

16.1.1 Review

- **Diagonalization:** If a $n \times n$ matrix is diagonalizable, it's equivalent to say it has n ind. eigenvectors. So its eigenvectors form a basis for \mathbb{R}^n . (*)
- If eigenvalues are distinct, then (*) holds.

16.1.2 Fibonacci Numbers

We show a famous example, where eigenvalues tell how to find the formula for Fibonacci Numbers.

Every new Fibonacci number come from two previous ones:

Fibonacci Number: 0, 1, 1, 2, 3, 5, 8, 13, ...

Fibonacci Equation: $F_{k+2} = F_{k+1} + F_k$, $F_0 = 0, F_1 = 1$.

How to compute F_{100} without computing F_2 to F_{99} ?

The key is to begin with a matrix equation $u_{k+1} = Au_k$. We put two Fibonacci number into a vector u_k , then you will see the matrix A:

Let
$$\mathbf{u}_k = \begin{bmatrix} \mathbf{F}_{k+1} \\ \mathbf{F}_k \end{bmatrix}$$
. The rule $\begin{cases} \mathbf{F}_{k+2} = \mathbf{F}_{k+1} + \mathbf{F}_k \\ \mathbf{F}_{k+1} = \mathbf{F}_{k+1} \end{cases}$ is $\mathbf{u}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{u}_k$. $\mathbf{u}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Every step we multiply \mathbf{u}_0 by \mathbf{A} . After 100 steps we obtain $\mathbf{u}_{100} = \mathbf{A}^{100} \mathbf{u}_0$:

$$\boldsymbol{u}_{100} = \begin{bmatrix} \boldsymbol{F}_{101} \\ \boldsymbol{F}_{100} \end{bmatrix} = \boldsymbol{A}^{100} \boldsymbol{u}_{0} = \boldsymbol{A}^{100} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

But how to compute A^{100} ? If possible, you can diagonalize A.

It's eay to show that for matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, we can decompose it into $\mathbf{A} = \mathbf{SDS}^{-1}$.

where
$$\mathbf{\textit{D}} = diag(\lambda_1, \lambda_2), \, \mathbf{\textit{S}} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix}$$
.

And $\begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$ is the eigenvector corresponding to λ_1 , $\begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$ is the eigenvector corresponding to λ_2 .

You can verify $\lambda_1 = \frac{1+\sqrt{5}}{2}$, $\lambda_2 = \frac{1-\sqrt{5}}{2}$. Thus we obtain $\mathbf{A}^{100} = \mathbf{S}\mathbf{D}^{100}\mathbf{S}^{-1}$. Hence we can compute \mathbf{u}_{100} :

$$\mathbf{u}_{100} = \mathbf{A}^{100} \mathbf{u}_0 = \mathbf{S} \mathbf{D}^{100} \mathbf{S}^{-1} \mathbf{u}_0 = \mathbf{S} \begin{pmatrix} \lambda_1^{100} & \\ & \lambda_2^{100} \end{pmatrix} \mathbf{S}^{-1} \mathbf{u}_0 \\
= \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \lambda_1^{100} & \\ & \lambda_2^{100} \end{pmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{101} \\ \mathbf{F}_{100} \end{bmatrix}$$

After messy computation, we obtain

$$\boldsymbol{F}_{100} = \frac{1}{\sqrt{5}} \left[\lambda_1^{100} - \lambda_2^{100} \right] = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{100} - \left(\frac{1 - \sqrt{5}}{2} \right)^{100} \right]$$

Another way to compute F_{100} :

We wet
$$\mathbf{S} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}$$
, where $\mathbf{x}_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$. $\mathbf{x}_1, \mathbf{x}_2$ are eigenvectors of \mathbf{A} . We let $\mathbf{u}_k = \begin{bmatrix} \mathbf{F}_{k+1} \\ \mathbf{F}_k \end{bmatrix}$.

