

Si consideri il circuito di figura. Si consideri l' OPAMP ideale. Calcolare le soglie di scatto V_{TH} e V_{TL} . Esplicitare i passaggi.

Multivibratore bistabile invertente

$$V_{TH}$$
=1.18 V
 V_{TL} = -0.82 V

A2 Sia ora applicato all' ingresso un segnale triangolare con ampiezza picco-picco 4V e valor medio nullo. Calcolare il duty cycle del segnale in uscita. Esplicitare i passaggi.

DC=54.5 %

- 1. Dimensionare i transistori i pMOS in modo che il tempo di salita e discesa, al nodo F, siano inferiore o uguale a 100pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori.
- 2. Disegnare la PDN

Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie : Sp=300, Sn= 150.

Parametri tecnologici:

Rrif p =10Kohm Rrif n= 5Kohm Cox = 7 fF/ μ m² Lmin = 0.25 μ m V_{CC} =3.3V

