Coupon Bight Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 October, 2025

Contents

Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete Chlorophyll a, Uncorrected for Pheophytin - Discrete Dissolved Oxygen - Discrete Dissolved Oxygen Saturation - Discrete Salinity - Discrete Total Nitrogen - Discrete Total Phosphorus - Discrete Turbidity - Discrete Water Temperature - Discrete	7 9 11 13 16 18
Water Quality - Continuous Dissolved Oxygen - Continuous Dissolved Oxygen Saturation - Continuous pH - Continuous Salinity - Continuous Turbidity - Continuous Water Temperature - Continuous	27 29 31 33
Coral Reef	37
Species list	39
References	43

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-10-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (FDEP) Division of Environmental Assessment and Restoration (DEAR) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (QAQC) Flags are inserted into the $SEACAR_QAQCFlagCode$ and $SEACAR_QAQC_Description$ columns of the export data. The Include column indicates whether the QAQC Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the Include column to exclude data (1 to include, 0 to exclude).

Table 1: Continuous Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
рН	None	2.000000	14

Table 2: Discrete Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	$\mathrm{mg/L}$	-	-
Chlorophyll a, Corrected for Pheophytin	ug/L	-	-
Chlorophyll a, Uncorrected for Pheophytin	ug/L	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	$\mathrm{mg/L}$	-	-
Nitrogen, organic	$\mathrm{mg/L}$	-	-
Phosphate, Filtered (PO4)	$\mathrm{mg/L}$	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	mS/cm	0.005000	100
Total Kjeldahl Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	$\mathrm{mg/L}$	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
рН	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	$SEACAR\ QAQCF lagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from STORET and WIN data are examined with the database and used to populate the Include column in data exports.

Table 4: Value Qualifier codes excluded from analysis

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network and data flagged with Value Qualifier **H** are included for this program only.

- **H** Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- **Q** Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- ${f S}$ Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.
- U Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the SWMP continuous program are examined with the database and used to populate the Include column in data exports. SWMP Qualifier Codes are indicated by QualifierSource=SWMP.

Table 5: SWMP Value Qualifier codes

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	1	Optional parameter not collected
SWMP	-2	0	Missing data
SWMP	-3	0	Data rejected due to QA/QC
SWMP	-4	0	Outside low sensor range
SWMP	-5	0	Outside high sensor range
SWMP	0	1	Passed initial QA/QC checks
SWMP	1	0	Suspect data
SWMP	2	1	Reserved for future use
SWMP	3	1	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	1	Historical: Pre-auto QA/QC
SWMP	5	1	Corrected data

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, and water quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined \ \ WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2025-Sep-04.txt$
- Combined WQ WC NUT Chlorophyll a uncorrected for pheophytin-2025-Sep-04.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Dissolved_Oxygen-2025-Sep-04.txt$
- Combined WQ WC NUT Dissolved Oxygen Saturation-2025-Sep-04.txt
- $\bullet \quad Combined_WQ_WC_NUT_pH\text{--}2025\text{--}Sep\text{--}04.txt$
- Combined_WQ_WC_NUT_Salinity-2025-Sep-04.txt
- Combined WQ_WC_NUT_Secchi_Depth-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Nitrogen-2025-Sep-04.txt$
- Combined_WQ_WC_NUT_Total_Phosphorus-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2025-Sep-04.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_Turbidity \hbox{-} 2025 \hbox{-} Sep\hbox{-} 04.txt$
- \bullet Combined_WQ_WC_NUT_Water_Temperature-2025-Sep-04.txt

Chlorophyll a, Uncorrected for Pheophytin - Discrete

Seasonal Kendall-Tau Trend Analysis

Figure 1: Scatter plot of monthly average levels of chlorophyll a, uncorrected for pheophytin, over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only laboratory-analyzed chlorophyll a (triangles) is included in the plot.

Table 6: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	р
Lab	Significantly increasing trend	167	24	1995 - 2025	0.6	0.4518	0.073	0.0177	0

Monthly average chlorophyll a, uncorrected for pheophytin, increased by $0.02~\mu g/L$ per year, indicating a decrease in water clarity.

