# D FLIP-FLOP ASYNCHRONOUS RESET PRESENTATION

#### **MEMBERS**

- 21200274 Nguyễn Tiến Đại
- 21200280 Lê Đình Dũng
- 21200356 Lê Minh Thông

#### **AGENDA**

- Introduction
- Logic Gates Are Used.
- Design and Operation.
- Simulation.
- Timing Analysis.



## INTRODUCTION

#### Introduction

- Mạch chốt D reset bất đồng bộ là một mạch điện tử logic hữu ích được sử dụng rộng rãi trong các thiết kế điện tử.
- Ưu điểm:
  - Mạch đơn giản, dễ dàng thiết kế
  - Khả năng hoạt động với nhiều tần số đồng hồ khác nhau.
- Khuyết điểm:
  - Có thể chậm
  - Tiêu thụ nhiều điện năng
  - Nhiễu bởi các tín hiệu điện từ bên ngoài.

#### Introduction

- Mạch flip flop D RESET bất đồng bộ hoạt động theo ba chế độ:
  - (1) lưu trữ dữ liệu
  - (2) Reset mạch
  - (3) Ngõ vào giống ngõ ra khi Reset mức 0 và xung CLK cạnh lên.



#### LOGIC GATES ARE USED.

## **High Assert Tristate Inverter**

| Truth Table of High Assert Inverter Tristate Buffer |   |      |  |  |
|-----------------------------------------------------|---|------|--|--|
| Enable                                              | А | Q    |  |  |
| 0                                                   | 0 | Hi-Z |  |  |
| 0                                                   | 1 | Hi-z |  |  |
| 1                                                   | 0 | 1    |  |  |
| 1                                                   | 1 | 0    |  |  |



## Inverter

| Input | Output |
|-------|--------|
| 1     | 0      |
| 0     | 1      |



#### NOR2

| Input A | Input B | Output |
|---------|---------|--------|
| 0       | 0       | 1      |
| 0       | 1       | 0      |
| 1       | 0       | 0      |
| 1       | 1       | 0      |





#### **DESIGN AND OPERATION.**

#### **Schematic**



| RN | D | СК | Q[n+1] | QN[n+1] |
|----|---|----|--------|---------|
| 0  | X | X  | 0      | 1       |
| 1  | 0 |    | 0      | 1       |
| 1  | 1 |    | 1      | 0       |
| 1  | X |    | Q[n]   | QN[n]   |

- Khi Reset ở mức 0, không quan tâm đến D, CLK, output Q reset về 0.
- Khi Reset ở mức 1, khi xung cạnh lên CLK thì Q có cùng trạng thái với D.
- khoảng thời gian còn lại, không quan tâm đến D, mạch giữ nguyên trạng thái.

## **Logical Effort**



#### **Logical Effort**

- Logical Effort:  $G = 2.\frac{5}{3}.\frac{5}{3}.2.\frac{5}{3}.1.1 = \frac{500}{27}$
- Electrical Effort:  $H = \frac{Cout}{Cin} = \frac{120}{4} = 30$
- Branching Effort: B = 2.3 = 6
- Path Effort:  $F = GBH = \frac{10000}{3}$
- Best state effort:  $\hat{f} = \sqrt[6]{10000/3} = 3.87$
- Parasitic delay: P = 2+2+2+1+1=10
- Delay:  $D = 3.87 \times 6 + 10 = 33$

## **Logical Effort**

=> Thế ngược tìm kích thước các cổng:

• 
$$X8 = \frac{120.1}{3.87} = 31$$

• 
$$X7 = \frac{31.1}{3.87} = 9$$

• 
$$X6 = 2.\frac{9}{3.87}.\frac{5}{3} = 8$$

• 
$$X3 = 2.\frac{8}{3.87} = 4$$

• 
$$X5 = 2.\frac{4}{3.87}.\frac{5}{3} = 4$$

• 
$$X1 = 2.\frac{4.2}{3.87} = 4$$



## SIMULATION.

• A=0, EN=0 => Q: Hi-Z



• A=1, EN=0 => Q: Hi-Z



• EN=1, A=0 => Q=1



• EN=1, A=1 => Q=0



#### Inverter



#### NOR2



### D Flip-Flop Async Reset Schematic



## D Flip-Flop Async Reset WaveForm



## D Flip-Flop Async Reset

- Khi Reset = 0
- ngõ ra Q=0 mà không cần quan tâm D và CLK



#### D Flip-Flop Async Reset

- Khi Reset = 1
- Xung CLK cạnh lên thì Q có cùng trạng thái với D.
- Khoảng thời gian còn lại, không quan tâm đến D, mạch giữ nguyên trạng thái.





#### TIMING ANALYSIS.

## Timing Analysis

- Use LTSpice to mearsure:
  - Propagation delay.
  - Contamination delay.
  - Clock to Q propagation delay.
  - Clock to Q contamination delay.
  - D to Q propagation delay.
  - D to Q contamination delay.

```
.meas tpd TRIG V(D)=0.6 FALL=1 TARG V(Q)=0.6 RISE=1 .meas tcd TRIG V(D)=0.6 RISE=1 TARG V(Q)=0.6 RISE=1 .meas tpcq TRIG V(CK)=0.6 RISE=1 TARG V(Q)=0.6 RISE=1 .meas tccq TRIG V(CK)=0.6 RISE=1 TARG V(Q)=0.6 FALL=1 .meas tpdq TRIG V(D)=0.6 RISE=1 TARG V(Q)=0.6 RISE=1 .meas tcdq TRIG V(D)=0.6 RISE=1 TARG V(Q)=0.6 FALL=1
```

tpd=0.385 FROM 0.015 TO 0.4 tcd=0.425 FROM 0.015 TO 0.44 tpcq=0.4 FROM 7e-11 TO 0.4 tccq=0.44 FROM 7e-11 TO 0.44 tpdq=0.4 FROM 1.3e-10 TO 0.4 tcdq=0.44 FROM 1.3e-10 TO 0.44

#### PROJECT RESPONSIBILITIES ASSIGNMENT TABLE

| Student ID | Name            | Responsibilities   | Total |
|------------|-----------------|--------------------|-------|
| 21200274   | Nguyễn Tiến Đại | Logic Effort, Word | 30%   |
| 21200280   | Lê Đình Dũng    | Schematic, Timing  | 40%   |
| 21200356   | Lê Minh Thông   | Test, PPT          | 30%   |

## **THANK YOU**