AVAILABLE COPY

(11)Publication number

04-302014

(43)Date of publication of application: 26.10.1992

(51)Int.CI

G06F 1/04

(21)Application number: 03-089869

(71)Applicant

TOKYO ELECTRIC CO LTD

(22)Date of filing

28.03.1991

(72)Inventor

ODA AKIRA

(54) LOGIC CIRCUIT DRIVING DEVICE

(57) Abstract:

PURPOSE: To suppress an excessive noise due to system clock and power consumption as much as possible by supplying the system clock to a logical element as necessary.

CONSTITUTION: When operational information signals 14a-14c are inputted to functional blocks 11-13, or when processing signals 19a-19c are outputted based on the operational information signals 14a-14c, an operation starting signal or an operation end signal is outputted to a status signal included in status information signals 16a-16c. A sequence controller 15 executes or stops the supply of a system clock 20 through signals 17a-17c for operation to the pertinent functional block by this status signal.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-302014

(43)公開日 平成4年(1992)10月26日

(51) Int.CL⁵ G 0 6 F 1/04 識別記号 庁内整理番号 301 B 7368-5B

FI

技術表示協所

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特顏平3-89869

(22)出廣日

平成3年(1991)3月28日

(71)出願人 000003562

東京電気株式会社

東京都目黒区中目黒2丁目6番13号

(72)発明者 織田 晃

静岡県田方郡大仁町大仁570番地 東京電

気株式会社大仁工場内

(74)代理人 弁理士 鈴江 武彦

(54)【発明の名称】 論理回路駆動装置

(57) 【要約】

【目的】システムクロックを必要なときだけ論理素子に供給して、システムクロックによる余計なノイズおよび 電力消費をできる限り抑える。

【構成】機能プロック11、12、13において、動作情報信号14a、14b、14cが入力されたとき、または動作情報信号14a、14b、14cに基づいて処理信号19a、19b、19cが出力されたとき、ステータス情報信号16a、16b、16cに含まれたステータス信号に動作開始信号または動作数了信号を出力する。シーケンスコントローラ15は、このステータス信号により動作用信号17a、17b、17cを介して該当する機能プロックにシステムクロック20の供給または供給停止を行うもの。

(2)

特開平4-302014

【特許請求の顧用】

【請求項1】 各種論理素子により構成される複数の論 理回路をシステムクロック信号により同期動作する論理 回路駆動装置において、前配各論理回路それぞれに対し て動作情報信号が入力されたときに動作開始信号を出力 し、前配各論理回路の動作が終了するとそれぞれ動作終 了信号を出力する複数のステータス出力手段と、この各 ステータス出力手段からの動作開始信号に基づいて該当 する論理回路へシステムクロック信号を供給し、前記各 ステークス出力手段からの動作終了信号に基づいて該当 10 する論理回路へのシステムクロック信号の供給を停止す るクロック供給制御手段とからなることを特徴とする論 理回路駆動装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、各種論理素子により 構成される複数の論理回路をシステムクロック信号によ り同期動作する論理回路駆動装置に関する。

[0002]

【従来の技術】従来、例えば図5に示すように、複数の 20 論理回路である機能プロック1、2、3を設け、これら の各機能プロック1~3にそれぞれ動作情報信号4 a、 4 b、4 cを入力するとともにシステムクロック 5を入 力して動作させ、その動作の結果として各機能プロック 1~3から処理信号7a、7b、7cが出力されるよう になっている。なお、動作情報信号4 a が機能プロック 1に入力されると、機能プロック 1から次段の機能プロ ック2へ動作情報信号4.6が入力され、さらに動作情報 信号4 bが機能プロック2に入力されると、機能プロッ cが入力されるようになっている。また各機能プロック 1~3はシステムリセット6によりリセットされるよう になっている。

【0003】前記機能プロック1は図6に示すように、 各種論理素子、例えばフリップフロップ1a, 1e, ゲ 一ト回路16、1イ、カウンタ1c、1d、インパータ 18. 1 hにより構成されている。なお、図示しないが 他の機能プロック2、3も同様の回路構成になってい

【0004】この従来例においては、ます動作情報信号 40 4 aが機能プロック 1 に入力されると、ブリップフロッ ブ1 a が動作し、これによりシステムクロック 6 を力ウ ンタ1 c、1 dがカウント動作し、カウンタ 1 dから次 段の機能プロック 2 に動作情報信号 4 b を出力するとと もにカウンタ1 cから処理信号7 aを出力する。すなわ ち動作情報信号4 b は処理信号7 a の出力タイミングと は無関係に出力されるようになっている。

【0005】機能プロック2では機能プロック1からの 動作情報信号4 bに基づいて同様の動作を行い、動作情 報信号4c及び処理信号7bを出力する。

【0006】機能プロック3では機能プロック2からの 動作情報信号4cに基づいて同様の動作を行い、処理信 号? cを出力する。なお、機能プロック 3 は最終段とな っているため動作情報信号の出力は行われない。

