MATH7320 - Functional Analysis Homework 5

Joel Sleeba

November 15, 2024

1. Solution: Since ϕ is distance preserving, we get

$$||x||^{2} + ||y||^{2} - 2\Re\langle x, y \rangle = \langle x - y, x - y \rangle$$

$$= ||x - y||^{2}$$

$$= ||\phi(x) - \phi(y)||^{2}$$

$$= \langle \phi(x) - \phi(y), \phi(x) - \phi(y) \rangle$$

$$= ||\phi(x)||^{2} + ||\phi(y)||^{2} - 2\Re\langle \phi(x), \phi(y) \rangle$$

$$= ||x||^{2} + ||y||^{2} - 2\Re\langle \phi(x), \phi(y) \rangle$$

Thus we get $\Re\langle x,y\rangle = \Re\langle \phi(x),\phi(y)\rangle$ for all $x,y\in\mathcal{H}$.

Now let $x, y \in \mathcal{H}$ and $p, q \in \mathcal{H}$ such that $\phi(p) = r\phi(x), \phi(q) = s\phi(y)$, for $r, s \in \mathbb{R}$. Surjectivity of ϕ allows us to find p, q. Then

$$\begin{split} \|\phi(rx+sy) - \phi(p) - \phi(q)\|^2 &= \langle \phi(rx+sy) - \phi(p) - \phi(q), \phi(rx+sy) - \phi(p) - \phi(q) \rangle \\ &= \|\phi(rx+sy)\|^2 + \|\phi(p)\|^2 + \|\phi(q)\|^2 - 2\Re\langle\phi(p), \phi(q) \rangle \\ &- 2\Re\langle\phi(rx+sy), \phi(p) \rangle - 2\Re\langle\phi(rx+sy), \phi(q) \rangle \\ &= \|\phi(rx+sy)\|^2 + r^2 \|\phi(x)\|^2 + s^2 \|\phi(y)\|^2 - 2\Re\langle r\phi(x), s\phi(y) \rangle \\ &- 2\Re\langle\phi(rx+sy), r\phi(x) \rangle - 2\Re\langle\phi(rx+sy), s\phi(y) \rangle \\ &= \|\phi(rx+sy)\|^2 + r^2 \|\phi(x)\|^2 + s^2 \|\phi(y)\|^2 - 2rs\Re\langle\phi(x), \phi(y) \rangle \\ &- 2r\Re\langle\phi(rx+sy), \phi(x) \rangle - 2s\Re\langle\phi(rx+sy), \phi(y) \rangle \\ &= \|rx+sy\|^2 + r^2 \|x\|^2 + s^2 \|y\|^2 - 2\Re\langle rx, sy \rangle \\ &- 2\Re\langle rx+sy, rx \rangle - 2\Re\langle rx+sy, sy \rangle \\ &= \|rx+sy-rp-sq\|^2 \\ &= 0 \end{split}$$

2. not finished

Solution: Since $S \perp S^{\perp}$, clearly $S \subset (S^{\perp})^{\perp}$. Moreover, we know that $(S^{\perp})^{\perp} = \operatorname{Ker}(P_{S^{\perp}})$. Therefore $(S^{\perp})^{\perp}$ is a closed subspace. Hence $\overline{\operatorname{span}}(S) \subset (S^{\perp})^{\perp}$. Conversely if $x \in (S^{\perp})^{\perp}$, then $x \perp S^{\perp}$

3. not finished

Solution: Let $T_n \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ be a Cauchy sequence.

4. **Solution:** Since we know that $I = P_{\mathcal{M}} + P_{\mathcal{M}^{\perp}}$, we see that $X = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then for all $x \in X$, x = m + m' for unique $m \in \mathcal{M}, m' \in \mathcal{M}^{\perp}$. Then $\pi(x) = m' + \mathcal{M}$ for $\pi: X \to X/\mathcal{M}$. Moreover

$$||x|| = ||m|| + ||m'||$$
 and $||\pi(x)|| = ||m'||$

Thus we see that $\pi|_{\mathcal{M}^{\perp}}$ is isometric.

5. verify

Solution: From what's given, it is evident that whenever $f_i \to 0$ weak *, $Tf_i \to 0$. Since the spaces X, Y are linear this gives us that T is weak * continuous. Since the closed unit ball, \overline{B} is weak * compact by Banach-Alaoglu, and the continuity of T gives that $T(\overline{B})$ is compact.

