

BIOMETRIKA

A JOURNAL FOR THE STATISTICAL STUDY OF BIOLOGICAL PROBLEMS

FOUNDED BY

W. F. R. WELDON, FRANCIS GALTON AND KARL PEARSON

EDITED BY

KARL PEARSON

VOLUME XI

NOVEMBER 1915 TO MAY 1917

CAMBRIDGE AT THE UNIVERSITY PRESS

LONDON: FETTER LANE, E.C. 4
(C. F. CLAY, Manager)

AND H. K. LEWIS AND CO., Ltd., 136, GOWER STREET, W.C. 1
WILLIAM WESLEY AND SON, 28, ESSEX STREET, STRAND, W.C. 2

EDINBURGH: 100, PRINCES STREET CHICAGO: UNIVERSITY OF CHICAGO PRESS

BOMBAY, CALCUTTA AND MADRAS: MACMILLAN AND CO., LIMITED

TORONTO: J. M. DENT AND SONS, LIMITED TOKYO: THE MARUZEN-KABUSHIKI-KAISHA

[All rights reserved]

CONTENTS OF VOLUME XI.

Memoirs.

		PAGE
I.	On the Association of Temperature, Pulse and Respiration with Physique and Intelligence in Criminals. By Madeline H. Whiting	1
II.	Variation and Correlation of the Number of Umbel Rays of some Umbelliferae. By C. Cool and A. N. Koopmans	38
III.	On the Partial Correlation-Ratio. Part II. Numerical. By L. Isserlis	50
IV.	Correlation of Anthropometrical Measurements in Cairo-born Natives. By Myer M. Orensteen	67.
V.	A Study of the Crania of the Moriori or Aborigines of the Chatham Islands, now in the Museum of the Royal College of Surgeons. By EVELINE Y. THOMSON	82
VI.	On the General Theory of Multiple Contingency with Special Reference to Partial Contingency. By Karl Pearson	145
VII.	On Criteria for the Existence of Differential Deathrates. By Karl Pearson and J. F. Tocher	159
VIII.	On certain Probable Errors and Correlation Coefficients of Multiple Frequency Distributions with Skew Regression. By L. Isserlis	185
IX.	On the Correlation between the "corrected" Cancer and Diabetes Deathrates. By C. A. CLAREMONT	191
X.	A Contribution to the Problem of Homotyposis. By J. Arthur Harris	201
XI.	On the Probable Error of a Coefficient of Contingency without Approximation. By Andrew W. Young and Karl Pearson	215
XII.	On some Novel Properties of Partial and Multiple Correlation Coefficients in a Universe of Manifold Characteristics. By	
	KARL PEARSON	231

		PAGE
XI.	II. On the Application of "Goodness of Fit" Tables to test Regression Curves and Theoretical Curves used to describe Observational or Experimental Data. By Karl Pearson	239
XI	V. On the "Best" Values of the Constants in Frequency Distributions. By Kirstine Smith	262
X	V. W. R. MACDONELL. Born October 16, 1852. Died May 15, 1916. Obituary Notice	281
XV	7I. Further Supplementary Tables for Determining High Correlations from Tetrachoric Groupings. By Alice Lee	284
XV	II. On the Probable Error of Biserial η . By Karl Pearson	292
XVI	III. A Preliminary Report on some Breeding Experiments with Fox- gloves. By Ernest Warren	303
XI	Appendix II to the Papers of "Student" and R. A. Fisher. A Cooperative Study. By H. E. SOPER, A. W. YOUNG, B. M. CAVE,	J
	A. LEE and KARL PEARSON	328
	Miscellanea.	
(i)	Note on the Probable Error of the Coefficient of Correlation in the Variate Difference Correlation Method. By A. RITCHIE-SCOTT	136
(ii)	On Certain Types of Compound Frequency Distributions in which the Components can be individually described by Binomial Series. By Karl Pearson	139
(iii)	Note on the Standard Deviations of Samples of Two or Three. By Andrew W. Young	277
(iv)	Tables for estimating the Probability that the Mean of a unique Sample of Observations lies between -∞ and any given Distance of the Mean of the Population from which the Sample is drawn. By	
, ,	"STUDENT"	414
(v)	On the Representation of Statistical Data. By L. Isserlis	418
(vi)	Relation of the Mode, Median and Mean in Frequency Curves. By ARTHUR T. DOODSON	425
(vii)	The Probable Error of a Mendelian Class Frequency. By Karl Pearson	429
	$Appendixes$ to $Volume\ XI$.	
I.	W. F. R. Weldon's Mice Breeding Experiments, Records of Matings. Prepared for Press by F. J. W. and K. P. Separately paged 1	to 60
II.	Moriori Crania. Six Type Contours on tissue in pocket.	

Plates.

Plate I.	Special Fasciations of Pastinaca sativa to face p.	38
Plate II.	Moriori Crania. Typical Male Skull. No. 765 ⁴⁵ . N. facialis	28
Plate III.	Moriori Crania. Typical Male Skull. No. 76545.	,,
Plate IV.	Moriori Crania. Typical Male Skull. No. 76545.	,,
Plate V.	Moriori Crania. Typical Male Skull. No. 76510.	,,
Plate VI.	Moriori Crania. Typical Male Skull. No. 765 ¹⁰ . N. occipitalis	,,
Plate VII.	Moriori Crania. Typical Male Skull. No. 765 ²⁵ . N. lateralis ,,	,,
Plate VIII.	Moriori Crania. Typical Male Skull. No. 765 ²⁵ . N. basalis , ,	,,
Plate IX.	Moriori Crania. Typical Female Skull. No. 765. N. lateralis	,,
Plate X.	Moriori Crania. Typical Female Skull. No. 765 ³² . N. lateralis ,,	,,
Plate XI.	Moriori Crania. Typical Female Skull. No. 763. N. verticalis	,,
Plate XII.	Moriori Crania. Typical Female Skull. No. 763. N. basalis	,,
Plate XIII.	Moriori Crania. Male Skull. No. 765 ⁵ . Marked asymmetry of foramen magnum. N. occipitalis ,,	> 2
Plate XIV.	Moriori Crania. Male Skull. No. 765 ⁵ . N. lateralis ,,	,,
Plate XV.	Moriori Crania. Male Skull. No. 762. Ossicle of coronal suture; occipital, bathrocephalic in character. N. lateralis	
Plate XVI.	Moriori Crania. Male Skull. No. 762. Ossicles of the lambdoid suture. N. occipitalis ,,	,,
Plate XVII.	Moriori Crania. Male Skull. No. 765 ²⁷ , with epipteric. N. lateralis ,,	,,
Plate XVIII.	Moriori Crania. Male Skull. No. 765 ²⁷ . Massive glabella. N. facialis ,,	,,

Plate XIX.	Moriori Crania. Skull No. 765 ¹⁷ , with marked bilateral paraoccipital processes articulating with atlas to face p. 128
Plate XX.	Moriori Crania. Male Skull. No. 765 ² , illustrating fracture of left ramus of mandible. <i>N. lateralis</i> , R. side with sound ramus , , , ,
Plate XXI.	Moriori Crania. Male Skull. No. 765 ² , illustrating fracture of left ramus of mandible. <i>N. facialis</i> , showing asymmetry produced by injury , , ,
Plate XXII.	Moriori Crania. Male Skull. No. 765 ² , illustrating fracture of left ramus of mandible. N. lateralis, L. side with healed fracture and dwarfing of ramus and perigonal region , , , ,,
Plate XXIII.	W. R. Macdonell, 1852-1916, from a photograph . ,, 281
Plate XXIV.	Correlation in Small Samples. Photograph of Model A, $\rho = 0.6$, $n = 2$ to 25
Plate XXV.	Correlation in Small Samples. Photograph of Model B, $\rho = 0.8$, $n = 2$ to 25 , , ,
Plate XXVI.	Correlation in Small Samples. Photograph of two aspects of Model C, $\rho = 0.0$ to $\rho = 0.9$, $n = 3$. ,, ,,
Plate XXVII.	Correlation in Small Samples. Photograph of Model D, $\rho = 0.0$ to $\rho = 0.9$, $n = 4$, , ,
Plate XXVIII.	Correlation in Small Samples. Photographs of Model E ($\rho = 0.0$ to $\rho = 0.9$, $n = 25$), and Model
	F $(\rho = 0.0 \text{ to } \rho = 0.9, n = 50)$, ,,
Extra Plate (de	ouble plate). Plate I of Appendix of W. F. R. Weldon's Mice

Extra Plate (double plate). Plate I of Appendix of W. F. R. Weldon's Mice Breeding Experiments. Photographs of Mice Skins to illustrate amount of Piebaldism.

JAN 24

BIOMETRIKA

A JOURNAL FOR THE STATISTICAL STUDY OF BIOLOGICAL PROBLEMS

FOUNDED BY THAT WE'D MARKETA

W. F. R. WELDON, FRANCIS GALTON AND KARL PEARSON

EDITED BY
KARL PEARSON

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER
LONDON: FETTER LANE, E.C.
EDINBURGH: 100, PRINCES STREET

also

H. K. Lewis, 136, gower street; London, w.c.

WILLIAM WESLEX AND SON, 28, ESSEX STREET, LONDON, W.C.

CHICAGO: UNIVERSITY OF CHICAGO PRESS

BOMBAY, CALCUTTA AND MADRAS: MACMILLAN AND CO., LIMITED

TORONTO J. M. DENT AND SONS, LIMITED TOKYO: THE MARUZEN-KABUSHIKI-KAISHA

Price Twenty Shillings net

[Issued December 22, 1915]

The Life, Letters, and Labours of Francis Galton

Vol. I. Birth 1822 to Marriage 1853

WITH 5 PEDIGREE PLATES AND 72 PHOTOGRAPHIC PLATES, FRONTISPIECE AND 2 TEXT-FIGURES

By KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

In Biometrika, Vol. VIII, 1911, the Editor promised an account of the lifework of Francis Galton. That account out-grew the limits of this Journal, and the first instalment has now appeared in the above issue.

"It is not too much to say of this book that it will never cease to be memorable. Never will man hold in his hands a biography more careful, more complete."—The Times

"A monumental tribute to one of the most suggestive and inspiring men of modern times."—Westminster Gazette

"It was certainly fitting that the life of the great exponent of heredity should be written by his great disciple, and it is gratifying indeed to find that he has made of it, what may without exaggeration be termed a great book."—Daily Telegraph

Recently issued. Price 9s. net.

Tables for Statisticians & Biometricians

EDITED BY KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

ISSUED WITH ASSISTANCE FROM THE GRANT MADE BY THE WORSHIPFUL COMPANY OF DRAPERS TO THE BIOMETRIC LABORATORY.

"To the workers in the difficult field of higher statistics such aids are invaluable. Their calculation and publication was therefore as inevitable as the steady progress of a method which brings within grip of mathematical analysis the highly variable data of biological observation. The immediate cause for congratulation is, therefore, not that the tables have been done but that they have been done so well......The volume is indispensable to all who are engaged in serious statistical work."—Science

"The whole work is an eloquent testimony to the self-effacing labour of a body of men and women who desire to save their fellow scientists from a great deal of irksome arithmetic; and the total time that will be saved in the future by the publication of this work is, of course, incalculable......To the statistician these tables will be indispensable."—Journal of Education

"The issue of these tables is a natural outcome of Professor Karl Pearson's work, and apart from their value for those for whose use they have been prepared, their assemblage in one volume marks an interesting stage in the progress of scientific method, as indicating the number and importance of the calculations which they are designed to facilitate."—Post Magazine

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER

LONDON: FETTER LANE, E.C. EDINBURGH: 100, PRINCES STREET

BIOMETRIKA

ON THE ASSOCIATION OF TEMPERATURE, PULSE AND RESPIRATION WITH PHYSIQUE AND INTELLIGENCE IN CRIMINALS: A STUDY IN CRIMINAL ANTHROPOMETRY

By MADELINE H. WHITING

CONTENTS

		PAGE
(1)	Introductory	1
(2)	Temperature	2
(3)	Further differentiated Characters of the Weak-minded and Normal-	
	minded Populations	7
(4)	On the Interphysiological Correlations	12
(5)	On the Correlations between the Physiological and the Physical Variates	15
(6)	On the Relation of External Temperature to the Physiological Variates .	17
(7)	On the Individuality of the Physiological Variates	17
	Appendix. Correlation Tables	20
	Alphabetical Index to Correlation Tables in Appendix	37

(1) Introductory. In a recent investigation as to school children by Williams, Bell and Pearson*, it was shown that in a series of seven schools temperature was negatively correlated with weight for constant age, and further in six out of the seven school series negatively correlated with stature for constant age. The correlations were on the whole small, but definitely significant. In the great public schools the temperature appeared, allowing for age, to be lower than in the elementary schools. An association was thus suggested between intelligence and temperature, the more intelligent having the lower temperature. This result might well be considered as spurious, and due to differences of nurture, particularly to differences of nutrition. On the other hand various writers have asserted that low temperatures are associated with low intelligence, and it is usually stated

^{* &}quot;A Statistical Study of Oral Temperatures in School Children," Drapers' Company Research Memoirs. Studies in National Deterioration, No. IV (Cambridge University Press). See pp. 57 and 59.

that the temperature of idiots is lower than that of normals. Such a conclusion might easily be reached if great care were not taken in keeping the mouths of the mentally defective closed. Norsworthy has given a descending scale of temperature from brightest girls to mediocre girls and so through mental defectives to idiots*. But the numbers dealt with were very inadequate, and the time of insertion very short. It appeared therefore well worth while considering further certain temperature problems, and the Biometric Laboratory was lucky enough to have placed at its disposal observations by Dr Charles Goring on 500 convicts. Of these convicts 400 were of normal intelligence and 100 were classed as weak-minded. In the bulk of cases the temperatures were taken twice at an interval of 14 days and upwards, the temperature of the room was also taken. Further the pulse and respiration were observed on both occasions. The examinations were all made at the same time, about a quarter of an hour after early dinner, and in the same condition, the prisoner would be sitting in his cell, either reading, writing or doing nothing. When the thermometer had been inserted under his tongue, the medical officer would count the frequency of his pulse during one minute, and then would count respirations during one minute by observation of abdominal movement; the prisoner himself had of course no knowledge that this observation was being made. Besides the above data, the age, stature, weight, nature of the crime and previous convictions, the existence of special disease, the general health, the physical condition with regard to nutrition and muscularity, as well as the class of prison labour were all recorded. Only some of these data are discussed in the present paper.

Of the characters dealt with, stature, age, weight, pulse, respiration and temperature are quantitatively determined, intelligence is in two classes, normal and feeble-minded; the other data are in broad categories. Thus General Health is classed as "Poor," "Indifferent," or "Good"; for physical condition there are two divisions, each in alternate categories, (i) "Fat" or "Thin" and (ii) "Muscular" or "Weak"; labour done by the convict is classed into "Heavy" and "Light"; and this forms an adequate classification by which to test health conditions and other physical categories.

- (2) Temperature. The temperatures were oral, taken with a Kew certified minute thermometer inserted under tongue with closed mouth for three minutes. None of the subjects were hospital invalids, all at the time of the observations were getting about, but of course a good many were suffering from chronic disease or disorders of one kind or another. The following classification of these diseases and disorders was made:
 - I. Syphilis: disease apparently inactive at time of observation.
 - II. Chronic Bronchitis or Asthma, or both: free from attack at time of observation.

^{* &}quot;The Psychology of Mentally Defective Children," Archives of Psychology, November, 1906. See also Pearson: Mendelism and Mental Defect, No. III (Cambridge University Press), p. 27.

- III. Organic Heart Disease.
- IV. Chronic Tubercular Disease: quiescent at time of observation.
- V. Cardio-vascular degenerative changes.
- VI. Epilepsy.
- VII. Functional Heart Disorders without organic disease, and described as "weak heart."
- VIII. Kidney degenerative changes: indicated by albuminuria, etc.
- IX. Other pathological states: Necrosis of bone of old standing; diabetes, active at time of observation; tabes dorsalis (active); general paralysis of the insane (active); chronic rheumatism (active); urethral stricture, resulting from gonorrhoea; previously insane; goître (active); cirrhosis of liver (active); hemiplegia, resulting from a stroke.

927 temperatures were taken on 500 individuals, 427 being repeated temperatures, the intervals between observations varying from 2-3 weeks to 2-3 months. 326 temperatures were those of criminals suffering from the diseases and disorders classed as above, the remaining 601 temperatures may be taken as those of fairly normal individuals, differentiated only from the same class of the population by the fact of their criminality and by the action of prison diet, discipline and labour. Out of the 400 mentally normal convicts 34.5 % were suffering from one or another disorder, and of the 100 weak-minded convicts, 27 %. This is explained by the fact that Parkhurst, where the observations were made, is largely a prison to which the physically or mentally feeble are sent, and accordingly it is more than probable that the weak-minded in general suffer at least as much from disorder and disease as the normal-minded criminal. Taking apparently inactive syphilis alone we find 12.75 % of the normal-minded and 11.00 % of the weak-minded* suffering from non-active disease, a nearer ratio of equality. It would be of great value if a Wassermann test could be made throughout a large convict establishment. It seems probable that at least 10 % of the inmates would be found to be syphilitic. Making due allowance for the class from which the bulk of criminals are drawn, this does not suggest that much more than 5 %-6 % of the non-criminal population are likely to be affected, and compares on the whole favourably with the high estimates published of the syphilised population in Germany†. The following table sets forth our results for mean temperatures:

^{*} One case of general paralysis of the insane included, and in both classes the probably syphilitic also counted.

[†] Fritz Lenz: "Ueber die Verbreitung der Lues...," Archiv für Rassen- und Gesellschaftsbiologie, Bd. vii. S. 306-327, 1910.

TABLE	Α.	Mean	Temperatures	of	Various	Classes.
-------	----	------	--------------	----	---------	----------

Class	No. of Temperatures	Mean Temperatures
"Weak Heart" (VII)	 20	$98.585 \pm .068$
Weak-minded	 191	$98.547 \pm .022$
Epilepsy (VI)	 27	98.537 + .059
Cardio-vascular changes (V)	 36	98.408 + .050
Normally Healthy Criminals	 601	98.383 + .013
Whole Population	 927	98.373 + .011
Chronic Bronchitis, Asthma (II)	 51	98.353 + .043
Kidney changes (VIII)	 14	$98.350 \pm .082$
Syphilis (I)	 97	98.342 + .031
Organic Heart Disease (III)	 32	98.278 + .054
Chronic Tubercular Disease (IV)	 22	98.241 + .065
Other pathological conditions (IX)	 27	98.170 + .059

Now it must be at once admitted that many of the series here are so small, that we cannot say that the temperature differences, still less the general temperature order, are significant, but certain differences do appear significant. For example, the weak-minded do appear to have a significantly *higher* average temperature than normally healthy criminals. The difference,

weak-minded – normally healthy =
$$\cdot 164 \pm \cdot 026$$
,

is clearly significant numerically, but this does not show that the higher temperature is inherent in the weak-mindedness. We have already seen that of the weak-minded 27 % were suffering from one form or another of disorder, while we are comparing them against a normally healthy criminal population. The only groups, however, that could tend to raise the temperature of the weak-minded are V, VI and VII. To these groups the weak-minded contribute

V. Cardio-vascular degenerative changes: 4 temperatures.

VI. Epilepsy: 16 ,, VII. "Weak Heart": 0 ,,

These 20 temperatures have therefore been removed and we find:

Mean temperature of weak-minded = $98.541 \pm .021$.

Thus the removal of the epileptic has only lowered very slightly the temperature of the weak-minded group. That has indeed 8.4 % of the temperatures of the epileptic as against only 1.2 % in the group of normal-minded criminals*, but the difference of temperature is only in the very smallest degree due to this excess of epilepsy. One point, however, of some apparent importance had it been based on more numerous data was observed, namely, that the 18 temperatures of the weak-minded who were suffering from syphilis, apparently inactive at the time of observation, gave a high mean, i.e. 98.683, as against the fact that the general

^{*} Reckoned on individuals, not on temperatures observed, the percentages are 9.0 % and 1.5 % respectively.

syphilised population had if anything a rather subnormal temperature; but the removal of these 18 temperatures gave for the weak-minded population a mean-temperature of $98.533 \pm .021$, which although slightly reduced is still significantly greater than that of the normal criminal population. I think we must conclude that none of the observed pathological states is the source of the higher temperature of the weak-minded, but whatever that source is, it is intensified in the presence of either epilepsy or syphilis*.

In the paper by Williams, Bell and Pearson, already cited, it is shown that body temperature falls with age up to the adult stage. From the present data we see that from age 22.5 to age 85.5 the fall is continued. Table XXXIV gives

DIAGRAM I. Regression Line of Temperature on Age for Criminals.

the data and Diagram I shows the plotted regression line. If T be the temperature in degrees Fahrenheit, A the age in years, the equation to the regression line is:

$$T = 98.5915 - .004989 A$$

which indicates that the temperature falls $\cdot 005$ or $\frac{1}{200}$ of a degree per year. The problem then arises—can the difference of temperature between the weak-minded

* Weak-minded epileptics, 98·669; criminal epileptics in general, 98·537; weak-minded syphilitics, 98·683; criminal syphilitics in general, 98·342. These results are open to the interpretation that the weak-mindedness may be owing to cerebral injury due to the disease, and that cerebral disorders are more apt than other forms of these diseases to be accompanied by higher temperatures.

and normal criminal be solely an age difference? An examination of Table B shows that the mean age of the weak-minded is 38·16 years and of the normal-minded 44·86 years, or the former are younger by 6·70 years. This would correspond only to an average greater temperature of ·034 degrees as against the observed difference of ·164 degrees. The temperature difference of weak- and normal-minded is therefore not due to age difference. This is confirmed in Diagram II, where

DIAGRAM II. Regression Lines of Temperature on Age for Feeble- and Normal-Minded.

the observations and the calculated regression lines for the weak-minded and the normal-minded groups* are plotted alongside each other. Notwithstanding the irregularities due to the smallness of the sample, it will be seen that at *every* age the mentally defective have a higher temperature than the normal-minded, and further that, as averaged out by the regression lines, the difference at each age is sensibly constant (the regression lines are practically parallel) and equal to $0^{\circ}\cdot 2$.

We conclude that weak-minded adults have a higher temperature than normal-minded adults and in this respect differ from mentally defective children who are

^{*} The equation to the regression line of the weak-minded group is T=98.6535-002796A, and of the normal-minded group T=98.5063-003939A.

stated by Professor Norsworthy* to have a lower temperature than normal-minded children, or else Norsworthy's material by including idiots was differentiated from weak-minded criminals, or again was unreliable owing to the brief period of insertion of the thermometer, and possibly to insufficient care in keeping the mouths of the mentally defective children closed during the observation. It is not possible in our case to account for this temperature difference by either (i) difference of age† or (ii) difference of observed pathological states other than those summed up in the word weak-minded.

One of the noteworthy points of Table A is that when we pass from one or other type of heart trouble (V or VII) and from the epileptic and weak-minded groups to chronic and organic disorders and diseases of a degree of activity which does not involve hospital segregation, we find, without laying too great stress on the individual order, that they tend on the whole to subnormal temperatures.

(3) Further Differentiated Characters of the Weak-minded and Normal-minded Populations.

A study of Table B shows that the weak-minded criminal is differentiated from the normal-minded; in a number of other characters beyond body temperature.

TABLE B.

Table of Means, Standard Deviations and Coefficients of Correlation of the Chief Variates dealt with.

