MULTILED Black Surface Enhanced optical Power LED (ThinFilm / ThinGaN) Lead (Pb) Free Product - RoHS Compliant

LRTB GFTG

Released

Besondere Merkmale

- Gehäusetyp: weißes P-LCC-6 Gehäuse, Kontrasterhöhung durch schwarze Oberfläche (RGB-Displays) und diffuser Silikon-Verguß
- Besonderheit des Bauteils: additive Farbmischung durch unabhängige Ansteuerung aller Chips
- Wellenlänge: 625 nm (red), 528 nm (true green), 470 nm (blau)
- Abstrahlwinkel: Lambertscher Strahler (120°)
- Technologie: ThinFilm (rot), ThinGaN (true grün, blau)
- optischer Wirkungsgrad: 45 lm/W (rot), 50 lm/W (true grün), 11 lm/W (blau)
- **Gruppierungsparameter:** Lichtstärke, Wellenlänge
- Verarbeitungsmethode: für alle SMT-Bestücktechniken geeignet
- Lötmethode: Reflow Löten
- Vorbehandlung: nach JEDEC Level 4
- Gurtung: 12 mm Gurt mit 1000/Rolle, ø180 mm oder 4000/Rolle, ø330 mm
- ESD-Festigkeit: ESD-sensitives Bauteil

Anwendungen

- Videoleinwände
- · Vollfarb-Displays

Features

- package: white P-LCC-6 package, higher contrast by a black surface (RGB-Displays) and diffused silicone resin
- feature of the device: additive mixture of color stimuli by independent driving of each chip
- wavelength: 625 nm (red), 528 nm (true green), 470 nm (blue)
- viewing angle: Lambertian Emitter (1209)
- technology: ThinFilm (red), ThinGaN (true green, blue)
- optical efficiency: 45 lm/W (red),
 50 lm/W (true green),11 lm/W (blue)
- grouping parameter: luminous intensity, wavelength
- assembly methods: suitable for all SMT assembly methods
- · soldering methods: reflow soldering
- preconditioning: acc. to JEDEC Level 4
- taping: 12 mm tape with 1000/reel, Ø180 mm or 4000/reel, Ø330 mm
- ESD-withstand voltage: ESD sensitive device

Applications

- · video walls in outdoor areas
- · full color displays

Bestellinformation Ordering Information

Тур	Emissionsfarbe	Lichtstärke ^{1) Seite 26}		
Туре	Color of Emission	Luminous Intensity $I_F = 20 \text{ mA}$ $I_V \text{ (mcd)}$	y ¹⁾ page 26	
		red	true green	blue
LRTB GFTG	red true green blue	3551800	9002240	125630

Bestellinformation Ordering Information

Тур Туре	Bestellnummer Ordering Code
LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L	Q65110A8177
LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-S	Q65110A9105

Anm: Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe **Seite 7** für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen T7, T9, U, U5, U7, U9, V, V5, V7, V9 oder AW enthalten ist. Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden.

Gleiches gilt für die Farben, bei denen Wellenlängengruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Wellenlängengruppe geliefert. Z.B.: LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L bedeutet, dass auf dem Gurt nur eine der Wellenlängengruppen -2, -3, -4, -5, -6, -7, -8 oder -9 enthalten ist (siehe **Seite 8** für nähere Information). Z.B.: LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L bedeutet, dass das Bauteil innerhalb der auf **Seite 4** spezifizierten Grenzen geliefert wird.

Um die Liefersicherheit zu gewährleisten, können einzelne Wellenlängengruppen nicht bestellt werden.

LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L bedeutet Lieferung auf einer ø 330 mm Rolle. LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-S bedeutet Lieferung auf einer ø 180 mm Rolle.

Anm: The above Type Numbers represent the order groups which include only a few brightness groups (see **page 7** for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g. LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L means that only one group T7, T9, U, U5, U7, U9, V, V5, V7, V9 oder AW will be shippable for any one reel.

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. E.g. LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L means that only 1 wavelength group -2, -3, -4, -5, -6, -7, -8 or -9 will be shippable (see **page 8** for explanation). E.g. LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L means that the device will be shiped within the specified limits as stated on **page 4**. In order to ensure availability, single wavelength groups will not be orderable.

LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-L means delivery on ø330 mm reel. LRTB GFTG-T7AW-1+V7A7-29+R5T9-49-S means delivery on ø180 mm reel..

