Relaciones

Luis Eduardo Amaya Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Noviembre 2019

Contents

- Introducción
- Conceptos básicos
- Formas de representar una relación
 - Matrices
 - Grafos
- Propiedades de las Relaciones
 - Relaciones de Equivalencia
 - Relaciones de Orden

Introducción

Considerar

La teoría de relaciones nos brinda los conceptos, propiedades y operaciones que permiten modelar lo que veríamos en la vida cotidiana como una vinculación o relación entre objetos, personas, números, algoritmos o cualquier otro tipo de estructura. En las ciencias computacionales las relaciones (particularmente las binarias) tienen una importancia crucial par comprender los fundamentos de la teoría de grafos.

Relación de estudiantes con cursos

Estudiante	Curso
Guillermo	Computación
María	Matemáticas
Guillermo	Arte
Beatriz	Historia
Beatriz	Computación
David	Matemáticas

Definición

Dados dos conjuntos A y B, una relación \mathcal{R} de A en B es el triplete (G, A, B) con $G \subseteq A \times B$.

- A es el conjunto emisor o de partida.
- B es el conjunto receptor o de llegada.
- El conjunto G se llama el gráfico de la relación.
- Para $a \in A$ y $b \in B$, se dice que a **se relaciona con** b sii $(a,b) \in G$, en cuyo caso se escribe $a \mathbb{R} b$.

Formas de representar una relación Propiedades de las Relaciones

Considerar

¿Qué parentesco existe entre Relaciones y Funciones?

Ejemplo

 $A = \{Petra, Pitra, Patra\}, B = \{Thorn, Ironman, CapitanAmerica\}$

Conceptos básicos

Nota

- Al conjunto $D = \{a \in A | aRb\}, D = D_R \text{ se le llama dominio de } R.$
- Al conjunto Rang = {b ∈ B|aRb}, Rang = R[A] se le llama rango de R.
- Se dice que una relación R esta definida sobre A si el emisor y el receptor son el mismo conjunto A, es decir (G, A, A).

Ejemplo

- Considere los conjuntos $A = \{3, 5, 6\}$ y $B = \{4, 7\}$ y la relación \mathcal{R} de A en B, definida por $a\mathcal{R}b \iff a = b 1$. Determinar el gráfico, dominio y rango de \mathcal{R} .
- ② Considere los conjuntos $A = \{1, 3, 5, 7\}$ y $B = \{2, 4, 6, 8\}$ y la relación \mathcal{R} de A en B, definidad por $a\mathcal{R}b \iff mcd(a, b) = 1$. Determinar el gráfico, dominio y rango de \mathcal{R} .
- **③** Sea $A = \{1, 2, 3, \dots, 100\}$ y \mathcal{R} una relacion definida sobre A, tal que: $a\mathcal{R}b \iff a \ge b$. Determinar el gráfico de \mathcal{R} y su cardinalidad.
- Sobre el conjunto $A = \{1, 2, 3, 4\}$, considere la relación \mathcal{R} dada por $a\mathcal{R}b$ sii $(a = b + 1 \lor 2a = b)$. Calcule el gráfico de \mathcal{R} .
- Establecer el gráfico de la relación \mathcal{R} para el conjunto $A = \{1, 3, 5, \cdots, 99\}$, donde $a\mathcal{R}b \iff b^3 = a$. ¿Están 63 \mathcal{R} 97 y 63 \mathcal{R} 3?

Conceptos básicos

Definición

Si $\mathcal{R} = (G, A, B)$ y $\mathcal{S} = (H, A, B)$ son dos relaciones de A en B, se define

- Unión de \mathcal{R} y \mathcal{S} como $\mathcal{R} \cup \mathcal{S} = (G \cup H, A, B)$.
- Intersección de \mathcal{R} y \mathcal{S} como $\mathcal{R} \cap \mathcal{S} = (G \cap H, A, B)$.
- Diferencia de \mathcal{R} y \mathcal{S} como $\mathcal{R} \mathcal{S} = (G H, A, B)$.
- Inversa de \mathcal{R} como $\mathcal{R}^{-1} = (G^{-1}, B, A)$, donde

$$G^{-1} = \{(b, a) | (a, b) \in G\}$$

Conceptos básicos

Definición

 $Si \mathcal{R} = (G, A, B)$ y S = (H, A, B) son dos relaciones de A en B, se define

