Package 'volesti'

September 9, 2018

es.
or VolEsti C++ package. VolEsti computes iven as a set of points or linear inequalities es). There are two algorithms for volume ampling, rounding and rotating polytopes.
on.fysikopoulos@oracle.com>, Chalkis Aposto-
n/volume_approximation/issues 3.3.4.0), BH (>= 1.66.0-1) 0.3.3.4.0), BH (>=

2 CheBall

rand_rotate		 	•			 •	•	•			 		•	•	•	•		•			•	8	
round_polytope		 									 											9	
sample_points .		 									 											10	
volume		 									 											11	

Index 14

CheBall

Compute the Chebychev ball of a H-polytope.

Description

For a H-polytope described by a $m \times d$ matrix A and a m-dimensional vector b, s.t.: $Ax \leq b$, this function computes the largest inscribed ball (Chebychev ball) of that polytope by solving the corresponding linear program. This function needs suggested R-package lpSolveAPI.

Usage

```
CheBall(A, b)
```

Arguments

- A The matrix of the H-polytope.
- b The m-dimensional vector b that containes the constants of the m facets.

Value

A (d+1)-dimensional vector that containes the Chebychev ball. The first d coordinates corresponds to the center and the last one to the radius of the Chebychev ball.

```
# compute the Chebychev ball of a 2d unit simplex A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE) b = c(0,0,1) ball_vec = CheBall(A,b)
```

ExactZonoVol 3

ExactZonoVol	Compute the exact volume of a zonotope.	

Description

Given the $m \times d$ matrix that containes the m segments that define the d-dimensional zonotope, this function computes the sum of the determinants of all the $d \times d$ submatrices.

Usage

```
ExactZonoVol(Matrix)
```

Arguments

Matrix

The $m \times d$ matrix that containes the segments that define the zonotope.

Value

The exact volume of the zonotope

Examples

```
# compute the exact volume of a 5-dimensional zonotope defined by the Minkowski sum of 10 segments
zonotope = GenZonotope(5, 10)
vol = ExactZonoVol(zonotope)
```

fileToMatrix

function to get a ine file and returns a numerical matrix A.

Description

This function takes the path for an ine or an ext file and returns the corresponding numerical matrix and vector that are compatible with volesti package's functions.

Usage

```
fileToMatrix(path)
```

Arguments

path

A string that containes the path to an ine or a ext file. The ine file describes a H-polytope and ext file describes a V-polytope or a zonotope.

4 GenCross

Value

If the path corresponds to an ine file then the return value is a list that containes elements "A" and "b", i.e. the numerical $m \times d$ matrix A and the numerical m-dimensional vector b, defining H-polytope P, s.t.: $Ax \leq b$. If it corresponds to an ext file (V-polytopes or zonotopes) then the return value is a $m \times d$ matrix that containes row-wise the vertices or the segments respectively.

Examples

```
# give the path to birk4.ine
ListPoly = fileToMatrix(path/to/data/birk4.ine)
```

GenCross

Generator function for cross polytopes.

Description

This function can be used to generate a d-dimensional cross polytope in H or V representation.

Usage

```
GenCross(dimension, repr)
```

Arguments

dimension The dimension of the cross polytope.

repr A string to declare the representation. It has to be 'H' for H-representation or

'V' for V-representation.

Value

A cross polytope in H or V-representation. For an H polytope the return value is a list with two elements: the "matrix" containing a $2^d \times d$ matrix A and the "vector" containing a 2^d -dimensional vector b, s.t. $Ax \leq b$. When the V-representation is chosen the return value is a $2d \times d$ matrix that containes the vertices row-wise.

```
# generate a 10-dimensional cross polytope in H-representation
PolyList = GenCross(10, 'H')

# generate a 15-dimension cross polytope in V-representation
PolyList = GenCross(15, 'V')
```

GenCube 5

GenCube

Generator function for hypercubes.

Description

This function can be used to generate a d-dimensional Hypercube $[-1,1]^d$ in H or V representation.

