플립플롭 (Flip-Flop)

- 01. 기본적인 플립플롭
- 02. S-R 플립플롭
- 03. D 플립플롭
- 04. J-K 플립플롭
- 05. T 플립플롭
- 06. 비동기 입력
- 07. 플립플롭의 동작특성

- 플립플롭(flip-flop)과 래치(latch)는
 - ✓ 순차회로에 사용되는 1비트 기억소자
 - ✓ 0과 1로 표현되는 두 개의 안정 상태(bistable)를 가짐
 - ✓ 게이트로 구성되지만 조합회로와 달리 피드백이 있다.
 - ✓ <u>플립플롭</u>은 클록(또는 제어신호)에 동기화
 - ✓ <u>래치</u>는 클록없이 입력이 바로 적용

<조합논리회로> 가산기, 디코더, 인코더, 멀티플렉서

<순차논리회로> 플립플롭, 카운터, 레지스터

NOR 게이트로 구성된 SR 래치

S	R	Q(t+1)
0	0	<i>Q</i> (t)(불변)
0	1	0
1	0	1
1	1	(부정)

진리표

NOR 게이트 진리표				
A	В	$oxed{F}$		
0	0			
0	1	_		
1	0	_		
1	1			

(1)
$$S = 0$$
, $R = 0$ 일 때

☞ 출력은 현재상태 유지

(2) S = 0, R = 1 일 때

- ☞ **출력** : *Q* =0
- (4) S = 1, R = 1 일 때

(3) S = 1, R = 0 일 때

☞ **출력** : *Q* =1

S	R	Q(t+1)
0	0	<i>Q(t)</i> (불변)

예제 8-1

그림과 같은 파형을 NOR 게이트 SR 래치회로에 인가하였을 때, 출력 Q 의 파형을 그려 보아라. 단, Q 는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

풀이

S	R	Q(t+1)
0	0	<i>Q</i> (t)(불변)
0	1	0
1	0	1
1	1	(부정)

NAND 게이트로 구성된 SR 래치

$$\overline{S} = 0, \overline{R} = 0$$
일 때

출력 : 부정 $(Q=1, \overline{Q}=1)$

 $\overline{S} = 0, \overline{R} = 1$ 일 때

 $\overline{S} = 1, \overline{R} = 0$ 일 때

 $\overline{S} = 1, \overline{R} = 1$ 일 때

☞ 출력은 현재상태 유지

그림과 같은 파형을 NAND 게이트 SR 래치회로에 인가하였을 때, 출력 Q 의 파형 에제 8-2 을 그려 보아라. 단, Q 는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

풀이

게이티드 SR 플립플롭

□ 동작상태

EN=0인 경우
EN=1인 경우

Gated SR 플립플롭을 Gated SR 래치라고도 한다.

①
$$S = 0, R = 0$$
 일 때

 $\overline{S} = 1, \overline{R} = 1$ 인 경우이므로 출력은 불변

$$\overline{S} = 1, \overline{R} = 0$$
인 경우이므로 $Q=0$

NAND 게이트 SR 래치회로 진리표

	S	3
	0	(
	0	(
	1	
)	1	
1	0 1 1	

$$\overline{S} = 0, \overline{R} = 1$$
 인 경우이므로 $Q=1$

(4) $S=1, R=1 \cong \mathbb{G}$

Tip

NAND 게이트 SR 래치회로 진리표

\overline{S}	\overline{R}	Q(t+1)
0	0	부정
0	1	1
1	0	0
1	1	Q(t) (불변)

140	
511	office.
1	Section 1

EN	S	R	Q(t+1)
1	0	0	Q(t) (불변)
1	0	1	0
1	1	0	1
1	1	1	부정

SR 플립플롭의 진리표

Q(t)	S	R	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

SR 플립플롭의 특성표

특성 방정식

(characteristic equation)

Q(t): 현재 상태 Q(t+1): 다음 상태

Q(t)	R_{00}	01	11	10	
0			X	1	$\longrightarrow S$
1	1		X	1	RQ(t)

$$Q(t+1) = S + \overline{R}Q(t), \quad SR = 0$$

Ç	Q(t)	S	R	Q(t+1)
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	(부정)
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	(부정)

□ 게이티드 SR 플립플롭(NOR형)

예제 8-3

그림과 같은 파형을 클록형 S-R 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려 보아라. 단, Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