• Complemento de $\mathcal R$ como $\overline{\mathcal R}=\left(\overline{G},A,B\right)$, donde

$$\overline{G} = \{(a,b) \mid (a,b) \notin G\}$$

• Si $\mathcal{R} = (G, A, B)$ y $\mathcal{S} = (H, B, C)$ se define la relación **Compuesta** de \mathcal{R} y \mathcal{S} como $\mathcal{S} \circ \mathcal{R} = (H \circ G, A, C)$, donde

$$HoG = \{(a, c) \mid \exists b \in B \text{ tal que } a\mathcal{R}b \land b\mathcal{S}c\}$$

Ejemplo

- **③** Sobre $A = \{1,2,3\}$ considere las relaciones \mathcal{R} y \mathcal{S} . El gráfico de \mathcal{R} es $G_{\mathcal{R}} = \{(1,2),(1,3),(2,3),(3,2),(3,3)\}$; el gráfico de \mathcal{S} es $G_{\mathcal{S}} = \{(1,2),(2,2),(3,3)\}$. Determine el gráfico de las relaciones $\mathcal{R} \cup \mathcal{S}$, $\mathcal{R} \cap \mathcal{S}$, \mathcal{R}^{-1} y $\overline{\mathcal{R}}$.
- **3** Sobre $A = \{1, 2, 3, 4\}$ se definen las relaciones \mathcal{R} y \mathcal{S} , donde el gráfico de \mathcal{R} es $G_{\mathcal{R}} = \{(1, 2), (2, 3), (2, 4), (3, 2), (4, 1), (4, 4)\}$ y el de \mathcal{S} es $G_{\mathcal{S}} = \{(2, 4), (3, 2), (4, 3)\}$. Determine el gráfico de \mathcal{S} o \mathcal{R} .
- Libro de Murillo, sección 3.1, ejercicio 5 y/o 6.

Definición

Si $A = \{a_1, a_2, \cdots, a_m\}$ y $B = \{b_1, b_2, \cdots, b_n\}$, ambos conjuntos finitos, sobre los cuales se define una relación binaria \mathcal{R} de A en B, se puede representar por una matriz de tamaño m por n, denotada como $M_{\mathcal{R}}$, donde

$$m_{ij} = \left\{ egin{array}{lll} 1 & \emph{si} & \emph{a}_i \mathcal{R} \emph{b}_j \ 0 & \emph{si} & \emph{a}_i \ \mathcal{R} \emph{b}_j \end{array}
ight.$$

Esta matriz se le denomina matriz de la relación R

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{a, b, c, d, e, f\}$, con gráfico, $G_{\mathcal{R}} = \{(b, c), (b, d), (c, a), (c, c), (d, c), (d, d), (d, e), (f, f)\}$, la matriz asociada es

Ejemplo

Sean $A = \{-1, 2, 3\}$ y $B = \{x, z, w, t\}$ y la relación \mathcal{R} de A en B, de manera que la matriz de esta relación esta definida por

$$M_{\mathcal{R}_{i,j}} = 1 \iff (i = j \lor j - i = 2)$$

- **1** Determine M_R .
- 2 Determine $G_{\mathcal{R}}$.

Ejemplo

Usando Mathematica construya la matriz de relación de \mathcal{R} donde mcd(a,b)=1, esto para $a\in A=\{1,3,5,7\}$ y $b\in B=\{n2,4,6,8\}$

$$M_{\mathcal{R}} = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right)$$

La rutina que brinda dicha matriz está en el archivo Ejemplo Matrices.nb

Operaciones

Definición

Sean \mathcal{R} y \mathcal{S} relaciones sobre un conjunto A con matrices $M_{\mathcal{R}}$ y $M_{\mathcal{S}}$ respectivamente, entonces

- $\bullet \ M_{\mathcal{R} \cup \mathcal{S}} = M_{\mathcal{R}} \vee M_{\mathcal{S}}$
- $M_{\mathcal{R}\cap\mathcal{S}} = M_{\mathcal{R}} \wedge M_{\mathcal{S}}$
- $M_{\overline{R}} = \overline{M_R}$, esta se llama matriz complemento, en la cual los valores de la matriz original cambian de uno a cero y viceversa
- $\bullet \ M_{\mathcal{R}^{-1}} = (M_{\mathcal{R}})^t$
- M_{RoS} = M_S ⊙ M_R, donde La multiplicación booleana, A ⊙ B_{ij} = 1 si existe un 1 en la misma posición en la fila i de A y en la columna j de B y A ⊙ B_{ij} = 0 si no hay coincidencia.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, A \odot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Ejemplo