Figure 2: Map showing location of discrete water quality sampling locations within the boundaries of $Coupon\ Bight$ $Aquatic\ Preserve$. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 7: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	108	2019	2025
297	61	1995	2011

297- Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1 5002- Florida STORET / WIN 2

Dissolved Oxygen - Discrete

Seasonal Kendall-Tau Trend Analysis

Dissolved Oxygen - Discrete, All Depths Coupon Bight Aquatic Preserve Monthly average dissolved oxygen (mg/L) \bigcirc 0 Trend type 0 0 0 0 Significant trend 80 000 000 Non-significant trend 0 0 Activity type 0 0 00 Field 0 \bigcirc 0 0 0 \circ 0 7006 7076 17026 7996

Figure 3: Scatter plot of monthly average dissolved oxygen over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only dissolved oxygen values measured in the field (circles) are included in the plot.

Year

Table 8: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	No significant trend	193	21	1995 - 2025	5.9953	-0.1517	6.45	-0.0283	0.0821

Dissolved oxygen showed no detectable trend between 1995 and 2025.

Figure 4: Map showing location of discrete water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 9: Programs contributing data for Dissolved Oxygen

$\overline{ProgramID}$	N_Data	YearMin	YearMax
297	111	1995	2011
5002	54	2020	2025
103	24	2008	2011
118	7	2020	2020
69	4	2000	2000

- 69 Fisheries-Independent Monitoring (FIM) Program³
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁵
- 297 Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1
- 5002 Florida STORET / WIN²

Dissolved Oxygen Saturation - Discrete

Seasonal Kendall-Tau Trend Analysis

Dissolved Oxygen Saturation - Discrete, All Depths Coupon Bight Aquatic Preserve

Figure 5: Scatter plot of monthly average dissolved oxygen saturation over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only dissolved oxygen saturation values measured in the field (circles) are included in the plot.

Table 10: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	No significant trend	220	23	1995 - 2025	93.6199	0.0123	92.2197	0.053	0.8544

Dissolved oxygen saturation showed no detectable trend between 1995 and 2025.

Figure 6: Map showing location of discrete water quality sampling locations within the boundaries of $Coupon\ Bight$ $Aquatic\ Preserve$. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 11: Programs contributing data for Dissolved Oxygen Saturation

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	113	2020	2025
297	112	1995	2011

297- Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1 5002- Florida STORET / WIN 2

Salinity - Discrete

Seasonal Kendall-Tau Trend Analysis

Salinity - Discrete, All Depths Coupon Bight Aquatic Preserve

Figure 7: Scatter plot of monthly average salinity over time. If the time series included ten or more years of discrete observations, significant (blue) or non-significant (magenta) trend lines are also shown. Discrete salinity values derived from grab samples analyzed in the field (circles) or the laboratory (triangles) are both included in the plot.

Table 12: Seasonal Kendall-Tau Trend Analysis for Salinity

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
All	Significantly increasing trend	235	23	1995 - 2025	36.7537	0.2826	36.3405	0.0358	0.0001

Monthly average salinity increased by 0.04 ppt per year.

Figure 8: Map showing location of discrete water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 13: Programs contributing data for Salinity

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	119	2020	2025
297	111	1995	2011
118	6	2020	2020
69	4	2000	2000

69 - Fisheries-Independent Monitoring (FIM) Program³

118 - National Aquatic Resource Surveys, National Coastal Condition Assessment⁵

297 - Florida Keys National Marine Sanctuary Water Quality Monitoring Project¹

5002 - Florida STORET / WIN 2

Total Nitrogen - Discrete

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. Future calculations of total nitrogen values may be based on components with mixed sample fractions.
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

Seasonal Kendall-Tau Trend Analysis

Figure 9: Scatter plot of monthly average total nitrogen over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only nitrogen values obtained from laboratory analyses (triangles) are included in the plot.

Table 14: Seasonal Kendall-Tau Trend Analysis for Total Nitrogen

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	р
Lab	Significantly increasing trend	196	24	1995 - 2025	0.2721	0.3152	0.1745	0.0055	0

Monthly average total nitrogen increased by less than 0.01 mg/L per year.

