UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CURSO DE CIRCUITOS DIGITAIS

ANDREI DANELLI

CHAPECÓ 2021

O projeto implementado, trata-se de um circuito multiplicador binário 4x4 bits, o mesmo foi dividido em 3 partes, sendo como: A primeira parte é o MS (Meio Somador), a segunda parte é o SC (Somador Completo) e o main que faz com que recebe as entradas e exibe as saídas.

No circuito SC (Somador Completo), foi utilizado as seguintes portas lógicas:

Portas	Total
AND	2
XOR	2
OR	1

Já no MS (Meio Somador), foi utilizado as seguintes portas lógicas:

Portas	Total
AND	1
XOR	1

Para o circuito do main, onde se encontra a principal função do circuito, foi utilizado os componentes:

Componentes	Total
AND	16
MS	4
SC	8

A estratégia utilizada para o desenvolvimento do circuito foi multiplicar o resultado de cada bit do multiplicador e somando os mesmos, utilizando os módulos desenvolvidos no circuito.

Tabela verdade circuito MS (Meio Somador)

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Tabela verdade circuito (Somador Completo)

Α	В	С	SUM	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Simplificações:

$$S = A \sim B \sim C + A \sim BC \sim + AB \sim C \sim + ABC$$

$$S = C(A \sim B \sim + AB) + C \sim (A \sim B + AB \sim)$$

$$S = S+(A+B)$$

$$S = A \sim BC + AB \sim C + ABC \sim + ABC$$

$$S = AB + BC + AC$$

Dificuldades: A parte mais complicada em que encontrei no meio do projeto foi em adicionar os subcircuitos e fazer com que ele fizesse corretamente as somas das multiplicações para também pode transportar o Carry de forma correta pelo circuito e poder entregar o resultado esperado.