# Big Data Analytics Project -Part II-

- ☐ **Dataset Selection:** Brazilian E-commerce Company Olist from Kaggle
- ☐ **Project Topic:** Analysis of the E-commerce Business of Olist on Optimizing Logistics Solutions and Increasing Customer Experiences

**Group Member:** 

Jiawei Huang Jingting Xu Qiaochu Cong Qiurong Ren

#### **Contents**

1.Overview of Problem

3. Challenges & Approaches

5.Insights Gained & Future Work

2. Modeling Approaches

**4.**Analysis Results

#### **Overview of Problem**

Briefly describe problem, why it is important and interesting



#### **Problem:**

Inaccurate estimated delivery date leads lower review scores



#### Goals:

Develop a model that predict a better and more accurate delivery days.

# **Modeling Approaches**

Describe modeling approaches

#### **Model Selection Demo**

| Regressor               | Better?             | Accurate? |
|-------------------------|---------------------|-----------|
| Linear regression       | 0.6337              | 1392, 343 |
| Decision tree regressor | 0.5742              | 5890,343  |
| AdaBoost regressor      | 0.7007              | 880, 343  |
| Bagging regressor       | 0.6528              | 3158, 343 |
| Extra-trees regressor   | <mark>0.7076</mark> | 5495,343  |
| Random forest regressor | 0.6835              | 3066,343  |

### **Parameter Tuning Results**

| n_estimators | max_depth | min_samples_split | Better? | Accurate? |
|--------------|-----------|-------------------|---------|-----------|
| 100          | 10        | 2                 | 0.65    | 1526, 343 |
| 100          | 20        | 2                 | 0.65    | 1528, 343 |
| 100          | None      | 2                 | 0.707   | 5522, 343 |
| 200          | None      | 2                 | 0.706   | 5495, 343 |
| 200          | None      | 3                 | 0.704   | 4805, 343 |
| 500          | 10        | 2                 | 0.65    | 2186, 343 |
| 500          | 20        | 2                 | 0.66    | 2206, 343 |

Group 8 Big Data Analytics Final Project

# Challenges & Approaches

Describe challenges with modeling and approaches to address challenges

## ! Problem:

The default model accuracy is not an effective measure of our result. So, method like gridsearch can't help us to find the best model.



Step 1 Two columns are generated: "Better" & "accurate"

Step 2 Manually adjust parameter





Early prediction Actual date Late Prediction







- ☐ Testing dataset length: **22764 rows**
- □ 70% of new prediction works better than old estimation.
- □ 5525 predicted result is the exact actual delivery date while the old estimation only accurately predict 343 accurate results.



# Insights Gained & Future Work

Discuss insights gained and future works



#### **Insights Gained:**

- instead of providing an actual delivery date of the package, it is better to **provide** a range of the estimated delivery days. Since it is estimated that customers prefer receive their package late than or at the exact estimated delivery date

Group 8 Big Data Analytics Final Project

# Insights Gained & Future Work

Discuss insights gained and future works



Group 8 Big Data Analytics Final Project

# Insights Gained & Future Work

Discuss insights gained and future works

#### **Future Work:**

- Acquire more considerations on the orders have delayed dates more than 30 days, which may exist logistics problem (like having not enough logistic centers)
- Acquire more feature inputs from the logistic providers (like the real logistics distance between the sellers, logistics center and the customers, instead of the current usage of calculating euclidean distance)
- Sentiment analysis



urces: https://www.istockphoto.com/vector/global-logistics-network-concept-communications-network-map-brazil-on-the-world-gm1055228636-281963048

