Calcolo Numerico Algoritmi

FACOLTÀ DI INGEGNERIA AEROSPAZIALE

Anno Accademico 2024-2025

Contents

1	Rise	oluzione di S	Sistemi Lineari	1
	1.1	Metodi diret	ti	1
		1.1.1 Algor	ritmi di Sostituzione per matrici Triangolari	1
		1.1.2 Meto	do di Eliminazione di Gauss	2
		1.1.3 Meto	do di Thomas	3
		1.1.4 Meto	do della fattorizzazione di Cholesky	3
		1.1.5 Fatto	orizzazione QR (per sistemi rettangolari)	4
	1.2	Metodi itera	tivi	4
		1.2.1 Meto	di iterativi per Decomposizione Additiva	4
2	Aut	ovalori e Aı	ıtovettori	7
3	Equ	azioni e Sis	temi non Lineari	9
	3.1	Metodo di N	$\text{Iewton} \dots $	10
	3.2	Metodi delle	e Iterazioni di Punto Fisso	11
4	Pro	blemi di Ot	timizzazione	12
	4.1	Metodi Deri	vative-Free	12
	4.2	Metodi di D	iscesa (Line Search)	13

List of Algorithms

1	Algoritmo di Sostituzione in avanti (per matrici L)	1
2	Algoritmo di Sostituzione all'indietro (per matrici a U)	1
3	MEG	2
4	MEG con pivoting sulle righe	2
5	Calcolo di LU per matrici tridiagonali	3
6	Sostituzione in avanti e indietro per bidiagonali	3
7	Fattorizzazione di Cholesky	3
8	Ortonormalizzazione di Gram-Schmidt	4
9	Metodo di Jacobi	4
10	Metodo di Gauss-Seidel	4
11	Metodi Richardson Precondizionati	5
12	Metodo del Gradiente	5
13	Metodo del Gradiente Precondizionato	5
14	Metodo del Gradiente Coniugato	6
15	Metodo delle Potenze (λ_{max})	7
16	Metodo delle potenze inverse (λ_{min})	8
17	Metodo delle potenze inverse con shift $(\lambda \approx \bar{\lambda} \text{ (assegnato)})$	8
18	Metodo delle iterazioni QR (per calcolo dello spettro)	8
19	Metodo di Bisezione	9
20	Metodo di Newton	10
21	Metodo di Newton - variante con incremento	10
22	Metodo di Newton Modificato	10
23	Metodo di Newton Additivo	10
24	Metodo di Newton per sistemi non lineari	11
25	Metodi delle iterazioni di punto fisso	11
26	Metodo della Sezione Aurea	12
27	Metodo di discesa (generale)	13
28	Metodo di Backtracking (per il calcolo di α_k)	13

29	Metodo di Newton per problemi di ottimo	13
30	Metodo BFGS (quasi-Newton)	14

Risoluzione di Sistemi Lineari

1.1 Metodi diretti

1.1.1 Algoritmi di Sostituzione per matrici Triangolari

Algorithm 1 Algoritmo di Sostituzione in avanti (per matrici L)

$$L \vec{y} = \vec{b}$$
 $y_1 = \frac{b_1}{l_{11}}$
for $i = 2, ..., n$ do
$$y_i = \frac{1}{l_{ii}} (b_i - \sum_{j=1}^{i-1} l_{ij} y_j)$$
end for

Algorithm 2 Algoritmo di Sostituzione all'indietro (per matrici a U)

$$U\vec{x} = \vec{y}$$

$$x_n = \frac{y_n}{u_{nn}}$$
for i = n-1, ..., 1 do
$$x_i = \frac{1}{u_{ii}}(y_i - \sum_{j=i+1}^n u_{ij}x_j)$$

end for

1.1.2 Metodo di Eliminazione di Gauss

Algorithm 3 MEG

```
assegnare A^{(1)} = A

for k = 1, ..., n-1 do

for i = k+1, ..., n do

l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}
for j = k+1, ..., n do

a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik}a_{kj}^{(k)}
end for

end for

end for
```

