ІНДИВІДУАЛЬНЕ ЗАВДАННЯ №2 З КУРСУ «МАТЕМАТИЧНА СТАТИСТИКА»

За допомогою критерію Пірсона при заданому рівні значущості перевірити гіпотезу про те, що генеральна сукупність керується певним законом розподілу. Невідомі параметри розподілу оцінити на підставі наведених вибіркових даних.

Структура звіту:

1) Постановка задачі;

2) Короткі теоретичні відомості;

4) Аналіз отриманих результатів;

5) Висновки

Максимальна оцінка – 20 балів

1. Вимірювання зросту юнаків віком 17 років дало такі результати:

	154—158	158—162	162—166	166—170	170—174	174—178	178—182	182—186
n_i	8	14	20	32	12	8	4	2

Визначити гіпотетично, який закон розподілу має ознака X— зріст юнака. При рівні значущості $\alpha = 0,01$ перевірити правильність висунутої нульової гіпотези.

2. Спостереження за відсотковим відношенням ринкових і номінальних цін 150-ти акцій на фондовому ринку дали такі результати:

(Zi-1, Zi]	(90, 94]	(94, 98]	(98, 102]	(102, 106]	(106, 110]
Ni	12	18	24	60	36

Користуючись критерієм Пірсона, з рівнем значущості $\alpha = 0.01$, перевірити гіпотезу — закон розподілу даної випадкової величини є нормальним.

3. Зібрано дані про число відвідувачів x_i супермаркета потягом хвилини та записано результати у вигляді інтервальної таблиці частот:

$(x_{i-1}, x_i]$	(3;8]	(8;13]	(13;18]	(18;23]	(23;28]	(28;33]	(33;38]
n_i	6	8	15	40	16	8	7

Користуючись критерієм Пірсона, при рівні значущості α =0,05 перевірити, чи узгоджується гіпотеза про експонентний розподіл випадкової величини ξ — числа відвідувачів супермаркета протягом хвилини?

4. У таблиці наведено результати 228 вимірювань чутливості телевізора (в мікровольтах)

x_i	300	350	400	450	500	550	600	650	700	750
m_i	13	20	28	33	34	31	25	19	13	11

За допомогою критерію Пірсона перевірити, чи узгоджуються ці результати вимірювань з нормальним законом розподілу.

5. Аналіз митних декларацій 520 осіб, що перетинають кордон, встановлює таку залежність між числом n_i осіб і відсотком x_i не заявленої валюти:

x_i	0	1	2	3	4	5
n_i	200	120	100	60	30	10

Перевірити гіпотезу H_0 : відсоток незаявленої валюти однією особою при перетині кордону має розподіл Пуассона, якщо рівень значущості $\alpha = 0,05$.

6. В результаті перевірки 500 контейнерів зі скляними виробами встановлено, що випадкова величина *X* - кількість пошкоджених виробів в одному контейнері має наступний емпіричний розподіл:

x_i	0	1	2	3	4	5	6	7
n_i	199	169	87	31	9	3	1	1

Використовуючи критерій Пірсона, за рівня значущості α =0,01 перевірити гіпотезу про те, що кількість пошкоджених виробів розподілена за законом Пуассона.

7. Для дослідження розподілу маси новонароджених x_i була зібрана інформація про 500 дітей. Ця інформація подана інтервальним статистичним розполілом:

$\frac{c_{1a}}{\left[x_{i-1},x_{i}\right)}$		1.5-2.0	2,0-2,5	2,5-3,0	3,0-3,5	3,5-4,0	4,0-4,5	4,5-5,0
$[x_{i-1},x_i]$	5	44	51	136	161	73	23	7

Визначити гіпотетично, який закон розподілу має ознака X— вага дитини. При рівні значущості $\alpha = 0,05$ перевірити правильність висунутої нульової гіпотези.

8. У результаті перевірки 400 контейнерів з фарфоровими виробами було встановлено, що кількість пошкоджених виробів ξ має статистичний

розподіл: x_i 0 1 2 3 4 5 6 7 n_i 159 139 67 21 9 3 1 1

Вимагається при рівні значущості 0,05 перевірити гіпотезу про те, що випадкова величина ξ — кількість пошкоджених виробів — розподілена за експонентним законом.

