ENGR 507 (Spring 2025) S. Alghunaim

10. Special convex optimization problems

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Linear program

a linear program (LP) is an optimization problem of the form

minimize (or maximize)
$$\sum_{j=1}^n c_j x_j$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\dots,m$$

$$\sum_{i=1}^n g_{ij} x_j = h_i, \quad i=1,\dots,p$$

- n optimization variables x_1, \ldots, x_n
- coefficients $c_j, a_{ij}, g_{ij}, h_i, b_i$ are given
- convex problem with linear objective and linear/affine constraints

LP in compact form

minimize (or maximize)
$$c^T x$$

subject to $Ax \le b$
 $Gx = h$

- A is an $m \times n$ matrix with entries a_{ij}
- G is an $p \times n$ matrix with entries g_{ij}
- $\bullet \ b = (b_1, \ldots, b_m)$
- $\bullet \ \ h=(h_1,\ldots,h_p)$
- $c = (c_1, \ldots, c_n)$

Example: diet problem

ullet create meal with at least 12 units of protein, 9 units of iron, 15 units of thiamine

food	protein	iron	thiamine	cost (cents/g)
A	2 unit/g	1 unit/g	1 unit/g	30
В	1 unit/g	1 unit/g	3 unit/g	40

how many grams of each food should be used to minimize the cost of the meal?

the problem can formulated as

minimize
$$30x_1 + 40x_2$$
 subject to
$$2x_1 + x_2 \ge 12$$

$$x_1 + x_2 \ge 9$$

$$x_1 + 3x_2 \ge 15$$

$$x_1, x_2 \ge 0$$

where x_1 and x_2 are the number of grams of food A and B used in the meal

Example: alloy mixture

we are given four alloys that have the metal properties listed in the below table

property	alloy 1	alloy 2	alloy 3	alloy 4
% of iron	70	25	40	20
% of nickel	10	15	50	50
% of cobalt	20	60	10	30
cost (\$/kg)	22	18	25	24

- goal is to create new alloy mixture with 40% iron, 35% nickel, 25% cobalt
- what proportions of the alloys should be blended together while minimizing cost?

- let x_i be the proportion of alloy i that is used to produce the new alloy
- the problem can be formulated as

$$\begin{array}{ll} \text{minimize} & 22x_1+18x_2+25x_3+24x_4\\ \text{subject to} & 0.7x_1+0.25x_2+0.4x_3+0.2x_4=0.4\\ & 0.1x_1+0.15x_2+0.5x_3+0.5x_4=0.35\\ & 0.2x_1+0.6x_2+0.1x_3+0.3x_4=0.25\\ & x_1+x_2+x_3+x_4=1\\ & x_1,x_2,x_3,x_4\geq 0 \end{array}$$

Example: wireless communication

- n "mobile" users
- user i transmits signal to base station with power p_i and attenuation factor of β_i
 signal power received at the base station from user i is β_i p_i
- total power received from all other users is considered interference

 the interference for user i is ∑_{i≠i} β_i p_j
- for reliable communication with user i, signal-to-interference ratio must exceed γ_i
- goal is to minimize total power transmitted by all users subject to having reliable communications for all users

linear programs SA — ENGR507 10.7

Problem formulation

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n p_i \\ \text{subject to} & \frac{\sum_{i=1}^n p_i}{\sum_{j\neq i} \beta_j p_j} \geq \gamma_i, \quad i=1,\dots,n \\ & p_i \geq 0, \quad i=1,\dots,n \end{array}$$

LP formulation

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n p_i \\ \text{subject to} & \beta_i p_i - \gamma_i \sum_{j \neq i} \beta_j p_j \geq 0, \quad i = 1, \dots, n \\ & p_i \geq 0, \quad i = 1, \dots, n \end{array}$$

Example: assignment problem

- we want to match N people to N tasks
- each person is assigned to one task (each task assigned to one person)
- cost of assigning person i to task j is c_{ij}
- variable $x_{ij} = 1$ if person i is assigned to task j; $x_{ij} = 0$ otherwise