EN	S	R	Q(t+1)
1	0	0	<i>Q(t)</i> (불변)
1	0	1	0
1	1	0	1
1	1	1	부정

에지 트리거 SR 플립플롭

- 게이티드 SR 플립플롭은 EN=1인 상태에서 모든 동작이 수행
- 플립플롭의 동작시간보다도 EN의 지속시간이 길면 플립플롭은 여러 차례 동 작이 수행되기 때문에 예측치 못한 동작을 할 여지가 충분
- 이를 위해 에지 트리거(edge trigger)를 이용
- 트리거 종류: 레벨(level) 트리거, 에지(edge) 트리거
- 게이티드 플립플롭은 레벨 트리거로 동작
- 에지 트리거는 플립플롭의 내부 구조를 바꾸어 클록이 0에서 1로 변하거나 1에서 0으로 변할 때의 순간에만 입력을 받아들이게 하는 방법

□ 에지 트리거 SR 플립플롭

• S와 R입력을 동기입력(synchronous input)이라 한다.

CP	S R	Q(t+1)
\uparrow	0 0	<i>Q(t)</i> (불변)
\uparrow	0 1	0
\uparrow	1 0	1
\uparrow	1 1	부정

상승에지 트리거 SR 플립플롭

CP	S R	Q(t+1)
\downarrow	0 0	Q(t) (불변)
$\overline{}$	0 1	0
$\overline{}$	1 0	1
$\overline{}$	1 1	부정

하강에지 트리거 SR 플립플롭

예제 8-4

그림과 같은 파형을 상승에지 SR 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려보아라. 단, Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

MOIDISTER D 플립플롭

- 게이티드 SR 플립플롭에서 원하지 않는 상태(S=R=1)를 제거하는 한 가지 방법
- 게이티드D 플립플롭(Gated D Flip-Flop)은 게이티드SR 플립플롭을 변형한 것
- 입력신호 D가 EN에 동기되어 그대로 출력에 전달되는 특성을 가지고 있음
- **D** 플립플롭이라는 이름은 데이터(Data)를 전달하는 것과 지연(Delay)하는 역할에 서 유래

03 D = 3 = 3

EN=0이면 D 입력에 관계없이 앞 단의 NAND 게이트 G_3 과 G_4 의 출력이 1이므로 플립플롭의 출력은 불변

Gated D 플립플롭을 Gated D 래치라고도 한다.

03 D 플립플롭

$$\overline{S} = 1, \overline{R} = 0$$
 인 경우이므로 $Q=0$

■ D=1일 때

 $\overline{S} = 0, \overline{R} = 1$ 인 경우이므로 Q=1

NAND 게이트 SR 래치회로 진리표

\overline{S}	\overline{R}	Q(t+1)
0	0	부정
0	1	1
1	0	0
1	1	<i>Q(t)</i> (불변)

EN	D	Q(t+1)
1	0	0
1	1	1

EN	S	R	Q(t+1)
1	0	0	<i>Q(t)</i> (불변)
1	0	1	0
1_1_	1_	0	1
1	1	1	부정

EN	D	Q(t+1)
1	0	0
1	1	1

D 플립플롭의 진리표

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭의 특성표

D 플립플롭의 상태도

특성 방정식

(characteristic equation)

Q(t) : 현재 상태 Q(t+1) : 다음 상태

그림과 같은 파형을 게이티드 D 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려 보 에제 8-5 아라. \mathbf{C} , \mathbf{Q} 는 1로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한 다.

풀이

EN	D	Q(t+1)
1	0	0
1	1	1

에지 트리거 D 플립플롭

• 게이티드D 플립플롭의EN 입력에 펄스전이검출기를 추가하여 구성

CP	D	Q(t+1)
\uparrow	0	0
\uparrow	1	1

상승에지 트리거D 플립플롭의 논리기호 및 진리표

CP	D	Q(t+1)
\downarrow	0	0
\downarrow	1	1

하강에지 트리거D 플립플롭의 논리기호 및 진리표

예제 8-6

그림과 같이 파형의 신호가 레벨 트리거, 상승에지 트리거 그리고 하강에지 트리거를 하는 D 플립플롭으로 입력되는 경우 출력 파형을 그려보아라. 단, 출력 Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

풀이

게이티드 JK 플립플롭

- ❖ J-K 플립플롭은 S-R 플립플롭에서 S=1, R=1인 경우 출력이 불안정한 상태가 되는 문제점을 개선하여 S=1, R=1에서도 동작하도록 개선한 회로
- * J-K 플립플롭의 J는 S(set)에, K는 R(reset)에 대응하는 입력
- ❖ J=1, K=1인 경우 J-K 플립플롭의 출력은 이전 출력의 보수 상태로 변화
- ❖ J-K 플립플롭은 플립플롭 중에서 가장 많이 사용되는 플립플롭이다.