	-	Me	an	Standard	Deviation	Coefficient of Variation		
Variate	Unit	Whole Population	Weak- minded	Whole Population	Weak- minded	Whole Population	Weak- minded	
Age Temperature Pulse Respiration Height Weight	Years Degs. Fahr. Per minute Per minute Inches Lbs.	$\begin{array}{c} 43 \cdot 518 \pm \cdot 438 \\ 98 \cdot 373 \pm \cdot 011 \\ 74 \cdot 215 \pm \cdot 245 \\ 18 \cdot 985 \pm \cdot 075 \\ 65 \cdot 281 \pm \cdot 082 \\ 142 \cdot 147 \pm \cdot 516 \end{array}$	$\begin{array}{c} 38 \cdot 160 \pm \cdot 717 \\ 98 \cdot 547 \pm \cdot 022 \\ 77 \cdot 620 \pm \cdot 578 \\ 19 \cdot 679 \pm \cdot 168 \\ 64 \cdot 788 \pm \cdot 185 \\ 134 \cdot 397 \pm \cdot 951 \end{array}$	$14.510 \pm .309 \\ \cdot 486 \pm .008 \$ \\ 11.062 \pm .173 \\ 3.380 \pm .053 \\ 2.682 \pm .058 \\ 16.996 \pm .365$	$\begin{array}{c} 10\cdot627\pm\cdot507\\ \cdot454\pm\cdot016\\ 11\cdot852\pm\cdot409\\ 3\cdot433\pm\cdot119\\ 2\cdot706\pm\cdot131\\ 13\cdot881\pm\cdot672\\ \end{array}$	$\begin{array}{c} 33 \cdot 34 \pm \cdot 79 \\ \cdot 49 \pm \cdot 01 \\ 14 \cdot 89 \pm \cdot 24 \\ 17 \cdot 80 \pm \cdot 29 \\ 4 \cdot 11 \pm \cdot 09 \\ 11 \cdot 96 \pm \cdot 26 \end{array}$	$\begin{array}{c} 27.85 \pm 1.43 \\ \cdot 46 \pm \cdot 02 \\ 15.27 \pm \cdot 54 \\ 17.45 \pm \cdot 62 \\ 4.18 \pm \cdot 20 \\ 10.33 \pm \cdot 51 \end{array}$	

^{*} loc. cit. on our p. 2.

[†] This is confirmed by the correlation $-\cdot 229 \pm [\cdot 030]$ for mentality and temperature for constant age. See Table C.

[‡] The term "normal-mirded" is throughout this paper used of that portion of the criminal population not classed as weak-minded, and is not intended to serve as the basis of any opinion as to whether the non-weak-minded criminal is or is not mentally differentiated from the general non-criminal normal-minded population.

[§] It will be noticed that the value of this standard deviation is in very close agreement with those found for first and second temperatures in the case of children by Williams, Bell and Pearson. See loc. cit. p. 10, where $\sigma_{t_1} = .5343$ and $\sigma_{t_2} = .4803$.

For if he significantly exceeds or falls short of, on the average, the whole population, he will a fortiori be differentiated from the normal-minded population*. We have the following results:

We conclude from these results that while the weak-minded criminal probably but not very certainly has a somewhat less stature[†], he has quite markedly less weight, and this is combined with a higher temperature, a quicker pulse and a quicker respiration.

We now come to precisely the same point as we reached in the problem of differential temperatures. We ask: How far are these differences explicable on the basis of the recognised difference in age between the weak-minded and the total population? From Table C (p. 11) we extract the following correlations and we give the corresponding regressions:

	0 1/	Regression	e on Age	
Variates	Correlations	Per Year	Per 5·36 Years	Comparable Difference
Age and Temperature Age and Pulse Age and Respiration Age and Height Age and Weight	$\begin{array}{l}150 \pm .022 \\ +.121 \pm .022 \\ +.077 \pm .022 \\ +.023 \pm .030 \\ +.136 \pm .030 \end{array}$	$\begin{array}{l}005,026 \\ +.092,400 \\ +.017,887 \\ +.004,177 \\ +.159,532 \end{array}$	- ·0269 + ·4951 + ·0958 + ·0224 + ·8548	$ \begin{array}{r} \cdot 174 \\ 3 \cdot 205 \\ \cdot 694 \\ - \cdot 493 \\ - 7 \cdot 750 \end{array} $

^{*} Let the means, total frequencies and standard deviations of the general, the normal-minded and the weak-minded population be \bar{g} , \bar{n} and \bar{w} , f_g , f_n , f_w , σ_g , σ_n , and σ_w , and let β be the multiple (say, about 3) which a quantity must be of its probable error to be considered significant. Then in the usual way $\overline{n} - \overline{w}$ is significant if

$$\overline{g} - \overline{w} \text{ is} = \text{or} > \beta \left(\cdot 67449 \right) \sqrt{\frac{\sigma_g^2}{f_g} + \frac{\sigma_w^2}{f_w} \left(1 - \frac{2f_w}{f_g} \right)} / \sqrt{1 + \frac{(\cdot 67449\beta)^2 f_w}{f_g \left(f_g - f_w \right)}} \,.$$

Now with $\beta = 3$ and our numbers, roughly $f_w = 190$, $f_g = 930$, we have

$$\sqrt{1+\frac{(\cdot 67449\beta)^2f_w}{f_{\theta}\left(f_{\theta}-f_w\right)}}\!=\!1\cdot\!0005,$$
 and this expression may be therefore taken as unity. Hence if we compare

$$\bar{g} - \bar{w}$$
 with $.67449 \sqrt{\frac{\sigma_g^2}{f_g} + \frac{\sigma_w^2}{f_w}}$,

and it is significant, it will certainly be significant if compared with

$$\cdot 67449 \sqrt{\frac{\sigma_g^2}{f_g} + \frac{{\sigma_w}^2}{f_w} \left(1 - \frac{2f_w}{f_g}\right)}$$
,

which is a smaller quantity. See Biometrika, Vol. v. pp. 181-183.

† Worked out from the fuller formula the result is $-.493 \pm .143$, or the difference is greater than three times its probable error and accordingly may be considered probably significant.

Now it will be seen that while all these correlations are significant except age and height*, none of them are of any considerable magnitude, or capable of producing any appreciable influence on the observed comparable differences. Further since pulse and respiration become very slightly quicker with age, they tend to emphasise and not to reduce the observed differences between these characters in weak-minded and normal-minded. Age might account for one-ninth of the observed difference in weight, or roughly for less than 1 lb. out of the nearly 8 lbs. difference observed; and, as before, age accounts for a very inconsiderable portion of the observed temperature difference. We are thus justified in concluding that the observed physical and physiological differences are quite independent of age differences†. We are able to confirm these results by another method of investigation, which well illustrates the insignificance of the age correction. In our opinion "weak-mindedness" must depend largely on the personal equation of the recorder;, and there is no definite bounding line between the weak- and the normal-minded. In other words we may consider mental state as an approximately continuous variate, and one not widely divergent from the Gaussian in frequency distribution. Now it is known that in school-children the feeble-minded do not amount to 2 %; and it is probable that in the community at large their number does not even reach this. On the other hand the criminal class is largely recruited from the less-intelligent section of the general population. Among inebriate and prostitute women probably 40 % to 60 % may be classed as feebleminded ||, and though among male criminals such a high percentage is not reached, they must bulk very considerably. Goring in his invaluable Report¶ considers the percentage to be 10 to 15. In our present data we have 100 weak-minded individuals and 400 normal-minded, or we have taken 20 % and calculated the correlations between intelligence and the physical and physiological characters on this basis. But it is of interest to observe what order of change would be made in our results by taking a lesser percentage. Consider, for example, Table XXXV for intelligence and temperature. Here the temperatures of the weak-minded

^{*} Of course the correlation of age and height is largely misleading, the younger criminals are still growing, the older are slowly losing height. Thus the regression is really skew. For example, the value of the correlation ratio η for height on age is ·147. If, however, we take the correlation of age and height for criminals of over 26 years, at which age other investigations (see *Biometrika*, Vol. 1. p. 47) show that height begins to diminish, the negative correlation is only —·01195 corresponding to merely a loss of ·0022 inches per year of past prime life, and therefore quite negligible.

[†] Except in the matter of age and weight Table B shows us that judged either by absolute or relative variability there is no practical difference in variability between weak-minded and normal-minded criminals.

[‡] On the continuity of Weak-mindedness, see Questions of the Day and the Fray, No. viii. "The Continuity of Mental Defect," by Karl Pearson and Gustav A. Jaederholm; No. ix. "On the Graduated Character of Mental Defect," by Karl Pearson (Cambridge University Press).

[§] See A Preliminary Study of Alcoholism in Adults, by Amy Barrington and Karl Pearson (Cambridge University Press), p. 9.

 $[\]parallel$ A Second Study of Extreme Alcoholism in Adults, by David Heron (Cambridge University Press), p. 15.

[¶] See The English Convict, a Statistical Study (Wyman and Sons), p. 254.

form 20.6 % of the 927 recorded temperatures; we will raise the normal-minded temperatures to 1719 by multiplying that row by the factor 2.336 retaining, however, only unit frequencies. We find approximately:

Table XXXV, modified to give 10 % weak-minded only. Temperature.

Intelligence	9.96-2-96	8.96-2.96	0.79-97-0	97.1—97.2	97.3—97.4	97.5-97.6	97.7—97.8	97.9—98.0	38.1—38.2	98.3—98.4	98.5—98.6	98.7—98.8	98.9—99.0	99.1—99.2	99.3—99.4	9-6666	8-66-2-66	0.001—6.66	Totals
Weak-minded Normal-minded	2		4	7	1 49	$\frac{4}{70}$	10 145	12 201	24 236	25 299	$\frac{34}{248}$	31 236	24 114	15 61	8 23	2 12	1 5		191 1719
Totals	2	5	4	7	50	74	155	213	260	324	282	267	138	76	31	14	6	2	1910

Here the correlation r (found by the bi-serial method) is for this 10 % of the weak-minded

$$r = -.231 \pm .030$$
,

whereas with the 20 % value of the weak-minded

$$r = -.258 \pm .030.$$

We conclude from this result that even halving the percentage of the feeble-minded will only alter the correlation by less than its probable error, and that accordingly for the purpose we have in hand the bi-serial values of the correlations based on 20 % of weak-mindedness will give sufficiently accurate results.

The reader is now asked to examine the last six lines of Table C. He will observe that, while nowhere very important, all the correlations of mentality with age, temperature, pulse, respiration, height and weight are significant; that the most important is weight, and that the signs are in agreement with the conclusions already reached, i.e. those with less mentality, or the feeble-minded, have less weight, height and age*, but greater temperature and quicker pulse and respiration. Examining the second column, which gives for the same variates the partial correlations for constant age, we see that no very substantial changes are made in the crude values; they all remain still significant, and this could have been anticipated by merely noting the small age and variate total correlations at the top of the first column. We conclude again that the physical and physiological characters dealt with are significantly related to feeble-mindedness, but the relationships are of such a low degree that they would be of absolutely no service for the purpose of

^{*} The extent to which this lesser age of the weak-minded criminal is due (a) to earlier average conviction, resulting from earlier crime or easier capture, (b) to more frequent transfer to other institutions, or (c) to earlier death is of course not determinable from the present data. But it has to be borne in mind that fraudulent offenders convicted late in life belong to a different social class, and are rarely feeble-minded. This class has usually greater stature and weight.

TABLE C. Physiological, Physical and Mental Correlations.

						Partial Co	rrelations				
Variates Correlated	Total Correla- tions	Age Constant	Tempera- ture Constant	Pulse Constant	Respira- tion Constant	Height Constant	Weight Constant	Age and Respira- tion Constant	Age and Weight Constant	Age and Height Constant	Weight and Height Constant
Age and Temperature Age and Pulse Age and Respiration Age and Height Age and Weight	$\begin{array}{c} -\cdot 150 \\ \pm \cdot 022 \\ +\cdot 121 \\ \pm \cdot 022 \\ +\cdot 077 \\ \pm \cdot 022 \\ +\cdot 023 \\ \pm \cdot 030 \\ +\cdot 136 \\ \pm \cdot 030 \end{array}$	— — — — ,	+·174 ±·022	-·195 ±·021	-·142 ±·030 +·117 ±·022 —	$\begin{array}{c} -\cdot 151 \\ \pm \cdot 021 \\ +\cdot 124 \\ \pm \cdot 022 \\ +\cdot 081 \\ \pm \cdot 022 \\ - \\ +\cdot 151 \\ \pm \cdot 030 \\ \end{array}$	$\begin{array}{c} -\cdot 158 \\ \pm \cdot 021 \\ +\cdot 107 \\ \pm \cdot 022 \\ +\cdot 090 \\ \pm \cdot 022 \\ -\cdot 070 \\ \pm \cdot 030 \\ -\end{array}$		— — — —		$ \begin{array}{c} -\cdot 160 \\ \pm \cdot 021 \\ +\cdot 097 \\ \pm \cdot 022 \\ +\cdot 083 \\ \pm \cdot 022 \end{array} $
Temperature and Pulse Temperature and Respiration Temperature and Height Temperature and Weight	$\begin{array}{c} \pm .020 \\ + .142 \\ \pm .022 \\ + .003 \\ + .022 \end{array}$	$\begin{array}{l} + \cdot 312 \\ \pm \cdot 020 \\ + \cdot 156 \\ \pm \cdot 022 \\ + \cdot 007 \\ \pm \cdot 022 \\ + \cdot 065 \\ \pm \cdot 022 \end{array}$		+·130 ±·022 —	+·283 ±·020 — — —	$\begin{array}{c} + \cdot 289 \\ \pm \cdot 020 \\ + \cdot 144 \\ \pm \cdot 022 \\ \\ + \cdot 051 \\ \pm \cdot 022 \end{array}$	$\begin{array}{c} + \cdot 286 \\ \pm \cdot 020 \\ + \cdot 146 \\ \pm \cdot 022 \\ - \cdot 027 \\ \pm \cdot 022 \\ - \end{array}$	+·305 ±·020 —	$\begin{array}{c} +.308 \\ \pm .020 \\ +.163 \\ \pm .022 \\039 \\ \pm .022 \\ -\end{array}$	$\begin{array}{c} +.314 \\ \pm.020 \\ +.158 \\ \pm.022 \\ - \\ +.075 \\ \pm.022 \end{array}$	$^{+\cdot 286}_{00000000000000000000000000000000000$
Pulse and Res- piration Pulse and Height Pulse and Weight	$\pm \cdot 022$	$ \begin{array}{r} +.070 \\ \pm .022 \\081 \\ \pm .022 \\ +.099 \\ \pm .022 \end{array} $	+·020 ±·022			$ \begin{array}{c} + \cdot 049 \\ \pm \cdot 022 \\ - \\ + \cdot 197 \\ \pm \cdot 021 \end{array} $	+·071 ±·022 -·178 ±·022		$+.081$ $\pm.022$ 172 $\pm.022$ 022	+·059 ±·022 - +·181 ±·022	+·052 ±·022
Respiration and Height Respiration and Weight	$ \begin{array}{r} -\cdot 144 \\ \pm \cdot 022 \\ -\cdot 089 \\ \pm \cdot 022 \end{array} $	$ \begin{array}{r} -\cdot 146 \\ \pm \cdot 022 \\ -\cdot 101 \\ \pm \cdot 022 \end{array} $				 +·007 ±·022	-·113 ±·022 —		-·108 ±·022		_
Height and Weight	+·580 ±·020	+·583 ±·020						_			
Mentality and Age Mentality and Temperature Mentality and Pulse Mentality and Respiration Mentality and Height Mentality and Weight	$\begin{array}{c} + \cdot 264 \\ \pm \cdot 041 \\ - \cdot 258 \\ \pm \cdot 020 \\ - \cdot 223 \\ \pm \cdot 030 \\ - \cdot 148 \\ \pm \cdot 031 \\ + \cdot 154 \\ \pm \cdot 043 \\ + \cdot 324 \\ \pm \cdot 040 \end{array}$	$ \begin{array}{c}266 \\ \pm [.030] \\175 \\ \pm [.031] \\ +.153 \\ \pm [.043] \\ +.304 \end{array} $	- - +·347		ー ー ー ー +·315 ±[·040]	$\begin{array}{c} + \cdot 263 \\ \pm [\cdot 041] \\ - \cdot 262 \\ \pm [\cdot 030] \\ - \cdot 214 \\ \pm [\cdot 030] \\ - \cdot 129 \\ \pm [\cdot 031] \\ - \\ + \cdot 291 \\ \pm [\cdot 041] \end{array}$	$\begin{array}{c} + \cdot 234 \\ \pm [\cdot 041] \\ - \cdot 288 \\ \pm [\cdot 030] \\ - \cdot 276 \\ \pm [\cdot 030] \\ - \cdot 127 \\ \pm [\cdot 031] \\ - \cdot 044 \\ \pm [\cdot 044] \\ - \end{array}$			$ \begin{array}{r} -\cdot 264 \\ \pm [\cdot 030] \\ -\cdot 160 \\ \pm [\cdot 031] \end{array} $	+·230 ±[·041] -·289 ±[·030] -·289 ±[·030] -·133 ±[·031]

The partial correlations were all calculated from values of the total correlations to four figures. The probable errors of the bi-serial correlations were calculated by Soper's formula (see *Biometrika*, Vol. x. p. 384). Those of the partial coefficients involving bi-serial values of total coefficients were calculated on the assumption that the partial coefficients had been calculated directly from bi-serial tables and are placed in squared brackets to indicate that they are only approximative.

diagnosis, or for discriminating the weak-minded from the normal-minded. An examination of the Tables XXXVII, XXXVIII and XLII, XLIII shows that the range of the normal in every case is practically coextensive with, or more extensive than, that of the feeble-minded. This is in good accordance with the results already reached by Jaederholm and Pearson from other data: see Questions of the Day and Fray, VIII. "The Continuity of Mental Defect," and IX. "On the Graduated Character of Mental Defect." With regard to the further partial correlations, it will be seen that the relationships between the physiological variates (temperature, pulse and respiration) and mentality are not much modified by making the physical variates constant. The relationship between mentality and temperature reaches its maximum for constant weight and height, but the gain is only about its probable error; that for mentality and pulse is more considerable being three times the probable error for constant age and weight; while that for mentality and respiration is a maximum for constant age and height, but the increase is less than half the probable error. Finally it may be noted that the relationship of mentality to weight is somewhat intensified if the temperature and pulse rates be made constant.

In no case, however, do we reach correlations of the slightest importance for diagnostic purposes.

(4) On the Interphysiological Correlations.

The next point to which we must turn our attention is the relationship between temperature, pulse and respiration. We have the following series of correlations from Table C.

Correlated Pair	Crude Correlations	Partial Correlations for Constant Age and Weight	Partial Correlations for Constant Age and Height
Temperature (T) and Pulse (P) Temperature (T) and Respiration (R) Pulse (P) and Respiration (R)	$^{+\cdot 288 \pm \cdot 020}_{+\cdot 142 \pm \cdot 022}_{+\cdot 060 \pm \cdot 022}$	$+.308\pm.020 +.163\pm.022 +.081\pm.022$	$^{+\cdot 314 \pm \cdot 020}_{+\cdot 158 \pm \cdot 022}_{+\cdot 059 \pm \cdot 022}$

All these correlations are significant, but the sole one of any importance, and even that is of little value, is the relation between temperature and pulse. The only comparative material is that of Körösy reduced by Julia Bell (Biometrika, Vol. vIII. p. 232). She found for pulse and respiration $+ \cdot 108 \pm \cdot 042$, in excellent agreement with our present value. Her values for pulse and height, $- \cdot 072 \pm \cdot 042$, and for respiration and height, $- \cdot 042 \pm \cdot 042$, are also in accordance with ours considering their probable errors. The smallness of the relation between pulse and respiration is noteworthy, and none of these relations are substantially modified if we make age and weight or age and height constant. In fact temperature, as an examination of Table C shows, has no relation to either height or weight, while greater stature

slightly lessens, greater weight slightly increases the pulse rate. On the other hand the "bantams"—judged by both stature and weight—have a somewhat quicker respiration. But for all practical purposes height and weight may be neglected in considering these physiological variates. It may be of interest to table the actual association of an increase of any one of these variates on the other two.

Probable temperature T_p for a given pulse P: $T_p = 97 \cdot 4336 + \cdot 01266 P$. Probable temperature T'_p for a given respiration R: $T'_p = 97 \cdot 9860 + \cdot 02040 R$. Probable pulse P_p for a given temperature T: $P_p = 6 \cdot 5551 T - 570 \cdot 6300^*$. Probable pulse P'_p for a given respiration R: $P'_p = 70 \cdot 4986 + \cdot 19575 R$. Probable respiration R_p for a given temperature T: $R_p = \cdot 98563 T - 77 \cdot 9747$. Probable respiration R'_p for a given pulse P: $R'_p = 17 \cdot 6291 + \cdot 01827 P$.

DIAGRAM III. Regression Line of Temperature on Pulse for Criminals.

In other words the temperature increases by ·127° for every increase of 10 beats per minute of the pulse and by ·204° for every increase of 10 respirations per minute; the pulse-rate quickens 6·56 beats per minute for each degree of temperature and 1·96 beats per minute for every increase of 10 respirations per minute. Lastly the respiration-rate quickens ·986 respirations per minute for each degree

^{*} For the normal-minded criminals only this line is $P_p = 6.4180T - 557.7481$.

of temperature, and ·183 respirations per minute for every 10 beats per minute increase of the pulse.

A further interesting point is that, if we could possibly suppose these relations for criminals, whose disorders, if any, do not enforce hospital treatment, to extend beyond the range of values observed, then the pulse would cease at a body temperature $T_m = 87^{\circ} \cdot 05^{*}$ and the respiration would cease at a body temperature $T'_m = 79^{\circ} \cdot 11$. We have no right, however, to extend our *linear* regressions to

DIAGRAM IV. Regression Lines of Temperature on Pulse for Feeble- and Normal-Minded.

these extreme cases; all we can say is that they suggest cessation of pulse before that of respiration, and raise the problem of whether the temperature at death, T_m , is or is not on the average as much below normal temperature as is indicated by the above vague figures.

In Diagram III the regression line of temperature on pulse is drawn to test the general accuracy of linearity in describing this relationship. It will be seen that graphically the accordance is good, the group 45–48 of pulse-rate (see Table XXXIX) has only two entries and the deviation is non-significant. Algebraically for

^{*} Deduced from normal-minded criminals only $T_m = 86^{\circ}.90$.

temperature on pulse $\eta = .2951$ (without corrections) to be compared with r = .2865 (without corrections) = .2881 after correction.

In Diagram IV the weak-minded have been separated from the normal-minded criminals and the separate regression lines of temperature on pulse are given for both classes. The equations to these lines are:

For normal-minded criminals: $T_p = 97.3651 + .01315P$, For weak-minded criminals: $T_p = 97.9976 + .00708P$,

and the correlations are respectively $\cdot 2906 \pm \cdot 0228$ and $\cdot 1847 \pm \cdot 0471$; thus we see that there is less correlation in the case of the weak-minded and further that the regression lines are no longer, as in the case of temperature on age, parallel. While the weak-minded of low pulse-rate have a higher temperature than the corresponding group of normal-minded, the weak-minded with high pulse-rate tend to have equal or perhaps slightly inferior temperature to the corresponding group of normal-minded.

(5) On the Correlations between the Physiological and the Physical Variates. We have already seen that various points of the physique of these criminals were noted by the medical officer. In the first place their capacity for hard labour; actually the class of work on which each criminal was employed was given, but it seemed sufficient for our present purposes to divide these into hard and light labour. In the next place we have the appreciation of muscularity given by the two categories muscular and weak. Physical condition was also marked by the classification fat and thin, corresponding to good and bad state of nutrition. Lastly the general health as appreciated medically was classed as good, indifferent and poor. We made the division Good and Not-good, and used in all cases four-fold tables, where the bi-serial r was not obtainable.

The following correlations of the physical characters were reached:

TABLE D.

Correlations of Variates measuring Physique.

	General Health (Good and Not-good)	Capacity for Labour (Set to Hard or Light Work)	Muscularity (Muscular or Weak)	Nutrition (Fat or Thin)
General Health Capacity for labour Muscularity Nutrition (Fat or Thin)	$\begin{array}{c c} - & - \\ + \cdot 770 \pm \cdot 027 \\ + \cdot 639 \pm \cdot 038 \\ + \cdot 451 \pm \cdot 043 \end{array}$	$ \begin{array}{c} +.770 \pm .027 \\ \\ +.878 \pm .019 \\ +.369 \pm .048 \end{array} $	$+.639 \pm .038 +.878 \pm .019 +.199 \pm .047$	$+ \cdot 451 \pm \cdot 043 + \cdot 369 \pm \cdot 048 + \cdot 199 \pm \cdot 047$

It will be seen at once that these correlations are of a very high order, much beyond anything we have hitherto reached. Indeed it is fairly clear that the Medical Officer's general appreciation of health or muscularity tallies closely with the prison official's appreciation of the type of labour to which the convict can be set. We are justified therefore in considering how far these variates of physique, which clearly have intrinsic value far beyond the difficulties inherent in the personal equation of the medical examiner, are associated with the physiological variates.

TABLE E.

Correlation of Physiological and Physical Variates.