【0 0 0 7】またシステムリセット5が各機能プロック 1~3に入力されると各機能プロック1、2、3の動作 がリセットされる。

【0008】なお機能プロック1についてシステムリセ ット5、システムクロック6、動作情報信号4 a、処理 信号7 a、動作情報信号4 bの入出力タイミングを示す と図7に示すようになる。

【0009】このように従来例によれば、各機能プロッ クおよびこの機能ブロックを構成する論理案子には、常 時システムクロックが入力されるようになっていた。

【0010】近年、装置の高速処理の要求に伴ってシス テムクロックは高速化し、さらにまた、回路を構成する 論理素子の使用量は増加しており、プリント基板に実装 される論理素子は、商品の小形化に伴ってより高密度化 している。

[0011]

【発明が解決しようとする課題】他の電子機器の誤作動 の原因の1つに、論理素子がオン・オフするときに流れ る電流により発生するノイズがある。 システムクロック は、論理案子に入力されると論理素子をオン・オフさせ るので、システムクロックの高速化および実装の高密度 化に伴ってノイズはさらに増大している。

【0012】 通常、システムクロックは常時ほとんどの 論理素子に供給されているが、ほとんどの論理素子は、 常時回路における動作処理に関与しているわけではない ク2からさらに次段の機能プロック3へ動作情報信号4 30 ため、動作処理に関与しない時に論理案子に供給された システムグロッグにより発生するフィズは、余計なフィ ズとして問題であった。

> 【0013】同様に、回路における動作処理に関与しな い時に論理案子に供給されたシステムクロックにより消 費される電力もまた、余計な電力消費として問題であっ

【0014】そこでこの発明は、論理素子に対して、動 作が必要とされる時間のみシステムクロックを供給する ことができ、従ってシステムクロックにより発生するノ イズおよび電力消費を最小限に抑えたクロック周波数制 御装置を提供することを目的とする。

[0015]

【課題を解決するための手段】この発明は、各種論理素 子により構成される複数の論理回路をシステムクロック 信号により同期動作する論理回路駆動装置において、各 論理回路それぞれに対して動作情報信号が入力されたと きに動作開始信号を出力し、各論理回路の動作が終了す るとそれぞれ動作終了信号を出力する複数のステータス 出力手段と、この各ステータス出力手段からの動作開始 50 信号に基づいて該当する論理回路へシステムクロック信

号を供給し、各ステータス出力手段からの動作終了信号 に基づいて該当する論理回路へのシステムクロック信号 の供給を停止するクロック供給制御手段とからなるもの である。

[0016]

【作用】このような構成の本発明において、論理回路に 動作情報信号が入力されると、ステーダス出力手段から 動作開始信号が、クロック供給制御手段に入力される。

【0017】すると、クロック供給手段からシステムクロック信号が、該当する論理回路へ供給される。

【0018】 該当する論理回路は供給されたシステムクロック信号により、動作情報信号に基づいた動作を行う。

【0019】 益理回路が動作情報信号に基づいた動作を 終了すると、ステータス出力手段から動作終了信号が、 クロック供給制御手段に入力される。

【0020】すると、酸当する論理回路へ出力されているシステムクロック信号が、クロック供給手段により停止させられる。

[0021]

【実施例】以下、この発明の一実施例を図面を参照して 説明する。

【0022】図1において、複数の論理回路である機能プロック11、12、13を設け、これらの各機能プロック11~13にそれぞれ動作情報信号14a、14 b、14cが入力されている。動作情報信号14aが機能プロック11に入力されると、前記機能プロック11から次段の前記機能プロック12へ動作情報信号14bが入力され、さらに動作情報信号14bが設定機能プロック12に入力されると、前記機能プロック12に入力されると、前記機能プロック12に入力されると、前記機能プロック12に入力されると、前記機能プロック12から次 の段の前記機能プロック13へ動作情報信号14cが入力されるようになっている。

【0023】前記機能プロック11~13からクロック 供給制御手段としてのシーケンスコントローラ15ベス テータス信号を含む複数の信号からなるステータス情報 信号16a、16b、16cが入力されるようになって いる。

【0024】前記シーケンスコントローラ15から前記 各機能プロック11~13へ、それぞれシステムクロックを含む複数の信号からなる動作用信号17a、17 40 b、17cが入力されるようになっている。

【0 0 2 5】前記機能プロック 1 1~1 3 には、システムリセット 1 8 がそれぞれ入力されている。

【0026】動作情報信号14a~14cおよびシステムクロックを含む動作用信号17a~17cが入力されて、各機能プロック11~13が動作し、その動作の結果として各機能プロック11~13から処理信号19a、19b、19cが出力されるようになっている。

