1. MATRICES

1.1.DEFINICIÓN Y NOTACIÓN

DEFINICIÓN: Una matriz es un arreglo rectangular de números reales o complejos ordenada como sigue

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

a los números de la matriz A se les denomina entradas o elementos de la matriz.

EJEMPLOS DE MATRICES

$$(1) A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

(3)
$$X = \begin{pmatrix} x & 3x^2 \\ -5x & 1 \\ x^{-1} & 0 \end{pmatrix}$$

NOTAS

1. Se utilizan letras mayúsculas para representar a las matrices mientras que las letras minúsculas representan sus elementos

 $(2) I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 2. Cada elemento de la matriz se identifica por la hilera y por la columna a la que pertenece (en ese orden) utilizando un doble subíndice. La entrada de la matriz A en la hilera "i" y la columna "j" se denota por a_{ij} . Las hileras se enumeran de arriba abajo y las columnas de izquierda a derecha
- 3. Las hileras también son conocidas como filas o renglones

DEFINICIÓN: La dimensión de una matriz (llamada también el orden, tamaño o forma de una matriz) es la descripción de los números de hileras y columnas que tiene. Decimos que una matriz tiene dimensión $n \times m$ si tiene n filas y m columnas.

Podemos denotar a una matriz A de dimensión $n \times m$ mediante la notación compacta $A = \left(a_{ij}\right)_{n \times m}$ en donde i = 1, 2, 3, ..., n y j = 1, 2, 3, ..., m. También suele denotarse como $A_{n \times m}$

NOTAS

- 1. Observe que (a_{ij}) representa a una matriz mientras que a_{ij} representa a un elemento
- Cuando se trabaja con matrices se acostumbra a referirse a sus elementos como escalares (números reales)

EJERCICIO

Determinar lo indicado para las matrices $A = \begin{pmatrix} 2 & 5 & -3 \\ -3 & 8 & -3 \\ 3 & 0 & 7 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 4 & 6 \end{pmatrix}$

a) Dimensión de A:

b) Dimensión de *B*:

c) Elemento a_{23} :

d) Elemento a_{32} :

e) Elemento b_{22} :

f) Elemento b_{32} :

1.2.TIPOS DE MATRICES

Tipo de matriz	Definición	Ejemplo
Matriz nula	Es una matriz de orden $n \times m$ cuyas entradas son todas ceros	$0_{2\times 3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ 0_{2\times 1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Matriz renglón	Es una matriz de orden $1 \times m$, en otras palabras, es una matriz con un renglón	(1 -3 5 3)
Matriz columna	Es una matriz de orden $n \times 1$, en otras palabras, es una matriz con una columna	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
Matriz cuadrada	Es una matriz de orden $n \times n$, es decir, una matriz con el mismo número de filas que de columnas. Usualmente decimos que es de orden n. Los elementos a_{ij} , con $i=j$, forman la llamada diagonal principal.	$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}_{n \times n}$
Matriz identidad	Es una matriz cuadrada en la que los elementos de la diagonal principal son unos y todos los elementos fuera de ella son ceros, suele denotarse con la literal I y con un solo subíndice su orden.	$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Matriz diagonal	Es una matriz cuadrada en la que todos los elementos no pertenecientes a la diagonal principal son nulos.	$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -7 \end{pmatrix}, \begin{pmatrix} -5 & 0 \\ 0 & 3 \end{pmatrix}$
Matriz escalar	Es una matriz diagonal con todos los elementos de la diagonal principal iguales entre sí.	$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}$
Matriz triangular superior	Es una matriz cuadrada en la cual los elementos que están por debajo de la diagonal principal son nulos, es decir, $a_{ij}=0 \ \forall \ i>j \ .$	$\begin{pmatrix} 2 & 4 & 5 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Matriz triangular inferior	Es una matriz cuadrada en la cual los elementos que están por encima de la diagonal principal son nulos, es decir, $a_{ij} = 0 \ \forall \ i < j$.	$ \begin{pmatrix} -3 & 0 & 0 \\ -6 & -2 & 0 \\ -9 & 5 & 7 \end{pmatrix} $

EJERCICIO

Clasificar las siguientes matrices de acuerdo a su tipo

$$(1) \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

$$(2) \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
7 & 3 & 4 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{pmatrix}$$

$$(4) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(5)
$$\begin{pmatrix} 2 & 1 & 4 \\ 7 & 5 & 3 \end{pmatrix}$$

1.3.ÁLGEBRA DE MATRICES

IGUALDAD DE MATRICES

DEFINICIÓN: Sean $A = (a_{ij})_{n \times m}$ y $B = (b_{ij})_{n \times m}$ dos matrices de igual dimensión, diremos que son iguales, A = B, sí y solo si se cumple que $a_{ij} = b_{ij} \ \forall \ i, j$.

NOTA

1. Para que pueda llegarse a darse la igualdad entre matrices, éstas deben tener igual dimensión.