Inhaltsverzeichnis

1	Maß	Se Se	2
	1.1	Mengensysteme	2
	1.2	Maße und Inhalte	5
	1.3	Folgerungen für Maße	6
	1.4	Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen)	7
	1.5	Bedingte Wahrscheinlichkeit	8
	1.6	Der Fortsetzungssatz für Maßfunktionen	9
	1.7	Zusammenhang zwischen dem Maß auf dem Ring und dem Maß auf dem Sigmaring	11
	1.8	Maße auf $(\mathbb{R},\mathfrak{B})$	12
	1.9	Maße auf $(\mathbb{R}, \mathfrak{B})$, zweiter Anlauf	12
	1.10	Ergänzungen zu bedingten Wahrscheinlichkeiten	13
	1.11	Eigenschaften von Verteilungsfunktionen	13
	1.12	Maße von Mengen mit Verteilungsfunktionen	14
	1.13	Mehrdimensionale Lebesgue-Stieltjes Maße und Verteilungsfunktionen	16
	1.14	Approximationssätze und Regularität	18
2	Das	Lebesgue-Integral	20
	2.1	Erweiterte \mathbb{R} -Funktionen	21
	2.2	Treppenfunktionen	22
	2.3	Konvergenzarten	22
	2.4	Messbare Funktionen und Maße	26
	2.5	Zufallsvariable/Verteilungen	26
		2.5.1 Diskrete Verteilungen	26
		2.5.2 Stetige Verteilungen	27
	2.6	Das Integral	29

Kapitel 1

Maße

In diesem Abschnitt werden wir uns drei Fragen stellen:

- Was können wir messen?
- Wie können wir messen?
- Wie können wir Maße ökonomisch definieren?

1.1 Mengensysteme

Definition 1.1.1. Sei Ω eine beliebige Menge. Dann heißt $\mathfrak{C} \subseteq 2^{\Omega}$ ein Mengensystem (über Ω).

Definition 1.1.2. Eine Mengenfunktion μ auf dem Mengensystem $\mathfrak C$ heißt additiv, falls

$$\mu\left(\biguplus_{i\in I} A_i\right) = \sum_{i\in I} \mu(A_i)$$

Definition 1.1.3 (Semiring). Sei \mathfrak{T} ein nichtleeres Mengensystem über Ω . Dann heißt \mathfrak{T} Semiring (im weiteren Sinn), falls

1. Durchschnittsstabilität:

$$A, B \in \mathfrak{T} \Rightarrow A \cap B \in \mathfrak{T}$$

2. Leiterbildung:

$$A,B\in\mathfrak{T},A\subseteq B\Rightarrow\exists n\in\mathbb{N}:C_{1},...,C_{n}\in\mathfrak{T}:\forall i\neq j:C_{i}\cap C_{j}=\varnothing,A\setminus B=\bigcup_{i=1}^{n}C_{i}$$

gilt zusätzlich für die Leiter

$$\forall k = 1, ..., n : A \cup \bigcup_{i=1}^{k} C_i \in \mathfrak{T},$$

so spricht man von einem Semiring im engeren Sinn.

Definition 1.1.4 (Ring). Sei \Re ein nichtleeres Mengensystem über Ω . \Re heißt Ring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R} \Rightarrow B \setminus A \in \mathfrak{R}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{R} \Rightarrow A \cup B \in \mathfrak{R}$$

Definition 1.1.5 (Sigmaring). Sei \mathfrak{R}_{σ} ein nichtleeres Mengensystem über Ω . \mathfrak{R}_{σ} heißt Sigmaring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R}_{\sigma} \Rightarrow B \setminus A \in \mathfrak{R}_{\sigma}$$

2. Sigma-Vereinigungsstabilität:

$$A_n \in \mathfrak{R}_{\sigma} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{R}_{\sigma}$$

Definition 1.1.6 (Algebra). Sei $\mathfrak A$ ein nichtleeres Mengensystem über Ω . $\mathfrak A$ heißt Algebra, falls

1. Abgeschlossenheit bzgl. Komplementbildung:

$$A \in \mathfrak{A} \Rightarrow A^c \in \mathfrak{A}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$$

Definition 1.1.7 (Dynkin System). Sei $\mathfrak D$ ein nichtleeres Mengensystem über Ω . $\mathfrak D$ heißt Dynkin-System (im weiteren Sinn), falls

1. Sigmaadditivität:

$$A_i \in \mathfrak{D}: A_i \ \operatorname{disjunkt} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathfrak{D}$$

2. Differenzenstabilität:

$$\forall A,B\subseteq\Omega:A,B\in\mathfrak{D}\Rightarrow B\setminus A\in\mathfrak{D}$$

Ist zusätzlich noch

$$\Omega\in\mathfrak{D}$$

erfüllt, so spricht man von einem Dynkin-System im engeren Sinn.

Lemma 1.1.8. (i) Wenn ein Dynkinsystem abgeschlossen bezüglich \cap ist, so ist es eine Sigmaalgebra.

(ii) Sei $\mathfrak C$ ein Mengensystem, welches abgeschlossen bezüglich \cap ist, so gilt:

$$\mathfrak{D}(\mathfrak{C}) = \mathfrak{A}_{\sigma}(\mathfrak{C})$$

(iii) Für endliche Maße μ, ν auf einem Ring \Re ist

$$\{a \in \mathfrak{R} : \mu(A) = \nu(A)\}$$

ein Dynkinsystem im weiteren Sinn.

Satz 1.1.9. Eine Mengenfunktion μ auf einem Semiring im engeren Sinn $\mathfrak T$ ist genau dann additiv, wenn für disjunkte Mengen $A, B \in \mathfrak T$ mit $A \cup B \in \mathfrak T$ gilt:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

Beispiel 1.1.0.1.

- Für ein beliebiges Ω ist $\mathfrak{C} := \{A \subset \Omega : |A| < \infty\}$ ein Ring und damit auch ein Semiring.
- Sei $a \in \mathbb{N}$, so ist $\mathfrak{C} := \{A \subset \Omega : |A| < a\}$ für $|\Omega| > a$ nur ein Semiring
- $\mathfrak{C} := \{A \subset \Omega : card(A) \leq \aleph_0\}$ eine Sigmaalgebra

Satz 1.1.10. \mathfrak{T} sei ein Semiring (in weiterem Sinne) und $I := \{1, ..., n\}$. Dann gilt:

$$\Re(\mathfrak{T}) = \{\bigcup_{i=1}^n A_i, n \in \mathbb{N}, A_i \in \mathfrak{T}\} = \{\sum_{i=1}^n, n \in \mathbb{N}, A \in \mathfrak{T}\}$$

Satz 1.1.11. Sei C ein nicht leeres Mengensystem. Dann ist

$$\{\bigcap_{i=1}^{n} A_{i} | n \in \mathbb{N}, A_{1} \in \mathfrak{C}, A_{i} \in \mathfrak{C} \vee A_{i}^{c} \in \mathfrak{C}, i \geq 1\}$$

ein Semiring.

Beispiel 1.1.0.2. Intervalle

 $\mathfrak{T}:=\{(a,b]|a\leq b\wedge a,b\in\mathbb{R}\} \text{ "westlich" und } \{[a,b)|a\leq b\wedge a,b\in\mathbb{R}\} \text{ "russisch" bilden Semiringe.}$ Im $\mathbb{R}^n:(a,b]=(a_1,b_1]\times(a_2,b_2]\times\ldots\times(a_n,b_n]$

Der erzeugte Sigmaring von \mathfrak{T} sind die Borelmengen $\mathfrak{B}(\mathfrak{B}_n)$

Für zwei Semiringe $\mathfrak{T}_1,\mathfrak{T}_2$ ist

$$\mathfrak{T}_1 \times \mathfrak{T}_2 = \{ A_1 \times A_2 | A_1 \in \mathfrak{T}_1 \wedge A_2 \in \mathfrak{T}_2 \}$$

ein Semiring.

Definition 1.1.12. Ein Mengensystem € heißt monoton, wenn

$$A_n \in \mathfrak{C}, A_n \subset A_{n+1}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{C}$$

oder

$$A_n\in\mathfrak{C}, A_n\supset A_{n+1}, n\in\mathbb{N}\Rightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathfrak{C}$$

Satz 1.1.13 (monotone classstheorem). Der von einem Ring erzeugte Sigmaring stimmt mit dem erzeugten monotonen System überein (Jeder monotone Ring ist Sigmaring)

Definition 1.1.14. Für Zahlenfolgen:

$$\limsup_{n \in \mathbb{N}} x_n = \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_n$$
$$\liminf_{n \in \mathbb{N}} x_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} x_n$$

Für Mengenfolgen:

$$\limsup_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_n = \{x : x \in A_n \text{ für unenlich viele } n\}$$
$$\liminf_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k > n} A_n = \{x : x \in A_n \text{ für fast alle } n\}$$

Bemerkung. Es gibt einige Tricks, wenn man mit Mengen arbeitet:

- 1. Folgen monoton machen: Sei $(A_n)_{n\in\mathbb{N}}$ eine Mengenfolge, so ist $B_n = \bigcup_{i=1}^n A_i$ eine monoton wachsende Folge.
- 2. Folgen disjunkt machen: Sei $C_1 = B_1 = A_1$

$$C_n = B_n \backslash B_{n-1} = \left(\bigcup_{j=1}^n A_j\right) \backslash \bigcup_{i=1}^{n-1} A_i = \left(\bigcup_{j=1}^{n-1} A_j \cup A_n\right) \backslash \bigcup_{i=1}^{n-1} A_i = \emptyset \cup A_n \backslash \bigcup_{i=1}^{n-1} A_i$$

mit
$$\bigcup_{n\in\mathbb{N}} C_n = \bigcup_{n\in\mathbb{N}} A_n$$

3. Klassische Tauschgeschäft:

Wenn du eine Gleichung willst, musst du 2 Ungleichungen zeigen

$$x = y \Leftrightarrow (x \le y) \land (x \ge y)$$
$$A = B \Leftrightarrow (A \subset B) \land (A \supset B)$$

4. Prinzip der guten Menge: Wenn du zeigen willst, dass alle Elemente x aus einer Menge X eine Eigenschaft haben, dann zeigt man $Y \supset X$ für:

$$Y := \{x \in X | x \text{ hat die Eigenschaft}\}\$$

Definition 1.1.15. Seien $\mathfrak{S}_1, \mathfrak{S}_2$ Sigmaalgebren über Ω , so heißt $\mathfrak{S}_1 \times \mathfrak{S}_2 = \mathfrak{A}_{\sigma}(\mathfrak{S}_1 \otimes \mathfrak{S}_2)$ die Produktalgebra

Definition 1.1.16. Sei $f: \Omega_1 \to \Omega_2$ und $A \in \Omega_2$, so heißt

$$f^{-1}(A) := \{x \in \Omega_1 | f(x) \in A\}$$

das Urbild von A.

