Hadronic spectrum calculations in the quark-gluon plasma

Aleksandra Rylund Glesaaen July 27th 2018

Swansea University In collaboration with G. Aarts, C. Allton, S. Hands, B. Jäger, J. Skullerud

Talk overview

- 1. Introduction
- 2. Method
- 3. Results
- 4. Future work
- 5. openQCD-FASTSUM

Introduction

Baryons at finite temperature

Although mesons have been thoroughly studied at finite temperatures, baryons have not been given nearly the same attention

- They have definite parity: $P_{\pm}\mathcal{O}_B(x) = \mathcal{O}_B(x)$
- · Experimentally accessible results
- · Important for model builders
 - · Quark models, e.g. hadron resonance gas
 - Verification of thermodynamic models

More broken symmetries...

In nature baryon parity is a broken symmetry

$$m_{\{uud\}^{1/2^+}} \equiv m_N = 0.939 \text{ GeV}$$

 $m_{\{uud\}^{1/2^-}} \equiv m_{N*} = 1.535 \text{ GeV}$

Similar to other broken symmetries, what happens to this one as we increase temperature and enter the deconfined phase?

More broken symmetries...

In nature baryon parity is a broken symmetry

$$m_{\{uud\}^{1/2^+}} \equiv m_N = 0.939 \text{ GeV}$$

 $m_{\{uud\}^{1/2^-}} \equiv m_{N*} = 1.535 \text{ GeV}$

Similar to other broken symmetries, what happens to this one as we increase temperature and enter the deconfined phase?

Previous studies by FASTSUM:

1502.03603, 1703.09246, 1710.00566, ...

Open questions

- Does parity restoration happen at T_c ?
- How does hadron content effect parity restoration?
- Is there a flavour hierarchy in the deconfinement transition?
- How does m_{π} affect parity restoration?

Method

Results produced with the FASTSUM "Gen2l" ensembles (lattice parameters by the HadSpec collaboration)

- $N_f = 2 + 1$ dynamical quarks, Wilson-Clover action
- Anisotropic action: $a_s = 0.1227(8)$ fm, $a_s/a_t = 3.5$
- $m_{\pi}=$ 236 MeV, $m_{\rm S}=$ physical

Nt	256	48	40	36	32	28	24	20	16
T/T_c									
N_{cfg}	750	500	500	500	500	1000	1000	1000	1000

Results produced with the FASTSUM "Gen2l" ensembles (lattice parameters by the HadSpec collaboration)

- $N_f = 2 + 1$ dynamical quarks, Wilson-Clover action
- Anisotropic action: $a_s = 0.1227(8)$ fm, $a_s/a_t = 3.5$
- $m_\pi=$ 236 MeV, $m_{s}=$ physical

N _t	256	48	40	36	32	28	24	20	16	
- T/T _c	0.12	0.63	0.76	0.84	0.95	1.09	1.27	1.52	1.90	
N_{cfg}	750	500	500	500	500	1000	1000	1000	1000	

Have to be checked, numbers from Gen2 ensembles

Results produced with the FASTSUM "Gen2l" ensembles (lattice parameters by the HadSpec collaboration)

- $N_f = 2 + 1$ dynamical quarks, Wilson-Clover action
- Anisotropic action: $a_s = 0.1227(8)$ fm, $a_s/a_t = 3.5$
- $m_\pi=$ 236 MeV, $m_{\scriptscriptstyle S}=$ physical

N _t	256	48	40	36	32	28	24	20	16
T/T_c	0.12	0.63	0.76	0.84	0.95	1.09	1.27	1.52	1.90
$N_{\rm cfg}$	750	500	500	500	500	1000	1000	1000	1000
N _{cfg} 750 500 500 500 500 1000 1000 1000 1000									

Results produced with the FASTSUM "Gen2l" ensembles (lattice parameters by the HadSpec collaboration)

- $N_f = 2 + 1$ dynamical quarks, Wilson-Clover action
- Anisotropic action: $a_s = 0.1227(8)$ fm, $a_s/a_t = 3.5$
- $m_\pi=$ 236 MeV, $m_{\scriptscriptstyle S}=$ physical

