IMPARA ARDUINO IN UN GIORNO DAL VIVO

Bologna, 5 aprile 2025

Introduzione alla programmazione Arduino

La programmazione Arduino è uno strumento potente nel mondo dell'elettronica e della robotica.

- Consente agli utenti di creare progetti interattivi utilizzando hardware e software.
- Durante questa lezione, imparerai la sintassi fondamentale, i costrutti chiave e le applicazioni pratiche della programmazione Arduino.
- Aspettati di acquisire conoscenze pratiche che ti consentiranno di avviare i tuoi progetti!

Nozioni di base sulla sintassi

Comprendere la sintassi è essenziale per scrivere un codice Arduino efficace.

 #include: questa direttiva viene utilizzata per includere librerie che forniscono funzionalità aggiuntive

Esempio:

#include <Servo.h> //consente di controllare i servomotori.

 #define: questa direttiva definisce costanti o macro, facilitando la lettura del codice

Esempio:

```
#define LED_PIN 13 // imposta una costante // per il numero di pin del LED.
```

// Include Libraries #include "Arduino.h" #include "BTHC05.h" #include "VarSpeedServo.h" // Pin Definitions #define BTHC05 PIN RXD 10 #define BTHC05 PIN TXD 11 #define LASER PIN S 2 #define SERVO9G1 PIN SIG 3 #define SERVO9G2 PIN SIG 4 // Global variables and defines // object initialization VarSpeedServo servo9gl; VarSpeedServo servo9g2; BTHC05 bthc05 (BTHC05_PIN_RXD, BTHC05_PIN_TXD); bool laserState = 0: bool autoplayState = 0; const int servoSpeed = 10; const int segIntervalDelta = 50; const int manualyServoMinStep = 5; const int manualyServoMaxStep = 20; const int minimalRangeSize = 10; // Change these parameters to define the rectangular play area int servolMin = 80; int servolMax = 110: int servo2Min = 20: int servo2Max = 50; int servolpos = (servolMin + servolMax) / 2; int servo2pos = (servo2Min + servo2Max) / 2; ot delegated - 200.

File Edit Sketch Tools Help

Cosa sono le variabili e come usarle

Le variabili sono fondamentali per l'archiviazione e la manipolazione dei dati in Arduino.

- **int**: Per numeri interi (numeri interi) Esempio: int count = 10;
- **float**: per i numeri a virgola mobile (decimali) Esempio: temperatura del galleggiante = 23.5;
- char: per singoli caratteri Esempio: char letter = 'A';
- Stringa: per stringhe di testo
 Esempio: String message = "Ciao, Arduino!";

Le funzioni

Le funzioni sono costrutti che servono per tenere ordinato il codice e per scrivere una sola volta il codice che può essere richiamato ed eseguito più volte.

Due funzioni speciali in Arduino: setup() e loop()

La struttura di un programma Arduino è definita da due funzioni principali:

- **setup()**: Questa funzione viene eseguita una volta all'inizio e viene utilizzata per inizializzare le impostazioni
- **loop()**: Questa funzione viene eseguita continuamente dopo l'impostazione, controllando il flusso del programma

Istruzioni condizionali: if e while

Le istruzioni condizionali consentono il processo decisionale nel codice.

- **if** Istruzione:
 - Esegue un blocco di codice se una condizione è vera

Esempio:

if (temperatura > 30)

- while Istruzione:
 - Ripete un blocco di codice mentre una condizione è vera

Esempio:

while (count < 10)

p implies q.

- p hypothesis or antecedent
- q conclusion or consequent

SplashLearn

Iterazione con ciclo For

Il ciclo for è un potente strumento per ripetere le azioni:

• for (inizializzazione; condizione; incremento)

```
Esempio:
for (int i = 0; i < 5; i++)
```

• Usalo quando sai quante volte vuoi ripetere un'attività.

Funzioni native di Arduino

Arduino offre una varietà di funzioni native per diverse attività.

- pinMode(): Imposta se un pin è ingresso o uscita
- **digitalRead()**: Legge il valore da un pin digitale
- digitalWrite(): Scrive un valore HIGH o LOW su un pin digitale
- analogRead(): Legge il valore da un pin analogico
- analogWrite(): Scrive un valore analogico (o PWM) su un pin
- **delay()**: Mette in pausa il programma per un numero specificato di millisecondi.

La lista completa dei comandi predefiniti di Arduino sul sito ufficiale:

https://docs.arduino.cc/language-reference/

Iniziare con blink.ino

Introduzione a **blink.ino**: L'esempio di blink.ino è un classico progetto per principianti nella programmazione di Arduino.

- Dimostra le basi del controllo di un LED
- Il programma attiva e disattiva il LED, rafforzando i concetti chiave di programmazione
- Questo semplice progetto è un trampolino di lancio per applicazioni più complesse

Utilizzo delle librerie di servomotori

L'utilizzo delle librerie di servomotori consente un controllo preciso dei servomotori nei progetti.

Le caratteristiche principali includono l'impostazione dell'angolo e il controllo della velocità.

Esempio:

```
#include <Servo.h>
Servo myServo;
myServo.attach(9);
mioServo.write(90);  // sposta a 90 gradi
```

Nota Bene: Staccare sempre il servo quando non è in uso per risparmiare energia. Usa fonti di alimentazione adeguate per i tuoi servo.

Codrey Electronics

Rule 4: Error Checking

Parity bit is '1' for even number of binary ones and '0'

for odd number of binary ones. According to rule 3 it is set to 1

Nozioni di base sulla comunicazione seriale

Comprensione della comunicazione seriale: la comunicazione seriale è essenziale per lo scambio di dati tra Arduino e altri dispositivi.

Consente l'invio e la ricezione di dati tramite la connessione USB.

Le funzioni principali includono:

- Serial.begin(): Inizializza la comunicazione seriale
- Serial.print(): Invia i dati al monitor seriale
- Serial.read(): Legge i dati in entrata

Documentazione ufficiale:

https://docs.arduino.cc/language-reference/en/functions/communication/serial/

Gestione display LCD

Lavorare con gli LCD migliora i tuoi progetti fornendo un output visivo.

L'installazione prevede il cablaggio dell'LCD ad Arduino e l'inclusione della libreria appropriata.

```
Esempio:
#include <LiquidCrystal.h>
int seconds = 0;
LiquidCrystal lcd_1(7, 6, 5, 4, 3, 2);
void setup() {
    lcd_1.begin(16, 2);
    lcd_1.print("hello world!");
}
```

https://docs.arduino.cc/libraries/liquidcrystal/

Sintesi della sezione: Punti chiave

Ricapitoliamo i costrutti e le funzioni importanti trattati:

- Nozioni di base sulla sintassi: #include, #define, setup(), loop()
- Istruzioni condizionali: if, while
- Iterazione: ciclo for
- Funzioni native: digitalRead, digitalWrite, delay, ecc.
- Introduzione a **blink.ino** e applicazioni pratiche di servomotori, comunicazione seriale e gestione LCD.

Considerazioni finali e domande e risposte

La programmazione Arduino apre un mondo di possibilità nell'elettronica e nella robotica.

- Abbraccia il processo di apprendimento e sperimenta i tuoi progetti
- Ora, apriamo la parola a tutte le domande che potresti avere per chiarire la tua comprensione e facilitare la discussione.

