Thesis Proposal:

Advances in Algorithms for Matrix Approximation

via Sampling and Sketching

Taisuke (Tai) Yasuda

Thesis Committee:

- David P. Woodruff (Carnegie Mellon University, Chair)
- Anupam Gupta (Carnegie Mellon University)
- Richard Peng (Carnegie Mellon University)
- Cameron Musco (University of Massachusetts Amherst)

"Turning big data into tiny data"

 Matrix approximation is the problem of approximating large matrices by smaller matrices

- Matrix approximation is the problem of approximating large matrices by smaller matrices
- Modern large-scale machine learning problems deal with huge matrices!

- Matrix approximation is the problem of approximating large matrices by smaller matrices
- Modern large-scale machine learning problems deal with huge matrices!
 - Billions of training examples and labels

- Matrix approximation is the problem of approximating large matrices by smaller matrices
- Modern large-scale machine learning problems deal with huge matrices!
 - Billions of training examples and labels
 - Thousands of features

- Matrix approximation is the problem of approximating large matrices by smaller matrices
- Modern large-scale machine learning problems deal with huge matrices!
 - Billions of training examples and labels
 - Thousands of features
- Goal: replace a large dataset with a smaller dataset to improve efficiency of data analytic tasks

Randomized Numerical Linear Algebra

• Numerical linear algebra [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision

- Numerical linear algebra [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra [2000's]: randomized approximation algorithms for numerical linear algebra

- Numerical linear algebra [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra [2000's]: randomized approximation algorithms for numerical linear algebra
 - Randomized: succeed every time → succeed with 99% probability

- Numerical linear algebra [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra [2000's]: randomized approximation algorithms for numerical linear algebra
 - Randomized: succeed every time → succeed with 99% probability
 - Approximation: solve exactly → solve up to (small) error

- Numerical linear algebra [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra [2000's]: randomized approximation algorithms for numerical linear algebra
 - Randomized: succeed every time → succeed with 99% probability
 - Approximation: solve exactly → solve up to (small) error
 - This flexibility leads to extraordinary improvements in efficiency!

- **Numerical linear algebra** [pre 2000's]: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra [2000's]: randomized approximation algorithms for numerical linear algebra
 - Randomized: succeed every time → succeed with 99% probability
 - Approximation: solve exactly → solve up to (small) error
 - This flexibility leads to extraordinary improvements in efficiency!
 - Key techniques: sampling, sketching, and optimization

New Challenges

1. Tight bounds: what are the fundamental possibilities and limitations for matrix approximation?

- 1. **Tight bounds**: what are the fundamental possibilities and limitations for matrix approximation?
- 2. **Uncertain/resource-limited settings**: are there algorithms for matrix approximation using limited information or computational resources?

- 1. **Tight bounds**: what are the fundamental possibilities and limitations for matrix approximation?
- 2. **Uncertain/resource-limited settings**: are there algorithms for matrix approximation using limited information or computational resources?
- 3. **Generalized loss functions**: are there algorithms for matrix approximation for generalized objectives and loss functions?

- 1. **Tight bounds**: what are the fundamental possibilities and limitations for matrix approximation?
- 2. **Uncertain/resource-limited settings**: are there algorithms for matrix approximation using limited information or computational resources?
- 3. **Generalized loss functions**: are there algorithms for matrix approximation for generalized objectives and loss functions?
- 4. **Applications**: can techniques for matrix approximation be applied to solve problems in adjacent areas of computer science?

- Oblivious ℓ_p subspace embeddings: high distortion and low distortion

- Oblivious ℓ_p subspace embeddings: high distortion and low distortion
- Non-oblivious subspace embeddings: ℓ_p Lewis weight sampling, general losses

- Oblivious ℓ_p subspace embeddings: high distortion and low distortion
- Non-oblivious subspace embeddings: ℓ_p Lewis weight sampling, general losses
- · Applications: active learning, streaming computational geometry, low rank approximation

Oblivious ℓ_p subspace embeddings: high distortion and low distortion

- Non-oblivious subspace embeddings: ℓ_p Lewis weight sampling, general losses
- · Applications: active learning, streaming computational geometry, low rank approximation

Linear Regression

Linear Regression

• Linear regression: given matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and vector $\mathbf{b} \in \mathbb{R}^n$, solve

Linear Regression

• Linear regression: given matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

Linear Regression

• Linear regression: given matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

° Simple model for supervised learning

Linear Regression

• Linear regression: given matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

- ° Simple model for supervised learning
- Building block for complex models and algorithms

Linear Regression

• Linear regression: given matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

- ° Simple model for supervised learning
- ° Building block for complex models and algorithms
- ° Can we design efficient approximation algorithms for linear regression?

Approximating the Linear Regression Loss Function

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

Approximating the Linear Regression Loss Function

One approach: approximate the original instance by a smaller instance

Approximating the Linear Regression Loss Function

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

One approach: approximate the original instance by a smaller instance

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|$$

Approximating the Linear Regression Loss Function

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

One approach: approximate the original instance by a smaller instance

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2} \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_{2}$$

• There are many possible ways to choose $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$!

Approximating the Linear Regression Loss Function

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

One approach: approximate the original instance by a smaller instance

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

• There are many possible ways to choose $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$!

Idea.
$$\tilde{\mathbf{A}} = \mathbf{S}\mathbf{A}$$
 and $\tilde{\mathbf{b}} = \mathbf{S}\mathbf{b}$ for some $\mathbf{S} \in \mathbb{R}^{r \times n}$, $r \ll n$

Approximating the Linear Regression Loss Function

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

One approach: approximate the original instance by a smaller instance

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2} \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_{2}$$

• There are many possible ways to choose $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$!

