

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

> Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

Martine PLANCHE

INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE SIEGE 26 bls, rue de Saint Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécople : 33 (0)1 53 04 45 23 www.inpl.fr

Code de la propriété intellectuelle - Livre VI

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

REQUÊTE EN DÉLIVRANCE 1/2

			Cet imprimé est à remol	ir lisiblement à l'encre noire DB 540 W/260899			
REMISE DES PIÈCES	Réservé à l'INPI			DU DEMANDEUR OU DU MANDATAIRE			
DATE 10 SEPT 2002			À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE				
75 INPI PARIS			CABINET HIRSCH-POCHART				
• • • • • • • •			34, rue de Bassano				
N° D'ENREGISTREMENT 0211196 NATIONAL ATTRIBUÉ PAR L'INPI		75008 PARIS					
DATE DE DÉPÔT ATTRIBUÉE	1 0 SEP. 2	วกกจ	FRANCE				
PAR L'INPI	V U JEP. 4	.002					
Vos références po (facultatif) 19604 A			u	•			
	dépôt par télécopie	☐ N° attribué par l'i	NPI à la télécopie				
NATURE DE L		Cochez l'une des 4 cases suivantes					
Demande de br	revet	x					
Demande de ce		F	=				
Demande divisi		\Box					
. Defiliation division		 alo		Data I / / I			
	Demande de brevet initiale	No		Date			
	de de certificat d'utilité iniliale	N°		Date/			
•	d'une demande de	□ _{N°}		Date / /			
n	Demande de brevet initiale IVENTION (200 caractères ou	<u> </u>					
MOLECULAI							
DÉCLARATIO	N DE PRIORITÉ	Pays ou organisat	ion	N°			
OU REQUÊTE	DU BÉNÉFICE DE	Pays ou organisat	ion	is .			
LA DATE DE I	DÉPÔT D'UNE	Date	<u>/</u>	N°			
DEMANDE A	NTÉRIEURE FRANÇAISE	Pays ou organisat	ion				
		Date/	<u>/</u>	N°			
		☐ S'il y a d'	autres priorités, coche	ez la case et utilisez l'imprimé «Suite»			
DEMANDEU	R	☐ S'il y a d'	autres demandeurs, c	ochez la case et utilisez l'imprimé «Suite»			
Nom ou dénor	Nom ou dénomination sociale			-			
Prénoms							
Forme juridique							
N° SIREN		1					
Code APE-NAF		11 1					
Adresse	Rue	4/8, Cours Miche	elet .				
·	Code postal et ville	92800 PU	TEAUX				
Pays FRANCE							
Nationalité		Français					
N° de téléphone (facultatif)							
N° de télécopie (facultatif)							
Adresse électronique (facultatif)				•			

BREVET NVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE 2/2

REMISE DES PIÈCES DATE 10 SE LIEU 75 INPI N° D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR L'	0211196			ов 540 W /260899		
		19604 ATOR 149				
6 MANDATAIRE						
		POCHART				
Préπom		François				
Cabinet ou So	ciété	CABINET HIRSCH-PO				
N °de pouvoir de lien contra	permanent et/ou ctuel					
Adresse	Rue	34, rue de Bassano				
	Code postal et ville	75008 PARIS				
N° de télépho	ne (facultatif)	01.53.23.92.12				
N° de télécop	ie (facultatif)	01.47.23.49.13				
Adresse élect	ronique (facultatif)					
7 INVENTEUR	(S)					
Les inventeurs sont les demandeurs		1		tion d'inventeur(s) séparée		
RAPPORT D	E RECHERCHE	Uniquement pour un	e demande de brevet	(y compris division et transformation)		
Établissement immédiat ou établissement différé				- Invieros		
Paiement échelonné de la redevance		☐Oui ☐Non		nt pour les personnes physiques		
RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence):				
Si vous ave indiquez le	z utilisé l'împrimé «Suite», nombre de pages jointes					
OU DU MA	ualité du signataire)	E. TEVENIN 93-2008		VISA DE LA PRÉFECTURE OU DE L'INPI		

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

PROCEDE DE FABRICATION D'ACIDE ACRYLIQUE A PARTIR DE PROPANE, EN L'ABSENCE D'OXYGENE MOLECULAIRE

La présente invention concerne la production d'acide acrylique à partir de propane en l'absence d'oxygène moléculaire.

Il est connu d'après la demande de brevet européen n°EP-A-608838 de préparer un acide carboxylique insaturé à partir d'un alcane selon une réaction d'oxydation 10 catalytique en phase vapeur en présence d'un catalyseur contenant un oxyde métallique mixte comprenant comme composants essentiels, Mo, V, Te, O, ainsi qu'au moins un élément choisi dans le groupe constitué par le niobium, le tantale, le tungstène, le titane, l'aluminium, 15 zirconium, le chrome, le manganèse, le fer, le ruthénium; le cobalt, le rhodium, le nickel, le palladium, platine, l'antimoine, le bismuth, le bore, l'indium et le cérium, ces éléments étant présents dans des proportions 20 bien précises. Les utilisations d'un tel catalyseur dépourvu de silicium décrites dans les exemples de ce document conduisent à de bonnes sélectivités en acide acrylique mais elles sont mises en œuvre en présence d'air.

Par ailleurs, il existe des brevets tels que les brevets américains n° 4 606 810, 4 966 681, 4 874 503, 4 830 728, 5 198 590 et 6 287 522 utilisant deux réacteurs ou plus, appelés « Risers », cependant ces brevets ne concernent que des applications dans le raffinage des coupes pétrolières.

L'invention a donc pour but de disposer d'un procédé de production de fabrication d'acide acrylique à partir de propane et en l'absence d'oxygène moléculaire, qui permette d'obtenir une conversion du propane élevée tout en ayant une sélectivité élevée.

