# Lecture 2: Terminology, Baselines, Decision Trees

**UBC 2022 Summer** 

Instructor: Mehrdad Oveisi

### Imports, LOs

### **Imports**

```
In [1]:
        import glob
        import os
        import re
        import sys
        from collections import Counter, defaultdict
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        sys.path.append("code/.")
        import graphviz
        import IPython
        import mglearn
        from IPython.display import HTML, display
        from plotting_functions import *
        from sklearn.dummy import DummyClassifier
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.linear_model import LinearRegression, LogisticRegression
        from sklearn.model_selection import train_test_split
        from sklearn.pipeline import Pipeline, make_pipeline
        from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
        from utils import *
        plt.rcParams["font.size"] = 16
        pd.set_option("display.max_colwidth", 200)
```

### Getting to know you survey

## Quick recap: True or False?

- There are different types of machine learning.
- Predicting spam and predicting housing prices are both examples of supervised machine learning.
- For problems such as spelling correction, translation, face recognition, spam identification, if you are a domain expert, it's usually faster and scalable to come up with a robust set of rules manually rather than building a machine learning model.
- Google News is likely be using machine learning to organize news.

### Learning outcomes

From this lecture, you will be able to

- identify whether a given problem could be solved using supervised machine learning or not;
- differentiate between supervised and unsupervised machine learning;
- explain machine learning terminology such as features, targets, predictions, training, and error;
- differentiate between classification and regression problems;
- use DummyClassifier and DummyRegressor as baselines for machine learning problems;
- explain the fit and predict paradigm and use score method of ML models;
- · broadly describe how decision tree prediction works;
- use DecisionTreeClassifier and DecisionTreeRegressor to build decision trees using scikit-learn;
- visualize decision trees;
- explain the difference between parameters and hyperparameters;
- explain the concept of decision boundaries;
- explain the relation between model complexity and decision boundaries.

# Terminology [video]

You will see a lot of variable terminology in machine learning and statistics. Let's familiarize ourselves with some of the basic terminology used in ML.

Check out the accompanying video on this material.

### Big picture and datasets

In this lecture, we'll talk about our first machine learning model: Decision trees. We will also familiarize ourselves with some common terminology in supervised machine learning.

### Toy datasets

Later in the course we will use larger datasets from Kaggle, for instance. But for our first couple of lectures, we will be working with the following three toy datasets:

- Quiz2 grade prediction classification dataset
- Quiz2 grade prediction regression dataset
- Canada USA cities dataset

If it's not necessary for you to understand the code, I will put it in one of the files under the code directory to avoid clutter in this notebook. For example, most of the plotting code is going to be in code/plotting\_functions.py.

I'll be using the following grade prediction toy dataset to demonstrate the terminology. Imagine that you are taking a course with four homework assignments and two quizzes. You and your friends are quite nervous about your quiz2 grades and you want to know how will you do based on your previous performance and some other attributes. So you decide to collect some data from your friends from last year and train a supervised machine learning model for quiz2 grade prediction.

```
In [2]:
         classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
         print(classification_df.shape)
         classification_df.head()
         (21, 8)
Out[2]:
            ml experience
                         class attendance lab1
                                               lab2
                                                     lab3
                                                           lab4
                                                                quiz1
                                                                        quiz2
         0
                       1
                                       1
                                            92
                                                 93
                                                       84
                                                             91
                                                                   92
                                                                          A+
                       1
                                            94
                                                 90
                                                       80
                                                             83
                                                                   91 not A+
```

83

92

90

80

91

92

80

85

not A+

A+

A+

### Recap: Supervised machine learning

0

78

91

77

85

94

83

#### Tabular data

0

0

0

2

4

In supervised machine learning, the input data is typically organized in a **tabular** format, where rows are **examples** and columns are **features**. One of the columns is typically the **target**.

**Features**: Features are relevant characteristics of the problem, usually suggested by experts. Features are typically denoted by \$X\$ and the number of features is usually denoted by \$d\$.

**Target**: Target is the feature we want to predict (typically denoted by \$y\$).

**Example**: A row of feature values. When people refer to an example, it may or may not include the target corresponding to the feature values, depending upon the context. The number of examples is usually denoted by \$n\$.

