

SÍLABO RESISTENCIA DE MATERIALES I

ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I1.3 Código de la asignatura : 09026005050

1.4Ciclo: V1.5Créditos: 51.6Horas semanales totales: 12

1.6.1 Horas lectivas (Teoría, Práctica- Laboratorio) : 6 (T=4, P=2, L=0))

1.6.2 Horas no lectivas : 6

1.7 Condición del Curso : Obligatorio

1.8 Requisito(s) : 09025404040 Estática

1.9 Docentes : Mg. Enoch Maguiña Rodríguez

II. SUMILLA

El curso es parte de la formación especializada: tiene carácter teórico-práctico y su propósito es brindar al estudiante los conceptos básicos de las propiedades de los materiales utilizados en la construcción. Aporta un conjunto de contenidos, criterios y prácticas que permitirán que los estudiantes adquieran los conocimientos, habilidades y actitudes necesarias para involucrarse, de forma interdisciplinaria y multidisciplinaria, al quehacer profesional del ingeniero. El curso se desarrolla mediante las siguientes unidades de aprendizaje: I- Esfuerzos y Carga Axial II- Torsión III- Esfuerzo Normal y Cortante- IV- Deflexiones-

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3-1 Competencias

- Aplica los principios básicos del análisis de esfuerzos deformaciones y deformaciones unitarias
- Emplea el método de secciones para obtener las fuerzas internas

3-2 Componentes

Capacidades

- Reconoce los esfuerzos y deformaciones que se producen en los elementos sometidos a la carga axial.
- Reconoce los esfuerzos y deformaciones que se producen en los elementos sometidos a la carga torsión.
- Encuentra esfuerzos normal y cortante en vigas.
- Calcula las deflexiones y encuentra las pendientes en un punto de una viga.

Contenidos actitudinales

- Transforma los componentes de esfuerzo asociado con un sistema coordinado particular u otro sistema coordenado.
- Diseña una viga que sea capaz de resistir cargas de flexión y de cortante.
- Aplica las fórmulas correspondientes para determinar las deflexiones de las vigas.

IV. PROGRAMACIÓN DE CONTENIDOS DE APRENDIZAJE

UNIDAD I : ESFUERZOS Y CARGA AXIAL

CAPACIDAD: Conoce los esfuerzos y deformaciones que se producen en un cuerpo prismático al aplicársele una fuerza externa

CEMANA	CONTENIDOS CONCEDIDALES	CONTENIDOS DEOCEDIMENTALES ACTIVIDAD DE ADDENIDIZA IE	ACTIVIDAD DE APRENDIZAJE	HOI	DRAS
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	L	T-I
1	Primera sesión: Equilibrio de cuerpo rígido. Fuerzas internas. Aplicaciones. Segunda sesión: Esfuerzo normal. Esfuerzo cortante. Esfuerzo de contacto. Aplicaciones.	 Determina el equilibrio de cuerpos rígidos. Encuentra las fuerzas internas en un elemento estructural. Utiliza fórmulas para resolver los problemas. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Introducción al tema - 1H - Desarrollo del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6
2	Primera sesión: Esfuerzos en planos inclinados. Esfuerzos en un punto. Esfuerzo uniaxial, biaxial y triaxial. Aplicaciones. Segunda sesión: Transformación de esfuerzo plano. Esfuerzos y planos principales. Aplicaciones.	 Transforma esfuerzos planos. Determina los esfuerzos en el plano y espacio. Halla los máximos esfuerzos. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6
3	Primera sesión: Esfuerzo cortante máximo Primera práctica calificada Segunda sesión: Entrega y resolución de la práctica calificada. Desarrollo de problemas de esfuerzo cortante máximo.	 Emplea el método de secciones para calcular las acciones internas. Utiliza las ecuaciones de equilibrio para resolver problemas. Diferencia los varios tipos de esfuerzo. Aplica conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema - 1H - Ejemplos del tema – 2H - Ejercicios en aula – 3H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6
4	Primera sesión: Torsión de ejes circulares. Esfuerzo cortante. Deformación por torsión. Aplicaciones. Segunda sesión: Transmisión de potencia. Torsión de elementos hiperestáticos. Aplicaciones.	 Dibuja diagramas de cuerpo libre. Utiliza fórmulas de la torsión para resolver problemas. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6

UNIDAD II: CARGA AXIAL

CAPACIDAD: Conoce los esfuerzos y las deformaciones que se producen en los elementos sometidos a carga axial

