

UNCLASSIFIED

AD NUMBER

AD448477

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

Distribution: No Foreign

AUTHORITY

USNOL ltr., 29 Aug 1974

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD 4 4 8477

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOLTR 64-65

AIR-FILM COOLING OF A SUPERSONIC
NOZZLE

NOL

18 AUGUST 1964

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOLTR 64-65

Aerodynamic Research Report No. 224

AIR-FILM COOLING OF A SUPERSONIC NOZZLE

by
Bing H. Lieu

ABSTRACT: An experimental study was made of the internal air-film cooling of a Mach 2.4, nonadiabatic wall, axially symmetric nozzle. The main stream air was heated to supply temperatures from 672 to 1212°R at supply pressures from 115 to 465 psia. The film coolant air was injected through a single peripheral slot at an angle of 10° from the nozzle wall. The coolant-to-main stream mass flow ratios were varied up to 20 percent. Steady-state nozzle wall temperatures were measured in both the subsonic and the supersonic flow regimes.

The turbulent pipe flow equation of Dittus and Boelter was found to be applicable in predicting the heat transfer rates in the absence of film cooling. A modified version of the semi-empirical equation of Hatch and Papell was found applicable in estimating the film-cooled nozzle wall temperatures.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

NOLTR 64-65

18 August 1964

Air-Film Cooling of a Supersonic Nozzle

This report presents a comparison between experimental data and theoretical calculations of air-film cooling of an axisymmetric, Mach 2.4 nozzle.

A number of people have contributed towards this project. Special thanks are due to Mr. R. C. Sullivan for the instrumentation of the nozzle and Mr. F. W. Brown for his general assistance in performing the experiment.

This work was sponsored by the Bureau of Naval Weapons Special Projects Office under Polaris Long Range Research (Task No. PR-10).

R. E. ODENING
Captain, USN
Commander

K. R. Enkenhus
K. R. Enkenhus
By direction

CONTENTS

	Page
INTRODUCTION.....	1
EXPERIMENTAL PROCEDURE.....	2
Apparatus and Instrumentation.....	2
Test Conditions and Procedure.....	3
ANALYSES AND RESULTS.....	4
Nozzle Heat Transfer Without Film Cooling.....	5
Film-Cooled Nozzle Wall Temperatures.....	7
DISCUSSION AND CONCLUSIONS.....	8
SUMMARY.....	10
REFERENCES.....	12

ILLUSTRATIONS

- Figure 1 Film-Cooling Apparatus Schematic
- Figure 2a Nozzle Configuration
- Figure 2b Design Flow Characteristics of Nozzle
- Figure 2c Coolant Injection Slot
- Figure 3 Thermocouple Locations
- Figure 4 Thermocouple Plug Design
- Figure 5 Thermocouple Read-Out Schematic
- Figure 6 Nozzle Heat-Transfer Correlation
- Figure 7 Velocity Ratio Function
- Figure 8a Nozzle Film-Cooling Correlation for $T_s=672^{\circ}\text{R}$,
 $P_s=315 \text{ psia}$
- Figure 8b Nozzle Film-Cooling Correlation for $T_s=852^{\circ}\text{R}$,
 $P_s=315 \text{ psia}$
- Figure 8c Nozzle Film-Cooling Correlation for $T_s=852^{\circ}\text{R}$,
 $P_s=465 \text{ psia}$
- Figure 8d Nozzle Film-Cooling Correlation for $T_s=1032^{\circ}\text{R}$,
 $P_s=115 \text{ psia}$
- Figure 8e Nozzle Film-Cooling Correlation for $T_s=1032^{\circ}\text{R}$,
 $P_s=215 \text{ psia}$
- Figure 8f Nozzle Film-Cooling Correlation for $T_s=1032^{\circ}\text{R}$,
 $P_s=315 \text{ psia}$
- Figure 8g Nozzle Film-Cooling Correlation for $T_s=1212^{\circ}\text{R}$,
 $P_s=115 \text{ psia}$
- Figure 8h Nozzle Film-Cooling Correlation for $T_s=1212^{\circ}\text{R}$,
 $P_s=315 \text{ psia}$
- Figure 9 Measured and Predicted Wall Temperatures
- Figure 10 Film-Cooled Nozzle Throat Temperatures
- Figure 11 Extended Flow Model of Reference (6)

SYMBOL LIST

(The units listed here are consistent with the equations given in this report.)

A	flow area, in ²
c _p	specific heat at constant pressure, Btu-in ² /lbm-ft ² -°R
d	diameter, in
f	velocity ratio function defined by equations (21) and (22)
h	heat transfer coefficient, Btu/sec-ft ² -°R
k	thermal conductivity, Btu-in/sec-ft ² -°R
L	injection slot length = $2\pi r$ for axisymmetric slot, in
M	Mach number
\dot{m}	mass flow rate, lbm/sec
Nu	Nusselt number
P	pressure, lbf/in ² abs.
p	pressure ratio defined by equation (3)
Pr	Prandtl number
q	heat flux, Btu/sec-ft ²
r	radius, in
Re	Reynolds number
S	injection slot width, in
T	temperature, °R
u	velocity, ft/sec
z	axial distance measured from the injection slot exit, in
α	thermal diffusivity, in-ft/sec
β	effective injection angle defined by equation (19), radians

ϵ geometrical injection angle, radians
 η adiabatic wall film-cooling effectiveness
 η' nonadiabatic wall film-cooling effectiveness
 μ absolute viscosity, lbm/sec-in
 ρ mass density, lbm/ft-in³
 φ exponent defined by equation (20)
 ψ mass flow parameter defined by equation (4).
 lbf/in² abs/OR^{1/2}

Subscripts

a upstream of orifice in mass flow meter
 aw adiabatic wall
 b downstream of orifice in mass flow meter
 c coolant, at injection slot exit
 d local diameter
 g main stream
 H cooling water
 i nozzle inner surface
 j inner surface thermocouple junction locations
 o nozzle outer surface
 s main stream supply (stagnation conditions)
 w nozzle wall
 ∞ local free stream

Superscripts

o zero coolant injection
 $*$ conditions at throat

INTRODUCTION

When a surface is exposed to a high energy fluid stream, some means of cooling the surface may become necessary. Many methods of cooling are available or have been proposed (ref. (1)). Among these is film cooling. Film cooling employs a second fluid (the coolant) introduced between the surface and the high energy main stream, thus absorbing the heat which would otherwise flow from the main stream to the surface. The coolant, not necessarily the same fluid as the main stream, can be injected through a single slot or a series of slots in the surface.

