# Supplementary materials for "How research programs come apart"

Lucas Gautheron

Elisa Omodei

## S1 Data collection

Our goal was to collect the whole HEP literature from 1980 to 2020 from the public Inspire HEP API (Moskovic, 2021). For that, we collected metadata for all articles through automated search requests, category per category, and year per year. This strategy was intended to abide with the limitations of the API, in terms of matching entries per search request. However, it appeared that many articles in years 1990 to 1995 were not categorized, and therefore our collection strategy missed many HEP articles from this period. In order to recover these articles, we gathered all articles that were referenced in publications collected through the first batch but which were missing. This methods fails to recover articles that were not cited in any article from the first batch. More importantly, the lack of categories means that selecting all HEP papers during the problematic time period will require unlabeled articles to be manually or automatically classified. Although there are ways to circumvent these issues and to assess their potential implications, we have decided to narrow down several analyses to years 2001 onwards in the present work.

## S2 Text-classifier performance stability

The categories (Theory-HEP, Phenomenology-HEP and Experiment-HEP) that we trained our classifier (3.2) to predict have been assigned in different ways in the Inspire HEP database. Although a majority were categorized based on arXiv's classification system, some papers were not, especially those published before arXix was introduced (in the early 1990s). It might seem unclear whether these classification procedures are consistent and revealing of distinct underlying cultures. In order to demonstrate that it is the case, in Figure S1, we show that the performance of the text-classifier is nonetheless roughly stable throughout the period considered (1980–2020). To this end, we subdivide this time-range in bins of five years and perform k-fold cross-validation using each five year bin for the validation set (and the papers from the other bins for the training set). Accuracy remains high and approximately stable over the years 1980 to 2020; therefore, these various classification procedures, and the underlying identity of each of these subcultures, must be rather consistent over this period.

# S3 Topic model

#### S3.1 Data and vocabulary selection

The model is trained on N=120,000 articles randomly sampled from those in the 1980-2020 period that belong to any of the categories Theory-HEP, Phenomenology-HEP, Experiment-HEP, and Lattice. Titles and abstracts of each papers are concatenated in order to maximize the textual content used for training. Very short texts (less than 100 characters) are removed.

Before applying the model, we performed a number of pre-processing steps on the abstracts with the goal of maximizing the amount of useful information in the training data. This procedure, largely inspired from Omodei 2014 and implemented with the use of the NLTK library (Bird et al., 2009), is as follows:

• Tokens (words separated by punctuation or spaces) are extracted from the text and transformed to lower-case.



Figure S1: Accuracy of the text-classifier from Section 3.2 as a function of the papers' years of publication. Error-bars represent the 95% confidence interval. Dashed lines show the accuracy of the baseline model (which may vary only due to variations in the frequency of each category, since the baseline model always predicts the most common class). The accuracy is roughly constant across time for each of the three categories, despite significant variations in the frequency of each class.

- All single nouns and adjectives are retrieved from these tokens.
- We also retrieve all n-grams that match specific syntactic patterns (e.g. "adjective+noun+noun", such as "supersymmetric standard model", "effective field theory").
- Single words are lemmatized, i.e. they are normalized to their root (e.g. "symmetries" becomes "symmetry").
- Words and expressions that occur less than 20 times are removed.

First, these steps allow us to reduce noise by removing words that convey little to no information about the topics of the articles (such as stop words). Second, extracting n-grams that matching certain syntactic patterns allows us to preserve some information about the relative position of words within the abstracts – which CTM do not do otherwise – while taking advantage of our prior knowledge of the documents' language. For instance, the word "dark" may convey different meanings depending on whether it occurs immediately before the word "matter", or, alternatively, "energy"; similarly, the occurrence of the expression "dark matter" in a text conveys more information than the simultaneous occurrence of "dark" and "matter" without more knowledge about their relative position.

As a result of this procedure, the vocabulary contains V = 18,658 "words", with 58 words per article on average.

### S3.2 Hyper-parameters

The implementation of the CTM by Tomotopy (Bab2min et al., 2021) has three hyper-parameters: the amount of topics k, an  $\vec{\alpha}$  parameter that controls the sparsity of the document-topic distribution  $(\theta_{d,i})$ , and a  $\vec{\eta}$  parameter that controls the sparsity of the topic-word distribution (the vocabulary associated to each topic). For choosing the amount of topics k, we considered three values that seemed acceptable in terms of interpretability and compliance with the values from the literature: 50, 75 and 100. We assumed  $\vec{\alpha}$  and  $\vec{\eta}$  to be symmetric, i.e.  $\alpha_1 = \alpha_k = \alpha$  and  $\eta_1 = \dots = \eta_V = \eta^1$ . We considered  $\alpha \in \{10^{-2}, 10^{-1}, 1\}$ and  $\eta \in \{10^{-3}, 10^{-2}, 10^{-1}\}$ , according to values encountered in the literature. We then trained the model for each triplet of k,  $\alpha$  and  $\eta$  among the candidate values. We rejected all triplets that led to significant overfitting, by comparing the perplexity<sup>2</sup> obtained for the training corpus and that obtained by applying the trained model to a validation set of abstracts unseen during training. Although Chang et al. (2009) have shown that perplexity could be negatively correlated to human judgments about the interpretability of the topics recovered by topic models, we believe it is a suitable metric to discard models that fail to capture meaningful regularities in the data, which is the case of models that show overfitting. Among the remaining models, we then selected the two models with the highest normalized pointwise mutual information coherence, a coherence metric frequently used to assess the consistency of topic models (Hoyle et al., 2021). Topic coherence metrics in general, as stressed by Hoyle et al., are not very strongly correlated with human judgments about the quality of a model; however, we believe they may be useful to discard certain models in order to limit the amount of those that should be inspected manually (since manual inspection is timeconsuming and quite subjective). We finally inspect manually the two models with the highest coherence measure, and choose the one with k=75,  $\alpha=0.1$  and  $\eta=0.001$ . Our preference for this model stemmed from the fact that it contained more topics than the other remaining model, and that these more numerous topics seemed reasonably consistent.

#### S3.3 Validation

Since the model infers document-topic distributions and topic-word distributions, we would like to assess the validity of these metrics, i.e. "their ability to measure what they purportedly measure" (Bannigan & Watson, 2009, p. 3240). In order to simultaneously assess both measures, we designed the following protocol. First, we derived the Physics and Astronomy Classification Scheme® (PACS) categories c that were the most

<sup>&</sup>lt;sup>1</sup>This is common in the literature, but this choice is disputable, cf. Wallach et al. 2009. One implication of symmetric priors is that topics must have comparable probabilities. This also has an impact on the meaning of topics.

<sup>&</sup>lt;sup>2</sup>Perplexity is the exponential of the average log-likelihood per word, cf. Blei et al. 2003. It measures the improbability of a corpus according to a given model.

correlated to each topic z (this approach is in a sense comparable to that employed in Griffiths and Steyvers 2004, who extracted the topics that were more strongly associated with PNAS categories). For that, we listed the categories c that maximize the pointwise mutual information with each topic z according to:

$$pmi(z,c) = \log \frac{p(z|c)}{p(z)}$$
(1)

Where p(z) is the marginal probability of the topic z, and p(z|c) the probability that a word in a document belongs to a topic z given that the document was assigned the PACS category c. Thefore, pmi(z,c) measures the increase in probability of a given topic provided that a PACS category is present. The 5 categories most correlated to each topic are given in table S2, which helped inform our choice for each topic label, in complement to their top-words.

