

2020(2021),2022(202*3*) A/L PAST PAPERS

T

DISCUSSION OF VECTOR QUESTIONS

Presented by 4th group students

R-15 2020(2021) QUESTION

14.

(a) a හා b ශූනා නොවන හා සමාන්තර නොවන දෛශික යැයි ද λ , $\mu \in R$ යැයි ද ගනිමු. $\lambda a + \mu b = 0$ නම්, $\lambda = 0$ හා $\mu = 0$ බව පෙන්වන්න.

ABC තිකෝණයක් යැයි ගනිමු. AB හි මධා ලක්ෂාය D ද CD හි මධා ලක්ෂාය E ද වේ. AE (දික්කළ) හා BC රේඛා F හි දී හමුවේ. AB = a හා AC = b යැයි ගනිමු. නිකෝණ <u>ආකලන නියමය භාවිතයෙන් AE = (a + 2b)/4 බව පෙන්වන්න.</u>

 $\overrightarrow{\mathsf{AF}} = \alpha \ \overrightarrow{\mathsf{AE}}$ හා $\overrightarrow{\mathsf{CF}} = \beta \overrightarrow{\mathsf{CB}}$ වන්නේ ඇයි දැයි පැහැදිලි කරන්න; මෙහි α , $\beta \in \mathsf{R}$ වේ.

ACF තිකෝණය සැලකීමෙන් (α - 4 β)a + 2 (α + 2 β - 2)b = 0 බව පෙන්වන්න. ඒ නයිින්, α හා β හි අගයන් සොයන්න.

Q=U+A

$$\underline{a}$$
, $\underline{b} \neq 0$ and $\underline{a} \neq \underline{b}$
 $\lambda \underline{a} + \mu \underline{b} = 0$ ----- (1)
If $\lambda \neq 0$ නම්, එවිට $\underline{a} = -(\mu/\lambda)b$

5=V.E

මෙය දෙන ලද අවශ්යතාවට පරස්පර වේ. ; λ = 0.

දැන්, (1) මඟින් $\mu \underline{b} = 0$ ලැබේ. $b \neq 0$ නිසා, $\mu = 0$; $\lambda = 0$ හා $\mu = 0$

$$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE}$$

$$= \frac{1}{2}a + \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{AC})$$

$$= \frac{1}{2}a + \frac{1}{2}(-\frac{1}{2}a + b)$$

$$= (a + 2b)/4$$

SEVE

Y=CypVs

$$\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF}$$

;
$$\alpha \overrightarrow{AE} = b + \beta \overrightarrow{CB}$$

;
$$\alpha(a+2b)/4 = b + \beta(\overrightarrow{CA} + \overrightarrow{AB})$$

;
$$\alpha a + 2\alpha b = 4b + 4\beta(-b + a)$$

$$(\alpha - 4\beta)a + (2\alpha + 4\beta - 4)b = 0$$

$$\alpha$$
 - 4β = 0 හෝ5 2a + 43 - 4 = 0 . ලැබේ

$$\alpha = 4/3$$
 හා $\beta = 1/3$

R-13 2022(2023) QUESTION

14.

(a) A, B, C හා D ලක්ෂා හතරක පිහිටුම් දෛශික, O අචල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් a, b, 3a හා 4b වේ; මෙහි a හා b යනු ශූනා නොවන හා සමාන්තර නොවන දෛශික වේ. E යනු AD හා BC හි ඡේදන ලක්ෂාය වේ. OAE නිකෝණය සදහා තිකෝණ ආකලන නියමය භාවිතයෙන්,

 $\lambda \in \mathsf{R}$ සදහා QE = a + λ (4b-a) බව පෙන්වන්න. එලෙසම, μ ∈ R සඳහා OE = b + μ(3a - b) බව ද පෙන්වන්න. ඒ නයින්, OE = 1/11(9a + 8b) බව පෙන්වන්න.

$$= \underline{a} + \lambda \stackrel{\rightarrow}{AD}$$

$$= \underline{a} + \lambda (\overrightarrow{AO} + \overrightarrow{OD})$$

$$= \underline{a} + \lambda(4\underline{b} - \underline{a})$$

SEV.E

OE = OB+BE →

$$= \underline{b} + \mu \overrightarrow{BC}$$

$$=\underline{b} + \mu(\overrightarrow{BO} + \overrightarrow{OC})$$

$$= \underline{b} + \mu(3\underline{a} - \underline{b})$$

Y=CypV3

Q=U+A

.'. a+λ
$$(4b-\underline{a})=\underline{b}+\mu(3\underline{a}-\underline{b})$$

$$(1-\lambda)\underline{a} + 4\lambda\underline{b} = 3\mu\underline{a} + (1-\mu)\underline{b}$$

S=V.t

$$\Rightarrow$$
 1 - $\lambda = 3\mu$ & 1 - $\mu = 4\lambda$

.'.
$$\lambda = 2/11$$

Y=CypV3

$$\overrightarrow{OE} = \underline{a} + (2/11)(4\underline{b} - \underline{a})$$

$$= 1/11(9\underline{a} + 8\underline{b})$$