1 Sean dos relaciones \mathcal{R}_1 y \mathcal{R}_2 definidas sobre $A = \{a, b, c, d\}$ dadas por sus matrices de representación

$$M_{\mathcal{R}_1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, M_{\mathcal{R}_2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

 $\textit{Determine $\mathcal{R}_1\cup\mathcal{R}_2$, $\mathcal{R}_1\cap\mathcal{R}_2$, $\overline{\mathcal{R}_1}$, \mathcal{R}_2^{-1} y $\mathcal{R}_1o\mathcal{R}_2$.}$

Ejemplo

Sean $A = \{a, b\}$ y $B = \{c, d, e\}$ y se definen dos relaciones \mathcal{R} y \mathcal{S} de A en B, donde $G_{\mathcal{R}} = \{(a, c), (a, e), (b, d), (b, e)\}$ y $G_{\mathcal{S}} = \{(a, c), (a, d), (b, e)\}$

- **①** Determine M_R y M_S .
- 2 Determine $M_R \cup M_S$.
- **3** Determine $M_R \cap M_S$.
- **1** Determine $M_{\mathcal{R}}^{-1}$.
- **1** Determine $\overline{M_S}$.

Definición

Las diferentes relaciones de A en B se pueden representar por medio de su criterio, su gráfico o su matriz asociada. En el caso particular de relaciones definidas de A en A, se pueden representar por medio de un grafo dirigido o digrafo.

- El grafo estará formado por los elementos de A, que se llamarán vértices o nodos.
- Si aRb, es decir, (a, b) ∈ G_R, entonces se dibuja una flecha dirigida de a hacia b, en ese orden!
- Si aRa, se forma un lazo.
- Mathematica cuenta con el comando **AdjacencyGraph** el cual elabora el digrafo de \mathbb{R} al recibir la matriz de relación.

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{1, 2, 3, 4\}$, donde, $G_{\mathcal{R}} = \{(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (4, 3)\}$, el digrafo asociado es:

Grafo con 4 nodos, 4 flechas y 2 lazos.

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{a, b, c, d, e, f\}$, con gráfico, $G_{\mathcal{R}} = \{(b, c), (b, d), (c, a), (c, c), (d, c), (d, d), (d, e), (f, f)\}$, el digrafo asociado es:

Grafo con 6 nodos, 5 flechas y 3 lazos.

Ejemplo

Dado el conjunto $A = \{2, 4, 6, \dots, 100\}$ y \mathcal{R} la relación definida sobre A, donde $a\mathcal{R}b \iff a = b^k$, $k \in \mathbb{N}$, elabore en Mathematica una rutina que muestre el gráfico, la matriz y el digrafo de \mathcal{R} .

Es importante notar lo siguiente para poder construir lo solicitado

$$a = b^k \Rightarrow k = \frac{ln(a)}{ln(b)}$$

$$k = \frac{ln(a)}{ln(b)} = \log_b a$$
, donde $k \in \mathbb{N}$

Ejemplo

Considere las gráficas de dos relaciones \mathcal{R}_1 y \mathcal{R}_2 . Encuentre: $\mathcal{R}_1 \cup \mathcal{R}_2$, $\mathcal{R}_1 \cap \mathcal{R}_2$ y $\overline{\mathcal{R}_1}$.

Introducción

Considerar

Se estudiarán algunas propiedades de las relaciones con el objetivo de llegarlas a clasificar en relaciones de equivalencia o relaciones de orden.

- Las relaciones del primer tipo permitirán asociar los elementos afines de los conjuntos y así particionarlos en subconjuntos, de manera que éstos sean disjuntos.
- Las relaciones del segundo tipo permitirán ordenar, en algún sentido, los elementos del conjunto donde se define la relación.

Definición

Si \mathcal{R} es una relación definida sobre A, se dice que la relación \mathcal{R} es:

- Reflexiva sii ∀ a ∈ A aRa, es decir a se relaciona consigo mismo para todo elemento a contenido en A.
- Simétrica sii ∀ a, b ∈ A [aRb ⇒ bRa], es decir si a tiene "algo" con b, entonces b debe tener "algo" con a.
- Antisimétrica sii ∀ a, b ∈ A [(aRb ∧ bRa) ⇒ a = b]. En ocasiones para analizar está propiedad es útil aplicar la contrapositiva del enunciado, el cúal sería, si a ≠ b entonces a Rb ni b Ra.
- Transitiva sii \forall $a, b, c \in A [(aRb \land bRc) \Rightarrow aRc].$
- Total sii \forall a, b \in A [a \mathbb{R} b \vee b \mathbb{R} a].