Then, we submitted the lists of PACS categories thus constitued to a human task derived from the methodology of Bennett et al. (2021), as follows:

- 1. We draw at random a topic  $z_1$  with a probability equal to its marginal probability
- 2. We draw at random 5 PACS categories  $c_1, ..., c_5$  among the 10 most correlated to  $z_1$ , as described above.
- 3. Then, we do any of the following, with equal probability 1/2:
  - (a) We draw at random another topic  $z_2 \neq z_1$  with probability  $\frac{p(z_2)}{1-p(z_1)}$ , and we pick at random 5 PACS categories  $c_6, ..., c_{10}$  among those most correlated with it.
  - (b) Alternatively, we draw  $c_6, ..., c_{10}$  from the 5 remaining PACS categories most associated to  $z_1$
- 4. We submit  $c_1, ..., c_5$  and  $c_6, ..., c_{10}$  to an expert unaware of the model. The expert is asked to guess whether the two lists of 5 categories were drawn from one and same general topic, or whether they were drawn from two separate topics.
- 5. The procedure is repeated a certain amount of times. The final score is the fraction of correct responses.

The rationale for this method is that good scores should only be achievable provided the topics are rather coherent, and that the document-topic distributions  $\theta_{d,i}$  are reasonably accurate. The final average score is 0.74 for 100 guesses from two HEP PhD students, which is significantly better than a random baseline (0.5). This shows that, to some extent, the topic distributions derived for each article correlate with PACS categories that are rather coherent with each other.

#### S3.4 Topics

Table S1: Most frequent terms for each topic.

|                                            | Most frequent expressions                                                                                                                                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic (context)                            |                                                                                                                                                                |
| Algorithms and calculation techniques      | simulation, carlo, monte, lattice, method, correlation, distribution, cluster, generator, statistical, study, function, scaling, size, event                   |
| Amplitude of scattering processes          | amplitude, contribution, state, interaction, resonance, final, final state, process, exchange, reaction, tree, scattering, double, polarization, level         |
| Amplitudes and Feynman Diagram             | amplitude, function, loop, limit, pole, conformal, relation, integral, diagram, correlation, scattering, analytic, block, correlators, feynman                 |
| Analyses and measurements from colliders   | data, measurement, event, result, detector, experiment, gev, algorithm, analysis, muon, experimental, energy, precision, fit, beam                             |
| Annihilation and scattering cross-sections | section, cross, annihilation, photon, energy, scattering, gev, production, total, elastic, process, pair, total cross section, total cross, elastic scattering |
| Astrophysics                               | star, wave, nuclear, matter, neutron, collision, gravitational waves, energy, nuclear matter, flow, density, gravitational, relativistic, heavy-ion, equation  |
| -                                          | Continued on next page                                                                                                                                         |

Table S1: Most frequent terms for each topic.

|                                                   | Most frequent expressions                                                                                                                                                                                 |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic (context)                                   |                                                                                                                                                                                                           |
| Black holes                                       | black, hole, black hole, black holes, horizon, entropy, extremal, radiation, schwarzschild, thermodynamics, black ho solutions, black hole entropy, hawking, charge, kerr                                 |
| Boundary conditions/non- locality                 | boundary, condition, boundary conditions, state, tensor, entropy, entanglement, distance, case, surface, general, corelation, boundary condition, term, phys                                              |
| CP violating processes                            | cp, asymmetry, violation, parameter, $b^0$ , bound, direct cp, direct, mixing, penguin, decay, constraint, experimental direct cp violation, effect                                                       |
| Chiral symmetry                                   | chiral, quark, qcd, lattice, chiral symmetry, mass, chiral perturbation theory, chiral perturbation, pion, condensat baryon, transition, perturbation, flavor, symmetry                                   |
| Conformal Field Theory                            | conformal, string, algebra, theory, conformal field, conformal field theory, central, central charge, conformal field theories, charge, operator, open, superconformal, virasoro, representation          |
| Cosmological sources                              | cosmic, spectrum, scale, energy, ray, universe, radiation, gravitational, cosmological, power, observation, cmb, background, cosmic ray, cosmic rays                                                      |
| Cosmology and gravity                             | cosmological, gravity, constant, axion, scale, lorentz, universe, cosmological constant, violation, problem, quantum vacuum, cosmology, time, planck                                                      |
| Cross-sections in colliders                       | production, section, cross, collision, energy, lhc, rapidity, process, pair, pp, inclusive, differential, fusion, nuclear, ge                                                                             |
| Dark matter (particles and direct searches)       | dark matter, matter, dark, dm, particle, detection, direct detection, direct, wimp, relic, relic density, density, annih lation, search, candidate                                                        |
| Dark matter in the universe                       | dark, matter, dark matter, dark energy, model, abundance, energy, sector, constraint, density, candidate, galax universe, cold, scenario                                                                  |
| Decay measurements                                | decay, state, $d$ , meson, stat, syst, $+/-$ , $+-$ , fraction, final, final state, width, ratio, $pi+$ , final states                                                                                    |
| Detectors                                         | detector, experiment, physic, beam, high, crystal, nuclear, liquid, performance, precision, resolution, high energ search, target, chamber                                                                |
| Double-beta decay                                 | mass, baryon, decay, scalar, beta, double beta decay, double, double beta, scale, light, neutrinoless, effective, gluebal gev, hierarchy                                                                  |
| Early-universe and other cos-<br>mological data   | constraint, big bang, big, galactic, signal, cosmic microwave, background, axion, bound, galaxy, bang, microwave halo, detection, dm                                                                      |
| Effective Field Theory                            | field, effective, theory, effective field theory, effective field, noncommutative, action, effective action, scalar, scalar field, potential, effective theory, effective potential, eft, non-commutative |
| Electromagnetism                                  | magnetic, field, particle, magnetic field, electric, relativistic, electromagnetic, effect, plasma, moment, energy, medium magnetic fields, external, electromagnetic field                               |
| Events in colliders (kinematics?)                 | production, collision, jet, tev, lhc, collider, event, transverse, large hadron collider, energy, large hadron, hadron, pai pp, luminosity                                                                |
| Events in colliders (signatures?)                 | jet, event, lhc, tev, production, cm, pair, atlas, final state, final, collision, data, luminosity, channel, large hadro collider                                                                         |
| Experimental investigation of the leptonic sector | decay, search, data, limit, gamma, collider, muon, gev, measurement, signal, experiment, detector, magnetic momen event, upper                                                                            |
| Experimental jargon                               | result, mass, effect, large, parameter, energy, value, analysis, small, order, region, current, due, contribution, present                                                                                |
| Experiments on light                              | photon, electron, particle, experiment, mi, laser, compton, optical, mo, beam, light, atom, year, math, pulse                                                                                             |
| Field theory and gravity                          | scalar, field, scalar field, mode, gravity, massive, scalar fields, gravitational, potential, massless, perturbation, geodesi background, metric, spacetime                                               |
| Flavor mixing                                     | cp, violation, asymmetry, mixing, matrix, lepton, cp violation, flavor, standard model, model, quark, phase, standard angle, mass                                                                         |
| Flavour physics                                   | mass, lepton, bound, flavour, flavor, decay, neutrino, heavy, scale, generation, violation, light, quark, coupling, number                                                                                |
| Form factors                                      | factor, form, nucleon, electromagnetic, pion, electromagnetic form, electromagnetic form factors, momentum, for factors, result, ratio, $^2$ , transfer, nn, form-factors                                 |
| Gauge Theory                                      | gauge, theory, action, invariance, field, lorentz, transformation, invariant, brst, yang-mills, symmetry, effective actio lattice gauge, massive, covariant                                               |
| Gauge symmetry break-<br>ing/GUTs                 | symmetry, gauge, su, model, group, theory, breaking, anomaly, fermion, spontaneous, unification, representation discrete, symmetric, grand                                                                |
| Gravitons and extra-<br>dimensions                | gravity, dimension, scalar, extra, field, constant, brane, cosmological, massive, cosmological constant, extra dimension scalar field, bulk, graviton, derivative                                         |
| Hadronic zoo                                      | state, resonance, $d$ , gev, mev, $b$ , channel, $e^+e^-$ , charmonium, narrow, $b$ , molecule, s1, reaction, $e^+$                                                                                       |
| Heavy quarks and ions                             | quark, heavy, hadron, distribution, collision, production, gluon, hadronic, qcd, heavy quark, heavy ion, charm, correlation, ion, heavy ion collisions                                                    |
| Higgs boson                                       | higgs, boson, model, standard model, mass, standard, coupling, gauge, sector, sm, higgs mass, doublet, higgs boson neutral, scalar                                                                        |
| Higgs sector beyond the SM                        | higgs, model, standard model, standard, boson, electroweak, supersymmetric, lhc, minimal, supersymmetric standar<br>model, collider, tev, mass, scalar, supersymmetric standard                           |