Figure 10: Map showing location of discrete water quality sampling locations within the boundaries of $Coupon\ Bight$ Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 15: Programs contributing data for Total Nitrogen

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	132	2019	2025
297	64	1995	2011

297- Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1 5002- Florida STORET / WIN 2

Total Phosphorus - Discrete

Seasonal Kendall-Tau Trend Analysis

Total Phosphorus - Discrete, All Depths Coupon Bight Aquatic Preserve 0.05 Δ \triangle 0.04 Monthly average total phosphorus (mg/L) Trend type Significant trend 0.03 Non-significant trend Δ \triangle Activity type 0.02 △ Lab 0.01 7006 7076 Year

Figure 11: Scatter plot of monthly average total phosphorus over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only phosphorus values obtained from laboratory analyses (triangles) are included in the plot.

Table 16: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly increasing trend	197	24	1995 - 2025	0.007	0.2658	0.0057	0.0001	0.0002

Monthly average total phosphorus increased by less than 0.01 mg/L per year.

Figure 12: Map showing location of discrete water quality sampling locations within the boundaries of $Coupon\ Bight$ Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 17: Programs contributing data for Total Phosphorus

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	135	2019	2025
297	64	1995	2011

297- Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1 5002- Florida STORET / WIN 2

Turbidity - Discrete

Seasonal Kendall-Tau Trend Analysis

Turbidity - Discrete, All Depths Coupon Bight Aquatic Preserve Trend type Significant trend Non-significant trend Activity type Lab

Figure 13: Scatter plot of monthly average turbidity over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only turbidity values measured in the laboratory (triangles) are included in the plot.

Year

Table 18: Seasonal Kendall-Tau Trend Analysis for Turbidity

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	No significant trend	152	11	2008 - 2025	0.7	-0.1084	0.9344	-0.0102	0.3564

Turbidity showed no detectable trend between 2008 and 2025.

Figure 14: Map showing location of discrete water quality sampling locations within the boundaries of $Coupon\ Bight$ Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 19: Programs contributing data for Turbidity

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	134	2019	2025
297	74	1995	2011
103	24	2008	2011

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴

297- Florida Keys National Marine Sanctuary Water Quality Monitoring $\operatorname{Project}^1$

5002 - Florida STORET / WIN²

Water Temperature - Discrete

Seasonal Kendall-Tau Trend Analysis

Water Temperature - Discrete, All Depths Coupon Bight Aquatic Preserve 8 0 0 00 Monthly average water temperature (Deg C) 30 0 Trend type Significant trend 0 0 0 Non-significant trend \bigcirc Activity type 0 Field 00 \circ 0 0 0 20 \bigcirc 0 7006 7076 + 2026 7996

Figure 15: Scatter plot of monthly average water temperature over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only water temperature measurements taken in the field (circles) are included in the plot.

Year

Table 20: Seasonal Kendall-Tau Trend Analysis for Water Temperature

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	р
Field	No significant trend	287	28	1995 - 2025	28.9	0.0027	27.4174	-0.0006	0.9337

Water temperature showed no detectable trend between 1995 and 2025.

Figure 16: Map showing location of discrete water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 21: Programs contributing data for Water Temperature

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	131	2020	2025
297	110	1995	2011
103	25	2008	2011
982	23	2015	2023
69	4	2000	2000
95	1	2010	2010

- 69 Fisheries-Independent Monitoring (FIM) Program³
- 95- Harmful Algal Bloom Marine Observation Network 6
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 4
- 297 Florida Keys National Marine Sanctuary Water Quality Monitoring Project 1
- 982- Florida Keys Bleach Watch 7
- 5002 Florida STORET / WIN 2

Water Quality - Continuous

The following files were used in the continuous analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_SE\text{-}2025\text{-}Sep\text{-}19.txt$
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_SE-2025-Sep-19.txt
- $\bullet \quad Combined_WQ_WC_NUT_cont_pH_SE\text{-}2025\text{-}Sep\text{-}19.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Salinity_SE\text{-}2025\text{-}Sep\text{-}19.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Turbidity_SE\text{-}2025\text{-}Sep\text{-}19.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Water_Temperature_SE\text{-}2025\text{-}Sep\text{-}19.txt$

Continuous monitoring locations in Coupon Bight Aquatic Preserve

Table 22: Station overview for Continuous parameters by Program

ProgramID	ProgramLocation ID	Years of Data	Use in Analysis	Parameters
10004	FKCB	1	FALSE	DO , DOS , pH , Sal , Turb , TempW

Program names:

10004 - Florida Keys Aquatic Preserves Continuous Water Quality Monitoring⁸

Figure 17: Map showing continuous water quality sampling locations within the boundaries of $Coupon\ Bight\ Aquatic$ Preserve. Sites marked as $Use\ In\ Analysis$ (green) are featured in this report.

