Plant Design and Profitability Analysis for the Production of Ethyl Acetate from Renewable Ethanol Feedstock

Ch E 184B Group 5 John Gelinas Brad Kooker Matt Simmons

Introduction

- Global demand of 5 million MT of ethyl acetate per year with a 4.5% projected growth through 2025¹
- Using oxygenated solvents derived from plant materials reduces CO₂ footprint of paints, inks, pharmaceuticals, and cosmetics

2 Ethanol \rightleftharpoons Ethyl Acetate + 2 Hydrogen [1] 2 Ethanol \rightleftharpoons Diethyl Ether + Water [2]

- Produce 50 kta of ethyl acetate with a \$35 MM total capital investment
- Corn-derived ethanol feedstock reacts over CuO, CoO, Cr₂O₃ catalyst
- \$600/MT spread yields \$14 MM profit before tax

Substance	Price
Ethanol	\$500/MT
Ethyl Acetate	\$1,100/MT
Diethyl Ether	Fuel Value only
Hydrogen	Fuel Value only
Fuel	\$2.50/MM BTU
Catalyst	\$10,000/MT
CO2 Charge	\$40/MT

acetate-market

Conceptual Design Process Flow Diagram

Conceptual Design

Reactor Volume vs. Conversion at 240 °C

Molar Flow Rates

Conceptual Design

MATLAB simulation and optimization

- MATLAB used to simulate and optimize NPV_%
- Discrete simulations for 5 values of conversion at the chosen operating conditions
- Parameters Chosen:

$$\circ$$
 $X_{T} = 0.45$

- Economic indicators measured:
 - NPV_{Project}, NPV_%, ROI_{BT}, IRR

Base-Case Economic Analysis Non-Discounted

- $ROI_{BT} = 41\%$
- TCI = \$35 MM
- P_{BT} = \$14 MM

Operating Costs

Discounted

- NPV_{Project} = \$51 MM
- NPV_% = 9%
- IRR = 23%

Capital Costs

Sensitivity Analysis

- TCI can increase to \$97M or ethyl acetate price can decrease to \$920/MT and remain profitable
- Plant could be shut down for up to
 6 years and still remain profitable
- Monte Carlo simulations show
 2% probability of having negative
 NPV with normal fluctuations

Health, Safety, & Environmental Concerns

- All chemicals except water are highly flammable
- Lowest auto-ignition temperature is 175 °C
- All flash points at or below 13 °C

- Reactor inlet temperature needs an emergency cooling system
- Pressure relief valves should be installed on distillation columns
- Equipment should be made from stainless steel to reduce hydrogen embrittlement and ethanol corrosion

Future Experiments

- Ensure kinetics are accurate at this scale
 - Profitability is very sensitive to reactor size
- Verify fluid models
 - Separations design is very sensitive to the model used

Process Alternatives

- Reactive distillation
 - Can simplify breaking azeotropes/ concentrate ethyl acetate stream sooner
- Diethyl ether extraction
 - liquid-liquid extraction
- Nickel-plated equipment
 - Greater longevity at higher upfront cost

Conclusions

- Design focused on NPV_%
- Level 4 plant design is profitable given the high spread between ethanol and ethyl acetate
- TCI = \$35 MM
- NPV = \$51 MM
- NPV_% = 9%

Questions?

Appendices Appendix A: Figures

Appendices Appendix A: Figures

Distillation System

Aspen Plus

1 atm

20 atm

Appendices Appendix B: Aspen HYSYS Simulation