Idea. $\tilde{\mathbf{A}} = \mathbf{S}\mathbf{A}$ and $\tilde{\mathbf{b}} = \mathbf{S}\mathbf{b}$ for some $\mathbf{S} \in \mathbb{R}^{r \times n}$, $r \ll n$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Goal: Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$

s.t.
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$$

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|A\mathbf{x}\|_2 \le \|SA\mathbf{x}\|_2 \le \kappa \|A\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|Ax\|_2 \le \|SAx\|_2 \le \kappa \|Ax\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|A\mathbf{x}\|_2 \le \|SA\mathbf{x}\|_2 \le \kappa \|A\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|Ax\|_2 \le \|SAx\|_2 \le \kappa \|Ax\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

• Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|Ax\|_2 \le \|SAx\|_2 \le \kappa \|Ax\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

- Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'
- $\mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{A}'\mathbf{x}'$ for $\mathbf{x}' = [\mathbf{x}; -1] \in \mathbb{R}^{d+1}$

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|A\mathbf{x}\|_2 \le \|\mathbf{S}A\mathbf{x}\|_2 \le \kappa \|A\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

- Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'
- $\mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{A}'\mathbf{x}'$ for $\mathbf{x}' = [\mathbf{x}; -1] \in \mathbb{R}^{d+1}$
- $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x} \mathbf{S}\mathbf{b}\|_2 \le \kappa \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|A\mathbf{x}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 \le \kappa \|\mathbf{A}\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

- Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'
- $\mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{A}'\mathbf{x}'$ for $\mathbf{x}' = [\mathbf{x}; -1] \in \mathbb{R}^{d+1}$
- $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x} \mathbf{S}\mathbf{b}\|_2 \le \kappa \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$

Cost of SA and Sb approximates cost of A and b

Approximating the Linear Regression Loss Function

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if $\|A\mathbf{x}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 \le \kappa \|\mathbf{A}\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

Why is this useful?

- Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'
- $\mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{A}'\mathbf{x}'$ for $\mathbf{x}' = [\mathbf{x}; -1] \in \mathbb{R}^{d+1}$
- $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x} \mathbf{S}\mathbf{b}\|_2 \le \kappa \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$

Cost of SA and Sb approximates cost of A and b

• Solve linear regression on $r \times d$ matrix **SA** instead of $n \times d$ matrix **A**!

Oblivious Subspace Embeddings

Theorem (Sarlos 2006). Let $\kappa = (1 + \varepsilon)$. Let $r = \tilde{O}(\varepsilon^{-2}d)$. If **S** is an $r \times n$ Gaussian matrix, then **S** is a subspace embedding for any **A** with distortion κ , with probability 99%.

n

Oblivious Subspace Embeddings

Theorem (Sarlos 2006). Let $\kappa = (1 + \varepsilon)$. Let $r = \tilde{O}(\varepsilon^{-2}d)$. If **S** is an $r \times n$ Gaussian matrix, then **S** is a subspace embedding for any **A** with distortion κ , with probability 99%.

Oblivious Subspace Embeddings

Theorem (Sarlos 2006). Let $\kappa = (1 + \varepsilon)$. Let $r = \tilde{O}(\varepsilon^{-2}d)$. If **S** is an $r \times n$ Gaussian matrix, then **S** is a subspace embedding for any **A** with distortion κ , with probability 99%.

Oblivious Subspace Embeddings

Theorem (Sarlos 2006). Let $\kappa = (1 + \varepsilon)$. Let $r = \tilde{O}(\varepsilon^{-2}d)$. If S is an $r \times n$ Gaussian matrix, then S is a subspace embedding for any A with distortion κ , with probability 99%.

So \mathcal{C}_2 regression is resolved. What's next?

 ℓ_p Linear Regression

 ℓ_p Linear Regression

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

• Minimize the **sum of squares** of errors

 ℓ_1 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_1$$

- Minimize the average error
- Robust loss function

 ℓ_p Linear Regression

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

 Minimize the sum of squares of errors

 ℓ_1 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{1}$$

- Minimize the average error
- Robust loss function

 ℓ_p Linear Regression

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

• Minimize the **sum of squares** of errors

 ℓ_{∞} linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{\infty}$$

- Minimize the worst-case error
- Sensitive loss function

 ℓ_1 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_1$$

- Minimize the average error
- Robust loss function

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

Minimize the sum of squares
 of errors

 ℓ_p linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

 ℓ_{∞} linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{\infty}$$

- Minimize the worst-case error
- Sensitive loss function

 ℓ_1 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_1$$

- Minimize the average error
- Robust loss function

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2$$

Minimize the sum of squares
 of errors

 ℓ_p linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

 ℓ_{∞} linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{\infty}$$

- Minimize the worst-case error
- Sensitive loss function

Question. What trade-offs are possible for oblivious subspace embeddings under the ℓ_p loss?