Firstly, We want to find linear combination of x_1 and x_2 to get $u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \left(\begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} - \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} \right) \quad \text{or} \quad \boldsymbol{u}_0 = \frac{\boldsymbol{x}_1 - \boldsymbol{x}_2}{\lambda_1 - \lambda_2}$$

Then we multiply \mathbf{u}_0 by \mathbf{A}^{100} to get \mathbf{u}_{100} :

$$\begin{aligned} \mathbf{u}_{100} &= \mathbf{A}^{100} \mathbf{u}_{0} = \frac{\mathbf{A}^{100} \mathbf{x}_{1} - \mathbf{A}^{100} \mathbf{x}_{2}}{\lambda_{1} - \lambda_{2}} \\ &= \frac{\mathbf{A}^{99} (\mathbf{A} \mathbf{x}_{1}) - \mathbf{A}^{99} (\mathbf{A} \mathbf{x}_{2})}{\lambda_{1} - \lambda_{2}} = \frac{\lambda_{1} \mathbf{A}^{99} \mathbf{x}_{1} - \lambda_{2} \mathbf{A}^{99} \mathbf{x}_{2}}{\lambda_{1} - \lambda_{2}} = \frac{\lambda_{1}^{2} \mathbf{A}^{98} \mathbf{x}_{1} - \lambda_{2}^{2} \mathbf{A}^{98} \mathbf{x}_{2}}{\lambda_{1} - \lambda_{2}} = \dots \\ &= \frac{\lambda_{1}^{100} \mathbf{x}_{1} - \lambda_{2}^{100} \mathbf{x}_{2}}{\lambda_{1} - \lambda_{2}} \end{aligned}$$

Since $\lambda_1 - \lambda_2 = \sqrt{5}$, finally we obtain the same result.

16.1.3 Imaginary Eigenvalues

The eigenvalues might not be real numbers sometimes.

Consider the rotation matrix given by $\mathbf{K} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. It rotates our vector by 90°:

$$\mathbf{K} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}.$$

Figure 16.1: Rotate a vector by 90° .

This rotation matrix exists eigenvector and eigenvalue, which means $\exists v \neq 0$ and λ s.t.

$$Kv = \lambda v$$
.

However, this equation means this rotation matrix doesn't change the direction of \mathbf{v} . But in geometric meaning it rotates vector \mathbf{v} by 90°. Why? This phenomenon will not happen unless we go to imaginary eigenvectors. Let's compute eigenvalues and eigenvectors for \mathbf{K} first:

$$P_{\mathbf{K}}(\lambda) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1 \implies \lambda_1 = i, \quad \lambda_2 = -i.$$

$$(\lambda_1 \mathbf{I} - \mathbf{K}) \mathbf{x} = \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0} \implies \mathbf{x} = \alpha \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$
$$(\lambda_2 \mathbf{I} - \mathbf{K}) \mathbf{x} = \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0} \implies \mathbf{x} = \beta \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

Moverover, we can do similar transformation for K:

$$D = S^{-1}KS = \begin{pmatrix} i \\ -i \end{pmatrix}$$
 where $S = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$.

For motion in vector space, eigenvalues are "speed" and eigenvectors are "directions" under basis $\mathbf{S} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix}$.

$$\mathbf{v} = c_1 \mathbf{x}_1 + \dots + c_n \mathbf{x}_n \xrightarrow{\text{postmultiply } \mathbf{A}} \mathbf{A} \mathbf{v} = c_1 \lambda_1 \mathbf{x}_1 + \dots + c_n \lambda_n \mathbf{x}_n.$$

$$(c_1 \dots c_n) \xrightarrow{\text{rightmultiply } \mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n)} (c_1 \lambda_1 \dots c_n \lambda_n).$$

16.1.4 Complex Numbers

Even when the matrix is real, its eigenvalues of this matrix may be complex numbers. Example: A 2 by 2 rotation matrix has no real eigenvectors. It rotates a vector by 90° . But it has complex eigenvalues i and -i.

Definition 16.1 — Complex Numbers. A complex number $x \in \mathbb{C}$ could be written as x = a + bi, where $i^2 = -1$.

Its **complex conjugate** is defined as $\bar{x} = a - bi$.

Its **modulus** is defined as $|\mathbf{x}| = \sqrt{a^2 + b^2} = \mathbf{x}\bar{\mathbf{x}}$.

Figure 16.2: The number z = a + bi corrsponds to the vector $\begin{bmatrix} a \\ b \end{bmatrix}$.

