ЛЕКЦИЯ 1

МЕТРИЧЕСКОЕ ПРОСТРАНСТВО

Определение. Будем называть множество X метрическим пространством если каждой паре элементов x и y из этого множества поставлено в соответствие неотрицательное число $\rho(x,y)$, называемое расстоянием между x и y, такое что выполнены следующие аксиомы:

- $\rho(x,y) \ge 0$
- $\rho(x,y) = 0 \Leftrightarrow x = y$
- $\bullet \quad \rho(x,y) = \rho(y,x)$
- $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

Пример

Метрическое пространство \mathbb{R} . α , β — вещественные числа, $\rho(\alpha,\beta)=|\alpha-\beta|$

Метрическое пространство \mathbb{R}^2 . $x = (x_1, x_2)$, $y = (y_1, y_2)$, $\rho(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$. Для доказательства можно обратиться к геометрической интерпретации

Замечание. Для одного и того же множества расстояние можно определять по-разному.

Пример

Метрическое пространство \mathbb{R}^2 . $x = (x_1, x_2)$, $y = (y_1, y_2)$, $\rho(x, y) = \max(|x_1 - y_1|, |x_2 - y_2|)$.

МЕТРИЧЕСКОЕ ПРОСТРАНСТВО \mathbb{R}^n

Будем рассматривать \mathbb{R}^n , которое состоит их точек $x = (x_1, x_2, ..., x_n)$.

Определим расстояние как $\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$.

Определение. Расстояние, определяемое формулой $\rho\left(x,y\right) = \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \; , \, \text{называют} \; \underline{\textit{евклидовым}}$

СХОДИМОСТЬ ПОСЛЕДОВАТЕЛЬНОСТИ ТОЧЕК В МЕТРИЧЕСКОМ ПРОСТРАНСТВЕ

Пусть $\{(x_1, x_2, ..., x_n)\}$ – множество точек \mathbb{R}^n .

Определение. Если каждому натуральному числу k поставлена в соответствие точка $x^{(k)} \in \mathbb{R}^n$, то говорят, что задана последовательность точек $\left\{x^{(k)}\right\}$ в \mathbb{R}^n .

Определение. Говорят, что точка $A \in \mathbb{R}^n$ называется <u>пределом последовательности</u> $\left\{x^{(k)}\right\}$ (последовательность точек $\left\{x^{(k)}\right\}$ <u>сходится</u> $\underline{\kappa}$ A), и пишут $\lim_{k \to \infty} x^{(k)} = A$, если $\lim_{k \to \infty} \rho\left(x^{(k)}, A\right) = 0$

Определение. Последовательность точек $\left\{x^{(k)}\right\}$ называется ограниченной, если $\exists C \in \mathbb{R}, \exists a \in \mathbb{R}^n : \forall k \in \mathbb{N} \Rightarrow \rho\left(x^{(k)}, a\right) \leq C$

Лемма. Если последовательность точек $\{x^{(k)}\}$ имеет предел, то она ограничена

Лемма. Если последовательность точек $\left\{x^{(k)}\right\}$ имеет предел, то он единственный

Лемма. Последовательность точек $\left\{x^{(k)}\right\} \in \mathbb{R}^n$, где $x^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right)$ сходится к пределу $A\left(a_1, a_2, \dots, a_n\right)$ тогда и только тогда, когда последовательности $\left\{x_1^{(k)}\right\}, \left\{x_2^{(k)}\right\}, \dots, \left\{x_n^{(k)}\right\}$ сходятся к соответствующим a_1, a_2, \dots, a_n , т. е. $\lim_{k \to \infty} x_i^{(k)} = a_i, i = 1, \dots, n$

Определение. Последовательность точек $\left\{x^{(k)}\right\} \subset X$ называется $\underline{\phi}$ ундаментальной, если $\forall \, \varepsilon > 0 \,\, \exists N \in \mathbb{N} : \forall \, k, m \geq N \Rightarrow \rho\left(x^{(k)}, x^{(m)}\right) < \varepsilon$.

Замечание. Это означает, что начиная с некоторого номера все точки последовательности достаточно близки друг к другу

Лемма. Если последовательность точек $\{x^{(k)}\}\subset X$ сходится, то она фундаментальная

Замечание. Обратное утверждение для произвольного метрического пространства неверно

ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА В МЕТРИЧЕСКОМ ПРОСТРАНСТВЕ

Определение. Шаром радиуса r с центром в точке $a \in X$ будем называть множество точек метрического пространства: $S_r(a) = \{x : x \in X, \rho(x,a) < r\}.$

Замечание. Шар в \mathbb{R} это интервал (a-r; a+r)

Шар в \mathbb{R}^2 это круг $\left(x_1 - a_1\right)^2 + \left(x_2 - a_2\right)^2 < r^2$

Шар в \mathbb{R}^n это множество

$$S_r(a) = \left\{ x : x = (x_1, \dots, x_n) \in \mathbb{R}^n, \sum_{i=1}^n (x_i - a_i)^2 < r^2 \right\}$$

Определение. Пусть M множество точек в метрическом пространстве X . Точка $x^0 \in M$ называется <u>внутренней точкой</u> множества M , если $\exists S_{\varepsilon} \left(x^0 \right) \subset M$.