In any particular application, many factors need to be considered in selecting a cooling method. Some of the features of film cooling are the following:

- (1) Film cooling may be applied when needed.
- (2) Film cooling may be applied locally (single-slot arrangement) or over an extended surface (multiple-slot technique (ref. (2))).
- (3) Film cooling does not alter the geometry of the surface (as in ablative cooling).
- (4) Film cooling does not require a special material or manufacturing process (as in porous-wall transpiration cooling).

The application of film cooling has been studied quite extensively (e.g., refs. (1) through (8)). The simplified flow model of Hatch and Papell (ref. (6)), developed for the gaseous film cooling of an adiabatic plate, resulted in a semi-empirical equation. This equation, incorporating the injection slot angle factor of reference (7), was used with some success by Lucas and Golladay (ref. (8)) in correlating their experimental data for film cooling of a rocket motor.

In the present investigation, the air-film cooling of an axially symmetric, nonadiabatic wall, Mach 2.4, contoured nozzle was studied by relating the decrease in the local nozzle wall temperatures with the increase in coolant mass flow rate. The equation of reference (7) was modified to apply to the axisymmetric, nonadiabatic wall used in the experiment.

EXPERIMENTAL PROCEDURE

Apparatus and Instrumentation

The air-film cooling of a supersonic nozzle was performed with the apparatus shown schematically in figure 1. The compressed air in the bottle field was used as the supply for both the main stream and the film coolant. The main stream air was heated in a propane-fired, indirect heat exchanger, the supply conditions being measured with a total temperature thermocouple and a static pressure tap, both located in a plenum chamber to be described below. The coolant air was tapped directly from the bottle field via a 1-inch line and metered with an orifice of 0.101-inch diameter. The coolant mass flow was controlled by a valve upstream of the orifice.

The essential features of the film cooling apparatus (fig. 1) consisted of a plenum chamber, a contraction section, an approach section, a coolant injection slot, and a nozzle. The plenum chamber is 54 inches long by 5½ inches ID. The contraction section is contoured, 8½ inches long by 5½-inch/1-inch ID. The approach section is 6 inches long by 1 inch ID. The nozzle (fig. 2a) is 13 inches long, is made of a chromium-copper alloy, and is externally water-cooled. The inlet and the exit sections of the nozzle are both 1 inch in diameter; the throat is 0.645-inch in diameter and 5 inches downstream of the injection slot exit. The design flow characteristics along the nozzle centerline are shown in figure 2b. The coolant injection slot (fig. 2c) has a width, S, of 0.0087-inch and a discharge angle, ϵ , of 10° measured from the nozzle wall.

Fifteen pairs of chromel-alumel thermocouples embedded in the nozzle wall at fifteen axial locations measured the temperature distributions along the inner and outer surfaces. These thermocouples were embedded approximately 0.03 inches from the inner wall and mounted on the outer wall. The fifteen thermocouple stations covered a range $1.25'' \leq z \leq 9.00''$, as shown in figure 3. These thermocouples were displaced circumferentially along the nozzle for ease of installation and reduction of stress. An axisymmetric temperature field in the nozzle wall is assumed.

The thermocouples measuring the nozzle inner surface temperatures were cemented in tapered plugs made of the same material as the nozzle such that the junctions protrude from the side of the plugs (fig. 4). These plugs were force-fitted and cemented into mating, tapered holes in the nozzle wall. The nozzle inner surface was machined after the plugs were installed, thus ensuring a smooth surface. The thermocouples measuring the outer surface temperatures were peened and cemented into small

indentations on the surface. This technique of thermocouple installation was used so as not to perturb the temperature field in the nozzle wall. The nozzle and thermocouple assembly was inserted and sealed inside a water jacket for the nonadiabatic test conditions (fig. 2a).

The thermocouple outputs were referenced to "cold" junctions in an oil bath at ambient temperature. The oil bath temperature was measured with another Cr-Al thermocouple with its cold junction in an ice bath. This thermocouple read-out method, shown schematically in figure 5, required only one ice bath and relatively short thermocouple wires. The validity of the method is insured by two fundamental laws of thermoelectric thermometry; viz., the law of intermediate metals and the law of successive temperatures (ref. (9)).

The output of all the thermocouples was recorded on magnetic tapes by an electronic digital read-out system.

Test Conditions and Procedure

The experimental conditions used are given in the following table:

Main Stream Supply Conditions		Main Stream Mass Flow Rate Without Film Cooling	Film Coolant Mass Flow Rates	
T _s (°R)	P _s (psia)	\dot{m}_g^0 (lbm/sec)	(\dot{m}_c) _{min} (lbm/sec)	(\dot{m}_c) _{max} (lbm/sec)
672	315	2.113	0.0737	0.2088
852	315	1.876	0.0409	0.2085
852	465	2.770	0.0605	0.2020
1032	115	0.6224	0.0368	0.0778
1032	215	1.164	0.0453	0.2324
1032	315	1.705	0.0742	0.2102
1032	465	2.517	(no film cooling data)	
1212	115	0.5743	0.0390	0.0953
1212	315	1.573	0.0739	0.2097

The main stream supply conditions were maintained constant for each test ($\pm 4^{\circ}\text{R}$ and ± 1.5 psi) by an automatic control system. The water flow rate was maintained at a constant value high enough to prevent local boiling.

The experimental procedure was as follows: For each of the supply conditions used, the nozzle wall temperatures without film cooling were recorded after they had reached steady-state values. Different amounts of film coolant were then injected into the nozzle and the steady-state wall temperatures were recorded for each coolant flow rate.

ANALYSES AND RESULTS

The experimental data were reduced and analyzed to yield information concerning nozzle heat transfer without film cooling and nozzle wall temperature reduction with film cooling.

The basic quantities and parameters needed for the analyses were determined by the following relations and assumptions:

(1) Mass Flow Rates

- (a) The main stream mass flow rate is (assuming one-dimensional isentropic flow, sonic throat, $d^*=0.645"$, and no film coolant)

$$\dot{m}_g^0 = 0.174 P_s / \sqrt{T_s} \quad (1)$$

- (b) The film coolant mass flow rate is, (from the standard ASME orifice flow equations for air (ref. (10))) for subcritical orifice flow ($p \geq 0.535$),

$$\dot{m}_c = 5.19 \times 10^{-3} \psi \sqrt{(1 - p)(1.0755p - 0.0755)} \quad (2)$$

where

$$p = P_b / P_a \quad (3)$$

$$\psi = (0.707 + 0.293p) P_a / \sqrt{T_a} \quad (4)$$

and for critical orifice flow ($p \leq 0.535$),

$$\dot{m}_c = 2.51 \times 10^{-3} \psi \quad (5)$$

(2) The thermocouples measuring the inner surface temperatures were approximately 0.03 inch from the inner surface (fig. 3). These thermocouple readings were assumed to correspond to the inner surface temperatures (i.e., $T_{wj}=T_{wi}$) in determining the temperature difference in equation (10) and in computing the film cooling effectiveness defined by equation (23).

