Vector Spaces

Definition of Vector Space: A vector space over an arbitrary field F is a non - empty set V, whose elements are called vectors for which two operations are prescribed The first operation called vector addition, assigns to each pair of vectors u and v in V, denoted by $\mathbf{u} + \mathbf{v}$ called their sum.

The second operation, called scalar multiplication assigns to each vector in V and each scalar α in F, a vector denoted by αv .

Linear Combination of vectors: Let V be a vector space over the field F and let

 $v_1, v_2, \ldots, v_n \in V$. Then any vector $v \in V$ is called a linear combination of v_1, v_2, \ldots, v_n if and only if there exists scalar $\alpha_1, \alpha_2, \ldots, \alpha_n$ in F such that,

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$$

Ex. 1) Consider the vectors $v_1=(2,1,4), v_2=(1,-1,3)$ and $v_3=(3,2,5)in\ \mathbb{R}^3$

Show that, v = (5, 9, 5) is a linear combination of v_1, v_2 and v_3 .

Now,

$$(5,9,5) = \alpha_1(2,1,4) + \alpha_2(1,-1,3) + \alpha_3(3,2,5)$$

$$\Rightarrow (5,9,5) = (2\alpha_1, \alpha_1, 4\alpha_1) + (\alpha_2, -\alpha_2, 3\alpha_2) + (3\alpha_3, 2\alpha_3, 5\alpha_3)$$

$$\Rightarrow (5,9,5) = (2\alpha_1 + \alpha_2 + 3\alpha_3, \alpha_1 - \alpha_2 + 2\alpha_3, 4\alpha_1 + 3\alpha_2 + 5\alpha_3)$$

Equating corresponding components and forming linear system we get,

Reducing the system to echelon form we get,

$$\begin{cases} \alpha_1 - \alpha_2 + 2\alpha_3 = 9\\ 3\alpha_2 - \alpha_3 = -13\\ -\frac{2}{3}\alpha_3 = -\frac{2}{3} \end{cases}$$

$$\therefore \alpha_3 = 1, \alpha_2 = -4, \alpha_1 = 3.$$

Hence, from (i), $v = 3v_1 - 4v_2 + v_3$.

Therefore, v is a linear combination of v_1 , v_2 and v_3 .

Ex. 2) Is the vector v=(2,-5,3) in \mathbb{R}^3 is a linear combination of the vectors

$$v_1 = (1, -3, 2), v_2 = (2, -4, -1) \text{ and } v_3 = (1, -5, 7)$$

Solution: Let, $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$ where $\alpha_1, \alpha_2, \alpha_3$ are unknown scalars.

Now,

$$(2,-5,3) = \alpha_1(1,-3,2) + \alpha_2(2,-4,-1) + \alpha_3(1,-5,7)$$

$$\Rightarrow (2,-5,3) = (\alpha_1,-3\alpha_1,2\alpha_1) + (2\alpha_2,-4\alpha_2,-\alpha_2) + (\alpha_3,-5\alpha_3,7\alpha_3)$$

$$\Rightarrow (2,-5,3) = (\alpha_1+2\alpha_2+\alpha_3,-3\alpha_1-4\alpha_2-5\alpha_3,2\alpha_1-\alpha_2+7\alpha_3)$$

Equating corresponding components and forming linear system we get,

Reducing the system to echelon form we get,

$$\begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 2\\ 2\alpha_2 - 2\alpha_3 = 1\\ 0 = \frac{3}{2} \end{cases}$$

The system has an equation of the form $0 = \frac{3}{2}$, which is not true.

Hence the above system is inconsistent and it has no solution.

Therefore, the vector v is not a linear combination of v_1 , v_2 and v_3 .

Ex. 3) For which value of λ will be the vector $\mathbf{v}=(1,\lambda,5)$ is a linear combination of the vectors $\mathbf{v}_1=(1,-3,2)$ and $\mathbf{v}_2=(2,-1,1)$.

Solution: Let, $v = \alpha_1 v_1 + \alpha_2 v_2$ where α_1 and α_2 are unknown scalars.

Now,

$$(1,\lambda,5) = \alpha_1(1,-3,2) + \alpha_2(2,-1,1)$$

$$\Rightarrow (1,\lambda,5) = (\alpha_1,-3\alpha_1,2\alpha_1) + (2\alpha_2,-\alpha_2,\alpha_2)$$

$$\Rightarrow (1,\lambda,5) = (\alpha_1+2\alpha_2,-3\alpha_1-\alpha_2,2\alpha_1+\alpha_2)$$

Equating corresponding components and forming linear system we get,

Reducing the system to echelon form we get,

$$\begin{cases} \alpha_1 + 2\alpha_2 = 1\\ 5\alpha_2 = \lambda + 3\\ \alpha_2 = -1 \end{cases}$$

The system has solution for $\lambda=-8$ and the solution is $\alpha_1=3$ and $\alpha_2=-1$.

Therefore, the vector v is a linear combination of v_1 and v_2 if $\lambda = -8$.

Ex. 4) Write the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ as a linear combination of the matrices

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } A_3 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Solution: Let, $A = \alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3$ is a linear combination of A_1 , A_2 and A_3 where α_1 , α_2 , α_3 are unknown scalars.

Now,

$$\begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_1 \\ 0 & -\alpha_1 \end{bmatrix} + \begin{bmatrix} \alpha_2 & \alpha_2 \\ -\alpha_2 & 0 \end{bmatrix} + \begin{bmatrix} \alpha_3 & -\alpha_3 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 - \alpha_3 \\ 0 - \alpha_2 + 0 & -\alpha_1 + 0 + 0 \end{bmatrix}$$

Equating corresponding components and forming linear system we get,

The solution of the system is $\alpha_1=2$, $\alpha_2=-1$, $\alpha_3=2$

Therefore, $A = 2A_1 - A_2 + 2A_3$. Thus, A is a linear combination of A_1 , A_2 and A_3 .

Ex. 5) Write the matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$ as a linear combination of the matrices

$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ and $A_3 = \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix}$

Solution: Let, $A = \alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3$ is a linear combination of A_1 , A_2 and A_3 where α_1 , α_2 , α_3 are unknown scalars.

Now,

$$\begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_1 \\ \alpha_1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \alpha_2 & \alpha_2 \end{bmatrix} + \begin{bmatrix} 0 & 2\alpha_3 \\ 0 & -\alpha_3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_1 + 2\alpha_3 \\ \alpha_1 + \alpha_2 & \alpha_2 - \alpha_3 \end{bmatrix}$$

Equating corresponding components and forming linear system we get,

$$\begin{cases} \alpha_1 = 3 \\ \alpha_1 + 2\alpha_3 = 1 \\ \alpha_1 + \alpha_2 = 1 \\ \alpha_2 - \alpha_3 = -1 \end{cases}$$
 (i)

The solution of the system is $\alpha_1=3$, $\alpha_2=-2$, $\alpha_3=-1$

Therefore, $A = 3A_1 - 2A_2 - A_3$. Thus, A is a linear combination of A_1 , A_2 and A_3 .