Messtechnik LU

376.046 Wintersemester 2018

Patrick Star - 0000000 Kathi Sophie - 0000000 Oskar Fürnhammer - 01329133

Studienkennzahl 033 235

Inhaltsverzeichnis

O/1/10-Messung und Messwerke	•
Statistik und Leistungsmessung	•
2.8 Leistungsmessung	
Messbrücken und Messverstärker	
Signalübertragung	
Abtastung und automatisierte Messsysteme	
5.1 Einleitung	
5.3 Umwandlung von singleended auf differentielle Signale	
5.4 Automatisierte Messsysteme	
Sensoren und frequenzselektive Messverfahren	
Eigentumserklärung	1
	Statistik und Leistungsmessung 2.1 Einleitung 2.2 Strommessung 2.3 Widerstandsmessung 2.4 Impedanzmessung 2.5 Fehlerforpflanzung 2.6 Impedazmessung mit LCR-Meter 2.7 5/8-Methode 2.8 Leistungsmessung Messbrücken und Messverstärker Signalübertragung Abtastung und automatisierte Messsysteme 5.1 Einleitung 5.2 Spannungsmessung 5.3 Umwandlung von singleended auf differentielle Signale 5.4 Automatisierte Messsysteme

Abbildungsverzeichnis

U/I/R-Messung und Messwerke

[1] [2]

Statistik und Leistungsmessung

2.1 Einleitung

Teilübung	Statistik und Leistungsmessung
Teilübungsnr.	2
Datum	28.11.2018
Messplatzbez.	CA

Tabelle 2.1: Grundlegende Information der 2. Laborübung

Im Rahmen der 2. Laborübung sollten fünf unterschiedliche Impedanzen (Z1-Z5) vermessen werden. Dabei war lediglich deren Struktur (siehe Tabelle 2.5!) im Vorhinein bekannt. Es wurde zuerst ein passender Strommessshunt ausgewählt und die Schaltung konzipiert. Um aus den erhaltenen Spannungswerten den dazugehörigen Strom bestimmen zu können ist natürlich die genau Kenntnis über den Widerstandswert unabdingbar, weshalb dieser zu Beginn mehrmals und mit unterschiedlichen Methoden bestimmt worden ist. Die eigentliche Impedanzmessung wurde darauf hin mit einem analogen Oszilloskop durchgeführt. Alle dabei verwendenten Messgeräte sind in Tabelle 2.2 aufgelistet.

Gerät	Bezeichnung
Handmultimeter	Agilent U1232A
Handmultimeter	Mastech MS8221C
Handmultimeter	Neumann 9140
Desktopmultimeter	Agilent 34461A
Analoges Oszilloskop	XXXX——-XXX DS-6612

Tabelle 2.2: Verwendete Messgeräte

Teilnahmebestätigung

 $\begin{array}{c} {\rm Hiermit} \ {\rm XXX} \\ {\rm XX} \end{array}$

2.2 Strommessung

Um den Strom durch einen bestimmten Strang zu messen musste zuerst eine passende Schaltung entworfen bzw. in weiterer Folge ein passender Messshunt ausgewählt werden. Unter der Bedingung, dass bei einer Eingangsspannung von $U=10\,V_{\rm pp}$ ein maximaler Strom von $I_{\rm max}=5\,{\rm mA}$ nicht überschritten werden soll, ergibt sich mit dem Ohm'schen Gesetzt direkt

$$R_{i,\text{min}} = \frac{\hat{U}}{I_{max}} = \frac{5 \text{ V}}{5 \text{ mA}} = 1 \text{ k}\Omega$$
 (2.1)

2.3 Widerstandsmessung

Da Damit ergibt sich der Mittelwert zu

Messung	Widerstandswert R_i [Ω]
M1 - Agilent U1232A	986
M2 - Mastech MS8221C	984
M3 - Neumann 9140	988
DM - Agilent 34461A	987

Tabelle 2.3: Gemessene Widerstandswerte

$$\overline{R_i} = \frac{1}{N} \sum_{j=0}^{N} R_{i,j} =$$
 (2.2)

