

Polynomials of bounded strength

Arthur Bik University of Bern

29 November 2018, Veenendaal

joint work with Jan Draisma and Rob Eggermont

b Universität Bern

$$x_{1}x_{2}x_{5} + x_{2}x_{3}x_{5} + x_{3}x_{4}x_{5} + x_{1}x_{5}^{2} + x_{2}x_{5}^{2} + x_{3}x_{5}^{2} - x_{4}x_{5}^{2} + x_{1}x_{2}x_{6} + x_{2}x_{3}x_{6} + x_{3}x_{4}x_{6} - x_{1}x_{6}^{2} - x_{2}x_{6}^{2} - x_{3}x_{6}^{2} + x_{4}x_{6}^{2} + x_{1}x_{2}x_{7} + x_{2}x_{3}x_{7} + x_{3}x_{4}x_{7} - x_{1}x_{7}^{2} - x_{2}x_{7}^{2} - x_{3}x_{7}^{2} + x_{4}x_{7}^{2} + x_{1}x_{2}x_{8} + x_{2}x_{3}x_{8} + x_{3}x_{4}x_{8} + x_{1}x_{8}^{2} + x_{2}x_{8}^{2} + x_{3}x_{8}^{2} - x_{4}x_{8}^{2}$$

b UNIVERSITÄT BERN

$$x_{1}x_{2}x_{5} + x_{2}x_{3}x_{5} + x_{3}x_{4}x_{5} + x_{1}x_{5}^{2} + x_{2}x_{5}^{2} + x_{3}x_{5}^{2} - x_{4}x_{5}^{2} + x_{1}x_{2}x_{6} + x_{2}x_{3}x_{6} + x_{3}x_{4}x_{6} - x_{1}x_{6}^{2} - x_{2}x_{6}^{2} - x_{3}x_{6}^{2} + x_{4}x_{6}^{2} + x_{1}x_{2}x_{7} + x_{2}x_{3}x_{7} + x_{3}x_{4}x_{7} - x_{1}x_{7}^{2} - x_{2}x_{7}^{2} - x_{3}x_{7}^{2} + x_{4}x_{7}^{2} + x_{1}x_{2}x_{8} + x_{2}x_{3}x_{8} + x_{3}x_{4}x_{8} + x_{1}x_{8}^{2} + x_{2}x_{8}^{2} + x_{3}x_{8}^{2} - x_{4}x_{8}^{2}$$

$$(x_1 + x_2 + x_3 - x_4)(x_5^2 - x_6^2 - x_7^2 + x_8^2) + (x_1x_2 + x_2x_3 + x_3x_4)(x_5 + x_6 + x_7 + x_8)$$

b Universität Bern

$$x_{1}x_{2}x_{5} + x_{2}x_{3}x_{5} + x_{3}x_{4}x_{5} + x_{1}x_{5}^{2} + x_{2}x_{5}^{2} + x_{3}x_{5}^{2} - x_{4}x_{5}^{2} + x_{1}x_{2}x_{6} + x_{2}x_{3}x_{6} + x_{3}x_{4}x_{6} - x_{1}x_{6}^{2} - x_{2}x_{6}^{2} - x_{3}x_{6}^{2} + x_{4}x_{6}^{2} + x_{1}x_{2}x_{7} + x_{2}x_{3}x_{7} + x_{3}x_{4}x_{7} - x_{1}x_{7}^{2} - x_{2}x_{7}^{2} - x_{3}x_{7}^{2} + x_{4}x_{7}^{2} + x_{1}x_{2}x_{8} + x_{2}x_{3}x_{8} + x_{3}x_{4}x_{8} + x_{1}x_{8}^{2} + x_{2}x_{8}^{2} + x_{3}x_{8}^{2} - x_{4}x_{8}^{2}$$

$$=$$

$$(x_1 + x_2 + x_3 - x_4)(x_5^2 - x_6^2 - x_7^2 + x_8^2) + (x_1x_2 + x_2x_3 + x_3x_4)(x_5 + x_6 + x_7 + x_8)$$

b Universität Bern

Definition

The strength of a homogeneous polynomial $f\in\mathbb{C}[x_1,\ldots,x_n]$ of degree $d\geq 2$ is the minimal $k\geq 0$ such that we can write

$$f = s_1 r_1 + \dots + s_k r_k$$

with $s_1,\dots,s_k,r_1,\dots,r_k\in\mathbb{C}[x_1,\dots,x_n]$ homogeneous polynomials of degree < d.

