

Selecting CMIP6 models for dynamical downscaling: The case of the NAO

Florian Sauerland, Susann Aschenneller (University of Bonn)

Ruth Mottram (Danish Meteorological Institute)

The challenge of CMIP6

	CMIP 1996 -	CMIP2 1997 -	CMIP3 (2005-2006)	CMIP5 (2010-2011)	CMIP6 (2017-2020)
Number of experiments	1	2	12	33	287
Experiment description	present- day ctrl	pd-ctrl & 1pctCO2	Ctrl & 20C & 21C- SRES & AMIP & idealized CO2	Near- and long- term, core + tier 1 + tier 2	DECK + historical run & 23 MIPs
Centres participating	16	18	17	31	42
# of distinct models	19	24	25	59	109
Total data size	1 GB	500 GB	40 TB	2-3 PB	10-50 PB

courtesy Shuting Yang

North Atlantic Oscillation

North Atlantic Oscillation

Persistent negative summer NAO associated with high ice sheet melt

NAO Effects on Ice Sheet Mass Balance

Greenland Blocking Index (GBI)

= geopotential height of 500 hPA area-averaged over Greenland

Associated with NAO, high GBI also enhances ice sheet melt

Used Models

AWI-CM

CanESM2

CESM2

CNRM-CM5

EC-Earth3

GISS GCM

IPSL-CM6

MIROC

MRI-ESM2

UKESM1

blue: only historical simulation available

yellow/orange: historical simulation and future projections SSP245 and SSP585

Temperature anomaly summer months

Temperature anomaly summer months

Temperature anomaly summer months

MIROC6

Temperature anomaly winter months

Temperature anomaly winter months

CESM2

CanESM5

ta_Amon_CanESM5_historical.mat versus ERA5_monthly-temp_85000.mat Months: 1 1 0 0 0 0 0 0 0 0 1 Mean Temperature Difference: -2K

Temperature anomaly winter months

MIROC6

ta_Amon_MIROC6_historical.mat versus ERA5_monthly-temp_85000.mat Months: 1 1 0 0 0 0 0 0 0 0 1 Mean Temperature Difference: -0.25K

NAO Persistence

Modelled NAO Index

Modelled NAO Index

Modelled NAO Index

NAO from Principal Component Analysis - Empirical Orthogonal

adaptor.mars.internal-1565608912.895368-18802-19-8d36d923-f2b1-484d-85a0-be67f1649d8d.nc.mat EOF-1; Months: 1 1 0 0 0 0 0 0 0 0 1 Variance: 48%

NAO - EC Earth and UKESM vs. ERA5

NAO - AWI-CM and CESM2 vs. ERA5

NAO - CanESM5 and MIROC6 vs. ERA5

distance ranking

and the winner is...

(okay, that's valid for this very special paramter...)

1	UKESM	381,03		
2	EC-Earth3	741,71		
3	CNRM	1041,65		
4	IPSL	1111,92		
5	GISS	1516,75		
6	CESM2	1536,71		
7	MRI	1900,37		
8	AWI	1962,17		
9	MIROC6	1972,86		
10	CanESM5	3072,32		

NAO - future projections

Take Away Messages

- It's important to look not only on absolute, but also on large scale circulation indices like NAO
- The more extreme the scenarion, the more differences in the ensemble spread
- Have a look on the geographical distribution --> EOF analysis

Outlook: GBI

GBI

GBI - running standard deviation

GBI - mean over all used models

