Mis-Classified, Binary, Endogenous Regressors: Identification and Inference

Francis J. DiTraglia Camilo García-Jimeno

University of Pennsylvania

January 7th, 2018

Additively Separable Model

$$y = h(T^*, \mathbf{x}) + \varepsilon$$

- ▶ y − Outcome of interest
- ► *h* − Known or unknown function
- ▶ T* Unobserved, endogenous binary regressor
- ► T Observed, mis-measured binary surrogate for T*
- x Exogenous covariates
- \triangleright ε Mean-zero error term

What is the Effect of T^* ?

Re-write the Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$
$$\beta(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$$
$$c(\mathbf{x}) = h(0, \mathbf{x})$$

This Paper:

- ▶ Does a discrete instrument z (typically binary) identify $\beta(\mathbf{x})$?
- ▶ What assumptions are required for z and the surrogate T?
- ▶ How to carry out inference for a mis-classified regressor?

Example: Smoking and Birthweight (SNAP Trial)

Coleman et al. (N Engl J Med, 2012)

RCT with 1050 pregnant smokers in England: 521 given nicotine patches, the rest given placebo patches.

- ▶ y Birthweight
- ▶ T* True smoking behavior
- ► T Self-reported smoking behavior
- x Mother characteristics
- ▶ z Indicator of nicotine patch

"Baseline" Assumptions I – Model & Instrument

Additively Separable Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon, \quad \mathbb{E}[\varepsilon] = 0$$

Valid & Relevant Instrument: $z \in \{0, 1\}$

- $ightharpoonup \mathbb{P}(T^* = 1 | \mathbf{x}, z = 1) \neq \mathbb{P}(T^* = 1 | \mathbf{x}, z = 0)$
- $\qquad \mathbb{E}[\varepsilon|\mathbf{x},z] = 0$
- ▶ $0 < \mathbb{P}(z = 1 | \mathbf{x}) < 1$

If T^* were observed, these conditions would identify β .

"Baseline" Assumptions II – Measurement Error

Notation: Mis-classification Rates

"\tau"
$$\alpha_0(\mathbf{x}, z) \equiv \mathbb{P}(T = 1 | T^* = 0, \mathbf{x}, z)$$

"
$$\downarrow$$
" $\alpha_1(\mathbf{x}, z) \equiv \mathbb{P}(T = 0 | T^* = 1, \mathbf{x}, z)$

Mis-classification unaffected by z

$$\alpha_0(\mathbf{x}, z) = \alpha_0(\mathbf{x}), \quad \alpha_1(\mathbf{x}, z) = \alpha_1(\mathbf{x})$$

Extent of Mis-classification

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$
 (T is positively correlated with T^*)

Non-differential Mis-classification

$$\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon|\mathbf{x}, z, T^*]$$

Identification Results from the Literature

Mahajan (2006) Theorem 1, Frazis & Loewenstein (2003) $\mathbb{E}[\varepsilon|\mathbf{x},z,T^*]=0, \text{ plus "Baseline"} \implies \beta(\mathbf{x}) \text{ identified}$ Requires (T^*,z) jointly exogenous.

Mahajan (2006) A.2

 $\mathbb{E}[\varepsilon|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon|\mathbf{x},T^*]$, plus "Baseline" $\Longrightarrow \beta(\mathbf{x})$ identified Allows T^* endogenous, but we prove this claim is false.

Open Question

Do the baseline assumptions identify $\beta(\mathbf{x})$ when T^* is endogenous?

Sharp Identified Set under Baseline Assumptions

Theorem

Under the baseline assumptions, the sharp identified set for $\beta(\mathbf{x})$ is never a singleton, regardless of how many (discrete) values the instrument z takes on.

Point identification from slightly stronger assumptions?

