GAN0001 - Geometria Analítica Prof. Bruno Terêncio do Vale

(a) B(0, -2, -2)

(a) A(0,1,1)

Sétima Lista de Exercícios Tópico: Coordenadas Cilíndricas e Esféricas

1. Determinar as coordenadas cilíndricas dos seguintes pontos, dados em coordenadas cartesianas:

(e) E(8, -4, 1)

2.	Determinar as coordenadas esféricas do problema 1. Transforme os pontos, dados em coordenadas cilíndricas, para coordenadas cartesianas		
3.			
	(a) $A\left(6, \frac{2\pi}{3}, -2\right)$	(c) $C\left(4, \frac{\pi}{4}, 2\right)$	(e) $E\left(6, \frac{\pi}{6}, -3\right)$
	(b) $B\left(1, \frac{11\pi}{6}, -2\right)$	(d) $D\left(8, \frac{2\pi}{3}, 3\right)$	

(c) C(1,-2,2)

(d) D(6,3,2)

4. Transforme os pontos, dados em coordenadas esféricas, para coordenadas cartesianas.

(a)
$$A\left(4, \frac{7\pi}{6}, \frac{\pi}{6}\right)$$
 (c) $C\left(6, \frac{11\pi}{6}, \frac{\pi}{3}\right)$ (e) $E\left(2, \pi, \frac{\pi}{2}\right)$ (b) $B\left(3, \frac{2\pi}{3}, \frac{2\pi}{3}\right)$ (d) $D\left(5, \frac{5\pi}{6}, \frac{5\pi}{6}\right)$

5. Escreva as seguintes superfícies, dadas em coordenadas cartesianas, em coordenadas cilíndricas e esféricas.

(a)
$$5x + 4y = 0$$

(b) $-x^2 - y^2 + z^2 = 4$
(c) $x^2 + y^2 - z^2 = 0$
(d) $x^2 + y^2 = 9$
(e) $z = 4$
(f) $x^2 + y^2 + z^2 = 25$

6. As superfícies a seguir estão expressas em coordenadas cilíndricas. Referi-las ao sistema cartesiano ortogonal e identificá-las.

(a)
$$r^2 + 3z^2 = 36$$
 (c) $r^2 + z^2 = 16$ (e) $\theta = \frac{\pi}{4}$ (b) $r = a \sec \theta, \ a \in \mathbb{R}$ (d) $r^2 - z^2 = 1$

7. As superfícies a seguir estão expressas em coordenadas esféricas. Transformá-las em coordenadas retangulares e identificá-las.

retangulares e identifica-ias.
(a)
$$\rho = 5a\cos\phi, \ a \in \mathbb{R}$$

(b) $\theta = \frac{\pi}{3}$
(c) $\rho \sec \phi = a, \ a \in \mathbb{R}$
(d) $\rho = 4$

8. Represente geometricamente o sólido que satisfaz as condições: $\begin{cases} 0 \le \theta \le 2\pi \\ 0 \le \phi \le \frac{\pi}{6} \\ 0 < \rho < 3 \end{cases}$

Respostas dos Exercícios

- 1. Considerando $\theta \in [0, 2\pi)$:
 - (a) $A\left(1, \frac{\pi}{2}, 1\right)$ ou $A\left(-1, \frac{3\pi}{2}, 1\right)$
 - (b) $B\left(2, \frac{3\pi}{2}, -2\right)$ ou $B\left(-2, \frac{\pi}{2}, -2\right)$
 - (c) $C(\sqrt{5}, \theta_1, 2)$ ou $C(-\sqrt{5}, \theta_2, 2)$; $\theta = \arctan(-2)$; $\theta_1 \in 4^{\circ}$ quadrante e $\theta_2 \in 2^{\circ}$ quadrante.
 - (d) $D\left(3\sqrt{5},\theta_1,2\right)$ ou $D\left(-3\sqrt{5},\theta_2,2\right)$; $\theta = \arctan\left(\frac{1}{2}\right)$; $\theta_1 \in 1^{\circ}$ quadrante e $\theta_2 \in 3^{\circ}$ quadrante.
 - (e) $E\left(4\sqrt{5},\theta_1,1\right)$ ou $E\left(-4\sqrt{5},\theta_2,1\right)$; $\theta = \arctan\left(-\frac{1}{2}\right)$; $\theta_1 \in 4^{\circ}$ quadrante e $\theta_2 \in 2^{\circ}$ quadrante.
- 2. Considerando $\rho \geq 0$; $\theta \in [0, 2\pi)$ e $\phi \in [0, \pi]$:
 - (a) $A\left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)$
 - (b) $B\left(2\sqrt{2}, \frac{3\pi}{2}, \frac{3\pi}{4}\right)$
 - (c) $C\left(3, \theta, \arccos\left(\frac{2}{3}\right)\right)$; $\theta = \arctan\left(-2\right)$; $\theta \in 4^{\circ}$ quadrante.
 - (d) $D\left(7, \theta, \arccos\left(\frac{2}{7}\right)\right); \theta = \arctan\left(\frac{1}{2}\right); \theta \in 1^{\circ}$ quadrante.
 - (e) $E\left(9, \theta, \arccos\left(\frac{1}{9}\right)\right); \theta = \arctan\left(-\frac{1}{2}\right); \theta \in 4^{\circ}$ quadrante.
- 3. (a) $A(-3, 3\sqrt{3}, -2)$
- (c) $C(2\sqrt{2}, 2\sqrt{2}, 2)$
- (e) $E(3\sqrt{3},3,-3)$
- (b) $B\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}, -2\right)$ (d) $D\left(-4, 4\sqrt{3}, 3\right)$
- 4. (a) $A\left(-\sqrt{3}, -1, 2\sqrt{3}\right)$
- (c) $C\left(-\frac{9}{2}, -\frac{3\sqrt{3}}{2}, 3\right)$ (e) E(-2, 0, 0)

- (b) $B\left(-\frac{3\sqrt{3}}{4}, \frac{9}{4}, -\frac{3}{2}\right)$ (d) $D\left(-\frac{5\sqrt{3}}{4}, \frac{5}{4}, -\frac{5\sqrt{3}}{2}\right)$
- 5. A primeira expressão está em coordenadas cilíndricas e a segunda em coordenadas esféricas.
 - (a) $\tan \theta = -\frac{5}{4}$; $\tan \theta = -\frac{5}{4}$

- (d) r = 3; $\rho \operatorname{sen} \phi = 3$
- (b) $-r^2 + z^2 = 4$; $\rho^2 \left(-\sin^2 \phi + \cos^2 \phi\right) = 4$ (e) z = 4; $\rho \cos \phi = 4$

(c) $r = z; \phi = \frac{\pi}{4}$

- (f) $r^2 + z^2 = 25$; $\rho = 5$
- 6. (a) $x^2 + y^2 + 3z^2 = 36$; elipsoide de revolução
 - (b) $x^2 + y^2 = ay$; cilindro circular reto se $a \neq 0$ ou reta se a = 0
 - (c) $x^2 + y^2 + z^2 = 16$; esfera
 - (d) $x^2 + y^2 z^2 = 1$; hiperboloide de uma folha
 - (e) y = x; plano
- 7. (a) $x^2 + y^2 + z^2 = 5az$; esfera se $a \neq 0$ ou ponto se a = 0
 - (b) $y = \sqrt{3}x$; plano
 - (c) $x^2 + y^2 = a^2$; cilindro circular reto
 - (d) $x^2 + y^2 + z^2 = 16$; esfera

8. Como se trata de coordenadas esféricas, tem-se

