(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年8 月30 日 (30.08.2001)

PCT

(10) 国際公開番号 WO 01/62763 A1

- (51) 国際特許分類⁷: C07D 495/04, 513/04, A61K 31/496, 31/4365, 31/5377, A61P 43/00, 7/02, C12N 9/99, G01N 33/15, 33/50, G06F 17/30, 17/50
- (21) 国際出願番号: PCT/JP01/01344
- (22) 国際出願日: 2001年2月23日(23.02.2001)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ: 特願2000-54370 2000年2月25日(25.02.2000) JI
- (71) 出願人 (米国を除く全ての指定国について): 第一 製薬株式会社 (DAIICHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8234 東京都中央区日本橋3丁目 14番10号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 小森谷聡 (KO-MORIYA, Satoshi) [JP/JP]. 萩野谷憲康 (HAGINOYA, Noriyasu) [JP/JP]. 鈴木 誠 (SUZUKI, Makoto) [JP/JP]; 〒134-8630 東京都江戸川区北葛西1丁目16-13 第一製薬株式会社東京研究開発センター内 Tokyo (JP).

- (74) 代理人: 有賀三幸, 外(ARUGA, Mitsuyuki et al.); 〒 103-0013 東京都中央区日本橋人形町1丁目3番6号 共同ビル Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: METHOD FOR INHIBITING TRYPSIN-TYPE SERINE PROTEASES

((54)発明の名称:トリプシン型セリンプロテアーゼ阻害手法

(57) Abstract: Trypsin-type serine protease inhibitors being compounds having groups represented by the general formula (1) or (2) (wherein R^1 and R^2 are each hydrogen, halogeno, ethynyl, or the like; R^3 and R^4 are each hydrogen, hydroxyl, or amino; X_1 , X_2 , X_3 and X_4 are each CH or N; Y_1 and Y_2 are

each CH or N; and Y_3 is NH, O or S). When such a compound is made to act on a trypsin-type serine protease, the group enters the S1 pocket to thereby exert an inhibitory activity against the protease.

(57) 要約:

一般式(1)または(2)

$$R^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{3}^{\frac{1}{2}}$$

$$\chi_{4}^{\frac{1}{2}}$$

$$\chi_{5}^{\frac{1}{2}}$$

$$\chi_{5}^{\frac{1}{2}$$

(式中、 R^1 および R^2 は、水素原子、ハロゲン原子またはエチニル基等を示し、 R^3 および R^4 は、水素原子、水酸基またはアミノ基を示し、 X_1 、 X_2 、 X_3 および X_4 は、C HまたはNを示し、 Y_1 および Y_2 は、C HまたはNを示し、 Y_3 は、N H、OまたはSを示す。)で表される基を有する化合物をトリプシン型セリンプロテアーゼに作用させ、当該基が、S 1 ポケットに進入することによって阻害作用を発現するトリプシン型セリンプロテアーゼの阻害薬。

明 細 書

トリプシン型セリンプロテアーゼ阻害手法

技術分野

本発明は、トリプシン型の基質特異性を有するセリンプロテアーゼの阻害方法に関する。別の観点からは、トリプシン型の基質特異性を有するセリンプロテアーゼの活性部位にあるS1サイトのポケットに進入し、そのポケットと特異的な相互作用をする阻害薬の部分構造に関する。更には、そのような部分構造を持っている、トリプシン型の基質特異性を有するセリンプロテアーゼの阻害薬に関する。

背景技術

蛋白やペプチドを分解するペプチダーゼは、活性中心の触媒部位の形式からいくつかの型に分類されるが、その1類型としてセリンプロテアーゼと称される一群のペプチダーゼがある。セリンプロテアーゼは、その三次元構造等から、キモトリプシン(chymotrypsin)類、サブチリシン(subtilisin)類、カルボキシペプチダーゼC(carboxypeptidase C)類、エシェリシアD-Ala-D-Ala-D-Ala-プチダーゼA(Escherichia D-Ala-D-Ala peptidase A)類等の6類に分けらる。それらの内、キモトリプシン類、サブチリシン類およびカルボキシペプチダーゼC類のセリンプロテアーゼは、His57、Asp102およびSer195から構成されている共通の触媒部位を有する(Methods in Enzymology,224巻,19-61頁,1994年)。

キモトリプシン類のセリンプロテアーゼは、触媒部位に隣接したS1サイトと

呼ばれる明確なポケット(以下、S1ポケット)を有する。そのポケットは、基質特異性の発揮に大きな役割を果たしている。キモトリプシン類のセリンプロテアーゼは、その基質特異性に基づいて、フェニルアラニン残基等の疎水性アミノ酸残基を認識して基質特異性を発揮するキモトリプシン型の基質特異性を有するセリンプロテアーゼとアルギニン残基等の塩基性アミノ酸残基を認識して基質特異性を発揮するトリプシン型の基質特異性を有するセリンプロテアーゼなどに分けられる。トリプシン型の基質特異性を有するセリンプロテアーゼは、S1ポケットの深部にAsp189を有し、アルギニン残基等の塩基性アミノ酸残基とイオン結合を形成することで基質特異性を発現している。一方、キモトリプシン型の基質特異性を育するセリンプロテアーゼは、Asp189に代わってSer189をS1ポケットの深部に有し、そのポケット全体で疎水性アミノ酸残基を認識している。このようなS1ポケットのアミノ酸残基の違いが、両群の基質特異性の違いのもととなっている(Eur. J. Biochem., 260巻, 571-595頁, 1999年)。

トリプシン型の基質特異性を有するセリンプロテアーゼ(以下、トリプシン型セリンプロテアーゼ)は、生理学的に重要な役割を有する酵素の活性化等に係わっている。例えば、活性化血液凝固第X因子(以下、FXa)は、トリプシン型セリンプロテアーゼであり、血液凝固系に係わる。FXaは、プロトロンビンを限定水解してトロンビンを生成する。生成したトロンビンは、血小板を活性化して血小板凝集を促進するとともに、フィブリノーゲンを不溶性のフィブリンに変換する。このフィブリンは、強固な血栓を形成する場合に極めて重要な役割を演じている粘着性の繊維状高分子である。FXaは、このように血栓形成において重要な役割を果たしている酵素である。したがって、FXaの阻害薬は血栓が関与する各種の循環器疾患の予防薬および/または治療薬として期待されている。

ところで、最近の酵素阻害薬の研究においては、X線結晶解析に基づく酵素の 三次元モデルをコンピュータを用いて画面上に表示して阻害作用を有すると考え

られる化合物を考案したり、あるいはその三次元モデルに阻害作用を有すると考えられる化合物をドッキングさせて仮想のスクリーニングをするなどの手法が活用されている。FXaもX線結晶解析され、その各原子の座標はプロテインデータバンク(PDB c o d e : 1 HCG)に公開されている。そのデータを用いると、FXa o = x

- 1) Asp189-Ala190-Cys191-Gln192-Gly193
 -Asp194
- 2) Val213-Ser214-Trp215-Gly216-Glu217
 -Gly218-Cys220
- 3) Gly226-Ile227-Tyr228

などで構成されていることが分かる。なお、上記のアミノ酸残基の番号は、J. Mol. Biol., 232巻, 947-966頁(1993年)の記載に従ってキモトリプシンのアミノ酸残基の番号を基準としている。以下に述べる他のセリンプロテアーゼについても同様である。

また、そのX線結晶解析のデータから、FXaの触媒部位がHis57、Asp102およびSer195から構成されていることが分かり、それらのアミノ酸残基から作られている空間の大きさやそれらの各アミノ酸残基の三次元的な相互の位置関係を知ることができる。さらには、その触媒部位がS1ポケットに隣接していることも容易に理解できる。

図1にFXaのS1ポケットについて概念的に示す。

FXaのS1ポケットと強固な相互作用を有する化合物は、FXaがS1ポケットでプロトロンビンのアルギニン残基を認識することを妨げ、FXaの機能を阻害する。そのようなS1ポケットとの相互作用としては、S1ポケットの深部に位置するAsp189とアミジノ基あるいはグアニジノ基との強固なイオン結

合が知られている。アミジノ基あるいはグアニジノ基を有するFXa阻害薬(Biochemistry、34巻、3750頁、1995年)としては、DX-9065aやFX-2212aを挙げることができる(Proc. Natl. Acad. Sci. USA、95巻、6630-6635頁、1998年)。図2に、DX-9065aやFX-2212aがS1ポケットと相互作用していることを概念的に示す。

図2に示した化合物のようなアミジン誘導体(またはグアニジン誘導体)は、S1ポケットとイオン結合して強力なFXa阻害作用を示すが、アミジノ基またはグアニジノ基を有するFXa阻害薬は、それらの基の強い塩基性のために、経口吸収性が低く、経口剤としては難点を有している。したがって、優れた経口吸収性を有するFXa阻害薬を創出するためには、Asp189とのイオン結合以外の様式によってS1ポケットと相互作用する新たな部分構造の発見が必要である。

以上はFXa阻害薬の例であるが、トリプシン型セリンプロテアーゼは、いずれも類似のS1ポケットを有しており、それらに対する経口吸収性のよい阻害薬を見出そうとする場合には、Asp189とのイオン結合以外の作用によってS1ポケットと相互作用する新たな部分構造を発見することが必要であるという共通の課題を有している。

上述のように、経口吸収性に優れたトリプシン型セリンプロテアーゼ阻害薬を 見出すためには、Asp189とのイオン結合以外の様式によってS1ポケット と相互作用する新たな阻害薬の部分構造を発見することが必須であった。

発明の開示

本発明者は、上述の課題、すなわち経口吸収性に優れたトリプシン型セリンプロテアーゼ阻害薬の開発に必要な新たな部分構造を発見するという課題を解決するために、ヒトのFX a とウシのトリプシンをトリプシン型セリンプロテアーゼ

の代表例として選び、Asp189とのイオン結合以外の様式によってS1ポケットと相互作用する新たな部分構造の発見に努めた。

本発明者は、アミジノ基やグアニジノ基を持たない薬物とFXaまたはトリプシンとの複合体を結晶化してX線解析した結果、Asp189とのイオン結合以外の様式によってS1ポケットと相互作用するというトリプシン型セリンプロテアーゼ阻害薬の新たな部分構造を見出した。

FXaと薬物との複合体のX線結晶解析は、下記のインドール誘導体(5)、ベンゾチオフェン誘導体(6)およびナフタレン誘導体(7)を用いて行なった。

$$\begin{array}{c|c}
0 & 0 \\
N & 0 \\
N & S0_2 & N \\
H
\end{array}$$
(5)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

図3に、X線結晶解析の結果を基に、5-クロロインドール-2-スルホニル基が F X a の S 1 ポケットと相互作用している概念図を示す。また、化合物 (5) と F X a との複合体の X 線結晶解析結果に基づいて、図 4 に 5-0 ロロインドール-2-スルホニル基と、その基中の塩素原子から 9 × 1 0 6 c m以内にある S 1 ポケットの原子をステレオ図で示す。

また、ウシのトリプシンと薬物との複合体のX線結晶解析は、下記のナフタレン誘導体(8)を用いて行なった。

$$\begin{array}{c|c}
S & & \\
N & & \\
HN & & \\
SO_2
\end{array}$$
(8)

その結果を図5にステレオ図で示す。

以上のように、FXaのS1ポケットにはインドール環(または、ベンゾチオフェン環もしくはナフタレン環)が、ウシのトリプシンのS1ポケットにはナフタレン環が進入していることが分かる。これらの二環性の芳香環基または二環性の芳香族複素環基(以下、これらを一緒にして二環性の芳香環基、または二環性芳香環基という。)とS1ポケットとの相互作用は、

- 1) 疎水性の相互作用
- 2) 下記の相互作用

a) S1ポケットを形成しているアミノ酸残基からなるβ-シートとインドール環(またはベンゾチオフェン環もしくはナフタレン環)とのスタッキング

- b) S 1 ポケットを形成しているアミノ酸残基からなるペプチド結合とインドール環(またはベンゾチオフェン環もしくはナフタレン環) とのπ-π相互作用
- c) S 1 ポケットを形成しているアミノ酸残基の側鎖とインドール環(またはベンゾチオフェン環もしくはナフタレン環)とのCH-π相互作用などが考えられる。

FXaのS1ポケットは、前述のように

- 1) Asp189-Ala190-Cys191-Gln192-Gly193
 -Asp194
- 2) Val213-Ser214-Trp215-Gly216-Glu217
 -Gly218-Cys220
- 3) Gly226-Ile227-Tyr228

などから構成されている。また、ウシのトリプシンのX線結晶解析データは、プロテインデータバンク(PDB code:1TTP)に公開されているが、S1ポケットは、

- 1) Asp189-Ser190-Cys191-Gln192-Gly193
 -Asp194
- 2) Val 2 1 3 Ser 2 1 4 Trp 2 1 5 Gly 2 1 6 Ser 2 1 7 Gly 2 1 9 Cys 2 2 0
- 3) Gly226-Val227-Tyr228

などから構成されている。両酵素のS1ポケットを構成するアミノ酸残基を比較すると、アミノ酸残基の一部が異なっていることが分かる。特に、FXaのA1a190がトリプシンではSer190に代わっている。しかしながら、両酵素のS1ポケットと相互作用している阻害薬の部分構造は、いずれも二環性の芳香環基である。この結果から、本発明者は、S1ポケットのアミノ酸残基が一

部異なったトリプシン型セリンプロテアーゼに対しても、これらの二環性の芳香 環基を阻害薬の部分構造として活用できることを見出した。なお、ここでは、ウ シのトリプシンを用いている。ウシとヒトのトリプシン(PDB code:1 TRN)のS1ポケットを構成するアミノ酸残基を比較すると、ウシのSer 217がヒトのAsp217に代わっているが、両トリプシンのS1ポケットは 同様な構造や機能を有する。

上記のFXaと化合物(5)との複合体のステレオ図(図4)から理解できるように、FXaのS1ポケットの深部にはA1a190、Va1213およびTyr228から形成されている疎水性の空間があり、その空間を5ークロロインドリル基のクロル原子が占有している。したがって、そのクロル原子は、A1a190、Va1213およびTyr228と疎水性の相互作用をしていることがわかる。中でも、Tyr228との疎水性の相互作用が強く働いていると考えられる。図6にS1ポケットと5ークロロインドリル基との相互作用の概念図を示す。

また、同様にウシのトリプシンのS1ポケットの深部にはSer190、 Va1213およびTyr228から形成されている同様な空間があり、5-クロロナフチル基のクロル原子も、その空間を占有している。この場合にも、クロル原子はTvr228などと疎水性の相互作用をしていると考えられる。

このように、本発明者は、S1ポケットにおける相互作用部位として、S1ポケットを構成するアミノ酸残基全体の他に、A1a190、Va1213およびTyr228、またはSer190、Va1213およびTyr228で構成される新たな相互作用部位を見出した。この相互作用部位は、トリプシン型セリンプロテアーゼの阻害薬をドラッグデザインする場合に有用である。

以上から、本発明者は、S1ポケットにA1a190、Va1213および Tyr228、またはSer190、Va1213およびTyr228のアミノ 酸残基を有するトリプシン型セリンプロテアーゼの阻害薬の部分構造として、二

環性の芳香環基が好ましいことを見出し、本発明を完成した。 すなわち、本発明は、下記の一般式(1)または(2)

$$R^{\frac{1}{1}} \underbrace{\chi_{1} \times \chi_{2}}_{X_{4} \times X_{3}}$$
 (1)

(式中、 R^1 および R^2 は、水素原子、C1-C3のアルキル基、ハロゲン原子、C2-C3のアルケニル基またはエチニル基を示し、 R^3 および R^4 は、水素原子、水酸基またはアミノ基を示し、 X_1 、 X_2 、 X_3 および X_4 は、CHまたはNを示し、 Y_1 および Y_2 は、CHまたはNを示し、 Y_3 は、NH、OまたはSを示す。)で表される基を有する化合物をトリプシン型セリンプロテアーゼに作用させ、当該基がトリプシン型セリンプロテアーゼのS1ポケットに進入することによってトリプシン型セリンプロテアーゼを阻害する方法を提供するものである。

また、本発明は、トリプシン型セリンプロテアーゼを阻害する化合物であって、トリプシン型セリンプロテアーゼのS1ポケットに進入する上記の一般式(1)または(2)で表される基を有する化合物を提供するものである。

また、本発明は、上記の一般式(1)または(2)で表される基を有し、当該基がFXaOS1ポケットに進入することによってFXa阻害作用を発現する化合物を提供するものである。

また、本発明は、上記の方法によりトリプシン型セリンプロテアーゼを阻害する化合物またはFXaを阻害する化合物を有効成分とする医薬を提供するもので

ある。

また、本発明は、上記の方法によりトリプシン型セリンプロテアーゼを阻害する化合物を有効成分とするトリプシン型セリンプロテアーゼ阻害薬を提供するものである。

また、本発明は、上記の方法により FX a を阻害する化合物を有効成分とする FX a 阻害薬を提供するものである。

さらに本発明は、上記のトリプシン型セリンプロテアーゼを阻害する化合物とトリプシン型セリンプロテアーゼとの複合体の結晶をX線解析して得られたデータを利用して、トリプシン型セリンプロテアーゼを阻害すると予想される薬物をコンピュータを使用してスクリーニングする方法を提供するものである。

図面の簡単な説明

図1は、FXaのS1ポケットを示す概念図である。

図 2 は、D X - 9 0 6 5 a または F X - 2 2 1 2 a が S 1 ポケットと相互作用していることを示す概念図である。

図3は、X線結晶解析の結果に基づく5-クロロインドール-2-スルホニル基とFXaのS1ポケットとの相互作用を示す概念図である。なお、図中、Trp215のインドール環は、省略している。

図4は、化合物(5)とFXaとの複合体のX線結晶解析結果に基づく5-クロロインドールー2-スルホニル基とその基中の塩素原子から 9×10^{-8} c m以内にあるS1ポケットの原子を示すステレオ図である。

図5は、ウシのトリプシンとナフタレン誘導体(8)との複合体のX線結晶解析に基づいて、6-クロロナフタレン-2-スルホニル基がS1ポケットに進入していることを示すステレオ図である。

図6は、FXaのS1ポケットと5-クロロインドリル基との相互作用を示す 概念図である。

発明を実施するための最良の形態

上記の一般式(1)または(2)におけるC1-C3のアルキル基とは、メチル基、エチル基、n-プロピル基、イソプロピル基およびシクロプロピル基を示す。また、C2-C3のアルケニル基とは、ビニル基、アリル基またはイソプロペニル基を示す。ハロゲン原子としては、フッ素、塩素、臭素およびヨウ素を示す。

トリプシン型セリンプロテアーゼとは、前述のようにアルギニン残基等の塩基性アミノ酸残基を認識して基質特異性を発揮するトリプシン型の基質特異性を有するセリンプロテアーゼを意味する。そのようなトリプシン型セリンプロテアーゼは、基質特異性の発揮と深く係わっているAsp189をS1ポケットに有する。

また、一般式(1)または(2)で表される基がS1ポケットに進入してトリプシン型セリンプロテアーゼを阻害するとは、一般式(1)または(2)で表される基がS1ポケットに進入するために、基質の塩基性アミノ酸残基の側鎖がS1ポケットに進入することを妨害し、トリプシン型セリンプロテアーゼの基質認識機能を阻害し、ペプチド切断機能を妨げることをいう。一般式(1)または(2)で表される基がS1ポケットに進入していることは、トリプシン型セリンプロテアーゼと一般式(1)または(2)で表される基を有する化合物、その塩またはそれらの溶媒和物との複合体のX線結晶解析で確認することができる。ただし、それらの複合体の全てが、必ず結晶化でき、X線結晶解析できるとは限らない。また、一般式(1)または(2)で表される基は、単にS1ポケットに進入するだけではなく、S1ポケットを形成しているアミノ酸残基と相互作用していると考えられる。そのようなS1ポケット全体との相互作用としては、

- 1) 疎水性の相互作用
- 2) 下記の相互作用

a) S1ポケットを形成しているアミノ酸残基からなるβ-シートとインドール環(またはベンゾチオフェン環もしくはナフタレン環) とのスタッキング

- b) S1ポケットを形成しているアミノ酸残基からなるペプチド結合とインドール環(またはベンゾチオフェン環もしくはナフタレン環)とのπ-π相互作用
- c) S1ポケットを形成しているアミノ酸残基の側鎖とインドール環(またはベンゾチオフェン環もしくはナフタレン環)とのCH-π相互作用などが挙げられる。従来は、これらに加えて、Asp189とのイオン結合による相互作用が知られていたが、本発明におけるトリプシン型セリンプロテアーゼ阻害薬の部分構造(1)および(2)は、S1ポケット全体との相互作用に加えて、A1a190、Va1213およびTyr228、またはSer190、Va1213およびTyr228で構成される部位と疎水性の相互作用をしていることが特徴である。

以下に、一般式(1)または(2)で表される基について詳述する。

一般式(1) または(2) で表される基は、下記の一般式(3) および(4)

$$R^{1} \xrightarrow{X_{1} \times X_{2}} A$$

$$X_{4} \xrightarrow{X_{3}} A$$

$$R^{3}$$

$$(3)$$

$$R^{2} \xrightarrow{Y_{1}} B \xrightarrow{Y_{2}} (4)$$

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 X_1 、 X_2 、 X_3 、 X_4 、 Y_1 、 Y_2 および Y_3 は、前記と同じものを示し、AおよびBは、スルホニル基、カルボニル基、メチレン基、酸素原子、イオウ原子または窒素原子を示す。)で示される様に、リンカー部分A

またはBと結合し、更に各種の基と結合してトリプシン型セリンプロテアーゼを 阻害する化合物を形成するのが好ましい。

- 一般式(3)および(4)で表される部分構造の具体例としては、
- 1) ナフタレン-2-スルホニル基、インドール-2 (または3) -スルホニル基、ベンゾフラン-2 (または3) -スルホニル基、ベンゾチオフェン-2 (または3) -スルホニル基、ベンゾチオフェン-2 (または3) -スルホニル基、ベンツイミダゾール-2-スルホニル基、ベンゾチアゾール-2-スルホニル基、インダゾール-3-スルホニル基、ベンツオキサゾール-2-スルホニル基、ベンツイソキサゾール-3-スルホニル基等の二環性 芳香環スルホニル基、
- 2) ナフタレン-2-カルボニル基、インドール-2 (または3) -カルボニル基、ベンゾフラン-2 (または3) -カルボニル基、ベンゾチオフェン-2 (または3) -カルボニル基、ベンツイミダゾール-2-カルボニル基、ベンゾチアゾール-2-カルボニル基、インダゾール-3-カルボニル基、ベンツオキサゾール-2-カルボニル基、ベンツイソキサゾール-3-カルボニル基等の二環性 芳香環カルボニル基、
- 3) ナフタレン-2-メチル基、インドール-2(または3)-メチル基、ベンゾフラン-2(または3)-メチル基、ベンゾチオフェン-2(または3)-メチル基、ベンゾチアゾール-2-メチル基、インダゾール-3-メチル基、ベンツオキサゾール-2-メチル基、ベンツイソキサゾール-3-メチル等の二環性芳香環メチル基、
- 4) ナフタレン-2-オキシ基、インドール-2(または3)-オキシ基、ベンゾフラン-2(または3)-オキシ基、ベンゾチオフェン-2(または3)-オキシ基、ベンゾチアゾール-2-オキシ基、インダゾール-3-オキシ基等の二環性芳香環オキシ基、
- 5) ナフタレン-2-チオ基、インドール-2(または3)-チオ基、ベンゾフラン-2(または3)-チオ基、ベンゾチオフェン-2(または3)-チオ基、

ベンツイミダゾールー2ーチオ基、ベンゾチアゾールー2ーチオ基、インダゾールー3ーチオ基等の二環性芳香環チオ基、

6) ナフタレン-2-アミノ基、インドール-2(または3)-アミノ基、ベンゾフラン-2(または3)-アミノ基、ベンゾチオフェン-2(または3)-アミノ基、ベンゾチアゾール-2-アミノ ミノ基、ベンツイミダゾール-2-アミノ基、ベンゾチアゾール-2-アミノ 基、インダゾール-3-アミノ基、ベンツオキサゾール-2-アミノ基、ベンツ イソキサゾール-3-アミノ基等

の二環性芳香環アミノ基を挙げることができる。

これらの基のベンゼン環部分の置換基R¹およびR²としては、フルオロ基、クロロ基、ブロモ基、ヨード基やエチニル基等が好ましく、中でもクロロ基、ブロモ基およびエチニル基がより好ましい。また、一般式(3)および(4)で表される部分構造の中でも、特に

- (1) 6-クロロナフタレン-2-スルホニル基、6-クロロナフタレン-2-カルボニル基、6-エチニルナフタレン-2-スルホニル基、6-エチニルナフタレン-2-カルボニル基、
- (2) 5 クロロインドール 2 スルホニル基、5 クロロインドール 2 カルボニル基、5 エチニルインドール 2 スルホニル基、5 エチニルインドール 2 カルボニル基、
- (3) 6 クロロベンゾチオフェン-2 スルホニル基、6 クロロベンゾチオフェン-2 カルボニル基、6 エチニルベンゾチオフェン-2 スルホニル基、6 エチニルベンゾチオフェン-2 カルボニル基、
- (4) 5 クロロベンゾフラン-2 スルホニル基、5 クロロベンゾフラン-2 カルボニル基、5 エチニルベンゾフラン-2 スルホニル基、5 エチニルベンゾフラン-2 カルボニル基等が好ましい。

前述のように、FXaのS1ポケットの深部にはA1a190、Va1213 およびTyr228から形成されている疎水性の空間があり、ウシのトリプシン

においてもSer190、Va1213およびTyr228から形成されている同様な空間がある。それらの空間は、クロロ基またはエチニル基で占有されている。本発明における部分構造の中でも、6-クロロナフタレン-2-スルホニル基、5-クロロインドール-2-スルホニル基、6-クロロナフタレン-2-カルボニル基、5-クロロインドール-2-カルボニル基、6-エチニルナフタレン-2-スルホニル基、5-エチニルインドール-2-スルホニル基、6-エチニルナフタレン-2-カルボニル基、5-エチニルインドール-2-カルボニル基等が特に好ましいが、その理由はクロロ基やエチニル基が上記の空間を占有し、その空間を形成しているアミノ酸残基と相互作用をしていることによる。特に、Tyr228との疎水性の相互作用の寄与が大きいと考えられる。

したがって、本発明においては、上で述べた好ましい基を部分構造とする化合物が好ましいトリプシン型セリンプロテアーゼの阻害薬となる。

ところで、前述のようにFXaに限らず他のトリプシン型セリンプロテアーゼも、類似のS1ポケットを有する。したがって、ヒトのFXaとウシのトリプシンの阻害に関して得られた知見は、他のセリンプロテアーゼにも適用できる。以下、この点について詳述する。

FXaはS1ポケットの深部にA1a190、Va1213およびTyr2228から形成されている疎水性の空間を有するが、その部分がSer190、Va1213およびTyr228から形成されている空間に変化しているウシのトリプシンでも、同様な二環性芳香環基、例えば6ークロロナフタレンー2ースルホニル基などがS1ポケットおよびS1ポケット中の上記の疎水性の空間と相互作用している。このことは、FXaのS1ポケットにおけるA1a190、Va1213およびTyr228から形成されている疎水性の空間が、Ser190、Va1213およびTyr228に変化したウシのトリプシンにおいても、阻害薬の部分構造として共通の二環性芳香環基が利用できることを示している。このように、本発明の二環性芳香環基は、トリプシン型セリンプロテアーゼ

全般に対して広く適用可能であり、特に、S1ポケットに

- 1) Ala190, Val213およびTyr228,
- 2) Ser 190, Val 213 およびTyr 228,
- 3) Ser190、Thr213およびTvr228、
- 4) Ala190, Val213 およびPhe228,
- 5) Thr190、Thr213およびTyr228、
- 6) Ala190、Ile213およびTvr228、
- 7) Ser190、Ile213およびTyr228、
- 8) Gly190, Thr213 およびTyr228、または
- 9) Thr190、Thr213およびTyr228

から形成されている空間を有するトリプシン型セリンプロテアーゼに対して有用 である。これらのアミノ酸残基から形成されている空間を有するヒトのトリプシ ン型セリンプロテアーゼを以下に例示する。A1a190、Va1213および Tvr228の例としては、FXa、トロンビン、活性化プロテインC(PDB code:1AUT) 等を挙げることができる。Ser190、Val213 およびTvr228の例としては、ヒト(およびウシ)のトリプシン(PDB code:1TRN)、コンプレメント・ファクターD(PDB code: 1BIO)、活性化血液凝固因子Ⅵa(PDB code:1DAN)、トリプ ターゼ(PDB code:1A0L)等を挙げることができる。Ser 190、Thr213およびTvr228の例としては、エンテロペプチダーゼ (PDB code: 1EKB) 等を挙げることができる。Ala190、 Ile213およびTyr228の例としては、t-PA(PDB code: 1A5H)等を挙げることができる。Ser190、Ile213およびTyr 228の例としては、血液凝固因子IXa (PDB code: 1RFN) 等を挙 げることができる。Gly190、Thr213およびTyr228の例として は、プラスミン(PDB code:1BUI)等を挙げることができる。な

お、これらのトリプシン型セリンプロテアーゼの例は、本発明を適用できるトリプシン型セリンプロテアーゼについて何ら限定するものではない。

本発明の理解を促進するために、以下にS1ポケットに進入することによって 阻害作用を発現しているFXa阻害薬を例を示すが、本発明のトリプシン型セリ ンプロテアーゼ阻害薬の範囲について何ら限定するものではない。

具体的なFXa阻害薬の例としては、下記の一般式(9)

$$X \xrightarrow{R^6} N \xrightarrow{0} R^5$$
 (9)

(式中、Aはベンゼン環、ピロール環、フラン環、チオフェン環、イミダゾール環、チアゾール環、オキサゾール環、イソキサゾール環またはピラゾール環を示し、Xはハロゲノ基またはエチニル基を示し、R⁶は置換基を有することもある不飽和の5員-6員または6員-6員の二環性縮合複素環またはそれらのテトラヒドロ体を示し、R⁶は炭素数1~6のアルキル基、炭素数1~6のアルコキシル基を有するアルコキシカルボニル基、炭素数1~6のカルボキシアルキル基、炭素数1~6のアルコキシカルボニルアルキル基、炭素数1~6のアルコキシカルボニルアルキル基、置換基を有することもあるカルバモイル基または置換基を有することもあるカルバモイルをまたは置換基を有することもあるカルバモイルアルキル基を示す。)で表されるFXa阻害薬を挙げることができる。

上記化合物における置換基について以下に説明する。ハロゲノ基とは、フルオロ基、クロロ基、ブロモ基およびヨード基を意味し、クロロ基およびブロモ基が好ましい。不飽和の5員-6員または6員-6員の二環性縮合複素環とは、イソキノリン、キノリン、インドール、ベンゾフラン、ベンゾチオフェン、ベンツイ

ミダゾール、ベンゾチアゾール、インダゾール、チエノピリジン、フロピリジ ン、ピロロピリジン、チアゾロピリジン、オキサゾロピリジンまたはオキサゾロ ピリダジンを具体的な例として挙げることができ。チエノピリジン、フロピリジ ン、ピロロピリジン、チアゾロピリジン、オキサゾロピリジンおよびオキサゾロ ピリダジンの好ましい縮合形式は、チエノ [2,3-c] ピリジン、フロ [2, 3-c] ピリジン、ピロロ [2, 3-c] ピリジン、チアゾロ [5, 4-c] ピ リジン、オキサゾロ「5、4-c] ピリジンおよびオキサゾロ「4、5-d] ピ リダジンである。これらの二環性縮合複素環に置換することもある基としては、 アルキル基、水酸基、炭素数1~6のアルキル基でモノまたはジ置換されたアミ ノ基、またはメタンスルホニル基を挙げることができる。モノまたはジ置換され たアミノ基の具体例としては、メチルアミノ基、エチルアミノ基、プロピルアミ ノ基、ブチルアミノ基、シクロペンチルメチルアミノ等の炭素数1~6の直鎖 状、分枝状または環状のアルキル基によってモノ置換されたアミノ基、ジメチル アミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、Nーメ チルーN-エチルアミノ基、N-エチル-N-プロピルアミノ基、N-メチルー N-シクロペンチルアミノ基、N-メチル-N-シクロペンチルメチルアミノ基 等の炭素数 1 ~ 6 の直鎖状、分枝状または環状のアルキル基によってジ置換され たアミノ基、ピロリジノ基、ピペリジノ基、ホモピペリジノ基等の3~7員の脂 肪族環状アミノ基、モルホリノ基、ピペラジノ基等の上記の3~7員の脂肪族環 状アミノ基の環内に、さらに窒素原子、酸素原子およびイオウ原子から選ばれる 1または同種もしくは異種の複数のヘテロ原子を含む3~7員の環状アミノ基を 挙げることができる。

置換基を有することもあるカルバモイル基としては、無置換のカルバモイル基 (H₂NCO-)の他に、メチルアミノカルボニル基、エチルアミノカルボニル 基、プロピルアミノカルボニル基、イソプロピルアミノカルボニル基、ブチルア ミノカルボニル基、イソブチルアミノカルボニル基、ペンチルアミノカルボニル

基、イソペンチルアミノカルボニル基、ヘキシルアミノカルボニル基、イソヘキ シルアミノカルボニル基、シクロプロピルアミノカルボニル基、シクロペンチル メチルアミノカルボニル基等の炭素数1~6の直鎖状、分枝状または環状のアル キル基によるモノ置換アミノカルボニル基、ジメチルアミノカルボニル基、ジエ チルアミノカルボニル基、ジプロピルアミノカルボニル基、ジイソプロピルアミ ノカルボニル基、ジブチルアミノカルボニル基、ジイソブチルアミノカルボニル 基、ジペンチルアミノカルボニル基、メチルエチルアミノカルボニル基、エチル プロピルアミノカルボニル基、メチルイソプロピルアミノカルボニル基、メチル ブチルアミノカルボニル基等の炭素数1~6の直鎖状、分枝状または環状の同種 もしくは異種のアルキル基によりジ置換されたアミノカルボニル基、ピペリジノ カルボニル基、ピロリジノカルボニル基等の3~7員の脂肪族環状アミノカルボ ニル基、モルホリノカルボニル基、ピペラジノカルボニル基等のような上記の3 ~ 7 員の脂肪族環状アミノカルボニル基の脂肪族環状アミノ基の環内に窒素原 子、酸素原子およびイオウ原子から選ばれる1または同種もしくは異種の複数の ヘテロ原子を有する環状アミノカルボニル基を挙げることができる。置換基を有 することもあるカルバモイルアルキル基としては、炭素数1~6のアルキル基に 上記の置換基を有することもあるカルバモイル基が置換した基を挙げることがで きる。

上記のFXa阻害薬においては、S1ポケットと相互作用する部分構造だけではなく、Tyr99、Phe174およびTrp215から構成されるアリールバインディング・サイトと称される基質との相互作用部位を有している。したがって、FXa阻害薬の構造式中に、S1ポケットと相互作用する部分構造とともに、アリールバインディング・サイトと相互作用する疎水性の置換基があればより強力なFXa阻害作用を発揮する。トリプシン型セリンプロテアーゼは、FXaと同様なアリールバインディング・サイトを必ずしも持ってる訳ではない。それぞれのトリプシン型セリンプロテアーゼに選択的かつ強力な阻害作用を

有する薬物を創出するためには、当然のことながら、S1ポケットと相互作用する部分構造以外の部分についても工夫が必要となることは言うまでもない。

また、本発明においては、経口吸収性のよいトリプシン型セリンプロテアーゼの阻害薬の開発を目的としている。したがって、一般式(1)もしくは(2)または一般式(3)もしくは(4)で表される基を有するトリプシン型セリンプロテアーゼ阻害薬は、経口吸収が可能な範囲の分子量の化合物であり、その分子量が1000以下であるものが好ましく、600以下であるものが特に好ましい。また、これらの化合物は、塩や溶媒和物を形成していてもよいことはいうまでもない。

また、FXa阻害薬は、血液凝固を抑制し、血栓の予防薬および/または治療薬となる。FXaに限らず、上述のトリプシン型セリンプロテアーゼの例として挙げた酵素は、基質特異性が高く、生理学的に重要な役割を果たしている蛋白の活性化等に関与している。したがって、トリプシン型セリンプロテアーゼを阻害する化合物は、医薬としての有用性を有している可能性が高い。

さらに、一般式(1)もしくは(2)または一般式(3)もしくは(4)で表される基を有する化合物とトリプシン型セリンプロテアーゼとの複合体の結晶を X線解析して得られるデータを、本発明のトリプシン型セリンプロテアーゼの S1ポケットに進入する基を有する新たなトリプシン型セリンプロテアーゼ阻害 薬の創出に利用することができる。すなわち、それらの結晶を X 線解析して得られたデータを利用して、トリプシン型セリンプロテアーゼを阻害すると予想される薬物をコンピュータを使用してスクリーニングすることもできる。その場合に は、例えば、 UNIX コンピュータ(シリコングラフィックス社)上で Quanta または Insight II 等のソフトウェアを使用すればよい。

以下に、本発明のトリプシン型セリンプロテアーゼ阻害薬の例およびその活性を示し、それらの阻害薬とFXaまたはトリプシンとの複合体のX線解析結果の例を示す。

実施例

[実施例1] 1- [(5-tert-ブトキシカルボニル-4, 5, 6, 7-テトラヒドロチアゾロ [5, 4-c] ピリジン-2-イル)カルボニル] -4-(6-クロロナフタレン-2-イルスルホニル) -2-エトキシカルボニルピペラジン

$$\begin{array}{c|c} & \text{Et0}_2\text{C}_{\overline{z}_2} \\ & \text{N} & \text{O} \\ & \text{N} & \text{SO}_2 \end{array}$$

1- [(6-クロロナフタレン-2-イル)スルホニル] -3- [エトキシカルボニル] ピペラジン塩酸塩(WO94/21599) (742mg)、5-tertーブトキシカルボニルー4,5,6,7ーテトラヒドロチアゾロ[5,4-c] ピリジン-2-カルボン酸(WO96/10022) (1.00g)、ベンゾトリアゾールー1ーイルオキシートリスーピロリジノホスホニウム ヘキサフルオロホスファイト(1.50g)をN,Nージメチルホルムアミド(30m1)に溶解させ、トリエチルアミン(0.40m1)を加え室温で一晩攪拌した。反応液を減圧下濃縮し、残さに酢酸エチルを加え水、飽和食塩水で一回ずつ洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下で留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル40g、ヘキサン:酢酸エチル=4:1)により精製し、標題化合物(505mg,30%)を淡黄色泡状物質として得た。

 1 H-NMR (CDC1₃) δ: 1. 24-1. 37 (3H, m), 1. 47 (9 H, s), 2. 45-2. 60 (1H, m), 2. 62-2. 71 (1H, m), 2. 75-2. 90 (2H, m), 3. 65-3. 94 (3H, m), 4. 19-4. 31 (2H, m), 4. 45-4. 72 (4H, m), 5. 35

(1/2H, br s), 5. 71-5. 77(1/2H, m), 6. 72(1H, br s), 7. 58(1H, dd, J=8.8, 2.0Hz), 7. 7(1H, dd, J=8.8Hz, 2.0Hz), 7. 88-7. 92(3H, m), 8. 33(1H, s).

MS (FAB) m/z : 649 [(M+H) $^{+}$, C1 35], 651 [(M+H) $^{+}$, C1 37].

[実施例2] 1-[(5-tert-ブトキシカルボニル-4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c] ピリジン-2-イル)カルボニル] <math>-2-カルバモイル-4-(6-クロロナフタレン-2-イルスルホニル)ピペラジン

$$\begin{array}{c|c} & H_2NOC_{\mathbb{Z}} \\ \hline N & 0 \\ S & N \\ \end{array}$$

実施例1で得た化合物(487mg)をテトラヒドロフラン(5m1)に溶解し、メタノール(5m1)、1規定水酸化ナトリウム水溶液(3m1)を加え室温で4時間攪拌した。反応液に1規定塩酸を加えて液性をpH1~2に調製し、酢酸エチルを加えて分液し、有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下に留去した。得られた残さをテトラヒドロフラン(5m1)に溶解し、-20℃でN-メチルモルホリン(0.09m1)、イソブチルクロロホルメート(0.11m1)を順次滴下した。反応液を-20℃で10分間攪拌した後、飽和アンモニアージクロロメタン溶液(0.50m1)を加えて、-20℃で10分間攪拌した。反応液に、1規定塩酸-エタノール溶液(10m1)を加え反応液を室温まで昇温させた。反応液を減圧下に濃縮した後、残さをジクロロエタンに溶解し、1規定塩酸で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下に留去し、得られた残さをシリカゲルカラムクロマトグラフィー(ジク

ロロメタン:メタノール= $100:0\sim100:1$)により精製し、標題化合物 (317mg, 68%)を無色泡状物質として得た。

¹H-NMR (DMSO-d₆) δ: 1. 41 (9H, s), 2. 39-2. 86 (4H, m), 3. 60-3. 80 (4H, m), 4. 25-4. 34 (1H, m), 4. 36-4. 34 (1/2H, m), 4. 62 (2H, br s), 4. 97 (1/2H, br s), 5. 44-5. 52 (1/2H, m), 6. 19 (1/2H, br s), 7. 30-7. 39 (1H, m), 7. 63-7. 85 (3H, m), 8. 15 (1H, d, J=8. 8Hz), 8. 20-8. 29 (2H, m), 8. 48 (1H, s).

MS (FAB) m/z: 620 [(M+H) $^{+}$, C1 35], 622 [(M+H) $^{+}$, C1 37].

[実施例3] 2-カルバモイル-4-[(6-クロロナフタレン-2-イル)スルホニル] -1-[(4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c]ピリジン-2-イル)カルボニル]ピペラジントリフルオロ酢酸塩

$$\begin{array}{c|c} & H_2NOC \\ \hline N & 0 \\ \hline S & N \\ \end{array} \\ N - SO_2 \\ \end{array}$$

実施例2で得た化合物(303mg)にトリフルオロ酢酸(1m1)を加えた後、減圧下に濃縮し、析出した沈殿物をろ取してジエチルエーテルで洗浄し、標題化合物(263mg, 83%)を得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 2. 39-2. 70 (2H, m), 2. 92 -3. 06 (2H, m), 3. 42-3. 77 (4H, m), 4. 25-4. 5 0 (7/2H, m), 4. 97 (1/2H, br s), 5. 35-5. 44 (1/2H, m), 6. 14 (1/2H, br s), 7. 30-7. 39 (1

H, m), 7. 66-7. 73 (2H, m), 7. 77-7. 82 (1H, m), 8. 16 (1H, d, J=8. 8Hz), 8. 21-8. 28 (2H, m), 8. 49 (1H, s), 9. 26 (2H, br s). MS (FAB) m/z:520 [(M+H) +, C135], 522 [(M+H)

+, C 1 37].

元素分析: $C_{22}H_{22}C1N_5O_4S_2 \cdot CF_3CO_2H \cdot 0$. $6H_2O$ として、計算値: C, 44. 29; H, 3. 73; C1, 5. 40; F, 9. 55; N, 10. 6 7; S, 9. 77. 分析値:C, 44. 59; H, 3. 79; C1, 5. 2 6; F, 9. 54; N, 10. 28; S, 9. 72.

[実施例4] 2-カルバモイルー4ー [(6-クロロナフタレンー2-イル)スルホニル] -1- [(5-メチルー4,5,6,7-テトラヒドロチアゾロ [5, 4-c] ピリジンー2-イル)カルボニル] ピペラジン 塩酸塩

$$\begin{array}{c|c} & H_2NOC_{\overline{Z}} \\ \hline N & 0 \\ \hline N & N \\ \end{array} \qquad N - SO_{\overline{Z}} \\ \end{array}$$

実施例3で得た化合物(400mg)をジクロロメタン(10m1)に懸濁し、トリエチルアミン(0.08m1)、酢酸(0.03m1)を加え室温で5分間攪拌させた。反応液に30%ホルムアルデヒド水溶液(0.03m1)と、トリアセトキシ水素化ホウ素ナトリウム(96mg)を加え室温で10分間攪拌した。反応液を減圧下に濃縮し、残さにジクロロメタンを加え、水で2回、飽和食塩水で1回洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下に留去した。残さを1規定塩酸/エタノール溶液(10m1)に溶解した後、反応液を減圧下に濃縮した。析出した沈殿物をろ取し、酢酸エチルで洗浄し標題化合物(94mg,57%)を無色アモルファスパウダーとして得た。

¹H-NMR (DMSO-d₆) δ : 2. 37-2. 70 (2H, m), 2. 91 (3H, s), 3. 00-3. 78 (6H, m), 4. 28-4. 77 (7/2 H, m), 4. 97 (1/2H, br s), 5. 40-5. 50 (1/2H, m), 6. 14 (1/2H, br s), 7. 32-7. 40 (1H, m), 7. 68-7. 75 (2H, m), 7. 77-7. 83 (1H, m), 8. 15 (1H, d, J=8. 8Hz), 8. 21-8. 28 (2H, m), 8. 49 (1H, s).

MS (FAB) m/z: 534 [(M+H) $^{+}$, C1 35], 536 [(M+H) $^{+}$, C1 37].

元素分析: C₂₃H₂₄C1N₅O₄S₂・HC1・2.5H₂Oとして、計算値: C, 4 4.88; H, 4.91; C1, 11.52; N, 11.38; S, 10.4 2.分析値: C, 44.83; H, 4.89; C1, 11.65; N, 11.3 1; S, 10.46.

[実施例5] 1-[(5-クロロインドール-2-イル) スルホニル] -4- [(5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ [<math>5, 4-c] ピリジン-2-イル) カルボニル] ピペラジン 塩酸塩

1) 5-エトキシカルボニルー4, 5, 6, 7-テトラヒドロチアゾロ [5, 4-c] ピリジン

五硫化二燐(500g)を氷冷下でホルムアミド(3000m1)に懸濁し、一晩攪拌した。反応液に水とジエチルエーテルを加えて分液し、得られた有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去し黄色油状物質を得た。これを n ーブタノール (350m1) に溶解させ、文献 (Tetrahedron、39

巻, 3767-3776頁, 1983年) に記載の方法により合成した3-クロロー1-エトキシカルボニルー4ーピペリジンー4ーオン(150g)を加えた後、100℃で2.5時間攪拌させた。反応液を室温まで冷却した後、セライトを用いてろ過し、ろ液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥し溶媒を留去して得た残さをシリカゲルカラムクロマトグラフィー(ジクロロメタン~酢酸エチル:ヘキサン=1:2)により精製し、標題化合物(79.0g)を褐色油状物質として得た。「HーNMR(CDC13)る:1.30(3H,t,J=7.3Hz),2.96(2H,brs),3.82(2H,brs),4.19(2H,t,J=7.3Hz),4.73(2H,brs),8.68(1H,s).MS(FAB)m/z:213(M+H)[†].

2) 5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ [5, 4-c] ピリジン

上で得た化合物(21.0g)を無水テトラヒドロフラン(500m1)に溶解し、氷冷下でリチウムアルミニウムヒドリドのテトラヒドロフラン溶液(1.0M,200m1)を加えて室温で2時間攪拌した。反応液に水(7m1)をゆっくり加えて反応を停止した後、1規定水酸化カリウム水溶液(7m1)、無水硫酸マグネシウムを順次加えた。反応液をセライトを用いてろ過し、ろ液を減圧下に濃縮した。得られた残さを減圧蒸留(1.5mmHg、沸点82-85℃)により精製し、標題化合物(6.10g)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 2. 52 (3H, s), 2. 83 (2H, t, J = 5. 9Hz), 2. 98 (2H, t, J=5. 9Hz), 3. 70 (2H,

s), 8. 63 (1H, s).

MS (FAB) $m/z : 155 (M+H)^{+}$.

3) リチウム 5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ [5, 4-c] ピリジン-2-カルボキシレート

上で得た化合物(6. 43g)を無水テトラヒドロフラン(200m1)に溶解し、-78℃でn-ブチルリチウムのn-ヘキサン溶液(1. 47M, 34. 00m1)を滴下し40分間攪拌した。反応液に-78℃で炭酸ガスを1時間吹き込んだ後、室温まで昇温させた。反応液を減圧下に濃縮し標題化合物(9. 42g)を淡褐色泡状固体として得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 2. 37 (3H, s), 2. 64-2. 77 (4H, m), 3. 54 (2H, s).

4) 5-クロロー1-フェニルスルホニルインドール

5-クロロインドール(2.86g)のテトラヒドロフラン(25m1)溶液に<math>-78 \mathbb{C} にてn-ブチルリチウム(1.61 \mathbb{M} \mathbb{M}

ムクロマトグラフィー(ヘキサン:酢酸エチル=5:7)で精製し、得られた白色固体をエタノールから再結晶して白色固体として標題化合物(5.38g,93%)を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 6. 61 (1H, d, J=3. 9Hz), 7. 2 6 (1H, dd, J=8. 3, 2. 0Hz), 7. 45 (2H, t, J=7. 3 Hz), 7. 50 (1H, d, J=2. 0Hz), 7. 56 (1H, m), 7. 59 (1H, d, J=3. 9Hz), 7. 86 (2H, m), 7. 92 (1H, d, J=8. 3Hz).

元素分析: C₁₄H₁₀C1NO₂Sとして、計算値: C, 57.63; H, 3.4 5; C1, 12.15; N, 4.80; S, 10.99. 分析値: C, 57. 82; H, 3.58; C1, 11.91; N, 4.79; S, 10.92.

5) (5-クロロ-1-フェニルスルホニルインドール-2-イル) スルホニル クロリド

上で得た化合物(5.38g)のエーテル(100m1)溶液に-78℃にて tert-ブチルリチウム(1.56 M ペンタン溶液,10.4m1)を滴 下後、30分で0℃まで昇温させた。1時間攪拌後、反応混液を再び-78℃に 冷却して亜硫酸ガスを導入し、1時間で室温まで昇温後、1時間攪拌した。反応 液を減圧下濃縮した後、ヘキサンを加えて再び減圧下濃縮した。得られた残渣を ジクロロメタンに溶解し、0℃にてN-クロロスクシンイミド(2.47g)を 加え、1時間で室温まで昇温して30分間攪拌した。反応液にジクロロメタンと 水を加え分液し、有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去して

得られた残渣をメタノールから固化し、白色固体として標題化合物 (4.41 g, 64%) を得た。

 1 H-NMR(CDC1₃) δ : 7. 46-7. 54(2H, m), 7. 58(1H, dd, J=9. 3, 2. 0Hz), 7. 63(1H, t, J=7. 3Hz), 7. 64(1H, s), 7. 67(1H, d, J=2. 0Hz), 8. 06(2H, d, J=7. 3Hz), 8. 26(1H, d, J=9. 3Hz). MS(EI)m/z:291(M⁺, C1³⁵),293(M⁺, C1³⁷). 元素分析: $C_{14}H_{9}C1_{2}NO_{4}S_{2}$ として、計算値:C, 43. 09;H, 2. 32;C1, 18. 27;N, 3. 59;S, 16. 43. 分析値:C, 42. 98;H, 2. 51;C1, 18. 36;N, 3. 59;S, 16. 47. 6)1-tert-ブトキシカルボニルー4- [(5ークロロー1ーフェニルスルホニルインドールー2ーイル)スルホニル

(5-2000-1-7) エニルスルホニルインドールー2ーイル)スルホニルクロリド(4.41g)のジクロロメタン溶液(75m1)に、氷冷下 tertーブチル 1-ピペラジンカルボキシレート(2.21g)、トリエチルアミン(1.65m1)を加えて室温で3時間攪拌した。反応終了後、水とジクロロメタンを加え分液し、有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:20)で精製し、標題化合物(3.63g, 60%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:1.45$ (9H, s), 3.35-3.42 (4

H, br), 3. 50-3. 55(4H, br), 7. 40-7. 48(4H, m), 7. 53-7. 58(2H, m), 8. 00-8. 05(2H, m), 8. 23(1H, d, J=8.8Hz).

7) 1- [(5-クロロインドール-2-イル) スルホニル] ピペラジン 塩酸塩

$$HN$$
 $N-SO_2$
 N
 H

上で得た化合物(3.63g)をメタノール(100m1)に溶解し、氷冷下0.2規定水酸化ナトリウムメタノール溶液(100m1)を加え室温で12時間攪拌した。氷冷下に飽和塩化アンモニウム水溶液を加えた後、水とジクロロメタンを加えて分液し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下濃縮して析出した固体をろ取し、飽和塩酸エタノールに溶解して30分間攪拌した。溶媒を減圧下留去して、標題化合物(1.25g,54%)を無色粉末として得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 3. 25-3. 43 (8H, br), 7. 4 6 (1H, d, J=8. 8Hz), 7. 64 (1H, d, J=8. 8Hz), 7. 93 (1H, s), 9. 33 (1H, br), 12. 70 (1H, br). MS (EI) m/z: 298 (M⁺, C1³⁵), 300 (M⁺, C1³⁷).

元素分析: $C_{12}H_{14}C1N_3O_2S \cdot HC1 \cdot 0.5H_2O$ として、計算値: C,41.75; H,4.67;C1,20.54;N,12.17;S,9.29.

実測値: C, 41. 78; H, 4. 98; C1, 20. 40; N, 11. 88; S, 9. 34.

ル)カルボニル] ピペラジン 塩酸塩

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

1- [(5-クロロインドール-2-イル)スルホニル] ピペラジン(400 mg)のN, N-ジメチルホルムアミド溶液(100m1)に、室温で1-ヒドロキシベンズトリアゾール(10.5mg)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 塩酸塩(194mg)、リチウム (5-メチルー4,5,6,7-テトラヒドロチアゾロ [5,4-c] ピリジンカルボキシレート(175mg)、およびN-メチルモルホリン(86.8mg)を加え、室温で10時間攪拌した。反応終了後、反応溶媒を減圧留去し、蒸留水、酢酸エチルを加え水層を3回抽出し、合わせた有機層を蒸留水で4回洗浄した。これを無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(メタノール: 酢酸エチル=3:100)に付し、この精製物に1規定塩酸-エタノール溶液、蒸留水を加え、減圧下溶媒留去し、終夜60℃の加熱下で減圧下乾燥することにより、標題化合物(106mg)を褐色非晶質固体として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 2. 49 (3H, s), 2. 78-2. 83 (2H, m), 2. 85-2. 94 (2H, m), 3. 15-3. 28 (4H, br), 3. 67 (2H, s), 3. 82-3. 95 (2H, br), 4. 50-4. 65 (2H, br), 6. 96 (1H, d, J=2. 0Hz), 7. 32 (1H, dd, J=8. 8, 2. 0Hz), 7. 36 (1H, d, J=8. 8Hz), 7. 67 (1H, s), 8. 71 (1H, br).

MS (FAB) m/z: 480 [(M+H) +, C1 35], 482 [(M+H)

 $^{+}$, C 1 37].

元素分析: C₂₀H₂₂C1N₅O₃S₂・HC1・0.5 H₂Oとして、計算値: C, 44.64; H, 4.76; C1, 13.18; N, 13.02; S, 11.9 2. 実測値: C, 44.69; H, 4.72; C1, 13.36; N, 12. 76; S, 11.76.

[実施例6] 1-[(5-クロロベンゾ[b] フラン-2-イル) スルホニル] <math>-4-[(5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c] ピリジン-2-イル) カルボニル] ピペラジン 塩酸塩

1) (5-クロロベンゾ [b] フラン-2-イル) スルホニル クロリド

5-クロロベンゾ [b] フラン(362mg)のエーテル(5.0ml)溶液に-78℃で、tert-ブチルリチウム(1.56Mへプタン溶液)(1.6ml)を加え、-78℃で10分間攪拌後、0℃で2分間攪拌し、再び-78℃で3分間攪拌した。 亜硫酸ガスを-78℃で注入し、-78~-40℃で1.5時間、0℃で10分間攪拌した。 反応溶液を減圧下濃縮し、残った淡黄色の固体をヘキサンで洗浄後、ジクロロメタンの懸濁溶液(5.0ml)とし、0℃でN-クロロこはく酸イミド(355mg)を加え、0℃~室温で12時間攪拌した。ジクロロメタンで希釈後、水を加え二層とした。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮した。粗精製物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)で精製し、酢酸エチルに溶解後、ヘキサンを加え結晶化し、標題化合物(381mg, 64%)を淡緑色針状晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:7.57$ (1H, dd, J=8.8, 2.0H

z), 7. 59 (1H, s), 7. 61 (1H, d, J=8.8Hz), 7. 7 6 (1H, d, J=2.0Hz).

MS (EI) m/z : 250 (M⁺, C1³⁵), 252 (M⁺, C1³⁷).

元素分析: C₈H₄C l₂O₃Sとして、計算値: C, 38.27; H, 1.61; C1, 28.24; S, 12.77. 分析値: C, 38.33; H, 1.71; C1, 28.16; S, 12.57.

2) 1- [(5-クロロベンゾ [b] フラン-2-イル) スルホニル] ピペラジン 塩酸塩

1-(tert-ブトキシカルボニル)ピペラジン(195mg)のジクロロメタン (3.0ml)溶液に、(5-クロロベンゾ[b]フラン-2-イル)スルホニル クロリド(211mg)、トリエチルアミン(1.0ml)を加え室温で1時間攪拌した。ジクロロメタンで希釈し、2規定塩酸を加え二層とした。有機層を飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮した。粗精製物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製した。得られた精製物のジクロロメタン(1.0ml)溶液に、エタノール(2.0ml)、飽和塩酸エタノール溶液(2.0ml)を加え、室温で2日間攪拌した。濃縮後、エタノールと共沸し、析出した無色の沈殿物をろ取後、真空ポンプで乾燥し、標題化合物(264mg,93%)を白色粉末として得た。

 $^{1}H-NMR$ (DMSO- d_{6}) δ : 3. 20 (4H, br), 3. 45 (4H, br), 7. 62 (1H, d, J=8. 8Hz), 7. 76 (1H, s), 7. 85 (1H, d, J=8. 8Hz), 7. 96 (1H, s), 9. 41 (1H,

br).

MS (FAB) m/z: 3 0 1 [(M+H) +, C1 35], 3 0 3 [(M+H) +, C1 37].

元素分析: C₁₂H₁₃C 1 N₂O₃S・HC1・0. 1 H₂Oとして、計算値: C, 4 2. 51; H, 4. 22; C1, 20. 91; N, 8. 26; S, 9. 46. 分析値: C, 42. 38; H, 4. 33; C1, 20. 92; N, 8. 18; S, 9. 58.

3) 1-[(5-クロロベンゾ[b] フラン-2-イル) スルホニル] -4- [(5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c] ピリジン-2-イル) カルボニル] ピペラジン 塩酸塩

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

上で得た1-[(5-クロロベンゾ[b] フラン-2-イル) スルホニル] ピペラジンと実施例5の3)で得たリチウム 5-メチル-4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c] ピリジン-2-カルボキシレートから、実施例1と同様にして合成した。

 $^{1}H-NMR$ (DMSO-d₆) δ : 2. 91 (3H, s), 3. 11 (2H, b r), 3. 25-3. 90 (6H, m), 3. 76 (2H, br), 4. 30-4. 80 (4H, br), 7. 46 (1H, d, J=8. 8Hz), 7. 73 (1H, s), 7. 84 (1H, d, J=8. 8Hz), 7. 96 (1H, s), 11. 48 (1H, br).

MS (FAB) m/z: 481 [(M+H) +, C1 35], 483 [(M+H) +, C1 37].

元素分析: $C_{20}H_{21}C1N_4O_4S_2 \cdot 1$. 1HC1・0. 3 H_2O として、計算値:

C, 45. 63; H, 4. 35; C1, 14. 14; N, 10. 64; S, 1 2. 18. 分析値: C, 45. 81; H, 4. 29; C1, 13. 93; N, 10. 44; S, 12. 26.

