Appendix: Derivation of the Cumulative Distribution Function of \hat{C}_{pk}

Let $X_1, X_2, ..., X_n$ be a random sample of size n drawn from a normal distribution with mean μ and variance σ^2 measuring the characteristic under investigation. The natural estimator \hat{C}_{pk} is obtained by replacing the process mean μ and the process standard deviation σ by their conventional estimators \overline{X} and S, respectively. Then we have the following expression:

$$\hat{C}_{pk} = \frac{d - \left| \overline{X} - M \right|}{3S}.$$

For the sake of deriving the cumulative distribution function of \hat{C}_{pk} , the following notations are introduced:

- 1. $K = (n-1)S^2/\sigma^2$, which is distributed as χ_{n-1}^2 ,
- 2. $Z' = \sqrt{n}(\overline{X} M)/\sigma$, which is distributed as $N(\xi \sqrt{n}, 1)$ with $\xi = (\mu M)/\sigma$,
- 3. H=|Z'|, which is distributed as a folded-normal distribution with probability density function $f_H(h)=\phi(h+\xi\sqrt{n})+\phi(h-\xi\sqrt{n})$ for $h\geq 0$, where $\phi(\cdot)$ is the probability density function of the standard normal distribution.

For x > 0, the cumulative distribution function of \hat{C}_{pk} can be derived as:

$$\begin{split} F_{\hat{C}_{pk}}(x) &= P(\hat{C}_{pk} \leq x) = P\left(\frac{\sqrt{n-1}(b\sqrt{n}-H)}{3\sqrt{nK}} \leq x\right) = 1 - P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-H)}{3x}\right) \\ &= 1 - \int_0^\infty P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-H)}{3x} \mid H = h\right) f_H(h) \mathrm{d}h \\ &= 1 - \int_0^\infty P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) f_H(h) \mathrm{d}h \;. \end{split}$$

where $b = d/\sigma$. Since *K* is distributed as χ_{n-1}^2 , we have

$$P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) = 0 \text{ for } h > b\sqrt{n} \text{ and } x > 0.$$

Therefore,
$$F_{\hat{C}_{pk}}(x) = 1 - \int_0^{b\sqrt{n}} P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) f_H(h) dh$$

= $1 - \int_0^{b\sqrt{n}} G\left(\frac{(n-1)(b\sqrt{n}-h)^2}{9nx^2}\right) f_H(h) dh$, for $x > 0$,

where $G(\cdot)$ is the cumulative distribution function of χ^2_{n-1} . Substituting $f_T(t)$ leads to the result:

$$F_{\hat{C}_{pk}}(x) = 1 - \int_0^{b\sqrt{n}} G\left(\frac{(n-1)(b\sqrt{n}-t)^2}{9nx^2}\right) \left[\phi(t+\xi\sqrt{n}) + \phi(t-\xi\sqrt{n})\right] dt, \text{ for } x > 0.$$