Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra Fall 2017

Version 6 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S2.

Determine if the set
$$\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\-1 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^3 .

Standard A3. Mark:

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^4$$
 given by the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.

(b)
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 given by the matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix}$

Standard A4.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \end{bmatrix}$$

Compute the kernel and image of T.