Федеральное государственное образовательное учреждение высшего профессионального образования

«ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАКАДЕМИЯ)

Кафедра «Теория вероятностей и математическая статистика»

А.В. Браилов С.А. Зададаев П.Е. Рябов

Теория вероятностей и математическая статистика Методические рекомендации по самостоятельной работе

Часть 1

Для студентов, обучающихся по направлению 080100.62 «Экономика» (программа подготовки бакалавра)

Федеральное государственное образовательное учреждение высшего профессионального образования

«ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАКАДЕМИЯ)

Кафедра

«Теория вероятностей и математическая статистика»

УТВЕРЖДАЮ

Ректор			
М.А. Эскиндаров			
2010 г.	*	*	

А.В. Браилов С.А. Зададаев П.Е. Рябов

Теория вероятностей и математическая статистика методические рекомендации по самостоятельной работе

Часть 1

Для студентов, обучающихся по направлению 080100.62 «Экономика» (программа подготовки бакалавра)

Рекомендовано Ученым советом факультета математических методов и анализа рисков (протокол N 4 от 23 марта 2010 г.)

Одобрено кафедрой «Теория вероятностей и математическая статистика» (протокол № 8 от 16 марта 2010 г.)

Москва 2010

УДК 519.2(072) ББК 22.17я73

Б 87

480248

Рецензент:

В.Б. Горяинов — к.ф.-м.н., доцент кафедры «Математическое моделирование», МГТУ им. Н.Э. Баумана

Б 87 Браилов А.В., Зададаев С.А., Рябов П.Е. Теория вероятностей и математическая статистика. Методические рекомендации по самостоятельной работе. Часть 1. — М.: Финакадемия, кафедра «Теория вероятностей и математическая статистика», 2010. — 53 с.

Методические рекомендации предназначены для организации самостоятельной работы студентов, изучающих дисциплину «Теория вероятностей и математическая статистика». В теоретической справке приведены решения типовых задач, которые вошли в варианты контрольных работ. Учебное издание содержит 30 вариантов контрольных заданий, требования к оформлению домашней контрольной работы. В конце учебного издания приведена рекомендуемая литература.

УДК 519.2(072) ББК 22.17я 73

Учебное издание Браилов Андрей Владимирович Зададаев Сергей Алексеевич Рябов Павел Евгеньевич

Теория вероятностей и математическая статистика Методические рекомендации по самостоятельной работе

Часть 1

Компьютерный набор, верстка Рябов П.Е. Формат $60 \times 90/16$. Гарнитура $Times\ New\ Roman$ Усл. 3,3 п.л. Изд. № 34.8-2010. Тираж -206 экз.

Заказ №_____ Отпечатано в Финакадемии

- © Коллектив авторов, 2010
- © Финакадемия, 2010

Содержание

у1. комоинации сооытии.
Классический способ подсчета вероятностей5
$\$2$. Геометрическое определение вероятности \dots 8
$\$3.$ Правила сложения и умножения вероятностей $\dots 10$
$\$4$. Формула полной вероятности и формула Байеса $\dots 14$
§5. Независимые испытания. Схема Бернулли.
Приближенные формулы Лапласа и Пуассона 16
Требования к оформлению домашней
контрольной работы $\dots 21$
Вариант № 1-0122
Вариант № 1-0223
Вариант № 1-0324
Вариант № 1-0425
Вариант № 1-0526
Вариант № 1-0627
Вариант № 1-0728
Вариант № 1-0829
Вариант № 1-0930
Вариант № 1-1031
Вариант № 1-1132
Вариант № 1-1233
Вариант № 1-1334
Вариант № 1-1435
Вариант № 1-1536
Бариант № 1-1637
Вариант № 1-1738
Бариант № 1-1839
Вариант № 1-1940
Вариант № 1-2041
Вариант № 1-2142
Вариант № 1-2243
Вариант № 1-2344
Вариант № 1-2445

Вариант № 1-25	46
Вариант № 1-26	47
Вариант № 1-27	48
Вариант № 1-28	49
Вариант № 1-29	50
Вариант № 1-30	51
Рекомендуемая литература	. 52

§1. Комбинации событий. Классический способ подсчета вероятностей

Cуммой событий A и B называется событие A+B, заключающееся в наступлении xoms бы одного из событий A и B. Вообще, суммой конечного или счетного множества событий называется событие, заключающееся в наступлении хотя бы одного события из данного множества событий.

Произведением событий A и B называется событие AB, заключающееся в одновременном (совместном) наступлении обоих событий A и B. Произведением конечного или счетного множества событий называется событие, заключающееся в одновременном наступлении всех событий из данного множества.

Противоположным событием для A называется событие \overline{A} , заключающееся в том, что A не наступает. Иначе говоря, \overline{A} — это не наступление A.

Справедливы формулы:

$$\overline{A_1 + A_2 + \dots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_n},$$

$$\overline{A_1 A_2 \dots A_n} = \overline{A_1} + \overline{A_2} + \dots + \overline{A_n}.$$

С формальной точки зрения, событие — подмножество пространства элементарных событий Ω , испытание — случайный выбор элемента ω (называемого элементарным исходом) из множества Ω . Если для элементарного исхода ω выполняется включение $\omega \in A$, то событие наступает, если же $\omega \notin A$, то — не наступает.

