

Zoo of Principal Component Analysis (PCA)

Ziming Liu
Peking University
July 3, 2019

Different PCA suitable for different physics problems

Kernel PCA (auto-encoder)

—— Learn the mapping from particle distribution to initial geometry

The wildest dream

Going back in time?
Can learn from Monte Carlo data

Change v2 a bit, initial?

III-defined?

Different fluctuations size, but same v2!

Not a one-to-one mapping problem ?!

Add constraint:

- The initial profile can be generated from the initial model – lie on "initial manifold"
- As little change as possible "gradient"

When you climb a hill

Auto encoder linear $\Phi_{extr}: \mathcal{X} \to \mathcal{Z}$ $\Phi_{gen}: \mathcal{Z} \to \mathcal{X}$ $y_2 = f(y_1)$ $y_4 = f(y_3)$ $y_1 = W_1 \underline{x}$ \hat{x}_1 x_1 W_2y_2 x_2 W_1 W_2 W_3 W_{4} non-linear generation extraction

f linear: PCAf non-linear: kernel PCA

Step 1: unsupervised learning, train the autoencoder. "Code" represents the most important information.

Step 3: Feed the gradient to the decoder, get the new profile.

Step 2: supervised learning. we have the "Code", and an observable. we train the neural network to fit the observable. After training, the "gradient" can be computed efficiently.

V2 Results

Hydro data: Trento + Vishnu + iss

V3 Results

Hydro data: Trento + Vishnu + iss

2. Robust PCA

—— automated Learning to separate flow and non-flow

Heavy-Ion collisions

Video Surveillance

QGP	Jet
Thermalized	Not thermalized
Long range	Short range
correlation	correlation

Background	Foreground
static	moving
Long correlation In time	Short correlation (sparse) in time

Learn Flow/Non-flow with many events of heavy-ion collisions

ons Learn Background/foreground with many snapshots of a single video

What's wrong with traditional PCA?

Blue: Robust PCA; Green: Traditional PCA

Why can we do this?

No free parameter!

X: input; D: low rank; X-D: sparse matrix

$$\min_{D} \quad rank(D) + \|X - D\|_0 \ \min_{ ilde{D}} \quad \|D\|_* + \lambda \|X - D\|_1 \ ilde{D} \quad ext{sum of singular values} \quad ext{sum of all elements (absolute value)}$$

A rather remarkable fact is that there is no tuning parameter in our algorithm. Under the assumption of the theorem, minimizing

$$||L||_* + \frac{1}{\sqrt{n_{(1)}}} ||S||_1, \quad n_{(1)} = \max(n_1, n_2)$$

always returns the correct answer. This is surprising because one might have expected that one would have to choose the right scalar λ to balance the two terms in $||L||_* + \lambda ||S||_1$ appropriately (perhaps depending on their relative size). This is, however, clearly not the case. In this sense, the choice $\lambda = 1/\sqrt{n_{(1)}}$ is universal. Further, it is not a priori very clear why $\lambda = 1/\sqrt{n_{(1)}}$ is a correct choice no matter what L_0 and S_0 are. It is the mathematical analysis which reveals the correctness of this value. In fact, the proof of the theorem gives a whole range of correct values, and we have selected a sufficiently simple value in that range.

https://statweb.stanford.edu/~candes/papers/RobustPCA.pdf

Toy model

Event 1

Flow: elliptic $\sin(2\phi)$, $\cos(2\phi)$

Nonflow: Guassian, randomized angle

Observed: Flow+Nonflow

Robust PCA can separate flow/non-flow without any training (unsupervised)!
Comment: No physics, but very good technique:P

3. ICA

Independent Component Analysis
—— conquer limitations of PCA to study sub-leading flow

Sub-leading flow?

Phys.Rev. C91 (2015) no.4, 044902 Aleksas Mazeliauskas, Derek Teany

Orthogonal? Not necessary! (PCA fails)
But independent for linear response! (ICA works)

Cocktail Party problem

$$x = As$$

We only have observation x, how to determine A and s?

Assumption:

- 1. Sources are **independent** with each other
- 2. Sources should be as **non-gaussian** as possible

Why non-gaussian?

Central limit theorem: gaussian implies mixing!

 z_1 : uniform distribution z_2 : sum of two uniform distribution ICA prefers z_1 over z_2

Irwin-Hall distribution

4. Traditional PCA

—— Probing number of initial sources

Different number of initial sources?

A naïve argument:

Au+Au

197+197=394 nucleons

Each nucleon has two-dim coordinates

So we have 394*2=788 parameters

Data should lie on a 788-dim manifold

Hydrodynamics evolution is finite time

So final particle distribution is a 788-dim manifold, too

The manifold could be non-linear,

BUT

Let' s try PCA first!

PCA to two-particle data

 $\frac{d^2N_{pair}}{d\Delta\eta d\Delta\varphi}$ data, 32*32=1024 bins, 2000 events 10%-20% centrality

For all models, the singular values show an abrupt drop at 768 < ~788

Guess: 768 corresponds to the mean number of participants*2

Comment:

- 1.Independent of collision energy? Number of events? Number of bins?

 Need further check
 - 2. May serve as an observable to measure number of sources Can we observe such drop in experiments? Statistical errors 27

5. High-order PCA

For multi-particle correlation data

Multi-particle correlation data

6. Generalized PCA

 (I_1, I_2, I_3)

Suitable for different data types

min
$$|A - \tilde{A}||_F^2 \iff A = \tilde{A} + \epsilon, \epsilon \sim N(0, \sigma^2)$$
 gaussian
$$A = \tilde{A} + \epsilon, \epsilon \sim p(\epsilon)$$
Bernoulli, Poisson, Laplacian

Conclusion

- PCA still has a lot to explore, at least in the application of heavy-ion physics.
- Our ultimate goal is to make PCA useful in experiments.
- But first we should publish a few method papers to elucidate the performance of these methods and arouse interests of experimentalists.

Thank you!

Backup

Singular values

Eigenvectors in Region I

Eigenvectors in Region I

Eigenvectors in Region II and III

The bright area is "expanding" towards outside. So in Region II, each eigenmode focuses on one local area. (In region I, the eigenmode is global)