The Mile Mile

Center for Night Vision and Electro-Optics

AMSEL-NV-TR-0081

ENVIRONMENTAL EVALUATION OF THE RICOR/CRYO-TEK 1/4-WATT SPLIT COOLER (CT-45)

by

H. Dunmire

R. Samuels

J. Shaffer

SEPTEMBER 1989

Approved for public release; distribution unlimited.

FORT BELVOIR, VIRGINIA 22060-5677

Best Available Copy

Destroy this report when it is no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCUMENTATION F				PAGE			m Approved IB No. 0704-0188
1	1a. REPORT SECURITY CLASSIFICATION Unclassified				1b. RESTRICTIVE MARKINGS None			
2a. SECURITY	CLASSIFICATION	ON AUTHORITY			3. DISTRIBUTION	VAVAILABILITY O	F REPORT	
1					Approved for	public release;	distribution	n unlimited.
2b. DECLASS	IFICATION/DOV	VNGRADING SC	HEDULE					
	NG ORGANIZA IV-TR-0081	TION REPORT N	IUMBER(S)		5. MONITORING	ORGANIZATION F	REPORT NU	MBER(S)
	ERFORMING O		6b. OFFICE SYM		7a. NAME OF MO	NITORING ORGA	NIZATION	
	ter for Night V	ision and	(If applicable					
Electro-Optics	(CENVEO) (City, State, and	J ZIP Code)	AUTOLD-IV		76. ADDRESS (Ci	tv State and ZIP	Code)	
Director, (C ² NVEO	•		ľ		,,, o <u>—</u> ,	JUL,	
1	MSEL-RD-N oir, VA_22060							
	FUNDING/SPO		8b. OFFICE SYM	,	9. PROCUREMEN	IT INSTRUMENT	DENTIFICA	TION NUMBER
C ² NVEO		:						
8c. ADDRESS	(City, State, and	ZIP Code)		1	10. SOURCE OF	FUNDING NUMBE	RS	
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Indi	ide Security Cla	essification)	R/CRYO-TEK 1/	/4. Wate	Split Cooler (C)	PAS) (TD)	<u> </u>	
12. PERSONAL	AUTHOR(S)			u- wall	Spill Cooler (C)	(43) (0)		
		and J. Shaffer	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IN COLUMN	 		·		
13a. TYPE OF Final	REPORT	135. TIME CO	vehed <u>8_</u> TO <u>1/21/88_</u>	14. DA	DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT September 1989 130			
16 SUPPLEME	NTARY NOTAT	The second secon		 				
17	COSATI CODE	S	I I SUBJECT TE	RMS (Co	onbnue on neverse	d necessary and i	dentile by bi	ock sumber)
FIELD	GROUP	SUB-GROUP]		Cycle, Clearance			•
17.007.001.01	Castalia	4						
TY ABSTRUT	Continue on rev	orse e nocassaly	and identify by bloo	ek numeq	- /			
+								
			des the data on					
			.045(V)/UA). (and the M1 Driv					
			nes per the devi					AOICI
pottotime				<i>p</i>				
								W H
		Y OF ABSTRACT		770 1105		UCT SECURITY	CLASSIFICA	TION
	SIFIEDAUNLIMIT		AS REPORT	OTIC USE				
22a. NAME OF James Sh	RESPONSIBLE after	LAUDIVIONI			703-	PHONE (Includie / 664-1345	VIEW (2008)	22c. Office Symbol AMSEL-RD-NV-SES

.

DD Form 1473, JUN 88

Previous editions are obsolete.

i

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

		Page
SECTION I	INTRODUCTION	1
SECTION II	DESCRIPTION	1
SECTION III	TEST RESULTS	3
APPENDIX A	TEST DATA	A-1
APPENDIX B	TEST PROCEDURE	B-1
APPENDIX C	DEVELOPMENT SPECIFICATION (B2-28A050122A, Dated 18 June 1982)	C-1

Access	ton For	
NTIS	I&ARD	×
DTIC S	t a B	ā
	our sod	
Justi	Pleation	
- Contraction of the Contraction	ibution/ lability (Avail an	
Dist	Specie	
101		
H		

SECTION I. INTRODUCTION

The US Army CECOM Center for Night Vision and Electro-Optics (C²NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C²NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C²NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. One of these efforts has been the development of a clearance seal HD-1045 cooler for the potential use in the tank and helicopter FLIRs.

The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the CECOM Center for Night Vision and Electro-Optics (C²NVEO) in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the Bradley Fighting Vehicle (BFV) System.

Performance requirements for the HD-1045 are governed by the cooler specification, B2-28A050122A, dated 18 June 1982. The primary specification requirements for this cooler include the ability to maintain a 0.35-watt heat load at 85K at room temperature, cooldown a 1.8 gram copper mass to 85K within 10 minutes over the temperature range of -40°C to +71°C, and operate under steady state conditions with a 0.35 watt heat load applied at room temperature with a power consumption of 30 watts or less.

This report describes the performance and environmental testing that C²NVEO conducted on the RICOR/CRYO-TEK Coolers. The test procedure used throughout the endication. Qualification Test Procedure 1/4-Watt Split Stirling Cooler," has been included in Appendix A for reference. The RICOR/CRYO-TEK coolers have not been subjected to life testing, therefore no mean time to failure (MTTF) is available. The MTTF testing and determination are required prior to the decision being made on whether the coolers are acceptable for use or not.

SECTION II. DESCRIPTION

The environmental evaluation was conducted on two RICOR/CRYO-TEK coolers, S/N 8011 and S/N 013 in accordance with the Qualification Test Procedure in Appendix A. Baseline acceptance tests and leak rates were conducted before and after each environmental test to determine whether or not the units had survived the test. In addition to the environmental tests, C²NVEO conducted audible noise and vibration output testing on the coolers.

A brief description of each test performed is provided in Table 1.

Table 1. Test Description

TEST REQUIREMENT

Leak Rate Less than 1.0 x 10⁻⁶ std cc/sec helium

Acceptance Test

- Cooldown Less than 7.5 min to 100K

Less than 10 min to 85K

— Cooling Capacity 0.35 Watt at 85K

- Input Power Less than 30 watts

Acoustic Noise Sound pressure levels must be less than specified limits

between 125 to 8,000 Hz

Vibration Output No requirement

Temperature Shock Rapid temperature changes from -54°C to +71°C every

4 hours for 24 hours total

High Temperature 48 hour soak at +71°C, +71°C operation

Low Temperature 24 hour soak at -57°C, -40°C operation

Mechanical Shock 100 g's peak amplitude for 11 msec

Imposed Vibration 4-5 g's acceleration over 5 to 500 Hz

SECTION III. TEST RESULTS

Both coolers failed audible noise testing at Noise Unlimited and C²NVEO. The coolers exceeded the specification maximum sound pressure levels at 2,000, 4,000, and 8,000 Hz. The vibration output testing was conducted for information purposes; there is no specification requirement. All the environmental tests were successfully completed by S/N 8011 and S/N 013. There were no failures, relevant or otherwise, and all environmental tests were completed without incident. A brief summary of all acceptance testing is shown in Tables 2 and 3.

Table 2. Environmental Test Results S/N 8011

TEST	COOLDOWN 80K (min)	TEMP (K) WITH HEAT LOAD	POWER (WATTS)	LEAK RATE scc He/sec
Initial Baseline	4.00	75.27	23.00	1.0×10^{-9}
Post Mechanical Vibration	3.88	76.43	22.78	2.5 x 10 ⁻⁹
Post Temperature Shock	3.93	74.82	23.11	2.6 x 10 ⁻¹⁰
High Termerature	6.00	83.46	23.83	
Post High Temperature	3.77	76.66	22.42	8.0 x 10 ⁻⁹
Low Temperature	2.43	62.12	19.65	
Post Low Temperature	3.67	73.24	22.81	9.0 x 10 ⁻⁹
Post Mechanical Shock	3.67	71.00	22.80	7.5 x 10 ⁻⁹

Table 3. Environmental Test Results S/N 013

TEST	COOLDOWN 80K (min)	TEMP (K) WITH HEAT LOAD	POWER (WATTS)	LEAK RATE scc He/sec
Initial Baseline	3.87	77.00	21.16	2.8 x 10 ⁻⁹
Post Mechanical Vibration	3.23	71.46	21.69	2.3 x 10 ⁻⁹
Post Temperature Shock	3.30	70.20	21.57	6.4 x 10 ⁻¹⁰
High Temperature	4.43	69.13	23.25	,
Post High Temperature	3.65	75.13	21.49	7.0 x 10 ⁻⁹
Low Temperature	2.53	63.43	19.12	•
Post Low Temperature	3.32	70.13	21.74	7.9 x 10 ⁻⁹
Post Mechanical Shock	3.22	71.65	21.4	5.4 x 10 ⁻⁹

APPENDIX A TEST DATA

All environmental test data shown in this appendix appears in chronological order, as the tests were conducted. The acoustic noise test data (pages A-46 through A-57) and vibration output data (pages A-58 through A-74) are provided. All cooler testing was conducted using a 1.8 gram copper mass coldstation and an input voltage of 17.5 VDC.

CONTENTS

	Page
Initial Baseline	
S/N 8011	A-2
S/N 013	
Mechanical Vibration	
Test Report Dated 22 May 1988	A-6
S/N 8011	
S/N 013	
Temperature Shock	
S/N 8011	A-16
S/N 013	A-19
High Temperature	
S/N 8011	A-22
S/N 013	A-25
Low Temperature	
S/N 8011	A-28
S/N 013	A-31
Mechanical Shock	
S/N 8011	A-34
S/N 013	A-40
Acoustic Noise	
Noise Unlimited Data	A-46
C ² NVEO Data	A-54
S/N 8011	A-56
S/N 013	A-57
Vibration Output	
Self-Induced Vibration Test	A58
S/N 8011	A-61
S/N 013	A-68

INITIAL BASELINE—S/N 013

NAEGL GRAGGENIG GGGLER LAG

DRYGGENIO DOGLER DATA

000LER: RICOR/OT-45 601:

CATE: 8 AFRIL 88 28. 4

JOLTAGE: 17.5

AMBIENT:

TEST. BASELINE TEST AS RECEIVED .

TIME	FOWER	QUARENT	FELVIN	_J+S
3.20	16.33	. 365	235.53	2.220
:.30	20.8S	1.218	208.01	0.222
2.00	21.72	:.256	145.35	2.220
3.00	22.30	1.275	:04.95	2.222
5.35	22.29 22.36	1,273	3 8.:5	ə.əəə
4.20	22.36	1.298	79.16	3.322
4.:3	37.50	1.231	77.15	ə.20ə
5.00	11.55	. 266	64.5	2.320
5.20	22.55	:.296	57.12	0.000
7.00	22.43	1.278	53.96	ð. ððð
ā. 20	22.26	1.271	52.44	3.222
3.00	22.25	1.276	51.70	3.220
:0.00	22.14	52	51.46	3.300
11.30	22.37	1.231	50.31	2.200
:2.00	22.37	1.250	50.3:	ə.əəə
:3.00	22.41	1.281	• 51.09	0.200
14.00	22.43	1.284	51.05	ə.əəə
15.00	22.43	1.336	5:.31	ð. 200
16.20	22.39	1.267	51.00	ð. 3 33
17.00	22.20	1.270	5:.5;	ð. 3 30
: 5.00	22.04	:.256	51.67	ଡ. ୬୭ଡ
· 3.00	22.13	1.267	51.74	ଡ . ଅପତ
20.00	22.14	1.267	51.57	ð. 20ð
30.00	22.42	1.282	77.00	. 353
40.00	23.00	1.317	75.27	.354

INITIAL BASELINE—S/N 013

NUESE DARBERTS SIGNER UHB

IRROGENIO COCLER CATA

| 000LER. | R000R | 0T-45 | 013 | DUTASE: | 17.5

CATE. 5 AFRIL 88 05.80

E168: -L3

AMBIENT.

PR03. 14TP+ 1.8

TEST, BASCLING TEST AS RECEIVED .

TIME	POWER	CURRENT	- EL . : N	LIAC
3.33	5.52	. 35	130.54	3.300
1.23	.7.83	:.039	210.52	3.300
2.20	· 3.90	:.∶∂3	47.65	2.200
3.20	20.01	. 79	34.13	ø. ə əə
2.23	20.62	;.:∃⊘	35.54	ა. ათა
3.87	21.13	1.206	77.84	ə.əəə
4.30	21.01		74.50	0.000
5.00	21.38	1.225	58.53	ø.əəə
5.00	21.37	1.2.7	52.09	ə.əəə
7.00	21.33	1.217	49.13	ə.əəə
5.00	21.31	1.215	47.67	ø. əəə
5.00	31.34	1.222	47,47	2.200
· 2.20	21.31	1.214	47.43	ə.əəə
··. 20	21.30	1.220	47.26	ø.ø0 0
12.20	21.34	1.221	47.39	ə.əəo
3.00	21.29	1.218	47.12	ð. 3 00
4.00	21.34	1.218	47.43	ə.əəə
:5.00	21.30	1.224	47.30	ə.əəə
:5.00	21.34	1.320	47.21	ə.əəə
7.00	21.35	1.215	47.26	3. 223
: 6. 00	21.31	1.220	47.36	შ. შშ მ
5.00	21.30	:,218	47.43	მ. მმმ
3.00	21.26	1.225	47.60	9.000
:0.00	21.09	1.207	75.63	.353
0.00	21.16	1.229	77.00	.353

LEAK RATE TEST DATA SHEET

Test	Tech_HLD	Project Eng.
Date	Time	TEST REQUIREMENT
		Conduct Leak Rate Test per paragraph 6.1.1 of this plan.
<u>5 APR</u> 8	88	Cooler S/N_013 Charged to operating pressure (initial) Measured leak rate (1.0 x 10-6 scc/sec air equivalent at 23C ambient) 2.8 x 10-7
		Cooler S/N SOII Charged to operating pressure (initial) Measured leak rate (1.0 x 10-6 scc/sec air equivalent at 23C ambient) 1.0 X 10-7
		Cooler S/N

Test Sheet 2

PHYSICAL CHARACTERISTICS DATA SHEET

Test Tech HLD		19 APR 88
	REQUIREMENT	
Record the follo paragraph 5.0 of this tes	wing physical chara t plan.	cteristics per
Cooler S/N OL	3	
SM-D-808551	pounds Max.)	(initial) 1.837 lb.
Cooler S/N 801		
SM-D-808551	e orawing number pounds max.)	(initial) (. 795 lb.
Cooler S/N		
SM-D-808551	drawing number S pounds max.)	(initial)

Test Sheet 1

MECHANICAL VIBRATION

NIGHT VISION

DEPARTMENT OF THE ARMY
ARMY NIGHT VISION AND ELECTRO-OPTICS LABORATORY
FORT BELVOIR, VIRGINIA 22080

TEST REPORT

RICOR COOLERS
S/N's 013 AND 8011

22 MAY 1988

TEST ITEMS

RICOR Coolers, S/N's 013 and 8011

TEST SPECIFICATION

B2-28A050122A, 18 June 1982

TEST DESCRIPTION

Both coolers were fastened to a rigid fixture and vibrated on three mutually perpendicular axes. The vibration was sinusoidal and its amplitude and frequency were controlled per para 4.3.2.3 and figure 3 of the above cited specification.

Both coolers continued to operate during all tests and maintained a frosted cold finger.

