LINEAR ACTUATOR

Publication number: JP5022920 (A)

Publication date:

1993-01-29

Inventor(s):

HAMASHIMA TAKANORI

Applicant(s):

AISIN SEIKI

Classification:

- international:

H01F7/20; H02K33/00; H02K33/16; H02K35/02; H01F7/20;

H02K33/00; H02K35/00; (IPC1-7): H01F7/20; H02K33/00

- European:

H02K33/16; H02K35/02

Application number: JP19910241664 19910920

Priority number(s): JP19910241664 19910920; JP19900256858 19900928

Abstract of JP 5022920 (A)

PURPOSE: To enable the mover cores and stator cores of a linear actuator to be easily composed by composing ring-shaped magnetic bodies with the mover cores and stator cores to be extended in the diameter direction, to be laminated in the axial direction. CONSTITUTION:In a linear actuator, on the outer peripheral surface of a shaft 1, a plurality of ring-shaped mover cores 2 of magnetic bodies are fitted via the spacers 3 of non-magnetic bodies, in the axial direction. On the peripheries of the mover cores 2, anisotropic multi-pole permanentmagnets 4 in the diameter direction are arranged in parallel with each other. Then, on the peripheries of the permanent magnets 4, ring-shaped stator cores 5 are arranged.; On the cores 5, through the thin sheets of the magnetic bodies of steel sheets or the like, holes 6 and slits 7 are punched, and a plurality of ring-shaped pieces are laminated so that the planes may be positioned in the diameter direction orthogonal to the axial core of the shaft 1. Between the holes 6, coils 8 are wound up, and between slits 7 adjacent to each other, magneto poles 9 are set. Besides, the permanent magnets 4 are arranged in the quantity same as the pole quantity of the poles 9 per train, and the number of the permanent magnets 4 in the axial direction is set higher by one than that of the stator cores 5.

(19)日本国特新庁(JP) (12) 公開特許公報(A)

(11)特許出願公阴番号

特開平5-22920

(43)公開日 平成5年(1993)1月29日

(51)Int.Cl.⁵

識別配号 庁内整理番号 FΙ

技術表示的所

H02K 33/00 H01F 7/20 A 7227-5H

E 7135-5E

客査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号

特願平3-241664

(71)出顧人 000000011

アイシン精機株式会社

(22)出願日

平成3年(1991)9月20日

愛知県刈谷市朝日町2丁目1番地

(31)優先極主張番号 特願平2-256858

(32)優先日

平 2 (1990) 9 月28日

(33)優先権主張国

日本(JP)

(72) 発明者 浜 島 孝 徳

愛知県刈谷市朝日町2丁目1番地 アイシ

ン精機株式会社内

(54) 【発明の名称】 リニアアクチユエータ

(57) 【 契約 】

【目的】 本発明は、リニアアクチユエータの鉄心を容 易に構成することを目的とする。

【構成】 リニアアクチュエータの固定子鉄心を、コイ ルの巻回される孔および磁極を形成するスリツトを打ち 抜かれた磁性体の薄板を積層することで構成するように し、また、可動子鉄心を、リング状磁性体鋼板を積層す ることで構成するようにした。

【特許請求の範囲】

【請求項1】 非磁性体の軸の外周面に取り付けられた 可動子鉄心と、

軸方向に隣合う該可動子鉄心同士の間に配設された非磁 性体のスペーサと、

前記可動了鉄心外周面に固定された径方向異方性の多極 永久磁石と、

該多極永久磁石と対向して配される磁極と、

該磁極を構成し且つコイルを支持する固定子鉄心とを有

前記可動子鉄心及び該固定子鉄心が径方向に延在するリ ング状磁性体を軸方向に積層されて構成されていること を特徴とするリニアアクチユエータ。

【請求項2】 前記多極永久磁石はリング状とされると 共に前記磁極と極数が同一であり、前記多極永久磁石の 軸方向の配列数は前記固定子鉄心の軸方向の配列数より も多く、前記多極永久磁石の軸方向長さは可動子である 前記軸のストロークと同長であることを特徴とする請求 項1記載のリニアアクチユエータ。

【請求項3】 可動子である前記軸を往復動させコイル 20 より出力を得ていることを特徴とする請求項1および請 求項2記載のリニアアクチユエータ。

【請求項4】 前記固定子鉄心は外周リング部と前記磁 極とを接続する脚部を有し、前記磁極は〔(360°) /(磁極の極数)] だけ該脚部とずれており、そのずれ 方向は前記固定子鉄心の1列おきに同一であることを特 徴とする請求項2記載のリニアアクチユエータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】木発明は、固定子欽心と永久磁石 30 ニアアクチユエータを説明すると、図示しない動力源 を組み合わせた永久磁石を組み合わせたリニアアクチュ エータに関するものである。

