

Clustered/Distributed File Systems

Petr Medonos, Lukáš Heřbolt

O nás

Petr Medonos

- Bc. ININ VŠCHT
- 5+ let v ETN
- RHCE, MongoDB for DBA
- databáze, performance, bezpečnost, ...
- realizace/dohled nad vetšinou současných projektů v ETN

O nás

Lukáš Heřbolt

- Bc. FEL ČVUT
- 2 roky v ETN
- MongoDB for DBA
- Loadbalancing, cachování
- Realizace projektů
 - TO2 (extravyhody.cz, firemnitelefony.cz), Fast, mojeallianz.cz, moje.partners.cz

Obsah

- Možnosti
- Storage komponenty
- Clusterovaný vs. distribuovaný
- Block level (DRBD)
- FS
 - GlusterFS
 - o GFS2
 - o GridFS

DRBD OCFS

CEPH

HDFS

VMFS

GlusterFS

QFS

VERITAS

SMB

GPFS

GoogleFS

GFS2

GridFS

AFS

LUSTER

SHEEPDOG

NFS

Clusterový vs. distribuovaný FS

- SAN vs. NAS
- block vs. file level
- cluster x parallel x distributed
- metadata
- split brain

DRBD

- replikovaný block device
- levná náhrada SAN
- od v. 8 umožnuje i dual-primary provoz
- synchronní i asynchonní replikace
- šifrování komunikace

DRBD

DRBD - konfigurace 1/2

```
common {
  startup {
     become-primary-on both;
  } }
resource r0 {
  net {
     protocol C;
     allow-two-primaries;
  disk {
     on-io-error detach;
     resync-rate 700M; }
```

DRBD - konfigurace 2/2

```
on drbd-test1.local {
  device
             /dev/drbd0;
  disk
             /dev/sdb1;
             192.168.1.164:7789;
  address
  meta-disk internal;
on drbd-test2.local {
             /dev/drbd0;
  device
  disk
             /dev/sdb1;
             192.168.1.207:7789;
  address
  meta-disk internal; } }
```

DRBD - inicializace resourcu

```
drbdadm create-md <resource | all>
drbdadm up <resource | all>
drbdadm primary --force <resource>
```

cat /proc/drbd

DRBD - spit brain

victim:

```
drbdadm disconnect <resource>
drbdadm secondary <resource>
drbdadm -- --discard-my-data connect
<resource>
```

survivor:

drbdadm connect <resource>

victim:

drbdadm primary <resource>

GlusterFS

- distribuovaný POSIX FS
- nemá vlastní metadata server
- NAS
 - TCP/IP
 - infiniband
- snadno škálovatelný ~ PB
- XFS
- geo-replication

Základní pojmy

- peer
 - server, na kterém běží glusterd a sdílí volumy
- brick
 - zakladní stavební jednotka uložiště v GlusterFS FS mountpoint
- translator
 - reší zakladní logiku mezi uložištěm a vysdílenými daty
- volume
 - spojené bricky prohnané přes translator

Elastic hashing algoritmus

hash z cesty+názvu souboru

přidělení logického disku podle hashe

oddělení logického a fyzického uložiště

přejmenování/přesouvání souboru

Přístup k datům

nativní glusterfs client (FUSE)

NFS

SMB/CIFS

Redundance

 výchozí nastavení volumu distributable!

Distribuovaný volume

Replikovaný volume

Striped volume

Distribuovaný replikovaný volume

Možnosti volumů - summary

- distributed
- replicated
- striped
- distributed striped
- distributed replicated
- distributed striped replicated
- striped replicated

Geo-replication

asynchronní

master-slave

rsync:)

Vytvoření bricku

```
[root@node1.local ~]# mkdir /brick1
[root@node2.local ~]# mkdir /brick2
```

Vytvoření replikovaného volumu

```
[root@node1.local ~]# gluster peer probe
  node2.local
[root@node1.local ~]# gluster peer status
[root@node1.local ~]# gluster volume create
  data replica 2 node1.local:/brick1
  node2.local:/brick2
[root@node1.local ~]# gluster volume start
  data
```

Pridani bricku

```
# gluster volume add-brick data
  c1-n1.local:/brick3 c1-n2.local:/brick4
# gluster volume rebalance data fix-layout
  start
# gluster volume rebalance data status
```

