Análise Matemática II

2017/18

Lista de Exercícios 1

Respostas

a) $D = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 \neq 0, \ x_1 > 0 \text{ e } 9 - x_1^2 - x_2^2 \geq 0\}$

b) int
$$(D) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \neq -x_2 \text{ e } x_1 > 0 \text{ e } x_1^2 + x_2^2 < 9\},$$

fr $(D) = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 = -x_2 \land 0 \leq x_1 \leq 3) \lor (0 \leq x_1 \land x_1^2 + x_2^2 = 9) \lor (x_1 = 0 \land -3 \leq x_2 \leq 3)\},$

$$\operatorname{ext}(D) = \mathbb{R}^2 \backslash \operatorname{ad}(D).$$

a)
$$f(0,1) = 5$$
, $f(-2,3) = 75$ e $f(2,-3) = 69$.

a)
$$f(0,1) = 5$$
, $f(-2,3) = 75$ e $f(2,-3) = 69$.
b) $g(1,0) = 0$, $g(-3,4) = -\frac{24}{25}$ e $g(5,5) = 1$.
c) $f(-1,0) = 0$; $f(e,0) = 1$ e $f(-3,-4) = \log(5)$.

c)
$$f(-1,0) = 0$$
; $f(e,0) = 1$ e $f(-3,-4) = \log(5)$.

6. a)
$$V(l,r) = \pi \left(\frac{4r^3}{3} + lr^2\right) m^3$$
.

b)
$$V(8,1) = \frac{28\pi}{3}m^3$$
.

a)
$$IMC(98, 1.65) = 35.9$$
.

b)
$$60 \le P \le 81$$
.

8.

a)
$$P(1000, 2) = 0.004 \ \mu g/m$$
.

9.
$$v(4 \times 10^3, 7.5 \times 10^{-3}, 1.675, 4 \times 10^{-3}, 2.7 \times 10^{-3}) = 8.89994.$$

10.

- a) $D_P = \{(T, C) \in \mathbb{R}^2 : T \ge 0, C \ge 0\}.$ b) P(194, 407) = 235.8.c) $P(2T, 2C) = 1,01(2T)^{3/4}(2C)^{1/4} = 2P(T, C)$
- d) P(kT, kC) = kP(T, C)
- 11. Encontre o domínio D das funções seguintes e, quando possível, representeo graficamente:
 - a) $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \neq 16\},\$

b) $D = \{(x, y) \in \mathbb{R}^2 : y > -x^2\},$

- c) $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 25 \text{ e } x^2 + y^2 > 9\}$ d) $D = \{(x, y) \in \mathbb{R}^2 : -1 x \le y \le 1 x\}$

e) $D = \left\{ (x, y) \in \mathbb{R}^2 : x \neq 0 \text{ e } \frac{y}{x} > 0 \text{ e } -1 \leq x^2 + y^2 \leq 1 \right\}$

- 12. Para as funções seguintes, indique o seu domínio, o limite na origem (se existir) e o conjunto onde a função é contínua:
 - a) $f(x,y) = \frac{x^2 2}{3 + xy}$.
- b) $D_r = \mathbb{R}^2$ e $\lim_{(x,y)\to(0,0)} g(x,y) = 0$, g é contínua em \mathbb{R}^2 . c) $D = \{(x,y) \in \mathbb{R}^2 : 3x^2 y^2 \neq 0\} \cup \{(0,0)\}$, não tem limite na origem, é contínua em $\mathbb{R}^2 \setminus \{(0,0)\}$. d) $D = \mathbb{R}^2$, $\lim_{(x,y)\to(0,0)} p(x,y) = 0$, p é contínua em \mathbb{R}^2 .

- e) $D_r = \mathbb{R}^2 \setminus \{(0,0)\}$ e $\lim_{(x,y)\to(0,0)} r(x,y) = 0$.
- 14. Estude a continuidade das funções:

$$f(x,y) = \begin{cases} \frac{\sin(x^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

b) É contínua em $\mathbb{R}^2\backslash\{(2,y):y\neq 7\}$