DAVID J. ALLINGHAM

Test Coordinator

Support Operations Team Technical Support Division Center for Night Vision and

Electro-Optics

B2-28A050122A CODE IDENT: 54490 18 JUNE 1982

Figure 3. Vibration Test Profile

MECHANICAL VIBRATION—S/N 8011

MECHANICAL VIBRATION TEST SUMMARY SHEET

Cooler S.	/N	ite of Test_	1. 1. m. 12
Test Tech	David All norm Pr	oj. Eng.	7
Step	Test Requirement		Initial
1.0	Mount cooler onto vibration tabl	e in the	
2.0	Energize coolers and allow coold 10 minutes.	lown for	
2.0	Energize vibration machine and cresonance search at an input lever from 5- 500 Hz.		
Resonance	es:1 2 3 4	5 6	7
	Select the four most severe reso a resonance dwell for 20 minutes d.		
	Energize vibration machine in acon profile.	cordance to	the filt
6.0	Allow coolers to vibrate in this 120 minutes	axis for	<u>-</u>
7.0	De-energise vibration machine an	nd coolers	JA
8.0 physical	Remove coolers from vibration made.	achine and in	spent for
	Mount the coolers in the Y amis. 3 and 4	and repeat	
10.0	Energize the coolers and allow o	cooldown for	M
ii.O appropia	Energize the vibration machine to vibration profile.	in accordance	with the
12.0	Allow the cooler to vibrate in 120 minutes.	this amis for	
13.0 Inspect	De-energize vibration machine as the coolers for any physical dam		coolers.
14.0 steps 2.	Mount the coolers in the Z ams 3 and 4 in the Z ams.	. instrument	ed. repeat
15.0	Energize the coolers and allow to minutes.	to cooldown	for

Step	Test Requirement	initial
16.0 vibration	Energize the vibration machi profile.	ine with the appropriate
17.0 minutes	Allow the coolers to vibrate	e in this axis for 120
18.0 coolers.	De-energize the vibration ma Inspect the coolers for any phys:	
19.0	Conduct a performance test $paragraph (6.0)$	per
Leak Test	: Std cc heli	LIM/SEC
Comments		

ALEJU JARGBENIS ISOLEA LHE

CATOGENIC COOLER DATA

COOLER: RICOR/CT-45 8011

DATE: 7 JUNE 88 13:13

VOLTAGE: 17.5

ENGR: HLD

AMBIENT: 23 (0)

DEWAR COMP: .335

TEST: BASELINE TEST FOLLOWING MECHNICAL VIBRATION

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	21.35	1.220	297.09	୬ . ୬ ଚ୬
: . ୬ଡ	20.25	1.173	211.75	ə.əəə
3.00	20.98	1.221	152.24	ə.əəə
3.00	22.00	1.305	105.97	ଡ.ଡଡଡ
3.25	22.91	1.309	37.96	ଡ . ଉଡଡ
3.88	23.14	1.322	78.12	ə.əəə
4.00	22.91	1.307	74.82	ø.øøø
5.00	23.13	1.324	59.15	o.
6.00	23.26	1.333	51.97	ଡ . ଡଡଡ
7.00	23.03	1.323	48.97	0.000
a. 00	23.04	1.304	47.62	ə. əəə
3.00	22.97	1.323	47.09	ଡ.ଡଡଡ
10.00	22.99	1.315	46.68	ø. ଡ ଡଡ
11.00	22.99	1.311	46.79	0.000
12.00	23.07	1,318	46.83	ଡ . ଡଡଡ
13.00	23.02	1.316	46.92	ø. 000
14.00	23.08	1.326	46.75	0.000
15.00	23.22	1.328	46.83	0.000
16.00	23.21	1.320	46.36	ø. əəə
17.00	23.21	1.332	47.05	0.000
18.00	23.20	1.324	47.05	0.000
13.00	23.16	1.322	47.18	0.000
20.00	23.15	1.316	47.23	୬. ୭୭୭
30.00	22.88	1.309	76.32	. 354
40.00	22.78	1.296	76.43	.354

MECHANICAL VIBRATION—S/N 013

MECHANICAL VIBRATION TEST SUMMARY SHEET

Cooler S	N 013	ate of Test_	18 May 28
Test Tech	David Alladan	Proj. Eng. <u>i</u>	- Shaffer
Step	Test Requirement		Initial
1.0	Mount cooler onto vibration tab X axis.	ole in the	
2.0	Energize coolers and allow cool 10 minutes.	down for	14
3.0	Energize vibration machine and resonance search at an input le from 5- 500 Hz.		
Resonance	es:1 2 3 4	5 6	7 .
• •	Select the four most severe resacressonance dwell for 20 minutes		
5.0 vibrqati	Energize vibration machine in a con profile.	accordance to	the ph
6.0	Allow coolers to vibrate in the 120 minutes	i s a xis for .	4
7.0	De-energize vibration machine	and coolers .	- PA
8.0 physical	Remove coolers from vibration (damage.	machine and in	spent for
	Mount the coolers in the Y axis, 3 and 4	s and repeat	
10.0	Energize the coolers and allow inutes	cooldown for	\bowtie
ii.O appropia	Energize the vibration machine te vibration profile.	in accordance	with the
12.0	Allow the cooler to vibrate in 120 minutes.	this axis fo	
13.0 Inspect	De-energize vibration machine the coolers for any physical da	and remove th mage.	e coolers.
14.0 steps 2,	Mount the coolers in the Z axi 3 and 4 in the Z axis.	s, instrument	ed, repeat
15.0	Energize the coolers and allow minutes.	to cooldown	for

. . .

Step	Test Requirement	Initial
16.0 Vibration pr	Energize the vibration machinofile.	e with the appropriate
17.0 minut es	Allow the coolers to vibrate	in this axis for 120
18.0 coolers. Ins	De-energize the vibration made pect the coolers for any physic	thine and remove the
19.0	Conduct a performance test perparagraph 6.0	<u> 15</u>
<u>leak Test:</u>	Z 3 × 10-9 Std cc helium	n/sec
Comments		

NVESE SAYSSENIS SSSLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR/CT-45 013

DATE: 7 JUNE 38 88:39

VOLTAGE: 17.5 AMBIENT: 23 (C) ENGR: HLD DEWAR COMP: .335

TEST: BASELINE TEST FOLLOWING MECHNICAL VIBRATION

TIME	POWER	CURRENT	KELVIN	LOAG
ə.əo	13.13	1.093	293.53	ə.əəə
1.30	17.25	1.043	200.19	ə.aəə
2.00	18.89	1.131	:31.35	ə.əəə
2.67	21.02	1.201	99.98	ə.əəə
3.00	20.74	1.237	85.68	მ. მმ მ
3,23	21.81	1.246	78.66	ଡ .ଡଡଡ
4.00	21.89	1.272	53.47	შ. მმმ
5.00	21.95	1.253	48.53	მ. მმ მ
6.00	21.82	1.254	44.04	მ. მმმ
7.00	21.80	1.252	42.43	୬. ୭୭ଡ
a. ହେଉ	21.67	1.231	42.04	อ.จออ
3.00	21.70	1.228	41.91	J. 999
10.00	21.66	1.226	41.78	୬ . ବରବ
11.00	21.64	1.229	41.95	୬ . ୬ବର
12.00	21.76	1.235	41.35	
13.00	21.69	1.224	42.04	J. 9 99
14.00	21.67	1.220	42.17	ଡ . ଡଡଡ
15.00	21.79	1.249	42.08	მ. მმმ
16.00	21.75	1.253	42.00	ଡ . ଡଡଡ
17.00	21.68	1.223	42.98	อ. อออ
18.00	21.76	1.257	12.94	ə.əəə
19.00	21.88	1.255	42.17	ଡ . ଚଚ୍ଚ
20.00	21.82	1.242	42.26	ð. əəə
30.00	21.60	1.237	71.58	. 354
49,00	21.69	1.336	71.46	. 354

LEAK RATE TEST DATA SHEET

Test Tec	n_G.D	OGGETT Project Eng.
Date	Time	TEST REQUIREMENT
	٠	Conduct Leak Rate Test per paragraph 6.1.1 of this plan.
9 <u>Jun</u> 88		Cooler S/N_013 Charged to operating pressure(initial) Measured leak rate (1.0 x 10-6 scc/sec air equivalent at 23C ambient) 2.3 x 10-9
		Cooler S/N 80 Charged to operating pressure (initial) Measured leak rate (1.0 x 10-6 scc/sec air equivalent at 23C ambient) 2.5 x 10-9
		Cooler S/N

MEASUREMENTS TAKEN FOLLOWING THE MECHANICAL VIBRATION TEST.

Test Sheet 2

TEMPERATURE SHOCK—S/N 8011

TEMPERATURE SHOCK TEST SUMMARY SHEET

Cooler	s/N <u>801</u>		Date: 9 JUNE 88
Test T	ech. HLD		Project Eng.
Step	Date	Elapsed Time	Test requirement Initial
1.0	9 Jun	10:58	Install coolers into test chamber
2.0		10:50	Adjust chamber ambient to + 710
2.0		15:15	verify cooler has soaked 115
4.0		15:15	Place cooler into test chamber that has been pre-cooled to -540 KS within 5 minutes from 710
5.0		19:15	Verify cooler has soaked for LIXD' four (4) hours at -54C
6.0		19:15	Place cooler into test chamber that has been pre-heated to 71C within 5 mins. of removing from -54C ambient.
7.0		23:15	Verify cooler has soaked for for hours at +710
8.0		23:15	Flace cooler into test chamber that has been pre-cooled to -540 within 5 mins. of removing jrom +710 embient.
9.0	10 JUNE	3:15	Verify cooler has soated for 196
10.0		3:15	Flace cooler into test chamber that has been pre-heated to +710 within 5 mins. of removing from -540 ambient.
11.0		7:15	Verify cooler has soaked for 1K5
12.0		7:15	Place cooler into test chamber that has been pre-cooled to -540 within 5 mins. of removing from //5 +710 ambient.

Temperature Shock Test Summary Sheet (Continued)

Step	Date	Elapsed Time	Test Requirement	Initial
13.	10 JUNE	11:15	Verify cooler has soaked for four hours.	4K5
14.		11:15	Adjust test chamber ambient to +230	1K5
15.		13:00	Verify test chamber Ambient is 230	1K5
16.		13.00	Visually inspect cooler for physical damage and record.	aks
17.	13 JUNE	08:30	Conduct performance test per Para. 6.0 of this test plan	4120
		26 X 10	o Std. CC Helium/s	ec (record)

Commentas:		
_		

NVEOL CRYOGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 8011

DATE: 13 JUNE 88 09:40

VOLTAGE: 17.5

ENGR: HLO

AMBIENT: 23 (C)

DEWAR COMP: .335

TEST: PERFORMANCE TEST FOLLOWING TEMP SHOCK

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	22.26	1,372	296.64	0.000
1.30	20.47	1.194	214.83	0.000
2.00	21.55	1.254	155.46	0.300
3.00	22.62	:.325	108.90	0.000
3.30	23.62	1.350	96.86	0.000
3.93	23.43	1.339	76.32	0.000
4.00	23.76	1.363	59.88	0.000
5.00	23.74	1.366	52.89	0.000
5.00	23.55	1.343	49.66	0.000
7.30	23.50	1.342	48.18	0.000
3. 00	23.39	1.324	47,66	0.000
9.00	23.41	1.321	47,49	0.000
10.00	23.42	1.335	47,31	0.000
11.00	23.35	1.341	47.23	0.000
12.00	23.44	1.346	47.18	0.000
13.00	23.37	1.343	47.23	0.000
14.00	23.15	1.306	47.49	0.000
15.30	23.30	1.332	47.14	0.000
16.00	23.36	1.325	47.14	0.300
17.00	23.33	1.340	47.18	0.000
18.00	23.25	1.327	47.43	0.000
19.00	23.23	1.322	47.27	0.300
20.00	23.33	1.333	47.31	0.000
30.00	23.21	1.326	74.01	.351
40.00	23.11	1.301	74.82	.351

TEMRATURE SHOCK—S/N 013

TEMPERATURE SHOCK TEST SUMMARY SHEET

Cooler	- s/N013		Date: 9 JUNE 88
Test 1	rech. HLD		Project Eng.
Step	bate	Elapsed Time	Test requirement Initial
1.0	9 JUNE	10:50	Install coolers into test chamber
2.0		10:50	Adjust chamber ambient to + 710
3.0		15:15	verify cooler has spaked / S
4.0		15:15	Place cooler into test chamber that has been pre-cooled to -540//-
5.0		19:15	Verify cooler has soaked for HXD four (4) hours at -540
6.0		19:15	Place cooler into test chamber that has been pre-heated to 710 within 5 mins. of removing from -540 ambient.
7.0		23:15	Verify cooler has soaked for HZD
8.0		23:15	Flace cooler into test chamber that has been pre-cooled to -540 within 5 mins, of removing from +710 ambient.
7.0	34UL OI	3:15	Verify cooler has soaked for // four hours at -540
10.0		3:15	Flace cooler into test chamber that has been pre-heated to +710 within 5 mins. of removing from -540 ambient.
11.0		7:15	Verify cooler has soaked for 1K5
12.0		7:15	Flace cooler into test chamber that has been pre-cooled to -540 within 5 mins. of removing from 145 +710 ambient.

Test Sheet 5 (1of 2)

Temperature Shock Test Summary Sheet (Continued)

Step	Date	Elapsed Time	Test Requirement	Initial
13.	IDJUNE	11:15	Verify cooler has soaked for four hours.	1K5
14.		11:15	Adjust test chamber ambient to +230	1/3
15.		13:00	Verify test chamber Ambient is 230	1KS
16.		13:00	Visually inspect cooler for physical damage an d record.	15
17.	13 JUNE	07:15	Conduct performance test per Fara. 6.0 of this test plan	HILD
		6.4 × 10	yo Std. CC Helium/s	ec (record)

Commentgs:			
	<u></u>	 	

Test Sheet 5 (2 of 2)

NVEOL CRYOGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 013

DATE: 13 JUNE 38 28:23

VOLTAGE: 17.5

ENGR: HLD

AMBIENT: 23 (C)

DEWAR COMP: .335

TEST: PERFORMANCE TEST FOLLOWING TEMP SHOCK

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	18.71	1.069	294.29	Ø. 300
1.00	17.81	1.040	203.11	0.000
2.00	19.32	1.175	136.53	0.000
2,77	21.23	1.213	95.79	0.000
3.00	21.26	1.239	87.60	0.000
3.30	21.73	1.242	77.39	0.000
4.00	22.00	1.261	61.10	0.000
5.00	22.05	1.233	49.49	0.000
6.00	22.23	1.266	44.48	0.300
7.00	21.90	1.237	43.13	Ø.000
8.00	21.93	1.225	42.43	0.000
9.00	22.11	1.260	42.04	Ø.000
10.00	21.94	1.250	41.74	0.000
11.00	21.86	1.233	41.74	0.000
12.00	21.97	1.248	41.82 .	0.000
13.00	22.12	1.266	41.74	0.000
14.00	22.08	1.232	41.60	Ø.300
15.00	22.04	1.253	41.69	0.000
15.00	21.79	1.236	41.78	0.000
17.00	22.05	1.262	41.87	0,000
18.00	21.89	1.255	41.95	0.000
19.00	21.85	1.246	42.04	0.000
20.00	21.84	1.257	41.78	Ø.300
30.00	21.70	1,276	69.09	.351
40.00	21.57	1.225	70.20	.351

HIGH TEMPERATURE—S/N 8011

HIGH TEMPERATURE TEST SUMMARY SHEET

Cooler	5/N <u>8011</u>		Date of Test 14-16 JUNE 88
Testrr	Tech_HLD		Froject Eng.
Step	Date	Elapsed Time (HrMin)	Test Requirement
1.0	14 JUNE	08:50	Install the cooler into the test chamber instrumented per Para. 6.3
2.0		09:05	Adjust chamber ambient to +710
3.0	16 June	09:07	Verify cooler has soaked for 48 hours at +710
4.0			Operate the coolers in accordance with Para. 6.0 and record results.
5.0			Lower test chamber to standard room ambient (non-operating)
6.0			Visually inspect coolers for physical damage and record abnormal findings.
7.0	16 June		Conduct performance test at 230 per Para. 6.0. and record results.
	16 Johe	8.0 × 10-9	_Std. CC Helium/Sec. (Record)
Commen	ts: Motol	HS. REMOVED	
			

Test Sheet 6

NUEGL CRYCGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 8011

DATE: 16 JUNE 88 10:15

VOLTAGE: 17.5 -

ENGR: HLD

AMBIENT: 71 (C)