**Training**: The process of learning the mapping between the features (\$X\$) and the target (\$y\$).

### Example: Tabular data for grade prediction

The tabular data usually contains both: the features ( X ) and the target ( y ).

```
In [3]: classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
```

classification\_df.head()

| Out[3]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2      |
|---------|---|---------------|------------------|------|------|------|------|-------|------------|
|         | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | A+         |
|         | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | not A+     |
|         | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | not A+     |
|         | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | A+         |
|         | 4 | 0             | 1                | 77   | 83   | 90   | 92   | 85    | <b>A</b> + |

So the first step in training a supervised machine learning model is separating X and y.

```
In [4]: X = classification_df.drop(columns=["quiz2"])
y = classification_df["quiz2"]
X.head()
```

```
Out[4]:
             ml_experience class_attendance lab1 lab2 lab3 lab4 quiz1
          0
                          1
                                                92
                                                      93
                                                             84
                                                                   91
                                                                          92
                                           1
          1
                          1
                                                94
                                                      90
                                                             80
                                                                   83
                                                                          91
          2
                          0
                                           0
                                                78
                                                      85
                                                            83
                                                                   80
                                                                          80
          3
                          0
                                                91
                                                      94
                                                             92
                                                                   91
                                                                          89
          4
                          0
                                           1
                                                77
                                                      83
                                                             90
                                                                   92
                                                                          85
```

Name: quiz2, dtype: object

**A+** 

### Example: Tabular data for the housing price prediction

Here is an example of tabular data for housing price prediction. You can download the data from here.

```
In [6]: housing_df = pd.read_csv("data/kc_house_data.csv")
housing_df = housing_df.drop(["id", "date"], axis=1)
housing_df.head()
```

| Out[6]: |   | price    | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above |
|---------|---|----------|----------|-----------|-------------|----------|--------|------------|------|-----------|-------|------------|
|         | 0 | 221900.0 | 3        | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | 3         | 7     | 1180       |
|         | 1 | 538000.0 | 3        | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | 3         | 7     | 2170       |
|         | 2 | 180000.0 | 2        | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | 3         | 6     | 770        |
|         | 3 | 604000.0 | 4        | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | 5         | 7     | 1050       |
|         | 4 | 510000.0 | 3        | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | 3         | 8     | 1680       |

```
In [7]: X = housing_df.drop(columns=["price"])
y = housing_df["price"]
```

|         | 0                             | 3                                                                         | 1.00                  | 1180 | 5650  | 1.0 | 0 | 0 | 3 | 7 | 1180 |             |
|---------|-------------------------------|---------------------------------------------------------------------------|-----------------------|------|-------|-----|---|---|---|---|------|-------------|
|         | 1                             | 3                                                                         | 2.25                  | 2570 | 7242  | 2.0 | 0 | 0 | 3 | 7 | 2170 |             |
|         | 2                             | 2                                                                         | 1.00                  | 770  | 10000 | 1.0 | 0 | 0 | 3 | 6 | 770  |             |
|         | 3                             | 4                                                                         | 3.00                  | 1960 | 5000  | 1.0 | 0 | 0 | 5 | 7 | 1050 |             |
|         | 4                             | 3                                                                         | 2.00                  | 1680 | 8080  | 1.0 | 0 | 0 | 3 | 8 | 1680 |             |
| 4       |                               |                                                                           |                       |      |       |     |   |   |   |   |      | <b>&gt;</b> |
| In [8]: | y.he                          | ead()                                                                     |                       |      |       |     |   |   |   |   |      |             |
| Out[8]: | 0<br>1<br>2<br>3<br>4<br>Name | 221900.0<br>538000.0<br>180000.0<br>604000.0<br>510000.0<br>e: price, dty | pe: floa <sup>.</sup> | t64  |       |     |   |   |   |   |      |             |
| In [9]: | X.sh                          | nape                                                                      |                       |      |       |     |   |   |   |   |      |             |
| Out[9]: | (216                          | 13, 18)                                                                   |                       |      |       |     |   |   |   |   |      |             |

bedrooms bathrooms sqft\_living sqft\_lot floors waterfront view condition grade sqft\_above sqft\_baser

Of course, to a machine, column names (features) have no meaning. Only feature values and how they vary across examples mean something.

