1. Докажите, что для произвольных натуральных a и b найдутся такие целые числа u и v, что справедливо равенство au + bv = d, где d = нод(a, b).

Китайская теорема об остатках. Пусть даны n попарно взаимно простых натуральных чисел d_1, d_2, \ldots, d_n и целые числа r_1, r_2, \ldots, r_n такие, что $0 \le r_i < d_i$ для любого i. Тогда найдётся такое целое неотрицательное число A, меньшее $d_1d_2 \ldots d_n$, что остаток от деления A на d_i равен r_i для любого i. Более того, любое число B, обладающее таким свойством равно A по модулю $d_1d_2 \ldots d_n$.

- 2. Могут ли два соседних числа иметь более 100 делителей каждое?
- 3. Дан многочлен F(x) с целыми коэффициентами, причём известно, что для любого целого n число F(n) делится на одно из целых чисел a_1, a_2, \ldots, a_m . Докажите, что из этих чисел можно выбрать одно число так, что F(n) будет делиться на него при любом целом n.
- 4. Докажите, что существует 100 последовательных чисел, каждое из которых делится на куб некоторого натурального числа, большего 1.
- 5. (а) (Лемма Шура) Пусть $f \in \mathbb{Z}[x]$, $\deg f > 0$. Докажите, что существует бесконечно много простых чисел, делящих хотя бы одно из ненулевых чисел f(k), $k \in \mathbb{N}$.
 - (b) Пусть $f \in \mathbb{Z}[x]$, $\deg f > 0$. Докажите, что для произвольных n и $k \in \mathbb{N}$ найдётся такое $a \in \mathbb{N}$, что каждое из чисел $f(a), f(a+1), \ldots, f(a+n-1)$ имеет хотя бы k различных простых делителей.

Домашнее задание

- 6. Докажите, что для произвольного $n \in \mathbb{N}$ найдутся такие целые числа a и b, что число $4a^2 + 9b^2 1$ делится на n.
- 7. (а) Докажите, что для любого множества натуральных чисел $\{a_1, a_2, \ldots, a_n\}$ существует такое число b, что каждое из произведений a_ib является степенью натурального числа (с показателем большим 1).
 - (b) Докажите, что для произвольного $n \in \mathbb{N}$ существует такое подмножество $M \subset \mathbb{N}$ из n элементов, что сумма произвольного количества элементов этого множества является степенью целого числа.
- 8. Докажите, что для каждого натурального числа n существует n последовательных натуральных чисел, ни одно из которых не является целой степенью простого числа.
- 9. Пусть a и b такие натуральные числа, что b^n+n : a^n+n для любого $n\in\mathbb{N}$. Докажите, что a=b.