FIG. 1A

GAATTCTCTGGACTGAGGCTCCAGTTCTGGCCTTTGGGG

TTCAAGATCACTGGGACCAGGCCGTGATCTCTATGCCCGAGTCTCAACCCTCAACTGTC									
ACCCCAAGGCACTTGGGACGTCCTGGACAGACCGAGTCCCGGGAAGCCCCAGCACTGCC									

GCTGCCACACTGCCCTGAGCCCAAATGGGGGAGTGAGAGGCCA TAG CTG TCT GGC									
S1 S5 S10 S15 Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CCA CTG GTG CTC 216 225 234 243 252									
S20 S25 S29 1 Leu Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG GTT ATT GGA CTG 261 270 279 288 297									
Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT AGT GTG TGT CCC 306 315 324 333 342									
20 25 30 Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC 351 360 369 378 387									
35 40 45 Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG 396 405 414 423 432									
50 55 60 Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr									

GGG CAG GAT ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC

Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys GCT TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC

Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TGC ACA GTG GAC

FIG. 1B

Arg Asp Thr CGG GAC ACC 576	95 Val Cys Gly GTG TGT GGC 585	Cys Arg Ly TGC AGG AA 594	00 ys Asn Gln Tyr AG AAC CAG TAC 603	105 Arg His Tyr CGG CAT TAT 612
Trp Ser Glu TGG AGT GAA 621	110 Asn Leu Phe AAC CTT TTC 630	Gln Cys Ph CAG TGC TT 639	L5 ne Asn Cys Ser TC AAT TGC AGC 648	120 Leu Cys Leu CTC TGC CTC 657
Asn Gly Thr AAT GGG ACC 666	125 Val His Leu GTG CAC CTC 675	Ser Cys Gl TCC TGC CF 684	30 In Glu Lys Gln AG GAG AAA CAG 693	135 Asn Thr Val AAC ACC GTG 702
Cys Thr Cys TGC ACC TGC 711	140 His Ala Gly CAT GCA GGT 720	Phe Phe Le	45 eu Arg Glu Asn FA AGA GAA AAC 738	150 Glu Cys Val GAG TGT GTC 747
Ser Cys Ser TCC TGT AGT 756	155 Asn Cys Lys AAC TGT AAG 765	Lus Ser Le	60 eu Glu Cys Thr TG GAG TGC ACG 783	165 Lys Leu Cys AAG TTG TGC 792
Leu Pro Gln CTA CCC CAG 801	170 Ile Glu Asn ATT GAG AAT 810	Val Lys G	75 Ly Thr Glu Asp GC ACT GAG GAC 828	180 Ser Gly Thr TCA GGC ACC 837
Thr Val Leu ACA GTG CTG 846	TTG CCC CTG	Val Ile Progression	90 ne Phe Gly Leu TC TTT GGT CTT 873	195 Cys Leu Leu TGC CTT TTA 882
Ser Leu Leu TCC CTC CTC 891	200 Phe Ile Gly TTC ATT GGT 900	Tou Mot To	05 yr Arg Tyr Gln AT CGC TAC CAA 918	210 Arg Trp Lys CGG TGG AAG 927
Ser Lys Leu TCC AAG CTC 936	215 Tyr Ser Ile TAC TCC ATT 945	Val Cys G	20 ly Lys Ser Thr GG AAA TCG ACA 963	225 Pro Glu Lys CCT GAA AAA 972
Glu Gly Glu GAG GGG GAG 981	230 Leu Glu Gly CTT GAA GGA 990	Thr Thr T	35 hr Lys Pro Leu CT AAG CCC CTG 1008	240 Ala Pro Asn GCC CCA AAC 1017

FIG. 1C

Pro Ser Phe CCA AGC TTC 1026	245 Ser Pro Thr AGT CCC ACT 1035	250 Pro Gly Phe CCA GGC TTC 1044	Thr Pro Thr ACC CCC ACC	255 Leu Gly Phe CTG GGC TTC 1062
AGT CCC GTG	260 Pro Ser Ser CCC AGT TCC 1080	265 Thr Phe Thr ACC TTC ACC 1089	Ser Ser Ser TCC AGC TCC	270 Thr Tyr Thr ACC TAT ACC 1107
CCC GGT GAC	TGT CCC AAC	280 Phe Ala Ala TTT GCG GCT 1134	Pro Arg Arg CCC CGC AGA	285 Glu Val Ala GAG GTG GCA 1152
CCA CCC TAT	CAG GGG GCT	295 Asp Pro Ile GAC CCC ATC 1179	CTT GCG ACA	300 Ala Leu Ala GCC CTC GCC 1197
TCC GAC CCC	305 Ile Pro Asn ATC CCC AAC 1215	310 Pro Leu Gln CCC CTT CAG 1224	Lys Trp Glu	315 Asp Ser Ala GAC AGC GCC 1242
CAC AAG CCA	CAG AGC CTA	325 Asp Thr Asp GAC ACT GAT 1269	GAC CCC GCG	330 Thr Leu Tyr ACG CTG TAC 1287
GCC GTG GTG	335 Glu Asn Val GAG AAC GTG 1305	340 Pro Pro Leu CCC CCG TTG 1314	Arg Trp CGC TGG AA G 1323	GGAATTC 1332

