

INVERSÃO MAGNÉTICA EM DIFERENTES ESCALAS

André Luis Albuquerque dos Reis

Tese apresentada ao Programa de Pósgraduação em Geofísica do Observatório Nacional, como parte dos requisitos necessários à obtenção do título de Doutor em Geofísica.

Orientador(a): Dr. Vanderlei Coelho de

Oliveira Junior

Co-orientador(a): Dra. Valéria Cristina

Ferreira Barbosa

Rio de Janeiro Setembro de 2019

Sumário

Li	Lista de Figuras		ii	
		eneralização do vínculo de positividade em camadas alentes magnéticas	1	
		Cálculo do vetor magnético a partir de dados de mi-		
		opia magnética no domínio do espaço	2	
	osco	•	3	
cr	osco	opia magnética no domínio do espaço		
cr	Me	opia magnética no domínio do espaço	3	
cr	Met	opia magnética no domínio do espaço todologia Fundamentação teórica	3	

Lista de Figuras

Parte I

Generalização do vínculo de positividade em camadas equivalentes magnéticas

Parte II

Cálculo do vetor magnético a partir de dados de microscopia magnética no domínio do espaço

Capítulo 1

Metodologia

1.1 Fundamentação teórica

Com o intuito de investigarmos mais profundamente que o cálculo das componentes do vetor magnético não depende da direção de magnetização, iremos explicar teoricamente como este processo é possível no contexto da camada equivalente. Em situações práticas, somente uma das componentes é medida no laboratório a uma distância fixa da superfície da amostra. Considerando que as medições são realizadas em regiões livres de fontes e, portanto, externas as amostras de rocha. Além disso, consideramos que o cálculo das componentes do vetor magnético não depende do tipo de fonte, bem como de sua configuração espacial. Assumimos também que o campo magnético não varia com o tempo ou que esta variação seja tão pequena que pode ser desprezada ao longo das medições. Consequentemente, o campo de indução magnética $\mathbf{B}(x,y,z)$ é governado pela lei de Gauss

$$\nabla . \mathbf{B}(x, y, z) = 0 \tag{1.1}$$

e pela lei de Ampère

$$\nabla \times \mathbf{B}(x, y, z) = 0. \tag{1.2}$$

Portanto, em coordenadas Cartesianas, a equação 1.2 corresponde a

$$\partial_y B_z - \partial_z B_y = 0$$

$$\partial_z B_x - \partial_x B_z = 0$$

$$\partial_x B_y - \partial_y B_x = 0,$$
(1.3)

em que $\partial_{\alpha} \equiv \frac{\partial}{\partial \alpha}$ é denotado como a derivada parcial em relação a coordenada α , $\alpha=x,y,z$.

Considere que $\tilde{\mathbf{B}}(x,y,z)$ é o campo de indução magnética produzido por uma camada contínua de dipolos que tem direção de magnetização constante $\hat{\mathbf{m}}(\mathbf{q})$, analogamente a equação ??, posicionada a uma profundidade $z=z_c$ abaixo do plano de observação. O campo de indução magnética produzido por esta camada é dado por

$$\tilde{\mathbf{B}}(x, y, z) = \gamma_m \,\tilde{\mathbf{M}}(x, y, z) \,\hat{\mathbf{m}}(\mathbf{q}) \,, \tag{1.4}$$

em que $\tilde{\mathbf{M}}(x,y,z)$ é uma matriz dada por

$$\tilde{\mathbf{M}}(x,y,z) = \begin{bmatrix}
\partial_{xx}\Phi(x,y,z) & \partial_{xy}\Phi(x,y,z) & \partial_{xz}\Phi(x,y,z) \\
\partial_{xy}\Phi(x,y,z) & \partial_{yy}\Phi(x,y,z) & \partial_{yz}\Phi(x,y,z) \\
\partial_{xz}\Phi(x,y,z) & \partial_{yz}\Phi(x,y,z) & \partial_{zz}\Phi(x,y,z)
\end{bmatrix} ,$$
(1.5)

com elementos $\partial_{\alpha\beta}\Phi(x,y,z)\equiv\frac{\partial^2\Phi(x,y,z)}{\partial\alpha\partial\beta}$, $\alpha,\beta=x,y,z$, representando as derivadas da função hamônica

$$\Phi(x,y,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{p(x'',y'',z_c) dS''}{\left[(x-x'')^2 + (y-y'')^2 + (z-z_c)^2 \right]^{\frac{1}{2}}}, \quad z_c > z.$$
 (1.6)

Nesta equação x'', y'' and z_c são as coordenadas do elemento de área dS'', que tem momento magnético por unidade de área definido pela função $p(x'', y'', z_c)$. De maneira simplificada, as componentes do vetor magnético podem ser reescritas como

$$\tilde{B}_{\alpha}(x,y,z) = \gamma_m \,\partial_{\alpha\beta}\Phi(x,y,z)m_{\beta} \,, \tag{1.7}$$

em que $\tilde{B}_{\alpha}(x,y,z)$ é a componente α , $\alpha=x,y,z$, do campo de indução magnética e m_{β} é a componente cartesiana β , $\beta=x,y,z$, da magnetização da camada. A componente vertical do campo de indução magnética é dada, por exemplo, por

$$\tilde{B}_z(x,y,z) = \gamma_m \,\partial_{xz} \Phi^{\dagger}(x,y,z) m_x^{\dagger} + \partial_{yz} \Phi^{\dagger}(x,y,z) m_y^{\dagger} + \partial_{zz} \Phi^{\dagger}(x,y,z) m_z^{\dagger} \,, \qquad (1.8)$$

- 1.2 Problema direto para a camada equivalente da componente vertical do campo
- 1.3 Problema inverso e o cálculo das componentes do vetor magnético