The group G is isomorphic to the group labelled by [21, 1] in the Small Groups library. Ordinary character table of $G \cong C7 : C3$:

	1a	7a	76	3a	3b
χ_1	1	1	1	1	1
χ_2	1	1	1	E(3)	$E(3)^2$
χ_3	1	1	1	$E(3)^{2}$	E(3)
χ_4	3	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0
χ_5	3	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0

Trivial source character table of $G \cong C7$: C3 at p = 7:

Normalisers N_i	N_1			N_2			
p-subgroups of G up to conjugacy in G		P_1			P_2		
Representatives $n_j \in N_i$	1a	3a	3b	1a	3a	3b	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$	7	1	1	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$	7	E(3)	$E(3)^{2}$	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$	7	$E(3)^{2}$	E(3)	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 18, 15, 12, 9, 6, 3)(2, 20, 17, 14, 11, 8, 5)(4, 21, 19, 16, 13, 10, 7)]) \cong C7$