Table S1: Most frequent terms for each topic.

|                                                                 | Most frequent expressions                                                                                                                                                                   |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic (context)                                                 |                                                                                                                                                                                             |
| High-energy source fluxes                                       | energy, flux, source, high energy, spectrum, high, event, signal, emission, time, radiation, solar, information, gravitional wave, such                                                     |
| Holographic Principle and dualities                             | conformal, dual, holographic, boundary, entropy, cft, entanglement, ad, bulk, defect, theory, conformal field, correspondence, conformal field theory, entanglement entropy                 |
| Inflation                                                       | inflation, perturbation, universe, inflationary, field, scalar, cosmological, inflaton, cosmology, potential, scalar field initial, evolution, fluctuation, curvature                       |
| Lattice calculation tech-<br>niques                             | operator, lattice, matrix, fermion, loop, wilson, theory, element, gauge, function, action, calculation, continuum expansion, method                                                        |
| Lepton/Meson decay                                              | decay, branching, ratio, semileptonic, meson, fraction, asymmetry, mode, measurement, rate, br, nu, semilepton decays, inclusive, lifetime                                                  |
| Lie algebra                                                     | algebra, space, integral, representation, function, group, operator, invariant, form, path, transformation, lie, differential, product, partition                                           |
| Loops and higher order ex-<br>pansions in Feynman Dia-<br>grams | correction, order, one-loop, term, contribution, radiative corrections, approximation, qed, calculation, loop, radiative logarithmic, effective, expansion, expression                      |
| M-theory and theories of everything                             | theory, gauge, duality, supergravity, string, dual, action, dimensional, type, background, m-theory, reduction, dimension, abelian, field                                                   |
| Matter in Yang-Mills theories                                   | su, symmetry, fermion, gauge, chiral, mass, model, breaking, coupling, boson, flavor, color, composite, quark, dirac                                                                        |
| Measurements and analysis of colliders data                     | data, measurement, uncertainty, experiment, analysis, experimental, fit, determination, systematic, first, theoretical error, parameter, detector, current                                  |
| Meson phenomenology                                             | meson, state, resonance, vector, decay, mass, width, mev, pseudoscalar, pion, amplitude, experimental, channel, quar<br>wave                                                                |
| Neutrino physics                                                | neutrino, oscillation, mass, experiment, majorana, neutrino mass, right-handed, neutrino oscillations, neutrino oscillation, flavor, interaction, supernova, antineutrino, seesaw, sterile  |
| Non-abelian theories                                            | gauge, field, spin, topological, theory, chern-simons, higher spin, abelian, vortex, non-abelian, gauge field, dirac, tern hall, fermion                                                    |
| Partons distributions                                           | qcd, distribution, parton, next-to-leading order, order, function, nlo, gluon, jet, next-to-leading, correction, transvers<br>momentum, calculation, perturbative                           |
| Perturbative QCD                                                | qcd, perturbative, factorization, anomalous, order, contribution, result, function, approach, perturbative qcd, calc<br>lation, anomalous dimension, coefficient, kernel, expansion         |
| Phenomenological jargon                                         | state, new, interaction, coupling, physic, strong, problem, particle, theory, recent, such, bound, model, approach, ro                                                                      |
| QCD calculation techniques                                      | propagator, expansion, lattice, gluon, effective, finite, loop, theory, potential, qcd, numerical, gauge, perturbativ method, regularization                                                |
| Quantum Chromodynamics (QCD)                                    | rule, sum, qcd, wall, domain, qcd sum rules, viscosity, qcd sum, quark, heavy, shear viscosity, shear, vacuum, co<br>densate, bubble                                                        |
| Quantum Field Theory                                            | theory, field, quantum, equation, solution, classical, dimension, quantum field, class, quantum field theory, probler space-time, dimensional, two-dimensional, arbitrary                   |
| Quantum Systems and Equations of motion                         | equation, hamiltonian, constraint, system, term, formalism, charge, monopole, dirac, solution, first, second, kineti nonlinear, part                                                        |
| Quantum systems and ther-<br>modynamics                         | system, energy, time, quantum, state, fluctuation, density, gas, dynamic, thermal, temperature, phase, casimir, forc<br>surface                                                             |
| Renormalization                                                 | renormalization, group, flow, point, coupling, scale, fixed, uv, rg, ir, cutoff, infrared, fixed point, effective, ultraviole                                                               |
| Scattering of composite particles                               | scattering, function, data, proton, structure, nucleon, inelastic, distribution, moment, deep, dipole, $q^2$ , inelastic scattering, hera, target                                           |
| Search for BSM physics                                          | physic, new, new physics, standard model, experiment, standard, neutral, search, tau, measurement, current, deca future, lepton, rare                                                       |
| Sigma models (?)                                                | model, symmetry, supersymmetric, supersymmetry, sigma, term, integrable, lagrangian, algebra, su, group, chira deformation, fermionic, sl                                                   |
| Solar neutrinos                                                 | neutrino, oscillation, solar, mixing, solar neutrino, angle, atmospheric, neutrino mass, sterile, atmospheric neutrin<br>experiment, hierarchy, sterile neutrinos, matrix, sterile neutrino |
| Space-time geometry and gravity                                 | solution, gravity, spacetime, metric, gravitational, ad, geometry, space, flat, curvature, sitter, singularity, general dilaton, einstein                                                   |
| Spin/angular momen-<br>tum/polarization                         | momentum, polarization, asymmetry, angular, spin, distribution, angular momentum, polarized, reaction, transvers cross, section, beam, production, photon                                   |
| States of matter                                                | phase, transition, critical, temperature, point, holographic, spectral, order, exponent, behavior, imaginary, critic point, finite temperature, finite, first order                         |
|                                                                 | string, solution, charge, soliton, branes, configuration, topological, type, monopoles, open, flux, bps, tachyon, back                                                                      |
| String theory                                                   | ground, vortex                                                                                                                                                                              |