Dissolved Oxygen - Continuous

Figure 18: Scatter plot of monthly average dissolved oxygen over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 23: Seasonal Kendall-Tau Results for Dissolved Oxygen - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16262	1	2024 - 2024	6.8	-	-	-	-

Figure 19: Map showing location of dissolved oxygen continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Dissolved Oxygen Saturation - Continuous

Figure 20: Scatter plot of monthly average dissolved oxygen saturation over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 24: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16263	1	2024 - 2024	103.3	-	-	-	-

Figure 21: Map showing location of dissolved oxygen saturation continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

pH - Continuous

Figure 22: Scatter plot of monthly average pH over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 25: Seasonal Kendall-Tau Results for pH - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16263	1	2024 - 2024	8.2	-	-	-	-

Figure 23: Map showing location of ph continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Salinity - Continuous

Figure 24: Scatter plot of monthly average salinity over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 26: Seasonal Kendall-Tau Results for Salinity - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16258	1	2024 - 2024	36.5	-	-	-	-

Figure 25: Map showing location of salinity continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Turbidity - Continuous

Figure 26: Scatter plot of monthly average turbidity over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 27: Seasonal Kendall-Tau Results for Turbidity - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16240	1	2024 - 2024	4	-	-	-	-

Figure 27: Map showing location of turbidity continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Water Temperature - Continuous

Figure 28: Scatter plot of monthly average water temperature over time at continuously monitored program locations. Each location is analyzed separately, with significant (blue) or non-significant (magenta) trend lines shown for time series that included five or more years of observations.

Table 28: Seasonal Kendall-Tau Results for Water Temperature - All Stations

Station	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
FKCB	Insufficient data to calculate trend	16263	1	2024 - 2024	26.8	-	-	-	-

Figure 29: Map showing location of water temperature continuous water quality sampling locations within the boundaries of *Coupon Bight Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Coral Reef

The data file used is: $All_CORAL_Parameters-2025-Sep-04.txt$ Species Richness

Figure 30: Line graph of annual average species richness of grazers and reef-dependent species over time. If the time series included more than one year of observations, a line connects the data points for visualization.

Year

Table 29: Coral Species Richness

Sar	nple Count	Number of Years	Period of Record	Median N of Taxa	Mean N of Taxa
	72	16	1999 - 2017	281	182.125

The median annual number of taxa was 281 based on 72 observations collected between 1999 and 2017.

Figure 31: Map showing location of coral species richness sampling locations within the boundaries of $Coupon\ Bight$ $Aquatic\ Preserve$. The bubble size on the maps above reflect the amount of data available at each sampling site.