DEWAR COMP: .335

TEST: PERFORMANCE TEST FOLLOWING 48 HOUR SOAK

TIME	POWER	CURRENT	KELVIN	LOAD
ð. 00	18.19	1.040	342.94	Ø.000
1.00	21.25	1.239	256.54	0.000
2.00	21.51	1.249	195.58	0.000
3.00	22.53	1.298	148.78	ð.000
4.00	22.93	1.327	114.49	0.000
4.58	23.49	1.342	99.87	0.000
5.00	23.33	1.324	92.48	0.000
6.00	23,39	1.328	79.50	0.000
6.13	23.33	1.333	78.04	0.000
7.00	23.54	1.358	71.54	0.000
8.00	23.65	1.360	67.76	0.000
9.00	23.54	1.361	65.40	0.000
10.00	23.66	1.345	64.38	0.000
11.00	23.49	1.326	64.05	0.000
12.00	23.61	1.355	63.80 ·	0.000
13.00	23.51	1.336	63.76	0.000
14.00	23.49	1.341	63.88	0.000
15.00	23.50	1.341	63.72	0.000
16.00	23.70	1.374	64.01	0,000
17.00	23.60	1.341	64.01	0.000
18.00	23.55	1.335	64.01	0.000
19.00	23.72	1.363	64.17	0 000
20.00	23.60	1.329	64.17	0.000
30.00	23.67	1.350	83.00	.201
40.00	23.83	1.366	93.46	.201

NVEOL CRYOGENIC COOLER LAB

CRYOGENIC COOLER DATA

CCOLER: RICOR / CT-45 8011

DATE: 17 JUNE 88 08:56

VOLTAGE: 17.5 AMBIENT: 23 (C) ENGR: HLD
DEWAR COMP: .335

TEST: ROOM AMBIENT PERFORMANCE TEST FOLLOWING HIGH TEMP TEST

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	21.83	1.247	295.38	0.000
1.00	20.38	1,171	209.28	0.000
2.00	21.22	1,248	148.99	0.000
3.00	22.40	1.323	103.91	0.000
3.10	23.10	1.320	99.72	0.000
3.77	23.01	1.315	79.35	0.000
4.00	23.11	1.333	74.20	0.000
5.00	23.39	1.338	58.91	0.000
6.00	23.34	1.324	52.77	0.000
7.00	23.22	1.329	49.84	0.000
8.00	23.13	1.320	48.62	0.000
9.00	23.15	1.325	48.18	0.000
10.00	23.09	1.312	47.97	0.000
11.00	22.98	1.311	47.79	0.000
12.00	23. 05	1.323	47.53	, 0.000
13.00	23.10	1.324	47.70	0.000
14.00	23.16	1.321	47.79	0.000
15.00	23.02	1.321	47.97	0.000
16.00	22.91	1.311	48.14	0.000
17.00	23.00	1.311	48.05	0.000
18.00	22.97	1.312	48.05	0.000
19.00	22.98	1.307	47.75	0.000
20.00	22.92	1.311	47.75	0.000
 30.00	22.37	1.284	76.58	.351
40.00	22.42	1.285	78,66	.351

HIGH TEMPERATURE—S/N 013

HIGH TEMPERATURE TEST SUMMARY SHEET

Cooler	5/N <u>013</u>		Date of Test 14-16 June 88
Testrr	Tech_HLD		Project Eng
	·	Elapsed Time	
Step	Date	(HrMin)	Test Requirement
1.0	14JUNE	08:50	Install the cooler into the test chamber instrumented per Para. 6.3
2.0		09:05	Adjust chamber ambient to +710
3.0	16 JUNE	10:21	Verify cooler has soaked for 48 hours at +710
4.0			Operate the coolers in accordance with Fara. 6.0 and record results.
5.0			Lower test chamber to standard room ambient (non-operating)
6.0			Visually inspect coolers for physical damage and record abnormal findings.
7.0			Conduct performance test at 230 per Para. 6.0. and record results.
	June 17	7.0 x 10-9	Std. CC Helium/Sec. (Record)
Commer	nts:		

Test Sheet 6

NUESE SRYGGENIS SOCIER LAB

CRYCGENIC COOLER DATA

COOLER: RICOR / CT-45 013

DATE: 15 JUNE 88 11:28

VOLTAGE: 17.5 - ENGR: HLD

AMBIENT: 71 (C)

DEWAR COMP: .143

TEST: PERFORMANCE TEST FOLLOWING 48 HOUR SOAK

TIME	POWER	CURRENT	KELVIN	LCAD
0.00	13.52	1.116	344.26	Ø.20Ø
1.00	18.60	1.113	242.84	3.000
2.00	20.11	1.200	173.74	0.000
3.00	21.86	1.263	121.69	0.000
3.60	23.29	1.331	98.73	0.000
4.00	23.15	1.334	88.08	0.000
4.43	23.62	1.350	78.04	0.000
5.00	23.62	1.343	69.82	0.000
5.00	23.53	1.335	59.64	0.000
7.00	23.52	1.341	55.35	0.200
8.00	23.45	1.363	54.00	0.000
9.00	23.40	1.325	53.38	0.000
10.00	23.30	1.323	53.92	0.000
11.00	23.31	1.336	53.38	0.000
12.00	23.27	1.312	53.34	0.000
13.00	23.37	1.315	53.05	0.000
14.00	23.34	1.338	52.73	0.000
15.00	23.41	1.333	52.84	0.000
16.00	23.30	1.329	52.81	0.000
17.00	23.27	1.337	53.71	0.000
18.00	23.30	1.334	52.10	0.000
19.00	23.26	1.317	53.50	0.000
20.00	23.34	1.337	53.14	0.000
30.00	23.40	1.337	68.52	. 201
40.00	23,25	1.332	69.13	.201

NVEOL CRYOGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CRYOTEK 613

DATE: 16 JUNE 1988 19:34

VOLTAGE: 17.5

ENGR: RNS

AMBIENT: 23 (C)

DEWAR COMP: .143

TEST: BASELINE AFTER HIGH TEMP

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	19.50	1.114	300.60	0.000
1.00	17.61	1.044	209.14	0.000
2.00	18.95	1.124	142.13	0.000
3.00	20.30	1.189	97.44	0.000
3.10	20.98	1.199	93.92	0.000
3.65	21.42	1.224	78.66	0.000
4.00	21.23	1.227	71.85	0.000
5.00	22.06	1.255	56.66	0.000
6.00	22.07	1.257	49.01	0.000
7.00	21.90	1.247	50.10	0.000
8.00	22.04	1.268	44.61	0.000
9.00	22.01	1.256	44.13	0.000
10.00	21.95	1.246	43.87	0.000
11.00	22.05	1.259	43.91	0. 000
12.00	21.99	1.250	43.83 ,	0.000
13.00	21.94	1.247	43.78	0.000
14.00	22.06	1.257	43.91	0.000
15.00	21.99	1.267	43.91	0.000
15.00	22.04	1.272	43.87	0.000
17.00	22.04	1.264	43.78	0.000
18.00	22.00	1.260	43.87	0.000
19.00	22.02	1.259	44.00	0.000
20.00	22.02	1.253	44.00	0.000
30.00	21.48	1.220	73.36	.351
40.00	21.49	1.226	75.13	.351

LOW TEMPERATURE—S/N 8011

LOW TEMPERATURE TEST SUMMARY SHEET

Cooler 5/N_8011		Date 21-22 June 88		
Test tech	HLD	Project Eng.		
Step	Dat e	Elapsed Time (Hour/Min.)	Test Requirement	
1.0	21 JUNE	<u>06: 05</u>	Install cooler into test chamber as per Para. 6.3.	
2.0		06:55@-57C	Adjust test chamber to -570	
3.0	22 June	<u>02:55</u>	Verify cooler has soaked for 4 hours at -570	
4.0		07:50	Raise the temper ature to -40 and allow coolers to stabilize.	
5.0			Operate coolers in accordance to para. 6.0 and record results.	
6.0			Raise test chamber to standard room ambient +23C (non-operating)	
7.0			Visually inspect coolers for any physical damage and record.	
8. 0			Conduct Performance test at +230 and record	
	9×10"	9 Std. CC Helium/Sec	:. (record)	
Comments:				

NVECE OF COGENIO COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CRYOTEK 8011

DATE: 22 JUNE 1988 09:48

VOLTAGE: 17.5

ENGR: HLD

AMBIENT: -40 (C)

DEWAR COMP: .335

TEST: PERFORMANCE TEST FOLLOWING 24 HOUR SOAK

TIME	POWER	CURRENT	KELVIN	LOAD
0.20	17.47	.338	232.97	0.000
1.00	17.63	1.033	149.92	3.000
2.00	18.83	1.121	96.67	0.000
2.10	19.50	1.114	91.90	0.000
2.43	19.81	1.132	78.62	0.000
3.00	19.78	1.145	62.12	0.000
4.00	20.00	1.136	46.44	0.000
5.00	19.78	1.119	41.13	0.000
6.00	19.73	1,129	39.47	0.000
7.00	19.61	1,119	38.67	0.000
8.00	19.58	1.121	38.37	0.060
9.00	19.70	1.121	38.22	0.000
10.00	19.69	1.130	38.19	0.000
11.00	19.60	1.120	38.14	0.000
12.00	19.76	1.130	38.14	0.000
13.00	19.75	1,129	38.14	0.000
4.00	19.69	1.125	38.14	3.000
15.00	19.78	1.125	39.14	0.000
16.00	19.74	1.128	38.14	Ø. ØØØ
17.00	19.67	1.135	38.14	0.000
19.00	19.76	1.128	38.18	0.000
19.00	19.71	1.133	38.18	0.000
20.00	19,76	1.126	38.19	0.300
30.00	19.79	1.131	61 63	. 348
43.30	: 9.65	1,1'4	62.12	. 350

NVEST CRYSGENIS SSCLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CRYOTEK 8011

DATE: 22 JUNE 1988 13:39

VOLTAGE: 17.5

ENGR: RNS

AMBIENT: 23 (C)

DEWAR COMP: .335

TEST: POST LOW TEMP BASELINE

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	14.74	.842	296.99	0.000
1.00	19.36	1.136	205.80	0.000
2.00	20.51	1.199	142.99	0.000
3.00	21.68	1.258	97.59	0.000
3.10	22.42	1.281	93.77	0.000
3.67	22.45	1.283	77.35	0.000
4.00	22.45	1.288	70.55	3.000
5.00	22.58	1.287	57.28	0.000
6.00	22.41	1.284	51.58	0.880
7.00	22.32	1.278	49.36	0.000
8.60	22.39	1.280	48.27	0.000
9.00	22.35	1.274	47.92	0.000
10.30	22.39	1.273	47.79	0.000
11.00	22.35	1.283	47.79	Ø. 986
12.00	22.45	1.280	47.84	0.900
13.00	22.40	1.283	47.92	8.000
14.89	22,45	1.273	47.97	0.000
15.00	22.41	1.290	48.05	0.000
16.89	22.51	1.281	48.19	0.200
17.00	22.56	1.289	48.14	9.000
18.99	22.58	1.295	48.18	0.300
19.00	22.53	1.291	48.23	9.999
20.00	22.49	1.266	48.19	9.300
30.00	22.62	1.299	73.24	. 350
40.00	22.81	1.298	73.24	. 350

LOW TEMPERATURE—S/N 013

LOW TEMPERATURE TEST SUMMARY SHEET

Cooler S/N 013		Date_17-18 JUNE 88		
Test tech_	HLD	Project Eng.		
Step	Date	Elapsed Time (Hour/Min.)	Test Requirement	
1.0	17 JUNE	09:30	Install cooler into test chamber as per Para. 6.3.	
2.0		<u>10:20 @-57</u>	Adjust test chamber to -57C	
5.0	34UL 81	10:20	Verify cooler has soaked for the hours at -570 24	
4.0			Raise the temper ature to -40 and allow coolers to stabilize.	
5.0			Operate coolers in accordance to para. 6.0 and re cord results.	
6.0			Raise test chamber to standard room ambient +23C (non-operating)	
7.0			Visually inspect coolers for any physical damage and record.	
8.0			Conduct Performance test at +230 and record	
	7.9 × 10-9	Std. CC Helium/Sec.	(record)	
Comments				

Test Sheet

NVEOL CRYCGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CRYOTEK 013 DATE: 18 JUNE 1988 12:22

UOLTAGE: 17.5 ENGR: RNS AMBIENT: -40 (C) DEWAR COMP: .143

TEST: COLD TEMP BASELINE

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	18,77	1.073	233.00	0.000
1.00	15.65	. 945	151.49	0.000
2.00	17.02	. 993	97.00	0.000
2.10	18.01	1.029	92.70	0.000
2.53	18.53	1.065	76.58	0.000
3.00	18.22	1.072	62.41	0.000
4.00	18.88	1.084	57.03	0.000
5.00	18.56	1.065	55.72	0.000
6.00	18.75	1.072	55.43	0.000
7.00	18.99	1.106	47.97	0.000
8.00	19.41	1.108	40.82	0.000
9.00	19.29	1.084	41.26	0.000
10.00	19.28	1.083	41.13	0.000
11.00	19.21	1.094	46.88	0.000
12.00	19.30	1.101	44.92	0.000
13.00	19.18	1.090	43.09	0.000
14.00	19.28	1.108	43.48	0.000
15.00	19.29	1.099	41.08	3.000
16.00	19.37	1.116	40.95	0.000
17.00	19,43	1.116	39.54	0.000
18.00	19.45	1.110	39.13	0.000
19.00	19.50	1.107	39.01	0.000
20.00	19.51	1.110	39.01	0.000
30.00	19.17	1.090	61.79	.351
40.00	19.12	1.097	63.43	.351

NVEST SPISSENTS SOCIET LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 013

DATE: 20 JUNE 88 07:33

VOLTAGE: 17.5 AMBIENT: 23 (C)

H.

