PEiTC_04	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna II rok	2023/24

7adanie 1

Wzmacniacz różnicowy

Wstęp teoretyczny

Wzmacniacz to element elektroniczny, którego zadaniem jest wytworzenie na wyjściu wzmocnionego wejściowego sygnału wejściowego kosztem energii pobranej ze źródła zasilania.

Głównymi parametrami wzmacniacza są:

- Współczynnik wzmocnienia prądowego
- Współczynnik wzmocnienia napięciowego
- Rezystancja wejściowa obciążenie źródła sygnału (im wyższa, tym lepiej)
- Rezystancja wyjściowa straty energii w postaci ciepła (im niższa tym lepiej)

Wzmacniacz składa się z elementów czynnych, biernych, oraz często z obwodu ujemnego sprzężenia zwrotnego. We wzmacniaczu tranzystorowym, elementem czynnym użytym do wzmacniania jest tranzystor.

Wzmacniacze tranzystorowe wykorzystują tranzystory bipolarne (BJT) lub polowe (FET). W przypadku BJT wyróżnia się układy ze wspólną bazą (OB), wspólnym emiterem (OE) i wspólnym kolektorem (OC), a w przypadku FET układy ze wspólnym źródłem (OS), wspólnym drenem (OD) i wspólną bramką (OG).

Wzmacniacz różnicowy to wzmacniacz dwuwejściowy. Składa się z dwóch tranzystorów pracujących w układzie wspólnego emitera. Napięcie wyjściowe takiego wzmacniacza jest zależne od różnicy napięć na jego wejściach.

Wzmacniasz różnicowy jest najczęściej stosowany tam, gdzie potrzeba wzmocnić słabe sygnały na które nakładają się szumy. Na jego dwóch wejściach, U_1 i U_2 , mogą być sygnały zgodne, lub przeciwne w fazie. Zgodne w fazie najczęściej są szumy i zakłócenia, a przeciwne w fazie są sygnały użyteczne.

Wzmocnienie składowych sumacyjnych to wzmocnienie sygnałów wejściowych zgodnych w fazie, a wzmocnienie składowych różnicowych – przeciwnych w fazie.

Napięcie różnicowe opisuje wzór: $U_D = |U_1 - U_2|$

Wzmocnienie napięciowe różnicowe opisuje wzór: $k_D = \frac{U_{wy}}{U_D}$

Tłumienie sygnału wspólnego opisuje wzór: $\rho_{dB} = 20 \cdot \log \frac{U_1 + U_2}{2 \cdot U_D}$

Założenia

Użyty tranzystor: PZT2222ATG ($U_{CE_{max}}=40~V$, $I_{C_{max}}=600~mA$)

Założone wartości: $R_{C_1}=R_{C_2}=R_B=25~k\Omega$; $U_{CC}=15~V$, $U_{DD}=-15~V$

Rezystor wpięty do emitera

Cel zadania

Dla wzmacniacza różnicowego z rezystorem wpiętym do emitera wyznaczyć wzmocnienie napięciowe różnicowe k_D i tłumienie sygnału wspólnego ρ_{dB} dla zakresu częstotliwości 1-100~kHz.

Schemat badanego układu

Rysunek 1 – schemat badanego wzmacniacza różnicowego zbudowanego z tranzystorów PZT2222AT1G, z rezystorem wpiętym do emitera

Pomiary i obliczenia

Częstotliwości napięć wejściowych do pomiarów zostały ustalone na $f=1\ kHz$. Pomiary u_{wy} zostały przeprowadzone za pomocą odczytów z multimetru.

