Московский Государственный Университет имени М. В. Ломоносова

Механико-математический факультет

Численное решение одномерного уравнения Навье-Стокса с использованием схемы с центральными разностями Плотность-Скорость (параллельная)

> Бушуева Наталья Сергеевна, 410 группа Декабрь 2019

1. Постановка задачи.

Приведем систему уравнений, описывающую нестационарное одномерное движение вязкого баротропного газа:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0\\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f\\ p = p(\rho) \end{cases}$$

Через μ обозначен коэффициент вязкости газа, которую будем считать известной неотрицательной константой ($\mu=0.1$). Неизвестные функции: плотность ρ и скорость u являются функциями переменных Эйлера $(t,x)\in [0,T]\times [0,X]$. В уравнения также входят две известные функции: давление газа $p=C\rho$ и вектор внешних сил f, являющейся функцией переменных Эйлера.

В начальный момент времени задаются функции, значениями которых являются плотность и скорость газа в точках отрезка [0,X]:

$$(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0, X].$$

Простейшими граничными условиями являютя условия непротекания:

$$u(t,0) = u(t,X) = 0, t \in [0,T].$$

2. Описание схемы

Для поиска численного решения задачи можно использовать разностную схему, в которой при апроксимации используются центральные разности, а системы уравнений решаются параллельно методом "прогонки".

$$\begin{cases} H_{t,0} + 0.5((V \stackrel{\wedge}{H})_{x,0} + H_0 V x, 0) - 0.5h((HV)_{x,\overline{x},1} - 0.5(HV)_{x,\overline{x},2} + H_0(V_{x,\overline{x},1} - 0.5V_{x,\overline{x},2})) = 0 \\ H_t + 0.5(V \stackrel{\wedge}{H}_{\stackrel{\circ}{x}} + (V \stackrel{\wedge}{H})_{\stackrel{\circ}{x}} + HV \stackrel{\circ}{x}) = 0, x \in \omega_h \\ H_{t,M} + 0.5((V \stackrel{\wedge}{H})_{\overline{x},M} + H_M V_{\overline{x},M}) + 0.5h((HV)_{x,\overline{x},M-1} - 0.5(HV)_{x,\overline{x},M-2} + H_M(V_{x,\overline{x},M-1} - 0.5V_{x,\overline{x},M-2})) = 0 \\ V_t + \frac{1}{3}(V \stackrel{\wedge}{V}_{\stackrel{\circ}{x}} + (V \stackrel{\wedge}{V})_{\stackrel{\circ}{x}}) + \frac{p(H)_{\stackrel{\circ}{x}}}{H} = \tilde{\mu} \stackrel{\wedge}{V}_{x\overline{x}} - (\tilde{\mu} - \frac{\mu}{H})V_{x\overline{x}} + f, x \in \omega_h \end{cases}$$

Под ω_h понимаются внутренние узлы отрезка [0,X], а $\widetilde{\mu}=\max_m \frac{\mu}{H}$

3. Координатная запись уравнений

$$\begin{cases} \frac{H_0^{n+1}-H_0^n}{t} + \frac{1}{2} (\frac{V_1^n H_1^{n+1}-V_0^n H_0^{n+1}}{h} + H_0^n \frac{V_1^n-V_0^n}{h}) - \\ -\frac{h}{2} (\frac{H_2^n V_2^n - 2H_1^n V_1^n + H_0^n V_0^n}{h^2} - \frac{1}{2} \frac{H_3^n V_3^n - 2H_2^n V_2^n + H_1^n V_1^n}{h^2} + H_0^n (\frac{V_2^n - 2V_1^n + V_0^n}{h^2} - \frac{V_3^n - 2V_2^n + V_1^n}{2h^2})) = 0 \end{cases}$$

$$\begin{cases} \frac{H_m^{n+1}-Hm^n}{t} + \frac{1}{2} (V_m^n \frac{H_{m+1}^{n+1}-H_{m-1}^{n+1}}{2h} + \frac{V_{m+1}^n H_{m+1}^{n+1}-V_{m-1}^n H_{m-1}^{n+1}}{2h} + H_m^n \frac{V_{m+1}^n - V_{m-1}^n}{2h}) = 0 \end{cases}$$

$$\begin{cases} \frac{H_M^{n+1}-Hm^n}{t} + \frac{1}{2} (V_m^n \frac{H_{m+1}^{n+1}-V_{m-1}^n H_{m-1}^{n+1}}{2h} + H_m^n \frac{V_m^n - V_{m-1}^n}{2h} + H_m^n \frac{V_m^n - V_{m-1}^n}{2h}) + \frac{h}{2} (\frac{H_m^n V_m^n - 2H_m^n - V_{m-1}^n + H_{m-2}^n V_{m-2}^n - H_m^n}{2h^2} - \frac{1}{2} \frac{H_{m-1}^n V_m^n - 2H_{m-2}^n V_{m-2}^n + H_m^n - V_{m-2}^n + H_m^n}{h^2} + H_m^n (\frac{V_m^n - 2V_{m-1}^n + V_{m-1}^n}{h^2} + V_{m-1}^n - \frac{V_m^n - 2V_{m-1}^n + V_{m-2}^n}{2h^2} - \frac{V_{m-1}^n - 2V_{m-2}^n + V_{m-3}^n}{2h^2})) = 0 \end{cases}$$

$$\begin{cases} \frac{H_m^{n+1} - H_m^n}{t} + \frac{1}{2} (V_m^n \frac{V_m^{n+1} - V_m^{n+1}}{h} - V_{m-1}^n + H_m^n - V_m^{n-1}}{h} + H_m^n (\frac{V_m^n - 2V_m^n - V_m^{n+1}}{h}) + \frac{h}{2} (H_m^n V_m^n - 2H_m^n - V_m^n - 2V_m^n -$$

Выделив коэффициенты при H_m^{n+1} из первых трех уравнений системы, получим трехдиагональную матрицу. Решим её методом "прогонки который является урезанным методом Гаусса, учитывающим строение матрицы.