9. В бібліотеці випадковим чином відібрали 200 вибірок по 5 книг. Реєстрували кількість пошкоджених книг у кожній вибірці. В результаті отримали емпіричний розподіл:

χ_i	0	C	2	3	4	5
n_i	72	77	34	14	2	1

Використовуючи критерій Пірсона, за рівня значущості α =0,01 перевірити гіпотезу про те, що кількість пошкоджених книг розподілена за біноміальним законом.

10.У деякій місцевості протягом 300 діб реєстрували середньодобову температуру повітря. В результаті отримали наступний емпіричний розподіл:

$(x_{i-1},x_i]$	(-20; -10]	(-10; 0]	(0; 10]	(10; 20]	(20; 30]	(30; 40]
n_i	21	52	62	68	59	38

Використовуючи критерій Пірсона, за рівня значущості α =0,05 перевірити гіпотезу про те, що середньодобова температура розподілена рівномірно.

11. У результаті статистичних досліджень отримано наступний розподіл зросту дорослих людей для 1000 осіб:

Plothi	145—155	155—165	165—175	175—185	185—195	195—205	205—215
n_i	24	. 112	263	322	202	66	11

При рівні значущості $\alpha = 0.01$ перевірити правильність гіпотези про нормальний закон розподілу генеральної сукупності.

12.У результаті випробування 450 ламп був отриманий емпіричний розподіл тривалості їх горіння, наведений в таблиці (час в годинах):

Тривалості іх торини, наведений в так торини, на так

$(x_{i-1}, x_i]$	(1600; 2000]	(2000; 2400]	(2400; 2800]
n:	45	36	21

Користуючись критерієм Пірсона, за рівня значущості α =0,01 перевірити гіпотезу про те, що час горіння розподілений за експонентним законом.

13. За заданим статистичним розподілом вибірки:

X_i	0—10	10-20	20—30	30-40	40—50
n_i	46	32	11	7	4

з'ясувати гіпотетично закон розподілу ймовірностей випадкової величини X. При рівні значущості $\alpha = 0,01$ перевірити правильність цього припущення.

14.В результаті перевірки 1000 упаковок зі скляними виробами встановлено, що випадкова величина X - кількість пошкоджених виробів в одній упаковці має наступний емпіричний розподіл:

X_i	0	1	2	3	4	5	6
n_i	554	324	98	19	3	1	1

Використовуючи критерій Пірсона, за рівня значущості α =0,01 перевірити гіпотезу про те, що кількість пошкоджених виробів розподілена за законом Пуассона.

15.У результаті статистичних досліджень отримано такий емпіричний розполіл довжини 1000 деталей:

X_i	5,1	5,2	5,3	5,4	5,5	5,6	5,7
n.:	7	78	289	392	195	36	3

Користуючись критерієм Пірсона, з рівнем значущості $\alpha = 0.05$, перевірити гіпотезу — закон розподілу даної випадкової величини ε нормальним.

16. На підставі опитування сформовано наступний статистичний розподіл 500 респондентів за віком:

x_i	15-22	22-29	29-36	36-43	43-50	50-57	57-64
n_i	43	74	83	136	87	62	15

Визначити гіпотетично, який закон розподілу має ознака x — вік респондента. При рівні значущості $\alpha = 0,01$ перевірити правильність висунутої нульової гіпотези.

17. Дослід, який полягав в одночасному підкиданні чотирьох монет, повторили 100 разів. Частотна таблиця дискретної величини ξ - числа появ "гербів" — виявилась наступною:

x_i	0	1	2	3	4
		20	12	22	Q

17. Дослід, який полягав в одночасному підкиданні чотирьох монет, повторили 100 разів. Частотна таблиця дискретної величини ξ - числа появ "гербів" — виявилась наступною:

При рівні значущості $\alpha = 0.05$ перевірити гіпотезу про те, що випадкова змінна \mathcal{E} має розподіл Пуассона.