

OFFICE OF NAVAL RESEARCH

CONTRACT NO. NO0014-75-C-0305

1000114-13-05050

Task No. NR 053-569

TECHNICAL REPORT NO. 27

Tetracarbon Metallocarboranes. 6.

Stereochemical Relationships

Between Co¹₂C¹₄B¹₆ Cage Isomers

Formed by Oxidative Fusion. Crystal Structure of $(n_{11}^5 - c_5^7 H_5^7)_2^7 Co_2^7 (CH_3^7)_4^7 C_4^7 B_6^7 H_6^7$,

Isomer V.

J. Robert/Pipal and Russell N. Grimes

Department of Chemistry, University of Virginia

Charlottesville, Virginia 22901

Prepared for Publication

in

Inorganic Chemistry

Apr 19 79

12/29p.

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for public release; distribution unlimited

DDC

PROPRIETOR

APR 16 1979

LUCKLIVE

B

401 147

79 04 12 029

Contribution from the Department of Chemistry University of Virginia Charlottesville, Virginia 22901

Tetracarbon Metallocarboranes. 6. 1 Stereochemical Relationships Between Co₂C₄B₆ Cage Isomers Formed by Oxidative Fusion. Crystal Structure of (n⁵-C₅H₅)₂Co₂(CH₃)₄C₄B₆H₆, Isomer V

J. Robert Pipal and Russell N. Grimes*

Abstract. The crystal and molecular structure of the title compound was determined from X-ray diffraction data and found to consist of two pentagonal pyramidal (n⁵-C₅H₅)Co(CH₃)₂C₂B₃H₃ units which are partially fused together along their C2B3 faces, such that the pairs of carbon atoms on the two pyramidal units are separated by nonbonding distances. The molecule resembles a severely distorted icosahedron with a large opening on one side, and its central cage system is very similar to that previously reported for the monocobalt complex (n5-C5H5)Co(CH3)4 C4B7H6-OC2H5. From 11B and 1H NMR data, the title compound is isostructural with isomer V of the (n5-C5H5)2Co2C4B6H10 system, which was previously obtained together with two other isomers (VI and VII) in the oxidative fusion of 1,2,3-(n⁵-C₅H₅)CoC₂B₃H₇ in ethanolic KOH. These three isomers adopt different types of cage geometry, as determined from the present study, from an X-ray investigation of VII, and from NMR data on isomer VI. A structure is proposed for isomer VI, and a mechanism is suggested to account for the formation of the three (n5-c5H5)20 $Co_2C_4B_6H_{10}$ species from $(\eta^5-C_5H_5)CoC_2B_3H_7$ as well as the formation of a single isomer of $(\eta^5 - C_5H_5)_2Co_2(CH_3)_4C_4B_6H_6$ (the title compound) from $(\eta^5 - C_5H_5)Co(CH_3)_2C_2B_3H_5$. Crystal data for $(\eta^5 - C_5H_5)_2$ Co₂(CH₃)₄C₄B₆H₆: space group I42d, Z = 8; a = 13.838(2), c = 20.635(5)A; V = 3951(1)A; R = 0.034 for the 1021 reflections for which $F_0^2 > 3\sigma(F_0^2)$.

NTIS	White S	ection 🛃
DDC	Buff Se	ction 🗆
UNANNOU	NCED	
JUSTIFICA	TION	
DISTRIBUT	TION/AVAILABILIT	Y CODES
	VAIL and/o	
Dist. A		Market Contract

Introduction

Structural studies of carboranes and metallocarboranes having four carbon atoms in the same polyhedron are proving to be an effective probe of the relationship between electron population and cage geometry, and have revealed a number of unprecedented molecular shapes. Eince the formal replacement of a BH by a CH (or C-alkyl) group in a closed polyhedral (closo) system increases the number of valence electrons in the cage skeleton, one can predict from electron-counting arguments 3 that tetracarbon carboranes will exhibit cage structures that are more open than their dicarbon counterparts; simply put, this is a consequence of the fact that the additional electrons in most cases must occupy antibonding orbitals, thereby producing some sort of cage-opening or distortion. However, this general principle does not tell us what kind of distortion to expect in a particular case, or what the geometry of a particular tetracarbon species will be. This is emphatically the case in 12-vertex, 28-electron cage systems 4, which contain two more skeletal electrons than do 26-electron icosahedral species such as $C_2B_{10}H_{12}$ and $B_{12}H_{12}^2$. All of the structurally characterized 28-electron cages are distorted from icosahedral geometry, but the nature of the distortion varies widely; as we pointed out recently4, at least four different types of cage geometry have been identified among the 12-vertex, 28-electron species that have been structurally characterized.