N _t	256	48	40	36	32	28	24	20	16
T/T_c	0.12	0.63	0.76	0.84	0.95	1.09	1.27	1.52	1.90
$N_{\rm cfg}$	750	500	500	500	500	1000	1000	1000	1000
	750 500 500 500 500 1000 1000 1000 Still generating								

Lattice setup - baryon correlation functions

Use the following baryon interpolation functions:

$$\chi_{N,\gamma} = \epsilon^{abc} u_{\gamma}^{a} (u_{\alpha}^{b} (C\gamma_{5})_{\alpha\beta} d_{\beta}^{c})$$

$$\chi_{\Delta^{+},\gamma,\mu} = \epsilon^{abc} (2u_{\gamma}^{a} (u_{\alpha}^{b} (C\gamma_{\mu})_{\alpha\beta} d_{\beta}^{c}) + d_{\gamma}^{a} (u_{\alpha}^{b} (C\gamma_{\mu})_{\alpha\beta} u_{\beta}^{c}))$$

$$\chi_{\Delta^{++},\gamma,\mu} = \epsilon^{abc} u_{\gamma}^{a} (u_{\alpha}^{b} (C\gamma_{\mu})_{\alpha\beta} u_{\beta}^{c})$$

for all baryons that can be constructed with from them having flavour content using $\{u,d,s,c\}$

· N,
$$\Delta_{s/c}$$
, $\Sigma_{s/c}$, $\Sigma_{s/c}^*$, $\Xi_{s/c}$, $\Omega_{s/c}$

Sinks and sources smeared with Gaussian smearing to extract ground states

Results

Parity and correlation functions

Due to charge conjugation symmetry (at $\mu=0$)

$$G_{\pm}(\tau,\mathbf{p}) = -G_{\mp}(1/T - \tau,\mathbf{p})$$

Thus the correlation function is a sum of forward moving parity⁺ states and backwards moving parity⁻ states

Correlation functions

Parity channels - nucleon

Parity channels - Δ^+ particle

Parity channels - Ω particle

Parity channels - Ω_c particle

Symmetry restoration parameter - the R parameter

$$R(\tau) = \frac{G_{+}(\tau) - G_{+}(1/T - \tau)}{G_{+}(\tau) + G_{+}(1/T - \tau)}$$

- $R(\tau) \neq 0 \Leftrightarrow$ no parity doubling
- $R(\tau) = 0 \Leftrightarrow \text{parity doubling}$

The summed ratio is a quasi-order parameter (as we will see)

$$R = \frac{\sum_{n} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n} 1 / \sigma^2(\tau_n)}$$

The R-factor - S = 0

The R-factor - S = -1

The R-factor - S = -2

The R-factor - S = -3

The R-factor - Ω_c particle

The R-factor - comparison with previous ensemble

Future work

Still a lot more to be done

Study just getting started

- More thorough look at the masses and correlators
- Spectral reconstruction analysis
- Susceptibility calculations

Planned future ensembles

- Generation 2P
- Generation 3

Still a lot more to be done

Study just getting started

- More thorough look at the masses and correlators
- Spectral reconstruction analysis
- Susceptibility calculations

Planned future ensembles

- Generation 2P (physical quark masses)
- Generation 3

Still a lot more to be done

Study just getting started

- · More thorough look at the masses and correlators
- Spectral reconstruction analysis
- Susceptibility calculations

Planned future ensembles

- Generation 2P (physical quark masses)
- Generation 3 (higher anisotropy)

openQCD-FASTSUM

openQCD-FASTSUM

Two major features

- Anisotropic lattice actions
- · Stout link smearing
- + AVX512 optimisations courtesy of the SA2C

openQCD-FASTSUM

Two major features

- Anisotropic lattice actions
- Stout link smearing
- + AVX512 optimisations courtesy of the SA2C

Future development plans

- · Library/back-end interface
- Unit testing and CI

https://fastsum.gitlab.io

