(t+1)}{p(t)}$ is a decreasing sequence.

Proof: Let $i \in \mathbb{Z}^+$. If $\frac{p(t+1)}{p(t)}$ is a decreasing sequence, then it must be the case that

$$\frac{p[(i+1)+1]}{p(i+1)} \le \frac{p(i+1)}{p(i)},$$

since i + 1 > i. Now, as p is a PMF, it must satisfy p(t) > 0 for all $t \in \mathbb{Z}^+$. Thus, multiplying by p(i)p(i+1) on both sides of the above inequality cannot change the direction of the inequality sign. Performing this multiplication yields

$$p(i)p(i+2) \le p^2(i+1).$$

This inequality can be rearranged to

$$p^{2}(i+1) - p(i)p(i+2) > 0.$$

Therefore, p is log-concave.

2. Note A determinant for log-concavity of a PMF p(t) can be defined by

$$\Delta \eta(t) := \frac{p(t+1)}{p(t)} - \frac{p(t+2)}{p(t+1)}.$$

When $\Delta \eta(t) > 0$, the PMF is log-concave. When $\Delta \eta(t) < 0$, the PMF is log-convex.

3. Definition The Extended Katz family of distributions are distributions whose PMFs satisfy

$$\frac{p(t+1)}{p(t)} = \frac{\alpha + \beta t}{\gamma + t},$$

where $\alpha > 0, \beta < 1, \gamma > 0$.

4. Theorem Let p(t) be the PMF of a distribution within the Extended Katz family. Let the parameters of the distribution be $\alpha > 0, \beta < 1, \gamma > 0$. If $\alpha - \beta \gamma > 0$, then p(t) is log-concave.

Proof: Since p(t) is the PMF of a distribution within the Extended Katz family, it must satisfy the equation

$$\frac{p(t+1)}{p(t)} = \frac{\alpha + \beta t}{\gamma + t}.$$

In this case,

$$\Delta \eta(t) = \frac{\alpha + \beta t}{\gamma + t} - \frac{\alpha + \beta(t+1)}{\gamma + t + 1}$$

$$= \frac{(\alpha + \beta t)(\gamma + t + 1) - (\alpha + \beta t + \beta)(\gamma + t)}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{(\alpha + \beta t)(\gamma + t) + (\alpha + \beta t) - (\alpha + \beta t)(\gamma + t) - \beta(\gamma + t)}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{\alpha + \beta t - \beta \gamma - \beta t}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{\alpha - \beta \gamma}{(\gamma + t)(\gamma + t + 1)}.$$

Notice that the denominator is always positive, since $\gamma > 0$ and t > 0 (since the support is restricted to the non-negative integers). Therefore, the determinant $\Delta \eta(t)$ is strictly positive only if $\alpha - \beta \gamma > 0$. Hence, p(t) is log-concave only if $\alpha - \beta \gamma > 0$.

5. Lemma Let $n, m, k \in \mathbb{Z}^+$, with n > m + k. Then

$$\frac{\binom{n}{m+k}}{\binom{n}{m+k-1}} = \frac{n-m-k+1}{m+k}.$$

Proof: Clearly,

$$\frac{\binom{n}{m+k}}{\binom{n}{m+k-1}} = \frac{\binom{\frac{n!}{(n-m-k)!(m+k)!}}{\binom{\frac{n!}{(n-m-k+1)!(m+k-1)!}}}}{\binom{\frac{n!}{(n-m-k+1)!(m+k-1)!}}{n!(n-m-k)!(m+k)!}}$$
$$= \frac{n-m-k+1}{m+k}.$$

6. Theorem The Binomial Distribution is a member of the Extended Katz family.

Proof: Let $\phi(t)$ denote the PMF of a binomial distribution with probability of success p and number of trials n. If it can be shown that there exist $\alpha > 0, \beta < 1, \gamma > 0$ such that

$$\frac{\phi(t+1)}{\phi(t)} = \frac{\alpha + \beta t}{\gamma + t}$$

then the proof will be complete. The ratio on the left-hand side of the equation is

$$\frac{\phi(t+1)}{\phi(t)} = \frac{\binom{n}{t+1}p^{t+1}(1-p)^{n-t-1}}{\binom{n}{t}p^{t}(1-p)^{n-t}}$$
(1)

$$= \left(\frac{p}{1-p}\right) \left(\frac{n-t}{t+1}\right),\tag{2}$$

where Lemma 5 was used in the simplification. Let $\gamma = 1$, $\beta = \frac{-p}{1-p}$, and $\alpha = \frac{np}{1-p}$. Clearly, $\beta < 1$, $\alpha > 0$, and $\gamma > 0$. Using these parameters, the expression in (2) can be rewritten as

$$\left(\frac{p}{1-p}\right)\left(\frac{n-t}{t+1}\right) = \frac{\alpha + \beta t}{\gamma + t}.$$

Therefore, the Binomial Distribution is a member of the Extended Katz family.

