Modelagem e simulação

Analucia Schiaffino Morales

Semana 4

Exemplo Simples

- Considere um sistema de fila simples
- Os automóveis oriundos de uma área externa, se encaminham ao posto para usar um elevador hidráulico e serem lavados por um operador que faz uso de uma mangueira de alta pressão.
- Dependendo do dia da semana e da hora do dia, é possível que ao chegar ao posto o cliente encontre o posto ocupado. Prevendo tal situação o proprietário criou uma área de espera para que os clientes possam aguardar (por ordem de chegada) para serem atendidos.

Exemplo Simples

 O proprietário anda considerando a possibilidade de melhorar o atendimento.

• Ele reconhece no entanto, um certo receio de investir sem uma análise mais detalhada as situação e de uma melhor avaliação de desempenho do negócio se novos investimentos forem realizados.

Como tratar e analisar o problema

- Dúvidas levantadas:
- Será que uma área de espera disponível (para no máximo 4 carros) é suficiente para acomodar a clientela do sábado pela manhã ou estou perdendo clientes por falta de espaço.
- Será que os serviços estão sendo prestados em tempo aceitável?
- Será necessário contratar um novo operador auxiliar para o período de alta demanda?

Para definir um modelo é fundamental:

- Com que frequência ocorre a chegada de carros para serem atendidos?
- Qual o tempo necessário para realizar o serviço?
- Segundo as informações do proprietário no período de sábado pela manhã (que é considerado crítico) os automóveis chegam mais ou menos a cada 10min, enquanto o tempo de atendimento é de 15min.
- No entanto, segue afirmando, às vezes é ao contrário. O operador leva 10min e os carros demoram mais para chegar.

Comportamentos

- Considerando as informações fornecidas pelo proprietário, um sistema com estas características pode ter 2 comportamentos distintos: Na primeira situação a frequência de chegadas (10min)> que a frequência da saída (15min de atendimento), uma vez que o tempo de atendimento é maior do que o tempo das chegadas de automóveis no posto.
- Um sistema com este comportamento em um período de 2horas, por exemplo, a área de espera disponível não será suficiente para a fila que seria formada.
- No período de 2 horas chegariam 12 carros e seriam atendidos apenas 8. E portanto, seria necessário mais espaço para que os carros esperem o atendimento.

Carros chegam a cada 10min e levam 15min para serem atendidos

Comportamentos

 Por outro lado, a segunda observação do proprietário às vezes é o contrário, levaria a uma situação totalmente diferente.

- Pois sobrariam folgas para o atendimento e a área de espera não seria necessária.
 - Existem 3 formas de analisar o problema de fila simples:
 - Tratamento pelo bom senso ou achometria;
 - Tratamento analítico por teoria das filas;
 - Tratamento por meio de modelagem e simulação.

Achometria

• Não permite ao decisor prever o que irá acontecer com o sistema.

Baseada na advinhação do futuro.

• Uma das técnicas de apoio a decisão mais empregadas.

São necessários alguns dados como as demais técnicas.

Considerando as informações fornecidas pelo proprietário

Informações

situação	TEC – tempo entre chegadas	TS – tempo de serviço
А	± 10 min	≅ 15min
В	≥ 1 0 min	± 10min

Na situação A, como os automóveis chegam mais rápidos do que podem ser atendidos é alta a probabilidade de ocorrem congestionamentos.

Faltam elementos para o exercício da previsão e avaliação

Conclusões considerando A

- Aumentar a área de espera (alugando o terreno vizinho, por exemplo).
- Contratar mais um empregado e comprar mais um elevador hidráulico, ou;
- Ambas as medidas acima.

Na situação B o sistema apresenta folga e neste caso a decisão seria tomar nenhuma medida porque o sistema opera com folga.

Emprego da teoria das filas

- Emprega-se um conjunto de formulas matemáticas que permitem calcular a maioria das respostas desejadas pelo proprietário.
- Entre elas: tempo médio dos serviços, tamanho médio da fila na área de espera, tempo médio de espera, proporção de ocupação do operador, etc.
- É preciso estimar valores para o tempo médio entre as duas chegadas de automóveis no sistema e para o tempo médio de uma lavação.