В классической вероятностной модели пространство элементарных событий $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ — конечное множество, при этом все элементарные события $\omega_1, \omega_2, \dots, \omega_n$ имеют одну и ту же вероятность.

Пусть событие A состоит из k = |A| элементарных событий ω_i (последние называются «благоприятными» для A).

Тогда для определения вероятности события A применяется следующая формула (классический способ подсчета вероятностей):

$$P(A) = \frac{k}{n} = \frac{|A|}{|\Omega|},$$

где $n=|\Omega|$ — число всех элементарных исходов.

Пример 1. Независимо друг от друга 5 человек садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.

Решение. Всего способов рассадить 5 человек в 13 вагонов равно $|\Omega|=13^5$, из них событию A, что все они поедут в разных вагонах, благоприятствует $|A|=13\cdot 12\cdot 11\cdot 10\cdot 9$ различных способов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{154440}{371293} \approx 0,416.$$

Ответ: 0,416.

Пример 2. Компания из n = 16 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k = 6 человек.

Решение. Приведем одно из решений задачи, которое связано с выбором 2 мест, а не с размещением людей. Итак, два места из 16 можно выбрать C_{16}^2 способами. Событию A, выбору 2 мест, так чтобы между ними было ровно 6, благоприятствует 16-6-1=9 способов. Таким образом, искомая вероятность события A равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9}{120} = 0,075.$$

Ответ: 0,075.

Пример 3. В группе учатся 13 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.

Решение. Количество способов выбрать троих для дежурства совпадает с числом сочетаний из 22 по 3, т.е. $|\Omega| = C_{22}^3$. Из них событию A, что все дежурные окажутся юношами, благоприятствует $|A| = C_{13}^3$ способов выбрать троих юношей. Таким образом, искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_{13}^3}{C_{22}^3} = \frac{286}{1540} \approx 0,186.$$

Ответ: 0,186.

Пример 4. В партии из 13 деталей имеется 8 стандартных. Наудачу отобраны 7 деталей. Найдите вероятность того, что среди отобранных деталей ровно 5 стандартных.

Решение. Число способов отобрать 7 деталей совпадает с числом сочетаний из 13 по 7, т.е. $|\Omega| = C_{13}^7$. Событию A, что среди 7 деталей окажется ровно 5 стандартных, а, следовательно, остальные 2 — не стандартные, благоприятствует $|A| = C_8^5 \cdot C_5^2$ исходов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_8^5 \cdot C_5^2}{C_{13}^7} = \frac{560}{1716} \approx 0,326.$$

Ответ: 0,326.

Пример 5. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 4 билета. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?

Решение. Количество способов выбрать 4 билета из 9 равно $|\Omega| = C_9^4$. Требуется определить вероятность события A, что среди 4 билетов окажется либо 2 (событие A_1), либо 3 (событие A_2) выигрышных билета. Событию A_1 благоприятствует $|A_1| = C_3^2 \cdot C_6^2$ способов, а событию $A_2 - |A_2| = C_3^3 \cdot C_6^1$ способов. Искомая вероятность равна

$$P(A) = \frac{|A_1| + |A_2|}{|\Omega|} = \frac{C_3^2 \cdot C_6^2 + C_3^3 \cdot C_6^1}{C_9^4} = \frac{51}{126} \approx 0,405.$$

Ответ: 0,405.

§2. Геометрическое определение вероятности

Одним из недостатков классического определения вероятности является то, что оно предполагает конечное число возможных исходов. Приводимые здесь примеры не укладываются в классическую схему, поскольку связаны с бесконечным множеством элементарных исходов опыта. Но в основе их, как и в классической схеме, лежит представление о равновозможных исходах. Говоря о том, что точка выбирается наугад в некоторой области $\Omega \in \mathbb{R}^n$ (n=1,2,3), имеют в виду следующее: вероятность попадания точки в некоторую часть A области Ω равна отношению

$$P(A) = \frac{\mu(A)}{\mu(\Omega)},$$

где $\mu(A)=l_A$ — длина (n=1), $\mu(A)=S_A$ — площадь (n=2) или $\mu(A)=V_A$ объем (n=3) множества A.

Пример 6. На отрезок AB длины 240 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 48.

Решение. Пусть x – координата точки X, тогда множество

$$\Omega = \{x : 0 \leqslant x \leqslant 240\}$$

представляет собой множество элементарных исходов, так что $l_{\Omega} = 240-0=240$. Событие A, что меньший из отрезков AX и XB имеет длину меньшую, чем 48, представляет собой подмножество Ω :

$$A = \{x \in \Omega : 0 \leqslant x \leqslant 48$$
 или $192 \leqslant x \leqslant 240\}.$

Поэтому $l_A = (48-0) + (240-192) = 96$. Искомая вероятность равна

$$P(A) = \frac{l_A}{l_O} = \frac{96}{240} = 0,4.$$

Ответ: 0,4.

Пример 7. Два лица X и Y договорились о встрече между 9 и 10 часами утра. Если первым приходит X, то он ждет Y в течение 5 минут. Если первым приходит Y, то он ждет X в течение 10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.