Grenzwerte Maximum Ratings

		Symbol Symbol	Werte Values			Einheit Unit
			red	true green	blue	
Betriebstemperatur Operating temperature range		$T_{\sf op}$	- 4	40 + 1	10	°С
Lagertemperatur Storage temperature range		$T_{ m stg}$	- 4	40 + 1	10	C
Sperrschichttemperatur Junction temperature		T_{j}		+ 125		C
Durchlassstrom Forward current $(T_S=25^{\circ})$	(min.) (max.)	I_{F}	- 40	5 50	5 50	mA
Stoßstrom Surge current $t_p = 10 \ \mu s, D = 0.005, T_A = 25 \ C$		I_{FM}	100	300	300	mA
Sperrspannung ^{2) Seite 26} Reverse voltage ^{2) page 26} $(T_A=25^{\circ}C)$		V_{R}	12		5	V

Kennwerte Characteristics

 $(T_{\rm S}=25~{\rm ^{\circ}\!\!\!C})$

Bezeichnung Parameter	Symbol Symbol			Werte Values		
			red	true green	blue	
Wellenlänge des emittierten Lichtes Wavelength at peak emission $I_{\rm F}$ = 20 mA	(typ.)	λ_{peak}	632	523	465	nm
Dominantwellenlänge ^{4) Seite 26} Dominant wavelength ^{4) page 26} V _F = 20 mA	(min.) (typ.) (max.)	λ_{dom}	619 625 631	519 528 546	459 470 476	nm nm nm
Spektrale Bandbreite bei 50 % $I_{rel max}$ Spectral bandwidth at 50 % $I_{rel max}$ $I_F = 20 mA$	(typ.)	Δλ	18	33	25	nm
Abstrahlwinkel bei 50 % ${ m I_V}$ (Vollwinkel) Viewing angle at 50 % ${ m I_V}$	(typ.)	2φ	120	120	120	Grad deg.
Durchlassspannung ^{5) Seite 26} Forward voltage ^{5) page 26} I _F = 20 mA	(min.) (typ.) (max.)	$egin{array}{c} V_{F} \ V_{F} \ \end{array}$	1.8 2.05 2.4	2.9 3.2 3.7	2.9 3.2 3.7	V V V
Sperrstrom Reverse current $V_R = 5 \text{ V (blue / true green); } 12 \text{ V (red)}$	(typ.) (max.)	I_{R} I_{R}	0.02 10	0.01 10	0.01 10	μΑ μΑ
Temperaturkoeffizient von λ_{peak} Temperature coefficient of λ_{peak} $I_{\text{F}} = 20 \text{ mA}; -10\% \leq T \leq 100\%$	(typ.)	$TC_{\lambda extsf{peak}}$	0.14	0.04	0.04	nm/K
Temperaturkoeffizient von λ_{dom} Temperature coefficient of λ_{dom} $I_{\text{F}} = 20 \text{ mA}; -10 \text{ C} \leq T \leq 100 \text{ C}$	(typ.)	$TC_{\lambda ext{dom}}$	0.07	0.03	0.02	nm/K
Temperaturkoeffizient von $V_{\rm F}$ Temperature coefficient of $V_{\rm F}$ $I_{\rm F}=20~{\rm mA;}~-10\%~\le T\le 100\%$	(typ.)	TC_{V}	- 2.5	- 3.6	- 4.0	mV/K
Optischer Wirkungsgrad Optical efficiency r _F = 20 mA	(typ.)	η_{opt}	45	50	11	lm/W
Wärmewiderstand Thermal resistance Sperrschicht/Umgebung ^{3) Seite 26} Junction/ambient ^{3) page 26} Sperrschicht/Lötpad Junction/solder point	1 chip on 3 chips on	$R_{ m th\ JA}$ $R_{ m th\ JA}$ $R_{ m th\ JS}$	440 700 280**	340 600 180**	340 600 180**	K/W K/W K/W

^{*} Einzelgruppen siehe Seite 8 Individual groups on page 8

 $^{^{**}} R_{th}(max)$ basiert auf statistischen Werten $R_{th}(max)$ is based on statistic values