Oblivious ℓ_p Subspace Embeddings

Oblivious ℓ_p Subspace Embeddings

Oblivious ℓ_p Subspace Embeddings

r S

Oblivious = does not depend on A

Oblivious ℓ_p Subspace Embeddings

Oblivious ℓ_p Subspace Embeddings

 $\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \kappa \|\mathbf{A}\mathbf{x}\|_p$ for every $\mathbf{x} \in \mathbb{R}^d$

Oblivious ℓ_p Subspace Embeddings

 $\|\mathbf{A}\mathbf{x}\|_{p} \leq \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \leq \kappa \|\mathbf{A}\mathbf{x}\|_{p}$ for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

 $\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \kappa \|\mathbf{A}\mathbf{x}\|_p$ for every $\mathbf{x} \in \mathbb{R}^d$

Oblivious ℓ_p Subspace Embeddings

$$\|\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{A}\mathbf{x}\|_{p}$$
for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

High distortion: sketch S has...

$$\|\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{A}\mathbf{x}\|_{p}$$
for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

High distortion: sketch S has...

Low distortion: sketch S has...

$$\|\mathbf{A}\mathbf{x}\|_{p} \leq \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \leq \|\mathbf{A}\mathbf{x}\|_{p}$$
for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = poly(d)$ distortion

d

Low distortion: sketch S has...

$$\begin{array}{c|c}
 & n \\
\hline
 & S \\
\hline
 & n \\
\hline
 & A \\
\hline
 & Oblivious = does not depend on A \\
\end{array}$$

$$\|\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{A}\mathbf{x}\|_{p}$$
for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = poly(d)$ distortion

I | d

- Low distortion: sketch S has...
 - $-r \gg \text{poly}(d) \text{ rows}$
 - $\kappa = (1 + \varepsilon)$ distortion

$$\|\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{p} \le \|\mathbf{A}\mathbf{x}\|_{p}$$
for every $\mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = \text{poly}(d)$ distortion

- Low distortion: sketch S has...
 - $-r \gg \text{poly}(d) \text{ rows}$
 - $\kappa = (1 + \varepsilon)$ distortion

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = poly(d)$ distortion

- Low distortion: sketch S has...
 - $-r \gg \text{poly}(d) \text{ rows}$
 - $-\kappa = (1 + \varepsilon)$ distortion

Best of both worlds is not possible! (Wang—Woodruff 2019)

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = poly(d)$ distortion

- Low distortion: sketch S has...
 - $-r \gg \text{poly}(d) \text{ rows}$
 - $-\kappa = (1 + \varepsilon)$ distortion

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Oblivious ℓ_p Subspace Embeddings

Two regimes for $1 \le p < 2$

- High distortion: sketch S has...
 - -r = poly(d) rows
 - $-\kappa = \text{poly}(d)$ distortion

- Low distortion: sketch S has...
 - $-r \gg \text{poly}(d) \text{ rows}$
 - $-\kappa = (1 + \varepsilon)$ distortion

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

- Low distortion: sketch S has...
 - $\kappa = O(1)$ distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

- Low distortion: sketch S has...
 - $-\kappa = O(1)$ distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Low distortion: sketch S has...

-
$$\kappa = O(1)$$
 distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

- Low distortion: sketch S has...
 - $-\kappa = O(1)$ distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \ \kappa = \tilde{O}(d^{1/p})$$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

- Low distortion: sketch S has...
 - $-\kappa = O(1)$ distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \ \kappa = \tilde{O}(d^{1/p})$$

- Prior best: Wang—Woodruff 2019
 - $r = \tilde{O}(d), \kappa = \tilde{O}(d)$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

- Low distortion: sketch S has...
 - $-\kappa = O(1)$ distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \ \kappa = \tilde{O}(d^{1/p})$$

• Prior best: Wang—Woodruff 2019

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d)$$

Almost!

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Low distortion: sketch S has...

$$-\kappa = O(1)$$
 distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d^{1/p})$$

• Prior best: Wang—Woodruff 2019

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d)$$

Almost!

· Li-Woodruff-Y 2021

$$-r = \exp(\varepsilon^{-1}d), \ \kappa = (1 + \varepsilon)$$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Low distortion: sketch S has...

$$-\kappa = O(1)$$
 distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d^{1/p})$$

Prior best: Wang—Woodruff 2019

$$- r = \tilde{O}(d), \ \kappa = \tilde{O}(d)$$

Almost!

· Li-Woodruff-Y 2021

$$-r = \exp(\varepsilon^{-1}d), \ \kappa = (1 + \varepsilon)$$

Prior best: Wang—Woodruff 2019

$$- r = \exp(\exp(\varepsilon^{-2}d)), \ \kappa = (1 + \varepsilon)$$

Oblivious ℓ_p Subspace Embeddings

Best of both worlds is not possible! (Wang-Woodruff 2019)

- High distortion: sketch S has...
 - $-r = \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Low distortion: sketch S has...

$$-\kappa = O(1)$$
 distortion $\Rightarrow r \gtrsim \exp(\sqrt{d})$

Question. Are the lower bounds of Wang—Woodruff 2019 tight?

Yes!

· Woodruff—Y 2023

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d^{1/p})$$

Prior best: Wang—Woodruff 2019

$$- r = \tilde{O}(d), \kappa = \tilde{O}(d)$$

Almost!

