Algorytm sieci neuronowej Rozpoznawanie cyfr

Piotr Klimkowski Rafał Borysionek

Wydział Elektroniki Politechnika Wrocławska

22 czerwca 2017

Spis treści

1. Teoria Sieci Neuronowych

- 1.1 Baza danych MNIST
- 1.2 Architektura sieci
- 1.3 Metoda Gradientu
- 1.4 Backpropagation
- 1.5 Overfitting
- 1.6 Dropout

2. Wyniki doświadczalne

- 2.1 Wpływ ilości ukrytych warstw na błąd
- 2.2 Wpływ ilości cykli uczenia na błąd
- 3. Prezentacja programu
- 4. Bibliografia

1. Teoria Sieci Neuronowych

- 1.1 Baza danych MNIST
- 1.2 Architektura sieci
- 1.3 Metoda Gradientu
- 1.4 Backpropagation
- 1.5 Overfitting
- 1.6 Dropout
- 2. Wyniki doświadczalne
- 2.1 Wpływ ilości ukrytych warstw na błąd
- 2.2 Wpływ ilości cykli uczenia na błąd
- 3. Prezentacja programu
- 4. Bibliografia

MNIST czyli baza danych służąca do uczenia:

Struktura sieci

Neuron w sieci

Aktywacja neuronu

Dopasowywanie wag

Metoda najmniejszych kwadratów

$$Q = \sum (y - \hat{y})^2$$

Gradient

$$\Delta a_q^{l+1} pprox rac{\partial a_q^{l+1}}{\partial a_j^l} \Delta a_j^l.$$

$$\Delta C pprox rac{\partial C}{\partial a_m^L} rac{\partial a_m^L}{\partial a_n^{L-1}} rac{\partial a_n^{L-1}}{\partial a_p^{L-2}} \dots rac{\partial a_q^{l+1}}{\partial a_j^l} rac{\partial a_j^l}{\partial w_{jk}^l} \Delta w_{jk}^l,$$

Co to jest Overfitting?

Kiedy on występuje?

Dropout jako sposób na overfitting

(a) Standard Neural Net

(b) After applying dropout.

- 1. Teoria Sieci Neuronowych
- 1.1 Baza danych MNIST
- 1.2 Architektura sieci
- 1.3 Metoda Gradientu
- 1.4 Backpropagation
- 1.5 Overfitting
- 1.6 Dropout
- 2. Wyniki doświadczalne
- 2.1 Wpływ ilości ukrytych warstw na błąd
- 2.2 Wpływ ilości cykli uczenia na błąd
- 3. Prezentacja programu
- 4. Bibliografia

Warstwy	Błąd [%]
800,400	2,32
400,800	2,40
800	2,41
400,400	2,42
500,150	2,52
800,800	2,53
400,200,100	2,53
800,400,400	2,61
400,400,400	2,62
800,400,100	2,94
100,100,100	3,23

- 1. Teoria Sieci Neuronowych
- 1.1 Baza danych MNIST
- 1.2 Architektura sieci
- 1.3 Metoda Gradientu
- 1.4 Backpropagation
- 1.5 Overfitting
- 1.6 Dropout
- 2. Wyniki doświadczalne
- 2.1 Wpływ ilości ukrytych warstw na błąc
- 2.2 Wpływ ilości cykli uczenia na błąd

3. Prezentacja programu

4. Bibliografia

- 1. Teoria Sieci Neuronowych
- 1.1 Baza danych MNIST
- 1.2 Architektura sieci
- 1.3 Metoda Gradientu
- 1.4 Backpropagation
- 1.5 Overfitting
- 1.6 Dropout
- 2. Wyniki doświadczalne
- 2.1 Wpływ ilości ukrytych warstw na błąc
- 2.2 Wpływ ilości cykli uczenia na błąd
- 3. Prezentacja programu
- 4. Bibliografia

Bibliografia I

Yann LeCun, Corinna Cortes, Christopher J.C. Burges.

THE MNIST DATABASE of handwritten digits.

http://yann.lecun.com/exdb/mnist/

Stephen Welch.

Neural-Networks-Demystified.

https://github.com/stephencwelch

Keras Documentation

Keras: The Python Deep Learning library.

https://keras.io/