$u_1 [mV]$	$u_2[mV]$	$u_{wy}[mV]$	$u_D[mV]$	k_D	$ ho_{dB}\left[dB ight]$
1,0	1,1	22,097	0,1	220,970	20,424
10,0	10,1	22,097	0,1	220,970	40,043
100,0	100,1	22,096	0,1	220,960	60,004
1000,0	1000,1	22,059	0,1	220,590	80,000
10000,0	10000,1	4,700	0,1	47,000	100,000
1,0	2,0	220,943	1,0	220,943	3,522
10,0	11,0	220,943	1,0	220,943	20,424
100,0	101,0	220,939	1,0	220,939	40,043
1000,0	1001,0	220,563	1,0	220,563	60,004
10000,0	10001,0	48,200	1,0	48,200	80,000
1,0	11,0	2187,000	10,0	218,700	-4,437
10,0	20,0	2187,000	10,0	218,700	3,522
100,0	110,0	2187,000	10,0	218,700	20,424
1000,0	1010,0	2184,000	10,0	218,400	40,043
10000,0	10010,0	455,300	10,0	45,530	60,004
1,0	101,0	11970,000	100,0	119,700	-5,849
10,0	110,0	11970,000	100,0	119,700	-4,437
100,0	200,0	11970,000	100,0	119,700	3,522
1000,0	1100,0	11546,000	100,0	115,460	20,424
10000,0	10100,0	3053,000	100,0	30,530	40,043

Rysunek 2 – sygnał wyjściowy wzmacniacza różnicowego (zielony) na tle 100-krotnie powiększonej różnicy sygnałów wejściowych (czerwony)

Rysunek 3 – zależność napięcia wyjściowego od częstotliwości dla wzmacniacza różnicowego dla napięć wejściowych $u_1=10\ mV,\,u_2=11\ mV$

Wnioski

Zbudowany wzmacniacz różnicowy, zasilany $U_{CC}=15\,V$, $U_{DD}=-15\,V$, wzmacnia różnicę sygnałów wejściowych o około $218-221\,\mathrm{razy}$.

Należy jednak zwrócić uwagę na to, że wzmocnienie różnicowe znacznie maleje, gdy wartości napięć wejściowych u_1 i u_2 osiągają powyżej 1 V. Na przykład dla 10 V wzmocnienie wynosi około 21-26% wzmocnienia oryginalnego, czyli między 45-47 razy.

Dodatkowo, gdy różnica między napięciami wejściowymi u_D wynosi więcej niż dwukrotność napięcia termicznego V_T (dla temperatury $20^{\circ}C$, $V_T\approx 25~mV$), czyli ponad 50~mV, można zauważyć spadek

wzmocnienia. Dla $u_D = 100 \, mV$, wzmocnienie różnicowe wynosi $k_D = 115 - 120$, czyli około 52 – 54% wartości oryginalnej.

Można też zauważyć, że tłumienie sygnału wspólnego ρ_{dB} rośnie wraz ze wzrostem napięć wejściowych \mathbf{u}_1 i \mathbf{u}_2 , ale maleje wraz ze wzrostem napięcia różnicowego \mathbf{u}_D . W przeprowadzonych symulacjach osiągnęło ono największą wartość $\rho_{dB}\approx 100~dB$ dla $\mathbf{u}_1\approx \mathbf{u}_2\approx 10~V,~\mathbf{u}_D=0.1~mV$. Najmniejsza wartość wyniosła $\rho_{dB}\approx -5.8~dB$ dla $\mathbf{u}_1=1~mV,~\mathbf{u}_2=101~mV~(\mathbf{u}_D=100~mV)$ – ujemna wartość tłumienia oznacza, że sygnały wspólne, takie jak szumy i zakłócenia, były wzmacniane, co jest niepożądane.

Ostatni wniosek można wyciągnąć analizując wykres napięcia wyjściowego u_{wy} od częstotliwości przy stałych wartościach napięć wejściowych $u_1=10\,\mathrm{mV},\ u_2=11\,\mathrm{mV}.$ Można zauważyć, że do częstotliwości od $1\,Hz$ do $100\,kHz$ napięcie wyjściowe u_{wy} pozostawało praktycznie niezmienione (wzmocnienie różnicowe $k_D\approx 220$), natomiast powyżej tych wartości malało. Można z tego wyciągnąć wniosek, że wzmacniasz różnicowy jest też filtrem dolnoprzepustowym.

