A PROJECT REPORT ON

BIGMART SALES PREDICTIVE MODEL

Submitted in partial fulfillment for the requirement of the award of Training

in

Data Analytics, Machine Learning and AI using Python

Submitted By

Meera Srilekha.B

(B Tech CSE - II year)

(Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu)

ACKNOWLEDGEMENT

My sincere gratitude and thanks towards my training and project guide Ashish Saini.

It was only with his backing and support that I could complete the report. He provided me with all sorts of help and corrected me if ever seemed to make mistakes. I acknowledge my sincere gratitude to the lecturer for their valuable guidance and helping attitude even in their very busy schedule. And at last but not the least, I acknowledge my dearest parents for being such a nice source of encouragement and moral support that helped me tremendously in this aspect. I also declare to the best of my knowledge and belief that the Project Work has not been submitted anywhere else.

INTRODUCTION

BigMart is a large retail chain that operates stores in India. The company collects a lot of data about its customers and products, including sales data, customer demographics, and product attributes. This data can be used to build predictive models that can help the company make better decisions about product pricing, promotions, and inventory levels.

BigMart sales predictive model is a model which aims to predict the stock rate of each product in the store. By forecasting the stock rate, bigmart can improve its supply chain management and inventory management. This project deals with providing information about the product's stock rate, fat content in it, MRP and outlet size. The model is trained on a dataset of over 200,000 sales transactions, and it has been shown to be very accurate in its predictions. Stores are benefited using these predictive models. This predictive model mainly uses python as its base programming language. This model uses flask for web deployment. Python has various in-built libraries which can be used to make various analyses for bigmart sales.

The predictive model deals with a set of procedures in it, such as data preprocessing, data cleansing, EDA, label encoding, splitting up train and test data set, standardization, model building and hyper parameter tuning and lastly saving the model. Each process in this predictive model deals with cleansing, analyzing, and standardizing the dataset.

PROBLEM STATEMENT

The Bigmart sales predictive model aims at accurately predicting the future sales of products.

TECHNOLOGY AND CONCEPTS USED

- 1. Data preparation
 - Data manipulation
 - Data blending
 - Missing values handling
 - Feature generation
 - Feature selection
 - Data cleansing
- 2. Model training
 - Using ensembles
- 3. Model optimization
- 4. Model evaluation
- 5. Web deployment with flask

Python libraries used in this predictive model,

Libraries used/can be used for analysis,

- numpy
- pandas
- matplotlib
- seaborn

Libraries used/can be used for EDA,

- Dtale
- SweetViz
- Klib
- pandas profiling

DESCRIPTION OF THE DATASET

The dataset comprises several features that are essential for developing an accurate predictive model. Each row represents a unique sales transaction at different Big Mart outlets, and the dataset contains the following key attributes:

Item Identifier: A unique identifier for each product sold at Big Mart.

Item Weight: The weight of the product.

Item Visibility: A measure of the visibility of the product within the store.

Item Type: The category or type of product.

Item MRP (Maximum Retail Price): The maximum price at which the product is sold to customers.

Outlet Identifier: A unique identifier for each Big Mart outlet.

Outlet Establishment Year: The year in which the outlet was established. Outlet Size: The size category of the store (small, medium, or large).

Outlet Location Type: The type of location where the store is situated (urban or rural).

Outlet Type: The type of outlet (grocery store or supermarket). Item Outlet Sales: The sales of the product (target variable).

DRAWBACKS

- Change of customer behavior will lead to less accurate predictions as the model may not adapt quickly with respect to the customer behavior.
- Seasonality and trends may affect this predictive model.
- Model overfitting can produce some noise and random variations in the predictions as it is trained on either complex dataset or on limited dataset.

