Exercice 1 Questions de cours

On se donne une fonction f définie que \mathbf{R} , a un nombre réel et h un nombre réel non nul. On note \mathcal{C}_f la courbe représentative de f dans un repère orthonormé.

1. Donner le taux de variation de f entre a et a + h.

Le taux de variation de f entre a et a+h est $\frac{f(a+h)-f(a)}{h}$.

2. Donner deux manières de définir le nombre dérivé de f en a.

Le nombre dérivé de f en a est la limite du taux de variation de f entre a et a+h lorsque h tend vers 0.

Le nombre dérivé de f en a est le coefficient directeur de la tangente à \mathcal{C}_f en a.

3. Donner l'équation de la tangente à \mathcal{C}_f en a.

L'équation de la tangente à C_f en a est y = f'(a)(x - a) + f(a).

f est une fonction dérivable sur **R** dont la courbe \mathcal{C}_f est représentée ci-contre ainsi que trois de ses tangentes.

Lire f'(0), f'(2) et f'(6).

$$f'(0) = -\frac{1}{2}$$
, $f'(2) = 0$ et $f'(6) = \frac{9}{2}$.

Exercice 3

Le plan est muni d'un repère $(O\;;\;\overrightarrow{\imath},\;\overrightarrow{\jmath}).$ On considère la fonction f définie sur \mathbf{R} par $f(x)=x^2-4x+\frac{3}{2}.$

 C_f est sa courbe représentative dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

- 1. Soit h un réel non nul. Calculer le taux d'accroissement de f entre 3 et 3+h.
- **2.** En déduire f'(3).
- **3.** Donner l'équation de la tangente (T_3) à C_f au point d'abscisse 3 et la tracer sur ce graphique.

1. Soit h un réel non nul.

$$f(3+h) = (3+h)^2 - 4(3+h) + \frac{3}{2}$$
$$= (9+6h+h^2) - 12 - 4h + \frac{3}{2}$$
$$= h^2 + 2h - \frac{3}{2}$$

et
$$f(3) = 3^2 - 4 \times 3 + \frac{3}{2}$$

= $9 - 12 + \frac{3}{2}$
= $-\frac{3}{2}$

D'où
$$\frac{f(3+h)-f(3)}{h} = \frac{h^2+2h-\frac{3}{2}+\frac{3}{2}}{h}$$

$$= \frac{h^2+2h}{h}$$

$$= h+2$$

2.
$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

= $\lim_{h \to 0} h + 2$
= 2

3. L'équation de la tangente (T_3) à \mathcal{C}_f au point d'abscisse 3 est $y=2(x-3)-\frac{3}{2}$.

$$(T_3): y = 2(x-3) - \frac{3}{2}$$

 $: y = 2x - 6 - \frac{3}{2}$
 $: y = 2x - \frac{15}{2}$

Exercice 1 Questions de cours

On se donne une fonction f définie que \mathbf{R} , a un nombre réel et h un nombre réel non nul. On note \mathcal{C}_f la courbe représentative de f dans un repère orthonormé.

1. Donner le taux de variation de f entre a et a + h.

Le taux de variation de f entre a et a+h est $\frac{f(a+h)-f(a)}{h}$.

2. Donner deux manières de définir le nombre dérivé de f en a.

Le nombre dérivé de f en a est la limite du taux de variation de f entre a et a+h lorsque h tend vers 0.

Le nombre dérivé de f en a est le coefficient directeur de la tangente à \mathcal{C}_f en a.

3. Donner l'équation de la tangente à \mathcal{C}_f en a.

L'équation de la tangente à C_f en a est y = f'(a)(x - a) + f(a).

f est une fonction dérivable sur **R** dont la courbe \mathcal{C}_f est représentée ci-contre ainsi que trois de ses tangentes.

Lire f'(0), f'(2) et f'(6).

$$f'(0) = -\frac{1}{2}$$
, $f'(2) = 0$ et $f'(6) = \frac{9}{2}$.

Exercice 3

Le plan est muni d'un repère $(O\;;\;\overrightarrow{\imath},\;\overrightarrow{\jmath})$. On considère la fonction f définie sur \mathbf{R} par $f(x)=x^2-2x-\frac{3}{2}$.

 \mathcal{C}_f est sa courbe représentative dans le repère $(O \; ; \; \overrightarrow{\imath}, \; \overrightarrow{\jmath})$.

- 1. Soit h un réel non nul. Calculer le taux d'accroissement de f entre 3 et 3+h.
- **2.** En déduire f'(3).
- **3.** Donner l'équation de la tangente (T_3) à C_f au point d'abscisse 3 et la tracer sur ce graphique.

1. Soit h un réel non nul.

$$f(3+h) = (3+h)^2 - 2(3+h) - \frac{3}{2}$$
$$= (9+6h+h^2) - 6 - 2h - \frac{3}{2}$$
$$= h^2 + 4h + \frac{3}{2}$$

et
$$f(3) = 3^2 - 2 \times 3 - \frac{3}{2}$$

= $9 - 6 - \frac{3}{2}$
= $\frac{3}{2}$

D'où
$$\frac{f(3+h)-f(3)}{h} = \frac{h^2+4h+\frac{3}{2}-\frac{3}{2}}{h}$$

$$= \frac{h^2+4h}{h}$$

$$= h+4$$

2.
$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

= $\lim_{h \to 0} h + 4$
= 4

3. L'équation de la tangente (T_3) à \mathcal{C}_f au point d'abscisse 3 est $y=4(x-3)+\frac{3}{2}$.

$$(T_3): y = 4(x-3) + \frac{3}{2}$$
$$: y = 4x - 12 + \frac{3}{2}$$
$$: y = 4x - \frac{21}{2}$$

