Точкови и интервални оценки. Проверка на хипотези.

- Точкова оценка на θ : $\hat{\theta}$ функция от данните/наблюденията (статистика). Добри свойства на $\hat{\theta}$: 1. неизместеност: $E(\hat{\theta})=\theta$; 2. $\hat{\theta}$ да има малка дисперсия за големи извадки. Пример: да се докаже неизместеност на $\bar{X}=\frac{X_1+...X_n}{n}$ и $S^2=\sum\limits_{i=1}^n\frac{(X_i-\bar{X})^2}{n-1}$; $Var\bar{X}=\frac{\sigma^2}{n}$
- Метод на моментите за намиране на точкови оценки: $M_k = \sum_{i=1}^n \frac{X_i^k}{n}$ е оценка на $E(X^k)$, т.е. съставят се толкова уравнения, колкото параметъра има за оценяване. Пример: Засадени са 5 реда по 20 дървета и на следващата година се преброяват оцелелите дръвчета във всеки ред (18, 17, 15, 19, 20). За оценката на вероятността за оцеляване на едно дръвче получаваме $\hat{p} = \bar{X}/20 = 17.8/20 = 0.89$.
- Метод на максималното правдоподобие: функция на правдоподобие $L(\theta) = \prod_{i=1}^n f(x_i), f(x)$ е плътността на X. $\hat{\theta}$ е стойността, която максимизира $L(\theta)$ (или $\ln L(\theta)$). Пример: Взети са n проби от водата на една река и са преброени коли бактериите във всяка от тях поасоново разпределени с параметър k. Да се намери МПО на k. Пример: Да се намери МПО за μ и σ^2 на извадка от нормално разпределение.
- Ако $X_1, \ldots X_n$ е случайна извадка от $N(\mu, \sigma^2)$, то $\bar{X} \sim N(\mu, \sigma^2/n)$
- Интервална оценка: $[L_1, L_2]$, такъв, че $P(L_1 \le \theta \le L_2) = 1 \alpha$ се нарича $100(1-\alpha)\%$ -ен доверителен интервал за параметъра θ .
- Доверителен интервал за μ при известно σ^2 : използваме, че $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$. Оттук $\bar{X}\pm z_{\alpha/2}\sigma/\sqrt{n}$ е $100(1-\alpha)\%$ -ен доверителен интервал за параметъра μ (когато X е нормално разпределена или за голямо n от ЦГТ).

Пример: При оценка на действието на даден медикамент за лечение на левкемия е измерено средно време на преживяемост на пациентите след поставяне на диагнозата 13 месеца и дисперсия 9. За

95%-ен доверителен интервал на средното време на преживяемост на пациентите вземали даденото лекарство получаваме $P(\bar{l}X) - 1.96\sigma/\sqrt{n} \le \mu \le \bar{l}X + 1.96\sigma/\sqrt{n} = 0.95$. Ако за n=16 пациента е измерено средно $\bar{x}=13.88$, то получаваме следния доверителен интервал [12.41, 15.35].

• Интервална оценка на дисперсията: Ако $X_1, \dots X_n$ е случайна извадка от $N(\mu, \sigma^2)$, то $(n-1)S^2/\sigma^2 = \sum\limits_{i=1}^n (X_i - \bar{X})^2/\sigma^2 \sim \chi^2_{n-1}$, откъдето $100(1-\alpha)\%$ -ен доверителен интервал за параметъра σ^2 е $[(n-1)S^2/\chi^2_{\alpha/2}, (n-1)S^2/\chi^2_{1-\alpha/2}]$. Пример: Дефинирана е релативна мярка за натоварване на компютърна система (1 за дадена система), според която са направени измервания на кръгъл час на системата в голяма консултантска фирма и те са:

За да построим 95%-ен доверителен интервал за дисперсията, ни е необходимо да знаем $s^2=1.4075,\,\chi^2_{0.025}=39.4,\,\chi^2_{0.075}=12.4$ (n-1=24). Оттук $L_1=24(1.408)/39.4=0.858,\,L_2=24(1.408)/12.4=2.725.$

- Т-разпределение с n степени на свобода: $T=\frac{Z}{\sqrt{\chi_n^2/n}},$ $f(t)=\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{\pi n}}\left(1+\frac{t^2}{n}\right)^{-(n+1)/2}.$
- Доверителен интервал за μ при неизвестно σ^2 : използваме, че $\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim T_{n-1}$. Оттук $\bar{X}\pm t_{\alpha/2}S/\sqrt{n}$ е $100(1-\alpha)\%$ -ен доверителен интервал за параметъра μ .

Пример: Направени са следните измервания в мкг/к.м. на серен диоксид в дадена гора, поразена от киселинен дъжд:

Намираме $\bar{x}=53.92,\ s=10.07,\ s^2=101.480.$ За $n-1=23,\ t_{0.025}=2.069$ и доверителният интервал е $53.92\pm2.069(10.07)/\sqrt{24}$ или [49.67,58.17].

• Проверка на хипотези: H_0 - нулева хипотеза, H_1 - алтернативна хипотеза. Отхвърляме или не H_0 , в зависимост от стойностите на дадена статистика от параметъра. Вероятността наблюдаваната стойност на тази статистика да попадне в т.нар. критична област (в която нулевата хипотеза се отхвърля), въпреки че е изпълнена H_0 , се нарича ниво на доверие и се означава с α . То се избира предварително. Вероятността стойността на наблюдаваната статистика не попадне в критичната област, въпреки че нулевата хипотеза не е вярна се означава с β .