La Demanderesse a découvert que l'on peut atteindre ce but en faisant passer un mélange gazeux de propane et de vapeur d'eau, et le cas échéant, d'un gaz inerte, sur

un catalyseur particulier, lequel agit comme système rédox et fournit l'oxygène nécessaire à la réaction et en utilisant un appareillage présentant deux zones réactionnelles.

5 Les avantages de ce nouveau procédé sont les suivants:

- la limitation de la suroxydation des produits présence d'oxygène en lieu formés qui a moléculaire; selon la présente invention, l'absence d'oxygène en que l'on opère moléculaire, la formation de CO_x (monoxyde de produits carbone et dioxyde de carbone), réduite, est dégradation, d'augmenter la sélectivité en acide acrylique ;
- la sélectivité en acide acrylique se maintient à un bon niveau ;
 - la conversion est augmentée sans perte de sélectivité;
- le catalyseur ne subit qu'une faible réduction et donc une perte progressive de son activité; 20 facilement régénérable par chauffage contenant de présence d'oxygène ou d'un gaz période certaine une après l'oxygène régénération, la d'utilisation ; après catalyseur retrouve son activité initiale et peut 25 être utilisé dans un nouveau cycle de réaction ;
 - en outre, la séparation des étapes de réduction du catalyseur et de régénération de celui-ci permet d'augmenter la pression partielle en propane, une telle pression partielle d'alimentation en propane n'étant plus limitée par l'existence d'une zone explosive créée par le mélange propane + oxygène.

La présente invention a donc pour objet un procédé 35 de fabrication de l'acide acrylique à partir de propane, dans lequel :

a) on introduit un mélange gazeux dépourvu d'oxygène moléculaire et comprenant du propane, de la

10

15

vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, dans un premier réacteur à lit de catalyseur transporté,

- b) à la sortie du premier réacteur, on sépare les gaz du catalyseur;
- c) on renvoie le catalyseur dans un régénérateur ;
- d) on introduit les gaz dans un second réacteur à lit de catalyseur transporté ;
- e) à la sortie du second réacteur, on sépare les gaz du catalyseur et on récupère l'acide acrylique contenu dans les gaz séparés;
- f) on renvoie le catalyseur dans le régénérateur ;
- g) on réintroduit du catalyseur régénéré provenant du régénérateur dans les premier et second réacteurs;

et dans lequel le catalyseur comprend du molybdène, vanadium, du tellure ou de l'antimoine, de l'oxygène et au moins un autre élément X choisi parmi le niobium, tantale, le tungstène, le titane, l'aluminium, zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, platine, l'antimoine, le bismuth, le bore, l'indium et le cerium.

Ce procédé permet d'obtenir une sélectivité en acide acrylique de près de 60% et une conversion du propane élevée.

D'autres caractéristiques et avantages de l'invention vont maintenant être décrits en détail dans l'exposé qui suit et qui est donné en référence à la figure unique annexée, qui représente schématiquement un appareillage apte à la mise en œuvre du procédé selon l'invention.

EXPOSE DETAILLE DE L'INVENTION

Le fonctionnement du procédé selon l'invention peut 35 être expliqué en se référant à la figure annexée.

Le mélange gazeux comprenant du propane, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, est

5

10

15

20

25

introduit dans un premier réacteur (Riser 1) contenant le lit de catalyseur transportable.

Ensuite, à la sortie du premier réacteur, les effluents sont séparés en des gaz et le catalyseur transporté.

Le catalyseur est envoyé dans un régénérateur.

Les gaz sont introduits dans un second réacteur (Riser 2) contenant également un lit de catalyseur transportable.

A la sortie du second réacteur, les effluents sont séparés en des gaz et le catalyseur transporté.

Le catalyseur est envoyé dans un régénérateur.

Les gaz sont traités de façon connue, généralement par absorption et purification, en vue de la récupération de l'acide acrylique produit.

Le catalyseur régénéré est réintroduit dans le premier réacteur ainsi que dans le second réacteur.

Le procédé fonctionne ainsi de façon continue, la circulation du catalyseur entre les réacteurs et le régénérateur s'effectue de façon régulière et généralement continue.

Bien entendu, l'unique régénérateur peut être remplacé par deux ou plus régénérateurs.

En outre, il est possible d'ajouter à la suite du second réacteur d'autres réacteurs ayant eux aussi un catalyseur circulant entre chacun de ces réacteurs et le régénérateur ou d'autres régénérateurs.

De préférence, les premier et second réacteurs sont verticaux et le catalyseur est transporté vers le haut par le flux des gaz.

En ce qui concerne la conversion du propane en acide acrylique au moyen du catalyseur, elle s'effectue selon la réaction rédox (1) suivante :

35 SOLIDE_{oxydé} + PROPANE → SOLIDE_{réduit} + ACIDE ACRYLIQUE (1)

15

20

25

Généralement, cette réaction rédox (1) est conduite à une température de 200 à 500°C, de préférence de 250 à 450 °C, plus préférentiellement encore, de 350 à 400°C.

La pression dans les réacteurs est généralement de $1,01.10^4$ à $1,01.10^6$ Pa (0,1 à 10 atmosphères), de préférence de $5,05.10^4$ à $5,05.10^5$ Pa (0,5-5 atmosphères).

Le temps de séjour dans chaque réacteur est généralement de 0,01 à 90 secondes, de préférence, de 0,1 à 30 secondes.

Le rapport en volume propane/vapeur d'eau dans la phase gazeuse n'est pas critique et peut varier dans de larges limites.

De même, la proportion de gaz inerte, qui peut être de l'hélium, du krypton, un mélange de ces deux gaz, ou bien de l'azote, du dioxyde de carbone, etc., n'est pas non plus critique et peut aussi varier dans de larges limites.

