Zapis števil in napake

Števila predstavimo kot elemente P(b,t,L,U), to so vsa decimalna števila $0.c_1c_2...c_t \cdot b^e$, $L \leq e \leq U, c_1 \neq 0$. Osnovna zaokrožitvena napaka je $u = \frac{1}{2}b^{-t}$.

Standard IEEE single: self, s predznak, 1 bit, e je eksponent, 8 bitov, f je mantisa, 23 bitov. Število x zapišemo kot $x=(-1)^s(1+f)2^{e-127}$. Denormalizirano število: $e=0, f\neq 0, x=(-1)^s(0+f)2^{-126}$

Za elementarne operacije velja fl $(a \oplus b)$ se v praksi izračuna z relativno napako $|\delta| < u$ v $(a \oplus b)(1 + \delta)$. Za zaporednje n operacij je napaka manjša od nu.

Direktna slabilnost: vedno majhna relativna napaka.

Obratna stabilnost: izračunan rezultat je točen rezultat malo spremenjenih začetnih vrednosti.

Nelinearne enačbe

Iščemo ničle α funkcije f. Občutljivost $\frac{1}{f'(\alpha)}$, za dvojno ničlo velja ocena $\sqrt{\frac{2\epsilon}{|f''(\alpha)|}}$, kjer $|f(\alpha)| \leq \epsilon$.

BISEKCIJA: razpolavljamo interval, na katerem imamo ničlo. Št korakov za natančnost ε : $k \ge \log\left(\frac{|b-a|}{\varepsilon}\right)$.

NAVADNA ITERACIJA: Iščemo fiksno točno $g(\alpha)=\alpha$. Metoda: $x_{r+1}=g(x_r)$. Če je $|g'(\alpha)|<1$ je točka privlačna, če $|g'(\alpha)|>1$ je odbojna. Red konvergence je p, če je $g^{(p)}(\alpha)\neq 0$, nižji odvodi pa so 0 v α . Ocene za napako: $|x_r-\alpha|\leq m^r|x_0-\alpha|, |x_{r+1}-\alpha|\leq \frac{m}{1-m}|x_r-x_{r+1}|$, kje je m Lipscitzeva konstanta za g $(m=\max g')$.

TANGENTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$. Konvergenca je za enojne ničle kvadratična, za večkratne ničle linearna. Če za enostavno ničlo velja $f''(\alpha) = 0$ je konvergenca kubična, itn... Vse ničle so privlačne.

SEKANTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$. Red konvergence: $\frac{1+\sqrt{5}}{2}$.

LAGUERROVA METODA za iskanje ničel polinomov: $z_{r+1} = z_r - \frac{np(z_r)}{p'(z_r) \pm \sqrt{(n-1)((n-1)p'^2(z_r) - np(z_r)p''(z_r))}}$

Pri stabilni metodi izberemo predznak tako, da je absolutna vrednost imenovalca največja. Če izbiramo vedno- ali + skonvergiramo k levi oz. desni ničli, če so vse ničle realne. Konvergenca v bližini enostavne ničle je kubična. Metoda najde tudi kompleksne ničle.

REDUKCIJA POLINOMA: Imamo eno ničlo, radi bi jo faktorizirali ven. Poznamo obratno in direktno redukcijo, pri katerih je stabilno izločati ničle v padajočem in naraščajočem vrstnem redu po absolutni vrednosti. V praksi uporabimo kombinirano metodo: do nekega r uporabimo z ene strani obratno, z druge pa direktno. Ta r izberemo tako, da je $|\alpha^r a_{n-r}|$ maksimalen.

DURAND-KERNERJEVA METODA: Iščemo vse ničle na
enkrat: $x_k^{(r+1)} = x_k^{(r)} - \frac{p(x_k^{(r)})}{\prod_{\substack{j=1\\j\neq k}}^n (x_k^{(r)} - x_j^{(r)})}$. Kvadratična konvergenca. Za kompleksne ničle je treba začeti s kompleksnimi približki.

Linearni sistemi

NORME: $\|A\|_1 = \max_{j \in \{1...n\}} \left(\sum_{i=1}^n |a_{ij}|\right) =$ največji stolpec, $\|A\|_{\infty} = \|A^{\mathsf{T}}\|_1 =$ največja vrstica $\|A\|_2 = \sigma_1 = \sqrt{\lambda_{max}(A^HA)} =$ največja singularna vrednost, $\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2} =$ gledamo kot vektor Operatorska norma: $\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. Neenakosti: $\lambda \leq \|A\|$. $\|Ax\| \leq \|A\| \|x\|$.

