Математический анализ

12 сентября 2022

Следствие 1. (th. о локальном обращении) $D \subset \mathbb{R}^n$, открыто, $f \in C^1(D, \mathbb{R}^n)$, f'(x) обратима при $\forall x \in D$ Тогда для \forall открытого $G \subset D$ — f(G) открыто

Доказательство. Докажем сначала для G=D

$$\forall y \in f(D) \quad f^{-1}(y) := x \quad f(x) \text{ обр.},$$

$$\exists U \text{ крестность } x : f(U) \text{ открыто}$$

$$y \in f(U) \subset f(D)$$

$$\Rightarrow f(U) \text{ - окр-ть } y$$
 т. о. $f(D)$ открыто

Пусть $G\subset D$, открыто. Рассмотрим $f\big|_G\Rightarrow$ \Rightarrow принимая доказанное \Rightarrow $f\big|_G(G)=f(G)$ – открыто

f – биекция образ \forall открытого множества открыт f – окрытое отображение прообраз \forall открытого множества открыт, f – непрерывное отображение

Определение. Если и то, и другое, то f – гомеоформизм

$$f: U \to V$$

$$f^{-1} \in C(V, U)$$

$$f \in C(U, V)$$

Определение. Если $f: U \to V$ – биекция, $f \in C^r(U, V)$, $f^{-1} \in C^r(V, U)$, то f – диффеоморфизм гладкости $r \in [0, \infty]$