【0027】前記シーケンスコントローラ15には、システムグロッグ20が入力されるようになっている。

10 (0029) 前記機能プロック11のフリップフロップ 11aはステータス出力手段を構成している。なお図示 しないが、他の前記機能プロック12、13も同様の回 路構成になっており、前記シーケンスコントローラ15 も機能プロック11に対して構成されていたのと同様に 前記機能プロック12、13に対しても同様な回路構成 になっている。

【0030】前記機能プロック11のフリップフロップ
11aの出力場子から前記シーケンスコントローラ15
のAND回路15cの一方の入力端子へステータス信号
20 録21が接続されている。なお、このAND回路15cの他の一方の入力端子にはシステムグロック20が入力
されている。そして前記AND回路15cの出力端子から前記機能プロック11のカウンタ11c、11dのC
LK(グロック)端子へクロック信号線22が接続されている。

【0031】このような構成の本実施例において、動作情報信号14a~14cが入力されていないとき、機能プロック11~13には、システムクロックは供給されていない。

【0032】ここで、動作情報信号14aが機能ブロック11に入力されると、機能ブロック11のブリップフロップ11aからステータス信号線21に動作開始信号が出力される。すると、AND回路15cからグロック信号線22にシステムクロック20が出力される。このシステムクロック20はブリップフロップ15bおよびカウンタ11c、11dに供給され、ステータス信号は21の動作開始信号はブリップフロップ15bを介してカウンタ11c、11dを動作させる。その結果カウンタ11dからは次段の機能ブロック12へ動作情報信号14bが出力され、一方カウンタ11cからは処理信号19aが出力される。

【0033】 このとき、この処理信号19 g がフリップフロップ15 a およびゲート回路11 b を介してフリップフロップ11 a のR (リセット) 増予に入力され、ステータス信号線21に動作終了信号が出力される。するとAND回路15 c からクロック信号線22に出力されていたシステムクロック20が停止される。

【0034】このときの、機能プロック11について、 システムリセット18、システムクロック、動作情報信 50 号14a、処理信号19a、動作情報信号14bの入出 カタイミングは、図7に示したものと同一であることが 確かめられている。

【0035】上述したことは、もちろん機能プロック1 2および13においても同様に動作することである。

【0036】このように本実施例によれば、動作情報信 号が入力されたときに機能プロックへのシステムクロッ クの供給が開始され、処理信号が出力されたときにシス テムクロックの供給を停止できる。従って、処理信号が 出力されてから次の動作情報信号が入力されるまでの間 止し、電力消費を最小限にすることができる。しかも、 動作処理において、常時システムクロックを供給する従 来のタイミングと同一で、支障が起こらない。

【0037】次に本発明の他の実施例を図面を参照して 説明する。

【0038】図3に示すものは、OR回路30により機 館プロック31および32を並列に処理して、機能プロ ック33に機能プロック31および32から出力された 動作情報信号35cおよび35dをOR処理した動作情 報信号35eを出力するものである。

【0039】複数の論理回路である機能プロック31、 32、33、34を設け、これらの各機能プロック31 ~34にそれぞれ動作情報信号35a、35b、35 e、35fが入力されるようになっており、動作情報信 号35 aが前配機能プロック31に入力されると、前記 機能プロック31から前記OR回路30の一方の入力端 子へ動作情報信号35cが入力され、また、動作情報信 号35bが前記機能プロック32に入力されると、前記 機能プロック32から前配OR回路30の残る一方の入 力端子へ動作情報信号35 dが入力される。

【0040】前記OR回路30では、各入力端子に入力 される動作情報信号35c、35dをOR処理し、その 処理の結果としての動作情報信号35eが、次段の前記 機能プロック33へ入力される。動作情報信号35eが 前記機能プロック33に入力されると、前記機能プロッ ク33から前記機能プロック34へ動作情報信号35 f が入力されるようになっている。

【0041】前記機能プロック31~34からシーケン スコントローラ36ペステータス信号を含む複数の信号 がらなるステータス情報信号37a、37b、37c、40 37 dが入力されるようになっている。

【0042】前記シーケンスコントローラ36から前記 各機能プロック31~34へ、それぞれシステムクロッ クを含む複数の信号からなる動作用信号38a.38 b. 38c、38dが入力されるようになっている。

【0043】前記機能プロック31~34にはシステム リセット39かそれぞれ入力され、動作情報信号による 動作の結果としての処理信号40 a、40 b、40 c、 40 dが出力されるようになっており、前記シーケンス