Algorithm 4 MEG con pivoting sulle righe

```
assegnare A^{(1)} = A

for k = 1, ..., n-1 do

for i = k+1, ..., n do

cerco \ r : |a_{rk}^{(k)}| > |a_{ik}^{(k)}|

scambio la riga k+1 con r

end for

for i = k+1, ..., n do

l_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}

for j = k+1, ..., n do

a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik}a_{kj}^{(k)}

end for

end for
```

1.1.3 Metodo di Thomas

Algorithm 5 Calcolo di LU per matrici tridiagonali

$$\alpha_1 = a_1$$

$$\mathbf{for} \ \mathbf{i} = 2, ..., \mathbf{n} \ \mathbf{do}$$

$$\beta_i = \frac{l_i}{\alpha_1 - i}$$

$$\alpha_i = a_i - \beta_i c_i - 1$$

$$\mathbf{end} \ \mathbf{for}$$

Algorithm 6 Sostituzione in avanti e indietro per bidiagonali

⊳ Sostituzione in avanti per bidiagonali

$$y_1 = b_1$$

$$\mathbf{for} \ \mathbf{i} = 2, \, ..., \, \mathbf{n} \ \mathbf{do}$$

$$y_i = b_i - \beta_i y_i - 1$$

$$\mathbf{end} \ \mathbf{for}$$

$$x_n = \frac{y_n}{\alpha_n}$$

$$\mathbf{for} \ \mathbf{i} = \mathbf{n}, \, ..., \, 2 \ \mathbf{do}$$

$$x_i = \frac{y_i - c_i x_i + 1}{\alpha_i}$$

$$\mathbf{end} \ \mathbf{for}$$

1.1.4 Metodo della fattorizzazione di Cholesky

Algorithm 7 Fattorizzazione di Cholesky

$$\begin{aligned} r_{11} &= \sqrt{a_{11}} \\ \textbf{for i} &= 2, ..., \text{n do} \\ \textbf{for j} &= 1, ..., \text{i-1 do} \\ R_{ji} &= \frac{1}{R_{jj}} (a_{ij} - \sum_{k=1}^{j-1} r_{ki} r_{kj}) \\ \textbf{end for} \\ r_{ii} &= \sqrt{a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2} \\ \textbf{end for} \end{aligned}$$

1.1.5 Fattorizzazione QR (per sistemi rettangolari)

Algorithm 8 Ortonormalizzazione di Gram-Schmidt

Data
$$A \in \mathbb{R}^{m \times n}$$
, $A = [\vec{a_1}, \vec{a_2}, ..., \vec{a_n}]$
 $\tilde{q_1} = \frac{\vec{a_1}}{||\vec{a_1}||}$
for $k = 1, ..., n-1$ do
 $\vec{q_{k+1}} = \vec{a_{k+1}} - \sum_{j=1}^{n} (\tilde{q_j} \cdot \vec{a_{k+1}}) \tilde{q_j}$
 $\tilde{q}_{k+1} = \frac{\vec{q_{k+1}}}{||\vec{q_{k+1}}||}$
end for

1.2 Metodi iterativi

1.2.1 Metodi iterativi per Decomposizione Additiva

Algorithm 9 Metodo di Jacobi

end for

Dato
$$\vec{x}^{(0)}$$
for $k=0,1,...$ do
for $i=1,...,n$ do
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)} \right)$$
end for

Algorithm 10 Metodo di Gauss-Seidel

Dato
$$\vec{x}^{(0)}$$
 for $k = 0, 1, ...$ do for $i = 1, ..., n$ do
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$
 end for end for

Algorithm 11 Metodi Richardson Precondizionati

Dato
$$\vec{x}^{(0)} \in \mathbb{R}^n$$

for $k = 0, 1, ...$ do
 $P\vec{z}^{(k)} = r^{(k)}$
 $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_k z^{(k)}$
end for

Metodo del Gradiente

Algorithm 12 Metodo del Gradiente

Dato
$$\vec{x}^{(0)} \in \mathbb{R}^{n}, \vec{r}^{(0)} = \vec{b} - A\vec{x}$$

for $k = 0, 1, ...$ do
$$\alpha_{k} = \frac{(\vec{r}^{(k)})^{T} \vec{r}^{(k)}}{(\vec{r}^{(k)})^{T} A \vec{r}^{(k)}}$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_{k} \vec{r}^{(k)}$$

$$\vec{r}^{(k+1)} = \vec{b} - A\vec{x}^{(k)} = \vec{r}^{(k)} - \alpha_{k} A \vec{r}^{(k)}$$
end for