· Li-Woodruff-Y 2021

$$-r = \exp(\varepsilon^{-1}d), \ \kappa = (1 + \varepsilon)$$

Prior best: Wang—Woodruff 2019

$$- r = \exp(\exp(\varepsilon^{-2}d)), \ \kappa = (1 + \varepsilon)$$

Oblivious ℓ_p Subspace Embeddings

r S n A

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

r S n

n

 \approx orthonormal bases for ℓ_p norms

Let U be an orthonormal basis for A

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

r S n A

- Let U be an orthonormal basis for A
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality)

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

r S

n

- Let U be an orthonormal basis for A
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality)
 - $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$ (with equality)

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{E}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality)
 - $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$ (with equality)

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le a^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$ (with equality)

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{E}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le a^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\|\mathbf{x}\|_{2} \leq \|\mathbf{U}\mathbf{x}\|_{2} \text{ for every } \mathbf{x} \subset \mathbb{R}^{d} \text{ (with equality)}$ $\|\mathbf{x}\|_{q} \leq \|\mathbf{U}\mathbf{x}\|_{p} \text{ for every } \mathbf{x} \in \mathbb{R}^{d}$

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{E}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\|\mathbf{x}\|_{2} \leq \|\mathbf{U}\mathbf{x}\|_{2} \text{ for every } \mathbf{x} \in \mathbb{R}^{d} \text{ (with equality)}$ $\|\mathbf{x}\|_{q} \leq \|\mathbf{U}\mathbf{x}\|_{p} \text{ for every } \mathbf{x} \in \mathbb{R}^{d}$

Hölder conjugate,
$$\frac{1}{p} + \frac{1}{q} = 1$$

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\frac{\|\mathbf{x}\|_{2} \leq \|\mathbf{U}\mathbf{x}\|_{2} \text{ for every } \mathbf{x} \in \mathbb{R}^{d} \text{ (with equality)}}{\|\mathbf{x}\|_{q} \leq \|\mathbf{U}\mathbf{x}\|_{p} \text{ for every } \mathbf{x} \in \mathbb{R}^{d}}$

Hölder conjugate, $\frac{1}{p} + \frac{1}{q} = 1$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le d^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\|\mathbf{x}\|_{2} \leq \|\mathbf{U}\mathbf{x}\|_{2} \text{ for every } \mathbf{x} \in \mathbb{R}^{d} \text{ (with equality)}$ $\|\mathbf{x}\|_{q} \leq \|\mathbf{U}\mathbf{x}\|_{p} \text{ for every } \mathbf{x} \in \mathbb{R}^{d}$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

Hölder conjugate, $\frac{1}{p} + \frac{1}{q} = 1$

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

- Let **U** be an orthonormal basis for **A** well-conditioned basis
 - $\|\mathbf{U}\|_F \le a^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha$ entrywise ℓ_p norm
 - $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$ (with equality)

 $\|\mathbf{x}\|_q \le \|\mathbf{U}\mathbf{x}\|_p$ for every $\mathbf{x} \in \mathbb{R}^d$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

No success in showing this conjecture! 🙁

Hölder conjugate, $\frac{1}{p} + \frac{1}{q} = 1$

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

r S n A

 \approx orthonormal bases for ℓ_p norms

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any **A**, there is **U** with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

r S n A

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any **A**, there is **U** with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $\mathbf{U} \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\|\mathbf{U}\|_{p,p} \le s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $U \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\|\mathbf{U}\|_{p,p} \le s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $\mathbf{U} \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\bullet \|\mathbf{U}\|_{p,p} \le s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \leq \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $\mathbf{U} \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\|\mathbf{U}\|_{p,p} \le s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any A, there is U with $\alpha = d^{1/p}$.

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $\mathbf{U} \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\bullet \|\mathbf{U}\|_{p,p} \le s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Auerbach 1930). For any **A**, there is **U** with $\alpha = d$.

Conjecture. For any **A**, there is **U** with $\alpha = d^{1/p}$.

No success in showing this conjecture!

 \Rightarrow as good as showing $\alpha = s^{1/p}$

Oblivious ℓ_p Subspace Embeddings

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing **well-conditioned bases** for subspaces

 \approx orthonormal bases for ℓ_p norms

• Idea. What if we relax well-conditioned bases to well-conditioned spanning sets?

Theorem (Woodruff—Y 2023). For any A, there is $U \in \mathbb{R}^{n \times s}$ for $s = O(d \log \log d)$ such that

- $\|\mathbf{U}\|_{p,p} \leq s^{1/p}$
- for every $\mathbf{z} \in \mathbb{R}^d$, there is $\mathbf{x} \in \mathbb{R}^s$ such that $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{x}\|_2 \le \|\mathbf{U}\mathbf{x}\|_p$

Theorem (Woodruff—Y 2023). There are oblivious ℓ_p subspace embeddings with $r = \tilde{O}(d)$ and $\kappa = \tilde{O}(d^{1/p})$, which is nearly optimal.

Oblivious ℓ_p Subspace Embeddings

Woodruff—Y 2023

Subspace Embeddings and Linear Regression

• Oblivious ℓ_p subspace embeddings: high distortion and low distortion

Non-oblivious subspace embeddings: ℓ_p Lewis weight sampling, general losses

· Applications: active learning, streaming computational geometry, low rank approximation

Non-oblivious/ Sampling

Non-oblivious Subspace Embeddings

A

Non-oblivious/ Sampling

A

S

A

Oblivious = does not depend on A

Step 1. Compute "importance scores" for the rows of **A**

 q_1

 q_2

Non-oblivious/ Sampling

Oblivious

 q_n

 q_1 Step 1. Compute "importance scores"

Non-oblivious/ Sampling

for the rows of A

Step 2. Sample rows proportionally to the importance scores

 q_2

 q_n

Step 1. Compute "importance scores" for the rows of **A**

Non-oblivious/ Sampling

Step 2. Sample rows proportionally to the importance scores

 q_1

 q_2

 q_n

Non-oblivious Subspace Embeddings

Theorem (Leverage score sampling). For any $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ..., q_n$ that sample $r = \tilde{O}(\varepsilon^{-2}d)$ rows of \mathbf{A} that forms an ℓ_2 subspace embedding with distortion $\kappa = (1 + \varepsilon)$, with probability 99%.

