

## United States Patent and Trademark Office



UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

| APPLICATION NO.                 | FILING DATE    | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO.    | CONFIRMATION NO. |
|---------------------------------|----------------|----------------------|------------------------|------------------|
| 10/664,859                      | 09/22/2003     | Konrad Basler        | Q-77377                | 4459             |
| 75                              | 90 11/23/2005  |                      | EXAM                   | INER             |
| SUGHRUE M                       |                |                      | CARLSON,               | KAREN C          |
| 2100 Pennsylva<br>Washington, D | nia Avenue, NW |                      | ART UNIT               | PAPER NUMBER     |
| washington, D                   | C 20037 3213   |                      | 1653                   |                  |
|                                 |                |                      | DATE MAILED: 11/23/200 | 5                |

Please find below and/or attached an Office communication concerning this application or proceeding.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Application No.                                                                                                                                                     | Applicant(s)                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/664,859                                                                                                                                                          | BASLER ET AL.                                                                      |
| Office Action Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Examiner                                                                                                                                                            | Art Unit                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Karen Cochrane Carlson, Ph.D.                                                                                                                                       | 1653                                                                               |
| The MAILING DATE of this communication app<br>Period for Reply                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ears on the cover sheet with the c                                                                                                                                  | orrespondence address                                                              |
| A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA  - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication.  - If NO period for reply is specified above, the maximum statutory period w  - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b). | ATE OF THIS COMMUNICATION  16(a). In no event, however, may a reply be tim  iill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE | J.<br>ely filed<br>the mailing date of this communication.<br>O (35 U.S.C. § 133). |
| Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |                                                                                    |
| 1) Responsive to communication(s) filed on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                    |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | action is non-final.                                                                                                                                                |                                                                                    |
| 3) Since this application is in condition for allowar                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     | secution as to the merits is                                                       |
| closed in accordance with the practice under E                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                   |                                                                                    |
| Disposition of Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                    |
| 4)⊠ Claim(s) 61-66 is/are pending in the application                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.                                                                                                                                                                  |                                                                                    |
| 4a) Of the above claim(s) is/are withdraw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                    |
| 5) Claim(s) is/are allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                    |
| 6)⊠ Claim(s) <u>61-66</u> is/are rejected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                    |
| 7) Claim(s) is/are objected to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |                                                                                    |
| 8) Claim(s) are subject to restriction and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | election requirement.                                                                                                                                               |                                                                                    |
| Application Papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                     |                                                                                    |
| 9) The specification is objected to by the Examine                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                   |                                                                                    |
| 10) The drawing(s) filed on is/are: a) acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | Examiner.                                                                          |
| Applicant may not request that any objection to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                   |                                                                                    |
| Replacement drawing sheet(s) including the correcti                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • • • • • • • • • • • • • • • •                                                                                                                             | ` '                                                                                |
| 11) The oath or declaration is objected to by the Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aminer. Note the attached Office                                                                                                                                    | Action or form PTO-152.                                                            |
| Priority under 35 U.S.C. § 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                    |
| 12)☐ Acknowledgment is made of a claim for foreign a)☐ All b)☐ Some * c)☐ None of:                                                                                                                                                                                                                                                                                                                                                                                                                                         | priority under 35 U.S.C. § 119(a)                                                                                                                                   | -(d) or (f).                                                                       |
| 1.☐ Certified copies of the priority documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s have been received                                                                                                                                                |                                                                                    |
| 2. Certified copies of the priority documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | on No.                                                                             |
| 3. Copies of the certified copies of the prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                    |
| application from the International Bureau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - <del>-</del>                                                                                                                                                      |                                                                                    |
| * See the attached detailed Office action for a list                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • •                                                                                                                             | d.                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                   |                                                                                    |
| Attachment(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                    |
| 1) Notice of References Cited (PTO-892)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) Interview Summary                                                                                                                                                |                                                                                    |
| 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date 9/22/03.                                                                                                                                                                                                                                                                                                                                                                  | Paper No(s)/Mail Da<br>5)                                                                                                                                           | atent Application (PTO-152)                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |                                                                                    |

۸,

Application/Control Number: 10/664,859

Art Unit: 1653

Claims 1-60 have been cancelled. New Claims 61-66 are currently pending and are under examination.

Priority is set to July 28, 2000.

### Sequence Compliance:

There is no amino acid sequence identifier depicting the amino acid sequence depicted in Figure 2, or under the nucleotide sequence of SEQ ID NO: 1. Thus, the Sequence Rules have not been met.

Further, upon finding the art of Venter et al. (US PG Pub 2005/0208558), the search of polypeptides encoded by the nucleotide sequence of SEQ ID NO: 1 shows that Venter et al.'s SEQ ID NO: 3129 is identical to residues 6-1429 of this amino acid sequence, herein now to be referred to as SEQ ID NO: X to help prevent confusion of what is instant SEQ ID NO: 1 (a nucleotide sequence) versus what Applicants claim SEQ ID NO: 1 to be (both nucleotide and amino acid sequences). However, perusal of the C-terminal amino acids of SEQ ID NO: X shows that these amino acids correspond to the C-terminal of Venter et al.'s SEQ ID NO: 3129, that is, the sting of amino acids N-terminal of residue 1464 is the same as Venter et al's string of amino acids N-terminal to residue 1429. Thus, there is a discrepancy of 40 amino acids (5 at the N-terminus of SEQ ID NO: 3129 and 40 somewhere in-between the N- and C-terminal of SEQ ID NO: X).

Venter et al's SEQ ID NO: 3129 is 1429 amino acid in length, of which amino acids 6-1429 are identical to the computer readable form of instant SEQ ID NO: X as determined by the Examiner's perusal of the sequence search. However, SEQ ID NO: X is 1464 amino acids long in paper form. Upon perusal of Venter et al.'s SEQ ID NO: 3129 and SEQ ID NO: X of the instant paper copy of the Sequence listing, amino acids 1140-1179 of the paper form of SEQ ID NO: X is

Application/Control Number: 10/664,859

Art Unit: 1653

missing in SEQ ID NO: 3129 at amino acid position 1144-1145 of SEQ ID NO: 3129. When the sequence search was reviewed again, the nucleotides encoding these same amino acids (nucleotides 5482-5601 of SEQ ID NO: 1) are missing from the computer readable form of instant SEQ ID NO: 1. Thus, the paper copy and the computer readable form of SEQ ID NO: 1 are not identical.

Thus:

This application contains sequence disclosures that are encompassed by the definitions for nucleotide and/or amino acid sequences set forth in 37 CFR 1.821(a)(1) and (a)(2). However, this application fails to comply with the requirements of 37 CFR 1.821 through 1.825 for the reason(s) set forth above.

Applicants must comply with the sequence rules in response to this office or their response will be held non-responsive.

The disclosure is objected to because of the following informalities:

At page 1, para. 2, line 1, "cystein" should be written as --- cysteine ---.

At page 18 and 39, the sequence identifiers are not placed after the sequences.

At page 32, para. 2, line 4, "Cels" should be written as --- cells ---.

At page 10+, the figure legends must refer to "Figure 1(A), Figure 1(B), and so on, for example, because there is no figure "B" or "Figure 1" in the drawings. See also the legends for figures 3, 5, 7, 8, 10, 11, 12, 13, and 15.

Also, reference to the figures throughout the specification must refer to the specifically named figure. That is, at page 22, para. 3, Figure 1 is referred to instead of "Figure 1(A), for example. See also reference to Figure 7 at page 24, para. 2 and page 26, line 4; Figure 8 at page 27, line 8; and Figures 8 and 10 at page 30, para. 1, for example.

It is noted that parent application 09/915,543 has been allowed. Upon issuance of this application the priority information at page 1 of the specification will have to be updated.

Appropriate correction is required.

The disclosure is objected to because it contains an embedded hyperlink and/or other form of browser-executable code. Applicant is required to delete the embedded hyperlink and/or other form of browser-executable code. See MPEP § 608.01.

Hyperlinks can be found at pages 23, 29, and 41. Applicants should delete <a href="http://">http://</a> to remove the hyperlink.

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 61-66 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. Claims 61 and 62 refer to nucleotide sequence SEQ ID NO: 1 as both the nucleic acid encoding and the amino acid sequence depicting algs. Thus, it is not clear what sequence identifies the amino acid sequence. Additionally, Claim 61 refers to amino acids 1-1464 of SEQ ID NO: 1, while the computer readable form of the translation of SEQ ID NO: 1 depicts an amino acid sequence of 1429 amino acids (ie, SEQ ID NO: X).

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make

and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 61-66 are rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

Claim 65 refers to chimeric polypeptides comprising algs (variants and fragments) and glutathione-S-transferase, thioredoxin, or an antibody. At page 6, para. 2 of the specification, the specification states that chimeric polypeptide will comprise algs (variants and fragments) and an epitope sequence tag, glutathione-S-transferase, beta-galactosidase, or alkaline phosphatase. Claim 65 is a new claim and is not part of the original disclosure. Thus, the inclusion of thioredoxin, or an antibody as being part of a chimeric polypeptide with algs (variants and fragments) is new matter.

Regarding written description, the specification does not describe variants of SEQ ID NO: X having at least 90% identity to SEQ ID NO: X, or biologically active fragments of SEQ ID NO: X. While the claims state that the fragments of SEQ ID NO: X will bind to an antibody against itself, this is not a biological activity, but rather a circular activity, that is, there is no reason for one of skill in the art to use an antibody to bind a fragment of SEQ ID NO: 1 if that fragment has no known activity.

Regarding the written description for dlgs fragments SEQ ID NO: 2, 4, 6, 8, or 10, SEQ ID NO: 2 has been show to bind Doll (page 37). However, the specification fails to address any activity associated with SEQ ID NO: 4, 6, 8, or 10. Thus, without a correlation of structure to function, these sequences lack written description.

. . .

Art Unit: 1653

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent.

Claims 61, 62, 63, and 66 are rejected under 35 U.S.C. 102(e) as being anticipated by Venter et al. (Pub. No. US 2005/0208558). Venter et al.'s SEQ ID NO: 3129 is the same as SEQ ID NO: 3135 in Venter et al's provisional application 60/191,637, filed March 23, 2000.

