

Sujet d'examen – Intégration et applications

Consignes.

- Documents autorisés : 2 feuilles A4 recto-verso manuscrites ;
- Pour qu'une réponse soit valide, elle doit s'appuyer sur des théorèmes du cours;
- Les parties 1 (exercices 1 et 2) et 2 (exercice 3) sont à rendre sur des **copies séparées**. La partie 3 (exercice 4) est à répondre **directement sur le sujet**.

Partie 1 (Cette partie est à rendre sur une copie séparée – barème prévisionnel : 8 points).

▷ Exercice 1 (Transformée de Fourier).

Remarque. Dans cet exercice, les intégrales considérées sont des intégrales de Lebesgue par rapport à la mesure de Lebesgue.

1. Soit $\lambda > 0$. On pose $f_{\lambda}(x) = e^{-\lambda |x|}$ pour $x \in \mathbb{R}$. Calculer sa transformée de Fourier $\widehat{f_{\lambda}}$ (on demande un calcul explicite, et pas seulement de fournir le résultat donné par une table ou autre).

On cherche maintenant les fonctions g de $L^1(\mathbb{R})$ telles que, pour tout $x \in \mathbb{R}$,

$$g(x) = e^{-|x|} + \alpha \int_{\mathbb{R}} e^{-|x-t|} g(t) dt$$
 (1)

où α est un réel quelconque.

- 2. Ecrire cette équation sous la forme d'une équation faisant intervenir un produit de convolution.
- 3. En utilisant la transformée de Fourier, exprimer \widehat{g} en fonction de $\widehat{f}_1.$
- 4. En déduire qu'il existe une solution à l'équation (1) si et seulement si $\alpha < \frac{1}{2}$. **Aide** : on utilisera le fait qu'une transformée de Fourier d'une fonction de $L^1(\mathbb{R})$ est nécessairement continue sur \mathbb{R} .
- 5. Montrer alors que pour $\alpha < \frac{1}{2}$, cette solution est unique, et la déterminer.
- ightharpoonup Exercice 2 (Distributions : transformée de Fourier d'une distribution homogène). Soient φ une fonction quelconque de $\mathcal{S}(\mathbb{R})$ et $\alpha > 0$. On note φ_{α} la fonction définie par : $\varphi_{\alpha}(x) = \varphi(\alpha x)$, $\forall x \in \mathbb{R}$. On dit qu'une distribution T de $\mathcal{S}'(\mathbb{R})$ est homogène de degré d si et seulement si :

$$\forall \varphi \in \mathcal{S}(\mathbb{R}), \quad \langle T, \varphi_{\alpha} \rangle = \alpha^{-(d+1)} \langle T, \varphi \rangle$$

- 1. Exprimer $\widehat{\varphi_{\alpha}}$ en fonction de $\widehat{\varphi}$.
- 2. Montrer alors, en calculant $\langle \hat{T}, \varphi_{\alpha} \rangle$, que si T est homogène de degré d, alors \hat{T} est homogène, d'un degré que l'on précisera.

Partie 2 (Cette partie est à rendre sur une copie séparée – barème prévisionnel : 6 points).

 \triangleright Exercice 3. Soit $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ un espace mesuré, avec λ la mesure de Lebesgue. On pose :

$$f: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+ \to \mathbb{R}$$

 $(x, \mu, \sigma) \mapsto \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$

On admet que

$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}\lambda = \sqrt{\pi}.$$

3.1. Soit $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$. On pose

$$\forall x \in \mathbb{R}, \quad f_{\mu,\sigma}(x) = f(x,\mu,\sigma).$$

Justifier la mesurabilité de cette fonction de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ vers $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

3.2. Soit $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$. En exploitant un changement de variable pertinent, montrer que la fonction $f_{\mu,\sigma}$ est intégrable sur \mathbb{R} et donner la valeur de

$$I(\mu, \sigma) = \int_{\mathbb{R}} f_{\mu, \sigma} \, \mathrm{d}\lambda.$$

3.3. Soit $\sigma \in \mathbb{R}_+^*$. Montrer que la fonction

$$\mu \mapsto \mathcal{E}(\mu) = \int_{\mathbb{R}} x f_{\mu,\sigma}(x) \, \mathrm{d}\lambda(x)$$

est définie sur \mathbb{R} . Donner les valeurs de $\mathcal{E}(0)$ puis $\mathcal{E}(\mu)$ pour μ quelconque.

Partie 3 (Cette partie est à répondre sur le sujet – barème prévisionnel : 10 points).

- ▶ Exercice 4 (Vrai ou faux). Déterminer si chacune des affirmations suivantes est vraie ou fausse. Justifier chaque réponse par une preuve ou un contre-exemple.
 - **4.1.** La famille $\mathcal{A} = \{A \subset \mathbb{N} \mid (\operatorname{card}(A) < +\infty) \text{ ou } (\operatorname{card}(\mathbb{N} \setminus A) < +\infty)\}$ est une tribu.

4.2. On note pour $A \subset \mathbb{R}$, son symétrique $-A = \{-x \mid x \in A\}$. La famille $\mathcal{A} = \{A \subset \mathbb{R} \mid A = -A\}$ est une tribu.

4.3. Soit

$$f \colon ([0,1], \mathcal{B}([0,1])) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

$$x \longmapsto f(x) = \sum_{n=1}^{+\infty} \mathbb{1}_{\left\{\frac{1}{n}\right\}}(x).$$

La fonction f est mesurable et étagée.

4.4. On note $E = \{1, 2, 3, 4\}$, $A = \{1\} \subset E$ et on introduit la tribu $\mathcal{A} = \{\emptyset, \{1, 2\}, \{3, 4\}, E\}$. Soit

$$\begin{array}{cccc} f \colon & (E, \mathcal{A}) & \longrightarrow & (\{0, 1\}, \mathcal{P}(\{0, 1\})) \\ & x & \longmapsto & f(x) = \mathbb{1}_A(x). \end{array}$$

La fonction f est mesurable.

4.5. Soit l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ avec λ la mesure de Lebesgue. Tout compact de \mathbb{R} est mesurable, de mesure finie.

4.6. Soit

$$\mu\colon \ \mathcal{P}(\mathbb{N}) \ \longrightarrow \ \overline{\mathbb{R}}_+$$

$$A \ \longmapsto \ \mu(A) = \begin{cases} 0 \text{ si } A = \emptyset, \\ 1 \text{ sinon.} \end{cases}$$

 μ est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

4.7. Soit l'espace mesuré $([0,1],\mathcal{B}([0,1]),\lambda)$ avec λ la mesure de Lebesgue. Soit

$$\begin{array}{ccc} f\colon & ([0\,,1],\mathcal{B}([0\,,1])) & \longrightarrow & (\mathbb{R},\mathcal{B}(\mathbb{R})) \\ & x & \longmapsto & f(x) = \sum_{n=1}^{+\infty} \mathbb{1}_{\left\{\frac{1}{n}\right\}}(x). \end{array}$$

On a $\int_{[0,1]} f \, d\lambda = +\infty$.

4.8. Soit l'espace mesuré $(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+),\lambda)$ avec λ la mesure de Lebesgue. On a

$$\lim_{n\to +\infty} \int_{\mathbb{R}_+} \cos(nx) \, \mathbbm{1}_{[0,n]}(x) \, \, \mathrm{d}\lambda = 0.$$