EXPERIMENTAL SETUP

- Code
- analysis
- flask deployment

CODE

PLOTS OF THE DATASET

<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df_train = pd.read_csv('train.csv') df_test=pd.read_csv('test.csv') df_train.head()</pre>									
Iter	m_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987	High

Faceted distributions

df_train.isnull().sum()

Item_Weight

Item_Identifier 0 Item_Weight
Item_Fat_Content
Item_Visibility
Item_Type 1463 0 0 0 Item_MRP 0 Outlet_Identifier
Outlet_Establishment_Year
Outlet_Size
Outlet_Location_Type
Outlet_Type
Item_Outlet_Sales 0 0 2410 0 0 0 dtype: int64

[5] df_test.isnull().sum()

Item_Identifier	0
Item_Weight	976
Item_Fat_Content	0
<pre>Item_Visibility</pre>	0
Item_Type	0
Item_MRP	0
Outlet_Identifier	0
Outlet_Establishment_Year	0
Outlet_Size	1606
Outlet_Location_Type	0
Outlet_Type	0
dtype: int64	

```
[7] df_train.describe()
             Item_Weight Item_Visibility
                                              {\tt Item\_MRP\ Outlet\_Establishment\_Year\ Item\_Outlet\_Sales}
     count 7060.000000
                              8523.000000 8523.000000
                                                                       8523.000000
                                                                                          8523.000000
               12.857645
                                 0.066132
                                            140.992782
                                                                       1997.831867
                                                                                          2181.288914
      mean
      std
                4.643456
                                 0.051598
                                             62.275067
                                                                          8.371760
                                                                                          1706.499616
                4.555000
                                 0.000000
                                             31.290000
                                                                       1985.000000
                                                                                            33.290000
      min
                8.773750
                                                                                           834.247400
      25%
                                 0.026989
                                             93.826500
                                                                       1987.000000
      50%
               12.600000
                                 0.053931
                                            143.012800
                                                                       1999.000000
                                                                                          1794.331000
      75%
               16.850000
                                 0.094585
                                            185.643700
                                                                       2004.000000
                                                                                          3101.296400
      max
               21.350000
                                 0.328391
                                            266.888400
                                                                       2009.000000
                                                                                         13086.964800
[8] df_train['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
     df_test['Item_Weight'].fillna(df_test['Item_Weight'].mean(),inplace=True)
   df_train.isnull().sum()
    {\tt Item\_Identifier}
     Item_Weight
                                     0
     Item_Fat_Content
                                     0
    Item_Visibility
                                     0
     Item_Type
                                     0
     Item MRP
                                     0
    Outlet_Identifier
                                     0
    Outlet_Establishment_Year
                                  2410
    Outlet Size
[10] df_train['Outlet_Size'].value_counts()
     Medium
               2793
     Small
               2388
     High
                932
     Name: Outlet_Size, dtype: int64
    df_train['Outlet_Size'].fillna(df_train['Outlet_Size'].mode()[0],inplace=True)
     df_test['Outlet_Size'].fillna(df_test['Outlet_Size'].mode()[0],inplace=True)
     df_train.isnull().sum()
     Item_Identifier
     Item_Weight
     Item_Fat_Content
                                   0
     Item_Visibility
     Item_Type
     Item_MRP
     Outlet_Identifier
     Outlet Establishment Year
     Outlet_Size
                                   0
```

Outlet_Location_Type

Item_Outlet_Sales

Outlet_Type

dtype: int64

0

0

0

[12] df_train.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)
 df_test.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)

EDA WITH KLIB

EDA WITH PANDAS_PROFILING

[24] from pandas profiling import ProfileReport profile = ProfileReport(df train, title="pandas profiling report") print(profile)

2023-08-02 09:31:38,188 - INFO 2023-08-02 09:31:38,199 - INFO 2023-08-02 09:31:38,201 - INFO 2023-08-02 09:31:38,203 - INFO

- Pandas backend loaded 1.5.3

- Numpy backend loaded 1.22.4

- Numpy backend loaded 1.22.

- Python backend loaded

Missing values

Correlations

Auto						
Heat	tmap Table					
		Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
	Item_Weight	1.000	-0.009	0.026	-0.023	0.013
	Item_Visibility	-0.009	1.000	0.006	-0.055	-0.115
	Item_MRP	0.026	0.006	1.000	0.004	0.563
	Outlet_Establishment_Year	-0.023	-0.055	0.004	1.000	0.043
	Item_Outlet_Sales	0.013	-0.115	0.563	0.043	1.000
	Item_Fat_Content	0.049	0.035	0.043	0.011	0.000
	Item_Type	0.080	0.063	0.087	0.000	0.003
	Outlet_Size	0.085	0.059	0.000	0.641	0.075

[26] plt.figure(figsize=(10,5))
 sns.heatmap(df_train.corr(),annot = True)
 plt.show()

<ipython-input-26-9eedae251a34>:2: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Se

