Mie 16-6 force field predicts viscosity with faster-than-exponential pressure dependence for 2,2,4-trimethylhexane

Richard A. Messerly

richard.messerly@nist.gov 303-497-5851

Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado, 80305

Michelle C. Anderson

michelle.anderson@nist.gov

Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado, 80305

S. Mostafa Razavi

sr87@zips.uakron.edu

Department of Chemical and Biological Engineering, The University of Akron, Akron, Ohio, 44325-3906

J. Richard Elliott

elliot1@uakron.edu

Department of Chemical and Biological Engineering, The University of Akron, Akron, Ohio, 44325-3906

Dear Editor,

We would greatly appreciate if you would consider the following paper for publication in *Fluid Phase Equilibria*. The results presented in this study were submitted to the 10th Industrial Fluid Properties Simulation Challenge. The manuscript is, therefore, intended for the *Special Issue of Fluid Phase Equilibria 10th IFPSC*. We are willing to make any changes that may be required to make the manuscript publishable in *Fluid Phase Equilibria*.

We apologize that this manuscript is being submitted after the March 1st deadline for the *Special Issue*. The email that contained this deadline was never received by the lead author, Richard Messerly, due to the federal government shutdown. Fortunately, we were notified on March 13th by the organizers of the 10th Challenge that submission to the *Special Issue* was still open.

Sincerely,

Richard Messerly