Farbortgruppen^{6) Seite 26}
Chromaticity Coordinate Groups^{6) page 26}

LRTB GFTG

Gruppe Group	Сх	Су	Gruppe Group	Сх	Су
2	0.115	0.742	4	0.146	0.029
	0.152	0.673		0.157	0.047
	0.174	0.691		0.153	0.056
	0.144	0.760		0.140	0.037
3	0.134	0.754	5	0.143	0.033
	0.167	0.685		0.155	0.051
	0.188	0.692		0.150	0.062
	0.160	0.762		0.137	0.042
4	0.150	0.759	6	0.140	0.037
	0.180	0.689		0.153	0.056
	0.202	0.694		0.148	0.069
	0.179	0.757		0.133	0.048
5	0.166	0.760	7	0.137	0.042
	0.192	0.694		0.150	0.062
	0.222	0.690		0.143	0.083
	0.202	0.752		0.126	0.061
6	0.190	0.755	8	0.131	0.052
	0.212	0.691		0.146	0.073
	0.233	0.684		0.138	0.100
	0.215	0.745		0.119	0.078
7	0.203	0.750	9	0.125	0.067
	0.222	0.687		0.141	0.088
	0.249	0.676		0.130	0.130
	0.234	0.735		0.109	0.109
8	0.222	0.742	red	0.693	0.310
	0.238	0.681		0.679	0.311
	0.265	0.668		0.698	0.292
	0.253	0.727		0.712	0.291
9	0.240	0.734			
	0.254	0.674			
	0.283	0.657			
	0.274	0.710			
		•			

Anm.: Die Farbkoordinaten des Mischlichtes können innerhalb des gekennzeichneten Bereichs des Farbdreiecks erwartet werden.
Note: The color coordinates of the mixed light can be expected within the marked area of the color triangle

Floating Bins

Floating Bins

Floating Bins

Wellenlängengruppen (Dominantwellenlänge)^{4) Seite 26} **Wavelength Groups** (Dominant Wavelength)^{4) page 26}

Gruppe	tru	e green	Einheit			
Group	min.	max.	Unit			
2	519	525	nm			
3	523	528	nm			
4	526	531	nm			
5	529	535	nm			
6	533	537	nm			
7	535	540	nm			
8	538	543	nm			
9	541	546	nm			

Gruppe	bl	Einheit Unit	
Group	min.	nin. max.	
4	459	463	nm
5	461	465	nm
6	463	467	nm
7	465	470	nm
8	468	473	nm
9	471	476	nm

Gruppenbezeichnung auf Etikett Group Name on Label

Beispiel: T7-1+V7-2+R5-4 Example: T7-1+V7-2+R5-4

Helligkeits-	Wellenlänge	Helligkeits-	Wellenlänge	Helligkeits-	Wellenlänge
gruppe	(keine	gruppe		gruppe	
Brightness	Gruppierung) Wavelength	Brightness	Wavelength	Brightness	Wavelength
Group	(no grouping)	Group	Wavelength	Group	Wavelength
·		·		-	
(red)	(red)	(true green)	(true green)	(blue)	(blue)
T7	1	V7	2	R5	4

Anm.: In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe pro Farbe enthalten.

Note: No packing unit / tape ever contains more than one brightness group per color.

Relative spektrale Emission^{6) Seite 26} Relative Spectral Emission^{6) page 26}

 $V(\lambda) = \text{spektrale Augenempfindlichkeit} / \text{Standard eye response curve}$

 $I_{\text{rel}} = f(\lambda)$; $T_{\text{S}} = 25 \, \text{C}$; $I_{\text{F}} = 20 \, \text{mA}$

Abstrahlcharakteristik^{6) Seite 26}

Radiation Characteristic^{6) page 26}

 $I_{rel} = f(\phi)$; $T_S = 25$ °C, $I_F = 20$ mA (R); 20 mA (T); 20 mA (B) red, true green, blue

Abstrahlcharakteristik^{6) Seite 26} Radiation Characteristic^{6) page 26}

 $I_{rel} = f(\phi)$; $T_S = 25$ °C, $I_F = 20$ mA (R); 20 mA (T); 20 mA (B) red, true green, blue

Durchlassstrom^{6) Seite 26} Forward Current^{6) page 26}

 $I_{\mathsf{F}} = f(V_{\mathsf{F}}); T_{\mathsf{S}} = 25 \ \mathfrak{C}$

Relative Lichtstärke^{6) Seite 26} Relative Luminous Intensity^{6) page 26}

 $I_V/I_V(25 \text{ C}) = f(T_S); I_F = 20 \text{ mA}$

Relative Lichtstärke^{6) 7) Seite 26} Relative Luminous Intensity^{6) 7) page 26}

 $I_V/I_V(20 \text{ mA}) = f(I_F); T_S = 25 \text{ }^{\circ}\text{C}$

2014-08-26

Dominante Wellenlänge^{6) Seite 26} Dominant Wavelength^{6) page 26}

Dominante Wellenlänge^{6) Seite 26} Dominant Wavelength^{6) page 26}

true green, $\lambda_{\text{dom}} = f(I_{\text{F}})$; $T_{\text{S}} = 25 \text{ }^{\circ}\text{C}$

