Results

Descriptives

Descriptives

	Adverts	Sales	Airplay	Image
N	200	200	200	200
Missing	0	0	0	0
Mean	614	193	27.5	6.77
Median	532	200	28.0	7.00
Standard deviation	486	80.7	12.3	1.40
Minimum	9.10	10.0	0.00	1.00
Maximum	2272	360	63.0	10.0
Skewness	0.853	0.0439	0.0597	-1.29
Std. error skewness	0.172	0.172	0.172	0.172
Kurtosis	0.236	-0.680	-0.0342	3.74
Std. error kurtosis	0.342	0.342	0.342	0.342
Shapiro-Wilk W	0.925	0.985	0.993	0.877
Shapiro-Wilk p	<.001	0.030	0.408	<.001

Plots

Adverts

Sales

Airplay

Image

Relationships, Prediction, and Group Comparisons

You have entered a numeric dependent variable and several numeric independent variables. Hence, <u>linear regression analysis</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Linear Regression

- Drop your dependent variable in the box below Dependent Variable
- Drop your independent variables in the box below Covariates

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Correlation Matrix

Correlation Matrix

		Adverts	Sales	Airplay	Image
Adverts	Pearson's r p-value	_ _			
Sales	Pearson's r p-value	0.578 *** <.001	_ _		
Airplay	Pearson's r p-value	0.102 0.151	0.599*** <.001	_	
Image	Pearson's r p-value	0.081 0.256	0.326 *** <.001	0.182 ^{**} 0.010	_

Note. * p < .05, ** p < .01, *** p < .001

Linear Regression

Model Fit Measures

				Overall Model Test			est
Model	R	\mathbb{R}^2	Adjusted R ²	F	df1	df2	р
1	0.578	0.335	0.331	99.6	1	198	<.001
2	0.815	0.665	0.660	129.5	3	196	<.001

Model Comparisons

Comparison							
Model		Model	ΔR^2	F	df1	df2	р
1	-	2	0.330	96.4	2	196	<.001

Model Specific ResultsModel 1Model 2

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	433688	1	433688	99.6	<.001
Residuals	862264	198	4355		

Note. Type 3 sum of squares

			95% Confide				
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate
Intercept	134.1399	7.53657	119.2777	149.002	17.80	<.001	
Adverts	0.0961	0.00963	0.0771	0.115	9.98	<.001	0.578

Assumption Checks

Q-Q Plot

Residuals Plots

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	333332	1	333332	150.3	<.001
Airplay	325860	1	325860	147.0	<.001
Image	45853	1	45853	20.7	<.001
Residuals	434575	196	2217		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

			95% Confidence Interval				
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate
Intercept	-26.6130	17.35000	-60.8296	7.6037	-1.53	0.127	
Adverts	0.0849	0.00692	0.0712	0.0985	12.26	<.001	0.511
Airplay	3.3674	0.27777	2.8196	3.9152	12.12	<.001	0.512
Image	11.0863	2.43785	6.2786	15.8941	4.55	<.001	0.192

Assumption Checks

Q-Q Plot

Residuals Plots

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.