11 layne - For your Fato. HO282 1101545 - Mike

ENGINEERING AND DEVELOPMENT SUPPORT OF GENERAL DECON
TECHNOLOGY FOR THE DARCOM INSTALLATION RESTORATION PROGRAM

Task 10. Analysis of LAAP Lagoon Water

Circulation Copy

Debra A. Price William E. Jones Judith F. Kitchens

June 1981

Submitted to:

Commander
U.S. Army Hazardous and Toxic Materials Agency
Aberdeen Proving Ground (Edgewood Area), Maryland 21010

Michael Asselin (DRXTH-TE-D)
Project Officer

Contract No. DAAKII-80-C-0027

ATLANTIC RESEARCH CORPORATION 5390 Cherokee Avenue Alexandria, Virginia 22314

20070419606

Distribution unlimited, approved for public release

Task 10 - Analysis of LAAP Lagoon Water

A sample of lagoon water was received on 7 May 1981 from Louisiana AAP. This sample was immediately refrigerated until analysis.

The lagoon water sample was a deep red-orange color and contained no particulates. The pH of the sample as received was 8.0. The following analyses were run on this sample:

- COD
- lead and zinc
- neutral, basic and acidic ethyl ether exractions followed by GC-MS of the concentrated extracts to identify components
- derivatization of the acidic extract and GC/MS of the derivative to identify acidic components
- quantitation of RDX, TNT, and 1,3,5-trinitrobenzene (TNB)

A. Experimental Proceedure

The lead and zinc concentrations in the lagoon water were determined by atomic absorption according to approved USATHAMA method #4A. Detection limits for lead and zinc by this method are 0.250 mg/L and 0.177 mg/L, respectively. The COD contents of the lagoon water was determined according to the procedure set forth in Standard Method No. 508.

The netural extraction was performed by placing 10 ml of the lagoon water in a 20 ml culture vial with screw cap and teflon liner. The water was extracted with 1 ml of ethyl ether (A.C.S. reagent, Fisher Scientific). The ether layer was drawn off and placed in a Kuderna-Danish evaporator. The water sample was re-extracted with a second ml of ether and the extracts combined. The combined extracts were evaporated to 0.1 ml (100:1 concentration) and injected into a Hewlett-Packard 5992A GC-MS with a 9825 A calculator and 9866B printer. The following GC-MS conditions were used:

Column:

2% Dexsil 300 GC on 90/100 mesh

Anakrom Q in a 2 mm ID x 1/2 in OD x 6 ft

long column

temperature:

injection port - 210°C

oven - programmed from 140 to 260°C at 15°C/min

For the basic extraction, 10 ml of lagoon water were placed in a culture vial with screw cap and teflon liner. Sodium hydroxide (5 N) was added to the 10 ml to a pH of 11.0. The resulting solution was extracted, concentrated, and chromatographed as described above for the neutral extraction.

The acidic extraction was performed in the same manner as the basic extraction except that hydrochloric acid (6N) was added to the solution until a pH of 2 was reached. The resulting solution was extracted and chromatographed as described above. A second acid extract of 10 ml of lagoon water was performed. This extract was subjected to esterification using the BF3-methanol microesterification reagent (Supelco, Inc.). The ether extract was evaporated to dryness and the solids dissolved in 2 ml of benzene. This solution was added to the reagent, and boiled for 3 minutes. One ml of water was then added to stop the reaction. The layers were separated and the benzene layer concentrated before injecting into the GC/MS.

Identification of the components of the lagoon waters was accomplished by comparing the mass spectrum of the water components with that of the actual compound, if it was available. If the compound was not available, identification was made through comparison of the spectrum with the EPA-NIH files. For those compounds not in the EPA-NIH files, tentative identification was made through scientific evaluation of the mass spectra.

RDX, TNT, and TNB in the lagoon water were quantitated using HPLC. A reverse phase C-18 water radial compression column was used on a Perkin-Elmer Model #601 HPLC with a LC-55 variable wavelength detector and Cole-Palmer strip chart recorder. The carrier was 50% methanol water at a flow rate of 1.5 mL/min. UV detection was accomplished at 230 nm

B. Results

The lead, zinc, COD, RDX and TNT levels in the lagoon water were:

lead < 0.250 mg/L
 zine < 0.177 mg/L
 COD 42,336 mg/L
 RDX 89.5 mg/L
 TNT 26.3 mg/L
 TNB 12.0 mg/L

The chromatograms and the mass spectra of the GC peaks of the four extraction solutions are presented in Figures 1-4.

