Circuit theorems 004

Unlimited Attempts.

The box contains a linear circuit.

When $R = R_1$, we measure $i = I_1$.

When $R = R_2$, we measure $i = I_2$.

What value of $R = R_3$ results in $i = I_3$?

What is the maximum value of $i = i_{max}$ that can be achieved (assuming of $R \ge 0$)?

Given Variables:

R1:1 ohm

R2:3 ohm

I1:10 A

I2:6A I3:2A

Calculate the following:

R3 (ohm):

imax (A):

cm1 1	on work to see the table	1	 Consultation of the consultation 	Secretaria de la compansión de la compan
The be	ox cont	ains a li	inear	circuit.

When $R = R_1$, we measure $i = I_1$.

When $R = R_2$, we measure $i = I_2$.

What value of $R = R_3$ results in $i = I_3$?

What is the maximum value of $i = i_{max}$ that can be achieved (assuming of $R \ge 0$)?

$$R1 = 5 ohm$$

R2 = 8 ohm

11 = 4 A

12 = 3 A

13 = 2 A

(i)
$$4 = \frac{\sqrt{7} + 10}{R_{TH} + 5}$$
 \Rightarrow $4 R_{TH} + 20 = V_{TH}$

$$| (1)^{-(2)} |$$
 $| F_{TH} = 4.5c$
 $| V_{TH} = 36$

(a)
$$I_3 = 2 = \frac{\sqrt{1+}}{R_{1+} + R} = \frac{36}{4+R} \implies R + R_{7+} = 18 \implies \boxed{R = 14.2}$$

(b)
$$c_{\text{MAX}}$$
 WHEN $R=0$ \Longrightarrow $c_{\text{MAX}} = \frac{V_{TH}}{V_{TH}} = \frac{36}{4} = 9$