Feedback — Chapter 5 Quiz: Discretization

Thank you. Your submission for this exam was received.

You submitted this exam on Sun 7 Apr 2013 9:01 PM EDT -0400. You got a score of 9.50 out of 10.00.

Question 1

$$\lim_{n o\infty}\left(rac{2n+1}{2n-1}
ight)^{2n-1}=$$

Your Answer		Score	Explanation
) e			
$)+\infty$			
0 1			
e^{-1}			
e^{-2}			
e^2	✓	1.00	
- otal		1.00 / 1.00	

Question 2

Consider the sequence $b=\left(3n^2-n\right)$. Which of the following sequences $a=(a_n)$ satisfies $\Delta a=b$?

Hint: rewrite the sequence a in terms of falling powers

 $n^{rac{k}{n}}=n(n-1)\cdots(n-k+1)$ and use $\Delta n^{rac{k}{n}}=kn^{rac{k-1}{n}}$.

Your Answer

Score

Explanation

$$a = \left(n^3 + \frac{1}{2} n^2\right)$$

$$\bigcirc a = (n^3 + 2n^2 - n)$$

$$\bigcap a = \left(n^3 - \frac{7}{2} n^2 + \frac{5}{2} n\right)$$

$$a = \left(n^3 + \frac{7}{2} n^2 - \frac{5}{2} n\right)$$

$$a = \left(n^3 - \frac{1}{2} n^2\right)$$

$$\bigcirc$$
 $a = (n^3 - 2n^2 + n)$

√ 1.00

Total

1.00 / 1.00

Question 3

Use **Euler's method** to compute the first three iterates, (x_1, x_2, x_3) , of the differential equation

$$\frac{dx}{dt} = t - 2x$$

starting with $t_0=0$, $x_0=x(t_0)=3$ and using a constant step size $h=\Delta t=0.1$. You do not need a calculator to do this (so long as you can do decimal arithmetic...), but you *are* allowed to use (a simple) calculator for this problem if you wish.

Your Answer	Score	Explanation
\bigcirc (2.4, 1.88, 1.358)		

ⓐ (2.4, 1.93, 1.564) ✓ 1.00 ⓒ (2.4, 1.88, 1.529)ⓒ (2.4, 1.93, 1.442)ⓒ (2.4, 1.93, 1.391)ⓒ (2.4, 1.88, 1.522)ⓒ (2.4, 1.93, 1.612)ⓒ (2.4, 1.88, 1.678)Total 1.00 / 1.00

Question 4

Which of the following statements are true about the series $\sum_{n=2}^{\infty} \frac{3\pi}{n^2(\ln n)^2}$? Choose

all that apply.

Your Answer		Score	Explanation
$rac{3\pi}{n^2(\ln n)^2}<rac{3\pi}{n^4} ext{ for } n>2,$ so the comparison test says that the series converges.	✓	0.00	
$\frac{3\pi}{n^2(\ln n)^2}>\frac{3\pi}{n} \text{ for } n>2, \text{ so the comparison}$ test says that the series diverges.	✓	0.00	
The integral $\int_{x=2}^{+\infty} \frac{3\pi}{x^2(\ln x)^2} \ dx$ diverges, so the integral test says that the series diverges.	✓	0.00	
$\lim_{n o\infty}rac{3\pi}{n^2(\ln n)^2}=0$, so the n -th term test says that the series converges.	✓	0.00	

$$rac{\sqrt{3\pi}}{n^2(\ln n)^2}<rac{3\pi}{n^2} ext{ for } n>2,$$
 so the comparison $extstyle 0.50$

test says that the series converges.

The integral
$$\int_{x=2}^{+\infty} \frac{3\pi}{x^2(\ln x)^2} \ dx$$
 converges, so \checkmark 0.50

the integral test says that the series converges.

Total	1.00 /
	1 00

Question 5

Determine the asymptotic behavior of the sequence $a=(a_n)=\left(n\,e^{1/n^2}-n\right)$ as $n\to +\infty.$ Using this information, determine whether the series $\sum_{n=1}^\infty a_n$ converges or diverges.

Your Answer Score Explanation

$$a_n=rac{1}{n^2}+Oigg(rac{1}{n^3}igg)$$
 as $n o +\infty$, so the series converges.

 \bigcirc $a_n=1+O\Big(rac{1}{n^2}\,\Big)$ as $n o +\infty$, so the series

diverges.

$$a_n=rac{1}{n^2}+Oigg(rac{1}{n^4}igg)$$
 as $n o +\infty$, so the

series converges.

$$lacksquare a_n = rac{1}{n} + Oigg(rac{1}{n^3}igg)$$
 as $n o + \infty$, so the

series converges.

$$\bigcirc$$
 $a_n=n+O(1)$ as $n \to +\infty$, so the series diverges.

$$a_n=rac{1}{n}+Oigg(rac{1}{n^3}igg)$$
 as $n o +\infty$, so the series diverges.