The neutral extract (Figure 1) had three major peaks (spectra #13, 14-15 and 17). Spectra #14, 15 and 17 were identified as TNT, 1,3,5-trinitrobenzene and RDX, respectively, by comparison with authentic SARMS of these compounds (see Figures 5-10). TNT and 1,3,5-trinitrobenzene are not well separated on this column. Both are present in the 12-27 ppm range in the lagoon water. Spectra #13 was tentatively identified as 2,6-bis(1,1-dimethylethyl)-4-methyl phenol by comparison with the EPA-NIH published spectra. It is expected that this is not the exact compound, but alkyl substituted phenol is highly indicated. The mass spectra of many of the alkyl substituted phenols are very similar. In addition to the major peak, a small peak (#18) was identified as 2-amino-4,6-dinitrotoluene by comparison with an authentic standard of the material.

The base extract (Figure 2) showed the presence of 2 main peaks: 1,3,5-trinitrobenzene and RDX. The 2-amino-4,6-dinitrotoluene and TNT were also present in this extract as well as small amounts of hydrocarbons and a compound that is similar to tributyltin chloride (spectra #47).

The acidic extract had numerous components as shown in Figure 3. The spectrum numbers and identification are listed below:

- 33 probably an isomer of di-t-butylmethyl phenol (tentative)
- 34 dinitrobenzene
- 35 C₁₆ hydrocarbon
- 36 chlorodinitrobenzene
- 37 C₁₇ hydrocarbon
- 38 dibutyltin chloride (tentative)
- 39 1,3,5-trinitrobenzene
- 40 unknown
- 41 phthalate ester
- 42 RDX
- 43 unknown

The derivatized acid extract had many of the components found in the underivatized acid extract plus several methyl esters of organic acids. The spectrum numbers and identification are listed below:

- 2 chlorodinitrobenzene
- 3 unknown? too small to get a good spectrum
- 4 a methyl ester of an organic acid probably myristic acid
- 5 TNT
- 6 methyl palmitate acid palmitate
- 7 RDX
- 8 unknown
- 9 methyl stearate acid stearic acid

In summary, the lagoon water contains a wide variety of components. The major components are TNT, TNB and RDX. These components are present in the 12-90 mg/L range.

Hest Spectrum recorded will be 13 FIBUREI 1 dated: 5/26-1981 ** COMPITIONS FOR RUN # TIMEL RATE TEMP2 TIME2 INJ.PORT NAT.OMEN SOLVENT RUN TIME min. Deg. Min. Deg. Min. Min. 0.0 15 0 260 32.0 210 280 0.0 30.0 TEMP1 TIME1 De∍. 140 MS PEAK DETECT THRESHOLD = 5.
FLOW RATE = 16
SAMPLES PER .1 AMU = 8
ELECTRON MULTIPLIER = 2000
GC PEAK DETECT THRESHOLD = 400 5.0 linear counts
16 ml/min
8 SCRN SPEED = 3 ml/min SCAN SPEED = 300 amu/sec VOITS
TRIGGERED ON TOTAL HBUNDANCE REAL TIME STRIPPING OF VALLEYS FROM PEAKS neutral ether extract of IAAA Agron Water SAMPLE NAME OPERATOR TOTAL ABUNDANCE FROM 40 TO 460 amu
Full Scale= 9920
Excess Source Pressure!
MS in Standby!
No Emission Current!
Detector Problem!
MS in Standby!
Excess Source Pressure!
No Emission Current! ION 121.0 Full Scale= 150 No Emission Current! MS in Standby! Excess Source Pressure! No Emission Current! MS in Standby! ġ io ---SPECTRA SAVED: Run # 1

