Lecture 9 - Chapter 10 - Sec. 10.5 Lines and Planes

Dr M. Loan

Department of Physics, SCUPI

© 2023, SCUPI

Learning Objectives

- Find the equation of the line represented in any one of the following ways:
 - Vector parameterization
 - Scalar parametric equations
 - Symmetric form
- Determine whether a pair of lines intersect, parallel, or skew.
- Find the distance from a point to a line.
- Find the equation of the plane
- Determine whether a collection of vectors is coplanar.
- Find the distance from a point to a plane.

Equation of a Line in 3-D

- A line in the xy-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given. The equation of the line can then be written using the point-slope form.
- A line L in three-dimensional space is determined when we know a point $P(x_0, y_0, z_0)$ on L and a direction for L, which is conveniently described by a vector v parallel to the line.

Equation of a Line in 3-D

- Let P(x, y, z) be an arbitrary point on L and let r_0 and r be the position vectors of P_0 and P (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}).
- If \vec{a} is the vector with representation $\overrightarrow{P_0P}$, then the Triangle Law for vector addition gives

$$\vec{r} = \vec{r}_0 + \vec{a}$$

Equation of a Line

Since \vec{a} and \vec{v} are parallel vectors, there is a scalar t such that $\vec{a}=t\vec{v}$. Thus $\vec{r}=\vec{r}_0+t\;\vec{v}$

which is a **vector equation** of *L*.

 Each value of the parameter t gives the position vector r of a point on L. In other words, as t varies, the line is traced out by the tip of the vector r.

• The positive values of t correspond to points on L that lie on one side of P_0 , whereas negative values of t correspond to points that lie on the other side of P_0 .

Parametric Equations of the Line

If the vector v that gives the direction of the line L is written in component form
as

$$v = \langle a, b, c \rangle$$

then we have $tv = \langle ta, tb, tc \rangle$

• Also, we can write $r=\langle x,y,z\rangle$ and $r_0=\langle x_0,y_0,z_0\rangle$, so the vector equation becomes

$$\langle x, y, z \rangle = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$$

• Two vectors are equal if and only if corresponding components are equal. Therefore we have the three scalar equations:

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

- These equations are called parametric equations of the line L through the point $P(x_0, y_0, z_0)$ and parallel to the vector $v = \langle a, b, c \rangle$.
- Each value of the parameter t gives a point (x, y, z) on L.

Summary

Equation of a Line

A vector equation of the line passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, or

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$
, for $-\infty < t < \infty$.

Equivalently, the corresponding parametric equations of the line are

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, for $-\infty < t < \infty$.

Eliminating parameter t yields:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

These equations are called symmetric equations of L, and a, b, c are called direction numbers of L.

Test Your Understanding

True or False and why?

- (a) Two lines parallel to a third line are parallel.
- (b) Two lines perpendicular to a third line are parallel

Example – Q. 8-9, Ex. 10.5

Find parametric equations and symmetric equations for the line

- (a) that passes through the point (2, 1, 0) and perpendicular to both i + j and j + k.
- (b) That passes through (1,-1,1) and parallel to the line $x+2=(1/2)\ y=z-2$.

Solution:

(a) We need the direction vector of the line. Since it is perpendicular the lines, i + j and j + k, therefore

$$v = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = i - j + k$$

With $P_0(2,1,0)$, the parametric equations are x=2+t, y=1-t, z=t. The symmetric equations are

$$x - 2 = -(y - 1) = z$$

Example – Q. 8-9, Ex. 10.5

(b) The line has direction vector v = (1,2,1)

The line passing through (1,-1,1) will have the same direction vector since it is parallel to the given line. Therefore parametric equations are

$$x = 1 + t$$
, $y = -1 + 2t$, $z = 1 + t$

and the symmetric equations are

$$x - 1 = \frac{y - 1}{2} = z - 1$$

- Lines are parallel if the direction vectors are a scalar multiple of each other.
- Lines are perpendicular if the dot product of their direction vectors is zero.

Example – Q. 13, Ex. 10.5

- (a) Find parametric equations for the line through (5,1,0) that is perpendicular to the plane 2x y + z = 1.
- (b) In what points does this line intersect the coordinate planes? Solution
- (a) The vector normal to the plane is $n = \langle 2, -1, 1 \rangle$ Since the line is to be perpendicular to the plane, n is also a direction vector for the line. Thus parametric equations of the line are

$$x = 5 + 2t$$
, $y = 1 - t$, $z = t$

(b) On the xy-plane z=0, so $z=t=0 \Rightarrow t=0$ in the parametric equations of the line, and therefore x=5, y=1

giving the point of intersection (5,1,0).

