Machine Learning

Angshuman Paul

Assistant Professor

Department of Computer Science & Engineering

Bayes Decision Theory

Consider two random variables

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs
- A 3×2 matrix of values

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs
- A 3×2 matrix of values

	Power cut	No power cut
Sunny	0.01	0.4
Rainy	0.2	0.1
Cloudy	0.09	0.2

- Sample space corresponding to *X* is $S_X = \{s, r, c\}$
- Sample space corresponding to *Y* is $S_Y = \{pc, npc\}$
- Sample space corresponding to the joint distribution is

	Power cut (pc)	No power cut (npc)
Sunny (s)	0.01 $P(s \cap pc)$	0.4 $P(s \cap npc)$
Rainy (r)	0.2 $P(r \cap pc)$	0.1 $P(r \cap npc)$
Cloudy (c)	0.09 $P(c \cap pc)$	0.2 $P(r \cap npc)$

- Sample space corresponding to *X* is $S_X = \{s, r, c\}$
- Sample space corresponding to Y is $S_Y = \{pc, npc\}$
- Sample space corresponding to the joint distribution is $S_I = \{(s,pc), (s,npc), (r,pc), (r,npc), (c,pc), (c,npc)\}$

	Power cut (pc)	No power cut (npc)
Sunny (s)	0.01 $P(s \cap pc)$	0.4 $P(s \cap npc)$
Rainy (r)	0.2 $P(r \cap pc)$	0.1 $P(r \cap npc)$
Cloudy (c)	0.09 $P(c \cap pc)$	0.2 $P(r \cap npc)$

Chain Rule

• If A_1, A_2, \dots, A_n are n events, then

•
$$P(A_n \cap A_{n-1} \cap \dots \cap A_1) = P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} \cap \dots \cap A_1)$$
 (1)

Similarly,

•
$$P(A_{n-1} \cap A_{n-2} \cap \dots \cap A_1) = P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} \cap \dots \cap A_1)$$
 (2)

Extending this for the subsequent events and putting in (1), we get,

•
$$P(A_n \cap A_{n-1} \cap \dots \cap A_1)$$

= $P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} | A_{n-3} \cap \dots \cap A_1) \dots P(A_1)$

Chain Rule

- If A_1 , A_2 , A_3 are 3 events, then we use
 - $P(A_n \cap A_{n-1} \cap \dots \cap A_1)$ = $P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} | A_{n-3} \cap \dots \cap A_1) \dots P(A_1)$
- We get
 - $P(A_4 \cap A_3 \cap A_2 \cap A_1)$ = $P(A_4 | A_3 \cap A_2 \cap A_1) P(A_3 | A_2 \cap A_1) P(A_2 | A_1) P(A_1)$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

• P(fever) =

	fever		¬ fever	
	cough ¬ cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• P(fever) = 0.21 + 0.10 + 0.11 + 0.07 = 0.49

	fever		¬ fever	
	cough ¬ cough coug		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(fever \ \ \ \) =$

	fever		¬ fever	
	cough – cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(fever \ \ \ \ \ \ \ \ \ \ \ \) = 0.21 + 0.10 + 0.11 + 0.07 + 0.11 + 0.08 = 0.68$

	fever		¬ fever	
	cough ¬ cough coug		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(\neg covid | \neg fever) =$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

•
$$P(\neg covid | \neg fever) = \frac{P(\neg covid \cap \neg fever)}{P(\neg fever)} = \frac{0.09 + 0.23}{P(\neg fever)}$$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

•
$$P(\neg covid | \neg fever) = \frac{P(\neg covid \cap \neg fever)}{P(\neg fever)} = \frac{0.09 + 0.23}{0.11 + 0.08 + 0.09 + 0.23} \approx 0.627$$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- If we have the complete joint distribution, I can answer any related queries
- But, what is the problem with this approach?

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- But, what is the problem with this approach?
 - For a system with many causes and effects, we have to maintain a large set of values and operate on those

Our Old Example in a New Form

- In a box, there are 40 Samsung phones and 20 MI phones
- Out of these, 10 Samsung phones and 2 MI phones are not working.
- You pick up a phone and find that the phone is not working.

• Can you tell me whether the phone is a Samsung Phone or MI Phone?

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).

• Find P(SP|NW) and P(MIP|NW)

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- Find P(SP|NW) and P(MIP|NW)
- If P(SP|NW) > P(MIP|NW)
 - The phone that I picked up is Samsung
- Else if P(SP|NW) < P(MIP|NW)
 - The phone that I picked up is MI
- Else if P(SP|NW) = P(MIP|NW)
 - We can't take any decision

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).

- Find P(SP|NW) and P(MIP|NW)
- If P(SP|NW) > P(MIP|NW)
 - The phone that I picked up is Samsung
- Else the phone is MI

Conditional Probability

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

•
$$P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$$

$$= \frac{10}{12}$$

$$= \frac{\frac{10}{40} \times \frac{40}{60}}{\frac{12}{60}}$$

- $\frac{10}{40}$: Given an SP, probability that it is NW (P(NW|SP))
- $\frac{40}{60}$: Probability of SP in the box P(SP)
- $\frac{12}{60}$: Probability of finding a NW phone in the box P(NW)

Conditional Probability

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

•
$$P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$$

$$= \frac{10}{12}$$

$$= \frac{\frac{10}{40} \times \frac{40}{60}}{\frac{12}{60}}$$

- $\frac{10}{40}$: Given an SP, probability that it is NW (P(NW|SP))
- $\frac{40}{60}$: Probability of SP in the box P(SP)
- $\frac{12}{60}$: Probability of finding a NW phone in the box P(NW)

•
$$P(SP|NW) = \frac{P(NW|SP) P(SP)}{P(NW)}$$

Similarly

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

- $P(MI|NW) = \frac{\# MI \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$
- $P(MI|NW) = \frac{2}{12}$

The Decision

$$P(SP|NW) = \frac{10}{12}$$

• $P(MI|NW) = \frac{2}{12}$

Since P(SP|NW) > P(MI|NW), I conclude that I picked up Samsung phone

- Consider a two-class classification problem with classes cl_1 and cl_2
 - For example, let
 - cl_1 : cat
 - cl₂: tiger
- Suppose, I have a data point with a feature x that I need to classify to one of these two classes
 - Let *x* be the weight of the animal
- To use Bayes decision rule, I will find out $P(cl_1|x)$ and $P(cl_2|x)$

•
$$P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$$

Now let's use Bayes theorem

•
$$P(cl_1|x) = \frac{P(x|cl_1)P(cl_1)}{P(x)}$$

$$P(cl_2|x) = \frac{P(x|cl_2)P(cl_2)}{P(x)}$$

• $P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$

Now let's use Bayes theorem

• $P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$

Now let's use Bayes theorem

•
$$P(cl_1|x) = \frac{P(x|cl_1)P(cl_1)}{P(x)}$$

$$P(cl_2|x) = \frac{P(x|cl_2)P(cl_2)}{P(x)}$$

• $P(x|cl_1)P(cl_1) > P(x|cl_2)P(cl_2) \Rightarrow cl_1$

 $P(cl_i|x)$

Error

Suppose, I am at $x = x_1$

What is my decision? cl_1

 $P(cl_i|x)$

What is the probability of correct decision? $P(cl_1|x)$

What is the probability of error in decision? $P(cl_2|x)$

Error in decision $\min\{P(cl_1|x), P(cl_2|x)\}$

Suppose, I am at $x = x_2$

What is my decision? cl_2

 $P(cl_i|x)$

What is the probability of correct decision? $P(cl_2|x)$

What is the probability of error in decision? $P(cl_1|x)$

Error in decision $\min\{P(cl_1|x), P(cl_2|x)\}$

Suppose, I am at $x = x_1$

What is my decision? $cl_1 P(cl_i|x)$

Error probability $P(cl_2|x)$

But if I take decision to be cl_2

Error probability $P(cl_1|x)$

Correct decision is obtained only when we consider the minimum error probability

Minimum Error Classification

Correct decision is obtained only when we consider the minimum error probability

Loss Function: A Generic Approach

- Consider that there are k number of classes
 - $cl_1, cl_2, ..., cl_k$
 - Also called states of nature
- Consider that there are a number of actions
 - $\alpha_1, \alpha_2, \dots, \alpha_a$
 - Action can be assigning one class to the data
 - Action can also be assigning no class when there is a tie
- Loss function
 - $\lambda(\alpha_i|cl_j)$: Loss incurred for taking action α_i when the true state of nature is cl_j
- We consider a data point x to be a d-dimensional feature vector

