Universidade Federal de Pelotas Cursos de Ciência e Engenharia de Computação Disciplina: Cálculo Numérico Computacional Prof^a. Larissa A. de Freitas

Relatório 3 - Interpolação e Ajuste de Função

1) Um automóvel percorreu 160 km numa rodovia que liga duas cidades e gastou, neste trajeto, 2 horas e 20 minutos. A tabela abaixo dá o tempo (min) e a distância percorrida (m) em alguns pontos entre as duas cidades.

Tempo (min)	0	10	30	60	90	120	140
Distância	0,00	8,00	27,00	58,00	100,00	145,00	160,00
Percorrida (m)							

Determine:

- a) Qual foi aproximadamente a distância percorrida pelo automóvel no primeiros 45 minutos de viagem, considerando apenas os quatro primeiros pontos da tabela?
- b) Quantos minutos o automóvel gastou para chegar à metade do caminho?
- 2) Conhecendo-se o diâmetro e a resistividade de um fio cilíndrico verificou-se a resistência do fio (Ohms) de acordo com o comprimento (m). Os dados obtidos estão indicados a seguir:

Comprimento (m)	500	1000	1500	2000	2500	3000	3500	4000
Resistência do fio	2,74	5,48	7,90	11,00	13,93	16,43	20,24	23,52
(Ohms)								

Use um polinômio interpolador de grau 2 e um polinômio interpolador de grau 3. para determinar quais serão as prováveis resistências deste fio (Ohms) para comprimentos (m) de:

- a) 1730 m
- b) 3200 m

Obs.: Nos exercícios 1 e 2 use o método de Lagrange e de Newton.

3) Deslocando-se um receptor de GPS num veículo ao longo do eixo de uma estrada, em Pelotas, obtiveram-se as coordenadas locais:

latitude (φ)	26′56″,1	26′50′′,4	27′02′′,7	26′58′′,3
longitude (λ)	5′36′′	5′56′′	6'16'	6′36′′

Aproximando o eixo da estrada por um spline cúbica natural determine:

- a) a latitude da estrada quando a longitude é $\lambda = 6'$;
- b) as coordenadas da estrada no ponto mais perto do equador, supondo que isso acontece entre 6'16" e 6'36" de longitude.
- 4) O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela:

N° de horas (x)	0	1	2	3	4	5	6
Nº de bactérias por	32	47	65	92	132	190	275
vol. unitário (y)							

- a) Trace o diagrama de dispersão dos dados
- b) Use o **método dos mínimos quadrados** para ajustar os dados as curvas $y = ab^x e y = ax^b$
- c) Verifique e justifique qual a equação do melhor ajuste. Utilize ela para prever o N° de bactérias por vol. unitário (y) em N° de horas (x) igual a 7.