После этого выделим из четвертого уравнения системы коэфициенты при V_m^{n+1} . Снова получим трехдиагональную матрицу. Решаем её методом прогонки и переходим к следующему n+2-му шагу алгоритма.

4. Заполнение матриц.

Напишем в явном виде формулы заполнения трехдиагональных матриц плотности и скорости.

4.1. Матрица плотности.

Преобразуем некраевой случай для плотности (второе уравнение):

$$H_{m-1}^{n+1}\underbrace{[-\frac{V_{m-1}^n+V_m^n}{4h}]}_{q}+H_m^{n+1}\underbrace{[\frac{1}{t}]}_{q}+H_{m+1}^{n+1}\underbrace{[\frac{V_m^n+V_{m+1}^n}{4h}]}_{q}=\underbrace{-H_m^n(\frac{V_{m+1}^n-V_{m-1}^n}{4h})+\frac{H_m^n}{t}}_{h}$$

Здесь А - это искомая трехдиагональная матрица плотности.

$$\begin{pmatrix} a_{00} & a_{01} & 0 & 0 & \dots \\ a_{10} & a_{11} & a_{12} & 0 & \dots \\ 0 & a_{21} & a_{22} & a_{23} & \dots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & a_{M,M-1} & a_{M,M} \end{pmatrix}$$

Будем хранить эту матрицу в виде трех векторов (по диагоналям). Заполнение матрицы плотности:

```
a[0+M+1]=1./t;
a[0]=V[i*(M+1)+1]/(2.0*h);
b[0] = -H[i*(M+1)+0]*V[i*(M+1)+1]/(2.0*h)+
(1/(2.0*h))*
(H[i*(M+1)+2]*V[i*(M+1)+2]-
2*H[i*(M+1)+1]*V[i*(M+1)+1]+
H[i*(M+1)+0]*V[i*(M+1)+0]-
0.5*(H[i*(M+1)+3]*V[i*(M+1)+3]-
2*H[i*(M+1)+2]*V[i*(M+1)+2]+
H[i*(M+1)+1]*V[i*(M+1)+1])+
H[i*(M+1)+0]*(V[i*(M+1)+2]-
2*V[i*(M+1)+1]+V[i*(M+1)+0]-
0.5*(V[i*(M+1)+3]-2*V[i*(M+1)+2]+
V[i*(M+1)+1]))+H[i*(M+1)+0]/t+f0(i,0,t,h);
for(int j=1;j<M;j++)</pre>
{
    a[j+2*(M+1)]=-(1./(4.*h))*(V[i*(M+1)+j-1]+
    V[i*(M+1)+j]);
    a[j+M+1]=1./t;
    a[j]=(1./(4.*h))*(V[i*(M+1)+j+1]+V[i*(M+1)+j]);
    b[j]=f0(i,j,t,h)-H[i*(M+1)+j]*(V[i*(M+1)+j+1]-
    V[i*(M+1)+j-1])/(4.*h)+H[i*(M+1)+j]/t;
}
a[M+2*(M+1)]=-0.5*V[i*(M+1)+M-1]/h;
a[M+(M+1)]=1./t+0.5*V[i*(M+1)+M]/h;
b[M]=H[i*(M+1)+M]/t-0.5*H[i*(M+1)+M]*
(V[i*(M+1)+M]-V[i*(M+1)+M-1])/h-
0.5*h*((H[i*(M+1)+M]*V[i*(M+1)+M]-
2.*H[i*(M+1)+M-1]*V[i*(M+1)+M-1]+
H[i*(M+1)+M-2]*V[i*(M+1)+M-2])/(h*h)-
0.5*(H[i*(M+1)+M-1]*V[i*(M+1)+M-1]-
2.*H[i*(M+1)+M-2]*V[i*(M+1)+M-2]+
H[i*(M+1)+M-3]*V[i*(M+1)+M-3])/(h*h)+
H[i*(M+1)+M]*((V[i*(M+1)+M]-2*V[i*(M+1)+M-1]+
V[i*(M+1)+M-2])/(h*h)-0.5*(V[i*(M+1)+M-1]-
2*V[i*(M+1)+M-2]+V[i*(M+1)+M-3])/(h*h)))+f0(i,M,t,h);
```

И умножим уравнения на th с целью повышения точности при малых t и h.

4.2. Матрица скорости.

Далее заполняем матрицу скорости. Аналогично выражаем коэффициенты, но считаем $a_{00}=a_{01}=a_{10}=a_{M,M-1}=a_{M,M}=a_{M-1,M}=0$. Получаем следующий фрагмент кода:

```
for(int j=1;j<M;j++)
{
    a[j+2*(M+1)]=-(V[i*(M+1)+j]+V[i*(M+1)+j-1])/(6*h)-
    max/(h*h);

    a[j+M+1]=1./t+2.*max/(h*h);

    a[j]=(V[i*(M+1)+j]+V[i*(M+1)+j+1])/(6*h)-max/(h*h);

    b[j]=V[i*(M+1)+j]/t-(p(H[(i+1)*(M+1)+j+1])-
    p(H[(i+1)*(M+1)+j-1]))/(2.*h*H[(i+1)*(M+1)+j])-
    (max-mu/H[(i+1)*(M+1)+j])*(V[i*(M+1)+j+1]-
    2*V[i*(M+1)+j]+V[i*(M+1)+j-1])/(h*h)+f(i,j,t,h,mu);
}</pre>
```

И умножим уравнения на th с целью повышения точности при малых t и h.

5. Расчет гладкого решения.