Table S1: Most frequent terms for each topic.

|                          | Most frequent expressions                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic (context)          |                                                                                                                                                                   |
| Supersymmetric particles | mass, susy, parameter, soft, neutralino, space, scale, mssm, squark, region, scenario, constraint, gluino, gaugino, large                                         |
| Supersymmetric theories  | theory, gauge, supersymmetric, yang-mills, supersymmetry, anomaly, supergravity, duality, chiral, $n=4$ , super, $n=2$ , super yang-mills, branch, su             |
| Theoretical jargon       | model, case, structure, limit, new, term, function, such, number, different, method, particular, property, spectrum, approach                                     |
| Thermodynamics           | phase, temperature, transition, potential, density, chemical, finite, finite temperature, matter, chemical potential, critical, high, thermal, order, first order |
| Top quark                | quark, top, top quark, mass, decay, bound, standard model, top quark mass, coupling, new physics, lepton, top quarks, standard, chiral quark, physic              |
| Topology                 | space, dimension, modulus, string, bundle, manifold, vacuum, extra, moduli space, heterotic, torus, instanton, singularity, compact, theory                       |

Table S2: PACS categories most correlated to the topics derived with the unsupervised model. Correlation is measured as the mutual pointwise information (pmi).

| opic            | PACS category                                                                         | pmi  |
|-----------------|---------------------------------------------------------------------------------------|------|
|                 | Lattice theory and statistics                                                         | 1.39 |
| Algorithms and  | Lattice gauge theory                                                                  | 1.17 |
| calculation     | Lattice QCD calculations                                                              | 1.12 |
| techniques      | Particle correlations and fluctuations                                                | 0.99 |
| techniques      | Inelastic scattering: many-particle final states                                      | 0.80 |
|                 | Baryon resonances (S=C=B=0)                                                           | 1.13 |
| A . 1:4 1 C     | Pion-baryon interactions                                                              | 1.10 |
| Amplitude of    |                                                                                       |      |
| scattering      | Meson-meson interactions                                                              | 1.03 |
| processes       | Nucleon-nucleon interactions                                                          | 0.93 |
|                 | Dispersion relations                                                                  | 0.92 |
|                 | Analytic properties of S matrix                                                       | 1.66 |
| Amplitudes and  | Properties of perturbation theory                                                     | 1.57 |
|                 | General properties of perturbation theory                                             | 1.39 |
| Feynman Diagram | Dispersion relations                                                                  | 1.04 |
|                 | Lattice theory and statistics                                                         | 0.86 |
|                 | Neutrino-induced reactions                                                            | 0.96 |
| Analyses and    | Muons                                                                                 | 0.89 |
| measurements    | Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors   | 0.81 |
|                 |                                                                                       |      |
| from colliders  | Pion-baryon interactions                                                              | 0.79 |
|                 | Meson production                                                                      | 0.77 |
|                 | Total cross sections                                                                  | 1.60 |
| Annihilation    | Hadron production in e-e+ interactions                                                | 1.23 |
| and scattering  | Meson production                                                                      | 1.11 |
| cross-sections  | Elastic and Compton scattering                                                        | 1.07 |
|                 | Electromagnetic processes and properties                                              | 1.03 |
|                 | Collective flow                                                                       | 1.91 |
|                 | Hydrodynamic models                                                                   | 1.74 |
| Astrophysics    | Particle correlations and fluctuations                                                | 1.52 |
| Astrophysics    |                                                                                       |      |
|                 | Relativistic heavy-ion collisions                                                     | 1.38 |
|                 | Particle and resonance production                                                     | 1.35 |
|                 | Black holes                                                                           | 2.64 |
|                 | Quantum aspects of black holes, evaporation, thermodynamics                           | 2.59 |
| Black holes     | Physics of black holes                                                                | 2.57 |
|                 | Classical black holes                                                                 | 2.55 |
|                 | Higher-dimensional black holes, black strings, and related objects                    | 2.38 |
|                 | Entanglement and quantum nonlocality                                                  | 1.18 |
| Boundary        | Theory of quantized fields                                                            | 0.90 |
| conditions/non- | Foundations of quantum mechanics; measurement theory                                  | 0.80 |
| locality        | Conformal field theory, algebraic structures                                          | 0.71 |
| locality        | Integrable systems                                                                    | 0.70 |
|                 |                                                                                       |      |
|                 | Decays of bottom mesons                                                               | 1.53 |
| CP violating    | Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements                    | 1.48 |
| processes       | Bottom mesons ( $ B >0$ )                                                             | 1.34 |
| processes       | Charge conjugation, parity, time reversal, and other discrete symmetries              | 1.30 |
|                 | Decays of bottom mesons                                                               | 1.19 |
|                 | Chiral Lagrangians                                                                    | 1.55 |
|                 | Chiral symmetries                                                                     | 1.54 |
| Chiral symmetry | Lattice QCD calculations                                                              | 1.48 |
|                 | Light quarks                                                                          | 1.30 |
|                 | Lattice gauge theory                                                                  | 1.21 |
|                 | Conformal field theory, algebraic structures                                          | 1.72 |
|                 |                                                                                       |      |
| Conformal Field | Algebraic methods                                                                     | 1.34 |
| Theory          | Nonperturbative techniques; string field theory                                       | 1.19 |
| <del>- J</del>  | Lattice theory and statistics                                                         | 1.15 |
|                 | M theory                                                                              | 0.99 |
|                 | Background radiations                                                                 | 1.86 |
| G 1 1 1         | Observational cosmology (including Hubble constant, distance scale, cosmological con- | 1.55 |
| Cosmological    | stant, early Universe, etc)                                                           |      |
|                 | ,,,,                                                                                  | l .  |
| sources         | Neutrino, muon, pion, and other elementary particles; cosmic rays                     | 1.49 |

Table S2: PACS categories most correlated to the topics derived with the unsupervised model. Correlation is measured as the mutual pointwise information (pmi).

