QUESTIONS

• Write the complimentary (homogeneous) solutions (y_h) of the differential equations whose roots of the characteristic equations are given.

a.
$$r_1 = 1$$
 , $r_2 = -1$, $r_3 = \frac{2}{3}$, $r_4 = -\frac{2}{3}$, $r_5 = 5$, $r_6 = -6$

b.
$$r_1 = r_2 = 0$$
, $r_3 = r_4 = -2$, $r_5 = 3i$, $r_6 = -3i$

c.
$$r_1 = r_2 = 2i$$
, $r_3 = r_4 = -2i$, $r_5 = i$, $r_6 = -i$

d.
$$r_1 = r_2 = r_3 = 2$$
 , $r_4 = -2$, $r_5 = 2 - 3i$, $r_6 = 2 + 3i$

e.
$$r_1 = r_2 = r_3 = i$$
, $r_4 = r_5 = r_6 = -i$

f.
$$r_1 = r_2 = -1 + 3i$$
, $r_3 = r_4 = -1 - 3i$, $r_5 = 2$, $r_6 = -2$

g.
$$r_1 = r_2 = r_3 = 2 - i$$
, $r_4 = r_5 = r_6 = 2 + i$

h.
$$r_1 = \sqrt{2}$$
 , $r_2 = r_3 = 2i$, $r_4 = r_5 = -2i$, $r_6 = \sqrt{3}$

i.
$$r_1 = i$$
, $r_2 = -i$, $r_3 = -2i$, $r_4 = 2i$, $r_5 = 3i$, $r_6 = -3i$

j.
$$r_1 = 1$$
, $r_2 = -1$, $r_3 = i$, $r_4 = -i$, $r_5 = 1 + i$, $r_6 = 1 - i$

k.
$$r_1 = 2$$
 , $r_2 = r_3 = -1$, $r_4 = r_5 = r_6 = -3$

l.
$$r_1 = r_2 = r_3 = \frac{3}{2}i$$
, $r_4 = r_5 = r_6 = -\frac{3}{2}i$

m.
$$r_1 = r_2 = r_3 = -3 + 5i$$
, $r_4 = r_5 = r_6 = -3 - 5i$

n.
$$r_{1,2} = 1 \pm \sqrt{2}i$$
, $r_{3,4} = \pm \sqrt{2}i$, $r_{5,6} = -\sqrt{2}i$

• Write the complimentary (homogeneous) solutions (y_h) of the following differential equations (y_h) .

a.
$$y^{...} - 3y^{..} - y + 3y = 2e^{3x} + 7x$$

b.
$$y^{...} + 2y^{..} - 4y^{.} - 8y = 4x + 7$$

c.
$$y^{...} - 3y^{..} + 3y^{.} - y = 8xe^x + sinx$$

d.
$$y^{\nu} + 9y^{...} = 11xsin3x$$

e.
$$y^{iv} - 4y^{...} + 29y^{..} = 0$$

f.
$$y^{...} - y^{..} - y^{.} + y = 9e^{-x} + 4$$

g.
$$y^{...} - 5y^{..} + 6y^{.} = 9x - 3$$