LC 21 : Cinétique homogène

Prérequis:

- Absorbance, loi de Beer-Lambert
- Avancement d'une réaction et notation algébrique

Hypothèses de travail en cinétique homogène

• Milieu homogène : parfaitement agité

• Volume fixe au cours de l'expérience

Système fermé à T_{ext} constante

Vitesse d'une réaction : exemple

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Vitesse d'une réaction : exemple

$$N_2 + 3H_2 \rightarrow 2NH_3$$

$$v = -\frac{d[N_2]}{dt}$$

$$v = -\frac{1}{3} \frac{d[H_2]}{dt}$$

Vitesse d'une réaction : exemple

$$N_2 + 3H_2 \rightarrow 2NH_3$$

$$v = -\frac{d[N_2]}{dt}$$

$$v = -\frac{1}{3} \frac{d[H_2]}{dt}$$

$$v = \frac{1}{2} \frac{d[NH_3]}{dt}$$

Rappel: loi d'ordre 1 sur un exemple

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

Rappel: loi d'ordre 1 sur un exemple

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

$$v \equiv -\frac{1}{2} \frac{d[N_2 O_5]}{dt} = k[N_2 O_5]$$

Rappel: loi d'ordre 1 sur un exemple

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

$$v \equiv -\frac{1}{2} \frac{d[N_2 O_5]}{dt} = k[N_2 O_5]$$

Solution:
$$[N_2O_5](t) = [N_2O_5]_0 exp(-2kt)$$

Ordre 0 sur un exemple

$$2NH_3(g) \to N_2(g) + 3H_2(g)$$

Ordre 0 sur un exemple

$$2NH_3(g) \to N_2(g) + 3H_2(g)$$

$$v = -\frac{1}{2} \frac{d[NH_3]}{dt} = k[NH_3]^0 = k$$

Ordre 0 sur un exemple

$$2NH_3(g) \to N_2(g) + 3H_2(g)$$

$$v = -\frac{1}{2} \frac{d[NH_3]}{dt} = k[NH_3]^0 = k$$

Solution:
$$[NH_3](t) = [NH_3]_0 - 2kt$$

Récapitulatif

$$\alpha A \rightarrow Produits$$

Ordre	Equation différentielle	Expression de la concentration
0	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^0$	
1	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^1$	
2	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^2$	

Récapitulatif

$\alpha A \rightarrow Produits$

Ordre	Equation différentielle	Expression de la concentration
0	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^0$	$[A](t) = [A]_0 + \alpha kt$
1	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^1$	$[A](t) = [A]_0 exp(\alpha kt)$
2	$\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^2$	$\frac{1}{[A](t)} = \frac{1}{[A]_0} - \alpha kt$

Expérience de suivi de la décoloration de l'érythrosine B

Expérience de suivi de la décoloration de l'érythrosine B

Expérience de suivi de la décoloration de l'érythrosine B

• Modèle utilisé : $v=k[ClO^-]^{\beta}[B]^{\alpha}$

• Modèle utilisé : $v=k[ClO^-]^\beta[B]^\alpha$

• Méthode de dégénérescence de l'ordre, CIO en large excès:

$$k[ClO^{-}]^{\beta} = cte = k_{app}$$

• Expression simplifiée de la vitesse :

$$v = k_{app}[B]^{\alpha}(t)$$

• D'où :
$$\frac{d[B]}{dt} = k_{app}[B]^{\alpha}(t)$$

• Expression simplifiée de la vitesse :

$$v = k_{app}[B]^{\alpha}(t)$$

• D'où :
$$\frac{d[B]}{dt} = k_{app}[B]^{\alpha}(t)$$

Même expression qu'avec un seul réactif

• Loi de Beer Lambert : $\ A = \epsilon l[B](t)$

$$\alpha = 0$$
, 1 ou 2, avec $k'_{app} = (\varepsilon l)^{1-\alpha} \times k_{app}$.

ordre partiel α	relation	
0	$A = A_0 - k'_{\rm app} . t$	
1	$\ln\left(A\right) = -k'_{\rm app}.t + \ln\left(A_0\right)$	
2	$\frac{1}{A} - \frac{1}{A_0} = k'_{\text{app}}.t$	

Tableau 2 - Évolution de l'absorbance en fonction de l'ordre partiel

Source : 40 expériences illustrées de chimie générale et organique - La chimie, une science expérimentale

Expérience de suivi de la décoloration de l'érythrosine B : détermination de k

$$k_{app} = k[ClO^{-}]_{0}^{\beta}$$

Expérience de suivi de la décoloration de l'érythrosine B : détermination de k

$$k_{app} = k[ClO^{-}]_{0}^{\beta}$$

$$ln(k_{app}) = ln(k) + \beta ln([ClO^{-}]_{0})$$

Expérience de suivi de la décoloration de l'érythrosine B : détermination de k

$$k_{app} = k[ClO^{-}]_{0}^{\beta}$$

$$ln(k_{app}) = ln(k) + \beta ln([ClO^{-}]_{0})$$

Ordonnée à l'origine

Pente