Brief Notes #7 Conditional Second-Moment Analysis

Important result for jointly normally distributed variables X₁ and X₂

If X₁ and X₂ are jointly normally distributed with mean values m₁ and m₂, variances σ_1^2 and σ_2^2 , and correlation coefficient ρ , then $(X_1 | X_2 = x_2)$ is also normally distributed with mean and variance:

$$\begin{cases}
 m_{1|2}(x_2) = m_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - m_2) \\
 \sigma_{1|2}^2(x_2) = \sigma_1^2(1 - \rho^2)
\end{cases}$$
(1)

Notice that the conditional variance does not depend on x_2 .

The results in Eq. 1 hold strictly when X_1 and X_2 are jointly normal, but may be used in approximation for other distributions or when one knows only the first two

moments of the vector
$$\underline{\mathbf{X}} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$$
.

Extension to many observations and many predictions

Let $\underline{X} = \begin{bmatrix} \underline{X}_1 \\ X_2 \end{bmatrix}$, where \underline{X}_1 and \underline{X}_2 are sub-vectors of \underline{X} . Suppose \underline{X} has multivariate

normal distribution with mean value vector and covariance matrix:
$$\underline{\mathbf{m}} = \begin{bmatrix} \underline{\mathbf{m}}_1 \\ \underline{\mathbf{m}}_2 \end{bmatrix}, \quad \text{and} \quad \underline{\Sigma} = \begin{bmatrix} \underline{\Sigma}_{11} & \underline{\Sigma}_{12} \\ \underline{\Sigma}_{21} & \underline{\Sigma}_{22} \end{bmatrix} \qquad (\underline{\Sigma}_{12} = \underline{\Sigma}_{21}^{\mathrm{T}}).$$

Then, given $\underline{X}_2 = \underline{x}_2$, the conditional vector $(\underline{X}_1 \mid \underline{X}_2 = \underline{x}_2)$ has jointly normal distributions with parameters:

$$\begin{cases}
\underline{\mathbf{m}}_{1|2}(\underline{\mathbf{x}}_{2}) = \underline{\mathbf{m}}_{1} + \underline{\Sigma}_{12} \underline{\Sigma}_{22}^{-1} (\underline{\mathbf{x}}_{2} - \underline{\mathbf{m}}_{2}) \\
\underline{\Sigma}_{1|2}(\underline{\mathbf{x}}_{2}) = \underline{\Sigma}_{11} - \underline{\Sigma}_{12} \underline{\Sigma}_{22}^{-1} \underline{\Sigma}_{12}^{\mathrm{T}}
\end{cases} \tag{2}$$

Notice again that $\Sigma_{1|2}$ does not depend on x_2 .

As for the scalar case, Eq. 2 may be used in approximation when \underline{X} does not have multivariate normal distribution or when the distribution of X is not known, except for the mean vector $\underline{\mathbf{m}}$ and covariance matrix $\underline{\Sigma}$.