

Predicting the speed of a sailing boat under any given condition requires solving the following system of equations,

$$R_{tot}(V, \phi) = F_{drive}(V, \phi)$$

$$M_{right}(\phi) = M_{heel}(V, \phi)$$

where

- R_{tot}, the advance resistance
- F_{drive} , the force due to the wind
- M_{right} , the righting moment
- M_{heel} , the heeling moment
- V, velocity of the boat
- φ, heeling angle

Then,

$$\begin{split} R_{tot}(V,\varphi) &= R_{tot}(V^*,\varphi^*) + (V-V^*) \frac{\partial R_{tot}}{\partial V} \Big|_{V^*,\varphi^*} + (\varphi-\varphi^*) \frac{\partial R_{tot}}{\partial \varphi} \Big|_{V^*,\varphi^*} = \\ &= V \frac{\partial R_{tot}}{\partial V} \Big|_{V^*,\varphi^*} + \varphi \frac{\partial R_{tot}}{\partial \varphi} \Big|_{V^*,\varphi^*} + \frac{R_{tot}(V^*,\varphi^*) - V^* \frac{\partial R_{tot}}{\partial V} \Big|_{V^*,\varphi^*} - \varphi^* \frac{\partial R_{tot}}{\partial \varphi} \Big|_{V^*,\varphi^*} = B_1 V + C_1 \varphi + D_1 \\ F_{drive}(V,\varphi) &= F_{drive}(V^*,\varphi^*) + (V-V^*) \frac{\partial F_{drive}}{\partial V} \Big|_{V^*,\varphi^*} + (\varphi-\varphi^*) \frac{\partial F_{drive}}{\partial \varphi} \Big|_{V^*,\varphi^*} = \\ &= V \frac{\partial F_{drive}}{\partial V} \Big|_{V^*,\varphi^*} + \varphi \frac{\partial F_{drive}}{\partial \varphi} \Big|_{V^*,\varphi^*} + \underbrace{F_{drive}(V^*,\varphi^*) - V^* \frac{\partial F_{drive}}{\partial V} \Big|_{V^*,\varphi^*} - \varphi^* \frac{\partial F_{drive}}{\partial \varphi} \Big|_{V^*,\varphi^*} = B_2 V + C_2 \varphi + D_2 \\ M_{right}(V,\varphi) &= M_{right}(V^*,\varphi^*) + (V-V^*) \frac{\partial M_{right}}{\partial V} \Big|_{V^*,\varphi^*} + (\varphi-\varphi^*) \frac{\partial M_{right}}{\partial \varphi} \Big|_{V^*,\varphi^*} = \\ &= V \frac{\partial M_{right}}{\partial V} \Big|_{V^*,\varphi^*} + \varphi \frac{\partial M_{right}}{\partial \varphi} \Big|_{V^*,\varphi^*} + \underbrace{M_{right}(V^*,\varphi^*) - V^* \frac{\partial M_{right}}{\partial V} \Big|_{V^*,\varphi^*} - \varphi^* \frac{\partial M_{right}}{\partial \varphi} \Big|_{V^*,\varphi^*} = C_3 \varphi + D_3 \\ M_{heel}(V,\varphi) &= M_{heel}(V^*,\varphi^*) + (V-V^*) \frac{\partial M_{heel}}{\partial V} \Big|_{V^*,\varphi^*} + (\varphi-\varphi^*) \frac{\partial M_{heel}}{\partial \varphi} \Big|_{V^*,\varphi^*} = \\ &= V \underbrace{\frac{\partial M_{heel}}{\partial V} \Big|_{V^*,\varphi^*} + \varphi}_{B_4} + \underbrace{\frac{\partial M_{heel}}{\partial \varphi} \Big|_{V^*,\varphi^*} + M_{heel}(V^*,\varphi^*) - V^* \frac{\partial M_{heel}}{\partial V} \Big|_{V^*,\varphi^*} - \varphi^* \frac{\partial M_{heel}}{\partial \varphi} \Big|_{V^*,\varphi^*} = B_4 V + C_4 \varphi + D_4 \end{aligned}$$

and balancing forces and moments

$$\begin{split} R_{\rm tot}(V,\varphi) &= F_{\rm drive}(V,\varphi) => B_1 V + C_1 \varphi + D_1 = B_2 V + C_2 \varphi + D_2 => (B_1 - B_2) V + (C_1 - C_2) \varphi = D_2 - D_1 \\ \\ M_{\rm right}(\varphi) &= M_{\rm heel}(V,\varphi) => C_3 \varphi + D_3 = B_4 V + C_4 \varphi + D_4 => (-B_4) V + (C_3 - C_4) \varphi = D_4 - D_3 \end{split}$$

it is possible to build the following iterative scheme

$$\begin{pmatrix} B_1 - B_2 & C_1 - C_2 \\ -B_4 & C_3 - C_4 \end{pmatrix} \begin{pmatrix} V \\ \varphi \end{pmatrix} = \begin{pmatrix} D_2 - D_1 \\ D_4 - D_3 \end{pmatrix}$$

where the spectral radius of the main matrix is less or equal 1, so it is expected linear convergence. The initial values are

$$V^* = 1.25 \cdot \sqrt{Lwl}$$
$$\Phi^* = 0$$

The calculation of the partial derivatives of each one of the coefficients relays on the splines of order 1 obtained from the corresponding values obtained experimentally and publicly available.

References,

- Principles of Yacht Design, Larsson & Eliasson
- Applied Naval Architecture, Zubaly
- Numerical Methods using MATLAB, Mathews & Fink
- Approximation of the Hydrodynamic Forces on a Sailing Yacht base on the Delft Systematic Yacht Hull
 Series, Keuning and Sonnenberg, The International HISWA Symposium
- The MATLAB software gvpp.

	Effective apparent wind angle		alfa_eff	
	True wind angle	α_{TW}	alfa_tw	[deg]
	Average freeboard	fb	AVGFREB	[m]
	Design waterplane area	Aw	AW	[m ²]
_	Total lateral area of yacht	1100	ALT	[m²]
_	Rudder planform area		APR	[m²]
	Nominal sail area		AN	[111]
_	Mainsail area		AM	
_	Jib area		AJ	
	Spinnaker area		AS	
_	Foretriangle area		AF	
_	Crew arm	b	b	[m]
_	beam of waterline	Bwl	BWL	
_		B	B	[m]
_	Design of maximum beam	Б	BAD	[m]
_	Bottom height above deck	Cm		[m]
_	Midship section coefficient	CIII	CMS	[-]
_	Longitudinal prismatic coefficient		CPL	[m]
_	Mean chord length		CHMEK	[m]
_	Root chord length		CHRTK	[m]
_	Tip chord length		CHTPK	[m]
_	Mean chord length		CHMER	[m]
_	Root chord length		CHRTR	[m]
_	Tip chord length		CHTPR	[m]
_	Mean thickness ratio of keel section		DELTTK	[-]
_	Mean thickness ratio of rudder section		DELTTR	[m]
_	Volume of displacement of canoe	$\nabla_{ m c}$	DIVCAN	[m³]
_	Displaced volume of keel		DVK	[m³]
_	Rudder displacement volume		DVR	[m³]
_	Mainsail base		E	[m]
_	Mast's height above deck		EHM	[m]
_	Mast's average diameter		EMDC	[m]
_	Flattening factor	F	F	[-]
_	Flattening factor		F	[-]
_	Drive force		Fdrive	
_	Side force		Fside	r / 21
_	Gravitational acceleration	g	g	[m/s ²]
_	Hull form factor		HULLFF	[m]
_	Foretriangle height		I	[m]
_	Foretriangle base		J	[m]
_	Center of gravity above moulded base or keel		KG	[m]
_	Transverse metacenter above moulded base or keel		KM	[m]
_	Keel's form factor		KEELFF	[-]
-	Perpendicular of largest jib		LPG	[m]
-	Waterline length	Lwl	LWL	[m]
-	Heeling moment		Mheel	
-	Movable crew mass		MMVBLCRW	[kg]
-	Correction for mainsail roach		MROACH	[-]
-	Full length battens in main (0:no, 1:yes)		MFLB	[-]

_	Heeling angle	ф	Phi	[deg]
_	Density of water	$ ho_{\mathbf{w}}$	rho_w	$[kg/m^3]$
_	Water kinematic viscosity	ν_{w}	ni_w	$[m^2/s]$
_	Air density	ρ_a	rho_a	$[kg/m^3]$
_	Total resistance		Rtot	
_	Hull viscous resistance	R_{vh}	Rvh	
_	Hull residuary resistance	R_{rh}	Rrh	
_	Keel viscous resistance	R_{vk}	Rvk	
_	Rudder viscous resistance	R_{vr}	Rvr	
_	Keel residuary resistance	R_{rk}	Rrk	
_	Change in hull viscous resistance due to heel	R_{vhH}	RvhH	
_	Change in hull residuary resistance due to heel	R_{rhH}	RrhH	
_	Change in keel residuary resistance due to heel	R_{rkH}	RrkH	
_	Keel induced resistance	R_i	Ri	
_	Change in hull residuary resistance due to trim	R_{rhT}	RrhT	
_	Rudders form factor		RUDDFF	[-]
_	Sails used in the calculation		SAILSET	[-]
_	Wetted area of the hull at zero speed	S_c	SC	$[m^2]$
_	Spinnaker length		SL	[m]
_	Keel's wetted surface		SK	$[m^2]$
_	Rudder wetted surface		SR	$[m^2]$
_	Total draft	T	T	[m]
_	draft of canoe body	T_c	TCAN	[m]
_	Taper ratio of keel (CHRTK/CHTPK)		TAK	[-]
_	Effective span of the keel		Te	
_	Mainsail height		Р	[m]
_	The forward velocity of the yacht	V	V	[m/s]
_	Apparent wind velocity opposite to direction of motion		V1	
Appare	ent wind velocity at right angles to mast and direction of motion		V2	
_	Effective apparent wind velocity		Veff	
_	True wind speed	V_{TW}	V_tw	[m/s]
_	Boat Speed		V	[m/s]
_	Boat Velocity Made Good		VMG	[m/s]
_	LCB from forward perpendicular	LCB_{fpp}	XFB	[m]
_	LCF from forward perpendicular	LCF_{fpp}	XFF	[m]
_	Keel's vertical center of buoyancy (above keel)	Zcbk	ZCBK	[m]

$$F_{drive}(V^*, \varphi^*)$$

: $V_1 = V^* + V_{tw} \cdot \cos \alpha_{tw}$

: $V_2 \approx V_{tw} \cdot \sin \alpha_{tw} \cdot \cos \varphi^*$

$$: \ V_{eff} = \sqrt{V_1^2 + V_2^2}$$

:
$$\alpha_{eff} = atan\left(\frac{V_2}{V_1}\right)$$

:
$$AM = \frac{1}{2} \cdot P \cdot E \cdot MROACH$$

: AJ =
$$\frac{1}{2}$$
 · LPG · $\sqrt{I^2 + J^2}$

$$: AS = 1.15 \cdot SL \cdot J$$

$$: AF = \frac{1}{2} \cdot I \cdot J$$

:
$$AN = AF + AM$$

:
$$ZCEM = 0.39 \cdot P + BAD$$

:
$$ZCEI = 0.39 \cdot I$$

:
$$ZCES = 0.59 \cdot I$$

:
$$k_M, k_S, k_J \in (0,1)$$

$$: \ C_L = F \cdot \frac{k_M \cdot Cl_M \cdot A_M + k_S \cdot Cl_S \cdot A_S + k_J \cdot Cl_J \cdot A_J}{AN}$$

$$: \ \ Cdp = \frac{k_M \cdot Cdp_M \cdot A_M + k_S \cdot Cdp_S \cdot A_S + k_J \cdot Cdp_J \cdot A_J}{AN}$$

$$: \ \ ZCE = \frac{k_M \cdot ZCEM \cdot AM + k_S \cdot ZCES \cdot AS + k_J \cdot ZCEJ \cdot AJ}{k_M \cdot AM + k_S \cdot AS + k_J \cdot AJ}$$

$$: \ AR = \begin{cases} 1.1 \cdot \frac{(EHM + AVGFREB)^2}{AN} & \quad \text{if $\alpha_{eff} < 45^o$} \\ \\ 1.1 \cdot \frac{EHM^2}{AN} & \quad \text{if $\alpha_{eff} \ge 45^o$} \end{cases}$$

:
$$CdI = C_L^2 \cdot \left(\frac{1}{\pi \cdot AR} + 0.005\right)$$

:
$$Cd0 = 1.13 \cdot \frac{(B \cdot AVGFREB + EHM \cdot EMDC)}{AN}$$

:
$$Cd = Cdp + Cd0 + CdI$$

:
$$L = \frac{1}{2} \cdot \rho_a \cdot V_{eff}^2 \cdot AN \cdot C_L$$

:
$$D = \frac{1}{2} \cdot \rho_a \cdot V_{eff}^2 \cdot AN \cdot C_D$$

:
$$D_2 = Fdrive = L \cdot sin(\alpha_{eff}) - D \cdot cos(\alpha_{eff})$$

$\alpha_{ m eff}$	Cl_M	Cl_J	Cl_S	Cdp_M	Cdp_J	Cdp_S
0	0	0	0	0	0	0
27	1.725*	1.5	0	0.02	0.02	0
50	1.5	0.5	1.5	0.15	0.25	0.25
80	0.95	0.3	1	0.8	0.15	0.9
100	0.85	0	0.85	1.0	0	1.2
180	0	0	0	0.9	0	0.66

