3.4 算术逻辑运算部件

本节需解决的关键问题:

如何以加法器为基础,实现各种运算处理。

解决思路:

复杂运算→四则运算→加法运算

解决方法:

在加法器的基础上,增加移位传送功能,并选择输入控制条件。

算术逻辑运算部件的组成

```
1位全加器 nch1位全加器 nch1位全加器 nch1位全加器 nch1位全加器 nch1位全加器
```

```
元 → ALU部件 → 乘除法器 → 运算器
```

例: 计算+1101, +1111两数相加的值。(补码, 双符号位)

```
0 0 1 1 0 1
+ 0 0 1 1 1 1
0 1 1 0 0
```

3. 4. 1加法单元

1. 加法单元的输入和输出

2. 全加器

(1) 逻辑一

```
\sum_{i} \mathbf{E}_{i} = (\mathbf{A}_{i} \oplus \mathbf{B}_{i}) \oplus \mathbf{C}_{i-1}
\mathbf{C}_{i} = \mathbf{A}_{i} \mathbf{B}_{i} + (\mathbf{A}_{i} \oplus \mathbf{B}_{i}) \mathbf{C}_{i-1}
```


(2) 逻辑二

3.4.2 加法器与进位链逻辑

- 一. 并行加法器
- 1. 定义:用n位全加器一步实现n位相加。
- 2. 特点: 各位同时相加。
- 例. 先看一个8位数相加的例子

3. 影响运算速度的主要因素 进位信号的传递

二. 并行加法器的进位链

(1) 进位链的基本逻辑关系

$$Ci = AiBi + (Ai + Bi)Ci-1$$

AiBi +
$$(Ai + Bi)\overline{Ci}_{-1}$$

$$AiBi + (Ai + Bi)Ci-1$$

 \Leftrightarrow Gi = AiBi

$$Pi = Ai \oplus Bi , \overline{Ai} \oplus \overline{Bi} , Ai + Bi$$

所以 Ci = Gi + Pi Ci-1

→ 进位传递函数 (进位条件)

进位产生函数

本地进位、绝对进位

条件进位、传递进位

(2) 串行进位

特点: 进位信号逐位形成。

设n位加法器

1)逻辑式

$$C_1 = G_1 + P_1C_0$$

 $C_2 = G_2 + P_2C_1$

$$C_n = G_n + P_n C_{n-1}$$

2) 结构举例

(3) 并行进位

特点: 各位进位信号同时形成。

设n位加法器

1)逻辑式

```
C_1 = G_1 + P_1C_0
C_2 = G_2 + P_2C_1
= G_2 + P_2G_1 + P_2P_1C_0
```

$$C_n = G_n + P_nC_{n-1}$$

$$= G_n + P_nG_{n-1} + ... + P_nP_{n-1}...P_2P_1C_0$$

2) 结构举例 C2 <u>C</u>1 C0**G2 P2** G1 **P1** Gi Pi Ai Ai Bi Bi

(4) 组内并行、组间并行 设16位加法器,4位一组,分为4组:

分级(2级)同时进位

1) 第1组进位逻辑式组内:

```
C_1 = G_1 + P_1C_0

C_2 = G_2 + P_2G_1 + P_2P_1C_0

C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1C_0
```

```
组间:

C4 = G4 + P4G3 + P4P3G2 + P4P3P2G1
+ P4P3P2P1C0

PI

所以 CI = GI + PIC0
```

2) 第2组进位逻辑式

组内:

```
C_5 = G_5 + P_5C_1

C_6 = G_6 + P_6G_5 + P_6P_5C_1

C_7 = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5C_1
```

组间:

GII

所以
$$C_{II} = G_{II} + P_{II}C_{II}$$

3) 第3组进位逻辑式

组内:

```
C_9 = G_9 + P_9C_{II}
C_{10} = G_{10} + P_{10}G_9 + P_{10}P_9C_{II}
C_{11} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_9 + P_{11}P_{10}P_9C_{II}
```

```
红道: GIII
C12 = G12+P12G11+P12P11G10+P12P11P10G9
+P12P11P10P9C II
PIII
所以 CIII = GIII + PIII C II
```

4) 第4组进位逻辑式

组内:

```
C_{13} = G_{13} + P_{13}C_{III}
```

$$C_{14} = G_{14} + P_{14}G_{13} + P_{14}P_{13}C_{III}$$

 $C_{15} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}C_{III}$

```
组间:
```

GIV

所以 $C_{IV} = G_{IV} + P_{IV}C_{III}$

5) 各组间进位逻辑

$$CI = GI + PIC0$$

```
C_{II} = G_{II} + P_{II}C_{I}
= G_{II} + P_{II}G_{I} + P_{II}P_{I}C_{0}
C_{III} = G_{III} + P_{III}C_{II}
= G_{III} + P_{III}G_{II} + P_{III}P_{II}G_{I} + P_{III}P_{II}C_{0}
C_{IV} = G_{IV} + P_{IV}C_{III}
```