EN=0이면 J와 K 입력에 관계없이 앞 단의 NAND 게이트 G_3 과 G_4 의 출력이 플립플롭의 출력은

<u></u>		
NAND) 게이!	트 <i>SR</i> 래치회로 진리
\overline{S}	\overline{R}	Q(t+1)
0	0	

\overline{S}	\overline{R}	Q(t+1)
0	0	
0	1	_
1	0	
1	1	_

②
$$J = 0, K = 1$$
 일 때

$$Q(t)=0$$
이면, $\overline{S}=0,\overline{R}=1$ 이므로 $Q(t+1)=1$ $Q(t)=1$ 이면, $S=1,R=1$ 이므로 $Q(t+1)=1$

NAND 게이트 SR 래치회로 진리표

\overline{S}	\overline{R}	Q(t+1)
0	0	부정
0	1	1
1	0	0
1	1	Q(t) (불변)

$$\Rightarrow Q(t+1)=1$$

④ J=1, K=1 일 때

CP	J	K	Q(t+1)
1	0	0	Q(t) (불변)
1	0	1	0
1	1	0	1
1	1	1	$\overline{Q}(t)$ (toggle)

클록형 J-K 플립플롭의 진리표

Q(t)	J	K	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

J-K 플립플롭의 특성표

특성 방정식 (characteristic equation)

J-K 플립플롭의 상태도

게이티드 JK 플립플롭(NOR) 게이트형)

O4 JK 플립플롭

에제 8-7

그림과 같은 파형을 게이티드 JK 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려보아라. 단, Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

풀이

에지 트리거 JK 플립플롭

• 게이티드 JK 플립플롭의 클록펄스 입력에 펄스전이 검출기를 추가하여 구성

\square 에지 트리거 JK 플립플롭의 논리기호와 진리표

CP	J K	Q(t+1)
↑	0 0	Q(t) (불변)
\uparrow	0 1	0
\uparrow	1 0	1
\uparrow	1 1	$\overline{Q}(t)$ (toggle)

상승 에지 트리거 JK 플립플롭의 논리기호 및 진리표

CP	J K	Q(t+1)
\downarrow	0 0	Q(t) (불변)
$\overline{}$	0 1	0
$\overline{}$	1 0	1
\downarrow	1 1	$\overline{Q}(t)$ (toggle)

하강 에지 트리거 JK 플립플롭의 논리기호 및 진리표

예제 8-8

그림과 같은 파형을 상승에지 JK 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려보이라. 단, Q는 1로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

풀이

주종형 JK 플립플롭

EN=0

• Master 플립플롭의 클록입력은 클록펄스가 그대로 입력되고, Slave 플립플롭 부분의 클록입력에는 반전된 클록펄스가 입력되도록 구성

EN=1 외부의 J와 K의 입력이 Master 플립플롭에 전달

Slave 플립플롭은 EN=0이므로 동작하지 않음

Slave 플립플롭이 동작하여 $Q=Y, \overline{Q}=\overline{Y}$

Master 플립플롭은 EN=0이므로 동작하지 않음

04 JK 플립플롭

MOIDLET T 플립플롭

- JK 플립플롭의 J와 K 입력을 묶어서 하나의 입력신호 T로 동작시키는 플립플롭
- JK 플립플롭의 동작에서 \mathbf{CGO} 모두 \mathbf{COO} 기나 \mathbf{COO} 경우만을 이용하는 플립플롭
- T 플립플롭의 입력 T=0이면, T 플립플롭은 J=0, K=0인 JK 플립플롭과 같이 동작하므로 출력은 변하지 않는다. T=1이면, J=1, K=1인 JK 플립플롭과 같이 동작하므로 출력은 보수가 된다.

