A Summary of "Sequential Optimization through Locally Important Dimensions" (SOLID) Winkel et al. [2021]

Miles Woollacott

Spring 2025

Background and Construction

- Want to find $maximum(\chi)$ of a multidimensional function f(x).
 - f is slow to optimize over.
- Idea: Sequential optimization of f that only considers a subset of variables at each iteration.
- $\underline{y} = f(\underline{x}) + \underline{\epsilon}$. • $f(\underline{x}) \sim GP(\mu \underline{1}_n, \Sigma(x, x'))$.
 - \bullet $\underline{\epsilon}$: noise term.
- $K(\underline{x},\underline{x}') = \exp\left\{-\sum_{k=1}^{p} \gamma_k (x_k x_k')^2\right\}.$
 - γ_k are unknown!
- Globally Inactive Variable: $\gamma_k = 0$.
- Globally Active Variable: $\gamma_k > 0$.

How can we identify potentially globally active variables?

Miles Woollacott SOLID Presentation Spring 2025 2 / 13

Identifying Globally Active Variables

How do we determine if a variable is globally (in)active?

$$\gamma_k = u_k b_k$$
 $u_k \sim \text{Gamma}(a_u, b_u)$
 $b_k \sim \text{Ber}(\theta)$
 $\theta \sim \text{Beta}(a_\theta, b_\theta)$.

If $\hat{b}_k := P(\gamma_k > 0|\underline{y}) < g$ for some $g \in (0,1)$, then we declare variable k as globally inactive.

GVS

Global Variable Selection: Sequentially remove globally inactive variables from model.

- Dimension reduction by only considering globally active variables.
- Variables declared globally inactive are never considered after removal.
- Acquisition function: Augmented El Criterion (AEI).

After identifying globally active variables:

- **1** Sample M posterior draws Ω_1,\ldots,Ω_M , and calculate $\hat{f}_t=\hat{f}(\cdot|\Omega_t)$.
- $\textbf{ Calculate the estimated global maximizer } \hat{\chi} = \arg\max_{\underline{\chi}} \left\{ \frac{1}{M} \sum_{t} \hat{f}_{t} \right\}.$

Locally Active/Inactive Variables

Want to find reasonable maximum in as few runs as possible. Global variable selection might still be too slow!

Locally Inactive Variable: The variable is not important in a subset of the input space.

Identifying Locally Active/Inactive Variables

How do we determine if a variable is locally (in)active?

Idea: Compare local predicted surfaces with and without $\gamma_k \stackrel{\text{set}}{=} 0$.

Identifying Locally Active/Inactive Variables

How do we determine if a variable is locally (in)active?

Idea: Compare local predicted surfaces with and without $\gamma_k \stackrel{\text{set}}{=} 0$.

- **①** Define local space \mathcal{F}_t , centered at $\hat{\chi}_t$ with size δ .
- ② Sample points in \mathcal{F}_t , denoted as $m{Q}_t \sim TN_{[0,1]^p}(\hat{m{\chi}}_t, \delta m{I})$.
- **3** Calculate $R_{kt}^2 = \operatorname{Corr}\left(\hat{f}_t(\boldsymbol{Q}_t), \hat{f}_t^k(\boldsymbol{Q}_t)\right)^2$.
- **1** Calculate $L_k = 1 \frac{1}{M} \sum_{i=1}^{M} R_{ki}^2$, and declare variable k locally inactive if $L_k < \rho$ for some $\rho \in (0,1)$.

SOLID

Idea: Sequentially optimize over globally and locally active variables.

- GVS.
- 2 Local variable selection (LVS).
- **3** AEI in LVS space for $\mathcal{R}^{\mathbf{A}}$ vs. \mathcal{R}^{δ} .

 $\circ = \hat{\chi}_t$, $\blacktriangle =$ design points, $\blacksquare =$ AEI maximizer, $* = \hat{\chi}$, Shaded area = the region which has the AEI maximizer.

Miles Woollacott SOLID Presentation Spring 2025 7 / 13

Comparing SOLID

- Mean Improvement: $\frac{1}{n} \sum_{i=1}^{n} f(\hat{\chi}_n) f(\hat{\chi}_0)$.
- SOLID initially improves faster than GVS and None.
 - Other methods tend to "catch up" as number of runs increases.

Miles Woollacott SOLID Presentation Spring 2025 8 / 13

Area of Improvement: Global Variable Selection

- If a variable is declared globally inactive, it is never considered again.
- If $\hat{b}_k := P(\gamma_k > 0|\underline{y}) < g$ for some $g \in (0,1)$, then we declare variable k as globally inactive.

References I

M. A. Winkel, J. W. Stallrich, C. B. Storlie, and B. J. R. and. Sequential optimization in locally important dimensions. *Technometrics*, 63(2): 236–248, 2021. doi: 10.1080/00401706.2020.1714738. URL https://doi.org/10.1080/00401706.2020.1714738.

The End

Questions?

Appendix A.1: Identifying Locally Inactive Variables

Algorithm Identifying Locally Active Variables [Winkel et al., 2021]

1: Initialize ρ and δ . Also randomly sample $m \leq M$ posterior draws.

- ρ : A cutoff value in the interval (0,1) that will determine if a variable is locally active/inactive.
- δ : Controls how far the prediction points are spread from $\hat{\chi} = \arg\max_{x} \hat{f}$.
- M: The number of posterior draws from Ω , the vector of GP parameters.