Definition

The strength of a homogeneous polynomial $f\in\mathbb{C}[x_1,\ldots,x_n]$ of degree $d\geq 2$ is the minimal $k\geq 0$ such that we can write

$$f = s_1 r_1 + \dots + s_k r_k$$

with $s_1,\ldots,s_k,r_1,\ldots,r_k\in\mathbb{C}[x_1,\ldots,x_n]$ homogeneous polynomials of degree < d.

Examples

- Reducible polynomials have strength ≤ 1 .
- The polynomial $y^2z (x^3 + xz^2 + z^3)$ has strength 2.
- The polynomial $x_1^2 + \cdots + x_n^2$ has strength $\lceil n/2 \rceil$.
- Every polynomial $f \in \mathbb{C}[x_1, \dots, x_n]_{(d)}$ has strength $\leq n$.

b UNIVERSITÄT BERN

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$f = (x_1 \dots x_n) A(x_1 \dots x_n)^T$$

has strength $\lceil \operatorname{rk}(A)/2 \rceil$.

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$f = (x_1 \dots x_n) A(x_1 \dots x_n)^T$$

has strength $\lceil \operatorname{rk}(A)/2 \rceil$.

Remark

$$f(x)=s_1(x)r_1(x)+\cdots+s_k(x)r_k(x)$$
 and y_1,\ldots,y_n are linear forms $\Rightarrow f(y)=s_1(y)r_1(y)+\cdots+s_k(y)r_k(y)$ has strength $\leq k$

b Universität Bern

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$f = (x_1 \dots x_n) A(x_1 \dots x_n)^T$$

has strength $\lceil \operatorname{rk}(A)/2 \rceil$.

Remark

$$f(x)=s_1(x)r_1(x)+\cdots+s_k(x)r_k(x)$$
 and y_1,\ldots,y_n are linear forms $\Rightarrow f(y)=s_1(y)r_1(y)+\cdots+s_k(y)r_k(y)$ has strength $\leq k$

Proof.

Change coordinates so that $f = x_1^2 + \cdots + x_r^2$ with r = rk(A).

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$f = (x_1 \dots x_n) A(x_1 \dots x_n)^T$$

has strength $\lceil \operatorname{rk}(A)/2 \rceil$.

Remark

 $f(x)=s_1(x)r_1(x)+\cdots+s_k(x)r_k(x)$ and y_1,\ldots,y_n are linear forms $\Rightarrow f(y)=s_1(y)r_1(y)+\cdots+s_k(y)r_k(y)$ has strength $\leq k$

Proof.

Change coordinates so that $f = x_1^2 + \cdots + x_r^2$ with r = rk(A).

$$(\leq)$$
 Use: $x_1^2 + x_2^2 = (x_1 + ix_2)(x_1 - ix_2)$

$$(\geq)$$
 Use: $2s_1r_1 = (x_1 \dots x_n)(vw^T + wv^T)(x_1 \dots x_n)^T$

Definition

The strength of a homogeneous polynomial $f\in\mathbb{C}[x_1,\ldots,x_n]$ of degree $d\geq 2$ is the minimal $k\geq 0$ such that we can write

$$f = s_1 r_1 + \dots + s_k r_k$$

with $s_1,\ldots,s_k,r_1,\ldots,r_k\in\mathbb{C}[x_1,\ldots,x_n]$ homogeneous polynomials of degree < d.

Examples

- Reducible polynomials have strength ≤ 1 .
- The polynomial $y^2z (x^3 + xz^2 + z^3)$ has strength 2.
- The polynomial $x_1^2 + \cdots + x_n^2$ has strength $\lceil n/2 \rceil$.
- Every polynomial $f \in \mathbb{C}[x_1, \dots, x_n]_{(d)}$ has strength $\leq n$.

The Main Theorem

Theorem (B, Draisma, Eggermont)

Let X be a closed subfunctor of the functor S^d : $\mathrm{Vec} \to \mathrm{Top}$. Suppose that $X(U) \neq S^dU$ for some $U \in \mathrm{Vec}$. Then there is a constant $k \in \mathbb{N}$ such that the strength of any polynomial $f \in X(V)$ is at most k.

