Linear Programming: Bandwidth Allocation

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 11

■ 3 users, A, B, C to be connected to each other

- 3 users, A, B, C to be connected to each other
- Link have capacity constraints (in Mbps)

- 3 users, A, B, C to be connected to each other
- Link have capacity constraints (in Mbps)
- Each connection *A*−*B*, *B*−*C*, *A*−*C* should have at least 2 Mbps of bandwidth

- 3 users, A, B, C to be connected to each other
- Link have capacity constraints (in Mbps)
- Each connection A–B, B–C, A–C should have at least 2 Mbps of bandwidth
- Direct and/or indirect connections allowed:
 - A-a-b-B
 - A-a-c-b-B

- 3 users, A, B, C to be connected to each other
- Link have capacity constraints (in Mbps)
- Each connection A–B, B–C, A–C should have at least 2 Mbps of bandwidth
- Direct and/or indirect connections allowed:
 - A-a-b-B
 - A-a-c-b-B
- Each connection earns revenue, per Mbps
 - *A*−*B*, Rs 300/Mbps
 - *B*−*C*, Rs 200/Mbps
 - *A*–*C*, Rs 400/Mbps

- 3 users, A, B, C to be connected to each other
- Link have capacity constraints (in Mbps)
- Each connection A–B, B–C, A–C should have at least 2 Mbps of bandwidth
- Direct and/or indirect connections allowed:
 - A-a-b-B
 - A-a-c-b-B
- Each connection earns revenue, per Mbps
 - *A*−*B*, Rs 300/Mbps
 - *B*−*C*, Rs 200/Mbps
 - *A*–*C*, Rs 400/Mbps
- Allocate bandwidth to maximize revenue

■ x_{AB} – bandwidth via short connection A-a-b-B,

- x_{AB} bandwidth via short connection A-a-b-B,
- y_{AB} bandwidth via long connection A-a-c-b-B

- x_{AB} bandwidth via short connection A-a-b-B,
- y_{AB} bandwidth via long connection A–a–c–b–B
- Likewise, x_{AC} , y_{AC} , x_{BC} , y_{BC}

- x_{AB} bandwidth via short connection A-a-b-B,
- y_{AB} bandwidth via long connection A-a-c-b-B
- Likewise, x_{AC} , y_{AC} , x_{BC} , y_{BC}
- x_{AB} , y_{AB} both flow via edge b–B, as do x_{BC} , y_{BC}
 - $x_{AB} + y_{AB} + x_{BC} + y_{BC} \le 10$

- x_{AB} bandwidth via short connection A-a-b-B,
- y_{AB} bandwidth via long connection A–a–c–b–B
- Likewise, x_{AC} , y_{AC} , x_{BC} , y_{BC}
- x_{AB} , y_{AB} both flow via edge b–B, as do x_{BC} , y_{BC}

$$x_{AB} + y_{AB} + x_{BC} + y_{BC} \le 10$$

Likewise

$$x_{AB} + y_{AB} + x_{AC} + y_{AC} \le 12$$

■
$$x_{AC} + y_{AC} + x_{BC} + y_{BC} \le 8$$

- x_{AB}, y_{AC}, y_{BC} all flow via edge a-b
 - $\blacksquare x_{AB} + y_{AC} + y_{BC} \le 6$

- x_{AB}, y_{AC}, y_{BC} all flow via edge a-b
 - \blacksquare $x_{AB} + y_{AC} + y_{BC} \leq 6$
- Likewise
 - $y_{AB} + x_{BC} + y_{AC} \le 13$
 - $y_{AB} + y_{BC} + x_{AC} \le 11$

- \blacksquare x_{AB} , y_{AC} , y_{BC} all flow via edge a-b
 - $\blacksquare x_{AB} + y_{AC} + y_{BC} \le 6$
- Likewise
 - $y_{AB} + x_{BC} + y_{AC} \le 13$
 - $v_{AB} + v_{BC} + x_{AC} < 11$
- Pairwise bandwidth at least 2 Mbps
 - $x_{AB} + y_{AB} \ge 2$
 - $x_{BC} + y_{BC} \ge 2$
 - $x_{AC} + y_{AC} \ge 2$

- \blacksquare x_{AB} , y_{AC} , y_{BC} all flow via edge a-b
 - $\blacksquare x_{AB} + y_{AC} + y_{BC} \le 6$
- Likewise
 - $y_{AB} + x_{BC} + y_{AC} \le 13$
 - $y_{AB} + y_{BC} + x_{AC} \le 11$
- Pairwise bandwidth at least 2 Mbps
 - $x_{AB} + y_{AB} > 2$
 - $\blacksquare x_{BC} + y_{BC} \ge 2$
 - $x_{AC} + y_{AC} > 2$
- Traffic on all routes is nonnegative
 - \blacksquare $x_{AB}, y_{AB}, x_{AC}, y_{AC}, x_{BC}, y_{AC} \ge 0$

Objective

Revenue

- *A*−*B*, Rs 300/Mbps
- *B*−*C*, Rs 200/Mbps
- *A*–*C*, Rs 400/Mbps

Objective

Revenue

- *A*−*B*, Rs 300/Mbps
- *B*–*C*, Rs 200/Mbps
- *A*–*C*, Rs 400/Mbps

Maximize

■
$$300(x_{AB} + y_{AB}) + 200(x_{BC} + y_{BC}) + 400(x_{AC} + y_{AC}) + 300(x_{AC} + y_{A$$

Simplex yields

■
$$x_{AB} = 0$$
, $y_{AB} = 7$
 $x_{BC} = 1.5$, $y_{BC} = 1.5$
 $x_{AC} = 0.5$, $y_{AC} = 4.5$

Simplex yields

■
$$x_{AB} = 0$$
, $y_{AB} = 7$
 $x_{BC} = 1.5$, $y_{BC} = 1.5$
 $x_{AC} = 0.5$, $y_{AC} = 4.5$

Fractional solutions are OK

Simplex yields

•
$$x_{AB} = 0$$
, $y_{AB} = 7$
 $x_{BC} = 1.5$, $y_{BC} = 1.5$
 $x_{AC} = 0.5$, $y_{AC} = 4.5$

- Fractional solutions are OK
- All edges full capacity except a-c

Simplex yields

■
$$x_{AB} = 0$$
, $y_{AB} = 7$
 $x_{BC} = 1.5$, $y_{BC} = 1.5$
 $x_{AC} = 0.5$, $y_{AC} = 4.5$

- Fractional solutions are OK
- All edges full capacity except a-c

Note

Simplex yields

■
$$x_{AB} = 0$$
, $y_{AB} = 7$
 $x_{BC} = 1.5$, $y_{BC} = 1.5$
 $x_{AC} = 0.5$, $y_{AC} = 4.5$

- Fractional solutions are OK
- All edges full capacity except a-c

Note

Modelling strategy does not scale well

Simplex yields

$$x_{AB} = 0, y_{AB} = 7$$

 $x_{BC} = 1.5, y_{BC} = 1.5$
 $x_{AC} = 0.5, y_{AC} = 4.5$

- Fractional solutions are OK
- All edges full capacity except a-c

Note

- Modelling strategy does not scale well
- One variable per path number of paths is exponential, in general

- Simplex yields
 - $x_{AB} = 0$, $y_{AB} = 7$ $x_{BC} = 1.5$, $y_{BC} = 1.5$ $x_{AC} = 0.5$, $y_{AC} = 4.5$
- Fractional solutions are OK
- All edges full capacity except a-c

Note

- Modelling strategy does not scale well
- One variable per path number of paths is exponential, in general
- Will look at a better approach to analyze such network flows

