

Inverse Trigonometric Functions

01

Inverse function	Domain	Principal Value Branch
$y = \sin^{-1} x$	[-1, 1]	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	$[0,\pi]$
$y = \csc^{-1} x$	R-(-1,1)	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]\!-\!\left\{0\right\}$
$y = \sec^{-1} x$	R-(-1,1)	$\left[0,\pi\right]\!-\!\left\{\frac{\pi}{2}\right\}$
$y = tan^{-1}x$	R	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1} x$	R	$(0,\pi)$

02

$$y = \cot^{-1}x$$

Graph

5.
$$y = sec^{-1}x$$

3.
$$y = tan^{-1}x$$

$$6. y = cosec^{-1}x$$

Properties Of Inverse Trigonometric Functions

03

Property -01

(i)
$$\sin^{-1}(\sin \theta) = \theta$$
 if $\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$

(ii)
$$\cos^{-1}(\cos\theta) = \theta$$
 if $0 \le \theta \le \pi$

(iii)
$$\tan^{-1}(\tan \theta) = \theta$$
 if $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$

(iv)
$$\cot^{-1}(\cot \theta) = \theta$$
 if $0 < \theta < \pi$

(v)
$$\sec^{-1}(\sec \theta) = \theta$$
 if $0 \le \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} < \theta \le \pi$

(vi)
$$\operatorname{cosec}^{-1}(\operatorname{cosec} \theta) = \theta$$
, if $-\frac{\pi}{2} \le \theta < 0$ or $0 < \theta \le \frac{\pi}{2}$

Property -02

(i)
$$\sin(\sin^{-1} x) = x$$
, if $-1 \le x \le 1$

(ii)
$$\cos(\cos^{-1} x) = x$$
, if $-1 \le x \le 1$

(iii)
$$\tan(\tan^{-1} x) = x$$
, if $-\infty < x < \infty$

(v)
$$\sec(\sec^{-1} x) = x$$
, if $-\infty < x \le -1$ or $1 \le x < \infty$

(iv)
$$\cot(\cot^{-1}x) = x$$
, if $-\infty < x < \infty$

(vi)
$$\csc(\csc^{-1} x) = x$$
, if $-\infty < x \le -1$ or $1 \le x < \infty$

Property -03

(i)
$$\sin^{-1}(-x) = -\sin^{-1}x$$
, if $-1 \le x \le 1$

$$(iv) \cot^{-1}(-x) = \pi - \cot^{-1} x, if -\infty < x < \infty$$

(ii)
$$\cos^{-1}(-x) = \pi - \cos^{-1} x$$
, if $-1 \le x \le 1$

(v)
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$
, if $-\infty < x \le -1$ or $1 \le x < \infty$

(iii)
$$\tan^{-1}(-x) = -\tan^{-1} x$$
, if $-\infty < x < \infty$

(vi)
$$\csc^{-1}(-x) = -\csc^{-1}x$$
, if $-\infty < x \le -1$ or $1 \le x < \infty$

Property -04

(i)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

(ii)
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}$$

(iii)
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, x \in (-\infty, -1] \cup [1, \infty)$$

Property -05

(i)
$$\sin^{-1} x = \csc^{-1} \left(\frac{1}{x} \right), -1 \le x \le 1 - \{0\}$$

(ii)
$$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x}\right), x \in R - (-1, 1)$$

(iii)
$$\cos^{-1} x = \sec^{-1} \left(\frac{1}{x} \right), -1 \le x \le 1 - \{0\}$$

(iv)
$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right), x \in R - (-1,1)$$

(v)
$$\tan^{-1} x = \cot^{-1} \left(\frac{1}{x} \right), x \in R - \{0\}$$

$$(vi) tan^{-1} (1/x) = \begin{cases} \cot^{-1} x & \forall \quad x > 0 \\ -\pi + \cot^{-1} x & \forall \quad x < 0 \end{cases}$$

Property -06

(i)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy < 1$$

= $\pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), x > 0, y > 0, xy > 1$

$$=-\pi+\tan^{-1}\left(\frac{x+y}{1-xy}\right), x<0, y<0, xy>1$$

(ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right), xy > -1$$

= $\pi + \tan^{-1} \left(\frac{x - y}{1 + xy} \right), x > 0, y > 0, xy < -1$

$$= -\pi + \tan^{-1} \left(\frac{x - y}{1 + xy} \right), \text{ if } x < 0, y < 0 \text{ and } xy > 1$$

(iii)
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z - xyz}{1 - xy - yz - zx} \right],$$

if $x > 0, y > 0, z > 0$, if $x < 0, y < 0$ and $xy > 1$

Property -07

(i)
$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left\{ x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right\}, if \ x^2 + y^2 \le 1$$

$$= \pi - \sin^{-1} \left\{ x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right\} \text{ if } 0 < x \le 1, 0 < y \le 1 \text{ and } x^2 + y^2 > 1$$

$$= -\pi - \sin^{-1} \left\{ x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right\}, if \ -1 \le x < 0, 0 < y \le 1 \text{ and } x^2 + y^2 > 1$$

$$\begin{split} (ii) \sin^{-1} x - \sin^{-1} y &= \sin^{-1} \left\{ x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right\}, \ xy > 0, \ x^2 + y^2 > 1 \ \text{or} \ x^2 + y^2 \le 1 \\ &= \pi - \sin^{-1} \left\{ x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right\}, \ 0 < x \le 1, \ -1 \le y \le 0, \ x^2 + y^2 > 1 \\ &= -\pi - \sin^{-1} \left\{ x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right\}, \ -1 \le x < 0, \ 0 < y \le 1, \ x^2 + y^2 > 1 \end{split}$$