Loss Function: A Generic Approach

- Loss function
 - $\lambda(\alpha_i|cl_j)$: Loss incurred for taking action α_i when state of nature is cl_j
- We consider a data point x to be a d-dimensional feature vector

• Expected loss for taking action α_i when we observe data x

$$R(\alpha_i|x) = \sum_{j=1}^k \lambda(\alpha_i|cl_j)P(cl_j|x)$$

Risk function/ conditional risk/ expected loss

Minimum Risk Classifier

• Expected loss for taking action α_i when we observe data x

$$R(\alpha_i|x) = \sum_{j=1}^k \lambda(\alpha_i|cl_j)P(cl_j|x)$$

Risk function/ conditional risk/ expected loss

- We want to take an action which minimizes the risk
 - Minimum risk classifier

• Expected loss for taking action α_i when we observe data x

$$R(\alpha_i|x) = \sum_{j=1}^k \lambda(\alpha_i|cl_j)P(cl_j|x)$$

- Let $\lambda(\alpha_i|cl_j) = \lambda_{ij}$
- For two-class problem

$$R(\alpha_i|x) = \sum_{j=1}^{2} \lambda_{ij} P(cl_j|x) =$$

For two-class problem

$$R(\alpha_i|x) = \sum_{j=1}^{2} \lambda_{ij} P(cl_j|x)$$

So,

$$R(\alpha_1|x) = \sum_{j=1}^{2} \lambda_{1j} P(cl_j|x) = \lambda_{11} P(cl_1|x) + \lambda_{12} P(cl_2|x)$$

$$R(\alpha_2|x) = \sum_{j=1}^{2} \lambda_{2j} P(cl_j|x) = \lambda_{21} P(cl_1|x) + \lambda_{22} P(cl_2|x)$$

- Let
 - α_1 be the action of assigning class 1 to the input data x
 - α_2 be the action of assigning class 2 to the input data x
- We have

$$R(\alpha_1|x) = \sum_{j=1}^{2} \lambda_{1j} P(cl_j|x) = \lambda_{11} P(cl_1|x) + \lambda_{12} P(cl_2|x)$$

$$R(\alpha_2|x) = \sum_{j=1}^{2} \lambda_{2j} P(cl_j|x) = \lambda_{21} P(cl_1|x) + \lambda_{22} P(cl_2|x)$$

We have

$$R(\alpha_{1}|x) = \sum_{j=1}^{2} \lambda_{1j} P(cl_{j}|x) = \lambda_{11} P(cl_{1}|x) + \lambda_{12} P(cl_{2}|x)$$

$$R(\alpha_{2}|x) = \sum_{j=1}^{2} \lambda_{2j} P(cl_{j}|x) = \lambda_{21} P(cl_{1}|x) + \lambda_{22} P(cl_{2}|x)$$

- If we want to assign class 1 to the input data x, we want
 - $R(\alpha_1|x) < R(\alpha_2|x)$
 - $(\lambda_{11}P(cl_1|x) + \lambda_{12}P(cl_2|x)) < (\lambda_{21}P(cl_1|x) + \lambda_{22}P(cl_2|x))$
 - $(\lambda_{11} \lambda_{21})P(cl_1|x) < (\lambda_{22} \lambda_{12})P(cl_2|x)$

- If we want to assign class 1 to the input data x, we want
 - $(\lambda_{11} \lambda_{21})P(cl_1|x) < (\lambda_{22} \lambda_{12})P(cl_2|x)$
 - $(\lambda_{21} \lambda_{11})P(cl_1|x) > (\lambda_{12} \lambda_{22})P(cl_2|x)$
- ullet Recall from Bayes decision rule, we need to have the following to assign class 1 to the input data x
 - $P(cl_1|x) > P(cl_2|x)$

• If we want to assign class 1 to the input data x, we want

- ullet Recall from Bayes decision rule, we need to have the following to assign class 1 to the input data x
 - $P(cl_1|x) > P(cl_2|x)$

Minimum Risk Classifier: How to Know λ_{ij}

- If we want to assign class 1 to the input data x, we want
 - $(\lambda_{21} \lambda_{11})P(cl_1|x) > (\lambda_{12} \lambda_{22})P(cl_2|x)$
- All the losses $(\lambda_{ij}s)$ are predefined depending on the problem

- In many occasions, we can consider $\lambda_{ii} = 0$
 - Why?

Minimum Risk Classifier: How to Know λ_{ij}

- If we want to assign class 1 to the input data x, we want
 - $(\lambda_{21} \lambda_{11})P(cl_1|x) > (\lambda_{12} \lambda_{22})P(cl_2|x)$
- All the losses $(\lambda_{ij}s)$ are predefined depending on the problem

- In many occasions, we can consider $\lambda_{ii} = 0$
 - Why?
 - Because λ_{ii} indicates correct decision

One Strategy of Defining λ_{ij}

Let's define

$$\lambda_{ij} = \lambda(\alpha_i | cl_j) = \begin{cases} 0 & when \ i = j \\ 1 & when \ i \neq j \end{cases}$$

We have

$$\lambda_{ij} = \lambda(\alpha_i|cl_j) = \begin{cases} 0 & when \ i = j \\ 1 & when \ i \neq j \end{cases}$$

We also have

$$R(\alpha_i|x) = \sum_{j=1}^k \lambda(\alpha_i|cl_j)P(cl_j|x)$$

Combining the two, we get

$$R(\alpha_i|x) = \sum_{i \neq j} P(cl_j|x)$$

Combining the two, we get

$$R(\alpha_i|x) = \sum_{i \neq j} P(cl_j|x)$$

- Let i = 2 and there are three classes cl_1, cl_2, cl_3
- So,

$$\sum_{j=1}^{3} P(cl_j|x) = ?$$

Combining the two, we get

$$R(\alpha_i|x) = \sum_{i \neq j} P(cl_j|x)$$

- Let i = 2 and there are three classes cl_1, cl_2, cl_3
- So,

$$\sum_{j=1}^{3} P(cl_j | x) = 1$$

Combining the two, we get

$$R(\alpha_i|x) = \sum_{i \neq j} P(cl_j|x)$$

- Let i = 2 and there are three classes cl_1 , cl_2 , cl_3
- So,

$$\sum_{j=1}^{3} P(cl_j|x) = 1 = P(cl_1|x) + P(cl_2|x) + P(cl_3|x)$$

So,

$$\sum_{i \neq j} P(cl_j | x) = P(cl_1 | x) + P(cl_3 | x) = 1 - P(cl_2 | x)$$

So, we get

$$R(\alpha_i|x) = \sum_{i \neq j} P(cl_j|x) = 1 - P(cl_i|x)$$

• So, if I want to minimize risk for action α_i , I have to maximize $P(cl_i|x)$

- That means, given the observation x
 - If the probability of class label cl_i is maximum, i.e. if $P(cl_i|x)$
 - The corresponding risk of error is minimum

