What is orbit determination?

- The process of estimating (or determining) the orbit of a body (e.g., spacecraft, asteroid, planet) in space
- Estimation is based on the type of observational measurements available
- There are many methods of orbit determination, and there are many very sophisticated methods based on statistical approaches
- When an orbit is determined from observational data, orbital propagation techniques are then used
- Orbits eventually diverge from their predicted paths
- Chapter 4 presents three methods, we will start in this course with

Lambert's Problem

There are several solutions to Lambert's problem, we will focus on Gauss' solution and restrict it to elliptical orbits with transfer angles less than 90°

Lambert's Problem

- Orbit determination from two position vectors and time
- Very important problem that has been studied extensively
- First solved by Johann Heinrich Lambert (18th century)
- Applications in orbit transfer, rendezvous, and targeting

13

Lambert's Problem

- To start, let's recognize: (i) orbital motion is planar and (ii) the position ($\vec{\bf r}$) and velocity ($\vec{\bf v}$) vectors are not parallel
- This allows us to relate \vec{r} and \vec{v} at one

point in an orbit to another by the relations:
$$\vec{\mathbf{r}}_2 = F\vec{\mathbf{r}}_1 + G\vec{\mathbf{v}}_1$$

We can obtain the velocity, $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2 = F_t\vec{\mathbf{r}}_1 + G_t\vec{\mathbf{v}}_1$

Scalars F, G, F_t , and G_t are known as the Lagrangian Coefficients

if we know F and G

$$\vec{\mathbf{v}}_1 = \frac{\vec{\mathbf{r}}_2 - F\vec{\mathbf{r}}_1}{G} \longrightarrow$$

To find F and G, let's start by expressing $\vec{\mathbf{r}}$ and $\vec{\mathbf{v}}$ in the perifocal frame, \mathcal{F}_p

$$\overrightarrow{\boldsymbol{\mathcal{F}}}_{P}^{T} = [\hat{\mathbf{x}}_{p} \quad \hat{\mathbf{y}}_{p} \quad \hat{\mathbf{z}}_{p}]$$

$$\vec{\mathbf{r}} = \vec{\mathcal{F}}_{P}^{T} \mathbf{r}_{P}$$

$$\mathbf{r}_{P} = [r \cos \theta \quad r \sin \theta \quad 0]^{T}$$

$$\vec{\mathbf{v}} = \vec{\mathcal{F}}_{P}^{T} \mathbf{v}_{P}$$

$$\mathbf{v}_{P} = \begin{bmatrix} -\sqrt{\frac{\mu}{p}} \sin \theta & \sqrt{\frac{\mu}{p}} (e + \cos \theta) & 0 \end{bmatrix}^{T}$$

$$\begin{bmatrix} \vec{\mathbf{r}} \\ \vec{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} r\cos\theta & r\sin\theta \\ -\sqrt{\frac{\mu}{p}}\sin\theta & \sqrt{\frac{\mu}{p}}(e+\cos\theta) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix}$$

Let's take the determinant and see if the matrix is invertible

$$\mathbf{v} = \begin{bmatrix} -\sqrt{\frac{\mu}{p}} \sin \theta & \sqrt{\frac{\mu}{p}} (e + \cos \theta) & 0 \end{bmatrix}^{\mathrm{T}} det \begin{pmatrix} r \cos \theta & r \sin \theta \\ -\sqrt{\frac{\mu}{p}} \sin \theta & \sqrt{\frac{\mu}{p}} (e + \cos \theta) \end{pmatrix} = r\sqrt{\frac{\mu}{p}} \cos \theta (e + \cos \theta) + r\sqrt{\frac{\mu}{p}} \sin^{2} \theta = r\sqrt{\frac{\mu}{p}} (1 + e \cos \theta)$$

Since $h \neq 0$ for an orbit, the matrix is invertible

14

$$\begin{bmatrix} \vec{\mathbf{r}} \\ \vec{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} r\cos\theta & r\sin\theta \\ -\sqrt{\frac{\mu}{p}}\sin\theta & \sqrt{\frac{\mu}{p}}(e+\cos\theta) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix}$$

Lambert's Problem

Lambert's Problem
$$\begin{bmatrix}
r\cos\theta & r\sin\theta \\
-\sqrt{\frac{\mu}{p}}\sin\theta & \sqrt{\frac{\mu}{p}}(e+\cos\theta)
\end{bmatrix}^{-1} = \begin{bmatrix}
\frac{1}{p}(e+\cos\theta) & -\frac{r}{\sqrt{\mu p}}\sin\theta \\
\frac{1}{p}\sin\theta & \frac{r}{\sqrt{\mu p}}\cos\theta
\end{bmatrix}$$
We can now take the inverse:

The unit vectors for the
$$\mathcal{F}_p$$
 can now be obtained from $\vec{\mathbf{r}}$ and $\vec{\mathbf{v}}$

$$\begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix} = \begin{bmatrix} \frac{1}{p}(e + \cos\theta) & -\frac{r}{\sqrt{\mu p}}\sin\theta \\ \frac{1}{p}\sin\theta & \frac{r}{\sqrt{\mu p}}\cos\theta \end{bmatrix} \begin{bmatrix} \vec{\mathbf{r}} \\ \vec{\mathbf{v}} \end{bmatrix} \quad \text{So we can represent} \\ \vec{\mathbf{r}}_1, \vec{\mathbf{v}}_1 \text{ and } \vec{\mathbf{r}}_2, \vec{\mathbf{v}}_2 \text{:} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix} = \begin{bmatrix} \frac{1}{p}(e + \cos\theta_1) & -\frac{r_1}{\sqrt{\mu p}}\sin\theta_1 \\ \frac{1}{p}\sin\theta_1 & \frac{r_1}{\sqrt{\mu p}}\cos\theta_1 \end{bmatrix} \begin{bmatrix} \vec{\mathbf{r}}_1 \\ \vec{\mathbf{v}}_1 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix} = \begin{bmatrix} \frac{1}{p} (e + \cos \theta_1) & -\frac{r_1}{\sqrt{\mu p}} \sin \theta_1 \\ \frac{1}{p} \sin \theta_1 & \frac{r_1}{\sqrt{\mu p}} \cos \theta_1 \end{bmatrix} \begin{bmatrix} \vec{\mathbf{r}}_1 \\ \vec{\mathbf{v}}_1 \end{bmatrix}$$

$$\begin{bmatrix} \vec{\mathbf{r}}_2 \\ \vec{\mathbf{v}}_2 \end{bmatrix} = \begin{bmatrix} r_2 \cos \theta_2 & r_2 \sin \theta_2 \\ -\sqrt{\frac{\mu}{p}} \sin \theta_2 & \sqrt{\frac{\mu}{p}} (e + \cos \theta_2) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{y}}_p \end{bmatrix}$$

• Substitute 1 into 2:

$$\begin{bmatrix} \vec{\mathbf{r}}_2 \\ \vec{\mathbf{v}}_2 \end{bmatrix} = \begin{bmatrix} r_2 \cos \theta_2 & r_2 \sin \theta_2 \\ -\sqrt{\frac{\mu}{p}} \sin \theta_2 & \sqrt{\frac{\mu}{p}} (e + \cos \theta_2) \end{bmatrix} \begin{bmatrix} \frac{1}{p} (e + \cos \theta_1) & -\frac{r_1}{\sqrt{\mu p}} \sin \theta_1 \\ \frac{1}{p} \sin \theta_1 & \frac{r_1}{\sqrt{\mu p}} \cos \theta_1 \end{bmatrix} \begin{bmatrix} \vec{\mathbf{r}}_1 \\ \vec{\mathbf{v}}_1 \end{bmatrix} \longrightarrow F = \frac{r_2}{p} (e \cos \theta_2 + \cos \theta_2 \cos \theta_1 + \sin \theta_2 \sin \theta_1)$$

$$G = \frac{r_1 r_2}{\sqrt{\mu p}} (\sin \theta_2 \cos \theta_1 - \cos \theta_2 \sin \theta_1)$$

Remember, we only $\vec{\mathbf{r}}_2 = F\vec{\mathbf{r}}_1 + G\vec{\mathbf{v}}_1$ need F and G

$$\vec{\mathbf{r}}_2 = F\vec{\mathbf{r}}_1 + G\vec{\mathbf{v}}_1$$

$$\vec{\mathbf{v}}_2 = F_1\vec{\mathbf{r}}_1 + G_2\vec{\mathbf{v}}_2$$

 $\vec{\mathbf{v}}_2 = F_t \vec{\mathbf{r}}_1 + G_t \vec{\mathbf{v}}_1$

$$r = \frac{p}{1 + e\cos\theta}$$

Using trig. identities and the polar eq. for the orbit (for
$$e\cos\theta_2$$
)
$$F = 1 - \frac{r_2}{p}(1 - \cos(\theta_2 - \theta_1))$$
$$r = \frac{p}{1 + e\cos\theta}$$
$$G = \frac{r_1r_2}{\sqrt{\mu p}}\sin(\theta_2 - \theta_1)$$