Usage

```
GenCube(dimension, repr)
```

Arguments

dimension The dimension of the hypercube

repr A string to declare the representation. It has to be 'H' for H-representation or

'V' for V-representation.

Value

A hypercube in H or V-representation. For an H polytope the return value is a list with two elements: the "matrix" containing a $2d \times d$ matrix A and the "vector" containing a 2d-dimensional vector b, s.t. $Ax \leq b$. When the V-representation is chosen the return value is a $2^d \times d$ matrix that containes the vertices row-wise.

Examples

```
# generate a 10-dimensional hypercube in H-representation
PolyList = GenCube(10, 'H')

# generate a 15-dimension hypercube in V-representation
PolyList = GenCube(15, 'V')
```

GenProdSimplex

Generator function for product of simplices.

Description

This function can be used to generate a 2d-dimensional polytope that is defined as the product of two d-dimensional unit simplices in H-representation.

Usage

```
GenProdSimplex(dimension, repr = "H")
```

Arguments

dimension

The dimension of the simplices.

GenSimplex

Value

A polytope defined as the product of two unit simplices in H-representation. The return value is a list with two elements: the "matrix" containing a $(2d+1) \times 2d$ matrix A and the "vector" containing a (2d+1)-dimensional vector b, s.t. $Ax \leq b$.

Examples

```
# generate a product of two 5-dimensional simplices.
PolyList = GenProdSimplex(5)
```

GenSimplex

Generator function for simplices.

Description

This function can be used to generate a d-dimensional unit simplex in H or V representation.

Usage

```
GenSimplex(dimension, repr)
```

Arguments

dimension The dimension of the simplex.

repr A string to declare the representation. It has to be 'H' for H-representation or

'V' for V-representation.

Value

A simplex in H or V-representation. For an H polytope the return value is a list with two elements: the "matrix" containing a $(d+1) \times d$ matrix A and the "vector" containing a (d+1)-dimensional vector b, s.t. $Ax \leq b$. When the V-representation is chosen the return value is a $(d+1) \times d$ matrix that containes the vertices row-wise.

```
# generate a 10-dimensional simplex in H-representation
PolyList = GenSimplex(10, 'H')

# generate a 20-dimensional simplex in V-representation
PolyList = GenSimplex(20, 'V')
```

GenSkinnyCube 7

GenSkinnyCube	Generator function for skinny hypercubes.
---------------	---

Description

This function can be used to generate a *d*-dimensional skinny hypercube only in H-representation.

Usage

```
GenSkinnyCube(dimension, repr = "H")
```

Arguments

dimension

The dimension of the skinny hypercube.

Value

A d-dimensional skinny hypercube in H-representation. The return value is a list with two elements: the "matrix" containing a $2d \times d$ matrix A and the "vector" containing a 2d-dimensional vector b, s.t. $Ax \leq b$.

Examples

```
# generate a 10-dimensional skinny hypercube.
PolyList = GenSkinnyCube(10)
```

GenZonotope

Generator function for zonotopes.

Description

This function can be used to generate a d-dimensional zonotope described by the Minkowski sum of m segments. We consider the e_1, \ldots, e_d generators and m-d random generators. Then we shift the zonotope in order to contain the origin. The origin is the center of symmetry as well. It might needs rounding before the volume computation.

Usage

```
GenZonotope(dimension, NumGen)
```

Arguments

dimension The dimension of the zonotope.

NumGen The number of segments that generate the zonotope.

8 rand_rotate

Value

A $m \times d$ matrix that containes the m d-dimensional segments.

Examples

```
# generate a 10-dimensional zonotope defined by the Minkowski sum of 20 segments
zonotope = GenZonotope(10, 20)
```

rand_rotate	Apply a random rotation to a convex polytope (H-polytope, V-polytope
	or a zonotope).

Description

Given a convex H or V polytope or a zonotope as input this function applies a random rotation.

Usage

```
rand_rotate(A, b, V, G)
```

Arguments

A	Only for H-polytopes. The $m \times d$ matrix A that containes the directions of the m facets.
b	Only for H-polytopes. The m -dimensional vector b that containes the constants of the m facets s.t.: $Ax \leq b$.
V	Only for V-polytopes. The $m\times d$ matrix V that containes row-wise the m d -dimensional vertices of the polytope.
G	Only for zonotopes. The $m \times d$ matrix G that containes row-wise the m d -dimensional segments that define a zonotope.

