## 1.1.2 Calidad en el software

# Tema 1.1. Introducción a la calidad del software

Asignatura: Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz. Enero 2017

CPMS 1.1 -1 -

1

**CALIDAD DEL SOFTWARE** 

# Un caso especial

- Naturaleza especial del software:
  - Se desarrolla, no se fabrica en sentido clásico
    - Todo el coste en diseño, no en fabricación
    - Producto lógico, sin existencia física
  - No se degrada con el uso
    - Repararlo no es devolverlo al estado original
  - Otros productos: sin errores o rechazados
  - La mayoría es artesanal: se construye a medida, en vez de ensamblar componentes existentes
    - Pero puede reutilizarse

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -2 -

# Mejora de la calidad

- Diferencias entre software y otros productos:
  - No se degrada, corregir no es retornar al estado original, propiedad intelectual, flexibilidad, etc.
- Proceso distinto de fabricación tradicional:
  - Procesos, no aplicable control estadístico, etc.
- Un gran esfuerzo de adaptación



© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -3 -

3

CALIDAD DEL SOFTWARE

# Calidad del software

- IEEE Std. 610-1991:
  - "Grado en el que un sistema, un componente, o un proceso cumple los requisitos especificados"
  - "Grado en el que un sistema, un componente, o un proceso cumple las necesidades o expectativas del cliente o el usuario"
- Una buena especificación disminuye los requisitos implícitos.

Requisitos

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -4 -

### Calidad del software

- Cualquier atributo que interfiera con el uso pretendido es síntoma de calidad pobre
- No sólo en producto final: también en intermedio

DISEÑO

Rendimiento y funcionalidad usuario final

Base de producción para programadores y mantenimiento

 No sólo hay clientes externos, también clientes internos (siguientes fases de desarrollo, explotación,...)

© Luis Fernández Sanz. Enero 2017

CPMS 1.1 -5 -

5

CALIDAD DEL SOFTWARE

## Otras definiciones

- Verificación (IEEE Std. 610):
  - "Proceso de evaluación de un sistema o componente para determinar si los productos de una fase satisfacen las condiciones impuestas al inicio de la misma"
- Definición informal de Boehm:
  - "¿Estamos construyendo correctamente el producto?"

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -6 -

# Otras definiciones • Validación (IEEE Std.610): - "El proceso de evaluación de un sistema o un componente durante o al final del proceso de desarrollo para determinar si satisface los requisitos especificados" • Definición informal de Boehm: - "¿Estamos construyendo el producto correcto?"



# Ciencia -> ingeniería

- Computer science → Software engineering
  - Soluciones eficientes, problemas prácticos, entornos reales
  - Eficacia con eficiencia
- Aplicar calidad e ingeniería de software:
  - Superar la confrontación calidad vs productividad
  - Hablar el mismo idioma que los "managers"
    - Objetivos, dinero, mercado, etc.
  - Lograr eficiencia/productividad y demostrarla

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -9 -

9









# Tecnología

- Opción evidente para mayoría de profesionales:
  - Actividad comercial, novedades constantes, etc.
  - Evolución: técnica, procedimientos, paradigmas, etc.
  - También mejora funcionalidad, integración, etc.
- Posibles dudas sobre datos en mejoras reales de productividad y calidad
  - Verdadera utilidad depende de uso en organización
  - Formación, adaptación, etc.

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -13 -

13



CALIDAD DEL SOFTWARE

# Mejora de procesos

- Mejora de técnicas y métodos de desarrollo
  - Actuación con modelos de procesos
    - CMMi, ISO 15504 (SPICE), etc.
    - -39% defectos (Zubrow, 1994)
  - Ordenación con ISO 9001
    - Dudas (FitzGibbon, 2000)
  - Estándares, metodologías, notaciones
    - METRICA, UML, ISO, IEEE, etc.

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -14 -

# Factores humanos (y entorno)

- Datos de influencia en productividad (Jones):
  - Mayor influencia de lo negativo que de lo positivo
  - "Las personas son nuestro principal activo"
    - Al menos no ahorrar demasiado

| Factores                  | Influencia positiva (+%) | Influencia negativa (-%) |
|---------------------------|--------------------------|--------------------------|
| Experiencia personal      | Mucha +55%               | Poca -87%                |
| Inexperiencia de gestores | Mucha +65%               | Poca –90%                |
| Oficinas                  | Ergonómicas +15%         | Abarrotadas –27%         |
| Horas extra no pagadas    | Sí +15%                  | No 0%                    |
| Moral                     | Alta +7%                 | Baja –6%                 |
| Organización              | Jerárquica +5%           | Matricial –8%            |

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -15 -

15

CALIDAD DEL SOFTWARE

# Factores humanos (y entorno)

- Otras reglas:
  - "Incorporar personal a un proyecto retrasado lo retarda más" (Brooks, 1975)
  - Mejor quitar a un programador incompetente que añadir otro adicional (Schulmeyer, 1992)
- Rendimiento de peores y mejores (Schnupp, 1976):

| Tamaño de programa               | 5:1  |
|----------------------------------|------|
| Tiempo de codificación           | 25:1 |
| Tiempo requerido para pruebas    | 26:1 |
| Tiempo de máquina requerido      | 11:1 |
| Tiempo de ejecución del programa | 13:1 |

