Please submitted by Saturday, 15 July 2023, 11 am, right before the discussion hour.

- 1. There is no penalty for submitting incorrect attempts
- 2. However, plagiarism will result in serious penalties, such as an F grade.
- 1. Let $\lambda_i(\mathbf{A})$ denote an eigenvalues of a symmetric matrix \mathbf{A} . Find the following in terms of $\lambda_i(\mathbf{A})$
 - (a) $Tr(\mathbf{A}^3)$
 - (b) $\lambda_i(\mathbf{A}^{-2})$
 - (c) $\lambda_i(\mathbf{A} \mathbf{I})$
 - (d) $\lambda_i(\mathbf{I} + 2\mathbf{A})$
- 2. Prove the following results for $A \succ 0$:
 - (a) $A^{-1} > 0$
 - (b) $[\mathbf{A}]_{ii} > 0$ for all i, where $[\mathbf{A}]_{ii}$ denotes the i-th diagonal entry of \mathbf{A} .
- 3. A matrix **A** is idempotent if $\mathbf{A}^2 = \mathbf{A}$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda = 0$ and $\lambda = 1$.
- 4. Given an $m \times n$ matrix \mathbf{A} with SVD $\mathbf{A} = \mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{v}_i \mathbf{u}_i^T$, show that $\|\mathbf{A}\|_F^2 := \operatorname{tr}(\mathbf{A}^T \mathbf{A}) = \sum_{i=1}^r \sigma_i^2$.
- 5. The ℓ_2 norm of a matrix **A** is defined as

$$\|\mathbf{A}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2} \tag{2}$$

Derive an expression for $\|\mathbf{A}\|_2$ in terms of $\{\sigma_i\}_{i=1}^r$.