[実施例7] 4 − [(5 − クロロインドール − 2 − イル) スルホニル] − 1 −
 [(5 − メチル − 4, 5, 6, 7 − テトラヒドロチアゾロ [5, 4 − c] ピリジンー2 − イル) カルボニル] − 2 − [[(モルホリンー4 − イル) カルボニル]
 メチル] ピペラジン 塩酸塩

1) 1-tert-ブトキシカルボニル-3-メトキシカルボニルメチルピペラジン

 $2000 \, \mathrm{m} \, 1$ ナスフラスコ中で、1,4 ージベンジルー2 ーメトキシカルボニルメチルピペラジン(30.4g)をメタノール(800 m 1)、濃塩酸(15 m 1)に溶解し、この溶液に水酸化パラジウム(1.5g)を加えた。次いでこの懸濁液を、室温、水素雰囲気下で4.5時間、激しく振盪させた。反応終了後、トリエチルアミン(31 m 1)を加え不溶物を溶解し、少し濃縮した後に、触媒をろ去し、ろ液を減圧下濃縮した。得られた残渣をジクロロメタンに溶解し、無水硫酸ナトリウムで乾燥した後、減圧下に溶媒を留去した。残渣にジクロロメタン(600 m 1)及びトリエチルアミン(27.5 m 1)を加えて溶解し、氷冷下に2ー(tertーブトキシカルボニルイミノ)ー2ーフェニルアセトニトリル(12.89g)を加えて、0℃で3.5時間攪拌した。さらに2ー(tertーブトキシカルボニルイミノ)ー2ーフェニルアセトニトリル(3.76g)を追加して、0℃から徐々に室温まで昇温させ、22時間攪拌した。攪拌終了後、溶媒を減圧下に留去し、残さをシリカゲルカラムクロマトグラ

フィー(1回目;ジクロロメタンとメタノール、2回目;ヘキサンと酢酸エチル、そして10%メタノールージクロロメタン)で精製し、標題化合物(9.77g,42%)を淡黄色アモルファスの粉末として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 1. 46 (9H, s), 2. 15-3. 10 (8 H, m), 3. 70 (3H, S), 3. 80-4. 00 (2H, m).

2) 1-[(5-クロロ-1-フェニルスルホニルインドール-2-イル)スルホニル]-3-(メトキシカルボニルメチル) ピペラジン

上で得たピペラジン(5.03g)のエタノール溶液(50m1)に飽和塩酸エタノール溶液(20m1)を加え、30分間攪拌した。減圧下に溶媒を留去した後、残さをジクロロメタン(200m1)に溶解した。これに、(5-クロロー1-フェニルスルホニルインドールー2ーイル)スルホニル クロリド(7.64g)、およびトリエチルアミン(9.5m1)を加え、室温で4時間攪拌した。反応液に蒸留水、ジクロロメタンを加えて有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を減圧下に留去し、得られた残留物をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン=1:50)で精製し、標題化合物(4.97g)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 2. 15-2. 30 (1H, br), 2. 34-2. 49 (2H, m), 2. 72-2. 76 (1H, m), 2. 90-3. 22 (3H, m), 3. 17-3. 25 (1H, m), 3. 67 (3H, s), 3. 71-3. 77 (2H, m), 7. 39-7. 47 (4H, m), 7. 52-

7. 58 (2H, m), 8. 02 (2H, d, J=7.8Hz), 8. 23 (1H, d, J=9.3Hz).

MS (FAB) m/z: 512 [(M+H) $^{+}$, C1 35], 514 [(M+H) $^{+}$, C1 37].

3) 1-(tert-ブトキシカルボニル)-4-[(5-クロロ-1-フェニルスルホニルインドール-2-イル)スルホニル]-2-(メトキシカルボニルメチル) ピペラジン

$$\begin{array}{c|c} \operatorname{MeO_2C} & & & \operatorname{CI} \\ \operatorname{Boc-N} & \operatorname{N-SO_2} & & & \operatorname{CI} \\ \\ & \operatorname{SO_2} & & & \\ \end{array}$$

上で得た1-[(5-クロロ-1-フェニルスルホニルインドール-2-イル) スルホニル] -3-(メトキシカルボニルメチル) ピペラジン (2.00g) のエタノール溶液 (250m1) に、室温でジー tert-ブチル ジカルボネート (3.91g) を加えて17時間攪拌した。反応溶液を減圧下に濃縮後、残さにジエチルエーテルを加えて析出した結晶をろ取し、標題化合物 (2.01g) を無色の結晶として得た。

¹H-NMR (CDC1₃) δ: 1. 45 (9H, s), 2. 45-2. 54 (1H, m), 2. 74-2. 86 (1H, m), 2. 92-3. 03 (1H, m), 3. 07-3. 27 (1H, m), 3. 37 (3H, s), 3. 67-3. 77 (2H, m), 3. 94-4. 06 (2H, m), 4. 52-4. 67 (1H, m), 7. 38-7. 49 (4H, m), 7. 57-7. 60 (2H, m), 8. 03 (2H, d, J=6. 8Hz), 8. 23 (1H, d, J=9. 3Hz).

MS (FAB) m/z: 612 [(M+H) +, C135], 614 [(M+H)

+, C 1 37 .

4) 1 - (tert-ブトキシカルボニル) - 4 - [(5-クロロインドールー2- イル) スルホニル] - 2 - [[(モルホリン-4-イル)] カルボニル] メチル] ピペラジン

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

上で得た1-(tert-ブトキシカルボニル)-4-「(5-クロロ-1-フェニルスルホニルインドールー2ーイル)スルホニル ー2ー(メトキシカル ボニルメチル) ピペラジン (1.0g) を1, 4-ジオキサン (100m1) に 溶解し、室温で1規定水酸化ナトリウム水溶液(4.9m1)を加えて、80℃ で6時間加熱攪拌した。氷冷下に飽和塩化アンモニウム水溶液を加えて反応溶液 を中性とした後、蒸留水を加え、ジクロロメタンで水層を4回抽出した。抽出液 を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残留物を減圧 乾燥後、ジクロロメタン(150m1)に溶解した。これに室温で1-ヒドロキ シベンゾトリアゾール1水和物(0.24g)、1-(3-ジメチルアミノプロ ピル) - 3 - エチルカルボジイミド塩酸塩(0.41g)、モルホリン (0.16g) およびN-メチルモルホリン(0.41g) を加えて、室温で 12時間攪拌した。反応液に蒸留水を加え、ジクロロメタンで水層を3回抽出し た。これを無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去し、得られた残留物 をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン=1: 50)で精製して、標題化合物(0.71g)を無色固体として得た。 ${}^{1}H-NMR$ (CDC1₃) $\delta:1.41$ (9H, s), 2.23-2.30 (3

H, m), 3. 34-3. 84 (12H, m), 3. 91-4. 12 (1H, m), 4. 49-4. 64 (1H, m), 6. 98 (1H, s), 7. 27-7. 33 (1H, m), 7. 37 (1H, d, J=8. 8Hz), 7. 66 (1H, s).

MS (FAB) m/z: 527 [(M+H) $^{+}$, C1 35], 529 [(M+H) $^{+}$, C1 37].

5) 4- [(5-クロロインドール-2-イル) スルホニル] -1- [(5-メ チル-4, 5, 6, 7-テトラヒドロチアゾロ [5, 4-c] ピリジン-2-イ ル) カルボニル] -2- [[(モルホリン-4-イル) カルボニル] メチル] ピ ペラジン 塩酸塩

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

1- (tert-ブトキシカルボニル) -4- [(5-クロロインドール-2 - イル) スルホニル] -2- [[(モルホリン-4-イル)] カルボニル] メチル] ピペラジン (710mg) のエタノール溶液 (50m1) に、室温で飽和塩酸エタノール溶液 (20m1) を加え、3時間攪拌した。反応溶液を減圧下で濃縮した。残さにジエチルエーテルとエタノールを加えて、析出した結晶をろ取した。これをN, N-ジメチルホルムアミド溶液 (50m1) とした後、室温で1ーヒドロキシベンゾトリアゾール1水和物 (68.8mg)、1- (3-ジメチルアミノプロピル-3-エチルカルボジイミド塩酸塩 (115.4mg)、リチウム 5-メチルー4,5,6,7-テトラヒドロチアゾロ [5,4-c] ピリジン-2-カルボキシレート (189.0mg) およびN-メチルモルホリン (140.5mg) を加え、室温で19時間攪拌した。反応液を減圧下濃縮し、

残さに水および酢酸エチルを加えて有機層を分取した。これを無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(メタノール:酢酸エチル=1:50)で精製し、ジエチルエーテルとジクロロメタンを加えて結晶化しろ取した。得られた結晶を1規定塩酸-エタノール溶液(0.5 m 1)と蒸留水少量に溶解した後、減圧下に溶媒を留去し、60℃の加熱下で減圧乾燥して標題化合物(187 m g)を黄色非晶質固体として得た。

¹H-NMR (DMSO-d₆) δ : 2. 66-2. 89 (3H, m), 2. 99 (3H, s), 3. 03-3. 29 (3H, m), 3. 34-3. 46 (1H, m), 3. 47-3. 72 (4H, m), 3. 75-3. 92 (8H, m), 4. 42-4. 53 (1. 5H, m), 4. 73-4. 81 (1H, m), 5. 10-5. 17 (0. 5H, m), 5. 39-5. 47 (0. 5H, m), 5. 82-5. 92 (0. 5H, m), 7. 12 (1H, br), 7. 41 (1H, dd, J=2. 0, 8. 8Hz), 7. 58 (1H, d, J=8. 8Hz), 7. 87 (1H, br), 12. 57 (1H, s).

[実施例8] 4-[(6-エチニルベンゾ[b] チエン-2-イル)スルホニル] -2-(N-メチルカルバモイル) -1-[(5-メチル-4,5,6,7-テトラヒドロチアゾロ[5,4-c] ピリジン-2-イル)カルボニル] ピペラジン

1) 6 - ブロモベンゾ [b] チオフェン

⁺, C 1 ³⁷]

6 - ブロモベンゾチオフェン-2 - カルボン酸(14g)と銅粉末(874 mg)をキノリン(45m1)に加え、油温220℃で2時間加熱攪拌した。放冷後、反応混合物にエーテルを加えて、銅粉末をろ去した。ろ液を1規定塩酸水溶液、1規定水酸化ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下に溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、淡黄色固体として標題化合物(5.56g)を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7. 29 (1H, d, J=5. 4Hz), 7. 4 2 (1H, d, J=5. 4Hz), 7. 46 (1H, dd, J=8. 3, 1. 5 Hz), 7. 67 (1H, d, J=8. 3Hz), 8. 01 (1H, d, J=1. 5Hz).

MS (EI) m/z : 212 (M⁺, Br⁷⁹), 214 (M⁺, Br⁸¹).

2) 6-トリメチルシリルエチニルベンゾ [b] チオフェン

6 ーブロモベンゾ [b] チオフェン (2.13g) をテトラヒドロフラン (15m1) に溶かし、トリフェニルホスフィン (787mg)、トリエチルア ミン (40m1)、N, Nージメチルホルムアミド (15m1)、トリメチルシ リルアセチレン (1.47g)、酢酸パラジウム (225mg)を加え、5時間 還流した。放冷後、ジクロロメタン (150m1)で希釈し、水、飽和食塩水で順次洗浄した。無水硫酸ナトリウムで乾燥後、減圧下に溶媒を留去し、シリカゲルカラムクロマトグラフィー (ヘキサン)で精製し、標題化合物 (1.38g)を得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:0.27$ (9H, s), 7.30 (1H, d, J=5.7Hz), 7.44 (1H, dd, J=8.3, 1.0Hz), 7.49 (1H, d, J=5.7Hz), 7.73 (1H, d, J=8.3Hz), 8.00 (1H, s).

 $MS (EI) m/z : 230 (M^{\dagger})$.

3) (6-トリメチルシリルエチニルベンゾ [b] チエン-2-イル) スルホニル クロリド

6ートリメチルシリルエチニルベンゾ [b] チオフェン(408mg)を乾燥ジエチルエーテル(10ml)に溶解し、-78℃に冷却して、tert-ブチルリチウム(1.54M n-ペンタン溶液,1.15ml)を滴下した。その後、30分かけて0℃まで昇温させ、同温度で1時間攪拌した。溶液を再び-78℃に冷却して亜硫酸ガスを導入し、1時間かけて室温まで昇温させた後、1時間攪拌した。反応液を減圧下濃縮した後、-10ml)を加えて、不溶の沈殿をろ取した。これをジクロロメタン(10ml)に溶解後、-10 でに冷却して、-10 に次分して、-10 に次分して、-10 に次分して、-10 に次分した。 これをジクロロメタン(10ml)に溶解後、-10 に次分して、-10 に次分した。 これをジクロロメタン(10ml)に溶解後、-10 に次分して、-10 に次分して、-10 に次分した。 有機層を無水流酸ナトリウムで乾燥し、減圧下に溶媒を留去して、淡黄色固体の標題化合物(498mg)を得た。

 $^{1}H-NMR$ (CDCl₃) $\delta:0.28$ (9H, s), 7.58 (1H, dd, J=8.3, 1.5Hz), 7.89 (1H, d, J=8.3Hz), 8.02 (1H, s), 8.10 (1H, s).

MS(EI) m/z:328 (M^{+} , C1³⁵), 330 (M^{+} , C1³⁷). 4) 1, 4-ジベンジル-2-(N-メチルカルバモイル) ピペラジン

1. 4 - ジベンジル - 2 - (エトキシカルボニル) ピペラジン (6 g) をエタ ノール (100m1) に溶解し、1規定水酸化ナトリウム水溶液 (18m1) を 加えて加熱還流した。反応の進行を追跡し、1規定水酸化ナトリウム水溶液を追 加(計28m1を使用)し、延べ2時間30分加熱還流した。反応液に1規定塩 酸を加え中和し、溶媒を減圧下に留去した。残渣にジクロロメタン(100 m1) を加えて、不溶物をろ去した後、1-エチル-3-(3-ジメチルアミノ プロピル)カルボジイミド塩酸塩(4.41g),1-ヒドロキシベンゾトリア ゾール1水和物(2.39g)、メチルアミン塩酸塩(1.79g)、トリエチ ルアミン(7.4m1)を加えて、室温で一晩攪拌した。有機層を水洗後、無水 硫酸ナトリウムで乾燥し、溶媒を減圧下に留去した。残渣をシリカゲルカラムク ロマトグラフィー(酢酸エチル)で精製し、標題化合物(3.88g)を得た。 $^{1}H-NMR$ (CDC1₃) $\delta:2.24-2.37$ (3H, m), 2.59-2. 62 (1H, m), 2. 73-2. 77 (1H, m), 2. 83, 2. 84 (計3H, 各m), 2. 89-2. 92 (1H, m), 3. 15-3. 18 (1 H, m), 3. 39 (1H, d, J=13.4Hz), 3. 48 (2H, s), 3. 75(1H, d, J=13.4Hz), 7.23-7.34(11H, d)m) .

5) 3-(N-メチルカルバモイル)-1-[(6-トリメチルシリルエチニルベンゾ[b] チエン-2-イル) スルホニル] ピペラジン

1, 4ージベンジルー2ー(Nーメチルカルバモイル)ピペラジン(437 mg)をメタノール(15m1)に溶解し、水酸化パラジウム(22mg)、濃塩酸(0.22m1)を加え、水素ガスを導入して(1気圧)、室温で1時間攪拌した。トリエチルアミン(0.9m1)を加えた後、パラジウムを濾去し、減圧下に溶媒を留去した。残渣をジクロロメタンに溶かし、トリエチルアミン(0.5m1)を加え、(6ートリメチルシリルエチニルベンゾ [b] チェンー2ーイル)スルホニル クロリド(399mg)を氷冷下にて加え、室温に戻してから20時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下に溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン=1:19)で精製し、淡黄色固体の標題化合物(462mg)を得た。

 1 H-NMR (CDC1 $_{3}$) δ : 0. 28 (9H, s), 1. 52 (1H, br s), 2. 57-2. 66 (2H, m), 2. 80, 2. 79 (計3H, 各 s), 2. 97 (1H, dt, J=3. 3, 11. 5Hz), 3. 09 (1H, dt, J=13. 2, 3. 1Hz), 3. 51 (1H, dd, J=9. 8, 3. 4Hz), 3. 59 (1H, dd, J=11. 7, 0. 98Hz), 3. 92 (1H, dd, J=11. 7, 2. 4Hz), 6. 56-6. 57 (1H, m), 7. 52 (1H, dd, J=8. 3, 0. 98Hz), 7. 77 (1H, s), 7. 82 (1H, d, J=8. 3Hz), 7. 97 (1H, s). MS (FAB) m/z: 436 (M+H) +

6) 2-(N-メチルカルバモイル)-1-[(5-メチル-4, 5, 6, 7-

テトラヒドロチアゾロ[5,4-c] ピリジン-2-イル) カルボニル] -4-[(6-トリメチルシリルエチニルベンゾ[b] チエン-2-イル) スルホニル] ピペラジン

3-(N-メチルカルバモイル)-1-[(6-トリメチルシリルエチニルベンゾ[b] チエン-2-イル) スルホニル] ピペラジン(218mg)をN, N-ジメチルホルムアミド(5m1)に溶かし、リチウム 5-メチルー4, 5, 6, 7-テトラヒドロチアゾロ[5, 4-c] ピリジン-2-カルボキシレート(188mg)、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(240mg)、1-ヒドロキシベンゾトリアゾール1水和物(68mg)を加え、室温で30時間攪拌した。反応液をジクロロメタンで希釈し、水で洗浄し、次いで飽和炭酸水素ナトリウムで洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン)で精製し、標題化合物(90mg)を得た。

MS (FAB) m/z : 616 (M+H) +

7) 4-[(6-x+x)(x)(b)] +x(x)-2-(x)(x)(x) +x(x)-2-(x)(x) +x(x)-2-(x) +x(x) +x(x) +x(x) +x(x) +x(x)

2-(N-メチルカルバモイル)-1-[(5-メチルー4,5,6,7ーテトラヒドロチアゾロ[5,4-c]ピリジン-2-イル)カルボニル]-4-[(6-トリメチルシリルエチニルベンゾ[b]チエン-2-イル)スルホニル]ピペラジン(270mg)をテトラヒドロフラン(1.5m1)とメタノール(1.5m1)の混合溶媒に溶解し、1規定水酸化ナトリウム水溶液(1.3m1)を加えて、室温で2時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて弱酸性とした後、飽和炭酸水素ナトリウム水溶液で弱アルカリ性とした。次いでジクロロメタンを加えて分液操作後、有機層を無水硫酸ナトリウムで乾燥後、減圧下に溶媒を留去した。得られた残さを分取用薄層クロマトグラフィー(メタノール:ジクロロメタン=1:9)およびSephadex LH-20(メタノール)で精製した。得られたアモルファス状物質をジクロロメタンに溶解してヘキサンに滴下して析出した固体をろ取して、淡灰色固体の標題化合物(82mg)を得た。

 1 H-NMR(CDC1₃) δ : 2. 49(3H, s), 2. 80-2. 90(10H, m), 3. 15-3. 18(1H, m), 3. 22(1H, s), 3. 53-3. 62(1H, m), 3. 67(1H, s), 4. 49(1H, d, J=12. 2Hz), 4. 65, 5. 74(計1H, 各d, J=13. 7Hz), 5. 26, 6. 18(計1H, 各s), 6. 45, 6. 49(計1H, 各s), 7. 54(1H, d, J=8. 3Hz), 7. 80(1H, s), 7. 82(1H, d, J=8. 3Hz), 7. 97(1H, s).

MS (FAB) $m/z : 544 (M+H)^{+}$.

[実施例9] (3S) -3-(6-クロロナフタレン-2-イル) スルホンアミ

ドー1ー [(4, 5, 6, 7ーテトラヒドロチエノ [3, 2-c] ピリジンー2 ーイル) メチル] ピロリジン 塩酸塩

1) (3S) - 3 - 7 = 1 - 1 - t e r t - ブトキシカルボニルピロリジン

(3R) -1 - t e r t - ブトキシカルボニル-3 - メタンスルホニルオキシピロリジン(1.50g)をN, N - ジメチルホルムアミド(20m1)に溶解させ、アジ化ナトリウム(736mg)を加え100℃で6時間攪拌した。反応液を減圧濃縮し、残さに酢酸エチルを加え、水で1回、飽和食塩水で1回洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下に留去した。得られた残さをテトラヒドロフラン(10m1)に溶解し、水(1m1)、トリフェニルホスフィン(2.23g)を加え室温で一晩攪拌させた。反応液を減圧下に濃縮し、残さをシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=100:2)により精製し、標題化合物(892mg,85%)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 1. 46 (9H, s), 1. 98-2. 11 (2 H, m), 2. 95-3. 10 (1H, m), 3. 26-3. 60 (4H, m).

 $MS (FD) m/z : 187 (M^{\dagger})$.

2) (3S) -3-[(6-クロロナフタレン-2-イル)スルホンアミド]ピロリジン トリフルオロ酢酸塩

(3S) - 3-アミノ-1-tertーブトキシカルボニルピロリジン (200mg)をピリジン(20m1)に溶解し、トリエチルアミン(0.15 m1)、6-クロロー2ーナフチルスルホニルクロリド(281mg)を加え、室温で20分間攪拌させた。反応液を減圧下に濃縮し、残さに酢酸エチルを加え、1規定塩酸で洗浄した。抽出した有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下に留去した。得られた残さをトリフルオロ酢酸(20m1)に溶解した後、減圧下に濃縮し、残さをジエチルエーテルで洗浄して、標題化合物(381mg,84%)を無色固体として得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 1. 69-1. 80 (1H, m), 1. 88 -1. 99 (1H, m), 2. 95-3. 28 (4H, m), 3. 75-3. 8 4 (1H, m), 7. 71 (1H, dd, J=8. 8, 2. 0Hz), 7. 57 (1H, dd, J=8. 8, 1. 0Hz), 7. 83-7. 96 (4H, m), 8. 53 (1H, s), 8. 91 (1H, br s), 9. 06 (1H, br s).

MS (FD) m/z: 311 [(M+H) $^{+}$, C1 35], 313 [(M+H) $^{+}$, C1 37].

3) (3S) - 1 - [(5 - tert - ブトキシカルボニル-4, 5, 6, 7 - テトラヒドロチエノ [3, 2 - c] ピリジン-2 - イル) メチル] - 3 - [(6 - クロロナフタレン-2 - イル) スルホンアミド] ピロリジン

(3S) -3-[(6-クロロナフタレン-2-イル)スルホンアミド]ピロリジン トリフルオロ酢酸塩(250mg)をジクロロメタン(10m1)に懸濁させ、トリエチルアミン(0.08m1)を加え室温で5分間攪拌させた。特許(WO94/21599)の方法に従い合成した5-tert-ブトキシカルボニル-2-ホルミル-4,5,6,7-テトラヒドロチエノ[3,2-c]ピリジン(150mg)と、トリアセトキシ水素化ホウ素ナトリウム(200mg)を加え室温で一晩攪拌した。反応液を減圧下濃縮し、残さに酢酸エチルを加え、水で2回、飽和食塩水で1回洗浄した。抽出した有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。得られた残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1~2:1)により精製し、標題化合物(255mg,77%)を無色泡状物質として得た。

¹H-NMR (CDC1₃) δ : 1. 49 (9H, s), 1. 52-1. 63 (1 H, m), 2. 03-2. 12 (1H, m), 2. 19-2. 27 (1H, m), 2. 35-2. 54 (2H, m), 2. 73-2. 85 (3H, m), 3. 59 (1H, d, J=13. 9Hz), 3. 66 (1H, d, J=13. 9Hz), 3. 70 (2H, br s), 3. 88-3. 95 (1H, m), 4. 39 (2H, s), 4. 99 (1/2H, s), 5. 02 (1/2H, s), 6. 49 (1H, s), 7. 55 (1H, dd, J=8. 8, 2. 0Hz), 7. 82-7. 90 (4H, m), 8. 40 (1H, s).

MS (FD) m/z: 561 (M⁺, C1³⁵), 563 (M⁺, C1³⁷).

4) (3S) - 3 - (6 - クロロナフタレン - 2 - イル) スルホンアミド - 1 - [(4, 5, 6, 7 - テトラヒドロチエノ[3, 2 - c] ピリジン - 2 - イル) メチル] ピロリジン 塩酸塩

(3S) -1-[(5-tert-ブトキシカルボニルー4, 5, 6, 7-テトラヒドロチエノ[3, 2-c] ピリジン-2-イル)メチル] <math>-3-[(6-tert-tert)] ピロリジン(229mg)を飽力ロロナフタレン-2-イル)スルホンアミド] ピロリジン(229mg)を飽和塩酸エタノール溶液(10m1)に溶解したのち反応液を減圧下濃縮した。残さを水で共沸させ標題化合物(203mg, 90%)を淡黄色泡状物質として得た。

 $^{1}H-NMR$ (DMSO-d₆ at 100°C) δ : 1. 88-1. 89 (1 H, m), 2. 10-2. 25 (1H, m), 3. 02-3. 07 (2H, m), 3. 10-3. 50 (6H, m), 4. 02 (1H, s), 4. 12 (2 H, s), 4. 45 (2H, s), 7. 12 (1H, s), 7. 65 (1H, d, J=8. 3Hz), 7. 91 (1H, d, J=8. 3Hz), 8. 10 (1

 $[\alpha]_{p} = -69.72^{\circ}$ (25°C, c=1.00, CH₃OH).

H, d, J=8.3Hz), 8. 14 (1H, s), 8. 16 (1H, d, J=8.3Hz), 8. 18 (1H, br s), 8. 48 (1H, s), 9. 6 5 (2H, br s).

MS (FD) m/z 462 [(M+H) +, C1 35], 464 [(M+H) +,

 $C 1^{37}$].

元素分析: $C_{22}H_{24}C1N_3O_2S_2 \cdot 2.1HC1 \cdot 1.0H_2O$ として、計算値:C, 47.47; H, 5.09; C1, 19.74; N, 7.55; S, 11.52. 分析値:C, 47.55; H, 5.13; C1, 19.85; N, 7.45; S, 11.48.

試験例1 (FXa阻害作用(ICm値)の測定)

検体溶液 $10\mu1$ 、100mMトリス・200mM塩化ナトリウム・0.2%BSA(pH7.4)緩衝液 $40\mu1$ 、0.05U/m1ヒトFXa(コスモバイオーERL HFXa-1011、測定用緩衝液で溶解および希釈) $10\mu1$ を96穴マイクロプレートに分注し、 750μ M S222 (Chromogenix社) 40m1を加え、室温で405nmにおける吸光度の増加(mOD/min)を測定した。以下の式により、各検体の阻害%を求め、対数確率紙の横軸に検体最終濃度、縦軸に阻害%をプロットし、50%阻害濃度(IC_{50})を求めた。

阻害率(%)= (1-サンプルのOD÷コントロールのOD)×100下表に、FXaOS1ポケットに進入する基を有する化合物が、強力にFXaを阻害することを示す。

表 1

	F X a 阻害作用 (I C ₅₀ 値) (μ M)
実施例4の化合物(化合物7)	0. 13
実施例5の化合物	0.005
実施例 6 の化合物	0.072
実施例7の化合物(化合物5)	0.0017
実施例8の化合物(化合物6)	0. 02

試験例2(トリプシン阻害作用(ICm値)の測定)

 $100 \,\mathrm{mMohJZ} \cdot 200 \,\mathrm{mM}$ NaCl (pH7.4) $355 \,\mu$ l、検体溶液 $100 \,\mu$ l、4mM S2222 (第一化学) $25 \,\mu$ lをガラスチューブに分注し、 $1 \,\mu$ g/mlヒトのトリプシン(コスモバイオ、 $20 \,\mathrm{mMhJZ} \cdot 0$. $2\% \,\mathrm{BSA} \cdot 10 \,\mathrm{mM}$ CaCl₂·0.8% NaCl (pH7.45) にて溶解および希釈) $20 \,\mu$ lを加え、 $37 \,\mathrm{Cl}\, 5 \,\mathrm{Oll}$ ででは、 $405 \,\mathrm{nm}$ における吸光度を測定した。以下の式により、各検体の阻害%を求め、対数確率紙の横軸に検体最終濃度、縦軸に阻害%をプロットし、 $50\% \,\mathrm{Il}$ 智濃度($I.C_{50}$)を求めた。

阻害率(%) = $(1 - (サンプルOD - ブランクOD) \div (コントロールOD - ブランクOD)) × 100$

下表に、トリプシンのS1ポケットに進入する基を有する化合物がトリプシン を阻害することを示す。

表 2

	トリプシン阻害作用 (Ι C ₅₀ 値) (μ M)
実施例9の化合物(化合物8)	7 9 0

試験例3 (FXaとの複合体のX線結晶解析)

下記のX線結晶解析の例で、FXaのS1ポケットに、本発明で言及している 二環性の芳香環基または芳香族複素環基が進入していることを示す。

この試験例で用いる略号は、以下のものを意味する。

G1a:ガンマ-カルボキシグルタミン酸

PEG:ポリエチレングリコール

HEPES: 2- [4-(2-ヒドロキシエチル) ピペラジン-1-イル] エタンスルホン酸

DMSO:ジメチルスルホキシド

F o:観測構造因子の絶対値

F c : 計算構造因子の絶対値

1)結晶化

本試験では、まず市販のベンズアミジンおよび市販のヒトGlaドメイン欠損 ベータFXa (Haematological technology社)を用 いて、ベンズアミジン/ヒトGlaドメイン欠損ベータFXa複合体結晶を作成 し、これに対しソーキング法を適用して、複合体中のベンズアミジンを5-クロ ロインドール誘導体(5)または6-クロロナフタレン誘導体(7)と置換する という方法を採用した。しかし、ベンズアミジン共存下ではヒトG1aドメイン 欠損ベータ F X a の自発的な結晶生成が認められなかったため、まず自発的に生 成するDX-9065/ヒトG1aドメイン欠損ベータFXaを作成し、これを 種結晶とするストリークーシーディング法でベンズアミジン/ヒトG1aドメイ ン欠損ベータFXa複合体微結晶を得、次いでマクローシーディング法により回 折データ測定可能な大きさへと成長させ、ソーキング法に用いた。6-エチニル ベンゾチオフェン誘導体(6)については、同様にして作成したベンズアミジン /ヒトGlaドメイン欠損ベータFXa複合体微結晶に対しマクローシーディン グ法を適用し6-エチニルベンゾチオフェン誘導体およびG1aドメイン欠損べ ータFXaの共存する溶液中で成長させることにより複合体結晶を得る方法(共 結晶化法)を用いた。

1 a) 種結晶の作成

市販のヒトG 1 aドメイン欠損ベータF X a をバッファー(5 mMのマレート・イミダゾール,p H 5 . 0 / 4 m Mの C a C 1_2 / 1 0 m Mの D X - 9 0 6 5 a)に対して透析後、セントリコン- 3 0(M i 1 1 i p o r e)で蛋白濃度 1 0 m g / m 1 まで濃縮した。1 2 . 5 % P E G 6 0 0 0 / 0 . 3 M 酢酸ナトリウム / 0 . 1 M マレート・イミダゾール,p H 5 . 0 の溶液を用いたハンギングドロップ蒸気拡散法により、D X - 9 0 6 5 / ヒトG 1 a ドメイン欠損ベータ F X a 複合体結晶を得た。結晶は 2 0 C で 1 週間以内に生成した。

1b) ベンズアミジン/ヒトG1aドメイン欠損ベータFXa複合体結晶の作成市販のヒトG1aドメイン欠損ベータFXaをバッファー(5mMマレート・イミダゾール,pH5.0/4mMCaC1₂/10mMベンズアミジン)に対して透析後、セントリコンで蛋白濃度10mg/mlまで濃縮した。12.5%PEG6000/0.3M酢酸ナトリウム/0.1Mマレート・イミダゾール,pH5.0の溶液を用いたハンギングドロップ蒸気拡散法により過飽和溶液を用意した。この過飽和溶液に、先の尖った人毛(睫毛)で前記種結晶を突くことにより取り出した微少な結晶核を植え、10日以上20℃で静置することにより、0.01mm角程度のベンズアミジン/ヒトG1aドメイン欠損ベータFXa複合体微結晶を得た[ストリークーシーディング法]。次にこの微結晶を12.5%PEG6000/0.3M酢酸ナトリウム/0.1Mマレート・イミダゾール,pH5.0で数回洗浄後上記過飽和溶液に移し、2週間以上20℃で静置して回折データ収集可能なベンズアミジン/ヒトG1aドメイン欠損ベータFXa複合体結晶を得た[マクローシーディング法]。

1c-1)6-クロロナフタレン誘導体(7)/ヒトG1 a ドメイン欠損ベータ FX a 複合体結晶の作成

1c-2) 5-クロロインドール誘導体(5) /ヒトG1aドメイン欠損ベータ FXa複合体結晶の作成

2段階の透析により、上記ベンズアミジン/ヒトG1aドメイン欠損ベータ

F X a 複合体結晶の外液を20%PEG6000/0.3 M酢酸ナトリウム/2.5 mM C a C 12/2.5 mM 5 - クロロインドール誘導体(5)/0.1 M HEPES, pH7.0 に置換した。その後同外液中で結晶(0.16×0.29×0.13 mm)を一晩浸漬し、結晶中のベンズアミジンを5 - クロロインドール誘導体(5)に置換した[ソーキング法]。

1c-3)6-エチニルベンゾチオフェン誘導体(6)/ヒトG1aドメイン欠 損ベータFXa複合体結晶の作成

上記の1b)と同様にして作成した過飽和溶液に6-xチニルベンゾチオフェン誘導体(6)をヒトG1aドメイン欠損ベータFXaに対し10当量となるように添加し、数日静置した。1bの様に作成した0.01mm角程度のベンズアミジン/ヒトG1aドメイン欠損ベータFXa複合体微結晶を、12.5%PEG6000/0.3M酢酸ナトリウム/0.1Mマレート・イミダゾール,pH5.0で数回洗浄後上記過飽和溶液に移し、2週間以上20%で静置して回折データ収集可能な/6-xチニルベンゾチオフェン誘導体(6)/ヒトG1aドメイン欠損ベータFXa複合体結晶を得た[マクローシーディング法]

2)回折実験

2 a) 6 ークロロナフタレン誘導体(7) /ヒトGlaドメイン欠損ベータFX a 複合体結晶の回折データ測定

結晶をナイロン製のループ(cryo-loop, Hampton research社)で外液ごとすくいとり、10kWで運転するX線発生装置(RU-H3C、リガク)に取り付けた。-170Cの窒素気流で凍結して結晶を固定し、イメージングプレートを検出器とする回折装置(R-Axis IIc、リガク)を用い-170Cの窒素気流を吹き付けながら回折写真を撮影した。装置付属のソフトウェア;PROCESSを用い、インディ・ワーク・ステーション(Silicon Graphics)上で回折写真のデンシトメトリーを行い、 2.2×10^{-3} cmの回折データを得た。本結晶はプロテインデー

タバンクのDX-9065a/ヒトG1aドメイン欠損ベータFXa複合体 (PDB code:1FAX) と同型で、空間群はP $2_12_12_1$ 、格子定数はa = 56.04×10⁻⁸cm, b=71.93×10⁻⁸cm, c=78.76×10⁻⁸cmであった。

2 b) 5-クロロインドール誘導体(5) /ヒトG1 aドメイン欠損ベータ F X a 複合体結晶の回折データ測定

結晶を回折試料用キャピラリーに封入し、回転対陰極X線発生装置(RUーH3C、リガク)に取り付けた。イメージングプレートを検出器とする回折装置(RーAxisIIc、リガク)を用い室温で回折写真を撮影した。装置付属のソフトウェア;PROCESSを用い、インディ・ワーク・ステーション(Silicon Graphics)上で回折写真のデンシトメトリーを行い、2.2×10 $^{-8}$ cmの回折データを得た。本結晶はプロテインデータバンクのDX-9065a/ヒトGlaドメイン欠損ベータFXa複合体(PDBcode:1FAX)と同型で、空間群はP2₁2₁2₁、格子定数はa=56.72×10 $^{-8}$ cm,b=72.60×10 $^{-8}$ cm,c=79.77×10 $^{-8}$ cmであった。

2c)6-エチニルベンゾチオフェン誘導体(6)/ヒトG 1aドメイン欠損ベータ F Xa 複合体結晶の回折データ測定

構造解析

下記の構造解析において使用したREFMACおよびPROLSQは、CCP

4中のものである。

CCP4に関する文献: "The CCP4 Suite:Programs for Protein Crystallography" (Acta Cryst., D50巻, 760-763頁, 1994年)

REFMACに関する文献: "Refinement of Macromolecular Structures by the Maximum-Likelihood Method" (Acta Cryst., D53巻, 240-255, 1997年)

PROLSQに関する文献: "Stereochemically Restrained Refinement of Macromolecular Structures" (Methods in Enzymol., 115巻, 252-270, 1985年)
3a) 6-クロロナフタレン誘導体(7)/ヒトGlaドメイン欠損ベータFX a複合体の構造解析

蛋白部分の構造は、プロテインデータバンクのDX-9065a/ヒトG1aドメイン欠損ベータFXa複合体(PDB code:1FAX)をモデルとし、X-PLORを用いた剛体精密化により決定した。位相精密化プログラムREFMACおよび分子グラフィックプログラムTurbo-Frodoを用いる標準的な方法で位相精密化および原子モデルの改善を行った。|Fo-Fc|および|2Fo-Fc|を係数とするフーリエマップはFXaの触媒活性部位付近に連続的な電子密度ピークを与えた。この電子密度ピークに6-クロロナフタレン誘導体(7)の原子モデルを適合させ精密化を継続した。位相精密化およびモデル改善のサイクルを数十回繰り返し、最終的に 2.2×10^{-8} cm分解能での結晶学的信頼度因子($\Sigma|Fo-Fc|/\SigmaFo$)は18.7%まで低下した。全ての計算処理は、02/R5000(Sillicon

Graphics)上で行った。

3 b) 5 - クロロインドール誘導体(5) / ヒトG 1 a ドメイン欠損ベータ F X a 複合体の構造解析

6-クロロナフタレン誘導体(7)/ヒトG 1 aドメイン欠損ベータF X a 複合体と同様の方法で構造解析を行った。ただし、ピペラジン環に結合するアセチルモルホリン構造は、|Fo-Fc| および|2Fo-Fc| を係数とするフーリエマップ上有意なピークとして観察されなかったため、精密化計算には含めなかった。最終的に 2.2×10^{-8} c m分解能での結晶学的信頼度因子は 18.1% まで低下した。

3c) 6-エチニルベンゾチオフェン誘導体(6)/ヒトG 1 a ドメイン欠損ベータ F X a 複合体の構造解析

上記の3 b)に記載の方法と同様の方法で構造解析を行った。ただし、ピペラジン環に結合するN-メチルカルバモイル基は、|Fo-Fc|および|2Fo-Fc|を係数とするフーリエマップ上有意なピークとして観察されなかったため、精密化計算には含めなかった。最終的に2. 4×10^{-8} cm分解能での結晶学的信頼度因子は17.8%まで低下した。

ここで得られたX線結晶解析のデータのうち、5ークロロインドール誘導体(5)/ヒトGlaドメイン欠損ベータFXa複合体の構造解析のデータを表3に示す。データは、PDBのフォーマットで示してあり、左から順次に、原子名、残基名、chainID、残基番号、X、Y、Z、占有率、温度因子を示す。また、下記のデータにおけるChainIDは、A;heavychain、B;light chain、C;solventを示す。

試験例4(ウシのトリプシンとの複合体のX線結晶解析)

下記のX線結晶解析の例で、トリプシンのS1ポケットに、本発明で言及している二環性の芳香環基または芳香族複素環基が進入していることを示す。

1) 化合物8とウシ膵臓由来トリプシンとの複合体結晶の作成

市販のウシ膵臓由来トリプシン(Sigma)を40%飽和硫酸アンモニウム /2%(w/v)ベンズアミジン/0.05%(w/v)CaCl2に10mg /m1の濃度で溶解し、53%飽和硫酸アンモニウム/2%(w/v)ベンズアミジン/0.05%(w/v)CaCl2, pH6.0の溶液を用いたハンギングドロップ蒸気拡散法により、ベンズアミジン/ウシ膵臓由来トリプシン複合体結晶を得た。結晶は20℃で1週間以内に生成した。

透析法により結晶外液を70%飽和硫酸アンモニウム/0.1Mカコジル酸ナトリウム緩衝液,pH6.0/0.01%(w/v)CaC12/5%(v/v)DMSOに置換し、数回の溶液交換により結晶中からベンズアミジンを除去した。この結晶を70%飽和硫酸アンモニウム/0.1Mカコジル酸ナトリウム緩衝液,pH6.0/0.01%(w/v)CaC12/25mM D61-8811/5%(v/v)DMSOに浸責し70時間静置してD61-8811とウシ膵臓由来トリプシンとの複合体結晶を得た。

- 2)化合物 8 とウシ膵臓由来トリプシンとの複合体結晶の回折データ測定 試験例 3 の 5 ークロロインドール誘導体 (5) /ヒトG 1 a ドメイン欠損ベータ F X a 複合体結晶と同様の方法で回折データ測定を行った。本結晶はプロテインデータバンクのウシ膵臓由来トリプシン(PDB code:1TLD)と同型で、空間群は P $2_1 2_1 2_1$ 、格子定数は a=6 3. 9 2 × 1 0 6 c m, b=6 3. 2 0 × 1 0 6 c m, c=6 9. 2 9 × 1 0 6 c m であった。
- 3) 化合物8とウシ膵臓由来トリプシンとの複合体結晶の構造解析

蛋白部分の構造は、プロテインデータバンクのウシ膵臓由来トリプシンの構造 (PDB code:1TLD)をモデルとし、X-PLORを用いた剛体精密 化により決定した。位相精密化プログラムPROLSQおよび分子グラフィック プログラムTurbo-Frodoを用いる標準的な方法で位相精密化および原子モデルの改善を行った。|Fo-Fc|および|2Fo-Fc|を係数とするフーリエマップはFXaoS1サイト付近に平面的な電子密度ピークを与えた。

この電子密度ピークにD61-8811の部分構造であるスルフォニルクロロナフタレンの原子モデルを適合させ精密化を継続した。それ以外の構造部分に関しては|Fo-Fc|および|2Fo-Fc|を係数とするフーリエマップ上有意なピークとして観察されなかったため、精密化計算には含めなかった。位相精密化およびモデル改善のサイクルを数十回繰り返し、最終的に1.8×10 $^{\circ}$ cm分解能での結晶学的信頼度因子($\Sigma|Fo-Fc|/\Sigma Fo$)は17.1%まで低下した。全ての計算処理は、インディゴ2 エクストリーム(Sillicon Graphics)上で行った。

ここで得られた X線結晶解析のデータを表 4 に示す。データは、PDBのフォーマットで示してあり、左から順次に、原子名、残基名、chain ID、残基番号、X、Y、Z、占有率、温度因子を示す。また、下記のデータにおけるChain IDは、A; heavy chain、B; light chain、C; solventを示す。

表3

ATOM	1	CB	ILE A	16	11.741	14.874	33.014	1.00 34.10
ATOM	2	CG2	ILE A	16	12.300	14.052	34.186	1.00 26.75
ATOM	3	CG1	ILE A	16	12.784	15.144	31.931	1.00 30.81
ATOM	4	CD1	ILE A	16	13.554	13.948	31.360	1.00 27.85
ATOM	5	C	ILE A	16	9.454	13.931	33.505	1.00 32.83
ATOM	6	0	ILE A	16	8.927	14.871	34.087	1.00 33.36
ATOM	7	N	ILE A	16	9.882	14.985	31.329	1.00 33.80
ATOM	8	CA	ILE A	16	10.493	14.182	32.413	1.00 32.86
ATOM	9	N	VAL A	17	9.084	12.678	33.684	1.00 31.58
ATOM	10	CA	VAL A	17	8.219	12.287	34.779	1.00 30.56
ATOM	11	СВ	VAL A	17	7.473	10.961	34.480	1.00 37.04
ATOM	12	CG1	VAL A	17	6.524	10.632	35.614	1.00 27.56

ATOM	13	CG2	VAL	A	17	6.722	10.978	33.155	1.00 24.63
ATOM	14	C	VAL	A	17	9.148	12.079	35.966	1.00 29.50
ATOM	15	0	VAL	A	17	10.025	11.192	35.881	1.00 30.22
ATOM	16	N	GLY	A	18	8.985	12.846	37.021	1.00 28.64
ATOM	17	CA	GLY	A	18	9.851	12.693	38.189	1.00 27.56
ATOM	18	C	GLY	A	18	11.067	13.591	38.070	1.00 27.76
ATOM	19	0	GLY	A	18	10.963	14.670	37.527	1.00 28.11
ATOM	20	N	GLY	A	19	12.220	13.247	38.639	1.00 28.78
ATOM	21	CA	GLY	A	19	13.398	14.091	38.451	1.00 28.38
ATOM	22	C	GLY	A	19	13.293	15.353	39. 257	1.00 29.83
ATOM	23	0	GLY	A	19	12.387	15.530	40.064	1.00 32.19
ATOM	24	N	GLN	A	20	14.248	16.261	39.090	1.00 29.56
ATOM	25	CA	GLN	A	20	14.348	17.521	39.793	1.00 29.79
ATOM	26	CB	GLN	A	20	15.625	17.517	40.620	1.00 31.99
ATOM	27	CG	GLN	A	20	16.158	16.255	41.281	1.00 27.42
ATOM	31	C	GLN	A	20	14.459	18.695	38.791	1.00 30.37
ATOM	32	0	GLN	A	20	14.595	18.380	37.586	1.00 33.00
ATOM	33	N	GLU	A	21	14.309	19.960	39.156	1.00 27.05
ATOM	34	CA	GLU	A	21	14.646	20.962	38.152	1.00 28.76
ATOM	35	CB	GLU	A	21	14.289	22.424	38.436	1.00 27.55
ATOM	36	CG	GLU	A	21	12.854	22.513	38.908	1.00 43.49
ATOM	37	CD	GLU	A	21	12.538	23.816	39.577	1.00 35.73
ATOM	38	0E1	GLU	A	21	13.380	24.450	40.229	1.00 45.79
ATOM	39	0E2	GLU	A	21	11.361	24.146	39.371	1.00 50.77
ATOM	40	C	GLU	A	21	16.178	20.998	38.003	1.00 29.17
ATOM	41	0	GLU	A	21	16.886	20.667	38.977	1.00 30.12

ATOM	42	N	CYS	A	22	16.568	21.328	36.769	1.00 27.04
ATOM	43	CA	CYS	A	22	17.991	21.622	36.596	1.00 24.56
ATOM	44	С	CYS	A	22	18.154	23.006	37.245	1.00 25.28
ATOM	45	0	CYS	A	22	17.414	23.962	36.886	1.00 22.49
ATOM	46	CB	CYS	A	22	18.419	21.865	35.159	1.00 23.65
ATOM	47	SG	CYS	A	22	18.463	20.433	34.076	1.00 20.60
ATOM	48	N	LYS	A	23	19.179	23.034	38.131	1.00 24.63
ATOM	49	CA	LYS	A	23	19.430	24.359	38.702	1.00 22.81
ATOM	50	СВ	LYS	A	23	20.019	24.244	40.111	1.00 28.53
ATOM	51	CG	LYS	A	23	19.106	23.506	41.088	1.00 33.93
ATOM	52	CD	LYS	A	23	17.741	24.171	41.171	1.00 24.38
ATOM	53	CE	LYS	A	23	16.720	23.452	42.010	1.00 17.66
ATOM	54	NZ	LYS	A	23	15.483	24.339	41.970	1.00 20.73
ATOM	55	C	LYS	A	23	20.351	25.147	37.801	1.00 23.58
ATOM	56	0	LYS	A	23	20.959	24.617	36.873	1.00 25.07
ATOM	57	N	ASP	A	24	20.544	26.390	38.211	1.00 23.91
ATOM	58	CA	ASP	A	24	21.336	27.356	37.513	1.00 24.51
ATOM	59	CB	ASP	A	24	21.627	28.646	38.262	1.00 19.39
ATOM	60	CG	ASP	A	24	21.710	29.858	37.349	1.00 36.63
ATOM	61	0D1	ASP	A	24	22.280	30.853	37.864	1.00 39.24
ATOM	62	OD2	ASP	A	24	21.208	29.836	36.197	1.00 31.34
ATOM	63	C	ASP	A	24	22.706	26.774	37.154	1.00 23.70
ATOM	64	0	ASP	Α	24	23.454	26.360	38.050	1.00 23.89
ATOM	65	N	GLY	A	25	22.919	26.685	35.843	1.00 21.84
ATOM	66	CA	GLY	A	25	24.215	26.189	35.435	1.00 24.54
ATOM	67	C	GLY	A	25	24.458	24.712	35.336	1.00 23.09

ATOM	68	0	GLY	A	25	25.503	24.404	34.779	1.00 23.53
ATOM	69	N	GLU	A	26	23.575	23.829	35.748	1.00 23.34
ATOM	70	CA	GLU	A	26	23.710	22.406	35.811	1.00 20.76
ATOM	71	СВ	GLU	A	26	22.726	21.790	36.858	1.00 16.47
ATOM	72	CG	GLU	A	26	23.010	22.109	38.314	1.00 23.68
ATOM	73	CD	GLU	A	26	22.055	21.428	39.274	1.00 23.99
ATOM	74	0E1	GLU	A	26	20.957	20.975	38.868	1.00 16.27
ATOM	75	0E2	GLU	A	26	22.433	21.318	40.469	1.00 30.26
ATOM	76	C	GLU	A	26	23.439	21.652	34.563	1.00 20.81
ATOM	77	0	GLU	A	26	23.876	20.483	34.438	1.00 23.45
ATOM	78	N	CYS	A	27	22.623	22.067	33.596	1.00 19.45
ATOM	79	CA	CYS	A	27	22.433	21.298	32.348	1.00 19.75
ATOM	80	C	CYS	A	27	22.668	22.199	31.152	1.00 20.03
ATOM	81	0	CYS	A	27	21.775	22.495	30.324	1.00 23.40
ATOM	82	СВ	CYS	A	27	21.012	20.710	32.308	1.00 21.74
ATOM	83	SG	CYS	A	27	20.388	20.030	33.843	1.00 20.05
ATOM	84	N	PRO	A	28	23.879	22.741	30.974	1.00 17.28
ATOM	85	CD	PRO	A	28	25.150	22.287	31.592	1.00 17.51
ATOM	86	CA	PRO	A	28	24.175	23.734	30.002	1.00 16.11
ATOM	87	CB	PRO	A	28	25.547	24.270	30.485	1.00 16.52
ATOM	88	CG	PR0	A	28	26.280	23.161	31.109	1.00 16.07
ATOM	89	C	PRO	A	28	24.186	23.275	28.566	1.00 17.86
ATOM	90	0	PRO	A	28	24.039	24.105	27.657	1.00 16.78
ATOM	91	N	TRP	A	29	24.281	21.989	28.295	1.00 19.80
ATOM	92	CA	TRP	A	29	24.321	21.361	26.991	1.00 24.06
ATOM	93	CB	TRP	A	29	25.127	20.018	26.940	1.00 12.44

ATOM	94	CG	TRP	A	29	24.805	19.240	28.193	1.00 14.28
ATOM	95	CD2	TRP	A	29	25.593	19.274	29.390	1.00 21.31
ATOM	96	CE 2	TRP	A	29	24.929	18.501	30.350	1.00 18.59
ATOM	97	CE3	TRP	A	29	26.813	19.896	29.709	1.00 22.48
ATOM	98	CD1	TRP	A	29	23.714	18.479	28.476	1.00 15.74
ATOM	99	NE 1	TRP	A	29	23.770	18.018	29.770	1.00 21.91
ATOM	100	CZ2	TRP	A	29	25.449	18.288	31.618	1.00 18.68
ATOM	101	CZ3	TRP	A	29	27.310	19.687	30.974	1.00 21.02
ATOM	102	CH2	TRP	A	29	26.617	18.938	31.892	1.00 14.68
ATOM	103	C	TRP	A	29	22.946	21.128	26.383	1.00 24.68
ATOM	104	0	TRP	A	29	22.916	20.859	25.201	1.00 25.11
ATOM	105	N	GLN	A	30	21.866	21.357	27.105	1.00 26.96
ATOM	106	CA	GLN	A	30	20.521	21.168	26.585	1.00 27.30
ATOM	107	СВ	GLN	A	30	19.513	21.264	27.743	1.00 22.26
ATOM	108	CG	GLN	A	30	18.044	21.214	27.338	1.00 18.16
ATOM	109	CD	GLN	A	30	17.607	19.790	27.100	1.00 19.93
ATOM	110	0E1	GLN	A	30	17.846	19.029	28.017	1.00 22.27
ATOM	111	NE 2	GLN	A	30	17.011	19.359	26.000	1.00 21.40
ATOM	112	C	GLN	A	30	20.190	22.196	25.511	1.00 27.17
ATOM	113	0	GLN	A	30	20.462	23.379	25.682	1.00 28.57
ATOM	114	N	ALA	A	31	19.535	21.724	24.463	1.00 26.78
ATOM	115	CA	ALA	A	31	19.033	22.570	23.392	1.00 26.29
ATOM	116	CB	ALA	A	31	19.730	22.319	22.045	1.00 19.14
ATOM	117	С	ALA	A	31	17.555	22.227	23.249	1.00 26.97
ATOM	118	0	ALA	A	31	17.167	21.126	23.661	1.00 27.50
ATOM	119	N	LEU	A	32	16.779	23.121	22.669	1.00 27.05

ATOM	120	CA	LEU	A	32	15.342	22.876	22.517	1.00 26.01
ATOM	121	CB	LEU	A	32	14.545	23.879	23.381	1.00 28.57
ATOM	122	CG	LEU	A	32	13.040	23.754	23.511	1.00 20.40
ATOM	123	CD1	LEU	A	32	12.586	22.300	23.800	1.00 21.02
ATOM	124	CD2	LEU	A	32	12.531	24.623	24.645	1.00 23.86
ATOM	125	C	LEU	A	32	14.964	23.127	21.071	1.00 24.49
ATOM	126	0	LEU	A	32	15.299	24.203	20.564	1.00 27.27
ATOM	127	N	LEU	A	33	14.283	22.244	20.393	1.00 24.07
ATOM	128	CA	LEU	A	33	13.885	22.534	19.010	1.00 22.68
ATOM	129	CB	LEU	A	33	13.971	21.380	18.087	1.00 27.42
ATOM	130	CG	LEU	A	33	15.114	20.419	17.942	1.00 28.78
ATOM	131	CD1	LEU	A	33	14.970	19.685	16.617	1.00 28.26
ATOM	132	CD2	LEU	A	33	16.471	21.074	18.067	1.00 34.69
ATOM	133	C	LEU	A	33	12.458	23.041	19.150	1.00 24.49
ATOM	134	0	LEU	A	33	11.598	22.490	19.873	1.00 22.43
ATOM	135	N	ILE	A	34	12.311	24. 234	18.617	1.00 26.64
ATOM	136	CA	ILE	A	34	11.056	24.945	18.610	1.00 30.67
ATOM	137	CB	ILE	A	34	11.206	26.305	19.327	1.00 37.88
ATOM	138	CG2	ILE	A	34	11.416	26.105	20.827	1.00 21.94
ATOM	139	CG1	ILE	A	34	12.293	27.154	18.670	1.00 33.87
ATOM	140	CD1	ILE	A	34	12.203	28.666	18.820	1.00 31.41
ATOM	141	C	ILE	A	34	10.486	25.152	17.205	1.00 34.15
ATOM	142	0	ILE	A	34	11.162	25.609	16.272	1.00 34.88
ATOM	143	N	ASN	A	35	9.205	24.825	17.025	1.00 35.60
ATOM	144	CA	ASN	A	35	8.486	25.008	15.787	1.00 37.36
ATOM	145	СВ	ASN	A	35	7.192	24.173	15.808	1.00 43.66

ATOM	146	CG	ASN	A	35	6.156	24.573	16.830	1.00 43.55
ATOM	147	0D1	ASN	A	35	6.056	25.699	17.327	1.00 42.65
ATOM	148	ND2	ASN	A	35	5.311	23.616	17.225	1.00 44.92
ATOM	149	C	ASN	A	35	8.151	26.480	15.547	1.00 40.78
ATOM	150	0	ASN	A	35	8.402	27.344	16.412	1.00 41.86
ATOM	151	N	GLU	A	36	7.377	26.726	14.488	1.00 42.40
ATOM	152	CA	GLU	A	36	6.851	28.018	14.077	1.00 44.93
ATOM	153	СВ	GĻU	A	36	5.852	27.844	12.923	1.00 51.48
ATOM	154	CG	GLU	A	36	6.414	27.044	11.748	1.00 52.67
ATOM	158	C	GLU	A	36	6.136	28.785	15.170	1.00 46.76
ATOM	159	0	GLU	A	36	6.429	29.978	15.409	1.00 49.87
ATOM	160	N	GLU	A	37	5.261	28.151	15.946	1.00 45.37
ATOM	161	CA	GLU	A	37	4.653	28.750	17.117	1.00 44.43
ATOM	162	CB	GLU	A	37	3.588	27.755	17.612	1.00 44.82
ATOM	167	C	GLU	A	37	5.575	29.097	18.270	1.00 43.79
ATOM	168	0	GLU	A	37	5.120	29.753	19. 233	1.00 43.98
ATOM	169	N	ASN	A	38	6.821	28.631	18.359	1.00 42.24
ATOM	170	CA	ASN	A	38	7.785	28.872	19.412	1.00 40.72
ATOM	171	CB	ASN	A	38	7.896	30.334	19.821	1.00 44.50
ATOM	172	CG	ASN	A	38	8.707	31.251	18.950	1.00 57.20
ATOM	173	0D1	ASN	A	38	9.134	30.978	17.812	1.00 45.90
ATOM	174	ND2	ASN	A	38	8.896	32.446	19.543	1.00 58.80
ATOM	175	C	ASN	A	38	7.529	28.005	20.647	1.00 39.40
ATOM	176	0	ASN	A	38	7.816	28.394	21.790	1.00 40.73
ATOM	177	N	GLU	A	39	6.949	26.836	20.442	1.00 38.65
ATOM	178	CA	GLU	A	39	6.712	25.840	21.479	1.00 37.46

ATOM	179	CB	GLU	A	39	5.266	25.374	21.490	1.00 42.73
ATOM	184	C	GLU	A	39	7.628	24.653	21.192	1.00 36.45
ATOM	185	0	GLU	A	39	7.735	24.161	20.067	1.00 35.98
ATOM	186	N	GLY	Α	40	8.294	24.190	22.240	1.00 35.86
ATOM	187	CA	GLY	A	40	9.315	23.157	22.042	1.00 33.39
ATOM	188	C	GLY	A	40	8.653	21.867	21.670	1.00 34.52
ATOM	189	0	GLY	A	40	7.624	21.539	22.263	1.00 35.89
ATOM	190	N	PHE	A	41	9.241	21.125	20.711	1.00 34.60
ATOM	191	CA	PHE	A	41	8.702	19.783	20.460	1.00 31.63
ATOM	192	СВ	PHE	A	41	8.214	19.702	19.021	1.00 34.07
ATOM	193	CG	PHE	A	41	9.226	19.990	17.948	1.00 26.28
ATOM	194	CD1	PHE	A	41	9.881	18.924	17.341	1.00 28.26
ATOM	195	CD2	PHE	A	41	9.491	21.253	17.489	1.00 32.65
ATOM	196	CE1	PHE	A	41	10.792	19.128	16.328	1.00 18.95
ATOM	197	CE2	PHE	A	41	10.423	21.450	16.475	1.00 29.27
ATOM	198	CZ	PHE	A	41	11.104	20.402	15.909	1.00 26.00
ATOM	199	C	PHE	A	41	9.740	18.705	20.731	1.00 30.55
ATOM	200	0	PHE	A	41	9.399	17.508	20.739	1.00 31.28
ATOM	201	N	CYS	A	42	11.024	19.045	20.797	1.00 28.45
ATOM	202	CA	CYS	A	42	12.047	18.018	20.945	1.00 26.75
ATOM	203	C	CYS	A	42	13.290	18.644	21.594	1.00 27.14
ATOM	204	0	CYS	A	42	13.363	19.851	21.414	1.00 24.89
ATOM	205	CB	CYS	A	42	12.532	17.496	19.607	1.00 20.38
ATOM	206	SG	CYS	A	42	11.773	16.128	18.836	1.00 29.38
ATOM	207	N	GLY	A	43	14.238	17.796	22.086	1.00 26.02
ATOM	208	CA	GLY	A	43	15.370	18.489	22.709	1.00 25.78

