CLAIMS

I claim:

1.An apparatus comprising

a memory;

a receiver; and

a processor;

wherein the processor receives data concerning test golfer sound waves received by the receiver, the test golfer sound waves generated by the sound of a golf club being swung by a test golfer; and

wherein the processor causes characteristics of the test golfer sound waves to be recorded in the memory.

2. The apparatus of claim 1 further comprising

a monitor; and

wherein the processor causes the monitor to display characteristics of the test golfer sound waves.

3. The apparatus of claim 1 wherein

the characteristics of the test golfer sound waves are one or more amplitudes of the test golfer sound waves with respect to time.

4. The apparatus of claim 1 wherein

the characteristics of the test golfer sound waves recorded are one or more amplitudes of the test golfer sound waves with respect to frequency.

5. The apparatus of claim 2 wherein

the characteristics of the test golfer sound waves recorded are one or more amplitudes of the test golfer sound waves with respect to time.

6. The apparatus of claim 2 wherein

the characteristics of the test golfer sound waves recorded are one or more amplitudes of the test golfer sound waves with respect to frequency.

7. The apparatus of claim 1 wherein

the processor causes a graph of characteristics of the test golfer sound waves to be displayed along with a graph of an ideal case of a golf club being swung in an ideal manner.

8. The apparatus of claim 7 wherein

the graph of the ideal case is derived from ideal sound waves recorded from a golfer swinging a golf club in a ideal manner.

9. The apparatus of claim 1 further comprising

a golf club having a sound generation element located thereon.

10. The apparatus of claim 9 wherein

the sound generation element includes containing an airfoil made of a semi-rigid material.

11.A method comprising

receiving data concerning test golfer sound waves, the test golfer sound waves generated by the sound of a golf club being swung by a test golfer; and recording characteristics of the test golfer sound waves in a memory.

12. The method of claim 11 further comprising

displaying characteristics of the test golfer sound waves.

13. The method of claim 11 wherein

the characteristics of the test golfer sound waves are one or more amplitudes of the test golfer sound waves with respect to time.

14. The method of claim 11 wherein

the characteristics of the test golfer sound waves are one or more amplitudes of the test golfer sound waves with respect to frequency.

15. The method of claim 12 wherein

the characteristics of the test golfer sound waves are one or more amplitudes of the test golfer sound waves with respect to time.

16. The method of claim 12 wherein

the characteristics of the test golfer sound waves are one or more amplitudes of the test golfer sound waves with respect to frequency.

17. The method of claim 11 wherein

the processor causes a graph of characteristics of the test golfer sound waves to be displayed along with a graph of an ideal case of a golf club being swung in an ideal manner.

18. The method of claim 17 wherein

the graph of the ideal case is derived from ideal sound waves recorded from a golfer swinging a golf club in a ideal manner.

19. The method of claim 11 wherein

the test golfer sound waves are derived from a test golfer swinging a golf club having a sound generation element located thereon.

20. The method of claim 19 wherein

the sound generation element includes an airfoil made of a semi-rigid material.