6. Solution: Without loss of generality, assume that $||T|| \leq 1$. Notice that $\overline{T(B_1)}$, the closure of the image of the unit ball is compact since T is a compact operator. Let $T(e_{i_n})$ be an arbitrary subsequence of $T(e_i)$. Since $T(e_{i_n})$ is a sequence in a compact space, it has a convergent subsequence $T(e_{i_{n_k}})$. We claim $T(e_{i_{n_k}})$ converge to zero. Let $x = \lim_{k \to \infty} T(e_{i_{n_k}})$. Since the convergence is in norm, we see that $T(e_{i_{n_k}}) \to x$ weakly.

Now, for any $x \in \mathcal{H}$,

$$||x||^2 \ge \sum_{n \in \mathbb{N}} \langle x, e_n \rangle$$

Hence $\langle e_n, x \rangle \to 0$ for any $x \in \mathcal{H}$. Thus we see that $e_n \to 0$, weakly. Specifically, we see that

$$\langle Te_n, y \rangle = \langle e_n, T^*y \rangle \to 0$$

for any $y \in \mathcal{H}$. Shows that $T(e_n) \to 0$ weakly. Since weak topology is Hausdorff, we see that x = 0.

Since we have shown that any arbitrary subsequence of $T(e_n)$ has a subsequence that converge to 0, we get that $T(e_i) \to 0$. Hence we are done.

7. Solution:

(a) $(1 \Longrightarrow 2)$ If T is an isometry, then expanding $\langle Tx, Ty \rangle = \langle x, y \rangle$ for some $x, y \in \mathcal{H}$, we get

$$\langle Tx, Ty \rangle + \langle Ty, Tx \rangle = \langle x, y \rangle + \langle y, x \rangle$$

which gives $\Re\langle x,y\rangle = \Re\langle Tx,Ty\rangle$. Now replace x with ix to get $\Im\langle Tx,Ty\rangle = \Im\langle x,y\rangle$. Since real and imaginary parts are equal, we see that $\langle Tx,Ty\rangle = \langle x,y\rangle$

- (b) $(2 \implies 3)$ If $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in \mathcal{H}$, then $\langle T^*Tx, y \rangle = \langle x, y \rangle$, which implies $\langle (T^*T I)x, y \rangle = 0$ for all $x, y \in \mathcal{H}$. Then Reisz Representation theorem shows that if $y \neq 0$, we must have $T^*T I = 0$.
- (c) $(3 \implies 2)$ If $T^*T = I$, then

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle T^*Tx, x \rangle$$

$$= \langle x, x \rangle$$

$$= ||x||^2$$

which shows that T is an isometry.

8. Solution:

- (a) $(1 \implies 3)$ If T is normal isometry, we see that $TT^* = T^*T$, and previous question proves that $TT^* = T^*T = I$.
- (b) $(3 \Longrightarrow 2)$ If $TT^* = T^*T = I$, then it is clear from the previous question that T is an isometry. To see that it is a bijection, let $x \in H$, since $T(T^*(x)) = x$, we see that $x \in T(\mathcal{H})$. Hence T is a bijection.
- (c) $(2 \implies 1)$. We just need to show normality of T. Since T is given to be an isometric bijection, T has an inverse, P. Since T is bijective P is also

isometric and linear. To see linearity, notice that

$$P(x + y) = P(T(Px) + T(Py)) = P(T(Px + Py)) = Px + Py$$

We claim $P = T^*$. To see this, note that

$$\langle PTx, y \rangle = \langle x, y \rangle = \langle Tx, Ty \rangle = \langle T^*Tx, y \rangle$$

Hence we see that $\langle (PT - T^*T)x, y \rangle = 0$ for al $x, y \in \mathcal{H}$. Therefore by Reisz representation, we have $PT - T^*T = (P - T^*)T = 0$. Since T is bijective, this forces $P = T^*$ and we get the normality.

9. Solution: Let $x \in \text{Ker}(T)$. Then $0 = \langle Tx, y \rangle = \langle x, T^*y \rangle$ for any $y \in \mathcal{H}$, shows that $y \in T(\mathcal{H})^{\perp}$.

Conversely if $x \in T^*(H)^{\perp}$. Then $0 = \langle x, T^*y \rangle = \langle Tx, y \rangle = \text{for any } y \in \mathcal{H}$ shows that $x \in \text{Ker}(T)$ by Reisz representation theorem.