Venter et al. teach SEQ ID NO: 3129, which encompasses amino acids 6-1429 of SEQ ID NO: X as shown in the sequence search (back translation of the computer readable form of SEQ ID NO: 1). Thus, for the purposes of this rejection in view of the noncompliance of the Sequence Rules as noted above, Venter et al. anticipate SEQ ID NO: X (Claims 61, 62), polypeptides having at least 90% identity to SEQ ID NO: X (Claim 61), and polypeptides comprising fragments of SEQ ID NO: X (Claim 61).

Even if the paper form of SEQ ID NO: X were used, the sequences would share 97.2% sequence identity (1423/1464; Claim 61).

Regarding fragments, SEQ ID N: 2, 4, 6, 8, and 10 can be found at amino acid positions 323-334, 520-554, 711-725, 760-768, and 773-884, respectively, in Venter et al.'s SEQ ID NO: 3129 (Claim 63).

At para. [0016] of Venter et al., these polypeptides are placed in pharmaceutical compositions (Claim 66).

No Claims are allowed.

Application/Control Number: 10/664,859

Art Unit: 1653

Page 7

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Karen Cochrane Carlson, Ph.D. whose telephone number is 571-272-0946. The examiner can normally be reached on 7:00 AM - 4:00 PM, off alternate Fridays.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Dr. Jon Weber can be reached on 571-272-0925. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

\*\*\*

KAREN COCHRANE CARLSON, PH.D. PRIMARY EXAMINER

Janen Carbane Carlson Kin

#### SEQUENCE LISTING

<110> BASLER, Konrad BRUNNER, Erich FROESCH, Barbara KRAMPS, Thomas PETER, Oliver

10/669 859 Attach #1

Marked up

Seg 1D NO:1 "
"NO: X"

<120> ESSENTIAL DOWNSTREAM COMPONENT OF THE WINGLESS SIGNALING PATHWAY AND THERAPEUTIC AND DIAGNOSTIC APPLICATIONS BASED THEREON

```
<130> Q60361
<140> 09/915,543
<141> 2001-07-27
<150> 60/221,502
<151> 2000-07-28
<160> 22
<170> PatentIn version 3.1
<210> 1
<211>
      6909
<212> DNA
<213> Drosophila lgs
<220>
<221> exon
<222> (691)..(981)
<223>
<220>
<221> exon
<222> (468)..(632)
<223>
<220>
<221> exon
<222>
      (1456) . . (1665)
<223>
<220>
<221> exon
<222> (2394)..(4397)
 <223>
 <220>
 <221> exon
```

(4679) . . (4870)

<222>

<223>

<220>
<221> exon
<222> (4927)..(6456)
<223>
<400> 1
acgagtgctt ctcttattat

| <pre>&lt;400&gt; 1 acgagtgctt ctcttattat gcgagctgtt tattccaaag tatgttcgca attttcgact</pre>                                                        | 60  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| cctgctaaca taacgcacgg ttaaagcagg aacatttggg cctataagcc caaaatttca                                                                                 | 120 |
| ttagettaat acgatgetee gaagtgttat tgeatttgea catatacata aaattgtgae                                                                                 | 180 |
| atagaatagg agaattccac atacaaatac aaaaatacaa aatcctccag taaaatttaa                                                                                 | 240 |
| aacgatatcg tgttttgctt cgcgtatctc acgtgagatg taatcgcatg catatgagtg                                                                                 | 300 |
| gtgagtgcct gcgtgcagtt cctggtctaa atatgcttaa ttgcgttcgc cgacttcaaa                                                                                 | 360 |
| agcaataaaa cgatggattt taattgctac ttgagcaatt agccacacaa gggatcttgg                                                                                 | 420 |
| gaaggtcgat ttgaaggaat tcgatttcta ggatgctctc gacaaca atg ccc cgc<br>Met Pro Arg<br>1                                                               | 476 |
| agt cca acc caa caa cag ccg caa cca aac tcc gat gcc tcc tca aca<br>Ser Pro Thr Gln Gln Gln Pro Gln Pro Asn Ser Asp Ala Ser Ser Thr<br>5 10 15     | 524 |
| agt gca tct gga tca aat cct gga gca gcg atc gga aat ggg gac tcg<br>Ser Ala Ser Gly Ser Asn Pro Gly Ala Ala Ile Gly Asn Gly Asp Ser<br>20 25 30 35 | 572 |
| gcg gcg agc aga agt tct ccg aag acc ctt aat agc gaa ccc ttt tct<br>Ala Ala Ser Arg Ser Ser Pro Lys Thr Leu Asn Ser Glu Pro Phe Ser<br>40 45 50    | 620 |
| act ttg tcg ccg ggtaagactt gtattgattt ctctttgtcc ggaattataa<br>Thr Leu Ser Pro<br>55                                                              | 672 |
| caactttctg tgtttcca gat caa ata aaa ttg acg cca gaa gaa ggc act<br>Asp Gln Ile Lys Leu Thr Pro Glu Glu Gly Thr<br>60 65                           | 723 |
| gag aaa agc gga cta tca act agt gat aaa gct gcc act gga gga gcc<br>Glu Lys Ser Gly Leu Ser Thr Ser Asp Lys Ala Ala Thr Gly Gly Ala<br>70 75 80    | 771 |
| cca ggc agt gga aat aat ctg ccc gag gga caa act atg cta agg cag<br>Pro Gly Ser Gly Asn Asn Leu Pro Glu Gly Gln Thr Met Leu Arg Gln<br>85 90 95    | 819 |
| aac tot acg ago aca ato aac tog tgo ota gto got tot coa caa aac<br>Asn Ser Thr Ser Thr Ile Asn Ser Cys Leu Val Ala Ser Pro Gln Asn<br>100 105 110 | 867 |

| tcc agt gaa cac tcg aat agc agc aat gtg tct gct aca gtg ggc ctt<br>Ser Ser Glu His Ser Asn Ser Ser Asn Val Ser Ala Thr Val Gly Leu<br>115 120 125 130 | 915  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| act cag atg gta gat tgt gac gag caa tcg aag aaa aac aaa tgt agt<br>Thr Gln Met Val Asp Cys Asp Glu Gln Ser Lys Lys Asn Lys Cys Ser<br>135 140 145     | 963  |
| gtg aag gac gag gaa gct ggtaagactg ccctacaaat ggtttaaaat<br>Val Lys Asp Glu Glu Ala<br>150                                                            | 1011 |
| tttaaaatgt attggcgttc acctttgtta atcatttaat tgttttttt ttgctatact                                                                                      | 1071 |
| tacaatttta gttttaaact tgtaaacttg actaaaactc gcgaagctcg gatcaaaaca                                                                                     | 1131 |
| gacattttct tggaaccgta attaagctca taaaaatatt aattcatctt gatggaatgc                                                                                     | 1191 |
| atatcataga tgtactcaaa catctcaaga aagacctcaa attggatcaa ctaattagtt                                                                                     | 1251 |
| tgagaaaaa ttgctgtact tttaagaata tattaattta aaaatttgct gagtgaaatg                                                                                      | 1311 |
| atataatagt cacaataatt tttagttaaa ctgctaaagc attttgaata gccgtgctac                                                                                     | 1371 |
| gcagatgcta ctagacgcgg tgtaaaagct aatttttatt taaaagctgt cctaatattc                                                                                     | 1431 |
| cataaccatt aatgtcccat ttca gaa ata agt tct aat aaa gca aaa ggt<br>Glu Ile Ser Ser Asn Lys Ala Lys Gly<br>155 160                                      | 1482 |
| caa gca gct ggt ggc ggc tgc gaa aca ggt tct aca tcc agt ttg act<br>Gln Ala Ala Gly Gly Gly Cys Glu Thr Gly Ser Thr Ser Ser Leu Thr<br>165 170 175     | 1530 |
| gtc aag gaa gaa ccc acc gat gtc tta ggc agt tta gta aat atg aaa<br>Val Lys Glu Glu Pro Thr Asp Val Leu Gly Ser Leu Val Asn Met Lys<br>180 185 190     | 1578 |
| aaa gaa gaa aga gaa aat cat teg eea aeg atg tee eet get ggt ttt<br>Lys Glu Glu Arg Glu Asn His Ser Pro Thr Met Ser Pro Val Gly Phe<br>195 200 205     | 1626 |
| ggt tca att ggt aat gca cag gac aac tcc gct aca ccg ggtaagtttt<br>Gly Ser Ile Gly Asn Ala Gln Asp Asn Ser Ala Thr Pro<br>210 215 220                  | 1675 |
| aagagatcca tataaagcaa ataacaagaa ttaatgtcag ttaccaattt tatttgatag                                                                                     | 1735 |
| tcaaagaact actatagega tateteetge ettttaattt tattttaatt aggaaataeg                                                                                     | 1795 |
| aatatttcta atttgtaaaa taaaattgat taattaacta gaatttaaaa accttttgaa                                                                                     | 1855 |
| ttaggacata cccttccaaa aatcagtaat cattgggaac gagagtgtgg tcccgaagga                                                                                     | 1915 |
| gactactata aaaccttttg agctatctga tactgcacgc tactaaaaat gattagttta                                                                                     | 1975 |
|                                                                                                                                                       |      |

