Instructions:

1. This exam contains 10 problems worth 10 points each.

Recitation Instructor:

- 2. Please supply all information requested above and on the mark-sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

Key! DDEC AEAD OC

- 1. By using a linear approximation of $f(x,y) = \sqrt{x^2 + y}$ at (4,9), compute the approximate value of f(5,8).
 - A. 5.2
 - B. 5.3
 - C. 5.5
 - D. 5.7
 - E. 5.9

2. If $xz^3 - xyz = 4$, find $\frac{\partial z}{\partial x}$.

A.
$$\frac{\partial z}{\partial x} = \frac{xz}{z^3 - y^2}$$

B.
$$\frac{\partial z}{\partial x} = \frac{3xz^2 - xy}{z^3 - yz}$$

$$C. \ \frac{\partial z}{\partial x} = 2x + xy$$

D.
$$\frac{\partial z}{\partial x} = \frac{yz - z^3}{3xz^2 - xy}$$

$$E. \ \frac{\partial z}{\partial x} = z^3 - yz$$

- 3. The directional derivative of $f(x,y)=x^3e^{-2y}$ in the direction of greatest increase of f at the point (1,0) is
 - A. 6
 - B. 5
 - C. $\sqrt{5}$
 - D. 13
 - E. $\sqrt{13}$

- 4. For the function $f(x,y) = x^3 + 2y^2 + xy 2x + 5y$, the point (-1,-1) yields
 - A. a local minimum
 - B. a local maximum
 - C. a saddle point
 - D. $\nabla f(-1, -1) \neq 0$
 - E. The Second Derivative Test gives no information at (-1, -1)

5. Use the method of reversing the order of integration to compute $\int_{0}^{1} \int_{2\pi}^{2} e^{y^{2}} dy dx.$

A.
$$\frac{1}{4}(e^4-1)$$

B.
$$\frac{1}{2}(e^2-1)$$

C.
$$\frac{1}{6}(e^3-1)$$

D.
$$\frac{1}{2}(e^2 - e)$$

E.
$$\frac{1}{4}(e^2 - e)$$

6. A flat plate of constant density occupies the region in the xy-plane bounded by the curves x=0 and $x=\sqrt{1-y^2}$. If $(\overline{x},\overline{y})$ is the center of mass, then \overline{x} equals

A.
$$\frac{2}{3\pi}$$

B.
$$\frac{1}{2}$$

C.
$$\frac{2}{\pi}$$

D.
$$\frac{3}{2\pi}$$

E.
$$\frac{4}{3\pi}$$

- 7. Find the maximum of f(x,y) = x + y on the curve defined by $x^2 + 2y^2 = 6$.
 - A. 3
 - B. 6
 - C. 5
 - D. $\frac{3}{2}$
 - E. $\frac{5}{2}$

- 8. Find the area of the part of the surface $z=2\sqrt{x^2+y^2}$ that lies above the disk $(x-1)^2+y^2<1$.
 - A. $\sqrt{7} \pi$
 - Β. 2π
 - C. 4π
 - D. $\sqrt{5} \pi$
 - E. $\frac{\sqrt{8} \pi}{3}$

9. Which of the following integrals equals the volume of the solid bounded by x = 0, y = 0, z = 0 and 2x + y + z = 4.

A.
$$\int_0^4 \int_0^4 \int_0^2 1 dx dy dz$$

B.
$$\int_0^2 \int_0^{4-2x} \int_0^{4-y} 1 dz dy dx$$

C.
$$\int_{0}^{4} \int_{0}^{2x} \int_{0}^{4-y} 1 dz dy dx$$

D.
$$\int_0^2 \int_0^{4-2x} \int_0^{4-2x-y} 1 dz dy dx$$

E.
$$\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} 1 dz dx dy$$

10. Which of the following integrals in spherical coordinates equals $\iiint_E z dv$, where E is the solid in the first octant satisfying $x^2 + y^2 + z^2 < 9$ and $z < \sqrt{x^2 + y^2}$.

A.
$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{4}} \int_0^3 \rho^2 \cos \phi \sin \phi d\rho d\phi d\theta$$

B.
$$\int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \int_0^3 \rho^3 \sin^2 \phi d\rho d\phi d\theta$$

C.
$$\int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^3 \rho^3 \cos \phi \sin \phi d\rho d\phi d\theta$$

D.
$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^3 \rho \cos \phi d\rho d\phi d\theta$$

$$E. \int_0^{\frac{\pi}{4}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^3 \rho^3 \cos \phi d\rho d\phi d\theta$$