Źródło prądu wpięte do emitera

Cel zadania

Dla wzmacniacza różnicowego ze źródłem prądu wpiętym do emitera wyznaczyć wzmocnienie napięciowe różnicowe k_D i tłumienie sygnału wspólnego ρ_{dB} dla zakresu częstotliwości 1-100~kHz. Określić wpływ źródła prądowego na zmianę tłumienia. Porównać wyniki z poprzednim układem.

Schemat badanego układu

Rysunek 4 – schemat badanego wzmacniacza różnicowego zbudowanego z tranzystorów PZT2222AT1G, ze źródłem prądu wpiętym do emitera

Pomiary i obliczenia

Częstotliwości napięć wejściowych do pomiarów zostały ustalone na $f=1\ kHz$. Pomiary u_{wy} zostały przeprowadzone za pomocą odczytów z multimetru.

$u_1 [mV]$	$u_2 [mV]$	$u_{wy}[mV]$	$u_D[mV]$	k_D	$ ho_{dB}\left[dB ight]$
1,0	1,1	16,512	0,1	165,120	20,424
10,0	10,1	16,512	0,1	165,120	40,043
100,0	100,1	16,512	0,1	165,120	60,004
1000,0	1000,1	16,511	0,1	165,110	80,000
10000,0	10000,1	7,560	0,1	75,600	100,000
1,0	2,0	165,106	1,0	165,106	3,522
10,0	11,0	165,106	1,0	165,106	20,424
100,0	101,0	165,106	1,0	165,106	40,043
1000,0	1001,0	165,087	1,0	165,087	60,004
10000,0	10001,0	75,600	1,0	75,600	80,000
1,0	11,0	1632,000	10,0	163,200	-4,437
10,0	20,0	1632,000	10,0	163,200	3,522
100,0	110,0	1632,000	10,0	163,200	20,424
1000,0	1010,0	1632,000	10,0	163,200	40,043
10000,0	10010,0	736,200	10,0	73,620	60,004
1,0	101,0	8556,000	100,0	85,560	-5,849
10,0	110,0	8556,000	100,0	85,560	-4,437
100,0	200,0	8556,000	100,0	85,560	3,522
1000,0	1100,0	8556,000	100,0	85,560	20,424
10000,0	10100,0	4725,000	100,0	47,250	40,043

Rysunek 5 – sygnał wyjściowy wzmacniacza różnicowego (zielony) na tle 100-krotnie powiększonej różnicy sygnałów wejściowych (czerwony)

Rysunek 6 – zależność napięcia wyjściowego od częstotliwości dla wzmacniacza różnicowego dla napięć wejściowych $u_1=10\ mV,\,u_2=11\ mV$

Wnioski

Zbudowany wzmacniacz różnicowy, zasilany $U_{CC}=15\,V$, $U_{DD}=-15\,V$, wzmacnia różnicę sygnałów wejściowych o około 163-165 razy. W porównaniu z poprzednim układem, wzmocnienie różnicowe jest mniejsze, ponieważ przez źródło prądu płynie mniejszy prąd niż przez rezystancję w poprzednim przykładzie.

Należy jednak zwrócić uwagę na to, że wzmocnienie różnicowe znacznie maleje, gdy wartości napięć wejściowych \mathbf{u}_1 i \mathbf{u}_2 osiągają powyżej 1 V. Na przykład dla 10 V wzmocnienie wynosi około 45-46% wzmocnienia oryginalnego, czyli między 73-76 razy. Zamiana rezystancji emitera na źródło prądu pozwala na większą swobodę przy wybieraniu maksymalnej wartości napięć wejściowych – w przypadku gdy miejsce źródła prądu zajmowała rezystancja, wzmocnienie wynosiło tylko 21-26% wzmocnienia oryginalnego.