	Ret. Time	Total Abund.	Relative Abund	d. base f	= 0 K	•
13 14 15 16 17	5.3 8.0 8.1 9.4 9.8 10.8	5187 37490 17727 430 4352 534	13.8% 100.0% 47.3% 1.1% 11.6% 1.4%	205.0 .209.9 .74.9 .42.0 .41.9 .77.9	5 - TNT 5 - TNO	- 21,6- directoboluence
			•			
Spectra P	lot/Tab Pro	ogram, [Rev 8/4	/781 _.			-
Scanned for File type	rom 40 to = linear	Sample # 460 amu Numbe Base Peak Abun	r of Peaks Dete	ected = 13	35	5187
was in the same				01	lenol, 2,6-2 ad	(1,1- denethyl-
		• dur		. (4	15/3·c. \\ - c	tis (1, 1-dimethyl- tyl) - 4-methyl- : (CH3)3 NIH match
			. 1, 1		CH3	NIH mateh
		╷┙╕╵╅┖╶╅╚╌╸┪┽┈╪┖┐ ╽┛	<u></u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m anthy lis
** Spectri		Sample #				100
Scanned fi	rom 40 to	460 amu Number	r of Peaks Dete	cted = 14	17	
Base Peak	= linear = 209.95	Base Peak Abund	dance = 4912			37492
Base Peak	= 11near = 209.95	Base Peak Abun	dance = 4912		undance =	417
Base Peak	= linear = 209.95	Base Peak Abun	dance = 4912		undance =	417
Base Peak	= linear = 209.95	Base Peak Abun	dance = 4912		undance =	37492 NT Sto J NW = 227
Base Peak	= 209.95	45-44445	-1	Total At	oundance =	NT Lilis IN = 227 UUL
Base Peak	= 209.95 50 10	150 150	<u> </u>	Total Ab	oundance =	417
** Spectru	= 209.95 50 10 15 **	45-44445	200 2	Total Ab 50 3 Time = 8.	oundance = Toldance = Oldance = Toldance =	NT Lilis IN = 227 UUL
** Spectru Scanned fr File type	= 209.95 50 10 um # 15 ** rom 40 to = linear	150 Sample #	200 2 1 Retention of Peaks Dete	Total Ab 50 3 Time = 8. cted = 13	oundance = Toldance = Oldance = Toldance = Toldanc	NT Lilis IN = 227 UUL
** Spectru Scanned fr File type	= 209.95 50 10 um # 15 ** rom 40 to = linear	الر على السافة المسافة المسافق المسافة المسافة المسافة المسافة المسافة المسافة المسافة المسافق المسافة المسافق المساف	200 2 1 Retention of Peaks Dete	Total Ab 50 3 Time = 8. cted = 13	oundance = Toldance = Oldance = Toldance = Toldanc	NT plo NW = 227 NU NW = 227 NU NW = 400
** Spectru Scanned fr File type	= 209.95 50 10 um # 15 ** rom 40 to = linear	الر على السافة المسافة المسافق المسافة المسافة المسافة المسافة المسافة المسافة المسافة المسافق المسافة المسافق المساف	200 2 1 Retention of Peaks Dete	Total Ab 50 3 Time = 8. cted = 13	oundance = Toldance = Oldance = Toldance = Toldanc	NT ST NO NO NO NO NO NO NO NO NO N
** Spectru Scanned fr File type	= 209.95 50 10 um # 15 ** rom 40 to = linear	الر على السافة المسافة المسافق المسافة المسافة المسافة المسافة المسافة المسافة المسافة المسافق المسافة المسافق المساف	200 2 1 Retention of Peaks Dete	Total Ab 50 3 Time = 8. cted = 13	oundance = Toldance = Oldance = Toldance = Toldanc	NT plo NW = 227 NU NW = 227 NU NW = 400
** Spectru Scanned fr File type	= 209.95 50 10 um # 15 ** rom 40 to = linear	الر على السافة المسافة المسافق المسافة المسافة المسافة المسافة المسافة المسافة المسافة المسافق المسافة المسافق المساف	200 2 1 Retention of Peaks Dete	Total Ab 50 3 Time = 8. cted = 13	oundance = Toldance = Oldance = Toldance = Toldanc	NT ST NO NO NO NO NO NO NO NO NO N

