Assignment 4: Continuous Skip-Gram Model, Image Segmentation, and Continuous Bag-of-Words Model

Question 1: Befine Continuous Skip-Gram Model

- * Definition: Neural network-based word embedding model in NXP, part of the Word2Vec framework by Mikolov et al. (2013).
- * Objective: Predicts surrounding context words for a target word, capturing semantic relationships.
- * Key Features:
- * Loal: Maximize probability of context words given a target word.
- * Architecture: Input layer (target word), hidden layer (word embeddings), output layer (context probability distribution).
- * Training: Adjusts word vectors to capture semantic similarities (e.g., "king" and "queen").
- * Applications:

- * Text classification
- * Information retrieval
- * Sentiment analysis

Question 2: Explain Image Segmentation and Object Detection

- * Image Segmentation: Partitions an image into segments to identify objects.
- * Types:
- * Semantic Segmentation: Classifies each pixel (e.g., road, car).
- * Instance Segmentation: Differentiates between instances of the same class.
- * Techniques:
- * Thresholding
- * Clustering (e.g., K-means)
- * Deep Learning (e.g., Fully Convolutional Networks)
- * Object Setection: Identifies and localizes objects with bounding boxes and class labels.
- * Techniques:
- * Traditional: HOL, Haar Cascades

- * Deep Learning: YOXO (real-time detection), Faster R-CNN (efficient detection)
- * Applications:
- * Autonomous vehicles
- * Video surveillance
- * Robotics
- * augmented reality

Question 3: Discuss Continuous Bag-of-Words (CBOW) Model

- * Definition: Word embedding model in Word2Vec, predicts target word based on context words.
- * Key Features:
- * Objective: Maximize probability of target word given context words.
- * Architecture: Input (context words), hidden layer (word embeddings), output (target word probability).
- * Training: Adjusts embeddings to improve target word prediction.
- * Applications: Similar to Skip-Gram-used

in sentiment analysis, text classification, recommendation systems.

* Comparison with Skip-Gram:

* Input: CBOW uses context words; Skip-

Gram uses target word.

* Performance: CBOW is faster and better for smaller datasets; Skip-Gram performs well on larger datasets with rare words.