Satz 1.1.17. Sei $f: \Omega_1 \to \Omega_2$, \mathfrak{S}_2 Sigmaalgebra über Ω_2 dann ist $f^{-1}(\mathfrak{S}_2) := \{f^{-1}(A) : A \in \mathfrak{S}_2\}$ eine Sigmaalgebra über Ω_1

Bemerkung. Dieser Satz funktioniert auch für:

- Semiringe

Jedoch nicht für

- Dynkin-Systeme
- monotone Systeme

Satz 1.1.18. Sei $f: \Omega_1 \to \Omega_2$ und \mathfrak{C} ein beliebiges Mengensystem über Ω_2

$$\Rightarrow \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C})) = f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C}))$$

1.2 Maße und Inhalte

Definition 1.2.1. Ein Inhalt μ auf einem Mengensystem C heißt endlich, wenn für alle $A \in C$:

$$\mu(A) < \infty$$

Definition 1.2.2. Ein Maß μ auf C heißt sigmaendlich, wenn für jedes $A \in C$ Mengen $A_n \in C$, $n \in \mathbb{N}$ existieren mit $\mu(A_n) < \infty$, $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$.

Definition 1.2.3. Ein Inhalt μ auf C heißt totalendlich, wenn

$$\Omega \in C \wedge \mu(\Omega) < \infty$$

Definition 1.2.4. Ein Inhalt μ auf C hei β t total sigmaendlich, wenn es $A_n \in C, n \in \mathbb{N}$ gibt mit $\mu(A_n) < \infty$ und $\Omega \subseteq \bigcup_{n \in \mathbb{N}} A_n$.

Definition 1.2.5. $A \in C$ hat sigmaendliches Ma β (A ist sigmaendlich), wen es $A_n \in C, n \in \mathbb{N}$: $\mu(A_n) < \infty$ und $A \subseteq \bigcup A_n$.

Definition 1.2.6. μ heißt Wahrscheinlichkeitsmaß, wenn $\mu(\Omega) = 1$.

Beispiel 1.2.0.1. Sei $\Omega \neq \emptyset$ endlich, $C = 2^{\Omega}, \mu(A) = \frac{|A|}{|\Omega|}$.

Beispiel 1.2.0.2. Sei $\Omega = \{1, 2, 3, 4, 5, 6\}$, also ein "fairer Würfel".

Beispiel 1.2.0.3. Sei $\Omega = \{(1,1), (1,2), ..., (2,1), (2,2), ..., (6,6)\}$, also würfeln mit zwei Würfeln, Würfel sind unterscheidbar.

Definition 1.2.7. Sei $\Omega \neq \emptyset$ beliebige Menge und \mathfrak{S} eine Sigmaalgebra über Ω . Dann heißt (Ω, \mathfrak{S}) Messraum.

Definition 1.2.8. Sei μ ein Ma β auf \mathfrak{S} und (Ω, \mathfrak{S}) Messraum. Dann hei β t $(\Omega, \mathfrak{S}, \mu)$ Ma β raum.

Beispiel 1.2.0.4. $(\Omega, 2^{\Omega}, \mu), \Omega \neq \emptyset$ endlich, $C = 2^{\Omega}, \mu(A) = \frac{|A|}{|\Omega|}$ ist der Laplace-Wahrscheinlichkeitsraum.

Satz 1.2.9. Seien μ_n Inhalte auf \mathfrak{C} , und existiere $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Dann ist μ ein Inhalt.

Satz 1.2.10 (Satz von Vitali-Hahn Saks:). Wenn $\mathfrak C$ ein Sigmaring ist und μ_n endliche Maße und für alle $A \in \mathfrak C$: $\mu(A) = \lim_{n \to \infty} \mu_n(A)$, dann ist μ auch ein Maß.

Satz 1.2.11. Sei μ ein Inhalt/Maß auf einem Ring. Dann gilt:

1. Monotonie:

$$A, B \in \mathfrak{R}, A \subseteq B \Rightarrow \mu(A) \le \mu(B)$$

2. Additions theorem:

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

3. Allgemeineres Additionstheorem:

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{J \subseteq \{1,\dots,n\}, J \neq \emptyset} (-1)^{|J|-1} \mu\left(\bigcap_{i \in J} A_{i}\right)$$

$$= \sum_{k=1}^{n} (-1)^{k-1} S_{k} \quad f \ddot{u} r S_{k} = \sum_{i \le i_{1} < \dots < i_{k} \le n} \mu\left(\bigcap_{k=1}^{n} A_{i_{k}}\right)$$

4. Subadditivität:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

Satz 1.2.12. Sei μ Inhalt auf \Re , $A_n, n \in \mathbb{N}$, $A \subseteq \Re$, dann gilt:

$$\sum_{n\in\mathbb{N}} A_n \subseteq A \Rightarrow \sum_{n\in\mathbb{N}} \mu(A_n) \le \mu(A)$$

1.3 Folgerungen für Maße

Satz 1.3.1. Sei μ ein Ma β auf \Re :

1. Stetigkeit von unten:

$$A_n \uparrow A, A_n, A \in \mathfrak{R}$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

2. Stetigkeit von oben:

$$A_n \downarrow A, A_n, A \in \mathfrak{R} \land \mu(A_1) < \infty$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

1.4 Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen)

Satz 1.4.1. Sei μ ein Ma β auf dem Ring \Re , $A_n \uparrow A$, $A_n, A \in \Re$. Dann gilt

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Entsprechendes für $A_n \downarrow A$.

Satz 1.4.2. Sei μ Inhalt auf Ring \Re ist genau dann ein Ma β , wenn μ stetig von unten ist.

Satz 1.4.3. Sei μ ein endlicher Inhalt auf einem Ring \Re . Dann ist μ genau dann ein Ma β , wenn er stetig von oben bei \varnothing ist, also

$$A_n \downarrow \varnothing \Rightarrow \mu(A_n) \to 0.$$

Bemerkung. Dieses Argument kann auch umgedreht werden. Dies werden wir später zumindest einmal benutzen.

Satz 1.4.4. Sei μ ein Maß auf dem Ring(Semiring) \Re , A_n , $A \in \Re$ mit

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n$$

 $so\ gilt$

$$\mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n)$$
. (μ ist abzählbar-, bzw sigmasubadditiv)

Satz 1.4.5. Sei μ ein Maß auf dem Sigmaring \mathfrak{R} und A_n eine Folge von Mengen aus \mathfrak{R} . Dann gilt:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k$$

Satz 1.4.6. Lemma von Borel Cantelli:

Sei μ ein Maß auf einem Sigamring \mathfrak{R} . Ist $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$ für $A_n\in\mathfrak{R}$, so gilt:

$$\mu(\limsup_{n\to\infty} A_n) = 0$$

Bemerkung. Als Hausübung: Ist μ endliches Maß auf einem Sigmaring, so gilt

$$\mu(\limsup_{n\to\infty} A_n) \ge \limsup_{n\to\infty} \mu(A_n).$$

Beispiel 1.4.0.1 (Additionstheorem). Die Anzahl der Permutationen von n Elementen ohne Fixpunkt.

$$\mathbb{P}(\text{kein Fixpunkt}) = 1 - \mathbb{P}(\text{Fixpunkt}) = 1 - \mathbb{P}\left(\bigcup A_i\right)$$

mit $A_i = [i \text{ ist Fixpunkt }].$

$$\mathbb{P}\left(\bigcup A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} \leq i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{2}}) - \dots$$

Es gilt:

$$\mathbb{P}(A_i) = \frac{(n-1)!}{n!}$$

$$\mathbb{P}(A_i \cap A_0) = \frac{(n-2)!}{n!}$$

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

Jetzt: (was auch immer S_k ist...)

$$S_k = \frac{(n-k)!}{n!} \left(\begin{array}{c} n \\ k \end{array} \right) = \frac{1}{k!}$$

Damit:

$$\mathbb{P}\left(\bigcup A_i\right) = \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$$

$$\Rightarrow \mathbb{P}(\text{kein Fixpunkt}) = 1 - \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!} = \sum_{k=0}^n (-1)^k \frac{1}{k!} \ n \xrightarrow{\rightarrow} \infty \frac{1}{e}$$

1.5 Bedingte Wahrscheinlichkeit

Definition 1.5.1. Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Nun heißt $A, B \in \mathfrak{S}$ Ereignisse. Gilt $\mathbb{P}(B) \neq 0$ so heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

 $die\ bedingte\ Wahrscheinlichkeit.$

Definition 1.5.2. Ereignisse A und B heißen unabhängig, wenn

$$P(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definition 1.5.3. Allgemeiner heißen Ereignisse $A_1, ..., A_n$ unabhängig, wenn

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} \mathbb{P}(A_i).$$

Definition 1.5.4. Ereignisse $A_1, ..., A_n$ heißen paarweise unabhängig, wenn:

$$\forall i, j \in \{1, ..., n\} : i \neq j \Rightarrow \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j).$$

Bemerkung. Es gilt:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

und:

$$\mathbb{P}(A_i \cap ... \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)...P(A_n|A_1 \cap ... \cap A_n)$$

Dies ist das Multiplikationstheorem für Wahrscheinlichkeiten.

Beispiel 1.5.0.1 (Bedingte Wahrscheinlichkeiten (Multiplikationstheorem)). In einer Urne liegen zwei schwarze und drei weiße Kugeln. Es wird 3-mal ohne Zurücklegen gezogen, wobei das Ziehen der Laplace-Wahrscheinlichkeit folgt. Nun ist

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \mathbb{P}(A_1 \cap A_2 \cap A_3)$$

wobe
i $A_i = ,i$ -te Kugel ist weiß". Also

$$\mathbb{P}(A_1\cap A_2\cap A_3)=\mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1\cap A_2)$$

mit

$$P(A_1) = \frac{3}{5}$$

$$P(A_2|A_1) = \frac{2}{4} = \frac{1}{2}$$

$$P(A_3|A_2 \cap A_1) = \frac{1}{3}$$

und damit

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \frac{1}{10}$$

Beispiel 1.5.0.2. Selbe Voraussetzungen wie im vorigen Beispiel. Nun ist

$$\begin{split} \mathbb{P}(\text{genau 2 Kugeln weiß}) &= \mathbb{P}(\text{wws}) + \mathbb{P}(\text{wsw}) + \mathbb{P}(\text{sww}) \\ &= \mathbb{P}(A_1 \cap A_2 \cap A_3^c) + \mathbb{P}(A_1 \cap A_2^c + A_3) + \mathbb{P}(A_1^c \cap A_2 \cap A_3) \\ &= \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{2}{5} \frac{3}{4} \frac{2}{3} = 3 \cdot \frac{12}{60} = \frac{3}{5}. \end{split}$$

Dieses Beispiel kann analog auf jede Anzahl an Kugeln fortgesetzt werden.

