Quadro Horário Escolar (timetabling)

Turma 71

Hor	Seg	Ter	Qua	Qui	Sex
07:25	PORT	HIST	CIÊN	MAT	CIÊN
08:15	REL	ING	ED FIS	MAT	CIÊN
09:05	MAT	ING	ED FIS	PORT	ART
10:10	HIST	GE0	MAT	PORT	ART
11:00	HIST	GEO	MAT	PORT	PORT

TURMAS

9a.(2) 7º anoEF(2) 7ª EF(2) 8ª EF(2) 1º EM(1)

BIOLOGIA

ARII

ALDRIM

06 1° EM(2) 2° EM(2) 3° EM(2)

CIÊNCIAS FÍSICAS E BIOLÓG ALDRIM

12 6° EF 9a.(3) 7° anoEF(3) 7ª EF(3) 8ª EF(3)

BRUNA

		6° EF 9a.	7° ano
	07:25	PORT	ING
	08:15	REL	MAT
Seg	09:05	MAT	ED F
	10:10	HIST	POR
	11:00	HIST	POR

Hor	Seg	Ter	Qua	Qui	Sex
07:25		6° EF 9a.	7° EF		1° EM
08:15	2° EM	1° EM	7° EF		7° anoEF
09:05	7° EF	3° EM	7° EF	7° anoEF	8" EF
10:10	6° EF 9a.	6° EF 9a.	7° anoEF	7° anoEF	8" EF
11:00	6° ЕГ 9а.	6° EF 9a.	7° anoEF	7° EF	3° EM

Objetivo:

 Geral: Alocar os recursos apropriados em slots de tempo contemplando o atendimento a restrições de disponibilidade.

• Especifico: Alocar professores em períodos diários em disciplinas e turmas

de alunos.

Turma 71

Hor	Seg	Ter	Qua	Qui	Sex
07:25	PORT	HIST	CIËN	MAT	CIÊN
08:15	REL	ING	ED FIS	MAT	CIÊN
09:05	MAT	ING	ED FIS	PORT	ART
10:10	HIST	GE0	MAT	PORT	ART
11:00	HIST	GEO	MAT	PORT	PORT

Definições...

Segundo Even Itai e Shamir (1976) trata-se de um problema NP-completo, comumente abordado através de técnicas heurísticas.

Revisão

 A abordagem normalmente envolve soluções para ambiente de ensino superior.

(Abramson (1991); Costa (1994); Burke et al.(2001); Ueda et al.(2001); Carrasco & Pato (2001); Colorni, Dorigo e Maniezzo (1998); Erben & Keppler (1996); Borges (2003); Martins (2004); Goés (2005) Cowling, Kendall e Han (2010); Moura & Scaraficci (2010), Goés, Costa e Steiner 2010)

Restrições

- Hard Contraints :
 - Todas disciplinas da grade curricular contempladas
 - Docente alocado em duas turmas ao mesmo tempo
 - Turmas sem docente alocado
 - Disponibilidade suficiente de docentes para as turmas / disciplinas que ministram

Restrições

- Soft Contraints:
 - Eliminar o máximo de "janelas" de docentes
 - Permitir a geminação de disciplinas em slots de tempo próximos
 - Evitar "janelas" na alocação das disciplinas em um mesmo dia.

Turma 81

I WILLIAM	OL O I	
Hor	Seg	Ter
07:25	CLAUDETE	BRUNA
08:15	CLAUDETE	CLAUDETE
09:05	BRUNA	BRUNA
10:10	BRUNA	CLAUDETE
11:00	BRUNA	BRUNA

Alocação - Grade Curricular

Disciplina/Turma	51	61	71	81	101
Biologia	0	0	0	0	3
Ciências	2	2	2	2	0
Educação Artística	2	2	2	2	1
Educação Física	2	2	2	2	2
Ensino Religioso	1	1	1	1	1
Espanhol	2	2	2	2	1
Física	0	0	0	0	3
Geografia	2	2	2	2	2
História	2	2	2	2	2
Inglês	2	2	2	2	1
Matemática	5	5	5	5	4
Português	5	5	5	5	3
Química	0	0	0	0	2
Totais:	25	25	25	25	25

Obs.: O total deve se exatamente o número de dias letivos semanais x o número de períodos diários, no caso, 5 dias com 5 períodos por dia.

Alocação - Grade de docentes

Disciplina / Turma	51	61	71	81	101
Biologia	-	-	-	-	Adir
Ciências	Daniel	Adir	Adir	Gislaine	-
Geografia	Edilcia	Edilcia	Edilcia	Edilcia	Edilcia
Matemática	Fabiana	Fabiana	Fabiana	André	André
Português	Fernanda	Fernanda	Fernanda	Fernanda	Gerson
Inglês	Gabriela	Gabriela	Gabriela	Gabriela	Gabriela
Educação Física	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson
História	Marcelo	Marcelo	Marcelo	Edilcia	Henrique
Educação Artística	Maria	Maria	Maria	Maria	Maria
Ensino Religioso	Renato	Renato	Renato	Renato	Renato
Espanhol	Virginia	Virginia	Virginia	Virginia	Virginia
Química	-	-	-	-	Daniel