SPECTRA SAVED: Run # 1

FIGURE 2 - BASE EXTRACT OF LAAP LAGOON WASER

***	****	******	****	****	*****	i ka erratik erre	********	*****	24.3
TEMP1 Dea.	TIME1	RATE Bea⁄min.	TEMP2 Dea.	TIME2	INJ.PORT Dea.	MAX.OVEN Dea.	SOLVENT Min.		
160	1.0	15.0	240	32.0	210	2186	0.0	30.0	
FLOW RAT SAMPLES ELECTROI GC PEAK	TE = PER .1 MULTI DETECT	THRESHOLD AMU = PLIER = THRESHOLD PPING OF V	1) : 200) = 80)	6 ml/ 8 SCA 0 vol 0 TRI	N SPEED = ts GGERED ON	: Berk alverse TOTHL HBUN			
SAMPLE H	IAME	<i>.</i>	- ig une	<u> </u>			·*		
OPERATOR	?			BASE	EX	T.CACT	1 120	n contente	Ī

** CONDITIONS FOR KUN # 1 dated: 5/26/1981 Twesday

Spect rum	Ret. Time	Total Abund.	Relative Abund.	Base Feak	
45	0.1	3078	13.3%	48.85	
46	6.8	659	2.9%	56.95	
47	7.3	952	4.1%	40.95	
48	7.9	23076	100.0%	74.90	
49	11.0	8449	36.6%	41.95	
50	13.0	840	3.6%	179.95	

*** LIBRARY SEARCH [rev. 1/1/78]

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
41.0	51	47.2	34.છ
43.0	89	82.4	62.2
55.0	28	25.9	25.0
56.0	18	16.7	16.4
57.0	108	100.0	100.0
71.0	62	57.4	71.5
85.0	45	41.7	62.1
112.0	19	9.3	18.2
113.0	13	12.0	23.9
182.0	7	6.5	20.7

Entry	Similiarity	Index	Molecular Weisht
5	0.9902	•	226.0
7	0.9875		254.0
3	0.9857		198.0
4	0.9854		212.0
. 6	0.9790		24 0. 0
8	0.9766		268.0
1	0.9704		170.0
438	0.9569		312.0
436	- 0.9524		256.0
437	0.9493		284.0
			•

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
153.0	27	51.9	29.5
155.0	27	51.9	29.9
177.0	24	46.2	30.4
211.0	21	40.4	31.7
213.0	24	46.2	36.5
265.0	21	40.4	39.8
267.0	37	71.2	70.6
268.0	19	36.5	36.4
269.0	52	100.0	100.0·
271.0	18	34.6	34.9

10 BEST MATCHES: Library #2

Entry	Similiarity	Index	Molecular Weight
280	0.218 9		278.0
469	0.2072		153.0
349	0.2067		154 Ø
372	0.2003		186.0
484	0.1947		220.0
277	0.1708		225.0
109	0.1549		320.0
513	0.1534		266.0
403	0.1517		296.0
134	0.1468		192.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
62.0	818	13.4	5.8
63.0	1092	17.9	.7.8
74.0	3877	63.5	32.6
75.0	6109	100.0	52.0
76.0	507	8.3	4.4
91.0	772	12.6	8.0
120.0	1437	23.5	19.6
167.0	423	6.9	8.0
213.0	4136	67.7	100.0.
214.0	313	5.1	7.6

Entry	Similiarity	Index	Molecular Weight
202	0.6552		260.0
493	0.4781		180.0
450	Ø.4698		312.0
447	0.4442		256.0
451	0.4318		326.0
286	0.4313		298.0
448	0.4300		284.0
449	0.4243		
463	0.4237		438.0
284	0.4195		242.0

FIGURE 2 (SONE)

Mass	Linear Abund	% Abund	Significance
51.0	38	47.5	13.5
52.0	51	63.8	18.4
.77.0	49	61.3	26.2
78.0	71	88.8	38.5
95.0	17	21.3	11.2
104.0	42	52.5	30.3
105.0	30	37.5	21.9
133.0	20	25.0	18.5
180.0	80	100.0	100.9
197.0	53	66.3	72.5