Similarly, for the yz- and zx-planes give the intersection points (0,7/2,-5/2) and (7,0,1), respectively.

Skew Lines

• Lines that do not intersect and are not parallel (and therefore do not lie in the same plane) are called skew lines.

Show that the lines L_1 and L_2 with parametric equations

$$x = 1 + t$$
 $y = -2 + 3t$ $z = 4 - t$
 $x = 2s$ $y = 3 + s$ $z = -3 + 4s$

are skew lines.

Solution: The vectors corresponding to lines are $\langle 1,3,-1 \rangle$ and $\langle 2,1,4 \rangle$ Since the vectors are not parallel (there components are not proportional), hence corresponding lines are not parallel.

If L_1 and L_2 had a point of intersection, then there would be values of t and s such that 1+t=2s, -2+3t=3+s, 4-t=-3+4s

There are no values of t and s that satisfy the above three eqns., so L_1 and L_2 do not intersect. The lined are skew lines.

Homework 1 – 10.5

Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection

$$L_1 = \frac{x-2}{1} = \frac{y-3}{-2} = \frac{z-1}{-3}$$

$$L_2 = \frac{x-3}{1} = \frac{y+4}{3} = \frac{z-2}{-7}$$

Equation of Plane

- Unlike a line in space, a plane in space is more difficult to describe. A single vector parallel to a plane is not enough to convey the direction of the plane.
- However, a vector perpendicular to the plane does completely specify its direction.
- Thus, a plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector n that is orthogonal to the plane.
- This orthogonal vector is called n is called a normal vector.

Equation of Plane

- Let P(x, y, z) be an arbitrary point in the plane, and let r_0 and r be the position vector of P_0 and P. Thus the vector $r r_0$ is represented by PP_0 .
- The normal vector n is orthogonal to every vector in the given plane. In particular, it is perpendicular to $r-r_0$ and so we have

Either of the above equations is called the vector equation of the plane.

$$\langle a, b, c \rangle \cdot (x_{x_0}, y - y_0, z - z_0) = 0$$

 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

Scalar equation of a plane with normal vector n.

Example – Q. 30, Ex. 10.5

Find the equation of the plane that passes through the points (0, -2, 5) and (-1, 3, 1) and is perpendicular to the plane 2z = 5x + 4y.

Solution: The points (0, -2, 5) and (-1, 3,1) lie in the desired plane, so the vector $v_1 = \langle -1 - 0, 3 - (-2), 1 - 5 \rangle = \langle -1, 5, -4 \rangle$

connecting them is parallel to the plane.

The desired plane is perpendicular to the plane 2z = 5x + 4y or 5x + 4y - 2z = 0. For perpendicular planes, a normal vector for one plane is parallel to the other plane, so $v_2 = \langle 5, 4, -2 \rangle$ is also parallel to the desired plane.

The normal vector to the desired plane is

$$n = v_1 \times v_2 = \langle -10 + 16, -20 - 2, -4 - 25 \rangle = \langle 6, -22, -29 \rangle$$

Thus, the equation of the plane passing through $(x_0, y_0, z_0) = (0, -2, 5)$ and normal vector (6, -22, -29) is

$$6(x-0) - 22(y+2) - 29(z-5) = 0$$
 or $6x - 22y - 29z = 0$

Homework 2 – 10.5

Find the equation of the plane that contains the line

$$x = 3 + 2t$$
, $y = t$, $z = 8 - t$

and is parallel to the plane

$$2x + 4y + 8z = 17.$$

Example – Q. 32, Ex. 10.4

Find the equation of the plane that passes through the line of intersection of the planes x - z = 1 and y + 2z = 3 and is perpendicular to the plane x + y - 2z = 1.