| ggaa       | aatg              | igg t      | gtaa       | ttt               | g ta              | ggaa              | gttt       | tca        | ttt               | aga        | agaa              | atgt       | ga t       | tatt              | ttatt      | 2035 |
|------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|------|
| aaac       | ccct              | tc a       | agcg       | gaac              | t ac              | attt              | gtto       | tac        | gata              | ttt        | tgga              | .aaaa      | ica a      | atgg              | ttaag      | 2095 |
| ttgg       | aaag              | itg c      | ctat       | aaaa              | c ag              | aatt              | ccac       | ggt        | ttca              | aat        | acta              | acca       | gg t       | ttt               | gattt      | 2155 |
| aatt       | ttga              | tt a       | aatg       | jagaa             | a tt              | atca              | cact       | tca        | gtta              | aaa        | tgtt              | taat       | tc g       | atta              | aggtc      | 2215 |
| ggac       | aatc              | ac a       | gcag       | atti              | с са              | tttt              | tgcg       | g tgt      | atat              | ata        | gaag              | tcgc       | ct t       | caca              | ctctt      | 2275 |
| ctgg       | cgcg              | ict t      | caco       | acta              | c gt              | ggag              | ttcc       | gcc        | cgca              | gtg        | attt              | atat       | ag a       | tgat              | ttacg      | 2335 |
| agtt       | attt              | aa t       | ttt        | tato              | g tç              | tatt              | ttaa       | a taa      | atat              | ctt        | attt              | atto       | at t       | ttac              | ata        | 2393 |
| gtt<br>Val |                   |            |            |                   |                   |                   |            |            |                   |            |                   |            |            |                   |            | 2441 |
| Ser        |                   |            |            |                   | aat<br>Asn        |                   |            |            |                   |            |                   |            |            |                   |            | 2489 |
| _          | _                 |            |            | -                 | ttt<br>Phe<br>260 |                   |            | _          |                   |            |                   |            |            | _                 |            | 2537 |
| _          | _                 |            |            | _                 | agc<br>Ser        |                   | _          |            |                   |            |                   |            |            |                   | -          | 2585 |
|            |                   |            |            |                   | aat<br>Asn        |                   |            |            |                   |            |                   |            |            |                   |            | 2633 |
| _          |                   | -          | _          |                   | tgt<br>Cys        | _                 | _          |            | _                 |            | _                 |            |            |                   | ata        | 2681 |
| ttc<br>Phe | gtg<br>Val<br>320 | ttt<br>Phe | tca<br>Ser | act<br>Thr        | cag<br>Gln        | ctg<br>Leu<br>325 | gcc<br>Ala | aac<br>Asn | aaa<br>Lys        | ggg<br>ggg | gcc<br>Ala<br>330 | gaa<br>Glu | tca<br>Ser | gtt<br>Val        | tta<br>Leu | 2729 |
|            |                   |            |            |                   | act<br>Thr<br>340 |                   |            |            |                   |            |                   |            |            |                   |            | 2777 |
| aca<br>Thr | aaa<br>Lys        | agc<br>Ser | ttc<br>Phe | ctg<br>Leu<br>355 | gaa<br>Glu        | gac<br>Asp        | ttt<br>Phe | ttt<br>Phe | atg<br>Met<br>360 | aaa<br>Lys | aac<br>Asn        | cct<br>Pro | tta<br>Leu | aag<br>Lys<br>365 | att<br>Ile | 2825 |
|            |                   |            |            |                   | cac<br>His        |                   |            |            |                   |            |                   |            |            |                   |            | 2873 |
|            |                   |            |            |                   | act<br>Thr        |                   |            | Asn        |                   |            |                   |            | Ile        |                   |            | 2921 |

|             | cag        |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 2969 | • |
|-------------|------------|--------------|-----|------------|--------------|------|------|-----|-----|------------|------------|------|-------------|------------|--------------|------|---|
| Gln         | Gln        | Pro          | His | Thr        | Lys          |      | Val  | Gly | Leu | Leu        | -          | Pro  | Gln         | Phe        | Asn          |      |   |
|             | 400        |              |     |            |              | 405  |      |     |     |            | 410        |      |             |            |              |      |   |
|             | cat        | <b>~</b> 3 3 | 220 | 200        | 222          | cat  | aat  | act | ota | 200        | aca        | cct  | age         | 220        | tct          | 3017 |   |
|             | His        |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 301. |   |
| 415         |            | 014          |     |            | 420          |      |      |     |     | 425        |            |      |             |            | 430          |      |   |
|             |            |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      | • |
| ttt         | gtc        | gac          | cag | tct        | gat          | cct  | atg  | ggc | aac | gaa        | act        | gaa  | ttg         | atg        | tgc          | 3065 |   |
| Phe         | Val        | Asp          | Gln | Ser        | Asp          | Pro  | Met  | Gly | Asn | Glu        | Thr        | Glu  | Leu         | Met        | Cys          |      |   |
|             |            |              |     | 435        |              |      |      |     | 440 |            |            |      |             | 445        |              |      |   |
|             |            |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 2112 |   |
|             | gaa<br>Glu |              |     |            |              |      |      | _   |     |            |            |      |             |            | _            | 3113 |   |
| 115         | GIU        | Gly          | 450 | SEL        | 261          | ASII | 1111 | 455 | ALG | 361        | GIY        | GIII | 460         | 361        | nr 9         |      |   |
|             |            |              | -50 |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
| aat         | cat        | gta          | gac | agt        | atc          | agt  | aca  | tcc | agc | gag        | tca        | cag  | gca         | ata        | aag          | 3161 | • |
|             | His        |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
|             |            | 465          |     |            |              |      | 470  |     |     |            |            | 475  |             |            |              |      |   |
|             |            |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
|             | ctg        | _            | _   | _          |              | _    | _    | _   |     | _          | _          |      |             |            | _            | 3209 |   |
| 116         | Leu<br>480 | GIU          | Ala | Ala        | GIA          | 485  | АБР  | Leu | GIA | GIN        | va1<br>490 | Inr  | гув         | GIÀ        | Ser          |      |   |
|             | 400        |              |     |            |              | 403  |      |     |     |            | 430        | •    |             |            |              |      |   |
| gat         | cct        | aac          | cta | aca        | act          | qaa  | aac  | aac | att | qta        | tca        | ctq  | caa         | qqa        | qtt          | 3257 |   |
|             | Pro        |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
| 495         |            | •            |     | ſ          | 500          |      |      |     |     | 505        |            |      |             |            | 510          |      |   |
|             |            |              |     | No         | : પ          |      |      |     |     |            |            |      |             |            |              |      |   |
|             | gtt        |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 3305 |   |
| Lys         | Val        | Pro          | Asp | G1u<br>515 | Asn          | Leu  | Thr  | Pro | 520 |            | Arg        | Gin  | HIS         | Arg<br>525 | GIU          |      |   |
|             |            |              |     | 313        |              |      |      |     | 520 | `          |            |      |             | 323        |              |      |   |
| gaa         | cag        | tta          | qca | ı<br>aaa   | ata          | aaa  | aaa  | atq | aat | caa        | ttt        | ctt  | ttt         | cct        | qaa          | 3353 |   |
| _           | Gln        | _            | _   |            |              |      |      | _   |     |            |            |      |             |            | _            |      |   |
|             |            |              | 530 | -          |              |      |      | 535 |     |            |            |      | 540         |            |              |      |   |
|             |            |              |     |            |              |      | 1    |     |     |            |            |      |             |            |              |      |   |
|             | gag        |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 3401 |   |
| Asn         | Glu        | Asn<br>545   | ser | vaı        | GIA          | Ala  |      | vaı | ser | ser        | Gin        | 555  | Thr         | гÀв        | He           |      |   |
|             |            | 343          |     |            |              |      | 550  |     |     |            | •          | 333  |             |            |              |      |   |
| cca         | gga        | gat          | tta | atq        | atq          | qqq  | atq  | tcq | qqt | qqc        | qqa        | ggc  | gga         | tct        | att          | 3449 |   |
|             | Gly        | _            |     | _          | _            |      | _    | _   |     |            |            |      |             |            |              |      |   |
|             | 560        |              |     |            |              | 565  |      |     |     | -          | 570        |      |             |            |              |      |   |
|             |            |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
|             | aat        | _            | _   | _          | _            |      | _    |     | _   |            |            |      | -           |            | -            | 3497 |   |
| 575         | Asn        | Pro          | inr | met        | 580          | GIN  | Leu  | HIS | met | Pro<br>585 | GIY        | neA  | ALA         | гув        | 590          |      |   |
| <i>31</i> 3 |            |              |     |            | 200          |      |      |     |     | 565        |            |      |             |            | 270          |      |   |
| gag         | ctc        | tta          | tcg | gcg        | aca          | agt  | tca  | gga | ctt | tcg        | gaa        | gat  | gta         | atg        | cat          | 3545 |   |
|             | Leu        |              |     |            |              |      |      |     |     |            |            |      |             |            |              |      |   |
|             |            |              |     | 595        |              |      |      |     | 600 | •          |            |      |             | 605        |              |      |   |
| _           | _          |              |     |            | <b>L</b> = : | •    |      |     | _   |            |            |      | <b>-</b> -• | ^          | <b>.</b> - • | 3503 |   |
|             | ggg        |              |     |            |              |      |      |     |     |            |            |      |             |            |              | 3593 |   |
| PIO         | GIY        | чер          | 610 |            | Jei          | veb  | met  | 615 |     | val        | 116        | GIY  | 620         |            | Asn          |      |   |
|             |            |              | 010 |            |              |      |      |     | •   |            |            |      |             |            |              |      |   |

