[Material] - Sistemas de Numeração na Computação

 $Impresso\ por:\quad LUCAS\ GABRIEL\ QUEVEDO\ CASTRO\ .$

quinta-feira, 28 ago. 2025, 15:52

Site: São Paulo Tech School

Curso: 1ADSA - Arquitetura Computacional 2025/2

Livro: [Material] - Sistemas de Numeração na Computação

Índice

1. Introdução

2. Sistemas de Numeração

- 2.1. Sistema Decimal
- 2.2. Sistema binário de numeração
- 2.3. O sistema octal
- 2.4. Sistema Hexadecimal

3. Ferramentas de Apoio

4. Lista I - Para Praticar

4.1. Resolução - Lista de Exercícios I

5. Lista II - Para Praticar

5.1. Resolução - Lista de Exercícios II

6. Lista III - Suplementares

6.1. Resolução - Lista de Exercícios III

1. Introdução

O homem através dos tempos sentiu a necessidade da utilização de sistemas numéricos. Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, binário, octal e hexadecimal. Com exceção do sistema decimal, os outros destacados no parágrafo anterior são utilizados nas áreas de circuitos digitais, automação e ambientes computacionais.

2. Sistemas de Numeração

Definição: Um sistema de numeração é um conjunto de regras e símbolos usados para representar números. Define como os números são escritos e organizados, permitindo que possamos contar e calcular. Cada sistema de numeração possui uma base, que determina quantos símbolos diferentes ele usa.

A Importância dos Sistemas de Numeração

- São fundamentais em várias áreas do conhecimento, desde a matemática até a tecnologia.
- Permitir realizar operações matemáticas, como somar, subtrair, multiplicar e dividir, de maneira padronizada.
- Base 10 (Decimal) | Base 2 (Binário) | Base 8 (Octal) | Base 16 (Hexadecimal)

2.1. Sistema Decimal

Sistema Hindu-Arábico

• Sistema Decimal, ou seja, base 10:

0123456789

• É um sistema posicional:

Cada algarismo muda de valor de acordo com a posição que ele ocupa em um determinado número.

Exemplo: 594₁₀

5x100 + 9 x 10 + 4 x 1

$$5 \times 10^2 + 9 \times 10^1 + 4 \times 10^0 = 594_{10}$$

Relembrando:

Número em Decimal 594

- 5 -> Centena
- 9 -> Dezena
- 4 -> Unidade

DEPENDENDO DA POSIÇÃO DO ALGARISMO, ESSA POSIÇÃO REPRESENTARÁ UMA CERTA QUANTIDADE!

2.2. Sistema binário de numeração

O sistema binário de numeração é um sistema no qual existem apenas dois algarismos → O (zero) ou 1(um)

Para entender melhor o sistema de numeração, vamos tomar como exemplo o número 594 na base 10, cuja notação passará a ser denominada 594 10 → isto significa que:

$$5 \times 10_2 + 9 \times 10_1 + 4 \times 10_0 = 594_{10}$$

Agora podemos entender melhor o sistema de numeração binário, cuja base é 2:

Para converter um número decimal em um binário temos dois métodos

a) arranjo na base dois:

Portanto o número 00101₂ corresponde a 5₁₀

b) Outro método: divisão pela base desejada

Se o número é decimal podemos dividir por 2 e assim teremos o resultado da conversão

O processo de conversão de um binário para um decimal, é fazer o arranjo conforme a tabela:

Expoente	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768
16	65536
17	131072
18	262144
19	524288

Expoente 2ⁿ

20 1048576

2.3. 0 sistema octal

Um sistema octal significa que sua base terá apenas oito algarismos 0,1,2,3,4,5,6 e 7

Veja a tabela a seguir:

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
etc	etc

Conversão de decimal para Octal

Mesmo procedimento do octal para decimal

 $144_8 \rightarrow \text{para decimal}$

$$1x 8^2 + 4x8^1 + 4x8^0 = 1x64 + 4x8 + 4x1 = 64 + 32 + 4 = 100_{10}$$

Decimal para Octal

Conversão do Octal para binário

O sistema octal é um octeto composto por três bits então:

$$34_8 \rightarrow 3 \qquad | \qquad 4 \qquad \\ 11 \qquad 100 \rightarrow 011100_2$$

Conversão de binário para Octal

2.4. Sistema Hexadecimal

O sistema hexadecimal é um sistema que possui dezesseis algarismos:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, e F

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

Conversão de um sistema hexadecimal para decimal

$$3 F_{16} \rightarrow 3x16^{1} + F \times 16^{0} = 3 \times 16 + F \times 1 = 3 \times 16 + 15 \times 1 = 63_{10}$$

