AALBORG UNIVERSITY

Identification of Randers Water Distribution Network for Optimal Control

Electronic & IT: Control & Automation Group: CA9-938

STUDENT REPORT

November 1, 2017

Second year of MSc study

Electronic and IT Fredrik Bajers Vej 7 DK-9220 Aalborg East, Denmark http://www.es.aau.dk

AALBORG UNIVERSITY

STUDENT REPORT

Topic:

Optimal Control for Water Distribu-

tion

Project:

P9-project

Project time:

September 2017 - December 2017

Projectgroup:

17 gr 938

Participants:

Krisztian Mark Balla

Supervisors:

Tom Nørgaard Jensen Jan Dimon Bendsten Carsten Skovmose Kallesøe Synopsis:

The synopsis is going to be written here...

Circulation: x Number of pages: x Appendix: x

Completed xx-xx-2017

Preface

The preface is going to be written here... The preface is going to be written here...

Aalborg University, th of December 2017

Krisztian Mark Balla kballa16@student.aau.dk

Nomenclature

Acronyms

CT	Circuit Theory
D-W	Darcy-Weisbach
EPA	Environmental Protection Agency
FCV	Flow Control Valve
GIS	Geographic Information Systems
GT	Graph Theory
KCL	Kirchhoff's current law
MPC	Model Predictive Control
PRV	Pressure Regulating Valve
OD	Opening Degree
WSS	Water Supply System

Acronyms - Randers Network

BKV	Bunkedal Vandværk
LZ	Low Zone
HBP	Hobrovej Pumpestation
HNP	Hornbæk Pumpestation
HSP	Hadsundvej Pumpestation
HZ	High Zone
OMV	Oust Mølle Vandværk
TBP	Toldbodgade Pumpestation
VSV	Vilstrup Vandværk
ØSV	Østrup Skov Vandværk

Gr938 Nomenclature

Symbols

\mathbf{Symbol}	Description	${f Unit}$
$\overline{a_{h2}, a_{h1}, a_{h0}}$	Pump constants	[·]
c_D	Darcy-Weisbach equation coefficient	$\left[\frac{s^2}{m}\right]$
D	Diameter (of pipes or tanks)	[m]
d	Flow demand	$[rac{m^3}{s}] \ [Pa]$
f(q)	Pressure drop due to pipe resistance	[Pa]
h	Pressure drop due to elevation	[Pa]
h_l	Water level in tanks	[m]
h_p	Pressure head	[m]
h_t	Total head	[m]
J	Mass inertia of water pipes	$[kgm^2]$
k_v	Valve conductivity function	[·] ¸
l	Length (of pipes)	$\lfloor m \rfloor$
p	Absolute pressure	[Pa]
q	Volumetric flow	$\left[\frac{m^3}{8}\right]$
Re	Reynolds number	$[\cdot]$
z	Elevation head	[m]
γp	Resistance parameter of pipes	[·]
Δp	Differential pressure	[Pa]
ϵp	Roughness of pipes	$\lfloor m \rfloor$
$\mu(q,k_v)$	Pressure drop on valves	[Pa]
ω_r	Impeller rotational speed of centrifugal pumps	$\left[\frac{rad}{s}\right]$
au	Elevated reservoir parameter	$\left[\frac{s^2}{ka}\right]$
		3

Constants

Symbol	Description	${f Unit}$
g = 9.83	Gravitational acceleration	$\left[\frac{m}{s^2}\right]$
$\rho = 1000$	Density of water	$egin{array}{c} \left[rac{m}{\mathrm{g}^2} ight] \ \left[rac{kg}{m^3} ight] \ \left[rac{kg}{\mathrm{g}^3} ight] \end{array}$
$f_D = ?$	Darcy friction factor	$\left[\frac{kg}{m^3}\right]$

Graph theory

\mathbf{Symbol}	Description
\overline{B}	Cycle matrix
${\cal E}$	Set of edges
$\mathcal{E}_{\mathcal{T}}$	Partitioned set of edges
$\mathcal{E}_{\mathcal{C}}$	Partitioned set of edges
$\mathcal{E}_{\mathcal{T}}$ $\mathcal{E}_{\mathcal{C}}$ \mathcal{G}	Directed and connected graph
H	Incidence matrix
\mathcal{V}	Set of vertices
$ar{\mathcal{V}}$	Vertices regarding non-inlet points
$\hat{\mathcal{V}}$	Vertices regarding inlet points
m	Number of columns in the incidence matrix
n	Number of rows in the incidence matrix
$\mathcal T$	General sub-graph
\mathcal{T}^*	Tree in a graph
\mathcal{T}^*_{span}	Spanning tree in a graph

Glossary of mathematical notation

Description of the mathematical notation and terminology used in the report.

Contents

No	omenclature	V
1	Introduction	1
Ι	System Analysis	3
2	Description of Water Supply Systems 2.1 Hydraulic system overview 2.1.1 Pipe networks 2.1.2 Elevated reservoirs 2.1.3 Pumps 2.1.4 Valves 2.2 The Randers water supply network 2.2.1 Waterworks and pumping stations	5 6 7 7 8 9 11
3	System Modelling 3.1 Hydraulic component modelling 3.1.1 Hydraulic head 3.1.2 Pipe model 3.1.3 Valve model 3.1.4 Pump model 3.1.5 Elevated reservoir model 3.1.5 Elevated reservoir model 3.2 Graph-based network modelling 3.2.1 Incidence matrix 3.2.2 Cycle matrix 3.2.3 Kirchhoff's and Ohm's law for hydraulic networks 3.2.4 Multi-inlet network model 3.2.5 Inclusion of elevated reservoirs 3.3 Simulation example on a simple pipe network 3.4 Simulation example with elevated reservoir	15 15 16 17 17 18 18 19 20 25 28 30
4	Network simplification 4.1 Purpose of the model reduction 4.2 State of the art model reduction analysis 4.2.1 Skeletonization 4.2.2 Parameter fitting 4.2.3 Graph decomposition 4.2.4 Variable elimination 4.3 Sectioning of the Randers WSS	31 31 31 32 32 32 32
II	Appendices	33
\mathbf{A}	Elevation Profile from HZ to LZ	35
В	Assumption List	37
\mathbf{C}	Example Network C.0.1 Simulation in EPANET	39
D	Example Network with elevated reservoir D.1 unspecified1	41 41

Gr938	Contents
E Measurements	43
Bibliography	45

1. Introduction

Due to the fast-paced technological development all over the world, the demand for industrial growth and energy resources has seen a rapid increase. Along with the industrial growth, the sudden rise in population has made the world realize that this shortage of energy sources is an actual and universally anticipated problem [1]. In order to cope with such shortage issues and to make the rapid development possible and less expensive, the world is moving towards more efficient use of resources and optimization of infrastructure. Therefore, technological development is also moving the focus on green energy, resulting in more and more renewable energy sources added to the grid [2].

Water Supply Systems (WSSs) are among the sectors which make the industrial growth possible. On top of this, WSSs are one of the most vital infrastructures of modern societies in the world. In Denmark typically, such networks are operating by making pumps transport water from reservoirs through the pipe network, to the end-users. In most cases, elevated reservoirs are exploited in these WSSs, such that they can even out the demand differences for the consumers. Although elevated reservoirs are usually an integrated part of these systems, providing drinking water is a highly energy-intensive activity. For instance, in the United States alone, the drinking water and waste water systems are typically the largest energy consumers, accounting for 25 to 40 percent of a municipality's total public expenditure. [3].

Since fresh water is limited, and due to the presence of global changes such as climate change and urbanization, new trends are emerging in the water supply sector. In the past few decades, several research and case study showed that WSSs and other energy distribution networks need to be improved due to the leakages in the system, high cost of maintenance and due to high energy consumption. Companies also realized that by using proper pressure management in their networks, the effect of leakages can be reduced, thereby huge amount of fresh water can be saved [4].

In Denmark recently, the larger water suppliers have been focusing on making the water supply sector more effective through introducing a benchmarking system focusing on the environment, the security of supply and the efficiency based on user demands. Since 1980, these efficiency activities has been an important issue [5]. It has been proved that by utilizing advanced, energy- or cost-optimizing control schemes and utilizing renewable energy sources, such as elevated reservoirs, the life of the existing infrastructure can be extended and money or energy can be saved [1]. Therefore there is a growing demand in industry for developing methods, leading towards more efficient WSSs.

The presented project is executed in collaboration with the company, Verdo A/S. It is in the interest of Verdo A/S to utilize an advanced model-based optimal control scheme on the WSS with several storages in Randers, Denmark. For a large municipality such as Randers, the water distribution network is complex and consists of thousands of elements. Since the control algorithm itself is complex and model-based, the computational effort is also high. Furthermore, the offline optimisation of a large-scale WSS means that any changes to the network may require significant changes in the optimisation method, which leads to high costs of the system maintenance [6]. Therefore typically a model reduction is required in such networks to make the online execution of the control algorithm possible.

The long-term goal of this project is to find a solution for implementing Model Predictive Control(MPC) on the Randers WSS. However, before the implementation of any control scheme would be possible, a proper and identified model is required. Therefore, as the first part of the project, the following problem statement can be

Gr938 1. Introduction

formulated:

How can the WSS in Randers be simplified and identified, with storages included in the system, such that the reduced model preserves the original nonlinear behaviour and remains suitable for a plug-and-play commissionable Model Predictive Control scheme.

Part I System Analysis

2. Description of Water Supply Systems

This chapter gives a general overview of hydraulic systems and an introduction to the WSS in Randers. The basic topology and structures of water supply networks are explained. The components of hydraulic systems are discussed. Furthermore, the different zones, pumping stations and waterworks are introduced and their role is explained in the Randers WSS.

