Blackbody Radiation

Thermal Fluids and Energy Systems Lab

(ME EN 4650)

Prof. Pardyjak

Department of Mechanical Engineering

University of Utah

Based on Prof. M's slides

Net Radiation Exchange

The net radiation exchange from a hotter to cooler surface depends on:

- 1. The temperatures of surface 1 and 2: T₁ and T₂
- 2. The areas of surface 1 and 2: A_1 and A_2
- 3. The shape, orientation, and spacing of surfaces 1 and 2
- 4. The radiative properties of the surface (e.g., ϵ , α , ρ)
- 5. Additional surfaces in the environment that may reflect radiation from surface 1 to surface 2 and vice versa
- 6. The medium between surfaces 1 and 2 (e.g., if it absorbs or emits radiation)

Heat Transfer by Thermal Radiation

What we want to know (simplify the problem):

$$q_{\rm rad} = f(T, h, D)$$

Use our data to validate the theory

chopper

- What we can measure:
 - $-q_{\rm rad}$ (pyroelectric radiometer)

Thermal Radiation & Electromagnetic Waves

Thermal radiation: Heat transfer via electromagnetic waves

- Heat transfer by radiation <u>requires no matter</u>
- Matter at a finite temperature will emit thermal radiation

 the mechanism of emission is related to energy
 released as a result of oscillations or transitions of the
 electrons the oscillations are sustained by the internal
 energy of the matter

$$\lambda = \frac{c}{v} = \frac{c_0 / n}{v}$$
 frequency

- c is speed of light in a
 medium of refractive index n
- c_0 is speed of light in vacuum (2.998 × 10⁸ m/s)

Electromagnetic Waves

<u>Thermal radiation</u>:
Part of the UV + Visible + IR

Complexity of radiation: up to 7 independent variables

• Space: *x*, *y*, *z*

• Time: *t*

Direction: θ, φ

Wavelength: λ

Blackbody Radiation

Blackbody (standard against which radiative properties of real surfaces may be compared):

- (1) A blackbody absorbs all incident radiation, regardless of wavelength and direction
- (2) For a prescribed temperature and wavelength, no surface can emit more energy than a blackbody
- (3) Radiation emitted by a blackbody is a function of wavelength and temperature, but it is independent of direction: the blackbody is a diffuse emitter.

Blackbody Radiation – Planck Distribution

A blackbody can be approximated by a cavity with inner surface at a uniform temperature

Blackbody spectral intensity:

$$I_{\lambda,b}(\lambda,T) = \frac{2hc_0^2}{\lambda^5[\exp(hc_0/\lambda k_B T) - 1]} \left[\frac{W}{\mu m \cdot m^2 \cdot sr} \right]$$

- $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ is the Planck constant
- $k_B = 1.381 \times 10^{-23}$ J/K is the Boltzmann constant
- *T* is the absolute temperature of the blackbody [K]

Planck Distribution

Blackbody spectral emissive power:

$$E_{\lambda,b}(\lambda,T) = \pi I_{\lambda,b}(\lambda,T)$$

$$\left[\frac{W}{\mu m \cdot m^2}\right]$$
 Diffuse emitter

Wien's displacement law:

$$\lambda_{\max} T = \text{Constant}$$

$$\lambda_{\text{max}}T = 2898 \ \mu m \cdot K$$

Wavelength leading to the maximum emissive power for a given temperature

Directional distribution of thermal radiation is described via solid angles

Solid angles are 2D angular spaces:

• 1D angular space: $d\alpha = \frac{dl}{r}$ radians [rad]

dl: infinitesimal length on a circle

• 2D angular space: $d\omega = \frac{dA_n}{r^2}$ steradians [sr]

 dA_n : infinitesimal area on a **sphere**

Figure 3.2 — A 1-steradian solid angle removed from a sphere.

Adapted by James J. Gross from The Light Measuremen Handbook.

Figure 3.3 — For a solid angle that measures 1 steradian, $A = r^2$.

$$d\omega = \frac{dA_n}{r^2}$$

Let's consider an emitting point P on a surface. Point P can radiate into all directions contained within a hemisphere of radius r.

 dA_n : infinitesimal area on the hemisphere of radius r

 θ : polar angle

 ϕ : azimuthal angle

 $d\omega$: infinitesimal solid angle

We say, "The area dA_n , through which the radiation passes, **subtends** a differential solid angle $d\omega$ when viewed from a point on dA_1 "

Let's take a closer look at a particular direction $\hat{\mathbf{s}}$

• The infinitesimal area dA_n is given by:

$$dA_n = r^2 \sin\theta d\theta d\phi$$

The infinitesimal solid angle is given by:

$$d\omega = \frac{dA_n}{r^2} = \frac{r^2 \sin\theta d\theta d\phi}{r^2}$$

$$\therefore d\omega = \sin\theta d\theta d\phi$$

Solid angle in spherical coordinates

Radiation Intensity, I

Rate at which radiant energy is <u>emitted</u> at the wavelength λ in the direction (θ,ϕ) , per unit wavelength, per unit solid angle and per unit area normal to the direction (θ,ϕ)

$$I_{\lambda,e}(\lambda,\theta,\phi) = \frac{dq}{dA_n \cdot d\omega \cdot d\lambda} = \underbrace{\frac{dq}{dA_1 \cos \theta} d\omega \cdot d\lambda}_{\text{m}^2 \cdot sr \cdot \mu m}$$

Lambert's Cosine Law

Lamberts Cosine Law

Lambert's Cosine Law

Radiation Exchange Between 2 Black **Bodies**

Radiation transfer from source to the detector is given by:

(1)
$$dq = I_b dA_{\mathbf{s}_n} d\omega$$
 $I_b = \int I_{b,\lambda} d\lambda$

Total Intensity for a BB, since it's a diffuse emitter

(2)
$$I_b = \frac{E_b}{\pi} = \frac{\sigma T^4}{\pi}$$

(3) $d\omega = \frac{dA_{\mathrm{d}_n}}{h^2}$
(4) $dA_{\mathrm{d}_n} = dA_{\mathrm{d}} \cos \theta_{\mathrm{d}}$

(3)
$$d\omega = \frac{dA_{\mathrm{d}_n}}{h^2}$$

$$(4)dA_{\mathbf{d}_n} = dA_{\mathbf{d}} \cos \theta_{\mathbf{d}}$$

$$(5)dA_{s_n} = dA_s \cos \theta_s \, dA_{s_n} = dA_s \cos \theta_s \leftarrow$$

Plug 2-5 into (1)

$$dq = \frac{\sigma T^4}{\pi h^2} \cos \theta_{\rm s} \cos \theta_{\rm d} dA_{\rm d} dA_{\rm s}$$

detector

Radiation Exchange Between 2 Black Bodies

$$dq = \frac{\sigma T^4}{\pi h^2} \cos \theta_{\rm s} \cos \theta_{\rm d} dA_{\rm d} dA_{\rm s}$$

Integrate over the Areas

$$q = \sigma T^4 \underbrace{\int_{A_s} \int_{A_d} \frac{\cos \theta_s \cos \theta_d}{\pi h^2} dA_d dA_s}_{=A_s F_{s \to d}}$$

Recall, view factor definition

$$\Rightarrow F_{ij} = \frac{q_{i \to j}}{q_i}$$

$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{\cos \theta_i \cos \theta_j}{\pi R^2} dA_i dA_j$$

THE UNIVERSITY OF UTAH

View Factors

View Factor (from literature):

$$r = D/2$$

$$F_{\rm d\to s} = \frac{1}{1 + \left(\frac{h}{r}\right)^2}$$

Using reciprocity:

$$A_{\rm s} F_{\rm s \to d} = A_{\rm d} F_{\rm d \to s}$$

Heat transfer rate:

$$q_{\text{theory}} = \frac{\sigma T^4 A_d r^2}{(r^2 + h^2)}$$

$$q_{\rm theory} = \frac{\sigma \, T^4 \, A_d \, D^2}{(D^2 + 4 \, h^2)}$$

Experimental Setup

Ray - the straight line along which the electromagnetic wave travels between two points

Blackbody Cavity

Experimental Setup

Multiplier

THE UNIVERSITY OF UTAH

Ambient Suppress

mhunhunhun

Response

Measures very small heat transfer rates: 10^{-2} to 10^{-6} W

Instrument box

007

Experimental Setup – Pyroelectric detector

Pyroelectric detector – voltage generated due to a change in temperature

 λ in the range 2-14 μ m

detector

Experimental Setup – Pyroelectric detector

Pyroelectric detector – voltage generated due to a change in temperature

Measurements

Quantity	Symbol	Units	Instrument
Temperature of blackbody	T	°C	thermocouple
Separation distance	h	in	linear ruler
Angle of detector head	$\theta_{ m d}$	deg	rotation table
Aperture diameter of source	D	in	markings on dial
Heat transfer rate	q	W	pyroelectric radiometer

$$q_{\rm rad} = f(T, h, D)$$

Vary *h* hold *T* and *D* constant Vary *T* hold *h* and *D* constant Vary *D* hold *T* and *H* constant

 $\theta_d = 0^{\circ}$ for all experiments

Data Collection Sheet

TFES Lab (ME EN 4650)

Blackbody Radiation Experiment: Raw Data Sheet

T_{atm}:_____(°C)
P_{atm}: (mbat/hPa)

Experiment 1: Variable h

T (oC)	D (in)	h (in)	q (μW)
	0.6	8	
	0.6	9	
	0.6	10	
	0.6	11	
	0.6	12	

Experiment 2: Variable T

T (oC)	D (in)	h (in)	q (μW)
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	
	0.6	9	

Experiment 3: Variable D

T (oC)	D (in)	h (in)	q (μW)
	0.1	9	
	0.2	9	
	0.4	9	
	0.6	9	

Set T ~ 460 C vary h

Set T ~ 700 C Record q every 20C Set T ~ 700 C Vary aperture ,D

Submission Requirements

$$q = f(T, h, D)$$

$$R^2 = 1 - \frac{S_R}{S_T} \quad \text{Correlation coef/coef of determination}$$

$$S_R = \sum_{i=1}^{N} (y_i - a_0 - a_1 x_i)^2$$

$$S_T = \sum_{i=1}^{N} (y_i - \overline{y})^2$$

$$S_T = \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Pseudocode for Linearizing and Computing Linear Regression

```
h2 = 1./(h.^2); %Linearize h
p = polyfit(h2,qdata,1) %Least squares regression
a1 = p(1) %slope
a0 = p(2) %intercept
SR = sum((qdata - a0 - a1*h2).^2) %compute sum of the squares of the residual
ST = sum((qdata - mean(qdata)).^2) %compute
Rsquared = 1 - SR/ST %compute coefficient of determination
```

$$R^{2} = 1 - \frac{S_{R}}{S_{T}}$$

$$S_{R} = \sum_{i=1}^{N} (y_{i} - a_{0} - a_{1} x_{i})^{2}$$

$$S_{T} = \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}$$

Submission Requirements

Solid Angle of Moon Subtended from Earth