| pic                       | PACS category                                                                         | pmi          |
|---------------------------|---------------------------------------------------------------------------------------|--------------|
|                           | Dark energy                                                                           | 1.29         |
|                           | Cosmology                                                                             | 1.21         |
|                           | Lorentz and Poincaré invariance Loop quantum gravity, quantum geometry, spin foams    | 1.34         |
| Cosmology and             | Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.)                    | 1.30         |
| gravity                   | Dark energy                                                                           | 1.28         |
|                           | Quantum cosmology                                                                     | 1.26         |
|                           | Total cross sections                                                                  | 1.57         |
| Cross-sections            | Inclusive production with identified hadrons                                          | 1.43         |
| in colliders              | Particle and resonance production Production                                          | 1.42<br>1.40 |
|                           | Inclusive production with identified leptons, photons, or other nonhadronic particles | 1.40         |
|                           | Dark matter                                                                           | 2.36         |
| Dark matter               | Elementary particle processes                                                         | 1.94         |
| (particles and            | Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors   | 1.40         |
| direct<br>searches)       | Neutrino, muon, pion, and other elementary particles; cosmic rays                     | 1.18         |
| searches)                 | Supersymmetric partners of known particles                                            | 1.15         |
|                           | Dark matter                                                                           | 1.86         |
| Dark matter in            | Dark energy                                                                           | 1.69         |
| the universe              | Elementary particle processes                                                         | 1.44         |
|                           | Observational cosmology (including Hubble constant, distance scale, cosmological con- | 1.36         |
|                           | stant, early Universe, etc) Cosmology                                                 | 1.27         |
|                           | Decays of charmed mesons                                                              | 1.93         |
|                           | Decays of charmed mesons  Decays of bottom mesons                                     | 1.93         |
| Decay                     | Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements                    | 1.83         |
| measurements              | Decays of $J/$ , $\Upsilon$ , and other quarkonia                                     | 1.82         |
|                           | Bottom mesons ( $ B >0$ )                                                             | 1.82         |
|                           | Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors   | 1.48         |
|                           | Muons                                                                                 | 0.99         |
| Detectors                 | Ordinary neutrinos                                                                    | 0.98         |
|                           | Neutrino interactions                                                                 | 0.91         |
|                           | Solar neutrinos                                                                       | 0.87         |
|                           | Baryons Charmed baryons ( C >0, B=0)                                                  | 1.20<br>1.08 |
| Double-beta               | Glueball and nonstandard multi-quark/gluon states                                     | 1.03         |
| decay                     | Bottom baryons ( B >0)                                                                | 0.99         |
|                           | Hadron mass models and calculations                                                   | 0.97         |
| D 1 .                     | Background radiations                                                                 | 1.57         |
| Early-universe            | Dark matter                                                                           | 1.38         |
| and other<br>cosmological | Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.)                    | 1.28         |
| data                      | Neutrino, muon, pion, and other elementary particles; cosmic rays                     | 1.27         |
|                           | Elementary particle processes                                                         | 1.11         |
|                           | Noncommutative field theory                                                           | 1.89         |
| Effective Field           | Noncommutative geometry Quantum mechanics                                             | 1.77         |
| Theory                    | Nonlinear or nonlocal theories and models                                             | 0.85<br>0.82 |
|                           | Canonical quantization                                                                | 0.82         |
|                           | Hydrodynamic models                                                                   | 1.45         |
| El                        | Collective flow                                                                       | 1.31         |
| Electromagnetis           | Electric and magnetic moments                                                         | 1.16         |
| m                         | Relativistic heavy-ion collisions                                                     | 1.11         |
|                           | Relativistic wave equations                                                           | 1.11         |
|                           | Limits on production of particles                                                     | 1.71         |
| Events in                 | Production                                                                            | 1.60         |
| colliders                 | Inclusive production with identified leptons, photons, or other nonhadronic particles | 1.57         |
| (kinematics?)             | W bosons Jets in large-Q2 scattering                                                  | 1.53<br>1.53 |
|                           | Limits on production of particles                                                     | 1.69         |
| Events in                 | Jets in large-Q2 scattering                                                           | 1.56         |
| colliders                 | Production                                                                            | 1.45         |
| (signatures?)             | Inclusive production with identified leptons, photons, or other nonhadronic particles | 1.37         |
| · - ·                     | W bosons                                                                              | 1.35         |
| Experimental              | Limits on production of particles                                                     | 1.38         |
| nvestigation              | Electromagnetic decays                                                                | 1.30         |
| of the leptonic           | Decays of $J/$ , $\Upsilon$ , and other quarkonia                                     | 1.26         |
| sector                    | Decays of $J/$ , $\Upsilon$ , and other quarkonia                                     | 1.19         |
|                           | Muons  Electromagnetic corrections to strong- and weak-interaction processes          | 1.18<br>0.35 |
|                           | Solar neutrinos                                                                       | 0.30         |
| Experimental              | Electroweak radiative corrections                                                     | 0.30         |
| jargon                    | Nucleon-nucleon interactions                                                          | 0.29         |
|                           | Neutrino-induced reactions                                                            | 0.25         |
|                           | Specific calculations                                                                 | 1.31         |
| Experiments on            | Elastic and Compton scattering                                                        | 1.26         |
| Experiments on<br>light   | Electromagnetic processes and properties                                              | 1.09         |
| 118110                    | Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.)                    | 1.09         |
|                           | Quantum electrodynamics                                                               | 1.08         |
|                           | Classical general relativity                                                          | 1.10         |
| Field theory              | Modified theories of gravity                                                          | 1.08         |
| and gravity               | Lower dimensional models; minisuperspace models                                       | 1.06         |
| and gravity               | Fundamental problems and general formalism<br>Classical black holes                   | 1.05<br>1.02 |
|                           |                                                                                       | 1.1.1.2      |
|                           | Quark and lepton masses and mixing                                                    | 1.36         |

Table S2: PACS categories most correlated to the topics derived with the unsupervised model. Correlation is measured as the mutual pointwise information (pmi).

