# PMLDL'21. Project Progress D1.5

### **Student Information**

Student: Anna Boronina

Group: BS18-DS-01

Telegram: @whoorma

The idea: using Variational Autoencoder for pointcloud generation

# **Progress**

The sections below contain information about changes I introduced to my model and the training process. These changes are based on "What's next" section from the previous report.

## **Data Augmentation**

I introduced new way to augment data, similar to how we augment images.

#### The problem before:

- 1. I had a set of pointclouds, each containing around 3000 points. I sampled 1024 from them during the training process, so my model has probably never seen the same pointcloud more than once. So, the training was very slow.
- 2. Another approach was to apply all transformations before training. It caused overfitting because the model saw the same pointclouds all the time, even though dataloader shuffled them.

**To solve it**, I did the following: points sampling and normalization happen before training, it's a static transformation. Noise application happens during training. This way, the models sees very similar yet different pointclouds.

The result: the loss is not decreasing too fast,

# Weights Initialization

I use Xavier weights initialization, as mentioned <u>here</u>. I didn't notice much difference, probably because my model generally doesn't perform well.

### Conv1d

Encoder part has Conv1d to increase the depth. For example, initially a pointcloud has shape [3, 1024], I treat 3 as a number of channels and use Conv1d to increase it up to 1024. Nevertheless, decoder part consisted of only Linear layers. It increased number of neurons from latent\_space\_dim to 1024 \* 3 which was then reshaped to [3, 1024].

#### To increase number of dimensions

Conv1d could take [1, 1024] and expend the number of channels from 1 to 3 and output [3, 1024]. When I tried adding TransposeConv1d, I got this:



#### To increase number of channels

Conv1d takes shape [1, 100] where 100 is latent space shape. I turn 100 into 1024 using Conv1d and get shape [1, 1024]. Then reshape it to [1024] and pass to Linear layer to get [1024\*3] and then reshape it to [3, 1024] - 1024 points, 3 dimensions. The results are (3 different ones):



So, my guess is that the model learns some features (length of bed, for example).

### **Activation Function**

ReLU gives better results comparing to SELU.

### **Autoencoder**

Current architecture is (with Conv1d in decoder to increase number of points):

```
PointNetAE(
  (encoder): PointEncoder(
    (convs): Sequential(
      (0): Conv1d(3, 64, kernel_size=(1,), stride=(1,))
      (1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (2): ReLU()
      (3): Conv1d(64, 128, kernel_size=(1,), stride=(1,))
      (4): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (5): ReLU()
      (6): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))
      (7): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    (dense): Sequential(
      (0): Linear(in_features=1024, out_features=512, bias=True)
      (1): ReLU()
      (2): Linear(in_features=512, out_features=100, bias=True)
    )
    (mu_fc): Linear(in_features=100, out_features=100, bias=True)
    (log_var_fc): Linear(in_features=100, out_features=100,
bias=True)
  (decoder): PointDecoder(
    (conv): Sequential(
      (0): Conv1d(100, 128, kernel_size=(1,), stride=(1,))
      (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (2): SELU()
      (3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))
      (4): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (5): SELU()
    )
    (dense_layers): Sequential(
      (0): Linear(in_features=1024, out_features=3072, bias=True)
      (1): Dropout(p=0.3, inplace=False)
      (2): Tanh()
    )
  )
```

)

### **Variational Autoencoder**

This time I didn't focus much on adding *varionality*. It can be simply added by uncommenting using reparametrize method:

```
class PointNetAE(nn.Module):
    def __init__(self, num_points=1024, z_dim=100):
        super(PointNetAE, self).__init__()
        self.num_points = num_points
        self.encoder = PointEncoder(num_points, z_dim=z_dim)
        self.decoder = PointDecoder(num_points, z_dim=z_dim)
    def reparameterize(self, mu, log_var):
        std = torch.exp(log_var / 2)
        eps = torch.randn_like(std)
        return mu + std * eps
    def forward(self, x):
        x, mu, logvar = self.encoder(x)
        # uncomment the line below to turn AE into VAE
        # x = self.reparameterize(mu, logvar)
        x = self.decoder(x)
        return x
```

## **Training**

Now, no matter with which decoder I train the autoencoder, loss gets stuck at ~120 and even if train loss goes a bit down, valid loss goes up. I use Adam with Ir=0.001.

## **Expectations**

I do not expect this project to actually achieve its initial goal - it's well-known that working with pointclouds is difficult. In every report I write everything new I've learned, which is helpful for my thesis.

### Links

<u>GitHub repository</u>

Folder with everything project-related

# What's next

- 1. Try to do it for 2 or 3 classes
  - 1. with the model that overfits (previous report)
  - 2. with the model from this report
- 2. Compose all the information into one report
- 3. Add comments for classes and functions for better navigation