Conversão do sistema hexadecimal para o sistema binário

O sistema hexadecimal é um sistema de 4 bits

$$C13_{16} \rightarrow C$$
 1 3 1100 0001 0011 \rightarrow 110000010011₂

Conversão de um sistema binário para hexadecimal

Conversão de um sistema decimal para hexadecimal

3. Ferramentas de Apoio

Matheu's Machine												
2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
4096	2048	1024	512	256	128	64	32	16	8	4	2	1

Matheu's Table								
Dec	24	2 ³	2 ²	2 ¹	2 ⁰	Oct	Hex	
0	0	0	0	0	0	0	0	
1	0	0	0	0	1	1	1	
2	0	0	0	1	0	2	2	
3	0	0	0	1	1	3	3	
4	0	0	1	0	0	4	4	
5	0	0	1	0	1	5	5	
6	0	0	1	1	0	6	6	
7	0	0	1	1	1	7	7	
8	0	1	0	0	0	10	8	
9	0	1	0	0	1	11	9	
10	0	1	0	1	0	12	А	
11	0	1	0	1	1	13	В	
12	0	1	1	0	0	14	С	
13	0	1	1	0	1	15	D	
14	0	1	1	1	0	16	Е	
15	0	1	1	1	1	17	F	
16	1	0	0	0	0	20	10	
17	1	0	0	0	1	21	11	
18	1	0	0	1	0	22	12	
19	1	0	0	1	1	23	13	
20	1	0	1	0	0	24	14	
21	1	0	1	0	1	25	15	
22	1	0	1	1	0	26	16	
23	1	0	1	1	1	27	17	
24	1	1	0	0	0	30	18	
25	1	1	0	0	1	31	19	
26	1	1	0	1	0	32	1A	
27	1	1	0	1	1	33	1B	
28	1	1	1	0	0	34	1C	
29	1	1	1	0	1	35	1D	
30	1	1	1	1	0	36	1E	
31	1	1	1	1	1	37	1F	

4. Lista I - Para Praticar

1) Converter os seguintes números binários abaixo em decimal

1001100
1111
11111
10000
10001
1010110
011001100110101

2) Converter os seguintes números decimais abaixo para binários

```
78
102
215
404
808
5429
16383
512
12
2
17
33
43
7
```

3) Converter os números octais abaixo para sistema decimal

```
14
67
153
1544
15874
```

4) Converter os seguintes números octais abaixo em binários

```
477
1523
4764
10000
4321
```

5) Converter os seguintes números abaixo em binário para octal

```
1011
10011100
110101110
1000000001
```

6) Converter os números em decimal abaixo em octal

```
107
185
2048
4097
```

7) Converter os números no sistema hexadecimal abaixo para binário

```
84
7F
3B8C
47FD
F1CD
```

8) Converter os binários abaixo para sistema de numeração em hexadecimal

10011
1110011100
100110010011
1111101111

9) Converter os seguintes números decimais abaixo em hexadecimais

486				
2000				
4096				

4.1. Resolução - Lista de Exercícios I

1) Converter os seguintes números binários abaixo em decimal

```
a) 1001100 = 76
b) 1111 = 15
c) 11111 = 31
d) 10000 = 16
e) 10001 = 17
f) 1010110 = 86
g) 011001100110101 = 13109
```

2) Converter os seguintes números decimais abaixo para binários

```
a) 78 = 1001110
b) 102 = 1100110
c) 215 = 11010111
d) 404 = 110010100
e) 808 = 1100101000
f) 5429 = 1010100110101
g) 16383 = 1111111111111
h) 512 = 1000000000
i) 12 = 1100
j) 2 = 10
k) 17 = 10001
l) 33 = 100001
m) 43 = 101011
n) 7 = 111
```

3) Converter os números octais abaixo para sistema decimal

```
a) 14 = 12
b) 67 = 55
c) 153 = 107
d) 1544 = 868
e) 15874 = ERROR
```

Ao deparar-se com uma entrada como "15874" em uma conversão de bases numéricas, é essencial reconhecer e comunicar de maneira clara ao usuário que a entrada contém um dígito inválido para a base binária. Essa abordagem visa fornecer uma resposta informativa e coerente, permitindo que o usuário compreenda o motivo da falha e possa corrigir a entrada conforme necessário, facilitando assim a resolução do problema.

