Departamento de Matemática

 1^o Semestre

Lic. em Ciências da Computação

Análise Numérica

Ficha de exercícios no 2 - Erros e estabilidade numérica

- 1. Escreva aproximações com 3 e 5 algarismos significativos para os números π , 1/3, 1/11, $\sqrt{\frac{1}{2}}$, e^3 e log 5.
- 2. Calcule a soma das seguintes séries com erro de truncatura inferior a 0.001.
 - a) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$
 - b) $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \ldots + (-\frac{1}{2})^n + \ldots$
- 3. Escreva a fórmula de Taylor com resto para $\sin x$ e determine um majorante para o erro de truncatura que se comete quando se usa

$$p_7(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

para aproximar $\sin x$ no ponto $x = \pi/4$.

4. Calcule, recorrendo ao Matlab, o valor da expressão

$$z = [(x+y)^2 - x^2 - 2xy]/y^2$$

para valores de x = 100 e $y = 10^{-k}$, para k = 0, 1, ..., 10. Explique os erros nos resultados obtidos para os valores de k maiores.

5. A sucessão de termo geral $(1+\frac{1}{n})^n$ é monótona crescente e convergente. O limite é o conhecido número e. No Matlab execute

$$\gg S = inline('(1+1/n)\hat{n}')$$

para definir a função S e calcule S(n) com $n=2^{52}$ e $n=2^{53}$. Compare o valor de $e=\exp(1)$ com as aproximações obtidas e explique o resultado "estranho" que se obtem para $n=2^{53}$.

- 6. Tente obter no seu computador o valor de $\lim_{n\to\infty} (100^n/n!)$, tomando valores de n sucessivamente mais elevados. O que conclui? Reorganize o cálculo dos quocientes $100^n/n!$ por forma a verificar que o limite é zero.
- 7. Sendo \widetilde{x}_i , para cada $i=1,\cdots,n$, uma aproximação de x_i tal que $|\widetilde{x}_i-x_i|\leq E$, mostre que se tem

$$\left| \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \widetilde{x}_i \right| \le n \cdot E$$

(nota: neste limite do erro da soma total não entramos em linha de conta com os eventuais erros de representação das somas parciais).

8. a) No Matlab, execute

$$\gg x = sqrt(1:100); \ xtil = chop(x, 24);$$

para produzir aproximações das raízes quadradas dos primeiros 100 números inteiros positivos; os valores de xtil são aproximações dos valores de x com mantissas de 24 bits. Verifique que, para cada $i=1,\cdots,100$, tem-se $|x(i)-xtil(i)|<10^{-6}$ (para isto basta executar $\gg \max(abs(x-xtil))$).

b) Escreva um limite para o erro $\left|\sum_{i=1}^n x_i - \sum_{i=1}^n \widetilde{x}_i\right|$. Execute no Matlab

$$\gg erro = sum(x) - sum(xtil)$$

e compare o erro efectivamente cometido com o limite anterior.

9. Considere o desenvolvimento em série da função exponencial

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

- a) No Matlab escreva o código de uma função [soma, n]=expTaylor(x, tol) que calcula a soma de termos da série até encontrar um termo cujo valor absoluto seja inferior à tolerância tol (dada). O parâmetro de saída n representa o grau do último termo adicionado.
- b) Teste a função **expTaylor** para x = -1 e $tol = 10^{-5}$ e verifique que se tem $|soma \exp(-1)| < tol$.
- c) Com o mesmo valor de tol, repita para x = -100.
- d) Tendo em conta que $e^{-x} = 1/e^x$, use a função **expTaylor** para x = 100 e $tol = 10^{-5}$. Compare o inverso aritmético deste valor com o resultado obtido anteriormente. Qual dos resultados está correcto? Explique os enormes erros cometidos.
- 10. Considere as funções

$$F_1(x) = \frac{1 - \cos(x)}{\sin(x)}$$
 e $F_2(x) = \frac{\sin(x)}{1 + \cos(x)}$.

- a) Prove que $F_1(x) = F_2(x)$, para $x \neq k\pi$, $k \in \mathbb{Z}$.
- b) Calcule o valor das duas expressões para $x=\pi 10^{-8}$ e $x=\pi 10^{-9}$ utilizando o Matlab. Comente os resultados obtidos.
- 11. a) No Matlab calcule sucessivamente os valores de \sqrt{x} e $\sqrt{x+\delta}$ com $\delta=0.001$ e $x=1,\,x=100$ e x=1000. Compare o número de algarismos significativos correctos de $x+\delta$ com o número de algarismos significativos correctos de $\sqrt{x+\delta}$.
 - b) A função é $f(x) = \sqrt{x}$ é bem ou mal condicionada? Justifique, calculando o número de condição (relativo).
- 12. Sejam $f \in g$ definidas, para x > 0, por $f(x) = \sqrt{x+1} \sqrt{x}$ e $g(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}}$.
 - a) Verifique que as expressões de f e g são matematicamente equivalentes.
 - b) Verique que o número de condição (relativo) de f é igual ao número de condição (relativo) de g e tem-se

$$condf(x) = condg(x) = -\frac{x}{2} \cdot \frac{1}{\sqrt{x(x+1)}}$$

c) No Matlab, calcule f(x) e g(x) para x = 10, $x = 10^7$, $x = 10^{11}$ e $x = 10^{16}$. Como explica a discrepância em muitos dos algarismos de f(x) e g(x)?