[0002]

【従来の技術】USP4、349、757に開示される ように、リニア発電機として利用されるリニアアクチュ エータは、一定ストロークで往復動する可動子である軸 に可動子鉄心と永久磁石とを固定し、この永久磁石と対 向させた磁極を有する固定子鉄心(固定了)にコイルを 担持させる構成としている。

向にその長乎方向が揃うようにして周方向へと重ね合わ せ、简休となるようにしてこの简体の中央孔に軸を挿入 している。このような従来構成の場合、磁石により発生 する磁束の磁路の平面が、軸の可動子鉄心とコイル周り の固定子鉄心とを通る軸心方向の面となつている。

[0004]

【発明が解決しようとする課題】固定子鉄心となる鉄板 を周方向に積層して円筒体を作るには、先ずは、鉄板を その内周側と外周側とで厚みを異にするクサビ状としな ければならないこと、これらクサビ状の鉄板の平面が軸 50

方向となるようにして、周方向に一枚ずつ重ね合わせて 円筒状にすること、このような積層体へのコイルを挿入 すること等の作業が難しく改善が望まれている。

2

【0005】そこで、本発明はリニアアクチユエータに おいて上述した不具合を解消させることを、その技術的 課題とする。

[0006]

【発明の構成】

[0007]

【課題を解決するための手段】前述した本発明の技術的 課題を解決するために講じた本発明の技術的手段は、非 磁性体の軸の外周面に取り付けた可動子鉄心と、軸方向 に隣合う可動子鉄心同士の間に配設された非磁性体のス ペーサと、可動子鉄心外周面に固定された径方向異方性 の多極永久磁石と、多極永久磁石と対向して配される磁 極と、磁極を構成し且つコイルを支持する固定子鉄心と からリニアアクチユエータを構成し、可動子鉄心及び固 定子鉄心が径方向に延在するリング状磁性体を軸方向に 稙層されて構成されているようにしたことである。

[0008]

【作用】上述した本発明の技術的手段によれば、磁石の 磁路が軸の長手方向に直交する平面内、即ち径方向に通 る同路となる。また、可動子鉄心及び固定子鉄心はリン グ状薄板を単に重ねるのみであるので、その作業は極め て容易である。

[0009]

【実施例】以下、本発明の技術的手段を具体化した実施 例について添付図面に基づいて説明する。

【0010】まず、図1において本発明第1実施例のリ (例えばスターリングエンジン) を用いて非磁性体の軸 周面に磁性体のリング状可動子鉄心2を軸方向に非磁性 体のスペーサ3を介して複数個(本第1実施例では2 個)取り付ける。ここで、スペーサ3の厚みは可動子鉄 心2の厚みの10%程度が適当である。この可動子鉄心 2の周りに径方向異方性の多極永久磁石 4を並置させ る。このとき、永久磁石4は図1に示すように軸方向に 2列(可動子鉄心2の配列数と同一)配設され、図2に 【0003】固定子鉄心は、鉄板等の磁性体薄板を軸方 40 赤すように径方向には8個配列される。但し、この2列 及び8個に限定されるものではない。

> 【0011】この永久磁石4の周りにリング状固定子鉄 心5を配す。この固定子鉄心5は、例えば、鉄板等の磁 性体の薄板を図2に示す孔6とスリツト7を打ち抜き、 リング状としたものをその平面が可動子たる軸1の軸心 に対して直交する径方向に位置するよう複数枚積層した ものである。可動子鉄心2も鉄板等の薄板を固定子鉄心 5と同じように積層したものがよい。孔6間にはコイル 8が巻回され、且つ隣合うスリント7間を磁極9とす る。

20

【0012】永久磁石4と磁極9の1列あたりの極数を 同一(本第1実施例では8)とし、永久磁石4の軸方向 の配列数は固定子鉄心5の軸方向の配列数よりも1つ多い。

【0013】永久磁石4の軸方向長さは可動子たる軸1のストロークAと同長とする。

【0014】本第1実施例では、図2に示すとおり永久 磁石4の磁路が径方向となり、コイル8を鎖交する磁束 がコイル8からの発電の有効成分となる。尚、リング状 の薄板を孔6が揃うように積層するのみで固定子鉄心5 10 が作られるのでその製作は極めて容易である。

