

Exercises Trees

(5) 1 Decision Trees: Binary Classification

Consider the following data with features A,B,C and the binary class target.

Split A = T; 0,1413 0,7213	MISSGIAGIALATOR
$G_{3}(0, (\lambda, A=T)) = \frac{4}{5}h(\frac{3}{5}) + \frac{5}{5}h(\frac{4}{5}) = 0.3444$	= 0,2222
$S_{\rho k_{1}} = \tau$: 0,724 $G_{\rho_{1}}(S_{\rho_{1}} = T) = \frac{5}{5} \cdot h(\frac{2}{5}) + \frac{9}{3} \cdot h(\frac{1}{5}) = \frac{0.4161}{0.4164}$	= 0,4444
8,17 C:	1 1
G(b, (-, 2)) = 3 - 4/1) + 3 - 4(3) = 0,4167	= 013323
G(b,(-1)) = = = h(2)+= h(=)=0,4971	= 014444
$G(b_1(c_1^{45})) = \frac{3}{5} \cdot b_1(\frac{2}{3}) + \frac{6}{5} \cdot b_1(\frac{24}{23}) = 6,4444$	£0,3331
G(b,(=,5;)) = = h(=++h(2)) = 0,4889	= 0, uyu4
(S(h,(<160)) - 3-h(3)+5-h(3)+5-h(3)+1=014815	- 0,4444
$G(y_1(x_1,y_1)) = \frac{1}{3} \cdot y_1(y_1) + \frac{8}{3} \cdot y_1(\frac{y_1}{y_1}) = 0 \cdot 4444$	= 0,4444

Α	В	\mathbf{C}	target
Т	Т	1.0	+
${\rm T}$	${\rm T}$	6.0	+
\mathbf{T}	\mathbf{F}	5.0	-
\mathbf{F}	\mathbf{F}	4.0	+
\mathbf{F}	${ m T}$	7.0	_
\mathbf{F}	\mathbf{T}	3.0	-
\mathbf{F}	\mathbf{F}	8.0	-
\mathbf{T}	\mathbf{F}	7.0	+
\mathbf{F}	\mathbf{T}	5.0	_

Entropy

 $Split A = T : 0,1413 \quad 0,72213$ $G(0, (A,A=T)) = \frac{4}{3} \cdot h(\frac{2}{3}) + \frac{5}{5} \cdot h(\frac{1}{3}) = 0,76223$ Split B = T : 0,7741 $G(0, (B,B=T)) = \frac{5}{3} \cdot h(\frac{2}{5}) + \frac{4}{3} \cdot h(\frac{2}{6}) = 0,7884$ $Split C : G(b_1(C_12)) = \frac{1}{3} \cdot h(\frac{2}{5}) + \frac{3}{3} \cdot h(\frac{2}{3}) = 0,8484$ $G(b_1(C_1A_3)) = \frac{2}{3} \cdot h(\frac{2}{3}) + \frac{3}{3} \cdot h(\frac{2}{3}) = 0,9493$ $G(b_1(C_1A_3)) = \frac{3}{3} \cdot h(\frac{2}{3}) + \frac{4}{3} \cdot h(\frac{2}{4}) = 0,9493$ $G(b_1(C_1A_3)) = \frac{3}{3} \cdot h(\frac{2}{3}) + \frac{4}{3} \cdot h(\frac{2}{4})^4 = 0,9493$ $G(b_1(C_1A_3)) = \frac{3}{3} \cdot h(\frac{2}{3}) + \frac{4}{3} \cdot h(\frac{2}{4})^4 = 0,9233$ $G(b_1(C_1A_3)) = \frac{3}{3} \cdot h(\frac{2}{3}) + \frac{4}{3} \cdot h(\frac{2}{4})^4 = 0,9288$ $G(b_1(C_1A_3)) = \frac{4}{3} \cdot h(\frac{2}{3}) + \frac{4}{3} \cdot h(\frac{4}{4}) = 0,9889$

Consider all three impurity measures: What is the best split according to each of the three measures?

2 Decision Trees: Binary Classification (XOR)

Consider the following data. Note that the target column is obtained by $A + B + C \mod 2$ (in Boolean logic this is called eXclusive OR - XOR -).

A	В	\mathbf{C}	target
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
_1	1	1	1

- 1. Draw the decision tree (class is *target*) obtained by tree induction using Gini impurity (if the gain of two features is equal, you are allowed to choose one of them randomly).
- 2. Does the tree change if you use entropy?
- 3. Suppose you use **prepruning** (so you stop growing the tree) by requiring more than one instance per leaf. How does your tree look like?