Part a (Using MAE) Gauss-Seidel Method

0.7161

Command Window >> Q1 Enter 1 for MAE. Enter 2 for RMSE. Choose a stopping criterion(MAE or RMSE) for part a: 1 Gauss-Seidel Method for part a: Iteration# x1 x2 x3 MAE 2.3333 1 -0.1111 1.0667 1.1704 2 3.7926 0.5062 0.4830 0.8867 2.8086 0.0447 3 0.8766 0.6130 4 3.4872 0.3659 0.6051 0.4238 5 3.0182 0.1437 0.7927 0.2929 6 3.3424 0.2973 0.6630 0.2025 7 3.1183 0.1912 0.7527 0.1400 8 3.2732 0.2646 0.6907 0.0968 9 3.1661 0.2138 0.7336 0.0669 3.2401 0.2489 0.7039 0.0462 10 11 3.1890 0.2247 0.7244 0.0320 12 3.2243 0.2414 0.0221 0.7103 13 3.1999 0.2298 0.7200 0.0153 14 3.2168 0.2378 0.7133 0.0106 15 3.2051 0.2323 0.7180 0.0073 16 3.2132 0.2361 0.7147 0.0050 17 3.2076 0.2335 0.7170 0.0035 3.2115 0.2353 0.7154 0.0024 18 19 3.2088 0.2341 0.7165 0.0017 20 3.2106 0.2349 0.7157 0.0012 21 3.2094 0.2343 0.0008 0.7163 22 3.2102 0.2347 0.7159 0.0006 23 3.2096 0.2344 0.7161 0.0004 24 3.2100 0.2346 0.7160 0.0003 25 3.2098 0.2345 0.0002 0.7161 26 3.2100 0.2346 0.7160 0.0001 27 3.2098 0.2345 0.7161 0.0001 ans = 3.2098 0.2345

Part a (Using MAE) Jacobi Method

Jacobi Meth	od for par	t a:		
Iteration#	x1	x2	х3	MAE
1	2.3333	-1.6667	2.0000	2.0000
2	5.5556	-0.7778	1.0667	1.6815
3	4.0148	1.6815	-0.2222	1.7630
4	1.4765	1.0840	0.3941	1.2507
5	2.4974	-0.8137	1.4094	1.3113
6	4.4837	-0.4715	1.0010	0.9123
7	3.8252	0.9888	0.2065	0.9711
8	2.2791	0.8146	0.4699	0.6612
9	2.6884	-0.3039	1.0884	0.7154
10	3.8858	-0.2372	0.9247	0.4760
11	3.6453	0.6156	0.4457	0.5241
12	2.7224	0.6150	0.5419	0.3399
13	2.8509	-0.0324	0.9111	0.3817
14	3.5589	-0.0698	0.8597	0.2656
15	3.5028	0.4194	0.5765	0.2761
16	2.9621	0.4764	0.5989	0.2067
17	2.9730	0.1085	0.8151	0.1984
18	3.3840	0.0436	0.8108	0.1601
19	3.3998	0.3191	0.6464	0.1519
20	3.0888	0.3844	0.6401	0.1276
21	3.0586	0.1792	0.7645	0.1199
22	3.2929	0.1176	0.7766	0.1027
23	3.3295	0.2697	0.6828	0.0942
24	3.1539	0.3254	0.6682	0.0820
25	3.1158	0.2132	0.7385	0.0735
26	3.2469	0.1644	0.7537	0.0651
27	3.2835	0.2467	0.7013	0.0571
28	3.1861	0.2886	0.6866	0.0513
29	3.1526	0.2285	0.7256	0.0441
30	3.2246	0.1932	0.7389	0.0402
31	3.2542	0.2367	0.7102	0.0340
32	3.2013	0.2661	0.6983	0.0313
33	3.1757	0.2348	0.7195	0.0260
34	3.2144	0.2107	0.7297	0.0243
35	3.2360	0.2330	0.7143	0.0198
36	3.2080	0.2526	0.7056	0.0188
37	3.1899	0.2368	0.7168	0.0150
38	3.2101	0.2210	0.7240	0.0144
39	3.2250	0.2321	0.7159	0.0114
40	3.2106	0.2447	0.7100	0.0110
41	3.1984	0.2371	0.7158	0.0085
42	3.2087	0.2270	0.7206	0.0084
fx 43	3.2185	0.2322	0.7165	0.0064