Remark

The constant k depends only on d and $\dim U$ (and not on V).

The Main Theorem

Theorem (B, Draisma, Eggermont)

Let X be a closed subfunctor of the functor $S^d \colon \operatorname{Vec} \to \operatorname{Top}$. Suppose that $X(U) \neq S^dU$ for some $U \in \operatorname{Vec}$. Then there is a constant $k \in \mathbb{N}$ such that the strength of any polynomial $f \in X(V)$ is at most k.

Remark

The constant k depends only on d and $\dim U$ (and not on V).

Definition

A closed subfunctor X of S^d assigns to every finite-dimensional vector space V a Zariski-closed subset X(V) of S^dV such that

$$S^d\varphi(X(V))\subseteq X(W)$$

for all linear maps $\varphi \colon V \to W$.

Definition

A closed subfunctor X of S^d assigns to every finite-dimensional vector space V a Zariski-closed subset X(V) of S^dV such that

$$S^d\varphi(X(V))\subseteq X(W)$$

for all linear maps $\varphi \colon V \to W$.

Example ($d=2,\ S^2\,\mathbb{C}^n\cong\{\text{symmetric }A\in\mathbb{C}^{n\times n}\}$)

Take $X(\mathbb{C}^n) = \{\text{symmetric } n \times n \text{ matrices of rank } \leq r\}$. Then

- $X(\mathbb{C}^n)$ is the zero set of some subdeterminants
- for any $P \in \mathbb{C}^{n \times m}$ and any $A \in X(\mathbb{C}^n)$, we have $P^TAP \in X(\mathbb{C}^m)$
- $X(\mathbb{C}^{r+1}) \neq \{\text{symmetric } (r+1) \times (r+1) \text{ matrices}\}$

The Main Theorem

Theorem (B, Draisma, Eggermont)

Let X be a closed subfunctor of the functor $S^d\colon \operatorname{Vec} \to \operatorname{Top}$. Suppose that $X(U) \neq S^dU$ for some $U \in \operatorname{Vec}$. Then there is a constant $k \in \mathbb{N}$ such that the strength of any polynomial $f \in X(V)$ is at most k.

Remark

The constant k depends only on d and $\dim U$ (and not on V).

The Main Theorem

Theorem (B, Draisma, Eggermont)

Let X be a closed subfunctor of the functor $S^d\colon \operatorname{Vec} \to \operatorname{Top}$. Suppose that $X(U) \neq S^dU$ for some $U \in \operatorname{Vec}$. Then there is a constant $k \in \mathbb{N}$ such that the strength of any polynomial $f \in X(V)$ is at most k.

Remark

The constant k depends only on d and $\dim U$ (and not on V).

Example

Take
$$d=2$$
 and $X(V)=\{v\cdot v\mid v\in V\}$ for all $V\in \mathrm{Vec}$. $\Rightarrow X(\mathbb{C}^2)=\{ax^2+bxy+cy^2\mid b^2-4ac=0\}\subsetneq S^2\mathbb{C}^2$

b UNIVERSITÄT BERN

Write $X_n = X(\mathbb{C}^n)$

 $\left| \{ \ell(x_1, \dots, x_n)^2 \} \right|$

UNIVERSITÄT

Write $X_n = X(\mathbb{C}^n)$

Fix
$$m$$
 such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$

m=2

$$\{\ell(x_1,\ldots,$$

BERN

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

m=2 $P = b^2 - 4ac$

Write
$$X_n = X(\mathbb{C}^n)$$

$$\mathcal{L}(\mathbb{C}^n)$$

$$X \rightarrow$$

 $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

Fix
$$m$$
 such that $X_m \neq \mathbb{C}[x_1, \dots, x_m]_{(d)}$

Write
$$X_n = X(\mathbb{C}^n)$$

$$X_m \neq \mathbb{C}[x_1, \dots, x_m]_{(d)}$$

Fix
$$m$$
 such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$ $\Rightarrow \exists P \neq 0$ so that $P(f) = 0$ for all $f \in X_m$

$$\Rightarrow \exists P \neq 0 \text{ so that } P(j) = 0 \text{ for all } j \in I$$
We do induction on the degree of the so