FIG. 2

FIG. 3A

FIG. 3B

FIG. 6A

pAD-CMV1 : 6414 bp

TCGACATTGA	TTATTGACTA	GTTATTAATA	GTAATCAATT	ACGGGGTCAT	TAGTTCATAG	60
CCCATATATG	GAGTTCCGCG	TTACATAACT	TACGGTAAAT	GGCCCGCCTG	GCTGACCGCC	120
CAACGACCCC	CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA	CGCCAATAGG	180
GACTTTCCAT	TGACGTCAAT	GGGTGGAGTA	TTTACGGTAA	ACTGCCCACT	TGGCAGTACA	240
TCAAGTGTAT	CATATGCCAA	GTACGCCCCC	TATTGACGTC	AATGACGGTA	AATGGCCCGC	300
CTGGCATTAT	GCCCAGTACA	TGACCTTATG	GGACTTTCCT	ACTTGGCAGT	ACATCTACGT	360
ATTAGTCATC	GCTATTACCA	TGGTGATGCG	GTTTTGGCAG	TACATCAATG	GGCGTGGATA	420
GCGGTTTGAC	TCACGGGGAT	TTCCAAGTCT	CCACCCCATT	GACGTCAATG	GGAGTTTGTT	480
TTGGCACCAA	AATCAACGGG	ACTTTCCAAA	ATGTCGTAAC	AACTCCGCCC	CATTGACGCA	540
AATGGGCGGT	AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCTCT	GGCTAACTAG	600
AGAACCCACT	GCTTAACTGG	CTTATCGAAA	TTAATACGAC	TCACTATAGG	GAGACCCAAG	⁶⁶⁰
CTTCTGCAGG	TCGACATCGA	TGGATCCGGT	ACCTCGAGCG	CGAATTCTCT	AGAGGATCTT	720
TGTGAAGGAA	CCTTACTTCT	GTGGTGTGAC	ATAATTGGAC	AAACTACCTA	CAGAGATTTA	780
AAGCTCTAAG	GTAAATATAA	AATTTTTAAG	TGTATAATGT	GTTAAACTAC	TGATTCTAAT	840
TGTTTGTGTA	TTTTAGATTC	CAACCTATGG	AACTGATGAA	TGGGAGCAGT	GGTGGAATGC	900
CTTTAATGAG	GAAAACCTGT	TTTGCTCAGA	AGAAATGCCA	TCTAGTGATG	ATGAGGCTAC	960
TGCTGACTCT	CAACATTCTA	CTCCTCCAAA	AAAGAAGAGA	AAGGTAGAAG	ACCCCAAGGA	1020
CTTTCCTTCA	GAATTGCTAA	GTTTTTTGAG	TCATGCTGTG	TTTAGTAATA	GAACTCTTGC	1080
TTGCTTTGCT	ATTTACACCA	CAAAGGAAAA	AGCTGCACTG	CTATACAAGA	AAATTATGGA	1140
AAAATATTTG	ATGTATAGTG	CCTTGACTAG	AGATCATAAT	CAGCCATACC	ACATTTGTAG	1200
AGGTTTTACT	TGCTTTAAAA	AACCTCCCAC	ACCTCCCCT	GAACCTGAAA	CATAAAATGA	1260
ATGCAATTGT	TGTTGTTAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	1320
GCATCACAAA	TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT	GGTTTGTCCA	1380
AACTCATCAA	TGTATCTTAT	CATGTCTGGA	TCAATTCTGA	GAAACTAGCC	TTAAAGACAG	1440