Comme ordre de grandeur des proportions du mélange de départ, on peut citer le ratio suivant (en volumes) : propane/inerte(He-Kr)/ H_2O (vapeur):10-30/40-50/40-50

Pour ce qui est du catalyseur, les proportions de ses éléments constitutifs peuvent satisfaire aux conditions suivantes :

 $0,25 < r_{Mo} < 0,98$

5

15

20

 $0,003 < r_{v} < 0,5$

 $0,003 < r_{Te} ou r_{Sb} < 0,5$

 $0,003 < r_{x} < 0,5$

dans lesquelles r_{MO} , r_V , r_{Te} ou r_{Sb} et r_X représentent les fractions molaires, respectivement, de MO, V, Te et X, par rapport à la somme des nombres de moles de tous les éléments du catalyseur, à l'exception de l'oxygène. Un tel catalyseur peut être préparé selon les enseignements de la demande de brevet européen n° 608 838 précitée. On peut se référer en particulier, au catalyseur de formule $MO_1V_{0.3}Te_{0.23}Nb_{0.12}O_n$, dont la préparation est décrite dans l'exemple 1 de cette demande de brevet.

Selon un mode de réalisation préféré de l'invention, le catalyseur répond à la formule (I) ou à la formule (Ibis) suivantes :

5 Mo₁V_aTe_bNb_cSi_dO_x (I) Mo₁V_aSb_bNb_cSi_dO_x (Ibis)

. U. UUPU.

dans lesquelles :

- a est compris entre 0,006 et 1, bornes incluses ;
- b est compris entre 0,006 et 1, bornes incluses ;
- 10 c est compris entre 0,006 et 1, bornes incluses;
 - d est compris entre 0 et 3,5, bornes incluses ; et
 - x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation.

Avantageusement :

- 15 a est compris entre 0,09 et 0,8, bornes incluses ;
 - b est compris entre 0,04 et 0,6, bornes incluses ;
 - c est compris entre 0,01 et 0,4, bornes incluses ; et
 - d est compris entre 0,4 et 1,6, bornes incluses.

Les oxydes des différents métaux entrant dans la composition du catalyseur de formule (I) ou (Ibis) peuvent être utilisés comme matières premières dans la préparation de ce catalyseur, mais les matières premières ne sont pas limitées aux oxydes ; comme autres matières premières, on peut citer :

- molybdate molybdène, le du 25 - dans le cas d'ammonium, paramolybdate d'ammonium, le l'heptamolybdate d'ammonium, l'acide molybdique, les halogénures ou oxyhalogénures de molybdène tels que MoCl₅, les composés organométalliques du molybdène comme les alkoxydes de molybdène tels 30 que $Mo(OC_2H_5)_5$, le molybdényle d'acétylacétone ;
 - dans le cas du vanadium, le métavanadate d'ammonium, les halogénures ou oxyhalogénures de de vanadium tels que VCl₄, VCl₅ ou VOCl₃, les composés organométalliques du vanadium comme les alkoxydes de vanadium tels que VO(OC₂H₅)₃;
 - dans le cas du tellure, le tellure, l'acide tellurique et TeO₂;

dans le cas du niobium, l'acide niobique, $Nb_2(C_2O_4)_5$, le tartrate de niobium, l'hydrogénooxalate niobium, de le niobiate d' oxotrioxalatoammonium $\{(NH_4)_3[NbO(C_2O_4)_3] \bullet 1, 5H_2O\},$ l'oxalate de niobium et d'ammonium, l'oxalate de niobium et de tartrate, halogénures les oxyhalogénures de nobium tels que NbCl3, NbCl5 et les composés organométalliques du niobium comme alkoxydes de niobium tels que $Nb(OC_2H_5)_5$, $Nb(O-n-Bu)_5$;

et, d'une manière générale, tous les composés susceptibles de former un oxyde par calcination, à savoir, les sels métalliques d'acides organique, les sels métalliques d'acides minéraux, les composés métalliques complexes, etc.

La source de silicium est généralement constituée de silice colloïdale et/ou d'acide polysilicique.

Conformément à des modes de réalisation e particuliers, on peut préparer le catalyseur de formule 🕴 (I) en mélangeant sous agitation des solutions aqueuses d'acide niobique, d'heptamolybdate d'ammonium, métavanadate d'ammonium, d'acide tellurique, en ajoutant de préférence de la silice colloïdale, puis précalcinant sous air à environ 300°C et en calcinant sous azote à environ 600°C.

De préférence, dans le catalyseur de formule (I) ou (Ibis) :

- a est compris entre 0,09 et 0,8, bornes incluses ;
- b est compris entre 0,04 et 0,6, bornes incluses ;
- 30 c est compris entre 0,01 et 0,4, bornes incluses ; et
 - d est compris entre 0,4 et 1,6, bornes incluses.

Au cours de la réaction rédox (1), le catalyseur subit une réduction et une perte progressive de son activité. C'est pourquoi, une fois que le catalyseur est au moins partiellement passé à l'état réduit, on conduit sa régénération selon la réaction (2) :

 $SOLIDE_{réduit} + O_2 \rightarrow SOLIDE_{oxydé}$ (2)

5

10

15

20

25

par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène à une température de 250 à 500°C, pendant le temps nécessaire à la réoxydation du catalyseur.

On met en général le procédé en œuvre jusqu'à ce que le taux de réduction du catalyseur soit compris entre 0,1 et 10 g d'oxygène par kg de catalyseur.

Ce taux de réduction peut être surveillé au cours de la réaction par la quantité de produits obtenus. On calcule alors la quantité d'oxygène équivalente. On peut aussi le suivre par l'exothermicité de la réaction.