CEWAR COMP: .143

ENGR: HLD

TEST: ROOM AMBIENT PERFORMANCE TEST FOLLOWING COLD TEMP TEST

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	11.77	.673	295.62	0.000
1.00	17.40	1.019	200.78	0.000
2.00	18.80	1.112	135.16	0.000
2.77	20.85	1.191	97.41	0.000
3.00	20.46	1.216	89.03	0.000
3.32	21.59	1.234	77.46	0.000
4.00	21.59	1.230	62.33	0.000
5.00	21.75	1.244	50.71	0.000
6.00	21.72	1.247	47.01	0.000
7.00	21.73	1.241	45.48	0.000
8.00	21.68	1.233	44.04	0.000
9.00	21.67	1.249	43.74	0.000
10.00	21.72	1.248	43.96	0.000
11.00	21.72	1.240	44.18	0.000
12.00	21.72	1.241	43.74 ;	0.000
13.00	21.74	1.252	43.78	0.000
14.00	21.74	1.242	44.44	0.000
15.00	21.73	1.234	44.31	0.000
16.00	21.74	1.245	44.26	0.000
17.00	21.81	1.242	44.44	0.000
18.00	21.77	1.238	44.31	0.000
19.00	21.78	1.246	44.09	0.000
20.00	21.83	1.246	44.44	0.000
30.00	21.73	1.250	70.01	.351
40.00	21.74	1.238	70.13	.351

MECHANICAL SHOCK—S/N 8011

MECHANICAL SHOCK TEST SUMMARY SHEET

Cooler S.	/N_ <u>SC-11</u>		Date <u>ZC JULY</u> OC
Test Tec:	HLD	Froject 8	ngineer
Step	Requ	irement	Initial
1.0	Verify Shock M	achine is calibrated	<u> </u>
2.0		mented cooler with powershock table. (X amis)	er leads
7.0	•	r and operate with no t n on the coldfinger.	thermal load or
4.0	Apply two shac	Is in the positive X a:	:15
5.0	Apply two shoc	ks in the minus X axis	
6.0	Change the coo	ler into ther Y axis	
7 .0	Apply two shoc	ks in the positive Y as	:15 <u>V</u>
8.0	Apply two shoc	Es in the minus Y axis	
9.0	Change cooler	into the Z amis	
10.0	Apply two shoc	ls in the positive Z a	15
11,0	Apply two shoc	Es in the minus Z axis	V
12.0		oler and inspect for e. Record results.	
17.0	Conduct perfor	mance test per para 6.	• <u>/</u>
	7.5 x 10	9 Std. cc helium/se	с
Comments	*******		
Pr 4 mile + 4 mr 4 mm 4 mm 4 mm 4 mm 4 mm 4 mm 4			

Test Sheet 8

MECHANICAL VIBRATION ORIENTATION

+X AXIS

- X AXIS

+Y AXIS

- Y AXIS

+Z AXIS

-ZAXIS

NUEGL CRYOGENIO COCLEP L48

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 8011

DATE: 21 JULY 88 11:19

VCLTAGE: 17.5 AMBIENT: 23 (C)

DEWAR COMP: .335

ENGR: HLD

TEST: PERFORMANCE TEST FOLLOWING MECHANICAL SHOCK

TIME	POWER	CURRENT	KELAIN	LJAO
ð. ðø	21.19	1.211	293.16	ð.20ð
1.00	19.68	1.148	207.59	0.200
2.00	20.66	1.217	147.51	3.90 0
3.00.	21.95	1.299	100.09	0.000
3.10	22.56	1.289	95.87	0.000
3.67	23.07	1.318	78.07	3.30 0
4.00	22.81	1.307	70.69	0.000
5.00	23.10	1.317	56.55	0.000
5.00	23.00	1.305	50.57	0.000
7.00	22.89	1.306	48.08	0.000
8.00	22.70	1.300	46.99	0.000
9.00	22.85	1.310	46.51	0.000
10.00	22.81	1.301	46.25	0.000
11.00	22.83	1.304	46.17	0.200
12.00	22.81	1.305	46.17	J.000
13.00	22.79	1.304	46.21	9.000
14.00	22.76	1.302	46.25	ð.000
15.00	22.85	1.303	46.25	0.000
15.00	22.78	1.304	46.30	0.000
17.00	22.54	1.298	46.17	0.000
18.00	22.80	1.300	46.34	0.000
19.00	22.83	1.301	46.34	0.000
20.00	22.84	1.309	46.34	0.000
30.00	22.81	1.296	71.00	.351
40.00	22.80	1.308	71.00	.351

MECHANICAL SHOCK—S/N 013

MECHANICAL SHOCK TEST SUMMARY SHEET

<u> 127</u> 88

r

Test Sheet 8

MECHANICAL VIBRATION ORIENTATION

- X AXIS

- Z AXIS

NVEOL CRYGGENIC COOLER LAB

CRYOGENIC COOLER DATA

COOLER: RICOR / CT-45 013

CATE: 21 JULY 88 08:25

VOLTAGE: 17.5 AMBIENT: 23 (C) ENGR: HLD DEWAR COMP: .143

TEST: PERFORMANCE TEST FOLLOWING MECHANICAL SHOCK

TIME	POWER	CURRENT	KELVIN	LOAD
0.00	14.29	.817	277.30	0.200
1.00	17.76	1.052	196.53	0.900
2.00	19.08	1.132	134.74	3.000
2.77	21.04	1.202	95.41	0.000
3.00	20,68	1.225	88.51	3.300
3.22	21.60	1.234	80.07	0.000
4.00	21.62	1.250	82.51	0.000
5.00	21.78	1.245	50.77	0.000
ä.00	21.65	1.235	47.72	0.000
7.00	21.64	1.250	45.54	0.000
8.00	21.60	1.235	45.76	0.000
9.00	21.52	1.220	45.02	0.000
10.00	21.54	1.234	44.10	0.600
11.00	21.52	1.237	44.93	0.000
12.00	21.50	1.227	44.27	0.000
13.00	21.52	1.231	44.841	0.000
14.00	21.58	1.217	44.54	0.000
15.00	21.59	1.224	45.41	9.000
16.00	21.54	1.229	44,45	0.000
17.00	21.67	1,241	44.54	0.000
18.00	21.62	1.234	44.19	0.000
19.00	21.54	1.224	44.06	9.000
20.00	21.55	1.232	43.97	0.000
30.00	21.51	1.230	71.38	. 352
40.00	21.48	1,224	71.65	. 352

Test Report No. 4773.01

No. of Pages 9

Report of Test on

RICOR 1/4 Watt Split P/N K516 CT-45 S/N 913 for Cryo-Tek Corp. Woodbridge, Virginia

NOISE UNLIMITED, INC.

104 S. Bridge St., Somerville, N.J. 06876

29 February 1988

Performed	Checked	Approved
J.B. Moncrief	G. McAdoo	R.D. McAdoo
Ja-BA	Es Muddon	(1) Me Alon
28 MARCH 1988	for 6M 3-29-8	21 Mark 88

TABLE OF CONTENTS

1.0	Purpose of lest	3
2.0	Manufacturer	3
3.0	Manufacturer's Type or Model No	3
4.0	Drawing, Specification or Exhibit	}
5.0	Number of Items Tested	3
6.0	Security Classification of Items	3
7.0	Date Test Completed	3
8.0	Test Conducted By	3
9.0	Test Witnesses	3
10.0	Disposition of Items Tested	}
11.0	Test Procedure	Ŀ
	Figures 1-2	;
	Tables 1-2	}
	List of Apparatus	•

NOISE UNLINITED, INC., SOMERVILLE, NEW JERSEY

1.0 Purpose of Test

The purpose of this test was to record sound pressure levels emitted by the RICOR 1/4 Watt Split.

2.0 Manufacturer

Cryo-Tek Corp. 3589 Forest Dale Woodbridge, Virginia 22193

3.0 Manufacturer's Type or Model No.

RICOR 1/4 Watt Split P/N K516 CT-45 S/N 013

4.0 Drawing, Specification or Exhibit

Night Vision Electro Optics Specification 82-28A050122A HD1045 Cooler 18 June 1982 Para. 7.2.2

5.0 Number of Items Tested

One (1)

6.0 Security Classification of Items

Unclassified

7.0 Date Test Completed

17 February 1988

8.0 Test Conducted By

Noise Unlimited, Inc. Somerville, NJ 08876

9.0 Test Witnesses

Hr. B.T. Walters, Cryo-Tek Corp. Representative Hr. H. Kling, Cenveo Representative

10.0 Disposition of Items Tested

MOISE UNLINITED, INC. SOMERVILLE, MEN JERSEY

Test Item Suspension
Figure 1

NOISE UNLINITED, INC. SOMERVILLE, NEW JERSEY

COMPA	NY	CR	407	-5 K			, <u>E</u> !	NGINE	ERING	DATA					JOB N	io	4773
TEST	ITEM	1/4 4	SPL	<u> </u>	3/~	800	, <u>s</u> !	PECTR	JM LE	VELS					REF.	NO.	
TESTE					4	1	` \.	m/~	K5:	16 4	T-4	5			DATE	<u>Z</u> .	17-88
Event	Time	Pos.	0	/A 1							ve L	vels					dB or v
No.		No.			Pk	Imp	31	63	125	250	500	1k	2 k	4k		lok	Ref •
ANIA		4.		51					37	27	24	30	20	10	510		SATOL
	5/~								63	62	57	49	43	43	40		MASL
	C13	4		59	-			<u> </u>	35	27	32	40	48	95	42	ļ	
				53				 	 	-	 	 		-			1
		2		53			ļ	ļ	ļ		<u> </u>	 		-			
		3		51					 	 	 	 		 	!	· 	ļ
		6	<u> </u>	5 <u>4</u>			 	-	1 2 2	17.	1 4 0	67	e /	+2 /	1 797	·	
		5	<u> </u>						32	27	122	93/45	26	12			Away FAIN
Ansi	h par	5		48	-			1	126	41	144	118	46	<u>; 13</u>	1510	1	W.
 								 	 	 	-		<u> </u>	 			
				 			 	 	 	 	 	!	 	T	<u> </u>	-	
-			 -	 				 	 	 				 	 		
-			 -	1	i		├ -			 		•		:		-	
 						-		 	`				1				
1				 				 	 	 			 	1	:		
-	<u> </u>	·········					<u> </u>			٠				<u></u>			
-8010						-											
-013	54				30,												
- 1771	>/K-T	نعدن	PC		UFFC	·T								<u> </u>			
									<u> </u>								
								-	· ***		neis			260			
<u> </u>									VOVI /	AVI	116 17	Eno-	78	CIP	<u> </u>		
A; O	dB S	PL =	2 x	10-5	N/M	2 = 2	x 10	0-4 DV	ne/Cm	_h 2							
8: 0	dB A	cc. =	1 ×	10-	6q.	lq =	120 c	18									

NUI Form #12

Original Data Sheet

Figure 2

NOISE UNLINITED, INC. SOMERVILLE, NEW JERSEY

Position	Description	Axie
1	Cold Finger End	x
2	Side A	z
3	Power End	x
4	Side. B	Z
5	Opposite Cold Finger Side	Y
6	Cold Finger Side	Y

The microphone was positioned at a distance of 1 meter from the side of the test item. The microphone was positioned with a ${\rm O}^{\rm O}$ angle of incidence.

Measurement Positions

Table 1

NOISE UNLINITED, INC. SOMERVILLE, NEW JERSEY

Octave Band Center Frequencies

Position	<u>a</u>	125	<u>250</u>	500	<u>1K</u>	<u>2K</u>	<u>4K</u>	<u>8K</u>	O/A dBC
Ambient	4	37	27	24	30	20	10	<10	51
	4	-	-	-	-	•	-	•	54
	1	-	-	-	*	-	•	-	53
	2	-	-	-	-	•	-	-	53
	3	•	-	-	-	-	-	•	51
	6	-	-	-	-	•	-	-	54
	5	32	30	38	43/45+	50/54.	42/44.	39/42•	55
Ambient	5	32	27	22	18	26	13	<10	48
	5••	18	16	24	29/31	36/40	28/30	25/28	41
Spec. Maximum	•••	49.5	48.5	43.5	35. 5	29. 5	29.5	26.5	

^{*}Heter on slow/noise was cycling.

SPL1 = SPL2 - 20L0G D1/D2

Where:

SPL2 = Sound pressure level at distance D2

Measurement Data (dB re: .0002 Microbar)

Table 2

NOISE UNLINITED, INC. SOMERVILLE, NEW JERSEY

^{**}Equivilant sound pressure levels for a distance of 5 meters using the following formula:

^{•••}Specification Paragraph 7.2.2

LIST OF APPARATUS

	Item .	Hanufacturer	Model Mo.	<u>\$/N</u>	Cal. Date	Due Date	Accurac	y Range
3.	Microphone	Bruel/Kjaer	4131	191648	Before/After	Test	<u>-148</u>	20Hz-10kHz
11.	Pistonphone	Bruel/Kjaer	4220	284823	04-28-87	04-28-88	<u>*</u> . 2d 3	250Hz
16.	Prec.Sd.Lvl.Htr.	Bruel/Kjaer	2204	313737	11-11-87	11-11-88	<u>*</u> 1d9	2Hz-70kHz
20.	Oct.Fltr.Set	Bruel/Kjaer	1613	325994	11-11-87	11-11-88	<u>+</u> . 5dB	22Hz-45kHz

NOISE UNLINITED, INC. SCHENVILLE, NEW JERSEY

ACOUSTIC NOISE

C²NVEO DATA

Two RICOR 1/4-Watt Split Rotary Coolers, S/N 8011 and S/N 013, were tested to determine their audible noise levels. The coolers were suspended with rubber bands in the C²NVEO firing range (semi-anechoic room). The ambient octave band sound pressure levels were then recorded with the required DC power supply operating. The cooler was then allowed to cool down. The overall sound pressure level data was then recorded. All measurements were taken at a distance of 1 meter from the cooler. The specification maximum sound pressure levels were then converted to 1-meter levels. As can be seen from the data, both coolers exceeded the maximum levels in +Y and +Z axes at the 2,000, 4,000, and 8,000 center frequencies.

MECHANICAL VIBRATION ORIENTATION

- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
ENTS	
U	
\mathbf{Z}	
ů.	
3	
CREME	
W	
3	
M.	
IJ	
MEAS	
3	
4	
- 1	
VEL MEASUL	
ωī.	
7]	
ات	
URE . LE	
\cdot 1	
W.	
ष्प	
9	
53	
גצ	
2	
\mathbf{z}	
- 1	
31	
3	
Λĺ	
1	
- 1	

2 2	DATE & SUNCE	UL DURCE: PKWE	i li 1	1 1/08 #	MW	11765			7.6	TEST ENGINEER	INEF		H. KLING	97.	
	INSTRUMENTATION	ON TIME	4,	28 RH	2 RH WIND MPH DURECTION	DIREC		mm Hg		1	CO	COMMENTS	475		
	GEN PAO 1933								*	745 2		2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	TOWN WAS PLACED OVER. THE COLD FINGER	12/2	
ı i		•													· . <u>-</u>
I W I ≪	TREMSOUCER								<u> </u>						
A P															
	TEST TIME POSITION		一	SOUND	PRESSURE LEVEL	RE LE	: 131	98	2	20 11.	MN/W	rms	۰		
						ati	CTAVE BAND	ı			FREG:	1	M		
			#	A-WEIGHTED OVERBLL	OVERBIL	31.5	63	125	250	500	1 K	2 K	4 K	8 K	16 K
2110		Bitaldon		35	63	53	1 .			25	6/	81	8/	19	2/
	×					53	53	66	40	31	53	40	44	36	35
	× -												7		
[>					53	53	5/	42	29	40	86	50	#2	3
	1/-											•	3	7	
	2					54	53	49	40	3/	35	46	46	27	38
ì	7.5											, J			
		MAX. SPL PER By SPC. AT 1.	Examition 1 M.					6315	5.09	575	49.5	49.5 43.5 43.5	43.5	2.04	
ł															
						,									

PRIMARRY HUSE SOURE: N.C. X # O.B. Ng M. SR.17 INSTRUMENTATION TIME	100	1			Sound	PAKSSURE-LEVEL MEDSUREMENTS	E-1EVE	L ME	A 54/6	EME	2			1			
SOURE: N.C. # OB N.W. S.P.17 ATION 1704 1705 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			872.	8							Ti	ST EN	GIMEE.	'	7 K21.	22	
NSTRUMENTATION TIME	PRIM	UBRY A		OURCE: K		810	15 M	118									
NSTRUMENTATION 11Mt T T H WIND					-	-		-									
TIME POSITION SOUND - PRESSURE LEVEL! SOUND FINGER	<u> </u>	15TRUA	MENTATI			7	WIND mPI	DIREC		H WW	6		CO	MMEI	NTS		
TIME PESITION	13	VRAD	1933	1			0)			*		Z Z	S PLA	(ev. 04	ER TH	7
TIME PSITION SOUND - PRESURE LEVEL : JB re 20 MN/m² rms	।अ	<u>ه</u> 0٤		<u>-</u>			•				,	0,00	1-180	ic.R			
1210 1210 SOUND - PRESURE LEVEL! JB re 20 M/M² rms SOUND - PRESURE LEVEL! JB re 20 M/M² rms ACTAVE BAND CENTER FREA: HZ JE JE JE JE JE JE JE J	138	NSDWEE	85														
Time Position Sound - Pressure Level : JB re 20 mm/m² ring	2	1/7	1310														
Market M	7557		POSITION			SOUND	1	RE LE			10	20 11	1 / N	- 1	اِ		
A-WEWATTAB ONEANIL 31.5 6.3 125 126 1K 2K 4K 8K STANKESN ONLY 35 d8 62 d8 52 52 47 41 57 26 43 44 57 X	NO.			W				at a	AVE B	3AWO	CENT	FR	FREG	١		378	
X G3 d8 65 d8 52 47 41 57 24 8 18 19 19 X 49 64 52 52 47 41 37 32 43 44 57 X 50 64 52 52 41 37 43 45 37 Y 56 64 53 52 50 41 34 45						A - WEIGHTE	OVERBIL	31.5	63	125		500	1 1 K	2 K		8 K	16 K
49 64 52 52 77 41 37 34 43 74 37 50 64 50 64 52 52 67 41 37 34 43 74 37 50 64 52 52 52 48 91 35 44 51 96 92 52 52 52 48 91 35 44 51 96 92 54 51 96 92	1	5661		BARGERA	(ma,	35 48	63 48	52	52	24		24	8	81	8/	0/	77
50 64 52 52 50 72 39 45 93 55 93 55 64 52 52 48 91 35 44 51 96 92 53 54 63 54 575 945 955 955 955 955 955 955 955 955 95			×			49	64	52	52	47	41	39	3	43	*	25	38
56 64 52 52 50 42 39 45 93 45 93 mms. Ramiti. Mass. Ramiti. Mass			×-			20	64								;		
55 64			/			56	64	53	52	50	42	33	45	86	45	93	96
53 64 52 52 48 91 35 44 51 96 92 max. Frautt. #5 1 mer.			χ-			55	49							,	!		
MAR. F. R. R. M. T. C. 1. 63,5 62.5 57.5 44.5 43.5 43.5			W			53	64	52	52	84	1/6	35	44	5/	96	42	14
MAX. FRAINTS 63.5 62.5 57.5 44.5 43.5 43.5			2-			54	63										
Mr. Frants 63,5 62.5 57.5 41.5 43.5 43.5																	
		fer.	SPEC.	MAY. FIR	m172) R)	1	ı	63.5	62.5	57.5	1 1		43.5	40.5	l

VIBRATION OUTPUT

Self-Induced Vibration Test of RICOR/CRYO-TEK 1/4-Watt Split Cooler

Three RICOR 1/4-Watt Split Rotary CRYO-Coolers were tested to determine the vibration characteristics. The coolers were freely suspended so that the linear and angular restraints would not affect the measurements. The accelerometers were mounted in pairs to facilitate the angular vibration components. From the acceleration measurements, the forces and torques generated by the cooler were determined.