Combinatorial formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}c_{ij}x_{ij} \\ \text{subject to} & \sum\limits_{i=1}^{N}x_{ij}=1, \quad j=1,\ldots,N \\ & \sum\limits_{j=1}^{N}x_{ij}=1, \quad i=1,\ldots,N \\ & x_{ij}\in\{0,1\}, \quad i,j=1,\ldots,N \end{array}$$

N! possible assignments (e.g., 10! = 3628800)

LP formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}c_{ij}x_{ij} \\ \text{subject to} & \sum\limits_{i=1}^{N}x_{ij}=1, \quad j=1,\ldots,N \\ & \sum\limits_{j=1}^{N}x_{ij}=1, \quad i=1,\ldots,N \\ & 0 \leq x_{ij} \leq 1, \quad i,j=1,\ldots,N \end{array}$$

- we have *relaxed* the constraints $x_{ij} \in \{0, 1\}$
- it can be shown that the solution $x_{ij}^{\star} \in \{0,1\}$
- hence, we can solve this hard combinatorial problem efficiently by solving an LP

linear programs SA_ENGR507 10.10

Polyhedron

a ployhedron is the intersection of finitely many halfspaces

$$a_1^T x \le b_1, \dots, a_m^T x \le b_m$$

in matrix notation, a polyhedron can be defined as

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

Extreme points

 $x \in \mathcal{P}$ is an *extreme point* of \mathcal{P} if it *cannot* be written as convex combination

$$x = \theta y + (1 - \theta)z, \quad \theta \in (0, 1)$$

for some $y, z \in \mathcal{P}$

- \hat{x} is an extreme point
- \bar{x} and \tilde{x} are not extreme points

Geometrical interpretation of LP

$$\begin{array}{ll} \text{minimize (or maximize)} & c^T x \\ & \text{subject to} & Ax \leq b \end{array}$$

- dashed lines are level sets $c^T x = \alpha$ for different α
- feasible set is a polyhedron
- the optimal solutions occur at an extreme point

Outline

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Piecewise-linear minimization

Piecewise-linear function

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

- $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$
- piecewise-linear function is a pointwise maximum of affine functions

Piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

Equivalent LP formulation

minimize
$$t$$
 subject to $a_i^T x + b_i \le t$, $i = 1, ..., m$

- with additional variable $t \in \mathbb{R}$
- for fixed x, the optimal t is t = f(x)

Matrix form

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T\!\tilde{x} \\ \\ \text{subject to} & \tilde{A}\tilde{x} \leq \tilde{b} \end{array}$$

where

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

ℓ_1 -Norm approximation

minimize
$$||Ax - b||_1$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- for a vector $y \in \mathbb{R}^m$, we have

$$||y||_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m \max\{y_i, -y_i\}$$

Equivalent LP formulation

minimize
$$\sum_{i=1}^{m} u_i$$
 subject to
$$-u \le Ax - b \le u$$

with variables $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$

Robust curve fitting

fit data points (z_i, y_i) to the straight line $x_1 + x_2 z \approx y$ using ℓ_1 -norm:

minimize
$$||Ax - b||_1$$

where

$$A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- · red circles represent the data
- blue dotted line from minimizing $||Ax b||^2$
- black line from minimizing $||Ax b||_1$
- ℓ_1 -norm more robust to outliers

Interview scheduling

- a company needs to schedule job interviews for n candidates $(1, 2, \ldots, n)$
- candidate i is scheduled to be the ith interview
- the starting time of candidate i must be in the interval $[\alpha_i, \beta_i]$, where $\alpha_i < \beta_i$
- goal is to find n starting times of interviews so that the minimal starting time difference between consecutive interviews is maximal

piecewise-linear minimization SA_ENGR507 10.18

- let t_i denote the starting time of interview i
- the objective function is the minimal difference between consecutive starting times:

$$f(t) = \min\{t_2 - t_1, t_3 - t_2, \dots, t_n - t_{n-1}\},\$$

Problem formulation

maximize
$$\min\{t_2-t_1,t_3-t_2,\ldots,t_n-t_{n-1}\}$$

subject to $\alpha_i \leq t_i \leq \beta_i, \quad i=1,2,\ldots,n,$

with variable $t \in \mathbb{R}^n$

Equivalent LP

maximize
$$s$$
 subject to $t_{i+1}-t_i \geq s, \quad i=1,2,\ldots,n-1$ $\alpha_i \leq t_i \leq \beta_i, \quad i=1,2,\ldots,n,$

with variables $t \in \mathbb{R}^n$ and $s \in \mathbb{R}$

Outline

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Quadratic optimization

Quadratic program (quadratic optimization problem)

minimize
$$(1/2)x^TQx + r^Tx$$

subject to $Ax \le b$
 $Gx = h$

- $Q \in \mathbb{S}^n_+$, so objective is convex quadratic
- $r \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $G \in \mathbb{R}^{p \times n}$, $h \in \mathbb{R}^p$, and $b \in \mathbb{R}^m$
- minimize a convex quadratic function over a polyhedron

Quadratically constrained quadratic problem (QCQP)

minimize
$$(1/2)x^TQ_0x + r_0^Tx + s_0$$

subject to $(1/2)x^TQ_ix + r_i^Tx \le 0$, $i = 1, \dots, p$
 $Ax = b$

- $Q_i \in \mathbb{S}^n_+$ (i = 0, 1, ..., m) are positive semidefinite
- feasible set is intersection of *n* ellipsoids and an affine set

Examples

Least squares

minimize
$$||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

Constrained least squares

minimize
$$\|Ax - b\|^2$$

subject to $Gx = h$
 $l_i \le x_i \le u_i, \quad i = 1, \dots, n$

this problem has no simple analytical solution

Example: power distribution (aggregator model)

- · in electricity markets, an aggregator
 - buys wholesale p units of power (Megawatt) from power distribution utilities
 - and resells this power to a group of *n* business or industrial customers
- the *i*th customer, $i = 1, \ldots, n$, would ideally wants p_i Megawatts
- the customer i does not want to receive more or less power than needed
- the customer dissatisfaction can be modeled as

$$f_i(x_i) = c_i(x_i - p_i)^2, \quad i = 1, ..., n$$

 x_i is power given to customer i; c_i is a given customer parameter

- the aggregator problem is finding the power allocations x_i , i = 1, ..., n, such that
 - the average customer dissatisfaction is minimized.
 - the whole power p is sold,
 - and that the dissatisfaction level is no greater than a contract level, say d
- the aggregator problem is

$$\begin{aligned} & \text{minimize} & & \frac{1}{n}\sum_{i=1}^n c_i(x_i-p_i)^2 \\ & \text{subject to} & & \sum_{i=1}^n x_i=p, \\ & & & c_i(x_i-p_i)^2 \leq d, \quad i=1,\dots,n \\ & & & x_i \geq 0, \quad i=1,\dots,n \end{aligned}$$

this is a QCQP

quadratic optimization SA = ENGR507 10.23

Example: portfolio optimization

we want to invest on n stocks to achieve a good return while minimizing risks of losses

- let $x_i \ge 0$ be the proportion of investment on stock i
- let r_i be the return for stock i; we assume that the expected returns are known,

$$\mu_j = \mathbb{E}(r_j), \quad j = 1, 2, \dots, n,$$

and that the covariances of all the pairs of variables are also known,

$$\sigma_{ij}^2 = \mathbb{E}[(r_i - \mu_i)(r_j - \mu_j)], \quad i, j = 1, 2, \dots, n$$

(typically, the mean and variance are estimated from historical data)

- a high variance indicates high risk; a low variance indicates low risk
- positive covariance $\sigma_{ij}^2 > 0$ means stocks i and j prices move in the same direction
- a negative $\sigma_{ij}^2 < 0$ means they one change in opposite direction

