1 Основные понятия

Определение 1.1. Сигнатура - множество имён операций с указанием их местности.

$$(f^{(2)}, g^{(3)}, h^{(0)}), (+^{(2)}, \cdot^{(3)})$$

 $h^{(0)}$ - символ константы, V - имена переменных

Определение 1.2. Терм - выражение, составленное из символов сигнатуры и переменных

- 1. $x \in V$, x терм
- $2. \ c$ символ константы, c терм
- 3. если $t_1,...,t_n$ термы и f символ n-местной операции, то $f(t_1,...,t_n)$ терм

Пример 1.1. Примеры термов: -(x), -(0), +(x,y), 2+3+a

Определение 1.3. Замкнутый терм - терм, не содержащий переменных

Определение 1.4. Универсальная алгебра - пусть Σ - сигнатура, тогда универсальная алгебра сигнатуры Σ - это пара вида (A,I), где A - произвольное непустое множество, а I - некоторое отображение, которое для всякого $p^{(m)} \in \Sigma$, $I(p^{(m)})$ - n-местной операции на множестве

Пример 1.2. Пример универсальной алгебры: пусть $\Sigma = (+^{(2)}, \cdot^{(2)}, -^{(1)}, 0^{(0)}, 1^{(0)}),$ тогда

$$R=(\mathbb{R},I): I(+)-$$
 сложение
$$I(\cdot)-y$$
множение
$$I(-)-\varepsilon$$
ычитание
$$I(0)-0$$

$$I(1)-1$$

Определение 1.5. $\mathbb R$ называется основным множеством или носителем алгебры, а I - интерпретацией или интерпретирующей функцией

Определение 1.6. Состояние - функция, приписывающая переменной некоторый элемент носителя $\sigma: V \to A$

Пример 1.3. Пример состояний: $\sigma = \{(x,3), (y,-8)\}, \sigma(x) = 3$

Определение 1.7. Значение терма на состоянии - значение того выражения, в котором переменные заменены их значениями

- 1. t переменная, $\sigma(t)$ по определению состояния
- 2. t символ константы, $I(t) = \sigma(t_1) = v_1$
- 3. если $t_1,...,t_n$ термы и $\sigma(t_1)=v_1,...,\sigma(t_n)=v_n$, то $\sigma(t)=I(f)(v_1,...,v_n)$

2 Изоморфизм

Определение 2.1. Изоморфизм - Пусть Σ - сигнатура, $\mathcal{A} = (A, I)$, $\mathcal{B} = (B, J)$ -

универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathcal{A} и \mathcal{B} - это $h:\mathcal{A}\to\mathcal{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 2.1. Пример изоморфизма: пусть $\Sigma = (f^{(2)}), \ \mathcal{A} = (\mathbb{R}, +), \ \mathcal{B} = (\mathbb{R}, \cdot)$

Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 2.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Доказательство. пусть $b_1, ..., b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i}))) = I(f_i)(a_1,...,a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 2.2. Системы, между которыми существует изоморфизм называют **изоморфными**

$$A \simeq B$$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 2.3. $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 2.4. Пусть \mathcal{A} - алгебра, $a_1, ..., a_n$ - элементы алгебры \mathcal{A} , тогда

$$t(a_1, ..., a_n) = \sigma(t), \sigma(x_1) = a_1, ..., \sigma(x_n) = a_n$$

Теорема 2.2. h - изоморфизм между $\mathcal{A} = (A, I)$ и $\mathcal{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

$$h(t^{\mathcal{A}}(a_1, ..., a_n)) = t^{\mathcal{B}}(h(a_1), ..., h(a_n))$$

Доказательство. Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathcal{A}}(a) = a \Leftrightarrow h(t^{\mathcal{A}}(a)) = h(a) \Leftrightarrow t^{\mathcal{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathcal{A}} = I(c), t^{\mathcal{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathcal{A}}(a_{1},...,a_{n})) = h(I(f)(t_{1}^{\mathcal{A}}(a_{1},...,a_{n}),...,t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(h(t_{1}^{\mathcal{A}}(a_{1},...,a_{n})),...,h(t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(t_{1}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})),...,t_{k}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})) = t^{\mathcal{B}}(h(a_{1}),...,h(a_{n}))$$

Пример 2.2. Доказать что $\mathcal{A}=(\mathbb{R};\cdot)\not\cong\mathcal{B}=(\mathbb{R}^+;\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{A} \to \mathcal{B},$ тогла

$$h(0) = x, x \in \mathbb{R}^+$$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0)=1=h(1) - противоречие (h не биективна). Утверждение не верно. \square

Пример 2.3. Доказать что $\mathcal{A} = (\mathbb{R}; +) \ncong \mathcal{B} = (\mathbb{R}; \cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(0) = x, h(1) = y; x, y \in \mathbb{R}$$
$$x = h(0) = h(0 \cdot 0) = h(0) + h(0) = 2x \Rightarrow x = 2x = 0$$
$$y = h(1) = h(1 \cdot 1) = h(1) + h(1) = 2y \Rightarrow y = 2y = 0$$

Противоречие (h должно быть биекцией)

Пример 2.4. Доказать что $\mathcal{A} = (\mathbb{R};\cdot) \cong \mathcal{B} = (\mathbb{C};\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(x) = -1; x \in \mathbb{C}, -1 \in \mathbb{R}$$

Пример 2.5. Доказать что $\mathcal{A} = (\mathbb{Z}; \min^{(2)}) \ncong \mathcal{B} = (\mathbb{Z}; \max^{(2)})$

Пример 2.6. Доказать что $A = (\omega; +) \not\cong B = (\omega^+; \cdot)$

Пример 2.7. Доказать что $\mathcal{A}=(\mathbb{Q};+)\not\cong\mathcal{B}=(\mathbb{Q}^+;\cdot)$

Пример 2.8. Доказать что $\mathcal{A}=(\mathbb{Z};\cdot)
ot\cong\mathcal{B}=(\mathbb{G};\cdot)$

3 Подалгебры и вложения

Определение 3.1. Подалгебра - алгебра $\mathcal{B}=(B,J)$ является подалдгеброй $\mathcal{A}=(A,I),$ если $B\subseteq A$ и J(f) - ограничение на B для всякого f

Определение 3.2. Ограничение операции - n-местная операция g на B является ограничением операции f множеством B если

$$g(b_1, ..., b_n) = f(b_1, ..., b_n)$$

для любых $b_1, ..., b_n$ из B

Пример 3.1. Пример подалгебры:

$$(\mathbb{C},+,\cdot)\supseteq (\mathbb{R},+,\cdot)\supseteq (\mathbb{Q},+,\cdot)$$

Следствие 3.1.

$$A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$$

Теорема 3.1. Если $\mathcal{A} = (A, I)$ - алгебра, то B ($B \subseteq A; B \neq \emptyset$) является носителем некоторой подалгебры тогда и только тогда, когда B замкнута относительно сигнатурной операции в алгебре \mathcal{A}

 \square оказательство. 1. \Rightarrow

B - носитель подалгебры $\mathcal{B}=(B,J)$ и $B\subseteq A,$ тогда

$$f^{\mathcal{A}}(b_1, ..., b_n) = f^{\mathcal{B}}(b_1, ..., b_n) \in B$$

B замкнута относительно сигнатурной операции в алгебре $\mathcal A$

 $2. \Leftarrow B$ замкнута относительно сигнатурной операции в алгебре $\mathcal{A},$ тогда

J(f) - функция на B

$$J(f)(b_1, ..., b_n) = f^{\mathcal{A}}(b_1, ..., b_n) \in B$$

J(f) - ограниение $f^{\mathcal{A}}$ на B

следовательно $\mathcal{B} = (B, J)$ - подалгебра и B - её носитель

Пример 3.2. Пример на теорему:

Теорема 3.2. Доказательство.