(3) Properties of Main Stream Air

(a) The absolute viscosity is (from ref. (11))

$$\mu = \frac{0.609 \times 10^{-4} (T/100)^{3/2}}{198.7 + T}, \text{ lbm/sec-in} \quad (6)$$

(b) The thermal conductivity is (from ref. (11))

$$k = \frac{0.38 \times 10^{-3} (T/100)^{3/2}}{441.7 \times 10^{-21.8/\tau} + T}, \text{ Btu-in/sec-ft}^2\text{-R} \quad (7)$$

(c) The Prandtl number is assumed constant at 0.7.

(4) The properties of the coolant air were obtained from reference (11) based on a temperature at the injection slot exit of 530°R.

(5) The thermal conductivity of the nozzle wall material is given by reference (12). For the range $672^\circ\text{R} \leq T_w \leq 1212^\circ\text{R}$, the thermal conductivity is essentially constant at

$$k_w = 0.672 \text{ Btu-in/sec-ft}^2\text{-°R} \quad (8)$$

Nozzle Heat Transfer Without Film Cooling

One-dimensional (radial) heat conduction through the nozzle wall was assumed. (This assumption is discussed more fully in a late section.) Thus

$$q = k_w(T_{wj} - T_{wo})/r_i \log(r_o/r_j) \quad (9)$$

The heat transfer coefficient is, by definition

$$h_{\infty} = q / (T_{aw} - T_{wi}) \quad (10)$$

The adiabatic wall (recovery) temperature, T_{aw} , in equation (10) was evaluated based on a turbulent recovery factor of 0.89 and a specific heat ratio of 1.4:

$$T_{aw} = T_s \frac{1 + 0.178 M_{\infty}^2}{1 + 0.2 M_{\infty}^2} \quad (11)$$

From the nozzle geometry and measured values of T_{wj} and T_{wo} , the nozzle heat transfer results were obtained from equations (9) and (10), and are shown in figure 6 as $(Nu_d)_{\infty}$ vs. $(Re_d)_{\infty}$, where

$$(Nu_d)_{\infty} = h_{\infty} d / k_{\infty} \quad (12)$$

$$(Re_d)_{\infty} = 4 \dot{m}_g^0 / \pi d \mu_{\infty} \quad (13)$$

Also included in figure 6 are the relation for turbulent pipe flow of Dittus and Boelter (ref. (13))

$$(Nu_d)_{\infty} = 0.023 (Re_d)_{\infty}^{0.8} (Pr)_{\infty}^{0.4} \quad (14)$$

and the relation for solid propellant rocket nozzle heat transfer of Colucci (ref. (14))

$$(Nu_d)_{\infty} = 0.023 (Re_d)_{\infty}^{0.8} \quad (15)$$

For laminar pipe flow, reference (15) gives

$$(Nu_d)_{\infty} = 4.36 \text{ for uniform heat flux} \quad (16)$$

$$(Nu_d)_{\infty} = 3.66 \text{ for uniform wall temperature}$$

Film-Cooled Nozzle Wall Temperatures

The equation of reference (7) giving the film-cooling effectiveness, η , for an adiabatic plate, is

$$\eta = \cos(0.8\beta)e^{-\psi} \quad (17)$$

where

$$\eta = (T_{aw} - T_{wi})/(T_{aw} - T_c) \quad (18)$$

$$\beta = \tan^{-1} \left[\frac{\sin \epsilon}{\cos \epsilon + (\rho u)_g / (\rho u)_c} \right] \quad (19)$$

$$\psi = \left[\frac{h_m^0 L z}{(\dot{m} c_p)_c} - 0.04 \right] \left[\frac{S u_g}{d_c} \right]^{1/8} f \quad (20)$$

The velocity ratio function, f , in equation (20) is defined by

$$f = 1 + 0.4 \tan^{-1} [(u_g/u_c) - 1] \quad \text{when } (u_g/u_c) \leq 1.0 \quad (21)$$

$$(u_g/u_c) \leq 1.0$$

and

$$f = \left[\frac{u_c}{u_g} \right]^{1.5} [(u_c/u_g) - 1] \quad (22)$$

$$\text{when } (u_c/u_g) \geq 1.0$$

Equations (21) and (22) are shown in figure 7.

In analogy with equation (18), the film cooling effectiveness for a nonadiabatic surface is defined by*

$$\eta' = (T_{wi}^0 - T_{wi})/(T_{wi}^0 - T_c) \quad (23)$$

The film cooling data were plotted in figures 8a through 8h as η' vs. ψ . The measured values of T_{wj} and T_{wj}^0 were assumed equal to T_{wi} and T_{wi}^0 , respectively, in the evaluation of the measured effectiveness, η' . The straight line in these figures is given by the equation

*For an insulated (adiabatic) surface, $T_{wi}^0 = T_{aw}$.

$$\eta' = e^{-\varphi} \quad (24)$$

In the experiment, the slot angle factor, $\cos(0.88)$, was approximately unity for all the condition encountered. In both equation (24) and data, the parameter φ was obtained from equation (20) with h_∞^0 evaluated from equation (14) and at $z=0$, and the terms u_g and f evaluated at $z=0$ (ref. (8)).

DISCUSSION AND CONCLUSIONS

The one-dimensional heat transfer analysis, used for all the data without film cooling, is expected to be fairly accurate because of the slenderness of the nozzle configuration (see fig. 2a). A comparison between the one-dimensional analysis and an exact solution of a sample temperature field yielded negligible differences in the resulting heat transfer rates. The experimental Nusselt numbers were, therefore, computed by the one-dimensional method. The results showed fair agreement with the turbulent flow correlations as shown in figure 6. The scatter in the data of figure 6 can be attributed mainly to the relatively low wall temperature levels and temperature gradients. The probable error in the measured heat transfer rates (thus, the Nusselt numbers) was estimated to be as low as $\pm 2\%$ in the throat region and as high as $\pm 30\%$ at $z=1.25"$ and $z=9.0"$.