44	3.2113	0.2402	0.7126	0.0064
45	3.2034	0.2367	0.7155	0.0048
46	3.2084	0.2304	0.7186	0.0048
47	3.2147	0.2327	0.7166	0.0035
48	3.2113	0.2376	0.7141	0.0036
49	3.2063	0.2361	0.7155	0.0026
50	3.2086	0.2324	0.7175	0.0027
51	3.2125	0.2332	0.7166	0.0019
52	3.2110	0.2362	0.7150	0.0020
53	3.2079	0.2357	0.7156	0.0014
54	3.2089	0.2334	0.7168	0.0015
55	3.2113	0.2337	0.7164	0.0010
56	3.2107	0.2354	0.7155	0.0011
57	3.2088	0.2353	0.7157	0.0007
58	3.2092	0.2340	0.7165	0.0008
59	3.2106	0.2340	0.7163	0.0005
60	3.2104	0.2350	0.7158	0.0006
61	3.2093	0.2350	0.7158	0.0004
62	3.2094	0.2343	0.7163	0.0004
63	3.2103	0.2342	0.7162	0.0003
64	3.2102	0.2348	0.7159	0.0003
65	3.2096	0.2349	0.7159	0.0002
66	3.2096	0.2344	0.7162	0.0002
67	3.2101	0.2343	0.7162	0.0002
68	3.2101	0.2347	0.7160	0.0002
69	3.2098	0.2347	0.7160	0.0002
70	3.2097	0.2345	0.7161	0.0001
71	3.2100	0.2344	0.7161	0.0001
72	3.2100	0.2346	0.7160	0.0001
73	3.2098	0.2347	0.7160	0.0001
74	3.2098	0.2346	0.7161	0.0001

ans =

3.2098

0.2346

0.7161

Part b (Using MAE) Gauss-Seidel and Jacobi Method

```
Enter 1 for MAE. Enter 2 for RMSE. Choose a stopping criterion (MAE or RMSE) for part b: 1
Gauss-Seidel Method for part b:
Iteration#
             x1
                        x2
                                    x3
                                                MAE
            0.2500
                       0.4250
                                              0.7750
   1
                                   1.6500
   2
           -0.0031
                       0.0697
                                   1.5356
                                              0.2409
   3
           -0.1078
                       0.0821
                                   1.5680
                                              0.0498
           -0.1112
                       0.0753
                                              0.0043
    4
                                  1.5654
           -0.1131
                       0.0756
                                   1.5661
                                              0.0010
           -0.1132
                       0.0755
                                   1.5660
                                              0.0001
ans =
  -0.1132
   0.0755
   1.5660
Jacobi Method for part b:
            x1
Iteration#
                        x2
                                    x3
                                                MAE
            0.2500
                       0.4000
                                   1.5000
                                              0.7167
   1
   2
           0.0250
                       0.1250
                                   1.6375
                                              0.2125
   3
           -0.1125
                       0.0750
                                   1.5562
                                              0.0896
   4
           -0.1109
                       0.0775
                                   1.5656
                                              0.0045
   5
           -0.1123
                       0.0758
                                   1.5665
                                              0.0013
    6
           -0.1132
                       0.0755
                                   1.5660
                                              0.0006
           -0.1132
                       0.0755
                                   1.5660
                                              0.0000
ans =
  -0.1132
   0.0755
   1.5660
```