DATA CLEANSING USING KLIB

	leansing using k ta_cleaning(df_t						₩ Ψ	ভ ৰ * ≥ ■ :
Shape o	f cleaned data:	(8523, 10) - Remain	ning NAs: 0					
Dropped rows: 0 of which 0 duplicates. (Rows (first 150 shown): []) Dropped columns: 0 of which 0 single valued. Columns: [] Dropped missing values: 0 Reduced memory by at least: 0.46 MB (-70.77%)								
ź	item_weight item	m_fat_content item	_visibility	item_type	item_mrp	outlet_establishment_year	outlet_size	outlet_location_type
0	9.300000	Low Fat	0.016047	Dairy	249.809204	1999	Medium	Tier 1
1	5.920000							
	5.520000	Regular	0.019278	Soft Drinks	48.269199	2009	Medium	Tier 3
2	17.500000	Regular Low Fat	0.019278		48.269199 141.617996	2009	Medium Medium	Tier 3
2								
	17.500000	Low Fat	0.016760	Meat Fruits and	141.617996	1999	Medium	Tier 1
3	17.500000 19.200001	Low Fat Regular	0.016760	Meat Fruits and Vegetables	141.617996 182.095001	1999 1998	Medium Medium	Tier :

0

klib.convert_datatypes(df_train)
df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	item_weight	8523 non-null	float64
1	item_fat_content	8523 non-null	object
2	item_visibility	8523 non-null	float64
3	item_type	8523 non-null	object
4	item_mrp	8523 non-null	float64
5	outlet_establishment_year	8523 non-null	int64
6	outlet_size	8523 non-null	object
7	outlet_location_type	8523 non-null	object
8	outlet_type	8523 non-null	object
9	item_outlet_sales	8523 non-null	float64

dtypes: float64(4), int64(1), object(5)

memory usage: 666.0+ KB

PREPROCESSING THE DATA

LABEL ENCODING

```
#preprocessing task before model building label encoding
     from sklearn.preprocessing import LabelEncoder
     le=LabelEncoder()
     df_train.head()
    df train['item fat content']= le.fit transform(df train['item type'])
    df_train['item_type'] = le.fit_transform(df_train['item_fat_content'])
    df_train['outlet_size']= le.fit_transform(df_train['outlet_size'])
df_train['outlet_location_type']= le.fit_transform(df_train['outlet_location_type'])
     df_train['outlet_type']= le.fit_transform(df_train['outlet_type'])
    df_train.head()
         item_weight item_fat_content item_visibility item_type item_mrp outlet_establishment_year outlet_size outlet_location_type
     0
                9.30
                                                   0.016047
                                                                         249.8092
                                                                                                           1999
                                                                                                                                                     0
      1
                 5.92
                                      14
                                                   0.019278
                                                                           48 2692
                                                                                                           2009
                                                                                                                                                     2
      2
                17.50
                                      10
                                                   0.016760
                                                                     10
                                                                          141.6180
                                                                                                           1999
                                                                                                                                                     0
      3
                19.20
                                       6
                                                   0.000000
                                                                          182.0950
                                                                                                            1998
                                                                                                                             0
                 8.93
                                                   0.000000
                                                                           53.8614
                                                                                                           1987
```

SPLITTING THE DATA INTO TRAIN AND TEST

STANDARDIZATION

```
[46] from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_train_std=scaler.fit_transform(X_train)
X_test_std=scaler.transform(X_test)
```

0

X train std

```
array([[ 1.52290029, -0.75847359, 0.68469729, ..., -1.95699503, 1.08786619, -0.25964107],
[-1.23985603, 1.60759199, -0.09514748, ..., -0.28872895, -0.13870429, -0.25964107],
[ 1.54667616, 0.66116576, -0.00838589, ..., -0.28872895, -0.13870429, -0.25964107],
...,
[ -0.08197107, 0.18795264, -0.9191623 , ..., 1.37953713, -1.36527477, -0.25964107],
[ -0.74888428, -1.70489982, 1.21363058, ..., -0.28872895, -0.13870429, -0.25964107],
[ 0.67885683, 0.4245592 , 1.83915356, ..., -0.28872895, 1.08786619, 0.98524841]])
```