79 04 12 029

Most striking are the cases in which isomers produced in the same reaction adopt markedly different polyhedral shapes. 1,5,6 A recent example is given by the oxidative fusion of the small metallocarborane $^{1,2,3-}(\eta^5-C_5H_5)CoC_2B_3H_7$ in ethanolic KOH, which produces $(\eta^5-C_5H_5)CoC_4B_7H_{11}$ and three isomers of $(\eta^5-C_5H_5)_2Co_2C_4B_6H_{10}$ (a 12-vertex, 28-electron system). We have previously described the synthetic chemistry together with a crystallographic study of one of the three dicobalt isomers. In this paper we report the structural characterization of a second isomer via its C-tetramethyl derivative, and propose a structure for the third isomer as well as a possible pathway for the formation of all three species.

Experimental Section

Crystals of $(C_5H_5)_2Co_2(CH_3)_4C_4B_6H_6$ were grown by the vapor diffusion of pentane into a methylene chloride solution of the compound. One of these multifaceted crystals, a rough parallelopiped with dimensions of $0.5 \times 0.5 \times 0.25$ mm, was mounted on a glass fiber in an arbitrary orientation and examined by preliminary precession photographs which indicated high crystal quality. Crystal data: $Co_2C_{18}B_6H_{28}$; mol wt 427.16; space group I42d (No. 122); Z=8; we a = 13.838(2), C=20.635(5) A; C=3951(1) A; C=

accurately centered reflections which were then used in the program INDEX to obtain an orientation matrix for data collection and to provide approximate cell dimensions. Refined cell dimensions and their estimated standard deviations were determined using these same 25 reflections and the Enraf-Nonius program UNICELL. The mosaicity of the crystal was examined by the ω scan technique and found acceptable. Systematic absences of h + k + k = 2n + 1 for h + k + k = 2n + 1 on $0 + k + k \neq 4n$ on $h + k \neq 4n$

Collection and Reduction of the Data. Diffraction data were collected at 295° K on an Enraf-Nonius four circle CAD-4 diffractometer controlled by a PDP8/M computer, using MoKa radiation from a highly oriented graphite crystal monochrometer. The 9-29 scan technique was used to record the intensities for all reflections for which $1^{\circ} \le 29 \le 52^{\circ}$. Scan widths were calculated from the formula SW = A + Btane where A is estimated from the mosaicity of the crystal and B compensates for the increase in the width of the peak due to $K\alpha_1$ and $K\alpha_2$ splitting. The values of A and B were 0.60 and 0.35° respectively. This calculated scan angle was extended at each side by 25% for background determination (BG1 and BG2). The net count (NC) was then calculated as NC = TOT - 2(BG1 + BG2) where TOT is the estimated peak intensity.

Reflection data were considered insignificant for intensities registering less than ten counts above background on a rapid prescan, and these reflections were rejected automatically by the computer. The intensities of three standard reflections were monitored at intervals of 100 reflections and showed no systematic trends. Raw intensity data were corrected for Lorentz-polarization effects which resulted in a total of 1264 intensities of which 1021 had $F_0^2 > 3\sigma(F_0^2)$, where $\sigma(F_0^2)$ was estimated from counting statistics using an ignorance factor of 0.03. These latter reflections were used in the final refinement of the structural parameters.

Solution and Refinement of the Structure. Initial efforts at solution and refinement were performed assuming I4₁md as the space group. With this choice, solution of the Patterson map for the possible coordinates of the unique cobalt was achieved but many strong peaks in the map were not accounted for. This set of coordinates failed to refine. Various reasonable estimates of the cobalt position consistent with minor symmetry for the molecule (with Z = 8) and spectroscopic information (NMR) likewise failed to refine in I4₁md. Therefore this initial choice was abandoned in favor of I42d. With some difficulty, the Patterson was solved unambiguously for the position of the unique cobalt. The second cobalt in the molecule is related to the first by the crystallographic fourfold roto-inversion operation in I42d carried out twice. Least squares refinement

of the cobalt atom coordinates and thermal parameters reduced the conventional residual R to 0.255. An electron density difference map phased on this refined cobalt yielded ten of the twelve unique remaining nonhydrogen atoms: subsequent maps were used to locate the last two. Isotropic followed by anistropic refinement lowered R to 0.045 and R_W to 0.069, where R and R_W are defined as $\Sigma ||F_O| - |F_C||/\Sigma |F_O|$ and $(\Sigma W(|F_O| - |F_C|)^2/\Sigma W|F_O|^2)^{1/2}$ respectively.

Several more electron density difference maps were then used to locate the positions of the terminal hydrogens bonded to the boron atoms as well as possible locations for the methyl hydrogens. The former successfully refined with isotropic thermal parameters. The latter did not, and were replaced by hydrogen atoms held fixed at calculated positions 0.95 A from their respective carbons. Further refinement reduced the residuals to their final values of R = 0.034 and R = 0.043. The estimated standard deviation of an observation of unit weight is 2.301 and the ratio of data to parameters is 7.9. During the last cycle of refinement the largest parameter shift was 0.01 times its estimated error. A structure factor calculation including those data for Which $F_0^2 < 3\sigma(F_0^2)$ gave R = 0.050. No absorption correction was attempted because of the very irregular multifaceted nature of the orystal. Given the crystal's boxlike shape and its relatively

small absorption coefficient, the error from this source was judged insignificant. A final electron density difference map was featureless.