4 Гомоморфизм

5 Декартовы произведения

6 Полугруппы и моноиды

Определение 6.1 (Полугруппа). Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Пример 6.1 (Примеры полугрупп).

Теорема 6.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n = 1, нет скобок

Шаг: для n-1 верно, тогда

1.
$$m = n - 1$$

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2.
$$1 \le m \le n - 1$$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 6.2 (Нейтральный элемент). e_l называется нейтральным слева в полугруппе, если $e_l*a=a$ для всех a, e_r называется нейтральным справа в полугруппе, если $a*e_r=a$ для всех a, e нейтральный слева и справа

Пример 6.2 (Примеры нейтрального элемента). $(\omega, +)$ - 0, (ω, \cdot) - 1, (ω, max) - 0, (ω, min) - нет нейтрального

Теорема 6.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие 6.1. Если нейтральный элемент существует, то он единственный.

Определение 6.3 (Моноид). Моноид - полугруппа с нейтральным элементом ИЛИ

Моноид - это элементы многообразия, которые определяются равенствами

$$\begin{cases} x * (y * z) = (x * y) * z \\ x * e = x \\ e * x = x \end{cases}$$

Пример 6.3 (Примеры моноидов). $(\omega, +, 0), (\omega, \cdot, 1), (\omega, max, 0)$

 A^A - множество одноместных функций из A в A $h=f\circ g$, если h(a)=g(f(a)) для любого $a\in A$

Доказать что (A^A,\circ) - моноид

Доказательство. e(a) = a для всех a, тогда

$$\begin{cases}
(e \circ f)(a) = f(e(a)) = f(a) \\
(f \circ e)(a) = e(f(a)) = f(a)
\end{cases} e \circ f = f \circ e = f$$

е - нейтральный элемент

$$((f \circ g)h)(a) = h(f \circ g)(a) = h(g(f(a)))$$
$$(f(g \circ h))(a) = (g \circ h)(f(a)) = h(g(f(a)))$$
$$((f \circ g)h)(a) = (f(g \circ h))(a)$$

Выполняется ассоциативность, соответственно (A^A, \circ, e) - моноид

Определение 6.4 (Свободный моноид). Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&, \varepsilon), A^*$ - множество всех слов в алфавите A, & - конкатенация, ε - пустое слово.

Теорема 6.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть $A \neq \emptyset$, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$
$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 6.4 (Примеры свободных моноидов и их гомоморфных образов). Пусть дан алфавит $A = \{1\}$, который образует $A^* = \{\varepsilon, 1, 11, ...\}$ и моноид $\mathcal{A} = (A^*; \&, \varepsilon)$, тогда

- 1. $mathcal B = (1; \cdot, 1)$, порождённый элементами A является гомоморфным образом A, $h: A \to B$, h(1...1) = 1
- 2. $mathcalC = (\omega; +, 0)$, порождённый элементами A(натуральные числа можно получить сложением единицы) является гомоморфным образом A, $h: A \to B$, $h(\underbrace{1...1}_{n}) = n$

Определение 6.5 (Циклический моноид). Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e,a,a^1,a^2,a^3,\dots$$
 - элементы моноида $< a >$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), \ h(a^i) = i \text{ изоморфизм.}$
- 2. $a^i=a^j$ при $i\neq j$

$$k = i + (k - i) = i + y(j - i) + r$$

$$r = (k - i) mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} = \underbrace{(a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r}}_{a^{r} = a^{i+j-i} = a^{j} = a^{i})}_{q-1} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} = \underbrace{a^{i}a^{r} = a^{i+r}(r < j - i; i + r < j)}_{q-1}$$

к чему весь этот список?

Пример 6.5 (Пример циклического моноида). $\langle a \rangle = (\{e, a, ...\}; *)$ Таблица умножения (*) -

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

Теорема 6.4. Если j - наименьшее число такое что $a^i=a^j$ для какогото $i< j,\ mo< a> coдержит ровно <math>j$ элементов

Доказательство.

$$\underbrace{e,a^1,...,a^{j-1}}_{\text{нет равных}},\underbrace{a^j=a^i,a^{j+1}=a^{i+1},...}_{\text{повоторяющиеся}}$$

если j - номер наименьшего повтора, тогда

$$a^x * a^y = \begin{cases} a^{x+y}, & \text{если } x+y < j \\ a^{i+(x+y-i)mod(j-i)}, & \text{если } x+y \geq i \end{cases}$$
 $x+y=k,$ $k=i+(k-i\cdot z+r)$ $r=(k-i)mod(j-i)$ $a^k=a^{i+z}$ $a^{x+y}=a^k=a^{i+(x+y-i)mod(j-i)}$

Определение 6.6 (Идемпотент). Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 6.6 (Примеры идемпотентов). $(\omega; +)$ - 0

Определение 6.7 (Моноид типа (i, j-i)). Моноид типа (i, j-i) - моноид с элементами

???

Теорема 6.5. В моноиде типа (i,j-i), где i>0 существует идемпотент $b\neq e$

 \square оказательство.

Определение 6.8 (Обратный элемент). b_l - левый обратный для элемента a, если $b_l*a=e$, b_r - правый обратный для элемента a, если $a*b_l=e$, b - обратный для элемента a, если b*a=a*b=e

Пример 6.7. Пример чего-то: Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & npu \ x < b \\ ab & npu \ x \ge b \end{cases}$$

Доказательство.

Пример 6.8 (Пример изоморфизма). Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A

Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$

$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 6.9 (Пример полугруппы). Является ли $(\omega, HOД())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$HOД(HOД(x, y), z) = HOД(x, HOД(y, z))$$

1. \Rightarrow Пусть d:d| НОД(x,y),d|zНадо доказать d| НОД(y,z),d|x

$$d \mid \text{HOД}(x, y) \Rightarrow d \mid x$$

 $d \mid \text{HOД}(x, y) \Rightarrow d \mid y$

$$d|x, d|y \Rightarrow d|$$
 НОД (y, z)

2. ⇐ также

Пример 6.10 (Построение моноидов). Построить все моноиды из двух элементов $\{e,x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Таблица умножения $(*_1)$

	e	x
e	e	x
x	x	e

Доказать их ассоциативность: a * (b * c) = (a * b) * c

Таблица умножения $(*_2)$

	e	x
e	e	x
x	x	x

1.
$$a = e$$

$$e * (b * c) = b * c = (e * b) * c$$

- $2. b = e \ make$
- 3. c = e также
- 4. a = b = c = x

$$x * (x * x) = x * e = e * x = (x * x) * x$$

Все остальные моноиды или изоморфны или тривиальны

Теорема 6.6. Если в конечном моноиде каждый элемент имеет левый обратный, то существует правый обратный

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет левый обратный, то хотя бы для одного не существует правый обратный: $ab_r \neq e$ для всех b_r

Определение 6.9 (Сократимый элемент). Сократимый слева (справа) - такой элемент моноида, что из $ax = ay \ (xa = ya)$ следует x = y

Пример 6.11 (Пример сократимого элемента). ($\mathbb{Z}, +, 0$), $x + a = y + a \Rightarrow x = y$

Теорема 6.7. Неединичные идемпотенты несократимы

Доказательство. $a \cdot a = a = e \cdot a$ но $a \neq e$, соответственно a несократим справа, $a \cdot a = a = a \cdot e$ но $a \neq e$, соответственно a несократим слева a несократим

Теорема 6.8. Все обратимые слева(справа) элементы сократимы слева(справа)

Доказательство. Пусть a - обратимый слева, тогда $ax = ay \Rightarrow b_l ax = b_l ay \Rightarrow ex = ey \Rightarrow x = y$, следовательно a - сократимый слева

Пример 6.12 (Пример обратимого элемента). ($\mathbb{Z}^+, \cdot, 1$), обратимый только 1, сократимы все. (Какой к половым органам это пример?)

