

氧化还原反应

日期:	时间:	姓名:	
Date:	Time:	Name:	

_	
W	

初露锋芒

 $A \times B \times C \times D$ 四种元素在周期表中分别处于元素 X 的四周(如图)已知元素 X 最高价氧化物的化学式为 $X_2()_5$,且五种元素中有一种元素的原子半径是它们所处的同族元素中最小的。

	В	
Α	Χ	С
	D	

回答下列各题:

(1) 写出各元素的名称: A B C D X	0
-------------------------	---

(2) 写出 C、D、X 气态氢化物最高价氧化物对应水化物的化学式, 其酸性由强到弱的顺序为

(3) 写出 A、B、X 气态氢化物的化学式, 其稳定性由强到弱的顺序为____。

学习目标

1、掌握电子转移方向和数目的方法。

2、掌握根据电子得失守恒进行化学方程式的配平。

&

3、掌握氧化性和还原性的比较。

重难点

4、学会简单的利用得失守恒的计算问题。

根深蒂固

一、氧化还原基本概念

1. 基本概念

反应物	表现性质	反应本质	变化过程	反应类型	产物	口诀
还原剂						
氧化剂						

化合价有升降的原因是	
化可用作用库引尿凶足	0

2. 电子转移的方向和数目

(1) 方向

氧化剂是化合价降低的,得到电子。还原剂是化合价升高,失去电子。因此方向上是由还原剂到氧化剂。

(2) 数目

数目上保证得到与失去的相等即可,元素单个原子化合价的变化×化合价变化的原子个数。难点往往 是哪些原子的化合价发生了变化,哪些原子的化合价没有发生变化。

【练一练】MnO ₂ + 4He	$Cl(x) \xrightarrow{\triangle} MnCl_2 +$	$Cl_2\uparrow + 2H_2O$			
氧化剂是; ;	还原剂是。	电子转移的方向是:	曲	_到	. 0
当 4mol 的 HCl 被氧化	L 时,转移电子数为	个。			

二、根据电子得失守恒进行化学方程式的配平

1. 配平原则: 守恒律

- (1) 在整个氧化—还原反应中,氧化剂得到电子与还原剂失去电子总数相等;
- (2) 在整个氧化—还原反应中,元素化合价升高与降低的总数相等;
- (3) 氧化还原反应亦遵守质量守恒定律(反应前后元素种类、原子个数、元素质量等保持不变)。

2. 配平方法

一标、二找、三定、四平、五查

3. 化合价变化类型

- (1) 普通的氧化还原反应
- (2) 部分氧化还原反应 (比如二氧化锰和浓盐酸反应,浓盐酸部分体现还原性,部分体现酸性)
- (3) 歧化反应
- (4) 归中反应
- (5) 复杂的氧化还原反应(多种元素得电子,或者多种元素失电子)

注意点:

当同一反应中,氧化反应和还原反应出现在同一元素上时,要遵循化合价不交叉变化原则。

【练一练】

配平下列反应方程式:

(1)
$$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO\uparrow + H_2O$$

(3)
$$KI+ KIO_3+ H_2SO_4 \rightarrow K_2SO_4+ I_2+ H_2O$$

(4)
$$H_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow CO_2 + K_2SO_4 + MnSO_4 + H_2O_4$$

三、氧化性还原性的比较

1. 根据元素化合价判断

2. 根据金属活动性顺序进行判断

金属活动性强的金属的还原性_______,对应金属阳离子的氧化性_____。 金属活动性顺序:

单质的还原性, 从左到右, 依次降低

K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au

对应阳离子的氧化性, 依次增强

	3. 根据非金属活动性	顺序进行判断			
	非金属活动性强的非金	金属单质氧化性	,	对应阴	离子的还原性。
	非金属活动性顺序:	单质的氧化性依次	减弱		
		<u>F Cl O Br I</u> 对应阴离子的氧化性	S	구보	
		对应例每 1 的氧化 压。	似 (人) 宣	浊	
	4. 根据化学反应自发	进行的方向判断			
	氧化剂+还原剂→还原	产物+氧化产物			
	一般的,在同一氧化-	还原反应中:			
	氧化性:				
	还原性:				
	5. 根据产物的氧化或				
	如: 2Fe+Cl ₂ →2FeCl ₃	3Fe+2O ₂ 点燃►Fe ₃	O ₄	Fe+S→	FeS
	氧化性:				
	注意: 物质的氧化性或	过还原性的强弱只决定	子得到	到或失去	电子的难易,与得失电子的多少无关。
	如还原性: Na>Mg>	Al,氧化性:浓硝酸	>稀硝	í酸 。	
四、	与氧化还原反应有	关的计算			
	1. 求氧化剂、还原剂	或者氧化产物、还原	产物的]物质的量	上之比或者质量之比
	【练习1】一定条件下	下硝酸铵受热分解的未	配平4	上学方程	式为:
	NH	4NO ₃ — HNO ₃	+	N_2 +	H_2O ,
	在反应中被氧化与被运	医原的氮原子数之比为	J ()	
	A. 5:3	B. 5:4	C.	1:1	D. 3:5
	2. 根据比例关系进行	解题			
	【练习2】(双选)在	一定条件下,硝酸铵分	分解反,	应的方程	式为:
	4NH ₄ NC	$O_3 \rightarrow N_2 \uparrow + 6NH_3 \uparrow + 3S$	SO ₂ ↑ +	$SO_3\uparrow + 7$	$^{\prime}\mathrm{H}_{2}\mathrm{O}$,
	当有 1mol 电子转移时	」 ,下列说法错误的是	ε ()	
	A. 有 0.5mol 硫原子	被还原		B. 有	I/3mol 氮原子被氧化
	C. 有 2/3 mol 硫酸铵	分解		D. 有	0.75mol 二氧化硫生成
	3. 利用得失电子守恒				
				ıL 0.100 ı	mol·L ⁻¹ Na ₂ S ₂ O ₃ 溶液恰好把 224mL(标准 状 况
卜)	Cl ₂ 完全转化为 Cl¯离)	
	A. $S^{2^{-}}$	B. S	C.	$SO_3^{2^-}$	D. SO ₄ ²⁻

枝繁叶茂

知识点 1: 氧化还原反应的基础	
【 例1】(双选) ClO ₂ 是一种杀菌效率	高、二次污染小的水处理剂。实验室可通过以下反应制得 ClO ₂ : 2KClO ₃
$+H_2C_2O_4 + H_2SO_4 \rightarrow 2ClO_2\uparrow + K_2SO_4 +$	- 2CO ₂ ↑ + 2H ₂ O, 下列说法正确的是()
A. KClO ₃ 在反应中得到电子	B. H ₂ C ₂ O ₄ 在反应中被氧化
C. ClO ₂ 是氧化产物	D. 1mol KClO ₃ 参加反应有 2mol 电子转移
变式1: 在下列反应的物质中,碘元素	素全部被氧化的是()
$A. I_2 + Zn \xrightarrow{H_2O} ZnI_2$	B. $I_2 + 2NaOH \rightarrow NaI + NaIO + H_2O$
C. $2KI + Cl_2 \rightarrow 2KCl + I_2$	D. $KI + AgNO_3 \rightarrow AgI \downarrow + KNO_3$
变式 2: 下列变化中,通常需加还原剂	引才能实现的是 ()
A. $Cl^{-} \rightarrow Cl_{2}$ B. $S^{2-} \rightarrow I$	HS- C. CO \rightarrow CO ₂ D. H ⁺ \rightarrow H ₂
【方法提炼】掌握氧化还原反应最基础	础的概念: 升失氧,降得还。
知识点 2: 氧化性还原性的比较	
【 例 2 】已知有如下反应: ①2BrO ₃ -+C	$Cl_2 \rightarrow Br_2 + 2ClO_3^-$, $@ClO_3^- + 5Cl^- + 6H^+ \rightarrow 3Cl_2 + 3H_2O$,
32 FeCl ₃ +2KI \rightarrow 2FeCl ₂ +2KCl+I ₂ ,	④2FeCl ₂ +Cl ₂ →2FeCl ₃ 。下列各微粒氧化能力由强到弱的顺序正确的是
()	
A. $ClO_3 > BrO_3 > Cl_2 > Fe^{3+} > I_2$	B. BrO ₃ >Cl ₂ >ClO ₃ >I ₂ >Fe ³⁺
C. BrO ₃ >ClO ₃ >Cl ₂ >Fe ³⁺ > I_2	D. $BrO_3 > ClO_3 > Fe^{3+} > Cl_2 > I_2$
变式 1: 将 H ₂ S 气体通入四种不同浓度	度的硝酸溶液中,发生下列反应:
$\textcircled{1}3\text{H}_2\text{S} + 2\text{HNO}_3 \rightarrow 3\text{S} + 2\text{NO} + 4\text{H}_2\text{O}$	$24H_2S + 2HNO_3 \rightarrow 4S + NH_4NO_3 + 3H_2O$
③H ₂ S+2HNO ₃ → S +2NO ₂ + 2H ₂ C	$45H_2S + 2HNO_3 \rightarrow 5S + N_2 + 6H_2O$
根据上述反应判断四种硝酸溶液的	的氧化性由强到弱的顺序是 ()
A. 4213 B. 314	C. 2413 D. 1423
变式 2: 根据反应式: (1)2Fe ³⁺ +2I ⁻ →2l ⁻	Fe ²⁺ +I ₂ ,(2)Br ₂ +2Fe ²⁺ →2Br ⁻ +2Fe ³⁺ ,可判断出离子的还原性从强到弱的顺
序是()	
A. Br-、Fe ²⁺ 、I-	B. I ⁻ , Fe ²⁺ , Br ⁻
C. Br ⁻ 、I ⁻ 、Fe ²⁺	D. Fe ²⁺ , I-, Br-

