Kidegalize Virtual Institute

Paper 2

UCE CHEMISTRY PAST PAPERS FOR CLASSROOM PURPOSE ONLY

			SECTION A (50 MARKS)					
1.	Sea	water co	ontains mainly dissolved sodium chloride and traces of p	ootassium bromide.				
	a)	State	State one practical method that can be used to obtain the following from sea					
		wate	r.					
		i)	Chlorine	(01 mark)				
		ii)	A reasonably pure sample of sodium chloride.	(01 mark)				
		iii)	Water free from ions.	(01 mark)				
	b)	A ve	essel containing a sample of the water in a(iii) was con	nected to an ammeter				
		which is turn was connected to a direct current source.						
		i)	State what was observed.	(01 mark)				
		ii)	Give a reason for your observation in b(i).	(01 mark)				
2.	a)	The	The atomic numbers of hydrogen, magnesium and oxygen are 1, 12 and 8					
		respe	ectively. Write the electronic configurations of the atom	ns of the elements.				
				(1 ½ marks)				
	b)	Usin	g outermost energy level electrons only, draw diagrams	s to show how oxygen				
		form	s a compound with					
		i)	Hydrogen	(01 mark)				
		ii)	magnesium	(01 mark)				
	c)	i)	Which one of the compounds in (b) when dissolved i	n water will conduct				
			electric current?	(0 ½ mark)				
		ii)	Give a reason for your answer in c(i)	(01 mark)				
3.	a)	State	e why ammonia is not dried using					
		i)	anhydrous calcium chloride	(01 mark)				
		ii)	concentrated sulphuric acid	(1 ½ marks)				
	b)	Nam	e the substance normally used in the laboratory for drying	ng ammonia.				
				(01 mark)				
	c)	Writ	e equation for the reaction that can take place when	copper (II) oxide is				
		treat	ed with ammonia.	(1 ½ marks)				
4.	State	e the co	ndition(s) under which sulphuric acid can react with the	following substances				

a) Sugar (C₁₂H₂₂O₁₁)i) Condition(s)

and in each case write equation for the reaction that would take place

(01 mark)

- ii) equation (1 ½ marks)

 Magnesium

 i) Condition (s) (01 mark)
- 5. The table below shows some tests carried out on a solution of salt Z and the observations that were made.

Test number	Test	Observation
I	Sodium hydroxide solution was	A white precipitate soluble in excess
	added drop wise to aqueous Z until	sodium hydroxide.
	in excess	
II	Ammonia solution was added drop	A white precipitate insoluble in excess
	wise to aqueous Z until in excess.	ammonia
III	Dilute hydrochloric acid was added	A white precipitate soluble on warming.
	to aqueous Z and the mixture	
	warmed	

Use the observations from the table to answer the following questions

a) i) Identify the cation in Z. (01 mark)

b)

ii)

Equation

- ii) Write the ionic equation for the reaction in test III. (1 ½ marks)
- b) Briefly describe how the cation in Z can be confirmed. (1 ½ marks)
- 6. Compound T contains 40.0% carbon, 6.7% hydrogen and the rest being oxygen.
 - a) i) Calculate the empirical formula of T. (03 marks)
 - ii) Determine the molecular formula of T. (01 mark) (Relative formula mass of T = 60)
 - b) T dissolved in water to form a solution which turned blue litmus paper red.
 - i) State what would be observed when a few drops of T were added to sodium carbonate. (0 ½ mark)
 - ii) Write an ionic equation for the reaction that takes place in b(i).

 $(1 \frac{1}{2} \text{ marks})$

(1 ½ marks)

- 7. a) State what is meant by the term hard water. (01 mark)
 - b) Name two cations and two anions present in hard water.
 - i) Cations (01 mark)
 - ii) Anions (01 mark)

- c) When a solution of barium nitrate was added to a sample of hard water, followed by dilute nitric acid, a white precipitate was formed that did not dissolve in the acid. Write equation for the reaction that took place. (02 marks)
- 8 a) When excess magnesium powder was added to 25cm³ of portions of equimolar solutions of compounds of elements Q, W, X, Y and Z, the temperature rise in each case was noted as indicated in the table below.

Solution of compounds	Rise in temperature (°C)
X	42
W	32
Y	0
Q	38
Z	14

- i) Arrange the elements, Mg, X, W, Y, Q and Z in order of their reactivity, starting with the least reactive. (01 mark)
- ii) State why there was no temperature rise when magnesium was added to the solution of the compound of Y. (01 mark)
- b) Magnesium powder was added to copper(II) oxide and the mixture heated strongly.
 - i) State what was observed. (01 mark)
 - ii) Write equation for the reaction that took place. $(1 \frac{1}{2} \text{ marks})$
- 9 a) When a sample of copper(II) nitrate was strongly heated, a reddish brown gas was evolved.
 - i) Identify the gas. (0 ½ mark)
 - ii) Write the formula of the residue. (0 ½ mark)
 - b) A sample of copper(II) nitrate contaminated with zinc nitrate was dissolved in water and the solution was treated with excess sodium hydroxide solution and then filtered. Identify the cation in the
 - i) Filtrate (01 mark)
 - ii) Residue (01 mark)
 - c) The residue from (b) was strongly heated.
 - i) State what was observed. (01 mark)
 - ii) Write equation for the reaction that took place. (1 ½ marks)
- 10. a) State the difference between endothermic and exothermic reaction. (01 mark)

b)	Carbo	n burns in air according to the following equ	ation						
٥)	$C_{(s)} +$								
	()	4.00g of carbon was burnt in air, the heat p	orođuc	ed rais	ed the	tempe	rature		
		g of water by 56.8°C. Calculate the molar h				-			
			½ mai						
c)		2, specific heat capacity of water = $4.2 \text{Jg}^{-1} \text{K}$ the equation in (b) suggest one use of carbon			`	½ mar			
c)	SECTION B (30 MARKS)				(0	/2 IIIdi	(L)		
		Answer two questions from this secti	ion						
a)	Hydro	gen peroxide gas bubbles slowly when expo		air bu	t when	ลดบลด	110		
a)	•	I) chloride is added, the production of gas by				•			
	i)	Name the gas produced when hydrogen pe				-	••		
	1)	Traine the gas produced when hydrogen pe	TOXIGO	ть схр		l mark)		
	ii)	Write equation for the reaction that takes p	lace		`	⁄2 mark			
	,				ì	l mark			
	iii) State the role of iron (III) chloride in the reaction.iv) Name another substance that can affect the production of th						,		
	iv)	same way as iron(III) chloride.	produ	ction o	_	as in u I mark			
b)	The to	able below show the variation in the conce	antratio	on of 1	`	•			
U)			, , ,						
	with time when a sample of hydrogen peroxide was mixed with iron (III) chloride at room temperature.								
			0.05	0.10	0.15	0.20	0.25		
		centration of hydrogen peroxide (mol dm ⁻³)	0.05	0.10	0.15		0.25		
		e, t(s)	53	26	17	13	10.5		
	1/t(s	•			×11.				
	i)	Copy and complete the table above by con	nputınş	g and f	_				
		of 1/t.			`	½ mai			
	,	ii) Plot a graph of 1/t against concentration of hydrogen peroxide (04 marks)							
	iii)	Using a graph, deduce how the rate of the r	eaction	n varie					
		concentration of hydrogen peroxide.			(01	l mark)		
	iv)	Determine the slope of the graph.			(02	2 mark	s)		
	v)	State two ways by which the rate of reaction	on in (b) could	l be ma	ade fas	ter.		
					(01	l mark)		
a)	Explai	in how a dry sample of hydrogen chloride ca	n be p	repared	l from	sodiun	ı		
	chlorio	de. (Your answer should include equation, be	ut no d	iagram	is req	uired)			
					(6	½ mar	ks)		

11.