Minimum Error Rate Classifier

• So, if I want to minimize risk for action α_i , I have to maximize $P(cl_i|x)$

- That means, given the observation x
 - If the probability of class label cl_i is maximum, i.e. if $P(cl_i|x)$
 - The corresponding risk of error is minimum
- This is called minimum error rate classifier

• This is similar to the Bayes decision rule $P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$

Inference by Enumeration

	fever		¬ fever		
	cough	¬ cough	cough	¬ cough	
covid	0.21	0.10	0.11	0.08	
¬ covid	0.11	0.07	0.09	0.23	

- But, what is the problem with this approach?
 - For a system with many causes and effects, we have to maintain a large set of values and operate on those

- Two events A and B are said to be independent if
 - P(A|B) = P(A) (1)
- We already have

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$
 (2)

- From (1) and (2), we get
 - P(B|A) = P(B)
 - $P(A \cap B) = P(A)P(B)$

Suppose I want to deal with Fever, Cough, Covid, and Internet Speed (I_Sp)

We intuitively know that internet speed does not depend on the other three

- So, if we want to find out the joint distribution
 - P(Fever, Cough, Covid, I_Sp)
- We can write

```
P(Fever, Cough, Covid, I\_Sp) = P(Fever, Cough, Covid) P(I\_Sp)
```

• Suppose the sample space for Internet Speed (I_Sp) is {slow, medium, fast, very fast}

- So, if we want to find out the joint distribution
 - P(Fever, Cough, Covid, I_Sp)

		fever		¬ fever	
		cough	¬ cough	cough	¬ cough
covid	slow	a1	a2	a3	a4
	medium	a5	a6	a7	a8
	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
¬ covid	slow	a17	a18	a19	a20
	medium	a21	a22	a23	a24
	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

		fever		¬ fever	
		cough	¬ cough	cough	¬ cough
covid	slow	a1	a2	a3	a4
	medium	a5	a6	a7	a8
	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
¬ covid	slow	a17	a18	a19	a20
	medium	a21	a22	a23	a24
	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

• How many variables do I need to store this table?

		fever		¬ fever	
		cough	¬ cough	cough	¬ cough
covid	slow	a1	a2	a3	a4
	medium	a5	a6	a7	a8
	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
¬ covid	slow	a17	a18	a19	a20
	medium	a21	a22	a23	a24
	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

• How many entries do I need to store this table? **32 (31 parameters)**

Total entries: 32 (31 parameters)

Now I know that

 $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$

- Now I know that
 - To store the above table, I need to store
 P(Fever, Cough, Covid) and P(I_Sp)

- Total entries: 32 (31 parameters)
- Now I know that

 $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$

- Now I know that
 - To store the above table, I need to store P(Fever, Cough, Covid) and P(I_Sp)

	fever		¬ fever	
	cough ¬ cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- Table for *P*(*Fever*, *Cough*, *Covid*)
- How many entries: 8 (7 parameters)

slow	medium	fast	very fast
0.2	0.4	0.25	0.15

- Table for $P(I_Sp)$
- How many entries? 4 (3 parameters)

		fever		¬ fever	
		cough ¬ cough		cough	¬ cough
	slow	a1	a2	a3	a4
covid	medium	a5	a6	a7	a8
Covid	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
	slow	a17	a18	a19	a20
govid	medium	a21	a22	a23	a24
¬ covid	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

- Total entries required was: 32 (31 parameters)
- After performing factorization $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$
 - Total entries required: 8+4= 12 (7+3=10 parameters)

- Total entries required was: 32
- After performing factorization

$$P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$$

- Total entries required: 8+4= **12**
- Complete independence is extremely powerful
- But in our model, why should we include something that does not have any relation to the problem?
 - We will not include such factors

- But in our model, why should we include something that does not have any relation to the problem?
 - We will not include such factors
- Although complete independence is extremely powerful, it is useless for our modeling purpose

So, what do we do?

 Suppose, I want to calculate the probability of fever given that a person has covid and cough

- So, we want to model
 - P(fever| covid, cough)
- I know that the person has covid
 - So, does the knowledge about cough give us any additional information to predict the probability of fever?

 Suppose, I want to calculate the probability of fever given that a person has covid and cough

- So, we want to model
 - P(fever| covid, cough)
- I know that the person has covid
 - So, does the knowledge about cough give us any additional information to predict the probability of fever?
 - No

- So, we can say
 - P(fever | covid, cough) = P(fever | covid)
- And also
 - $P(fever | \neg covid, cough) = P(fever | \neg covid)$
- We say that fever is conditionally independent of cough given covid
 - P(Fever | Covid, Cough) = P(Fever | Covid)

- Suppose we want to model
 - P(Fever, Covid, Cough)
 - Typically, I need 8 entries and 7 parameters
- P(Fever, Covid, Cough) = P(Fever|Covid, Cough) P(Covid, Cough)= P(Fever|Covid) P(Covid, Cough)= P(Fever|Covid) P(Covid|Cough) P(Cough)

• P(Fever, Covid, Cough) = P(Fever|Covid) P(Covid|Cough) P(Cough)• P(Fever, Covid, Cough) = P(Fever|Covid) P(Covid|Cough) P(Covid|Cough

Total: **5** parameters

A graph representing influences

A graph representing influences

One cause resulting in multiple independent effects

One cause resulting in multiple independent effects

A naïve assumption

One cause resulting in multiple independent effects

Naïve Bayes' model

P(Effect 1, Effect 2, Effect 3, Cause)

- = P(Effect 1|Effect 2,Effect 3,Cause) P(Effect 2|Effect 3,Cause) P(Effect 3|Cause)
- = P(Effect 1|Cause)P(Effect 2|Cause)P(Effect 3|Cause)P(Cause)

$$= P(Cause) \prod_{k=1}^{3} P(\text{Effect } k | Cause)$$

• For *n* number of effects

$$P(Effect_1, Effect_2, Effect_3, \dots, Effect_n, Cause) = P(Cause) \prod_{k=1}^{n} P(Effect_k | Cause)$$

P(Effect 1, Effect 2, Effect 3, Cause)

$$= P(Cause) \prod_{k=1}^{3} P(\text{Effect } k | Cause)$$

• For *d* number of effects

$$P(\text{Effect 1, Effect 2, Effect 3, ..., Effect } d, Cause) = P(Cause) \prod_{k=1}^{\infty} P(\text{Effect } k | Cause)$$

One cause resulting in multiple independent effects

Naïve Bayes' model

One cause resulting in multiple independent effects

Classification Problem

Cause: Class Label (class 1, class2, etc.)

Effect 1: Feature 1; Effect 2: Feature 2, etc.

Naïve Bayes' model

Classification Problem: Classification of persons with anemia

Cause: Class Label (anemia, no anemia)

Effect 1: Feature 1; Effect 2: Feature 2, etc.

