13TSTST8

Himadri Mandal

October 29, 2021

§1 Solution

Solution.

Claim 1.1 — 2 is a primitive root $\pmod{3^k}$

Proof. Assume $\operatorname{ord}_{3^k}(2) = \alpha \leq 2 \cdot 3^{k-1}$. It is obvious that α has to be even. Note that $v_3(2^{\alpha} - 1) = v_3(4^{\frac{\alpha}{2}} - 1) = 1 + v_3(\alpha/2) \geq k \implies \alpha \geq 2 \cdot 3^{k-1}$.

So,
$$\alpha = 2 \cdot 3^{k-1}$$

Claim 1.2 — f(n) is periodic $\pmod{3^k}$ with period 3^k

Proof. We will induct, base case is trivial, assume the proposition is true for $n \leq N$. Now notice that the interval

$$[a, a + 3^{N+1} - 1] = [a, a + 3^{N} - 1] \cup [a + 3^{N}, 2 \cdot 3^{N} - 1] \cup [a + 2 \cdot 3^{N}, a + 3^{N+1} - 1]$$
$$= I_{1} \cup I_{2} \cup I_{3}$$
(say)

As, I_1 is a residual class mod 3^N .

$$f(a+3^N) - f(a) = \sum_{i \in I_1} 2^{f(i)} \equiv 2^1 + 2^3 \dots + 2^{2 \cdot 3^N - 1} \pmod{3^{N+1}}$$
$$\equiv \frac{2}{3} \cdot (4^{3^N} - 1) \pmod{3^{N+1}}$$

by virtue of Claim 1.1 and the fact that f(i) is odd. Clearly this is analogous over I_2, I_3 , and we get,

$$f(a+3^{N+1}) - f(a) \equiv 2(4^{3^N} - 1) \equiv 0 \pmod{3^{N+1}}$$

thanks to LTE.

To finish, just see that $f(a+2\cdot 3^N) \not\equiv f(a) \not\equiv f(a+3^N) \pmod{3^{N+1}}$. Thus, $f(a) \equiv f(b) \pmod{3^{N+1}} \iff 3^{N+1}|a-b$. Which finishes the problem.