### Alternative terminology for examples, features, targets, and training

- **examples** = rows = samples = records = instances
- **features** = inputs = predictors = explanatory variables = regressors = independent variables = covariates
- **targets** = outputs = outcomes = response variable = dependent variable = labels (if categorical).
- **training** = learning = fitting

X.head()

Out[7]:

Check out the MDS terminology document.

### Supervised learning vs. Unsupervised learning

In **supervised learning**, training data comprises a set of features (\$X\$) and their corresponding targets (\$y\$). We wish to find a **model function \$f\$** that relates \$X\$ to \$y\$. Then use that model function **to predict the targets** of new examples.

In unsupervised learning training data consists of observations (\$X\$) without any corresponding targets.

Unsupervised learning could be used to **group similar things together** in \$X\$ or to provide **concise summary** of the data. We'll learn more about this topic in later videos.

- Supervised machine learning is about function approximation, i.e., finding the mapping function from
   X to y
- Unsupervised machine learning is about concisely describing the data.

### Classification vs. Regression

In supervised machine learning, there are two main kinds of learning problems based on what they are trying to predict.

- Classification problem: predicting among two or more discrete classes
  - Example1: Predict whether a patient has a liver disease or not
  - Example2: Predict whether a student would get an A+ or not in quiz2.
- Regression problem: predicting a continuous value
  - Example1: Predict housing prices
  - Example2: Predict a student's score in quiz2.

```
In [10]: # quiz2 classification toy data
    classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
    classification_df.head(4)
```

| Out[10]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2  |
|----------|---|---------------|------------------|------|------|------|------|-------|--------|
|          | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | A+     |
|          | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | not A+ |
|          | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | not A+ |
|          | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | A+     |

```
In [11]: # quiz2 regression toy data
    regression_df = pd.read_csv("data/quiz2-grade-toy-regression.csv")
    regression_df.head(4)
```

| out[11]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2 |
|----------|---|---------------|------------------|------|------|------|------|-------|-------|
|          | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | 90    |
|          | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | 84    |
|          | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | 82    |
|          | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | 92    |

#### Exercise 2.1: X and y

1. How many examples and features are there in the housing price data above? You can use df.shape to get number of rows and columns in a dataframe.

- 2. For each of the following examples what would be the relevant features and what would be the target?
  - A. Sentiment analysis
  - B. Fraud detection
  - C. Face recognition

#### Exercise 2.1: One solution!

- 1. Number of examples: 21613, number of features: 18
- 2. Open-ended

```
housing_df.shape
In [12]:
          (21613, 19)
```

Out[12]:

#### Exercise 2.2: Supervised vs. unsupervised

Which of these are examples of supervised learning?

- 1. Finding groups of similar properties in a real estate data set.
- 2. Predicting real estate prices based on house features like number of rooms, learning from past sales as examples.
- 3. Grouping articles on different topics from different news sources (something like the Google News
- 4. Detecting credit card fraud based on examples of fraudulent and non-fraudulent transactions.

#### Exercise 2.2: Solution

2 and 4 are examples of supervised machine learning

#### Exercise 2.3: Classification vs. Regression

Which of these are examples of classification and which ones are of regression?

- 1. Predicting the price of a house based on features such as number of bedrooms and the year built.
- 2. Predicting if a house will sell or not based on features like the price of the house, number of rooms, etc.
- 3. Predicting percentage grade in CPSC 330 based on past grades.
- 4. Predicting whether you should bicycle tomorrow or not based on the weather forecast.

Exercise 2.3: Solution

• classification: 2, 4

• regression: 1, 3

# Baselines [video]

Check out the accompanying video on this material.

## Supervised learning (Reminder)

- Training data \$\rightarrow\$ Machine learning algorithm \$\rightarrow\$ ML model
- Unseen test data + ML model \$\rightarrow\$ predictions

Let's build a very simple supervised machine learning model for quiz2 grade prediction problem.

```
In [13]: classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
    classification_df.head()
```

| Out[13]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2  |
|----------|---|---------------|------------------|------|------|------|------|-------|--------|
|          | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | A+     |
|          | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | not A+ |
|          | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | not A+ |
|          | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | A+     |
|          | 4 | 0             | 1                | 77   | 83   | 90   | 92   | 85    | A+     |

```
In [14]: classification_df['quiz2'].value_counts()
```

Out[14]: not A+ 11 A+ 10

Name: quiz2, dtype: int64

Seems like "not A+" occurs more frequently than "A+". What if we predict "not A+" all the time?