2.1 Hydraulic system overview

WSSs are designed to deliver water to consumers in terms of sufficient pressure and appropriate chemical composition. Distribution systems as such are typically transport water from one geographical place to another. In practice, there are different methods exist to achieve this water transport. One example is the use of natural advantages such as the water stored in mountains, and thereby use the potential energy of the water to provide pressure in the network. Examples for this are countries like Norway where the advantages of the landscape are being exploited [7]. However, in this project the source of the water is considered as groundwater, considering that in Denmark all reservoirs in the network are tapping water from the ground. It worth noting that the quality of groundwater in Denmark is sufficiently good to use it for drinking water supply purposes. After tapping the water, it goes through an aeration process at the waterworks and afterwards the pure water is pumped into the network [8]. In WSSs, pumps and valves are the elements that enable the control and thereby the proper delivery of water to the consumers or to elevated reservoirs, storing water for later use. Such a network is illustrated in the figure below

Figure 2.1: Illustration of a WSS [9].

The delivered water needs to fulfil a certain pressure criteria in order to reach consumers at higher levels. For example, in some cases the pressure has to be high enough to make it to the fourth floor of a building and still provide appropriate pressure in the water taps. Generally, in such cases booster pumps are placed in the basement of buildings, helping to supply the pressure. Too large pressure values, however increase water losses due to pipe waste [10].

Another criteria is that the flow through particular pipes need to stay within acceptable limits. A low flow rate can lead to water quality problems due to the undesirable microorganisms in the water and due to the metal and salt accumulation on the wall of the pipes [10].

As can be seen in *Figure 2.1*, typically WSSs consist of pipe, valve, reservoir, elevated reservoir(tank) and pump components. The common property of them is that they are all two-terminal components, therefore they can be characterized by the dynamic

relationship between the pressure drop across their two corresponding endpoints and the flow through them [11].

2.1.1 Pipe networks

Pipes have a major role in WSSs since they are used for carrying pressurized water. They serve as a connection between components. Normally, the pipe network can be split into different sub-parts, taking into account the physical characteristics and the attributes of the pipes. Therefore, water supply networks can consist of transmission mains, arterial mains, distribution mains and service lines as shown in the example below:

Figure 2.2: Illustration of pipe mains. Tree configuration.

Transmission mains deliver large amounts of water over long distances. Arterial and distribution mains provide intermediate steps towards delivering water to the end-users. Service lines transmit the water from the distribution mains straight to the end-users [12].

The transmission and distribution network can have a topology that is called a loop or a tree structure. Figure 2.2 shows an example for a tree configuration. This type of configuration is most frequently used in rural areas [13]. Typically the network has only one path for the water to reach the end-users. A more frequent problem compared to looped configurations is, that on the outer parts of the system lower pressures can be experienced due to the pressure losses from long flow paths. The flow dynamics within this kind of systems therefore consist of large flows closer to the source that turn into smaller flows on the outer parts of the system. Main disadvantage of a purely tree structure system is that due to maintenance or momentary breakdowns, the system suffers disruption of service [13].

Loop networks have a configuration as shown in Figure 2.3.

Figure 2.3: Loop configuration.

Loop networks are usually composed of smaller loops which are composed of smaller distribution mains, and larger loops that are connected to arterial or transmission

mains. Elevated reservoirs are typically placed in the centre of the system due to pressure losses resulting from flows through the loop network [14]. This is reasonable because within a certain grid, the same pressure is provided by the tank, instead of providing the pressure through long pipelines to different distances. Furthermore, in the presence of a ring structure, the large loop around the area may be used to feed an internal distribution grid or a distribution grid attached to the outer part of the loop. Loop configurations are generally associated with larger suburban and city distribution systems such as larger cities [14]. The Randers WSS falls into this category.

2.1.2 Elevated reservoirs

Elevated reservoirs, or tanks, are typically placed in the system to use them as buffers and level out the pressure and flow demand differences. When the demand is high, the waterworks might not be able to provide the sufficient amount of water in the network. In these cases, the elevated reservoir supplies the remaining demand. When the user consumption decreases, the system can be controlled such that the tank is being refilled to provide the required demand for the next peak time of consumption. Having such an elevated reservoir in the network, the system becomes more independent of the pump stations, as the refilled tank can itself maintain the desired pressure and flow for a limited time.

Due to the elevation of the tank, when it is filled up, the pumping stations need to provide a pressure higher than the pressure in the water tank. Therefore when the tank is being emptied, the pumping stations can reduce the amount of pressure they provide to the system, since the pressure from the elevated reservoir becomes dominant. This is due to the fact that the dynamics of systems with large storages come primarily from the pressure of the tank [15]. However, it should be noted that normally the level in the tank is varying less than a meter. This means that the effect on the pump operation is limited. Due to these considerations, the dynamics of these elevated reservoirs has to be taken into account while modelling the system.

2.1.3 Pumps

Water pumps are used to increase pressure in hydraulic systems, thus making the water flow. Pumps are typically the main actuators of a WSS and they can be either flow or pressure controlled. Therefore, pumps can have controllers to produce a desired flow or pressure. This is done by changing the rotational speed of the pump. In this way, when the pump has a reference pressure or flow, simple control makes it possible to produce the desired flow or pressure respectively [16]. The pressure required to make the water reach some height is the sum of the pressure required to overcome the elevation and the friction losses in the pipe network.

The most common pumps in WSSs are centrifugal pumps. Normally, the characteristics of such pumps are described by two pump curves. The two curves depict the volume flow versus the pressure and the power of the pump respectively. Normally the curves describe the characteristics for one particular speed, which is denoted the nominal speed [16]. An example of these pump curves is shown in *Figure 2.4*.

- (a) Flow versus pressure difference
- (b) Flow versus power consumption

Figure 2.4: Pump curves describing the performance of a centrifugal pump at nominal speed.

As can be seen, at a given flow, the pump can deliver a pressure with a maximum limit. This pressure decreases when the flow is increasing. At a certain flow and pressure value, the pump has an optimal point where the operation is the most energy efficient. Pumps are normally designed such that the optimal point lies in the operational area for the pumping application [9].

As in almost all WSSs, the flow is varying in the system, according to the flow demand from the end-consumers. Therefore, when dealing with varying flow in the system, pumps are often placed parallel at the pump stations such that they can keep their optimum points. As the flow increases, more pumps get activated to keep the pressure constant [9].

2.1.4 Valves

Valves in the WSS can be also seen as actuators along with pump elements. Unlike the pumps, valves are passive actuators in the sense that they do not consume energy. In principle, there are many types of valves existing. They can be categorized as non-return valves, control valves, shut-off valves and the combination of the two former one. Non-return valves allow waterflow only in one direction, while control valves can either adjust the flow or the pressure on their two endpoints. The former category is typically called a Flow Control Valve(FCV), while the latter is called a Pressure Reducer Valve or Pressure Regulating Valve(PRV). Shut-off valves are important components of the network since they can change the structure of the system, when for example doing maintenance or just redirecting the flow. This project deals with all three types of valves

Valves can be controlled such that no flow passes through. In these cases the valve is closed and thereby certain parts of the system can be isolated as mentioned above. Other possibility is that the valve is fully open. In such case the pressure drop between the two endpoints is experienced because of the friction loss of the valve.

2.2 The Randers water supply network

The Randers drinking WSS is managed by Verdo A/S, which is the main supplier of drinking water and heating to the city of Randers. Verdo supplies water to approximately 46.000 customers in Randers Municipality [17]. The WSS is a complex, looped configuration with many different distribution areas. The coverage of the distribution areas are shown in *Figure 2.5* below.

Figure 2.5: Distribution zones in the Randers WSS.

As can be seen in Figure 2.5, the network consists of many different distribution zones, however, the whole distribution map can be split into four main zones, according to the different geographical properties of the city. Furthermore, Randers is split into two regions, Randers North and Randers South. This is due to the fact that Randers fjord divides the city into two parts[17] .

The distribution network which is located in the southern part of the city is called Vilstrup zone. This zone has its own waterwork and pumping station which allows to supply the whole southern area by itself. This zone is shown in *Figure 2.6* below.

Figure 2.6: Vilstrup zone in Randers.

The only connection between Vilstrup and the northern region is through an emergency line, which is indeed used in emergency cases when the waterwork and pumping station in Vilstrup malfunctions or if there is a pollution in the water tanks. In these cases waterworks from the northern parts can provide water to the Vilstrup zone. Besides the emergency cases, Vilstrup does not rely on the waterworks and pumping stations in Randers North.

Randers North consists of three different areas, each having its own particular geographical property. The water distribution in these regions are normally relies on each other, meaning that during a certain time period, the schedulings of the pumps are interconnected.

The area shown in *Figure 2.7* below is called the High Zone(HZ) due to the high elevation level of the region.

Figure 2.7: High Zone in Randers.

This part of the city lies approximately 55 meters above sea level, which means that big pumping effort is required to deliver the sufficient level of pressure to this area.

The area underneath the HZ is called the Low Zone(LZ). This zone in Randers lies approximately on sea level. Therefore, the HZ and LZ have a significant elevation difference which requires special pumping solutions in this area. In order to get a visual overview of the geographical properties of the HZ and LZ, the elevation profile is shown between these two areas in *Appendix: A*, in *Figure A.1* and *Figure A.2*. The area itself is shown in *Figure 2.8*.

Figure 2.8: Low Zone in Randers.

The fourth main area in the Randers WSS is an area which according to its elevation neither belongs to the HZ, nor to the LZ. This area is called Hornbæk and shown in Figure 2.9.

Figure 2.9: Hornbæk region in Randers.

The elevation in this area is around 30 meters above sea level and covers the western part of the city.

2.2.1 Waterworks and pumping stations

Verdo provides drinking water by pumping water from groundwater bases and treating the water in four different water works. Due to the high quality of ground water, this water treatment is only aeration in some cases. The WSS in Randers has four waterworks and four pumping stations, in different locations. In order to draw a better picture of the pumping and waterwork stations in the system, first they are listed and named and secondly their geographical locations and properties are described. The waterworks and pumping stations are the following

BKV	Bunkedal Waterwork
ØSV	Østrup Skov Waterwork
VSV	Vilstrup Waterwork
OMV	Oust Mølle Waterwork

Table 2.1: Waterworks in the network.