+ Pw Pm PmGi + PwPmPmPiCo

 $= \mathbf{G} \mathbf{N} + \mathbf{P} \mathbf{N} \mathbf{G} \mathbf{H} + \mathbf{P} \mathbf{N} \mathbf{P} \mathbf{H} \mathbf{G} \mathbf{H}$

6) 结构示意

7) 进位传递过程

Ai、Bi、Co $\stackrel{\text{第1步}}{\longrightarrow}$ GI、PI、C3~1 $\stackrel{\text{第2步}}{\longrightarrow}$ CII、CII、CI $\stackrel{\text{第3步}}{\longrightarrow}$ C15~13、C11~9、C7~5

[例] 已知操作数Ai、Bi,初始进位C0。试写出C6 的逻辑式。

串行进位: $C_6 = G_6 + P_6 C_5$

并行进位: C6= G6+P6G5+P6P5G4+....

+P6P5...P1C0

分级同时进位,4位一组:

 $C_6 = G_6 + P_6G_5 + P_6P_5C_1$

C_I=G_I+P_IC₀

 $G_1=G_4+P_4G_3+P_4P_3G_2+P_4P_3P_2G_1$

 $P_1=P_4P_3P_2P_1$ $G_i=A_iB_i$ $P_i=A_i\oplus B_i$

3. 4. 3 ALU部件

ALU

以SN74181芯片(4位片ALU)为例。

- 1. ALU的组成
 - (1) 一位逻辑

```
1位加法器(求和、进位)
```

1位输入选择器(1对与或非门)

1个公共控制门(算术或逻辑运算)

输入端: 操作数Ai、Bi 低位进位Ci-1

控制信号M: 1 做逻辑运算 0 做算术运算

控制信号S₃S₂S₁S₀ 控制产生Gi、Pi 控制形成多种输入组合

教材的表:

S 3	S2	输出Xi	S1	SO	输出
Qi	0	1	0	0	Ai
0	1	Ai+Bi	0	1	AiBi
1	0	Ai+Bi	1	0	AiBi
1	1	Ai	1	1	0

(2) 多位逻辑

参见图:

4位ALU 组内并行进位链

符合比较"A=B"

初始进位 Cn

2. 运算功能

16种算术运算功能,16种逻辑运算功能参见下表。

SN74181功能表

S3 S2 S1 S0	M=1 (逻辑运算)	M=0 (算术运算)		
		C0=0(无进位)	C0=1(有进位)	
0000	F=/A	A 减1	A	
0001	F=/(A+B)	AB减1	AB	
0010	F=/A+B	A/B减1	A/B	
0011	逻辑1	全1	0	
0100	F=/(A+B)	A加 (A+/B)	A加(A+/B)加1	
0101	F=/B	AB加 (A+/B)	AB加(A+/B)加1	
0110	$F=/(A \oplus B)$	A加/B	A减B	
0111	F=(A+/B)	A+/B	A+/B加1	

SN74181功能表

S3 S2 S1 S0	M=1 (逻辑运算)	M=0 (算术运算)		
		C0=0(无进位)	C0=1(有进位)	
1000	F=/AB	F=A加 (A+B)	F=A加 (A+B) 加1	
1001	$F=A \oplus B$	F=A加B	F=A加B加1	
1010	F=B	F=A/B加(A+B)	F=A/B加(A+B) 加1	
1011	F=A+B	F=A+B	F=A+B加1	
1100	逻辑0	0	1	
1101	F=A/B	F=AB加A	F=AB加A加1	
1110	F=AB	F=A/B加A	F=A/B加A加1	
1111	F=A	F=A	F=A加1	

常用算术逻辑运算微命令

	M	S3	S2	S1	S0	C0	
A+1	0	1	1	1	1	1	算
A-1	0	0	0	0	0	0	术
A+B	0	1	0	0	1	0	运
A-B	0	0	1	1	0	1	算
传送A	1	1	1	1	1	0	逻 辑 运
传送B	1	1	0	1	0	0	算

3. ALU的进位逻辑

(1) 组间串行

(2) 组间并行

3.4.4 运算器组织

寄存器组

独立结构

小型存储 单口器结构 双口

独立R、双口RAM用多路选择器作为ALU的输入逻辑,

单口RAM用锁存器作为ALU的输入逻辑。

1、带多路选择器的运算器

2、带输入锁存器的运算器

3、位片式运算器

例.4位片运算器粗框

特点:

用双口RAM(两地址端、两数据端)作通用寄存器组,可同时提供数据:

用多路选择器作输入 逻辑,不需暂存操作 数;

ALU增加乘、除功能, 用乘商寄存器存放乘 数、乘积或商。