Quadro de disponibilidade de docente

<u> </u>	,					- 1	×
l۱	Marque a disponibilidade do professor(a): André						
L		Segunda	Terça	Quarta	Quinta	Sexta	
L	1° Periodo			\		V	
ı	2° Periodo			✓		V	
L	3° Periodo			>		>	
L	4° Periodo			V		V	
L	5° Periodo			▼			

Tabela Grade

ID_GRADE	ID_TUR	ID_DISC	ID_PROF	nr_periodos	geminar
1	20	1	1	3	2
2	16	2	3	2	1
3	17	2	1	2	1
4	18	2	1	2	1
5	19	2	9	2	1
6	16	3	13	2	1
7	17	3	13	2	1
8	18	3	13	2	1
9	19	3	13	2	1
10	20	3	13	1	1

Representação disponibilidade

ID_DISPO	ID_PROFESSOR	diaok	periodook	ID_grade
1	15	1	0	0
2	15	1	1	0
3	15	1	2	0
4	15	1	3	0
5	15	1	4	0
6	15	3	0	0
7	15	3	1	0
8	15	3	2	0
9	15	3	3	0
10	15	3	4	0
11	15	4	3	0
12	15	4	4	0

Representação Cromossomo

Eurísticas

- Algoritmos genéticos.
- GRASP
- Busca Tabú
- VND

Pseudocógigo GA

Início

Crie uma população inicial

Calcule o grau de aptidão dos indivíduos

Enquanto não atingiu a condição de término

Selecione os indivíduos e forme os casais

Realize crossover

Realize mutação

Calcule grau de aptidão dos sobreviventes

Fim do Enquanto

Fim

Crossover

Figura 4.6: Realização do crossover

Fonte: Resolução do timetabling utilizando GA – Tadeu (2002)

Timetabling - Cesar A. Almeida

Mutação

- ▲ 6 aulas/semana
- 5 aulas/semana

(b)

- 5 aulas/semana
- 4 aulas/semana

▲ 6 aulas/semana

5 aulas/semana

(b)

- 🗅 5 aulas/semana
- 🗏 4 aulas/semana

Avaliação

- Hard constrainst Penalidades com maior valor.
- Soft constraints Penalidades com menor valor.

GRASP

(Greedy Randomized Adaptive Seach Procedure)

- Processo de busca adaptativa gulosa e randomizada é um método iterativo proposto por Feo e Resende (1995).
- Consiste de duas fases:
 - Fase de Construção, onde uma solução é gerada elemento a elemento. Nessa etapa o comportamento poderá ser guloso ou aleatório.
 - Fases de busca local, na qual um ótimo local na vizinhança da solução construída é pesquisado.

Pseudocodigo GRASP

Para (n° interações < maxGRASP) faça

Contrução (f,s)

Busca Local (s, s')

Se s' < s então

S = s'

Fims-e

Fim-para

Legenda: s- solução, s'- solução final, f- forma(gulosa ou aleatória).

Busca TABU

- Proposto por Glover (1986)
- Utiliza o conceito de lista tabu, onde movimentos são proibidos durante um determinado tempo (tempo tabu).
- Procedimento de otimização local que admite soluções de piora para escapar de ótimos locais (retorno a soluções previamente geradas).
- Busca uma solução possível e marca o ponto como tabu para que não seja novamente vistada.

Pseudocódigo

Gerar solução inicial

Repetir

Gerar a vizinhança

Avaliar a vizinhança

Determinar a melhor solução da vizinhança

Atualizar a lista tabú

Até critério de parada

GRASP + VND (variable neighborhood descent)

- Proposto Mladenovic e Hansen (1999).
- busca local, a técnica VND (Variable Neighborhood Descent)
- O VND é um método de busca local que consiste em explorar o espaço de soluções através de trocas sistemáticas de estruturas de vizinhança, aceitando somente soluções de melhora da solução corrente e retornando à primeira estrutura quando uma solução melhor é encontrada.

VND

- O Método VND proposto por Olliveira, Vianna e Vianna (2012) utiliza três estruturas de vizinhança:
 - Troca Horários do Professor no Mesmo Dia;
 - Troca Horários do Professor em Dias Diferentes;
 - Troca de Turmas Entre Professores.

VND

```
Algoritmo GRASP+VND (a, GRASPmax)
Entrada
        α – valor de aleatoriedade;
        GRASPmax - número de iterações;
Saída

 s – a melhor solução encontrada;

Início
        f^* \leftarrow \infty;
        Para iter ← 1 to GRASPmax faça
                 s \leftarrow \text{Construção}(\alpha);
                 s \leftarrow \text{VND}(s);
                 Se f(s) < f* então
                         s' \leftarrow s;
                         f^* \leftarrow f(s);
                 fim-se;
        fim-para;
        s \leftarrow s';
        Retorne s;
Fim-GRASP+VND
```

Timetabling Paralelo

- Trabalho proposto por Souza (2000)
- Java CORBA
- Processamento distribuído

Timetabling Paralelo

CUDA

Nvidia Geforce Titan - 2688 Núcleos

Timetabling Paralelo

- GRASP + VND
- Geração de múltiplas populações utilizando o conceito de ilhas, gerando maior diversidade
- Execução com Streams simultâneas em overlapping na GPU

Referências

ABRAMSON, D. Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms. Management Science, v. 37, pp. 98-113, 1991.