Dodatkowo, gdy różnica między napięciami wejściowymi u_D wynosi więcej niż dwukrotność napięcia termicznego V_T (dla temperatury $20^{\circ}C$, $V_T\approx 25~mV$), czyli ponad 50~mV, można zauważyć spadek wzmocnienia. Dla $u_D=100~mV$, wzmocnienie różnicowe wynosi $k_D=86$, czyli około 52% wartości oryginalnej. Zamiana rezystancji emitera na źródło prądu nie miała wpływu na ograniczenie wynikające z wyboru odpowiedniego napięcia różnicowego u_D .

Można też zauważyć, że tłumienie sygnału wspólnego ρ_{dB} rośnie wraz ze wzrostem napięć wejściowych u_1 i u_2 , ale maleje wraz ze wzrostem napięcia różnicowego u_D . W przeprowadzonych symulacjach osiągnęło ono największą wartość $\rho_{dB}\approx 100~dB$ dla $u_1\approx u_2\approx 10~V$, $u_D=0.1~mV$. Najmniejsza wartość wyniosła $\rho_{dB}\approx -5.8~dB$ dla $u_1=1~mV$, $u_2=101~mV$ ($u_D=100~mV$) – ujemna wartość tłumienia oznacza, że sygnały wspólne, takie jak szumy i zakłócenia, były wzmacniane, co jest niepożądane. Jest to wynik dokładnie taki sam jak w przypadku układu z rezystancją wpiętą do emitera.

Ostatni wniosek można wyciągnąć analizując wykres napięcia wyjściowego u_{wy} od częstotliwości przy stałych wartościach napięć wejściowych $\mathbf{u}_1=10~\mathrm{mV},~\mathbf{u}_2=11~\mathrm{mV}.$ Można zauważyć, że do częstotliwości od 1~Hz do 100~kHz napięcie wyjściowe u_{wy} pozostawało praktycznie niezmienione (wzmocnienie różnicowe $k_D\approx 165$), natomiast powyżej tych wartości malało. Można z tego wyciągnąć wniosek, że wzmacniasz różnicowy jest też filtrem dolnoprzepustowym. Również w tym przypadku dodanie źródła prądu w miejsce rezystancji emitera nie modyfikuje wyników (z dokładnością do k_D).

Zadanie 2

Wzmacniacz operacyjny

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY RÓŻNICOWYCH – PATRZ "ZADANIE 1: WSTĘP TEORETYCZNY"

Wzmacniacz operacyjny to specjalny rodzaj wzmacniacza różnicowego, który charakteryzuje się bardzo dużym wzmocnieniem napięciowym różnicowym k_D .

Wzmacniacz operacyjny posiada dwa wejścia – odwracające (symbol "-", napięcie na tym wejściu to " U_- ") i nieodwracające (symbol "+", napięcie na tym wejściu to " U_+ ")) oraz jedno wyjście (napięcie oznaczone " U_o "). Różnica napięć wejściowych to napięcie różnicowe ($U_D=U_+-U_-$).

Idealny wzmacniacz operacyjny charakteryzuje się:

- Nieskończenie dużym różnicowym wzmocnieniem napięciowym (realnie $A_U \approx 10^5$)
- Zerowym wejściowym napięciem niezrównoważenia (realnie $\rho_{dB} \approx 90~dB$)
- Nieskończenie dużą impedancją wejściową (realnie $R_i \approx 2~M\Omega$)
- Zerową impedancją wyjściową (realnie $R_o \approx 75 \Omega$)
- Nieskończenie szerokim pasmem przenoszonych częstotliwości (realnie do $f \approx 1 \, MHz$)