Après la régénération, qui peut être effectuée dans des conditions de température et de pression identiques à, ou différentes de celles de la réaction rédox, le catalyseur retrouve une activité initiale et peut être réintroduit dans les réacteurs.

On peut utiliser un mode de fonctionnement à un seul passage ou avec recyclage des produits sortant du deuxième réacteur.

Selon un mode de réalisation préféré de l'invention, après traitement des gaz issus du deuxième réacteur, le propylène produit comme produit secondaire et/ou le propane n'ayant pas réagi sont recyclés (ou renvoyés) à l'entrée du réacteur, c'est-à-dire qu'ils sont réintroduits à l'entrée du premier réacteur, en mélange ou parallèlement avec le mélange de départ de propane, de vapeur d'eau et le cas échéant de gaz inerte(s).

Selon un mode de réalisation avantageux de l'invention, le mélange gazeux passe également sur un co-catalyseur.

Ceci a pour avantage de réduire la production d'acide propionique, qui est généralement un sous-produit de la réaction de conversion et qui pose des problèmes dans certaines applications de l'acide acrylique lorsqu'il est présent en trop grande quantité.

Ainsi, on réduit fortement le rapport acide propionique/acide acrylique en sortie de réacteur.

5

10

15

20

25

30

En outre, la formation d'acétone, qui est aussi un sous-produit de la fabrication d'acide acrylique à partir de propane, est diminuée.

A cet effet, l'un au moins des réacteurs comprend un 5 co-catalyseur ayant la formule (II) suivante :

 Mo_1Bi_a , Fe_b , Co_c , Ni_d , K_e , Sb_f , Ti_g , Si_h , Ca_i , Nb_j , Te_k , Pb_1 , W_m , Cu_n , (II)

dans laquelle :

```
a' est compris entre 0,006 et 1, bornes incluses ;
10
      b' est compris entre 0 et 3,5, bornes incluses ;
      c' est compris entre 0 et 3,5, bornes incluses ;
      d' est compris entre 0 et 3,5, bornes incluses ;
      e' est compris entre 0 et 1, bornes incluses ;
      f' est compris entre 0 et 1, bornes incluses ;
      g' est compris entre 0 et 1, bornes incluses ;
      h' est compris entre 0 et 3,5, bornes incluses ;
      i' est compris entre 0 et 1, bornes incluses ;
      j' est compris entre 0 et 1, bornes incluses ;
      k' est compris entre 0 et 1, bornes incluses ;
20
      l' est compris entre 0 et 1, bornes incluses ;
         est compris entre 0 et 1, bornes incluses ; et
      n' est compris entre 0 et 1, bornes incluses.
      Un tel co-catalyseur peut être préparé de la même
   manière que le catalyseur de formule (I).
25
```

Les oxydes des différents métaux entrant dans la composition du co-catalyseur de formule (II) peuvent être utilisés comme matières premières dans la préparation de ce co-catalyseur, mais les matières premières ne sont pas limitées aux oxydes ; comme autres matières premières, on peut citer dans le cas du nickel, du cobalt, du bismuth, du fer ou du potassium, les nitrates correspondants.

De manière générale, le co-catalyseur est présent sous forme de lit transportable et il est régénéré et circule de la même manière que le catalyseur.

De préférence, dans le co-catalyseur de formule (II) : a' est compris entre 0,01 et 0,4, bornes incluses ; b' est compris entre 0,2 et 1,6, bornes incluses ;

30

. - . - . - . .

- c' est compris entre 0,3 et 1,6, bornes incluses;
- d' est compris entre 0,1 et 0,6, bornes incluses;
- e' est compris entre 0,006 et 0,01, bornes incluses.
- f' est compris entre 0 et 0,4, bornes incluses;
5 - g' est compris entre 0 et 0,4, bornes incluses;
- h' est compris entre 0,01 et 1,6, bornes incluses;
- i' est compris entre 0 et 0,4, bornes incluses;
- j' est compris entre 0 et 0,4, bornes incluses;
- k' est compris entre 0 et 0,4, bornes incluses;
- k' est compris entre 0 et 0,4, bornes incluses;
- m' est compris entre 0 et 0,4, bornes incluses;
- m' est compris entre 0 et 0,4, bornes incluses;
- m' est compris entre 0 et 0,4, bornes incluses; et

Le rapport massique du catalyseur au co-catalyseur est généralement supérieur à 0,5 et de préférence d'au moins 1.

Avantageusement, le co-catalyseur est présent dans les deux réacteurs.

Le catalyseur et le co-catalyseur se présentent sous la forme de compositions solides catalytiques.

Ils peuvent être chacun sous la forme de grains, généralement de 20 à 300 μm de diamètre, les grains de catalyseur et de co-catalyseur étant généralement mélangés avant la mise en œuvre du procédé selon l'invention.

Le catalyseur et le co-catalyseur peuvent aussi se présenter sous la forme d'une composition solide catalytique composée de grains dont chacun comprend à la fois le catalyseur et le co-catalyseur.

30 Exemples

35

Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.

Dans les formules indiquées dans l'exemple 1, x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation.

Les conversions, sélectivités et rendements sont définis comme suit :

	Conversion(%)=	Nombre de moles de propane ayant réagi
	du propane	Nombre de moles de propane introduites
5	Sélectivité(%) =	Nombre de moles d'acide acrylique formées
	en acide acrylique	
10	Rendement (%) =	Nombre de moles d'acide acrylique formées
	en acide acrylique	Nombre de moles de propane introduites

Les sélectivités et rendements relatifs aux autres composés sont calculées de manière similaire.

Le ratio conversion est la masse de catalyseur (en kg) nécessaire pour convertir 1 kg de propane.