Решение. Пусть x – момент прихода X в пределах указанного часа, y – момент прихода Y в пределах того же часа, тогда $\omega = (x,y)$ – элементарный исход. Множество

$$\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1, \}$$

представляет собой множество всех элементарных исходов, так что $S_{\Omega}=1^2=1$. Обозначим через A — событие, что встреча состоится. Тогда, согласно условию задачи, событие A представляет собой подмножество Ω :

$$A = \{(x, y) \in \Omega : y - x \leqslant \frac{1}{12}, x - y \leqslant \frac{1}{6}\}.$$

Искомая вероятность равна отношению площади выделенного шестиугольника к площади квадрата:

$$P(A) = \frac{S_A}{S_{\Omega}} = \frac{1^2 - \frac{1}{2} \cdot \left(\frac{11}{12}\right)^2 - \frac{1}{2} \cdot \left(\frac{5}{6}\right)^2}{1^2} = \frac{67}{288} \approx 0,233.$$

Ответ: 0,233.

§3. Правила сложения и умножения вероятностей

Правило сложения вероятностей:

$$P(A+B) = P(A) + P(B) - P(AB).$$

Правило сложения вероятностей для несовместных событий: если события A_1, A_2, \ldots, A_n попарно несовместны (никакие два из них не могут наступить вместе в одном испытании), то

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n).$$

Для двух событий A и \overline{A} отсюда следует равенство $P\left(A\right)+P\left(\overline{A}\right)=1$ или $P\left(\overline{A}\right)=1-P\left(A\right)$.

Вероятность события A при условии, что наступило событие B (условная вероятность) определяется формулой

 $P(A|B) = \frac{P(AB)}{P(B)}.$

Правило умножения вероятностей: $ecnu \partial ns$ событий A_1 , A_2 , ..., A_n вероятности $P(A_1) > 0$, $P(A_1A_2) > 0$, ..., $P(A_1 \cdots A_{n-1}) > 0$, то

$$P(A_1A_2...A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1A_2) \cdots P(A_n|A_1A_2...A_{n-1}).$$
(1)

Если A и B — независимые события с положительной вероятностью, то выполняются равенства:

$$P(A|B) = P(A), \quad P(B|A) = P(B).$$

Правило умножения вероятностей для независимых событий: ecnu события $A_1, A_2, ..., A_n$ независимы, то

$$P(A_1A_2...A_n) = P(A_1) \cdot P(A_2) \cdot \cdot \cdot P(A_n).$$

Вычисление вероятности суммы событий можно свести к вычислению вероятности произведения по формуле

$$P(A_1 + A_2 + \dots + A_n) = 1 - P(\overline{A_1}\overline{A_2}\cdots\overline{A_n}).$$
 (2)

В частности, если события A_1, A_2, \ldots, A_n независимы, из последнего равенства вытекает: вероятность наступления хотя бы одного из независимых событий A_1, A_2, \ldots, A_n равна $1-P\left(\overline{A}_1\right) \cdot P\left(\overline{A}_2\right) \cdots P\left(\overline{A}_n\right)$.

Пример 8. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 15 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задача по теории вероятностей.

Решение. Приведем решение задачи, которое использует формулу умножения (другое решение основано на классической вероятности). Итак, обозначим через A_k событие, что k-му студенту не достанется задача по теории вероятности, следовательно, $\overline{A_k} - k$ -му студенту достанется задача по теории вероятностей. Тогда $A = A_1 + A_2 + A_3$ означает событие, что хотя бы одному из них не достанется задача по теории вероятностей. Тогда, используя (1) и (2), находим

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}) =$$

$$= 1 - P(\overline{A_1}) \cdot P(\overline{A_2}|\overline{A_1}) \cdot P(\overline{A_3}|\overline{A_1} \cdot \overline{A_2}) =$$

$$= 1 - \frac{10}{25} \cdot \frac{9}{24} \cdot \frac{8}{23} \approx 0,948.$$

Ответ: 0,948

Пример 9. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1=0,17$, $p_2=0,73$ и $p_3=0,14$. Найдите вероятность того, что тока в цепи не будет.

Решение. Пусть A_k обозначает событие, что тока не будет в k-ом элементе. Тогда $A = A_1 + A_2 + A_3$ означает событие, что тока в цепи не будет (поскольку элементы соединены последовательно). Тогда

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) =$$

$$= 1 - (1 - P(A_1)) \cdot (1 - P(A_2)) \cdot (1 - P(A_3)) =$$

$$= 1 - (1 - p_1)(1 - p_2)(1 - p_3) = 0,807.$$

Ответ: 0,807.

Пример 10. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка,

равна p = 0,05. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы c вероятностью больше, чем 0,83, можно было ожидать, что хотя бы один результат измерений окажется неверным.

Решение. Пусть A_k обозначает событие, что при k-ом измерении некоторой физической величины допущена ошибка, где $k=1,2\ldots,n$. Через n обозначено количество измерений. Тогда $A=A_1+\ldots+A_n$ означает событие, что хотя бы один результат измерений окажется неверным при n измерениях. Поэтому

$$P = P(A) = P(A_1 + ... + A_n) = 1 - (1 - p)^n > 0.83.$$

Откуда, решая полученное неравенсто, находим:

$$n > \frac{\ln(1-a)}{\ln(1-p)} = \frac{\ln 0,17}{\ln 0,95} \approx 34,5.$$

Ответ: $n_{\min} = 35$.

Пример 11. События A, B, C независимы и P(A) = 0.8; P(B) = 0.7; P(C) = 0.6. Найдите $P(AB | \overline{B} + \overline{C})$.