Full matrix least squares refinement was based on F, and the function minimized was $\operatorname{Ew}(|\mathbf{F}_0| - |\mathbf{F}_C|)^2$. The weights w were taken as $[2\mathbf{F}_0/\sigma(\mathbf{F}_0^2)]^2$ where $|\mathbf{F}_0|$ and $|\mathbf{F}_C|$ are the observed and calculated structure factor amplitudes. The atomic scattering factors for nonhydrogen atoms were taken from Cromer and Waber and those for hydrogen from Stewart. The effects of anomalous dispersion were included in \mathbf{F}_C using Cromer and Ibers of values of $\Delta \mathbf{f}$ and $\Delta \mathbf{f}$. The computing system and programs are described elsewhere. A table of observed and calculated structure factors is available (see paragraph at end of paper regarding supplementary material).

Results and Discussion

Final positional and thermal parameters are given in Table I while Tables II and III contain intramolecular distances and angles. The digits in parentheses in the tables are the estimated standard deviations in the least significant figure quoted and were derived from the inverse matrix in the course of least squares refinement calculations. Tables IV and V list selected mean planes and intermolecular contacts, respectively. Figure 1 is a stereoscopic view of the molecule.

Description of the Structure. cule consists of two pyramidal CoC2B3 units whose pentagonal faces are partially fused along their respective B(4)-B(5)-B(6)-C(2) and B(4')-B(5')-B(6')-C(2') edges (primed and unprimed atoms are related by a crystallographic twofold axis through the molecule). The distances between the pair of framework carbons atoms C(2), C(3) and their counterparts C(2'), C(3') are clearly nonbonding (2.7 A or greater), so that the cage has a large opening on the side facing the viewer in Figure 1. This geometry is very similar to that of $1,2,3,7,8-(n^5-C_5H_5)Co(CH_3)_4C_4B_7H_6-OC_2H_5^4$ (Figure 2a), an analogue of the present structure in which one Co(C5H5) unit has been replaced by B-OC2H5; for comparison, the dihedral angle between the C2B3 ring planes is 26.3° in the present structure and 28.5° in the monocobalt species. 4 Similarly, the C(3)-C(3') distance across the open face in the dicobalt species is 2.791(5) A, while the corresponding vector in the monocobalt structure [C(3)-C(7)] is 2.854(6) A. These data indicate that the Co₂C₄B₆ framework is slightly less open than the CoC4B7 cage. On the other hand, both the Co2C4B6 and CoC,B, systems are significantly different from (CH₃)₄C₄B₈H₈¹² (Figure 2b), in which the central C-C interaction is bonding [1.53(1) A]. Since these three species form an

isoelectronic series with 28 skeletal electrons, one can say that formal replacement of one apex BH unit in $(CH_3)_4C_4B_8H_8$ with a $Co(\eta^5-C_5H_5)$ group produces a major structural change, but replacement of the second apex BH has little effect. These findings are important in light of the severe differences that have been observed between $Co_2C_4B_6$ isomers, to be discussed below.

Relationship to the Structures of $(n^5-C_5H_5)_2Co_2C_4B_6H_{10}$.

Isomers. As described elsewhere¹, the nido complex 1,2,3- $(n^5-C_5H_5)CoC_2B_3H_7$ can be deprotonated by treatment with KOH/ethanol or sodium hydride in tetrahydrofuran. The resulting anion, when exposed to air in 10% ethanolic KOH solution, undergoes oxidative fusion² to generate a series of tetracarbon metallocarboranes as well as other products, 1 in yields of a few percent each.

$$(C_5H_5)COC_2B_3H_7$$
 $C_2H_5O^ (C_5H_5)COC_2B_3H_6^ C_2H_5O^ (C_5H_5)_2CO_2C_4B_6H_{10}$ Isomers V, VI, and VII $+(C_5H_5)COC_4B_7H_{11}$ $+1,7,2,3-(C_5H_5)_2CO_2C_2B_3H_5$

When the C,C'-dimethyl species $1,2,3-(\eta^5-c_5H_5)$ Co $(CH_3)_2C_2B_3H_5$ is treated in identical fashion, the only tetracarbon metallocarborane obtained is a single isomer of $(\eta^5-c_5H_5)_2Co_2(CH_3)_4$ C $C_4B_6H_6$, the compound whose structure we report in this paper. From the 32.1-MHz 11 B and 100-MHz 1 H pulse Fourier transform

NMR spectra¹, it is clear that this complex is a C-tetramethyl derivative of $(n^5-C_5H_5)_2Co_2C_4^B_6H_{10}$, isomer V; hence, the gross cage geometry of the tetramethyl species (Figure 1) is assumed to be that of the parent isomer V.

