

Datos acelerográficos de Costa Rica de 1988 al 2021

Para el desarrollo de modelos predictivos del movimiento del suelo

Por: Ing. Luis Carlos Esquivel Salas, M.Sc.

Supervision y aprobación: Ing. Víctor Schmidt Díaz, Ph.D.

Agenda

- 1. Introducción
- 2. Base de datos trabajada
- 3. Caracterización de los eventos sísmicos y registros sísmicos
- 4. Determinación de distancias de ruptura
- 5. Promedios H/V con datos de Costa Rica
- 6. Conclusiones

Antecedentes

- i. La última ecuación predictiva del movimiento del suelo (GMPE) para la región de Centro América (Schmidt, 2014) utilizó registros de Costa Rica y México hasta marzo del 2009 y de El Salvador y Nicaragua hasta el 2007.
- ii. A partir del año 2009 la red acelerográfica del LIS (red-LIS) crece de manera importante, con instrumentos digitales de última generación.

Fuente: Schmidt (2014).

Necesidades

- iii. El LIS identifica la necesidad de poder actualizar periódicamente las GMPE que genera para Costa Rica y Centro América.
- iv. Para lograr lo anterior, adicional a las labores de registro de los eventos sísmicos, se debe sistematizar el proceso de análisis de los registros de la red-LIS y de generación de GMPEs.

Objetivos

Por esto, el LIS se da a la tarea de generar una nueva GMPE para Costa Rica.

Principales Productos:

1. Base de datos de la red-LIS robusta, detallada y flexible en cuanto a los criterios de su definición, para la generación de GMPEs para Costa Rica.

2. Sistema para crear, filtrar y analizar la base de datos de la red-LIS.

 Sistema que permita crear y actualizar periódicamente GMPEs para Costa Rica, con la posibilidad de integrar información del resto de Centro América.

Red acelerográfica del LIS

Actualmente, se tienen 176 acelerógrafos distribuidos en estaciones de campo libre, edificaciones y boreholes.

Todos los equipos envían datos acelerográficos en tiempo real a los servidores del LIS en el CI-UCR.

El personal del LIS lo componen 4 investigadores, 4 técnicos y 2 asistentes.

Estaciones de la red-LIS al 2022. Disponible en <u>www.lis.ucr.ac.cr</u>

Base de datos trabajada

Marco temporal: Marzo 1998 a abril 2021.

Consiste de 3,891 registros de 407 eventos, todos en formato .lis

Schmidt (2014) utilizó 706 registros de 308 eventos.

30 atributos para cada registro acelerográfico adicionales a la forma de onda, para un total de 116,730 datos.

Datos de localización, magnitud y tipo de fuente facilitados por la RSN-ICE-UCR (The Costa Rica National Seismological Network Catalog during 1975-2021).

Atributos de cada registro acelerográfico.

Record_name Event_name Event_date(UTC)	Station_elev(m) Site_type Site_condition
Event_time(UTC) date time(UTC)	Epicentral_dist(km) Hypocentral dist(km)
Event lat	Azimuth_Ep2Sta(°)
Event long	Delta_t(s)
Depth(km)	PGA_NS
Magnitude(Mw)	PGA_UD
Source type	PGA_EW
Station code	PGA_max
Instrument type	PGA_GM
Serial number	Lower_fc(Hz)
Station lat	Upper_fc(Hz)
Station long	Number_points

Base de datos trabajada

Se aplicaron filtros para escoger los registros de mejor calidad y para fines de generar una GMPE:

Detalle del filtro	Cantidad de registros eliminados
1. Eliminar registros analógicos.	Solo 1 para 1998.
2. Cantidad mínima de registros por evento de 3.	189 registros correspondientes a 132 eventos.
3. Frecuencia de muestreo mínima de 200 mps.	18

Base de datos trabajada

Detalle del filtro	Cantidad de registros eliminados
4. Rango del filtro de frecuencias de 0.2 a 20 Hz.	0
5. Duración mínima del registro de 15 s.	0
6. Magnitud mínima de 2.5 Mw	0
7. Eliminar registros asociados a eventos con tipo de fuente "Zona Fractura de Panamá" y "falla de placa superior en Cocos".	90 por ZFP y 370 por falla Cocos.

Al final de la aplicación de los filtros, se cuenta con una base de datos filtrada compuesta por 3,192 registros de 245 eventos.