Measurements of the three RICOR coolers show that the primary disturbances generated by the cooler are 1) Forces at the compressor in the direction of the Y and Z axis at the fundamental frequency, 2) A torque about the compressor axis (X AXIS) at the first harmonic, and 3) A force along the coldfinger AXIS at the first, second or third harmonic.

A schematic of the test set up is shown. An aluminum block/collar was clamped around the compressor to facilitate accelerometer mounting. The coldfinger was suspended below the compressor and covered with foam insulation. The cooler was suspended by a bungy cord arrangement that allowed free rotation about the C.G. and free translation. The natural frequency of the suspension system was determined to be less than 5 Hz.

An accelerometer was mounted to the cooler system in one of the positions (X, Y, Z). The linear accelerations along the X, Y, Z axis were determined by measuring the spectrum of the resulting signals with an HP-3561A, dynamic signal analyzer. The force generated by the compressor or coldfinger about the C.G. was determined by multiplying the weight of the cooler system by the measured acceleration. The weight of the cooler and accelerometer mounting block is 2.14 pounds. Thus, if "a" is acceleration, the force is:

 $Fx = 2.14 \times a$ $Fy = 2.14 \times a$ $Fz = 2.14 \times a$

The torque generated by the compressor was obtained by coherently summing the accelerometer outputs of two accelerometers. The torque required to generate the measured exceleration was determined by multiplying this measurement by the inertia of the cooler system about the appropriate axis and by dividing by the distance between the accelerometers. The moments of inertia were determined by the bifilar torsional pendulum method.

 $Ixx = 0.856 \text{ in-Oz-sec}^2$ Iyy = 0.1663Izz = 0.1936

Power spectral data for the force and torque measurements are shown in the following graphs.

This vibration test was performed to determine the vibration output of the coolers. There is accept or reject requirement for this test.

ACCELEROMETER MOUNTING

ACCELEROMETER MOUNTING BLOCK/COLLAR

ACCELEROMETER MOUNTING BLOCK/COLLAR: 174gr/0.384 LB

TOTAL WEIGHT OF COOLER AND MOUNTING BLOCK: 2.14 LB

	A: STORED	CF	RANGE: 8 SN-8011	ABV	STATUS: RMS: 25	JS: PAUSED: 25	
200 ml.8F							
-							:
	· •	•		•			:
		- · · · · · · · · · · · · · · · · · · ·				•	
20				• •	• •		
mLBF							•
/01/						•	
				•			
							:
			,		•		
		• •					
						· · · · · · · · · · · · · · · · · · ·	: : :
				<u> </u>			=
0 -				3	3	NOON	
START: 0 HZ) 5) }	BW: 4.7743 Hz	3 Hz		STOP: 500	500 Hz
¥: 09.	1 n) = -			

APPENDIX B TEST PROCEDURES

B2-28A050122A CODE IDENT: 54490 18 June 1982

DEVELOPMENT SPECIFICATION FOR

COOLER, CRYOGENIC, SPLIT STIRLING

HD-1045 (V) /UA

APPROVAL:

PROJECT ENGINEER

CONFIGURATION MANAGER

NIGHT VISION & ELECTRO-OPTICS LAB

DATE: 18 June 1982

OFFICIAL RELEASE: NV&EOL ERR NO: 28A122-004

B-1

DEVELOPMENT SPECIFICATION FOR COOLER, CRYOGENIC, SPLIT STIRLING HD-1045 (V) /UA

1. SCOPE

- 1.1 General. This specification establishes the general performance design, development, and test requirements for the several models of the Coolers, Cryogenic, Split Stirling, RD-1045(V)/VA, hereafter referred to as the cooler.
- 1.2 Models. Specific coverage of each model of the HD-1045 (V) /UA are contained in specification sheets which are used to supplement this general specification.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents, of the issue in effect on date of invitation for bids or request for proposal, form a part of the specification to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this specification, the contents of this specification shall be considered a superseding requirement.

SPECIFICATIONS

Military

MIL-P-116	Preservation - Packaging, Methods of
DDD-0-10 0 0	Drawings, Engineering and Associated List
MIL-I-8500	Interchangeability and Replaceability of
	Component Parts for Aircraft and Missiles
MIL-Q-9858	Quality Program Requirements
MIL-P-11268	Parts, Materials, and Processes Used in
	Electronic Equipment
MIL-M-13231	Marking of Electronic Items
MIL-E-55585	Electronic Equipment and Parts,
	Packaging of
MIL-5-83490	Specifications, Types and Forms
Other Government Activity	
CODE IDENT 54490	USAERADOOM, Night Vision & Electro-Optics
	Laboratory
SM-D-808551	Installation/Interface Cryogenic Cooling
	Systems 0.25 Watt Common Mcdule Cooler

STANDARDS

Military DOD-STD-100

Engineering Drawings Practices

B2-28A050122A

CODE IDENT: 54490

18 June 1982

MIL-STD-130	Identification Marking of U.S. Military Property
MIL-STD-454	Standard General Requirements for Electronic Equipment
MIL-STD-461	Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference
MIL-5TD-490	Specification Practices
MIL-STD-726 MIL-STD-781B	Packaging Requirement Codes Reliability Tests: Exponential Distribution
MIL-STD-810	Environmental Test Methods
MIL-STD-8108	Environmental Test Methods
MIL-STD-882	System Safety Program for Systems and Associated Subsystems and Equipment, Requirements for

OTHER PUBLICATIONS

MIL-HDBK-472

Maintainability Prediction

2.2 Non-Government documents. The following documents, of the issue in effect on date of invitation for bids or request for proposal, form a part of this specification to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this specification, the contents of this specification shall be considered a superseding requirement.

SPECIFICATIONS

ANSI Y32.16	Reference Designations for Electrical and
	Electronic Parts and Equipment
ANSI Sl.11	Specification for Octave, Half Octave, and Third
	Ontare Rand Filter Sets

(American National Standards Institute, Inc., 1430 Broadway, New York, New York 10018)

Technical society and technical association specifications and standards are generally available for reference from libraries. They are also distributed among technical groups and using Federal agencies.

3. REQUIREMENTS

3.1 Item definition. The cooler shall consist of a compressor assembly, an expander assembly, and a connecting transfer line for cooling an infrared detector and shall interface with the Dawar of the infrared Datector/Dawar package DT-591/UA. Model variations are for length and bend configuration of the transfer line.

3.2 Characteristics.

- 3.2.1 Performance. Unless otherwise specified herein, the cooler shall meet the specified performance requirements at an ambient temperature of +23°C, +5°C and a 12-inch line separation. Heat sinking shall be sufficient to limit the crankcase temperature to 20°C above ambient.
- 3.2.1.1 Cooling capacity. The cooler shall provide the minimum refrigeration capacity at 85 K as shown in figure 1 over the temperature range of -40°C to +71°C.
- 3.2.1.1.1 Specific Model Cooling Capacity. The specific model cooling capacity at the ambient temperature shall be as specified in the applicable specification sheets.
- 3.2.1.2 Cooldown time. The cooldown time to reach a cold spot temperature of 100 K with a 1.8 grams minimum copper mass load shall be 7.5 minutes or less. Cooldown to 85 K shall be 10 minutes or less for any temperature over the range of -40° C to $+71^{\circ}$ C.
- 3.2.1.3 Input power. The total input power to the cooler shall be as shown in Figure 2. The input voltage shall be 17.5 Vdc +0.5 Vdc with a maximum voltage ripple of 10 percent at frequencies of 10 Hz or greater. Starting current shall not exceed 7 amperes for 50 milliseconds (ms) duration.
- 3.2.1.4 Operating mode. The cooler shall perform as specified in any jec-
- 3.2.1.5 Audible noise. The couler shall not exceed the noise values tabulated below, when measured at a distance of 5 meters:

Center Frequency (Hz)	Octave Band (Hz)	Maximum Sound Pressure Level (dB) (Reference 0.0002 microbar)
1 25	87 to 175	49.5
250	175 to 350	48.5
500	350 to 700	43.5
1,000	700 to 1400	35.5
2,000	1400 to 2800	29.5
4,000	2800 to 5600	29.5
8,000	5600 to 11200	26.5

3.2.1.6 Leak rate. The leak rate of helium from the cooler shall not be greater than 1.0×10^{-6} standard (std. cc/sec) cubic centimeters per second (cc/sec) air equivalent at an ambient temperature of +23°C, +5°C.

92-28A050122A CODE IDENT: 54490 18 June 1982

3.2.2 Physical characteristics.

- 3.2.2.1 Size. The size and configuration of the cooler shall be in accordance with that specified on drawing SM-D-808551 as modified by the applicable specification sheet for the individual item.
- 3.2.2.2 Weight. The weight of the cooler shall be less than 2.5 pounds.
- 3.2.3 Reliability. The cooler shall have a specified mean time between failure (MTBF) of 1,000 hours, 90.
- 3.2.4 Maintainability. The cooler shall be designed to be maintainable by the Direct/General Support (DS/GS) maintenance level when disassociated from its next higher assembly. The maintenance tasks shall consist of purging and recharging the cooler with helium and repairing/replacing the input power cable and connector. The mean time to repair (MTTR) for the DS/GS tasks shall not exceed 0.5 hour. Potting cure time is not considered within the MTTR definition.
- 3.2.5 Environmental conditions. The cooler performance shall not be degraded when subjected to the environments specified in table 1.
- 3.2.6 Transportability. When properly packaged, the cooler can be shipped by common carrier.
- 3.3 Design and construction.
- 3.3.1 Materials, processes, and parts. Unless otherwise specified, all parts, materials, and processes used in construction shall be in accordance with MIL-P-11268.
- 3.3.1.2 Protective coatings and surface treatments. Uhless otherwise specified, finishes of machines, case-forged, and welded surfaces shall be the minimum required for proper operation, good appearance, and economy of manufacture. The method of protection shall in no way prevent compliance with other requirements of this specification. Protective coatings shall not be applied to areas which will lose that coating during normal operation, testing, or maintenance. The cooler shall be finished in accordance with the applicable specification sheet.

Table I. Environmental Conditions.

Environment	Leveis	MIL-STD-810
High Temperature	Operation +71°C Storage +71°C	501.1 Procedure I
Low Temperature	Operation -40°C Storage -57°C	502.1 Procedure I
Temperature Shock	-54°C to +71°C	503.1 Procedure I
Solar Radiation	W/O container	505.1 Procedure I
Furgus	28 Days W/O container	508.2 Procedure I
Salt fog	W/simulated Dewar	509.1 Procedure I
Dust (fine sand)	Wsimulated Dawar	510.1 Procedure I
Leakage (immersion)	W/O container	512.1 Procedure I
Vibration -	 a. Vibration test profile figure 3. b. Cycle time of 120 minutes per axis c. Dwell time of 1/6 cycling at each resonance 	514.2 Procedures I & VIII
Shock	a. Figure 516.2-1 b. 100 g at 10 ms	516.2 Procedure IV
Temperature - Humidity-Altitude	Wcontainer	513.2 Procedure I

82-28A050122A CODE IDENT: 54490 18 June 1982

3.3.2 Electromagnetic radiation. The cooler, when properly connected for operation shall comply with the following requirements of MIL-STD-461.

		Deviation
RE O1	Radiated emission/magnetic field, 30 Hz to 30 kHz	30 dB
RE 02 88	Radiated emissions/electric field, 14 kHz to 1 GHz	30 dB
RE 02.1 NB	Radiated emissions/electric field, 14 kHz to 10 GHz	30 dB
*RS 03	Radiated susceptibility/electric field, 14 kHz to 10 GHz	
CE O1	Conducted emissions/dc power leads, 30 Hz to 50 kHz	30 dB
CE 04	Conducted emissions/ab power leads, 50 kHz to 50 MHz	30 dB

The field strengths specified in MIL-STD-461 shall be modified as follows:

0.014 MHz to 2 MHz	10 volts	per meter
2 MHz to 75 MHz	50 voits	per meter
76 MHz to 10,000 MHz	10 volts	per meter

- 3.3.3 Nameplates and product marking. The cooler parts, components, sub-assemblies, and assemblies thereof, shall be marked for identification per MIL-STD-130, and in accordance with MIL-M-13231, and as specified in the applicable specification sheets. Reference designation markings shall be permanent and in accordance with ANSI Y32.16. To prevent working fluid contamination, internal parts need not be marked.
- 3.3.4 Workmanship. Workmanship shall be in accordance with MIL-STD-454, Requirement 9.
- 3.3.5 Interchangeability. Parts shall be functionally and dimensionally interchangeable without selective assembly. The control of interchangeability shall be in accordance with MIL-I-8500. Within the limits imposed by performance, maximum use of parts, tools, and test equipment cummon to other US Army systems is essential. Compressors and expanders shall be interchangeable from one cooler to another.
- 3.3.6 Safety. The cooler shall be designed and fabricated to prevent injury to the operator or maintenance personnel. Safety features shall be incorporated so that any component failure will not result in conditions hazardous to personnel, in accordance with MIL-STD-454, Requirement 1. Potentially hazardous areas shall be identified in accordance with MIL-STD-882.
- 3.4 <u>Documentation</u>. The cooler shall be documented by development and product specifications prepared in accordance with MIL-5-83490 and MIL-STD-490, and by drawings prepared in accordance with DOD-D-1000 and DOD-STD-100. Variations of

cooler models shall be documented with supplemental specification sheets using this specification number with an assigned slash number (i.e. 82-28A050122A/1).

3.5 Logistics.

- 3.5.1 Maintenance. The maintenance concept allows for a combined DS/GS maintenance level for helium purging/recharging and repair/replacement of the input power cable and connector. No other tasks are to be performed below deput level. Depot level maintenance shall be either Government or contractor performed.
- 3.5.1.1 Tool and test equipment requirements. The cooler design shall be such that the need for special tools and test equipment for alignment, adjustment and maintenance is kept to a minumum. No special tools or test equipment shall be required for operator/organizational maintenance. Direct/general support maintenance shall be accomplished using standard tools and test equipment and a helium purging/recharging device.
- 3.5.2 <u>Supply</u>. The cooler shall impose no unique requirements on the supply system. The cooler is intended to be replaced as a unit at DS/GS maintenance level with a minimum of maintenance parts (purge port cover and input power cable) introduced into the supply support system.
- 3.6 Precedence. The characteristics of the cooler shall have priority as follows:
 - a. Performance.
 - b. Reliability, maintainability.
 - c. Size, weight, configuration.
 - d. Transportability.
 - e. Safety (should be given consideration equal to each of the characteristics above).