Зададим функции:

$$\widetilde{\rho}=e^t(\cos(\frac{\pi x}{10})+1.5),\ \widetilde{u}=\cos(2\pi t)\sin(\pi\frac{x^2}{100})$$

Определим функции f_0 и f так, чтобы они удовлетворяли системе:

$$\begin{cases} \frac{\partial \widetilde{\rho}}{\partial t} + \frac{\partial \widetilde{\rho}\widetilde{u}}{\partial x} = f_0 \\ \widetilde{\rho} \frac{\partial \widetilde{u}}{\partial t} + \widetilde{\rho}\widetilde{u} \frac{\partial \widetilde{u}}{\partial x} + \frac{\partial \widetilde{\rho}}{\partial x} = \mu \frac{\partial^2 \widetilde{u}}{\partial x^2} + \widetilde{\rho}f \\ p = p(\widetilde{\rho}) \end{cases}$$

Проведя подстановку и соответствующие вычисления, найдем функции:

$$\begin{cases} f_0(t,x) = e^t(\cos(\frac{\pi x}{10}) + 1.5) + e^t\cos(2\pi t)(-\frac{\pi}{10}sin(\frac{\pi x}{10})sin(\frac{\pi x^2}{100}) + \frac{\pi x}{50}cos(\frac{\pi x^2}{100})(cos(\frac{\pi x}{10}) + 1.5) \\ f(t,x) = (-e^t(\cos(\frac{\pi x}{10}) + 1.5)2\pi sin(2\pi t)sin(\frac{\pi x^2}{100}) + \frac{\pi t}{50}e^t(\cos(\frac{\pi x}{10}) + 1.5)(cos(2\pi t))^2sin(\frac{\pi x^2}{100})cos(\frac{\pi x^2}{100}) - (-p(\frac{\pi}{10})e^tsin(\frac{\pi x}{10}) - \frac{\mu\pi}{50}cos(2\pi t)(cos(\frac{\pi x^2}{100}) - \frac{x^2\pi}{50}sin((\frac{\pi x^2}{100}))))/(e^t(\cos(\frac{\pi x}{10}) + 1.5)) \end{cases}$$

Таким образом, имеем дифференциальную задачу для системы с начальными и граничными условиями:

$$\begin{cases} \widetilde{\rho}(0,x) = \cos(\frac{\pi x}{10}) + 1.5, x \in [0,10] \\ \widetilde{u}(0,x) = \sin(\pi \frac{x^2}{100}), x \in [0,10] \\ \widetilde{u}(t,0) = \widetilde{u}(t,10) = 0, t \in [0,1] \end{cases}$$

Она имеет гладкое точное решение в области $[0,1] \times [0,10]$.

Составим таблицы ошибок численного решения с теоретическим для плотности и скорости в нормах $||\ ||_{C_h},\ ||\ ||_{L_2},\ ||\ ||_W$ при различных значениях C=1,10,100 и $\mu=0.1,0.01,0.001$.

Таблица для H при $\mu=0.1,\, C=1,\, ||\, .\, ||_{C_h}:$

N / M	10	100	1000	10 000
10	2.143694e-01	2.264050e-01	2.251116e-01	2.250955e-01
100	2.964124e-02	2.221759e-02	2.228827e-02	2.228837e-02
1000	2.317728e-02	2.192264e-03	2.225735e-03	2.226023e-03
10 000	2.252601e-02	2.623133e-043	2.222659e-04	2.225705e-04

Таблица для H при $\mu=0.1,\, C=1,\,\,||\,\,||_{L_2}:$

N / M	10	100	1000	10 000
10	4.417969e-01	4.391595e-01	4.390930e-01	4.390929e-01
100	4.723786e-02	4.298727e-02	4.300219e-02	4.300234e-02
1000	2.016514e-02	4.281144e-03	4.293383e-03	4.293544e-03
10 000	1.980081e-02	4.514181e-04	4.291298e-04	4.292884e-04

Таблица для H при $\mu=0.1,\, C=1,\,\,||\,\,||_W$:

N / M	10	100	1000	10 000
10	4.462457e-01	4.437024e-01	4.435496e-01	4.435500e-01
100	5.208176e-02	4.331901e-02	4.334279e-02	4.334300e-02
1000	2.999366e-02	4.315816e-03	4.327254e-03	4.327461e-03
10 000	2.981948e-02	5.029274e-04	4.324820e-04	4.326792e-04

Таблица для V при $\mu=0.1,\, C=1,\, ||\, . \,\, ||_{C_h}:$

N / M	10	100	1000	10 000
10	3.444460e-01	3.429665e-01	3.430031e-01	3.430030e-01
100	3.744959e-02	3.189993e-02	3.189130e-02	3.189126e-02
1000	1.858139e-02	3.180874e-03	3.174460e-03	3.174446e-03
10 000	1.857666e-02	3.844859e-04	3.177237e-04	3.177065e-04

Таблица для V при $\mu=0.1,\, C=1,\, \;||\; ||_{L_2}:$

N / M	10	100	1000	10 000
10	4.788023e-02	3.086641e-02	3.070495e-02	3.070333e-02
100	2.241863e-02	7.767198e-04	7.767198e-04	7.757596e-04
1000	2.215128e-02	2.514846e-04	7.336845e-05	7.299164e-053
10 000	2.214510e-02	2.310423e-04	7.920253e-06	7.310115e-063

Таблица для V при $\mu = 0.1, \, C = 1, \, \, || \, \, ||_W$:

N / M	10	100	1000	10 000
10	6.573218e-02	4.150134e-02	4.126848e-02	4.126624e-02
100	3.287995e-02	1.120130e-03	9.368058e-04	9.354343e-04
1000	3.264929e-02	3.749411e-04	8.728497e-05	8.695886e-05
10 000	3.265416e-02	3.593887e-04	9.546523e-06	8.716269e-06

