

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120108004

FCC REPORT (WIFI)

Applicant: United Telelinks(Bangalore) Limited

Address of Applicant: NO 39/13, Appareddy palya Main Road, off 7th Main HAL 2nd

stage, Indiranagar 2nd stage, Bangalore, India-560038

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: A5s

Trade mark: karbonn

FCC ID: 2AD3GA5S2-8501900

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Jan., 2015

Date of Test: 21 Jan., to 28 Jan., 2015

Date of report issued: 28 Jan., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jan., 2015	Original

Prepared by: Yoy0 Lu0 **Date:** 28 Jan., 2015

Report Clerk

Reviewed by: Date: 28 Jan., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
J			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5 5.6	LABORATORY LOCATION	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	00.1000.000 =00.100	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	60
7	TES	T SETUP PHOTO	68
8	EUT	CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	United Telelinks(Bangalore) Limited
Address of Applicant:	NO 39/13, Appareddy palya Main Road,off 7th Main HAL 2nd stage, Indiranagar 2nd stage, Bangalore, India-560038
Manufacturer:	TEM MOBILE LIMITED
Address of Manufacturer:	No 1708, Cangsong Building, Tairan 6 Road, Futian ShenZhen, China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	A5s
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1400mAh
AC adapter:	Model: A5s Input: AC100-240V 50/60Hz 0.15 A Output: DC 5.0V, 700mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequence							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS14120108004

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14120108004

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015		
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
·					
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz)	Limit (c			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 5-30	56 60	46 50		
	* Decreases with the logarithm		50		
	 a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 041RF Condition

Pro

EUT : Mobile Phone Model : A5s

Test Mode : Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

tomark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
(1.11)	MHz	dBu∀	d₿	₫B	dBu∜	dBu∀	dB		-
1	0.194	44.84	0.25	10.76	55.85	63.84	-7.99	QP	
2	0.194	27.68	0.25	10.76	38.69	53.84	-15.15	Average	
3	0.258	39.11	0.26	10.75	50.12	61.51	-11.39	QP	
4	0.258	21.89	0.26	10.75	32.90	51.51	-18.61	Average	
5	0.322	34.70	0.26	10.73	45.69	59.66	-13.97	QP	
2 3 4 5 6 7 8 9	0.449	35.83	0.27	10.74	46.84	56.89	-10.05	QP	
7	0.461	23.00	0.28	10.75	34.03	46.67	-12.64	Average	
8	0.595	20.58	0.23	10.77	31.58	46.00	-14.42	Average	
9	1.032	34.90	0.22	10.87	45.99	56.00	-10.01	QP	
10	1.032	20.82	0.22	10.87	31.91	46.00	-14.09	Average	
11	2.190	17.24	0.29	10.95	28.48	46.00	-17.52	Average	
12	3.509	34.43	0.29	10.90	45.62	56.00	-10.38	QP	

Line:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

041RF Pro

EUT Mobile Phone Model : A5s : Wifi Mode

Test Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

C. Store J. Grav.	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
9 018	MHz	dBu∜	₫B	₫B	dBu₹	dBu∀	dB	Personal and	
1	0.194	39.69	0.28	10.76	50.73	63.84	-13.11	QP	
2	0.202	21.90	0.28	10.76	32.94	53.54	-20.60	Average	
1 2 3	0.262	35.31	0.27	10.75	46.33	61.38	-15.05	QP	
4	0.262	20.49	0.27	10.75	31.51	51.38	-19.87	Average	
4 5 6 7 8 9	0.449	31.90	0.29	10.74	42.93	56.89	-13.96	QP	
6	0.454	22.93	0.29	10.74	33.96	46.80	-12.84	Average	
7	0.527	18.55	0.28	10.76	29.59	46.00	-16.41	Average	
8	0.994	31.27	0.25	10.87	42.39	56.00	-13.61	QP	
9	1.191	12.82	0.25	10.89	23.96	46.00	-22.04	Average	
10	3.509	12.87	0.28	10.90	24.05	46.00	-21.95	Average	
11	3.642	29.25	0.28	10.90	40.43	56.00	-15.57	QP	
12	14.063	30.30	0.32	10.91	41.53	60.00	-18.47	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

-	Ma	ximum Conduct		D		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	17.64	15.05	14.88	13.15		
Middle	17.91	16.17	16.19	15.18	30.00	Pass
Highest	18.08	15.38	15.48	13.30		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

-		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	16.11	17.31	35.75		
Middle	10.26	16.19	17.31	35.75	>500	Pass
Highest	10.26	16.27	17.39	35.75		