Non-oblivious/ Sampling

Non-oblivious Subspace Embeddings

Theorem (Leverage score sampling). For any $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ... q_n$ that sample $r = \tilde{O}(\varepsilon^{-2}d)$ rows of \mathbf{A} that forms an ℓ_2 subspace embedding with distortion $\kappa = (1 + \varepsilon)$, with probability 99%.

Non-oblivious/ Sampling

Non-oblivious Subspace Embeddings

Non-oblivious Subspace Embeddings

Theorem (Leverage score sampling). For any $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ... q_n$ that sample $r = \tilde{O}(\varepsilon^{-2}d)$ rows of \mathbf{A} that forms an ℓ_2 subspace embedding with distortion $\kappa = (1 + \varepsilon)$, with probability 99%.

• Same row count (r) vs distortion (κ) trade-off as the oblivious case...

Non-oblivious Subspace Embeddings

- Same row count (r) vs distortion (κ) trade-off as the oblivious case...
- Generalizes to much better trade-offs for ℓ_p norms with $p \neq 2!$

Non-oblivious Subspace Embeddings

- Same row count (r) vs distortion (κ) trade-off as the oblivious case...
- Generalizes to much better trade-offs for ℓ_p norms with $p \neq 2!$
 - Oblivious: either $\kappa = \operatorname{poly}(d)$ or $r \gg \operatorname{poly}(d)$, and only for $p \leq 2...$

Non-oblivious Subspace Embeddings

- Same row count (r) vs distortion (κ) trade-off as the oblivious case...
- Generalizes to much better trade-offs for ℓ_p norms with $p \neq 2!$
 - Oblivious: either $\kappa = \operatorname{poly}(d)$ or $r \gg \operatorname{poly}(d)$, and only for $p \leq 2...$
 - Non-oblivious: $\kappa = (1 + \varepsilon)$ and r = poly(d) for any fixed p!

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x} \neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

"Importance score": largest fraction of ℓ_2 norm occupied by the *i*th coordinate

Many generalizations:

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

- Many generalizations:
 - ℓ_p sensitivity scores (Langberg—Schulman 2010)

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

- Many generalizations:
 - ℓ_p sensitivity scores (Langberg—Schulman 2010)
 - ℓ_p Lewis weights (Lewis 1978)

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

- Many generalizations:
 - ℓ_p sensitivity scores (Langberg—Schulman 2010)
 - ℓ_p Lewis weights (Lewis 1978)
 - Online leverage scores (Cohen—Musco—Pachocki 2016)

Non-oblivious Subspace Embeddings

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*th leverage

score is

$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Contribution of the *i*th coordinate

 ℓ_2 norm of $\mathbf{A}\mathbf{x}$

- Many generalizations:
 - ℓ_p sensitivity scores (Langberg—Schulman 2010)
 - $-\ell_p$ Lewis weights (Lewis 1978)
 - Online leverage scores (Cohen—Musco—Pachocki 2016)

Non-oblivious Subspace Embeddings

Theorem (Lewis weight sampling, Cohen—Peng 2015). For any

 $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ... q_n$ that sample

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

rows of **A** that forms an ℓ_p subspace embedding with distortion $\kappa = (1 + \varepsilon)$, with probability 99%.

Non-oblivious Subspace Embeddings

Theorem (Lewis weight sampling, Cohen—Peng 2015). For any

 $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ... q_n$ that sample

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

rows of A that forms an ℓ_p subspace embedding with distortion

$$\kappa = (1 + \varepsilon)$$
 with probability 99%.

Non-oblivious Subspace Embeddings

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Two questions:

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Two questions:

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Two questions:

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Two questions:

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Nearly optimal (Li—Wang—Woodruff 2020)

Non-oblivious Subspace Embeddings

Two questions:

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Nearly optimal (Li—Wang—Woodruff 2020)

Question 2. What if the rows of A arrive one by one in a stream?

 $d^{p/2}$ is nearly optimal for $\varepsilon = O(1)$ (Li—Wang—Woodruff 2020)

Non-oblivious Subspace Embeddings

Two questions:

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Nearly optimal (Li-Wang-Woodruff 2020)

 ε^{-2} should be possible here!

 $d^{p/2}$ is nearly optimal for $\varepsilon = O(1)$ (Li—Wang—Woodruff 2020)

Non-oblivious Subspace Embeddings

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

Questions 1 and 2 can be addressed using related $r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2 \\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$ techniques!

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

Questions 1 and 2 can be addressed using related $r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2 \\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$ techniques!

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

Question 2. What if the rows of A arrive one by one in a stream?

Handling addition of rows in a stream → better sampling bounds

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

Questions 1 and 2 can be addressed using related techniques!

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-2}d) & p > 2 \end{cases}$$

Question 2. What if the rows of A arrive one by one in a stream?

Handling addition of rows in a stream → better sampling bounds

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

Questions 1 and 2 can be addressed using related techniques!

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-2}d) & p > 2 \end{cases}$$

 $\tilde{O}(\varepsilon^{-2}d^{p/2})$ (Woodruff—Y 2023)

Question 2. What if the rows of A arrive one by one in a stream?

Handling addition of rows in a stream → better sampling bounds

Non-oblivious Subspace Embeddings

Woodruff—Y 2023

Question 1. Can these bounds be improved?

Questions 1 and 2 can be addressed using related techniques!

