CONJUNTOS MEDIBLES JORDAN

Curso 2019-2020

Camille Jordan 1838-1822

Henri L. Lebesgue 1875-1941

Conjuntos medibles Jordan

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

 $\blacktriangleright \ {\rm Si} \ A\subset \mathbb{R}^n \mbox{, entonces } \big\{x\in \mathbb{R}^n: \chi_{{}_A} \mbox{ no es continua en } x\big\}=\partial A$

Si A es <u>acotado</u> y R es un rectángulo cerrado tal que $A\subset R$, entonces $\chi_A\in \mathscr{R}(R)$ sii ∂A tiene <u>contenido</u> nulo.

Diremos que $A \subset \mathbb{R}^n$ es medible Jordan si es acotado y su frontera tiene contenido nulo (o medida nula).

 $\mathfrak{J}(\mathbb{R}^n)\equiv$ conjunto de los subconjuntos medibles Jordan de $\mathbb{R}^n.$ Si $A\in\mathfrak{J}(\mathbb{R}^n)$, denominamos volumen de A a v $(A)=\int_R\chi_A$, donde R es cualquier rectángulo cerrado que contiene a A.

Conjuntos medibles Jordan

- Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **③** Invariancia por difeomorfismos: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, $F : \Omega \longrightarrow \mathbb{R}^n$ es un difeomorfismo de clase $C^1(\Omega, \mathbb{R}^n)$ y $\bar{A} \subset \Omega$, entonces $F(A) \in \mathfrak{J}(\mathbb{R}^n)$.
- $\textbf{ § Estabilidad: Si } A,B \in \mathfrak{J}(\mathbb{R}^n) \text{ entonces } A \cup B,A \cap B,A \setminus B \in \mathfrak{J}(\mathbb{R}^n).$
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- **③** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ entonces $\overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n)$. Más aún, si $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $B \in \mathfrak{J}(\mathbb{R}^n)$.
- Continuidad en abiertos: Si $\Omega \subset \mathbb{R}^n$ es <u>abierto</u> y no vacío, existe una sucesión $\{\Omega_k\}_{k=1}^\infty$ de <u>abiertos medibles Jordan</u> tal que $\Omega = \bigcup_{k=1}^\infty \Omega_k$ y $\bar{\Omega}_k \subset \Omega_{k+1} \subset \Omega$, para cada $k \in \mathbb{N}^*$.

① Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- **1** Invariancia por isomorfismos: Si $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es un <u>isomorfismo</u> con matriz asociada M y $A \in \mathfrak{J}(\mathbb{R}^n)$ con $\overline{A} \subset \Omega$, entonces $\mathbf{v}\big(F(A)\big) = |\det \mathsf{M}|\mathbf{v}(A)$.

- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- **③** Invariancia por isomorfismos: Si $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es un <u>isomorfismo</u> con matriz asociada M y $A \in \mathfrak{J}(\mathbb{R}^n)$ con $\bar{A} \subset \Omega$, $\mathbf{v}(F(A)) = |\det \mathbf{M}| \mathbf{v}(A)$.
- **①** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, $\mathsf{v}_{k+m}(A \times B) = \mathsf{v}_k(A)\mathsf{v}_m(B)$.

- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- **③** Invariancia por isomorfismos: Si $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es un <u>isomorfismo</u> con matriz asociada M y $A \in \mathfrak{J}(\mathbb{R}^n)$ con $\bar{A} \subset \Omega$, $\mathsf{v}(F(A)) = |\det \mathsf{M}| \mathsf{v}(A)$.
- **①** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, $\mathsf{v}_{k+m}(A \times B) = \mathsf{v}_k(A)\mathsf{v}_m(B)$.
- **Ompatibilidad topológica:** Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $\mathsf{v}(B) = \mathsf{v}(A)$. En particular, $\mathsf{v}(\overset{\circ}{A}) = \mathsf{v}(A) = \mathsf{v}(\bar{A})$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- **③** Invariancia por isomorfismos: Si $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es un <u>isomorfismo</u> con matriz asociada M y $A \in \mathfrak{J}(\mathbb{R}^n)$ con $\bar{A} \subset \Omega$, $\mathbf{v}(F(A)) = |\det \mathbf{M}| \mathbf{v}(A)$.
- **①** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, $\mathsf{v}_{k+m}(A \times B) = \mathsf{v}_k(A)\mathsf{v}_m(B)$.
- **③** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $\mathsf{v}(B) = \mathsf{v}(A)$. En particular, $\mathsf{v}(\overset{\circ}{A}) = \mathsf{v}(A) = \mathsf{v}(\bar{A})$.
- **Aditividad Finita:** Si $A_1, \ldots, A_m \in \mathfrak{J}(\mathbb{R}^n)$ son tales que $A_i \cap A_j = \emptyset$ si $i \neq j$ y $A = \bigcup_{j=1}^m A_j$, entonces $\mathbf{v}(A) = \sum_{j=1}^m \mathbf{v}(A_j)$.

- Continuidad: Si $A \subset \mathfrak{J}(\mathbb{R}^n)$, para cada sucesión $\{A_k\}_{k=1}^\infty \subset \mathfrak{J}(\mathbb{R}^n)$ tal que $A_k \subset A_{k+1}$ y $A = \bigcup\limits_{k=1}^\infty A_k$ se satisface que $\mathsf{v}(A_k) \uparrow \mathsf{v}(A)$. Análogamente, si $B \subset \mathfrak{J}(\mathbb{R}^n)$, para cada sucesión $\{B_k\}_{k=1}^\infty \subset \mathfrak{J}(\mathbb{R}^n)$ tal que $B_{k+1} \subset B_k$ y $B = \bigcap\limits_{k=1}^\infty B_k$ se satisface que $\mathsf{v}(B_k) \downarrow \mathsf{v}(B)$.
- $\begin{array}{l} \textbf{@} \ \ \operatorname{Regularidad:} \ \operatorname{Si} \ A \in \mathfrak{J}(\mathbb{R}^n) \text{, para cada } \varepsilon > 0 \ \operatorname{existen} \ G \in \mathfrak{J}(\mathbb{R}^n) \ \operatorname{unión} \\ \underline{\operatorname{finita}} \ \operatorname{de} \ \operatorname{rectángulos} \ \operatorname{abiertos} \ \operatorname{y} \ K \in \mathfrak{J}(\mathbb{R}^n) \ \operatorname{unión} \ \underline{\operatorname{finita}} \ \operatorname{de} \ \operatorname{rectángulos} \\ \operatorname{cerrados} \ \operatorname{tales} \ \operatorname{que} \ K \subset \overset{\circ}{A} \subset A \subset \overline{A} \subset G \ \operatorname{y} \ \operatorname{v}(G \setminus K) \leq \varepsilon. \end{array}$

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

 $f^*(x) = f(x), \text{ si } x \in A, f^*(x) = 0 \text{ si } x \in R \setminus A$

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

 $\blacktriangleright \ f^*(x) = f(x) \text{, si } x \in A \text{, } f^*(x) = 0 \text{ si } x \in R \setminus A \quad \Longrightarrow f^* = f \chi_A$

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

$$\blacktriangleright \ f^*(x) = f(x) \text{, si } x \in A \text{, } f^*(x) = 0 \text{ si } x \in R \setminus A \qquad \Longrightarrow f^* = f \chi_A$$

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

 $\qquad \qquad f \text{ es integrable en } A \text{ sii } f^* \in \mathscr{R}(R) \text{ y entonces } \int_A f = \int_R f^*$

Criterio de Lebesgue

Sea $A\in\mathfrak{J}(\mathbb{R}^n)$ y R un rectángulo tal que $A\subset R$. Si $f\colon A\longrightarrow\mathbb{R}$ está acotada definimos $f^*\colon R\longrightarrow\mathbb{R}$ su extensión a R por 0 fuera de A

 $lackbox{} f \in \mathcal{R}(A)$ sii es <u>acotada</u> y continua c.s. en A

Sean $A\subset \mathfrak{J}(\mathbb{R}^n)$ y $\mathscr{R}(A)$ el conjunto de funciones integrables en A.