Entry	Similiarity	Indan	Molecular Weisht
		Tunex	
218	0.4744		162.0
490	0.4312		⊕ 106.0
469	0.4283		153.0
430	0.4239	• •	- 182.0
494	0.4205		140. ยั
470	.0.4129		120.0
227	0.3981		143.0
322	0.3314		35€.0
495	0.3756		210.0
432	0.3754		123.0

FIGURES. ASID EXTRAST OF LAND HARDEN CLASER

		FOR RUN #						*****
TEMP1	TIME1		TEMP2	TIME2	INJ.PORT	MAX.OVEN	SOLVENT Min.	RUN TIME
FLOW RAT SAMPLES ELECTROM GC PEAK	FE = PER .1 MULTI DETECT	PLIER =	1 180 = 80	6 ml/ 8 SCA 0 vol 0 TRI	min N SPEED = ts GGERED ON	: 200 amu/se TOTHL ABUN		
SAMPLE M		AAP 2	2000	Wai	ta. a	and Ex	Tract	

Transe C. Lower

FIGURE 3 (CON'T)

Spectrum	Ret. Time	Total Abund.	Relative Abund.	Base Peak
32	1.8	2159	21.2%	48.85
3 3	5.0	1937	19.0%	40.95
34	5.4	2184	21.4%	49.95
35	5.8	· 624	6.1%	56.95
36	6.0	4792	46.9%	74.90
.37	6.7	1295	12.7%	56.95
~38	7.1	5238	51.3%	40.95
~ 3 9	7.8	10207	100.0%	74.90
40	8.1	7031	. 68.9%	183.95
41	10.3	2040	20.0%	149.00
42	10.6	1729	16.9%	45.95
43	17.1	851	8.3%	56.95

*** LIBRARY SEARCH [rev. 1/1/78]

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
41.0	43	6.4	5.4
47.0	151	22.5	21.6
48.0	69	10.3	10.1
49.0	6701	100.0	100.0
51.0	222	33.1	34.5
84.0	337	50.3	86.2
86 .0	210	31.3	55.0
88.0	. 33	4.9	8.8
259.0	30	4.5	23.7
274.0	9	1.3	7.5

Entry	Similiarity	Index	Molecular Weisht
37	0.2381		206.0
38	0.2212		22 2. 0
323	0.1479		314.0
342	0.1440		129.0
443	0.1417		20 0. 0 .
36	0.1301		190.0
16	0.1227	-	28 8. 0
24	0.1185	~	257.0
278	0.1172	•	277.0
216	0.1167		154.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Signif <u>i</u> cance
41.0	167	100.0	. 35.5
67.0	67	- 40.1	23.3
135.0	55	32.9	38.5
149.0	47	28.1	36.3
161.0	58	34.7	48.4
163.0	51	30.5	43.1
177.0	109	65. 3	100.0
203.0	22	13.2	23.1
205.0	27	16.2	28.7
220.0	75	44.9	85.5

Entry	Similiarity	Index	Molecular Weisht
484	0.6644		220.0
225	0.5797		152.0
236	0.5652		152.0
226	0.5509		152.0
298	0.5287	•	108.0
260	0.5241		154.0
254	0.5044		136.0
232	0.5032		154.0
211	0.4898		184.0
237	0.4830		152.0

FIGURE 3 (CONY)

10 Peaks used for search:

Mass	Linear Abund	% Abund	Significance
50.0	333	100.0	31.8
63. 0	95	28.5	11.4
64.0	107	32.1	13.1
74.0	115	34.5	16.2
75.0	291	87.4	41.6
76.0	299	89.8	43.4
92.0	126	37.8	22.1
122.0	112	33.6	26.1
168.0	312	93.7	100.0
169.0	23	6.9	7.4

10 BEST MATCHES: Library #2

Entry	Similiarity	Index	Molecular Weisht
368	0.4487		168.0
202	0.4039		26 0. 0
61	0.3827		225.0
491	0.2827		103.0
277	0.2447		22 5. 0
493	0.2301		180.0
20	0.2124	•	250.0
486	0.2087		124.0
450	0.2083		312.0
463	0.1962	·	438.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
41.0	63	57.8	41.6
43.0	93	85.3	64.4
55.0	26	23.9	23.0
56.0	18	16.5	16.2
57.0	109	100.0	100.0
71.0	57	52.3	65.1
83.0	18	16.5	24.0
85 .0	41	37.6	56.1
99 .0	9.	8.3	14.3
226.0	8	7.3	29.1