The film-cooling effectiveness as defined by equation (23) is a measure of the decrease in the wall temperature due to film cooling relative to the maximum possible decrease, whereas the original definition (Eq. (18)) has no physical meaning when applied to a nonadiabatic surface. The heat transfer coefficient, h_∞^0 , appearing in the parameter φ of equation (20) was computed from equation (14). The correlation thus obtained (Eq. (24)) is shown in figures 8a through 8h. The scatter in the data is mainly due to the low measured wall temperatures. The ratio of the two small differences that defined the film-cooling effectiveness (Eq. (23)) can be quite inaccurate. Conversely, the relatively large discrepancies between data and equation (24) indicated in figures 8a through 8h resulted in only moderate discrepancies in terms of the wall temperatures. An example of this is shown by comparing the solid curves with the data in figure 9.* The dashed curves in figure 9 will be discussed later.

The effect of film cooling on the nozzle throat temperature is shown in figure 10 along with the predictions of equation (24). The dashed curves in figure 10 are the estimated throat temperatures that would result if the coolant and the main stream were completely mixed at this point. Figures 8 to 10 will be discussed more fully later.

*Only twelve data points appear in figure 9 instead of the designed fifteen because three thermocouples became inoperative during the experiment.

In an attempt to study the phenomenon of film cooling and, perhaps, to improve the correlation, the theoretical flow model of reference (6) was extended to the case of a nonadiabatic, axisymmetric nozzle (fig. 11). The assumptions used in the development of the extension are as follows:

- (1) The coolant does not mix with the main stream.
- (2) Heat conduction through the nozzle wall is one-dimensional radial.
- (3) The local coolant temperature is equal to the local wall temperature.
- (4) The temperature gradient through the coolant film is negligible. (These first four assumptions are the same as those of reference (6).)
- (5) Heat transfer from the main stream is governed by equations (10) and (11) with h_{∞}^0 computed from equation (14).
- (6) The water temperature is constant at 530°R. (The total rise in the water temperature from inlet to exit due to heat transfer from the nozzle wall was estimated to be less than 10°R for the worst case.)
- (7) The coolant temperature at injection slot exit is 530°R.

A heat balance $Q_1 = Q_2 + Q_3$ and $Q_3 = Q_4$ (fig. 11) yielded the following differential equation:

$$\frac{dT_{wi}}{dz} = \frac{2\pi}{(\dot{m} c_p)_c} \left[h_{\infty}^0 r_i (T_{aw} - T_{wi}) - \frac{T_{wi} - T_w}{(\log(r_o/r_i)/k_w) + (1/h_w r_o)} \right] \quad (25)$$

in which h_{∞}^0 , r_i , and T_{aw} were all allowed to vary with z . Typical numerical solutions of equation (25) are shown in figure 9 as dashed curves. It is seen from figure 9 that the extension did not offer a better correlation of film-cooling data than equation (24). Thus, it is concluded that the phenomenon of film cooling of a nonadiabatic nozzle is more complex than that described by equation (25).

Although no realistic flow model was developed for the film cooling of a nozzle, the following qualitative observations may be made:

(1) Figures 8a through 8h indicate that equation (24) generally overestimates the effectiveness for the subsonic flow regime and underestimates it for the sonic and the supersonic flow regimes. Thus, equation (24) would be conservative in estimating the film-cooled nozzle throat temperatures (fig. 10).

(2) Although figures 8a through 8h showed large discrepancies between the measured and the predicted film-cooling effectiveness, the difference between the measured and the predicted wall temperatures is less severe.

(3) The throat temperature (fig. 10) decreases with increasing coolant flow until an optimum value is reached. Further increase in the coolant flow, in some cases, resulted in an increase in the throat temperature. This reversal is believed to be due to the premature mixing of the coolant with the main stream, resulting in a loss of the insulation effect.

(4) Optimum cooling is achieved when the coolant velocity at the injection slot exit is approximately equal to the main stream velocity at that point. This can be seen from figure 10 and the following table:

T_s	$\left[\frac{\dot{m}_c}{\dot{m}_g} \right]_{(u_c/u_g)_z=0}^{0.0}$
672°R	4.5%
852°R	5.6%
1032°R	6.8%
1212°R	8.0%

For lack of a rigorous and exact analysis and a comprehensive experimental investigation, it is felt that, for engineering purposes, equation (24) offers a fair correlation of film-cooling data and may be used in estimating the film-cooled wall temperatures.

SUMMARY

The air-film cooling of a Mach 2.4, nonadiabatic wall, axially symmetric, contoured nozzle was investigated experimentally. The main stream was air at supply conditions of 672°R to 1212°R and 115 psia to 465 psia. The film coolant was air at ambient temperatures and injected through a single annular slot of 10°

discharge angle. The coolant to main stream mass flow ratios were varied up to 20 percent. Steady-state temperature distributions along the inner and the outer walls were measured in both the subsonic and the supersonic flow regimes.

For the supply conditions tested, the main stream flow was fully developed and turbulent. The heat transfer data without film cooling were correlated reasonably well with the equation of Dittus and Boelter for turbulent pipe flow.

The film-cooled nozzle wall temperatures were correlated qualitatively with a modified version of the equation of Hatch and Papell, the modification being a definition of the film-cooling effectiveness for a nonadiabatic surface.

Optimum cooling is achieved when the velocities of the two streams at the injection slot exit are approximately equal.

For engineering purposes, the film-cooled wall temperatures may be estimated by the following procedure (for both adiabatic and nonadiabatic surfaces):

(1) Calculate, by conventional methods, the wall temperatures in the absence of film cooling.

(2) For a given coolant flow rate, compute the effectiveness from equation (17) or (24), evaluating all the parameters (except "z") in the term φ at $z=0$.

(3) Compute the film-cooled wall temperature from equation (18) or (23).

Steps (2) and (3) are iterated if the film-cooled wall temperature is prescribed and the coolant flow rate is to be determined.