4. QUALITY ASSURANCE PROVISIONS

- 4.1 General. The inspections in this section shall be conducted by the contractor to verify the performance and design characteristics specified in section 1 and the preparation for delivery requirements in section 5 are met. Quality assurance requirements are divided into four groups; initial source qualification, second source qualification, acceptance inspection, and periodic production inspections. There are five categories of quality assurance inspections; examinations, analyses, demonstrations, environmental tests, and performance tests. Supplemental specification sheets augment the quality assurance requirements herein for specific cooler models.
- 4.1.1 Responsibility for tests. Unless otherwise specified in the contract, the contractor shall be responsible for the performance of all tests specified herein. Except as otherwise specified, the contractor may use his own facilities. The contractor shall maintain a quality assurance program in accordance

32-28A050122A CCDE IDENT: 54490 18 June 1982

with the requirements of MIL-Q-9858. Inspection records of the examinations and tests shall be kept complete and available to the Government as specified in the contract, and shall include a complete description of each test method and identification of the instrumentation used. The contractor is responsible for ensuring that components and materials used, are tested in accordance with the requirements of this specification and the referenced documents. The Government reserves the right to perform any of the tests set forth in this specification where such tests are deemed necessary to ensure that supplies and services conform to the prescribed requirements.

4.1.2 Special tests and examination.

- 4.1.2.1 Qualification, initial source. The initial qualification tests of table II shall be performed to prove the item design and the initial source supplier. Failure to meet any of the inspections of table II shall constitute failure of qualification.
- 4.1.2.2 Qualification, second source. The second source qualification tests of table II shall be performed to prove the capability of a second source supplier to manufacture a specific cooler without requalification of the item design. Failure to meet any of the second source inspections of table II shall constitute failure of qualification.
- 4.1.2.3 Acceptance inspections. Each cooler submitted for acceptance shall be subjected to the acceptance inspections of table II following the run-in of 4.1.2.5. Failure to meet any of the acceptance inspections of table II shall be cause for rejection of that cooler.
- 4.1.2.4 Periodic inspections. Coolers shall be sampled on a monthly basis for the periodic inspections of table II as follows:

Monthly lot size	Number of sample units
1-9	0
10 -99	1
100 –299	3
300-499	5
5009 99	7
1000 or more	10

Failure to meet any of the periodic inspections of table II shall constitute failure of that monthly lot.

4.1.2.5 Run-in. An 8 hour continuous run-in shall be performed prior to acceptance test.

32-23A050122A

CODE IDENT: 54490 18 June 1982

TABLE II. Quality Conformance Inspection.

Requirement	Requirement Paragragh	Inspection Criterion		2nd	Acceptance Inspection	
Performance:						
Cooling capacity	3.2.1.1	4.2.1.1	X	X	X	
Cooldown time	3.2.1.2	4.2.1.2	X	X	X	
Input power	3.2.1.3	4.2.1.3	X	X	X	
Operating mode	3.2.1.4	4.2.1.4	X	X		X
Audible noise	3.2.1.5	4.2.1.5	X	X		X
Leak rate	3.2.1.6	4.2.1.6	X	X	X	
Physical Charact						
Si za	3.2.2.1	4.2.2.1	X	X	X	
Weight	3.2.2.2	4.2.2.2	X	X		X
Reliability	3.2.3	4.2.3	X	X		
Maintainability		4.2.4	X			
Savironmental	3.2.5	4.2.5				
High Temperatur			X	X		
Low Temperature			X	X		
Temperature Sho			X	X		X
Solar Radiation			X			
			X			
Fungus			X	X		
Salt fog Dust (fine sand	Y		X	X		
			X	X		X
Leakage (immers	40111		X	X		X
Vibration			X	X		
Shock	e, vita		×	X		
Temp-Humid-Aiti	_	476	X			
Transportability		4.2.6	•			
Design & Constru	cerou:	4.3.1	X			
Materials,	3.3.1	4.3.7	•			
processes and						
par ta			· ·	X		
Electromagnetic	3.3.2	4.3.2	X	^		
radiation				v	x	
bns serial and	3.3.3	4.3.3	X	X	•	
produce markin	xì			ىن	J	
Workmanship	3.3.4	4.3.4	X	X	×	
Interchange-	3.3.5	4.3.5	X	X		
ability						
Safety	3.3.6	4.3.6	X			
Decumentation	3.4	4.4	X			
Logistics	3.5	4.5	X			
Preparation for delivery	Š.	4.6	X	X		

32-28A050122A CODE IDENT: 54490

18 June 1982

- 4.1.3 Test conditions. Unless otherwise specified, the cooler shall be operated at an ambient temperature of +23°C, +5°C using a 12-inch line separation. Adequate heat sinking or convective cooling shall be provided to ensure that the crankcase temperature does not exceed 20°C above ambient temperature.
- 4.2 Quality conformance inspection.

4.2.1 Performance tests.

- 4.2.1.1 Cooling capacity. The cooling capacity shall be measured by attaching to the cooler a test Dewar which is evacuable and contains temperature sensors and heating elements required to apply heat load. The cooler shall also have a copper mass of 1.3 grams minimum attached directly to the expander. Heat load shall be applied after achieving cooldown and capacity shall be measured not less than thirty minutes later. Failure to meet the requirements of 3.2.1.1 shall constitute failure of this tests.
- 4.2.1.2 Cooldown time. Cooldown time shall be measured using the test Dawar and thermal mass described in 4.2.1.1. Failure to meet the requirements of 3.2.1.2 shall constitute failure of this test.
- 4.2.1.3 Input power. Input power shall be measured during the cooling capacity test of 4.2.1.1. Failure to meet the requirements of 3.2.1.3 shall constitute failure of this test.
- 4.2.1.4 Operating mode. The cooler shall be operated in the horizontal and vertical axes for a minimum of five minutes per exis with the test Dawar and thermal mass described in 4.2.1.1. Failure of the cooler to maintain the expander temperature at or below 85 R shall constitute failure of this test.
- A.2.1.5 Audible noise. The cooler shall be set up in an area where the background noise level is not greater than 10 dB below the sound level to be measured. The cooler shall be operated and sound pressure measurements recorded with the cooler oriented for maximum sound level output. Measurements shall be made using an octave band analyzer with characteristics which comply with ANSI S1.11. Failure to meet the requirements of 3.2.1.5 shall constitute failure of this test.
- 4.2.1.6 Leak rate. The cooler shall be charged with helium to its normal operating pressure, allowed to set for at least one hour, and placed into a test chamber. Using a mass spectrometer, the leak rate shall be measured. Failure to meet the requirement of 3.2.1.6 shall constitute failure of this test.

4.2.2 Physical examinations.

4.2.2.1 Size. The cooler shall be examined for conformance to the dimensional controls of cited drawings. Failure to meet the requirements of 3.2.2.1 shall constitute failure of this examination.

- 4.2.2.2 Weight. The cooler shall be weighed on a scale having an accuracy of +0.05 pound. Failure to meet the requirement of 3.2.2.2 shall constitute failure of that examination.
- 4.2.3 Reliability. Cooler reliability shall be demonstrated in accordance with MIT-SID-781B, Test Plan IV A, test cycle paragraph 5.2.3.1 and figure 4. Fall-ure to meet the requirement of 3.2.3 shall constitute failure of that demonstration.
- 4.2.4 Maintainability. Maintainability shall be verified by analysis in accordance with Military Handbook 472, method 2, procedure II.
- 4.2.5 Environmental tests. The cooler shall be subjected to the environments specified in table I at the levels specified in accordance with the specified procedure of MIL-STD-810. Failure to meet the acceptance inspections (performance) of table II following the individual test shall constitute failure of that test.
- 4.2.6 Transportability. When packaged as specified in section 5, the cooler shall be analyzed to determine if the requirement of 3.2.6 is satisfied. Fallure to meet the requirement of 3.2.6 shall constitute fallure of that analysis.
- 4.3 Design and construction inspections.
- 4.3.1 Materials, processes and perts. The cooler shall be examined for compliance with 3.3.1. Failure to meet the requirement of 3.3.1 shall constitute failure of that examination.
- 4.3.2 Electromagnetic radiation. The cooler shall be subjected to the tasts of 3.3.2. Fallure to meet the requirements of 3.3.2 shall constitute fallure of that environmental tast.
- 4.3.3 Nameplates and product markings. The cooler shall be examined to verify nameplates and product marking. Failure to meet the requirements of 3.3.3 shall constitute failure of that examination.
- 4.3.4 Workmanship. The cooler shall be examined for workmanship. Failure to neet the requirements of 3.3.4 shall constitute failure of that examination.
- 4.3.5 Interchangeability. The cooler shall be examined for interchangeability. Failure to meet the requirements of 3.3.5 shall constitute failure of that examination.
- 4.3.6 Safety. The cooler shall be analyzed for safety. Failure to meet the requirements of 3.3.6 shall constitute failure of that analysis.

32-28A050122A

CODE IDENT: 54490

18 June 1982

- 4.4 Documentation. The cooler technical data package shall be examined. Failure to meet the requirements of 3.4 shall constitute failure of that examination.
- 4.5 Logistics. The cooler shall be analyzed for logistics. Failure of the cooler to meet the requirements of 3.5 shall constitute failure of that analysis.
- 4.6 Inspection of packaging. Packaging shall be inspected in accordance with MIL-P-116 to determine compliance with the requirements of section 5.
- 5. Preparation for delivery.
- 5.1 Preservation. Preservation shall be as specified in MIL-STD-726, coded as follows:
- 5.1.1 Level A. 10-1-1-00-00-NS-X-ED-0-00-A.
- 5.1.2 Level 8. 13-1-1-00-00-NS-X-ED-7-00-8.
- 5.2 Packing and marking. Packing and marking shall be in accordance with MIL-E-55585.
- 6. NOTES
- 6.1 Intended use. The cooler is intended for use in infrared systems. Installation may require additional heat sinking or forced-air cooling for the compressor depending upon the system/cooler interface.
- 6.2 Ordering data. Producement documents should specify the following:
 - a. Title, number and date of this specification.
 - b. Title, number and date of an applicable specification sheet.
 - c. Qualification of either initial or second source are required (4.1.2).
 - (1) Time frame for submission of qualification test reports.
 - (2) Time frame for approval of qualification test reports.
 - d. Production delivery schedule.
 - (1) Defined in terms of monthly lots.
 - (2) Actions relative to periodic inspection failures (see 4.1.2.4).
 - e. Level A or level B preservation and packaging.
 - f. MIL-STD-8108 may be used in lieu of the current revision of MIL-STD-810 for the shock and vibration environmental tests of 3.2.5.
- g. Requirement for contractor-generated, Gwernment-approved acceptance test procedure.

Figure 1. Cooling Capacity

Figure 2. Input Power

Figure 3. Vibration Test Profile

Figure 4. Reliability Test Cycle

APPENDIX C DEVELOPMENT SPECIFICATIONS

QUALIFICATION TEST FROCEDURE

1/4 Watt Split Stirling Cooler

Submitted To:

U.S. Army
Center for Night Vision
and Electro-Optics
Laboratory
Ft Belvoir, Virginia, 2006

Submitted By: CRYQ-TEK CORFORATION TEB9 Forestdale Ave. Woodbridge, Virginia 22197

Frepared by

Buford .Walters CRYO-TEK CORP. Approved by:

TABLE OF CONTENTS

Scope	
Applicable Documents	
Quality Assurance Provisions	
Physical Characteristics	
Performance Tests	
Demonstration Tests	C-6
Audio Security	C-8
Mechanical Vibration Output	
Electro Magnetic Radiation	C-10
Temperature Shock	
Thermal Exposure	
Mechanical Shock	
Mechancial Vibration	
Statement of Omission	
Physical Characteristics Data Sheet	
Input Power Test Data Sheet	
Leak Test Data Sheet	
EMI Test Data Sheet	
Temperature Shock Test Summary Sheet	
High Temperature Test Summary Sheet	
Low Temperature Test Summary Sheet	
Mechanical Shock Test Summary Sheet	
Mechanical Vibration Test Summary Sheet	
Figure 1 Cooling Capacity	
Figure 2 Input Power	C-30
Figure 3 Vibration Test Profile	
Figure 4 Reliability Test Cycle	

1.0 SCOPE:

This document establishes the procedure to be followed for Qualification Testing of the item described in Paragraph 4.0 below.

2.0 APPLICABLE DOCUMENTS:

The following documents of revision shown form a part of this Test Procedure to the extent specified herein. In the event of any conflict between this document and the documents specified herein, this document shall take precedence.

B2-28A050122A. Development Specification for Cooler, Cryogenic, Split Stirling, HD-1045 (V)/UA dated 18 June 1982.

MIL-STD-810B, Environmental Test Methods.

MIL-STD-461. Electromagnetic Emission and Susceptibility Requirements.

MIL-STD-45662. Calibration Methods.

ANSI S1.11-1971, Specification for Octave. Half Octave. and Third Octave Band Filter Sets.

D.O GUALITY ASSURANCE PROVISIONS:

3.1 Test Facilities

Facilities providing testing shall be certified capable to meet the test requirements of MIL-STD-810E. In addition to CRYO-TEP's internal testing, RICOR Ltd. Israel and Night Vision and Electro-Optics Center, Atlantic Research will be used for the EMI testing and Noise Unlimited will be used to provide the Acoustic noise testing as neccessary.

3.2 Test Surveillance

CNVEO will provide test surveillance/auditing to certify accuracy of data collected including verification of test equipment, instrumentation, tooling and test fixturing shall be verified capable of meeting MIL-STD-45602. Calibration standards where applicable. Night Vision and Electro-optics Center will be the qualifing agency. CRYO-TE: will witness all testing and coordinate the effort.

4.0 TEST ITEM:

The test items shall be (5) five coolers, Cryogenic, 1/4 watt Miniature Split Stirling Model No. CT 45 (RICOR 516) herein known as the coolers or Units Under Test (UUT). Each cooler consists of a compresser, expander, and a 12 inch connecting tube which will interface with a DT-591/UA Detector/Dewar.

Three coolers will be subjected to the Reliability tests to determine the reliability of the product, and two will be subjected to the environmental conditions as prescribed in MIL-STD-8108. One of the environmental samples will be tested for FMI and audio security.

5.0 FHYSICAL CHARACTERISTICS:

5.1 Size

The cooler shall conform to the dimensions and configuration of drawing SM-D-808551

5.2 Weight

The weight of the cooler will be 2.5 lbs. or less when weighed on a scale having an accuracy of \pm 0.05 lbs.

6.0 FERFORMANCE TESTS:

6.1 Tests and Ferformance Criteria

6.1.1 Leal Fate

The cooler less rate shall not e ceed 1.0 \times 10-6 standard cubic centimeters per second air equivoslant at an ambient temperature of +2T degrees centigrade \pm 5 degrees C.

Leas tests will be performed on all coolers submitted for testing using a helium load detector.

6.1.2 Cool Down Time

The cool down time to reach a temperature of 1000 with a 1.8 grams minimum copper mass load shall be 7.5 minutes or less. Cooldown to 850 shall be 10 minutes or less for any temperature over the temperature range of ±40 degrees C to ±71 degrees C.

- 6.3.6 Heat sinking of the coolers shall be sufficient to limit the housing temperature to 20 degrees C above ambient.
- 6.3.7 Temperatures to be monitored shall be measured using T type thermocouples or by electronic thermometers mounted at the following locations:
 - Cooler housing (cooler temp)
 - 2. Centrally located within the test chamber (chamber ambient)

6.4 Test requirement

The test shall consist of instrumenting the coolers as in paragraph 6.3 above to measure the cooldown time, refrigeration capacity, and input power of the coolers. The following performance data shall be measured and recorded on the Ferformance Test Data sheet at start-up and at each required time interval during test.