#### **Baselines**

**Baseline**: A simple machine learning algorithm based on simple rules of thumb.

- For example, most frequent baseline always predicts the most frequent label in the training set.
- Baselines provide a way to sanity check your machine learning model.

### DummyClassifier

- sklearn 's baseline model for classification
- Let's train DummyClassifier on the grade prediction dataset.

### Steps to train a classifier using sklearn

- 1. Read the data
- 2. Create \$X\$ and \$y\$
- 3. Create a classifier object
- 4. fit the classifier
- 5. predict on new examples
- 6. score the model

#### Reading the data

```
In [15]: classification_df.head()
```

| Out[15]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2  |
|----------|---|---------------|------------------|------|------|------|------|-------|--------|
|          | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | A+     |
|          | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | not A+ |
|          | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | not A+ |
|          | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | A+     |
|          | 4 | 0             | 1                | 77   | 83   | 90   | 92   | 85    | A+     |

### Create \$X\$ and \$y\$

- \$X\$ → Feature vectors
- \$y\$ → Target

```
In [16]: X = classification_df.drop(columns=["quiz2"])
y = classification_df["quiz2"]
```

#### Create a classifier object

- import the appropriate classifier
- Create an object of the classifier

```
In [17]: from sklearn.dummy import DummyClassifier # import the classifier
dummy_clf = DummyClassifier(strategy="most_frequent") # Create a classifier object
```

#### fit the classifier

• The "learning" is carried out when we call fit on the classifier object.

```
In [18]: dummy_clf.fit(X, y); # fit the classifier
```

#### predict the target of given examples

We can predict the target of examples by calling predict on the classifier object.

```
In [19]:
                                                                                       dummy_clf.predict(X) # predict using the trained classifier
                                                                                      array(['not A+', 'not A+', 'not A+', 'not A+', 'not A+',
Out[19]:
                                                                                                                                                     'not A+', 'not A
                                                                                                                                                        'not A+', 'not A+', 'not A+'], dtype='<U6')
```

#### score your model

- How do you know how well your model is doing?
- For classification problems, by default, score gives the accuracy of the model, i.e., proportion of correctly predicted targets.

\$accuracy = \frac{\text{correct predictions}}{\text{total examples}}\$

```
print("The accuracy of the model on the training data: %0.3f" % (dummy_clf.score(X, y)))
In [20]:
```

The accuracy of the model on the training data: 0.524

- Sometimes you will also see people reporting error, which is usually \$1 accuracy\$
- score
  - calls predict on X
  - compares predictions with y (true targets)
  - returns the accuracy in case of classification.

```
In [21]: print(
             "The error of the model on the training data: %0.3f" %
             (1 - dummy_clf.score(X, y))
         )
```

The error of the model on the training data: 0.476

#### fit, predict, and score summary

Here is the general pattern when we build ML models using sklearn.

```
In [22]: # Create `X` and `y` from the given data
         X = classification_df.drop(columns=["quiz2"])
         y = classification_df["quiz2"]
          clf = DummyClassifier(strategy="most_frequent") # Create a class object
          clf.fit(X, y) # Train/fit the model
          print(clf.score(X, y)) # Assess the model
          new_examples = [[0, 1, 92, 90, 95, 93, 92], [1, 1, 92, 93, 94, 92]] # two new examples
          clf.predict(new_examples) # Predict on some new data using the trained model
         0.5238095238095238
         array(['not A+', 'not A+'], dtype='<U6')</pre>
```

You'll be exploring dummy classifier in your lab!

Out[22]:

#### DummyRegressor

You can also do the same thing for regression problems using DummyRegressor, which predicts mean, median, or constant value of the training set for all examples.