Caracterización de los eventos sísmicos

Caracterización de los eventos sísmicos

Distribución de eventos según el régimen tectónico (tipo de fuente).

Región tectónica	Cantidad de eventos	Proporción
Cortical	113	46 %
Subducción interplaca (interface)	89	36 %
Subducción intraplaca (inslab	43	18 %
Total	245	100 %

Distribución de registros según el régimen tectónico (tipo de fuente).

Región tectónica	Cantidad de registros	Proporción (ev.)
Cortical	1,171	37 % (46 %)
Subducción interplaca (interface)	1,309	41 % (36 %)
Subducción intraplaca (inslab	712	22 % (18 %)
Total	3,192	100 %

10 estaciones con más registros.

Código	Ubicación	Sitio	Registros
SIAC	San Ignacio de Acosta, Cruz Roja	S 3	85
SFRA	Frailes, Escuela	S2	78
AFRA	Fraijanes, Sede UCR	S2	70
CCDN	Agua caliente, Ciudad Niños	S 3	67
CPAR	Paraíso, Sede UCR	S 3	60
CSRH	Oreamuno, Clínica	S 4	58
PPQR	Paquera, Cruz Roja	S 3	54
PCNH	Ciudad Neily, Hospital	S 3	53
SHTH	Hatillo, Clínica	S 3	53
PLRL	Laurel, Acueducto Laurel	S3	53

Mapa de las 10 estaciones con más registros.

Distribución de registros y estaciones según tipo de sitio.

Tipo de sitio	Cantidad de registros	Cantidad de estaciones
S1: roca o suelo rígido	187 (6%)	15 (9%)
S2: suelo medianamente rígido	943 (29%)	53 (32%)
S3: suelo suave	1,628 (51%)	70 (42%)
S4: suelo con estrato de más de 12 m de arcilla suave	434 (14%)	27 (17%)
Total	3,192	165

Completitud del catálogo

(a) Según tipo de fuente

ACR: cortical

Inter: subducción interplaca

Intra: subducción intraplaca

(b) Según tipo de sitio

S1: roca

S2: medianamente rígido

S3: suelo suave

S4: > 12m de arcilla suave

Distribución de la Media Geométrica del PGA

Determinación de las distancias de ruptura

Tipos de distancia de ruptura calculadas en este estudio: (d5) Joyner y Boore y (d4) ruptura, únicamente para eventos con magnitudes mayores a

6.5 Mw

Sismo	Profundidad (km)	Mw	Tipo de fuente
1999/08/20 10:02	22	6.9	Subducción interplaca
2012/09/05 14:42	9	7.6	Subducción interplaca
2013/06/15 17:34	36	6.5	Subducción interplaca
2014/04/11 20:29	131	6.6	Subducción intrapalaca

Fuente: Villaverde (2009).

Determinación de las distancias de ruptura

Se calcularon siguiendo procedimiento detallado en "Estimating Rupture Distances without a Rupture" (Thompson & Worden, 2018).

Promedio H/V con datos de Costa Rica

Tipo de sitio	Cantidad de estaciones	Cantidad de registros
SC-I	3 (9%)	190 (14%)
SC-II	20 (61%)	833 (61%)
SC-III	8 (24%)	260 (19%)
SC-IV	2 (6%)	83 (6%)
Total	33	1,366

Conclusiones

- i. En el pasado, se han propuesto 8 modelos de atenuación para Costa Rica o Centro América.
- ii. En este momento, nos parece que lo más importante es concentrar los esfuerzos en crear una base de datos confiable y detallada.
- iii. Los sistemas desarrollados para (1) generar y analizar la base de datos y (2) para generar GMPEs, son herramientas valiosas para el LIS que se continuarán mejorando a lo largo del tiempo.
- iv. Se está trabajando en las regresiones, ya se generaron las primeras GMPEs.
- v. Se están analizando los residuos y haciendo comparaciones con otros modelos.

Información de contacto

Correo: <u>luiscarlos.esquivel@ucr.ac.cr</u>

Teléfono: +506 25 11 66 61

Laboratorio de Ingeniería Sísmica Instituto de Investigaciones en Ingeniería Universidad de Costa Rica Sede Rodrigo Facio - Ciudad de la Investigación San Pedro, Montes de Oca, San José, Costa Rica