V701

Reichweite von Alphastrahlung

Evelyn Romanjuk evelyn.romanjuk@tu-dortmund.de

 $Ramona-Gabriela\ Kallo$ ramonagabriela.kallo@tu-dortmund.de

Durchführung: 19.06.18 Abgabe: 26.06.18

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziels	setzung	3		
2	The	orie	3		
3	3.1	Chführung Bestimmung der Reichweite			
4	Auswertung				
	4.1 4.2 4.3	Reichweite der α -Strahlung	5		
5	Disk	ussion	12		
Lit	teratı	ır	12		

1 Zielsetzung

Ziel des Versuches ist es die Reichweite von α -Strahlung in Luft zu bestimmen, um daraus die Energie der Strahlung zu bestimmen. Am Ende soll die Statistik des radioaktiven Zerfalls überprüft werden.

2 Theorie

Durchlaufen α -Teilchen Luft, so kommt es zu Wechselwirkung mit den Luftatomen. Es kommt zu Energieverlust beziehungsweise Abgabe von Energie aufgrund von Ionisierungsprozessen, Anregung und Dissoziation von Molekülen.

Der Energieverlust pro Wegstück ist somit von der Energie der α - Strahlung und der Dichte der durchlaufenden Materie abhängig. Bei kleinen Geschwindigkeiten nimmt die Wechselwirkungswahrscheinlichkeit zu. Da es unterschiedliche Wechselwirkungswahrscheinlichkeiten für alle Energiebereiche existieren, gibt es keine universelle Formel. Für hinreichend große Energiebereiche gibt es die Bethe-Bloch-Gleichung:

$$-\frac{dE_{\alpha}}{dx} = \frac{z^2 e^4}{4\pi\epsilon_0 m_e} \frac{nZ}{v^2} \ln\left(\frac{2m_e v^2}{I}\right)$$

wobei v die Geschwindigkeit der α -Strahlung, z die Ladung, n die Teilchendichte, I die Ionisierungsenergie des durchlaufenen Gases, Z die Ordnungszahl sind. Für kleine Energien gilt diese Formel nicht mehr aufgrund von Ladungsaustauschprozesse. Deshalb wird empirisch eine gewonnene Kurve für eine α -Strahlung in Luft verwendet. Es sollen nur Energien unter 2,5 MeV berücksichtigt werden, damit die folgende Beziehung gelten kann:

$$R_{\rm m} = 3, 1 \cdot E_{\alpha}^{\frac{3}{2}} \tag{1}$$

wobei $R_{\rm m}$ die mittlere Reichweite von α -Teilchen ist. Diese beschreibt die Reichweite, die die Hälfte der Teilchen noch erreicht. Die Reichweite R eines α -Teilchens lässt sich durch:

$$\int_0^{E_\alpha} \frac{dE_\alpha}{-dE_\alpha/dx}$$

bestimmen. Zu beachten ist noch, dass die Bethe-Bloch-Gleichung bei sehr kleinen Energien aufgrund der dann auftretenden Ladungsaustauschprozesse nicht mehr anwendbar ist. Wenn die Temperatur und das Volumen konstant bleibt, so ist die Reichweite eines α -Teilchens proportional zum Druck p. Durch diese Bedingungen wird eine Absorptionsmessung gemacht. Für die effektive Länge ergibt sich:

$$x = x_0 \frac{p}{p_0} \tag{2}$$

wobei $p_0=1013\,\mathrm{mbar}$ der Normaldruck und x_0 der feste Abstand zwischen der $\alpha\textsc{-Strahler}$ und Detektor ist.

3 Durchführung

Bei dem im Versuch verwendeten α -Strahler handelt es sich um $^{241}_{95}$ Am, welches mit einer Halbwertszeit von $T_{1/2}=458a$:

$$^{241}_{95}\mathrm{Am} \longrightarrow ^{237}_{93}\mathrm{Np} + ^{4}_{2}\mathrm{He}$$

zerfällt. Das Präparat befindet sich in einem evakuierbaren Glaszylinder auf einer beweglichen Halterung, mit der der Abstand des Präparats zum am Ende des Zylinders befindlichen Detektors verändert werden kann. Der Detektor ist ein Halbleiter-Sperrschichtzähler, der ähnlich einer in Sperrrichtung beitriebenen Diode aufgebaut ist. Wenn ein α -Teilchen auf den Detektor trifft, entstehen Elektronen-Loch-Paare in der Verarmungszone und dadurch ein Stromimpuls. Dieser wird über einen Vorverstärker an einen Vielkanalanalysator geleitet und dort analysiert. Die Pulshöhe ist dabei proportional zur Energie der α -Teilchen. Der Vielkanalanalysator wird über einen Computer mithilfe des Programms "Multichannel Analyzer" (MCA) betrieben, über welches sich unter anderem die Messzeit einstellen lässt. Hier lässt sich einstellen, ob eine Zeitspanne oder eine bestimmte Anzahl Pulse lang gemessen werden soll. Zunächst muss an diesem allerdings die Diskriminatorschwelle eingestellt werden. Dabei werden bei maximalem Abstand des Präparates zum Detektor die unteren Kanäle weggeschnitten, da ansonsten durch Rauschen des Verstärkers das Ergebnis verfälscht würde. Der experimentelle Aufbau ist in Abbildung 1 zu sehen.

