A Multistage Differential BJT Amplifier Simulation

Figure 1 Schematic capture of the op-amp circuit

In this example, we will use parts Q2N3904 and Q2N3906 (from Fairchild Semiconductor) for the npn and pnp BJTs.

Each student should supply a pdf report that has results and an OrCAD project files in .zip format.

• construct the circuit shown in Figure-1.

In OrCAD, the common-mode input voltage V_{CM} of the op-amp circuit is set to 0 V (i.e., to the average of the dc power-supply voltages V_{CC} and V_{EE}) to maximize the available input signal swing. A bias-point simulation is performed to determine the dc operating point.

• Construct a table that shows the collector current for each transistor.

To compute the large-signal differential transfer characteristic of the op-amp circuit, we perform a **dc-analysis simulation** in PSpice with the differential voltage input V_d swept over the range $-V_{EE}$ to $+V_{CC}$, and we plot the corresponding output voltage V_{OUT} .

• Plot the resulting dc transfer characteristic.

Repeat dc analysis is with V_d swept over the range -5mV to +5mV at increments of $10 \mu V$.

• Plot the resulting differential dc transfer characteristic. What is the gain of opamp?

To compute the **frequency response** of the op-amp circuit and to measure its differential gain A_d and its 3-dB frequency f_H in OrCAD, we set the differential input voltage V_d to be a 1-V ac signal (with 0-V dc level), perform an **ac-analysis simulation**.

• Plot the output voltage magnitude V_{OUT} versus frequency.

Notes:

GAIN = 0.5 This voltage controlled voltage source that can be found in OrCAD under **ANALOG lib** with name **E**.