7 Группы

Определение 7.1 (Группа). Группа - моноид, в котором все элементы обратимы

Определение 7.2 (Тривиальная группа). Тривиальная группа - группа, состоящая из одного элемента

Теорема 7.1. Если M - моноид и $G \subseteq M$ - подмножество обратимых элементов, то G - группа

Доказательно $G \subseteq M$ следовательно G ассоциативна, e - обратимый следовательно G имеет нейтральный элемент. Надо доказать замкнутость: $x*y \in G$

x', y' - обратные к x и y элементы, тогда

$$(x * y) * (y' * x') = x * (y * y') * x' = x * e * x' = x * x' = e$$

$$(y'*x')*(x'*y') = y'*(x'*x)*y = y*e*y' = y*y' = e$$

x * y обратим $\Rightarrow xy \in G$

если $x \in G$, то x' * x = x * x' = e, тогда x' имеет обратный элемент, тогда $x' \in G$. Любой элемент G имеет обратный.

G - группа. Теорема доказана.

Теорема 7.2 (Теорема Гротендика). *Каждый коммутативный моноид,* в котором все элементы сократимы можно вложить в группу

Доказательство. Пусть M - коммутативный моноид, $G' = M \times M = (a,b)$, где $a,b \in M$, $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$, (e_1,e_2) - нейтральный элемент.

Пусть $(a,b) \equiv (c,d) \Leftrightarrow ad = bc$. Является ли \equiv конгруэнтностью?

- 1. $(a,b) \equiv (a,b), ab = ba$
- 2. $(a,b) \equiv (c,d), ad = bc \Rightarrow cb = da \Rightarrow (c,d) \equiv (a,b)$
- 3. $(a,b) \equiv (c,d) \equiv (u,v) \Rightarrow (a,b) \equiv (u,v)$

Надо доказать:

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow (a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow$$

$$a_1b_2 = b_1a_2, c_1d_2 = d_1c_2 \Rightarrow a_1b_2c_1d_2 = b_1a_2d_1c_2 \Rightarrow$$

$$(a_1c_1)(b_2d_2) = (b_1d_1)(a_2c_2) \Rightarrow$$

$$(a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

 $(a,b) \equiv (c,d) \Leftrightarrow ad = bc$ - конгруэнтность

Пусть $G=G'/_{\textstyle\equiv}$ надо доказать что G - группа и M вкладывается в G

$$ab = ba \Rightarrow abe = ab = ba = bae \Rightarrow (ab, ba) \equiv (e, e)$$

$$\widehat{(a, b)} * \widehat{(b, a)} = \widehat{(ab, ba)} = \widehat{(e, e)}$$

 \Rightarrow каждый элемент G имеет обратный $\Rightarrow G$ - группа Пусть $h:M\to G$ и $h(a)=\widehat{(a,e)}$, тогда

$$h(ab) = \widehat{(ab, e)} = \widehat{(a, e)}\widehat{(b, e)} = h(a)h(b)$$
$$h(e) = \widehat{(e, e)}$$

h - гомоморфизм Пусть h(a) = h(b)

$$\widehat{(a,e)} = \widehat{(b,e)} \Rightarrow (a,e) \equiv (b,e) \Rightarrow ae = eb \Rightarrow a = b$$

следовательно h - инъекция, следовательно h - вложение

Пример 7.1 (Пример на теорему Гротендика).

Теорема 7.3. G - группа тогда и только тогда, когда

1.
$$(xy)z = x(yz)$$

2. xe = x

3. $xx^{-1} = e$

Доказательство. 1. \Rightarrow по определению группы

14

2.
$$\Leftarrow$$

$$(xy)z = x(yz) \Rightarrow G$$
 ассоциативна $xx^{-1} = e \Rightarrow x^{-1}x = e$

Надо доказать: ex = x для любого x

$$x^{-1}x = x^{-1}xe = x^{-1}x(x^{-1}x)(x^{-1}x)^{-1} = x^{-1}(xx^{-1})x(x^{-1}x)^{-1} = x^{-1}ex(x^{-1}x)^{-1} = (x^{-1}x)(x^{-1}x)^{-1} = e$$
(1)
$$ex = (xx^{-1})x = x(x^{-1}x) = xe = x$$

G - группа

Следствие 7.1. Группы образуют многообразие в сигнатуре $(*, e, ^{-1})$

Определение 7.3 (Аддитивная группа). Аддитивная группа - группа со сложением

Пример 7.2 (Примеры аддитивных групп). ($\mathbb{Z}; +$)

Определение 7.4 (Мультипликативная группа). Мультипликативная группа - группа с умножением

Пример 7.3 (Примеры мультипликативных групп). (\mathbb{Q} ; ·)

Определение 7.5 (Множество вычетов).

Пример 7.4 (Пример Множества вычетов).

Определение 7.6 (Матричная группа). Матричные группы: носитель группы - $M_n^*(R)$ и $det \neq 0$

Пример 7.5 (Примеры матричных групп). 1. $(M_n^*, \cdot, E, ^{-1})$ - группа, не коммутативная

- 2. $det = \pm 1$ spynna
- 3. O_n ортогональные, $(O_n,\cdot,E,^{-1})$ группа

Определение 7.7 (Группа перестановок). Группа перестановок - группа перестановок множества S называется группа всех биекций $f: S \to S$. $(F, \circ, e, ^{-1})$

Пример 7.6 (Пример группы перестановок).

Определение 7.8 (Симметрическая группа порядка). Симметрическая группа порядка n: S - конечно и состоит из n элементов. $(A, \circ, e, ^{-1}), A$ - множество автоморфизмов $h: S \to S$

Пример 7.7 (Пример симметрической группы). *Пример симметрической группы:*

$$A = \{e, r_1, r_2, s_1, s_2, s_3\}$$

- е тождественное преобразование
- \bullet r_1, r_2 поворот на 120° и 240° соответственно
- \bullet s_1, s_2, s_3 оборот вокруг высоты, идущей из первой, второй и третьей вершины соответственно

$$\mathbf{D}_3 = (A, \circ)$$

Таблица умножения о

	e	r_1	r_2	s_1	s_2	s_3
e	e	x	e	x	e	x
r_1	e	x	e	x	e	x
r_2	e	x	e	x	e	x
s_1	e	x	e	x	e	x
s_2	e	x	e	x	e	x
s_3	x	x	e	x	e	x

Определение 7.9 (Группа кос). Группа кос -

потом соображу как длиннее сделать

Теорема 7.4. Если G - полугруппа, то G является группой тогда и только тогда, когда любое уравнение вида ax = b или xa = b, $(a, b \in G)$ имеет в G решение

Доказательство. 1. \Rightarrow

$$ax = b$$

$$a^{-1}ax = a^{-1}b$$

$$x = a^{-1}b$$

$$x = ba^{-1}$$

$$x = ba^{-1}$$

любое уравнение вида ax=b или $xa=b, (a,b\in G)$ имеет в G решение

2. ← по теореме 7.3

- (а) по определению полугруппы
- (b) $ax = a \Rightarrow x = e \ ya = b$, имеет решение y = d, da = b

$$be = dae = da = b \Rightarrow be = b$$

(c) для любых ax=e существует решение $x=a^{-1}$ - обратное к a

Теорема 7.5. 1. $(ab)^{-1} = b^{-1}a^{-1}$

2.
$$(a^{-1})^{-1} = a$$

Определение 7.10 (Абелева группа). Абелева группа - группа, в которой xy=yx

8 Подгруппы

Определение 8.1 (Подгруппа). Подгруппа - подмножество Н группы G, само являющееся группой относительно операции, определяющей G Подгруппа - подалгебра в группе

Следствие 8.1. Подгруппа является группой

Определение 8.2 (Тривиальная подгруппа). Тривиальная подгруппа - подгруппа, состоящая только из одного нейтрального элемента группы или равна самой группе

Пример 8.1 (Пример подгрупп).

