HOW TO DRAW A GRAPH BY W.T. TUTTE

- 3-connected: A graph G is 3-connected (nodally 3-connected) if it is simple and non-separable and satisfies the following condition; if G is the union of two proper subgraphs H and K such that HNK consists solely of two vertices a and V, then one of H and K is a link-graph (aic-graph) with ends a and V.
- peripheral polygon: Let J be a polygon of G and let $\beta(J)$ denote the number of bridges of J in G. If $\beta(J)$ (I we call J a peripheral polygon of G.
- (2.1) Let G be a nodally 3-connected graph. Let J be a polygon of G and B any bridge of J in G. Then either J is a peripheral or J has another bridge B' which closs not avoid B.
- a second bridge B' of J in G we say that B' avoids B. Then B avoids B'.
- of K, in G. C a subgraph of B. and L a branch of G in K. Then we can find a peripheral polygon J of G such that L C J and JNC = K. NC.

- (23) Let G be a nodally 3-connected graph which is not a polygon or a link-graph, and let L be a branch of G. Then we can find two peripheral polygons J, and J, of G such that J. N Jz = L.
- (24) Let G be a nodally 3-connected graph. K a polygon of G. B a bridge of K in G, and L a branch of C contained in K. Let J. and J be peripheral polygons of G such that L C J. N J. and neither BN J. por BN J. is a subgraph of K. Then we can find a peripheral polygon J, dirtind from J, and J, such that L C J.

- (2.5) Let G be a nodally 3-connected non-null graph Then we can find a set of p. (G) independent peripheral cycles of G.
- peripheral cycle. Consider the set of cycles of a connected graph G. The rank of this set the maximum number of cycles independent under mod-2 coldition, is

P. (G) = x.c(G) - x.(G)+1

We reter to the elementary cycles associated with a peripheral polygon as a peripheral cycle.

- (26) Let G be a needally 3-connected non-null graph with at least two edges, which is not a polygon Suppose that no edge of G belongs to more than two distinct peripheral polygons. Then G has just p. (G) + 1 dirtinct peripheral cycles, and they constitute a planar mesh of G.
- (17) A peripheral polygon K of a non-seperable graph G belongs to every planar mesh of G
- (2.8) If M is a planar mesh of a nodally 3-connected graph G, then each member of M is
- (2.7) + (2.8) show that a modally 3-ronnected graph has at most one planar mesh.

representation. We call H a representation of G in Tif it satisfies the following conditions (i) No edge of H contains any vertex of 1-1.

(ii) It e and e' are distinct edges of G, then fre) and fre's are disjoint.

A graph G is said to be planar if it has a representation in TI

- (3.1) Each peripheral polygon of H bounds a face of 1-1.
- (3.2) If a graph G has three distinct peripheral polygons with a common edge, then G is non-planar.

Kuratonski graph of Type I.

Kuratonski graph of Type II

(4.1) Every Kuratonski graph is non-planar. COPOLLARY. Any graph having a Kuratowsk: subgraph is non-planar. crossing diagonals: Lot J be a phygon of a graph G. Let a., as, ci, ay be distinct vertices of J such that a. and a, separate as from an on J. Let Lis and Liy be disjoint are-graphs of G spanning J. Then we say that Lis and Liy are crossing diagonals of J.

(5.1) Given a peripheral polygon of G with a pair of crossing diagonals we contind a Kuratowski subgraph of G of Type I.

(a. a., a., a., x', y' form a Kuratowski graph of Type I).

(5.2) Let J be a peripheral polygon of a graph G. Let a, b, and c be distinct vertices of J. Let Y., Yz be Y-graphs of G. each with ends a, b, and c, which spans J. Suppose further that Y. N Xz consists solely of the vertices a, b, and c. Then we can find a Kuratowski subgraph of G.

Banycentric mappings

If neigh let Aci) be the set of all vertices of Co adjacent to Vi, that is joined to Vi by an edge. For each vi in Aci) let a unit mass my be placed at point fevi). Then fevil is required to be the centroid of the masses mi

Denoting the coordinates of five, 15 ism, by cxi, yi).

Define a matrix K(G) = {Cij}, 1 < ci, j) < m, as follows.

If it | then (ij is minus the number of edges joining vi and vj

If i= i then Cij is the degree of Vi.

Then the foregoing regularized specifies the roordinates as and y, for nejem, as the solutions of the equations

(5)
$$\sum_{j=1}^{m} C_{ij} x_{j} = 0$$

(6)
$$\sum_{j=1}^{\infty} C_{ij} y_{j} = 0$$

where nkikm.