Satz 1.5.5 (Borel-Cantelli II). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei $A_n \in \mathfrak{S}$ eine Folge unabhängiger Ereignisse.

Ist nun

$$\sum_{n=0}^{\infty} \mathbb{P}(A_n) = \infty$$

so folgt

$$\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$$

1.6 Der Fortsetzungssatz für Maßfunktionen

In diesem Abschnitt werden wir den folgenden Satz beweisen:

Satz 1.6.1 (Fortsetzungssatz für Maßfunktionen). Sei μ ein Maß auf einem Ring \Re . Dann gilt:

- 1. μ kann zu einem Maß $\widetilde{\mu}$ auf dem erzeugten Sigmaring fortgesetzt werden.
- 2. Wenn μ sigmaendlich ist, dann ist $\widetilde{\mu}$ eindeutig bestimmt.

Bemerkung. Wir werden $\tilde{\mu}$ im Folgenden immer mit μ bezeichnen, da es nicht wichtig ist, ob wir auf einem Ring oder auf dem erzeugten Sigmaring arbeiten.

Bemerkung. Die Motivation für diesen Satz ist das klassische Ausschöpfungs-, bzw Exhaustionsprinzip, das z.B. Archimedes und Eudoxos bearbeitet haben. Dabei wurde die Fläche eines Kreises durch Rechtecke approximiert. Damit ist (A ist die Fläche des Kreises, B die Fläche der Vierecke)

$$\mu^+(A) = \inf\{\mu(B) : A \subseteq B, B \in \mathfrak{R}\}\$$

$$\mu^-(A) = \sup\{\mu(B): B \subseteq A, B \in \Re\}$$

wenn $\mu^+(A) = \mu^-(A)$, dann ist A messbar (im Sinn von Jordan). Dann μ^* das Jordon-Maß.

$$\mu^*(A) = \inf\left(\sum_{n \in \mathbb{N}} \mu(B_n)\right), B_n \in \mathfrak{R}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n$$
$$= \inf\left\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\right\}$$

Die letzte Gleichheit folgt durch Zeigen von \leq und \geq .

Definition 1.6.2. Das Ma β von einem Ma β μ erzeugte Ma β

$$\mu^*(A) = \inf\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\}$$

heißt äußeres Maß oder Jordan-Maß. Hierbei wird

$$\inf \varnothing = \infty$$

gesetzt.

Definition 1.6.3. *Ist* $\mu(\Omega) < \infty$, *so ist*

$$\mu_*(A) = \mu(\Omega) - \mu^*(A^c)$$

 $das\ innere\ Ma\beta.$

Definition 1.6.4 (vorläufige Definition). A heißt messbar, falls

$$\forall E \in \mathfrak{R} : \mu(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Definition 1.6.5. A heißt messbar, wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Satz 1.6.6 (Eigenschaften von äußeren Maßfunktionen). Sei μ ein Maß und μ^* das von μ erzeugte äußere Maß. Dann gilt:

- 1. $\mu^*(A) \ge 0$
- 2. $\mu^*(\emptyset) = 0$
- 3. Monotonie:

$$A \subseteq B \subseteq \Omega \Rightarrow \mu^*(A) \le \mu^*(B)$$

4. Sigmasubadditivität:

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq \Omega$$

$$\Rightarrow \mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

Definition 1.6.7. Eine Funktion $\mu^*: 2^{\Omega} \to [0, \infty]$ heißt eine äußere Maßfunktion, wenn sie die Eigenschaften 1.-4. besitzt.

Bemerkung. Will man zeigen, dass μ^* ein äußeres Maß ist, so muss man nur 1.,2. und 4. zeigen, 3. folgt dann automatisch.

Beispiel 1.6.0.1. Sei $|\Omega| \geq 3$ und

$$\mu^*(A) = \left\{ \begin{array}{l} 0: A = \varnothing \\ 1: A \notin \{\varnothing, \Omega\}, A \subseteq \Omega \\ 2: A = \Omega \end{array} \right.$$

Definition 1.6.8. $A \subseteq \Omega$ heißt messbar (μ^* -messbar), wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Bemerkung. Um die Messbarkeit von A zu zeigen, genügt es zu zeigen, dass

$$\mu^*(B) > \mu^*(B \cap A) + \mu^*(B \cap A^c),$$

da die Ungleichung "≤" trivialerweise immer erfüllt ist.

Definition 1.6.9. m_{μ^*} bezeichnet das System aller μ^* -messbaren Mengen. Ist klar, um welches Ma β μ^* es sich handelt (oder das egal ist), so schreiben wir einfach m.

Satz 1.6.10. 1. m ist eine Sigmaalgebra, $\mu^*|_m$ ein Ma β .

2. Wenn μ^* von einem Maß μ auf einem Ring \Re erzeugt wird und $\mu^*(B) = \mu(B)$, so folgt $\Re \subseteq m$.

$1.7. \ \ ZUSAMMENHANG \ ZWISCHEN \ DEM \ MASS \ AUF \ DEM \ RING \ UND \ DEM \ MASS \ AUF \\ DEM \ SIGMARING \ KAPITEL \ 1. \ MASSE$

Bemerkung. Der erste Teil des Fortsetzungssatzes ist damit bewiesen. Bleibt also noch der folgende Satz zu zeigen:

Satz 1.6.11. Ist $\widetilde{\mu}$ eine Fortsetzung von μ auf $\mathfrak{R}_{\sigma}(\mathfrak{R})$ ist, dann gilt

$$\widetilde{\mu} = \mu^*|_{\mathfrak{R}_{\sigma}}$$

Satz 1.6.12. Ist μ auf \Re sigmaendlich, dann auch auf dem erzeugten Sigmaring.

Satz 1.6.13. $F\ddot{u}r A \in \mathfrak{R}_{\sigma}(\mathfrak{R}) : \widetilde{A} \leq \mu^*(A)$

Satz 1.6.14. $\widetilde{\mu}(A) = \mu^*(A)$ (siehe oben)

Bemerkung. Nun ist der Fortsetzungssatz für Maßfunktionen vollständig bewiesen.

1.7 Zusammenhang zwischen dem Maß auf dem Ring und dem Maß auf dem Sigmaring

Satz 1.7.1 (Approximationstheorem I). Sei μ ein sigmaendliches Maß auf einem Ring \Re . Sei $A \in \Re_{\sigma}(\Re), \mu(A) < \infty$. Dann gilt

$$\forall \epsilon > 0 : \exists B \in \mathfrak{R} : \mu(A\Delta B) < \epsilon$$

Bemerkung. Es gilt auch

$$|\mu(A) - \mu(B)| \le \mu(A\Delta B)$$

Bemerkung. Wir nehmen nun an, dass $\Omega \in \mathfrak{R}_{\sigma}(\mathfrak{R})$, der erzeugte Sigmaring ist also schon eine Sigmaalgebra.

Definition 1.7.2. Sei $(\Omega, \mathfrak{S}, \mu)$ Maßraum. Ist $\mu(A) = 0$, so heißt A Nullmenge.

Satz 1.7.3. Ist A messbar, so kann man A schreiben als Vereinigung einer Menge aus dem Sigmaring und einer Nullmenge, also

$$A = F \cup N, F \in \mathfrak{R}_{\sigma}, N \subseteq M \in \mathfrak{R}_{\sigma} : \mu(M) = 0$$

Definition 1.7.4. Ein Maßraum $(\Omega, \mathfrak{S}, \mu)$ heißt vollständig, wenn

$$A \in \mathfrak{S}, \mu(A) = 0, B \subseteq A \Rightarrow B \in \mathfrak{S}$$

Definition 1.7.5. Sei $(\Omega, \mathfrak{S}, \mu)$ Maßraum. Mit

$$\overline{\mathfrak{S}} := \{ A \cup N, A \in \mathfrak{S}, \exists M \in \mathfrak{S} : N \subseteq M, \mu(B) = 0 \}$$

und

$$\overline{\mu}(A \cup N) = \mu(A)$$

heißt der vollständige Maßraum $(\Omega, \overline{\mathfrak{S}}, \overline{\mu})$ die Vervollständigung von $(\Omega, \mathfrak{S}, \mu)$.

Satz 1.7.6. Ist $\mu*$ das von einem Ma β μ auf dem Ring \Re erzeugte äußere Ma β , so ist ein $A \subseteq \Omega$ messbar genau dann, wenn

$$\forall B \in \mathfrak{R} : (\mu^*(B) =) \mu(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Ist zusätzlich $\mu(\Omega) < \infty \ (\mu^*(\Omega) < \infty)$, dann ist A messbar, wenn

$$\mu(\Omega) = \mu^*(A) + \mu^*(A^c).$$

1.8 Maße auf $(\mathbb{R}, \mathfrak{B})$

Die Frage, die sich stellt ist: Ist μ^* auf \mathbb{R} frei definiert, wann gilt $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$?

Definition 1.8.1. Seien $A, B \in \mathbb{R}$. Dann ist der Abstand

$$d(A, B) := \inf\{|x - y|, x \in A, y \in B\}.$$

Ein äußeres Maß μ^* heißt arithmetisch, wenn

$$\forall A, B \in \mathbb{R} : d(A, B) > 0 \Rightarrow \mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

Satz 1.8.2 (Satz von Carathéodory). $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$ genau dann, wenn μ^* arithmetisch ist.

1.9 Maße auf $(\mathbb{R}, \mathfrak{B})$, zweiter Anlauf

Im folgenden ist immer $\mathfrak{T} := \{(a, b], a \leq b, a, b \in \mathbb{R}\}.$

Satz 1.9.1. μ ist genau dann endliches Maß auf \mathfrak{T} , wenn

$$\forall x \in \mathbb{R} \exists \delta(x) > 0 : \mu((x - \delta(x), x]) < \infty$$

Definition 1.9.2. μ auf $(\mathbb{R}, \mathfrak{B})$ heißt Lebesgue-Stieltjes Ma β , oder lokalendlich, wenn jede beschränkte Borelmenge endliches Ma β hat.