• the overall return is the random variable

$$R = \sum_{j=1}^{n} x_j r_j = r^T x$$

whose expectation and variance are given by

$$\mathbb{E}(R) = \mu^T x$$
, $Var(R) = x^T \Sigma x$

- $\bullet \ \mu = (\mu_1, \mu_2, \ldots, \mu_n)$
- ullet Σ is the covariance matrix whose elements are $\Sigma_{ij}=\sigma_{ij}$
- the covariance matrix is always positive semidefinite

Portfolio problem QP formulation:

minimize
$$x^T \Sigma x$$

subject to $\mu^T x \ge \alpha$
 $\mathbf{1}^T x = 1$
 $x \ge 0$

where α is the minimal return value

Portfolio problem QCQP formulation:

$$\begin{array}{ll} \text{maximize} & \mu^T x \\ \text{subject to} & x^T \Sigma x \leq \beta \\ & \mathbf{1}^T x = 1 \\ & x \geq 0 \end{array}$$

where β is the upper bound on the risk

Outline

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Monomials and posynomials

Monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

c > 0 and each $a_i \in \mathbb{R}$ can be any number

Posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

each $c_k > 0$

Example

- wireless cellular network with n paired transmitters and receivers
- p_1, \ldots, p_n are the transmit powers for these pairs
- each transmitter i is intended to communicate with its corresponding receiver i
- each receiver i receives signal: $G_{ii}p_i + \sum_{i \neq i} G_{ij}p_j$, $i = 1, \dots, n$,
 - $-G_{ij}$ are the known path gains from transmitter j to receiver i
- signal to interference plus noise ratio (SINR) for each receiver is:

$$\gamma_i(p) = \frac{G_{ii}p_i}{\sigma_i + \sum_{j \neq i} G_{ij}p_j}, \quad i = 1, \dots, n,$$

- σ_i is the receiver's noise power
- while the SINR functions aren't posynomials, their inverses are:

$$\gamma_i^{-1}(p) = \frac{\sigma_i}{G_{ii}} p_i^{-1} + \sum_{j \neq i} \frac{G_{ij}}{G_{ii}} p_j p_i^{-1}, \quad i = 1, \dots, n$$

Geometric program (GP)

minimize
$$f(x)$$

subject to $g_i(x) \le 1$, $i = 1, ..., m$
 $h_i(x) = 1$, $i = 1, ..., p$

- $f, g_1 \dots, g_m$ are posynomials
- h_1, \ldots, h_p are monomials
- the domain is $\mathcal{D} = \mathbb{R}^n_{++}$ (implicit constraint x > 0)

Example

consider the optimization problem:

$$\begin{array}{ll} \text{maximize} & x/y \\ \text{subject to} & 2 \leq x \leq 3 \\ & x^2 + 3y/z \leq \sqrt{y} \\ & x/z = z^2 \end{array}$$

where $x, y, z \in \mathbb{R}_{++}$

• the problem can be recast into the standard GP form:

$$\begin{array}{ll} \text{minimize} & x^{-1}y\\ \text{subject to} & 2x^{-1} \leq 1\\ & (1/3)x \leq 1\\ & x^2y^{-1/2} + 3y^{1/2}z^{-1} \leq 1\\ & xy^{-1}z^{-2} = 1 \end{array}$$

Change of variable

- geometric programs are generally not convex optimization problems
- but, they can be recast into convex forms through suitable transformations

Change of variable: $y_i = \log x_i$ ($x_i = e^{y_i}$); take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ can be transformed to

$$f(y) = e^{a^T y + \log c} \iff \log f(y) = a^T y + b, \quad (b = \log c)$$

• posynomials $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ can be transformed to

$$f(y) = \sum_{k=1}^{K} e^{a_k^T y + \log c_k} \iff \log f(y) = \log(\sum_{k=1}^{K} e^{a_k^T y + b}), \quad (b_k = \log c_k)$$
 with $a_k = (a_{1k}, \dots, a_{nk})$

geometric programming SA — ENGR507 10.31

Geometric program in convex form

applying the logarithm to the objective/constraint functions results in

$$\begin{array}{ll} \text{minimize} & \tilde{f}(y) = \log \left(\sum_{k=1}^{K_0} \exp(a_{0k}^T y + b_{0k})\right) \\ \text{subject to} & \tilde{g}_i(y) = \log \left(\sum_{k=1}^{K_i} \exp(a_{ik}^T y + b_{ik})\right) \leq 0, \quad i=1,\ldots,m \\ & \tilde{h}_i(y) = h_i^T y + d_i = 0, \quad i=1,\ldots,p \end{array}$$