れるようになっている。

【0.044】このような構成の本実施例においては、各 機能プロック31~34は動作情報信号を入力すると、 ステータス情報信号に含まれたステータス信号に動作開 始信号を出力する。 するとシーケンスコントローラ36 からシステムグロック41が該当する機能プロックに供 給され、該当する機能プロックはシステムクロック 4.1 により動作を行って処理信号を出力する。そして処理信 号により該当する機能プロックからシステムコントロー において、システムクロックにより発生するノイズを防 10 ラ36 ベステータス信号に動作終了信号が出力され、シ -ケンスコントローラ36からのシステムクロック41 の供給が停止される。

> 【0045】 このようにOR論理回路30を使用した場 合でも各機能プロック31~3.4は動作情報信号が入力 されたときシーケンスコントローラ36からシステムク ロックが供給されて動作を開始し、処理信号が出力され たときシステムクロックの供給が停止されることにな

【0046】従って本実施例においても前配実施例と同 20 様の効果が得られるものである。

[0047] また図4に示すものはAND論理回路50 により機能プロック51および52を並列に処理して、 機能プロック53に機能プロック51および52から出 力された動作情報信号 5.5 c および 5.5 dをAND処理 した動作情報信号55eを出力するものである。

【0048】複数の論理回路である機能プロック51、 52、53、54を設け、これらの各機能プロック51 ~5.4 にそれぞれ動作情報信号 5.5 a. 5.5 b. 5.5 e、5.5 f が入力されるようになっており、動作情報信 30 号55 aが前記機能プロック51に入力されると、前記 機能プロック51から前配AND論理回路50の一方の 入力端子へ動作情報信号 5.5 cが入力され、また、動作 情報信号 55 bが前記機能プロック 52 に入力される と、前記機能プロック52から前配AND論理回路50 の残る一方の入力端子へ動作情報信号 5 5 dが入力され

【0049】前配AND論理回路50では、各入力端子 に入力される動作情報信号55c。55dをAND処理 し、その処理の結果としての動作情報信号55 eが、次 段の前記機能プロック53へ入力される。動作情報信号 55eが前配機能プロック53に入力されると、前配機 能プロック53から前記機能プロック54へ動作情報信 号55fが入力されるようになっている。

【0 0 5 0】前記機能プロック 5 1 ~ 5 4 からシーケン スコントローラ56へステータス信号を含む複数の信号 からなるステータス情報信号57a、57b、57c。 57 dが入力されるようになっている。

【0051】前記シーケンスコントローラ56から前記 各機能プロック51~54へ、それぞれシステムクロッ コントローラ36には、システムクロック41が入力さ 50 クを含む複数の信号からなる動作用信号58 a、58

b、58c、58dが入力されるようになっている。 【0052】前記機能プロック51~54にはシステム リセット59がそれぞれ入力され、動作情報信号による 動作の結果としての処理信号60a、60b、60c、 60 dが出力されるようになっており、前記シーケンス コントローラ56には、システムクロック61が入力さ れるようになっている。

【0053】このような構成の本実施例においては、各 機能プロック51~54は動作情報信号を入力すると、 ステータス情報信号に含まれているステータス信号に動 10 作関始信号を出力する。するとシーケンスコントローラ 56からシステムクロック61が該当する機能プロック に供給され、該当する機能プロックはシステムクロック 61により動作を行って処理信号を出力する。そして処 理信号により該当する機能プロックからシステムコント ローラ56ヘステータス信号に動作終了信号が出力さ れ、シーケンスコントローラ56からのシステムクロッ ク61の供給が停止される。

【0054】このようにAND論理回路50を使用した 場合でも各機能プロック51~54は動作情報信号が入 20 力されたときシーケンスコントローラ56からシステム クロックが供給されて動作を開始し、処理信号が出力さ れたときシステムクロックの供給が停止されることにな

【0055】従って本実施例においても前記実施例と同 様の効果が得られるものである。

[0056]

【発明の効果】以上詳述したようにこの発明によれば、 論理素子に対して、動作が必要とされる時間のみシステ ムクロックを供給することができ、従ってシステムクロ ックにより発生するノイズおよび電力消費を最小限に抑 えたクロック周波数制御装置を提供できる。

【図面の簡単な説明】

【図1】この発明の一実施例を示す回路プロック図。

【図2】同実施例を示す部分回路図。

【図3】この発明の他の一実施例を示す回路プロック ☒.

【関4】この発明の他の一実施例を示す同路プロック M.

【図5】従来例を示す回路ブロック図。

【図6】同従来例を示す部分回路図。

【図7】同従来例を示す各信号の入出力タイミングの図 【符号の説明】

11, 12, 13…機能プロック、14a, 14b, 1 4 c …動作情報信号、15 …シーケンスコントローラ、 16a, 16b, 16c…ステータス情報信号、17 a, 17b, 17c…動作用信号、19a, 19b, 1 9 c …処理信号、20…システムクロック。

[図1]

[図5]

【図2】

(6)

(7)

特別平4-302014

【図7】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.