Bemerkung. Dazu muss man ein Maß finden, dass für alle $a < b \mu((a, b])$ festlegt. Dies ist nicht ganz frei möglich, die Additivität muss erfüllt werden, also

$$\mu((a,c]) = \mu((a,b]) + \mu((b,c]).$$

Wir beginnen dazu mit einem Spezialfall, dass $\mu(\mathbb{R}) < \infty$:

Beispiel 1.9.0.1. Sei

$$F(x) = \mu((-\infty, x]) < \infty$$

dann ist für a < b:

$$\begin{aligned} (-\infty, a] \cup (a, b] &= (-\infty, b] \\ \mu((-\infty, a]) + \mu((a, b]) &= \mu((-\infty, b]) \\ \Rightarrow \mu((a, b]) &= F(b) - F(a) \end{aligned}$$

Definition 1.9.3. $F: \mathbb{R} \to \mathbb{R}$ heißt Verteilungsfunktion von μ , wenn $\mu((a,b|) = F(b) - F(a)$.

Bemerkung.

$$F(x) = \mu((0, x]), x \ge 0,$$

damit:

$$\mu((a,b]) = F(b) - F(a)$$

und F(0) = 0.

für

$$\mu((x,0]) = F(0) - F(x)$$

 $\Rightarrow F(x) = -\mu((x,0]),$

eine Verteilungsfunktion muss also die Form

$$F(x) = \begin{cases} \mu((0,x]) : x \ge 0 \\ -\mu((x,0]) : x < 0 \end{cases}$$

dies funktioniert, siehe Aufgaben ($\mathbf{Z}\mu((a,b]) = F(b) - F(a)$). Dies fassen wir im folgenden Satz zusammen:

Satz 1.9.4. Zu jeder Lebesgue-Stieltjes Maßfunktion gibt es eine Verteilungsfunktion. Diese ist bis auf eine additive Konstante eindeutig bestimmt.

1.10 Ergänzungen zu bedingten Wahrscheinlichkeiten

Satz 1.10.1 (Satz von der vollständigen Wahrscheinlichkeit). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei dann $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Dann ist

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A|B_i).$$

Satz 1.10.2 (Satz von Bayes). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei wieder $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Zusätzlich zu vorher gelte $\mathbb{P}(A) > 0$. Dann gilt:

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A \cap B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\sum_{j \in I} \mathbb{P}(B_j)\mathbb{P}(A|B_j)}$$

Definition 1.10.3. Die $\mathbb{P}(B_i)$ in den Sätzen vorher heißen a-priori Wahrscheinlichkeiten, $\mathbb{P}(B_i|A)$ die a-posteriori Wahrscheinlichkeiten.

Beispiel 1.10.0.1. Es gibt vier Blutgruppen, A, B, AB, 0. Die Blutgruppe der Frau ist A, die des Sohnes ist 0. Wie ist die Wahrscheinlichkeit für die Blutgruppe des Mannes?

Mit zusätzlichem Wissen über Genetik, kann man über die Wahrscheinlichkeiten p_a, p_b, p_0 für das Auftreten der Allele a, b, 0 die Wahrscheinlichkeit der Blutgruppen ausrechnen. In der Bevölkerung haben Blutgruppe 0 40% der Bevölkerung, Blutgruppe A 47%, B 9% und AB 4%. Damit erhalten wir:

$$0.4 = p_0^2$$

$$0.47 = p_a^2 + 2p_a p_0$$

$$0.09 = p_b^2 + 2p_b p_0$$

$$0.04 = 2p_a p_b$$

Eine gute Approximation ist

$$p_a \approx \frac{9}{30}, \quad p_b \approx \frac{2}{30}, \quad p_0 \approx \frac{19}{30}.$$

Damit erhält man:

$$\mathbb{P}(\text{Sohn } 0|0) = 1$$

$$\mathbb{P}(\text{Sohn } 0|A) = \frac{1}{2}$$

$$\mathbb{P}(\text{Sohn } 0|B) = \frac{1}{2}$$

und

$$\mathbb{P}(0|\text{Sohn }0) = \frac{p_0^2}{p_0^2 + p_a p_0 + p_b p_0} = p_0,$$

genauso für A und B, also ist die Wahrscheinlichkeit für Blutgruppe 0 am größten.

1.11 Eigenschaften von Verteilungsfunktionen

Satz 1.11.1. Sei $F : \mathbb{R} \to \mathbb{R}$ eine Verteilungsfunktion. Dann gilt:

1. Monotonie:

$$a \le b \Rightarrow F(a) \le F(b)$$

2. Rechtsstetigkeit:

$$b_n \downarrow b \Rightarrow F(b_n) \downarrow F(b)$$

Satz 1.11.2. Sei $F: \mathbb{R} \to \mathbb{R}$ nichtfallend und rechtsstetig. Dann ist durch

$$\mu_F((A,b]) := F(b) - F(a)$$

ein Maß auf $\mathfrak{T} = \{(a, b], a \leq b, a, b, \in \mathbb{R}\}$ definiert.

Bemerkung. Für Wahrscheinlichkeitsmaße μ hat die Verteilungsfunktion

$$F(x) := \mu((-\infty, x])$$

die zusätzlichen Eigenschaften:

•

•

$$\lim_{x \to -\infty} F(x) = 0$$

•

$$\lim_{x \to +\infty} F(X) = 1.$$

Eine Verteilungsfunktion, die das erfüllt, heißt Verteilungsfunktion im engeren Sinn.

1.12 Maße von Mengen mit Verteilungsfunktionen

Ab diesem Kapitel werden wir offene Intervallgrenzen auch mit eckigen Klammern schreiben. Wir wissen schon:

$$\mu(|a,b|) = F(b) - F(a).$$

Was passiert, $f\"{u}r\mu([a,b]), \mu([a,b[), \mu([a,b[)])$?

$$\mu([a,b]) = \mu(\bigcap_{n \in \mathbb{N}}]a - \frac{1}{n}, b]) = \lim_{n \to \infty} \mu(F(b) - F(a - \frac{1}{n})) = F(b) - F(a - 0)$$

$$\mu(]a,b[) = \mu(\bigcup_{n \in \mathbb{N}}]a,b-\frac{1}{n}]) = \lim_{n \to \infty} (F(b-\frac{1}{n}) - F(a)) = F(b-0) - F(a)$$

$$\mu([a,b]) = F(b-0) - F(a-0)$$

Und damit auch

$$\mu(\lbrace x \rbrace) = \mu([x,x]) = F(x) - F(x-0) (= \text{Sprungh\"ohe von } F \text{ in } x)$$

Satz 1.12.1. Jedes (sigma-)endliche Ma β μ auf (Ω, \mathfrak{S}) lässt sich darstellen als Summe eines stetigen Ma β es μ_c und eines diskreten Ma β es μ_d , wobei

 \bullet μ_d diskret, wenn es eine Menge D gib, die höchstens abzählbar ist, sodass

$$\mu(D^c) = 0.$$

• μ_c stetig, wenn

$$\forall w \in \Omega : \mu_c(\{w\}) = 0.$$

 $N\ddot{a}mlich$

$$\mu(A) = \mu(A \cap D^c) + \mu(A \cap D) = 0 + \mu(\bigcup_{x \in A \cap D} \{x\}) = \sum_{x \in A \cap D} \mu(\{x\}) = \sum_{x \in A} \mu(\{x\})$$

Beispiel 1.12.0.1. Sei μ ein endliches Lebesgue-Stieltjes Maß auf $(\mathbb{R}, \mathfrak{B})$. Für die Verteilungsfunktion $F(x) = \mu(]-\infty, x[)$ kann man nun, da μ dargestellt werden kann als

$$\mu = \mu_c + \mu_d$$

auch zerlegen in

$$F = F_c + F_d, F_d(x) = \sum_{y \le x} \mu_d(\{y\}).$$

Wir erhalten den folgenden Satz:

Satz 1.12.2. Jede diskrete Verteilungsfunktion (Verteilungsfunktion eines diskreten, endlichen $Ma\beta es$) auf \mathbb{R} lässt sich anschreiben als

$$F(x) = \sum_{y \le x} p(y).$$

Ist $\sum_{y \in \mathbb{R}} p(y) = 1$, so nennen wir p Wahrscheinlichkeitsfunktion. Umgekehrt gibt es zu jeder Funktion p mit $p(y) \ge 0$ eine diskrete Verteilungsfunktion.

Definition 1.12.3. Ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\mathbb{R},\mathfrak{B})$ heißt Verteilung.

Satz 1.12.4. Ist eine Verteilungsfunktion F(x) (stückweise) stetig differenzierbar, $f(x) := F'(x) \ge 0$, so ist

$$\mu_F(]a,b]) = \int_a^b f(x)dx.$$

f(x) heißt dann Dichtefunktion.

Bemerkung. Ist $\mu_F(\mathbb{R}) = 1$, so ist

$$1 = \int_{-\infty}^{+\infty} f(x)dx.$$

Bemerkung. Wir werden anstatt des Riemann-Integrals bald ein Lebesgue-Integral schreiben.

Beispiel 1.12.0.2 (Standardnormalverteilung).

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Aus der Analysis ist schon bekannt

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi},$$

also

$$\int_{-\infty}^{+\infty} \varphi(x) dx = 1.$$

Wir erhalten die Verteilungsfunktion

$$\Phi(x) := \int_{-\infty}^{x} \varphi(x) dx.$$

Dann ist

$$\mathbb{P}_{\Phi}(]a,b]) = \Phi(b) - \Phi(a).$$

Zum Beispiel also

$$\mathbb{P}_{\Phi}(]-1,2]) = \Phi(2) - \Phi(-1) = 0.9772 - 0.1587 = 0.8185,$$

 $\Phi(1.67) = 0.9525$

Beispiel 1.12.0.3. Allgemeiner nimmt man

$$\mathcal{N}(\mu, \sigma^2, x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

1.13 Mehrdimensionale Lebesgue-Stieltjes Maße und Verteilungsfunktionen

Der hier verwendete Maßraum ist $(\mathbb{R}^d, \mathfrak{B}_d)$ mit

$$\mathfrak{B}_d := \mathfrak{A}_{\sigma} \left(\{ [a, b] : a, b \in \mathbb{R}, a \leq b \} \right),$$

wobei die Ungleichung $a \leq b$ komponentenweise zu verstehen ist, also

$$a \leq b : \Leftrightarrow \forall i \in \{1, ..., d\} : a_i \leq b_i$$

und

$$|a, b| := |a_1, b_1| \times |a_2, b_2| \times ... \times |a_d, b_d|$$

Definition 1.13.1. Sei μ ein Lebesgue-Stieltjes Maß auf $(\mathbb{R}^d, \mathfrak{B}_d)$, wenn für beschränkte Mengen $A \in \mathfrak{B}_d$

$$\mu(A) < \infty$$
.