12.

		place	if hydrogen chloride was passed.			
		i)	over strongly heated iron wire	(2 ½ marks)		
		ii)	through aqueous silver nitrate	(2 ½ marks)		
	c)	Aqueo	ous hydrogen chloride reacts with sodium carbonate sol	ution to produce		
		carbo	n dioxide according to the following equation			
		Na ₂ Co	$O_{3(aq)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$			
		Calcu	late the volume of carbon dioxide that would be pr	oduced at room		
		tempe	erature if excess sodium carbonate solution was added	to 50.0cm ³ of a		
		solution	on containing 0.2 moldm ⁻³ of hydrogen chloride (1 mole	of gas occupies		
		24.0d	m ³ at room temperature)	(3 ½ marks)		
13.	a)	i)	Describe how sodium hydroxide can be manufactured usi	ng the mercury-		
			cathode cell (Your answer should include equations f the	reactions, but not		
			diagram)	(07 marks)		
		ii)	State one use of the product formed at the anode and o	one use of the by		
			product.	(02 marks)		
	b)	State how sodium hydroxide can react with the following substances and in each				
		case v	vrite equation for the reaction			
		i)	Sulphuric acid	(2 ½ marks)		
		ii)	Aluminium ion	(3 ½ marks)		
14.	a)	i)	Draw a labeled diagram of the set-up of apparatus that can	n be used to		
			prepare a dry sample of carbondioxide.	(3 ½ marks)		
		ii)	Write equation for the reaction leading to the formation o			
	b)	Expla	in the reason for your choice of the	(1 ½ marks)		
	σ,	i)	drying agent for carbondioxide	(02 marks)		
		ii)	method of collecting carbondioxide as shown in your diag	gram in a(i). (1½ marks)		
	c)		equation(s) to show the reaction of carbondioxide with	,		
		i) ii)	water Sodium hydroxide	(1½ marks) (03 marks)		
	d)	State		(00 111111111)		
		i)	Why carbon dioxide is used in making fire extinguishers.	(01 mark)		
		ii)	the effect of increased concentration of carbon environment.	dioxide on the		
				(01 mark)		

State what would be observed and write equation for the reaction hat would take

b)

Paper 2

SECTION A

- 1. Air is a mixture consisting mainly of two gases X and Y in the ratio 1:4 by volume respectively
 - a) Name gas

i) X (01 mark)

i) Y (01 mark)

b) i) State a suitable method by which the mixture of X and Y can be separated industrially. (01 mark)

i) Give a reason for the choice of the method you have stated in b(i) above.

(01 mark)

Name one process during which the concentration of X in the atmosphere can be increased. (0 $\frac{1}{2}$ mark)

d) State one industrial use of Y. (0 ½ mark)

2. a) State the difference between hard water and soft water. (01 mark)

b) Name one substance that causes

i) temporary hardness of water. (01 mark)

ii) permanent hardness of water. (01 mark)

c) State one method that can be used to remove

i) temporary hardness in water (01 mark)

ii) permanent hardness in water. (01 mark)

3. The number of electrons, protons and neutrons in the atoms of elements A, B, C, D and E are shown in the table below.

Atoms	Electrons	Protons	Neutrons
A	8	8	8
В	13	13	14
С	16	16	16
D	Y	11	11
W	8	Z	10

a) Determine the values of

i) Y $(0 \frac{1}{2} \text{ mark})$

		ii)	Z	(0 ½ mark)
	b)	State	e the mass number of atom C.	(0 ½ mark)
	c)	Indic	cate which of the atoms	
		i)	are isotopes	(0 ½ mark)
		ii)	belong to the same group in the periodic table.	(1 ½ marks)
	d)	Writ	te the electronic configuration of	
		i)	atom C	(0 ½ mark)
		i)	ion A^{2+}	(0 ½ mark)
		iii)	ion B^{3+}	(0 ½ mark)
4.	An c	xide W	of formula mass 160 consists of 70.0% iron	
	a)	i)	Calculate the empirical formula of W.	(2 ½ marks)
		ii)	Deduce the formula of W.	(1 ½ marks)
	b)	Writ	te the chemical name of W.	(01 mark)
5.	In th	e prepa	ration of ammonia in the laboratory, a mixture of ammonium	chloride and
	calci	um hyd	lroxide is heated. The gas evolved is passed into a tower pacl	xed with calcium
	oxid	e before	e it is collected using upward delivery method.	
	a)	i)	Write an equation for the reaction that leads to the format	ion of ammonia.
				(1 ½ marks)
		ii)	State why ammonia is passed into the tower packed with	calcium oxide.
				(0 ½ mark)
		iii)	Give a reason why ammonia is collected using upward de	livery method.
				(0 ½ mark)
	b)	i)	Name one reagent that can be used to identify ammonia.	(01 mark)
		ii)	State what would be observed if ammonia was treated with	th the reagent
			you have named in b(i) above.	(01 mark)
	c)	Nam	ne the catalyst that is used in the oxidation of ammonia during	g the
		man	ufacture of nitric acid.	(1 ½ marks)
6	a)	Hyd	rogen chloride can be produced from potassium chloride	
		i)	Name another reagent that is used with potassium chlorid	e to produce
			hydrogen chloride.	(0 ½ mark)
		ii)	Write an equation for the reaction leading to the formation	n of hydrogen
			chloride.	(1 ½ marks)
	b)	Writ	e an equation for the reaction between hydrogen chloride and	d
		i)	Silver nitrate solution.	(1 ½ marks) Page 7 of 30