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -16 -





# 1.1.3 Ámbitos de actuación

# Tema 1.1. Introducción a la calidad del software

Asignatura: Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -19 -

19

#### CALIDAD DEL SOFTWARE

# Niveles de acción

#### • Organización:

- Procesos: CMMi, ISO 15504, ISO 9000, EFQM, etc.
- Mejoras generales: PSP, TSP, RRHH, formación, cualificación, métodos de trabajo



- SQA (Aseguramiento en el proyecto), planes
- Técnicas de aseguramiento: gestión de configuración, métricas, pruebas, revisiones y auditorías





© Luis Fernández Sanz, Enero 2017

20

CPMS 1.1 -20 -











#### CALIDAD DEL SOFTWARE

#### ISO 15504

- Conocido como SPICE (Software Process Improvement and Capability Determination)
  - Origen: European Software Institute (<u>www.esi.es</u>) desde 1993
  - Base: CMMi e ISO 12207 (y otros modelos, incluso ISO 9000) para proponer un estándar mundial
    - Procesos de ISO 12207 ampliando y retocando
    - Niveles de CMMi
- Comparando con CMMi:
  - Incluye nivel previo, se centra en madurez de procesos de software más que de organización
  - Nivel para cada proceso más que para la organización

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -26 -







#### CALIDAD DEL SOFTWARE

# Sistema de calidad

- ISO 9000: Conjunto de estructura de la organización, responsabilidades, procedimientos, procesos y recursos para la gestión de la calidad
- Sistema en proporción a los objetivos de calidad
- La dirección es responsable de desarrollar, e implantar un sistema de calidad, que debe:
  - Ser eficaz y comprendido adecuadamente
  - Dar confianza en satisfacer necesidades de clientes
  - Poner más énfasis en prevenir que en detectar

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -30 -

# Documentación del sistema de calidad

- ISO 9004: MANUAL DE CALIDAD es el documento principal
  - Descripción del sistema de calidad
  - Referencia permanente (Principios) al implantar y aplicar
- Planes de calidad:
  - Para proyectos
  - Coherentes con el sistema de gestión de calidad
  - Objetivos; autoridad y responsabilidad específica; métodos y procedimientos a aplicar; inspecciones, pruebas, auditorías; método para cambio del plan

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -31 -

31





#### CALIDAD DEL SOFTWARE

# Certificación de empresa

- Interés de empresas por certificarse:
  - Sectores que obligan para acceder a contratos
  - Publicidad de calidad: moda de certificarse,...
  - Convencimiento de acceder a un nivel superior, desde el mero control y ausencia de tradición
  - Exigencias internacionales: contratos, barreras de importación, etc.
- Problema:
  - Empresas sin tradición: más interés en pasar examen que en mejorar

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -34 -









# Gestión de calidad de software en proyectos

#### Actividades a realizar

- Planificar aseguramiento de calidad del software
- Desarrollar métricas de Calidad
- Gestionar calidad del software
- Identificar necesidades de mejora de la calidad
- Técnicas (IEEE std. 1074)
  - Verificación y validación: pruebas y revisiones
  - Medición de software
  - Gestión de configuración

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -39 -

39



# Otras técnicas de V y V

- Apoyo de herramientas:
  - Herramientas específicas
  - Funcionalidad de herramientas CASE
- Otras técnicas de V y V (IEEE Std. 1012):
  - Análisis de algoritmos
  - Análisis de flujo de control, de flujo de datos
  - Análisis por simulación, ejecución simbólica
  - Monitorización del rendimiento, análisis de tiempos y tamaño

© Luis Fernández Sanz. Enero 2017

CPMS 1.1 -41 -

41



# ¿Debo hacer todo esto?

- Puede parecer demasiada burocracia
- El estándar señala un nivel muy alto, para proyectos críticos
- Debe adaptarse:
  - Plan de calidad
  - Objetivos
  - Documentación

© Luis Fernández Sanz. Enero 2017

CPMS 1.1 -43 -

43

#### CALIDAD DEL SOFTWARE

# **Preguntas**

Señalar la respuesta correcta sobre la calidad:

- a) La política de calidad de la empresa corresponde a la gestión de calidad
- b) Sustituye a plazo y coste como factor de gestión
- c) Se suele insistir en el concepto de garantía de calidad
- d) Ninguna de las anteriores

Señalar la frase correcta para la calidad de software a nivel de proyecto:

- a) Todos los planes de aseguramiento de calidad de software (PACS) deben seguir la norma IEEE 730
- , b) Las actividades de calidad en un proyecto deben especificarse en su PACS
- c) IEEE 730 no indica ninguna estructura para el PACS
- d) Ninguna de las anteriores

© Luis Fernández Sanz, Enero 2017

CPMS 1.1 -44 -