HBP	Hobrovej Pumping Station
HSP	Hadsundvej Pumping Station
TBP	Toldbodgade Pumping Station
HNP	Hornbæk Pumping Station

Table 2.2: Pumping stations in the network.

In order to show the geographical location of the waterworks and pumping stations in the network, an illustration of the network model is shown where each pumping station and waterwork are labelled with its name. The network is shown in $Figure\ 2.10$.

Figure 2.10: Waterworks(encircled in blue) and Pumping stations(encircled in red) in the Randers network.

The two main waterworks in the northern region are Bunkedal and Østrup Skov Waterworks. It is important to mention that in these areas, the water quality is sufficiently good, therefore clean water is pumped up to the surface. This is due to the fact that this groundwater lies under the ground such that it is protected by certain layers of the ground which makes it possible to provide this water without any kind of cleaning process, except aeration. These protection layers has been created by Randers fjord over the centuries due to glacial erosion (cite).

One of the drawbacks, however, is that the fresh water is located in the LZ, therefore the water has to be pumped from BKV and ØSV to locations with higher elevation.

Since BKV and ØSV are the main sources to the HZ and LZ areas, in the worst case, water has to be pumped up approximately 55 meters above sea level. For this reason, the pumping station called Toldbodgade provides the sufficient amount of pressure to the HZ areas. In the HZ areas, at the border of LZ and HZ, there are two pumping stations, Hadsundvej and Hobrovej, which divides the water distribution in the HZ and LZ.

As can be seen in Figure 2.10, the network in the HZ is a grid structure. The two main pump stations, HSP and HBP provide the sufficient pressure and flow to the grid and to the LZ areas, such that they keep a balance in pressure and flow. Furthermore, there is a water tank placed both at HSP and HBP. Since the HZ has an elevation of approximately 55 meters, the static pressure in each water tank at the two pumping stations is sufficient to provide pressure in the LZ areas, without any pumping effort. Therefore HSP and HBP provide pressure to the LZ areas such that the geodesic properties are exploited. An illustration of the two pumping stations and the HZ grid is shown in Figure 2.11.

Figure 2.11: Hadsundvej and Hobrovej pumping stations with the HZ grid and LZ.

In order to avoid too high or too low pressure in the system, the pressure needs to be controlled alongside the flow. HBP is responsible for flow control, while HSP is responsible for the pressure control. Thereby it is avoided to provide the desired flow to the end-users with possibly with too high or too low pressure.

Furthermore, in Hornbæk zone, the elevation is above sea level, and the static pressure from the two main pumping stations can not provide the desired pressure to this region. Therefore, boosting is needed which is supplied by the Oust Mølle Waterwork and the Hornbæk Pumping Station. OMV and HNP thereby are responsible for the Hornbæk zone.

As it is described in Section 2.2: The Randers water supply network, the Vilstrup zone is an individual distribution network, if normal operation is assumed. Therefore, the Vilstrup Waterwork is able to provide all flow demands in Randers South, without the help of the other waterworks in Randers North. Due to this consideration, the WSS in Randers South can be discarded when the control of Randers North is analysed.

In this report, the control of the two main pumping stations, Hadsundvej and Hobrovej is taken into account. This means that the Vilstrup region is indeed ignored, and the end-users are considered in the HZ, LZ and in Hornbæk region. With these considerations, the network simplifies to the following shown in *Figure 2.12*

Figure 2.12: The simplified network map of the Randers WSS.

The modelling of this system is going to be used for control purposes, which means that the model needs to be simple, but at the same time needs to have the same characteristics as of the original network. In the WSS in Randders, the control purpose is to find an optimal control scheme which is able to actuate the pumps at the two main pumping stations, such that the dynamic effect of the water tanks at each station are taken into account.

Tom's comments:

- -some additional info on the purpose of the control
- -what challenges should we face while controlling such system, with WTs included

3. System Modelling

This chapter gives a mathematical description of the component modelling. Thus, the different physical and mathematical measures of hydraulic systems are introduced. The similarities to electronic networks are shown by explaining the relevant properties of graph theory. A reduced model for multi-inlet networks is first introduced, then the inclusion of tanks is considered. In the end, the EPANET-based modelling approach is introduced and the reduced model is verified on a simple pipe network by comparing it to the simulation results in EPANET.

3.1 Hydraulic component modelling

In this section the mathematical relation between pressure and flow is given for each component in a WSS system, in order to show their non-linear behaviour. The purpose here is not to derive the different models, but to introduce the mathematical formalism which describes them.

Equation: (3.1) shows the dual variable which describes all two-terminal components in the network

$$\begin{bmatrix} \Delta p \\ q \end{bmatrix} = \begin{bmatrix} p_{in} - p_{out} \\ q \end{bmatrix}, \tag{3.1}$$

where

$$\Delta p$$
 is the differential pressure across the element, [Pa] q is the flow through the element, p_{in}, p_{out} are the absolute pressures. [Pa] $[Pa]$

3.1.1 Hydraulic head

As can be seen in Equation: (3.1), the measure of pressure is in [Pa] and the measure of volumetric flow is in $[\frac{m^3}{s}]$. In the further report, the units used for calculation are in SI, however sometimes results are shown in non-SI units. Non-SI units are considered due to the fact that EPANET uses meter head and liters instead of pascals and cubic meters for pressure and flow simulations, respectively. The unit conversion between liters and cubic meters is a constant, however meter head expresses pressure in terms of length. The link between pressure and pressure head is explained in Equation: (3.2) below.

$$h_p = \frac{p}{\rho g}. ag{3.2}$$

where

As can be seen in Equation: (3.2), if the density of the liquid is a known parameter, the conversion can be made easily between pressure and pressure head. In this project, water is considered and its density is assumed to be constant.

In general, the hydraulic head, or total head, is a measure of the potential of fluid at a specific measurement point. It relates the energy of an incompressible fluid to the height of an equivalent static column of that fluid. The different forms of energies concerning fluids can be measured in distance, and therefore that is the reason that these terms are sometimes referred to as heads. The total hydraulic head of a fluid is composed of the pressure head and elevation head. ¹

The total head is given

$$h_t = h_p + z, (3.3)$$

where

$$h_t$$
 is the total head, [m] z is the elevation(head).

Therefore, pressure head is a measurement of length, which is dependant on the density of the fluid but can be converted to the units of pressure. Using meters for describing pressure in the system is convenient for the reason, that pressure can be treated the same way as the elevation. In calculations, this property is exploited.

3.1.2 Pipe model

Pipes in the network are governed by the dynamic equation

$$\Delta p_i = J_i \dot{q}_i + f_i(q_i) - h_i, \tag{3.4}$$

where

 J_i is the mass inertia of the water in the pipes, $f_i(q_i)$ is the pressure drop due to friction, h_i is the pressure drop due to geodesic level difference across the two terminals of pipe elements.

The dynamics of pipes due to mass inertia are discarded in this project, as it is shown in other works that the small time constant of these mass inertia dynamics are not dominant in the system, especially if there are elevated reservoirs included [9, 15]. Therefore the pressure drop across pipes can be written as

$$\Delta p_i = f_i(q_i) - h_i, \tag{3.5}$$

Additionally, the dynamics due to inertia of the liquid is not the only possible dynamics for pipes. The phenomenon, called water hammer occurs when a fluid, or gas in motion is forced to stop or change direction suddenly. In this case, a pressure wave runs through the pipe, causing vibration and possible damage in the network [19]. However, Equation: (3.4) models the pressure drops or equivalently, headloss, due to the elevation of the pipes and friction of the fluid. Therefore such rapid flow change is not assumed in the network.

The pressure drop due to friction across the i^{th} edge is a diagonal map where $f: \mathbb{R}^m \to \mathbb{R}^m$ is strictly increasing.² As it is shown in *Equation:* (3.6), f_i describes a flow dependant pressure drop due to the hydraulic resistance such that

$$f_i(q_i) = \gamma_i |q_i| q_i, \tag{3.6}$$

¹There is a third term, called the kinetic head which is discarded, since the velocity of the fluid is assumed to be constant along the cross sectional area in the whole length of pipes [18].

²A map $f: \mathbb{R}^m \to \mathbb{R}^m$ is strictly increasing if $\langle x-y, f(x)-f(y) \rangle > 0$ for every $x, y \in \mathbb{R}^m$ such that $x \neq y$ [20].

where

$$\gamma_i > 0$$
 is the resistance coefficient, the parameter of pipes. [\cdot]

Equation: (3.6) is motivated by turbulent flow in the pipes, which is typical in water supply applications. The resistance coefficient is calculated according to the Darcy-Weisbach formula, which provides the theoretically most precise result and is the most commonly used in Europe[8, 21]. γ is given as shown in Equation: (3.7) below³.

$$\gamma(q) = \frac{c_D f_D(\epsilon, Re(q), D)l}{D^5},\tag{3.7}$$

where

$$f_D \qquad \text{is the Darcy friction factor,} \qquad \qquad \left[\begin{array}{c} [\cdot] \\ \epsilon \\ D \\ D \\ \end{array} \right]$$
 is the roughness of the pipe,
$$\left[\begin{array}{c} [m] \\ [m] \\ \end{array} \right]$$
 is the diameter of the pipe,
$$\left[\begin{array}{c} [m] \\ [m] \\ \end{array} \right]$$
 is the Reynolds-number,
$$\left[\begin{array}{c} [\cdot] \\ [\cdot] \\ \end{array} \right]$$
 is a coefficient in the D-W equation,
$$\left[\begin{array}{c} [s^2] \\ [m] \\ \end{array} \right]$$
 is the length of the pipe.

In Equation: (3.7), the Darcy friction factor, f_D , is dependent on the Reynolds number, which is defined by the volumetric flow in the pipes. However, at high flows Re becomes nearly constant and therefore normally this flow dependency is disregarded. Thus, f_D is considered to be constant in the further project.

