ALGEBRA LINEARE E GEOMETRIA

$4^{\rm o}$ appello — 1 febbraio 2022

Esercizio 1. In \mathbb{R}^4 siano U il sottospazio vettoriale di equazione $2x_1 - x_2 + x_3 - 2x_4 = 0$ e W il sottospazio generato dal vettore w = (1, 1, 1, 1).

- (a) Verificare che $W \subset U$ e trovare due vettori u_1, u_2 tali che $\{w, u_1, u_2\}$ sia una base di U.
- (b) Scrivere le coordinate del vettore w rispetto alla base di U trovata nel punto (a).
- (c) Scrivere la matrice (rispetto alla base canonica) di una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $U = \operatorname{Im} f \in W = \operatorname{Ker} f$. Se una tale funzione non esiste, si spieghi perché.

Soluzione. (a) Per verificare che $W \subset U$ basta verificare che le coordinate del vettore w = (1, 1, 1, 1) soddisfano l'equazione di U (il che è vero).

Dall'equazione di U si deduce che dim U=3. I vettori $u_1=(1,2,0,0)$ e $u_2=(0,1,1,0)$ verificano l'equazione di U (quindi appartengono a U), inoltre è immediato verificare che i vettori w, u_1, u_2 sono linearmente indipendenti, quindi sono una base di U.

(b) Il vettore w si scrive come combinazione lineare dei vettori della base w, u_1, u_2 come segue:

$$w = 1 w + 0 u_1 + 0 u_2$$

quindi le sue coordinate rispetto alla base w, u_1, u_2 sono (1, 0, 0).

(c) Per garantire che U = Im f basta scrivere su tre delle quattro colonne della matrice A i tre vettori di una base (qualunque) di U (ricordiamo che Im f è generata dalle colonne della matrice A). Dall'equazione di U si trova che una base di U è formata dai vettori $u_1 = (1, 2, 0, 0), u_2 = (0, 1, 1, 0)$ e $u_3 = (0, -2, 0, 1)$. Consideriamo quindi una matrice A del tipo

$$A = \begin{pmatrix} 1 & 0 & 0 & a \\ 2 & 1 & -2 & b \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & d \end{pmatrix}$$

Naturalmente ora bisogna richiedere che sia anche W = Ker f, cioè che Aw = 0. Da questa condizione si ottiene a = b = c = d = -1, quindi la matrice A diventa

$$A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & -2 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la seguente funzione lineare:

$$f(x, y, z) = (2x - 8y + 4z, x - 6y + 2z, -4y).$$

- (a) Determinare la dimensione e una base dell'immagine di f.
- (b) Determinare il polinomio caratteristico e gli autovalori di f.
- (c) Determinare una base degli autospazi di f e stabilire se esiste una base di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.

Soluzione. (a) La matrice di f rispetto alla base canonica è

$$A = \begin{pmatrix} 2 & -8 & 4 \\ 1 & -6 & 2 \\ 0 & -4 & 0 \end{pmatrix}$$

Questa matrice ha rango 2, quindi dim $\operatorname{Im} f = 2$ e una base dell'immagine di f è formata da due colonne linearmente indipendenti di A (ad esempio, le prime due colonne).

(b) Si ha

$$\det \begin{pmatrix} 2-x & -8 & 4\\ 1 & -6-x & 2\\ 0 & -4 & 0-x \end{pmatrix} = -x(x+2)^2$$

per cui gli autovalori di f sono 0 (con molteplicità 1) e -2 (con molteplicità 2).

(c) Per l'autovalore 0 si trova l'autovettore (-2,0,1) (l'autospazio relativo all'autovalore 0 è il nucleo di f, che ha dimensione 1).

Per l'autovalore -2 si trova che il corrispondente autospazio ha dimensione 1 ed è generato dall'autovettore (0,1,2). Dato che questo autospazio ha dimensione 1 ma l'autovalore -2 ha molteplicità 2, si deduce che la matrice A non è diagonalizzabile, quindi non esiste una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia diagonale.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni

$$U: \begin{cases} 2x_1 - x_2 - x_3 - 3x_4 = 0\\ x_2 + 3x_4 = 0 \end{cases}$$

e sia $L \subset \mathbb{R}^4$ il sottospazio generato dal vettore $\ell = (0, 1, 1, 0)$

- (a) Trovare una base ortogonale di U.
- (b) Sia $V = U^{\perp} \cap L^{\perp}$. Trovare una base di V.
- (c) Dato il vettore $w = (2, 3, -2, 2) \in \mathbb{R}^4$, determinare la sua proiezione ortogonale su V^{\perp} .

Soluzione. (a) Dalle equazioni di U si ricava

$$U: \begin{cases} x_3 = 2x_1 \\ x_2 = -3x_4 \end{cases}$$

quindi dim U = 2 e una base di U è formata dai vettori $u_1 = (1, 0, 2, 0)$ e $u_2 = (0, -3, 0, 1)$. Dato che $u_1 \cdot u_2 = 0$ questi due vettori sono ortogonali, quindi formano una base ortogonale di U.

