Stichprobenverfahren

Proportionale Auswahlwahrscheinlichkeiten

 $Willi\ Mutschler\ (willi@mutschler.eu)$

Sommersemester 2017

Motivation

Beispiel

In einer Stichprobe sollen die Ausgaben für Marketing und Werbemaßnahmen von Kreisen und kreisfreien Städten eines Landes erhoben werden. Ziel ist es, den mittleren Marketing-Etat pro Kreis (bzw. Stadt) zu schätzen. Daraus lässt sich dann der Gesamt-Etat des Landes für Marketing hochrechnen.

- Ein mögliches Vorgehen wäre n Kreise zufällig auszuwählen und nach ihrem Marketing-Etat zu befragen. Bei einer einfachen Zufallsstichprobe kann es dabei rein zufällig passieren, dass hauptsächlich kleine, bevölkerungsschwache Kreise gezogen werden, deren Etat generell kleiner ist als der von bevölkerungsreichen Städten.
- Große Städte sind bezüglich des Marketing-Etats bedeutender, d.h. informativer als kleine Kreise. Daher scheint es sinnvoll, die größeren Städte mit größerer Wahrscheinlichkeit zu ziehen.
- $\hookrightarrow \ \mathsf{Einschlusswahrscheinlichkeiten} \ \mathsf{sind} \ \mathsf{proportional} \ \mathsf{zu} \ \mathsf{einer} \ \mathsf{Hilfsvariablen}$

Effekt: Proportionale Auswahlwahrscheinlichkeiten können die Varianz verringern.

Proportionale Auswahlwahrscheinlichkeiten

Man unterscheidet

- πps Sampling:
 - feste Stichprobengröße
 - ohne Zurücklegen
 - ullet verbunden mit dem π Schätzer
- pps Sampling
 - ggf. zufällige Stichprobengröße
 - mit Zurücklegen
 - verbunden mit dem pwr Schätzer
- Kombination aus πps und pps
 - Horvitz-Thompson Schätzer
 - Hansen-Hurwitz Varianzschätzer

πps Sampling (1)

- ullet Der π Schätzer für die Merkmalssumme ist gegeben durch $\hat{t}_\pi = \sum_s y_k/\pi_k$
- Extremfall: ein Design bei dem $y_k/\pi_k = c$ mit c konstant und n fixe Stichprobengröße, dann gilt für eine beliebige Stichprobe: $\hat{t}_{\pi} = nc$
- \hat{t}_{π} hat keine Variation:

$$V(\hat{t}_{\pi}) = -\frac{1}{2} \sum_{U} \Delta_{kl} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l} \right)^2$$

- Für so ein Design benötigen wir allerdings Informationen über alle yk, die wir nicht haben
- Deswegen suchen wir eine Variable x, von der wir annehmen können, dass sie approximativ proportional zu y ist und bekommen so eine geringere Varianz des π Schätzers
- Im Beispiel haben pro-Kopf Ausgaben eine geringere Streuung als die absoluten Gesamtausgaben
- Ziel: $\pi_k \propto x_k$

πps Sampling (2)

- Einschlusswahrscheinlichkeiten: $\pi_k = n \frac{x_k}{\sum_{j=1}^N x_j}$ um Proportionalität und $\sum_U \pi_k = n$ zu gewährleisten; Annahme: $nx_k < \sum_{i=1}^N x_i$, damit $\pi_k \leq 1$
- Anforderung an Design und Algorithmus:
 - 1. Auswahlverfahren der Stichprobe ist relativ simpel
 - 2. Die Einschlusswahrscheinlichkeiten erster Ordnung π_k sind strikt proportional zu x_k
 - 3. Die Einschlusswahrscheinlichkeiten zweiter Ordnung sind positiv $\pi_{kl}>0$ für alle $k\neq l$
 - 4. Die Berechnung der π_{kl} ist exakt und nicht allzu computerintensiv
 - 5. $\Delta_{kl}=\pi_{kl}-\pi_k\pi_l<0$ für alle $k\neq l$, so dass der Yates-Grundy-Sen Varianzschätzer stets nichtnegativ ist

πps Sampling (3)