Species list

Aplysina fulva

Abudefduf saxatilis¹ Oligoplites saurus¹ Epinephelus drummondhayi¹ Epinephelus guttatus¹ Ophioblennius macclurei¹ Acanthemblemaria aspera¹ Acanthemblemaria chaplini 1 Epinephelus itajara¹ Opistognathus aurifrons Acanthemblemaria maria¹ Epinephelus morio¹ Opistognathus macrognathus Acanthemblemaria spinosa¹ Epinephelus striatus¹ Opistognathus sp. Eques lanceolatus¹ Opistognathus whitehursti Acanthocybium solandri Acanthostracion polygonium¹ Equetus punctatus¹ Orbicella annularis² Acanthostracion quadricornis¹ Erylus formosus Orbicella faveolata² Erythropodium caribaeorum² Orbicella franksi² Acanthurus bahianus¹ Acanthurus chirurgus¹ Eucinostomus argenteus Orthopristis chrysoptera¹ Acanthurus coeruleus¹ Eucinostomus gula Other calcareous macroalgae Acanthurus sp.¹ Eucinostomus jonesii Other fleshy macroalgae Acropora cervicornis² Eunicea calvculata² Other green algae Acropora palmata² Eunicea flexuosa² Oxyurichthys stigmalophius¹ Actiniaria Eunicea fusca² Pagrus pagrus¹ Eunicea knighti² Palythoa mammillosa Aetobatus narinari Eunicea laciniata² Agaricia agaricites² Pandaros acanthifolium Parablennius marmoreus¹ Agaricia fragilis² Eunicea laxispica² Agaricia grahamae² Eunicea mammosa² Paraclinus marmoratus¹ Agaricia humilis² Eunicea palmeri² Paraclinus nigripinnis¹ Agaricia lamarcki² Eunicea succinea² Paralichthys albigutta¹ Eunicea tourneforti² Paranthias furcifer¹ Agaricia spp. Agaricia undata² Eusmilia fastigiata² Paregues acuminatus¹ Euthynnus alletteratus Pareques umbrosus¹ Agelas clathrodes Agelas conifera Favia fragum² Pempheris schomburgkii¹ Agelas dispar Fine turf Penicillus spp. Fistularia tabacaria¹ Agelas schmidtii Peyssonnelia Fowlerichthys ocellatus¹ Phaeoptvx xenus¹ Agelas wiedenmayeri Ahlia egmontis Galaxaura spp. Phorbas sp. Phyllangia americana² Aiolochroia crassa Geodia gibberosa Albula vulpes Geodia neptuni Phymanthus crucifer Alcyonacea sp.² Gerres cinereus Plakortis angulospiculatus Alectis ciliaris 1 Plexaura homomalla² Ginglymostoma cirratum Plexaura kuna 2 Alphestes afer¹ Gnatholepis thompsoni¹ Aluterus monoceros¹ Gobioclinus bucciferus¹ Plexaurella dichotoma² Aluterus schoepfii¹ Gobioclinus filamentosus¹ Plexaurella grandiflora² Aluterus scriptus¹ Gobioclinus gobio¹ Plexaurella grisea² Plexaurella nutans² Aluterus sp.¹ Gobioclinus kalisherae¹ Amblycirrhitus pinos¹ Gobiosoma sp.¹ Pomacanthus arcuatus¹ Gorgonia flabellum² Pomacanthus paru¹ Amphimedon compressa Amphimedon viridis Gorgonia mariae² Porifera Gorgonia ventalina² Amphiroa spp. Porifera spp. Gramma loreto¹ Porites astreoides² Anchoa lyolepis Porites branneri 2 Anisotremus surinamensis¹ Gymnothorax funebris¹ Porites colonensis² Anisotremus virginicus¹ Gymnothorax miliaris¹ Porites divaricata² Antillogorgia acerosa² Gymnothorax moringa¹ Antillogorgia americana² Gymnothorax nigromarginatus¹ Porites furcata² Porites porites² Antillogorgia bipinnata² Gymnothorax saxicola¹ $\rm Antillogorgia~kallos^2$ Gymnothorax vicinus¹ Porites spp.² Haemulon album¹ Antillogorgia rigida² Priacanthus arenatus¹ Haemulon aurolineatum¹ Aplysina archeri Priolepis hipoliti¹ $Prionotus ophryas^1$ Aplysina cauliformis Haemulon carbonarium¹ Haemulon flavolineatum¹ Aplysina fistularis Pristipomoides aquilonaris¹

Pristis pectinata

Haemulon macrostomum¹

Aplysina lacunosa Apogon aurolineatus¹ Apogon binotatus¹ Apogon maculatus¹ Apogon phenax¹

Apogon pseudomaculatus¹ Apogon quadrisquamatus¹ Apogon townsendi¹

Archosargus probatocephalus 1 Archosargus rhomboidalis 1

Arturia canariensis Astrapogon puncticulatus 1

Astrapogon sp.¹ Astrapogon stellatus¹ Astroscopus guttatus Atherinomorus stipes Aulostomus maculatus¹

Axinellida Azurina cyanea¹ Balistes capriscus¹ Balistes sp.¹ Balistes vetula¹ Bare substrate Bartholomea annulata

Bartnoiomea annuiata Blenniidae sp. ¹ Bodianus pulchellus ¹ Bodianus rufus ¹

Bollmannia boqueronensis¹

Bothus lunatus¹ Bothus ocellatus¹

Bryozoa

Brachygenys chrysargyreum¹
Branching gorgonian²
Briareum asbestinum²
Brockius nigricinctus¹
Brotula barbata
Brown algae

Calamus bajonado¹
Calamus calamus¹
Calamus nodosus¹
Calamus penna¹
Calamus proridens¹
Calcareous green algae
Callionymus bairdi¹