α_{eff}	$Cl_{\mathbf{M}}$	Cl _J	Cl _S
0	$0.0638888\alpha_{\mathrm{eff}}$	0.0555555 α_{eff}	0
27		0.033333ueff	0
	$-9.782 \cdot 10^{-3} \alpha_{\rm eff} +$	$-0.043478 \cdot \alpha_{\rm eff} + 2.673913$	$0.0652173 \cdot \alpha_{\rm eff} - 1.760869$
50	+ 1.9891304		<u> </u>
	$-0.018333 \cdot \alpha_{\rm eff} + 2.4166666$	$-6.666 \cdot 10^{-3} \cdot \alpha_{\rm eff} +$	$-0.016666 \cdot \alpha_{\rm eff} +$
80	0.010333 u _{eff} 1 2.1100000	+ 0.8333333	+ 2.3333333
80	$-5 \cdot 10^{-3} \cdot \alpha_{\rm eff} + 1.35$	$-0.015 \cdot \alpha_{\rm eff} + 1.5$	$-7.5 \cdot 10^{-3} \cdot \alpha_{\rm eff} + 1.6$
100		Cii	CII
	$-0.010625 \cdot \alpha_{\rm eff} + 1.9125$	0	$-0.010625 \cdot \alpha_{\rm eff} + 1.9125$
180	0.010020 Well 1.9120		0.010020 deff 1 1.7120

α_{eff}	Cdp_M	Cdp_J	Cdp_S
0	$7.4074\cdot 10^{-4}\cdot \alpha_{eff}$	$7.4074\cdot 10^{-4}\cdot \alpha_{eff}$	0
27	$5.6521 \cdot 10^{-3} \cdot \alpha_{\rm eff} - 0.132608$	$0.01 \cdot \alpha_{\mathrm{eff}} - 0.25$	$0.0108695 \cdot \alpha_{eff} - 0.293478$
50	$0.0216666 \cdot \alpha_{\text{eff}} - 0.933333$	$-3.333 \cdot 10^{-3} \cdot \alpha_{\text{eff}} + 0.4166666$	$0.0216666 \cdot \alpha_{eff} - 0.833333$
80			
100	$0.01 \cdot \alpha_{eff}$	$-7.5 \cdot 10^{-3} \cdot \alpha_{\rm eff} + 0.75$	$0.015 \cdot \alpha_{\rm eff} - 0.3$
180	$-1.25 \cdot 10^{-3} \cdot \alpha_{\rm eff} + 1.125$	0	$-6.75 \cdot 10^{-3} \cdot \alpha_{\rm eff} + 1.875$

$$M_{heel}(V^*, \phi^*)$$

: Fheel = $L \cdot cos(\alpha_{eff}) + D \cdot sin(\alpha_{eff})$

: $Mheel = Fheel \cdot (ZCE + T - ZCBK)$

$$M_{right}(V^*, \phi^*)$$

: $M1 = (KM - KG) \cdot sin(\phi^*) \cdot g \cdot \rho_w \cdot (DIVCAN + DVK)$

: $M2 = MMVBLCRW \cdot g \cdot b \cdot cos(\phi^*)$

: $Mright = M_1 + M_2$

$$R_t(V^*, \varphi^*)$$

: Rt = Ri + Rrh + RrhH + Rrk + RrkH + Rvh + RvhH + Rvk + Rvr

 R_i

$$: Ri = \frac{Fheel^2}{\pi \cdot Te^2 \cdot \frac{1}{2} \cdot \rho_w \cdot V^{*2}}$$

$$: \ T_e = T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T}\right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK}\right) \cdot \left(B_0 + B_1 \cdot Fn\right)$$

$$: \ Fn = \frac{V^*}{\sqrt{g \cdot Lwl}}$$

φ*	A_1	A_2	A_3	A_4	B_0	B_1
0	3.7455	-3.6246	0.0589	-0.0296	1.2306	-0.7256
10	4.4892	-4.8454	0.0294	-0.0176	1.4231	-1.2971
20	3.9592	-3.9804	0.0283	-0.0075	1.5450	-1.5622
30	3.4891	-2.9577	0.0250	-0.0272	1.4744	-1.3499

ф*	A ₁	A ₂	A_3	A_4
0	0.07437 · φ* +	$-0.12208 \cdot \phi^* -$	$-2.95 \cdot 10^{-3} \cdot \phi^* +$	$1.2 \cdot 10^{-3} \cdot \phi^* - 0.0296$
10	+ 3.7455	- 3.6246	+ 0.0589	$1.2 \cdot 10^{-4} \cdot \psi = 0.0298$
10	0.052 4* 5.0102	$0.0865 \cdot \phi^* - 5.7104$	$-1.1 \cdot 10^{-4} \cdot \phi^* +$	$1.01 \cdot 10^{-3} \cdot \phi^* -$
20	$-0.053 \cdot \phi^* + 5.0192$	$0.0005 \cdot \psi = 5.7104$	+ 0.0305	- 0.0277
20	$-0.04701 \cdot \phi^* +$	0.10227 · φ* –	$-3.3 \cdot 10^{-4} \cdot \phi^* +$	$-1.97 \cdot 10^{-3} \cdot \phi^* +$
30	+ 4.8994	- 6.0258	+ 0.0349	+ 0.0319

φ*	B_0	B_1
0	$0.01925 \cdot \varphi^* + 1.2306$	$-0.05715 \cdot \phi^* - 0.7256$
10	υ.υ1923 Ψ 1 1.2300	0.03713 ψ 0.7230
	$0.01219 \cdot \phi^* + 1.3012$	$-0.02651 \cdot \phi^* - 1.032$
20	·	·
	$-7.06 \cdot 10^{-3} \cdot \phi^* + 1.6862$	$0.02123 \cdot \phi^* - 1.9868$
30	¥ . =	Ψ =

Rrh

Fn	a_0	a_1	a_2	a_3	a_4	a_5	a ₆	a ₇	a ₈
0	0	0	0	0	0	0	0	0	0
0.10	-0.0014	0.0403	0.0470	-0.0227	-0.0119	0.0061	-0.0086	-0.0307	-0.0553
0.15	0.0004	-0.1808	0.1793	-0.0004	0.0097	0.0118	-0.0055	0.1721	-0.1728
0.20	0.0014	-0.1071	0.0637	0.0090	0.0153	0.0011	0.0012	0.1021	-0.0648
0.25	0.0027	0.0463	-0.1263	0.0150	0.0274	-0.0299	0.0110	-0.0595	0.1220
0.30	0.0056	-0.8005	0.4891	0.0269	0.0519	-0.0313	0.0292	0.7314	-0.3619
0.35	0.0032	-0.1011	-0.0813	-0.0382	0.0320	-0.1481	0.0837	0.0223	0.1587
0.40	-0.0064	2.3095	-1.5152	0.0751	-0.0858	-0.5349	0.1715	-2.4550	1.1865
0.45	-0.0171	3.4017	-1.9862	0.3242	-0.1450	-0.8043	0.2952	-3.5284	1.3575
0.50	-0.0201	7.1576	-6.3304	0.5829	0.1630	-0.3966	0.5023	-7.1579	5.2534
0.55	0.0495	1.5618	-6.0661	0.8641	1.1702	1.7610	0.9176	-2.1191	5.4281
0.60	0.0808	-5.3233	-1.1513	0.9663	1.6084	2.7459	0.8491	4.7129	1.1089

$$: \ Rrh = \nabla_c g \rho_w \left[a_0 + \frac{\nabla^{\frac{1}{3}}}{Lwl} \left(a_1 \frac{LCB}{Lwl} + a_2 Cp + a_3 \frac{\nabla_c^{2/3}}{A_w} + a_4 \frac{Bwl}{Lwl} + a_5 \frac{\nabla_c^{2/3}}{S_c} + a_6 \frac{LCB}{LCF} + a_7 \left(\frac{LCB}{Lwl} \right)^2 + a_8 Cp^2 \right) \right]$$

Fn	a_0	a ₁	a_2
0	−0.014 · Fn	0.403 ⋅ Fn	0.47 · Fn
0.10	01011 111	01100 111	011, 111
0.15	$0.036 \cdot Fn - 0.005$	$-4.422 \cdot \text{Fn} + 0.4825$	2.646 ⋅ Fn − 0.2176
0.15	$0.02 \cdot Fn - 0.0026$	1.474 · Fn − 0.4019	−2.312 · Fn + 0.5261
0.20			
0.25	$0.026 \cdot \text{Fn} - 0.0038$	$3.068 \cdot \text{Fn} - 0.7207$	$-3.8 \cdot \text{Fn} + 0.8237$
0.25	0.058 · Fn — 0.0118	-16.936 · Fn + 4.2803	12.308 · Fn — 3.2033
0.30	0.030 · Fil = 0.0110	-10.730 · FII + 4.2003	12.500 · FII — 5.2055
0.25	$-0.048 \cdot \text{Fn} + 0.02$	13.988 ⋅ Fn − 4.9969	-11.408 · Fn + 3.9115
0.35	$-0.192 \cdot \text{Fn} + 0.0704$	48.212 · Fn — 16.9753	−28.678 · Fn + 9.956
0.40	0.172 111 0.0701	10.212 111 10.7733	20.070 111 7.750
0.45	$-0.214 \cdot Fn + 0.0792$	21.844 ⋅ Fn − 6.4281	$-9.42 \cdot \text{Fn} + 2.2528$
0.45	$-0.06 \cdot \text{Fn} + 0.0099$	75.118 · Fn — 30.4014	-86.884 · Fn + 37.1116
0.50	3,00 111 0,0077	, 5.110 111 50.1011	33.001 111 37.1110
0.55	$1.392 \cdot Fn - 0.7161$	-111.916 · Fn + 63.1156	5.286 ⋅ Fn − 8.9734
0.55	0.626 ⋅ Fn − 0.2948	-137.702 · Fn + 77.2979	98.296 · Fn — 60.1289
0.60	$0.020 \cdot 111 - 0.2540$	-137.702 · FII + 77.2979	70.270 · Fil — 00.1209

Fn	a_3	a ₄	a ₅
0	−0.227 · Fn	−0.119 · Fn	0.061 · Fn
0.10	0.446 ⋅ Fn − 0.0673	0.432 · Fn — 0.0551	0.114 · Fn — 0.0053
0.15	0.188 ⋅ Fn − 0.0286	0.112 · Fn − 0.0071	$-0.214 \cdot \text{Fn} + 0.0439$
0.20	$0.12 \cdot Fn - 0.015$	0.242 ⋅ Fn − 0.0331	$-0.62 \cdot \text{Fn} + 0.1251$
0.25	0.238 ⋅ Fn − 0.0445	0.49 ⋅ Fn − 0.0951	-0.028 · Fn - 0.0229
0.30	$-1.302 \cdot \text{Fn} + 0.4175$	$-0.398 \cdot \text{Fn} + 0.1713$	-2.336 · Fn + 0.6695
0.35	2.266 ⋅ Fn − 0.8313	−2.356 · Fn + 0.8566	-7.736 · Fn + 2.5595
0.40	4.982 ⋅ Fn − 1.9177	-1.184 · Fn + 0.3878	-5.388 · Fn + 1.6203
0.45	5.174 ⋅ Fn − 2.0041	6.16 · Fn — 2.917	8.154 · Fn — 4.4736
0.50	5.624 ⋅ Fn − 2.2291	20.144 · Fn — 9.909	43.152 · Fn − 21.9726
0.55	2.044 ⋅ Fn − 0.2601	8.764 · Fn — 3.65	19.698 · Fn — 9.0729

Fn	a ₆	a ₇	a ₈
0	−0.086 · Fn	−0.307 · Fn	−0.553 · Fn
0.10	$0.062 \cdot \text{Fn} - 0.0148$	4.056 ⋅ Fn − 0.4363	$-2.35 \cdot \text{Fn} + 0.1797$
0.15	0.134 · Fn − 0.0256	-1.4 · Fn + 0.3821	2.16 · Fn − 0.4968
0.20	0.196 ⋅ Fn − 0.038	−3.232 · Fn + 0.7485	3.736 ⋅ Fn − 0.812
0.25	$0.364 \cdot \text{Fn} - 0.08$	15.818 · Fn — 4.014	−9.678 · Fn + 2.5415
0.30	1.09 · Fn — 0.2978	−14.182 · Fn + 4.986	10.412 · Fn − 3.4855
0.35	2.000 2.11 0.2000	2.1202 111 1 11900	
0.40	1.756 · Fn — 0.5309	-49.546 + 17.3634	20.556 · Fn — 7.0359
0.45	2.474 · Fn — 0.8181	−21.468 · Fn + 6.1322	3.42 ⋅ Fn − 0.1815
0.50	4.142 · Fn — 1.5687	-72.59 + 29.1371	77.918 · Fn — 33.7056
0.55	8.306 ⋅ Fn − 3.6507	100.776 · Fn − 57.5459	3.494 · Fn + 3.5064
0.60	$-1.37 \cdot Fn + 1.6711$	136.64 · Fn — 77.2711	-86.384 · Fn + 52.9393

RrhH

$$: \; RrhH = \nabla_c g \rho_w \cdot \left[u_0 + u_1 \frac{Lwl}{Bwl} + u_2 \frac{Bwl}{T_c} + u_3 \left(\frac{Bwl}{T_c} \right)^2 + u_4 \frac{XFB}{Lwl} + b_5 \left(\frac{XFB}{Lwl} \right)^2 \right] \cdot 6.0 \cdot \varphi^{*1.7}$$

