

Diverse Cotraining Makes Strong Semi-Supervised Segmentor

Yijiang Li¹ Xinjiang Wang² Lihe Yang³ Litong Feng² Wayne Zhang² Ying Gao⁴ ¹Johns Hopkins University ²SenseTime Research ³The University of Hong Kong ⁴South China University of Technology

Problem and Motivation

Problem: Current deep co-training \(\frac{1}{8} \) 0.95 violates the core assumption of co- \$\frac{7}{90.90}\$ training: multiple compatible and conditionally independent views. Models are tightly coupled together leading to the homogenization of networks and confirmation bias which consequently limits the performance (see left figure).

Homogenization problem (measured by agree rate) and the corresponding performance.

Theoretical Framework:

Definition 1 Definition of homogenization:

$$H = Pr_{x \in D}[f_1(x) = f_2(x)] = \frac{1}{HW} \sum_{i=1}^{HW} 1(p_{1i} = p_{2i})$$

Theorem 1 Given hypothesis class \mathcal{H} and labeled data set D_l of size l that are sufficient to learn an initial segmentor f_i^0 with an upper bound of the generalization error of b_i^0 with probability δ ($l \geq \max\{\frac{1}{b_i^0} \ln \frac{|\mathcal{H}|}{\delta}\}$), we use empirical risk minimization to train f_i^0 on the combination of labeled and unlabeled set σ^i where pseudo label are provided by the other model f_{3-i}^0 . Then we have

$$Pr[d(f_i^k, f*) \ge b_i^k] \le \delta$$

if
$$lb_i^0 \le e \sqrt[M]{M!} - M$$
, where $M = ub_{3-i}^0$ and $b_i^k = \max\{\frac{lb_i^0 + ub_{3-i}^0 - ud(f_{3-i}^{k-1}, f_i^k)}{l}, 0\}$.

Diverse Co-training

- Diverse strong augmentations provide different views.
- Different input domains as pseudo views. We propose to use DCT space as pseudo views of RGB space.
- Diverse architecture provides different inductive biases

Architecture of Diverse Co-training.

Illustrating the architectures for (a) FixMatch, (b) CPS, (c) cross heads with shared backbone, (d) n-CPS, (e) Diverse Co-training (2-cps) and (f) Diverse Co-training (3-cps).

Experiments & Results

Analysis on How to Promote Diversity

	R50 mit-b2 R50 & mit-b2 R50 & mit-b2 R50 & mit-b2 R50 & mit-b2 ResNeSt50 ResNeSt50 ResNeXt50 R50 & ResNeST50	1/32	1/16
		(331)	(662)
w/o SA	R50	65.66	71.28
	mit-b2	71.01	74.53
	R50 & mit-b2	71.58 / <u>71.03</u>	74.94 / <u>74.84</u>
w/ SA	R50	70.28	73.36
	mit-b2	74.51	<u>75.29</u>
	R50 & mit-b2	<u>74.85</u> / 74.87	75.12 / 75.85
	ResNeSt50	70.92	<u>75.58</u>
	ResNeXt50	71.18	72.77
	R50 & ResNeST50	<u>72.70</u> / 73.56	73.41 / 75.65
	R50 & ResNeXT50	72.15 / 72.39	74.41 / 74.56

	Input Domain	1/32	1/16
	Input Domain	(331)	(662)
w/o SA	RGB	65.66	71.28
	DCT	65.33	67.37
	RGB & DCT	<u>69.45</u> / 69.03	72.46 / <u>72.03</u>
	RGB & HSV	69.65 / 67.05	71.74 / 69.89
w/ SA	RGB	70.28	73.36
	DCT	70.65	73.26
	RGB & DCT	<u>71.88</u> / 72.00	74.10 / <u>73.94</u>
	RGB & HSV	70.40 / 68.30	72.64 / 70.91
	-	-	

w/o diff S --- Deeplabv3+ **Uperhead** → Deeplabv3+ & Uperhead partition protocol (a) Different strong augmentation (SA) (b) Different head architecture

Different Architecture

Different Input Space

Different augmentation and seg head

Comparison with state-of-the-arts on Pascal VOC and Cityscapes.

