Single Neuron - is just a function

neights - how much influence a specific input has

bias -> how much influence the neuron has

5 positive bias: small input -> big output

4 negative bias, vice versa -> neuron less important / influence

activation functions - allow to capture and model complex non-linear velationships within impuls. Lo enabling to learn & generalize from complex data

- any growing function is possible

-> but some non-linear are necessary or neural net is suct an linear regression

examples

•							\mathcal{C}							-			reguession			
•	Activation function	Equation	Example	1D Graph													,	U		
•	Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant		•		•	•	•	•	•	•	•	•	•	•	•	٠		•
•	Linear	$\phi(z) = z$	Adaline, linear regression		•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•
•	Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine		•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•
	Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN				•													
	Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks		•							•	•	•			•	•		
	Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks		•															
•	Rectifier, softplus Copyright © Sebastian Reschika 2016 (http://sebastianraschika.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	\	•		٠	•	•	•	•	•	•	•	•	•	•	٠	•	•