The first law of thermodynamics is defined as $de = \delta q + \delta w$.

Enthalpy is defined as $h = u + p\nu$.

The ideal gas law is defined as $P = \rho RT$.

Specific heats are c_p and c_{ν} . The change in entropy can be expressed as $ds = \frac{\delta q}{T} + ds_{irreversible}$.

$$T\mathrm{d}s = \mathrm{d}h - \nu\mathrm{d}p$$

$$T\mathrm{d}s=\mathrm{d}e+~\mathrm{d}\nu$$

$$ds = de + d\nu$$

$$s_2 - s_1 = c_p \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{p_2}{p_1}\right)$$

$$\frac{P_2}{P_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$$

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{P_2}{P_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$$

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$