Bagging Trees Random Forest Boosting Methods AdaBoost Additive Models AdaBoost and Additive Logistic Models

Lecture 21: Bagging and Boosting

Hao Helen Zhang

Outlines

- Bagging Methods
 - Bagging Trees
 - Random Forest
- Adaboost
 - Strong learners vs Weak Learners
 - Motivations
 - Algorithms
- Additive Models
- Adaboost and Additive Logistic Regression

Ensemble Methods (Model Averaging)

A machine learning *ensemble* meta-algorithm designed to improve the stability and accuracy of machine learning algorithms

- widely used in statistical classification and regression.
- can reduce variance and helps to avoid overfitting.
- usually applied to decision tree methods, but it can be used with any type of method.

Bootstrap Bagging (Bagging)

Bagging is a special case of the model averaging approach.

Bootstrap aggregation = Bagging

- Bagging leads to "improvements for unstable procedures" (Breiman, 1996), e.g. neural nets, classification and regression trees, and subset selection in linear regression (Breiman, 1994).
- On the other hand, it can mildly degrade the performance of stable methods such as K-nearest neighbors (Breiman, 1996).

Basic Idea

Given a standard training set D of size n, bagging

- generates B new training sets D_i , each of size n', by sampling from D uniformly and with replacement.
- The B models are fitted using the above B bootstrap samples and combined by averaging the output (for regression) or voting (for classification).

This kind of sample is known as a bootstrap sample.

- By sampling with replacement, some observations may be repeated in each D_i .
- If n' = n, then for large n, the set D_i is expected to have the fraction $(1 1/e) \approx 63.2\%$ of the unique examples of D, the rest being duplicates.

Bagging Procedures

Bagging uses the bootstrap to improve the estimate or prediction of a fit.

- Given data $\mathbf{Z} = \{(x_1, y_1), ..., (x_n, y_n)\}$, we generate B bootstrap samples \mathbf{Z}^{*b}
 - **Empirical distribution** $\hat{\mathcal{P}}$: putting equal probability 1/n on each (x_i, y_i) (discrete)
 - Generate $\mathbf{Z}^{*b} = \{(x_{1*}, y_{n*}), ..., (x_{n*}, y_{n*})\} \sim \hat{\mathcal{P}}, b = 1, ..., B$
- Obtain $\hat{f}^{*b}(x)$, b = 1, ..., B.
- The Monte Carlo estimate of the bagging estimate

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

Properties of Bagging Estimates

Advantages:

- $\bullet \ \, \mathsf{Note} \,\, \hat{f}_{\mathsf{bag}}(x) \longrightarrow E_{\hat{\mathcal{D}}} \hat{f}^*(x) \,\, \mathsf{as} \,\, B \to \infty,$
- $\hat{f}_{bag}(x)$ typically has smaller variance than $\hat{f}(x)$;
- $\hat{f}_{bag}(x)$ differs from $\hat{f}(x)$ only when the latter is nonlinear or adaptive function of data.

Bagging Classification Trees

In multiclass $(K \ge 3)$ problems, there are two scenarios

- (1) $\hat{f}^b(x)$ is indicator-vector, with one 1 and K-1 0's (hard classification)
- (2) $\hat{f}^b(x) = (p_1, ..., p_K)$, the estimates of class probabilities (soft classification)

The bagged estimate is the average prediction at x from B trees

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x),$$

Bagging Classification Trees (cont.)

There are two types of averaging:

- (1) uses the majority vote;
- (2) use the averaged probabilities.

The bagged classifier

$$\hat{G}_{\mathsf{bag}}(x) = \arg\max_{k=1,\cdots,K} \hat{f}_{\mathsf{bag}}(x).$$

Example

- Sample size n = 30, two classes
- p = 5 features, each having a standard Gaussian distribution with pairwise correlation $Corr(X_j, X_k) = 0.95$.
- The response Y was generated according to

$$Pr(Y = 1|x_1 \le 0.5) = 0.2$$
, $Pr(Y = 1|x_1 > 0.5) = 0.8$.

- The Bayes error is 0.2.
- A test sample of size 2,000 was generated from the same population.

We fit

- classification trees to the training sample
- classification trees to each of 200 bootstrap samples

Elements of Statistical Learning @Hastie, Tibshirani & Friedman 2001 Chapter 8

Original Tree

Bootstrap Tree 2

Bootstrap Tree 4

Bootstrap Tree 1

Bootstrap Tree 3

Bootstrap Tree 5

About Bagging Trees

The original tree and five bootstrap trees are all different:

- with different splitting features
- with different splitting cutpoints
- The trees have high variance due to the correlation in the predictors

Averaging reduces variance and leaves bias unchanged.

