This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑩ 公 開 特 許 公 報 (A) 平1-142002

<pre>⑤Int Cl.⁴</pre>	識別記号	庁内整理番号	•	43公開	平成1年(19	89)6月2日
B 22 F 1/00		T-7511-4K U-7511-4K				
C 22 C 38/00	$\begin{smallmatrix}3&0&1\\3&0&2\end{smallmatrix}$	Z-6813-4K Z-6813-4K	.		•	•
38/12	302	2 0010 411	審査請求	未請求	発明の数 1	(全6頁)

砂発明の名称 粉末冶金用合金鋼粉

②特 願 昭62-299486

②出 願 昭62(1987)11月27日

70発 明 者 太 田 純 一 千葉県千葉市川崎町1番地 川崎製鉄株式会社技術研究本部内

⑫発 明 者 小 倉 邦 明 千葉県千葉市川崎町1番地 川崎製鉄株式会社技術研究本

⑫発 明 者 髙 城 重 彰 千葉県千葉市川崎町1番地 川崎製鉄株式会社技術研究本 部内

⑪出 願 人 川崎製鉄株式会社 兵庫県神戸市中央区北本町通1丁目1番28号

個代 理 人 并理士 松下 義勝 外1名

明細。書

発明の名称
 粉末冶金用合金網粉

2. 特許請求の範囲

電量%でMo: 1.5~20%、∀; 3.0~20%のう
ちいずれか1種以上を含み、かつ、

1.5 < Mo + W < 20%

であり、残部がFeおよび不可避的不純物とからなる合金組成を有し、更に、粉末の粒径が250 μm以下で、10~44μmの粒子を15%以上、100 ~250μmの粒子を5~20%含有することを特徴 とする粉末冶金用合金網粉。

3. 発明の詳細な説明

<発明の目的>

産業上の利用分野

本発明は粉末冶金用合金綱粉に係り、詳しくは、特に高密度焼結材料用合金綱粉に係る。

従来の技術

近年、粉末冶金法による焼精部品の製造は著しい伸びを示し、焼結部品の適用箆囲が広がり

つつある。しかし、焼結合金には気孔が存在し、この気孔が観視的諸性質に悪影響を及ぼす欠点があった。このため、焼結合金の焼結密度はできるだけ高いことが必要で、鉄系焼結材料では7.6g/cm(密度比96%)程度以上が望まれている。

一方、強度レベルを向上させるために合金元素を添加し、固溶強化による特性改善も行なわれている。合金元素の添加方法としては予め、溶網時に添加する予合金法が最も均質な固溶状態を作ることができ、良好な特性が得られるが、反面、合金元素の固溶硬化によって圧縮性の低下を招くことになる。

そこで、圧縮性改良の試みとして、例えば、特公昭45~9649号公報に開示されているように、内部の純鉄粉の圧縮性を保ちつつ鉄粉表面だけに合金成分を拡散付符させる方法が示されている。しかし、鉄粉表面に拡散付着した合金元素を基地鉄中に十分固溶させ、均質な合金を得るためには、高温焼精や長時間焼結を行なう必要があり、製造プロセスに大きな制約を受けると

·(2)

いう難点がある。

そこで、前述のような表面被覆を必要としないHIP法として、米国特許第4591482号(1986年5月27日)に開示される方法がある。これによると徴粒の金属粉を用いた圧粉体を焼結後、HIP加圧するものであるが、表面被覆を行なわない

(3)

であり、残部がFeおよび不可避的不免物とからなる合金組成を有し、更に、粉末の粒径が250 μm以下で、10~44μmの粒子を15%以上、100 ~250μmの粒子を5~20%含有することを特徴 とする。

ため、焼結体の気孔を閉塞化する必要がある。このため、HIP加圧時に過度的に高い温度を加え、表面に被覆層を形成する必要があり、製造条件の厳密な管理やコントロールを行なうという製造上の舞点がある。また、使える粉末が325メッシュ以下で好ましくは10ミクロン以下で要求されたり、組成も限定され汎用性に乏しいという欠点を有していた。

発明が解決しようとする問題点

本発明はこれらの問題点の解決を目的とし、 具体的には、微粉末を原料粉とすることなく、 また、粉末成形体の表面を被覆することもなく 高密度の焼結体の製造を可能とする粉末冶金用 合金網粉を提供することを目的とする。