(b) Un vettore (x_1, x_2, x_3, x_4) di V deve appartenere a U^{\perp} e anche a L^{\perp} , cioè deve essere ortogonale ai vettori u_1 e u_2 di U e anche al vettore ℓ di L. Si deve quindi avere

$$\begin{cases} x_1 + 2x_3 = 0 \\ -3x_2 + x_4 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = -2x_3 \\ x_2 = -x_3 \\ x_4 = -3x_3 \end{cases}$$

Questo significa che V ha dimensione 1 e una sua base è formata dal vettore v = (2, 1, -1, 3).

(c) Scriviamo il vettore w come w=w'+w'', con $w'\in V^{\perp}$ e $w''\in V$. Dato che V è generato dal vettore v=(2,1,-1,3), si deve avere $w''=\lambda v=\lambda(2,1,-1,3)$ e quindi

$$w' = w - w'' = (2 - 2\lambda, 3 - \lambda, -2 + \lambda, 2 - 3\lambda).$$

Dato che $w' \in V^{\perp}$ e $v \in V$, si deve avere $w' \cdot v = 0$. Calcolando il prodotto scalare $w' \cdot v$ e ponendolo uguale a 0 si trova $\lambda = 1$ e quindi si ha w' = (0, 2, -1, -1). Questa è la proiezione ortogonale di w sul sottospazio V^{\perp} .

Esercizio 4. Nello spazio affine $\mathbb{A}^4_{\mathbb{R}}$ sia σ il sottospazio affine di equazioni

$$\sigma: \begin{cases} x_1 + x_2 - 2x_4 = 3\\ 2x_1 - x_3 = 2\\ 2x_2 + x_3 - 4x_4 = 4 \end{cases}$$

- (a) Determinare la dimensione di σ e una base del suo spazio direttore.
- (b) Sia π il piano passante per P = (1, 2, -2, 1) e parallelo ai vettori $v_1 = (1, 0, -1, 0), v_2 = (0, 1, 1, 2)$. Determinare $\pi \cap \sigma$.
- (c) Scrivere le equazioni parametriche della retta r passante per P, contenuta nel piano π e ortogonale al vettore w=(1,1,-1,1).

Soluzione. (a) La matrice completa del sistema di equazioni è

$$\begin{pmatrix}
1 & 1 & 0 & -2 & | & 3 \\
2 & 0 & -1 & 0 & | & 2 \\
0 & 2 & 1 & -4 & | & 4
\end{pmatrix}$$

che ridotta a forma a scala diventa

$$\begin{pmatrix}
1 & 1 & 0 & -2 & | & 3 \\
0 & -2 & -1 & 4 & | & -4 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

Quindi σ è definito da **due** equazioni indipendenti e pertanto la sua dimensione è 2 (cioè σ è un piano nello spazio affine di dimensione 4).

Una base dello spazio direttore di σ si ottiene risolvendo il sistema **omogeneo** associato:

$$\begin{cases} x_1 + x_2 - 2x_4 = 0 \\ 2x_1 - x_3 = 0 \\ 2x_2 + x_3 - 4x_4 = 0 \end{cases}$$

Lo spazio delle soluzioni ha dimensione 2 ed è generato dai vettori (1, -1, 2, 0) e (0, 2, 0, 1).

(b) Le equazioni parametriche del piano π sono date da $X = P + \alpha v_1 + \beta v_2$, cioè

$$\begin{cases} x_1 = 1 + \alpha \\ x_2 = 2 + \beta \\ x_3 = -2 - \alpha + \beta \\ x_4 = 1 + 2\beta \end{cases}$$

Per trovare $\pi \cap \sigma$ basta mettere a sistema le equazioni di π (appena scritte), con le equazioni di σ . Risolvendo il sistema si trova $\alpha = \beta = -1$ e quindi il punto di coordinate (0, 1, -2, -1).

(c) Le equazioni parametriche della retta r sono del tipo $X = P + tv_r$, ove v_r è un vettore direttore di r. Dato che la retta r deve essere contenuta nel piano π , il vettore v_r deve essere combinazione lineare dei vettori v_1 e v_2 :

$$v_r = \alpha v_1 + \beta v_2 = (\alpha, \beta, -\alpha + \beta, 2\beta).$$

Dato che la retta r deve essere ortogonale al vettore w, si deve avere $v_r \cdot w = 0$, da cui si ricava $\alpha + \beta = 0$, cioè $\beta = -\alpha$. Ponendo $\alpha = 1$ si trova $\beta = -1$ e quindi il vettore v_r è

$$v_r = v_1 - v_2 = (1, -1, -2, -2).$$

Le equazioni parametriche di r sono quindi

$$r: \begin{cases} x_1 = 1 + t \\ x_2 = 2 - t \\ x_3 = -2 - 2t \\ x_4 = 1 - 2t \end{cases}$$