- 10. **Solution:** Consider the map $T|_{\mathrm{Ker}(T)^{\perp}}:\mathrm{Ker}(T)^{\perp}\to T(H)$. Clearly the map is surjective and linear. Hence $\mathrm{Ker}(T)^{\perp}\cong T(H)$, which is finite dimensional. From the previous question, we know that $T^*(\mathcal{H})=\mathrm{Ker}(T)^{\perp}$. Hence we see that T^* is finite rank.
- 11. Solution:

$$||Tf||^2 = \int |xf(x)|^2 d\mu$$

$$\leq \int |f|^2 d\mu$$

$$= ||f||^2$$

shows that T is a contraction. Hence $T \in B(L^2[0,1])$.

Moreover for any $f, g \in L^2([0,1])$, we get

$$\langle Tf, g \rangle = \int |xf(x)\bar{g}(x)|^2 d\mu = \int |f(x)\bar{x}g(x)|^2 d\mu = \langle f, Tg \rangle$$

Hence $T^* = T$. To prove injectivity of T, assume T(f) = T(q), then

$$0 = (T(f) - T(g))(x) = x(f(x) - g(x))$$

forces f = g. (Note that the equalities above is almost everywhere). To see that T is not surjective, we claim that there $T(f) \neq \chi_{[0,1]} \in L^2([0,1])$ for any $f \in L^2([0,1])$. If such f exist, then $f(x) = \frac{\chi_{[0,1]}(x)}{x} \notin L^2([0,1])$.

For the sake of contradiction, assume that $\lambda \in \mathbb{C}$ such that $Tf = \lambda f$ for some $f \in L^2([0,1])$. Then we must have

$$xf(x) = T(f)(x) = \lambda f(x)$$

almost everywhere. This forces $x = \lambda$ or f = 0 almost everywhere. Since x cannot be equal to λ except possibly only at $x = \lambda$ (measure zero set), we see that f = 0 almost everywhere. Thus λ cannot be an eigenvector of T.

12. Solution:

(a) Let $x = (x_n) \in \ell^2$. Then

$$||T(x)||_2^2 = \sum_{n \in \mathbb{N}} |\alpha_n x_n|^2$$

$$\leq ||(\alpha_n)||_{\infty}^2 \sum_{n \in \mathbb{N}} |x_n|^2$$

$$= ||(\alpha_n)||_{\infty} ||(x_n)||_2^2$$

shows that $||T|| \leq ||(\alpha_n)||_{\infty}$. Moreover since each $||\delta_n|| = 1$, and

$$||T(\delta_n)|| = |\alpha_n|$$

taking supremum over n, we see T attains the norm $\|(\alpha_n)\|_{\infty}$.

- (b) One direction is the direct application of question 6. Conversely if $(\alpha_n) \in c_0$, then for any open cover U which cover T(B), we can find a finite subcover by first taking an element which cover 0, then there can only by at most finite $T(\delta_n)$ outside that open ball. Now by the fact that finite dimensional closed unit balls are compact, we get compactness of T.
- (c) Notice that if $x = (x_n), y = (y_n) \in \ell^2$, then

$$x = \sum_{n \in \mathbb{N}} x_n \delta_n, \quad y = \sum_{n \in \mathbb{N}} y_n \delta_n$$

and

$$\langle Tx, y \rangle = \sum_{n \in \mathbb{N}} \alpha_n x_n \overline{y_n} = \sum_{n \in \mathbb{N}} x_n \overline{\alpha_n y_n}$$

Since this is true for all $x, y \in \ell^2$, by the uniqueness of the adjoint, we get our assertion.

13. Solution:

- (a) If M is invariant under T, then $T(M) \subset M$, This shows $T(m) = P_M T(m)$ for all $m \in M$. Thus $TP_M = P_M TP_M$. Conversely if $TP_M = P_M TP_M$, then $T(m) = TP_M(m) = P_M TP_M(m) = P_M T(m)$ for all $m \in M$, shows that $T(m) \subset M$ for all $m \in M$. Thus M is invariant under T.
- (b) If M reduces T, then M and M^{\perp} is invariant under T. Thus we see that for x = m + m' for $m \in M, m' \in M^{\perp}$.

$$P_M T(x) = P_M (T(m) + T(m')) = P_M (T(m)) = T(m) = T(P_M(x))$$

Thus $P_M T = T P_M$.

Conversely, if $P_MT = TP_M$, then for $m \in M$, we get

$$P_M T(m) = T P_M(m) = T(m)$$

which shows $T(m) \in M$ and for $m' \in M^{\perp}$, we get

$$P_M T(m') = T P_M(m') = T(0) = 0$$

Hence $T(m') \perp M$ which implies $T(m') \in M^{\perp}$. Thus we see that M reduces T.