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p < 2\\ \tilde{O}(\varepsilon^{-2}d) & p > 2 \end{cases}$$

These bounds also hold in the streaming setting (Woodruff—Y 2023)

 $\tilde{O}(\varepsilon^{-2}d^{p/2})$ (Woodruff—Y 2023)

Question 2. What if the rows of A arrive one by one in a stream?

Handling addition of rows in a stream → better sampling bounds

Non-oblivious Subspace Embeddings

Non-oblivious Subspace Embeddings

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

• There are many other loss functions used for linear regression...

Non-oblivious Subspace Embeddings

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

- There are many other loss functions used for linear regression...
 - Huber/Tukey loss for robust statistics

Non-oblivious Subspace Embeddings

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

- There are many other loss functions used for linear regression...
 - Huber/Tukey loss for robust statistics
 - Logistic regression for classification

Non-oblivious Subspace Embeddings

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Musco—Musco—Woodruff—Y 2022

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Musco—Woodruff—Y 2022

General losses with quadratic growth

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_{g} := \sum_{i=1}^{n} g([\mathbf{A}\mathbf{x}](i))$$

Musco—Musco—Woodruff—Y 2022

General losses with quadratic growth

$$r = \tilde{O}(\varepsilon^{-2}d^2)$$

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Musco—Musco—Woodruff—Y 2022

General losses with quadratic growth

$$r = \tilde{O}(\varepsilon^{-2}d^2)$$

Huber loss

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_{g} := \sum_{i=1}^{n} g([\mathbf{A}\mathbf{x}](i))$$

Musco—Woodruff—Y 2022

General losses with quadratic growth

$$r = \tilde{O}(\varepsilon^{-2}d^2)$$

Huber loss

$$r = \text{poly}(\varepsilon^{-1})d^{4-2\sqrt{2}} \approx d^{1.172}$$

Non-oblivious Subspace Embeddings

Question 3. Are there similar results for other loss functions?

$$\|\mathbf{A}\mathbf{x}\|_g := \sum_{i=1}^n g([\mathbf{A}\mathbf{x}](i))$$

Musco—Woodruff—Y 2022

General losses with quadratic growth

$$r = \tilde{O}(\varepsilon^{-2}d^2)$$

Huber loss

$$r = \text{poly}(\varepsilon^{-1})d^{4-2\sqrt{2}} \approx d^{1.172}$$

I am very interested in improving this to d

Subspace Embeddings and Linear Regression

- Oblivious ℓ_p subspace embeddings: high distortion and low distortion
- Non-oblivious subspace embeddings: ℓ_p Lewis weight sampling, general losses

Applications: active learning, streaming computational geometry, low rank approximation

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

• Active learning: machine learning, where **label acquisition** is the most expensive resource

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- Active learning: machine learning, where **label acquisition** is the most expensive resource
 - Labeling could require manual labor

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- Active learning: machine learning, where label acquisition is the most expensive resource
 - Labeling could require manual labor
 - Labeling could require purchasing information

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- Active learning: machine learning, where **label acquisition** is the most expensive resource
 - Labeling could require manual labor
 - Labeling could require purchasing information
 - Labeling could require involve an invasive medical procedure

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- Active learning: machine learning, where label acquisition is the most expensive resource
 - Labeling could require manual labor
 - Labeling could require purchasing information
 - Labeling could require involve an invasive medical procedure
- · Goal: minimize the number of label entries that are read

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

The algorithm has full access to A

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

The algorithm has full access to A

b vector is hidden, and the algorithm has query access to it

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

The algorithm has full access to A

b vector is hidden, and the algorithm has query access to it

Active ℓ_p Linear Regression

$$\frac{\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p}{\mathbf{A}\mathbf{x} - \mathbf{b}}$$

Active ℓ_p Linear Regression

Active ℓ_p Linear Regression

$$\frac{\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p}{\mathbf{x} - \mathbf{b}}$$

Active ℓ_p Linear Regression

$$\begin{array}{c|c}
\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p \\
\hline
\vdots \\
\bullet \\
\bullet \\
\bullet
\end{array}$$

Active ℓ_p Linear Regression

$$\begin{array}{c|c}
\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p \\
\hline
\vdots \\
\mathbf{A} \\
\vdots \\
\mathbf{A} \\
\vdots
\end{array}$$

Active ℓ_p Linear Regression

•
$$p = 2$$
: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)

Active ℓ_p Linear Regression

- p = 2: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)
- p=1: $\tilde{\Theta}(\varepsilon^{-2}d)$ (Chen—Derezinski, Parulekar—Price 2021)

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- p = 2: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)
- p=1: $\tilde{\Theta}(\varepsilon^{-2}d)$ (Chen—Derezinski, Parulekar—Price 2021)
- 1 < p < 2: $\tilde{O}(\varepsilon^{-2}d^2)$ (Chen—Derezinski 2021)

Active ℓ_p Linear Regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p$$

- p = 2: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)
- p=1: $\tilde{\Theta}(\varepsilon^{-2}d)$ (Chen—Derezinski, Parulekar—Price 2021)
- 1 < p < 2: $\tilde{O}(\varepsilon)$ (Chen—Derezinski 2021)

Active ℓ_p Linear Regression

- p = 2: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)
- p=1: $\tilde{\Theta}(\varepsilon^{-2}d)$ (Chen—Derezinski, Parulekar—Price 2021)
- $1 : <math>\tilde{O}(\varepsilon)$ (Chen—Derezinski 2021) $\tilde{\Theta}(\varepsilon^{-1}d) \text{ (Musco-Musco-Woodruff-Y 2022)}$