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\mathsf{F}} = f(T)$; 3 chips on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

 $I_{\rm F} = f(T)$; 3 chips on

2014-08-26

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Exemplarische durchschnittliche Lebensdauer für mittlere Helligkeitsgruppe^{2) Seite 17} Exemplary median Lifetime for median Brightness Group^{2) page 17}

Bedingungen Conditions	mittlere Lebensdauer median Lifetime	Einheit Unit
$I_F = 20 \text{ mA}$ (blue, true green) $I_F = 15 \text{ mA}$ (red) $T_S = 25 ^{\circ}\text{C}$	>100.000*	Betriebs- stunden operating hours
$I_F = 15 \text{ mA}$ (blue, true green) $I_F = 20 \text{ mA}$ (red) $T_S = 85 \text{ C}$	70.000*	Betriebs- stunden operating hours

^{*} lifetime L50 / B50

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\mathsf{F}} = f(T)$; 3 chips on

2014-08-26

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_p)$; red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C I_F = f (t_p); red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_p)$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_D)$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 25 °C $I_{\rm F}$ = f ($t_{\rm p}$); true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 85 °C $I_{\rm F}$ = $f(t_{\rm p})$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_p)$; true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C I_F = f (t_p); true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 $^{\circ}$ C $I_F = f(t_p)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 25 °C $I_{\rm F}$ = f ($t_{\rm p}$); blue (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; blue (3 Chips on)

Maßzeichnung^{8) Seite 26} Package Outlines^{8) page 26}

Gewicht / Approx. weight:

40 mg

Gurtung / Polarität und Lage^{8) Seite 26}

Verpackungseinheit 1000/Rolle, ø180 mm

oder 4000/Rolle, ø330 mm

Method of Taping / Polarity and Orientation^{8) page 26}

Packing unit 1000/reel, ø180 mm or 4000/reel, ø330 mm

Empfohlenes Lötpaddesign^{8) 9) Seite 26} Recommended Solder Pad^{8) 9) page 26}

Reflow Löten Reflow Soldering

Lötbedingungen Soldering Conditions Reflow Lötprofil für bleifreies Löten Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 (nach J-STD-020D.01) (acc. to J-STD-020D.01)

Profile Feature	Pb-I	Pb-Free (SnAgCu) Assembly		
	Recommendation	Max. Ratings		
Ramp-up Rate to Preheat* ⁾ 25℃ to 150℃	2℃ / sec	3℃ / sec		
Time t_s from T_{Smin} to T_{Smax} (150°C to 200°C	100s	min. 60sec max. 120sec		
Ramp-up Rate to Peak*) 180℃ to T _P	2℃ / sec	3℃ / sec		
Liquidus Temperture T _L		217℃		
Time t _L above T _L	80sec	max. 100sec		
Peak Temperature T _P	245℃	max. 260℃		
Time t _P within 5℃ of the specified peak temperature T _P - 5K	20sec	min. 10sec max. 30sec		
Ramp-down Rate* T _P to 100℃	3% / sec	6₭ / sec maximum		
Time 25℃ to Peak temperature		max. 8 min.		

All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation $\Delta T/\Delta t$: Δt max. 5 sec; fulfillment for the whole T-range

Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL)

Gurtverpackung

Tape and Reel

Tape dimensions in mm (inch)

W	P_0	P_1	P_2	D_0	E	F
12 ⁺ 0.3 - 0.1	4 ± 0.1 (0.157 ± 0.004)	8 ± 0.1 (0.315 ± 0.004)				5.5 ± 0.05 (0.217 ± 0.002)

Reel dimensions in mm (inch)

\boldsymbol{A}	W	N_{min}	W_1	$W_{ m 2\ max}$
180 (7)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)
330 (13)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)

Trockenverpackung und Materialien Dry Packing Process and Materials

Anm.: Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte

Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel "Gurtung und Verpackung" unter dem Punkt "Trockenverpackung". Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten.

Note: Moisture-senisitve product is packed in a dry bag containing desiccant and a humidity card.

Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter "Tape and Reel" under the topic "Dry Pack". Here you will also find the normative references like JEDEC.

