

# PROJ4 Issues The case of Romania: increasing transformation accuracy through grid shift files

Daniel Urdă 17.07.2014

#### **Outline**

- National Reference System of Romania
- Reference transformation: TransDatRo
- Current implementations
  - Open source software
  - Proprietary software
- Towards increased precision (in FOSS)
- Conclusion

1

# Romanian National Projection System

#### Romanian National Projection System

S-42 National Reference System – "Stereo70"

- Characteristics:
  - Krasovski 1940 ellipsoid
  - Stereographic projection "1970"

#### **Transformation issues**

- No simple mathematical formula
- Existing attempts produce inconsistent errors, with accuracy depending on actual location of the dataset
- Reprojection to/from other systems result in topological errors

#### Why bother with it

- De jure standard for topo-geodesic measurements
- Large existing database of geographic information using the projection (both classical maps and GIS systems)
- Regulation No. 1089/2010 (EU) on the implementation of the INSPIRE directive as regards interoperability of geodatasets and services recommends using ETRS89

2

## Reference transformation: TransDatRo

#### **TransDatRO**



- "Dumb" application provided by the Romanian Cadaster Agency (ANCPI)
- Reprojects from/to ETRS89 (LAEA and Transverse Mercator projections available)
- Declared planimetric precision: ±10+15 cm

#### **Algorithm**

- 1. Convert ETRS89 ellipsoidal coordinates to Cartesian coordinates in the oblique stereographic projection
- 2. Convert GRS80 coordinates to Stereo70 coordinates
- 3. Interpolate geometric correction based on a table of datum shifts
- 4. Interpolate quasigeoid anomalies to account for the Black Sea reference altitude (Marea Neagră 1975 system)

### TransDat v.1.02 absolute horizontal datum shifts





#### Limitations •

- MS Windows only
- "Experimental" source code for version 1.0
- Accepted input format:
  - ESRI Shapefile (v1.0)
  - Text files (v4)
- Cumbersome UI

3

# Alternative transformations: Open Source Software

#### PROJ.4

FOSS library available for most major OSs

### PROJ.4

- A large database of global, national and local projection systems
- WGS84 as intermediary projection system
- Used for reprojecting in a large part of higher-level open-source GIS software

#### **Stereo70** ?!?

- No standard EPSG code
- Several potentially applicable codes (originally from the GeoTIFF library)
  - EPSG:31700
  - EPSG:3844
  - EPSG:4284
  - EPSG:4178
- Standard transformation parameters



#### EPSG:31700 Dealul Piscului 1970 / Stereo 70

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +towgs84=28,-121,-77,0,0,0,0 +units=m +no\_defs



#### EPSG:3844 Pulkovo 1942(58) / Stereo70

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +towgs84=33.4,-146.6,-76.3,-0.359,-0.053,0.844,-0.84 +units=m +no defs



#### **EPSG:4284 Pulkovo 1942 + Stereo70**

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +towgs84=23.92,-141.27,-80.9,-0,0.35,0.82,-0.12 +units=m +no defs



#### EPSG:4178 Pulkovo 1942(83) + Stereo70

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +towgs84=33.4,-146.6,-76.3,-0.359,-0.053,0.844,-0.84 +units=m +no defs



#### **User-defined parameters**

- Romanian Cadastre Agency:
  - 7-parameter "Helmert" transformation between "Sistem 42" and ETRS89
- Issues:
  - WGS84 and ETRS89 postulated identical (default PROJ4 behaviour)
  - "Wrong" sign for the rotation parameters (EPSG:9607 apparently used instead of the ISO 19111 recommended EPSG:9606, used by PROJ4)

#### **User-defined parameters – ANCPI**

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +towgs84=2.3283,-147.0416,-92.0802,-0.30924979,0.32482188, 0.49730012,5.68907711



4

### Alternative transformations: proprietary software

#### Global Mapper (v.14)



- Potentially applicable reference systems:
  - S-42 (Pulkovo 1942)
  - S-42 Romania
  - Dealul Piscului 1970

#### Stereo70 / S-42 Romania





#### Stereo70 / Dealul Piscului 1970





#### Stereo70 / S-42 (Pulkovo 1942)





#### ESRI ArcGIS (v10.2) ·



- Potentially applicable pre-defined transformations:
  - Dealul\_Piscului\_1970\_to\_WGS\_1984\_1
  - Dealul\_Piscului\_1970\_to\_WGS\_1984\_2
  - Pulkovo\_1942\_Adj\_1958\_To\_ETRS\_1989\_4

#### Dealul\_Piscului\_1970\_to\_WGS\_1984\_1





#### Dealul\_Piscului\_1970\_to\_WGS\_1984\_2





#### Pulkovo\_1942\_Adj\_1958\_To\_ETRS\_1989\_4





5

### Improving precision in FOSS



#### PROJ.4 – alternative algorithm

- 1. Convert ETRS89 ellipsoidal coordinated to rectangular coordinates in the oblique stereographic projection
- 2. Convert coordinates based on GRS80 ellipsoid to ones based on the Krasovski 1940 ellipsoid
- 3. Interpolate geometric corrections based on a grid of datum shifts

#### Grid shift files – NTV2

- Binary format developed in Canada and Australia
- De facto standard (official grid shift files published by Brazil, Germany, New Zealand, United States, South Africa, etc.)
- Used by PROJ4 for high precision transformations

#### Building a NTv2 file for Romania

#### Issues:

- NTv2 grid points in geographical projection
- ANCPI grid points in stereographic projection

#### Building a NTv2 file for Romania

#### Algorithm:

- Generate a custom regular grid in geographical projection (35 sec latitude,
   50 sec longitude) covering the territory of Romania
- Convert grid to "Sistem 42" using TransDatRO
- Convert back to WGS84 using PROJ4, ignoring datum transformations
- Compute shifts between the points of the original grid and that of the reprojected one
- Generate NTv2 binary file using the above shifts

https://github.com/danieluct/ntv2generator (Work in progress)



#### Transformation using grid shifts file

+proj=sterea +lat\_0=46 +lon\_0=25 +k=0.99975 +x\_0=500000 +y\_0=500000 +ellps=krass +nadgrids=stereo70\_etrs89A.gsb +units=m +no\_defs



6

#### Conclusion

#### Comparing transformation accuracy

| No | Transformation                                       | Minimum<br>error<br>(m) | Maximum<br>error<br>(m) | Mean<br>error<br>(m) | Standard<br>deviation<br>(m) |
|----|------------------------------------------------------|-------------------------|-------------------------|----------------------|------------------------------|
| 1  | PROJ.4 Generated grid shift file                     | 0,000                   | 0,029                   | 0,007                | 0,003                        |
| 2  | PROJ.4 ANCPI parameters + Stereo70                   | 0,000                   | 1,463                   | 0,339                | 0,219                        |
| 3  | ArcGIS 10.2<br>Pulkovo_1942_Adj_1958_To_ETRS_1989_4  | 0,000                   | 1,464                   | 0,339                | 0,219                        |
| 4  | Global Mapper 14.0<br>Stereo70 / S-42 Romania        | 0,000                   | 1,718                   | 0,416                | 0,250                        |
| 5  | Global Mapper 14.0<br>Stereo70 / S-42 (Pulkovo 1942) | 0,000                   | 1,949                   | 0,488                | 0,325                        |
| 6  | PROJ.4 EPSG:3844<br>Pulkovo 1942(58) / Stereo70      | 0,001                   | 2,976                   | 1,290                | 0,647                        |

#### Comparing transformation accuracy

| No | Transformation                                        | Minimum<br>error<br>(m) | Maximum<br>error<br>(m) | Mean<br>error<br>(m) | Standard<br>deviation<br>(m) |
|----|-------------------------------------------------------|-------------------------|-------------------------|----------------------|------------------------------|
| 7  | ArcGIS 10.2<br>Dealul_Piscului_1970_to_WGS_1984_2     | 0,004                   | 3,587                   | 1,640                | 0,774                        |
| 8  | Global Mapper 14.0<br>Stereo70 / Dealul Piscului 1970 | 0,001                   | 3,593                   | 1,650                | 0,776                        |
| 9  | PROJ.4 EPSG:31700<br>Dealul Piscului 1970 / Stereo 70 | 0,004                   | 3,587                   | 1,648                | 0,774                        |
| 10 | PROJ.4 EPSG:4178<br>Pulkovo 1942(83) + Stereo70       | 1,195                   | 4,918                   | 3,124                | 0,619                        |
| 11 | ArcGIS 10.2 Dealul_Piscului_1970_to_WGS_1984_1        | 1,690                   | 8,312                   | 4,698                | 1,495                        |
| 12 | PROJ.4 EPSG:4284<br>Pulkovo 1942 + Stereo70           | 3,731                   | 7,304                   | 5,686                | 0,498                        |



#### **Further work**

- Modify EPSG:3844 to use parameters published by the Romanian Cadastre Agency
- Official endorsement of the NTv2 grid shift file / Publication of a ANCPI-generated grid shift file based on latest measurements
- OGR/GDAL support for vertical grid shift files

7

#### **Questions?**

### Thank you!