© Ziel des Codes

Der Service AmortizationService berechnet einen **Tilgungsplan** (Amortization Schedule) und eine **Zusammenfassung** für einen Kredit anhand gegebener Kreditdaten wie Darlehensbetrag, Zinssatz, anfänglicher Tilgung und Zinsbindungsfrist.

🔢 Wichtige Eingabedaten (LoanData)

- loanAmount : Gesamtdarlehensbetrag (z. B. 100.000 €)
- interestRate: jährlicher Zinssatz in Prozent (z. B. 3 %)
- initialRepayment: anfängliche Tilgung in Prozent jährlich (z.B. 2%)
- interestFixation: Zinsbindungsfrist in Jahren (z. B. 10)

Schrittweise Erklärung der Methode calculateAmortizationPlan()

1. Validierung der Eingabedaten

```
if (!this.isValidLoanData(loanData)) {
  throw new InvalidLoanDataError(...);
}
```

Stellt sicher, dass alle Zahlen positiv (außer Zinssatz = 0 erlaubt) und vorhanden sind.

2. Berechnung der Monatsrate

```
const monthlyInterestRate = interestRate / 100 / 12;
const numberOfPayments = interestFixation * 12;
const monthlyPayment = this.calculateMonthlyPayment(...);
```

Monatlicher Zinssatz

Wird aus dem Jahreszins berechnet, geteilt durch 12 Monate.

Anzahl der Raten

Multipliziert die Jahre der Zinsbindung mit 12 (Monate pro Jahr).

Monatsrate (calculateMonthlyPayment)

```
annualPayment = loanAmount * (interestRate / 100 + initialRepayment / 100)
monthlyPayment = annualPayment / 12
```

✓ Warum so?

- Die anfängliche jährliche Gesamtbelastung = Zinsen + anfängliche Tilgung (beide in Prozent vom Darlehen).
- Diese Jahresrate wird auf 12 Monate verteilt.

3. Zinsprüfung für den ersten Monat

```
const firstMonthInterest = loanAmount * monthlyInterestRate;
if (monthlyPayment <= firstMonthInterest + ZERO_THRESHOLD) {
   throw new InsufficientRateError(...);
}</pre>
```

Warum? Die Rate muss mindestens die Zinsen decken. Sonst findet keine Tilgung statt \rightarrow die Schulden wachsen oder bleiben ewig gleich.

4. Erstellung des Tilgungsplans (Array)

Auszahlungseintrag

```
createDisbursementEntry(loanAmount, currentDate)
```

Eintrag mit:

- Negativer Restschuld (–Darlehen)
- Keine Zinsen oder Tilgung
- Negativer Cashflow (Auszahlung)

Schleife: Monatliche Zahlungen

```
for (let i = 0; i < numberOfPayments; i++) {
  const previousBalance = lastEntry.remainingDebt;
  if (nearZero(previousBalance)) {
    push ZeroEntry
  } else {
    push calculateNextPaymentEntry(...)</pre>
```

```
}
```

Jede Iteration erstellt einen neuen Monats-Eintrag:

- Basiert auf dem vorherigen Stand der Restschuld
- Berechnet Zinsen, Tilgung und Restschuld neu

Detailliert: calculateNextPaymentEntry()

Eingang:

- previousBalance (negativ oder 0)
- monthlyPayment (vorher berechnet)
- monthlyInterestRate
- Datum

1. Zinsberechnung

```
interest = -previousBalance * monthlyInterestRate
```

Da previousBalance negativ ist, ergibt sich ein positiver Zinsbetrag.

2. Tilgung (Kapitalanteil)

```
principalPayment = monthlyPayment - interest;
```

Was von der Monatsrate nach Abzug der Zinsen übrig bleibt, geht in die Tilgung.

3. Sonderfall: Letzte Zahlung

```
if (principalPayment >= restschuld - Toleranz) {
  principalPayment = Restschuld;
  actualPayment = interest + principalPayment;
}
```

Wenn der verbleibende Betrag fast vollständig gedeckt ist, wird die Zahlung angepasst (damit nichts überzahlt wird).

4. Neue Restschuld

newBalance = previousBalance + principalPayment;

Die Tilgung wird vom vorherigen Stand abgezogen (bzw. aufs Konto des Schuldners angerechnet).

calculateSummaryData()

Erstellt ein Summenobjekt für:

- Gesamtzinszahlungen
- Gesamt-Tilgungen
- Übrig bleibende Schuld am Ende der Laufzeit

Berechnung:

totalInterestPaid = Summe aller entry.interest
totalRepaymentPaid = Summe aller entry.repayment
remainingDebt = letzte remainingDebt (gerundet)

Rundung und Toleranzen

roundToTwoDecimals(value)
ZERO_THRESHOLD = 0.005

Damit Rundungsfehler (z. B. 0.0049 €) die Logik nicht stören, wird mit einem kleinen Schwellenwert gearbeitet, und alles auf 2 Dezimalstellen gerundet.

Zusammenfassung der Logik

Schritt	Beschreibung	Warum
Validierung	Prüft auf gültige Eingaben	Fehlervermeidung
Monatszins & Raten	Berechnung auf Basis Jahreswerte	Grundlage für Plan
Prüfung: Rate deckt Zinsen	Vermeidet negative Tilgung	Realistische Rückzahlung
Initialer Eintrag	Auszahlung dokumentieren	Startpunkt

Schritt	Beschreibung	Warum
Monatliche Schleife	Tilgung & Zinsen Monat für Monat	Plan über Laufzeit
Letzte Rate anpassen	Genauigkeit & kein Überzahlen	Präzision
Zusammenfassung	Übersicht über Zins, Tilgung, Rest	Nutzerinformation