Alkalmazott Fizikai Módszerek Laboratórium

Transzmissziós elektronmikroszkópia

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizikus MSc I

'E' mérőcsoport

Mérés dátuma: 2019.11.22.

Mérés vezetője: Lábár János

1. Rövid bevezető

Mérésünk soorán a TEM (transzmissziós elektronmikroszkóp működési elvével ismerkedtünk meg, valamint lehetőségünk nyílt különböző minták diffrakciós mintázatának tanulmányozására is. Méréseink kalibrálása után indexeltem a hexagonális kristályrácsokról készített diffrakciós képeket, majd meghatároztam a zónatengelyeket, illetve a minták orientációját. Az indexeléshez a négyindexes hexagonális rendszert használtuk, melyre a szimmetria szerinti ekvivalenciákhoz való igazodás miatt volt szükség. Az indexelés hátterének, valamint számításának részletei megtalálhatók [1] jegyzetben, valamint [2] cikkben.

2. Mérés menete

A mérés során egy Al₂O₃ hordozóra növesztett GaN álló minta egymásra merőleges metszeteiről vettünk fel diffrakciós képeket. A felvett diffrakciós képeken is látszott, hogy mindkét minta hexagonális rendszerben kristályosodik. A mikroszkóp és a minta beállítását követően a Kikuchi-sávok mentén magas szimmetriájú pontokat keresve orientáltuk a mintát, majd mind a hordozó rétegről, mind a számunkra érdekes GaN rétegről diffrakciós képeket készítettünk, majd ezen lépéseket megismételtük a merőleges metszet esetén is.

3. Mérések kiértékelése

Méréseink kiértékeléséhez először kalibrálnunk kell a készült képeket. Ehhez a Ni mintáról készült polidiffrakciós képet értékeltük ki. A kalibrációt az alábbi egyenlet segítségével végezhetjük el, mivel ezen anyag köbös kristályráccsal rendelkezik:

$$R_{hkl} = \frac{L\lambda}{a} \sqrt{h^2 + k^2 + l^2},\tag{1}$$

ahol R_{hkl} a felvételen a direkt nyaláb és a hkl indexű síksereg távolsága, L a kalibrálandó kamerahossz, λ a hullámhossz, a pedig a rácsállandó. Mivel a rácstávolságok ezen szimmetriájú rács esetében

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \tag{2}$$

alakban adhatjuk meg, így a két összefüggés összevetésével látható, hogy a diffrakciós képen mért távolságok fordítottan arányosak a valós rácssíktávolságokkal. A kalibrációs képen az egyes gyűrűk sugarát megmérve, majd ezen távolságokat összevetve a hozzájuk tartozó rácssíktávolságokkal meghatározhatjuk a rendszer mikroszkóp állandóját, mely segítségével elvégezhetjük a többi minta indexelését.

A kalibráció elvégzéséhez kinyomtattam az egyes diffrakciós képeket, majd egy vonalzó segítségével megmértem az egyes diffrakciós körök átmérőit, ahogy a függelék első ábráján is látszik. Az egyes mért értékekhez párosítani tudjuk az egyes rácssíktávolságokat a Ni kalibrációs lapjának segítségével. A mért távolságok valamint a hozzájuk tartozó rácssíktávolságok a 1. táblázatban láthatók.

R [mm]	d [Å]	1/d [1/Å]
27.5	2.03718	0.49087
32.0	1.76425	0.56681
45.0	1.24751	0.80160
53.0	1.06388	0.93996
71.0	0.80949	1.23534

1. táblázat. A kalibrációhoz szükséges értékek táblázata. Az általam feljegyzett utolsó távolságot megelőzően még kettő további diffrakciós gyűrűnek is látszódnia kellett volna a kalibrációs lap szerint, melyek halványan látszódtak is a képen azonban a távolságok meghatározása bizonytalan lett volna, így ezek elhagyása mellett döntöttem.

A táblázatban listázott pontokra a fenti

$$\frac{1}{d_{hkl}} = L\lambda \cdot R_{hkl} \tag{3}$$

egyenlet értelmében egyenest illesztettem, majd ezen egyenes meredekségéből meghatároztam a mikroszkóp állandót, melyre $L\lambda=0.0352~\mathrm{mm}\cdot\mathrm{\mathring{A}}\,$ érték adódott. A továbbiakban ezen értéket leosztva a papíron mért értékekkel megkapjuk az egyes diffrakciós pontokhoz tartozó rácssíktávolságokat.

