# Control Systems

# G V V Sharma\*

|   | Contents                        |                             |     | 7     | Compensators                                                                           |                                      | 2 |  |
|---|---------------------------------|-----------------------------|-----|-------|----------------------------------------------------------------------------------------|--------------------------------------|---|--|
| 1 | Signal                          | Flow Graph                  | 2   |       | 7.1                                                                                    | Phase Lead                           | 2 |  |
| 1 | 1.1                             | Mason's Gain Formula        | 2   |       | 7.2                                                                                    | Lag Lead                             | 2 |  |
|   | 1.2                             | Matrix Formula              | 2   |       | 7.3                                                                                    | Example                              | 2 |  |
|   | 1.3                             | Example                     | 2   |       |                                                                                        | •                                    |   |  |
|   | 1                               |                             |     | 8     | Gain Margin                                                                            |                                      | 2 |  |
| 2 | <b>Bode Plot</b>                |                             | 2   |       | 8.1                                                                                    | Introduction                         | 2 |  |
|   | 2.1                             | Introduction                | 2   |       |                                                                                        |                                      |   |  |
|   | 2.2                             | Example                     | 2   |       | 8.2                                                                                    | Example                              | 2 |  |
|   | 2.3                             | Phase                       | 2   |       | 8.3                                                                                    | Example                              | 2 |  |
| 3 | Second                          | andar System                | 2   |       | 8.4                                                                                    | Example                              | 2 |  |
| 3 | Second order System 3.1 Damping |                             |     |       |                                                                                        |                                      |   |  |
|   | 3.1                             | Peak Overshoot              | 2 2 | 9     | Phase                                                                                  | Margin                               | 4 |  |
|   | 3.3                             | Example                     | 2   |       | 9.1                                                                                    | Intoduction                          | 4 |  |
|   | 3.4                             | Settling Time               | 2   |       | 9.2                                                                                    | Example                              | 4 |  |
| 4 | <b>Routh Hurwitz Criterion</b>  |                             | 2   | 10    | Oscille                                                                                | Oscillator                           |   |  |
|   | 4.1                             | Routh Array                 | 2   | 2     |                                                                                        |                                      | 4 |  |
|   | 4.2                             | Marginal Stability          | 2   |       | 10.1                                                                                   | Introduction                         | 4 |  |
|   | 4.3                             | Stability                   | 2   |       | 10.2                                                                                   | Example                              | 4 |  |
|   | 4.4                             | Example                     | 2   |       |                                                                                        |                                      |   |  |
|   | 4.5                             | Example                     | 2   | 11    | Root 1                                                                                 | Locus                                | 4 |  |
| 5 | State-Space Model               |                             | 2   |       | 11.1                                                                                   | Introduction                         | 4 |  |
|   | 5.1                             | Controllability and Observ- |     |       | 11.2                                                                                   | Example                              | 4 |  |
|   |                                 | ability                     | 2   |       | 11.3                                                                                   | Example                              | 4 |  |
|   | 5.2                             | Second Order System         | 2   |       |                                                                                        | •                                    |   |  |
|   | 5.3                             | Example                     | 2   | 12    | Polar                                                                                  | Plot                                 | 4 |  |
|   | 5.4                             | Example                     | 2   |       | 12.1                                                                                   | Introduction                         | 4 |  |
|   | 5.5                             | Example                     | 2   |       | 12.1                                                                                   | introduction                         | 7 |  |
|   | 5.6                             | Example                     | 2   |       |                                                                                        |                                      |   |  |
|   | 5.7                             | Example                     | 2   |       |                                                                                        | his manual is an introduction to cor |   |  |
| 6 | Nyquist Plot                    |                             | 2   |       | systems based on GATE problems.Links to sample Python codes are available in the text. |                                      |   |  |
|   | 6.1                             | Introduction                | 2   | coucs | coucs are available in the text.                                                       |                                      |   |  |
|   | 6.2                             | Example                     | 2   | D     | ownload                                                                                | python codes using                   |   |  |
|   |                                 |                             |     |       |                                                                                        |                                      |   |  |

\*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

svn co https://github.com/gadepall/school/trunk/control/codes

#### 1 SIGNAL FLOW GRAPH

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula
- 1.3 Example

### 2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 2.3 Phase

#### 3 Second order System

- 3.1 Damping
- 3.2 Peak Overshoot
- 3.3 Example
- 3.4 Settling Time

## 4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example

#### 5 STATE-SPACE MODEL

- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example

# 6 NYQUIST PLOT

- 6.1 Introduction
- 6.2 Example

# 7 Compensators

- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example

# 8 Gain Margin

- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 8.4 Example
- 8.1. For a unity feedback system shown in Fig 8.1 having transfer function



Fig. 8.1

$$G(s) = \frac{K}{(s+3)(s+9)(s+15)}$$
 (8.1.1)

design the value of gain(K), for a gain margin of 50dB.

