

A comprehensive grid impact analysis of developing zero-emission sustainable aviation fuel

Yifu Ding¹, Dun Yuan Tan², Florian Allroggen^{1,2}, Dharik S. Mallapragada¹ {vifuding, tandun, fallrogg, dharik}@mit.edu, 1.MIT Energy Initiative 2. Department of Aeronautics and Astronautics, MIT

Introduction – Sustainable aviation fuel from 100% renewable energy

Power-to-Liquid fuel (PtL) is a synthetic aviation fuel produced from hydrogen and carbon dioxide, aiming to achieve zero emissions using 100 % renewable power.

We conduct a case study for a daily demand of 10,000 barrels PtL at Amarillo,

Texas, in 2030 to evaluate its grid impacts.

Methods – Grid expansion model for future scenarios

We simulate the grid expansion in 2030 using an open-source model [1] and consider different future scenarios:

(A) Hydrogen electrolyzer operations: flexible or inflexible operations if the hydrogen electrolyzer is operated with or without hydrogen gas storage.

Research Highlights

Compared to ERCOT 2030 without the PtL demand (represented as $\times 100\%$ baseline) -How significant is the change in carbon emissions and renewable curtailment?

		Carbon	Renewable
		Emission (%)	Curtailment (%)
Compete	Inflexible, Annual	9.24	-25.49
	Flexible, Annual	7.61	-37.48
	Inflexible, Hourly	-18.03	29.10
	Flexible, Hourly	-2.79	9.65
	Inflexible, Annual	-1.35	42.28
Non-	Flexible, Annual	-0.85	-2.86
compete	Inflexible, Hourly	-18.03	29.10
	Flexible, Hourly	-2.79	9.65

In the non-compete scenario, flexible and annual time-matching policy can reduce carbon emissions and mitigate curtailment.

Results - How the grid will change with a daily demand of 10,000 barrels PtL?

• In the compete scenario, the annual time-matching policy will Capacity: prevent coal plant retirement.

> Under the inflexible operation, the hourly time-matching policy significant requires investments renewable generations and batteries.

Electricity generation:

- the compete scenario. natural gas electricity meets part of the PtL demand.
- In the non-compete scenario. renewable electricity can fully supply the PtL demand, except in the inflexible, annual time-matching case.

Conclusions:

- 1) Future development of PtL should consider its grid impacts systematically.
- 2) Flexible hydrogen operations avoid over-investment in renewables and mitigate curtailment, especially under the stringent hourly time-matching policy.

Reference:

- [1] https://github.com/macroenergy/DOLPHYN, DOLPHYN
- [2] Cybulsky, Anna, Michael Giovanniello, Tim Schittekatte, Dharik S. Mallapragada, and MIT Energy Initiative. "Producing Hydrogen from Electricity: How Modeling Additionality Drives the Emissions Impact of Time-Matching Requirements." (2023)

(B) Time-matching carbon policy: annual or hourly time-matching policy enforces 100% renewable power generation to match the PtL demand annually or hourly.

(C) Capacity investment: the 'compete' scenario (C1) represents grid expansion including the PtL demand (C1), while the 'non-compete' scenario (C2) considers capacity investment exclusive for the PtL demand (i.e., PPA contracted capacity) [2].