| aat<br>Asn        | caa<br>Gln        | aaa<br>Lys<br>625 | acc<br>Thr        | agt<br>Ser        | gtg<br>Val        | caa<br>Gln        | tgt<br>Cys<br>630 | gga<br>Gly | tct<br>Ser        | gga<br>Gly        | gta<br>Val        | ggt<br>Gly<br>635 | gtt<br>Val | gtc<br>Val        | act<br>Thr        | 3641  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------|
| gga<br>Gly        | aca<br>Thr<br>640 | act<br>Thr        | gca<br>Ala        | gct<br>Ala        | gga<br>Gly        | gta<br>Val<br>645 | aat<br>Asn        | gtc<br>Val | aat<br>Asn        | atg<br>Met        | cat<br>His<br>650 | tgc<br>Cys        | tca<br>Ser | agc<br>Ser        | tcc<br>Ser        | 3689  |
| ggc<br>Gly<br>655 | gcc<br>Ala        | ccg<br>Pro        | aat<br>Asn        | ggc<br>Gly        | aat<br>Asn<br>660 | atg<br>Met        | atg<br>Met        | gga<br>Gly | agc<br>Ser        | tct<br>Ser<br>665 | acg<br>Thr        | gat<br>Asp        | atg<br>Met | cta<br>Leu        | gcc<br>Ala<br>670 | 3737  |
| tcg<br>Ser        | ttt<br>Phe        | ggc<br>Gly        | aac<br>Asn        | aca<br>Thr<br>675 | agc<br>Ser        | tgc<br>Cys        | aac<br>Asn        | gtc<br>Val | atc<br>Ile<br>680 | Gly               | acg<br>Thr        | gcc<br>Ala        | cca<br>Pro | gat<br>Asp<br>685 | atg<br>Met        | 3785  |
| Ser               | Lys               | Glu               | Val<br>690        | Leu               |                   | Gln               | qaA               | Ser<br>695 | Arg               | Thr               | His               | Ser               | His<br>700 | Gln               | Gly               | 3833  |
| Gly               | Val               | Ala<br>705        | Gln               | Met               | gag<br>Glu        | Trp               | <b>Ser</b><br>710 | Lys        | Ile               | Gln               | His               | Gln<br>715        | Phe        | Phe               | Glu               | 3881  |
| Glu               | 720               | Leu               | Lys               | Gly               | Gly               | Lys<br>725        | Pro               | Arg        | Gln               | Val               | Thr<br>730        | Gly               | Thr        | Val               | Val               | 3929  |
| Pro<br>735        | Gln               | Gln               | Gln               | Thr               |                   | Ser               | Gly               | Ser        | Gly               | Gly<br>745        | Asn               | Ser               | Leu        | Asn               | <b>Asn</b><br>750 | 3977  |
| Gln               | Val               | Arg               | Pro               | Leu<br>755        | caa<br>Gln        | Gly               | Pro               | Pro        | Pro<br>760        | Pro               | Tyr               | His               | Ser        | 11e<br>765        | Gln               | 4025  |
| Arg               | Ser               | Ala               | <b>Ser</b><br>770 | Val               | cca<br>Pro        | Ile               | Ala               | Thr<br>775 | Gln               | Ser               | Pro               | Asn               | Pro<br>780 | Ser               | Ser               | 4073  |
| Pro               | Asn               | Asn<br>785        | Leu               | Ser               | ctc<br>Leu        | Pro               | Ser<br>790        | Pro        | Arg               | Thr               | Thr               | Ala<br>795        | Ala        | Val               | Met .             | 4121  |
| Gly               | Leu<br>800        | Pro               | Thr               | Asn               | tct<br>Ser        | Pro<br>805        | Ser               | Met        | Asp               | Gly               | Thr<br>810        | Gly               | Ser        | Leu               | Ser               | 4169  |
| 61y<br>815        | Ser               | Val               | Pro               | Gln               | gct<br>Ala<br>820 | Asn               | Thr               | Ser        | Thr               | Val<br>825        | Gln               | Ala               | Gly        | Thr               | Thr<br>830        | 421.7 |
| Thr               | Val               | Leu               | Ser               | Ala<br>835        | aac<br>Asn        | Lys               | Asn               | Cys        | Phe<br>840        | Gln               | Ala               | Asp               | Thr        | Pro<br>845        | Ser               | 4265  |
| ccg               | tca               | aat.              | caa               | aat               | cgt               | agt               | aga               | aat        | acc               | gga               | tcg               | tca               | agc        | gtt               | ctt               | 4313  |

it

-

.

Comments of the Comments of th

Pro Ser Asn Gln Asn Arg Ser Arg Asn Thr Gly Ser Ser Ser Val Leu 850 855 acg cat aac tta agc agc aac cca agt acc ccc tta tct cat cta tcc 4361 Thr His Asn Leu Ser Ser Asn Pro Ser Thr Pro Leu Ser His Leu Ser 865 870 cca aag gaa tit gag tot tic ggt cag too tot got ggtatgttat 4407 Pro Lys Glu Phe Glu Ser Phe Gly Gln Ser Ser Ala 880 attigtttaa tittittaaa gacaaatcaa atatgaattg cgttaataat aagttatata 4467 ttacataact cggaaatttg atagaaaaaa tcaggaataq aaaaaataaa ttatttccq 4527 gaccgcccat ccatttcttg aatccaattt ctggagtgat tgttagagat aatctactat 4587 taaaattaaa cacgaaaatt catatccgtt aattgaaaat cactattgtt taataagaaa 4647 ttaaaaaatat gtttattata atatttctac a ggt gat aac atg aaa agt agg 4699 Gly Asp Asn Met Lys Ser Arg 895 cga cca agc cca cag ggt cag cgg tca cca gta aat agt cta ata gag 4747 Arg Pro Ser Pro Gln Gly Gln Arg Ser Pro Val Asn Ser Leu Ile Glu 900 905 gca aat aaa gat gta cga ttt gct gca tcc agt cct ggt ttt aac ccg 4795 Ala Asn Lys Asp Val Arg Phe Ala Ala Ser Ser Pro Gly Phe Asn Pro 920 cat cca cat atg caa agc aat tca aat tca gca tta aac gcc tat aaa 4843 His Pro His Met Gln Ser Asn Ser Asn Ser Ala Leu Asn Ala Tyr Lys 935 940 atg ggc tct acc aat ata cag atg gag gtaaatattt aaatatttta 4890 Met Gly Ser Thr Asn Ile Gln Met Glu 950 tttaacgttt ttgtgttaat ttatcttctt tttcag cgt caa gca tca gcg caa 4944 Arg Gln Ala Ser Ala Gln 955 ggt gga tcc gta caa ttt agt cgg cgc tcc gat aat att ccg cta aat 4992 Gly Gly Ser Val Gln Phe Ser Arg Arg Ser Asp Asn Ile Pro Leu Asn 965 970 ccc aat agt ggc aat cgg ccg cca cca aac aag atg acc caa aac ttc 5040 Pro Asn Ser Gly Asn Arg Pro Pro Pro Asn Lys Met Thr Gln Asn Phe 980 985 gat cca atc tct tct ttg gca caa atg tcc caa caa cta aca agt tgc 5088 Asp Pro Ile Ser Ser Leu Ala Gln Met Ser Gln Gln Leu Thr Ser Cys 995 gtg tcc agc atg ggt agt cca gcc gga act ggt ggt atg acg atg Val Ser Ser Met Gly Ser Pro Ala Gly Thr Gly Gly Met Thr Met 5133

|            | 1010               |            |            |            |            | 1015                               | •          |            |            |            | 1020               |            |            |                     |      |
|------------|--------------------|------------|------------|------------|------------|------------------------------------|------------|------------|------------|------------|--------------------|------------|------------|---------------------|------|
|            | 999<br>Gly<br>1025 | ggt<br>Gly | ccg<br>Pro | gga<br>Gly | ccg<br>Pro | tcc<br>Ser<br>1030                 | gac<br>Asp | atc<br>Ile | aat<br>Asn | att<br>Ile | gag<br>Glu<br>1035 | cat<br>His | gga<br>Gly | ata<br>Ile          | 5178 |
| att<br>Ile | tcg<br>Ser<br>1040 | gga<br>Gly | cta<br>Leu | gat<br>Asp | gga<br>Gly | tca<br>Ser<br>1045                 | gga<br>Gly | ata<br>Ile | gat<br>Asp | acc<br>Thr | ata<br>Ile<br>1050 | aat<br>Asn | caa<br>Gln | aat<br>Asn          | 5223 |
| aac<br>Asn | tgt<br>Cys<br>1055 | cat<br>His | tca<br>Ser | atg<br>Met | aat<br>Asn | gtc<br>Val<br>1060                 | gta<br>Val | atg<br>Met | aac<br>Asn | tca<br>Ser | atg<br>Met<br>1065 | ggt<br>Gly | ccc<br>Pro | cga<br>Arg          | 5268 |
| Met        | Leu<br>1070        | Asn        | Pro        | Lys        | Met        | tgc<br>Cys<br>1075                 | Val        | Ala        | Gly        | Gly        | Pro<br>1080        | Asn        | Gly        | Pro                 | 5313 |
| Pro        | Gly<br>1085        | Phe        | Asn        | Pro        | Asn        | tcc<br>Ser<br>1090                 | Pro        | Asn        | Gly        | Gly        | Leu<br>1095        | Arg        | Glu        | Asn                 | 5358 |
| Ser        | Ile<br>1100        | Gly        | Ser        | Gly        | Cys        | ggc<br>Gly<br>1105                 | Ser        | Ala        | Asn        | Ser        | Ser<br>1110        | Asn        | Phe        | Gln/                | 5403 |
| GJA<br>333 | gtt<br>Val<br>1115 | gtt<br>Val | cca<br>Pro | cct<br>Pro | ggt<br>Gly | gcc<br>Ala<br>1120                 | aga<br>Arg | atg<br>Met | atg<br>Met | Gly        | Arg<br>1125        | Met        | Pro        | gtc<br>Val<br>entre | 5448 |
| aat<br>Asn | ttt<br>Phe<br>1130 | ggt<br>Gly | tcg<br>Ser | aat<br>Asn | ttc<br>Phe | aat<br>Asn<br>1135                 | ccg<br>Pro | aat<br>Asn | att<br>Ile | caq/       | qta                | aag        | aca        | agt.                | 5493 |
| acc<br>Thr | cca<br>Pro<br>1145 | aac<br>Asn | acc<br>Thr | ata<br>Ile | caa<br>Gln | tac<br>Tyr<br>1150                 | atg<br>Met | cca<br>Pro | gta<br>Val | agg<br>Arg | gca<br>Ala<br>1155 | cag<br>Gln | aac<br>Asn | gcc<br>Ala          | 5538 |
| Yeu<br>aac | aac<br>Asn<br>1160 | Asn        | aac<br>Asn | aac<br>Asn | Asn        | gga<br>Gly<br>1165<br>SbO <b>\</b> | Ala        | aat<br>Asn | aat<br>Asn | gtg<br>Val | cga<br>Arg<br>1170 | atg<br>Met | cca<br>Pro | cct<br>Pro          | 5583 |
| agt<br>Ser | ctg<br>Leu<br>1175 | gaa<br>Glu | ttt<br>Phe | ttg<br>Leu | cagl       | agg<br>Arg<br>1180                 | tac        | gct<br>Ala | aac<br>Asn | cct<br>Pro | caa<br>Gln<br>1185 | atg<br>Met | ggt<br>Gly | gct<br>Ala          | 5628 |
| Val        | Gly<br>1190        | Asn        | Gly        | Ser        | Pro        | ata<br>Ile<br>1195                 | Сув        | Pro        | Pro        | Ser        | Ala<br>1200        | Ser        | Asp        | Gly                 | 5673 |
| act<br>Thr | cct<br>Pro<br>1205 | gga<br>Gly | atg<br>Met | cca<br>Pro | gga<br>Gly | ttg<br>Leu<br>1210                 | atg<br>Met | gcg<br>Ala | gga<br>Gly | cca<br>Pro | gga<br>Gly<br>1215 | gcc<br>Ala | gga<br>Gly | ggt<br>Gly          | 5718 |
| atg<br>Met | cta<br>Leu<br>1220 | atg<br>Met | aat<br>Asn | tct<br>Ser | tcc<br>Ser | gga<br>Gly<br>1225                 | gag<br>Glu | caa<br>Gln | cac<br>His | cag<br>Gln | aac<br>Asn<br>1230 | aag<br>Lys | atc<br>Ile | aca<br>Thr          | 5763 |