	Temperature	Pulse	Respiration
General Health Capacity for Labour	$+\cdot 108 \pm \cdot 029 \\ +\cdot 098 \pm \cdot 028$	$\begin{array}{c} -\cdot 116 \pm \cdot 029 \\ -\cdot 010 \pm \cdot 028 \end{array}$	$+.025\pm.029 \\098\pm.028$
Muscularity Nutrition	$^{+\cdot 126 \pm \cdot 030}_{+\cdot 019 \pm \cdot 028}$	$179 \pm .030 \\ +.093 \pm .028$	$130\pm.030 +.096\pm.028$
Height Weight	$+ \cdot 003 \pm \cdot 022 + \cdot 043 \pm \cdot 022$	$078 \pm .022 +.114 \pm .022$	$144 \pm .022 \\089 \pm .022$
Age	-·150±·022	$+\cdot 121\pm \cdot 022$	+·136±·030

Now this table is really very noteworthy for all the correlations are low, even when significant. In other words the general physical condition has very little relation to the physiological variates. In a person, not ill enough for hospital treatment, temperature, pulse, and respiration would hardly be a differential measure of general health, much less of the goodness or badness of the physique in general. It is true that the person in good health has a rather higher temperature and rather lower pulse-rate than one in poor or indifferent health. But there is no significant difference in respiration and the correlations are so low that not only no rough measures of temperature and pulse would aid diagnosis, but really fine numerical determinations would not be of any discriminating value. capacity for hard labour the pulse plays no part, but it is associated with a slightly higher temperature and a slightly slower respiration. Muscularity is associated with higher temperature, slower pulse and slower respiration. Fatness with higher respiration and pulse, but has no apparent relation to temperature. Height and weight also have no sensible relation to temperature, the larger men have a slower respiration, but the effect of tallness is to slacken pulse, of greater weight to quicken it. Pulse and respiration quicken with age, but temperature falls. In every case, however, these associations are so small that they would be incapable of appreciation except as the mean results of large numbers of accurate records. For ordinary every day experience we can only conclude that nothing can be judged from the physiological variates of physique or from physique of the physiological variates.

(6) On the Relation of External Temperature to the Physiological Variates. In the memoir by Williams, Bell and Pearson, it has been shown that such variations as occur in seasonal change of external temperature do not influence the body temperature of one and the same individual*. The present material enables us to confirm this result for fairly long series of temperatures on different individuals. We have correlated external temperature with body temperature, pulse and respiration, and find the following values:

Correlation of External Temperature and Body Temperature: $-.002 \pm .023$. Correlation of External Temperature and Pulse: $+.108 \pm .023$. Correlation of External Temperature and Respiration: $+.067 \pm .023$.

Thus body and external temperatures are to the extent of seasonal change unrelated. Pulse quickens and respiration quickens in rather warmer weather. But again these environmental influences are of a very unimportant nature, and the associations are even less than those between the physiological and physical characters.

(7) On the Individuality of the Physiological Variates. We have seen that temperature, pulse and respiration are variates, which have in reality very little association with physique as measured by such anthropometric characters as age, height or weight; nor are they, within the limits of non-hospital state, at all closely associated with general health or nutrition. Further they are practically unrelated to occupation (nature of labour) or environment (external temperature) as far as we have been hitherto able to measure these factors. Does this therefore signify that they are quantities rapidly varying, changed by a variety of causes not yet appreciated, and of no essential importance to the individual, as having no close relation to any of the bigger measurable factors of personality, physique or environment? The answer to this question is, perhaps, best sought by asking which of all the characters we have dealt with is most closely related to the physiological variates? There cannot be a doubt that the answer must be the mentality of the individual, and this factor of individuality we know to be one that is remarkably persistent and personal. The majority of the weak-minded are congenitally weak-minded, and but few of them really change their intellectual grade in the course of their life-time. Those who believe that intellectual power is the product of environment, or on the other hand that it is closely related to physique, or to any anthropometric measurement of the external body, have yet to demonstrate their position, and many facts have been collected which are markedly opposed to it. There is much evidence to show that the chief mental characters flow from congenital and hereditary potentialities. Can it be that these physiological variates have a like origin? The actual demonstration of this cannot, perhaps, be completed on the basis of our present data, but very weighty evidence for its truth can, however, be deduced. We have already indicated that in the majority of cases the observation of temperature, pulse and respiration was repeated at an interval

^{*} See loc. cit. pp. 5-7.

[†] See R. S. Proc. Vol. 69, pp. 333-342, Vol. 71, pp. 106-114; Biometrika, Vol. III. p. 39, et seq., Vol. v. pp. 105-146. Letters in British Medical Journal, January 27—March 17, 1906, etc.

varying from 2-3 weeks to 2-3 months. We are thus able to correlate first and second temperatures, first and second pulses and first and second respirations, and the results are of very marked significance. We find the following values of the correlations:

First and Second Temperature: $+.395 \pm .019*$.

First and Second Pulse Rate: $+ .644 \pm .012$.

First and Second Respiration Rate: $+.856 \pm .006$.

The accompanying Diagram V indicates the distribution of observations of First and Second Respiration and their clustering about the regression line.

DIAGRAM V. Scatter Diagram and Regression Line for Respirations before and after an interval.

It will be evident at once from the above results that our physiological variates—above all respiration-rate, but markedly also pulse-rate—are essentially constant

^{*} The value found for first and second temperatures in the case of children by Williams, Bell and Pearson (loc. cit. p 10) was $+.5238\pm.0346$.

characters of the individual, characters which change only slightly with age, and which are only moderately linked with each other and with mentality. are not subject to much influence from environment or occupation, and it appears to us that respiration-rate would probably form as good a mark of individual identity as most anthropometric characters and, since there is a relatively low rate of correlation between these physiological variates, their combined records might be even of value as a supplement* to finger prints in the problem of identification. The above values undoubtedly indicate that the degree of individuality which we find in the external measurable features of the body and in the mental characteristics is maintained, and just possibly exceeded, in the manner in which the various organs of the body carry on their functions; in other words the "individual" is not only characterised by an individualised framework and an individualised controlling faculty for that framework, but its metabolic processes are individualised also. The individual is such not only by his existence in space, but by his manner of existing in time. The individuality in the functioning of organs is as great as the physical differences in the organs themselves. In the future it may well be that heredity will be as effectively studied by measuring the functioning of organs as by measuring the organs themselves. The clinical thermometer and the sygmograph may gain new scientific value when they are introduced into the field of genetics.

I wish, in conclusion, to express my indebtedness to Professor Karl Pearson for his continuous supervision throughout the course of the work and to thank him for many ideas and suggestions set forth in this paper.

^{*} Of course two persons will have the same respiration but hardly an absolute sameness of finger prints. What is meant here is that if finger prints have to be placed in definite descriptive "categories" —a loop of so many ridges or a subclass of arches—these categories will hardly be more individual than the respiration-rate. Again a pulse tracing would correspond for individuality more closely to an actual finger imprint, than a pulse-rate which would represent a certain category of pulse tracings like a finger print class represents a certain type of finger prints.

APPENDIX. CORRELATION TABLES.

TABLE I.

Temperature.

20	A Stady in Criminal And	•1
Totals	225752525252525252525252525252525252525	924
6.66	-	1
2.66		63
99.5	-	7
99.3	- - 01010101-0101-1	18
1.66		41
6.86		73
2.86	11 1000 21 10 21 11 11 1 1 1 1 1 1 1 1 1 1	132
98.5	1 1 4 8 8 6 8 1 1 8 8 8 7 8 1 8 8 8 8 8 8 8 8 8 8 8	140
98.3	T	153
1.86	1 2 2 2 4 1 4 1 1 1 1 1 1 1	124
6.76		26
7.76		72
97.5	27 4 75 75 4 4 53 4 1 53 1 1	34
97.3		22
1.26	- - -	ಣ
6.96	1 ~ ~	5
2.96		- 23
86.2*	11111117711111111111	-
	Samming and	Totals

Respirations per minute.

Good 1. Poor	Thin
TABLE II. General Health	TABLE III.

Th	Mu
TABLE III. Nutrition.	TABLE IV. Muscularity.

620 295	527 388	697 218	915	
-	=	-	ī	
ಣ	1 2	eo .	ಣ	
9	rc 63	70 67	7	
13	თ ∞	13	17	
27	27	34	40	
47 24	37	53	71	
95 36	82 49	106	131	
103	78	117	138	
101	86	108	150	l
831	68	92	125	
37	54	67	96	l
31	47	55	72	
10	18 16	23	34	
13	===	16	22	l
eo	1 2	2,	හ	
c ₂	63	2	67	
			2	
0 -	П	-	1	
ood	nin	uscular eak	otals for ach Table	

924

62

86

109

131

120

150

90

22

17

Totals

1 1 2 4 0 4 9 11 8 2 2 2 2 2 4 | | | 1 | | |

>	
P	
BL	
A	

49

	Totals
	113
	109
	105
	$ \begin{vmatrix} 77 \\ -80 \end{vmatrix} - 84 \begin{vmatrix} 85 \\ -88 \end{vmatrix} - 92 \begin{vmatrix} 93 \\ -96 \end{vmatrix} - 100 \begin{vmatrix} 101 \\ -100 \end{vmatrix} - 104 \begin{vmatrix} 105 \\ -108 \end{vmatrix} - 112 \begin{vmatrix} 113 \\ -116 \end{vmatrix} $
	97
,	93
	89 93
inute.	85 88
per m	81
Pulse-Beats per minute.	77
Pulse.	73
	6972
	65 —68
	$\begin{vmatrix} 57 & 61 & 65 & 69 & 72 & 73 \\60 &64 &68 &72 & 7-76 \end{vmatrix}$
	57
	26

Respirations per minute.

620 294	526 388	697 217	914
1 22	e0	2	33
- 63	60	- 63	က
4-	5	5	70
54	9 8	∞ ⊢	6
00	10	14	18
7.7	10	9	14
24 18	28 14	25	42
37 23	42 18	36 24	09
57	48	56 28	84
71 37	62	83 25	108
93	62 70	95	132
36	64 52	98	116
109	77 72	126 23	149
66	90	75 15	06
41 16	32 25	45 12	57
ත ග	12 5	13	17
4-	ca ea	ا م	70
	[c3		63
Good Poor	Thin Fat	Muscular Weak	Totals for each Table

TABLE VIII.

Muscularity.

TABLE VII.

Nutrition.

TABLE VI. Good Health.

TABLE IX.

	Totals	225 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	848
	31	111111111111111	P=4
	30		ಣ
	$6\tilde{c}$		က
	28		ಣ
	27		01
	98		ಸಾ
	52		20
A).	76		24
Respirations per minute (Occasion A).	88		53
(Occ	66		89
inute	18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79
er m	02	100 100 100 100 100 100 100 100 100 100	76
ons p	19		101
pirati	18		113
Res	17		88
i	91		72
	15	1	62
TABLE IX.	14	2 1888 12	43
	13		19
	$\tilde{c}I$	67	55
	II	62 1	ಣ
	01	00	61
		110 111 122 133 133 133 133 133 133 133 133	Totals

Respirations per minute (Occasion B).

		1	
618 295	525 388	695 218	913
-	-	-	-1
23	1 2	e	က
3	es =	es	4
4-	4-1	4-1	ಹ
9	57 52	27	10
21 4	20	0.4	9
19	15	16	26
15	16	11	25
36	36	43	54
22	41 28	50	69
35	46	65	87
34	57	62	85
84 26	62 48	83	110
89	63 55	29	118
25	48	66	84
53	46 34	74	80
40	36	51	29
30	23 23	34 14	48
12	8 11	16	19
9 ==	40	7	7
1 23	1 22	8	ಣ
		67	67
::	: :	lar	otals for each Table
Good	Thin	Muscular Weak	Totals for each Table
TABLE X. Good General Health. Poor	TABLE XI. Nutrition.	TABLE XII. Muscularity.	

	Totals	2002 000 1113 1143 1143 1143 1143 1143 1143	854											
	6.66	1111111-11111111	_											
	7.66		ಣ											
ı	99.5		ಸ್			Totals	335	158	493					
	99.3		18	1			66	1	<u> </u>					
	1.66		32	TABLE XV	Muscularity.	Weak	37	77	114					
	98.9		65	TABI	Musc	Muse.	298	81	379					
	98.7	1	120				Good	Poor	Totals		1			_
n A).	98.5	0 2 8 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132			_	T T	L L			Totals	293	199	492
Temperature (Occasion A)	98.3		143							XVI.	Weak	7	901	113
ure (C	§8.1	1 1 62 82 5 4 4 60 52 88 88 88 88 88 88 88 88 88 88 88 88 88	119							TABLE XVI. Muscularity.		99	93	6.
nperat	6.76	12 8 11 4 4 0 0 0 0 4 1	06							TA	Muse.	1 286		ls 379
Ter	2.26		29			Totals	335	157	492			Hard	Light	Totals
	97.5		33	JV.	our.	Light	75	124	199			-	tbour.	
	97.3	अथायाय्यम – व्य	20	TABLE XIV.	Prison Labour.				16			H	rrison Labour.	
	1.76		23	TAB	Priso	Hard	260	33	293			, ,	T T	
	6.96	{	-				Good	Poor	Totals					
	2.96	[]]]]]]] = = [] []]]]]	2		l.		<u> </u> 	TOTT.						
TABLE	9.96		_				Cononel Hoelth	ar Trea						
T		96.57 96.97 97.11 97.77 97.75 98.37 98.37 98.37 99.77 99.97 99.77 99	Totals				Conomic	Callet						

Temperature (Occasion B).

_	.11	
>	1	
7	7	
\ \ \	2	

	Totals	128 128 128 120 120 120 120 120 120 120 120 120 120	395 97	492
	9 <i></i> 2		1	1
	75-			
			1 1	
	73—			
	73-		2	5
	71—		1	33
	_0z		14 1	15
	-69		33	26
nes.	-89	1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28	33
Height in inches.	19	23 8 8 4 2 5 5 -	42	09
ght in	-99	822222	49	59
Hei	65—	100 100 100 100 100 100 100 100 100 100	54	09
		230 231 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61	72
	-69	13 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47	63
	-29	1	30	41
	-19	0	29 8	37
	-09	1000014	10	14
/II.	-65		2.23	4
E XI	-85	[]		2
TABLE XV		90-99 $100-109$ $110-119$ $120-129$ $130-139$ $140-149$ $150-159$ $160-169$ $170-179$ $180-189$ $190-299$ $200-299$ $210-219$	Normal Weak-Minded	Totals for each Table

TABLE XIX.

Pulse (Occasion A).

	Totals	25 1121 1020 1030 1031 1031 1032 1032 1033 1033	952
	113		1
	109		အ
	105		5
	101		7
	97		16
	93		12
	89 —92		38
./**	85	12222247111	09
TIOTER	81	27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46
	7.7 —80		102
Targe (coordinate	73	222	121
1	69	11 12 128 128 129 120 120 120 120 120 120 120 120 120 120	109
	65 —68	20 20 42 114 114 10 10 10 114 114 114 114 114 11	141
	61	11 11 14 14 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	83
	57 —60	1122112211221112	52
	53 —56	000000000000000000000000000000000000000	17
	49 — 52	1 2 1 1 1 1 1 1 1 1	70
	45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67
		45-48 49-48 53-52 57-60 61-64 65-68 69-72 77-80 81-84 85-88 89-92 93-90 101-104 105-108 109-112	Totals

TABLE XVIII.
Mentality.

Weight in Ibs.

Pulse (Occasion B).

	Totals	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	493
	84—		7
	81-		1
	78-		3
	75—		4
	72-		11
	-69		11
	99	1 2 2 2 2 2 1	15
	-29	4 8 9 8 1 1 1 1 1	25
	-09	6161-12 44-1-1-	21
	57—	% - 1 % 67 - 1 - 1	14
	51- 54-	1 2 3 1 1 1 1 1 1 1 1 1	18
Age.		1 222211	17
	48—	1 8 5 6 5 4 1	18
	45-		21
	42-	100100000000000000000000000000000000000	33
	39-	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42
	36—	100 100 122 122 122 113 113 113 113 113 113 113	43
	33—	14	48
	30-	1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 6 1 1 6 1 7 7 7 7 7 7 7 7 7 7 7 7 7	57
	-12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46
77	21- 24- 27- 30-	121-00-133	34
TABLE AA	-12		10
TA		90—99 100—109 110—119 120—129 130—139 140—149 150—159 160—169 170—179 180—189 190—199 200—209 210—219	Totals

•sq1	uı	Weight

	-
111111111111111111111111111111111111111	1
	က
	4
	11
- -	Ξ
	15
	25
	21
	14
	18
	17
4 60 4 61 61 61	18
	21
0 10 10 4 4 4 10 4 10	33
. Hedden dar	42
	43
4100000040401 0	48
62 82 4 4 50 4 4 50 4 63	56
	46
X	34
TABLE XX	10
TA	Totals

Height in inches.

Ξ
XX
Ħ
BI
LA

	•		0.0
	Totals	2 8 2 2 2 3 3 2 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	915
	99.9		_
	7.66	== =	ಣ
	99.5		7
	99-3	1 1 2 2 3 1	17
	1.66	62 65 62 11 4 65 4	40
	98.9	1 1 1 16 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1	71
	98.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131
	98.5	9 21 23 26 24 24 15 17	138
ure.	98.3	1 1 27 28 33 7 7 7 7 7 1 1 1 1	150
Temperature.	1.86	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	125
Tem	97.9	2 177 222 223 50 6 6	96
	97.7	8 6 6 7 11 11 11 11 11 11 11 11 11 11 11 11 1	72
	97.5	6 4 4 6 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	34
	97-3		22
	1.76	27	ಣ
	6.96		23
XXII.	2.96		2
	96.2		-
TABLE		90-99 $100-109$ $100-119$ $120-129$ $130-139$ $140-149$ $150-159$ $150-159$ $160-169$ $170-179$ $180-189$ $200-209$ $220-229$	Totals

Weight in lbs.

TABLE XXIII.

4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	914
	1
	ಣ
	7
	17
	40
6161888668666	11
1 9 11 0 1 8 4 2 2 1 1 6 6 1 1 2 2 2 1 1 1 1 1 1 1 1 1	130
112 22 20 20 20 20 20 20 20 20 20 20 20 20	138
25 26 26 27 28 20 20 20 20 18 18 18 18	150
128	125
2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	96
8 8 8 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	72
1 8 8 4 9 9 9 6 6 7 8 1 6 7	34
1 1010041011	22
	ಣ
	2
1111-11-11	2
	1
58- 59- 60- 61- 63- 63- 63- 65- 67- 70- 71- 73- 73- 74- 75- 76- 76- 77- 78- 78- 78- 78- 78- 78- 78	Totals

Height in inches.

	30		ಣ
	59	2 1	7
	888	1 1 3 3	,:
	27	- 10 - 61 -	10
	98		9
	25	3000000	26
	24	- x 4 12 x x x 4 x 1	25
	23	8 1 1 4 8 5 1	54
nute.	22	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69
ır mi	12		87
ns pe	30	6 4 7 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	85
Respirations per minute.	19	8 112 8 14 14 14 15 16 16 16 16 16 16 16	110
Resp	18	10 10 10 14 14 17 18 19 19 19 19 19 19 19 19	118
	17		84
	91	25 2 3 3 3 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3	- 08
	15	22 33 130 1 1 1 1 1 1 1 1 1	67
	14	1 22 25 10 10 10 10 10 10 10 1	48
	13		19
Λ.	12	4-01	7
XXI	11		ಣ
TABLE XX	10	- -	61
TAI		90-99 $100-109$ $110-119$ $120-129$ $130-139$ $140-149$ $150-159$ $160-169$ $170-179$ $180-189$ $190-209$ $210-219$	Totals

Weight in lbs.

Totals

TABLE XXV.

4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	615
	-
- 0	ಞ
	+
	30
- 00	10
- - -	9
I	26
1 00 00 41 41 00 11 70 1	25
27-25-8842 4	54
	69
1 2 2 2 3 3 3 3 3 3 3	87
61 61 80 P 4 P 51 51 50 80 70 4 72	84
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110
61 4 \pi \tige 62 62 \pi	118
8184728113228111	84
1 4 4 6 6 6 6 6 6 6 6	08
	67
	48
1 22 23 21 25 2 4 25	19
	ಣ
1	22
58- 60- 61- 62- 63- 63- 73- 73- 73- 73- 73- 73- 73- 73- 73- 7	Totals

Height in inches.

XXVI.	
TABLE	

	Totals	78886098089814	4
	To	23 88 239 239 220 126 73 8 8 8 6 6 6 7 7 8	914
	113	00 1-	33
	109	2	ಣ
	105		5
	101		6
	97	20 50 10 11 10 11	18
	93	1 8 20 8 1 1	14
	88	12 C & & C & & &	42
	85 —88	11	09
a.	81	701 100 110 110 110 110 110 110 110 110	84
Pulse.	77	1	108
	73	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	132
:	6972	144 125 166 177 177 177 178 179 179 179 179 179 179 179 179 179 179	116
	65	1 1 1 2 2 6 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	149
	61 —64	188 188 224 222 156 6	06
	57	$egin{array}{cccccccccccccccccccccccccccccccccccc$	57
	53	2 4 8 1 2	17
XXV	49		5
TABLE X	45		2
TAB		90-99 $100-109$ $110-119$ $120-129$ $120-129$ $130-139$ $140-149$ $150-159$ $150-159$ $160-169$ $170-179$ $180-189$ $190-199$ $200-209$ $210-219$	Totals
	'	Weight in lbs.	

TABLE XXVII.

4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	913
	က
- - -	က
	5
	6
8 4 64 64 64 67 61	18
20 20 11 20 21	14
	42
0000440455040	09
100000000000000000000000000000000000000	84
2 - 1 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 1 -	108
4 \pi 811 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	131
	116
2 2 1 2 2 2 3 3 3 3 3 3 3	149
1	06
1 8 2 2 2 2 4 8 8 8 1	57
	17 .
	5
- -	67
588- 69- 61- 62- 63- 64- 65- 66- 66- 71- 71- 72- 73- 73- 73- 73- 74- 76- 76- 77- 77- 77- 77- 77- 77- 77- 77	Totals

Height in inches.

	Totals	10 10 10 10 10 10 10 10 10 10	926		191 735	976		533 379	912													
-	113	-	ಣ		7 2 1	ಣ		27	က													
	109	11-11-1111-11-11	ಣ		- 67	က		00	3													
	105		70		eo eo	29		m 63	ಬ													
	101		6		80	6		98	6													
	97		18		8 10	18		111	18													
	93		15		10	15		∞ ಀ	14													
	89 —92		42		12 30	12 30	42		16	42												
	85	01 4 70 9 80 4 4 F 80 H 91 80 80 80 80 80 80 80 80 80 80 80 80 80	63		17 46	63		35.8	09													
	81 —84	970	98		20 66	98		14.2	ရာ တ													
-	77	1000000 41	109		25 84	25 84 109		61 47	108													
	73	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	132		29 103	132			52	132												
	69	8 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120		21 99	120																
	65 —68	22 16 25 17 11 11 10 10 10 10 10 10 10 10 10 10 10	150		19	150		99	149													
	61	2221111182223333331111	06	10 16 47 74	16	06		54	06													
	57 —60	197788388887 4 212	57			10	10 47	57		36	57											
	53 —56		17		1 16	11		10	17													
	49 —52		5	IX.	5	5	KX.	es 61	20													
	45 —48	- -	67	XXI	23	5	X		62													
		21-23 24-26 27-29 30-32 33-35 36-38 36-38 36-47 48-50 57-56 66-68 66-68 69-71 772-74 78-74 78-74 78-74	Totals	TABLE	Weak-Minded Normal	Totals	TABLE	rd	Totals													
	1	Age.			ì			Hard Light														
					tality.	Men		'anoq	La													

TABLE XXVIII.