| opic                            | PACS category                                                                                                                                          | pmi                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                 | Flavor symmetries                                                                                                                                      | 1.30                |
|                                 | Charge conjugation, parity, time reversal, and other discrete symmetries                                                                               | 1.28                |
|                                 | Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements                                                                                     | 1.10                |
|                                 | Neutrino mass and mixing Global symmetries (e.g., baryon number, lepton number)                                                                        | 1.06                |
|                                 | Flavor symmetries (e.g., baryon number, tepton number)                                                                                                 | 1.03                |
| Flavour physics                 | Non-standard-model neutrinos, right-handed neutrinos, etc.                                                                                             | 1.02                |
| Pagasas Pagasas                 | Unification of couplings; mass relations                                                                                                               | 1.00                |
|                                 | Quark and lepton masses and mixing                                                                                                                     | 0.99                |
|                                 | Electromagnetic form factors                                                                                                                           | 1.97                |
| Form factors                    | Relativistic quark model Protons and neutrons                                                                                                          | 1.34                |
| Form factors                    | Hyperons                                                                                                                                               | 1.18                |
|                                 | Sum rules                                                                                                                                              | 1.18                |
|                                 | Gauge field theories                                                                                                                                   | 1.20                |
|                                 | Lorentz and Poincaré invariance                                                                                                                        | 1.16                |
| Gauge Theory                    | Canonical formalism, Lagrangians, and variational principles                                                                                           | 1.10<br>1.09        |
|                                 | Lagrangian and Hamiltonian approach Noncommutative field theory                                                                                        | 1.09                |
|                                 | Unified theories and models of strong and electroweak interactions                                                                                     | 1.34                |
| a .                             | Unification of couplings; mass relations                                                                                                               | 1.26                |
| Gauge symmetry<br>breaking/GUTs | Spontaneous breaking of gauge symmetries                                                                                                               | 1.15                |
| breaking/GU is                  | Unified field theories and models                                                                                                                      | 1.14                |
|                                 | Spontaneous and radiative symmetry breaking                                                                                                            | 0.96                |
| Gravitons and                   | Higher-dimensional gravity and other theories of gravity                                                                                               | 1.41                |
| Gravitons and<br>extra-         | Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity                                     | 1.39                |
| extra-<br>dimensions            | Modified theories of gravity                                                                                                                           | 1.34                |
|                                 | Lower dimensional models; minisuperspace models                                                                                                        | 1.08                |
|                                 | String and brane phenomenology                                                                                                                         | 1.04                |
|                                 | Decays of $J/$ , $\Upsilon$ , and other quarkonia                                                                                                      | 1.92                |
|                                 | Heavy quarkonia                                                                                                                                        | 1.73                |
| Hadronic zoo                    | Exotic mesons                                                                                                                                          | 1.71                |
|                                 | Decays of $J/$ , $\Upsilon$ , and other quarkonia<br>Mesons with $S=C=B=0$ , mass $> 2.5$ GeV (including quarkonia)                                    | 1.65<br>1.58        |
|                                 | Particle and resonance production                                                                                                                      | 1.40                |
|                                 | Particle correlations and fluctuations                                                                                                                 | 1.39                |
| Heavy quarks                    | Collective flow                                                                                                                                        | 1.38                |
| and ions                        | Relativistic heavy-ion collisions                                                                                                                      | 1.37                |
|                                 | Fragmentation into hadrons                                                                                                                             | 1.29                |
|                                 | Other neutral Higgs bosons                                                                                                                             | 1.91                |
| Higgs boson                     | Supersymmetric Higgs bosons Non-standard-model Higgs bosons                                                                                            | 1.87<br>1.77        |
| riggs boson                     | Extensions of electroweak Higgs sector                                                                                                                 | 1.73                |
|                                 | Standard-model Higgs bosons                                                                                                                            | 1.69                |
|                                 | Other neutral Higgs bosons                                                                                                                             | 1.65                |
| Higgs sector                    | Supersymmetric Higgs bosons                                                                                                                            | 1.64                |
| beyond the SM                   | Non-standard-model Higgs bosons                                                                                                                        | 1.60                |
|                                 | Extensions of electroweak Higgs sector                                                                                                                 | 1.55                |
|                                 | Standard-model Higgs bosons  Neutrino, muon, pion, and other elementary particles; cosmic rays                                                         | 1.37                |
|                                 | Neutrino, muon, pion, and other elementary particles, cosmic rays  Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors | 1.33                |
| High-energy                     | Solar neutrinos                                                                                                                                        | 1.28                |
| source fluxes                   | Background radiations                                                                                                                                  | 0.89                |
|                                 | Ordinary neutrinos                                                                                                                                     | 0.74                |
|                                 | Entanglement and quantum nonlocality                                                                                                                   | 1.89                |
| Holographic                     | Gauge/string duality                                                                                                                                   | 1.53<br>1.43        |
| Principle and<br>dualities      | Conformal field theory, algebraic structures  Higher-dimensional black holes, black strings, and related objects                                       | 1.43                |
|                                 | Quantum aspects of black holes, evaporation, thermodynamics                                                                                            | 1.02                |
|                                 | Particle-theory and field-theory models of the early Universe (including cosmic pancakes,                                                              | 1.80                |
|                                 | cosmic strings, chaotic phenomena, inflationary universe, etc.)                                                                                        |                     |
| Inflation                       | Origin and formation of the Universe                                                                                                                   | 1.78                |
|                                 | Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc)                                        | 1.76                |
|                                 | Background radiations                                                                                                                                  | 1.70                |
|                                 | Quantum cosmology                                                                                                                                      | 1.67                |
|                                 | Lattice QCD calculations                                                                                                                               | 1.38                |
| Lattice                         | Lattice gauge theory                                                                                                                                   | 1.36                |
| calculation                     | Lattice theory and statistics                                                                                                                          | 0.80                |
| techniques                      | General properties of perturbation theory                                                                                                              | 0.76                |
|                                 | Renormalization  Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements                                                                    | 0.74<br>1.97        |
|                                 | Decays of charmed mesons                                                                                                                               | 1.94                |
| Lepton/Meson                    | Decays of bottom mesons                                                                                                                                | 1.89                |
| decay                           | Decays of charmed mesons                                                                                                                               | 1.86                |
|                                 | Bottom mesons ( B >0)                                                                                                                                  | 1.81                |
|                                 | Algebraic methods                                                                                                                                      | 1.39                |
| T                               | Integrable systems                                                                                                                                     | 1.28                |
| Lie algebra                     | Geometry, differential geometry, and topology                                                                                                          | 1.19                |
|                                 | Noncommutative geometry                                                                                                                                | 1.03                |
| Loops and                       | Quantum mechanics  Electromagnetic corrections to strong- and weak-interaction processes                                                               | 0.94<br>1.32        |
| higher order                    | Electromagnetic corrections to strong- and weak-interaction processes  Electroweak radiative corrections                                               | 1.23                |
| expansions in                   |                                                                                                                                                        |                     |
| expansions in                   |                                                                                                                                                        | Continued on next p |

Table S2: PACS categories most correlated to the topics derived with the unsupervised model. Correlation is measured as the mutual pointwise information (pmi).