• Let's build a regression baseline model using sklearn .

```
In [23]: from sklearn.dummy import DummyRegressor

regression_df = pd.read_csv("data/quiz2-grade-toy-regression.csv") # Read data
X = regression_df.drop(columns=["quiz2"]) # Create `X` and `y` from the given data
y = regression_df["quiz2"]
reg = DummyRegressor() # Create a class object
reg.fit(X, y) # Train/fit the model
reg.score(X, y) # Assess the model
new_examples = [[0, 1, 92, 90, 95, 93, 92], [1, 1, 92, 93, 94, 92]]
reg.predict(new_examples) # Predict on some new data using the trained model

Out[23]:
```

- The fit and predict paradigms similar to classification. The score method in the context of regression returns somethings called \$R^2\$ score. (More on this in later videos.)
  - The maximum \$R^2\$ is 1 for perfect predictions.
  - For DummyRegressor it returns the mean of the y values.

```
In [24]: reg.score(X, y)
Out[24]:

In [25]: # DummyRegressor returns the mean of the y values:
    [y.mean(), reg.predict(new_examples)]
Out[25]: [86.28571428571429, array([86.28571429, 86.28571429])]
```

# **??** Questions for you

#### Exercise 2.4

- 1. Order the steps below to build ML models using sklearn.
  - score to evaluate the performance of a given model
  - predict on new examples
  - Creating a model instance
  - Creating X and y
  - fit
- 2. predict takes only X as argument whereas fit and score take both X and y as arguments. True or False.
- 3. Have you ever played 20-questions game? If yes, think about how do you decide what question to ask next?

- 1. Ordered steps
  - Creating X and y
  - Creating a model instance
  - fit
  - predict on new examples
  - score to evaluate the performance of a given model
- 2. True
- 3. Open-ended.

# Decision trees [video]

Check out the accompanying video on this material.

### Writing a traditional program to predict quiz2 grade

- Can we do better than the baseline?
- Forget about ML for a second. If you are asked to write a program to predict whether a student gets an A+ or not in quiz2, how would you go for it?
- For simplicity, let's binarize the feature values.
- Is there a pattern that distinguishes yes's from no's and what does the pattern say about today?
- How about a rule-based algorithm with a number of *if else* statements?

```
if class_attendance == 1 and quiz1 == 1:
    quiz2 == "A+"
elif class_attendance == 1 and lab3 == 1 and lab4 == 1:
    quiz2 == "A+"
```

- How many possible rule combinations there could be with the given 7 binary features?
  - Gets unwieldy pretty quickly

### Decision tree algorithm

- A machine learning algorithm to derive such rules from data in a principled way.
- Have you ever played 20-questions game? Decision trees are based on the same idea!
- Let's fit a decision tree using scikit-learn and predict with it.

• Recall that scikit-learn uses the term fit for training or learning and uses predict for prediction.

## Building decision trees with sklearn

Let's **binarize** our toy dataset for simplicity.

```
In [26]: classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
X = classification_df.drop(columns=["quiz2"])
y = classification_df["quiz2"]

X_binary = X.copy()
columns = ["lab1", "lab2", "lab3", "lab4", "quiz1"]
for col in columns:
    X_binary[col] = X_binary[col].apply(lambda x: 1 if x >= 90 else 0)

X_binary.head()
```

```
class_attendance lab1
Out[26]:
                                                         lab2
                                                                lab3
                                                                       lab4
            0
                             1
                                                                    0
                                                                                  1
                             1
                                                                    0
                                                                          0
            2
                             0
                                                0
                                                      0
                                                             0
                                                                    0
                                                                          0
                                                                                  0
            3
                             0
                                                      1
                                                                    1
                                                                          1
                                                                                  0
                             0
                                                1
                                                      0
                                                             0
                                                                                  0
            4
                                                                    1
                                                                          1
```

#### DummyClassifier on quiz2 grade prediction toy dataset

```
In [28]: dummy_clf = DummyClassifier(strategy="most_frequent")
dummy_clf.fit(X_binary, y)
dummy_clf.score(X_binary, y)
Out[28]: 0.5238095238095238
```

### DecisionTreeClassifier on quiz2 grade prediction toy dataset

```
In [29]: from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier() # Create a decision tree
model.fit(X_binary, y) # Fit a decision tree
model.score(X_binary, y) # Assess the model
```

Out[29]: 0.9047619047619048

The decision tree classifier is giving much higher accuracy than the dummy classifier. That's good news!



### Some terminology related to trees

Here is a commonly used terminology in a typical representation of decision trees.

A root node: represents the first condition to check or question to ask

**A branch**: connects a node (condition) to the next node (condition) in the tree. Each branch typically represents either true or false.

An internal node: represents conditions within the tree

A leaf node: represents the predicted class/value when the path from root to the leaf node is followed.

