Tema 04 - Cableado Estructurado

Ismael Macareno Chouikh

2025-03-06

Índice

1.	Definiciones de cableado estructurado 1.1. Definición I	
	1.2. Definición II	6.6
2.	Características	٠
3.	Normativa 3.1. Estándar ANSI/TIA/EIA-568-A	4
4.	Ventajas	4
5 .	Subsistemas	4
6.	Ejemplo práctico	
7.	Subsistemas troncal y horizontal 7.1. Subsistema troncal o backbone	100
8.	Subsistemas administrativo y de trabajo 8.1. Subsistema administrativo	
9.	Otros elementos 9.1. Instalación de entrada o acometida	(
10	.Elementos del cableado estructurado	(
	10.1. Cables	6 6 6
	10.7. Armarios de comunicación	(

11.Recomendaciones en la instalación		
11.1. Subsistema horizontal		
11.2. Subsistema vertical	11	
11.3. Consideraciones generales	11	
12.Cableado Horizontal		
12.1. Distancias máximas	12	
12.2. Limitaciones	12	
13. Comprobación del cableado		
13.1. Buenas prácticas	12	
13.2. Tareas a realizar		

1. Definiciones de cableado estructurado

1.1. Definición I

El cableado estructurado es la técnica que permite

- cambiar
- identificar
- mover

periféricos o equipos de una red con flexibilidad y sencillez.

1.2. Definición II

Sistema colectivo de:

- cables
- canalizaciones
- conectores
- etiquetas
- espacios

y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus

1.3. Definición III

Distribución de cables en un edificio que comprenda las necesidades de comunicación actuales y futuras.

2. Características

- Toda solución de cableado estructurado debe ser modular.
- Comprende la transmisión de voz y datos
- Los equipos de interconexión de los módulos se sitúan en lugares centralizados, facilitando la detección de problemas de cableado y su solución sin afectar al resto de la red.

3. Normativa

Las normas más importantes a saber son:

- EIA/TIA 568 y otras
- ISO/IEC 11801
- EN 50173

3.1. Estándar ANSI/TIA/EIA-568-A

Estándar ANSI/TIA/EIA-568-A de Cableado de Telecomunicaciones para Edificios Comerciales. El propósito de esta norma es permitir la planificación e instalación de cableado de edificios con muy poco conocimiento de los productos de telecomunicaciones que serán instalados con posterioridad.

3.2. Complemento de la norma 568-A en aspectos de cableado

- Estándar ANSI/TIA/EIA-569-A: de Rutas y Espacios de Telecomunicaciones para Edificios Comerciales.
- EIA/TIA 570: establece el cableado de uso residencial y de pequeños negocios.
- Estándar ANSI/TIA/EIA-606: Administración para la Infraestructura de Telecomunicaciones de Edificios Comerciales.
- EIA/TIA 607: define al sistema de tierra física y el de alimentación bajo las cuales se deberán de operar y proteger los elementos del sistema estructurado.

4. Ventajas

- independiente de la aplicación y del proveedor
- puede conectarse en cualquier punto del edificio y trabajar del mismo modo
- crecimiento de la red sin añadir excesiva complejidad a la misma
- Los problemas que pudieran surgir quedan aislados en el módulo correspondiente.

5. Subsistemas

- backbone o subsistema troncal
- subsistema horizontal
- subsistema administrativo (conecta el vertical con el horizontal)
- subsistema de puesto de trabajo (patch cord)
- subsistema de campus (instalaciones grandes o multi-edificio)
- Otros:
 - instalación de entrada
 - sala de equipos

6. Ejemplo práctico

7. Subsistemas troncal y horizontal

7.1. Subsistema troncal o backbone

- Proporciona interconexión entre la sala de equipos, subsistemas administrativos e instalaciones de entrada.
- Necesita tener gran ancho de banda
 - implica cableado de alta velocidad

7.2. Subsistema horizontal

- Cableado e interconexión entre elsubsistema administrativo y el área de trabajo.
- Necesita menor ancho de banda que el vertical.