- 1. Elapsed time from start-up. Min-Sec.
- I. Test chamber ambient temp. degrees C
- I. Cooler Housing Temperature degrees C
- 4. Applied Heat Load. Watts
- 5. Coldfinger temp. degrees }
- 6. Applied Voltage, VDC
- 7. Input Current, Amps.
- 8. Test Dewar Vacuum (Torr)
- 9. Coldfinger Attitude, horizontal/vertical

Ferformance testing shall begin subsequent to the coolers having reached stabilization temperature. The coolers shall be considered to have reached stabilization when the coldfinger temperature is within \pm 3 degrees of the test chamber ambient or has soaked at the required ambient temperature for four hours in a non-operating mode.

6.5 Performance Test Procedure

Insure that the coolers are instrumented in accordance with para. 6.3 of this test plan.

Step 1: Establish test set-up as outlined

Step I: After the coolers have stabilized at the required ambient temperature, energize the coolers by applying 17.5 \pm .5 VDC to the input terminals of the coolers. The starting current shall be monitored with an oscilloscope. Verify that the input current does not exceed 7.0 amps for a period of 50 milliseconds (ms). With no heat load applied to the coldfinger, allow the cooler to cool down.

NOTE

The input voltage shall be monitored for ripple by applying a simulated nominal resistive load across the power supply output terminals and measuring the voltage ripple with an oscilloscope. AC component of voltage shall be less than 1.7 volts peak to peak at frequencies greater than 10 Hz. Record findings on the Input Power Testr Data Sheet.

Step I. Allow cooldown with no applied heat load to the coldfinger. Record data on the Performance Test Data Sheet immediately after start-up and when the coldfinger temperature reaches 85). This procedure will be repeated for each ambient temperature specified. This shall conclude the cooldown test.

Step 4. Allow the cooler to operate for 20 minutes with no applied heat load. After 20 minutes has elapsed, record all applicable data on the Ferformance Test Data Sheet.

Step 5. After 20 minutes of operation, apply the required heat load which correlates to the ambient temperature of the test being performed. Allow the cooler to operate for another 20 minutes.

Step 6. Record data on the Ferformance Test Data Sheet at the time the heat load is applied and at 10 minutes intervals and at the end of the required time period. This shall conclude the Cooling Capacity Test.

Step 7. De-energize the coolers.

7.0 DEMONSTRATION TESTS

7.1 Operating Mode

7.1.1 Test purpose

The operating test shall be performed to verify the ability of the coolers to perform as specified in the BI Specs, when operated in the horizontal and vertical actis as defined in this test procedure.

7.1.2 Acceptance criteria

The coldfinger temperature shall not rise above 85% when the coldfinger is in the horizontal or vertical attitudes respectively.

6.1.3 Cooling capacity

The coolers shall provide the minimum net refrigeration capacity at 85K as shown in figure 1 over the temperature range from -40 C to +71 C.

6.1.4 Input Fower

The Fower consumed by each cooler shall be in accordance to the chart shown in figure 2

6.2 Test Furpose

Ferformance testing shall be performed to verify cooler performance before, during, and after emposure to the various environmental conditions as required by this test plan. The performance test data taken after emposure to an environmental test may be used as the performance test data to be taken before the new tenvironmental test provided that the environmental test is run within 48 hours.

6.3 Test Instrumentation

- 6.3.1 Those parts of the test fixtures and test equipment that are in contact with the coolers shall be visually inspected prior to and during use to insure that they are free of oil, grease, soil, or other contamination. All test instrumentation used shall be calibrated within the requirements of MIL-STD--4555.
- 6.3.2 The thermal mass applied shall be as defined in the Development Specification B2-2840501224. The mass shall include a silicon diode (temperature sensor) and an integral heater shall have a total mass of 1.8 grams of copper over the temperature range of 3000 to 800.
- 6.3.3 Each coldstation will be immersed in an ice bath and a liquid nitrogen bath to establish the calibration curve.
- 6.3.4 The electric voltage for operating the coolers will be set at 17.5VDC \pm .5 VDC with a maximum voltage ripple of 10 % at frequencies of 10 Hz or greater. Starting current shall not elect 7 ampères for 50 milliseconds (ms) direction.
- 6.7.5 . Frior to the start of performance testing the dewar assembly shall be evacuated to a vacuum level of 1.0×10^{-4} form or better.

7.1.3 Test Procedure:

Step 1. Instrument coolers in accordance with paragraph 6.3 of this test plan.

Step 2. Establish the test set-up as previously butlined.

Step I. Mount the coolers in the test chamber with the cold finger and the compressor in the X axis. See figure 5.

Step 4. Energize the coolers by applying 17.5 \pm 5 value 0.0. to the input terminals of the coolers.

Step 5. Repeat the test as outlined in paragraph 6.5 step 5.

Step 5. De-energize the coolers.

Step 7. Rotate the coplers and place the colldfinger and the compressor in the Y alis. See figure 5.

Step 8. Repeat the previous test for ambient temperature and heat load.

This concludes the Operating Mode Test.

7.1 ALDIA SECLETY:

7.1.1 Test purpose:

The Audio Security test shall be performed on the cooler to determine the sound pressure levels emitted from the cooler over various frequency bandwidths. The qualifying agency has the option to choose the qualer to undergo Audio Security Testing; should the option not be evertised CFYD-TER will make the choice.

7.2.2 Acceptance Criteria:

The cooler shall not erceed the noise leavels tabulated below, when measured at a distance of 5 meters:

Center	Octave	Fressure Level
ELGUGRACA	Band (Hz)	40B: .0000 UB
125	87 to 175	49.5
250	175 to 75%	49.5
Situit	TEN to The	47.5
1.000	700 to 1,400	75.5
1. 000	1.400 to 2.800	29.5
4,000	2.800 to 5.600	29.5
8. 0000	5.600 to 11.200	25.5

7.2.3 Test Sequirement:

The Audio Security test will be performed in an arethold chamber where the background noise level will be limited to at least 10 db below the sound pressure levels to be measured.

7.2.4.: Test Data:

Test data shall be obtained using an obtaine band analyzer which complies with ANSI SI.II. The obtaine shall be energized by applying 17.5 ± 5 volts D.C. to the indust terminals of the cooler. Using a hard held Octive Band Analyzer, the cooler shall be surveyed to determine the location of the area of hallman hoise generation. The mailman sond pressure values measured at 5 meters shall not enceed the values of the above table.

T.T MECHANICAL VIBRATION CLTPUT:

7.7.: <u>Test Europse</u>:

The Mechanical Albration Cutait Test shall be performed to determine the Abartan putait of the cooler when monitored at Laribus frequencies.

7.7.0 <u>Acceptance Oriteria</u>:

There is no eccept on reject reclinement for this test

Test Set ingrent:

The cooler shall be lectically suscented suctions, we specify that the funderental frequency of the cooler is full higher than the natural frequency of the suspension system.

T.T.4 Test Fince: Fe

Step 1. Establish Test settic.

Step 2. Turn on fan.

Step I. Energize the cooler by applying 17.5 \pm 5 /bits D.C. to the power input terminals of the copler. Record start time on the Mechanical Vibration vibration Test Sheet.

Step 4. Allow both cooler and fan to operate

for 1 trinutes.

step 5. Demenergize (an. Record time on Data

Sheet.

Step 5. Measure GD 'Ht at frequency per figure

5. 'Y a 15)

Step 7. De-energise cooler and permit cooler to assume ambient temperature.

Step 8. Receat steps T. 4. and S.

Step 9. Measure G2/Hz at frequency per figure 5 (Z axis) and record data.

Step 10 repeat steps 7. I. 4. and 5.

Steo 11. Measure GI/Hz at frequency per figure

5 (X amis) and record data.

Step 12 De-energize cooler.

This concludes the Mechanical Vibration Test.

8.1 EN.IRONMENTAL TESTS

8.1 <u>Slectromagnetic Fadiation</u>:

8.1.1 Test Firecse:

The Electromagnetic Radiation Test shall be deriformed on one (1) cooler to determine the deviation levels of radiated emissions susceptibility at specified frequencies and field strengths.

8.1.1 Attentanta Instanta:

The cooler when properly connected for operation, shall comply with the Following radiated emission and susceptibility requirements of MIL-STO-461:

RE):	Fad. Emission Magnetic field	Tidb
	TO HE TO AME	
FE : 2 55	Fad. Emission/Electric *ield	T∵db
	(4) he to 1 Ghe	
£E:2.1 %	Fad. Emission Electric field	7 100
	14 no to 10 Sho.	
#RSCT	Faciated Emission Susceptibility/	
	Slectric field 14 ths to 10 Ghs	
CEC:	Conducted Emissions/DC Fower	್≎ರಾ
	Leads TO Ha to 50 kms	
CEC4	Conducted Emissions/AC Fower	Tidb
	Leads 50 the to 50 Mms	

* The field strengths specified in MIL-STD-461 shall be todified as follows:

0.014 MHz to 2 Mhz	t∴ val	* <u>5</u>	ser	reter
I Mha to 76 Mha	53 va:	ta	26-	~eter
The May any triving May	10 val	t g	sec	reter

Conduct a performance test per paragraph $\delta_{\rm s}(0)$, of this plan.

8.2 <u>Temperature Shock</u>

8.2.1 <u>Test Purpose</u>

The Temperature Shock Test shall be conducted to determine the effect of sudden changes in temperature of the surrounding atmosphere on the coolers.

8.2.2 <u>Acceptance Criteria</u>

The coolers shall satisfy the requirements of paragraph 6.1 of this test plan.

8.2.3 Test Requirement-

The Temperature Shock Test shall be performed in accordance with MIL-STD-BIOE, Method 503.1, Procedure 1, with the exception of temperature extremes will be limited to +71 degrees C \pm 5 degrees C and -54 degrees C \pm 5 degrees C.

8.2.4 Test Frocedure

Step 1. Install the coolers into the temperature chamber and raise the test chamber temperature to 71 degrees $\mathbb{C} \pm \mathbb{S}$ degrees \mathbb{C} . Allow the coolers to soal at this temperature for four (4) hours minimum or until the coolers stabilize.

Step 2. After four (4) hours minimum emposure to the high ambient soal, move the system into a test chamber with an ambient temperature of -54 degrees C \pm 5 degrees C within 5 minutes.

Step 3. Allow the coolers to soal at this temperature for four (4) hours minimum or until the coolers stabilize.

Step 4. After four (4) hours minimum exposure to the low ambient soal, return the coolers to the test chamber set at 71 degrees C ± 5 degrees C within 5 minutes.

Step 5. Allow the units to soal at this temperature for four (4) hours minimum or until the unit stabilizes.

Step 6. Repeat steps 2 thru 5

Step 7. Repeat steps 2 and 3.

Step 8. Raise the test chamber temperature to 27 degrees 0 \pm 5 degrees 0 and allow the coolers to stabilize at standard from ambient conditions.

Step 9. Visually inspect for any evidence of mechanical damage or deterioration. Record any abnormal findings on the Temperature Shock Test Summary Sheet

paragraph 6.0 \$ heak test

C-11

This concludes the Temperature Shock Test.

B.3 THERMAL EXPOSURE

8.3.1 <u>High Temperature</u>

8.3.1.1 Test_purpose

The High Temperature Test shall be performed to determine the resistance of the coolers to elevated temperatures that may be encountered during service life.

8.3.1.2 Acceptance Criteria

The coolers shall satisfy the requirements of paragraph 6.1 (at +23 degrees C \pm 5 degrees C and + 71 degrees C \pm 5 degrees C) of this test plan.

8.3.1.2 Test Requirement

The high Temperature test shall be performed in accordance with MIL-STD-810B, method 501.1, procedure 1.

L T.1.4 Test Frocedure

Step 1. Install the cooler, instrumented for operation, per paragraph 6.7, into a temperature chamber capable of achieving \pm 71 degrees C minimum (temperature rate shall not exceed 10 degreesd C/min.)

Step 2. Raise the chamber ambient temperature to + 71 degrees C \pm 1.4 degrees C.

Step J. Allow the copiers to soal at ± 71 degrees C for a period of forty eight (48) hours.

Step 4. Ensure that the cooler has stabilized at \pm 71 degrees C. Operate the cooler in accordance with paragraph 6.0 of this test plan and record the results.

Step 5. Lower the test chamber ambient to allow the coolers (non-operating) to return to standard room temperature.

Step 6. Visually inspect the coolers for any evidence of mechanical damage or deterioration. Record any abnormal findings on the High Temperature Test Summary Sheet.

Step 7. Conduct the performance test at 23 degrees C \pm 5 degrees C per paragraph 6.0 of this test plan. Record the results of paragraph 6.1.1 on the High Température Test Summary Sheet.

This concludes the High Temperature Test.

8.3.2 Low Temperature

5.3.2.1 Test Purpose

The low temperature test shall be performed to determine the resistance of the coolers to low temperatures that may be encountered during service life.

8.3.2.2 Acceptance Criteria

The coolers shall satisfy the requirements of paragraph 6.1 (at -40 degrees C and 27 degrees C \pm 1.4 degrees C) of this test plan.

8.3.2.3 Test Requirement

The Low Temperature Test shall be performed in accordance with MIL-STD-810B, Method 502.1, Procedure 1.

8.3.2.4 Test Procedure

Step 1. Install the coolers instrumented for operation per Faragraph 6.3, into a Temperature Chamber capable of achieving -57 degrees C minimum.

Step 2. Lower the temperature in the test chamber to -57 degrees C \pm 1.4 degrees C (temperature rate shall not exceed 10 degrees C/10 min. Soal for twenty four hours.

Step J. After the completion of the twenty four hours soal at -570 ± 1.4 degrees C. visually inspect the the coplers for any evidence of mechanical damage or deterioration. Record any abnormal findings on the Low Temperature Test Summary Sheet.

Step 4. Raise temperature to -40 and allow coolers to stabilize.

Step 5. Conduct performance test at -400 ± 1.4 degrees C per paragraph 6.0 of this test plan. Record the results of paragraph 6.1.1 on the Low Temperature Test Summary Sheet.

Step 6. Raise the temperature in the test chamber to allow the cooler to return to room ambient conditions and stabilize.

Step 7. Conduct performance test at ± 27 degrees 0 \pm 5 degrees 0 per paragraph 6.0 of tis plan. Record the results of paragraph 6.1.1 on the Low Temperature Summary Sheet.

Step 8. Visually inapect the cooler for any visible mechanical damage or deterioration. Record any abnormal findings on the Low Temperature Summary Sheet.

This completes the Low Temperature Test.

8.4 MECHANICAL SHOCK!

8.4.1 Test Furpose:

The Mechanical Shock Test shall be performed to determine if the coolers are constructed to withstand the expected dynamic shock stresses and that performance degradations will not be produced by the service shock environment expected in handling, transportation, and service use. The coolers shall be operated during shock test.

8.4.2 Acceptance Criteria:

The Cooler shall satisfy the requirements of paragraph 6.1 (at 27 C \pm 5 degrees C) of this test plan.

9.4.7 Test Sequinement:

The Mechanical Shock Test shall be performed at at DI degrees C \pm 5 degrees C in accordance with MIL- STD Site Met od 516. If shocked the lV. High Intensity Test. The coolers shall operate continuously during the shock portion of the test.

8.4.4 Test Prodecure:

Step 1. Install a dummy load onto the shock test firture to simulate the emperted muss that will be encountered when the actual unit is installed onto the test firture.

Step 2. Attach the test finiture and the dummy load to the moving element of the Shock Test Machine.

Step T. Calibrate the Shock Test Machine to assume conformance to the specified waveform. Two consectivity shock applications to the dummy load shall fall within the specified tolerance envelope prior to installation of the coplers. The calibration shall conform to figure 516-1 1003 for 10 ms duration.

Step 4. After the Shot. Test Machine has been calibrated for conformance to the waveform, the coolers shall be installed into the test finture in the place of the dumn, load.

Step 5. Energize the copiers and allow copidown without the thermal mass or thermal load for ten (10) min tes.