- Under squared-error loss, averaging reduces variance and leaves bias unchanged.
- Therefore, bagging will often decrease MSE.

Elements of Statistical Learning @ Hastie, Tibshirani & Friedman 2001 Chapter 8

Figure 8.10: Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The green points correspond to majority vote, while the purple points average the probabilities.

About Bagging

- Bagging can dramatically reduce the variance of unstable procedures like trees, leading to improved prediction
 - Bagging smooths out this variance and hence reducing the test error
 - Bagging can stabilize unstable procedures.
- The simple structure in the model can be lost due to bagging
 - A bagged tree is no longer a tree.
 - The bagged estimate is not easy to interpret.
- Under 0-1 loss for classification, bagging may not help due to the nonadditivity of bias and variance.

Random Forest

- Random forest is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees.
- The algorithm was developed by Breiman (2001) and Cutler.
- The method combines Breiman's "bagging" idea and the random selection of features, in order to construct a collection of decision trees with controlled variation.
- The selection of a random subset of features is an example of the random subspace method, a way to implement stochastic discrimination.

Learning Algorithm for Building A Tree

Denote the training size by n and the number of variables by p. Assume m < p is the number of input variables to be used to determine the decision at a node of the tree.

- Randomly choose n samples with replacement (i.e. take a bootstrap sample).
- Use the rest of the samples to estimate the error of the tree, by predicting their classes.
- For each node of the tree, randomly choose m variables on which to base the decision at that node. Calculate the best split based on these m variables in the training set.
- Each tree is fully grown and not pruned.

Advantages of Random Forest

- highly accurate in many real examples; fast; handles a very large number of input variables.
- ability to estimate the importance of variables for classification through permutation.
- generates an internal unbiased estimate of the generalization error as the forest building progresses.
- impute missing data and maintains accuracy when a large proportion of the data are missing.
- provides an experimental way to detect variable interactions.
- can balance error in unbalanced data sets.

Hao Helen Zhang

- compute proximities between cases, useful for clustering, detecting outliers, and (by scaling) visualizing the data
- can be extended to unlabeled data, leading to unsupervised clustering, outlier detection and data views

Lecture 21: Bagging and Boosting

Disadvantages of Random Forest

- Random forests are prone to overfitting for some data sets.
 This is even more pronounced in noisy classification/regression tasks.
- Random forests do not handle large numbers of irrelevant features

Motivation: Model Averaging

They are methods for improving the performance of weak learners.

- strong learners: Given a large enough dataset, the classifier can arbitrarily accurately learn the target function with probability $1-\tau$ (where $\tau>0$ can be arbitrarily small)
- weak learners: Given a large enough dataset, the classifier can barely learn the target function with probability $\frac{1}{2}+\tau$
 - The error rate is only slightly better than a random guessing

Can we construct a strong learner from weak learners and how?

Boosting

Motivation: combines the outputs of many weak classifiers to produce a powerful "committee".

- Similar to bagging and other committee-based approaches
- Originally designed for classification problems, but can also be extended to regression problem.

Consider the two-class problem

• $Y \in \{-1,1\}$, the classifier $G(\mathbf{x})$ has training error

$$err = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq G(\mathbf{x}_i))$$

• The expected error rate on future predictions is $E_{\mathbf{X},Y}I(Y \neq G(\mathbf{X}))$.

Classification Trees

Classifications trees can be simple, but often produce noise or weak classifiers.

- Bagging (Breiman 1996): Fit many large trees to bootstrap-resampled versions of the training data, and classify by a majority vote.
- Boosting (Freund & Shapire 1996): Fit many large or small trees to re-weighted versions of the training data. Classify by a weighted majority vote.

In general, Boosting > Bagging > Single Tree

 Breiman's comment "AdaBoost best off-the-shelf classifier in the world". (1996, NIPS workshop)

AdaBoost (Discrete Boost)

Adaptively resampling the data (Freund & Shapire 1997; winners of the 2003 Godel Prize)

- sequentially apply the weak classification algorithm to repeatedly modified versions of the data (re-weighted data)
- produces a sequence of weak classifiers

$$G_m(\mathbf{x}), \quad m = 1, 2, ..., M.$$

3 The predictions from G_m 's are then combined through a weighted majority vote to produce the final prediction

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right).$$

Here $\alpha_1,...,\alpha_M \geq 0$ are computed by the boosting algorithm.