Classification Problem: Classification of persons with anemia

Cause: Class Label (anemia, no anemia)

Bayes' decision rule

$$P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$$

Now let's use Bayes theorem

•
$$P(cl_1|x) = \frac{P(x|cl_1)P(cl_1)}{P(x)}$$

- Consider x to be a d dimensional feature vector $\{x_1, x_2, ..., x_d\}$
- All features are conditionally independent of each other given the class

- Consider x to be a d dimensional feature vector $\{x_1, x_2, ..., x_d\}$
- All features are conditionally independent of each other given the class
- Now let's use Bayes theorem

$$P(cl_1|x) = \frac{P(x,cl_1)}{P(x)}$$

$$= \frac{P(x_1x_2 \dots x_d,cl_1)}{P(x)}$$

$$= \frac{P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1)}{P(x)}$$

P(Effect 1, Effect 2, Effect 3, ..., Effect d, Cause)

- Consider x to be a d dimensional feature vector $\{x_1, x_2, ..., x_d\}$
- All features are conditionally independent of each other given the class
- Now let's use Bayes theorem

$$P(cl_1|x) = \frac{P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1)}{P(x)}$$

Similarly

$$P(cl_2|x) = \frac{P(x_1|cl_2)P(x_2|cl_2) \dots P(x_d|cl_2)P(cl_2)}{P(x)}$$

Bayes' decision rule

$$P(cl_1|x) > P(cl_2|x) \Rightarrow cl_1$$

$$\frac{P(x_{1}|cl_{1})P(x_{2}|cl_{1})\dots P(x_{d}|cl_{1})P(cl_{1})}{P(x)} > \frac{P(x_{1}|cl_{2})P(x_{2}|cl_{2})\dots P(x_{d}|cl_{2})P(cl_{2})}{P(x)} \Rightarrow cl_{1}$$

$$P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1) > P(x_1|cl_2)P(x_2|cl_2) \dots P(x_d|cl_2)P(cl_2) \Rightarrow cl_1$$

Sample Number	Appetite	Weight	BP	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Training data

Sample Number	Appetite	Weight	BP	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Suppose, we see a new sample who has normal appetite, normal weight, and low BP. Find if the person has anemia

Training data

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 1: Calculate P(anemia), $P(no\ anemia)$ from the training data

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 1: Calculate P(anemia), $P(no\ anemia)$ from the training data

$$P(anemia) = \frac{4}{7}$$

$$P(no\ anemia) = \frac{3}{7}$$

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

		Anemia	No Anemia
Ammatita	Low	$\frac{3}{4}$	$\frac{1}{3}$
Appetite	Normal	$\frac{1}{4}$	$\frac{2}{3}$

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

Similarly, we can calculate for other features

		Anemia	No Anemia
Weight	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

Sample Number	Appetite	Weight	ВР	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

Similarly, we can calculate for other features

		Anemia	No Anemia
D.D.	Low	$\frac{3}{4}$	$\frac{1}{3}$
BP	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Weight	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

Step 3: Testing:

Suppose, I observe a test data with normal appetite, normal weight, and low BP

Predict if the person has anemia

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
TAY . 1 .	Low	$\frac{3}{4}$	$\frac{1}{3}$
Weight	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_1)P(x_2|cl_1) ... P(x_d|cl_1)P(cl_1)$$

Step 3: Testing:

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **normal** weight, and **low** BP

Predict if the person has anemia

Let's first evaluate the chance of anemia

 $\pi_{anemia} =$

 $\begin{aligned} \textit{P(appetite} &= \textit{normal}|\textit{anemia})\textit{P(weight} = \textit{normal}|\textit{anemia})\textit{P(BP} = \textit{low}|\textit{anemia})\textit{P(anemia)} \\ &= \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} = 0.009 \end{aligned}$

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Weight	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_2)P(x_2|cl_2)\dots P(x_d|cl_2)P(cl_2)$$

Step 3: Testing:

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **normal** weight, and **low** BP

Predict if the person has anemia

Let's first evaluate the chance of no anemia

 $\pi_{no\ anemia} =$

 $\begin{aligned} \textit{P(appetite} &= \textit{normal}|\textit{no anemia})\textit{P(weight} = \textit{normal}|\textit{no anemia})\textit{P(BP} = \textit{low}|\textit{no anemia})\textit{P(no anemia)} \\ &= \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{3}{7} = 0.06 \end{aligned}$

Naïve Bayes': An Example

$$\begin{aligned} \pi_{anemia} &= \\ P(appetite = normal|anemia)P(weight = normal|anemia)P(BP = low|anemia)P(anemia) \\ &= \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} = 0.009 \end{aligned}$$

 $P(appetite = normal|no \ anemia)P(weight = normal|no \ anemia)P(BP = low|no \ anemia)P(no \ anemia)$ $= \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{3}{7} = 0.06$

$$P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1) > P(x_1|cl_2)P(x_2|cl_2) \dots P(x_d|cl_2)P(cl_2) \Rightarrow cl_1$$

So, our conclusion is that the person does not have anemia as per the Naïve Bayes' classifier

Naïve Bayes' Classifier: Algorithm

Training Data

- Assume N training samples and class label pairs $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})$
- Each training sample $x^{(i)}$ is a D dimensional feature vector $\{x_1^{(i)}, x_2^{(i)}, \dots, x_D^{(i)}\}$
- Assume that attribute x_k can take values x_{k_1} , x_{k_2} , ..., x_{k_n}
- The values of the attributes are discrete
- We have a total of C number of classes $cl_1, cl_2, ..., cl_C$

Naïve Bayes' Classifier: The Algorithm

Training Data

- Assume N training samples and class label pairs $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(N)}, y^{(N)})$
- Each training sample $x^{(i)}$ is a Ddimensional feature vector $\{x_1^{(i)}, x_2^{(i)}, ..., x_D^{(i)}\}$
- Assume that attribute x_k can take values $x_{k_1}, x_{k_2}, ..., x_{k_v}$
- We have a total of C number of classes $cl_1, cl_2, ..., cl_C$

Training method

```
for j = 1: C

Calculate P(cl_j) from training data

for d = 1: D

for q = 1: v

Calculate P(x_{d_q}|cl_j)
```

Naïve Bayes' Classifier: The Algorithm

Training method

```
for j = 1: C

Calculate P(cl_j) from training data

for d = 1: D

for q = 1: v

Calculate P(x_{d_q}|cl_j)
```

Inference

for a new test sample $x^{(new)}$, suppose the feature vector is $\left\{x_1^{(new)}, x_2^{(new)}, \dots, x_d^{(new)}\right\}$

for i = 1: C

- get $P(cl_i)$ computed during training
- get $P\left(x_1^{(new)} \middle| cl_j\right)$, $P\left(x_2^{(new)} \middle| cl_j\right)$, ..., $P\left(x_d^{(new)} \middle| cl_j\right)$ computed during training
- Calculate $\pi_j = P\left(x_1^{(new)} \middle| cl_j\right) P\left(x_2^{(new)} \middle| cl_j\right) \dots P\left(x_d^{(new)} \middle| cl_j\right) P(cl_j)$

Find out *j* for which π_i is maximum

$$j^* = \operatorname*{argmax}_{j} \boldsymbol{\pi_j}$$

Assign the class label j^* to the test data

Life without Naïve Bayes'

- Consider x to be a d dimensional feature vector $\{x_1, x_2, ..., x_d\}$
- If all features are not conditionally independent of each other given the class
- The Bayes theorem would be

$$P(cl_1|x) = \frac{P(x,cl_1)}{P(x)}$$

$$= \frac{P(x_1x_2 \dots x_d,cl_1)}{P(x)}$$

$$= \frac{P(x_1|x_2 \dots x_d,cl_1)}{P(x)}$$

$$= \frac{P(x_1|x_2 \dots x_d,cl_1)P(x_2|x_3,\dots,cl_1)\dots P(x_d|cl_1)P(cl_1)}{P(x)}$$

The Classifier

How Does the Classifier Do it?