		11)	iron in the presence of water.	(1 ½ marks)			
7.	Ether	ne is cla	assified as an alkane and can be prepared in the laborator	ry by dehydration of			
	ethan	ol					
	a)	i)	State what is meant by the term alkene.	(01 mark)			
		ii)	Write the structural formula of ethene.	(01 mark)			
		iii)	Name the reagent which is used as a dehydrating age	nt in the preparation			
			of ethene.	(01 mark)			
	b)	Bron	nine was added to ethene. Write equation for the reaction	on that took place.			
				(01 mark)			
	c)	Unde	er high temperature and pressure, ethene molecules can	react with one			
		another to form a big molecule Z.					
		i)	Name Z	(0 ½ mark)			
		ii)	State one use of Z.	(0 ½ mark)			
8.	In the extraction of sodium from sodium chloride, calcium chloride is added to sodium						
	chloride and the mixture is melted. The molten mixture is then electrolyzed using						
	graphite electrodes.						
	a)	State	ate the purpose of adding calcium chloride. $(0 \frac{1}{2} \text{ mark})$				
	b)	Write	e the equation for the reaction that takes place at the				
		i)	anode	(1 ½ marks)			
		ii)	cathode	(1 ½ marks)			
	c)	Bron	nine vapour was passed over heated sodium. Write an e	quation for the			
		react	ion that took place.	(1 ½ marks)			
9	a)	Hydrogen peroxide decomposes quite easily at room temperature.					
		i)	Write the equation for the decomposition of hydrogen	n peroxide. (01 mark)			
		ii)	State two ways by which the decomposition can be m	nade faster.			
				(02 marks)			
	b)	Usin	g the space below, on the same axes sketch graphs of co	oncentration of			
		hydr	ogen peroxide versus time for the decomposition of the	peroxide at			
		i)	room temperature	(01 mark)			
		ii)	one of the conditions you have stated in a(ii)	(01 mark)			
10.	a)	State	the conditions under which sulphuric acid can react wit	th			
		i)	sucrose $C_{12}H_{22}O_{11}$	(0 ½ mark)			
		ii)	zinc oxide	(0 ½ mark)			
	b)	Write	e equation for the reaction of sulphuric acid with				

		i)	sucrose	(1 ½ marks)
		ii)	zinc oxide	(1 ½ marks)
	c)	State	the property of sulphuric acid which is shown by its reacti	ion with
		i)	sucrose	(0 ½ mark)
		ii)	zinc oxide	(0 ½ mark)
			SECTION B (30 MARKS)	
			Answer two questions from this section	
11.	a)	Descr	ribe how a pure sample of carbon dioxide can be prepared	in the laboratory
		from	calcium carbonate and write the equation for the reaction	that takes place.
		(Diag	gram is not required)	(07 marks)
	b)	Expla	ain with the aid of equations the changes that take place wh	nen excess carbon
		dioxi	de is bubbled into sodium hydroxide solution.	(5 ½ marks)
	c)	Potas	sium hydrogen carbonate decomposes when heated accord	ling to the
		follov	wing equation: $2KHC_{3(s)}$ $K_2Co_{3(s)} + H_2O_{(l)} + CO_{2(g)}$	
		Calcu	alate the mass of carbon dioxide evolved when 8g of potas	sium hydrogen
		carbo	enate is heated strongly (H = 1, C = 12, O = 16, K = 39)	(2 ½ marks)
12.	a)	One o	of the ores from which iron is extracted is spathic iron ore	
		i)	Write the formula of the iron compound that is the ore.	(01 mark)
		ii)	Describe how impure iron is extracted from spathic iron	ore. (Your answer
			should include equation)	(07 marks)
	b)	Write	e equation(s) where possible and state the condition(s) for	the reaction of iron
		with		
		i)	Water	(04 marks)
		ii)	chlorine	(2 ½ marks)
	c)	State	one use of iron.	(0 ½ mark)
13.	a)	The e	elements copper, zinc and sulphur react with oxygen to for	m their oxides.
		Write	e the formula of the oxide of each of the elements and state	e the type of oxide
		whos	e formula you have written.	(03 marks)
	b)	Hydro	ogen gas was passed separately over the heated oxides of o	copper and zinc.
		i)	State what was observed in each case and explain	(04 marks)
		ii)	Write equation for any reaction that took place.	(1 ½ marks)
	c)	Exces	ss dilute sodium hydroxide solution was added to a mixtur	re of the oxides of
		zinc a	and copper. State what was observed and give a reason for	r your observation.
				(2 ½ marks)

- d) A mixture of oxides of zinc and copper was added to excess dilute sulphuric acid and warmed. State what was observed and write equation(s) for the reaction(s) that took place. (04 marks)
- 14. Write the equation for the complete combustion of ethanol. (01 mark) a) i)
 - Outline an experiment that can be carried out in the laboratory to ii) determine the enthalpy of combustion of ethanol. (6 ½ marks)

(A diagram is not required, but your answer should include how the enthalpy of combustion of ethanol can be calculated from the experiment results)

- When 0.15g of compound W, molecular mass 60g was burnt, it caused the b) temperature of 150cm³ of water to rise by 80°C. Calculate the enthalpy of combustion of W. (Density of water = 1.0gcm⁻³, specific heat capacity of water = $4.2 \text{Jg}^{-1} \text{K}^{-1}$) (02 marks)
- The enthalpies of combustion ΔH_c of some hydrocarbons are shown in the table c) below.

Hydrogen	CH ₄	C_2H_6	C ₃ H ₈	C ₄ H ₁₀	C ₆ H ₁₄
ΔH_c	890	1560	2220	2880	4160

- Plot a graph of enthalpy of combustion (Vertical axis) against number of i) carbon atoms in the hydrocarbons (horizontal axis) (03 marks)
- State from the graph you have plotted in c(i), the enthalpy of combustion ii) of C_5H_{12} . $(0 \frac{1}{2} \text{ mark})$
- iii) Determine the slope of the graph that you have drawn. (01 mark)
- Using your slope and the intercept, calculate the enthalpy of combustion iv) of the hydrocarbon C₇H₁₆. (01 mark)

2016

Paper 2

SECTION A (50 MARKS)

- 1. State a method by which each of the following mixtures can be separated a)
 - Iron (II) chloride and iron (II) oxide. i)

 $(0 \frac{1}{2} \text{ mark})$

ii) Sodium carbonate and sodium hydrogen carbonate.

 $(0 \frac{1}{2} \text{ mark})$

Give a reason why it is possible to separate the mixture in a(i) using the method b) you have stated. (0 1mark)

	c)	State	e what would be observed if iron (II) chloride solution wa	served if iron (II) chloride solution was mixed with			
		aque	ous silver nitrate.	(01 mark)			
	d)	Writ	e the formula of the residue formed when a mixture of so	odium carbonate and			
		sodiı	um hydrogen carbonate is heated strongly.	(01 mark)			
2.	The	atomic	numbers of elements X, Y and Z are 18, 16 and 19.				
	a)	State	e the				
		i)	group in the periodic table to which X belongs.	(01 mark)			
		ii)	valency of Y	(01 mark)			
		iii)	period in the periodic table to which Z belongs.	(01 mark)			
	b)	Writ	e the formula of the compound that can be formed when	X reacts with			
		i)	Y	(01 mark)			
		ii)	Z	(01 mark)			
	c)	State	State one physical property of the compound formed between X and Y in which it				
		diffe	ers from the compound formed between X and Z.	(01 mark)			
3.	a)	State the conditions under which oxygen can react with					
		i)	Sulphur	(0 ½ mark)			
		ii)	Copper	(0 ½ mark)			
	b)	Write equation for the reaction between oxygen and					
		i)	Sulphur	(1 ½ marks)			
		ii)	copper	(1 ½ marks)			
	c)	i)	State which one of the compounds formed in b(i) and	(ii) will react with			
			dilute hydrochloric acid,	(1 ½ marks)			
		ii)	Give a reason for your answer in c(i)	(0 ½ mark)			
4.	a)	A m	ixture of iron fillings and sulphur was heated strongly. W	Vrite equation for the			
		react	ion that took place.	(1 ½ marks)			
	b)	Dilu	te sulphuric acid was added to the product in (a)				
		i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
	c)	One	of the substances formed in reaction b(ii) pollutes air.				
		i)	Identify the substance.	(0 ½ mark)			
		ii)	Give one reason why the substance pollutes air.	(0 ½ mark)			
5.	Amn	nonia re	eacts with oxygen in the presence of hot platinum to prod	uce a colourless gas			
	X, w	hich ev	entually gives brown fumes.				
	a)	Iden	tify X.	(0 ½ mark) Page 11 of 30			

