Fractions: inverse, 4 multiplication et division

- Distinguer « signifie » et « est égal à ». Par exemple 3×4 , 4+4+4et 10 + 2 sont des écritures différentes du nombre 12. $3 \times 4 = 10 + 2$. Mais 3×4 ne signifie pas 10 + 2. En effet 3×4 signifie 4 + 4 + 4.
- Exemple 4.1 un b-ième.
 - a) $\frac{1}{7}$ est **un septième** : il en faut 7 pour faire 1. C'est le nombre qui multiplié par 7 donne 1, donc $7 \times \frac{1}{7} = 1$
 - b) $\frac{1}{100}$ est **un centième** : il en faut 100 pour faire 1. C'est le nombre qui multiplié par 100 donne 1, donc

$$100 \times \frac{1}{100} = 1$$

c) $\frac{1}{1000}$ est un millième. Il en faut 1000 pour faire 1.

$$1000 \times \frac{1}{1000} = 1$$

L'écriture $\frac{1}{h}$ s'étend au cas ou b n'est pas un entier.

$$Aire = a \times \frac{1}{a} = 1$$

Figure 4.1 – Pour a nombre positif : $a\geqslant 0$. L'inverse de a s'interprète comme « la hauteur d'un rectangle de largeur a et d'aire totale 1 »

4.1 Inverse : définition

Définition 4.1 — Inverse d'un nombre. Deux nombres a et b sont inverses l'un de l'autre si leur produit vaut 1.

$$ab = 1$$

 $a = \text{inverse}(b) = \frac{1}{b}$ $b = \text{inverse}(a) = \frac{1}{a}$

- R L'inverse de l'inverse est le nombre lui même : $\frac{1}{\left(\frac{1}{a}\right)} = a$.
- $0 \times ? = 1$. L'inverse de 0 n'est pas défini, et l'écriture $\frac{1}{0}$ n'a pas de sens.

■ Exemple 4.2

- a) $1 \times 1 = 1$. 1 est l'inverse de $1: 1 = \frac{1}{1}$
- b) $(-1) \times (-1) = 1$. -1 est l'inverse de $-1: -1 = \frac{1}{-1}$
- c) $0, 1 \times 10 = 1$. 0, 1 est l'inverse de $10:0, 1 = \frac{1}{10}$ 10 est l'inverse de $0, 1:10 = \frac{1}{0.1}$
- d) $4 \times 0.25 = 1$ 0.25 est l'inverse de $4:0.25 = \frac{1}{4}$ 4 est l'inverse $0.25:4 = \frac{1}{0.25}$
- e) $(-4) \times (-0.25) = 1$. -0.25 est l'inverse de $-4: -\frac{1}{4} = -0.25 = \frac{1}{-4}$ 4 est l'inverse $-0.25: -4 = \frac{1}{-0.25}$
- Un nombre et son inverse sont de même signe car leur produit est positif.
- L'inverse de certains nombres n'ont pas une écriture décimale finie. Par exemple $3 \times 0{,}333$ 333 333 $= 0{,}999$ 999 999, et $7 \times 0{,}142$ 857 $= 0{,}999$ 999.

 On garde l'écriture fractionnaire $\frac{1}{3}$ et $\frac{1}{7}$ pour désigner les inverses de 3 et 7.

4.1 Inverse : définition 3

4.1.1 Exercices: l'inverse

Tout nombre non nul a admet un inverse :

 $a \times inverse(a) = 1$ $a + \operatorname{oppose}(a) = 0$

Tout nombre a admet un opposé :

Exercice 1 Compléter les espaces par un nombre décimal.

 $0.1 \times 1 = 1$

 $10 \times$ = 1,

 $4 \times$

 $0.01 \times \boxed{} = 1,$ $0.5 \times 1... = 1$

 $0.05 \times \boxed{ } = 1,$

 $0.2 \times | 1 = 1$

inverse (10) = $\begin{bmatrix} 0.025 \times 1 & 1 \\ 0.025 \times 1 & 1 \end{bmatrix} = 1$,

inverse (4) = $\begin{bmatrix} 0.125 \times 1 & 1 \end{bmatrix} = 1$,

inverse $(0.01) = \frac{1}{2.5} = \frac{1}{2.5} = 1$,

inverse $(0.5) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

inverse $(0.05) = \frac{1}{5} = \frac{1}{5}$

inverse(1) = $\begin{bmatrix} 0.02 \times \begin{bmatrix} 0.02 \times [0.02 \times \begin{bmatrix} 0.02 \times [0.02 \times [0.02 \times] & 0.02 \times [0.02 \times [0.02 \times] & 0.02 \times [0.02 \times [0.02 \times] & 0.02 \times[0.02 \times[0.02 \times[0.02 \times] & 0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times] & 0.02 \times[0.02 \times[0.02 \times[0.02 \times] & 0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times] & 0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times[0.02 \times] & 0.02 \times[0.02 \times$

inverse $(0.1) = \frac{1}{100} =$

 $25 \times \boxed{} = 1$

 $20 \times \boxed{} = 1,$

inverse $(0.2) = \begin{bmatrix} 1 & 12.5 \\ 12.5 & 14 \end{bmatrix} = 1$,

inverse $(0.02) = \frac{1}{1000}$

inverse (0.25) = 1

inverse (0.025) = 1...

inverse (0.125) = 1.1.1

inverse (2.5) = 1

Exercice 2 Compléter les cadres par les mots « opposés » ou « inverses » et justifier la réponse.

-2 et 2 sont

car

-4 et 4 sont

-6.25 et -0.16 sont

-0.4 et -2.5 sont

0.44 et 2.25 ne sont pas

12 et 0,833 333 ne sont pas

inverses

inverses car

12 et sont

opposés

L'inverse d'un nombre a se note inverse $(a) = \frac{1}{a}$.