Решение. Используя: а) определение условной вероятности; б) правило сложения вероятностей; в) независимость событий A, B и C, получаем

$$P(AB|\overline{B}+\overline{C}) \stackrel{\text{a}}{=} \frac{P(AB \cdot (\overline{B}+\overline{C}))}{P(\overline{B}+\overline{C})} \stackrel{\text{f}}{=} \frac{P(AB \cdot \overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B} \cdot \overline{C})} =$$

$$\stackrel{\text{B}}{=} \frac{P(A) \cdot P(B) \cdot P(\overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B}) \cdot P(\overline{C})} = \frac{0,8 \cdot 0,7 \cdot 0,4}{0,3 + 0,4 - 0,3 \cdot 0,4} \approx 0,386.$$

Ответ: 0,386.

§4. Формула полной вероятности и формула Байеса

События H_1, H_2, \ldots, H_n образуют *полную группу*, если они попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий.

Если события H_1, H_2, \ldots, H_n образуют полную группу, то для любого события A справедливо равенство

$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$$

 $(\phi opmyna\ nonhoй\ вероятности).$ При этом события H_1, H_2, \ldots, H_n называют гипотезами.

В тех же предположениях справедлива формула Байеса:

$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)},$$

(i = 1,2,...,n).

Пример 12. В ящике содержится $n_1 = 6$ деталей, изготовленных на заводе 1, $n_2 = 5$ деталей — на заводе 2 и $n_3 = 6$ деталей — на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны: $p_1 = 0.04$, $p_2 = 0.02$ и $p_3 = 0.03$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.

Решение. Пусть H_k — событие, что извлеченная наудачу деталь изготовлена на k-ом заводе, где k=1,2,3. Тогда H_1,H_2,H_3 образуют полную группу событий, причем

$$P(H_1) = \frac{n_1}{n_1 + n_2 + n_3} = \frac{6}{17}, P(H_2) = \frac{n_2}{n_1 + n_2 + n_3} = \frac{5}{17}, P(H_3) = \frac{6}{17}.$$

Обозначим через A событие, что извлеченная наудачу деталь окажется бракованной. Противоположное к A будет

событие \overline{A} , что извлеченная наудачу деталь окажется качественной. Тогда по формуле полной вероятности имеем:

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$= \frac{6}{17} \cdot 0.04 + \frac{5}{17} \cdot 0.02 + \frac{6}{17} \cdot 0.03 = \frac{13}{425} \approx 0.031.$$

Откуда искомая вероятность, что извлеченная наудачу деталь окажется качественной, равна

$$P(\overline{A}) = 1 - P(A) = 0,969.$$

Ответ: 0.969.

Пример 13. Имеется три одинаковых по виду ящика. В первом ящике n=23 белых шаров, во втором — m=9 белых и n-m=14 черных шаров, в третьем — n=23 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.

Решение. Введем гипотезы, H_k , что выбран k-ый ящик, k=1,2,3. Тогда $P(H_1)=P(H_2)=P(H_3)=\frac{1}{3}$. Обозначим через A событие, что ивлеченный наудачу шар окажется белым. Поскольку у нас есть неопределенность, связанная с выбором ящика, то по формуле полной вероятности имеем

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$=\frac{1}{3}\left(1+\frac{9}{23}+0\right)=\frac{32}{69}\approx 0,464.$$

После того, как событие A произошло (вынутый шар $o\kappa a$ -зался белым), по формуле Байеса переоценим вероятность гипотезы H_2 :

$$P(H_2|A) = \frac{P(H_2)P(A|H_2)}{P(A)} = \frac{\frac{1}{3} \cdot \frac{9}{23}}{\frac{32}{69}} = \frac{9}{32} \approx 0,281.$$

Таким образом, вероятность того, что шар вынут из второго ящика, равна 0,281.

Ответ: 0,281.

§5. Независимые испытания. Схема Бернулли. Приближенные формулы Лапласа и Пуассона

Несколько испытаний (с конечным числом исходов) называются *независимыми*, если вероятность того или иного исхода в любом из этих испытаний не зависит от исхода других испытаний.

Схема Бернулли: производится n независимых испытаний, в каждом из которых с одной и той же вероятностью p наступает некоторое событие A (называемое обычно «успехом») и, следовательно, с вероятностью q = 1 - p наступает событие \overline{A} , противоположное A.

Пусть $P_n(k)$ — вероятность того, что в схеме Бернулли успех наступит k раз. Справедлива формула Бернулли:

$$P_n(k) = C_n^k p^k q^{n-k}.$$

Известно, что наиболее вероятное число успехов приближенно равно np. Точнее: если число $\alpha = np + p$ является целым, то максимум чисел $P_n(k)$ достигается при $k = \alpha$ и $k = \alpha - 1$; если же α — не целое, то максимум достигается при $k = [\alpha]$, где $[\alpha]$ — целая часть α .

При больших n имеет место так называемая nриближенная локальная формула Лапласа:

$$P_n(k) \approx \frac{\varphi(x_0)}{\sqrt{npq}},$$

где $x_0 = \frac{k-np}{\sqrt{npq}}$, $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} - \varphi y n \kappa u u s \Gamma a y c c a$.