<発 明 の 樹 成>

問題点を解決するための 手段ならびにその作用

本発明は、重量%でMo: 1.5~20%、W: 3.0~20%のうちいずれか1種以上を含み、かつ、

1.5 < MO + V < 20 %

(4)

なる。

そこで、本発明者等は種々の検討を集ねた結果、予合金約粉の粒度と鉄粉へのMoおよびVの 添加量を組合わせて最適な条件を見出し、本発 明を完成するに至った。

以下、本発明について説明する。

まず、合金元素としてMoおよびWを選択した 理由を示す。FeはFe単味でα→ 7 変態点を有し、 通常の焼結温度である1000~1350℃では 7 相で ある。ところが、 7 相のFeの自己拡散速度は α 相の拡散速度に比較してかなり遅いため、焼結 に長時間を必要とする。そのため、密度上昇が 鈍く、気孔の閉寒化が進行しないことになる。 そこで、合金元素を添加することによって、Fe の変態を押さえ、 α 相単相とすることが必要で ある。

すなわち、鉄中に固溶し、α相を形成する元 絮には、Mo、A & 、Cr、Si、P、Sn、Ti、V、W、 Zrなどがあるが、これらの元素のうち、酸素と の親和力が比較的弱く、安価な水アトマイズ法 で製造した場合も、その水アトマイズ時における酸化がガス還元等によって容易に還元することができ、かつ、鉄中の固溶した時に頻粉の焼入性を高め、また、焼入材の焼戻し抵抗を高めることからMoとWを選択した。

次に、合金元素の添加方法として予合金法を 選択した理由を説明する。

添加方法には純鉄物に添加元素粉末を混合して調整する、所謂混粉法や純鉄粉の表面に拡散付着させる部分拡散法がある。しかし、いずれも合金元素が通常の焼結によって鉄基地中に拡散し、完全に均質な合金化の状態は得られない。さらに、このことが合金元素の不均一性による熱処理材の寸法変化や相機の不安定を招くことになる。

これらの粉末と比較して溶網の段階で添加元素を合金化した合金钢粉を使った場合、熱処理 更が減少して、合金元素の均質な焼結体組織が 得られるという利点があるため、本発明では予 合金法を採用した。

(7)

成するためには有効となる。すなわち、粉末成 形体を容器に封入しなくても、また、表面を般 密質材で覆わなくとも、加圧焼結を行なうこと によって気孔を消滅させることが可能となるの - である。

一方、Moが20%を越える場合は合金成分による網粉の固溶硬化のために圧物密度が低下し、焼結体は高密度にならないため、90%以上の閉気孔率が得られなかった。続いて、加圧処理を行ない焼結密度を測定すると90%以上の閉気孔率を有する焼結体では焼結体に残留する気孔の90%以上が除去され、99%以上の高密度焼結体が得られた。以上の理由からMoの合金量を1.5~20%とした。

次に、¥景を3.0~20%とした理由を示す。

WはMoと同様にフェライトフォーマーであるが、3.0%以下では焼結時にα相の形成が困難となり、20%以上では予合金鋼粉が硬化しすぎるために、圧縮性を阻害し、圧粉密度の低下が落しく、焼結によっても高密度、すなわち、気

次に、Mo聞を1.5~20重量%(以下、単に%で示す。)とした理由を示す。

Moは前述のようにα相を出現させて焼結を促進し、気孔の閉塞化を進めるために添加するが、1.5%未満では予合金網粉で焼結時にα相単一相を形成し難く、他方20%を越えるとFe中に過剰にMoが固溶するために、固溶硬化の程度が非常に大きくなり、圧粉密度の低下が著しく、焼結によっても密度上昇が得られない。これらのことは次の実験によって確かめられた。

すなわち、水アトマイズ法によってMoを鉄粉に均質に固溶させ、Moを1.0~25.0%含有する予合金粉末を作製して成形、焼桔後、水銀ポロシメーターを用いて閉気孔率を求めた。その結果、Moが1.5%未満ではα相単相にならず、90%以上の閉気孔率が得られなかった。閉気を過じない気孔の体積分率を表したもので、閉気・通じない気孔の体積分率を表したもので、閉気・で焼結すると、気孔の除去される体積が増し、高密度を選