Solution:

The normal vector of the two planes are $n_1 = \langle 1, 0, -1 \rangle$ and $n_2 = \langle 0, 1, 2 \rangle$ Setting z = 0, it is easy to see that (1,3,0) is a point on the line of intersection of x - z = 1 and y + 2z = 3

This direction of this line is $v_1 = n_1 \times n_2 = \langle 1, -2, 1 \rangle$

A second vector parallel to the desired plane is $v_2 = \langle 1,1,-2 \rangle$, since it is perpendicular to x + y - 2z = 1. Therefore, a normal to the plane in question is $n = v_1 \times v_2 = \langle 4 - 1,1 + 2,1 + 2 \rangle = \langle 3,3,3 \rangle = 3\langle 1,1,1 \rangle$

Thus the eqn. of the plane passing through (1,3,0) and normal vector $3\langle 1,1,1\rangle$ is

$$(x-1) + (y-3) + z = 0$$
 or $x + y + z = 4$

Homework 3 – 10.5

(a). Determine whether the planes

$$x = 4y - 2z$$
, $8y = 1 + 2x + 4z$

are parallel, perpendicular or neither. If neither, find the angle between them.

(b). Find an equation of the plane with x-intercept a, y-intercept b, and z-intercept c.

Distances - Point the Plane

In order to find a formula for the distance D from a point $P(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0, we let $P(x_0, y_0, z_0)$ be any point in the given plane and **b** be the vector corresponding to $\overrightarrow{P_0P_1}$. Then

$$b = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$$

The distance D from P_1 to the plane is equal to the absolute value Of the scalar projection of b onto the normal vector $n = \langle a, b, c \rangle$

$$D = |comp_n b| = \frac{|n \cdot b|}{|n|} = \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)}{\sqrt{a^2 + b^2 + c^2}}$$
$$= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

Example – Q. 49, Ex. 10.5

Since P_0 lies in the plane, its coordinates satisfy the equation of the plane and so we have $ax_0 + by_0 + cz_0 + d = 0$. Thus we have the following formula

The distance D from the point
$$P_1(x_1, y_1, z_1)$$
 to the plane $ax + by + cz + d = 0$ is

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Example – Q. 56, Ex. 10.5

Find the distance between the given parallel planes

$$2x - 3y + z = 4$$
, $4x - 6y + 2z = 3$

Solution:

Put y = z = 0 in the equation of the first plane to obtain the point (2, 0, 0) on the plane.

Because the planes are parallel, the distance D between them is the distance from (2,0,0) to the second plane.

$$D = \frac{|4(2) - 6(0) + 2(0) - 3|}{\sqrt{4 + (-6)^2 + (2)^2}}$$
$$= \frac{5}{\sqrt{56}}$$

Homework 4 – 10.5

(a) Find distance from the point (1, -2, 4) to the plane

$$3x + 2y + 6z = 5$$

(b) Find the distance between the given parallel planes

$$6z = 4y - 2x$$
, $9z = 1 - 3x + 6y$

Example – Q. 56, Ex. 10.5

Find the distance between the skew lines with parametric equations

$$x = 1 + t$$
, $y = 1 + 6t$, $z = 2t$ and $x = 1 + 2s$, $y = 5 + 15s$, $z = -2 + 6s$.

Solution: From the equations of the lines, we can write their direction vectors

$$v_1 = \langle 1, 6, 2 \rangle, \quad and \quad v_2 = \langle 2, 15, 6 \rangle$$

Then

$$n = v_1 \times v_2 = \langle 6, -2, 3 \rangle$$

is perpendicular to both line.

Pick any point on each of the lines, (1,1,0) and (1,5,-2), and form the vector b connecting the two points

$$b = \langle 0, 4, -2 \rangle$$

Example – Q. 56, Ex. 10.5

Then, the distance between the two skew lines is the absolute value of the scalar projection of b along n, that is

$$D = \frac{|n \cdot b|}{|n|}$$

$$= \frac{1}{\sqrt{36 + 4 + 9}} |0 - 8 - 6|$$

$$= \frac{14}{7}$$

$$= 2$$

Summary – Lines & Planes

Equation of a line passing through a point and having direction vector (a,b,c)

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} = t \qquad (t \to parameter)$$

Angle between two lines using direction ratios

$$\cos \theta = \frac{|a_1 a_2 + b_1 b_2 + c_1 c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \times \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Perpendicularity and Parallelism

Two lines with direction cosines l_1, m_1, n_1 and l_2, m_2, n_2 are

- Perpendicular if
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

- Parallel if

$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

Homework 5 – 10.5

Let L_1 be the line through the origin and the point (2, 0, -1). Let L_2 be the line through the points (1, -1, 1) and (4,1,3).

Find the distance between L_1 and L_2 .