Wzmacniacz odwracający

Schemat badanego układu

Rysunek 7 – schemat wzmacniacza odwracającego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Napięcie wyjściowe wzmacniacza odwracającego można wyliczyć ze wzoru:

$$U_o = -U_i \cdot \frac{R_2}{R_1}$$

Cel zadania

- 1. Dobrać wartości rezystorów $R_1=R_2=10~k\Omega$. Na wejście podłączyć źródło napięcia stałego, zmierzyć napięcie na wyjściu.
- 2. Dobrać wartości rezystorów, aby uzyskać wzmocnienie napięciowe $A_U=10$. Sprawdzić poprawność działania układu.
- 3. Dobrać wartości rezystorów, aby uzyskać wzmocnienie napięciowe $A_U=0$,2. Sprawdzić poprawność działania układu.
- 4. Doświadczalnie wyznaczyć rezystancję wejściową wzmacniacza.

Pomiary i obliczenia

1. $U_i = 5 V$, $R_1 = 10 k\Omega$, $R_2 = 10 k\Omega$

Pomiar: $U_0 = -5,001 \, V$

Obliczenia: $U_o = -5 \cdot \frac{10}{10} = -5 \cdot 1 = -5 \ [V]$ Błąd pomiaru: $|\delta| = \left| \frac{-5,001 - (-5)}{-5} \right| = \left| \frac{5,001 - 5}{5} \right| = \left| \frac{0,001}{5} \right| = |0,0002| = 0,0002 = 0,02\%$

2. $U_i = 0.5 V$, $R_1 = 1 k\Omega$, $R_2 = 10 k\Omega$

 $U_0 = -5.01 \, V$ Pomiar:

Obliczenia: $U_o = -0.5 \cdot \frac{10}{1} = -0.5 \cdot 10 = -5 \ [V]$ Błąd pomiaru: $|\delta| = \left| \frac{-5.01 - (-5)}{-5} \right| = \left| \frac{5.01 - 5}{5} \right| = \left| \frac{0.01}{5} \right| = |0.002| = 0.002 = 0.2\%$

3. $U_i = 5 V$, $R_1 = 10 k\Omega$, $R_2 = 2 k\Omega$

 $U_o = -1,001 V$ Pomiar:

Obliczenia: $U_o = -5 \cdot \frac{2}{10} = -5 \cdot 0.2 = -1 \ [V]$ Błąd pomiaru: $|\delta| = \left| \frac{-1,001 - (-1)}{-1} \right| = \left| \frac{1,001 - 1}{1} \right| = \left| \frac{0,001}{1} \right| = |0,001| = 0,001 = 0.1\%$

4. Do wyznaczenia rezystancji wejściowej R_i wzmacniacza został użyty poniższy układ ze źródłem napięcia U_i i amperomierzem.

Rysunek 8 – układ do badania rezystancji wejściowej wzmacniacza

$$U_i = 5 V$$

 $I = 819,966 \, nA = 10^{-9} \cdot 819,966 \, A$

$$R_i = \frac{U_i}{I} = \frac{5 V}{10^{-9} \cdot 819,966 A} = \frac{10^9 \cdot 5 V}{819,966 A} \approx 10^9 \cdot 0,006098 \Omega = 10^6 \cdot 6,098 \Omega$$
$$= 6.098 M\Omega$$

Wzmacniacz nieodwracający

Schemat badanego układu

Rysunek 9 – schemat wzmacniacza nieodwracającego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Napięcie wyjściowe wzmacniacza nieodwracającego można wyliczyć ze wzoru:

$$U_o = U_i \cdot \left(1 + \frac{R_2}{R_1}\right)$$

Cel zadania

- 1. Dobrać wartości rezystorów, aby uzyskać wzmocnienie napięciowe $A_U=10$. Sprawdzić poprawność działania układu.
- 2. Dobrać wartości rezystorów, aby uzyskać wzmocnienie napięciowe $A_U=0,2$. Sprawdzić poprawność działania układu.
- 3. Dobrać wartości rezystorów, aby uzyskać wzmocnienie napięciowe $A_U=0.2$. Przeanalizować układ.