FIGURE 3 (lon's)

10 BEST MATCHES: Library #2

Entry	Similiarity	Index	Molecular Weight
5	0.9853		226.0
4	0.9853	•	212.0
3	0.9835		198.0
7	0.9782		254.0
6	0.9706		240.0
1	0.9687		170.0
8	0.9667		268.0
438	0.9620		31 2. 0
437	0.9586		284.0
436	0.9546		256.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
71.0	. 193	47.7	19.5
74.0	269	66.4	28.4
75.0	405	100.0	43.3
84.0	142	35.1	17.0
109.0	144	35.6	22.4
110.0	190	46.9	29.8
156.0	85	21.0	18.9
202.0	347	85.7	100.0
204.0	120	29.6	34.9
259.0	69	17.0	25.5

Entry	Similiarity	Index	Molecular Weight
493	0.5389		180.0
202	0.5316		260.0
81	0.4548		202.0
330	0.4503		202.0
329	0.4463	•	202.0
450	0.3942		312.0
460	0.3763		466.0
286	0.3621		298.0 *
451	0.3616		326.0
448	0.3613	المستعدد المعادد	284.0

10 peaks used for search:

Mass 41.0 43.0 55.0 56.0 57.0 83.0 85.0	Linear Abund 120 210 54 37 234 136 27 74	51.3 89.7 23.1 15.8 100.0 58.1 11.5 31.6	Significance 36.9 67.7 22.3 15.5 100.0 72.4 16.8 47.2
99.0	25	10.7	18.6 -
113.0	21	9.0	17.8

F		
Entry	Similiarity I	ndex – Molecular Weight
5	0.9907	226.0
3	0.9897	198.0
4	0.9870	212.0
7	0.9866	254.0
6	0.9775	240.0
8	0.9766	268.0
1	0.9758	7 170.0
438	0.9634	312.0
437	0.9571	284.0
436	0.9541	256.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
153.0	141	47.6	27.1
155.0	179	60.5	34.8
177.0	135	45.6	30.0
211.0	113	38.2	29.9
213.0	130	43.9	34.8
265.0	115	38.9	38.3
267.0	203	68.6	68.1
268.0	115	38.9	38.7
269.0	296	100.0	100.0
271.0	113	38.2	38.5

10 BEST MATCHES: Library #2

Entry	Similiarity	Index	Molecular Weisht
372	0.2332	. ,	186.0
280	0.2107		278.0
349	0.1943		154.0
484	0.1919		22 0. 0
469	0.1899		153.0
277	0.1565		225.0
513	0.1533		26 6. 0
403	0.1460	•	296.0
134	0.1447		192.0
109	0.1419		3 20. 0

. 10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
62.0	378	14.8	5.9
63.0	487	19.1	7.8
74.0	1695	66.6	31.8
75.0	2546	100.0	48.4
76.0	221	8.7	4.3
91.0	311	12.2	7.2
120.0	606.	23.8	18.4
167.0	188~	7.4	8.0
213.0	1852	72.7	100.0
214.0	145	5.7	7.9

10 BEST MATCHES: Library #2

Entry	Similiarity	Index	Molecular Weisht
202	0.6360		260.0
493	0.4772		180.0
450	0.4726		31 2. 0
447	0.4487		256.0
286	0.4343		298.0
451	0.4335		326.0
448	0.4333		284.0
449	0.4272		298.0
463	0.4245		438.0
284	0.4236		24 2. 0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
63.0	871	66.3	22.7
91.0	273	20.8	10.3
.92.0	265	20.2	10.1
138.0	310	23.6	17.7
184.0	1313	100.0	100.0
185.0	103	7.8	7.9
191.0	109	8.3	8.6
212.0	475	36.2	41.7
219.0	3971	30.2	36.0
234.0	96	7.3	9.3