Design für n = 1: Kumulative Totalmethode

- Kumuliere x_k wie folgt
 - 1. Setze $T_0 = 0$, berechne $T_k = T_{k-1} + x_k, k = 1, ..., N$
 - 2. Ziehe aus der Gleichverteilung eine zufällige Zahl arepsilon zwischen 0 und 1.
 - 3. Falls $T_{k-1} < \varepsilon T_N \le T_k$ wird das Element k ausgewählt.
- Da $\pi_k = Pr(T_{k-1} < \varepsilon T_N \le T_k) = \frac{T_k T_{k-1}}{T_N} = \frac{x_k}{\sum_{ij} x_k}$.
- Aber, da n=1, gilt $\pi_{kl}=0$ für alle $k\neq l$

πps Sampling (4)

Design für n = 2 nach Brewer (1963, 1975):

- Sei $c_k = \frac{x_k(T_N x_k)}{T_N(T_N 2x_k)}$ mit $T_N = \sum_U x_k$
 - 1. Das erste Element k wird mit Wahrscheinlichkeit $p_k = c_k / \sum_U c_k$ ohne Zurücklegen gezogen
 - 2. Das zweite Element I wird mit Wahrscheinlichkeit $p_{I|k}=x_I/(T_N-x_k)$ ohne Zurücklegen gezogen
- Es lässt sich zeigen, dass $\pi_k = 2x_k/T_N$ und

$$\pi_{kl} = \frac{2x_k x_l}{T_N(\sum_{U} c_k)} \frac{T_N - x_k - x_l}{(T_N - 2x_k)(T_N - 2x_l)}$$

und sogar $\Delta_{kl} < 0$

• Vereinfachende Annahme: $x_k < \sum_U x_k/2$, damit $\pi_k \le 1$

πps Sampling (5)

Designs für n > 2:

- Algorithmisch schwierig genau nach π_k auszuwählen
- Einschlusswahrscheinlichkeiten zweiter Ordnung schwierig zu bekommen
- Δ_{kl} < 0 schwierig zu gewährleisten
- Überblick, siehe z.B. Brewer und Hanif (1983), Tillé (2006) oder Rosén (1997)

Exkurs: Systematisches πps Sampling

- Sei $T_0 = 0$ und $T_k = T_{k-1} + x_k$, a Stichprobenintervall, n ganzahlige Teil von T_N/a , mit $T_N = \sum_{l,l} x_k = na + c$, $0 \le c < a$
 - Falls c=0 bekommen wir die Stichprobengröße n, falls c>0 bekommen wir die Stichprobengröße n oder n+1
- Annahme: $nx_k \leq \sum_{U} x_k$ und x_k (gerundete) ganze Zahl
- Systematisches πps Sampling:
 - 1. Wähle mit gleicher Wahrscheinlichkeit, 1/a, eine Zahl r zwischen 1 und a (einschließlich).
 - 2. Die Stichprobe besteht dann aus

$$s=\{k: k=T_{k-1}< r+(j-1)a \leq T_k \text{ für ein } j=1,2,...,n_s\}=s_r$$
 wobei $n_s=n$ für $r\leq c$ oder $n_s=n+1$ für $c< r\leq a$

- Intuition:
 - ullet Distanzen x_k werden beginnend am Ursprung und Endend bei T_N eine nach der anderen auf einer horizontalen Achse ausgelegt
 - ullet c=0: totale Distanz T_N wird in n Intervalle mit gleicher Länge a unterteilt
 - Zufälliger Start für das erste Intervall, danach systematisch
 - im Prinzip fixe Stichprobengröße

•
$$\pi_k = \frac{nx_k}{T_N - c}$$

Monetary Unit Sampling

Relevant bei Wirtschaftsprüfern, um eine Stichprobe von Konten für eine Prüfung auszuwählen. x_k ist z.B. die Größe des Kontos/Buchungen in Euro