The structures of the two crystallographically characterized isomers, V and VII¹, are clearly different (Figure 3), and in fact constitute different types of nido cages. The geometry of V can be described as a severely distorted icosahedron, while VII resembles a 13-vertex closo polyhedron from which the unique high-coordinate vertex has been removed (this type of cage is also found in (n -C₅H₅)Fe(CH₃)₄C₄B₇H₈, an isoelectronic analogue of VII). From NMR data, to be discussed below, it is highly probable that the remaining isomer, VI, falls into yet another structural class.

The formation of three structurally dissimilar cobaltocarborane isomers at room temperature in the same reaction can only be interpreted in terms of kinetic factors which are dependent on reaction conditions. Whatever the thermodynamically preferred geometry of the ${\rm Co_2C_4B_6}$ system may be (and it could well be different from any of the three observed isomers V, VI, or VII), the structures of the isolated products no doubt reflect specific pathways by which they are generated from the ${\rm CoC_2B_3}$ precursor. In Figure 3 we suggest a scheme for the formation of all three isomers. The initial step probably involves formation of a "quadruple-decker" complex (I) in which two $(n^5-{\rm C_5H_5}){\rm CoC_2B_3H_3}^{2-}$ ligands are

sandwiched around a central CoH⁴⁺ group; this process would be precisely analogous to the known synthesis¹³ of [(CH₃)₂C₂B₄H₄]₂CoH from the (CH₃)₂C₂B₄H₅ ion and CoCl₂ in THF. In the present case, the source of the central cobalt ion is doubtless the degradation of the original monocobalt complex in basic media, which is extensive and produces a variety of products. Complex I has not been isolated due to its rapid conversion to other species, but NMR evidence for the existence of its C-tetramethyl derivative has been obtained. Complex I has not been obtained.

Subsequent air-oxidation of I results in oxidative fusion of the two $(7^5-C_5H_5)COC_2B_3H_5^{2-}$ ligands to produce the neutral $(7^5-C_5H_5)_2Co_2C_4B_6H_{10}$ complexes. In our proposed scheme this occurs through the partially linked intermediate II, which with minor adjustment becomes the observed isomer V; again, this is a process directly analogous to the known conversion, $(CH_3)_2C_2B_4H_4$ coh or $(CH_3)_2C_2B_4H_4$ coh or $(CH_3)_2C_2B_4H_4$ counterpart of $(CH_3)_4C_4B_8H_8$. Indeed, as was pointed out earlier, isomer V is a structural counterpart of $(CH_3)_4C_4B_8H_8$ in which the central C-C interaction is stretched to nonbonding distance.

Intermediate II is also proposed to undergo an alternative type of rearrangement to produce the symmetric intermediate III from which isomers VI and VII are formed as shown. The suggested structure of VI is based on its $^{11}{\rm B}$ and $^{1}{\rm H}$ NMR spectra 1 , which indicate ${\rm C_{2v}}$ symmetry with two boron environments in a 2:4 ratio

and equivalent (C_5H_5)Co groups. The area-2 ^{11}B signal appears at very low field (§ 69.1 ppm relative to BF₃ etherate), strongly suggesting the presence of two four-coordinate BH units [B(5), B(5')] located adjacent to both cobalt nuclei. 16,17 These data are highly restrictive, and while alternative structures cannot be ruled out, a pseudo-icosahedral type cage seems strongly indicated for isomer VI. Mild distortion of the idealized C_{2v} geometry in Figure 3 (perhaps lowering the symmetry to C_2) would not be surprising, but a highly opened framework (such as VII, for example) would be difficult to recondile with the NMR observations.

The scheme shown in Figure 3 also provides a rationale for the fact that only isomer V of $(\eta^5-C_5H_5)_2Co_2(CH_3)_4C_4B_6H_6$ is obtained when the starting material is $(\eta^5-C_5H_5)Co(CH_3)_2C_2B_3H_5$, as opposed to the three isomers (V, VI, VII) that are formed from the parent (non-methylated) complex: In isomers VI and VII, the framework carbon atoms are in close proximity, requiring the two HC-CH pairs in intermediate III to move toward each other. In isomer V, on the other hand, no such close approach is involved and the two pairs of carbon atoms are in fact well separated. One might then expect that in the C- tetramethylated system, the cage geometry of V would be strongly favored and those of VI and VII hindered, as a consequence of methyl-methyl repulsions.

Conclusions

The structure reported in this paper, taken together with previously established structures, 1,2,4,12,8 extends our understanding of tetracarbon cobaltacarborane stereochemistry in a significant way: it allows us to consider in some detail the mechanisms of formation and interconversion of the Co₂C₄B₆ cage isomers. In general, we appear to have reached a point at which the available structural information in this area can support at least some mechanistic ideas.