Fn	u_0	u ₁	u_2	u_3	u_4	u ₅
0	0	0	0	0	0	0
0.20	0	0	0	0	0	0
0.25	$0.0268 \cdot 10^{-3}$	-0.0014 ·		0.0016 ·	-0.0070 ·	−0.0017 ·
0.23	0.0200 * 10	$\cdot10^{-3}$	$\cdot10^{-3}$	$\cdot10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$
0.30	$0.6628 \cdot 10^{-3}$			0.0069 ·	0.0450 10-3	-0.0004 ·
0.30	0.0020 • 10	· 10 ⁻³	· 10 ⁻³		$0.0459 \cdot 10^{-3}$	· 10 ⁻³
0.35	$1.6433 \cdot 10^{-3}$		$-0.1640 \cdot$	0.0199 ·	−0.0540 ·	−0.0268 ·
0.55	1.0433 • 10	$\cdot10^{-3}$	$\cdot10^{-3}$	$\cdot10^{-3}$	$\cdot10^{-3}$	$\cdot 10^{-3}$
0.40	− 0.8659 ·	−0.0354 ·	$0.2226 \cdot 10^{-3}$	0.0188 ·	−0.5800 ·	−0.1133 ·
0.40	$\cdot 10^{-3}$	· 10 ⁻³		$\cdot10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$
0.45	−3.2715 ·	$0.1372 \cdot 10^{-3}$	0 5547 10-3	0.0268 ·	−1.0064 ·	−0.2026 ·
0.43	$\cdot 10^{-3}$	0.13/2 · 10	0.5547 • 10	$\cdot10^{-3}$	$\cdot10^{-3}$	· 10 ⁻³
0.50		−0.1480 ·		0.1862 ·		-0.1648 ⋅
0.50	$\cdot 10^{-3}$	$\cdot10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$	
0.55	$1.5873 \cdot 10^{-3}$	−0.3749 ·	$-0.7105 \cdot$	0.2146 ·	-0.4818 ·	$-0.1174 \cdot$
0.55	1.50/5 · 10	· 10 ⁻³	· 10 ⁻³	· 10 ⁻³	· 10 ⁻³	· 10 ⁻³

Fn	u_0	u_1	u_2
0	0	0	0
0.20	0.000526 Em 0.0001072	0.000020 Em 0.00000TC	0.000114 Fm + 0.0000220
0.25	0.000536 ⋅ Fn − 0.0001072	$-0.000028 \cdot \text{Fn} + 0.0000056$	$-0.000114 \cdot \text{Fn} + 0.0000228$
	$0.0007896 \cdot Fn - 0.0001706$	$-0.001236 \cdot \text{Fn} + 0.0003076$	$-0.001284 \cdot Fn + 0.0003153$
0.30	0.0315404 · Fn - 0.00939584	$-0.003024 \cdot \text{Fn} + 0.000844$	$-0.001882 \cdot \text{Fn} + 0.0004947$
0.35	-0.050184 · Fn + 0.0192077	0.00358 · Fn — 0.0014674	0.007732 · Fn — 0.0028702
0.40	$-0.048112 \cdot \text{Fn} + 0.0183789$	0.003452 · Fn — 0.0014162	0.006642 · Fn — 0.0024342
0.45	0.061478 · Fn — 0.0309366	$-0.005704 \cdot \text{Fn} + 0.002704$	-0.02428 · Fn + 0.0114807
0.50	0.035698 · Fn — 0.0180466	-0.004538 · Fn + 0.002121	-0.001024 · Fn - 0.0001473

Fn	\mathfrak{u}_3	\mathfrak{u}_4	u_5
0	0	0	0
0.20	0.000032 - 0.0000064	$-0.00014 \cdot \text{Fn} + 0.000028$	$-0.000034 \cdot Fn + 0.0000068$
0.25	0.000106 ⋅ Fn − 0.0000249	0.001058 · Fn — 0.0002715	0.000026 · Fn — 0.0000082
0.30	0.00026 ⋅ Fn − 0.0000711	-0.001998 · Fn + 0.0006453	-0.000528 · Fn + 0.000158
0.35	$-0.000022 \cdot \text{Fn} + 0.0000276$	$-0.01052 \cdot \text{Fn} + 0.003628$	$-0.00173 \cdot \text{Fn} + 0.0005787$
0.40	0.00016 · Fn — 0.0000452	$-0.008528 \cdot \text{Fn} + 0.0028312$	0.006318 · Fn — 0.0026405
0.45	0.003188 · Fn — 0.0014078	0.00515 · Fn — 0.0033239	-0.007348 · Fn + 0.0035092
0.50			
0.55	0.000568 · Fn — 0.0000978	0.005342 · Fn — 0.0034199	0.000948 · Fn — 0.0006388

Rrk

$$: \ Rrk = \nabla_k \cdot \rho_w \cdot g \cdot \left[A_0 + A_1 \cdot \frac{T}{Bwl} + A_2 \cdot \frac{(T_C + Zcbk)^3}{\nabla_k} + A_3 \cdot \frac{\nabla_c}{\nabla_k} \right]$$

Fn	A_0	A_1	A_2	A_3
0	0	0	0	0
0.15	0	0	0	0
0.20	-0.00104	0.00172	0.00117	-0.00008
0.25	-0.00550	0.00597	0.00390	-0.00009
0.30	-0.01110	0.01421	0.00069	0.00021
0.35	-0.00713	0.02632	-0.00232	0.00039
0.40	-0.03581	0.08649	0.00999	0.00017
0.45	-0.00470	0.11592	-0.00064	0.00035
0.50	0.00553	0.07371	0.05991	-0.00114
0.55	0.04822	0.00660	0.07048	-0.00035
0.60	0.01021	0.14173	0.06409	-0.00192

Fn	A_0	A_1	A ₂	A_3
0	0	0	0	0
0.15	$-0.0208 \cdot \text{Fn} + 0.00312$	0.0344 · Fn — 0.00516	0.0234Fn — 0.00351	-0.0016Fn + + 0.00024
0.20	$-0.0892 \cdot Fn + 0.0168$	0.085 · Fn — 0.01528	0.0546 · Fn — 0.00975	-0.0002 · Fn - - 0.00004
0.25	$-0.112 \cdot \text{Fn} + 0.0225$	0.1648 · Fn — 0.03523	-0.0642 · Fn + + 0.01995	0.006 · Fn — 0.00159
0.30	$0.0794 \cdot Fn - 0.03492$	0.2422 · Fn — 0.05845	-0.0602 · Fn + + 0.01875	0.0036 · Fn — 0.00087
0.33	$-0.5736 \cdot \text{Fn} + 0.19363$	1.2034 · Fn — 0.39487	$0.2462 \cdot \text{Fn} - 0.08849$	-0.0044 · Fn + + 0.00193
0.40	$0.6222 \cdot Fn - 0.28469$	0.5886 ⋅ Fn − 0.14895	-0.2126 · Fn + + 0.09503	$0.0036 \cdot Fn - 0.00127$
	$0.2046 \cdot Fn - 0.09677$	-0.8442 · Fn + + 0.49581	1.211 · Fn — 0.54559	$-0.0298 \cdot \text{Fn} + 0.01376$
0.50	$0.8538 \cdot Fn - 0.42137$	-1.3422 · Fn + + 0.74481	$0.2114 \cdot \text{Fn} - 0.04579$	$0.0158 \cdot Fn - 0.00904$
0.60	$-0.7602 \cdot \text{Fn} + 0.46633$	2.7026 · Fn — 1.47983	$-0.1278 \cdot Fn + + 0.14077$	$-0.0314 \cdot \text{Fn} + 0.01692$

RrkH

$$: \ RrkH = \nabla_k \cdot \rho_w \cdot g \cdot \left[H_1 \cdot \frac{T_c}{T} + H_2 \cdot \frac{Bwl}{T_c} + H_3 \cdot \frac{T_c}{T} \cdot \frac{Bwl}{T_c} + H_4 \cdot \frac{Lwl}{\nabla_c^{1/3}} \right] \cdot Fn^2 \cdot \varphi^*$$

H_1	H ₂	H_3	H_4
-3.5837	-0.0518	0.5958	0.2055

Rvh

:
$$Rn = \frac{V \cdot 0.7 \cdot Lwl}{v}$$

:
$$C_f = \frac{0.075}{(\log(Rn) - 2)^2}$$

:
$$Sc = \left(1.97 + 0.171 \cdot \frac{Bwl}{Tc}\right) \cdot \left(\frac{0.65}{Cm}\right)^{1/3} \cdot (\nabla_c \cdot Lwl)^{1/2}$$

$$: \ Rfh = \frac{1}{2} \cdot \rho_w \cdot V^2 \cdot Sc \cdot C_f$$

:
$$Rvh = (1 + k) \cdot Rfh$$

.....

RvhH

:
$$Rn = \frac{V \cdot 0.7 \cdot Lwl}{v}$$

:
$$C_f = \frac{0.075}{(\log(Rn) - 2)^2}$$

$$: \ Sc_{\varphi} = S_c \cdot \left[1 + \frac{1}{100} \cdot \left(s_0 + s_1 \cdot \frac{Bwl}{T_c} + s_2 \cdot \left(\frac{Bwl}{Tc} \right)^2 + s_3 \cdot Cms \right) \right]$$

: RfhH =
$$\frac{1}{2} \cdot \rho_w \cdot V^2 \cdot C_f \cdot Sc_{\varphi}$$

:
$$RvhH = (1 + k) \cdot Rfh$$

ф	s_0	s_1	s_2	s_3
0	0	0	0	0
5	-4.112	0.054	-0.027	6.329
10	-4.522	-0.132	-0.077	8.738
15	-3.291	-0.389	-0.118	8.949
20	1.850	-1.200	-0.109	5.364
25	6.510	-2.305	-0.066	3.443
30	12.334	-3.911	0.024	1.767
35	14.648	-5.182	0.102	3.497

ф	s_0	s ₁	s_2	s_3
5	−0.8224 · ф	0.0108 ∙ ф	−0.0054 · ф	1.2658 · ф
	$-0.082 \cdot \phi - 3.702$	$-0.0372 \cdot \phi + 0.24$	$-0.01 \cdot \phi + 0.023$	$0.4818 \cdot \phi + 3.92$
10	$0.2462 \cdot \varphi - 6.984$	$-0.0514 \cdot \phi - 0.382$	$-0.0082 \cdot \phi + 0.005$	$0.0422 \cdot \phi + 8.316$
15	1.0282 · φ − 18.714	$-0.1622 \cdot \phi + 2.044$	$0.0018 \cdot \phi - 0.145$	$-0.717 \cdot \phi + 19.704$
20	0.932 · φ − 16.79	$-0.221 \cdot \phi + 3.22$	$0.0086 \cdot \phi - 0.281$	$-0.3842 \cdot \phi + 13.048$
25	1.1648 · φ − 22.61	$-0.3212 \cdot \phi + 5.725$	$0.018 \cdot \phi - 0.516$	$-0.3352 \cdot \phi + 11.823$
30	$0.4628 \cdot \phi - 1.55$	$-0.2542 \cdot \phi + 3.715$	$0.0156 \cdot \phi - 0.444$	$0.346 \cdot \phi - 8.613$

Rvk

$$: \ Rn = \frac{CHMEK \cdot V}{\nu}$$

:
$$Cf = \frac{0.075}{(\log(Rn) - 2)^2}$$

$$: \ Rfk = \frac{1}{2} \cdot \rho_w \cdot V^2 \cdot S_k \cdot Cf$$

:
$$(1 + k_k) = \left(1 + 2 \cdot \left(\frac{t}{c}\right)_k + 60 \cdot \left(\frac{t}{c}\right)_k^4\right)$$

:
$$Rvk = Rfk \cdot (1 + k_k)$$

Rvr

:
$$Rn = \frac{CHMER \cdot V}{v}$$

:
$$Cf = \frac{0.075}{(\log(Rn) - 2)^2}$$

: Rfr =
$$\frac{1}{2} \cdot \rho_w \cdot V^2 \cdot S_r \cdot Cf$$

$$: \ (1+k_r) = \left(1+2\cdot \left(\frac{t}{c}\right)_r + 60\cdot \left(\frac{t}{c}\right)_r^4\right)$$

