LLaMA-Adapter

Title: LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention

Venue: ICML 2023

Reviewer: HyeongJun Do Last Updated: 05.06.2024

Refence

Paper Link: https://arxiv.org/abs/2303.16199

Github: https://github.com/OpenGVLab/LLaMA-Adapter/tree/main/alpaca_finetuning_v1

1. Introduction

• 대규모 언어 모델(LLMs): 최근 LLMs는 언어 이해 및 생성 능력에서 큰 진전을 보였음.

• 문제점: 기존의 LL됨. 이 메커니즘은 zero gating을 사용하여 학습 초기에는 기존 모델의 성능을 유지하고 점진적으로 새로운 신호를 통합함.

수식 2: Zero-initialized Attention

$$S_l = Q_l K_l^T / \sqrt{C}$$

여기서 Q_l , K_l 는 쿼리와 키 매트릭스.

수식 3: Gating Factor 적용

$$S_g = \left[\operatorname{softmax}\left(S_l^K\right) \cdot g_l; \operatorname{softmax}\left(S_l^{M+1}\right)\right]$$

Figure 2: **Details of LLaMA-Adapter.** We insert lightweight adapters with learnable prompts into L out of N transformer layers of LLaMA. To progressively learn the instructional knowledge, we adopt zero-initialized attention with gating mechanisms for stable training in early stages.

• 초기화된 주의 메커니즘과 zero gating이 적용된 모습을 다이어그램으로 설명.

3.3 Multi-modal Extension

- **다중 모달 학습**: 이미지 기반 학습 적용.
- 확장 가능성: 다양한 모달리티와의 통합.

LLaMA-Adapter는 다중 모달 학습으로 확장 가능하며, 텍스트와 이미지의 조합을 처리 가능. 이를 위해 이미지 기반 프롬프트를 추가하여, 모델이 이미지 조건부 언어 생성 작업을 수행할 수 있음. 이 방법은 ScienceQA와 COCO Caption 벤치마크에서 우수한 성능을 보였으며, 이는 다중모달 학습의 가능성을 증명함.

**Fig임. 이미지 조건부 언어 생성 작업에서 ScienceQA와 COCO Caption 벤치마크를 사용하여 평가되었으며, 기존의 이미지 기반 모델들과 비교하여 경쟁력 있는 성능을 입증함.

Table 2: Multi modality 작업 성능 비교 표

Table 2: **Question Answering Accuracy** (%) **on ScienceQA's** [41] **test set.** We report GPT-3 [4], ChatGPT [2], and GPT-4 [45] for zero-shot inference. *CoT* denotes to utilize additional chain of thought for question answering. *T* denotes the single-modal model with text-only input.

Model	Tuned Params	Avg	NAT	SOC	LAN	TXT	IMG	NO	G1-6	G7-12
Random Choice [41] Human [41]		39.83 88.40	40.28 90.23	46.13 84.97	29.25 87.48	47.45 89.60	40.08 87.50	33.66 88.10	39.35 91.59	40.67 82.42
MCAN [65]	95M	54.54	56.08	46.23	58.09	59.43	51.17	55.40	51.65	59.72
VisualBERT [33, 34]	111M	61.87	59.33	69.18	61.18	62.71	62.17	58.54	62.96	59.92
UnifiedQA [27]	223M	70.12	68.16	69.18	74.91	63.78	61.38	77.84	72.98	65.00
Unified QA_{CoT}	223M	74.11	71.00	76.04	78.91	66.42	66.53	81.81	77.06	68.82
GPT-3 [4]	0M	74.04	75.04	66.59	78.00	74.24	65.74	79.58	76.36	69.87
$GPT-3_{CoT}$	0M	75.17	75.44	70.87	78.09	74.68	67.43	79.93	78.23	69.68
ChatGPT $_{CoT}$ [2]	0M	78.31	78.82	70.98	83.18	77.37	67.92	86.13	80.72	74.03
GPT-4 $_{CoT}$ [45]	0M	83.99	85.48	72.44	90.27	82.65	71.49	92.89	86.66	79.04
$MM\text{-}COT_T$ [74]	223M	70.53	71.09	70.75	69.18	71.16	65.84	71.57	71.00	69.68
MM-COT	223M	84.91	87.52	77.17	85.82	87.88	82.90	86.83	84.65	85.37
$\begin{array}{c} \mathbf{LLaMA\text{-}Adapter}_T \\ \mathbf{LLaMA\text{-}Adapter} \end{array}$	1.2M 1.8M	78.31 85.19	79.00 84.37	73.79 88.30	80.55 84.36	78.30 83.72	70.35 80.32	83.14 86.90	79.77 85.83	75.68 84.05

• 모델, 파라미터 수, ScienceQA 및 COCO Caption 벤치마크 성능 지표를 비교한 표.

4.3 Generalization to Other Models

- 일반화 성능: 다른 사전 학습 모델에의 적용.
- 적용 사례: ViT, RoBERTa.

Zero-initialized attention 메커니즘은 ViT, RoBERTa와 같은 다른 사전 학습 모델에도 적용 가능. 이들 모델의 전통적인 비전 및 언어 작업에서 우수한 성능을 보였으며, 제안된 메커니즘의 일반화능력을 입증.