Exercice 3 Complétez en utilisant les calculs de l'exercice 1

inverse $(25) = \frac{1}{2}$

inverse $(20) = \frac{1}{2}$

inverse (12.5) = 1

 $\frac{1}{2} = \dots$ car $(-2) \times \dots = 1$. $\frac{1}{-1} = \dots = 1.$ $\frac{1}{-10} = \dots \quad \text{car} \quad \dots \qquad \frac{1}{-5} = \dots \quad \text{car} \quad \dots$ $\frac{1}{\left(\frac{1}{5}\right)} = \dots \quad \text{car} \quad \dots \qquad \frac{1}{\left(\frac{1}{2}\right)} = \dots \quad \text{car} \quad \dots$ $\frac{1}{0}$ n'existe pas car

4.2 Écriture fractionnaire

¹ fraction décimale, fraction d'entiers, écriture fractionnaire

Définition 4.2 L'écriture fractionnaire $\frac{a}{b}$ (a b-ième) signifie : « le résultat de la **multiplication** de a par l'inverse de b » :

$$a \times \frac{1}{h} = \frac{a}{h}$$

On parle de fraction, si a et b sont des nombres entiers.

■ Exemple 4.3

a)
$$\frac{37}{100} = 37 \times \frac{1}{100} = 37 \text{ centièmes} = 0.37$$

b)
$$\frac{3.5}{10} = 3.5 \times \frac{1}{10} = 3.5 \text{ dixièmes} = 0.35$$

c)
$$\frac{5}{3} = 5 \times \frac{1}{3}$$
.

$$\frac{5}{4} = 5 \times \frac{1}{4} = 5 \times 0.25 = 1.25.$$

R Pour tout
$$a$$
, la fraction $\frac{a}{0} = a \times \frac{1}{0}$ n'est pas définie

Théorème 4.1 — Somme de fractions de même dénominateur. Pour tout nombres x, a et b (b non nul) :

$$\frac{x}{b} + \frac{a}{b} = \frac{x+a}{b}$$

Démonstration.
$$\frac{x}{b} + \frac{a}{b} = x \times \frac{1}{b} + a \times \frac{1}{b}$$

$$= (x+a) \times \frac{1}{b}$$

$$= \frac{x+a}{b}$$

$$x \ b-i\`{e}mes \ et \ a \ b-i\`{e}mes$$

$$= (x+a) \ b-i\`{e}mes$$

Théorème 4.2 Pour tous nombres a b, c et d **non nuls** on a :

$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$D\'{e}monstration. \ a \times \frac{1}{b} \times c = \left(a \times \frac{1}{b}\right) \times c = a \times \left(\frac{1}{b} \times c\right) = (a \times c) \times \frac{1}{b} \quad \blacksquare$$

 \bigcirc Nous verrons en exercice le cas $a + \frac{b}{c}$.

4.2.1 Exercices écritures fractionnaires

■ Exemple 4.4 — multiplier/ajouter un entier et une fraction, partie entière et décimale.

$$\frac{45}{9} = \frac{5 \times 9}{9} = 5 \times \frac{9}{9}$$

$$= 5$$

$$= 5$$

$$2 \times \frac{7}{9} = \frac{2 \times 7}{9}$$

$$= \frac{14}{9}$$

$$3 + \frac{2}{5} = 3 \times \frac{5}{5} + \frac{2}{5}$$

$$= \frac{35}{5} + \frac{2}{5} = \frac{15}{5} + \frac{2}{5}$$

$$= \frac{17}{5}$$

$$= \frac{14}{9}$$

$$\frac{35}{8} = \frac{4 \times 8 + 3}{8}$$

$$= \frac{4 \times 8}{8} + \frac{3}{8}$$
Division euclidienne par 8
$$= 4 \times \frac{8}{8} + \frac{3}{8}$$

$$= 4 \times \frac{8}{8} + \frac{3}{8}$$

$$= 3 \times \frac{5}{5} + \frac{c}{5} = \frac{a + c}{b}$$

$$= \frac{17}{5}$$

$$= \frac{17}{5}$$

$$= \frac{35}{8} = 4 + \frac{3}{8}$$

Exercice 4 — 🖬. Complétez

a) Simplifie les écriture fractionnaires suivantes sous forme d'entiers :

$$\frac{15}{3} = \frac{\times 3}{3} = \dots \times \frac{3}{3} =
\frac{24}{6} = \frac{\times}{3} = \dots
= \frac{100}{100} =
\frac{5}{1} =
\frac{12}{12} =
\frac{12}{12} =
\frac{18}{2} =$$

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1$$

b) Écrire sous forme d'une unique fraction les opérations suivantes :

$$3 + \frac{2}{5} = 3 \times \frac{5}{5} + \frac{2}{5} = \frac{3 \times 5}{5} + \frac{2}{5} = \frac{1}{5}$$

$$2 + \frac{2}{5} = \frac{1}{5}$$

$$3 + \frac{1}{6} = \frac{1}{4} = \frac{1}$$

c) Écrire les fractions suivantes sous la forme d'une partie entière et d'une fraction inférieure à 1.

4.3 Inverse : propriétés

Théorème 4.3 — Inverse d'une écriture fractionnaire.

Pour tous a et b non nuls, $\frac{a}{b}$ et $\frac{b}{a}$ sont inverses l'un de l'autre :

$$\frac{a}{b} \times \frac{b}{a} = 1$$

On peut écrire $\frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a}$

$$D\'{e}monstration. \ \frac{a}{b} \times \frac{b}{a} = a \times \frac{1}{b} \times b \times \frac{1}{a} = a \times \frac{1}{a} \times b \times \frac{1}{b} = 1$$

■ Exemple 4.5

$$\frac{\frac{1}{\frac{3}{5}} = \frac{5}{3}}{\frac{\frac{1}{12}}{\frac{7}{7}} = \frac{7}{12}}$$
$$\frac{\frac{1}{0.8}}{\frac{1}{0.8}} = \frac{1}{\left(\frac{4}{5}\right)} = \frac{5}{4} = 1,25$$

$$\frac{1}{1,25} = \frac{1}{\frac{5}{4}} = \frac{4}{5} = 0.8$$
$$\frac{1}{0,1} = \frac{1}{\frac{1}{10}} = \frac{10}{1} = 10$$

4.3.1 Exercices: inverse

Exercice $5 - \blacksquare$.

a) Donner les inverses des fractions suivantes.