| aac<br>Asn | aat<br>Asn<br>1235 | cct<br>Pro | Gly<br>999 | gca<br>Ala | agc<br>Ser | aat<br>Asn<br>1240 | ggt<br>Gly | att<br>Ile | aac<br>Asn | ttc<br>Phe | ttt<br>Phe<br>1245 | cag<br>Gln | aat<br>Asn | tgc<br>Cys | 5808 |
|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------|
| aat<br>Asn | caa<br>Gln<br>1250 | atg<br>Met | tct<br>Ser | att<br>Ile | gtt<br>Val | gac<br>Asp<br>1255 | gaa<br>Glu | gag<br>Glu | ggt<br>Gly | gga<br>Gly | tta<br>Leu<br>1260 | ccc<br>Pro | ggc<br>Gly | cat<br>His | 5853 |
| gac<br>Asp | gga<br>Gly<br>1265 | tca<br>Ser | atg<br>Met | aat<br>Asn | att<br>Ile | ggt<br>Gly<br>1270 | caa<br>Gln | cca<br>Pro | tct<br>Ser | atg<br>Met | ata<br>Ile<br>1275 | agg<br>Arg | ggc<br>Gly | atg<br>Met | 5898 |
|            | cca<br>Pro<br>1280 | cat<br>His | gcc<br>Ala | atg<br>Met | cgg<br>Arg | cca<br>Pro<br>1285 | aat<br>Asn | gta<br>Val | atg<br>Met | ggt<br>Gly | gcg<br>Ala<br>1290 | cgg<br>Arg | atg<br>Met | cca<br>Pro | 5943 |
| ccc<br>Pro | gtt<br>Val<br>1295 | aac<br>Asn | agg<br>Arg | caa<br>Gln | att<br>Ile | cag<br>Gln<br>1300 |            |            |            |            | tcg<br>Ser<br>1305 |            |            |            | 5988 |
| gac<br>Asp | tgt<br>Cys<br>1310 | gtc<br>Val | Gly<br>999 | gat<br>Asp | ccg<br>Pro | tca<br>Ser<br>1315 | tca<br>Ser | ttt<br>Phe | ttc<br>Phe | act<br>Thr | aac<br>Asn<br>1320 | gct<br>Ala | tcc<br>Ser | _          | 6033 |
| aac<br>Asn | agc<br>Ser<br>1325 | gct<br>Ala | gga<br>Gly | cca<br>Pro | cac<br>His | atg<br>Met<br>1330 | ttt<br>Phe | gga<br>Gly | tca<br>Ser | gca<br>Ala | caa<br>Gln<br>1335 | cag<br>Gln | gcc<br>Ala | aat<br>Asn | 6078 |
| cag<br>Gln | cct<br>Pro<br>1340 | aag<br>Lys | aca<br>Thr | caa<br>Gln | cac<br>His | ata<br>Ile<br>1345 | aag<br>Lys | aac<br>Asn | ata<br>Ile | cct<br>Pro | agt<br>Ser<br>1350 | gga<br>Gly | atg<br>Met | _          | 6123 |
| Gln        | Asn<br>1355        | Gln        | Ser        | Gly        | Leu        | gca<br>Ala<br>1360 | Val        | Ala        | Gln        | Gly        | Gln<br>1365        | Ile        | Gln        | Leu        | 6168 |
| His        | Gly<br>1370        | Gln        | Gly        | His        | Ala        | cag<br>Gln<br>1375 | Gly        | Gln        | Ser        | Leu        | Ile<br>1380        | Gly        | Pro        | Thr        | 6213 |
| Asn        | Asn<br>1385        | Asn        | Leu        | Met        | Ser        | act<br>Thr<br>1390 | Ala        | Gly        | Ser        | Val        | Ser<br>1395        | Ala        | Thr        | Asn        | 6258 |
| Gly        | Val<br>1400        | Ser        | Gly        | Ile        | Asn        | ttc<br>Phe<br>1405 | Val        | Gly        | Pro        | Ser        | Ser<br>1410        | Thr        | Asp        | Leu        | 6303 |
| Lys        | Tyr<br>1415        | Ala        | Gln        | Gln        | Tyr        | cat<br>His<br>1420 | Ser        | Phe        | Gln        | Gln        | Gln<br>1425        | Leu        | Tyr        | Ala        | 6348 |
| acc<br>Thr | aac<br>Asn<br>1430 | acc<br>Thr | aga<br>Arg | agt<br>Ser | caa<br>Gln | caa<br>Gln<br>1435 | caa<br>Gln | cag<br>Gln | cat<br>His | atg<br>Met | cac<br>His<br>1440 | cag<br>Gln | cag<br>Gln | cac<br>His | 6393 |

.

. . .

cag age aac atg ata aca atg eeg eeg aat tta tea eea aat eea 6438 Gln Ser Asn Met Ile Thr Met Pro Pro Asn Leu Ser Pro Asn Pro 1445 1450 acg ttc ttt gtc aac aaa taaacttcta aatttttgcc gccctcgtca 6486 Thr Phe Phe Val Asn Lys 1460 tgtattgttt actagtctcc aaattaagac atgcatctct aaataagatt ttttgaagct 6546 tatttactta ggtgttttta caacggagaa aataaacttt tggatatgca aatgataacg 6606 ttggaaacaa cataattcat ttgcaacttt tagaagtcac gtcgaagtta aatgtagaat ctgtatttta acataatagg tcatctgtaa aaataattaa acatcgaaat tttagttatc 6726 agcagctatt ttctgttatt atttaatatg tgcgctgctc tctctgtgtt aaatgaaatt 6786 aaaatatata tataaatgta aaacgctatt gatatatatt gctctcaact gtattgtaat 6846 caatattaag agaactgtaa attetteeat ataaaggtaa tgaaaaaaaa aaaaaaaaa 6906 aaa 6909

<210> 2
<211> 28
<212> PRT

<213> Drosophila lgs

<400> 2

Ile Phe Val Phe Ser Thr Gln Leu Ala Asn Lys Gly Ala Glu Ser Val
1 5 10 15

Leu Ser Gly Gln Phe Gln Thr Ile Ile Ala Tyr His

<210> 3
<211> 28
<212> PRT
<213> Human lo

<213> Human lgs/bcl9

<400> 3

Val Tyr Val Phe Ser Thr Glu Met Ala Asn Lys Ala Ala Glu Ala Val 1 5 10 15

Leu Lys Gly Gln Val Glu Thr Ile Val Ser Phe His 20 25

<210> 4</br>
<211> 35

. .

• )

```
- Cy-Cgn2 1/USPTO spool p/US1064859/runat 02112005 171806 3577/app query.fasta 1.7047
- Cy-Cgn2 1/USPTO spool p/US1064859/runat 02112005 171806 3577/app query.fasta 1.7047
- DB=Published Applications AA -QFMT=fastan -SUFFIX=rapb -MINMATCH=0.1
- LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62
- TRANS=human40.cd1 -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100
- THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXIEN=200000000 -USER=US10664859 @CCN 1 1 982 @runat 02112005 171806 3577
-NCPU=6 -1CPU=3 -NO_MARP -LARGSQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -
- LONGLOG -DEV_TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5
-FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Minimum DB seq length: 0
Maximum DB seq length: 200000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Database :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Scoring table:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       OM nucleic - protein search, using frame_plus_n2p model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Searched:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Perfect score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Run on:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Command line parameters:
-MODEL=frame+_n2p.model
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        n2p.model -DEV=xlp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Xgapop 10.0 , Xgapext
Ygapop 10.0 , Ygapext
Fgapop 6.0 , Fgapext
Delop 6.0 , Delext
                                                                                                                 November 2, 2005, 22:10:58 ; Search time 876.5 Seconds (without alignments) 6590.438 Million cell updates/sec
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Published_Applications_AA:*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1865214 seqs, 418043040 residues
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     BLOSUM62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     US-10-664-859-1
12037
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        acgagtgcttctcttattat.....
                                                                                             / cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US07_NEW PUB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US08_NEW PUB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US09_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US09_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US09_PUBCOMB.pep: *
/ cgn2_6/ptodata/2/pubpaa/US108_PUBCOMB.pep: *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               /cgn2_6/ptodata/2/pubpaa/US07_
/cgn2_6/ptodata/2/pubpaa/PCT_N
/cgn2_6/ptodata/2/pubpaa/US06_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.5
7.0
7.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .aaaaaaaaaaaaaaaaaa 6909
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PUBCOMB.pep:*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3730428
```