Пример 8.2. $(\mathbb{Z}_p; +, 0, -)$, p - простое число B этой группе нет нетривиальных подгрупп

Доказательство. $A\subseteq \mathbb{Z}_p,\ x\in A,\ x\ x,2x,3x,...,px$ - все разные предположим, что ix=jx(i< j), тогда $jx-ix=0\Rightarrow (j-i)x=0$ (j-i)xmodp=0 (j-i)modp=0 j-i=0 ПОЧЕМУ j=i $A=\mathbb{Z}_p$

Теорема 8.1. Любая бесконечная группа имеет нетривиальную подгруппу

П

Доказательство. Пусть $a \in G, a \neq e$, тогда $A = \{a^0 = e, a^1, a^2, ..., a^{-1}, a^{-2}, ...\}$

1. $A \neq G$ A - нетривиальная подгруппа

2. $A = G A' = \{a^0, a^2, a^4, ..., a^{-2}, a^{-4}, ...\}$

Пример 8.3 (Пример подгрупп). *Возъмём группу из 7.7 и выпишем подгруппы:*

- 1. $\{e\}$ тривиальная подгруппа
- 2. $\{e, r_1, r_2, s_1, s_2, s_3\}$ тривиальная подгруппа
- 3. $\{e, r_1, r_2\}$

18

4.
$$\{e, s_1\}, \{e, s_2\}, \{e, s_3\}$$

Пример 8.4. Группа операций над треугольником - подгруппа

Пример 8.5. Является ли группой моноид $(A; \cap, e)$, где A - множество фигур на плоскости, e - вся плоскость.

Доказательство. $A \cap A^{-1} = e$, этого не может быть, $(\mathcal{A}; \cap, e)$ - не группа

Является ли группой алгебра $(A; \dot{-})$, где A - множество фигур на плоскости.

Доказательство. Сперва докажим ассоциативность $\div \colon A \div (B \div C) = (A \div B) \div C$

$$A - B = (\overline{A} \cap B) \cup (\overline{B} \cap A)$$

$$A \doteq (B \doteq C) = (\overline{A} \cap (B \doteq C)) \cup (A \cap (\overline{B} \doteq \overline{C})) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B))) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((\overline{B} \cap C) \cap (\overline{C} \cap B))) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((B \cup \overline{C}) \cap (C \cup \overline{B}))) =$$

$$(\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C}) \cup (A \cap ((B \cup \overline{C}) \cap (C \cup \overline{B}))) =$$

$$(\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C}) \cup (A \cap B \cap C) \cup (A \cap \overline{B} \cap \overline{C}) \cup (A \cap \overline{B} \cap \overline{C})$$

$$(A - B) - C = C - (A - B) = \dots =$$

$$(\overline{C} \cap \overline{B} \cap A) \cup (\overline{C} \cap B \cap \overline{A}) \cup (C \cap B \cap A) \cup (C \cap \overline{B} \cap \overline{A})$$

$$A - (B - C) = (A - B) - C$$

теперь доказать существование обратного

Пусть
$$e = \emptyset$$
, Тогда $A - \emptyset = A$
 $A - A^{-1} = \emptyset \Rightarrow (\overline{A} \cap A^{-1}) \cup (\overline{A^{-1}} \cap A) = \emptyset \Rightarrow A^{-1} = A$
 $(A; \dot{-})$ - группа

Пример 8.6. Конечные группы

1.
$$G_1 = (\{e\}; *)$$

Таблица умножения *

$$\begin{array}{c|c} e \\ \hline e & e \end{array}$$

2.
$$G_2 = (\{e, a\}; *)$$

Таблица умножения *

$$\begin{array}{c|cccc}
e & e & a \\
\hline
e & e & a \\
\hline
a & a & e
\end{array}$$

3.
$$\mathcal{G}_3 = (\{e, a, b\}; *)$$

Таблица умножения *

4.
$$A = (\{e, a, b, c\}, *)$$

Таблица умножения *

	i	i .		
	e	a	b	c
e	e	a	b	c
a	a	e	b	c
b	b	c	e	a
c	c	b	a	e

Пример 8.7. Построить группу симметрии правильного n-угольника (Диэдрическая группа)

 $\mathcal{D}_n = (r_0, ..., r_{n-1}, s_1, ..., s_n; \circ, e, ^{-1}), \ \textit{где} \ r_0, ..., r_{n-1} - \textit{повороты}, \ s_1, ..., s_n$ - отражения, эти элементы множсетва являются автоморфизмами, композиция задана следующей таблицей умножения:

Таблица умножения о

_		r_i	s_i	
	r_j	$r_{(i+j) \bmod n}$	$S(i+j) \bmod n$	
	s_{j}	$S(j-i) \bmod n$	$r_{(i-j) \bmod n}$	

нейтральным элементом является r_0 , обратным к любому отражению s_i само отражение s_i , обратным к повороту r_i поворот r_{n-i}

Определение 8.3 (Рекурсивная перестановка). Рекурсивная перестановка - разнозначная общерекурсивная функция, область значений которой - множество ω

Теорема 8.2. Рекурсивные перестановки с операцией композиции образуют группу

Доказательство. Надо доказать ассоциативность \circ , существование нейтрального и обратных

- 1. $a \in \omega$, a = g(b), b = f(c), $a = g(f(c)) = (f \circ g)(c)$, \circ ассоциативна
- 2. $e = \mathrm{Id}_1^1$, $(f \circ e)(a) = e(f(a)) = f(a)$
- 3. $f^{-1} =$

Теорема 8.3. Любая группа вкладывается в группу перестановок

Доказательство. Пусть $\mathcal{G}=(G,*),\,S$ - множество перестановок G, надо доказать

$$h(x * y) = h(x) \circ h(y)$$

Пусть $h(x) = f_x$, такой что $f_x(y) = y * x$ (А существует ли f_x для каждого x?). h разнозначна, так как $f_x(e) = f_y(e) \Rightarrow ex = ey \Rightarrow x = y$,

$$h(x * y)(a) = f_{x*y}(a) = a * (x * y) = (a * x) * y = f_x(a) * y = f_y(f_x(a)) = (f_x \circ f_y)(a) = (h(x) \circ h(y))(a)$$

Теорема 8.4. Любой конечный моноид, в котором нет неединичных идемпотентов является группой

 $\ensuremath{\mathcal{A}oka3}$ ательство. Пусть M - конечный моноид, $a\in M,\, a*a^-1=e$

Индукция по количеству элементов

Базис: n = 1, a = e, $M = \{e\}$

Шаг индукции: пусть для моноидов с k < n верно. Тогда для k = n Пусть $a \in M$, A - циклический моноид, порождённый a

- 1. $A \neq M$, |A| < n, по индукционному предположению
- 2. A = M, так как M не содержит неединичных идемпотентов, то A это моноид типа (0,n)

$$a^x a^y = egin{cases} a^{x+y} & , \text{если } x+y < n, y < n-1 \ a^{j+(x+y-i)} & , \text{если } x+y \geq n \end{cases}$$