inverse de $\frac{2}{5} =$ | inverse de $\frac{8}{5} =$ | inverse de $\frac{1}{2} =$ | inverse de $\frac{9}{4} =$ | inverse de $\frac{1}{7} =$ | inverse de $\frac{2}{7} =$ | inverse de $\frac{4}{9} =$ inverse de $\frac{1}{7}$ =

- b) Quand on multiplie un nombre par son inverse, le résultat est
- c) Écrire sous forme d'une fraction unique puis calcule l'inverse des expressions suivantes :

 $\begin{vmatrix} 5 + \frac{1}{2} = \\ \text{inverse de } 5 + \frac{1}{2} = \end{vmatrix}$ inverse de $3 + \frac{1}{8} =$ $1 + \frac{3}{4} =$ inverse de $1 + \frac{3}{4} =$

d) Écrire sous forme d'une fraction décimale (dénominateur 10, 100..) puis calcule l'inverse :

 $0.7 = \frac{10}{10}$ | 0.25 = | 0.2 = | 0.049 = | inverse de $0.7 = \frac{10}{10}$ | inverse de 0.25 = | inv

e) Complète par une fraction d'entiers pour rendre les égalité vraies :

 $\begin{bmatrix} \frac{2}{9} \times \\ 6 \times \\ \end{bmatrix} = 1$ $\begin{bmatrix} \frac{1}{12} \times \\ 0.8 \times \\ \end{bmatrix} = 1$ $\begin{bmatrix} \frac{3}{8} \times \\ 0.9 \times \\ \end{bmatrix} = 1$ $0.9 \times \begin{bmatrix} 0.9 \times \\ \end{bmatrix} = 1$

- f) Calcule a stucieusement $\frac{1}{5}\times 243\times 5=...$ g) Calcule a stucieusement $92,6\times \frac{1}{4}\times 40=...$
- h) Compléter par des entiers pour rendre les égalités vraies.

 $3 \times \frac{1}{2} \times$

■ Exemple 4.6 Écrire sous forme d'une fraction. Montrer les calculs.

 $1 + \frac{1}{2 + \frac{1}{2}} =$

Exercice 6 — **I** fractions continues. Donner l'écriture en fractions d'entiers des expressions suivantes.

$$A = 1 + \frac{1}{1 + \frac{1}{7}}$$
$$B = 3 + \frac{1}{1 + \frac{1}{2}}$$

$$C = 2 + \frac{1}{3 + \frac{1}{4}}$$

$$D = 3 + \frac{1}{3 + \frac{1}{2}}$$

$$E = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4}}}$$

$$F = 1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}$$

■ Exemple 4.7 — 🖬. Écrire les fractrions suivantes sous la forme d'une fraction continue

$$\frac{55}{17} = 3 + \frac{4}{17} =$$

$$\frac{11}{9} =$$

$$55 = 3 \times 17 + 4$$

$$17 = 4 \times 4 + 1$$

$$4 = 4 \times 1 + 0$$

Exercice 7 — A vous. Écrire les nombres suivants sous forme d'une fraction continue.

$$A = \frac{13}{10}$$

$$B = \frac{16}{7}$$

$$B = \frac{16}{7} \qquad \qquad C = \frac{25}{13}$$

$$D = \frac{11}{8}$$

Exercice 8 — 🖬. Colorier

du rectangle

du rectangle

 $\frac{1}{4}$ de $\frac{1}{3}$ du rectangle

 $\frac{1}{3}$ de $\frac{1}{5}$ du rectangle

 $\frac{1}{4}$ et $\frac{1}{3}$ du rectangle

 $\frac{1}{3}$ et $\frac{1}{5}$ du rectangle

En mathématique, le mot « de » se traduit par ×. Compléter les égalités suivantes :

$$\frac{1}{4} \times \frac{1}{3} = \boxed{ } \qquad \frac{1}{3} \times \frac{1}{5} = \boxed{ } \qquad \frac{1}{4} + \frac{1}{3} = \boxed{ } \qquad \frac{1}{3} + \frac{1}{5} = \boxed{ } \qquad \frac{1}{3} + \frac{1}{3} =$$

 $solution\ de\ l'exercice\ 6.\ A=\frac{15}{8};\ B=\frac{11}{3};\ C=\frac{30}{13};\ D=\frac{33}{10};\ E=\frac{161}{72};\ F=\frac{19}{15};$

 $solution\ de\ l'exercice\ 7.\ A=[1,\ 3,\ 3];\ B=[2,\ 3,\ 2];\ C=[1,\ 1,\ 12];\ D=[1,\ 2,\ 1,\ 2];$

4.4 Multiplication de fractions

Théorème 4.4 — Le produit des inverses est l'inverse du produit.

$$\frac{1}{b} \times \frac{1}{d} = \frac{1}{b \times d}$$

 $D\acute{e}monstration.$ $\frac{1}{b}\times\frac{1}{d}$ est l'inverse de ab car :

$$(bd) \times \left(\frac{1}{b} \times \frac{1}{d}\right) = b \times \frac{1}{b} \times d \times \frac{1}{d} = 1$$

Théorème 4.5 — Multiplication de fractions.

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Proposition 4.6 — Règle des signes. On a :

$$\frac{1}{1} = \frac{-1}{-1}$$
 $-1 = \frac{-1}{1} = \frac{1}{-1}$

Pour tout nombres a et b (b non nul):

$$\frac{a}{b} = \frac{-a}{-b} \qquad -\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$

Théorème 4.7 — Simplification/Amplification par un facteur commun.

Pour tout nombres x, a et b (x et b non nuls):

$$\frac{a}{b} = \frac{a \times c}{b \times c} \qquad \frac{a}{b} = \frac{a \div c}{b \div c}$$

cas particulier.

$$\frac{a}{b} = \frac{a}{b} \times 1 = \frac{a}{b} \times \frac{c}{c} = \frac{a \times c}{b \times c}$$

4.4.1 Exercices: simplifications, multiplications

Exercice 9 À l'aide des critères de divisibilité, indiquer si les fractions suivantes sont simplifiables par 2, 3, 4, 5, 9 ou 10:

	2	3	4	5	9	10
$1/\frac{45}{30}$						
$2/\frac{54}{81}$						
$3/\frac{1557}{1341}$						

	2	3	4	5	9	10
$4/\frac{4962}{11334}$						
$5/\frac{2034}{6066}$						
$6/\frac{1460}{2180}$						

Une fraction est **irréductible** si le numérateur et dénominateur n'ont pas de facteurs commun autre que 1 ou -1.