: $Rvr = Rfr \cdot (1 + k_r)$

$$C_2 = \frac{\partial F_{drive}}{\partial \phi} \Big|_{V^*, \phi^*}$$

$$: \ C_2 = \frac{\partial F_{drive}}{\partial \varphi} = \frac{\partial}{\partial \varphi} (L \cdot sin(\alpha_{eff}) - D \cdot cos(\alpha_{eff})) = \frac{\partial}{\partial \varphi} (L \cdot sin(\alpha_{eff})) - \frac{\partial}{\partial \varphi} (D \cdot cos(\alpha_{eff}))$$

$$: \frac{\partial}{\partial \Phi}(L \cdot \sin(\alpha_{eff})) = (\sin \alpha_{eff}) \frac{\partial L}{\partial \Phi} + L \cdot \frac{\partial}{\partial \Phi}(\sin(\alpha_{eff}))$$

$$: \ \frac{\partial}{\partial \varphi} (D \cdot \cos(\alpha_{eff})) = (\cos \alpha_{eff}) \frac{\partial D}{\partial \varphi} + D \cdot \frac{\partial}{\partial \varphi} (\cos(\alpha_{eff}))$$

$$: \ \frac{\partial L}{\partial \varphi} = \frac{\partial}{\partial \varphi} \Big(\frac{1}{2} \cdot \rho_a \cdot V_{eff}^2 \cdot AN \cdot C_L \Big) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \frac{\partial}{\partial \varphi} \Big(V_{eff}^2 \cdot C_L \Big)$$

$$: \ \frac{\partial}{\partial \varphi} \big(V_{eff}^2 \cdot C_L \big) = C_L \cdot \frac{\partial}{\partial \varphi} \big(V_{eff}^2 \big) + V_{eff}^2 \cdot \frac{\partial C_L}{\partial \varphi} = 2 \cdot V_{eff} \cdot C_L \cdot \frac{\partial V_{eff}}{\partial \varphi} + V_{eff}^2 \cdot \frac{\partial C_L}{\partial \varphi}$$

$$: \frac{\partial V_{eff}}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\sqrt{V_1^2 + V_2^2} \right) = \frac{1}{2} \left(V_1^2 + V_2^2 \right)^{-1/2} \cdot \frac{\partial}{\partial \varphi} \left(V_1^2 + V_2^2 \right) = \frac{1}{2} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial}{\partial \varphi} \left(V_2^2 \right) = V_2 \cdot \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot \frac{\partial V_2}{\partial \varphi} \left(V_1^2 + V_2^2 \right) \cdot$$

$$: \ \frac{\partial V_2}{\partial \varphi} = \frac{\partial}{\partial \varphi} (V_{tw} \cdot \sin \alpha_{tw} \cdot \cos \varphi^*) = V_{tw} \cdot \sin \alpha_{tw} \cdot \frac{\partial}{\partial \varphi} (\cos \varphi^*) = -V_{tw} \cdot \sin \alpha_{tw} \cdot \sin \varphi^*$$

$$: \ \frac{\partial C_L}{\partial \varphi} = \frac{\partial}{\partial \varphi} \big(k_M \cdot Cl_M \cdot AM + k_S \cdot Cl_S \cdot AS + k_J \cdot Cl_J \cdot AJ \big) = k_M \cdot AM \cdot \frac{\partial Cl_M}{\partial \varphi} + k_S \cdot AS \cdot \frac{\partial Cl_S}{\partial \varphi} + k_J \cdot AJ \cdot \frac{\partial Cl_J}{\partial \varphi} + k_J \cdot AJ \cdot \frac{\partial Cl_J}{\partial$$

:
$$AM = \frac{1}{2} \cdot P \cdot E \cdot MROACH$$

:
$$AJ = \frac{1}{2} \cdot LPG \cdot \sqrt{I^2 + J^2}$$

:
$$AS = 1.15 \cdot SL \cdot J$$

$$: AF = \frac{1}{2} \cdot I \cdot J$$

:
$$AN = AF + AM$$

$$: \ \frac{\partial Cl_M}{\partial \varphi} = \frac{\partial}{\partial \varphi} (m_o \cdot \alpha_{eff} + m_1) = m_o \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial Cl_J}{\partial \varphi} = \frac{\partial}{\partial \varphi} (j_o \cdot \alpha_{eff} + j_1) = j_o \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial Cl_S}{\partial \varphi} = \frac{\partial}{\partial \varphi} (s_o \cdot \alpha_{eff} + s_1) = s_o \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial \alpha_{eff}}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\tan^{-1} \left(\frac{V_2}{V_1} \right) \right) = \frac{1}{1 + \left(\frac{V_2}{V_1} \right)^2} \cdot \frac{\partial}{\partial \varphi} \left(\frac{V_2}{V_1} \right) = \frac{V_1^2}{V_1^2 + V_2^2} \cdot \frac{1}{V_1} \cdot \frac{\partial V_2}{\partial \varphi} = \frac{V_1}{V_{eff}^2} \cdot \frac{\partial V_2}{\partial \varphi}$$

$$: \ \frac{\partial V_2}{\partial \varphi} = V_{tw} \cdot \sin \alpha_{tw} \cdot \frac{\partial \cos \varphi^*}{\partial \varphi} = -V_{tw} \cdot \sin \alpha_{tw} \cdot \sin \varphi^*$$

$$: \ \frac{\partial}{\partial \varphi}(sin(\alpha_{eff})) = cos(\alpha_{eff}) \cdot \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial}{\partial \varphi}(\cos(\alpha_{eff})) = -\sin(\alpha_{eff}) \cdot \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial D}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\frac{1}{2} \cdot \rho_a \cdot V_{eff}^2 \cdot AN \cdot C_D \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \frac{\partial}{\partial \varphi} \left(V_{eff}^2 \cdot C_D \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \left(V_{eff}^2 \cdot \frac{\partial C_D}{\partial \varphi} + 2 \cdot V_{eff} \cdot \frac{\partial V_{eff}}{\partial \varphi} \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \left(V_{eff}^2 \cdot \frac{\partial C_D}{\partial \varphi} + 2 \cdot V_{eff} \cdot \frac{\partial V_{eff}}{\partial \varphi} \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \left(V_{eff}^2 \cdot \frac{\partial C_D}{\partial \varphi} + 2 \cdot V_{eff} \cdot \frac{\partial V_{eff}}{\partial \varphi} \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \left(V_{eff}^2 \cdot \frac{\partial C_D}{\partial \varphi} + 2 \cdot V_{eff} \cdot \frac{\partial V_{eff}}{\partial \varphi} \right) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \left(V_{eff}^2 \cdot \frac{\partial C_D}{\partial \varphi} + 2 \cdot V_{eff} \cdot \frac{\partial V_{eff}}{\partial \varphi} \right)$$

$$: \frac{\partial C_D}{\partial \phi} = \frac{\partial}{\partial \phi} (Cdp + Cd0 + CdI) = \frac{\partial Cdp}{\partial \phi} + \frac{\partial Cd0}{\partial \phi} + \frac{\partial CdI}{\partial \phi}$$

$$: \frac{\partial CdI}{\partial \Phi} = \left(\frac{1}{\pi \cdot AR} + 0.005\right) \frac{\partial}{\partial \Phi} C_L^2 = 2 \cdot C_L \cdot \left(\frac{1}{\pi \cdot AR} + 0.005\right) \frac{\partial C_L}{\partial \Phi}$$

:
$$\frac{\partial Cd0}{\partial \Phi} = \left(1.13 \cdot \frac{(B \cdot AVGFREB + EHM \cdot EMDC)}{AN}\right) = 0$$

$$: \ \frac{\partial \text{Cdp}}{\partial \varphi} = \frac{1}{\text{AN}} \bigg[k_\text{M} A_\text{M} \frac{\partial \text{Cdp}_\text{M}}{\partial \varphi} + k_\text{S} A_\text{S} \frac{\partial \text{Cdp}_\text{S}}{\partial \varphi} + k_\text{J} A_\text{J} \frac{\partial \text{Cdp}_\text{J}}{\partial \varphi} \bigg]$$

$$: \ \frac{\partial Cdp_M}{\partial \varphi} = \frac{\partial}{\partial \varphi} (m_2 \alpha_{eff} + m_3) = m_2 \cdot \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial Cdp_S}{\partial \varphi} = \frac{\partial}{\partial \varphi} (s_2 \alpha_{eff} + s_3) = s_2 \cdot \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$$: \ \frac{\partial Cdp_J}{\partial \varphi} = \frac{\partial}{\partial \varphi} (j_2 \alpha_{eff} + j_3) = j_2 \cdot \frac{\partial \alpha_{eff}}{\partial \varphi}$$

$\alpha_{ m eff}$	m _o	ј _о	So	m_2	j_2	S ₂
0	0.0638888	0.0555555	0	$7.4074 \cdot 10^{-4}$	$7.4074 \cdot 10^{-4}$	0
27						
F0	$-9.782 \cdot 10^{-3}$	-0.043478	0.0652173	$5.6521 \cdot 10^{-3}$	$0.01 \cdot \alpha_{eff}$	0.0108695
50	-0.018333	$-6.666 \cdot 10^{-3}$	-0.016666	0.0216666	$-3.333 \cdot 10^{-3}$	0.0216666
80						
100	$-5 \cdot 10^{-3}$	-0.015	$-7.5 \cdot 10^{-3}$	0.01	$-7.5 \cdot 10^{-3}$	0.015
100	-0.010625	0	-0.010625	$1.25 \cdot 10^{-3}$	0	$-6.75 \cdot 10^{-3}$

$$C_4 = \frac{\partial M_{heel}}{\partial \phi} \Big|_{V^* \cdot \Phi^*}$$

:
$$\frac{\partial Mheel}{\partial \varphi} = (ZCE + T - ZCBK) \cdot \frac{\partial Fheel}{\partial \varphi}$$

$$: \ \frac{\partial Fheel}{\partial \varphi} = \frac{\partial}{\partial \varphi} (L \cdot cos(\alpha_{eff})) + \frac{\partial}{\partial \varphi} (D \cdot sin(\alpha_{eff}))$$

$$: \ \frac{\partial}{\partial \varphi}(L \cdot \cos(\alpha_{eff})) = \cos(\alpha_{eff}) \cdot \frac{\partial L}{\partial \varphi} + L \cdot \frac{\partial}{\partial \varphi}(\cos(\alpha_{eff}))$$

$$: \ \frac{\partial}{\partial \varphi}(D \cdot sin(\alpha_{eff})) = sin(\alpha_{eff}) \cdot \frac{\partial D}{\partial \varphi} + D \cdot \frac{\partial}{\partial \varphi}(sin(\alpha_{eff}))$$

$$C_3 = \frac{\partial M_{right}}{\partial \phi} \bigg|_{V^*, \phi^*}$$

$$: \ \frac{\partial M_{right}}{\partial \varphi} = \frac{\partial M_1}{\partial \varphi} + \frac{\partial M_2}{\partial \varphi}$$

:
$$\frac{\partial M_1}{\partial \varphi} = (KM - KG) \cdot g \cdot \rho_w \cdot (DIVCAN + DVK) \cdot cos(\varphi^*)$$

$$: \frac{\partial M_2}{\partial \phi} = -MMVBLCRW \cdot g \cdot b \cdot \sin(\phi^*)$$

$$C_1 = \frac{\partial R_t}{\partial \varphi} \Big|_{V^*, \Phi^*}$$

$$: \ \frac{\partial R_{tot}}{\partial \varphi} = \frac{\partial R_i}{\partial \varphi} + \frac{\partial R_{rh}}{\partial \varphi} + \frac{\partial R_{rhH}}{\partial \varphi} + \frac{\partial R_{rkH}}{\partial \varphi} + \frac{\partial R_{rkH}}{\partial \varphi} + \frac{\partial R_{vh}}{\partial \varphi} + \frac{\partial R_$$

$$\frac{\partial Ri}{\partial \Phi}$$

.....

$$: \ \frac{\partial Ri}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\text{Fheel}^2 \cdot \frac{1}{\pi \cdot \text{Te}^2 \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \right) = \frac{2}{\pi \cdot \text{Te}^2 \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Fheel}}{\partial \varphi} - \frac{2 \cdot \text{Fheel}^2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \cdot \text{Te}^{-3} \cdot \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \text{Te}^2 \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Fheel}}{\partial \varphi} - \frac{2 \cdot \text{Fheel}^2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \cdot \text{Te}^{-3} \cdot \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \text{Te}^2 \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Fheel}}{\partial \varphi} - \frac{2 \cdot \text{Fheel}^2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \cdot \text{Te}^{-3} \cdot \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \text{Te}^2 \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Fheel}}{\partial \varphi} - \frac{2 \cdot \text{Fheel}^2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \cdot \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Fheel}}{\partial \varphi} - \frac{2 \cdot \text{Fheel}^2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \cdot \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi} = \frac{2}{\pi \cdot \frac{1}{2} \cdot \rho_w \cdot \text{V}^{*2}} \frac{\partial \text{Te}}{\partial \varphi}$$

$$: \frac{\partial Te}{\partial \Phi} = \frac{\partial}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \left(B_0 + B_1 \cdot Fn \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \left(B_0 + B_1 \cdot Fn \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \left(B_0 + B_1 \cdot Fn \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \left(B_0 + B_1 \cdot Fn \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \left(B_0 + B_1 \cdot Fn \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right] \right] = \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right) \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi} \left[T \cdot \left(A_1 \cdot \frac{TCAN}{T} \right) \right] + \frac{\partial Te}{\partial \Phi$$

$$= (B_0 + B_1 \cdot Fn) \cdot T \cdot \frac{\partial}{\partial \phi} \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) + T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T} \right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK} \right) \cdot \frac{\partial}{\partial \phi} \left[(B_0 + B_1 \cdot Fn) \right] = 0$$

$$= \left(\mathbf{B}_{0} + \mathbf{B}_{1} \cdot \mathbf{Fn} \right) \cdot \mathbf{T} \cdot \left(\frac{\mathbf{TCAN}}{\mathbf{T}} \cdot \frac{\partial \mathbf{A}_{1}}{\partial \boldsymbol{\varphi}} + \left(\frac{\mathbf{TCAN}}{\mathbf{T}} \right)^{2} \cdot \frac{\partial \mathbf{A}_{2}}{\partial \boldsymbol{\varphi}} + \frac{\mathbf{BWL}}{\mathbf{TCAN}} \cdot \frac{\partial \mathbf{A}_{3}}{\partial \boldsymbol{\varphi}} + \frac{\mathbf{CHTPK}}{\mathbf{CHRTK}} \cdot \frac{\partial \mathbf{A}_{4}}{\partial \boldsymbol{\varphi}} \right) + \mathbf{T} \cdot \left(\mathbf{A}_{1} \cdot \frac{\mathbf{TCAN}}{\mathbf{T}} + \mathbf{A}_{2} \cdot \left(\frac{\mathbf{TCAN}}{\mathbf{T}} \right)^{2} + \mathbf{A}_{3} \cdot \frac{\mathbf{BWL}}{\mathbf{TCAN}} + \mathbf{A}_{4} \cdot \frac{\mathbf{CHTPK}}{\mathbf{CHRTK}} \right) \cdot \left(\frac{\partial \mathbf{B}_{0}}{\partial \boldsymbol{\varphi}} + \mathbf{Fn} \cdot \frac{\partial \mathbf{B}_{1}}{\partial \boldsymbol{\varphi}} \right)$$