In other publications we shall attempt to deal with the observed reversible rearrangement of (CH₃)₄C₄B₈H₈ isomers, the formation and stereochemistry of (CH₃)₄C₄B₈H₈ isomers, the formation and stereochemistry of (CH₃)₄C₄B₈H₈ and (CH₃)₄C₄B₈H₉ ions, 5 the insertion of transition metals into these species to give tetracarbon metallocarboranes of various types, 2 and related problems.

Acknowledgments. This work was supported in part by the Office of Naval Research and by the National Science Foundation, Grant CHE 76-04491.

<u>Supplementary Material Available</u>: Listing of observed and calculated structure factors (5 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) Part 5: K-S. Wong, J. R. Bowser, J. R. Pipal, and R. N. Grimes, J. Am. Chem. Soc., 100, 5045 (1978).
- (2) For a review, see R.N. Grimes, Acc. Chem. Res., 11, 420 (1978).
- (3) (a) K. Wade, Adv. Inorg. Chem. Radiochem., 18, 1 (1976);
 (b) R.W. Rudolph, Acc. Chem. Res., 9, 446 (1976); (c) D.M. P. Mingos, Nature (London), Phys. Sci., 236, 99 (1972).
- (4) J.R. Pipal and R.N. Grimes, J. Am. Chem. Soc., 100, 3083 (1978).
- (5) W.M. Maxwell, R.F. Bryan, and R.N. Grimes, J. Am. Chem. Soc., 99, 4008 (1977).
- (6) W.M. Maxwell, R. Weiss, E. Sinn, and R.N. Grimes, <u>J. Am. Chem.</u>
 Soc., 99, 4016 (1977).
- (7) P.W.R. Corfield, R.J. Doedens, and J.A. Ibers, <u>Inorg. Chem.</u>, <u>6</u>, 197 (1967).
- (8) D.T. Cromer and J.T. Waber, "International Tables for X-ray Crystallography," Vol. IV, the Kynoch Press, Birmingham, England, 1974.
- (9) R.F. Stewart, E.R. Davidson, and W.T. Simpson, J. Chem. Phys., 42, 3175 (1965).
- (10) D.T. Cromer and J.A. Ibers, ref. 8.
- (11) D.P. Freyberg, G.M. Mockler, and E. Sinn, J. Chem. Soc.,

 Dalton Trans., 447 (1976).
- (12) D.P. Freyberg, R.Weiss, E. Sinn, and R.N. Grimes, <u>Inorg. Chem.</u>, <u>16</u>, 1847 (1977).

- (13) W.M. Maxwell, V.R. Miller, and R.N. Grimes, J. Am. Chem. Soc., 98, 4818 (1976).
- (14) D.F. Finster and R.N. Grimes, unpublished results.
- (15) W.M. Maxwell, V.R. Miller, and R.N. Grimes, <u>Inorg. Chem.</u>, <u>15</u>, 1343 (1976).
- (16) (a) V.R. Miller and R.N. Grimes, J. Am. Chem. Soc., 95, 2830 (1973); (b) W.J. Evans, G.B. Dunks, and M.F. Hawthorne, ibid., 95, 4565 (1973); (c) V.R. Miller and R.N. Grimes, ibid., 97, 4213 (1975).
- (17) Support for this assignment is the fact that (1) no other known tetracarbon metallocarborane has an ¹¹B resonance lower than δ ~ 35 ppm, and (2) no previously characterized tetracarbon metallocarborane has a low-coordinate boron adjacent to more than one metal. Thus, the strikingly different ¹¹B spectrum of VI implies a structural type not previously seen in this class of compounds.
- (18) J.R. Pipal, W.M. Maxwell, and R.N. Grimes. <u>Inorg. Chem.</u>, <u>17</u>, 1447 (1978).

