Topic modeling

Singular value decomposition (SVD)

& Non-negative matrix factorization (NMF)

Singular value decomposition

- Factorization of a real or complex matrix.
- Generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any Λ matrix.
- SVD of an $m \times n$ matrix A is a factorization of the form

$$A = U\Lambda V^T$$

- **U** is an $m \times n$ unitary matrix, $\mathbf{U}\mathbf{U}^{T} = \mathbf{I}$
- Λ is an m × n rectangular diagonal matrix with non-negative real numbers on the diagonal,
- **V** is an $n \times n$ unitary matrix,
- V^T is the <u>conjugate transpose</u> of V. $VV^T = I$

Results

- U is the eigenvector of AA^T . Thus, $AA^T = U(\Sigma \Sigma^T)U^T$ (left singular vector of A)
- V is the eigenvector of A^TA .
- Thus, $A^T A = V(\Sigma^T \Sigma) V^T$ (right singular vector of A)
- σ_i is the square root of the eigenvalues of A^TA or AA^T .

$$A = \sum_{i=1}^{s} \sigma_i u_i v_i^T$$

Geometric interpretation of SVD

Source: https://en.wikipedia.org/wiki/Singular_value_decomposition

R code

```
library(OpenImageR)

x<-readImage("C:/Users/user/Documents/pansy.jpeg")

r<-rgb_2gray(x)

imageShow(r)

r.svd<-svd(r)

plot(r.svd$d)

u<-r.svd$u

v<-r.svd$v

d<-diag(r.svd$d)

depth<-50

us<-as.matrix(u[,1:depth])

vs<-as.matrix(v[,1:depth])

ds<-as.matrix(d[1:depth,1:depth])

ls<-us<sup>0</sup>/<sub>0</sub>*0/ds<sup>0</sup>/<sub>0</sub>*0/ot(vs)

imageShow(ls)
```

Topic modeling using SVD

SVD -Interpretation #1

- 'documents', 'terms' and 'concepts':
- U: document-concept similarity matrix
- V: term-concept similarity matrix
- Λ: diagonal elements: concept "strengths"
- $A^TA = ?$
- $AA^T = ?$

SVD -Interpretation #2

SVD is closely related to PCA

How do we determine # of topics?

More details

Q: how exactly is dim. reduction done?

A: set the smallest singular values to zero:

SVD -Interpretation #3

- finds non-zero 'blobs' in a data matrix =
- 'communities' (bi-partite cores, here)

		1		
1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

NMF

• Given $X \in \mathbb{R}^{m \times n}$, compute an approximation $X \approx WH$ for some matrix $W \in \mathbb{R}^{m \times k}$ and $H \in \mathbb{R}^{k \times n}$ where W and H are nonnegative matrices

$$\min_{W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{k \times n}} ||X - WH||_F^2$$

subject to

$$W \ge 0$$

$$H \ge 0$$

Often positive factors will be more easily interpretable

Example

Applications to Topic modeling