Point Identification: 1st Ingredient

Reparameterization

$$\begin{aligned} \theta_1(\mathbf{x}) &= \beta(\mathbf{x}) / \left[1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right] \\ \theta_2(\mathbf{x}) &= \left[\theta_1(\mathbf{x}) \right]^2 \left[1 + \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right] \\ \theta_3(\mathbf{x}) &= \left[\theta_1(\mathbf{x}) \right]^3 \left[\left\{ 1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right\}^2 + 6\alpha_0(\mathbf{x}) \left\{ 1 - \alpha_1(\mathbf{x}) \right\} \right] \\ & \left[\beta(\mathbf{x}) = 0 \iff \theta_1(\mathbf{x}) = \theta_2(\mathbf{x}) = \theta_3(\mathbf{x}) = 0 \right] \end{aligned}$$

Lemma

Baseline Assumptions $\implies Cov(y, z|\mathbf{x}) = \theta_1(\mathbf{x})Cov(z, T|\mathbf{x}).$

Point Identification: 2nd Ingredient

Assumption (II)

$$\mathbb{E}[\varepsilon^2|\mathbf{x},z] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$$

Lemma

(Baseline) + (II)
$$\Longrightarrow$$
 $Cov(y^2, z|\mathbf{x}) = 2Cov(yT, z|\mathbf{x})\theta_1(\mathbf{x}) - Cov(T, z|\mathbf{x})\theta_2(\mathbf{x})$

Corollary

(Baseline) + (II) + $[\beta(\mathbf{x}) \neq 0] \implies [\alpha_1(\mathbf{x}) - \alpha_0(\mathbf{x})]$ is identified.

Hence, $\beta(\mathbf{x})$ is identified if mis-classification is one-sided.

Point Identification: 1st Ingredient

Assumption (III)

- (i) $\mathbb{E}[\varepsilon^2|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon^2|\mathbf{x},z,T^*]$
- (ii) $\mathbb{E}[\varepsilon^3|\mathbf{x},z] = \mathbb{E}[\varepsilon^3|\mathbf{x}]$

Lemma

$$(Baseline) + (II) + (III) \implies$$

$$Cov(y^3, z|\mathbf{x}) = 3Cov(y^2T, z|\mathbf{x})\theta_1(\mathbf{x}) - 3Cov(yT, z|\mathbf{x})\theta_2(\mathbf{x}) + Cov(T, z|\mathbf{x})\theta_3(\mathbf{x})$$

Point Identification Result

Theorem

(Baseline) + (II) + (III) $\implies \beta(\mathbf{x})$ is point identified. If $\beta(\mathbf{x}) \neq 0$, then $\alpha_0(\mathbf{x})$ and $\alpha_1(\mathbf{x})$ are likewise point identified.

Proof Sketch

- 1. $\beta(\mathbf{x}) = 0 \iff \theta_1(\mathbf{x}) = 0$ so suppose this is not the case.
- 2. Lemmas: full-rank linear system in $\theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \theta_3(\mathbf{x})$ & observables.
- 3. Non-linear eqs. relating $\theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \theta_3(\mathbf{x})$ to $\beta(\mathbf{x})$ and $\alpha_0(\mathbf{x}), \alpha_1(\mathbf{x})$. Show that solution exists and is unique.

Sufficient Conditions for (II) and (III)

- (i) T is conditionally independent of (ε, z) given (T^*, \mathbf{x})
- (ii) z is conditionally independent of ε given \mathbf{x}

Just-Identified System of Moment Equalities

Suppress dependence on x to simplify the notation from here on. . .

