

Instituto Politécnico Superior

Polinomios Cromáticos

Gaspar Giménez - Docente: Regina Muzzulini

Polinomios Cromáticos

Gaspar Giménez - Docente: Regina Muzzulini

August 24, 2023

Contents

1	Introducción	2
	1.1 De cuántas formas distintas puedo colorear un único grafo?1.2 Polinomio Cromático	
2	Unión de Grafos	
	Diferencias de Grafos	5

1 Introducción

1.1 De cuántas formas distintas puedo colorear un único grafo?

Definición: Llamaremos Número Cromático al menor número de colores necesarios para colorear un grafo G, denotado como X(G).

¿Cómo se obtiene este número cromático? Hay distintos casos:

- 1. $X(K_n) = n$
- 2. $X(L_n) = 2$ para todo $n \ge 2$ (Siendo L un grafo lineal o camino)
- 3. $X(N_n) = 1$ (Grafo vacío, es decir n vértices y 0 aristas)
- 4. $X(C_n) = 2$ si n es par, 3 si n es impar (Grafo circular o circuito)
- 5. $X(R_n) = 4$ si n es par, 3 si n es impar (Grafo rueda)
- 6. X(G) = 2 si G es bipartito
- 7. $X(K_{r,s}) = 2$ con K bipartito completo

En casos donde el grafo no sea uno de estos, deberemos recurrir a algoritmos o distintas técnicas para encontrarlo.

1.2 Polinomio Cromático

Definición: Dado un grafo G no dirigido y un k natural ≥ 1 , llamamos polinomio cromático de G a la función de k que nos da el número de formas de colorear G con k colores.

$$PG(k) = \text{polinomio cromático de } G$$

Propiedad 1) Si k < X(G) entonces no podré colorear el grafo, es decir PG(k) = 0.

Propiedad 2) Si $k \ge X(G)$ entonces podré colorearlo de al menos una forma, es decir $PG(k) \ge 1$.

Propiedad 3) Además, si k < k' entonces PG(k) < PG(k').

Luego, por estas tres propiedades:

Conclusión 1) X(G) es el menor número natural para el cual PG(k) no es nulo.

Conclusión 2) Si G es un grafo no dirigido con componentes conexas C_1, C_2, \ldots, C_r con $r \geq 1$, entonces

$$PG(k) = PG(C_1) \cdot PG(C_2) \cdot \dots \cdot PG(C_r)$$

Algunos polinomios cromáticos conocidos:

• $K_3: t \cdot (t-1) \cdot (t-2)$

Instituto Politécnico Superior — 3

- $K_n: t\cdot (t-1)\cdot (t-2)\cdot \ldots \cdot (t-(n-1))$
- Árbol con n vértices: $t \cdot (t-1)^{n-1}$
- Ciclo C_n : $(t-1)^n + (-1)^n \cdot (t-1)$
- Lineal L_n : t^n

2 Unión de Grafos

Llamamos unión de los grafos G y H al grafo $G \cup H = (V,E)$ donde $V = V(G) \cup V(H)$ y $E = E(G) \cup E(H)$.

De esta forma podemos descomponer grafos que tengan un vértice en común, por ejemplo:

¿Para qué nos sirve? Bueno, gracias a la descomposición de grafos podemos obtener:

Si G y H tienen un único vértice en común, se verifica que:

$$\mathbf{PG}_{G \cup H}(k) = \frac{\mathbf{PG}_{G}(k) \cdot \mathbf{PG}_{H}(k)}{k}$$

Si G y H tienen una única arista en común e=(u,v), entonces se verifica que:

$$\mathbf{PG}_{G \cup H}(k) = \frac{\mathbf{PG}_{G}(k) \cdot \mathbf{PG}_{H}(k)}{k \cdot (k-1)}$$

3 Diferencias de Grafos

Definición: El grafo diferencia G - a es un grafo que tiene los mismos vértices que G y las mismas aristas que G excepto la arista a (eliminamos la arista, pero dejamos sus extremos).

Definición: El grafo cociente G_a es un grafo en el cual identificamos los dos extremos de a en uno solo. Por tanto, G_a tiene un vértice menos que G y la arista a se elimina. Dos aristas no incidentes que tienen como extremos los vértices de a en G, pasan a tener un vértice común en G_a , y dos aristas cualesquiera que formen un triángulo con a en G pasan a ser la misma arista en G_a .

Eligrafo G

El grafo diferencia G-a

El grafo cociente Go

Teorema: $PG(k) = \mathbf{PG}_{-a}(k) - \mathbf{PG}_{a}(k)$

Ejemplo:

Si quisiéramos calcular, por ejemplo, el Polinomio cromático del grafo G de la figura anterior:

$$PG(k) = \mathbf{PG}_{-a}(k) - \mathbf{PG}_{a}(k) = \mathbf{PL}_{3}(k) - \mathbf{PK}_{3}(k) = k^{3} - k \cdot (k-1) \cdot (k-2)$$