On simplifie une fraction en éliminant des facteurs communs

$$\frac{a}{b} = \frac{a \times c}{b \times c} \qquad \frac{a}{b} = \frac{a \div c}{b \div c}$$

Il est pratique de simplifier directement par le plus grand facteur commun.

■ Exemple 4.8 — ■. Simplifier au maximum les fractions suivantes.
$$\frac{90}{120} = \frac{90 \div 10}{120 \div 10} = \frac{9}{12} = \frac{9 \div 3}{12 \div 3} \qquad \frac{11}{-15} = -\frac{11}{15} \qquad \qquad \frac{-12}{-15} = \frac{12}{15} = \frac{12 \div 3}{15 \div 3} = \frac{4}{5}$$
$$\frac{90}{120} = \frac{90 \div 30}{120 \div 30} = \frac{3}{4} \qquad \qquad \frac{-10}{15} = -\frac{10}{15} = -\frac{10 \div 5}{15 \div 5} = -\frac{2}{3} \qquad \frac{-11}{-33} = \frac{11}{33} = \frac{11 \div 11}{33 \div 11} = \frac{1}{3}$$

Exercice 10 — fractions irréductibles. Identifier le plus grand facteur commun et simplifier les fractions

suivantes au maximum. **PGCD** $\frac{105}{120} = \frac{105 \div 15}{120 \div 15} = \dots$ 15 $\frac{-48}{-66} = \dots$

Défi. Simplifier $\frac{5a}{10a^2b}$ en une fraction de l'unité.

On multiplie les fractions en multipliant numérateurs et dénominateurs

Pour les fractions négatives, le signe peut être placé en haut, en bas ou devant la fraction : $\frac{1}{-5} = -\frac{1}{5} = \frac{-1}{5}$

■ Exemple 4.9

$$\frac{1}{2} \times \frac{3}{5} = \frac{1 \times 3}{2 \times 5}$$
$$= \frac{3}{10}$$

$$5 \times \frac{3}{4} = \frac{5}{1} \times \frac{3}{4}$$
$$= \frac{5 \times 3}{1 \times 4}$$
$$= \frac{15}{4}$$

$$-\frac{3}{4} \times \left(-\frac{2}{5}\right) = \frac{3 \times 2}{4 \times 5} \quad \frac{15}{28} \times \frac{14}{3} = \frac{15 \times 14}{28 \times 3}$$
$$= \frac{6}{20} \qquad \qquad = \frac{3 \times 5 \times 14}{14 \times 2 \times 3}$$
$$= \frac{3}{10} \qquad \qquad = \frac{5}{2}$$

Exercice 11 — **a**. a) Calculer :

b) Simplifier par un facteur commun avant de multiplier :

$$\frac{24}{5} \times \frac{10}{18} = \dots \\
\frac{40}{7} \times \frac{14}{8} = \dots \\
\frac{8}{15} \times \frac{3}{4} = \dots \\
\frac{15}{42} \times \frac{7}{5} = \dots \\
\frac{9}{100} \times \frac{20}{15} = \dots \\
\frac{105}{60} \times \frac{18}{25} = \dots$$

c) Entoure les deux expressions égales à $\frac{3}{8}$

$$\frac{1}{8} \times \frac{2}{8}$$

$$\frac{1}{2} \times \frac{6}{16}$$

$$\frac{3}{4} \times \frac{1}{2}$$

$$\frac{2}{8} \times \frac{3}{2}$$

d) Complète pour rendre les égalités vraies.

$$\frac{1}{5} \times \boxed{ } = \frac{4}{5}$$

$$\frac{3}{4} \times \boxed{ } = \frac{21}{20}$$

$$\frac{1}{8} \times \boxed{ } = \frac{5}{8}$$

$$\frac{1}{6} \times \boxed{ } = \frac{5}{12}$$

$$\begin{vmatrix} \frac{3}{4} \times \\ \frac{2}{3} \times \end{vmatrix} = \frac{13}{4}$$

e) Simplifier au maximum les expressions suivantes :

$$\frac{4}{3} \times (-3) = \dots \qquad \qquad -\frac{2}{5} \times (-5) = \dots$$

$$\frac{5}{-7} \times 7 = \dots \qquad -\frac{5}{4} \times \frac{2}{5} = \dots$$

$$\frac{-8}{3} \times \frac{9}{4} = \dots \qquad -3 \times \frac{-3}{8} = \dots$$

$$-\frac{2}{7} \times \frac{-7}{3} = \dots \qquad -\frac{5}{2} \times \frac{-22}{5} = \dots$$

$$-2 \times \frac{-4}{5} = \dots \qquad -\frac{1}{3} \times \frac{-3}{4} \times \frac{-5}{3} = \dots$$

f) Entoure les deux fractions supérieures à 1

$$6 \times \frac{1}{7}$$
 $\left| \begin{array}{c} \frac{6}{5} \times \frac{5}{4} \end{array} \right| \left| \begin{array}{c} \frac{2}{5} \times 3 \end{array} \right| \left| \begin{array}{c} \frac{8}{9} \times \frac{8}{9} \end{array} \right|$

- g) Vrai ou Faux?...... $\frac{2}{3} \times 5 = \frac{10}{15}$
- h) Défi : complétez à l'aide des nombres suivants pour rendre les égalités vraies.