7. Theorem The PMF of the Binomial Distribution is log-concave.

Proof: Let $\phi(t)$ be the PMF of a binomial distribution with probability of success p and number of trials n. Let $\theta = \frac{p}{1-p}$. Let $\alpha = n\theta$, $\beta = -\theta$, and $\gamma = 1$, as in the previous proof. Since the Binomial Distribution is a member of the Extended Katz family, it must be shown that $\alpha - \beta \gamma > 0$. But

$$\alpha - \beta \gamma = n\theta + \theta$$
$$= \theta(n+1) > 0.$$

Therefore, $\phi(t)$ is log-concave.

8. Theorem The PMF of the Negative Binomial Distribution with parameter k and probability of success p is log-concave if k > 1, and log-convex if k < 1.

Proof: The proof can be simplified by first showing that the Negative Binomial Distribution is a member of the extended Katz family. Let $\phi(t)$ be the PMF of a Negative Binomial Distribution with parameter k and probability of success p. Then

$$\frac{\phi(t+1)}{\phi(t)} = \frac{\binom{k+t}{t+1}p^k(1-p)^{t+1}}{\binom{k+t-1}{t}p^k(1-p)^t}$$
$$= \left(\frac{k+t}{t+1}\right)(1-p)$$
$$= \frac{\alpha+\beta t}{\gamma+t},$$

where $\alpha = k(1-p)$, $\beta = 1-p$, and $\gamma = 1$. Since the parameter k must be greater than 0, and $0 \le p \le 1$, it follows that $\alpha > 0$. Furthermore $\beta \le 1$. Therefore, the Negative Binomial Distribution is a member of the extended Katz family.

Now let k > 1. Then

$$\alpha - \gamma \beta = k(1-p) - (1-p)$$

= $(1-p)(k-1) > 0$.

Thus, $\phi(t)$ is log-concave. Now, clearly, if k < 1, then (1 - p)(k - 1) < 0, in which case $\phi(t)$ is log-convex.

9. Definition The Conway-Maxwell Poisson (CMP) Distribution is defined by the PMF

$$P(X = t) = \frac{\theta^t}{(t!)^{\nu}} \frac{1}{Z(\theta, \nu)}$$

where $0 \le t \in \mathbb{Z}$, and $\theta, \nu > 0$. The function $Z(\theta, \nu)$ is defined as

$$Z(\theta, \nu) = \sum_{j=0}^{\infty} \frac{\theta^j}{(j!)^{\nu}}.$$

The CMP distribution is over-dispersed if $\nu < 1$, and under-dispersed if $\nu > 1$. If $\nu = 1$, the CMP distribution reduces to the standard Poisson Distribution, where the mean and variance are equal (i.e., there is neither over-dispersion nor under-dispersion).

10. Theorem The CMP distribution approaches a Bernoulli Distribution with probability of success $p = \frac{\theta}{1+\theta}$ as ν tends to infinity.

Proof: Let X be a CMP-distributed random variable and let its parameter $\nu \to \infty$. Then

$$Z(\theta, \nu) = \sum_{j=0}^{\infty} \frac{\theta^j}{(j!)^{\nu}}$$
$$= 1 + \frac{\theta}{1^{\nu}} + \frac{\theta^2}{2^{\nu}} + \dots$$
$$\to 1 + \theta.$$

Therefore, $P(X=0) \to \frac{1}{1+\theta}$ and $P(X=1) \to \frac{\theta}{1+\theta}$. Clearly, P(X=0) + P(X=1) = 1. So the requirements for a Bernoulli-distributed random variable with probability of success equal to $\frac{\theta}{1+\theta}$ have been satisfied.

