Relazione

Gruppo C2.7 -

Marsicano Aurora, Minichetti Gianluca, Morini Pietro e Nicastro Claudia

Introduzione

Fine dell'esperienza:

Misurare massa, lunghezza, diametro, volume e densità di un rigatone su un campione di 20, utilizzando degli strumenti di uso quotidiano, ovvero un righello per la lunghezza e il diametro, una bilancia da cucina per la massa, un bicchiere tarato per ricavare il volume d'acqua spostato dal volume immerso, sfruttando la legge di Stevino:

$$P=d\cdot g\cdot h$$

Dove d è la densità del fluido, g è l'accelerazione di gravità ($g=9.81 \text{ m/s}^2$), h è il livello del fluido e P la pressione (in questo caso atmosferica).

Lo scopo dell'esperimento è anche di mostrare il rapporto di proporzionalità inversa tra massa e volume per il calcolo della densità:

$$d=m/V$$

Apparato sperimentale e campione analizzato:

Grandezza	Strumento	Sensibilità
Massa	Bilancia da cucina	1g
Lunghezza/Diametro	Righello	1mm
Volume	Bicchiere tarato, acqua	1ml
Densità	Misura sperimentale	1 g/mm ³

Difficoltà registrate:

Nella misurazione delle grandezze fondamentali di massa e lunghezza si riscontra una differenza di valori infinitesima tra i diversi campioni analizzati poiché gli strumenti hanno una sensibilità ridotta e i corpi presentano delle irregolarità di forma (rigature sulla faccia esterna).

Per rendere più agevoli le misure, i rigatoni sono stati approssimati a dei cilindri cavi, non deformabili a pressione e temperatura ambienti, quindi, i valori di lunghezza e diametro corrispondono a quelli di un solido ideale.

Per la massa non è stato possibile rilevare una misura della precisione inferiore al grammo, quindi ogni valore ottenuto avrà un certo errore di misura.

Il volume, invece, è stato misurato direttamente immergendo ogni rigatone in un bicchiere dal collo allungato, riempito con ~35ml di acqua e osservando le variazioni di quota di quest'ultima.

Per la densità è stato utilizzato il valore medio della massa pari a ~2.6g, non disponendo di strumenti adeguati ad una misurazione diretta, per cui l'incertezza sul risultato è maggiore rispetto a quello relativo alle altre grandezze.

Misure ottenute:

Numero del rigatone:	Massa(g)	Lunghezza (mm)	Diametro (mm)	Densità(g/mm³)
1	3	23	11	1.4x10-3
2	2	27	13	0.9x10-3
3	2	24	9	1.4x10-3
4	3	25	12	2.9x10-3
5	2	23	11	2.9x10-3
6	3	24	11	1.4x10-3
7	2	24	14	1.4x10-3
8	2	26	12	1.4x10-3
9	3	26	12	1.4x10-3
10	3	24	11	2.9x10-3
11	3	25	13	2.9x10-3
12	3	24	12	2.9x10-3
13	2	23	13	1.4x10-3
14	3	26	12	2.9x10-3
15	2	23	13	1.4x10-3
16	3	24	12	2.9x10-3

Numero del rigatone:	Massa(g)	Lunghezza (mm)	Diametro (mm)	Densità(g/mm³)
17	3	24	12	1.4x10-3
18	3	24	11	1.4x10-3
19	2	23	12	1.4x10-3
20	3	25	10	1.4x10-3

Conclusione

I dati raccolti dall'esperimento mostrano come siano compatibili con i valori delle grandezze derivate di volume di un cilindro cavo e di densità ricavabili rispettivamente dalle formule della geometria euclidea ($V=r^2\cdot\pi\cdot h$) e dalla relazione fisica densità = massa/volume.

I risultati suggeriscono, quindi, che le misurazioni delle grandezze fondamentali di massa e lunghezza siano state condotte in maniera coerente utilizzando strumenti facilmente reperibili.