### Exercise 1

For each of the following formulas use the DPLL procedure to determine whether  $\phi$  is satisfiable or unsatisfiable. Give a complete trace of the algorithm, showing the simplified formula for each recursive call of the DPLL function. Assume that DPLL selects variables in alphabetical order (i.e.  $A, B, C, D, E, \ldots$ ), and that the splitting rule first attempts the value False (F) and then the value True (T).

(a) 
$$\phi_1 = (A \vee B) \wedge (B \vee C) \wedge (\neg B \vee D) \wedge (\neg A \vee \neg D) \wedge (\neg C \vee E) \wedge (A \vee \neg B \vee \neg D)$$

(b) 
$$\phi_2 = (\neg A \lor \neg B \lor \neg C) \land (A \lor \neg B) \land (A \lor \neg D) \land (B \lor \neg E) \land (\neg C \lor D) \land (C \lor E) \land (C \lor \neg E) \land (\neg D \lor E)$$

#### **Solution:**

a) DPLL trace:

$$\{\{A, B\}, \{B, C\}, \{\neg B, D\}, \{\neg A, \neg D\}, \{\neg C, E\}, \{A, \neg B, \neg D\}\}$$

1. Splitting rule:

Satisfying assignment:  $A, \neg B, C, \neg D, E$ 

b) DPLL trace:

$$\{\{\neg A, \neg B, \neg C\}, \{A, \neg B\}, \{A, \neg D\}, \{B, \neg E\}, \{\neg C, D\}, \{C, E\}, \{C, \neg E\}, \{\neg D, E\}\}\}$$

1. Splitting rule:

1a. 
$$A \mapsto F$$
  $\{\{\neg B\}, \{\neg D\}, \{B, \neg E\}, \{\neg C, D\}, \{C, E\}, \{C, \neg E\}, \{\neg D, E\}\}\}$ 

2a. UP rule:  $B \mapsto F$   $\{\{\neg D\}, \{\neg E\}, \{\neg C, D\}, \{C, E\}, \{C, \neg E\}, \{\neg D, E\}\}\}$ 

3a. UP rule:  $D \mapsto F$   $\{\{\neg E\}, \{\neg C\}, \{C, E\}, \{C, \neg E\}\}\}$ 

4a. UP rule:  $C \mapsto F$   $\{\{\neg E\}, \{E\}, \{\neg E\}\}$ 

5a. UP rule:  $E \mapsto F$   $\{\Box\}$ 

# 1. Splitting rule:

1b. 
$$A \mapsto T$$
  $\{\{\neg B, \neg C\}, \{B, \neg E\}, \{\neg C, D\}, \{C, E\}, \{C, \neg E\}, \{\neg D, E\}\}$  2b. Splitting rule:

There is no satisfying assignment.

#### Exercise 2

For the two formulas below, use resolution to prove that the formulas are unsatisfiable. To do so, first give a set of clauses  $\Delta$  that is equivalent to the formula and second, use resolution to prove that it is unsatisfiable. Write the resolution process in the form of a tree for easier readability.

(a) 
$$\phi_1 = (A \lor B \lor C) \land (\neg A \lor B \lor C) \land (A \lor \neg B \lor C) \land (A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor \neg C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor \neg B \lor \neg C)$$

(b) 
$$\phi_2 = (G \vee \neg H) \wedge (\neg G \vee H) \wedge (A \to B) \wedge (\neg B \vee C) \wedge (A \vee D) \wedge (\neg C \vee \neg A \vee \neg E) \wedge (\neg D \vee A) \wedge F \wedge (F \leftrightarrow E)$$

**Solution:** 

(a) 
$$\Delta_1 = \{\{A,B,C\}, \{\neg A,B,C\}, \{A,\neg B,C\}, \{A,B,\neg C\}, \{\neg A,\neg B,C\}, \{\neg A,B,\neg C\}, \{A,\neg B,\neg C\}, \{\neg A,\neg B,\neg C\}\}$$

$$\{A,B,C\} \quad \{A,\neg B,C\} \quad \{\neg A,B,C\} \quad \{\neg A,B,C\} \quad \{\neg A,B,\neg C\} \quad \{\neg A,B,\neg C\} \quad \{\neg A,\neg B,\neg C\} \quad \{\neg A,\neg B,\neg C\} \quad \{\neg B,\neg C\}$$

