

Cloud Computing – The Ground Data Systems Perspective

M. Sarkarati, V. Reggestad, M. Merri, E. Doeling, K. Widegard European Space Agency

ESA UNCLASSIFIED— Releasable to the Public

European Space Agency

© 2016 by European Space Agency. Published by The Aerospace Corporation with permissio

Cloud Computing at ESA – IT Department

- ESA inter-directorate Cloud Computing Working Group started in 2009
- Study on Cloud Computing in ESA 2010
- Private Cloud (IaaS) proof of concept in 2010
- CC Cross Domain Requirements Engineering Study 20°
- ESA public cloud services (IaaS) available as of 2013
- ESA private cloud services (laaS) available as of 2014

Cloud Computing at ESA – Application Domains

A Number of ESA Projects Already Use Successfully Cloud Computing

(ESA's Cloudscape: A review of projects using cloud technology in ESA, William O'Mullane)

- Cloud Computing initiatives for Ground Data Systems (this Presentation)
- GAIA/AGIS Data Train
- EOP's GPOD
- ESA Communication Office
- ESA Collaboration Tools
- Supersites Geohazard Virtual Archive
- **–** ...
- The European Science Cloud HelixNebula Initiative
 - ESA Flagship Project

Cloud Computing for Mission Data Systems Technology Driven Approach

ESA UNCLASSIFIED- Releasable to the Public

Move Towards Cloud: Technology Driven

What did large enterprises do at early days of Cloud?

- How can our organisation/business benefit from Close Computing?
 Focus on migration of oxisting.
- •Focus on Private Claud deplacement •Focus on Private Claud deplacement
- •Focus on Private Cloud deployment ode
- How to solve legislations a

 - Contrentiality of Data

2010 – 2011 Cloudability Assessment For Mission Data Systems

60 Metrics:

- Number of HMI screens
- Number of interfaces
- Level of control
- Integration level with ot
- Implementation technole
- Nr of COTS involved

- Preliminary scoring scheme is rapid analysis of the ESA grou systems portfolio
- 2. Risk assessment is performed the initial assessment (Risk v suitability)
- 3. Selection of candidate ground systems for further detailed a

2012-2014 Island Private Cloud at ESOC

Proof-of-Concept Setup

- Starting from existing ESOC virtualised pre-OPS environment
- Hypervisor: VMware ESX
- Very limited hardware resources (2 Servers)
- Cloud Management: OpenNebula
- Configuration Management: Chef

2014 Simple SaaS Usage: Media Archive on a Public Cloud

Media Library

Archive, Compression, Encryption

Upload to Public Cloud Storage

Cloud Computing for Mission Data Systems Need Driven Approach

ESA UNCLASSIFIED- Releasable to the Public

Move towards Cloud: Need Driven

Selling a Refrigerator to Eskimos?

- 1. Which problems am I trying to solve?
- 2. Can Cloud Computing help there?
- 3. Which Cloud Computing?

Why Cloud?

- ESOC Cloud Computing for Ground Data Systems Working Group
- Formed in 2014, with experts from
 - Mission Ground Data Systems
 - Multi-Mission Infrastructure
 - ICT and Data Centre experts
- Analysis of Mission Data System Problem Domains
 - What are our problems today?
- Identification of use cases where Cloud Computing can help
 - Which Cloud?
- 15 Use Cases specified and presented to the management in a workshop
 - Short-term, mid-term and long-term use cases selected

Problem Domains - Computing Resources

- Increasing requirements/demand on computing resources
 - Data Rates → Transport / Storage / Processing
 - Processing Power → CPU / RAM
- Computing resources specifications driven by estimated peak requirements
- Growing number of computing resources per mission
 - Roughly 70 machines per mission
- Long provisioning time for computing resources
 - ~ 2 months for physical / 3 weeks for virtual
- Flexibility to Change (facility sharing, moving of systems, administration)
- Procured computing resources do not meet the software/performance requirements

Problem Domains – Data Centre

- Large number of various kinds of hardware machines maintained over a long period
 - Migration to newer hardware not transparent to the software
- Disaster recovery currently not sufficiently addressed
 - Extreme geographical proximity of the two data centres
- Significant administration effort of data centre
 - Monitoring and update of (e.g. security alerts) large number of 3rd party products
 - Limited automation due to diversity of hardware

Problem Domains – Baseline Management

- Obsolescence of HW certified for a particular Operating System Version
 - Non-aligned evolution roadmaps of SW/OS/HW
- Long life of the missions
 - Unrealistic mission lifetime.
 - Not exposure of the migration costs in mission plans
- Dependency between Operating System, 3rd party products and application software
- Large number of software baselines maintained in parallel
 - Little incentive for missions to migrate / often good technical reasons against migration
 - Lack of migration policy at centre level: Budgets are managed mission by mission
- High validation effort for SW migration to a higher OS version
 - Reluctance of continuously following the product evolution