Collect Lemmas from Above:

$$\begin{aligned} \mathsf{Cov}(y,z) - \mathsf{Cov}(T,z)\theta_1 &= 0 \\ \mathsf{Cov}(y^2,z) - 2\mathsf{Cov}(yT,z)\theta_1 + \mathsf{Cov}(T,z)\theta_2 &= 0 \\ \mathsf{Cov}(y^3,z) - 3\mathsf{Cov}(y^2T,z)\theta_1 + 3\mathsf{Cov}(yT,z)\theta_2 - \mathsf{Cov}(T,z)\theta_3 &= 0 \end{aligned}$$

Notation: Observed Data Vector

$$\mathbf{w}'_{i} = (T_{i}, y_{i}, y_{i}T_{i}, y_{i}^{2}, y_{i}^{2}T_{i}, y_{i}^{3})$$

Just-Identified System of Moment Equalities

$$oxed{\mathbb{E}\left[\left(\mathbf{\Psi}'(oldsymbol{ heta})\mathbf{w}_i-oldsymbol{\kappa}
ight)\otimes\left(egin{array}{c}1\z_i\end{array}
ight)
ight]}=\mathbf{0}$$

Weak Identification Problem

Moment conditions are uninformative about (α_0, α_1) when β is small.

Non-standard Inference Problem

- ▶ β small \Rightarrow moment equalities uninformative about (α_0, α_1)
- (α_0, α_1) could be on the boundary of the parameter space
- ightharpoonup Partial identification bounds remain informative even if eta is small or zero
- Same problem for other estimators from the literature but hasn't been pointed out...

Our Approach

Identification-robust inference combining equality and inequality moment conditions based on generalized moment selection (GMS)

Inference With Moment Equalities and Inequalities

Moment Conditions

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] \ge 0, \quad j = 1, \cdots, J$$

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] = 0, \quad j = J + 1, \cdots, J + K$$

Test Statistic

$$T_{n}(\vartheta) = \sum_{j=1}^{J} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]_{-}^{2} + \sum_{j=J+1}^{J+K} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]^{2}$$

$$[x]_{-} = \min \{x, 0\}$$

$$\bar{m}_{n,j}(\vartheta) = n^{-1} \sum_{i=1}^{n} m_{i}(\mathbf{w}_{i}, \vartheta)$$

$$\widehat{\sigma}_{n,j}^2(\vartheta) = \text{consistent est. of AVAR}\left[\sqrt{n} \ \bar{m}_{n,j}(\vartheta)\right]$$

Moment Inequalities: Part I

$$\alpha_0(\mathbf{x}) \leq p_k \leq 1 - \alpha_1$$
 becomes $\mathbb{E}\left[m_{1k}'(\mathbf{w}_i, \boldsymbol{\vartheta})\right] \geq \mathbf{0}$ for all k where

$$m_{1k}^{I}(\mathbf{w}_{i}, \boldsymbol{\vartheta}) \equiv \left[\begin{array}{c} \mathbf{1}(z_{i} = k)(T - \alpha_{0}) \\ \mathbf{1}(z_{i} = k)(1 - T_{i} - \alpha_{1}) \end{array} \right]$$

Moment Inequalities: Part II

For all k, we have $\mathbb{E}[m_{2k}^l(\mathbf{w}_i, \boldsymbol{\vartheta}, \mathbf{q}_k)] \geq 0$ where

$$m_{2k}^{l}\left(\mathbf{w}_{i},\vartheta,\mathbf{q}_{k}\right) \equiv \begin{bmatrix} y_{i}\mathbf{1}\left(z_{i}=k\right)\left\{\left(T_{i}-\alpha_{0}\right)-\mathbf{1}\left(y_{i}\leq\underline{q}_{0k}\right)\left(1-T_{i}\right)\left(\frac{1-\alpha_{0}-\alpha_{1}}{\alpha_{1}}\right)\right\}\\ -y_{i}\mathbf{1}\left(z_{i}=k\right)\left\{\left(T_{i}-\alpha_{0}\right)-\mathbf{1}\left(y_{i}>\overline{q}_{0k}\right)\left(1-T_{i}\right)\left(\frac{1-\alpha_{0}-\alpha_{1}}{\alpha_{1}}\right)\right\}\\ y_{i}\mathbf{1}\left(z_{i}=k\right)\left\{\left(T_{i}-\alpha_{0}\right)-\mathbf{1}\left(y_{i}\leq\underline{q}_{1k}\right)T_{i}\left(\frac{1-\alpha_{0}-\alpha_{1}}{1-\alpha_{1}}\right)\right\}\\ -y_{i}\mathbf{1}\left(z_{i}=k\right)\left\{\left(T_{i}-\alpha_{0}\right)-\mathbf{1}\left(y_{i}>\overline{q}_{1k}\right)T_{i}\left(\frac{1-\alpha_{0}-\alpha_{1}}{1-\alpha_{1}}\right)\right\} \end{bmatrix}$$

