A No-Arbitrage Model Of Liquidity In Financial Markets Involving Brownian Sheets: Applications To High-Frequency Data

October 29, 2015

Ran Zhao

WITH HENRY SCHELLHORN

CLAREMONT GRADUATE UNIVERSITY

Outline

- Option Pricing in a Liquid Market
- Trading Limit Orders
- Option Pricing in an Illiquid Market
- 4 Option Empirical Analysis
- Market Data Calibration and Net Demand Curve Simulation

Option Pricing in a Liquid Market

Model for Asset Price π at time t

$$\pi(t,\omega) = \pi(0) \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t,\omega)\right)$$

where:

 ω : the state of the world ("scenario", "outcome"),

μ: the drift,

 σ : the volatility,

W: Brownian Motion.

Option Pricing in a Liquid Market: what is Brownian Motion?

Random walk: equal probability at each (discrete) time-step to go up or down.

Figure: Random Walk.

Option Pricing in a Liquid Market: what is Brownian Motion?

Random walk: equal probability at each (discrete) time-step to go up or down.

Brownian Motion: accelerate time:

Option Pricing in a Liquid Market: Stochastic Calculus

The Chain rule is different

• Regular calculus: with a differentiable path x(t)

$$\frac{d}{dt}f(x(t),t) = \frac{\partial f}{\partial x}\frac{\partial x(t)}{\partial t} + \frac{\partial f}{\partial t}$$

• Stochastic calculus: with a non-differentiable path W(t)

$$df(W(t),t) = \frac{\partial f}{\partial x}dW(t) + \frac{1}{2}\frac{\partial^2 f}{\partial^2 x}dt + \frac{\partial f}{\partial t}dt$$

(Ito's lemma)

Option Pricing in a Liquid Market: the Black-Scholes Formula

Call Option

A call option is a contract which gives the owner the right to buy an (underlying) stock at a future time T for a given *strike price* K.

Theorem

If there is no arbitrage, the price of the call option at time zero is:

$$C(0) = E^{\mathbb{Q}}[\max(\pi(T) - K, 0)]$$

Observation: \mathbb{Q} is called the *risk-neutral* measure. It is by definition the measure where π is a *martingale*, i.e., where:

$$\pi(0) = E^{\mathbb{Q}}[\pi(t)] \quad \forall t > 0$$

Equivalently, this is the measure where $W^{\mathbb{Q}}(t) \equiv W(t) + \frac{\mu}{a}t$ is Brownian motion

$$\begin{split} \pi(t) &= \pi(0) \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t)\right) \\ &= \pi(0) \exp\left(-\frac{\sigma^2 t}{2} + \sigma\left(W(t) + \frac{\mu}{\sigma}t\right)\right) \\ &= \pi(0) \exp\left(-\frac{\sigma^2 t}{2} + \sigma W^{\mathbb{Q}}(t)\right) \end{split}$$

The drift μ disappears. The option price depends only on volatility σ !

Market vs Limit Orders

A (buy) market order specifies

- how many shares a trader wants to buy,
- that he is willing to buy them at any price.

A (buy) limit order specifies

- how many shares a trader wants to buy,
- at what maximum price he is willing to buy them.

Figure: Limit order matching mechanism.

Figure: Limit order matching mechanism.

Figure: Limit order matching mechanism.

Figure: Limit order matching mechanism.

Demand v.s. Supply

The order books contain all the information about demand and supply.

Figure: Demand v.s. Supply

The dynamics of Limit Orders in 3D

Figure: Buy Limit Orders of ORCL on April 4, 2011

Figure: Sell Limit Orders of ORCL on April 4, 2011

The dynamics of the Clearing Price process

Figure: The dynamics of Oracle Corporation's Clearing Prices on April 1, 2011.

High-Frequency Trading

Figure: Average daily trading volume by HFT firms in all U.S. stocks (2005–2012). Source: Tabb Group, Rosenblatt Securities, The New York Times and Agarwal (2012).

Literature Review: Liquidity Models

Market Manipulation (feedback) Models

- Jarrow (1994),
- Platen and Schweizer (1998),
- Sircar and Papanicolaou (1998),
- Frey (1998),
- Schonbucher and Wilmott (2000),
- Bank and Baum (2004).

Price-taking (competitive) Models

- Cetin, Jarrow, and Protter (2004),
- Cetin and Rogers (2006),
- Cetin, Soner, and Touzi (2009),
- Kallsen and Rheinlaender (2009),
- Gokay and Soner (2011).

Net Demand Curve and Clearing Price

Definition

The net demand curve Q is a function $[0, P] \times \mathbb{R}^+ \times \Omega \to \mathbb{R}$, which value $Q(p, t, \omega)$ is equal to the difference between the quantity of shares **available** for purchase and the quantity of shares **available** for sale at price p at time t. For each p the stochastic process $Q(., t_*)$ is a \mathcal{F}_t adapted semimartingale.

Remark: If we use Brownian motion to model demand, the net demand curve must be defined on a continuum of limit prices. Indeed the clearing price will be a diffusion (range $= \mathbb{R}^+$). Since it must fall on an existing limit price, the demand must be defined on a continuum of limit prices.