 ${\it 3 ame u a h u e}$. Внутренняя точка содержится в M вместе с некоторым шаром с центром в ней

Определение. Совокупность всех внутренних точек множества M образуют <u>внутренность</u> M – int M. Очевидно, что int $M \subset M$.

Определение. Если $\inf M = M$, то множество называется $\underbrace{omкрытым}$ в метрическом пространстве X. Пустое множество считается открытым по определению.

Определение. <u>Окрестностью</u> точки $x^0 \in X$ будем называть любое множество $O(x^0)$, для которого точка x^0 является внутренней.

Например, шар $S_{\varepsilon}(x^0)$ $-\varepsilon$ -окрестность точки x^0 .

Определение. Точка x^0 называется <u>предельной точкой</u> множества $M \subset X$, если в любой ее окрестности есть точки множества M отличные от x^0 .

Замечание. Предельная точка может принадлежать множеству, а может и не принадлежать.

Пример

Интервал, фигура на плоскости без границы

Определение. Точка множества M, не являющаяся предельной, называется <u>изолированной</u>.

 ${\it 3амечаниe}$. Если точка является изолированной, то существует ее окрестность, в которой нет точек множества M

Определение. Множество $M \subset X$ называется <u>замкнутым</u>, если содержит все свои предельные точки.

Пример

Отрезок, фигура на плоскости с границей

Π РЯМЫЕ, ЛУЧИ И ОТРЕЗКИ В \mathbb{R}^n

Пока рассматривали объекты, которые использовали лишь понятие расстояния. Введем не связанные с метрикой объекты

Определение. <u>Прямой</u> в \mathbb{R}^n , проходящей через точки $a = (a_1, a_2, ..., a_n)$ и $b = (b_1, b_2, ..., b_n)$ будем называть следующее множество точек $\left\{x: x \in \mathbb{R}^n, x_i = a_i t + b_i \left(1 - t\right), t \in \mathbb{R}, i = 1, ..., n\right\}$ Пример

Для
$$\mathbb{R}^2$$

$$\begin{cases} x = a_1 t + b_1 (1-t) \\ y = a_2 t + b_2 (1-t) \end{cases}$$

Определение. <u>Лучом</u> в \mathbb{R}^n с вершиной в точке $a = (a_1, a_2, ..., a_n)$ в направлении $l = (l_1, l_2, ..., l_n)$, где $l_1^2 + l_2^2 + ... + l_n^2 = 1$ назовем множество

$$\left\{x: x \in \mathbb{R}^n, x_i = a_i + l_i t, 0 \le t < +\infty, i = 1, \dots, n\right\}$$

Пример

Для
$$\mathbb{R}^3$$

$$\begin{cases} x=x_0+mt \\ y=y_0+nt \ , 0 \leq t < +\infty \\ z=z_0+pt \end{cases}$$

Определение. <u>Отрезком</u> в \mathbb{R}^n , соединяющим точки $a=(a_1,a_2,...,a_n)$ и $b=(b_1,b_2,...,b_n)$ будем называть следующее множество $\left\{x:x\in\mathbb{R}^n,x_i=a_it+b_i\left(1-t\right),0\le t\le 1,i=1,...,n\right\}$

Определение. Множество $M \subset \mathbb{R}^n$ будем называть <u>выпуклым</u>, если вместе с любыми двумя своими точками оно содержит отрезок, который эти точки соединяет.

Определение. Кривая в \mathbb{R}^n задается параметрически $x_i = \varphi_i(t), \alpha \le t \le \beta, i = 1, ..., n$, где $\varphi_i(t)$ непрерывные функции на отрезке $[\alpha, \beta]$

Определение. Множество $M \subset \mathbb{R}^n$ называется <u>связным</u>, если любые две его точки можно соединить кривой $\Gamma \subset M$.

Определение. Открытое и связное множество в \mathbb{R}^n называют областью. Замыкание области называют замкнутой областью

Определение. Кривая в \mathbb{R}^n , являющаяся объединением конечного числа отрезков, называется <u>ломаной</u> в \mathbb{R}^n

ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ

Определение. Функцию $f:M\to\mathbb{R}$, где $M\subset\mathbb{R}^n$ которую называют функцией многих переменных и обозначают

$$f(x) = f(x_1, x_2, ..., x_n), x \in M$$

Для функции может быть найдена естественная область определения. Пример

Найти ООФ
$$z = \sqrt{\frac{2y}{x^2 + y^2 - 1}}$$