		99% Occupy		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.99	16.51	17.64	35.91		
Middle	12.83	16.51	17.64	36.07	N/A	N/A
Highest	12.91	16.43	17.64	35.75		

Test plot as follows:

6dB EBW

Lowest channel

Middle channel

Highest channel

Lowest channel

20.JAN.2015 14:58:13

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T . O		Power Spec	1: ://ID \	D "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	5.81	-0.32	-0.65	-6.54		
Middle	5.61	0.94	0.59	-4.49	8.00	Pass
Highest	6.34	-0.57	-0.09	-6.23		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak Peak	RBW 1MHz 1MHz	VBW 3MHz 10Hz	Remark Peak Value Average Value
Limit:	Frequency Above 1GHz		Limit (dBuV/m @3m) 54.00 74.00		Remark Average Value Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

Model : A5s
Test mode : Wifi-b-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq	ReadAntenna Freq Level Factor						
2	MHz	—dBu∜	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	
	2390.000 2390.000					58.81 48.50		

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile Phone

: A5s Model

Test mode : Wifi-b-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Linuita			Antenna Factor					
2	MHz	dBu₹	— <u>dB</u> /m	 <u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
	2390.000 2390.000							

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

. AOS
Test mode : Wifi-b-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK

EMAR	r :	Road	Antenna	Cabla	Droomp		Limit	Over	
	Freq		Factor						
69	MHz	dBu₹	dB/m	āB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone

EUT

: A5s

lest mode : Wifi-b-H Mode

Power Rating : AC 230V/50Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	Freq	ReadAntenna (Freq Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	$-\overline{dB}/m$	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500	25.81 14.68	27.52 27.52	5.70 5.70	0.00 0.00	59.03 47.90	74.00 54.00	-14.97 -6.10	Peak Average

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT

Model : A5s
Test mode : Wifi-g-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMMARK

REMARK

	Freq		 a Cable r Loss m dB		Level			
	MHz	dBu∜		<u>dB</u>		dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition EUT

: Abs

lest mode : Wifi-g-L Mode

Power Rating : AC 230V/50Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

allener.	f de	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz		<u>dB</u> /m						
	2390,000 2390,000				0.00 0.00				

Test channel: Highest

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

: A5s Model

Test mode : Wifi-g-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq						Limit Line		
35	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

: Mobile Phone

Model : A5s
Test mode : Wifi-g-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

- III II X	50 Sec.	ReadAnt Freq Level Fa		intenna Cable Factor Loss					
8	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500								

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT

Model : A5s

Test mode : Wifi-n20-L Mode Power Rating: AC 230V/50Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: MT
REMARK:

IRMA	a .								
	Freq		Antenna Factor						Remark
2	MHz	—dBu∜	<u>d</u> B/m	āB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	ā	
1	2390.000 2390.000	5-55.5T.(15.75.75)	T (1) T (1) T (1)	7,5,5,5,61				X 7 (5 (17) (7)	OEDITORIES DA

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition EUT

: A5s
Test mode : Wifi-n20-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

JILLIA		Road	Antenna	Cable	Dreamn		Limit	Over		
	Freq		Factor					3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
- 12	MHz	dBu₹		<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1	2390.000	30.31	27.58	5.67	0.00	63.56	74.00	-10.44	Peak	
2	2390.000	15.73	27.58	5.67	0.00	48.98	54.00	-5.02	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT

Model : A5s

: Wifi-n20-H Mode Test mode Power Rating : AC 230V/50Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq	ReadAntenna Level Factor						
	MHz	dBu∜	dB/π	 	dBu∜/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500							

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone

Site Condition EUT

: A5s
Test mode : Wifi-n20-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq	ReadAntenna Freq Level Factor								
,	MHz	dBu∜		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	āB		
1 2	2483.500 2483.500									

802.11n (H40)

Test channel: Lowest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile Phone

Model : A5s
Test mode : Wifi-n40-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55% Model A5s

Test Engineer: MT

REMARK

	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	āB		-
1	2390,000 2390,000			0.000				77.7		

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

: Mobile Phone

Model : A5s
Test mode : Wifi-n40-L Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor						Remark	
1.5	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B		
	2390.000 2390.000						74.00 54.00		Peak Average	

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT

Model : A5s

Test mode : Wifi-n40-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT

EMARE	: `								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	2483.500	38. 25	27.52	5.70	0.00	71.47	74.00	-2.53	Peak
2	2483.500	16.25	27.52	5.70	0.00	49.47	54.00	-4.53	Average
3	2487.827	38.57	27.52	5.71	0.00	71.80	74.00	-2.20	Peak
4	2487, 827	16, 24	27. 52	5, 71	0.00	49.47	54,00	-4.53	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