Teoria das filas

- Podem ser obtidas das estimativas do proprietário ou de uma amostragem realizada no sistema.
- Uma vez obtidas as estimativas para os tempos necessários, faz-se uso das formulas e chega-se às respostas desejadas.
- Um elemento importante em Teoria das filas é reconhecimento do tipo de sistema que está sendo modelado.

M/M/1

- Existem inúmeras variações as quais exigem o emprego de diferentes formulas.
- No caso do exemplo, o sistema é do tipo M/M/1.
- Este tipo de sistema é o mais simples e o mais popular pressupõe tanto que o tempo decorrido entre as chegadas dos clientes no sistema quanto o tempo gasto nos serviços ocorram como um processo Markoviano.
- Por isso, a sigla MM. Neste caso, considera-se que são tempos independentes um do outro e distribuídos segundo uma distribuição exponencial. Para completar a explicação o algarismo um indica a existência de um único servidor.

Fórmulas para M/M/1

- Número médio de carros no sistema:
- L = <u>λ</u> μ-λ
- Tempo médio despendido no sistema:
- W = $\underline{\mathbf{1}}_{\mu-\lambda}$
- Taxa média de ocupação do servidor
- ρ= <u>λ</u> μ

Onde:

 $\lambda = taxa de chegadas$ $\mu = taxa de serviço$

Teoria das filas

- Considerando para o parâmetro λ 10, 12 e 15 minutos como taxa de chegada por hora, o valor assume: 6 (60min/10min), 5 (60min/12min) e 4 (60min/15min) e μ = 6 carros por hora (10min de atendimento).
- Complete a tabela a seguir:

Exemplo simples

<u>λ</u>	6	5	4
L	α	5	2
W	α	1	0,5
ρ	1	0,833	0,666

O número médio de carros no sistema cai de 5 para 2, o tempo médio de espera reduz de Uma hora para meia hora, e finalmente as taxas de ocupação baixam de 83,3% para 66,6%. Já são informações melhores que a achometria. Os valores para 6 carros foram atribuídos como infinito porque devido a divisão por zero. A interpretação neste caso, é que a fila Tende a crescer indefinidamente, com congestionamentos eternos no sistema enquanto que o servidor passa a ter 100% de ocupação.

Desvantagens

- O uso de valores médios (estimativas) para o tempo decorrido entre chegadas e tempo de serviço pode levar a conclusões imprecisas, devido a erros associados a obtenção das estimativas;
- As formulas são apropriadas para observações de um grande período.
 Se o sistema modelado funciona por um curto período é possível gerar um distanciamento entre as respostas do sistema real e as obtidas no modelo analítico.

Desvantagens

- É extremamente complexa a possibilidade de analisar a variabilidade do sistema, isto é, seu comportamento dinâmico e estocástico ao longo de um período de tempo ou intervalo de interesse.
- Tratamento por meio de modelagem de simulação!

- Modelagem e simulação implica num esforço computacional no qual o programa executa uma série de instruções.
- Transmitem ao usuário a nitidasensação de que o modelo executado possui comportamento semelhante ao sistema real do qual deriva.
- Controle de execução do modelo permite ao analista a realização de experimentos.

- O experimento determina a possibilidade de estimar e concluir a respeito do comportamento do modelo e por inferencia, responder as questões formuladas na descrição do problema sobre a conduta e o desempenho do sistema.
- Simulações manuais implicam na construção de tabelas -> tabelas de simulação.

- Dependem do tipo de modelo empregado para tratar o sistema e o tipo de resposta que se busca através dos experimentos.
- As tabelas de simulação apresentam uma espécie de registro do comportamento dinâmico do sistema ao longo do tempo.
- Para construir a tabela do exemplo do posto de lavação, emprega-se os mesmos elementos das abordagens anteriores com exceção da situação A, que leva a uma situação crítica de congestionamentos.

- Utilizando a situação B, serão empregados os valores semelhantes ao utilizado no modelo de teoria das filas.
- A diferença das aboradagensficam por conta do uso dos valores não determinísticos tanto para os tempos de chegada (TEC) quando para os tempos de serviço (TS).
- No modelo de teoria das filas foram empregados diferentes valores para TEC e TS mas em experimentos separados. E em cada um deles, os valores médios usados permanecem fixos.