Abbildung 1: Aufbau zur Bestimmung der Reichweite.[1, S. 3]

3.1 Bestimmung der Reichweite

Nach Einstellen der Diskreminatorschwelle wird das Präparat so nah an den Detektor herangeführt, dass dieser gerade wieder anfängt, α -Teilchen zu registrieren. Anschließend wird das Präparat fixiert und der Glaskolben evakuiert. Nun wird einmal für die Länge $l=1,5\,\mathrm{cm}$ und $l=2\,\mathrm{cm}$ in 50 mbar-Schritten die Energieverteilung gemessen und über jeweils 120 s Messungen durchgeführt. Zu jedem Druck wird nun der Kanal des Energiemaximums und die Gesamtpulszahl notiert. Es wird von einer linearen Energieskala ausgegangen und so kann die Energie der α -Teilchen in Abhängigkeit vom Druck bestimmt werden. Bei 0 mbar entspricht dies etwa einem Kanal von 4 MeV.

3.2 Statistik des radioaktiven Zerfalls

Anschließend soll die Statistik des radioaktiven Zerfalls überprüft werden, indem bei vollkommen evakuiertem Zylinder 100 Messungen zu je 10 s durchgeführt in denen die Anzahl der Zerfälle aufgenommen wird. Danach werden hieraus die Varianz und der Mittelwert errechnet und mit einer Gauß- und Poissonverteilung verglichen.

4 Auswertung

4.1 Einstellen der Diskreminatorschwelle

Das Einstellen der Diskreminatorschwelle mithilfe des Vielkanalanalysators ergibt die in Tabelle 1 aufgetragenen Messwerte. Es soll erreicht werden, dass sich die Zählrate von 0 mbar auf 1000 mbar mindestens halbiert. Unter den jeweiligen Einstellungen des Vielkanalanalysators können die weiteren Versuchsteile durchgeführt werden.

$l/10^{-2}\mathrm{m}$	$p/10^{-3}$ bar	Counts	Kanal	Zählrate
1,5	0	457	527	76537
	1000	584	366	33 072
2	0	249	366	7887
	1000	331	527	56 593

Tabelle 1: Messwerte beim Einstellen der Diskreminatorschwelle.

4.2 Reichweite der α -Strahlung

Zur Berechnung der mittleren Reichweite der α -Teilchen werden die Zählraten der jeweiligen eingestellten Abstände l gegen die effektive Länge x_0 , welche über Gleichung 2 berechnet wird, aufgetragen. Die verwendeten Messdaten können aus Tabelle 2 entnommen werden. In diesen sind die Drücke p, die Counts, die Kanäle und die Zählraten, welche vom Computerprogramm ausgegeben wurden, sowie die effektive Länge x_0 und die

Tabelle 2: Messwerte zur Bestimmung der mittleren Reichweite.

$l/10^{-2}$ m	$p/10^{-3}$ bar	Counts	Kanal	Zählrate	$x_0/10^{-3}\mathrm{m}$	$E/10^6 \mathrm{eV}$
1,5	0	941	527	161877	0	4
	50	963	495	161277	0,74	3,76
	100	950	495	157732	1,48	3,76
	150	1010	483	157625	$2,\!22$	$3,\!67$
	200	1065	463	156034	2,96	$3,\!51$
	250	1096	463	153792	3,70	$3,\!51$
	300	1064	463	152001	$4,\!44$	$3,\!51$
	350	1102	455	150500	$5,\!18$	3,45
	400	1061	448	147357	$5,\!92$	3,4
	450	1157	431	145209	$6,\!66$	$3,\!27$
	500	1159	423	142490	$7,\!40$	3,21
	550	1147	419	138768	8,14	3,18
	600	1180	419	135112	8,88	3,18
	650	1255	399	131522	$9,\!62$	3,03
	700	1306	399	126386	$10,\!37$	3,03
	750	1404	399	121800	$11,\!11$	3,03
	800	1308	391	115545	11,85	2,97
	850	1333	367	108058	$12,\!59$	2,79
	900	1360	376	100227	$13,\!33$	$2,\!85$
	950	1401	367	98248	$14,\!07$	2,79
	1000	1355	367	75984	14,81	2,79
2	0	657	515	114855	0	4
	50	672	511	112216	0,99	3,97
	100	681	495	112152	1,97	3,84
	150	682	463	111337	$2,\!96$	$3,\!59$
	200	789	463	108275	$3,\!95$	$3,\!59$
	250	759	455	106929	4,93	$3,\!53$
	300	765	463	104299	$5,\!92$	$3,\!59$
	350	780	448	103377	$6,\!91$	3,48
	400	836	431	99788	$7,\!89$	$3,\!35$
	450	840	415	98292	8,88	$3,\!22$
	500	866	399	93292	9,87	3,09
	550	879	399	89007	10,86	3,09
	600	893	399	84418	11,85	3,09
	650	949	399	77557	12,83	3,09
	700	932	367	69840	$13,\!82$	2,85
	750	944	367	61664	14,81	2,85
	800	965	367	53202	15,79	2,85
	850	929	367	42037	16,78	2,85
	900	793	367	31698	17,77	2,85
	950	663	367	23749	18,76	2,85
	1000	370	367	12139	19,74	2,85