16.1.5 Complex Vectors

Definition 16.2 — Length (norm) for complex. For
$$z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \in \mathbb{C}^n$$
, its **length (norm)** is defined as

$$||z|| = \sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} = \sqrt{\langle z, z \rangle} = \sqrt{z_1 \overline{z}_1 + z_2 \overline{z}_2 + \dots + z_n \overline{z}_n}.$$

Before we introduce the definition of inner product for complex, let's introduce the *Hermition* of a vector in \mathbb{C}^n :

Definition 16.3 — **Hermition.** The hermition of a vector in \mathbb{C}^n is its *conjugate transpose*.

$$\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \qquad \mathbf{z}^{\mathrm{H}} = \bar{\mathbf{z}}^{\mathrm{T}} = \begin{bmatrix} \bar{z}_1 & \dots & \bar{z}_n \end{bmatrix}.$$

Definition 16.4 — Inner product. The inner product of real or complex vectors z and w is $\mathbf{w}^{\mathrm{H}}\mathbf{z}$, which is defined as

$$\langle z, w \rangle = w^{\mathrm{H}} z = \begin{bmatrix} \bar{w}_1 & \dots & \bar{w}_n \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = \bar{w}_1 z_1 + \dots + \bar{w}_n z_n.$$

Note that with complex vectors, $\mathbf{w}^{\mathrm{H}}\mathbf{z}$ is different from $\mathbf{z}^{\mathrm{H}}\mathbf{w}$. The order of the vectors is now important! In fact, $\mathbf{z}^{H}\mathbf{w} = \bar{\mathbf{z}}_{1}\mathbf{w}_{1} + \cdots + \bar{\mathbf{z}}_{n}\mathbf{w}_{n}$ is the complex conjugate of $\mathbf{w}^{H}\mathbf{z}$.

Definition 16.5 — **Orthogonal**. The two vectors of real or complex are *orthogonal* if their inner product is zero.

$$\mathbf{z} \perp \mathbf{w} \implies \langle \mathbf{z}, \mathbf{w} \rangle = \mathbf{w}^{\mathrm{H}} \mathbf{z} = 0$$

Given
$$\mathbf{z} = \begin{pmatrix} 1 \\ i \end{pmatrix}, \mathbf{w} = \begin{pmatrix} -i \\ 1 \end{pmatrix}.$$

Given
$$\mathbf{z} = \begin{pmatrix} 1 \\ i \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} -i \\ 1 \end{pmatrix}$.
Although we have $\mathbf{z}^{\mathrm{T}}\mathbf{w} = 0$, the two vectors are not perpendicular.
This is because $\langle \mathbf{z}, \mathbf{w} \rangle = \mathbf{w}^{\mathrm{H}}\mathbf{z} = \begin{bmatrix} i & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = 2i \neq 0$.

■ Example 16.3 The inner product of $\mathbf{u} = \begin{bmatrix} 1 \\ i \end{bmatrix}$ with $\mathbf{v} = \begin{bmatrix} i \\ 1 \end{bmatrix}$ is $\begin{bmatrix} -i & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = 0$.

Although those vectors (1,i) and (i,1) don't look perpendicular, actually they are! A zero inner product still means vectors are orthogonal.

Proposition 16.1 — Conjugate symmetry.

For two vectors \mathbf{z} and $\mathbf{w} \in \mathbb{C}^n$, we have $\overline{\langle \mathbf{z}, \mathbf{w} \rangle} = \langle \mathbf{w}, \mathbf{z} \rangle$.

Verify:

$$\langle z, w \rangle = w^{\mathrm{H}} z = \bar{w}^{\mathrm{T}} z = \bar{w}_1 z_1 + \dots + \bar{w}_n z_n$$

 $\langle w, z \rangle = z^{\mathrm{H}} w = \bar{z}^{\mathrm{T}} w = \bar{z}_1 w_1 + \dots + \bar{z}_n w_n$

And since we have $\overline{wv} = \overline{w}\overline{v}$ and $\overline{w+v} = \overline{w} + \overline{v}$, it's easy to find that

$$\overline{\overline{w_1z_1+\cdots+\overline{w_n}z_n}}=w_1\overline{z}_1+\cdots+w_n\overline{z}_n.=\overline{z}_1w_1+\cdots+\overline{z}_nw_n.$$

Hence
$$\overline{\langle z, w \rangle} = \langle w, z \rangle$$
.