Также при больших *п* справедлива *приближенная интегральная формула Лапласа*:

$$P_n(k_1 \leqslant k \leqslant k_2) \approx \Phi(x_2) - \Phi(x_1),$$

где $x_1 = \frac{k_1 - np}{\sqrt{npq}}, \quad x_2 = \frac{k_2 - np}{\sqrt{npq}}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt - \phi y \mu \kappa u u s$ Лапласа.

Приближенными формулами Лапласа на практике пользуются, если npq>10.

Из приближенной интегральной формулы Лапласа следует, что при заданном $\varepsilon>0$ и большом n вероятность события $\left|\frac{k}{n}-p\right|<\varepsilon$ близка к $2\Phi\left(\varepsilon\cdot\sqrt{\frac{n}{pq}}\right)$.

При больших n и малых p (точнее при $np^2 \ll 1$) справедлива npиближенная формула Π уассона:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

где $\lambda = np$.

Пример 14. Вероятность попадания в цель при одном выстреле равна 0,18. Сделано 7 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

Решение. Пусть A событие, что в цель попали менее трех раз, причем вероятность успеха («попадет в цель при одном выстреле») p=0,18, а q=1-p=0,82. Тогда по формуле Бернулли имеем:

$$P(A) = P_7(0) + P_7(1) + P_7(2) =$$

= $q^7 + 7pq^6 + 21p^2q^5 \approx 0,885.$

Ответ: 0,885.

Пример 15. Отрезок длины 6 поделен на две части длины 4 и 2 соответственно, 8 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1.

Решение. Сначала найдем вероятность события A, что количество точек, попавших на отрезок длины 4, будет равно одному. Используя геометрическую вероятность, вероятность успеха для одной точки попасть в указанный отрезок равна $p = \frac{4}{6} = \frac{2}{3}$. Тогда по формуле Бернулли

$$P(A) = P_8(1) = 8pq^7 = \frac{16}{6561} \approx 0,00244.$$

Следовательно, вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1, равна $1-P(A)\approx 0,998$.

Ответ: 0,998.

Пример 16. Монета подбрасывается до тех пор, пока герб не выпадет 7 раз. Найдите вероятность того, что будет произведено 14 бросков.

Решение. Неверным было бы считать, что речь идет о 14 бросках, в семи из которых выпадет герб. По условию задачи при последнем, четырнадцатом бросании, должен выпасть герб (вероятность этого события равна p=0,5). Остальные появления шести раз гербов могут случиться произвольно в предыдущих тринадцати бросаниях (вероятность такого события равна $C_{13}^6 p^6 q^7$). Таким образом, искомая вероятность равна

$$(C_{13}^6 p^6 q^7) \cdot p = C_{13}^6 p^7 q^7 = \frac{429}{4096} \approx 0,105.$$

Ответ: 0,105.

Пример 17. Игральная кость подбрасывается до тех пор, пока не выпадет 5 раз число очков, отличное от 6. Какова вероятность, что будет произведено 8 бросков?

Решение. По условию задачи при последнем восьмом подбрасывании не выпадает 6 (вероятность этого события равна $p=\frac{5}{6}$. Остальные четыре раза выпадения числа очков,

отличного от 6, могут случиться произвольно в семи предыдущих подбрасываниях игральной кости (вероятность такого события равна $C_7^4 p^4 q^3$). Искомая вероятность равна

$$p \cdot (C_7^4 p^4 q^3) = C_7^4 \left(\frac{5}{6}\right)^5 \left(\frac{1}{6}\right)^3 \approx 0,0651.$$

Ответ: 0,0651.

Пример 18. Вероятность попадания стрелком в цель равна $\frac{1}{12}$. Сделано 132 выстрелов. Определите наивероятнейшее число попаданий в цель.

Решение. Мы имеем дело со схемой Бернулли, для которой n=132, вероятность успеха $p=\frac{1}{12}$. Поскольку $\alpha=np+p=\frac{133}{12}$ — не целое, то наиболее вероятное число попаданий в цель равно $k=[\alpha]=11$.

Ответ: 11.

Пример 19. Вероятность выпуска бракованного изделия равна 0,4. Найдите вероятность того, что среди 104 выпущенных изделий ровно 62 изделия без брака.

Решение. Мы имеем дело со схемой Бернулли, для которой n=104, вероятность успеха, что изделие без брака, равна p=0,6; q=1-p=0,4. Требуется оценить $P_{104}(62)$. Поскольку $npq=104\cdot 0, 6\cdot 0, 4=24, 96>10$, то воспользуемся приближенной локальной формулой Лапласа, согласно которой

$$P_{104}(62) \approx \frac{1}{\sqrt{104 \cdot 0, 6 \cdot 0, 4}} \cdot \varphi\left(\frac{62 - 104 \cdot 0, 6}{\sqrt{104 \cdot 0, 6 \cdot 0, 4}}\right) \approx 0.2 \cdot \varphi(-0.08) \approx 0.2 \cdot 0.3977 \approx 0.0795.$$

Ответ: 0,0795.

Пример 20. Вероятность выпуска бракованного изделия равна $p = \frac{7}{20}$. Найдите вероятность того, что среди n = 108 выпущенных изделий будет хотя бы одно, но не более s = 37 бракованных изделий.