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
			ACTIVIDAD DE ATRENDIZASE	L	T-I-
5	Primera sesión: Ley de Hooke. Deformación axial. Aplicaciones. Elementos hiperestáticos. Segunda sesión: Efectos de temperatura. Esfuerzos térmicos. Aplicaciones.	 Resuelve problemas aplicando la ley de Hooke. Trabaja con elementos sujetos a carga axial. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6
6	Primera sesión: Aplicaciones de elementos hiperestáticos. Segunda práctica calificada Segunda sesión: Entrega y resolución de la práctica calificada. Problemas de efectos térmicos.	 Resuelve problemas de elementos hiperestáticos. Trabaja con elementos sujetos a cambios de temperatura. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	- 6	6
7	Primera sesión: Ley generalizada de Hooke. Aplicaciones al esfuerzo normal. Relación de Poisson. Segunda sesión: Entrega y resolución de la práctica calificada.	 Resuelve problemas de elementos hiperestáticos. Trabaja con elementos sujetos a cambio de temperatura Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6
8	Examen parcial				

UNIDAD III: ESFUERZO EN VIGAS

CAPACIDAD: Determina la distribución del esfuerzo dentro del eje circular-

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
				L	T-I-
9	Primera sesión: Esfuerzo normal en vigas. Fórmula de la flexión. Aplicaciones.	 Utiliza la fórmula de la flexión para resolver problemas. Encuentra los esfuerzos normales máximos. Soluciona elementos estáticamente indeterminados sujetos a flexión 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H	6	6
	Segunda sesión: Aplicaciones empleando diagramas de momentos.	- Aplica los conocimientos teóricos para resolver problemas.	Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H		
10	Primera sesión: Flexión en uno y dos ejes. Aplicaciones. Segunda sesión: Aplicaciones mediante el diagrama de fuerza cortante	 Utiliza la fórmula de la flexión para resolver problemas. Soluciona elementos estáticamente indeterminados sujetos a flexión. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	- 6	6
11	Primera sesión: Aplicación de la flexión en un eje de las columnas. Tercera práctica calificada Segunda sesión: Entrega y resolución de la práctica calificada. Aplicación de la flexión en dos ejes en columnas.	 Utiliza la fórmula de la flexión para resolver problemas. Soluciona elementos estáticamente indeterminados sujetos a flexión. Aplica los conocimientos teóricos para resolver problemas 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema - 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación - 2 h - Trabajo grupal – 2H	- 6	6
12	Primera sesión: Esfuerzo cortante. Aplicaciones mediante diagramas de fuerza cortante. Segunda sesión: Flujo cortante. Aplicaciones.	 Encuentra la separación de pasadores de vigas compuestas. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	- 6	6

UNIDAD IV: DEFLEXIONES

. **CAPACIDAD:** Calcula las deflexiones y encuentra las pendientes en un punto de una viga.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES ACTIVIDAD DE APRENDIZA.	ACTIVIDAD DE APRENDIZAJE	HORAS		
			AOTIVIDAD DE AI RENDIEAGE	L	T-	
13	Primera sesión: Curva elástica. Deflexiones y pendientes por el método de doble integración. Segunda sesión: Funciones de discontinuidad. Aplicación.	 Diagrama la fuerza cortante y el momento flector. Halla las deformaciones por flexión. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	6	6	
14	Primera sesión: Vigas de varios tramos con carga variable. Cuarta práctica calificada Segunda sesión: Entrega y resolución de la práctica calificada. Aplicaciones del método de Macaulay.	 Utiliza la fórmula de la flexión para resolver problemas. Soluciona elementos estáticamente indeterminados sujetos a flexión. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	- 6	6	
15	Primera sesión: Vigas estáticamente indeterminadas, método de integración. Segunda sesión: Vigas estáticamente indeterminadas, método de superposición. Aplicación.	 Resuelve vigas hiperestáticas. Utiliza los métodos de integración y superposición para resolver problemas estáticamente indeterminados. Aplica los conocimientos teóricos para resolver problemas. 	Lectivas (L): - Desarrollo del tema – 1H - Ejemplos del tema – 3H - Ejercicios en aula – 2H Trabajo Independiente (T-I): - Resolución tareas – 2H - Trabajo de investigación – 2H - Trabajo grupal – 2H	- 6	6	
16	Examen final					
17	Entrega de promedios finales y acta del curso					

V. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo- Disertación docente, exposición del estudiante.
- Método de Discusión Guiada- Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución- El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

- Equipos: computadora, ecran, proyector de multimedia.
- Materiales: Separatas, pizarra, plumones, manual universitario, obras literarias, artículos de revistas y periódicos

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF= 0.30 * PE +0.30* EP + 0.40*EF PE= (P1 + P2 + P3 + P4) / 4

Donde:

PF: Promedio final P1: Práctica calificada 1
PE: Promedio de evaluaciones P2: Práctica calificada 2
EP: Examen parcial P3: Práctica calificada 3
EF: Examen final P4: Práctica calificada 4

VIII. FUENTES DE CONSULTA

8-1 Bibliográficas

- Beer, Ferdinan y Johnston, Russell (2015). Mecánica de Materiales. México: MCGraw Hilll Interamericana.
- Hibbeler, R.C.(2017). Mecánica de Materiales. EE.UU: Pearson Prenctice-Hall.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	K
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	K
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	R
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	