An R Package for Fast Sampling from von Mises Fisher Distribution

Elysée Aristide Houndetoungan

2020-09-10

Context

I build an R package named \mathbf{vMF} which samples from the von Mises-Fisher distribution (\mathcal{M}) as \mathbf{movMF} . However, unlike the \mathbf{movMF} package (Hornik and Grün, 2018) which also simulates and estimates mixtures of \mathcal{M} , \mathbf{vFM} instead focuses on fast sampling from \mathcal{M} . The package also computes the density and the normalization constant of the von Mises-Fisher distribution.

Note that \mathbf{movMF} is more general and can be used for many other purposes. It cannot be replaced by \mathbf{vMF} which is more specific.

The von Mises Fisher distribution is used to model coordinates on a hypersphere of dimension $p \geq 2$. It can be considered as the equivalent of the normal distribution on a hypersphere. The von Mises Fisher distribution is characterized by two parameters. The location (or mean directional) parameter μ around which simulations from the distribution will be concentrated and the intensity parameter η which measures the intensity of concentration of the simulations around μ . The higher η , the more the simulations are concentrated around μ . Comparing to the normal distribution, μ is similar to the mean parameter of the normal distribution and $\frac{1}{n}$ is similar to the standard deviation.

There are several definitions of the density function of \mathcal{M} . In this package, the density is normalized by the uniform distribution without loss of generality. This is also the case in Mardia and Jupp (2009) and Hornik and Grün (2013).

Let $\mathbf{z} \sim \mathcal{M}(\eta, \boldsymbol{\mu})$. Then,

$$f_p(\mathbf{z}|\eta, \boldsymbol{\mu}) = C_p(\eta)e^{\eta \mathbf{z}'\boldsymbol{\mu}},$$

where $C_p(x) = \left(\frac{x}{2}\right)^{\frac{p}{2}-1} \frac{1}{\Gamma\left(\frac{p}{2}\right) I_{\frac{p}{2}-1}(x)}$ is the normalization constant and $I_{\cdot}(\cdot)$ the Bessel function of the first kind defined by:

$$I_{\alpha}(x) = \sum_{m=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2m+\alpha}}{m!\Gamma(m+\alpha+1)}.$$

The normalization with respect to the uniform distribution simplifies some results. For example, $C_p(0) = 1$.

Simulation from von Mises Fisher distribution

The following algorithm provides a rejection sampling scheme for drawing a sample from the \mathcal{M} with mean directional parameter $\boldsymbol{\mu}=(0,...,0,1)$ and concentration (intensity) parameter $\eta\geq 0$ (see Section 2.1 in Hornik and Grün, 2014).

• Step 1. Calculate b using * Step 1. Calculate b using

$$b = \frac{p-1}{2\eta + \sqrt{2\eta^2 + (p-1)^2}}.$$

Let $x_0 = (1-b)/(1+b)$ and $c = \eta x_0 + (p-1)\log(1-x_0^2)$.

• Step 2. Generate $Z \sim Beta((p-1)/2, (p-1)/2)$ and $U \sim Unif([0,1])$ and calculate

$$W = \frac{1 - (1 + b)Z}{1 - (1 - b)Z}.$$

• Step 3. If

$$\eta W + (p-1)\log(1-x_0W) - c < \log(U),$$

go to step 2.

• Step 4. Generate a uniform (d-1)-dimensional unit vector V and return

$$X = \left(\sqrt{1 - W^2}V', W\right)'$$

The uniform (d-1)-dimensional unit vector V can be generated by simulating d-1 independent standard normal random variables and normalizing them. To get samples from \mathcal{M} with arbitrary mean direction parameter μ , X is multiplied from the left with a matrix where the first d-1 columns consist of unitary basis vectors of the subspace orthogonal to μ and the last column is equal to μ .

Package Installation

The code source of the package is written in C++ with the package **Rcpp** (Eddelbuettel et al., 2020). **vMF** is currently available on GitHub. Its installation requires to prior install **devtools** package (Wickham et al., 2020). Moreover, Windows users should install Rtools compatible with their R version.

vMF package can be installed from this GitHub repos using the **install_github** function of **devtools**. All the dependencies will also be installed automatically.

```
library(devtools)
install_github("ahoundetoungan/vMF")
```

The option build_vignettes = TRUE can be added if one desires to install the vignettes.

References

References

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Bates, D., and Chambers, J. (2020). $Rcpp: Seamless R \ and \ C++ \ Integration$. R package version 1.0.5.

Hornik, K. and Grün, B. (2013). On conjugate families and jeffreys priors for von mises–fisher distributions. Journal of statistical planning and inference, 143(5):992–999.

Hornik, K. and Grün, B. (2014). movmf: an r package for fitting mixtures of von mises-fisher distributions. Journal of Statistical Software, 58(10):1–31.

Hornik, K. and Grün, B. (2018). movMF: Mixtures of von Mises-Fisher Distributions. R package version 0.2-4.

Mardia, K. V. and Jupp, P. E. (2009). Directional statistics, volume 494. John Wiley & Sons.

Wickham, H., Hester, J., and Chang, W. (2020). devtools: Tools to Make Developing R Packages Easier. R package version 2.2.2.