CCF NOI 2018 河南省组队选拔赛 Round 1

题目名称	奇怪的背包	反色游戏	字串覆盖
目录	knapsack	game	cover
可执行文件名	knapsack	game	cover
输入文件名	knapsack.in	game.in	cover.in
输出文件名	knapsack.out	game.out	cover.out
每个测试点时限	2s	1s	3s
内存限制	512MB	512MB	512MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序须加后缀

对于 C++ 语言	knapsack.cpp	game.cpp	cover.cpp
对于 C 语言	knapsack.c	game.c	cover.c
对于 Pascal 语言	knapsack.pas	game.pas	cover.pas

编译开关

对于 C++ 语言	-lm -O2	-lm -O2	-lm -O2
对于 C 语言	-lm -O2	-lm -O2	-lm -O2
对于 Pascal 语言	-O2	-O2	-O2

1 奇怪的背包

1.1 题目描述

小 C 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 P,当他向这个背包内放入若干个物品后,背包的重量是物品总体积对 P 取模后的结果.

现在小 C 有 n 种体积不同的物品,第 i 种占用体积为 V_i ,每种物品都有无限个. 他会进行 q 次询问,每次询问给出重量 w_i ,你需要回答有多少种放入物品的方案,能将一个初始为空的背包的重量变为 w_i . 注意,两种方案被认为是不同的,当且仅当<u>放入物品的种类不同</u>,而与每种物品放入的个数无关. 不难发现总的方案数为 2^n .

由于答案可能很大, 你只需要输出答案对 10⁹ + 7 取模的结果.

1.2 输入格式

从文件 knapsack.in 中读入数据. 第一行三个整数 n,q,P.

接下来一行 n 个整数表示 V_i .

接下来一行 q 个整数表示 w_i .

1.3 输出格式

输出到文件 knapsack.out 中.

输出 q 行,每行一个整数表示答案.

1.4 样例输入 1

3 3 6

1 3 4

5 2 3

1.5 样例输出 1

5 6 6

1.6 样例解释 1

对于第一个询问 5, 选择 $\{1\}$, $\{1,3\}$, $\{1,4\}$, $\{3,4\}$, $\{1,3,4\}$ 都是合法的方案.

1.7 样例输入输出 2

见选手目录下的 knapsack/knapsack2.in 与 knapsack/knapsack2.ans.

1.8 数据范围与约定

对于所有数据,有 $1 \le n, q \le 10^6, 3 \le P \le 10^9, 0 < V_i, w_i < P$. 保证 V_i 两两不同.

测试点编号	n	q	P
1	= 1		$\leq 10^{9}$
2	≤ 10	≤ 10 $\leq 10^3$	≤ 10
3			≤ 250
4			
5	$\leq 10^3$		$\leq 10^4$
6			<u> </u>
7			=998244353
8			
9	$\leq 10^{6}$	$\leq 10^{6}$	$\leq 10^9$
10			

2 反色游戏

2.1 题目描述

小 C 和小 G 经常在一起研究博弈论问题,有一天他们想到了这样一个游戏. 有一个 n 个点 m 条边的无向图,初始时每个节点有一个颜色,要么是黑色,要么是白色. 现在他们对于每条边做出一次抉择: 要么将这条边连接的两个节点都反色 (黑变白,白变黑),要么不作处理. 他们想把所有节点都变为白色,他们想知道在 2^m 种决策中,有多少种方案能达成这个目标.

小 G 认为这个问题太水了,于是他还想知道,对于第 i 个点,在删去这个点及与它相连的边后,新的答案是多少.

由于答案可能很大, 你只需要输出答案对 109 + 7 取模后的结果.

2.2 输入格式

从文件 game.in 中读入数据.

第一行一个整数 T,表示数据组数.

每组数据第一行两个整数 n, m, 表示点数和边数.

接下来 m 行,每行两个整数 u,v,描述无向图的一条边.

接下来一行一个长度为 n 的 0/1 串,如果第 i 个字符为 0 表示第 i 个点为白色,否则为黑色.

