5. Modele parametryczne czasu do wystąpienia niepowodzenia

Model przyśpieszonego czasu do niepowodzenia (Accelerated Failure Time Model, AFT)

Założenia

Intepretacja

Diagnostyka

Modele parametryczne czasu do wystąpienia niepowodzenia

 Zakładają konkretną formę rozkładu prawdopodobieństwa czasu do wystąpienia niepowodzenia

- Zalety: większa precyzja wnioskowania
 - bardziej precyzyjne oszacowania współczynników

Wady: założenie formy rozkładu

Najczęściej używane modele parametryczne

- T ~ Exponential (PH, AFT)
- T ~ Weibull (PH, AFT)
- T ~ Gompertz (PH)
- T ~ (Generalized) Gamma (AFT)
- In T ~ Normal (T ~ log-normal) (AFT)
- In T ~ Logistic (T ~ log-logistic) (AFT)

Parametryczne funkcje hazardu

Model przyśpieszonego czasu do niepowodzenia (AFT)

"Konkurencja" dla modelu PH

 Założenie: efekt zmiennej niezależnej jest wyrażony jako skrócenie lub wydłużenie czasu do wystąpienia zdarzenia

• Symbolicznie: $T = T_0 \cdot e^{X'\beta}$

• Równoważnie: In $T = \text{In } T_0 + X' \cdot \beta$

Interpretacja modelu AFT

$$T = T_0 \cdot e^{X'\beta}$$

$$S_T(t) = P(T > t) = P(T_0 \cdot e^{X'\beta} > t) = P(T_0 > t / e^{X'\beta}) = S_{T_0}(t / e^{X'\beta})$$

- $\beta > 0 \rightarrow e^{\beta} > 1 \rightarrow T > T_0 \rightarrow d$ łuższy czas do zdarzenia
 - dla chwili t, S_T odpowiada wartości S_{TO} dla <u>wcześniejszego</u> czasu
 - większe p-stwo przeżycia, mniejsza wartość funkcji hazardu
- β < 0 \rightarrow krótszy czas (większa wartość hazardu)
- <u>Problem</u>: model wymaga założenia <u>parametrycznej</u> formy rozkładu prawdopodobieństwa (log-) *T*
- Z tego powodu mniej popularny niż model Coxa

Najczęściej używane modele AFT

- T ~ Exponential (PH)
- T ~ Weibull (PH)
- T ~ (Generalized) Gamma
- ♦ In T ~ Normal (T ~ log-normal)
- In T ~ Logistic (T ~ log-logistic)

Ogólna postać modeli AFT

- Niech $\varepsilon \sim f_{\varepsilon}(w)$, $E(\varepsilon)=0$ i $Var(\varepsilon)=1$
- Przyjmijmy

In
$$T = \mu + X'\beta + \sigma \cdot \varepsilon$$

Wówczas

$$\mathsf{E}(\ln T) = \mu + \mathbf{X'}\boldsymbol{\beta}, \ \mathsf{Var}(\ln T) = \sigma^2, \ f_{\ln T}(\mathsf{y}) = \sigma^{-1}f_{\varepsilon}\{(\mathsf{y}-\mu-\mathbf{X'}\boldsymbol{\beta})/\sigma\}$$

Model liniowy na logarytmicznej skali czasu z błędem ε

Model AFT Weibulla

ε ~ Extreme value (Gumbel)

$$S_{\varepsilon}(w) = \exp(-e^{w})$$

$$\ln T = \mu + \mathbf{X'}\boldsymbol{\beta} + \sigma \cdot \varepsilon \quad \rightarrow \quad \varepsilon = (\ln T - \mu - \mathbf{X'}\boldsymbol{\beta})/\sigma$$

$$P(T \ge t) = P\{ (\ln T - \mu - \mathbf{X}'\boldsymbol{\beta})/\sigma \ge (\ln t - \mu - \mathbf{X}'\boldsymbol{\beta})/\sigma \}$$

$$= S_{\varepsilon} \{ (\ln t - \mu - \mathbf{X}'\boldsymbol{\beta})/\sigma \}$$

$$= \exp[-\exp\{(\ln t - \mu - \mathbf{X}'\boldsymbol{\beta})/\sigma \}$$

$$= \exp[\{-te^{(-\mu - \mathbf{X}'\boldsymbol{\beta})}\}^{1/\sigma}] \equiv \exp\{-(\lambda t)^{\rho}\}$$