$$: \ Fn = \frac{V^*}{\sqrt{g \cdot Lwl}}$$

ф*	$\frac{\partial A_1}{\partial \phi}$	$\frac{\partial A_2}{\partial \phi}$	$\frac{\partial A_3}{\partial \phi}$	$\frac{\partial A_4}{\partial \phi}$	$\frac{\partial B_0}{\partial \phi}$	$\frac{\partial B_1}{\partial \phi}$
0	0.07437	-0.12208	$-2.95 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	0.01925	-0.05715
10	-0.053	0.0865	$-1.1 \cdot 10^{-4}$	$1.01 \cdot 10^{-3}$	0.01219	-0.02651
30	-0.04701	0.10227	$-3.3 \cdot 10^{-4}$	$-1.97 \cdot 10^{-3}$	$-7.06 \cdot 10^{-3}$	0.02123

$$\frac{\partial Rrh}{\partial \varphi}$$

$$: \ \frac{\partial Rrh}{\partial \varphi} = 0$$

$$\frac{\partial RrhH}{\partial \Phi}$$

$$\begin{split} : \; \frac{\partial RrhH}{\partial \varphi} &= \nabla_c g \rho_w \cdot \left[u_0 + u_1 \frac{Lwl}{Bwl} + u_2 \frac{Bwl}{T_c} + u_3 \left(\frac{Bwl}{T_c} \right)^2 + u_4 \frac{XFB}{Lwl} + u_5 \left(\frac{XFB}{Lwl} \right)^2 \right] \cdot 6.0 \cdot \frac{\partial \varphi^{*1.7}}{\partial \varphi} = \\ &= \nabla_c g \rho_w \cdot \left[u_0 + u_1 \frac{Lwl}{Bwl} + u_2 \frac{Bwl}{T_c} + u_3 \left(\frac{Bwl}{T_c} \right)^2 + u_4 \frac{XFB}{Lwl} + u_5 \left(\frac{XFB}{Lwl} \right)^2 \right] \cdot 1.7 \cdot 6.0 \cdot \varphi^{*0.7} \end{split}$$

Fn	u ₀	u ₁	\mathfrak{u}_2
0	0	0	0
0.20	0.000526 5 0.0001072	0.000020	0.000114 Fr. 0.0000220
0.25	0.000536 · Fn − 0.0001072	$-0.000028 \cdot \text{Fn} + 0.0000056$	$-0.000114 \cdot \text{Fn} + 0.0000228$
	$0.0007896 \cdot Fn - 0.0001706$	$-0.001236 \cdot Fn + 0.0003076$	$-0.001284 \cdot \text{Fn} + 0.0003153$
0.30	0.0315404 · Fn − 0.00939584	$-0.003024 \cdot \text{Fn} + 0.000844$	$-0.001882 \cdot \text{Fn} + 0.0004947$
0.35	-0.050184 · Fn + 0.0192077	0.00358 · Fn — 0.0014674	0.007732 · Fn − 0.0028702
0.40	-0.050164 · FII + 0.0192077	0.00336 · FII — 0.0014674	0.007732 · FII = 0.0028702
	$-0.048112 \cdot \text{Fn} + 0.0183789$	$0.003452 \cdot Fn - 0.0014162$	0.006642 · Fn - 0.0024342
0.45	0.061478 · Fn — 0.0309366	$-0.005704 \cdot \text{Fn} + 0.002704$	-0.02428 · Fn + 0.0114807
0.50	0.035698 ⋅ Fn − 0.0180466	$-0.004538 \cdot \text{Fn} + 0.002121$	$-0.001024 \cdot Fn - 0.0001473$

Fn	u_3	u_4	u ₅
0	0	0	0
0.20	0.000032 - 0.0000064	$-0.00014 \cdot \text{Fn} + 0.000028$	$-0.000034 \cdot \text{Fn} + 0.0000068$
0.25	0.000032 0.0000004	0.00014 111 0.000020	0.000034 111 0.0000000
0.30	0.000106 · Fn — 0.0000249	$0.001058 \cdot Fn - 0.0002715$	$0.000026 \cdot Fn - 0.0000082$
0.30	0.00026 ⋅ Fn − 0.0000711	-0.001998 · Fn + 0.0006453	-0.000528 · Fn + 0.000158
0.35	0.000022 F. + 0.0000276	0.04052 5. + 0.002620	0.00170 F 0.0005707
0.40	$-0.000022 \cdot \text{Fn} + 0.0000276$	$-0.01052 \cdot \text{Fn} + 0.003628$	$-0.00173 \cdot \text{Fn} + 0.0005787$
	0.00016 ⋅ Fn − 0.0000452	$-0.008528 \cdot \text{Fn} + 0.0028312$	0.006318 · Fn − 0.0026405
0.45	0.003188 · Fn — 0.0014078	0.00515 ⋅ Fn − 0.0033239	$-0.007348 \cdot Fn + 0.0035092$
0.50	0.000568 · Fn — 0.0000978	0.005342 ⋅ Fn − 0.0034199	0.000948 · Fn — 0.0006388
0.55			

$$\frac{\partial Rrk}{\partial \varphi}$$

$$: \ \, \frac{\partial Rrk}{\partial \varphi} = \nabla_k \cdot \rho_w \cdot g \cdot \frac{\partial}{\partial \varphi} \bigg[A_0 + A_1 \cdot \frac{T}{Bwl} + A_2 \cdot \frac{(T_C + Zcbk)^3}{\nabla_k} + A_3 \cdot \frac{\nabla_c}{\nabla_k} \bigg] = 0$$

$$\frac{\partial RrkH}{\partial \Phi}$$

$$\begin{split} : \; \frac{\partial RrkH}{\partial \varphi} &= \nabla_k \cdot \rho_w \cdot g \cdot \left[H_1 \cdot \frac{T_c}{T} + H_2 \cdot \frac{Bwl}{T_c} + H_3 \cdot \frac{T_c}{T} \cdot \frac{Bwl}{T_c} + H_4 \cdot \frac{Lwl}{\nabla_c^{1/3}} \right] \cdot Fn^2 \cdot \frac{\partial \varphi}{\partial \varphi} = \\ &= \nabla_k \cdot \rho_w \cdot g \cdot \left[H_1 \cdot \frac{T_c}{T} + H_2 \cdot \frac{Bwl}{T_c} + H_3 \cdot \frac{T_c}{T} \cdot \frac{Bwl}{T_c} + H_4 \cdot \frac{Lwl}{\nabla_c^{1/3}} \right] \cdot Fn^2 \end{split}$$

H_1	H_2	H_3	H_4
-3.5837	-0.0518	0.5958	0.2055

$$\frac{\partial Rvh}{\partial \Phi}$$

$$: \frac{\partial Rvh}{\partial \Phi} = 0$$

$$\frac{\partial Rvk}{\partial \Phi}$$

$$: \frac{\partial Rvk}{\partial \phi} = 0$$

$$: \frac{\partial Rvr}{\partial \varphi}$$

$$: \frac{\partial Rvr}{\partial \varphi} = 0$$

$$\frac{\partial RvhH}{\partial \varphi}$$

$$: \ \frac{\partial RvhH}{\partial \varphi} = (1+k) \cdot \frac{\partial RfhH}{\partial \varphi}$$

$$: \frac{\partial RfhH}{\partial \varphi} = \frac{1}{2} \cdot \rho_{\rm w} \cdot V^2 \cdot C_f \cdot \frac{\partial Sc_{\varphi}}{\partial \varphi}$$

$$: \frac{\partial Sc_{\varphi}}{\partial \varphi} = S_{c} \cdot \left[1 + \frac{1}{100} \cdot \left(\frac{\partial s_{0}}{\partial \varphi} + \frac{Bwl}{T_{c}} \cdot \frac{\partial s_{1}}{\partial \varphi} + \left(\frac{Bwl}{Tc} \right)^{2} \cdot \frac{\partial s_{2}}{\partial \varphi} + Cm \cdot \frac{\partial s_{3}}{\partial \varphi} \right) \right]$$

:
$$Rn = \frac{V \cdot 0.7 \cdot Lwl}{v}$$

:
$$C_f = \frac{0.075}{(\log(Rn) - 2)^2}$$

ф	$\frac{\partial s_0}{\partial \Phi}$	$\frac{\partial s_1}{\partial \phi}$	$\frac{\partial s_2}{\partial \Phi}$	$\frac{\partial s_3}{\partial \phi}$
0	-0.8224	0.0108	-0.0054	1.2658
5	-0.082	-0.0372	-0.01	0.4818
10	0.2462	-0.0514	-0.0082	0.0422
15	1.0282	-0.1622	0.0018	-0.717
20	0.932	-0.221	0.0086	-0.3842
25	1.1648	-0.3212	0.018	-0.3352
30 35	0.4628	-0.2542	0.0156	0.346

$$B_2 = \frac{\partial F_{\text{drive}}}{\partial V} \Big|_{V^*, \Phi^*}$$

$$: \ B_2 = \frac{\partial F_{drive}}{\partial V} = \frac{\partial}{\partial V} (L \cdot sin(\alpha_{eff}) - D \cdot cos(\alpha_{eff})) = \frac{\partial}{\partial V} (L \cdot sin(\alpha_{eff})) - \frac{\partial}{\partial V} (D \cdot cos(\alpha_{eff}))$$

$$: \ \frac{\partial}{\partial V}(L \cdot sin(\alpha_{eff})) = L \cdot \frac{\partial}{\partial V}(sin(\alpha_{eff})) + sin(\alpha_{eff}) \frac{\partial L}{\partial V}$$

$$: \ \frac{\partial L}{\partial V} = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \frac{\partial}{\partial V} \big(V_{eff}^2 \cdot C_L \big)$$

$$: \ \frac{\partial}{\partial V} \big(V_{eff}^2 \cdot C_L \big) = 2 \cdot V_{eff} \cdot C_L \cdot \frac{\partial V_{eff}}{\partial V} + V_{eff}^2 \cdot \frac{\partial C_L}{\partial V}$$

$$: \ \frac{\partial V_{eff}}{\partial V} = \frac{\partial}{\partial V} \bigg(\sqrt{V_1^2 + V_2^2} \bigg) = \frac{1}{2} \cdot (V_1^2 + V_2^2)^{-1/2} \cdot \frac{\partial}{\partial V} (V_1^2 + V_2^2)$$

$$: \ \frac{\partial}{\partial V}(V_1^2 + V_2^2) = \frac{\partial}{\partial V}(V_1^2) + \frac{\partial}{\partial V}(V_2^2)$$

$$: \ \frac{\partial}{\partial V}(V_1^2) = 2 \cdot V_1 \cdot \frac{\partial V_1}{\partial V} = 2 \cdot V_1 \cdot \frac{\partial}{\partial V}(V + V_{tw} \cdot \cos \alpha_{tw}) = 2 \cdot V_1 = 2 \cdot (V^* + V_{tw} \cdot \cos \alpha_{tw})$$

$$: \ \frac{\partial}{\partial V}(V_2^2) = 2 \cdot V_2 \cdot \frac{\partial V_2}{\partial V} = 2 \cdot V_2 \cdot \frac{\partial}{\partial V}(V_{tw} \cdot \sin \alpha_{tw} \cdot \cos \varphi^*) = 0$$

$$: \ \frac{\partial C_L}{\partial V} = \frac{F}{AN} \cdot \left(k_M \cdot AM \cdot \frac{\partial Cl_M}{\partial V} + k_S \cdot AS \cdot \frac{\partial Cl_s}{\partial V} + k_J \cdot AJ \cdot \frac{\partial Cl_j}{\partial V} \right)$$

$$: \ \frac{\partial Cl_M}{\partial V} = \frac{\partial}{\partial V} (m_0 \cdot \alpha_{eff} + m_1) = m_0 \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial Cl_J}{\partial V} = \frac{\partial}{\partial V} (j_o \cdot \alpha_{eff} + j_1) = j_o \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial Cl_S}{\partial V} = \frac{\partial}{\partial V} (s_o \cdot \alpha_{eff} + s_1) = s_o \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial \alpha_{eff}}{\partial V} = \frac{\partial}{\partial V} \left(tan^{-1} \left(\frac{V_2}{V_1} \right) \right) = \frac{1}{1 + \left(\frac{V_2}{V_1} \right)^2} \cdot \frac{\partial}{\partial V} \left(\frac{V_2}{V_1} \right) = \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial}{\partial V} \left(\frac{1}{V_1} \right) = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{1}{V_1^2} \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 + V_2^2} \cdot \frac{\partial V_1}{\partial V} = -1 \cdot \frac{V_1^2 \cdot V_2}{V_1^2 +$$

$$= -1 \cdot \frac{V_2}{V_1^2 + V_2^2}$$

$$: \ \frac{\partial}{\partial V}(\sin(\alpha_{eff})) = \cos(\alpha_{eff}) \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \frac{\partial}{\partial V}(D \cdot \cos(\alpha_{eff})) = D \cdot \frac{\partial}{\partial V}(\cos(\alpha_{eff})) + \cos(\alpha_{eff}) \cdot \frac{\partial D}{\partial V}$$