and $\mathbf{q}_k \equiv (\underline{q}_{0k}, \overline{q}_{0k}, \underline{q}_{1k}, \overline{q}_{1k})'$ defined by $\mathbb{E}[h_k^I(\mathbf{w}_i, \boldsymbol{\vartheta}, \mathbf{q}_k)] = 0$ with

$$h_{k}^{I}(\mathbf{w}_{i}, \boldsymbol{\vartheta}, \mathbf{q}_{k}) = \begin{bmatrix} \mathbf{1}(y_{i} \leq \underline{q}_{0k})\mathbf{1}(z_{i} = k)(1 - T_{i}) - \left(\frac{\alpha_{1}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(T_{i} - \alpha_{0}) \\ \mathbf{1}(y_{i} \leq \overline{q}_{0k})\mathbf{1}(z_{i} = k)(1 - T_{i}) - \left(\frac{1 - \alpha_{0}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(1 - T_{i} - \alpha_{1}) \\ \mathbf{1}(y_{i} \leq \underline{q}_{1k})\mathbf{1}(z_{i} = k)T_{i} - \left(\frac{1 - \alpha_{1}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(T_{i} - \alpha_{0}) \\ \mathbf{1}(y_{i} \leq \overline{q}_{1k})\mathbf{1}(z_{i} = k)T_{i} - \left(\frac{\alpha_{0}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(1 - T_{i} - \alpha_{1}) \end{bmatrix}$$

Inference via Generalized Moment Selection

Andrews & Soares (2010)

Moment Selection Step

If
$$\frac{\sqrt{n}\,\bar{m}_{n,j}(\vartheta_0)}{\widehat{\sigma}_{n,j}(\vartheta_0)} > \sqrt{\log n}$$
 then drop inequality j

Critical Value

- $\sqrt{n}\, \bar{m}_n(\vartheta_0) \to_d$ normal limit with covariance matrix $\Sigma(\vartheta_0)$
- ▶ Use this to bootstrap the limit distribution of the test statistic.

Theoretical Guarantees

Uniformly valid test of H_0 : $\vartheta=\vartheta_0$ regardless of whether ϑ_0 is identified.

Not asymptotically conservative.

Drawback

Joint test for the whole parameter vector but we're only interested in β

Bonferroni-Based Inference Procedure

Leverage Special Structure of Model

- β only enters MCs through $\theta_1 = \beta/(1 \alpha_0 \alpha_1)$
- ▶ Inference for θ_1 is standard if z is a strong IV.
- (κ, \mathbf{q}) strongly identified under null for (α_0, α_1)

Procedure

- 1. Concentrate out $(\theta_1, \kappa, q) \implies$ joint GMS test for (α_0, α_1)
- 2. Invert \implies $(1 \delta_1) \times 100\%$ confidence set for (α_0, α_1)
- 3. Project \implies CI for $(1 \alpha_0 \alpha_1)$
- 4. Construct standard $(1 \delta_2) \times 100\%$ IV CI for θ_1
- 5. Bonferroni \implies $(1 \delta \delta_2) \times 100\%$ CI for β

Conclusion

Summary

- Endogenous, mis-classified binary treatment.
- ▶ Usual (1st moment) IV assumption fails to identify β
- Derive sharp identified set.
- Stronger assumptions point identify β
- Identification-Robust Inference incorportating equality and inequality moment conditions.

Extensions / Future Work

- Arbitrary discrete T*
- Endogenous Mis-classification: "returns to lying"