Решение. В нашем случае, n=108, вероятность успеха, что изделие бракованное, равна p=0,35; q=0,65. Требуется найти $P_{108}(1 \le k \le 37)$. Поскольку $npq=108\cdot 0,35\cdot 0,65=24,57>10$, воспользуемся приближенной интегральной формулой Лапласа, согласно которой

$$P_{108}(1 \leqslant k \leqslant 37) \approx \Phi\left(\frac{37 - 108 \cdot 0.35}{\sqrt{108 \cdot 0.35 \cdot 0.65}}\right) - \Phi\left(\frac{1 - 108 \cdot 0.35}{\sqrt{108 \cdot 0.35 \cdot 0.65}}\right) \approx \Phi(-0.16) - \Phi(-7.42) \approx -0.0675 + 0.5 \approx 0.433.$$

Ответ: 0,433.

Пример 21. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

Решение. Применяется схема Бернулли: n=1000 — число веретен; p=0,004 — вероятность обрыва на 1-ом веретене; $A=\{k>2\}$. Используя: **a**) формулу для вероятности противоположного события; **б**) $\overline{A}=\{k=0\}+\{k=1\}+\{k=2\};$ **в**) приближенную формулу Пуассона $(np^2=0,016\ll 1,\lambda=np=4)$, имеем

$$\begin{split} &P(A) \stackrel{\mathbf{a}}{=} 1 - P(\overline{A}) \stackrel{\mathbf{6}}{=} 1 - P_{1000}(0) - P_{1000}(1) - P_{1000}(2) \approx \\ &\stackrel{\mathbf{B}}{\approx} 1 - e^{-\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2}{2} e^{-\lambda} = \\ &= 1 - e^{-\lambda} \left(\frac{2 + 2\lambda + \lambda^2}{2} \right) \approx 1 - 0,238 = 0,762. \end{split}$$

Ответ: 0,762.

Требования к оформлению домашней контрольной работы

- ✓ Порядок записи решений задач повторяет порядок условий в варианте контрольной работы.
- ✓ Перед решением указывается порядковый номер задачи, условие не переписывается.
- ✔ Номер задачи выделяется маркером или иным образом. В конце решения приводится ответ по форме: «Ответ:...».
- ✓ Как правило, ответ записывается как десятичная дробь или целое. Допускается также запись в виде несократимой дроби, если такая запись содержит не более 5 символов (например: $\frac{11}{36}$). Ошибка округления в ответе не должна превосходить 0.1%.
- ✔ Если задача не решена, после ее номера ставится прочерк.
- ✔ Решения, которые содержат грубые ошибки (отрицательная дисперсия, вероятность больше 1, ...), считаются неправильными.
- ✓ Неправильное решение, решение задачи из другого варианта или задачи с измененным условием, отсутствие решения или ответа приводит к минимальной оценке задачи (0 баллов).
- ✔ Отсутствие обоснования при правильном решении влечет снижение оценки на 2 балла.
- ✔ Неправильный ответ (в том числе из-за ошибок округления) при правильном решении снижает оценку.
- ✔ Оценка также снижается за плохое оформление работы (зачеркнутый текст, вставки, . . .).

- 1. В группе учатся 18 юношей и 5 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 40.
- 3. Вероятность попадания при одном выстреле в мишень 0,81. Найдите вероятность хотя бы одного попадания при 3 выстрелах.
- 4. С первого станка-автомата на сборочный конвеер поступает 15% деталей, со 2-го и 3-го по 35% и 50%, соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно 0,3%, 0,35% и 0,05%. Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станках-автоматах, при условии, что она оказалась бракованной.
- **5.** Игральная кость подбрасывается до тех пор, пока не выпадет 4 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 2 раза?

- 1. В партии из 15 деталей имеется 9 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- 2. Двое договорились о встрече между 10 и 11 часами утра, причем договорились ждать друг друга не более a = 5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** События A, B и C независимы; P(A) = 0, 2, P(B) = 0, 5 и P(C) = 0, 7. Найдите вероятность события A + B при условии, что наступило событие B + C.
- **4.** В первой урне $m_1 = 6$ белых и $n_1 = 6$ черных шаров, во второй $m_2 = 7$ белых и $n_2 = 6$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- **5.** Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна 17%, двух 33%, трех 72%, четырех 82%. Определите вероятность разорения фирмы.

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 30 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- **3.** События A, B и C независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,1, P(B)=0,4 и P(C)=0,9.
- 4. В урну, содержащую 14 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 10 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 9.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- **2.** На отрезок AB длины 60 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 15.
- **3.** Вероятность события P(A) = 0.69, P(B) = 0.78, P(C) = 0.82. Найдите наименьшую возможную вероятность события *ABC*.
- 4. В первой урне $m_1 = 8$ белых и $n_1 = 3$ черных шаров, во второй $m_2 = 7$ белых и $n_2 = 8$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разных цветов?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 164% от вложенной суммы. Вероятность банкротства каждого из предприятий 0, 22. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В группе учатся 9 юношей и 16 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- 2. В квадрат со стороной 12 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.94. Найдите наименьшую возможную вероятность события AB.
- 4. В среднем из 100 клиентов банка n=37 обслуживаются первым операционистом и 63 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет $p_1=0,54$ и $p_2=0,92$ соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- **5.** Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?
- **2.** В круг радиуса 60 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 40.
- 3. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1 = 0.45$, $p_2 = 0.67$ и $p_3 = 0.59$. Найдите вероятность того, что тока в цепи не будет.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 28% женщин, 18% мужчин и 33% детей. В настоящий момент среди покупателей: 160 женщин, 75 мужчин и 26 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- **5.** Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Какова вероятность того, что на базу поступят 2 некачественных изделия?