The derivation of Equation: (3.7) is explained in more detail in appref [18]. Furthermore, in the following sections it is assumed that each f_i has a structure shown in Equation: (3.6).

It is important to note here that $f_i(\cdot)$ is a homogeneous map which means that if the argument is multiplied by a positive scalar, then its value is multiplied by some power of this scalar ⁴. For $f_i(q_i)$, it can be shown that

$$\gamma_i|(\alpha q_i)|(\alpha q_i) = f_i(\alpha q_i) = \alpha^2 f_i(q_i). \tag{3.8}$$

More precisely, with the given structure of $f(\cdot)$ the scaling would be $|\alpha|\alpha$, however $\alpha \geq 0$ is already assumed in *Equation:* (3.8). This property is noted here and used later in the system description, in Section 3.2.4: Multi-inlet network model, where the scaling is indeed such that $\alpha \in \mathbb{R}_+$.

3.1.3 Valve model

Valves in the network are governed by the following algebraic expression

$$\Delta p_i = \mu_i(q_i, k_v) = \frac{1}{k_v(OD)^2} |q_i| q_i, \tag{3.9}$$

where

 k_v is the valve conductivity function, taking the Opening Degree(OD) of the valve in its argument [15].

 $\mu_i(q_i, k_v)$ is a continuously differentiable and proper function which for $q_i = 0$ is zero and monotonically increasing.

3.1.4 Pump model

Centrifugal pumps are governed by the following expression [16]

 $^{^3\}mathrm{EPANET}$ uses the D-W formula for calculating the resistance terms.

 $^{^4}g(\alpha v) = \alpha^k g(v)$

$$\Delta p = -a_{h2}q_i^2 + a_{h1}\omega_r q_i + a_{h0}\omega_r^2 \tag{3.10}$$

where

$$\Delta p$$
 is the differential pressure produced by the pump, [Pa] a_{h2}, a_{h1}, a_{h0} are constants describing the pump, [·] ω_r is the impeller rotational speed. $\left\lceil \frac{\mathrm{rad}}{\mathrm{s}} \right\rceil$

The model described in Equation: (3.10), works only for positive flows, therefore it is assumed that liquid cannot flow back to the pump.

3.1.5 Elevated reservoir model

In elevated reservoirs, the rate of change in the volume of the fluid inside the tank is equal to the volumetric flow at which water enters or leaves the tank. Since the pressure on the bottom is due to the cross sectional area of the tank and the amount of water in it, proportional relation can be set between the pressure and the flow in and out of the tank. The dynamics of such system can be described by a first order differential equation of the form

$$\dot{p}_i = \tau_i \left(\frac{p_i}{h_{l,i}}\right) q_i \tag{3.11}$$

where

$$\begin{array}{lll} p_i & \text{is the pressure at the node connected to the tank,} & [Pa] \\ h_{l,i} & \text{is the water level in the tank,} & [m] \\ \tau_i & \text{is the parameter in terms of the cross sectional area and} \\ the pressure/water level ratio in the tank,} & [\frac{s^2}{kg}] \\ q_i & \text{is the flow into the tank if } q_i < 0 \text{ and flow out of the tank} \\ \text{if } q_i > 0. & [\frac{m^3}{s}] \end{array}$$

As can be seen in Equation: (3.12), in general, the parameter of the tank depends on the pressure and water level ratio, if the cross sectional are is not constant along the height of the tank. However, it is assumed that tanks have the same cross sectional areas in the entire height. Then Equation: (3.12) simplifies to

$$\dot{p}_i = \tau_i q_i. \tag{3.12}$$

3.2 Graph-based network modelling

Most of the tools, used by Circuit Theory(CT), are developed based on Graph Theory(GT). A WSS can be modelled as a directed graph with the set of vertices, representing the water sources and consumption nodes, and the set of edges, representing pipes, pumps and valves.

In order to track the pressure and flow in the desired part of the network, the equation system of the network has to be solved for the corresponding edges and vertices. The whole network can be described by writing up the equations for all edges in the network, based on the mathematical modelling of the different components in the system, as shown in Section 3.1: Hydraulic component modelling. However, in case of complex systems such as water networks for large cities, these systems of equations are difficult to handle individually and typically cannot be solved explicitly if the system consists of loops. Therefore the properties of GT are not only useful for setting up relations between flow and pressure, but to make the handling of algebraic constraints easier by exploiting the properties of linear algebra. Thereby making it convenient for implementing it in computer algorithms for iterative solving methods.

WSSs can be described by a directed and connected graph, such that [22]:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\},\tag{3.13}$$

where

 $\begin{array}{ll} \mathcal{G} & \text{is a directed and connected graph,} \\ \mathcal{V} & \text{is the set of vertices, where } \mathcal{V} = \{v_1, ..., v_n\}, \\ \mathcal{E} & \text{is the set of edges, where } \mathcal{E} = \{e_1, ..., e_m\}. \end{array}$

3.2.1 Incidence matrix

The incidence matrix, H, of a connected graph, \mathcal{G} , is a matrix where the number of rows and columns correspond to the number of vertices and edges, respectively. Therefore $H \in \mathbb{R}^{n \times m}$. In case of hydraulic networks, edges are directed in order to keep track of the direction of the flow in the system.

$$H_{i,j} = \begin{cases} 1 & \text{if the } j^{th} \text{ edge is incident out of the } i^{th} \text{ vertex.} \\ -1 & \text{if the } j^{th} \text{ edge is incident into the } i^{th} \text{ vertex.} \\ 0 & \text{if the } j^{th} \text{ edge is not connected to the } i^{th} \text{ vertex.} \end{cases}$$
(3.14)

It is worth mentioning that the reduced incidence matrix can be obtained by removing any arbitrary row from H. Therefore H always has (n-1) row rank. This statement is induced by the mass conservation in the network and explained in the following section, Section 3.2.3: Kirchhoff's and Ohm's law for hydraulic networks.

3.2.2 Cycle matrix

Purely tree structure of a WSS is not common when complex distribution systems are considered. However, trees can be arbitrarily chosen from the underlying graph of the network.⁵ A tree, \mathcal{T}^* , of a graph is a connected sub-graph where any two vertices are connected by exactly one path [23]. Therefore trees in the network can be represented as follows

$$\mathcal{T}^* = \{ \mathcal{V}_{\mathcal{T}^*}, \mathcal{E}_{\mathcal{T}^*} \}. \tag{3.15}$$

A special case of connected tree sub-graphs is the spanning tree of the network. A spanning tree contains all the vertices of \mathcal{G} and has no cycles, since it is a tree. A spanning tree of the network therefore can be represented as

$$\mathcal{T}_{span}^* = \{\mathcal{V}, \mathcal{E}_{\mathcal{T}^*}\} \tag{3.16}$$

In order to obtain a spanning tree, an edge has to be removed from each cycle. The removed edges are $\mathcal{G} - \mathcal{T}^*$, and called the chords of \mathcal{T}^* with respect to \mathcal{G} . By adding a chord to \mathcal{T}^* , a cycle is created which is called a fundamental cycle. A graph is conformed by as many fundamental cycles as the number of chords [23].

The set of fundamental cycles correspond to the fundamental cycle matrix, B, such that the number of rows and columns are defined by the number of chords and edges, respectively. The cycle matrix of the system is given by

$$B_{i,j} = \begin{cases} 1 & \text{if the } j^{th} \text{ edge belongs to the } i^{th} \text{ cycle and their directions agree.} \\ -1 & \text{if the } j^{th} \text{ edge belongs to the } i^{th} \text{ cycle and their directions are opposite.} \\ 0 & \text{if the } j^{th} \text{ edge does not belong to the } i^{th} \text{ cycle.} \end{cases}$$

(3.17)

⁵Recall that a tree with n vertices has n-1 edges [23].

3.2.3 Kirchhoff's and Ohm's law for hydraulic networks

In this project, the hydraulic system is considered to be an open network with pipes, valves, pumps and the storage tanks, where water is able to enter and leave the network at a subset of the vertices. For such system, Kirchhoff's vertex law, or equivalently Kirchhoff's current law(KCL), corresponds to conservation of mass in each vertex and described by

$$Hq = d, (3.18)$$

where

 $d \in \mathbb{R}^n$

is the vector of nodal demands, with $d_i > 0$ when demand flow is into vertex i and $d_i < 0$ when demand flow is out of vertex i.

Nodal demands are seen as the end-user consumption, which means that water is taken out from the network. The mass conservation corresponds to the fact that what is consumed from the system must also be produced. Due to mass conservation, there can be only (n-1) independent nodal demands in the network

$$d_n = -\sum_{i=1}^{n-1} d_i. (3.19)$$

As a matter of fact, Equation: (3.19) is not an additional constraint since it follows from Equation: (3.18). This can be sown by using the knowledge that 1_n is the left kernel⁶ of H.

In the further report, a distinction is made between inlet and non-inlet nodes. It is assumed that the demand at non-inlet nodes fulfil the following constraint

$$d_i \le 0. (3.20)$$

It is worth noting however, that in closed hydraulic networks the vertex law becomes

$$Hq = 0. (3.21)$$

Ohm's law for hydraulic networks is expressed with the incidence matrix, when H^T is applied to the vector of absolute pressures, p. Important to point out that the description below in *Equation*: (3.22) is valid if edges of the underlying graph are considered as only pipe elements.

$$\Delta p = H^T p = f(q) - H^T h. \tag{3.22}$$

In Equation: (3.22), the differential pressure is described across each edge in the network, taking into account the pressure loss due to friction, f(q), and the pressure drop due to geodesic level differences, where $h \in \mathbb{R}^n$ is the vector of geodesic levels at each vertex expressed in units of potential, i.e. pressure. It is noted that the pressure loss, f(q), the absolute pressure, p and the geodesic level h can be both considered in units of meter. As mentioned in the previous section, handling Ohm's law for hydraulic systems in meter is convenient, since the elevation is already in meters.