Algorithm 13 Metodo del Gradiente Precondizionato

Dato
$$\vec{x}^{(0)} \in \mathbb{R}^{n}, \vec{r}^{(0)} = \vec{b} - A\vec{x}$$

for $k = 0, 1, ...$ do
 $P\vec{z}^{(k)} = \vec{r}^{(k)}$
 $\alpha_{k} = \frac{(\vec{z}^{(k)})^{T} \vec{z}^{(k)}}{(\vec{z}^{(k)})^{T} A \vec{z}^{(k)}}$
 $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_{k}\vec{z}^{(k)}$
 $\vec{r}^{(k+1)} = \vec{r}^{(k)} - \alpha_{k}A\vec{z}^{(k)}$
end for

Algorithm 14 Metodo del Gradiente Coniugato

▶ Le direzioni sono A-coniugate

Dato
$$\vec{x}^{(0)} \in \mathbb{R}$$
, $\vec{r}^{(0)} = \vec{b} - A\vec{x}^{(0)}$, $\vec{p}^{(0)}$ for $k = 0, 1, ...$ do
$$\alpha_k = \frac{(\vec{p}^{(k)})^T \vec{r}^{(k)}}{(\vec{p}^{(k)})^T A \vec{r}^{(k)}}$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_k \vec{p}^{(k)}$$

$$\vec{r}^{(k+1)} = \vec{r}^{(k)} - \alpha_k A \vec{p}^{(k)}$$

$$\beta_k = \frac{(\vec{p}^{(k)})^T A \vec{r}^{(k+1)}}{\vec{p}^{(k)} A \vec{p}^{(k)}}$$

$$\vec{p}^{(k+1)} = \vec{r}^{(k+1)} - \beta_k \vec{p}^{(k)}$$
 end for

Autovalori e Autovettori

Algorithm 15 Metodo delle Potenze (λ_{max})	
Dato $\vec{x}^{(0)} \in \mathbb{C}^n$, con $ \vec{x}^{(0)} \neq 0$	
$\vec{y}^{(0)} = \frac{\vec{x}^{(0)}}{ \vec{x}^{(0)} }$	> Normalizzazione
$\lambda^{(0)} = \vec{y}^{(0)H} \vec{A} \vec{y}^{(0)}$	
for $k = 1, 2, do$	
$\vec{x}^{(k)} = A \vec{y}^{(k-1)}$	
$ec{y}^{(k)} = rac{ec{ec{x}}^{(k)}}{ ec{x}^{(k)} }$	> Normalizzazione
$\lambda^{(k)} = \vec{y}^{(k)H} A \vec{y}^{(k)}$	
end for	

Algorithm 16 Metodo delle potenze inverse (λ_{min})

Dato
$$\vec{x}^{(0)} \in \mathbb{C}^n, \vec{x}^{(0)} \neq \vec{0}$$

$$\vec{y}^{(0)} = \frac{\vec{x}^{(0)}}{||\vec{x}^{(0)}||} \qquad \qquad \triangleright \text{Normalizzazione}$$

$$\mu^{(0)} = \vec{y}^{(0)H}A^{-1}\vec{y}^{(0)}$$
for $k = 1, 2, ...$ do
$$\text{risolvo } A\vec{x}^{(k)} = \vec{y}^{(k-1)} \qquad \qquad \triangleright \text{Non assembliamo l'inversa!}$$