Таблица для H при $\mu = 0.01,\, C = 1,\, || \ . \ ||_{C_h} :$

N/M	10	100	1000	10 000
10	2.211703e-01	2.263311e-01	1.582959e+00	5.372131e+00
100	3.142828e-02	2.245293e-02	2.246906e-02	2.246932e-02
1000	2.482366e-02	2.213685e-03	2.244466e-03	2.244768e-03
10 000	2.415879e-02	2.929521e-04	2.241461e-04	2.244516e-04

Таблица для H при $\mu=0.01,\, C=1,\, \ ||\ ||_{L_2}:$

N / M	10	100	1000	10 000
10	4.428018e-01	4.392113e-01	5.252379e-01	6.093233e-01
100	4.786355e-02	4.302245e-02	4.303809e-02	4.303825e-02
1000	2.127418e-02	4.284601e-03	4.297226e-03	4.297396e-03
10 000	2.091750e-02	4.550180e-04	4.295095e-04	4.296761e-04

Таблица для H при $\mu = 0.01,\, C = 1,\,\, \mid\mid \, \mid\mid_W:$

N / M	10	100	1000	10 000
10	4.475027e-01	4.435662e-01	$3.172539\mathrm{e}{+01}$	1.679467e + 02
100	5.329391e-02	4.336868e-02	4.339092e-02	4.339114e-02
1000	3.185870e-02	4.321297e-03	4.332518e-03	4.332742e-03
10 000	3.169456e-02	5.171906e-04	4.329971e-04	4.332119e-04

Таблица для V при $\mu = 0.01,\, C = 1,\, ||\,\,.\,\,||_{C_h}$:

N / M	10	100	1000	10 000
10	3.422005e-01	3.405622e-01	$1.548628\mathrm{e}{+00}$	4.175018e-01
100	3.774782e-02	3.174822e-02	3.174968e-02	3.174968e-02
1000	1.959094e-02	3.205442e-03	3.201035e-03	3.201043e-03
10 000	1.958207e-02	3.891733e-04	3.203633e-04	3.203665e-04

Таблица для V при $\mu=0.01,\, C=1,\,\, ||\,\,||_{L_2}:$

N / M	10	100	1000	10 000
10	4.990424e-02	3.216016e-02	2.135581e-01	1.082185e-01
100	2.341577e-02	1.101758e-03	9.954724e-04	9.946412e-04
1000	2.310145e-02	2.714493e-04	9.530832e-05	9.496017e-05
10 000	2.309122e-02	2.432983e-04	1.005089e-05	9.495519e-06

Таблица для V при $\mu = 0.01, \, C = 1, \, \, || \, \, ||_W$:

N / M	10	100	1000	10 000
10	6.835065e-02	4.286211e-02	1.714778e + 01	$6.841703\mathrm{e}{+00}$
100	3.446748e-02	1.323483e-03	1.169268e-03	1.168214e-03
1000	3.421400e-02	3.991829e-04	1.113716e-04	1.112409e-04
10 000	3.421724e-02	3.818741e-04	1.173585e-05	1.113611e-05

Таблица для H при $\mu = 0.001,\, C = 1,\, ||\, . \, ||_{C_h}$:

N / M	10	100	1000	10 000
10	2.218780e-01	2.261835e-01	$2.585887\mathrm{e}{+06}$	$2.165843\mathrm{e}{+05}$
100	3.162551e-02	2.245921e-02	2.248779e-02	$9.648828\mathrm{e}{+44}$
1000	2.500499e-02	2.215424e-03	2.246375e-03	2.246679e-03
10 000	2.433857e-02	3.042393e-04	2.243375e-04	2.246431e-04

Таблица для H при $\mu=0.001,\, C=1,\;\;||\;||_{L_2}:$

N / M	10	100	1000	10 000
10	4.429164e-01	4.392228e-01	$3.828000\mathrm{e}{+05}$	$1.969445\mathrm{e}{+04}$
100	4.793440e-02	4.302637e-02	4.304229e-02	$7.776510e{+43}$
1000	2.139615e-02	4.285062e-03	4.297672e-03	4.297842e-03
10 000	2.104003e-02	4.556348e-04	4.295536e-04	4.297210e-04

Таблица для H при $\mu=0.001,\, C=1,\;\;||\;||_W:$

N / M	10	100	1000	10 000
10	4.476502e-01	4.436026e-01	5.470499e+07	$3.685878\mathrm{e}{+07}$
100	5.343186e-02	4.337631e-02	4.339887e-02	1.492133e+47
1000	3.206457e-02	4.322675e-03	4.333353e-03	4.333580e-03
10 000	3.190117e-02	5.233605e-04	4.330795e-04	4.332960e-04

Таблица для V при $\mu = 0.001,\, C = 1,\, ||\, . \, ||_{C_h}$:

N / M	10	100	1000	10 000
10	3.419760e-01	3.403284e-01	$3.233496\mathrm{e}{+02}$	$2.298566\mathrm{e}{+02}$
100	3.777779e-02	3.177527e-02	3.177693e-02	$1.022704\mathrm{e}{+03}$
1000	1.969975e-02	3.207939e-03	3.203747e-03	3.203758e-03
10 000	1.969037e-02	3.896910e-04	3.206325e-04	3.206378e-04

Таблица для V при $\mu=0.001,\, C=1,\,\, ||\,\, ||_{L_2}:$

N / M	10	100	1000	10 000
10	5.012832e-02	3.230986e-02	$1.624489\mathrm{e}{+01}$	3.884439e+01
100	2.352296e-02	1.124423e-03	1.019120e-03	$1.649396\mathrm{e}{+01}$
1000	2.320283e-02	2.737599e-04	9.766722 e-05	9.731917e-05
10 000	2.319209e-02	2.446654e-04	1.028347e-05	9.730381e-06

Таблица для V при $\mu = 0.001, \, C = 1, \, \, || \, \, ||_W :$

N / M	10	100	1000	10 000
10	6.864411e-02	4.303422e-02	$1.037434e{+03}$	$9.834436\mathrm{e}{+02}$
100	3.463934e-02	1.349755e-03	1.198210e-03	$6.965285\mathrm{e}{+03}$
1000	3.438205e-02	4.030825e-04	1.143226e-04	1.142056e-04
10 000	3.438498e-02	3.854373e-04	1.201492e-05	1.143154e-05