Active ℓ_p Linear Regression

$$\begin{array}{c|c}
\min_{\mathbf{x} \in \mathbb{R}^d} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_p^p \\
\hline
\vdots \\
\mathbf{A}\mathbf{x} - \mathbf{b} \\
\downarrow \\
\mathbf{A}\mathbf{$$

- p = 2: $\Theta(\varepsilon^{-1}d)$ (Chen—Price 2019)
- p=1: $\tilde{\Theta}(\varepsilon^{-2}d)$ (Chen—Derezinski, Parulekar—Price 2021)
- 1 < p < 2: $\tilde{O}(\varepsilon)$ d^2) (Chen—Derezinski 2021) $\tilde{\Theta}(\varepsilon^{-1}d) \text{ (Musco-Musco-Woodruff-Y 2022)}$
- $2 : <math>\tilde{\Theta}(\varepsilon^{1-p}d^{p/2})$ (Woodruff—Y 2023)

Streaming Löwner—John Ellipsoids

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with

2n faces in d dims

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

$$\{\mathbf{x}: \ \langle \mathbf{a}_i, \mathbf{x} \rangle \le 1\}$$

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

• Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...
 - test if ellipsoid respects a new constraint \mathbf{a}_i

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...
 - test if ellipsoid respects a new constraint \mathbf{a}_i
 - bound # of times we keep a new constraint \mathbf{a}_i

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...
 - test if ellipsoid respects a new constraint \mathbf{a}_i
 - bound # of times we keep a new constraint \mathbf{a}_i

$$\sup_{\mathbf{E}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{E}\mathbf{x}\|_2^2}$$

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...
 - test if ellipsoid respects a new constraint \mathbf{a}_i
 - bound # of times we keep a new constraint \mathbf{a}_i

 ≤ 1 iff ellipsoid **E** respects constraint \mathbf{a}_i

$$\sup_{\mathbf{E}\mathbf{x}\neq\mathbf{0}} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{E}\mathbf{x}\|_2^2}$$

Streaming Löwner—John Ellipsoids

Input: symmetric polytope with 2n faces in d dims

Want the "largest" ellipsoid enclosed in polytope

- Agarwal—Har-Peled—Varadarajan 2004: $\exp(\Theta(d))$ bits
- Woodruff—Y 2022: $O(d^2 \log^2 n)$ bits
- Approach: select a subset of constraints
- Techniques: use leverage scores to...
 - test if ellipsoid respects a new constraint \mathbf{a}_i
 - bound # of times we keep a new constraint \mathbf{a}_i

Question. Can Löwner—John ellipsoids be maintained in poly(d, log n) bits of space?

 ≤ 1 iff ellipsoid \mathbf{E} respects constraint \mathbf{a}_i

$$\sup_{\mathbf{E}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{E}\mathbf{x}\|_2^2}$$

Leverage scores:
$$\tau_i(\mathbf{A}) = \sup_{\mathbf{A}\mathbf{x}\neq 0} \frac{\langle \mathbf{a}_i, \mathbf{x} \rangle^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_F^2$$

Low Rank Approximation with General Losses

NP-hard... → need approximation/bicriteria algorithms

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{p,p}^{p} = \sum_{i,j} (\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j}^{p}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g}^{p} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

- NP-hard... → need approximation/bicriteria algorithms
- Focus on column subset selection algorithms: U is a set of $\approx k$ columns of A

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{F}^{2} = \sum_{i,j} (\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j}^{p}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

- NP-hard... → need approximation/bicriteria algorithms
- Focus on column subset selection algorithms: U is a set of $\approx k$ columns of A
 - Useful for unsupervised feature selection

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{F}^{2}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g}^{p} = \sum_{i,j} (\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j}^{p}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

- NP-hard... → need approximation/bicriteria algorithms
- Focus on column subset selection algorithms: U is a set of $\approx k$ columns of A
 - Useful for unsupervised feature selection
 - This framework gives the best known algorithms for this problem!

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

Low Rank Approximation with General Losses

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$

Subset of $\approx k$ columns of **A**

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\left\| \mathbf{A} - \hat{\mathbf{U}} \hat{\mathbf{V}} \right\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \left\| \mathbf{A} - \mathbf{U} \mathbf{V} \right\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

- ℓ_p , p < 2: $\kappa \approx k^{1/p-1/2}$ (Mahankali—Woodruff 2021)
- $\ell_p, p > 2$: $\kappa \approx k^{1-1/p}$ (Dan—Wang—Zhang—Zhou—Ravikumar 2019)

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

- ℓ_p , p < 2: $\kappa \approx k^{1/p-1/2}$ (Mahankali—Woodruff 2021)
- $\ell_p, p > 2$: $\kappa \approx k^{1-1/p}$ (Dan—Wang—Zhang—Zhou—Ravikumar 2019)
- Huber: $\kappa \approx k^2$ (Song—Woodruff—Zhong 2019)

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

- ℓ_p , p < 2: $\kappa \approx k^{1/p-1/2}$ (Mahankali—Woodruff 2021)
- $\ell_p, p > 2$: $\kappa \approx k^{1-1/p}$ (Dan—Wang—Zhang—Zhou—Ravikumar 2019) $\kappa \approx k^{1/2-1/p}$ (Woodruff—Y 2023)
- Huber: $\kappa \approx k^2$ (Song—Woodruff—Zhong 2019)

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\left\| \mathbf{A} - \hat{\mathbf{U}} \hat{\mathbf{V}} \right\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \left\| \mathbf{A} - \mathbf{U} \mathbf{V} \right\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