EN	T	Q(t+1)
1	0	Q(t)
1	1	$\overline{Q}(t)$

T 플립플롭의 진리표

T 플립플롭의 상태도

Q(t)	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

T 플립플롭의 특성표

$$Q(t+1) = T\overline{Q}(t) + \overline{T}Q(t)$$

특성 방정식

(characteristic equation)

Q(t) : 현재 상태 Q(t+1) : 다음 상태

예제 8-9

그림과 같은 파형을 게이티드 T 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려 보아라. 단, Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

에지 트리거 T 플립플롭

• 클록형 T 플립플롭의 클록펄스 입력에 펄스 전이 검출기를 추가하여 구성

CP	T	Q(t+1)
\uparrow	0	Q(t)
\uparrow	1	$\overline{Q}(t)$

상승에지 트리거 T 플립플롭

CP	T	Q(t+1)
\downarrow	0	Q(t)
$\overline{}$	1	$\overline{Q}(t)$

하강에지 트리거 T 플립플롭

T = 1

• 에지 트리거 T 플립플롭은 T 입력은 논리 1 상태로 고정하고 CP에 클록펄스를 트리거 입력으로 사용하기도 한다. 이러한 경우 T 플립플롭은 클록펄스가 들어올 때마다 상태가 바뀌어지는 회로이다.

□ T 플립플롭을 구성하는 방법

06 비동기 입력

- 대부분의 플립플롭은 클록펄스에 의해서 플립플롭의 상태를 변화시킬 수 있는 동기입력이 있고, 클록펄스와 관계없이 비동기적으로 변화시킬 수 있는 비동기 입력인 preset(\overline{PR}) 입력과 clear(\overline{CLR}) 입력이 있다.
- 비동기 입력들은 플립플롭의 초기조건을 결정하는 용도로 사용

\overline{PR}	\overline{CLR}	CP	J	K	Q
0	1	×	×	×	1
1	0	×	×	×	0
1	1	\downarrow	0	0	변화 없음
1	1	\	0	1	0
1	1	\downarrow	1	0	1
1	1	\	1	1	토글

비동기 입력을 가진 JK 플립플롭의 논리기호와 진리표

preset 입력과 clear 입력에 있는 <math>JK 플립플롭의 논리회로

06 비동기 입력

에제 8-11

그림과 같이 하강에지 JK 플립플롭의 J와 K 입력을 논리 1로 하고, \overline{PR} 과 \overline{CLR} 입력에 그림의 파형을 인가하였을 때, 출력 Q의 파형을 그려 보아라. 단, Q는 0으로 초기화되어 있으며, 게이트에서의 전파지연은 없는 것으로 가정한다.

전파지연시간 (Propagation Delay Time)

• 입력 신호가 가해진 후 출력에 변화가 일어날 때까지의 시간 간격

설정시간(set-up time) 및 유지시간(hold time)

- 설정시간 $(t_s): CP$ 의 상승에지 전이 전에 입력값이 일정 시간 동안 유지되어 야 하는데 필요한 시간 간격
- 보류 시간 $(t_{b}): CP$ 가 상승에지 변이 이후에도 입력값이 변해서는 안 되는 일 정한 시간

D = 0°이 입력되는 경우

펄스 폭 (pulse widths)

최대 클록 주파수 (Maximum Clock Frequency)

- 최대 클록 주파수 (Maximum Clock Frequency)는 플립플롭의 동작속도를 결정 하는 중요한 파라미터
- 최대 클록 주파수는 플립플롭이 안전하게 동작할 수 있는 최대 주파수
- 항상 최대 클록 주파수 이하에서 동작시켜야 한다.

기타 특성

• 디지털 논리 게이트의 전기적 특성에 있는 잡음 여유도, 팬-아웃, 팬-인 등이 플립플롭에도 적용될 수 있다.

플립플롭의 특성 비교

Parameter	TTL		CMOS	
(Times in ns)	7474	74LS112	74C74	74HC112
t_s (set-up)	20	20	60	25
t_h (hold)	5	0	0	0
t_{PHL} (from CLK to Q)	40	24	200	31
t_{PLH} (from CLK to Q)	25	16	200	31
t_{PHL} (from \overline{CLR} to Q)	40	24	225	41
t_{PLH} (from \overline{PR} to Q)	25	16	225	41
$t_W(L)(CLK\ Low\ \text{time})$	37	15	100	25
$t_W(H)(CLK High time)$	30	20	100	25
$t_W(L)$ (at \overline{CLR} or \overline{PR})	30	15	60	25
$f_{\text{MAX}}(\text{in } MHz)$	15	30	5	20

SR 플립플롭의 진리표

EN	S	R	Q(t+1)
1	0	0	
1	0	1	
1	1	0	
1	1	1	

D 플립플롭의 진리표

EN	D	Q(t+1)
1	0	
1	1	

JK 플립플롭의 진리표

EN	J	K	Q(t+1)
1	0	0	
1	0	1	
1	1	0	
1	1	1	

T 플립플롭의 진리표

EN	T	Q(t+1)
1	0	
1	1	