INF01 118

Técnicas Digitais para Computação

Transistor MOS
Portas CMOS

Aula 4

Estruturas MOS

da carga colocada no gate (G), cargas de sentido oposto são atraídas para a interface com o óxido, formando o canal do transistor. Se estas cargas forem do mesmo tipo que as cargas presentes nas regiões de fonte (S) e dreno (D), haverá passagem de corrente (I) entre essas regiões através do canal do transistor.

Símbolo: G

Circuitos CMOS Estáticos

De Morgan: $A + B = A \cdot B$

- •A lógica PMOS permite conectar o sinal de saída a Vcc (5V), '1' lógico.
- A lógica NMOS permite conectar o sinal de saída a Gnd (0V), '0' lógico.
- Sempre um dos caminhos, para Vcc ou Gnd, estão fechados para a saída, conectando a mesma a 5V ou 0V.

As redes PUP (pull up) e PDN (pull down) são duais nas suas topologias.

INVERSOR CMOS

INVERSOR CMOS

• Equação:

$$S = \overline{E}$$

• Esquema Lógico:

• Tabela Verdade:

E	S
0	1
1	0

• Esquema Elétrico CMOS

INVERSOR CMOS : Curva de Transferência DC (estática)

INVERSOR CMOS

Porta NAND CMOS

E1	E2	S
0	0	1
0	1	1
1_	0	_1
1	1	

Dica: A SAÍDA É 0 SOMENTE QUANDO TODAS AS ENTRADAS FOREM 1, CASO CONTRÁRIO HAVERÁ 1 NA SAÍDA. CONTRÁRIO DA PORTA 'AND'.

Porta NAND CMOS

• Equação Lógica:

$$S = \overline{A \cdot B}$$

• Esquema Lógico:

$$\frac{A}{B}$$

• Esquema Elétrico:

Porta NOR CMOS

Símbolo:

Equação Booleana:
$$S = \overline{E1 + E2}$$

 $S = \overline{E1 + E2 + ... + En}$

Tabela Verdade:

E 1	E2	S
0	0	1
0	1	0
1	0	0
1	1	0

E 1	E2	•••	En	S
0	0		0	1
0	1		0	0
1	0		0	0
1	1	•••	1	0

Dica: A SAÍDA É 1 SOMENTE QUANDO TODAS AS ENTRADAS FOREM 0, CASO CONTRÁRIO HAVERÁ 0 NA SAÍDA. OU SEJA, 1 EM UMA DAS ENTRADAS JÁ GARANTE 0 NA SAÍDA. CONTRÁRIO DA PORTA OR.

Porta NOR CMOS

• Equação:

$$S = \overline{A + B}$$

• Esquema Lógico:

• Esquema Elétrico CMOS

Porta XOR (porta 'OU Exclusivo')

Equação Booleana:
$$S = E1 \oplus E2$$

$$S = E1 \oplus E2 \oplus ... \oplus En$$

Tabela Verdade:

E1	E2	S
0	0	0
0	1	1
1	0	1
1	1	0

E 1	E2	•••	En	S
0	0		0	0
0	1		1	0
1	0		0	1
1	1	•••	1	1

Dica: A SAÍDA É 1 SOMENTE QUANDO HOUVER UM NÚMERO ÍMPAR DE ENTRADAS COM VALOR 1.

XNOR (porta 'Não OU Exclusivo')

Equação Booleana: $S = \overline{E1 \oplus E2}$

 $S = \overline{E1 \oplus E2 \oplus ... \oplus En}$

Tabela Verdade:

E 1	E2	S
0	0	1
0	1	0
1	0	0
1	1	1

E1	E2	•••	En	S
0	0		0	1
0	1		1	1
1	0		0	0
1	1	•••	1	0

Dica: A SAÍDA É 1 SOMENTE QUANDO HOUVER UM NÚMERO PAR DE ENTRADAS COM VALOR 1. CONTRÁRIO DA PORTA XNOR.