$$: \ \frac{\partial}{\partial V}(cos(\alpha_{eff})) = -\sin(\alpha_{eff}) \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial D}{\partial V} = \frac{\partial}{\partial V} \Big(\frac{1}{2} \cdot \rho_a \cdot V_{eff}^2 \cdot AN \cdot C_D \Big) = \frac{1}{2} \cdot \rho_a \cdot AN \cdot \frac{\partial}{\partial V} \Big(V_{eff}^2 \cdot C_D \Big)$$

$$: \ \frac{\partial}{\partial V} \big(V_{eff}^2 \cdot C_D \big) = C_D \cdot \frac{\partial}{\partial V} \big(V_{eff}^2 \big) + V_{eff}^2 \cdot \frac{\partial C_D}{\partial V} = 2 \cdot V_{eff} \cdot C_D \cdot \frac{\partial V_{eff}}{\partial V} + V_{eff}^2 \cdot \frac{\partial C_D}{\partial V}$$

$$: \ \frac{\partial C_D}{\partial V} = \frac{\partial}{\partial V} (Cdp + Cd0 + CdI) = \frac{\partial Cdp}{\partial V} + \frac{\partial Cd0}{\partial V} + \frac{\partial CdI}{\partial V}$$

$$: \ \frac{\partial CdI}{\partial V} = \left(\frac{1}{\pi \cdot AR} + 0.005\right) \frac{\partial}{\partial V} \left(C_L^2\right) = 2 \cdot C_L \cdot \left(\frac{1}{\pi \cdot AR} + 0.005\right) \cdot \frac{\partial C_L}{\partial V}$$

$$: \frac{\partial Cd0}{\partial V} = 0$$

$$: \ \frac{\partial Cdp}{\partial V} = \frac{1}{AN} \bigg[k_M A_M \frac{\partial Cdp_M}{\partial V} + k_S A_S \frac{\partial Cdp_S}{\partial V} + k_J A_J \frac{\partial Cdp_J}{\partial V} \bigg]$$

$$: \ \frac{\partial Cdp_M}{\partial V} = \frac{\partial}{\partial V}(m_2\alpha_{eff} + m_3) = m_2 \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial Cdp_S}{\partial V} = \frac{\partial}{\partial V}(s_2\alpha_{eff} + s_3) = s_2 \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

$$: \ \frac{\partial Cdp_J}{\partial V} = \frac{\partial}{\partial V} (j_2 \alpha_{eff} + j_3) = j_2 \cdot \frac{\partial \alpha_{eff}}{\partial V}$$

:
$$V_1 = V^* + V_{tw} \cdot \cos \alpha_{tw}$$

:
$$V_2 \approx V_{tw} \cdot \sin \alpha_{tw} \cdot \cos \varphi^*$$

$\alpha_{ m eff}$	m _o	j _o	So	m ₂	j ₂	S ₂
0	0.0638888	0.0555555	0	$7.4074 \cdot 10^{-4}$	$7.4074 \cdot 10^{-4}$	0
27			-			-
	$-9.782 \cdot 10^{-3}$	-0.043478	0.0652173	$5.6521 \cdot 10^{-3}$	$0.01 \cdot \alpha_{eff}$	0.0108695
50	-0.018333	$-6.666 \cdot 10^{-3}$	-0.016666	0.0216666	$-3.333 \cdot 10^{-3}$	0.0216666
80		0.000 10				
	$-5\cdot10^{-3}$	-0.015	$-7.5 \cdot 10^{-3}$	0.01	$-7.5 \cdot 10^{-3}$	0.015
100	-0.010625	0	-0.010625	$1.25 \cdot 10^{-3}$	0	$-6.75 \cdot 10^{-3}$

$$B_4 = \frac{\partial M_{\text{heel}}}{\partial V} \Big|_{V^*, \Phi^*}$$

:
$$B_4 = \frac{\partial M_{heel}}{\partial V} = (ZCE + T - ZCBK) \frac{\partial Fheel}{\partial V}$$

$$: \ \frac{\partial Fheel}{\partial V} = \frac{\partial}{\partial V} (L \cdot cos(\alpha_{eff}) + D \cdot sin(\alpha_{eff})) = \frac{\partial}{\partial V} (L \cdot cos(\alpha_{eff})) + \frac{\partial}{\partial V} (D \cdot sin(\alpha_{eff}))$$

$$: \ \frac{\partial}{\partial V}(L \cdot cos(\alpha_{eff})) = L \cdot \frac{\partial}{\partial V}(cos(\alpha_{eff})) + cos(\alpha_{eff}) \cdot \frac{\partial L}{\partial V}$$

$$: \ \frac{\partial}{\partial V}(D \cdot sin(\alpha_{eff})) = D \cdot \frac{\partial}{\partial V}(sin(\alpha_{eff})) + sin(\alpha_{eff}) \cdot \frac{\partial D}{\partial V}$$

$$B_3 = \frac{\partial M_{right}}{\partial V} \bigg|_{V^*.\phi^*}$$

:
$$\frac{\partial M_{right}}{\partial V} = 0$$

$$B_1 = \frac{\partial R_t}{\partial V} \Big|_{V^*, \Phi^*}$$

$$\frac{\partial R_{tot}}{\partial V}$$

$$: \ \frac{\partial R_{tot}}{\partial V} = \frac{\partial R_{i}}{\partial V} + \frac{\partial R_{rh}}{\partial V} + \frac{\partial R_{rhH}}{\partial V} + \frac{\partial R_{rkH}}{\partial V} + \frac{\partial R_{rkH}}{\partial V} + \frac{\partial R_{vh}}{\partial V} + \frac{\partial R_{vhH}}{\partial V} + \frac{\partial R_{vhH}}{\partial V} + \frac{\partial R_{vh}}{\partial V} + \frac{$$

$$\frac{\partial R_i}{\partial V}$$

$$: \frac{\partial Ri}{\partial V} = \frac{\partial}{\partial V} \left(\frac{Fheel^2}{\pi \cdot Te^2 \cdot \frac{1}{2} \cdot \rho_w \cdot V^{*2}} \right) = \frac{Fheel^2}{\pi \cdot \frac{1}{2} \cdot \rho_w} \cdot \frac{\partial}{\partial V} \left(\frac{1}{Te^2 \cdot V^{*2}} \right) + \frac{1}{\pi \cdot Te^2 \cdot \frac{1}{2} \cdot \rho_w \cdot V^{*2}} \cdot \frac{\partial}{\partial V} (Fheel^2)$$

$$: \frac{\partial}{\partial V}(Fheel^2) = 2 \cdot Fheel \cdot \frac{\partial Fheel}{\partial V}$$

$$: \ \frac{\partial}{\partial V} \bigg(\frac{1}{Te^2 \cdot {V^*}^2} \bigg) = \frac{1}{Te^2} \cdot \frac{\partial}{\partial V} \bigg(\frac{1}{V^2} \bigg) + \frac{1}{{V^*}^2} \cdot \frac{\partial}{\partial V} \bigg(\frac{1}{Te^2} \bigg)$$

$$: \frac{\partial}{\partial V} \left(\frac{1}{V^2} \right) = -2 \cdot \frac{1}{V^3}$$

$$: \frac{\partial}{\partial V} \left(\frac{1}{Te^2} \right) = -2 \cdot \frac{1}{Te^3} \cdot \frac{\partial Te}{\partial V}$$

$$: \ \frac{\partial Te}{\partial V} = T \cdot \left(A_1 \cdot \frac{TCAN}{T} + A_2 \cdot \left(\frac{TCAN}{T}\right)^2 + A_3 \cdot \frac{BWL}{TCAN} + A_4 \cdot \frac{CHTPK}{CHRTK}\right) \cdot \frac{\partial}{\partial V} (B_0 + B_1 \cdot Fn)$$

:
$$\frac{\partial}{\partial V}(B_0 + B_1 \cdot Fn) = B_1 \cdot \frac{\partial Fn}{\partial V}$$

$$: \ \frac{\partial Fn}{\partial V} = \frac{\partial}{\partial V} \left(\frac{V}{\sqrt{g \cdot Lwl}} \right) = \frac{1}{\sqrt{g \cdot Lwl}}$$

ф*	A_1	A_2	A_3	A_4
0	$0.07437 \cdot \phi^* +$	$-0.12208 \cdot \phi^* -$	$-2.95 \cdot 10^{-3} \cdot \phi^* +$	$1.2 \cdot 10^{-3} \cdot \phi^* - 0.0296$
10	+ 3.7455	- 3.6246	+ 0.0589	$1.2 \cdot 10 \cdot \phi = 0.0290$
10	$-0.053 \cdot \phi^* + 5.0192$	$0.0865 \cdot \phi^* - 5.7104$	$-1.1 \cdot 10^{-4} \cdot \phi^* +$	$1.01 \cdot 10^{-3} \cdot \phi^* -$
20	$-0.033 \cdot \Psi + 3.0192$	$0.0003 \cdot \psi = 5.7104$	+ 0.0305	-0.0277
20	$-0.04701 \cdot \phi^* +$	$0.10227 \cdot \phi^* -$	$-3.3 \cdot 10^{-4} \cdot \phi^* +$	$-1.97 \cdot 10^{-3} \cdot \phi^* +$
30	+ 4.8994	- 6.0258	+ 0.0349	+ 0.0319

ф*	B_1
0	$-0.05715 \cdot \phi^* - 0.7256$
10	$-0.03/13 \cdot \psi - 0.7230$
10	$-0.02651 \cdot \phi^* - 1.032$
20	$-0.02031 \cdot \varphi - 1.032$
20	$0.02123 \cdot \phi^* - 1.9868$
30	υ.υ2123 · ψ — 1.9000

$$\begin{split} : & \frac{\partial Rrh}{\partial V} = \\ & = \nabla_{c}g\rho_{w} \cdot \frac{\partial}{\partial V} \Bigg[a_{0} + \frac{\nabla^{\frac{1}{3}}}{Lwl} \Bigg(a_{1} \frac{LCB}{Lwl} + a_{2}Cp + a_{3} \frac{\nabla^{\frac{2}{3}}}{A_{w}} + a_{4} \frac{Bwl}{Lwl} + a_{5} \frac{\nabla^{\frac{2}{3}}}{S_{c}} + a_{6} \frac{LCB}{LCF} + a_{7} \left(\frac{LCB}{LCF} \right)^{2} + a_{8}Cp^{2} \Bigg) \Bigg] = \\ & = \nabla_{c}g\rho_{w} \cdot \frac{\partial}{\partial V} + \frac{\nabla^{\frac{1}{3}}}{Lwl} \cdot \frac{\partial}{\partial V} + \frac{\nabla^{\frac{1}{3}}}{Lwl} \cdot \frac{\partial}{\partial V} + \frac{\nabla^{\frac{1}{3}}}{Lwl} \cdot \frac{\partial}{\partial V} + \frac{\nabla^{\frac{1}{3}}}{S_{c}} \cdot \frac{\partial}{\partial V} + \frac{LCB}{LCF} \cdot \frac{\partial}{\partial V} + \left(\frac{LCB}{LCF} \right)^{2} \cdot \frac{\partial}{\partial V} + Cp^{2} \cdot \frac{\partial}{\partial W} \Bigg) \Bigg] \end{aligned}$$

Fn	$\frac{\partial a_0}{\partial V}$	$\frac{\partial a_1}{\partial V}$	$\frac{\partial a_2}{\partial V}$
0	$-0.014 \cdot (g \cdot Lwl)^{-1/2}$	$0.403 \cdot (g \cdot Lwl)^{-1/2}$	$0.47 \cdot (g \cdot Lwl)^{-1/2}$
0.10	$0.036 \cdot (\mathbf{g} \cdot \mathbf{Lwl})^{-1/2}$	$-4.422 \cdot (g \cdot Lwl)^{-1/2}$	2.646 · (g · Lwl) ^{-1/2}
0.15	$0.02 \cdot (g \cdot Lwl)^{-1/2}$	$1.474 \cdot (g \cdot Lwl)^{-1/2}$	$-2.312 \cdot (g \cdot Lwl)^{-1/2}$
0.20	$0.026 \cdot (g \cdot Lwl)^{-1/2}$	$3.068 \cdot (g \cdot Lwl)^{-1/2}$	$-3.8 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$0.058 \cdot (g \cdot Lwl)^{-1/2}$	$-16.936 \cdot (g \cdot Lwl)^{-1/2}$	$12.308 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$-0.048 \cdot (g \cdot Lwl)^{-1/2}$	13.988 ⋅ (g ⋅ Lwl) ^{-1/2}	$-11.408 \cdot (g \cdot Lwl)^{-1/2}$
0.35	$-0.192 \cdot (g \cdot Lwl)^{-1/2}$	$48.212 \cdot (g \cdot Lwl)^{-1/2}$	$-28.678 \cdot (g \cdot Lwl)^{-1/2}$
0.40	$-0.214 \cdot (g \cdot Lwl)^{-1/2}$	$21.844 \cdot (g \cdot Lwl)^{-1/2}$	$-9.42 \cdot (g \cdot Lwl)^{-1/2}$
	$-0.06\cdot(g\cdot Lwl)^{-1/2}$	$75.118 \cdot (g \cdot Lwl)^{-1/2}$	$-86.884 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$1.392 \cdot (g \cdot Lwl)^{-1/2}$	$-111.916 \cdot (g \cdot Lwl)^{-1/2}$	$5.286 \cdot (g \cdot Lwl)^{-1/2}$
0.55	$0.626 \cdot (g \cdot Lwl)^{-1/2}$	$-137.702 \cdot (g \cdot Lwl)^{-1/2}$	98.296 ⋅ (g ⋅ Lwl) ^{-1/2}