• Czyli *T* ma rozkład Weibulla z $p = 1/\sigma$ i $\lambda = e^{-\mu - X'\beta}$

Model AFT log-logistyczny

• $\varepsilon \sim logistyczny$, $Var(\varepsilon)=\pi^2/3$ $S_{\varepsilon}(w)=1/(1+e^w)$

• Czyli *T* ma rozkład log-logistyczny z $p = 1/\sigma$ i $\lambda = e^{\mu + X'\beta}$

Model AFT log-normalny

ε ~ standardowy normalny

$$S_{\varepsilon}(w) = 1 - \Phi(w)$$

Czyli T ma rozkład log-normalny

$$E(T) = \exp(\mu + X'\beta) \exp(\sigma^2/2)$$
$$Var(T) = \{E(T)\}^2 \{\exp(\sigma^2) - 1\}$$

Model AFT Weibulla jest modelem PH (1)

In
$$T = \mu + X'\beta + \sigma \cdot \varepsilon$$
, $\varepsilon \sim Gumbel$
 $\downarrow \downarrow$
 T ma rozkład Weibulla z $p = 1/\sigma$ i $\lambda = e^{-\mu - X'\beta}$
 $\downarrow \downarrow$
 $\lambda_T(t;X) = p\lambda^p t^{p-1} = \sigma^{-1} t^{1/\sigma - 1} e^{-(\mu + X'\beta)/\sigma} \equiv \lambda_0(t) e^{X'\beta^*}$
 $gdzie \beta^* = -\beta/\sigma$

• Czyli otrzymujemy model PH z $\beta^* = -\beta/\sigma$

Model AFT Weibulla jest modelem PH (2)

$$T$$
 ma rozkład Weibulla z $p = 1/\sigma$ i $\lambda = e^{-\mu - X'\beta}$ \downarrow $S_T(t; \mathbf{X}) = \exp(-\lambda t)^p = \exp(-te^{-(\mu + X'\beta)})^{1/\sigma}$ \downarrow $\ln\{-\ln S_T(t; \mathbf{X})\} = -\sigma^{-1} \cdot (\mu + \mathbf{X'}\beta) + \sigma^{-1} \cdot \ln t$

- Wykres In{ -In $S_T(t)$ } vs. In t powinien być liniowy
 - ze wsp. kierunkowym w przybliżeniu równym $p = 1/\sigma$
 - jeśli p = 1, rozkład wykładniczy
 - dla pojedyńczej próbki, z wyrazem wolnym \approx (ln λ)/ σ
 - do oceny, możemy użyć estymatora Kaplana-Meiera

Szacowanie parametrów modelu AFT (1)

Funkcja wiarogodności (dane cenzurowane prawostronnie):

Logarytm funkcji wiarogodności:

$$l(\beta, \mu, \sigma) = \sum_{j=1}^{n} \left\{ -\delta_{j} \ln t_{j} - \delta_{j} \ln \sigma + \delta_{j} \ln f_{\varepsilon}(w_{j}) + (1 - \delta_{j}) \ln S_{\varepsilon}(w_{j}) \right\}$$

Szacowanie parametrów modelu AFT (2)

Rozwiązujemy równania:

$$\partial \ln L/\partial \mu = \sum g(w_j)/\sigma = 0$$

$$\partial \ln L/\partial \sigma = \sum \{w_j g(w_j) - \delta_j\}/\sigma = 0$$

$$\partial \ln L/\partial \beta = \sum \{X'_j g(w_j)\}/\sigma = 0$$

$$gdzie \ w_j = (\ln t_j - \mu - X_j'\beta)/\sigma \text{ oraz}$$

$$g(w_j) = (1 - \delta_j) \frac{f_{\varepsilon}(w_j)}{S_{\varepsilon}(w_j)} - \delta_j \frac{df_{\varepsilon}(w_j)}{dw_j} \frac{1}{S_{\varepsilon}(w_j)}$$

Wnioskowanie w oparciu o model AFT

• Oszacowanie wariancji estymatorów μ , σ i β na podstawie odwrotności zaobserwowanej macierzy informacji.