Además, sobre el conjunto de funciones constantes en A, la integral coincide con la multiplicación por v(A).

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- ② Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$. En particular, $|f|, f^2 \in \mathscr{R}(A)$ cuando $f \in \mathscr{R}(A)$ y $fg, \max\{f,g\}, \min\{f,g\} \in \mathscr{R}(A)$, para cada $f,g \in \mathscr{R}(A)$.

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- **2** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.

- $\textbf{① Linealidad: } \mathscr{R}(A) \text{ es un espacio vectorial real que contiene a } \mathscr{C}^b(A) \text{ y} \\ \text{la integral un funcional lineal sobre \'el.}$
- **②** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.
- $\textbf{ Positividad: La integral es un funcional positivo sobre } \mathscr{R}(A); \text{ es decir,} \\ \textbf{si } f \in \mathscr{R}(A) \text{ y } f \geq 0 \text{ c.s. en } A, \text{ entonces } \int_A f \geq 0.$

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- **②** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.
- **Operation** Positividad: La integral es un funcional positivo, si $f \in \mathcal{R}(A)$ y $f \geq 0$ c.s. en A, entonces $\int_A f \geq 0$, con igualdad sii f = 0 c.s. en A.
- $\textbf{Aditividad respecto del conjunto de integración: Si} \ B \subset \mathfrak{J}(\mathbb{R}^n) \ \mathbf{y} \\ f \colon A \cup B \longrightarrow \mathbb{R} \ \text{es } \underline{\mathbf{acotada}}, \ \text{entonces} \ f \in \mathscr{R}(A) \ \text{sii} \ f_{|_A} \in \mathscr{R}(A) \ \mathbf{y} \\ f_{|_B} \in \mathscr{R}(B) \ \mathbf{y} \ \text{en ese caso,}$

$$\int_{A \cup B} f = \int_A f + \int_B f - \int_{A \cap B} f.$$

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- **②** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.
- **③** Positividad: La integral es un funcional positivo, si $f \in \mathcal{R}(A)$ y $f \geq 0$ c.s. en A, entonces $\int_A f \geq 0$, con igualdad sii f = 0 c.s. en A.
- **Aditividad** respecto del conjunto de integración: Si $B \subset \mathfrak{J}(\mathbb{R}^n)$ y $f \colon A \cup B \longrightarrow \mathbb{R}$ es <u>acotada</u>, entonces $f \in \mathscr{R}(A)$ sii $f_{|_A} \in \mathscr{R}(A)$ y $f_{|_B} \in \mathscr{R}(B)$ y en ese caso, $\int_{A \cup B} f = \int_A f + \int_B f \int_{A \cap B} f$.

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- **②** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.
- **3** Positividad: La integral es un funcional positivo, si $f \in \mathcal{R}(A)$ y $f \geq 0$ c.s. en A, entonces $\int_A f \geq 0$, con igualdad sii f = 0 c.s. en A.
- $\textbf{Aditividad respecto del conjunto de integración: Si} \ B \subset \mathfrak{J}(\mathbb{R}^n) \ \mathbf{y} \\ f \colon A \cup B \longrightarrow \mathbb{R} \ \text{es } \underline{\mathbf{acotada}}, \ \text{entonces} \ f \in \mathscr{R}(A) \ \text{sii} \ f_{|A} \in \mathscr{R}(A) \ \mathbf{y} \\ f_{|B} \in \mathscr{R}(B) \ \mathbf{y} \ \text{en ese caso}, \ \int_{A \cup B} f = \int_A f + \int_B f \int_{A \cap B} f.$

- **1** Linealidad: $\mathscr{R}(A)$ es un espacio vectorial real que contiene a $\mathscr{C}^b(A)$ y la integral un funcional lineal sobre él.
- **②** Estabilidad: Si $\mathscr{O}: \mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \ldots, f_m \in \mathscr{R}(A)$ se satisface que $\mathscr{O}(f_1, \ldots, f_m) \in \mathscr{R}(A)$.
- **3** Positividad: La integral es un funcional positivo, si $f \in \mathcal{R}(A)$ y $f \geq 0$ c.s. en A, entonces $\int_A f \geq 0$, con igualdad sii f = 0 c.s. en A.