atom	×	>	2	111	U22	U3.2	1112	013	U23
8	0.33176(4)	0.33176(4) 0.05600(4)	0.03268(3)	0.0341(2)	8.6315(2)	0.0407(2)	0.0008(2)	-0.0058(2)	0.8847(2)
c(2)	0.3941(3)	- 8.8445131	6.8899(2)	6.033(2)	0.027(2)	0.036(2)	B.881(2)	-0.001(2)	0.005(2)
(6)	9.4135(3)	8.9519(3)	0.1105(2)	0.034(2)	0.028(2)	0.033(2)	0.004(2)	-0.003(1)	-0.002(2)
CM(2)	0.3393(3)	-0.1166(3)	0.1384(3)	0.045(2)	0.035(2)	6.869(3)	-6.805(2)	-0.001(3)	0.012(2)
CM(3)	0.3851(3)	0.0884151	0.1775(2)	0.047(2	0.048(2)	0.047(2)	0.005(2)	8.884(2)	-8.818.2
CP(1)	6.2417(4)	0.1725(4)	0.0318(4)	0.052(2)	0.043(2)	0.201(6)	0.021(2)	-0.065(3)	-6.82214
CP(2)	8.2542(4)	0.1319(4)	-0.0358(3)	9.048(2)	0.885(3)	0.102(4)	0.003(3)	-0.019(3)	8.051(3)
CP(3)	6.2198(4)	0.0387(5)	-8.8337(3)	0.049(2)	N.885(4)	0.064(3)	0.001(3)	-0.024(2)	-6.601(3)
CP(4)	0.1861(4)	0.6183(4)	0.0287(3)	0.042(2)	0.061(3)	6.092(4)	-0.001(2)	-0.015(3)	8.816(3)
CP(5)	0.1979(4)	0.0974(5	0.8658(3)	0.849(2)	0.088(4)	0.067(3)	0.023(3)	-0.007(3)	-0.003(3)
B(L)	0.4745(3)	0.1117(3)	0.0616(3)	0.035(2)	0.029(2)	0.050(2)	0.001(2)	-8.888(2)	0.002(2)
B(5)	8.4513(4)	0.0512(4)	-0.0178(2)	0.041(2)	0.648(3)	0.038(2)	-8.881(2)	0.002(2)	6.067(2)
B(6)	0.4181(4)	-0.0665741	0.0132(2)	0.038(2)	0.038(2)	0.040(2)	-0.005(2)	-0.006(2)	-0.010(2)
H(ħ)	0.498(3)	0.192(3)	0.063(2)	2.1(7) b					
H(5)	0.452(4)	0.684(4)	-6.869(2)	5.9(14)					
Н(6)	6.377(3)	-0.122(3)	-0.012(2)	2.4(8)					
H(21)	9.334	-0.176	0.107	6.0					
H(22)	0.372	-0.127	0.170	6.6					
H(23)	9.276	-0.992	6.139	6.9					
H(31)	0.404	6.154	8.182	6.9					
H(32)	6.317	U.084	6.182	6.0					
H(33)	6.416	0.65:	0.216	6.8					

THE FORM OF THE ANISOTROPIC THERMAL PARAMETER IS EXP[-2¶2(Ullh²a*² + U₂₂k²b*² + U₃₃k²c*² + 2U₁₂hka*b* + 2U₁₃hka*c* + 2U₂₃kb*c*)]. ^bFor hydrogen atoms, standard isotropic B values are given.

Table II. Interatomic Distances (A)

	Во	nded Distances		
Co-C(2) Co-C(3) Co-B(4) Co-B(5) Co-B(6) Co-CP(1) Co-CP(2) Co-CP(3) Co-CP(4) Co-CP(5) C(2)-C(3) C(2)-B(4') C(2)-B(6) C(2)-CM(2) C(3)-B(4)	2.017(3) 1.965(3) 2.205(4) 2.074(3) 2.112(4) 2.039(3) 2.062(4) 2.090(4) 2.084(4) 2.079(4) 1.425(4) 2.122(4) 1.645(4) 1.507(4) 1.555(4)	C(3)-CM(3) B(4)-B(5) B(4)-B(6') B(4)-H(4) B(5)-B(5') B(5)-B(6') B(5)-H(5) B(6)-H(6) CP(1)-CP(2) CP(2)-CP(3) CP(3)-CP(4) CP(4)-CP(5) CP(5)-CP(1)	1.524(4) 1.849(5) 1.895(5) 1.14(3) 1.776(8) 1.848(5) 1.800(5) 1.17(4) 1.09(3) 1.500(7) 1.379(6) 1.394(6) 1.385(6) 1.436(7)	
	Non	bonded Distances		
Co-Co' C(2)-C(2')	4.907(1) 3.178(6)	C(2)-C(3') C(3)-C(3')	2.698(4) 2.791(5)	

Atoms marked with a prime are related to their unmarked counterparts by an inversion axis which bisects the B(5)-B(5') and C(3)-C(3') vectors.