FIG. 6B

ACAGCTTTGT	TCTAGTCAGC	CAGGCAAGCA	TATGTAAATA	AAGTTCCTCA	GGGAACTGAG	1500
GTTAAAAGAT	GTATCCTGGA	CCTGCCAGAC	CTGGCCATTC	ACGTAAACAG	AAGATTCCGC	1560
CTCAAGTTCC	GGTTAACAAC	AGGAGGCAAC	GAGATCTCAA	ATCTATTACT	TCTAATCGGG	1620
TAATTAAAAC	CTTTCAACTA	AAACACGGAC	CCACGGATGT	CACCCACTTT	TCCTTCCCCG	1680
GCTCCGCCCT	TCTCAGTACT	CCCCACCATT	AGGCTCGCTA	CTCCACCTCC	ACTTCCGGGC	1740
GCGACACCCA	CGTGCCCTCT	CCCACCCGAC	GCTAACCCCG	CCCCTGCCCG	TCTGACCCCG	1800
CCCACCACCT	GCCCCCCCC	CGTTGAGGAC	AGAAGAAACC	CCGGGCAGCC	GCAGCCAAGG	1860
CGGACGGGTA	GACGCTGGGG	GCGCTGAGGA	GTCGTCCTCT	ACCTTCTCTG	CTGGCTCGGT	1920
GGGGGACGCG	GTGGATCTCA	GGCTTCCGGA	AGACTGGAAG	AACCGGCTCA	GAACCGCTTG	1980
TCTCCGCGGG	GCTTGGGCGG	CGGAAGAATG	GCCGCTAGAC	GCGGACTTGG	TGCGAGGCAT	2040
CGCAGGATGC	AGAAGAGCAA	GCCCGCCGGG	AGCGCGCGGC	TGTACTACCC	CGCGCCTGGA	2100
GCGGCCACGC	CGGACTGGGC	GGGCCGGCC	TGGTGGAGGC	GGAGTCTGAC	CTCGTGGAGG	2160
CGGGGCCTCT	GATGTTCAAA	TAGGATGCTA	GGCTTGTTGA	GGCGTGGCCT	CCGATTCACA	2220
AGTGGGAAGC	AGCGCCGGGC	GACTGCAATT	TCGCGCCAAA	CTTGGGGGAA	GCACAGCGTA	2280
CAGGCTGCCT	AGGTGATCGC	TGCTGCTGTC	ATGGTTCGAC	CGCTGAACTG	CATCGTCGCC	2340
GTGTCCCAGA	ATATGGGCAT	CGGCAAGAAC	GGAGACCTTC	CCTGGCCAAT	GCTCAGGTAC	2400
TGGCTGGATT	GGGTTAGGGA	AACCGAGGCG	GTTCGCTGAA	TCGGGTCGAG	CACTTGGCGG	2460
AGACGCGCGG	GCCAACTACT	TAGGGACAGT	CATGAGGGGT	AGGCCCGCCG	GCTGCTGCCC	2520
TTGCCCATGC	CCGCGGTGAT	CCCCATGCTG	TGCCAGCCTT	TGCCCAGAGG	CGCTCTAGCT	2580
GGGAGCAAAG	TCCGGTCACT	GGGCAGCACC	ACCCCCGGA	CTTGCATGGG	TAGCCGCTGA	2640
GATGGAGCCT	GAGCACACGT	GACAGGGTCC	CTGTTAACGC	AGTGTTTCTC	TAACTTTCAG	2700
GAACGAGTTC	AAGTACTTCC	AAAGAATGAC	CACCACCTCC	TCAGTGGAAG	GTAAACAGAA	2760
CCTGGTGATT	ATGGGCCGGA	AAACCTGGTT	CTCCATTCCT	GAGAAGAATC	GACCTTTAAA	2820
GGACAGAATT	AATATAGTTC	TCAGTAGAGA	GCTCAAGGAA	CCACCACAAG	GAGCTCATTT	2880
TCTTGCCAAA	AGTCTGGACC	ATGCCTTAAA	ACTTATTGAA	CAACCAGAGT	TAGCAGATAA	2940
AGTGGACATG	GTTTGGATAG	TTGGAGGCAG	TTCCGTTTAC	AAGGAAGCCA	TGAATCAGCC	3000