$$\vec{y}^{(k)} = \frac{\vec{x}^{(k)}}{||\vec{x}^{(k)}||}$$

$$\lambda^{(k)} = \vec{y}^{(k)H}A\vec{y}^{(k)}$$
end for

Algorithm 17 Metodo delle potenze inverse con shift ($\lambda \approx \bar{\lambda}$ (assegnato))

```
Dato \vec{x}^{(0)} \in \mathbb{C}^n, \vec{x}^{(0)} \neq \vec{0}
\vec{y}^{(0)} = \frac{\vec{x}^{(0)}}{||\vec{x}^{(0)}||} \Rightarrow \text{Normalizzazione}
\mu^{(0)} = \vec{y}^{(0)H}(A - sI)^{-1}\vec{y}^{(0)}
\text{for } k = 1, 2, ... \text{ do}
\text{risolvo } (A - sI)\vec{x}^{(k)} = \vec{y}^{(k-1)}
\vec{y}^{(k)} = \frac{\vec{x}^{(k)}}{||\vec{x}^{(k)}||}
\mu^{(k)} = \vec{y}^{(k)H}(A - sI)^{-1}\vec{y}^{(k)}
end for
\lambda^{(k)} = \frac{1}{\mu^{(k)}} + s
```

Algorithm 18 Metodo delle iterazioni QR (per calcolo dello spettro)

```
Data A \in \mathbb{R}^{n \times n}, A^{(0)} = A

while not criterio d'arresto do

Data A^{(k)}, calcolo la fattorizzazione A^{(k)} = Q^{(k+1)}R^{(k+1)}

A^{(k+1)} = R^{(k+1)}Q^{(k+1)}

for i = 1, ..., n do

\lambda_i^{(k+1)} = (A^{(k+1)})_{ii}

end for

end while
```

Equazioni e Sistemi non Lineari

```
Algorithm 19 Metodo di Bisezione

Pongo k = 0, a^{(0)} = a, b^{(0)} = b, x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}

for k = 1, 2, ... do

\Rightarrow \text{Se x è la radice}

if f(x^{(k-1)}) = 0 then
\alpha = x^{(k-1)}
break

\Rightarrow \text{Se la funzione cambia segno tra x e a}
else if f(x^{(k-1)})f(a^{(k-1)}) < 0 then
a^{(k)} = a^{(k-1)}, b^{(k)} = x^{(k-1)}
\Rightarrow \text{Se la funzione cambia segno tra x e b}
else if f(x^{(k-1)})f(b^{(k-1)}) < 0 then
a^{(k)} = x^{(k-1)}, b^{(k)} = b^{(k-1)}
end if
x^{(k)} = \frac{a^{(k)} + b^{(k)}}{2}
end for
```

3.1 Metodo di Newton

Algorithm 20 Metodo di Newton

Dato
$$x^{(0)}$$
 for $k = 1, 2, ...$ do
$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$
 end for

Algorithm 21 Metodo di Newton - variante con incremento

Dato
$$x^{(0)}$$

for $k = 1, 2, ...$ do
$$\delta = -\frac{f(x^{(k)})}{f'(x^{(k)})}$$

$$x^{(k+1)} = x^{(k)} + \delta$$
end for

Algorithm 22 Metodo di Newton Modificato

Dato
$$\mathbf{x}^{(0)}$$
 for $k = 0, 1, \dots$ do
$$x^{(k+1)} = x^{(k)} - m^{(k)} \frac{f(x^{(k)})}{f'(x^{(k)})} \qquad \triangleright \text{Dove m è la molteplicità della radice}$$

Algorithm 23 Metodo di Newton Additivo

Dato
$$x^{(0)}$$
 for $k = 0, 1, ...$ do \Rightarrow Valutiamo m (molteplicità della radice) come:
$$m^{(k)} = \frac{x^{(k-1)} - x^{(k-2)}}{2x^{(k-1)} - x^{(k)} - x^{(k-2)}}$$

$$x^{(k+1)} = x^{(k)} - m^{(k)} \frac{f(x^{(k)})}{f'(x^{(k)})}$$
 end for

Algorithm 24 Metodo di Newton per sistemi non lineari

```
Dato \vec{x}^{(0)} \in \mathbb{R}^n,

for k = 0, 1, ... do \Rightarrow Dove J_f è la matrice Jacobiana J_f(\vec{x}^{(k)}) \vec{\delta} = -\vec{f}(\vec{x}^{(k)}) \Rightarrow Risoluzione di sist. lin. n \times n end for
```