 Testowanie hipotez przy użyciu testów Walda, "score" lub ilorazu wiarogodności

Badanie zamków ortodontycznych

- Czochrowska et al., J Orof Orthop (1999)
- Ocena in vitro wpływu przechowywania w wodzie (24 godz., 9 mies.) na siłę wiązania zamków ortodontycznych
- Trzy rodzaje cementu
- 59 zębów od różnych pacjentów podzielonych (≈losowo) pomiedzy 6 kombinacji czasu przechowywania i cementu
- Obserwacja: siła (≈ czas) potrzebny do oderwania zamka

Zamki ortodontyczne: dane (1)

Group	Material	Water-	No. of	Mean	Quartiles		
		storage	Teeth		Median	25%	75%
1	Control	short	10	16.31	15.49	14.15	20.69
2	Vitremer	short	9	5.77	3.60	2.84	7.27
3	Fuji II LC	short	8	2.85	2.75	2.13	3.11
4	Control	long	11	14.93	13.73	12.59	17.37
5	Vitremer	long	10	6.06	5.22	4.01	8.72
6	Fuji II LC	long	11	9.03	9.12	7.20	12.67

- Średnia>mediana: rozkłady prawoskośne
- Wyraźny efekt cementu; możliwy czasu przechowywania
- Obserwacje traktowane jako nie-cenzurowany czas do zerwania wiązania

Zamki ortodontyczne: dane (2)

- Kontrola, Vitremer~ liniowe
 wsp. kierunkowe nieco różne, Fuji istotnie
- Długi czas ~ liniowy; krótki czas?
- Wykresy dla wszystkich grup bliższe liniowym
 - różne przesunięcia różne efekty

Model AFT: zamki ortodontyczne (1)

Model z wieloma zmiennymi niezależnymi:

- -"term" = 0 dla krótkiego, 1 dla długiego przechowywania
- -"mat1" = 1 dla Vitremeru, 0 dla innych
- -"mat2" = 1 dla Fuji, 0 dla innych
- -"termmat1" = 1 długie-Vitremer, 0 w p.p. (interakcja)
- -"termmat2" = 1 długie-Fuji, 0 w p.p. (interakcja)

• Założenie: "czas" ma rozkład Weibulla; In $T = \ln T_0 + X'\beta$

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1074781	.1738644	-0.62	0.536	4482461	.2332898
mat1	7617404	.1868062	-4.08	0.000	-1.127874	3956069
mat2	-1.658699	.1892983	-8.76	0.000	-2.029717	-1.287682
termmat1	0440427	.2534948	-0.17	0.862	5408834	.4527981
termmat2	1.258753	.2537898	4.96	0.000	.761334	1.756172
_cons	2.836138	.1259901	22.51	0.000	2.589202	3.083074
p	2.51325	.2560333			2.058358	3.068672

Model AFT: zamki ortodontyczne (2)

• Model na skali logarytmicznej: In $T = \text{In } T_o + X'\beta$

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1074781	.1738644	-0.62	0.536	4482461	.2332898
mat1	7617404	.1868062	-4.08	0.000	-1.127874	3956069
mat2	-1.658699	.1892983	-8.76	0.000	-2.029717	-1.287682
termmat1	0440427	.2534948	-0.17	0.862	5408834	.4527981
termmat2	1.258753	.2537898	4.96	0.000	.761334	1.756172
_cons	2.836138	.1259901	22.51	0.000	2.589202	3.083074
p	2.51325	.2560333			2.058358	3.068672

• Model na skali czasu: $T = T_0 e^{X'\beta}$

_t	Tm. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
term	.8980962	.156147	-0.62	0.536	.6387475	1.262747
mat1	.4668532	.0872111	-4.08	0.000	.3237208	.6732713
mat2	.1903864	.0360398	-8.76	0.000	.1313727	.2759097
termmat1	.9569131	.2425725	-0.17	0.862	.5822337	1.572707
termmat2	3.521028	.8936008	4.96	0.000	2.141131	5.790228

Model AFT: zamki ortodontyczne (3)

_t		Std. Err.	z	P> z		Interval]
term		.156147	-0.62	0.536	.6387475	1.262747
mat1	.4668532	.0872111	-4.08	0.000	.3237208	.6732713
mat2	.1903864	.0360398	-8.76	0.000	.1313727	.2759097
termmat1	.9569131	.2425725	-0.17	0.862	.5822337	1.572707
termmat2	3.521028	.8936008	4.96	0.000	2.141131	5.790228

Wnioski:

- –Dla Vitremeru ("mat1") i Fuji ("mat2"), siła wiązania była słabsza niż dla kontroli
 - •"czas" (siła) skrócony
- -Vitremeru: czas przechowywania nie miał znaczenia
- -Fuji: siła wzrosła ~3.5-razy po długim przechowywaniu