Kartonverpackung und Materialien Transportation Packing and Materials

OSRAM
Opto Semiconductors

Revision History: 2014-08-26 Previous Version: 2014-01-28

Page	Subjects (major changes since last revision)	Date of change
18	Package outlines updated	2009-05-29
2	Ordering code for reel ø180 mm added	2009-05-29
22	OS-IN-2010-032	2010-10-04
all	Final datasheet created	2010-11-17
21	OS-IN-2012-005	2012-03-16
1	Application recommendation adapted	2014-01-28
24, all	Eye safety advice added; general update	2014-08-26

Augensicherheitsbewertung

Wegen der Streichung der LED aus der IEC 60825 erfolgt die Bewertung der Augensicherheit nach dem Standard IEC 62471:2006 ("photobiological safety of lamps and lamp systems")

Im Risikogruppensystem dieser CIE- Norm erfüllen die in diesem Datenblatt angegebenen LED die "exempt"- Gruppe (die die sich im "sichtbaren" Spektralbereich auf eine Expositionsdauer von 10000 s bezieht). Unter realen Umständen (für Expositionsdauer, Augenpupille, Betrachtungsabstand) geht damit von diesen Bauelementen keinerlei Augengefährdung aus.

Grundsätzlich sollte jedoch erwähnt werden, dass intensive Lichtquellen durch ihre Blendwirkung ein hohes sekundäres Gefahrenpotenzial besitzen. Wie nach dem Blick in andere helle Lichtquellen (z.B. Autoscheinwerfer) auch, können temporär eingeschränktes Sehvermögen und Nachbilder je nach Situation zu Irritationen, Belästigungen, Beeinträchtigungen oder sogar Unfällen führen.

Eye safety advice

Due to the cancellation of the LED from IEC 60825, the evaluation of eye safety occurs according to the standard IEC 62471:2006 ("photobiological safety of lamps and lamp systems").

Within the risk grouping system of this CIE standard, the LEDs specified in this data sheet fall into the "exempt" group (relating to devices in the visible spectrum with an exposure time of 10000 s). Under real circumstances (for exposure time, eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices.

As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. As is also true when viewing other bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb.Falls Sie diese Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein wenden Sie sich bitte an nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein! Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Scherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für (a) die Implantierung in den menschlichen Körper oder (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended(a) to be implanted in the human body,or(b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Fußnoten:

- Helligkeitswerte werden mit einer Stromeinprägedauer von 25 ms und einer Genauigkeit von ± 11% ermittelt.
- Die LED kann kurzzeitig in Sperrichtung betrieben werden.
- R_{thJA} ergibt sich bei Montage auf PC-Board FR 4 (Padgröße ≥ 16 mm² je Pad)
- Wellenlängen werden mit einer Stromeinprägedauer von 25 ms und einer Genauigkeit von ±1 nm ermittelt.
- Spannungswerte werden mit einer Stromeinprägedauer von 1 ms und einer Genauigkeit von ±0,1 V ermittelt.
- Wegen der besonderen Prozessbedingungen bei der Herstellung von LED können typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes überein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden können. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ankündigung geändert.
- 7) Im gestrichelten Bereich der Kennlinien muss mit erhöhten Helligkeitsunterschieden zwischen Leuchtdioden innerhalb einer Verpackungseinheit gerechnet werden.
 - Dimmverhältnis im Gleichstrom-Betrieb max. 5:1 für red
- 8) Maße werden wie folgt angegeben: mm (inch)
- 9) Gehäuse hält TTW-Löthitze aus nach CECC 00802
- ¹⁰⁾ Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- Lebenserhaltende Apparate oder Systeme sind für
 (a) die Implantierung in den menschlichen Körper
 - (b) für die Lebenserhaltung bestimmt.
 Falls sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Remarks:

- ¹⁾ Brightness groups are tested at a current pulse duration of 25 ms and a tolerance of \pm 11%.
- ²⁾ Driving the LED in reverse direction is suitable for short term application.
- R_{thJA} results from mounting on PC board FR 4 (pad size ≥ 16 mm² per pad)
- Wavelengths are tested at a current pulse duration of 25 ms and a tolerance of ±1 nm.
- ⁵⁾ Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ±0.1 V.
- Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 7) In the range where the line of the graph is broken, you must expect higher brightness differences between single LEDs within one packing unit.
 Dimming range for direct current mode max. 5:1 for red
- Dimensions are specified as follows: mm (inch)
- Package able to withstand TTW-soldering heat acc. to CECC 00802
- 10) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- Life support devices or systems are intended (a) to be implanted in the human body, or
 - (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com
© All Rights Reserved..

EU RoHS and China RoHS compliant product

(e)

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

