

CS 412 Intro. to Data Mining

Chapter 4. Data Warehousing and On-line Analytical Processing

Chapter 4: Data Warehousing and On-line Analytical Processing

■ Data Warehouse: Basic Concepts

- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

What is a Data Warehouse?

- Defined in many different ways, but not rigorously 9 ซึ่ สามา พานุน พรอง ัก สินใก
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of
- consolidated, historical data for analysis

 "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and nonvolatile collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- □ Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - Ex. Hotel price: differences on currency, tax, breakfast covered, and parking
 - When data is moved to the warehouse, it is converted

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse—Nonvolatile

- Independence
 - A physically separate store of data transformed from the operational environment
- Static: Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

- OLTP: Online transactional processing
 - DBMS operations
 - Query and transactional processing
- OLAP: Online analytical processing
 - Data warehouse operations
 - Drilling, slicing, dicing, etc.

?	OLTP2	OLAP?
users2	clerk, <a>ITa professional	knowledge @worker ?
function2	day@to@day@perations@	decision 3 upport 2
DB3design?	application-oriented2	subject-oriented2
data2	current,@up-to-date@	historical, 127
	detailed, flat relational relational	summarized, 🛚
	isolated ্র	multidimensional?
		integrated, atonsolidated 2
usage?	repetitive?	ad-hoc?
access?	read/write2	lots@fracans@
	index/hash@n@rim.@key@	
unitsofswork?	short, simple 2	complex@uery@
	transaction?	
#@records@accessed@tens@		millions2
#users2	thousands?	hundreds?
DB3size?	100MB-GB2	100GB-TB2
metric2	transaction throughput ?	query@throughput,@tesponse@

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - <u>missing data</u>: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

- Top Tier: Front-End Tools
- Middle Tier: OLAP Server
- Bottom Tier: DataWarehouse Server
- Data

Three Data Warehouse Models

Enterprise warehouse

Collects all of the information about subjects spanning the entire organization

Data Mart

- □ A subset of corporate-wide data that is of value to a specific groups of users
- ☐ Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

Virtual warehouse

- A set of views over operational databases
- Only some of the possible summary views may be materialized

Extraction, Transformation, and Loading (ETL)

Data extraction

get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions

Refresh

propagate the updates from the data sources to the warehouse

Metadata Repository

- Meta data is the data defining warehouse objects. It stores:
 - Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
 - Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - The mapping from operational environment to the data warehouse
 - Data related to system performance
 - warehouse schema, view and derived data definitions
 - Business data
 - business terms and definitions, ownership of data, charging policies

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP

- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 เก็บใน data warehouse ไว้สองอัน

 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
 เก็บส่วนคุง
- Data cube: A lattice of cuboids
 - In data warehousing literature, an n-D base cube is called a base cuboid
 - The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid
 - ☐ The lattice of cuboids forms a data cube.

Table 4.2: A 2-D view of sales data for AllElectronics according to the dimensions time and item, where the sales are from branches located in the city of Vancouver. The measure displayed is dollars_sold (in thousands).

	location = "Vancouver"							
time (quarter)		item (type)	820000 Rus P7					
	home entertainment	computer	phone	security				
Q1	605	825	14	400				
Q2	680	952	31	512				
Q3	812	1023	30	501				
Q4	927	1038	38	580				

3D 3 22200

Table 4.3: A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and location. The measure displayed is dollars_sold (in thousands).

	location = "Chicago" item			location = "New York" item			$location = ext{``Toronto''}$ $item$				location = "Vanco item					
time	home ent.		phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
24	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580

Data Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - □ Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Star Schema: An Example

Snowflake Schema: An Example

Misusy Monother Monoson

A Concept Hierarchy for a Dimension (location)

Data Cube Measures: Three Categories

- Distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - \square avg(x) = sum(x) / count(x)
 - Is min_N() an algebraic measure? How about standard_deviation()?
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

View of Warehouses and Hierarchies

Multidimensional Data

11/9/1// Land of the Maria Construction of the Maria left of the man of the m

□ Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time มอาลายารเบาร. 1 เบนนะ., _____ Hierarchical summarization paths

พกรีน

ผู้บานแกะอยู่ คองป

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - □ Drill across: involving (across) more than one fact table
 - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

A Star-Net Query Model 2011 hata Improventa

