

Computer science Standard level Paper 1

Friday 3 November 2017 (afternoon)

1 hour 30 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer all questions.
- The maximum mark for this examination paper is [70 marks].

[3]

Section A

Answer all questions.

6.

1.	Identify t	wo essential featu	ires of a compute	er language.			[2]
2.		damental operation ental operations.	ns of a computer	are <i>add</i> and <i>retr</i>	ieve. State another	two	[2]
3.	In the co	ntext of the netwo	rked world, state	the role of			
	(a) a c	client.					[1]
	(b) a s	server.					[1]
4.	Identify of for some		utting data that c	an improve the a	ccessibility of a cor	nputer system	[1]
5.	Copy an	d complete the fol	lowing truth table) .			[3]
		Α	В	A nor B	(A NOR B) OR A		
		FALSE	FALSE				
			•••				

NOT A OR B AND C.

Construct a logic diagram for the Boolean expression

7. Consider the following algorithm, where N is a positive integer.

```
loop for K from 1 to N
  loop for J from 1 to N
  if K = J then
    output K
  end if
  end loop
end loop
```

(a) Determine the number of times the comparison K = J will be performed.

[1]

(b) Determine the number of times the statement output K will be executed.

[1]

(c) Construct the algorithm which performs the same task using a single while loop, instead of nested for loops.

[4]

- **8.** The machine instruction cycle is the process by which a program instruction is fetched, decoded, executed and the results are stored.
 - (a) State where all instructions and data are stored.

[1]

(b) Outline the role of the data bus and address bus in this process.

[2]

9. Define the term *bit*.

[1]

10. Outline what is meant by beta testing.

[2]

Section B

Answer all questions.

11.		application package used in an office includes a word processor. A secretary uses the diprocessor to create a text file.	
	(a)	Describe how a spellchecker checks whether a word in a text file is correctly spelt or not.	[2]
	The	text file is automatically saved at regular periods while being edited.	
	(b)	State one advantage of this feature.	[1]
	(c)	Identify two additional features of a word processing package that could be useful for this office.	[2]
	(d)	Outline the purpose of one application software package other than a word processing package that could be used in this office.	[2]
	All fi	les created in this office contain information important to the business.	
	(e)	Outline the security measures that should be taken to prevent data loss.	[2]
	The	office manager decides to buy and install new software and hardware.	
	(f)	Outline one problem that may arise from the installation of new hardware and software in the office.	[2]
		changeover to the new system can be achieved by either direct changeover or sed conversion.	
	(g)	Compare direct changeover and phased conversion.	[4]

- **12.** A wireless local area network (WLAN) is used to extend access to a school's wired local area network.
 - (a) Identify **one** hardware component of the WLAN, other than computers.

[1]

The advantages of this WLAN are user-mobility and economical access points.

(b) Outline two disadvantages of this WLAN.

[4]

(c) Identify **three** ways in which the network administrator can reduce the risk of unauthorized access to confidential data.

[3]

The concept of packet data transmission is used within this network. **Figure 1** shows the simplified structure of a data packet.

Figure 1: The structure of a data packet

Header (12 bytes)	Data (112 bytes)	Trailer / Footer (4 bytes)
address of senderaddress of receiverprotocolsequence number	Actual data to be transmitted (payload)	transmission codeserror checking codescontrol bits

- (d) Define the term *protocol*. [1]
- (e) With reference to **Figure 1**, explain how data is transferred by packet switching. [6]

13. A character array S holds the word "PSEUDOCODE".

									[9]
P	S	Ε	U	D	0	С	0	D	Ε

(a) State the index of character "U" in the array S.

[1]

(b) Consider the following algorithm. The function len() returns the number of characters in an array (for example, len(S) is 10).

```
K = 0
CL = 0
loop while K < len(S)
  if S[K] = "E" then
      CL = CL + 1
  end if
   K = K + 1
end loop
output CL</pre>
```

For this algorithm, **copy** and complete the following trace table.

[4]

[5]

K	CL	K < len(S)	S[K] = "E"	output
0	0	TRUE	FALSE	

A simple method of encoding a message is to use substitutions to produce a cryptogram.

Given a positive integer ${\tt N}$ and the array <code>UPCASELETTERS</code> containing letters in alphabetical order, a new array <code>SUBSTITUTE</code> is created by shifting the entire contents of <code>UPCASELETTERS</code> to the left, ${\tt N}$ times. As an element moves off the left of the array, it moves back into the right side of the array.

For example, given the array UPCASELETTERS:

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]	[24]	[25]
А	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	M	Х	Y	Z

When N = 5 the array SUBSTITUTE will be:

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]	[24]	[25]
F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	M	Χ	Y	Z	А	В	С	D	E

(c) Construct an algorithm which creates the array SUBSTITUTE. You may assume that a positive integer N and array UPCASELETTERS are given.

(This question continues on the following page)

(Question 13 continued)

This encoding method produces a cryptogram of a sentence by replacing each uppercase letter of the sentence with its substitute. Other characters in the sentence are not changed.

For example, using the arrays shown on page 6:

Input (sentence): ARS LONGA, VITA BREVIS.
Output (cryptogram): FWX QTSLF, ANYF GWJANX.

The following algorithm fragment inputs the characters, one by one, from the input sentence, and outputs its cryptogram using the method <code>encode()</code>.

```
loop while NOT end-of-input-sentence
    CH = input()
    CRYPTEDCH= encode(CH, UPCASELETTERS, SUBSTITUTE)
    output CRYPTEDCH
end loop
```

The method <code>encode()</code> accepts a character <code>CH</code> and two arrays <code>UPCASELETTERS</code> and <code>SUBSTITUTE</code>, as defined above, and returns the corresponding character <code>CRYPTEDCH</code> of the character <code>CH</code>.

(d) Explain the steps to construct an algorithm for the method <code>encode()</code>.

[5]