Exemple 1

20

25

Préparation du catalyseur de formule $Mo_1V_{0,33}Nb_{0,11}Te_{0,22}Si_{0,95}O_x$

a) Préparation d'une solution de niobium

Dans un bécher de 5 l, on introduit 640 g d'eau distillée puis 51,2 g d'acide niobique (soit 0,304 moles de niobium). On ajoute ensuite 103,2 g (0,816 mole) d'acide oxalique dihydraté.

Le rapport molaire acide oxalique/niobium est donc de 2,69.

On chauffe la solution obtenue précédemment à 60°C pendant 2 heures, en couvrant pour éviter l'évaporation et en agitant. On obtient ainsi une suspension blanche que l'on laisse refroidir sous agitation jusqu'à 30°C, ce qui dure environ 2 heures.

35 b) Préparation d'une solution de Mo, V et Te

Dans un bécher de 5 l, on introduit 2120 g d'eau distillée, 488 g d'heptamolybdate d'ammonium (soit 2,768 moles de molybdène), 106,4 g de métavanadate d'ammonium NH_4VO_3 (soit 0,912 mole de vanadium) et 139,2 g d'acide

tellurique (fournisseur : FLUKA) (soit 0,608 mole de tellure).

On chauffe la solution obtenue précédemment à 60°C pendant 1 heure et 20 minutes, en couvrant pour éviter l'évaporation et en agitant. On obtient ainsi une solution limpide rouge que l'on laisse refroidir sous agitation jusqu'à 30°C, ce qui dure environ 2 heures.

c) Introduction de la silice

393,6 g de silice Ludox (contenant 40% en poids de silice, fournie par la société Dupont) sont introduits sous agitation dans la solution de Mo, V et Te préparée précédemment. Cette dernière conserve sa limpidité et sa coloration rouge.

On ajoute ensuite la solution de niobium préparée précédemment. On obtient ainsi un gel orange fluo au bout de quelques minutes d'agitation. On sèche alors par atomisation cette solution. L'atomiseur utilisé est un atomiseur de laboratoire (ATSELAB de la société Sodeva). L'atomisation se déroule sous atmosphère d'azote (afin

L'atomisation se déroule sous atmosphère d'azote (afin d'éviter toute oxydation et toute combustion intempestive de l'acide oxalique présent dans la barbotine).

Les paramètres de marche sont globalement :

- débit d'azote de l'ordre de 45 Nm³/h ;
- débit de barbotine de l'ordre de 500 g/h ;
- température d'entrée des gaz comprise entre 155°C et 170°C;
- température de sortie des gaz comprise entre 92°C et 100°C.

On met ensuite le produit récupéré (355,2 g), qui présente une granulométrie inférieure à 40 microns à l'étuve à 130°C pendant une nuit, dans un plateau téfloné.

On obtient ainsi 331 g de produit sec.

d) Calcination

Les précalcinations et calcinations ont été faites sous flux d'air et d'azote dans des capacités en acier.

R:\Brevets\19600\19604.doc - 9 septembre 2002 - 12/23

35

25

30

10

Ces capacités sont directement installées dans des fours à moufles et l'alimentation en air se fait par la cheminée. Un puits thermométrique interne permet un juste contrôle de la température. Le couvercle est utile pour éviter un retour d'air vers le catalyseur.

Tout d'abord, on précalcine les 331 g du précurseur obtenu précédemment pendant 4 heures à 300°C sous flux d'air de 47,9 ml/min/g de précurseur.

Le solide obtenu est ensuite calciné pendant 2 10 heures à 600°C sous un flux d'azote de 12,8 ml/min/g de solide.

On obtient ainsi le catalyseur souhaité.

Exemple 2

15 <u>Tests du catalyseur</u>

a) Appareillage

Afin de simuler le procédé selon l'invention, on a effectué des simulations en laboratoire dans un réacteur en lit fixe de laboratoire, en générant des impulsions de propane et des impulsions d'oxygène. En utilisant un chargement du réacteur ayant deux lits de catalyseur superposés, on peut ainsi simuler le comportement du catalyseur et ce qu'il aurait subi dans deux réacteurs successifs à lit transporté montant appélés « risers ».

25

30

35

20

i) Un seul réacteur (à titre comparatif) : test dit « simple RISER »

On charge, du bas vers le haut, dans un réacteur vertical de forme cylindrique et en pyrex :

- une première hauteur de 1 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une seconde hauteur de 1 ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,
- une troisième hauteur de 5 g de catalyseur sous forme de particules de 0,02 à 1 mm dilué avec 5

ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,

- une quatrième hauteur de 1 ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,
- une cinquième hauteur de 3 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une sixième hauteur de 1 ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,
 - une septième hauteur de 5 ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,
- une huitième hauteur de 1 ml de carbure de silicium sous forme de particules de 0,062 mm de diamètre,
 - une neuvième hauteur de 2 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
 - puis, une dixième hauteur de carbure de silicium sous forme de particules de 1,19 mm de manière à remplir la totalité du réacteur.

25 <u>ii) Deux réacteurs (selon l'invention) :</u> test dit « double RISER »

L'appareillage est le même que précédemment, sauf que la septième hauteur de 5 ml carbure de silicium est remplacée par 5 g de catalyseur dilué avec 5 ml de carbure de silicium 0,062 mm, comme la troisième hauteur de catalyseur.

On a donc chargé deux lits de catalyseur, l'un audessus de l'autre dans le réacteur, ce qui permet de simuler le comportement d'un appareil à 2 réacteurs tel que celui représenté sur la figure annexée.

5

20

30

b) Mode opératoire

Le réacteur est ensuite chauffé à 250°C et le vaporiseur à 200°C. L'amorçage électrique de la pompe à eau est activé.

