

华中科技大学 2019~2020 学年第一学期 复变函数与积分变换 "考试试卷(A 卷)

考试方式:	闭卷	考试日期:_	2019-	12-8	考试时长:	<u>150</u> 分钟
院(系):			专业	班级: _		
学 号:			姓	名:_		
单项选择题	(每题2分,	共24分).				

 $1.(1+i)^{i}=($) (下列 k 均为任意整数)

A.
$$e^{-\left(\frac{\pi}{4}+2k\pi\right)}e^{i\ln 2}$$
, B. $e^{\frac{\pi}{4}+2k\pi}e^{i\ln 2}$, C. $e^{-\left(\frac{\pi}{4}+2k\pi\right)}e^{i\frac{1}{2}\ln 2}$, D. $e^{\frac{\pi}{4}+2k\pi}e^{i\frac{1}{2}\ln 2}$.

2.
$$z = 2\left(\sin\frac{2}{3}\pi - i\cos\frac{2}{3}\pi\right)$$
的指数表示为()

A.
$$2e^{-\frac{2}{3}\pi i}$$
, B. $2e^{-\frac{1}{6}\pi i}$, C. $2e^{\frac{2}{3}\pi i}$, D. $2e^{\frac{1}{6}\pi i}$.

- 3. 下列命题中正确的是(
 - A. 如果 $f'(z_0)$ 存在,那么 f(z) 在 z_0 解析。
 - B. 如果 z_0 为f(z)的奇点,那么f(z)在 z_0 不可导。
 - C.如果 z_0 为f(z)和g(z)的解析点,那么 z_0 也是f(z)+g(z)和 $\frac{f(z)}{g(z)}$ 的解析点。
 - D.如果f(z)在点 z_0 解析,那么f'(z)在点 z_0 也解析。
- 4. 设函数 f(z) = u + iv 在区域 D 内解析, 下列等式中错误的是(

A.
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
, B. $f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$,

C.
$$f'(z) = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$$
, D. $f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$

- 5. 设f(z)在闭路C上及其内部解析, z_0 在C的内部,则且 $\frac{f(z)}{(z-z_0)^2}dz = ($
 - A. $f'(z_0) \iint_{\mathbb{R}} \frac{1}{(z-z_0)^2} dz$, B. $\iint_{\mathbb{R}} \frac{f'(z)}{z-z_0} dz$,
- - C. $\frac{f'(z_0)}{2!} \iint_{z-z_0} \frac{1}{z-z_0} dz$, D. $\iint_{z-z_0} \frac{f(z)}{z-z_0} dz$
- 6. 设C为正向圆周: |z|=r>1, 则 $\int_{C} \frac{\sin \pi z}{(z-1)^4} dz = ($
- A. $\frac{\pi^4 i}{6}$, B. $\frac{\pi^4 i}{3}$, C. $-3\pi^2 i$, D.0 .
- 7. 幂级数 $\sum_{n=0}^{+\infty} \frac{n!}{n^n} z^n$ 的收敛半径是 ()
- A.1, B.+ ∞ , C. $\frac{1}{2}$, D. e.
- 8. 函数 $f(z) = e^{\frac{1}{z+2}} \cdot \ln(1+i+z^2)$ 在点 z = 0 展开成 Taylor 级数的收敛半径为(

- $B.\sqrt{2}$, $C.\sqrt[4]{2}$, D. 以上都不对。
- 9. 如果z=a分别为f(z)和g(z)的本性奇点和 n 阶极点,那么z=a为f(z)g(z)的 ()

- A. 可去奇点, B. 本性奇点, C.n 阶极点, D. 非孤立奇点。
- 10. 映射 $\mathbf{w} = \mathbf{e}^{iz^2}$ 在点 $\mathbf{z} = \mathbf{i}$ 处的伸缩率为 (
 - A. 1, B. 2, C. $\frac{1}{2}$, D. e_{\circ}

- 11. 设 $f(t) = \sin t \cos t$,则f(t)的 Fourier 变换F(f(t))为(

 - A. $\frac{j}{4} [\delta(2+\omega) + \delta(2-\omega)],$ B. $\frac{j}{4} [\delta(2+\omega) \delta(2-\omega)],$
 - C. $\frac{j\pi}{2} [\delta(2+\omega) + \delta(2-\omega)],$ D. $\frac{j\pi}{2} [\delta(2+\omega) \delta(2-\omega)].$

12. 函数 $F(\omega) = 1 + \delta(\omega + a)$ $(a \in \mathbb{R})$ 的 Fourier 逆变换 $f(t) = F^{-1}(F(\omega))$ 为(

A.
$$\delta(t) + e^{-jta}$$
,

B.
$$\delta(t) + e^{jta}$$
,

C.
$$\delta(t) + \frac{1}{2\pi} e^{-jta}$$
, D. $\delta(t) + \frac{1}{2\pi} e^{jta}$

D.
$$\delta(t) + \frac{1}{2\pi}e^{jta}$$

二、(12 分) 已知 f(z)=u(x,y)+iv(x,y) 为复平面上的解析函数,且满足

$$u(x,y)-v(x,y)=e^{-y}(\sin x+\cos x)$$
, 求函数 $f(z)$ 。

三、(12 分) 把函数 $f(z) = \frac{1}{(z+1)(z-1)^2}$ 在下列圆环域内展开为 Laurent 级数:

(1)
$$0 < |z+1| < 2$$
; (2) $2 < |z-1| < +\infty$.

四、计算下列积分(每题5分,共10分)。

1.
$$\iint_{|z|=2} \frac{e^z}{z(1-z)^2} dz$$
 2. $\iint_{|z|=2} \frac{z^3}{1+z} e^{\frac{1}{z}} dz$

五、计算下列积分(每题5分,共10分)。

1.
$$\iint_{|z|=2} \frac{dz}{z^3(z^{10}-2)}$$
, 2. $\int_0^{+\infty} \frac{x \sin x}{x^2+1} dx$.

$$2. \quad \int_0^{+\infty} \frac{x \sin x}{x^2 + 1} dx \ .$$

六、(6 分) 求区域
$$\mathbf{D} = \left\{ z : |z| > 1, 0 < \arg z < \frac{5}{4}\pi \right\}$$
 在映射 $\mathbf{w} = \frac{\left(\frac{1}{\left(\sqrt[5]{z}\right)^2}\right)^2 + 1}{\left(\frac{1}{\left(\sqrt[5]{z}\right)^2}\right)^2 - 1}$ 下的像。(答题

过程需用图形表示)

七、 $(N \circ)$ 求一共形映射W = f(z),将z平面上的区域 $D = \{z : |z-i| > 1, \text{Re}z > 0, \text{Im}z > 0\}$ 映射到W平面的上半平面。(答题过程需用图形表示)

八、(10 多) 利用 Laplace 变换求解下面常微分方程:

$$x''(t) - 2x'(t) + 2x(t) = 2 - 2t$$
, $\coprod x(0) = 1$, $x'(0) = 0$.

九、(6 **%**) 证明: 若函数 f(z) 在 |z| > 1 内解析,且满足 $\lim_{z \to \infty} f(z) = a$,则对于任何正数

$$r > 1$$
,积分 $\frac{1}{2\pi i} \iint_{C_r} f(z) dz = a$,其中 C_r 为正向圆周: $|z| = r$ 。