Вопрос 2 (ВМ2)

Функция, график функции. Операции над функциями: сумма, разность, произведение, частное, композиция. Обратная функция.

Функция, график функции

Пусть D - некоторое множество действительных чисел. Говорят, что на множестве D задана (числовая) функция f если каждому числу $x \in D$ (аргументу

функции) поставлено в соответствие единственное число, обозначаемое f(x) и называемое значением функции в точке x. Множество D(f) называется областью определения функции, а множество $E(f)=\{y\in\mathbb{R}:y=f(x),x\in D(f)\}$ - областью значений функции.

Функция обозначается также $f:D \to \mathbb{R}$ или $x \mapsto f(x), x \in D$, или $y = f(x), x \in D$, или просто $f(x), x \in D$

Графиком функции f (рис. 7) называется множество $\Gamma(f) = \{(x,y) \in \mathbb{R}^2 : y = f(x), x \in D(f)\}$ Наиболее распространённый способ заданий функций является **аналитический**.

Операции над функциями

Суммой (разностью) функций f и g называется функция f+g (f-g), определённая на множестве $D(f)\cap D(g)$, значение которой в точке $x\in D(f)\cap D(g)$ вычисляется по формуле

$$(f\pm g)(x)=f(x)\pm g(x)$$

Произведением функций f и g называется функция $f\cdot g$ определённая на множестве $D(f)\cap D(g)$, значение которой в точке $x\in D(f)\cap D(g)$ вычисляется по формуле

$$(f \cdot g)(x) = f(x)g(x)$$

Частным функций f и g называется функция $\frac{f}{g}$, определённая на множестве

 $D_1=D(f)\cap \{x\in D(g): g(x)
eq 0\}$, значение которой в точке $x\in D_1$ вычисляется по формуле

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Композиция функций

Композицией функций f и g (или сложной функцией, полученной композицией функций f и g) называется функция $h=g\circ f$ (рис. 8), задаваемая формулой $h(x)=(g\circ f)(x)=g(f(x))$ на множестве $D(h)=\{x\in D(f):f(x)\in D(g)\}.$

Обратная функция

Re 9

Пусть функция $f:D\to\mathbb{R}$ такова, что для $\forall x_1,x_2\in D(x_1\neq x_2)\implies f(x_1)\neq f(x_2),$ например, f - возрастает: $x_1< x_2\implies f(x_1) < f(x_2)$ или f - убывает: $x_1< x_2\implies f(x_1)>f(x_2).$ Тогда $\forall y\in E=E(f)$ найдётся единственное $x\in D,$ такое что f(x)=y. Тем самым определена функция $f^{-1},f^{-1}:E\to\mathbb{R},$ называемая функцией обратной к $f:x=f^{-1}(y)$ (рис. 9) Ясно, что $D(f^{-1})=E(f),E(f^{-1})=D(f),$ $f(f^{-1}(y))\equiv y$ и $f^{-1}(f(x))\equiv x$

График $\Gamma(f^{-1})$ обратной функции получается $\Gamma(f)$ преобразованием плоскости \mathbb{R}^2 , переводящим любую точку (x, y) в точку (y, x), симметричную ей относительно прямой y = x (рис. 10).