3.2.4 Multi-inlet network model

The system is a water network supplied from more than one pumping stations and the distribution is to several end-users. In the underlying graph therefore the nodes are

⁶The kernel of matrix $A \in \mathbb{R}^{m \times n}$ is $\{x \in \mathbb{R}^n | Ax = 0\}$.

pipe connections, with possible water demand from the end-users, and the edges are only pipes.

The aim of the modelling here is to obtain a reduced order network model which is able to capture the dependence of the measured output pressures, on the flows and pressures at the inlets. The inclusion of storage tanks is the next step of the model development, therefore it is described in a following section, in Section 3.2.5: Inclusion of elevated reservoirs.

It is assumed that the inlet pressures and demands are measured. Furthermore, pressure measurement is available in certain parts of the remaining network, at the end-users. Considering generality, the model is described for c inlets, however it should be noted that regarding the Randers WSS, two inlet vertices are taken into account.

In order to put the system into a form which can handle the measured pressure dependencies on the control inputs, the underlying graph of the network is first partitioned. The n vertices of the graph are separated into two sets

$$\mathcal{V} = \{\bar{\mathcal{V}}, \hat{\mathcal{V}}\},\tag{3.23}$$

where

 $\hat{\mathcal{V}} = \{\hat{v}_1, ..., \hat{v}_c\}$ represents the vertices corresponding to the inlet points,

and

represents the remaining vertices in the graph.

The partitioning for the m edges of the graph is being chosen such that

$$\mathcal{E} = \{\mathcal{E}_{\mathcal{T}}, \mathcal{E}_{\mathcal{C}}\},\tag{3.24}$$

where $\mathcal{E}_{\mathcal{T}} = \{e_{\mathcal{T},1},...,e_{\mathcal{T},n-c}\}$

and

$$\mathcal{E}_{\mathcal{C}} = \{e_{\mathcal{C},1}, ..., e_{\mathcal{C},m-n+c}\}.$$

The subsets regarding edges and the partitioning is chosen such that the sub-matrix, which maps edges in $\mathcal{E}_{\mathcal{T}}$ to vertices in \mathcal{V} , is invertible. It is worth mentioning that such partitioning is always possible for connected graphs.

Therefore, the incidence matrix can be split into four sub-matrices, as shown in Equation: (3.25) below

$$H = \begin{bmatrix} \bar{H}_{\mathcal{T}} & \bar{H}_{\mathcal{C}} \\ \hat{H}_{\mathcal{T}} & \hat{H}_{\mathcal{C}} \end{bmatrix}, \tag{3.25}$$

where

 $\bar{H}_{\mathcal{T}} \in \mathbb{R}^{(n-c)\times(n-c)} \quad \text{is the sub-matrix, mapping edges in } \mathcal{E}_{\mathcal{T}} \text{ to vertices in } \bar{\mathcal{V}},$ $\bar{H}_{\mathcal{C}} \in \mathbb{R}^{(n-c)\times(m-n+c)} \quad \text{is the sub-matrix, mapping edges in } \mathcal{E}_{\mathcal{C}} \text{ to vertices in } \bar{\mathcal{V}},$ $\hat{H}_{\mathcal{T}} \in \mathbb{R}^{c\times(n-c)} \quad \text{is the sub-matrix, mapping edges in } \mathcal{E}_{\mathcal{T}} \text{ to vertices in } \hat{\mathcal{V}},$ $\hat{H}_{\mathcal{C}} \in \mathbb{R}^{c\times(m-n+c)} \quad \text{is the sub-matrix, mapping edges in } \mathcal{E}_{\mathcal{C}} \text{ to vertices in } \hat{\mathcal{V}}.$

It is worth noting that the only requirement for the edge partitioning is $H_{\mathcal{T}}$ being invertible⁷. Furthermore, the set $\mathcal{T} = \{\mathcal{V}, \mathcal{E}_{\mathcal{T}}\}$ is not necessarily a tree of the underlying graph, it can be any form of graph that fulfils the invertibility requirements. The set here, \mathcal{T} , is not connected due to the requirement of $\mathcal{E}_{\mathcal{T}} \geq (n-1)$. For the multi-inlet case, c > 1, therefore $\mathcal{E}_{\mathcal{T}} = (n-c)$. However, one special case is given when c = 1, meaning that the network has only one inlet. In this case, \mathcal{T} is indeed a spanning tree.

 $^{7\}exists \{\mathcal{V}, \mathcal{E}\} : \bar{H}_{\mathcal{T}}^{-1} : rank(H) = (n-1)$ [23]

With the chosen partitioning, Kirchhoff's vertex law in Equation: (3.18) can be rewritten as

$$\bar{d} = \bar{H}_{\mathcal{T}} q_{\mathcal{T}} + \bar{H}_{\mathcal{C}} q_{\mathcal{C}}, \tag{3.26}$$

$$\hat{d} = \hat{H}_{\mathcal{T}} q_{\mathcal{T}} + \hat{H}_{\mathcal{C}} q_{\mathcal{C}},\tag{3.27}$$

and Ohm's law in Equation: (3.22), separating the pressure drops due to hydraulic resistance

$$f_{\mathcal{T}}(q_{\mathcal{T}}) = \bar{H}_{\mathcal{T}}^T(\bar{p} + \bar{h}) + \hat{H}_{\mathcal{T}}^T(\hat{p} + \hat{h}),$$
 (3.28)

$$f_{\mathcal{C}}(q_{\mathcal{C}}) = \bar{H}_{\mathcal{C}}^T(\bar{p} + \bar{h}) + \hat{H}_{\mathcal{C}}^T(\hat{p} + \hat{h}).$$
 (3.29)

Writing up Equation: (3.28) and Equation: (3.29) in matrix form, the following yields

$$\begin{bmatrix} f_{\mathcal{T}}(q_{\mathcal{T}}) \\ f_{\mathcal{C}}(q_{\mathcal{C}}) \end{bmatrix} = \underbrace{\begin{bmatrix} \bar{H}_{\mathcal{T}}^T & \hat{H}_{\mathcal{T}}^T \\ \bar{H}_{\mathcal{C}}^T & \hat{H}_{\mathcal{C}}^T \end{bmatrix}}_{\left[\bar{H}^T & \hat{H}^T\right]} \begin{bmatrix} (\bar{p} + \bar{h}) \\ (\hat{p} + \hat{h}) \end{bmatrix} \tag{3.30}$$

As it is shown in Equation: (3.30), the transposed incidence matrices can be written up as the two sub-matrices partitioned according to inlet and non-inlet nodes.

Now, defining a matrix Γ , in which the partitioning of the edges are the same as for the incidence matrix, H. Γ is defined as follows

$$\Gamma = \begin{bmatrix} -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} & I \end{bmatrix} \tag{3.31}$$

It should be noted that the expressions in matrix Γ are of the same structure as the structure of a partitioned cycle matrix [23]. However, as mentioned, the set \mathcal{T} does not define a spanning tree when c > 1, therefore matrix Γ is not a cycle matrix corresponding to any spanning trees. Multiplying H with Γ from the left-hand side

$$\Gamma H^T = \begin{bmatrix} -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} & I \end{bmatrix} \begin{bmatrix} \bar{H}_{\mathcal{T}}^T & \hat{H}_{\mathcal{T}}^T \\ \bar{H}_{\mathcal{C}}^T & \hat{H}_{\mathcal{C}}^T \end{bmatrix} = \begin{bmatrix} 0 & -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^T + \hat{H}_{\mathcal{C}}^T \end{bmatrix}.$$
(3.32)

Multiplying with Γ from the left in Equation: (3.30)

$$\begin{bmatrix} -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} & I \end{bmatrix} \begin{bmatrix} f_{\mathcal{T}}(q_{\mathcal{T}}) \\ f_{\mathcal{C}}(q_{\mathcal{C}}) \end{bmatrix} = \begin{bmatrix} -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} & I \end{bmatrix} \begin{bmatrix} \bar{H}_{\mathcal{T}}^T & \hat{H}_{\mathcal{T}}^T \\ \bar{H}_{\mathcal{C}}^T & \hat{H}_{\mathcal{C}}^T \end{bmatrix} \begin{bmatrix} (\bar{p} + \bar{h}) \\ (\hat{p} + \hat{h}) \end{bmatrix}$$
(3.33)

induces the following expression

$$f_{\mathcal{C}}(q_{\mathcal{C}}) - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(q_{\mathcal{T}}) = (\hat{H}_{\mathcal{C}}^T - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^T)(\hat{p} + \hat{h}). \tag{3.34}$$

From Equation: (3.26), the vector $q_{\mathcal{T}}$, of flows in edges $\mathcal{E}_{\mathcal{T}}$ can be expressed

$$q_{\mathcal{T}} = -\bar{H}_{\mathcal{T}}^{-1}\bar{H}_{\mathcal{C}}q_{\mathcal{C}} + \bar{H}_{\mathcal{T}}^{-1}\bar{d}. \tag{3.35}$$

Therefore using Equation: (3.35), Equation: (3.34) can be rewritten

$$f_{\mathcal{C}}(q_{\mathcal{C}}) - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} q_{\mathcal{C}} + \bar{H}_{\mathcal{T}}^{-1} \bar{d}) = (\hat{H}_{\mathcal{C}}^T - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^T)(\hat{p} + \hat{h}). \quad (3.36)$$

Now expressing the vertex demands at non-inlet vertices, \bar{d} , such that

$$\bar{d} = -v\sigma \tag{3.37}$$

where $\bar{d} \in \mathbb{R}^{n-c}$ is the vector of nodal demands in non-inlet vertices, is the total demand in the network, representing the total consumption of the end-users,

 $v \in \mathbb{R}_{n-c}$ represents the distribution vector of nodal demands among the non-inlet vertices with the property $\sum_{i} v_{i} = 1$ and $v_i \in (0;1).$

Furthermore, introducing a vector, $a_{\mathcal{C}}$, such that

$$q_{\mathcal{C}} = a_{\mathcal{C}}\sigma. \tag{3.38}$$

It is worth mentioning that such an $a_{\mathcal{C}}$ can always be defined in this manner as long as

Having d and $q_{\mathcal{C}}$ introduced as the linear function of the total demand, σ , Equation: (3.36) can be expressed such that

$$f_{\mathcal{C}}(q_{\mathcal{C}}) - \bar{H}_{\mathcal{C}}^{T} \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} q_{\mathcal{C}} + \bar{H}_{\mathcal{T}}^{-1} \bar{d}) =$$

$$f_{\mathcal{C}}(a_{\mathcal{C}}\sigma) - \bar{H}_{\mathcal{C}}^{T} \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} a_{\mathcal{C}}\sigma - \bar{H}_{\mathcal{T}}^{-1} v\sigma) =$$

$$f_{\mathcal{C}}(a_{\mathcal{C}})\sigma^{2} - \bar{H}_{\mathcal{C}}^{T} \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} a_{\mathcal{C}} - \bar{H}_{\mathcal{T}}^{-1} v)\sigma^{2}.$$

$$(3.39)$$

where the latter equality is due to the homogeneity property of the pressure drops due to frictions, previously explained in Section 3.1.2: Pipe model.