Model AFT: zamki ortodontyczne (4)

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1074781	.1738644	-0.62	0.536	4482461	.2332898
mat1 mat2	7617404 -1.658699	.1868062 .1892983	-4.08 -8.76	0.000	-1.127874 -2.029717	3956069 -1.287682
termmat1 termmat2	0440427 1.258753	.2534948 .2537898	-0.17 4.96	0.862 0.000	5408834 .761334	.4527981 1.756172
_cons	2.836138	.1259901	22.51	0.000	2.589202	3.083074
p	2.51325	.2560333			2.058358	3.068672

	_	_			_		
Group	term	mat1	mat2	termmat1	termmat2	Coefficient	Time ratio (relative)
Control, short	0	0	0	0	0	2.84	e ⁰ =1.000
Vitremer, short	0	1	0	0	0	2.84 -0.76=2.08	e ^{-0.76} =0.467
Fuji, short	0	0	1	0	0	2.84 -1.66=1.18	e ^{-1.66} =0.190
Control, long	1	0	0	0	0	2.84 -0.11=2.73	e ^{-0.11} =0.898
Vitremer, long	1	1	0	1	0	2.84 -0.11-0.76-0.04=1.93	e ^{-0.11-0.76-0.04} =0.403
Fuji, long	1	0	1	0	1	2.84 -0.11-1.66+1.26=2.23	e ^{-0.11-} 1.66+1.26=0.600

Model AFT: zamki ortodontyczne (5)

Przewidywane (linie) i obserwowane (symbole) średnie dla siły wiązania

Model AFT: zamki ortodontyczne (6)

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term mat1 mat2 termmat1 termmat2cons	1074781 7617404 -1.658699 0440427 1.258753 2.836138	.1738644 .1868062 .1892983 .2534948 .2537898 .1259901	-0.62 -4.08 -8.76 -0.17 4.96 22.51	0.536 0.000 0.000 0.862 0.000 0.000	4482461 -1.127874 -2.029717 5408834 .761334 2.589202	.23328983956069 -1.287682 .4527981 1.756172 3.083074
р	2.51325	.2560333			2.058358	3.068672

Model AFT: zamki ortodontyczne (7)

• Model na skali logarytmicznej: In $T = \text{In } T_o + X'\beta$

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1074781	.1738644	-0.62	0.536	4482461	.2332898
mat1 mat2	7617404 -1.658699	.1868062 .1892983	-4.08 -8.76	0.000 0.000	-1.127874 -2.029717	3956069 -1.287682
termmat1	0440427	.2534948	-0.17	0.862	5408834	.4527981
termmat2 _cons	1.258753 2.836138	.2537898 .1259901	4.96 22.51	0.000	.761334 2.589202	1.756172 3.083074
р	2.51325	.2560333			2.058358	3.068672

• Model PH: In $\lambda_T(t) = \ln \lambda_{TO}(t) - pX'\beta$

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term mat1	.2701194 1.914444	.4381688 .4699163	0.62 4.07	0.538	5886756 .9934246	1.128914 2.835463
mat2	4.168726	.6128505	6.80	0.000	2.967561	5.369891
termmat1	.1106902	.6382956	0.17	0.862	-1.140346	1.361727
termmat2	-3.16356	.7127207	-4.44	0.000	-4.560467	-1.766653
_cons	-7.127924	.8069324	-8.83	0.000	-8.709482	-5.546365

Model AFT: zamki ortodontyczne (8)

• Model PH: In $\lambda_T(t) = \ln \lambda_{TO}(t) + X'\beta$

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	.2701194	.4381688	0.62	0.538	5886756	1.128914
mat1	1.914444	.4699163	4.07	0.000	.9934246	2.835463
mat2	4.168726	.6128505	6.80	0.000	2.967561	5.369891
termmat1	.1106902	.6382956	0.17	0.862	-1.140346	1.361727
termmat2	-3.16356	.7127207	-4.44	0.000	-4.560467	-1.766653
_cons	-7.127924	.8069324	-8.83	0.000	-8.709482	-5.546365

• Model PH: $\lambda_T(t) = \lambda_{TO}(t)e^{X'\beta}$

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1.310121	.5740541	0.62	0.538	.5550619	3.092298
mat1	6.783165	3.18752	4.07	0.000	2.700467	17.03828
mat2	64.63304	39.61039	6.80	0.000	19.44443	214.8394
termmat1	1.117049	.7130073	0.17	0.862	.3197083	3.902926
termmat2	.042275	.0301302	-4.44	0.000	.0104572	.170904