Un nombre est utilisable une unique fois. 0 5 $\frac{1}{5}$ 6 7 $-\frac{3}{5}$ 4 $\frac{6}{5}$ $-\frac{1}{2}$

$$-\frac{3}{4} \times \boxed{ } = \frac{9}{20}$$

$$\frac{2}{7} \times \boxed{ } = 1 + \frac{1}{7}$$

$$\frac{4}{9} \times \boxed{ } = 0$$

$$4 \times \boxed{ } = \frac{4}{5}$$

$$\frac{1}{2} \times \boxed{ } = 2 + \frac{1}{2}$$

$$\frac{3}{4} \times \boxed{ } = 5 + \frac{1}{4}$$

$$\frac{5}{6} \times \boxed{ } = 5$$

Exercice 12 — Multiplier des fractions. Guider le coureur de mine à travers le labyrinthe. Il ne peut traverser des cellules que si le calcul est juste. Les déplacements en diagonale ne sont pas autorisés.

ue si le calcul est juste. Les deplacements en diagonale ne sont pas autorises.									
Départ									
$\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$	$\frac{2}{3} \times \frac{3}{5} = \frac{3}{5}$	$\frac{2}{7} \times \frac{3}{4} = \frac{5}{14}$	$\frac{3}{4} \times \frac{5}{6} = \frac{7}{8}$	$\frac{3}{5} \times \frac{3}{4} = \frac{9}{20}$					
$\boxed{\frac{2}{3} \times \frac{5}{7} = \frac{10}{21}}$	$\frac{5}{6} \times \frac{4}{5} = \frac{2}{3}$	$\frac{3}{4} \times \frac{5}{7} = \frac{17}{28}$	$\frac{2}{6} \times \frac{4}{7} = \frac{4}{21}$	$\frac{5}{6} \times \frac{3}{8} = \frac{5}{16}$					
$\boxed{\frac{5}{7} \times \frac{2}{3} = \frac{11}{21}}$	$\frac{5}{6} \times \frac{3}{4} = \frac{7}{8}$	$\frac{6}{7} \times \frac{3}{4} = \frac{9}{14}$	$\frac{4}{5} \times \frac{7}{8} = \frac{9}{10}$	$\frac{7}{8} \times \frac{4}{5} = \frac{7}{10}$					
$\boxed{\frac{7}{8} \times \frac{5}{6} = \frac{35}{48}}$	$\frac{5}{7} \times \frac{7}{10} = \frac{1}{2}$	$\frac{7}{9} \times \frac{3}{4} = \frac{7}{12}$	$\frac{5}{8} \times \frac{10}{11} = \frac{25}{44}$	$\boxed{\frac{7}{12} \times \frac{5}{9} = \frac{35}{108}}$					
$\frac{7}{9} \times \frac{7}{11} = \frac{49}{99}$	$\frac{6}{7} \times \frac{7}{8} = \frac{23}{28}$	$\frac{6}{13} \times \frac{5}{7} = \frac{31}{91}$	$\frac{5}{8} \times \frac{5}{13} = \frac{27}{104}$	$\boxed{\frac{9}{11} \times \frac{5}{7} = \frac{47}{77}}$					
	·	Arrivée	<u> </u>						

4.5 Quotient et écritures fractionnaires

Définition 4.3 — Quotient. Pour a et b non nuls. $\frac{a}{b}$ est le nombre qui multiplié par b donne a.

$$\frac{a}{b} \times b = a$$

 $\frac{a}{b}$ est égal au quotient (division) de a par b:

$$a \div b = \frac{a}{b} = a \times \frac{1}{b}$$

« diviser c'est multiplier par l'inverse »

■ Exemple 4.10

$$3 \div 7 = \frac{3}{7}$$

$$5 \div \frac{9}{13} = \frac{5}{\left(\frac{9}{13}\right)} = 5 \times \frac{13}{9} = \frac{65}{9}$$

$$3 \div \frac{1}{7} = 3 \times 7 = 21$$

$$\frac{-1}{7} \div \frac{-5}{3} = \frac{-1}{7} \times \frac{3}{-5} = \frac{3}{7 \times 5}$$

$$\frac{3}{4} \div \frac{-5}{8} = \frac{3}{4} \times \frac{8}{-5} = \frac{3}{4} \times \frac{2 \times 4}{-5} = -\frac{3 \times 2}{5} = -\frac{6}{5}$$

4.5.1 Exercices: inverses et quotients

Pour diviser par une fraction, on multiplie par son inverse!

■ Exemple 4.11

$$\frac{4}{3} \div \frac{1}{2} = \frac{4}{3} \times \frac{2}{1} = \frac{8}{3}$$

$$\frac{4}{3} \div \frac{2}{5} = \frac{4}{3} \times \frac{5}{2}$$
$$= \frac{20}{2}$$

$$3 \div \frac{2}{5} = 3 \times \frac{5}{2}$$
$$= \frac{15}{2}$$

Example 4.11
$$\frac{4}{3} \div \frac{1}{2} = \frac{4}{3} \times \frac{2}{1}$$

$$= \frac{8}{3}$$

$$\frac{4}{3} \div \frac{2}{5} = \frac{4}{3} \times \frac{5}{2}$$

$$3 \div \frac{2}{5} = 3 \times \frac{5}{2}$$

$$= \frac{15}{2}$$

$$= \frac{2}{30}$$

Exercice 13 — **a**. a) Écrire sous forme d'une fraction simplifiée au maximum :

$$9 \div \frac{1}{4} = \dots$$

$$10 \div \frac{3}{4} = \dots$$

$$\frac{5}{12} \div 3 = \dots$$

b) Entourez la bonne réponse

$1/8 \div \frac{1}{2}$ est égal à	$\frac{1}{2} \div 8$	$8 \div 2$	8×2	2 ÷ 8
$2/\frac{4}{5} \div 3$ est égal à	$\frac{4}{5} \div \frac{3}{1}$	$\frac{4}{5} \div \frac{1}{3}$	$\frac{4}{5} \times \frac{1}{3}$	4
$3/\ldots$ est égal à $\frac{1}{6}$	$\frac{5}{6} \div 5$	$\frac{1}{11} \div \frac{6}{11}$	$\frac{1}{12} \div \frac{1}{2}$	$\frac{1}{3} \div 2$

c) Écrire sous forme d'une fraction simplifiée au maximum : :

$\frac{2}{3} \times \frac{5}{7} = \dots $	$4 \div \frac{1}{5} = \dots$
$\frac{2}{3} \div \frac{5}{7} = \dots$	$\frac{2}{3} \div 5 = \dots$
$4 \times \frac{1}{5} = \dots$	$\frac{2}{3} \times 5 = \dots$

d) Écrire sous forme d'une fraction. Simplifier au maximum.