P(i): Choose a line l in the plane and define ((i) . I & i & m, as the perpendicular distance of f(v;) from l, counted positive on one side of l and negative on the other.

positive p-poles. The nodes V: of J with the greatest value of φ(i) are the positive φ-poles of G.

The number of positive φ-poles is either 1 or 2.

rising (falling) e-path: Let P be a simple path in G. We call Pa rising challing) e-path interach vetter of P other than the last corresponds to a smaller agreater) value of the function $\varphi(i)$ than does the immediately succeeding vertex

- (6.1) Suppose that v_i , where $n < i \le m$, is a φ -article vertex. Then it has adjacent vertices v_i and v_k such that $\varphi(v_j) < \varphi(v_i) < \psi(v_k)$
- (6.2) Let vi be a quartire vertex Then we can find a rising up-path P from vi to a positive up-pole, and a falling up-path P' from vi to a negative up-pole
- (7.1) Every node of Gr is 4-active.
- (7.2) Suppose vi & VCJ) Then f(vi) is in the interior of Q.
- (8.1) Let K be a peripheral polygon of G such that V(K) includes just three nodes x, y, and z of G. Then f(x), feys, and f(z) are not collinear.
- (8.2) Let K be a peripheral polygon of G let V_P , V_Q , V_r , and V_s be nodes of G_r in V(K) such that V_P and V_r separate V_Q and V_S in K. Then it is not true that

 (7) $\Psi(C_P) > \Psi(C_Q) \leq \Psi(C_r) > \Psi(S_r) \leq \Psi(D_r)$

(8.3) The nodes of any peripheral polygon K of G are mapped by fonto distinct points of the plane, no three of which are collinear.

- (8.4) Let L be a branch of Gr having just t > 1 internal vertices, and let its ends be a and b. Then fine and f(b) are distinct and f maps the internal vertices onto & distinct points of the segment for fibs subdividing it into the equal parts. Moreover, the order of the vertices from a to b in L agrees with that of their images in faufib)
- (85) Let k be any peripheral polygon of G. Then I maps the nodes of Gink onto the vertices of a Egeometrical) convex polygon Qx so that the cyclic order of nodes in k agrees with that of varlies in QK
- (8.6) Let e be any edge of R. Then just two distinct peripheral polygons of G pass through e, and the two corresponding regions Rx lie on opposite sides of the segment free.

Barycontric representations

number of distinct peripheral polygons Kot G such Het AERK.

- (9.2) Let G be a nodally 3-connected graph having no Kuratowski subgraph. Let I be a peripheral polygon of G which includes just no 3 nodes of G. led Q be an n-sided convex polygon in the Euclidean plane. Then there is a unique barycentric representation of G on Q mapping the nodes of G occurring on I and the vertices of Q in any arbitrary specified way preserving the cyclic order.
- (9.3) Let G be a modally 3-connected graph having at least one polygon. Then if G has no Kuratowski subgraph we can construct a convex representation of G.

Straight representations

- (10.1) Let G be the union of two proper subgraphs II and K such that HINK is either null or a vertex-graph. Let My and Mk be planar meshes of H and K respectively. Then My UMk is a planur mesh of G. Moreover, any planar mesh of G can be represented in this form.
- (10.6) Let G be a graph having a planer mesh M. Then each subgraph of CI has a planer mesh. (10.7) If a graph has a planor mesh it has no Kuralonski subgraph.
- (10.8) let G be any simple graph having a planar mesh. Then by adding new links to Gr. with ends in VCG), we can construct a nodally 3-connected graph T having a planar mesh.

 (10.9) If G is a simple graph having a planar mesh we can find a straight representation of G in this plan

{MIT 6.889} by Erik Demaine, Shay Mozes, Unistian Sommer, Siomak lazari

Survey : general Problems O(n lgin Ocam) [Bellman-Food] _ single - source Shorest paths [Mozes & Wolfd-Nilson -ESA 2010] carbitiony weights) -nonegative O(n/gn+m) O(n) weights [Dijksta] + [Henzinger, [Fredman & Tarjan]
- JACM 1987 Klein, Rao, - JCSS 1997] - maximum flow O(nm lg n) Ocnlyn) [Croldberg & Taijan 1986] [Borradaile & Ocm Ign Igu) Klein - JACM 2009] [Goldberg & Rao 1997] -undirected Ocn lylan) [Haliano, Nussbaum, Samkowski. Wull-Nilsen - STOC 2011] O(n lg3n) - multiterminal [Borradnile. Klein, Mozes, Nussbaum, Wult-Nilsen - FOC5 2011]

- min spanning tree Ocn) rand. Ocn) det [Kniger, Klein, Taujan 1985]