BARDADYM, V. A. Computer-Aided School and University Timetabling: The New Wave. Lecture Notes in Computer Science, v. 1153, pp. 22-45, 1996.

BIRBAS,T., DASKALAKI, S., e HOUSOS, E. D. School timetabling for quality student and teacher schedules. Journal of Scheduling, v. 12, n. 2, Abril 2009.

BORGES, S. K. Resolução de timetabling utilizandoalgoritmos genéticos e evolução cooperativa. Curitiba, 2003. 79 f. Dissertação (Mestrado em Ciência da Computação) – Setor de Ciências Exatas, Universidade Federal do Paraná.

CARRASCO, M. P. e PATO, M. V. A Comparison of Discrete and Continuous neural Network Approaches to Solve the Class/Teacher Timetabling Problem. European Journal of Operational Research, v. 153, n. 1, pp. 65-79, 2001.

CISCON, L. A. et al. O Problema de Geração de Horários: um Foco na Eliminação de Janelas e Aulas Isoladas. XXXVIII Simpósio Brasileiro de Pesquisa Operacional. Gramado - RS, 2005.

COLORNI, A., DORIGO M., e MANIEZZO V. Methaheuristics for high school timetabling. Computational Optimization and Applications, v. 9, n. 3, pp.275-298,1998.

COSTA, D. A tabu search algorithm for computing an operational timetable. European Journal of Operational Research, v. 76, pp.98-110, 1994.

COWLING, P., KENDALL, G., e HAN, L. An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. Disponível em: http://www.cs.nott.ac.uk/~gxk/papers/cec2002lxh.pdf> Acessado em: 22 de dez. 2010.

ERBEN, W. e KEPPLER, J. A genetic Algorithm Solving a Weekly Course-Timetabling Problem. Lecture Notes in Computer Science, v. 1408, pp.37-52, 1996.

EVEN, S., ITAI, A. e SHAMIR, A. On the complexity of timetabling and multicommodity flow problems. SIAM Journal of Computation, v. 5, pp.691-703, 1976.

FEO, T. A. e RESENDE, M. G. C. Greedy randomized adaptive search procedures. Journal of global optimization, v. 6, pp.109-133, 1995.

FERREIRA, P. S., RIBEIRO, A. A., KARAS, E. W., e SILVA, A. L. Aplicação de Programação Inteira na Distribuição de Encargos Didáticos em Instituições de Ensino. XXIII Congresso Nacional de Matemática Aplicada e Computacional. Águas de Lindóia – SP, 2010.

Referências

GOÉS, A. R. T. Otimização na Distribuição da Carga Horária de Professores – Método Exato, Método Heurístico, Método Misto e Interface. 2005. Dissertação (Programa de Pós-Graduação em Métodos Numéricos em Engenharia – Programação Matemática, Setores de Tecnologia e de Ciências Exatas) - Universidade Federal do Paraná. Curitiba, 2005.

GOÉS, A. R. T., COSTA, D. M. B., e STEINER, M. T. A. Otimização na Programação de Horários de Professores/ Turmas: Modelo Matemático, Abordagem Heurística e Método Misto. Revista Eletrônica Sistemas & Gestão, v. 5, n. 1, pp. 50-66, 2010.

GONÇALVES, T. S. Software para Organização de Horários Escolares. Anteprojeto de Dissertação (Sistemas de Informação) – Instituto de Ciências Exatas e Tecnológicas - Universidade FEEVALE, 2010.

KOTSKO, E. G. S., MACHADO, A. L. F., e SANTOS, E. M. Otimização na Alocação de Professores na Construção de uma Grade Horária Escolar. Revista do Centro de Ciências Agrárias e Ambientais, v. 1, n. 1, Jan/Jun. 2005.

MARTINS, S. V. Melhor Horário para o Sistema Cefet Campos. Vértices, v. 6, n. 1, jan./abr, 2004. MLADENOVIC, N. e HANSEN, P. Variable Neighborhood Search. Computers and Operations Research, v. 24, pp. 1097-1100, 1999.

MOURA, A. V.; SCARAFICCI, R. A. A GRASP strategy for a more constrained school timetabling problem. International Journal of Operational Research, v. 7, pp. 152-170, 2010.

SCHAEFER, A. A survey of automated timetabling. Artificial Intelligence Review, 13:87-127, 1999.

SOUZA, M.J.F. Programação de Horários em Escolas: Uma aproximação por Methaheurísticas. Tese de Doutorado. Universidade Federal do Rio de Janeiro. Rio de janeiro, Brasil, 2000.

OLIVEIRA, J.G, Viannaa D.S. E Vianna M.F.D Uma heurística grasp+vnd para o problema de programação de horário escolar. Revista Sistemas & Gestão 7 (2012), pp 326-335.