	H_0 е вярна	H_1 е вярна
отхвърля се H_0	грешка от тип I (с вероятност α)	вярно решение
не се отхвърля H_0	вярно решение	грешка от тип II (с вероятност β)

Пример: В проучване на ефекта от светлоотразяващи табели по пътищата, се е стигнало до предположение, че фаровете на повече от половината от автомобилите не са настроени правилно. За проверка на това твърдение съставяме $H_1: p > 0.5, H_0: p \le 0.5(p = 0.5).$ Проверена е настройката на фаровете на 20 автомобила, като броя на тези с неправилна настойка е X. Нека $\alpha = 0.05$, тогава, ако е изпълнена нулевата хипотеза, X има биномно разпределение с n=20, p = 0.5, EX = np = 10, т.е. ако е изпълнено, че стойността на Xе в определена степен по-голяма от 10, ще отхвърлим нулевата хипотеза. Имаме, че $P(X \ge 14|p=0.5) = 1 - P(X \le 13|p=0.5) =$ $1-0.9423=0.0577\approx \alpha$, т.е. можем да отхвърлим H_0 , ако стойността на X е в множеството $C = \{14, 15, 16, 17, 18, 19, 20\}$ - критична област, и не можем да я отхвърлим, ако $X \in C' = \{0, 1, \dots 13\}.$ В този случай, ако истинската стойност на параметъра е p = 0.7, можем да намерим $\beta = P(X < 13|p = 0.7) = 0.3920$, т.е. нашия тест не прави добро разграничение между p = 0.5 и p = 0.7. За p = 0.8, $\beta = 0.0867.$

• P-value: може α да не бъде фиксирано предварително, а да се вземе решение, в зависимост вероятността да бъде наблюдавана стойност на тест статистиката поне колкото е стойността и, ако е вярно H_0 :

 $\theta = \theta_0$. Тази вероятност често се нарича p-value (така отхвърляме нулевата хипотеза за малки стойности на p-value).

• Тест за средното (t-тест): двустранен - H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$, едностранен - H_0 : $\mu = \mu_0$, H_1 : $\mu > (<)\mu_0$ Пример: Компютърна система се състои от 10 компютъра и един принтер, като средното време за стартиране на системата е 15 минути. Добавени са още 10 компютъра и един принтер и трябва да се провери дали средното време се е променило, т.е. H_0 : $\mu = 15$ срещу H_1 : $\mu \neq 15$. Имаме $\bar{x} = 14.0$, s = 3, n = 30. $(\bar{x} - 15)/(s\sqrt{30}) = -1.83$, $P(T_{29} \leq -1.699) = 0.05$, $P(T_{29} \leq -2.045) = 0.025$ и понеже наблюдаваната стойност на T-статистиката е между тези две стойности, можем да заключим, че вероятността да се наблюдава стойност поне толкова голяма, колкото наблюдаваната (в положителен или отрицателен смисъл - двустранен тест) е между 0.05 и 0.1, което е достатъчно малко, за да можем да отхвърлим нулевата хипотеза.

• Непараметрични методи:

— Тест на знаците: Нека $X_1, X_2, \ldots X_n \sim X$. Нека M е медианата и $H_0: M = M_0, H_1: M < M_0 (> M_0, \neq M_0)$. Разглеждаме $X_i - M_0$ и Q_+ е броя на положителните разлики. Ако е вярна H_0 , то Q_+ е биномно разпределена с параметри 1/2 и n и очакването и е n/2. Ако $P(Q_+ \leq Q_+^{obs}|n,p=1/2)$ е твърде малка, отхвърляме H_0 .

Пример: Определен етап от производството на машинна част се изпълнява средно за 55 секунди. Пусната е нова технология, за която се твърди, че намалява това време. Измерени са следните времена за новата технология: 35, 65, 48, 40, 70, 50, 58, 36, 47, 41, 49, 39, 34, 33, 31. $P(Q_+ \le 3|n=15, p=1/2) = 0.0176$, следователно хипотезата за равенство се отхвърля и можем да твърдим, че M < 55.

— Тест на Уилкоксън: Като горното, но се вземат предвид големините на $|X_i-M_0|$ и им се дава ранг $R_1,\ldots R_n$, като на най-малката разлика се дава най-малкия ранг - 1. След това на ранговете се поставя занк, съвпадащ със знака на съответната разлика. Тогава при изпълнена H_0 , статистиките $W_+ = \sum_{pozitive} R_i$ и $|W_-| = \sum_{negative} |R_i|$ ще бъдат приблизително

равни. За $W = min(W_+, W_-)$ има таблици и нулевата хипотеза се отхвърля, когато получената стойност на W е по-малка или равна на съответната критична стойност в таблицата.

Пример: Тества се точката на топене на нов материал за интериор на автомобили, като се счита, че медианата е $120^{\circ}C$. Получени са следните данни: $115.1,\ 117.8,\ 116.5,\ 121.0,\ 120.3,\ 119.0,\ 119.8,\ 118.5.$ Потвърждават ли те хипотезата? W=5.5, от таблицата за $\alpha=0.05, n=8,$ критичната точка е 6, а за $\alpha=0.025, n=8,$ критичната точка е 4, т.е. можем да отхвърлим нулевата хипотеза и да приемем, че точката на топене е под 120.