Defining a function $F_v : \mathbb{R}^{m-n+c} \to \mathbb{R}^{m-n+c}$, parametrized with v such that it takes $a_{\mathcal{C}}$ as input, the following expression can be formed

$$F_v(a_{\mathcal{C}}) = f_{\mathcal{C}}(a_{\mathcal{C}}) - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}} (-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} a_{\mathcal{C}} - \bar{H}_{\mathcal{T}}^{-1} v)$$

$$(3.40)$$

Furthermore, $F_v(\cdot)$ equals to the following, according to Equation: (3.36)

$$F_v(a_c) = \frac{1}{\sigma^2} (\hat{H}_c^T - \bar{H}_c^T \bar{H}_T^{-T} \hat{H}_T^T) (\hat{p} + \hat{h}). \tag{3.41}$$

An algebraic expression for a_c can be found iff $\exists F_v^{-1}(\cdot)$. It can be shown, however that $\exists F_v^{-1}(\cdot)$ by showing that $F_v(\cdot)$ is a homeomorphism⁸, which is done in [20].

As a result of using the inverse mapping of F_v , a unique expression can be obtained for

$$a_{\mathcal{C}} = F_v^{-1} A(\hat{p} + \hat{h}), \tag{3.42}$$

where

$$\hat{A} = \hat{H}_{\mathcal{C}}^T - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^T \in \mathbb{R}^{(m-n+c \times c)}.$$

A has a non-trivial kernel, and for every unique value of $\frac{1}{\sigma^2}A(\hat{p}+\hat{h})$, there is a unique solution for $a_{\mathcal{C}}$.

The main objective of writing up $a_{\mathcal{C}}$ is to show that it can be expressed in terms of $v, \sigma(t), \hat{p}(t)$ and \hat{h} , where \hat{h} and $\sigma(t)$ are assumed to be known signals and parameters,

⁸Two functions are homeomorphic if they can be formed into each other by continuous, invertible mapping [24]. However, here invertibility is a sufficient condition.

v(t) is an unknown parameter and $\hat{p}(t)$ is the control signal. The difficulty about the constraint on $a_{\mathcal{C}}$ in Equation: (3.42) is that its structure is unknown. Equivalently, the solution for $a_{\mathcal{C}}$ cannot be expressed analytically but there exists a unique numerical solution for it.

Furthermore, assuming that $(\hat{p} + \hat{h}) \neq 0 \in ker(A)$, then $a_{\mathcal{C}}$, Equation: (3.41) can be simplified such that

$$a_{\mathcal{C}} = F_{v}^{-1}(0).$$
 (3.43)

Equation: (3.43) shows, that in the special case when the input vertices are chosen such that the product $A(\hat{p}+\hat{h})=0$, then $a_{\mathcal{C}}$ becomes only dependent on the parameter v.

Now, using the equations for Ohm's law in Equation: (3.28) and the vector $q_{\mathcal{T}}$, of flows in edges $\mathcal{E}_{\mathcal{T}}$ in Equation: (3.35), the vector \bar{p} of pressures at non-inlet vertices is expressed

$$\bar{p} = \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}} (-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} q_{\mathcal{C}} + \bar{H}_{\mathcal{T}}^{-1} \bar{d}) - \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^{T} (\hat{p} + \hat{h}) - \bar{h}$$

$$= \bar{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}} (-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} a_{c} + \bar{H}_{\mathcal{T}}^{-1} v) \sigma^{2} - \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^{T} (\hat{p} + \hat{h}) - \bar{h}$$
(3.44)

As shown in Equation: (3.44), the output vector which consists of the pressures in the non-inlet vertices can be written up in terms of $\sigma(t)$, $\hat{p}(t)$ time-varying signals, in terms of \hat{h} and \bar{h} constants and in terms of the parameter $a_{\mathcal{C}}$ and v. In the non-general case, as shown in Equation: (3.43), a_c is a parameter which is governed by the behaviour of the total demand distribution among the non-inlet vertices. In case vector v is constant, thereby time-invariant, which means that the distribution of nodal demands are the same in all vertices in the network at all time, the output pressure in the i^{th} non-inlet vertices can be written as follows: ⁹

$$\bar{p}_i(t) = \alpha_i \sigma^2(t) + \sum_j \beta_{ij} \hat{p}_j(t) + \gamma_i$$
(3.45)

where

e
$$\alpha_{i} = (\bar{H}_{\mathcal{T}}^{-T})_{i} f_{\mathcal{T}} (-\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}} a_{\mathcal{C}} + \bar{H}_{\mathcal{T}}^{-1} v)$$

$$\beta_{ij} = -(\bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^{T})_{ij}$$

$$\gamma_{i} = -(\bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^{T})_{i} \hat{h} - \bar{h}_{i}$$

However in WSSs, the above-mentioned consideration for v is unrealistic, meaning that the distribution of nodal demands in the non-inlet vertices should depend on time, as the end-user water consumption is not the same in every hour. This consumption behaviour of the end-users, however, is assumed to be periodic, which is a fair assumption, taking into account that the daily consumption shows approximately the same trends every day.

Therefore the demand in non-inlet vertices, described in Equation: (3.37) can be rewritten such that

$$\bar{d}(t) = -v(t)\sigma(t) \tag{3.46}$$

where

$$\begin{aligned} v(t+T) &= v(t),\\ \sigma(t+T) &= \sigma(t),\\ \text{and } T \text{ is the length of the period.} \end{aligned}$$

⁹FiXme Fatal: Fix rows, alfa,beta,gamma

If the non-inlet demands are time-varying, but periodic behaviour is assumed and on top of this, the input vertices are arranged such that Equation: (3.43) is fulfilled, Equation: (3.47) can be rewritten as follows

$$\bar{p}_i(t) = \alpha_i(t)\sigma^2(t) + \sum_j \beta_{ij}\hat{p}_j(t) + \gamma_i, \qquad (3.47)$$

where α_i is also a time-varying parameter of the model.

Inclusion of elevated reservoirs 3.2.5

When a WT is being attached to an existing pipe network, certain properties of the previous system must be modified. Regarding the underlying graph of the network, when a WT is newly attached, the vertex to which the tank is connected becomes a vertex with a demand. However, the demand flow which describes the filling and emptying process of the tank, in this case, is not related directly to any user consumption profile, since flow can go into and come out from the tank. Therefore, the constraint on demand flows, described in Equation: (3.20) is not true in case of elevated reservoirs, as the demand can be both positive or negative. For this reason, demands on the reservoirs are treated as inputs and partitioned from the input flows of the pumps such that

$$\hat{d} = F\hat{d}_t + G\hat{d}_c,\tag{3.48}$$

 $\hat{d}_t \in \mathbb{R}^{(l \times 1)}$ is the vector including the nodal demands of the tanks, $\hat{d}_c \in \mathbb{R}^{(c-l \times 1)}$ is the the vector including the nodal demands of the pump

 $F^T \in \mathbb{R}^{(c \times l)}$ is a mapping which selects the nodes belonging to tanks, $G^T \in \mathbb{R}^{(c \times c - l)}$ is a mapping which selects the nodes belonging to pump

The same partitioning is done for the input pressures and elevation, regarding pumps and tanks

$$\hat{h} = F\hat{h}_t + G\hat{h}_c
\hat{p} = F\hat{p}_t + G\hat{p}_c$$
(3.49)

 $\hat{h}_t \in \mathbb{R}^{(l \times 1)}$ is the vector including the elevation of the tanks, $\hat{h}_c \in \mathbb{R}^{(c-l \times 1)}$ is the the vector including the elevation of the pump

 $\hat{p}_t \in \mathbb{R}^{(l \times 1)}$ is the vector including the absolute pressures in the tanks, $\hat{p}_c \in \mathbb{R}^{(c-l \times 1)}$ is the the vector including the absolute pressures of the pump inputs.

With the inclusion of tanks, the network is not only constrained by the static pressure and flow relation, as in case of the model without tanks, but also governed by the dynamic equation describing the WT. These dynamics act as integrators on the flow which goes in or out of the tank, \hat{d}_t . In terms of \hat{d}_t , the dynamics of the tank set the pressure contribution, \hat{p}_t , as an input to the distribution system. The block diagram of such system is shown in Figure 3.1.

¹⁰FiXme Fatal: Fix dimensions.

Figure 3.1: Block diagram of the system with WTs.

where the 'Elevated reservoirs' block represents the subsystem with dynamics, and the 'Static network' subsystem is governed by the algebraic flow and pressure relations which describe the pipe network.

When elevated reservoirs are introduced in the network, the system usually operates such that the control inputs are the flows, \hat{d} , as this is the most practical and robust way to control the network. In fact, this is the case regarding the Randers WSS, as the two pumping stations which are filling up the tanks are controlled by flow, as it was explained in Section 2.2.1: Waterworks and pumping stations.