	b)	Writ	Write equation to show the formation of					
		i)	X	(1 ½ mark)				
		ii)	the brown fumes	(01 mark)				
	c)	State the						
		i)	role of platinum	(0 ½ mark)				
		ii)	industrial application of the reaction in (b)	(0 ½ mark)				
6.	A ga	A gaseous organic compound J contains 82.76% carbon, the rest being hydrogen.						
	a)	To w	which group of the organic compounds does J belong?	(01 mark)				
	b)	Calculate the empirical formula of J (H = 1, C = 12) (2 $\frac{1}{2}$ marks)						
	c)	140c	m3 of J weighed 0.363g at s.t.p. Determine the molecular t	formula of J.				
		(1 m	nole of a gas occupies 22400cm ³ at s.t.p)	(2 ½ marks)				
7.	State	what w	would be observed and write ionic equation for the reaction	that would take				
	place	e if hydi	rogen chloride was bubbled through aqueous					
	a)	Sodi	um hydrogen carbonate					
		i)	Observation	(0 ½ mark)				
		ii)	Equation	(1 ½ marks)				
	b)	Silve	er nitrate					
		i)	observation	(0 ½ mark)				
		ii)	equation	(1 ½ marks)				
8	a)	i)	Name one process by which ethanol can be produced fro	m sugar.				
				$(0 \frac{1}{2} \text{ mark})$				
		ii)	Write equation for the production of ethanol by the process	ess you have				
			named in a(i)	(01 mark)				
	b)	Ethanol can be converted to ethene by dehydration.						
		i)	State the conditions under which the reaction takes place	e. (1 ½ marks)				
		ii)	Write equation for the reaction leading ot he formation of	f ethene from				
			ethanol.	(01 mark)				
	c)	Wri	te equation for the reaction between ethene and bromine.	(01 mark)				
9.	a)	State	what is meant by the term enthalpy of combustion.	(01 mark)				
	b)	Carb	on burns in oxygen according to the following equation.					
		C(s)	+ $O_{2(g)}$ \longrightarrow $CO_{2(g)}$: $\Delta H = -393 \text{kJmol}^{-1}$					
		Calc	ulate the					
		i)	amount of heat evolved when 3.6g of carbon is burnt cor	npletely in				
			oxygen. ($C = 12$)	(02 marks) Page 12 of 30				

		ii)	volume of oxygen at s.t.p that would be required to produc	ce 78.6kg of			
			heat. (1 mole of gas occupies 22.4dm3 at s.t.p)	(02 marks)			
10.	Nan	ne one r	eagent that can be used o differentiate between the following	pairs of ions			
	and i	n each o	case state what would be observed when each of the ions is to	reated separately			
	with	the reag	gent you have named.				
	a)	НСО	$\sigma_{3 \text{ (aq)}}$ and CO^{2} - $\sigma_{3 \text{ (aq)}}$				
		i)	Reagent	(01 mark)			
		i)	Observation	(01 mark)			
	b)	Pb ³⁺ ((a_q) and $Zn^{2+}(aq)$				
		i)	Reagent	(01 mark)			
		ii)	observation	(01 mark)			
	c)	SO_4^2	and Cl ⁻ (aq)	(01 mark)			
		i)	Reagent	(01 mark)			
		ii)	Observation	(01 mark)			
			SECTION B (30 MARKS)				
			Answer any two questions from this section				
11.	a)	Disti	nguish between the terms anode and cathode.	(02 marks)			
	b)	Explain why copper (II) chloride in solid form does not conduct electricity					
	whereas in molten form it does. (2 ½ marks)						
	c)	A dil	ute solution of copper (II) chloride was electrolyzed using gr	aphite as			
		elect	rodes				
		i)	State what was observed at the cathode.	(01 mark)			
		ii)	Write equation for the reaction the anode and cathode resp	ectively.			
				(2 ½ marks)			
	d)	Desc	ribe how the product at the anode can be identified.	(02 marks)			
	e) The electrolysis of dilute copper (II) chloride was repeated for sometime						
		copp	er instead of graphite as electrodes.				
		i)	State what was observed at the anode and cathode respect:	ively. (02 marks)			
		ii)	Write equation to support your observation at the anode.	(01 mark)			
	f)	State	one factor other than change of electrodes from graphite to	copper that			
		woul	d affect the products of electrolysis of copper (II) chloride so	olution and			
		indic	ate how it would affect the process.	(02 marks)			
12.	a)	Desc	ribe how a dry sample of hydrogen can be prepared in the lal	ooratory.			
		(Diag	gram is not required.)	(4 ½ marks) Page 13 of 30			

	b)	Hydr	rogen burns in air to form liquid L				
		i)	identify L	(01 mark)			
		ii)	Name a reagent that can be used to test for L and state wh	at would be			
			observed if L was treated with the reagent you have name	ed. (02 marks)			
	c)	Write equation to show the reaction of hydrogen with chlorine. (1					
	d)	State the condition(s) under which hydrogen can react with copper(II) oxide and					
		write	e equation for the reaction				
	e)	Hydr	rogen reacts with iron (II, III) oxide according to the following	ng equation.			
		Fe ₃ C	$O_{4(s)} + 4H_{2(g)} \longrightarrow 3Fe_{(s)} + 4H_2O_{(l)}$				
		Calc	ulate the volume of hydrogen measured at room temperature	that would be			
		requi	ired to produce 3.36g of iron. (Fe = 56, 1 mole of gas occupi	es 24dm3 at			
		room	temperature.	(5 ½ marks)			
	f)	State	one industrial use of hydrogen.	(01 mark)			
13.	a)	Alun	ninium oxide is an amphoteric oxide				
		i)	Define the term amphoteric oxide	(01 mark)			
		ii)	Write equation to show the reaction of aluminium oxide v	vith dilute nitric			
			acid.	(1 ½ marks)			
		iii)	Give two examples of amphoteric oxides other than alum	inium oxide.			
				(01 mark)			
	b)	i)	With the aid of an equation, describe how a pure dry samp	ple of aluminium			
			sulphate crystals can be prepared in the laboratory. Start	ing from			
			aluminium oxide.	(06 marks)			
		ii)	Hydrated aluminium sulphate, Al ₂ (SO ₄) ₃ . nH ₂ O contains	9.7% of			
			aluminium. Calculate the value of n in the above formula	a. $(Al = 27, S =$			
			32, O = 16, H = 1)	(2 ½ marks)			
	c)	i)	Name one reagent that can be used to distinguish between	aluminum ion			
			and lead (II) ions.	(0 ½ mark)			
		ii)	State what would be observed and write equation for the	reaction that			
			takes place if any, when the reagent you named in c(i) is	treated			
			separately with aluminium ions and lead(II) ions.	(2 ½ marks)			
14.	Haen	natite is	s one of the ores from which iron can be extracted.				
	a)	Write	e the chemical formula of haematite	(0 ½ mark)			
	b)	Duri	ng the extraction of iron, roasted haematite is mixed with co	oke and			

