Compute the semantic value of the program x:=2; y:=3. Assume the initial state σ_0 . We want to compute the value $\sigma\in\Sigma$ where

$$(x := 2; y := 3, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

We have $\sigma = (\sigma_0[2/x])[3/y]$. What is the value for $\sigma(y)$ and $\sigma(x)$? How about $\sigma(z)$, $z \in \mathbf{Loc}$?

Compute the semantic value of the program x:=1; y:=x+1. Assume the initial state σ_0 . We want to compute the value $\sigma \in \Sigma$ where

$$(x := 1; y := x + 1, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$\frac{(x, \sigma_0[1/x]) \mapsto 1}{(1, \sigma_0) \mapsto 1} \frac{(x, \sigma_0[1/x]) \mapsto 1}{(x + 1, \sigma_0[1/x]) \mapsto 2}$$

$$\frac{(x := 1, \sigma_0) \mapsto \sigma_0[1/x]}{(x := 1; y := x + 1, \sigma_0) \mapsto (\sigma_0[1/x])[2/y]}$$

We have $\sigma = (\sigma_0[1/x])[2/y]$.

Compute the semantic value of the program x:=2; x:=4. Assume the initial state σ_0 . We want to compute the value $\sigma\in\Sigma$ where

$$(x := 2; x := 4, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$\begin{array}{c|c}
\hline
(2,\sigma_0) \mapsto 2 & \hline
\hline
(4,\sigma_0[2/x]) \mapsto 4 \\
\hline
(x := 2,\sigma_0) \mapsto \sigma_0[2/x] & (x := 4,\sigma_0[2/x]) \mapsto \sigma_0[4/x] \\
\hline
(x := 2; x := 4,\sigma_0) \mapsto \sigma_0[4/x]
\end{array}$$

We have $\sigma = \sigma_0[4/x]$. What is the value for $\sigma(y)$ and $\sigma(x)$? How about $\sigma(z)$, $z \in \mathbf{Loc}$?

Compute the semantic value of the program

$$x := 1$$
; if $x = 1$ then $x := 2$ else $x := 3$ end.

Assume the initial state σ_0 . We want to compute the value $\sigma \in \Sigma$ where

$$(x := 1; \mathbf{if} \ x = 1 \ \mathbf{then} \ x := 2 \ \mathbf{else} \ x := 3 \ \mathbf{end}, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$\begin{array}{c} (1,\sigma_0) \mapsto 1 \\ \hline (x) = (x) \mapsto (x) \mapsto$$

Compute the semantic value of the program

$$x := 2$$
; if $x = 1$ then $x := 2$ else $x := 3$ end.

Assume the initial state σ_0 . We want to compute the value $\sigma \in \Sigma$ where

$$(x := 2; \mathbf{if} \ x = 1 \mathbf{then} \ x := 2 \mathbf{else} \ x := 3 \mathbf{end}, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$\begin{array}{c} (2,\sigma_0) \mapsto 2 \\ \hline (x) = (2,\sigma_0) \mapsto \sigma_0[2/x] \\ \hline (x) = (2,\sigma_0) \mapsto \sigma_0[2$$

Compute the semantic value of the program

$$x := 1$$
; while $x = 1$ do $x := 2$ end.

Assume the initial state σ_0 . We want to compute the value $\sigma \in \Sigma$ where

$$(x := 1; \mathbf{while} \ x = 1 \ \mathbf{do} \ x := 2 \ \mathbf{end}, \sigma_0) \mapsto \sigma$$

We do this evaluation in parts otherwise it is too unmanageable. Let

$$(x := 1, \sigma_0) \mapsto \sigma'$$

for $\sigma' \in \Sigma$.

$$\frac{(1,\sigma_0)\mapsto 1}{(x:=1,\sigma_0)\mapsto \sigma_0[1/x]}$$

Therefore, $\sigma' = \sigma_0[1/x]$.

We now compute,

(while
$$x = 1$$
 do $x := 2$ end, σ') $\mapsto \sigma$

or

(while
$$x = 1$$
 do $x := 2$ end, $\sigma_0[1/x]$) $\mapsto \sigma$

$$\begin{array}{c} \vdots \\ (x=1,\sigma_0[1/x]) \mapsto \textit{true} \end{array} \begin{array}{c} \vdots \\ (x=2,\sigma_0[1/x]) \mapsto \sigma_0[2/x] \end{array} \begin{array}{c} \vdots \\ (x=1,\sigma_0[2/x]) \mapsto \textit{false} \end{array} \\ (\textit{while } x=1 \textit{ do } x := 2 \textit{ end}, \sigma_0[2/x]) \mapsto \sigma_0[2/x] \\ (\textit{while } x=1 \textit{ do } x := 2 \textit{ end}, \sigma_0[2/x]) \mapsto \sigma_0[2/x] \end{array}$$

Therefore, $\sigma = \sigma_0[2/x]$.

Given $c_0, c_1 \in \mathbf{Com}$, then we can define program equivalence as

$$c_0 \sim c_1 \text{ iff } \forall \sigma \in \Sigma, \exists \sigma' \in \Sigma. \ (c_0, \sigma) \mapsto \sigma' \wedge (c_1, \sigma) \mapsto \sigma'$$

Show that x := 1; $y := x \sim x := 1$; y := 1 for $x, y \in \mathbf{Loc}$ and $1 \in \mathbf{I}$.

