Arene Molybdenum Chemistry: Some π -Allyl, Hydrido, and Dinitrogen Derivatives

By M. L. H. Green* and W. E. SILVERTHORN
(Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary Treatment of the new compound $C_6H_6Mo(\pi-C_3H_5)$ (PPh₃)Cl with sodium borohydride forms the dihydride $C_6H_6Mo(PPh_3)_2H_2$ which reacts readily with nitrogen gas forming the binuclear dinitrogen complex $[C_6H_6Mo(PPh_3)_2]_3N_2$.

RECENTLY we found that bisbenzenemolybdenum reacts readily at ca. 120 °C with some tertiary phosphines forming the mono-benzene derivatives $C_6H_6Mo(PR_3^1)_3(I)$.¹ However, this reaction does not proceed when PR_3^1 is triphenylphosphine, possibly due to steric overcrowding. This observation may be contrasted with the report of the isolation of a dinitrogen complex of stoicheiometry PhMe-Mo(PPh₃)₂N₂, from the reaction between molybdenum, acetylacetone, triphenylphosphine, and tri-isobutylaluminium in toluene,² which presumably would have essentially the same structure as the complexes (I).

These observations suggested to us that formation of mono-arenemolybdenum complexes with triphenylphosphine as a ligand under mild conditions might lead to reaction with molecular nitrogen.

During a study of bis-arenemolybdenum chemistry we have found that treatment with allyl chloride causes smooth addition and the purple binuclear complexes $[PhR^2Mo(\pi-C_3H_5)Cl]_2$ (II; $R^2=H$ or Me) have been isolated in high yields. The structure of the complex (II; $R^2=H$) (see Scheme) has been established by X-ray diffraction studies.³

Treatment of the complexes (II) with tertiary phosphine ligands causes cleavage of the chloro-bridge and the purple mononuclear complexes $PhR^2Mo(\pi-C_3H_5)(PR_3^1)Cl$ (III; $R^2=H$ or Me) are formed when $R_3^1=Me_2Ph$, MePh₂, or Ph₃. Reduction of ethanol solutions of the complexes (III; $R_3^1=Me_2Ph$ or MePh₂) with sodium borohydride in the presence of excess of the phosphine causes formation of the corresponding triphosphine complexes (I). However, when $R^2=H$ or Me and R_3^1P is triphenylphosphine, reduction

with sodium borohydride under hydrogen or argon produces the red dihydrides $PhR^2Mo(PPh_s)_2H_2$ (IV). {(IV; $R^2 = Me)^{-1}H$ n.m.r. (C_6D_6) τ 3·13 (m, 30H, 6Ph), 6·20 (m, 5H,

 C_6H_5), 8·49 (s, 3H, C H_3), 14·35 [t, 2H, J (H $_2$, ³¹P) 50·2 Hz, Mo H_2]; ν (Mo–H) (mull) 1740s, 1720sh cm⁻¹. (IV; R² = H) ν (Mo–H) (mull) 1730s, 1775w cm⁻¹}. The ¹H n.m.r.

spectrum of (IV; $R^2 = Me$) is consistent with either a trans-configuration, or, if it is a fluctional molecule, with a cis- or a trans-configuration.

The dihydride (IV; $R^2 = H$) in benzene reacts readily with nitrogen gas at room temperature and one atmosphere pressure forming a binuclear, maroon dinitrogen complex [C₆H₆Mo(PPh₃)₂]₂N₂ (V) in essentially quantitative yields. The reaction is reversible and treatment of (V) with hydrogen gas reforms (IV; $R^2 = H$). The complex

(V) does not show an absorption near 2000 cm⁻¹ in the i.r. spectrum. However, the Raman spectrum of the solid shows a very intense band at 1910 \pm 5 cm⁻¹ assignable to a symmetric N=N stretching frequency.

All the above complexes have been characterised by analysis, i.r. and, for the sufficiently soluble, ¹H n.m.r. spectra.

(Received, March 15th, 1971; Com. 259.)

¹ M. L. H. Green, L. C. Mitchard, and W. E. Silverthorn, to be published.

² M. Hidai, K. Tominari, Y. Uchida, and A. Misono, *Chem. Comm.*, 1969, 814 and 1392. ³ T. S. Cameron, C. K. Prout, and G. V. Rees, personal communication.