FIG. 6C

AGGCCATCTC	AGACTCTTTG	TGACAAGGAT	CATGCAGGAA	TTTGAAAGTG	ACACGTTCTT	3060
CCCAGAAATT	GATTTGGAGA	AATATAAACT	TCTCCCAGAG	TACCCAGGGG	TCCTTTCTGA	3120
AGTCCAGGAG	GAAAAAGGCA	TCAAGTATAA	ATTTGAAGTC	TATGAGAAGA	AAGGCTAACA	3180
GAAAGATACT	TGCTGATTGA	CTTCAAGTTC	TACTGCTTTC	CTCCTAAAAT	TATGCATTTT	3240
TACAAGACCA	TGGGACTTGT	GTTGGCTTTA	GATCCTGTGC	ATCCTGGGCA	ACTGTTGTAC	3300
TCTAAGCCAC	TCCCCAAAGT	CATGCCCCAG	CCCCTGTATA	ATTCTAAACA	ATTAGAATTA	3360
TTTTCATTTT	CATTAGTCTA	ACCAGGTTAT	ATTAAATATA	CTTTAAGAAA	CACCATTTGC	3420
CATAAAGTTC	TCAATGCCCC	TCCCATGCAG	CCTCAAGTGG	CTCCCCAGCA	GATGCATAGG	3480
GTAGTGTGTG	TACAAGAGAC	CCCAAAGACA	TAGAGCCCCT	GAGAGCATGA	GCTGATATGG	3540
GGGCTCATAG	AGATAGGAGC	TAGATGAATA	AGTACAAAGG	GCAGAAATGG	GTTTTAACCA	3600
GCAGAGCTAG	AACTCAGACT	TTAAAGAAAA	TTAGATCAAA	GTAGAGACTG	AATTATTCTG	3660
CACATCAGAC	TCTGAGCAGA	GTTCTGTTCA	CTCAGACAGA	AAATGGGTAA	ATTGAGAGCT	3720
GGCTCCATTG	TGCTCCTTAG	AGATGGGAGC	AGGTGGAGGA	TTATATAAGG	TCTGGAACAT	3780
TTAACTTCTC	CGTTTCTCAT	CTTCAGTGAG	ATTCCAAGGG	ATACTACAAT	TCTGTGGAAT	3840
GTGTGTCAGT	TAGGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	CAGGCAGAAG	TATGCAAAGC	3900
ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	3960
AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4020
ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTTT	4080
TTTATTTATG	CAGAGGCCGA	GGCGCCTCTG	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	4140
TTGGAGGCCT	AGGCTTTTGC	AAAAAAGCTA	ATTCAGCCTG	AATGGCGAAT	GGGACGCGCC	4200
CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	4260
TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	4320
CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT	4380
ACGGCACCTC	GACCCCAAAA	ACTTGATTAG	GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	4440
TGATAGACGG	TTTTTCGCCC	TTTGACGTTG	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	4500
TTCCAAACTG	GAACAACACT	CAACCCTATC	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	4560

FIG. 6D

TTGCCGATTT	CGGCCTATTG	GTTAAAAAAT	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	4620
TTTAACAAAA	TATTAACGTT	TACAATTTCA	GGTGGCACTT	TTCGGGGAAA	TGTGCGCGGA	4680
ACCCCTATTT	GTTTATTTTT	CTAAATACAT	TCAAATATGT	ATCCGCTCAT	GAGACAATAA	4740
CCCTGATAAA	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	4800
GTCGCCCTTA	TTCCCTTTTT	TGCGGCATTT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	4860
CTGGTGAAAG	TAAAAGATGC	TGAAGATCAG	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	4920
GATCTCAACA	GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG	AAGAACGTTT	TCCAATGATG	4980
AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC	GTATTGACGC	CGGGCAAGAG	5040
CAACTCGGTC	GCCGCATACA	CTATTCTCAG	AATGACTTGG	TTGAGTACTC	ACCAGTCACA	5100
GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	5160
agtgataaca	CTGCGGCCAA	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	5220
GCTTTTTTGC	ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	5280
AATGAAGCCA	TACCAAACGA	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT	GGCAACAACG	5340
TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	5400
iggatggagg'	CGGATAAAGT	TGCAGGACCA	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	5460
TTTATTGCTG	ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG	5520
GGCCAGATG	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT	5580
ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	5640
CTGTCAGACC	AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTAATTT	5700
AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	5760
TTTTCGTTCC	ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	TTGAGATCCT	5820
TTTTTCTGC	GCGTAATCTG	CTGCTTGCAA	АСАААААААС	CACCGCTACC	AGCGGTGGTT	5880
TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG	5940
CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	6000
STAGCACCGC	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	6060
SATAAGTCGT	GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	6120

FIG. 6E

TCGGGCTGAA	CGGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	618
CTGAGATACC	TACAGCGTGA	GCATTGAGAA	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	6240
GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	GCTTCCAGGG	6300
GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	6360
TTTTTGTGAT	GCTCGTCAGG	GGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCC	