$$\frac{\left(\frac{3}{4}\right)}{\left(\frac{5}{2}\right)} = \frac{\left(\frac{-3}{8}\right)}{\left(\frac{9}{16}\right)} = \frac{\left(\frac{14}{3}\right)}{7} = \frac{\left(\frac{7}{2}\right)}{\left(\frac{14}{5}\right)} = \frac{14}{\left(\frac{14}{5}\right)} = \frac{14}{\left(\frac{14}{5}$$

■ Exemple 4.12 — Fractions, nombresa décimaux relatifs. Simplifier sous forme de fraction irréductible.

$$\frac{1}{5} \div 0,3 = \frac{1}{5} \div \frac{3}{10} \\
= \frac{1}{5} \times \frac{10}{3} \\
= \frac{1}{5} \times \frac{10}{3}$$

$$= \frac{-8}{30} \\
= \frac{2}{3}$$

$$= \frac{4}{15}$$

$$-\frac{4}{3} \times 0,2 = -\frac{4}{3} \times \frac{2}{10}$$

$$= -\frac{8}{30}$$

$$= -\frac{4}{15}$$

$$= -\frac{4}{15}$$

$$= \frac{24}{100} = 0,24$$

$$3 \div 0,5 = \frac{3}{25} \div \frac{1}{2}$$

$$= 3 \times \frac{6}{10}$$

$$= 3 \times \frac{10}{6}$$

$$= \frac{30}{6}$$

$$= \frac{24}{100} = 0,24$$

Exercice 14 — **a**. a) Écrire sous forme d'un nombre décimal :

b) Écrire sous forme d'une fraction irréductible

$-\frac{1}{4} \times \frac{2}{3} = \dots$	$\frac{3}{4} \div \frac{-2}{5} = \dots$
$-\frac{1}{3} \times 4 = \dots$	$\frac{-1}{5} \div 7 = \dots$
$-2 \times \frac{3}{4} = \dots$	$-\frac{1}{5} \div \frac{-2}{3} = \dots$
$-\frac{1}{6} \times \frac{-1}{6} = \dots$	$-\frac{1}{7} \div 7 = \dots$
	$-3 \div \frac{-2}{5} = \dots$
$-3 \times \frac{-2}{5} = \dots$	$12 \div \frac{-2}{10} = \dots$

c) Complète par un nombre décimal, un entier ou une fraction irréductible :

$\frac{2}{5} \times \frac{5}{2} = \boxed{}$		$\frac{2}{10} \div$	=1	1,7 ×	=1
0,1 ×	= 1	$\frac{20}{6}$ ×	= 1	2,1 ×	=1
$\frac{5}{3}$ ×	= 1	$\frac{1}{3}$ ×	=1	$0.15 \times \boxed{}$	= 1

4.5.2 Exercices extra

Exercice 15

En utilisant les chiffres de 0 à 9 pas plus qu'une fois rend l'égalité vraie. Combien de solutions différentes trouves-tu?

$$\times \frac{}{} = \frac{3}{2}$$

$$\times \frac{1}{2} = \frac{3}{2}$$

$$\frac{\left| \frac{1}{2} \right|}{\left| \frac{1}{2} \right|} \times \frac{\left| \frac{1}{2} \right|}{2} = \frac{3}{2}$$

$$\frac{||\cdot||}{|\cdot||} \times \frac{|\cdot||}{|\cdot||} = \frac{3}{2}$$

Exercice 16

Trouve des solutions en utilisant les chiffres de 0 à 9 pas plus qu'une fois. Combien de solutions différentes trouves-tu?

4.6 Exercices : fractions d'une quantité et ratios

x de y signifie $x \times y$. **Exemple 4.13** 3 de $5 = 3 \times 5$; $\frac{1}{5}$ de $\frac{2}{3}$ de $60 = \frac{1}{5} \times \frac{2}{3} \times 60 = 8$

Exercice 17 Écrire les expressions suivantes sous forme d'entiers. Montrer les simplifications.

Exercice 18

Éva a 21 \in . Elle dépense $\frac{4}{7}$ de son argent pour un cadeau. Combien coûte le cadeau?

Exercice 19

Les sept vingt-cinquièmes de 15000 participants à un sondage sont mineures. Combien de mineurs ont participé?

Exercice 20

Un collège compte 660 garçons et 840 filles. Les $\frac{2}{5}$ des garçon et $\frac{3}{7}$ des filles font partie du club de théatre.

- 1) Donner le nombre de filles et de garcons qui font partie du club de théatre.
- 2) Quelle est la proportion d'élèves qui font théatre?

Un ratio est une paire de deux nombres qui fait une comparaison, ou décrit un quotient. On peut l'écrire $\frac{a}{b}$ ou « a: b » ou encore « a pour b ». a est le premier terme du ratio, et b est le second terme.

■ Exemple 4.14 — On simplifie un ratio en divisant par un facteur commun.

- a) Le ratio du nombre de côtés d'un triangle pour le nombre de côtés d'un carré est de $\frac{3}{4}$, ou 3: 4.
- b) 5 ordinateurs pour 20 élèves = 5: 20 = 1: 4
- c) 12 filles pour 30 élèves = 12: $30 = \dots$
- e) parcourir $60 \,\mathrm{km}$ en $3 \,\mathrm{h} = 60 \colon 3 = \dots$

Exercice 21 Simplifier les ratios suivants sous la forme d'un ratio de nombres entiers.

$$9: 12 = ...$$
 $8: 10 = ...$
 $14: 21: 35 = ...$
 $9: 15 = ...$
 $4: 5 = ...$
 $60: 80: 100 = ...$
 $10: 16 = ...$
 $32: 48 = ...$
 $84: 96: 20 = ...$
 $16: 10 = ...$
 $64: 96 = ...$
 $128: 96: 40 = ...$

18

■ Exemple 4.15 — Problèmes de partage.

Cindy et Mindy se partagent une somme d'argent avec un ratio de 3: 4.

c est l'argent reçu par Cindy, et m celui reçu par Mindy.