ATOM	209	C	GLY	A	43	16.600	18.371	21.793	1.00 25.34
ATOM	210	0	GLY	A	43	16.470	17.783	20.713	1.00 25.73
ATOM	211	N	GLY	A	44	17.779	18.642	22.329	1.00 21.94
ATOM	212	CA	GLY	A	44	19.014	18.531	21.538	1.00 20.95
ATOM	213	C	GLY	A	44	20.209	18.659	22.471	1.00 20.46
ATOM	214	0	GLY	A	44	20.027	19.149	23.583	1.00 20.29
ATOM	215	N	THR	A	45	21.408	18.232	22.098	1.00 20.31
ATOM	216	CA	THR	A	45	22.592	18.406	22.929	1.00 18.55
ATOM	217	СВ	THR	A	45	23.326	17.076	23.163	1.00 26.53
ATOM	218	0G1	THR	A	45	22.367	16.107	23.587	1.00 21.22
ATOM	219	CG2	THR	A	45	24.416	17.114	24. 239	1.00 11.11
ATOM	220	C	THR	A	45	23.502	19.307	22.087	1.00 20.41
ATOM	221	0	THR	A	45	23.584	19.190	20.856	1.00 21.20
ATOM	222	N	ILE	A	46	24.133	20.277	22.712	1.00 21.59
ATOM	223	CA	ILE	A	46	25.088	21.156	22.045	1.00 19.64
ATOM	224	СВ	ILE	A	46	25.221	22.400	22.944	1.00 19.40
ATOM	225	CG2	ILE	A	46	26.405	23. 281	22.568	1.00 11.98
ATOM	226	CG1	ILE	A	46	23.924	23.203	22.908	1.00 16.49
ATOM	227	CD1	ILE	A	46	23.861	24.397	23.862	1.00 27.22
ATOM	228	C	ILE	A	46	26.419	20.413	21.915	1.00 21.02
ATOM	229	0	ILE	A	46	26.924	19.943	22.963	1.00 20.53
ATOM	230	N	LEU	A	47	26.962	20.318	20.700	1.00 20.10
ATOM	231	CA	LEU	A	47	28.274	19.648	20.642	1.00 23.10
ATOM	232	CB	LEU	A	47	28.378	18.669	19.485	1.00 14.14
ATOM	233	CG	LEU	A	47	27.407	17.498	19.538	1.00 20.38
ATOM	234	CD1	LEU	A	47	27.475	16.876	18.141	1.00 20.32

ATOM	235	CD2	LEU	A	47	27.771	16.533	20.669	1.00 17.11
ATOM	236	C	LEU	A	47	29.426	20.644	20.489	1.00 22.83
ATOM	237	0	LEU	A	47	30.559	20.339	20.825	1.00 21.31
ATOM	238	N	SER	A	48	29.098	21.834	20.018	1.00 23.39
ATOM	239	CA	SER	A	48	30.158	22.852	19.804	1.00 23.58
ATOM	240	СВ	SER	A	48	31.058	22.363	18.650	1.00 20.53
ATOM	241	0G	SER	A	48	30.380	22.714	17.426	1.00 30.79
ATOM	242	C	SER	A	48	29.428	24.120	19.471	1.00 24.47
ATOM	243	0	SER	A	48	28.176	24.065	19.449	1.00 25.06
ATOM	244	N	GLU	A	49	30.100	25.194	19.054	1.00 25.26
ATOM	245	CA	GLU	A	49	29.448	26.451	18.676	1.00 23.17
ATOM	246	CB	GLU	A	49	30.505	27.519	18.359	1.00 25.58
ATOM	247	CG	GLU	A	49	31.720	27.103	17.557	1.00 35.32
ATOM	248	CD	GLU	A	49	32.784	28.160	17.349	1.00 46.03
ATOM	249	0E1	GLU	A	49	33.696	27.953	16.499	1.00 52.18
ATOM	250	0E2	GLU	A	49	32.776	29.223	18.015	1.00 49.25
ATOM	251	C	GLU	A	49	28.483	26.375	17.503	1.00 23.08
ATOM	252	0	GLU	A	49	27.504	27.148	17.409	1.00 22.69
ATOM	253	N	PHE	A	50	28.621	25.466	16.552	1.00 23.34
ATOM	254	CA	PHE	A	50	27.768	25.392	15.370	1.00 22.88
ATOM	255	CB	PHE	A	50	28.656	25.290	14.079	1.00 15.02
ATOM	256	CG	PHE	A	50	29.188	26.673	13.780	1.00 23.01
ATOM	257	CD1	PHE	A	50	28.380	27.597	13.122	1.00 19.81
ATOM	258	CD2	PHE	A	50	30.470	27.030	14.184	1.00 26.60
ATOM	259	CE1	PHE	A	50	28.890	28.847	12.815	1.00 17.84
ATOM	260	CE 2	PHE	A	50	30.972	28.294	13.899	1.00 20.74

ATOM	261	CZ	PHE	A	50	30.148	29.205	13.245	1.00 24.46
ATOM	262	C	PHE	A	50	26.914	24.144	15.275	1.00 22.71
ATOM	263	0	PHE	A	50	26.130	24.125	14.333	1.00 21.66
ATOM	264	N	TYR	A	51	27.136	23.179	16.153	1.00 22.18
ATOM	265	CA	TYR	A	51	26.586	21.829	15.975	1.00 23.38
ATOM	266	СВ	TYR	A	51	27.770	20.803	15.791	1.00 20.17
ATOM	267	CG	TYR	A	51	28.276	20.905	14.374	1.00 21.85
ATOM	268	CD1	TYR	A	51	29.539	21.307	14.068	1.00 21.60
ATOM	269	CE1	TYR	A	51	29.999	21.426	12.773	1.00 24.08
ATOM	270	CD2	TYR	A	51	27.419	20.685	13.297	1.00 26.29
ATOM	271	CE2	TYR	A	51	27.851	20.809	11.989	1.00 28.54
ATOM	272	CZ	TYR	A	51	29.137	21.205	11.732	1.00 29.46
ATOM	273	ОН	TYR	A	51	29.535	21.369	10.410	1.00 33.62
ATOM	274	C	TYR	A	51	25.747	21.246	17.091	1.00 23.84
ATOM	275	0	TYR	A	51	26.261	21.083	18.197	1.00 26.71
ATOM	276	N	ILE	A	52	24.534	20.826	16.775	1.00 22.66
ATOM	277	CA	ILE	A	52	23.593	20.279	17.732	1.00 22.20
ATOM	278	CB	ILE	A	52	22.259	21.088	17.694	1.00 21.77
ATOM	279	CG2	ILE	A	52	21.252	20.557	18.734	1.00 22.07
ATOM	280	CG1	ILE	A	52	22.386	22.580	17.914	1.00 20.12
ATOM	281	CD1	ILE	A	52	23.097	23.124	19.146	1.00 22.25
ATOM	282	C	ILE	A	52	23.314	18.821	17.384	1.00 23.59
ATOM	283	0	ILE	A	52	23.063	18.441	16.215	1.00 24.96
ATOM	284	N	LEU	A	53	23.263	17.955	18.413	1.00 22.03
ATOM	285	CA	LEU	A	53	22.851	16.582	18.239	1.00 20.52
ATOM	286	СВ	LEU	A	53	23.598	15.695	19.237	1.00 28.57

ATOM	287	CG	LEU	A	53	23.569	14.185	19.110	1.00 15.29
ATOM	288	CD1	LEU	A	53	24.175	13.775	17.757	1.00 12.80
ATOM	289	CD2	LEU	A	53	24.383	13.586	20.293	1.00 14.32
ATOM	290	C	LEU	A	53	21.372	16.380	18.566	1.00 21.75
ATOM	291	0	LEU	A	53	20.919	16.973	19.541	1.00 20.78
ATOM	292	N	THR	A	54	20.634	15.572	17.783	1.00 22.22
ATOM	293	CA	THR	A	54	19.213	15.350	18.156	1.00 21.92
ATOM	294	СВ	THR	A	54	18.430	16.600	17.714	1.00 21.63
ATOM	295	0G1	THR	A	54	17.069	16.605	18.195	1.00 19.53
ATOM	296	CG2	THR	A	54	18.322	16.738	16.196	1.00 13.07
ATOM	297	C	THR	A	54	18.757	14.049	17.540	1.00 21.87
ATOM	298	0	THR	A	54	19.604	13.464	16.835	1.00 23.70
ATOM	299	N	ALA	A	55	17.541	13.560	17.718	1.00 22.69
ATOM	300	CA	ALA	A	55	17.134	12.331	17.014	1.00 24.25
ATOM	301	СВ	ALA	A	55	16.022	11.608	17.778	1.00 18.95
ATOM	302	C	ALA	A	55	16.582	12.639	15.614	1.00 26.25
ATOM	303	0	ALA	A	55	15.915	13.693	15.446	1.00 25.70
ATOM	304	N	ALA	A	56	16.747	11.703	14.678	1.00 25.44
ATOM	305	CA	ALA	A	56	16.162	11.831	13.345	1.00 28.12
ATOM	306	СВ	ALA	A	56	16.646	10.820	12.326	1.00 25.61
ATOM	307	C	ALA	A	56	14.642	11.768	13.363	1.00 30.41
ATOM	308	0	ALA	A	56	14.077	12.666	12.709	1.00 33.26
ATOM	309	N	HIS	A	57	13.926	11.087	14.244	1.00 30.98
ATOM	310	CA	HIS	A	57	12.467	11.134	14.266	1.00 32.09
ATOM	311	СВ	HIS	A	57	11.873	10.108	15.239	1.00 28.43
ATOM	312	CG	HIS	A	57	11.806	10.503	16.670	1.00 25.27

ATOM	313	CD2	HIS	A	57	10.876	11.112	17.422	1.00 29.34
ATOM	314	ND1	HIS	A	57	12.878	10.295	17.513	1.00 37.31
ATOM	315	CE1	HIS	A	57	12.597	10.746	18.721	1.00 32.46
ATOM	316	NE 2	HIS	A	57	11.383	11.250	18.688	1.00 28.72
ATOM	317	C	HIS	A	57	11.928	12.517	14.537	1.00 33.52
ATOM	318	0	HIS	A	57	10.835	12.889	14.116	1.00 34.99
ATOM	319	N	CYS	A	58	12.571	13.382	15.304	1.00 35.52
ATOM	320	CA	CYS	A	58	12.278	14.752	15.532	1.00 36.52
ATOM	321	C	CYS	A	58	12.197	15.664	14.320	1.00 37.37
ATOM	322	0	CYS	A	58	11.522	16.705	14.459	1.00 39.01
ATOM	323	СВ	CYS	A	58	13.380	15.314	16.455	1.00 32.26
ATOM	324	SG	CYS	A	58	13.119	14.810	18.174	1.00 26.62
ATOM	325	N	LEU	A	59	12.809	15.419	13.189	1.00 37.23
ATOM	326	CA	LEU	A	59	12.723	16.295	12.035	1.00 39.59
ATOM	327	СВ	LEU	A	59	13.875	15.961	11.058	1.00 32.91
ATOM	328	CG	LEU	A	59	15.257	16.067	11.683	1.00 27.13
ATOM	329	CD1	LEU	A	59	16.202	15.215	10.862	1.00 36.55
ATOM	330	CD2	LEU	A	59	15.755	17.506	11.690	1.00 35.82
ATOM	331	C	LEU	A	59	11.469	16.269	11.183	1.00 40.95
ATOM	332	0	LEU	A	59	11.353	17.168	10.347	1.00 42.55
ATOM	333	N	TYR	A	60	10.565	15.323	11.317	1.00 41.34
ATOM	334	CA	TYR	A	60	9.284	15.179	10.681	1.00 40.63
ATOM	335	CB	TYR	A	60	9.024	13.668	10.421	1.00 43.43
ATOM	336	CG	TYR	A	60	10.124	12.961	9.675	1.00 45.39
ATOM	337	CD1	TYR	A	60	11.102	12.246	10.373	1.00 46.59
ATOM	338	CE1	TYR	A	60	12.122	11.607	9.695	1.00 47.50

ATOM	339	CD2	TYR	A	60	10.183	13.015	8.289	1.00 44.87
ATOM	340	CE2	TYR	A	60	11.207	12.374	7.604	1.00 47.43
ATOM	341	CZ	TYR	A	60	12.173	11.677	8.312	1.00 48.68
ATOM	342	ОН	TYR	A	60	13.191	11.023	7.648	1.00 49.76
ATOM	343	C	TYR	A	60	8.154	15.621	11.609	1.00 40.66
ATOM	344	0	TYR	A	60	6.941	15.446	11.417	1.00 40.01
ATOM	345	N	GLN	A	61	8.520	16.176	12.766	1.00 41.98
ATOM	346	CA	GLN	A	61	7.629	16.757	13.748	1.00 42.63
ATOM	347	СВ	GLN	A	61	8.260	16.674	15.133	1.00 45.96
ATOM	348	CG	GLN	Ά	61	8.416	15.228	15.603	1.00 54.04
ATOM	349	CD	GLN	A	61	7.119	14.724	16.206	1.00 62.00
ATOM	350	0E1	GLN	A	61	6.534	15.420	17.044	1.00 65.01
ATOM	351	NE 2	GLN	A	61	6.670	13.539	15.805	1.00 61.87
ATOM	352	C	GLN	A	61	7. 275	18.207	13.465	1.00 44.37
ATOM	353	0	GLN	A	61	6.321	18.718	14.048	1.00 45.36
ATOM	354	N	ALA	A	61A	7.966	18.874	12.559	1.00 46.01
ATOM	355	CA	ALA	A	61A	7.764	20.269	12.196	1.00 47.11
ATOM	356	СВ	ALA	A	61A	8.328	21.199	13.270	1.00 38.57
ATOM	357	C	ALA	A	61A	8.561	20.543	10.913	1.00 48.74
ATOM	358	0	ALA	A	61A	9.727	20.113	10.794	1.00 49.70
ATOM	359	N	LYS	A	62	7.951	21.268	9.971	1.00 49.03
ATOM	360	CA	LYS	A	62	8.688	21.516	8.727	1.00 48.64
ATOM	361	CB	LYS	A	62	7.762	21.835	7.562	1.00 58.79
ATOM	366	C	LYS	A	62	9.741	22.585	8.987	1.00 48.05
ATOM	367	0	LYS	A	62	10.923	22.270	8.739	1.00 49.82
ATOM	368	N	ARG	A	63	9.371	23.785	9.424	1.00 45.58

ATOM	369	CA	ARG	A	63	10.450	24.753	9.751	1.00 43.09
ATOM .	370	CB	ARG	A	63	10.186	26.077	9.070	1.00 43.47
ATOM	371	CG	ARG	A	63	11.332	26.993	8.646	1.00 42.64
ATOM	372	CD	ARG	A	63	10.877	28.433	8.424	1.00 48.73
ATOM	373	NE	ARG	A	63	11.867	29.467	8.617	1.00 51.77
ATOM	374	CZ	ARG	A	63	11.855	30.630	9.257	1.00 58.79
ATOM	375	NH1	ARG	A	63	12.985	31.360	9.264	1.00 57.37
ATOM	376	NH2	ARG	A	63	10.823	31.155	9.926	1.00 58.68
ATOM	377	C	ARG	A	63	10.563	24.774	11.276	1.00 41.53
ATOM	378	0	ARG	A	63	9.562	24.518	11.983	1.00 41.86
ATOM	379	N	PHE	A	64	11.766	24.894	11.828	1.00 39.14
ATOM	380	CA	PHE	A	64	11.980	25.028	13.263	1.00 35.93
ATOM	381	СВ	PHE	Α	64	11.943	23.671	13.987	1.00 39.97
ATOM	382	CG	PHE	A	64	13.017	22.710	13.547	1.00 37.04
ATOM	383	CD1	PHE	A	64	14.242	22.685	14.180	1.00 32.63
ATOM	384	CD2	PHE	A	64	12.813	21.860	12.474	1.00 32.90
ATOM	385	CE1	PHE	A	64	15.241	21.820	13.746	1.00 33.75
ATOM	386	CE2	PHE	A	64	13.808	21.013	12.026	1.00 35.44
ATOM	387	CZ	PHE	A	64	15.031	20.985	12.670	1.00 31.47
ATOM	388	C	PHE	A	64	13.299	25.760	13.550	1.00 33.79
ATOM	389	0	PHE	A	64	14.211	25.817	12.724	1.00 30.88
ATOM	390	N	LYS	A	65	13.374	26.393	14.735	1.00 32.03
ATOM	391	CA	LYS	A	65	14.617	27.001	15.195	1.00 30.79
ATOM	392	СВ	LYS	A	65	14.409	28.501	15.444	1.00 36.02
ATOM	393	CG	LYS	A	65	14.164	29. 290	14.146	1.00 31.02
ATOM	394	CD	LYS	A	65	13.175	30.408	14.349	1.00 44.54

ATOM	395	CE	LYS	A	65	13.466	31.630	13.480	1.00 44.05
ATOM	396	NZ	LYS	A	65	12.560	32.747	13.872	1.00 45.67
ATOM	397	C	LYS	A	65	15.134	26.238	16.409	1.00 31.27
ATOM	398	0	LYS	A	65	14.509	25.283	16.897	1.00 30.06
ATOM	399	N	VAL	A	66	16.289	26.652	16.972	1.00 29.65
ATOM	400	CA	VAL	A	66	16.893	25.953	18.087	1.00 27.86
ATOM	401	СВ	VAL	A	66	18.286	25.394	17.747	1.00 29.74
ATOM	402	CG1	VAL	A	66	19.044	24.888	18.973	1.00 26.38
ATOM	403	CG2	VAL	A	66	18.230	24.206	16.776	1.00 19.84
ATOM	404	C	VAL	A	66	17.022	26.934	19.241	1.00 27.31
ATOM	405	0	VAL	A	66	17.662	27.936	18.937	1.00 30.38
ATOM	406	N	ARG	A	67	16.556	26.659	20.445	1.00 25.06
ATOM	407	CA	ARG	A	67	16.735	27.703	21.476	1.00 25.81
ATOM	408	CB	ARG	A	67	15.420	28.111	22.136	1.00 26.53
ATOM	409	CG	ARG	A	67	15.523	29.185	23.165	1.00 24.05
ATOM	410	CD	ARG	A	67	14.188	29.878	23.481	1.00 28.98
ATOM	411	NE	ARG	A	67	13.298	28.924	24.098	1.00 35.96
ATOM	412	CZ	ARG	A	67	11.993	28.776	23.953	1.00 42.83
ATOM	413	NH1	ARG	A	67	11.212	29.522	23.188	1.00 34.17
ATOM	414	NH2	ARG	A	67	11.478	27.764	24.663	1.00 45.70
ATOM	415	C	ARG	A	67	17.715	27.166	22.516	1.00 23.13
ATOM	416	0	ARG	A	67	17.699	25.951	22.714	1.00 23.46
ATOM	417	N	VAL	A	68	18.586	28.023	22.997	1.00 23.37
ATOM	418	CA	VAL	A	68	19.572	27.674	24.000	1.00 23.34
ATOM	419	СВ	VAL	A	68	21.040	27.612	23.547	1.00 19.37
ATOM	420	CG1	VAL	A	68	21.350	26.511	22.527	1.00 26.11

ATOM	421	CG2	VAL	A	68	21.573	28.924	23.071	1.00 14.06
ATOM	422	C	VAL	A	68	19.550	28.661	25.185	1.00 24.22
ATOM	423	0	VAL	A	68	19.092	29.809	25.162	1.00 23.30
ATOM	424	N	GLY	A	69	19.983	28.090	26.320	1.00 24.62
ATOM	425	CA	GLY	A	69	20.161	28.879	27.538	1.00 24.99
ATOM	426	C	GLY	A	69	18.821	29.172	28.183	1.00 25.92
ATOM	427	0	GLY	A	69	18.669	30.249	28.770	1.00 26.31
ATOM	428	N	ASP	A	70	17.881	28.240	28.157	1.00 26.18
ATOM	429	CA	ASP	A	70	16.569	28.623	28.732	1.00 28.30
ATOM	430	CB	ASP	A	70	15.540	28.796	27.637	1.00 38.67
ATOM	431	CG	ASP	A	70	14.100	29.133	27.875	1.00 41.97
ATOM	432	OD1	ASP	A	70	13.725	30.147	28.498	1.00 50.32
ATOM	433	OD2	ASP	A	70	13.233	28.348	27.387	1.00 47.53
ATOM	434	C	ASP	A	70	16.194	27.515	29.691	1.00 27.23
ATOM	435	0	ASP	A	70	16.019	26.436	29.177	1.00 28.55
ATOM	436	N	ARG	A	71	16.058	27.778	30.952	1.00 27.52
ATOM	437	CA	ARG	A	71	15.594	26.842	31.944	1.00 28.07
ATOM	438	СВ	ARG	A	71	16.324	27.124	33.286	1.00 22.24
ATOM	439	CG	ARG	A	71	17.808	26.839	33.230	1.00 25.52
ATOM	440	CD	ARG	A	71	18.576	27.526	34.361	1.00 30.33
ATOM	441	NE	ARG	A	71	18.055	27.152	35.623	1.00 22.80
ATOM	442	CZ	ARG	A	71	17.697	27.668	36.768	1.00 43.78
ATOM	443	NH1	ARG	A	71	17.779	28.952	37.095	1.00 33.19
ATOM	444	NH2	ARG	A	71	17.168	26.778	37.625	1.00 41.74
ATOM	445	С	ARG	A	71	14.108	26.953	32.207	1.00 29.33
ATOM	446	0	ARG	A	71	13.496	26.059	32.777	1.00 31.05

ATOM	447	N	ASN	A	72	13.493	28.085	31.921	1.00 32.78
ATOM	448	CA	ASN	A	72	12.081	28.359	32.212	1.00 34.57
ATOM	449	СВ	ASN	A	72	11.998	29.363	33.357	1.00 31.80
ATOM	450	CG	ASN	A	72	10.630	29.738	33.882	1.00 41.84
ATOM	451	OD1	ASN	A	72	9.543	29.608	33.318	1.00 32.42
ATOM	452	ND2	ASN	A	72	10.651	30.295	35.110	1.00 49.81
ATOM	453	C	ASN	A	72	11.358	28.936	31.010	1.00 35.77
ATOM	454	0	ASN	A	72	11.501	30.118	30.722	1.00 35.78
ATOM	455	N	THR	A	73	10.400	28.210	30.411	1.00 37.50
ATOM	456	CA	THR	A	73	9.777	28.721	29.187	1.00 39.68
ATOM	457	CB	THR	A	73	9.174	27.606	28.336	1.00 40.35
ATOM	458	0G1	THR	A	73	8.269	26.862	29.179	1.00 38.73
ATOM	459	CG2	THR	A	73	10.247	26.689	27.777	1.00 36.98
ATOM	460	C	THR	A	73	8.709	29.770	29.431	1.00 42.80
ATOM	461	0	THR	A	73	8.392	30.481	28.464	1.00 44.37
ATOM	462	N	GLU	A	74	8.175	29.923	30.631	1.00 43.83
ATOM	463	CA	GLU	A	74	7.187	30.949	30.929	1.00 46.48
ATOM	464	CB	GLU	A	74	6.435	30.488	32.188	1.00 48.73
ATOM	465	CG	GLU	A	74	5.292	29.523	31.897	1.00 46.02
ATOM	469	C	GLU	A	74	7.811	32.305	31.245	1.00 48.68
ATOM	470	0	GLU	A	74	7.303	33.362	30.893	1.00 48.12
ATOM	471	N	GLN	A	75	8.963	32.263	31.921	1.00 51.08
ATOM	472	CA	GLN	A	75	9.661	33.474	32.357	1.00 52.32
ATOM	473	СВ	GLN	A	75	10.382	33. 217	33.681	1.00 60.71
ATOM	478	C	GLN	A	75	10.608	33.902	31.250	1.00 53.24
ATOM	479	0	GLN	A	75	10.270	33.605	30.102	1.00 53.20

ATOM	480	N	GLU	A	76	11.695	34.590	31.573	1.00 54.20
ATOM	481	CA	GLU	A	76	12.674	35.008	30.583	1.00 54.81
ATOM	482	СВ	GLU	A	76	12.069	36.015	29.584	1.00 59.29
ATOM	483	CG	GLU	A	76	12.885	36.016	28.301	1.00 74.41
ATOM	484	CD	GLU	A	76	12.298	36.803	27.154	1.00 83.26
ATOM	485	0E1	GLU	A	76	12.599	36.441	25.988	1.00 88.63
ATOM	486	0E2	GLU	A	76	11.556	37. 785	27.386	1.00 82.78
ATOM	487	C	GLU	A	76	13.920	35.578	31.245	1.00 53.64
ATOM	488	0	GLU	A	76	14.263	36.748	31.091	1.00 53.27
ATOM ·	489	N	GLU	A	77	14.718	34.775	31.961	1.00 53.55
ATOM	490	CA	GLU	A	77	15.880	35.361	32.630	1.00 52.99
ATOM	491	СВ	GLU	A	77	16.420	34.542	33.794	1.00 54.46
ATOM	496	C	GLU	A	77	16.981	35.645	31.620	1.00 52.71
ATOM	497	0	GLU	A	77	17.892	34.808	31.438	1.00 54.69
ATOM	498	N	GLY	A	78	17.023	36.807	30.991	1.00 49.11
ATOM	499	CA	GLY	A	78	17.963	37.240	30.038	1.00 46.74
ATOM	500	C	GLY	A	78	18.843	36.449	29.128	1.00 44.16
ATOM	501	0	GLY	A	78	18.888	36.918	27.973	1.00 43.83
ATOM	502	N	GLY	A	79	19.477	35.316	29.442	1.00 40.78
ATOM	503	CA	GLY	A	79	20.400	34.647	28.568	1.00 38.81
ATOM	504	C	GLY	A	79	19.870	33.632	27.569	1.00 36.63
ATOM	505	0	GLY	A	79	20.559	32.618	27.343	1.00 37.23
ATOM	506	N	GLU	A	80	18.714	33.837	26.927	1.00 32.66
ATOM	507	CA	GLU	A	80	18.277	32.895	25.933	1.00 31.57
ATOM	508	СВ	GLU	A	80	16.752	32.731	25.933	1.00 42.21
ATOM	509	CG	GLU	A	80	16.187	32.206	27.249	1.00 42.43

ATOM	510	CD	GLU	Δ	80	15.702	33.346	28. 123	1.00 40.44
ATOM	511		GLU		80	16.266	34. 457	28.081	1.00 42.89
ATOM	512	0E2	GLU	A	80	14.740	33.129	28.868	1.00 40.30
ATOM	513	C	GLU	A	80	18.711	33.263	24.507	1.00 29.50
ATOM	514	0	GLU	A	80	18.673	34.435	24.180	1.00 30.28
ATOM	515	N	ALA	A	81	19.049	32.299	23.635	1.00 27.51
ATOM	516	CA	ALA	A	81	19.280	32.708	22.235	1.00 26.83
ATOM	517	СВ	ALA	A	81	20.740	32.969	22.002	1.00 9.44
ATOM	518	C	ALA	A	81	18.624	31.714	21.303	1.00 28.33
ATOM	519	0	ALA	A	81	18.395	30.513	21.578	1.00 29.54
ATOM	520	N	VAL	A	82	18.112	32.232	20.186	1.00 28.67
ATOM	521	CA	VAL	A	82	17.449	31.409	19.165	1.00 27.70
ATOM	522	CB	VAL	A	82	16.050	31.921	18.815	1.00 31.53
ATOM	523	CG1	VAL	A	82	15.312	30.879	17.977	1.00 20.12
ATOM	524	CG2	VAL	A	82	15.199	32.204	20.051	1.00 29.47
ATOM	525	С	VAL	A	82	18.367	31.419	17.943	1.00 26.64
ATOM	526	0	VAL	A	82	19.013	32.435	17.685	1.00 26.17
ATOM	527	N	HIS	A	83	18.714	30.252	17.421	1.00 26.47
ATOM	528	CA	HIS	A	83	19.621	30.071	16.314	1.00 27.11
ATOM	529	СВ	HIS	A	83	20.902	29.315	16.649	1.00 17.66
ATOM	530	CG	HIS	A	83	21.789	29.987	17.646	1.00 16.78
ATOM	531	CD2	HIS	A	83	21.592	30.163	19.005	1.00 17.65
ATOM	532	ND1	HIS	A	83	23.001	30.556	17.352	1.00 20.39
ATOM	533	CE1	HIS	A	83	23.488	31.104	18.453	1.00 23.97
ATOM	534	NE 2	HIS	A	83	22.632	30.889	19.465	1.00 24.78
ATOM	535	С	HIS	A	83	18.873	29.351	15.195	1.00 28.63

ATOM	536	0	HIS	A	83	17.968	28.561	15.442	1.00 30.66	
ATOM	537	N	GLU	A	84	19.154	29.727	13.965	1.00 29.91	
ATOM	538	CA	GLU	A	84	18.538	29.167	12.776	1.00 30.96	
ATOM	539	СВ	GLU	A	84	18.385	30.203	11.683	1.00 43.44	
ATOM	540	CG	GLU	A	84	17.408	31.317	12.043	1.00 49.20	
ATOM	541	CD	GLU	A	84	16.632	31.775	10.813	1.00 55.67	
ATOM	542	0E1	GLU	A	84	15.401	31.964	10.952	1.00 53.47	
ATOM	543	OE2	GLU	A	84	17.250	31.916	9.733	1.00 48.27	
ATOM	544	C	GLU	A	84	19.424	28.011	12.314	1.00 31.91	
ATOM	545	0	GLU	A	84	20.626	27.995	12.629°	1.00 31.46	
ATOM	546	N	VAL	A	85	18.756	26.998	11.753	1.00 32.93	
ATOM	547	CA	VAL	A	85	19.587	25.859	11.338	1.00 33.87	
ATOM	548	СВ	VAL	A	85	19.089	24.449	11.650	1.00 37.08	
ATOM	549	CG1	VAL	A	85	17.943	24.459	12.658	1.00 36.13	
ATOM	550	CG2	VAL	A	85	18.711	23.563	10.474	1.00 35.27	
ATOM	551	C	VAL	A	85	19.931	26.156	9.878	1.00 34.58	
ATOM	552	0	VAL	A	85	19.061	26.535	9.120	1.00 34.29	
ATOM	553	N	GLU	A	86	21.206	25.963	9.557	1.00 35.00	
ATOM	554	CA	GLU	A	86	21.682	26.158	8.211	1.00 34.23	
ATOM	555	СВ	GLU	A	86	23.126	26.629	8.225	1.00 46.19	
ATOM	556	CG	GLU ⁻	A	86	23.451	27.532	7.020	1.00 54.39	
ATOM	557	CD	GLU	A	86	24.847	27.183	6.521	1.00 62.64	
ATOM	558	OE1	GLU	A	86	25.142	25.977	6.335	1.00 58.62	
ATOM	559	0E2	GLU	A	86	25.622	28.154	6.368	1.00 61.45	
ATOM	560	С	GLU	A	86	21.543	24.826	7.490	1.00 34.41	
ATOM	561	0	GLU	A	86	20.721	24.766	6.580	1.00 35.14	

ATOM	562	N	VAL	A	87	22.197	23.784	7.990	1.00 33.79
ATOM	563	CA	VAL	A	87	22.194	22.440	7.463	1.00 32.10
ATOM	564	СВ	VAL	A	87	23.625	21.869	7.261	1.00 33.81
ATOM	565	CG1	VAL	A	87	23.632	20.520	6.532	1.00 36.95
ATOM	566	CG2	VAL	A	87	24.577	22.792	6.519	1.00 34.21
ATOM	567	C	VAL	A	87	21.593	21.454	8.463	1.00 33.26
ATOM	568	0	VAL	A	87	21.903	21.462	9.655	1.00 34.34
ATOM	569	N	VAL	A	88	20.783	20.542	7.977	1.00 33.95
ATOM	570	CA	VAL	A	88	20.245	19.415	8.721	1.00 34.52
ATOM	571	CB	VAL	A	88	18.740	19.203	8.563	1.00 35.95
ATOM	572	CG1	VAL	A	88	18.234	17.969	9.298	1.00 33.53
ATOM	573	CG2	VAL	A	88	17.971	20.414	9.080	1.00 41.98
ATOM	574	C	VAL	A	88	20.994	18.213	8.148	1.00 35.47
ATOM	575	0	VAL	A	88	21.176	18.175	6.923	1.00 34.82
ATOM	576	N	ILE	A	89	21.651	17.412	8.982	1.00 36.02
ATOM	577	CA	ILE	A	89	22.295	16.204	8.458	1.00 35.40
ATOM	578	CB	ILE	A	89	23.808	16.105	8.604	1.00 36.71
ATOM	579	CG2	ILE	A	89	24.290	14.875	7.831	1.00 38.94
ATOM	580	CG1	ILE	A	89	24.604	17.295	8.071	1.00 37.87
ATOM	581	CD1	ILE	A	89	24.844	18.400	9.082	1.00 43.27
ATOM	582	C	ILE	A	89	21.599	15.028	9.148	1.00 36.17
ATOM	583	0	ILE	A	89	21.742	14.740	10.336	1.00 36.92
ATOM	584	N	LYS	A	90	20.793	14.314	8.391	1.00 37.23
ATOM	585	CA	LYS	A	90	19.977	13.228	8.937	1.00 35.93
ATOM	586	CB	LYS	A	90	18.656	13.180	8.205	1.00 30.37
ATOM	587	CG	LYS	A	9.0	17.505	12.590	9.002	1.00 44.83

ATOM	588	CD	LYS	A	90	16.326	12.289	8.072	1.00 44.13
ATOM	589	CE	LYS	A	90	16.358	10.796	7.768	1.00 55.83
ATOM	590	NZ	LYS	A	90	16.154	10.441	6.344	1.00 55.46
ATOM	591	c	LYS	A	90	20.714	11.941	8.675	1.00 37.28
ATOM	592	0	LYS	A	90	21.239	11.927	7.567	1.00 37.72
ATOM	593	N	HIS	A	91	20.821	11.000	9.626	1.00 37.91
ATOM	594	CA	HIS	A	91	21.457	9.744	9.290	1.00 38.35
ATOM	595	CB	HIS	A	91	21.507	8.768	10.470	1.00 40.40
ATOM	596	CG	HIS	A	91	22.528	7.690	10.244	1.00 40.53
ATOM	597	CD2	HIS	A	91	23.717	7.456	10.846	1.00 43.00
ATOM	598	ND1	HIS	A	91	22.402	6.713	9.273	1.00 38.59
ATOM	599	CE1	HIS	A	91	23.461	5.931	9.304	1.00 35.61
ATOM	600	NE 2	HIS	A	91	24.286	6.366	10.248	1.00 36.79
ATOM	601	C	HIS	A	91	20.596	9.146	8.177	1.00 40.94
ATOM	602	0	HIS	A	91	19.364	9.047	8.339	1.00 42.33
ATOM	603	N	ASN	A	92	21.221	8.684	7.103	1.00 41.87
ATOM	604	CA	ASN	A	92	20.536	8.130	5.947	1.00 42.44
ATOM	605	СВ	ASN	A	92	21.426	8.076	4.699	1.00 52.47
ATOM	606	CG	ASN	A	92	22.796	7.491	4.943	1.00 58.04
ATOM	607	0D1	ASN	A	92	23.661	8.106	5.586	1.00 72.36
ATOM	608	ND2	ASN	A	92	23.004	6.298	4.410	1.00 56.76
ATOM	609	C	ASN	A	92	19.906	6.764	6.165	1.00 42.37
ATOM	610	0	ASN	A	92	18.931	6.449	5.454	1.00 41.49
ATOM	611	N	ARG	A	93	20.331	5.982	7.159	1:00 41.34
ATOM	612	CA	ARG	A	93	19.649	4.721	7.437	1.00 40.02
ATOM	613	СВ	ARG	A	93	20.656	3.660	7.849	1.00 40.58

ATOM	614	CG	ARG	A	93	21.842	3.395	6.922	1.00 28.80
ATOM	615	CD	ARG	A	93	22.280	1.944	7.129	1.00 39.94
ATOM	620	C	ARG	A	93	18.542	4.870	8.456	1.00 40.93
ATOM	621	0	ARG	A	93	18.188	3.796	8.955	1.00 41.47
ATOM	622	N	РНЕ	A	94	18.010	6.054	8.844	1.00 41.12
ATOM	623	CA	PHE	A	94	16.949	6.030	9.845	1.00 41.99
ATOM	624	СВ	PHE	A	94	16.570	7.334	10.500	1.00 32.16
ATOM	625	CG	PHE	A	94	15.259	7.530	11.219	1.00 23.65
ATOM	626	CD1	PHE	A	94	15.068	7.176	12.524	1.00 23.28
ATOM	627	CD2	PHE	A	94	14.193	8.139	10.581	1.00 30.32
ATOM	628	CE1	PHE	A	94	13.854	7.343	13.171	1.00 22.97
ATOM	629	CE2	PHE	A	94	12.981	8.354	11.193	1.00 35.67
ATOM	630	CZ	PHE	A	94	12.808	7.940	12.509	1.00 38.70
ATOM	631	C	PHE	A	94	15.669	5.489	9.186	1.00 44.70
ATOM	632	0	PHE	A	94	15.293	5.990	8.138	1.00 46.11
ATOM	633	N	THR	A	95	14.972	4.620	9.927	1.00 45.61
ATOM	634	CA	THR	A	95	13.644	4.223	9.493	1.00 46.42
ATOM	635	CB	THR	A	95	13.528	2.690	9.373	1.00 46.00
ATOM	636	0G1	THR	A	95	14.739	2.178	8.801	1.00 48.15
ATOM	637	CG2	THR	A	95	12.306	2.374	8.530	1.00 35.79
ATOM	638	C	THR	A	95	12.622	4.629	10.547	1.00 47.52
ATOM	639	0	THR	A	95	12.890	4.485	11.746	1.00 48.91
ATOM	640	N	LYS	A	96	11.410	4.999	10.139	1.00 46.48
ATOM	641	CA	LYS	A	96	10.388	5.373	11.109	1.00 45.00
ATOM	642	СВ	LYS	A	96	9.332	6.317	10.532	1.00 50.39
ATOM	647	C	LYS	A	96	9.756	4.133	11.704	1.00 44.07

ATOM	648	0	LYS	A	96	9.354	4.195	12.875	1.00 4	46.51
ATOM	649	N	GLU	A	97	9.720	2.991	11.023	1.00 4	11.71
ATOM	650	CA	GLU	A	97	9.109	1.782	11.557	1.00 3	38. 37
ATOM	651	СВ	GLU	A	97	8.966	0.781	10.400	1.00 4	19.45
ATOM	656	C	GLU	A	97	9.843	1.117	12.711	1.00 3	37. 28
ATOM	657	0	GLU	A	97	9.240	0.434	13.555	1.00 3	34.41
ATOM	658	N	THR	A	98	11.183	1.198	12.755	1.00 3	37.03
ATOM	659	CA	THR	A	98	11.964	0.645	13.844	1.00 3	35.72
ATOM	660	СВ	THR	A	98	13.068	-0.317	13.374	1.00 4	44.08
ATOM	661	0G1	THR	A	98	14.028	0.356	12.529	1.00 4	40.60
ATOM	662	CG2	THR	A	98	12.495	-1.520	12.635	1.00 4	40.40
ATOM	663	C	THR	A	98	12.646	1.735	14.671	1.00	35.66
ATOM	664	0	THR	A	98	13.070	1.495	15.803	1.00	36.87
ATOM	665	N	TYR	A	99	12.868	2.920	14.146	1.00	34.33
ATOM	666	CA	TYR	A	99	13.605	4.033	14.731	1.00	33.12
ATOM	667	СВ	TYR	A	99	13.026	4.644	15.977	1.00	32.86
ATOM	668	CG	TYR	A	99	11.910	5.612	16.078	1.00	33.15
ATOM	669	CD1	TYR	A	99	11.002	5.814	15.044	1.00	34. 78
ATOM	670	CE1	TYR	A	99	9.987	6.735	15.132	1.00	34.14
ATOM	671	CD2	TYR	A	99	11.719	6.342	17.235	1.00	34.13
ATOM	672	CE2	TYR	A	99	10.699	7.284	17.350	1.00	34.91
ATOM	673	CZ	TYR	A	99	9.836	7.445	16.293	1.00	35.24
ATOM	674	ОН	TYR	A	99	8.765	8. 285	16.379	1.00	37.76
ATOM	675	C	TYR	A	99	15.061	3.630	14.998	1.00	32.60
ATOM	676	0	TYR	A	99	15.659	4.000	15.995	1.00	30.89
ATOM	677	N	ASP	A	100	15.663	2.864	14.097	1.00	33.99

ATOM	678	CA	ASP	A	100	17.040	2.416	14.156	1.00	33.20
ATOM	679	СВ	ASP	A	100 .	17.270	1.120	13.395	1.00	28.02
ATOM	680	CG	ASP	A	100	18.534	0.405	13.787	1.00	35.36
ATOM	681	0D1	ASP	A	100	19.121	0.711	14.861	1.00	45.96
ATOM	682	OD2	ASP	A	100	19.035	-0.464	13.049	1.00	31.49
ATOM	683	C	ASP	A	100	17.814	3.566	13.520	1.00	33.97
ATOM	684	0	ASP	A	100	17.229	4.299	12.717	1.00	36.30
ATOM	685	N	PHE	A	101	19.052	3.810	13.907	1.00	33.52
ATOM	686	CA	PHE	A	101	19.841	4.933	13.408	1.00	32.38
ATOM	687	CB	PHE	A	101	20.221	4.780	11.938	1.00	39.22
ATOM	688	CG	PHE	A	101	21.016	3.560	11.569	1.00	36.36
ATOM	689	CD1	PHE	A	101	22.383	3.582	11.618	1.00	29.94
ATOM	690	CD2	PHE	A	101	20.385	2.399	11.137	1.00	24.71
ATOM	691	CE1	PHE	A	101	23.142	2.473	11.270	1.00	34.83
ATOM	692	CE2	PHE	A	101	21.117	1.288	10.776	1.00	29.64
ATOM	693	CZ	PHE	A	101	22.493	1.326	10.854	1.00	37.05
ATOM	694	C	PHE	A	101	19.084	6.237	13.649	1.00	31.14
ATOM	695	0	PHE	A	101	18.996	7.078	12.750	1.00	32.09
ATOM	696	N	ASP	A	102	18.659	6.491	14.887	1.00	29.35
ATOM	697	CA	ASP	A	102	17.842	7.663	15.178	1.00	29.88
ATOM	698	CB	ASP	A	102	16.754	7. 291	16.162	1.00	24.89
ATOM	699	CG	ASP	A	102	15.747	8.357	16.461	1.00	34.65
ATOM	700	0D1	ASP	A	102	15.609	9.306	15.652	1.00	48.77
ATOM	701	0D2	ASP	A	102	15.033	8.291	17.483	1.00	24.20
ATOM	702	C	ASP	A	102	18.792	8.750	15.656	1.00	29.98
ATOM	703	0	ASP	A	102	19.170	8.789	16.829	1.00	29.61

ATOM	704	N	ILE A	103	19.235	9.578	14.680	1.00 28.85
ATOM	705	CA	ILE A	103	20.302	10.546	14.936	1.00 25.90
ATOM	706	CB	ILE A	103	21.647	9.859	15.213	1.00 26.77
ATOM	707	CG2	ILE A	103	22.071	8.933	14.053	1.00 24.81
ATOM	708	CG1	ILE A	103	22.783	10.839	15.547	1.00 21.16
ATOM	709	CD1	ILE A	103	24.013	10.098	16.091	1.00 27.49
ATOM	710	C	ILE A	103	20.462	11.487	13.757	1.00 25.74
ATOM	711	0	ILE A	103	20.598	11.160	12.584	1.00 25.86
ATOM	712	N	ALA A	104	20.651	12.758	14.116	1.00 25.25
ATOM	713	CA	ALA A	104	20.725	13.858	13.209	1.00 24.30
ATOM	714	СВ	ALA A	104	19.323	14.413	13.051	1.00 23.86
ATOM	715	C	ALA A	104	21.653	14.904	13.796	1.00 25.70
ATOM	716	0	ALA A	104	21.831	14.904	15.002	1.00 27.40
ATOM	717	N	VAL A	105	22.415	15.599	12.976	1.00 27.45
ATOM	.718	CA	VAL A	105	23.279	16.696	13.413	1.00 28.44
ATOM	719	CB	VAL A	105	24.755	16.456	13.150	1.00 38.25
ATOM	720	CG1	VAL A	105	25.576	17.714	13.433	1.00 35.08
ATOM	721	CG2	VAL A	105	25.279	15.246	13.972	1.00 27.41
ATOM	722	C	VAL A	105	22.758	17.957	12.739	1.00 27.57
ATOM	723	0	VAL A	105	22.334	17.908	11.602	1.00 29.52
ATOM	724	N	LEU A	106	22.557	19.028	13.494	1.00 27.11
ATOM	725	CA	LEU A	106	22.124	20. 291	12.990	1.00 24.97
ATOM	726	СВ	LEU A	106	20.970	20.933	13.766	1.00 16.04
ATOM	727	CG	LEU A	106	19.890	19.993	14.304	1.00 18.72
ATOM	728	CD1	LEU A	106	18.855	20.739	15.114	1.00 20.39
ATOM	$7\hat{2}9$	CD2	LEU A	106	19.243	19.126	13.229	1.00 27.66

ATOM	730	C	LEU	A	106	23.312	21.247	12.960	1.00	26.14
ATOM	731	0	LEU	A	106	24.003	21.302	13.967	1.00	27. 26
ATOM	732	N	ARG	A	107	23.548	21.840	11.803	1.00	26.49
ATOM	733	CA	ARG	A	107	24.565	22.899	11.687	1.00	28.21
ATOM	734	СВ	ARG	A	107	25.452	22.799	10.476	1.00	38.89
ATOM	735	CG	ARG	A	107	25.882	23.932	9.620	1.00	40.75
ATOM	736	CD	ARG	A	107	27.039	24.786	10.021	1.00	42.93
ATOM	737	NE	ARG	A	107	28.334	24.341	9.561	1.00	42.40
ATOM	738	CZ	ARG	A	107	29.464	25.033	9.641	1.00	49.58
ATOM	739	NH1	ARG	A	107	29.571	26.251	10.146	1.00	45.95
ATOM	740	NH2	ARG	A	107	30.585	24.473	9.175	1.00	58.65
ATOM	741	C	ARG	A	107	23.823	24.228	11.760	1.00	27.11
ATOM	742	0	ARG	A	107	22.866	24.493	11.042	1.00	27.74
ATOM	743	N	LEU	A	108	24. 299	25.051	12.685	1.00	26.82
ATOM	744	CA	LEU	A	108	23.646	26.330	12.954	1.00	26.21
ATOM	745	CB	LEU	A	108	23.974	26.593	14.418	1.00	22.59
ATOM	746	CG	LEU	A	108	22.949	26.402	15.513	1.00	25.68
ATOM	747	CD1	LEU	A	108	21.963	25.268	15.296	1.00	18.17
ATOM	748	CD2	LEU	A	108	23.636	26.268	16.861	1.00	29.12
ATOM	749	C	LEU	A	108	24.133	27.415	12.030	1.00	27.21
ATOM	750	0	LEU	A	108	25.324	27.415	11.722	1.00	28.81
ATOM	751	N	LYS	A	109	23.336	28.409	11.661	1.00	28.03
ATOM	752	CA	LYS	A	109	23.767	29.472	10.789	1.00	28.80
ATOM	753	CB	LYS	A	109	22.624	30.374	10.269	1.00	21.97
ATOM	758	C	LYS	A	109	24.743	30.441	11.437	1.00	29.61
ATOM	759	0	LYS	A	109	25.443	31.176	10.732	1.00	27. 25

ATOM	760	N	THR	A	110	24.596	30.630	12.758	1.00 29.67
ATOM	761	CA	THR	A	110	25.377	31.559	13.543	1.00 28.64
ATOM	762	CB	THR	A	110	24.593	32.798	14.048	1.00 30.52
ATOM	763	0G1	THR	A	110	23.491	32.363	14.873	1.00 30.22
ATOM	764	CG2	THR	A	110	23.951	33.653	12.981	1.00 23.73
ATOM	765	C	THR	A	110	25.852	30.768	14.756	1.00 27.41
ATOM	766	0	THR	A	110	25.058	30.026	15.277	1.00 28.78
ATOM	767	N	PR0	A	111	27.093	30.936	15.180	1.00 27.26
ATOM	768	CD	PRO	A	111	28.077	31.935	14.604	1.00 26.56
ATOM	769	CA	PRO	A	111	27.663	30.199	16.272	1.00 25.68
ATOM	770	CB	PRO	A	111	29.103	30.701	16.317	1.00 26.68
ATOM	771	CG	PR0	A	111	29.096	32.080	15.731	1.00 25.88
ATOM	772	C	PR0	A	111	27.063	30.534	17.617	1.00 27.17
ATOM	773	0	PRO	A	111	26.659	31.667	17.852	1.00 28.68
ATOM	774	N	ILE	A	112	26.948	29.546	18.494	1.00 27.44
ATOM	775	CA	ILE	A	112	26.438	29.745	19.837	1.00 25.79
ATOM	776	CB	ILE	A	112	26.120	28.386	20.491	1.00 30.75
ATOM	777	CG2	ILE	A	112	25.893	28.489	22.002	1.00 26.18
ATOM	778	CG1	ILE	A	112	24.900	27.725	19.856	1.00 25.01
ATOM	779	CD1	ILE	A	112	24.739	26.237	20.211	1.00 17.18
ATOM	780	C	ILE	A	112	27.488	30.509	20.649	1.00 25.83
ATOM	781	0 .	ILE	A	112	28.699	30.249	20.605	1.00 24.02
ATOM	782	N	THR	A	113	26.959	31.365	21.525	1.00 25.12
ATOM	783	CA	THR	A	113	27.810	32.092	22.461	1.00 26.63
ATOM	784	СВ	THR	A	113	27.438	33.584	22.503	1.00 40.14
ATOM	785	0G1	THR	A	113	27.473	34.036	21.122	1.00 36.64

ATOM	786	CG2	THR	A	113	28.432	34.395	23.308	1.00	36.16
ATOM	787	C	THR	A	113	27.710	31.431	23.830	1.00	25.92
ATOM	788	0	THR	A	113	26.798	31.574	24.598	1.00	28.42
ATOM	789	N	PHE	A	114	28.733	30.677	24.172	1.00	24.22
ATOM	790	CA	PHE	A	114	28.802	29.998	25.456	1.00	26.00
ATOM	791	СВ	PHE	A	114	29.957	29.041	25.560	1.00	22.82
ATOM	792	CG	PHE	A	114	30.115	28.056	24.439	1.00	20.60
ATOM	793	CD1	PHE	A	114	29.064	27.441	23.784	1.00	26.00
ATOM	794	CD2	PHE	A	114	31.424	27.656	24.147	1.00	19.62
ATOM	795	CE 1	PHE	A	114	29.273	26.482	22.794	1.00	20.50
ATOM	796	CE 2	PHE	A	114	31.658	26.725	23.124	1.00	21.24
ATOM	797	CZ	PHE	A	114	30.574	26.181	22.471	1.00	21.00
ATOM	798	C	PHE	A	114	28.812	31.013	26.588	1.00	27.13
ATOM	799	0	PHE	A	114	29.441	32.052	26.517	1.00	28.69
ATOM	800	N	ARG	A	115	27.998	30.702	27.598	1.00	23.85
ATOM	801	CA	ARG	A	115	27.741	31.582	28.704	1.00	23.44
ATOM	802	СВ	ARG	A	115	26.807	32.713	28.320	1.00	25.35
ATOM	803	CG	ARG	A	115	25.485	32.300	27.662	1.00	31.87
ATOM	804	CD	ARG	A	115	24.576	33.496	27.397	1.00	43.17
ATOM	805	NE	ARG	A	115	24.438	34.228	28.634	1.00	62.46
ATOM	806	CZ	ARG	A	115	24.175	35.409	29.138	1.00	61.90
ATOM	807	NH1	ARG	A	115	24.187	35.526	30.477	1.00	55.57
ATOM	808	NH2	ARG	A	115	23.889	36.435	28.343	1.00	60.60
ATOM	809	C	ARG	A	115	27.090	30.678	29.769	1.00	24.43
ATOM	810	0	ARG	A	115	26.954	29.475	29.549	1.00	23.78
ATOM	811	N	MET	A	116	26.673	31.289	30.872	1.00	24.13

ATOM	812	CA	MET	A	116	26.111	30.544	31.980	1.00	25.75
ATOM	813	СВ	MET	A	116	25.692	31.479	33.086	1.00	30.03
ATOM	814	CG	MET	A	116	24.914	30.913	34.245	1.00	23.48
ATOM	815	SD	MET	A	116	26.080	30.174	35.378	1.00	41.52
ATOM	816	CE	MET	A	116	25.180	30.385	36.914	1.00	32.98
ATOM	817	С	MET	A	116	24.930	29.790	31.409	1.00	27. 24
ATOM	818	0	MET	A	116	24.223	30.288	30.530	1.00	28.80
ATOM	819	N	ASN	A	117	24.809	28.505	31.686	1.00	27. 25
ATOM	820	CA	ASN	A	117	23.736	27.677	31.141	1.00	28.48
ATOM	821	CB	ASN	A	117	22.355	28.301	31.387	1.00	28.12
ATOM	822	CG	ASN	A	117	21.878	28.227	32.815	1.00	30.61
ATOM	823	0D1	ASN	A	117	21.941	27.167	33.434	1.00	33.37
ATOM	824	ND2	ASN	A	117	21.438	29.369	33.308	1.00	33.88
ATOM	825	C	ASN	A	117	23.860	27.392	29.661	1.00	28.11
ATOM	826	0	ASN	A	117	22.907	26.767	29.117	1.00	30.29
ATOM	827	N	VAL	A	118	24.950	27.667	28.954	1.00	26.07
ATOM	828	CA	VAL	A	118	25.092	27.409	27.529	1.00	24.16
ATOM	829	СВ	VAL	A	118	24.840	28.609	26.615	1.00	30.01
ATOM	830	CG1	VAL	A	118	24.904	28.137	25.170	1.00	26.61
ATOM	831	CG2	VAL	A	118	23.520	29.357	26.657	1.00	28.39
ATOM	832	C	VAL	A	118	26.510	26.889	27.269	1.00	20.98
ATOM	833	0	VAL	A	118	27.428	27.692	27.164	1.00	21.00
ATOM	834	N	ALA	A	119	26.731	25.604	27.131	1.00	19.84
ATOM	835	CA	ALA	A	119	28.094	25.101	26.820	1.00	20.85
ATOM	836	CB	ALA	A	119	29.005	25.309	28.014	1.00	20.31
ATOM	837	C	ALA	A	119	27.920	23.637	26.403	1.00	20.48

ATOM	838	0	ALA A	119	26.916	22.972	26.642	1.00 18.28
ATOM	839	N	PRO A	120	28.946	23.136	25.703	1.00 18.87
ATOM	840	CD	PRO A	120	30.342	23.664	25.631	1.00 18.80
ATOM	841	CA	PRO A	120	28.834	21.877	25.021	1.00 17.47
ATOM	842	CB	PRO A	120	29.890	22.022	23.942	1.00 18.28
ATOM	843	CG	PRO A	120	30.756	23.190	24.234	1.00 18.77
ATOM	844	C	PRO A	120	29.025	20.689	25.930	1.00 18.63
ATOM	845	0	PRO A	120	29.663	20.884	26.976	1.00 21.85
ATOM	846	N	ALA A	121	28.462	19.526	25.608	1.00 16.45
ATOM	847	CA	ALA A	121	28.814	18.361	26.399	1.00 18.96
ATOM	848	CB	ALA A	121	27.699	17.303	26.457	1.00 25.20
ATOM	849	C	ALA A	121	30.010	17.833	25.585	1.00 21.15
ATOM	850	0	ALA A	121	30.201	18.248	24.417	1.00 23.93
ATOM	851	N	CYS A	122	30.768	16.944	26.141	1.00 20.09
ATOM	852	CA	CYS A	122	31.939	16.383	25.540	1.00 19.82
ATOM	853	C	CYS A	122	31.627	15.130	24.778	1.00 19.32
ATOM	854	0	CYS A	122	30.823	14.339	25.256	1.00 22.58
ATOM	855	СВ	CYS A	122	32.959	15.900	26.601	1.00 19.85
ATOM	856	SG	CYS A	122	33.818	17.133	27.560	1.00 20.40
ATOM	857	N	LEU A	123	32.299	14.925	23.679	1.00 20.06
ATOM	858	CA	LEU A	123	32.233	13.664	22.934	1.00 18.94
ATOM	859	CB	LEU A	123	32.463	13.945	21.469	1.00 11.99
ATOM	860	CG	LEU A	123	31.310	14.587	20.684	1.00 24.65
ATOM	861	CD1	LEU A	123	31.814	14.726	19.249	1.00 33.09
ATOM	862	CD2	LEU A	123	30.038	13.770	20.650	1.00 20.59
ATOM	863	C	LEU A	123	33.356	12.752	23.433	1.00 17.89

ATOM	864	0	LEU A	123	34.472	13.196	23.674	1.00 17.39
ATOM	865	N	PRO A	124	33.016	11.528	23.792	1.00 18.79
ATOM	866	CD	PRO A	124	31.638	10.955	23.820	1.00 19.87
ATOM	867	CA	PRO A	124	33.994	10.580	24. 291	1.00 20.75
ATOM	868	CB	PRO A	124	33.143	9.658	25.129	1.00 20.36
ATOM	869	CG	PRO A	124	31.833	9.566	24.423	1.00 20.64
ATOM	870	C	PRO A	124	34.646	9.782	23.160	1.00 23.20
ATOM	871	0	PRO A	124	34.267	9.889	21.982	1.00 24.33
ATOM	872	N	GLU A	124A	35.697	9.074	23.479	1.00 25.06
ATOM	873	CA	GLU A	124A	36.267	8.127	22.502	1.00 25.48
ATOM	874	CB	GLU A	124A	37.756	8.067	22.724	1.00 37.95
ATOM	875	CG	GLU A	124A	38.561	8.649	21.568	1.00 48.20
ATOM	876	CD	GLU A	124A	39.856	9.273	22.043	1.00 63.60
ATOM	877	0E1	GLU A	124A	39.961	10.522	21.915	1.00 71.90
ATOM	878	0E2	GLU A	124A	40.766	8.559	22.535	1.00 65.69
ATOM	879	C	GLU A	124A	35.435	6.865	22.696	1.00 26.06
ATOM	880	0	GLU A	124A	34.979	6.569	23.813	1.00 27.29
ATOM	881	N	ARG A	125	35.096	6.142	21.638	1.00 25.62
ATOM	882	CA	ARG A	125	34.299	4.942	21.659	1.00 24.19
ATOM	883	CB	ARG A	125	34.260	4.317	20.240	1.00 30.49
ATOM	884	CG	ARG A	125	33.508	3.007	20.088	1.00 32.97
ATOM	885	CD	ARG A	125	33.860	2.254	18.806	1.00 32.80
ATOM	886	NE	ARG A	125	35.189	1.660	18.894	1.00 47.47
ATOM	887	CZ	ARG A	125	35.831	0.863	18.050	1.00 50.13
ATOM	888	NH1	ARG A	125	35.272	0.467	16.905	1.00 50.93
ATOM	889	NH2	ARG A	125	37.082	0.450	18.293	1.00 43.88

ATOM	890	C	ARG	A	125	34.778	3.871	22.602	1.00	23.01
ATOM	891	0	ARG	A	125	33.979	3.330	23.398	1.00	22.83
ATOM	892	N	ASP	A	126	36.029	3.415	22.433	1.00	22.40
ATOM	893	CA	ASP	A	126	36.494	2.300	23.288	1.00	22.02
ATOM	894	СВ	ASP	A	126	37.893	1.837	22.858	1.00	28.81
ATOM	895	CG	ASP	A	126	37.816	0.770	21.779	1.00	42.39
ATOM	896	0D1	ASP	A	126	36.762	0.502	21.159	1.00	40.90
ATOM	897	0D2	ASP	A	126	38.871	0.143	21.525	1.00	58.59
ATOM	898	C	ASP	A	126	36.380	2.582	24.769	1.00	20.65
ATOM	899	0	ASP	A	126	35.812	1.833	25.548	1.00	20.73
ATOM	900	N	TRP	A	127	36.871	3.706	25.246	1.00	21.66
ATOM	901	CA	TRP	A	127	36.758	4.151	26.631	1.00	21.37
ATOM	902	CB	TRP	A	127	37. 683	5.384	26.713	1.00	21.88
ATOM	903	CG	TRP	A	127	37.677	5.984	28.080	1.00	30.76
ATOM	904	CD2	TRP	A	127	36.834	7.058	28.508	1.00	22.98
ATOM	905	CE2	TRP	A	127	37.139	7.297	29.856	1.00	30.61
ATOM	906	CE3	TRP	A	127	35.885	7.844	27.861	1.00	23.66
ATOM	907	CD1	TRP	A	127	38.409	5.595	29.170	1.00	31.96
ATOM	908	NE1	TRP	A	127	38.098	6.381	30.242	1.00	26.78
ATOM	909	CZ2	TRP	A	127	36.523	8.307	30.585	1.00	27.07
ATOM	910	CZ3	TRP	A	127	35.292	8.852	28.583	1.00	27.96
ATOM	911	CH2	TRP	A	127	35.595	9.062	29.930	1.00	33.99
ATOM	912	C	TRP	A	127	35.360	4.456	27.098	1.00	19.75
ATOM	913	0	TRP	A	127	35.045	4.225	28.283	1.00	21.53
ATOM	914	N	ALA	A	128	34.503	5.051	26.275	1.00	19.69
ATOM	915	CA	ALA	A	128	33.110	5.349	26.618	1.00	19.70

