a) The mass is	mass
a) The mass is	
a) The mass is	mass
a) The mass is	IIIdSS
a) The mass is	
a) The mass is	Fig. 3.1
	s in equilibrium. Explain, by reference to the forces acting on the mass, wha
is meant by	equilibrium.
	[2
b) The mass i	s pulled down and then released at time $t = 0$. The mass oscillates up and
-	variation with t of the displacement of the mass d is shown in Fig. 3.2.
	6.0
$d/10^{-2}\mathrm{m}$	
	4.0
	2.0
	0 0.2 0.4 0.6 0.8 1.0
	-2.0 t/s
	-4.0
	-6.0
	Fig. 3.2
Fig. 3.2	2 to state a time, one in each case, when
(i) the ma	ass is at maximum speed,
	time = s [1
(ii) the ela	stic potential energy stored in the spring is a maximum,
,	time = s [1
	time = s [1

(c) The arrangement shown in Fig. 3.3 is used to determine the length l of a spring when different masses M are attached to the spring.

Fig. 3.3

The variation with mass M of l is shown in Fig. 3.4.

Fig. 3.4

(i)	State and explain whether the spring obeys Hooke's law.
	[2]
(ii)	Show that the force constant of the spring is 26 N m ⁻¹ .
	[2]
(iii)	A mass of 0.40 kg is attached to the spring. Calculate the energy stored in the
` '	spring.
	energy = J [3]
	g ,