Proposition 16.2 — Sesquilinear.

For two vectors \mathbf{z} and $\mathbf{w} \in \mathbb{C}^n$, we have

$$\langle \alpha \mathbf{z}, \mathbf{w} \rangle = \alpha \langle \mathbf{z}, \mathbf{w} \rangle \tag{16.1}$$

$$\langle \mathbf{z}, \beta \mathbf{w} \rangle = \bar{\beta} \langle \mathbf{z}, \mathbf{w} \rangle \tag{16.2}$$

for scalars α and β .

Verify:

$$\langle \alpha z, w \rangle = w^{H}(\alpha z)$$

= $\alpha(w^{H}z)$
= $\alpha \langle z, w \rangle$.

For equation (16.2), due to the conjugate symmetry, we derive

$$\langle \mathbf{z}, \boldsymbol{\beta} \mathbf{w} \rangle = \overline{\langle \boldsymbol{\beta} \mathbf{w}, \mathbf{z} \rangle}$$

Since
$$\langle \beta w, z \rangle = \beta \langle w, z \rangle = \beta \overline{\langle z, w \rangle}$$
, we obtain

$$\langle \mathbf{z}, \boldsymbol{\beta} \mathbf{w} \rangle = \overline{\boldsymbol{\beta} \overline{\langle \mathbf{z}, \mathbf{w} \rangle}} = \overline{\boldsymbol{\beta}} \langle \mathbf{z}, \mathbf{w} \rangle.$$

Hermition of matrix

The hermition of a matrix \mathbf{A} is given by

$$\boldsymbol{A}^{\mathrm{H}} := \bar{\boldsymbol{A}}^{\mathrm{T}}$$

And the rules for hermition usually comes frim transpose. For example, the hermition has the property

$$(\boldsymbol{A}\boldsymbol{B})^{\mathrm{H}} = \boldsymbol{B}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}}.$$

\mathbb{R}^n	\mathbb{C}^n
$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$	$\langle \pmb{z}, \pmb{w} \rangle = \pmb{w}^{\mathrm{H}} \pmb{z}$
$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{x}$	$z^{\mathrm{H}}w=\overline{w^{\mathrm{H}}z}$
$\ \boldsymbol{x}\ ^2 = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}$	$\ \mathbf{z}\ ^2 = \mathbf{z}^{\mathrm{H}}\mathbf{z}$
$\mathbf{x} \perp \mathbf{y} \Longleftrightarrow \mathbf{x}^{\mathrm{T}} \mathbf{y} = 0$	$\mathbf{z} \perp \mathbf{w} \Longleftrightarrow \mathbf{w}^{\mathrm{H}} \mathbf{z} = 0$

- What aspects of eigenvalues/eigenvectors are not nice?
 - Some matrix are *non-diagonalizable*. (or equivalently, eigenvectors don't form a basis.)
 - Eigenvalues can be *complex*.

We may ask, what matrix has all real eigenvalues? Let's focus on *real* matrix first. For real symmetric matrix, its eigenvalues are all real!

Proposition 16.3 For a real symmetric matrix \mathbf{A} ,

- All eigenvalues are real numbers.
- Its eigenvectors corresponding to distinct eigenvalues are orthogonal.
- A is diagonalizable. More general, all eigenvectors of A are orthogonal!

Before the proof, let's introduce a useful formula: $\langle Ax, y \rangle = \langle x, A^H y \rangle$.

Verify:
$$\langle Ax, y \rangle = y^{H}Ax = (A^{H}y)^{H}x = \langle x, A^{H}y \rangle$$

Proof. • For the first part, suppose x is any eigenvectors of A corresponding to eigenvalue λ . Then we obtain

$$\langle Ax, x \rangle = \langle x, A^{\mathrm{H}}x \rangle$$

- For the LHS, $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle$.
- For the RHS, Since \boldsymbol{A} is a real symmetric matrix, we have $\boldsymbol{A}^{H} = \bar{\boldsymbol{A}}^{T} = \boldsymbol{A}^{T} = \boldsymbol{A}$. Hence $\langle \boldsymbol{x}, \boldsymbol{A}^{H} \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x} \rangle$. Moreover, $\langle \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \lambda \boldsymbol{x} \rangle = \bar{\lambda} \langle \boldsymbol{x}, \boldsymbol{x} \rangle$. So we have $\langle \boldsymbol{x}, \boldsymbol{A}^{H} \boldsymbol{x} \rangle = \bar{\lambda} \langle \boldsymbol{x}, \boldsymbol{x} \rangle$.

