Київський національний університет ім.Т.Шевченка

ФІЗИЧНИЙ ФАКУЛЬТЕТ

ДОСЛІДЖЕННЯ ДИСПЕРСІЇ СВІТЛА У СКЛІ

Автор: Холоімов Валерій

5 мая 2021 г.

1 Вступна частина

Мета роботи: Ознайомлення з експериментальними методами дослідження дисперсії світла в речовині і, зокрема, з методом заломлення в призмі.

Прилади: Гоніометр, скляна призма, плоскопаралельна скляна пластина, ртутна лампа, трансформатор, настільна лампа

Теоретичні відомості

Дисперсія світла в деякій речовині — це залежність показника заломлення n цієї речовини від частоти ν (довжини хвилі λ) світла, або залежність фазової швидкості світлових хвиль у речовині V від їх частоти (довжини хвилі). Наслідком дисперсії світла є розкладання в спектр пучка білого світла при його проходженні крізь призму.

Відносну дисперсію обраховують за формулою:

$$N = \frac{n_B + n_R}{n_Y + 1}$$

де n_B показник заломлення для хвилі з довжиною $\lambda=486,1$ (синя лінія водню), n_R показник заломлення для хвилі з довжиною $\lambda=656,3$ (червона лінія водню, С), n_Y – показник заломлення для хвилі з довжиною $\lambda=589,3$ (середнє з двох довжин хвиль, які відповідають двом близьким жовтим лініям натрію D).

У даній роботі визначення показників заломлення скла проводиться методом заломлення в призмі. За цим методом із досліджуваної речовини (скла) виготовляють призму і спостерігають у ній заломлення світла. Показник заломлення n для хвилі з довжиною λ визначається за формулою:

$$n = \frac{\sin\frac{\phi + \delta}{2}}{\sin\frac{\phi}{2}}$$

Де ϕ – кут заломлення призми, а δ – кут найменшого відхилення променів даної довжини хвилі.

2 Практична частина

2.1 Вимірювання заломлюючого кута призми

Розрахунок проводиться за наступною формулою

$$\phi = \pi - \beta + \alpha$$

Виміряні кути та розрахунки подані у наступній таблиці

α	β	φ	<φ>	
152° 24' 56"	272° 25 '34"	59° 59' 18"		
152° 25' 30"	272° 26' 08"	59° 59' 22"	59° 59' 21''	1,047 рад
152° 25' 12"	272° 25' 48"	59° 59' 24"		

Рис. 1: Вимірювання заломлюючого кута призми

2.2 Визначення кута найменшого відхилення білих ліній спектра ртуті

///> Engl	γ				
− <γ>, град	хв сек град		XB	град	
129.0245	128,034	2	2	128	
128,0345	128,035	6	2	128	

Рис. 2: Визначення кута найменшого відхилення

2.3 Визначення показників заломлення скла призми для світлових хвиль, що відповідають різним спектральним лініям ртуті

колір	δ			w S progr	w S non		λ, Å	
	град	XB	сек	град	ү-б, град	γ-δ, рад	n	λ, Α
червоний —	179	36	44	179,612	51,5775	0,9002	1,6541	6907,16
	179	41	58	179,6994	51,6649	0,9017	1,6550	6716,17
жовтий 179 180	179	59	55	179,9986	51,9641	0,9069	1,6579	5790,65
	180	1	10	180,0194	51,9849	0,9073	1,6581	5769,59
зепений	180	21	12	180,353	52,3185	0,9131	1,6613	5460,74
	181	8	18	181,1383	53,1038	0,9268	1,6689	4916,04
синій 13	181	8	18	181,1383	53,1038	0,9268	1,6689	4916,04
	182	19	38	182,3272	54,2927	0,9476	1,6803	4358,35
	182	21	25	182,3569	54,3224	0,9481	1,6806	4347,5
	182	22	45	182,3792	54,3447	0,9485	1,6808	4339,24
фіолетовий 	183	17	31	183,2919	55,2574	0,9644	1,6894	4077,81
	183	10	52	183,181	55,1465	0,9625	1,6883	4046,56
φ/2	29	59	41	29,9947	0,5235 рад			
φ	59	59	21	59,9892	1,0470	рад		

Рис. 3: Визначення показників заломлення скла призми

Рис. 4: Графік залежності показника заломлення від довжини хвилі

2.4 Визначення відносної диспервсії скла

$$N = \frac{n_B + n_R}{n_Y + 1} = \frac{1,6776 + 1,6651}{1,6580 + 1}$$

3 Висновок

В даній роботі було досліджено метод визначення показника заломлення ізотропної твердої прозорої речовини за вимірюваним заломлюючому кута призми з даної речовини та по куту найменшого відхилення параксіального променя, що пройшов через призму. Вимірювання вказаних кутів проводиться за допомогою гоніометра ГС-5. Також було встановлено залежність показника заломлення світла від довжини хвилі, що падає на межу розділу двох середовищ (скла та повітря), тобто досліджено явище дисперсії світла.

Встановлене значення відносної дисперсії N = 1,257

Згідно графіку № 3.1 показник заломлення має обернену залежність від довжини хвилі: найбільш довгим хвилям (хвилі, що відповідають червоним лініям спектра) відповідають найменші значення показника заломлення (1,6541-1,6550), найкоротшим хвилям (хвилям, що відповідають фіолетовим лініям спектра) відповідають найбільші значення показника заломлення (1,6883-1,6894).