Method	Resolution	92	183	366	732	1464
ResNet50						
Sup Baseline	513x513	39.1	51.3	60.3	65.9	71.0
PseudoSeg [103]	512x512	54.9	61.9	64.9	70.4	-
PC ² Seg [100]	512x512	56.9	64.6	67.6	70.9	-
Ours (2-cps)	513x513	71.8	74.5	77.6	78.6	79.8
Ours (3-cps)	513x513	73.1	74.7	<u>77.1</u>	78.8	80.2
ResNet101						
Sup Baseline	321x321	44.4	54.0	63.4	67.2	71.8
ReCo [49]	321x321	64.8	72.0	73.1	74.7	-
ST++[91]	321x321	65.2	71.0	74.6	77.3	79.1
ours (2-cps)	321x321	74.8	77.6	79.5	80.3	81.7
ours (3-cps)	321x321	75.4	76.8	79.6	80.4	81.6
Sup Baseline	512x512	42.3	56.6	64.2	68.1	72.0
MT [72]	512x512	48.7	55.8	63.0	69.16	-
CPS[12]	512x512	64.1	67.4	71.7	75.9	-
$U^{2}PL$ [82]	512x512	68.0	69.2	73.7	76.2	79.5
PS-MT [50]	512x512	65.8	69.6	76.6	78.4	80.0
ours (2-cps)	513x513	76.2	76.6	80.2	80.8	81.9
ours (3-cps)	513x513	75.7	77.7	80.1	80.9	82.0

Comparison with state-of-the-art methods on the Pascal dataset. Labeled images are from the high-quality training set.

Mathad	Resolution	1/32	1/16	1/8	1/4	
Method		(331)	(662)	(1323)	(2646)	
Sup Baseline	321x321	55.8	60.3	66.8	71.3	
CAC[43]	320x320	-	70.1	72.4	74.0	
ST++[91]	321x321	-	72.6	74.4	75.4	
Ours (2-cps)	321x321	75.2	76.0	76.2	76.5	5
Ours (3-cps)	321x321	74.9	76.4	76.3	76.6	
Sup Baseline	513x513	54.1	60.7	67.7	71.9	a
CPS[12]	512x512	_	72.0	73.7	74.9	
3-CPS [20]	512x512	_	72.0	74.2	75.9	:
ELN [42]	512x512	_	-	73.2	74.6	
PS-MT [50]	512x512	_	72.8	75.7	76.4	
$U^2PL*[82]$	513x513	_	72.0	75.1	76.2	
Ours (2-cps)	513x513	75.2	76.2	77.0	77.5	
Ours (3-cps)	513x513	74.7	76.3	77.2	77.7	

ResNet50

(100) (372) (744)

- 74.4 76.9

U²PL* [82] | 59.8 73.0 76.3 | PS-MT [50] |

1/30 1/8

Method

CAC [43]

ResNet101 1/16 1/8 1/4 (186) (372) (744) Sup Baseline 54.8 70.2 73.6 Sup Baseline 66.8 72.5 76.4 69.7 72.7 CutMix [23] 67.9 73.5 75.4 70.5 75.7 77.4 ST++ [91] 61.4 72.7 73.8 U²PL [82] 74.9 76.5 78.5 Ours (2-cps) 64.5 76.3 77.1 Ours (2-cps) 75.0 77.3 78.7

Comparison with state-of-the-art methods on the Cityscapes dataset

Ours (3-cps) 65.5 76.5 77.9 Ours (3-cps) 75.7 77.4 78.5

Method

CPS [12]

Conclusion

- We theoretically prove that the homogenization of networks accounts for the generalization error of co-training training and discover the lack of diversity in current co-training methods that violate the assumptions.
- We comprehensively explore the different dimensions of co-training to promote diversity including input domains, augmentations and architectures and demonstrate the significance of diversity in co-training.
- We propose a holistic framework combining the above three techniques to increase diversity and discuss two variants with high empirical performances.