Appendix A.1: Identifying Locally Inactive Variables

Algorithm Identifying Locally Active Variables [Winkel et al., 2021]

- 1: Initialize ρ and δ . Also randomly sample $m \leq M$ posterior draws.
- 2: **for** $t \in \{1, ..., m\}$ **do**
- 3: Estimate $\hat{\chi}_t$ using Ω_t and all globally active variables.
- 4: Construct q prediction points Q_t centered around χ_t .
- 5: Determine baseline predictions \hat{f} at Q_t using Ω_t .
- 6: **for** variable $k \in \{1, \dots, p\}$ **do**
- 7: Make alternative predictions \hat{f}_t^k at Q_t and calculate R_{kt}^2 .
 - $Q_t \sim TN_{[0,1]^p}(\hat{\chi}_t, \delta I)$.
 - $R_{kt}^2 = \operatorname{Corr}\left(\hat{f}_t(\boldsymbol{Q}_t), \hat{f}_t^k(\boldsymbol{Q}_t)\right)^2$.

12 / 13

Miles Woollacott SOLID Presentation Spring 2025

Appendix A.1: Identifying Locally Inactive Variables

Algorithm Identifying Locally Active Variables [Winkel et al., 2021]

- 1: Initialize ρ and δ . Also randomly sample $m \leq M$ posterior draws.
- 2: **for** $t \in \{1, ..., m\}$ **do**
- 3: Estimate $\hat{\chi}_t$ using Ω_t and all globally active variables.
- 4: Construct q prediction points Q_t centered around χ_t .
- 5: Determine baseline predictions \hat{f} at Q_t using Ω_t .
- 6: **for** variable $k \in \{1, \dots, p\}$ **do**
- 7: Make alternative predictions \hat{f}_t^k at Q_t and calculate R_{kt}^2 .
- 8: **end for**
- 9: end for
- 10: Calculate $L_k = 1 \bar{R}_{k}^2$.
- 11: **return** $\mathbf{A} = \{k : L_k \ge \rho | \hat{\mathbf{\chi}} \}$, the set of locally active variables. =0

Miles Woollacott SOLID Presentation Spring 2025 12 / 13

Appendix A.2: SOLID

Algorithm SOLID [Winkel et al., 2021]

- 1: Set n_0 and N (the maximum number of evaluations). Also set g, δ , ρ , M, m, and c.
- 2: Create an initial maximin LHS (n_0, p) design X.
- 3: Generate y from Y(X).
- 4: for $i \in \{0, ..., N\}$ do
- 5: Obtain M posterior draws of Ω_t and χ_t , and calculate \hat{f} and $\hat{\chi}$.
- 6: Global Variable Selection: Remove variables with $\hat{b}_k < g$ from X. If variables are removed, repeat the previous step with the new X.
- 7: Local Variable Selection: Obtain A form previous algorithm.
- 8: Define restricted \mathcal{R}^{δ} and unrestricted $\mathcal{R}^{\mathbf{A}}$ search spaces.
- 9: Localized Optimum Estimation: Update estimate $\hat{\chi}$ in \mathcal{R}^{A} using \hat{f} . Store as $\hat{\chi}^{i}$.
- 10: Create maximin LHS designs $C_{\delta} \subset \mathcal{R}^{\delta}$ and $C_{\Delta} \subset \mathcal{R}^{\Delta}$.
- 11: Evaluate AEI in C_{δ} and C_{A} . Define the set with the largest AEI as C.
 - $\bullet \ \, \textit{AEI}(\underline{x}) = \mathbb{E}\left[\max\left\{\hat{f}(\underline{x}) \hat{f}(\underline{x}^*), 0\right\}\right] \left(1 \frac{\tau}{\sqrt{s^2(\underline{x}) + \tau^2}}\right), \, \text{where} \\ \underline{x}^* = \arg\max_{\underline{x}_i \in \mathbf{X}}\left\{\hat{f}(\underline{x}_i) \nu \cdot s(\underline{x}_i)\right\} \, \text{for some} \, \nu \geq 0, \, \text{and} \, \, \tau \, \, \text{is the nugget term.}$

Miles Woollacott SOLID Presentation Spring 2025 13 / 13

Appendix A.2: SOLID

Algorithm SOLID [Winkel et al., 2021]

- 1: Set n_0 and N (the maximum number of evaluations). Also set g, δ , ρ , M, m, and c.
- 2: Create an initial maximin LHS (n_0, p) design X.
- 3: Generate y from Y(X).
- 4: for $i \in \{0, ..., N\}$ do
- 5: Obtain M posterior draws of Ω_t and χ_t , and calculate \hat{f} and $\hat{\chi}$.
- 6: Global Variable Selection: Remove variables with $\hat{b}_k < g$ from X. If variables are removed, repeat the previous step with the new X.
- 7: Local Variable Selection: Obtain A form previous algorithm.
- 8: Define restricted \mathcal{R}^{δ} and unrestricted $\mathcal{R}^{\mathbf{A}}$ search spaces.
- 9: Localized Optimum Estimation: Update estimate $\hat{\chi}$ in \mathcal{R}^{A} using \hat{f} . Store as $\hat{\chi}^{i}$.
- 10: Create maximin LHS designs $C_{\delta} \subset \mathcal{R}^{\delta}$ and $C_{\mathbf{A}} \subset \mathcal{R}^{\mathbf{A}}$.
- 11: Evaluate AEI in C_{δ} and C_{A} . Define the set with the largest AEI as C.
- 12: **Localized AEI Estimation**: Perform line search optimization to identify $\underline{x}^* = \arg \max_{x \in C} AEI(x)$.
- 13: Augment \underline{x}^* to X. Generate $Y(\underline{x}^*)$ and add to y.
- 14: end for
- 15: return $\{\hat{\chi}^0, \dots, \hat{\chi}^N\}$. =0