We do induction on the degree of the equation
$$P$$

$$x_1,\ldots,x_n$$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

m=2 $P = b^2 - 4ac$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

Write
$$X_n = X(\mathbb{C}^n)$$

Fix m such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$

 $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

 $P \neq \text{const} \Rightarrow P$ has a partial derivative $Q \neq 0$

We do induction on the degree of the equation P

Q = -4a

m=2

$$P = b^2 - 4ac$$

m=2 $P = b^2 - 4ac$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

Write
$$X_n = X(\mathbb{C}^n)$$

Fix m such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$

such that
$$X_m
eq 0$$
 so that F

 $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

We do induction on the degree of the equation
$${\cal P}$$

erivative
$$\mathcal{C}$$

$$P \neq \mathrm{const} \Rightarrow P$$
 has a partial derivative $Q \neq 0$

Take
$$Y_n=\{f\in X_n\mid \forall L\colon\, \mathbb{C}^m\to\mathbb{C}^n \text{ holds } Q(f\circ L)=0\}$$

$$)=0\}$$

Q = -4a

m=2 $P = b^2 - 4ac$

Q = -4a

 $Y_n = \{0\}$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

Write
$$X_n = X(\mathbb{C}^n)$$

We do induction on the degree of the equation P

 $P \neq \text{const} \Rightarrow P$ has a partial derivative $Q \neq 0$

Take $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n \text{ holds } Q(f \circ L) = 0 \}$

h that
$$X_i$$

Fix m such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$ $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

m=2 $P = b^2 - 4ac$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

Write
$$X_n = X(\mathbb{C}^n)$$

Fix
$$m$$
 such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$ $\Rightarrow \exists P \neq 0$ so that $P(f) = 0$ for all $f \in X_m$

We do induction on the degree of the equation
$${\cal P}$$

$$P \neq \mathrm{const} \Rightarrow P$$
 has a partial derivative $Q \neq 0$

 $\deg(Q) < \deg(P) \Rightarrow$ done for polynomials $f \in Y_n$

Take
$$Y_n=\{f\in X_n\mid \forall L\colon\, \mathbb{C}^m\to\mathbb{C}^n \text{ holds }Q(f\circ L)=0\}$$

$$\mathbb{C}^n \ \ \text{holds} \ Q(f \circ L) = 0 \}$$

ive
$$Q \neq 0$$

$$Q = -4a$$
 holds $Q(f \circ L) = 0$
$$Y_n = \{0\}$$

$$Q = -4a$$

 $|\{\ell(x_1,\ldots,x_n)^2\}|$

m=2 $P = b^2 - 4ac$

Q = -4a

 $Y_n = \{0\}$

We do induction on the degree of the equation P

 $P \neq \text{const} \Rightarrow P$ has a partial derivative $Q \neq 0$

Take $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n \text{ holds } Q(f \circ L) = 0 \}$

 $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

Write $X_n = X(\mathbb{C}^n)$ Fix m such that $X_m \neq \mathbb{C}[x_1,\ldots,x_m]_{(d)}$

Consider polynomials in $X_n \setminus Y_n$

 $\deg(Q) < \deg(P) \Rightarrow$ done for polynomials $f \in Y_n$

BERN

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

b UNIVERSITÄT BERN

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

$$Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$$

u

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$$

u

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0 \text{ for some } L \colon \mathbb{C}^m \to \mathbb{C}^n$$

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

b UNIVERSITÄT BERN

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0 \text{ for some } L \colon \mathbb{C}^m \to \mathbb{C}^n$$

$$f \in X_n \Rightarrow P(f \circ L') = 0$$
 for all $L' \colon \mathbb{C}^m \to \mathbb{C}^n$

b UNIVERSITÄT BERN

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0$$
 for some $L \colon \mathbb{C}^m \to \mathbb{C}^n$

$$f \in X_n \Rightarrow P(f \circ L') = 0 \text{ for all } L' \colon \mathbb{C}^m \to \mathbb{C}^n$$

$$ightsquigarrow g(y_1,\ldots,y_k)$$
 is a polynomial in the h_{i_1,\ldots,i_m}

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

BERN

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

$$Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$$

u •

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

$$f \notin Y_n = \{0\} \Rightarrow$$
 after coordinate change we have $a \neq 0$

$$Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$$

u

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

$$f \notin Y_n = \{0\} \Rightarrow$$
 after coordinate change we have $a \neq 0$

$$f \in X_n \Rightarrow f = a \left(x_1 + \frac{b}{2a} x_2 + \frac{1}{2a} \ell_1(y_1, \dots, y_k) \right)^2$$