- $a_{ik} \in \mathbb{R}^n$, i = 1, ..., m contain exponents of posynomial inequality constraints
- $h_i \in \mathbb{R}^n$, $i = 1, \ldots, p$, contain exponents of monomial equality constraints
- ullet convex problem since $ilde{f}, ilde{g}_i$ are convex, and $ilde{h}_i$ are affine
- called geometric program in convex form
- the original form is called geometric program in posynomial form

Example

- ullet consider a cylindrical liquid storage tank with height, h, and diameter, d
- unlike the main body of the tank, its base is made from a distinct material
- assume the height of base remains unchanged irrespective of tank's height
- $V_{\text{tank}} = \pi (d/2)^2 h$ is the volume of the tank
- ullet $V_{ ext{supp}}$ is the volume supplied within a designated time frame
- total costs associated with manufacturing/operating the tank over a set duration (e.g., a year) is divided into
 - filling cost
 - construction cost
- goal is to minimize cost subject to some constraints

Filling costs

$$C_{\text{fill}}(d,h) = \alpha_1 \frac{V_{\text{supp}}}{V_{\text{tank}}} = c_1 h^{-1} d^{-2}$$

- α_1 is a positive constant (in dollars), and $c_1 = \frac{4\alpha_1 V_{\rm supp}}{\pi}$
- tied to supplying a certain volume, V_{supp} , of a liquid within the time-frame
- $V_{\text{supp}}/V_{\text{tank}}$ determines the frequency of tank refilling; hence its cost
- as the volume of the tank diminishes relative to the supply volume, filling costs rise

Construction costs

$$C_{\text{constr}}(d, h) = c_2 d^2 + c_3 dh$$

- $c_2=\alpha_2\frac{\pi}{4}$ and $c_3=\alpha_3\pi$ (α_2,α_3 are +ve dollar-per-square-meter constants)
- include the expenses of constructing the tank's and its base
- the base's cost is proportional to its area, $\frac{\pi d^2}{4}$
- the tank's cost correlates with its surface area, πdh

Total cost

$$C_{\text{total}}(d, h) = C_{\text{fill}}(d, h) + C_{\text{constr}}(d, h)$$
$$= c_1 h^{-1} d^{-2} + c_2 d^2 + c_3 dh$$

this posynomial objective function is subject to constraints such as upper and lower limits on the diameter and height, represented as:

$$0 < d \le d_{\text{max}}, \quad 0 < h \le h_{\text{max}}$$

GP formulation

$$\begin{array}{ll} \text{minimize} & c_1h^{-1}d^{-2}+c_2d^2+c_3dh\\ \text{subject to} & d_{\max}^{-1}d\leq 1\\ & h_{\max}^{-1}h\leq 1 \end{array}$$

with variables d, h > 0

Example: Frobenius norm diagonal scaling

we seek diagonal matrix D = diag(d), d > 0, with

$$\quad \text{minimize} \quad \|DMD^{-1}\|_F^2$$

express as

$$\|DMD^{-1}\|_F^2 = \sum_{i,j=1}^n (DMD^{-1})_{ij}^2 = \sum_{i,j=1}^n M_{ij}^2 d_i^2/d_j^2$$

- a posynomial in d (with exponents 0, 2, and -2)
- in convex form, with $y_i = \log d_i$,

$$\log \|DMD^{-1}\|_F^2 = \log \left(\sum_{i,j=1}^n \exp \left(2(y_i - y_j + \log |M_{ij}|) \right) \right)$$