Pomiary i obliczenia

1. $U_i = 0.5 V$, $R_1 = 1 k\Omega$, $R_2 = 9 k\Omega$

Pomiar: $U_o = 4,99 \, V$

Obliczenia: $U_o = 0.5 \cdot \left(1 + \frac{9}{1}\right) = 0.5 \cdot (1 + 9) = 0.5 \cdot 10 = 5 \ [V]$

Błąd pomiaru: $|\delta| = \left| \frac{4,99-5}{5} \right| = \left| \frac{-0,01}{5} \right| = \left| \frac{-0,01}{5} \right| = |-0,002| = 0,002 = 0,2\%$

2. Wzmocnienie napięciowe wzmacniacza nieodwracającego ma wzór $A_U=1+\frac{R_2}{R_1}$. Rezystancje są nieujemne, zatem ze wzoru jasno wynika, że najmniejsze możliwe do osiągnięcia wzmocnienie dla wzmacniaczy nieodwracających to $A_U=1$.

3. $U_i=5~V$, $R_1=10~k\Omega$, $R_2=0~\Omega$ (zwarcie)

 $U_0 = 4,999 V$ Pomiar:

Obliczenia: $U_o = 5 \cdot \left(1 + \frac{0}{10}\right) = 5 \cdot (1 + 0) = 5 \cdot 1 = 5 \ [V]$ Błąd pomiaru: $|\delta| = \left|\frac{4,999 - 5}{5}\right| = \left|\frac{-0,001}{5}\right| = \left|\frac{-0,001}{5}\right| = |-0,0002| = 0,0002 = 0,02\%$

Wzmacniacz sumujący

Schemat badanego układu

Rysunek 10 – schemat wzmacniacza sumującego

Wstep teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Jeśli $R=R_1+R_2+R_3$ i $R_4=R_1\|R_2\|R_3\|R_5$, to napięcie wyjściowe wzmacniacza sumującego można wyliczyć ze wzoru:

$$U_o = -\frac{R_5}{R} \cdot (U_{i1} + U_{i2} + U_{i3})$$

Jeśli dodatkowo rezystancja $R_5=R$, to współczynnik skalujący sumę jest równy 1, zatem wzór przyjmuje postać:

$$U_0 = -(U_{i1} + U_{i2} + U_{i3})$$

Napięcie wyjściowe U_o jest zanegowane, ponieważ sygnały wejściowe zostały podłączone do wejścia odwracającego wzmacniacza.

Cel zadania

Zbadać przy pomocy napięć stałych przedziały poprawnej pracy wzmacniacza sumującego.

Pomiary i obliczenia

$$R_1 = 10 k\Omega$$
, $R_2 = 10 k\Omega$, $R_3 = 10 k\Omega$, $R_5 = 10 k\Omega$

$$R_4 = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_5}} = \frac{1}{\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10}} = \frac{1}{\frac{4}{10}} = \frac{10}{4} = 2,5 \ [k\Omega]$$

Rysunek 11 – wykres zależności napięcia wyjściowego U_o od sumy napięć wejściowych $U_{i1}+U_{i2}+U_{i3}$ we wzmacniaczu sumującym

Dla stałych napięć $U_{i2}=0~V$, $U_{i3}=0~V$, suma napięć $U_{i1}+U_{i2}+U_{i3}=U_{i1}$. Wykres zależności napięcia wyjściowego U_o od napięcia wejściowego U_{i1} pokazuje, że wzmacniacz pracuje poprawnie dla sumy napięć $U_{i1}+U_{i2}+U_{i3}$ od -20~V do 20~V.

Wzmacniacz różnicowy

Schemat badanego układu

Rysunek 12 – schemat wzmacniacza różnicowego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Jeśli $R_1=R_5$ i $R_2=R_4$, to napięcie wyjściowe wzmacniacza różnicowego można wyliczyć ze wzoru:

$$U_o = \frac{R_2}{R_1} \cdot (U_{i2} - U_{i1})$$

Jeśli dodatkowo rezystancja $R_1=R_2$, to współczynnik skalujący różnicę jest równy 1, zatem wzór przyjmuje postać:

$$U_o = U_{i2} - U_{i1}$$

Cel zadania

Zbadać przy pomocy napięć stałych przedziały poprawnej pracy wzmacniacza różnicowego.