Problem Domains – Software Provisioning

- Large Portfolio of products for mission operations
 - The more we use COTS the smaller our portfolio of custom developed software
- Multi-layer-provisioning of Mission Data Systems
 - Organisational setup
 - Lack of automation in the provisioning process
- Broken track in delivery from Contractors→ Data System Manager → Missions
 - Lack of a common development and validation environment
 - Lack of automation at software provisioning level
- Reuse of generic software infrastructure sometimes at code level
 - Lack of clear separation between "infrastructure" and mission specific modules
- Increasing awareness and requirements on secure software engineering

5 Prominent Cloud Computing Utilisation Scenarios

- Automated Provisioning of Mission Data Systems
 - DEVOPS Concept
 - Configuration Management
 - Auditing
- Automated Provisioning of a Reference Ground Segment
 - Multiple Applications
 - Mission Context
- Multi-Mission / Multi-User Mission Data Systems
 - Platform and Software as a Service
 - Security
- Collaboration Platform with Suppliers and Partners
- New Application Domains: SSA Space Weather Execution Platform as a Service (?)

Automated Provisioning of Mission Data Systems

Short-term Focus

Automated Provisioning at Application Level

- Automation is the key

- Proof of Concept since 2011

 Operational solution aimed for 2018

 Self-service provisioning up to application level

 Ease of confiction
- on and change management
- Requirements
- Automated deployment of Ref. Ground Segment (Multi App)
- 1st Generation Provisioning solution based on Chef
- We are looking into a number of alternatives for 2nd Generation
 - Salt, Puppet, Ansible, Docker ...

Moving towards Multi-Mission Platform/Software as a Service

Mid-term Focus

From "My Mission – My Computer – My Software" to Multi-Mission Platforms

Reuse Model for ESA Ground Infrastructure

Emulator for each nt used by some

Example of Simulation Platform as a Service Proof of Concept 2014-15

- SIMSAT: Generic multi-purpose simulation platform
- Standardised platform services (Scheduling, Logging, Eventing, Breakpointing ...)
- Simulation Model Portability Standard SMP2
 - New concepts for user management
 - New concepts for resource management
 - New concepts of workspaces and separated simulation sessions
 - New concepts for deployment of simulation models onto the platform
 - Enhancements to clients (Man-Machine Interfaces)

R&T Space Weather Model Execution PaaS

- Proof of Concept 2014
- The Space Weather Model Execution Platform
- Based on reuse of COTS technologies
- Model execution: stand-alone or in a work-flow
- Models are very diverse
- Highly demanding on computing resources
- SWEMEP runs on top of a hybrid laaS
- Abstraction layer between PaaS and IaaS
- Models can run externally in case of constraints

Security in the Cloud

ESA UNCLASSIFIED— Releasable to the Public

European Space Agency

Security in the Cloud

GSP Study DataChunks2Go - Completed in 2014

- Distributed processing in Cloud Deployments
- Four different Scenarios: Risks & Controls
- Hadoop based solution (Map-Reduce)
- Homomorphic Algorithm

GSTP Study Security as a Service Started in 2015

- Common security concerns when moving towards Paas/Saas
- Federated Identity Management for Mission Data Systems
- Security Gateways for Cloud Deployments

Cloud Computing as a Design Paradigm

ESA UNCLASSIFIED- Releasable to the Public

Cloud Aware Applications: Cloud As An Architectural Design Paradigm

- Cloud computing is not just a <u>deployment</u> question
- Cloud Aware Applications have built-in Cloud architectural design
- Basic principle of <u>Simple Design</u>
 - Some sources of complex design delegated to lower level cloud services
 - Performance and optimisation
 - Multi-threading, caching, session management
- Design To Fail!!
 - Failure tolerance, Redundancy Load Balancing
 - Delegated to the Cloud
- Design to run on a Cloud Platform
 - Google App Engine, SalesForce.com
 - AWS: design and deployment (work flows, ...)
 - Google Bigtable and Amazon SimpleDB

Take Aways

- ESA private laaS Cloud helps a lot in crossing the cultural barrier
- Do not stop at laaS
- We have started to look into PaaS and SaaS Architectural Concepts
- PaaS/SaaS models can often not be added easily "on-top" of legacy software
- ESA Cloud is an enabler in providing PaaS/SaaS solutions at application level
- The bigger Change comes with Multi-Mission Platform/Software as a Service Concepts
- Some of these concepts are taken into account for EGS-CC

