Introductory Astronomy

Week 5: Stellar Evolution

Clip 11: Life in the Fast Lane

Post-MS Massive Star

- Massive $M > 8M_{\odot}$ stars end Main Sequence life $10 \, \mathrm{My}$
- When core Hydrogen fusion ceases core contracts and envelope expands and cools
- Shell Hydrogen fusion: Red Supergiant
- Core does not become degenerate

Massive Star HB

- Helium core ignites
- Hydrogen fusion in shell
- Envelope contracts and heats
- Blue Supergiant
- Forming CO core

Massive Star AGB

CO core collapses until

$$T_c > 6 \times 10^8 \, {\rm K}$$

- Carbon fusion produces Mg Ne O
- Helium and Hydrogen fusion in shells
- Many neutrinos carry energy off
- Superwind and mass loss

More Onion Shells

- At $T_c \sim 1.5 \times 10^9 \, {
 m K}$ ignite Neon Si fusion $T_c \sim 3.5 \times 10^9 \, {
 m K}$ fusion
 - Produce O Mg...
 - Neutrinos carry off L_{\odot}
 - Last a few years
- Oxygen fusion $T_c \sim 2.1 \times 10^9 \, \mathrm{K}$
 - Produce Si S P...
 - Neutrinos carry off $10^5 L_{\odot}$
 - Last about a year

- - Produce Ni Fe
 - Neutrinos carry off $10^{12}L_{\odot}$
 - Last about a day
- Build up inert Fe core
- Changes rapid. Envelope never responds
- s-process nucleosynthesis produces heavier elements

End of the (Si) Day

Inert Fe core

$$T_c \sim 3.5 \times 10^9 \,\mathrm{K}$$

 $ho_c \sim 10^{11} {
m kg/m^3}$ High au photons

- High T photons cause photodisintegration destroying heavy nuclei and absorbing energy
- Fe is the end: no more nuclear energy. What next?

Credits

Figures and HR Diagrams: R. Pogge (with permission)

http://www.astronomy.ohio-state.edu/ ~pogge/Ast162/Unit2/himass.html

