Contrôle d'algèbre linéaire N°3

Durée : 1 heure 45 minutes Barème sur 20 points

NOM:	_	
	Groupe	
PRENOM:	_	

1. Soient $n \in \mathbb{N}^*$, $B \in \mathbb{M}(n \times n; \mathbb{R})$ et $C \in \mathbb{M}(1 \times n; \mathbb{R})$.

On considère l'application

$$\begin{array}{cccc} f & : & \mathbb{M}(1 \times n; \, \mathbb{R}) & \longrightarrow & \mathbb{M}(n \times n; \, \mathbb{R}) \\ & X & \longmapsto & f(X) = BX^tC \end{array}$$

a) Montrer que f est linéaire.

Déterminer, en fonction de n, le nombre de lignes et de colonnes de la matrice de f.

On fixe
$$n=2$$
. On pose $B=\left(\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array}\right)$ et $C=\left(\begin{array}{cc} 1 & 3 \end{array}\right)$.

b) Déterminer la matrice de f par rapport aux bases canoniques usuelles à préciser.

3.5 pts

- **2.** Dans le plan, muni de la base canonique orthonormée $B=(\vec{e}_1,\vec{e}_2)$, on considère les endomorphismes suivants :
 - r est une rotation de centre O et d'angle $\varphi = \frac{\pi}{48}$,
 - s est une symétrie orthogonale d'axe (O, \vec{a}) telle que $\angle(\vec{e}_1, \vec{a}) = \frac{\pi}{12}$,
 - \bullet g est donnée par sa matrice $\,M_g\,$ par rapport à $\,B$:

$$M_g = \left(\begin{array}{cc} 4 & -2 \\ 2 & -1 \end{array}\right)$$

a) Déterminer la matrice de l'endomorphisme $f=r^{-8}\circ s\circ g$ par rapport à la base B. Déterminer, avec précision, la nature géométrique de f.

On note d l'ensemble des points fixes de l'endomorphisme $\frac{1}{3}$ g. On considère l'affinité h dont l'axe est d, la direction est parallèle à ker g et le rapport k=-5.

b) Déterminer une base B' par rapport à laquelle la matrice de h est diagonale. Puis à l'aide d'un changement de base, calculer la matrice de h relativement à la base B.

c) Soit l'endomorphisme l défini par

$$\begin{cases} l(\vec{e}_2 - \vec{e}_1) = \vec{e}_2 \\ l(\vec{e}_2) = \vec{e}_1 \end{cases}$$

Déterminer $\alpha \in \mathbb{R}$ pour que l'application $h + \alpha l$ soit composée d'une homothétie et d'une symétrie d'axe $(O, \vec{e_1})$.

En déduire le rapport de l'homothétie et la direction de la symétrie.

7 pts

3. Dans l'espace muni de la base canonique orthonormée $B = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$, on considère l'endomorphisme f défini par

$$\begin{cases} f(\vec{e}_1) = \alpha \ \vec{e}_1 + \vec{e}_2 + \vec{e}_3 \\ f(\vec{e}_2) = \vec{e}_1 + \alpha \ \vec{e}_2 + \vec{e}_3 \\ f(\vec{e}_3) = (2 \ \alpha + 1) \ \vec{e}_1 + 3 \ \vec{e}_2 + (\alpha + 2) \ \vec{e}_3 \end{cases} \qquad \alpha \in \mathbb{R}$$

- a) Déterminer la matrice de f par rapport à la base B et déterminer les valeurs de α pour lesquelles f est bijective.
- b) On pose $\alpha = -2$. Déterminer les équations (paramétriques ou cartésiennes) de Im f et $\ker f$.

4.5 pts

4. On note P_2 l'espace vectoriel des polynômes de degré plus petit ou égal à deux. On munit P_2 de la base canonique $E=(x^2\,,x\,,1)$ et de la base $E'=(x^2+x\,,1-x\,,2)$. On munit \mathbb{R}^2 de la base canonique $B=(\vec{e_1},\,\vec{e_2})$ et de la base $B'=(\vec{u_1},\,\vec{u_2})$ définie par

$$\begin{cases} \vec{u}_1 = \vec{e}_1 + 2\vec{e}_2 \\ \vec{u}_2 = 3\vec{e}_1 + 4\vec{e}_2 \end{cases}$$

Soit l'application linéaire f de \mathbb{R}^2 dans P_2 dont la matrice associée est

$$\overline{M} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 3 \end{pmatrix}$$

par rapport à B et E'.

- a) Déterminer la matrice de passage P de la base B à la base B', ainsi que la matrice de passage Q de la base E à la base E'.
- b) A l'aide des matrices de passage, déterminer la matrice M de f par rapport aux bases B et E.
- c) Soit $p = ax^2 2x 3a + 14$, $a \in \mathbb{R}$ par rapport à E. Déterminer l'équation cartésienne de $f^{-1}(\{p\})$ dans B'.

5 pts