$$\frac{1}{\sqrt{n}} \|A\|_{F} \le \|A\|_{2} \le \|A\|_{F}$$

$$\frac{1}{\sqrt{n}} \|A\|_{1} \le \|A\|_{2} \le \sqrt{n} \|A\|_{1}$$

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{n} \|A\|_{\infty}$$

$$N_{\infty}(A) \le \|A\|_{2} \le nN_{\infty}(A)$$

$$\le \|A\|_{2} \le \sqrt{\|A\|_{1} \|A\|_{\infty}}$$

$$\|a_{i}\|_{2}, \|\alpha_{i}\|_{2} \le \|A\|_{2}$$

Rešujemo sistem Ax = b. Za napako x velja ocena:

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\kappa(A)}{1 - \kappa(A)\frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$

Količina $\kappa(A)$ se imenuje občutljivost matrike. $\kappa(A) = ||A|| ||A^{-1}||$. Velja $\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)} \ge 1$.

LU RAZCEP s kompletnim pivotiranjem: matriko A zapišemo kot PAQ = UL, L sp. trikotna z 1 na diagnoali in U zg. trikotna, ter P,Q permutacijski matriki stolpcev in vrstic. Algoritem:

```
Q = I, P = I for j = 1 to n: 
 r, q taka, da a_rq največji v podmatriki A(j+1:n) 
 zamenjaj vrstici r in j v A, L, P // za delno pivotiranje 
 zamenjaj stolpca q in j v A, L, Q // za kompletno pivotiranje 
 for i = j+1 to n: 
 l_ij = a_ij / a_jj 
 for k = j+1 to n: 
 a_ik = a_ik - l_ij * a_jk
```

Postopek na roke:

- 1. * Če delamo pivotiranje zamenjamo primerne vrstice in stolpce v A, P, Q, da je a_{00} največji.
- 2. Prvi stolpec delimo z a_{00} , razen a_{00} , ki ga pustimo na miru.
- 3. Za vsak element v podmatriki A(2:n,2:n): $a_{ij} = a_{ij} a_{i1} \cdot a_{1j}$ (odštejemo produkt \leftarrow in \uparrow).
- 4. Ponovimo postopek na matriki A(2:n,2:n).

Delno pivotiranje uporablja samo matriko P, za LU razcep brez pivotiranja pa preskočimo 1.

Skalarni produkt potrebuje 2n operacij. Reševanje s premimi substitucijami potrebuje n^2 , z obratnimi $n^2 + n$. Reševanje z LU razcepom (brez pivotiranja) potrebuje $\frac{2}{3}n^3 + \frac{3}{2}n^2 + \frac{5}{6}n$ operacij.

Za izračunani LU razcep $\hat{L}\hat{U} = A + E$ velja $|E| \leq nu|\hat{L}||\hat{U}|$.

Pivotna rast: $g = \frac{\max u_{ij}}{\max a_{ij}}$. Pri delnem pivotiranju $g < 2^n$.

RAZCEP CHOLESKEGA: Za sp
d matriko Aobstaja razcep $A = VV^\mathsf{T}.$

```
for k = 1 to n:
    v_kk = sqrt(a_kk - sum(v_kj^2, j=1 to k))
    for i = k+1 to n:
        v_ik = 1/v_kk * (a_ik - sum(v_ij * v_kj, j = 1 to k))
```

Postopek na roke po stolpcih:

- 1. Če sem diagonalen element: odštejem od sebe skalarni produkt vrstice na levo same s sabo in se korenim.
- 2. Če nisem diagonalni: od sebe odštejem skalarni produkt vrstice levo od sebe z vrstico levo od mojega diagonalnega. Nato se delim z diagonalnim.

Razcep stane $\frac{1}{3}n^3$ operacij. Je obratno stabilno. Je enoličen.

Nelinearni sistemi

JACOBIJEVA ITERACIJA: Posplošitev navadne iteracije. Naj velja $G(\alpha) = \alpha$. Metoda: $x^{(r+1)} = G(x^{(r)})$. Točka α je privlačna, če velja $\rho(DG(\alpha)) < 1$. Dovolj je $||DG(\alpha)|| < 1$. Konvergenca je linearna.

```
NEWTONOVA METODA: Posplošitev tangentne metode. Metoda: reši sistem DF(x^{(r)})\Delta x^{(r)} = -F(x^{(r)}). x^{(r+1)} = x^{(r)} + \Delta x^{(r)}. Konvergenca je kvadratična.
```

Problem najmanjših kvadratov

Reševanje predoločenih sistemov: Za dan predoločen sistem Ax = b rešujemo normalni sistem $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$. Če je A polnega ranga, je x enoličen. Rešujemo z razcepom Choleskega. Število operacij: $n^2m + \frac{1}{3}n^3$.