• Compatibilidad geométrica de la integral:

Si
$$A\in \mathfrak{J}(\mathbb{R}^n)$$
 y $f\in \mathscr{R}(A)$ es tal que $f\geq 0$, entonces

$$E = \{(x, y) \in \mathbb{R}^{n+1} : x \in A, \ 0 \le y \le f(x)\}$$

satisface que $E \in \mathfrak{J}(\mathbb{R}^{n+1})$ y además $\mathbf{v}_{n+1}(E) = \int_A f$.

Conjuntos Elementales

Si $A\in \mathfrak{J}(\mathbb{R}^n)$ y $\phi,\psi\in \mathscr{R}(A)$ tales que $\phi\leq \psi$, definimos los conjuntos

$$\widetilde{E}_{\phi,\phi} = \left\{ (x,y) : x \in A, \phi(x) \le y \le \psi(x) \right\}, \quad \widehat{E}_{\phi,\psi} = \left\{ (x,y) : x \in A, \phi(x) < y < \psi(x) \right\}$$

$$\widetilde{F}_{\phi,\psi} = \left\{ (x,y) : y \in A, \phi(y) \le x \le \psi(y) \right\}, \quad \widehat{F}_{\phi,\psi} = \left\{ (x,y) : y \in A, \phi(y) < x < \psi(y) \right\}.$$

Conjuntos Elementales

Si $A\in \mathfrak{J}(\mathbb{R}^n)$ y $\phi,\psi\in \mathscr{R}(A)$ tales que $\phi\leq \psi$, definimos los conjuntos

$$\widetilde{E}_{\phi,\phi} = \left\{ (x,y) : x \in A, \phi(x) \le y \le \psi(x) \right\}, \quad \widehat{E}_{\phi,\psi} = \left\{ (x,y) : x \in A, \phi(x) < y < \psi(x) \right\}$$

$$\widetilde{F}_{\phi,\psi} = \left\{ (x,y) : y \in A, \phi(y) \le x \le \psi(y) \right\}, \quad \widehat{F}_{\phi,\psi} = \left\{ (x,y) : y \in A, \phi(y) < x < \psi(y) \right\}.$$

Si $n \in \mathbb{N}^*$, $E \subset \mathbb{R}^{n+1}$ es un conjunto elemental si existen un conjunto $A \in \mathfrak{J}(\mathbb{R}^n)$ y funciones $\phi, \psi \in \mathscr{R}(A)$ tales que $\phi \leq \psi$ y o bien $\widehat{E}_{\phi,\psi} \subset E \subset \widetilde{E}_{\phi,\psi}$ o bien $\widehat{F}_{\phi,\psi} \subset F \subset \widetilde{F}_{\phi,\psi}$.

Conjuntos Elementales

Si $A\in \mathfrak{J}(\mathbb{R}^n)$ y $\phi,\psi\in \mathscr{R}(A)$ tales que $\phi\leq \psi$, definimos los conjuntos

$$\begin{split} \widetilde{E}_{\phi,\phi} &= \Big\{ (x,y) : x \in A, \phi(x) \leq y \leq \psi(x) \Big\}, \quad \widehat{E}_{\phi,\psi} &= \Big\{ (x,y) : x \in A, \phi(x) < y < \psi(x) \Big\} \\ \widetilde{F}_{\phi,\psi} &= \Big\{ (x,y) : y \in A, \phi(y) \leq x \leq \psi(y) \Big\}, \quad \widehat{F}_{\phi,\psi} &= \Big\{ (x,y) : y \in A, \phi(y) < x < \psi(y) \Big\}. \end{split}$$