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 8A

raTNF-R

GAATTCCTTT	TCTC	CGAG	TT T	TCTG.	AACT	C TG	GCTC	ATGA	TCG	GGCT	TAC	TGGA'	TACG	AG	6	0	
AATCCTGGAG,														_	12	-	
GGGCTCACGC	TGCC.	AACA	cc c	GGGC	CACC	T GG	TCCG.	ATCG	TCT	TACT	TCA	TTCA	CCAG	CG	18	0	
TTGCCAATTG	CTGC	CCTG	TC C	CCAG	cccc	A AT	GGGG	GAGT	GAG.	AGAG	GCC .	ACTG	CCGG	CC	24	0	
GGAC																	
245/1					~~~	^	~~~	275		OMC.	C#C	000					
ATG GGT CTC Met Gly Leu	CCC	ATC	GIG	CCT	GGC	CTG	CTG	CTG	TCA	CTG	GIG	CTC	CTG	GCT	CTG	CTG	ATG
305/21	PIO	TTE	val	FIO	GIY	Leu	neu	335		Tea	Val	neu	neu	MIG	rea	reu	Met
GGG ATA CAC	CCA	TCA	GGG	GTC	ACC	GGA	CTG			TCT	CTT	GGT	GAC	CGG	GAG	AAG	AGG
Gly Ile His	Pro	Ser	Gly	Val	Thr	Gly.	Leu	Val	Pro	Ser	Leu	Gly	Asp	Arg	Glu	Lys	Arg
.365/41								395,								_	_
GAT AAT TTG																	
Asp Asn Leu	Cys	Pro	GIN	GIY	Lys	Tyr	Ala			rās	Asn	Asn	Ser	Ile	Cys	Cys	Thr
425/61 AAG TGC CAC		GGA	ACC	ጥልሮ	ጥጥር	GTG	acm	455,		CCA	ACC	CCA	ece	CNG	CNA	303	Cmc
Lys Cys His	Lvs	Glv	Thr	Tvr	Leu	Val	Ser	ASD	Cvs	Pro	Ser	Pro	Glv	Gln	Glu	Thr	Ual
485/81	-4 -			-1-				515,					 2		0		AGT
TGC GAG CTC	TCT	CAT	AAA	GGC	ACC	TTT	ACA	GCT	TCG	CAG	AAC	CAC	GTC	AGA	CAG	TGT	CTC
Cys Glu Leu	Ser	His	Lys	Gly	Thr	Phe	Thr			Gln	Asn	His	Val	Arg	Gln	Cys	Leu
545/101 AGT TGC AAG		mc m	ccc	***	C22	2 000	mm/		/111	CNC	2 (2) (2)	mcm		700			
Ser Cys Lys	Thr	Cvs	Ara	T.vs	GAA	Met	Phe	Gln	Val	GAG	TIA	Sar	Pro	Cve	AAA	GCT	GAC
605/121		0 10		2.5	014				/131		***	001	110	Cys	nys	VIG	ASP
ATG GAC ACC	GTG	TGT	GGC	TGC	AAG	AAG	AAC	CAA	TTC	CAG	CGC	TAC	CTG	AGT	GAG	ACG	CAT
Met Asp Thr																	
665/141									/151								
TTC CAG TGT	GTG	GAC	TGC	AGC	CCC	TGC	TTC	AAT	GGC	ACC	GTG	ACA	ATC	CCC	TGT	AAG	GAG
Phe Gln Cys 725/161	vaı	vab	Cys	ser	PIO	Cys	Pne		/171	THE	vaı	THE	тте	Pro	Cys	Lys	Glu
AAA CAG AAC	ACC	GTG	TGT	AAC	TGC	CAC	GCA			TTT	CTA	AGC	GGA	AAT	GAG	TGC	ACC
Lys Gln Asn	Thr	Val	Cys	Asn	Cys	His	Ala	Gly	Phe	Phe	Leu	Ser	Gly	Asn	Glu	Cvs	Thr
785/181								815/					-			-	
CCT TGC AGC	CAC	TGC	AAG	AAA	AAT	CAG	GAA	TGT	ATG	AAG	CTG	TGC	CTA	CCT	CCA	GTT	GCA
Pro Cys Ser 845/201	nis	Cys	ьys	гĀз	Asn	GIn	GTA	Cys 875/		Lys	Leu	Cys	Leu	Pro	Pro	Val	Ala
AAT GTC ACA	AAC	CCC	CAG	GAC	TCA	GGT	ACT			CTG	TTG	CCT	CTG	GTT	ATC	ጥጥር	CTA
Asn Val Thr	Asn	Pro	Gln	Asp	Ser	Gly	Thr	Ala	Val	Leu	Leu	Pro	Leu	Val	Ile	Phe	Leu
905/221								935/	231								
GGT CTT TGC	CTT	TTA	TTC	TTT	ATC	TGC	ATC	AGT	CTA	CTG	TGC	CGA	TAT	CCC	CAG	TGG	AGG
Gly Leu Cys 965/241	Leu	Leu	Pne	Pne	TTE	Cys	Ile	Ser 995/		Leu	Суз	Arg	Tyr	Pro	Gln	Trp	Arg
CCC AGG GTC	TAC	TCC	ATC	ATT	TGT	AGG	GAT			CCT	GTC	AAA	GAG	СТС	GAG	CCT	CAA
Pro Arg Val	Tyr	Ser	Ile	Ile	Cys	Arg	Asp	Ser	Ala	Pro	Val	Lys	Glu	Val	Glu	Glv	Glu
1025/261								1055	/271			-				-	
GGA ATT GTT	ACT	AAG	CCC	CTA	ACT	CCA	GCC	TCT	ATC	CCA	GCC	TTC	AGÇ	CCC	AAC	CCC	GGC
Gly Ile Val	Thr	Lys	Pro	Leu	Thr	Pro	Ala				Ala	Phe	Ser	Pro	Asn	Pro	Gly
1085/281	N.C.M	CMC	CC0	mmo	3.00	100			/291			~~	 -				
TTC AAC CCC Phe Asn Pro	Thr	LAU	Glu	Dhe	Ser	MCC Th-	ACC Th~	DEA	750	TTC	AGT Se~	CAT	CCT	GTC	TCC	AGT	ACC
1145/301		u	y	- **	JUL		****		/311		267	4172	FTO	AQT	ser	ser	Inr
CCC ATC AGC	CCC	GTC	TTC	GGT	CCT	AGT	AAC	TGG	CAC	AAC	TTC	GTG	CCA	CCT	GTA	AGA	GAG
Pro Ile Ser	Pro	Val	Phe	Gly	Pro	Ser	Asn	Trp	His	Asn	Phe	Val	Pro	Pro	Val	Arg	Glu
1205/321								1235	/331							_	
GTG GTC CCA	ACC	CAG	GGT	GCT	GAC	CCT	CTC	CTC	TAC	GGA	TCC	CTC	AAC	CCT	GTG	CCA	ATC
Val Val Pro	Inr	GTU	стЛ	ATS	ASP	PIO	ren	ren	Tyr	GTÄ	ser	Leu	Asn	Pro	Val	Pro	Ile