| Sequence of the control of the contr |            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>       | 10 c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 7-143-34 ation mo anti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | SCOTE  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Material Mat | * |
| Applicatio<br>Applicatio<br>US2005020<br>TION: DETE<br>TION: DETE<br>TION: DETE<br>TION: DETE<br>TION: DETE<br>TION UMB<br>ATION NUMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER<br>ATION UMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Action US/11<br>50208558A1<br>. Craig<br>. Po<br>. Po<br>. Po<br>. Po<br>. Po<br>. Po<br>. Po<br>. Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Length   1429   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   112   11 |   |
| US/110<br>58A1<br>ION KI'<br>S, FOR<br>PHILA<br>US/1:<br>US/1:<br>-05<br>-05<br>-05<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~          | DB 155 155 155 155 155 155 155 155 155 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| US/11097143<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGNMENTS | US-11-097-143-3129 US-09-915-543-10 US-10-322-579-10 US-10-364-889-10 US-10-364-889-11 US-10-766-149-5163 US-09-915-543-15 US-10-766-149-5163 US-09-915-543-15 US-10-381-247B-17 US-10-381-247B-17 US-10-381-247B-17 US-10-381-247B-17 US-10-381-247B-17 US-10-381-247B-17 US-11-097-143-7555 US-11-097-143-7555 US-11-097-143-8729 US-10-773-446-101 US-11-097-143-8729 US-10-773-923-8729 US-11-097-143-8001 US-10-10-355-218-2 US-11-097-143-8103 US-11-097-143-8103 US-10-40-755A-1964 US-10-355-367B-3 US-10-973-858-8 US-10-473-127-347 US-10-473-127-350          |   |
| OF 10,000 OR MORE  T 10,000 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | Description  Sequence 3129, Applesquence 10, Appl Sequence 10, Applesquence 11764, Applesquence 15, Applesquence 15, Applesquence 15, Applesquence 15, Applesquence 1764, Applesquence 17, Applesquence 17, Applesquence 17856, Applesquence 1799, Applesquence 18729, Applesquence 18729, Applesquence 18729, Applesquence 1874, Applesquence 2, Applesquence 18747, Applesquence 18447, Applesquence 18447, Applesquence 2, Applesquence 18447, Applesquence 3, Applesquence 3, Applesquence 2, Applesquence 2, Applesquence 3, Applesqu |   |

SZZ Luonazille

| Db 157 | Qy 1113 CGAAGCTCGGATCAAAACAGACATTTTCTTGGAACCGTAATTAAGCTCATAAAAATATTA 1172 | Db 157 157 | QY 1053 GTTTTTTTTTGCTATACTTACAATTTTAGTTTTAAACTTGTAAAACTTGACTAAAACTCG 1112 | Db 157 157 | Qy 993 CCTACAAATGGTTTAAAATTTTAAAATGTATTGGCGTTCACCTTTGTTAATCATTTAATT 1052 |     | 933 TGACGAGCAATCGAAGAAAAACAAATGTAGTGTGAAGGACGAGGAAGCTGGTAAGACTGC | Qy | 873. TIGAACATOROMOTA TITATOROMOTA CATOROMOTA | Cy 813 ANGGUNGANCICINCGNGUNGANCICINCIGIGCCIAGICGCIII CICCACAAAACICICII CICCACAAAACICACGGGGGGGGGG | 81 sAlaAlaThrGlyGlyAlaProGlySerGlyAsnAsnLeuProGluGlyGlnThrMetLe | Cy /53 AGETISCEACHGAIGECECHAGGEAGATHAICHGEICHEAGGAALAAACTAIGET 812 | ned to control the second to t | 693 TCAATAAATTGACGCCAGAAGAAGCCACTGAGAAAACCGGACTATCAACTAGGATAA | 60 | 633 GGTAAGACITGTATIGATTICTCTTTIGTCCGGAATTATAACAACTTTCTGTGTTTCCAGA | asc.nominionicum vicitim variationicum vicitim vicitim variationicum vicitim viciti | 573 GCGGCGAGAAGTICTICCGAAGCCCTTATIGGGACCCTTTTCTTIGTCGCCG 6 | 21 Alaserserinrseralaserulyserasneroottalaataileutyasneriyapser 40 | 513 GCCTCCTCAACAAGTGCATCTGGATCAAATCCTGGAGCAGCGATCGGAAATGGGGACTCG | Db 1 MetLeuSerThrThrMetProArgSerProThrGlnGlnFroGlnProAsnSerAsp 20 | 453         | 10-664-859-1 (1-6909) x US-11-097-1 | 58.49% Indels: | Conservative: | No.: Cores: 0 Length: | Allegent Control | ; ORGANISM: DROSOPHILA                                               | ; LENGTH: 1429 | ; SOFTWARE: PastSEQ for Windows Version 4.0 | ING DATE: 2000-03-23 | FRIOR FILING JOHNEY 00/101 637                                       | FILING DATE: 2000-01-12 | FILING DATE: 1999-12-28 | FILING DATE: 1999-11-12 |
|--------|---------------------------------------------------------------------------|------------|---------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|-----|------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------|-------------------------------------|----------------|---------------|-----------------------|------------------|----------------------------------------------------------------------|----------------|---------------------------------------------|----------------------|----------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
|        | 226                                                                       | 2193       | 226                                                                       | 2423       | 336                                                                      | 226 |                                                                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Db 226 -                                                      |    | 226 -                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 223                                                        | 1653                                                               | 203                                                              | 1593                                                              | 1533<br>183 | 163                                 | 1473           | 158           | 1413                  |                  | QY 1353 TTTTGAATAGCCGTGCTACGCAGATGCTACTAGACGCGGTGTAAAAGCTAATTTTTATTT |                | 12                                          | u                    | QY 1233 TTGGATCAACTAATTAGTTTGAGAAAAAATTGCTGTACTTTTAAGAATATATTAATTTAA | _                       | 11                      |                         |

ð

밁

| 3153 GCAATAAAGATACTGGAAGCAGCTGGCGTTGATTTGGGACAGGTCACAAAAGGAAGCGAT 3212                                                                                                                                  | TGTGCTGGAAGGCGGATCCTCAA                                              | 381 GlyMetProTrpIleGlyMetGlyGlnValGlyLeuThrProProAsnProValAlaLys 400 2913 ATAACACAACAGCAGCCACTACAAAGACCGTAGGCCTATTGAAACCCCAATTCAATCAA | GGTATGCCATGGGATAGGCGTCGGGGCTAAACCCTCCTAAATCCTGTAGCCAAATCCCGTC 2        | AATCACATATTCGTGTTTTCAACTCAGCTGGCCAACAAAGGGGCCGAATCAGTTTTAAGC                                                                                                                                                                                                                                                                                                                                                                        | AGGGGAGTAGGACCAATACCCGGAATCGGAGTTGGAGCGGGGAGCGGGAATTTATTGACT              | 2433 AAAAAAGGATCGTCCTTGACAATGAATAATGACGAAATGAGCATGGAAGGCTGCAATCAG 2492   | GTGATTTATAGATGATTTACGAGTTATTTAATTTTTTTTT                                  | 2253 ATAGAAGTCGCCTTCACACTCTTCTGGCGCGCTTCACCACTACGTGGAGTTCCGCCCGC          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Db 841 ASDLYSASDCYSPHEGINALASBTHYPOSETPOSETASDGRANATGSETATATTATATTACA 4472  Oy 4293 ACCGGATCGTCAAGCGTTCTTACGCATAACTTAAGCAGCAACCCAAGTACCCCTTATCT 4352  B61 ThrGlySerSerSerValLeuThrHisAsnLeuSerSerAsnPli | 4113 GCAGTCATGGGATTGCCGACCAACTCCTCCTAGCATGGAACAGGACCAGCATCATTATCTGGA | 3993 CAAG<br>    <br>761 GInG<br>4053 CAAT<br>    <br>781 GInS                                                                        | Qy 3873 TTTTTCGAAGACGCCTCAAGGGGGCAAGCCCAGACAGTCACTGGAACTGTAGTACCA 3932 | Qy         3753         AGCTGCAACGTCATCGGAACGGCCCCAGATATGTCTAAGGAAGTTTTAAATCAAGATAGC         3812           Db         681         SerCysAsnVallleGlyThrAlaProAspMetSerLysGluValLeuAsnGlnAspSer         700           Qy         3813         CGAACCCATTCACATCAAGGGGGAGTTGCTCAAATGGAGTGGTCGAAGATTCAACATCAA         3872           Db         701         ArgThrHisSerHisGlnGlyGlyValAlalaGlnMetGluTrpSerLysileGlnHisGln         720 | Qy 3633 GTTGTCACTGGAACAACTGCAGCTGGAGTAAATGTCAATATGCATTGCTCAAGCTCCGGC 3692 | Oy 3513 ACAACTTCAGGACTTTCGGAAGATGTAATGCATCCAGGGATGTTATATCAGATATGGGT 3572 | Oy 3393 ACAAAAATTCCAGGAGATTTAATGATGGGGATGTCGGGTGGCGGAGGCGGATCTATTATA 3452 | OY 3333 AATCAATTTCTTTTTCCTGAAAATGAGAATTCAGTAGGAGCTAATGTAAGCTCACAGATA 3392 |

