School of Computing and Information Systems The University of Melbourne COMP30027 Machine Learning (2021)

Workshop: Week 5

1) For the following dataset:

ID	Outl	Тетр	Humi	Wind	PLAY			
TRAINING INSTANCES								
A	S	h	h	F	N			
В	\mathbf{s}	h	h	T	N			
C	O	h	h	F	Y			
D	r	m	h	F	Y			
E	r	c	n	F	Y			
F	r	c	n	T	N			
TEST INSTANCES								
G	О	С	n	T	?			
Н	\mathbf{s}	m	h	F	?			

- a) Classify the test instances using the method of **0-R**.
- b) Classify the test instances using the method of 1-R.
- c) Classify the test instances using the **ID3 Decision Tree** method:
 - i) Using the Information Gain as a splitting criterion
 - ii) Using the Gain Ratio as a splitting criterion
- 2) For the following dataset:

apple	ibm	lemon	sun	CLASS				
Training Instances								
4	0	1	1	FRUIT				
5	0	5	2	FRUIT				
2	5	0	0	COMPUTER				
1	2	1	7	COMPUTER				
TEST INSTANCES								
2	0	3	1	?				
1	2	1	0	?				

- a) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- b) Using the **Manhattan distance** measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: *majority class, inverse distance* ($\varepsilon = 1$), *inverse linear distance*.
- c) Can we do weighted k-NN using cosine similarity?