Group Research Meeting

Adwait Datar

Technical University of Hamburg

6th Jan,2020

Problem

- Coupled loop
- Two step-synthesis procedure:
 - 1 Design a local tracking exponentially stabilizing controller (with performance measures specified by the exponents)
 - 2 Use these as inputs to design the network dynamics
- Analysis via
 - rho-IQCs for exponential stability of tracking dynamics
 - Singular perturbation theory

rho-IQCs¹

- ▶ L2/I2 gains give conservative bounds on the exponents
- ▶ Less conservative LMI formulations via rho-IQCs

¹[2017] Boczar, Lessard, Packard, Recht

Time-scale separation²

$$\dot{x} = -(L(\mathcal{G}) \otimes I) (I \otimes M) z = -(L(\mathcal{G}) \otimes M) z$$

$$\varepsilon \dot{z} = g(x, z)$$

- ► If the time-scales are separated enough, we can study(and use the vast literature on)
 - simplified network dynamics
 - robust/LPV controller synthesis for uncertain/non-linear agent dynamics

 $^{^2 \}mbox{[}2019\mbox{]}$ Awad ,Chapman , Schoof , Narang-Siddarth, and Mesbahi

Starting Example

- First order consensus at the network level
- Possible options local agent dynamics:
 - LTI model with uncertain parameter
 - ▶ Damping coeff b = |x| non-linearity (=sector non-linearity?)
 - Force saturation non-linearity (=sector non-linearity?)

Problem 2: Stochastic version of the IQC result

Theorem 7.16 Suppose that $M: \mathcal{L}^k_{2e} \to \mathcal{L}^l_{2e}$ is causal and bounded, $\Delta: \mathcal{L}^l_{2e} \to \mathcal{L}^k_{2e}$ is causal, Σ is a bounded quadratic form, $\mathscr{D} \subset \mathcal{L}^l_{2e}$ and that

• there exist $\varepsilon > 0$ and m_0 such that

$$\Sigma \begin{pmatrix} w_T \\ M(w)_T \end{pmatrix} \le -\varepsilon \|w_T\|^2 + m_0 \underbrace{\text{for all } T > 0, w}_{} \in \mathcal{L}_2^k; \tag{7.3.2}$$

there exists δ₀ with

$$\Sigma\left(\begin{array}{c}\Delta(z)_T\\z_T\end{array}\right) \geq -\delta_0 \ \ \underline{for\ all} \ \ T>0,\ z\in M(\mathscr{L}_2^k)+\mathscr{D}. \tag{7.3.3}$$

Then there exist $\gamma > 0$ and γ_0 such for any $d \in \mathscr{D}$ with response $z \in \mathscr{L}^l_{2e}$ satisfying (7.3.1): $\varphi(0) = 0$

$$\|z_T\|^2 \le \gamma^2 \|d_T\|^2 + \gamma \gamma_0$$
 for all $T > 0$. We usual with Single 8 Ske (7.3.4) Windows logic key + Shift + Si

If M is linear one can choose $\gamma_0 = m_0 + \delta_0$.

- \triangleright \triangle is characterized by (7.3.3)
- ► Can we relax condition (7.3.3) and give a weaker implication of (7.3.4)

Thank you