Таблица для H при $\mu=0.1,\, C=10,\, ||\, . \, ||_{C_h}:$

N / M	10	100	1000	10 000
10	2.513310e-01	6.840937e-01	$3.619086\mathrm{e}{+00}$	$1.097858e{+01}$
100	2.740819e-02	2.366752e-02	2.383323e-02	2.383486e-02
1000	1.956120e-02	2.202376e-03	2.367907e-03	2.369558e-03
10 000	2.130836e-02	2.572322e-04	2.351462e-04	2.367993e-04

Таблица для H при $\mu=0.1,\, C=10,\,\, ||\,\,||_{L_2}$:

N / M	10	100	1000	10 000
10	4.330993e-01	4.699694e-01	1.664312e+00	1.826387e+00
100	4.644060e-02	4.301035e-02	4.310528e-02	4.310624e-02
1000	3.346195e-02	4.224109e-03	4.305530e-03	4.306463e-03
10 000	3.443016e-02	4.630315e-04	4.296777e-04	4.305969e-04

Таблица для H при $\mu = 0.1, \; C = 10, \; \; || \; ||_W :$

N / M	10	100	1000	10 000
10	4.389722e-01	$2.653836\mathrm{e}{+00}$	$3.707389e{+01}$	3.559133e+02
100	4.718579e-02	4.371834e-02	4.382771e-02	4.382882e-02
1000	3.579572e-02	4.284730e-03	4.377660e-03	4.378718e-03
10 000	3.690329e-02	4.710372e-04	4.367784e-04	4.378209e-04

Таблица для V при $\mu=0.1,\, C=10,\, ||\,\,.\,\, ||_{C_h}$:

N / M	10	100	1000	10 000
10	3.750469e-01	$1.230806\mathrm{e}{+00}$	$1.095256\mathrm{e}{+01}$	1.138714e + 02
100	6.600732e-02	3.688866e-02	3.658867e-02	3.658567e-02
1000	3.726058e-02	3.979793e-03	3.677855e-03	3.674847e-03
10 000	3.670124e-02	6.805344e-04	3.706906e-04	3.676773e-04

Таблица для V при $\mu=0.1,\, C=10,\,\,||\,\,||_{L_2}:$

N/M	10	100	1000	10 000
10	1.746435e-01	4.284444e-01	2.494228e+00	$3.763049e{+01}$
100	8.368716e-02	7.648909e-03	6.913849e-03	6.906527e-03
1000	7.798488e-02	1.417858e-03	6.636130e-04	6.562138e-04
10 000	7.744721e-02	8.378828e-04	7.277683e-05	6.534517e-05

Таблица для V при $\mu=0.1,\, C=10,\,\, ||\,\, ||_W:$

N / M	10	100	1000	10 000
10	1.908808e-01	5.149794e+00	1.018747e + 02	7.972251e+02
100	9.003273e-02	8.542508e-03	7.772740e-03	7.765089e-03
1000	8.390559e-02	1.545760e-03	7.454532e-04	7.377036e-04
10 000	8.333088e-02	9.015871e-04	8.125727e-05	7.345495e-05

Таблица для H при $\mu = 0.01,\, C = 10,\, || \;.\; ||_{C_h} :$

N / M	10	100	1000	10 000
10	2.524745e-01	$1.289765\mathrm{e}{+04}$	$2.374686\mathrm{e}{+04}$	$8.622140\mathrm{e}{+04}$
100	2.747173e-02	2.369868e-02	$4.560177\mathrm{e}{+18}$	$5.454099\mathrm{e}{+58}$
1000	1.957615e-02	2.205360e-03	2.370923e-03	2.372576e-03
10 000	2.134193e-02	2.593398e-04	2.354473e-04	2.371008e-04

Таблица для H при $\mu=0.01,\, C=10,\,\, ||\,\, ||_{L_2}:$

N / M	10	100	1000	10 000
10	4.334053e-01	6.793411e+03	$5.587676\mathrm{e}{+03}$	5.759727e + 03
100	4.649140e-02	4.306713e-02	$6.730699e{+17}$	$2.500740\mathrm{e}{+57}$
1000	3.351083e-02	4.229880e-03	4.311095e-03	4.312026e-03
10 000	3.447509e-02	4.641414e-04	4.302347e-04	4.311521e-04

Таблица для H при $\mu = 0.01, \, C = 10, \, \, || \, \, ||_W :$

N / M	10	100	1000	10 000
10	4.394616e-01	1.339472e + 05	$6.396975\mathrm{e}{+05}$	$8.002384 \mathrm{e}{+06}$
100	4.724397e-02	4.380764e-02	1.174399e + 20	3.472873e+60
1000	3.585155e-02	4.293535e-03	4.386480e-03	4.387539e-03
10 000	3.695566e-02	4.724853e-04	4.376584e-04	4.387015e-04

Таблица для V при $\mu=0.01,\, C=10,\, ||\, . \, ||_{C_h}:$

N /	Μ	10	100	1000	10 000
10)	3.766542e-01	$2.434208\mathrm{e}{+02}$	$4.917218\mathrm{e}{+02}$	2.132218e+02
10	0	6.619407e-02	3.703839e-02	$2.698780\mathrm{e}{+04}$	$8.058098\mathrm{e}{+05}$
100	00	3.737069e-02	3.997215e-03	3.692591e-03	3.689547e-03
10 0	000	3.682553e- 02	6.850500e-04	3.721883e-04	3.691466e-04