(b) 
$$\Delta_2 = \{\{G, \neg H\}, \{\neg G, H\}, \{\neg A, B\}, \{\neg B, C\}, \{A, D\}, \{\neg C, \neg A, \neg E\}, \{\neg D, A\}, \{F\}, \{\neg F, E\}, \{\neg E, F\}\}$$

Resolution tree:



## Exercise 3

Transform the following formulas to CNF. To do so, follow the steps from the lecture (Chapter 9 slide 21) and give the intermediate results (you may skip those steps where there is nothing to do for the formula at hand). Simplify the resulting formulas where possible.

(a) 
$$(P \to Q) \leftrightarrow (P \to R)$$

(b) 
$$\neg (P \leftrightarrow Q) \lor (Q \to R)$$

(c) 
$$(P \to R) \land (Q \to R) \land \neg (\neg Q \land (\neg R \lor P))$$

#### **Solution:**

- (a) 1. Eliminate  $\leftrightarrow$ :  $((P \to Q) \to (P \to R)) \land ((P \to R) \to (P \to Q))$ 
  - 2. Eliminate  $\rightarrow$ :  $(\neg(\neg P \lor Q) \lor (\neg P \lor R)) \land (\neg(\neg P \lor R) \lor (\neg P \lor Q))$
  - 3. Move  $\neg$  inwards:  $((P \land \neg Q) \lor \neg P \lor R) \land ((P \land \neg R) \lor \neg P \lor Q)$
  - 4. Distribute  $\vee$  over  $\wedge$ :  $(\neg P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee \neg R)$

CNF: 
$$(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R)$$

- (b) 1. Eliminate  $\leftrightarrow$ :  $\neg((P \to Q) \land (Q \to P)) \lor (Q \to R)$ 
  - 2. Eliminate  $\rightarrow$ :  $\neg((\neg P \lor Q) \land (\neg Q \lor P)) \lor \neg Q \lor R$
  - 3. Move  $\neg$  inwards:  $(P \land \neg Q) \lor (Q \land \neg P) \lor \neg Q \lor R$
  - 4. Distribute  $\vee$  over  $\wedge$ :  $\neg P \vee \neg Q \vee R$

CNF: 
$$\neg P \lor \neg Q \lor R$$

- (c) 1. Elimination of equivalence: nothing to do
  - 2. Elimination of implication:  $(\neg P \lor R) \land (\neg Q \lor R) \land \neg (\neg Q \land (\neg R \lor P))$
  - 3. Move negation inwards:  $(\neg P \lor R) \land (\neg Q \lor R) \land (Q \lor (R \land \neg P))$
  - 4. Distribute  $\vee$  over  $\wedge$ :  $(\neg P \vee R) \wedge (\neg Q \vee R) \wedge (Q \vee R) \wedge (Q \vee \neg P)$

CNF: 
$$(\neg P \lor R) \land (\neg Q \lor R) \land (Q \lor R) \land (Q \lor \neg P)$$

### **Exercise 4**

Consider the formulas in Exercise 3. Are they satisfiable? Draw the truth table and give the number of interpretations that satisfy the formula.

### **Solution:**

$$\gamma = (\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R)$$

| P       | Q | R       | $(\neg P \vee \neg Q \vee R)$ | $(\neg P \lor Q \lor \neg R)$ | $\gamma$ |
|---------|---|---------|-------------------------------|-------------------------------|----------|
| $\perp$ | 1 | 1       | T                             |                               | T        |
| $\perp$ | 1 | T       | T                             |                               | T        |
| $\perp$ | Т | 1       | Т                             |                               | Т        |
| $\perp$ | Т | Т       | Т                             | Т                             | T        |
| Т       | 1 | 1       | T                             |                               | Т        |
| Т       | T | Т       | Т                             |                               | $\perp$  |
| Т       | Т | $\perp$ | T                             | Т                             | $\perp$  |
| Т       | Т | Т       | Т                             | Т                             | Т        |

