Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Trepalin Timofey Гр. 320207

Вариант 24

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:5469:6d6f:6600:0/103 |

Задание 1.2: разбить сеть из п.1.1 на 56 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\acute{\Gamma}C,}$	2001: db8: 0: 4 eef: 5469: 6d6f: 6600: 0/109
Префикс $N_{\mathrm{C,PePS}}$	2001:db8:0:4eef:5469:6d6f:67b8:0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (24*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (24*16)/256=128

Дано: Сеть 11.128.0.0/12

Задание 2.1.1: разбить сеть на 512 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	128	0	0
Адрес сети	00001011	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета.

3. Итого, получается, что сеть 11.128.0.0/12 мы разбили на 512 подсети, в каждой из которых по 2046 узлов, указываем первые 5 подсетей:

	11	128	0	0
Адрес сети дв.с	00001011	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

299	255	248
Адрес сети $N_1/$ Префикс N_1	11.128.0.0	0/21
Адрес первого узла N_1	11.128.0.1	L
Адрес последнего узла N_1	11.128.7.2	254
Широковещательный адрес N_1	11.128.7.2	255
Адрес сети $N_2/$ Префикс N_2	11.128.8.0	0/21
Адрес первого узла N_2	11.128.8.1	L
Адрес последнего узла N_2	11.128.15	.254
Широковещательный адрес N_2	11.128.15	.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.128.16	.0/21
Адрес первого узла N_3	11.128.16	.1
Адрес последнего узла N_3	11.128.23	.254
Широковещательный адрес N_3	11.128.23	.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.128.24	.0/21
Адрес первого узла N_4	11.128.24	.1
Адрес последнего узла N_4	11.128.31	.254
Широковещательный адрес N_4	11.128.31	.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.128.32	.0/21
Адрес первого узла N_5	11.128.32	.1
Адрес последнего узла N_5	11.128.39	.254
Широковещательный адрес N_5	11.128.39	.255

Дано: Сеть 11.128.0.0/12

Задание **2.1.2:** разбить сеть на 1200 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(1200 \leqslant 2^{11} = 2048)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета (получается, что сеть можно разбить на 2048 подсетей: $2^{11} = 2048$; оставшиеся 9 бит идут под узлы: $2^9 - 2 = 510$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxed{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.128.0.0/23
Адрес первого узла N_1	11.128.0.1
Адрес последнего узла N_1	11.128.1.254
Широковещательный адрес N_1	11.128.1.255

$oxed{\mathrm{A}}$ дрес сети $N_2/$ Префикс N_2	11.137.94.0/23
Адрес первого узла N_2	11.137.94.1
Адрес последнего узла N_2	11.137.95.254
Широковещательный адрес N_2	11.137.95.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 8192 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	128	0	0
Адрес сети	00001011	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=13, т.к. $2^{13}-2=8190$. Т.е. нужно выбрать такую маску, которря выделит ровно 13 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^7=1024$ подсетей по 8190 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.143.96.0/19
Адрес первого узла N_1	11.143.96.1
Адрес последнего узла N_1	11.143.127.254
Широковещательный адрес N_1	11.143.127.255
Адрес сети $N_2/$ Префикс N_2	11.143.128.0/19
Адрес первого узла N_2	11.143.128.1
Адрес последнего узла N_2	11.143.159.254
Широковещательный адрес N_2	11.143.159.255
Адрес сети $N_3/$ Префикс N_3	11.143.160.0/19
Адрес первого узла N_3	11.143.160.1
Адрес последнего узла N_3	11.143.191.254
Широковещательный адрес N_3	11.143.191.255

$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.143.192.0/19
Λ дрес первого узла N_4	11.143.192.1
Адрес последнего узла N_4	11.143.223.254
Широковещательный адрес N_4	11.143.223.255
Адрес сети $N_5/$ Префикс N_5	$oxed{11.143.224.0/19}$
Адрес сети $N_5/$ Префикс N_5 Адрес первого узла N_5	11.143.224.0/19 11.143.224.1
	,

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 1000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	128	0	0
Адрес сети	00001011	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022 \geqslant 1000$.

	11	128	U	U
Адрес сети дв.с	00001011	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.128.0.0/22
Адрес первого узла N_1	11.128.0.1
Адрес последнего узла N_1	11.128.3.254
Широковещательный адрес N_1	11.128.3.255

Адрес сети $N_2/$ Префикс N_2	11.143.252.0/22
Адрес первого узла N_2	11.143.252.1
Адрес последнего узла N_2	11.143.255.254
Широковещательный адрес N_2	11.143.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 8000 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	128	0	0
Адрес сети	00001011	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=13, т.к. $2^{13}-2=8190$.

	11	128	0	0
Адрес сети дв.с	00001011	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11100000	00000000
	255	255	224	0

3. Указываем последние 5 подсетей:

$oxedsymbol{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.143.96.0/19
Λ дрес первого узла N_1	11.143.96.1
Адрес последнего узла N_1	11.143.127.254
Широковещательный адрес N_1	11.143.127.255
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	11.143.128.0/19
Λ дрес первого узла N_2	11.143.128.1
Адрес последнего узла N_2	11.143.159.254
Широковещательный адрес N_2	11.143.159.255

$oxed{\mathrm{A}}$ дрес сети $N_3/$ Префикс N_3	11.143.160.0/19
Адрес первого узла N_3	11.143.160.1
Адрес последнего узла N_3	11.143.191.254
Широковещательный адрес N_3	11.143.191.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.143.192.0/19
Адрес первого узла N_4	11.143.192.1
Адрес последнего узла N_4	11.143.223.254
Широковещательный адрес N_4	11.143.223.255
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	11.143.224.0/19
Адрес первого узла N_5	11.143.224.1
Адрес последнего узла N_5	11.143.255.254
Широковещательный адрес N_5	11.143.255.255