AdaBoost Algorithm

- **1** Initially the observation weights $w_i = 1/n, i = 1, ..., n$.
- For m=1 to M
 - (a) Fit a classifier $G_m(\mathbf{x})$ to the training data using weights w_i .
 - (b) Compute the weighted error

$$\operatorname{err}_m = \frac{\sum_{i=1}^n w_i I(y_i \neq G_m(\mathbf{x}_i))}{\sum_{i=1}^n w_i}.$$

(c) Compute the importance of G_m as

$$\alpha_m = \log\left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m}\right)$$

- (d) Update $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(\mathbf{x}_i))], i = 1, ..., n$.
- **3** Output $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right)$.

Weights of Individual Weak Learners

In the final rule, the weight of G_m

$$\alpha_m = \log\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right),\,$$

where err_m is the weight error of G_m .

- The weights α_m 's weigh the contribution of each G_m .
- The higher (lower) err_m , the smaller (larger) α_m .
 - The principle is to give higher influence (larger weights) to more accurate classifiers in the sequence.

Data Re-weighting (Modification) Scheme

At each boosting, we impose the updated weights $w_1, ..., w_n$ to samples $(\mathbf{x}_i, y_i), i = 1, ..., n$.

- Initially, all weights are set to $w_i = 1/n$. The usual classifier.
- At step $m=2,\ldots,M$, we modify weights for observations individually: increasing weights for those observations misclassified by $G_{m-1}(\mathbf{x})$ and decreasing weights for observations classified correctly by $G_{m-1}(\mathbf{x})$.
 - Samples difficult to correctly classify receive ever increasing influence
 - Each successive classifier is forced to concentrate on those training observations that are missed by previous ones in sequence
- The classification algorithm is re-applied to the weighted observations

Elements of Statistical Learning @Hastie, Tibshirani & Friedman 2001 Chapter 10

Figure 10.1: Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Power of Boosting

- Ten features $X_1,...,X_{10} \sim N(0,1)$
- two-classes: $Y = 2 \cdot I(\sum_{i=1}^{10} X_i^2 > \chi_{10}^2(0.5)) 1$
- sample size n = 2000, test size 10,000
- weak classifier: stump (a two-terminal node classification tree)
- performance of boosting and comparison with other methods:
 - stump has 46% misclassification rate
 - 400-mode tree has 26% misclassification rate
 - boosting has 12.2% error rate

Elements of Statistical Learning @Hastie, Tibshirani & Friedman 2001 Chapter 10

Figure 10.2: Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 400 node classification tree.

Boosting And Additive Models

The success of boosting is not very mysterious. The key lies in

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right).$$

- Adaboost is equivalent to fitting an additive model using the exponential loss function (a very recent discovery by Friedman et al. (2000)).
- AdaBoost was originally motivated from a very different perspective

Introduction on Additive Models

An additive model typically assumes a function form

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m b(\mathbf{x}; \gamma_m),$$

• β_m 's are coefficients. $b(\mathbf{x}, \gamma_m)$ are basis functions of \mathbf{x} characterized by γ_m .

The model \hat{f} is obtained by minimizing a loss averaged over the training data

$$\min_{\{\beta_m, \gamma_m\}_1^M} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M \beta_m b(\mathbf{x}_i; \gamma_m)\right). \tag{1}$$

It is feasible to rapidly solve the sub-problem of fitting just a single basis.

Forward Stagewise Fitting for Additive Models

Forward stagewise modeling approximate the solution to (1) by

- sequentially adding new basis functions to the expansion without adjusting the parameters and coef. of those that have been added.
- At iteration m, one solves for the optimal basis function $b(\mathbf{x}, \hat{\gamma}_m)$ and corresponding coefficient $\hat{\beta}_m$, which is added to the current expansion $f_{m-1}(\mathbf{x})$.
 - Previously added terms are not modified.
- This process is repeated.