Step 6. Apply Two (I) shocks in direction of three mutuall, perpindicular amins for a total of twelve (II) shock sulses. Ans identification is shown in figure 5.

Step 7. De-onergize coolers.

Step 8. The coolers shall be visually inspected for any evidence of mechanical damage or deterioration. Any abnormal findings shall be recorded on the Mechanical Shock Test Summary Sheet.

Step 9. Upon completion of the Mechanical Shock Test the performance test described in paragraph 6.0 of this test plan shall be conducted at 27 degrees 0 ± 5 degrees 0. Second the results of 6.1.1 on the Mechanical Shock Test Summary Sheet.

This concludes the Mechanical Shock Test.

8.5 <u>Mechanical Vibration</u>:

8.5.1 Test Furpose:

The Mechanical Vibration. Test shall be performed to determine if the coolers are constructed to withstand the expected dynamic vibrational stresses that may be encountered during service life. These coolers will be operated during this test.

8.5.1 Acceptance Criteria:

The coolers shall satisfy the requirements of paragraph 5.1 (at 27 C \pm 5 degrees C) of this test plan.

8.5.7 <u>Test requirement:</u>

The Mechanical Vibration Test shall be performed at 27 degrees C \pm 5 degrees C in accordance with MIL-STD 810B. Method 5124.2 procedures 1 t VIII. and conform to the vibration profile in figure 7. Gycle time of 120 minutes per axis with a dwell time of 1/6 cycling at each resonance. The accelerometer shall be affined to the cooler mounting finture.

8.5.4 <u>Test Fracedure</u>:

Step 1. Mount the coolers onto the vibration mathine with the cold finger and the compressor in the X axis. See figure 5.

Step I. Energize the cooler and allow cooldown for 10 minutes with no thermal mass or thermal load. Record all applicable data on the Mechanical Vibration Test Surmary Sheet.

Step T. Energize the Vibration Machine and conduct a resonance search at an input level of 15 from S-S00 Hz. Ferond all resonant frequencies encountered.

Step 4. Select the four (4) most severe resonants recorded in step T and perform a resonant dwell for 20 minutes at the frequency levels specified.

Step 5. Energize the Vibration Machine in accordance with the appropriate Vibration Profile.

Step 6. Allow the coolers to vibrate in this alis for 120 minutes.

Step 7. De-energize the Vibration machine and the coolers.

Step 8. Remove the coolers from the vibration machine and visually inspect them for any evidence of mechanical damage or deterioration. Record any abnormal findings on the mechanical Vibration Test Summary Sheet.

Step 9. Instrument the coolers per paragraph 6.3 of this test plan and mount the coolers in the Y axis. See figure 5. Repeat steps 2.3 and 4 in the Y axis.

Step 10. Energize the coolers and allow cooldown for 10 minutes with no thermal mass or thermal load.

Step 11. Energize the vibration machine in accordance with the appropriate vibration profile.

Step 12. Allow the coplers to vibrate in this axis for 120 minutes.

Step iI. De- energize the Vibration machine and remove the coolers. Inspect the coolers for any physical damage and record the results on the Mechanical Vibration Test Summary Sheet.

Step 14. Instrument the coolers per para graph $\epsilon.T$ of this test plan and mount the coolers in the Z axis. See figure 5. Repeat steps 1.T and 4 in the Z axis.

Step 15. Energize the coolers and allow cooldown for 10 minutes with no thermal mass or thermal load.

Step 16. Energize the vibration machine with the appropriate vibration profile.

Step 17. allow the coolers to vibrate in this axis for 100 minutes.

Step 19. Demending the vibration machine and retove the doclars. Inspect the coolers for any physical damage and record the results on the Mechanical Vibration Test Simmary Sheet.

Step 19. Conduct a performance test per paragraph 5.0 of this test plan.

17. The following tests were omitted for reasons assigned. If these tests were stringently required by the Army. CRYO-TER would gladly submit to your request.

SOLAR RADIATION: The component parts are buried in the system and are not subjected to direct solar radiation.

FUNGUS: Materials used in the fabrication are not affected by nor do they promote fungus growth.

SALT FOG: The materials are selected so as not to be susceptible to the effects of Salt Fog.

DUST: The unit is sealed so as not to allow infusion of dust and sand into the working area.

LEAFAGE: (IMMERSION) The units are sealed and do have a positive internal pressure therefore preventing any contamination by water lastinge.

Temperature- Humidity- Altitude: The unit is a positive pressured vessel and is not affected by the Altitude. The materials used in the construction of the coolers do not lend them to be affected by Temperature and Humidity.

11.0 — A Reliability Test Flan will be submitted along with this procedure.

EHYSICAL CHARACTERISTICS DATA SHEET

Tack Tack	Date
Test Tech	Project Eng.
RE(QUIREMENT
Record the following paragraph 5.0 of this test plants	physical characteristics per an.
Cooler S/N	
Conforms to draw SM-D-808551	(initial)
Weight (2.5 pour	nds Max.)
Cooler S/N	_
Conforms to dra SM-D-808551	wing number(initial)
Weight (2.5 pou	nds max.)
Cooler S/N	
Conforms to draw SM-D-808551	wing number (initial)
Weight (2.5 pour	

INPUT POWER TEST DATA SHEET

Cool	er S/N	Date
Test	Tech	Project eng.
Step	IEST	REQUIREMENT
1.0	Instrument cooler per	paragraph 6.3 of this plan.
2.0	Establish test set-up	
3. 0	Verify power supply me paragraph 6.1.4 of thi	eets the voltage ripple requirements of splan.
4.0	Energize cooler and re	ecord the following data:
	o Input voltage o Starting current o Duration of star	VDC :Amps ting currentMs
5.0	Record data when the d	cold tip reaches 80K
	o Input voltage o Current o power	Amps
6.0	Apply sufficient heat temperture of BOF. All an additional 30 min.	load to maintain a cold tip ow cooler to operate for
<u>7.0</u>	At the end of 30 mins.	record the follwing data:
	o Input voltage o Current o Fower o Cold tip temp o Applied heat loa	Amps Watts Degræes K
8.0 I	De-energize cooler	
Comme	ents:	

LEAN RATE TEST DATA SHEET

Test Te	ech	Project Eng.
Date	Time	TEST REQUIREMENT
		Conduct Leak Rate Test per paragraph 6.1.1 of this plan.
		Cooler S/N
		Charged to operating pressure (initial) Measured leak rate (1.0 x 10-6 scc/sec air equivalent at 230 ambient)
		Cooler S/N
		Charged to operating pressure (initial)
		Measured leak rate (1.0 \times 10-6 scc/sec air
		equivalent at DBC ambient)
		Cooler S/N
		Charged to operating pressure (initial)
		Measured leak rate (1.0 $ imes$ 10-6 scc/sec air
		equivalent at 230 ambient)

ELECTRO-MAGNETIC RADIATION TEST SUMMARY SHEET

Cooler S/N	er S/N Date		
Test Tech	Test Tech Froject Engineer		
Test Method	Title	Fass	Fail
RE 01	Fadiated Emission/Magnetic Field To Hz to To Khz		
REOD BB	Radiated Emission/Magnetic Field 14 thz to 1.0 Ghz (Broadband)		
REGD.1 NB	Radiated Emission/Magnetic Field 14 Fhz to 10 Ghz (Narrowband)	naga Militagayan pepengagani Mi	
RSOT	Radiated susceptibility. Electric Field. 14 hhz to 10 Ghz (Modified)		nataga" dentagade, platen menerica de de depar
CE01	Conducted Emissions/dc Fower Leads TO He to 50 khz		appropriate approximately and an additional
CEQ4	Conducted Emissions/AC Fower Leads 50 Fhz to 50 Mhz		
	a Performance Test per paragraph $\pm .0$ and the results.	of this	test
Comments			anderstein our Assessmentschaften.

TEMPERATURE SHOCK TEST SUMMARY SHEET

Cooler S/N	Date:	
Test Tech.	Project Eng	
Elapsed Step Date Time	Test requirement Initial	
1.0	_ Install coolers into test chamber	
2.0	Adjust chamber ambient to + 710	
3.0	verify cooler has soaked for four hours	
4.0	Flace cooler into test chamber that has been pre-cooled to -540 within 5 minutes from 710	
5.0	Verify cooler has soaled for four (4) hours at -540	
6.0	Flace cooler into test chamber that has been pre-heated to 710 within 5 mins. of removing from -540 ambient.	
7.0	Verify cooler has soaked for for hours at +710	
8.0	Flace cooler into test chamber that has been pre-cooled to -540 within 5 mins, of removing from +710 ambient.	
9.0	Verify cooler has soaled for four hours at -540	
10.0	Flace cooler into test chamber that has been pre-heated to +710 within 5 mins, of removing from -540 ambient.	
11.0	Verify cooler has soaled for four hours at +710	
12.0	Flace cooler into test chamber that has been pre-cooled to -540 within 5 mins. of removing from +710 ambient.	

Temperature Shock Test Summary Sheet (Continued)

Step	Date	Elapsed Time	Test Requirement	Initial
13.			Verify cooler has	
			soaked for four	
			hours.	
14.			Adjust test chamber	
			ambient to +230	
15.			Verify test chamber	
10.			Ambient is DIC	
16.			Visually inspect	
			cooler for physical	
			damage an d record.	W
17.			Conduct performance	
<u></u>			test per Fara. 6.0	
			of this test plan	
			Std. CC Hellum/s	sec (record)
Connen	tgs:			
				
	-			
				ار المعادل الم

HIGH TEMPERATURE TEST SUMMARY SHEET

		Date of Test
Tech		Project Eng.
	Elapsed Time	
Dat e	(HrMin)	Test Requirement
		Install the cooler into the test chamber instrumented per Para. 6.3
		Adjust chamber ambient to +710
		Verify cooler has soaked for 46 hours at +710
		Operate the coolers in accordance with Fara. 6.0 and record results.
	***************************************	Lower test chamber to standard room ambient (non-operating)
		Visually inspect coolers for physical damage and record abnormal findings.
	alin, 15 ann 120, st-athri, an	Conduct performance test at 230 per fara. 6.0. and record results.
		Std. CC Helsum/Sec. (Record)
tsi		
	Date	Time

DW TEMPERATURE TEST SUMMARY SHEET

Cooler 5/N		Pate	
Test tech		Project E	ng.
		Elapsed Tine	
Step	Date	(Hour/Min.)	Test Requirement
1.0			Install cooler into test chamber as per Para. 6.3.
2.0			Adjust test chamber to -570
3.0			Verify cooler has soaked for 48 hours at -570
4.0			Raise the temper ature to -40 and allow coolers to stabilize.
5.0			Operate coolers in accordance to para. 6.0 and record results.
6. 0			Raise test chamber to standard room ambient +230 (non-operating)
7.0			Visually inspect coolers for any physical damage and record.
8.O			Conduct Performance test at +230 and record
		Std. CC Helium/Sec.	(record)
Comments:			

Test Sheet 7 C-25

LOW TEMPERATURE TEST SUMMARY SHEET

Cooler 5/N		Date		
Test tech		Project Eng.		
		Elepsed Time		
Step	Date	(Hour/Min.)	Test Requirement	
1.0			Install cooler into test chamber as per Para. 6.3.	
2.0			Adjust test chamber to -570	
3.0			Verify cooler has soaked for 48 hours at -370	
4. O			Raise the temper ature to -40 and allow coolers to stabilize.	
3.¢			Operate coolers in accordance to para. 6.0 and record results.	
6.0			Raise test chamber to standard room ambient +23C (non-operating)	
7. Q	•		Visually inspect coolers for any physical damage and record.	
B. O			Conduct Performance test at +230 and record	
		Std. CC Helium/Sed	:. (record)	

Test Sheet 7 C-26

MECHANICAL SHOCK TEST SUMMARY SHEET

Cooler	\$/N	Date
Test Te	ech Froject E	ingineer
Step	Fequirement	Initial
1.0	Verify Shock Machine is calibrated	
2.0	Install instrumented cooler with bowe only onto the shock table. (X axis)	er leads
7. 0	Energize cooler and operate with no tinstrumentation on the coldfinger.	thermal load or
4.0	Apply two shacks in the positive X as	.15
5.0	Apply two shocks in the minus X axis	***************************************
6.0	Change the cooler into them Y amis	
7.0	Apply two shocks in the positive Y a:	15
9.0	Apply two shocks in the minus Y axis	*** And the latest an
9.0	Change cooler into the Z amis	
10.0	Apply two shocks in the positive Z a	18
11.0	Apply two shocks in the minus Z aris	
12.0	De-energize cooler and inspect for physical damage. Record results.	
17.0	Conduct performance test per para 6.0	
	Std. cc helium/sec	=
Commen	ts	

MECHANICAL VIBRATION TEST SUMMARY SHEET

Cooler S.	/N Date of Test	_ Date of Test		
Test Tec	h Froj. Eng			
Step	Test Requirement In	nitial		
1.0	Mount cooler onto vibration table in the X axis.			
2.0	Energize coolers and allow cooldown for 10 minutes.			
₹.0	Energize vibration machine and conduct a resonance search at an input level of 1g from 5- 500 Hz.			
Resonance	es:1 5 6	7		
4.0 perform a specified	Select the four most severe resonances recorded a resonance dwell for 20 minutes frequency level d.	ard s		
	Energize vibration machine in accordance to the on profile.	•		
6.0	Allow coolers to vibrate in this axis for 120 minutes			
7.0	De-energize vibration machine and coolers			
8.0 physical	Remove coolers from vibration machine and inspedamage.	ect for		
9.0 steps 2	Mount the coolers in the Y axis and repeat . I and 4			
10.0	Energize the coolers and allow cooldown for 10 minutes			
	Energize the vibration machine in accordance wite vibration profile.	th the		
12.0	Allow the cooler to vibrate in this amis for 120 minutes.			
17.0 Inspect (De-energize vibration machine and remove the cothe coolers for any physical damage.	oolers.		
	Mount the coolers in the Z axis. instrumented. T and 4 in the Z axis. $_$	repeat		
15.0	Energize the coolers and allow to cooldown for 10 minutes.			

Step	Test Requirement	Initial
16.0 Vibration prof	Energize the vibration machi	ne with the appropriate
17.0 minutes	Allow the coolers to vibrate	in this amis for 120
	De-energize the vibration ma ect the coolers for any physi	
19.0	Conduct a performance test p paragraph 6.0	er
_eat Test:	Std cc heliu	m/sec
Comments		
		

AMBIENT TEMPERATURE (CENTIGRADE)

Figure 1. Cooling Capacity

Figure 2. Input Power

Figure 3. Vibration Test Profile

Figure 4. Reliability Test Cycle

DISTRIBUTION FOR REPORT NO. AMSEL-NV-TR-0081

Director

8 ATTN: AMSEL-RD-NV-SES

1 AMSEL-RD-NV-D Fort Belvoir, VA 22060-5677

1 Commander

US Army Communications Electronics Command ATTN: AMSEL-ED-EN

Fort Monmouth, NJ 07703-5000

1 Director

US Army Materiel Systems Analysis Activity

ATTN: AMXST

Aberdeen Proving Grounds, MD 21005

1 Program Manager

Aquila Remotely Piloted Vehicle

US Army Missile Command

Redstone Arsenal, AL 35898-5000

1 Program Executive Officer

Close Combat Vehicles

ATTN: AMCPEO-CCV

US Army Tank-Automotive Command

Warren, MI 48397-5000

1 Product Manager

Night Vison and Electro-Optics

US Army Center for Night Vision and

Electro-Optics

Fort Belvoir, VA 22060-5677

1 Defense Technical Information Center

ATTN: DTIC

Cameron Station

Alexandria, VA 22304-9990

1 Commander

Belvoir RD&E Center

ATTN: STRBE-BT, Tech Library

ASQNK-BVP-G

Fort Belvoir, VA 22060-5606

- Project Manager
 Abrams Tank System
 US Army Tank-Automotive Command
 Warren, MI 48397-5000
- Product Manager
 Bradley Fighting Vehicle Systems
 US Army Tank-Automotive Command
 Warren, MI 48397-5000