Callyspongia (Callyspongia) fallax Callyspongia (Cladochalina) aculeata Callyspongia (Cladochalina) plicifera Callyspongia (Cladochalina) tenerrima

Calyx podatypa

Caranx latus¹

Cantherhines macrocerus¹
Cantherhines pullus¹
Canthidermis sufflamen¹
Canthigaster rostrata¹
Caranx bartholomaei¹
Caranx crysos¹
Caranx hippos¹

Haemulon parra¹
Haemulon plumierii¹
Haemulon sciurus¹
Haemulon sp. ¹
Haemulon striatum¹
Haemulon vittatum¹
Halichoeres bivittatus¹
Halichoeres caudalis¹
Halichoeres cyanocephalus¹
Halichoeres garnoti¹

Halichoeres maculipinna¹
Halichoeres pictus¹
Halichoeres poeyi¹
Halichoeres radiatus¹

Haemulon melanurum¹

Haliclona (Reneira) aquaeductus Haliclona (Reniera) tubifera

Haliclona sp.
Halimeda spp.
Halisarca sp.

Harengula humeralis Harengula jaguana Helioseris cucullata² Hemiemblemaria simula¹ Hemiramphus brasiliensis Heteroconger longissimus

Heteropriacanthus cruentatus¹ Higginsia strigilata Hippocampus erectus¹

Hippospongia sp. Holacanthus bermudensis¹ Holacanthus ciliaris¹ Holacanthus tricolor¹ Holocentrus adscensionis¹

Holocentrus rufus¹ Hypanus americanus

Hypleurochilus bermudensis¹ Hypoatherina harringtonensis Hypoplectrus chlorurus¹ Hypoplectrus gemma¹ Hypoplectrus guttavarius¹ Hypoplectrus hybrid¹ Hypoplectrus indigo¹ Hypoplectrus nigricans¹ Hypoplectrus puella¹

Hypoplectrus puella¹
Hypoplectrus sp.¹
Hypoplectrus tann¹
Hypoplectrus unicolor¹
Hyporthodus flavolimbatus¹
Hyporthodus niveatus¹
Hyrtios violaceus
Iciligorgia schrammi²
Iotrochota birotulata
Ircinia campana
Ircinia felix
Ircinia strobilina

Prognathodes aculeatus¹
Pseudobatos lentiginosus
Pseudodiploria clivosa²
Pseudodiploria strigosa²
Pseudoplexaura crucis²
Pseudoplexaura flagellosa²
Pseudoplexaura porosa²
Pseudoplexaura wagenaari²
Pseudoplexaura wagenaari²
Pseudupeneus maculatus¹
Ptereleotris calliura
Ptereleotris helenae
Pterogorgia anceps²
Pterogorgia citrina²

Pterogorgia guadalupensis²

Pterois miles¹
Pterois volitans¹
Ptilocaulis sp.

Rachycentron canadum

Razorfish sp.¹

Red calcareous branching algae

Red frondose algae Remora remora Rhodactis osculifera Rhomboplites aurorubens¹

Ricordea florida

Rubble

Rypticus maculatus¹ Rypticus saponaceus¹

Sand-sand

Sand on hard-bottom Sardinella aurita Sargassum spp.

Sargocentron coruscum¹ Sargocentron vexillarium¹

Scartella cristata¹ Scarus coelestinus¹ Scarus coeruleus¹ Scarus guacamaia¹ Scarus iseri¹ Scarus sp.¹ Scarus taeniopterus¹

Scarus taemopte Scarus vetula¹ Schultzea beta¹ Scleractinia² Scolymia sp. Scolymia spp.²

Scomberomorus cavalla Scomberomorus maculatus Scomberomorus regalis Scopalina ruetzleri Scorpaena plumieri¹ Scorpaenodes caribbaeus¹

Selachii Selene vomer¹ Seriola dumerili¹ Seriola rivoliana¹ Seriola sp.¹

Ircinia variabilis

Caranx lugubris¹ Caranx ruber¹ Caranx sp.¹

Carcharhinus leucas Carcharhinus limbatus Carcharhinus perezii Centropomus undecimalis

Carcharhinus falciformis

Centropyge argi¹

Cephalopholis cruentata¹ Cephalopholis fulva¹ Chaenopsis limbaughi¹ Chaetodipterus faber Chaetodon capistratus¹ Chaetodon ocellatus¹ Chaetodon sedentarius¹ Chaetodon striatus¹

Chilomycterus antennatus¹ Chilomycterus reticulatus¹ Chilomycterus schoepfii¹ Chloroscombrus chrysurus¹

Chondrilla nucula Chondrosia sp.