Entry	Similiarity	Index	Molecular Weight
468	0.3907		186.0
501	0.2690		162.0
481 ·	0.2545~		172.0
429	0.2447		182.0
486	0.2378		124.0
519 🔩	0.2307		ø.0
41	0.2284	,	195.0
466	0.2259	•	142.0
3 69 .	0.2184 ,		186.0
86 .	0.2122		23 0. 0
			· · · · · · · · · · · · · · · · ·

Spectrum	# 41 Ret	. Time:	= 10.3 9	Sample #	1 Total	<u>Abundana</u>	e = 20	140
					Chi	Ralati s		
		.11			L	·	ı	.•
	50	100	150	200	250	30 0	350	400
10 pe	iks used f	or sear	ch:					
Mass 41.0 104.0 149.0 150.0 205.0 223.0 236.0 237.0	Linear F 153 41 768 72 38 42 48 113		Abund 20.1 5.4 100.0 9.5 3.9 5.5 5.3 14.9 2.2	Significan 5.5 3.8 100.0 9.5 5.4 7.7 7.9 23.5 3.6	te .			

10 BEST MATCHES: Library #2

Entry	Similiarity Inc	dex Molecular Weight
296	0.9085	222.0
297	0.8323	39 0. 0
304	0.7272	220.0
198	0.3220	275.0
319	0.2997	316.0
484	0.2680	220.0
426	0.1953	220.0
187	0.1741	275.0
205	0.1658	299.0
225	0.1584	152.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
42.0	409	98.6	90.0
46.0	415	100.0	100.3
56.0	93	22.4	27.3
71.0	72	17.3	26.8
75.0	138	33.3	54.2
82.0	27	6.5	11.6
93.0	25	6.0	12.8
120.0	78	18.8	49.3
128.0	122	29.4	81.8
148.0	22	5.3	17.1

10 BEST MATCHES: Library #2

Entry	Similiarity Index	Molecular Weight
133	0.2749	164.0
467	0.2596	138.0
202	0.2035	260.0
348	0.1834	128.0
135	0.1823	145.0
341	0.1164	101.0
46	0.1152	248.0
106	0.1095	177.0
196	0.1025	229.0
483	0.0895	122.0

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
41.0	70	73.7	38.8
55.0	61	64.2	45.4
57.0	95	100.0	73.3
70.0	93	97.9	88.1
71.0	45	47.4	43.2
82.0	28	29.5	31.1
83.0	28	29.5	31.4
99.0	29	30.5	38.3
100.0	31	32.6	41.9
112.0	66	69.5	100.0

Entry	Similiarity Inde	x Molecular Weight
247	0.7103	366.0
287	0.7050	130.0
246	0.6212	332.0
. 8	0.6206	268.0
6	0.6202	243.0
193	0.6088	380.0
437	0.6059	284.0
436	0.6020	2 56. 9
438	0.5969	312.0
2	0.5943	184.0

FIGURE 4 Mettyl desiratization

PEAKFINDER PROGRAM [Rev 10/9/78]

>>> CURRENT GC CONDITIONS: Oven=106.0 Inj. Port = 44.0 Retention time= 0.0

Last spectrum recorded was 18 Total Available = 100

Next Spectrum recorded will be 1

Dea. min. Dea/min. Dea. Min. Dea. Dea. Min. Min. 140 0.0 15.0 260 32.0 210 280 0.0 30.0

MS PEAK DETECT THRESHOLD = 5.0 linear counts

-FLOW RATE = 16 ml/min

SAMPLES PER .1 AMU = 8 SCAN SPEED = 200 amu/sec

ELECTRON MULTIPLIER = 1800 volts

GC PEAK DETECT THRESHOLD = 400 TRIGGERED ON TOTAL ABUNDANCE

REAL TIME STRIPPING OF VALLEYS FROM PEAKS

LAAP Jagom-acid Extract - BE-MOOH SAMPLE NAME OPERATOR TOTAL ABUNDANCE FROM 40 TO 460 amu
Full Scale= 9920
Excess Source Pressure!
MS in Standby!
No Emission Current!
Detector Problem!
MS in Standby! ION 121.0 Full Scale= 150 ION=168.0 Voltage ROX STEARATE -METHY1 OVER TEMP = 280.63 OVEN MAX = PRI TEMPUATEN OUR OVER COMES 200.03

