Lecture 10a
of
EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 11th November 2024

□ Logic Inverter VTC

- ideal logic inverter
- voltage transfer characteristics
- > with a resistive load
- graphical method

Input-Output Voltage Relation

(ideal logic inverter)

- □ In <u>ideal</u> digital circuits, the logic states "0" and "1" are represented by only two fixed voltages (e.g. 0 V and V_{DD}).
 - In such <u>ideal</u> situation, the **input-output voltage relationship** is simple (e.g. in a logic inverter):

Input-Output Voltage Relation

(real logic inverter)

□ In <u>real</u> digital circuits, there is a <u>continuous</u> range of voltages for the logic states "0" and "1". And MOS transistors are <u>not ideal</u> <u>switches</u>.

- The input-output voltage relationship will fall short of the ideal.
- representative case of the logic inverter:voltage transfer characteristics

Voltage Transfer Characteristics

(key voltage quantities)

- ☐ To specify clearly the **voltage transfer characteristics** (**VTC**), several key voltage quantities need to be defined:
 - ➤ V_{OH}: max output voltage when output is logic "1"

 - $\triangleright V_{II}$: max input voltage which can be interpreted as "0"
 - ➤ V_{IH}: min input voltage which can be interpreted as "1"

- > The definitions apply to not only the logic inverter but also other logic gates.

Noise Margins in Logic Voltages

(for logic "0" & "1")

The **noise margins** (and the key voltages) are part of the **design consideration**.

VTC of Logic Inverter

(nMOSFET with a resistor load)

- □ To determine the VTC of the logic inverter, we will use the simple implementation of an nMOSFET with a resistor load to illustrate the techniques:
 - > graphical method & solving simultaneous equations
 - ➤ In the CMOS logic inverter, the circuit analysis is more complicated.

- ➤ One key step is to understand the three major operation modes of the MOSFET: cut-off, triode (linear), and saturation.
- > The resistor load has only one "mode": one equation to define the voltage and current.

(What is that "mode"?)

VTC of Logic Inverter

(graphical method)

- □ Resistor's I-V curves & nMOSFET's
 - > intersection points of the VTC

increasing

$$v_{GS} = v_{IN} > V_T$$

 $\rightarrow V_{DS}(=V_{out})$

Xi'an Jiaotong-Liverpool University 西交利物浦大學