Chriodorus atherinoides Chromis enchrysurus¹ Chromis insolata¹ Chromis multilineata¹ Chromis scotti¹ Cinachyra sp.

Cladocora arbuscula² Clathria (Thalysias) venosa Clathria (Thalysias) virgultosa

Clathria sp. Clepticus parrae¹ Cliona caribbaea Cliona delitrix Cliona sp. Cliona spp. Cliona varians Colpophyllia natans² Condylactis gigantea ${\bf Corallimor pharians}$ Coryphopterus dicrus¹ Coryphopterus eidolon¹

Coryphopterus glaucofraenum¹

Coryphopterus lipernes¹ Coryphopterus personatus¹

Coryphopterus punctipectophorus¹

Coryphopterus sp.¹ Cribrochalina vasculum Crustose coralline algae Cryptotomus roseus¹ Ctenogobius saepepallens¹

Cyanobacteria

Dactylopterus volitans Decapterus macarellus¹ Decapterus punctatus¹

Isophyllia rigida² Isophyllia sinuosa² Istiophorus platypterus

Jania spp. Jenkinsia sp. Kallymenia spp. Kyphosus sectatrix¹ Labrisomidae sp.¹ Labrisomus nuchipinnis¹

Lachnolaimus maximus¹ Lactophrys bicaudalis¹ Lactophrys trigonus¹ Lactophrys triqueter¹ Lagodon rhomboides¹

Laurencia spp. Lebrunia neglecta

Liagora spp. Liopropoma eukrines¹ Liopropoma mowbrayi¹ Liopropoma rubre¹ Lobophora spp. Lutjanus analis¹ Lutjanus apodus¹ Lutjanus buccanella¹

Lutjanus cyanopterus¹ Lutianus griseus¹ Lutjanus jocu¹ Lutjanus mahogoni¹ Lutjanus synagris¹ Madracis carmabi² Madracis decactis² Madracis formosa² Madracis myriaster² Madracis senaria² Malacanthus plumieri Malacoctenus aurolineatus¹

Malacoctenus gilli¹ Malacoctenus macropus¹ Malacoctenus triangulatus¹ Malacoctenus versicolor¹ Manicina areolata² Meandrina meandrites² Megalops atlanticus Melichthys niger¹ Menidia sp.

Microgobius carri¹ Microgobius microlepis¹ Microspathodon chrysurus¹ Millepora alcicornis² Millepora complanata² Mobula birostris Monacanthus ciliatus¹

Monacanthus tuckeri¹ Monanchora arbuscula Montastraea cavernosa² Mulloidichthys martinicus¹

Muraena retifera¹

Serranid sp. 1

Serranus annularis¹ Serranus baldwini¹ Serranus phoebe¹ Serranus subligarius¹ Serranus tabacarius¹ Serranus tigrinus¹ Serranus tortugarum¹ Siderastrea radians² Siderastrea siderea² Silt on hard-bottom

Siphonodictyon coralliphagum Siphonodictyon siphonum

Snapper sp.¹

Solenastrea bournoni² Solenastrea hyades² Sparidae sp.¹

Sparisoma atomarium¹ Sparisoma aurofrenatum¹ Sparisoma chrysopterum¹ Sparisoma radians¹ Sparisoma rubripinne¹ Sparisoma sp.¹ Sparisoma viride¹

Spheciospongia vesparium

Sphoeroides¹

Sphoeroides spengleri¹ Sphoeroides testudineus¹ Sphyraena barracuda¹ Sphyraena guachancho Sphyraena picudilla Sphyrna lewini Sphyrna mokarran Sphyrna tiburo Spirastrella coccinea Spirastrella mollis

Spongia sp. Squirrelfish sp.¹ Stegastes adustus¹ Stegastes diencaeus¹ Stegastes leucostictus¹ Stegastes partitus¹ Stegastes planifrons¹ Stegastes sp.¹