1. ábra. A mikroszkóp állandó meghatározásához készített kalibrációs egyenes

A rácssík távolságok ismeretében a mérés honlapján található JCPDS adatlapok segítségével meghatározhatjuk a diffrakciós pontok indexeit. A kapott (hkl) indexekből az i:=-(h+k) módon vezethetjük a hexagonális rendszereknél használatos négyes (hkil) indexelésre. A négyes indexelések esetében természetesen ugyanúgy teljesülnie kell a vektoriális összeadások szabályainak mint a háromindexes esetben.

Az egyes diffrakciós képek indexelését a 2-7. táblázatok tartalmazzák.

Pont indexe (#)	R _{mért} (mm)	d _{mért} (Å)	d _{valós} (Å)	hkl	hkil
1	12.0	2.367	2.379	110	$11\overline{2}0$
2	17.5	1.623	1.601	<u>11</u> 6	1126
4	13.0	2.185	2.165	006	0006

2. táblázat. Az Al_2O_3 hordozóról készített első diffrakciós kép kiértékelése (Al2O3_1.jpg)

Pont indexe (#)	R _{mért} (mm)	$d_{m ext{\'e}rt}$ (Å)	d _{valós} (Å)	hkl	hkil
1	10.0	2.840	2.760	100	$10\overline{1}0$
3	11.0	2.581	2.590	002	0002
4	15.0	1.893	1.884	102	$10\overline{1}2$

3. táblázat. A GaN hordozóról készített első diffrakciós kép kiértékelése (GaN_1.jpg)

Pont indexe (#)	R _{mért} (mm)	d _{mért} (Å)	d _{valós} (Å)	hkl	hkil
1	8.0	3.545	3.479	012	$01\overline{1}2$
2	11.0	2.581	2.552	$01\overline{4}$	$01\overline{14}$
3	13.0	2.184	2.165	$00\overline{6}$	$000\overline{6}$

4. táblázat. Az ${\rm Al_2O_3}$ hordozóról készített második diffrakciós kép kiértékelése (Al2O3_2.jpg)

Pont indexe (#)	R _{mért} (mm)	d _{mért} (Å)	d _{valós} (Å)	hkl	hkil
1	17.5	1.626	1.591	110	$11\overline{2}0$
2	21.0	1.352	1.357	112	$11\overline{2}2$
3	11.0	2.581	2.590	002	0002

5. táblázat. A GaN hordozóról készített második diffrakciós kép kiértékelése (${\tt GaN_2.jpg}$)

Pont indexe (#)	R _{mért} (mm)	d _{mért} (Å)	d _{valós} (Å)	hkl	hkil
1	15.0	1.893	1.884	102	$10\overline{12}$
2	10.0	2.840	2.760	100	$10\overline{1}0$
3	11.0	2.581	2.590	$00\overline{2}$	$000\overline{2}$
ĩ	17.5	1.623	1.601	116	$11\overline{2}6$
$\widetilde{2}$	12.0	2.366	2.379	110	$11\overline{2}0$
$\widetilde{3}$	13.0	2.184	2.165	$00\overline{6}$	$000\overline{6}$

6. táblázat. A GaN (#) és az Al_2O_3 (#) rétegekről készített első együttes diffrakciós kép kiértékelése (Al2O3_GaN_1.jpg)

Pont indexe (#)	$R_{m\acute{e}rt}$ (mm)	$d_{m ext{\'ert}}$ (Å)	d _{valós} (Å)	hkl	hkil
1	11.0	2.581	2.590	002	0002
3	17.5	1.623	1.591	110	1120
4	21.0	1.352	1.357	112	$11\overline{2}2$
ĩ	13.0	2.184	2.165	006	0006
$\widetilde{\mathfrak{F}}$	21.0	1.385	1.374	300	3030
$\widetilde{4}$	24.5	1.159	1.160	306	$30\overline{3}6$

7. táblázat. A GaN (#) és az Al_2O_3 (#) rétegekről készített második együttes diffrakciós kép kiértékelése (Al2O3_GaN_2.jpg)

