Supplemental Note to Section 7.1

1. When X_i are **normal** and σ^2 is **known**: (CI)

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$
 exactly

See: Example 7.1-1 and Example 7.1-2.

Note: exactly normal. Thus, n can be small or large.

Theory: exact normal distribution.

2. When X_i are **normal** and σ^2 is **unknown**: (CI)

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(\text{df} = n - 1)$$
 exactly

See: Example 7.1-5.

Note: exact t-distribution. Thus, n can be small or large.

Theory: exact t-distribution.

3. When X_i are **not necessarily normal** $(n \ge 30)$ and σ^2 is **known**: (approximate CI)

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\bullet}{\sim} N(0, 1)$$

See: Example 7.1-3.

Theory: CLT.

4. When X_i are **not necessarily normal** $(n \ge 30)$ and σ^2 is **unknown**: (approximate CI)

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\bullet \bullet}{\sim} N(0, 1)$$

See: Example 7.1-4.

Theory: CLT + Slutzky.

• When X_i are **not necessarily normal** (n < 30) and σ^2 is **unknown**: (approximate CI)

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\bullet \bullet \bullet}{\sim} t(\mathrm{df} = n - 1)$$

Note: if $n \ge 30$, then use 4.

Theory: $\overline{CLT} + \text{Slutzky} + \text{Rule of thumb.}$

Supplemental Note to Section 7.2

1. When $X_i \sim N(\mu_x, \sigma_x^2)$ for i = 1, 2, ..., n and $Y_j \sim N(\mu_y, \sigma_y^2)$ for j = 1, 2, ..., m $(\sigma_x^2 \text{ and } \sigma_y^2 \text{ are } \mathbf{known})$:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}} \sim N(0, 1) \text{ exactly}$$

See: Example 7.2-1.

Note: exactly normal. Thus, n and m can be small or large.

Theory: exact normal distribution.

2. When $X_i \sim N(\mu_x, \sigma_x^2)$ for i = 1, 2, ..., n and $Y_j \sim N(\mu_y, \sigma_y^2)$ for j = 1, 2, ..., m $(\sigma_x^2 = \sigma_y^2 = \sigma^2 \text{ but } \sigma^2 \text{ is } \mathbf{unknown})$:

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{S_p^2 (1/n + 1/m)}} \sim t(\mathrm{df}) \text{ exactly}$$

where df = (n - 1) + (m - 1) and

$$S_p^2 = \frac{(n-1)S_x^2 + (m-1)S_y^2}{(n-1) + (m-1)}.$$

See: Example 7.2-2.

Note: exact t-distribution. Thus, n and m can be small or large.

Theory: exact t-distribution.

3. When X_i are **not necessarily normal** for i = 1, 2, ..., n $(n \ge 30)$ and Y_j are **not necessarily normal** for j = 1, 2, ..., m $(m \ge 30)$.

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{S_x^2/n + S_y^2/m}} \stackrel{\bullet \bullet}{\sim} N(0, 1)$$

Theory: CLT + Slutzky.

4. When X_i are **not necessarily normal** for i = 1, 2, ..., n (n < 30) and Y_j are **not necessarily normal** for j = 1, 2, ..., m (m < 30).

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{S_x^2/n + S_y^2/m}} \stackrel{\bullet}{\sim} t(\mathrm{df} = r),$$

where

$$r = \left\lfloor \frac{\left(\frac{S_x^2}{n} + \frac{S_y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{S_x^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_y^2}{m}\right)^2} \right\rfloor$$

Theory: Welch.

IE-24211