Stegastes variabilis¹

Stephanocoenia intersepta² Stephanolepis hispida¹ Stichodactyla helianthus Strongylacidon sp. Strongvlura notata¹ Strongylura timucu Stygnobrotula latebricola

Stypopodium spp. Syacium micrurum¹ Syngnathus scovelli¹ Synodus foetens¹ Synodus intermedius¹ Decapterus sp.¹ Muricea atlantica² Synodus synodus¹ Dendrogyra cylindrus² Muricea elongata² Tectitethya crypta Muricea laxa² Dermatolepis inermis¹ Tedania (Tedania) ignis Muricea muricata² Tethya diploderma Desmapsamma anchorata Diadema antillarum Muricea pinnata² Thalassoma bifasciatum¹ Dichocoenia stokesii 2 Muriceopsis flavida² Thick turf Mussa angulosa² Dictyota spp. Tigrigobius macrodon¹ Mycale (Mycale) laevis Tigrigobius saucrus¹ Diodon holocanthus¹ Diodon hystrix¹ Trachinotus falcatus¹ Mycale sp. Diodon sp. 1 Mycetophyllia aliciae² Trachyteleia hispida Diplastrella megastellata Mycetophyllia danaana² Tunicata Mycetophyllia ferox² Diplectrum formosum¹ Turf algae free of sediment Diplodus argenteus¹ Mycetophyllia lamarckiana² Turf algae with sediment Mycetophyllia spp.² Diplodus holbrookii¹ Tylosurus crocodilus Diploria labyrinthiformis² Mycteroperca acutirostris¹ Udotea spp. Mycteroperca bonaci¹ Umbrina coroides¹ Discosoma carlgreni Doratonotus megalepis¹ Mycteroperca interstitialis¹ Unidentified species Mycteroperca microlepis¹ Dragmacidon lunaecharta Unknown black smooth encrusting sponge Mycteroperca phenax¹ Unknown bowling ball sponge Dysidea etheria Dysidea fragilis Mycteroperca tigris¹ Unknown brown encrusting sponge Dysidea janiae Mycteroperca venenosa¹ Unknown brown smooth sponge Echeneis naucrates Myrichthys breviceps Unknown brown tube sponge Echeneis neucratoides Myrichthys ocellatus Unknown brown vein sponge Ectyoplasia ferox Myripristis jacobus¹ Unknown green encrusting sponge Elacatinus dilepis¹ Narcine bancroftii Unknown olive sponge Elacatinus evelvnae¹ Needlefish sp. Unknown orange encrusting sponge Elacatinus horsti¹ Negaprion brevirostris Unknown orange massive sponge Elacatinus oceanops¹ Neofibularia nolitangere Unknown pink lumpy sponge Elacatinus randalli 1 Neoniphon marianus¹ Unknown red encrusting sponge Elacatinus xanthiprora¹ Neopetrosia carbonaria Unknown red lumpy tube sponge Nes longus¹ Elagatis bipinnulata¹ Unknown red squishy sponge Elops saurus Nicholsina usta¹ Urobatis jamaicensis Emblemaria pandionis¹ Niphates amorpha Verongula gigantea Emblemariopsis bahamensis¹ Niphates digitalis Verongula reiswigi Emmelichthyops atlanticus¹ Niphates erecta Verongula rigida Enchelycore nigricans¹ Oculina diffusa² Xestospongia muta Encrusting gorgonian² Oculina sp. Xyrichtys martinicensis¹ Enneanectes altivelis Ocyurus chrysurus¹ Xyrichtys novacula¹ Odontoscion dentex¹ Enneanectes boehlkei Xyrichtys splendens¹ Epinephelus adscensionis¹ Ogcocephalus sp. Zoanthids

1 - Coral Reef - Species Richness, 2 - Coral Reef - Percent Cover

References

- 1. Florida International University (FIU). Florida Keys National Marine Sanctuary Water Quality Monitoring Project. (2023).
- 2. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 3. Florida Fish and Wildlife Conservation Commission (FWC). Fisheries-Independent Monitoring (FIM) Program. (2022).
- 4. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 5. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 6. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 7. Mote Marine Laboratory. Florida Keys Bleach Watch. (2023).
- 8. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Florida Keys Aquatic Preserves. Florida Keys Aquatic Preserves Continuous Water Quality Monitoring. (2024).