Таблица для V при $\mu=0.01,\, C=10,\,\,||\,\,||_{L_2}:$

N / M	10	100	1000	10 000
10	1.743680e-01	9.274478e + 01	1.533499e+02	7.071701e+01
100	8.393404e-02	7.597186e-03	$1.858218\mathrm{e}{+02}$	1.681499e + 03
1000	7.824325e-02	1.416750e-03	6.585911e-04	6.511391e-04
10 000	7.770639e-02	8.402207e-04	7.232663e-05	6.484504e-05

Таблица для V при $\mu = 0.01, \, C = 10, \, \, || \, \, ||_W :$

N / M	10	100	1000	10 000
10	1.904086e-01	$8.169066\mathrm{e}{+02}$	$2.453591\mathrm{e}{+03}$	$6.585651\mathrm{e}{+02}$
100	9.030136e-02	8.472591e-03	1.109948e+04	2.671933e+06
1000	8.420600e-02	1.542929e-03	7.387875e-04	7.309949e-04
10 000	8.363417e-02	9.041614e-04	8.063660e-05	7.279252e-05

Таблица для H при $\mu = 0.001,\, C = 10,\, ||\, . \, ||_{C_h}$:

N / M	10	100	1000	10 000
10	2.525803e- 01	$3.810761\mathrm{e}{+04}$	$4.036218\mathrm{e}{+08}$	$3.790344e{+08}$
100	2.747631e-02	2.370113e-02	$1.344236\mathrm{e}{+54}$	3.334677e + 82
1000	1.957590e-02	2.205616e-03	2.371229e-03	nan
10 000	2.134526e-02	2.589457e-04	2.354779e-04	2.371315e-04

Таблица для H при $\mu = 0.001,\, C = 10,\,\,\,||\,\,||_{L_2}$:

N / M	10	100	1000	10 000
10	4.334356e-01	$1.410200\mathrm{e}{+04}$	$5.865876\mathrm{e}{+07}$	$3.253876\mathrm{e}{+07}$
100	4.649621e-02	4.307303e-02	$1.723133\mathrm{e}{+53}$	$1.573913\mathrm{e}{+81}$
1000	3.351533e- 02	4.230474e-03	4.311675e-03	nan
10 000	3.447922e-02	4.642444e-04	4.302926e-04	4.312099e-04

Таблица для H при $\mu = 0.001, \, C = 10, \, \, || \, \, ||_W$:

N	/ M	10	100	1000	10 000
	10	4.395100e-01	$2.278425\mathrm{e}{+05}$	8.433941e+09	$3.643904\mathrm{e}{+10}$
	100	4.724951e-02	4.381695e-02	$3.134390\mathrm{e}{+55}$	2.190795e + 84
1	000	3.585663e- 02	4.294449e-03	4.387400e-03	nan
10	000	3.696042e-02	4.726341e-04	4.377502e-04	4.387934e-04

Таблица для V при $\mu = 0.001,\, C = 10,\, || \ . \ ||_{C_h} :$

N / M	10	100	1000	10 000
10	3.768193e-01	$1.766271\mathrm{e}{+02}$	$2.005202\mathrm{e}{+04}$	2.708942e+04
100	6.621307e-02	3.705380e-02	$1.698175\mathrm{e}{+06}$	$2.920801\mathrm{e}{+06}$
1000	3.738169e-02	3.999016e-03	3.694111e-03	$1.409340\mathrm{e}{+07}$
10 000	3.683789e-02	6.855323e-04	3.723428e-04	3.692986e-04

Таблица для V при $\mu=0.001,\, C=10,\, \ ||\ ||_{L_2}:$

N / M	10	100	1000	10 000
10	1.743434e-01	7.208726e+01	$9.806257\mathrm{e}{+02}$	$1.570384e{+02}$
100	8.395888e-02	7.592556e-03	$1.230660\mathrm{e}{+02}$	1.027037e + 03
1000	7.826898e-02	1.416684e-03	6.581469e-04	nan
10 000	7.773218e-02	8.404618e-04	7.228717e-05	6.480088e-05

Таблица для V при $\mu = 0.001,\, C = 10,\, \ || \ ||_W$:

N / M	10	100	1000	10 000
10	1.903650e-01	$1.095608\mathrm{e}{+03}$	$7.396439\mathrm{e}{+04}$	$2.854414\mathrm{e}{+03}$
100	9.032825e-02	8.466287e-03	$1.551421\mathrm{e}{+04}$	$1.524546\mathrm{e}{+06}$
1000	8.423582e-02	1.542716e-03	7.381960e-04	nan
10 000	8.366426e-02	9.044598e-04	8.058158e-05	7.273386e-05

Таблица для H при $\mu=0.1,\, C=100,\, ||\, . \, ||_{C_h}:$

N / M	10	100	1000	10 000
10	1.845259e-01	$6.583996\mathrm{e}{+04}$	$2.229711\mathrm{e}{+04}$	$1.406105\mathrm{e}{+07}$
100	6.314241e-02	1.633035e-02	$1.857319\mathrm{e}{+63}$	4.979522e + 89
1000	6.995732 e-02	1.727615e-03	1.659239e-03	1.660194e-03
10 000	7.065563e-02	6.422419e-04	1.653621e-04	1.661981e-04

Таблица для H при $\mu=0.1,\, C=100,\,\,||\,\,||_{L_2}:$

ſ	N / M	10	100	1000	10 000
ſ	10	4.476717e-01	$4.993000\mathrm{e}{+04}$	$5.395078\mathrm{e}{+03}$	1.127133e+06
ſ	100	1.474096e-01	4.169186e-02	$2.248001\mathrm{e}{+62}$	1.787611e + 88
ſ	1000	1.397630e-01	4.459672e-03	4.163849e-03	4.163023e-03
ſ	10 000	1.395490e-01	1.457592e-03	4.173837e-04	4.163639e-04