QR razcep je bolj stabilen. Za $A \in \mathbb{R}^{m \times n}$ obstaja enoličen razcep A = QR, $Q^{\mathsf{T}}Q = I$ in R zg. trikotna s pozitivnimi diagonalci. Za predoločen sistem rešimo $Rx = Q^{\mathsf{T}}b$.

CGS IN MGS Klasična GS ortogonalizacija. Od vsakega stolpca a_k odštejemo pravokotne projekcije $a_i, i < k$. Algoritem ni najbolj stabilen.

```
for k = 1 to n:  q_k = a_k  for i = 1 to k-1:  r_i k = q_i i' * a_k (CGS) ALI = q_i i' * q_k (MGS)   q_k = q_k - r_i k q_i   r_k k = ||q_k||   q_k = q_k / r_k k
```

Za večjo natančnost izračunamo $[Ab] = [Qq_{n+1}][Rz;0p]$ in rešimo Rx = z. Porabi $2nm^2$ operacij.

Razširjeni QR razcep: $A = \tilde{Q}\tilde{R}, \ Q \in \mathbb{R}^{m \times m}$ ortogonalna, R zgornje trapezna. $\tilde{Q} = [Q \ Q_1], \ \tilde{R} = [R; 0].$

GIVENSOVE ROTACIJE

Elemente v A po stolpcih enega po enega ubijamo z rotacijami. Rotacija, ki ubije element a_{ki} je $R_{ik}^{\mathsf{T}}([ik],[i,k]) = [c\ s; -s\ c]$, in ostalo identiteta. Parametre nastavimo: $c = x_{ii}/r$, $s = x_{ki}/r$, $r = \sqrt{x_{ii}^2 + x_{ki}^2}$. \tilde{Q} dobimo kot prokdukt vseh rotacij, potrebnih za genocid elementov A. Rotacija spremeni samo i-to in k-to vrstico.

Število operacij: $3mn^2 - n^3$. Če potrebujemo \tilde{Q} , potem rabimo še dodatnih $6m^2n - 3mn^2$ operacij.

HAUSHOLDERJEVA ZRCALJENJA Definiramo $P = I - \frac{2}{w^{\mathsf{T}}w}ww^{\mathsf{T}}$. P je zrcaljenje prek ravnine z normalo w. $Px = x - \frac{1}{m}(x^{\mathsf{T}}w)w, \ m = \frac{1}{2}w^{\mathsf{T}}w$.

Da vektor x prezrcalimo tako, da mu uničimo vse razen prve komponente, uporabimo $w = [x_1 + \text{sign}(x_1) || x ||_2; x_2; \dots x_n]$ in $m = ||x||_2 (||x||_2 + |x_1|)$. Število operacij za Pz je 4nm za w in m pa potrebujemo 2n operacij.

Reševanje predoločenega sistema tako stane $2mn^2 - \frac{2}{3}n^3$. Za \tilde{Q} potrebujemo še $4m^2n - 2mn^2$ operacij. Za kvadratne sisteme je stabilnejši, a rabimo $\frac{4}{3}n^3$ operacij.

Za napako pri reševanju predoločenega sistema velja: $\frac{\|\Delta x\|}{\|x\|} \leq \frac{\varepsilon \kappa_2(A)}{1-\varepsilon \kappa_2(A)} \left(2 + (\kappa_2(A)+1) \frac{\|r\|}{\|A\| \|x\|} \right), r = Ax - b.$

Lastne vrednosti

Desni in levi lastni vektorji: $y^HA = \mu y^H$ in $Ax = \lambda x$. Levi in desni vektorji za različne l. vrednosti so pravokotni. Občutljivost lastne vrednosti je $\frac{1}{y^Hx}$, kjer sta x in y normirana levi in desni lastni vektor.

POTENČNA METODA: Pravzaprav navadna iteracija. Izberemo si začetni vektor z in tolčemo čéz matriko A in normiramo, dokler ne postane lastni vektor. Ta metoda ima linearno konvergenco k lastnemu vektorju za dominantno lastno vrednost, če je le ena sama lastna vrednost največja. Hitrost konvergence je λ_1/λ_2 , kjer sta to dve največji lastni vrednosti.

```
z = ones(n, 1) // naključen neničeln vektor for k = 1 to m: // m je veliko število y = A * z z = y / ||y||
```

Če imamo lastni vektor v, potem želimo imeti lastno vrednost λ . Najboljši približek je Raylegihov kvocient: $\rho(A, v) = \frac{z^H A z}{z^H z}$. Kot kriterij v potenčni metodi uporabimo | A * z - p(A, z) | < eps.

