

## planetmath.org

Math for the people, by the people.

## proof of characterizations of the Jacobson radical

 $Canonical\ name \qquad Proof Of Characterizations Of The Jacobson Radical$ 

Date of creation 2013-03-22 12:48:56 Last modified on 2013-03-22 12:48:56

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 31

Author rspuzio (6075)

Entry type Proof Classification msc 16N20 First, note that by definition a left primitive ideal is the annihilator of an irreducible left R-module, so clearly characterization 1) is equivalent to the definition of the Jacobson radical.

Next, we will prove cyclical containment. Observe that 5) follows after the equivalence of 1) - 4) is established, since 4) is independent of the choice of left or right ideals.

- 1)  $\subset$  2) We know that every left primitive ideal is the largest ideal contained in a maximal left ideal. So the intersection of all left primitive ideals will be contained in the intersection of all maximal left ideals.
- 2)  $\subset$  3) Let  $S = \{M : M \text{ a maximal left ideal of } R\}$  and take  $r \in R$ . Let  $t \in \cap_{M \in S} M$ . Then  $rt \in \cap_{M \in S} M$ .

Assume 1 - rt is not left invertible; therefore there exists a maximal left ideal  $M_0$  of R such that  $R(1 - rt) \subseteq M_0$ .

Note then that  $1 - rt \in M_0$ . Also, by definition of t, we have  $rt \in M_0$ . Therefore  $1 \in M_0$ ; this contradiction implies 1 - rt is left invertible.

 $3) \subset 4)$  We claim that 3) satisfies the condition of 4).

Let  $K = \{t \in R : 1 - rt \text{ is left invertible for all } r \in R\}.$ 

We shall first show that K is an ideal.

Clearly if  $t \in K$ , then  $rt \in K$ . If  $t_1, t_2 \in K$ , then

$$1 - r(t_1 + t_2) = (1 - rt_1) - rt_2$$

Now there exists  $u_1$  such that  $u_1(1-rt_1)=1$ , hence

$$u_1((1-rt_1)-rt_2) = 1 - u_1rt_2$$

Similarly, there exists  $u_2$  such that  $u_2(1 - u_1rt_2) = 1$ , therefore

$$u_2 u_1 (1 - r(t_1 + t_2)) = 1$$

Hence  $t_1 + t_2 \in K$ .

Now if  $t \in K$ ,  $r \in R$ , to show that  $tr \in K$  it suffices to show that 1-tr is left invertible. Suppose u(1-rt)=1, hence u-urt=1, then tur-turtr=tr.

So 
$$(1 + tur)(1 - tr) = 1 + tur - tr - turtr = 1$$
.

Therefore K is an ideal.

Now let  $v \in K$ . Then there exists u such that u(1-v)=1, hence  $1-u=-uv \in K$ , so u=1-(1-u) is left invertible.

So there exists w such that wu = 1, hence wu(1 - v) = w, then 1 - v = w. Thus (1 - v)u = 1 and therefore 1 - v is a unit.

Let J be the largest ideal such that, for all  $v \in J$ , 1 - v is a unit. We claim that  $K \subseteq J$ .

Suppose this were not true; in this case K+J strictly contains J. Consider  $rx + sy \in K + J$  with  $x \in K, y \in J$  and  $r, s \in R$ . Now 1 - (rx + sy) = (1 - rx) - sy, and since  $rx \in K$ , then 1 - rx = u for some unit  $u \in R$ .

So  $1 - (rx + sy) = u - sy = u(1 - u^{-1}sy)$ , and clearly  $u^{-1}sy \in J$  since  $y \in J$ . Hence  $1 - u^{-1}sy$  is also a unit, and thus 1 - (rx + sy) is a unit.

Thus 1-v is a unit for all  $v \in K+J$ . But this contradicts the assumption that J is the largest such ideal. So we must have  $K \subseteq J$ .

4)  $\subset$  1) We must show that if I is an ideal such that for all  $u \in I$ , 1-u is a unit, then  $I \subset \operatorname{ann}({}_RM)$  for every irreducible left R-module  ${}_RM$ .

Suppose this is not the case, so there exists  $_RM$  such that  $I \not\subset \operatorname{ann}(_RM)$ . Now we know that  $\operatorname{ann}(_RM)$  is the largest ideal inside some maximal left ideal J of R. Thus we must also have  $I \not\subset J$ , or else this would contradict the maximality of  $\operatorname{ann}(_RM)$  inside J.

But since  $I \not\subset J$ , then by maximality I + J = R, hence there exist  $u \in I$  and  $v \in J$  such that u + v = 1. Then v = 1 - u, so v is a unit and J = R. But since J is a proper left ideal, this is a contradiction.