Model AFT: zamki ortodontyczne (9)

• Ilorazy hazardów:

_t	Haz. Ratio	Std. Err.	z	P> z	_	Interval]
term	1.310121	.5740541	0.62	0.538	.5550619	3.092298
mat1	6.783165	3.18752	4.07	0.000	2.700467	17.03828
mat2	64.63304	39.61039	6.80	0.000	19.44443	214.8394
termmat1	1.117049	.7130073	0.17	0.862	.3197083	3.902926
termmat2	.042275	.0301302	-4.44	0.000	.0104572	.170904

Wnioski:

- –Dla Vitremeru ("mat1") i Fuji ("mat2"), hazard zerwania wiązania był <u>wyższy</u> niż dla kontroli (siła była <u>mniejsza</u>)
- -Vitremer: czas przechowywania nie miał znaczenia
- -Fuji: hazard <u>zmniejszył się</u> ~1/0.042 = 24-razy po długim przechowywaniu (siła <u>wzrosła</u>)

Model AFT: zamki ortodontyczne (10)

Model na skali logarytmicznej, Weibull

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1074781	.1738644	-0.62	0.536	4482461	.2332898
mat1	7617404	.1868062	-4.08	0.000	-1.127874	3956069
mat2	-1.658699	.1892983	-8.76	0.000	-2.029717	-1.287682
termmat1	0440427	.2534948	-0.17	0.862	5408834	.4527981
termmat2	1.258753	.2537898	4.96	0.000	.761334	1.756172
_cons	2.836138	.1259901	22.51	0.000	2.589202	3.083074

Model na skali logarytmicznej, log-normalny

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term mat1	0667642 -1.242451	.1987403 .2089913	-0.34 -5.94	0.737	4562881 -1.652067	.3227597
mat2	-1.802875	.2157565	-8.36	0.000	-2.225751	-1.38
termmat1	.2684701	.2884009	0.93	0.352	2967853	.8337256
termmat2	1.182718	.2901168	4.08	0.000	.6140993	1.751336
_cons	2.753794	.1438377	19.15	0.000	2.471878	3.035711

Diagnostyka (1)

- Modele parametryczne pozwalają na różne rodzaje diagnostyki
 - porównanie przewidywanych/obserwowanych krzywych przeżycia
 - reszty $\epsilon_i = \{\ln t_i (\mu + X'\beta)\}/\sigma$ powinny zachowywać się jak (cenzurowana) próbka o znanym rozkładzie p-stwa
 - Weibull: $\epsilon \sim Gumbel$: $S_{\epsilon}(\epsilon) = \exp(-e^{\epsilon})$
 - Log-normal: $\epsilon \sim Normal$: $S_{\epsilon}(\epsilon) = 1 \Phi(\epsilon)$
 - oszacowanie Kaplana-Meiera powinno odpowiadać parametrycznej formie S_ε(ε)

Reszty Coxa-Snell (1)

- Reszty Coxa-Snell: $r_{CS,i} = \Lambda_i(t_i) = -\ln S_i(t_i) = -\ln S_{\varepsilon}(\epsilon_i)$
 - Weibull: $\epsilon \sim Gumbel$: $S_{\epsilon}(\epsilon) = \exp(-e^{\epsilon}) \rightarrow r_{CS} = e^{\epsilon}$
 - Log-normal: $\epsilon \sim Normal$: $S_{\epsilon}(\epsilon) = 1 \Phi(\epsilon) \rightarrow r_{CS} = -\ln\{1 \Phi(\epsilon)\}$
- Gęstość dla r_{CS} : $f(r)=f_{\varepsilon}\{S_{\varepsilon}^{-1}(e^{-r})\}/|dr/d\varepsilon|$
 - $dr/d\varepsilon = d\{-\ln S_{\varepsilon}(\varepsilon)\}/d\varepsilon = f_{\varepsilon}(\varepsilon)/S_{\varepsilon}(\varepsilon) = f_{\varepsilon}(S_{\varepsilon}^{-1}(e^{-r}))/S_{\varepsilon}(S_{\varepsilon}^{-1}(e^{-r}))$
- W rezultacie $f(r)=f_{\varepsilon}\{S^{-1}(e^{-r})\}/|dr/d\varepsilon|=S_{\varepsilon}(S_{\varepsilon}^{-1}(e^{-r}))=e^{-r}$
- Wnosek: reszty Coxa-Snell mają rozkład wykładniczy z λ=1