FIGURE 4 (con'T)

SPECTRA SAVED: Run # 1

Spectrum	Ret. Time	Total Abund.	Relative Abund.	Base Peak
1	4.9	635	3.9%	48.90
2	6.6	1431	3.7%	74.95
3	7.3	389	2.4%	235.10
4	7.5	369	2.2%	73.95
5	8.1	16409	100.0%	209.95
ϵ	9.0	1657	10.1%	73.95
7	9.9	648	3.9%	41.90
8	10.7	555	3.4%	40.90
9	11.0	849	5.2%	73.95
10	16.3	428	2.6%	72.95

100

Flourey (con'T)

FIGURE 4 (con'T)

FIGURE 4 (con'T).

450	500	์ 550	600	650	700	750	 800
** LIBRARY	SEARCH [rev	. 1/1/78]		•			
pectrum #	6 Ret. Tim	e= 9.0 S	ample #	1 fotas	Hbundanc	e =16	57
				to proper title. See		. •	
1				٠.		••	
	444_444	<u>, </u>		<u> </u>	·		
. 50	100	150	200	250	300	350	400
	used for se						
41.0	near Abund 135	% Abund 45.8	Significano 25.4	ie .			
43.0 55.0	142 96	48.1 32.5	28.0 24.2				
57.0 74.0	51 295	17.3 100.0	13.3 100.0				
75.0 87.0	58 177	19.7 60.0	19.9 70.5				
143.0 227.0	48 23	16.3 7.8	31.4 23.9	•			
270.0	33	11.2				V	
10 B	EST MATCHES	: Library #	2	aht ()	n mit	ole	
Entry 446	Similiarity 0.9913	Index Mo	lecular Wei	isht of C	pallic	•	
285	0.9836		270.0 ←	. Muss			
284 448	0.983 0 0.9823	•.	284.0		₩,	• •••	
286 457	0.9815 0.97 99		298.0 354.0				
447 283	0.9792 0.9782		256.0 214.0		•		
454 458	0.9768 0.9761		34 0. 0 36 8. 0				
		-					
pectrum #	9 Ret. Time	= 11.0 S	<u>ample #</u>	1 Total	<u>Abundance</u>	= 8	49
		•	· * 4 - 43		. ,		
	. 1						
	-						
- 22 11							

FIGURE 4 (CON-)

10 peaks used for search:

Mass	Linear Abund	% Abund	Significance
41.0	61	40.1	22.2
43.0	81	53.3	31.∂
55.0	49	32.2	24.0
74.0	152	100.0	100.0
75.0	36	23.7	24.ଡ
87 .0	92	60.5	71.2
143.0	27	17.8	34.3
199.0	10	6. 6	17.7
255.0	9	5.9	20.4
298.0	16	10.5	42.4

10 BEST MATCHES: Library #2

Entry	Similiarity Index	Molecular Weisht
446	0.9837	220 A
285	0.9772	270.0 284.0 256.0 242.0 298.0 298.0 354.0
448	0.9770	284.0
447	0.9755	256.0 phy 200 mg to
284	0.9740	242.0 12000
286	0.9731	298.0 optility
449	0.9725	298.0
457	0.9716	354.0
281	0.9694	186.ម
283	0.9691	214-0

HP 5992 SYSTEM OPTIONS: [Rev.11/20/78]

1 = AUTOTUNE

2 = PEAKFINDER 3 = EDIT MASS SPEC OPERATING PARAMETERS 4 = LIBRARY SEARCH

5 = PLOT/TABULATE
6 = PRINT TAPE LAYOUT
7 = PLOT SPECTRA ON X-Y PLOTTER
8 = SHOW AND EDIT LIBRARIES

9 = RESIZE SPECTRAL FILES 10 = DFTPP NORMALIZER

11 = SPECTRUM MANIPULATION PROGRAM

Library Editing Program [rev 7/26/78]

Francis TAT SHEW

LOUNCE 6 ROAN

Total Abundance *** LIBRARY SEARCH [rev. 1/1/8] Ret. Time= Spectrum #

1. 1.00 t Flower of 2 anima - charles have

From Endorge to indocine

D

