

Logistic Regression

Chelsea Parlett-Pelleriti

Linear Regression in Disguise

PREDICT CONTINUE CATEGORY OUS CATEGORY

Predictions

Linear

Continuous Variable (can be -∞ to ∞)

Logistic

Binary Categorical Variable (can be 0 or 1)

- Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- Predict Probabilities
- . Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- 1. Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- 1. Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

The Final Formula

$$\log(p/1-p) = mx + b$$

All the Steps

Probability P	Odds (p/1-p)	Log Odds log((p/1-p))
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

Doing LR in Python (Inference)

	coef	std err	z	P> z	[0.025	0.975]
const	-2.9777	2.781	-1.071	0.284	-8.427	2.472
age	0.1445	0.073	1.977	0.048	0.001	0.288
income	-0.0066	0.017	-0.397	0.691	-0.039	0.026
months_subbed	0.0015	0.016	0.089	0.929	-0.030	0.033