8. Subsistemas administrativo y de trabajo

8.1. Subsistema administrativo

- Conexiones entre subsistemas vertical y horizontal
- Compatibiliza la transmisión vertical y la horizontal en caso de que se necesite

8.2. Subsistema o área de trabajo

- Conecta el horizontal con el equipo de usuario
- Roseta y cable directo al PC y/o teléfono

9. Otros elementos

9.1. Instalación de entrada o acometida

• Es el punto donde la instalación exterior se conecta al edificio.

- Este punto puede estar utilizado por servicios de redes públicas, redes privadas del cliente, o ambas.
- Separa ámbitos público y privado.

9.2. Sala de equipos

Espacio centralizado para todo tipo de servidores y equipos de comunicaciones comunes a todo el edificio.

10. Elementos del cableado estructurado

10.1. Cables

- UTP para el subsistema horizontal y patch cords.
- Fibra, coaxial o UTP/STP de alta velocidad para el subsistema vertical.

10.2. Conectores - I

■ RJ45 para datos

10.3. Conectores - II

■ RJ11 para voz

10.4. Rosetas o tomas de usuario

 \blacksquare Elementos donde se conectan los $patch\ cord$ de las áreas de usuario

10.5. Paneles de parcheo

• Elementos de terminación de una conexión. Facilitan conectar, interconectar y reconectar elementos en la red. Se instalan en los *racks*.

10.6. Canaletas y falsos suelos

• Para ocultar el cableado

10.7. Armarios de comunicación

 \blacksquare Albergan paneles de parcheo, $switches,\ hubs$ y el cableado de interconexión.

File / Print server

File / Print server

File / Print server

Domain controller

Messaging server

Storage server

Firewall / VPN / Cache

UPS

Keyboard and display

 ${\color{blue} \textbf{UPS}} \ \ is maxel mac are no chou ikh 1@gmail.com$

11. Recomendaciones en la instalación

11.1. Subsistema horizontal

- Definir previamente la cantidad de puestos por planta.
 - Calcular 1 puesto de trabajo por cada 10m2 aproximadamente
- Definir cuántas conexiones RJ45 y RJ11 se necesitan por puesto de trabajo
 - Normalmente por puesto 2, una para datos y otra para voz
- Definir tipos de canalizaciones y rosetas que se requieren
- Definir la mejor ubicación de los armarios
- Definir la cantidad de cable que se necesita, sabiendo las limitaciones de longitud especificadas para ese cable
- \bullet Prever un 15 o 20 % de conexiones libres

11.2. Subsistema vertical

- Definir los servicios que tiene que soportar la red (voz, datos, video, etc.)
- Definir el tipo de cable capaz de soportar el tráfico.
- Definir el modo de conexión entre subsistemas.
- Elegir entre cuarto de comunicaciones o armario.

11.3. Consideraciones generales

- La instalación debe quedar documentada
- Los cables deben ir etiquetados

12. Cableado Horizontal

12.1. Distancias máximas

12.2. Limitaciones

Evitar el paso de los cables de datos a través o cerca de:

- Motores eléctricos o transformadores. >1,2m.
- No compartir conducto con los cables de corriente alterna.
- Fluorescentes a una distancia mínima de 12cm.
- En caso de necesitar cruzar con cables eléctricos o luces fluorescentes, se debe hacer con un ángulo de 90º.
- Equipos de soldadura, aires acondicionados, ventiladores, calentadores eléctricos a 1,2m
- Evitar otras fuentes de radiofrecuencia o eléctricas

13. Comprobación del cableado

13.1. Buenas prácticas

- Conviene ejecutar tests conforme se avanza en la instalación.
- Una vez finalizada la instalación, se debe ejecutar una prueba de conformidad o certificación

13.2. Tareas a realizar

- Verificar continuidad en los cables.
- Verificar la calidad de la transmisión: niveles de diafonía, atenuación y ruido.
- Chequear el mapeado de hilos: comprueba que los hilos que forman el cable estén montados correctamente.

- Medir la resistencia del cable. Un valor alto puede producir problemas de atenuación de la señal
- Longitud: distancia entre los dos extremos del cable. Tienen que respetar las distancias máximas definida por el estándar.