Lecture des résultats:

-> Il existe une ligne où le pivot (1º coeff non nul de la ligne) est aus se cond membre => Pas de solution

Exemple: [3n + 2g - 3 = 2]

$$y + 3z = 3$$

$$0 = -1$$

$$0 = -1$$

$$mest furmais vrain$$

- Autant de lignes non-melle que d'inconnues => une enique solution

Exemple.

$$\frac{3}{10}x + 2y - 3 = 2$$

$$\frac{1}{10}y + 3z = 3$$

plus d'incomnes que de pivots une infinité de solutions							
Exemple:	13~	-20 + 6.	3 + 2 t = 1	2- Pive	9 ()		
pu.			2 F = 0	4 in co	of => 0	o de so	
	-	1319 + 3	3 - F = 0				
			0 = 0				
			0 = 0				
			0 = 0				
	1		1.1	1 / .		0 .	O I
	Les	inunnues	· qui n'est pas a	le pivot Lia:	(3 et) Low	An Conhues	- Kibra
			· qui ont un	pivot (iai:	rety) sort	in connud	lives
Durs Plexemple	: L	pent s'in	~ o.t=c	tow	Per FEIRA	ent solutions:	tal libre
	1_1	N	()2 + Oct = 0)'	ZEIR	10 11	7 4 1
(m	xui\ bo	\(\(\)	3 = -38	t per	ur en const	(2,+) donne	, a est unique
1	1	Ja. 11 11	$3 = -33$ $x = \frac{1}{3}(1 + 2)$	· 62-2+)	11	(3)	estening
C	u meme		3 + 2	16			

Description des solutions: écrine les inconnues lières en fondion des inconnues libres.

Exemple:
$$\begin{cases} ne = \frac{1}{3}(1 + 2q - 4z - 2t) \\ y = \frac{3}{3}z + t \end{cases}$$
 $\begin{cases} y = \frac{1}{3}z + \frac{10}{3}z \\ y = -3z + t \end{cases}$

Ensemble des solutions
$$S = \left(\frac{1}{3} - \frac{10}{3}, \frac{3}{3}, \frac{3}{3}, \frac{1}{3}, \frac{1}{3$$

Lecture des résultats.

Lecture du résultat

$$\begin{array}{r}
(2 = t + 50) \\
(3 = -t + 350) \\
(3 = -t + 300) \\
\text{test quelconque dans } R
\end{array}$$

Matrices

Définition: Soit met no deux entiers non nuls. On ayelle matrice de taille mxm up tableau de réels à m lignes et n colonnes.

Notation: M: ensemble des maties colonne j mxn à m lipres et n colonnes Exemple:

$$A = egin{pmatrix} -5 & 2 & 3 & 0 & -1 \ 1 & 0 & 1 & 2 & -1 \ 0 & \sqrt{2} & -\pi^2 & 0 & -1 \end{pmatrix} \in \mathcal{M}_{3 imes 5}$$

- dimension de $A:3\times5$
- $a_{32} = \sqrt{2}$, $a_{25} = -1$

• colonne 3 :
$$\boldsymbol{C}_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -\pi^2 \end{pmatrix}$$

• ligne 2 : $\mathbf{L}_2 = \begin{pmatrix} 1 & 0 & 1 & 2 & -1 \end{pmatrix}$

Matrices particulières:

-> Matrice mulle :
$$0_{m \times n}$$
 :

Matrice identité de Monan notre 1/m: [1 seu la diagonale

Addition: on peut ajouler 2 matries de tailles égales en ajoutent les coefficients de mêmes indices

Exemple:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

Règles de culcul formellement identiques à celles de l'addition de neils: _s (A+B)+c = A+(B+c) associationté

 $A \in \mathcal{O}_{mxn}$ \rightarrow A + O = O + A = A O_{mxn} est élément neutre

A+B=B+A commutativité

→ la matrice motée — A a les coefficients opposés à A

On éait B — A pour B + (-A)

! matrier de mêmes duilles

Multiplication par un mombre réel: > 4 a les coefficients de 4 multiplisses Produit de matrices = mb lignes de B

En pratique, pour calculer c:: colonne ; de $b_{12} \quad \cdots \quad b_{1j}$ a_{11} A = $= A \times B$

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 0 & 3 \end{pmatrix} = A \times B$$

$$C_{11}: (1 \times 1) + (1 \times 1) + (-2 \times (-1)) = 4$$

$$C_{12}: (1 \times -1) + (1 \times 2) + (-2 \times 1) = -1$$

$$C_{21}: (0 \times 1) + (1 \times 1) + (1 \times (-1)) = 0$$

$$C_{21}: (0 \times (-1)) + (1 \times 2) + (1 \times 1) = 3$$

$$AB = C$$

$$M M$$

$$23 \quad 32$$

$$23 \quad 32$$