FIG. 8B

1265/341		1295/351		
CCC CCC CCT GTT CGG AA	AA TGG GAA GAC GTC	GTC GCG GCC CAG C	CA CAA CGG CTT	GAC ACT
Pro Ala Pro Val Arg Ly	s Trp Glu Asp Val	Val Ala Ala Gln Pi	co Gln Arg Leu 2	Asp Thr
1225/261		1355/3/1		
CON CAC CCT GCG ATG CT	G TAT GCT GTG GTG	GAT GGC GTG CCT CC	IG ACA CGC TGG	AAG GAG
Ala Asp Pro Ala Met Le	u Tyr Ala Val Val	Asp Gly Val Pro Pr	co Thr Arg Trp	Lys Glu
1205/391		1415/391		
TTC ATG CGG CTC CTG GG	G CTG AGC GAG CAC	GAG ATC GAG CGG C	rg gag ctg cag :	AAC GGG
Phe Met Arg Leu Leu Gl	y Leu Ser Glu His	Glu Ile Glu Arg Le	eu Glu Leu Gln :	Asn Gly
1445/401		1475/411		
CGT TGC CTC CGC GAG GC	T CAT TAC AGC ATG	CTG GAA GCC TGG C	GG CGC CGC ACA	CCG CGA
Arg Cys Leu Arg Glu Al	la His Tyr Ser Met	Leu Glu Ala Trp A	rg Arg Arg Thr	Pro Arg
1505/421		1535/431		
CAC GAG GCC ACG CTG GA	AC GTA GTG GGC CGC	GTG CTT TGC GAC A	TG AAC CTG CGT	GGC TGC
His Glu Ala Thr Leu As	sp Val Val Gly Arg	Val Leu Cys Asp M	et Asn Leu Arg	GLY Cys
1565/441		1595/451	~~ .~~ .~~ ~.~	000 000
CTG GAG AAC ATC CGC GA	AG ACT CTA GAA AGC	CCT GCC CAC TCG T	CC ACG ACC CAC	Cro cos
Leu Glu Asn Ile Arg Gl	lu Thr Leu Glu Ser	Pro Ala His Ser S	er Thr Thr His	Ten bro
1625/461				
CGA TAA				
Arg Stop		- cma caaccaccam cc	TGCTAGAT 1680	•
GGCCACACCC	CCACCTCAGG AACGGG	ACTC GAAGGACCAT CC		
GCCCTGCTTC CCTGTGAACC	TCCTCTTTGG TCCTCT.	NOCT CTACATAGET TT	TCCCAGCT 1800	
CTCGATCTGG CAGCCACTTC GCCGAGGACA GCCTGTGCCA	CONCERNO CARGO	ACCC AACTCTCCCA TC		
GCCGAGGACA GCCTGTGCCA GACAGCTGAG GGTGCCAAAA	CCCACCACAC CTCATT	ETGG AGAAAAGCA CA		
GACAGCTGAG GGTGCCAAAA GATACCCACT TGGGATGCAA	CCACCCAAAC AAACCT	TOTO AGGGCCTCCT CA		
CTGGGCCCTT TTCACAGTAG	ATABACACT CTTTCT	ATTATATATA ACT		
GAACGGTTGA ACTCCCTAAG	GTAGGGGCAA GCACAG	AACA GTGGGGTCTC CA	GCTGGAGC 2100	
CCCCGACTCT TGTAAATACA	CTAAAAATCT AAAAGT	AA AAAAAAAA AAA	АААААААА 2160	
AAAAAAGGAA TTC				
Waterungowa 110				