Bemerkung. Sei μ ein endliches Maß. Dann können wir die Verteilungsfunktion wieder anschreiben als

$$F(x) = \mu(] - \infty, x]) = \mu(] - \infty, x_1]) \times ... \times \mu(] - \infty, x_d]).$$

Genügt dies, um μ festzulegen?

Beispiel 1.13.0.1. Für d=2 erhalten wir:

$$\mu([a,b]) = F(b_1,b_2) - F(a_1,b_2) - F(b_1,a_2) + F(a_1,a_1).$$

Wir können den Satz von oben also zmd. für den 2-dimensionalen Raum erweitern:

Satz 1.13.2. F ist eine Verteilungsfunktion von einem Lebesque-Stieltjes Maß µ, wenn

• F rechtsstetig ist, also

$$x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$$

• F monoton ist, also

$$a \le b \Rightarrow F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2) \ge 0$$

Beispiel 1.13.0.2. Für $d \geq 2$ erhalten wir:

$$\mu(]a,b]) = \mu(]a_1,b_1] \times ... \times]a_d,b_d]) = \sum_{e \in \{0,1\}^d} F(ae + b(1-e)),$$

wobei

$$ae + b(1 - e) = (a_1e_1 + b_1(1 - e_1), ..., a_de_d + b_d(1 - e_d)).$$

Definition 1.13.3 (Differenzoperatoren).

$$\Delta_i(a_i, b_i) : \mathbb{R}^{\mathbb{R}^d} \to \mathbb{R}^{\mathbb{R}^d};$$

$$f \mapsto \Delta_i(a, b) f(x_1, ..., x_d) := f(x_1, ..., x_{i-1}, b_i, x_{i+1}, ...x_d) - f(x_1, ..., x_{i-1}, a_i, x_{i+1}, ..., x_d)$$

Beispiel 1.13.0.3. d = 2. $f(x_1, x_2) = x_1 x_2$.

$$\Delta_1(4,17) f(x_1,x_2) = 17x_2 - 4x_2 - 13x_2 - 13x_2$$

bzw

$$\Delta_1(a_1, b_1) f(x_1, x_2) = (b_1 - a_1) x_2$$

$$\Delta_1(a_1, b_1) \Delta_2(a_2, b_2) f(x_1, x_2) = (b_1 - a_1) b_2 - (b_1 - a_1) a_2 = (b_1 - a_1) (b_2 - a_2)$$

Bemerkung. Damit ist (für $d \in \mathbb{N}$)

$$\mu_F(a,b) = \Delta_1(a_1,b_1)\Delta_2(a_2,b_2)...\Delta_d(a_d,b_d)F$$

Und

$$\Delta_i(a_i, b_i) F(x_1, ..., x_d) = \int_{a_i}^{b_i} \frac{\partial}{\partial x_i} F(x_1, ..., x_d) dx_i$$

Beispiel 1.13.0.4. Endliche Maße:

$$F(x) = \mu(]-\infty,x])$$

Wir betrachten den Spezialfall für d=2. Dann ist

$$\mu(0,x) = F(x_1,x_2) - F(x_1,0) - F(0,x_2) + F(0,0).$$

Setze $F(x_1, 0) = F(0, x_2) = 0$. Dann ist für x > 0

$$F(x_1, x_2) = \mu(]0, x_1] \times]0, x_2])$$

und für $x_1 \ge 0, x_2 < 0$

$$\mu([0, x_1] \times [x_2, 0]) = F(x_1, 0) - F(0, 0) - F(x_1, x_2) + F(0, x_2) = -F(x_1, x_2).$$

Dies lässt sich quadrantenweise durchführen.

Allgemein:

$$F(x) = \mu(|\min(x, 0), \max(x, 0)|) \operatorname{sgn}(x),$$

wobei das Minimum und Maximum koordinatenweise zu verstehen ist und

$$\operatorname{sgn}(x) = \prod_{i=1}^{n} \operatorname{sgn}(x_i)$$

Definition 1.13.4. Das d-dimensionale Lebesguema β λ_d ist

$$\lambda_d(]a,b]) = \prod_{i=1}^d (b_i - a_i)$$

und

$$F(x_1, ..., x_d) = x_1 \cdots x_d.$$

Mit Hilfe des Fortsetzungssatzes erhalten wir das Ma β λ_d auf \mathfrak{B}_d .

Die λ_d^* -messbaren Mengen werden mit \mathfrak{L}_d (d-dimensionale Lebesguemengen) bezeichnet, wobei

$$A \in \mathfrak{L}_d \Leftrightarrow A = B \cup N, B \in \mathfrak{B}_d, \exists M \in \mathfrak{B}_d : N \subseteq M, \lambda_d(M) = 0$$

Satz 1.13.5. Sei λ_d das Lebesguemaß auf \mathfrak{B}_d . Dann gilt:

• λ_d ist translationsinvariant:

$$A \oplus c := \{x + c : x \in A\},$$

$$A \in \mathcal{L}_d, c \in \mathbb{R}^d \Rightarrow A \oplus c \in \mathcal{L}_d, \lambda_d(A \oplus c) = \lambda_d(A)$$

Satz 1.13.6. Wenn μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ein translationsinvariantes Lebesgue-Stieltjes Ma β ist, dann gilt

$$\mu = c\lambda_d, c \geq 0.$$

Definition 1.13.7. Sei $\Omega = [0, 1]$, dann ist

$$x \sim y :\Leftrightarrow y - x \in \mathbb{Q}$$

eine Äquivalenzrelation.

Dann zerlegen wir Ω in Äquivalenzklassen und bilden mithilfe des Auswahlaxioms eine Menge V, die aus jeder Äquivalenzklasse genau einen Vertreter wählt. Eine solche Menge heißt Vitali-Menge und ist nicht Lebesque-Messbar.

Bemerkung. Übliche Schlamperei:

$$\mathbb{R}^n \times \mathbb{R}^m = \mathbb{R}^{m+n}$$

und

$$\mathfrak{B}_n \times \mathfrak{B}_m = \mathfrak{B}_{n+m}$$

Satz 1.13.8. Seien Ω_1, Ω_2 Mengen und $\mathfrak{C}_1, \mathfrak{C}_2$ Mengensysteme über Ω_1, Ω_2 . Dann ist

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) = \mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2),$$

wobei

$$\mathfrak{C}_1 \otimes \mathfrak{C}_2 := \{A_1 \times A_2 : A_1 \in \mathfrak{C}_1, A_2 \in \mathfrak{C}_2\}$$

und

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) := \mathfrak{A}_{\sigma}(\mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2))$$

1.14 Approximationssätze und Regularität

Definition 1.14.1. Sei μ ein Inhalt auf $(\mathbb{R}^d, \mathfrak{B}_d)$ bzw $(\mathbb{R}^d, \mathfrak{S})$ mit $\mathfrak{B}_d \subseteq \mathfrak{S}$, dann heißt $A \in \mathfrak{S}$ regulär von oben, wenn

$$\mu(A) = \inf \{ \mu(U) : A \subseteq U, U \text{ offen} \}.$$

 μ heißt dann regulär von oben, wenn alle $A \in \mathfrak{S}$ regulär von oben.

Definition 1.14.2. Sei μ ein Inhalt auf $(\mathbb{R}^d, \mathfrak{B}_d)$ bzw $(\mathbb{R}^d, \mathfrak{S})$ mit $\mathfrak{B}_d \subseteq \mathfrak{S}$, dann heißt $A \in \mathfrak{S}$ regulär von unten, wenn

$$\mu(A) = \sup{\{\mu(K) : K \subseteq A, K \text{ kompakt}\}}.$$

 μ heißt dann regulär von unten, wenn alle $A \in \mathfrak{S}$ regulär von oben.

Definition 1.14.3. Wenn μ bzw $A \in \mathfrak{S}$ sowohl regulär von oben als auch regulär von unten sind, dann heißen sie regulär.

Satz 1.14.4. Ein regulärer Inhalt ist ein Maß.

Satz 1.14.5. Sei μ ein Lebesgue-Stieltjes Ma β auf $(\mathbb{R}^d, \mathfrak{B}_d)$, dann ist μ regulär von oben.

Satz 1.14.6. Ist μ ein sigmaendliches Maß auf $(\mathbb{R}^d, \mathfrak{B}_d)$, so ist μ regulär von unten.

Zusammenfassend ergibt das dann:

Satz 1.14.7. Jedes Lebesgue-Stieltjes Maß ist regulär.

Satz 1.14.8. Ein endliches/sigmaendliches Maß μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ist regulär von unten.

Bemerkung. Eine Funktion $F: \mathbb{R}^d \to \mathbb{R}$ heißt Verteilungsfunktion im engeren Sinn, wenn es ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\mathbb{R}^d, \mathfrak{B}_d)$ mit

$$F(x) = \mathbb{P}(|-\infty, x|) \quad (= \mathbb{P}(|-\infty, x_1| \times \dots \times |-\infty, x_d|))$$

gibt und F rechtsstetig ist, also

$$\Delta_1(a_1, b_1)...\Delta_d(a_d, b_d)F \ge 0.$$

Zusätzlich muss ein solches F nichtfallend in jeder Argumentvariable $x_1,...,x_d$ sein, also

$$\forall i = 1, ..., d : \lim_{x_i \to -\infty} F(x_1, ..., x_d) = 0$$

$$\lim_{\min(x_1,...,x_d)\to\infty} F(x_1,...,x_d) = 1$$

Kapitel 2

Das Lebesgue-Integral

Motivation für dieses Kapitel: Wir wollen einen neuen Integralbegriff auf Basis des Riemann-Integrals definieren,

$$\int f = \int_0^\infty \mu([f > x]) dx,$$

wobei f auf beliebigen Mengen definiert sein darf, also wenn μ Maß auf einem Messraum (Ω, \mathfrak{S}) , dann ist

$$f:\Omega\to\mathbb{R}$$

und $\mu([f > x])$ definiert sein soll, also $[f > x] \in \sigma$, wobei

$$[f > x] := \{\omega \in \Omega : f(\omega) > x\}.$$

Definition 2.0.1. Seien $(\Omega_1, \mathfrak{S}_1)$, $(\Omega_2, \mathfrak{S}_2)$ zwei Messräume, dann heißt

$$f:\Omega_1\to\Omega_2$$

messbar bezüglich $(\Omega_1, \mathfrak{S}_1)$ und $(\Omega_2, \mathfrak{S}_2)$ (oder kürzer $\mathfrak{S}_1 - \mathfrak{S}_2$ -messbar), wenn

$$f^{-1}(\mathfrak{S}_2) \subseteq \mathfrak{S}_1$$

also wenn $\forall A \in \mathfrak{S}_2 : f^{-1}(A) \in \mathfrak{S}_1$. Für eine solche Funktion schreiben wir

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2).$$

Eine Funktion

$$f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$$

heißt dann &-messbar bzw

$$f: (\mathbb{R}^{d_1}, \mathfrak{S}_{d_1}) \to (\mathbb{R}^{d_2}, \mathfrak{B}_{d_2})$$

heißt Borelmessbar,

$$f::(\mathbb{R}^{d_1},\mathfrak{L}_{d_1})\to(\mathbb{R}^{d_2},\mathfrak{B}_{d_2})$$

heißt Lebesguemessbar.