Suppose I have *C* number of classes. I consider Bayes' decision rule

In a More Generic Form

 $g_i(\cdot)$ is called discriminant function

Nature of the Discriminant Function

For the minimum risk classifier

We assign the class label corresponding to the action of minimum risk

If the risk of action α_i is $R(\alpha_i|x)$

$$g_i(x) = -R(\alpha_i|x)$$

Nature of the Discriminant Function

For the minimum error rate classifier

We assign the class label corresponding to the maximum posterior probability

If the posterior probability for class cl_i is $P(cl_i|x)$

$$g_i(x) \propto P(cl_i|x)$$

The Choice of the Discriminant Function

The choice of the discriminator function is not unique

If $g_i(x)$ is a discriminant function and $f(\cdot)$ is a monotonically increasing function, $f(g_i(x))$ is also a valid discriminant function

If $g_i(x) > g_j(x)$, $\forall j \neq i$, we assign class label i to the input data x

Why?

$$g_i(x) \propto P(cl_i|x)$$

$$\propto \frac{P(x|cl_i)P(cl_i)}{P(x)}$$

Since the denominator is common for every class i

We take
$$g_i(x) = P(x|cl_i)P(cl_i)$$

$$g_i(x) \propto P(cl_i|x)$$

$$\propto \frac{P(x|cl_i)P(cl_i)}{P(x)}$$

Since the denominator is common for every class i

We take

$$g_i(x) = P(x|cl_i)P(cl_i)$$

We can also take

$$g_i(x) = \ln(P(x|cl_i)P(cl_i))$$

= \ln P(x|cl_i) + \ln P(cl_i)

Why can we take this?

For a two-class problem, I have two discriminant functions $g_1(x)$ and $g_2(x)$

If $g_1(x) > g_2(x)$, we conclude that x belongs to class 1

If $g_1(x) < g_2(x)$, we conclude that x belongs to class 2

We can also take

$$g_i(x) = \ln(P(x|cl_i)P(cl_i))$$

= \ln P(x|cl_i) + \ln P(cl_i)

The decision boundary is $g_1(x) = g_2(x)$

For a two-class problem, I have two discriminant functions $g_1(x)$ and $g_2(x)$

If $g_1(x) > g_2(x)$, we conclude that x belongs to class 1

If $g_1(x) < g_2(x)$, we conclude that x belongs to class 2

$$g(x) > 0 \Rightarrow \text{class } 1$$

 $g(x) < 0 \Rightarrow \text{class } 2$

So, instead of two discriminant functions $g_1(x)$ and $g_2(x)$, I can take one discriminant function

$$g(x) = g_1(x) - g_2(x)$$

So, instead of two discriminant functions $g_1(x)$ and $g_2(x)$, I can take one discriminant function

$$g(x) = g_1(x) - g_2(x)$$

$$g(x) > 0 \Rightarrow \text{class } 1$$

 $g(x) < 0 \Rightarrow \text{class } 2$

$$g_{i}(x) = \ln P(x|cl_{i})P(cl_{i})$$

$$= \ln P(x|cl_{i}) + \ln P(cl_{i})$$
So,
$$g(x) = \ln P(x|cl_{1}) + \ln P(cl_{1}) - \ln P(x|cl_{2}) - \ln P(cl_{2})$$

$$= \ln \frac{P(x|cl_{1})}{P(x|cl_{2})} + \ln \frac{P(cl_{1})}{P(cl_{2})}$$

Probability Density and the Discriminant Function

$$g_i(x) = \ln P(x|cl_i)P(cl_i)$$

= \ln P(x|cl_i) + \ln P(cl_i)

 $P(x|cl_i)$ is a probability distribution which can take many forms

For our discussion, assume that $P(x|cl_i)$ follows Gaussian or Normal distribution in d – dimensions

So,

$$P(x|cl_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right]$$

Probability Density and the Discriminant Function

$$g_i(x) = \ln P(x|cl_i)P(cl_i)$$

= \ln P(x|cl_i) + \ln P(cl_i)

 $P(x|cl_i)$ is a probability distribution which can take many forms

For our discussion, assume that $P(x|cl_i)$ follows Gaussian or Normal distribution in d — dimensions

So,

$$P(x|cl_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right]$$

 μ_i : Expected value of x (samples) given that x belongs to class cl_i

 Σ_i : Covariance matrix computed from x (samples) given that x belongs to class cl_i

Variance

• $Var(X) = \mathbb{E}[(X - \mu)^2]$

Suppose, I want to measure the mean weights

Weights of Persons

Variance

• $Var(X) = \mathbb{E}[(X - \mu)^2]$

Suppose, I want to measure the mean weights

$$\operatorname{Mean} \mu = \mathbb{E}(X)$$

Weights of Persons

- Variance
- $Var(X) = \mathbb{E}[(X \mu)^2]$

Mean
$$\mu = \mathbb{E}(X) = \int xp(x)dx$$

For *N* distinct (equally likely) data points $x_1, ..., x_N$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Weights of Persons

Suppose, I want to measure the mean weights

Variance

• $Var(X) = \mathbb{E}[(X - \mu)^2]$

Variance indicates the spread

For *N* distinct (equally likely) data points $x_1, ..., x_N$

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Weights of Persons

Covariance

We observe that as *X* increases, *Y* also increases

Covariance

We observe that as *X* increases, *Y* decreases

But, in both cases, X variances are almost same

Similar situation happens for Y variance

Covariance

But, in both cases, X variances are almost same

Similar situation happens for Y variance

Individual variances do not capture the trend

To differentiate between these distributions, we introduce covariance

* Covariance Y Y X X

$$cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)^T]$$

* Covariance Y Y X

For *N* distinct (equally likely) data points $(x_1, y_1), ..., (x_N, y_N)$

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$$

Covariance

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu}_{\mathbf{x}}) (\mathbf{y}_i - \boldsymbol{\mu}_{\mathbf{y}})$$

Point-wise product of the differences from the mean

Shows a joint trend of the different variables

Covariance

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x_i} - \boldsymbol{\mu_x}) (\mathbf{y_i} - \boldsymbol{\mu_y})$$

Point-wise product of the differences from the mean

Shows a joint trend of the different variables

In our case, the covariance will be positive for the left and negative for the right example

Covariance Matrix

• Covariance Y Y X

$$\Sigma = \begin{pmatrix} var(X) & cov(X,Y) \\ cov(X,Y) & var(Y) \end{pmatrix}$$

Covariance Matrix

• Covariance for three random variables X_1, X_2, X_3

$$\Sigma = \begin{pmatrix} Var\left(X_{1}\right) & Cov\left(X_{1}, X_{2}\right) & Cov\left(X_{1}, X_{3}\right) \\ Cov\left(X_{2}, X_{1}\right) & Var\left(X_{2}\right) & Cov\left(X_{2}, X_{3}\right) \\ Cov\left(X_{3}, X_{1}\right) & Cov\left(X_{3}, X_{2}\right) & Var\left(X_{3}\right) \end{pmatrix}$$

Covariance Matrix

• Covariance for three random variables X_1, X_2, X_3

$$\Sigma = \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & Cov(X_1, X_3) \\ Cov(X_2, X_1) & Var(X_2) & Cov(X_2, X_3) \\ Cov(X_3, X_1) & Cov(X_3, X_2) & Var(X_3) \end{pmatrix}$$

Similar covariance matrices can be constructed for more number of random variables (features in our context)

Probability Density and the Discriminant Function

$$g_i(x) = \ln P(x|cl_i)P(cl_i)$$

= \ln P(x|cl_i) + \ln P(cl_i)

$$P(x|cl_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right]$$

It can be shown that

$$g_i(x) = -\frac{(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)}{2} - \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(\Sigma_i) + \ln P(cl_i)$$

Normal Density and the Discriminant Function

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2}\ln(2\pi) - \frac{1}{2}\ln(\Sigma_i) + \ln P(cl_i)$$

