COMPLEX NUMBER

COMPLEX NUMBER

- Definition
- Different forms
- Modulus
- Argument

IMAGINARY UNIT

- You can't take the square root of a negative number. If you use imaginary units, you can!
- The imaginary unit is 'i'
- $i = \sqrt{-1}$
- It is used to write the square root of a negative number

Property of the square root of negative numbers

If r is a positive real number, then

$$\sqrt{-r} = i\sqrt{r}$$

Examples:

$$\sqrt{-2} = i\sqrt{2} \qquad \qquad \sqrt{-9} = i\sqrt{9} = 3i$$

THE POWERS OF i

$$i = \sqrt{-1}$$
, then:

$$i^2 = -1$$
 $i^3 = -i$ $i^4 = 1$ $i^5 = i$

$$i^3 = -i$$

$$i^4 = 1$$

$$i^{5} = i$$

$$i^6 = -1$$
 $i^7 = -i$ $i^8 = 1$

$$i^7 = -i$$

$$i^8 = 1$$

etc.

For i^n ... divide n by 4 ...

- If n is evenly divisible by 4 then $i^n = 1$
- If the remainder is 1, then $i^n = i$
- If the remainder is 2, then $i^n = -1$
- If the remainder is 3, then $i^n = -i$

DEFINITION

For real numbers x and y the number z = x + iy is a complex number.

$$z = x + iy$$
Real part Imaginary part

• All numbers can be expressed as complex numbers.

$$3 = 3 + i \cdot 0$$
 $-6i = 0 + i \cdot (-6)$

- The complex conjugate of a complex number, z = x + iy, denoted by \bar{z} , is given by $\bar{z} = x iy$
- Two complex numbers x + iy and c + id are equal, if x = c and y = d

ALGEBRAIC FORM OF Z

where: x and y real number

$$z = x + iy$$

$$(\pm i)^2 = -1$$

Examples:

$$*z = 4 + 5i$$

$$*z = 4 - 15i = 4 + (-15)i$$

$$z = -44 - 35 i = -44 + (-35)i$$

$$z = 4 = 4 + (0)i$$

$$z = 6i = 0 + 6i$$

2 IMPORTANT CONCEPTS

$$z = x + iy$$

Modulus of z:

Notation : |z| = r

Rule : $|z| = \sqrt{x^2 + y^2}$

Argument of **z**:

Notation : arg(z) or θ

FINDING MODULUS OF Z

$$z = x + iy$$

Modulus of z:

- Notation : | z |
- Rule : $|z| = \sqrt{x^2 + y^2}$

Examples:

$$z = 5 + 5i$$
 $\therefore |z| = \sqrt{5^2 + 5^2} = \sqrt{50}$
 $z = -5 + 5i$ $\therefore |z| = \sqrt{(-5)^2 + 5^2} = \sqrt{50}$
 $z = -5 - 5i$ $\therefore |z| = \sqrt{(-5)^2 + (-5)^2} = \sqrt{50}$
 $z = 5 - 5i$ $\therefore |z| = \sqrt{5^2 + (-5)^2} = \sqrt{50}$

ARGUMENT OF Z

Z	$oldsymbol{ heta}$	$oldsymbol{ heta}$
(5,0)	00	0
(-5,0)	180 ⁰	π

Z	$oldsymbol{ heta}$	$oldsymbol{ heta}$
(0,5)	90°	$\pi/2$
(0, -5)	270°	$3\pi/2$

$$z = x + iy$$

$$z = -x + iy$$

$$z = -x - iy$$

$$z = x - iy$$

$$\theta = \tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = 180^{\circ} - \alpha$$

$$\theta = 180^{\circ} - tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = 180^{\circ} + \alpha$$
$$\therefore \theta = 180^{\circ} + tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = 360^{\circ} - \alpha$$

$$\therefore \theta = 360^{\circ} - tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = ?$$

- Plot z = (x, y) in the coordinate axes. The following cases will arise:
- $tan 1 \theta = arctan \theta$
- To find θ in radians, use:
 - radian mode ;
 - π for 180° & 2π for 360°

$$\theta = 180^0 - \tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = \tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = 180^0 + \tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = 360^0 - \tan^{-1} \left| \frac{y}{x} \right|$$

$$\theta = ?$$

$$z_1 = 5 + 5i$$

$$\theta_1 = \tan^{-1} \left| \frac{5}{5} \right| = \tan^{-1} 1 = 45^0$$

$$z_2 = -5 + 5i$$

$$\theta_2 = 180^0 - \tan^{-1} \left| \frac{5}{-5} \right| = 180^0 - \tan^{-1} 1$$

= $180^0 - 45^0 = 135^0$

$$z_3 = -5 - 5i$$

$$\theta_3 = 180^0 + \tan^{-1} \left| \frac{-5}{-5} \right| = 180^0 + \tan^{-1} 1$$

= $180^0 + 45^0 = 225^0$

$$z_4 = 5 - 5i$$

$$\theta_4 = 360^0 - \tan^{-1} \left| \frac{-5}{5} \right| = 360^0 - \tan^{-1} 1$$

= $360^0 - 45^0 = 315^0$

POLAR FORM OF COMPLEX NUMBER

Based on the figure:

$$\cos \theta = \frac{x}{r}$$
$$\therefore x = r \cos \theta$$

Again,

$$\sin \theta = \frac{y}{r}$$
$$\therefore y = r \sin \theta$$

The polar form is defined by:

$$z = r \cos \theta + ir \sin \theta$$
$$z = r(\cos \theta + i \sin \theta)$$
$$z = (r, \theta)$$

Where
$$r = \sqrt{x^2 + y^2}$$
 and $\theta = tan^{-1} \left(\frac{y}{x}\right)$

EXPONENTIAL FORM OF Z

$$z = re^{i\theta}$$

where,
$$r = |z|$$

$$\theta = \arg(z)$$

$$\theta \text{ must be in radian.}$$