into the furnace from the bottom. Write equation(s) for the reaction (s) in the blast furnace that leads to the i) formation of iron. (4 ½ marks) (4 ½ marks) ii) Explain the role of limestone. Write equation for the reaction of iron with c) Water (1 ½ marks) i) (1 ½ marks) ii) hydrochloric acid d) To the resultant mixture in reaction c(ii) was added dilute ammonia solution until the alkali was in excess. State what was observed and write equation for the reaction that took place. $(2 \frac{1}{2} \text{ marks})$ Paper 2 **SECTION A (50 MARKS)** Duralumin is an alloy of aluminium, copper and element D. Identify element D. a) i) $(0 \frac{1}{2} \text{ mark})$ ii) State one use of duralumin. $(0 \frac{1}{2} \text{ mark})$ Na\me the elements commonly used for making each of the following alloys and b) in each case give one use of the alloy. i) Steel Element (01 mark) $(0 \frac{1}{2} \text{ mark})$ Use ii) Solder Element (01 mark) Use $(0 \frac{1}{2} \text{ mark})$ c) Some two reasons why alloys are commonly used instead of pure elements. (01 mark) Hydrochloric acid reacts with sodium sulphite to form a gas Q. Identify Q. (01 mark) a) State the conditions under which the reaction takes place. (01 mark) b) Write an ionic equation for the reaction leading to the formation of Q. c) (1 ½ marks) d) i) Name one reagent that can be used to identify Q. $(0 \frac{1}{2} \text{ mark})$ Page **15** of **30**

2015

1.

2.

limestone. The mixture is fed into the blast furnace and a blast of hot air blown

		ii)	State what would be observed if Q was tested with the rea	igent you have
			named in d(i).	(01 mark)
3.	The 1	molecul	ar formula of an organic compound J is C ₃ H ₈ .	
	a)	i)	Write the structural formula of J.	(01 mark)
		ii)	Name J	(01 mark)
		iii)	Name the group of organic compounds to which J belong	s. (01 mark)
	b)	It is 1	not wise to burn J in a living room with closed windows and	doors. Give a
		reasc	on.	(01 mark)
	c)	State	one use of J.	(0 ½ mark)
4	a)	i)	Name two substances from which nitric acid can be prepa	red in the
			laboratory.	(02 marks)
		ii)	Write an equation for the reaction between the substances	you have named
			in c(i)	(1 ½ marks)
	b)	Write	e an equation for the reaction between fuming nitric acid and	l copper.
				(1 ½ marks)
5.	a)	Soot	is form of carbon.	
		i)	Write an equation for the complete combustion of soot in	oxygen.
				(01 mark)
		ii)	Calculate the volume of gas produced at room temperatur	e, when 0.6g of
			soot is burnt in excess oxygen. ($C = 12$, 1 mole of a gas of	ccupies 24.0dm ³
			at room temperature)	(02 marks)
		iii)	Deduce the volume of the gas that would be produced at r	room temperature
			if the same mass of graphite was burnt in excess oxygen.	(0 ½ mark)
		iv)	Give a reason for your answer in a(iii).	(01 mark)
	b)	State	one industrial use of graphite.	(0 ½ mark)
6.	a)	Write	e an equation to show the reaction that would take place lead	ling to the
		form	ation of hydrogen if	
		i)	acidified water was electrolyzed	(01 mark)
		ii)	potassium was added to water.	(1 ½ marks)
	b)	Dry 1	hydrogen was passed over strongly heated copper(II) oxide.	
		i)	State what was observed.	(1 ½ marks)
		ii)	Write an equation for the reaction that took place.	(1 ½ marks)
		iii)	Name one non metallic substance that would react with co	opper (II) oxide
			in a similar way to hydrogen.	(0 ½ mark)

- 7. When excess iron fillings were added to 200cm³ of a 0.5M copper (II) sulphate solution in a plastic cup, the temperature of the solution rose by 17.9°C.
 - a) Write an ionic equation for the reaction that took place. $(1 \frac{1}{2} \text{ marks})$
 - b) Suggest a reason why a plastic cup was used instead of a metallic cup. (0 ½ mark)
 - c) i) Calculate the enthalpy change for the reaction between iron fillings and copper (II) sulphate solution (O = 16, S = 32, Fe = 56, Cu = 64, the density of water = 1 gcm-3 and the specific heat capacity of water = $4.2 \, \text{Jk}^{-1}$) (02 marks)
 - ii) State any assumption(s) you have made in the calculation in c(i) (01 mark)
- 8 During the manufacture of sodium hydroxide, concentrated sodium chloride solution is electrolyzed using mercury as the cathode.
 - a) i) Name the substance that is used as the anode. (0 ½ mark)
 - ii) Give a reason for the choice of the substance (01 mark)
 - iii) Identify the product collected at the anode. (0 ½ mark)
 - b) During the electrolysis, sodium amalgam is formed at the cathode
 - i) State how sodium amalgam is converted to sodium hydroxide. (0 ½ mark)
 - ii) Write an equation for the reaction leading to the formation of sodium hydroxide. (1 ½ marks)
 - c) State one industrial use of sodium hydroxide. (0 ½ mark)
- 9 Curve Y in the diagram below shows the results that were obtained during the investigation of the rate of the reaction between iron and dilute hydrochloric acid under normal conditions. Curves X and Z were obtained when some conditions of the experiment were changed.