Ejemplo

Sea {1,2,3,4} y sea R una relación definida sobre A, cuyo gráfico G es

$$G = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3), (4,4), (4,1)\}$$

Determine si \mathcal{R} es reflexiva, simétrica, transitiva, antisimétrica o total. Aprovechando el enunciado anterior estudiar este otro gráfico para $G = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}.$

② Determine que propiedades cumple $\mathcal R$ sobre $\mathbb Z$, donde se define la relación $\mathcal R$ por,

$$a\mathcal{R}b \Longleftrightarrow (\exists k \in \mathbb{Z} \text{ tal que } b - a = 3k)$$

③ Sobre \mathbb{Z} se define la relación \mathcal{R} por,

$$aRb \iff a-b \le 10$$

Definición

Si A y B son matrices booleanas de tamaño $m \times n$, se dice que A es menor o igual que B sii $a_{ij} \le b_{ij}$ y se simboliza como $A \le B$.

Por ejemplo $A \leq B$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Definición

Si \mathcal{R} es una relación definida sobre un conjunto finito A, donde A contiene n elementos, entonces se cumple:

- \mathcal{R} es Reflexiva sii $I_n \leq M_{\mathcal{R}}$.
- \mathcal{R} es Simétrica sii $M_{\mathcal{R}} = M_{\mathcal{R}}^t$.
- \mathcal{R} es Antisimétrica sii $M_{\mathcal{R}} \wedge M_{\mathcal{R}}^t \leq I_n$.
- \mathcal{R} es Transitiva sii $M_{\mathcal{R} \circ \mathcal{R}} \leq M_{\mathcal{R}}$.
- \mathcal{R} es Total sii $M_{\mathcal{R}} \vee M_{\mathcal{R}}^t = 1_{n \times n}$.

Ejemplo

Este ejercicio lo realizamos anteriormente, ahora lo resolveremos haciendo uso de sus matrices

Sea {1,2,3,4} y sea R una relación definida sobre A, cuyo gráfico G es

$$G = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3), (4,4), (4,1)\}$$

Determine si $\mathcal R$ es reflexiva, simétrica, transitiva, antisimétrica o total.

Sea {1,2,3,4} y sea S una relación definida sobre A, cuyo gráfico H es

$$H = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$$

Determine si S es reflexiva, simétrica, transitiva, antisimétrica o total

Relaciones de Equivalencia

Definición

 $Si \mathcal{R}$ es una relación sobre el conjunto A, se dice que la relación \mathcal{R} es de equivalencia si y solo si es reflexiva, simétrica y transitiva.

Definición

Si $\mathcal{R} = (G, A, A)$ es una relación de equivalencia sobre el conjunto A, entonces la clase de equivalencia de a, que se denota por \dot{a} , es el conjunto

$$\dot{a} = \{b \in A | aRb\}$$

- En otras palabras, la clase de equivalencia de un elemento está formada por todos los elementos que se relacionan con él.
- El conjunto formado por todas las clases de equivalencia se llama el conjunto cociente y se denota por A/\mathcal{R} , es decir:

$$A/\mathcal{R} = \{\dot{a}|\ a \in A\}$$

 En ocasiones, la clase de equivalencia de a se representa por medio de los símbolos a o [a].

Ejemplo

- Sea $A = \{a, c, d, f\}$ y sea \mathcal{R} una relación definida sobre A, donde su gráfico es $G_{\mathcal{R}} = \{(a, a), (a, d), (c, c), (d, a), (d, d), (f, f)\}.$
 - Demuestre que R es una relación de equivalencia.
 - 2 Determine las clases de equivalencia de la relación.
 - **3** Determine A/\mathcal{R} .
- Sobre Z se define la relación

$$aRb \iff (\exists k \in \mathbb{Z} \text{ tal que } b - a = 3k)$$

previamente se demostro que es una relación de equivalencia, determine las clases de equivalencia y A/\mathcal{R} .