Pomiary i obliczenia

$$R_1=10~k\Omega,\,R_2=10~k\Omega,\,R_3=10~k\Omega,\,R_4=10~k\Omega$$

Rysunek 13 – wykres zależności napięcia wyjściowego U_o od różnicy napięć wejściowych $U_{i2}-U_{i1}$ we wzmacniaczu różnicowym

Dla stałego napięcia $U_{i1}=0\ V$, różnica napięć $U_{i2}-U_{i1}=U_{i2}$. Wykres zależności napięcia wyjściowego U_o od napięcia wejściowego U_{i2} pokazuje, że wzmacniacz pracuje poprawnie dla różnicy napięć $U_{i2}-U_{i1}$ od $-20\ V$ do $20\ V$.

Wzmacniacz całkujący

Schemat badanego układu

Rysunek 14 – schemat wzmacniacza całkującego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Jeśli $R_1=R_2$, to napięcie wyjściowe wzmacniacza całkującego można wyliczyć ze wzoru:

$$U_o = -\frac{1}{2\pi f R_1 C} \int_0^t U_i(\tau) d\tau$$

Jeśli dodatkowo pojemność $C=\frac{1}{2\pi fR_1}$, to współczynnik skalujący całkę jest równy 1, zatem wzór przyjmuje postać:

$$U_o = -\int_0^t U_i(\tau) d\tau$$

Napięcie wyjściowe U_o jest zanegowane, ponieważ sygnał wejściowy został podłączony do wejścia odwracającego wzmacniacza.

Cel zadania

Zbadać odpowiedź wzmacniacza całkującego na ciąg prostokątnych impulsów.

Pomiary i obliczenia

$$R_1 = R_2 = 10 \ k\Omega, U_i = 10 \ V, f = 1 \ kHz$$

$$C = \frac{1}{2\pi f R_1} \approx \frac{1}{2 \cdot 3,14 \cdot 1k \cdot 10k} = \frac{1}{62,8M} \approx 15,9n \ [F]$$

Rysunek 15 – napięcie wyjściowe wzmacniacza całkującego (zielony) na tle prostokątnego sygnału wejściowego (czerwony)

Odpowiedź wzmacniacza całkującego na sygnał prostokątny to sygnał trójkątny.

Wzmacniacz różniczkujący

Schemat badanego układu

Rysunek 16 – schemat wzmacniacza różniczkującego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Jeśli $R_1=R_2$, to napięcie wyjściowe wzmacniacza różniczkującego można wyliczyć ze wzoru:

$$U_o = -2\pi f R_1 C \cdot \frac{dU_i}{dt}$$

Jeśli dodatkowo pojemność $C=\frac{1}{2\pi fR_1}$, to współczynnik skalujący pochodną jest równy 1, zatem wzór przyjmuje postać:

$$U_o = -\frac{dU_i}{dt}$$

Ze względu na znaczne szumy przy wzmocnieniu równym 1, wskazane jest aby wzmocnienie było znacznie mniejsze od 1, w celu ich eliminacji.

Napięcie wyjściowe U_o jest zanegowane, ponieważ sygnał wejściowy został podłączony do wejścia odwracającego wzmacniacza.

Cel zadania

Zbadać odpowiedź wzmacniacza różniczkującego na ciąg trójkątnych impulsów.

Pomiary i obliczenia

$$R_1 = R_2 = 10 \; k\Omega, \, U_i = 10 \; V, \, f = 1 \; kHz$$

$$C = \frac{1}{2\pi f R_1} \approx \frac{1}{2 \cdot 3,14 \cdot 1k \cdot 10k} = \frac{1}{62,8M} \approx 15,9n \ [F]$$

Aby uniknąć szumów, został wybrany kondensator o pojemności C=15.9~pF.