- a) i) List three conditions that were changed to obtain curve X. (03 marks)
 - ii) State what point M represents. (0 ½ mark)

	b)	Some	e conditions you have listed in a(i) were changed to obtain	curve Z.
		i)	State the conditions changed.	(01 mark)
		ii)	Give a reason for your answer.	(01 mark)
10.	a)	Dilut	te ammonia solution was added to a solution containing lead	d (II) ions. Write
		an io	nic equation for the reaction that took place.	(01 mark)
	b)	To th	ne resultant mixture in (a) was added dilute sodium hydroxi	de solution drop
		wise	until in excess.	
		i)	State what was observed.	(01 mark)
		ii)	Give a reason for your answer in b(i)	(01 mark)
	c)	Zinc	powder was added to an aqueous solution of lead (II) nitrate	te and the mixture
		allow	ved to stand	
		i)	Write an equation for the reaction that took place.	(01 mark)
		ii)	State any conclusion that can be drawn from the equation	n you have written
			in c(i)	(01 mark)
			SECTION B (30 MARKS)	
			Answer two questions from this section	
11.	a)	i)	Name the fundamental particles in an atom and in each of	ease state the type
			of charge on the particle.	(03 marks)
		ii)	Draw a labeled diagram to show the location of the parti	cles in an atom.
				(02 marks)
	b)	The	full symbols of atoms of elements Q and R are 23Q and 35	• •
		Write	e the name and number of particles in the atoms Q and R.	
	c)	Nam	e the type of bond that would be formed between	
		i)	two atoms of R	(0 ½ mark)
		ii)	an atom of R and an atom of Q.	(0 ½ mark)
	d)	i)	With the aid of diagrams describe how the bond you have	re named in (b) are
			formed.	(05 marks)
		ii)	State one property of the compound formed between Q a	and R. (01 mark)
12.	a)	Brief	fly describe how a dry sample of hydrogen chloride can be	prepared in the
		labor	ratory. (Diagram is not required)	(5 ½ marks)
	b)	Hydı	rogen chloride was bubbled through a solution of lead (II) n	itrate
		i)	State what was observed and explain your answer.	(2 ½ marks)
		ii)	Write an equation for the reaction that took place.	(1 ½ marks)

		metal	surfaces (pickling). Explain why concentrated nitric acid is	not used for the		
		same j	purpose.	(1 ½ marks)		
	d)	A sam	nple of hydrogen chloride gas was dissolved in water to make	e 250cm ³ of		
		solutio	on. 25.0cm3 of this solution required 46cm ³ of 2M sodium h	ydroxide for		
		compl	lete neutralization. Determine the mass of hydrogen chloride	e that was		
		dissol	ved to make 250cm^3 of solution. (H = 1, Cl = 35.5)	(04 marks)		
13.	a)	Calciu	um nitrate was strongly heated.			
		i)	State what was observed.	(1 ½ marks)		
		ii)	Write equation for the reaction that took place.	(1 ½ marks)		
		iii)	Name a gas that can be dried using the solid residue.	(01 mark)		
		iv)	Calculate the total gaseous products formed at room temper	rature when		
			4.5g of calcium nitrate is heated strongly. ($N = 14$, $O = 16$,	Ca = 40, 1		
			mole of a gas occupies 24.0dm ³ at room temperature)	(03 marks)		
	b)	The re	esidue in (a) was dissolved in water. Write equation for the r	reaction that		
		took p	place.	(1 ½ marks)		
	c)	Exces	s carbondioxide was bubbled through the solution in (b). Sta	ate		
		i)	what was observed and write the equation(s) for the reaction	on(s) that took		
			place.	(4 ½ marks)		
		ii)	one application of this reaction in gas analysis.	(01 mark)		
	d)	To the	e solution in (b) soap solution was added. State what was ob	served.		
				(01 mark)		
14.	a)	Descri	ibe how pure sugar can be obtained from sugar cane on indu	strial scale.		
		(Diagr	ram not required)	(07 marks)		
	b)	Sugar	can be converted in the presence of an enzyme to ethanol. N	Name the		
		i)	process leading to the formation of ethanol.	(01 mark)		
		ii)	enzyme used in the process.	(01 mark)		
	c)	Write	an equation for the reaction that leads to the formation of eth	nanol.		
				(01 mark)		
	d)	When concentrated sulphuric acid was added to sugar, a black solid was formed.				
		Explain what took place and illustrate your answer with an equation.				
	e)	State	one use of			
		i)	sugar	(01 mark)		
		ii)	ethanol	(01 mark) Page 19 of 30		

Concentrated hydrochloric acid is commonly used for removing oxides from

c)

Paper 2

SECTION A (50 MARKS)

1.	A sn	nall am	ount of ethanol was added to a large amount of water and	the mixture shaken					
	a)	State	e what was observed.	(0 ½ mark)					
	b)	In th	e mixture in (a), state which one of the components is the						
		i)	Solute	(0 ½ mark)					
		ii)	Solvent	(0 ½ mark)					
	c)	Nam	e the method that would be used to separate the mixture for	formed in (a).					
				(0 ½ mark)					
	d)	In an	nother experiment, simsim oil was shaken with water.						
		i)	State what was observed.	(0 ½ mark)					
		ii)	Give a reason for your answer in d(i)	(01 mark)					
		iii)	Name the piece of apparatus that would be used to sepa	arate the mixture.					
				(0 ½ mark)					
2.	The	The atomic numbers of elements Q, R and T are 6, 17 and 19 respectively.							
	a)	Write the electronic configuration of							
		i)	Q	(0 ½ mark)					
		ii)	R	(0 ½ mark)					
		iii)	T	(0 ½ mark)					
	b)	R reacted separately with Q and T to form compound X and Y respectively. State							
		the type of bond that exists in compound.							
		i)	X	(01 mark)					
		ii)	Y	(01 mark)					
	c)	Ident	tify which one of the components in (b) would be soluble	in					
		i)	Water	(0 ½ mark)					
		ii)	petrol	(0 ½ mark)					
3.	a)	Sodi	um metal was burnt in excess oxygen						
		i)	State what was observed	(01 mark)					
		ii)	Write the equation for the reaction that took place.	(1 ½ marks)					
	b)	Wate	Water was added to the product in (a)						
		i)	State what was observed.	(01 mark)					
		ii)	Write the equation for the reaction that took place.	(1 ½ marks)					
4.	a)	A mi	ixture of magnesium powder and lead(II) oxide was heated	d strongly until Page 20 of 30					

- ii) Write equation for the reaction between the solid product in a(i) and dilute sulphuric acid. (1 ½ marks)
- b) Chlorine was bubbled through the product in a(i)
 - i) State what was observed. (01 mark)
 - ii) Write ionic equation for the reaction that took place. (1 ½ marks)
- 9 a) Write equation for the complete combustion of methane. $(1 \frac{1}{2} \text{ marks})$
 - b) 0.12dm³ of methane was completely burnt in air. Calculate the
 - i) volume of oxygen at s.t.p that would be required for the complete combustion of methane. (02 marks)
 - ii) quantity of heat that would be liberated during the reaction. (One mole of methane completely burns to give 890-KJ of heat: one mole of gas occupies 22.4dm3 at s.t.p)

 (1 ½ marks)
- 10. a) Both copper wire and copper (I) sulphate conduct electric current. Name the particles which conduct electric current in
 - i) copper wire $(0 \frac{1}{2} \text{ mark})$
 - ii) aqueous copper(II) sulphate (0 ½ mark)
 - b) The set up of apparatus in the diagram below was used to find out what happens when an electrolyte is connected to a source of electric current.

State what was observed.