Proof: We show that

$$\forall \sigma, \exists \sigma'. \ (x := 1; y := x, \sigma) \mapsto \sigma' \land (x := 1; y := 1, \sigma) \mapsto \sigma'$$

for $\sigma, \sigma' \in \Sigma$. Consider $(x := 1; y := x, \sigma) \mapsto \sigma'$, our semantics gives us the following derivation,

$$\begin{array}{c} (1,\sigma)\mapsto 1 \\ \hline (x:=1,\sigma)\mapsto \sigma[1/x] \end{array} \qquad \begin{array}{c} (x,\sigma[1/x])\mapsto \sigma[1/x](x)=1 \\ \hline (y:=x,\sigma[1/x])\mapsto (\sigma[1/x])[1/y] \\ \hline (x:=1;y:=x,\sigma)\mapsto (\sigma[1/x])[1,y] \end{array}$$

with $\sigma' = (\sigma[1/x])[1, y]$.

Now consider $(x:=1; y:=1, \sigma) \mapsto \sigma'$, our semantics gives us the following derivation,

$$\begin{array}{c} (1,\sigma)\mapsto 1 \\ (x:=1,\sigma)\mapsto \sigma[1/x] \end{array} \qquad \begin{array}{c} (1,\sigma[1/x])\mapsto 1 \\ (y:=1,\sigma[1/x])\mapsto (\sigma[1/x])[1/y] \\ \\ (x:=1\,;y:=1,\sigma)\mapsto (\sigma[1/x])[1,y] \end{array}$$

with
$$\sigma' = (\sigma[1/x])[1, y]$$
.

This concludes the proof. \Box

Show that $x := x \sim \mathbf{skip}$ for $x \in \mathbf{Loc}$.

Proof: We show that

$$\forall \sigma, \exists \sigma'. \ (x := x, \sigma) \mapsto \sigma' \land (\mathbf{skip}, \sigma) \mapsto \sigma'$$

for $\sigma, \sigma' \in \Sigma$ and $x \in \mathbf{Loc}$. Consider $(x := x, \sigma) \mapsto \sigma'$ with some states $\sigma, \sigma' \in \Sigma$ and $x \in \mathbf{Loc}$. We then have a derivation

$$\frac{(x,\sigma)\mapsto\sigma(x)}{(x:=x,\sigma)\mapsto\sigma'} \text{, where } \sigma'=\sigma[\sigma(x)/x]$$

We now show that $\sigma' = \sigma$. It is easy to see that for any $y \in \mathbf{Loc}$ with $y \neq x$ we have $\sigma'(y) = \sigma[\sigma(x)/x](y) = \sigma(y)$. Also note that $\sigma'(x) = \sigma[\sigma(x)/x](x) = \sigma(x)$. These are the only two possibilities and therefore we have $\sigma'(z) = \sigma(z)$ for all $z \in \mathbf{Loc}$. Functions that agree on the co-domain values over their whole domains are considered to be equal. This implies that $\sigma' = \sigma$ and therefore $(x := x, \sigma) \mapsto \sigma$. That is, the statement x := x preserves the state.

Now consider $(\mathbf{skip}, \sigma) \mapsto \sigma'$ with $\sigma, \sigma' \in \Sigma$. Our operational semantics gives us a derivation

$$\overline{\left(\mathsf{skip}, \sigma
ight) \mapsto \sigma'}$$
 , where $\sigma' = \sigma$

It follows that the statement **skip** preserves the state.

This concludes the proof. \Box

How would you show x := 1; $y := x \sim y := 1$; x := y? What is the problem here? How would you solve it?

Are the programs

$$p \equiv c_0$$
; if b then c_1 else c_2 end

and

$$p' \equiv \text{if } b \text{ then } (c_0; c_1) \text{ else } (c_0; c_2) \text{ end}$$

equivalent? For all $c_0, c_1, c_2 \in \mathbf{Com}$ and $b \in \mathbf{Bexp}$.

Proposition: $p \not\sim p'$.

Proof: It suffices to show that there exists some program fragment c_0, c_1, c_2 or boolean expression b such that the two programs p and p' do not compute the same final state σ' given the same initial state σ . One such choice is: $c_0 \equiv x := 1$, $c_1 \equiv x := 2$, $c_2 \equiv x := 3$, and $b \equiv x = 1$. With this assignment we have

$$p \equiv x := 1$$
; if $x = 1$ then $x := 2$ else $x := 3$ end

and

$$p' \equiv \text{if } x = 1 \text{ then } (x := 1; x := 2) \text{ else } (x := 1; x := 3) \text{ end.}$$

Program equivalence implies that for all $\sigma, \sigma' \in \Sigma$ we have $(p, \sigma) \mapsto \sigma'$ and $(p', \sigma) \mapsto \sigma'$. Since this must hold for all states, it must also hold for some state $\sigma[0/x]$. However, it is easily verified that $(p, \sigma[0/x])$ and $(p', \sigma[0/x])$ evaluate to different semantic values and therefore p and p' cannot be equivalent. \square

Assignments

HW#2 – see webpage