Physics-Informed Neural Networks

Massimo Poncino¹, Sara Vinco¹, Daniele Jahier Pagliari¹, Alessio Burrello^{1,2}, Giovanni Pollo¹

¹Politecnico di Torino

²Alma Mater Studiorum - Università di Bologna

October 25, 2023

Introduction

2 Background

Introduction

2 Background

Introduction

- The real world is governed by physical laws
- Most of them are described by complex Differential Equations (DEs)
 - Navier-Stokes
 - Diffusion
 - Poisson-Boltzmann
- Solving DEs is a challenging task and it is often impossible to find an analytical solution

Introduction

- Runge-Kutta methods
 - High computational cost
 - Mainly used for behavioural simulations
- Popularity growth of Deep Neural Networks (DNNs) to solve DEs [1]
 - Computational cost is moved to the training phase
 - Possibility to

Introduction

Background

Background

Introduction

2 Background

Bibliography

[1] Tamirat Temesgen Dufera. "Deep neural network for system of ordinary differential equations: Vectorized algorithm and simulation". In: Machine Learning with Applications 5 (2021), p. 100058. ISSN: 2666-8270. DOI: https://doi.org/10.1016/j.mlwa.2021.100058. URL:

https://www.sciencedirect.com/science/article/pii/

S2666827021000293