# 8.2. Solution:

Gain Margin:

$$GM = -20 \log |G(j\omega_{pc})| \tag{8.2.1}$$

where,  $\omega_{pc}$  is the phase cross-over frequency, at which

$$\angle G(j\omega_{pc}) = -180^{\circ} \tag{8.2.2}$$

First substitute,

$$s = j\omega \tag{8.2.3}$$

$$\implies G(j\omega) = \frac{K}{(-27\omega^2 + 405) + j(-\omega^3 + 207\omega)}$$
(8.2.4)

Now the phase will be

$$\angle G(j\omega) = -\tan^{-1}(\frac{-\omega^3 + 207\omega}{-27\omega^2 + 405}) \qquad (8.2.5)$$

Solving for  $\angle G(j\omega) = -180^{\circ}$  gives

$$\omega_{pc} = 14.3875 \tag{8.2.6}$$

Magnitude:

$$|G(j\omega)| = \frac{K}{\sqrt{(\omega^2 + 9)} \sqrt{(\omega^2 + 81)} \sqrt{(\omega^2 + 225)}}$$
(8.2.7)

Substituting value of  $\omega_{pc}$  in (8.2.1) gives

$$K = 16.406$$
 (8.2.8)

This can be verified from fig 8.2 The following code generates Fig. 8.2



Fig. 8.2

- 8.3. Design the value gain (K) for a phase margin of 40°.
- 8.4. **Solution:**

Phase Margin:

$$PM = 180^{\circ} + \phi_{gc}$$
 (8.4.1)

where  $\phi_{gc}$  is the phase angle at the gain cross over frequency  $\omega_{gc}$ . At gain cross over frequency,

$$|G(j\omega_{gc})| = 1 \tag{8.4.2}$$

$$\implies -20 \log |G(j\omega_{gc})| = 0 \tag{8.4.3}$$

Given,

$$PM = 40^{\circ} = 180^{\circ} + \phi_{gc}$$
 (8.4.4)

$$\implies \phi_{gc} = -140^{\circ} = \angle G(j\omega_{gc})$$
 (8.4.5)

From (8.2.5)

$$\angle G(j\omega_{gc}) = -\tan^{-1}(\frac{-\omega_{gc}^3 + 207\omega_{gc}}{-27\omega_{gc}^2 + 405}) \quad (8.4.6)$$

$$\implies \omega_{gc} = 8.09623 \tag{8.4.7}$$

Substituting this value in (8.4.3), we get

$$20\log K = 65.016 \tag{8.4.8}$$

$$\implies K = 1781.56$$
 (8.4.9)

This again can be verified from fig 8.4. The following code generates Fig. 8.4



Fig. 8.4



# 8.6. **Solution:** Closed loop transfer function:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$
(8.6.1)

where H(s) = 1

$$\implies T(s) = \frac{K}{(s+3)(s+6)(s+15) + K}$$
(8.6.2)

Output will be:

$$\implies Y(s) = \frac{1}{s} \frac{K}{(s+3)(s+6)(s+15) + K}$$
(8.6.3)

Maximum peak overshoot:

$$M_p = \frac{y(t_p) - y(\infty)}{y(\infty)}$$
 (8.6.4)

which is given as 20%. Here,  $t_p$  is the peak time. Solving this, we get

$$\implies \frac{y(t_p)}{y(\infty)} = 1.2 \tag{8.6.5}$$

Plotting y(t) for different values of K, we choose the value of K, which gives the above ratio, which is verified from fig 8.6. Thus, we get

$$t_p = 0.505 \tag{8.6.6}$$

$$\implies K = 928.035$$
 (8.6.7)

The following code generates fig 8.6

codes/ee18btech11050 3.py



Fig. 8.6

- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example
- 11 Root Locus
- 11.1 Introduction
- 11.2 Example
- 11.3 Example
- 12 Polar Plot
- 12.1 Introduction