Remark: The net demand curve should be decreasing in p. The easiest way to do that is to model positive processes:

- Q(0, t): total number of buy orders
- q(p, t): density of buy orders + density of sell orders

$$Q(p,t) = Q(0,t) - \int_0^p q(y,t)dy$$

Definition

The clearing price $\pi(t)$ is a \mathcal{F}_t - adapted stochastic process which satisfies market clearing:

$$Q(\pi(t), t) = 0$$

The Mode

It can be proved that the optimal strategy of a large trader is to disseminate her orders into infinitesimal orders.

This shows that a continuous demand curve is a plausible model.

- For the clearing price to be a martingale, it is (generically) necessary to have as many "sources of information" as possible limit price values:
 - since the set of possible limit price values has to be a continuous range we introduce the Brownian sheet W(t,s).
- There is correlation among net demand at different limit prices

$$\begin{split} dQ(0,\,t) &= \mu_Q(0,\,t) dt - \sigma_Q(0,\,t) \int_{\mathcal{S}} b_q(0,\,s,\,t) W(0,\,dt), \qquad Q(0,\,0) = Q_0(0) \\ dq(p,\,t) &= \mu_q(p,\,t) dt + \sigma_q(p,\,t) \int_{\mathcal{S}} b_q(p,\,s,\,t) W(ds,\,dt), \qquad q(p,\,0) = Q_0(p) \ \ \text{for} \ \ 0$$

Main Result: Market with a Large Trader

Main Result

Suppose in addition to our standing assumptions that

- C1) for self-financing strategies involving only immediate orders, (Jarrow, 1994)'s discrete-time conditions for absence of market manipulation strategy hold,
- C2) no arbitrage strategy involves wait orders,
- C3) the volatility $\sigma_{Q_A}(p,t)$ is bounded away from zero, uniformly in p,
- C4) there is no path such that $Q(S, t) \ge 0$ or $Q(0, t) \le 0$.

Then

- F1) there exists at least one martingale measure \mathbb{Q} for $\int L_L(\vartheta, dt)$,
- F2) there is no arbitrage strategy,
- F3) the net demand curve Q is continuous in t,
- F4) the clearing price $\pi(t)$ is continuous,
- F5) any such measure $\mathbb Q$ is also a martingale measure for $\pi(t)$.

Characterization of the Risk-Neutral Measure Q

Standing assumption: There is no path such that $Q(P, t) \ge 0$

Change of Measure

In the \mathbb{Q} -measure the process $W^{\mathbb{Q}}$ is a Brownian sheet, where:

$$W^{\mathbb{Q}}(ds, dt) = W(ds, dt) + \lambda(s, t)dt$$

Goal: determine λ such that π is a \mathbb{Q} -martingale.

Market Price of Risk Equations

Define

$$C(\pi, t) = -\sigma_{\pi}(t) \left(\frac{\partial}{\partial p} \left(\sigma_{q}(0, t) \int_{s} b_{q}(0, s, t) b_{\pi}(s, t) ds \right) + \sigma_{q}(\pi, t) \int_{s} b_{q}(\pi, s, t) b_{\pi}(s, t) ds \right),$$

$$b(\pi, t) = -\mu_{Q}(0, t) + \int_{0}^{\pi} \mu_{q}(p, t) dp dt + \frac{1}{2} \frac{\partial q}{\partial p}(\pi, t) (\sigma_{\pi}(t))^{2} - C(\pi, t),$$

$$\Sigma(\pi, s, t) = \int_{0}^{\pi} \sigma_{q}(p, t) b_{q}(p, s, t) ds.$$

The market price of risk equations are:

$$\int_{s=0}^{P} \Sigma(\pi, s, t) \lambda(s, t) ds = b(\pi, t) \qquad 0 \le \pi \le F$$

Theorem

Suppose all the previous assumptions hold. In addition, suppose that the market price of risk equations have a unique solution. Then there is no arbitrage.

From a "MetaModel" to a Model

Reminder:

$$q(p,t)dp=$$
 sum of buy and sell order quantities with limit price in $[p,p+dp]$ arriving in $[0,t]$

Plausible dynamics for q:

- positive process
 not necessarily increasing: orders can be cancelled
- mean-reverting process
- lacksquare to be implemented on a computer: $m{p}$ and $m{t}$ must take discrete values
- the relative curve, i.e., the two-argument curve $\tilde{q}(.,.,t)$ where $\tilde{q}(p-\pi(t),p,t)=q(p,t)$ can be well fitted as a function of the first argument only

Our choice: the exponential of a (vector) Ornstein-Uhlenbeck process.

NYSE Arcabook Data

Industry	Exchange	Ticker	Firm
Energy	NYSE	CVX	Chevron Corporation
	NYSE	XOM	Exxon Mobil Corporation
Financial Banks	NYSE	JPM	JPMorgan Chase & Co.
	NYSE	WFC	Wells Fargo & Company
Materials and Mining	NYSE	ABX	Barrick Gold Corporation
	NYSE	FCX	Freeport-McMoRan Copper & Gold Inc.
Technology	NASDAQ	CSCO	Cisco Systems, Inc.
	NASDAQ	MSFT	Microsoft Corporation
	NASDAQ	ORCL	Oracle Corporation

Table: NYSE Arcabook data selection.