Une fois que le réacteur et le vaporiseur ont atteint les températures indiquées ci-dessus, on active la pompe à eau et on fait monter la température du réacteur à la température de test voulue.

On laisse ensuite le point chaud du réacteur se 10 stabiliser pendant 30 minutes.

Puis, de l'oxygène est introduit en 10 impulsions de 23 secondes chacune pour bien oxyder le catalyseur. Le catalyseur est considéré comme totalement oxydé lorsque la température du point chaud s'est stabilisée, c'est-à-dire quand il n'y a plus d'exothermie due à la réaction (en suivant la température du catalyseur mesurée au moyen d'un thermocouple placé dans le lit catalytique, on peut voir les fluctuations de température en fonction des impulsions).

La pression à l'entrée du réacteur était d'environ 1,2 à 1,8 bar (absolu) et la perte de charge à travers le réacteur est d'environ 0,2 à 0,8 bar (relatif).

Pour ce qui est de la production d'acide acrylique proprement dite, un bilan rédox est composé de 60 cycles rédox. Un cycle rédox représente :

- 13,3 secondes de propane dans un flux continu d'hélium-krypton/eau,
- 45 secondes de flux continu d'héliumkrypton/eau,
- 20 secondes d'oxygène dans un flux continu d'hélium-krypton/eau,
 - 45 secondes de flux continu d'hélium-krypton/eau.

Pendant le bilan, quatre prélèvements sont faits, chacun représentant 15 cycles. On effectue aussi 4 prélèvements de gaz à l'aide de poches à gaz, chaque prélèvement représentant 15 cycles. (Les prélèvements de gaz sont effectués sur une durée correspondant à un

25

multiple de la durée d'un cycle, pour pouvoir connaître la quantité théorique de propane injectée).

Chaque petit flacon laveur (de 25 ml de contenance et rempli de 20 ml d'eau) est équipé d'une poche à gaz, et lorsque l'on connecte le flacon à la sortie du réacteur (dès que le liquide fait des bulles), la poche est ouverte et le chronomètre est déclenché.

Pour vérifier l'état d'oxydation du catalyseur, une nouvelle série de 10 impulsions de 23 secondes d'oxygène est effectuée. Elle montre que l'état d'oxydation du solide a été maintenu pendant le bilan (pas d'exothermie).

Les effluents liquides sont analysés sur un chromatographe HP 6890, après avoir effectué un étalonnage spécifique.

Les gaz sont analysés pendant le bilan sur un chromatographe micro-GC Chrompack.

Un dosage de l'acidité est effectué sur chaque flacon en cours de bilan, pour déterminer le nombre exact de moles d'acide produites et valider les analyses chromatographiques.

c) Résultats

10

15

20

25

Les résultats finals correspondent à la moyenne des micro-bilans effectués sur les 4 flacons laveurs et les 4 poches à gaz.

Un bilan est composé de 60 cycles avec des pressions partielles en propane et en oxygène correspondant aux ratios suivants :

pour la réaction : Propane/He-Kr/ H_2O : 10/45/45 pour la régénération : $0_2/He-Kr/H_2O$: 20/45/45

Le débit d'He/Kr est de 4,325 N1/h (Nl = litre de gaz à 0°C et sous 760 mm Hg)

Les résultats sont regroupés dans le tableau 35 suivant :

	The A City of the							
	Test « Simple RISER »				Test « Double RISER »			
	(Comparatif)				(Invention)			
Descriptif test catalyseur	5 g de catalyseur dilué dans 5 ml de				2 lits	2 lite do 5 a do 14 d		
1	s	SiC grande ampoule				2 lits de 5 g de catalyseur dîlué dans 5 ml de SiC		
	gv umpvulo				grande ampoule			
Température (°C)	200							
Sélectivités (%)	380	400	360	380	380	400	360	
Acide Acrylique	57.0	 		<u> </u>	<u> </u>			
Acide Acétique	57,9	57,2	57,1	60,4	58,4	49,4	58,4	
Acroléine	10,6	6,8	10,7	8,2	9,4	6,5	11,3	
Acétone	0,20	0,08	0,17	0,10	0,06	0,08	0,00	
Acide Propionique	1,06	0,49	2,15	1,05	0,47	0,22	0,95	
Alcool Allylique	0,70	0,26	1,18	0,71	0,35	0,16	0,56	
Acrylate allyle	0,05	0,00	0,06	0,01	0,02	0,02	0,02	
Propanaldéhyde	0,06	0,00	0,11	0,00	0,02	0,01	0,00	
Acétaldéhyde	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
CO	0,13	0,06	0,15	0,06	0,04	0,03	0,00	
CO ₂	8,9	13,5	7,8	9,5	13,6	21,0	12,9	
Propylène	6,0	10,1	4,2	6,1	10,6	17,9	8,5	
Quantité d'oxygène	14,4	11,4	16,3	13,9	7,0	4,7	7,4	
consommé (*)	0,40	0,57	0,28	0,40	0,39	0,61	0,33	
(g O/ kg catalyseur)		1				1		
Flux: Quantité d'oxygène		ļ	<u> </u>	<u> </u>		<u> </u>	j `	
consommé par seconde (g	0,0301	0,0427	0,0211	0,0299	0,0295	0,0456	0,0243	
O/ kg catalyseur/s)				1			,	
Ratio conversion Propane	3476			<u> </u>]	
(kg catalyseur (1lit) /	3476	2623	4268	3464	2107	1613	2456	
kg Propane converti)		ļ	·					
Rendements (%)		 	<u> </u>	ļ				
Acide Acrylique	12,3	150						
Acide Acétique	2,24	15,3	9,0	12, 6	21,0	23,7	17,8	
Acroléine	0,04	1,83	1,68	1,71	3,36	3,13	3,47	
Acétone	0,04	0,02	0,03	0,02	0,02	0,04	0,00	
Acide Propionique	0,15	0,13	0,34	0,22	0,17	0,11	0,29	
Alcool Allylique	0,13	0,07	0,19	0,15	0,13	0,08	0,17	
Acrylate d'allyle	0,01	0,00	0,01	0,00	0,01	0,01	0,01	
Propanaldéhyde	0,00	0,00	0,02	0,00	0,01	0,00	0,00	
Acétaldéhyde	0,03	0,00	0,00	0,00	0,00	0,00	0,00	
CO	1,88	0,02	0,02	0,01	0,01	0,01	0,00	
CO ₂	1,26	3,63	1,22	1,97	4,89	10,11	3,93	
Propylène		2,72	0,66	1,27	3,79	8,58	2,59	
Propane	3,04	3,07	2,55	2,88	2,51	2,27	2,27	
Bilan Carbone (%)	77,0	69,5	81,3	76,9	62,0	50,4	67,4	
	98,1	96,3	96,9	97,7	97,9	98,4	98,0	