(8)

孔の閉塞化が進まない。これらのことはMoの場合と同様にして確認した。

また、MoおよびVを同時に含むことも可能であるが、その場合、MoおよびVの合計量が1.5%未満ではα相の形成が損なわれ、少なくとも1.5%以上必要であり、また、MoとVの合計量を20%以内に制限した場合には鉄中に合金元素が固溶して圧縮性を劣化する程度を最小限に抑えることができるので、Mo+Vは1.5~20%の範囲とした。

また、製品の粒度構成として、10~44 µ mの 粒子を15 %以上、100~250 µ mの粒子を5~20 % 含むこととしたのは次の理由による。

すなわち、予合金額粉は合金元素の固溶硬化によって圧縮性が阻害されているが、177~250 μαの比較的粗粒を5~20%含むことによって、 圧粉密度を向上させることが可能となり、一方、 焼結時に緻密化を促進させ、閉気孔を容易に形成させるためには10~44 μαの微粒を15%以上 含むことが必要である。これらのことは以下の 実験によって確認された。

すなわち、水アトマイズ法によって作製した Mo: 1.5~20%、W: 0.7~10%含有した予合金 網粉を退元、焼鈍後、解砕し、粒度調節を行ない、100~250μmの報粒粉を0~25%、10~44μmの微粉を18%含む網粉を用いて、成形、焼結 後閉気孔率を求めた。その結果、100~250μmの相粒粉が5%未満の場合、通常、知られるように予合金網粉は圧縮性が劣るという結果であったが、相対を5~20%含むように調節した網粉では圧縮性が改善されて高圧粉密度が得られ、その後の焼結によって微粒を18%含む圧粉体では焼桔性のよい微粒によって微粒を18%含む圧粉体では焼桔性のよい微粒によって微粒を18%含む圧粉体では焼桔性のよい微粒によって微粒を10%以上の高密度、焼結体が得られた。

一方、25%を据える組粒を含んだ網粉を用いた、焼結休中には粗大な気孔が残留し、微粒の焼結性が優れても閉気孔率は上昇せず、続いて行なった加圧処理によっても気孔が除去されな

(11)

間脱ろうし、乾燥水素中で1250℃で1時間焼結 した。その後、焼結体をHIP装留に装入し、Ar ガス、100気圧で1300℃、1時間の加圧焼結を行 なった。焼結体の開気孔体積を水銀ポロシメー ターを用いて測定し、閉気孔体積分率を求めた。 また、加圧処理後の焼結体密度をアルキメデス 法によって求め、これらの結果を第1表に示す。

第 1 表

		相	戍	閉気	加圧焼結後
	Mo属	100~250µm	10~44 µm	孔率	の密度比
	(%)	粒子(%).	粒子(%)	(%)	(%)
実施例 1	1,8	12	18	90	99,5
" 2	5,0	12	18	91	99.6
# 3	11.0	12	18	93	99, 7
<i>"</i> 4	18.0	12	18	93	99. 7
比较例 1	1.0	12	18	28	94.8
" 2	25.0	12	18	34	95.2

第1表からkloの添加量によって閉気孔率が変

いため、99%以上の高密度が得られなかった。

また、全体としての粒度は250 μ m 以下とする必要がある。これを越えると焼結密度が低下すると共に、焼結後の表面制度が増加する。このため、製品の粒度構成として100~250 μ m の粒子を5~20%、10~44 μ m の粒子を15%以上の範囲とした。

実 施 例

以下、実施例によって具体的に説明する。 (実施例1~4)

水アトマイズ法によって、Moの含有量が1.8、5.0、11.0、18.0%の実施例1~4および1.0、25.0%の比較例1および2の予合金網粉を作製した後、H2、雰囲気で1000℃×25分還元し解砕した後、800℃×20分、H2、雰囲気中で焼鈍処理を行ない、解砕時に粒度を調節して100~250以回の粒子を12%、10~44以回の粒子を18%含む粉末を作製した。これにステアリン酸亜鉛を1%添加混合し、7ton/ぴの圧力で直径11.3㎜、高さ11.3㎜の圧粉体を成形後、これを600℃で1時

(12)

