CRYPTOLOGIE

TD2-codage quantique et chiffrement par blocs

Exercice 1: Codage quantique

Alice et Bob décide de communiquer en utilisant un chiffrement à clé privée, pour cela ils décident d'utiliser le protocole quantique de génération/transmission de clé. Ils se mettent d'accord sur la conversion bit polarisation suivante :

Polarisation	_		/	\
Bit	0	1	0	1

1. Génération et transmission de la clé.

Alice génère aléatoirement une liste de 10 photons et la transmet à Bob (deuxième ligne du tableau ci-dessous). Bob la mesure avec une liste de miroirs réglés aléatoirement (troisième ligne du tableau ci-dessous).

Photon	1	2	3	4	5	6	7	8	9	10
Alice	/	_		/	_	\	\		1	
Réglages B.	\	_	/	/		/	_		/	\
Mesures B.										

- (a) Compléter le tableau ci-dessus en donnant une liste possible de mesures pour Bob.
- (b) Bob transmet la liste de ses réglages à Alice qui en déduit la liste des photons qui ont eu un comportement déterministe; donner cette liste.
- (c) Alice transmet cette liste à Bob et ils en déduisent tous la deux la clé de codage grâce à la correspondance bit/polarisation; donner cette clé.

2. Ève intervient.

Ève a écouté la liste de photons émise par Alice et l'a donc modifiée, les mesures de Bob sont donc modifiées. On peut lire dans le tableau ci-dessous les nouvelles mesures de Bob :

Photon	1	2	3	4	5	6	7	8	9	10
Réglages B.	\	_	/	\		/	_		/	\
Mesures B.	\	×	/	\	×	×	_		/	\

(a) Les réglages de Bob n'ayant pas changé, Alice retrouve la même liste de photons à comportement déterministe que précédemment et elle transmet cette liste à Bob. D'après ses nouvelles mesures et ses réglages, Bob déduit la polarisation des photons ayant eu un comportement déterministe; donner cette liste de polarisation.

- (b) Donner la clé qu'en déduit Bob.
- (c) En testant quels bits de leur clé respective Alice et Bob peuvent-ils savoir s'ils ont été écoutés ou non?

Exercice 2: chiffrement par blocs

- 1. On construit un réseau de Feistel admettant les paramètres suivant :
 - On code des blocs de longueur 6 bits.
 - L'espace des clés est $K = \{0,1\}^4$: tous les mots de 4 bits.
 - Le réseau admet deux rondes.
 - La fonction g génératrice de sous-clés génère deux sous-clés de 3 bits : $g(k) = (k_1, k_2)$ où k_1 correspond au trois premiers bits de k, k_2 à ses trois derniers.
 - La fonction f est définie de $\{0,1\}^3 \times \{0,1\}^3$ dans $\{0,1\}^3$ par $f(m_i, k_i) = m_i + k_i$ où "+" désigne l'addition bit à bit modulo 2.
 - (a) Faire le schéma complet du réseau de chiffrement.
 - (b) En utilisant la clé k=1010, on utilise ce réseau de Feistel pour chiffrer le message m=100110; calculer le message chiffré c en faisant apparaître tous les calculs intermédiaires.
 - (c) Faire le schéma complet du réseau de déchiffrement.
 - (d) On reçoit le message chiffré c' = 111000; sachant qu'il a été chiffré par ce réseau de Feistel avec toujours la même clé k = 1010, retrouver le message en clair m' en faisant apparaître tous les calculs intermédiaires.
- 2. On souhaite à présent chiffrer des messages de 12 bits. Pour cela on utilise un chiffrement par bloc en mode ECB basé sur le réseau de Feistel précédent.
 - (a) Faire le schéma complet de chiffrement.
 - (b) On souhaite chiffrer le message $M=100110\ 000101$ toujours avec la même clé k=1010; déterminer le message chiffré obtenu C.
 - (c) A quel test de sécurité le mode ECB échoue-t-il? Expliquer brièvement pourquoi (on pourra donner un exemple) ce chiffrage est sensible aux attaques à textes en clairs choisis.
- 3. On passe à un mode de chiffrement CFB $(c_i = e_k(c_{i-1} + m_i))$.
 - (a) Faire le schéma complet de chiffrement.
 - (b) On souhaite chiffrer le message $M' = 011010 \ 110100$ avec le bloc constant $C_0 = 100110$ et toujours la même clé k = 1010; déterminer le message chiffré obtenu C'.
 - (c) Expliquer brièvement pourquoi le mode CFB est plus efficace que le mode ECB.