(c) If M reduces T, then it is clear that M is invariant under T. Let $m \in M$. Then for $x \in M^{\perp}$, we get

$$\langle T^*m, x \rangle = \langle m, Tx \rangle = 0$$

since $Tx \in M^{\perp}$. Thus $T^*(m) \in M$.

(d) If M reduces T Then $\mathcal{H} = M \oplus M^{\perp}$ and $TP_M = P_M T$. Notice also that $T|_M = TP_M$. Then

$$P_M T^* = P_M^* T^* = (T P_M)^*$$

Moreover, we know M reduces T^* also. Hence we get $P_M T^* = T^* P_M$. Thus we get

$$(T|_{M})^{*} = (TP_{M})^{*} = P_{M}T^{*} = T^{*}P_{M} = T^{*}|_{M}$$

(e) No. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be represented by

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Now take $M = \text{span}(e_1)$. The fact is evident.

14. not finished

Solution:

(a) Given P, Q are projections, if P + Q is a projection, then

$$P + Q = (P + Q)^2 = P^2 + PQ + QP + Q^2 = P + QP + PQ + Q$$

shows that PQ = -QP. Then for any $x, y \in \mathcal{H}$, verify

Conversely if $P(\mathcal{H}) \perp Q(\mathcal{H})$, then for all $x, y \in \mathcal{H}$, we get

$$\langle x, PQy \rangle = \langle Px, Qy \rangle = \langle QPx, y \rangle = 0$$

Then Reisz representation theorem forces PQ = QP = 0, thus we see

$$(P+Q)^2 = P^2 + PQ + QP + Q^2 = P + QP + PQ + Q = P + Q$$

Also $(P+Q)^* = P^* + Q^* = P + Q$. Hence we see that P+Q is a projection.

If this happens, then it is clear that $\operatorname{Ker}(P) \cap \operatorname{Ker}(Q) \subset \operatorname{Ker}(P+Q)$. Conversely let (P+Q)(y)=0, then P(y)=-Q(y). But since $P(\mathcal{H}) \perp Q(\mathcal{H})$, this forces P(y)=Q(y)=0. Hence $\operatorname{Ker}(P+Q)=\operatorname{Ker}(P)\cap \operatorname{Ker}(Q)$.

Moreover since $P(\mathcal{H}) \perp Q(\mathcal{H})$, we immediately see that $(P+Q)(\mathcal{H}) = P(\mathcal{H}) \oplus Q(\mathcal{H})$

(b) • If PQ is a projection, we must have $(PQ)^* = PQ$. Then for all $x, y \in \mathcal{H}$,

$$\langle PQ(x), y \rangle = \langle Qx, Py \rangle = \langle x, QPy \rangle$$

Then uniqueness of the adjoint forces PQ = QP.

• If PQ = QP, then

and $(P+Q-QP)^* = P^*+Q^*-P^*Q^* = P+Q-PQ = P+Q-QP$. shows that P+Q-QP is a projection.

• If P + Q - QP is a projection, then

$$P + Q - QP = (P + Q - QP)^* = P^* + Q^* - P^*Q^* = P + Q - PQ$$

forces $QP = PQ$

If the above happens, then for any $x \in \mathcal{H}$, PQ(x) = QP(x) forces that $PQ(x) \in P(\mathcal{H})$ and $QP(x) \in Q(\mathcal{H})$. Hence we see that $PQ(\mathcal{H}) \subset P(\mathcal{H}) \cap Q(\mathcal{H})$. Conversely, if $y \in P(\mathcal{H}) \cap Q(\mathcal{H})$, then for some $a, b \in \mathcal{H}$, P(a) = y = Q(b). Then $Q(P(a)) = Q(y) = Q^2(b) = Q(b) = y$ and $P(Q(b)) = P(y) = P^2(a) = P(a) = y$ shows that $y \in PQ(\mathcal{H})$. Hence we see that $P(\mathcal{H}) \cap Q(\mathcal{H}) = PQ(\mathcal{H})$.

Similarly, if $y \in \text{Ker}(P), z \in \text{Ker}(Q)$, then since QP = PQ, we get

$$(P+Q)(y+z) = (P+Q)^{2}(y+z)$$

$$= (P+Q)(P(z)+Q(y))$$

$$= P(z) + Q(y) + QP(z) + PQ(y)$$

$$= P(z) + Q(y)$$