 (*): dans le test double RISER, la consommation d'oxygène a été calculée sur la masse totale de 5 catalyseur (somme des deux lits).

On voit que sur 1 ou 2 lits, on extrait la même quantité d'oxygène du catalyseur (en g/kg catalyseur), et avec le même débit (même valeurs de Flux g/kg.s). Par

contre, le ratio conversion est calculé en ne tenant compte que d'un seul lit, car il reflète le débit de solide nécessaire pour convertir 1 kg de propane. L'unité devant fonctionner à une densité maximale (limitée par le flux de catalyseur), le seul moyen d'augmenter encore la conversion est donc de sortir le catalyseur usé et de le remplacer par du catalyseur frais, et ce, sans changer le flux de catalyseur. C'est donc le ratio conversion sur 1 lit qui dimensionne l'unité.

Les résultats sont bons, la sélectivité en acide acrylique (AA) étant proche de 60% à 360°C et à 380°C.

La conversion du propane (Pan) avec le procédé selon l'invention est nettement supérieure à celle du procédé utilisé comparativement, elle est pratiquement deux fois supérieure à 360°C.

Les rendements en acide acrylique sont supérieurs à 17,5% à toutes les températures testées, alors que selon le procédé comparatif ils sont inférieurs à 15,5%.

Ainsi, l'utilisation des deux réacteurs permet d'obtenir un gain en conversion par passe, sans perte de sélectivité. Ceci permet de diminuer le ratio conversion, recalculé par réacteur, mais en tenant compte de la conversion totale, car l'utilisation d'un second réacteur revient à augmenter le flux de catalyseur, dans une unité qui est déjà souvent au maximum de densité solide.

10

15

20

REVENDICATIONS

- 1. Procédé de fabrication d'acide acrylique à partir de propane, dans lequel :
- a) on introduit un mélange gazeux dépourvu d'oxygène moléculaire et comprenant du propane, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, dans un premier réacteur à lit de catalyseur transporté,
- b) à la sortie du premier réacteur, on sépare les gaz du catalyseur;
 - c) on renvoie le catalyseur dans un régénérateur ;
 - d) on introduit les gaz dans un second réacteur à lit de catalyseur transporté;
- e) à la sortie du second réacteur, on sépare les gaz du catalyseur et on récupère l'acide acrylique contenu dans les gaz séparés ;
 - f) on renvoie le catalyseur dans le régénérateur ;
 - g) on réintroduit du catalyseur régénéré provenant du régénérateur dans les premier et second réacteurs;

et dans lequel le catalyseur comprend du molybdène, du vanadium, du tellure ou de l'antimoine, de l'oxygène et au moins un autre élément X choisi parmi le niobium, le

25 tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l'indium et le cerium.

30

20

 Procédé selon la revendication 1, dans lequel les premier et second réacteurs sont verticaux et le catalyseur est transporté vers le haut par le flux des gaz.

35

3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la température des réacteurs est comprise entre 200 à 500°C et de préférence entre 250 à 450°C.

- 4. Procédé selon l'une des revendications 1 à 3, dans lequel la pression dans les réacteurs est comprise entre $1,01.10^4$ et $1,01.10^6$ Pa (0,1 à 10 atmosphères) et de préférence entre $5,05.10^4$ et $5,05.10^5$ Pa (0,5-5 atmosphères).
- 5. Procédé selon l'une des revendications 1 à 4, dans lequel le temps de séjour des gaz dans chaque réacteur est compris entre 0,01 et 90 secondes et de préférence entre 0,1 et 30 secondes.
- 6. Procédé selon l'une des revendications 1 à 5, dans lequel la régénération du catalyseur est réalisée par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène, à une température de 250 à 500°C.
 - 7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le propylène produit provenant des gaz séparés à l'étape e) et/ou le propane n'ayant pas réagi sont recyclés à l'entrée du réacteur.
 - 8. Procédé selon l'une des revendications 1 à 7, dans lequel les proportions des éléments du catalyseur satisfont aux conditions suivantes :

 $0,25 < r_{Mo} < 0,98$

5

10

20

 $0,003 < r_{v} < 0,5$

 $0,003 < r_{Te} ou r_{Sb} < 0,5$

 $0.003 < r_X < 0.5$

dans lesquelles r_{MO} , r_V , r_{Te} et r_X représentent les fractions molaires, respectivement, de MO, V, Te et X, par rapport à la somme des nombres de moles de tous les éléments du catalyseur, à l'exception de l'oxygène.