Squared-Error Loss Example

Consider the squared-error loss

$$L(y, f(\mathbf{x})) = [y - f(\mathbf{x})]^2$$

At the *m*th step, given the current fit $f_{m-1}(\mathbf{x})$, we solve

$$\min_{\beta,\gamma} \qquad \sum_{i} L(y_{i}, f_{m-1}(\mathbf{x}_{i}) + \beta b(\mathbf{x}, \gamma)) \iff \\
\min_{\beta,\gamma} \qquad \sum_{i} [y_{i} - f_{m-1}(\mathbf{x}_{i}) - \beta b(\mathbf{x}_{i}; \gamma)]^{2} = \sum_{i} [r_{im} - \beta b(\mathbf{x}_{i}, \gamma)]^{2}.$$

The term $\hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m)$ is the best fit to the current residual. This produces the updated fit

$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m).$$

Forward Stagewise Additive Modeling

- Initialize $f_0(\mathbf{x}) = 0$.
- ② For m = 1 to M:
 - (a) Compute

$$(\hat{\beta}_m, \hat{\gamma}_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^n L(y_i, f_{m-1}(\mathbf{x}_i) + \beta b(\mathbf{x}_i; \gamma)).$$

(b) Set
$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m)$$

Additive Logistic Models and AdaBoost

Friedman et al. (2001) showed that AdaBoost is equivalent to forward stagewise additive modeling

using the exponential loss function

$$L(y, f(\mathbf{x})) = \exp\{-yf(\mathbf{x})\},\$$

• using individual classifiers $G_m(\mathbf{x}) \in \{-1,1\}$ as basis functions The (population) minimizer of the exponential loss function is

$$f^*(\mathbf{x}) = \arg\min_{f} E_{Y|\mathbf{x}}[e^{-Yf(\mathbf{x})}]$$
$$= \frac{1}{2} \log \frac{\Pr(Y=1|\mathbf{x})}{\Pr(Y=-1|\mathbf{x})},$$

which is equal to one half of the log-odds. So, AdaBoost can be regarded as an additive logistic regression model.

Forward Stagewise Additive Modeling with Exponential Loss

For exponential loss, the minimization at *m*th step in forward stagewise modeling becomes

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^n \exp\{-y_i [f_{m-1}(x_i) + \beta b(x_i, \gamma)]\}$$

In the context of a weak learner G, this is

$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^n \exp\{-y_i [f_{m-1}(x_i) + \beta G(x_i)]\},$$

or equivalently,
$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^n w_i^{(m)} \exp\{-y_i \beta G(x_i)\},$$

where
$$w_i^{(m)} = \exp\{-y_i f_{m-1}(\mathbf{x}_i)\}.$$

Iterative Optimization

In order to solve

$$\min_{\beta,G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\},\,$$

we take the two-step (profile) approach

- first, fix $\beta > 0$ and solve for \hat{G} .
- second, solve for β with $G = \hat{G}$.

Recall that both Y and G(x) take only two values +1 and -1. So

$$y_iG(\mathbf{x}_i) = +1 \Longleftrightarrow y_i = G(\mathbf{x}_i),$$

$$y_i G(\mathbf{x}_i) = -1 \iff y_i \neq G(\mathbf{x}_i).$$

Solving for \hat{G}_m

$$(\beta_{m}, G_{m}) = \arg \min_{\beta, G} \sum_{i=1}^{n} w_{i}^{(m)} \exp\{-y_{i}\beta G(x_{i})\}$$

$$= \arg \min_{\beta, G} e^{\beta} \sum_{y_{i} \neq G(x_{i})} w_{i}^{(m)} + e^{-\beta} \sum_{y_{i} = G(x_{i})} w_{i}^{(m)}$$

$$= \arg \min_{\beta, G} (e^{\beta} - e^{-\beta}) \sum_{y_{i} \neq G(x_{i})} w_{i}^{(m)} + e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}$$

For any $\beta>0$, the minimizer \hat{G}_m is a $\{-1,1\}$ -valued function

$$\hat{G}_m = \arg\min_{G} \sum_{i=1}^n w_i^{(m)} I[y_i \neq G(x_i)],$$

the classifier that minimizes training error for the weighted data.

Solving for $\hat{\beta}_m$

Define

$$err_m = \frac{\sum_{i=1}^{n} w_i^{(m)} I(y_i \neq \hat{G}_m(\mathbf{x}_i))}{\sum_{i=1}^{n} w_i^{(m)}}$$

Plugging \hat{G}_m in the objective gives

$$\beta_m = \operatorname{argmin}_{\beta} \{ e^{-\beta} + (e^{\beta} - e^{-\beta}) \operatorname{err}_m \} \sum_{i=1}^n w_i^{(m)}$$

The solution is

$$\hat{\beta}_m = \frac{1}{2} \log \left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m} \right).$$