$$\gamma = \neg P \vee \neg Q \vee R$$

| P       | Q | R | $\gamma$ |
|---------|---|---|----------|
|         | 1 |   | $\perp$  |
| $\perp$ | 1 | T | $\perp$  |
| $\perp$ | Т | 1 | $\perp$  |
| $\perp$ | Т | T | T        |
| Т       | T | 1 | T        |
| Т       | T | T | Т        |
| Т       | Т |   |          |
| T       | Т | T | T        |

$$\gamma = (\neg P \lor R) \land (\neg Q \lor R) \land (Q \lor R) \land (Q \lor \neg P)$$

| P       | Q        | R | $(\neg P \lor R)$ | $(\neg Q \lor R)$ | $(Q \vee R)$ | $(Q \lor \neg P)$ | $\gamma$ |
|---------|----------|---|-------------------|-------------------|--------------|-------------------|----------|
| $\perp$ | $\perp$  | 1 | Т                 | Т                 | Τ            | Т                 |          |
| $\perp$ | $\perp$  | T | Т                 | Т                 | T            | Т                 | $\top$   |
|         | Т        | 1 | Т                 | Τ                 | T            | Т                 |          |
|         | Т        | Т | Т                 | Т                 | T            | Т                 | T        |
| T       | $\perp$  | 1 |                   | Т                 | Τ            | Τ                 |          |
| T       | $\perp$  | Т | Т                 | Т                 | T            | Τ                 |          |
| T       | Т        | 1 |                   | Τ                 | T            | Т                 |          |
| T       | $\vdash$ | T | T                 | Т                 | Т            | T                 | $\Box$   |

The formula is satisfiable and has 3 satisfying assignments.

### Exercise 5

Encode the example in the slides of Chapter 7 as a logical formula to verify that if the counter is initialized in the range 0-2, it cannot transition to the value 3.



- Counter, repeatedly from c = 0 to c = 2.
- 2 bits  $x_1$  and  $x_0$ ;  $c = 2 * x_1 + x_0$ .
- ("FF" Flip-Flop, "D" Data IN, "CLK" Clock)
- $\rightarrow$  The circuit simply repeats the operations:  $x_0 \leftarrow NOR(x_0, x_1) = \neg(x_0 \lor x_1)$ ; and  $x_1 \leftarrow x_0$ . The clock is there so that both operations happen simultaneusly, so  $x_0$  and  $x_1$  are updated at the same time.

Hint: you need to refer to two different states of the counter (before and after an operation), so you'll need different propositions for those.

Hint: If you want to prove that given your knowledge encoded as a formula  $\phi_K$ , some statement  $\phi_S$  is true, then you need to encode the formula  $\phi = \phi_K \land \neg \phi_S$ . If  $\phi$  is unsatisfiable, then it means that if we assume  $\phi_K$ ,  $\phi_S$  must be true (as  $\neg \phi_S$  leads to contradiction).

#### **Solution:**

We encode the formula in term of propositions  $x_0, x_1, x'_0, x'_1$ , which encode the state of the circuit before and after an operation.

We know that:

- The value of the circuit is initially in the range 0-2:  $\neg(x_0 \land x_1)$
- The value of the circuit is updated with  $x_0 \leftarrow \neg(x_0 \lor x_1) : x_0' \leftrightarrow \neg(x_0 \lor x_1)$
- The value of the circuit is updated with  $x_1 \leftarrow x_0$ :  $x_1' \leftrightarrow x_0$

We want to prove that  $\neg(x_0' \land x_1')$ . So, our full formula is:  $(\neg(x_0 \land x_1)) \land (x_0' \leftrightarrow \neg(x_0 \lor x_1)) \land (x_1' \leftrightarrow x_0) \land (x_0' \land x_1')$ 

**Note:** The encoding above is just one possibility. For example, one can also use propositions  $c_0, \ldots, c_3, c'_0, \ldots, c'_3$  representing the value of the counter, and add clauses making sure they have the right values such as  $c_0 \leftrightarrow \neg x_0 \land \neg x_1$ ). This however, would not scale if the counter can have millions of values