[48] X test std

```
array([[-0.43860915, 0.18795264, -0.21609255, ..., -0.28872895, 1.08786619, 0.98524841], [ 1.22570189, 1.37098543, -0.52943461, ..., -1.95699503, 1.08786619, -0.25964107], [-1.21845775, -1.46829326, 0.16277342, ..., 1.37953713, -1.36527477, -0.25964107],
```

MODEL BUILDING

HYPER PARAMETER TUNING

```
[67] from sklearn.model_selection import RepeatedStratifiedKFold
     from sklearn.model selection import GridSearchCV
     # define models and parameters
     model = RandomForestRegressor()
     n estimators = [10, 100, 1000]
     max depth=range(1,31)
     min_samples_leaf=np.linspace(0.1, 1.0)
     max features=["auto", "sqrt", "log2"]
     min_samples_split=np.linspace(0.1, 1.0, 10)
     # define grid search
     grid = dict(n_estimators=n_estimators)
     #cv = RepeatedStratifiedKFold(n splits=5, n repeats=3, random state=101)
     grid_search_forest = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1,
                                scoring='r2',error_score=0,verbose=2,cv=2)
     grid_search_forest.fit(X_train_std, Y_train)
     # summarize results
     print(f"Best: {grid_search_forest.best_score_:.3f} using {grid_search_forest.best_params_}"
     means = grid_search_forest.cv_results_['mean_test_score']
     stds = grid_search_forest.cv_results_['std_test_score']
     params = grid_search_forest.cv_results_['params']
     for mean, stdev, param in zip(means, stds, params):
         print(f"{mean:.3f} ({stdev:.3f}) with: {param}")
```

SAVE THE MODEL USING JOBLIB

Two SAV files are saved in this folder named bigmart prediction.

GOOGLE COLAB LINK FOR ACCESSING THE CODE

∞ Bigmart sales predictive model.ipynb

FLASK DEPLOYMENT

```
from flask import Flask, isonify, render template, request
import joblib
import os
import numpy as np
app = Flask(name)
@app.route("/")
def index():
  return render template("home.html")
@app.route('/predict',methods=['POST','GET'])
def result():
  item weight= float(request.form['item weight'])
  item fat content=float(request.form['item fat content'])
  item visibility= float(request.form['item visibility'])
  item type= float(request.form['item type'])
  item mrp = float(request.form['item mrp'])
  outlet establishment year= float(request.form['outlet establishment year'])
  outlet size= float(request.form['outlet size'])
  outlet location type= float(request.form['outlet location type'])
  outlet type= float(request.form['outlet type'])
  X= np.array([[ item weight,item fat content,item visibility,item type,item mrp,
           outlet establishment year, outlet size, outlet location type, outlet type [])
                                                            Srilekha\OneDrive\Desktop\bigmart
                   scaler path=
                                    r'C:\Users\B.Meera
prediction\models\sc.sav'
  sc=joblib.load(scaler path)
```

```
X_std= sc.transform(X)
model_path=r'C:\Users\B.Meera Srilekha\OneDrive\Desktop\bigmart prediction\models\lr.sav'
model= joblib.load(model_path)

Y_pred=model.predict(X_std)
return jsonify({'Prediction': float(Y_pred)})

if __name__ == "__main__":
    app.run(debug=True, port=9457)
```


DIFFICULTIES

- There were two many libraries to do the analysis part so choosing the best amongst them was challenging.
- Proper procedure must be followed in order to make the predictive model if not the process cannot be developed further.
- The data should be stored in some SAV file, but the content was not saved in the file. That is the challenging portion where everything from first needs to be checked.

CONCLUSIONS

The Big Mart Sales Predictive Model project has been a significant endeavor to develop an efficient and accurate forecasting tool for Big Mart stores. Through the rigorous analysis of historical sales transactions, product attributes, and store details, I have successfully created a predictive model that can provide valuable insights and support data-driven decision-making.

The predictive model demonstrates strong performance in forecasting sales, with low Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values on the testing dataset, indicating its reliability and accuracy. This is a great project where it implies to follow the procedures of the data analysis part and even get to know more about the predictive model's process.

This predictive model's functionalities can be extended further by using more advanced technologies for productive management of bigmart sales.

BIBLIOGRAPHY

Bigmart Dataset Sales Prediction. This post is about my approach on... | by Vishal Borana | Analytics Vidhya | Medium

Big Data Sales Prediction/Big Mart Sales Prediction.ipynb at main · sowmyavarshinipathala/Big Data Sales Prediction (github.com)