数值分析上机报告1

段浩东 1500017705

上机习题1.1

问题:

利用Taylor展开公式:

$$e^x = \sum_{k=0}^{\infty} rac{e^x}{x!}$$

编一段小程序上机用单精度计算 e^x 的函数值,分别取x=1,5,10,15,20,-1,-5,-10,-15-20。观察结果是否合理,若不合理请分析原因并给出解决方法。

解答:

我们利用 e^x 的Taylor级数的前n项和来作为 e^x 的近似值。在计算的过程中,我们可以认为,当通项 $a_k = x^k/k!$ 的绝对值小于 ϵ 时,部分和已经基本收敛,近似值的计算就可以结束了。在实际计算中,注意到通项 $a_k = x^k/k!$ 使用递推进行计算,从而避免重复计算。而在x < 0的情况下,由于存在较大项($x^k/k!$)正负相消,有效数字难以保证的情况,因此,计算 e^x ,x < 0时,我们通过计算 $1/e^{-x}$ 来得到结果。计算使用代码如下:

```
float calcexp(float num){
    if(num<0)
    return 1.0/calcexp(-num);
    float ans=0;
    float attr=1.0;
    float fact=1.0;
    do {
        ans+=attr;
        attr*=num;
        attr/=fact;
        fact+=1.0;
    }while(abs(attr)>eps);
    return ans;
}
```

幂次	数值	幂次	数值
1	2.718282	-1	0.367879
5	148.413193	-5	0.006738
10	22026.468750	-10	0.000045
15	3269017.500000	-15	0.000000
20	485165216.000000	-20	0.000000

同对单精度浮点数调用cmath自带函数exp相比,我们所编写的calcexp函数相对误差大致在千万分之一左右,取得了不错的效果。

上机习题1.2

问题:

对于积分:

$$I_n=\int_0^1rac{x^n}{x+5}dx$$

证明递推关系

$$I_0 = ln1.2$$
,

$$I_n = -5I_{n-1} + \frac{1}{n}$$

用上述递推关系计算 I_1,I_2,\ldots,I_{20} ,观察数值结果是否合理,并说明原因

解答:

• 对于递推公式的证明:

$$egin{aligned} I_0 &= \int_0^1 dl n(x+5) = ln 1.2 \ I_n + 5 I_{n-1} &= \int_0^1 rac{x^n + 5 x^{n-1}}{x+5} = \int_0^1 x^{n-1} dx = rac{1}{n} \end{aligned}$$

• 用上述方法计算出来的结果是:

幂次	结果
0	0.182322
1	0.0883922
2	0.0580389
3	0.0431387
4	0.0343063
5	0.0284684
6	0.0243249
7	0.0212326
8	0.0188369
9	0.0169265
10	0.0153676
11	0.0140713
12	0.0129766
13	0.0120399
14	0.0112289
15	0.0105219
16	0.00989032
17	0.00937191
18	0.00869602
19	0.00915147
20	0.00424264

我们发现,在 I_{19} 处居然存在一上升,这显然是一个不合理的数值结果,究其原因,是因为在递推过程 $I_n=-5I_{n-1}+\frac{1}{n}$ 中,每递推一步,初始时的误差就成五倍放大,因此导致了不合理的数值结果。为了进行改进,我们可以直接利用递推公式求出 I_n 与 I_0 的关系并进行计算,由此可以减小误差的放大。或是先利用某种方法求出 I_n ,再反向求出其余值,这是一个误差逐渐被放小的过程。