REFERENCES

- (1) Eckert, E. R. G. and Livingood, J. N. B., "Comparison of Effectiveness of Convection-, Transpiration-, and Film-Cooling Methods with Air as Coolant," NACA Rept. 1182, 1954
- (2) Chin, J. H., Skirvin, S. C., et al., "Film Cooling with Multiple Slots and Louvers," ASME JHT 83-3, Aug 1961
- (3) Boden, R. H., "Heat Transfer in Rocket Motors and the Application of Film and Sweat Cooling," ASME Trans. 73-4, May 1951
- (4) Graham, A. R., "An Experimental and Theoretical Investigation of Film Cooling of Rocket Motors," Purdue Univ. Rocket Lab. Rept. F 57-3, Oct 1957
- (5) Carter, H. S., "Water-Film Cooling of an 80° Total-Angle Cone at Mach Number of 2 for Airstream Total Temperatures Up to 3000°R," NASA TN D-2029, Oct 1963
- (6) Hatch, J. E. and Papell, S. S., "Use of a Theoretical Flow Model to Correlate Data for Film Cooling or Heating an Adiabatic Wall by Tangential Injection of Gases of Different Fluid Properties," NASA TN D-130, Nov 1959
- (7) Papell, S. S., "Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes," NASA TN D-299, Sep 1960
- (8) Lucas, J. G. and Golladay, R. L., "An Experimental Investigation of Gaseous-Film Cooling of a Rocket Motor," NASA TN D-1988, Oct 1963
- (9) Finch, D. I., "General Principles of Thermoelectric Thermometry," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, 1962
- (10) ASME Power Test Codes, Chap 4: "Flow Measurement by Means of Standardized Nozzles and Orifice Plates," 1949
- (11) Hilsenrath, J., Beckett, C. W., Benedict, W. S., et al., "Tables of Thermal Properties of Gases," NBS Circular 564, Nov 1955
- (12) Watson, T. W. and Robinson, H. W., "Thermal Conductivity of a Specimen of Chromium-Copper Alloy," NBS Rept. 7775, Jan 1963

- (13) McAdams, W. H., "Heat Transmission," 3rd Ed., McGraw-Hill, 1954
- (14) Colucci, S. E., "Experimental Determination of Solid Rocket Nozzle Heat Transfer Coefficients," Aerojet-General Tech. Paper 106 SRP, May 1960
- (15) Rohsenow, W. M. and Choi, H., "Heat, Mass, and Momentum Transfer," Prentice-Hall, 1961

FIG. 1. FILM-COOLING APPARATUS SCHEMATIC

FIG. 2a. NOZZLE CONFIGURATION

FIG. 2b. DESIGN FLOW CHARACTERISTICS OF NOZZLE

FIG. 2c. COOLANT INJECTION SLOT

FIG. 3. THERMOCOUPLE LOCATIONS

FIG. 4. THERMOCOUPLE PLUG DESIGN

FIG. 5. THERMOCOUPLE READ-OUT SCHEMATIC

FIG. 6. NOZZLE HEAT-TRANSFER CORRELATION

FIG. 7. VELOCITY RATIO FUNCTION

FIG. 8a. NOZZLE FILM-COOLING CORRELATION
FOR $T_s = 672^{\circ}\text{R}$ AND $P_s = 315 \text{ psia}$

FIG. 8a. NOZZLE FILM-COOLING CORRELATION
FOR $T_s = 672^{\circ}\text{R}$ AND $P_s = 315 \text{ psia}$

FIG. 8b. NOZZLE FILM-COOLING CORRELATION
FOR $T_s = 852^{\circ}\text{R}$ AND $P_s = 315 \text{ psia}$

FIG. 8c. NOZZLE FILM-COOLING CORRELATION

FOR $T_s = 852^\circ R$ AND $P_s = 465 \text{ psia}$

FIG. 8d. NOZZLE FILM-COOLING CORRELATION
 FOR $T_s = 1032^{\circ}\text{R}$ AND $p_s = 115 \text{ psia}$

FIG. 8d. NOZZLE FILM-COOLING CORRELATION
FOR $T_s = 1032^{\circ}\text{R}$ AND $P_s = 115 \text{ psia}$

FIG. 8e. NOZZLE FILM-COOLING CORRELATION

FOR $T_s = 1032^{\circ}\text{R}$ AND $P_s = 215 \text{ psia}$

FIG. 8f. NOZZLE FILM-COOLING CORRELATION

FOR $T_s = 1032^{\circ}\text{R}$ AND $P_s = 315 \text{ psia}$

FIG. 8g. NOZZLE FILM-COOLING CORRELATION

FOR $T_s = 1212^{\circ}\text{R}$ AND $P_s = 115 \text{ psia}$

FIG. 8b. NOZZLE FILM-COOLING CORRELATION

FOR $T_s = 1212^{\circ}\text{R}$ AND $P_s = 315 \text{ psia}$

FIG. 9. MEASURED AND PREDICTED WALL TEMPERATURES

FIG. 10. FILM-COOLED NOZZLE THROAT TEMPERATURES

FIG. 10. (CONT'D) FILM-COOLED NOZZLE THROAT TEMPERATURES

FIG. 11. EXTENDED FLOW MODEL OF REFERENCE (6)

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A1)

	<u>No. of Copies</u>
Chief, Bureau of Naval Weapons Department of the Navy Washington, D. C. 20360 Attn: DLI-3 Attn: R-14 Attn: RRRE-4 Attn: RMGA-811 Attn: RMMO-42	2
Office of Naval Research T-3 Washington, D. C. Attn: Head, Structural Mechanics Branch Attn: Head, Fluid Dynamics Branch	
Director, David Taylor Model Basin Aerodynamics Laboratory Washington, D. C. Attn: Library	
Commander, U. S. Naval Ordnance Test Station China Lake, California Attn: Technical Library Attn: Code 406	
Director, Naval Research Laboratory Washington, D. C. Attn: Code 2027	
Commanding Officer Office of Naval Research Branch Office Box 39, Navy 100 Fleet Post Office New York, New York	
NASA High Speed Flight Station Box 273 Edwards Air Force Base, California	
NASA Ames Research Center Moffett Field, California Attn: Librarian	

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A1)

No. of
Copies

Commander, Naval Weapons Laboratory
Dahlgren, Virginia
Attn: Library

Director, Special Projects
Department of the Navy
Washington 25, D. C.
Attn: SP-2722

Director of Intelligence
Headquarters, USAF
Washington 25, D. C.
Attn: AFOIN-3B

Headquarters - Aero. Systems Division
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: WWAD
Attn: RRLA-Library

2

Commander
Air Force Ballistic Systems Division
Norton Air Force Base
San Bernardino, California
Attn: BSRVA