【0015】次に、図3において本発明第2実施例のリニアアクチュエータを説明すると、図示しない動力源(例えばスターリングエンジン)を用いて非磁性体の岫51を一定ストロークで往復動可能とさせる。軸51の外間面に磁性体のリング状可動子鉄心52を軸方向に非磁性体のスペーサ53を介して複数個(本第2実施例では5個)取り付ける。ここで、スペーヴ53の原みのは可動子鉄心52の厚みの10%程度が適当である。この可動子鉄心52の周りに径方向異方性の多極永久磁石54(図3、4に極性N/Sを示す)を並置させる。このとき、永久磁石54は図3に示すように軸方向に5列(可動子鉄心52の配列数と同一)配設され、図4に示すように径方向には12個配列される。但し、この5列及び12個に限定されるものではない。

【0016】この永久磁石54の周りにリング状固定子 鉄心55を配す。この固定子鉄心55は、例えば、鉄板 等の磁性体の薄板を図5に示す孔56とスリツト57を 打ち抜き、リング状としたものをその平面が可動子たる 軸51の軸心に対して直交する径方向に位置するよう複 数個積層したものである。可動子鉄心52も鉄板等の 板を固定子鉄心55と同じように積層したものがよい。 孔56間にはコイル58が巻回され、且つ隣合うスリツト57間を磁極59とする。

【0017】永久磁石54と磁極59の極数を同一(本第2実施例では12)とし、永久磁石54の軸方向の配列数は固定子鉄心55の軸方向の配列数よりも1つ多い。永久磁石54の軸方向長さは可動子たる軸51のストロークと同長とする。

【0018】固定子鉄心55において、磁極59と外周 40 リング63とは脚部61により接続され、図5に示すようにその脚部61と磁極59とは(360°/P[Pは磁極59の極数])だけずれている。例えば、本第2実施例では極数P=12なので、ずれ角度は360°/12=30°となる。この理由は次のとおりである。即ち、固定子鉄心55は軸方向にスペーサ60(その厚みはスペーサ53の厚みと同一)を介して4列配設されて

おり、1列おきに磁極59のずれ方向が同一となつている。つまり、1列目と3列目の磁極59a,59cのずれ方向を図5に示すものとすると、2列目と4列目の磁 極59b,59dのずれ方向は図5に示す固定子鉄心55を裏返したものとなる。このとき、各列の磁極59の位置を揃わせるため、上述のずれ角度が360°/Pとされる。

【0019】また、図6に示すように磁性体からなる磁気くさび62を固定子鉄心55間の内周面側(永久磁石54と向かい合う側)に配設してもよい。このとき、

[磁気くさび62の軸方向長さ] ≧ [磁気くさび62の 径方向長さ] とするのがよい。

【0020】このとき、磁気くさび62の径方向幅は図3に示す磁極59の先端部の幅Mと略同一とする。

【0021】本第2実施例においても、図3に示すとおり永从磁石54の磁路が径方向となり、コイル58を鎖交する磁束がコイル58からの発電の有効成分となる。尚、リング状の薄板を孔56が揃うように積層するのみで固定子鉄心55が作られるのでその製作は極めて容易である。

【0022】第1,第2実施例に共通して、軸1,51を一定ストロークで往復動させることで、複数の磁極9,59それぞれに対向する永久磁石54の極性が変化して、コイル58に電力が発生する(発電機として作用)。逆に、コイル58に電力(交流電力など)を供給することで、軸1,51が往復動する(アクチュエータとして作用)。

[0023]

打ち抜き、リング状としたものをその平面が可動子たる 【発明の効果】以上に示した様に本発明では、固定子鉄 軸51の軸心に対して直交する径方向に位置するよう複 30 心の形成は薄板を積層するだけでよく、非常に簡単であ 数個積層したものである。可動子鉄心52も鉄板等の数 る。

【図面の簡単な説明】

【図1】本発明第1実施例のリニアアクチユエータの断面図を示す。

【図2】図1における正面図を示す。

【図3】本発明第2実施例のリニアアクチユエータの正面図を示す。

【図4】図3における断面図を示す。

【図5】図3における要部正面図を示す。

【図6】図4における変形実施例を示す。

【符号の説明】

1,51 軸

2, 52 可動子鉄心、

4,54 永久磁石、

5,55 固定子鉄心、

8,58 コイル、

9,59 磁極。