**Tree depth**: The *number of edges* on the path from the root node to the farthest away leaf node.

### How does predict work?



What's the prediction for the new example?

In [33]: model.predict(new\_example)

/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(

Out[33]: array(['A+'], dtype=object)

In summary, given a learned tree and a test example, during prediction time,

- Start at the top of the tree. Ask binary questions at each node and follow the appropriate path in the tree. Once you are at a leaf node, you have the prediction.
- Note that the model only considers the features which are in the learned tree and ignores all other features.

### How does fit work?

- Decision tree is inspired by 20-questions game.
- Each node either represents a question or an answer. The terminal nodes (called leaf nodes) represent answers.

In [34]: plot\_fruit\_tree()



### How does fit work?

- Which features are most useful for classification?
- Minimize impurity at each question
- Common criteria to minimize impurity: gini index, information gain, cross entropy

```
In [35]: from sklearn.tree import DecisionTreeClassifier
          model = DecisionTreeClassifier() # Create a decision tree
          model.fit(X_binary, y) # Fit a decision tree
          display_tree(X_binary.columns, model)
Out[35]:
                                                         lab4 <= 0.5
                                                        class = not A+
                                                                      False
                                                   True
                                                                 class attendance <= 0.5
                                            lab1 <= 0.5
                                          class = not A+
                                                                       class = A+
                                                                                          quiz1 <= 0.5
                       quiz1 <= 0.5
                                            class = not A+
                                                                    class = not A+
                                                                                           class = A+
                      class = not A+
                lab3 <= 0.5
                                                                               lab2 <= 0.5
                                    class = A+
                                                                                                  class = A+
                                                                               class = A+
              class = not A+
                                                                                ml experience <= 0.5
                                  class = A+
                                                              class = A+
            class = not A+
                                                                                      class = A+
```

class = A+

class = A+

#### Note

We won't go through **how** it does this - that's CPSC 340.

But it's worth noting that it support two types of inputs:

- 1. Categorical (e.g., Yes/No or more options, as shown in the tree above)
  - 2. Numeric (a number), the decision tree algorithm also picks the \*threshold\*

#### Decision trees with continuous features

#### In [36]: X.head() Out[36]: ml\_experience class\_attendance lab1 lab2 lab3 lab4 quiz1

```
In [37]: model = DecisionTreeClassifier()
model.fit(X, y)
display_tree(X.columns, model)
```



### Decision tree for regression problems

- We can also use decision tree algorithm for regression.
- Instead of gini, we use some other criteria for splitting. A common one is mean squared error (MSE). (More on this in later videos.)
- scikit-learn supports regression using decision trees with DecisionTreeRegressor
  - fit and predict paradigms similar to classification
  - score returns somethings called \$R^2\$ score.

- The maximum \$R^2\$ is 1 for perfect predictions.
- It can be negative which is very bad (worse than DummyRegressor ).

```
In [38]: regression_df = pd.read_csv("data/quiz2-grade-toy-regression.csv")
    regression_df.head()
```

```
Out[38]:
              ml_experience class_attendance lab1 lab2 lab3 lab4 quiz1 quiz2
           0
                          1
                                           1
                                                92
                                                       93
                                                             84
                                                                   91
                                                                          92
                                                                                 90
           1
                          1
                                                94
                                                       90
                                                             80
                                                                   83
                                                                          91
                                                                                 84
           2
                          0
                                                       85
                                                                   80
                                                                          80
                                                                                 82
                                           0
                                                78
                                                            83
                                                91
                                                       94
                                                            92
                                                                   91
                                                                          89
                                                                                 92
                          0
                                                77
                                                       83
                                                             90
                                                                   92
                                                                          85
                                                                                 90
```

```
In [39]: X = regression_df.drop(["quiz2"], axis=1)
y = regression_df["quiz2"]

depth = 2
reg_model = DecisionTreeRegressor(max_depth=depth)
reg_model.fit(X, y);
regression_df["predicted_quiz2"] = reg_model.predict(X)
print("R^2 score on the training data: %0.3f\n\n" % (reg_model.score(X, y)))
regression_df.head()
```