【方法提炼】氧化还原反应中,氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物

知识点 3: 氧化还原反应的配平

【例1】根据以上步骤,配平以下氧化还原反应方程式:

(1)
$$CrI_3+$$
 Cl_2+ $KOH K_2Cr_2O_7+$ KIO_4+ $KCl+$ H_2O

$$(2) \ \underline{\hspace{1cm}} P_4 + \underline{\hspace{1cm}} HNO_3 + \underline{\hspace{1cm}} H_2O - \underline{\hspace{1cm}} H_3PO_4 + \underline{\hspace{1cm}} NO \uparrow$$

$$(3) \ \underline{\hspace{10mm}} Mn^{2+} + \underline{\hspace{10mm}} S_2O_8^{2-} + \underline{\hspace{10mm}} H_2O - \underline{\hspace{10mm}} SO_4^{2-} + \underline{\hspace{10mm}} MnO_4^{-} + \underline{\hspace{10mm}} H^+$$

变式 1: 配平下列反应方程式,标出下列氧化还原反应电子转移的方向和数目,并回答问题

$$NH_3+O_2 \rightarrow NO+H_2O$$

此反应中_____元素被氧化,转移电子总数为_____。

变式 2: 近年来,我国储氢纳米碳管研究获得重大进展,电弧法合成的碳纳米管,常伴有大量的物质——碳纳米颗粒。这种碳纳米颗粒可用氧化气化法除去,同时生成的产物对环境不会产生污染。在整个反应体系中除了碳单质外,还有 $K_2Cr_2O_7$ 、 K_2SO_4 、 $Cr_2(SO_4)_3$ 、 H_2SO_4 、 H_2O 和 X。

- (1)根据题意,可判断出 X 是_____(写化学式)。
- (2) 在反应中,氧化剂应是_____(写化学式),硫酸的作用是____。
- (3) 写出并配平该反应的化学方程式,并标出电子转移的方向和数目。
- (4) 在上述反应中, 若产生 22 g X 物质,则反应中转移的电子数目为。

【方法提炼】

- 1、判断反应中元素化合价的升与降;
- 2、判断反应类型,特别是歧化反应、归中反应、部分氧化还原反应;
- 3、注意变价元素有下角标的情况。
- 4、用原子个数守恒进行检验。

