ME301A (First Sem, 2017 - 18)

Assignment 1

Due date: Aug 31 (Thursday)

Submit problem no. 2, 3, 4, 7 only (remaining are for practice)

- 1) A mixture of 40% by volume methane, CH₄, and 60% by volume propane, C₃H₈, is burned completely with stoichiometric air. Determine the Air/Fuel ratio on a mass and on a mole basis. Determine the lower and upper heating value of the mixture during the stoichiometric combustion
- 2) Consider the (a) constant pressure (b) constant volume, adiabatic combustion of a Methyl alcohol (CH₃OH) with air, at temperature 25^oC. Determine the adiabatic flame temperature and plot it for at least 10 values of equivalence ratio ranging from lean to rich mixture. You may write a MATLAB code. Use polynomial expressions for species specific heat.
- 3) Liquid octane (C₈H₁₈) enters the combustion chamber of a gas turbine at 25⁰C and air enters from the compressor at 250⁰C. It is determined that 98% of the carbon in the fuel burns to form CO₂ and remaining 2% buns to form CO. What amount of excess air will be required if the temperature of the products is to be limited to 850⁰C?
- Calculate the equilibrium composition for the reaction $H_2 + 1/2O_2 = H_2O$, when the ratio of the number of moles of elemental hydrogen to elemental oxygen is unity. The temperature is 2000K and pressure is 2 atm. Determine the equilibrium composition if O_2 further dissociates in to O atoms, $O_2 = 2O$.
- Consider the water-shift reaction $CO_2 + H_2 = CO + H_2O$. Assume that the equilibrium constant k(T) is k(1100K) = 1 and k (2100K) = 10. Further assume that the global forward reaction rate coefficient is $K_f = AT^n e^{\frac{-T_A}{T}}$ where $T_A = 15000$ K, n=1/2 and $A=10^{10} cm^3 mol^{-1} s^{-1}$. Estimate the global reverse rate coefficient k_r at 1600 K. (The water gas shift reaction is a global description of the reaction sequence $CO_2 + H \rightarrow CO + OH$, $H_2 + OH \rightarrow H_2O + H$.)
- 6) Consider the following elementary reactions of the Hydrogen-Chlorine combustion system:

$$k_{1}$$

$$Cl_{2} + M \longrightarrow Cl + Cl + M$$

$$k_{2}$$

$$Cl + H_{2} \longrightarrow HCl + H$$

$$k_{3}$$

$$H + Cl_{2} \longrightarrow HCl + Cl$$

$$k_{4}$$

$$Cl + Cl + M \longrightarrow Cl_{2} + M$$

Derive the following rate expression by assuming quasi-steady state

$$\frac{d[HCL]}{dt} = 2k_2 \sqrt{\frac{k_1}{k_4}} [Cl_2]^{0.5} [H_2]$$

7) Assume a simple reaction chain consisting of two elementary steps:

$$k_{12}$$
 k_{23} $S_1 \rightarrow S_2 \rightarrow S_3$

- (a) Derive the rate laws for each species, S1, S2 and S3.
- (b) If S_2 is very reactive and has a short chemical time scale $(k_{23} >> k_{12})$, S_2 is consumed as soon as it is produced. Thus, consumption and production rates of S_2 can be assumed to approximately balance $\frac{d[S_2]}{dt} \approx 0$ and such an assumption is called the quasi-steady state assumption. Simplify the expression obtained in (1) by applying the quasi-steady state assumption.
- (c) Plot species concentrations (you may normalize concentration by $[S_1]_{t=0}$) vs. time.