

Binary Coded Octal

 Three binary digits (also known as binary-coded octal) can be combined to form one octal digit.

Three-bit Group	Decimal Dig	it Octal Digit
000	0	0
001	1	1
010	2	2
011	3	3
100	4	4
101	5	5
110	6	6
111	7	7

Base (8) to base (2)

Ex: Convert 742₈ to binary Convert each octal digit to 3 bits:


```
TOTAL MATHURA
Accredited with A Grade by NAAC
```

```
Ex: Convert 10100110_2 to octal

Starting at the right end, split into groups of 3:

10 100 110 \rightarrow

110 = 6

100 = 4
```

010 = 2 (pad empty digits with 0)

$$10100110_2 = 246_8$$

Binary Coded Hexadecimal

Four binary digits (also known as binary-coded hexadecimal)
 can be combined to form one hexadecimal digit.

Four-bit Group	Decimal Digit	Hexadecimal Digit
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	\mathbf{A}
1011	11	В
1100	12	C
1101	13	D
1110	14	\mathbf{E}
1111	15	\mathbf{F}

```
Accredited with A Grade by NAAC
```

Ex: Convert $3D9_{16}$ to binary

Convert each hex digit to 4 bits:

3 = 0011

D = 1101

9 = 1001

0011 1101 1001 →

 $3D9_{16} = 1111011001_2$ (can remove leading zeros)

Ex: Convert 110100110₂ to hex

Starting at the right end, split into groups of 4:

```
1 1010 0110 \rightarrow 0110 = 6

1010 = A

0001 = 1 (pad empty digits with 0)
```

 $110100110_2 = 1A6_{16}$

Hexadecimal(16) to Octal(8)

Ex: Convert E8A₁₆ to octal

First convert the hex to binary:

111 010 001 010 and re-group by 3 bits (starting on the right)

Then convert the binary to octal:

So
$$E8A_{16} = 7212_8$$

Octal(8) to Hexadecimal(16)

Example: Octal to Hexadecimal 3756₈

```
3 7 5 6<sub>8</sub>
011 111 101 110
0111 1110 1110
7 E E<sub>16</sub>
```


Questions

Q1. Convert the following Binary to Octal numbers.

a. 11101011110₂

b. 111101.01101₂

Ans: 1656₈

Ans: 75.32₈

Q2. Convert the following Octal to binary.

a. 1573₈

b. 64.175₈

Ans: 1101111011₂

Ans: 110100.001111101₂

Questions

Q3. Convert the following Binary to Hexadecimal numbers.

a. 1111101101₂

b. 11110.01011₂

Ans: 3ED₁₆

Ans: 1E.58₁₆

Q4. Convert the following Hexadecimal to binary.

a. A748₁₆

b. BA2.23C₁₆

Ans: 1010011101001000₂

Ans: 101110100010.0010001111₂

Questions

Q5. Convert the 1573₈ to hexa-decimal

Ans: **37B**₁₆

Q6. Convert the A748₁₆ to Octal

Ans: 123510₈

Q7. Convert the 725.25₁₀ to Hexadecimal

Ans: 2D5.4

Q8. Convert the 236.45 ₁₀ to Octal

Ans: 354.346

Q9. Convert to 94.56₁₀ to binary

Ans: 1011110. 10001