Fn	$\frac{\partial a_3}{\partial V}$	$\frac{\partial a_4}{\partial V}$	$\frac{\partial a_5}{\partial V}$
0	$-0.227 \cdot (g \cdot Lwl)^{-1/2}$	$-0.119 \cdot (\mathbf{g} \cdot \mathbf{Lwl})^{-1/2}$	$0.061 \cdot (g \cdot Lwl)^{-1/2}$
0.10	$0.446 \cdot (g \cdot Lwl)^{-1/2}$	$0.432 \cdot (g \cdot Lwl)^{-1/2}$	$0.114 \cdot (g \cdot Lwl)^{-1/2}$
0.15	$0.188 \cdot (g \cdot Lwl)^{-1/2}$	$0.112 \cdot (g \cdot Lwl)^{-1/2}$	$-0.214 \cdot (g \cdot Lwl)^{-1/2}$
0.20	$0.12 \cdot (g \cdot Lwl)^{-1/2}$	$0.242 \cdot (g \cdot Lwl)^{-1/2}$	$-0.62 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$0.238 \cdot (g \cdot Lwl)^{-1/2}$	$0.491 \cdot (g \cdot Lwl)^{-1/2}$	$-0.028 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$-1.302 \cdot (g \cdot Lwl)^{-1/2}$	$-0.398 \cdot (g \cdot Lwl)^{-1/2}$	$-2.336 \cdot (g \cdot Lwl)^{-1/2}$
0.35	$2.266 \cdot (g \cdot Lwl)^{-1/2}$	$-2.356 \cdot (g \cdot Lwl)^{-1/2}$	$-7.736 \cdot (g \cdot Lwl)^{-1/2}$
0.40	$4.982 \cdot (g \cdot Lwl)^{-1/2}$	$-1.184 \cdot (g \cdot Lwl)^{-1/2}$	$-5.388 \cdot (g \cdot Lwl)^{-1/2}$
0.45	$5.174 \cdot (g \cdot Lwl)^{-1/2}$	$6.16 \cdot (g \cdot Lwl)^{-1/2}$	$8.154 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$5.624 \cdot (g \cdot Lwl)^{-1/2}$	20.144 · (g · Lwl) ^{-1/2}	43.152 ⋅ (g ⋅ Lwl) ^{-1/2}
0.55	$2.044 \cdot (g \cdot Lwl)^{-1/2}$	$8.764 \cdot (g \cdot Lwl)^{-1/2}$	19.698 ⋅ (g ⋅ Lwl) ^{-1/2}

Fn	$\frac{\partial a_6}{\partial V}$	∂a ₇ ∂V	$\frac{\partial a_8}{\partial V}$
0	$-0.086 \cdot (g \cdot Lwl)^{-1/2}$	$-0.307 \cdot (g \cdot Lwl)^{-1/2}$	$-0.553 \cdot (g \cdot Lwl)^{-1/2}$
0.10	$0.062 \cdot (g \cdot Lwl)^{-1/2}$	$4.056 \cdot (g \cdot Lwl)^{-1/2}$	$-2.35 \cdot (g \cdot Lwl)^{-1/2}$
0.15	$0.134 \cdot (g \cdot Lwl)^{-1/2}$	$-1.4\cdot(\mathrm{g}\cdot\mathrm{Lwl})^{-1/2}$	2.16 · (g · Lwl) ^{-1/2}
0.20	$0.196 \cdot (g \cdot Lwl)^{-1/2}$	$-3.232 \cdot (g \cdot Lwl)^{-1/2}$	$3.736 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$0.364 \cdot (g \cdot Lwl)^{-1/2}$	15.818 ⋅ (g ⋅ Lwl) ^{-1/2}	$-9.678 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$1.09 \cdot (g \cdot Lwl)^{-1/2}$	$-14.182 \cdot (g \cdot Lwl)^{-1/2}$	$10.412 \cdot (g \cdot Lwl)^{-1/2}$
0.33	$1.756 \cdot (g \cdot Lwl)^{-1/2}$	$-49.546 \cdot (g \cdot Lwl)^{-1/2}$	$20.556 \cdot (g \cdot Lwl)^{-1/2}$
0.45	$2.474 \cdot (g \cdot Lwl)^{-1/2}$	$-21.468 \cdot (g \cdot Lwl)^{-1/2}$	$3.42 \cdot (g \cdot Lwl)^{-1/2}$
	$4.142\cdot(g\cdot Lwl)^{-1/2}$	$-72.59 \cdot (g \cdot Lwl)^{-1/2}$	$77.918 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$8.306 \cdot (g \cdot Lwl)^{-1/2}$	$100.776 \cdot (g \cdot Lwl)^{-1/2}$	$3.494 \cdot (g \cdot Lwl)^{-1/2}$
0.55	$a_6 = -1.37 \cdot Fn + 1.6711$		

0.60	$136.64 \cdot (g \cdot Lwl)^{-1/2}$	$-86.384 \cdot (g \cdot Lwl)^{-1/2}$
	1 200.01 (8 2)	00.001 (8 2.1.)

.....

$$\begin{split} : \; & \frac{\partial RrhH}{\partial V} = \nabla_c g \rho_w \cdot 6.0 \cdot \varphi^{*1.7} \cdot \frac{\partial}{\partial V} \bigg[u_0 + u_1 \frac{Lwl}{Bwl} + u_2 \frac{Bwl}{T_c} + u_3 \left(\frac{Bwl}{T_c} \right)^2 + u_4 \frac{XFB}{Lwl} + b_5 \left(\frac{XFB}{Lwl} \right)^2 \bigg] = \\ & = \nabla_c g \rho_w \cdot 6.0 \cdot \varphi^{*1.7} \cdot \bigg[\frac{\partial u_0}{\partial V} + \frac{Lwl}{Bwl} \frac{\partial u_1}{\partial V} + \frac{Bwl}{T_c} \frac{\partial u_2}{\partial V} + \left(\frac{Bwl}{T_c} \right)^2 \frac{\partial u_3}{\partial V} + \frac{XFB}{Lwl} \frac{\partial u_4}{\partial V} + \left(\frac{XFB}{Lwl} \right)^2 \frac{\partial u_5}{\partial V} \bigg] \end{split}$$

Fn	$\frac{\partial u_0}{\partial V}$	$\frac{\partial u_1}{\partial V}$	$\frac{\partial u_2}{\partial V}$
0	0	0	0
0.20	$0.000536 \cdot (g \cdot Lwl)^{-1/2}$	$-0.000028 \cdot (g \cdot Lwl)^{-1/2}$	$-0.000114 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$0.0007896 \cdot (g \cdot Lwl)^{-1/2}$	$-0.001236 \cdot (g \cdot Lwl)^{-1/2}$	$-0.001284 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$0.0315404 \cdot (g \cdot Lwl)^{-1/2}$	$-0.003024 \cdot (g \cdot Lwl)^{-1/2}$	$-0.001882 \cdot (g \cdot Lwl)^{-1/2}$
0.35	$-0.050184 \cdot (g \cdot Lwl)^{-1/2}$	$0.00358 \cdot (g \cdot Lwl)^{-1/2}$	$0.007732 \cdot (g \cdot Lwl)^{-1/2}$
0.40	$-0.048112 \cdot (g \cdot Lwl)^{-1/2}$	$0.003452 \cdot (g \cdot Lwl)^{-1/2}$	$0.006642 \cdot (g \cdot Lwl)^{-1/2}$
0.45	$0.061478 \cdot (g \cdot Lwl)^{-1/2}$	$-0.005704 \cdot (g \cdot Lwl)^{-1/2}$	$-0.02428 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$0.035698 \cdot (g \cdot Lwl)^{-1/2}$	$-0.004538 \cdot (g \cdot Lwl)^{-1/2}$	$-0.001024 \cdot (g \cdot Lwl)^{-1/2}$
0.55	0.033070 (g · LWI)	0.00 1 330 (g LWI)	0.00102+ (g · LWI)

Fn	$\frac{\partial u_3}{\partial V}$	$\frac{\partial u_4}{\partial V}$	$\frac{\partial u_5}{\partial V}$
0	$u_3 = 0$	$u_4 = 0$	$u_5 = 0$
0.20	$0.000032 \cdot (g \cdot Lwl)^{-1/2}$	$-0.00014 \cdot (g \cdot Lwl)^{-1/2}$	$-0.000034 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$0.000106 \cdot (g \cdot Lwl)^{-1/2}$	$0.001058 \cdot (g \cdot Lwl)^{-1/2}$	$0.000026 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$0.00026 \cdot (g \cdot Lwl)^{-1/2}$	$-0.001998 \cdot (g \cdot Lwl)^{-1/2}$	$-0.000528 \cdot (g \cdot Lwl)^{-1/2}$
0.35	$-0.000022 \cdot (g \cdot Lwl)^{-1/2}$	$-0.01052 \cdot (g \cdot Lwl)^{-1/2}$	$-0.00173 \cdot (g \cdot Lwl)^{-1/2}$
0.45	$0.00016 \cdot (g \cdot Lwl)^{-1/2}$	$-0.008528 \cdot (g \cdot Lwl)^{-1/2}$	$0.006318 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$0.003188 \cdot (g \cdot Lwl)^{-1/2}$	$0.00515 \cdot (g \cdot Lwl)^{-1/2}$	$-0.007348 \cdot (g \cdot Lwl)^{-1/2}$
0.55	$0.000568 \cdot (g \cdot Lwl)^{-1/2}$	$0.005342 \cdot (g \cdot Lwl)^{-1/2}$	$0.000948 \cdot (g \cdot Lwl)^{-1/2}$

$$\frac{\partial Rrk}{\partial V}$$

$$\begin{split} : \frac{\partial Rrk}{\partial V} &= \nabla_k \cdot \rho_w \cdot g \cdot \frac{\partial}{\partial V} \bigg[A_0 + A_1 \cdot \frac{T}{Bwl} + A_2 \cdot \frac{(T_C + Zcbk)^3}{\nabla_k} + A_3 \cdot \frac{\nabla_c}{\nabla_k} \bigg] = \\ &= \nabla_k \cdot \rho_w \cdot g \cdot \bigg[\frac{\partial A_0}{\partial V} + \frac{T}{Bwl} \cdot \frac{\partial A_1}{\partial V} + \frac{(T_C + Zcbk)^3}{\nabla_k} \frac{\partial A_2}{\partial V} + \frac{\nabla_c}{\nabla_k} \frac{\partial A_3}{\partial V} \bigg] \end{split}$$

Fn	$\frac{\partial A_0}{\partial V}$	$\frac{\partial A_1}{\partial V}$	$\frac{\partial A_2}{\partial V}$	$\frac{\partial A_3}{\partial V}$
0	0	0	0	0
0.15	$-0.0208 \cdot (g \cdot Lwl)^{-1/2}$	$0.0344 \cdot (g \cdot Lwl)^{-1/2}$	$0.0234 \cdot (g \cdot Lwl)^{-1/2}$	$-0.0016 \cdot \cdot (g \cdot Lwl)^{-1/2}$
0.20	$-0.0892 \cdot (g \cdot Lwl)^{-1/2}$	$0.085 \cdot (g \cdot Lwl)^{-1/2}$	$0.0546 \cdot (g \cdot Lwl)^{-1/2}$	$-0.0002 \cdot (g \cdot Lwl)^{-1/2}$
0.25	$-0.112 \cdot (\mathbf{g} \cdot \mathbf{Lwl})^{-1/2}$	$0.1648 \cdot (g \cdot Lwl)^{-1/2}$	$-0.0642 \cdot (g \cdot Lwl)^{-1/2}$	$0.006 \cdot (g \cdot Lwl)^{-1/2}$
0.30	$0.0794 \cdot (g \cdot Lwl)^{-1/2}$	$0.2422 \cdot (g \cdot Lwl)^{-1/2}$	$ \begin{array}{c} -0.0602 \cdot \\ \cdot (g \cdot Lwl)^{-1/2} \end{array} $	$0.0036 \cdot (g \cdot Lwl)^{-1/2}$
0.35	$-0.5736 \cdot (g \cdot Lwl)^{-1/2}$	$1.2034 \cdot (g \cdot Lwl)^{-1/2}$	$0.2462 \cdot (g \cdot Lwl)^{-1/2}$	$-0.0044 \cdot \cdot (g \cdot Lwl)^{-1/2}$
0.40	$0.6222 \cdot (g \cdot Lwl)^{-1/2}$	$0.5886 \cdot (g \cdot Lwl)^{-1/2}$	$-0.2126 \cdot (g \cdot Lwl)^{-1/2}$	$0.0036 \cdot (\mathbf{g} \cdot \mathbf{Lwl})^{-1/2}$