Outline

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Semidefinite program

a *linear matrix inequality* (LMI) constrains a vector of variables $x \in \mathbb{R}^n$ as

$$F(x) = F_0 + \sum_{i=1}^{m} x_i F_i \le 0$$

with symmetric coefficient matrices F_0, \ldots, F_n of size $m \times m$

Semidefinite program (SDP)

minimize
$$c^T x$$
 subject to $F(x) = F_0 + \sum_{i=1}^n x_i F_i \le 0$

- $x \in \mathbb{R}^n$ is the optimization variable and $c \in \mathbb{R}^n$
- each F_i is a known $m \times m$ symmetric matrices
- if F_0, F_1, \dots, F_m are diagonal matrices the SDP becomes a linear program

General form SDP

minimize
$$c^Tx$$
 subject to
$$F^{(i)}(x)=x_1F_1^{(i)}+\cdots+x_nF_n^{(i)}+F_0^{(i)}\leq 0,\quad i=1,\ldots,K$$

$$Gx\leq h$$

$$Ax=b$$

can be equivalently represented as an SDP

minimize
$$c^T x$$

subject to $\operatorname{diag}(Gx - h, F^{(1)}(x), \dots, F^{(K)}(x)) \leq 0$
 $Ax = b$

semidefinite programs SA_ENGR507 10.38

Example: maximum eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

- for symmetric argument, $\lambda_{\max}(A) = \sup_{\|x\|=1} x^T A x$ is convex
- this problem can be equivalently reformulated as:

minimize
$$t$$

subject to $A(x) - tI \le 0$

with variables are $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

• this is a specific instance of an SDP in the augmented (vector) variable:

$$\hat{x} = \begin{bmatrix} t \\ x \end{bmatrix}, \quad \hat{c} = (1, 0, \dots, 0), \quad \hat{F}(\hat{x}) = A(x) - tI$$

Example: spectral matrix norm minimization

minimize
$$||A(x)||_2$$

- $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n \in \mathbb{R}^{p \times m}$
- this problem is equivalent to the following SDP:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} tI_m & A^T(x) \\ A(x) & tI_p \end{array} \right] \geq 0 \\ \end{array}$$

with decision variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$ $(t \ge 0)$

• to show this, recall that the spectral norm is

$$\|A(x)\|_2 = \sqrt{\lambda_{\max}(A^T(x)A(x))}$$

· it follows that

$$||A(x)||_2 \le t \iff A^T(x)A(x) \le t^2 I, \quad t \ge 0$$

using the Schur complement rule, this matrix inequality is same as

$$\left[\begin{array}{cc} t^2 I_m & A^T(x) \\ A(x) & I_p \end{array}\right] \ge 0 \iff \left[\begin{array}{cc} t I_m & A^T(x) \\ A(x) & t I_p \end{array}\right] \ge 0$$

right inequality obtained by congruence transformation with

$$\operatorname{diag}(1/\sqrt{t}I_m, \sqrt{t}I_p)$$

for t > 0

Example: Frobenius norm minimization

$$\text{minimize} \quad \|A(x)\|_F^2$$

equivalent to SDP:

minimize
$$\operatorname{tr}(Y)$$
 subject to $\begin{bmatrix} Y & A(x) \\ A^T(x) & I_m \end{bmatrix} \geq 0$

with variables $x \in \mathbb{R}^n$ and $Y \in \mathbb{S}^p$

the equivalence of this formulation can be established by noting

$$||A(x)||_F^2 = \text{tr}(A(x)A^T(x))$$

and

$$A(x)A^{T}(x) \leq Y \iff \begin{bmatrix} Y & A(x) \\ A^{T}(x) & I_{m} \end{bmatrix} \geq 0$$

Outline

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

Quasiconvex function

 $f:\mathbb{R}^n\to\mathbb{R}$ is *quasiconvex* if its domain and all of its sublevel sets

$$\mathcal{S}_{\gamma} = \{x \in \text{dom}\, f \mid f(x) \le \gamma\}$$

are convex for every real number γ

- every convex function naturally possesses convex level sets
- there exist nonconvex functions that have convex level sets
- a function is *quasiconcave* if its negative (-f) is quasiconvex
- a function that's both quasiconvex and quasiconcave is called quasilinear
 - both their domain and each level set $\{x \mid f(x) = \gamma\}$ are convex