Hármas (uvw) indexek esetében a zónatengelyek irányát úgy kaphatjuk, hogy a diffrakciós síkban fekvő két vektor vektoriális szorzatát képezzük, majd ezt lenormáljuk a számhármas legnagyobb közös osztójával. Ez megfelel a Weisstörvénynek, miszerint a zónatengely indexire teljesülnie kell a sík tetszőleges Millerindex-hármasával az alábbi relációnak:

$$uh + vk + wl = 0 (4)$$

Négyesindexű reciprokrács-vektorokból nem számíthatjuk a zónatengelyt vektoriális szorzattal, viszont ekkor a zónatengely irányát megkaphatjuk a háromindexes zónatengely segítségével a következő módon:

$$u = \frac{1}{3}(2u' - v'),$$

$$v = \frac{1}{3}(2v' - u'),$$

$$t = -\frac{1}{3}(v' + u'),$$

$$w = w'$$
(5)

A háromindexes zónatengelyeket a fent említett módon lehet számolni egy vektoriális szorzat segítségével. A háromindexes (uvw) jelölésből ezt követően a fent egyenletrendszer alapján lehet áttérni a négyindexes (uvwt) zónatengelyirányra (itt természetesen a négyindexes jelölés első két indexe nem egyezik meg a háromindexes jelölés első két indexével). A számolt zónatengelyeket a 8. táblázat tartalmazza.

Diffrakciós kép	$h_1k_1l_1$	$h_2k_2l_2$	uvw	uvtw
Al_2O_3 1.	110	<u>11</u> 6	$1\overline{1}0$	$1\overline{1}00$
GaN 1.	100	002	010	$1\overline{2}10$
Al_2O_3 2.	012	$01\overline{4}$	<u>1</u> 00	$\overline{2}110$
GaN 2.	110	112	$1\overline{1}0$	$1\overline{1}00$
Al ₂ O ₃ +GaN 1. (GaN)	102	100	010	$\overline{1}2\overline{1}0$
$Al_2O_3+GaN 1. (Al_2O_3)$	116	110	<u>1</u> 10	<u>1</u> 100
Al ₂ O ₃ +GaN 2. (GaN)	002	110	<u>1</u> 10	<u>1</u> 100
Al ₂ O ₃ +GaN 2. (Al ₂ O ₃)	006	300	010	$1\overline{2}10$

8. táblázat. A zónatengelyek irányait tartalmazó táblázat a különböző diffrakciós képek esetére

Az egyes diffrakciós indexeléseket összevetve azt kapjuk, hogy az egyetlen közös síksereg az Al_2O_3 hordozó esetében a 0006 síksereg, valamint a GaN réteg esetében a 0002 síksereg. Ez annak felel meg, hogy a hordozóban és a rétegben a reciproktér z-tengelye megegyezik. Ezt követően kiválasztottam az első metszet irányából készült felvételeket, majd tekintettem azon közös irányokat, melyek a fenti irányra merőlegesek. A közös irányokba álló síkok indexeinek típusa eltérő, Al_2O_3 hordozó esetén $11\overline{2}0$, míg a GaN réteg esetén $10\overline{1}0$. Ezen két síksereg közötti szög számolásával meghatározhatjuk azok orientációját. A számoláshoz azonban egy bonyolultabb képletre lesz szükségünk, mivel a síkseregek közötti szög nem azonos az irányok közötti szöggel. A számításokhoz a [2] cikkben felírt A2.6 képlettel számoltam:

$$\cos \Phi = \frac{hd + ke + \frac{1}{2}(he + kd) + \frac{3}{4}lg(a/c)^2}{(h^2 + k^2 + hk + \frac{3}{4}l^2(a/c)^2)^{1/2}} \cdot (d^2 + e^2 + de + \frac{3}{4}g^2(a/c)^2)^{1/2}, \quad (6)$$

ahol (hkil) az egyik síkhoz tartozó indexek, míg (defg) a másik síkhoz tartozó indexek, valamint a és c a hordozó és a réteg rácsparaméterei (a JCPDS adatlapok szerint ezek rendre 4.758 Å és 3.186 Å). A fenti képlet használatával $\cos\Phi=0.866$ adódott, ezáltal a síkok által bezárt szög $\Phi\approx 30^\circ$ -nak adódott.

4. Diszkusszió

A laborgyakorlat során megismerkedtünk a transzmissziós elektronmikroszkópia működési elveinek alapjaival, majd az általunk készített diffrakciós képekhez történő kalibrációt elvégezve meg tudtam határozni az egyes minták zónatengelyeinek irányát, valamint a mintában levő anyagok egymáshoz viszonyított orientációját is

Hivatkozások

(1).: http://metal.elte.hu/oktatas/alkfizlab/meresleirasok/TEM.pdf

(2):: https://www.energia.mta.hu/labar/Edington.pdf