следовательно $a^x a^y = a^{(x+y) \text{mod} n}$ и $a^{-1} = a^{n-1}$

Пример 8.8. Построить группу симметричную чему-то там

Теорема 8.5. Любая чётная перестановка является произведением циклов длины 3

Доказательство. Любую чётную перестановку можно разложить в произведение циклов длины 2. Таких циклов будет чётное число, соответственно будет n произведений циклов вида (ab)(cd)

- 1. b = c, тогда (ab)(cd) = (abd)
- 2. $b \neq c$, тогда (ab)(cd) = (ab)(bc)(bc)(cd) = (abc)(bcd)

Теорема 8.6. Если \mathcal{G} - группа, $\mathcal{H} \subseteq \mathcal{G}$, $\mathcal{H} \neq \emptyset$, $a,b \in \mathcal{H} \rightarrow ab^{-1} \in \mathcal{H}$, тогда \mathcal{H} является подгруппой

Доказательство. Пусть $a, b \in H$

- 1. $H \neq \emptyset, a \in H \Rightarrow aa^{-1} \in H \Rightarrow e \in H$ есть нейтральный элемент
- 2. $a \in H \Rightarrow ea^{-1} \in H \Rightarrow a^{-1} \in H$, есть обратные

3. $a,b\in H,\,b^{-1}\in H\Rightarrow a(b^{-1})^{-1}\in H\Rightarrow ab\in H,$ замкнуто по операции группы $\mathcal G$

 \mathcal{H} - подгруппа

Определение 8.4 (Центр группы). Центр группы - $\mathcal{Z} = \{a \in G, ab = ba \text{ для всех } b \in G\}$

Пример 8.9. $\mathcal{M}=(M_2^*(\mathbb{R});\cdot),$ невырожденные матрицы $\mathcal{Z}=\left\{egin{pmatrix} a & 0 \ 0 & a \end{pmatrix}: a\in R \right\}$

Теорема 8.7. Центр группы - подгруппа

Доказательство. $a, b \in \mathcal{Z}, ab^{-1} \in \mathcal{Z}$ Надо доказать: $x \in \mathcal{G}, (ab^{-1})x = x(ab^{-1})$

$$(ab^{-1})x = ab^{-1}xe = ab^{-1}xbb^{-1} = ab^{-1}bxb^{-1} = axb^{-1} = x(ab)^{-1}$$

следует что $x \in \mathcal{Z}$ (что это вообще доказывает)

Определение 8.5 (Циклическая группа). Циклическая группа - группа, порождённая одним элементом. < a > - циклическая группа порождённая a.

 $(\omega, +, 0)$ изоморфно бесконечной циклической группе моноид типа (i, j) изоморфен конечной циклической группе

Теорема 8.8. $\mathcal{G}=\langle a \rangle$, тогда $\mathcal{G}\cong (\mathbb{Z},+)$ или $\mathcal{G}\cong (\mathbb{Z}_n,+)$ для некоторого n

Доказательство. Пусть \mathcal{M} - подмоноид, порождённый $a.\ M$ - циклический

1. $\mathcal{M} \cong (\omega, +, 0)$ $x \in \mathcal{M} \ x^{-1} \ xx^{-1} = e$ $x \in \mathcal{M} \ x \neq e \ x^{-1} \neq \mathcal{M}$

$$0 = h(x) + h(x^{-1}) = h(xx^{-1}) = h(e) = 0$$

Доказать что изоморфизм

2. \mathcal{M} - конечный (i,j) моноид, если i>0, то в \mathcal{M} есть нееденичный идемпотент, следовательно он необратимый, следовательно в группе должно быть i=0

$$a^x a^y = egin{cases} a^{x+y} & , \text{ если } x+y < j \\ a^{(x+y)\pmod{j}} & , \text{ если } x+y \geq j \end{cases}$$

 \mathcal{M} - группа

$$a^x = a^{j-x} = a^{j \pmod{j}} = e$$

П

 \mathcal{M} - группа порождённая $a, \mathcal{M} = \mathcal{G}$

 $h:a^x\to x$

Теорема 8.9. В циклической группе существуют нетривиальные группы тогда и только тогда когда она бесконечна или п в $(\mathbb{Z}_n, +)$ составное

Доказательство. 1. \Rightarrow пусть имеется $(\mathbb{Z}_n, +)$, n - простое, $a \neq 0$, a < n, a и n взаимно простые, следовательно xa + yn = 1. пусть $b \in \mathbb{Z}$, тогда

$$b = b \cdot 1 = b(ax + yn) = (bx)a + (by)n$$

$$\underbrace{(a + a + \dots + a)}_{bx} \mod n = (b - (by)n) \mod n = b \mod n = b$$

Таким (КАКИМ) образом любые подгруппы, содержащие не только 0 содержат \mathbb{Z}_n

2. \Leftarrow

- (а) бесконечная циклическая группа имеет нетривиальную подгруппу
- (b) пусть n = xy, тогда $(\mathbb{Z}_{xy}, +) \supseteq \{0, x, 2x, ..., (y-1)x\}$

Определение 8.6 (Порядок группы). Порядок группы - количество элементов группы. $ord\mathcal{G}$

Определение 8.7 (Порядок элемента). Порядок элемента - порядок порождённой им циклической подгруппы $orda = ord\langle a \rangle$

Пример 8.10. Пример на порядок через группу треугольника

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

ord $\mathcal{D}_3 = 6$

$$\langle r_0 \rangle = \{r_0\} \qquad \text{ord } r_0 = 1$$

$$\langle r_1 \rangle = \{r_0, r_1, r_2\} \qquad \text{ord } r_1 = 3$$

$$\langle r_2 \rangle = \{r_0, r_1, r_2\} \qquad \text{ord } r_2 = 3$$

$$\langle s_1 \rangle = \{r_0, s_1\} \qquad \text{ord } s_1 = 2$$

$$\langle s_2 \rangle = \{r_0, s_2\} \qquad \text{ord } s_2 = 2$$

$$\langle s_3 \rangle = \{r_0, s_3\} \qquad \text{ord } s_3 = 2$$

Следствие 8.2. ord $e=1, \langle e \rangle = \{e\}$

Определение 8.8 (Смежный класс). Пусть \mathcal{G} - группа, $\mathcal{H} \subseteq \mathcal{G}$, $a \in \mathcal{G}$ Левый смежный класс a по \mathcal{H} - $a\mathcal{H} = \{ab : b \in \mathcal{H}\}$ Правый смежный класс a по \mathcal{H} - $\mathcal{H}a = \{ba : b \in \mathcal{H}\}$

Пример 8.11. Пример смежных классов:

$$\langle s_1 \rangle \subseteq \mathcal{D}_3, \ r_1 \in \mathcal{D}_3$$

$$r_1\langle s_1\rangle = r_1\{r_0, s_1\} = \{r_1, s_2\}$$
$$\langle s_1\rangle r_1 = \{r_0, s_1\} r_1 = \{r_1, s_3\}$$
$$r_1\langle s_1\rangle \neq \langle s_1\rangle r_1$$

Определение 8.9 (Нормальная подгруппа). Нормальная подгруппа - подгруппа, у которой любой левый смежный класс совпадает с правым