Parameter Estimation

Figure: Parameter Estimation

Volatility Smile (ORCI

Strike Price	Implied Volatility
33.77	22.66%
33.80	21.05%
	19.40%
33.87	17.71%
33.90	15.94%
	14.10%
	12.16%
34.00	10.11%
	9.35%
34.07	10.26%
34.10	11.03%
34.14	11.70%
34.17	12.25%
34.20	12.71%
34.24	13.06%
34.27	13.25%
34.31	13.34%
34.34	13.32%
34.37	13.23%
34.41	12.99%

Volatility Smile (ABX)

Strike Price	Implied Volatility
50.98	23.64%
51.03	21.98%
51.08	20.27%
51.13	
51.18	16.70%
51.23	14.84%
51.29	12.93%
	11.69%
51.39	12.24%
51.44	12.75%
51.49	13.20%
51.54	
51.59	13.92%
51.64	14.18%
51.69	14.37%
51.74	14.46%
51.79	14.54%
51.85	14.55%
51.90	14.46%
51.95	14.39%

Volatility Smile (CSCO)

Strike Price	Implied Volatility
16.88	13.30%
16.90	12.17%
16.92	
	9.84%
16.95	8.63%
16.97	7.37%
16.99	6.04%
17.00	4.63%
	4.16%
17.04	4.84%
17.05	5.28%
17.07	
17.09	5.68%
17.10	5.73%
17.12	5.79%
17.14	5.85%

Model Framework

We define

$$\begin{array}{lcl} \frac{dh(p,\,t,\,\omega)}{h(p,\,t,\,\omega)} &=& [-a_h(p) + \mu_h(h(p,\,t,\,\omega),\,p,\,t)]dt + \int_{s=0}^S \sigma_h(h(p,\,t,\,\omega),\,p,\,s,\,t)W(ds,\,dt,\,\omega) \\ q(p,\,t,\,\omega) &=& \exp\left(\int_{x=0}^P h(x,\,y,\,\omega)dx\right) \\ dQ(p,\,t,\,\omega) &=& \int_{x=0}^S q(x,\,t,\,\omega)dx\eta(t,\,\omega) - \int_{x=0}^P q(x,\,t,\,\omega)dx \\ d\eta(t,\,\omega) &=& a_\eta(\bar{\eta}-\eta(t,\,\omega))dt + \sqrt{\eta(t,\,\omega)(1-\eta(t,\,\omega))} \int_{s=0}^S \sigma_\eta(s)W(ds,\,dt,\,\omega) \end{array}$$

Reasoning of Modeling Framework

- The reason of modeling demand but not demand/supply separately Simonth semi-martingale assumption holds for net demand curve
- The reason of modeling η process

 Make sure Q can be positive or negative
- The reason for Q to be twice differentiable

 However that the targer trader is rational, and thus the net demand curve is continuous.
- The reason for q to be positive

 Suppositive that the net demand is downward stoping (decreases with price
- The reason for using Brownian sheet
 Rule out arbitrage apportunity

Simulation Process

Market Calibration

- **E**stimate excess demand $\bar{Q}(p, t)$ from p and t from the high frequency data;
- Calculate the $\eta(t)$ process by $\frac{\bar{Q}(0,t)}{\bar{Q}(0,t)-\bar{Q}(S,t)}$;
- Calculate process q and h. Estimate the variance-covariance matrix of h and η ;
- Apply Cholesky decomposition to the correlation matrix, where $ilde{R}dt= extstyle{Corr}[rac{dh_i}{h_i},rac{dh_j}{h_j}]$

Figure: The net demand of GE as of 04/01/2011

Figure: The q process of GE as of 04/01/2011 TEUNIVER

Simulation Process

Excess Demand Simulation

(The process of the simulation is to demonstrate that the calibrated parameters in framework are market consistent)

- Randomly generate n paths for h;
- Use h to integrate for q process;
- Simulate η process using the correlation estimated in market calibration process;
- Combine h, q and η to simulate excess demand Q.

Figure: The net demand of GE as of 04/01/2011 32 of 34

The q process of GE as of 04/015

TE UNIVER

Simulation Result

GE stock net demand curve with 04/01/2015 market data calibrated:

Figure: Q (net demand) for GE.

Conclusions

- We developed a liquidity model with stands between
 - traditional no-arbitrage (option pricing) models and
 - financial economics models.
- 2 This model uses Ito-Wentzell's formula and Girsanov's theorem for Brownian sheets.
- We give conditions for no-arbitrage, which allows us to price options
- We specified a model
 - with positive demand density,
 - with mean-reversion,
 - where parameters are centered on the clearing price.
- The model generates an implied volatility smile which matches the observed smile much better than the traditional Black-Scholes model.
- We calibrate the model parameters from high frequency stock data of GE as of 04-01-2015.

 The simulated net demand curve shows a downward sloping shape, as expected.