FIG. 9A

huTNF-R

GAATTCTCTG GACTGAGGCT	CCAGTTCTGG	CCTTTGGGGT	TCAAGATCAC	TGGGACCAGG	60
CCGTGATCTC TATGCCCGAG	TCTCAACCCT	CAACTGTCAC	CCCAAGGCAC	TTGGGACGTC	120
CTGGACAGAC CGAGTCCCGG	GAAGCCCCAG	CACTGCCGCT	GCCACACTGC	CCTGAGCCCA	180
AATGGGGGAG TGAGAGGCCA					

			243/11			
213/1 ATG GGC CTC TCC AC	'C CMC CCM	CAC CTG CT		GTG CTC C	TG GAG CTG	тте сте
Met Gly Leu Ser Th	C GIG CCI	Asp Leu Le	n Len Pro Len	Val Leu L	eu Glu Leu	Leu Val
	IF VAL PIO	wah neg ne	303/31			204 141
273/21 GGA ATA TAC CCC TC		3 mm CC3 C9		CTA GGG G	AC AGG GAG	AAG AGA
GGA ATA TAC CCC TC	A GGG GIT	ALL GGA CA	u Wal Dro Hie	Lau Gly A	en Ara Glu	Tue Ara
-	er Grå var	TIE GIA De	363/51	Dea Orl	.op mig oru	. Dyd Alg
333/41 GAT AGT GTG TGT CO		מ יהמיה אא		ד דבב דבב	יכה אחיד ידהכ	TGT ACC
Asp Ser Val Cys Pr	co Cla Glu	Tue Tur Ti	e His Pro Gln	Asn Asn S	er Ile Cvs	Cvs Thr
	.o gin giy	1132 131 1.	423/71			-3
393/61 AAG TGC CAC AAA GO	בא ארר ידאר	TTG TAC A		GGC CCG G	GG CAG GAT	ACG GAC
Lys Cys His Lys G	on nee inc	Len Tur A	n Asp Cvs Pro	Glv Pro G	lv Gln Aso	Thr Asp
453/81	-yy-		483/91			
TGC AGG GAG TGT G	אה אפר הפר	TCC TTC AC		AAC CAC C	TC AGA CAC	TGC CTC
Cys Arg Glu Cys G	lu Ser Glv	Ser Phe Ti	r Ala Ser Glu	Asn His I	Leu Arg His	Cys Leu
513/101			543/111		_	-
AGC TGC TCC AAA TO	SC CGA AAG	GAA ATG G	T CAG GTG GAG	ATC TCT T	CT TGC ACA	GTG GAC
Ser Cys Ser Lys Cy	s Arg Lys	Glu Met G	y Gln Val Glu	Ile Ser S	er Cys Thr	Val Asp
573/121			603/131			
CGG GAC ACC GTG TO	ST GGC TGC	AGG AAG A	C CAG TAC CGG	CAT TAT T	igg agt gaa	AAC CTT
Arg Asp Thr Val Cy	ys Gly Cys	Arg Lys A	n Gln Tyr Arg	His Tyr T	rp Ser Glu	Asn Leu
633/141			663/151			
TTC CAG TGC TTC A	AT TGC AGC	CTC TGC C	C AAT GGG ACC	GTG CAC C	TC TCC TGC	CAG GAG
Phe Gln Cys Phe As	sn Cys Ser	Leu Cys L	eu Asn Gly Thr	Val His I	Leu Ser Cys	Gln Glu
693/161			723/171			
AAA CAG AAC ACC G	rg tgc acc	TGC CAT G	A GGT TTC TTT	CTA AGA	AA AAC GAG	TGT GTC
Lys Gln Asn Thr Va	al Cys Thr	Cys His A		Leu Arg	ilu Asn Glu	Cys Val
753/181			783/191			3 mm C3C
TCC TGT AGT AAC TO	ST AAG AAA	AGC CTG G	IG TGC ACG AAG	TIG TGC (IN CCC CAG	ATT GAG
Ser Cys Ser Asn Cy	is rās rās	Ser Leu G.	u Cys The Lys. 843/211	neu cys i	en bro gru	i iie Gin
813/201 AAT GTT AAG GGC AG	om crc crc	mca ccc 3/		ייים כככ כ	ነጥር ርጥሮ እጥጥ	ጥጥር ጥጥጥ
AST GTT ANG GGC AGAIN AST Val Lys Gly Th	or Glu Aen	Ser Glu Ti	r Thr Val Len	Leu Pro I	en Val Ile	Phe Phe
873/221	ir ora usb	Der Ory 1	903/231			
GGT CTT TGC CTT T	TA TCC CTC	CTC TTC A		TAT CGC T	TAC CAA CGG	TGG AAG
Gly Leu Cys Leu Le	au Ser Leu	Leu Phe I	e Glv Leu Met	Tyr Arg T	yr Gln Arg	Trp Lys
933/241			963/251		-	
TCC AAG CTC TAC TO	C ATT GTT	TGT GGG A		GAA AAA G	AG GGG GAG	CTT GAA
Ser Lys Leu Tyr Se	er Ile Val	Cys Gly Ly	s Ser Thr Pro	Glu Lys G	Slu Gly Glu	Leu Glu
993/261			1023/271			
GGA ACT ACT ACT AM	AG CCC CTG	GCC CCA A	C CCA AGC TTC	AGT CCC A	CT CCA GGC	TTC ACC
Gly Thr Thr Thr Ly	s Pro Leu	Ala Pro A	n Pro Ser Phe	Ser Pro T	hr Pro Gly	Phe Thr
1053/281			1083/291			
CCC ACC CTG GGC T	C AGT CCC	GTG CCC A	T TCC ACC TTC	ACC TCC A	GC TCC ACC	TAT ACC
Pro Thr Leu Gly Pl	ne Ser Pro	Val Pro Se		Thr Ser S	er Ser Thr	Tyr Thr
1113/301			1143/311			
CCC GGT GAC TGT C	CC AAC TTT	GCG GCT C	C CGC AGA GAG	GTG GCA C	CA CCC TAT	CAG GGG
Pro Gly Asp Cys Pr	co Asn Phe	Ala Ala P		. Val Ala P	ro Pro Tyr	GIN GIA
1173/321			1203/331			
GCT GAC CCC ATC C						
Ala Asp Pro Ile Le	eu Ala Thr	Ala Leu A.	a ser Asp Pro	TIE PIO A	ish rro Leu	GIU DAS