- ℓ_p , p < 2: $\kappa \approx k^{1/p-1/2}$ (Mahankali—Woodruff 2021)
- $\ell_p, p > 2$: $\kappa \approx k^{1-1/p}$ (Dan—Wang—Zhang—Zhou—Ravikumar 2019) $\kappa \approx k^{1/2-1/p}$ (Woodruff—Y 2023)
- Huber: $\kappa \approx k^2$ (Song—Woodruff—Zhong 2019) $\kappa \approx k$ (Woodruff—Y 2023)

Low Rank Approximation with General Losses

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \| \mathbf{A} - \mathbf{U} \mathbf{V} \|_{g} = \sum_{i,j} g((\mathbf{A} - \mathbf{U} \mathbf{V})_{i,j})$$

$$\|\mathbf{A} - \hat{\mathbf{U}}\hat{\mathbf{V}}\|_{g} \leq \kappa \min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A} - \mathbf{U}\mathbf{V}\|_{g}$$
Subset of $\approx k$ columns of \mathbf{A} Approximation factor κ

- ℓ_p , p < 2: $\kappa \approx k^{1/p-1/2}$ (Mahankali—Woodruff 2021)
- $\ell_p, p > 2$: $\kappa \approx k^{1-1/p}$ (Dan—Wang—Zhang—Zhou—Ravikumar 2019) $\kappa \approx k^{1/2-1/p}$ (Woodruff—Y 2023)
- Huber: $\kappa \approx k^2$ (Song—Woodruff—Zhong 2019) $\kappa \approx k$ (Woodruff—Y 2023)

Techniques: well-conditioned spanning sets, \mathcal{C}_p Lewis weights, ...

Matrix Approximation Summary

Summary

• We develop a wide variety of techniques for matrix approximation based on sampling and sketching techniques

- We develop a wide variety of techniques for matrix approximation based on sampling and sketching techniques
 - **Tight bounds**: we obtain nearly optimal bounds for fundamental problems for matrix approximation

- We develop a wide variety of techniques for matrix approximation based on sampling and sketching techniques
 - **Tight bounds**: we obtain nearly optimal bounds for fundamental problems for matrix approximation
 - Uncertain/resource-limited settings: we develop the first algorithms for matrix approximation in online, streaming, and other models of computation

- We develop a wide variety of techniques for matrix approximation based on sampling and sketching techniques
 - **Tight bounds**: we obtain nearly optimal bounds for fundamental problems for matrix approximation
 - Uncertain/resource-limited settings: we develop the first algorithms for matrix approximation in online, streaming, and other models of computation
 - Generalized loss functions: we obtain new and improved algorithms for matrix approximation under ℓ_p , Huber, and even further general loss functions

- We develop a wide variety of techniques for matrix approximation based on sampling and sketching techniques
 - **Tight bounds**: we obtain nearly optimal bounds for fundamental problems for matrix approximation
 - Uncertain/resource-limited settings: we develop the first algorithms for matrix approximation in online, streaming, and other models of computation
 - Generalized loss functions: we obtain new and improved algorithms for matrix approximation under ℓ_p , Huber, and even further general loss functions
 - **Applications**: we apply algorithmic techniques from matrix approximation to solve fundamental problems in machine learning and computational geometry

Matrix Approximation Open Problems

Open Problems

Open Problem 1. Is there a $\kappa = O(1)$ distortion subspace embedding for the Huber loss with $r \approx d$ rows?

Open Problems

Open Problem 1. Is there a $\kappa = O(1)$ distortion subspace embedding for the Huber loss with $r \approx d$ rows?

Current best: $r \approx d^{4-2\sqrt{2}}$ (Musco—Musco—Woodruff—Y 2022)

Open Problems

Open Problem 1. Is there a $\kappa = O(1)$ distortion subspace embedding for the Huber loss with $r \approx d$ rows?

Current best: $r \approx d^{4-2\sqrt{2}}$ (Musco—Musco—Woodruff—Y 2022)

Open Problem 2. Is $r \approx \varepsilon^{-2} d^{p/2}$ optimal for $\kappa = (1 + \varepsilon)$ distortion ℓ_p subspace embeddings for p > 2?

Open Problems

Open Problem 1. Is there a $\kappa = O(1)$ distortion subspace embedding for the Huber loss with $r \approx d$ rows?

Current best: $r \approx d^{4-2\sqrt{2}}$ (Musco—Musco—Woodruff—Y 2022)

Open Problem 2. Is $r \approx \varepsilon^{-2} d^{p/2}$ optimal for $\kappa = (1 + \varepsilon)$ distortion ℓ_p subspace embeddings for p > 2?

Current best: $r \gtrsim \varepsilon^{-2} + d^{p/2}$ (Li—Wang—Woodruff 2020)

Other works

- Subspace Embeddings + Applications:
 - Sharper Bounds for ℓ_p Sensitivity Sampling [preprint]
 - New Subset Selection Algorithms for Low Rank Approximation: Offline and Online [STOC'23]
 - Online Lewis Weight Sampling [SODA'23]
 - High-Dimensional Geometric Streaming in Polynomial Space [FOCS'22]
 - Active Linear Regression for ℓ_p Norms and Beyond [FOCS'22]
 - Exponentially Improved Dimensionality Reduction for ℓ_1 : Subspace Embeddings and Independence Testing [COLT'21]
- Low Rank Approximation
 - New Subset Selection Algorithms for Low Rank Approximation: Offline and Online [STOC'23]
 - Improved Algorithms for Low Rank Approximation from Sparsity [SODA'22]
- Sequential Attention for Feature Selection [ICLR'23]