- i) when the switch was closed $(0 \frac{1}{2} \text{ mark})$
- ii) if copper (II) sulphate crystal was replaced with potassium manganate (VII) crystal and the switch closed once again. (01 mark)
- c) i) Give a reason for the observation you have made in b(i) and (i). (01 mark)
 - ii) State any general conclusion that can be drawn following the reason you have given in c(i) (01 mark)

SECTION B

Answer any two questions from this section .

11.	a)	i)	With the aid of a labeled diagram, explain how a pure dr	y sample of			
			sodium sulphite				
			and sulphuric acid.	(05 marks)			
		ii)	Write an equation for the reaction leading to the formation	on of sulphur			
			dioxide.	(1 ½ marks)			
	b)	Name one reagent that would be used to confirm the presence of sulphur dioxide					
		and s	tate what would be observed if the reagent you have named	l was treated with			
		sulph	ur dioxide.	(02 marks)			
	c)	Write	e an equation to show the reaction between sulphur dioxide	and			
		i)	water	(1 ½ marks)			
		ii)	oxygen in the presence of hot platinum.	(1 ½ marks)			
	d)	The product of the reaction in c(ii) was mixed with water and barium nitrate					
		solution added to the resultant mixture					
		i)	State what was observed.	(01 mark)			
		ii)	Explain what took place (No equation required)	(2 ½ marks)			
12.	a)	State the difference between the following pairs of terms:					
		i)	Synthetic polymer and natural polymer	(02 marks)			
		ii)	Thermosetting polymer and thermo softening polymer (c	or thermoplastic)			
				(03 marks)			
	b)	i)	State the conditions under which sulphuric acid can react	t with ethanol to			
			produce ethene.	(1 ½ marks)			
		ii)	Write an equation leading to the formation of ethene.	(01 mark)			
	c)	When reacted together, ethene molecules can form a polymer					
		i)	Name the polymer.	(01 mark)			
		ii)	Write an equation leading to the formation of the polyme	er. (01 mark)			
		iii)	State one use of the polymer.	(01 mark)			
	d)	Name one					
		i)	synthetic polymer other than the one you have named in	(c) (01 mark)			
		ii)	natural polymer other than rubber.	(01 mark)			
	e)	State	one				
		i)	use of each of the polymers you have named in (d)	(02 marks) Page 23 of 30			

13.	a)	Chlorine can be prepared in the laboratory using potassium manganate(VII) KMnO ₄					
		i)	Name one substance that reacts with potassium manganate	e(VII) to			
			produce chlorine.	(01 mark)			
		ii)	State the condition for the reaction	(01 mark)			
		iii)	Write an equation for the reaction leading to the formation	of chlorine.			
				(1 1½ marks)			
	b)	Damp	blue litmus paper was dropped in a gas jar containing chlor	ine. State what			
		was o	bserved and explain your observation(s).	(03 marks)			
	c)	A boil	ling tube filled with chlorine water was inverted into a beaker	er containing			
		chlorine water and exposed to sunlight for sometime.					
		i)	State what was observed.	(0 ½ mark)			
		ii)	Explain with the aid of equation(s), your observation(s) in	c(i) (03 marks)			
	d)	Write an equation show how chlorine can react with					
		i)	dilute potassium hydroxide solution.	(1 ½ marks)			
		ii)	turpentine $C_{10}H_{16}$.	(1 ½ marks)			
	e)	Briefly describe a test you would carryout to confirm the presence of chloride ion					
		in solution. State what would be observed and write an equation for the reaction					
		that w	ould take place.	(2 ½ marks)			
14.	a)	Write	an equation for the reaction between oxygen and				
		i)	ammonia in the presence of hated platinum.	(1 ½ marks)			
		ii)	nitrogen monoxide.	(1 ½ marks)			
	b)	State how the product in a(ii) can be converted to nitric acid. (1 ½ mark					
	c)	Write an equation and state the conditions for the reaction between nitric acid and					
		i)	sulphur	(2 ½ marks)			
		ii)	lead (II) oxide	(2 ½ marks)			
	d)	In each case, state what was observed and write an equation for the reaction that					
		took p	place when, sodium nitrate was heated strongly				
		i)	alone				
		ii)	as a mixture with concentrated sulphuric acid.	(5 ½ marks)			

disadvantage of the polymer formed in c(ii)

ii)

(0 ½ mark)

Paper

SECTION A

Answer all questions in this section

	1.	Tea was	placed in	a cup	of hot	water and	allowed	to	stan
--	----	---------	-----------	-------	--------	-----------	---------	----	------

a) State what was observed.

(01 mark)

b) Name the process that occurred.

(01 mark)

c) State what the process you have named in (b) demonstrates.

(02 marks)

2. The number of protons, electrons and neutrons in some particles (ions and atoms) A, B, E, G, H and F are shown in the table below.

		Particles						
	A	D	Е	G	Н	F		
Protons	6	8	13	11	8	17		
Electrons	6	8	10	11	8	18		
Neutrons	6	8	14	12	10	18		

- a) Identify which one of the particles is
 - i) an anion

(01 mark)

ii) a cation

b)

(01 mark)

- b) State two particles which are atoms of the same element.
- (01 mark)
- c) State the type of bond formed when particle A, combines with particle H.

(01 mark)

- d) Write the formula of the ion formed from particle G.
- (01 mark)
- 3. When hydrogen peroxide is exposed to sunlight, it composes to give a colourless gas.
 - a) i) Write equation for the reaction that takes place.

(1 ½ marks)

- ii) Calculate the volume of the gas that would be evolved at room temperature when 20g of hydrogen peroxide decomposes completely at room temperature. (02 marks)
- i) State what would be observed if manganese (IV) oxide was added to the hydrogen peroxide. (01 mark)
 - ii) Give a reason for your answer in b(i)

(01 mark)

4.	Calci	um dihy	ydrogen phosphate is more used in agriculture as a source of	f phosphorus for			
	plant	nutrien	ts than calcium phosphate				
	a)	Write	e the formula of				
		i)	calcium dihydrogen phosphate.	(01 mark)			
		ii)	calcium phosphate	(01 mark)			
	b)	i)	Calculate the percentage of phosphorous in calcium phos	phate. (02 marks)			
		ii)	Suggest a reason why calcium dihydrogen phosphate is u	sed more in			
			agriculture than calcium phosphate.	$(0 \frac{1}{2} \text{ mark})$			
	c)	Write	e an ionic equation to show how calcium phosphate can be p	prepared in the			
		labor	atory.	(1 ½ marks)			
5.	Stean	n was p	assed over heated magnesium				
	a)	i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
	b)	To th	e solid produced in a(ii) was added dilute hydrochloric acid				
		i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
6.	When	n a blacl	k solid, X was dissolved in warm dilute hydrochloric acid, a	gas that smelt			
	like a rotten egg was evolved and a green solution was formed. The solution when						
	treated with aqueous sodium hydroxide formed a dirty green precipitate, Y which turned						
	reddish brown on standing in air.						
	a)	Ident	ify				
		i)	the anion in X.	(0 ½ mark)			
		ii)	the cation in X.	(0 ½ mark)			
	b)	i)	Name Y.	(01 mark)			
		ii)	Write equation for the reaction which led to the formation	n of Y.			
				(1 ½ marks)			
	c)	State	why Y turned reddish brown on standing in air.	(01 mark)			
7	The g	general i	formula of compounds Q and r are C_nH_{2n} and C_nH_{2n+2} respectively.	ectively.			
	a)	Write	e the molecular formula and the name of Q and r for $n = 2$				
		i)	Q: formula	(0 ½ mark)			
			Q: Name	(0 ½ mark)			
		ii)	R: formula	(0 ½ mark)			
			R: Name	(0 ½ mark)			
	b)	State	the structural difference between Q and R.	(01 mark) Page 26 of 30			