EUT

Model : A5s

Test mode : Wifi-n40-H Mode
Power Rating : AC 230V/50Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	—dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500			5.70			74.00		
2	2483.500	15. 19	27.52	5.70	0.00	48.41	54.00	-5.59	Average
3	2486.113	34.82	27.52	5.70	0.00	68.04	74.00	-5.96	Peak
4	2486.113	15.19	27.52	5.70	0.00	48.41	54.00	-5.59	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 23.JAN.2015 08:29:43

30MHz~25GHz

Middle channel

Date: 23.JAN.2015 08:30:59

30MHz~25GHz

Highest channel

Date: 23.JAN.2015 08:31:49

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 23.JAN.2015 08:35:36

30MHz~25GHz

Middle channel

Date: 23.JAN.2015 08:33:26

30MHz~25GHz

Highest channel

Date: 23.JAN.2015 08:32:41

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 23.JAN.2015 08:36:39

30MHz~25GHz

Middle channel

Date: 23.JAN.2015 08:37:25

30MHz~25GHz

Highest channel

Date: 23.JAN.2015 08:38:56

30MHz~25GHz

Test mode: 802.11n(H40) Lowest channel

Date: 23.JAN.2015 08:39:56

30MHz~25GHz

Middle channel

Date: 23.JAN.2015 08:40:32

30MHz~25GHz

Highest channel

Date: 23.JAN.2015 08:41:15

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:200	03						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7.5575 151.2	Peak	1MHz	10Hz	Average Value			
Limit:			1: :(/ID-)/	/ @a \	Б			
	Freque		Limit (dBuV		Remark			
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-		54.0		Quasi-peak Value			
			54.0		Average Value			
	Above 1	GHz	74.0)	Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and	at a 3 meter of the position was set 3 meter which was mountained and vertice to determine the antennent was pected emisted the rota table maximum reactiver system and width with sion level of the cified, then to would be reported to the position of the would be reported to the terminal than the sion level of the cified, then to would be reported to the terminal than the sion level of the cified, then the would be reported to the terminal than the sion level of the cified, then the would be reported to the terminal than the sion level of the cified, then the would be reported to the terminal than the sion level of the cified, then the would be reported to the terminal than the sion level of the cified, then the would be reported to the terminal than the sion level of the cified than the ci	camber. The standard standard in the highest research away from need from one the maximum cal polarization was turned standard was turned standard was turned standard in the EUT in peasesting could borted. Otherwas re-tested	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. It is mode was the stopped arise the emit one by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the es to 360 degrees. Function and s 10dB lower than and the peak values assions that did not the using peak, quasi-ported in a data			

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Mobile Phone

Site Condition EUT

Model Test mode : Wifi Mode
Power Rating : AC 230V/50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK : A5s

REMARK

	-			Capie	Preamp		Limit	Over	
	Freq		Factor				(T) 75 (1) (T) (T) (T)		Remark
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	44.901	31.89	13.55	0.56	29.86	16.14	40.00	-23.86	QP
2	58.203	32.02	12.81	0.68	29.78	15.73	40.00	-24.27	QP
2	105.642	36.91	12.63	1.01	29.49	21.06	43.50	-22.44	QP
4	166.068	36.92	8.85	1.34	29.08	18.03	43.50	-25.47	QP
5	315.481	49.30	13.28	1.82	28.49	35.91	46.00	-10.09	QP
4 5 6	357.929	39.48	14.38	1.97	28.59	27.24	46.00	-18.76	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Mobile Phone Condition

EUT Model

: A5s : Wifi Mode Test mode

Power Rating: AC 230V/50Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK

REMARK										
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
_	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>		
1	37.285	34.68	12.92	0.50	29.93	18.17	40.00	-21.83	QP	
2 3 4 5	84.702	40.26	10.16	0.88	29.60	21.70	40.00	-18.30	QP	
3	103.080	37.82	12.87	0.99	29.51	22.17	43.50	-21.33	QP	
4	148.441	41.95	8.25	1.31	29.23	22.28	43.50	-21.22	QP	
5	293.084	37.28	12.92	1.75	28.46	23.49	46.00	-22.51	QP	
6	315.481	46.04	13.28	1.82	28.49	32.65	46.00	-13.35	QP	