化し、 α相鼠はMo 届に強く依存していることがわかる。すなわち、実施例1~4はα相の出現によって概密化が容易に促進され、気孔の閉塞化が進み、閉気孔率が極めて高い、90%以上を達成した。

その結果、閉気孔は加圧処理によってほぼ完全に消滅し、加圧焼結後の密度は99%以上となり、良好な緻密質体が得られた。これに反して比較例1は140日が少ないのでα相の出現が不充分となり、焼結が十分進まず、閉気孔率が28%と低いために加圧焼結後の密度が上昇しなかった。

また、比較例2はM0量が極めて多く、固溶硬化性が高く網粉の圧縮性が悪化し、圧粉密度が低いものであった。すなわち、気孔体積が大きく焼結後でも気孔の残留が目立った。そのため、加圧後の焼結体は低密度となったと考えられる。(実施例5~7)

水アトマイズ法によってMo含有品が5%の予合金網筋を作製後、実施例1と同様な還元処理

(14)

を施し、解砕時に100~250μmの 網粒を0~25%、10~44μmの 微粒を10~70% 含む粉末を作製した。実施例1~4と同様な方法で成形、焼結し、加圧処理を施した。焼結体の閉気孔率と加圧処理後の密度を測定した結果を第2表に示す。

第 2 表

		朝		成	閉気	加圧焼結後
		Mo費 100~250μm		10~44 LL R	孔率	の密度比
		(%)	粒子(%)	粒子(%)	(%)	(%)
実施例	5	5,0	5	18	90	99.6
"	G	5.0	12	18	91	99.6
B	7	5.0	12	70	91	99,5
比较例	3	5.0	0	18	41	95.0
"	4	5.0	12	10	45	95.1
n	5	5.0	25	25	45	95, 9

第2表から実施例5~7は100~250μmの組粒を 5~20%、10~44μmを18~70%含むことによって、圧縮性の劣化を防ぎかつ焼結性を良好に保(15)

驳例6および7の予合金網粉を作製した後、H₂ 雰囲気で1000℃×30分還元し解砕した後、800 ℃×20分、H₂ 雰囲気中で焼鈍処理を施した。 解砕時に粒度を調節することによって177~250 μ₁の組粒を12%、10~44μ₁の微粒を18%含む 粉末を作製した。

実施例1~4と同様な方法で成形焼結後、焼結体の閉気孔率を求めた。焼いて加圧処理を行ない、加圧焼結体の密度を求めた結果を第3表に示す。

第 3 表

	朝 V 日 100~250 µm		成	閉気	加圧焼結後
			10~44µm	孔率	の密度比
	(%)	粒子(%)	粒子(%)	(%)	(%)
実施例 8	3.5	12 .	18	94	99.5
<i>u</i> 9	10,0	12	. 18	95	99.6
<i>"</i> 10	18.0	12	18	95	99.8
比较例 6	1.0	12	18	42	95.5
<i>"</i> 7	25.0	12	18	44	95.8

(17)

つことが可能となり、従って、閉気孔率90%以上の極めて高い値を得、その後の加圧焼結では、 閉気孔がつぶされ99%以上の高密度が得られた。

比較例3は100~250μmの租稅粉が全く無いので、圧粉密度が低下し、焼結後も密度の上昇がみられなかった。そのため、気孔は外部と通じており、閉気孔率が50%以下で加圧処理を施しても99%以上の高密度は得られなかった。

また、比較例4は組粒が12%含まれているが、 10~44μmの微粒が15%未満であるため、焼結 密度の増加が得られず、十分な閉気孔率になら なかった。

比較例5は100~250μmの相対的が25%と過別にあるため、成形時に形成される相大な気孔が焼結によっても収縮せずに残る。従って、閉気孔率が50%以下で加圧処理に有効な閉気孔率は得られなかった。

(実施例8~10)

水アトマイズ法によってVの含有量が3.5、 10.0、18.0%の実施例7~9、1.0、25.0%の比 (16)

第3表からわかるように、実施例8~10はα相を出現させるV量、すなわち、3.5、10.0、18.0%のV添加は気孔の閉塞化に極めて有効である。その結果、加圧処理によって気孔が消滅し、99.5%以上の高密度が得られた。