R^2 score on the training data: 0.989

| Out[39]: |   | ml_experience | class_attendance | lab1 | lab2 | lab3 | lab4 | quiz1 | quiz2 | predicted_quiz2 |
|----------|---|---------------|------------------|------|------|------|------|-------|-------|-----------------|
|          | 0 | 1             | 1                | 92   | 93   | 84   | 91   | 92    | 90    | 90.333333       |
|          | 1 | 1             | 0                | 94   | 90   | 80   | 83   | 91    | 84    | 83.000000       |
|          | 2 | 0             | 0                | 78   | 85   | 83   | 80   | 80    | 82    | 83.000000       |
|          | 3 | 0             | 1                | 91   | 94   | 92   | 91   | 89    | 92    | 92.000000       |
|          | 4 | 0             | 1                | 77   | 83   | 90   | 92   | 85    | 90    | 90.333333       |

# **??** Questions for you to ponder on

#### Exercise 2.5

1. Should change in features (i.e., binarizing features above) change DummyClassifier predictions?

#### Exercise 2.5: Solution

1. No. DummyClassifier does not look at the features.

#### Exercise 2.6 True or False

- 1. For the decision tree algorithm to work, the feature values must be numeric.
- 2. For the decision tree algorithm to work, the target values must be numeric.
- 3. The decision tree algorithm creates balanced decision trees.

- 1. False
- 2. False
- 3. False

# Break (5 min)

# More terminology [video]

- Parameters and hyperparameters
- Decision boundary

Check out the accompanying video on this material.

#### **Parameters**

- The decision tree algorithm primarily **learns two** things:
  - the **best feature** to split on
  - the threshold for the feature to split on at each node
- These are called *parameters* of the decision tree model.
- When predicting on new examples, we need parameters of the model.

```
In [40]: classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv")
X = classification_df.drop(columns=["quiz2"])
y = classification_df["quiz2"]
model = DecisionTreeClassifier()
model.fit(X, y);
```

In [41]: X.head()

```
Out[41]:
              ml_experience class_attendance lab1 lab2 lab3 lab4 quiz1
           0
                          1
                                                92
                                                      93
                                                            84
                                                                  91
                                                                         92
                                                      90
           1
                          1
                                                94
                                                            80
                                                                  83
                                                                         91
           2
                          0
                                           0
                                                78
                                                      85
                                                            83
                                                                  80
                                                                         80
           3
                          0
                                                91
                                                      94
                                                            92
                                                                  91
                                                                         89
                          0
           4
                                           1
                                                77
                                                      83
                                                            90
                                                                  92
                                                                         85
```

```
In [42]: display_tree(X.columns, model, counts=True)
```



- With the default setting, the nodes are expanded until all leaves are "pure".
- The decision tree is creating very specific rules, based on just one example from the data.
- Is it possible to control the learning in any way?
  - Yes! One way to do it is by controlling the **depth** of the tree, which is the length of the longest path from the tree root to a leaf.

### Decision tree with max depth=1

**Decision stump**: A decision tree with only one split (depth=1) is called a **decision stump**.

max\_depth is a hyperparameter of DecisionTreeClassifier.

### Decision tree with max depth=3



### Parameters and hyperparameters: Summary

**Parameters**: When you call fit, a bunch of values get set, like the features to split on and split thresholds. These are called **parameters**. These are learned by the algorithm from the data during training. We need them during prediction time.

**Hyperparameters**: Even before calling fit on a specific data set, we can set some "knobs" that control the learning. These are called **hyperparameters**. These are specified based on: expert knowledge, heuristics, or systematic/automated optimization (more on this in the coming lectures).

#### Attention

In sklearn hyperparameters are set in the constructor.

Above we looked at the max\_depth hyperparameter. Some other commonly used hyperparameters of decision tree are:

- min\_samples\_split
- min\_samples\_leaf
- max\_leaf\_nodes

See here for other hyperparameters of a tree.

### **Decision boundary**

What do we do with learned models? So far we have been using them to predict the class of a new instance. Another way to think about them is to ask: what sort of test examples will the model classify as positive, and what sort will it classify as negative?

