ΛΗΜΜΑ ΑΝΤΛΗΣΗΣ για ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

KANONIKEΣ ΓΛΩΣΣΕΣ www.psounis.gr

KANONIKEΣ ΓΛΩΣΣΕΣ www.psounis.gr

Το Λήμμα Άντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \ge n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u, v και w ισχύει:

- $|uv| \leq n$
- \triangleright $v \neq \varepsilon$
- $uv^mw\in L$ για κάθε φυσικό $m\geq 0$

	Συμβ/ρα	Δυναμη		Ś	(1) Επιλέγουμε μια συμβολοσειρά s που ανήκει στην γλώσσα που το πρώτο σύμβολο είναι • (α) υψωμένο τουλάχιστον στην p
$\frac{\mathbf{I}\sigma\acute{\mathbf{o}}\mathbf{t}\mathbf{\eta}\mathbf{t}\alpha}{\{0^n1^n\mid n\geq 0\}}$	$0^{p}1^{p}$	uv^2w	(0717 la > 0) ADOADITH		• (β) ανήκει οριακά στην γλώσσα
$\frac{\mathbf{A} \mathbf{v} \mathbf{\alpha} \mathbf{\lambda} \mathbf{o} \mathbf{v} (\mathbf{\alpha}}{\{0^{2n} 1^{3n} \mid n \ge 0\}}$	$0^{2p}1^{3p}$	uv^2w	$\mathbf{L_1} = \{0^n 1^n \ n \geq 0\} - A\PiO\DeltaEI\XiH$ Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω		(2) Υπολογίζουμε το μήκος της συμβολοσειράς που επιλέξαμε στο (1)
	$a^p b^p c b^p a^p$	uv^2w	ρ το μήκος άντλησής της. Η συμβολοσειρά $s = 0^p 1^p$ ανήκει στην γλώσσα και	->	(3) Το uv θα περιέχεται στο πρώτο σύμβολο που έχουμε ετιιλέξει.
$\frac{\mathbf{Avi\sigma\acute{o}tnt\alpha}}{\{a^nb^m\mid \mathbf{n}\leq m\}}$	$\alpha^p b^p$	uv^2w	έχει μήκος $2\underline{p} \geq p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή $s=uvw$ με $0< \mathbf{v} $ και $ uv \leq p$.	\rightarrow	(4) Το πρώτο σύμβολο της s υψωμένο στην <i>i</i>
$\{a^nb^m\mid \mathbf{n}< m\}$	$\alpha^p b^{p+1}$	uv^2w	Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw\in L$		(5) Το πρώτο σύμβολο της s υψωμένο στην <i>j</i>
$\{a^nb^m\mid n>m\}$		uv^0w	Επειδή $ uv \le p$ έπεται ότι το uv θ α περιέχεται στο θ^p . Έτσι η λέξη s θ α αποτελείται από τα εξής τμήματα:		(6) Ακριβώς ίδια συμβολοσειρά με την s όπου
$\{a \ b \ c \ a \ \Pi, \Pi \ge 0\}$	$\alpha^p b^p c^p d^p$	uv^2w	$\left(u = \underline{0}^{i}, i \ge 0\right)$		στον εκθέτη του 1 $^{\text{ou}}$ σύμβολου θα έχει αφαιρεθε το $-i-j$
$\begin{aligned} &\{a^{n+m}b^mc^n n,m\geq 0\}\\ &\{a^ib^jc^k\big i=j+k\} \end{aligned}$	$\alpha^{2p}b^pc^p$	uv^2w	$\begin{cases} v = \underline{0}^j, & j > 0 \\ w = \underline{0}^{p-i-j}\underline{1}^p \end{cases}$		(7) Θα είναι: • uv²w ή
$\left\{a^ib^jc^k\big i>j+k\right\}$	$a^{2p+1}b^pc^p$	uv^0w	Η συμβολοσειρά $\underline{uv^2w}$ θα είναι $\underline{0^{p+j}1^p}$ συνεπώς δεν		• uv°w
$\frac{\Pi$ αράθεση}{ $\{a^nb^nc^md^m n,m \ge 0\}$	$\alpha^p b^p c^p d^p$	uv^2w	θα ανήκει στην L αφού δεν θα έχει ίσα 0 και 1 Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα	7	(8) Αντίστοιχα από την επιλογή μας στο (7) • Θέτουμε + j στον 1° εκθέτη της s.
$\begin{aligned} &\{a^nb^{n+m}c^n n,m\geq 0\}\\ &\{a^ib^jc^k\big j=i+k\} \end{aligned}$	$\alpha^p b^{2p} c^p$	uv^2w	δεν είναι κανονική.		• Θέτουμε – j στον 1° εκθέτη της s.
Δ ιάζευξη Συμβ/ρών $\{a^ib^jc^k i=j\ \eta\ j=k\}$	$\alpha^p b^p c^p$	uv^2w		4	(9) Αιτιολογούμε γιατί η συμβολοσειρά που έχουμε δεν ανήκει στην γλώσσα.