(Clarkson

Lambert's Problem

- Looking closer at the Lagrangian Coefficients, we have: $r_1 = |\vec{\mathbf{r}}_1|$, $r_2 = |\vec{\mathbf{r}}_2|$, and $\theta_2 \theta_1$ is just the angle between $\vec{\mathbf{r}}_1$ and $\vec{\mathbf{r}}_2$
- So to determine the orbit, all we need is $p \leftarrow$ Fortunately, we can find this by using $h = \sqrt{\mu p}$ and the sector-triangle area ratio η

Sector-Triangle Area Ratio

We will try to describe this briefly (more details in de Ruiter, Ch. 4.2)

Area of the triangle defined by \vec{r}_1 and \vec{r}_2

$$\Delta_1 = \frac{1}{2} |\vec{\mathbf{r}}_1 \times \vec{\mathbf{r}}_2|$$

Area of the orbit sector defined by $\vec{\mathbf{r}}_1$ and $\vec{\mathbf{r}}_2$

$$S_1 = \frac{h}{2}(t_2 - t_1)$$

(from Kepler's 2nd law)

Sector-triangle area ratio n

$$\eta_1 = \frac{S_1}{\Delta_1} = \frac{h(t_2 - t_1)}{|\vec{\mathbf{r}}_1 \times \vec{\mathbf{r}}_2|}$$

 $h = \sqrt{\mu p}$ Substitute in and rearrange:

$$p = \frac{\eta^2 |\vec{\mathbf{r}}_1 \times \vec{\mathbf{r}}_2|^2}{\mu(t_2 - t_1)^2}$$

So now, all we need to do is find η given the transfer time

The sector-triangle ratio η for a two-body elliptical orbit between two vectors can be solved for using a transcendental equation, which must be solved iteratively

$$\eta = 1 + \frac{m}{\eta^2} W \left(\frac{m}{\eta^2} - l \right)$$

We can use an iterative procedure to compute (see Ch. 4.2 and 4.3)

$$m = \frac{\mu(t_2 - t_1)}{[2\sqrt{r_1 r_2}\cos((\theta_2 - \theta_1)/2)]^3}$$

$$l = \frac{r_1 + r_2}{4\sqrt{r_1 r_2} \cos((\theta_2 - \theta_1)/2)} - \frac{1}{2}$$

$$W(w) = \frac{2g - \sin 2g}{\sin^3 g}$$

$$g = 2\sin^{-1}\sqrt{w}$$

Summary of Gauss' Solution to Lambert's Problem (elliptical orbit, transfer angle less than 90°)

1. Compute the sector-triangle area ratio

$$\eta = 1 + \frac{m}{\eta^2} W \left(\frac{m}{\eta^2} - l \right)$$

Using the secant method: $\eta_{i+1} = \eta_i - f(\eta_i) \frac{\eta_i - \eta_{i-1}}{f(\eta_i) - f(\eta_{i-1})}$ For questions in this course, it will be sufficient to approximate n = n.

where:
$$f(x) = 1 - x + \frac{m}{x^2} W\left(\frac{m}{x^2} - l\right)$$

With starting values: $\eta_1 = \eta_H + 0.1$, and $\eta_2 = \eta_H$

sufficient to approximate $\eta = \eta_H$

$$\eta_H = \frac{12}{22} + \frac{10}{22} \sqrt{1 + \frac{44}{9} \frac{m}{l + 5/6}}$$

where η_H is known as the **Hansen Approximation**

2. Compute the semi-parameter:

$$p = \frac{\eta^2 |\vec{\mathbf{r}}_1 \times \vec{\mathbf{r}}_2|^2}{\mu (t_2 - t_1)^2}$$

4. Compute the velocity, $\vec{\mathbf{v}}_1$: $\vec{\mathbf{v}}_1 = \frac{\vec{\mathbf{r}}_2 - F \vec{\mathbf{r}}_1}{C}$

$$\vec{\mathbf{v}}_1 = \frac{\vec{\mathbf{r}}_2 - F\vec{\mathbf{r}}_1}{G}$$

3. Compute the Lagrangian Coefficients:

$$F = 1 - \frac{r_2}{p} (1 - \cos(\theta_2 - \theta_1))$$
 $G = \frac{r_1 r_2}{\sqrt{\mu p}} \sin(\theta_2 - \theta_1)$

$$G = \frac{r_1 r_2}{\sqrt{\mu p}} \sin(\theta_2 - \theta_1)$$

Now we have the state vectors $\vec{\mathbf{r}}_1$ and $\vec{\mathbf{v}}_1$, which are sufficient for determining the orbit