Finally we have $\lambda \langle x, x \rangle = \langle Ax, x \rangle = \langle x, A^H x \rangle = \bar{\lambda} \langle x, x \rangle$.

Since $\mathbf{x} \neq \mathbf{0}$, $\langle \mathbf{x}, \mathbf{x} \rangle \neq 0$. Hence $\lambda = \bar{\lambda}$. So λ is real.

• For the second part, suppose x_1 and x_2 are two eigenvectors corresponding to two **distinct** eigenvalues λ_1 and λ_2 respectively. Our goal is to show $x_1 \perp x_2$. We find that

$$\langle \boldsymbol{A}\boldsymbol{x}_1, \boldsymbol{x}_2 \rangle = \langle \boldsymbol{x}_1, \boldsymbol{A}^{\mathrm{H}}\boldsymbol{x}_2 \rangle$$

- For LHS, $\langle \mathbf{A}\mathbf{x}_1, \mathbf{x}_2 \rangle = \langle \lambda_1 \mathbf{x}_1, \mathbf{x}_2 \rangle = \lambda_1 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$.
- For RHS, $\langle \mathbf{x}_1, \mathbf{A}^H \mathbf{x}_2 \rangle = \langle \mathbf{x}_1, \mathbf{A} \mathbf{x}_2 \rangle = \langle \mathbf{x}_1, \lambda_2 \mathbf{x}_2 \rangle = \bar{\lambda}_2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$. Since we have shown that all eigenvalues are real for \mathbf{A} , we obtain $\bar{\lambda} = \lambda$.

Hence $\langle \boldsymbol{x}_1, \boldsymbol{A}^{\mathrm{H}} \boldsymbol{x}_2 \rangle = \lambda_2 \langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle$.

Hence $\lambda_1 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle = \langle \mathbf{A} \mathbf{x}_1, \mathbf{x}_2 \rangle = \langle \mathbf{x}_1, \mathbf{A}^H \mathbf{x}_2 \rangle = \lambda_2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$.

Since $\lambda_1 \neq \lambda_2$, we obtain $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle = 0$. That is to say, $\mathbf{x}_1 \perp \mathbf{x}_2$.

• The proof for the third part is not required.

16.1.6 Spectral Theorem

We state a theorem without proving it:

Theorem 16.1 — Spectral Theorem. Any real symmetric matrix \mathbf{A} has the factorization

$$\boldsymbol{A} = \boldsymbol{Q} \Lambda \boldsymbol{Q}^{\mathrm{T}}, \tag{16.3}$$

where $\Lambda \in \mathbb{R}^{n \times n}$ is diagonal matrix, $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is orthogonal matrix.

Proof. From proposition (16.3) we know that \bf{A} is *diagonalizable*, which means there exists invertible matrix \bf{Q} and diagonal matrix $\bf{\Lambda}$ such that

$$\boldsymbol{A} = \boldsymbol{Q} \Lambda \boldsymbol{Q}^{-1}$$

Then we know that all eigenvalues of \boldsymbol{A} are real numbers, so Λ is a real matrix. Since all eigenvectors $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$ are orthogonal, matrix $\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{x}_1 & \dots & \boldsymbol{x}_n \end{bmatrix}$ is orthogonal matrix.

 $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{\mathrm{T}} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$. So \mathbf{A} could be diagonalized by an orthogonal matrix. If we let $\mathbf{Q} = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix}$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then \mathbf{A} could be written as:

$$m{A} = m{Q} \wedge m{Q}^{ ext{T}} = egin{bmatrix} q_1 & \dots & q_n \end{bmatrix} egin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} egin{bmatrix} q_1^{ ext{T}} & \vdots & \\ \vdots & \vdots & \vdots & \\ q_n^{ ext{T}} & \end{bmatrix}$$

Or equivalently,

$$\mathbf{A} = \lambda_1 q_1 q_1^{\mathrm{T}} + \lambda_2 q_2 q_2^{\mathrm{T}} + \dots + \lambda_n q_n q_n^{\mathrm{T}}$$

$$\tag{16.4}$$

Note that for each term $q_i q_i^T$ is the **projection matrix** to q_i . Hence this theorm says that a real symmetric matrix is a combination of projection matrices.