Part a (Using RMSE) Gauss-Seidel Method

3.2098 0.2345 0.7161

Command Window >> Q1 Enter 1 for MAE. Enter 2 for RMSE. Choose a stopping criterion (MAE or RMSE) for part a: 2 Gauss-Seidel Method for part a: Iteration# x1 x2 **x**3 RMSE 1 2.3333 -0.1111 1.0667 1.4826 2 3.7926 0.5062 0.4830 0.9749 0.8766 3 2.8086 0.0447 0.6674 4 3.4872 0.3659 0.6051 0.4609 5 3.0182 0.1437 0.7927 0.3186 6 3.3424 0.2973 0.6630 0.2202 7 3.1183 0.1912 0.7527 0.1522 8 3.2732 0.2646 0.6907 0.1052 9 3.1661 0.2138 0.7336 0.0727 0.7039 0.0503 10 3.2401 0.2489 11 3.1890 0.2247 0.7244 0.0348 12 3.2243 0.2414 0.0240 0.7103 13 3.1999 0.2298 0.7200 0.0166 14 3.2168 0.2378 0.7133 0.0115 15 3.2051 0.2323 0.7180 0.0079 16 3.2132 0.2361 0.7147 0.0055 17 3.2076 0.2335 0.7170 0.0038 18 3.2115 0.2353 0.7154 0.0026 19 3.2088 0.2341 0.7165 0.0018 20 3.2106 0.2349 0.7157 0.0013 21 3.2094 0.2343 0.7163 0.0009 22 3.2102 0.2347 0.7159 0.0006 23 3.2096 0.2344 0.7161 0.0004 0.2346 24 3.2100 0.7160 0.0003 25 3.2098 0.2345 0.7161 0.0002 3.2100 0.2346 0.7160 0.0001 26 27 3.2098 0.2345 0.7161 0.0001 ans =

Part a (Using RMSE) Jacobi Method

Jacobi Metl	hod for par	t a:		
Iteration#	x1	x2	x 3	RMSE
1	2.3333	-1.6667	2.0000	2.0184
2	5.5556	-0.7778	1.0667	2.0037
3	4.0148	1.6815	-0.2222	1.8333
4	1.4765	1.0840	0.3941	1.5470
5	2.4974	-0.8137	1.4094	1.3753
6	4.4837	-0.4715	1.0010	1.1873
7	3.8252	0.9888	0.2065	1.0324
8	2.2791	0.8146	0.4699	0.9111
9	2.6884	-0.3039	1.0884	0.7748
10	3.8858	-0.2372	0.9247	0.6988
11	3.6453	0.6156	0.4457	0.5816
12	2.7224	0.6150	0.5419	0.5357
13	2.8509	-0.0324	0.9111	0.4366
14	3.5589	-0.0698	0.8597	0.4104
15	3.5028	0.4194	0.5765	0.3279
16	2.9621	0.4764	0.5989	0.3141
17	2.9730	0.1085	0.8151	0.2465
18	3.3840	0.0436	0.8108	0.2402
19	3.3998	0.3191	0.6464	0.1854
20	3.0888	0.3844	0.6401	0.1835
21	3.0586	0.1792	0.7645	0.1397
22	3.2929	0.1176	0.7766	0.1400
23	3.3295	0.2697	0.6828	0.1053
24	3.1539	0.3254	0.6682	0.1067
25	3.1158	0.2132	0.7385	0.0795
26	3.2469	0.1644	0.7537	0.0812
27	3.2835	0.2467	0.7013	0.0602
28	3.1861	0.2886	0.6866	0.0618
29	3.1526	0.2285	0.7256	0.0456
30	3.2246	0.1932	0.7389	0.0469
31	3.2542	0.2367	0.7102	0.0346
32	3.2013	0.2661	0.6983	0.0356
33	3.1757	0.2348	0.7195	0.0263
34	3.2144	0.2107	0.7297	0.0269
35	3.2360	0.2330	0.7143	0.0201
36	3.2080	0.2526	0.7056	0.0204
37	3.1899	0.2368	0.7168	0.0153
38	3.2101	0.2210	0.7240	0.0154
39	3.2250	0.2321	0.7159	0.0117
40	3.2106	0.2447	0.7100	0.0116
41	3.1984	0.2371	0.7158	0.0090
42	3.2087	0.2270	0.7206	0.0088
f x 43	3.2185	0.2322	0.7165	0.0069

