Rules of the Examination

Closed book, closed notes. No calculators, cell phones, PDAs or other electronic devices. Just you, your writing instrument, and a pad of paper. Answer all questions. Please keep you answers concise and confined to the area provided. **Any answer not contained in the empty box following the question will not be graded!** Be sure to address the actual question asked.

\sim	4 •
<i>(</i>)1	IDCTIANC
\mathbf{v}	ıestions

		relaxed consisten	cy models.	
	e various states that a changes to the state.	E	<i>c c</i>	•
Ci O diggets	——————————————————————————————————————			
Ci o diggois	enanges to the state.			
Ci o diggois	enanges to the state.			
Ci o uiggus	enanges to the state.			
Ci Cuiggus	enanges to the state.			
	enanges to the state.			
Ci o uiggois	enanges to the state.			
Ci o diggets	enanges to the state.			
Ci o diggets	enanges to the state.			
	changes to the state.			
Ci o diggets	enanges to the state.			
Ci o diggets	enanges to the state.			

3.	(10 points) Assume branches are predicted to occur with a frequency of 20% and data hazards are predicted to occur with a frequency of 17% of all instructions executed. Assume that you are evaluating the potential speedup of a 5 stage pipeline that must stall 3 cycles for each branch outcome and two cycles for each data hazard. Show quantitatively the expected speedup (from a non-pipelined machine) from pipelining in the presence of of these control and data hazards.
4.	(10 points) Show the average memory access time for a multi-core platform with a snoopy cache. Normally the L1 cache has a hit time of 3 cycles and the L2 cache has a hit time of 8 cycles. However, cache writes to shared cache lines incur an additional two cycle delay. Assuming that 3% of L1 cache writes and 12% of L2 cache writes trigger a coherence delay derive an equation to show the average memory access time.
5.	(10 points) Assume that you are deciding whether to include a new optimization into your computer system design. Furthermore assume that the optimization has a speedup of 3 on 7% of the computation, a slowdown of 1.3 on 12% of the computation but a slowdown of 1.7 on 15% of the computation. Will the system be faster with or without the optimization? You can assume that the percent impacted by each speedup/slowdown occur to completely unique portions of the computation.

6.	(10 points) Show the impact of memory access performance on a NUMA platform. You should assume that non-local memory access times are 16 times longer than local accesses.
7	(10 maints) Assume that we are realizations are relative for some analysis of the same and the s
1.	(10 points) Assume that you are evaluating a new optimization for your computer system design. If the optimization has a positive speedup of N on $X\%$ computation but a slowdown of M on $Y\%$ of the computation. Develop an equation that shows the overall speedup.
8.	(10 points) The assume that a program can be parallelized as follows. The program will be broken down into 2 parts, namely A and B. Part A is 5% of the computation and part B is 95% of the computation. Part A is entirely serial and part B is fully parallel to any amount, however, there is a factor of $P + K\alpha$ synchronization cost for this part (where P and α are fixed costs and K is the
	amount of parallelism. Develop an equation showing the potential speedup from this parallization.

9.	(10 points) Assume that your team is considering the addition of a vector processing unit to your next generation processor design that will increase the performance of vector operations by 70%. Assuming that, in general, X% of your programs statements are vectorizable. How much faster would programs be with the addition of this vector hardware?		
10.	(10 points) Following the above question, assume that your hardware vector register contains space for 128 64-bit words and that the average vector size of your is 512 words. Refine your answer to show the potential speedup with this additional limitation.		
11.	(10 points) Following from the above two question, assume that your vector hardware also supports lanes of 32, 16, and 8 bits with each operation. Assuming that 10% of your vector operations are on 32-bit operands, that 8% of your vector operations are on 16-bit operands, that 20% of your vector operations are on 8-bit operands, and that all the remainder are expected to be on 64-bit operands. Refine your above answer to show the potential speedup with this additional limitation.		