Rysunek 17 – napięcie wyjściowe wzmacniacza różniczkującego (zielony) na tle 1000-krotnie pomniejszonego trójkątnego sygnału wejściowego (czerwony)

Odpowiedź wzmacniacza różniczkującego na sygnał trójkątny to sygnał prostokątny.

Przesuwnik fazowy

Schemat badanego układu

Rysunek 18 – schemat przesuwnika fazowego

Wstęp teoretyczny

WSTĘP DO WZMACNIACZY OPERACYJNYCH – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Jeśli $R_1=R_2$, to amplituda sygnału wyjściowego przesuwnika fazowego jest taka sama jak amplituda sygnału wejściowego. Przesunięcie fazowe można wyliczyć ze wzoru:

$$\varphi = 2 \cdot arctg(2\pi f R_3 C)$$

Przesunięcie w czasie sygnału wyjściowego względem wejściowego można opisać wzorem:

$$\Delta t = \frac{1}{\pi f} \cdot arctg(2\pi f R_3 C)$$

Napięcie wyjściowe U_o jest zanegowane, ponieważ sygnał wejściowy został podłączony do wejścia odwracającego wzmacniacza.

Cel zadania

Zbadać odpowiedź przesuwnika fazowego na sygnał sinusoidalny w zależności od wartości rezystora regulującego R_3 .

Pomiary i obliczenia

$$R_1 = R_2 = 10 \ k\Omega$$
, $U_i = 10 \ V$, $f = 1 \ kHz$, $C \approx 15.9 \ nF$ (okres $T = 1000 \ \mu s$)

Pomiary Δt zostały przeprowadzone za pomocą odczytów z oscyloskopu.

n [1.0]	Δt [hhad manaiann [0/]	
$R_3 [k\Omega]$	pomiar	obliczenia	błąd pomiaru [%]
0	0,000	0,000	0,00
1	30,303	31,725	4,48
5	155,303	147,580	5,23
10	250,000	249,995	0,00
50	437,500	437,165	0,08
100	469,697	468,274	0,30
500	500,000	493,634	1,29
1000	500,000	496,817	0,64

Rysunek 19 – napięcie wyjściowe przesuwnika fazowego (zielony) na tle sygnału wejściowego (czerwony) dla $R_3=10~k\Omega$

Przesunięcie w fazie sygnału wyjściowego przesuwnika fazowego względem sygnału wejściowego jest zerowe dla $R_3=0~\Omega$ i asymptotycznie zbliża się do 180° (przesunięcie o połowę okresu) dla rosnącej wartości R_3 .

Wnioski

Podsumowując przeprowadzone doświadczenia i wyciągnięte z nich wnioski można zauważyć, że wzmacniacze operacyjne można wykorzystać w wielu zastosowaniach.

Najprostsze z nich, wzmacniacze odwracające i nieodwracające, nadają się doskonale do prostych zadań jakim może być wzmocnienie i/lub odwrócenie sygnału wejściowego, a także jako filtry dolnoprzepustowe.

Wzmacniacze sumujące i różnicowe mogą być przydatne do łączenia ze sobą prostych sygnałów sinusoidalnych w bardziej złożone sygnały.

Wzmacniacze całkujące i różniczkujące mogą się nadawać do przekształcania sygnałów od danym kształcie na inny.

Wreszcie, przesuwniki fazowe mogą być użyteczne wtedy, gdy jest potrzebne sterowanie przesunięciem fazowym sygnału wejściowego za pomocą rezystora.

Oczywiście, każdy ze wzmacniaczy poza specyficznym dla siebie zastosowaniem, może dodatkowo wzmocnić lub osłabić sygnał wyjściowy, a wartość wzmocnienia lub osłabienia może być bardzo precyzyjnie ustawiona.