ATOM	916	CB	ALA	A	128	32.453	6.018	25.412	1.00 20.25	
ATOM	917	C	ALA	A	128	32.339	4.052	26.912	1.00 19.97	
ATOM	918	0	ALA	A	128	31.659	3.883	27.904	1.00 20.13	
ATOM	919	N	GLU	A	129	32.532	3.063	26.054	1.00 19.93	
ATOM	920	CA	GLU	A	129	32.046	1.734	26.228	1.00 24.82	
ATOM	921	СВ	GLU	A	129	32.288	0.912	24.939	1.00 21.76	
ATOM	922	CG	GLU	A	129	31.106	1.339	24.038	1.00 38.72	
ATOM	923	CD	GLU	A	129	31.073	0.645	22.694	1.00 39.87	
ATOM	924	0E1	GLU	A	129	30.217	1.028	21.861	1.00 46.86	
ATOM	925	0E2	GLU	A	129	31.907	-0.248	22.455	1.00 40.64	
ATOM	926	C	GLU	A	129	32.542	0.977	27.445	1.00 23.74	
ATOM	927	0	GLU	A	129	31.720	0.412	28.166	1.00 23.76	
ATOM	928	N	SER	A	130	33.825	1.017	27.772	1.00 24.71	
ATOM	929	CA	SER	A	130	34.203	0.173	28.933	1.00 24.11	
ATOM	930	CB	SER	A	130	35.636	-0.313	28.679	1.00 17.58	
ATOM	931	0G	SER	A	130	36.398	0.869	28.503	1.00 27.90	
ATOM	932	C	SER	A	130	33.991	0.934	30.216	1.00 23.99	
ATOM	933	0	SER	A	130	33.566	0.360	31.219	1.00 23.76	
ATOM	934	N	THR	A	131	34.134	2.245	30.191	1.00 25.75	
ATOM	935	CA	THR	A	131	34.061	3.074	31.383	1.00 27.89	
ATOM	936	СВ	THR	A	131	35.196	4.141	31.413	1.00 21.43	
ATOM	937	0G1	THR	A	131	36.322	3.603	30.752	1.00 31.98	
ATOM	938	CG2	THR	A	131	35.577	4.507	32.819	1.00 27.16	
ATOM	939	C	THR	A	131	32.803	3.917	31.568	1.00 26.65	
ATOM	940	0	THR	A	131	32.507	4.140	32.737	1.00 26.35	
ATOM	941	N	LEU	A	131A	32.202	4.454	30.533	1.00 26.99	

ATOM	942	CA	LEU A	131A	31.029	5.327	30.729	1.00 26.39
ATOM	943	CB	LEU A	131A	30.938	6.407	29.666	1.00 27.45
ATOM	944	CG	LEU A	131A	31.354	7.852	29.821	1.00 30.09
ATOM	945	CD1	LEU A	131A	32.344	8.162	30.914	1.00 19.04
ATOM	946	CD2	LEU A	131A	31.837	8.469	28.524	1.00 19.24
ATOM	947	C	LEU A	131A	29.767	4.527	30.757	1.00 25.74
ATOM	948	0	LEU A	131A	28.924	4.610	31.631	1.00 28.36
ATOM	949	N	MET A	131B	29.544	3.567	29.883	1.00 27.02
ATOM	950	CA	MET A	131B	28.394	2.717	29.766	1.00 26.30
ATOM	951	СВ	MET A	131B	28. 293	1.880	28.512	1.00 21.38
ATOM	952	CG	MET A	131B	28.729	2.541	27. 246	1.00 32.22
ATOM	953	SD	MET A	131B	27.560	3.430	26.294	1.00 30.30
ATOM	954	CE	MET A	131B	26.112	2.393	26.270	1.00 16.93
ATOM	955	C	MET A	131B	28.321	1.664	30.860	1.00 27.34
ATOM	956	0	MET A	131B	27.241	1.095	30.996	1.00 28.87
ATOM	957	N	THR A	132	29.388	1.404	31.586	1.00 27.10
ATOM	958	CA	THR A	132	29.404	0.519	32.710	1.00 27.58
ATOM	959	СВ	THR A	132	30.685	-0.356	32.721	1.00 34.80
ATOM	960	0G1	THR A	132	31.817	0.469	32.967	1.00 27.47
ATOM	961	CG2	THR A	132	30.821	-1.085	31.398	1.00 30.24
ATOM	962	C	THR A	132	29.252	1.232	34.047	1.00 27.20
ATOM	963	0	THR A	132	29.347	0.518	35.081	1.00 30.36
ATOM	964	N	GLN A	133	29.081	2.522	34.091	1.00 23.66
ATOM	965	CA	GLN A	133	28.798	3.229	35.346	1.00 25.09
ATOM	966	СВ	GLN A	133	28.901	4.746	35.206	1.00 19.32
ATOM	967	CG	GLN A	1 133	30.129	5.263	34.501	1.00 24.28

ATOM	968	CD	GLN	A	133	31.264	5.405	35.492	1.00	36.11
ATOM	969	0E1	GLN	A	133	31.091	5.971	36.570	1.00	39.13
ATOM	970	NE 2	GLN	A	133	32.438	4.868	35.180	1.00	47.13
ATOM	971	C	GLN	A	133	27.360	2.968	35.800	1.00	24.16
ATOM	972	0	GLN	A	133	26.558	2.680	34.912	1.00	27.15
ATOM	973	N	LYS	A	134	26.916	3.133	37.024	1.00	22.90
ATOM	974	CA	LYS	A	134	25.515	2.814	37.323	1.00	24.07
ATOM	975	CB	LYS	A	134	25.201	3.014	38.823	1.00	32.78
ATOM	976	CG	LYS	A	134	26.319	2.550	39.756	1.00	40.78
ATOM	977	CD	LYS	A	134	25.993	2.901	41.201	1.00	47.99
ATOM	980	C	LYS	A	134	24.505	3.643	36.565	1.00	25.88
ATOM	981	0	LYS	A	134	23.498	3.202	36.060	1.00	25.66
ATOM	982	N	THR	A	135	24.649	4.989	36.591	1.00	27.83
ATOM	983	CA	THR	A	135	23.671	5.898	36.022	1.00	25.11
ATOM	984	СВ	THR	A	135	23.125	6.785	37.166	1.00	19.85
ATOM	985	0G1	THR	A	135	24.259	7.421	37.806	1.00	44.19
ATOM	986	CG2	THR	A	135	22.352	6.044	38.235	1.00	32.85
ATOM	987	C	THR	A	135	24.202	6.907	35.015	1.00	24.63
ATOM	988	0	THR	A	135	25.413	7.111	34.968	1.00	24.03
ATOM	989	N	GLY	A	136	23.269	7.381	34.170	1.00	22.36
ATOM	990	CA	GLY	A	136	23.593	8.606	33.379	1.00	19.93
ATOM	991	C	GLY	A	136	22.425	9.588	33.634	1.00	17.94
ATOM	992	0	GLY	A	136	21.421	9.243	34.280	1.00	18.45
ATOM	993	N	ILE	A	137	22.452	10.805	33.146	1.00	18.51
ATOM	994	CA	ILE	A	137	21.519	11.883	33.356	1.00	18.32
ATOM	995	CB	ILE	A	137	22.280	13.137	33.839	1.00	33.15

ATOM	996	CG2	ILE A	A 137	21.358	14.350	34.105	1.00 27.66
ATOM	997	CG1	ILE A	A 137	23.258	12.950	35.001	1.00 26.72
ATOM	998	CD1	ILE A	A 137	22.758	12.894	36.417	1.00 41.09
ATOM	999	C	ILE	A 137	20.781	12.245	32.063	1.00 21.46
ATOM	1000	0	ILE A	A 137	21.363	12.424	30.988	1.00 24.58
ATOM	1001	N	VAL A	A 138	19.460	12.458	32.126	1.00 21.54
ATOM	1002	CA	VAL A	A 138	18.641	12.833	30.966	1.00 18.15
ATOM	1003	СВ	VAL A	A 138	17.612	11.748	30.622	1.00 24.24
ATOM	1004	CG1	VAL A	A 138	16.693	11.475	31.824	1.00 37.00
ATOM	1005	CG2	VAL A	A 138	16.717	12.083	29.449	1.00 21.70
ATOM	1006	C	VAL A	A 138	18.012	14.149	31.368	1.00 17.59
ATOM	1007	0	VAL A	A 138	17.796	14.395	32.551	1.00 18.12
ATOM	1008	N	SER .	A 139	17.804	15.078	30.479	1.00 17.79
ATOM	1009	CA	SER A	A 139	17.228	16.362	30.822	1.00 19.11
ATOM	1010	CB	SER A	A 139	18.219	17.497	30.961	1.00 26.57
ATOM	1011	0G	SER .	A 139	19.087	17.531	29.829	1.00 26.63
ATOM	1012	C	SER A	A 139	16.251	16.683	29.687	1.00 19.03
ATOM	1013	0	SER A	A 139	16.444	16.075	28.638	1.00 21.17
ATOM	1014	N	GLY .	A 140	15.331	17.600	29.897	1.00 17.81
ATOM	1015	CA	GLY	A 140	14.424	18.040	28.871	1.00 17.19
ATOM	1016	C	GLY	A 140	13.243	18.770	29.464	1.00 21.27
ATOM	1017	0	GLY A	A 140	13.082	18.815	30.683	1.00 21.96
ATOM	1018	N	PHE	A 141	12.400	19.284	28.562	1.00 24.14
ATOM	1019	CA	PHE A	A 141	11.215	20.062	28.857	1.00 24.56
ATOM	1020	СВ	PHE A	A 141	11.171	21.257	27.898	1.00 26.41
ATOM	1021	CG	PHE	A 141	12.123	22.350	28.201	1.00 32.70

ATOM	1022	CD1	PHE	A	141	13.340	22.419	27.544	1.00	41.10
ATOM	1023	CD2	PHE	A	141	11.789	23.306	29.145	1.00	31.80
ATOM	1024	CE1	PHE	A	141	14.225	23.449	27.834	1.00	37.10
ATOM	1025	CE 2	PHE	A	141	12.681	24. 314	29.451	1.00	20.45
ATOM	1026	CZ	PHE	A	141	13.871	24.360	28.795	1.00	21.91
ATOM	1027	C	PHE	A	141	9.903	19.333	28.506	1.00	26.65
ATOM	1028	0	PHE	A	141	8.847	19.957	28.456	1.00	26.61
ATOM	1029	N	GLY	A	142	9.999	18.016	28.319	1.00	25.50
ATOM	1030	CA	GLY	A	142	8.874	17.230	27.956	1.00	27.42
ATOM	1031	C	GLY	A	142	7.837	17.045	29.058	1.00	29.02
ATOM	1032	0	GLY	A	142	7.924	17.683	30.120	1.00	29.72
ATOM	1033	N	ARG	A	143	6.956	16.071	28.801	100	27.65
ATOM	1034	CA	ARG	A	143	5.804	16.002	29.704	1.00	28.92
ATOM	1035	СВ	ARG	A	143	4.705	15.121	29.143	1.00	28.19
ATOM	1036	CG	ARG	A	143	4.049	15.589	27.853	1.00	32.16
ATOM	1037	CD	ARG	A	143	3.607	14.298	27.199	1.00	41.17
ATOM	1038	NE	ARG	A	143	2.230	13.984	26.992	1.00	37.78
ATOM	1039	CZ	ARG	A	143	1.569	14.341	25.892	1.00	48.44
ATOM	1040	NH1	ARG	A	143	2.163	15.043	24.923	1.00	49.46
ATOM	1041	NH2	ARG	A	143	0.300	13.972	25.780	1.00	40.29
ATOM	1042	C	ARG	A	143	6.208	15.450	31.059	1.00	29.70
ATOM	1043	0	ARG	A	143	7.032	14.561	31.102	1.00	29.73
ATOM	1044	N	THR	A	144	5.454	15.813	32.080	1.00	29.65
ATOM	1045	CA	THR	A	144	5.638	15.414	33.459	1.00	30.57
ATOM	1046	CB	THR	A	144	5.173	16.553	34.383	1.00	34.95
ATOM	1047	0G1	THR	A	144	3.971	17.179	33.900	1.00	27.96

ATOM	1048	CG2	THR A	A 144	6.249	17.639	34.391	1.00 38.14
ATOM	1049	C	THR A	A 144	4.895	14.127	33.806	1.00 31.31
ATOM	1050	0	THR A	A 144	5.101	13.452	34.814	1.00 30.45
ATOM	1051	N	HIS	A 145	4.030	13.706	32.902	1.00 30.84
ATOM	1052	CA	HIS	A 145	3.352	12.436	32.985	1.00 32.10
ATOM	1053	СВ	HIS	A 145	2.276	12.305	34.004	1.00 38.21
ATOM	1054	CG	HIS	A 145	1.041	13.112	33.989	1.00 45.71
ATOM	1055	CD2	HIS	A 145	-0.173	12.860	33.443	1.00 44.09
ATOM	1056	ND1	HIS	A 145	0.926	14.318	34.634	1.00 47.09
ATOM	1057	CE1	HIS	A 145	-0.294	14.795	34.464	1.00 43.92
ATOM	1058	NE 2	HIS	A 145	-0.972	13.933	33.739	1.00 44.45
ATOM	1059	C	HIS	A 145	2.852	12.169	31.576	1.00 34.72
ATOM	1060	0	HIS	A 145	2.645	13.160	30.846	1.00 36.60
ATOM	1061	N	GLU A	A 147	2.581	10.913	31.299	1.00 33.76
ATOM	1062	CA	GLU A	A 147	2.138	10.514	29.980	1.00 36.06
ATOM	1063	СВ	GLU A	A 147	1.866	9.005	30.101	1.00 33.42
ATOM	1064	CG	GLU A	A 147	1.686	8.351	28.758	1.00 39.79
ATOM	1065	CD	GLU A	A 147	1.490	6.860	28.841	1.00 47.93
ATOM	1066	0E1	GLU A	A 147	2.012	6.187	29.759	1.00 49.21
ATOM	1067	0E2	GLU	A 147	0.787	6.423	27.892	1.00 55.79
ATOM	1068	C	GLU .	A 147	0.939	11.232	29.409	1.00 39.38
ATOM	1069	0	GLU	A 147	0.929	11.598	28.229	1.00 40.47
ATOM	1070	N	LYS	A 148	-0.103	11.546	30.188	1.00 41.44
ATOM	1071	CA	LYS	A 148	-1.296	12.211	29.645	1.00 43.10
ATOM	1072	CB	LYS	A 148	-2.534	11.407	30.076	1.00 38.72
ATOM	1077	С	LYS	A 148	-1.350	13.665	30.062	1.00 42.39

ATOM	1078	0	LYS A	148	-2.411	14.265	30.167	1.00 44.06
ATOM	1079	N	GLY A	149	-0.191	14.233	30.406	1.00 42.23
ATOM	1080	CA	GLY A	149	-0.088	15.586	30.903	1.00 40.33
ATOM	1081	C	GLY A	149	0.491	16.551	29.877	1.00 39.36
ATOM	1082	0	GLY A	149	0.595	16.240	28.687	1.00 39.45
ATOM	1083	N	ARG A	150	0.897	17.711	30.392	1.00 38.23
ATOM	1084	CA	ARG A	150	1.393	18.775	29.531	1.00 38.36
ATOM	1085	CB	ARG A	150	0.746	20.142	29.864	1.00 36.67
ATOM	1092	C	ARG A	150	2.909	18.835	29.685	1.00 37.62
ATOM	1093	0	ARG A	150	3.436	18.132	30.552	1.00 38.06
ATOM	1094	N	GLN A	151	3.540	19.695	28.886	1.00 35.86
ATOM	1095	CA	GLN A	151	4.992	19.744	28. 912	1.00 35.85
ATOM	1096	CB	GLN A	151	5.657	20.354	27.673	1.00 30.46
ATOM	1097	CG	GLN A	151	5.437	19.526	26.407	1.00 43.32
ATOM	1098	CD	GLN A	151	6.380	19.770	25.256	1.00 48.62
ATOM	1099	0E1	GLN A	151	7.614	19.796	25.305	1.00 48.42
ATOM	1100	NE 2	GLN A	151	5.807	19.950	24.068	1.00 52.44
ATOM	1101	C	GLN A	151	5.369	20.512	30.166	1.00 35.40
ATOM	1102	0	GLN A	151	4.532	21.111	30.850	1.00 37.75
ATOM	1103	N	SER A	152	6.652	20.408	30.461	1.00 33.30
ATOM	1104	CA	SER A	152	7.138	21.210	31.602	1.00 30.43
ATOM	1105	CB	SER A	152	8.325	20.435	32.180	1.00 23.84
ATOM	1106	0G	SER A	152	8.707	21.056	33.395	1.00 38.69
ATOM	1107	C	SER A	152	7.504	22.555	30.971	1.00 28.36
ATOM	1108	0	SER A	152	7.940	22.713	29.817	1.00 28.62
ATOM	1109	N	THR A	153	7.281	23.598	31.738	1.00 26.18

ATOM	1110	CA	THR A	153	7.701	24.940	31.484	1.00 27.14
ATOM	1111	СВ	THR A	153	6.867	26.099	32.074	1.00 18.06
ATOM	1112	0G1	THR A	153	6.710	25.755	33.437	1.00 35.37
ATOM	1113	CG2	THR A	153	5.546	26.163	31.344	1.00 34.20
ATOM	1114	C	THR A	153	9.121	25.064	32.083	1.00 25.11
ATOM	1115	0	THR A	153	9.821	25.970	31.655	1.00 27.73
ATOM	1116	N	ARG A	154	9.470	24.228	33.034	1.00 22.68
ATOM	1117	CA	ARG A	154	10.795	24.133	33.577	1.00 22.63
ATOM	1118	СВ	ARG A	154	10.692	23.935	35.116	1.00 36.09
ATOM	1119	CG	ARG A	154	9.998	25.148	35.747	1.00 27.15
ATOM	1120	CD	ARG A	154	10.954	26.289	35.956	1.00 42.85
ATOM	1121	NE	ARG A	154	10.288	27.407	36.626	1.00 46.14
ATOM	1122	CZ	ARG A	154	10.696	28.176	37.611	1.00 42.69
ATOM	1123	NH1	ARG A	154	11.887	28.006	38.174	1.00 42.06
ATOM	1124	NH2	ARG A	154	9.905	29.155	38.024	1.00 35.71
ATOM	1125	C	ARG A	154	11.643	22.996	33.027	1.00 21.64
ATOM	1126	0	ARG A	154	11.203	21.839	32.925	1.00 23.02
ATOM	1127	N	LEU A	155	12.918	23.288	32.745	1.00 19.91
ATOM	1128	CA	LEU A	155	13.837	22.242	32.271	1.00 18.64
ATOM	1129	СВ	LEU A	155	15.091	22.957	31.735	1.00 19.07
ATOM	1130	CG	LEU A	155	16.314	22.101	31.439	1.00 16.95
ATOM	1131	CD1	LEU A	155	16.065	21.080	30.336	1.00 13.69
ATOM	1132	CD2	LEU A	155	17.419	23.094	31.076	1.00 12.91
ATOM	1133	C	LEU A	155	14.174	21.303	33.399	1.00 18.71
ATOM	1134	0	LEU A	155	14.583	21.801	34.447	1.00 20.63
ATOM	1135	N	LYS A	156	13.953	19.996	33.297	1.00 20.29

ATOM	1136	CA	LYS A	156	14.206	19.083	34. 387	1.00 22.76
ATOM	1137	CB	LYS A	156	12.977	18.274	34.821	1.00 31.36
ATOM	1138	CG	LYS A	156	11.812	19.165	35.261	1.00 34.47
ATOM	1139	CD	LYS A	156	10.835	18.470	36.171	1.00 34.48
ATOM	1140	CE	LYS A	156	9.989	17.469	35.426	1.00 33.14
ATOM	1141	NZ	LYS A	156	9.455	16.409	36.342	1.00 28.11
ATOM	1142	C	LYS A	156	15.306	18.069	34.082	1.00 23.69
ATOM	1143	0	LYS A	156	15.708	17.996	32.939	1.00 24.26
ATOM	1144	N	MET A	157	15.846	17.421	35.110	1.00 24.71
ATOM	1145	CA	MET A	157	16.839	16.359	34.889	1.00 26.07
ATOM	1146	CB	MET A	157	18.243	16.819	35.244	1.00 19.73
ATOM	1147	CG	MET A	157	18.676	16.690	36.682	1.00 20.84
ATOM	1148	SD	MET A	157	20.104	17.570	37. 203	1.00 29.37
ATOM	1149	CE	MET A	157	21.501	16.496	36.937	1.00 31.35
ATOM	1150	C	MET A	157	16.430	15.090	35.654	1.00 27.38
ATOM	1151	0	MET A	157	15.703	15.177	36.659	1.00 26.05
ATOM	1152	N	LEU A	158	16.941	13.933	35.199	1.00 27.16
ATOM	1153	CA	LEU A	158	16.732	12.671	35.869	1.00 25.29
ATOM	1154	CB	LEU A	158	15.583	12.012	35.097	1.00 26.84
ATOM	1155	CG	LEU A	158	14.539	11.076	35.660	1.00 37.74
ATOM	1156	CD1	LEU A	158	14.097	10.171	34.510	1.00 32.05
ATOM	1157	CD2	LEU A	158	14.851	10.290	36.918	1.00 24.37
ATOM	1158	C	LEU A	158	17.853	11.635	35.829	1.00 26.93
ATOM	1159	0	LEU A	158	18.170	11.147	34.728	1.00 28.48
ATOM	1160	N	ĠLU A	159	18.458	11.201	36.931	1.00 25.76
ATOM	1161	CA	GLU A	159	19.334	10.052	36.893	1.00 25.81

ATOM	1162	CB	GLU A	159	19.954	9.647	38.237	1.00 29.34
ATOM	1163	CG	GLU A	159	20.661	10.803	38.962	1.00 41.39
ATOM	1164	CD	GLU A	159	21.758	10.225	39.840	1.00 60.43
ATOM	1165	0E1	GLU A	159	21.526	10.041	41.061	1.00 66.64
ATOM	1166	0E2	GLU A	159	22.834	9.926	39. 284	1.00 64.61
ATOM	1167	C	GLU A	159	18.544	8.825	36.454	1.00 27.05
ATOM	1168	0	GLU A	159	17.534	8.517	37.070	1.00 25.94
ATOM	1169	N	VAL A	160	18.977	8.141	35.380	1.00 26.97
ATOM	1170	CA	VAL A	160	18.312	6.914	34.959	1.00 25.56
ATOM	1171	СВ	VAL A	160	17.649	6.998	33.579	1.00 21.37
ATOM	1172	CG1	VAL A	160	16.293	7.674	33.648	1.00 28.72
ATOM	1173	CG2	VAL A	160	18.507	7.688	32.537	1.00 26.67
ATOM	1174	C	VAL A	160	19.393	5.843	34.903	1.00 25.39
ATOM	1175	0	VAL A	160	20.437	6.058	34.307	1.00 28.02
ATOM	1176	N	PRO A	161	19.194	4.709	35.557	1.00 24.72
ATOM	1177	CD	PRO A	161	18.226	4.538	36.681	1.00 23.59
ATOM	1178	CA	PRO A	161	20.232	3.680	35.604	1.00 22.41
ATOM	1179	CB	PRO A	161	19.805	2.696	36.641	1.00 21.04
ATOM	1180	CG	PRO A	161	18.537	3.157	37. 249	1.00 22.71
ATOM	1181	C	PRO A	161	20.345	3.045	34.224	1.00 24.09
ATOM	1182	0	PRO A	161	19.376	3.141	33.466	1.00 23.45
ATOM	1183	N	TYR A	162	21.553	2.584	33.903	1.00 23.35
ATOM	1184	CA	TYR A	162	21.846	1.879	32.671	1.00 22.35
ATOM	1185	CB	TYR A	162	23.363	1.542	32.507	1.00 20.71
ATOM	1186	CG	TYR A	162	24.039	2.697	31.804	1.00 22.66
ATOM	1187	CD1	TYR A	162	23.878	2.913	30.436	1.00 20.74

ATOM	1188	CE1	TYR	A	162	24.470	3.972	29.797	1.00	19.76
ATOM	1189	CD2	TYR	A	162	24.767	3.639	32.512	1.00	24.49
ATOM	1190	CE2	TYR	A	162	25.401	4.677	31.867	1.00	23.53
ATOM	1191	CZ	TYR	A	162	25.228	4.852	30.507	1.00	21.92
ATOM	1192	ОН	TYR	A	162	25.853	5.925	29.890	1.00	21.67
ATOM	1193	C	TYR	A	162	21.136	0.568	32.782	1.00	23.99
ATOM	1194	0	TYR	A	162	21.180	0.100	33.938	1.00	25.01
ATOM	1195	N	VAL	A	163	20.557	0.033	31.702	1.00	25.71
ATOM	1196	CA	VAL	A	163	19.886	-1.257	31.926	1.00	27.18
ATOM	1197	СВ	VAL	A	163	18.411	-1.187	31.542	1.00	19.65
ATOM	1198	CG1	VAL	A	163	17.716	-2.500	31.240	1.00	30.35
ATOM	1199	CG2	VAL	A	163	17.617	-0.455	32.626	1.00	30.45
ATOM	1200	C	VAL	A	163	20.620	-2.380	31.199	1.00	28.35
ATOM	1201	0	VAL	A	163	21.057	-2.253	30.052	1.00	30.91
ATOM	1202	N	ASP	A	164	20.640	-3.543	31.820	1.00	26.93
ATOM	1203	CA	ASP	A	164	21.164	-4.759	31.267	1.00	29.53
ATOM	1204	СВ	ASP	A	164	20.597	-5.966	32.068	1.00	39.08
ATOM	1205	CG	ASP	A	164	21.309	-7.223	31.588	1.00	48.49
ATOM	1206	0D1	ASP	A	164	22.466	-7.366	32.067	1.00	59.01
ATOM	1207	OD2	ASP	A	164	20.733	-7.938	30.747	1.00	30.04
ATOM	1208	C	ASP	A	164	20.666	-4.862	29.830	1.00	31.28
ATOM	1209	0	ASP	A	164	19.488	-4.527	29.602	1.00	32.36
ATOM	1210	N	ARG	A	165	21.519	-5.231	28.868	1.00	29.81
ATOM	1211	CA	ARG	A	165	20.959	-5.386	27.531	1.00	30.85
ATOM	1212	CB	ARG	A	165	22.087	-5.652	26.538	1.00	35.11
ATOM	1213	CG	ARG	A	165	21.543	-5.464	25.118	1.00	39.25

ATOM	1214	CD	ARG A	165	22.767	-5.286	24.195	1.00 45.17
ATOM	1215	NE	ARG A	165	22.264	-4.567	23.029	1.00 47.62
ATOM	1216	CZ	ARG A	165	22.293	-3.257	22.842	1.00 42.57
ATOM	1217	NH1	ARG A	165	22.800	-2.370	23.672	1.00 37.85
ATOM	1218	NH2	ARG A	165	21.771	-2.834	21.697	1.00 44.52
ATOM	1219	C	ARG A	165	19.921	-6.504	27.380	1.00 31.90
ATOM	1220	0	ARG A	165	18.917	-6.339	26.635	1.00 32.36
ATOM	1221	N	ASN A	166	20.142	-7.653	28.041	1.00 30.95
ATOM	1222	CA	ASN A	166	19.198	-8.755	27.897	1.00 32.82
ATOM	1223	CB	ASN A	166	19.869	-10.068	28.242	1.00 43.29
ATOM	1224	CG	ASN A	166	21.139	-10.284	27.418	1.00 52.75
ATOM	1225	0D1	ASN A	166	22.186	-10.517	28.037	1.00 59.75
ATOM	1226	ND2	ASN A	166	21.126	-10.220	26.088	1.00 47.06
ATOM	1227	C	ASN A	166	17.926	-8.390	28.626	1.00 35.52
ATOM	1228	0	ASN A	166	16.870	-8.319	27.973	1.00 36.52
ATOM	1229	N	SER A	167	17.936	-7.767	29.821	1.00 36.52
ATOM	1230	CA	SER A	167	16.695	-7.402	30.502	1.00 37.75
ATOM	1231	CB	SER A	167	17.040	-6.748	31.836	1.00 41.63
ATOM	1232	0G	SER A	167	17.729	-7.688	32.660	1.00 51.35
ATOM	1233	C	SER A	167	15.789	-6.538	29.647	1.00 38.69
ATOM	1234	0	SER A	167	14.568	-6.685	29.569	1.00 39.70
ATOM	1235	N	CYS A	168	16.338	-5.538	28.979	1.00 38.12
ATOM	1236	CA	CYS A	168	15.795	-4.617	28.031	1.00 35.42
ATOM	1237	C	CYS A	168	15.065	-5.215	26.847	1.00 34.54
ATOM	1238	0	CYS A	168	13.910	-4.913	26.476	1.00 32.30
ATOM	1239	СВ	CYS A	168	17.105	-3.943	27.559	1.00 44.16

ATOM	1240	SG	CYS	A	168	16.908	-2.659	26.324	1.00 46.13
ATOM	1241	N	LYS	A	169	15.723	-6.168	26.175	1.00 35.59
ATOM	1242	CA	LYS	A	169	15.156	-6.923	25.058	1.00 34.48
ATOM	1243	СВ	LYS	A	169	16.222	-7.777	24.419	1.00 39.30
ATOM	1244	CG	LYS	A	169	17.337	-7.076	23.665	1.00 40.62
ATOM	1245	CD	LYS	A	169	18.333	-8.128	23.203	1.00 43.34
ATOM	1246	CE	LYS	A	169	19.411	-7.555	22.298	1.00 49.49
ATOM	1247	NZ	LYS	A	169	20.307	-8.673	21.836	1.00 58.86
ATOM	1248	C	LYS	A	169	13.949	-7.735	25.531	1.00 36.13
ATOM	1249	0	LYS	A	169	12.925	-7.770	24.832	1.00 35.83
ATOM	1250	N	LEU	A	170	14.012	-8.357	26.705	1.00 37.07
ATOM	1251	CA	LEU	A	170	12.885	-9.043	27.308	1.00 40.06
ATOM	1252	СВ	LEU	A	170	13.323	-9.811	28.552	1.00 49.91
ATOM	1253	CG	LEU	A	170	13.464	-11.328	28.528	1.00 52.44
ATOM	1254	CD1	LEU	A	170	14.005	-11.883	27. 223	1.00 53.35
ATOM	1255	CD2	LEU	A	170	14.393	-11.783	29.657	1.00 53.40
ATOM	1256	C	LEU	A	170	11.753	-8.095	27.628	1.00 41.47
ATOM	1257	0	LEU	A	170	10.612	-8.319	27. 244	1.00 43.82
ATOM	1258	N	SER	A	171	11.950	-6.914	28.185	1.00 42.85
ATOM	1259	CA	SER	A	171	10.901	-5.970	28.485	1.00 42.53
ATOM	1260	СВ	SER	A	171	11.539	-4.830	29.312	1.00 42.24
ATOM	1261	0G	SER	A	171	12.285	-4.014	28.430	1.00 45.17
ATOM	1262	C	SER	A	171	10.226	-5.315	27. 292	1.00 42.94
ATOM	1263	0	SER	A	171	9.117	-4.795	27. 435	1.00 42.94
ATOM	1264	N	SER	A	172	10.855	-5.231	26.129	1.00 42.64
ATOM	1265	CA	SER	A	172	10.328	-4.492	25.007	1.00 42.95

ATOM	1266	CB	SER A	172	11.491	-3.816	24.254	1.00	46.68
ATOM	1267	0G	SER A	172	11.083	-3.406	22.969	1.00	40.80
ATOM	1268	C	SER A	172	9.519	-5.355	24.067	1.00	43.93
ATOM	1269	0	SER A	172	9.832	-6.516	23.839	1.00	45.76
ATOM	1270	N	SER A	173	8.491	-4.760	23.457	1.00	43.74
ATOM	1271	CA	SER A	173	7.697	-5.433	22.453	1.00	44.07
ATOM	1272	CB	SER A	173	6.375	-4.694	22.194	1.00	55.30
ATOM	1273	OG	SER A	173	5.838	-4.208	23.419	1.00	59.71
ATOM	1274	C	SER A	173	8.473	-5.426	21.140	1.00	44.30
ATOM	1275	0	SER A	173	8.463	-6.362	20.356	1.00	46.53
ATOM	1276	N	PHE A	174	9.151	-4.314	20.888	1.00	43.32
ATOM	1277	CA	PHE A	174	9.853	-4.050	19.643	1.00	40.60
ATOM	1278	СВ	PHE A	174	9.594	-2.563	19.343	1.00	35.74
ATOM	1279	CG	PHE A	174	8.140	-2.158	19.314	1.00	31.24
ATOM	1280	CD1	PHE A	174	7. 377	-2.231	18.170	1.00	28.27
ATOM	1281	CD2	PHE A	174	7.512	-1.700	20.470	1.00	36.86
ATOM	1282	CE1	PHE A	174	6.044	-1.841	18.157	1.00	23.43
ATOM	1283	CE2	PHE A	174	6.190	-1.302	20.476	1.00	32.71
ATOM	1284	CZ	PHE A	174	5.435	-1.381	19.311	1.00	26.99
ATOM	1285	C	PHE A	174	11.323	-4.398	19.710	1.00	40.09
ATOM	1286	0	PHE A	174	12.010	-4.519	20.731	1.00	41.11
ATOM	1287	N	ILE A	175	11.935	-4.631	18.571	1.00	37.85
ATOM	1288	CA	ILE A	175	13.318	-4.923	18.348	1.00	33.79
ATOM	1289	СВ	ILE A	175	13.630	-4.795	16.830	1.00	36.90
ATOM	1290	CG2	ILE A	175	15.019	-5.389	16.544	1.00	29.77
ATOM	1291	CG1	ILE A	175	12.581	-5.405	15.925	1.00	48.42

ATOM	1292	CD1	ILE A	A 175	11.294	-4.676	15.600	1.00 50.53
ATOM	1293	C	ILE A	A 175	14.195	-3.898	19.048	1.00 33.21
ATOM	1294	0	ILE A	A 175	14.030	-2.692	18.740	1.00 32.99
ATOM	1295	N	ILE A	A 176	15.097	-4.343	19.920	1.00 32.70
ATOM	1296	CA	ILE A	A 176	16.105	-3.397	20.473	1.00 30.26
ATOM	1297	СВ	ILE A	A 176	16.341	-3.536	21.969	1.00 28.86
ATOM	1298	CG2	ILE A	A 176	17.496	-2.718	22.540	1.00 20.31
ATOM	1299	CG1	ILE	A 176	15.106	-3.132	22.786	1.00 28.69
ATOM	1300	CD1	ILE	A 176	14.356	-1.893	22.360	1.00 27.95
ATOM	1301	C	ILE A	A 176	17.332	-3.618	19.641	1.00 30.26
ATOM	1302	0	ILE .	A 176	17.895	-4.702	19.775	1.00 32.06
ATOM	1303	N	THR	A 177	17.734	-2.707	18.764	1.00 30.61
ATOM	1304	CA	THR	A 177	18.849	-3.054	17.885	1.00 29.40
ATOM	1305	СВ	THR	A 177	18.845	-2.278	16.559	1.00 40.20
ATOM	1306	0G1	THR	A 177	19.192	-0.904	16.766	1.00 34.64
ATOM	1307	CG2	THR	A 177	17.539	-2.429	15.805	1.00 27.42
ATOM	1308	C	THR	A 177	20.158	-2.847	18.604	1.00 30.45
ATOM	1309	0	THR	A 177	20.159	-2.555	19.795	1.00 30.93
ATOM	1310	N	GLN	A 178	21.286	-2.910	17.887	1.00 30.32
ATOM	1311	CA	GLN .	A 178	22.591	-2.582	18.461	1.00 27.66
ATOM	1312	СВ	GLN .	A 178	23.660	-3.313	17.678	1.00 22.21
ATOM	1313	CG	GLN .	A 178	23.932	-4.660	18.365	1.00 41.88
ATOM	1314	CD	GLN	A 178	25.126	-5.338	17.730	1.00 36.22
ATOM	1315	0E1	GLN	A 178	25.885	-4.704	16.983	1.00 50.71
ATOM	1316	NE2	GLN .	A 178	25. 255	-6.613	18.035	1.00 46.61
ATOM	1317	C	GLN .	A 178	22.931	-1.104	18.452	1.00 27.04

ATOM	1318	0	GLN	A	178	23.868	-0.639	19.116	1.00	28.37
ATOM	1319	N	ASN	A	179	22.145	-0.255	17.820	1.00	25.63
ATOM	1320	CA	ASN	A	179	22.288	1.199	17.778	1.00	24.65
ATOM	1321	CB	ASN	A	179	21.800	1.660	16.413	1.00	27.79
ATOM	1322	CG	ASN	A	179	22.771	1.240	15.332	1.00	31.23
ATOM	1323	0D1	ASN	A	179	23.881	1.771	15.308	1.00	37.58
ATOM	1324	ND2	ASN	A	179	22.354	0.328	14.482	1.00	37.34
ATOM	1325	C	ASN	A	179	21.510	1.900	18.875	1.00	24.97
ATOM	1326	0	ASN	A	179	21.388	3.116	19.013	1.00	24.02
ATOM	1327	N	MET	A	180	20.904	1.123	19.780	1.00	23.66
ATOM	1328	CA	MET	A	180	20.123	1.521	20.903	1.00	23.17
ATOM	1329	CB	MET	A	180	18.655	1.032	20.794	1.00	28.71
ATOM	1330	CG	MET	A	180	17.948	1.336	19.486	1.00	20.39
ATOM	1331	SD	MET	A	180	16.394	0.406	19.442	1.00	29.19
ATOM	1332	CE	MET	A	180	15.748	1.082	17.917	1.00	24.84
ATOM	1333	C	MET	A	180	20.589	0.860	22.196	1.00	22.74
ATOM	1334	0	MET	A	180	21.238	-0.162	22.187	1.00	24.04
ATOM	1335	N	PHE	A	181	20.226	1.459	23.326	1.00	24.01
ATOM	1336	CA	PHE	A	181	20.458	0.911	24.648	1.00	23.12
ATOM	1337	СВ	PHE	A	181	21.815	1.336	25.150	1.00	17.52
ATOM	1338	CG	PHE	A	181	21.980	2.753	25.623	1.00	28.57
ATOM	1339	CD1	PHE	A	181	22.462	3.708	24.757	1.00	14.76
ATOM	1340	CD2	PHE	A	181	21.728	3.108	26.953	1.00	15.73
ATOM	1341	CE1	PHE	A	181	22.679	5.008	25.136	1.00	22.19
ATOM	1342	CE2	PHE	A	181	21.961	4.393	27.339	1.00	18.53
ATOM	1343	CZ	PHE	A	181	22.390	5.342	26.452	1.00	24.15

ATOM	1344	C	PHE A	181	19.305	1.304	25.553	1.00 24.17
ATOM	1345	0	PHE A	181	18.518	2.187	25.212	1.00 26.29
ATOM	1346	N	CYS A	182	19.217	0.727	26.743	1.00 26.03
ATOM	1347	CA	CYS A	182	18.085	0.916	27.653	1.00 24.47
ATOM	1348	C	CYS A	182	18.587	1.605	28.920	1.00 24.24
ATOM	1349	0	CYS A	182	19.669	1.239	29.416	1.00 23.13
ATOM	1350	CB	CYS A	182	17.506	-0.407	28.139	1.00 34.44
ATOM	1351	SG	CYS A	182	16.083	-1.150	27.261	1.00 47.31
ATOM	1352	N	ALA A	183	17.744	2.506	29.417	1.00 22.53
ATOM	1353	CA	ALA A	183	18.016	3.197	30.637	1.00 24.98
ATOM	1354	CB	ALA A	183	18.852	4.466	30.502	1.00 14.40
ATOM	1355	C	ALA A	183	16.657	3.567	31.254	1.00 26.43
ATOM	1356	0	ALA A	183	15.736	3.990	30.546	1.00 26.26
ATOM	1357	N	GLY A	184	16.609	3.448	32.577	1.00 27.28
ATOM	1358	CA	GLY A	184	15.393	3.786	33.311	1.00 28.67
ATOM	1359	C	GLY A	184	15.092	2.770	34. 383	1.00 30.46
ATOM	1360	0	GLY A	184	15.925	1.910	34.670	1.00 33.07
ATOM	1361	N	TYR A	185	13.930	2.859	34.993	1.00 31.84
ATOM	1362	CA	TYR A	185	13.447	2.008	36.066	1.00 31.15
ATOM	1363	СВ	TYR A	185	12.919	2.877	37.229	1.00 31.36
ATOM	1364	CG	TYR A	185	13.913	3.890	37.771	1.00 32.92
ATOM	1365	CD1	TYR A	185	13.963	5.197	37.312	1.00 33.98
ATOM	1366	CE 1	TYR A	185	14.877	6.125	37.793	1.00 34.26
ATOM	1367	CD2	TYR A	185	14.848	3.531	38.740	1.00 33.17
ATOM	1368	CE2	TYR A	185	15.759	4.442	39.224	1.00 33.92
ATOM	1369	CZ	TYR A	185	15.769	5.728	38.754	1.00 36.40

ATOM	1370	ОН	TYR	A	185	16.708	6.626	39.266	1.00	42.00
ATOM	1371	C	TYR	A	185	12.372	1.066	35.567	1.00	32.23
ATOM	1372	0	TYR	A	185	11.645	1.199	34.592	1.00	32.18
ATOM	1373	N	ASP	A	185A	12.324	-0.084	36.228	1.00	35.18
ATOM	1374	CA	ASP	A	185A	11.328	-1.134	36.027	1.00	35.79
ATOM	1375	СВ	ASP	A	185A	11.825	-2.438	36.645	1.00	44.36
ATOM	1376	CG	ASP	A	185A	10.878	-3.613	36.711	1.00	56.13
ATOM	1377	0D1	ASP	A	185A	9.633	-3.428	36.781	1.00	56.81
ATOM	1378	0D2	ASP	A	185A	11.342	-4.786	36.684	1.00	49.21
ATOM	1379	C	ASP	A	185A	10.045	-0.600	36.657	1.00	36.32
ATOM	1380	0	ASP	A	185A	9.016	-0.636	35.959	1.00	37.59
ATOM	1381	N	THR	A	185B	10.051	-0.143	37.918	1.00	36.65
ATOM	1382	CA	THR	A	185B	8.782	0.235	38.546	1.00	36.63
ATOM	1383	СВ	THR	A	185B	8.272	-0.625	39.732	1.00	45.46
ATOM	1384	0G1	THR	A	185B	9.127	-0.555	40.903	1.00	47.09
ATOM	1385	CG2	THR	A	185B	8.082	-2.101	39.416	1.00	37.50
ATOM	1386	C	THR	A	185B	8.752	1.667	39.038	1.00	36.76
ATOM	1387	0	THR	A	185B	7.673	2.265	38.994	1.00	36.91
ATOM	1388	N	LYS	A	186	9.832	2.219	39.573	1.00	36.35
ATOM	1389	CA	LYS	A	186	9.778	3.605	40.068	1.00	35.10
ATOM	1390	СВ	LYS	A	186	11.180	4.025	40.499	1.00	31.99
ATOM	1391	CG	LYS	A	186	11.446	5.507	40.666	1.00	41.89
ATOM	1392	CD	LYS	A	186	12.820	5.749	41.308	1.00	45.90
ATOM	1393	CE	LYS	A	186	12.739	6.880	42.320	1.00	46.49
ATOM	1394	NZ	LYS	A	186	14.008	7.646	42.395	1.00	48.01
ATOM	1395	C	LYS	A	186	9.184	4.480	38.988	1.00	34.20

ATOM	1396	0	LYS A	186	9.723	4.413	37.886	1.00 34.69
ATOM	1397	N	GLN A	187	8.153	5.286	39.179	1.00 34.75
ATOM	1398	CA	GLN A	187	7.553	6.113	38.115	1.00 34.25
ATOM	1399	СВ	GLN A	187	6.204	6.638	38.568	1.00 32.80
ATOM	1400	CG	GLN A	187	4.870	6.075	38. 230	1.00 43.27
ATOM	1401	CD	GLN A	187	4.231	6.589	36.959	1.00 46.12
ATOM	1404	C	GLN A	187	8.437	7.310	37. 758	1.00 33.63
ATOM	1405	0	GLN A	187	8.236	8.458	38.193	1.00 33.68
ATOM	1406	N	GLU A	188	9.523	7.123	37.001	1.00 31.68
ATOM	1407	CA	GLU A	188	10.458	8.161	36.610	1.00 29.68
ATOM	1408	СВ	GLU A	188	11.572	8.337	37.632	1.00 35.16
ATOM	1409	CG	GLU A	188	11.298	9.229	38.817	1.00 40.70
ATOM	1410	CD	GLU A	188	12.484	9.701	39.615	1.00 48.13
ATOM	1411	0E1	GLU A	188	13.359	8.842	39.872	1.00 53.79
ATOM	1412	0E2	GLU A	188	12.474	10.922	39.929	1.00 39.40
ATOM	1413	C	GLU A	188	10.984	7.822	35.207	1.00 28.69
ATOM	1414	0	GLU A	188	11.469	6.723	34.888	1.00 28.33
ATOM	1415	N	ASP A	189	10.774	8.763	34.277	1.00 28.28
ATOM	1416	CA	ASP A	189	11.194	8.489	32.887	1.00 27.09
ATOM	1417	СВ	ASP A	189	10.192	7.463	32.323	1.00 20.62
ATOM	1418	CG	ASP A	189	10.592	6.773	31.051	1.00 34.92
ATOM	1419	0D1	ASP A	189	11.795	6.766	30.720	1.00 29.23
ATOM	1420	OD2	ASP A	189	9.658	6.282	30.357	1.00 35.06
ATOM	1421	C	ASP A	189	11.226	9.764	32.070	1.00 24.26
ATOM	1422	0	ASP A	189	10.961	10.839	32.575	1.00 22.91
ATOM	1423	N	ALA A	190	11.767	9.712	30.875	1.00 22.82

ATOM	1424	CA	ALA .	A 190	11.651	10.743	29.886	1.00 24.10
ATOM	1425	СВ	ALA .	A 190	12.498	10.391	28.663	1.00 20.95
ATOM	1426	C	ALA .	A 190	10.191	10.644	29.394	1.00 26.53
ATOM	1427	0	ALA .	A 190	9.512	9.673	29.732	1.00 28.99
ATOM	1428	N	CYS	A 191	9.771	11.577	28.554	1.00 26.34
ATOM	1429	CA	CYS	A 191	8.433	11.545	28.003	1.00 27.12
ATOM	1430	C	CYS .	A 191	8.360	12.426	26.760	1.00 27.51
ATOM	1431	0	CYS .	A 191	9.381	12.882	26.263	1.00 28.67
ATOM	1432	СВ	CYS .	A 191	7.374	11.848	29.040	1.00 22.39
ATOM	1433	SG	CYS .	A 191	5.684	11.405	28.539	1.00 27.11
ATOM	1434	N	GLN .	A 192	7.177	12.634	26.218	1.00 28.58
ATOM	1435	CA	GLN .	A 192	7.009	13.342	24.943	1.00 28.20
ATOM	1436	CB	GLN .	A 192	5.548	13.216	24.481	1.00 30.70
ATOM	1437	CG	GLN .	A 192	5.285	13.894	23.147	1.00 39.82
ATOM	1438	CD	GLN .	A 192	3.862	13.774	22.625	1.00 46.01
ATOM	1441	C	GLN .	A 192	7.561	14. 741	25.098	1.00 27.11
ATOM	1442	0	GLN .	A 192	7.344	15.390	26.120	1.00 28.23
ATOM	1443	N	GLY .	A 193	8.391	15.196	24.169	1.00 26.70
ATOM	1444	CA	GLY .	A 193	8.962	16.552	24. 231	1.00 27.20
ATOM	1445	C	GLY .	A 193	10.459	16.483	24.549	1.00 27.75
ATOM	1446	0	GLY .	A 193	11.262	17.281	24.083	1.00 28.89
ATOM	1447	N	ASP	A 194	10.873	15.440	25.264	1.00 26.90
ATOM	1448	CA	ASP	A 194	12.234	15.217	25.685	1.00 27.94
ATOM	1449	CB	ASP .	A 194	12.260	14.250	26.876	1.00 21.90
ATOM	1450	CG	ASP	A 194	11.605	14.805	28.133	1.00 15.61
ATOM	1451	0D1	ASP .	A 194	10.929	14.108	28.934	1.00 29.43

ATOM	1452	OD2	ASP .	A	194	11.800	15.992	28.349	1.00 15.90)
ATOM	1453	C	ASP .	A	194	13.094	14.626	24.580	1.00 28.29)
ATOM	1454	0	ASP .	A	194	14.324	14.767	24.597	1.00 29.70	}
ATOM	1455	N	SER	A	195	12.455	13.843	23.719	1.00 27.47	7
ATOM	1456	CA	SER	A	195	13.055	13.172	22.609	1.00 25.76	;
ATOM	1457	СВ	SER	A	195	12.040	12.713	21.528	1.00 22.94	Į
ATOM	1458	OG	SER	A	195	11.147	11.808	22.144	1.00 38.49)
ATOM	1459	C	SER	A	195	14.022	14.058	21.869	1.00 23.39	}
ATOM	1460	0	SER	A	195	13.853	15.224	21.613	1.00 27.28	}
ATOM	1461	N	GLY	A	196	15.149	13.513	21.511	1.00 21.98	}
ATOM	1462	CA	GLY	A	196	16.289	14.027	20.827	1.00 20.73	}
ATOM	1463	C	GLY	A	196	17. 251	14.589	21.865	1.00 21.02	}
ATOM	1464	0	GLY	A	196	18.332	15.030	21.452	1.00 25.91	
ATOM	1465	N	GLY	A	197	16.900	14.712	23.126	1.00 18.31	
ATOM	1466	CA	GLY	A	197	17.612	15.490	24.131	1.00 19.54	ŀ
ATOM	1467	C	GLY	A	197	18.836	14.684	24.541	1.00 19.76	;
ATOM	1468	0	GLY	A	197	19.029	13.583	24.025	1.00 20.22)
ATOM	1469	N	PRO	A	198	19.559	15.218	25.525	1.00 19.09)
ATOM	1470	CD	PRO	A	198	19.422	16.572	26.065	1.00 19.17	7
ATOM ,	1471	CA	PRO	A	198	20.772	14.541	25.966	1.00 19.50)
ATOM	1472	СВ	PRO	A	198	21.562	15.701	26.568	1.00 19.45	<u>.</u>
ATOM	1473	CG	PRO	A	198	20.789	16.975	26.568	1.00 18.78	}
ATOM	1474	C	PRO	A	198	20.623	13.416	27.007	1.00 21.17	7
ATOM	1475	0	PRO	A	198	19.803	13.383	27.946	1.00 22.75)
ATOM	1476	N	HIS	A	199	21.461	12.411	26.963	1.00 17.84	Į
ATOM	1477	CA	HIS	A	199	21.750	11.389	27.922	1.00 18.60)

ATOM	1478	CB	HIS	A 199	21.398	9.957	27.523	1.00 17.91
ATOM	1479	CG	HIS	A 199	21.724	8.875	28.502	1.00 12.04
ATOM	1480	CD2	HIS	A 199	20.996	8.107	29.351	1.00 23.10
ATOM	1481	ND1	HIS	A 199	23.049	8.487	28.689	1.00 22.43
ATOM	1482	CE1	HIS	A 199	23.095	7.543	29.615	1.00 30.27
ATOM	1483	NE 2	HIS	A 199	21.874	7.287	30.050	1.00 15.25
ATOM	1484	C	HIS	A 199	23.287	11.534	28.049	1.00 21.97
ATOM	1485	0	HIS	A 199	24.076	11.399	27.087	1.00 25.42
ATOM	1486	N	VAL	A 200	23.740	12.025	29.183	1.00 21.84
ATOM	1487	CA	VAL	A 200	25.137	12.267	29.486	1.00 18.01
ATOM	1488	CB	VAL	A 200	25.441	13.728	29.798	1.00 14.45
ATOM	1489	CG1	VAL	A 200	25.138	14.656	28.633	1.00 15.94
ATOM	1490	CG2	VAL	A 200	24.635	14.246	31.012	1.00 13.55
ATOM	1491	C	VAL	A 200	25.535	11.393	30.666	1.00 18.61
ATOM	1492	0	VAL	A 200	24.705	10.928	31.451	1.00 18.79
ATOM	1493	N	THR	A 201	26.820	11.108	30.800	1.00 17.69
ATOM	1494	CA	THR	A 201	27.379	10.308	31.854	1.00 18.43
ATOM	1495	CB	THR	A 201	27.815	8.933	31.332	1.00 13.78
ATOM	1496	0G1	THR	A 201	26.756	8.260	30.649	1.00 23.60
ATOM	1497	CG2	THR	A 201	28.345	7.924	32.334	1.00 4.86
ATOM	1498	C	THR	A 201	28.511	11.193	32.387	1.00 20.40
ATOM	1499	0	THR	A 201	29.320	11.696	31.610	1.00 21.28
ATOM	1500	N	ARG	A 202	28.487	11.520	33.674	1.00 21.00
ATOM	1501	CA	ARG	A 202	29.564	12.176	34.393	1.00 19.74
ATOM	1502	CB	ARG	A 202	28.998	12.630	35.739	1.00 23.80
ATOM	1503	CG	ARG	A 202	29.959	12.925	36.872	1.00 39.18

ATOM	1504	CD	ARG	A	202	29.487	13.965	37.860	1.00 40.46
ATOM	1505	NE	ARG	A	202	28.186	13.641	38.454	1.00 55.85
ATOM	1506	CZ	ARG	A	202	27.909	14.096	39.689	1.00 61.41
ATOM	1509	C	ARG	A	202	30.705	11.195	34.702	1.00 19.63
ATOM	1510	0	ARG	A	202	30.511	10.035	35.082	1.00 17.20
ATOM	1511	N	PHE	A	203	31.938	11.648	34.466	1.00 21.26
ATOM	1512	CA	PHE	A	203	33.082	10.844	34.932	1.00 21.71
ATOM	1513	СВ	PHE	A	203	33.744	10.082	33.804	1.00 23.06
ATOM	1514	CG	PHE	A	203	34.879	9.238	34.312	1.00 27.77
ATOM	1515	CD1	PHE	A	203	34.615	8.042	34.961	1.00 33.75
ATOM	1516	CD2	PHE	A	203	36.200	9.635	34.148	1.00 28.66
ATOM	1517	CE1	PHE	A	203	35.634	7.240	35.446	1.00 25.04
ATOM	1518	CE2	PHE	A	203	37. 231	8.842	34.618	1.00 26.75
ATOM	1519	CZ	PHE	A	203	36.937	7.645	35. 273	1.00 25.88
ATOM	1520	С	PHE	A	203	33.989	11.828	35.625	1.00 23.36
ATOM	1521	0	PHE	A	203	34.429	12.787	34.961	1.00 23.78
ATOM	1522	N	LYS	A	204	34.293	11.681	36.914	1.00 24.66
ATOM	1523	CA	LYS	A	204	35.067	12.746	37.594	1.00 28.42
ATOM	1524	CB	LYS	A	204	36.513	12.660	37.112	1.00 19.59
ATOM	1525	CG	LYS	A	204	37. 279	11.404	37.364	1.00 17.19
ATOM	1526	CD	LYS	A	204	38.789	11.721	37. 281	1.00 19.97
ATOM	1527	CE	LYS	A	204	39.501	10.385	37.533	1.00 18.58
ATOM	1528	NZ	LYS	A	204	39.275	10.028	38.987	1.00 23.68
ATOM	1529	C	LYS	A	204	34.517	14.136	37. 294	1.00 29.81
ATOM	1530	0	LYS	A	204	35.206	15.036	36.739	1.00 33.36
ATOM	1531	N	ASP	A	205	33.266	14.480	37.569	1.00 28.37

ATOM	1532	CA	ASP	A	205	32.576	15.658	37.102	1.00	28.69
ATOM	1533	CB	ASP	A	205	32.196	16.720	38.123	1.00	47.14
ATOM	1534	CG	ASP	A	205	31.598	16.352	39.451	1.00	56.27
ATOM	1535	0D1	ASP	A	205	30.351	16.345	39.613	1.00	64.25
ATOM	1536	0D2	ASP	A	205	32.337	16.082	40.427	1.00	63.03
ATOM	1537	C	ASP	A	205	32.977	16.373	35.792	1.00	28.16
ATOM	1538	0	ASP	A	205	32.908	17.609	35.587	1.00	26.29
ATOM	1539	N	THR	A	206	33.056	15.589	34.708	1.00	26.86
ATOM	1540	CA	THR	A	206	33.162	15.960	33. 321	1.00	24.10
ATOM	1541	СВ	THR	A	206	34.465	15.710	32.593	1.00	23.12
ATOM	1542	0G1	THR	A	206	35.532	16.329	33. 291	1.00	33.87
ATOM	1543	CG2	THR	A	206	34.597	16.273	31.182	1.00	28.88
ATOM	1544	C	THR	A	206	32.037	15.063	32.732	1.00	22.29
ATOM	1545	0	THR	A	206	32.033	13.870	32.919	1.00	18.49
ATOM	1546	N	TYR	A	207	31.093	15.748	32.100	1.00	21.88
ATOM	1547	CA	TYR	A	207	29.925	15.164	31.481	1.00	19.15
ATOM	1548	СВ	TYR	A	207	28.785	16.161	31.637	1.00	20.14
ATOM	1549	CG	TYR	A	207	28.321	16.248	33.077	1.00	21.50
ATOM	1550	CD1	TYR	A	207	28.924	17.083	33.998	1.00	24.61
ATOM	1551	CE1	TYR	A	207	28.463	17.135	35.316	1.00	26.15
ATOM	1552	CD2	TYR	A	207	27.222	15.511	33.475	1.00	23.06
ATOM	1553	CE 2	TYR	A	207	26.759	15.557	34.779	1.00	24.11
ATOM	1554	CZ	TYR	A	207	27.389	16.366	35.680	1.00	26.10
ATOM	1555	ОН	TYR	A	207	26.926	16.407	36.974	1.00	29.87
ATOM	1556	С	TYR	A	207	30.108	14.847	30.011	1.00	17.27
ATOM	1557	0	TYR	A	207	30.484	15.715	29.245	1.00	18.24

ATOM	1558	N	PHE A	208	29.906	13.622	29.583	1.00 15.80
ATOM	1559	CA	PHE A	208	30.120	13.182	28.212	1.00 19.46
ATOM	1560	СВ	PHE A	208	30.958	11.838	28. 286	1.00 18.88
ATOM	1561	CG	PHE A	208	32.390	12.146	28.664	1.00 25.21
ATOM	1562	CD1	PHE A	208	33. 265	12.610	27.687	1.00 16.39
ATOM	1563	CD2	PHE A	208	32.822	12.070	29.980	1.00 14.34
ATOM	1564	CE1	PHE A	208	34. 551	12.979	28.044	1.00 26.46
ATOM	1565	CE2	PHE A	208	34.099	12.476	30. 321	1.00 20.01
ATOM	1566	CZ	PHE A	A 208	34.986	12.909	29.358	1.00 17.78
ATOM	1567	С	PHE A	1 208	28.787	12.829	27.550	1.00 19.71
ATOM	1568	0	PHE A	1 208	28.013	12.224	28.302	1.00 20.61
ATOM	1569	N	VAL A	A 209	28.509	13.051	26.298	1.00 18.39
ATOM	1570	CA	VAL A	A 209	27. 300	12.596	25.633	1.00 18.85
ATOM	1571	СВ	VAL A	A 209	27.107	13.090	24.169	1.00 20.25
ATOM	1572	CG1	VAL A	A 209	25.615	13.102	23.838	1.00 21.16
ATOM	1573	CG2	VAL A	A 209	27.735	14.404	23.842	1.00 30.98
ATOM	1574	С	VAL A	A 209	27.303	11.079	25.408	1.00 19.85
ATOM	1575	0	VAL A	A 209	28.165	10.581	24.669	1.00 23.15
ATOM	1576	N	THR A	A 210	26.343	10.325	25.921	1.00 19.46
ATOM	1577	CA	THR A	A 210	26. 295	8.897	25.732	1.00 17.65
ATOM	1578	СВ	THR A	A 210	26.367	8.176	27.093	1.00 28.63
ATOM	1579	0G1	THR A	A 210	25.764	8.959	28.147	1.00 25.81
ATOM	1580	CG2	THR A	A 210	27.810	7.866	27.442	1.00 28.46
ATOM	1581	С	THR A	A 210	25.051	8.415	24.993	1.00 18.09
ATOM	1582	0	THR A	A 210	24.990	7.251	24.515	1.00 18.66
ATOM	1583	N	GLY A	A 211	24.072	9.307	24.795	1.00 16.93

