

Dengue virus type 2 (DENV-2) MGB TaqMan (DENV2-2016MGB) assay

Ian Mackay, Judy Northill

Abstract

This protocol was designed and developed at this laboratory.

The assay specifically targets the 3' UTR region of DENV-2 strains and is designed as a qualitative screening test for human cases of DENV-2 infection, but not for infection due to other known DENVs.

Citation: Ian Mackay, Judy Northill Dengue virus type 2 (DENV-2) MGB TaqMan (DENV2-2016MGB) assay. protocols.io

dx.doi.org/10.17504/protocols.io.n7kdhkw

Published: 03 Apr 2018

Before start

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol and with PCR in general.

Materials

SuperScript™ III Platinum™ One-Step qRT-PCR Kit <u>11732088</u> by <u>Life Technologies</u>

Protocol

Oligonucleotide sequences

Step 1.

Name	Sequence (5'-3')
D2_v1_3UTR_FWD	CAGCCTGTA R CTCCACCT
D2_v1_3UTR_REV	CTCTAACCGCTAGTCCACTAC
D2-3UTR-MGB	6FAM - AGGCCACAA R CCAT - MGB NFQ

Reagents

Step 2.

SuperScript™ III Platinum™ One-Step qRT-PCR Kit 11732088 by Life Technologies

Reaction set-up

Step 3.

MIX PREPARATION

Reagent	Vol (µl) x1	Final reaction concentration
Nuclease-free water	4.41	N/A
D2_v1_3UTR_FWD (200μM)	0.03	300nM
D2_v1_3UTR_REV (200μM)	0.07	700nM
D2-3UTR-MGB (200μM)	0.05	250nM
2X Reaction Mix ¹	10	1X
ROX reference dye (25μM)	0.04	50nM
SuperScript™ III/Platinum™ Taq Mix¹	0.4	1X
TOTAL	15	

¹Superscript[™]III Platinum[™] One-step qRT-PCR kit

- Dispense 15µL to each reaction well.
- Add 5µL of template (extracted RNA, controls or NTC [nuclease-free water]).
- Total reaction volume is 20µL

Amplification

Step 4.

50°C	5min	1X
95°C	2min	1X
95°C	3sec	40X
60°C	30sec ¹	

¹Fluorescence acquisition step

Result analysis

Step 5.

The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A **suitable level of fluorescence** intensity as measured in comparison to a positive control (y-axis)
- 3. A **defined threshold (C_T) value** which the fluorescent curve has clearly exceeded (Fig.1 arrow),

A flat or non-sigmoidal curve or a curve that crosses the threshold with a $C_T > 40$ cycles is considered a negative result. NTCs should not produce a curve.

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.