#### Example 1: quiz 2 grade prediction

For visualization purposes, let's consider a subset of the data with only two features.

```
X_subset = X[["lab4", "quiz1"]]
In [45]:
          X_subset.head()
Out[45]:
             lab4 quiz1
          0
               91
                      92
          1
               83
                      91
          2
               80
                      80
               91
                      89
               92
                      85
```

#### Decision boundary for max\_depth=1

```
In [46]: depth = 1 # decision stump
   model = DecisionTreeClassifier(max_depth=depth)
   model.fit(X_subset, y)
   plot_tree_decision_boundary_and_tree(
        model, X_subset, y, x_label="lab4", y_label="quiz1"
   )
```

/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names warnings.warn(



We assume geometric view of the data. Here, the red region corresponds to "not A+" class and blue region

corresponds to "A+" class. And there is a line separating the red region and the blue region which is called the **decision boundary** of the model. Different models have different kinds of decision boundaries. In decision tree models, when we are working with only two features, the decision boundary is made up of horizontal and vertical lines. In the example above, the decision boundary is created by asking one question lab4 <= 84.5.

#### Decision boundary for max\_depth=2

```
In [47]: model = DecisionTreeClassifier(max_depth=2)
  model.fit(X_subset, y)
  plot_tree_decision_boundary_and_tree(
         model, X_subset, y, x_label="lab4", y_label="quiz1"
)
```

/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(





The decision boundary, i.e., the model gets a bit more complicated.

#### Decision boundary for max\_depth=5

/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(





The decision boundary, i.e., the model gets even more complicated with max\_depth=5.

### Example 2: Predicting country using the longitude and latitude

Imagine that you are given longitude and latitude of some border cities of USA and Canada along with which country they belong to. Using this training data, you are supposed to come up with a classification model to predict whether a given longitude and latitude combination is in the USA or Canada.

```
In [49]: ### US Canada cities data
df = pd.read_csv("data/canada_usa_cities.csv")
df
```

| Out[49]: |     | longitude | latitude | country |
|----------|-----|-----------|----------|---------|
|          | 0   | -130.0437 | 55.9773  | USA     |
|          | 1   | -134.4197 | 58.3019  | USA     |
|          | 2   | -123.0780 | 48.9854  | USA     |
|          | 3   | -122.7436 | 48.9881  | USA     |
|          | 4   | -122.2691 | 48.9951  | USA     |
|          | ••• |           |          |         |
|          | 204 | -72.7218  | 45.3990  | Canada  |
|          | 205 | -66.6458  | 45.9664  | Canada  |
|          | 206 | -79.2506  | 42.9931  | Canada  |
|          | 207 | -72.9406  | 45.6275  | Canada  |
|          | 208 | -79.4608  | 46.3092  | Canada  |

209 rows × 3 columns

```
In [50]: X = df[["longitude", "latitude"]]
In [51]: y = df["country"]
```

```
In [52]: mglearn.discrete_scatter(X.iloc[:, 0], X.iloc[:, 1], y)
    plt.xlabel("longitude")
    plt.ylabel("latitude");
```



#### Real boundary between Canada and USA

In real life we know what's the boundary between USA and Canada.

#### Source

Here we want to pretend that we do not know this boundary and we want to infer this boundary based on the limited training examples given to us.

/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn
ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature nam
es
 warnings.warn(





/home/moveisi/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:450: UserWarn ing: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(





#### **Practice exercises**

• If you want more practice, check out module 2 in this online course. All the sections **without** video or notes symbol are exercises.

Attention

If all of you are working on the exercises, especially coding exercises, at the same time, you might have to wait for the real-time feedback for a long time or you might even get an error. There is no solution for this other than waiting for a while and trying it again.

Some background on the online course above: This course is designed by Hayley Boyce, Mike Gelbart, and Varada Kolhatkar. It'll be a great optional resource at the beginning of this class, as it give you a chance to practice what we learn and the framework will provide you real-time feedback.

# Final comments, summary, and reflection

What did we learn today?

- There is a lot of terminology and jargon used in ML. Some of the basic terminology includes:
  - Features, target, examples, training
  - Supervised vs. Unsupervised machine learning
  - Classification and regression
  - Accuracy and error
  - Parameters and hyperparameters
  - Decision boundary
- Baselines and steps to train a supervised machine learning model
  - Baselines serve as reference points in ML workflow.
- Decision trees
  - are models that make predictions by sequentially looking at features and checking whether they are above/below a threshold
  - learn a hierarchy of if/else questions, similar to questions you might ask in a 20-questions game.
  - learn axis-aligned decision boundaries (vertical and horizontal lines with 2 features)
  - One way to control the complexity of decision tree models is by using the depth hyperparameter (max\_depth in sklearn).