Introduction to

Information Retrieval

Lecture 6: Scoring, Term Weighting and the Vector Space Model

Contents

- Parametric and zone indexes
- Ranked retrieval
- Term Weighting schemes
- Vector space scoring

Parametric and zone indexes

- Each document has, in addition to text, some "metadata" in <u>fields</u> e.g.,
 - Language = French

Fields Format = pdf

- Subject = Physics etc.
- Date = Feb 2000
- A parametric search interface allows the user to combine a full-text query with selections on these field values e.g.,
 - language, date range, etc.

Zones

- A zone is an identified region within a doc
 - E.g., <u>Title</u>, <u>Abstract</u>, <u>Bibliography</u>
- Contents of a zone are free text
 - Not a "finite" vocabulary
- Indexes for each zone allow queries like
 - find documents with merchant in the title and william in the author list and the phrase gentle rain in the body

Weighted zone scoring

- Given a Boolean query q and a document d, weighted zone scoring assigns to the pair (q, d) a score in the interval [0, 1],
 - by computing a linear combination of zone scores
 - where each zone of the document contributes a Boolean value.
- Specifically,
 - let there are L zones. Let $g1, \ldots, gL \in [0, 1]$ such that $\sum_{i=1}^{L} g^{i} = 1$
 - let s be the Boolean score denoting a match (or absence thereof) between q and the ith zone.
 - Then, the weighted zone score is defined to be $\sum_{i=1}^{L} g_i * S_i$

gi*Si

Example: Weighted zone scoring

- Query Q= shakespeare
- consider a collection in which each document has three zones: author, title and body
- Suppose we set g1 = 0.2, g2 = 0.3 and g3 = 0.5 where g1, g2 and g3 represents the author, title and body zone weights.
- If the term shakespeare appear in the title and body zones but not the author zone of a document, the score of this document would be
- 0.8

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language

10

Introduction to Information Retrieval Sec. 6.2								
Term-document count matrices								
 Consider the number of occurrences of a term in a document: Each document is a count vector: a column below 								
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth		
Antony	Antony and Cleopatra 157	Julius Caesar 73	The Tempest	Hamlet 0	Othello 0	Macbeth 0		
Antony Brutus	, .							
,	157	73	0	0	0	0		
Brutus	157 4	73 157	0	0 1	0	0		
Brutus Caesar	157 4 232	73 157 227	0	0 1 2	0 0 1	0 0 1		
Brutus Caesar Calpumia	157 4 232 0	73 157 227 10	0 0 0	0 1 2	0 0 1	0 0 1		

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NR: frequency = count in IR

Sec. 6.2

Log-frequency weighting

■ The log frequency weight of term t in d is

$$w_{i,d} = \begin{cases} 1 + \log_{10} \operatorname{tf}_{i,d}, & \text{if } \operatorname{tf}_{i,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:
- score $=\sum_{t \in a \cap d} (1 + \log t f_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Sec. 6.2

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- → We want a high weight for rare terms.

Sec. 6.2.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - $lack df_t$ is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by

$$idf_t = \log_{10} \left(N/df_t \right)$$

• We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 806791

term	df_t	idf _t
car	18,165	1.65
auto	6723	2.08
insurance	19,241	1.62
best	25,235	1.5

$$idf_t = \log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$tf - idf_{t,d} = log(1 + tf_{t,d}) \times log_{10}(N/df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Sec. 6.

Binary \rightarrow count \rightarrow tf-idf weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	5.25	3.18	0	0	0	0.35	
Brutus	1.21	6.1	0	1	0	0	
Caesar	8.59	2.54	0	1.51	0.25	0	
Calpurnia	0	1.54	0	0	0	0	
Cleopatra	2.85	0	0	0	0	0	
mercy	1.51	0	1.9	0.12	5.25	0.88	
worser	1.37	0	0.11	4.15	0.25	1.95	

Each document is now represented by a real-valued vector of tf-idf

Sec. 6.2.2

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - ...

21

The Vector Space Model for Scoring

- The set of documents in a collection may be viewed as a set of vectors in a vector space.
 - Terms are axes of the space
 - Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Vector Similarity

- How do we quantify the similarity between two documents in this vector space?
- A first attempt: the magnitude of the vector difference between two document vectors.
 - <u>Drawback</u>: two documents with very similar content can have a significant vector difference simply because one is much longer than the other.
- Solution to compensate for the effect of document length is to compute the *cosine similarity*.