Abbildung 2: Zählrate als Funktion der effektiven Länge x_0 für $l=1,5\cdot 10^{-2}\,\mathrm{m}.$

Abbildung 3: Zählrate als Funktion der effektiven Länge x_0 für $l=2\cdot 10^{-2}\,\mathrm{m}.$

entsprechenden Energien E zu finden. Für die letzte Größe wird für 0 mbar eine Energie von 4 MeV gesetzt, alle weiteren Energien werden proportional über die Kanäle bestimmt. Die Abbildungen 2 und 3 zeigen die Zählraten in Abhängigkeit der effektiven Länge. Auf Höhe der halben maximalen Zählrate $\frac{N_{\max}}{2}$ wird eine Horizontale gelegt. Zudem wird mithilfe des Pythonmoduls matplotlib in den annähernd linear abfallenden Bereichen der beiden Funktionen eine lineare Regression der Form

$$y = mx + b$$

vorgenommen. Es ergeben sich für Steigung und Y-Achsenabschnitt:

$$l = 1.5 \text{ cm} : m = -13.3 \pm 3.9$$

$$b = 277.4 \pm 547.5$$

$$l = 2 \text{ cm} : m = -9.5 \pm 0.2$$

$$b = 201.5 \pm 3.6$$

Der Schnittpunkt der beiden eingezeichneten Geraden entspricht der mittleren Reichweite der α -Strahlung und kann über

$$\frac{N_{\text{max}}}{2} = mx + b$$

$$x = \frac{1}{m} \left(\frac{N_{\text{max}}}{2} - b \right)$$

berechnet werden. Da es sich bei m und b um fehlerbehaftete Größen handelt, muss auch für x ein Fehler Δx berechnet werden. Dies geschieht über die Gaußsche Fehlerfortpflanzung:

$$\varDelta x = \sqrt{\left(-\frac{1}{m^2} \bigg(\frac{N_{\max}}{2} - b\bigg)\right)^2 \cdot (\varDelta m)^2 + \left(\frac{1}{m}\right)^2 \cdot (\varDelta b)^2}$$

Die mittleren Reichweiten der α -Strahlung betragen damit:

$$x_{1,5} = (0.015 \pm 2.707 \cdot 10^{-7}) \,\mathrm{m}$$

 $x_2 = (0.015 \pm 3.789 \cdot 10^{-7}) \,\mathrm{m}$

Durch Umstellen von Gleichung 1 und Einsetzen der berechneten mittleren Reichweiten lassen sich die zugehörigen Energie E bestimmen. Es ergibt sich:

$$E_{1.5} = 2{,}86\,{\rm MeV}$$

$$E_2 = 2{,}86\,{\rm MeV}$$

In den Abbildungen 4 und 5 sind die Energien E als Funktion der effektiven Länge zu sehen.

Der Energieverlust $-\frac{\mathrm{d}E}{\mathrm{d}x}$ ist jeweils der Betrag der Steigung der Ausgleichsgeraden, welche wiederum mit matplotlib erstellt werden. Es werden folgende Werte ausgegeben:

Abbildung 4: Energie als Funktion der effektiven Länge x_0 für $l=1,5\cdot 10^{-2}\,\mathrm{m}.$

Abbildung 5: Energie als Funktion der effektiven Länge x_0 für $l=2\cdot 10^{-2}\,\mathrm{m}.$

$$\begin{split} -\frac{\mathrm{d}E}{\mathrm{d}x_{1,5}} &= (76,\!48 \pm 3,\!04) \, \frac{\mathrm{MeV}}{\mathrm{m}} \\ -\frac{\mathrm{d}E}{\mathrm{d}x_2} &= (62,\!22 \pm 4,\!04) \, \frac{\mathrm{MeV}}{\mathrm{m}} \end{split}$$

4.3 Statistik des radioaktiven Zerfalls

In Tabelle 3 sind die Zählraten für hundert Messungen bei einem festen Abstand von $l=2,5\,\mathrm{cm}$ zu finden.