 $u^{\scriptscriptstyle b}$

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

$$f \notin Y_n = \{0\} \Rightarrow$$
 after coordinate change we have $a \neq 0$

$$f \in X_n \Rightarrow f = a \left(x_1 + \frac{b}{2a} x_2 + \frac{1}{2a} \ell_1(y_1, \dots, y_k) \right)^2$$
$$\Rightarrow g = \frac{1}{4a} \ell_1(y_1, \dots, y_k)^2$$

$$u^{\scriptscriptstyle b}$$

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

 $f \notin Y_n = \{0\} \Rightarrow$ after coordinate change we have $a \neq 0$

$$f \in X_n \Rightarrow f = a \left(x_1 + \frac{b}{2a} x_2 + \frac{1}{2a} \ell_1(y_1, \dots, y_k) \right)^2$$
$$\Rightarrow g = \frac{1}{4a} \ell_1(y_1, \dots, y_k)^2$$

So $g(y_1,\ldots,y_k)$ is a polynomial in $\ell_1(y_1,\ldots,y_k)$ and $\ell_2(y_1,\ldots,y_k)$

 $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^m \to \mathbb{C}^n : Q(f \circ L) = 0 \}$

$$f = ax_1^2 + bx_1x_2 + cx_2^2 + x_1\ell_1(y_1, \dots, y_k) + x_2\ell_2(y_1, \dots, y_k) + g(y_1, \dots, y_k)$$

 $f \notin Y_n = \{0\} \Rightarrow$ after coordinate change we have $a \neq 0$

$$f \in X_n \Rightarrow f = a \left(x_1 + \frac{b}{2a} x_2 + \frac{1}{2a} \ell_1(y_1, \dots, y_k) \right)^2$$
$$\Rightarrow g = \frac{1}{4a} \ell_1(y_1, \dots, y_k)^2$$

So $g(y_1,\ldots,y_k)$ is a polynomial in $\ell_1(y_1,\ldots,y_k)$ and $\ell_2(y_1,\ldots,y_k)$

 \Rightarrow the strength of g is at most 2

b UNIVERSITÄT BERN

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0$$
 for some $L \colon \mathbb{C}^m \to \mathbb{C}^n$

$$f \in X_n \Rightarrow P(f \circ L') = 0 \text{ for all } L' \colon \mathbb{C}^m \to \mathbb{C}^n$$

$$ightsquigarrow g(y_1,\ldots,y_k)$$
 is a polynomial in the h_{i_1,\ldots,i_m}

b UNIVERSITÄT BERN

If $f \in X_n$ and $n \le m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\le m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0$$
 for some $L \colon \mathbb{C}^m \to \mathbb{C}^n$

$$f \in X_n \Rightarrow P(f \circ L') = 0$$
 for all $L' \colon \mathbb{C}^m \to \mathbb{C}^n$

$$\rightsquigarrow g(y_1,\ldots,y_k)$$
 is a polynomial in the h_{i_1,\ldots,i_m}

UNIVERSITÄT BERN

Thank you for your attention!

Questions

UNIVERSITÄT BERN

- Is the set $\{f \in \mathbb{C}[x_1,\ldots,x_n]_{(d)} \mid \mathsf{strength}(f) \leq k\}$ Zariski-closed?
- What is the strength of a generic polynomial in $\mathbb{C}[x_1,\ldots,x_n]_{(d)}$?
- How do you calculate the strength of a polynomial?

For d=2:

- Yes
- \bullet $\lceil n/2 \rceil$
- Compute the rank of the corresponding matrix

For d=3:

- Yes
- $\min\left\{\ell \geq \frac{n}{2} \mid \ell \in \mathbb{Z} \text{ and } {d-\ell+n-1 \choose d} \leq \ell(n-\ell)\right\}$
- Find biggest subspace $U \subseteq V$ with f(U) = 0

References

- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, preprint.
- Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel, Shin, Secant varieties of the varieties of reducible hypersurfaces in \mathbb{P}^n , preprint.
- Derksen, Eggermont, Snowden, *Topological noetherianity for cubic polynomials*, Alg. Number Th. 11 (2017) 2197-2212.
- Kazhdan, Ziegler, On ranks of polynomials, preprint.