Monetary Unit Sampling einfaches Beispiel

- Prüffeld aus drei Rechnungen (5, 10 und 15 Euro)
- ullet Wahrscheinlichkeit bei einfacher Zufallsauswahl ist 1/3, unabhängig vom Rechnungswert
- Aber: in größeren Buchungen werden auch größere Fehler erwartet und in kleineren Buchungen die kleineren Fehler
- p(R1) = 5/30, p(R2) = 10/30 und p(R3) = 15/30
- Somit kann ein Prüfer geforderte Risikominimierung erreichen

pps Sampling (1)

Größenproportionale Designs mit Zurücklegen

Verwendung des pwr Schätzers:

$$\hat{t}_{pwr} = \frac{1}{m} \sum_{i=1}^m y_{k_i}/p_{k_i}$$

mit m fixe Anzahl an Ziehungen mit Zurücklegen und p_{k_i} die Wahrscheinlichkeit, das Element k_i zu ziehen

- Wenn wir ein Design haben, bei dem $y_k/p_k = c$ mit c konstant, dann haben wir für jede geordnete Stichprobe, $os = \{k_1, ..., k_m\}$: $\hat{t}_{pwr} = c$
- \hat{t}_{pwr} hat keine Variation:

$$V(\hat{t}_{pwr}) = \frac{1}{m} \sum_{U} p_k \left(\frac{y_k}{p_k} - t_U \right)^2 = \frac{1}{2m} \sum_{U} p_k p_l \left(\frac{y_k}{p_k} - \frac{y_l}{p_l} \right)^2$$

- Für so ein Design benötigen wir Informationen über alle y_k
- Deswegen suchen wir eine Variable x, von der wir annehmen können, dass sie approximativ proportional zu y ist, und bekommen so eine geringere Varianz des pwr Schätzers
- Ziel: $p_k \propto x_k$

pps Sampling (2)

Für die Ein-Zug-Auswahlwahrscheinlichkeit gilt $p_k \propto x_k$, also

$$p_k = \pi_k / n = \frac{x_k}{\sum_U x_k}$$

- Für n=1 ist kumulative Totalmethode äquivalent zu πps
- *m*-maliges Wiederholen der kumulativen Totalmethode ergibt *pps* geordnete Stichprobe $os = \{k_1, k_2, ..., k_m\}$
- pwr Schätzer:

$$\hat{t}_{pwr} = \frac{1}{m} \sum_{i=1}^{m} \frac{y_{k_i}}{p_{k_i}} = \left(\sum_{U} x_k\right) \frac{1}{m} \sum_{i=1}^{m} \frac{y_{k_i}}{x_{k_i}}$$

• Varianzschätzer lässt sich dann einfach berechnen gegeben obiges p_k :

$$\hat{V}(\hat{t}_{pwr}) = \left(\sum_{U} x_{k}\right)^{2} \frac{1}{m(m-1)} \left[\sum_{i=1}^{m} \left(\frac{y_{k_{i}}}{x_{k_{i}}} \right)^{2} - \frac{1}{m} \left(\sum_{i=1}^{m} \frac{y_{k_{i}}}{x_{k_{i}}} \right)^{2} \right]$$

Kombination πps und pps Sampling

- Varianzformel des pwr Schätzers ist sehr simpel,
 Einschlusswahrscheinlichkeiten zweiter Ordnung werden nicht benötigt
- π Schätzer ist jedoch häufig effizienter als pwr
- Manchmal verbindet man πps und pps:
 - 1. Verwende πps Stichprobendesign mit fester Stichprobengröße m, so dass

$$\pi_k = mp_k = m \frac{x_k}{\sum_U x_k}$$

- 2. Verwende π Schätzer für Merkmalssumme t_U
- 3. Die Varianz wird dann geschätzt mit der pps Formel:

$$v = \frac{1}{m(m-1)} \sum_{s} \left(\frac{y_k}{p_k} - \frac{1}{m} \sum_{s} \frac{y_k}{p_k} \right)^2$$

- 4. Wir haben hier jedoch eine Verzerrung: $BIAS(v) = E(v) - V(\hat{t}_{\pi}) = \frac{m}{m-1} \left[V(\hat{t}_{pwr}) - V(\hat{t}_{\pi}) \right]$
- 5. Falls π Schätzer effizienter, dann überschätzen wir die Varianz mit ν

Sampford Sampling (1)