| pic                               | PACS category                                                                                                           | pmi          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|
|                                   | Specific calculations                                                                                                   | 1.08         |
|                                   | Summation of perturbation theory                                                                                        | 1.00         |
|                                   | General properties of perturbation theory  M theory                                                                     | 0.98<br>1.63 |
| M-theory and                      | Supergravity                                                                                                            | 1.34         |
| theories of                       | Nonperturbative techniques; string field theory                                                                         | 1.27         |
| everything                        | Compactification and four-dimensional models                                                                            | 1.22         |
|                                   | D branes Technicolor models                                                                                             | 1.13         |
| NF 11 - 37                        | Unified theories and models of strong and electroweak interactions                                                      | 1.06         |
| Matter in Yang-<br>Mills theories | Unification of couplings; mass relations                                                                                | 0.99         |
| willis theories                   | Composite models                                                                                                        | 0.94         |
|                                   | Spontaneous breaking of gauge symmetries  Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements            | 0.88         |
| Measurements                      | Solar neutrinos                                                                                                         | 0.87         |
| and analysis of                   | Muons                                                                                                                   | 0.84         |
| colliders data                    | Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors                                     | 0.75         |
|                                   | Decays of charmed mesons  Other mesons with S=C=0, mass < 2.5 GeV                                                       | 0.73<br>1.53 |
|                                   | Hadron mass models and calculations                                                                                     | 1.48         |
| Meson<br>phenomenology            | Meson-meson interactions                                                                                                | 1.45         |
| phenomenology                     | Mesons                                                                                                                  | 1.41         |
|                                   | Glueball and nonstandard multi-quark/gluon states  Ordinary neutrinos                                                   | 1.37<br>2.04 |
|                                   | Solar neutrinos                                                                                                         | 1.98         |
| Neutrino<br>physics               | Non-standard-model neutrinos, right-handed neutrinos, etc.                                                              | 1.97         |
| physics                           | Neutrino mass and mixing                                                                                                | 1.94         |
|                                   | Neutrino, muon, pion, and other elementary particles; cosmic rays  Gauge field theories                                 | 1.92         |
|                                   | Magnetic monopoles                                                                                                      | 1.03         |
| Non-abelian<br>theories           | Canonical formalism, Lagrangians, and variational principles                                                            | 0.97         |
| theories                          | Lagrangian and Hamiltonian approach                                                                                     | 0.88         |
|                                   | Noncommutative field theory                                                                                             | 0.87<br>1.62 |
|                                   | Summation of perturbation theory Factorization                                                                          | 1.62         |
| Partons<br>distributions          | Production                                                                                                              | 1.46         |
| distributions                     | Jets in large-Q2 scattering                                                                                             | 1.44         |
|                                   | Perturbative calculations                                                                                               | 1.43         |
|                                   | Factorization Summation of perturbation theory                                                                          | 1.17<br>1.10 |
| Perturbative                      | Perturbative calculations                                                                                               | 1.03         |
| QCD                               | Production                                                                                                              | 0.66         |
|                                   | Heavy quark effective theory                                                                                            | 0.65         |
|                                   | Foundations of quantum mechanics; measurement theory Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.) | 0.34<br>0.31 |
| Phenomenologica                   | Loop quantum gravity, quantum geometry, spin foams                                                                      | 0.31         |
| jargon                            | Experimental tests of gravitational theories                                                                            | 0.29         |
|                                   | Potential models                                                                                                        | 0.27         |
|                                   | Gluons General properties of perturbation theory                                                                        | 1.29<br>1.02 |
| QCD calculation                   | Renormalization                                                                                                         | 0.96         |
| techniques                        | General properties of QCD (dynamics, confinement, etc.)                                                                 | 0.94         |
|                                   | Lattice gauge theory                                                                                                    | 0.89         |
| Quantum                           | Sum rules Other nonperturbative calculations                                                                            | 2.24<br>1.42 |
| Quantum<br>Chromodynamics         | Bottom baryons ( $ B  > 0$ )                                                                                            | 1.32         |
| (QCD)                             | Charmed baryons ( $ C  > 0$ , B=0)                                                                                      | 1.26         |
|                                   | Heavy quark effective theory                                                                                            | 1.16         |
|                                   | Foundations of quantum mechanics; measurement theory                                                                    | 1.32         |
| Quantum Field                     | Quantum mechanics Algebraic methods                                                                                     | 1.15<br>1.06 |
| $\Gamma$ heory                    | Canonical quantization                                                                                                  | 0.97         |
|                                   | Theory of quantized fields                                                                                              | 0.95         |
| Quantum System-                   | Canonical formalism, Lagrangians, and variational principles Magnetic monopoles                                         | 1.23         |
| Quantum Systems<br>and Equations  | Magnetic monopoles  Lagrangian and Hamiltonian approach                                                                 | 1.15<br>1.11 |
| of motion                         | Relativistic wave equations                                                                                             | 1.04         |
|                                   | Canonical quantization                                                                                                  | 1.00         |
| Quantum quata                     | Hydrodynamic models Theory of gypatical fields                                                                          | 1.21         |
| Quantum systems<br>and            | Theory of quantized fields Foundations of quantum mechanics; measurement theory                                         | 0.96<br>0.93 |
| thermodynamics                    | Entanglement and quantum nonlocality                                                                                    | 0.90         |
|                                   | Quark-gluon plasma                                                                                                      | 0.75         |
|                                   | Renormalization group evolution of parameters                                                                           | 1.77         |
| Renormalization                   | Renormalization General properties of perturbation theory                                                               | 1.46<br>0.85 |
| tenormanzation                    | Technicolor models                                                                                                      | 0.85         |
|                                   | Other nonperturbative techniques                                                                                        | 0.81         |
|                                   | Total and inclusive cross sections (including deep-inelastic processes)                                                 | 1.78         |
| Scattering of                     | Photon and charged-lepton interactions with hadrons                                                                     | 1.65         |
|                                   | Elastic and Compton scattering                                                                                          | 1.49         |
| composite                         |                                                                                                                         |              |
|                                   | Regge theory, duality, absorptive/optical models Polarization in interactions and scattering                            | 1.35<br>1.32 |

Table S2: PACS categories most correlated to the topics derived with the unsupervised model. Correlation is measured as the mutual pointwise information (pmi).

| opic            | PACS category                                                                               | pmi          |
|-----------------|---------------------------------------------------------------------------------------------|--------------|
|                 | Decays of K mesons                                                                          | 1.09         |
|                 | Decays of taus                                                                              | 1.09         |
|                 | Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors         | 1.07         |
|                 | Neutral currents                                                                            | 1.05         |
|                 | Integrable systems                                                                          | 1.74         |
| Sigma models    | Algebraic methods                                                                           | 1.23         |
| (?)             | Supersymmetry                                                                               | 1.09         |
|                 | Lattice theory and statistics Conformal field theory, algebraic structures                  | 1.00         |
|                 | Solar neutrinos                                                                             | 2.64         |
|                 | Ordinary neutrinos                                                                          | 2.30         |
| Solar neutrinos | Neutrino mass and mixing                                                                    | 2.13         |
|                 | Non-standard-model neutrinos, right-handed neutrinos, etc.                                  | 1.98         |
|                 | Neutrino, muon, pion, and other elementary particles; cosmic rays                           | 1.89         |
|                 | Exact solutions                                                                             | 1.75         |
| Space-time      | Classical general relativity                                                                | 1.57         |
| geometry and    | Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields          | 1.53         |
| gravity         | Classical black holes                                                                       | 1.51         |
|                 | Higher-dimensional black holes, black strings, and related objects                          | 1.51         |
|                 | Polarization in interactions and scattering                                                 | 1.80         |
| Spin/angular mo | Photon and charged-lepton interactions with hadrons                                         | 1.47         |
| mentum/polariza | Fragmentation into hadrons                                                                  | 1.41         |
| tion            | Inclusive production with identified hadrons                                                | 1.35         |
|                 | Meson production  Quark deconfinement, quark-gluon plasma production, and phase transitions | 1.21         |
|                 | Finite-temperature field theory                                                             | 1.09         |
| States of       | Gauge/string duality                                                                        | 1.08         |
| matter          | Lattice theory and statistics                                                               | 0.90         |
|                 | Quark matter                                                                                | 0.84         |
|                 | D branes                                                                                    | 1.86         |
|                 | Magnetic monopoles                                                                          | 1.71         |
| String theory   | Nonperturbative techniques; string field theory                                             | 1.67         |
| 3               | Extended classical solutions; cosmic strings, domain walls, texture                         | 1.52         |
|                 | Strings and branes                                                                          | 1.46         |
|                 | M theory                                                                                    | 1.62         |
|                 | Supergravity                                                                                | 1.58         |
| Supergravity    | Compactification and four-dimensional models                                                | 1.51         |
|                 | Nonperturbative techniques; string field theory                                             | 1.37         |
|                 | Geometry, differential geometry, and topology                                               | 1.30         |
|                 | Supersymmetric partners of known particles                                                  | 1.68         |
| Supersymmetric  | Supersymmetric models Supersymmetric Higgs bosons                                           | 1.35<br>1.27 |
| particles       | Unification of couplings; mass relations                                                    | 0.85         |
|                 | Non-standard-model Higgs bosons                                                             | 0.83         |
|                 | Supersymmetry                                                                               | 1.37         |
|                 | M theory                                                                                    | 1.35         |
| Supersymmetric  | Supergravity                                                                                | 1.20         |
| theories        | Nonperturbative techniques; string field theory                                             | 1.05         |
|                 | Gauge field theories                                                                        | 1.05         |
|                 | Integrable systems                                                                          | 0.36         |
| Theoretical     | Quantum mechanics                                                                           | 0.36         |
| jargon          | Foundations of quantum mechanics; measurement theory                                        | 0.33         |
| Jargon          | Algebraic methods                                                                           | 0.31         |
|                 | Fundamental problems and general formalism                                                  | 0.28         |
|                 | Quark deconfinement, quark-gluon plasma production, and phase transitions                   | 1.62         |
| TD1             | Quark matter                                                                                | 1.61         |
| Thermodynamics  | Finite-temperature field theory                                                             | 1.57<br>1.35 |
|                 | Quark-gluon plasma Other models for strong interactions                                     | 1.11         |
|                 | Top quarks                                                                                  | 1.11         |
|                 | Neutral currents                                                                            | 1.96         |
| Top quark       | Limits on production of particles                                                           | 1.07         |
| 10p quain       | Other neutral Higgs bosons                                                                  | 0.98         |
|                 | Other gauge bosons Other gauge bosons                                                       | 0.97         |
|                 | Compactification and four-dimensional models                                                | 1.40         |
|                 | Geometry, differential geometry, and topology                                               | 1.31         |
| Topology        | Nonperturbative techniques; string field theory                                             | 1.20         |
| - 50            | M theory                                                                                    | 1.11         |
|                 | Strings and branes                                                                          | 1.04         |

