Problem 1

Последний вариант. Уравнение одно, лианеризации нет.

Задача № 1

<u>Условие</u>: Миномет установлен у основания некоторой горы под углом $\alpha=1,5$ радиана к горизонту. Минометный расчет ведет записи о том, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

	v_0 , м/с	10	14	18	22	26	30	34	38	42	46
ſ	l, M	0,710576	1,611942	2,85057	4,45474	6,48101	8,9838	12,0195	15,6393	19,879	24,7493
ſ	$v_0, { m m/c}$	50	54	58	62	66	70	74	78	82	
ſ	<i>l</i> , м	30,2305	36,2765	42,8294	49,8405	57,2941	65,2363	73,8201	83,4179	95,0382	

Решение: Сопротивлением воздуха при решении задачи пренебрегаем. Введем систему координат, как на рис. 1.1. Рассмотрим движение снаряда, выпущенного из начала координат со скоростью v_0 под углом α к горизонту. Его координаты при таком движении зависят от времени по законам $x(t) = v_0 t \cos \alpha$ и $y(t) = v_0 t \sin \alpha - g t^2/2$ соответственно. Выразив t из первого уравнения и подставив во второе, получим уравнение траектории:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (1)

Перейдем к полярным координатам (l,φ) . Будем искать полярные углы φ точек падения снарядов. Координаты точек падения снаряда $x=l\cos\varphi$ и $y=l\sin\varphi$. Подставим их в уравнение (1) и разделим обе его части на x:

Рис. 1.1. Ось Ox горизонтальна, ось Oy вертикальна. Миномет расположен в начале координат.

$$\operatorname{tg}\varphi = \operatorname{tg}\alpha - \frac{gl\cos\varphi}{2v_0^2\cos^2\alpha},$$

откуда, с использованием тождества $\lg\alpha-\lg\varphi=\frac{\sin(\alpha-\varphi)}{\cos\alpha\cos\varphi}$ получим

$$\sin(\alpha - \varphi) = \frac{gl\cos^2\varphi}{2v_0^2\cos\alpha}.$$
 (2)

Такое уравнение невозможно решить стандартными способами, оно приводится к уравнению четвертой степени с громоздким решением.

Попробуем тогда найти приближенное решение. Элементарными преобразованиями уравнение (2) приводится к виду

$$\frac{\sin(\alpha - \varphi)}{\cos^2 \varphi} = \frac{gl}{2v_0^2 \cos \alpha}.$$

График зависимости левой части от переменной φ изображен на рис. 1.3. Так как во всех 19 случаях величина $\varepsilon = gl/2v_0^2\cos\alpha$ меньше, чем $f(0)=\sin\alpha$, то уравнение имеет единственный корень, близкий к $\pi/2$ (он соответствует пересечению изображенного графика с прямой $f(\varphi)=\varepsilon$, а функция, изображенная на графике, очень быстро убывает при φ , близком к α). Так как и угол α близок к $\pi/2$, то будем считать углы α и φ близкими между собой. А именно, применим приближения

Рис. 1.3. График $f(\varphi) = \sin(\alpha - \varphi)/\cos^2 \varphi$, где $\alpha = 1,5$ рад.

 $\sin(\alpha-\varphi) \approx \alpha-\varphi$ и $\cos\varphi = \sin(\pi/2-\varphi) \approx \pi/2-\varphi$. Уравнение (2) примет вид

$$\alpha - \varphi = \frac{gl}{2v_0^2 \cos \alpha} \left(\frac{\pi}{2} - \varphi\right)^2,$$

которое легко привести к виду

$$q\varphi^2 - \varphi(q\pi - 1) + \left(\frac{q\pi^2}{4} - \alpha\right) = 0, \quad q = \frac{gl}{2v_0^2 \cos \alpha}.$$

Получили квадратное уравнение, корни которого

$$\varphi_{1,2} = \frac{1}{2q} \left(q\pi - 1 \pm \sqrt{(q\pi - 1)^2 - q\pi^2 + 4\alpha} \right).$$

Во всех случаях искомый корень — с плюсом перед радикалом (второй корень не подходит, так как он не соответствует примененным приближениям). В таблице представлены решения этого уравнения для всех случаев, представленых в условии, в порядке их перечисления. Как далее выяснится, ошибка по сравнению с точным решением $\Delta \varphi = 0.001^{\circ}$.

	φ, \degree	85,7915	85,7645	85,7517	85,7419	85,7326	85,7229	85,7126	85,7018	85,6907
ſ	85,6797	85,6695	85,6604	85,6528	85,6466	85,6416	85,6373	85,6328	85,6266	85,6151

Рис. 1.4. График поверхности горы по точкам (не в масштабе). Зеленым изображена поверхность горы, другими цветами изображены траектории снарядов. Справа приведен график в масштабе.

По полученным данным был построен график¹, см. рис. 1.4. Траектории снарядов кажутся настолько прижатыми к поверхности из-за малой разности углов α и φ .

По полученным данным полярные углы φ всех точек близки, то есть форма горы близка к линейной. Однако в пределах погрешности можно утверждать, что гора выпукла вверх. Наилучшая линеаризация

¹ На самом деле он построен по данным точного решения. Впрочем, невооруженным глазом это различие не заметно.

горы соответствует углу наклона — среднему этих величин²: $\overline{\varphi}=85{,}69^\circ$. Высота горы $H=l_{19}\sin\varphi_{19}=94{,}7601$ м.

Проверим полученные результаты при помощи точного решения. Уравнение (2) решила программа $Mathematica^3$. Полученные данные иллюстрирует следующая таблица:

$\varphi,$ °	85,7918	85,7648	85,7521	85,7423	85,7330	85,7234	85,7131	85,7023	85,6912
85,6803	85,6701	85,6610	85,6534	85,6472	85,6423	85,6380	85,6335	85,6273	85,6159

Как видим, отличие от приближенного решения в четвертом знаке после запятой.

<u>Ответ</u>: Высота H=94,7601 м, форма — кривая с выпуклостью вверх, которую можно аппроксимировать наклонной плоскостью, образующей угол $\varphi=85,69^{\circ}$ с горизонтом.

 $^{^{2}{\}rm Ha}$ самом деле правильно усреднять не углы, а их тангенсы.

 $^{^3}$ Имеется в виду программа компании Wolfram Research, Inc., см. www.wolfram.com/mathematica