Property -08

(i)
$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left\{ xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}, -1 \le x, y \le 1, x + y \ge 0$$

$$= 2\pi - \cos^{-1} \left\{ xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}, -1 \le x, y \le 1, x + y < 0$$

(ii)
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left\{ xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}, -1 \le x, y \le 1, x \le y$$

= $-\cos^{-1} \left\{ xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}, -1 \le y \le 0, 0 \le x \le 1, x > y$

Property -09

(i)
$$2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2}\right), \frac{-1}{\sqrt{2}} \le x \frac{1}{\sqrt{2}}$$
 (ii) $3\sin^{-1} x = \sin^{-1} \left(3x - 4x^3\right), -1/2 \le x \le 1/2$

$$= \pi - \sin^{-1} \left(2x\sqrt{1-2^2}\right), \quad \frac{1}{\sqrt{2}} \le x \le 1.$$

$$= -\pi - \sin^{-1} \left(2x\sqrt{1-x^2}\right), -1 \le x \le \frac{-1}{\sqrt{2}}$$

(ii)
$$3\sin^{-1} x = \sin^{-1} (3x - 4x^3), -1/2 \le x \le 1/2$$

 $= \pi - \sin^{-1} (3x - 4x^3), 1/2 < x \le 1$
 $= -\pi - \sin^{-1} (3x - 4x^3), -1 \le x < -1/2$

(i) $2\cos^{-1} x = \cos^{-1}(2x^2 - 1)$, $0 \le x \le 1$. $= 2\pi - \cos^{-1}(2x^2 - 1)$, $-1 \le x \le 0$ (ii) $3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), 1/2 \le x \le 1$ $=2\pi-\cos^{-1}(4x^3-3x),-1/2 \le x \le 1/2$

 $=2\pi + \cos^{-1}(4x^3 - 3x), -1 \le x \le -1/2$

Property -10

Property -11

(i)
$$2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right), -1 < x < 1$$

$$= \pi + \tan^{-1} \left(\frac{2x}{1 - x^2} \right), \quad x > 1$$

$$= -\pi + \tan^{-1} \left(\frac{2x}{1 - x^2} \right), \quad x < -1$$

(ii)
$$2 \tan^{-1} x = \sin^{-1} \left(\frac{2x}{1+x^2} \right), -1 \le x \le 1$$

$$= \pi - \sin^{-1} \left(\frac{2x}{1+x^2} \right), x > 1$$

$$= -\pi - \sin^{-1} \left(\frac{2x}{1+x^2} \right), x < -1$$

(iv)
$$3 \tan^{-1} x = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), \frac{-1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$

$$= \pi + \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), x > \frac{1}{\sqrt{3}}$$

$$= -\pi + \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), x < \frac{-1}{\sqrt{3}}$$

(iii)
$$2 \tan^{-1} x = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$
, $0 \le x < \infty$
= $-\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$, $-\infty < x \le 0$

Property -12

(i)
$$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} = \tan^{-1} \frac{x}{\sqrt{1 - x^2}} = \cot^{-1} \frac{\sqrt{1 - x^2}}{x} = \sec^{-1} \left(\frac{1}{\sqrt{1 - x^2}}\right) = \csc^{-1} \left(\frac{1}{x}\right), x > 0$$

$$\cos^{-1} x = \sin^{-1} \sqrt{1 - x^{2}} = \tan^{-1} \frac{\sqrt{1 - x^{2}}}{x} = \cot^{-1} \frac{x}{\sqrt{1 - x^{2}}} = \sec^{-1} \left(\frac{1}{x}\right) = \csc^{-1} \left(\frac{1}{\sqrt{1 - x^{2}}}\right), x > 0$$

(iii)
$$\tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right) = \cos^{-1} \left(\frac{1}{\sqrt{1+x^2}} \right) = \cot^{-1} \left(\frac{1}{x} \right) = \sec^{-1} \left(\sqrt{1+x^2} \right) = \csc^{-1} \left(\frac{\sqrt{1+x^2}}{x} \right)$$

Property -13

If $x_1, x_2,, x_n \in \mathbb{R}$ then $tan^{-1}x_1 + tan^{-1}x_2 + + tan^{-1}x_n =$

$$\tan^{-1}\left(\frac{s_1-s_3+s_5-s_7+\cdots}{1-s_2+s_4-s_6+\cdots}\right)$$

where, $s_k = sum of products of x_1, x_2,, k_n taken k at a time.$

Some Important graphs

$$\cos^{-1}\left(4x^3-3x\right)$$

$$\tan^{-1}\left(\sec x + \tan x\right)$$

$$\tan^{-1}\left(\frac{\left(\sqrt{1+x^2}+\sqrt{1-x^2}\right)}{\left(\sqrt{1+x^2}-\sqrt{1-x^2}\right)}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$$

$$\cos^{-1}(\cos x)$$

$$\sin^{-1}(\sin x)$$