Έστω L μια κανονική γλώσσα. Ορίζουμε ότι:

ΔΙΑΚΡΙΝΟΜΕΝΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ

• Δύο συμβολοσειρές x,y είναι διακρινόμενες ανά δυο αν και μόνο αν υπάρχει συμβολοσειρά z τέτοια ώστε μια μόνο από τις xz και yz να ανήκει στην γλώσσα.

• **ΘΕΩΡΗΜΑ:** Αν μια γλώσσα έχει η διακρινόμενες ανά δύο συμβολοσειρές, τότε το αυτόματό της θα πρέπει να έχει τουλάχιστον η καταστάσεις.

Χρήση του ορισμού για να αποδείξουμε ότι η γλώσσα $\mathbf{L}=\{0^n \mathbf{1}^n|\ n\geq 0\}$ δεν είναι κανονική

Απόδειξη:

Υποθέτουμε ότι είναι κανονική. Συνεπώς θα υπάρχει πεπερασμένο αυτόματο με η καταστάσεις που την αναγνωρίζει.

Θεωρούμε τις συμβολοσειρές 0, 0^2 , 0^3 , 0^4 ,..., 0^m (όπου m>n)

Οι παραπάνω συμβολοσειρές είναι διακρινόμενες ανά δύο: Π.χ. Έστω 0^i και 0^j με $\mathbf{i} \neq j$. Πρέπει να βρούμε ένα z τέτοιο ώστε ένα μόνο από τα 0^iz και 0^jz να ανήκει στην γλώσσα. Επιλέγουμε $z=1^i$ οπότε 0^i1^i ανήκει στην γλώσσα και 0^j1^i δεν ανήκει στην γλώσσα. Συνεπώς οι m συμβολοσειρές είναι διακρινόμενες ανά δύο.

Συνεπώς κάθε αυτόματό της θα έχει τουλάχιστον m>n καταστάσεις.

Άτοπο. Άρα η L δεν είναι κανονική.

Χρήση του ορισμού των διακρινόμενων συμβολοσειρών για να αποδείξουμε ότι ένα ΝΠΑ έχει ελάχιστο πλήθος καταστάσεων.

Απόδειξη: Το ακόλουθο ΝΠΑ της γλώσσας L= $\{w \in \{0,1\}^* \mid w$ τελειώνει με 00 $\}$ έχει ελάχιστο πλήθος καταστάσεων:

Οι συμβολοσειρές $s_1=arepsilon, s_2=0, s_3=00$ είναι διακρινόμενες ανά δύο:

 s_1 και s_2 είναι διακρινόμενες. Επιλέγω z=0 και έχουμε:

$$s_1 z = \varepsilon 0 = 0 \notin L$$

•
$$s_2 z = 00 \in L$$

 s_1 και s_3 είναι διακρινόμενες. Επιλέγω $z = \varepsilon$ και έχουμε:

$$s_1 z = \varepsilon \varepsilon = \varepsilon \notin L$$

$$s_3 z = 00\varepsilon = 00 \in L$$

 s_2 και s_3 είναι διακρινόμενες. Επιλέγω $z=\varepsilon$ και έχουμε:

$$s_2 z = 0\varepsilon = 0 \notin L$$

•
$$s_3 z = 00\varepsilon = 00 \in L$$

Συνεπώς οποιοδήποτε ΝΠΑ της L απαιτεί τουλάχιστον 3 καταστάσεις.