2.3 输出格式

输出到文件 game.out 中.

每组数据输出一行 n+1 个整数,第一个整数表示不删去任何点时的答案.接下来 n 个整数,第 i 个表示删去第 i 个点时的答案.

2.4 样例输入 1

- 2
- 5 5
- 1 2
- 2 3
- 3 4

- 2 4
- 3 5

00000

- 5 4
- 1 2
- 2 3
- 2 4
- 2 5
- 11111

2.5 样例输出 1

- 2 2 1 1 1 2
- 0 1 0 1 1 1

2.6 样例解释 1

第一组数据,在不删掉任何点时,有两种方案:要么对所有的边都不做操作;要么对(2,3),(3,4),(2,4)做操作.

在删掉 2 号点或 3 号点或 4 号点时, 唯一的方案是对所有边都不做操作. 注意图可能不连通.

2.7 样例输入输出 2

见选手目录下的 game/game2.in 与 game/game2.ans.

2.8 数据范围与约定

对于所有数据,有 $1 \le T \le 5, 1 \le n, m \le 10^5, 1 \le u, v \le n$,没有重边和自环.

测试点编号	n	m	特殊性质
1		≤ 10	
2	≤ 15	< 50	无
3	1	≥ 90	
4	≤ 50	≤ 100	初始全为白色
5			无
6	≤ 200	≤ 200	初始全为白色
7	≤ 2000	≤ 2000	无
8			初始全为白色
9	$\leq 10^{5}$	$\leq 10^5$	无
10			<u> </u>

3 字串覆盖

3.1 题目描述

小 C 对字符串颇有研究,他觉得传统的字符串匹配太无聊了,于是他想到了这样一个问题.

对于两个长度为 n 的串 A,B, 小 C 每次会给出给出 4 个参数 s,t,l,r. 令 A 从 s 到 t 的子串 (从 1 开始标号) 为 T,令 B 从 l 到 r 的子串为 P. 然后他会进行下面的操作:

如果 T 的某个子串与 P 相同,我们就可以删掉 T 的这个子串,并获得 K-i 的收益,其中 i 是初始时 A 中 (注意不是 T 中) 这个子串的起始位置,K 是给定的参数.删除操作可以进行任意多次,你需要输出获得收益的最大值.

注意每次询问都是独立的,即进行一次询问后,删掉的位置会复原.

3.2 输入格式

从文件 cover.in 中读入数据.

第一行两个整数 n, K,表示字符串长度和参数.

接下来一行一个字符串 A.

接下来一行一个字符串 B.

接下来一行一个整数 q,表示询问个数.

接下来 q 行,每行四个整数 s,t,l,r,表示一次询问.

3.3 输出格式

输出到文件 cover.out 中.

输出 q 行,每行一个整数,表示一个询问的答案.

3.4 样例输入 1

10 11

abcbababab

ababcbabab

5

1 9 7 9

- 3 10 8 10
- 1 10 1 2
- 5 7 2 3
- 1 5 3 6

3.5 样例输出 1

- 6
- 10
- 22
- 5
- 10

3.6 样例解释 1

对于第一组询问 $T={
m abcb}{
m {\bf aba}}{
m ba},\,P={
m aba},\,$ 将加粗部分的子串删去,收益为 K-5=6.

对于第二组询问 T = c**bab**a**bab**, P = bab, 收益为 (K - 4) + (K - 8) = 10.

3.7 数据范围与约定

对于所有数据,有 $1 \le n, q \le 10^5$,A, B 仅由小写英文字母组成, $1 \le s \le t \le n, 1 \le l \le r \le n, n < K \le 10^9$.

对于 $n=10^5$ 的测试点,满足 $51 \le r-l \le 2000$ 的询问不超过 11000 个,且 r-l 在该区间内均匀随机.

测试点编号	n	q	r-l
1	= 10	= 10	
2	= 300	= 300	$\leq n$
3	=5000	= 5000	
4			≤ 6
5			≤ 21
6			≤ 51
7	$=10^{5}$	$=10^5$	
8			≥ 1999
9			
10			$\leq n$