ATOM	1584	CA	GLY A	211	22.810	8.860	24. 262	1.00 17.00
ATOM	1585	С	GLY A	211	21.921	9.969	23.812	1.00 19.29
ATOM	1586	0	GLY A	211	22.273	11.096	24.007	1.00 21.42
ATOM	1587	N	ILE A	212	20.915	9.680	22.991	1.00 20.78
ATOM	1588	CA	ILE A	212	19.928	10.623	22.525	1.00 18.93
ATOM	1589	СВ	ILE A	212	19.951	10.771	21.019	1.00 10.32
ATOM	1590	CG2	ILE A	212	18.823	11.574	20.444	1.00 16.73
ATOM	1591	CG1	ILE A	212	21.242	11.400	20.428	1.00 21.97
ATOM	1592	CD1	ILE A	212	21.446	10.887	19.031	1.00 9.52
ATOM	1593	C	ILE A	212	18.617	9.966	22.989	1.00 21.04
ATOM	1594	0	ILE A	212	18.474	8.760	22.966	1.00 22.44
ATOM	1595	N	VAL A	213	17.714	10.709	23.533	1.00 21.87
ATOM	1596	CA	VAL A	213	16.430	10.309	24.057	1.00 22.35
ATOM	1597	CB	VAL A	213	15.882	11.493	24.873	1.00 24.44
ATOM	1598	CG1	VAL A	213	14.526	11.233	25.509	1.00 14.76
ATOM	1599	CG2	VAL A	213	16.842	11.846	26.005	1.00 25.07
ATOM	1600	C	VAL A	213	15.632	9.981	22.787	1.00 21.97
ATOM	1601	0	VAL A	213	15.441	10.840	21.961	1.00 20.21
ATOM	1602	N	SER A	214	15.164	8.730	22.697	1.00 23.11
ATOM	1603	CA	SER A	214	14.567	8.306	21.439	1.00 22.81
ATOM	1604	CB	SER A	214	15.518	7. 259	20.851	1.00 27.49
ATOM	1605	OG	SER A	214	15.203	6.921	19.532	1.00 35.85
ATOM	1606	C	SER A	214	13.154	7. 797	21.614	1.00 22.51
ATOM	1607	0	SER A	214	12.280	8.525	21.157	1.00 21.09
ATOM	1608	N	TRP A	215	12.892	6.624	22.214	1.00 23.61
ATOM	1609	CA	TRP A	215	11.514	6.203	22.347	1.00 24.32

A.	rom	1610	СВ	TRP	A	215	10.984	5.481	21.109	1.00	26.87
A'	rom	1611	CG	TRP	A	215	11.752	4.239	20.786	1.00	29.31
A'	ГОМ	1612	CD2	TRP	A	215	11.421	2.883	21.091	1.00	20.80
A.	ГОМ	1613	CE2	TRP	A	215	12.449	2.075	20.570	1.00	20.96
A'	MOT	1614	CE3	TRP	A	215	10.349	2.258	21.725	1.00	26.36
A'	rom	1615	CD1	TRP	A	215	12.933	4.209	20.093	1.00	20.27
A'	ГОМ	1616	NE 1	TRP	A	215	13.340	2.905	19.967	1.00	15.37
A'	ГОМ	1617	CZ2	TRP	A	215	12.445	0.673	20.637	1.00	28.03
A'	rom	1618	CZ3	TRP	A	215	10.346	0.885	21.833	1.00	25.94
A'	MOT	1619	CH2	TRP	A	215	11.390	0.103	21.307	1.00	31.88
A'	ГОМ	1620	C	TRP	A	215	11.291	5.345	23.580	1.00	25.29
A'	ГОМ	1621	0	TRP	A	215	12.241	5.012	24.275	1.00	24.23
A'	МОТ	1622	N	GLY	A	216	10.028	5.295	23.997	1.00	25.77
A'	ГОМ	1623	CA	GLY	A	216	9.621	4.436	25.111	1.00	27.88
A'	ГОМ	1624	C	GLY	A	216	8.216	3.930	24.726	1.00	31.59
A'	ГОМ	1625	0	GLY	A	216	7.606	4.481	23.790	1.00	32.19
A'	TOM	1626	N	GLU	A	217	7.735	2.846	25.315	1.00	32.35
A'	ТОМ	1627	CA	GLU	A	217	6.329	2.450	25.083	1.00	31.65
A'	ГОМ	1628	CB	GLU	A	217	6.243	0.940	25.199	1.00	28.75
A'	ТОМ	1629	CG	GLU	A	217	6.971	0.128	24.126	1.00	29.51
A'	TOM	1630	CD	GLU	A	217	6.955	-1.353	24.471	1.00	36.06
A'	TOM	1631	0E1	GLU	A	217	7.996	-2.016	24.699	1.00	26.22
A'	MOT	1632	0E2	GLU	A	217	5.826	-1.901	24.584	1.00	42.83
A'	ГОМ	1633	C	GLU	A	217	5.571	3.205	26.174	1.00	32.40
A'	MOT	1634	0	GLU	A	217	5.597	2.824	27.355	1.00	33.98
A'	ГОМ	1635	N	GLY	A	218	4.966	4.333	25.865	1.00	32.79

ATOM	1636	CA	GLY A	218	4.373	5.175	26.922	1.00 33.07
ATOM	1637	C	GLY A	218	5.501	5.920	27.627	1.00 33.29
ATOM	1638	0	GLY A	218	6.571	6.151	27.057	1.00 33.84
ATOM	1639	N	CYS A	220	5.267	6.456	28.817	1.00 32.07
ATOM	1640	CA	CYS A	220	6.246	7.108	29.639	1.00 31.80
ATOM	1641	C	CYS A	220	6.085	6.653	31.097	1.00 32.58
ATOM	1642	0	CYS A	220	5.070	6.910	31.721	1.00 33.33
ATOM	1643	CB	CYS A	220	6.108	8.632	29.725	1.00 28.38
ATOM	1644	SG	CYS A	220	5.767	9.432	28.175	1.00 24.86
ATOM	1645	N	ALA A	221	7.091	6.036	31.665	1.00 32.44
ATOM	1646	CA	ALA A	221	7.153	5.594	33.030	1.00 34.35
ATOM	1647	СВ	ALA A	221	6.822	6.742	33.989	1.00 35.19
ATOM	1648	C	ALA A	221	6.334	4.359	33.351	1.00 34.39
ATOM	1649	0	ALA A	221	6.135	4.008	34.515	1.00 37.10
ATOM	1650	N	ARG A	222	5.971	3.523	32.411	1.00 35.26
ATOM	1651	CA	ARG A	222	5.162	2.340	32.630	1.00 32.61
ATOM	1652	CB	ARG A	222	4.704	1.821	31.278	1.00 32.64
ATOM	1653	CG	ARG A	222	3.833	2.865	30.542	1.00 31.78
ATOM	1654	CD	ARG A	222	2.673	2.206	29.816	1.00 37.96
ATOM	1655	NE	ARG A	222	2.388	2.742	28.518	1.00 43.50
ATOM	1656	CZ	ARG A	222	1.449	3.430	27.928	1.00 48.60
ATOM	1657	NH1	ARG A	222	0.352	3.843	28.560	1.00 54.56
ATOM	1658	NH2	ARG A	222	1.543	3.777	26.638	1.00 48.96
ATOM	1659	C	ARG A	222	5.970	1.326	33.418	1.00 34.28
ATOM	1660	0	ARG A	222	7.205	1.379	33.325	1.00 33.75
ATOM	1661	N	LYS A	223	5.274	0.463	34.177	1.00 33.30

ATOM	1662	CA	LYS A	223	5.974	-0.556	34.930	1.00 34.97
ATOM	1663	СВ	LYS A	223	5.131	-1.244	36.004	1.00 36.87
ATOM	1668	С	LYS A	223	6.455	-1.612	33.932	1.00 35.82
ATOM	1669	0	LYS A	223	5.809	-1.825	32.908	1.00 35.13
ATOM	1670	N	GLY A	223A	7.664	-2.129	34.173	1.00 36.69
ATOM	1671	CA	GLY A	223A	8.283	-3.118	33.325	1.00 35.80
ATOM	1672	C	GLY A	223A	8.863	-2.620	32.015	1.00 36.16
ATOM	1673	0	GLY A	223A	9.381	-3.448	31.241	1.00 39.14
ATOM	1674	N	LYS A	224	8.828	-1.354	31.660	1.00 33.71
ATOM	1675	CA	LYS A	224	9.294	-0.727	30.448	1.00 31.30
ATOM	1676	CB	LYS A	224	8.166	-0.008	29.723	1.00 31.63
ATOM	1677	CG	LYS A	224	7.029	-0.913	29.236	1.00 35.48
ATOM	1678	CD	LYS A	224	7.371	-1.644	27.951	1.00 33.01
ATOM	1679	CE	LYS A	224	6.258	-2.621	27.611	1.00 40.42
ATOM	1680	NZ	LYS A	224	6.729	-3.836	26.903	1.00 33.98
ATOM	1681	C	LYS A	224	10.375	0.300	30.763	1.00 30.39
ATOM	1682	0	LYS A	224	10.403	0.965	31.785	1.00 29.77
ATOM	1683	N	TYR A	225	11.413	0.355	29.925	1.00 29.97
ATOM	1684	CA	TYR A	225	12.522	1.299	30.158	1.00 28.88
ATOM	1685	CB	TYR A	225	13.840	0.497	30.043	1.00 30.48
ATOM	1686	CG	TYR A	225	13.859	-0.667	31.015	1.00 33.17
ATOM	1687	CD1	TYR A	225	14.262	-0.439	32.312	1.00 33.48
ATOM	1688	CE1	TYR A	225	14.299	-1.451	33.245	1.00 33.84
ATOM	1689	CD2	TYR _. A	225	13.405	-1.933	30.673	1.00 35.61
ATOM	1690	CE2	TYR A	225	13.434	-2.973	31.597	1.00 38.02
ATOM	1691	CZ	TYR A	225	13.877	-2.699	32.883	1.00 37.26

ATOM	1692	ОН	TYR	A 225	13.897	-3.696	33.834	1.00 38.89
ATOM	1693	C	TYR	A 225	12.548	2.379	29.115	1.00 27.17
ATOM	1694	0	TYR	A 225	11.697	2.396	28. 234	1.00 27.63
ATOM	1695	N	GLY	A 226	13.465	3.325	29.200	1.00 27.63
ATOM	1696	CA	GLY	A 226	13.615	4.314	28.113	1.00 25.71
ATOM	1697	C	GLY	A 226	14.607	3.780	27.093	1.00 24.98
ATOM	1698	0	GLY	A 226	15.521	3.012	27.455	1.00 28.37
ATOM	1699	N	ILE	A 227	14.427	4.121	25.819	1.00 23.76
ATOM	1700	CA	ILE	A 227	15.282	3.662	24.732	1.00 21.24
ATOM	1701	СВ	ILE	A 227	14.553	2.940	23.580	1.00 35.68
ATOM	1702	CG2	ILE	A 227	15.561	2.077	22.817	1.00 21.00
ATOM	1703	CG1	ILE	A 227	13.329	2.090	23.934	1.00 35.87
ATOM	1704	CD1	ILE	A 227	13.458	0.933	24.891	1.00 41.89
ATOM	1705	C	ILE	A 227	16.010	4.876	24.129	1.00 22.04
ATOM	1706	0	ILE	A 227	15.479	5.875	23.678	1.00 21.15
ATOM	1707	N	TYR	A 228	17.352	4.791	24.140	1.00 21.65
ATOM	1708	CA	TYR	A 228	18.325	5.793	23.752	1.00 19.78
ATOM	1709	CB	TYR	A 228	19.262	6.117	24.972	1.00 17.62
ATOM	1710	CG	TYR	A 228	18.457	6.658	26.148	1.00 16.98
ATOM	1711	CD1	TYR	A 228	18.222	8.001	26.244	1.00 18.23
ATOM	1712	CE1	TYR	A 228	17.433	8.504	27. 273	1.00 20.00
ATOM	1713	CD2	TYR	A 228	17.896	5.820	27.109	1.00 18.51
ATOM	1714	CE 2	TYR	A 228	17.122	6.303	28.155	1.00 18.01
ATOM	1715	CZ	TYR	A 228	16.911	7.656	28.220	1.00 19.60
ATOM	1716	ОН	TYR	A 228	16.169	8.219	29.221	1.00 19.43
ATOM	1717	C	TYR	A 228	19.208	5.366	22.581	1.00 20.35

ATOM	1718	0	TYR A	228	19.437	4.157	22.391	1.00 20.47
ATOM	1719	N	THR A	229	19.585	6.302	21.729	1.00 21.24
ATOM	1720	CA	THR A	229	20.432	6.068	20.548	1.00 21.84
ATOM	1721	CB	THR A	229	20.505	7.215	19.530	1.00 20.18
ATOM	1722	0G1	THR A	229	19.199	7.621	19.063	1.00 32.24
ATOM	1723	CG2	THR A	229	21.253	6.796	18.260	1.00 17.52
ATOM	1724	C	THR A	229	21.817	5.875	21.154	1.00 22.52
ATOM	1725	0	THR A	229	22.163	6.658	22.029	1.00 22.89
ATOM	1726	N	LYS A	230	22.466	4.741	20.944	1.00 24.91
ATOM	1727	CA	LYS A	230	23.786	4.516	21.526	1.00 24.00
ATOM	1728	CB	LYS A	230	24.180	3.060	21.472	1.00 25.14
ATOM	1729	CG	LYS A	230	25.569	2.670	21.973	1.00 20.09
ATOM	1730	CD	LYS A	230	25.660	1.127	21.991	1.00 17.63
ATOM	1731	CE	LYS A	230	27.011	0.603	21.629	1.00 27.33
ATOM	1732	NZ	LYS A	230	27.517	-0.600	22.341	1.00 25.73
ATOM	1733	C	LYS A	230	24.707	5.400	20.694	1.00 25.28
ATOM	1734	0	LYS A	230	25.131	4.987	19.608	1.00 25.18
ATOM	1735	N	VAL A	231	25.121	6.529	21.285	1.00 24.91
ATOM	1736	CA	VAL A	231	25.972	7.497	20.632	1.00 25.72
ATOM	1737	СВ	VAL A	231	26.094	8.785	21.471	1.00 24.80
ATOM	1738	CG1	VAL A	231	27.378	9.580	21.327	1.00 21.74
ATOM	1739	CG2	VAL A	231	24.892	9.694	21.189	1.00 17.53
ATOM	1740	C	VAL A	231	27.337	6.919	20.302	1.00 24.88
ATOM	1741	0	VAL A	231	27.907	7. 288	19.261	1.00 25.43
ATOM	1742	N	THR A	232	27.929	6.010	21.040	1.00 24.28
ATOM	1743	CA	THR A	232	29.234	5.462	20.701	1.00 24.84

ATOM	1744	CB	THR A	232	29.773	4.594	21.850	1.00 16.56
ATOM	1745	0G1	THR A	232	28.818	3.521	22.017	1.00 20.82
ATOM	1746	CG2	THR A	232	29.941	5.400	23.096	1.00 20.82
ATOM	1747	C	THR A	232	29.269	4.651	19.429	1.00 25.90
ATOM	1748	0	THR A	232	30.373	4.415	18.944	1.00 28.36
ATOM	1749	N	ALA A	233	28.197	4.175	18.807	1.00 26.65
ATOM	1750	CA	ALA A	233	28.115	3.508	17.542	1.00 27.26
ATOM	1751	CB	ALA A	233	26.731	2.847	17.385	1.00 27.81
ATOM	1752	C	ALA A	233	28.230	4.437	16.358	1.00 27.91
ATOM	1753	0	ALA A	233	28.280	4.105	15.173	1.00 31.60
ATOM	1754	N	PHE A	234	27.984	5.718	16.558	1.00 28.06
ATOM	1755	CA	PHE A	234	27.959	6.835	15.656	1.00 23.59
ATOM	1756	CB	PHE A	234	26.585	7.529	15.859	1.00 28.28
ATOM	1757	CG	PHE A	234	25.471	6.577	15.477	1.00 33.00
ATOM	1758	CD1	PHE A	234	25.280	6.261	14.135	1.00 29.99
ATOM	1759	CD2	PHE A	234	24.693	5.988	16.459	1.00 28.52
ATOM	1760	CE1	PHE A	234	24.280	5.375	13.793	1.00 36.08
ATOM	1761	CE 2	PHE A	234	23.677	5.100	16.108	1.00 36.55
ATOM	1762	CZ	PHE A	234	23.501	4.798	14.771	1.00 34.89
ATOM	1763	C	PHE A	234	29.043	7.848	15.915	1.00 22.67
ATOM	1764	0	PHE A	234	28.920	8.934	15.342	1.00 21.85
ATOM	1765	N	LEU A	235	30.129	7.546	16.640	1.00 21.63
ATOM	1766	CA	LEU A	235	31.078	8.634	16.886	1.00 25.65
ATOM	1767	СВ	LEU A	235	32.086	8.360	18.011	1.00 16.76
ATOM	1768	CG	LEU A	235	31.538	8.512	19.441	1.00 18.85
ATOM	1769	CD1	LEU A	235	32.486	7.801	20.381	1.00 21.99

ATOM	1770	CD2	LEU	A	235	31.357	9.955	19.891	1.00 19.91
ATOM	1771	C	LEU	A	235	31.797	9.048	15.593	1.00 27.89
ATOM	1772	0	LEU	A	235	31.964	10.266	15.376	1.00 27.82
ATOM	1773	N	LYS	A	236	32.167	8.129	14.700	1.00 27.37
ATOM	1774	CA	LYS	A	236	32.849	8.488	13.457	1.00 28.68
ATOM	1775	СВ	LYS	A	236	33.327	7.228	12.692	1.00 19.98
ATOM	1776	CG	LYS	A	236	34.370	6.486	13.539	1.00 33.77
ATOM	1780	C	LYS	A	236	31.908	9.254	12.543	1.00 29.90
ATOM	1781	0	LYS	A	236	32.327	10.239	11.959	1.00 30.38
ATOM	1782	N	TRP	A	237	30.648	8.818	12.453	1.00 28.27
ATOM	1783	CA	TRP	A	237	29.616	9.528	11.708	1.00 30.56
ATOM	1784	CB	TRP	A	237	28.331	8.682	11.743	1.00 18.06
ATOM	1785	CG	TRP	A	237	27. 250	9.280	10.919	1.00 23.86
ATOM	1786	CD2	TRP	A	237	26.269	10.220	11.386	1.00 26.31
ATOM	1787	CE2	TRP	A	237	25.435	10.532	10.303	1.00 25.75
ATOM	1788	CE3	TRP	A	237	26.055	10.859	12.626	1.00 27.43
ATOM	1789	CD1	TRP	A	237	26.977	9.056	9.603	1.00 20.95
ATOM	1790	NE1	TRP	A	237	25.900	9.821	9.226	1.00 24.50
ATOM	1791	CZ2	TRP	A	237	24.398	11.448	10.419	1.00 31.34
ATOM	1792	CZ3	TRP	A	237	25.003	11.714	12.755	1.00 18.02
ATOM	1793	CH2	TRP	A	237	24.180	12.030	11.648	1.00 30.01
ATOM	1794	C	TRP	A	237	29.418	10.940	12.212	1.00 32.87
ATOM	1795	0	TRP	A	237	29.318	11.882	11.405	1.00 36.00
ATOM	1796	N	ILE	A	238	29.341	11.224	13.518	1.00 32.38
ATOM	1797	CA	ILE	A	238	29.263	12.591	14.014	1.00 32.41
ATOM	1798	CB	ILE	A	238	29.048	12.583	15.545	1.00 28.18

ATOM	1799	CG2	ILE	A	238	28.963	14.012	16.055	1.00 29.27
ATOM	1800	CG1	ILE	A	238	27.734	11.817	15.836	1.00 29.47
ATOM	1801	CD1	ILE	A	238	27.512	11.532	17.301	1.00 29.07
ATOM	1802	C	ILE	A	238	30.485	13.429	13.627	1.00 32.80
ATOM	1803	0	ILE	A	238	30.368	14.594	13.196	1.00 31.42
ATOM	1804	N	ASP	A	239	31.685	12.871	13.822	1.00 32.54
ATOM	1805	CA	ASP	A	239	32.936	13.527	13.420	1.00 33.34
ATOM	1806	СВ	ASP	A	239	34.119	12.599	13.672	1.00 40.02
ATOM	1807	CG	ASP	A	239	35.435	13.339	13.792	1.00 54.38
ATOM	1808	0D1	ASP	A	239	35.435	14.360	14.519	1.00 61.54
ATOM	1809	0D2	ASP	A	239	36.447	12.912	13.198	1.00 56.89
ATOM	1810	C	ASP	A	239	32.902	13.861	11.938	1.00 33.75
ATOM	1811	0	ASP	A	239	33.103	15.006	11.530	1.00 34.75
ATOM	1812	N	ARG	A	240	32.569	12.881	11.102	1.00 34.35
ATOM	1813	CA	ARG	A	240	32.356	13.140	9.679	1.00 37.45
ATOM	1814	CB	ARG	A	240	32.002	11.852	8.930	1.00 39.48
ATOM	1815	CG	ARG	A	240	32.054	11.981	7.423	1.00 58.07
ATOM	1816	CD	ARG	A	240	30.785	12.485	6.769	1.00 71.30
ATOM	1817	NE	ARG	A	240	29.612	11.664	7.004	1.00 79.07
ATOM	1818	CZ	ARG	A	240	28.342	12.012	6.817	1.00 84.38
ATOM	1819	NH1	ARG	A	240	27.956	13.206	6.379	1.00 81.15
ATOM	1820	NH2	ARG	A	240	27.410	11.094	7.089	1.00 87.01
ATOM	1821	C	ARG	A	240	31.335	14.236	9.465	1.00 37.16
ATOM	1822	0	ARG	A	240	31.649	15.212	8.790	1.00 38.08
ATOM	1823	N	SER	A	241	30.134	14.192	10.023	1.00 39.05
ATOM	1824	CA	SER	A	241	29.154	15.260	9.930	1.00 40.97

,ATOM	1825	CB	SER	A 2	241	27.859	14.881	10.695	1.00	43.34
ATOM	1826	OG	SER	A 2	241	27.592	13.513	10.364	1.00	45.05
ATOM	1827	C	SER	A 2	241	29.602	16.623	10.373	1.00	41.84
ATOM	1828	0	SER	A 2	241	29.119	17.609	9.790	1.00	43.50
ATOM	1829	N	MET	A 2	242	30.514	16.806	11.328	1.00	42.76
ATOM	1830	CA	MET	A 2	242	30.945	18.140	11.727	1.00	44.40
ATOM	1831	CB	MET	A 2	242	31.291	18.132	13.214	1.00	37.98
ATOM	1832	CG	MET	A 2	242	30.155	17.732	14.141	1.00	38.06
ATOM	1833	SD	MET	A 2	242	30.638	17.678	15.890	1.00	36.16
ATOM	1834	CE	MET	A 2	242	31.905	16.417	15.825	1.00	39.99
ATOM	1835	С	MET	A 2	242	32.082	18.695	10.885	1.00	46.58
ATOM	1836	0	MET	A 2	242	32.531	19.827	11.045	1.00	47.27
ATOM	1837	N	LYS	A 2	243	32.597	18.003	9.916	1.00	48.69
ATOM	1838	CA	LYS	A 2	243	33.584	18.090	8.903	1.00	51.08
ATOM	1839	CB	LYS	A 2	243	33.313	19.153	7.854	1.00	56.82
ATOM	1840	CG	LYS	A 2	243	31.941	19.012	7.173	1.00	70.86
ATOM	1841	CD	LYS	A 2	243	31.069	20.232	7.502	1.00	76.94
ATOM	1842	CE	LYS	A 2	243	29.600	20.018	7.191	1.00	76.65
ATOM	1843	NZ	LYS	A 2	243	28.747	21.110	7.748	1.00	78.65
ATOM	1844	C	LYS	A 2	243	35.011	18.137	9.429	1.00	53.33
ATOM	1845	0	LYS	A 2	243	35.709	17.081	9.374	1.00	54.97
ATOM	1846	OT	LYS	A 2	243	35.454	19.178	9.952	1.00	66.42
ATOM	1	СВ	THR	В	85	44.949	-9.163	38.127	1.00	56.87
ATOM	2	0G1	THR	В	85	45.093	-10.315	37.278	1.00	59.79
ATOM	3	CG2	THR	В	85	45.504	-9.502	39.505	1.00	50.10
ATOM	4	C	THR	В	85	43.224	-7.488	37.349	1.00	53.74

ATOM	5	0	THR	В	85	43.033	-7.626	36.135	1.00 54.84
ATOM	6	N	THR	В	85	42.482	-9.748	37.823	1.00 54.19
ATOM	7	CA	THR	В	85	43.487	-8.713	38.221	1.00 53.84
ATOM	8	N	ALA	В	86	43.149	-6.329	37.978	1.00 52.17
ATOM	9	CA	ALA	В	86	42.840	-5.096	37.274	1.00 50.53
ATOM	10	CB	ALA	В	86	41.876	-4.253	38.091	1.00 42.95
ATOM	11	C	ALA	В	86	44.161	-4.382	37.009	1.00 50.42
ATOM	12	0	ALA	В	86	44.899	-4.002	37.928	1.00 51.71
ATOM	13	N	ALA	В	87	44.467	-4.241	35.719	1.00 48.80
ATOM	14	CA	ALA	В	87	45.727	-3.585	35.382	1.00 46.64
ATOM	15	CB	ALA	В	87	46.577	-4.535	34.533	1.00 49.55
ATOM	16	C	ALA	В	87	45.434	-2.350	34.547	1.00 45.49
ATOM	17	0	ALA	В	87	44.381	-2.256	33.912	1.00 46.34
ATOM	18.	N	LEU	В	88	46.456	-1.507	34.471	1.00 41.99
ATOM	19	CA	LEU	В	88	46.457	-0.356	33.575	1.00 39.17
ATOM	20	CB	LEU	В	88	46.886	-0.889	32.208	1.00 33.44
ATOM	21	CG	LEU	В	88	48.022	-1.873	31.996	1.00 45.68
ATOM	22	CD1	LEU	В	88	48.545	-1.742	30.571	1.00 50.83
ATOM	23	CD2	LEU	В	88	49.186	-1.749	32.975	1.00 48.25
ATOM	24	C	LEU	В	88	45.136	0.371	33.611	1.00 36.72
ATOM	25	0	LEU	В	88	44.495	0.580	34.660	1.00 34.64
ATOM	26	N	CYS	В	89	44.492	0.634	32.464	1.00 34.60
ATOM	27	CA	CYS	В	89	43.173	1.242	32.470	1.00 31.70
ATOM	28	С	CYS	В	89	42.062	0.675	33.280	1.00 29.10
ATOM	29	0	CYS	В	89	41.077	1.401	33.508	1.00 28.84
ATOM	30	CB	CYS	В	89	42.706	1.347	30.991	1.00 28.41

ATOM	31	SG	CYS	В	89	43.913	2.359	30.200	1.00 29.95
ATOM	32	N	SER	В	90	42.001	-0.571	33.698	1.00 28.70
ATOM	33	CA	SER	В	90	40.926	-1.089	34.546	1.00 28.01
ATOM	34	CB	SER	В	90	40.666	-2.552	34.226	1.00 37.87
ATOM	35	0G	SER	В	90	41.777	-3.216	33.652	1.00 44.71
ATOM	36	C	SER	В	90	41.222	-0.848	36.010	1.00 28.23
ATOM	37	0	SER	В	90	40.393	-1.239	36.842	1.00 29.50
ATOM	38	N	LEU	В	91	42.382	-0.340	36.407	1.00 28.46
ATOM	39	CA	LEU	В	91	42.628	0.028	37.798	1.00 30.37
ATOM	40	CB	LEU	В	91	44.006	-0.438	38.241	1.00 36.58
ATOM	41	CG	LEU	В	91	44.483	0.007	39.623	1.00 45.34
ATOM	42	CD1	LEU	В	91	43.719	-0.673	40.750	1.00 48.88
ATOM	43	CD2	LEU	В	91	45.985	-0.242	39.752	1.00 50.54
ATOM	44	C	LEU	В	91	42.390	1.526	37.951	1.00 29.82
ATOM	45	0	LEU	В	91	43.153	2.477	37.744	1.00 30.03
ATOM ·	46	N	ASP	В	92	41.124	1.856	38.198	1.00 31.10
ATOM	47	CA	ASP	В	92	40.703	3.245	38.427	1.00 30.67
ATOM	48	CB	ASP	В	92	41.349	3.668	39.769	1.00 30.18
ATOM	49	CG	ASP	В	92	40.909	5.045	40.219	1.00 40.18
ATOM	50	0D1	ASP	В	92	39.742	5.396	39.923	1.00 40.36
ATOM	51	OD2	ASP	В	92	41.747	5.761	40.806	1.00 44.43
ATOM	52	C	ASP	В	92	41.061	4.150	37. 285	1.00 29.98
ATOM	53	0	ASP	В	92	41.793	5.166	37.362	1.00 30.63
ATOM	54	N	ASN	В	93	40.796	3.786	36.023	1.00 28.93
ATOM	55	CA	ASN	В	93	41.012	4.592	34.829	1.00 26.66
ATOM	56	СВ	ASN	В	93	40.158	5.893	34.914	1.00 8.51

ATOM	57	CG	ASN	В	93	39.914	6.408	33.515	1.00 22.03
ATOM	58	0D1	ASN	В	93	39.434	5.725	32.633	1.00 31.20
ATOM	59	ND2	ASN	В	93	40.295	7.630	33.202	1.00 25.54
ATOM	60	C	ASN	В	93	42.457	4.941	34.597	1.00 26.17
ATOM	61	0	ASN	В	93	42.888	6.002	34.048	1.00 27.35
ATOM	62	N	GLY	В	94	43.376	4.082	35.033	1.00 25.98
ATOM	63	CA	GLY	В	94	44.814	4.191	35.075	1.00 23.92
ATOM	64	C	GLY	В	94	45.342	5.455	35.721	1.00 23.83
ATOM	65	0	GLY	В	94	46.336	6.017	35.208	1.00 24.85
ATOM	66	N	ASP	В	95	44.661	6.045	36.724	1.00 22.01
ATOM	67	CA	ASP	В	95	44.942	7.361	37.226	1.00 24.08
ATOM	68	CB	ASP	В	95	46.384	7.476	37.748	1.00 26.25
ATOM	69	CG	ASP	В	95	46.474	8.276	39.022	1.00 26.19
ATOM	70	0D1	ASP	В	95	45.510	8.332	39.823	1.00 24.25
ATOM	71	OD2	ASP	В	95	47.547	8.872	39.177	1.00 23.74
ATOM	72	C	ASP	В	95	44.690	8.527	36.291	1.00 23.91
ATOM	73	0	ASP	В	95	44.968	9.679	36.653	1.00 24.94
ATOM	74	N	CYS	В	96	44.009	8.396	35.170	1.00 24.79
ATOM	75	CA	CYS	В	96	43.751	9.434	34.189	1.00 23.18
ATOM	76	C	CYS	В	96	42.529	10.245	34.555	1.00 22.65
ATOM	77	0	CYS	В	96	41.572	9.709	35.148	1.00 23.15
ATOM	78	CB	CYS	В	96	43.478	8.772	32.810	1.00 23.92
ATOM	79	SG	CYS	В	96	44.808	7.718	32.145	1.00 22.51
ATOM	80	N	ASP	В	97	42.513	11.530	34.171	1.00 22.59
ATOM	81	CA	ASP	В	97	41.258	12.249	34.427	1.00 23.75

ATOM	83	CG	ASP	В	97	42.089	14.274	35.614	1.00 18.77
ATOM	84	0D1	ASP	В	97	42.395	13.568	36.613	1.00 18.43
ATOM	85	0D2	ASP	В	97	42.267	15.474	35.390	1.00 11.24
ATOM	86	C	ASP	В	97	40.141	11.924	33.440	1.00 24.23
ATOM	87	0	ASP	В	97	38.960	11.962	33.764	1.00 26.94
ATOM	88	N	GLN	В	98	40.418	11.737	32.177	1.00 22.37
ATOM	89	CA	GLN	В	98	39.496	11.430	31.123	1.00 20.71
ATOM	90	CB	GLN	В	98	39.351	12.611	30.137	1.00 23.68
ATOM	91	CG	GLN	В	98	38.924	13.922	30.723	1.00 8.66
ATOM	92	CD	GLN	В	98	38.728	15.074	29.815	1.00 20.28
ATOM	93	0E1	GLN	В	98	39.039	14.970	28.643	1.00 30.74
ATOM	94	NE 2	GLN	В	98	38. 218	16.209	30. 274	1.00 32.30
ATOM	95	C	GLN	В	98	39.898	10.172	30.363	1.00 20.76
ATOM	96	0	GLN	В	98	39.905	9.131	31.022	1.00 21.67
ATOM	97	N	PHE	В	99	40.249	10.186	29.085	1.00 19.18
ATOM	98	CA	PHE	В	99	40.437	8.966	28. 331	1.00 20.46
ATOM	99	CB	PHE	В	99	40.389	9.161	26.822	1.00 22.65
ATOM	. 100	CG	PHE	В	99	39.431	10.152	26.223	1.00 20.55
ATOM	101	CD1	PHE	В	99	38.118	10.294	26.618	1.00 24.31
ATOM	102	CD2	PHE	В	99	39.856	10.942	25.176	1.00 10.29
ATOM	103	CE1	PHE	В	99	37.251	11.190	26.029	1.00 15.37
ATOM	104	CE 2	PHE	В	99	38.983	11.834	24.542	1.00 18.84
ATOM	105	CZ	PHE	В	99	37.698	11.999	24.995	1.00 16.90
ATOM	106	C	PHE	В	99	41.692	8.182	28.708	1.00 21.82
ATOM	107	0	PHE	В	99	42.736	8.760	29.041	1.00 22.34
ATOM	108	N	CYS	В	100	41.502	6.873	28.856	1.00 22.05

ATOM	109	CA	CYS	В	100	42.601	5.953	29.102	1.00 26.02
ATOM	110	C	CYS	В	100	42.598	4.818	28.045	1.00 27.68
ATOM	111	0	CYS	В	100	41.566	4.241	27.691	1.00 23.83
ATOM	112	CB	CYS	В	100	42.498	5.210	30.427	1.00 31.59
ATOM	113	SG	CYS	В	100	43.914	4.225	30.917	1.00 33.78
ATOM	114	N	HIS	В	101	43.788	4.535	27.507	1.00 30.09
ATOM	115	CA	HIS	В	101	44.098	3.444	26.594	1.00 33.81
ATOM	116	CB	HIS	В	101	44.216	3.775	25.113	1.00 47.56
ATOM	117	CG	HIS	В	101	43.582	5.034	24.613	1.00 60.87
ATOM	118	CD2	HIS	В	101	42.421	5.274	23.961	1.00 67.75
ATOM	119	ND1	HIS	В	101	44.146	6.267	24.873	1.00 68.91
ATOM	120	CE1	HIS	В	101	43.379	7.210	24.360	1.00 74.55
ATOM	121	NE 2	HIS	В	101	42.320	6.637	23.799	1.00 74.64
ATOM	122	C	HIS	В	101	45.435	2.784	26.997	1.00 37.27
ATOM	123	0	HIS	В	101	46.259	3.218	27.825	1.00 36.47
ATOM	124	N	GLU	В	102	45.669	1.571	26.503	1.00 39.85
ATOM	125	CA	GLU	В	102	46.841	0.755	26.827	1.00 41.35
ATOM	126	CB	GLU	В	102	46.386	-0.576	27.412	1.00 35.01
ATOM	127	CG	GLU	В	102	45.794	-0.451	28.806	1.00 35.84
ATOM	128	CD	GLU	В	102	44.952	-1.588	29.310	1.00 37.07
ATOM	129	0E1	GLU	В	102	44.303	-1.459	30.371	1.00 42.10
ATOM	130	0E2	GLU	В	102	44.905	-2.670	28.690	1.00 49.57
ATOM	131	C	GLU	В	102	47.700	0.580	25.585	1.00 44.35
ATOM	132	0	GLU	В	102	47. 284	-0.139	24.674	1.00 45.55
ATOM	133	N	GLU	В	103	48.794	1.327	25.504	1.00 46.55
ATOM	134	CA	GLU	В	103	49.728	1.333	24.393	1.00 48.48

ATOM	135	CB	GLU B	103	50.034	2.739	23.892	1.00 56.10
ATOM	136	CG	GLU B	103	49.029	3.313	22.913	1.00 59.16
ATOM	137	CD	GLU B	103	49.122	4.812	22.685	1.00 65.20
ATOM	138	0E1	GLU B	103	50.231	5.353	22.474	1.00 62.49
ATOM	139	0E2	GLU B	103	48.059	5.489	22.711	1.00 62.58
ATOM	140	С	GLU B	103	51.003	0.664	24.887	1.00 51.34
ATOM	141	0	GLU B	103	51.597	1.104	25.873	1.00 52.56
ATOM	142	N	GLN B	104	51.458	-0.381	24.168	1.00 51.85
ATOM	143	CA	GLN B	104	52.531	-1.225	24.711	1.00 50.18
ATOM	144	СВ	GLN B	104	53.852	-0.545	24.977	1.00 49.60
ATOM	149	C	GLN B	104	51.881	-1.773	25.987	1.00 50.18
ATOM	150	0	GLN B	104	50.700	-2.124	25.849	1.00 50.16
ATOM	151	N	ASN B	105	52.553	-1.828	27.123	1.00 49.86
ATOM	152	CA	ASN B	105	51.861	-2.341	28.330	1.00 49.23
ATOM	153	CB	ASN B	105	52.350	-3.715	28.667	1.00 52.36
ATOM	154	CG	ASN B	105	51.809	-4.449	29.855	1.00 57.21
ATOM	155	0D1	ASN B	105	50.940	-5.326	29.758	1.00 58.13
ATOM	156	ND2	ASN B	105	52.358	-4.139	31.032	1.00 62.73
ATOM	157	C	ASN B	105	52.088	-1.256	29.386	1.00 48.72
ATOM	158	0	ASN B	105	52.770	-1.334	30.405	1.00 50.49
ATOM	159	N	SER B	106	51.475	-0.129	29.042	1.00 45.07
ATOM	160	CA	SER B	106	51.493	1.101	29.791	1.00 42.70
ATOM	161	СВ	SER B	106	52.563	2.049	29.239	1.00 46.06
ATOM	162	0G	SER B	106	53.158	2.743	30.339	1.00 61.90
ATOM	163	C	SER B	106	50.112	1.764	29.618	1.00 39.39
ATOM	164	0	SER B	106	49.318	1.305	28.825	1.00 38.41

ATOM	165	N	VAL I	3 107	49.832	2.765	30.407	1.00 37.05
ATOM	166	CA	VAL I	3 107	48.628	3.582	30.395	1.00 33.35
ATOM	167	СВ	VAL I	3 107	48.366	4.090	31.827	1.00 35.21
ATOM	168	CG1	VAL I	3 107	47.487	5.339	31.911	1.00 39.73
ATOM	169	CG2	VAL I	3 107	47.812	2.988	32.716	1.00 26.24
ATOM	170	С	VAL I	3 107	49.011	4.802	29.547	1.00 30.85
ATOM	171	0	VAL I	3 107	50.129	5.265	29.749	1.00 31.80
ATOM	172	N	VAL I	3 108	48.235	5.197	28.583	1.00 27.83
ATOM	173	CA	VAL I	3 108	48.380	6.425	27.868	1.00 27.56
ATOM	174	CB	VAL I	3 108	48.518	6.336	26.351	1.00 32.07
ATOM	175	CG1	VAL I	3 108	48.514	7.724	25.709	1.00 39.92
ATOM	176	CG2	VAL I	3 108	49.835	5.667	25.974	1.00 27.77
ATOM	177	C	VAL I	3 108	47.056	7.140	28. 231	1.00 27.42
ATOM	178	0	VAL I	3 108	46.024	6.497	28.164	1.00 27.39
ATOM	179	N	CYS I	3 109	47.137	8.378	28.669	1.00 27.32
ATOM	180	CA	CYS I	3 109	45.941	9.105	29.079	1.00 27.77
ATOM	181	C	CYS I	3 109	45.798	10.188	28.023	1.00 27.41
ATOM	182	0	CYS I	3 109	46.854	10.600	27.564	1.00 30.49
ATOM	183	CB	CYS I	3 109	46.121	9.855	30.389	1.00 24.14
ATOM	184	SG	CYS I	3 109	46.307	9.025	31.934	1.00 22.14
ATOM	185	N	SER I	3 110	44.612	10.550	27.657	1.00 27.43
ATOM	186	CA	SER I	3 110	44.377	11.670	26.753	1.00 26.47
ATOM	187	CB	SER 1	3 110	44.283	11.277	25.289	1.00 17.86
ATOM	188	0G	SER 1	3 110	43.296	10.277	25.095	1.00 30.77
ATOM	189	C	SER 1	3 110	43.064	12.270	27. 258	1.00 26.88
ATOM	190	0	SER I	3 110	42.420	11.780	28.206	1.00 30.15

ATOM	191	N	CYS B	111	42.703	13.403	26.764	1.00 26.21
ATOM	192	CA	CYS_B	111	41.618	14.281	27.063	1.00 27.79
ATOM	193	C	CYS B	111	40.792	14.668	25.832	1.00 29.41
ATOM	194	0	CYS B	111	41.280	14.718	24.697	1.00 29.51
ATOM	195	СВ	CYS B	111	42.254	15.633	27.515	1.00 18.84
ATOM	196	SG	CYS B	111	43.498	15.458	28.818	1.00 18.66
ATOM	197	N	ALA B	112	39.523	14.986	26.047	1.00 29.24
ATOM	198	CA	ALA B	112	38.610	15.443	25.000	1.00 30.18
ATOM	199	СВ	ALA B	112	37.167	15.524	25.474	1.00 22.56
ATOM	200	C	ALA B	112	39.094	16.769	24.458	1.00 31.54
ATOM	201	0	ALA B	112	40.059	17.294	24.991	1.00 33.15
ATOM	202	N	ARG B	113	38.493	17.332	23.421	1.00 33.14
ATOM	203	CA	ARG B	113	38.936	18.531	22.732	1.00 32.68
ATOM	204	СВ	ARG B	113	38.298	18.594	21.316	1.00 38.61
ATOM	211	C	ARG B	113	38.561	19.783	23.495	1.00 33.81
ATOM	212	0	ARG B	113	37.446	19.969	23.996	1.00 34.48
ATOM	213	N	GLY B	114	39.558	20.661	23.645	1.00 33.56
ATOM	214	CA	GLY B	114	39.407	21.838	24.500	1.00 31.07
ATOM	215	C	GLY B	114	40.159	21.567	25.804	1.00 31.67
ATOM	216	0	GLY B	114	40.161	22.363	26.744	1.00 32.37
ATOM	217	N	TYR B	115	40.743	20.373	25.959	1.00 30.84
ATOM	218	CA	TYR B	115	41.550	20.059	27.122	1.00 31.31
ATOM	219	CB	TYR B	115	40.954	18.957	28.006	1.00 28.57
ATOM	220	CG	TYR B	115	39.661	19.236	28.719	1.00 28.17
ATOM	221	CD1	TYR B	115	38.443	19.097	28.029	1.00 29.10
ATOM	222	CE1	TYR B	115	37.211	19.325	28.605	1.00 25.16

ATOM	223	CD2	TYR I	3 11	. 5	39.566	19.641	30.037	1.00	26.86
ATOM	224	CE2	TYR I	3 11	. 5	38.349	19.875	30.650	1.00	26.02
ATOM	225	CZ	TYR I	3 11	. 5	37.186	19.690	29.928	1.00	26.78
ATOM	226	ОН	TYR I	3 11	. 5	35.918	19.877	30.387	1.00	25.91
ATOM	227	C	TYR I	3 11	. 5	42.958	19.690	26.636	1.00	32.20
ATOM	228	0	TYR I	3 11	. 5	43.169	19.236	25.510	1.00	33.58
ATOM	229	N	THR I	3 11	. 6	43.967	20.029	27.437	1.00	32.15
ATOM	230	CA	THR I	3 11	. 6	45.334	19.653	27.115	1.00	31.77
ATOM	231	СВ	THR I	3 11	. 6	46.372	20.745	26.851	1.00	36.92
ATOM	232	0G1	THR I	3 11	. 6	46.840	21.311	28.091	1.00	45.95
ATOM	233	CG2	THR I	3 11	6	45.889	21.898	25.987	1.00	32.25
ATOM	234	C	THR I	3 11	. 6	45.833	18.831	28.314	1.00	32.27
ATOM	235	0	THR I	3 11	. 6	45.536	19.153	29.464	1.00	33.09
ATOM	236	N	LEU I	3 11	.7	46.606	17.810	28.000	1.00	31.61
ATOM	237	CA	LEU I	3 11	.7	47.194	16.989	29.040	1.00	31.36
ATOM	238	CB	LEU I	3 11	.7	47.836	15.808	28.326	1.00	32.33
ATOM	239	CG	LEU I	3 11	. 7	47.949	14.479	29.037	1.00	37.69
ATOM	240	CD1	LEU I	3 11	. 7	46.590	14.019	29.571	1.00	29.98
ATOM	241	CD2	LEU I	3 11	. 7	48.582	13.482	28.065	1.00	26.11
ATOM	242	C	LEU I	3 11	.7	48.205	17.718	29.897	1.00	31.16
ATOM	243	0	LEU I	3 11	.7	49.226	18.191	29.387	1.00	33.02
ATOM	244	N	ALA I	3 11	. 8	48.010	17.800	31.212	1.00	29.14
ATOM	245	CA	ALA I	3 11	. 8	49.006	18.412	32.080	1.00	28.53
ATOM	246	СВ	ALA I	3 11	.8	48.613	18.243	33.550	1.00	21.69
ATOM	247	C	ALA I	3 11	. 8	50.372	17.752	31.879	1.00	28.22
ATOM	248	0	ALA I	3 11	. 8	50.478	16.634	31.397	1.00	29.26

ATOM	249	N	ASP	В	119	51.418	18.222	32.532	1.00 27.7	2
ATOM	250	CA	ASP	В	119	52.793	17.761	32.503	1.00 29.3	7
ATOM	251	CB	ASP	В	119	53.757	18.796	33.116	1.00 35.5	5
ATOM	252	CG	ASP	В	119	53.412	19.072	34.586	1.00 40.0	1
ATOM	255	C	ASP	В	119	53.023	16.439	33.230	1.00 28.9	6
ATOM	256	0	ASP	В	119	53.900	15.631	32.867	1.00 28.9	2
ATOM	257	N	ASN	В	120	52.078	16.068	34.119	1.00 26.2	9
ATOM	258	CA	ASN	В	120	52.115	14.772	34.754	1.00 24.6	6
ATOM	259	CB	ASN	В	120	51.350	14.830	36.070	1.00 24.7	0
ATOM	260	CG	ASN	В	120	49.891	15.137	36.026	1.00 22.2	3
ATOM	261	0D1	ASN	В	120	49.233	15.190	34.979	1.00 34.2	6
ATOM	262	ND2	ASN	В	120	49.290	15.376	37.187	1.00 26.8	0
ATOM	263	C	ASN	В	120	51.671	13.702	33.788	1.00 24.5	9
ATOM	264	0	ASN	В	120	51.724	12.498	34.080	1.00 25.6	2
ATOM	265	N	GLY	В	121	51.033	13.953	32.635	1.00 24.7	7
ATOM	266	CA	GLY	В	121	50.594	12.978	31.674	1.00 24.7	6
ATOM	267	C	GLY	В	121	49.239	12.397	32.020	1.00 25.8	3
ATOM	268	0	GLY	В	121	48.675	11.537	31.347	1.00 29.2	2
ATOM	269	N	LYS	В	122	48.606	12.829	33.105	1.00 24.5	6
ATOM	270	CA	LYS	В	122	47.417	12.254	33.665	1.00 23.1	5
ATOM	271	CB	LYS	В	122	47.692	11.802	35.095	1.00 26.4	:5
ATOM	272	CG	LYS	В	122	48.886	10.900	35.316	1.00 30.8	8
ATOM	273	CD	LYS	В	122	48.603	9.572	36.004	1.00 28.4	8
ATOM	274	CE	LYS	В	122	49.911	9.084	36.664	1.00 34.0	4
ATOM	275	NZ	LYS	В	122	49.708	8.161	37.810	1.00 24.9	3
ATOM	276	C	LYS	В	122	46.191	13.156	33.643	1.00 22.3	8

ATOM	277	0	LYS	В	122	45.152	12.718	33.176	1.00 19.04
ATOM	278	N	ALA	В	123	46.327	14.347	34.185	1.00 23.46
ATOM	279	CA	ALA	В	123	45.227	15.290	34.369	1.00 24.90
ATOM	280	CB	ALA	В	123	45.569	16.217	35.551	1.00 22.86
ATOM	281	C	ALA	В	123	44.958	16.116	33.100	1.00 24.51
ATOM	282	0	ALA	В	123	45.791	16.194	32.205	1.00 20.00
ATOM	283	N	CYS	В	124	43.723	16.634	32.982	1.00 24.04
ATOM	284	CA	CYS	В	124	43.364	17.381	31.770	1.00 23.90
ATOM	285	C	CYS	В	124	42.982	18.795	32.101	1.00 22.18
ATOM	286	0	CYS	В	124	42.090	18.934	32.895	1.00 24.14
ATOM	287	CB	CYS	В	124	42.107	16.745	31.159	1.00 20.55
ATOM	288	SG	CYS	В	124	42.442	15.124	30.508	1.00 18.82
ATOM	289	N	ILE	В	125	43.581	19.807	31.547	1.00 25.30
ATOM	290	CA	ILE	В	125	43.385	21.207	31.937	1.00 28.39
ATOM	291	СВ	ILE	В	125	44.731	21.928	32.198	1.00 27.64
ATOM	292	CG2	ILE	В	125	44.581	23.092	33.168	1.00 37.04
ATOM	293	CG1	ILE	В	125	45.871	21.089	32.739	1.00 33.07
ATOM	294	CD1	ILE	В	125	45.687	20.346	34.047	1.00 45.74
ATOM	295	С	ILE	В	125	42.635	21.919	30.810	1.00 29.55
ATOM	296	0	ILE	В	125	42.853	21.696	29.614	1.00 31.64
ATOM	297	N	PRO	В	126	41.664	22.756	31.174	1.00 30.28
ATOM	298	CD	PRO	В	126	41.086	22.909	32.535	1.00 29.56
ATOM	299	CA	PRO	В	126	40.850	23.441	30.185	1.00 31.40
ATOM	300	CB	PRO	В	126	39.685	24.004	30.966	1.00 30.64
ATOM	301	CG	PRO	В	126	39.620	23.258	32.256	1.00 30.95
ATOM	302	C	PRO	В	126	41.619	24.499	29.411	1.00 34.44

ATOM	303	0	PR0	В	126	42.408	25.263	29.957	1.00 36.86
ATOM	304	N	THR	В	127	41.389	24.592	28.103	1.00 34.49
ATOM	305	CA	THR	В	127	42.049	25.554	27.242	1.00 35.21
ATOM	306	СВ	THR	В	127	42.291	24.795	25.925	1.00 40.29
ATOM	307	0G1	THR	В	127	43.613	25.052	25.439	1.00 46.75
ATOM	308	CG2	THR	В	127	41.285	25.074	24.814	1.00 44.10
ATOM	309	C	THR	В	127	41.298	26.882	27.133	1.00 35.80
ATOM	310	0	THR	В	127	41.873	27.834	26.607	1.00 37.82
ATOM	311	N	GLY	В	128	40.039	27.029	27.491	1.00 34.38
ATOM	312	CA	GLY	В	128	39.223	28.213	27.481	1.00 33.62
ATOM	313	C	GLY	В	128	38.259	28.199	28.665	1.00 34.08
ATOM	314	0	GLY	В	128	38.275	27.267	29.479	1.00 34.95
ATOM	315	N	PRO	В	129	37.324	29.161	28.767	1.00 32.81
ATOM	316	CD	PRO	В	129	37.175	30.252	27.764	1.00 32.03
ATOM	317	CA	PRO	В	129	36.452	29.334	29.919	1.00 32.19
ATOM	318	СВ	PRO	В	129	36.028	30.806	29.768	1.00 32.01
ATOM	319	CG	PRO	В	129	35.972	31.013	28.283	1.00 32.32
ATOM	320	C	PRO	В	129	35.143	28.580	30.087	1.00 33.57
ATOM	321	0	PR0	В	129	34.407	28.531	31.131	1.00 30.93
ATOM	322	N	TYR	В	130	34.708	27.933	28.983	1.00 31.48
ATOM	323	CA	TYR	В	130	33.526	27.100	28.853	1.00 30.08
ATOM	324	СВ	TYR	В	130	32.335	27.790	28.115	1.00 29.01
ATOM	325	CG	TYR	В	130	31.766	28.927	28.946	1.00 29.88
ATOM	326	CD1	TYR	В	130	31.053	28.672	30.110	1.00 32.60
ATOM	327	CE1	TYR	В	130	30.591	29.716	30.896	1.00 35.13
ATOM	328	CD2	TYR	В	130	32.016	30. 243	28.606	1.00 31.44

ATOM	329	CE 2	TYR	В	130	31.562	31.299	29.376	1.00 32.08
ATOM	330	CZ	TYR	В	130	30.858	31.025	30.514	1.00 34.82
ATOM	331	ОН	TYR	В	130	30.408	32.057	31.307	1.00 36.17
ATOM	332	C	TYR	В	130	33.901	25.849	28.069	1.00 28.85
ATOM	333	0	TYR	В	130	33.641	25.696	26.861	1.00 31.37
ATOM	334	N	PRO	В	131	34.733	25.007	28.680	1.00 24.99
ATOM	335	CD	PRO	В	131	35.167	24.984	30.099	1.00 25.15
ATOM	336	CA	PRO	В	131	35.106	23.762	28.040	1.00 23.17
ATOM	337	CB	PRO	В	131	36.258	23.255	28.920	1.00 21.82
ATOM	338	CG	PRO	В	131	35.804	23.634	30.280	1.00 23.50
ATOM	339	C	PRO	В	131	33.898	22.831	28.019	1.00 22.87
ATOM	340	0	PRO	В	131	32.932	22.977	28.787	1.00 21.43
ATOM	341	N	CYS	В	132	34.058	21.750	27. 252	1.00 22.84
ATOM	342	CA	CYS	В	132	32.925	20.846	27.102	1.00 21.04
ATOM	343	C	CYS	В	132	32.755	20.214	28.472	1.00 20.43
ATOM	344	0	CYS	В	132	33.783	19.906	29.096	1.00 19.72
ATOM	345	CB	CYS	В	132	33.208	19.796	26.023	1.00 22.06
ATOM	346	SG	CYS	В	132	34.458	18.563	26.341	1.00 19.32
ATOM	347	N	GLY	В	133	31.544	19.794	28.824	1.00 17.96
ATOM	348	CA	GLY	В	133	31.372	18.875	29.939	1.00 16.01
ATOM	349	C	GLY	В	133	31.256	19.370	31.339	1.00 17.73
ATOM	350	0	GLY	В	133	31.084	18.552	32.227	1.00 18.33
ATOM	351	N	LYS	В	134	31.422	20.666	31.565	1.00 19.58
ATOM	352	CA	LYS	В	134	31.385	21.250	32.877	1.00 20.47
ATOM	353	CB	LYS	В	134	32.519	22.261	33.066	1.00 23.06
ATOM	354	CG	LYS	В	134	33.874	21.930	32.500	1.00 27.06

ATOM	355	CD	LYS	В	134	34.328	20.718	33.063	1.00	32.85
ATOM	356	CE	LYS	В	134	35.495	19.781	32.993	1.00	33.39
ATOM	357	NZ	LYS	В	134	35.092	18.590	33.843	1.00	42.88
ATOM	358	C	LYS	В	134	30.149	22.093	33.094	1.00	21.09
ATOM	359	0	LYS	В	134	29.773	22.878	32.246	1.00	22.01
ATOM	360	N	GLN	В	135	29.525	21.892	34.229	1.00	23.17
ATOM	361	CA	GLN	В	135	28.464	22.799	34.655	1.00	25.79
ATOM	362	СВ	GLN	В	135	28.018	22.303	36.029	1.00	17.47
ATOM	363	CG	GLN	В	135	27.541	20.876	35.950	1.00	17.48
ATOM	364	CD	GLN	В	135	26.806	20.382	37.158	1.00	26.55
ATOM	365	0E1	GLN	В	135	25.925	19.511	37.086	1.00	32.38
ATOM	366	NE 2	GLN	В	135	27.159	20.941	38.311	1.00	41.04
ATOM	367	C	GLN	В	135	29.051	24. 204	34.707	1.00	27.41
ATOM	368	0	GLN	В	135	30.240	24. 331	35.034	1.00	27.85
ATOM	369	N	THR	В	136	28. 289	25. 246	34.430	1.00	30.36
ATOM	370	CA	THR	В	136	28.760	26.628	34.453	1.00	32.45
ATOM	371	СВ	THR	В	136	28.079	27.482	33.355	1.00	24.62
ATOM	372	0G1	THR	В	136	26.676	27.584	33.588	1.00	24.04
ATOM	373	CG2	THR	В	136	28.276	26.882	31.964	1.00	24.80
ATOM	374	C	THR	В	136	28.581	27.319	35.793	1.00	36.48
ATOM	375	0	THR	В	136	27.486	27.417	36.350	1.00	38.91
ATOM	376	N	LEU	В	137	29.663	27.916	36.308	1.00	39.32
ATOM	377	CA	LEU	В	137	29.606	28.546	37.632	1.00	41.16
ATOM	378	CB	LEU	В	137	30.761	28.279	38.534	1.00	47.00
ATOM	379	CG	LEU	В	137	31.905	27. 317	38.683	1.00	49.44
ATOM	380	CD1	LEU	В	137	31.766	25.980	37.987	1.00	41.49

ATOM	381	CD2	LEU	В	137	33.219	27.985	38. 256	1.00 45.45
ATOM	382	C	LEU	В	137	29.354	30.054	37.437	1.00 42.53
ATOM	383	0	LEU	В	137	28.850	30.676	38.374	1.00 41.78
ATOM	384	N	GLU	В	138	29.713	30.639	36.295	1.00 43.44
ATOM	385	CA	GLU	В	138	29.334	32.031	36.029	1.00 44.73
ATOM	386	СВ	GLU	В	138	30.252	33.088	36.665	1.00 48.92
ATOM	391	C	GLU	В	138	29.216	32.297	34.529	1.00 46.18
ATOM	392	0	GLU	В	138	29.002	33.491	34.129	1.00 46.33
ATOM	393	OT	GLU	В	138	29.329	31.315	33.732	1.00 46.87
ATOM	1	CAL	WAT	D	261	13.196	31.760	29.875	1.00 67.43
ATOM	1862	CAL	WAT	D	999	9.329	1.566	33.718	1.00 67.13
ATOM	2	OW	WAT	D	300	10.616	17.801	31.523	1.00 36.96
ATOM	3	OW	WAT	D	301	19.000	19.867	40.739	1.00 29.68
ATOM	4	OW	WAT	D	302	21.239	24.614	32.934	1.00 26.08
ATOM	5	OW	WAT	D	303	19.492	31.278	30.852	1.00 42.33
ATOM	6	OW	WAT	D	304	7.241	25.012	24.594	1.00 40.96
ATOM	7	OW	WAT	D	305	2.614	25.806	19.851	1.00 59.45
ATOM	8	OW	WAT	D	306	-0.928	31.248	22.721	1.00 55.30
ATOM	9	OW	WAT	D	307	9.283	22.718	38.529	1.00 46.50
ATOM	10	OW	WAT	D	308	14.077	26.727	37.252	1.00 41.96
ATOM	11	OW	WAT	D	309	15.108	24.123	35.592	1.00 22.14
ATOM	12	OW	WAT	D	310	20.760	25.033	29.627	1.00 25.01
ATOM	13	OW	WAT	D	311	21.204	15.242	29.873	1.00 45.78
ATOM	14	OW	WAT	D	312	15.441	16.957	26.183	1.00 24.12
ATOM	15	OM	WAT	D	313	13.261	18.598	25.861	1.00 18.55
ATOM	16	OW	WAT	D	314	14.572	6.302	30.480	1.00 24.57

