Basic Concepts of Cryptography

- Symmetric Key Cryptography
 - Same key used for encryption and decryption
 - How to share the key securely
 - Cannot address certain requirements
- Public Key Cryptography
 - One key for encryption, one for decryption
 - Handles several requirements like those in blockchain

Digital Signature

- A digital code, which can be included with an electronically transmitted document to verify
 - The content of the document is authenticated
 - The identity of the sender
 - Prevent non-repudiation sender will not be able to deny about the origin of the document

Public Key Cryptography

- Also known as asymmetrical cryptography or asymmetric key cryptography
- Key: A parameter that determines the functional output of a cryptography algorithm
 - Encryption: The key is used to convert a plain-text to a cypher-text; M' = E(M, k)
 - **Decryption:** The key is used to convert the cypher-text to the original plain text; M = D(M', k)

Public Key Cryptography

- Two keys are used
 - Private key: Only Alice has her private key
 - Public key: "Public" to everyone everyone knows Alice's public key

RSA Key Generation and Distribution

- Chose two distinct prime integers p and q
 - p and q should be chosen at random to ensure tight security
- Compute n = pq; n is used as the modulus, the length of n is called the key length
- Compute $\phi(n) = (p-1)(q-1)$ (Euler totient function)
- Choose an integer e such that $1 < e < \phi(n)$ and $\gcd(e,\phi(n)) = 1$; e and $\phi(n)$ are co-prime
- Determine $d \equiv e^{-1} \pmod{\phi(n)}$: d is the modular multiplicative inverse of $e \pmod{\phi(n)}$

[Note $d.e \equiv 1 \pmod{\phi(n)}$]