	Table III.	Selected Bond Angles (deg)
C(2)-Co-C(3)	41.9(1)	C(21)-B(4)-C(3)	93.1(2)
C(2)-Co-B(6)	46.9(1)	C(2*)-B(4)-B(6*)	47.9(2)
C(3)-Co-B(4)	43.3(1)	B(5)-B(4)-B(6')	57.4(2)
B(4)-Co-B(5)	51.1(1)	C(3)-B(4)-B(5)	106.2(2)
B(5)-Co-B(6)	52.4(2)	Co-B(5)-B(4)	68.1(2)
Co-C(2)-C(3)	67.1(1)	Co-B(5)-B(6)	64.9(2)
Co-C(2)-B(6)	69.6(2)	B(4)-B(5)-B(6*)	62,6(2)
C(3)-C(2)-B(41)	109.3(2)	B(5')-B(5)-B(6')	62,3(2)
C(3)-C(2)-B(6)	115.0(3)	B(5')-B(5)-B(6)	59.5(2)
B(4')-C(2)-B(6)	58.8(2)	B(4)-B(5)-B(6)	97.2(2)
Co-C(2)-CM(2)	124.5(2)	Co-B(6)-C(2)	63,5(2)
C(3)-C(2)-CM(2)	123,3(3)	Co-B(6)-B(5)	62.8(2)
B(4')-C(2)-CM(2)	107.0(2)	C(2)-B(6)-B(4')	73,3(2)
B(6)-C(2)-CM(2)	120.8(3)	B(4')-B(6)-B(5')	60.0(2)
Co-C(3)-C(2)	71.0(2)	B(5)-B(6)-B(5')	58.2(2)
Co-C(3)-B(4)	76.6(2)	C(2)-B(6)-B(5)	103.6(2)
C(2)-C(3)-B(4)	114.0(3)	CP(2)-CP(1)-CP(5)	106,2(3)
Co-C(3)-CM(3)	125.7(2)	CP(1)-CP(2)-CP(3)	106.3(4)
C(2)-C(3)-CM(3)	122.2(3)	CP(2)-CP(3)-CP(4)	109.5(4)
B(4)-C(3)-CM(3)	123.5(3)	CP (3)-CP (4)-CP (5)	110.8(4)
Co-B(4)-C(3)	60.1(2)	CP(1)-CP(5)-CP(4)	107.1(4)
Co-B(4)-B(5)	60.8(2)		

Table IV. Selected Intramolecular Planes

Atom	Deviation	Atom	Deviation
		2), C(3), B(4), B(
	0.9081x - 0.	3516y + 0.2274z =	5.5732
C(2)	-0.017	B(6)	-0.066
C(3)	0.111	Co	1.524
B(4)	-0.137	CM (2)	0.131
B(5)	0.109	CM (3)	0.332
	Plane 3: CP	(1), CP(2), CP(3), 3337y + 0.2521z =	CP(4), CP(5)
	0.3003x - 0.	3337 + 0.23212 -	2.3333
CP(1)	-0.002	CP (4)	-0.003
CP(2)	0.000	CP (5)	0.003
CP (3)	0.002	Co	-1.682
		, CP(2'), CP(3'),	CD (41) CD (51)

Planes	Angle, deg	Planes	Angle, deg
1.2	26.3	2,3	27.8
1,2 1,3 1,4	1.8	2,4	1.8
1,4	27.8	3,4	29.2

Table V. Intermolecular Non-Hydrogen Contacts (<3.8 A)

Atom 1	Atom 2	Distance, A	Relationship
CM (2)	CM(2)	3.699(6)	x, -1/2-y, 1/4-z
CM (2)	CP (2)	3.797(5)	y, -1/2+x, 1/4+z
CP (2)	CP (2)	3.68(1)	1/2-x, y, -1/4-z
CP (3)	CP (5)	3.753(6)	-y, x, -z

Figure Captions

- Figure 1. Molecular structure of $(n^5-C_5H_5)_2Co_2(CH_3)_4C_4B_6H_6$.

 Primed atoms are related to the corresponding unprimed atoms by a crystallographic twofold axis bisecting the B(5)-B(5') bond.
- Figure 2. Comparison of the structures of $(\eta^5-C_5H_5)Co(CH_3)_4C_4B_7H_6-OC_2H_5$ (a) 4 and $(CH_3)_4C_4B_8H_8$ (b). 12
- Figure 3. Proposed mechanism of formation of $(n^5-C_5H_5)_2Co_2C_4B_6H_{10}$ isomers. The structures of isomers V and VII are established; that of VI is proposed from NMR evidence. Species I, II, and III are suggested reaction intermediates. The conversion of II to III can occur via insertion of B(5') between B(5) and B(4) and insertion of B(5) between B(5') and B(4'), with subsequent linkage of B(5') to Co(1) and of B(5) to Co(1'); the other rearrangements depicted are obvious.

FORMATION OF (CSHS)2CO2C4B6HIO ISOMERS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
Technical Report No. 27	3. RECIPIENT'S CATALOG NUMBER			
Tetracarbon Metallocarboranes. 6. Stereochemical Relationships Between Co ₂ C ₁ B ₆ Cage Isomers Formed by Oxidative Fusion. Crystal Structure of	5. Type of Report & Period Covered Interim			
by Oxidative Fusion. Crystal Structure of (75-C5H5)2Co2(CH3)1.Cl.B6H6. Isomer V	6. PERFORMING ORG. REPORT NUMBER			
J. Robert Pipal and Russell N. Grimes	NOOOL4-75-C-0305			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
University of Virginia, Department of Chemistry, Charlottesville, Va. 22901	NR 053-569			
11. CONTROLLING OFFICE NAME AND ADDRESS	April, 1979			
Chemistry Branch, Office of Naval Research Arlington, Virginia 22217	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	Unclassified			
	15. DECLASSIFICATION/DOWNGRADING			
Approved for public release; distribution unlimited.				
17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from	m Report)			
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Metallocarboranes Dimetallocarbo				
Cobaltacarboranes Oxidative cage fusion Tetracarbon metallocarboranes	ranes			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
See page 1				