Reszty Coxa-Snell (2)

• Jeśi model jest poprawny, oszacowania $S(t_i)$ powinny być bliskie prawdziwej wartości

- Czyli zaobserwowane reszty Cox-Snell powinny zachowywać się jak (cenzurowane) zmienne z rozkładu wykładniczego o średniej 1
 - Możemy oszacować $S(r_{CS})$ metodą Kaplana-Meiera
 - Wykres $-\ln\{S(r_{CS})\}$ vs r_{CS} powinien być liniowy ze wsp. kierunkowym=1

Zmodyfikowane reszty Coxa-Snell

- Dla obserwacji cenzurowanych, zaobserwowana wartość
 r_{CS,i} jest zbyta mała
 - czas zdarzenia jest dłuższy niż obserwowany, więc zaobserwowana wartość $\Lambda_i(t_i)$ jest zbyta mała (skumulowany hazard nie maleje)

- Zmodyfikowane reszty Coxa-Snell $r^*_{CS,i}=r_{CS,i}+1-\delta_i$
 - Idea: dla obserwacji cenzurowanych, $r^*_{CS,i} = r_{CS,i} + \text{stała (",naddatek")}$
 - Brak pamięci rozkładu wykładniczego: "naddatek" powinien mieć ten sam rozkład, czyli średnio powinien wynosić 1

• Crowley & Hu (1977): 1 to za dużo; miast średniej, mediana: $r^*_{CS,i} = r_{CS,i} + \ln 2$ dla obserwacji cenzurowanych

Reszty "score"

- Oparte na pochodnych logarytmu funkcji wiarogodności
- Dla obserwacji j i poszczególnych parametrów:

$$r_{Sj,\mu} = g(\hat{w}_j)/\hat{\sigma}$$

$$r_{Sj,\sigma} = \{\hat{w}_j g(\hat{w}_j) - \delta_j\}/\hat{\sigma}$$

$$r_{Sj,\beta_k} = x_{j,k} g(\hat{w}_j)/\hat{\sigma}$$

$$g(w_{j}) = (1 - \delta_{j}) \frac{f_{\varepsilon}(w_{j})}{S_{\varepsilon}(w_{j})} - \delta_{j} \frac{df_{\varepsilon}(w_{j})}{dw_{j}} \frac{1}{S_{\varepsilon}(w_{j})}$$

Model AFT: zamki ortodontyczne (11)

Przewidywane (linie) i obserwowane (schodki) krzywe przeżycia dla modelu Weibulla

Model AFT: zamki ortodontyczne (12)

• reszty ϵ powinny zachowywać się jak (cenzurowana) próbka o znanym rozkładzie p-stwa (Gumbela / normalnym)

Model AFT: zamki ortodontyczne (13)

◆-In S vs reszty Coxa-Snell – wykres powinien być liniowy ze wsp. kierunkowym = 1, gdzie S to funkcja przeżycia dla reszt

Log-normalny model AFT: zamki ortodontyczne (14)

- ◆-In S vs reszty Coxa-Snell –
 wykres powinien być liniowy ze
 wsp. kierunkowym = 1, gdzie S
 to funkcja przeżycia dla reszt
- ◆ Dane nie były cenzurowane, więc reszty € powinny mieć rozkład normalny (linowy wykres kwantyli)

Model AFT: zamki ortodontyczne (15)

Model Weibulla to model PH

Ilorazy hazardów dla modelu Weibulla:

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1.310121	.5740541	0.62	0.538	.5550619	3.092298
mat1	6.783165	3.18752	4.07	0.000	2.700467	17.03828
mat2	64.63304	39.61039	6.80	0.000	19.44443	214.8394
termmat1	1.117049	.7130073	0.17	0.862	.3197083	3.902926
termmat2	.042275	.0301302	-4.44	0.000	.0104572	.170904

Ilorazy hazardów dla modelu Coxa:

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
term	1.936816	.9471746	1.35	0.176	.7427099	5.050767
mat1	9.972082	5.380327	4.26	0.000	3.463613	28.7106
mat2	65.58283	43.36532	6.33	0.000	17.94529	239.679
termmat1	.774097	.5359148	-0.37	0.711	.1992968	3.006702
termmat2	.0459922	.0342823	-4.13	0.000	.0106709	.198228

Efektywność modelu PH

- Model wykładniczy/Weibula, bez cenzurowania, dwie próbki (X=0,1) z pn obserwacjami dla X=1
 - wykładniczy: efektywność ponad 75% dla e^β ∈ (1/3,3)
 - Weibull: ponad 93% for e^β ∈ (1/3,3) and p=1/2

Figure 5.1 Percent efficiencies of the partial likelihood analysis in the two-sample problem against Weibull (dashed line) and exponential (solid line) true model.