Diese werden mit matplotlib in einem Histogramm aufgetragen. Ebenso wird mit dem Pythonmodul eine Gauß- und eine Poissonverteilung über die Messwerte gelegt, wie in Abbildung 6 zu sehen ist.

Abbildung 6: Histogramm der Messwerte, sowie Gauß- und Poissonverteilung.

 ${\bf Tabelle~3:~Messwerte~zur~Bestimmung~der~Statistik}.$

Messung	Zählrate	Messung	Zählrate	Messung	Zählrate
1	7248	35	6576	69	6816
2	6803	36	6673	70	7548
3	6875	37	6760	71	6675
4	7116	38	7170	72	7120
5	7116	39	7343	73	6950
6	7257	40	7356	74	7212
7	7132	41	6937	75	6912
8	7191	42	6837	76	6882
9	6716	43	6965	77	7030
10	6765	44	6886	78	6968
11	7085	45	6720	79	6678
12	6762	46	7017	80	7142
13	7004	47	7042	81	6876
14	6572	48	6702	81	6876
15	6694	49	6821	82	7253
16	6888	50	7034	83	7120
17	6866	51	6876	84	6854
18	6596	52	6859	85	7255
19	7309	53	6729	86	7177
20	6851	54	6829	87	7277
21	6999	55	6687	88	7269
22	6517	56	7078	89	6931
23	7024	57	6676	90	6642
24	6767	58	6791	91	6932
25	6908	59	6777	92	7217
26	6569	60	7005	93	7111
27	6814	61	7516	94	6760
28	6823	62	6942	95	7199
29	7146	63	7025	96	6739
30	6712	64	7022	97	7115
31	7048	65	6964	98	7046
32	7141	66	7022	99	7163
33	6879	67	7145	100	6661
34	7227	68	7381		

5 Diskussion

Der erste Versuchsteil ergibt mittlere Reichweiten der α -Strahlung von

$$x_{1,5} = (0.015 \pm 2.707 \cdot 10^{-7}) \, \mathrm{m}$$

$$x_2 = (0.015 \pm 3.789 \cdot 10^{-7}) \, \mathrm{m}$$

und die zugehörigen Energien

$$E_{1,5} = 2,86 \,\mathrm{MeV}$$

 $E_2 = 2,86 \,\mathrm{MeV}.$

Es fällt auf, dass sich die berechneten Reichweiten nur etwa auf einen geringen Fehlerwert unterscheiden, sodass auch die entsprechenden Energien für beide Abstände gleich sind. Dies wurde zu Beginn des Versuchs angenommen und kann hiermit also bestätigt werden. Die Energieverluste

$$\begin{split} -\frac{\mathrm{d}E}{\mathrm{d}x_{1,5}} &= (76,\!48 \pm 3,\!04) \, \frac{\mathrm{MeV}}{\mathrm{m}} \\ -\frac{\mathrm{d}E}{\mathrm{d}x_2} &= (62,\!22 \pm 4,\!04) \, \frac{\mathrm{MeV}}{\mathrm{m}} \end{split}$$

befinden sich etwa in der gleichen Größenordnung, weichen aber dennoch mit etwa 23% voneinander ab. Da dieser Versuchsteil nicht genau genug durchgeführt worden ist, ist anzunehmen, dass hier genauere Ergebnisse zu erreichen sind.

Im letzten Teil des Versuchs soll das Histogramm der Messwerte mit einer Gauß- und einer Poissonverteilung verglichen werden. Vorab wurde angenommen, dass sich das Histogramm wie eine Poissonverteilung verhält. In Abbildung 6 lässt sich allerdings erkennen, dass die Messwerte eine etwas höhere Übereinstimmung mit der Gaußverteilung zeigen, was die Annahme damit nicht bestätigt. Dass mit dem Histogramm allerdings keine klaren Aussagen getroffen werden können, könnte messtechnische Gründe haben, weshalb nicht ausgeschlossen werden sollte, dass eine genauere Messung in diesem Fall auch zu einem besseren Ergebnis führen könnte.

Literatur

[1] TU Dortmund. Versuch 701: Reichweite von Alphastrahlung. 2018. URL: http://129.217.224.2/HOMEPAGE/MEDPHYS/BACHELOR/AP/SKRIPT/V701.pdf (besucht am 22.06.2018).