ATOM	17	OW	WAT D	315	20.991	14.644	21.834	1.00 20.77
ATOM	18	OW	WAT D	316	12.309	4.759	33.490	1.00 50.75
ATOM	19	OW	WAT D	317	3.828	10.925	38.342	1.00 52.05
ATOM	20	OW	WAT D	318	13.025	19.761	41.837	1.00 40.36
ATOM	21	OW	WAT D	319	8.223	21.470	36.235	1.00 38.60
ATOM	22	OW	WAT D	320	17.939	33.531	41.004	1.00 42.86
ATOM	23	OW	WAT D	321	18.501	30.601	34.292	1.00 51.36
ATOM	24	OW	WAT D	322	22.385	18.104	43.728	1.00 42.81
ATOM	25	OW	WAT D	323	23.029	25.966	40.619	1.00 34.71
ATOM	26	OW	WAT D	324	16.054	27.034	11.345	1.00 49.87
ATOM	27	OW	WAT D	325	1.761	20.255	10.113	1.00 34.99
ATOM	28	OW	WAT D	326	5.823	31.828	23.218	1.00 44.19
ATOM	29	OW	WAT D	327	6.627	16.209	19.519	1.00 35.46
ATOM	30	OW	WAT D	328	15.023	29.852	34.766	1.00 46.67
ATOM	31	OW	WAT D	329	24.618	16.776	37.846	1.00 57.98
ATOM	32	OW	WAT D	330	17.270	25.831	26.084	1.00 55.83
ATOM	33	OW	WAT D	331	21.577	25.417	27.170	1.00 24.29
ATOM	34	OW	WAT D	332	7.044	19.049	37.067	1.00 40.95
ATOM	35	OW	WAT D	333	3.600	8.959	32.741	1.00 52.43
ATOM	36	OW	WAT D	334	17.002	12.509	39.856	1.00 37.40
ATOM	37	OW	WAT D	335	5.887	21.111	15.212	1.00 38.51
ATOM	38	OW	WAT D	336	3.372	24.904	23.991	1.00 54.81
ATOM	39	OW	WAT D	337	11.811	31.252	26.604	1.00 37.92
ATOM	40	OW	WAT D	338	10.709	29. 391	15.954	1.00 44.52
ATOM	41	OW	WAT D	339	6.183	19.392	39.948	1.00 55.98
ATOM	42	OW	WAT D	340	16.266	30.041	38.983	1.00 42.49

ATOM	43	OW	WAT D	341	21.860	31.059	40.868	1.00 43.44
ATOM	44	OW	WAT D	342	5.084	34.738	23.539	1.00 46.45
ATOM	45	OW	WAT D	343	10.167	-0.895	24.971	1.00 24.98
ATOM	46	OW	WAT D	344	9.997	1.280	26.443	1.00 25.45
ATOM	47	OW	WAT D	345	15.781	30.743	32.395	1.00 48.51
ATOM	48	OW	WAT D	346	12.315	-1.025	17.168	1.00 36.68
ATOM	49	OW	WAT D	347	7.722	9.060	18.526	1.00 49.37
ATOM	50	OW	WAT D	348	9.875	9.432	20.478	1.00 44.19
ATOM	51	OW	WAT D	349	4.077	15.357	18.277	1.00 50.28
ATOM	52	OW	WAT D	350	0.446	13.948	20.926	1.00 76.28
ATOM	53	OW	WAT D	351	9.583	4.329	28.510	1.00 47.55
ATOM	1847	OW	WAT D	420	3.785	19.435	36.290	1.00 37.00
ATOM	1848	OW	WAT D	421	2.525	16.751	43.749	1.00 47.99
ATOM	1849	OW	WAT D	422	16.467	5.419	43.375	1.00 59.42
ATOM	1850	OW	WAT D	423	10.924	16.672	42.485	1.00 54.80
ATOM	1851	OW	WAT D	424	6.852	25.579	38.388	1.00 48.50
ATOM	1852	OW	WAT D	425	6.805	16.131	44.457	1.00 62.08
ATOM	1853	OW	WAT D	426	22.021	17.043	31.525	1.00 67.22
ATOM	1854	OW	WAT D	427	24.938	18.692	40.819	1.00 57.68
ATOM	1855	OW	WAT D	428	23.286	33.822	36.415	1.00 63.24
ATOM	1856	OW	WAT D	429	25.598	12.475	38.567	1.00 52.08
ATOM	1857	OW	WAT D	430	22.253	18.448	40.366	1.00 63.37
ATOM	1858	OW	WAT D	431	31.199	28.618	34.076	1.00 42.29
ATOM	1859	OW	WAT D	432	15.462	24.378	9.192	1.00 65.34
ATOM	1860	OW	WAT D	433	-0.012	27.837	13.021	1.00 59.02
ATOM	1861	OW	WAT D	434	4.610	5.657	17.412	1.00 59.36

ATOM	54	S1	D91	D	700	6.724	9.614	23.992	1.00 28.71
ATOM	55	01	D91	D	700	5.851	9.678	25.111	1.00 31.43
ATOM	56	02	D91	D	700	6.873	10.637	23.023	1.00 38.56
ATOM	57	NP1	D91	D	700	6.134	8.322	23.006	1.00 41.90
ATOM	58	CP1	D91	D	700	7.115	7.752	22.060	1.00 35.74
ATOM	59	CP2	D91	D	700	6.346	7.072	20.906	1.00 41.32
ATOM	60	NP 2	D91	D	700	5.470	6.110	21.623	1.00 37.40
ATOM	61	CP3	D91	D	700	4.480	6.683	22.536	1.00 44.86
ATOM	62	CP4	D91	D	700	5.251	7.364	23.678	1.00 35.74
ATOM	63	CC1	D91	D	700	5.559	4.784	21.485	1.00 35.37
ATOM	64	0C1	D91	D	700	4.973	4.029	22.251	1.00 37.41
ATOM	65	CZ2	D91	D	700	7.826	2.549	19.134	1.00 34.11
ATOM	66	CZ1	D91	D	700	6.498	4.198	20.444	1.00 32.80
ATOM	67	CZ6	D91	D	700	8.105	3.807	18.784	1.00 33.04
ATOM	68	CZ5	D91	D	700	9.069	4.185	17.682	1.00 42.25
ATOM	69	CZ4	D91	D	700	9.251	2.956	16.781	1.00 41.78
ATOM	70	SZ1	D91	D	700	6.634	2.437	20.422	1.00 40.35
ATOM	71	NZ1	D91	D	700	7.332	4.767	19.551	1.00 24.52
ATOM	72	NZ2	D91	D	700	9.516	1.746	17.548	1.00 35.92
ATOM	73	CZ7	D91	D	700	9.739	0.610	16.634	1.00 30.85
ATOM	74	CZ3	D91	D	700	8.453	1.342	18.487	1.00 35.25
ATOM	75	C1	D91	D	700	8.187	9.153	24.713	1.00 32.00
ATOM	76	N1	D91	D	700	8.036	8.526	25.907	1.00 29.96
ATOM	77	C3	D91	D	700	9.472	9.316	24.210	1.00 23.54
ATOM	78	C4	D91	D	700	10.197	8.658	25.220	1.00 25.30
ATOM	79	C5	D91	D	700	9.341	8.175	26.265	1.00 20.37

ATOM	80	C6	D91	D 700	11.580	8.498	25.285	1.00 17.97
ATOM	81	C7	D91	D 700	9.868	7.470	27.358	1.00 14.18
ATOM	82	C8	D91	D 700	11.277	7. 293	27.394	1.00 23.50
ATOM	83	C9	D91	D 700	12.087	7.782	26.356	1.00 19.79
ATOM	84	CL1	D91	D 700	13.809	7.584	26.298	1.00 32.05
ATOM	85	C11	D91	D 700	5.346	8.026	20.192	1.00 40.56
ATOM	86	C2	D91	D 700	4.299	6.639	19.667	0.00 0.00
ATOM	87	N2	D91	D 700	4.601	6.324	18.383	0.00 0.00
ATOM	88	03	D91	D 700	3.371	6.136	20.289	0.00 0.00
ATOM	89	C12	D91	D 700	3.840	5.292	17.679	0.00 0.00
ATOM	90	C13	D91	D 700	5.682	6.931	17.607	0.00 0.00
ATOM	91	C14	D91	D 700	3.444	5.767	16.275	0.00 0.00
ATOM	92	C15	D91	D 700	5.197	7.325	16.205	0.00 0.00
ATOM	93	04	D91	D 700	4.605	6.197	15.577	0.00 0.00
		-						
【表4】								
ATOM	1	CB	ILE	16	-8.111	7. 218	19.664	1.00 18.87
ATOM	2	CG2	ILE	16	-8.170	6.279	18.455	1.00 18.23
ATOM	3	CG1	ILE	16	-6.923	6.856	20.552	1.00 18.51
ATOM	4	CD1	ILE	16	-5.529	6.936	19.993	1.00 18.53
ATOM	5	C	ILE	16	-9.309	9.040	18.411	1.00 19.33
ATOM	6	0	ILE	16	-10.419	9.007	18.943	1.00 19.37
1 mon								
ATOM	9	N	ILE	16	-8.004	9.626	20.425	1.00 18.71
ATOM	9 11	N CA	ILE ILE	16 16	-8.004 -8.082	9. 6268. 705	20. 42519. 254	1.00 18.71 1.00 19.07

ATOM	15	CB	VAL	17	-9.992	10.874	15.339	1.00 18.08
ATOM	16	CG1	VAL	17	-11.165	11.129	14.395	1.00 17.77
ATOM	17	CG2	VAL	17	-9.764	12.138	16.167	1.00 16.75
ATOM	18	C	VAL	17	-10.409	8.398	15.344	1.00 19.80
ATOM	19	0	VAL	17	-9.433	7.881	14.806	1.00 19.89
ATOM	20	N	GLY	18	-11.636	7.907	15.224	1.00 20.67
ATOM	22	CA	GLY	18	-11.939	6.743	14.406	1.00 20.97
ATOM	23	C	GLY	18	-11.448	5.422	14.975	1.00 21.61
ATOM	24	0	GLY	18	-11.254	4.457	14.222	1.00 22.06
ATOM	25	N	GLY	19	-11.261	5.339	16.291	1.00 21.55
ATOM	27	CA	GLY	19	-10.788	4.113	16.913	1.00 21.80
ATOM	28	C	GLY	19	-11.913	3.317	17.555	1.00 22.51
ATOM	29	0	GLY	19	-13.092	3.515	17. 243	1.00 23.29
ATOM	30	N	TYR	20	-11.574	2.408	18.465	1.00 22.41
ATOM	32	CA	TYR	20	-12.564	1.574	19.140	1.00 21.82
ATOM	33	CB	TYR	20	-12.607	0.179	18.503	1.00 20.97
ATOM	34	CG	TYR	20	-11.309	-0.603	18.543	1.00 20.48
ATOM	35	CD1	TYR	20	-11.045	-1.524	19.550	1.00 20.43
ATOM	36	CE1	TYR	20	-9.858	-2.226	19.600	1.00 20.57
ATOM	37	CD2	TYR	20	-10.330	-0.412	17.576	1.00 20.45
ATOM	38	CE2	TYR	20	-9.138	-1.109	17.615	1.00 20.66
ATOM	39	CZ	TYR	20	-8.911	-2.027	18.616	1.00 20.76
ATOM	40	ОН	TYR	20	-7.715	-2.715	18.650	1.00 20.72
ATOM	42	C	TYR	20	-12.261	1.460	20.633	1.00 21.79
ATOM	43	0	TYR	20	-11.133	1.730	21.057	1.00 21.93
ATOM	44	N	THR	21	-13.252	1.072	21.430	1.00 21.17

ATOM	46	CA	THR	21	-13.022	0.866	22.862	1.00 21.04
ATOM	47	СВ	THR	21	-14.337	0.689	23.630	1.00 20.83
ATOM	48	0G1	THR	21	-15.124	1.885	23.485	1.00 21.93
ATOM	50	CG2	THR	21	-14.117	0.456	25.119	1.00 21.84
ATOM	51	C	THR	21	-12.112	-0.348	23.030	1.00 20.88
ATOM	52	0	THR	21	-12.476	-1.456	22.635	1.00 21.07
ATOM	53	N	CYS	22	-10.943	-0.164	23.631	1.00 20.67
ATOM	55	CA	CYS	22	-9.999	-1.254	23.794	1.00 20.36
ATOM	56	C	CYS	22	-10.559	-2.451	24.551	1.00 21.06
ATOM	57	0	CYS	22	-10.419	-3.604	24.156	1.00 21.36
ATOM	58	CB	CYS	22	-8.770	-0.767	24.582	1.00 18.82
ATOM	59	SG	CYS	22	-7.889	0.596	23.813	1.00 18.07
ATOM	60	N	GLY	23	-11.196	-2.144	25.673	1.00 21.71
ATOM	62	CA	GLY	23	-11.678	-3.163	26.611	1.00 21.82
ATOM	63	C	GLY	23	-10.805	-2.964	27.865	1.00 22.05
ATOM	64	0	GLY	23	-9.596	-2.742	27.729	1.00 22.29
ATOM	65	N	ALA	24	-11.406	-3.024	29.043	1.00 22.00
ATOM	67	CA	ALA	24	-10.685	-2.794	30. 283	1.00 21.96
ATOM	68	СВ	ALA	24	-11.624	-3.016	31.470	1.00 22.09
ATOM	69	C	ALA	24	9.445	-3.655	30.461	1.00 22.19
ATOM	70	0	ALA	24	-9.483	-4.881	30.390	1.00 22.25
ATOM	71	N	ASN	25	-8.318	-2.996	30.700	1.00 22.58
ATOM	73	CA	ASN	25	-7.030	-3.611	30.976	1.00 22.89
ATOM	74	СВ	ASN	25	-7.117	-4.393	32.308	1.00 25.52
ATOM	75	CG	ASN	25	-7.505	-3.459	33.446	1.00 27.41
ATOM	76	0D1	ASN	25	-6.731	-2.557	33. 791	1.00 30.00

ATOM	77	ND2	ASN	25	-8.709	-3.638	33.972	1.00 26.56
ATOM	80	C	ASN	25	-6.461	-4.488	29.874	1.00 22.90
ATOM	81	0	ASN	25	-5.609	-5.357	30.117	1.00 23.54
ATOM	82	N	THR	26	-6.882	-4.255	28.631	1.00 22.21
ATOM	84	CA	THR	26	-6.371	-5.006	27.487	1.00 20.94
ATOM	85	CB	THR	26	-7.372	-5.036	26.320	1.00 20.97
ATOM	86	0G1	THR	26	-7.788	-3.699	26.004	1.00 21.71
ATOM	88	CG2	THR	26	-8.597	-5.859	26.695	1.00 21.16
ATOM	89	C	THR	26	-5.052	-4.414	27.001	1.00 20.04
ATOM	90	0	THR	26	-4.362	-4.988	26.165	1.00 20.05
ATOM	91	N	VAL	27	-4.717	-3.238	27.519	1.00 19.15
ATOM	93	CA	VAL	27	-3.489	-2.518	27.178	1.00 17.77
ATOM	94	СВ	VAL	27	-3.774	-1.246	26.366	1.00 16.21
ATOM	95	CG1	VAL	27	-2.496	-0.675	25.767	1.00 14.67
ATOM	96	CG2	VAL	27	-4.786	-1.457	25.245	1.00 14.72
ATOM	97	C	VAL	27	-2.798	-2.196	28.507	1.00 17.28
ATOM	98	0	VAL	27	-2.740	-1.055	28.961	1.00 17.40
ATOM	99	N	PRO	28	-2.285	-3.239	29.160	1.00 16.95
ATOM	100	CD	PRO	28	-2.029	-4.564	28.522	1.00 16.54
ATOM	101	CA	PRO	28	-1.694	-3.150	30.480	1.00 16.26
ATOM	102	СВ	PRO	28	-1.316	-4.598	30.817	1.00 16.35
ATOM	103	CG	PRO	28	-1.151	-5.278	29.508	1.00 16.25
ATOM	104	C	PR0	28	-0.505	-2.231	30.667	1.00 16.03
ATOM	105	0	PRO	28	-0.210	-1.862	31.816	1.00 15.99
ATOM	106	N	TYR	29	0.196	-1.865	29.603	1.00 15.57
ATOM	108	CA	TYR	29	1.355	-0.979	29.682	1.00 15.47

ATOM	109	СВ	TYR	29	2.411	-1.325	28.614	1.00 15.08
ATOM	110	CG	TYR	29	1.803	-1.470	27. 230	1.00 14.48
ATOM	111	CD1	TYR	29	1.616	-0.363	26.415	1.00 14.42
ATOM	112	CE1	TYR	29	1.002	-0.481	25.184	1.00 14.89
ATOM	113	CD2	TYR	29	1.377	-2.710	26.773	1.00 14.44
ATOM	114	CE 2	TYR	29	0.764	-2.840	25.541	1.00 14.96
ATOM	115	CZ	TYR	29	0.598	-1.728	24.745	1.00 14.94
ATOM	116	ОН	TYR	29	-0.020	-1.836	23.520	1.00 15.36
ATOM	118	С	TYR	29	0.978	0.490	29.541	1.00 15.47
ATOM	119	0	TYR	29	1.853	1.351	29.685	1.00 16.33
ATOM	120	N	GLN	30	-0.278	0.786	29.230	1.00 15.28
ATOM	122	CA	GLN	30	-0.721	2.167	29.053	1.00 14.75
ATOM	123	СВ	GLN	30	-2.070	2.162	28.329	1.00 14.48
ATOM	124	CG	GLN	30	-2.808	3.476	28.193	1.00 13.59
ATOM	125	CD	GLN	30	-2.283	4.389	27.107	1.00 15.20
ATOM	126	0E1	GLN	30	-1.942	5.556	27.350	1.00 16.74
ATOM	127	NE 2	GLN	30	-2.255	3.873	25.884	1.00 12.57
ATOM	130	C	GLN	30	-0.820	2.914	30.378	1.00 15.42
ATOM	131	0	GLN	30	-1.374	2.378	31.351	1.00 15.69
ATOM	132	N	VAL	31	-0.266	4.136	30.433	1.00 14.66
ATOM	134	CA	VAL	31	-0.405	4.943	31.642	1.00 14.71
ATOM	135	СВ	VAL	31	0.859	5.216	32.479	1.00 15.14
ATOM	136	CG1	VAL	31	1.665	3.929	32.694	1.00 17.07
ATOM	137	CG2	VAL	31	1.806	6.275	31.935	1.00 15.07
ATOM	138	C	VAL	31	-1.087	6.273	31.269	1.00 14.18
ATOM	139	0	VAL	31	-1.114	6.721	30.127	1.00 13.36

ATOM	140	N	SER	32	-1.673	6.871	32.298	1.00 14.29
ATOM	142	CA	SER	32	-2.299	8.178	32.218	1.00 13.94
ATOM	143	СВ	SER	32	-3.730	8.185	32.745	1.00 12.79
ATOM	144	0G	SER	32	-4.265	9.503	32.802	1.00 15.08
ATOM	146	C	SER	32	-1.450	9.139	33.062	1.00 14.04
ATOM	147	0	SER	32	-1.170	8.812	34.218	1.00 13.71
ATOM	148	N	LEU	33	-0.981	10.229	32.459	1.00 14.05
ATOM	150	CA	LEU	33	-0.241	11.223	33.245	1.00 14.38
ATOM	151	CB	LEU	33	0.891	11.861	32.467	1.00 14.08
ATOM	152	CG	LEU	33	1.968	10.955	31.864	1.00 14.31
ATOM	153	CD1	LEU	33	3.072	11.807	31.242	1.00 13.62
ATOM	154	CD2	LEU	33	2.583	9.997	32.872	1.00 14.52
ATOM	155	C	LEU	33	-1.290	12.219	33.744	1.00 14.43
ATOM	156	0	LEU	33	-2.033	12.785	32.947	1.00 14.36
ATOM	157	N	ASN	34	-1.355	12.368	35.062	1.00 14.58
ATOM	159	CA	ASN	34	-2.389	13.191	35.677	1.00 14.92
ATOM	160	СВ	ASN	34	-3.248	12.209	36.495	1.00 14.80
ATOM	161	CG	ASN	34	-4.470	12.849	37.109	1.00 16.23
ATOM	162	0D1	ASN	34	-4.336	13.530	38.133	1.00 17.14
ATOM	163	ND2	ASN	34	-5.638	12.660	36.511	1.00 16.93
ATOM	166	C	ASN	34	-1.885	14.314	36.563	1.00 15.19
ATOM	167	0	ASN	34	-1.011	14.127	37.402	1.00 15.54
ATOM	168	N	SER	37	-2.490	15.486	36.423	1.00 16.31
ATOM	170	CA	SER	37	-2.195	16.666	37.231	1.00 17.88
ATOM	171	СВ	SER	37	-1.276	17.630	36.472	1.00 19.13
ATOM	172	0G	SER	37	-1.948	18.194	35.348	1.00 20.99

ATOM	174	C	SER	37	-3.502	17.348	37.643	1.00	18.54
ATOM	175	0	SER	37	-3.675	18.570	37.598	1.00	19.36
ATOM	176	N	GLY	38	-4.479	16.544	38.064	1.00	18.35
ATOM	178	CA	GLY	38	-5.815	17.011	38.436	1.00	18.04
ATOM	179	C	GLY	38	-6.795	16.762	37. 289	1.00	18.03
ATOM	180	0	GLY	38	-7.984	17.070	37.311	1.00	18.60
ATOM	181	N	TYR	39	-6.278	16.157	36.230	1.00	17.69
ATOM	183	CA	TYR	39	-6.961	15.815	35.000	1.00	17.31
ATOM	184	СВ	TYR	39	-7.487	17.051	34. 264	1.00	18.39
ATOM	185	CG	TYR	39	-6.384	18.033	33.907	1.00	19.84
ATOM	186	CD1	TYR	39	-5.913	18.959	34.825	1.00	20.67
ATOM	187	CE1	TYR	39	-4.866	19.812	34.523	1.00	21.09
ATOM	188	CD2	TYR	39	-5.789	18.000	32.651	1.00	20.35
ATOM	189	CE 2	TYR	39	-4.745	18.846	32.334	1.00	20.83
ATOM	190	CZ	TYR	39	-4.302	19.752	33.268	1.00	21.66
ATOM	191	ОН	TYR	39	-3.279	20.608	32.931	1.00	23.45
ATOM	193	C.	TYR	39	-5.951	15.050	34.137	1.00	17.15
ATOM	194	0	TYR	39	-4.740	15.162	34. 378	1.00	16.58
ATOM	195	N	HIS	40	-6.432	14.311	33.151	1.00	16.36
ATOM	197	CA	HIS	40	-5.532	13.584	32.254	1.00	16.00
ATOM	198	СВ	HIS	40	-6.295	12.443	31.578	1.00	14.41
ATOM	199	CG	HIS	40	-5.610	11.828	30.394	1.00	13.32
ATOM	200	CD2	HIS	40	-5.668	12.159	29.080	1.00	12.66
ATOM	201	ND1	HIS	40	-4.698	10.804	30.507	1.00	12.46
ATOM	203	CE1	HIS	40	-4.237	10.513	29.301	1.00	12.64
ATOM	204	NE 2	HIS	40	-4.791	11.331	28.424	1.00	13.29

ATOM	206	C	HIS	40	-4.945	14.572	31.249	1.00 15.89
ATOM	207	0	HIS	40	-5.721	15.304	30.625	1.00 16.28
ATOM	208	N	PHE	41	-3.630	14.559	31.038	1.00 15.61
ATOM	210	CA	PHE	41	-3.039	15.486	30.064	1.00 15.59
ATOM	211	CB	PHE	41	-2.245	16.585	30.763	1.00 12.99
ATOM	212	CG	PHE	41	-1.019	16.183	31.519	1.00 12.95
ATOM	213	CD1	PHE	41	0.214	16.139	30.884	1.00 12.56
ATOM	214	CD2	PHE	41	-1.078	15.893	32.871	1.00 12.08
ATOM	215	CE 1	PHE	41	1.351	15.766	31.574	1.00 12.44
ATOM	216	CE 2	PHE	41	0.057	15.547	33.575	1.00 12.65
ATOM	217	CZ	PHE	41	1.273	15.472	32.921	1.00 13.68
ATOM	218	C	PHE	41	-2.191	14.765	29.015	1.00 15.77
ATOM	219	0	PHE	41	-2.021	15.277	27.903	1.00 16.07
ATOM	220	N	CYS	42	-1.667	13.584	29.332	1.00 14.93
ATOM	222	CA	CYS	42	-0.837	12.846	28.392	1.00 14.67
ATOM	223	C	CYS	42	-0.832	11.353	28.701	1.00 14.46
ATOM	224	0	CYS	42	-1.151	10.939	29.819	1.00 14.65
ATOM	225	CB	CYS	42	0.603	13.380	28.438	1.00 14.62
ATOM	226	SG	CYS	42	0.994	14.774	27.339	1.00 14.37
ATOM	227	N	GLY	43	-0.471	10.549	27.704	1.00 13.90
ATOM	229	CA	GLY	43	-0.346	9.106	27.898	1.00 12.82
ATOM	230	C	GLY	43	1.130	8.776	28.139	1.00 12.69
ATOM	231	0	GLY	43	1.994	9.659	28.148	1.00 12.29
ATOM	232	N	GLY	44	1.416	7.496	28.336	1.00 12.22
ATOM	234	CA	GLY	44	2.784	7.038	28.562	1.00 12.84
ATOM	235	C	GLY	44	2.802	5.505	28.521	1.00 13.15

ATOM	236	0	GLY	44	1.743	4.877	28.423	1.00 12.81
ATOM	237	N	SER	45	3.997	4.929	28.579	1.00 13.38
ATOM	239	CA	SER	45	4.169	3.491	28.547	1.00 14.07
ATOM	240	СВ	SER	45	4.861	3.026	27. 256	1.00 14.99
ATOM	241	0G	SER	45	4.086	3.379	26.131	1.00 18.67
ATOM	243	C	SER	45	5.043	2.984	29.689	1.00 14.47
ATOM	244	0	SER	45	6.134	3.508	29.901	1.00 14.92
ATOM	245	N	LEU	46	4.580	1.938	30.366	1.00 14.79
ATOM	247	CA	LEU .	46	5.352	1.354	31.458	1.00 15.31
ATOM	248	CB	LEU	46	4.420	0.572	32.389	1.00 14.25
ATOM	249	CG	LEU	46	5.040	0.078	33.696	1.00 14.76
ATOM	250	CD1	LEU	46	5.332	1.247	34.627	1.00 16.20
ATOM	251	CD2	LEU	46	4.115	-0.919	34. 377	1.00 15.95
ATOM	252	C	LEU	46	6.428	0.462	30.857	1.00 15.70
ATOM	253	0	LEU	46	6.076	-0.479	30.136	1.00 16.27
ATOM	254	N	ILE	47	7.706	0.741	31.089	1.00 16.40
ATOM	256	CA	ILE	47	8.734	-0.114	30.481	1.00 17.26
ATOM	257	CB	ILE	47	9.785	0.664	29.678	1.00 17.32
ATOM	258	CG2	ILE	47	9.115	1.277	28.447	1.00 16.71
ATOM	259	CG1	ILE	47	10.494	1.725	30.518	1.00 17.48
ATOM	260	CD1	ILE	47	11.756	2.271	29.877	1.00 19.14
ATOM	261	C	ILE	47	9.368	-1.021	31.525	1.00 18.39
ATOM	262	0	ILE	47	10.084	-1.955	31.157	1.00 19.08
ATOM	263	N	ASN	48	9.158	-0.750	32.802	1,00 18.93
ATOM	265	CA	ASN	48	9. 606	-1.636	33.878	1.00 19.96
ATOM	266	CB	ASN	48	11.091	-1.694	34.107	1.00 22.53

ATOM	267	CG	ASN	48	11.881	-0.494	34.526	1.00 24.03
ATOM	268	0D1	ASN	48	12.997	-0.316	34.008	1.00 26.97
ATOM	269	ND2	ASN	48	11.409	0.317	35.458	1.00 22.22
ATOM	272	C	ASN	48	8.826	-1.264	35.144	1.00 20.00
ATOM	273	0	ASN	48	7.978	-0.377	35.040	1.00 20.65
ATOM	274	N	SER	49	9.084	-1.887	36.283	1.00 19.69
ATOM	276	CA	SER	49	8.326	-1.583	37.492	1.00 19.54
ATOM	277	СВ	SER	49	8.715	-2.550	38.620	1.00 17.15
ATOM	278	OG	SER	49	10.020	-2.248	39.079	0.50 12.89
ATOM	280	C	SER	49	8.488	-0.150	37.985	1.00 19.70
ATOM	281	0	SER	49	7.612	0.328	38.718	1.00 19.97
ATOM	282	N	GLN	50	9.549	0.553	37.589	1.00 19.48
ATOM	284	CA	GLN	50	9.759	1.914	38.060	1.00 19.25
ATOM	285	СВ	GLN	50	11.016	1.944	38.959	1.00 21.89
ATOM	286	CG	GLN	50	10.610	1.816	40.419	1.00 27.98
ATOM	287	CD	GLN	50	11.716	2.302	41.335	0.50 29.49
ATOM	288	0E1	GLN	50	12.812	1.745	41.261	1.00 33.13
ATOM	289	NE 2	GLN	50	11.409	3.316	42.138	1.00 31.40
ATOM	292	C	GLN	50	9.930	2.996	37.010	1.00 18.35
ATOM	293	0	GLN	50	10.132	4.160	37. 397	1.00 18.50
ATOM	294	N	TRP	51	9.840	2.661	35.726	1.00 17.49
ATOM	296	CA	TRP	51	10.053	3.683	34.704	1.00 16.66
ATOM	297	CB	TRP	51	11.435	3.526	34.067	1.00 15.84
ATOM	298	CG	TRP	51	12.621	3.840	34.924	1.00 16.16
ATOM	299	CD2	TRP	51	13.335	5.081	34.995	1.00 16.26
ATOM	300	CE2	TRP	51	14.397	4.904	35.908	1.00 17.36

ATOM	301	CE3	TRP	51	13.185	6.325	34.375	1.00 16.15
ATOM	302	CD1	TRP	51	13.274	2.980	35.764	1.00 16.63
ATOM	303	NE1	TRP	51	14.337	3.611	36.366	1.00 16.58
ATOM	305	CZ2	TRP	51	15.307	5.923	36.211	1.00 17.85
ATOM	306	CZ3	TRP	51	14.082	7.338	34.671	1.00 16.26
ATOM	307	CH2	TRP	51	15.125	7.129	35.585	1.00 17.30
ATOM	308	C	TRP	51	8.975	3.681	33.625	1.00 16.25
ATOM	309	0	TRP	51	8.466	2.667	33.163	1.00 16.08
ATOM	310	N	VAL	52	8.628	4.891	33.210	1.00 15.66
ATOM	312	CA	VAL	52	7.647	5.188	32.188	1.00 15.51
ATOM	313	CB	VAL	52	6.469	5.973	32.809	1.00 15.01
ATOM	314	CG1	VAL	52	5.499	6.574	31.799	1.00 13.96
ATOM	315	CG2	VAL	52	5.697	5.064	33.761	1.00 14.55
ATOM	316	C	VAL	52	8.297	5.989	31.061	1.00 15.94
ATOM	317	0	VAL	52	9.151	6.847	31.314	1.00 16.29
ATOM	318	N	VAL	53	7.893	5.716	29.822	1.00 15.44
ATOM	320	CA	VAL	53	8.357	6.479	28.669	1.00 15.05
ATOM	321	CB	VAL	53	8.881	5.612	27.514	1.00 15.68
ATOM	322	CG1	VAL	53	9.384	6.455	26.350	1.00 16.80
ATOM	323	CG2	VAL	53	10.031	4.733	27.992	1.00 17.45
ATOM	324	C	VAL	53	7.194	7.344	28.165	1.00 14.58
ATOM	325	0	VAL	53	6.078	6.853	27.980	1.00 14.11
ATOM	326	N	SER	54	7.490	8.626	27.932	1.00 13.93
ATOM	328	CA	SER	54	6.451	9.531	27.432	1.00 13.12
ATOM	329	СВ	SER	54	5.717	10.176	28.606	1.00 12.05
ATOM	330	0G	SER	54	4.662	11.007	28.145	1.00 13.13

ATOM	332	C	SER	54	7.070	10.546	26.475	1.00 13.30
ATOM	333	0	SER	54	8.222	10.351	26.056	1.00 13.65
ATOM	334	N	ALA	55	6.317	11.566	26.068	1.00 12.63
ATOM	336	CA	ALA	55	6.839	12.586	25.172	1.00 12.71
ATOM	337	CB	ALA	55	5.748	13.073	24.234	1.00 11.19
ATOM	338	C	ALA	55	7.406	13.753	25.981	1.00 13.39
ATOM	339	0	ALA	55	6.838	14.149	27.001	1.00 13.38
ATOM	340	N	ALA	56	8.538	14.286	25.530	1.00 13.97
ATOM	342	CA	ALA	56	9.159	15.420	26.208	1.00 14.02
ATOM	343	CB	ALA	56	10.449	15.840	25.522	1.00 12.90
ATOM	344	C	ALA	56	8.204	16.607	26.266	1.00 14.06
ATOM	345	0	ALA	56	8.232	17.334	27.268	1.00 14.33
ATOM	346	N	HIS	57	7.354	16.781	25.258	1.00 14.19
ATOM	348	CA	HIS	57	6.453	17.940	25.294	1.00 14.89
ATOM	349	CB	HIS	57	5.892	18.296	23.929	1.00 14.92
ATOM	350	CG	HIS	57	4.752	17.515	23.375	1.00 15.41
ATOM	351	CD2	HIS	57	3.413	17.733	23.451	1.00 16.31
ATOM	352	ND1	HIS	57	4.908	16.378	22.614	1.00 15.56
ATOM	354	CE1	HIS	57	3.724	15.918	22.258	1.00 15.59
ATOM	355	NE 2	HIS	57	2.794	16.727	22.741	1.00 16.02
ATOM	357	C	HIS	57	5.345	17.753	26.330	1.00 15.58
ATOM	358	0	HIS	57	4.537	18.670	26.518	1.00 16.48
ATOM	359	N	CYS	58	5.295	16.609	26.991	1.00 15.71
ATOM	361	CA	CYS	58	4.304	16.370	28.028	1.00 16.82
ATOM	362	C	CYS	58	4.833	16.798	29.393	1.00 18.49
ATOM	363	0	CYS	58	4.106	16.790	30.384	1.00 18.74

ATOM	364	CB	CYS	58	3.934	14.883	28.101	1.00 14.65
ATOM	365	SG	CYS	58	2.885	14.370	26.720	1.00 15.77
ATOM	366	N	TYR	59	6.110	17.177	29.441	1.00 19.74
ATOM	368	CA	TYR	59	6.713	17.558	30.710	1.00 21.19
ATOM	369	СВ	TYR	59	8.202	17.943	30.517	1.00 21.36
ATOM	370	CG	TYR	59	8.819	18.411	31.826	1.00 23.10
ATOM	371	CD1	TYR	59	8.925	19.774	32.099	1.00 24.46
ATOM	372	CE1	TYR	59	9.368	20.221	33.330	1.00 25.63
ATOM	373	CD2	TYR	59	9.086	17.515	32.850	1.00 23.68
ATOM	374	CE2	TYR	59	9.538	17.954	34.079	1.00 25.16
ATOM	375	CZ	TYR	59	9.681	19.305	34.312	1.00 26.41
ATOM	376	ОН	TYR	59	10.132	19.753	35.536	1.00 28.12
ATOM	378	C	TYR	59	5.942	18.662	31.443	1.00 21.53
ATOM	379	0	TYR	59	5.526	19.680	30.909	1.00 21.37
ATOM	380	N	LYS	60	5.812	18.444	32.749	1.00 22.11
ATOM	382	CA	LYS	60	5.289	19.424	33.700	1.00 23.26
ATOM	383	CB	LYS	60	3.833	19.777	33.513	1.00 23.78
ATOM	384	CG	LYS	60	2.802	18.774	33.970	1.00 25.65
ATOM	385	CD	LYS	60	1.482	18.968	33. 249	1.00 26.33
ATOM	386	CE	LYS	60	0.578	20.008	33.872	1.00 26.78
ATOM	387	NZ	LYS	60	-0.768	19.907	33.230	0.50 23.59
ATOM	391	C	LYS	60	5.628	18.900	35.103	1.00 23.63
ATOM	392	0	LYS	60	5.967	17.722	35.259	1.00 23.11
ATOM	393	N	SER	61	5.658	19.780	36.100	1.00 24.63
ATOM	395	CA	SER	61	5.949	19.315	37.462	1.00 25.50
ATOM	396	СВ	SER	61	6.622	20.409	38. 284	1.00 26.33

ATOM	397	0G	SER	61	5.765	21.541	38.377	0.50 25.40
ATOM	399	C	SER	61	4.648	18.843	38.105	1.00 25.88
ATOM	400	0	SER	61	3.564	19.159	37.599	1.00 26.83
ATOM	401	N	GLY	62	4.730	18.043	39.162	1.00 25.83
ATOM	403	CA	GLY	62	3.520	17.586	39.841	1.00 25.59
ATOM	404	C	GLY ·	62	2.785	16.509	39.059	1.00 25.08
ATOM	405	0	GLY	62	1.550	16.477	39.083	1.00 26.47
ATOM	406	N	ILE	63	3.517	15.639	38.374	1.00 23.63
ATOM	408	CA	ILE	63	2.900	14.563	37.606	1.00 21.67
ATOM	409	СВ	ILE	63	3.806	14.073	36.451	1.00 21.23
ATOM	410	CG2	ILE	63	3.227	12.838	35.753	1.00 21.36
ATOM	411	CG1	ILE	63	4.055	15.177	35.421	1.00 20.57
ATOM	412	CD1	ILE	63	5.043	14.864	34.309	1.00 21.24
ATOM	413	C	ILE	63	2.557	13.382	38.527	1.00 20.42
ATOM	414	0	ILE	63	3.384	12.933	39.322	1.00 19.89
ATOM	415	N	GLN	64	1.320	12.903	38.400	1.00 18.96
ATOM	417	CA	GLN	64	0.916	11.677	39.082	1.00 17.85
ATOM	418	СВ	GLN	64	-0.335	11.783	39.936	1.00 16.72
ATOM	419	CG	GLN	64	-0.672	10.482	40.667	1.00 17.77
ATOM	420	CD	GLN	64	-2.000	10.586	41.389	1.00 19.24
ATOM	421	0E1	GLN	64	-3.044	10.708	40.746	1.00 20.31
ATOM	422	NE2	GLN	64	-1.955	10.583	42.716	1.00 19.23
ATOM	425	C	GLN	64	0.709	10.626	37.972	1.00 16.81
ATOM	426	0	GLN	64	0.005	10.892	36.998	1.00 17.05
ATOM	427	N	VAL	65	1.339	9.477	38.136	1.00 15.61
ATOM	429	CA	VAL	65	1.237	8.398	37.153	1.00 15.54

ATOM	430	CB	VAL	65	2.567	7.640	37.019	1.00 14.90
ATOM	431	CG1	VAL	65	2.501	6.492	36.020	1.00 16.34
ATOM	432	CG2	VAL	65	3.687	8.598	36.612	1.00 14.25
ATOM	433	C	VAL	65	0.105	7.458	37. 557	1.00 15.08
ATOM	434	0	VAL	65	0.107	6.935	38.678	1.00 15.38
ATOM	435	N	ARG	66	-0.843	7.256	36.650	1.00 14.47
ATOM	437	CA	ARG	66	-1.971	6.366	36.964	1.00 15.02
ATOM	438	CB	ARG	66	-3.284	7.129	36.791	1.00 12.69
ATOM	439	CG	ARG	66	-3.293	8.372	37.678	1.00 12.89
ATOM	440	CD	ARG	66	-4.636	9.081	37.621	1.00 13.50
ATOM	441	NE	ARG	66	-4.807	9.869	38.844	1.00 15.25
ATOM	443	CZ	ARG	66	-5.946	10.349	39.327	1.00 15.13
ATOM	444	NH1	ARG	66	-7.113	10.161	38.727	1.00 14.12
ATOM	447	NH2	ARG	66	-5.910	11.036	40.470	1.00 16.19
ATOM	450	C	ARG	66	-1.909	5.097	36.125	1.00 15.35
ATOM	451	0	ARG	66	-2.036	5.126	34.897	1.00 15.65
ATOM	452	N	LEU	67	-1.671	3.977	36.794	1.00 15.57
ATOM	454	CA	LEU	67	-1.549	2.676	36.150	1.00 16.36
ATOM	455	СВ	LEU	67	-0.364	1.898	36.732	1.00 17.20
ATOM	456	CG	LEU	67	1.026	2.531	36.684	1.00 19.70
ATOM	457	CD1	LEU	67	1.327	3.335	37.941	1.00 21.62
ATOM	458	CD2	LEU	67	2.113	1.476	36.502	1.00 22.01
ATOM	459	C	LEU	67	-2.818	1.837	36.299	1.00 16.52
ATOM	460	0	LEU	67	-3.609	2.063	37. 221	1.00 16.68
ATOM	461	N	GLY	69	-3.029	0.888	35.391	1.00 16.38
ATOM	463	CA	GLY	69	-4.174	-0.001	35.431	1.00 16.41

ATOM	464	C	GLY	69	-5.518	0.676	35.233	1.00 16.80
ATOM	465	0	GLY	69	-6.556	0.178	35.694	1.00 17.29
ATOM	466	N	GLU	70	-5.542	1.787	34.508	1.00 16.43
ATOM	468	CA	GLU	70	-6.752	2.542	34.263	1.00 16.46
ATOM	469	СВ	GLU	70	-6.379	4.016	33.986	1.00 16.58
ATOM	470	CG	GLU	70	-6.019	4.812	35.225	1.00 16.97
ATOM	471	CD	GLU	70	-7.227	5.264	36.020	1.00 17.93
ATOM	472	0E1	GLU	70	-8.325	4.674	35.924	1.00 18.19
ATOM	473	0E2	GLU	70	-7.084	6.268	36.752	1.00 18.75
ATOM	474	C	GLU	70	-7.582	2.105	33.065	1.00 16.74
ATOM	475	0	GLU.	70	-7.033	1.636	32.069	1.00 17.07
ATOM	476	N	ASP	71	-8.901	2.236	33.190	1.00 16.54
ATOM	478	CA	ASP	71	-9.780	2.050	32.035	1.00 16.94
ATOM	479	CB	ASP	71	-10.625	0.792	32.017	1.00 18.41
ATOM	480	CG	ASP	71	-11.322	0.645	30.668	1.00 19.97
ATOM	481	0D1	ASP	71	-10.679	0.911	29.627	1.00 20.59
ATOM	482	0D2	ASP	71	-12.513	0.270	30.650	1.00 21.02
ATOM	483	C	ASP	71	-10.640	3.324	31.975	1.00 17.20
ATOM	484	0	ASP	71	-10.418	4.178	31.115	1.00 17.40
ATOM	485	N	ASN	72	-11.603	3.436	32.889	1.00 17.19
ATOM	487	CA	ASN	72	-12.388	4.661	33.004	1.00 17.12
ATOM	488	CB	ASN	72	-13.741	4.413	33.646	1.00 17.03
ATOM	489	CG	ASN	72	-14.667	5.603	33.613	1.00 17.32
ATOM	490	0D1	ASN	72	-14.285	6.753	33.807	1.00 18.48
ATOM	491	ND2	ASN	72	-15.941	5.353	33.338	1.00 19.21
ATOM	494	C	ASN	72	-11.541	5.607	33.863	1.00 17.59

ATOM	495	0	ASN	72	-11.319	5.310	35.041	1.00 17.49
ATOM	496	N	ILE	73	-11.079	6.716	33.293	1.00 18.07
ATOM	498	CA	ILE	73	-10.221	7.618	34.053	1.00 18.84
ATOM	499	CB	ILE	73	-9.309	8.472	33.143	1.00 19.69
ATOM	500	CG2	ILE	73	-8.206	7.585	32.582	1.00 19.18
ATOM	501	CG1	ILE	73	-10.121	9.167	32.053	1.00 19.26
ATOM	502	CD1	ILE	73	-9.366	10.238	31.294	1.00 22.29
ATOM	503	C	ILE	73	-10.997	8.538	34.988	1.00 19.11
ATOM	504	0	ILE	73	-10.372	9.307	35.727	1.00 18.87
ATOM	505	N	ASN	74	-12.324	8.444	34.974	1.00 19.61
ATOM	507	CA	ASN	74	-13.127	9.298	35.846	1.00 20.66
ATOM	508	CB	ASN	74	-14.252	9.967	35.043	1.00 21.21
ATOM	509	CG	ASN	74	-13.697	11.025	34.104	1.00 23.31
ATOM	510	0D1	ASN	74	-12.938	11.908	34.516	0.80 23.31
ATOM	511	ND2	ASN	74	-14.071	10.931	32.834	0.80 22.25
ATOM	514	C	ASN	74	-13.711	8.541	37.034	1.00 21.27
ATOM	515	0	ASN	74	-14.282	9.171	37.935	1.00 21.93
ATOM	516	N	VAL	75	-13.557	7. 222	37.058	1.00 20.66
ATOM	518	CA	VAL	75	-14.109	6.409	38.137	1.00 20.55
ATOM	519	СВ	VAL	75	-15.306	5.583	37.614	1.00 20.50
ATOM	520	CG1	VAL	75	-15.889	4.625	38.645	1.00 20.55
ATOM	521	CG2	VAL	75	-16.403	6.513	37.098	1.00 21.64
ATOM	522	C	VAL	75	-13.066	5.449	38.702	1.00 20.51
ATOM	523	0	VAL	75	-12.309	4.873	37.916	1.00 20.91
ATOM	524	N	VAL	76	-13.038	5.290	40.021	1.00 20.09
ATOM	526	CA	VAL	76	-12.153	4.275	40.607	1.00 20.62

ATOM	527	CB	VAL	76	-11.755	4.558	42.056	1.00	20.24
ATOM	528	CG1	VAL	76	-10.919	3.434	42.668	1.00	19.70
ATOM	529	CG2	VAL	76	-10.967	5.863	42.147	1.00	19.92
ATOM	530	C	VAL	76	-12.930	2.961	40.464	1.00	21.34
ATOM	531	0	VAL	76	-13.986	2.786	41.078	1.00	21.77
ATOM	532	N	GLU	77	-12.420	2.054	39.644	1.00	21.00
ATOM	534	CA	GLU	77	-13.098	0.797	39.371	1.00	21.28
ATOM	535	СВ	GLU	77	-13.163	0.567	37.855	1.00	22.43
ATOM	536	CG	GLU	77	-13.601	1.748	37.016	1.00	24.83
ATOM	537	CD	GLU	77	-13.557	1.421	35.533	1.00	26.02
ATOM	538	0E1	GLU	77	-14.612	1.030	34.989	1.00	27.62
ATOM	539	OE2	GLU	77	-12.484	1.550	34.906	1.00	26.48
ATOM	540	C	GLU	77	-12.386	-0.406	39.978	1.00	20.93
ATOM	541	0	GLU	77	-12.946	-1.500	40.036	1.00	21.33
ATOM	542	N	GLY	78	-11.159	-0.194	40.423	1.00	20.45
ATOM	544	CA	GLY	78	-10.336	-1.274	40.966	1.00	20.44
ATOM	545	C	GLY	78	-9.222	-1.523	39.945	1.00	20.45
ATOM	546	0	GLY	78	-9.412	-1.280	38.752	1.00	20.49
ATOM	547	N	ASN	79	-8.073	-1.978	40.403	1.00	20.48
ATOM	549	CA	ASN	79	-6.892	-2.261	39.612	1.00	20.65
ATOM	550	СВ	ASN	79	-7.165	-2.915	38.250	1.00	24.41
ATOM	551	CG	ASN	79	-7.852	-4.260	38.420	1.00	27.87
ATOM	552	OD1	ASN	79	-7.327	-5.161	39.082	1.00	29.48
ATOM	553	ND2	ASN	79	-9.032	-4.370	37.820	1.00	28.94
ATOM	556	С	ASN	79	-6.020	-1.026	39.370	1.00	19.76
ATOM	557	0	ASN	79	-4.916	-1.193	38.833	1.00	19.65

ATOM	558	N	GLU	80	-6.490	0.156	39.759	1.00 18.78
ATOM	560	CA	GLU	80	-5.695	1.359	39.577	1.00 18.11
ATOM	561	CB	GLU	80	-6.461	2.669	39.755	1.00 18.03
ATOM	562	CG	GLU	80	-7.578	2.974	38.792	1.00 17.19
ATOM	563	CD	GLU	80	-8.939	2.466	39.206	1.00 17.09
ATOM	564	OE1	GLU	80	-9.049	1.633	40.129	1.00 17.95
ATOM	565	OE 2	GLU	80	-9.936	2.909	38. 588	1.00 17.54
ATOM	566	C	GLU	80	-4.557	1.431	40.600	1.00 17.55
ATOM	567	0	GLU	80	-4.690	1.004	41.740	1.00 17.98
ATOM	568	N	GLN	81	-3.440	1.973	40.154	1.00 17.06
ATOM	570	CA	GLN	81	-2.307	2.240	41.026	1.00 16.46
ATOM	571	СВ	GLN	81	-1.120	1.325	40.803	1.00 16.31
ATOM	572	CG	GLN	81	-1.361	-0.114	41.212	1.00 16.82
ATOM	573	CD	GLN	81	-0.209	-1.025	40.845	1.00 18.21
ATOM	574	0E1	GLN	81	-0.393	-2.009	40.120	1.00 20.80
ATOM	575	NE 2	GLN	81	0.974	-0.723	41.353	1.00 16.72
ATOM	578	C	GLN	81	-1.922	3.696	40.741	1.00 16.93
ATOM	579	0	GLN	81	-1.719	4.039	39.569	1.00 17.18
ATOM	580	N	PHE	82	-1.934	4.520	41.778	1.00 16.67
ATOM	582	CA	PHE	82	-1.536	5.917	41.589	1.00 16.63
ATOM	583	СВ	PHE	82	-2.566	6.902	42.093	1.00 15.60
ATOM	584	CG	PHE	82	-3.953	6.880	41.541	1.00 16.15
ATOM	585	CD1	PHE	82	-4.932	7.588	42.240	1.00 15.98
ATOM	586	CD2	PHE	82	-4.340	6.186	40.404	1.00 16.30
ATOM	587	CE1	PHE	82	-6.237	7.622	41.785	1.00 16.70
ATOM	-588	CE2	PHE	82	-5.640	6.199	39.955	1.00 15.94

ATOM	589	CZ	PHE	82	-6.591	6.928	40.643	1.00 16.34
ATOM	590	C	PHE	82	-0.178	6.118	42.258	1.00 16.59
ATOM	591	0	PHE	82	-0.021	5.852	43.443	1.00 17.28
ATOM	592	N	ILE	83	0.780	6.566	41.451	1.00 16.50
ATOM	594	CA	ILE	83	2.141	6.725	41.955	1.00 16.70
ATOM	595	СВ	ILE	83	3.049	5.555	41.525	1.00 15.83
ATOM	596	CG2	ILE	83	4.417	5.686	42.191	1.00 14.98
ATOM	597	CG1	ILE	83	2.393	4.217	41.875	1.00 15.36
ATOM	598	CD1	ILE	83	3.033	2.982	41.291	1.00 16.45
ATOM	599	C	ILE	83	2.718	8.051	41.478	1.00 17.08
ATOM	600	0	ILE	83	2.637	8.377	40.297	1.00 17.22
ATOM	601	N	SER	84	3.278	8.806	42.418	1.00 17.13
ATOM	603	CA	SER	84	3.893	10.075	42.060	1.00 17.91
ATOM	604	CB	SER	84	4.164	10.933	43.302	1.00 19.00
ATOM	605	0G	SER	84	2.944	11.405	43.849	0.80 21.25
ATOM	607	C	SER	84	5.203	9.854	41.303	1.00 17.98
ATOM	608	0	SER	84	5.933	8.883	41.486	1.00 17.21
ATOM	609	N	ALA	85	5.466	10.807	40.411	1.00 18.43
ATOM	611	CA	ALA	85	6.721	10.781	39.658	1.00 19.55
ATOM	612	СВ	ALA	85	6.569	11.708	38.465	1.00 19.07
ATOM	613	C	ALA	85	7.834	11.220	40.602	1.00 20.25
ATOM	614	0	ALA	85	7.614	12.207	41.319	1.00 20.81
ATOM	615	N	SER	86	8.930	10.484	40.722	1.00 20.95
ATOM	617	CA	SER	86	10.027	10.953	41.567	1.00 22.04
ATOM	618	CB	SER	86	10.896	9.850	42.140	1.00 21.13
ATOM	619	0G	SER	86	11.555	9.133	41.117	0.50 23.64

ATOM	621	C	SER	86	10.878	11.913	40.730	1.00 23.19
ATOM	622	0	SER	86	11.444	12.860	41.269	1.00 24.08
ATOM	623	N	LYS	87	10.969	11.686	39.423	1.00 23.71
ATOM	625	CA	LYS	87	11.720	12.579	38.542	1.00 23.97
ATOM	626	СВ	LYS	87	13.230	12.427	38.734	1.00 26.89
ATOM	627	CG	LYS	87	13.795	11.044	38.461	1.00 30.49
ATOM	628	CD	LYS	87	15.213	10.884	38.994	1.00 34.19
ATOM	629	CE	LYS	87	16.236	11.662	38.178	1.00 35.53
ATOM	630	NZ	LYS	87	17.566	11.699	38.854	1.00 37.35
ATOM	634	C	LYS	87	11.385	12.360	37.067	1.00 23.07
ATOM	635	0	LYS	87	11.040	11.251	36.662	1.00 22.76
ATOM	636	N	SER	88	11.490	13.436	36.287	1.00 21.93
ATOM	638	CA	SER	88	11.257	13.340	34.849	1.00 20.99
ATOM	639	CB	SER	88	10.100	14.223	34.398	1.00 22.04
ATOM	640	0G	SER	88	8.884	13.817	35.008	1.00 25.98
ATOM	642	C	SER	88	12.546	13.725	34.135	1.00 19.84
ATOM	643	0	SER	88	13.169	14.718	34.511	1.00 20.74
ATOM	644	N	ILE	89	12.975	12.949	33.165	1.00 18.45
ATOM	646	CA	ILE	89	14.202	13.212	32.416	1.00 17.20
ATOM	647	CB	ILE	89	15.208	12.049	32.560	1.00 15.75
ATOM	648	CG2	ILE	89	16.477	12.265	31.739	1.00 14.00
ATOM	649	CG1	ILE	89	15.554	11.859	34.044	1.00 16.13
ATOM	650	CD1	ILE	89	16.278	10.586	34.423	1.00 15.04
ATOM	651	C	ILE	89	13.856	13.490	30.957	1.00 16.88
ATOM	652	0	ILE	89	13.546	12.572	30.197	1.00 16.68
ATOM	653	N	VAL	90	13.831	14.769	30.587	1.00 16.62

ATOM	655	CA	VAL	90	13.568	15.145	29.195	1.00 16.35
ATOM	656	СВ	VAL	90	13.070	16.593	29.106	1.00 17.13
ATOM	657	CG1	VAL	90	13.093	17.185	27.701	1.00 16.19
ATOM	658	CG2	VAL	90	11.641	16.671	29.658	1.00 17.24
ATOM	659	C	VAL	90	14.861	14.919	28.421	1.00 16.44
ATOM	660	0	VAL	90	15.944	15.178	28.963	1.00 16.92
ATOM	661	N	HIS	91	14.771	14.421	27.190	1.00 15.81
ATOM	663	CA	HIS	91	15.985	14.235	26.385	1.00 15.24
ATOM	664	СВ	HIS	91	15.597	13.721	24.996	1.00 14.00
ATOM	665	CG	HIS	91	16.787	13.173	24.270	1.00 15.01
ATOM	666	CD2	HIS	91	17.208	11.895	24.108	1.00 15.56
ATOM	667	ND1	HIS	91	17.715	13.972	23.640	1.00 14.97
ATOM	669	CE1	HIS	91	18.654	13.208	23.109	1.00 15.51
ATOM	670	NE 2	HIS	91	18.373	11.941	23.380	1.00 14.96
ATOM	672	C	HIS	91	16.730	15.565	26.302	1.00 15.21
ATOM	673	0	HIS	91	16.112	16.597	26.016	1.00 15.03
ATOM	674	N	PRO	92	18.028	15.575	26.568	1.00 15.85
ATOM	675	CD	PRO	92	18.790	14.399	27.064	1.00 16.10
ATOM	676	CA	PRO	92	18.826	16.788	26.567	1.00 16.24
ATOM	677	CB	PRO	92	20.223	16.307	26.952	1.00 16.43
ATOM	678	CG	PRO	92	19.998	15.037	27.704	1.00 16.79
ATOM	679	C	PRO	92	18.835	17.554	25.256	1.00 16.52
ATOM	680	0	PRO	92	19.123	18.757	25.229	1.00 15.79
ATOM	681	N	SER	93	18.513	16.877	24.155	1.00 16.98
ATOM	683	CA	SER	93	18.493	17.535	22.849	1.00 18.04
ATOM	684	CB	SER	93	19.315	16.720	21.849	1.00 18.05

ATOM	685	0G	SER	93	20.681	16.767	22.229	1.00 20.42
ATOM	687	С	SER	93	17.085	17.784	22.334	1.00 18.59
ATOM	688	0	SER	93	16.883	18.110	21.152	1.00 19.29
ATOM	689	N	TYR	94	16.088	17.656	23.206	1.00 18.70
ATOM	691	CA	TYR	94	14.709	17.931	22.797	1.00 19.21
ATOM	692	CB	TYR	94	13.741	17.711	23.962	1.00 18.80
ATOM	693	CG	TYR	94	12.340	18.260	23.791	1.00 18.40
ATOM	694	CD1	TYR	94	11.882	19.284	24.614	1.00 18.60
ATOM	695	CE1	TYR	94	10.605	19.800	24.465	1.00 18.91
ATOM	696	CD2	TYR	94	11.500	17.817	22.777	1.00 18.50
ATOM	697	CE2	TYR	94	10.229	18.333	22.609	1.00 18.48
ATOM	698	CZ	TYR	94	9.790	19.326	23.455	1.00 19.25
ATOM	699	ОН	TYR	94	8.529	19.865	23.294	1.00 20.06
ATOM	701	C	TYR	94	14.613	19.357	22.248	1.00 19.99
ATOM	702	0	TYR	94	15.130	20.287	22.873	1.00 20.59
ATOM	703	N	ASN	95	13.973	19.526	21.098	1.00 20.37
ATOM	705	CA	ASN	95	13.780	20.869	20.563	1.00 21.49
ATOM	706	CB	ASN	95	14.304	21.023	19.142	1.00 24.48
ATOM	707	CG	ASN	95	14.343	22.467	18.685	1.00 25.91
ATOM	708	0D1	ASN	95	15.422	22.964	18.343	1.00 30.84
ATOM	709	ND2	ASN	95	13.236	23.189	18.666	1.00 24.82
ATOM	712	C	ASN	95	12.281	21.166	20.604	1.00 21.89
ATOM	713	0	ASN	95	11.517	20.482	19.921	1.00 21.91
ATOM	714	N	SER	96	11.901	22.211	21.324	1.00 22.17
ATOM	716	CA	SER	96	10.502	22.581	21.461	1.00 22.74
ATOM	717	СВ	SER	96	10.368	23.736	22.472	1.00 22.66

ATOM	718	0G	SER	96	11.274	23.614	23.547	0.50 24.35
ATOM	720	C	SER	96	9.848	23.059	20.171	1.00 23.11
ATOM	721	0	SER	96	8.621	22.997	20.035	1.00 24.00
ATOM	722	N	ASN	97	10.640	23.583	19.243	1.00 23.34
ATOM	724	CA	ASN	97	10.095	24.131	18.005	1.00 23.86
ATOM	725	СВ	ASN	97	11.019	25.222	17.432	1.00 24.30
ATOM	726	CG	ASN	97	11.230	26.342	18.434	0.50 24.67
ATOM	727	0D1	ASN	97	10.265	26.989	18.849	0.50 26.44
ATOM	728	ND2	ASN	97	12.476	26.548	18.841	0.50 26.05
ATOM	731	C	ASN	97	9.871	23.081	16.929	1.00 23.68
ATOM	732	0	ASN	97	8.897	23.170	16.180	1.00 25.03
ATOM	733	N	THR	98	10.764	22.104	16.851	1.00 22.75
ATOM	735	CA	THR	98	10.657	21.072	15.827	1.00 22.14
ATOM	736	СВ	THR	98	12.044	20.788	15.219	1.00 21.61
ATOM	737	0G1	THR	98	12.923	20.295	16.241	1.00 21.58
ATOM	739	CG2	THR	98	12.632	22.060	14.628	1.00 22.28
ATOM	740	C	THR	98	10.077	19.775	16.378	1.00 21.72
ATOM	741	0	THR	98	9.542	18.959	15.629	1.00 21.91
ATOM	742	N	LEU	99	10.158	19.617	17.689	1.00 20.73
ATOM	744	CA	LEU	99	9.727	18.423	18.401	1.00 20.28
ATOM	745	СВ	LEU	99	8.258	18.069	18.195	1.00 21.10
ATOM	746	CG	LEU	99	7.242	18.986	18.892	1.00 23.03
ATOM	747	CD1	LEU	99	5.825	18.528	18.561	1.00 23.73
ATOM	748	CD2	LEU	99	7.399	19.048	20.405	1.00 22.08
ATOM	749	C	LEU	99	10.674	17.260	18.109	1.00 19.46
ATOM	750	0	LEU	99	10.381	16.079	18.283	1.00 19.01

