

# Flattened Convolutional Neural Networks for Feedforward Acceleration



Jonghoon Jin, Aysegul Dundar and Eugenio Culurciello

#### Abstract

We present flattened convolutional neural networks that are designed for fast feedforward execution. The flattened layer, consisting of a sequence of 1D filters across all directions, can effectively substitute for the 3D filters without loss of accuracy. The flattened convolution pipelines provide around 2x speed-up during feedforward pass with 90% parameter reduction. Furthermore, the proposed method does not require efforts in manual tuning or post processing once the model is trained.

#### Acceleration







16x16 32x32

(c) Backpropagation on CPU







### Flattened ConvolutionLayer



1D convolutions over channels (Lateral) and in space (Vertical / Horizontal)

#### **Reconstructed Filters**



Sparse and sharp edge filters in 1st layer

# Classification Accuracy

| Dataset   | <b>Model Type</b>                 | Test Accuracy        |
|-----------|-----------------------------------|----------------------|
| CIFAR-10  | Baseline Model<br>Flattened Model | $86.42\% \\ 87.04\%$ |
| CIFAR-100 | Baseline Model<br>Flattened Model | $60.08\% \ 60.92\%$  |
| MNIST     | Baseline Model<br>Flattened Model | $99.62\% \\ 99.56\%$ |

Comparable performance as vanilla CNNs

# Memory Usage



## Convergence Rate