Model AFT: zamki ortodontyczne (16)

Przewidywane (Cox) i obserwowane krzywe przeżycia

Wybór formy modelu parametrycznego (1)

Uogólniony rozkład gamma GΓ(κ,σ):

$$S(t) = \begin{cases} 1 - I(\gamma, u), & \text{if } \kappa > 0 \\ 1 - \Phi(z), & \text{if } \kappa = 0 \\ I(\gamma, u), & \text{if } \kappa < 0 \end{cases}$$

$$f(t) = \begin{cases} \frac{\gamma^{\gamma}}{\sigma t \sqrt{\gamma} \Gamma(\gamma)} \exp(z\sqrt{\gamma} - u), & \text{if } \kappa \neq 0 \\ \frac{1}{\sigma t \sqrt{2\pi}} \exp(-z^2/2), & \text{if } \kappa = 0 \end{cases}$$

where $\gamma = |\kappa|^{-2}$, $z = \text{sign}(\kappa)\{\log(t) - \mu\}/\sigma$, $u = \gamma \exp(|\kappa|z)$, $\Phi(z)$ is the standard normal cumulative distribution function, and I(a,x) is the incomplete gamma function. See the gammap(a,x)

Rodzina modeli

- $\kappa = 1 \rightarrow Weibull$
- $\kappa = \sigma = 1 \rightarrow exponential$
- $\kappa = 0 \rightarrow log-normal$

Wybór formy modelu parametrycznego (2)

Dopasowujemy model z ε ~ GΓ(κ,σ)

- Test hipotezy H_0 : $\kappa = 0$
 - np. test Walda lub ilorazu wiarogodności
 - jeśli istotny statystycznie, nie możemy użyć modelu log-normalnego
- Test hipotezy H_0 : $\kappa = 1$
 - jeśli istotny statystycznie, nie możemy użyć modelu Weibulla
- Sprawdzić dopasowanie wybranego modelu przy pomocy reszt!

Model AFT: zamki ortodontyczne (17)

• Model uogólniony-gamma; In $T = \ln T_0 + X'\beta$

t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
term mat1 mat2 termmat1 termmat2cons	0854606 -1.075086 -1.755934 .161583 1.236515 2.785922	.1942349 .302885 .2185789 .316652 .2856645 .1448654	-0.44 -3.55 -8.03 0.51 4.33 19.23	0.660 0.000 0.000 0.610 0.000	466154 -1.668729 -2.184341 4590435 .676623 2.501991	.2952327 4814418 -1.327527 .7822096 1.796407 3.069853
/ln_sig /kappa	8161719 .3668636	.1057526 .4560403	-7.72 0.80	0.000 0.421	-1.023443 526959	6089005 1.260686
sigma	.4421209	.0467555			.3593555	.5439486

- Test hipotezy $\kappa = 0$ nieistotny \rightarrow model log-normalny możliwy
- Test hipotezy $\kappa = 1$: $(0.367 1)^2 / 0.456^2 = 1.927$
 - •χ² z 1 stopniem swobody (wartość krytyczna 3.84)
 - •1.927<3.84 → test <u>nieistotny statystycznie</u> → model Weibulla możliwy

Wybór formy modelu parametrycznego (3)

Uogólniony rozkład F: GF(β, σ>0, m₁, m₂)

$$f_{\text{GF}}(t) = \frac{e^{-\beta m_1/\sigma} t^{(m_1/\sigma)-1} (m_1/m_2)^{m_1}}{\sigma B(m_1, m_2) [1 + (m_1/m_2)(e^{-\beta}t)^{1/\sigma}]^{(m_1+m_2)}}$$

- Dla $q=(m_1^{-1}-m_2^{-1}) (m_1^{-1}+m_2^{-1})^{-1/2} i p= 2(m_1+m_2)^{-1} mamy$
 - $q=0, p=0 \rightarrow log-normalny$
 - q=0, $p=1 \rightarrow log-logistyczny$
 - $q=1, p=0 \rightarrow Weibull$
 - q>0, p=0 → uogólniony gamma

Figure 3.2 Special cases of the log F model. Note that $\{(q,0): q \ge 0\}$ gives the generalized gamma model.