知识点 4: 氧化还原反应的计算

题型一:基础计算

【例 1】ClO₂是一种广谱型的消毒剂,根据世界环保组织的要求 ClO₂将逐渐取代 Cl₂成为生产自来水的消毒剂,工业上 ClO₂常用 NaClO₃和 Na₂SO₃溶液混合并加 H₂SO₄酸化后反应制得,在以上反应中 NaClO₃和 Na₂SO₃的物质的量之比为(

- A. 1:1
- B. 2:1
- C. 1:2
- D. 2:3

变式 1: 已知氧化还原反应: $2Cu(IO_3)_2 + 24KI + 12H_2SO_4 \rightarrow 2CuI + 13I_2 + 12K_2SO_4 + 12H_2O$,其中 1 mol 氧化剂在反应中得到的电子为(

- A. 10 mol
- B. 11 mol
- C. 12mol
- D. 13 mol

变式 2: 硫酸铵在强热条件下分解,生成氨、二氧化硫、氮气和水。反应中生成的氧化产物和还原产物的分子个数之比是()

- A. 1:3
- B. 2:3
- C. 1:1
- D. 4:3

题型二: 与得失电子守恒有关的计算

【例1】某金属单质跟一定浓度的硝酸反应,假定只生成单一的还原产物,当参加反应的单质与被还原的硝酸的物质的量比为2:1时,还原产物是())

- A. NO_2
- B. NO
- C. N₂O₃
- D. N₂

变式 1: 将 M mol 的 Cu_2S 跟足量稀 HNO_3 反应,生成 $Cu(NO_3)_2$ 、 H_2SO_4 、NO、 H_2O ,则参加反应的硝酸中被还原的硝酸的物质的量是(

- A. 4M mol
- B. 10M mol
- C. 10M/3 mol
- D. 2M/3 mol

变式 2: 向 100mL FeBr₂ 溶液中通入 2.24L 标准状况下的 Cl_2 ,完全反应后,溶液中有 1/3 的溴离子被氧化成溴单质,则原溴化亚铁溶液的浓度为(

- A. 0.1 mol/L
- B. 1/3 mol/L
- C. 1 mol/L
- D. 1.2 mol/L

【方法提炼】

解氧化还原反应的计算题, 牢记:

- 1、"生失氧、降得还"的基础知识,准确判断元素化合价的升与降;
- 2、得失电子守恒,利用这个原则解题事半功倍。

1.	有关氧化还原反应的叙述正确的是()
	A. 氧化还原反应的实质是有氧元素的得多	失
	B. 氧化还原反应的实质是元素化合价的升	十降
	C. 氧化还原反应的实质是电子的转移	
	D. 物质所含元素化合价升高的反应是还原	泵反应
2.	某元素在化学反应中由化合态变为游离态,	则该元素 ()
	A. 一定被氧化了	B. 一定被还原了
	C. 既可能被氧化也可能被还原	D. 既不可能被氧化,也不可能被还原
3.	下列关于氧化剂的叙述正确的是(
	A. 分子中不一定含有氧元素	B. 分子中一定含有氧元素
	C. 在反应中易失电子的物质	D. 在反应中元素化合价升高的物质
4.	下列说法中,正确的是(
	A. 氧化剂本身被还原, 生成氧产物	
	B. 氧化剂是在反应中得到电子(或电子对	偏向)的物质
	C. 还原剂在反应时所含元素的化合价降值	£
	D. 在一个反应中,氧化剂和还原剂可能具	是同一物质
5.	在 3Cl ₂ +6KOH→5KCl+KClO ₃ +3H ₂ O 反应 [□]	中,还原产物是 ()
	A. KClO ₃ B. KCl	C. $KCl+H_2O$ D. H_2O
6.	下列各反应中,氧化反应与还原反应在同	种元素中进行的是()
	A. $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$	B. $2KClO_3 \xrightarrow{MnO_2 \triangle} 2KCl + 3O_2 \uparrow$
	C. $2KMnO_4 \xrightarrow{\triangle} K_2MnO_4 + MnO_2 + O_2\uparrow$	D. $2H_2O \xrightarrow{\text{ide}} 2H_2\uparrow + O_2\uparrow$
7.	下列反应中,盐酸做氧化剂的是()
	A. $Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$	B. $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 \uparrow$
	C. $KClO_3 + 6HCl \rightarrow KCl + 3Cl_2 \uparrow + 3H_2O$	D. $Ca(ClO)_2 + 2HCl \rightarrow CaCl_2 + 2HClO$
8.	下列变化过程属于还原过程的是()
	A. HCl→MgCl ₂ B. Na→Na ⁺	C. CO \rightarrow CO ₂ D. Fe ³⁺ \rightarrow Fe ²⁺