On interprète ceci : Cindy a reçu 3 parts, alors que Mindy en a reçu 4.

montant d'une part = $\frac{c}{3} = \frac{m}{4} = \frac{\text{total}}{7}$

a) Dans cette question Mindy a reçu $30 \in$.

1 part est $\frac{1}{1}$ de

Cindy a reçu

b) Dans cette question on connait le total partagé : 66,5 €.

1 part est $\frac{1}{1}$ de

Cindy a reçu

Exercice 22

Pour chacune des situations suivantes déterminer les montants manquants.

- a) Mork et Cindy se partagent une somme d'argent dans un ratio 5: 2. Mork reçoit 30€.
- b) Mork et Cindy partagent une somme d'argent dans un ratio 3: 2. Mork reçoit 18€.
- c) Mork et Cindy partagent une somme d'argent dans un ratio 6: 4. Mork reçoit 18€.
- d) Cara, Lara et Tara partagent des bonbons dans un ratio 7: 8: 9. Cara reçoit 14 bonbons.

Exercice 23

Pour chaque question, préciser les parts :

- a) On partage 30g dans le ratio 1: 2
- b) On partage 30g dans le ratio 2: 4
- c) On partage 60g dans le ratio 4: 1
- d) On partage 60g dans le ratio 0: 8

- e) On partage 60g dans le ratio 1: 1
- f) On partage 60g dans le ratio $8\colon 8$
- g) On partage 4g dans le ratio 3: 5
- h) On partage 4g dans le ratio 4: 10: 2

Exercice 24

3 angles sont dans un ratio 63: 126: 105. Le plus grand vaut 72°.

- a) Simplifier le ratio des 3 angles au maximum.
- b) Déterminer la mesure des 3 angles.
- c) S'agit-il de 3 angles d'un triangle?

Exercice 25

Les trois angles d'un triangle sont dans le ratio 36: 36: 90.

- a) Simplifier le ratio des 3 angles.
- b) Quelle est la mesure de chaque angle?

4.7 AP Problèmes ratios, fractions, multiplications.....

Exercice 26

- 1) Trouver deux nombres dans le ratio 5: 3 dont la somme est 320,4.
- 2) Trouver deux nombres dans le ratio 7: 5 dont la différence est 320,4.

So	lutio	n										\mathbf{F}	\mathbf{P}	J

Exercice 27

Jadzia, Naomi et Tasha se partagent de l'argent au ratio 2: 3: 7.

Tasha a recu 80€ de plus que Jadzia. Combien ont reçu chacune d'elles?

Solution		$oxed{\mathbf{F}}oxed{\mathbf{P}}oxed{\mathbf{J}}$	

Exercice 28

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

Solution F P J

CLG Jeanne d'Arc, 4^e Année 2022/2023

Exercice 29

Le prix d'un paquet de chocolat est $9.60 \in$. Billy a $13 \in$.

Durant la semaine de Pâques, le magasin offre une remise de $\frac{1}{3}$ du prix normal sur tous les chocolats. Pourra-t-il acheter deux boites de chocolats lors des offres spéciales? Montre tes calculs.

Solution F P J

Exercice 30

Jadzia achète 10 packs de 12 cannettes de boissons gazeuses. Chaque pack coute $5 \in$. Jadzia vend $\frac{2}{3}$ des cannettes à 60 centimes pièce. Elle vend le reste à 30 centimes pièce. Calcule le profit de Jadzia.

Solution F P J

Exercice 31

Sarah veut faire 420 cookies : au chocolat, aux raisins secs, au caramel et aux amandes. $\frac{2}{7}$ des cookies sont aux chocolat. 35% des cookies sont aux raisins secs.

Le ratio nombre de cookies au caramel pour le nombre de cookies aux amandes est de 4: 5.

Trouve le nombre de cookies au caramel.

Solution	\mathbf{F}	P	•][J

Exercice 32

Un avion transporte 500 passagers : hommes, femmes et des enfants.

40% des passagers sont des femmes. Le ratio nombre d'hommes pour nombre de femmes est de 7: 8.

Quel est le nombre d'enfants?

Solution $\mathbf{F} || \mathbf{P} || \mathbf{J}$

CLG Jeanne d'Arc, 4e Année 2022/2023

Exercice 33

Le public d'un cinéma est composé aux $\frac{3}{5}$ de mineurs.

Parmi les mineurs, le ratio nombre de filles pour nombre de garcons est de 2: 7.

Il y a 170 filles dans ce cinémas. Trouver le nombre d'adultes.

Solution F P J

Exercice 34

Pour le match de foot du village, $\frac{3}{7}$ du public est composé d'adultes.

Parmi les mineurs, le ratio nombre de supporters de l'équipe locale pour le nombre de supporters de l'équipe en déplacement est de 5: 3.

Il y a 140 supporters de plus pour l'équipe locale qu'il n'y a de supporters pour l'équipe en déplacement. Trouvez le nombre d'adultes.

Solution F P J

AP Corrections

Exercice 35

- 1) Trouver deux nombres dans le ratio 5: 3 dont la somme est 325.
- 2) Trouver deux nombres dans le ratio 7: 5 dont la différence est 325.

1) 1 part $320.4 \div 8 = 40.05$. Ses nombres sont $40.05 \times 5 = 200.25$ et $40.05 \times 3 = 120.15$ 2) 1 part $320.4 \div 2 = 160, 2$.

Les nombres sont $160.2 \times 7 = 1121.4$ et $160.2 \times 5 = 801$

Exercice 36

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

Exercice 37

Le prix d'un paquet de chocolat est $9.60 \in$. Billy a $13 \in$.

Durant la semaine de Pâques, le magasin offre une remise de $\frac{1}{3}$ du prix normal sur tous les chocolats.

Pourra-t-il acheter deux boites de chocolats lors des offres spéciales? Montre tes calculs.

Solution $\mathbf{F}||\mathbf{P}||\mathbf{J}$ $\frac{1}{3}$ de 9.60 €=3.2 €. 9.60 €-3.20 €=6.40 € le prix d'un paquet de chocolat après la remise. 2×6.40 €=12.80 € , Billy a de quoi payer 2 paquets de chocolat.