		$.9 {\rm gA}$. Yillet	Men		.ruod	La
TABLE		21-23 24-26 37-29 30-35 33-35 33-35 36-41 45-41 45-41 45-41 45-41 45-56 60-63 60-63 60-63 60-63 81-88 81-88	Totals	TABLE	Weak-Minded Normal	Totals	TABLE	Hard Light	Totals
XXXI	10		2		63	2	i 1		2
XI.	II		ಣ	XXXII.	es	3	XXXIII	61	3
	ĩI	2 2 - - -	F-		1	2	انا	6	7
	13	35 14	19		17	19		00	18
	14	ro a ro = a = u = u = u = u = u = u = u = u = u	48		8 40	48		21 26	47
	15	L 7 9 1 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	67		59	67		33	67
	91	H L I 1 9 8 5 8 5 8 5 8 6 8 7 8 8 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9	82		15 67	85		60	80
Ŧ	17	89 T T T T T T T T T T T T T T T T T T T	85		18 67	85		52 32	84
?espir	18	10 10 11 11 11 11 10 10 10 10 10 10 10 1	119		20	119		74	118
Respirations per minute.	GI	010 111 111 111 111 111 111 111 111 111	112		25	112		69 41	110
s per	20	6148866446691 618688668 1 1	80 20		16	85		45	80
mint	21	8469656887748945688 1	68		22 67	68		51	87
rte.	22	—∞4∞1-0100000110401401 01	71		16	71		39	69
	23	L 01 - 00 L 4 01 01 4 01 02 70 4 4 1 1 03	55		14 41	55		30 24	54
	24		26		9 20	26		13	25
	25		56		21	26		13	26
	26	-	9		ಣ ಣ	9		2 4	9
	22	- -2- -	10		6	10		4	10
	28		7.3		63.69	ಸರ		4 I	70
	53		4		3	4		4	4
	30	-	က		1 2	က		1 2	ಣ
	31	111111-111111111111	-		-	н			П
	Totals	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	925		190	925		532	911
							-1		

	Totals	71 107 107 107 107 107 107 107 107 107 1	927		191 736	927		533 380	913																					
	99.9				-	1		-	-																					
	99.7		က		- 67	ଦ		ಣ	ෙ																					
	99.5		7		2 23	1~		2 2	7																					
	99.3	1	18		8 10	18		13	17																					
	1.66	64 4 70 7 4 70 20 4 61 1 61 -	41		15 26	41			27	40																				
	98.9	8 70 80 F F F 5 70 80 61 80 61 - 70 80 4 - 1	73		24 49	73		37	71																					
	98.7	48474460844614666641 1	132		31	132		77	130																					
	98.5	ELICOSTI 4 8 4 ELI 4 F 5 1 4 C	140		34 106	140		94	138																					
ure.	98.3	0 4 4 5 5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	153		25 128	153		88	150																					
Temperature	98.1	2200178887239724474	125		24 101	125		59	125																					
Ten	97.9	100 00 t 00 0 t 10 4 4 0 10 t 10 0 0 0 0 0 0 1 0 1 0 1	86		12 86	86		48 	96																					
	97.7	H 0 4 4 20 0 20 H 10 20 H 10 4 61 10 61 61 H 1 H 1	72		10	72	-	-													-	-							36 36	72
	97.5	00 4 70 4 64 E - 1 75 00 11 00 64	34		30	22 34				19	33																			
	97.3	11126226 67 4 1 1	22		21			15	55																					
	97.1	-	ಣ		m m		- 63	ಣ																						
	6.96		2		ଫ	23	<u>-</u>	63	- 23																					
TOTO	2.96		2	XXXV.	61	63	XXXVI	,	2																					
	96.5			E XX	-		EX																							
TADI		21-23 27-26 27-26 30-32 30-32 36-38 36-38 36-38 51-59 51-59 60-62 63-65 63-77 72-74 78-80 84-86	Totals	TABLI	Weak-Minded Normal	Totals	TABL	Hard Light	Totals																					
		Λ ge.			tality.	UƏTAT	1	.Tuods	T																					
				1.1.7	J/ VL																									

•€	Temperature
·yIno	Normal-minded

TABLE XXXVII.

	Totals	1006 822 32 22 32 22 32 32 32 32 32 32 32 32 3	736
44	84-	- -	67
	81—		2
	78-		5
	75—		7
	72-	1 6 6 6 6 7 6 1 1 1 1 1 1	21
	—69		25
	99	1	30
	63—	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45
	09	1 8 4 75 75 9 7 8 75 75	41
	57-	20 20 25 4 4 7	25
	1-2		24
1180	51—	44216112	19
7	48-	44041001	21
			29
	_~~~~~		46
	39—	11	58
	-36-	8 9 0 0 1 1 1 1 1 2 1 4 2 2 1	73
	33		61
	30—		06
	£ê		89
			32
	-12		12
		96.5— 96.7— 96.7— 96.7— 97.3— 97.75— 97.75— 98.7— 98.7— 98.7— 99.7— 99.7—	Totals

Temperature.

Weak-minded only.

TABLE XXXVIII.

	Totals	1 4 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	191
	63—	1 5 11	9
	-09		
	57—		-
	54-		10
	51—		11
	48-	1 1 1 2 2 3 3 3 1 1 1 1	12
	<i>g</i> F	23 23 13	6
ů	43-	4 60 4 63 - 1	15
12 K	39—	81 62 62 62 14	21
	-98		œ
	33—	2 4 4 6 1 1	28
	30—		17
	27—	2 4 9 8 1 1	17
	24-	67 85 85 85 85 85 85 85 85 85 85 85 85 85	31
	-12	1 1 1 2	20
		97.3- 97.5- 97.5- 97.7- 98.3- 98.7- 98.7- 99.7- 99.5-	Totals

									SI					
									Totals	400	200			
									84—	1	1			
	Totals	22 117 117 118 109 109 109 109 118 118 118 118 118	926		Totals	396 97	493		81—	1	1			
	6.66	1	1		- Tc	80	4		78_	ස	- 3			
	7-66		e0		220-	2	2		75—	4	4			
	99.2		7		-012	11			72_	=	11			
	99.3		18		200-	1	1		69	13	13			
	1.66		41		199—	8	33		-99	15 	15			
	98.9		73			4 -	4		- 63	23	26			
	98.7	22 23 3 1 1 1 1 1 1 2 2 3 3 3 3 3 3 3 3	132		— 180·				-09	21	21			
	98.5		140	3 21 34 72 98 125 153 140 Weight in Ibs.	- 170	21	21		- 22	13	14			
ture.	98.3	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	153		25 in	lbs.	lbs.	160-	35	40		- 54-	13	18
Temperature	1.86	20 119 117 117 118 118 119 119 119				150—	58	89	Age.	- 2 -	11 6	17		
Ten	97.9		86			140-	106 15	121	A	48-	12 6	18		
	97.7	21 11 22 66 66 67 67 67 67 67 67 67 67 67 67 67	34 72		130—	94	128		- 45-	16	21			
	97.5					51	69 1		42-	26	34			
	97.3		21		- 120		9		- 39-	32 11	43			
	1.76		3		6.7		-011	18	31		-98-	41	45	
X.	6.96		6.2					100	e	4		33	34	48
XXXXIX	2.96	- -	63	XL.	-06	-	-		- 30-	48	57			
	96.5	1	-	1		ied			- 27-	37	46			
TABLE		- 48 - 52 - 52 - 64 - 64 - 64 - 64 - 72 - 72 - 72 - 72 - 73 - 74 - 72 - 73 - 73 - 74 - 74 - 75 - 72 - 73 - 74 - 74 - 74 - 74 - 74 - 74 - 74 - 74	s	TABLE		Normal Weak-Minded	Totals];	- 24-	18	34			
		45-48 53-56 57-60 61-64 65-68 65-68 77-80 77-80 85-88 89-92 93-96 97-100 105-108 113-116	Totals			Norn Weal	Ĭ	E XLI.	21—	L 60	10			
		.Pulse.		.[*	ytilstn9]	M	TABLE		Normal Weak-Minded	Totals			
46-										<u> </u>				
\$									*,	Tentality	T			

Pulse. Normal-minded only.

	Totals	22 103 103 103 84 84 66 66 66 66 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25	735
3	99.9	++-++	1
	2.66	++ 0	2
	99.5	1 1 23	5
	99-3		10
	99.1	111 8 25 85 4 63 75 1 1	26
	98.9		49
	98.7	11 118 118 119 119 119 119 119 119 119 1	101
	98.5	100 100 100 100 100 100 100 100 100 100	106
ire.	98.3	4	128
Temperature.	98.1	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	101
Tem	97.9		98
,	97.7	1	62
	97.5	225 0 23 4 23 2	30
:	97.3	11 67 - 10 4 68 68 1	20
:	97.1		3
XLII.	6.96		2
	2.96		2
TABLE	96.2	- 	
TA		$egin{array}{l} 45-48 \\ 49-52 \\ 53-66 \\ 57-60 \\ 61-64 \\ 65-68 \\ 77-75 \\ 73-76 \\ 77-80 \\ 85-88 \\ 89-92 \\ 97-100 \\ 101-104 \\ 105-116 \\ 113-116 \end{array}$	Totals

Tempe	
XLIII.	
LE	

	Totals	11 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	191
	7.66		1
	99.5	1111-111-111	2
	99.3	2 - 2 - 2	8
	1.66	4401-	15
	6.86	-010101000401- 01-	24
ature.	7.86		31
Temperature.	98.2		34
Ţ	98.3		25
	1.86	w w w 4 4 w w H	24
	6.76		12
	7.76	63 63 63 64 63 7 7 7 7	10
XLIII.	97.5		4
	97.3	-	1
TABLE		53—56 61—64 65—68 69—72 73—76 77—80 81—84 85—88 89—92 93—96 97—100 101—104 105—108 105—108	Totals

Pulse. Weak-minded only.

		۰	
	>	>	
C		_	
_		7	
۰		4	
i	ı	á	
ú	×	4	
1		•	
71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ť	٦	
		1	
		1	

	Totals	122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	836
	78—		10
	-92		6
	74—	3 4 6 6 4 6 6 6 6 6 6	41
-	72—		88
	-02	1 0 4 6 6 6 7 6 6 7	22
	89	1 122224881188481	65
	-99		46
	#9		80
4	-29	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67
ature	-09	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	109
empe	58-		06
al T	-99		39
External Temperature.	54-		27
田	52-		30
	50-	1 1 1 4 4 4 9 9 5 5	29
	48-		
	-97	n to n to 4 to 1	21
	44-	1 1 1 1 4 6 8 8 8 6 1 6 6 6 7 6 1 6 1	55
KLIV	42-		
TABLE XL	40-		∞
TAB		Temperature.	Totals

2 16 16 132 132 132 139 139 139 14 17 17 17	835
	10
	6
	41
1 1 1 2 2 2 2 2 2	88
	22
- 81 70 80 70 80 80 41 70 70 70 70 70 70 70 70 70 70 70 70 70	65
[97
1 288 0 11 12 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 08
	99
1	601
	06
- 00 00 P 70 4 00	39
	27
	30
	29
	I
	21
	55
	-
1 22 25 - 1 1	∞
45-48 49-52 53-56 57-60 61-64 65-68 69-72 77-80 81-84 85-88 89-92 97-100 101-104 105-108 113-116	Totals

Тетрегатиге.

Pulse.

	202		1	7									
	Totals	8 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	834										
	31	-	П										
	30		ಣ										
	68		4										
	82		70	II.	Totals	282	210	492	}				
	27		10	Labor		24	21						
	98		9	Prison Labour.	Light	142	57	199					
	22		23	Pri	Hard	140	153	293					
	24		24		H	_	1						
е.	23	1 41 1 222 4 4 2 2 2 1 1 1 1 1 1 1 1 2 2 2 4 1 1 1 1	49	XLVIII.		Thin	Fat	Totals		als	<u>_</u>	0	es -
ninut	22	7 8 8 23 9 0 0 2 4 8 4 4 4 4 4	89			1			lth.	Totals	283	210	493
per r	21	1 6 4 4 4 8 4 4 5 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	81	TABLE					Hea	Poor	122	36	158
Respirations per minute.	20	80 80 H 80 40 80 50 50 50 50 50 50 50 50 50 50 50 50 50	77						General Health.				
spirat	61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100						Ğ	Good	161	174	335
$\mathbf{R}\mathbf{e}$	18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106		als	l			XLIX.		Thin	Fat	Totals
	17		77	ty.	Totals	283	210	493			!		
	91	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	92	Muscularity.	Weak	22	37	114	TABLE		Nutrition	010110	
	15	41 11 41 81 81 81 81 91 91 91 91 91 91 91 91 91 91 91 91 91	56	Musc					H		Ž	7	
	14	03 03 00 04 00 00 01 - 4 03	42		Musc.	206	173	379				€	
Ι,	13		15	VII.		Thin	Fat	Totals					
XLVI.	13		9	XLVII.				I					
TABLE	11		ಣ	TABLE		:	Nutrition.						
TAI	01		67	TA		*	Nut						
			S										

External Temperature.

ALPHABETICAL INDEX TO CORRELATION TABLES IN APPENDIX.

Correlated Variates.

- Age: with Height, XXI; with Mentality, XLI; with Pulse, XXVIII; with Respiration, XXXI; with Temperature (Total population), XXXIV; with Temperature (Normal-minded only), XXXVIII; with Temperature (Weak-minded only), XXXVIII; with Weight, XX.
- Health: with Labour, XIV; with Muscularity, XV; with Nutrition, XLIX; with Pulse, VI; with Respiration, X; with Temperature, II.
- Height: with Age, XXI; with Mentality, XVIII; with Pulse, XXVII; with Respiration, XXV; with Temperature, XXIII; with Weight, XVII.
- Labour: with Health, XIV; with Muscularity, XVI; with Nutrition, XLVIII; with Pulse, XXX; with Respiration, XXXIII; with Temperature, XXXVI.
- Mentality: with Age, XLI; with Height, XVIII; with Pulse, XXIX; with Respiration, XXXII; with Temperature, XXXV; with Weight, XL.
- Muscularity: with Health, XV; with Labour, XVI; with Nutrition, XLVII; with Pulse, VIII; with Respiration, XII; with Temperature, VI.
- Nutrition: with Health, XLIX; with Labour, XLVIII; with Muscularity, XLVII; with Pulse, VII; with Respiration, XI; with Temperature, III.
- Pulse: with Age, XXVIII; with Health, VI; with Height, XXVII; with Labour, XXX; with Mentality, XXIX; with Muscularity, VIII; with Nutrition, VII; (Occasion A) with Pulse (Occasion B), XIX; with Respiration, V; with Temperature (Total population), XXXIX; with Temperature (Normal-minded only), XLII; with Temperature (Weak-minded only), XLIII; with Temperature (external), XLV; with Weight, XXVI.
- Respiration: with Age, XXXI; with Health, X; with Height, XXV; with Labour, XXXIII; with Mentality, XXXII; with Muscularity, VIII; with Nutrition, XI; with Pulse, V; (Occasion A) with Respiration (Occasion B), IX; with Temperature, I; with Temperature (external), XLVI; with Weight, XXIV.
- Temperature: with Age (Total population), XXXIV; with Age (Normal-minded only), XXXVII; with Age (Weak-minded only), XXXVIII; with Health, II; with Height, XXIII; with Labour, XXXVI; with Mentality, XXXV; with Muscularity, IV; with Nutrition, III; with Pulse (Total population), XXXIX; with Pulse (Normal-minded only), XLII; with Pulse (Weak-minded only), XLIII; with Respiration, I; (Occasion A) with Temperature (Occasion B), XIII; with Temperature (external), XLIV; with Weight, XXII.
- Weight: with Age, XX; with Height, XVII; with Mentality, XL; with Pulse, XXVI; with Respiration, XXIV; with Temperature, XXII.

VARIATION AND CORRELATION OF THE NUMBER OF UMBEL RAYS OF SOME UMBELLIFERAE*.

By C. COOL AND A. N. KOOPMANS,

Laboratory of Microscopical Anatomy, Technical High School, Delft.

(1) Since the investigations by Ludwig† into the variation of the number of umbel rays of the umbels of Umbelliferae, but little is to be found about this subject in biological literature, although the reading of the chapter "Summationskurven der Umbelliferen" of the article above-mentioned might suggest various problems.

For example, in the variation curves of Ludwig the numbers of the Fibon-nacci series do not exclusively appear as maxima, but in some cases also the numbers of the first parallel series (1, 3, 4, 7, 11, etc.) appear. Vogler‡ also finds in his investigations into Astrantia major that principal series as well as parallel series occur in this case.

The few investigations by Ludwig on the Umbelliferae are hardly sufficient to allow us to state that modes which arise in the numbers of the first parallel series of these variation curves are with any degree of certainty only apparent modes, or to assert that they have resulted from the mixing of plants of different local races. On the contrary it is very probable that these numbers of the first parallel series are a characteristic phenomenon of the variation curves of the number of umbel rays of many species of Umbelliferae.

Of the many countings which we made in the summer of 1912 to find out something more about this subject, only those relating to three species of plants, Pastinaca sativa, Anthriscus sylvestris and Sium latifolium, are used here.

Only numbers of umbel rays of terminal umbels and those of lateral umbels of the first order were counted.

^{*} Our thanks are due to Prof. Dr G. van Iterson who kindly revised this paper.

[†] Bot. Centralblatt, Bd. LXIV.

[‡] Beihefte zum botanischen Centralblatt, Bd. xxiv.

Fig. 1. A represents an umbel with one fasciation of two rays which are united to the top, B an umbel with one fasciation of two rays which are not united to the top, C an umbel with two fasciations each of two rays with union somewhat lower.

Fig. 2. D represents an umbel with two fasciations, one of two and the other of three rays, E an umbel with one fasciation of four rays, F an umbel with three fasciations each of two umbel rays.

Special Fasciations of Pastinaca sativa.

(2) Countings of Pastinaca Sativa.

Variation of the number of umbel rays of the terminal umbel.

In Table I are arranged, according to the increasing numbers of umbel rays, terminal umbels of two groups of plants growing in different places; the first group of 341 plants came from clayey and peaty waysides in the neighbourhood of Delft (Holland), the second of 335 plants for the greater part from sheltered, for the smaller part from exposed spots in the duneland not far from the village of Lisse (Holland). The countings were made in the months of July and August of the year 1912.

In counting, a large number of fasciations were observed in the umbels. Among 515 plants, of which both the terminal and lateral umbels were counted, 167 were observed to have fasciations. As many rays were taken into account as there would have been, if no fasciation had occurred. Plate I, figures 1 and 2, shows some very interesting fasciations.

Variation of the number of umbel rays of the lateral umbels of the first order and correlation of the numbers of umbel rays of terminal umbels and that of lateral umbels.

The countings of umbel rays of lateral umbels have been combined in two different ways. In the first place lateral umbels belonging to plants with the same number of rays in the terminal umbel have been united into groups; and in the second place those which belonged to plants with the same number of lateral umbels.

In Table II, 3836 lateral umbels of 515 plants have been divided into groups, each of which has been placed in a horizontal row and contains all the lateral umbels of plants with the same number of rays in the terminal umbels.

The mean number of umbel rays of the lateral umbels is greater than that of the terminal umbels. For that reason terminal and lateral umbels are considered separately.

In Table III the lateral umbels are divided into groups in such a way that all the lateral umbels of plants with the same number of lateral umbels are arranged in one horizontal row.

The distribution of the number of umbel rays of the 3836 lateral umbels is represented graphically in Fig. 3.

The distribution, which is given in the first and the last column of Table III and which gives the number of lateral umbels per plant, has not been studied in detail because it is of no importance for this investigation. The constants $\beta_1 = 0.144$ and $\beta_2 = 3.485$, the "critical function" = 0.208 and the curve which will fit best to this distribution is a Pearson curve of Type IV.

TABLE I.

Variation of the number of umbel rays of the terminal umbel of Pastinaca sativa.

Totals	341	335	676
98		-	-
35	1		
24	1	1	-
. 53			
55		1	
12	_	67	က
19 20		က	ಣ
19	ಣ	23	70
18		7	00
17	67	6	П
12 13 14 15 16 17 18	4	13	22 17 11
15	10	12 13	22
14	23	22	82 85 45
13	53	32	85
12	42	40	82
II	55	53	108
10	49	59	87 108
6	53	34	87
~	11 31	14 29	09
2-	Ξ	14	25
9	က	61	55
Number of umbel rays of the terminal umbel	Number of terminal umbels, 3	Number of terminal umbels, 2 Lisse	Number of terminal umbels, Totals

Mean of umbel rays for 676 terminal umbels = 11.325. S.D. of umbel rays for 676 terminal umbels = 2.746.

TABLE II.

Correlation of the number of umbel rays of terminal umbels and lateral umbels of Pastinaca sativa.

Num- ber of plants	22,2 66,5 7,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	515
Total number of lateral umbels	119 256 356 356 356 614 640 491 485 175 175 175 172 172 172 172 172 172 172 172 172 172	3836
28	1	1
27.		c 3
36		
35	1 1 1 1 1 1 4	4
34		9
23		11
23		15
31		18
50	4 11 2 4 2 4 70	37
th 19	4 9 6 1 1	58
Number of lateral umbels with $4\mid 15\mid 16\mid 17\mid 18\mid 1$ umbel rays		115
ral umb	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120
of lateral un	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197
mber c		275
Nu 14	4 - 4 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	348
13	20 20 20 101 101 101 101 101 101 101 101	537
12	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	534
11	1142	591
11 01	388 109 109 85 85 85 85 117 117	478
6	227 272 273 274 276 277 277 277 277 277 277 277	255
~	28 38 88 88 88 88 88 88 88 88 88 88 88 88	171
~	8 4 8 O V 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40
9	L4x00 L	05
50		ಣ
	0 × 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Totals

Number of umbel rays of the terminal umbel.

Mean of umbel rays for 515 lateral umbels = 12.549. S.D. of umbel rays for 515 lateral umbels = 3.007. Coefficient of correlation = 0.7269.

TABLE III.

Correlation of the number of lateral umbels per plant and the number of umbel rays of lateral umbels of Pastinaca sativa.

Num- ber of plants	201 201 201 201 201 202 203 41 44 203 203 203 203 203 203 203 203 203 203	515
Total number of lateral umbels	4 108 257 257 269 690 654 654 168 22 72 44	3836
38	1 -	1
22		61
98		
25	4	4
24		9
53		11
22	4 64 4 75	15
21	0 - 0 - 0 - 0	18
08		37
vith 19	1 1 8 8 2 2 4 5	58
ıbels wit 18	22 22 3 6 2 6 6	115
l umb 17 rays		120
of lateral um $ I6 I7$	223 237 227 237 318 318 5 6	197
Number of lateral umbels with I4 $\mid I5\mid I6\mid I7\mid I8\mid I$ umbel rays	256 256 37 27 3	275
Numb 14	111 122 131 111 112 113 113 113 113 113	348
13	11 14 120 120 59 59 15 15 1	537
<i>EI</i>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	534
11	22 49 49 102 106 106 102 36 24 17	591
10	102 102 109 109 709 709 719 6	478
6	2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	255
∞	27 111 17 17 17 17 17 17 17 17	171
~	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40
9	2 12 25 23	20
- ·		3
	% & 4 & 0 > 0 & 0 1 1 1 1 1 1 1 1 1	Totals

Number of lateral umbels per plant.

If we consider the different distributions in the horizontal rows of Tables II and III in which the maximum numbers are printed in heavy figures, we become convinced that besides the numbers of the principal series such as 8 and 13 (and multiples of numbers of this series such as 15 and 16), also numbers of the first parallel series such as 11 and 18 (and perhaps multiples of numbers of that series, 14 for example) are not infrequent.

Fig. 3. Pastinaca sativa.

It is certainly very remarkable that with the increasing number of rays of the terminal umbel or with the increasing number of lateral umbels per plant, the lateral umbels that occur as maxima in a horizontal distribution possess a number of umbel rays that leaps up from 11 in one to 13 in another horizontal distribution; in other words:

The number of umbel rays 12 does not occur as a maximum in any of the horizontal groups of the two correlation tables.

(3) Countings of Anthriscus sylvestris.

Variation of the number of umbel rays of the terminal umbel.

A little preliminary investigation showed that the number of umbel rays of the terminal umbel of *Anthriscus sylvestris* is very small and that in most cases this umbel consists of 1, 2, 3 or 4 umbel rays and in some cases of 5, or is entirely missing.

Afterwards four countings were made:

- (a) On 502 plants in the neighbourhood of Beverwijk on May 16th, 1912.
- (b) On 305 plants in the neighbourhood of Lisse on May 26th and July 16th, 1912.
- (c) On 77 plants partly in the neighbourhood of Lisse, partly in that of Bentveld, on July 6th, July 19th and July 27th, 1912.
- (d) On 46 plants from the Schapenweg in the neighbourhood of Rijswijk on May 19th, 1912.

The result of these countings of the number of umbel rays of 930 terminal umbels is given in the following table.

TABLE IV.

Variation of the number of umbel rays of the terminal umbel of Anthriscus sylvestris.