Parameters: μ_i , Σ_i

If μ_i , Σ_i are given, the Gaussian pdf can be uniquely identified

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2}\ln(2\pi) - \frac{1}{2}\ln(\Sigma_i) + \ln P(cl_i)$$

Independent of class label

So we may ignore this term in constructing the discriminant function

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln(\Sigma_{i}) + \ln P(cl_{i})$$

Assume

$$\Sigma_i = \sigma^2 I \ \forall i$$

In 3D

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Only the diagonal elements (variance terms) are non zero

Off-diagonal elements (covariance terms) are zero

It means that the features of the data are statistically independent of each other, i.e., no pair of features show any trend

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) - \frac{1}{2}\ln(\Sigma_i) + \ln P(cl_i)$$

$$\Sigma_i = \sigma^2 I \ \forall i$$

 $|\Sigma_i| = \sigma^{2d}$ (assuming *I* to be a $d \times d$ identity matrix)

$$\Sigma_i^{-1} = \frac{1}{\sigma^2} I$$

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln(\sigma^{2}I) + \ln P(cl_{i})$$

Assume

$$\Sigma_i = \sigma^2 I \ \forall i$$

Independent of class label

So we may ignore this term in constructing the discriminant function

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) + \ln P(cl_i)$$

$$\Sigma_i^{-1} = \frac{1}{\sigma^2} I$$

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) + \ln P(cl_i)$$

$$\Sigma_i^{-1} = \frac{1}{\sigma^2} I$$

$$g_i(x) = -\frac{\|x - \mu_i\|^2}{2\sigma^2} + \ln P(cl_i)$$

$$g_{i}(x) = -\frac{\|x - \mu_{i}\|^{2}}{2\sigma^{2}} + \ln P(cl_{i})$$

$$= -\frac{1}{2\sigma^{2}} \left[x^{T}x - 2\mu_{i}^{T}x + \mu_{i}^{T}\mu_{i} \right] + \ln P(cl_{i})$$

$$g_{i}(x) = -\frac{\|x - \mu_{i}\|^{2}}{2\sigma^{2}} + \ln P(cl_{i})$$

$$= -\frac{1}{2\sigma^{2}} \left[x^{T}x - 2\mu_{i}^{T}x + \mu_{i}^{T}\mu_{i} \right] + \ln P(cl_{i})$$

Independent of class label

So we may ignore this term in constructing the discriminant function

$$g_i(x) = -\frac{1}{2\sigma^2} \left[-2\mu_i^T x + \mu_i^T \mu_i \right] + \ln P(cl_i)$$

$$= \frac{\mu_i^T}{\sigma^2} x + \ln P(cl_i) - \frac{1}{2\sigma^2} \mu_i^T \mu_i$$

$$= w_i^T x + w_{i0}$$

$$w_i^T = \frac{\mu_i^T}{\sigma^2}$$

$$w_i^T = \frac{\mu_i^T}{\sigma^2}$$

$$w_{i0} = \ln P(cl_i) - \frac{1}{2\sigma^2} \mu_i^T \mu_i$$

$$g_i(x) = w_i^T x + w_{i0}$$

The discriminant function is a linear function of the input

This is called linear machine

Sample Number	Appetite	Weight	BP	Class
1	Low	Normal	Low	No Anemia
2	Low	Low	Low	Anemia
3	Normal	Low	Low	Anemia
4	Low	Low	Normal	No Anemia
5	Normal	Low	Normal	Anemia
6	Normal	Normal	Low	Anemia
7	Normal	Normal	Normal	No Anemia

Training data

		Anemia	No Anemia
DD	Low	$\frac{3}{4}$	$\frac{1}{3}$
BP	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Moight	Low	$\frac{3}{4}$	$\frac{1}{3}$
Weight	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Amnatita	Low	$\frac{3}{4}$	$\frac{1}{3}$
Appetite	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_1)P(x_2|cl_1) ... P(x_d|cl_1)P(cl_1)$$

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **normal** weight, and **low** BP

Predict if the person has anemia

Let's first evaluate the chance of anemia

 $\pi_{anemia} =$

 $\begin{aligned} \textit{P(appetite} &= \textit{normal}|\textit{anemia})\textit{P(weight} = \textit{normal}|\textit{anemia})\textit{P(BP} = \textit{low}|\textit{anemia})\textit{P(anemia)} \\ &= \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} = 0.009 \end{aligned}$

		Anemia	No Anemia
DD	Low	$\frac{3}{4}$	$\frac{1}{3}$
BP	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Moight	Low	$\frac{3}{4}$	$\frac{1}{3}$
Weight	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Amatita	Low	$\frac{3}{4}$	$\frac{1}{3}$
Appetite	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_2)P(x_2|cl_2)\dots P(x_d|cl_2)P(cl_2)$$

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **normal** weight, and **low** BP

Predict if the person has anemia

Let's first evaluate the chance of no anemia

 $\pi_{no\ anemia} =$

 $\begin{aligned} \textit{P(appetite} &= \textit{normal}|\textit{no anemia})\textit{P(weight} = \textit{normal}|\textit{no anemia})\textit{P(BP} = \textit{low}|\textit{no anemia})\textit{P(no anemia)} \\ &= \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{3}{7} = 0.06 \end{aligned}$

$$\begin{aligned} \pi_{anemia} &= \\ P(appetite = normal|anemia)P(weight = normal|anemia)P(BP = low|anemia)P(anemia) \\ &= \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} = 0.009 \end{aligned}$$

 $P(appetite = normal|no \ anemia)P(weight = normal|no \ anemia)P(BP = low|no \ anemia)P(no \ anemia)$ $= \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{3}{7} = 0.06$

$$P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1) > P(x_1|cl_2)P(x_2|cl_2) \dots P(x_d|cl_2)P(cl_2) \Rightarrow cl_1$$

So, our conclusion is that the person does not have anemia as per the Naïve Bayes' classifier

Naïve Bayes': A Slightly Different Example

Sample Number	Appetite	Weight (Kg)	BP	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Training data

Sample Number	Appetite	Weight (Kg)	ВР	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 1: Calculate P(anemia), $P(no\ anemia)$ from the training data

Sample Number	Appetite	Weight (Kg)	ВР	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 1: Calculate P(anemia), $P(no\ anemia)$ from the training data

$$P(anemia) = \frac{4}{7}$$

$$P(no\ anemia) = \frac{3}{7}$$

Sample Number	Appetite	Weight (Kg)	ВР	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

		Anemia	No Anemia
	Low	$\frac{3}{4}$	$\frac{1}{3}$
Appetite	Normal	$\frac{1}{4}$	$\frac{2}{3}$

P(Appetite = low|Anemia), P(Appetite = normal|Anemia)

 $P(Appetite = low|No\ Anemia), \qquad P(Appetite = normal|No\ Anemia)$

All these can be calculated

Sample Number	Appetite	Weight (Kg)	BP	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

		Anemia	No Anemia
D.D.	Low	$\frac{3}{4}$	$\frac{1}{3}$
BP	Normal	$\frac{1}{4}$	$\frac{2}{3}$

$$P(BP = low|Anemia), \qquad P(BP = normal|Anemia)$$

$$P(BP = low|No\ Anemia), \qquad P(BP = normal|No\ Anemia)$$

All these can be calculated

Now What?

Sample Number	Appetite	Weight (Kg)	ВР	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

What should we put in the blank boxes?

	Anemia	No Anemia
Weight		
Weight		

Now What?