- 1. Имеется 22 экзаменационных билета, на каждом из которых напечатано условие некоторой задачи. В 12 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. Внутрь круга радиуса 15 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- **3.** Вероятность хотя бы одного попадания в мишень при k = 13 выстрелах равна p = 0,71. Найдите вероятность попадания при одном выстреле.
- 4. Имеется 14 монет, из которых 2 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 8 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- **5.** Вероятность попадания стрелком в цель равна $\frac{1}{5}$. Сделано 38 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Компания из n = 22 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k = 5 человек.
- 2. Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=30 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- 3. Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,9; 0,4; 0,8 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=24 белых шара, во втором m=9 белых и n-m=15 черных шаров, в третьем n=24 черных шара. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из 10000 вакцинированных птиц заболеют 4.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 10 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. Внутрь круга радиуса 40 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 2, P(B) = 0, 4 и P(C) = 0, 9.
- 4. Пассажир может обратиться за получением билета в одну из трёх касс (*A*, *B*, *C*). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,35, 0,3 и 0,35. Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,25, 0,35 и 0,05. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- 5. Прядильщица обслуживает 2000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В ящике 9 белых и 2 черных шара. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 60.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,21. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,92 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Фирма A занимает 14% рынка электронной техники, фирма B-50%, фирма C-36%. Доля мобильных телефонов в поставках фирмы A составляет 14%, в поставках фирмы B-3%, в поставках фирмы C-21%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- 5. В банке, осуществляющем кредитование населения, 1000 клиентов. Каждому из клиентов выдается кредит 200 тыс. ден. ед. при условии возврата 119,31% от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,09. С какой вероятностью прибыль банка будет не ниже 12,8 млн. рублей?

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 180 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 45.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 10 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,29; 0,85 и 0,42 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- 5. Всхожесть семян данного растения равна 60%. Найдите (приближенно) вероятность того, что из 1200 посаженных семян число проросших семян заключено между 699 и 739.

- 1. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 13 билетах задачи по статистике, а в остальных 12 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** События A, B и C независимы; P(A) = 0,8, P(B) = 0,5 и P(C) = 0,3. Найдите вероятность события A+B при условии, что наступило событие A+B+C.
- 4. В ящике содержится $n_1 = 5$ деталей, изготовленных на заводе 1, $n_2 = 10$ деталей на заводе 2 и $n_3 = 6$ деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны $p_1 = 0.07$, $p_2 = 0.08$ и $p_3 = 0.09$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- 5. Вероятность выпуска бракованного изделия равна 0,2. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 106 выпущенных изделий ровно 84 изделий без брака.

- 1. В партии из 17 деталей имеется 9 стандартных. Наудачу отобраны 9 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- 2. Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- 3. События A, B и C независимы; P(A) = 0,7, P(B) = 0,6 и P(C) = 0,3. Найдите вероятность события A при условии, что наступило событие $\overline{A} + \overline{B} + \overline{C}$.
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролёров. Вероятность того, что деталь попадёт к 1-му контролёру, равна 0,3; ко 2-му 0,7. Вероятность того, что годная деталь будет признана стандартной 1-м контролёром равна 0,95; 2-м контролёром 0,98. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролёр.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,4. Сделано 6 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 12 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** Вероятность попадания при одном выстреле в мишень 0,63. Найдите вероятность хотя бы одного попадания при 4 выстрелах.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 54% пачек были признаны удовлетворительными: они содержали 1% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т.к. они содержали 6% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из 10000 вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 14 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 50 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 13 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. В первой урне $m_1 = 8$ белых и $n_1 = 4$ черных шара, во второй $m_2 = 6$ белых и $n_2 = 7$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разного цвета?
- 5. Завод отправил на базу 3 000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,001. Какова вероятность того, что на базу поступят 3 некачественных изделия?

- 1. В ящике 2 белых и 6 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** Внутрь круга радиуса 100 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- 3. Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,6; 0,5; 0,9 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Пассажир может обратиться за получением билета в одну из трёх касс (*A*, *B*, *C*). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,35, 0,6 и 0,05 Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,4, 0.5 и 0,15. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- 5. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,001. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?
- 2. В круг радиуса 30 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- **3.** События A, B и C независимы; P(A) = 0.9, P(B) = 0.5 и P(C) = 0.3. Найдите вероятность события A + B при условии, что наступило событие A + B + C.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 39% пачек были признаны удовлетворительными: они содержали 4% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т.к. они содержали 9% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- 5. Вероятность выпуска бракованного изделия равна 0,27. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 80 изделий без брака.

- 1. В группе учатся 11 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 60 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- 3. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1=0.05$, $p_2=0.7$ и $p_3=0.31$. Найдите вероятность того, что тока в цепи не будет.
- 4. Имеется 15 монет, из которых 3 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 6 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из 20000 вакцинированных птиц заболеют 4.

- 1. В группе учатся 11 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** На отрезок AB длины 120 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 20.
- **3.** Вероятность события P(A) = 0.91, P(B) = 0.71, P(C) = 0.95. Найдите наименьшую возможную вероятность события *ABC*.
- 4. Фирма A занимает 17% рынка электронной техники, фирма B-45%, фирма C-38%. Доля мобильных телефонов в поставках фирмы A составляет 10%, в поставках фирмы B-3%, в поставках фирмы C-22%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- **5.** Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 9 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 4.