3.2 Metodi delle Iterazioni di Punto Fisso

Algorithm 25 Metodi delle iterazioni di punto fisso

```
Dato \vec{x}^{(0)},

for k = 0, 1, ... do

\vec{x}^{(k+1)} = \phi(\vec{x}^{(k)})

end for
```

Problemi di Ottimizzazione

4.1 Metodi Derivative-Free

Algorithm 26 Metodo della Sezione Aurea	
Sia $k = 0$, $a^{(0)} = a$, $b^{(0)} = b$, $x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}$ for $k = 0, 1,$ do $c^{(k)} = a^{(k)} + \frac{b^{(k)} - a^{(k)}}{\varphi + 1}$ $d^{(k)} = a^{(k)} + \frac{b^{(k)} - a^{(k)}}{\varphi + 1}$	$\stackrel{\text{O}}{-}$ \triangleright Dove φ è la sezione aurea
if $(\phi(c^{(k)}) > \phi(d^{(k)}))$ then $a^{(k+1)} = c^{(k)}; \ b^{(k+1)} = b^{(k)}$	⊳ Nuovo intervallo [c; b]
else $a^{(k+1)} = a^{(k)}; \ b^{(k+1)} = d^{(k)}$	⊳ Nuovo intervallo [a; d]
end if $x^{(k+1)} = \frac{a^{(k+1)} + b^{(k+1)}}{2}$ end for	

4.2 Metodi di Discesa (Line Search)

Algorithm 27 Metodo di discesa (generale)

Dato
$$\vec{x}^{(0)} \in \mathbb{R}^n$$

for $k = 0, 1, \dots do$
 $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_k \vec{d}^{(k)}$
end for

Algorithm 28 Metodo di Backtracking (per il calcolo di α_k)

$$\alpha_k = 1$$
, scelgo $c_1 \in \rho \in \left[\frac{1}{10}; \frac{1}{2}\right]$
while $\phi\left(\vec{x}^{(k)} + \alpha_k \vec{d}^{(k)}\right) > \phi\left(\vec{x}^{(k)} + c_1\alpha_k \nabla\left(\phi(\vec{x}^{(k)})\right) \vec{d}^{(k)}\right)$ do

 \Rightarrow While **not** (prima condizione di Wolfe)

 $\alpha_k = \rho \alpha_k$
end while

Algorithm 29 Metodo di Newton per problemi di ottimo

```
\vec{x}^{(0)} for k = 0, 1, ... do assemblo il vettore \nabla \phi\left(\vec{x}^{(k)}\right) \in \mathbb{R}^n e H_{\varphi}\left(\vec{x}^{(k)}\right) \in \mathbb{R}^{n \times n} risolvo il sistema H_{\varphi}\left(\vec{x}^{(k)}\right) \vec{d} = -\nabla \phi\left(\vec{x}^{(k)}\right) \vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_k \vec{d}
```

 \triangleright il peso α_k viene scelto con il metodo di backtracking \triangleright per aumentare la robustezza dell'algoritmo

end for

Algorithm 30 Metodo BFGS (quasi-Newton)

Dato
$$\vec{x}^{(0)}$$
, $B^{(0)} = I$
for $k = 0, 1, ...$ do

$$d^{k+1} = -B^{(k)} \nabla \phi \left(\vec{x}^{(k)} \right)$$
determino α_k con backtracking

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \alpha_k \vec{d}^{(k)}$$

$$\vec{\delta}^{(k+1)} = \vec{x}^{(k+1)} - \vec{x}^{(k)}$$

$$\vec{s}^{(k)} = \nabla \phi \left(\vec{x}^{(k+1)} \right) - \nabla \phi \left(\vec{x}^{(k)} \right)$$

$$\rho_k = \frac{1}{\left(\vec{\delta}^{(k)} \right)^T \vec{s}^{(k)}}$$

$$B^{(k+1)} = \left(I - \rho_k \vec{\delta}^{(k)} \left(\vec{s}^{(k)} \right)^T \right) B^{(k)} \left(I - \rho_k \vec{s}^{(k)} \left(\vec{\delta}^{(k)} \right)^T \right) + \rho_k \vec{\delta}^{(k)} \left(\vec{\delta}^{(k)} \right)^T$$
end for