Sample Number	Appetite	Weight (Kg)	ВР	Class
1	Low	61	Low	No Anemia
2	Low	49	Low	Anemia
3	Normal	47	Low	Anemia
4	Low	51	Normal	No Anemia
5	Normal	50	Normal	Anemia
6	Normal	63	Low	Anemia
7	Normal	58	Normal	No Anemia

Step 2: Calculate P(feature|Anemia), $P(feature|No\ Anemia)$ from the training data

What should we put in the blank boxes? Do we want to calculate this

		Anemia	No Anemia
	61	0	1
	49	1	0
	47	1	0
Weight	51	0	1
	50	1	0
	63	1	0
	58	0	1

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
	Low	$\frac{3}{4}$	$\frac{1}{3}$
Appetite	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
	61	0	1
	49	1	0
	47	1	0
Weight	51	0	1
	50	1	0
	63	1	0
	58	0	1

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

Step 3: Testing:

Suppose, I observe a test data with normal appetite, 56 Kg weight, and low BP

Predict if the person has anemia

		Anemia	No Anemia
20	Low	$\frac{3}{4}$	$\frac{1}{3}$
BP	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite Low Normal	Low	$\frac{3}{4}$	$\frac{1}{3}$
	$\frac{1}{4}$	$\frac{2}{3}$	

		Anemia	No Anemia
	61	0	1
	49	1	0
	47	1	0
Weight	51	0	1
	50	1	0
	63	1	0
	58	0	1

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1)$$

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **56 Kg** weight, and **low** BP.

Predict if the person has anemia

Let's first evaluate the chance of anemia

 $\frac{\pi_{anemia}}{P(appetite = normal|anemia)P(weight = 56 \ Kg|anemia)P(BP = low|anemia)P(anemia)}$

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Weight	61	0	1
	49	1	0
	47	1	0
	51	0	1
	50	1	0
	63	1	0
	58	0	1

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_1)P(x_2|cl_1)\dots P(x_d|cl_1)P(cl_1)$$

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **56 Kg** weight, and **low** BP.

Predict if the person has anemia

Let's first evaluate the chance of anemia

$$\begin{aligned} \pi_{anemia} &= \\ P(appetite = normal|anemia)P(weight = 56 \ Kg|anemia)P(BP = low|anemia)P(anemia)\\ &= \frac{1}{4} \times ? \times \frac{1}{4} \times \frac{4}{7} \end{aligned}$$

From my training data, I can't find P(weight = 56 Kg | anemia)

If I just look at the table, P(weight = 56 Kg | anemia) does not have an entry

		Anemia	No Anemia
ВР	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Appetite	Low	$\frac{3}{4}$	$\frac{1}{3}$
	Normal	$\frac{1}{4}$	$\frac{2}{3}$

		Anemia	No Anemia
Weight	61	0	1
	49	1	0
	47	1	0
	51	0	1
	50	1	0
	63	1	0
	58	0	1

$$P(anemia) = \frac{4}{7}$$
 $P(no\ anemia) = \frac{3}{7}$

$$P(x_1|cl_1)P(x_2|cl_1) \dots P(x_d|cl_1)P(cl_1)$$

Naïve Bayes': An Example

Suppose, I observe a test data with **normal** appetite, **56 Kg** weight, and **low** BP.

$$\pi_{anemia} = P(appetite = normal|anemia)P(weight = 56 Kg|anemia)P(BP = low|anemia)P(anemia) = \frac{1}{4} \times ? \times \frac{1}{4} \times \frac{4}{7}$$

From my training data, I can't find P(weight = 56 Kg|anemia)

This is a problem when we have real numbers as features

What is the way out? Let's see

What If You Can Find This?

What If You Can Find This?

What If You Can Find This?

The question is, how to find the probability density from training data so that we can estimate the likelihood $P(weight = 56 \ Kg|anemia)$?

$$P(cl_1|x) = \frac{P(x|cl_1)P(cl_1)}{P(x)}$$

Suppose, I have C number of classes $cl_1, cl_2, ..., cl_C$ in my dataset

 S_1 : Training samples of class cl_1

 S_2 : Training samples of class cl_2

...

 S_C : Training samples of class cl_C

I have to find $P(x|cl_i)$ such that $P(x|cl_i)$ is maximized when I use the training data of class cl_i

We assume that $oldsymbol{P}(oldsymbol{x}|oldsymbol{cl_i})$ has a known parametric form

If $P(x|cl_i)$ Gaussian, it is completely specified by mean μ_i and covariance matrix Σ_i (call them parameters θ_i of the distribution)

So, if I can find out parameters θ_i , I can find out $P(x|cl_i)$

Suppose, I have C number of classes $cl_1, cl_2, ..., cl_C$ in my dataset

 S_1 : Training samples of class cl_1 S_2 : Training samples of class cl_2

 S_C : Training samples of class cl_C

I have to find $P(x|cl_i)$ such that $P(x|cl_i)$ is maximized when I use the training data of class cl_i

We assume that $oldsymbol{P}(oldsymbol{x}|oldsymbol{c}oldsymbol{l}_{oldsymbol{i}})$ has a known parametric form

If $P(x|cl_i)$ Gaussian, it is completely specified by mean μ_i and covariance matrix Σ_i (call them parameters θ_i of the distribution)

So, if I can find out parameters θ_i , I can find out $P(x|cl_i)$

So our goal is to use information from training sample in S_i to find parameters θ_i such that $P(x|cl_i)$ is maximized when I use the training data of class cl_i

In this, we assume that information in S_i does not affect θ_i if $i \neq j$

Our goal is to use information from training sample in S_i to find parameters θ_i such that $P(x|cl_i)$ is maximized when I use the training data of class cl_i

So, we have to maximize $P(x|cl_i, \theta_i) \forall i$

Since θ_i are the parameters corresponding to cl_i only, we can say we have to maximize $P(x|\theta_i)$ $\forall i$

In this, we assume that information in S_i does not affect θ_i if $i \neq j$

So, even if I consider the entire training dataset S instead of just S_i , the parameters θ_i will only be influenced by S_i

We can say we have to find θ_i that maximizes $P(x|\theta_i) \forall i$

In this, we assume that information in S_j does not affect θ_i if $i \neq j$

So, even if I consider the entire training dataset S instead of just S_i , the parameters θ_i will only be influenced by S_i

So, we can say that we have to find θ that maximizes $P(x|\theta)$

So, we can say that we have to find θ that maximizes $P(x|\theta)$

If I have N training samples $x_1, x_2, ..., x_N$, we want to maximize the likelihood of each of the training samples

So, we want to maximize $P(x_1|\theta)$, $P(x_2|\theta)$, ..., $P(x_N|\theta)$

That means, we have to find θ that maximizes the product

$$P(x_1|\theta)P(x_2|\theta)...P(x_N|\theta) = \prod_{k=1}^{N} P(x_k|\theta)$$

An Example

Suppose, in the classroom, there are

30 students of age 22

35 students of age 23

30 students of age 24

25 students of age 25

An Example

Suppose, in the classroom, there are

30 students of age 22

35 students of age 23

30 students of age 24

25 students of age 25

An Example

Suppose, in the classroom, there are

30 students of age 22

35 students of age 23

30 students of age 24

25 students of age 25

An Example

Training data **S**

Suppose, in the classroom, there are

30 students of age 22

35 students of age 23

30 students of age 24

25 students of age 25

P(age = 22|S)P(age = 23|S)P(age = 24|S)P(age = 25|S) is maximum for which curve?