밁 유

S 밁 8 문 र् 밁 ঠ ફ 문 ક 밁

| GGGTCGAATGCCAGTCAATTTTGGTTCGAATTTCAATCCGAATATTCAGGTAAAGGCGAG                                                                                                                                       | 3 CTGTGGCTCAGCAAACTCTTCAAACTGTTCAAGCGGTTGTTCCACCTGGTGCCAGAATGAT | 1088 OPTGGLYPHOANTGMELUCHABRIPTOLYSMECCYBVALALBGLYGLYPTOARBRULYPT 1088  5313 GCCTGGCTTTAATTCCTAATTCCCCAATGGTGGATTAAGAGAGAATTCCATAGGGTCTGG 5372  [ | 048 PG1YSETG1Y11EABPINT11EABRIGINABRIGHECYBH1BSETMECABRIVB1V81V81W8CAB 1 253 CTCAATGGGTCCCCGAATGCTGAATCCTAAAATGTGCGTAGCAGGGGGGTCCAAATGGACC 5 | 028 CMECGLYGLYPTOGLYPTOGETABDLIEABDLIEGIUH18GLYLLELIESETGLYLEUAB 193 TGGATCAGGAATAGATACCATAAATCAAAATAACTGTCATTCAATGAATG | GATGGGGGGTCCGGGACCGTCCGACATCAATATTGAGCATGGAATAATTTCGGGACTAGA              | ACAACTAACAAGTTGCGTGTCCAGCATGGGTAGTCCAGCCGGAACTGGTGGTATGACGAT     | 53 CGTACAATTTAGTCGGCGCTCCGATAATATTCCGCTAAATCCCAATAGTGGCAATCGGCC 5 |                                        | ACGCCTATAAAATGGGCTCTACCAATATACAGATGGAGGTAAATATTTAAATATTTTATT    | CATCCAGTCCTGGTTTTAACCCGCATCCACATATGCAAAGCAATTCAAATTCAGCATTAA<br> | AGGGTCAGCGGTCACCAGTAAATAGTCTAATAGAGGCAATAAAGATGAGTACGATTTGCTG | AATATGTTTATAATATTTCTACAGGTGATAACATGAAAAGTAGGCGACCAAGCCCAC | TTAAACACGAAAATTCATATCCGTTAATTGAAAATCACTATTGTTTAATAAGAAATTAAA 4          | CCCATCCATTTCTTGAATCCAATTTCTGGAGTGATTGTTAGAGATAATCTACTATTAAAA 4 | 4473 TAACTCGGAAATTTGATAGAAAAAATCAGGAATAGAAAAAATAAAT    | 894 894 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|---------|
| RESULT 2 US-09-915-543-10 US-09-915-543-10 ; Sequence 10, Application US/09915543 ; Publication No. US20020086986A1 ; GENERAL INFORMATION: ; APPLICANT: BASLER, Konrad ; APPLICANT: BRUNNER, Brich | Qy 6453 CAAA 6456<br>    <br>                                   | Qy 6393 CCAGAGCAACATGATAACAATGCCGCGAAATTTATCACCAAATCCAACGTTCTTTGTCAA 6452                                                                         | Qy 6333 GCAGCAGTTATATGCTACCAACACCAGAAGTCAACAACAACAGCATATGCACCAGCAGCA 6392<br>                                                                | Qy 6273 CAATTTCGTAGGTCCCTCTTCTACGGACCTGAAGTATGCCCAGCAATATCATAGTTTTCA 6332                                               | Qy 6213 TAATAATAATTTAATGTCAACTGCCGGAAGTGTCAGTGCTACTAACGGTGTCTCTGGCAT 6272 | Qy 6153 AGGGCAGATCCAACTGCGTAAGGCCAAGGGTCAGTCTTTAATTGGACCTAC 6212 | 3 CAACAGCGCTGGACCACACATGTTTTGGATCAGCACACAGCGCAATCAGCCTAAGACAGA    | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 913 GCGGCCAAATGTAATGGGTGCGCGGATGCCACCGTTAACAGGCAAATTCAGTTTGCACA | ATCAATGAATATTGGTCAACCATCTATGATAAGGGGCATGCGTCCACATGCCAT<br>       |                                                               | Qy 5733 TTCCGGAGAGCAACACCAGAACAAGATCACTGGGGCAAGCAA        | Qy 5673 TACTCCTGGAATGCCAGGATTGATGGCGGGCCGAGGGCCGGAGGTATGCTAATGATTC 5732 | CCCTCAAATGGGTGCTGTAGGCAATGGGTCGCCAATATGCCCACCATCAGCCAGC        | AGCTAATAATGTGCGAATGCCACCTAGTCTGGAATTTTTTGCAGGTTACGCTAA | 1143    |

8 밁 ঠ

ð 밁 S 유 성

유 성

밁 ঠ 문 ঠ 밁 श्च 밁 5 밁 ঠ 8 श् 밁

밁

밁

ક 문

ঠ

8

5

밁

ક

밁

음 성



**United States Patent and Trademark Office** 

Mark up, Attach#3

Home | Site Index | Search | FAQ | Glossary | Guides | Contacts | eBusiness | eBiz alerts | News | Help

# Publication Site for Issued and Published Sequences (PSIPS)

PSIPS View Sequence(s): 3129 for 20050208558

### **PSIPS Homepage**

Here is the list of the requested sequences.

| Sequence ID<br>No:     | <210> SEQ ID NO 3129<br><211> LENGTH: 1429 |                                                                 |            |            |            |            |            |            |            |            |            |            |            |            | Convi<br>to<br>Searc |            |            |   |
|------------------------|--------------------------------------------|-----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------------|------------|------------|---|
| Gol                    |                                            | TYPE: PRT  ORGANISM: DROSOPHILA SEOUENCE: 3129  Gasler et al -> |            |            |            |            |            |            |            |            |            |            |            |            |                      | Forma      |            |   |
|                        | <400>                                      |                                                                 |            |            |            |            | Ba         | معام       | ا لمد -    | - لا       | -7         |            |            |            |                      |            |            |   |
| <i>(</i> )             |                                            | Met<br>1                                                        | Leu        | Ser        | Thr        | Thr<br>5   | Met        | Pro        | Arg        | Ser        | Pro<br>10  | Thr        | Gln        | Gln        | Gln                  | Pro<br>15  | Gln        |   |
| First                  |                                            |                                                                 | Asn        | Ser        | Asp        |            | Ser        | Ser        | Thr        | Ser        | Ala        | Ser        | Gly        | Ser        | Asn                  |            | Gly        |   |
| Sequence               |                                            |                                                                 |            |            | 20         |            |            |            |            | 25         |            |            |            |            | 30                   |            |            |   |
| Next Sequence          |                                            | Ala                                                             | Ala        | Ile<br>35  | Gly        | Asn        | Gly        | Asp        | Ser<br>40  | Ala        | Ala        | Ser        | Arg        | Ser<br>45  | Ser                  | Pro        | Lys        |   |
| Previous               |                                            | Thr                                                             |            |            | Ser        | Glu        | Pro        |            |            | Thr        | Leu        | Ser        |            |            | Gln                  | Ile        | Lys        |   |
| Sequence               |                                            | Tou                                                             | 50         | Dro        | C1.,       | C1.,       | C1.,       | 55         | C1,,       | Tuc        | Ser        | C1.,       | 60         | Sar        | Пhr                  | Sar        | 7 en       |   |
| Last                   |                                            | 65                                                              | 1111       | PIO        | GIU        | GIU        | 70         | 1111       | GIU        | пуз        | Ser        | 75         | ьeu        | ser        | 1111                 | 261        | 80         |   |
| Sequence               |                                            | Lys                                                             | Ala        | Ala        | Thr        | Gly<br>85  | Gly        | Ala        | Pro        | Gly        | Ser<br>90  | Gly        | Asn        | Asn        | Leu                  | Pro<br>95  | Glu        |   |
| Full Text              |                                            | Gly                                                             | Gln        | Thr        | Met<br>100 | Leu        | Arg        | Gln        | Asn        | Ser<br>105 | Thr        | Ser        | Thr        | Ile        | Asn<br>110           | Ser        | Cys        |   |
| Publication            |                                            | Leu                                                             | Val        | Ala<br>115 |            | Pro        | Gŀn        | Asn        | Ser<br>120 | Ser        | Glu        | His        | Ser        | Asn<br>125 | Ser                  | Ser        | Asn        |   |
| PSIPS Home<br>Page     |                                            | Val                                                             |            |            | Thr        | Val        | Gly        |            |            | Gln        | Met        | Val        | _          |            | Asp                  | Glu        | Gln        |   |
| NCBI Home              |                                            | Ser                                                             | 130<br>Lvs | Lvs        | Asn        | Lvs        | Cvs        | 135<br>Ser | Val        | Lvs        | Asp        | Glu        | 140<br>Glu | Ala        | Gĺu                  | Ile        | Ser        | • |
| PIW and AIW            |                                            | 145                                                             | -          | -          |            | -          | 150        |            |            | -          | -          | 155        |            |            |                      |            | 160        |   |
| Search Home<br>Page    |                                            | Ser                                                             | Asn        | ГÀа        | Ala        | Lys<br>165 | Gly        | Gln        | Ala        | Ala        | Gly<br>170 | Gly        | Gly        | Cys        | Glu                  | Thr<br>175 | Gly        |   |
| Document<br>Services   |                                            | Ser                                                             | Thr        | Ser        | Ser<br>180 | Leu        | Thr        | Val        | Lys        | Glu<br>185 | Glu        | Pro        | Thr        | Asp        | Val<br>190           | Leu        | Gly        |   |
| Division<br>USPTO Home |                                            | Ser                                                             | Leu        | Val<br>195 |            | Met        | Lys        | Lys        | Glu<br>200 |            | Arg        | Glu        | Asn        | His<br>205 |                      | Pro        | Thr        |   |
| oor to nome            |                                            | Met                                                             | Ser        |            | Val        | Gly        | Phe        | Gly        |            | Ile        | Gly        | Asn        | Ala        |            | Asp                  | Asn        | Ser        |   |
| Help Page              |                                            |                                                                 | 210        |            |            | _          |            | 215        |            |            | _          |            | 220        |            | _                    |            |            |   |
| FAQ                    |                                            | Ala<br>225                                                      | Thr        | Pro        | Val        | Lys        | 11e<br>230 | Glu        | Arg        | Ile        | Ser        | Asn<br>235 | Asp        | Ser        | Thr                  | Thr        | Glu<br>240 |   |
|                        |                                            |                                                                 | Lys        | Gly        | Ser        | Ser<br>245 |            | Thr        | Met        | Asn        | Asn<br>250 |            | Glu        | Met        | Ser                  | Met<br>255 |            |   |
|                        |                                            | Gly                                                             | Cys        | Asn        | Gln<br>260 |            | Asn        | Pro        | Asp        |            | Ile        | Asn        | Glu        | Ser        | Leu<br>270           |            | Asn        |   |
|                        |                                            | Pro                                                             | Ala        |            | Ser        | Ser        | Ile        | Leu        |            |            | Gly        | Val        | Gly        |            |                      | Pro        | Gly        |   |
|                        |                                            | Ile                                                             | _          |            |            | Ala        | Gly        |            | _          |            | Leu        | Leu        |            | 285<br>Ala | Asn                  | Ala        | Asn        |   |
|                        |                                            | Glv                                                             | 290<br>Tle |            | Ser        | Glv        | Ser        | 295<br>Ser |            | Cve        | Leu        | Asp        | 300<br>Tvr | Met        | Gln                  | Gln        | Gln        |   |
|                        |                                            | 305                                                             |            | ٢          | 0:2        | Jry        | 310        | JCI        |            | <b>-</b> 1 | Leu        | 315        | - 1 -      |            | 5111                 | 5111       | 320        |   |
|                        |                                            | Asn                                                             | His        | Ile        | Phe        | Val<br>325 | Phe        | Ser        | Thr        | Gln        | Leu<br>330 | Ala        | Asn        | Lys        | Gly                  | Ala<br>335 | Glu        |   |
|                        |                                            | Ser                                                             | Val        | Leu        | Ser        | Gly        | Gln        | Phe        | Gln        | Thr        | Ile        | Ile        | Ala        | Tyr        | His                  |            | Thr        |   |

