Last time tuture: > Machine learning + dynamical & System > Lyapunov relos singular richor of S Computationed

chynamics 3

project tagent l'adjoint propogetors eigeneters of -> Random dynamical systems () for past/far future matrices Today > Reciew of Lyapurov retors > Review of QR iteration (firear algebra) > Computation of LVs.

Fir orbit

Σ, φχ, φχ, Far future operator $\lim_{t\to\infty} ((f(o,t))^T + (o,t))^{\frac{1}{2t}}$ targent propagator

T_M -> Tota M $(F(0,t))^T$: $T_{\varphi^t}M \rightarrow T_xM$ $F(o,t) = U(o,t) \sum_{i=0}^{\infty} U(o,t) \sqrt{(o,t)}$ (F(0,t))'F(0,t) $= V \leq U^T U \leq V^T = V \leq^2 V^T$ $W(z) = \lim_{t \to \infty} ((F(o,t))^T (F(o,t)))^{\frac{1}{2t}}$ State at = $\lim_{t \to \infty} V(o,t) \cdot \frac{1}{2t} \cdot \frac{1}{2t}$ (ATA, AAT are eigenvalues >> 0, SPSD matrices. eigenvectors are orthogonal) $V(o,t) := \left[f_{i}^{\dagger}(o,t) \middle| f_{2}^{\dagger}(o,t) \middle| \cdots \middle| f_{d}^{\dagger}(o,t) \right]$ Existence of lim V(0,t): Oseledets theorem +->00 Logarithms of eigenvalues of W(x):= Lyapunovexponents $\lambda_1 > \lambda_2 > \cdots > \lambda_p$ p: humber of distinct LEs $p \leq d$. For degenerate LEO, file) are not usique Ergodic systems, LEs are constant functions of z. fi(0)
Les at point x lim fit(0,t) =

Homework > Lorenz 163 system: first example of chaosin climate system Navier Stokes
Founds

To Ta $F(o,t): V(o) \longrightarrow V(t)$ $T_{\infty}M$ $T_{\phi^{\dagger} \times}M$ 7 pt x: solution of Lorenz system at time t Runge Kutta odeint (Scipy) $\frac{d\varphi^{t_{(2)}}}{dt} = \varphi(\varphi^{t_{2}})$

 $\frac{d\varphi(z)}{dt} = g(\varphi^z)$ $\Rightarrow \qquad v(o) \in T_z M$ $v(t) \in T_{et_z} M$ $\frac{dv(t)}{dt} = dg(\varphi^z) v(t) \stackrel{\text{tayent time}}{=} equation$ f(o,t) v(o) = v(t) time integrabor

for targent equations

Power iteration Output: 20, 10: top eigenvector
Vo not orthogonal to its top eigenvector Input: for i = 1, 2, 3, ...UiH = A 19; di = 11 Avil vitt = Vitt/di $\alpha_i \rightarrow b$. $v_i \rightarrow 20$ Output: 20(9x), 20(9x)Input: Ab, A,, Az... to top LE $A_6 = d\varphi(x)$ $v_0 \in T_x M = rand(d)$ i = 1.2.3 $A_1 = d\varphi(\varphi^2) \cdots$ i=1,2,3 ··· Uiti = A: Ui Tois M $\alpha_i = \|A_i v_i\|$ Uit = Uit / Aivi vi > 20(pix)

i logaj > lo

i j=1 Inputs: Ao, A,,... Ak... $A_o = \left(dq \left(q^k \right) \right)^T$ $A_{l} = \left(d\varphi(\varphi^{k-l}x)\right)^{T}$ $A_{k} = \left(d\varphi(x) \right)^{T}$ $v_k \in T_x^*M$ $\approx p_o(x)$

→ {q,,.., &, } $\{y_1,\ldots,y_n\}$ 2i 1 ℃; · i ≠ j P1 € 11/110111 () modified as v3 - (v3.21) 21 $\frac{2}{2}$ - $(\frac{2}{2}\cdot 2)$ 2

= QR mxn nxn b Upper to angular metrix orthonormal makix form an orthonormal basis for the columns of A off-diagonal dements: diagonal elements computed morms computed by modified G.S. Eigenvalue - Eigenvector of Makrix A ARE = span? 20,2,... 24. m-dimensional subspece of Rd Combine pour iteration + as Input: AERdxd Q: random orhegonal makrix

R = R dxd Ro: Id for i=1,2,... QiH = AQi QiH RiH = QiH Qi -> eigenvertors of A $\frac{i}{11}R_{i} = R_{i}R_{i-1}...R_{o}$ j=1(tr'argales matrix: eigenvalues are on the $A^{k} = Q_{1}Q_{2} \dots Q_{k}R_{k} \dots R_{l}$ $= \widetilde{Q}_{k} \widetilde{R}_{k}$ = Qk A Qk C to angular, diagonal if A is symmetric) Rayleigh quotient: v $r(v) = v^T A v$