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No Copi	
Office of Naval Research	Defense Documentation Center
800 North Quincy Street	Building 5, Cameron Station
Arlington, Virginia 22217	Alexandria, Virginia 22314 12
Attn: Code 472	
	U.S. Army Research Office
ONR Branch Office	P.O. Box 1211
536 S. Clark Street	Research Triangle Park, N.C. 27709
Chicago, Illinois 60605	Attn: CRD-AA-IP 1
Attn: Dr. George Sandoz 1	
Actus Dr. Goorge Bases	Naval Ocean Systems Center
ONR Branch Office	San Diego, California 92152
715 Broadway	Attn: Mr. Joe McCartney 1
New York, New York 10003	needs medically
Attn: Scientific Dept. 1	Naval Weapons Center
Attn: Scientific Dept.	China Lake, California 93555
ONR Branch Office	Attn: Dr. A. B. Amster
	Chemistry Division 1
1030 East Green Street	Chemistry Division
Pasadena, California 91106 Attn: Dr. R. J. Marcus 1	Name 1 Civil Producedne Laboratory
Attn: Dr. R. J. Marcus 1	
	Port Hueneme, California 93401
ONR Area Office	Attn: Dr. R. W. Drisko 1
One Hallidie Plaza, Suite 601	
San Francisco, California 94102	Professor K. E. Woehler
Attn: Dr. P. A. Miller 1	
	Naval Postgraduate School
ONR Branch Office	Monterey, California 93940 1
Building 114, Section D	
666 Summer Street	Dr. A. L. Slafkosky
Boston, Massachusetts 02210	Scientific Advisor
Attn: Dr. L. H. Peebles 1	(Code RD-1)
Director, Naval Research Laboratory	Washington, D.C. 20380
Washington, D.C. 20390	
Attn: Code 6100	Office of Naval Research
	800 N. Quincy Street
The Assistant Secretary of the Navy	Arlington, Virginia 22217
(R, E6S)	Attn: Dr. Richard S. Miller 1
Department of the Navy	
Room 4B736, Pentagon	Naval Ship Research and Development
Washington, D.C. 20350	Center
	Annapolis, Maryland 21401
Commander, Naval Air Systems Comman	d Attn: Dr. G. Bosnajian
Department of the Navy	Applied Chemistry Division 1
Washington, D.C. 20360	
Attn: Code 310C (H. Rosenwasser) 1	Naval Ocean Systems Center
	San Diego, California 91232
	Attn: Dr. S. Yamamoto, Marine

TECHNICAL REPORT DISTRIBUTION LIST, 053

	No.		No. Copie	
Dr. R. N. Grimes University of Virginia		Dr. M. H. Chisholm Department of Chemistry		
Department of Chemistry		Indiana University		
Charlottsville, Virginia 22901	1	Bloomington, Indiana 47401	1	
Dr. M. Tsutsui		Dr. B. Foxman		
Texas A&M University		Brandeis University		
Department of Chemistry		Department of Chemistry		
College Station, Texas 77843	1	Waltham, Massachusetts 02154	1	
Dr. M. F. Hawthorne		Dr. T. Marks		
University of California		Northwestern University		
Department of Chemistry		Department of Chemistry		
Los Angeles, California 90024	1	Evanston, Illinois 60201	1	
Dr. D. B. Brown		Dr. G. Geoffrey		
University of Vermont		Pennsylvania State University		
Department of Chemistry		Department of Chemistry		
Burlington, Vermont 05401	1	University Park, Pennsylvania	16802	1
Dr. W. B. Fox		Dr. J. Zuckerman		
Naval Research Laboratory		University of Oklahoma		
Chemistry Division		Department of Chemistry		
Code 6130		Norman, Oklahoma 73019	1	
Washington, D.C. 20375	1			
		Professor O. T. Beachley		
Dr. J. Adcock		Department of Chemistry		
University of Tennessee		State University of New York		
Department of Chemistry		Buffalo, New York 14214	1	
Knoxville, Tennessee 39716	1			
		Professor P. S. Skell		
Dr. W. Hetfield		Department of Chemistry		
University of North Carolina		The Pennsylvania State University		
Department of Chemistry		University Park, Pennsylvania	16802	1
Chapel Hill, North Carolina 2751	4 1			
		Professor K. M. Nicholas		
Dr. D. Seyferth		Department of Chemistry		
Massachusetts Institute of		Boston College		
Technology		Chestnut Hill, Massachusetts O	2167	1
Department of Chemistry				
Combeidee Massachusetta 02139	1			