

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

Agenda

- Average Treatment Effect
 - Notes borrowed from <u>here</u>
- Review CDF and PDF

Individual Treatment Effect (ITE)

ITE = Y(X = 1) - Y(X = 0) $\equiv Y(1) - Y(0)$

$$ITE = Y(X = 1) - Y(X = 0)$$
$$\equiv Y(1) - Y(0)$$

Y(1) represents the outcome value for the pill scenario (i.e. X=1) and Y(0) represents the outcome of the no pill scenario (i.e. X=0).

Average Treatment Effect (ATE)

$ATE = E\{Y_i(1) - Y_i(0)\}$

Expected Value Operator E()

The expectation operator, E(X), takes the weighted sum of a random variable.

In the case where there are two outcomes $\{x_1,x_2\}$, E(X) takes $p_1x_1 + p_2x_2$,

where p_1 and p_2 are the respective probabilities of the two outcomes.

Rules

$ATE = E\{Y_i(1) - Y_i(0)\}$

 $E\{V\}$ represents the expectation value (i.e. average) of some variable V.

 $Y_i(1)$ represents the ith subject's outcome value for the pill scenario.

And, $Y_i(o)$ represents the ith subject's outcome value for the no pill scenario.

$$ATE_{RCT} = E\{Y_j(1) - Y_k(0)\} = E\{Y_j(1)\} - E\{Y_k(0)\}$$

Where, j indexes the treatment group and k indexes the control group.

In other words, the ATE can be directly computed by comparing the average outcome value for each of the two sub-populations.

Average Treatment Effect for the Treated (or Controls)

$$ATT = E\{Y_i(1) - Y_i(0) | X = 1\}$$

ATT is the expected treatment effect given the treatment (X=1) was observed.

Average Treatment Effect for the Controls (ATC)

$$ATC = E\{Y_i(1) - Y_i(0) | X = 0\}$$

Review CDF and PDF

Probability Distribution Function (PDF): specification of the probability associated with each value of a random variable.

For continuous r.v.s:

$$F(a) = p(X \le a) = \int_{-\infty}^{a} f(x) dx = \text{Area up to } X = a$$

$$p(a \le X \le b) = F(b) - F(a)$$

$$F(a) = p(X \le a)$$

$$p(a \le X \le b) = F(b) - F(a)$$

Probability Mass Function (PMF)

A probability distribution involving only discrete values of X. Aggregates different possible values of X, and the different possible values of P(x).

Properties:

$$0 \le P(X = x) \le 1$$

$$\Sigma P(X = x) = 1.$$

х	P(x)
2	1/16
3	2/16
4	3/16
5	4/16
6	3/16
7	2/16
8	1/16

Cumulative Density Function (CDF)

The probability that a random variable X takes on a value less than or equal to some particular value a is often written as

$$F(a) = p(X \le a) = \sum_{X \le a} p(x)$$

(for discrete variables, integral for continuous)

End of class form

https://forms.gle/My9wHi2QFKNLedGC7