- 1. Компания из n=21 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=15 человек.
- **2.** В круг радиуса 90 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- **3.** События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 1, P(B) = 0, 6 и P(C) = 0, 7.
- 4. В ящике содержатся $n_1 = 5$ деталей, изготовленных на заводе 1, $n_2 = 8$ деталей на заводе 2 и $n_3 = 6$ деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны $p_1 = 0.09$, $p_2 = 0.06$ и $p_3 = 0.01$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- 5. Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В группе учатся 11 юношей и 13 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 40.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,47. Найдите наименьшее число п измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,77 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролёров. Вероятность того, что деталь попадёт к 1-му контролёру, равна 0,6; ко 2-му 0,4. Вероятность того, что годная деталь будет признана стандартной 1-м контролёром равна 0,92; 2-м контролёром 0,97. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролёр.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,7. Сделано 4 выстрела. Найдите вероятность того, что в цель попали менее трех раз.

- 1. В ящике 10 белых и 2 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- 2. Внутрь круга радиуса 10 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.6. Найдите наименьшую возможную вероятность события AB.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 16% женщин, 13% мужчин и 33% детей. В настоящий момент среди покупателей: 155 женщин, 77 мужчин и 29 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- 5. В банке, осуществляющем кредитование населения, 1500 клиентов. Каждому из клиентов выдается кредит 600 тыс. ден. ед. при условии возврата 113,48% от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,062. С какой вероятностью прибыль банка будет не ниже 45,6 млн. рублей?

- 1. В группе учатся 14 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- **3.** События *A*, *B* и *C* независимы; P(A) = 0,9, P(B) = 0,6 и P(C) = 0,1. Найдите вероятность события *A* при условии, что наступило событие $\overline{A} + \overline{B} + \overline{C}$.
- **4.** В первой урне $m_1 = 6$ белых и $n_1 = 7$ черных шаров, во второй $m_2 = 3$ белых и $n_2 = 4$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- 5. Вероятность попадания стрелком в цель равна $\frac{1}{8}$. Сделано 150 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 25 и 50 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- **3.** Вероятность хотя бы одного попадания в мишень при k=8 выстрелах равна p=0,67. Найдите вероятность попадания при одном выстреле.
- 4. В среднем из 100 клиентов банка n=39 обслуживаются первым операционистом и 61 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет $p_1=0,59$ и $p_2=0,53$ соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 163% от вложенной суммы. Вероятность банкротства каждого из предприятий 0, 24. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 1, но не больше 2?
- **2.** На отрезок AB длины 180 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 30.
- **3.** События A, B и C независимы; P(A) = 0,1, P(B) = 0,5 и P(C) = 0,8. Найдите вероятность события A + B при условии, что наступило событие B + C.
- 4. В урну, содержащую 6 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из 20000 вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Компания из n=15 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=8 человек.
- 2. Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=24 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** События *A*, *B* и *C* независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,2, P(B)=0,6 и P(C)=0,9.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=10 белых шаров, во втором -m=3 белых и n-m=7 черных шаров, в третьем -n=10 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- **5.** Всхожесть семян данного растения равна 30%. Найдите (приближенно) вероятность того, что из 1200 посаженных семян число проросших семян заключено между 339 и 379.

- 1. Имеется 20 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 10 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 5 см от центра квадрата.
- **3.** Вероятность события P(A) = 0.69, P(B) = 0.73, P(C) = 0.79. Найдите наименьшую возможную вероятность события ABC.
- 4. С первого станка-автомата на сборочный конвеер поступает 15% деталей, со 2-го и 3-го по 35% и 50%, соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно 0,25%, 0,45% и 0,1%. Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станках-автоматах, при условии, что она оказалась бракованной.
- 5. Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна 18%, двух 40%, трех 65%, четырех 93%. Определите вероятность разорения фирмы.

- 1. В партии из 14 деталей имеется 7 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- **2.** В круг радиуса 30 наудачу бросаются 4 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- **3.** События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 3, P(B) = 0, 6 и P(C) = 0, 7.
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,1; 0,88 и 0,66 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- 5. Игральная кость подбрасывается до тех пор, пока не выпадет 3 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 3 раза?

- 1. В группе учатся 11 юношей и 12 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,32. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,91 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=8 белых и n-m=4 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- 5. Вероятность выпуска бракованного изделия равна 0,47. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 57 изделий без брака.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 25 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- **3.** События *A*, *B* и *C* независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,1, P(B)=0,5 и P(C)=0,7.
- 4. Фирма A занимает 29% рынка электронной техники, фирма B-42%, фирма C-29%. Доля мобильных телефонов в поставках фирмы A составляет 13%, в поставках фирмы B-7%, в поставках фирмы C-25%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- **5.** Всхожесть семян данного растения равна 30%. Найдите (приближенно) вероятность того, что из 900 посаженных семян число проросших семян заключено между 249 и 289.

Рекомендуемая литература

- [1] Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: учебник: В 3-х ч. Ч. 3. Теория вероятностей и математическая статистика. М.: Финансы и статистика, 2008. 464 с.
- [2] *Браилов А.В., Солодовников А.С.* Сборник задач по курсу «Математика в экономике». Ч.З. Теория вероятностей: учеб. пособие. М.: Финансы и статистика; ИНФРА-М, 2010. 128 с.