The orbital elements can also be computed, if needed

$$R_{earth} = 149.598023 \times 10^6 \text{ km}, R_{mars} = 227.939186 \times 10^6 \text{ km}$$

Orbit Determination $\mu_{earth} = 3.986 \times 10^5 \text{ km}^3/s^2, \mu_{mars} = 4.305 \times 10^4 \text{ km}^3/s^2, \mu_{sun} = 1.327144 \times 10^{11} \text{ km}^3/s^2$

It is desired to perform an interplanetary transfer from Earth to Mars. It is determined that a Hohmann transfer requires too much time. Assume that the Earth and Mars both possess coplanar circular orbits. At time t = 0, the Earth has true anomaly $\theta_E(0) = 0$, and Mars has true anomaly $\theta_M(0) = 30^\circ$. The spacecraft is desired to arrive at Mars when Mars has a true anomaly $\theta_M = 45^\circ$.

- (a) Determine the time of flight of the transfer in days
- (b) Determine the heliocentric velocity vector for the s/c upon departing Earth's SOI (assume $\eta = \eta_H$ for the sector-triangle area ratio)

For (a) solve for the orbital angular velocity of Mars, and then find the time of flight between $\theta_M(0)$ and $\theta_M(t)$

$$n \equiv \frac{2\pi}{T} = \sqrt{\frac{\mu}{a^3}}$$
 $n_{\rm M} = \sqrt{\frac{\mu_s}{r_{\rm M}^3}} = \sqrt{\frac{132.7 \times 10^9 \text{ km}^3/\text{s}^2}{(227.9 \times 10^6 \text{ km})^3}} = 1.059 \times 10^{-7} \text{ rad/s}$

$$\theta(t) - \theta(t_0) = n(t - t_0)$$

$$t = \frac{\theta_M(t) - \theta(t_0)}{n_M}$$

$$= \frac{45 \times \left(\frac{\pi}{180}\right) - 30\left(\frac{\pi}{180}\right)}{1.059 \times 10^{-7}}$$

$$= 2.4731 \times 10^6 \text{ s} = 28.62 \text{ days}$$

$R_{earth} = 149.598023 \times 10^6 \text{ km}, R_{mars} = 227.939186 \times 10^6 \text{ km}$

Orbit Determination $\mu_{earth} = 3.986 \times 10^5 \text{ km}^3/s^2$, $\mu_{mars} = 4.305 \times 10^4 \text{ km}^3/s^2$, $\mu_{sun} = 1.327144 \times 10^{11} \text{ km}^3/s^2$

It is desired to perform an interplanetary transfer from Earth to Mars. It is determined that a Hohmann transfer requires too much time. Assume that the Earth and Mars both possess coplanar circular orbits. At time t = 0, the Earth has true anomaly $\theta_E(0) = 0$, and Mars has true anomaly $\theta_M(0) = 30^\circ$. The spacecraft is desired to arrive at Mars when Mars has a true anomaly $\theta_M = 45^\circ$.

- (a) Determine the time of flight of the transfer in days
- (b) Determine the heliocentric velocity vector for the s/c upon departing Earth's SOI (assume $\eta = \eta_H$ for the sector-triangle area ratio)

For (b) we need to solve Lambert's problem,

- Starting point is given by the position of the Earth at t = 0: $\vec{\mathbf{R}}_E = R_{earth} \vec{\mathbf{x}} = 149.598023 \times 10^6 \, \vec{\mathbf{x}} \, \mathrm{km}$
- $\vec{\mathbf{R}}_{M} = R_{mars} \cos 45^{\circ} \vec{\mathbf{x}} + R_{mars} \sin 45^{\circ} \vec{\mathbf{v}}$ Final position of Mars at *t*: $= 1.6118 \times 10^8 \, \mathbf{\vec{x}} + 1.6118 \times 10^8 \, \mathbf{\vec{v}} \, \mathrm{km}$
- The angle of transfer: $\Delta\theta = 45^{\circ}$

$$\eta_{H} = \frac{12}{22} + \frac{10}{22} \sqrt{1 + \frac{44}{9} \frac{m}{l + 5/6}}$$

$$l = \frac{r_{1} + r_{2}}{4\sqrt{r_{1}r_{2}}\cos((\theta_{2} - \theta_{1})/2)} - \frac{1}{2}$$

$$m = \frac{\mu(t_{2} - t_{1})^{2}}{[2\sqrt{r_{1}r_{2}}\cos((\theta_{2} - \theta_{1})/2)]^{3}}$$

