Bi-Weekly Update

Sarkis Ter Martirosyan

October 9, 2017

1 Introduction

This is a section which outlines the fundamental formulas behind the "Delay Sum" (DAS) and "Pressure Matching" (PM) methods for sound localization.

1.1 Math Fundamentals

The relationship between L sources and M control points is

$$\mathbf{p}(\omega) = \mathbf{Z}(\omega)\mathbf{q}(\omega)s(\omega) \tag{1}$$

where $\mathbf{p}(\omega)$ are the sound pressure at the M control points, $\mathbf{q}(\omega)$ is the vector of weights for the L sources, $\mathbf{Z}(\omega)$ is the transfer matrix, and $s(\omega)$ is set to 1 at each angular velocity ω .

The transfer matrix \mathbf{Z} is

$$\mathbf{Z}_{M \times L}(\omega) = \begin{bmatrix} Z(\mathbf{x}_1, \mathbf{y}_1, \omega) & \dots & Z(\mathbf{x}_1, \mathbf{y}_L, \omega) \\ \vdots & \ddots & \vdots \\ Z(\mathbf{x}_M, \mathbf{y}_1, \omega) & \dots & Z(\mathbf{x}_M, \mathbf{y}_L, \omega) \end{bmatrix}$$
(2)

Where the transfer function is defined as

$$Z(\mathbf{x}_m, \mathbf{y}_{\ell}, \omega) = \frac{e^{-j\frac{\omega}{c}||\mathbf{x}_m - \mathbf{y}_{\ell}||}}{4\pi ||\mathbf{x}_m - \mathbf{y}_{\ell}||}$$
(3)

For simplicity's sake, ω will be omitted in all further equations.

1.2 DAS

The equation that gives us the \mathbf{q} using the DAS method is

$$\mathbf{q}_{DAS} = \mathbf{\Gamma} \mathbf{z}_B^* \tag{4}$$

Where $[\,\cdot\,]^*$ is the operation of complex conjugate. The vector \mathbf{z}_B is the transfer vector for the singular bright point and the matrix Γ is defined as

$$\mathbf{\Gamma} = \begin{bmatrix} \gamma_1 & 0 & \dots & 0 \\ 0 & \gamma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \gamma_L \end{bmatrix}$$
 (5)

Where $\gamma_{\ell} = \frac{16\pi^2 ||\mathbf{x}_B - \mathbf{y}_{\ell}||^2}{L}$.

1.3 PM

The equation that allows us to derive \mathbf{q} using the PM method is

$$\min_{\mathbf{q}} J_{PM} = \min_{\mathbf{q}} (\mathbf{e}_{PM}^{H} \mathbf{e}_{PM} + \beta_{PM} E_{q})$$
 (6)

Where $\mathbf{e}_{PM} = \hat{\mathbf{p}} - \mathbf{Z}\mathbf{q}$. The Tikhonov regularization parameter β_{PM} is given by gradually increasing β_{PM} until this inequality is satisfied

$$E_{\mathbf{q}} = \mathbf{q}^H \mathbf{q} \le E_{max} \tag{7}$$

The final relationship used to calculate the vector \mathbf{q}_{PM} is

$$\mathbf{q}_{PM} = (\mathbf{Z}^H \mathbf{Z} + \beta_{PM} \mathbf{I})^{-1} \mathbf{Z}^H \hat{\mathbf{p}}$$
 (8)

2 Conclusion

From tinkering with the algorithms in a Jupyter notebook, I've elucidated some of the intricacies of the two algorithms. Notably:

- 1. \mathbf{q}_{DAS} is much, much faster to compute than \mathbf{q}_{PM}
- 2. PM has much better directive performance than DAS

3. both algorithms perform better at higher frequencies and worse at lower frequencies α

The following images highlight points 2 and 3:

