#### What is MobileNet?

- MobileNet is a CNN architecture that is much faster and smaller. These models are useful to be implemented on mobile and embedded devices.
- MobileNet is known to give good results while being computationally inexpensive comparatively.
- It was the first CNN architecture to use pointwise convolutions. It makes use of a new kind of convolutional layer, known as Depthwise-Separable convolution.
- It has 10x less parameters compared to ResNet50 and still offer great results!



### What is Depthwise Convolution?

In Depthwise Convolution, we apply a single convolutional filter for each input channel



## What is Depthwise-Separable Convolution?

Depthwise Separable Convolution splits the computation into two steps:

**Depthwise convolution:** It applies a single convolutional filter per each input channel.

**Pointwise convolution:** It is used to create a linear combination of the output of the depthwise convolution.



#### What is Pointwise Convolution?

In Pointwise Convolution, we use a 1x1 kernel, which iterates across every point. This kernel has a depth equal to the number of channels in the input picture.



#### What is EfficientNet?

- EfficientNet is a state-of-the-art CNN architecture that outperforms all previous ones while using fewer parameters.
- It is a family of neural networks of different sizes, where a lot of attention was paid to the scaling of the networks in the family.
- It uses a method that uniformly scales all dimensions of depth/width/resolution using a technique called compound coefficient.
- It has eight models(B0->B7), with increasing size



## Comparison of EfficientNet with Other Famous CNN Models



| Model Name     | Number of params | Top 1 Acc | Top 5 Acc |
|----------------|------------------|-----------|-----------|
| EfficientnetB0 | 5.3M             | 77.3      | 93.5      |
| MobileNet      | 2.3M             | 71.0      | 90.5      |
| ResNet50       | 25.6M            | 83.2      | 96.5      |
| Inception      | 22.9M            | 79.0      | 94.5      |
| VGG16          | 138M             | 74.4      | 91.9      |
| AlexNet        | 62M              | 63.3      | 84.6      |

# Factors to consider while using Transfer Learning

| New<br>Dataset      | Similarity of new dataset with the original dataset | Action                                                                                             |
|---------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Small and similar   | Fine-tuning might lead to overfitting.              | Consider using regularization techniques such as dropout or weight decay.                          |
| Large and similar   | Fine-tune the pre-trained network.                  | This can leverage the knowledge learned from the original dataset and adapt it to the new dataset. |
| Large and different | Train a convolutional neural network from scratch.  | This is necessary when the new dataset is significantly different from the original dataset.       |