2

Chief, Defense Atomic Support Agency
Washington 25, D. C.
Attn: Document Library

Headquarters, Arnold Engineering Development Center
ARO, Inc.
Arnold Air Force Station, Tennessee
Attn: Technical Library
Attn: AEOR
Attn: AEOIM

Commanding Officer, Harry Diamond Laboratories
Washington 25, D. C.
Attn: Library, Room 211, Bldg. 92

Commanding General
U. S. Army Missile Command
Redstone Arsenal, Alabama
Attn: AMSMI-RR (Mr. N. Shapiro)
Attn: AMSMI-RB (Redstone Scientific Information
Center)

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A1)

	<u>No. of</u> <u>Copies</u>
NASA George C. Marshall Space Flight Center Huntsville, Alabama Attn: Dr. E. Geissler Attn: Mr. F. Reed Attn: Mr. H. Paul Attn: Mr. W. Dahm Attn: Mr. H. A. Connell Attn: Mr. J. Kingsbury Attn: ARDAB-DA	
APL/JHU (N0w 7386) 8621 Georgia Avenue Silver Spring, Maryland Attn: Technical Reports Group Attn: Mr. D. Fox Attn: Dr. F. Hill Attn: Dr. L. L. Cronvich	2
Air Force Systems Command Scientific & Technical Liaison Office Department of the Navy Washington, D. C. Attn: Alonso P. Mercier	
Scientific & Technical Information Facility P. O. Box 5700 Bethesda, Maryland Attn: NASA Representative (S-AK/DL)	
Commander Air Force Flight Test Center Edwards Air Force Base Muroc, California Attn: FTOTL	
Air Force Office of Scientific Research Holloman Air Force Base Alamogordo, New Mexico Attn: SRLTL	
U. S. Army Engineer Research & Development Laboratories Fort Belvoir, Virginia Attn: STINFO Branch	

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

University of Minnesota
Minneapolis 14, Minnesota
Attn: Dr. E. R. G. Eckert
Attn: Heat Transfer Laboratory
Attn: Technical Library

Rensselaer Polytechnic Institute
Troy, New York
Attn: Dept. of Aeronautical Engineering

Dr. James P. Hartnett
Department of Mechanical Engineering
University of Delaware
Newark, Delaware

Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
Princeton, New Jersey
Attn: Prof. S. Bogdonoff
Attn: Dept. of Aeronautical Engineering Library

Defense Research Laboratory
The University of Texas
P. O. Box 8029
Austin 12, Texas
Attn: Assistant Director

Ohio State University
Columbus 10, Ohio
Attn: Security Officer
Attn: Aerodynamics Laboratory
Attn: Dr. J. Lee
Attn: Chairman, Dept. of Aero. Engineering

California Institute of Technology
Pasadena, California
Attn: Guggenheim Aero. Laboratory,
Aeronautics Library
Attn: Jet Propulsion Laboratory
Attn: Dr. H. Liepmann
Attn: Dr. L. Lees
Attn: Dr. D. Coles
Attn: Dr. A. Roshko
Attn: Dr. J. Laufer

Case Institute of Technology
Cleveland 6, Ohio
Attn: G. Kuerti

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

North American Aviation, Inc.
Aerophysics Laboratory
Downey, California
Attn: Chief, Aerophysics Laboratory
Attn: Missile Division (Library)

Department of Mechanical Engineering
Yale University
400 Temple Street
New Haven, Connecticut
Attn: Dr. P. P. Wegener

MIT Lincoln Laboratory
Lexington, Massachusetts

RAND Corporation
1700 Main Street
Santa Monica, California
Attn: Library, USAF Project RAND
Attn: Technical Communications

Mr. J. Lukasiewicz, Chief
Gas Dynamics Facility
ARO, Incorporated
Tullahoma, Tennessee

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Prof. J. Kaye
Attn: Prof. M. Finston
Attn: Mr. J. Baron
Attn: Prof. A. H. Shapiro
Attn: Naval Supersonic Laboratory
Attn: Aero. Engineering Library
Attn: Prof. Ronald F. Probstein
Attn: Prof. C. C. Lin

Polytechnic Institute of Brooklyn
527 Atlantic Avenue
Freeport, New York
Attn: Dr. M. Bloom
Attn: Dr. P. Libby
Attn: Aerodynamics Laboratory

Brown University
Division of Engineering
Providence, Rhode Island
Attn: Librarian

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Air Ballistics Laboratory
Army Ballistic Missile Agency
Huntsville, Alabama

Applied Mechanics Reviews
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas

BUWEPS Representative
Aerojet-General Corporation
6352 N. Irwindale Avenue
Azusa, California

The Boeing Company
Seattle, Washington
Attn: J. H. Russell, Aero-Space Division
Attn: Research Library

United Aircraft Corporation
400 Main Street
East Hartford 8, Connecticut
Attn: Chief Librarian
Attn: Mr. W. Kuhrt, Research Department
Attn: Mr. J. G. Lee

2

Hughes Aircraft Company
Florence Avenue at Teale Streets
Culver City, California
Attn: Mr. D. J. Johnson
R&D Technical Library

McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 3, Missouri

Lockheed Missiles and Space Company
P. O. Box 504
Sunnyvale, California
Attn: Dr. L. H. Wilson
Attn: Mr. M. Tucker
Attn: Dr. R. Smelt

Martin Company
Baltimore, Maryland
Attn: Library
Attn: Chief Aerodynamicist
Attn: Dr. W. Morkovin, Aerophysics Division

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

CONVAIR

A Division of General Dynamics Corporation

Fort Worth, Texas

Attn: Library

Attn: Theoretical Aerodynamics Group

Purdue University

School of Aeronautical & Engineering Sciences

LaFayette, Indiana

Attn: R. L. Taggart, Library

University of Maryland

College Park, Maryland

Attn: Director

2

Attn: Dr. J. Burgers

Attn: Librarian, Engr. & Physical Sciences

Attn: Librarian, Institute for Fluid Dynamics
and Applied Mathematics

Attn: Prof. S. I. Pai

University of Michigan

Ann Arbor, Michigan

Attn: Dr. A. Kuethe

Attn: Dr. A. Laporte

Attn: Department of Aeronautical Engineering

Stanford University

Palo Alto, California

Attn: Applied Mathematics & Statistics Lab.

Attn: Prof. D. Bershad, Dept. of Aero. Engr.

