DSC5211C QUANTITATIVE RISK MANAGEMENT SESSION 11 - Workshop

Fernando Oliveira

bizfmdo@nus.edu.sg

Catastrophic Risk Management Capacity Management under Uncertainty

Objectives

- Comparison of risk-neutral, CV@R, V@R, and Worst-case risk measures.
- Analysis the Capacity Management Problem Under Risk-Aversion.
- Explore some more features of GAMS.

The Capacity Management Model

• O'Neill's Hammer 3/2 wetsuit.

Capacity Management Implementation Steps

- Generate a demand model:
 - Determine a distribution function that accurately reflects the possible demand outcomes, such as a normal distribution function.
- Gather economic inputs:
 - Selling price, production/procurement cost, salvage value of inventory.
- Choose an objective:
 - e.g. maximize expected profit or satisfy an in-stock probability.
- Choose a quantity to order.

Historical forecast performance at O'Neill

O'Neill's Hammer 3/2 normal distribution forecast

- To represent demand for the Hammer 3/2 during the Spring season O'Neill can choose a normal distribution with:
 - mean 3192
 - standard deviation 1181.
- O'Neill sells each suit for p = \$190.
- O'Neill purchases each suit from its supplier for c = \$110 per suit.
- Discounted suits sell for v = \$90
 - This is also called the *salvage value*.

Performance Measures

- For any order quantity we would like to evaluate the following performance measures:
 - *In-stock probability*
 - Probability all demand is satisfied
 - Stockout probability
 - Probability some demand is lost
 - Expected lost sales
 - The expected number of units by which demand will exceed the order quantity
 - Expected sales
 - The expected number of units sold.
 - Expected left over inventory
 - The expected number of units left over after demand (but before salvaging)
 - Expected profit

Maximize Expected Profit

Profit = (Price - Cost).Sales - (Cost - Salvage Value). Leftover inventory

- If they order 3000 Hammer 3/2s, then ...
- *Expected sales* = 2620
- Expected Left Over Inventory =

$$=Q$$
 - Expected Sales
= $3000 - 2620 = 380$

```
Expected Profit = [(Price - Cost) \times Expected Sales]

-[(Cost - Salvage value) \times Expected left over inventory]

= $80 \times 2620 - $20 \times 380

= $202,000
```

TASK 1 – Risk-Neutral

• Using the file "hammer_neutral.gms" compute the number of wetsuits to order to maximize the expected profit.

How does the solution change if you use 200, 1000, 10000 scenarios?

• Compute:

- the expected sales,
- the expected lost sales,
- the stockout probability,
- the expected leftover inventory.

• A description on how to view the output of GAMS in excel:

https://www.gams.com/latest/docs/UG DataExchange Excel.html

TASK 2 – CV@R

• Save the file with the name "hammer_CVaR.gms". Change the file to compute the CV@R. Insert the following code in the file:

```
tails(s).. z(s)=g= var-profit(s);

cvar_eq.. cvar =e= var-1/((1-beta)*card(s))*sum(s,z(s));

Solve hammer using lp maximizing cvar;
```

Note: these equations work with PROFIT functions.

• Solve the problem in TASK 1 for MAXIMIZING CV@R, with Beta 0.9, 0.99, 0.999.

FSO

TASK 3 – General Model

- Continue working on the "hammer_CVaR.gms" file.
- Solve the *CV@R maximization* problem with beta:
 - **0.0**, 0.25, 0.5, 0.75, 0.95, 0.99999.

What is the relationship between the CV@R, the expected Profit, and the Worst-case profit?

Summary

- We have solved the capacity management problem using risk.
- We have compared how risk measures affect the performance measure of management.
- We have looked at using the PUT feature for outputting the GAMS results into files.

FSO