- Idee der Verwerfungsstichprobe:
 - Ziehe eine Stichprobe vom Umfang n mit Zurücklegen und den Ein-Zug-Auswahlwahrscheinlichkeiten pi
 - Sind alle n Elemente verschieden, so wird die Stichprobe akzeptiert, ansonsten verworfen und eine neue gezogen
 - Approximativ gilt dann $p_i \approx \pi_i/n$
- Sampford (1967) Algorithmus sorgt für exakt $p_i = \pi_i/n$

Sampford Sampling (2)

Sampford Algorithmus

- Gegeben seien Auswahlwahrscheinlichkeiten π_k mit $\sum_U \pi_k = n$, eine Stichprobe der Größe n kann dann wir folgt gezogen werden:
 - 1. Ziehe das erste Element mit $p_k = \pi_k/n$
 - 2. In den weiteren (n-1) Schritten werden aus allen Elementen mit

Zurücklegen
$$(n-1)$$
 Elemente gezogen mit $\tilde{p}_k = \frac{\frac{n-k}{1-n_k}}{\sum_{j=1}^N \frac{\pi_j}{1-\pi_j}}$

- 3. Falls die n gezogenen Elemente nicht paarweise verschieden, verwerfe die Stichprobe und beginne bei Schritt 1
- Auswahlwahrscheinlichkeiten zweiter Ordnung:

$$\pi_{kl} = K \frac{p_k}{1 - \pi_k} \frac{p_l}{1 - \pi_l} \sum_{t=2}^{n} (t - \pi_k - \pi_l) L_{n-t}(kl) \frac{1}{n^{t-2}}$$

$$\begin{array}{l} \text{mit } \mathcal{K} := \left(\sum_{t=1}^n t \mathcal{L}_{n-t}/n^t\right)^{-1}, \ \mathcal{L}_m := \sum_{\substack{\text{s} \mid \text{s hat die Länge m} \\ \text{s} \mid \text{s} \text{ hat die Länge m}}} \prod_{l \in s} \frac{\pi_l/n}{1-\pi_l}, \\ \mathcal{L}_m(ij) := \sum_{\substack{\text{s} \mid \text{s} \text{ hat die Länge m und enthält nicht i, i}}} \prod_{l \in s} \frac{\pi_l/n}{1-\pi_l}, \end{array}$$

- Es gilt: $\pi_{kl} < \pi_k \pi_l$, also Existenz positiver Varianzschätzung
- Bei großen Auswahlsätzen führt Sampford Sampling zu langen Rechenzeiten

Abschlussbeispiel

- Fischereistudie in England, siehe Cotter, Course, Buckland, und Garrod (2002)
- Ziel: Anzahl gefangener Fische schätzen
- Dabei wurden Kabeljau, Schellfisch und Weißfisch in der Nordsee in den Jahren von 1997 bis 1998 betrachtet.
- Gesamtzahlen nur sehr schwer zu erheben, daher Erhebung auf verschiedenen Fischerbooten
- y_k sind die in einem bestimmten Zeitraum auf dem Boot k gefangenen Fische
- Boote unterscheiden sich stark in Kapazität und Fangstrategie, hohe Streuung der yk und damit wäre eine Schätzung basierend auf einer einfachen Zufallsstichprobe der Boote nur sehr ungenau.
- Verbesserung der Genauigkeit durch Hilfsmerkmal, das möglichst proportional zu den gefangenen Fischen y_k ist und vor der Stichprobenziehung bekannt ist:

$$X = \frac{\textit{VCU} \cdot \text{Aufwand}}{\text{durchschnittliche Dauer der Ausfahrten in Tagen}}$$

- VCU: Kapazität der Schiffe ("vessel capacity unit")
- Aufwand: Stunden, die das Boot in den früheren Jahren unterwegs war
- Dauer der Ausfahrten ist indirekt proportional: kürzere Zeitspanne erlaubt mehr Ausfahrten
- Methodik: Ziehen der Boote mit Zurücklegen und Hansen-Hurwitz-Schätzer
- Da sich die Boote erheblich in ihren Fängen unterschieden, führte die PPS-Strategie hier zu einem erheblichen Effizienzgewinn