ATOM	751	N	ASN	100	11.887	17.636	17.685	1.00 18.84
ATOM	753	CA	ASN	100	12.925	16.625	17.469	1.00 17.83
ATOM	754	СВ	ASN	100	14.085	17. 211	16.679	1.00 18.17
ATOM	755	CG	ASN	100	15.026	16.146	16.165	1.00 19.19
ATOM	756	0D1	ASN	100	14.632	15.021	15.836	1.00 20.06
ATOM	757	ND2	ASN	100	16.305	16.487	16.103	1.00 21.11
ATOM	760	С	ASN	100	13.353	16.117	18.844	1.00 17.04
ATOM	761	0	ASN	100	13.521	16.912	19.775	1.00 17.11
ATOM	762	N	ASN	101	13.504	14.814	19.005	1.00 16.27
ATOM	764	CA	ASN	101	13.874	14.199	20.276	1.00 16.20
ATOM	765	CB	ASN	101	15.208	14.719	20.820	1.00 16.26
ATOM	766	CG	ASN	101	16.343	14.535	19.841	1.00 16.97
ATOM	767	0D1	ASN	101	16.970	15.515	19.435	1.00 19.51
ATOM	768	ND2	ASN	101	16.625	13.307	19.445	1.00 15.07
ATOM	771	C	ASN	101	12.753	14.367	21.309	1.00 15.60
ATOM	772	0	ASN	101	12.971	14.662	22.490	1.00 14.75
ATOM	773	N	ASP	102	11.526	14.132	20.828	1.00 14.58
ATOM	775	CA	ASP	102	10.357	14.249	21.702	1.00 14.66
ATOM	776	CB	ASP	102	9.121	14.614	20.891	1.00 13.72
ATOM	777	CG	ASP	102	7.963	15.088	21.749	1.00 14.61
ATOM	778	0D1	ASP	102	6.818	15.124	21.242	1.00 16.34
ATOM	779	0D2	ASP	102	8.154	15.421	22.937	1.00 15.30
ATOM	780	C	ASP	102	10.166	12.968	22.521	1.00 14.64
ATOM	781	0	ASP	102	9.301	12.122	22.290	1.00 14.41
ATOM	782	N	ILE	103	11.031	12.833	23.527	1.00 14.59
ATOM	784	CA	ILE	103	11.052	11.662	24.405	1.00 14.91

ATOM	785	CB	ILE	103	11.962	10.566	23.803	1.00 14.44
ATOM	786	CG2	ILE	103	13.387	11.075	23.641	1.00 13.44
ATOM	787	CG1	ILE	103	11.921	9.281	24.636	1.00 15.28
ATOM	788	CD1	ILE	103	12.496	8.050	23.960	1.00 14.65
ATOM	789	C	ILE	103	11.435	12.070	25.824	1.00 14.90
ATOM	790	0	ILE	103	12.280	12.927	26.078	1.00 15.22
ATOM	791	N	MET	104	10.768	11.463	26.800	1.00 15.09
ATOM	793	CA	MET	104	10.955	11.720	28. 215	1.00 15.22
ATOM	794	CB	MET	104	9.885	12.715	28.671	1.00 15.52
ATOM	795	CG	MET	104	9.778	12.992	30.156	1.00 17.45
ATOM	796	SD	MET	104	8.596	14.291	30.517	1.00 18.91
ATOM	797	CE	MET	104	7.019	13.477	30.319	1.00 18.48
ATOM	798	C	MET	104	10.841	10.441	29.039	1.00 15.53
ATOM	799	0	MET	104	9.980	9.593	28.789	1.00 15.69
ATOM	800	N	LEU	105	11.688	10.329	30.048	1.00 15.47
ATOM	802	CA	LEU	105	11.661	9.199	30.973	1.00 15.95
ATOM	803	CB	LEU	105	13.043	8.580	31.087	1.00 16.71
ATOM	804	CG	LEU	105	13.460	7.313	30.359	1.00 20.66
ATOM	805	CD1	LEU	105	12.855	7.114	28.982	1.00 21.94
ATOM	806	CD2	LEU	105	14.993	7.302	30. 231	1.00 21.43
ATOM	807	C	LEU	105	11.149	9.659	32.335	1.00 16.24
ATOM	808	0	LEU	105	11.593	10.685	32.859	1.00 16.48
ATOM	809	N	ILE	106	10.191	8.939	32.907	1.00 15.97
ATOM	811	CA	ILE	106	9.668	9.294	34. 223	1.00 15.84
ATOM	812	CB	ILE	106	8.152	9.539	34. 241	1.00 16.72
ATOM	813	CG2	ILE	106	7.666	9.937	35.635	1.00 15.97

ATOM	814	CG1	ILE	106	7. 781	10.621	33. 225	1.00 18.03
ATOM	815	CD1	ILE	106	6.319	10.656	32.834	1.00 20.50
ATOM	816	С	ILE	106	9.999	8.161	35.196	1.00 15.89
ATOM	817	0	ILE	106	9.689	7.013	34.906	1.00 14.94
ATOM	818	N	LYS	107	10.619	8.524	36.311	1.00 16.10
ATOM	820	CA	LYS	107	10.921	7.546	37. 344	1.00 16.75
ATOM	821	СВ	LYS	107	12.280	7. 799	37. 993	1.00 16.49
ATOM	822	CG	LYS	107	12.720	6.601	38.815	1.00 18.82
ATOM	823	CD	LYS	107	13.996	6.892	39.583	1.00 21.75
ATOM	824	CE	LYS	107	14.316	5.679	40.457	1.00 23.94
ATOM	825	NZ	LYS	107	15.532	5.923	41.284	1.00 27.19
ATOM	829	C	LYS	107	9.816	7.603	38.403	1.00 17.00
ATOM	830	0	LYS	107	9.461	8.693	38.853	1.00 16.67
ATOM	831	N	LEU	108	9.266	6.445	38.757	1.00 17.80
ATOM	833	CA	LEU	108	8.210	6.413	39.767	1.00 18.26
ATOM	834	CB	LEU	108	7.351	5.160	39.603	1.00 17.64
ATOM	835	CG	LEU	108	6.682	4.923	38. 249	1.00 17.82
ATOM	836	CD1	LEU	108	5.915	3.606	38.262	1.00 18.07
ATOM	837	CD2	LEU	108	5.749	6.055	37.853	1.00 18.96
ATOM	838	C	LEU	108	8.790	6.469	41.176	1.00 18.72
ATOM	839	0	LEU	108	9.850	5.891	41.428	1.00 18.67
ATOM	840	N	LYS	109	8.069	7.133	42.078	1.00 18.89
ATOM	842	CA	LYS	109	8.529	7.252	43.465	1.00 19.47
ATOM	843	CB	LYS	109	7.591	8.151	44.265	1.00 19.75
ATOM	844	CG	LYS	109	8.066	8.460	45.675	1.00 20.08
ATOM	845	CD	LYS	109	7.157	9.505	46.305	0.80 22.33

ATOM	846	CE	LYS	109	7.526	9.750	47.764	0.50 22.29
ATOM	847	NZ	LYS	109	6.367	10.628	48.344	0.00 27.64
ATOM	851	C	LYS	109	8.675	5.878	44.107	1.00 20.06
ATOM	852	0	LYS	109	9.587	5.657	44.908	1.00 20.37
ATOM	853	N	SER	110	7.763	4.971	43.786	1.00 20.24
ATOM	855	CA	SER	110	7.812	3.590	44.258	1.00 20.76
ATOM	856	СВ	SER	110	6.870	3. 334	45.426	1.00 20.17
ATOM	857	OG	SER	110	5.501	3.508	45.150	0.50 18.37
ATOM	859	C	SER	110	7.539	2.654	43.075	1.00 21.40
ATOM	860	0	SER	110	6.934	3.048	42.070	1.00 21.23
ATOM	861	N	ALA	111	8.044	1.424	43.143	1.00 21.58
ATOM	863	CA	ALA	111	7.829	0.463	42.067	1.00 21.60
ATOM	864	СВ	ALA	111	8.685	-0.776	42.283	1.00 20.13
ATOM	865	C	ALA	111	6.362	0.062	41.975	1.00 22.09
ATOM	866	0	ALA	111	5.666	-0.053	42.988	1.00 22.70
ATOM	867	N	ALA	112	5.877	-0.129	40.752	1.00 21.73
ATOM	869	CA	ALA	112	4.502	-0.578	40.563	1.00 22.04
ATOM	870	СВ	ALA	112	4.063	-0.283	39.136	1.00 21.48
ATOM	871	C	ALA	112	4.397	-2.076	40.853	1.00 22.34
ATOM	872	0	ALA	112	5.393	-2.799	40.784	1.00 21.69
ATOM	873	N	SER	113	3.207	-2.529	41.236	1.00 22.87
ATOM	875	CA	SER	113	2.988	-3.963	41.442	1.00 23.80
ATOM	876	CB	SER	113	1.960	-4.289	42.516	1.00 22.95
ATOM	877	0G	SER	113	2.385	-3.779	43.771	0.50 22.75
ATOM	879	C	SER	113	2.546	-4.506	40.082	1.00 24.51
ATOM	880	0	SER	113	1.482	-4.116	39.593	1.00 24.81

ATOM	881	N	LEU	114	3.387	-5.330	39.471	1.00 25.24
ATOM	883	CA	LEU	114	3.040	-5.850	38.149	1.00 26.57
ATOM	884	CB	LEU	114	4.304	-6.132	37.336	1.00 25.50
ATOM	885	CG	LEU -	114	5.226	-4.927	37.111	1.00 25.67
ATOM	886	CD1	LEU	114	6.550	-5.380	36.514	1.00 26.60
ATOM	887	CD2	LEU	114	4.570	-3.884	36.220	1.00 25.80
ATOM	888	C	LEU	114	2.128	-7.064	38. 273	1.00 27.83
ATOM	889	0	LEU	114	2.261	-7.900	39.159	1.00 28.41
ATOM	890	N	ASN	115	1.140	-7.104	37. 393	1.00 28.69
ATOM	892	CA	ASN	115	0.150	-8.170	37. 325	1.00 29.77
ATOM	893	СВ	ASN	115	-0.973	-7.935	38.329	1.00 29.71
ATOM	894	CG	ASN	115	-1.635	-6.579	38. 235	1.00 30.29
ATOM	895	OD1	ASN	115	-2.197	-6.194	37. 207	1.00 29.97
ATOM	896	ND2	ASN	115	-1.581	-5.837	39.338	1.00 30.51
ATOM	899	C	ASN	115	-0.347	-8.286	35.884	1.00 30.48
ATOM	900	0	ASN	115	0.330	-7.855	34.939	1.00 31.07
ATOM	901	N	SER	116	-1.509	-8.890	35.690	1.00 30.72
ATOM	903	CA	SER	116	-2.086	-9.064	34. 363	1.00 30.65
ATOM	904	СВ	SER	116	-3.166	-10.155	34.444	1.00 32.15
ATOM	905	OG	SER	116	-3.955	-9.989	35.618	0.50 31.73
ATOM	907	C	SER	116	-2.668	-7.767	33.816	1.00 30.03
ATOM	908	0	SER	116	-2.777	-7.584	32.602	1.00 30.77
ATOM	909	N	ARG	117	-3.016	-6.862	34.722	1.00 28.70
ATOM	911	CA	ARG	117	-3.634	-5.587	34. 377	1.00 27.14
ATOM	912	СВ	ARG	117	-4.746	-5.358	35.421	1.00 27.24
ATOM	913	CG	ARG	117	-5.824	-6.424	35. 215	1.00 26.96

ATOM	914	CD	ARG	117	-6.435	-6.927	36.503	0.50 26.27
ATOM	915	NE	ARG	117	-7.414	-7.989	36.227	0.50 25.07
ATOM	917	CZ	ARG	117	-8.155	-8.528	37.191	0.50 25.62
ATOM	918	NH1	ARG	117	-9.470	-7.235	37.606	0.00 9.64
ATOM	921	NH2	ARG	117	-9.514	-9.058	36.301	0.00 9.31
ATOM	924	С	ARG	117	-2.648	-4.438	34.320	1.00 25.91
ATOM	925	0	ARG	117	-2.918	-3.375	33.756	1.00 26.01
ATOM	926	N	VAL	118	-1.477	-4.666	34.901	1.00 24.50
ATOM	928	CA	VAL	118	-0.393	-3.687	34.919	1.00 22.94
ATOM	929	CB	VAL	118	-0.315	-2.959	36.269	1.00 20.98
ATOM	930	CG1	VAL	118	0.851	-1.987	36.349	1.00 20.06
ATOM	931	CG2	VAL	118	-1.623	-2.210	36.527	1.00 19.08
ATOM	932	C	VAL	118	0.899	-4.419	34.568	1.00 22.60
ATOM	933	0	VAL	118	1.477	-5.145	35.379	1.00 22.53
ATOM	934	N	ALA	119	1.356	-4.245	33.329	1.00 21.86
ATOM	936	CA	ALA	119	2.566	-4.916	32.865	1.00 20.78
ATOM	937	CB	ALA	119	2.179	-6.130	32.033	1.00 19.77
ATOM	938	C	ALA	119	3.424	-3.984	32.022	1.00 20.30
ATOM	939	0	ALA	119	2.898	-3.009	31.485	1.00 20.15
ATOM	940	N	SER	120	4.706	-4.303	31.881	1.00 19.90
ATOM	942	CA	SER	120	5.579	-3.439	31.084	1.00 20.05
ATOM	943	CB	SER	120	6.980	-3.401	31.691	1.00 19.80
ATOM	944	0G	SER	120	7.468	-4.719	31.807	1.00 22.74
ATOM	946	C	SER	120	5.619	-3.884	29.627	1.00 20.22
ATOM	947	0	SER	120	5.238	-5.014	29.298	1.00 20.71
ATOM	948	N	ILE	121	6.040	-2.975	28.753	1.00 19.43

ATOM	950	CA	ILE	121	6.135	-3.254	27.315	1.00 19.19
ATOM	951	СВ	ILE	121	5.352	-2.211	26.498	1.00 18.82
ATOM	952	CG2	ILE	121	5.903	-0.797	26.674	1.00 17.76
ATOM	953	CG1	ILE	121	5.301	-2.552	25.003	1.00 18.86
ATOM	954	CD1	ILE	121	4.416	-3.734	24.666	1.00 19.74
ATOM	955	C	ILE	121	7.611	-3.346	26.949	1.00 19.48
ATOM	956	0	ILE	121	8.427	-2.637	27.549	1.00 19.58
ATOM	957	N	SER	122	7.988	-4.227	26.027	1.00 19.51
ATOM	959	CA	SER	122	9.376	-4.392	25.628	1.00 20.04
ATOM	960	CB	SER	122	9.617	-5.759	24.966	1.00 19.45
ATOM	961	0G	SER	122	9.171	-6.835	25.765	0.50 17.73
ATOM	963	C	SER	122	9.850	-3.338	24.627	1.00 20.36
ATOM	964	0	SER	122	9.110	-2.848	23.777	1.00 20.20
ATOM	965	N	LEU	123	11.131	-3.007	24.744	1.00 21.32
ATOM	967	CA	LEU	123	11.778	-2.072	23.827	1.00 22.81
ATOM	968	CB	LEU	123	12.960	-1.373	24.504	1.00 23.23
ATOM	969	CG	LEU	123	12.641	-0.369	25.619	1.00 22.43
ATOM	970	CD1	LEU	123	13.913	0.074	26.325	1.00 23.56
ATOM	971	CD2	LEU	123	11.898	0.839	25.064	1.00 23.33
ATOM	972	C	LEU	123	12.210	-2.831	22.574	1.00 23.67
ATOM	973	0	LEU	123	12.620	-3.994	22.656	1.00 24.02
ATOM	974	N	PRO	124	12.091	-2.186	21.419	1.00 24.18
ATOM	975	CD	PRO	124	12.001	-0.707	21.299	1.00 24.09
ATOM	976	CA	PR0	124	12.459	-2.807	20.161	1.00 24.98
ATOM	977	СВ	PR0	124	12.076	-1.756	19.132	1.00 24.45
ATOM	978	CG	PR0	124	12.223	-0.456	19.835	1.00 24.17

ATOM	979	C	PR0	124	13.934	-3.157	20.067	1.00 26.40
ATOM	980	0	PRO	124	14.812	-2.503	20.633	1.00 25.88
ATOM	981	N	THR	125	14.210	-4.252	19.365	1.00 28.12
ATOM	983	CA	THR	125	15.599	-4.669	19.130	1.00 30.28
ATOM	984	СВ	THR	125	15.743	-6.195	19.174	1.00 33.30
ATOM	985	0G1	THR	125	14.616	-6.818	18.526	1.00 35.08
ATOM	987	CG2	THR	125	15.811	-6.664	20.623	1.00 34.37
ATOM	988	C	THR	125	16.060	-4.082	17.798	1.00 30.27
ATOM	989	0	THR	125	17. 238	-3.848	17.540	1.00 31.47
ATOM	990	N	SER	127	15.086	-3.788	16.946	1.00 29.70
ATOM	992	CA	SER	127	15.294	-3.182	15.645	1.00 28.86
ATOM	993	CB	SER	127	15.441	-4.263	14.570	1.00 31.34
ATOM	994	OG	SER	127	14.317	-5.136	14.597	1.00 34.38
ATOM	996	C	SER	127	14.129	-2.259	15.297	1.00 27.60
ATOM	997	0	SER	127	13.065	-2.304	15.914	1.00 27.30
ATOM	998	N	CYS	128	14.340	-1.409	14.303	1.00 26.76
ATOM	1000	CA	CYS	128	13.296	-0.499	13.850	1.00 26.48
ATOM	1001	C	CYS	128	12.266	-1.239	13.004	1.00 26.77
ATOM	1002	0	CYS	128	12.640	-2.144	12.246	1.00 27.30
ATOM	1003	CB	CYS	128	13.918	0.641	13.039	1.00 24.17
ATOM	1004	SG	CYS	128	15.155	1.598	13.955	1.00 23.57
ATOM	1005	N	ALA	129	10.993	-0.878	13.133	1.00 26.46
ATOM	1007	CA	ALA	129	9.952	-1.530	12.335	1.00 26.29
ATOM	1008	СВ	ALA	129	8.607	-1.348	13.006	1.00 25.12
ATOM	1009	С	ALA	129	9.964	-0.971	10.915	1.00 26.65
ATOM	1010	0	ALA	129	10.403	0.163	10.690	1.00 27.70

ATOM	1011	N	SER	130	9.479	-1.734	9.938	1.00 26.29
ATOM	1013	CA	SER	130	9.479	-1.260	8.553	1.00 25.66
ATOM	1014	СВ	SER	130	10.006	-2.372	7.637	1.00 24.98
ATOM	1015	0G	SER	130	9.319	-3.593	7.834	0.50 22.78
ATOM	1017	С	SER	130	8.111	-0.748	8.123	1.00 25.19
ATOM	1018	0	SER	130	7.101	-0.982	8.793	1.00 25.15
ATOM	1019	N	ALA	132	8.067	-0.013	7.011	1.00 24.46
ATOM	1021	CA	ALA	132	6.821	0.516	6.470	1.00 23.92
ATOM	1022	CB	ALA	132	7.054	1.222	5.139	1.00 22.13
ATOM	1023	C	ALA	132	5.825	-0.629	6.282	1.00 23.63
ATOM	1024	0	ALA	132	6.249	-1.731	5.909	1.00 23.90
ATOM	1025	N	GLY	133	4.545	-0.388	6.533	1.00 22.55
ATOM	1027	CA	GLY	133	3.569	-1.454	6.383	1.00 22.41
ATOM	1028	C	GLY	133	3.332	-2.249	7.654	1.00 22.43
ATOM	1029	0	GLY	133	2.338	-2.981	7.718	1.00 23.01
ATOM	1030	N	THR	134	4.221	-2.147	8.634	1.00 22.14
ATOM	1032	CA	THR	134	4.013	-2.837	9.907	1.00 22.10
ATOM	1033	СВ	THR	134	5.210	-2.686	10.856	1.00 23.98
ATOM	1034	0G1	THR	134	6.399	-3.162	10.200	1.00 26.26
ATOM	1036	CG2	THR	134	5.016	-3.495	12.133	1.00 24.53
ATOM	1037	C	THR	134	2.765	-2.269	10.583	1.00 21.71
ATOM	1038	0	THR	134	2.643	-1.050	10.693	1.00 21.12
ATOM	1039	N	GLN	135	1.873	-3.161	11.008	1.00 21.60
ATOM	1041	CA	GLN	135	0.644	-2.757	11.682	1.00 21.29
ATOM	1042	СВ	GLN	135	-0.501	-3.747	11.499	1.00 23.24
ATOM	1043	CG	GLN	135	-1.091	-3.865	10.109	0.70 25.18

ATOM	1044	CD	GLN	135	-1.971	-2.717	9.675	0.70 26.37
ATOM	1045	0E1	GLN	135	-2.703	-2.108	10.463	0.70 27.36
ATOM	1046	NE 2	GLN	135	-1.928	-2.404	8.377	0.70 26.75
ATOM	1049	C	GLN	135	0.929	-2.596	13.178	1.00 20.82
ATOM	1050	0	GLN	135	1.506	-3.494	13.793	1.00 20.80
ATOM	1051	N	CYS	136	0.498	-1.462	13.719	1.00 20.11
ATOM	1053	CA	CYS	136	0.735	-1.151	15.120	1.00 19.14
ATOM	1054	C	CYS	136	-0.550	-0.804	15.855	1.00 18.50
ATOM	1055	0	CYS	136	-1.567	-0.504	15.231	1.00 18.54
ATOM	1056	CB	CYS	136	1.701	0.039	15.208	1.00 18.56
ATOM	1057	SG	CYS	136	3.228	-0.217	14.267	1.00 19.48
ATOM	1058	N	LEU	137	-0.490	-0.851	17.184	1.00 18.06
ATOM	1060	CA	LEU	137	-1.639	-0.510	18.012	1.00 17.19
ATOM	1061	СВ	LEU	137	-1.941	-1.547	19.074	1.00 18.72
ATOM	1062	CG	LEU	137	-3.307	-1.842	19.673	1.00 19.93
ATOM	1063	CD1	LEU	137	-3.133	-2.097	21.179	1.00 20.38
ATOM	1064	CD2	LEU	137	-4.392	-0.805	19.463	1.00 19.58
ATOM	1065	C	LEU	137	-1.337	0.811	18.732	1.00 16.34
ATOM	1066	0	LEU	137	-0.346	0.920	19.446	1.00 15.35
ATOM	1067	N	ILE	138	-2.207	1.782	18.537	1.00 16.69
ATOM	1069	CA	ILE	138	-2.083	3.088	19.178	1.00 16.62
ATOM	1070	CB	ILE	138	-2.079	4. 222	18.141	1.00 17.07
ATOM	1071	CG2	ILE	138	-1.814	5.561	18.825	1.00 16.76
ATOM	1072	CG1	ILE	138	-1.025	3.942	17.063	1.00 17.73
ATOM	1073	CD1	ILE	138	-1.151	4.752	15.802	1.00 19.01
ATOM	1074	C	ILE	138	-3.252	3.238	20.148	1.00 16.63

ATOM	1075	0	ILE	138	-4.381	2.878	19.792	1.00 16.92
ATOM	1076	N	SER	139	-2.997	3.757	21.345	1.00 16.38
ATOM	1078	CA	SER	139	-4.067	3.896	22.334	1.00 15.95
ATOM	1079	CB	SER	139	-4.073	2.649	23.230	1.00 15.17
ATOM	1080	0G	SER	139	-2.757	2.378	23.695	1.00 15.35
ATOM	1082	C	SER	139	-3.942	5.157	23.177	1.00 15.73
ATOM	1083	0	SER	139	-2.863	5.732	23.306	1.00 15.57
ATOM	1084	N	GLY	140	-5.055	5.597	23.762	1.00 16.06
ATOM	1086	CA	GLY	140	-5.079	6.778	24.607	1.00 15.93
ATOM	1087	C	GLY	140	-6.481	7.292	24.915	1.00 16.23
ATOM	1088	0	GLY	140	-7.494	6.840	24.379	1.00 16.50
ATOM	1089	N	TRP	141	-6.528	8.304	25.777	1.00 15.91
ATOM	1091	CA	TRP	141	-7.740	8.968	26.214	1.00 15.99
ATOM	1092	CB	TRP	141	-7.717	9.115	27.744	1.00 15.23
ATOM	1093	CG	TRP	141	-7.845	7.822	28.483	1.00 14.86
ATOM	1094	CD2	TRP	141	-6.779	7.021	29.011	1.00 15.96
ATOM	1095	CE 2	TRP	141	-7.371	5.907	29.644	1.00 16.07
ATOM	1096	CE3	TRP	141	-5.384	7.139	29.017	1.00 14.93
ATOM	1097	CD1	TRP	141	-9.009	7.195	28.826	1.00 15.01
ATOM	1098	NE 1	TRP	141	-8.734	6.043	29.528	1.00 16.18
ATOM	1100	CZ2	TRP	141	-6.619	4.913	30.275	1.00 16.31
ATOM	1101	CZ3	TRP	141	-4.642	6.155	29.647	1.00 15.74
ATOM	1102	CH2	TRP	141	-5.259	5.055	30.273	1.00 15.66
ATOM	1103	С	TRP	141	-7.893	10.354	25.599	1.00 16.88
ATOM	1104	0	TRP	141	-8.586	11.233	26.121	1.00 17.02
ATOM	1105	N	GLY	142	-7.258	10.574	24.450	1.00 17.33

ATOM	1107	CA	GLY	142	-7.320	11.861	23.789	1.00 17.91
ATOM	1108	C	GLY	142	-8.639	12.132	23.090	1.00 18.72
ATOM	1109	0	GLY	142	-9.563	11.328	23.026	1.00 18.45
ATOM	1110	N	ASN	143	-8.721	13.333	22.525	1.00 19.87
ATOM	1112	CA	ASN	143	-9.898	13.764	21.788	1.00 21.04
ATOM	1113	СВ	ASN	143	-9.604	15.130	21.181	1.00 22.84
ATOM	1114	CG	ASN	143	-10.775	15.759	20.472	1.00 25.57
ATOM	1115	OD1	ASN	143	-11.928	15.345	20.597	1.00 26.46
ATOM	1116	ND2	ASN	143	-10.461	16.796	19.700	1.00 28.29
ATOM	1119	C	ASN	143	-10.279	12.754	20.711	1.00, 22.00
ATOM	1120	0	ASN	143	-9.439	12.204	19.993	1.00 21.59
ATOM	1121	N	THR	144	-11.583	12.520	20.592	1.00 22.95
ATOM	1123	CA	THR	144	-12.107	11.579	19.614	1.00 24.83
ATOM	1124	CB	THR	144	-13.131	10.616	20.249	1.00 24.69
ATOM	1125	0G1	THR	144	-14.173	11.400	20.850	1.00 26.72
ATOM	1127	CG2	THR	144	-12.509	9.737	21.319	1.00 25.29
ATOM	1128	C	THR	144	-12.742	12.284	18.420	1.00 26.17
ATOM	1129	0	THR	144	-13.280	11.618	17.526	1.00 26.01
ATOM	1130	N	LYS	145	-12.668	13.612	18.364	1.00 27.90
ATOM	1132	CA	LYS	145	-13.275	14.331	17.245	1.00 30.08
ATOM	1133	СВ	LYS	145	-14.369	15.278	17.754	1.00 28.43
ATOM	1134	CG	LYS	145	-15.638	14.536	18.160	0.50 27.14
ATOM	1135	CD	LYS	145	-16.766	15.498	18.492	0.50 26.86
ATOM	1136	CE	LYS	145	-18.326	14.737	18.272	0.00 8.45
ATOM	1137	NZ	LYS	145	-18.975	15.943	18.891	0.00 8.67
ATOM	1141	C	LYS	145	-12.259	15.080	16.393	1.00 31.84

ATOM	1142	0	LYS	145	-11.336	15.716	16.894	1.00 32.01
ATOM	1143	N	SER	146	-12.432	14.969	15.074	1.00 33.67
ATOM	1145	CA	SER	146	-11.579	15.650	14.116	1.00 36.01
ATOM	1146	CB	SER	146	-11.793	15.170	12.681	1.00 35.22
ATOM	1147	0G	SER	146	-11.690	13.776	12.508	0.50 36.05
ATOM	1149	C	SER	146	-11.879	17.153	14.139	1.00 37.98
ATOM	1150	0	SER	146	-10.975	17.990	14.106	1.00 38.70
ATOM	1151	N	SER	147	-13.171	17.478	14.210	1.00 39.47
ATOM	1153	CA	SER	147	-13.589	18.877	14.189	1.00 40.85
ATOM	1154	CB	SER	147	-14.883	19.026	13.372	1.00 41.56
ATOM	1155	0G	SER	147	-15.464	17.857	12.565	0.00 18.40
ATOM	1157	C	SER	147	-13.775	19.486	15.569	1.00 41.60
ATOM	1158	0	SER	147	-13.255	20.588	15.801	0.50 42.07
ATOM	1159	N	GLY	148	-14.482	18.823	16.478	1.00 41.92
ATOM	1161	CA	GLY	148	-14.717	19.400	17.793	1.00 42.13
ATOM	1162	C	GLY	148	-13.850	18.862	18.921	1.00 41.95
ATOM	1163	0	GLY	148	-12.720	18.420	18.724	1.00 42.15
ATOM	1164	N	THR	149	-14.403	18.924	20.134	1.00 41.39
ATOM	1166	CA	THR	149	-13.729	18.457	21.341	1.00 40.54
ATOM	1167	CB	THR	149	-13.352	19.641	22.248	1.00 40.49
ATOM	1168	0G1	THR	149	-12.330	20.393	21.559	0.50 40.26
ATOM	1170	CG2	THR	149	-12.790	19.262	23.604	0.50 39.78
ATOM	1171	C	THR	149	-14.601	17.454	22.089	1.00 39.88
ATOM	1172	0	THR	149	-15.617	17.829	22.675	1.00 40.38
ATOM	1173	N	SER	150	-14.190	16.190	22.074	1.00 38.65
ATOM	1175	CA	SER	150	-14.934	15.142	22.766	1.00 37.11

ATOM	1176	CB	SER	150	-15.906	14.467	21.797	1.00 37.33
ATOM	1177	0G	SER	150	-16.659	13.462	22.455	1.00 37.76
ATOM	1179	С	SER	150	-13.987	14.120	23.391	1.00 35.84
ATOM	1180	0	SER	150	-13.380	13.317	22.678	1.00 35.72
ATOM	1181	N	TYR	151	-13.857	14.154	24.717	1.00 34.26
ATOM	1183	CA	TYR	151	-12.983	13.219	25.415	1.00 33.03
ATOM	1184	CB	TYR	151	-12.241	13.918	26.564	1.00 34.21
ATOM	1185	CG	TYR	151	-11.242	14.936	26.049	1.00 36.18
ATOM	1186	CD1	TYR	151	-9.992	14.526	25.599	1.00 36.97
ATOM	1187	CE1	TYR	151	-9.081	15.437	25.098	1.00 37.65
ATOM	1188	CD2	TYR	151	-11.565	16.285	25.985	1.00 36.86
ATOM	1189	CE2	TYR	151	-10.656	17.202	25.491	1.00 37.89
ATOM	1190	CZ	TYR	151	-9.422	16.773	25.048	1.00 38.48
ATOM	1191	ОН	TYR	151	-8.517	17.691	24.557	1.00 39.69
ATOM	1193	C	TYR	151	-13.735	12.006	25.950	1.00 31.58
ATOM	1194	0	TYR	151	-14.842	12.125	26.482	1.00 31.98
ATOM	1195	N	PRO	152	-13.131	10.831	25.810	1.00 29.50
ATOM	1196	CD	PRO	152	-11.829	10.611	25.132	1.00 28.78
ATOM	1197	CA	PRO	152	-13.708	9.590	26.281	1.00 28.43
ATOM	1198	CB	PRO	152	-13.031	8.563	25.373	1.00 28.38
ATOM	1199	CG	PRO	152	-11.664	9.120	25.167	1.00 28.28
ATOM	1200	С	PRO	152	-13.431	9.308	27.751	1.00 27.62
ATOM	1201	0	PRO	152	-12.523	9.894	28.355	1.00 27.33
ATOM	1202	N	ASP	153	-14.234	8.436	28.355	1.00 26.45
ATOM	1204	CA	ASP	153	-14.016	8.030	29.736	1.00 25.04
ATOM	1205	CB	ASP	153	-15.303	7.549	30.396	1.00 29.58

ATOM	1206	CG	ASP	153	-16.260	8.626	30.851	1.00 32.94
ATOM	1207	0D1	ASP	153	-17.481	8.335	30.931	1.00 35.63
ATOM	1208	0D2	ASP	153	-15.807	9.749	31.167	1.00 33.96
ATOM	1209	C	ASP	153	-13.020	6.865	29.747	1.00 23.17
ATOM	1210	0	ASP	153	-12.107	6.769	30.553	1.00 22.71
ATOM	1211	N	VAL	154	-13.256	5.978	28.784	1.00 21.34
ATOM	1213	CA	VAL	154	-12.479	4.758	28.654	1.00 20.38
ATOM	1214	CB	VAL	154	-13.407	3.546	28.445	1.00 21.16
ATOM	1215	CG1	VAL	154	-14.318	3.413	29.663	1.00 22.60
ATOM	1216	CG2	VAL	154	-14.227	3.662	27.169	1.00 20.75
ATOM	1217	C	VAL	154	-11.439	4.837	27.543	1.00 19.37
ATOM	1218	0	VAL	154	-11.510	5.656	26.633	1.00 19.37
ATOM	1219	N	LEU	155	-10.472	3.933	27.644	1.00 18.59
ATOM	1221	CA	LEU	155	-9.343	3.847	26.738	1.00 17.63
ATOM	1222	CB	LEU	155	-8.329	2.832	27. 282	1.00 15.08
ATOM	1223	CG	LEU	155	-6.984	2.719	26.567	1.00 14.96
ATOM	1224	CD1	LEU	155	-6.206	4.027	26.639	1.00 13.69
ATOM	1225	CD2	LEU	155	-6.165	1.577	27.157	1.00 13.92
ATOM	1226	c	LEU	155	-9.743	3.460	25.321	1.00 18.07
ATOM	1227	0	LEU	155	-10.431	2.457	25.117	1.00 18.59
ATOM	1228	N	LYS	156	-9.279	4.261	24.358	1.00 17.96
ATOM	1230	CA	LYS	156	-9.577	3.997	22.953	1.00 17.57
ATOM	1231	СВ	LYS	156	-10.065	5.255	22.239	1.00 17.93
ATOM	1232	CG	LYS	156	-11.348	5.823	22.831	1.00 19.71
ATOM	1233	CD	LYS	156	-12.554	4.957	22.487	1.00 21.22
ATOM	1234	CE	LYS	156	-13.789	5.389	23.264	1.00 23.08

ATOM	1235	NZ	LYS	156	-14.996	4.613	22.860	0.50 20.61
ATOM	1239	С	LYS	156	-8.344	3.416	22.273	1.00 17.60
ATOM	1240	0	LYS	156	-7.215	3.691	22.670	1.00 17.27
ATOM	1241	N	CYS	157	-8.581	2.599	21.259	1.00 17.54
ATOM	1243	CA	CYS	157	-7.533	1.917	20.521	1.00 17.50
ATOM	1244	C	CYS	157	-7.653	2.189	19.027	1.00 17.36
ATOM	1245	0	CYS	157	-8.749	2.468	18.554	1.00 17.72
ATOM	1246	СВ	CYS	157	-7.617	0.408	20.755	1.00 17.14
ATOM	1247	SG	CYS	157	-6.866	-0.228	22.258	1.00 18.52
ATOM	1248	N	LEU	158	-6.543	2.127	18.313	1.00 17.55
ATOM	1250	CA	LEU	158	-6.533	2.327	16.873	1.00 17.36
ATOM	1251	СВ	LEU	158	-6.346	3.788	16.476	1.00 17.19
ATOM	1252	CG	LEU	158	-6.220	4.121	14.985	1.00 17.72
ATOM	1253	CD1	LEU	158	-7.528	3.915	14.235	1.00 17.12
ATOM	1254	CD2	LEU	158	-5.739	5.554	14.782	1.00 18.02
ATOM	1255	C	LEU	158	-5.417	1.478	16.263	1.00 17.79
ATOM	1256	0	LEU	158	-4.281	1.491	16.737	1.00 17.63
ATOM	1257	N	LYS	159	-5.787	0.708	15.244	1.00 17.98
ATOM	1259	CA	LYS	159	-4.787	-0.092	14.521	1.00 18.56
ATOM	1260	CB	LYS	159	-5.383	-1.424	14.081	1.00 18.30
ATOM	1261	CG	LYS	159	-5.591	-2.447	15.198	0.50 17.10
ATOM	1262	CD	LYS	159	-4.245	-3.061	15.552	0.50 18.00
ATOM	1263	CE	LYS	159	-4.297	-4.234	16.503	0.50 19.31
ATOM	1264	NZ	LYS	159	-2.911	-4.807	16.637	0.50 18.48
ATOM	1268	C	LYS	159	-4.284	0.758	13.359	1.00 18.87
ATOM	1269	0	LYS	159	-5.122	1.312	12.631	1.00 19.65

ATOM	1270	N	ALA	160	-2.976	0.938	13.194	1.00 18.75
ATOM	1272	CA	ALA	160	-2.484	1.795	12.109	1.00 18.21
ATOM	1273	CB	ALA	160	-2.378	3.239	12.585	1.00 17.35
ATOM	1274	C	ALA	160	-1.136	1.308	11.599	1.00 17.93
ATOM	1275	0	ALA	160	-0.318	0.827	12.379	1.00 18.13
ATOM	1276	N	PR0	161	-0.904	1.442	10.298	1.00 17.88
ATOM	1277	CD	PR0	161	-1.923	1.814	9.280	1.00 17.60
ATOM	1278	CA	PR0	161	0.337	1.016	9.691	1.00 17.85
ATOM	1279	СВ	PR0	161	-0.092	0.663	8.264	1.00 17.28
ATOM	1280	CG	PR0	161	-1.196	1.622	7.977	1.00 17.26
ATOM	1281	C	PR0	161	1.410	2.093	9.659	1.00 17.92
ATOM	1282	0	PR0	161	1.084	3.283	9.580	1.00 17.97
ATOM	1283	N	ILE	162	2.666	1.673	9.756	1.00 18.15
ATOM	1285	CA	ILE	162	3.780	2.622	9.597	1.00 18.20
ATOM	1286	CB	ILE	162	5.090	2.010	10.116	1.00 17.92
ATOM	1287	CG2	ILE	162	6.291	2.895	9.795	1.00 15.95
ATOM	1288	CG1	ILE	162	4.962	1.758	11.627	1.00 17.34
ATOM	1289	CD1	ILE	162	6.064	0.954	12.269	1.00 16.24
ATOM	1290	C	ILE	162	3.843	2.994	8.114	1.00 18.25
ATOM	1291	0	ILE	162	3.790	2.099	7.264	1.00 18.32
ATOM	1292	N	LEU	163	3.898	4.279	7.783	1.00 18.18
ATOM	1294	CA	LEU	163	3.955	4.675	6.377	1.00 18.42
ATOM	1295	CB	LEU	163	3.237	6.004	6.151	1.00 17.76
ATOM	1296	CG	LEU	163	1.782	6.088	6.623	1.00 19.11
ATOM	1297	CD1	LEU	163	1.229	7.459	6.262	1.00 18.57
ATOM	1298	CD2	LEU	163	0.879	5.000	6.053	1.00 18.45

ATOM	1299	C	LEU	163	5.394	4.740	5.892	1.00 18.85
ATOM	1300	0	LEU	163	6.320	4.699	6.709	1.00 19.25
ATOM	1301	N	SER	164	5.592	4.778	4.577	1.00 18.95
ATOM	1303	CA	SER	164	6.958	4.857	4.057	1.00 19.22
ATOM	1304	CB	SER	164	6.989	4.578	2.553	1.00 19.73
ATOM	1305	OG	SER	164	6.228	5.595	1.908	1.00 21.78
ATOM	1307	С	SER	164	7.507	6.253	4.340	1.00 19.45
ATOM	1308	0	SER	164	6.725	7.196	4.501	1.00 19.33
ATOM	1309	N	ASP	165	8.833	6.373	4.388	1.00 20.12
ATOM	1311	CA	ASP	165	9.420	7.688	4.650	1.00 20.80
ATOM	1312	CB	ASP	165	10.909	7.601	4.982	1.00 21.68
ATOM	1313	CG	ASP	165	11.086	7.359	6.479	0.50 22.17
ATOM	1314	0D1	ASP	165	11.783	6.396	6.856	0.50 23.08
ATOM	1315	OD2	ASP	165	10.505	8.130	7. 283	0.50 22.41
ATOM	1316	C	ASP	165	9.145	8.642	3.498	1.00 21.18
ATOM	1317	0	ASP	165	8. 987	9.840	3.755	1.00 20.94
ATOM	1318	N	SER	166	9.028	8.119	2.277	1.00 21.40
ATOM	1320	CA	SER	166	8.746	9.008	1.147	1.00 21.46
ATOM	1321	СВ	SER	166	8.912	8.329	-0.204	1.00 21.70
ATOM	1322	0G	SER	166	8.049	7.240	-0.435	0.50 22.18
ATOM	1324	C	SER	166	7. 351	9.597	1.319	1.00 21.97
ATOM	1325	0	SER	166	7.168	10.791	1.055	1.00 22.94
ATOM	1326	N	SER	167	6.387	8.797	1.784	1.00 21.68
ATOM	1328	CA	SER	167	5.045	9.362	1.959	1.00 21.37
ATOM	1329	CB	SER	167	4.000	8.261	2.127	1.00 22.91
ATOM	1330	OG	SER	167	3.859	7.572	0.892	1.00 25.10

ATOM	1332	C	SER	167	5.030	10.336	3.131	1.00 20.59
ATOM	1333	0	SER	167	4.349	11.358	3.087	1.00 20.59
ATOM	1334	N	CYS	168	5.787	10.012	4.169	1.00 19.87
ATOM	1336	CA	CYS	168	5.866	10.865	5.349	1.00 19.49
ATOM	1337	C	CYS	168	6.456	12.233	5.031	1.00 19.56
ATOM	1338	0	CYS	168	5.877	13.260	5.396	1.00 18.65
ATOM	1339	СВ	CYS	168	6.683	10.147	6.428	1.00 18.14
ATOM	1340	SG	CYS	168	6.625	10.878	8.080	1.00 17.69
ATOM	1341	N	LYS	169	7.584	12.266	4.321	1.00 20.22
ATOM	1343	CA	LYS	169	8.260	13.517	3.990	1.00 20.70
ATOM	1344	СВ	LYS	169	9.713	13.264	3.569	1.00 20.76
ATOM	1345	CG	LYS	169	10.577	12.940	4.781	1.00 22.78
ATOM	1346	CD	LYS	169	11.973	12.480	4.393	1.00 22.87
ATOM	1347	CE	LYS	169	12.750	12.094	5.645	0.50 21.17
ATOM	1348	NZ	LYS	169	14.034	11.422	5.304	0.50 23.82
ATOM	1352	C	LYS	169	7.530	14.321	2.926	1.00 21.08
ATOM	1353	0	LYS	169	7.709	15.543	2.867	1.00 21.37
ATOM	1354	N	SER	170	6.750	13.642	2.088	1.00 21.27
ATOM	1356	CA	SER	170	5.939	14.327	1.090	1.00 21.52
ATOM	1357	СВ	SER	170	5.345	13.377	0.050	1.00 22.10
ATOM	1358	0G	SER	170	6.333	12.866	-0.820	0.50 21.75
ATOM	1360	C	SER	170	4.791	15.067	1.782	1.00 21.88
ATOM	1361	0	SER	170	4.357	16.116	1.307	1.00 22.30
ATOM	1362	N	ALA	171	4.297	14.517	2.891	1.00 21.63
ATOM	1364	CA	ALA	171	3.210	15.118	3.651	1.00 20.61
ATOM	1365	CB	ALA	171	2.537	14.051	4.514	1.00 19.20

ATOM	1366	C	ALA	171	3.681	16.279	4.525	1.00 20.23
ATOM	1367	0	ALA	171	2.968	17. 275	4.671	1.00 20.34
ATOM	1368	N	TYR	172	4.872	16.165	5.089	1.00 20.08
ATOM	1370	CA	TYR	172	5.435	17.169	5.981	1.00 20.36
ATOM	1371	CB	TYR	172	5.508	16.647	7.419	1.00 19.71
ATOM	1372	CG	TYR	172	4.171	16.337	8.039	1.00 19.38
ATOM	1373	CD1	TYR	172	3.766	15.019	8.225	1.00 19.48
ATOM	1374	CE1	TYR	172	2.533	14.728	8.787	1.00 19.63
ATOM	1375	CD2	TYR	172	3.305	17.356	8.414	1.00 19.45
ATOM	1376	CE 2	TYR	172	2.072	17.075	8.975	1.00 19.96
ATOM	1377	CZ	TYR	172	1.701	15.760	9.175	1.00 20.01
ATOM	1378	ОН	TYR	172	0.477	15.476	9.735	1.00 20.63
ATOM	1380	C	TYR	172	6.830	17.564	5.515	1.00 21.13
ATOM	1381	0	TYR	172	7.852	17.306	6.154	1.00 21.01
ATOM	1382	N	PR0	173	6.869	18.161	4.324	1.00 22.07
ATOM	1383	CD	PR0	173	5.695	18.782	3.659	1.00 22.22
ATOM	1384	CA	PR0	173	8.119	18.597	3.725	1.00 22.65
ATOM	1385	CB	PR0	173	7.710	19.395	2.500	1.00 22.64
ATOM	1386	CG	PR0	173	6.253	19.185	2.326	1.00 22.75
ATOM	1387	C	PRO	173	8.958	19.419	4.695	1.00 23.34
ATOM	1388	0	PR0	173	8.489	20.378	5.314	1.00 23.39
ATOM	1389	N	GLY	174	10.203	18.991	4.877	1.00 23.91
ATOM	1391	CA	GLY	174	11.157	19.645	5.744	1.00 24.44
ATOM	1392	C	GLY	174	10.876	19.583	7. 235	1.00 24.64
ATOM	1393	0	GLY	174	11.614	20.224	8.002	1.00 25.17
ATOM	1394	N	GLN	175	9.878	18.834	7.684	1.00 24.30

ATOM	1396	CA	GLN	175	9.567	18.781	9.110	1.00 24.05
ATOM	1397	СВ	GLN	175	8.092	19.129	9.322	1.00 24.26
ATOM	1398	CG	GLN	175	7.656	20.503	8.855	1.00 25.59
ATOM	1399	CD	GLN	175	6.141	20.643	8.849	1.00 26.16
ATOM	1400	0E1	GLN	175	5.507	20.488	7.799	0.50 27.11
ATOM	1401	NE 2	GLN	175	5.560	20.931	10.004	0.50 25.14
ATOM	1404	C	GLN	175	9.859	17.419	9.731	1.00 23.73
ATOM	1405	0	GLN	175	9.798	17.263	10.955	1.00 24.19
ATOM	1406	N	ILE	176	10.189	16.438	8.905	1.00 22.94
ATOM	1408	CA	ILE	176	10.433	15.081	9.388	1.00 22.27
ATOM	1409	СВ	ILE	176	9.793	14.054	8.426	1.00 20.49
ATOM	1410	CG2	ILE	176	10.020	12.615	8.882	1.00 19.86
ATOM	1411	CG1	ILE	176	8.299	14.328	8.234	1.00 19.33
ATOM	1412	CD1	ILE	176	7.398	14.265	9.448	1.00 18.73
ATOM	1413	C	ILE	176	11.921	14.840	9.584	1.00 22.62
ATOM	1414	0	ILE	176	12.715	14.927	8.642	1.00 22.84
ATOM	1415	N	THR	177	12.304	14.544	10.825	1.00 21.93
ATOM	1417	CA	THR	177	13.707	14.248	11.130	1.00 21.91
ATOM	1418	СВ	THR	177	14.165	14.889	12.450	1.00 22.42
ATOM	1419	0G1	THR	177	13.520	14.250	13.560	1.00 22.68
ATOM	1421	CG2	THR	177	13.803	16.373	12.480	1.00 22.39
ATOM	1422	C	THR	177	13.909	12.736	11.159	1.00 21.68
ATOM	1423	0	THR	177	12.935	11.982	11.023	1.00 22.03
ATOM	1424	N	SER	178	15.145	12.281	11.322	1.00 21.08
ATOM	1426	CA	SER	178	15.440	10.852	11.369	1.00 20.75
ATOM	1427	СВ	SER	178	16.955	10.627	11.257	1.00 21.66

ATOM	1428	0G	SER	178	17.637	11.318	12.297	0.50 18.55
ATOM	1430	C	SER	178	14.922	10.182	12.642	1.00 20.15
ATOM	1431	0	SER	178	14.996	8.960	12.766	1.00 20.26
ATOM	1432	N	ASN	179	14.368	10.968	13.560	1.00 19.19
ATOM	1434	CA	ASN	179	13.865	10.451	14.828	1.00 18.51
ATOM	1435	СВ	ASN	179	14.435	11.298	15.978	1.00 19.14
ATOM	1436	CG	ASN	179	15.953	11.232	16.015	1.00 20.02
ATOM	1437	0D1	ASN	179	16.515	10.136	16.024	1.00 20.11
ATOM	1438	ND2	ASN	179	16.581	12.405	16.006	1.00 20.73
ATOM	1441	C	ASN	179	12.344	10.440	14.893	1.00 17.93
ATOM	1442	0	ASN	179	11.720	10.392	15.952	1.00 17.01
ATOM	1443	N	MET	180	11.734	10.503	13.717	1.00 18.06
ATOM	1445	CA	MET	180	10.296	10.510	13.553	1.00 17.69
ATOM	1446	СВ	MET	180	9.780	11.898	13.182	1.00 16.62
ATOM	1447	CG	MET	180	10.258	13.030	14.080	1.00 16.14
ATOM	1448	SD	MET	180	9.810	14.634	13.388	1.00 18.43
ATOM	1449	CE	MET	180	10.572	15.739	14.578	1.00 15.23
ATOM	1450	C	MET	180	9.880	9.549	12.439	1.00 17.77
ATOM	1451	0	MET	180	10.671	9.178	11.574	1.00 17.94
ATOM	1452	N	PHE	181	8.620	9.146	12.499	1.00 17.68
ATOM	1454	CA	PHE	181	8.040	8.289	11.465	1.00 17.16
ATOM	1455	CB	PHĖ	181	8.268	6.806	11.693	1.00 16.62
ATOM	1456	CG	PHE	181	7.608	6.108	12.843	1.00 16.80
ATOM	1457	CD1	PHE	181	6.302	5.647	12.760	1.00 16.62
ATOM	1458	CD2	PHE	181	8.315	5.851	14.011	1.00 16.93
ATOM	1459	CE1	PHE	181	5.689	5.000	13.814	1.00 16.35

ATOM	1460	CE2	PHE	181	7.712	5.188	15.065	1.00 17.68
ATOM	1461	CZ	PHE	181	6.396	4.769	14.976	1.00 16.47
ATOM	1462	C	PHE	181	6.550	8.644	11.388	1.00 17.28
ATOM	1463	0	PHE	181	5.996	9.156	12.370	1.00 17.42
ATOM	1464	N	CYS	182	5.933	8.397	10.240	1.00 16.88
ATOM	1466	CA	CYS	182	4.507	8.643	10.088	1.00 16.76
ATOM	1467	C	CYS	182	3.785	7.295	10.206	1.00 17.01
ATOM	1468	0	CYS	182	4.312	6.258	9.801	1.00 16.65
ATOM	1469	СВ	CYS	182	4.128	9.300	8.766	1.00 17.20
ATOM	1470	SG	CYS	182	4.655	11.010	8.526	1.00 17.41
ATOM	1471	N	ALA	183	2.600	7.338	10.787	1.00 17.17
ATOM	1473	CA	ALA	183	1.750	6.163	10.937	1.00 17.81
ATOM	1474	СВ	ALA	183	1.965	5.444	12.256	1.00 16.64
ATOM	1475	C	ALA	183	0.298	6.621	10.783	1.00 18.35
ATOM	1476	0	ALA	183	-0.050	7.730	11.203	1.00 18.28
ATOM	1477	N	GLY	184A	-0.528	5.806	10.125	1.00 19.08
ATOM	1479	CA	GLY	184A	-1.920	6.181	9.970	1.00 20.16
ATOM	1480	C	GLY	184A	-2.520	5.979	8.588	1.00 20.44
ATOM	1481	0	GLY	184A	-2.185	5.060	7.851	1.00 20.31
ATOM	1482	N	TYR	184	-3.416	6.903	8.248	1.00 21.18
ATOM	1484	CA	TYR	184	-4.198	6.839	7.027	1.00 22.16
ATOM	1485	CB	TYR	184	-5.651	6.451	7.383	1.00 21.76
ATOM	1486	CG	TYR	184	-5.710	5.119	8.102	1.00 21.76
ATOM	1487	CD1	TYR	184	-5.616	5.032	9.486	1.00 21.67
ATOM	1488	CE1	TYR	184	-5.610	3.811	10.131	1.00 21.63
ATOM	1489	CD2	TYR	184	-5.786	3.940	7. 375	1.00 22.11

ATOM	1490	CE 2	TYR	184	-5.798	2: 713	8.007	1.00 22.48
ATOM	1491	CZ	TYR	184	-5.709	2.657	9.385	1.00 22.36
ATOM	1492	ОН	TYR	184	-5.708	1.426	10.000	1.00 22.80
ATOM	1494	C	TYR	184	-4.204	8.165	6.287	1.00 23.25
ATOM	1495	0	TYR	184	-4.531	9.200	6.873	1.00 24.08
ATOM	1496	N	LEU	185	-3.859	8.124	5.003	1.00 23.91
ATOM	1498	CA	LEU	185	-3.853	9.351	4.208	1.00 24.80
ATOM	1499	СВ	LEU	185	-2.964	9.147	2.979	1.00 24.89
ATOM	1500	CG	LEU	185	-1.482	8.918	3.282	1.00 24.61
ATOM	1501	CD1	LEU	185	-0.747	8.487	2.024	1.00 26.29
ATOM	1502	CD2	LEU	185	-0.835	10.175	3.851	1.00 25.69
ATOM	1503	C	LEU	185	-5.264	9.780	3.838	1.00 25.55
ATOM	1504	0	LEU	185	-5.494	10.947	3.514	1.00 25.38
ATOM	1505	N	GLU	186	-6.221	8.856	3.932	1.00 26.63
ATOM	1507	CA	GLU	186	-7.605	9.200	3.603	1.00 27.71
ATOM	1508	СВ	GLU	186	-8.426	7.976	3.217	1.00 31.56
ATOM	1509	CG	GLU	186	-8.612	6.872	4.228	1.00 36.03
ATOM	1510	CD	GLU	186	-7.610	5.739	4.177	1.00 38.73
ATOM	1511	0E1	GLU	186	-8.021	4.587	4.464	1.00 40.07
ATOM	1512	0E2	GLU	186	-6.415	5.951	3.866	1.00 40.47
ATOM	1513	С	GLU	186	-8.266	9.962	4.747	1.00 27.55
ATOM	1514	0	GLU	186	-9.403	10.412	4.610	1.00 27.93
ATOM	1515	N	GLY	187	-7.575	10.124	5.868	1.00 27.41
ATOM	1517	CA	GLY	187	-8.122	10.834	7.019	1.00 27.05
ATOM	1518	C	GLY	187	-9.189	10.012	7.739	1.00 26.77
ATOM	1519	0	GLY	187	-9.539	8.913	7.300	1.00 27.26

ATOM	1520	N	GLY	188A	-9.669	10.510	8.880	1.00 26.04
ATOM	1522	CA	GLY	188A	-10.715	9.846	9.634	1.00 24.87
ATOM	1523	C	GLY	188A	-10.283	8.927	10.755	1.00 23.94
ATOM	1524	0	GLY	188A	-11.105	8.500	11.572	1.00 24.16
ATOM	1525	N	LYS	188	-9.020	8.540	10.794	1.00 23.10
ATOM	1527	CA	LYS	188	-8.474	7.684	11.836	1.00 21.91
ATOM	1528	CB	LYS	188	-8.389	6.221	11.424	1.00 23.11
ATOM	1529	CG	LYS	188	-9.731	5.532	11.242	1.00 23.53
ATOM	1530	CD	LYS	188	-9.638	4.267	10.412	1.00 24.36
ATOM	1531	CE	LYS	188	-9.051	3.081	11.147	0.50 24.45
ATOM	1532	NZ	LYS	188	-8.834	1.936	10.516	0.00 9.85
ATOM	1536	C	LYS	188	-7.091	8.228	12.192	1.00 21.13
ATOM	1537	0	LYS	188	-6.205	8.240	11.337	1.00 20.86
ATOM	1538	N	ASP	189	-6.938	8.696	13.425	1.00 20.14
ATOM	1540	CA	ASP	189	-5.669	9.284	13.851	1.00 19.59
ATOM	1541	CB	ASP	189	-5.549	10.658	13.183	1.00 18.58
ATOM	1542	CG	ASP	189	-4.208	11.340	13.120	1.00 18.86
ATOM	1543	0D1	ASP	189	-4.152	12.538	12.745	1.00 21.13
ATOM	1544	0D2	ASP	189	-3.186	10.712	13.475	1.00 17.45
ATOM	1545	C	ASP	189	-5.593	9.474	15.363	1.00 19.28
ATOM	1546	0	ASP	189	-6.553	9.243	16.099	1.00 18.35
ATOM	1547	N	SER	190	-4.401	9.834	15.839	1.00 18.90
ATOM	1549	CA	SER	190	-4.187	10.240	17.215	1.00 18.68
ATOM	1550	СВ	SER	190	-2.732	10.172	17.654	1.00 18.79
ATOM	1551	0G	SER	190	-2.285	8.847	17.814	1.00 22.59
ATOM	1553	C	SER	190	-4.640	11.706	17.302	1.00 18.47

ATOM	1554	0	SER	190	-4.739	12.386	16.275	1.00 18.26
ATOM	1555	N	CYS	191	-4.859	12.179	18.522	1.00 18.73
ATOM	1557	CA	CYS	191	-5.305	13.563	18.692	1.00 18.76
ATOM	1558	С	CYS	191	-4.851	14.117	20.036	1.00 18.43
ATOM	1559	0	CYS	191	-4.115	13.452	20.774	1.00 17.77
ATOM	1560	CB	CYS	191	-6.822	13.610	18.484	1.00 20.26
ATOM	1561	SG	CYS	191	-7.501	15.232	18.058	1.00 22.66
ATOM	1562	N	GLN	192	-5.245	15.351	20.352	1.00 18.26
ATOM	1564	CA	GLN	192	-4.885	15.993	21.609	1.00 18.25
ATOM	1565	CB	GLN	192	-5.642	17.324	21.752	1.00 19.07
ATOM	1566	CG	GLN	192	-5.412	18.178	22.789	0.00 23.01
ATOM	1567	CD	GLN	192	-6.072	19.537	22.686	0.00 23.32
ATOM	1568	0E1	GLN	192	-6.583	20.042	23.692	0.00 25.01
ATOM	1569	NE 2	GLN	192	-6.065	20.151	21.507	0.00 23.50
ATOM	1572	С	GLN	192	-5.205	15.112	22.816	1.00 18.14
ATOM	1573	0	GLN	192	-6.347	14.658	22.930	1.00 18.07
ATOM	1574	N	GLY	193	-4.230	14.884	23.694	1.00 17.92
ATOM	1576	CA	GLY	193	-4.470	14.061	24.879	1.00 17.62
ATOM	1577	С	GLY	193	-3.859	12.671	24.742	1.00 17.15
ATOM	1578	0	GLY	193	-3.647	11.960	25.725	1.00 17.21
ATOM	1579	N	ASP	194	-3.598	12.271	23.499	1.00 16.64
ATOM	1581	CA	ASP	194	-2.972	10.995	23.202	1.00 16.23
ATOM	1582	CB	ASP	194	-3.367	10.501	21.806	1.00 16.89
ATOM	1583	CG	ASP	194	-4.828	10.119	21.685	1.00 18.04
ATOM	1584	0D1	ASP	194	-5.468	10.397	20.646	1.00 16.55
ATOM	1585	0D2	ASP	194	-5.360	9.515	22.641	1.00 17.23