(1) Find the sector-triangle area ratio:

$$m = \frac{\mu_{sun}t^2}{\left[2\sqrt{R_{earth}R_{mars}}\cos(\Delta\theta/2)\right]^3} = 0.0204$$

$$l = \frac{R_{earth} + R_{mars}}{4\sqrt{R_{earth}R_{mars}}\cos(\Delta\theta/2)} - \frac{1}{2} = 0.0532$$

$$l = \frac{R_{earth} + R_{mars} \cos(\Delta\theta/2)}{4\sqrt{R_{earth}R_{mars}} \cos(\Delta\theta/2)} - \frac{1}{2} = 0.0532 \qquad \eta_H = \frac{12}{22} + \frac{10}{22} \sqrt{1 + \frac{44}{9} \frac{m}{l + 5/6}} = 1.0249$$
Clarkson

12

 $R_{earth} = 149.598023 \times 10^6 \text{ km}, R_{mars} = 227.939186 \times 10^6 \text{ km}$

Orbit Determination
$$\mu_{earth} = 3.986 \times 10^5 \text{ km}^3/s^2$$
, $\mu_{mars} = 4.305 \times 10^4 \text{ km}^3/s^2$, $\mu_{sun} = 1.327144 \times 10^{11} \text{ km}^3/s^2$

It is desired to perform an interplanetary transfer from Earth to Mars. It is determined that a Hohmann transfer requires too much time. Assume that the Earth and Mars both possess coplanar circular orbits. At time t=0, the Earth has true anomaly $\theta_{E}(0)=0$, and Mars has true anomaly $\theta_M(0) = 30^\circ$. The spacecraft is desired to arrive at Mars when Mars has a true anomaly $\theta_M = 45^\circ$.

- (a) Determine the time of flight of the transfer in days
- (b) Determine the heliocentric velocity vector for the s/c upon departing Earth's SOI (assume $\eta = \eta_H$ for the sector-triangle area ratio)

For (b) we need to solve Lambert's problem,

$$\eta_H = 1.0249$$

$$\eta_H = 1.0249$$
 $\vec{\mathbf{R}}_E = 149.598023 \times 10^6 \, \vec{\mathbf{x}} \, \text{km}$

$$\Lambda \theta = 45^{\circ}$$

$$\Delta \theta = 45^{\circ}$$
 $\vec{\mathbf{R}}_{M} = 1.6118 \times 10^{8} \, \vec{\mathbf{x}} + 1.6118 \times 10^{8} \, \vec{\mathbf{y}} \, \text{km}$

 $t = 2.4731 \times 10^6 \text{ s} = 28.62 \text{ days}$

(2) Compute the semiparameter:

$$p = \frac{\eta^2 |\vec{\mathbf{r}}_1 \times \vec{\mathbf{r}}_2|^2}{\mu(t_2 - t_1)^2} \qquad p = \frac{\eta^2 |\vec{\mathbf{R}}_E \times \vec{\mathbf{R}}_M|^2}{\mu_{\text{cur}} t^2} = 7.524 \times 10^8 \text{ km}$$

(4) Compute the velocity, $\vec{\mathbf{V}}$:

$$\vec{\mathbf{v}}_1 = \frac{\vec{\mathbf{r}}_2 - F\vec{\mathbf{r}}_1}{G}$$

$$\vec{\mathbf{V}} = \frac{\vec{\mathbf{R}}_M - F\vec{\mathbf{R}}_E}{G}$$

$$\vec{V} = 10.3 \, \vec{x} + 66.8 \, \vec{y} \, \text{km/s}$$

$$F = 1 - \frac{-mars}{p} (1 - \cos \Delta \theta) = 0.9113$$

$$G = \frac{r_1 r_2}{\sqrt{\mu p}} \sin(\theta_2 - \theta_1)$$

$$G = \frac{r_1 r_2}{\sqrt{\mu p}} \sin(\theta_2 - \theta_1)$$

$$G = \frac{R_{earth} R_{mars}}{\sqrt{\mu_{sym} p}} \sin \Delta \theta = 2.413 \times 10^6$$

