CSC373 Worksheet 7 Solution

August 14, 2020

1. Rough Works:

The longest simple cycle problem is the problem of finding a cycle of maximum length in a graph ^[5].

Notes

• Decision Problem

- Is the problem with yes/no solution

• Alphabet

- Is a finite set of symbols
- Is denoted Σ

Example:

For decision problem, its alphabet is: $\Sigma = \{0, 1\}$

- * 1 means 'yes'
- * 0 means 'no'

• Language

- Is any set of strings made of symbols from Σ
- Is denoted L

Example:

$$L = \{10, 11, 101, 111, 1011, 1101, 10001\}$$

- Is denoted Σ^* for language of all strings over Σ plus empty string ϵ .

Example:

$$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 11, 000, \ldots\}$$

Example 2:

The decision problem PATH has the corresponding language

PATH =
$$\{\langle G, U, v, k \rangle : G = (V, E) \text{ is an undirected graph,}$$

 $u, v \in V,$
 $k \geq 0 \text{ is an integer, and}$
tere exists a path from u to v in G
consisting of at most k edges $\}$

• P

– Is set of problems that can be solved by a deterministic Turing machine in Polynomial time (i.e. $\mathcal{O}(n^k)$) [2].

Example:

- 1) Shortest path problems
- 2) Calculating the greatest common divisor
- 3) Finding maximum bipartite matching

• NP (Non-deterministic Polynominal):

- Is set of decision problems that can be solved by a Non-deterministic Turing Machine in Polynomial time.^[2]
- Has no particular rule is followed to make a guess [1].
- Can be solved in polynominal time via a "lucky algorithm", a magical algorithm that always make a right guess $^{[2]}$
- $-P \subseteq NP$

Examples:

- Longest-path problems
- Hamiltonian Cycle
- Graph coloring

\bullet NP-Complete Problems:

- A decision problem A is NP-complete (NPC) if

- 1) $A \in NP$ and
- 2) Every (other) problems A' in NP is reducible to A
- Has no efficient solution in polynominal number of steps (not yet) [3]
- Is not likely that there is an algorithm to make it efficient [3]

• NP-Hard:

- A decision problem A is NP-hard if
 - 1) $A \in NP$ (Not necessarily) and
 - 2) Every (other) problems A' in NP is reducible to A
- NP-Hard means "at least as hard as any problems in NP"
- Does not have to be about decision problems

Example:

1) Alan Turing's Halting Problem

References

- 1) Encyclopedia Britannica, NP-Complete Problem, link
- 2) Geeks for Geeks, NP-Completeness, link
- 3) Wikipedia, NP-complete, link
- 4) UCLA UC-Davis, ECS122A Handout on NP-Completeness, link