Volume shrink

```
# gluster volume remove-brick data
c1-n1.local:/brick3 c1-n2.local:/brick4
start
```

gluster volume remove-brick data
c1-n1.local:/brick3 c1-n2.local:/brick4
status

gluster volume remove-brick data
c1-n1.local:/brick3 c1-n2.local:/brick4
commit

Nastavení geo-replikace

etnetera

```
# gluster peer probe c1-n1.local
/var/lib/glusterd/geo-replication/gsyncd.conf
 - remote gsyncd =
 /usr/libexec/glusterfs/gsyncd
# ssh-keygen -f
 /var/lib/glusterd/geo-replication/secret.pe
 m
# ssh-copy-id -i
 /var/lib/glusterd/geo-replication/secret.pe
 m.pub root@c1-n1.local
```

Nastavení geo-replikace

```
# gluster volume geo-replication data
ssh://c1-n1.local:/mnt/gluster-backup start
# gluster volume geo-replication status
```

Rebalancing

 nutné vždy po přidání, odebrání bricku

fix-layout

fix-layout a migrace dat

Red Hat Cluster Suite (GFS2)

Kdy ho použít

- o FC
- FCoE
- o iSCSI
- o SAS
- DRBD (master master)
- AoE
- o KVM

kolekce démonů pro běh clusteru a HA

- o clvmd
- dlm_controld
- o gfs controld
- rgmanager
- o ricci
- o cman
- qdisk
- fenced

DLM

- distrinuted lock manager
- správa zámků nad v CLVM a GFS2
 - cman
 - qdiskd

CLVM

- clustered Logical Volume Manager
- distribuce konfigurace přes všechny nody v clusteru

GFS2

- Global File System 2
 - pozor na GPFS od IBM a GFS od Google
- o přímý konkureční přístup k sdílenému block device
- journalování
- o online resize
- nepodporuje SELinux contexty
- řízení přístupu k datům přes DLM

/sys/kernel/debug/dlm/clvmd_locks

LOCK	NL	CR	cw	PR	PW	EX
NL	YES	YES	YES	YES	YES	YES
CR	YES	YES	YES	YES	YES	NO
CW	YES	YES	YES	NO	NO	NO
PR	YES	YES	NO	YES	NO	NO
PW	YES	YES	NO	NO	NO	NO
EX	YES	NO	NO	NO	NO	NO

- GFS2 glocks
 - 1 inode 2 zámky
 - iopen
 - inode glock
 - UN NL
 - SH PR
 - DF CW
 - EX EX

Nastavení

CLVM

```
vgcreate --clustered y
VG  #PV #LV #SN Attr VSize VFree
shared-ebs-1  1  0 wz--nc 928,00g 89,80g
/etc/lvm/lvm.conf
locking type = 3
```

CMAN

- o /etc/cluster/cluster.conf
- o /usr/share/cluster/cluster.rng xml schema

• GFS2

- mkfs.gfs2 -p LockProtoName -t LockTableName -j NumberJournals BlockDevice
 - LockProtoName dlm_lock

```
<?xml version="1.0"?>
   <cluster config version="13" name="cluster1">
      <cman expected votes="1" two node="1"/> <!--2</pre>
nodes-->
      <clusternodes>
         <clusternode name="10.1.1.1" nodeid="1">
            <fence>
                <method name="single">
                   <device action="off" ipaddr="192.168.1.1"</pre>
                   name="fence pub" port="hw-server-1"/>
                </method>
            </fence>
         </clusternode>
```

```
<fencedevices>
   <fencedevice agent="fence virsh" delay="5"</pre>
    identity_file="/root/.ssh/id rsa" login="root"
    name="fence pub"/>
</fencedevices>
< rm >
   <failoverdomains/>
   <resources/>
</rm>
```

Na co si dát pozor

- maximální počet nodů!
 - o mezeno na qdiskd na 16
- pozor na čas
 - TSC vs. HPET
- výkon
- správný fencing

GridFS - MongoDB

- FS v DB
- alternativa k HDFS a jiným DBFS
- moduly pro
 - nginx
 - httpd (apache)
- připojení přes FUSE
 - o neumí adresáře
- HA
 - replika set
 - max 12 nodes 7 voting
- horizontální škálování
 - sharding

GridFS - MongoDB

```
[root@mongo ~] # mongofiles -d file put
  /root/passwd

[root@mongo ~] # mongo file
> show collections
fs.chunks
fs.files
system.indexes
>
```

GridFS - MongoFS

fs.chunks

- obsahuje data souborů
- default velikost 256kb
 - změna přes driver v aplikaci při PUT

```
"_id": <ObjectID>,
    "files_id": <string>,
    "n": <num>,
    "data": <binary>
```

fs.files

o "metadata" souboru

{
 "id": <ObjectID>,
 "length": <num>,
 "chunkSize": <num>,
 "uploadDate": <timestamp>,
 "md5": <hash>
}

Q&A

petr.medonos@etnetera.cz
lukas.herbolt@etnetera.cz