Math 324: Linear Algebra

Section 4.4: Linear Combinations and Spans

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- Subspaces of \mathbb{R}^2
- Subspaces of \mathbb{R}^3
- Intersections of Subspaces

Today.

- Linear Combination
- Span

Definition.

A vector \vec{v} in a vector space V is a linear combination of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \in V$ if there exist scalars c_1, c_2, \dots, c_n such that

$$\vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \cdots + c_n \vec{u}_n.$$

Example.

The vector $\vec{v} = (1, 4, 5)$ is a linear combination of $\vec{u_1} = (1, 2, 3)$ and $\vec{u_2} = (3, 4, 7)$ because

$$\vec{v} = 4\vec{u}_1 - \vec{u}_2.$$

Example.

The polynomial $p(x)=3+x-2x^2$ is a linear combination of $q_1(x)=1+x$, $q_2(x)=1+x^2$, $q_3(x)=1+x+x^2$, and $q_4(x)=x^2$ because

$$p(x) = 3 + x - 2x^{2}$$

$$= 5(1+x) + 2(1+x^{2}) - 4(1+x+x^{2}) + 0x^{2}$$

$$= 5q_{1}(x) + 2q_{2}(x) + (-4)q_{3}(x) + 0q_{4}(x)$$

Exercise 1.

Can the vector $\vec{v} = (1,0,5)$ be written as a linear combination of $\vec{u}_1 = (-1,1,1)$ and $\vec{u}_2 = (2,1,3)$?

I suggest you turn this into a question about solutions to a linear system of equations.

Exercise 2.

Can the polynomial $p(x) = 2 + x + x^2$ be written as a linear combination of $q_1(x) = 1 + x$ and $q_2(x) = 1 + x^2$? You should also turn this into a question of solutions to a linear system.

Exercise 3.

Can $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ be written as a linear combination of $M_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$?

Definition.

If $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is a set of vectors in a vector space V, then the span of S, denoted span(S), is the set of all linear combinations of the vectors in S,

$$\mathsf{span}(S) = \{c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k \ : \ c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Exercise 4.

Compute span(S) for $S = \{(1,2,3),(4,5,6)\}$ as a subset of \mathbb{R}^3 . That is, describe all vectors, $\vec{v} = (x,y,z)$, that can be written in the form

$$(x, y, z) = a(1, 2, 3) + b(4, 5, 6).$$

Use the following code to row reduce a matrix with variables in Sage: (https://sagecell.sagemath.org/)

Go to the next slide to see the solution.

Exercise 4.

Compute span(S) for $S = \{(1,2,3),(4,5,6)\}$ as a subset of \mathbb{R}^3 . That is, describe all vectors, $\vec{v} = (x,y,z)$, that can be written in the form

$$(x, y, z) = a(1, 2, 3) + b(4, 5, 6).$$

Use the following code to row reduce a matrix with variables in Sage: (https://sagecell.sagemath.org/)

Notice that the last row of the augmented matrix A reduces to $\begin{bmatrix} 0 & 0 & x-2y+z \end{bmatrix}$. We want the system to have solutions. This means that

$$span(S) = \{(x, y, z) : 0 = x - 2y + z\}.$$

Exercise 5.

Continuing, open https://sagecell.sagemath.org/ and use the code below to plot the plane x-2y+z=0 along with the vectors in $S=\{(1,2,3),(4,5,6)\}$.

```
x,y = var("x,y")
P = plot3d(-x+2*y,(x,-2,6),(y,-2,6),opacity=.5)
P += arrow((0,0,0),(1,2,3),color="red",thickness=5)
P += arrow((0,0,0),(4,5,6),color="green",thickness=5)
P.show()
```

Brain Break.

Do you have any art-related hobbies?

I'm a bit knitting obsessed. Here's Pepper enjoying two homemade blankets and Me trying on a half(quarter)-finished sweater.

Exercise 6.

Compute span(S) for $S = \{1 + x, 1 - x\}$ as a subset of P_1 . That is, provide a meaningful description of all polynomials that can be written as a(1 + x) + b(1 - x).

Definition.

Let V be a vector space. We call the set $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ a spanning set for V if span(S) = V.

Example.

$$S = \{1 + x, 1 - x\}$$
 is a spanning set for P_1

Non-Example.

The set $S = \{(1,2,3),(4,5,6)\}$ is NOT a spanning set for \mathbb{R}^3 because span(S) is the plane defined by x-2y+z=0. How might you prove it is not a spanning set? Pick a vector not on the plane, say $\vec{v} = (1,0,0)$ and prove that it is not a linear combination of (1,2,3) and (4,5,6).

Exercise 7.

Use proof by contradiction to show that $\vec{v} = (1,0,0)$ is not a linear combination of $\vec{u}_1 = (1,2,3)$ and $\vec{u}_2 = (4,5,6)$.

Theorem 4.7.

If $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is a set of vectors in a vector space V, then span(S) is a subspace of V.

Moreover, span(S) is the smallest subspace of V that contains S. This means that if W is any other subspace of V that contains S, then W also contains span(S).

Exercise 8.

Prove that span(S) is a subspace of V.

Proof.

Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a subset of a vector space V. To show that span(S) is a subspace of V, we use the Subspace Test:

- (a) Write $\vec{0}$ as a linear combination of the vectors in S. *Be sure to reference any previous Theorems.*
- (b) Let \vec{u} and \vec{w} be elements of span(S). Then we can write $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$ and $\vec{w} = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$. Show that $\vec{u} + \vec{w}$ can be written as a linear combination of the vectors in S.
- (c) Let c be a scalar. Show that $c\vec{u}$ can be written as a linear combination of the scalars in S.