	c)	i)	Name a reagent can be used to distinguish Q and R.	(0 ½ mark)			
		ii)	State what would be observed if the reagent you have nan	ned in c(i) was			
			treated separately with Q and R.	(1 ½ marks)			
		iii)	Write equation for any reaction that would take place to il	lustrate your			
			observation in c(ii).	(01 mark)			
8	In ord	er to ill	ustrate a redox reaction, zinc was added to copper (II) sulph	nate solution and			
	the set	t up left	to stand for sometime.				
	a)	State	what was observed.	(01 mark)			
	b)	State 1	the substance that was:				
		i)	oxidized	(01 mark)			
		ii)	reduced	(01 mark)			
	c)	Name	one other substance that would react with copper (II) sulph	nate in a similar			
		way li	ke zinc.	(0 ½ mark)			
9.	An aqueous solution of potassium iodide was electrolyzed between carbon electrodes.						
	a)	State	what was observed at the anode.	(01 mark)			
	b)	i)	Name the product formed at the cathode.	(0 ½ mark)			
		ii)	Describe the test that can be carried out to identify the pro	oduct at the			
			cathode.	(01 mark)			
	c)	Litmu	s paper was dropped into the solution around the cathode a	t the end of the			
		experiment.					
		i)	State what was observed.	(01 mark)			
		ii)	Give a reason for your answer in c(i).	(01 mark)			
10.	90cm ³ of 0.1M calcium hydroxide solution was added to a sample of water containing						
	0.01 moles of calcium hydrogen carbonate						
	a)	State	(0 ½ mark)				
	b)	Write	Write equation for the reaction which took place.				
	c)	Calcu	late the number of moles of calcium ions in the 90cm ³ of 0.	1M calcium			
		hydroxide. (1 ½ marks)					
	d)	i)	State what would be observed if soap solution was added	to a sample of			
			the water after the addition of calcium hydroxide.	(0 ½ mark)			
		ii)	Give a reason for your observation in d(i)	(01 mark)			

SECTION B

Answer two questions from this section.

11.	a)	Describe how a pure dry sample of chlorine can be prepared in the laboratory					
11.		from potassium manganate (VII) crystals (Your answer should include a well					
		label	(06 marks)				
	b)	State	what would be observed if chlorine was bubbled throu	igh a:			
		i)	blue litmus solution	(01 mark)			
		ii)	potassium bromide solution	(01 mark)			
		iii)	Solution of iron (II) ions	(01 mark)			
	c)	Write	e equation for the reaction in b(ii) and (iii)	(03 marks)			
	d)	Write equation for the reaction between chlorine and					
		i)	heated iron	(1 ½ marks)			
		ii)	cold dilute sodium hydroxide solution.	(1 ½ marks)			
12.	a)	Nitrogen can react with hydrogen in the presence of catalyst which is finely					
		divided to form ammonia in the Haber process.					
		i)	State the source of nitrogen	(0 ½ mark)			
12.		ii)	Name the catalyst used in the reaction	(0 ½ mark)			
		iii)	Explain why the catalyst is finely divided	(1 ½ marks)			
		iv)	Write equation for the reaction leading to the format	ion of ammonia.			
				(01 mark)			
	b)	Write equation for the reaction to show that ammonia can:					
		i)	act as a reducing agent	(1 ½ marks)			
		ii)	burn in oxygen	(1 ½ marks)			
	c)	Ammonia obtained by the Haber process can be converted to nitrogen (II) oxide.					
		i)	Write equation for the reaction leading to the conver	rsion of ammonia to			
			nitrogen (II) oxide.	(1 ½ marks)			
		ii)	State the conditions for the reaction.	(01 mark)			
	d)	Write	e equation(s) to show nitrogen (II) oxide can be conver	ted to nitric acid.			
				(03 marks)			
	e)	When aqueous ammonia was added drop wise until in excess to a solution of					
		copper (II) nitrate a blue precipitate, P which dissolved in excess ammonia to give					
		a deep blue solution was formed					
		i)	Identify P.	(01 mark)			
		ii)	Write the formula and name of the cation in the deep	leep blue solution.			

(01	marl	(۲
(V)	mun	``)

- 13. a) i) Write equation for the reaction that can take place between zinc oxide and dilute nitric acid. (1 ½ marks)
 - ii) Briefly describe how dry crystals of the product of the reaction in a(i) can be obtained in the laboratory (3 ½ marks)
 - b) State what would be observed and write equation for the reaction that would take place if:
 - i) the crystals in a(ii) were heated. (3 ½ marks)
 - ii) to the solution of the crystals in a(ii) was added few drops of aqueous ammonia. (02 marks)
 - c) Excess silver nitrate solution was added to a solution containing 2.72g of zinc chloride.
 - i) State what was observed. (0 ½ mark)
 - ii) Write equation for the reaction that took place. (01 mark)
 - iii) Calculate the mass of silver that was used in the reaction. (Relative formula mass of zinc chloride = 136) (03 marks)
- 14. Sodium thiosulphate reacts with dilute acids according to the following equation.
 - a) State what would be observed if dilute hydrochloric acid was added to sodium thiosulphate solution. (0 $\frac{1}{2}$ mark)
 - b) The rate of the reaction is affected by the concentration of sodium thiosulphate.
 - i) State one factor other than concentration that can affect the rate of the reaction. (0 $\frac{1}{2}$ mark)
 - ii) Briefly explain the effect of the factor you have stated in b(i) on the rate of the reaction. (02 marks)
 - iii) Describe an experiment that can be carried out in the laboratory to show the effect of the factor you have stated in b(i) on the rate of the reaction.

 (Diagram not required) (6 ½ marks)

c) The table below shows the variation in the concentration of sodium thiosulphate with time.

Time(s)	200	100	40	20	10
Concentration of thiosulphate (moldm ⁻³)	0.05	0.09	0.15	0.20	0.25
1/concentration of thiosulphate (moldm ⁻³)					

- i) Determine the values for 1/concentration of sodium thiosulphate, copy the table and enter your answers in the spaces provided in the table. (01 mark)
- ii) Plot the graph of 1/concentration of thiosulphate (Vertical axis) against time(horizontal axis) (03 marks)
- iii) State any conclusion that can be drawn from the shape of the graph. (1 $\frac{1}{2}$ marks)

E N D