Model AFT: zamki ortodontyczne (18)

• Model uogólniony-F; In $T = \text{In } T_o + X'\beta$

Estimates:

	data mean	est	L95 %	U95 %	<pre>exp(est)</pre>	L95%	U95 %
mu	NA	2.8400	2.5900	3.0900	NA	NA	NA
sigma	NA	0.2440	0.0862	0.6900	NA	NA	NA
Q	NA	0.7410	-0.6790	2.1600	NA	NA	NA
P	NA	2.9500	0.1980	43.9000	NA	NA	NA
term	0.5420	-0.1270	-0.4220	0.1690	0.8810	0.6560	1.1800
mat1	0.3220	-1.0100	-1.4800	-0.5490	0.3630	0.2280	0.5770
mat2	0.3220	-1.7900	-2.1100	-1.4700	0.1670	0.1210	0.2300
termmat1	0.1690	0.1320	-0.4820	0.7450	1.1400	0.6180	2.1100
termmat2	0.1860	1.3600	0.8920	1.8200	3.8800	2.4400	6.1700

```
N = 59, Events: 59, Censored: 0
Total time at risk: 561.8991
Log-likelihood = -153.5943, df = 9
AIC = 325.1887
```

Model AFT: zamki ortodontyczne (19)

• Model log-logistyczny; In $T = \text{In } T_0 + X'\beta$

Estimates:

	data mean	est	L95%	U95 %	exp(est)	L95 %	บ95%
mu	NA	2.7800	2.5300	3.0200	NA	NA	NA
sigma	NA	0.3490	0.2810	0.4340	NA	NA	NA
Q	NA	0.0000	NA	NA	NA	NA	NA
P	NA	1.0000	NA	NA	NA	NA	NA
term	0.5420	-0.0913	-0.4170	0.2340	0.9130	0.6590	1.2600
mat1	0.3220	-1.3200	-1.7500	-0.8880	0.2670	0.1730	0.4120
mat2	0.3220	-1.8100	-2.1800	-1.4300	0.1640	0.1130	0.2390
termmat1	0.1690	0.3320	-0.2270	0.8900	1.3900	0.7970	2.4400
termmat2	0.1860	1.2800	0.7700	1.7900	3.5900	2.1600	5.9600

```
N = 59, Events: 59, Censored: 0
Total time at risk: 561.8991
Log-likelihood = -154.2939, df = 7
AIC = 322.5878
```

Model AFT: zamki ortodontyczne (20)

Logarytmy funkcji wiarogodności:

```
> brack.AFT.genF$loglik # loglik generalized F
[1] -153.5943
> brack.AFT.LL$loglik # loglik log-logistic
[1] -154.2939
> brack.AFT.LN$loglik # loglik log-normal
[1] -155.4093
> brack.AFT.W$loglik # loglik Weibull
[1] -155.8208
```

Testy ilorazu funkcji wiarogodności:

```
> 2*(brack.AFT.genF$loglik-brack.AFT.LL$loglik)
[1] 1.399175
> 1-pchisq(2*(brack.AFT.genF$loglik-brack.AFT.LL$loglik),2)
[1] 0.4967902
> 2*(brack.AFT.genF$loglik-brack.AFT.LN$loglik)
[1] 3.629975
> 1-pchisq(2*(brack.AFT.genF$loglik-brack.AFT.LN$loglik),2)
[1] 0.1628399
> 2*(brack.AFT.genF$loglik-brack.AFT.W$loglik)
[1] 4.452899
> 1-pchisq(2*(brack.AFT.genF$loglik-brack.AFT.W$loglik),2)
[1] 0.1079109
```

Model AFT

 Użycie modelu parametrycznego generalnie zwiększa precyzję wnioskowania

Wymaga poprawnej specyfikacji rozkładu

- Model Coxa nie wymaga, więc jest bardziej popularny
 - Zawsze warto sprawdzić, czy mozna użyć modelu AFT

Model PH vs. AFT

• Rozważmy model PH $\lambda(t \mid x_1, x_2) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2}$

- Pominięcie X_2 może spowodować obciążenie oszacowań β_1
 - Nawet jeśli rozkład X_2 jest zrównoważony dla X_1
 - Problem w próbach klinicznych!

◆Ponadto spowoduje zależność od czasu HR dla X₁

Modele AFT są bardziej "odporne" na takie zaburzenia