



# Modul: Issues in Decision Tree Learning (DTL)

### **Continuous-valued Attribute**

Pembelajaran Mesin (Machine Learning)

#### **Nur ULFA Maulidevi**

KK IF - Teknik Informatika- STEI ITB



#### **Issues in DTL**

Overfitting training data

Continuous
-valued
attribute

Handling attributes with differing costs

Handling missing attribute value

Alternative measures for selecting attributes

#### Discretization

Continuous valued attributes → new discrete valued (boolean) attribute A



True: A < c



False:  $A < c \text{ (or } A \ge c)$ 

| Temperature: | 40 | 48 | 60  | 72  | 80  | 90 |
|--------------|----|----|-----|-----|-----|----|
| Play Tennis: | No | No | Yes | Yes | Yes | No |
|              |    |    |     |     |     |    |

Potential optimal breakpoints

What is Best Value

for threshold c?

C = (48+60)/2 = 54C = (80+90)/2 = 85

**Use Information Gain for** each potential breakproint



#### Illustration

1. Sort The Continuous-valued attribute

| Day            | Outlook | Temperature | Humidity | Wind | Play Tennis |
|----------------|---------|-------------|----------|------|-------------|
| D1             |         | 72          |          |      | Yes         |
| D <sub>2</sub> |         | 40          |          |      | No          |
| D <sub>3</sub> |         | 90          |          |      | No          |
| D <sub>4</sub> |         | 60          |          |      | Yes         |
| D <sub>5</sub> |         | 48          |          |      | No          |
| D6             |         | 80          |          |      | Yes         |

| - | Temperature | 40 | 48 | 60  | 72  | 80  | 90 |
|---|-------------|----|----|-----|-----|-----|----|
|   | Play Tennis | No | No | Yes | Yes | Yes | No |
|   |             |    |    |     |     |     |    |

2. Identify Adjacent examples that differ in their target class

3. Candidates: midway between corresponding values  $\rightarrow$  C: 54 or C: 85

4. Find the greatest Gain from the candidates, and other discrete-valued attributes

For C: 54

Temperature < 54: 2 examples  $\rightarrow$  yes/o, no/2 Temperature  $\geq$  54: 4 examples  $\rightarrow$  yes/3, no/1

 $Gain(S,T_{54}) = Entropi(S) - [(2/6*Entropi(0,2))+(4/6*Entropi(3,1)]$ 

For C: 85

Temperature < 85: 5 examples  $\rightarrow$  yes/3, no/2 Temperature  $\geq$  85: 1 examples  $\rightarrow$  yes/0, no/1 Gain(S,T<sub>85</sub>) = Entropi(S) – [(5/6\*Entropi(3,2))+(1/6\*Entropi(0,1)]

## **THANK YOU**