Пример 8.12. Пример нормальных групп

$$\langle r_{1} \rangle = \{r_{0}, r_{1}, r_{2}\} \subseteq \mathcal{D}_{3}$$

$$r_{i} \langle r_{1} \rangle = r_{i} \{r_{0}, r_{1}, r_{2}\} = \{r_{0+i}, r_{1+i}, r_{2+i}\} = \langle r_{1} \rangle$$

$$\langle r_{1} \rangle r_{i} = \{r_{0}, r_{1}, r_{2}\} r_{i} = \{r_{0+i}, r_{1+i}, r_{2+i}\} = \langle r_{1} \rangle$$

$$r_{i} \langle r_{1} \rangle = \langle r_{1} \rangle r_{i}$$

$$s_{i} \langle r_{1} \rangle = \{s_{i} r_{0}, s_{i} r_{1}, s_{i} r_{2}\} = \{s_{i}, s_{i-1}, s_{i+1}\}$$

$$\langle r_{1} \rangle s_{i} = \{r_{0} s_{i}, r_{1} s_{i}, r_{2} s_{i}\} = \{s_{i}, s_{i+1}, s_{i-1}\}$$

$$s_{i} \langle r_{1} \rangle = \langle r_{1} \rangle s_{i}$$

 $\langle r_1
angle$ - нормальная подгруппа

Теорема 8.10. Если \mathcal{G} - группа, $\mathcal{H} \subseteq \mathcal{G}$, $u \equiv$ - отношение принадлежености κ одному левому смеженому классу, то \equiv - отношение эквивалентности

Доказательство. 1. Рефлексивность $a \in a\mathcal{H} \Rightarrow a \equiv a$

- 2. Симметричность $a \equiv b \Rightarrow a \in x\mathcal{H}, b \in x\mathcal{H} \Rightarrow b \equiv a$
- 3. Транзитивность $a \equiv b, b \equiv c \Rightarrow$

$$a, b \in x\mathcal{H} \qquad a = xh_a \qquad b = xh_b$$

$$b, c \in y\mathcal{H} \qquad b = yh'_b \qquad c = yh_c$$

$$xh_b = yh'_b \Rightarrow x = yh'_bh_b^{-1} \Rightarrow a = y\underbrace{h'_bh_b^{-1}h_a}_{\mathcal{H}}$$

$$c \in y\mathcal{H}$$

$$a \in y\mathcal{H}$$

$$a \in y\mathcal{H}$$

Следствие 8.3. Каждый левый смежный класс является классом эквивалентности

Следствие 8.4. Левые смежные классы или совпадают или не пересекаются

Следствие 8.5. Количество элементов в левом смежном классе сов $nadaem\ c\ {
m ord}\ {\cal H}$

Доказательство. Пусть $f: \mathcal{H} \to a\mathcal{H}, f(x) = ax$, тогда

$$f(x) = f(y) \Rightarrow ax = ay \Rightarrow = a^{-1}ax = a^{-1}ay \Rightarrow x = y$$

f - взаимоодназначная функция, соответственно ord $a\mathcal{H}=\operatorname{ord}\mathcal{H}$

Определение 8.10 (Индекс подгруппы). Индекс подгруппы - количество левых смежных классов ind H

Теорема 8.11. Если H - подгруппа G, то ord $G = \operatorname{ord} H \cdot \operatorname{ind} H$

Доказательство. Разобьём группу G на левые смежные классы. Их количество - ind H, каждый содержит ord H элементов. Общее количество этих элементов - ind H · ord H

Следствие 8.6. ind $H = \frac{\operatorname{ord} G}{\operatorname{ord} H}$

Следствие 8.7. ord $H|\operatorname{ord} G$

Следствие 8.8. ord $a \mid \operatorname{ord} \mathcal{G}$

Доказательство. $\mathcal{H} = \langle a \rangle$, ord $a = \operatorname{ord} \mathcal{H}$

Теорема 8.12. $a^{\text{ord } a} = e$

Доказательство. $\langle a \rangle = \{\underbrace{a^0, a^1, ..., a^{\operatorname{ord} a - 1}}_{\operatorname{ord} a}\}, \ a^{\operatorname{ord} a} = a^0 = e$

Теорема 8.13. $a^n = e \Leftrightarrow \operatorname{ord} a | n$

Доказательство. Пусть $x = \operatorname{ord} a + r = n$, $(0 \le r < \operatorname{ord} a)$, тогда

$$e = a^n = a^{x \operatorname{ord} a} \cdot a^r = (a^{\operatorname{ord} a})^x \cdot a^r = e^x \cdot a^r = a^r$$

 $a^r = e \Rightarrow r = 0 \Rightarrow n = x \cdot \operatorname{ord} a \Rightarrow \operatorname{ord} a | n$

Теорема 8.14. $a^{\text{ord } G} = e$

Доказательство. ord $a | \operatorname{ord} \mathcal{G} \Rightarrow \operatorname{ord} \mathcal{G} = x \cdot \operatorname{ord} a \Rightarrow a^{\operatorname{ord} \mathcal{G}} = (a^{\operatorname{ord} a})^x = e_{\operatorname{grad}}$

Пример 8.13. A_5 - группа чётных перестановок из 5 элементов. В A_5 нет нормальных подгрупп

 \mathcal{A} оказательство. \mathcal{A} ОКАЖИ \mathcal{A} ОМА))))))))))))

Теорема 8.15. Любая подгруппа индекса 2 является нормальной

Доказательство. 1. (a) $e\mathcal{H} = \mathcal{H}$

(b)
$$a\mathcal{H} \neq \mathcal{H}$$

 $a\mathcal{H} = \mathcal{G}/\mathcal{H}$

- 2. (a) $\mathcal{H}e = \mathcal{H}$
 - (b) $\mathcal{H}a \neq \mathcal{H}$ $\mathcal{H}a = \mathcal{G}/\mathcal{H}$

9 Гомоморфизмы группы

Определение 9.1 (Факторгруппа). Рассмотрим группу G и ее нормальную подгруппу H. Пусть G/H — множество смежных классов G по H. Определим в G/H операцию умножения по следующему правилу: $aH \cdot bH = (ab)H$

Теорема 9.1. Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей а и b

Доказательство. Пусть $aH, bH \in G/H, \ a_1 = a \cdot h_a \in aH, \ b_1 = b \cdot h_b \in bH$. Докажем, что $abH = a_1b_1H$. Достаточно показать, что $a_1 \cdot b_1 \in abH$.

В самом деле, $a_1 \cdot b_1 = a \cdot h_a \cdot b \cdot h_b = a \cdot b \cdot (b^{-1} \cdot h_a \cdot b) \cdot h_b$. Элемент $h = (b^{-1} \cdot h_a \cdot b)$ лежит в H по свойству нормальности H. Следовательно, $a \cdot b \cdot h \cdot h_b \in abH$.

Теорема 9.2. Если G и H - группа, $h: G \to H$ и h(a*b) = h(a)*h(b), то h - гомоморфизм

Доказательство. h(e) = h(e*e) = h(e)*h(e) h(e) - идемпотент в \mathcal{H} , следовательно h(e) = e

$$h(a^{-1}) = h(a^{-1}) * e = h(a^{-1}) * h(a) * (h(a))^{-1} = h(a^{-1} * a) * (h(a))^{-1} = h(e) * (h(a))^{-1} = e * (h(a))^{-1} = (h(a))^{-1}$$

Определение 9.2 (Порождённая конгруэнтность). Конгруэнтность порождённая h - если $a \equiv b \Leftrightarrow h(a) = h(b)$ - конгруэнтность, то $h[A] = A / \equiv$

Теорема 9.3. Если $h: G \to H$ - гомоморфизм, \equiv - конгруэнтность порожедённая h, то классы эквивалентные e в G являются нормальными подгруппами

Доказательство. Пусть $a,b\in f\Rightarrow ab^{-1}\in f,\ a\equiv e,\ b\equiv e,\ b^{-1}\equiv e^{-1}\equiv e,\ ab^{-1}\equiv ee\equiv e$

$$a\{b \in \mathcal{G} : b \equiv e\} \ni c$$

 $aba^{-1} \in \{b \in \mathcal{G} : b \equiv e\} a \ni c$

$$c = ab = abe = aba^{-1}a$$

$$b \equiv e \quad a \equiv a \quad a^{-1} \equiv a^{-1}$$
$$aba^{-1} \equiv aea^{-1} = e$$
$$aba^{-1} \equiv e$$
$$aba^{-1}a = abe = ab = c$$

"И в обратную сторону". Хотя я в душе не знаю как в эту получилось.