Table 3: 다른 모델에의 일반화 성능 비교 표

Table 3: **Ablation on Inserted Layers** of LLaMA's transformer.

Layers	Params	Val Acc (%)
10	0.97	55.95
20	1.37	73.36
30	1.79	83.85

Table 4: **Ablation on Zero-initialized Attention.** Blue highlights the gain.

Setting	Val Acc (%)
Rand-Init Attention	40.77
Zero-Init Attention	83.85
<i>Gain</i>	+43.08

• ViT, RoBERTa 등의 모델에 대해 zero-initialized attention 메커니즘 적용 후 성능을 비교한 표.

5. Conclusion

- 연구 요약: LLaMA-Adapter의 주요 기여.
- 향후 연구 방향: 추가적인 연구 가능성.

LLaMA-Adapter는 효율적인 미세 조정 방법으로, 적은 파라미터로도 높은 성능을 유지할 수 있는 방법을 제안함. Zero-initialized attention 메커니즘을 통해 기존 지식을 보존하면서 새로운 지시 신호를 통합하는 혁신적인 방법을 소개. 향후 연구에서는 더 다양한 모델과 작업에 대한 적용 가 능성을 탐구할 예정.

6. Code

zero-initialized attention 메커니즘

```
import torch
import torch.nn as nn
from transformers import LlamaModel
class LLaMAAdapterV1(nn.Module):
    def __init__(self, llama_model, prompt_length, adapter_dim):
        super(LLaMAAdapterV1, self).__init__()
        self.llama = llama_model
        self.prompt_embeddings = nn.Parameter(torch.randn(prompt_length,
llama_model.config.hidden_size))
        self.adapter = nn.Linear(llama_model.config.hidden_size,
adapter_dim)
        self.zero_gating = nn.Parameter(torch.zeros(adapter_dim))
    def forward(self, input_ids, attention_mask=None):
        # LLaMA 모델의 출력
        hidden_states = self.llama(input_ids,
attention_mask=attention_mask).last_hidden_state
        # Adaption Prompt 추가
```

```
prompts = self.prompt_embeddings.expand(hidden_states.size(0), -1,
-1)
hidden_states = torch.cat([prompts, hidden_states], dim=1)

# Zero-initialized Attention 적용
attention_scores = torch.matmul(hidden_states,
hidden_states.transpose(-1, -2)) / self.llama.config.hidden_size ** 0.5
attention_probs = torch.nn.functional.softmax(attention_scores,
dim=-1)

gated_attention = attention_probs * self.zero_gating
hidden_states = torch.matmul(gated_attention, hidden_states)

return hidden_states
```

- prompt_embeddings: 학습 가능한 프롬프트 임베딩을 초기화
- adapter: LLaMA 모델의 출력 차원을 어댑터 차원으로 변환
- zero_gating: 제로 초기화된 게이팅 파라미터를 정의
- forward 메서드: 입력 토큰에 대한 LLaMA 모델의 출력을 얻고, 프롬프트 임베딩을 추가하여 zero-initialized attention 메커니즘을 적용

Finetuning(Training)

```
import torch
from transformers import Trainer, TrainingArguments, LlamaTokenizer,
LlamaForSequenceClassification
from models_llama_adapter import LLaMAAdapterV1
# 사전 학습된 LLaMA 모델 로드
llama_model = LlamaForSequenceClassification.from_pretrained('llama-base')
tokenizer = LlamaTokenizer.from_pretrained('llama-base')
# LLaMA-Adapter V1 초기화
llama_adapter = LLaMAAdapterV1(llama_model, prompt_length=10,
adapter_dim=512)
# 학습 설정
training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    save_steps=10_000,
    save_total_limit=2,
)
# 트레이너 초기화
trainer = Trainer(
    model=llama_adapter,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
)
# 학습 시작
```

```
trainer.train()
```

- TrainingArguments: 학습 설정을 정의 (출력 디렉토리, 에포크 수, 배치 크기 등)
- Trainer: 모델, 학습 설정, 데이터셋을 사용하여 트레이너를 초기화
- trainer.train(): 모델 학습을 시작

Evaluation

```
import torch
from transformers import Trainer, TrainingArguments, LlamaTokenizer,
LlamaForSequenceClassification
from models_llama_adapter import LLaMAAdapterV1
# 사전 학습된 LLaMA 모델 로드
llama_model = LlamaForSequenceClassification.from_pretrained('llama-base')
tokenizer = LlamaTokenizer.from_pretrained('llama-base')
# LLaMA-Adapter V1 초기화
llama_adapter = LLaMAAdapterV1(llama_model, prompt_length=10,
adapter_dim=512)
# 평가 설정
training_args = TrainingArguments(
   output_dir='./results',
    per_device_eval_batch_size=8,
)
# 트레이너 초기화
trainer = Trainer(
   model=llama_adapter,
   args=training_args,
    eval_dataset=eval_dataset,
)
# 평가 시작
results = trainer.evaluate()
print(results)
```

- Trainer: 평가 설정과 데이터셋을 사용하여 트레이너를 초기화
- trainer.evaluate(): 모델 평가를 수행하고 결과를 출력