A =
$$\begin{pmatrix} \frac{3}{2} & \frac{1}{4} & \frac{2}{3} \\ \frac{3}{4} & \frac{2}{3} \end{pmatrix}$$

P_A(λ) = $\begin{pmatrix} \frac{3}{2} & \frac{1}{4} & \frac{2}{4} \\ \frac{1}{4} & \frac{2}{3} & \frac{1}{4} \end{pmatrix}$

= $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

= $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

(3 - λ + λ)

= $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

2) Donc Spec (A) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{2}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

2) Donc Spec (A) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

P_A(λ) = $\frac{1}{4} \begin{pmatrix}$

on a done bien deux vocheurs propres (0) associé à l= 6. Om a bien 1 vedeur propre (-?) associo à $\lambda = 2$. Non avous alors tel que A - PDP-1 Nous obtenous