44	3.2113	0.2402	0.7126	0.0066
45	3.2034	0.2367	0.7155	0.0053
46	3.2084	0.2304	0.7186	0.0050
47	3.2147	0.2327	0.7166	0.0040
48	3.2113	0.2376	0.7141	0.0037
49	3.2063	0.2361	0.7155	0.0031
50	3.2086	0.2324	0.7175	0.0028
51	3.2125	0.2332	0.7166	0.0024
52	3.2110	0.2362	0.7150	0.0021
53	3.2079	0.2357	0.7156	0.0018
54	3.2089	0.2334	0.7168	0.0016
55	3.2113	0.2337	0.7164	0.0014
56	3.2107	0.2354	0.7155	0.0012
57	3.2088	0.2353	0.7157	0.0011
58	3.2092	0.2340	0.7165	0.0009
59	3.2106	0.2340	0.7163	0.0008
60	3.2104	0.2350	0.7158	0.0007
61	3.2093	0.2350	0.7158	0.0006
62	3.2094	0.2343	0.7163	0.0005
63	3.2103	0.2342	0.7162	0.0005
64	3.2102	0.2348	0.7159	0.0004
65	3.2096	0.2349	0.7159	0.0004
66	3.2096	0.2344	0.7162	0.0003
67	3.2101	0.2343	0.7162	0.0003
68	3.2101	0.2347	0.7160	0.0002
69	3.2098	0.2347	0.7160	0.0002
70	3.2097	0.2345	0.7161	0.0002
71	3.2100	0.2344	0.7161	0.0002
72	3.2100	0.2346	0.7160	0.0001
73	3.2098	0.2347	0.7160	0.0001
74	3.2098	0.2346	0.7161	0.0001

ans =

3.2098

0.2346

0.7161

Part b (Using RMSE) Gauss-Seidel and Jacobi Method

1.5660

```
Enter 1 for MAE. Enter 2 for RMSE. Choose a stopping criterion (MAE or RMSE) for part b: 2
Gauss-Seidel Method for part b:
Iteration#
            x1
                        x2
                                   x3
                                               RMSE
           0.2500
                       0.4250
                                  1.6500
                                             0.9943
   1
           -0.0031
                      0.0697
                                  1.5356
                                             0.2604
   3
          -0.1078
                      0.0821
                                1.5680
                                             0.0636
                      0.0753
   4
          -0.1112
                                1.5654
                                             0.0046
   5
          -0.1131
                      0.0756
                                             0.0012
                                1.5661
                      0.0755
   6
           -0.1132
                                  1.5660
                                             0.0001
ans =
  -0.1132
   0.0755
   1.5660
Jacobi Method for part b:
Iteration#
            x1
                       x2
                                   x3
                                              RMSE
           0.2500
                      0.4000
                                  1.5000
   1
                                             0.9078
   2
           0.0250
                     0.1250
                                  1.6375
                                             0.2200
   3
          -0.1125
                      0.0750
                                1.5562
                                             0.0966
   4
          -0.1109
                      0.0775
                                  1.5656
                                             0.0057
   5
          -0.1123
                       0.0758
                                  1.5665
                                             0.0014
   6
           -0.1132
                       0.0755
                                  1.5660
                                             0.0006
          -0.1132
                      0.0755
                                  1.5660
                                             0.0000
ans =
  -0.1132
   0.0755
```

Brief Report:

The solution for part a is [3.2098; 0.2346; 0.7161]. The solution for part b is [-0.1132;0.0755;1.5660]. For part a, the Jacobi Method required more iterations than the Gauss-Seidel Method to produce the solution. For part b, both methods required around the same number of iterations to produce the solution. There was no difference in using either MAE or RMSE as a stopping criterion.