Определение 9.3 (Ядро подгруппы). Ядро подгруппы - множество элементов эквивалентных e. Кег h

Теорема 9.4. G - группа, H - нормальная подгруппа, $a \equiv b \Leftrightarrow a \ u \ b$ принадлежат одному левому классу, то \equiv - конгруэнтность

Доказательство. Пусть $a \equiv b, c \equiv d$, надо доказать

1.
$$ac \equiv bd$$

2.
$$a^{-1} \equiv b^{-1}$$
 (зачем)

1.

$$a, b \in x\mathcal{H}$$
 $a = xh_a, b = xh_b$
 $c, d \in y\mathcal{H}$ $c = yh_c, d = yh_d$

$$ac = xh_a \cdot yh_c, h_a y = yh', h_a y \in \mathcal{H}y = y\mathcal{H}$$

$$ac = xh_ayh_c = xy\underbrace{h'h_c}_{\in \mathcal{H}} \in xy\mathcal{H}$$
 $bd = xh_byh_d = xy\underbrace{h''h_d}_{\in \mathcal{H}} \in xy\mathcal{H}$ эквивалентные

$$h_b y = yh'', h_b y \in \mathcal{H}y = y\mathcal{H}$$

2.

$$egin{array}{cccc} h_a & h_b & h_b^{-1} & h_b^{-1} & \mathcal{H}x^{-1} & \mathcal{$$

$$a^{-1}, b^{-1} \in x^{-1}\mathcal{H}$$

Определение 9.4 (щито). \mathcal{G} - группа, \mathcal{H} - нормальная подгруппа, \equiv - отношение конгруэнтности. Тогда $\mathcal{G}/_{\equiv}=\mathcal{G}/\mathcal{H}$

Следствие 9.1. $\mathit{Ecnu}\;h:\mathcal{G}\to\mathcal{H}\;$ - гомоморфизм, тогда $h[\mathcal{G}]=\mathcal{G}\,/_{\mathrm{Ker}\;h}$

Доказательство.
$$h[\mathcal{G}] = \mathcal{G}/_{\equiv} = \mathcal{G}/_{\operatorname{Ker} h}$$

Пример 9.1.

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

 $\langle r_1
angle$ - подгруппа вращений $\langle r_1
angle$ $S_1 \langle r_1
angle$

Таблица умножения (ЧЕГО???)

$$\begin{array}{c|ccc} & \langle r_1 \rangle & S_1 \langle r_1 \rangle \\ \hline \langle r_1 \rangle & \langle r_1 \rangle & S_1 \langle r_1 \rangle \\ \hline S_1 \langle r_1 \rangle & S_1 \langle r_1 \rangle & \langle r_1 \rangle \\ \hline \end{array}$$

Пример 9.2.
$$(\mathbb{R},+)\supseteq (\mathbb{Z},+)$$
 $a+\mathbb{Z}$
 $ba\in \mathbb{Z}$
 $a+\mathbb{Z}=b+\mathbb{Z}$
 $a\in [0,1)$
 $(a+\mathbb{Z})+(b+\mathbb{Z})=(a+b)=(a+b)\mod 1$
 $\mathbb{C}_1=\{z\in \mathbb{C},|z|=1\},\ (\mathbb{C}_1,\cdot)$
 $h(x)=e^{2nix}$
 $x\in \mathbb{R}=e^{2nix}\in \mathbb{C}_1$
 $h(x+y)=e^{2ni(x+y)}=e^{2nix}e^{2niy}=h(x)h(y)$
 $h:(\mathbb{R},+)\to (\mathbb{C},\cdot)$
 $r\in \operatorname{Ker} h\Leftrightarrow r\equiv e$
 $h(r)=h(e)$
 $h(r)=h(0)$
 $e^{2nix}=e^{2nix}=1$
 $e^{2nix}=2n\cdot k, k\in \mathbb{Z}$
 $r\in \mathbb{Z}$
 $\operatorname{Ker} h\in \mathbb{Z}$

Определение 9.5. $\mathcal G$ - группа, A - множество, образующее группу, тогда определяющим соотношением называют равенство вида t(a)=s(a), где t,s - термы, $a\in A$

Пример 9.3. $A = \{a, b\}, a^2 = b^2, a^3b = ba$

Определение 9.6. A - множество элементов, X - множество определяющих соотношений. Группа, порождённая A и X - \mathcal{G} такач, что

- 1. образована при помощи A
- 2. в $\mathcal G$ выполняются все определяющие соотношения из X
- 3. любая группа \mathcal{H} , удовлетворяющая условиям 1 и 2 является гомоморфным множеством \mathcal{G}

Пример 9.4.

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

$$A = \{r_1, s_1\}, \ \langle A \rangle = \mathcal{D}_3$$

$$\begin{bmatrix} r_1^3 = e \\ r_1 s_1 = s_1 r_1^2 \\ s_1^2 = e \end{bmatrix}$$

 $\overline{\mathcal{H}}$ порожедена A

* - одноместная операция

 \mathcal{H} ?????? ??? слова, состоящие из $r_1, s_1, r_1^{-1}, s_1^{-1}$, пусть в \mathcal{H} выполнены определяющие соотношения X

$$r_1^3 = e$$
 $r_1^{-1} = r_1^2$ $r_1^{-1} = r_1 r_1$ $s_1^2 = e$ $s_1^{-1} = s_1$ $s_1^{-1} = s_1$

$$s_1...s_1r_1...r_1 \\ s_1^nr_1^m \\ s_1^n = s_1^{n \mod 2} \\ r_1^m = r^{m \mod 3}$$

$$egin{array}{ccc} r_1^0 & s_1 r_1^0 \ r_1^0 & s_1 r_1^0 \ r_1^0 & s_1 r_1^0 \ \end{array}$$

Теорема 9.5. Для любого множества A и множества определяющих соотношений X существует группа, образованная A и X

Доказательство. Пусть $A' = A \cup \{a-1 : a \in A^{\}}$. Нужно проверить три свойства

1. Если M - свободный моноид образованный A'(M - множество слов алфавита A' с конкатенацией), M' - моноид, порождённый A', то M' - гомоморфный образ M. $u,v\in M,$ $u\equiv v\Leftrightarrow h(u)=h(v)$ для любого гомоморфизма $h:M\to \mathcal{G}.$ \mathcal{G} - группа, порождённая A в которой ??? X.