Die empirische Standardabweichung wurde wiederum folgendermaßen berechnet:

$$s(\overline{R_i}) = \sqrt{\frac{1}{N-1} \sum_{j=0}^{N} (R_{i,j} - \overline{R_i})^2} =$$
 (2.3)

Das Desktopmultimeter bietet die Funktion diverse statistische Größen direkt zu berechnen. Es hat sich gezeigt, dass mit zunehmender Aperaturbreite die Werte annährend gaußverteilt erscheinen. Auch der Effekt der PLC (Power Line Cycles) wurde untersucht. Wobei festgestellt worden ist, dass der Widerstandswert, höchst wahrscheinlich auf Grund der Temperaturabhngigkeit, bei langen Messzeiten stark zu driften beginnt. Die erhaltenen Messdaten sind in Tabelle 2.4 zusammengefasst.

2.4 Impedanzmessung

Um die unbekannten Impedanzen zu bestimmen werden Spannung und Strom (über Spannungsabfall an R_i) mit einem analogen Kathodenstrahloszilloskop

PLC	Samples	Mittelwert $[\Omega]$	Standardabweichung $[m\Omega]$
0.02	15k	987.44	20
0.2	15k	987.421	12
1	273	987.442	3
1	1017	987.416	2
1	5456	987.401	13

Tabelle 2.4: Widerstandsmessung mit dem Desktopmultimeter

gemessen. Dazu wird mittels Funktionsgenerator ein Sinus mit Amplitude 5V $(10\mathrm{Vpp})$ angelegt. Durch die Phasenverschiebung und Amplitude des Stroms bei verschiedenen Frequenzen kann auf die Struktur sowie die Größe der Impedanz geschlossen werden.

XX Formeln

Strang	f [kHz]	u [V]	i [A]	$Z[\Omega]$	Struktur
S1	1	•	•	•	•
•	15	•	•	•	•
S2	1	•	•	•	•
•	15	•	•	•	•
S3	1	•	•	•	•
•	15	•	•	•	•
S4	1	•	•	•	•
•	15	•	•	•	•
S5	1	•	•	•	•
•	15	•	•	•	•

Tabelle 2.5: \bullet

2.5 Fehlerforpflanzung

2.6 Impedazmessung mit LCR-Meter

TO DO

2.7 5/8-Methode

TO DO

Messung Nr.	$x_1 = I_{RMS} [V]$	$x_2 = \Phi \text{ [rad]}$
1	•	•
2	•	•
3	•	•
4	•	•
5	•	•
6	•	•
$\overline{x_i}$	•	•
$s(\overline{x_i})$	•	•
$\frac{\partial P}{\partial x_i}$	•	•
$\left(\frac{\partial P}{\partial x_i}\right)^2 s^2(\overline{x_i})$	•	•
Kovarianz	•	
$s(\overline{P})$	•	-

Tabelle 2.6: \bullet

Strang	C/L [nF/mH]	$R [\Omega]$	Z [Ω]
S1	47.84	13.57	300.9
S2	1.1018	17.80	18.91
S3	97.89	2.701e3	3.153e3
S4	102	27.5	1.56e3
S5		8.066	8.066e3

2.8 Leistungsmessung

Messbrücken und Messverstärker

Signalübertragung

Abtastung und automatisierte Messsysteme

5.1 Einleitung

Verwendete Messgeräte:

- A
- B
- 5.2 Spannungsmessung
- 5.3 Umwandlung von singleended auf differentielle Signale
- 5.4 Automatisierte Messsysteme

Teilübung	Statistik und Leistungsmessung
Teilübungsnr.	2
Datum	28.11.2018
Messplatzbez.	CA

Tabelle 5.1: Grundlegende Information der 2. Laborübung

Sensoren und frequenzselektive Messverfahren

Eigentumserklärung

Hiermit erklären wir, die xxx

Literaturverzeichnis

- [1] G. Schitter, Skriptum zur Messtechnik LU. Institut für Automatisierungsund Regelungstechnik, TU Wien, 2018.
- [2] E. Schrüfer, L. Reindl, and B. Zagar, *Elektrische Messtecchnik*. Caarl Hanser Verlag, 2012.