Graphical illustration

quasiconvex function that is non-convex

- $S_{\alpha} = [a, b]$ is convex
- $S_{\alpha} = (\infty, c)$ is convex

Examples

- $f(x) = \sqrt{|x|}$ is nonconvex, but it is quasiconvex
 - when $\gamma < 0$, then $\mathcal{S}_{\gamma} = \emptyset$
 - for $\gamma \geq 0$, the sublevel set is given by:

$$S_{\gamma} = \{x \mid \sqrt{|x|} \le \gamma\} = \{x \mid |x| \le \gamma^2\} = [-\gamma^2, \gamma^2]$$

- $\log x$ over \mathbb{R}_{++} is both quasiconvex and quasiconcave, making it quasilinear
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \ge x\}$ is quasilinear
- the nonconvex $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_+ but not on \mathbb{R}^2

the function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \in \mathbb{R}^n \mid c^T x + d > 0\}, c \neq 0$$

is quasiconvex since

$$S_{\gamma} = \{x \mid f(x) \le \gamma\} = \{x \in \mathbb{R}^n \mid (a - \gamma c)^T x + (b - \gamma d) \le 0\}$$

is a convex set

• given points $a, b \in \mathbb{R}^n$, the function

$$f(x) = \frac{\|x - a\|}{\|x - b\|}$$

is quasiconvex since its sublevel set represents the halfspace where the distance to \boldsymbol{a} is less than or equal to the distance to \boldsymbol{b}

quasiconvex optimization SA — ENGR507 10.46

Properties of quasiconvex function

• f is quasiconvex iff $\operatorname{dom} f$ is convex and for any $x, y \in \operatorname{dom} f$ with $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

• a differentiable f with convex domain is quasiconvex if and only if

$$f(y) \le f(x) \Longrightarrow \nabla f(x)^T (y - x) \le 0$$

• a sum of quasiconvex functions is not necessarily quasiconvex

Examples

• the cardinality $x \in \mathbb{R}^n$, denoted $\operatorname{card}(x)$, is the no. of its nonzero entries $\operatorname{card}(x)$ is quasiconcave on \mathbb{R}^n_+ (but not on \mathbb{R}^n) since

$$card(x + y) \ge min\{card(x), card(y)\}$$

valid for non-negative vectors x, y

• the rank is quasiconcave on positive semidefinite matrices since

$$\operatorname{rank}(X + Y) \ge \min\{\operatorname{rank} X, \operatorname{rank} Y\}$$

holds for positive semidefinite matrices X, Y

Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$ (10.1) $Ax = b$

- the objective f is quasiconvex
- g_i are convex
- can have locally optimal points that are not (globally) optimal

Convex representation of sublevel sets of \boldsymbol{f}

if f is quasiconvex, there exists a family of functions $\phi_t(x)$ such that:

- $\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f is 0-sublevel set of $\phi_t(x)$:

$$f(x) \le t \iff \phi_t(x) \le 0$$

where for every x, we have $\phi_s(x) \le \phi_t(x)$ for any $s \ge t$

Example

$$f(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f$ can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

find
$$x$$
 subject to
$$\begin{aligned} \phi_t(x) &\leq 0 \\ f_i(x) &\leq 0, \quad i=1,\dots,m \\ Ax &= b \end{aligned}$$

- if feasible then $p^* \le t$; p^* is optimal solution of original quasiconvex problem
- if infeasible, then $p^* \ge t$

Bisection for quasiconvex problems

given: $l \le p^*, u \ge p^*$ and a tolerance $\epsilon > 0$

repeat

- 1. $t := \frac{l+u}{2}$
- 2. solve the convex feasibility problem
- 3. if feasible, set u := t; else, set l := t

until $u - l \le \epsilon$

References and further readings

- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. (chapters 2.2.1, 2.2.4, 4.3)
- G. C. Calafiore and L. El Ghaoui. Optimization Models. Cambridge University Press, 2014. (chapter 9).

references SA FIGRS 07 10.52