Zadanie:

Numericky riešte problém ideálneho kyvadla hmotnosti m, pripevneného k pevnému čapu tuhou tyčou dĺžky L. Predpokladajme, že uhol vychýlenia θ je malý, takže platí sin $\theta \approx \theta$. V takom prípade je možné popísať pohyb kyvadla sústavou diferenciálnych rovníc

$$\frac{d\omega}{dt} = -\frac{g}{L}\theta$$

$$\frac{d\theta}{dt} = \omega$$

Nájdite časovú závislosť $\theta(t)$ pre $0 \le t \le 20$ s krokom $\Delta t = 0.02$, pričom $\theta(0) = 0$, $\omega(0) = 0.1$ a L = 2g. Úlohu riešte

- (a) Eulerovou metódou
- (b) Metódou Runge-Kutta 4. radu
- (c) Za pomoci zabudovanej funkcie Octavu Isode

Jednotlivé riešenia zobrazte graficky, porovnajte a diskutujte prípadné rozdiely.

Riešenie:

Definovali sme sieťové uzly t_i na intervale [a, b] = [1, 20] s konštantným krokom dt=0,02.

1. Eulerova metóda

Hodnota y_{i+1} sa počíta extrapoláciou z hodnoty y_i v predchádzajúcom uzle a na intervale $[t_i, t_{i+1}]$ sa riešenie aproximuje priamkou, ktorá prechádza bodom (t_i, y_i) a má smernicu $y_i' = f(t_i, y_i)$. Z toho dostávame rekurentný vzťah

$$y_{i+1} = y_i + dt * f(t_i, y_i)$$

2. Runge-Kutta metóda

Runge-Kutta metódy sú všeobecne dané rekurentným vzťahom:

$$y_{i+1} = y_i + dt \sum_{j=1}^r \alpha_j k_j,$$

kde $k_1=f(t_i, y_i)$ a $k_j=f(t_i+\lambda_j dt, y_i+\mu_j dt k_{j-1})$ pre j>1. Konkrétne pre 4. rád RK metódy dostávame rekurentný vzťah

$$y_{i+1} = y_i + dx \frac{k_1 + 2k_2 + 2k_3 + k_4}{6},$$

kde hodnoty k_j sú

$$k_{1} = f(t_{i}, y_{i}),$$

$$k_{2} = f\left(t_{i} + \frac{dt}{2}, y_{i} + \frac{dt}{2}k_{1}\right)$$

$$k_{3} = f\left(t_{i} + \frac{dt}{2}, y_{i} + \frac{dt}{2}k_{2}\right)$$

$$k_{4} = f(t_{i+1}, y_{i} + dtk_{3})$$

Výsledky:

Na grafoch sú zobrazené riešenia úlohy pomocou rôznych metód. Rozdiel medzi Eulerovou metódou a Runge-Kutta metódou 4. rádu je v tomto priblížení nebadateľný. Riešenie pomocou zabudovanej funkcie Isode sa líši od spomínaných dvoch riešení s každou periodou stále viac.

Na ďalšom grafe už vidíme rozdiely medzi jednotlivými metódami. Riešenia sa s každou polperiódou prekrývajú takže chyba klesne do nuly, ale potom sa s každým dosiahnutým extrémom chyba v našom časovom intervale zväčšuje.

Záver:

Podarilo sa nám nájsť riešenia úlohy ideálneho kyvadla pomocou všetkých troch numerických metód. Ich rozdiely vidíme na 3. grafe v sekcii Výsledky. Rozdiely možno odôvodniť výpočtovou chybou samotných numerických metód.