Question 6

Which of the following statements are true? Select all that apply.

Your Answer		Score	Explanation
$igsquare \sum_{n=1}^{\infty} rac{3^n-1000n^3}{3^n+1}$ diverges.	X	0.00	
$\square \sum_{n=1}^{\infty} rac{(-1)^n}{2n+3}$ diverges.	✓	0.00	
$\sum_{n=1}^{\infty} (-1)^n rac{2^n}{1+3^n}$ converges conditionally.	✓	0.00	
$\square \sum_{n=1}^{\infty} rac{(-1)^n}{2n+3}$ converges absolutely.	✓	0.00	
$\displaystyle \mathbb{Z} \sum_{n=1}^{\infty} rac{(-1)^n}{2n+3}$ converges conditionally.	✓	0.33	
$\sum_{n=1}^{\infty} (-1)^n rac{2^n}{1+3^n}$ diverges.	✓	0.00	
$lacksquare \sum_{n=1}^{\infty} rac{3^n-1000n^3}{3^n+1}$ converges conditionally.	✓	0.00	
$\sum_{n=1}^{\infty} (-1)^n rac{2^n}{1+3^n}$ converges absolutely.	1	0.33	

$$\boxed{N} \sum_{n=1}^{\infty} rac{3^n - 1000n^3}{3^n + 1}$$
 converges absolutely.

Total 0.50 / 1.00

Question 7

For which values of x does the power series $\sum_{n=1}^{\infty} \frac{\left(-1\right)^n n!}{4 \cdot 8 \cdot 12 \cdot \cdot \cdot \left(4n\right)} \left(x-1\right)^n$

converge?

our Answer		Score	Explanation
-4 < x < 4			
$-1 < x \le 3$			
-1 < x < 3			
$-4 < x \le 4$			
$-3 < x \le 5$			
-3 < x < 5	✓	1.00	
otal		1.00 / 1.00	

Question 8

What is the radius of convergence R of the power series $\sum_{n=0}^{\infty} \left(\frac{3n+1}{2n+2} \right)^n x^n$?

Hint: the usual formula, derived from the ratio test, will not work so well... Can you think of a different convergence test to use to derive the radius of convergence?

Exam reedback Calculus, Single variable				
Your Answer		Score	Explanation	
\bigcirc $R = +\infty$				
\bigcirc $R=2$				
$^{igorphi}R=rac{1}{2}$				
$\bigcirc R = 1$				
$^{ extstyle e$				
$^{\odot}$ $R=rac{2}{3}$	✓	1.00		
Total		1.00 / 1.00		

Question 9

Consider the series

$$s = \sum_{n=1}^{\infty} (-1)^n \, \frac{16}{n^4}$$

Using the alternating series error estimate, what is the best (lowest) estimate for N such that the error E_N of the approximation

$$s = \sum_{n=1}^{N} (-1)^n \, \frac{16}{n^4} + E_N$$

satisfies $E_N < 10^{-8}\,$? You should not need a calculator for this problem, but you will need to be careful with your powers-of-10.

Your Answer	Score	Explanation
\bigcirc $N \geq 99$		
\bigcirc $N \geq 100$		

- \bigcirc $N \geq 201$
- \bigcirc $N \geq 101$
- \bigcirc $N \geq 199$
- \odot $N \ge 200$

1.00

Total

1.00 / 1.00

Question 10

Suppose you try to approximate $e^{-1/2}$ using the first three terms in the Taylor series expansion of the exponential function:

$$e^x = 1 + x + rac{x^2}{2} + E_2(x)$$

What is the the best bound for $\left|E_2\left(-\frac{1}{2}\right)\right|$ provided by Taylor's theorem?

Your Answer Score Explanation

- $\left|E_2\left(-\frac{1}{2}\right)\right| \leq 0.00004$
- $\left| E_2\left(-\frac{1}{2}\right) \right| \le \frac{e^{-1/2}}{48}$
- $\mathbb{O}\left|E_2\left(-\frac{1}{2}\right)\right| \leq \frac{1}{6}$
- $\left| E_2 \left(\frac{1}{2} \right) \right| \le \frac{e^{-1/2}}{8}$
- $\mathbb{O}\left|E_2\left(-rac{1}{2}
 ight)
 ight|\leq rac{1}{8}$
- $^{ \bigcirc} \left| E_2 \left(\frac{1}{2} \right) \right| \leq \frac{1}{48}$

√ 1.00

Total 1.00 / 1.00