11. Theorem The CMP distribution is log-concave.

Proof: Let p(t) be the PMF of a CMP distribution with parameters θ and ν . The ratio

$$\frac{p(t+1)}{p(t)} = \left(\frac{\theta^{t+1}}{([t+1]!)^{\nu}} \frac{1}{Z(\theta,\nu)}\right) \left(Z(\theta,\nu) \frac{(t!)^{\nu}}{\theta^t}\right)$$
$$= \frac{\theta}{(t+1)^{\nu}}.$$

The ratio

$$\frac{p(t+2)}{p(t+1)} = \left(\frac{\theta^{t+2}}{([t+2]!)^{\nu}} \frac{1}{Z(\theta,\nu)}\right) \left(Z(\theta,\nu) \frac{([t+1]!)^{\nu}}{\theta^{t+1}}\right)$$
$$= \frac{\theta}{(t+2)^{\nu}}.$$

Therefore,

$$\Delta \eta(t) = \frac{\theta}{(t+1)^{\nu}} - \frac{\theta}{(t+2)^{\nu}}$$
$$= \theta \left[\frac{(t+2)^{\nu} - (t+1)^{\nu}}{[(t+1)(t+2)]^{\nu}} \right],$$

which is larger than 0. Thus, the CMP distribution is log-concave.

12. Definition The Generalized CMP (GCMP) distribution is defined by the PMF

$$P(X = t) = \frac{\left[\Gamma(\nu + t)\right]^r \theta^t}{t!C(r, \nu, \theta)}$$

with $0 \le t \in \mathbb{Z}$ and parameters satisfying either r < 1 and $\theta, \nu > 0$ or r = 1 and $\nu > 0$ and $0 < \theta < 1$. The normalizing constant C is given by

$$C(r, \nu, \theta) = \sum_{j=0}^{\infty} \frac{\left[\Gamma(\nu + j)\right]^r \theta^j}{j!}.$$

13. Theorem When $r \le 0$ or 0 < r < 1 and $\nu \ge 1$, the GCMP distribution is log-concave.

Proof: Let p be the PMF of a GCMP distribution with parameters r, ν , and θ . First, an expression for $\Delta \eta(t)$ will be found. The ratio

$$\begin{split} \frac{p(t+1)}{p(t)} &= \left(\frac{\left[\Gamma(\nu+t+1)\right]^r \theta^{t+1}}{(t+1)!C(r,\nu,\theta)}\right) \left(\frac{\left[t!C(r,\nu,\theta)\right]}{\left[\Gamma(\nu+t)\right]^r \theta^t}\right) \\ &= \frac{\left[\Gamma(\nu+t)\right]^r (\nu+t)^r \theta}{\left[\Gamma(\nu+t)\right]^r (t+1)} \\ &= \frac{(\nu+t)^r \theta}{t+1}. \end{split}$$

The ratio

$$\frac{p(t+2)}{p(t+1)} = \frac{(v+t+1)^r \theta}{t+2}.$$

Therefore,

$$\Delta \eta(t) = \frac{(\nu+t)^r \theta}{t+1} - \frac{(\nu+t+1)^r \theta}{t+2}$$
(3)

$$= \frac{\theta(\nu+t)^r}{t+1} \left[1 - \frac{t+1}{t+2} \left(\frac{\nu+t+1}{\nu+t} \right)^r \right]. \tag{4}$$

Clearly (4) will be positive as long as

$$\frac{t+1}{t+2} \left(\frac{\nu+t+1}{\nu+t}\right)^r < 1. \tag{5}$$

The expression in parentheses is clearly larger than 1. Therefore, if $r \le 0$, the entire left-hand side of the inequality will be less than 1. Now, suppose 0 < r < 1 and $\nu \ge 1$. Notice that, since $\frac{t+1}{t+2} < 1$, it must be the case that

$$\left(\frac{t+1}{t+2}\right)^r < \frac{t+1}{t+2}.\tag{6}$$

Furthermore, as $\nu \geq 1$, it follows that

$$\frac{t+1}{t+2} \le \frac{\nu+t}{\nu+t+1}. (7)$$

Therefore,

$$\frac{t+1}{t+2} \left(\frac{\nu+t+1}{\nu+t}\right)^r \le \frac{t+1}{t+2} \left(\frac{t+2}{t+1}\right)^r$$

$$< \frac{t+1}{t+2} \left[\left(\frac{t+2}{t+1}\right)^{\frac{1}{r}} \right]^r$$

$$= 1.$$

Thus the PMF of the GCMP distribution is log-concave when $r \leq 0$ or when 0 < r < 1 and $\nu \geq 1$.

6