比較例6はV量が少なくα相関が少なかったため、緻密化が進まず、気孔の42%が閉塞したに過ぎなかった。従って、加圧処理を施しても95%の密度で焼結体には残留気孔がみられた。

比较例7はV日が25%と多く、Fe - V化合物を 形成し易くなり、焼結の促進が妨げられたこと によって気孔が閉塞化しなかった。従って、加 圧処理を施しても95.8%の密度で、緻密質な焼 結体は得られなかった。

(実施関11、12)

実施例9で用いたV含有量が10%の予合金期粉を仕上げ解砕の時点で粒度を100~250μmの粗粒を0~25%、10~44μmの微粒を18%含むように調節した粉末を作裂した。

実施例1~4と同様な方法で成形、焼結し、加

(18)

圧処理を施した焼結体の閉気孔率と加圧処理後 の密度を測定した結果を第4表に示す。

第.4 表

	朝 W 尉 100~250µm		成	閉気	加圧焼結後
			10~44µm	孔率	の密度比
	(%)	粒子(%)	粒子(%)	(%)	(%)
実施例11	10, 0	5	18	95	99.8
# 12	10, 0	12	18	95	99.8
比較例 8	10.0	0	18	46	96.2
<i>"</i> 9	10.0	25	18	38	95,2

期粒の粒度構成を5%、12%とした実施例11、12は閉気孔率95%以上の加圧焼結に有効な閉気孔率が達成された。しかし、比較例8は期粒が全くないため、予合金網粉では圧粉密度が上らず、その結果、気孔の閉塞化が46%と加圧焼結には極めて不利な焼結体となった。

比較例9は粗粒が25%と非常に多いため、成 形時に粗粒間に存在した大きな空隙が焼桔後で

(19)

第5表から明らかなように、実施例13は十分なの相が形成され、緻密化が進み、気孔の閉塞が容易に進んだ。その結果、気孔の90%が閉塞化し、加圧処理後99%以上の高焼結密度が得られた。

比較例10は合金添加量が少なかったため、α相の形成が不十分で焼結が進まず、開気孔率が45%と低く、従って、加圧焼結体の密度も95%で気孔が残留した。

比較例11は合金添加量が多いために、類粉の圧縮性が劣り、圧粉密度が低く、焼結後も密度上昇はみられなかった。その結果、閉気孔率43%でまだ外部と通じる開気孔が残留するため、加圧処理による気孔消滅の十分な効果が得られなかった。

上述のように、本発明約約を用いた焼結材は特に気孔の閉塞が容易に進み、加圧処理によって99%以上の高密度焼結体が製造可能である。
<発明の効果>

以上説明したように、本発明は、重量%で#0;

も収縮しきれずに存在する。従って、閉気孔率は38%と低く、加圧焼結後の密度も上昇しないという結果になった。

(実施例13)

水アトマイズ法によってMoおよび¥を第5表に示すような合金贔になるように類粉を作割し、実施例1~4と同様な条件で還元し、粒度関節した粉末を作製した。

これらの粉末を用いて実施例1~4と同様な方法で成形、焼精後、焼結体の閉気孔率を求めた。次に、加圧処理を行ない、加圧焼結後の密度を測定し、これらの結果を第5表に示す。

第 5 表

		相 成				加圧烧結後
	合金	合金量(%) 100~250L		10~44 /LIII	孔率	の密度比
	Mo	A	粒子(%)	粒子(%)	(%)	(%)
実施例13	3, 3	6.0	12	18	90	99, 6
比较例10	0,5	0.3	. 12	18	45	95.2
<i>n</i> 11	22,7	1.5	12	18	43	94, 0

(20)

1.5~20%、♥:3.0~20%のうちいずれか1種以上を含み、かつ、

1,5 < M0 + W < 20%

であり、残部がFeおよび不可避的不純物とからなる合金組成を有し、更に、粉末の粒径が250 μπ以下で、10~44 μmの粒子を15%以上、100 ~250 μmの粒子を5~20%含有することを特徴 とし、本発明網粉を用いると、微粒粉末に原料 を限定したり、粉末成形体を容器に入れること なしに加圧焼結を行なうことで高密度焼結体を 得ることが可能となり、焼結体の機械的性質の 向上に寄与することができた。

特許出願人 川 頃 劉 鉄 株 式 会 社

(21)