9. Procédé selon l'une des revendications 1 à 8, dans 35 lequel le catalyseur répond à la formule (I) ou à la formule (Ibis) suivantes :

 $MO_1V_aTe_bNb_cSi_dO_x$ (I)

 $Mo_1V_aSb_bNb_cSi_dO_x$ (Ibis)

```
dans lesquelles :
   a est compris entre 0,006 et 1, bornes incluses ;
  b est compris entre 0,006 et 1, bornes incluses ;
- c est compris entre 0,006 et 1, bornes incluses ;
- d est compris entre 0 et 3,5, bornes incluses ; et
   x est la quantité d'oxygène lié aux autres éléments et
   dépend de leurs états d'oxydation.
10. Procédé selon la revendication 9, dans lequel, dans
la formule (I) ou (Ibis) :
   a est compris entre 0,09 et 0,8, bornes incluses ;
- b est compris entre 0,04 et 0,6, bornes incluses ;
- c est compris entre 0,01 et 0,4, bornes incluses ; et
   d est compris entre 0,4 et 1,6, bornes incluses.
11. Procédé selon l'une des revendications 1 à 10, dans
lequel, l'un au moins des deux réacteurs comprend un co-
catalyseur répondant à la formule (II) suivanté :
Mo<sub>1</sub>Bi<sub>a</sub>, Fe<sub>b</sub>, Co<sub>c</sub>, Ni<sub>d</sub>, K<sub>e</sub>, Sb<sub>f</sub>, Ti<sub>g</sub>, Si<sub>h</sub>, Ca<sub>i</sub>, Nb<sub>j</sub>, Te<sub>k</sub>, Pb<sub>1</sub>, W<sub>m</sub>, Cu<sub>n</sub>,
                                                             (II)
dans laquelle :
   a' est compris entre 0,006 et 1, bornes incluses ;
```

...

• .

. <u>À</u>

```
- b' est compris entre 0 et 3,5, bornes incluses;

25 - c' est compris entre 0 et 3,5, bornes incluses;

- d' est compris entre 0 et 3,5, bornes incluses;

- e' est compris entre 0 et 1, bornes incluses;

- f' est compris entre 0 et 1, bornes incluses;

- g' est compris entre 0 et 1, bornes incluses;

30 - h' est compris entre 0 et 3,5, bornes incluses;

- i' est compris entre 0 et 1, bornes incluses;

- j' est compris entre 0 et 1, bornes incluses;

- k' est compris entre 0 et 1, bornes incluses;

- l' est compris entre 0 et 1, bornes incluses;

- n' est compris entre 0 et 1, bornes incluses;

- m' est compris entre 0 et 1, bornes incluses;

- n' est compris entre 0 et 1, bornes incluses;
```

15

- 12. Procédé selon la revendication 11, dans lequel le cocatalyseur est régénéré et circule de la même manière que le catalyseur.
- 5 13. Procédé selon la revendication 11 ou la revendication 12, dans lequel, dans le co-catalyseur de formule (II) :
 - a' est compris entre 0,01 et 0,4, bornes incluses ;
 - b' est compris entre 0,2 et 1,6, bornes incluses ;
 - c' est compris entre 0,3 et 1,6, bornes incluses ;
- 10 d'est compris entre 0,1 et 0,6, bornes incluses ;
 - e' est compris entre 0,006 et 0,01, bornes incluses ;
 - f' est compris entre 0 et 0,4, bornes incluses ;
 - q' est compris entre 0 et 0,4, bornes incluses ;
 - h' est compris entre 0,01 et 1,6, bornes incluses ;
- 15 i' est compris entre 0 et 0,4, bornes incluses ;
 - j' est compris entre 0 et 0,4, bornes incluses ;
 - k' est compris entre 0 et 0,4, bornes incluses ;
 - l'est compris entre 0 et 0,4, bornes incluses ;
 - m' est compris entre 0 et 0,4, bornes incluses ; et
- 20 n' est compris entre 0 et 0,4, bornes incluses.
 - 14. Procédé selon l'une des revendications 11 à 13, dans lequel, on utilise un rapport massique du catalyseur au co-catalyseur supérieur à 0,5 et de préférence d'au moins
- 25 1.
 - 15. Procédé selon l'une des revendications 12 à 14, dans lequel le catalyseur et le co-catalyseur sont mélangés.
- 30 16. Procédé selon l'une des revendications 12 à 15, dans lequel le catalyseur et le co-catalyseur se présentent sous la forme de grains, chaque grain comprenant à la fois le catalyseur et le co-catalyseur.

Figure unique

BREVET DEVENTION CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 DÉSIGNATION D'INVENTEUR(S) Page N° 1../ 1..
(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30 Cet imprimé est à remplir lisiblement à l'encre noire OB 113 W /26 19604 ATOR 149 Vos références pour ce dossier (facultatif) **N° D'ENREGISTREMENT NATIONAL** TITRE DE L'INVENTION (200 caractères ou espaces maximum) PROCEDE DE FABRICATION D'ACIDE ACRYLIQUE A PARTIR DE PROPANE, EN L'ABSENCE D'OXYGENE **MOLECULAIRE** LE(S) DEMANDEUR(S): **ATOFINA** 4/8. Cours Michelet 92800 PUTEAUX - France DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeur: utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages). **DUBOIS** Nom Jean-Luc Prénoms Rue 190, rue du Coteau Adresse 69390 MILLERET Code postal et ville Société d'appartenance (facultatif) Nom Prénoms Rue Adresse Code postal et ville Société d'appartenance (facultatif) Nom Prénoms Rue Adresse Code postal et ville Société d'appartenance (facultatif) DATE ET SIGNATURE(S) Best Available Copy DU (DES) DEMANDEUR(S) **OU DU MANDATAIRE** E. TEVENIN (Nom et qualité du signataire) 93-2008 Paris, le 9 Septembre 2002 POCHART François

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Best Available Copy