

planetmath.org

Math for the people, by the people.

nested interval theorem

Canonical name NestedIntervalTheorem

Date of creation 2013-03-22 17:27:12 Last modified on 2013-03-22 17:27:12

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 11

Author pahio (2872)
Entry type Theorem
Classification msc 54C30
Classification msc 26-00

Proposition 1. If

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq [a_3, b_3] \supseteq \dots$$

is a sequence of nested closed intervals, then

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \varnothing.$$

If also $\lim_{n\to\infty} (b_n - a_n) = 0$, then the infinite intersection consists of a unique real number.

Proof. There are two consequences to nesting of intervals: $[a_m, b_m] \subseteq [a_n, b_n]$ for $n \leq m$:

- 1. first of all, we have the inequality $a_n \leq a_m$ for $n \leq m$, which means that the sequence $a_1, a_2, \ldots, a_n, \ldots$ is nondecreasing;
- 2. in addition, we also have two inequalities: $a_m \leq b_n$ and $a_n \leq b_m$. In either case, we have that $a_i \leq b_j$ for all i, j. This means that the sequence $a_1, a_2, \ldots, a_n, \ldots$ is bounded from above by all b_i , where $i = 1, 2, \ldots$

Therefore, the limit of the sequence (a_i) exists, and is just the supremum, say a (see proof http://planetmath.org/NondecreasingSequenceWithUpperBoundhere). Similarly the sequence (b_i) is nonincreasing and bounded from below by all a_i , where i = 1, 2, ..., and hence has an infimum b.

Now, as the supremum of (a_i) , $a \leq b_i$ for all i. But because b is the infimum of (b_i) , $a \leq b$. Therefore, the interval [a, b] is non-empty (containing at least one of a, b). Since $a_i \leq a \leq b \leq b_i$, every interval $[a_i, b_i]$ contains the interval [a, b], so their intersection also contains [a, b], hence is non-empty.

If c is a point outside of [a, b], say c < a, then there is some a_i , such that $c < a_i$ (by the definition of the supremum a), and hence $c \notin [a_i, b_i]$. This shows that the intersection actually coincides with [a, b].

Now, since $\lim_{n\to\infty} (b_n - a_n) = 0$, we have that $b - a = \lim_{n\to\infty} b_n - \lim_{n\to\infty} a_n = \lim_{n\to\infty} (b_n - a_n) = 0$. So a = b. This means that the intersection of the nested intervals contains a single point a.

Remark. This result is called the *nested interval theorem*. It is a restatement of the *finite intersection property* for the compact set $[a_1, b_1]$. The result may also be proven by elementary methods: namely, any number lying in between the supremum of all the a_n and the infimum of all the b_n will be in all the nested intervals.