Satz 2.0.2. Sei \mathfrak{C} ein Mengensystem über Ω_2 , das \mathfrak{S}_2 erzeugt, $\mathfrak{S}_2 = \mathfrak{A}_{\sigma}(\mathfrak{C})$, dann ist $f: \Omega_1 \to \Omega_2$ $\mathfrak{S}_1 - \mathfrak{S}_2$ -messbar genau dann, wenn

$$f^{-1}(\mathfrak{C}) \subset \mathfrak{S}_1$$

Bemerkung. Für $\mathfrak{S}_2 = \mathfrak{B}$ ist \mathfrak{C} z.B. die Menge der halboffenen Intervalle. Wir können aber auch $\mathfrak{C} = \{]-\infty, b], b \in \mathbb{R}\}$ oder $\mathfrak{C} = \{U \subseteq \mathbb{R}, U \text{ offen}\}$ hernehmen. Damit können wir schon einige Sätze beweisen.

Satz 2.0.3. Sei $f: \mathbb{R} \to \mathbb{R}$, bzw $f: \mathbb{R}^d \to \mathbb{R}$, dann ist f Borelmessbar, wenn f

- monoton oder
- stetiq

ist.

Satz 2.0.4. Ist

$$f_1:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_2:(\Omega_2,\mathfrak{S}_2)\to(\Omega_3,\mathfrak{S}_3),$$

dann ist auch

$$f_2 \circ f_1 : (\Omega_1, \mathfrak{S}_1) \to (\Omega_3, \mathfrak{S}_3)$$

messbar.

Satz 2.0.5. Seien $(\Omega_1, \mathfrak{S}_1), (\Omega_2, \mathfrak{S}_2), (\Omega_3, \mathfrak{S}_3)$ Messräume. Wir bilden den Produktraum $(\Omega_2 \times \Omega_3, \mathfrak{S}_2 \times \mathfrak{S}_3)$. Dann ist

$$f:\Omega_1\to\Omega_2\times\Omega_3, f=(f_2,f_3)$$

genau dann

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2\times\Omega_3,\mathfrak{S}_2\times\mathfrak{S}_3),$$

wenn

$$f_2:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_3:(\Omega_1,\mathfrak{S}_1)\to(\Omega_3,\mathfrak{S}_3).$$

Definition 2.0.6. *Ist* $(\Omega, \mathfrak{S}, \mathbb{P})$ *ein Wahrscheinlichkeitsraum, so nennt man*

$$S:(\Omega,\mathfrak{S})\to(\mathbb{R}^d,\mathfrak{B}_d)$$

eine d-dimensionale Zufallsvariable oder einen d-dimensionalen Zufallsvektor. Bei d=1 spricht man von der Zufallsvariable.

Satz 2.0.7. Ist $f: \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ stetig, so ist f Borel-messbar.

Satz 2.0.8. *Ist* $f : \mathbb{R} \to \mathbb{R}$ *monoton, so ist* f *Borel-messbar.*

Satz 2.0.9. $f := (f_1, ..., f_d) : (\Omega, \mathfrak{S}) \to (\mathbb{R}^d, \mathfrak{B}_d)$ genau dann, wenn

$$\forall i = 1, ..., d : f_i : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Satz 2.0.10. Aus $f_i:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B}),\ i=1,2\ folgt$

- 1. $f_1 + f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}),$
- 2. $f_1 f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 3. $f_1 \wedge f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 4. $f_1 \vee f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$).

Definition 2.0.11 (7.14).

2.1 Erweitert reellwertige Funktionen

Whaaaaat??

Kuso abschreiben... S.86

Satz 2.1.1. Sei f_n eine Folge messbarer Funktionen. Dann ist

$$M := [\liminf f_n = \limsup f_n] \in \mathfrak{S}$$

Satz 2.1.2 (7.24).

2.2 Treppenfunktionen

Definition 2.2.1. Eine Funktion

$$t:\Omega\to\mathbb{R}$$

heißt Treppenfunktion, wenn es eine endliche Zerlegung $A_1,...,A_n$ von Ω und reelle Zahlen $\alpha_1,...,\alpha_n$ gibt mit

$$\forall \omega \in \Omega : t(\omega) = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}(\omega).$$

Lemma 2.2.2. Eine Funktion $t: \Omega \to \mathbb{R}$ ist genau dann eine Treppenfunktion, wenn es Mengen $B_1, ..., B_m$ und reelle Zahlen gibt, sodass $t = \sum_{j=1}^m \beta_j \mathbb{1}_{B_j}$.

Bemerkung. Sind die oben genannten Mengen A_i und B_i alle messbar, so ist auch t messbar. Die Umkehrung gilt jedoch im Allgemeinen nicht, man kann also auch eine messbare Treppenfunktoin mit Hilfe einer nichtmessbaren Zerlegung darstellen kann, z.B. $t \equiv 0 = 0\mathbb{1}_A + 0\mathbb{1}_{A^c}$ mit $A \notin \mathfrak{S}$.

Definition 2.2.3. $t = \sum_{i=1}^{n} x_i \mathbb{1}_{[t=x_i]}$ ist die kanonische Darstellung einer messbaren Treppenfunktion.

Satz 2.2.4. Zu jeder messbaren positiven Funktion f gibt es eine monoton steigende Folge (t_n) aus positiven Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega).$$

Weiters gibt es zu jeder messbaren Funktion f eine Folge (t_n) aus Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega)$$

und

$$\forall n \in \mathbb{N} : |t_n| \le |f|.$$

Ist f beschränkt, so konvergiert (t_n) gleichmäßig gegen f.

2.3 Konvergenzarten

Definition 2.3.1. Zwei Funktionen f, g sind fast überall gleich, falls sie auf dem Komplement einer Nullmenge gleich sind.

Definition 2.3.2. Eine Folge (f_n) messbarer Funktionen konvergiert gleichmäßig μ -fast überall (bzw P-fs) gegen eine Funktion f, wenn es eine μ -Nullmenge N gibt, sodass (f_n) auf N^c gleichmäßig konvergiert.

Definition 2.3.3. Eine messbare Funktion f auf einem Maßraum heißt μ -fast überall beschränkt, wenn es ein $c \in \mathbb{R}$ gibt mit $\mu(|f| > c) = 0$.

$$||f||_{\infty} := \text{ess sup } f := \inf\{c \in \mathbb{R} : \mu(|f| > c) = 0\}$$

wird als das essentielle Supremum von f bezeichnet.

Satz 2.3.4. *Sei*

$$\mathfrak{F}:=\{f:(\mathbb{R}^{(n)},\mathfrak{B}_{(n)})\to(\mathbb{R}^{(m)},\mathfrak{B}_{(m)})\}.$$

Nun ist \mathfrak{F} die kleinste Menge der reellen Funktionen, die die stetigen Funktionen enthält und bezüglich der Bildung von punktweisen Grenzwerten abgeschlossen ist

Definition 2.3.5. Sei P eine Aussage und $(\Omega, \mathfrak{S}, \mu)$ ein Maßraum. Wir sagen, P gilt fast überall oder fast sicher, wenn es eine Menge $N \in \mathfrak{S}$, $\mu(N) = 0$ gibt mit $P(\omega)$ für alle $\omega \in N^c$.

Definition 2.3.6. Seien $(\Omega_1, \mathfrak{S}_1, \mu)$ ein Maßraum und $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Sei $f : \Omega_1 \to \Omega_2$. f heißt fast überall messbar, wenn

$$\exists \Omega_1' \in \mathfrak{S}_1 : \mu(\Omega_1'^c) = 0,$$

wobei f auch nur auf Ω'_1 definiert sein kann. Dann ist

$$f:(\Omega_1',\mathfrak{S}\cap\Omega_1')\to(\Omega_2,\mathfrak{S}_2)$$

Definition 2.3.7. $f_n \to f$ heißt μ -fast überall

$$f_n:(\Omega,\mathfrak{S},\mu)\to(\mathbb{R},\mathfrak{B}),$$

wenn es $N \in \mathfrak{S} : \mu(N) = 0$ mit

$$f_n(\omega) \to f(\omega)$$

für fast alle $\omega \in N^c$.

Definition 2.3.8 (gleichmäßige Konvergenz). $f_n \to f$ ist gleichmäßig konvergent, wenn

$$\forall \epsilon > 0 \exists n_0(\epsilon) \forall \omega \in \Omega \forall n \geq n_0(\epsilon) : |f_n(\omega) - f(\omega)| < \epsilon$$

Definition 2.3.9 (fast überall gleichmäßige Konvergenz). $f_n \to f$ ist fast überall gleichmäßig konvergent für

$$f_n, f: (\Omega, \mathfrak{S}, \mu) \to (\mathbb{R}, \mathfrak{B})$$

wenn es eine Menge $M \in \mathfrak{S}, \mu(M) = 0$ gibt mit $f_n \to f$ gleichmäßig auf M^c .

Bemerkung. $f_n \to f$ gleichmäßig, wenn, wie aus der Analysis bekannt,

$$||f_n - f||_{\sup} = \sup\{|f_n(\omega) - f(\omega)| : \omega \in \Omega\} \to 0.$$

Definition 2.3.10. Sei $f(\Omega,\mathfrak{S}) \to (\mathbb{R},\mathfrak{B})$, $(\Omega,\mathfrak{S},\mu)$ Maßraum. Dann ist das Essentielle Supremum von f

ess sup
$$f := \inf\{y \in \mathbb{R} : \mu([f > y]) = 0\}.$$

Bemerkung. Es gilt

$$\mu([f > \operatorname{ess sup} f]) = 0,$$

da

$$\mu([f>\operatorname{ess\ sup} f]) = \mu\left(\bigcup_{n\in\mathbb{N}} [f>\operatorname{ess\ sup} f + \frac{1}{n}]\right) \leq \sum_{n\in\mathbb{N}} \mu([f>\operatorname{ess\ sup} f + \frac{1}{n}]) = \sum_{n\in\mathbb{N}} 0 = 0.$$

Satz 2.3.11. *Sei* c > 0. *Dann ist*

ess
$$\sup cf = c \operatorname{ess sup} f$$
.

