104.
$$\int \tan x \sec^2 x \, dx =$$

107. $\int \frac{dx}{x^2 + 7x + 6} =$

égale :

1, 32/3

1.
$$\frac{1}{2}\cot^2 x + C$$
 3. $\frac{1}{2}\tan^2 x + C$

$$x + C$$
 5. $\frac{1}{2\cos^2 x} + C$ (B.-98)

2.
$$\frac{1}{2}\cos^2 x + C$$
 4. $-\frac{1}{2}\tan^2 x + C$

105.
$$\int_{1}^{\sqrt{c}} x \ln x \, dx$$
 égale www.ecoles-rdc.net
1. $\frac{e^4 + 3}{4e^2}$ 2. $\frac{1}{4} \left(e^2 + 1 \right)$ 3. $\frac{e^2}{4}$ 4. $\frac{4}{e}$ 5. $\frac{1}{4}$

106.
$$\int \frac{x + 27}{x^2 + 25} dx$$
 égale

$$\frac{dx \text{ égale}}{+5)^{11}}$$

$$\int \frac{1}{x^2 - 25} dx \text{ egale}$$
1. $\frac{1}{5} \ln \left[\frac{(x+5)^{11}}{(x-5)^6} \right] + c$ 3. $\frac{1}{10} \ln \left[\frac{(x-5)^{10}}{(x+5)^6} \right] + c$ 5. $\frac{1}{5} \ln \left[\frac{(x+5)^{10}}{(x-5)^6} \right] + c$

2.16/3

 2.32π

$$\frac{1}{-\ln n}$$

$$\frac{1}{2} \ln \left[\frac{\zeta}{2} \right]$$

2.
$$\frac{1}{5} \ln \left[\frac{(x-5)^6}{(x+5)^{11}} \right] + c$$
 4. $\frac{1}{10} \ln \left[\frac{(x+5)^{11}}{(x-5)^6} \right] + c$

1.
$$\ln \left| \left(\frac{x+1}{x+6} \right) \right| + c$$
 3. $\frac{1}{5} \ln \left| \left(\frac{x+1}{x+6} \right) \right| + c$ 5. $\frac{1}{5} \ln \left| \left(\frac{x-6}{x-1} \right) \right| + c$

3. 18π

$$4. \frac{1}{5} \ln \left| \frac{1}{5} \right| \right| \right| \right|$$

$$\frac{1}{5}\ln\left(\frac{x}{2}\right)$$

$$\left(\begin{array}{c} x+6 \end{array}\right)$$

$$\ln \left(\frac{x-1}{x-1} \right) + c$$

$$2. \frac{1}{5} \ln \left| \left(\frac{x+6}{x+1} \right) + c \right| + c \qquad 4. \frac{1}{5} \ln \left| \left(\frac{x-1}{x+6} \right) + c \right|$$

$$\left(\frac{x-1}{x+6}\right)+c$$

$$\frac{1}{6}$$
 +c

$$\left|\frac{1}{6}\right|$$
+c

$$\left|\frac{1}{6}\right|$$
+c

$$\frac{1}{5}\ln\left[\frac{\Delta}{4}\right]$$

égale:

1.
$$\frac{1125\pi}{35}$$
 2. 32π 3. $\frac{1128\pi}{7}$ 4. $\frac{256\pi}{35}$ 5. $\frac{2372\pi}{41}$ (M. 99)

(M.-2000)

$$41$$

$$2 = 10 \text{ yaut}$$

109. L'aire comprise entre les paraboles
$$y^2 = 10x$$
 et $x^2 = 10y$ vaut :

es paraboles
$$y'' = 10x$$
 et $x'' = 10y$ vaux :
3. 100/3 4. 16 5. 48 (M.

droite x = 3, en tournant autour de 0x vaut :
$$1 \times 8\pi = 2.32\pi = 3.18\pi = 4.72\pi$$

10. Le volume limité par la surface engendré par la parabole
$$y^2 = 4x$$
 et la droite $y = 3$ en tournant autour de $0x$ vaut :