An Example

Training data **S**

Suppose, in the classroom, there are

30 students of age 22

35 students of age 23

30 students of age 24

25 students of age 25

$$P(age = 22|S)P(age = 23|S)P(age = 24|S)P(age = 25|S)$$
 is maximum for which curve? Red

So, the parameters corresponding to the red curve gives me the higher likelihood of the training data among the two curves

We have to find $\boldsymbol{\theta}$ that maximizes the product

$$P(x_1|\theta)P(x_2|\theta)...P(x_N|\theta) = \prod_{k=1}^{N} P(x_k|\theta)$$

It is equivalent to finding θ that maximizes

$$l(\theta) = \ln \left(\prod_{k=1}^{N} P(x_k | \theta) \right) = \sum_{k=1}^{N} \ln P(x_k | \theta)$$

To maximize, find gradient of $l(\theta)$ and equate to zero

$$\nabla_{\theta} l(\theta) = 0$$

But this may give me max or min So, we have to check the second derivative

We may also have multiple maxima So, we have to find the highest maxima

To maximize, find gradient of $l(\theta)$ and equate to zero $\nabla_{\theta} l(\theta) = 0$

If I have m number of parameters $\theta_1, \theta_2, \dots, \theta_m$, we have to do

$$\begin{bmatrix} \frac{\partial l(\theta)}{\partial \theta_1} \\ \frac{\partial l(\theta)}{\partial \theta_2} \\ \dots \\ \frac{\partial l(\theta)}{\partial \theta_m} \end{bmatrix} = 0$$

To maximize, find gradient of $l(\theta)$ and equate to zero $\nabla_{\theta} l(\theta) = 0$

If I have m number of parameters $\theta_1, \theta_2, \dots, \theta_m$, we have to do

$$\frac{\partial l(\theta)}{\partial \theta_1} = 0$$
$$\frac{\partial l(\theta)}{\partial \theta_2} = 0$$

...

$$\frac{\partial l(\theta)}{\partial \theta_m} = 0$$

Let's assume that the pdf has a Gaussian distribution with mean μ and covariance matrix Σ

Assume that Σ is known, we have to find μ

$$P(x_k|\mu) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \mu)^T \Sigma^{-1} (x_k - \mu)}{2}\right]$$

 $Take \mu = \theta$ (parameter to be found)

$$\ln P(x_k|\theta) = -\frac{1}{2}\ln(2\pi)^d|\Sigma| - \frac{1}{2}(x_k - \theta)^T \Sigma^{-1}(x_k - \theta)$$

$$P(x_k|\mu) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \mu)^T \Sigma^{-1} (x_k - \mu)}{2}\right]$$

Take $\mu = \theta$ (parameter to be found)

$$P(x_k|\theta) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \theta)^T \Sigma^{-1} (x_k - \theta)}{2}\right]$$

$$\ln P(x_k|\theta) = -\frac{1}{2}\ln(2\pi)^d|\Sigma| - \frac{1}{2}(x_k - \theta)^T \Sigma^{-1}(x_k - \theta)$$

Maximum Likelihood Estimation: Example

$$l_k(\theta) = \ln P(x_k | \theta) = -\frac{1}{2} \ln(2\pi)^d |\Sigma| - \frac{1}{2} (x_k - \theta)^T \Sigma^{-1} (x_k - \theta)$$

$$l(\theta) = \sum_{k=1}^{N} \ln P(x_k | \theta) = \sum_{k=1}^{N} l_k(\theta)$$

It can be shown

$$\nabla_{\theta} l_k(\theta) = \Sigma^{-1} (x_k - \theta)$$

$$l(\theta) = \sum_{k=1}^{N} \ln P(x_k | \theta) = \sum_{k=1}^{N} l_k(\theta)$$

It can be shown

$$\nabla_{\theta} l_k(\theta) = \Sigma^{-1} (x_k - \theta)$$

$$\nabla_{\theta} l(\theta) = \sum_{k=1}^{N} \nabla_{\theta} l_k(\theta) = \sum_{k=1}^{N} \Sigma^{-1} (x_k - \theta)$$

For MLE, we make

$$\nabla_{\theta} l(\theta) = \sum_{k=1}^{N} \nabla_{\theta} l_k(\theta) = \sum_{k=1}^{N} \Sigma^{-1} (x_k - \theta) = 0$$

Since $\Sigma^{-1} \neq 0$

$$\sum_{k=1}^{N} (x_k - \theta) = 0$$

$$\left(\sum_{k=1}^N x_k\right) - N\theta = 0$$

$$\boldsymbol{\theta} = \frac{\sum_{k=1}^{N} x_k}{N}$$

Consider a univariate Gaussian with unknown μ and σ^2

We have to find the values of μ and σ^2 for MLE

$$P(x_k|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\left[-\frac{(x_k-\mu)^2}{2\sigma^2}\right]$$

$$P(x_k|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \mu)^2}{2\sigma^2}\right]$$

Assuming $\theta_1 = \mu$, and $\theta_2 = \sigma^2$, We write

$$P(x_k|\theta) = \frac{1}{(2\pi\theta_2)^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \theta_1)^2}{2\theta_2}\right]$$

$$P(x_k|\theta) = \frac{1}{(2\pi\theta_2)^{\frac{1}{2}}} \exp\left[-\frac{(x_k - \theta_1)^2}{2\theta_2}\right]$$

$$l_k(\theta) = \ln P(x_k|\theta) = -\frac{1}{2}\ln(2\pi\theta_2) - \frac{1}{2\theta_2}(x_k - \theta_1)^2$$

$$\nabla_{\theta} l_k(\theta) = \begin{bmatrix} \frac{\partial l_k(\theta)}{\partial \theta_1} \\ \frac{\partial l_k(\theta)}{\partial \theta_2} \end{bmatrix}$$

$$l_k(\theta) = \ln P(x_k|\theta) = -\frac{1}{2}\ln(2\pi\theta_2) - \frac{1}{2\theta_2}(x_k - \theta_1)^2$$

$$\nabla_{\theta} l_k(\theta) = \begin{bmatrix} \frac{\partial l_k(\theta)}{\partial \theta_1} \\ \frac{\partial l_k(\theta)}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{1}{2\theta_2^2} (x_k - \theta_1)^2 \end{bmatrix}$$

$$\nabla_{\theta} l_k(\theta) = \begin{bmatrix} \frac{\partial l_k(\theta)}{\partial \theta_1} \\ \frac{\partial l_k(\theta)}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{1}{2\theta_2^2} (x_k - \theta_1)^2 \end{bmatrix} \qquad \sum_{k=1}^{N} \frac{1}{\theta_2} (x_k - \theta_1) = 0$$

$$\sum_{k=1}^{N} \frac{1}{\theta_2} (x_k - \theta_1) = 0$$

For MLE, we make

$$\sum_{k=1}^{N} \nabla_{\theta} l_k(\theta) = 0$$

$$\sum_{k=1}^{N} \left(-\frac{1}{2\theta_2} + \frac{1}{2\theta_2^2} (x_k - \theta_1)^2 \right) = 0$$

$$\sum_{k=1}^{N} \frac{1}{\theta_2} (x_k - \theta_1) = 0$$

$$\sum_{k=1}^{N} \left(-\frac{1}{2\theta_2} + \frac{1}{2\theta_2^2} (x_k - \theta_1)^2 \right) = 0$$

Assuming $\theta_2 \neq 0$

$$\boldsymbol{\theta_1} = \frac{\sum_{k=1}^{N} x_k}{N}$$

$$\theta_2 = \frac{\sum_{k=1}^{N} (x_k - \theta_1)^2}{N}$$

This is the estimate of μ

This is the estimate of σ^2

Maximum Likelihood Estimation: Home Assignment

$$P(x_k|\theta) = \begin{cases} \theta \exp(-\theta x_k) & \text{if } x_k \ge 0\\ 0 & \text{otherwise} \end{cases}$$