Si $n \in \mathbb{N}^*$, $E \subset \mathbb{R}^{n+1}$ es un conjunto elemental si existen un conjunto $A \in \mathfrak{J}(\mathbb{R}^n)$ y funciones $\phi, \psi \in \mathscr{R}(A)$ tales que $\phi \leq \psi$ y o bien $\widehat{E}_{\phi,\psi} \subset E \subset \widetilde{E}_{\phi,\psi}$ o bien $\widehat{F}_{\phi,\psi} \subset F \subset \widetilde{F}_{\phi,\psi}$.

Cada conjunto elemental simple $\widehat{E}_{\phi,\psi}\subset E\subset \widetilde{E}_{\phi,\psi}$ y cada conjunto elemental simple $\widehat{F}_{\phi,\psi}\subset F\subset \widetilde{F}_{\phi,\psi}$ satisfacen que $E,F\in \mathfrak{J}(\mathbb{R}^{n+1})$ y $\mathsf{v}_{n+1}(E)=\mathsf{v}_{n+1}(F)=\int_A(\psi-\phi).$

Teorema de Fubini

Si $A\in \mathfrak{J}(\mathbb{R}^n)$ y $\phi,\psi\in \mathscr{R}(A)$ tales que $\phi\leq \psi$, definimos los conjuntos

$$\begin{split} \widetilde{E}_{\phi,\phi} &= \Big\{ (x,y) : x \in A, \phi(x) \leq y \leq \psi(x) \Big\}, \quad \widehat{E}_{\phi,\psi} &= \Big\{ (x,y) : x \in A, \phi(x) < y < \psi(x) \Big\} \\ \widetilde{F}_{\phi,\psi} &= \Big\{ (x,y) : y \in A, \phi(y) \leq x \leq \psi(y) \Big\}, \quad \widehat{F}_{\phi,\psi} &= \Big\{ (x,y) : y \in A, \phi(y) < x < \psi(y) \Big\}. \end{split}$$

Si $n \in \mathbb{N}^*$, $E \subset \mathbb{R}^{n+1}$ es un conjunto elemental si existen un conjunto $A \in \mathfrak{J}(\mathbb{R}^n)$ y funciones $\phi, \psi \in \mathscr{R}(A)$ tales que $\phi \leq \psi$ y o bien $\widehat{E}_{\phi,\psi} \subset E \subset \widetilde{E}_{\phi,\psi}$ o bien $\widehat{F}_{\phi,\psi} \subset F \subset \widetilde{F}_{\phi,\psi}$.

Para cada $f \in \mathscr{C}^b(E)$ y cada $g \in \mathscr{C}^b(F)$ se satisface que

$$\int_{E} f(x,y)dxdy = \int_{A} \left[\int_{\phi(x)}^{\psi(x)} f(x,y)dy \right] dx,$$

$$\int_{F} g(x,y)dxdy = \int_{A} \left[\int_{\phi(y)}^{\psi(y)} g(x,y)dx \right] dy$$

Teorema del Cambio de Variable

Sean $\Omega \subset \mathbb{R}^n$ abierto y $F \colon \Omega \longrightarrow \mathbb{R}^n$ un difeomorfismo de clase $\mathscr{C}^1(\Omega;\mathbb{R}^n)$ y consideremos $A \in \mathfrak{J}(\mathbb{R}^n)$ tal que $\bar{A} \subset \Omega$. Entonces $F(A) \in \mathfrak{J}(\mathbb{R}^n)$, $f \in \mathscr{R}\big(F(A)\big)$ sii $f \circ F \in \mathscr{R}(A)$ y además,

$$\int_{F(A)} f = \int_{A} (f \circ F) |\det D_F)|.$$

En particular, $v(F(A)) = \int_A |\det D_F|$.