9.	氢化钙可作为生氢剂,反应的化学方程式为	$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H$	2↑,下列说法错误的是			
	()					
	A. CaH_2 既是氧化剂,又是还原剂	B. H ₂ 既是氧化产物,又是	还原产物			
	C. CaH ₂ 是还原剂, H ₂ O 是氧化剂	D. 氧化产物与还原产物的原	质量比为1:1			
10.	(双选)被称为万能还原剂的 NaBH4 溶于	并和水反应: NaBH4+H2O-N	NaBO ₂ +H ₂ (未配平),下列说法			
	中正确的是 ()					
	A. NaBH4既是氧化剂又是还原剂	B. NaBH ₄ 是还原剂,H ₂ O 是	是氧化剂			
	C. 硼元素被氧化,氢元素被还原	D. 被氧化的元素与被还原的	的元素的质量比是 1:1			
11.	在一定条件下,氯酸钾和碘按下式发生反应	2KClO ₃ +I ₂ →2KlO ₃ +Cl ₂ ,由J	比推断下列相应的结论,不正确			
	的是()					
	A. 该反应属置换反应	B. 还原性: I ₂ >Cl ₂				
	C. 氧化性: I ₂ >Cl ₂	D. 氧化性: KClO ₃ >I ₂				
12.	下列说法正确的是()					
	A. H ⁺ 的氧化性比 Cu ²⁺ 强	B. H ₂ O 既可作氧化剂 3	又可作还原剂			
	C. CO ₂ 中的 C 既有氧化性又有还原性	D. Fe 既能做还原剂又	能做氧化剂			
13.	根据下列反应判断有关物质还原性由强到弱的顺序是()					
	$H_2SO_3 + I_2 + H_2O \rightarrow 2HI + H_2SO_4 2FeCl_3 + 2HI \rightarrow 2FeCl_2 + 2HCl + I_2$					
	$FeCl_2+4HNO_3 \rightarrow 2FeCl_3+NO\uparrow +2H_2O+Fe(NO_2)$					
	A. $H_2SO_3>I>Fe^{2+}>NO$	B. $I > Fe^{2+} > H_2SO_3 > NO$				
	C. $Fe^{2+}>I>H_2SO_3>NO$	D. $NO>Fe^{2+}>H_2SO_3>I^-$				
14.	在反应 2H ₂ S + O ₂ →2S↓+2H ₂ O 中,被氧化	质与被还原物质的分子数之比	3为()			
	A. 1:2 B. 2:1	C. 3:1 D. 3	:2			
15.	反应 $MnO_2 + 4HCl(浓) \xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow$	2H ₂ O 中,氧化剂和还原剂的特	勿质的量之比是()			
	A. 1:4 B 1:2	C 4:1 D 2:1				
16.	一定条件下硝酸铵受热分解的未配平化学之	程式为: NH4NO3——HNO3+N	₂ +H ₂ O,在反应中被氧化与被还			
	原的氮原子数之比为 ()					
	A. 5:3 B. 5:4	C. 1:1 D. 3	:5			