■ Example 16.4

If we write \mathbf{A} as combination of projection matrix, we can have a deep understanding for $\mathbf{A}\mathbf{x}$:

$$m{A} = \sum_{j=1}^n \lambda_j q_j q_j^{\mathrm{T}} \implies m{A} m{x} = \sum_{j=1}^n \lambda_j q_j q_j^{\mathrm{T}} m{x} = \sum_{j=1}^n \lambda_j (q_j q_j^{\mathrm{T}} m{x}).$$

If we set n = 2, it's clear to find that

$$\mathbf{x} = c_1 q_1 + c_2 q_2 \implies \mathbf{A} \mathbf{x} = \lambda_1 c_1 q_1 + \lambda_2 c_2 q_2$$

Showing in graph, we have

Figure 16.3: Linear transformation of **A**.

The formula $\mathbf{A} = \sum_{j=1}^{n} \lambda_j q_j q_j^{\mathrm{T}}$ or $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{\mathrm{T}}$ are called **eigendecomposition** or **eigenvalue** decomposition.

And sometimes $\{\lambda_1, \dots, \lambda_n\}$ are called **spectum** of **A**.

Also, we can extend our result from real symmetric matrix into complex:

16.1.7 Hermition matrix

Definition 16.6 — **Hermition matrix.** A matrix $\mathbf{M} \in \mathbb{C}^{n \times n}$ is said to be **Hermition** if $\mathbf{M} = \mathbf{M}^{H}$.

Example: $\mathbf{M} = \begin{bmatrix} 3 & 2-i \\ 2+i & 4 \end{bmatrix}$ is hermition matrix since $\mathbf{M} = \mathbf{M}^{\mathrm{H}}$.

If \mathbf{M} is a real matrix, then $\mathbf{M} = \mathbf{M}^{H} \iff \mathbf{M} = \mathbf{M}^{T}$. So if the real matrix is hermition matrix, that is to say it is real symmetric matrix.

Hermition matrix has many interesting properties:

Proposition 16.4 If $\mathbf{M} = \mathbf{M}^{H}$, then $\mathbf{x}^{H}\mathbf{M}\mathbf{x} \in \mathbb{R}$ for any complex vectors \mathbf{x} .

Proof. We set $\alpha := \mathbf{x}^H \mathbf{M} \mathbf{x}$. Since α is a number (easy to check), we obtain $\alpha^T = \alpha$.

Thus $\bar{\alpha} = \alpha^{H} = (\mathbf{x}^{H}\mathbf{M}\mathbf{x})^{H} = \mathbf{x}^{H}\mathbf{M}\mathbf{x} = \alpha$.

Hence α is real.

Proposition 16.5 If $\mathbf{M} = \mathbf{M}^{H}$, then $\langle \mathbf{x}, \mathbf{M} \mathbf{y} \rangle = \langle \mathbf{M} \mathbf{x}, \mathbf{y} \rangle$.

Proof. By definition,

$$\langle x, My \rangle = (My)^{\mathrm{H}}x = y^{\mathrm{H}}M^{\mathrm{H}}x = y^{\mathrm{H}}Mx = \langle Mx, y \rangle.$$

And we have general orthogonal matrices for complex matrices:

Definition 16.7 — **Unitary.** A unitary matrix is a complex matrix that has **orthonormal columns**. In other words, U is unitary if $U^{H}U = I$.

And the spectral theorm can also apply for Hermition matrix:

Theorem 16.2 Any Hermition matrix M can be factorized into

$$\mathbf{M} = \mathbf{U} \Lambda \mathbf{U}^{\mathrm{H}}$$

where Λ is a real diagonal matrix, \boldsymbol{U} is a complex unitary matrix.

What good points does Hermition matrix has?

- It is diagonalizable.
- Its eigenvectors form orthogonal basis.
- Its eigenvalues are all real.