Above 1GHz

Test mode: 80	02.11b		Test chan	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.67	31.53	8.90	40.24	51.86	74.00	-22.14	Vertical
4824.00	51.56	31.53	8.90	40.24	51.75	74.00	-22.25	Horizontl
Test mode: 80	02.11b		Test channel: Lowest			Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.17	31.53	8.90	40.24	50.36	54.00	-3.64	Vertical
4824.00	47.12	31.53	8.90	40.24	47.31	54.00	-6.69	Horizontal

Test mode: 80	02.11b		Test chan	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	51.88	31.58	8.98	40.15	52.29	74.00	-21.71	Vertical
4874.00	51.44	31.58	8.98	40.15	51.85	74.00	-22.15	Horizontal
Test mode: 80	02.11b		Test chan	nel: Middle		Remark: Av	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.21	31.58	8.98	40.15	49.62	54.00	-4.38	Vertical
4874.00	48.64	31.58	8.98	40.15	49.05	54.00	-4.95	Horizontal

Test mode: 80	02.11b		Test chan	nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.67	31.69	9.08	40.03	51.41	74.00	-22.59	Vertical
4924.00	52.02	31.69	9.08	40.03	52.76	74.00	-21.24	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Av	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.33	31.69	9.08	40.03	49.07	54.00	-4.93	Vertical
4924.00	48.13	31.69	9.08	40.03	48.87	54.00	-5.13	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test chann	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	52.01	31.53	8.90	40.24	52.20	74.00	-21.80	Vertical
4824.00	51.34	31.53	8.90	40.24	51.53	74.00	-22.47	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.04	31.53	8.90	40.24	50.23	54.00	-3.77	Vertical
4824.00	48.32	31.53	8.90	40.24	48.51	54.00	-5.49	Horizontal

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.34	31.58	8.98	40.15	50.75	74.00	-23.25	Vertical
4874.00	51.07	31.58	8.98	40.15	51.48	74.00	-22.52	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.24	31.58	8.98	40.15	49.65	54.00	-4.35	Vertical
4874.00	48.67	31.58	8.98	40.15	49.08	54.00	-4.92	Horizontal

Test mode: 802.11g		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.67	31.69	9.08	40.03	50.41	74.00	-23.59	Vertical	
4924.00	51.03	31.69	9.08	40.03	51.77	74.00	-22.23	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	47.64	31.69	9.08	40.03	48.38	54.00	-5.62	Vertical	
4924.00	50.14	31.69	9.08	40.03	50.88	54.00	-3.12	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.87	31.53	8.90	40.24	52.06	74.00	-21.94	Vertical
4824.00	52.04	31.53	8.90	40.24	52.23	74.00	-21.77	Horizontal
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	49.67	31.53	8.90	40.24	49.86	54.00	-4.14	Vertical
4824.00	50.01	31.53	8.90	40.24	50.20	54.00	-3.80	Horizontal

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	51.04	31.58	8.98	40.15	51.45	74.00	-22.55	Vertical
4874.00	49.67	31.58	8.98	40.15	50.08	74.00	-23.92	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.34	31.58	8.98	40.15	50.75	54.00	-3.25	Vertical
4874.00	48.88	31.58	8.98	40.15	49.29	54.00	-4.71	Horizontal

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.11	31.69	9.08	40.03	50.85	74.00	-23.15	Vertical
4924.00	51.04	31.69	9.08	40.03	51.78	74.00	-22.22	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.61	31.69	9.08	40.03	50.35	54.00	-3.65	Vertical
4924.00	49.37	31.69	9.08	40.03	50.11	54.00	-3.89	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	50.47	31.53	8.90	40.24	50.66	74.00	-23.34	Vertical
4844.00	49.66	31.53	8.90	40.24	49.85	74.00	-24.15	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	49.77	31.53	8.90	40.24	49.96	54.00	-4.04	Vertical
4844.00	48.67	31.53	8.90	40.24	48.86	54.00	-5.14	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4874.00	50.48	31.58	8.98	40.15	50.89	74.00	-23.11	Vertical
4874.00	50.17	31.58	8.98	40.15	50.58	74.00	-23.42	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.67	31.58	8.98	40.15	50.08	54.00	-3.92	Vertical
4874.00	49.34	31.58	8.98	40.15	49.75	54.00	-4.25	Horizontal

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	49.97	31.69	9.08	40.03	50.71	74.00	-23.29	Vertical
4904.00	50.17	31.69	9.08	40.03	50.91	74.00	-23.09	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	48.22	31.69	9.08	40.03	48.96	54.00	-5.04	Vertical
4904.00	49.34	31.69	9.08	40.03	50.08	54.00	-3.92	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.