340 345 Gln Pro Ala Thr Lys Ser Phe Leu Glu Asp Phe Phe Met Lys Asn Pro 360 Leu Lys Ile Asn Lys Leu Gln Arg His Asn Ser Val Gly Met Pro Trp 375 380 Ile Gly Met Gly Gln Val Gly Leu Thr Pro Pro Asn Pro Val Ala Lys 390 395 Ile Thr Gln Gln Pro His Thr Lys Thr Val Gly Leu Leu Lys Pro 410 405 Gln Phe Asn Gln His Glu Asn Ser Lys Arg Ser Thr Val Ser Ala Pro 425 Ser Asn Ser Phe Val Asp Gln Ser Asp Pro Met Gly Asn Glu Thr Glu 440 Leu Met Cys Trp Glu Gly Gly Ser Ser Asn Thr Ser Arg Ser Gly Gln 455 460 Asn Ser Arg Asn His Val Asp Ser Ile Ser Thr Ser Ser Glu Ser Gln 475 470 Ala Ile Lys Ile Leu Glu Ala Ala Gly Val Asp Leu Gly Gln Val Thr 485 490 Lys Gly Ser Asp Pro Gly Leu Thr Thr Glu Asn Asn Ile Val Ser Leu 500 505 MO: 4 510 Gln Gly Val Lys Val Pro Asp Glu Asn Leu Thr Pro Gln Gln Arg Gln 520 525 His Arg Glu Glu Gln Leu Ala Lys Ile Lys Lys Met Asn Gln Phe Leu 535 540 Phe Pro Glu Asn Glu Asn Ser Val Gly Ala Asn Val Ser Ser Gln Ile 545 550 560 Thr Lys Ile Pro Gly Asp Leu Met Met Gly Met Ser Gly Gly Gly 570 565 Gly Ser Ile Ile Asn Pro Thr Met Arg Gln Leu His Met Pro Gly Asn 585 Ala Lys Ser Glu Leu Leu Ser Ala Thr Ser Ser Gly Leu Ser Glu Asp 600 Val Met His Pro Gly Asp Val Ile Ser Asp Met Gly Ala Val Ile Gly 615 620 Cys Asn Asn Gln Lys Thr Ser Val Gln Cys Gly Ser Gly Val Gly 630 635 Val Val Thr Gly Thr Thr Ala Ala Gly Val Asn Val Asn Met His Cys 650 645 Ser Ser Ser Gly Ala Pro Asn Gly Asn Met Met Gly Ser Ser Thr Asp 665 Met Leu Ala Ser Phe Gly Asn Thr Ser Cys Asn Val Ile Gly Thr Ala 680 Pro Asp Met Ser Lys Glu Val Leu Asn Gln Asp Ser Arg Thr His Ser 690

His Gln Gly Gly Val Ala Gln Met Glu Trp Ser Lys Ile Gln His Gln 710 715 Phe Phe Glu Glu Arg Leu Lys Gly Gly Lys Pro Arg Gln Val Thr Gly 730 Thr Val Val Pro Gln Gln Gln Thr Pro Ser Gly Ser Gly Gly Asn Ser 740 745 NO: 8 750

Leu Asn Asn Gln Val Arg Pro Leu Gln Gly Pro Pro Pro Pro Tyr His 755 No:10 760 765

Ser Ile Gln Arg Ser Ala Ser Val Pro Ile Ala Thr Gln Ser Pro Asn 770 775 775 Pro Ser Ser Pro Asn Asn Leu Ser Leu Pro Ser Pro Arg Thr Thr Ala 790 795 Ala Val Met Gly Leu Pro Thr Asn Ser Pro Ser Met Asp Gly Thr Gly 805 810 Ser Leu Ser Gly Ser Val Pro Gln Ala Asn Thr Ser Thr Val Gln Ala 825 Gly Thr Thr Thr Val Leu Ser Ala Asn Lys Asn Cys Phe Gln Ala Asp

840 Thr Pro Ser Pro Ser Asn Gln Asn Arg Ser Arg Asn Thr Gly Ser Ser 855 860 Ser Val Leu Thr His Asn Leu Ser Ser Asn Pro Ser Thr Pro Leu Ser 875 870 His Leu Ser Pro Lys Glu Phe Glu Ser Phe Gly Gln Ser Ser Ala Gly **——** 885 890 Asp Asn Met Lys Ser Arg Arg Pro Ser Pro Gln Gly Gln Arg Ser Pro 905 Val Asn Ser Leu Ile Glu Ala Asn Lys Asp Val Arg Phe Ala Ala Ser 920 Ser Pro Gly Phe Asn Pro His Pro His Met Gln Ser Asn Ser Asn Ser 935 940 Ala Leu Asn Ala Tyr Lys Met Gly Ser Thr Asn Ile Gln Met Głu Arg 950 955 Gln Ala Ser Ala Gln Gly Gly Ser Val Gln Phe Ser Arg Arg Ser Asp 965 970 Asn Ile Pro Leu Asn Pro Asn Ser Gly Asn Arg Pro Pro Pro Asn Lys 985 Met Thr Gln Asn Phe Asp Pro Ile Ser Ser Leu Ala Gln Met Ser Gln 1000 Gln Leu Thr Ser Cys Val Ser Ser Met Gly Ser Pro Ala Gly Thr Gly 1015 1020 Gly Met Thr Met Met Gly Gly Pro Gly Pro Ser Asp Ile Asn Ile Glu 1030 1035 His Gly Ile Ile Ser Gly Leu Asp Gly Ser Gly Ile Asp Thr Ile Asn 1045 1050 Gln Asn Asn Cys His Ser Met Asn Val Val Met Asn Ser Met Gly Pro 1065 1060 Arg Met Leu Asn Pro Lys Met Cys Val Ala Gly Gly Pro Asn Gly Pro 1080 . 1075 1085 Pro Gly Phe Asn Pro Asn Ser Pro Asn Gly Gly Leu Arg Glu Asn Ser 1090 1095 1100 Ile Gly Ser Gly Cys Gly Ser Ala Asn Ser Ser Asn Phe Gln/Gly Val 1110 1115 l = 1120Val Pro Pro Gly Ala Arg Met Met Gly Arg Met Pro Val Asn Phe Gly

1125 40 a 1135

Ser Asn Phe Asn Pro Asn Ile Gln Arg Tyr Ala Asn Pro Gln Met Gly

1140 1 NSect 1145 1150 Ala Val Gly Asn Gly Ser Pro Ile Cys Pro Pro Ser Ala Ser Asp Gly 11/55 1160 Thr Pro Gly Met Pro Gly Leu Met Ala Gly Pro Gly Ala Gly Gly Met 1170 ` 1175 1180 Leu Met Asn Ser Ser Gly Glu Gln His Gln Asn Lys Ile Thr Asn Asn 1190 1195 Pro Gly Ala Ser Asn Gly Ile Asn Phe Phe Gln Asn Cys Asn Gln Met 1205 1210 Ser Ile Val Asp Glu Glu Gly Gly Leu Pro Gly His Asp Gly Ser Met 1220 1225 1230 Asn Ile Gly Gln Pro Ser Met Ile Arg Gly Met Arg Pro His Ala Met 1240 Arg Pro Asn Val Met Gly Ala Arg Met Pro Pro Val Asn Arg Gln Ile 1255 1260 Gln Phe Ala Gln Ser Ser Asp Gly Ile Asp Cys Val Gly Asp Pro Ser 1275 1270 Ser Phe Phe Thr Asn Ala Ser Cys Asn Ser Ala Gly Pro His Met Phe 1285 1290 Gly Ser Ala Gln Gln Ala Asn Gln Pro Lys Thr Gln His Ile Lys Asn 1300 1305 Ile Pro Ser Gly Met Cys Gln Asn Gln Ser Gly Leu Ala Val Ala Gln 1320 Gly Gln Ile Gln Leu His Gly Gln Gly His Ala Gln Gly Gln Ser Leu 1

A In Tong

1330 1335 1340 Ile Gly Pro Thr Asn Asn Asn Leu Met Ser Thr Ala Gly Ser Val Ser 1345 1350 1355 Ala Thr Asn Gly Val Ser Gly Ile Asn Phe Val Gly Pro Ser Ser Thr 1370 1365 Asp Leu Lys Tyr Ala Gln Gln Tyr His Ser Phe Gln Gln Gln Leu Tyr 1385 1380 Ala Thr Asn Thr Arg Ser Gln Gln Gln His Met His Gln Gln His 1400 1405 Gln Ser Asn Met Ile Thr Met Pro Pro Asn Leu Ser Pro Asn Pro Thr 1415 1410 1420 Phe Phe Val Asn Lys 1425 1464

PSIPS Home | PSIPS Help Page | PSIPS Accessibility Help Page | PSIPS FAQ | PIW and AIW Search Home Page | Document Services Division | NCBI Home

I.HOME | INDEX | SEARCH | eBUSINESS | CONTACT US | PRIVACY STATEMENT

Last Modified: 11/15/2005 14:31:29