Weiters ist für $f, g \ge 0$

ess sup
$$f + q \le \operatorname{ess} \sup f + \operatorname{ess} \sup q$$

Definition 2.3.12.

$$||f||_{\infty} := \operatorname{ess sup} |f|.$$

Dies ist fast eine Norm, die erste Eigenschaft fehlt, da

$$\|f\|_{\infty} = 0 \Leftrightarrow \mu([|f| > 0]) = 0$$

Definition 2.3.13. Sei

$$\mathcal{L}_{\infty}(\Omega,\mathfrak{S},\mu):=\left\{f:(\Omega,\mathfrak{S})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}}):f\ \textit{ist fast "überall messbar},\ \|f\|_{\infty}<\infty\right\},$$

dann ist

$$f \sim g \Leftrightarrow ||f - g||_{\infty} = 0 \Leftrightarrow f = g \text{ fast ""uberall"}$$

eine Äquivalenzrelation (trivial). Damit ist

$$\mathcal{L}_{\infty}(\Omega,\mathfrak{S},\mu) = \mathcal{L}_{\infty} \setminus \sim$$

und $\|.\|_{\infty}$ eine Norm auf \mathcal{L}_{∞} und somit auch \mathcal{L}_{∞} ein normierter Vektorraum, bzw. sogar ein Banachraum.

Definition 2.3.14. Sei (f_n) eine Folge von Funktionen,

$$f_n:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B}),$$

die gegen ein f fast gleichmäßig konvergiert, wenn

$$\forall \varepsilon > 0 \exists A \in \mathfrak{S} : \mu(A^c) < \varepsilon \text{ mit } f_n \to f \text{ gleichmäßig auf } A.$$

Beispiel 2.3.0.1. Sei $([0,1],\mathfrak{B})\cap [0,1],\lambda\big|_{\mathfrak{B}\cap [0,1]})$ und

$$f_n(\omega) = \omega^n$$

dann ist

$$\lim_{n \to \infty} f_n(\omega) = \begin{cases} 0: & 0 \le \omega < 1 \\ 1: & \omega = 1 \end{cases},$$

wir können also ein beliebig kleines Intervall A um 1 herausnehmen, sodass f_n gleichmäßig auf A^c konvergiert, also konvergiert f_n fast gleichmäßig.

Satz 2.3.15 (Satz von Egorov). Sei $(\Omega, \mathfrak{S}, \mu)$ endlich

$$f_n, f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$$

dann ist

$$f_n \to f \ \mu - fast \ \ddot{u}berall \Leftrightarrow f_n \to f \ \mu - fast \ gleichm\ddot{a}\beta ig.$$

Definition 2.3.16. Sei $(\Omega, \mathfrak{S}, \mu)$

$$f_n, f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Dann ist $f_n \to f$ im Ma β (in Wahrscheinlichkeit, wenn $(\Omega, \mathfrak{S}, \mu)$ ein Wahrscheinlichkeitsraum ist), wenn

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu([|f_n - f|] \ge \varepsilon]) = 0.$$

Bemerkung. Diese Konvergenz ist später wichtig in der Statistik. Dies ist auf endlichen Maßräumen die schwächste Konvergenzart.

Satz 2.3.17. Gilt $f_n \to f$ im Maß und $f_n \to g$ im Maß, so folgt

$$f=g$$
 fast überall.

Bemerkung.

$$\begin{array}{ccc} & \text{fast "überall gleichmäßig} \\ & & \downarrow \\ & \text{fast gleichmäßig} \\ & & \downarrow \\ & \text{fast "überall} & \text{im Ma\$} \end{array}$$

Definition 2.3.18. Sei $(f_n) \to f$ eine Folge von fast überall messbaren, fast überall endlichen, rellwertigen Funktionen. Sei f ebenfall fast überall messbar, fast überall endlich. Wenn

$$\forall \varepsilon > 0 : \mu([|f_n - f| > \varepsilon) \to 0 \Rightarrow f_n \to f \text{ im Maß}$$

gilt, dann nennen wir f_n Barock. ???? - nicht sicher ob das stimmt

Lemma 2.3.19. Sei $\mathcal{L}_0 = \{f : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})\}$. Dann ist

$$d(f,g) := \inf\{\varepsilon > 0 : \mu([|f - g| > \varepsilon]) < \varepsilon\}$$

eine Pseudometrik auf \mathcal{L}_0 . d heißt Lévy-Metrik.

Bemerkung. Es gilt

$$d(f,g) = 0 \Leftrightarrow f = g \ \mu - \text{fast "uberall"}$$

Mithilfe der Äquivalenzrelation

$$f \sim g : \Leftrightarrow f = g \ \mu$$
-fast überall,

zerfällt \mathcal{L}_0 in Äquivalenzklassen. Auf

$$L_0 = \mathcal{L}_0 \setminus \sim = \{ [f]_{\sim} : f \in \mathcal{L}_0 \}, [f]_{\sim} = \{ g \in \mathcal{L}_0 : g \sim f \}$$

ist damit d eine Metrik.

Definition 2.3.20. $(f_n), f_n \in \mathcal{L}_0$ ist eine Cauchyfolge im Ma β , wenn

$$\forall \varepsilon > 0 : \lim_{m,n \to \infty} \mu([|f_n - f_m| > \varepsilon]) = 0,$$

das heißt

$$\forall \delta > 0 \exists n_0 \forall m, n \geq n_0 : \mu([|f_n - f_m| > \varepsilon] < \delta$$

Im Folgenden arbeiten wir auf den folgenden Satz hin:

Satz 2.3.21. (L_0, d) ist vollständig.

Satz 2.3.22. Sei (f_n) . Es gilt

$$f_n \to f$$
 im $Ma\beta \Leftrightarrow d(f_n, f) \to 0$.

Satz 2.3.23. Sei (f_n) Cauchyfolge im Ma β . Dann existiert eine Teilfolge (f_{n_k}) , die fast gleichmä β ig konvergiert.

Erinnerung: Sei

$$f:\Omega_1\to\Omega_2,$$

 \mathfrak{S}_2 Sigmaalgebra über Ω_2 , $f^{-1}(\mathfrak{S}_2)$ ist Sigmaalgebra über Ω_1 (und zwar die kleinste Sigmaalgebra, bezüglich der f messbar ist).

Definition 2.3.24. Sei $(f_i)_{i\in I}$ eine Familie von Funktionen $\Omega \to \Omega_i$, \mathfrak{S}_i Sigmaalgebra über Ω_i . Die von $(f_i)_{i\in I}$ erzeugte Sigmaalgebra $\mathfrak{S}_{\sigma}((f_i)_{i\in I})$ ist die kleinste Sigmaalgebra, bezüglich der alle f_i messbar sind.

$$\mathfrak{S}_{\sigma}((f_i)_{i\in I}) = \mathfrak{S}_{\sigma}(\{f_i^{-1}(B), i\in I, B\in\mathfrak{S}_i\})$$

Bemerkung. Anschaulich: $\{f: \mathfrak{S}_{\sigma}((f_i)_{i\in I}) \to (\mathbb{R}, \mathfrak{B})\}$ sind alle Funktionen, die wir aus den Funktionen $(f_i)_{i\in I}$ berechnen können. (kleine Lüge, eigentlich ist es alles, was wir "vernünftig" aus den Funktionen berechnen können)

Satz 2.3.25. Sei $f: \Omega_1 \to \Omega_2$, $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Dann ist

$$g:\Omega_1\to\mathbb{R}$$

genau dann bezüglich $f^{-1}(\mathfrak{S}_2)$ messbar (also $g:(\Omega_1,f^{-1}(\mathfrak{S}_2))\to (\mathbb{R},\mathfrak{B})$) wenn es ein $h:(\Omega_2,\mathfrak{S}_2)\to (\mathbb{R},\mathfrak{B})$ mit $g=h\circ f$ gibt.

2.4 Messbare Funktionen und Maße

Definition 2.4.1. Seien $(\Omega_1, \mathfrak{S}_1, \mu_1), (\Omega_2, \mathfrak{S}_2, \mu_2)$ Maßräume. Dann heißt $f: \Omega_1 \to \Omega_2$ maßtreu, wenn

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$\forall B \in \mathfrak{S}_2 : \mu_2(B) = \mu_1(f^{-1}(B)).$$

Satz 2.4.2. Sei $(\Omega_1, \mathfrak{S}_1, \mu_1)$ ein Maßraum und $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Für eine Funktion

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

kann man ein eindeutig bestimmtes Maß

$$\mu_2(B) = \mu_1(f^{-1}(B))$$

definieren, sodass f eine maßtreue Abbildung wird. μ_2 heißt das von f induzierte Maß.

Bemerkung. Ist $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum so heißt $X : (\Omega, \mathfrak{S}) \to (\Omega_2, \mathfrak{S}_2)$,

$$\mathbb{P} \circ X^{-1} = \mathbb{P}_X$$

die Verteilung von X.

2.5 Zufallsvariable und ihre Vertilungen

Definition 2.5.1. Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und

$$X_i: (\Omega, \mathfrak{S}) \to (\Omega_i, \mathfrak{S}_i), i \in I.$$

Wir nennen $(X_i)_{i \in I}$ unabhängig, wenn

$$\forall n \in N \forall \{i_1, ..., i_n\} \subseteq I : \mathbb{P}\left(\bigcap_{k=1}^n X_{i_k}^{-1}(A_{i_k})\right) = \prod_{k=1}^n \mathbb{P}(X_{i_k}^{-1}(A_{i_k})), A_{i_k} \in \mathfrak{S}_{i_k}.$$

Bemerkung. Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. $(\mathfrak{S}_i)_{i \in I}$ Teilsigmaalgebra von \mathfrak{S} (d.h. $\mathfrak{S}_i \subseteq \mathfrak{S}$), dann heißen $(\mathfrak{S}_i)_{i \in I}$ unabhängig, wenn

$$\forall n \in \mathbb{N}, \forall \{i_1,...,i_n\} \subseteq I: \mathbb{P}\left(\bigcap_{k=1}^n A_{i_k}\right) = \prod_{k=1}^n \mathbb{P}(A_{i_k})$$

Bemerkung. Ab jetzt: $\Omega_i = \mathbb{R}, \, \mathfrak{S}_i = \mathfrak{B}.$

2.5.1 Diskrete Verteilungen

Definition 2.5.2 (Alternativ- oder Bernoulliverteilung). Sei X eine Indikatorfunktion $X = A(), A \in \mathfrak{S}$.

$$\mathbb{P}_X(\{1\}) = \mathbb{P}(A), \mathbb{P}(A) = p, \mathbb{P}_x(\{0\}) = 1 - \mathbb{P}(A)$$

 $mit \ 0 \le p \le 1$ heißt Alternativ- oder Bernoulliverteilung. $p = \frac{1}{2}$ werden wir dann als Münzwurf bezeichnen.