Number of umbel rays of the terminal umbel	0	1	2	3	4	5	6	7	8	9	10	Totals
Number of terminal umbels. Group (a)	9	107	196	143	40	4	1	1	_	1	_	502
Number of terminal umbels. Group (b)	16	107	112	49	14	3		3	-		1	305
Number of terminal umbels. Group (c)	1	26	23	23	1		2	1		_	_	77
Number of terminal umbels. Group (d)		13	15	13	4	1		_	-		_	46
Number of terminal umbels. Totals	26	253	346	228	59	8	3	5	_	1	1	930

Mean of umbel rays for 930 terminal umbels = $2 \cdot 125$. S.D. of umbel rays for 930 terminal umbels = $1 \cdot 119$.

The graphical representation in Fig. 4 of the distribution in the last row of Table IV is an asymmetrical polygon with mode at 2 umbel rays. The point which is obtained by taking the terminal umbels with 0 umbel rays into account

accords with the one that we can expect when we know only the other points and causes the variation polygon to become rather symmetrical with regard to the vertical through the mode.

Fig. 4. Anthriscus sylvestris.

Variation of the number of umbel rays of the lateral umbels of the first order and correlation of the number of umbel rays of terminal umbels and that of lateral umbels.

Of 235 plants (being the same series for which the rays of the terminal umbels were counted and which were included in the preceding distributions) the number of umbel rays of the lateral umbels was determined.

Again these lateral umbels were divided into groups, in the first place into groups belonging to plants with the same number of rays in the terminal umbel, and in the second place into groups belonging to plants with the same number of lateral umbels.

In the following table have been assembled the results of the countings on 1632 lateral umbels of these 235 plants in which the first sub-division was taken. It is easy to see that the numbers 8 and 10 are predominant.

TABLE V. Correlation of the number of umbel rays of terminal umbels and lateral umbels of Anthriscus sylvestris.

the terminal umbe		3	4	5	6	7	Nu 8	mber 9	10		l uml 12 rays		vith 14	15	16	17	18	19	Total number of lateral umbels	ber of
of umbel rays of the te	0 1 2 3 4 5 6	 3 1 1 	$\begin{bmatrix} 2 \\ 23 \\ 5 \\ 3 \\ 1 \\ 1 \\ 1 \\ - \end{bmatrix}$	$\begin{bmatrix} 6 \\ 27 \\ 15 \\ 6 \\ - \\ - \\ 1 \end{bmatrix}$	5 37 22 7 — 3 1	11 55 43 19 4 2 2 1	19 135 108 30 2 5 3 2	13 119 97 45 3 — 1	13 107 127 82 8 2 1 4	$\begin{bmatrix} 2 \\ 44 \\ 73 \\ 68 \\ 17 \\ 5 \\ 1 \\ 2 \end{bmatrix}$	$ \begin{vmatrix} $	$-\frac{1}{15}$ $\frac{15}{24}$ $\frac{4}{11}$ $\frac{1}{1}$	$-\frac{5}{7}$ $\frac{3}{2}$ $\frac{1}{1}$	$-\frac{2}{1}$ $\frac{1}{1}$	- 3 - - 1				71 567 562 327 50 22 13 20	9 77 82 50 9 3 2
mberod	Totals	7	36	55	75	137	304	279	344	212	105	47	18	5	4	2	1	1	1632	235

Mean of umbel rays for 235 lateral umbels = 9.127.

S.D. of umbel rays for 235 lateral umbels = 2.150.

Coefficient of correlation = 0.3033.

The mean number of umbel rays of the lateral umbels is much greater than the mean number of rays of the terminal umbels. For that reason terminal and lateral umbels were considered separately. This great difference of the average numbers to a certain degree accounts for the fact that the coefficient of correlation is low, much lower than with Pastinaca sativa.

The second sub-division of the lateral umbels in groups belonging to plants with the same number of lateral umbels gives the following result:

TABLE VI. Correlation of the number of lateral umbels per plant and the number of umbel rays of lateral umbels of Anthriscus sylvestris.

plant.		3	4	5	6	7	Num	9	of la 10 umbe	11	umbe <i>12</i> ys	els w	ith <i>14</i>	15	16	17	18	19	Total number of lateral umbels	Num- ber of plants
Number of lateral umbels per plant.	2 3 4 5 6 7 8 9 10 11 12 13		- - 3 11 10 8 3 - 1	$\begin{bmatrix} - \\ 5 \\ 22 \\ 12 \\ 11 \\ 2 \\ - \\ 2 \end{bmatrix}$	$ \begin{array}{c c} 2 \\ - \\ 6 \\ 27 \\ 23 \\ 10 \\ 4 \\ - \\ - \\ 1 \end{array} $	$ \begin{array}{c c} - & 2 \\ - & 8 \\ 28 \\ 41 \\ 36 \\ 15 \\ 6 \\ - \\ 1 \end{array} $	1 19 56 125 55 32 15 —	22 61 98 54 36 7 —	1 24 74 119 75 43 8	$ \begin{array}{c} $	$\begin{bmatrix} - \\ 2 \\ 6 \\ 34 \\ 30 \\ 22 \\ 7 \\ - \\ 4 \end{bmatrix}$	5 18 8 15 1 —	$ \begin{bmatrix} - \\ 2 \\ \hline 6 \\ 1 \\ 9 \\ \hline - \\ - \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	1 2 - 2		1 1 1 - -	1	1	2 3 8 115 342 552 367 180 50 —	1 1 2 23 57 79 46 20 5 —
4	Totals	7	36	55	75	137	304	279	344	212	105	47	18	5	4	2	1	1	1632	235

In this table also the numbers 8 and 10 are conspicuous just as in the subdivisions not reproduced here of each horizontal row in the above table, which were made according to the number of rays of the terminal umbel.

It is remarkable that there is not a single case of *Anthriscus sylvestris* in which a number of 9 umbel rays in a horizontal row of one of the Tables V and VI occurs as a maximum, whereas the numbers 8 and 10 not infrequently occur as modes.

Figure 5 gives a graphical representation of the variability of the number of umbel rays of these 1632 lateral umbels.

(4) Countings of Sium Latifolium.

Variation of the number of umbel rays of the terminal umbel.

The number of plants examined of *Sium latifolium* was much smaller than the number of plants of the preceding species, which were submitted to examination. Only in the case of 127 plants were the umbel rays of terminal umbels and lateral umbels counted, and of one only of the umbel rays of the lateral umbels, because the terminal umbel was missing.

The distribution of the numbers of umbel rays of 127 terminal umbels was as follows:

TABLE VII.

Variation of the number of umbel rays of the terminal umbel of Sium latifolium.

Number of umbel rays of the ter- minal umbel	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	Total
Number of ter- minal umbels	3	1	3	6	6	1	6	8	3	5	7	10	4	4	6	9	10	9	8	5	4	4	1	1	127

Mean of umbel rays for 127 terminal umbels = 25.638. S.D. of umbel rays for 127 terminal umbels = 5.948.

Conclusions could not be drawn from this distribution, the number of variates being too small with respect to the great range of variation.

Variation of the number of umbel rays of the lateral umbels.

The lateral umbels again were sub-divided into groups belonging to plants with the same number of rays in the terminal umbels and into groups belonging to plants with the same number of lateral umbels. As the former groups were very small, they can give little or no information about preference for certain numbers. The latter groups have been united in Table VIII.

Though the small number of umbels, of which the rays were counted, and the great range of variability make it necessary to be prudent in drawing conclusions, we think it probable that not only the numbers of the principal series are of importance in this case, but also other numbers as for instance 18 and 29.

Correlations.

The coefficient of correlation for the number of rays of terminal and lateral umbels was as follows:

For Pastinaca sativa ... 0.7269 ± 0.0051 . ,, Anthriscus sylvestris ... 0.3033 ± 0.0152 . ,, Sium latifolium ... 0.8693 ± 0.0070 .

It is remarkable that this coefficient of correlation is different for these three species of plants, and it would be worth examining if this coefficient has a constant value within certain limits for different local races of the same species of plants. In that case a number would have been found, characteristic of each particular species.

TABLE VIII.

Correlation of the number of lateral umbels per plant and the number of umbel rays of lateral umbels of Sium latifolium.

Num- ber of plants	6 19 27 33 32 11	128
Total number of lateral umbels	11 53 104 148 177 69	562
-	11111	
41	= 4=	9
40 41 42		17
39	100 10	17
38 39	8 8 4	20
37	125	31
36	10 8 8	28
35 36	1 12 16 5	34
34	3	35
65	5 6 19 6	36
ber of lateral umbels with $\mid 26\mid 27\mid 28\mid 29\mid 30\mid 31\mid 32\mid 33\mid 34\mid$ umbel rays	1 3 15 14	35
31	12 5 5 2	27
s wit	1 4 8 0	12
29 s	9 2 2 0 0	24
if lateral un $ 27 28 $ umbel rays	6180000	21
f late 27 umbe	1 7 7 9 9 9	22
Number of lateral umbels with $\mid 25\mid 26\mid 27\mid 28\mid 29\mid 30\mid$ umbel rays	1 6 4 5 2	18
Numk 24 25	4 6 9 4 1	24
24	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24
6	08280	21
66	L & E 4 g	21
18	0 10 1 3	24
08	614686161	16
19	1000	×
	0 6 8 8 3 1	14
17	09840	6
13 14 15 16 17 18	H 488 H	6
15	00	0
14	4-111	55
I3	-01 +	က
	ひさまるのと	Totals

Mean of umbel rays for 562 lateral umbels = 29·416. S.D. of umbel rays for 562 lateral umbels = 6·782. Coefficient of correlation = 0·8693.

Conclusions.

The result of this investigation is that even in relatively small groups of sufficiently homogeneous material of Pastinaca sativa numbers (or multiples of numbers) of the principal series, or numbers (or multiples of numbers) of the first parallel series, or both, occur as maxima in distributions of the number of rays of terminal and of lateral umbels.

The maximum numbers of umbel rays that occur in the horizontal rows of the correlation tables do not shift regularly from top to bottom, and in the case of Pastinaca sativa the number of 12 rays does

not occur as a maximum in the groups of which the plants have the same number of rays in the terminal umbel or in those of which the plants have the same number of lateral umbels; on the contrary the numbers 11 and 13 occur as maxima.

It is therefore not probable that the numbers of the first principal series should be caused by the mixing of different local races of plants, in each of which numbers of the principal series occur as maxima, as Ludwig thinks is the case with other Umbelliferae. It is more probable that the numbers of the first parallel series must be considered as characteristic of the variation of many species of Umbelliferae.

ON THE PARTIAL CORRELATION-RATIO

PART II. NUMERICAL

Being Part II of a Thesis for the degree of D.Sc. in the University of London

By L. ISSERLIS, B.A.

1. The object of the present paper is to provide numerical illustrations of some of the results in the first part*. Suitable material is not easily obtained, as many tables dealing with three variable characters are artificially curtailed as regards one or more of them. I am indebted to Miss Ethel M. Elderton for having kindly placed at my disposal manuscript tables of the heights to the nearest inch and weights to the nearest pound of the boys in group A (comprising schools in the poorest parts of the city) of her investigations into the heights and weights of school children in Glasgow†.

I have arranged the material in tables which differ from Tables I-IX of Miss Elderton's paper in the following respects:

- (i) A uniform grouping of 5 lb. intervals for weight and 3 inch intervals for height is adopted at all ages;
- (ii) 384 boys of central age 5 (i.e. ages 4.5 to 5.5 years), omitted in Miss Elderton's tables, are here included, and two boys (age 6.5 to 7.5 years) whose height was below 21.5 inches, included in her tables, are omitted here.

These tables are cut off artificially by the regulations of the School Board with regard to school leaving age and the admission age of infants.

Tables I-X contain the data, the frequency distributions of height and weight being given for each of the ages from 5 to 14 of the 11,382 boys.

* "On the Partial Correlation Ratio," Part I, Theoretical, by L. Isserlis. Biometrika, Vol. x, 1914, pp. 391–411. (The title of the first part was badly chosen, the generalized H there introduced is a multiple one, providing a measure of the dependence of one variable on two or more other variables. An example of a partial η would be $_x\eta_x,_y$, being the correlation ratio of z on y for a given value of x. Pearson has recently published very simple formulae connecting the partial correlation ratio with the multiple correlation ratio: see R. S. Proc: Vol. 91, A, pp. 492–8. They suffice to show that a knowledge of the multiple correlation ratios leads at once to the partial correlation ratios, and to that extent justify my title.)

† "Height and Weight of School Children in Glasgow," by Ethel M. Elderton. *Biometrika*, Vol. x, 1914, pp. 288–339.

Tables XI, XIII give the distributions of height and weight, height and age, and age and weight for the whole of the individuals in the preceding ten tables. They are summaries. The *direct* calculation of one of the three generalized H's, say that of age on height and weight, requires the use of Tables I–X, while the various approximations given in the paper cited can be obtained from the summaries in Tables XI–XIII.

I have calculated the correlation ratio of age on height and weight, and that of weight on age and height directly, and compared them with the values obtained as approximations from the summaries.

The direct calculation is laborious and the results show that the various approximation formulae are in general sufficiently accurate to enable us to dispense with this heavy labour.

Throughout the present paper, I denote the age by 'z' with an arbitrary origin at 10 years, the height by 'x' with the origin at 49 inches and the weight by 'y' with origin at 56 lbs.

2. With the arbitrary origin at 49 inches, the raw moments for the height frequencies are:

$$\overline{x} = p'_{x} = -0.511861*,$$
 $p'_{x^{2}} = 3.453699,$
 $p'_{x^{3}} = -4.938324,$
 $p'_{x^{4}} = 30.678791.$

Thus the mean height is 49 - 3 (0.511861) = 47.46 inches.

The moments referred to mean are given by the formulae:

From these

The standard deviation is $\sigma_x = 1.78653$ in 3 inch units, or 5.36 inches.

For weights the arbitrary origin is at 56 lbs., and the raw moments are:

$$\overline{y} = p'_{y} = -0.205412,$$

 $p'_{y^{2}} = -6.772096,$
 $p'_{y^{3}} = -5.979090,$
 $p'_{y^{4}} = 134.637146.$

^{*} For the sake of uniformity the constants in all intermediate results are given to six places of decimals.

So that the mean weight is 56 - 5 (0.205412) = 55.97 lbs., and the moments referred to the mean are:

$$p_{y^2} = 6.729902, \ p_{y^3} = 10.134965, \ p_{y^4} = 141.258877, \ 370. \qquad \beta_2 = 3.1189.$$

giving

 $_{y}\beta_{1} = \cdot 3370, \qquad _{y}\beta_{2} = 3\cdot 1189.$

The standard deviation is $\sigma_y = 2.594205$ in 5 lb. units, or 12.97 lbs.

With arbitrary origin at 10 years, the raw moments of the ages are:

$$ar{z}=p'_z=-0.568617, \ p'_{z^2}=-6.402214, \ p'_{z^3}=-9.423124, \ p'_{z^4}=-80.916710.$$

The mean age is therefore 10 - 0.568617 = 9.43 years, and the moments about the mean age are:

$$egin{array}{ll} p_{z^2} &=& 6 \! \cdot \! 078889, \ p_{z^3} &=& 1 \! \cdot \! 130401, \ p_{z^4} &=& 71 \! \cdot \! 591474, \end{array}$$

leading to

$$_{z}\beta_{1}=\cdot0057,$$
 $_{z}\beta_{2}=1\cdot9374,$

while the standard deviation is $\sigma_z = 2.47$ years.

3. The mixed moments p_{xy} , p_{xy^2} , etc., can be found from the correlation tables XI-XIII. The values of the raw moments required are as follows:

$$\begin{array}{lll} p'_{xy} &=& 4\cdot311017, & p'_{xz} &=& 3\cdot949042, \\ p'_{xy^2} &=& -1\cdot066245, & p'_{xz^2} &=& -7\cdot108065, \\ p'_{xy^3} &=& 74\cdot045335, & p'_{xz^3} &=& 50\cdot313120, \\ p'_{x^2y} &=& -3\cdot712880, & p'_{x^2z} &=& -5\cdot488842, \\ p'_{x^3y} &=& 35\cdot657353, & p'_{x^3z} &=& 24\cdot225619, \end{array}$$

$$p'_{zy} = 5.430241, \quad p'_{x^2y^2} = 47.927956, \quad p'_{xyz} = -4.341768, \quad p'_{x^2z^2} = 37.510631.$$

The corresponding moments about the mean are:

$$\begin{array}{l} p_{xy} = p'_{xy} - \bar{x}\bar{y} = 4\cdot205875,\\ p_{yz} = 5\cdot313440,\\ p_{zx} = 3\cdot657989,\\ p_{xy^2} = p'_{xy^2} - 2\bar{y}p'_{xy} - \bar{x}p'_{y^2} + 2\bar{x}\bar{y}^2 = 4\cdot128088,\\ p_{xy^3} = p'_{xy^3} - 3\bar{y}p'_{xy^2} + 3\bar{y}^2p'_{xy} - \bar{x}p'_{y^3} + 3\bar{x}\bar{y}p'_{y^2} = 79\cdot144020,\\ p_{x^2y^3} = p'_{x^2y^2} - 2\bar{y}p'_{x^2y} - 2\bar{x}p'_{xy^2} + \bar{y}^2p'_{x^2} + \bar{x}^2p'_{y^2} + 4\bar{x}\bar{y}p'_{xy} - 3\bar{x}^2\bar{y}^2 \\ = 49\cdot011115,\\ p_{xyz} = p'_{xyz} - \bar{x}\bar{y}\bar{z} - \bar{x}p_{yz} - \bar{y}p_{zx} - \bar{z}p_{xy} = 1\cdot580733. \end{array}$$

Similar formulae give:

$$egin{array}{ll} p_{x^2y} = 1 \cdot 302279, & p_{x^2z} = \cdot 219749, \ p_{x^3y} = 33 \cdot 336761, & p_{x^3z} = 19 \cdot 108627, \ p_{xz^2} = \cdot 328967, & p_{xz^3} = 42 \cdot 785163. \end{array}$$

4. Further we take:
$$q_{x^ly^mz^n}=rac{p_{x^ly^mz^n}}{\sigma_{x^l}\sigma_{y^m}\sigma_{z^n}}$$

We now collect into a single table the values of the reduced moments, the correlation coefficients and the correlation ratios.

TA	RT	T.	V	TV7
$\perp \Delta$	1)1.	1124	$-\Delta$. v

$q_{x^{\imath}y}$	·157282	r_{xy}	$\cdot 907489$		_
q_{xy^2}	•343344	$y\eta_x$	·918157	$y\eta^2_x - r^2_{xy}$.019478
$q_{x^2y^2}$	$2 \cdot 281729$	$_{x}\eta_{y}$	·915430	$_{x}\eta^{2}_{y}-r^{2}_{xy}$	$\cdot 014476$
q_{x^3y}	$2 \cdot 253653$			_	_
q_{xy^3}	2.537432	r_{yz}	·830729		
q_{x^3}	$\cdot 016995$	η_z	·851196	$_{y}\eta^{2}_{z}-r^{2}_{zy}$	$\cdot 034424$
q_{x^4}	2.531793	$_z\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	·833060	$_{z}\eta^{2}_{y}-r^{2}_{yz}$	$\cdot 003878$
q_{y^3}	·580509		_	_	
q_{v^4} .	3.118877	r_{zx}	·830463		
q_{x^2z}	$\cdot 027925$	$_{x}\eta_{z}$	$\cdot 844792$	$_{x}\eta^{2}_{z}-r^{2}_{zx}$	$\cdot 024005$
q_{xz^2}	.030294	$z\eta_x$.831447	$z\eta^2_x - r^2_{zx}$	$\cdot 001635$
q_{xz^3}	1.597889	-		_	
q_{x^3z}	1.359207	_	-		
$q_{x^2z^2}$	1.605274		_		
q_{xyz}	·138335	_			

It will be observed that the differences $_z\eta^2{}_y-r^2{}_{yz}$ and $_z\eta^2{}_x-r^2{}_{xz}$ are very small, showing that the regression lines of weight on age, and of height on age are nearly straight. The six empirical regression lines are given in Figs. 1-6.

Fig. 1. Regression of Age on Weight.

Fig. 2. Regression of Weight on Age.

Fig. 3. Regression of Height on Age.

Fig. 4. Regression of Age on Height.

Fig. 5. Regression of Weight on Height.

Fig. 6. Regression of Height on Weight.

The mean ages of the x, y arrays are given in Table XV. From this table $_{xy}H^2_{z}$ is calculated directly by the formula:

$${}_{xy}H^2_{z} = SS \frac{\{n_{xy} (\bar{z} - z_{xy})^2\}}{N\sigma_z^2}$$

$$= \cdot 7519,$$
or
$${}_{xy}H_z = \cdot 8671.$$
Also
$${}_{xy}R^2_{z} = \frac{r^2_{yz} + r^2_{zx} - 2r_{yz}r_{zx}r_{xy}}{1 - r^2_{xy}}$$

$$= \cdot 7233,$$
and
$${}_{xy}R_z = \cdot 8505.$$

We see that the regression of age on height and weight is very far from planar. The difference

$$_{xy}H_{z}^{2} - _{xy}R_{z}^{2} = \cdot 0286.$$

We have at present* no formula for the probable error of the multiple correlation ratio, but some idea of its magnitude may be obtained from Blakeman's formula† for the probable error of $_{x}\eta^{2}_{y}-r^{2}_{xy}$:

$$\frac{{}_{x}\eta^{2}{}_{y}-r^{2}{}_{xy}}{\text{Probable error of }({}_{x}\eta^{2}{}_{y}-r^{2}{}_{xy})}=\frac{\sqrt{N}\cdot\frac{1}{2}\cdot\sqrt{\eta^{2}-r^{2}}}{67449\sqrt{1+(1-\eta^{2})^{2}-(1-r^{2})^{2}}}.$$

^{*} Since writing the above, the author has obtained a formula for the p.e. of $_{xy}H_z$. It is very similar to Pearson's well known formula for the p.e. of the simple η .

[†] J. Blakeman. Biometrika, Vol. IV, p. 332.

With the above values of $_{xy}H_z^2$ and $_{xy}R_z^2$, the right-hand side of Blakeman's formula reduces to 13·47, so that on this assumption $_{xy}H_z^2 - _{xy}R_z^2$ is 13 or 14 times greater than its probable error.

If we examine the regression of weight on height and age, we find in the same way that:

$$z_x H^2_y = \cdot 8634,$$
 $z_x H_y = \cdot 9292,$ $z_x R^2_y = \cdot 8427,$ $z_x R_y = \cdot 9180,$ $z_x H^2_y - z_x R^2_y = \cdot 0207.$

In this case too the regression is significantly non-planar, Blakeman's formula reducing to 11.43 so that $_{zx}H^{2}{}_{y}-_{zx}R^{2}{}_{y}$ is more than 11 times greater than its probable error.

Physically $_{zx}H_y$ is more interesting than $_{xy}H_z$. A knowledge of the former enables us to construct by means of equation (53) of my Part I, a formula predicting the mean weight of a group of boys of given age and height. Such a formula would be an alternative solution to the one given by Table α on p. 300 of the paper by Miss Elderton referred to above.