Value

A random rotation of the polytope that is given as an input. The output for a H-polytope is a list that containes elements "matrix" and "vector". For a V-polytope the output is a $m \times d$ matrix that containes the m d-dimensional vertices of the V-polytope row-wise. For a zonotope is a $m \times d$ matrix that containes the m d-dimensional segments row-wise.

round_polytope 9

```
matVpoly = rand_rotate(V=V)

# rotate a 5-dimensional zonotope defined by the Minkowski sum of 15 segments
Zono = GenZonotope(5,15)
MatZono = rand_rotate(G=Zono)
```

round_polytope Apply rounding to a convex zonotope).	polytope (H-polytope, V-polytope or a
--	---------------------------------------

Description

Given a convex H or V polytope or a zonotope as input this function computes a rounding based on minimum volume enclosing ellipsoid of a pointset.

Usage

```
round_polytope(A, b, V, G, walk_length, ball_walk, delta, coordinate, verbose)
```

Arguments

A	Only for H-polytopes. The $m\times d$ matrix A that containes the directions of the m facets.
b	Only for H-polytopes. The m -dimensional vector b that containes the constants of the m facets s.t.: $Ax \leq b$.
V	Only for V-polytopes. The $m\times d$ matrix V that containes row-wise the m d -dimensional vertices of the polytope.
G	Only for zonotopes. The $m\times d$ matrix G that containes row-wise the m d -dimensional segments that define a zonotope.
walk_length	Optional. The number of the steps for the random walk, default is $\lfloor 10 + d/10 \rfloor$.
ball_walk	Optional. Boolean parameter to use ball walk, only for CG algorithm. Default value is false.
delta	Optional. The radius for the ball walk.
coordinate	Optional. A boolean parameter for the hit-and-run. True for Coordinate Directions HnR, false for Random Directions HnR. Default value is true.
verbose	Optional. A boolean parameter for printing. Default is false.

Value

Is a list that containes elements to describe the rounded polytope, i.e. "matrix" and "vector" for H-polytopes and just "matrix" for V-polytopes and zonotopes, containing the verices or segments rowwise. For both representations the list containes element "round_value" which is the determinant of the square matrix of the linear transformation that was applied on the polytope that is given as input.

10 sample_points

Examples

sample_points

Sample points from a convex Polytope (H-polytope, V-polytope or a zonotope).

Description

Sample N points from a H or a V-polytope or a zonotope with uniform or spherical gaussian - centered in an internal point- target distribution.

Usage

```
sample_points(A, b, V, G, walk_length, internal_point, gaussian, variance, N,
ball_walk, delta, verbose, coordinate)
```

Arguments

A	Only for H-polytopes. The $m\times d$ matrix A that containes the directions of the m facets.
b	Only for H-polytopes. The m -dimensional vector b that containes the constants of the m facets s.t.: $Ax \leq b.$
V	Only for V-polytopes. The $m\times d$ matrix V that containes row-wise the m d -dimensional vertices of the polytope.
G	Only for zonotopes. The $m\times d$ matrix G that containes row-wise the m d -dimensional segments that define a zonotope.
walk_length	Optional. The number of the steps for the random walk, default is $\lfloor 10 + d/10 \rfloor$.
internal_point	Optional. A d -dimensional vector that containes the coordinates of an internal point of the polytope. If it is not given then for H-polytopes the Chebychev center is computed, for V-polytopes $d+1$ vertices are picked randomly and the Chebychev center of the defined simplex is computed. For a zonotope that is defined by the Minkowski sum of m segments we use the origin.
gaussian	Optional. A boolean parameter to sample with gaussian target distribution. Default value is false.

volume 11

variance	Optional. The variance for the spherical gaussian. Default value is 1.
N	The number of points that the function is going to sample from the convex polytope. Default value is 100 .
ball_walk	Optional. Boolean parameter to use ball walk for the sampling. Default value is false.
delta	Optional. The radius for the ball walk.
verbose	Optional. A boolean parameter for printing. Default is false.
coordinate	Optional. A boolean parameter for the hit-and-run. True for Coordinate Directions HnR, false for Random Directions HnR. Default value is true.