- Na simulação, faremos a aproximação da realidade. A variável TEC assume valores entre 10, 12 e 15, mas de forma aleatória. Assume-se que o sistema pode apresentar estes 3 possíveis valores com as mesmas probabilidades. Ou seja 1/3.
- Da mesma forma para TS também poderá randomicamente assumir 9, 10 e 11 para atendimento do serviço com probabilidade 1/3.

Dúvidas

- •Tamanho da área de espera disponível
- •O tempo de realização do serviço
- •A necessidade de contratar mais um operador

As **respostas** exigem as seguintes estatísticas:

- •Numero de carros esperando na fila
- •Tempo despendido pelo cliente no sistema
- Taxa de ocupação do operador

	TEC				TS	
Tempos (min)	10	12	15	9	10	11
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3

Para calcular estas estatísticas necessita-se os seguintes dados.

- Para cálculo do número de carros esperando na fila, exige um monitoramento constante da área de fila de espera ao longo da simulação.
- Para cálculo do tempo de um cliente no sistema é necessário guardar o tempo de sua entrada. Posteriormente, quando de sua saída verifica-se em que momento isso ocorre (tempo de ocorrência) e deste extrai-se o tempo de sua chegada.

Para calcular estas estatísticas necessita-se os seguintes dados.

• Por exemplo, um carro chega às 10:00 e sai às 10:25, 10:25 menos 10:00. O tempo de 25min é armazenado como tempo deste cliente no sistema. Uma lista com todos os atendimentos no sistema permite posteriormente a verificação de quem dependeu menor tempo, o maior tempo e o tempo médio pelos clientes no sistema.

Para calcular estas estatísticas necessita-se os seguintes dados.

 Para calcular a taxa de ocupação do operador é necessário verificar que parcela do tempo de operação do sistema (tempo simulado) este se encontra ocupado ou livre.

• Acumula-se todos os períodos de tempo em que o operador está no estado livre. Ao final da simulação faz a relação tempo livre/tempo de simulação e se obtém o percentual de tempo livre.

Tabela de simulação

- Construir uma tabela de simulação que compreende o período equivalente aos trabalhos do sábado no turno matutino, com o posto abrindo às 9h e fechando ao meio dia.
- Desta maneira o tempo de simulação deve cobrir um intervalo de 3 horas ou 180 minutos.

cliente	TEC	Tempo de chegada no relógio	Tempo de serviço	Tempo de início do serviço no relógio	Tempo clientes na fila	Tempo final do serviço no relógio	Tempo do cliente no sistema	Tempo livre do operador
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37		46	9	O
4	10	47	10	47	0	57	10	1
5	12	59	9	59	0	68	9	2
6	15	74	10	74		84	10	6
7	10	84	11	84	O	95	11	
8	12	96	9	96	\bigcirc	105	9	1
8	10	106	11	106	0	117	11	1
10	10	116	10	117	1	127	MA	\bigcirc
11	10	126	11	127	1	138	12	
12	12	138	9	138	Õ	147	9	
13	15	153	10	153	0	63	10	6
14	12	165	9	165		174	9	2.
15	12	177	11	177	9/2	(88)	11/2	3/2

b->

80

Fórmulas

Tempo médio de espera na fila =
$$\frac{\sum tempos de espera na fila}{Número total de clientes}$$

Probabilidade de um cliente esperar na fila=
$$\frac{\text{Numero de clientes que esperaram}}{\text{Numero total de clientes}}$$

$$Probabilidade do operador livre = \frac{\sum tempo \ livre \ do \ operador dor}{Tempo \ total \ de \ simulação}$$

Tempo médio de serviço =
$$\frac{\sum Tempo de serviço}{Numero total de clientres}$$

Tempo médio despendido no sistema =
$$\frac{\sum tempos no sistema}{Número de clientes}$$

Fórmulas

Tempo médio de espera na fila =
$$\frac{\sum \text{tempos de espera na fila}}{\text{Número total de clientes}} = \frac{2}{15} = 0,13 \text{ min.}$$

Probabilidade de um cliente esperar na fila=
$$\frac{\text{Numero de clientes que esperaram}}{\text{Numero total de clientes}} = \frac{2}{15} = 0,13 = 13,3\%$$

Probabilidade do operador livre
$$=\frac{\sum tempo \ livre \ do \ operador}{Tempo \ total \ de \ simulação}=\frac{38}{188}=0,20=20\%$$