6. We may consider now equation (70) of Part I which gives the approximate age of $_{xy}H_z^2 - _{xy}R_z^2$ in terms of constants all derivable from Tables XI, XII, XIII, i.e. constants whose determination does not require a detailed knowledge of the distribution. The equation is:

$$(_{xy}H^{2}_{z} - _{xy}R^{2}_{z}) \frac{q_{x^{2}y^{2}} - 1}{q_{x^{2}y^{2}} - r^{2}_{xy}}$$

$$= \frac{r_{xy}q_{x^{2}y} - q_{xy^{2}}}{q_{x^{2}y}r_{xz} - q_{xy^{2}r_{yz}}} \cdot \frac{r_{yz} - r_{xz}r_{xy}}{1 - r^{2}_{xy}} \left[(_{y}\eta^{2}_{z} - r^{2}_{zy}) - \left(\frac{r_{xz} - r_{yz}r_{xy}}{1 - r^{2}_{xy}} \right)^{2} (_{y}\eta^{2}_{x} - r^{2}_{xy}) \right]$$

$$+ \frac{r_{xy}q_{xy^{2}} - q_{x^{2}y}}{q_{xy^{2}}r_{yz} - q_{x^{2}y}r_{xz}} \cdot \frac{r_{xz} - r_{yz}r_{xy}}{1 - r^{2}_{xy}} \left[(_{x}\eta^{2}_{z} - r^{2}_{zx}) - \left(\frac{r_{yz} - r_{xz}r_{xy}}{1 - r^{2}_{xy}} \right)^{2} (_{x}\eta^{2}_{y} - r^{2}_{xy}) \right]$$

$$\dots \dots (70).$$

When $_x\beta_1$, $_y\beta_1^*$ are very small and $_y\eta_x$, $_x\eta_y$ and r_{xy} are nearly equal, we use instead of (70) the following equations:

$${}_{xy}H^{2}_{z} - {}_{xy}R^{2}_{z} = \frac{q_{x^{2}y^{2}} - r^{2}_{xy}}{q_{x^{2}y^{2}} - 1} \left({}_{y}\eta^{2}_{z} - r^{2}_{zy} \right) \qquad (71),$$

$${}_{xy}H^{2}_{z} - {}_{xy}R^{2}_{z} = \frac{q_{x^{2}y^{2}} - r^{2}_{xy}}{q_{x^{2}y^{2}} - 1} \left({}_{x}\eta^{2}_{z} - r^{2}_{zx} \right) \qquad (72),$$

or approximately

$${}_{xy}H^2{}_z - {}_{xy}R^2{}_z = \frac{1 + r^2{}_{xy}}{2r^2{}_{xy}} ({}_y\eta^2{}_z - r^2{}_{zy}) \dots (71)',$$

$${}_{xy}H^2{}_z - {}_{xy}R^2{}_z = \frac{1 + r^2{}_{xy}}{2r^2{}_{xy}} ({}_x\eta^2{}_z - r^2{}_{zx}) \dots (72)'.$$

^{*} $_x\beta_1$ is used to denote the β_1 of the frequencies of the x character.

For the regression of age on height and weight, the values of $_{xy}H^2_z - _{xy}R^2_z$ and of $_{xy}H^2_z$, given by the preceding equations, are tabulated below:

TABLE XVI.

Source	$_{xy}H^{2}_{z}$ - $_{xy}R^{2}_{z}$	$_{xy}H^{2}_{z}$
(70)	-0303	$\cdot 7537$
(71)	$\cdot 0392$	$\cdot 7625$
(71)'	$\cdot 0381$	$\cdot 7615$
(72)	$\cdot 0273$	$\cdot 7507$
(72)'	.0266	$\cdot 7499$
Direct Calculation	.0286	·7519

We notice that (72) and (72)' give much better values than (71) and (71)'. This is to be expected for $_x\beta_1$ is very small with a value of $\cdot 0003$, while $_y\beta_1$ is quite appreciable with a value of $\cdot 3370$, and since r_{xy} , $_y\eta_x$, $_x\eta_y$ are pretty nearly equal (cf. Table XIV), equations (72) and (72)' may be used to replace (70).

Another point of interest is that there is very little to choose between the values given by the cumbersome formula (70) and those given by (72) and (72)'.

If we now consider the regression of weight on height and age, we find that equation (70) is unsuitable for the calculation of $z_xH^2_y - z_xR^2_y$.

For in this case
$$\begin{array}{c} {}_{x}\beta_{1}=\cdot 0003,\\ {}_{z}\beta_{1}=\cdot 0057,\\ {}_{x}\eta_{z}=\cdot 8448,\\ {}_{z}\eta_{x}=\cdot 8314,\\ {}_{r_{zx}}=\cdot 8305, \end{array}$$

and we expect the right-hand side of (70) to be indeterminate (cf. Part I, p. 406). We find

$$egin{array}{ll} r_{zx}q_{zx^2}-q_{z^2x}&=-\cdot007104,\ r_{zx}q_{z^2x}-q_{zx^2}&=-\cdot002767,\ r_{zy}q_{z^2x}-r_{xy}q_{zx^2}&=-\cdot000175. \end{array}$$

and

Thus the right-hand side of equation (70) depends on the ratio of quantities which practically vanish when their probable errors are taken into account.

If, nevertheless, (70) is employed, it gives $_{zx}H^2_y - _{zx}R^2_y = \cdot 1580$, and since $_{zx}R^2_y = \cdot 8427$, we get $_{zx}H^2_y = 1\cdot 0007$!, i.e. a value just greater than unity*.

The values of $z_xH^2_y$ obtained from (71) and (72) are tabulated below:

TABLE XVII.

Source	$_{zx}H^{2}_{y}$ - $_{zx}R^{2}_{y}$	$_{zx}H^{2}{}_{y}$
(71)	-0054	.8481
(72)	·0203	·8630
(71)'	.0048	$\cdot 8474$
(72)'	.0177	·860 4
$\left. egin{array}{l} ext{Direct} \ ext{Calculation} \end{array} ight\}$.0207	·8634

^{*} Of course by an amount < p.e. of $_{zx}R_y$.

In this example also as $_x\beta_1$ is much nearer to zero than $_z\beta_1$ we get better values from (72) and (72)' than from (71) and (71)'.

We may conclude from these numerical cases that, if

- (i) $_x\beta_1$ and $_y\beta_1$ are fairly small, and
- (ii) the regressions of y on x and that of x on y do not depart widely from linearity, we get very fair values for $_{xy}H^2_z$ from an equation of type

$$_{xy}H_{z}^{2}-_{xy}R_{z}^{2}=rac{1+r_{xy}^{2}}{2r_{xy}^{2}}(_{y}\eta_{z}^{2}-r_{zy}^{2}),$$

and a very good value from one of type

$$_{xy}H^{2}_{\ z}-_{xy}R^{2}_{\ z}=rac{q_{x^{2}y^{2}}-r^{2}_{\ xy}}{q_{x^{2}y^{2}}-1}\,(_{y}\eta^{2}_{\ z}-r^{2}_{\ zy}),$$

and that it is better to use the equation which corresponds to the smaller β_1 than to use the mean of the values given by the two equations of each type, i.e. if $_y\beta_1$ is smaller than $_x\beta_1$ we use the formula in terms of $_y\eta^2_z - r^2_{zy}$ in preference to the one involving $_x\eta^2_z - r^2_{zx}$ and in preference to the mean of the two.

If the conditions (i) and (ii) are not satisfied, we use equation (70), which requires more labour than (71) or (72), but is much easier than a direct calculation.

7*. It is a matter of interest to see whether the regression surface of age on height is of the type considered in Part I of this paper. The regression surface being

$$\frac{\bar{z}_{xy} - \bar{z}}{\sigma_z} = \bar{d} + \frac{a(x - \bar{x})}{\sigma_x} + \frac{b(y - \bar{y})}{\sigma_y} + \frac{c(x - \bar{x})(y - \bar{y})}{\sigma_x \sigma_y} + \frac{e(x - \bar{x})^2}{\sigma_x^2} + \frac{f(y - \bar{y})^2}{\sigma_y^2} \dots (28).$$

The solution of equations (29)-(34) is:

$$\begin{array}{lll} d= \cdot 060374, & c= -\cdot 0940467, \\ a= \cdot 360742, & e= \cdot \cdot 072020, \\ b= \cdot 547960, & f= -\cdot 040709. \end{array}$$

Here c is decidedly smaller than a and b, but e and f are of the same order as c. This seems to suggest that our formulae have a wider range than the type of surface by which they were suggested. If we solve equations (36) to (39) (Part I) in which the coefficients e and f are assumed to be zero, we obtain

$$d = .060172,$$
 $b = .512257,$ $a = .376024,$ $c = -.066306.$

On substituting these values in (59) and (60), we find

$$_{xy}H_{z}^{2} = \cdot 7470,$$

 $_{xy}H_{z}^{2} = \cdot 7534.$

or

Now equations (59) and (60) were based on the assumption that the arrays of y's for constant x and the arrays of x's for constant y are homoscedastic.

* This section differs from the preceding—it does not deal with genuine approximation formulae—for in the determination of the constants a, b, c, d we use q_{xyz} , i.e. the detailed table. It illustrates some other points in Part I.

It is easy to remove this restriction. As on p. 402, we write

$$\begin{aligned}
& {}_{xy}H^2_z - {}_y\eta^2_z = S_y \left\{ \left(a + \frac{cy}{\sigma_y} \right)^2 \frac{\sigma^2 x_y}{\sigma^2_x} \frac{n_y}{N} \right\} \\
&= a^2 \left(1 - {}_y\eta^2_x \right) + 2ac S_y \left(\frac{y}{\sigma_y} \frac{\sigma^2 x_y}{\sigma^2_x} \frac{n_y}{N} \right) + c^2 S_y \left(\frac{y^2}{\sigma^2_y} \frac{\sigma^2 x_y}{\sigma^2_x} \frac{n_y}{N} \right) \quad \dots \dots (59)'.
\end{aligned}$$

If the x arrays are homoscedastic $\frac{\sigma^2_{x_y}}{\sigma^2_x} = 1 - {}_x\eta^2_y$ and we get (59).

Similarly equation (60), corrected for heteroscedasticity, becomes

$${}_{xy}H^2{}_z - {}_x\eta^2{}_z = b^2 \left(1 - {}_x\eta^2{}_y\right) + 2bcS_x \left(\frac{x}{\sigma_x} \frac{\sigma^2 y_x}{\sigma^2{}_y} \frac{n_x}{N}\right) + c^2S_x \left(\frac{x^2}{\sigma^2{}_x} \frac{\sigma^2 y_x}{\sigma^2{}_y} \frac{n_x}{N}\right) \ \dots \dots (60)'.$$

Applying these corrections to the case of $_{xy}H_{z}^{2}$, we find

$$_{xy}H_{z}^{2} - .724535 = .0221969 + .0003345 + .0006875$$
(59)

or
$$_{xy}H^{2}_{z}=\cdot 7478$$

and
$${}_{xy}H^2{}_z - \cdot 713674 = \cdot 0424845 - \cdot 0053862 + \cdot 0010073 \quad(60)',$$
 or
$${}_{xy}H^2{}_z = \cdot 7518,$$

showing the separate contributions of the various terms.

The agreement of (60)' with the empirical value ·7519 is remarkably close.

For the regression of weight on height and age, equations (36) to (39) give the values

$$a = .24570,$$
 $b = .70004,$ $c = .12160,$

if the regression hyperboloid be written in the form:

$$\frac{\overline{y}_{zx} - y}{\sigma_y} = d + a \frac{z - \overline{z}}{\sigma_z} + b \frac{x - \overline{x}}{\sigma_x} + c \frac{(x - \overline{x})(z - \overline{z})}{\sigma_x}.$$

The values given by the equations corresponding to (59) and (60) are

$$_{zx}H^2{}_y = {}_x\eta^2{}_y + (a^2 + c^2) (1 - {}_x\eta^2{}_z) = \cdot 838012 + \cdot 021519 = \cdot 8595,$$

$$_{zx}H^2{}_y = {}_z\eta^2{}_y + (b^2 + c^2) (1 - {}_z\eta^2{}_x) = \cdot 693989 + \cdot 15580 = \cdot 8498,$$

while the equations corresponding to (59)' and (60)' give

$$_{zx}H^{2}{}_{y}=\cdot 838012+\cdot 0172780+\cdot 00011322+\cdot 0034254=\cdot 8588,$$

and $zxH^2_y = .6939891 + .15128 + .0048971 + .0091002 = .8593$,

the empirical value of $z_xH^2_y$ being ·8634.

These approximations are not quite so good; they are bound up rather closely with the assumed hyperboloidal form of the regression surface, while Mr Soper has shown that in the case of weight on age and height, a good fit is obtained by a surface of the form:

$$\overline{y}_{zx} = a_0 + a_1 z + a_2 z^2 + (b_0 + b_1 z + b_2 z^2) x^*.$$

8. Mr M. Greenwood, Jr, has kindly drawn my attention to a joint paper, entitled "A Study of Index Correlations," published by Mr J. W. Brown, Miss Frances Wood and himself in the *Journal of the Royal Statistical Society*†.

^{*} Elderton's paper, loc. cit. p. 294.

[†] Vol. LXXVII, Part III, February, 1914, pp. 317-346.

The authors give the value of a generalized H, obtained by direct calculation in two or three cases. The material they deal with is the distribution of births, deaths and populations in 1000 English registration sub-districts, and also of the birth- and death-rates and populations in these districts. The material is highly heterogeneous and exceedingly high values of β_1 occur. Thus, β_1 for deaths is 16.0205 and for death rates is 61.5392.

Unfortunately in their table on page 341 of the values of the simple η 's, the authors fail to discriminate between $_{y}\eta_{x}$ and $_{x}\eta_{y}$.

Mr Greenwood, at my request, was good enough to consult his Ms. notes and sent me an identification table of the η 's, but a recalculation of the η of populations on births and the η of populations on deaths has shown that errors have crept into this identification table.

When amended this table is as follows:

$$x\eta_y = .9501,$$

 $y\eta_x = .9358,$
 $x\eta_z = .9241,$
 $z\eta_x = .7855,$
 $z\eta_y = .7527,$
 $z\eta_z = .8871,$

where x = population, y = births, z = deaths.

or

With these values our equation (70) gives

$$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ \text{or} & & & & & & \\ \text{or} & & & & & & \\ & & & & & & \\ xyH_z &= \cdot 9388. & & & \\ \end{array}$$

The authors give as the empirical value $_{xy}H_z=\cdot 9384$.

As regards the use of the simpler formulae, the only β_1 of reasonably small value is β_1 of population which equals .0886.

Considering the wide divergence in the results obtained by the authors when dealing with the 1000 sub-districts and with 999 of them* it is evident that the use of the above simple formula would have been sufficient for their purpose.

^{*} l.c., p. 343: population and births $H_{\text{deaths}} = .9384$ for 1000 sub-districts, and = .9213 for 999 sub-districts.

GLASGOW SCHOOL BOYS—GROUP A.

TABLE I. Age 4.5 to 5.5 years. Weight in lbs.

80		24—28	29—33	34—38	39—43	44—48	49—53	Totals
Height in inches	30—32 33—35 36—38 39—41 42—44 45—47	2 5 1 —	15 18 5 —	5 72 87 4 1	8 90 35			2 25 99 190 65 3
	Totals	8	38	169	133	30	6	384

TABLE II. Age 5.5 to 6.5 years.

Weight in lbs. Totals -46-62 Height in inches $^{1}_{17}$ 30-32 33---35 $\begin{array}{c} 23 \\ 146 \end{array}$ 36-38 39 - 4142 - 44 $\frac{5}{6}$ 1 45-47 48-51 Totals

TABLE III. Age 6.5 to 7.5 years.

					0					
		24-28	29—33	34—38	39—43	44—48	49—53	54—58	59—63	Totals
Height in inches	30—32 33—35 36—38 39—41 42—44 45—47 48—50 51—53	1 1 	1 8 6 4 — 1 —	6 37 93 22 —	1 2 10 178 220 21 2	2 35 294 133 —	- 2 61 138 13	3 38 12	1 4 1	3 16 55 312 601 332 31 2
	Totals	2	20	158	434	464	215	53	6	1352

TABLE IV. Age 7.5 to 8.5 years. Weight in lbs.

		29—33	34—38	39—43	44—48	49—53	54—58	59—63	89—49	69—73	74-78	Totals
Height in inches	33—35 36—38 39—41 42—44 45—47 48—50 51—53 54—56 57—59	2 — 1 — — — —	3 13 38 13 2 — —	1 15 63 145 36 1 —		$egin{array}{c c} -1 \\ 2 \\ 74 \\ 283 \\ 82 \\ 9 \\ -2 \\ \end{array}$		40 9 1	 1 7 1 		- - - 1	$\begin{bmatrix} 6\\ 32\\ 121\\ 491\\ 619\\ 229\\ 31\\ 2\\ 4\\ \end{bmatrix}$
	Totals	3	69	261	501	453	183	54	9	1	1	1535

TABLE V. Age 8.5 to 9.5 years.

Weight in lbs.

		2933	34—38	39—43	11-18	49—53	24—58	59—63	64—68	69—73	74—78	79—83	Totals
Height in inches	30—32 33—35 36—38 39—41 42—44 45—47 48—50 51—53 54—56 57—59 60—62	1 2 - - - - -		1 21 48 18 3 —		$ \begin{array}{c c} & \underline{} \\ & \phantom{0$	$\begin{array}{c c} - & - \\ \hline 1 & 1 \\ 5 & 118 \\ 217 & 20 \\ \hline 2 & - \\ 1 & \end{array}$	9 9 98 41 1	- - - 11 23 3 -			-	1 8 43 187 583 458 99 18 2 3
	Totals	3	11	91	268	459	365	150	37	15	2	1	1402

TABLE VI. Age 9.5 to 10.5 years.

						0						
		34—38	39-43	44—48	49—53	54—58	59—63	89	69—73	74—78	79—83	Totals
Height in inches	33—35 36—38 39—41 42—44 45—47 48—50 51—53 54—56 57—59 60—62 63—65		3 7 14 5 3 1 —	1	1 2 23 148 127 7 —	$ \begin{vmatrix} - \\ 1 \\ 4 \\ 93 \\ 281 \\ 42 \\ - \\ 1 \\ 2 \\ - \end{vmatrix} $	1 - 10 159 130 3 2 -		5 27 10	— — — — — — — — — — — — — — — — — — —		1 8 16 70 311 613 323 30 4 2 1
	Totals	5	33	91	308	424	305	156	42	13	2	1379

TABLE VII. Age 10.5 to 11.5 years.

Weight in lbs.

		34—38	39—43	44—48	49—53	54—58	59—63	89—79	69—73	74-78	79—83	84—88	Totals
Height in inches	33—35 36—38 39—41 42—44 45—47 48—50 51—53 54—56 57—59 60—62	1 1 - - -		3 8 16 5 —	$egin{array}{c}$	1 - 1 55 184 49 1 -	10 161 166 13 2	$\begin{bmatrix} - \\ - \\ 2 \\ 45 \\ 148 \\ 42 \\ - \\ 2 \end{bmatrix}$	1 - 1 - 11 81 56 2 -		2 8 3	35	1 1 5 24 151 447 465 168 14 2
	Totals	2	6	32	126	291	352	239	151	58	13	8	1278

TABLE VIII. Age 11.5 to 12.5 years.

Weight in lbs.

							.,	0	*** **							
		34-38	39—43	44—48	49—53	54—58	59-63	64—68	69—73	74-78	79—83	84—88	89-93	94—98	99—103	Totals
Height in inches	36—38 39—41 42—44 45—47 48—50 51—53 54—56 57—59 60—62 63—65	1 		3 3	1 3 23 22 —	1 22 83 41 5	2 101 125 14 1	 4 36 168 64 1	 11 108 100 3 1			$\begin{bmatrix} - \\ - \\ 2 \\ 6 \\ 10 \\ 1 \\ 1 \end{bmatrix}$			 - - - - - - -	1 5 5 54 258 474 321 57 4 3
	Totals	1	1	6	49	152	243	273	223	139	61	20	7	1	2	1178

TABLE IX. Age 12.5 to 13.5 years.

		44-48	49—53	54—58	59—63	89	69—73	74-78	79—83	84—88	89—93	94—98	99—103	104-108	109—113	Totals
Height in inches	42—44 45—47 48—50 51—53 54—56 57—59 60—62 63—65		1 6 8 2 — —	12 35 12 1 1 —	$\begin{bmatrix} - \\ 3 \\ 60 \\ 80 \\ 13 \\ - \\ - \end{bmatrix}$	$ \begin{array}{c} -\\ 20\\ 142\\ 59\\ 3\\ -\\ - \end{array} $	- 6 112 129 12 - -	3 51 138 38 4	 14 50 42 2	$-\frac{1}{6}$ 17 44 2	$-\frac{1}{6}$ 15 14 1					1 24 134 421 415 171 33 3
	Totals	5	17	61	156	224	259	234	108	70	37	21	8	1	1	1202

Totals

 $\begin{array}{c} 109 \\ 25 \end{array}$

428

		44—48	49—53	54—58	59—63	89—19	69-73	74—78	79—83	84—88	89—93	94—98	99—103	104-108
Height in inches	42—44 45—47 48—50 51—53 54—56 57—59 60—62 63—65	_ _ _ _ _ _		3 5 3 — 1 —	1 7 16 7 —	7 31 27 —	1 36 41 7 —	9 49 19 1	1 27 28 1	- - 6 28 5 1				
	Totals	1	6	12	31	65	85	78	57	40	22	15	9	6

TABLE XI. Correlation Table of Heights and Weights. Height in inches.

		30—32	33—35	36—38	39—41	45-44	45—47	4850	51—53	54—56	6229	<i>29—09</i>	63—65	Totals
Weight in lbs.	24—28 29—33 34—38 39—43 44—48 49—53 54—58 59—63 64—68 69—73 74—78 79—83 84—88 89—93 94—98 99—103 104—108 109—113 114—118 119—123	4 3	9 42 16 3 1 — 1 — — — — — — — — — — — — — — — —	2 62 220 51 7 4 3 1 —————————————————————————————————	25 414 617 122 12 1 1	3 72 697 875 249 17 1 	1 1 6 95 603 988 436 39 8 ——————————————————————————————————	11 38 411 905 630 161 35 3 2	1 8 33 171 568 621 374 106 222 8 1	1 5 11 51 206 340 335 120 32 10 3		3 1 2 2 5 4 8 18 9 11		16 136 728 1476 1655 1706 1552 1297 1004 776 525 242 138 66 37 19 7
	Totals	8	72	350	1193	1914	2178	2196	1913	1115	361	69	13	11382

 ${\it TABLE~XII.}~~Correlation~{\it Table~of~Height~and~Age}.$

					Ag	ge in j	years					
		5	6	7	8	9	10	11	12	13	14	Totals
Height in inches	30-32 33-35 36-38 39-41 42-44 45-47 48-50 51-53 54-56 57-59 60-62 63-65	2 25 99 190 65 3 	2 23 146 505 469 95 4 — — —	3 16 55 312 601 332 31 2 —	-6 32 121 491 619 229 31 2 4	1	1 8 16 70 311 613 323 30 4 2 1	1 1 5 24 151 447 465 168 14 2		1 24 134 421 415 171 33 3	$\begin{bmatrix}\\ -\\ -\\ 1\\ 6\\ 22\\ 98\\ 161\\ 109\\ 25\\ 6 \end{bmatrix}$	8 72 350 1193 1914 2178 2196 1913 1115 361 69 13
	Totals	384	1244	1352	1535	1402	1379	1278	1178	1202	428	11382

TABLE XIII. Correlation Table of Age and Weight.

Age in years

		5	6	7	8	9	10	11	12	13	14	Totals
Weight in lbs.	24—28 29—33 34—38 39—43 44—48 49—53 54—58 59—63 64—68 69—73 74—78 79—83 84—88 89—93 99—103 104—108 109—113 114—118 119—123	8 38 169 133 30 6 — — — — — — — — — — — — — — — — — —	6 72 313 517 257 17 11 — 1 — — — — — —	2 20 158 434 464 215 53 6 	 3 69 261 501 453 183 54 9 1 1 		5 33 91 308 424 305 156 42 13 2 — — — —					16 136 728 1476 1655 1706 1552 1297 1004 776 525 242 138 66 37 19 7 1

TABLE XV. Mean Ages of Height and Weight Arrays.

x	y	z_{xy}	x	y	z_{xy}	x	y	z_{xy}	\boldsymbol{x}	y	z_{xy}	\boldsymbol{x}	y	z_{xy}
-6	-6	-4.25	- 3	0	-1	0	- 1	-0.508516	2	2	2.194174	4	3	0.5
	-5	-2.666667		2	- 4		0	0.046409		3	$2 \cdot 361764$		4	$3\cdot 2$
	-3	- 3		3	1		1	0.604762		4	2.531343		5	3
-5	-6	-4.555556	-2	-5	-3.333333		2	1.118012		5	2.758333		6	3.5
	-5	-4.071428		-4	-3.083333		3	1.542857		6	2.812500		7	3.222222
	-4	-3.5625		-3	-3.008608		4	3		7	3		8	3.444444
	- 3	-2.666667		-2	-2.6222857		5	2		8	3.666667		9	3.363636
1	-2	0		-1	-1.943775	1	-3	0		10	3		10	4
	0	1	Ì	0	-1.235294		-2	-1.25	3	-1	-1		11	3
-4	-6	-4.5		1	-3		-1	-0.151515		0	1.25	5	2	1
	-5	-4.096774	- 1	-6	-3		0	0.883041		1	0.3333333		5	2
	-4	-3.927273	İ	-5	-3		1	1.158450		2	3		6	3
	-3	-3.078431		-4	-2.5		2	1.624798		3	3		7	3
	-2	-2.428571		-3	-2.084210		3	2.048128		4	2.921052		8	4
	– 1	-1.75		-2	-1.815920		4	$2 \cdot 367924$		5	3.021505		9	3.333333
}	0	-1.666667		-1	-1.292510		5	2.545455		6	3.091954		10	4
1	1	0		0	-0.658257		6	2.75		7	3.305555		13	4
-3	-5	-4.04		1	0.256410		7	3		8	3.260869			
	-4	-3.763285		2	1	2	-2	-1		9	3.4			
1	-3	-3.505673		6	3		- 1	-1	4	0	-0.333333			
	-2	-2.786885	0	-3	-1.272727		0	0.727273		1	- 1			
1	- 1	-1.5		-2	-0.5		1	2.098039		2	1			

CORRELATION OF ANTHROPOMETRICAL MEASUREMENTS IN CAIRO-BORN NATIVES*

By MYER M. ORENSTEEN

(Ministry of Public Works, Egypt)

1. The Material. Since 1910, owing to the completion of an anthropometrical study undertaken by the Egyptian Government under the direction of Mr J. I. Craig, now Controller-General of the Statistical Department, a series of measurements of about ten thousand Egyptian natives has been filed in the Survey Department. It has been thought of interest to take this opportunity to re-examine the material in order to determine the correlation between the different organs of the native body available.