Exercice 38

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

CLG Jeanne d'Arc, 4^e Année 2022/2023 Solution

 $|\mathbf{P}||\mathbf{J}$

- 1) 12: 18=6: 9=2: 32) Les jetons bleus constituent $\frac{3}{2+3}=\frac{3}{5}$ du total de jetons.

La probabilité d'obtenir un jeton bleu est de $\frac{3}{5}$.

Exercice 39

Jadzia achète 10 packs de 12 cannettes de boissons gazeuses. Chaque pack coute 5€. Jadzia vend $\frac{2}{3}$ des cannettes à 60 centimes pièce. Elle vend le reste à 30 centimes pièce. Calcule le profit de Jadzia.

Solution

 $|\mathbf{F}||\mathbf{P}||\mathbf{J}|$

$$10 imes 5 = 50$$
 $igoriangle$ de dépenses

$$10 \times 12 = 120$$
 cannelles au total.

$$10 \times 5 = 50$$
 € de dépenses.
$$10 \times 12 = 120 \text{ cannelles au lotal.}$$
 $\frac{2}{3} \times 120 = 80 \text{ canneles sont vendues à 60 centimes.}$ Les 40 restantes à 30 centimes.

Recette:
$$80 \times 0.6 + 40 \times 0.3 = 48 + 12 = 60 \in$$
.

Dépense :
$$5 \times 10 = 50$$

Dépense :
$$5 \times 10 = 50 \in$$

Profits : $60 \in -50 \in = 10 \in$

Exercice 40

Sarah veut faire 420 cookies : au chocolat, aux raisins secs, au caramel et aux amandes.

 $\frac{2}{7}$ des cookies sont aux chocolat. 35% des cookies sont aux raisins secs.

Le ratio nombre de cookies au caramel pour le nombre de cookies aux amandes est de 4: 5.

Trouve le nombre de cookies au caramel.

 $|\mathbf{F}||\mathbf{P}||\mathbf{J}|$

Cookies au chocolat =
$$\frac{2}{7} \times 420 = 20 \times \frac{42}{7} = 20 \times 6 = 120$$

Cookies aux raisins = $\frac{35}{100} \times 420 = 147$
Cookies au caramel et cookies aux amandes : $420 - 120 - 147 = 153$

Cookies au caramel et cookies aux amandes :
$$420-120-147=153$$

caramel: amandes = 4: 5, total de
$$153$$
 en 9 parts.

1 part = $\frac{153}{9}$ = 17, Cookies au caramel = 4 parts, donc $4 \times 17 = 68$.

Exercice 41

Un avion transporte 500 passagers : hommes, femmes et des enfants.

40% des passagers sont des femmes. Le ratio nombre d'hommes pour nombre de femmes est de 7: 8.

Quel est le nombre d'enfants?

Solution

 $40\% \times 500 = \frac{40}{100} \times 500 = 200$ est le nombre de femmes. hommes : femmes = 7 : 8. $1_{\rm part} = 200 \div 8 = 25.$ hommes = $7_{\rm parts} = 7 \times 25 = 175.$ total des enfants est 500 - 175 - 200 = 125.

$$1_{\text{part}} = 200 \div 8 = 25.$$

hommes =
$$7 \text{ parts} = 7 \times 25 = 175$$
.

total des enfants est
$$500-175-200=125$$

Exercice 42

Le public d'un cinéma est composé aux $\frac{3}{5}$ de mineurs.

Parmi les mineurs, le ratio nombre de filles pour nombre de garcons est de 2:7.

Il y a 170 filles dans ce cinémas. Trouver le nombre d'adultes.

Solution

filles: garcons = 2: 7, total de 9 parts.
$$1_{\rm part} = \frac{170}{2} = 85.$$

Folal de mineurs : 9 parls $= 9 \times 85 = 765$.

public complet

 $\frac{3}{5}$ de l'ensemble du public sont des mineurs. $\frac{2}{5}$ sont des adultes. Le ratio mineurs: adultes =3:2. Fotal adultes $=2\times(765\div3)=510$.

Exercice 43

Pour le match de foot du village, $\frac{3}{7}$ du public est composé d'adultes.

Parmi les mineurs, le ratio nombre de supporters de l'équipe locale pour le nombre de supporters de l'équipe en déplacement est de 5: 3.

Il y a 140 supporters de plus pour l'équipe locale qu'il n'y a de supporters pour l'équipe en déplacement. Trouvez le nombre d'adultes.

Solution

 $|\mathbf{F}||\mathbf{P}||\mathbf{J}|$

supporter locaux : supporters en déplacement =5 : 3, total de 9 parts, et 2 parts de différence.

$$1_{\text{part}} = \frac{140}{2} = 70.$$

Fotal de mineurs : 8 parts $= 8 \times 70 = 560$.

public complet

 $\frac{3}{7}$ de l'ensemble du public sont des mineurs. $\frac{4}{7}$ sont des adultes. Le ratio mineurs : adultes =3:4. Pdultes $=3\times(560\div4)=420.$

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{ad + bc}{bd}$$

Fra

Sommes de fractions:

Ramener au même

dénominateur

 $a,b \in \mathbb{R}$

Inverse de
$$\frac{a}{b} = \frac{1}{\frac{a}{b}} = \frac{b}{a}$$

Inverse de $b \neq 0$ se note $\frac{1}{b}$ $b \times \frac{1}{b} = 1$

L'inverse de 0 n'existe pas $\frac{1}{b}$

Fract

 $\frac{a}{b}$

Diviser revient à multiplier par l'inverse :

$$\frac{a}{b} \div \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

ction comme quotient:

$$\frac{a}{b} = a \div b$$

Simplification/Amplification:

$$\frac{a}{b} = \frac{a}{b} \times \frac{c}{c} = \frac{a \times c}{b \times c}$$

$$b \neq 0$$

Multiplication de fractions :

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Règles des signes :

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$
$$\frac{-a}{-b} = \frac{a}{b}$$

L'unité :

$$\frac{b}{b} = b \times \frac{1}{b} = 1$$

on comme multiplication:

$$\frac{a}{b} = a \times \frac{1}{b}$$

Fractions de fractions :

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{1}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$