Connection to Adaboost

Since

$$-yG_m(x) = 2(I(y \neq G_m(x)) - 1,$$

we have

$$w_i^{(m+1)} = w_i^{(m)} \exp\{-\beta_m y_i G_m(\mathbf{x}_i)\}$$

=
$$w_i^{(m)} \exp\{\alpha_m I(y_i \neq G(\mathbf{x}_i))\} \exp\{-\beta_m\}$$

where $\alpha_{\it m}=2\beta_{\it m}$ and $\exp\{-\beta_{\it m}\}$ is constant across the data points. Therefore

- the weight update is equivalent to line 2(d) of the AdaBoost
- line 2(a) of the Adaboost is equivalent to solving the minimization problem

Weights and Their Update

• At the mth step, the weight for the ith observation is

$$w_i^{(m)} = \exp\{-y_i f_{m-1}(\mathbf{x}_i)\},\,$$

which depends only on $f_{m-1}(\mathbf{x}_i)$ but not on β or $G(\mathbf{x})$.

• At the (m+1)th step, we update the weight using the fact

$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}_i) + \beta_m G_m(\mathbf{x}_i).$$

It leads to the following update formula

$$w_{i}^{(m+1)} = \exp\{-y_{i}f_{m}(\mathbf{x}_{i})\}\$$

$$= \exp\{-y_{i}(f_{m-1}(\mathbf{x}_{i}) + \beta_{m}G_{m}(\mathbf{x}_{i}))\}\$$

$$= w_{i}^{(m)} \exp\{-\beta_{m}y_{i}G_{m}(\mathbf{x}_{i})\}.$$

Why Exponential Loss?

- Principal virtue is computational
- Exponential loss concentrates much more influence on observations with large negative margins yf(x). It is especially sensitive to misspecification of class labels.
- More robust losses: computation is not as easy (Use Gradient Boosting).

Exponential Loss and Cross Entropy

Define $Y' = (Y + 1)/2 \in \{0, 1\}.$

The binomial negative log-likelihood loss function is

$$-I(Y, p(\mathbf{x})) = -[Y' \log p(\mathbf{x}) + (1 - Y') \log(1 - p(\mathbf{x}))]$$

= \log \left(1 + \exp\{-2Yf(\mathbf{x})\}\right),

where
$$p(\mathbf{x}) = [1 + e^{-2f(\mathbf{x})}]^{-1}$$
.

• The population minimizers of the deviance $E_{Y|\mathbf{x}}[-l(Y, f(\mathbf{x}))]$ and $E_{Y|\mathbf{x}}[e^{-Yf(\mathbf{x})}]$ are the same.

Loss Functions for Classification

Choice of loss functions matters for finite data sets.

The Margin of $f(\mathbf{x})$ is defined as $yf(\mathbf{x})$.

The classification rule is $G(\mathbf{x}) = \text{sign}[f(\mathbf{x})]$

The decision boundary is $f(\mathbf{x}) = 0$

- Observations with positive margin $y_i f(\mathbf{x}_i) > 0$ are correctly classified
- Observations with negative margin $y_i f(\mathbf{x}_i) < 0$ are incorrectly classified

The goal of a classification algorithm is to produce positive margins as frequently as possible

 Any loss function should penalize negative margins more heavily than positive margins, since positive margin are already correctly classified

Various Loss Functions

Monotone decreasing loss functions of the margin

- Misclassification loss: $I(sign(f(\mathbf{x})) \neq y)$
- Exponential loss: $\exp(-yf)$ (not robust against mislabeled samples)
- Binomial deviance: $log\{1 + exp(-2yf)\}$ (more robust against influential points)
- SVM loss: $[1 yf]_+$

Other loss functions

• Squared error: $(y - f)^2 = (1 - yf)^2$ (penalize positive margins heavily)

Figure 10.4: Loss functions for two-class classification. The response is $y=\pm 1$; the prediction is f, with class prediction $\operatorname{sign}(f)$. The losses are misclassification: $I(\operatorname{sign}(f) \neq y)$; exponential: $\exp(-yf)$; binomial deviance: $\log(1+\exp(-2yf))$; squared error: $(y-f)^2$; and support vector: $(1-yf) \cdot I(yf>1)$ (see Section 12.3). Each function has been scaled so that it passes through the point (0,1).

Brief Summary on AdaBoost

- AdaBoost fits an additive model, where the basis functions $G_m(x)$ stage-wise optimize exponential loss
- The population minimizer of exponential loss is the log odds
- There are loss functions more robust than squared error loss (for regression problems) or exponential loss (for classification problems)