Cornell University

Graduate School of Aeronautical Engineering

Ithaca, New York

Attn: Prof. W. R. Sears

The Johns Hopkins University

Charles and 34th Streets

Baltimore, Maryland

Attn: Dr. F. H. Clauser

University of California

Berkeley 4, California

Attn: G. Maslach

Attn: Dr. S. A. Schaaf

Attn: Dr. Holt

Attn: Institute of Engineering Research

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo 21, New York
Attn: Librarian
Attn: Dr. Franklin Moore
Attn: Dr. J. G. Hall
Attn: Mr. A. Hertzberg

University of Minnesota
Rosemount Research Laboratories
Rosemount, Minnesota
Attn: Technical Library

Director, Air University Library
Maxwell Air Force Base, Alabama

Douglas Aircraft Company, Inc.
Santa Monica Division
3000 Ocean Park Boulevard
Santa Monica, California
Attn: Chief Missiles Engineer
Attn: Aerodynamics Section

CONVAIR
A Division of General Dynamics Corporation
Daingerfield, Texas

CONVAIR
Scientific Research Laboratory
5001 Kearney Villa Road
San Diego, California
Attn: Asst. to the Director of Scientific Research
Attn: Dr. B. M. Leadon
Attn: Library

Republic Aviation Corporation
Farmingdale, New York
Attn: Technical Library

General Applied Science Laboratories, Inc.
Merrick and Stewart Avenues
Westbury, L. I., New York
Attn: Mr. Walter Daskin
Attn: Mr. R. W. Byrne

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Arnold Research Organization, Inc.
Tullahoma, Tennessee
Attn: Technical Library
Attn: Chief, Propulsion Wind Tunnel
Attn: Dr. J. L. Potter

General Electric Company
Missile Space Division
3198 Chestnut Street
Philadelphia, Pennsylvania
Attn: Larry Chasen, Mgr. Library 2
Attn: Mr. R. Kirby
Attn: Dr. J. Farber
Attn: Dr. G. Sutton
Attn: Dr. J. D. Stewart
Attn: Dr. S. M. Scala
Attn: Dr. H. Lew
Attn: Mr. J. Persh

Eastman Kodak Company
Navy Ordnance Division
50 West Main Street
Rochester 14, New York
Attn: W. B. Forman 2

Library 3
AVCO-Everett Research Laboratory
2385 Revere Beach Parkway
Everett 49, Massachusetts

Chance-Vought Corp.
Post Office Box 5907
Dallas, Texas
Library 1-6310/3L-2884

National Science Foundation
1951 Constitution Avenue, N. W.
Washington 25, D. C.
Attn: Engineering Sciences Division

New York University
University Heights
New York 53, New York
Attn: Department of Aeronautical Engineering

AERODYNAMICS LABORATORY
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

New York University
25 Waverly Place
New York, New York
Attn: Library, Institute of Math. Sciences

NORAIR
A Division of Northrop Corporation
Hawthorne, California
Attn: Library

Northrop Aircraft, Inc.
Hawthorne, California
Attn: Library

Gas Dynamics Laboratory
Technological Institute
Northwestern University
Evanston, Illinois
Attn: Library

Pennsylvania State University
University Park, Pennsylvania
Attn: Library, Dept. of Aero. Engineering

The Ramo-Wooldridge Corporation
8820 Bellanca Avenue
Los Angeles 45, California

Gifts and Exchanges
Fondren Library
Rice Institute
P. O. Box 1892
Houston, Texas

University of Southern California
Engineering Center
Los Angeles 7, California
Attn: Librarian

The Editor
Battelle Technical Review
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio

Douglas Aircraft Company, Inc.
Long Beach, California
Attn: Library

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Fluidyne Engineering Corporation
5740 Wayzata Boulevard
Golden Valley
Minneapolis, Minnesota

Grumman Aircraft Engineering Corporation
Bethpage, Long Island, New York

Lockheed Missiles and Space Company
P. O. Box 551
Burbank, California
Attn: Library

Marquardt Aircraft Corporation
7801 Havenhurst
Van Nuys, California

Martin Company
Denver, Colorado

Martin Company
Orlando, Florida
Attn: J. Mayer

Mississippi State College
Engineering and Industrial Research Station
Aerophysics Department
P. O. Box 248
State College, Mississippi

Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, California
Attn: Library

General Electric Company
Research Laboratory
Schenectady, New York
Attn: Dr. H. T. Nagamatsu
Attn: Library

Fluid Dynamics Laboratory
Mechanical Engineering Department
Stevens Institute of Technology
Hoboken, New Jersey
Attn: Dr. R. H. Page, Director

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Department of Mechanical Engineering
University of Arizona
Tucson, Arizona
Attn: Dr. E. K. Parks

Vitro Laboratories
200 Pleasant Valley Way
West Orange, New Jersey

Department of Aeronautical Engineering
University of Washington
Seattle, Washington
Attn: Prof. R. E. Street
Attn: Library

American Institute of Aeronautics & Astronautics
1290 Avenue of the Americas
New York, New York
Attn: Managing Editor
Attn: Library

Department of Aeronautics
United States Air Force Academy
Colorado

MHD Research, Inc.
Newport Beach, California
Attn: Technical Director

University of Alabama
College of Engineering
University, Alabama
Attn: Head, Dept. of Aeronautical
Engineering

ARDC Associates
100 W. Century Road
Paramus, New Jersey
Attn: Mr. Edward Cooperman

Aeronautical Research Associates of Princeton
50 Washington Road
Princeton, New Jersey
Attn: Dr. C. duP. Donaldson, President

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Daniel Guggenheim School of Aeronautics
Georgia Institute of Technology
Atlanta, Georgia
Attn: Prof. A. L. Ducoffe

University of Cincinnati
Cincinnati, Ohio
Attn: Prof. R. P. Harrington, Head
Dept. of Aeronautical Engineering
Attn: Prof. Ting Yi Li, Aerospace Engineering Dept.

