b

EE5 * EE6 * EE7 *

E14 *

EI5 *

Microhomology scheme: Sense/pCMVΔ, sqRNA A, forward strand

Microhomology scheme: Sense/pCMVΔ, sgRNA B, reverse strand

	5 10 15 2	0 25 30 35 40 45	50 55	60 65	70 75	80 8	90	95 100	105 110	115 120	125 130	135	140 145	150 155	160	165 170	175 1	180 185	190 195	200 205	210	215 220 225
			Intron											DS Red								
	Primer	Exon2	Intron			Intron (brai	nch site)					Intron						Exon1				Primer
EE1R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGTC	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	TTCATCAC	GCGCTCCCACTTGAA
EE2R *	GGAAGTICACGCCGATGAACTICACCTTGTAGATGAAGCAGCCGCCCTCGTAGATGAAATAAAT																					
EE3R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	TAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE4R *	GGAAGTICACGCCGATGAACTICACCTIGTAGATGAAGCACCTCCTTGTAGACTACGACCCCCCCCCC												GCGCTCCCACTTGAA									
EE5R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCA <mark>GCCG</mark> TC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE6R *	GGAAGTTCACGCCGATGAAC	TT CAC CTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT,	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE7R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCA <mark>GCC</mark> GTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE8R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE9R *	GGAAGTTCACGCCGATGAAC	TTCAC CTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE10R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCC <mark>GTC</mark>	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACATA	CCTGCA	GGAGGAGT	CCTGGGTC	ACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EE11R *	GGAAGTTCACGCCGATGAAC	TTCACCT TGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACATA	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EE12R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EE13R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACATA	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
E127R *	GGAAGTTCACGCCGATGAAC	TTCACCTTG TAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI28R	GGAAGTTCACGCCGATGAA	TTCACCTTG TAGATGAAGCAGCCGTC	CTGTGGATAA.	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCCA	TATTAACAT	CCTGCA	GGGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI29R *	GGAAGTTCACGCCGATGAAC	TTCACCTT GTAGATGAAGCAGCCGTC	CTGTGGATAA.	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT!	CCTGCA	GGGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI30R *	GGAAGTTCACGCCGATGAAC	TTCACCT TGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI31R *	GGAAGTTCACGCCGATGAAC	TTCACCTTG TAGATGAAGCAGCCGTC	CTGTGGATAA.	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI32R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGATGAAGCAGCCGTC	CTGTGGATAA.	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAA <mark></mark> A	AGCCTCCT	TTAGTCCA	TATTAACAT	CCTGCA	GGGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI33R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGAT <mark>GAAG</mark> CAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGA <mark>GAA</mark> A	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EI34R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGT <mark>AGA</mark> TGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGA <mark>AA</mark>	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EI35R *	GGAAGTTCACGCCGATGAAC	TTCACCTTGTAGA TGA AGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGA <mark>GAAA</mark>	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EI36R *	GGAAGTTCACGCCGATGAAC	TTCACCT TGTAGATGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA
EI37R *	GGAAGTTCACGCCGATGAAC	TTCACCTTG TAGA TGAAGCAGCC GTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	CTAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	ATATTAACAT <i>i</i>	CCTGCAC	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	GTTCATCAC	GCGCTCCCACTTGAA
EI38R *	GGAAGTTCACGCCGATGAA	TTCACCTTG TAGA TGAAGCAGCCGTC	CTGTGGATAA	ATAATACCATT	TGTTAGTAA	AAATTCGA	GCTCGGTAC	CCGGGGGATC	CTACGCGT	TAGAGTCG	ACCTGAGAAA	AGCCTCCT	TTAGTCC	TATTAACAT	CCTGCA	GGAGGAGT	CCTGGGTC	CACGGTCG	CCACGCCGCC	GTCCTCGAA	STTCATCAC	GCGCTCCCACTTGAA

Microhomology scheme: Sense/pCMVΔ/BranchΔ, sgRNA E, forward strand

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 CTICANGGIGG CRATGROUGG CACCIONAL COCCACGACATCONG CONCECUTACION CONCECUTA EE11 EE13 CTICAROGIC COLTICA OCCACOTOR ACCOUNTICA OCCACOTOR ACCOUNTICARO ACCOUNT EE18 EE20 * EE21 CTTCAAGGTGCGCATGGAGGGCACGTGAACGCTCACAGTTCCAGGGCGAGGGCGAGGGCGAGGGCCGAGGGCCACACACCCCGAAGGGCTTCAAGGGGCGCCTCACCTCGCCTGGGACATCCCCCAGTTCCAGTAGGAGGTTCAAGAGGCCGAAGTCCCCGACTTCACAGAAGAAGCTGTCACAGAGGCCTTCAACTGGAGGCTTCAACTGGAGGCCTCAA EE24 CTICARGET COCCATEGORGE COTTON ACCOUNT CONTROL OF COLOR OF EE26 CTICANGGIGG CRATGINGGIGG CACGIGAN CONCEPTANCE CONTROL OF THE CONTR CTICALOGICCCCATGRAGG CACCOTORAC COCCA GASTICOAD TICALOGIC CACCACO CONTROL CONT EE28 * EE29 EE32 EE34 EE36 * EE38 EE40 * EE42 EE44 * EE45 * EE46 * EE47 * EE48 EE53 EE55 * EE57 * EE58 * EE64 EE65 * EE68 * EE71 * EE73 * EE74 * EE76 * EE78 * EE79 * EE80 * EER1 * EE82 * EE84 CTTCAAGGTGCGCATGGAGGGCACGTGAACGGCCACGAGTTCGAGGGCGAGGGCGAGGGCGAGGGCCGAGGGCCTCAAGGTGCAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGTGAAGGGCGTGAA EE87 * EE89 * EE90 * EE91 * EE92 * CTTCAAGGTGCCCATGGAGGGCCACGGTGTAACGGCCACGAGTTCCAAGGTCCACGACTTCCAAGGTGCCACGACTTCCAAGGAGCCACCACTACAAGAAGCAGCCCCCAACATCCCCAACTACAAGAAGCAGCTCCAACAAGAACCATCCCGACTTCAAGGAGCCACTTCAAGGAGCACCCCGACTTCAAGGAGCACCTCCAACTACAAGAAGCAGCTCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTACAAGAACCATCCAAGTA EE94 * EE95 * EE97 * EE98 * EE100 :

EE2 *

EE9 *

EE10 *

EE11 *

EE12 *

EE13

EE14

EE15

PP17 *

EE18 *

EE19 *

EE20 *

EE21 *

EE22 *

EE9R

Microhomology scheme: Sense/pCMVΔ/BranchΔ, sqRNA E & J, forward strand

Microhomology scheme: Sense/pCMVΔ/BranchΔ, sgRNA E & J, reverse strand