This modelling approach is different, however, from what is handled in case of a network without a tank, since instead of using the pressures, \hat{p} , the inlet flows, \hat{d}_c and \hat{d}_c , are considered as inputs. Furthermore, regarding the dynamics, the filling and emptying of a tank is dependent on how much flow is delivered by the pumps. Recalling the dynamic equation of tanks, from Equation: (3.53)

$$\dot{\hat{p}}_{t,i} = \gamma_i \hat{d}_{t,i},\tag{3.50}$$

it is seen that the tank flows, \hat{d}_t , need to be expressed in terms of the inputs, \hat{d}_c . In order to express the demand regarding a tank, the whole network is treated as one node, as illustrated in *Figure 3.2*.

Figure 3.2: Mass balance on the network with a WT.

According to the mass-balance in the network, and using the corresponding partitioning as shown in Figure~3.2, the balance equation on demand flows can be written in the form of 11

$$1^{T}d = 1^{T} \begin{bmatrix} \bar{d} \\ \hat{d} \end{bmatrix} = 1^{T} \begin{bmatrix} -v\sigma \\ \hat{d}_{c} \\ \hat{d}_{t} \end{bmatrix} = 0$$
(3.51)

Now, expressing \hat{d}_t from Equation: (3.51) yields

¹¹FiXme Fatal: Fix 1 vector.

$$\hat{d}_t = \sigma - 1^T \hat{d}_c, \tag{3.52}$$

where it is shown, that if the control flow, \hat{d}_c , is higher than the total demand, σ , the tank is being filled, and the tank is emptied if \hat{d}_c is lower than σ . Thus, the system dynamics can be reformulated such that

$$\dot{\hat{p}}_t = \gamma(\sigma - 1^T \hat{d}_c). \tag{3.53}$$

It is important to point out that this first order differential equation in Equation: (3.53), describes the mass-balance model of a single tank system, where the input flows equal to the overall demand in the network and the rate of change in storage in the tank. The result is not surprising, since according to Equation: (3.53), the water level, or pressure, fluctuates according to the in- and outflow of water, which relates to the pumping and demand in the network.

It is aimed to set up a model which is capable of handling the dynamics of the tanks, constrained by the static network and driven by the input flows, \hat{d} .

Comments for the supervisors:

- 1. In Equation: (3.51), the mass-balance equation is a scalar equation. If there is one tank in the system then it works fine but i am not sure if it is applicable if there are two tanks. At least, i cannot see how the distribution is handled between $\hat{d}_{t,1}$ and $\hat{d}_{t,2}$.
- 2. In order to derive a system with flow inputs, where the pressure inputs can be calculated back, \hat{p} should be expressed such that (assumably): $\hat{p}_c = G^T \hat{p} = f(\hat{d}_t, \hat{p}_t, \sigma, \hat{d}_c)$. As I can see, the only way of expressing \hat{p} and \hat{d} is by using:

$$f_{\mathcal{T}}(q_{\mathcal{T}}) = \bar{H}_{\mathcal{T}}^T(\bar{p} + \bar{h}) + \hat{H}_{\mathcal{T}}^T(\hat{p} + \hat{h}),$$
 (3.54)

and

$$\hat{d} = \hat{H}_{\mathcal{T}} q_{\mathcal{T}} + \hat{H}_{\mathcal{C}} q_{\mathcal{C}}. \tag{3.55}$$

This requires a different partitioning, such that $\hat{H}_{\mathcal{T}}$ is invertible.

Then:

$$\hat{p} = \hat{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}}(q_{\mathcal{T}}) - \hat{H}_{\mathcal{T}}^{-T} \bar{H}_{\mathcal{T}}^{T} (\bar{p} + \bar{h}) - \hat{h}. \tag{3.56}$$

$$\hat{p} = \hat{H}_{\mathcal{T}}^{-T} f_{\mathcal{T}} (\hat{H}_{\mathcal{T}}^{-1} \hat{d} - \hat{H}_{\mathcal{T}}^{-1} \hat{H}_{\mathcal{C}} q_{\mathcal{C}}) - \hat{H}_{\mathcal{T}}^{-T} \bar{H}_{\mathcal{T}}^{T} (\bar{p} + \bar{h}) - \hat{h}. \tag{3.57}$$

But I am not sure if it is the right approach because according to this, there is a dependency on the non-inlet pressures. $q_{\mathcal{C}}$ can be expressed in terms of the total inflow but then $a_{\mathcal{C}}$ is in the equation. I have difficulties to express input pressures or to express a model where the control variables are flows because according to the Ohm's law and Kirchhoff's vertex law, if output pressures are expressed, there is always a dependancy on the input pressure. (Maybe something else has to be taken into account?)

3.3 Simulation example on a simple pipe network

In order to illustrate and to show how the implementation of the model described in Section 3.2.4: Multi-inlet network model works, it is first tested on a simple, two-source, two-loop pipe network. This simple pipe system serves as an example to point out the differences and possible simplifications which were done regarding the modelling in Matlab and in EPANET. In this case, simulation results are steady-state values of pressures and flows, and the models are excited by some arbitrary pressure inputs.

The underlying graph of the example network is shown in Figure 3.3

Figure 3.3: Graph of a simple multi-inlet network.

In Figure 3.3, arrows illustrate the in-and outflows such that input flows are present in v_1 and v_2 , and user-consumption is defined only in v_3 and v_6 . The diameters are the same for all pipes, however regarding the length, there are two types of pipes in this network. The corresponding parameters of the pipes, pumps, the elevation profile and the hourly demand variation is described in detail and can be found in (appref).

The partitioning of edges in the network is chosen such that

$$\mathcal{E}_{\mathcal{T}} = \{e_1, e_5, e_3, e_4\} \equiv \{e_{\mathcal{T},1}, e_{\mathcal{T},2}, e_{\mathcal{T},3}, e_{\mathcal{T},4}\},\tag{3.58}$$

and

$$\mathcal{E}_{\mathcal{C}} = \{e_2, e_6, e_7\} \equiv \{e_{\mathcal{C},1}, e_{\mathcal{C},2}, e_{\mathcal{C},3}\},\tag{3.59}$$

The corresponding vectors describing the pressures and flows in vertices and edges, respectively, furthermore the elevation and distribution profiles are given such that

$$p(t) = \begin{bmatrix} \bar{p}_3(t) \\ \bar{p}_4(t) \\ \bar{p}_5(t) \\ \bar{p}_6(t) \\ \hat{p}_1(t) \\ \hat{p}_2(t) \end{bmatrix}, \quad d(t) = \begin{bmatrix} \bar{d}_3(t) \\ 0 \\ 0 \\ \bar{d}_6(t) \\ \hat{d}_1(t) \\ \hat{d}_2(t) \end{bmatrix}, \quad h = \begin{bmatrix} \bar{h}_3 \\ \bar{h}_4 \\ \bar{h}_5 \\ \bar{h}_6 \\ 0 \\ 0 \end{bmatrix}, \quad v = \begin{bmatrix} v_3 \\ 0 \\ 0 \\ v_6 \end{bmatrix}.$$
 (3.60)

From this arrangement of edges and nodes, it follows that the sub-matrix, $\bar{H}_{\mathcal{T}}$, which maps non-inlet vertices to edges in set $\mathcal{E}_{\mathcal{T}}$, is invertible.

Since there are two nodes in the system with demand, the total flow leaving the network can be written as

$$\sigma(t) = -\bar{d}_3(t) - \bar{d}_6(t). \tag{3.61}$$

Having the input pressures and the parameters of the network, the output pressures, i.e. the pressures in the non-inlet vertices can be calculated. However, first recall Equation: (3.36),

$$g(q_{\mathcal{C}}) = f_{\mathcal{C}}(q_{\mathcal{C}}) + Bf_{\mathcal{T}}(Cq_{\mathcal{C}} + D\bar{d}) - A(\hat{p} + \hat{h}) = 0.$$
 (3.62)

where $A = \hat{H}_{\mathcal{C}}^T - \bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T} \hat{H}_{\mathcal{T}}^T,$ $B = -\bar{H}_{\mathcal{C}}^T \bar{H}_{\mathcal{T}}^{-T},$ $C = -\bar{H}_{\mathcal{T}}^{-1} \bar{H}_{\mathcal{C}},$ $D = \bar{H}_{\mathcal{T}}^{-1}.$

On account of non-linearity in Equation: (3.62), it is not possible to solve the network analysis problem analytically. Instead, iterative numerical solution methods are used. As $g(q_c)$ is differentiable with respect to q_c , gradient-based root finding algorithms such as Newton-Raphson method can be used. With iterative methods, initial values of flows are repeatedly adjusted until the difference between two successive iterates is within an acceptable tolerance. Furthermore, we know from the homogeneity and monotonicity property of $g(q_c)$ that the function is a homeomorphism in q_c , therefore its root is unique. Using gradient-based searching methods, and squaring $g(q_c)$

$$2\frac{\partial g^{T}(q_{\mathcal{C}})}{\partial q_{\mathcal{C}}}g(q_{\mathcal{C}}) = 0, \tag{3.63}$$

the unique solution can be found. Furthermore, if $g^T(q_{\mathcal{C}})g(q_{\mathcal{C}})$ is convex, the solution is the global minimum. By solving Equation: (3.62) for $a_{\mathcal{C}}$, the non-inlet pressures and all flows in the network can be calculated in terms of the input pressures and the total demand in the network. In order to obtain these values, the previously-derived output equation in Equation: (3.47) can be used.

In the simulation, the most simple case is considered, when the total flow demand in the network varies, however the distribution among vertices remains the same. In this case, v is a constant vector, and the base demands in all vertices are the same.

The variation curve for the input pressures are set the same in both EPANET and in the simulator.

Figure 3.4: Signals describing the input pressures(left) and flows(right) of the pumping stations.

Figure 3.5: Signals describing the demand flows by the end-users(left) and output pressures(right) in the network.

Figure 3.6: Signals describing the flows in all pipes in the network.