Virginia Polytechnic Institute
Dept. of Aerospace Engineering
Blacksburg, Virginia
Attn: Dr. R. T. Keefe
Attn: Dr. J. B. Eades, Jr.
Attn: Library

IBM Federal System Division
7220 Wisconsin Avenue
Bethesda, Maryland
Attn: Dr. I. Korobkin

Superintendent
U. S. Naval Postgraduate School
Monterey, California
Attn: Technical Reports Section Library

National Bureau of Standards
Washington 25, D. C.
Attn: Chief, Fluid Mechanics Section

North Carolina State College
Raleigh, North Carolina
Attn: Division of Engineering Research
Technical Library

Defense Research Corporation
P. O. Box No. 3587
Santa Barbara, California
Attn: Dr. J. A. Laurmann

Aerojet-General Corporation
6352 North Irwindale Avenue
Box 296
Azusa, California

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

	<u>No. of Copies</u>
Apollo - DDCS General Electric Company A&E Building, Room 204 Daytona Beach, Florida Attn: Dave Hovis	1
University of Minnesota Institute of Technology Minneapolis, Minnesota Attn: Prof. J. D. Akerman	1
Guggenheim Laboratory Stanford University Stanford, California Attn: Prof. D. Bershad, Department of Aero. Engineering	1
Space Technology Laboratory, Inc. 1 Space Park Redondo Beach, California 90200 Attn: STL Tech. Lib. Doc. Acquisitions	1
University of Illinois Department of Aeronautical and Astronautical Engineering Urbana, Illinois Attn: Prof. H. S. Stilwell	1
Armour Research Foundation Illinois Institute of Technology 10 West 35th Street Chicago, Illinois Attn: Dr. L. N. Wilson	1
Institute of the Aeronautical Sciences Pacific Aeronautical Library 7600 Beverly Boulevard Los Angeles, California	1
University of California Department of Mathematics Los Angeles, California Attn: Prof. A. Robinson	1
Louisiana State University Department of Aeronautical Engineering College of Engineering Baton Rouge, Louisiana	1

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Mathematical Reviews
American Mathematical Society
80 Waterman Street
Providence, Rhode Island

Stanford University
Department of Aeronautical Engineering
Stanford, California
Attn: Library

University of California
Aeronautical Sciences Laboratory
Richmond Field Station
1301 South 46th Street
Richmond, California

University of Denver
Department of Aeronautical Engineering
Denver 10, Colorado

University of Chicago
Laboratories for Applied Sciences
Museum of Science and Industry
Chicago, Illinois
Attn: Librarian

University of Colorado
Department of Aeronautical Engineering
Boulder, Colorado

University of Illinois
Aeronautical Department
Champaign, Illinois

University of Kentucky
Department of Aeronautical Engineering
College of Engineering
Lexington, Kentucky

University of Toledo
Department of Aeronautical Engineering
Research Foundation
Toledo, Ohio

AERODYNAMICS DEPARTMENT
EXTERNAL DISTRIBUTION LIST (A2)

No. of
Copies

Aerospace Corporation

P. O. Box 95085

Los Angeles, California

Attn: Advanced Propulsion & Fluid Mechanics Department

Attn: Gas Dynamics Department

Boeing Scientific Research Laboratory

P. O. Box 3981

Seattle, Washington

Attn: Dr. A. K. Sreekanth

Attn: G. J. Appenheimer

Vidya, Inc.

2626 Hanover

Palo Alto, California

Attn: Mr. J. R. Stalder

Attn: Library

General Electric Company

FPD Technical Information Center F-22

Cincinnati, Ohio

Northwestern University

Technological Institute

Evanston, Illinois

Attn: Department of Mechanical Engineering

Harvard University

Cambridge, Massachusetts

Attn: Prof. of Engineering Sciences & Applied Physics

Attn: Library

University of Wisconsin

P. O. Box 2127

Madison, Wisconsin

Attn: Prof. J. O. Hirschfelder

Dr. Antonio Ferri, Director

Guggenheim Aerospace Laboratories

New York University

181st St. and University Ave.

Bronx, New York

Cornell University

Graduate School of Aeronautical Engineering

Ithaca, New York

Attn: Dr. Shan-Fu Shen

CATALOGING INFORMATION FOR LIBRARY USE

BIBLIOGRAPHIC INFORMATION

	DESCRIPTORS	CODES	DESCRIPTORS	CODES
SOURCE	NOL technical report	NOLTR	SECURITY CLASSIFICATION AND CODE COUNT	Unclassified - 36
REPORT NUMBER	64-65	640065	CIRCULATION LIMITATION	U#36
REPORT DATE	18 August 1964	0864	CIRCULATION LIMITATION OR BIBLIOGRAPHIC	

SUBJECT ANALYSIS OF REPORT

	DESCRIPTORS	CODES	DESCRIPTORS	CODES	DESCRIPTORS	CODES
Air	AIRE	HITEM	Subsonic	SUBS		
Film	COAT	TEMP	Turbulent	TUBU		
Cooling	COOL	SUPP	Pipe	PIPE		
Nozzle	NOZZ	PRES	Equation	EQUA		
Supersonic	SUPR	SLOT	Prediction	PRED		
Internal	INTO	INJ.C	Heat transfer	HEAT		
Mach	MACH	COOA	Rates	RATE		
2.4	2X25	MASZ	Estimation	ESTM		
Non-adiabatic	ADIAZ	FLOW	Comparison	CMRI		
Wall	WALL	RATI	Experiment	EXPE		
Axial	AXIA	VART	Theory	THEY		
Symmetry	SYMM	STBI	Instrumentation	INSM		

<p>Naval Ordnance Laboratory White Oak, Md. (NOL technical report 64-65) AIR-FTLM COOLING OF A SUPERSONIC NOZZLE (U) by Bing H. Lieu. 18 Aug. 1964. 13P. diagrs., charts. (Aerodynamics research report 224) BuWeps task PR-10.</p>	<p>UNCLASSIFIED</p>	<p>This report presents a comparison between experimental data and theoretical calculations of air-film cooling of an axisymmetric, Mach 2.4 nozzle. The turbulent pipe flow equation of Dittus and Boelter was found to be applicable in predicting the heat transfer rates in the absence of film cooling. A modified version of the semi-empirical equation of Hatch and Papell was found applicable in estimating the film-cooled nozzle wall temperatures.</p>	<p>I. Wind tunnels - Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 64-65) AIR-FTLM COOLING OF A SUPERSONIC NOZZLE (U) by Bing H. Lieu. 18 Aug. 1964. 13P. diagrs., charts. (Aerodynamics research report 224) BuWeps task PR-10.</p>	<p>II. Nozzles - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>	<p>1. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>
<p>Abstract card 18 unclassified.</p>	<p>Abstract card 18 unclassified.</p>	<p>Abstract card 18 unclassified.</p>	<p>I. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>	<p>1. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>	<p>1. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>
<p>Abstract card 18 unclassified.</p>	<p>Abstract card 18 unclassified.</p>	<p>Abstract card 18 unclassified.</p>	<p>I. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>	<p>1. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>	<p>1. Wind tunnels - Nozzles - Cooling Film cooling Title Lieu, Bing H. Series Project</p>