Referring to the nature of the characters considered in the paper, it will be necessary to remember here that the data belong to anthropometrical slips of prisoners, taken from the Cairo Anthropometrical Bureau. The slips have been drawn absolutely at random without any particular character of selection.

- To Mr J. I. Craig, the writer addresses his best thanks for kindly allowing him full access to the material, and for valuable advice.
 - 2. The Data. The measurements available and dealt with in the paper are:
- (L.) Length of the Head. This is the shortest distance between the glabella and the occipital point as measured with callipers.
- (B.) Breadth of the Head. This is the maximum breadth of the head. It is measured with callipers just above the back of the ears.
 - (L.M.F.) Length of the left middle Finger.
 - (L.F.) Length of the left Foot.
 - (L.C.) Length of the left Cubit.
 - (S.) Stature. This is the total height standing without boots.

From the ten thousand individuals in hand, who are natives of all parts of Egypt up to Aswan, 1191 persons have been selected as being exclusively males born in Cairo. From this selected group a further number of 389 has been

^{*} As the Editor was unable to consult the author of this paper, he has considered it best to alter as little as possible the literary expression.

excluded for being, at the date when measured, youths of under 20 years of age. The remaining 802 individuals providing the final group of measurements dealt with throughout the paper are, therefore, adult male Egyptians born in Cairo. Of this final group 76 per cent. were measured during 1904–1905, the remaining 24 per cent. fall within the years 1901 and 1906.

3. Social class to which the Natives dealt with belong. From the fact that these natives have undergone police examination, objection may arise as to whether the measurements of such persons can represent the ordinary native body, or if really they belong to a selected group of individuals, namely the criminal class of natives.

TABLE I.

Movement of the natives measured, their distribution as regards length of imprisonment, and their comparison with migration of ordinary inhabitants.

	Place	Place where migrated to					
Length of Imprisonment	Lower Egypt	Cairo Town	Upper Egypt	Total			
One year and less	8.8	71.2	6.8	86-8			
Over one year and up to three	0.8	10.5	1.0	12.3			
Over three years	0.0	0.8	0.1	0.9			
Total	9-6	82.5	7.9	100.0			
Ordinary Egyptian inhabitants	6.3	91-1	2.5	100-0			

Mr J. I. Craig, writing on the same material, says* "it may be objected that criminality in itself is a determinating factor of selection, but the objection does not hold in Egypt. Here it cannot be said that there exists a definite criminal class, and criminals are rather amateurs than professionals. This state of things is in all probability due to the easy conditions under which the lower class live."

In support of this, I may mention some recent conclusions which Dr Charles Goring comes to[†]. "Criminals as criminals are not a physically differentiated class of the general community....The physical and mental constitution of both criminal and law-abiding persons of same age, stature, class and intelligence are identical....There is no such thing as an anthropological type."

^{* &}quot;Anthropometry of Modern Egyptians," Biometrika, July, 1911.

[†] The English Convict: A Statistical Study, by Charles Goring, M.D.

These statements are suggestive for our material, and some investigation has been thought desirable in order to ascertain how far the former is justified for the Cairo group when considered alone. This investigation was carried out in two directions:

- (1) The seriousness of the offence or crime committed. This of course is proportionate to the length of imprisonment.
- (2) The social class to which the natives belong. This is traced by looking into the daily occupation of each individual.

TABLE II.

Daily occupation of men measured.

			%			%
Coffee-house	keep	er	9.4	Tailor	• • •	$2 \cdot 4$
Pedlar			9.2	Cultivator	•••	2.2
Servant			7.9	Baker		2.0
Driver			$7 \cdot 4$	Butcher		1.7
Workman			6.9	Cobbler		1.6
Blacksmith			6.4	Barber		1.3
Vagabond			6.2	Washerman		1.2
Carpenter			5.5	Coal-seller	***	1.1
Painter			4.8	Water-carrier		0.8
Cook			4.0	Shoe-black		0.8
Tobacconist			$4 \cdot 0$	Bricklayer		0.6
Clerk			$3 \cdot 1$	Student		0.6
Fruiterer			$2 \cdot 7$	Printer		0.5
Weaver			$2 \cdot 6$	Milkman		0.3
Confectioner			2.5	Watchman		0.3

Table I gives in per cent. the different lengths of imprisonment. This table also exhibits the stability of the group measured when compared with the total mass of the ordinary native male population. The figures of the latter group were taken from the Census of Egypt in 1907, where 221,185 individuals have been classified as being male Egyptians born in Cairo. From Table I we observe that most of the men have been condemned to very short punishments. On the whole only nine natives have been registered for murder (manslaughter); 86·8 per cent. have been kept in custody for a period varying between a few days and one year; 12·3 per cent. have been kept in for a length varying from one year and up to three. The remaining 0·9 per cent. have been imprisoned for a period over three years. This state of things is surely due to slight offences done without premeditation.

The figures under the heading "migration" show clearly that most of the Cairenes settle in their native town (as is also the case in the whole country). Out of the Cairo migrating element, ten per cent. prefer to settle down in Lower Egypt while eight per cent. move into Upper Egypt. We further remark that the ordinary

native migrates less than the group measured by the police. The natives of the former selection remaining in the town exceed by 10 per cent. those of the latter. This in all probability is to be explained by the fact that the census figures include children and boys under 20, up to which age there is less tendency to migration than afterwards.

Table II gives a fairly exact idea of the daily occupation or social class to which the men measured belong. From this table we first remark that practically all men have their daily occupation, and that the greater part of them deal directly with the public. The proportion of these is 87 per cent.; the ordinary native element is represented by 52 per cent. Vagabonds and men without distinct occupation come in with 6 per cent.

As a result of the analysis of Tables I and II, we may come to the conclusion that the people dealt with in this paper are not necessarily of the poorest class of the total mass of the Cairo natives. And although they have undergone the police examination they are not necessarily of a selected class of natives, nor are they under special conditions of health.

4. Age of the People. As we have already said, all youths under twenty years of age have been excluded. Most of the natives are ignorant of their right age and could easily deviate by ten or twenty years from the truth though with apparent good faith. The age was estimated by the police officer on duty.

The percentage frequency of men per group of age is as follows:

						Census
From	20	$_{ m to}$	25	years	 52 %	25%
,,	26	to	30	,,	 28 %	18%
,,	31	to	40	,,	 16%	26~%
,,	41	to	70	,,	 4 %	32 %

It will be seen that the above grouping eliminates the greater part of accidental errors due to personal equation of the observer. The figures given by the census are said to be very unreliable.

TABLE III.

Means, Standard-deviations and their respective Probable Errors.

Character	$M\pm E^{M}$	$\sigma^* \pm E_\sigma$
Length of Head, in mm Breadth of Head, in mm Left Middle Finger, in mm. Left Foot, in mm Left Cubit, in mm Stature, in cm Cephalic Index, in %	$\begin{array}{c} 190 \cdot 52 \pm 0 \cdot 14 \\ 144 \cdot 45 \pm 0 \cdot 11 \\ 114 \cdot 09 \pm 0 \cdot 15 \\ 257 \cdot 64 \pm 0 \cdot 30 \\ 457 \cdot 51 \pm 0 \cdot 52 \\ 165 \cdot 82 \pm 0 \cdot 14 \\ 75 \cdot 82 \pm 0 \cdot 07 \end{array}$	$\begin{array}{c} 5 \cdot 90 \pm 0 \cdot 10 \\ 4 \cdot 67 \pm 0 \cdot 08 \\ 6 \cdot 14 \pm 0 \cdot 10 \\ 12 \cdot 36 \pm 0 \cdot 21 \\ 21 \cdot 21 \pm 0 \cdot 36 \\ 5 \cdot 93 \pm 0 \cdot 10 \\ 2 \cdot 91 \pm 0 \cdot 05 \end{array}$

^{*} Sheppard's corrections have been applied.

5. Frequency Distributions. The total number of individuals measured being 802, the measurements were grouped so as to save time and labour.

The grouping of the data has been arranged so as to give approximately eleven sub-ranges of grouping in each case with limits as follows:

Length of the head	 every 3	millimetres
Breadth of the head	 ,, 3	,,
Left middle finger	 ,, 4	**
Left foot	 ,, 7	,,
Left cubit	 ,, 15	,,
Stature	 ,, 4	centimetres

Table III gives the mean, the standard deviation corrected by Sheppard's adjustments, and the corresponding probable error for each character observed. The cephalic index is computed as usual from the ratio of the breadth to the length multiplied by a hundred; this gives a measure as to whether the head is relatively long or broad.

The frequency distributions were further analysed. Sheppard's corrections were applied to all the moments, and the criterion κ for the classification of the curves determined. κ in all cases was less than unity; β_1 and β_2 computed from μ_2 , μ_3 , μ_4 (the second, third and fourth moments) were practically 0 and 3 respectively for all distributions.

The normal curve of the form $Y = y_0 e^{-x^2/2\sigma^2}$ was therefore chosen.

The theoretical frequencies for every sub-group of each distribution of measurements have been computed from the following formulae:

```
\begin{array}{lll} \mbox{Length of the head:} & f = 162 \cdot 73 e^{-x^2/69 \cdot 6132}, \\ \mbox{Breadth of the head:} & f = 205 \cdot 50 e^{-x^2/43 \cdot 6194}, \\ \mbox{Left middle finger:} & f = 208 \cdot 43 e^{-x^2/75 \cdot 3952}, \\ \mbox{Left foot:} & f = 181 \cdot 20 e^{-x^2/305 \cdot 5150}, \\ \mbox{Left cubit:} & f = 226 \cdot 30 e^{-x^2/899 \cdot 3250}, \\ \mbox{Stature:} & f = 215 \cdot 77 e^{-x^3/70 \cdot 3072}, \end{array}
```

where f is the frequency for every unit of grouping,

x is the distance from the origin (in these cases the origin and the mean coincide) to the foot of the ordinate to be calculated,

e is the base of the Napierian system of logarithms.

The comparison between the observed frequencies and the theoretical frequencies computed from the above formulae is given in Table IV. χ^2 is calculated from the sum of the squares of the departures of the theoretical values from the observed ones, divided by the corresponding theoretical values. This is shown by the formula

$$\chi^2 = \sum [(y_O - y_C)^2 / y_C].$$

P is the probability that, in another random sample of the same size, a worse fit would be obtained.

TABLE IV.

(a) Length of Head

Centre of Group mm.	Observed frequency	Computed frequency C	Δ 0 -	
174	4	3	+	1
177	8	12	-	4
180	41	33	+	. 8
183	69	72	-	3
186	114	122	-	8
189	177	158	+	19
192	160	158	+	2
195	98	122		24
198	75	73	+	2
201	39	34	+	5
204	7	12		5
207	10	3	+	7
	1		I	
$\chi^2 = \Sigma \Delta^2$	C = 30.3	P =	.0015	5

(c) Left Middle Finger

Centre of Group mm.	$\begin{array}{c} \text{Observed} \\ \text{frequency} \\ O \end{array}$	Computed frequency	$\Delta = O - C$
94·5 98·5 102·5 106·5 110·5 114·5 118·5 122·5 126·5 130·5	$\begin{array}{c} 1\\ 6\\ 32\\ 1111\\ 176\\ 215\\ 137\\ 80\\ 36\\ 5\\ 3\\ \end{array}$	1 8 35 97 176 208 161 82 27 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-	$\frac{3}{2/C = 9.8}$		·4590

(e) Left Cubit

Centre of Group mm.	$\begin{array}{c} \text{Observed} \\ \text{frequency} \\ O \end{array}$	Computed frequency	$ \Delta = 0 - C $		
395	3	4	_		
410	20	18	+		
425	72	70	+		
440	160	161	_		
455	224	225	_		
470	186	190			
485	100	97	+		
500	26	30	-		
515	10	6	+		
530	0	1	-		
545	1	0	+		
$\chi^2 = \Sigma \Delta$	$\Delta^2/C = 3.9$	P =	9439		

(b) Breadth of Head

Centre of Group mm.	Observed frequency O	Computed frequency	$\Delta = O - C$	
131 134 137 140 143 146 149 152 155 158 161	6 8 75 121 190 202 125 55 11 8	3 17 58 130 196 195 128 56 16 3 0	+ - + + +	3 9 17 9 6 7 3 1 5 3
$\chi^2 = \Sigma \Delta^2$	$/C = 19 \cdot 2$	P =	= .037	18

(d) Left Foot

Centre of Group mm.	Observed frequency	Computed frequency	O	= - C
225	5	6	_	1
232	19	21	-	2
239	70	58	+	12
246	111	117	_	6
253	178	169	+	9
260	167	178	_	11
267	122	136	_	14
274	88	76	+	12
281	28	30	_	2
288	11	9	+	2
295	3	2	+	1
2 2	$\frac{1}{2^2/C} = 8.7$	70	·567'	

(f) Stature

Centre of Group cm.	Observed frequency O	$\begin{array}{c} \text{Computed} \\ \text{frequency} \\ C \end{array}$					
149·5 153·5 157·5 161·5 165·5 169·5 173·5 177·5 181·5 185·5	4 28 73 185 212 167 87 31 14	5 25 81 166 215 178 93 31 7	+ - + +	1 3 8 19 3 11 6 0 7			
$\chi^2 = \Sigma \Delta$	·234]						

Fig. 1. Length of Head. $(y=202\cdot90\times2\cdot71828-x^2/69\cdot6132)$

Fig. 2. Breadth of Head. $(y=256\cdot23\times2\cdot71828^{-x^2/43\cdot6194})$

Fig. 3. Left Middle Finger. $(y=259.89\times2.71828-x^2/75.3952)$

Fig. 4. Left Foot. $(y=225.93\times2.71828-x^2/305.515)$

Fig. 5. Left Cubit. $(y=282\cdot17\times2\cdot71828^{-x^2/899\cdot3250})$

Fig. 6. Stature. $(y=269.04\times2.71828^{-x^2/70.3872})$

Figures 1 to 6 give the calculated frequency curves. The lengths of the ordinates represent the frequency per thousand of observations in a corresponding group where the ordinate considered is the mean for the unit of grouping. The dotted curves have been drawn from the observed frequencies reduced to the same base. A glance at these figures is sufficient to show that normal curves fit pretty well our statistics. The quartiles have been drawn with the aid of an integraph.

6. Coefficients of Correlation. With the same grouping of the data I have constructed correlation tables. These are given in Tables VIII to XIV.

The coefficient of correlation for the length and the breadth of the head was found to be $r=+0.244\pm0.020$. This coefficient is as we should have expected lower than the results from the remaining pairs of characters. Attention may be drawn to the fact that this particular coefficient varies very much from race to race. A comparison with similar results for different races may be of interest here:

8		
Smith Sound Eskimos	• • •	$r = +0.47 \pm 0.08$
Ainos		$r = +0.43 \pm 0.06$
Naqada Race		$r = +0.34 \pm 0.05$
Germans		$r = +0.29 \pm 0.06$
Bavarian Peasants		$r = +0.28 \pm 0.06$
Cairo Natives		$r = +0.24 \pm 0.02$
French Peasants		$r = +0.13 \pm 0.09$
British Columbian Indian	s	$r = +0.08 \pm ?$

Taking into consideration the great variation of this coefficient from race to race, the writer is greatly inclined to believe that a correlation between the length and the breadth of the head really exists, but that its variation in value is very probably due to special factors, probably working independently and tending to modify the real measure of relationship. This is being further investigated, and a closer study of such factors is being undertaken.

The results of the computation of Tables VIII to XIV are grouped in Table V. From this table we may deduce the following conclusions: Were all human bodies perfectly similar all the coefficients of correlation between the different organs would be unity; if on the contrary there should exist a complete independency of the organs, the coefficients would be all nil. We may therefore conclude from Table V that we are to expect a tall man to have more often long feet than long fingers and short men will more often have long fingers than long arms. Further, men with long arms will very rarely have short fingers, and such people will more often be men with greater stature than men with long feet, and so on.

Table VI gives the probable error for each coefficient of correlation shown in Table V. They are in all cases very small, which proves our results to be very reliable.

The results shown in Table V have been compared with the like data for European countries, and no serious deviation in the coefficients has been noticed. This tends to confirm the statement made above for the head characters.

TABLE V.

Coefficients of Correlation.

Character	L.M.F.	L.F.	L.C.	S.
L.M.F.	1.000	0.763	0.832	0.661
L.F.	0.763	1.000	0.757	0.715
L.C.	0.832	0.757	1.000	0.803
S.	0.661	0.715	0.803	1.000

TABLE VI.

Probable Errors of Coefficients of Correlation.

Character	L.M.F.	L.F.	L.C.	S.
L.M.F.	0.000	±0.010	±0.007	±0·013
L.F.	±0.010	0.000	±0·010	±0·012
L.C.	± 0·007	±0·010	0.000	±0.008
S.	± 0.013	±0·012	±0·008	0.000

7. Regression Equations. Considering the significancy of all the coefficients of correlation shown above, we may conclude that the variability between the human organs is not chaotic, but governed by very definite laws. We are therefore able to predict an unknown measurement in terms of the given length of a known organ.

Table VII results from this investigation. This table shows us how and with what accuracy human characters can be calculated one from another. The

 ${\it TABLE\ VII}.$ Table for Application of linear Regression Equations.

_						
į				Comput	ed from	
	Character	Constants	L.M.F. in mm.	L.F. in mm.	L.C. in mm.	S. in mm.
		m		0.3790	0.2409	0.0684
	L.M.F. in mm.	c		+16.4	+3.9	+0.7
		p.e.		±2·7	±2·3	± 3.1
8 2	L.F.	m	1.5359		0.4411	0.1490
rement		c	+82.4		+55.8	+10.6
Calculated measurements		p.e.	± 5·4		± 5·5	± 5·8
lated		m	2.8741	1.2990		0.2872
Calcu	L.C. in mm.	c	+129.6	+122.8		-18.7
		p.e.	± 7·9	± 9·4		± 8·5
		m	6.3839	3.4304	2.2451	_
	S. in mm.	c	+929.9	+774.4	+631.0	
		p.e.	± 29.5	±27·5	±23·5	

regression equations given in this table are of course linear, and are to be put into the form

$$y = mx + c$$

where y is the measurement looked for,

x is the known measurement,

m is the change of the dependent measurement for a unit change of the independent variable,

p.e. is the probable error for each calculated measurement, and is computed from

$$0.6745\sigma_y n^{\frac{1}{2}} (1-r^2)^{\frac{1}{2}}/(n-2)^{\frac{1}{2}},$$

and c is a constant.

All characters, stature included, are in millimetres.

Besides the formulae given above, the following multiple regression equations for the determination of the stature may be of interest:

Reconstruction of stature from a knowledge of one measurement:

Stature = 6.3839 (Finger) + 929.9, Stature = 3.4304 (Foot) + 774.4,

Stature = 2.2451 (Cubit) + 631.0.

Reconstruction of stature from a knowledge of two measurements:

Stature = -0.2228 (Finger) + 2.2981 (Cubit) + 632.2,

Stature = 2.6699 (Finger) + 2.4195 (Foot) + 730.2,

Stature = 1.7136 (Foot) + 1.2034 (Cubit) + 564.2.

Reconstruction of stature from a knowledge of three measurements:

Stature = 1.4309 (Foot) + 1.9866 (Cubit) - 1.0166 (Finger) + 496.6, where all the values, stature included, are in millimetres.

- 8. Summary of Conclusions.
- (a) The raw material, though taken from the anthropometrical slips of prisoners, is a fair sample of the ordinary native community.
- (b) The natives dealt with are not of the poorest nor of the lowest class of the Cairo natives.
- (c) The records are homogeneous, and are sufficient in number for a good statistical study.
 - (d) The distributions of stature, cubit, finger, etc., are normal.
- (e) The coefficients of correlation between all organs are significant, no matter to what race the records belong.
- (f) The variability between the human organs is not chaotic, but governed by definite laws which enable us to predict measurements one from another.
- (g) The coefficients of correlation for the human organs are practically identical from one race to another, only the coefficients resulting from the head measurements vary to any great extent.
- (h) The great variation which the coefficient of correlation for the head measurements undergoes from race to race, is to be traced to special factors not yet determined, which influence this measure of relationship. I hope to investigate this further.

TABLE VIII. Correlation Table of Length and Breadth of Head.

Length of Head in mm.

	Groups	173—175	176—178	179—181	182—184	185—187	188—190	191—193	961—161	197—199	200-202	203—205	802-908	Total
Breadth of Head in mm.	130—132 133—135 136—138 139—141 142—144 145—147 148—150 151—153 154—156 157—159 160—162	3 - 1	1 3 1 2 1 —	10 5 9 9 3 5 —	1 2 9 14 16 17 7 1 2	1 2 9 17 24 39 19 2 1	$\begin{array}{c} 1\\ 2\\ 10\\ 29\\ 54\\ 40\\ 32\\ 6\\ 1\\ 2\\ -\\ \end{array}$	1 2 15 35 31 41 22 11 2 —	8 8 24 29 13 13 2 1	$ \begin{array}{c} 1 \\ 8 \\ 4 \\ 19 \\ 12 \\ 18 \\ 7 \\ 2 \\ 4 \\ - \end{array} $	$ \begin{array}{c c} & - \\ & 4 \\ & 8 \\ & 11 \\ & 8 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \end{array} $	3 1 1 1 1 -		6 8 75 120 190 202 125 55 12 8 1
	Total	4	8	41	69	114	177	160	98	75	39	7	10	802

TABLE IX. Correlation Table of Left Foot with Left Middle Finger.

Left Foot in mm.

					петь	1.000	111 11111	1.					
n.	Groups	822-226	229—235	236—242	243—249	250—256	257—263	264-270	271—277	278—384	285—291	865—568	Total
Left Middle Finger in mm.	93—96 97—100 101—104 105—108 109—112 113—116 117—120 121—124 125—128 129—132 133—136	1 1 3	3 5 9 2 - - -		1 11 31 42 22 4 —	1 32 62 63 13 7 —	7 36 67 46 9 2				3 4 -		1 6 32 111 176 215 137 80 36 5
_	Total	5	19	70	111	178	167	122	88	28	11	3	802

TABLE X. Correlation Table of Left Cubit with Left Middle Finger.

Left Cubit in mm.

1	Groups	388—402	403—417	418—432	433—447	448—462	463—477	478—492	493—507	208-222	523—537	538—552	Total
Left Middle Finger in mm.	93—96 97—100 101—104 105—108 109—112 113—116 117—120 121—124 125—128 129—132 133—136	2 1 ———————————————————————————————————	1 9 6 4	1 17 33 18 1 1 —————————————————————————————	1 4 59 62 29 5 —	1 1 13 75 100 30 4 —		6 17 21 36 19 1	- - - 5 11 8 2				1 6 32 111 176 215 137 80 36 5 3
Ĭ	Total	3	20	72	160	224	186	100	26	10	0	1	802

TABLE XI.

Correlation Table of Stature with Left Middle Finger.

Stature in cm.