ATOM	1586	C	ASP	194	-1.451	11.097	23.277	1.00 15.95
ATOM	1587	0	ASP	194	-0.778	10.074	23.432	1.00 16.61
ATOM	1588	N	SER	195	-0.914	12.308	23.162	1.00 15.57
ATOM	1590	CA	SER	195	0.525	12.537	23.205	1.00 14.86
ATOM	1591	CB	SER	195	0.828	14.038	23.358	1.00 15.18
ATOM	1592	0G	SER	195	0.410	14.728	22.189	1.00 17.97
ATOM	1594	C	SER	195	1.237	11.790	24.325	1.00 14.45
ATOM	1595	0	SER	195	0.751	11.707	25.454	1.00 14.63
ATOM	1596	N	GLY	196	2.422	11.265	24.020	1.00 13.70
ATOM	1598	CA	GLY	196	3.206	10.526	24.989	1.00 12.98
ATOM	1599	C	GLY	196	2.800	9.060	25.050	1.00 13.00
ATOM	1600	0	GLY	196	3.558	8.253	25.590	1.00 13.28
ATOM	1601	N	GLY	197	1.657	8.695	24.488	1.00 13.15
ATOM	1603	CA	GLY	197	1.178	7.319	24.529	1.00 13.76
ATOM	1604	C	GLY	197	1.942	6.376	23.612	1.00 14.28
ATOM	1605	0	GLY	197	2.738	6.806	22.771	1.00 14.55
ATOM	1606	N	PRO	198	1.674	5.074	23.718	1.00 14.28
ATOM	1607	CD	PRO	198	0.679	4.509	24.673	1.00 14.20
ATOM	1608	CA	PRO	198	2.337	4.047	22.956	1.00 14.58
ATOM	1609	CB	PRO	198	2.107	2.773	23.803	1.00 14.53
ATOM	1610	CG	PRO	198	0.826	3.020	24.517	1.00 14.28
ATOM	1611	C	PRO	198	1.871	3.721	21.545	1.00 15.00
ATOM	1612	0	PR0	198	0.725	3.854	21.123	1.00 15.36
ATOM	1613	N	VAL	199	2.843	3.295	20.746	1.00 15.41
ATOM	1615	CA	VAL	199	2.678	2.780	19.393	1.00 15.50
ATOM	1616	СВ	VAL	199	3.261	3.622	18.262	1.00 14.82

ATOM	1617	CG1	VAL	199	3.016	2.979	16.895	1.00	14.33
ATOM	1618	CG2	VAL	199	2.659	5.027	18.281	1.00	13.58
ATOM	1619	C	VAL	199	3.373	1.409	19.481	1.00	16.06
ATOM	1620	0	VAL	199	4.605	1.357	19.510	1.00	16.06
ATOM	1621	N	VAL	200	2.577	0.355	19.622	1.00	16.58
ATOM	1623	CA	VAL	200	3.155	-0.982	19.806	1.00	17.20
ATOM	1624	CB	VAL	200	2.560	-1.638	21.061	1.00	16.35
ATOM	1625	CG1	VAL	200	3.010	-3.077	21.270	1.00	16.38
ATOM	1626	CG2	VAL	200	2.967	-0.810	22.282	1.00	15.48
ATOM	1627	C	VAL	200	2.990	-1.801	18.536	1.00	18.36
ATOM	1628	0	VAL	200	1.904	-1.886	17.977	1.00	18.31
ATOM	1629	N	CYS	201	4.110	-2.341	18.059	1.00	20.04
ATOM	1631	CA	CYS	201	4.128	-3.146	16.840	1.00	21.76
ATOM	1632	C	CYS	201	4.844	-4.464	17.130	1.00	23.13
ATOM	1633	0	CYS	201	5.999	-4.481	17.553	1.00	23.15
ATOM	1634	СВ	CYS	201	4.817	-2.436	15.676	1.00	19.76
ATOM	1635	SG	CYS	201	4.619	-0.648	15.652	1.00	19.28
ATOM	1636	N	SER	202	4.132	-5.568	16.936	1.00	24.64
ATOM	1638	CA	SER	202	4.670	-6.904	17.179	1.00	25.74
ATOM	1639	CB	SER	202	5.727	-7.253	16.126	1.00	28.62
ATOM	1640	0G	SER	202	5.136	-7.308	14.831	1.00	34.02
ATOM	1642	C	SER	202	5.204	-7.040	18.597	1.00	25.48
ATOM	1643	0	SER	202	6.265	-7.614	18.854	1.00	26.72
ATOM	1644	N	GLY	203	4.447	-6.512	19.562	1.00	24.84
ATOM	1646	CA	GLY	203	4.819	-6.593	20.959	1.00	23.55
ATOM	1647	C	GLY	203	5.997	-5.743	21.387	1.00	22.58
					100				

ATOM	1648	0	GLY	203	6.541	-5.972	22.479	1.00 22.91
ATOM	1649	N	LYS	204	6.422	-4.777	20.577	1.00 21.72
ATOM	1651	CA	LYS	204	7. 531	-3.908	20.974	1.00 20.49
ATOM	1652	СВ	LYS	204	8.758	-4.093	20.093	1.00 21.66
ATOM	1653	CG	LYS	204	9.239	-5.510	19.894	1.00 23.02
ATOM	1654	CD	LYS	204	9.997	-6.049	21.092	1.00 25.31
ATOM	1655	CE	LYS	204	10.582	-7.418	20.756	0.50 26.46
ATOM	1656	NZ	LYS	204	11.388	-7.951	21.890	1.00 31.45
ATOM	1660	C	LYS	204	7.088	-2.446	20.892	1.00 19.30
ATOM	1661	0	LYS	204	6.289	-2.117	20.008	1.00 19.10
ATOM	1662	N	LEU	209	7.593	-1.614	21.795	1.00 18.02
ATOM	1664	CA	LEU	209	7. 255	-0.185	21.725	1.00 16.97
ATOM	1665	CB	LEU	209	7.537	0.482	23.063	1.00 15.39
ATOM	1666	CG	LEU	209	7. 233	1.973	23.239	1.00 15.16
ATOM	1667	CD1	LEU	209	5.744	2.265	23.151	1.00 13.34
ATOM	1668	CD2	LEU	209	7. 790	2.466	24.570	1.00 14.52
ATOM	1669	C	LEU	209	8.059	0.455	20.598	1.00 16.75
ATOM	1670	0	LEU	209	9.269	0.648	20.751	1.00 17.04
ATOM	1671	N	GLN	210	7.438	0.805	19.476	1.00 16.37
ATOM	1673	CA	GLN	210	8.178	1.398	18.366	1.00 16.71
ATOM	1674	CB	GLN	210	7.731	0.769	17.037	1.00 18.33
ATOM	1675	CG	GLN	210	8.203	-0.654	16.830	1.00 20.86
ATOM	1676	CD	GLN	210	9.682	-0.830	16.577	1.00 22.75
ATOM	1677	0E1	GLN	210	10.426	0.122	16.339	1.00 23.70
ATOM	1678	NE 2	GLN	210	10.134	-2.086	16.605	1.00 23.57
ATOM	1681	C	GLN	210	8.042	2.910	18.260	1.00 16.01

ATOM	1682	0	GLN	210	8.898	3.562	17.650	1.00 16.23
ATOM	1683	N	GLY	211	6.970	3.467	18.818	1.00 15.31
ATOM	1685	CA	GLY	211	6.737	4.896	18.731	1.00 14.37
ATOM	1686	C	GLY	211	6.062	5.525	19.939	1.00 14.24
ATOM	1687	0	GLY	211	5.501	4.876	20.821	1.00 13.99
ATOM	1688	N	ILE	212	6.156	6.852	19.996	1.00 13.58
ATOM	1690	CA	ILE	212	5.530	7.675	21.018	1.00 12.96
ATOM	1691	CB	ILE	212	6.543	8.397	21.917	1.00 11.43
ATOM	1692	CG2	ILE	212	5.851	9.302	22.934	1.00 11.31
ATOM	1693	CG1	ILE	212	7.430	7.369	22.626	1.00 11.88
ATOM	1694	CD1	ILE	212	8.720	7.939	23.187	1.00 13.02
ATOM	1695	C	ILE	212	4.652	8.691	20.282	1.00 13.08
ATOM	1696	0	ILE	212	5.141	9.321	19.335	1.00 12.96
ATOM	1697	N	VAL	213	3.393	8.805	20.686	1.00 13.16
ATOM	1699	CA	VAL	213	2.504	9.796	20.071	1.00 13.99
ATOM	1700	СВ	VAL	213	1.092	9.766	20.672	1.00 13.40
ATOM	1701	CG1	VAL	213	0.159	10.752	19.973	1.00 13.23
ATOM	1702	CG2	VAL	213	0.486	8.365	20.607	1.00 14.48
ATOM	1703	C	VAL	213	3.133	11.184	20.231	1.00 14.72
ATOM	1704	0	VAL	213	3.283	11.674	21.360	1.00 14.75
ATOM	1705	N	SER	214	3.463	11.829	19.106	1.00 14.81
ATOM	1707	CA	SER	214	4.129	13.129	19.188	1.00 15.00
ATOM	1708	CB	SER	214	5.510	12.990	18.528	1.00 13.52
ATOM	1709	0G	SER	214	6.290	14.152	18.735	1.00 12.94
ATOM	1711	C	SER	214	3.336	14.281	18.603	1.00 16.33
ATOM	1712	0	SER	214	2.857	15.146	19.362	1.00 16.63

ATOM	1713	N	TRP	215	3.150	14.351	17.281	1.00 16.96
ATOM	1715	CA	TRP	215	2.443	15.500	16.708	1.00 17.32
ATOM	1716	CB	TRP	215	3.395	16.685	16.506	1.00 15.98
ATOM	1717	CG	TRP	215	4.554	16.447	15.585	1.00 17.99
ATOM	1718	CD2	TRP	215	4.672	16.827	14.209	1.00 17.49
ATOM	1719	CE2	TRP	215	5.937	16.404	13.758	1.00 18.22
ATOM	1720	CE3	TRP	215	3.824	17.486	13.311	1.00 19.28
ATOM	1721	CD1	TRP	215	5.735	15.828	15.899	1.00 17.88
ATOM	1722	NE1	TRP	215	6.573	15.799	14.812	1.00 17.45
ATOM	1724	CZ2	TRP	215	6.382	16.613	12.451	1.00 18.34
ATOM	1725	CZ3	TRP	215	4.266	17.697	12.011	1.00 18.88
ATOM	1726	CH2	TRP	215	5.533	17.264	11.598	1.00 18.19
ATOM	1727	C	TRP	215	1.778	15.172	15.382	1.00 18.08
ATOM	1728	0	TRP	215	1.987	14.112	14.807	1.00 18.03
ATOM	1729	N	GLY	216	0.988	16.115	14.900	1.00 19.33
ATOM	1731	CA	GLY	216	0.303	15.976	13.618	1.00 21.16
ATOM	1732	C	GLY	216	-0.304	17.347	13.304	1.00 23.11
ATOM	1733	0	GLY	216	-0.322	18.229	14.166	1.00 23.29
ATOM	1734	N	SER	217	-0.744	17.508	12.066	1.00 24.54
ATOM	1736	CA	SER	217	-1.387	18.769	11.669	1.00 26.25
ATOM	1737	CB	SER	217	-0.952	19.146	10.263	1.00 27.79
ATOM	1738	0G	SER	217	-1.469	20.401	9.865	1.00 31.80
ATOM	1740	C	SER	217	-2.888	18.543	11.821	1.00 26.72
ATOM	1741	0	SER	217	-3.551	18.044	10.906	1.00 27.92
ATOM	1742	N	GLY	219	-3.417	18.879	12.999	1.00 26.46
ATOM	1744	CA	GLY	219	-4.834	18.585	13.272	1.00 25.92

ATOM	1745	C	GLY	219	-4.942	17.071	13.512	1.00 25.39
ATOM	1746	0	GLY	219	-3.931	16.376	13.672	1.00 25.90
ATOM	1747	N	CYS	220	-6.160	16.552	13.525	1.00 24.73
ATOM	1749	CA	CYS	220	-6.377	15.125	13.723	1.00 24.41
ATOM	1750	C	CYS	220	-7.252	14.530	12.625	1.00 24.65
ATOM	1751	0	CYS	220	-8.309	15.072	12.282	1.00 24.87
ATOM	1752	CB	CYS	220	-7.060	14.860	15.071	1.00 22.63
ATOM	1753	SG	CYS	220	-6.398	15.836	16.444	1.00 24.10
ATOM	1754	N	ALA	221A	-6.830	13.409	12.064	1.00 24.31
ATOM	1756	CA	ALA	221A	-7.577	12.665	11.063	1.00 24.40
ATOM	1757	CB	ALA	221A	-8.853	12.111	11.711	1.00 24.83
ATOM	1758	C	ALA	221A	-7.898	13.426	9.785	1.00 24.56
ATOM	1759	0	ALA	221A	-8.894	13.132	9.117	1.00 24.28
ATOM	1760	N	GLN	221	-7.051	14.384	9.411	1.00 24.74
ATOM	1762	CA	GLN	221	-7.220	15.107	8.160	1.00 25.29
ATOM	1763	CB	GLN	221	-6.557	16.482	8.187	1.00 28.06
ATOM	1764	CG	GLN	221	-7.042	17.464	9.229	1.00 31.43
ATOM	1765	CD	GLN	221	-8.531	17.745	9.157	0.70 33.71
ATOM	1766	0E1	GLN	221	-9.054	17.983	8.062	0.70 36.32
ATOM	1767	NE 2	GLN	221	-9.220	17.657	10.290	0.70 34.99
ATOM	1770	C	GLN	221	-6.612	14.306	7.006	1.00 25.41
ATOM	1771	0	GLN	221	-5.668	13.548	7.218	1.00 24.87
ATOM	1772	N	LYS	222	-7.155	14.476	5.806	1.00 25.84
ATOM	1774	CA	LYS	222	-6.636	13.790	4.629	1.00 26.23
ATOM	1775	CB	LYS	222	-7.462	14.148	3.394	1.00 27.81
ATOM	1776	CG	LYS	222	-8.756	13.391	3.198	1.00 31.10

ATOM	1777	CD	LYS	222	-8.688	12.414	2.035	0.50 32.08
ATOM	1778	CE	LYS	222	-9.987	11.670	1.798	0.50 32.89
ATOM	1779	NZ	LYS	222	-11.218	12.506	1.830	0.50 33.78
ATOM	1783	C	LYS	222	-5.193	14.205	4.369	1.00 26.00
ATOM	1784	0	LYS	222	-4.891	15.398	4.462	1.00 26.41
ATOM	1785	N	ASN	223	-4.328	13.262	4.047	1.00 26.04
ATOM	1787	CA	ASN	223	-2.932	13.482	3.722	1.00 26.28
ATOM	1788	СВ	ASN	223	-2.806	14.394	2.480	1.00 29.51
ATOM	1789	CG	ASN	223	-3.447	13.749	1.267	1.00 32.14
ATOM	1790	0D1	ASN	223	-4.318	14.371	0.652	1.00 34.90
ATOM	1791	ND2	ASN	223	-3.041	12.523	0.956	1.00 32.87
ATOM	1794	C	ASN	223	-2.076	14.061	4.838	1.00 25.68
ATOM	1795	0	ASN	223	-0.953	14.515	4.584	1.00 25.92
ATOM	1796	N	LYS	224	-2.573	14.045	6.067	1.00 24.50
ATOM	1798	CA	LYS	224	-1.829	14.573	7. 205	1.00 23.54
ATOM	1799	CB	LYS	224	-2.393	15.897	7.692	1.00 24.28
ATOM	1800	CG	LYS	224	-2.324	17.100	6.764	1.00 24.92
ATOM	1801	CD	LYS	224	-3.059	18.244	7.460	0.50 25.61
ATOM	1802	CE	LYS	224	-3.101	19.546	6.704	0.50 26.64
ATOM	1803	NZ	LYS	224	-3.657	20.641	7.571	0.50 25.89
ATOM	1807	С	LYS	224	-1.836	13.527	8.322	1.00 22.78
ATOM	1808	0	LYS	224	-2.553	13.622	9.322	1.00 23.38
ATOM	1809	N	PR0	225	-1.038	12.483	8.118	1.00 21.67
ATOM	1810	CD	PR0	225	-0.079	12.344	6.992	1.00 21.23
ATOM	1811	CA	PR0	225	-0.900	11.408	9.090	1.00 20.66
ATOM	1812	СВ	PRO	225	-0.054	10.382	8.348	1.00 20.71

ATOM	1813	CG	PRO	225	0.786	11.191	7.415	1.00 21.04
ATOM	1814	C	PRO	225	-0.254	11.873	10.386	1.00 19.48
ATOM	1815	0	PRO	225	0.317	12.966	10.458	1.00 19.45
ATOM	1816	N	GLY	226	-0.338	11.061	11.437	1.00 18.09
ATOM	1818	CA	GLY	226	0.272	11.417	12.715	1.00 16.41
ATOM	1819	C	GLY	226	1.774	11.162	12.665	1.00 15.62
ATOM	1820	0	GLY	226	2.250	10.290	11.936	1.00 15.31
ATOM	1821	N	VAL	227	2.538	11.940	13.422	1.00 15.14
ATOM	1823	CA	VAL	227	3.992	11.789	13.482	1.00 14.65
ATOM	1824	CB	VAL	227	4.771	13.060	13.132	1.00 15.37
ATOM	1825	CG1	VAL	227	6.266	12.790	13.016	1.00 14.38
ATOM	1826	CG2	VAL	227	4.251	13.640	11.821	1.00 15.25
ATOM	1827	C	VAL	227	4.342	11.271	14.875	1.00 14.38
ATOM	1828	0	VAL	227	3.794	11.713	15.882	1.00 14.28
ATOM	1829	N	TYR	228	5.286	10.340	14.900	1.00 14.44
ATOM	1831	CA	TYR	228	5.646	9.638	16.120	1.00 14.50
ATOM	1832	CB	TYR	228	5.081	8.196	16.033	1.00 14.37
ATOM	1833	CG	TYR	228	3.572	8.190	15.865	1.00 14.60
ATOM	1834	CD1	TYR	228	2.735	8.202	16.970	1.00 14.91
ATOM	1835	CE1	TYR	228	1.356	8.236	16.833	1.00 15.93
ATOM	1836	CD2	TYR	228	2.986	8.239	14.604	1.00 14.96
ATOM	1837	CE2	TYR	228	1.616	8.292	14.443	1.00 15.00
ATOM	1838	CZ	TYR	228	0.809	8.283	15.563	1.00 15.96
ATOM	1839	ОН	TYR	228	-0.554	8.327	15.401	1.00 16.64
ATOM	1841	C	TYR	228	7.144	9.595	16.351	1.00 14.87
ATOM	1842	0	TYR	228	7.922	9.558	15.396	1.00 15.11

ATOM	1843	N	THR	229	7.546	9.618	17.618	1.00 14.82
ATOM	1845	CA	THR	229	8.955	9.538	17.983	1.00 14.90
ATOM	1846	CB	THR	229	9.176	9.906	19.459	1.00 13.38
ATOM	1847	0G1	THR	229	8.551	11.178	19.702	1.00 14.42
ATOM	1849	CG2	THR	229	10.659	9.994	19.789	1.00 13.86
ATOM	1850	C	THR	229	9.457	8.127	17.701	1.00 15.09
ATOM	1851	0	THR	229	8.855	7.151	18.154	1.00 15.20
ATOM	1852	N	LYS	230	10.557	8.038	16.968	1.00 15.35
ATOM	1854	CA	LYS	230	11.122	6.735	16.590	1.00 16.05
ATOM	1855	CB	LYS	230	11.908	6.965	15.304	1.00 15.18
ATOM	1856	CG	LYS	230	12.349	5.731	14.542	1.00 19.57
ATOM	1857	CD	LYS	230	12.830	6.160	13.157	1.00 19.90
ATOM	1858	CE	LYS	230	13.315	4.978	12.340	1.00 23.78
ATOM	1859	NZ	LYS	230	13.695	5.405	10.960	0.50 22.47
ATOM	1863	C	LYS	230	11.929	6.159	17.743	1.00 16.49
ATOM	1864	0	LYS	230	13.131	6.389	17.890	1.00 16.82
ATOM	1865	N	VAL	231	11.276	5.356	18.585	1.00 16.78
ATOM	1867	CA	VAL	231	11.910	4.799	19.781	1.00 17.12
ATOM	1868	CB	VAL	231	10.870	4.041	20.632	1.00 16.45
ATOM	1869	CG1	VAL	231	11.464	3.405	21.884	1.00 15.25
ATOM	1870	CG2	VAL	231	9.730	4.981	21.042	1.00 14.48
ATOM	1871	C	VAL	231	13.131	3.944	19.482	1.00 18.25
ATOM	1872	0	VAL	231	14.076	3.992	20.285	1.00 18.12
ATOM	1873	N	CYS	232	13.172	3.169	18.401	1.00 18.78
ATOM	1875	CA	CYS	232	14.347	2.338	18.137	1.00 19.91
ATOM	1876	С	CYS	232	15.642	3.147	18.107	1.00 20.19

ATOM	1877	0	CYS	232	16.718	2.559	18.284	1.00 21.09
ATOM	1878	CB	CYS	232	14.200	1.540	16.835	1.00 21.26
ATOM	1879	SG	CYS	232	14.038	2.566	15.351	1.00 22.59
ATOM	1880	N	ASN	233	15.587	4.458	17.885	1.00 19.78
ATOM	1882	CA	ASN	233	16.789	5.277	17.869	1.00 19.47
ATOM	1883	CB	ASN	233	16.579	6.585	17.103	1.00 20.07
ATOM	1884	CG	ASN	233	16.488	6.464	15.602	1.00 22.27
ATOM	1885	0D1	ASN	233	16.594	5.376	15.025	1.00 23.18
ATOM	1886	ND2	ASN	233	16.283	7.601	14.935	1.00 22.36
ATOM	1889	C	ASN	233	17.252	5.653	19.277	1.00 19.49
ATOM	1890	0	ASN	233	18.356	6.193	19.405	1.00 19.93
ATOM	1891	N	TYR	234	16.447	5.373	20.297	1.00 18.31
ATOM	1893	CA	TYR	234	16.751	5.776	21.659	1.00 17.73
ATOM	1894	CB	TYR	234	15.594	6.656	22.194	1.00 16.96
ATOM	1895	CG	TYR	234	15.406	7.914	21.373	1.00 16.11
ATOM	1896	CD1	TYR	234	16.226	9.019	21.587	1.00 15.68
ATOM	1897	CE1	TYR	234	16.073	10.164	20.830	1.00 15.09
ATOM	1898	CD2	TYR	234	14.436	7. 973	20.381	1.00 15.07
ATOM	1899	CE2	TYR	234	14.288	9.114	19.618	1.00 15.22
ATOM	1900	CZ	TYR	234	15.115	10.192	19.841	1.00 14.90
ATOM	1901	ОН	TYR	234	14.957	11.328	19.082	1.00 15.50
ATOM	1903	C	TYR	234	16.952	4.651	22.656	1.00 17.93
ATOM	1904	0	TYR	234	17.113	4.915	23.856	1.00 17.85
ATOM	1905	N	VAL	235	16.981	3.407	22.183	1.00 18.71
ATOM	1907	CA	VAL	235	17.124	2.271	23.108	1.00 19.00
ATOM	1908	CB	VAL	235	16.981	0.935	22.365	1.00 19.94

ATOM	1909	CG1	VAL	235	17.163	-0.255	23.300	1.00 20.59
ATOM	1910	CG2	VAL	235	15.606	0.868	21.690	1.00 18.79
ATOM	1911	C	VAL	235	18.403	2.380	23.925	1.00 18.96
ATOM	1912	0	VAL	235	18.343	2.150	25.143	1.00 19.11
ATOM	1913	N	SER	236	19.531	2.733	23.313	1.00 19.07
ATOM	1915	CA	SER	236	20.777	2.872	24.070	1.00 18.97
ATOM	1916	СВ	SER	236	21.978	3.122	23.153	1.00 19.97
ATOM	1917	0G	SER	236	22.295	1.911	22.474	0.50 19.99
ATOM	1919	C	SER	236	20.677	4.009	25.088	1.00 19.01
ATOM	1920	0	SER	236	21.120	3.856	26.232	1.00 19.22
ATOM	1921	N	TRP	237	20.088	5.130	24.667	1.00 18.40
ATOM	1923	CA	TRP	237	19.938	6.259	25.579	1.00 18.11
ATOM	1924	СВ	TRP	237	19.402	7.485	24.838	1.00 19.25
ATOM	1925	CG	TRP	237	19.171	8.658	25.753	1.00 20.27
ATOM	1926	CD2	TRP	237	17.915	9.090	26.296	1.00 20.39
ATOM	1927	CE2	TRP	237	18.181	10.201	27.121	1.00 21.52
ATOM	1928	CE3	TRP	237	16.592	8.657	26.161	1.00 20.26
ATOM	1929	CD1	TRP	237	20.126	9.480	26.274	1.00 20.61
ATOM	1930	NE1	TRP	237	19.538	10.415	27.094	1.00 21.65
ATOM	1932	CZ2	TRP	237	17.175	10.891	27.803	1.00 20.86
ATOM	1933	CZ3	TRP	237	15.593	9.339	26.832	1.00 19.95
ATOM	1934	CH2	TRP	237	15.890	10.444	27.643	1.00 20.70
ATOM	1935	C	TRP	237	19.046	5.868	26.759	1.00 17.79
ATOM	1936	0	TRP	237	19.396	6.170	27.907	1.00 18.02
ATOM	1937	N	ILE	238	17.915	5.227	26.493	1.00 17.43
ATOM	1939	CA	ILE	238	17.008	4.830	27.573	1.00 16.75

ATOM	1940	CB	ILE	238	15.757	4.129	27.009	1.00 14.61
ATOM	1941	CG2	ILE	238	14.915	3.443	28.083	1.00 14.75
ATOM	1942	CG1	ILE	238	14.898	5.151	26.252	1.00 12.44
ATOM	1943	CD1	ILE	238	13.884	4.530	25.310	1.00 12.14
ATOM	1944	C	ILE	238	17.751	3.951	28.575	1.00 17.10
ATOM	1945	0	ILE	238	17.734	4.200	29.781	1.00 16.81
ATOM	1946	N	LYS	239	18.388	2.902	28.047	1.00 17.25
ATOM	1948	CA	LYS	239	19.089	1.955	28.909	1.00 17.48
ATOM	1949	СВ	LYS	239	19.617	0.781	28.069	1.00 17.75
ATOM	1950	CG	LYS	239	18.476	-0.055	27.502	0.70 17.30
ATOM	1951	CD	LYS	239	18.976	-1.125	26.547	0.70 17.67
ATOM	1952	CE	LYS	239	18.026	-2.226	27.069	0.00 14.71
ATOM	1953	NZ	LYS	239	16.816	-2.558	27.803	0.00 12.85
ATOM	1957	C	LYS	239	20.199	2.600	29.720	1.00 17.48
ATOM	1958	0	LYS	239	20.317	2.314	30.918	1.00 17.49
ATOM	1959	N	GLN	240	21.000	3.460	29.096	1.00 17.53
ATOM	1961	CA	GLN	240	22.101	4.102	29.820	1.00 17.94
ATOM	1962	CB	GLN	240	23.072	4.798	28.859	1.00 17.46
ATOM	1963	CG	GLN	240	23.889	3.827	28.015	1.00 15.79
ATOM	1964	CD	GLN	240	24.731	4.449	26.925	0.50 11.28
ATOM	1965	0E1	GLN	240	24.473	5.550	26.442	0.50 8.50
ATOM	1966	NE 2	GLN	240	25.764	3.733	26.480	0.50 6.45
ATOM	1969	C	GLN	240	21.574	5.067	30.872	1.00 18.17
ATOM	1970	0	GLN	240	22.126	5.134	31.974	1.00 18.20
ATOM	1971	N	THR	241	20.497	5.781	30.564	1.00 18.78
ATOM	1973	CA	THR	241	19.928	6.734	31.519	1.00 19.77

ATOM	1974	СВ	THR	241	18.905	7.637	30.803	1.00 20.52
ATOM	1975	0G1	THR	241	19.569	8.196	29.652	1.00 22.01
ATOM	1977	CG2	THR	241	18.394	8.754	31.701	1.00 19.50
ATOM	1978	C	THR	241	19.311	6.032	32.720	1.00 20.39
ATOM	1979	.0	THR	241	19.505	6.472	33.857	1.00 21.00
ATOM	1980	N	ILE	242	18.561	4.963	32.484	1.00 20.79
ATOM	1982	CA	ILE	242	17.942	4.195	33.565	1.00 21.41
ATOM	1983	СВ	ILE	242	17.028	3.100	32.973	1.00 20.25
ATOM	1984	CG2	ILE	242	16.654	2.009	33.966	1.00 22.43
ATOM	1985	CG1	ILE	242	15.772	3.792	32.426	1.00 20.44
ATOM	1986	CD1	ILE	242	14.835	2.934	31.614	1.00 21.22
ATOM	1987	С	ILE	242	19.019	3.627	34.483	1.00 21.97
ATOM	1988	0	ILE	242	18.865	3.624	35.707	1.00 22.36
ATOM	1989	N	ALA	243	20.089	3.119	33.883	1.00 22.23
ATOM	1991	CA	ALA	243	21.174	2.520	34.647	1.00 23.04
ATOM	1992	CB	ALA	243	22.191	1.894	33.705	1.00 22.33
ATOM	1993	C	ALA	243	21.876	3.508	35.570	1.00 23.78
ATOM	1994	0	ALA	243	22.354	3.095	36.631	1.00 24.47
ATOM	1995	N	SER	244	21.919	4.784	35.220	1.00 24.28
ATOM	1997	CA	SER	244	22.616	5.759	36.055	1.00 25.07
ATOM	1998	CB	SER	244	23.462	6.683	35.173	1.00 26.54
ATOM	1999	0G	SER	244	22.688	7.293	34.155	1.00 29.47
ATOM	2001	C	SER	244	21.679	6.551	36.954	1.00 25.45
ATOM	2002	0	SER	244	22.150	7.425	37.695	1.00 25.75
ATOM	2003	N	ASN	245	20.384	6.248	36.934	1.00 25.49
ATOM	2005	CA	ASN	245	19.437	6.965	37.785	1.00 26.11

ATOM	2006	CB	ASN	245	18.470	7. 789	36.925	1.00 24.41
ATOM	2007	CG	ASN	245	19.162	9.045	36.423	1.00 23.54
ATOM	2008	0D1	ASN	245	19.289	10.013	37.173	1.00 23.37
ATOM	2009	ND2	ASN	245	19.631	8.992	35.188	1.00 22.19
ATOM	2012	C	ASN	245	18.663	6.045	38.722	1.00 27.10
ATOM	2013	0	ASN	245	17.705	6.528	39.369	1.00 27.59
ATOM	2014	OT	ASN	245	19.027	4.853	38.846	1.00 30.18
ATOM	2015	CAL	WAT	261	-10.395	4.437	36.888	1.00 18.32
ATOM	2016	OW	WAT	301	-1.905	7.924	24.789	1.00 13.66
ATOM	2019	OW	WAT	302	-3.665	9.241	26.313	1.00 15.63
ATOM	2022	OW	WAT	303	-9.112	8.458	22.785	1.00 16.12
ATOM	2025	OW	WAT	304	-5.931	10.617	34.634	1.00 17.10
ATOM	2028	OW	WAT	305	-11.310	0.631	26.880	1.00 17.19
ATOM	2031	OW	WAT	306	-0.787	0.522	22.396	1.00 17.23
ATOM	2034	OW	WAT	307	-3.444	3.351	33. 201	1.00 13.33
ATOM	2037	OW	WAT	308	5.006	5.791	25. 277	1.00 19.75
ATOM	2040	OW	WAT	309	-8.079	0.037	29.875	1.00 24.23
ATOM	2043	OW	WAT	310	7.366	7.266	8.088	1.00 15.28
ATOM	2046	OW	WAT	311	-3.758	9.067	10.146	1.00 19.62
ATOM	2049	OW	WAT	312	20.035	5.835	21.691	1.00 34.37
ATOM	2052	OW	WAT	313	-9.263	0.178	36.339	1.00 18.40
ATOM	2055	OW	WAT	314	-7.666	8.824	36.166	1.00 13.97
ATOM	2058	OW	WAT	315	-14.841	6.946	41.704	1.00 20.78
ATOM	2061	OW	WAT	316	-8.410	13.423	37. 346	1.00 24.38
ATOM	2064	OW	WAT	317	-5.766	-1.147	29.343	1.00 18.91
ATOM	2067	OW	WAT	318	-4.402	0.647	31.241	1.00 23.08

ATOM	2070	OW	WAT	319	-4.375	-1.845	32.558	1.00 23.45
ATOM	2073	OW	WAT	320	-5.842	17.320	27.349	1.00 42.83
ATOM	2076	OW	WAT	321	7.523	21.578	25.140	1.00 28.90
ATOM	2079	OW	WAT	322	5.103	22.746	34.944	1.00 46.94
ATOM	2082	OW	WAT	323	-6.385	-1.037	42.786	1.00 27.79
ATOM	2085	OW	WAT	324	11.562	12.947	17.562	1.00 15.70
ATOM	2088	OW	WAT	325	8.819	13.635	17.313	1.00 21.35
ATOM	2091	OW	WAT	326	14.822	26.186	16.671	1.00 35.99
ATOM	2094	OW	WAT	327	-3.204	-2.998	39.828	1.00 19.21
ATOM	2097	OW	WAT	328	11.012	2.702	16.573	1.00 16.63
ATOM	2100	OW	WAT	329	1.330	-5.608	19.128	1.00 43.50
ATOM	2103	OW	WAT	330	-13.902	-0.321	28.492	1.00 24.51
ATOM	2106	OW	WAT	331	-4.573	11.560	9.792	1.00 23.44
ATOM	2109	OW	WAT	332	1.521	12.180	1.528	1.00 49.66
ATOM	2112	OW	WAT	333	14.501	-1.800	30.682	1.00 46.44
ATOM	2115	OW	WAT	334	-2.138	14.426	12.268	1.00 20.63
ATOM	2118	OW	WAT	335	-4.516	15.252	10.600	1.00 22.81
ATOM	2121	OW	WAT	336	-8.174	18.772	13.212	1.00 35.32
ATOM ·	2124	OW	WAT	337	-1.961	8.326	13.265	1.00 16.26
ATOM	2127	OW	WAT	338	-12.080	6.664	18.760	1.00 25.51
ATOM	2130	OW	WAT	339	-14.199	8.888	16.578	1.00 39.71
ATOM	2133	OW	WAT	340	-16.374	6.757	26.510	1.00 37.14
ATOM	2136	OW	WAT	341	-16.108	0.642	20.094	1.00 35.24
ATOM	2139	OW	WAT	342	-16.951	1.093	27.947	0.00 60.49
ATOM	2142	OW	WAT	343	-14.520	0.419	32.271	1.00 27.20
ATOM	2145	OW	WAT	344	-1.262	0.371	33.168	1.00 20.86

A.T.O.Y. O.J.T.J. O.W.		-7.162	-4.301	22.655	1.00 37.89
ATOM 2151 OW	WAT 346	-1.805	20.417	29.761	0.00 58.31
ATOM 2154 OW	WAT 347	1.429	21.046	37.118	1.00 47.87
ATOM 2157 OW	WAT 348	-0.896	21.487	35.925	1.00 29.56
ATOM 2160 OW	WAT 349	-2.835	21.253	37.744	1.00 25.03
ATOM 2163 OW	WAT 350	1.164	19.352	28.698	1.00 52.69
ATOM 2166 OW	WAT 351	-10.110	12.012	28.301	1.00 28.86
ATOM 2169 OW	WAT 352	-14.467	16.603	34.198	1.00 29.37
ATOM 2172 OW	WAT 353	-9.250	13.967	33.389	1.00 28.69
ATOM 2175 OW	WAT 354	-9.611	12.174	35.316	1.00 38.61
ATOM 2178 OW	WAT 355	-9.466	6.344	38.206	1.00 17.02
ATOM 2181 OW	WAT 356	-10.453	8.578	39.359	1.00 28.30
ATOM 2184 OW	WAT 357	-9.300	11.905	41.394	1.00 36.78
ATOM 2187 OW	WAT 358	14.747	20.278	30.078	1.00 36.32
ATOM 2190 OW	WAT 359	6.614	15.778	39.119	1.00 49.87
ATOM 2193 OW	WAT 360	7.482	16.178	36.633	1.00 35.09
ATOM 2196 OW	WAT 361	-10.577	2.288	35.636	1.00 17.91
ATOM 2199 OW	WAT 362	-17.953	8.402	33.704	0.00 55.79
ATOM 2202 OW	WAT 363	-8.501	0.395	42.579	1.00 36.49
ATOM 2205 OW	WAT 364	3.589	7.895	45.556	1.00 35.20
ATOM 2208 OW	WAT 365	-0.371	7.644	45.345	1.00 38.96
ATOM 2211 OW	WAT 366	19.821	15.695	18.056	1.00 41.79
ATOM 2214 OW	WAT 367	19.785	9.708	21.907	1.00 35.36
ATOM 2217 OW	WAT 368	19.487	12.580	19.272	1.00 48.93
ATOM 2220 OW	WAT 369	12.639	19.211	11.814	0.00 54.44

ATOM	2226	OW	WAT	371	9.886	19.069	12.907	1.00 31.26
ATOM	2229	OW	WAT	372	12.233	7.143	43.046	1.00 52.20
ATOM	2232	OW	WAT	373	6.445	-5.652	40.962	1.00 36.91
ATOM	2235	OW	WAT	374	4.606	-5.714	44.714	0.00 65.81
ATOM	2238	OW	WAT	375	11.061	-4.763	36.679	1.00 33.56
ATOM	2241	OW	WAT	376	9.140	-5.689	33.824	1.00 43.41
ATOM	2244	OW	WAT	377	10.725	-2.963	28.659	1.00 40.56
ATOM	2247	OW	WAT	378	12.769	-4.338	26.870	1.00 38.89
ATOM	2250	OW	WAT	379	15.964	-4.104	24.128	1.00 51.98
ATOM	2253	OW	WAT	380	19.795	-0.196	31.987	1.00 35.49
ATOM	2256	OW	WAT	381	-8.496	0.342	14.158	1.00 22.55
ATOM	2259	OW	WAT	382	2.307	-5.866	14.005	1.00 44.57
ATOM	2262	OW	WAT	383	2.498	-6.538	10.655	1.00 44.30
ATOM	2265	OW	WAT	384	-15.363	16.316	26.483	1.00 39.41
ATOM	2268	OW	WAT	385	9.333	4.021	7.838	1.00 36.25
ATOM	2271	OW	WAT	386	-3.936	5.517	3.775	1.00 39.66
ATOM	2274	OW	WAT	387	8.554	-4.103	16.301	1.00 33.24
ATOM	2277	OW	WAT	388	12.231	-5.552	17.382	1.00 43.10
ATOM	2280	OW	WAT	389	23.544	-0.308	25.873	0.00 55.07
ATOM	2283	OW	WAT	390	26.904	7.165	28.806	1.00 35.67
ATOM	2286	OW	WAT	391	-10.833	1.716	13.801	1.00 43.50
ATOM	2289	OW	WAT	392	16.796	2.873	38.104	1.00 41.58
ATOM	2292	OW	WAT	393	15.383	8.458	43.074	1.00 53.57
ATOM	2295	OW	WAT	394	14.564	3.748	43.968	0.00 56.92
ATOM	2298	OW	WAT	395	11.392	20.761	29.053	1.00 51.71
ATOM	2301	OW	WAT	396	8.516	20.315	27.818	1.00 47.65

ATOM	2304	OW	WAT	397	16.071	19.180	27.062	1.00 28.16
ATOM	2307	OW	WAT	398	17.574	21.082	24.462	1.00 41.18
ATOM	2310	OW	WAT	399	12.956	19.381	32.472	1.00 31.10
ATOM	2313	OW	WAT	400	14.062	17.031	32.626	1.00 17.66
ATOM	2316	OM	WAT	401	-13.817	7.163	44.236	1.00 24.66
ATOM	2319	OW	WAT	402	-12.637	9.443	45.648	1.00 43.03
ATOM	2322	OW	WAT	403	-13.063	9.443	41.281	1.00 49.01
ATOM	2325	OW	WAT	404	-10.208	9.853	42.431	0.00 64.70
ATOM	2328	OW	WAT	405	-4.440	-3.379	35.760	0.00 65.46
ATOM	2331	OW	WAT	406	5.182	13.405	46.093	0.00 69.23
ATOM	2334	OW	WAT	407	16.729	19.952	15.903	1.00 46.80
ATOM	2337	OW	WAT	408	5.808	-7.130	25.473	0.00 56.92
ATOM	2340	OW	WAT	409	17.156	-1.465	12.577	1.00 42.39
ATOM	2343	OW	WAT	410	-5.822	18.214	4.919	0.00 54.99
ATOM	2346	OW	WAT	411	25.575	3.970	31.354	0.00 62.34
ATOM	2349	OW	WAT	412	-16.767	10.544	19.256	0.00 64.65
ATOM	2352	OW	WAT	413	-17.748	20.182	20.212	0.00 56.38
ATOM	2355	OW	WAT	414	-7.323	-4.649	20.119	1.00 44.13
ATOM	2358	OW	WAT	415	-10.787	-1.783	34.989	0.00 55.92
ATOM	2361	OW	WAT	416	-13.608	-2.603	35.338	0.00 67.72
ATOM	2364	OW	WAT	417	2.140	-6.629	27.622	1.00 57.12
ATOM	2367	OW	WAT	418	5.624	-7.393	33.086	1.00 51.41
ATOM	2370	OW	WAT	419	-0.467	-5.289	23.074	1.00 56.34
ATOM	2373	OW	WAT	420	1.542	-6.560	23.136	0.00 64.13
ATOM	2376	OW	WAT	421	3.243	-8.673	34.546	0.00 54.90
ATOM	2379	OW	WAT	422	1.598	17.652	19.736	1.00 28.42

ATOM	2382	OW	WAT	423	-12.509	12.142	30.297	1.00 41.87
ATOM	2385	OW	WAT	424	-10.315	13.952	30.383	1.00 45.19
ATOM	2388	OW	WAT	425	-9.090	16.079	29.562	1.00 53.57
ATOM	2391	OW	WAT	426	4.831	14.523	40.996	1.00 52.07
ATOM	2394	OW	WAT	427	23.282	17.422	18.791	0.00 65.44
ATOM	2397	OW	WAT	428	8.912	-4.954	11.527	0.00 58.65
ATOM	2400	OW	WAT	429	10.424	2.471	13.416	1.00 52.56
ATOM	2403	OW	WAT	430	10.821	3.585	10.508	1.00 48.72
ATOM	2406	OW	WAT	431	-4.500	-0.846	7.126	0.00 67.95
ATOM	2409	OW	WAT	432	15.461	13.743	7.165	0.00 70.52
ATOM	2412	OW	WAT	433	10.444	16.076	5.820	1.00 29.74
ATOM	2415	OW	WAT	434	5.977	16.935	-1.738	0.00 64.28
ATOM	2418	OW	WAT	435	-4.099	11.548	7.241	1.00 45.18
ATOM	2421	OW	WAT	436	19.824	2.507	19.888	1.00 52.15
ATOM	2424	OW	WAT	437	17.571	9.412	40.762	1.00 50.76
ATOM	2427	OW	WAT	438	-12.084	14.783	32.955	1.00 61.10
ATOM	2430	OW	WAT	439	-14.319	13.654	36.237	1.00 46.42
ATOM	2433	OW	WAT	440	10.305	0.389	45.808	1.00 55.47
ATOM	2436	OW	WAT	441	12.728	-1.773	37.959	1.00 44.25
ATOM	2439	OW	WAT	442	-16.698	2.610	32.300	1.00 48.23
ATOM	2442	OW	WAT	443	-20.330	5.527	37.297	0.00 68.00
ATOM	2445	OW	WAT	444	16.067	23.811	24.444	1.00 40.14
ATOM	2448	OW	WAT	445	13.872	24.125	22.546	1.00 38.85
ATOM	2451	OW	WAT	446	13.211	22.905	25.588	1.00 52.18
ATOM	2454	OW	WAT	447	14. 250	21. 203	27.596	1.00 49.65
ATOM	2457	OW	WAT	448	11.097	-0.207	5.135	1.00 45.26

ATOM	2460	OW	WAT	449	17.705	14.453	10.537	1.00 46.15
ATOM	2463	OW	WAT	450	12.820	9.329	9.063	1.00 46.90
ATOM	2466	OW	WAT	451	-10.201	5.893	7.144	0.00 55.67
ATOM	2469	OW	WAT	452	18.821	-1.094	34.949	0.00 63.99
ATOM	2472	OW	WAT	453	-13.271	4.374	12.121	0.00 56.00
ATOM	2475	OW	WAT	454	-14.727	-3.622	28.448	1.00 47.02
ATOM	2478	OW	WAT	455	-6.411	9.706	9.159	1.00 49.91
ATOM	2481	OW	WAT	456	-12.971	6.349	10.137	0.00 54.99
ATOM	2484	OW	WAT	457	-13.748	9.558	11.612	1.00 52.69
ATOM	2487	OW	WAT	458	-9.443	16.370	5.577	0.00 55.45
ATOM	2490	OW	WAT	459	-0.320	18.412	5.281	0.00 58.33
ATOM	2493	OW	WAT	460	4.955	-7.798	30.123	0.00 57.88
ATOM	2496	OW	WAT	461	19.213	9.356	19.235	1.00 42.32
ATOM	2499	OW	WAT	462	22.192	14.313	22.804	0.00 55.48
ATOM	2502	OW	WAT	463	24.699	15.133	22.637	1.00 46.44
ATOM	2505	OW	WAT	464	2.194	-9.965	16.937	0.00 57.62
ATOM	2508	OW	WAT	465	-15.309	5.827	16.276	0.00 64.00
ATOM	2511	OW	WAT	466	-17.428	2.366	35.225	1.00 55.39
ATOM	2514	OW	WAT	467	-18.115	0.972	37.559	0.00 55.35
ATOM	2517	OW	WAT	468	-22.716	7.152	33.166	0.00 67.20
ATOM	2520	OW	WAT	469	-1.339	-6.980	25.875	0.00 57.21
ATOM	2523	OW	WAT	470	-11.395	16.258	29.651	0.00 54.67
ATOM	2526	OW	WAT	471	-14.841	14.210	30.032	0.00 70.09
ATOM	2529	OW	WAT	472	24.148	19.508	20.056	1.00 50.79
ATOM	2532	OW	WAT	473	6.172	-5.650	7.247	1.00 47.86
ATOM	2535	OW	WAT	474	-15.558	14.275	13.831	1.00 49.06

ATOM	2538	OW	WAT	475	-11.551	13.412	7. 269	0.00 65.88	
ATOM	2541	OW	WAT	476	15.297	-0.120	36.648	0.00 58.35	
ATOM	2544	OM	WAT	477	13.465	0.550	39.350	0.00 54.68	
ATOM	2547	OW	WAT	478	17.613	17.690	12.395	0.00 58.42	
ATOM	2550	OW	WAT	479	4.499	5.235	46.423	1.00 54.09	
ATOM	2553	OW	WAT	480	5.100	-3.001	44.685	1.00 58.78	
ATOM	2556	OW	WAT	481	5.978	10.750	-3.760	0.00 60.94	
ATOM	2559	OW	WAT	482	17.386	19.082	18.354	1.00 45.88	
ATOM	2562	OW	WAT	483	18.605	14.496	14.534	0.00 58.27	
ATOM	2565	S	SUL	600	-1.062	17.594	23.022	0.70 27.41	
ATOM	2566	01	SUL	600	0.126	17.737	22.115	0.70 27.95	
ATOM	2567	02	SUL	600	-0.658	17.859	24.438	0.70 28.16	
ATOM	2568	03	SUL	600	-2.097	18.572	22.571	0.70 27.83	
ATOM	2569	04	SUL	600	-1.619	16.201	22.956	0.70 27.86	
ATOM	2570	S	SUL	601	12.698	16.949	3.137	0.50 36.89	
ATOM	2571	01	SUL	601	13.521	18.169	3.428	0.50 37.13	
ATOM	2572	02	SUL	601	12.749	16.036	4.328	0.50 37.33	
ATOM	2573	03	SUL	601	11.285	17.364	2.848	0.50 37.22	
ATOM	2574	04	SUL	601	13.224	16.221	1.936	0.50 37.43	
ATOM	2575	CL1	D68	700	0.468	11.440	16.442	0.80 21.92	
ATOM	2576	CN1	D68	700	-2.705	17.122	17.860	0.80 28.24	
ATOM	2577	CN2	D68	700	-1.919	16.757	18.977	0.80 24.99	
ATOM	2578	CN3	D68	700	-1.151	15.579	18.945	0.80 22.83	
ATOM	2579	CN4	D68	700	-1.204	14.798	17.778	0.80 22.58	
ATOM	2580	CN5	D68	700	-0.447	13.619	17.713	0.80 21.98	
ATOM	2581	CN6	D68	700	-0.506	12.857	16.529	0.80 21.26	

1	ATOM	2582	CN7	D68	700	-1.300	13.208	15.420	0.80	22.58
İ	ATOM	2583	CN8	D68	700	-2.073	14.384	15.463	0.80	22.33
1	ATOM	2584	CN9	D68	700	-2.012	15.168	16.630	0.80	22.74
1	MOTA	2585	C10	D68	700	-2.765	16.352	16.680	0.80	24.34
1	ATOM	2586	S1	D68	700	-3.651	18.631	17.910	0.80	31.92
İ	ATOM	2587	01	D68	700	-4.067	18.929	16.566	0.80	32.72
Ä	ATOM	2588	02	D68	700	-4.645	18.509	18.933	0.80	32.63
İ	ATOM	2589	N1	D68	700	-2.603	19.797	18.345	0.80	31.40
ı	ATOM	2590	CP1	D68	700	-1.602	20.297	17.391	0.80	31.68

産業上の利用可能性

本発明では、トリプシン型セリンプロテアーゼのS1ポケットと相互作用する新たな部分構造を見出し、それを利用したトリプシン型セリンプロテアーゼ阻害薬を創出した。そのトリプシン型セリンプロテアーゼ阻害薬は、従来知られていたAsp189とのイオン結合によってS1ポケットと相互作用する部分構造を有する化合物と比較して、経口吸収性に優れたトリプシン型セリンプロテアーゼ阻害薬となり得る。

請求の範囲

1. 下記の一般式(1)または(2)

(式中、 R^1 および R^2 は、水素原子、C1-C3のアルキル基、Nロゲン原子、C2-C3のアルケニル基またはエチニル基を示し、 R^3 および R^4 は、水素原子、水酸基またはアミノ基を示し、 X_1 、 X_2 、 X_3 および X_4 は、CHまたはNを示し、 Y_1 および Y_2 は、CHまたはNを示し、 Y_3 は、NH、OまたはSを示す。)で表される基を有する化合物をトリプシン型セリンプロテアーゼに作用させ、当該基がトリプシン型セリンプロテアーゼのS1ポケットに進入することによってトリプシン型セリンプロテアーゼを阻害する方法。

2. 下記の一般式(3) または(4)

$$R^{\frac{1}{2}} \underbrace{X_{1} \times X_{2}}_{X_{4} \times X_{3}} A$$
 (3)

(式中、 R^1 および R^2 は、水素原子、C1-C3のアルキル基、ハロゲン原子、C2-C3のアルケニル基またはエチニル基を示し、 R^3 および R^4 は、水素原子、水酸基またはアミノ基を示し、 X_1 、 X_2 、 X_3 および X_4 は、CHまたはNを示し、 Y_1 および Y_2 は、CHまたはNを示し、 Y_3 は、NH、OまたはSを示し、AおよびBは、スルホニル基、カルボニル基、メチレン基、酸素原子、イオウ原子または窒素原子を示す。)で表される基を有する化合物をトリプシン型セリンプロテアーゼに作用させ、当該基が、トリプシン型セリンプロテアーゼのS1ポケットに進入することによってトリプシン型セリンプロテアーゼを阻害する方法。

- 3. トリプシン型セリンプロテアーゼを阻害する化合物であって、トリプシン型セリンプロテアーゼのS1ポケットに進入する請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基を有する化合物。
- 4. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基(ただし、 R^1 および R^2 は水素原子ではない)を有する化合物であって、当該基が、
- 1) Ala190, Val213 およびTyr228,
- 2) Ser190, Val213 およびTvr228,

- 3) Ser190、Thr213およびTyr228、
- 4) Ala190、Val213およびPhe228、
- 5) Thr190、Thr213およびTyr228、
- 6) Ala190、Ile213およびTyr228、
- 7) Ser190、Ile213およびTyr228、
- 8) Gly190、Thr213およびTyr228、または
- 9) Thr190、Thr213およびTvr228

のいずれかのアミノ酸残基を有するトリプシン型セリンプロテアーゼのS1ポケットに進入することによって、当該トリプシン型セリンプロテアーゼを阻害する 化合物。

- 5. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基(ただし、 R^1 および R^2 は水素原子ではない)を有する化合物であって、
- 1) Ala190, Val213 およびTyr228,
- 2) Ser190、Val213およびTyr228、
- 3) Ser 190, Thr 213 およびTvr 228,
- 4) Ala190、Val213およびPhe228、
- 5) Thr190、Thr213およびTyr228、
- 6) Ala190、Ile213およびTyr228、
- 7) Ser190、Ile213およびTvr228、
- 8) Glv190、Thr213およびTvr228、または
- 9) Thr190、Thr213およびTyr228

のいずれかのアミノ酸残基を有するトリプシン型セリンプロテアーゼのS1ポケットに進入し、それらのアミノ酸残基と相互作用して、当該トリプシン型セリンプロテアーゼを阻害する化合物。

6. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一

般式(3)もしくは(4)で表される基(ただし、R¹およびR²は水素原子ではない)を有する化合物であって、

- 1) Ala190, Val213 およびTyr228、または
- 2) Ser190、Val213およびTvr228

のいずれかのアミノ酸残基を有するトリプシン型セリンプロテアーゼのS1ポケットに進入し、それらのアミノ酸残基と相互作用して、当該トリプシン型セリンプロテアーゼを阻害する化合物。

- 7. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基を有し、当該基が活性化血液凝固第X因子のS1ポケットに進入することによって活性化血液凝固第X因子阻害作用を発現する化合物。
- 8. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基(ただし、R¹およびR²は水素原子ではない)を有し、当該基が活性化血液凝固第X因子のS1ポケットに進入することによって活性化血液凝固第X因子阻害作用を発現する化合物。
- 9. 請求項1に記載の一般式(1)もしくは(2)または請求項2に記載の一般式(3)もしくは(4)で表される基(ただし、R¹およびR²は水素原子ではない)を有し、当該基が活性化血液凝固第X因子のS1ポケットに進入し、A1a190、Val213およびTyr228と相互作用することによって活性化血液凝固第X因子阻害作用を発現する化合物。
- 10. 請求項1または請求項2の方法によりトリプシン型セリンプロテアーゼを阻害する化合物を有効成分とする医薬。
 - 11. 請求項3~9に記載の化合物を有効成分とする医薬。
- 12. 請求項1または2の方法によりトリプシン型セリンプロテアーゼを阻害する化合物を有効成分とするトリプシン型セリンプロテアーゼ阻害薬。
 - 13. 請求項3~6に記載の化合物を有効成分とするトリプシン型セリンプロ

テアーゼ阻害薬。

14. 請求項7~9に記載の化合物を有効成分とする活性化血液凝固第X因子 阻害薬。

- 15. 請求項1または請求項2の方法によりトリプシン型セリンプロテアーゼを阻害する化合物とトリプシン型セリンプロテアーゼとの複合体の結晶。
- 16. 請求項15に記載の結晶をX線解析して得られたデータを利用して、トリプシン型セリンプロテアーゼを阻害すると予想される薬物をコンピュータを使用してスクリーニングする方法。

Asp
$$189$$
 の HN の 0

図 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/01344

	CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D495/04, 513/04, A61K31/496, 31/4365, 31/5377, A61P43/00, 7/02, C12N9/99, G01N33/15, 33/50, G06F17/30, 17/50								
According t	ding to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELD	S SEARCHED								
	ocumentation searched (classification system followed .Cl ⁷ C07D495/04, 513/04, A61K31								
Jits Koka	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1940-1992 Toroku Jitsuyo Shinan Koho 1994-1996 Kokai Jitsuyo Shinan Koho 1971-1992 Jitsuyo Shinan Toroku Koho 1996-2000								
	lata base consulted during the international search (nam LUS (STN), REGISTRY (STN)	ne of data base and, where practicable, sea	rch terms used)						
CAFI	102 (21N), KEGISIKI (21N)								
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		<u> </u>						
Category*	Citation of document, with indication, where ap	poropriate, of the relevant passages	Relevant to claim No.						
		Shobrane, or me received by	Troit in the state of the state						
, X	WO, 2000/9480, A1 (Daiichi Phan 24 February, 2000 (24.02.00) & JP, 2000-119253, A	rmaceutical Co., Ltd.),	3-16						
х	WO, 99/16747, A1 (Daiichi Pharm 08 April, 1999 (08.04.99) & EP, 1031563, A1	3-16							
	& EF, 1031303, AI								
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.							
	d categories of cited documents:	"T" later document published after the inte							
conside	ent defining the general state of the art which is not cred to be of particular relevance	priority date and not in conflict with the understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or theory understand the principle or the principl	erlying the invention						
date	document but published on or after the international filing	"X" document of particular relevance; the considered novel or cannot be considered.	red to involve an inventive						
cited to special	ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified)	"Y" step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is							
means	ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such combination being obvious to a person							
than th	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent f							
	actual completion of the international search April, 2001 (13.04.01)	Date of mailing of the international search report 24 April, 2001 (24.04.01)							
	nailing address of the ISA/	Authorized officer							
Japa	anese Patent Office								
Facsimile N	0.	Telephone No.							

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/01344

вох	1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This	inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	\boxtimes	Claims Nos.: 1,2
	~_3	because they relate to subject matter not required to be searched by this Authority, namely:
	is	Claims 1 and 2 include methods for treatment of the human body by therapy, Ithus relate to subject matters which this International Searching Authority not required, under the provisions of Article 17(2)(a)(i) of the PCT and e 39.1(iv) of the Regulations under the PCT, to search.
2.		Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.		Claims Nos.:
		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box		Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This	s Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
		ļ
	_	
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Ren	nark	on Protest The additional search fees were accompanied by the applicant's protest.
		No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

In t. Cl 7 C07D495/04, 513/04, A61K31/496, 31/4365, 31/5377, A61P43/00, 7/02, C12N9/99, G01N33/15, 33/50, G06F17/30, 17/50

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C07D495/04, 513/04, A61K31/496, 31/4365, 31/5377

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1940-1992年

日本国公開実用新案公報

1971-1992年

日本国登録実用新案公報

1994-1996年

日本国実用新案登録公報

1996-2000年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO, 2000/9480, A1 (Daiichi Pharmaceutical Co., Ltd.) 24. Februar y. 2000(24, 02.00) & JP, 2000-119253, A	3-16
X	WO, 99/16747, A1 (Daiichi Pharmaceutical Co., Ltd.) 8. April. 1999 (08. 04. 99) & EP, 1031563, A1	3-16

□ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

13.04.01

国際調査報告の発送日

24.04.01

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 田村 聖子

(四)

4C 9051

電話番号 03-3581-1101 内線 3452

第 I 欄 法第8名 成しなか	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) 条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. X	請求の範囲 1、2 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲 1 、 2 は、治療による人体の処置方法に関する発明を含むので、 PCT 第 17 条 (2) (a) (i) 及び PCT 規則 39.1 (iV) の規定により、この国際調査機関が国際調査を行うことを要しない対象に係るものである。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に立	☆べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	·
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	至手数料の異議の申立てに関する注意
	追加調査手数料の納付と共に出願人から異議申立てがあった。 追加調査手数料の納付と共に出願人から異議申立てがなかった