Definición

Si A es un conjunto y K es una familia de subconjuntos no vacíos de A, se dice que K es una partición de A si se cumple que todo elemento de A pertenece a uno y solo uno de los conjuntos de la familia K

Nota: Esta definición establece que una colección de subconjuntos no vacíos de A es una partición de A si y solo si la unión de todos estos es A y la intersección de cualesquiera dos de estos conjuntos es vacía. Para el conjunto $A = \{1, 2, 3, 4\}, K_1 = \{\{1, 3, 4\}, \{2\}\}$ es partición de A, pero $K_2 = \{\{1, 2, 3\}, \{3, 4\}\}$ no lo es.

Ejemplo

- En el ejemplo resuelto de clases de equivalencia, se tiene que el conjunto cociente en la relación modulo 3 es Z/R = {0, 1, 2}, esto significa que este conjunto es una partición de Z, esto porque 0, 1, 2 no son vacíos, son mutuamente excluyentes y su unión da como resultado Z.
- ② Si $A = \{a, b, c, d, e\}$, determine el gráfico de la relación de equivalencia asociada a la partición $P = \{\{a, c\}, \{e\}, \{b, d\}\}\}$ de A.

Relaciones de Orden

Definición

Si $\mathcal R$ es una relación sobre el conjunto A, se dice que la relación $\mathcal R$ es de:

- Pre-Orden si y solo si es reflexiva y transitiva.
- Orden (parcial) si y solo si es reflexiva, antisimétrica y transitiva.
- Orden Total si y solo si es de orden y es total.

Ejemplo

Se debe tener cuidado al "ordenar", no es lo mismo ordenar personas por estatura, que por edad o por peso.

Sea $E = \{a, b, c, d, e, f, g\}$ y \mathcal{R} una relación definida sobre E, cuyo gráfico es

$$G_{\mathcal{R}} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (b, d), (b, d), (b, d), (c, d),$$

$$(b, f), (c, c), (c, d), (c, e), (d, d), (d, e), (e, e), (f, f), (g, g), (g, f)$$

Demuestre que R es una relación de orden, pero no de orden total.

Ejemplo

Este gráfico se puede representar mediante el organigrama

Además, x está en un nivel inferior que y para cuando xRy; por ejemplo, en este organigrama se tiene que aRd y se verifica para cada uno de los elementos de su gráfico.

Relaciones de Orden

Definición

Si \mathcal{R} es una relación de orden sobre E, se dice que E está \mathcal{R} – ordenado y se denota (E,\mathcal{R}) .

Definición

Sea (E, \mathcal{R}) un conjunto ordenado. Sea $A \subseteq E$, con $A \neq \emptyset$ y sea $x \in A$. Se dice que x es:

- Un elemento minimal de A sii $\forall y \in A \ [yRx \Longrightarrow y = x]$. No tiene predecesores.
- Un primer elemento de A sii xRy, ∀y ∈ A. Precede a todos, además todo primer elemento será minimal, pero no a la inversa.
- Un elemento maximal de A sii $\forall y \in A \ [x\mathcal{R}y \Longrightarrow x = y]$. No tiene sucesores
- Un último elemento de A sii $yRx, \forall y \in A$. Sucede a todos los demás, todo último elemento será maximal, pero no

• Sea $E = \{a, b, c, d, e, f, g\}$ y \mathcal{R} una relación definida sobre E, cuyo gráfico es

$$G_{\mathcal{R}} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e), (d, d), (d, e), (e, e), (f, f), (g, g), (g, f)\}$$

se puede observar:

- a y g son minimales de E, pero E no tiene primer elemento.
- *e* y *f* son elementos maximales de *E*, pero no hay último elemento.
- ② Si ahora se considera $A = \{a, b, c, d\}$ subconjunto de E, se tiene que
 - el elemento a es primer elemento de A.
 - el elemento d sería un último elemento de A.

3. Sea $E = \{a, b, c, d, e, f, g\}$ y \mathcal{R} una relación definida sobre E, cuyo organigrama es

- Determinar el gráfico de R.
- ② Demostrar que \mathcal{R} es una relación de orden, pero no de orden total.
- Obterminar los elementos minimales, primer y último elemento

4. Defina la relación \mathcal{R} sobre \mathbb{Z}^* , por

$$a\mathcal{R}b \iff (\exists k \in \mathbb{Z} \text{ tal que } a = b^k)$$

Analice cuáles propiedades cumple la relación $\mathcal R$ y determine si $\mathcal R$ es una relación de equivalencia, de orden o de orden total.

Acá estamos, con un futuro lleno de maravillas tecnológicas y nosotros con el temor de aprender matemáticas a como es debido...