3.4 Simulation example with elevated reservoir

4. Network simplification

This chapter gives a general introduction about the need for model simplification in WSSs. Different approaches and methods are discussed in a state of art manner, including the development and methodologies employed in this field. Lastly, an attempt is made to simplify the Randers WSS, using one of the techniques which are being introduced in this chapter.

4.1 Purpose of the model reduction

As it was explained in Chapter 2: Description of Water Supply Systems, the typical components of WSSs are reservoirs, pipes, pumps and valves. Each of these interconnected elements are dependent on their neighbours, thus the behaviour of the entire WSS depends on each of its elements. For simulation purposes, it is required that the model of the real-life network consists of thousands of elements in order to accurately replicate hydraulic behaviour and the topographical layout of the system. Such models are appropriate for simulation purposes, however, online optimisation tasks are much more computationally demanding, therefore simplified models are required. There are different approaches for model reduction, however the outcome of most of these methods is a hydraulic model with a smaller number of components than the original one.

The use of Geographic Information Systems(GIS) in the water industry resulted in an increasing amount of information about actual network topology and service that can be utilized in a model [25]. As a consequence this, normally the simulation model of WSSs include exactly the same amount of components as in real-life, and therefore a large-scale are considered.

The efficiency and accuracy of large-scale system reduction is highly dependant on the complexity of models and the selected method. In this field, several researches has been focusing on the verification of different methods and therefore provided case studies and results.

4.2 State of the art model reduction analysis

In the frame of this project, the WSS in Randers is considered as a large-scale system and attempted to be reduced. However, before discussing the reduction on the actual model network, first the different methods for model reduction are introduced in a state of the art manner. It is worth noting that throughout the report, the terms reduction and simplification are used alternately as a description of the process of achieving a hydraulic model with a smaller number of components than the original. The different reduction approaches, discussed in this report are:

- Skeletonization, which is researched in [10], [26] and [27].
- Parameter fitting (cite)
- Graph decomposition (cite)
- Variable elimination (cite)

4.2.1 Skeletonization

Skeletonization can be considered as a reduction of data needed to represent the operation of the hydraulic system without significant loss of information [28]. The basic types of network components are maintained but the individual network components

are combined and replaced. Skeletonization is not a single process but several different low-level element removal processes that must be applied in series in order to ensure that the demands in the network are logically reduced back to their source of supply.

(in progress)

Comments for the supervisors:

The plan is to try skeletonization in the first place. Write algorithm for serial/parallel pipe replacement and tree reduction. The Randers WSS should be split into different zones: (HNP, High zone, Low zone, waterworks on the eastern side) and skeletonization should be carried out on each sub-system separately. After it is done, the sub-systems can be attached again. The HNP region and Low zone and the waterworks on the eastern side are mainly tree structures, they can be reduced significantly, it hink, with skeletonization. I am not sure about the grid in the High zone. If the network after the skeletonization is not sufficiently reduced, then try a different method on the already skeletonized network.

Q1: Verification of reduced networks

Q2: Distributed optimization without reduction, large-scale network

4.2.2 Parameter fitting

(in progress)

4.2.3 Graph decomposition

(in progress)

4.2.4 Variable elimination

(in progress)

4.3 Sectioning of the Randers WSS

(in progress)

${\bf Part~II} \\ {\bf Appendices} \\$

A. Elevation Profile from HZ to LZ

Figure A.1: Elevation profile along the High and Low Zones 1.

Figure A.2: Elevation profile along the High and Low Zones 2.

B. Assumption List

In this part of the appendix, the different assumptions and simplifications, which were applied in the project, are collected. In order to ease the reading, a reference points to the part in the report where the relevant assumption is used.

Number	Assumptions	Section reference
1	The fluid in the network is water.	Section 3.1.1: Hydraulic head
2	All pipes in the system are filled up fully with water at all time.	Section 3.1.2: Pipe model
3	The pipes have a cylindrical structure and the cross section, $A(x)$, is constant for every $x \in [0, L]$.	Section 3.1.2: Pipe model
4	The flow of water is uniformly distributed along the cross sectional area of the pipe and the flow is turbulent.	Section 3.1.2: Pipe model
5	The change in elevation, z , occurs only in pipes.	Section 3.1.2: Pipe model
6	At high flows, the Reynolds number is assumed to be constant. Therefore the Darcy friction factor, f_D is assumed to be constant.	Section 3.1.2: Pipe model
7	Pumps in the network are of the type centrifugal.	Section 3.1.4: Pump model
8	Tanks in the network have constant diameters. Equivalently, walls of the tanks are vertical.	Section 3.1.5: Elevated reservoir model
9	Functions describing the pressure drops regarding the flow through them across the components of the system are continuously differentiable.	Section 3.2.4: Multi-inlet network model

Table B.1: List of assumptions

C. Example Network

C.0.1 Simulation in EPANET

In EPANET, the simulation is built up in the same way as the network model. The simulation model is shown in the figure below.

Figure C.1: Non-inlet pressures in .

As can be seen in Figure C.1, reservoirs and pumps are present as extra links and nodes in this simulation. These extra nodes and links are removed when data is extracted from the EPANET model due to the reason that the input pressures can be measured on v_1 and v_2 . The input flows can be measured through the links, connecting the reservoirs to the nodes, v_1 and v_2 . Furthermore, the elevations and the demands are attributes of the nodes. In this simulation only demands are changing according to hourly time steps.

D. Example Network with elevated reservoir

 $D.1 \quad unspecified 1$

E. Measurements

Bibliography

- [1] T. Younos and T. Parece, Sustainable Water Management in Urban Environments. The Handbook of Environmental Chemistry, Springer International Publishing, 2016.
- [2] Y. X. J.N. Tsitsiklis, "Pricing of fluctuations in electricity markets," European Journal of Operational Research, 2015.
- [3] B. Appelbaum, "Water & sustainability (volume 4): Us electricity consumption for water supply & treatment—the next half century," 2002.
- [4] N. R. Council et al., Public Water Supply Distribution Systems: Assessing and Reducing Risks-First Report. National Academies Press, 2005.
- [5] Miljøministeriet and Geus, Water Supply in Denmark. Danish action plan for promotion of eco-efficient technologies Danish Lessons, 2009.
- [6] M. Brdys and B. Ulanicki, Operational Control of Water Systems: Structures, Algorithms, and Applications. Prentice Hall, 1994.
- [7] M. Beniston, Environmental Change in Mountains and Uplands. Key Issues in Environmental Change, Taylor & Francis, 2016.
- [8] P. Swamee and A. Sharma, Design of Water Supply Pipe Networks. Wiley, 2008.
- [9] K. Hoe, "Modeling and control of water supply network," Danmarks Tekniske Universitet, 2005.
- [10] T. Walski and I. Haestad Methods, Advanced water distribution modeling and management. No. vb. 1, Haestad Press, 2003.
- [11] M. M\ODIGARDIS INDICATION [11] M. M\ODIGARDIS INDICATION [12] Optimization of Water Distribution Networks. 2015. Master thesis, Aalborg University.
- [12] N. Grigg, Water, Wastewater, and Stormwater Infrastructure Management, Second Edition. Taylor & Francis, 2012.
- [13] L. Mays, "Water transmission and distribution," American Water Works Association, Denver, 2010.
- [14] N. Council, D. Studies, W. Board, and C. Risks, *Drinking Water Distribution Systems: Assessing and Reducing Risks*. National Academies Press, 2007.
- [15] D. Andersen, K. Balla, N. Christensen, I. Bolinaga, and S. Krogh, Optimal Control for Water Distribution. Alborg Universitet, 2017.
- [16] C. Kallesøe, "Fault detection and isolation in centrifugal pumps," Department of Control Engineering, Aalborg Universitet, 2005.
- [17] Verdo. Last visited 17-09-2017, https://verdo.dk/da/vand/forsyningskunde-/om-verdo-vand, Title = Om Verdo Vand.
- [18] D. Chen, Sustainable Water Technologies. Green Chemistry and Chemical Engineering, CRC Press, 2016.
- [19] Water Transmission and Distribution. Principles and practices of water supply operations series, American Water Works Association, 2011.

Gr938 Bibliography

[20] T. N. Jensen, C. S. Kallesøe, and R. Wisniewski, "Adaptive reference control for pressure management in water networks," *European Control Conference(ECC)*, vol. 3, July 2015.

- [21] E. Agency, *Epanet 2 Users Manual*. CreateSpace Independent Publishing Platform, 2016.
- [22] W. Borutzky, Bond Graph Methodology. Springer London, 2010.
- [23] N. Deo, Graph Theory with Applications to Engineering and Computer Science. Dover Publications, 2017.
- [24] S. Krantz, Handbook of Complex Variables. Birkhäuser Boston, 2012.
- [25] L. Johnson, Geographic Information Systems in Water Resources Engineering. CRC Press, 2016.
- [26] F. J. Martínez-Solano, P. L. Iglesias-Rey, D. Mora-Meliá, and V. S. Fuertes-Miquel, "Exact skeletonization method in water distribution systems for hydraulic and quality models," *Procedia Engineering*, vol. 186, no. Supplement C, pp. 286 293, 2017. XVIII International Conference on Water Distribution Systems, WDSA2016.
- [27] P. Iglesias-Rey, F. Martinez-Solano, D. Mora-Meliá, and J. Ribelles-Aguilar, "The battle water networks ii: Combination of meta-heuristic technics with the concept of setpoint function in water network optimization algorithms," vol. 1, pp. 510–523, 01 2012.
- [28] D. Paluszczyszyn, Advanced modelling and simulation of water distribution systems with discontinuous control elements. De Montfort University Leicester, Faculty of Technology School of Engineering and Sustainable Development, 2015.

Rettelser

Fatal: Fix rows, alfa, beta, gamma	24
Fatal: Fix dimensions	25
Fatal: Fix 1 vector	26

Todo list

Q1:	Verification of reduced networks	32
Q2:	Distributed optimization without reduction, large-scale network	32