Надо доказать что ≡ является конгруэнтностью

- (a) $a \equiv a$
- (b) $a \equiv b \Rightarrow b \equiv a$
- (c) $a \equiv b, b \equiv c \Rightarrow a \equiv c$

Пусть $a \equiv b, c \equiv d$, то есть h(a) = h(b), h(c) = h(d), тогда, так как h является гомоморфизмом

$$h(ac) = h(a)h(c) = h(b)h(d) = h(bd)$$

следовательно $ac \equiv bd$ и \equiv - конгруэнтность

Пусть группа $F = M /_{\equiv}$, $\widehat{a} \in F$, $a = u_1...u_n$, $b = u_n^{-1}...u_1^{-1}$, $a, b \in M$

$$h(a) = h(u_1)...h(u_n)$$

$$h(b) = h(u_n^{-1})...h(u_1^{-1}) \\$$

$$h(ab) = h(u_1)...h(u_n)h(u_n^{-1})...h(u_1^{-1}) = e$$

$$\widehat{a}\widehat{b} = \widehat{e}$$

F порождается A

2. Доказать $t(\overline{a}) = s(\overline{a}) \in X$

$$h(t(a_1,...,a_n)) = t(h(a_1),...,h(a_n)) = s(h(a_1),...,h(a_n)) = h(s(a_1,...,a_n))$$

$$t(\overline{a}) \equiv s(\overline{a}) \Rightarrow \widehat{t(a)} = widehats(\overline{a}) \Rightarrow t(\widehat{a_1},...,\widehat{a_n}) = s(\widehat{a_1},...,\widehat{a_n})$$

3. Из чего следует?

и WTF в общем

Пример 9.5. Про пирамиду рубика. Конём.

Пример 9.6. Дана "головоломка"

1	2
3	4

 Π остроить группу $\mathcal G$

а - перестановка двух столбцов

b - перестановка строк

$$a^2 = e, b^2 = e, ab = ba$$

	e	$\mid a \mid$	b	ab
e	e	a	b	ab
\overline{a}	a	e	ab	b
\overline{b}	b	ba	e	a
ab	ab	b	a	e

$$\mathcal{G} = (\{e, a, b, ab\}, \circ)$$

Пример 9.7. Таблица 8х8. Конём.

Пример 9.8. Z = 1, -1

Пример 9.9.

Пример 9.10.

Пример 9.11.

Пример 9.12.

Определение 9.7. Если $X=\emptyset$, то $M \mathrel{/=} -$ свободная группа порождённая A

Следствие 9.2. Любая группа порождённая A - гомоморфный образ свободной группы

Определение 9.8. $\mathcal G$ - группа, $S \neq \emptyset$. Действие группы $\mathcal G$ на S - это отображение $h: S \times \mathcal G \to S$ и

1.
$$h(S, e) = S$$

2.
$$h(h(S, a), b) = h(S, ab)$$

Эти два условия по другому:

1.
$$Se = S$$

2.
$$(Sa)b = S(ab)$$

Пример 9.13. \mathcal{G} действует на себя правыми умножениями

Определение 9.9. Сопряжение - действие группы \mathcal{G} на себя или множество подмножеств $P(\mathcal{G}): h(S,a) = a^{-1}Sa$

Теорема 9.6. Сопряжение - действие

Доказательство. Проверим условия сопряжения

1.
$$e^{-1}Se = eSe = S$$

2.
$$h(h(S, a)b) = h(a^{-1}Sa, b) = b^{-1}a^{-1}Sab = (ab)^{-1}Sab = h(S, ab)$$

 $a^{-1}Aa = A \subset \mathcal{G}$

Теорема 9.7. Любая подгруппа при сопряжении переходит в подгруппу

$$\mathcal{A}$$
оказательство. Пусть A - подгруппа \mathcal{G}

Теорема 9.8. Пусть A - подгруппа, то A неподвижна при всех сопряжениях тогда и только тогда когда A - нормальная подгруппа

Доказательство.
$$\bullet \Rightarrow a^{-1}Aa = a \Rightarrow aa^{-1}Aa = aA \Rightarrow Aa = aA$$

$$\bullet \Leftarrow Aa = aA \Rightarrow a^{-1}Aa = a^{-1}aA \Rightarrow a^{-1}Aa = A$$

Определение 9.10 (Стабилизатор). \mathcal{G} действует на $S, s \in S$. Стабилизатор s - stab $s = \{a \in \mathcal{G}, h(s, a) = s\}$

Теорема 9.9. stab s - nodepynna \mathcal{G}

Доказательство. пусть $b, c \in \operatorname{stab} s$, тогда

Определение 9.11 (Орбита). Пусть G действует на $S, s \in S$. Орбита s - orb $s = \{sa : a \in G\}$

Теорема 9.10. Орбиты - классы эквивалентности

Теорема 9.11. Количество элементов орбиты равняется индексу стабилизатора

Теорема 9.12 (Формула орбит). G действует на множестве S, тогда $|S| = \sum_{opбumu} \frac{\operatorname{ord} G}{\operatorname{ord} q_0}$

Следствие 9.3. Если ord $G=p^k, p$ - простое, то $Z \neq \{e\}$

10 Кольца и поля

Определение 10.1 (Кольцо). Кольцо - алгебра сигнатуры

$$(+^{(2)},0^{(0)},-^{(1)},\cdot^{(2)})$$

обладающее свойствами:

1.
$$(a+b) + c = a + (b+c)$$

$$2. \ a + 0 = a$$

3.
$$a + (-a) = 0$$

4.
$$a + b = b + a$$

5.
$$a(b+c) = ab + ac$$

Определение 10.2 (Ассоциативное кольцо). Кольцо с ассоциативностью умножения (ab)c = a(bc)

Определение 10.3 (Кольцо с единицей). Кольцо, в котором существует элемент 1, такой что $a \cdot 1 = 1 \cdot a = a$

Определение 10.4 (Коммутативное кольцо). Кольцо с коммутативностью умножения ab=ba

Определение 10.5 (Кольцо с делением). Если для любого элемента кольца $a \, (a \neq 0)$) существует b : ab = 1, то такое кольцо называется кольцом с делением

Определение 10.6 (Тело). Тело - ассоциативное, коммутативное кольцо с делением

Определение 10.7 (Поле). Поле - ассоциативное, коммутативное кольцо с делением и единицей

Пример 10.1 (Примеры колец).

Теорема 10.1. Для любых элементов кольца a, b справедливы следующие утверждения:

1.
$$a0 = 0a = 0$$

2.
$$(-a)b = a(-b) = -(ab)$$

Доказательство.

Следствие 10.1. В кольце с 1 ноль необратим.

Определение 10.8 (Делитель нуля). Пусть $a \cdot b = 0$ $a, b \neq 0$, тогда a - левый делитель нуля, b - правый делитель нуля.

Пример 10.2 (Пример делителей нуля).

Теорема 10.2. Делители нуля необратимы

 $oxed{eta}$ оказательство.

Определение 10.9 (Идемпотент кольца). Такие элементы кольца, для которых выполняется $a=a^2$

Теорема 10.3. Идемпотенты - делители нуля

Определение 10.10 (Целостное кольцо). Ассоциативное, коммутативное кольцо с единицей без делителей нуля

Теорема 10.4. Конечное целое кольцо ??????

Теорема 10.5. *Каждое целостное кольцо может быть достроено до поля*

Определение 10.11 (Гомоморфизм колец). $h: R \to S$ - гомоморфизм, определённый так: $a \equiv b \Leftrightarrow h(a) = h(b)$

Определение 10.12 (Ядро кольца). $h:R\to S$ - гомоморфизм, тогда ядро кольца $\operatorname{Ker} h=\{a\in R:h(a)=0\}$

Теорема 10.6. \mathcal{A} дро кольца - подкольцо

Определение 10.13 (Идеал). R - кольцо, $\mathcal{I} \subseteq R$ - идеал (левый, правый, двусторонний), если

- 1. \mathcal{I} подкольцо
- 2. для любого $x \in R$ $x\mathcal{I} \subseteq \mathcal{I}$ (левый идеал), $\mathcal{I}x \subseteq \mathcal{I}$ (правый идеал)

Пример 10.3 (Пример идеалов).

Теорема 10.7. R - ассоциативное кольцо с единицей или R - тело или R тогда и только тогда когда в R Нет других идеалов, кроме $\{0\}$ и R

Определение 10.14 (Булевое кольцо).