17.		率高、二次污染小的水 K ₂ SO ₄ + 2CO ₂ ↑ + 2H ₂		通过以下反应制得 ClO ₂ :	2KClO ₃ +H ₂ C ₂ O ₄ +
	C. ClO ₂ 是氧化产 ⁴			反应有 2mol 电子转移	
18.	在一定条件下, RC中, 元素 R 的化合		$\hat{\zeta}$) $\dot{\Sigma}$: RO ₃ ⁿ⁻ + F ₂ + 2C	$0H^- \rightarrow RO_4^- + 2F^- + H_2O$	人而可知在 RO3 ⁿ⁻
	A. +4	B. +5	C. +6	D. +7	
19.		I Na ₂ SO ₃ 按物质的量之 应后测得 NaClO ₃ 和 Na ₂		用水浴加热,同时滴入 F 则 X 为()	I ₂ SO ₄ 溶液,产生棕
	A. Cl ₂	B. Cl ₂ O	C. ClO ₂	D. Cl ₂ O ₃	
20.	用 0.1mol/L 的 Na ₂ s	SO ₃ 溶液 30ml 恰好将 2>	×10 ⁻³ mol 的 XO ₄ -离子	子还原,元素 X 在还原产物	中的化合价(
	A. +1	B.+2	C.+3	D.+4	
21.	中 Fe ³⁺ 转变为 Fe ²⁺ ⁺ 存在)。则上述反	,生成的 Fe ²⁺ 恰好与 24 反应中羟胺的氧化产物为	50mL0.020mol·L ⁻¹	胺的酸性溶液与足量硫酸 KMnO4溶液完全作用(此	
	A. N ₂	B. N ₂ O	C. NO	D. NO ₂	
22.	元素	→ 2KCl+2CrCl₃+3Cl₂ 被氧化, HCl 表现的性质是	元素被还原,	氧化产物是	是还原剂, ,还原产物是
23.	分别用单线桥法和	双线桥法表示电子转移	和得失情况。		
	2KMnO ₄ +16HCl →	2KCl+2MnCl ₂ +5Cl ₂ ↑+8	BH₂O		
	的比值是		4参加反应,则被氧	的盐酸中,被氧化的 HCl 化的 HCl 有克 子为mol。	
24.		,既可作还原剂		®HCl,⑨H₂O,其中在反 望,	

25.	某反应位	体系中反应物与生成物有: K ₂ SO ₄ 、CaSO ₄ 、MnSO ₄ 、CaC ₂ O ₄ 、KMnO ₄ 、H ₂ SO ₄ 、H ₂ O和一和	中	
	未知气	体X。		
(1)己知C	CaC ₂ O ₄ 在反应中失去电子,则该反应的氧化剂是。		
(2) 在标准	状况下生成11.2LX时,有0.5mol 电子转移,共消耗0.25mol CaC ₂ O ₄ ,X的化学式为	_ 0	
(3)将氧化	L剂和还原剂的化学式及其配平后的系数填入下列方框中,并标出电子转移的方向和数目:		
(1)長尚出			
(4		· CaC ₂ O ₄ 农坑	,	
	+(10/2			
26.	将足量	Cl ₂ 通入 FeCl ₂ 中的离子方程式为;		
		通入 FeI ₂ 中的离子方程式为;		
	将 Cl ₂ 追	通入 FeBr ₂ 中的离子方程式为;		
27.	配平下	列反应的化学方程式		
	(1)	$KMnO_4+$ HCl — $KCl+$ $MnCl_2+$ Cl_2+ H_2O		
	(2)	Cu ₂ S+ HNO ₃ — Cu(NO ₃) ₂ + S+ NO+ H ₂ O		
	(2)	Cu_2S^{+} $IINO_3$ — $Cu(NO_3)_2^{+}$ S^{+} INO^{+} II_2O		
	(3)	KMnO ₄ + H ₂ C ₂ O ₄ + H ₂ SO ₄ — CO ₂ + MnSO ₄ + K ₂ SO ₄ + H ₂ O		
	(4)	Fe(OH) ₃ + NaOH+ Cl ₂ — Na ₂ FeO ₄ + NaCl+ H ₂ O		
	(5)	MnO_2+ I^-+ H^+ $Mn^{2+}+$ I_2+ H_2O		
	46 - 34	11 - 1 11 11 - 1 		
28.	某反应体系中的物质有: KIO ₃ 、KI、KBrO ₃ 、Br ₂ 、H ₂ SO ₄ 、K ₂ SO ₄ 和 H ₂ O。			
	(1) 頃	青将 KIO₃ 之外的反应物和生成物分别填入以下空格内:		
		+		
	(2) 其	其中被还原的元素是		
		—————————————————————————————————————		
	Г			
		+		