Tempo médio de serviço =
$$\frac{\sum \text{Tempo de serviço}}{\text{Numero total de clientres}} = \frac{150}{15} = 10 \text{ min}$$

Tempo médio despendido no sistema =
$$\frac{\sum \text{tempos no sistema}}{\text{Número de clientes}} = \frac{152}{15} = 10,13 \text{ min.}$$

Exercício

- Ao chegar na sala do professor, o aluno deve esperar em uma fila até que chegue a sua vez de ser atendido.
- Quando chega a sua vez, o aluno conversa com o professor e depois abandona a sala dando oportunidade para que um novo aluno possa ser atendido.
- Apenas por uma questão de simplicidade, vamos assumir que o tempo de chegada dos alunos e o tempo gasto por cada aluno em atendimento são conhecidos.

Tabela1 - Tempo de chegada de alunos e tempo de atendimento

Aluno	Tempo de chegada	Tempo de atendimento
1	6,0	9,0
2	24,0	7,5
3	26,0	10,0
4	35,0	6,5
5	44,0	6,0
6	52,0	5,0
7	58,0	9,0
8	70,0	7,5
9	77,0	6,5
10	89,0	11,0

Exercício

- O objetivo é realizar uma simulação manual do processo apresentado, de forma a determinar o tempo médio que um estudante passa tirando dúvidas com o professor e a percentagem do tempo que o professor fica ocupado tirando dúvidas.
- Apresentar duas tabelas:
 - Uma que apresenta a visão do estudante (descrição orientada a processo)
 - E outra que apresenta a visão da ocorrência ordenada dos eventos, no caso da visão do professor (descrição orientada a evento).

Neste processo de simulação usa-se a linguagem natural, considerando que os alunos são atendidos por ordem de chegada.

- Definição dos estados do sistema:
 - número de estudantes à espera de atendimento
 - ocupação ou não do professor
- A mudança de estado do sistema pode ocorrer devido a dois eventos:
 - um estudante chega para atendimento
 - um estudante acaba de tirar suas dúvidas e sai do sistema

Visão do estudante (descrição orientada a processo)

Aluno	tempo	de	tempo	de	tempo	de	tempo	de	tempo	total
	chegada	a	entrada	em	saída da	sala	espera	na	gasto	
	sala		atendime	ento			fila			
1	6,0		6,0		15,0		0,0		9,0	_

Visão da ocorrência ordenada dos eventos, no caso da visão do professor (descrição orientada a evento)

Tempo	Aluno	tipo do	número	número	estado do	tempo de
de		evento	de alunos	de alunos	professor	ocupação
evento			na fila	na sala		do prof.
0,0	-	inicio	0	0	livre	-

Segunda etapa do exercício:

Alterar o modelo incluindo mais uma entidade permanente denominada 'Reprografia'. O tempo de chegada nesta entidade permanente é igual ao tempo de saída do atendimento na entidade 'Professor'. Os tempos de atendimento na Reprografia são apresentados na Tabela 4 a seguir.

Aluno	Tempo de atendimento
1	3,0
2	4,5
3	7,0
4	2,0
5	15,0
6	11,0
7	8,0
8	3,0
9	2,0
10	5,0

Tabela 4 – Tempo de atendimento na Reprografia

- 1. Média de tempo que os alunos permanecem no modelo
- Tempo médio de espera na fila da Reprografia
- 3. Percentual de ociosidade da Reprografia

Tabela 5 – Tempo de atendimento na Biblioteca

Aluno	Tempo de atendimento
1	8,0
2	30,0
3	2,0
4	7,0
5	18,0
6	1,0
7	20,0
8	10,0
9	9,0
10	8,0

Objetivos:

- 4. Média de tempo que os alunos permanecem no modelo
- 5. Tempo médio de espera na fila da Reprografia
- 6. Percentual de ociosidade da Biblioteca e da Reprografia

Quarta etapa do exercício:

A entidade permanente Professor deve ser alterada para atender, simultaneamente, até dois alunos. Ou seja, representar o comportamento de um setor de atendimento com dois professores.

Utilizar os mesmos tempos de chegada e de atendimento para simular o modelo com esta nova característica.

Objetivos:

- 7. Média de tempo que os alunos permanecem no modelo
- 8. Tempo médio de espera na fila da Reprografia
- 9. Percentual de ociosidade da Biblioteca e da Reprografia