4) Converter os seguintes números octais abaixo em binários

```
a) 477 = 100111111
b) 1523 = 001101010011
c) 4764 = 100111110100
d) 10000 = 001000000000000000
e) 4321 = 100011010001
```

5) Converter os seguintes números abaixo em binário para octal

```
a) 1011 = 13
b) 10011100 = 234
c) 110101110 = 656
d) 10000000001 = 2001
```

6) Converter os números em decimal abaixo em octal

```
a) 107 = 153
b) 185 = 271
c) 2048 = 4000
d) 4097 = 1001
```

7) Converter os números no sistema hexadecimal abaixo para binário

- a) 84 = 10000100
- b) 7F = 01111111
- c)3B8C = 0011101110001100
- d) 47FD = 0100011111111101
- e)F1CD = 1111000111001101
- 8) Converter os binários abaixo para sistema de numeração em hexadecimal
 - a) 10011 = 13
 - b) 1110011100 = 39C
 - c) 100110010011 = 993
 - d) 1111101111 = 3EF
- 9) Converter os seguintes números decimais abaixo em hexadecimais
 - a) 486 = 1E6
 - b) 2000 = 7D0
 - c) 4096 = 1000

5. Lista II - Para Praticar

1) Converter os seguintes números binários para decimal:

2) Converter os seguintes números decimais para binário:

```
55
128
356
999
2047
8191
4095
73
29
3
19
36
88
```

3) Converter os seguintes números octais para decimal:

```
27
145
702
1001
1754
2407
```

4) Converter os seguintes números octais para binário:

```
345
777
1204
10000
7654
```

5) Converter os seguintes números binários para octal:

6) Converter os seguintes números decimais para octal:

```
250
1023
5000
8192
999
```

7) Converter os seguintes números hexadecimais para binário:

A2			
1F			
4B3			
9E7			
FF			
10A0			

8) Converter os seguintes números binários para hexadecimal:

```
1010
111100
10011011
11111111111
1101010110
```

9) Converter os seguintes números decimais para hexadecimal:

```
254
1024
1500
65535
123
```

10) Explique a relação entre as bases 2, 8 e 16 no contexto da computação.

5.1. Resolução - Lista de Exercícios II

1) Binário → Decimal

```
101010 = 42
110011 = 51
111000 = 56
1001011 = 75
1101100 = 108
101110101 = 373
111111111 = 511
100000000 = 256
111100001111 = 3855
```

2) Decimal → Binário

```
55 = 110111

128 = 10000000

356 = 101100100

999 = 1111100111

2047 = 11111111111

8191 = 111111111111

4095 = 11111111111

73 = 1001001

29 = 11101

3 = 11

19 = 10011

36 = 100100

88 = 1011000
```

3) Octal → Decimal

```
27 = 23

145 = 101

702 = 450

1001 = 513

1754 = 1004

2407 = 1287

3120 = 1616
```

4) Octal → Binário (cada dígito octal → 3 bits)

```
345 = 011100101

777 = 111111111

1204 = 001010000100

10000 = 0001000000000000

7654 = 111110101100
```

5) Binário → Octal (agrupa 3 bits da direita para a esquerda)

```
111 = 7

101101 = 55

1001100 = 114

111000111 = 707

10000000000000 = 10000
```

6) Decimal → Octal

```
250 = 372

1023 = 1777

5000 = 11610

8192 = 20000

999 = 1747
```

7) Hexadecimal → Binário (cada dígito hexa → 4 bits)

```
A2 = 10100010

1F = 00011111

4B3 = 010010110011

9E7 = 100111100111

FF = 11111111

10A0 = 0001000010100000
```

8) Binário \rightarrow Hexadecimal (agrupa 4 bits da direita para a esquerda)

```
1010 = A

111100 = 3C

10011011 = 9B

111111111111 = FFF

1101010110 = 356
```

9) Decimal → Hexadecimal

```
254 = FE

1024 = 400

1500 = 5DC

65535 = FFFF

123 = 7B

4095 = FFF
```

10) Bases 2, 8 e 16 têm relação direta porque:

- Binário é a base fundamental (2 símbolos: 0 e 1).
- Octal agrupa 3 bits → 1 dígito octal.
- Hexadecimal agrupa 4 bits → 1 dígito hexadecimal. Isso permite conversões diretas sem precisar passar pelo decimal.

6. Lista III - Suplementares

Converter os seguintes números para as bases distintas:

- 1. FOCA₁₆
- 2. F3B9₁₆
- 3. 00110101010₂
- 4.7778
- 5. 1020₁₀
- 6. $BA_{16} + CA_{16}$
- 7. 111₈ + 00127₈
- 8. 514₁₀ + 200₁₀
- 9. 1024₁₀ 205₁₀

6.1. Resolução - Lista de Exercícios III

Converter os seguintes números para as bases distintas:

Expressão	base 2	base 8	base 10	base 16	
FOCA ₁₆		1111000011001010	170312	61642	FOCA
F3B9 ₁₆		1111001110111001	171671	62393	F3B9
001101010102		110101010	652	426	1AA
7778		111111111	777	511	1FF
102010		1111111100	1774	1020	3FC
BA ₁₆ + CA ₁₆		110000100	604	388	184
111 ₈ + 00127 ₈		10100000	240	160	A0
51410 + 20010		1011001010	1312	714	2CA
102410 - 20510		1100110011	1463	819	333