Definition 2.5.3 (Diskrete Gleichverteilung: (Laplacescher Warhscheinlichkeitsraum)).

$$\mathbb{P}(X = x) = \frac{1}{b - a + 1}, x = a, a + 1, ..., b; a, b \in \mathbb{Z}$$

Definition 2.5.4 (Binomialverteilung). Seien $A_1, ..., A_n$ unabhängig $\mathbb{P}(A) = p$.

 $X = Anzahl \ der \ Ereignisse, \ die \ eintreten \in \{0, ..., n\}$

Beispiel 2.5.1.1. Binomialverteilung:

$$\mathbb{P}(X=n) = \mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1) \cdots \mathbb{P}(A_n) = p^n$$
$$\mathbb{P}(X=0) = \mathbb{P}(A_1^c \cap \dots \cap A_n^c) = (1-p)^n$$

Alles weitere ist etwas komplizierter:

$$\mathbb{P}(X=1) = \mathbb{P}((A_1 \cap A_2^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \cap \dots) \cup \dots \cup (A_1^c \cap \dots \cap A_{n-1}^c \cap A_n)) = n \cdot p^1 \cdot (1-p)^{n-1}.$$

Der allgemeine Fall sieht dann wie folgt aus:

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, k = 0, ..., n$$

mit der Konvention $\binom{n}{k} = 0$, wenn k < 0 oder k > n. Diese Verteilung heißt Binomialverteilung B(n, p).

Definition 2.5.5 (Poisson-Verteilung). $\mathbb{P}(X=n)=\frac{\lambda^n e^{-\lambda}}{n!}, n=0,1,...; \lambda>0$. Dies ist der Grenzfall der Binomialverteilungen für $np\to\lambda$ für $n\to\infty$ (vgl Übung.)

Definition 2.5.6 (Geometrische Verteilung).

$$G(p): \mathbb{P}(X=n) = p(1-p)^n, n \ge 0$$

 $\tilde{G}(p), \mathbb{P}(X=n) = p(1-p)^{n-1}, n > 1$

Definition 2.5.7 (negative Binomialverteilung).

$$NB(\alpha, p): \mathbb{P}(X = n) = (1 - p)^n p^{\alpha} \binom{n + \alpha - 1}{n}, n \ge 0$$

Definition 2.5.8 (Hypergeometrische Verteilung). Bsp: Sei eine Urne mit N Kugeln, A schwarze, N-A weiße. Es werden n Kugeln ohne zurücklegen gezogen. Sei

 $X = Anzahl \ der \ schwarzen \ Kugeln \ unter \ den \ gezogenen$

Dann ist

$$H(N,A,n): \mathbb{P}(X=x) = \frac{\binom{A}{x}\binom{N-A}{n-x}}{\binom{N}{n}}$$

$$\left(=\binom{n}{x}\frac{A\cdot(A-1)\cdots(A-x+1)\cdot(N-A)\cdots(N-A-n+x+1)}{N\cdots(N-n+1)}\right)$$

2.5.2 Stetige Verteilungen

Definition 2.5.9 (Stetige Gleichverteilung).

$$\mathbb{P}(A) = \frac{\lambda(A)}{b-a}, A \subseteq [a,b], A \in \mathfrak{B},$$

$$F_X(x) = \left\{ \begin{array}{l} 0: & x < a \\ \frac{x-a}{b-a}: & a \le x < b \\ 1: & x \ge b \end{array} \right\} = \int_{-\infty}^x f_x(u) du,$$

$$f_x(x) = \left\{ \begin{array}{l} \frac{1}{b-a}: & a \le x \le b \\ 0: & sonst \end{array} \right.$$

Definition 2.5.10 (Normalverteilung).

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$\mathbb{P}_X = \mathbb{P} \circ X^{-1}$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{x^2}{2}}$$

$$\Rightarrow \Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Definition 2.5.11. Ist die Verteilungsfunktion F_X differenzierbar, so heißt $f_X = F_X'$ die Dichte (-funktion) von X. Es gilt hierbei

$$f$$
 ist $Dichte \Leftrightarrow f \geq 0, \int_{-\infty}^{\infty} f(x)dx = 1.$

Definition 2.5.12 (Exponential verteilung $E(\lambda)$).

$$f(x) = \lambda e^{-\lambda x}, x \ge 0$$

bzw

$$F(x) = (1 - e^{-\lambda x}), x \ge 0.$$

Definition 2.5.13 (Gammaverteilung).

$$f(x) = \frac{x^{\alpha - 1} \lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x}, x \ge 0, \alpha 0, \lambda > 0$$
$$\Gamma(\alpha) = \int_0^{\infty} x^{\alpha - 1} e^{-x} dx$$

wobei

$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$

und

$$\forall n \in \mathbb{N} : \Gamma(n) = (n-1)!$$

gilt.

Definition 2.5.14 (Betaverteilung 1. Art, $B_1(\alpha, \beta)$).

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 \le x \le 1$$

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Definition 2.5.15 (Betaverteilung 2. Art, $B_2(\alpha, \beta)$).

$$f(x) = \frac{1}{B(\alpha, \beta)} \cdot \frac{x^{\alpha - 1}}{(1 + x)^{\alpha + \beta}}, x \ge 0.$$

Definition 2.5.16 (Chiquadratverteilung mit n Freiheitsgraden).

$$\Gamma(\frac{n}{2}, \frac{1}{2}) = \chi^2 n,$$

ist für uns derzeit nicht besonders wichtig, aber in der Statistik schon.

Definition 2.5.17. Sei X eine Zufallsvariable. Dann bedeutet $X \sim F$, dass X die Verteilung F besitzt.

Beispiel 2.5.2.1. Sei X eine Zufallsvariable mit stetiger und streng monotoner Verteilungsfunktion F_X . Sei

$$Y = F_X(X)$$

die Verteilung von Y. Da F_X stetig und streng monoton steigend ist, existiert eine Umkehrfunktion F_X^{-1} . Damit ist

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(F_X(X) \le y) = \mathbb{P}(X \le F_X^{-1}(y)) = F(F^{-1}(y)) = y.$$

Damit hat Y die Verteilungsfunktion $F(X) \sim U(0,1)$. Setzt man also eine Zufallsvariable in ihre Verteilungsfunktion ein, so erhält man eine Gleichverteilung.

Sei umgekehrt U auf [0,1] gleichverteilt, dann ist $F^{-1}(U) \sim F$. (Beweis übergangen)

Definition 2.5.18 (Verallgemeinerte Inverse). Die Verallgemeinerte Inverse einer Verteilungsfunktion F ist

$$F^{-1}(y) = \inf\{x : F(x) \ge y\}.$$

Damit folgt

$$x < F^{-1}(y) \Rightarrow F(x) < y.$$

Satz 2.5.19. Sei $U \sim U[0,1]$ und F eine Verteliungsfunktion. Dann ist

$$F^{-1}(U) \sim F$$
.

Satz 2.5.20. Sei F stetig und $X \sim F$. Dann gilt

$$F(X) \sim U(0,1)$$
.

2.6 Das Integral

Anschaulich: Beim Lebesgue Integral wird im Gegensatz zum Riemann-Integral der Grenzwert nicht über vertikale, sondern über horizontale "Scheiben" gebildet.

Definition 2.6.1. Sei

$$f:(\Omega,\mathfrak{S})\to(\mathbb{R}_0^+,\mathfrak{B})$$

in einem Maßraum $(\Omega, \mathfrak{S}, \mu)$. Dann definieren wir das Lebesgue-Maß als

$$\int f d\mu = \int_0^\infty \mu([f > y]) dy,$$

also als uneigentliches Riemann-Integral, wobei wir das Integral gleich ∞ setzen, falls es ein y gibt, sodass $\mu([f>y])=\infty$.

Definition 2.6.2 (Allgemeiner). Für

$$f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$$

definieren wir

$$f_+ := \max(f, 0)$$

$$f_{-} := \max(-f, 0).$$

Dann gilt

$$f = f_+ - f_-$$

und wir können

$$\int f d\mu = \int f_{+} d\mu - \int f_{-} d\mu$$

schreiben, falls der Ausdruck definiert ist, also nicht " $\infty - \infty$ " ist. Andernfalls sagen wir, dass $\int f d\mu$ nicht existiert. Existiert $\int f d\mu$, so nennen wir f integrierbar, falls

$$\int f d\mu < \infty.$$

Definition 2.6.3. Sei

$$\mathfrak{L}_1(\Omega,\mathfrak{S},\mu) := \left\{ f: \left| \int f d\mu \right| < \infty \right\},\,$$

also die Menge der integrierbaren Funktionen.

Bemerkung (Notation). Man kann auch

$$\int f d\mu = \int f(x) d\mu(x) = \int f(x) \mu(dx)$$

schreiben. Wissen wir, von welchem Maß die Rede ist, so schreibt man auch einfach

$$\int f$$
.

Außerdem schreibt man für eine messbare Menge $A \in \mathfrak{S}$

$$\int_{A} f = \int A() \cdot f,$$

also das bestimmte Integral.

Satz 2.6.4.

(1) Sei $f \geq 0$. Dann gilt

$$\int f \ge 0,$$

wobei

$$\int f = 0 \Leftrightarrow f = 0\mu - fast \ \ddot{u}berall$$

gilt.

(2) Sei $f \leq g$, so folgt

$$\int f \le \int g.$$

(3) Sei $c \geq 0$, dann gilt

$$\int cf = c \int f.$$

(4) Seien f, g. Dann gilt

$$\int (f+g) = \int f + \int g.$$

(5) Satz von der monotonen Konvergenz, Satz von Beppo-Levi: Sei $f_n \uparrow f$. Dann folgt

$$\int f_n \uparrow \int f$$

(6) Sei $f = \sum_{i=1}^{n} a_i A_i(), a_i \ge 0, A_i \in \mathfrak{S}$ disjunkt, also eine Treppenfunktion. Dann gilt

$$\int f d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$