Таблица для H при $\mu=0.1,\, C=100,\,\,||\,\,||_W:$

N / M	10	100	1000	10 000
10	4.518418e-01	$9.759963\mathrm{e}{+05}$	$2.870931\mathrm{e}{+05}$	1.415807e + 09
100	1.546395e-01	4.211100e-02	$2.685174\mathrm{e}{+64}$	2.534312e + 91
1000	1.469140e-01	4.537067e-03	4.207191e-03	4.206206e-03
10 000	1.466721e-01	1.528534e-03	4.219124e-04	4.207149e-04

Таблица для V при $\mu=0.1,\, C=100,\, ||\, . \, ||_{C_h}$:

N / M	10	100	1000	10 000
10	6.252598e-01	$8.879800\mathrm{e}{+02}$	$4.547761\mathrm{e}{+02}$	1.896095e+02
100	1.709711e-01	5.094260e-02	$2.704737\mathrm{e}{+05}$	1.108724e + 06
1000	1.270639e-01	6.169077e-03	4.973440e-03	4.961510e-03
10 000	1.233556e-01	1.715816e-03	5.080713e-04	4.961333e-04

Таблица для V при $\mu=0.1,\, C=100,\,\,\,||\,\,||_{L_2}:$

N / M	10	100	1000	10 000
10	4.368946e-01	$5.510062\mathrm{e}{+02}$	$1.644422\mathrm{e}{+02}$	$1.454028\mathrm{e}{+02}$
100	6.411959e-02	5.793595e-02	$5.572300\mathrm{e}{+02}$	2.700454e + 03
1000	9.068685e-02	5.343706e-03	5.928335e-03	5.934478e-03
10 000	9.444016e-02	5.833748e-04	5.880938e-04	5.941778e-04

Таблица для V при $\mu=0.1,\, C=100,\,\,||\,\,||_W:$

N / M	10	100	1000	10 000
10	5.122246e-01	$7.530496\mathrm{e}{+03}$	$1.299412\mathrm{e}{+03}$	$1.262009\mathrm{e}{+03}$
100	6.934462e- 02	6.843348e-02	$8.806266\mathrm{e}{+04}$	3.904029e+06
1000	9.833935e-02	6.359216e-03	6.990951e-03	6.997551e-03
10 000	1.026223e-01	6.309003e-04	6.940319e-04	7.005493e-04

Таблица для H при $\mu=0.01,\, C=100,\, ||\,\,.\,\, ||_{C_h}$:

N / M	10	100	1000	10 000
10	1.841277e-01	$1.275948\mathrm{e}{+07}$	$2.188936\mathrm{e}{+08}$	$3.970911\mathrm{e}{+11}$
100	6.326133e-02	1.643460e-02	$2.519265\mathrm{e}{+73}$	$1.260722\mathrm{e}{+91}$
1000	7.011649e-02	1.734247e-03	1.669098e-03	$3.602561\mathrm{e}{+301}$
10 000	7.079909e-02	6.427447e-04	1.663595e-04	1.671784e-04

Таблица для H при $\mu=0.01,\, C=100,\, \ ||\ ||_{L_2}$:

N / M	10	100	1000	10 000
10	4.483706e-01	1.343671e + 07	$3.037518\mathrm{e}{+07}$	$1.302293e{+}10$
100	1.476911e-01	4.174663e-02	5.131454e + 72	1.357487e + 90
1000	1.399703e-01	4.467551e-03	4.169100e-03	nan
10 000	1.397491e-01	1.460142e-03	4.179319e-04	4.168869e-04

Таблица для H при $\mu = 0.01, \, C = 100, \, \, || \, \, ||_W$:

N / M	10	100	1000	10 000
10	4.527400e-01	1.719436e + 08	$4.280805\mathrm{e}{+09}$	1.842197e + 13
100	1.549485e-01	4.218772e-02	$5.241700\mathrm{e}{+74}$	1.891694e + 93
1000	1.471323e-01	4.547538e-03	4.214591e-03	nan
10 000	1.468822e-01	1.531407e-03	4.226806e-04	4.214522e-04

Таблица для V при $\mu = 0.01,\, C = 100,\, ||\,\,.\,\,||_{C_h}$:

N / M	10	100	1000	10 000
10	6.225402e-01	$6.721016\mathrm{e}{+03}$	$4.558179e{+03}$	1.584303e+04
100	1.709270e-01	5.077288e-02	$8.062654 \mathrm{e}{+04}$	$1.596971e{+06}$
1000	1.271934e-01	6.152719e-03	4.956244e-03	1.317858e + 07
10 000	1.237083e-01	1.714890e-03	5.063633e-04	4.944152e-04

Таблица для V при $\mu=0.01,\, C=100,\, \ ||\ ||_{L_2}$:

N / M	10	100	1000	10 000
10	4.435176e-01	$3.612954\mathrm{e}{+02}$	3.941217e + 02	$1.259630\mathrm{e}{+03}$
100	6.402450e-02	5.829656e-02	$1.609875\mathrm{e}{+03}$	$1.950357e{+03}$
1000	9.082143e-02	5.376518e-03	5.962292e-03	nan
10 000	9.460853e-02	5.821508e-04	5.914602e-04	5.975541e-04

Таблица для V при $\mu = 0.01, \ C = 100, \ || \ ||_W$:

N/M	10	100	1000	10 000
10	5.201995e-01	5.800149e+03	2.923469e+04	7.434317e + 05
100	6.934991e-02	6.888147e-02	$2.197652\mathrm{e}{+05}$	$2.550464\mathrm{e}{+06}$
1000	9.861408e-02	6.400201e-03	7.032877e-03	nan
10 000	1.029358e-01	6.300024e-04	6.981898e-04	7.047151e-04

Таблица для H при $\mu=0.001,\, C=100,\, ||\, . \, ||_{C_h}:$

N / M	10	100	1000	10 000
10	1.840873e-01	3.739917e+07	5.514377e + 10	$1.768935\mathrm{e}{+10}$
100	6.327378e-02	1.644507e-02	$1.254961\mathrm{e}{+76}$	$7.593688e{+117}$
1000	7.013243e-02	1.734938e-03	1.670089e-03	nan
10 000	7.081346e-02	6.428448e-04	1.664596e-04	1.672770e-04