FIG. 9B

1233/341	1263/351	
TGG GAG GAC AGC GCC CAC AAG CCA CAG	AGC CTA GAC ACT GAT GAC CCC GCG ACG CTG TAC	:
Trp Glu Asp Ser Ala His Lys Pro Gln	Ser Leu Asp Thr Asp Asp Pro Ala Thr Leu Tyr	:
1293/361	1323/371	
GCC GTG GTG GAG AAC GTG CCC CCG TTG	CGC TGG AAG GAA TTC GTG CGG CGC CTA GGG CTG	3
Ala Val Val Glu Asn Val Pro Pro Leu	Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu	1
1353/381	1383/391	
AGC GAC CAC GAG ATC GAT CGG CTG GAG	CTG CAG AAC GGG CGC TGC CTG CGC GAG GCG CAM	¥.
Ser Asp His Glu Ile Asp Arg Leu Glu	Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Glr	1
1413/401	1443/411	
	CGC ACG CCG CGC CGC GAG GCC ACG CTG GAG CTC	3
Tyr Ser Met Leu Ala Thr Trp Arg Arg	Arg Thr Pro Arg Arg Glu Ala Thr Leu Glu Leu	1
1473/421	1503/431	
	CTG CTG GGC TGC CTG GAG GAC ATC GAG GAG GCC	3
Leu Gly Arg Val Leu Arg Asp Met Asp	Leu Leu Gly Cys Leu Glu Asp Ile Glu Glu Ala	3
1533/441	1563/451	
CTT TGC GGC CCC GCC GCC CTC CCG CCC	GCG CCC AGT CTT CTC AGA TGA 153	80
Leu Cys Gly Pro Ala Ala Leu Pro Pro		
	·	
GGCTGCGCCC CTGCGGGCAG CTCTAAGGAC CGT	TCCTGCGA 1620	
GATCGCCTTC CAACCCCACT TTTTTCTGGA AAG		
CTAGCAGCCG CCTACTTGGT GCTAACCCCT CGA		
GCGCCGCCGA CAGTCAGCGC TGTGCGCGCG GAG		
GAGTGGGTGG TTTGCGAGGA TGAGGGACGC TAT		
CCAGCAAGGC TGCTCGGGGG CCCCTGGTTC GTC		
AGTTTTTTT GTTTTTGTTT TGTTTTGTTT TGT		
GAAACTTGGC ACTCCTGTGC CCTCTGCCTG GAC		
AGGCAGGGGC GAGCACGGAA CAATGGGGCC TTC		
CACTAAAATT CTGAAGTTAA AAAAAAAAAA AAA	AAGGAATT C 2141	

A STATE OF THE PARTY OF THE PAR

