MEMORY SYSTEMS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ Upcoming deadline
 - Feb. 27th: homework assignment will be posted
- □ Group projects

	Subject	Presentation
Group 1	Reducing cache energy via skipping common values	April 17
Group 2	Integrating high bandwidth memory with high capacity DIMMs for data-centric workloads	April 17
Group 3	A near-threshold spiking neural network accelerator	April 17
Group 4	Improving energy efficiency of low power micro-controllers used in various IoT nodes	April 19
Group 5	In-situ hardware accelerator for clustering applications	April 19
Group 6	Improving performance of time-based data encoding	April 19

Overview

- Student paper presentation
 - Prepare for exactly 20m talk followed by 5m Q&A

Presenter Names	Date
Kohl, Meher, Shirley	March 29
Karl, Anirban, Chandrasekhar	April 3
Suryanarayanan, Tim, Arjun	April 5
Pranav, Goverdhan, Yomi	April 10
Munzer, Manikanth, Amandeep	April 12

- □ This lecture
 - Main memory systems
 - DRAM architecture basics

Main Memory System

- □ A critical component of all computing systems
 - server, mobile, embedded, desktop, sensor

- Must scale to maintain performance growth
 - size, technology, efficiency, cost, and control algorithms

Why Main Memory is Important?

- □ Shared resource
 - Multiple applications running on different processor cores
 - Different objectives and requirements
 - Highly contented resource

Complex control policies and microarchitectures are required.

Scalability Challenges

- Increasing need for memory capacity, bandwidth, and quality-of-service maintenance
 - increasing number of cores (multicores)
 - increasing demand for data (big data processing)
 - cloud computing, GPUs, mobile (consolidation)

AMD Barcelona

Intel Core i7 8 cores

Sun Niagara II 8 cores

Nvidia Fermi 448 "cores"

IBM Cell BE 8+1 cores

Intel SCC 48 cores, networked

IBM POWER7 8 cores

Tilera TILE Gx 100 cores, networked

CPU-DRAM Gap

- □ Core count doubling ~ every 2 years
- □ DRAM DIMM capacity doubling ~ every 3 years

Memory capacity per core expected to drop by 30% every two years

DRAM: Design Challenges

- Main memory energy/power is a key system design concern
 - Energy spent in off-chip memory hierarchy is about 40-50% [Lefurgy'03]
 - DRAM consumes power even when not used
 - periodic refresh
- DRAM technology scaling is ending
 - stops gaining higher capacity, lower cost, lower energy

DRAM: Logical Organization

- □ Five DRAM coordinates
 - □ Channel, rank, bank, row, column

DRAM: Physical Organization

DIMM Structure

DIMM Structure

Rank Organization

Rank Breakdown

DRAM DIMM and Rank

- Multiple chips operated together to form a wide interface
 - All chips within a rank are controlled at the same time
 - Respond to a single command
 - Share address and command; different data bits
- A DRAM module consists of one or more ranks
 - e.g., DIMM (dual inline memory module)
 - If we have chips with 8-bit interface, to read 8 bytes in a single access, use 8 chips in a DIMM

Chip Structure

Bank Organization

DRAM Page Access

- Access to a closed row
 - Activate command opens row (placed into row buffer)
 - Read/write command reads/writes column in the row buffer
- Precharge command closes the row and prepares the bank for next access
- □ Access to an "open row"
 - No need for activate command

DRAM Page Access

DRAM: Parallel Access

- DRAM subsystem comprises multiple banks
 - Organized under independent channels and ranks

DRAM Controller

- Ensure correct operation of DRAM (refresh and timing)
- Service DRAM requests while obeying timing constraints of DRAM chips
 - Constraints: resource conflicts (bank, bus, channel), minimum write-to-read delays
 - Translate requests to DRAM command sequences
- Buffer and schedule requests to improve performance
 - Reordering, row-buffer, bank, rank, bus management
- Manage power consumption and thermals in DRAM
 - Turn on/off DRAM chips, manage power modes

DRAM Controller

□ Ensuring DDRx timing constraints

Figure 5. Three Phases of DRAM Access

Table 2. Timing Constraints (DDR3-1066) [43]

Phase	Commands	Name	Value
1	$\begin{array}{c} ACT \to READ \\ ACT \to WRITE \end{array}$	tRCD	15ns
	$ACT \to PRE$	tRAS	37.5ns
2	$\begin{array}{c} {\rm READ} \rightarrow {\it data} \\ {\rm WRITE} \rightarrow {\it data} \end{array}$	tCL tCWL	15ns 11.25ns
	data burst	tBL	7.5ns
3	$\text{PRE} \to \text{ACT}$	tRP	15ns
1 & 3	$ACT \to ACT$	tRC (tRAS+tRP)	52.5ns