Таблица для H при $\mu=0.001,\, C=100,\, \ ||\ ||_{L_2}$:

N / M	10	100	1000	10 000
10	4.484431e-01	$1.826424\mathrm{e}{+07}$	$9.049440\mathrm{e}{+09}$	$1.685555e{+09}$
100	1.477195e-01	4.175223e-02	2.897197e + 75	$5.595372\mathrm{e}{+116}$
1000	1.399911e-01	4.468351e-03	4.169636e-03	nan
10 000	1.397693e-01	1.460400e-03	4.179877e-04	4.169402e-04

Таблица для H при $\mu = 0.001, \, C = 100, \, \, || \, \, ||_W$:

N / M	10	100	1000	10 000
10	4.528332e-01	$2.517398e{+08}$	$1.297191\mathrm{e}{+12}$	$2.420641\mathrm{e}{+12}$
100	1.549797e-01	4.219554e-02	$4.464021\mathrm{e}{+77}$	$6.116383e{+}119$
1000	1.471544e-01	4.548601e-03	4.215346e-03	nan
10 000	1.469034e-01	1.531700e-03	4.227588e-04	4.215274e-04

Таблица для V при $\mu = 0.001, \, C = 100, \, || \, . \, ||_{C_h} :$

N / M	10	100	1000	10 000
10	6.222634e-01	$5.058694\mathrm{e}{+03}$	$1.482826\mathrm{e}{+05}$	$1.763216\mathrm{e}{+04}$
100	1.709229e-01	5.075580e-02	$2.629151\mathrm{e}{+06}$	$3.485066\mathrm{e}{+06}$
1000	1.272068e-01	6.151047e-03	4.954532e-03	$3.656183\mathrm{e}{+07}$
10 000	1.237442e-01	1.714861e-03	5.061924e-04	4.942434e-04

Таблица для V при $\mu = 0.001, \, C = 100, \, \, || \, \, ||_{L_2}$:

N / M	10	100	1000	10 000
10	4.441868e-01	$1.495402\mathrm{e}{+03}$	$1.075883e{+04}$	2.408517e + 03
100	6.401593e-02	5.833287e-02	$5.232401\mathrm{e}{+02}$	1.580412e+04
1000	9.083621e-02	5.379825e-03	5.965712e-03	nan
10 000	9.462670e-02	5.820322e-04	6.986087e-04	5.978942e-04

Таблица для V при $\mu = 0.001, C = 100, || ||_W$:

N / M	10	100	1000	10 000
10	5.210084e-01	1.778741e + 04	$1.413502\mathrm{e}{+06}$	$2.651711\mathrm{e}{+05}$
100	6.935247e-02	7.793750e + 04	$2.183592\mathrm{e}{+07}$	2.183592e+07
1000	9.864410e-02	6.404335e-03	7.037101e-03	nan
10 000	1.029697e-01	6.299253e-04	6.986087e-04	7.051348e-04

5.1. Выводы о работе схемы для гладкой задачи.

Таблицы ошибок говорят о том, что система является расходящейся. Также, обратим внимание на то, что сходимость задачи зависит от параметров μ и C. При $\mu=0.1,\ C=1$ система сходится при любом отношении $\frac{N}{M},$ однако при росте C и убывании μ задача начинает расходиться при $\frac{N}{M}<1.$

Если же M не превосходит N, то система сходится (во всех нормах).

Из таблиц ошибок очевидно, что чаще всего в строке наименьшую ошибку имеем при N=M, и значения ошибки на диагонали уменьшаются при росте N и достигают своего минимума при N=10000-это значение является минимумом всей таблицы (чаще всего). Также хороший результат достигается при N=10M. Из этого можно сделать вывод о том, что наилучшее отношение $\frac{N}{M}$ между единицей и десятью.

6. Разрывное решение.

Применим метод к решению двух разрывных задач.

6.1. Первая разрывная задача.

Зададим начально-краевую задачу, начальные и граничные условия которой определяются следующим образом:

$$\begin{cases} u_0(x) = \begin{bmatrix} 0, \ x < 4.5 \text{ или } x > 5.5 \\ 1, \ x \in [4.5, 5.5] \end{cases} \\ \rho_0(x) \equiv 1, \ x \in [0, 10] \\ u(t, 0) = u(t, 10) = 0, \ t \in [0, 1] \end{cases}$$

Зафиксируем N и начнем менять M=32, 64, 128, 256, 512, 1024 (уменьшаем шаг по оси x). Составим таблицы с отношениями скорости и плотности на последних слоях на двух соседних запусках:

6.2. Вторая разрывная задача.

Зададим начально-краевую задачу, начальные и граничные условия которой определяются следующим образом:

$$\begin{cases} \rho_0(x) = \begin{bmatrix} 1, \ x < 4.5 \text{ или } x > 5.5 \\ 2, \ x \in [4.5, 5.5] \end{bmatrix} \\ u_0(x) \equiv 0, \ x \in [0, 10] \\ u(t, 0) = u(t, 10) = 0, \ t \in [0, 1] \end{cases}$$

Список литературы

- [1] А. В. Попов: Численное моделирование нестационарного одномерного течения газа с использованием неявных разностных схем . 2017.
- [2] А. В. Попов: Численное моделирование нестационарного течения газа с использованием неявных разностных схем. 2018.

- [3] А. В. Попов: GNUPLOT и его приложения . Издательство попечительского совета механико-математического факультета МГУ. 2015.
- [4] К. Ю. Богачев: Практикум на ЭВМ.Методы решения линейных систем и нахождения значений. Издатальство Механико-Математического факультета МГУ. 1998.