### S3.5 Topics and their correlation with categories

Below, we evaluate how topics compare with the classification of the literature. For that, we generated a 2D representation of the semantic space by applying a t-SNE transformation (van der Maaten & Hinton, 2008) on the distance matrix  $1 - R_{ij}$ , where  $R_{ij}$  is the correlation matrix for the 75 topics from the CTM. The t-SNE transformation aims to reduce dimensionality (from 75 to 2) while preserving distances, such that highly correlated topics should appear close to each other on the resulting 2D map. We then colored each topic according to the category (among theory, phenomenology and experiment) that has the strongest association (normalized pointwise mutual information) with this topic. The graph was then rotated such that



Figure S2: Semantic map extracted from the topic model, after applying a t-SNE transformation. Each dot represents a topic. Each topic is assigned the category, among theory, phenomenology and experiment, that is most associated with it. Correlated topics appear closer to each other. For each category, the density of topics along the x-axis is shown in the lower plot.

the x-axis would explain most of the variance in these three categories. Topics related to supersymmetry were emphasized and labeled. The resulting map is shown in Figure S2.

Although the t-SNE transformation does not yield very stable results, it generally appears (as in this figure) that topics most associated with a given category (e.g. theory) appear closer to each other, such that these three categories explain part of the variance in the semantic space. Second, in this representation, the distinction between phenomenological supersymmetry and theoretical supersymmetry is supported by the emergence of two separate clusters of supersymmetry-related topics.

# S4 Validity of the citation network for exploring the trading zone

Below, we support the relevance of the citation network as a means of exploring trading zones between scientific cultures by showing it can be used to recover known facts, in particular i) that theory and experiment in HEP do not communicate directly and ii) that phenomenology channels most exchanges across them.

We build a citation network where each node is one paper of the literature and the edge between nodes x and y is assigned a weight  $w_{x,y} = 1$  if x cites y and 0 otherwise. From this we can define the amount of citations of papers from the category i to a paper from the category j as:

$$n_{ij} = \sum_{x \in i, y \in j} \frac{w_{xy}}{(\sum_c \mathbb{1}_c(x))(\sum_c \mathbb{1}_c(y))}$$

$$(2)$$

Where  $\mathbb{1}_c(x) = 1$  if x belongs to  $c \in \{\text{Experiment}, \text{Phenomenology}, \text{Theory}\}$ , and 0 otherwise. We then normalize  $n_{ij}$  by the amount of citations from category i, thus yielding the normalized matrix  $\tilde{n}_{ij}$ . By



Figure S3: Origin of the references (citations) in the HEP literature Each matrix element  $\tilde{n}_{ij}$  represents the fraction of references from the x-axis category (columns) that target papers from the y-axis category (lines). For instance, 41% of references in experimental papers refer to experimental papers. 15% of citations from phenomenological papers refer to experimental papers. If these categories were completely hermetic, the matrix would equal the identity matrix, which is not the case.

construction,  $0 \le \tilde{n}_{ij} \le 1$  is the effective fraction of references from papers of category i to papers of category j. The matrix is built from the citation network between 2001 and 2019. We then verify that  $\tilde{n}_{ii}$  is high (papers mostly cite papers from the same category); and that for cross-culture citations  $(i \ne j)$ ,  $\tilde{n}_{ij} \ll 1$  unless i or j is "phenomenology"; i.e., "trading zones" in the field occur around phenomenology. Evaluating the fraction of citations from papers of a category i that target papers from a category j yields the matrix in Figure S3. In this matrix, borrowing the trade metaphor from Yan et al. (2013), non-diagonal elements represent "imports" (references to publications from other subcultures) and diagonal elements measure the "self-dependence" of each subculture. The results confirm that most citations occur within categories, emphasizing the relative autonomy of each of these subcultures including phenomenology – it is less obvious for experimental papers, which are much more scarce then the others, and cannot cite themselves as much. Moreover the results confirm that most trades involve phenomenology: cross-citations between purely theoretical and experimental papers are very rare ( $\sim 1\%$  of their references). Overall, "theory" is highly self-reliant.

### References

Bab2min, Fenstermacher, D., & Schneider, J. (2021). Python package of tomoto, the topic modeling tool. Zenodo.

- Bannigan, K., & Watson, R. (2009). Reliability and validity in a nutshell. *Journal of Clinical Nursing*, 18(23), 3237–3243.
- Bennett, A., Misra, D., & Than, N. (2021). Have you tried Neural Topic Models? Comparative Analysis of Neural and Non-Neural Topic Models with Application to COVID-19 Twitter Data.
- Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python: Analyzing text with the natural language toolkit. "O'Reilly Media, Inc.".
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res., 3(Jan), 993–1022.
- Chang, J., Boyd-Graber, J., Wang, C., Gerrish, S., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models, In *Neural information processing systems*.
- Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. *Proceedings of the National Academy of Sciences*, 101(suppl 1), 5228–5235.
- Hoyle, A., Goel, P., Hian-Cheong, A., Peskov, D., Boyd-Graber, J. L., & Resnik, P. (2021). Is automated topic model evaluation broken? the incoherence of coherence (A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan, Eds.). In A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in neural information processing systems.
- Moskovic, M. (2021). The INSPIRE REST API. Zenodo.
- Omodei, E. (2014). Modeling the socio-semantic dynamics of scientific communities (Thesis). Ecole Normale Supérieure.
- van der Maaten, L. J., & Hinton, G. E. (2008). Visualizing data using t-sne. *Journal of Machine Learning Research*, 9, 2579–2605.
- Wallach, H., Mimno, D., & McCallum, A. (2009). Rethinking LDA: Why Priors Matter (Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta, Eds.). In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), *Advances in neural information processing systems*, Curran Associates, Inc.
- Yan, E., Ding, Y., Cronin, B., & Leydesdorff, L. (2013). A bird's-eye view of scientific trading: Dependency relations among fields of science. *Journal of Informetrics*, 7(2), 249–264.