EXERCICE 3: Codage quantique

Alice et Bernard décide de communiquer en utilisant un chiffrement à clé secrète. On s'intéresse au protocole quantique de transmission de la clé. Ils se mettent d'accord sur la conversion bit polarisation suivante :

Polarisation	_		/	\
Bit	0	1	0	1

1. Génération et transmission de la clé.

Alice génère aléatoirement une liste de 10 photons et la transmet à Bob (deuxième ligne du tableau ci-dessous). Bob la mesure avec une liste de miroirs réglés aléatoirement (troisième ligne du tableau ci-dessous).

Photon	1	2	3	4	5	6	7	8	9	10
Alice	\		_		/	_		\	_	\
Réglages B.	-		/	\	\		/	\		/
Mesures B.										

- (a) Complétez le tableau ci-dessus en donnant une liste possible de mesures pour Bob.
- (b) Bob transmet la liste de ses réglages à Alice qui en déduit la liste des photons qui ont eu un comportement déterministe; donnez cette liste.
- (c) Alice transmet cette liste à Bob et ils en déduisent tous la deux la clé de codage grâce à la correspondance bit/polarisation; donnez cette clé.

2. Ève intervient.

Ève a écouté la liste de photons émise par Alice et l'a donc modifiée, les mesures de Bob sont donc modifiées. On peut lire dans le tableau ci-dessous les nouvelles mesures de Bob :

Photon	1	2	3	4	5	6	7	8	9	10
Réglages B.	_		/	\	\	_	/	\		/
Mesures B.	_		/	\	\	X	/	\	X	×

- (a) Les réglages de Bob n'ayant pas changé, Alice retrouve la même liste de photons à comportement déterministe que précédemment et elle transmet cette liste à Bob. D'après ses nouvelles mesures et ses réglages, Bob déduit la polarisation des photons ayant eu un comportement déterministe; donnez cette liste de polarisation.
- (b) Donnez la clé qu'en déduit Bob.
- (c) En testant quels bits de leur clé respective Alice et Bob peuvent-ils savoir s'ils ont été écoutés ou non?

EXERCICE 4: Codage par bloc

1. Réseau de Feistel

On construit un réseau de Feistel admettant les paramètres suivant :

- On code des blocs de longueur 6 bits.
- L'espace des clés est $K = \{0,1\}^6$: tous les mots de 6 bits.
- Le réseau admet deux rondes.
- La fonction g génératrice de sous-clés génère deux sous-clés de 3 bits : $g(k) = (k_1, k_2)$ où k_1 correspond aux bits impairs (le 1^{er} , le 3^{eme} , le 5^{eme}) de k, k_2 à ses bits pairs.
- La fonction f est définie de $\{0,1\}^3 \times \{0,1\}^3$ dans $\{0,1\}^3$ par $f(m_i, k_i) = m_i + k_i$ où "+" désigne l'addition bit à bit modulo 2.
- (a) Faites le schéma complet du réseau de chiffrement.
- (b) On utilise ce réseau de Feistel avec la clé k=110110 pour chiffrer le message $m=000\,111$; calculez le message chiffré c en faisant apparaître tous les calculs intermédiaires.
- (c) Comment modifier le schéma précédent pour obtenir celui du réseau de déchiffrement?
- (d) Déchiffrez le message $c' = 010\,000$ pour retrouver le message en clair m' (on travaille toujours avec la clé k = 110110).

2. Étude d'un mode

A partir d'une fonction de chiffrement F permettant de chiffrer un bloc et de sa fonction de déchiffrement G, on voudrait chiffrer un message M se décomposant en 2 blocs $M = M_1M_2$. On utilise pour cela un mode où C_i , le i^{eme} bloc chiffré, se calcule de la façon suivante : $C_i = F(C_{i-1}) + F(M_i)$, où C_0 est un bloc constant donné et où "+" désigne l'addition bit à bit modulo 2.

- (a) Faites le schéma de chiffrement et de déchiffrement.
- (b) Sachant que F est le réseau de Feistel étudié précédemment, toujours utilisé avec la même clé k=110110, chiffrez le message $M=000\,111\,001\,010$ avec le bloc $C_0=001\,100$.