Če imamo dober približek $\tilde{\lambda}$ za lastno vrednost vrednost λ_i uporabimo inverzno iteracijo. Iščemo največjo vrednost matrike $(A - \tilde{\lambda}I)^{-1}$, ki ima lastne vrednosti $\frac{1}{\lambda_i - \lambda}$.

```
z = ones(n, 1)
for k = 0 to m:
    reši (A - lambda I)y = z
    z = y / ||y||
```

SCHUROVA FORMA: Za vsako matriko A obstaja Schurova forma S, da je $A = USU^H$, kjer je U unitarna in S zgornje trikotna. Na diagnoali so lastne vrednosti. V primeru kompleksnih lastnih vrednosti imamo 2x2 bloke.

OTROGONALNA ITERACIJA: Za izračun Schurove forme. Z je lahko $n \times p$ matrika z ortonormiranimi stolpci, tako dobimo prvih p stolpcev Schurove forme. Za p = 1 je to potenčna metoda, za p = n, pa dobimo celo schurovo formo.

```
Z = eye(n) // naključna matrika z otronormiranimi stolpci for k = 0 to m: Y = A * Z [Q, R] = qr(Y)  
Z = 0
```

QR ITERACIJA: Najboljša metoda za izračun lastnih vrednosti A.

```
for k = 0 to m:
    [Q, R] = qr(A)
    A = R * Q
```

GERSCHGORINOV IZREK: Naj bo $A \in \mathbb{C}^{n \times n}$, $C_i = \overline{K}(a_{ii}, r = \sum_{j=1, j \neq i}^n |a_{ij}|), i = 1, 2, ..., n$. Potem vsaka lastna vrednost leži v vsaj enem Gerschgorinovem krogu. Če m krogov C_i sestavlja povezano množico, ločeno od ostalih n - m krogov, potem ta množica vsebuje natanko m lastnih vrednosti.

Diagonalno dominantna matrika ($|a_{ij}|>\sum_{j=1,j\neq i}^n|a_{ij}|)$ je obr
nljiva.

Interpolacija

LAGRANGEEV INTERPOLACIJSKI POLINOM:

$$\ell_{n,j}(x) = \frac{\prod_{i=0, i \neq j}^{n} (x - x_i)}{\prod_{i=0, i \neq j}^{n} (x_j - x_i)}$$

Polinom: $p(x) = \sum_{i=0}^{n} f(x_i) \ell_{n,i}(x)$. Definiramo $\omega(x) = (x - x_0) \dots (x - x_n)$. Velja $\ell_{n,i}(x) = \frac{\omega(x)}{(x - x_i)\omega'(x)}$.

Ocena napake: $f(x) = p(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x)$, kjer je ξ nekje na intervalu, ki ga določajo x_i in x. To se prevede na: $|f(x) - p(x)| = |\omega(x)f[x_0, \dots, x_n, x]| = |\omega(x)\frac{f^{(n+1)}(\xi)}{(n+1)!}| \leq ||\omega||_{\infty} \frac{||f^{(n+1)}||_{\infty}}{(n+1)!}$

Izračun vrednosti polinoma, ki je dan z $d_i = f[x_0, \dots, x_i]$:

DELJENE DIFERENCE:

Če so točke paroma različne: $f[x_i] = y_i$, ostalo izračunamo po rekurzivni formuli: $f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$. Če so točke x_0 do x_k enake, je $f[x_0, \dots, x_k] = \frac{f^{(k)}(x_0)}{k!}$.

Polinom: $p(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, \dots, x_n](x - x_0) + \cdots + f[x_0, x_1](x - x_0) + f[x_0, x_1](x - x_0)$

Integriranje

Ekvidistančne točke $a = x_0 < x_1 < \dots < x_n = b, x_i = x_0 + ih.$

SEST. TRAPEZNO PRAVILO: $\int_a^b f(x)dx = \frac{h}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{m-1}) + f(x_m)) - \frac{h^2}{12}(b-a)f''(\xi)$ SEST. SIMPSONOVO: $\int_a^b f(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{2m-2}) + 4f(x_{2m-1}) + f(x_{2m})) - \frac{h^4}{180}(b-a)f^{(4)}(\xi)$ $3/8 \text{ PRAVILO: } \int_a^b f(x)dx = \frac{3}{8}h(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)) - \frac{3}{80}h^5f^{(4)}(\xi), \text{ Vedno } \xi \in (a,b).$

RICHARDSONOVA EKSTRAPOLACIJA: $I=T_h(f)+R_h(f)$, kjer je T pravilo in R napaka, npr. $h^2/12f''(\xi)$. S pomočjo izračuna za h in h/2 določimo $I(f)=T_h(f)+R_h(f)=T_{h/2}(f)+R_{h/2}(f)$ in ocenimo napako (če so odvodi baš enaki) in boljše izračunamo integral: $R_{h/2}(f)\approx \frac{S_{h/2}(f)-S_h(f)}{15}$, $I(f)\approx \frac{16S_{h/2}(f)-S_h(f)}{15}$.