0.50	$0.2046 \cdot (g \cdot Lwl)^{-1/2}$	$-0.8442 \cdot \cdot (g \cdot Lwl)^{-1/2}$	$1.211 \cdot (g \cdot Lwl)^{-1/2}$	$-0.0298 \cdot (g \cdot Lwl)^{-1/2}$
0.50	$0.8538 \cdot (g \cdot Lwl)^{-1/2}$	−1.3422 ·	0.2114 (- 11)=1/2	
0.55	0.0338 · (g · LWI)	$\cdot (g \cdot Lwl)^{-1/2}$	0.2114 · (g · LWI)	0.0130 · (g · LWI)
0.55	0.7(02 (~ 11)-1/2	2.702((~ [])-1/2	−0.1278 ·	−0.0314 ·
0.60	$-0.7602 \cdot (g \cdot Lwl)^{-1/2}$	$2.7026 \cdot (g \cdot Lwl)^{-1/2}$	$\cdot (g \cdot Lwl)^{-1/2}$	$\cdot (g \cdot Lwl)^{-1/2}$

$$: \ \frac{\partial RrkH}{\partial V} = \nabla_k \cdot \rho_w \cdot g \cdot \left[H_1 \cdot \frac{T_c}{T} + H_2 \cdot \frac{Bwl}{T_c} + H_3 \cdot \frac{T_c}{T} \cdot \frac{Bwl}{T_c} + H_4 \cdot \frac{Lwl}{\nabla_c^{1/3}} \right] \cdot \varphi^* \cdot \frac{\partial}{\partial V} (Fn^2)$$

$$: \ \frac{\partial}{\partial V}(Fn^2) = 2 \cdot Fn \cdot \frac{\partial Fn}{\partial V} = 2 \cdot Fn \cdot \frac{1}{\sqrt{g \cdot Lwl}} = 2 \cdot \frac{V}{g \cdot Lwl}$$

H_1	H ₂	H_3	H_4
-3.5837	-0.0518	0.5958	0.2055

:
$$\frac{\partial Rvh}{\partial V} = (1 + k) \cdot \frac{\partial Rfh}{\partial V}$$

$$: \ \frac{\partial Rfh}{\partial V} = \frac{\partial}{\partial V} \left(\frac{1}{2} \cdot \rho_w \cdot V^2 \cdot Sc \cdot C_f \right) = \frac{1}{2} \cdot \rho_w \cdot Sc \cdot \frac{\partial}{\partial V} \left(V^2 \cdot C_f \right)$$

$$: \ \frac{\partial}{\partial V}(V^2 \cdot C_f) = C_f \cdot \frac{\partial}{\partial V}(V^2) + V^2 \cdot \frac{\partial C_f}{\partial V} = 2 \cdot V \cdot C_f + V^2 \cdot \frac{\partial C_f}{\partial V}$$

$$: \ \frac{\partial C_f}{\partial V} = \frac{\partial}{\partial V} \left(\frac{0.075}{(log(Rn)-2)^2} \right) = 0.075 \cdot \frac{\partial}{\partial V} \left(\frac{1}{(log(Rn)-2)^2} \right) = \frac{-2 \cdot 0.075}{(log(Rn)-2)^3} \cdot \frac{\partial}{\partial V} (log(Rn))$$

$$: \frac{\partial}{\partial V}(\log(Rn)) = \frac{\log e}{Rn} \cdot \frac{\partial Rn}{\partial V}$$

$$: \ \frac{\partial Rn}{\partial V} = \frac{\partial}{\partial V} \left(\frac{V \cdot 0.7 \cdot Lwl}{v_{w}} \right) = \frac{0.7 \cdot Lwl}{v_{w}}$$

:
$$Sc = \left(1.97 + 0.171 \cdot \frac{Bwl}{Tc}\right) \cdot \left(\frac{0.65}{Cm}\right)^{1/3} \cdot (\nabla_c \cdot Lwl)^{1/2}$$

.....

$$: \ \frac{\partial RvhH}{\partial V} = (1+k) \cdot \frac{\partial RfhH}{\partial V}$$

$$: \ \frac{\partial RfhH}{\partial V} = \frac{1}{2} \cdot \rho_w \cdot \left(Sc_\varphi - S_c\right) \cdot \frac{\partial}{\partial V} (V^2 \cdot C_f)$$

$$: \ \frac{\partial}{\partial V}(V^2 \cdot C_f) = C_f \cdot \frac{\partial}{\partial V}(V^2) + V^2 \cdot \frac{\partial C_f}{\partial V} = 2 \cdot V \cdot C_f + V^2 \cdot \frac{\partial C_f}{\partial V}$$

$$: \ \frac{\partial C_f}{\partial V} = \frac{\partial}{\partial V} \left(\frac{0.075}{(\log(Rn) - 2)^2} \right) = 0.075 \cdot \frac{\partial}{\partial V} \left(\frac{1}{(\log(Rn) - 2)^2} \right) = \frac{-2 \cdot 0.075}{(\log(Rn) - 2)^3} \cdot \frac{\partial}{\partial V} (\log(Rn))$$

:
$$\frac{\partial}{\partial V}(\log(Rn)) = \frac{\log e}{Rn} \cdot \frac{\partial Rn}{\partial V}$$

$$: \ \frac{\partial Rn}{\partial V} = \frac{\partial}{\partial V} \Big(\frac{V \cdot 0.7 \cdot Lwl}{\nu_w} \Big) = \frac{0.7 \cdot Lwl}{\nu_w}$$

$$: \; Sc_{\varphi} = S_c \cdot \left[1 + \frac{1}{100} \cdot \left(s_0 + s_1 \cdot \frac{Bwl}{T_c} + s_2 \cdot \left(\frac{Bwl}{Tc}\right)^2 + s_3 \cdot Cm\right)\right]$$

ф	s_0	s_1	s_2	s_3
0	$-0.8224 \cdot \phi^*$	0.0108 ∙ ф*	$-0.0054\cdot \varphi^*$	1.2658 ∙ ф*
5	$-0.082 \cdot \varphi^* - 3.702$	$-0.0372 \cdot \phi^* + 0.24$	$-0.01 \cdot \phi^* + 0.023$	$0.4818 \cdot \phi^* + 3.92$
10	$0.2462 \cdot \varphi^* - 6.984$	$-0.0514 \cdot \phi^* - 0.382$	$-0.0082 \cdot \varphi^* + 0.005$	$0.0422 \cdot \varphi^* + 8.316$
15	$1.0282 \cdot \varphi^* - 18.714$	$-0.1622 \cdot \phi^* + 2.044$	$0.0018 \cdot \varphi^* - 0.145$	$-0.717 \cdot \phi^* + 19.704$
20	0.932 · φ* − 16.79	$-0.221 \cdot \phi^* + 3.22$	$0.0086 \cdot \varphi^* - 0.281$	$-0.3842 \cdot \phi^* + 13.048$
25	$1.1648 \cdot \phi^* - 22.61$	$-0.3212 \cdot \phi^* + 5.725$	$0.018 \cdot \varphi^* - 0.516$	$-0.3352 \cdot \varphi^* + 11.823$
30	$0.4628 \cdot \varphi^* - 1.55$	$-0.2542 \cdot \phi^* + 3.715$	$0.0156 \cdot \varphi^* - 0.444$	$0.346 \cdot \varphi^* - 8.613$

$$\frac{\partial Rvk}{\partial V}$$

$$: \ \frac{\partial Rvk}{\partial V} = (1+k_k) \cdot \frac{\partial Rfk}{\partial V}$$

$$: \ \frac{\partial Rfk}{\partial V} = \frac{1}{2} \cdot \rho_w \cdot S_k \cdot \frac{\partial}{\partial V} (V^2 \cdot C_f)$$

$$: \ \frac{\partial}{\partial V}(V^2 \cdot C_f) = C_f \cdot \frac{\partial}{\partial V}(V^2) + V^2 \cdot \frac{\partial C_f}{\partial V} = 2 \cdot V \cdot C_f + V^2 \cdot \frac{\partial C_f}{\partial V}$$

$$: \frac{\partial C_f}{\partial V} = \frac{\partial}{\partial V} \left(\frac{0.075}{(\log(Rn) - 2)^2} \right) = 0.075 \cdot \frac{\partial}{\partial V} \left(\frac{1}{(\log(Rn) - 2)^2} \right) = \frac{-2 \cdot 0.075}{(\log(Rn) - 2)^3} \cdot \frac{\partial}{\partial V} (\log(Rn))$$

$$: \frac{\partial}{\partial V}(\log(Rn)) = \frac{\log e}{Rn} \cdot \frac{\partial Rn}{\partial V}$$

$$: \ \frac{\partial Rn}{\partial V} = \frac{\partial}{\partial V} \Big(\frac{CHMEK \cdot V}{\nu_w} \Big) = \frac{CHMEK}{\nu_w}$$

$$: (1+k_k) = \left(1+2\cdot \left(\frac{t}{c}\right)_k + 60\cdot \left(\frac{t}{c}\right)_k^4\right)$$

$$\frac{\partial Rvr}{\partial V}$$

:
$$\frac{\partial Rvr}{\partial V} = (1 + k_r) \cdot \frac{\partial Rfr}{\partial V}$$

$$: \ \frac{\partial Rfr}{\partial V} = \frac{1}{2} \cdot \rho_w \cdot S_r \cdot \frac{\partial}{\partial V} (V^2 \cdot C_f)$$

$$: \ \frac{\partial}{\partial V}(V^2 \cdot C_f) = C_f \cdot \frac{\partial}{\partial V}(V^2) + V^2 \cdot \frac{\partial C_f}{\partial V} = 2 \cdot V \cdot C_f + V^2 \cdot \frac{\partial C_f}{\partial V}$$

$$: \frac{\partial C_f}{\partial V} = \frac{\partial}{\partial V} \left(\frac{0.075}{(\log(Rn) - 2)^2} \right) = 0.075 \cdot \frac{\partial}{\partial V} \left(\frac{1}{(\log(Rn) - 2)^2} \right) = \frac{-2 \cdot 0.075}{(\log(Rn) - 2)^3} \cdot \frac{\partial}{\partial V} (\log(Rn))$$

$$: \frac{\partial}{\partial V}(\log(Rn)) = \frac{\log e}{Rn} \cdot \frac{\partial Rn}{\partial V}$$

$$: \ \frac{\partial Rn}{\partial V} = \frac{\partial}{\partial V} \Big(\frac{CHMER \cdot V}{\nu_w} \Big) = \frac{CHMER}{\nu_w}$$

$$: \ (1+k_k) = \left(1+2\cdot \left(\frac{t}{c}\right)_r + 60\cdot \left(\frac{t}{c}\right)_r^4\right)$$

```
%%%%%%% PHYSICAL PARAMETERS %%%%%%%%%%%%%
rho w 1025.9
ni_w 1.18838E-6
rho a 1.125
    9.80665
%%%%%%% WIND %%%%%%%%%%%
% the speeds and incidence angles may be provided as a list
% of values or bya a starting value, a step and an end value
V tw 7.7167
               % [m/s] true wind speeds
alfa tw 30 5 180 % [deg] true wind angle
%%%%%% HULL %%%%%%%
DIVCAN 1.549
                %[m^3] Displaced volume of canoe body
LWL 6.096
              % [m] Design waterline?s length
BWL 1.737
               % [m] Design waterlins?s beam
    2.591
             % [m] Design maximum beam
AVGFREB 0.853
                 % [m] Average freeboard
XFB 3.483
              % [m] Longitudinal center of buoyancy LCB from fpp
XFF 3.483
              % [m] Longitudinal center of flotation LCF from fpp
CPL 0.550
              % [-] Longitudinal prismatic coefficient
HULLFF 0.0
              % [-] Hull form factor
AW
      6.503
              %[m^2] Waterplane area
CMS 0.710
              % [-] Midship section coefficient
    1.372
             % [m] Total draft
TCAN 0.305
               % [m] Draft of canoe body
ALT 5.528
              %[m^2] Total lateral area of yacht
     0.305
              % [m] Center of gravity above moulded base or keel
KG
     2.511
              % [m] Transverse metacentre above moulded base or keel
ΚM
%%%%%% KEEL %%%%%%%%
DVK 0.046
              %[m^3] Displaced volume of keel
APK
    1.007
              %[m^2] Keel?s planform area
ASK 0.850
              % [-] Keel?s aspect ratio
     2.014
             %[m^2] Keel?s wetted surface
ZCBK 0.653
               % [m] Keel?s vertical center of buoyancy (below free surface)
CHMEK 0.925
                % [m] Mean chord length
CHRTK 1.197
               % [m] Root chord length
CHTPK 0.653
               % [m] Tip chord length
KEELFF 1
             % [-] Keel's form factor
DELTTK 0
              % [-] Mean thickness ratio of keel section
TAK 0.545
              % [-] Taper ratio of keel (CHRTK/CHTPK)
%%%%%% RUDDER %%%%%%%
DVR
      0
            %[m^3] Rudder?s displaced volume
APR 0.480
              %[m^2] Rudder?s planform area
     0.960
             %[m^2] Rudder?s wetted surface
CHMER 0.490
                % [m] Mean chord length
```

```
CHRTR 0.544 % [m] Root chord length
CHTPR 0.435 % [m] Tip chord length
```

DELTTR 0 % [m] Mean thikness ratio of rudder section

RUDDFF 1 % [m] Rudder?s form factor

%%%%%%% SAILS %%%%%%%%%

%sailset - sails used in THIS calculation

% 3 - main & jib; 5 - main & spi; 7 - main, jib, & spinnaker;

SAILSET 5

P 8.900 % [m] Mainsail heigth

E 4.084 % [m] Mainsail base

MROACH 1.3 % [-] Correction for mainsail roach [-]

MFLB $\,1\,$ % [0/1] Full main battens in main

BAD 0.610 % [m] Boom heigth above deck

I 8.626 % [m] Foretriangle heigth

J 1.890 % [m] Foretriangle base

LPG 4.115 % [m] Perpendicular of longest jib

SL 8.077 % [m] Spinnaker length

EHM 9.754 % [m] Mast?s heigth above deck

EMDC 0.254 % [m] Mast?s avarage diameter

F 1 % [-] flattening factor

%%%%%% CREW %%%%%%%%%%%

MMVBLCRW 228 % [kg] Movable Crew Mass

b 0 % [m] crew arm