Cosine similarity illustrated

23

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

cosine(document,document) $\frac{\vec{V}(d_1) \cdot \vec{V}(d_2)}{\vec{V}(d_1)|\vec{V}(d_2)|}, \quad (2)$ $\vec{EUCLIDEAN LENGTH}$ The dot product $\vec{x} \cdot \vec{y}$ of two vectors is defined as $\sum_{i=1}^{M} x_i y_i$ The Euclidean length of d is defined to be $\sqrt{\sum_{i=1}^{M} \vec{V}_i^2(d)}$.

Cosine for length-normalized vectors

The effect of the denominator of Equation (2) is thus to length-normalize the vectors $\vec{V}(d_1)$ and $\vec{V}(d_2)$ to unit vectors $\vec{v}(d_1) = \vec{V}(d_1)/|\vec{V}(d_1)|$ and $\vec{v}(d_2) = \vec{V}(d_2)/|\vec{V}(d_2)|$

Then we can rewrite the previous equation as:

$$sim(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$
. (3)

27

Example: N= 1,000,000

Document: car insurance auto insurance Query: best car insurance

Term DF
auto 5000
best 50000
car 10000
insurance 1000

Example: N= 1,000,000

Document: car insurance auto insurance
Query: best car insurance

Term

Query

Document

auto
best
car
insurance

Example: N= 1,000,000 Document: car insurance auto insurance											
Term	ery: best car insurance					Document				Pro d	
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	2.3	0.47	(
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	(
car	1	1	10000	2.0	2.0	0.53	1	1	2.0	0.41	0.22
insurance	1	1	1000	3.0	3.0	0.79	2	1.3	3.9	0.80	0.63
Query length = $\sqrt{0^2 + 1.3^2 + 2^2 + 3^2} \approx 3.8$ Doc length = $\sqrt{2.3^2 + 0^2 + 2^2 + 3.9^2} \approx 4.9$ Score = 0+0+0.22+0.63 = 0.85											

Introduction to

Information Retrieval

Lecture 8: Evaluation IR systems

Measures for a search engine

How fast does it index
Number of documents/hour
(Average document size)
How fast does it search
Latency as a function of index size
Quality of results
Precision
Recall
F-measure

Expressiveness of query language
Ability to express complex information needs

Evaluating an IR system

- Note: the information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether travelling by train from Cairo to Assuit is more effective than flying.
- Query: travelling by train from Cairo to Assuit effective
- Evaluate whether the doc addresses the information need, not whether it has these words

Standard relevance benchmarks

- TREC National Institute of Standards and Technology (NIST) has run a large IR test bed for many years
- Reuters and other benchmark doc collections used
- "Retrieval tasks" specified
 - sometimes as queries
- Human experts mark, for each query and for each doc, <u>Relevant</u> or <u>Nonrelevant</u>
 - or at least for subset of docs that some system returned for that query

Unranked retrieval evaluation: Precision and Recall

- Predision: fraction of retrieved docs that are relevant
 = (relevant retrieved / retrieved)
- Recall: fraction of relevant docs that are retrieved
 = (relevant retrieved/relevant)

	Relevant	Nonrelevant		
Retrieved	tp	fp		
Not Retrieved	fn	tn		

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Should we instead use the accuracy measure for evaluation?

- Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- The accuracy of an engine: the fraction of these classifications that are correct
 - (tp + tn) / (tp + fp + fn + tn)
- Accuracy is a commonly used evaluation measure in machine learning classification work

37

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but a result with strong empirical confirmation

20

A combined measure: F

 Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

- People usually use balanced F₁ measure
 - i.e., with $\alpha = \frac{1}{2}$

$$F_1 = \frac{2 PR}{P + R}$$

Sec. 8.4

Evaluating ranked results

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precisionrecall curve

40

Sec. 8.4

Averaging over queries

- A precision-recall graph for one query isn't a very sensible thing to look at
- You need to average performance over a whole bunch of queries.
- But there's a technical issue:
 - Precision-recall calculations place some points on the graph

41