Value

A $d \times N$ matrix that contains, column-wise, the sampled points from the convex polytope.

Examples

volume	The main R function for volume approximation of a convex Polytope (H-polytope, V-polytope or a zonotope).
	(11-ροιγιορε, ν-ροιγιορε οι α ζοποιορε).

Description

For the volume approximation can be used two algorithms. Either SequenceOfBalls or Cooling-Gaussian. A H-polytope with m facets is described by a $m \times d$ matrix A and a m-dimensional vector b, s.t.: $Ax \leq b$. A V-polytope is described as a set of d-dimensional points. A zonotope is described by the Minkowski sum of d-dimensional segments.

Usage

```
volume(A, b, V, G, walk_length, error, InnerVec, CG, win_len, C, N, ratio, frac,
ball_walk, delta, verbose, coordinate, rounding)
```

12 volume

Arguments

A	Only for H-polytopes. The $m\times d$ matrix A that containes the directions of the m facets.
b	Only for H-polytopes. The m -dimensional vector b that containes the constants of the m facets s.t.: $Ax \leq b$.
V	Only for V-polytopes. The $m\times d$ matrix V that containes row-wise the m d -dimensional vertices of the polytope.
G	Only for zonotopes. The $m\times d$ matrix G that containes row-wise the m d -dimensional segments that define a zonotope.
walk_length	Optional. The number of the steps for the random walk, default is $\lfloor 10 + d/10 \rfloor$.
error	Optional. Declare the goal for the approximation error. Default is 1 for SequenceOfBalls and 0.2 for CoolingGaussian.
InnerVec	Optional. A $d+1$ vector that containes an inner ball. The first d coordinates corresponds to the center and the last one to the radius of the ball. If it is not given then for H-polytopes the Chebychev ball is computed, for V-polytopes $d+1$ vertices are picked randomly and the Chebychev ball of the defined simplex is computed. For a zonotope that is defined as the Minkowski sum of m segments we compute the maximal r s.t.: $re_i \in Z$ for all $i=1,\ldots,m$.
CG	Optional. A boolean parameter to use CoolingGaussian algorithm. Default value is false.
win_len	Optional. The size of the window for the ratios' approximation in CG algorithm. Default value is $4\ dimension^2+500$.
С	Optional. A constant for the lower bound of $variance/mean^2$ in schedule annealing of CG algorithm.
N	optional. The number of points we sample in each step of schedule annealing in CG algorithm. Default value is $500C+dimension^2/2$.
ratio	Optional. Parameter of schedule annealing of CG algorithm, larger ratio means larger steps in schedule annealing. Default value is $1-1/dimension$.
frac	Optional. The fraction of the total error to spend in the first gaussian in CG algorithm. Default value is 0.1.
ball_walk	Optional. Boolean parameter to use ball walk. Default value is false.
delta	Optional. The radius for the ball walk.
verbose	Optional. A boolean parameter for printing. Default is false.
coordinate	Optional. A boolean parameter for the hit-and-run. True for Coordinate Directions HnR, false for Random Directions HnR. Default value is true.
rounding	Optional. A boolean parameter to activate the rounding option. Default value is false.

Value

The approximation of the volume of a convex H or V polytope.

volume 13

References

I.Z.Emiris and V. Fisikopoulos, "Practical polytope volume approximation," ACM Trans. Math. Soft., 2014.,

B. Cousins and S. Vempala, "A practical volume algorithm," Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society, 2015.

Index

```
CheBall, 2

ExactZonoVol, 3

fileToMatrix, 3

GenCross, 4
GenCube, 5
GenProdSimplex, 5
GenSimplex, 6
GenSkinnyCube, 7
GenZonotope, 7

rand_rotate, 8
round_polytope, 9

sample_points, 10

volume, 11
```