Groups	148—151	152—155	156—159	160—163	164—167	168—171	172—175	621—921	180—183	184—187	Total
## 93—96 97—100 101—104 105—108 109—112 113—116 117—120 121—124 125—128 129—132 133—136 Total		1 3 11 9 1 3 — —	-2 17 24 21 9 	1 9 41 64 50 15 5 — — — — — — — — — — — — — — — — —	1 2 24 49 78 43 11 4 —		$ \begin{array}{c c} & - \\ & 1 \\ & 3 \\ & 19 \\ & 22 \\ & 25 \\ & 16 \\ & - \\ & 1 \end{array} $			1	1 6 32 111 176 215 137 80 36 5 3

TABLE XII.

Correlation Table of Left Foot with Left Cubit.

Left Foot in mm.

	Groups	222—228	229—235	236—242	243—249	250—256	257—263	264—270	271—277	278—287	288—291	292—298	Total
Left Cubit in mm.	388—402 403—417 418—432 433—447 448—462 463—477 478—492 493—507 508—522 523—537 538—552	1 -4 	2 4 8 5 — — — — —	10 20 24 13 3 —	6 22 43 32 8 — —	— 16 56 68 28 9 1 — —	2 28 70 47 19 1	3 32 61 19 5 2		- - 1 2 1 17 5 1 - 1		3	3 20 72 160 224 186 100 26 10 0
	Total	5	19	70	111	178	167	122	88	28	11	3	802

TABLE XIII.

Correlation Table of Stature with Left Foot.

Stature in cm.

	Groups	148—151	152—155	156—159	160—163	164—167	121—891	172—175	176—179	189—183	184—187	Total
Left Foot in mm.	222—228 229—235 236—242 243—249 250—256 257—263 264—270 271—277 278—284 285—291 292—298	1 2 -1 	1 3 10 9 5 —	1 8 23 16 21 4 — —	2 6 24 41 65 36 9 1	- 10 35 53 57 37 17 3 	3 8 30 51 41 29 4 1		$\begin{array}{c c} - & - & - & - & - & - & - & - & - & - $			5 19 70 111 178 167 122 88 28 11
	Total	4	28	73	185	212	167	87	31	14	1	802

TABLE XIV.

Correlation Table of Stature with Left Cubit.

Stature in cm.

	Groups	148—151	152—155	156—159	160—163	164—167	171—891	172-175	176—179	180—183	184—187	Total
Left Cubit in mm.	388—402 403—417 418—432 433—447 448—462 463—477 478—492 493—507 508—522 523—537 538—552	3 1	15 6 4 3 — — —	3 33 27 9 1 —	1 27 76 60 17 3 1	5 44 91 54 17 1	1 8 54 77 26 1 —					3 20 72 160 224 186 100 26 10 0
	Total	4	28	73	185	212	167	87	31	14	1	802

Biometrika xI

A STUDY OF THE CRANIA OF THE MORIORI, OR ABORIGINES OF THE CHATHAM ISLANDS, NOW IN THE MUSEUM OF THE ROYAL COLLEGE OF SURGEONS.

By EVELINE Y. THOMSON, Crewdson-Benington Student in Craniometry, Biometric Laboratory, University College, London.

1. Introductory. The fact that pure bred Morioris are now very rare if not extinct renders of special value any study of such crania of them as still exist. In papers referred to below Dr Scott* deals with 50 and Dr Duckworth† with 10 Moriori crania. Professor Thane possesses two specimens and there are a few scattered through various British and Continental museums. Hence the 63 crania in the museum of the Royal College of Surgeons almost double the available number. Yet if we pool the present measurements with such of Dr Scott's series as are homogeneous, our results are still too slender to warrant the publication of more than the measurements themselves and their mean values. As one of the best uses of methods of treatment which do not extend beyond the mean the type sections of the Moriori crania have been reconstructed. By most kind permission of Professor Arthur Keith I have been able to study the collection of Moriori skulls in his charge, and he most readily provided facilities for the photographing of a considerable number of the crania. Although the collection has been for a considerable time in the Royal College of Surgeons no complete set of measurements appears to have been published ‡. Dr Duckworth in the paper just cited makes some remarks on a few of the abnormal skulls. Forty-four crania were purchased by the Royal College as "from the Chatham Islands" in 1892, i.e. 7651 to 76544, six, 76545 to 765⁵⁰, appear to be later additions, while thirteen, 758–760, 760¹, 760², 761–765, seem to have an earlier origin, as well as the three 1015, 1015^A and 1016 from the Barnard Davis collection. The very remarkable character of the Moriori skull is not fully accounted for by the outlying character of their island, although anthropologists naturally look to such islands for the survival of primitive types. Chatham

^{*} Contribution to the Osteology of the Aborigines of New Zealand and of the Chatham Islands. Transactions of New Zealand Institute, Vol. xxvi. pp. 1—64. Wellington, 1894.

[†] On a collection of Crania of the Moriori, Journal of the Anthropological Institute, Vol. xxx. p. 141 et seq. London, 1900.

[‡] Eight have certain measurements given in Flower's Catalogue of the Royal College of Surgeons. Barnard Davis gives measurements of three others in his Thesaurus Craniorum.

Island lies to the east of New Zealand. According to their own traditions the Moriori reached their present home direct from Hawaiiki, so that they are not degraded Maoris but form a special branch of the Polynesian race. Never numerous, they were mostly slaughtered in the year 1838—two years previous to the first British colonisation of New Zealand-by a party of Ngatilawa landed on the island by a whaler. This party enslaved the few survivors. Some years ago the remaining Moriori were stated to be reduced to fifty, and these were probably not of pure race*. There was nothing of special note in their occupations, habits or beliefs. Most of their life was utilised in procuring food, making garments and sleeping mats, or in shaping stone implements in which they showed considerable ingenuity. Fish hooks, fish spears and gaffs in constant use were cleverly shaped out of bone. The dwellings were ordinary conical huts constructed out of fern tree and thatched with toi-toi grass; they were often sufficiently large to accommodate twenty or thirty persons. Some of them were ornamented with rude carvings, but most of these places have been demolished by the Maori, or perished from age, so that no specimens of their art are now obtainable. They lived peaceably, chiefly along the coast, spending their time as a rule in procuring supplies of fish, fern roots, nuts, wild duck, etc. Periodically they put off in rafts or large canoes for the hunting of seal and albatross. They are said to have had a confused notion of good and evil spirits and to have invoked numerous deities prior to any undertaking of importance. In short, such accounts as we have of them do not seem to differentiate them markedly from the inhabitants of many other Polynesian islands. They stand out differentiated rather by their cranial than by their cultural characters.

2. Measurements and Methods of Measurement. The measurements I have taken are similar to those adopted by previous biometric craniologists. They were made in the manner described by Fawcett (Biometrika, Vol. 1. p. 416) and Macdonell (Ibid. Vol. III. p. 200). The measurements are as follows:

C= capacity taken with mustard seed, packing in skull and in measuring glass, not by our usual laboratory method of weighing as no fine chemical balance was available, the work being done away from the Laboratory. In the tables it will be seen that I have given two figures for each capacity. The seed was tightly packed into the skull and then tightly packed into the measuring glass. This is the standard method. It involves the great labour of double packing; the second packing is avoided in our laboratory use of the balance. It occurred to me to be worth while trying loose packing in the measuring glass and correlating the results for tight packing and loose packing with the view of saving the time employed in the second tight packing on another occasion. The loose packing consisted in taking the seed from the skull, gently pouring it into the measuring glass and then giving a slight shake sufficient to obtain a level surface for reading. The

^{*} R. Lydekker, Living Races of Mankind, Vol. 1. p. 72.

[†] Extracted from Notes on the Chatham Islands by J. W. Williams, of Waitangi West, Chatham Island, Journal of the Anthropological Institute, Vol. XXVII. p. 343. London, 1897.

results are given in the footnote below*; it suffices to remark here that for practical purposes it appears approximate enough if we deduct one-twentieth from the volume of the loosely packed seed in order to obtain the volume of the tightly packed. My corrected results from loose packing are given in brackets in the tables. The means are:

The mean difference (regardless of sign) of the results obtained from loose packing from those obtained from tight packing is, however, 8 cm.³ How much of this is due to variation in the tight packing in the measuring glass, how much to fortuitous settlements in the loose packing it is not possible to say. The differences suggest at any rate that a method may well be devised by which tight packing in the measuring cylinder may be avoided.

Further measurements made are:

F= Flower's Ophryo-occipital length. L'= glabellar horizontal length. L= maximum length from glabella to occiput. B= maximum horizontal breadth. B'= least forehead breadth from one temporal crest to the other. H= Basio-bregmatic height. OH= auricular height as measured on the

* Let C_t be the capacity from tight packing, C_l from loose packing; let σ be a standard deviation, V a coefficient of variation and r_{ll} the correlation of C_l and C_l , then in cubic centimetres:

It will be seen that the correlations are very high. The regression lines giving C_t for C_t are:

$$\begin{split} &C_t = \cdot 96654 \ C_l - \ 25 \cdot 91 \ \text{for males,} \\ &C_t = \cdot 99847 \ C_l - \ 64 \cdot 53 \ \text{for females.} \end{split}$$

We should have expected the same line to have resulted from the two series, as it does not it is clear that the coefficient of C_l is a function of C_l . To determine the nature of loose packing a little further we took the regression lines of $(C_l - C_l)/C_l$ and C_l or equations of the form $(C_l - C_l)/C_l = AC_l + B$. There resulted:

$$(C_l - C_t)/C_l = .06843 - .0000,1173 C_l$$
 for males, $(C_l - C_t)/C_l = .056939 - .0000,0619 C_l$ for females.

These may be written:

$$\begin{split} C_t &= \, C_l \; (\cdot 93157 \, + \, \cdot 0000, \! 1173 \; C_l) \; \, \text{for males,} \\ C_t &= \, C_l \; (\cdot 94306 \, + \, \cdot 0000, \! 0619 \; C_l) \; \, \text{for females.} \end{split}$$

The terms depending on C_l^2 are so small that we may insert in them for C_l , the mean values in each case, when we find:

$$C_t = C_l$$
 (.94914) for males, $C_t = C_l$ (.95159) for females.

The differences are now not unreasonable considering the paucity of the data, and we see that very approximately it suffices to take for both sexes, $C_t = C_t$ (1 - $\frac{1}{20}$), the rule given above.

The whole matter is to be reconsidered on more ample material. It is not clear at present how far it depends on personal equation in tight and loose packing of different amounts and how far on the diameter of the measuring glass, i.e. the pressure varying with height or with C'_l and so affecting the looseness of the loose packing.

craniophor, that is the height perpendicular to the horizontal plane above the line joining the upper points of the margins of the auricular orifices. LB = lengthfrom basion to nasion. $\angle P$ = profile angle, measured with goniometer, the skull being on the craniophor. Q = transverse are from upper margin of one auricular passage to upper margin of the other, the arc being taken perpendicular to the horizontal plane with the skull on the craniophor. This perpendicular arc goes generally behind the bregma through a point, the "apex," which is marked on the skull by the sliding bar of the craniophor, i.e. the bar by which OH is obtained. Q' is the same measure taken when the skull is off the craniophor*. S = sagittal are from nasion to opisthion. $S_1 = \text{are}$ from nasion to bregma, $S_2 = \text{arc from bregma to lambda}, S_3 = \text{arc from lambda to opisthion}. S'_3 = \text{chord}$ from lambda to opisthion. U = horizontal circumference measured directly abovethe superciliary ridges and round the most projecting part of occiput. G'H = upperface height from nasion to alveolar point. GB = face breadth from the lower end of one zygomatic-maxillary suture to that of the other. J = zygomaticbreadth, from the most lateral point of one zygomatic arch to that of the other. NH =nasal height from nasion to the lowest edge of left pyriform aperture (in cases where this is damaged the lowest edge of right aperture is taken; if there be a marked difference between the heights of the two apertures, both heights are given). NB = nasal breadth, greatest breadth of nasal aperture, wherever it may be. O_1 = breadth of orbit, R and L, the greatest breadth from side to side \dagger . O_2 = height of orbit, R and L, taken perpendicular to O_1 . G_1 = length of palate, from the point of the spina nasalis posterior to an imaginary surface tangential to the inner alveolar surfaces of the mesial incisors. $G'_1 = \text{length}$ from base of spine. G_2 = breadth of palate between the inner alveolar walls at the second molars. GL = profile, or basi-alveolar length, from basion to alveolar point. fml = length of foramen magnum; fmb = greatest breadth of foramen magnum. GH = face height.

Weight of skull in grams. In this series the actual weight of the skull (measured without mandible) was taken, as the crania being so abnormally heavy, it was thought the individual weights of the skulls might be of some interest.

The indices calculated are: the cephalic indices $100 \ B/L'$, $100 \ H/L'$, $100 \ B/L$, $100 \ H/L$ and $100 \ B/H$; the upper facial index $100 \ G'H/GB$; the nasal index $100 \ NB/NH$; the right and left orbital indices $100 \ O_2/O_1$; the palate index $100 \ G_2/G_1$; the occipital index $Oc. \ I. = 100 \frac{S_3}{S'_3} \sqrt{\frac{S_3}{24(S_3 - S'_3)}}$; the foraminal index $100 \ fmb$. Finally the mathematical has been above the invalence of the constant of the sum of the

index $100 \frac{fmb}{fml}$. Finally the gnathic index has been obtained from mean values.

^{*} Q is taken with the tape over the skull and measured from the top of one ear rod to the top of the other; it is somewhat troublesome to take. Q' is easier, but owing to the recessing of the margins of the auricular passages is not quite the same as Q. The differences in Q and Q' are partly due to this, partly to observational error. The mean values: $Q = 316 \cdot 11$ for Zs, $Q = 310 \cdot 20$ for Qs, show that there is close concordance of both methods in determining type.

[†] On the difficulties of measurement of O₁: see Biometrika, Vol. III. p. 201.

The twelve mandibles available were measured: $w_1 = \text{condylar width}$, or greatest width from outside one condyle to outside of second; $w_2 = \text{greatest}$ width at angles from outside one angle to outside of the other; $h_1 =$ greatest height, from lowest median projection to top of alveolar margin between mesial incisors; and zz = distance between foramina mentalia. The mandibles were too few in number to justify a more elaborate system of measurements. Also the following angles were taken in the manner described by Cicely Fawcett*: (a) profile angle $(\angle P)$ as already mentioned measured with Ranke's goniometer; (b) angle between upper face length and profile length, the alveolar angle ($\angle A$), determined from the length measurements GL, G'H and LB by aid of Pearson's trigonometer; (c) angle between skull basis, and upper face length, the nasal angle $(\angle N)$, determined as in (b); (d) angle between skull basis and profile length, the basilar angle $(\angle B)$, determined as in (b); (e) angle between skull basis and the standard horizontal plane (θ_1) , the basic-nasal horizontal angle, determined as in (b) with the use of profile angle as found by goniometer. (f) Angle between profile length and the standard horizontal plane (θ_2) , the basic-alveolar horizontal angle, determined as in (e).

- Sex. I first recorded my own opinion as to the sex of the skulls, and then Professor Pearson gave me his judgment on them. In one or two cases, where it was most difficult to determine the sex, and we could not agree, appeal was made to Professor Keith, and he kindly gave his opinion also.
- 3. Contours. A study of the three chief contours of these crania was made. These contours were drawn by aid of a Klaatsch contour tracer, in the same manner as the contours traced by Dr Crewdson Benington in his paper in Biometrika, Vol. VIII. p. 123, on Cranial Type Contours. From these contours were obtained the average or type contours of the Moriori crania. The construction of the type contours was as follows:
- (a) The transverse, vertical, or auricular coronal section. The skull being placed on the craniophor, and adjusted in the usual manner to the standard horizontal plane, the horizontal rod of the craniophor determines the "apex" of the skull. The plane through the apex of the skull (which is marked with a pencil stroke) and the "auricular points" is the transverse vertical plane of the skull. The skull being now transferred to the Klaatsch apparatus, the vertical plane is made horizontal and the contour traced from "auricular point" to "auricular point" through the apex. The line joining auricular point to auricular point is the auricular line of the contour, and the line perpendicular to it through its mid-point is the vertical axis MA of the transverse vertical contour. This vertical axis is divided into ten equal parts by aid of the proportional compasses, and lines parallel to the auricular line are drawn through the points of division; these lines will not necessarily be bisected by the vertical axis owing to the asymmetry of the skull. They are numbered from below upwards 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

^{*} Biometrika, Vol. 1. p. 418.

where 1 represents the lengths on the auricular axis. An eleventh line is taken one-quarter of the last section from the apex, the distances to R and L of the vertical axis up to the contour are measured off along these eleven horizontals. Also the length of the vertical axis MA is measured. Since the skull is placed with the occiput downwards on the Klaatsch, the right side of the skull is to the observer's left when viewing the contour, and the left of the skull to his right. This is reversed in plotting type-contours in order to obtain the norma occipitalis*.

The following measurements are now entered in the columns of the record for each contour—the sum of 1R and 1L being the interacticular diameter:

M.A.	1R	1		2R	$2L_{_{\perp}}$	3R	3L	4R	4	L	5R	5I	6 A	6L
											-	1		-
		7R	7L	8R		L 9.	R 9	L	10R	-10.	$L \mid A$	$\frac{1}{4}R$	$A_{\frac{1}{4}}L$	

The means of the columns give the corresponding lengths for the type skull and from these we can plot the points on the type section; this section is then drawn between the points by aid of a spline, and we thus reach the transverse type contour. See Figs. III and IV for male and female respectively.

(b) The glabellar horizontal section. This is obtained by placing the skull on the craniophor, and by aid of the scriber marking points on the same horizontal plane as the nasion and the gamma, in the region above both auricular passages. The skull is now adjusted in the Klaatsch holder, apex downwards, until these four points are shown to be in the same horizontal plane. The horizontal contour is then drawn parallel to this plane but through the glabella; it will fall below the lambda, and does not pass far from the occipital point. The points in the median plane immediately above the nasion and below the lambda on this contour are especially marked with the Klaatsch tracer. They will be spoken of as F and O, the glabellar and occipital points. FO is the fronto-occipital line of the horizontal section. This fronto-occipital line being found, it is divided into ten equal parts by the proportional compasses, and lines perpendicular to the fronto-occipital line are drawn through the points of division, and the lengths up to the contour measured right and left. To obtain the frontal and occipital curvatures, parallel lines at $F_{\frac{1}{4}}$ and $O_{\frac{1}{4}}$ were taken as in the other cases.

In the case of the Moriori contour there were such sharp projections at the linea temporalis that ordinates perpendicular to the fronto-occipital line both right and left were drawn to the most projecting points. These are the ordinates

^{*} Benington (Biometrika, Vol. viii. p. 151 etc.) gives the transverse section as norma facialis, and his tracings must be reversed in superposition on mine.

 T_R and T_L with abscissae x_R and x_L . To complete this contour in the neighbourhood of the glabella extra lines were measured at quarter and half the distance from F to 2; these lines are spoken of as the $F_{\frac{1}{4}}$ and $F_{\frac{1}{2}}$ lines. All these points being recorded they were found sufficient by aid of a spline to reconstruct the horizontal section effectively.

When we look at any horizontal contour with the frontal point towards us, the right of the skull is on our right, as it would be if we were facing the actual skull the right way up. The ordinates are reversed in plotting the type contour in order to obtain the norma verticalis.

We have the following measurements entered in our recording book:

FO	F4	R F		$\frac{1}{2}R$ $F_{\frac{1}{2}}$.	L 2R	2L	3.6	31	L 4	R 41	L 51	8 5L	6R	6 <i>L</i>
7	R	7L	8R	8L	9R	9L	10R	10L	O1R	011	T_R	$\left. \begin{array}{c c} T_L \\ \hline \end{array} \right $	x_R	x_L

The means are again found for all the columns. The results are plotted, splined in, and we obtain the type horizontal section for β and φ . See Figs. V and VI.

(c) The sagittal or median section. The skull being again placed on the craniophor and adjusted to the Frankfurt horizontal plane, the point γ on the same horizontal level as the nasion is marked off on the median plane of the skull by means of the scriber. The skull is now removed to the Klaatsch, and adjusted so that the nasion, bregma and lambda lie in the same horizontal plane. The contour is then drawn, starting from the alveolar point. The alveolar point, the nasion, the bregma, the apex, the vertex, the lambda, the gamma, the inion, the opisthion, the basion, and the auricular point are all marked on this contour drawing. We now take the horizontal line through the nasion, i.e. the line linking the nasion to the gamma, as our "horizontal axis" and divide it into ten equal pieces by aid of the proportional compasses. The nasion counting as 0, and the other divisions from nasion to gamma as 1, 2, 3, 4...9, ordinates are drawn through these ten points perpendicular to the horizontal axis. Lines 8 and 9 are produced, and continued on the other side of the horizontal axis; a further upright is taken near the gamma at $\frac{1}{4}$ the distance from the gamma to 9; this for brevity is termed the γ_4^1 line; this line is also produced and continued below the horizontal axis. At 0, i.e. vertically through the nasion, there will in most male skulls be a sensible ordinate roughly of about 20 mm. In order to get the curvature in the neighbourhood of the glabella a vertical tangent was drawn by aid of the set-square to the most projecting part of the glabella; the point in which the tangent meets the

prolonged gamma-nasion line being T and the point of contact of the tangent being G, the ordinate GT and the abscissa TN represented by the letters G_y and G_x respectively were measured, they are practically the coordinates of the glabella. To complete the drawing of the frontal part of the sagittal contour, an extra ordinate was measured at $\frac{1}{4}$ the distance from 0 to 1; this line is spoken of as the $N_{\frac{1}{4}}$ line. Perpendiculars were also dropped from the opisthion, auricular point and suborbital point to N_{γ} . Also a perpendicular from the most projecting point of the contour just above the inion was drawn to N_{γ} . These points will now be found amply sufficient to reproduce the individual contour as closely as it could be redrawn by the Klaatsch.

In our record book, we have accordingly the following entries, as well as the number and sex of the cranium:

$N\gamma$	MA	β -sub.	β -sub.	V-sub. to GI		G_y	Ordinates above $N\gamma$													
		to Nλ	to GI	to GI	$G_{\boldsymbol{x}}$		0	$N_{\frac{1}{4}}$	1	2	3	4	5	6	7	8	9	γ_{4}^{1}	$\gamma \frac{1}{8}$	γ

$egin{array}{c} ext{Ordinates} \ ext{below} \ N_{egin{array}{c} ext{Ordinates} \ ext{Occ.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			ec.	c. \ \ \ \		Suborb.		Aur.		Op.		Lengths					Angles						
8 9	$\gamma^{\frac{1}{2}}$	γ 1		y	x	y	x from N	y	x from γ	y	x from γ	y	GI		γ to Bas.	N to Bas.	γI	$ \phi = \\ \angle \beta G I $	φ'= ∠βNI	A Z	Ν∠	В∠	P 2

The type contours are constructed as before. See Figs. I and II.

(d) General remarks on Contours. Illustrations of the type contour of the Moriori are shown in Figs. I to VI. For the sagittal contour:

N= Nasion, Gl.= Glabellar point, B= basion, $\beta=$ Bregma, V= vertex, $\lambda=$ Lambda, $\gamma=$ Gamma, I= Inion, Op.= Opisthion, Aur.= Auricular point, Bas.= Basion, Alv.= Alveolar point, Suborb.= Infra-orbital point. Suborb. to Aur. if joined by a line gives the standard horizontal plane. $N\gamma$ is the horizontal plane through the nasion. The angles N, B and A are the nasal, basilar and alveolar angles of NBAlv. the fundamental triangle. P= the profile angle measured from the Frankfurt horizontal, $\phi=$ the angle between the glabella-inion and glabella-bregma lines, $\phi'=$ the angle between the nasion-inion and nasion-bregma lines. There are three interesting subtenses, s, s and s, s is the corresponding bregma subtense and s is the bregma subtense to nasio-lambda line.

The most marked characteristics of the Moriori skull are the depressed and retreating forehead, the bulging glabella, and the high sagittal crest. On looking at Figs. I and II, it will be seen that these points are well demonstrated in the type sagittal contours. The glabella is not of course so pronounced in the female contour, but it is pronounced for a female skull. Figs. III and IV, illustrating the transverse contours of these skulls, show nothing particularly characteristic; the sagittal crest can be seen, but it is more marked further back than the transverse section. Figs. V and VI, showing the horizontal contours, demonstrate very markedly that the Moriori skull is of a low type. There is a very substantial difference between the type horizontal contour of the Moriori skull and that of the English skull illustrated in Dr Crewdson Benington's paper on Cranial Type Contours: see Biometrika, Vol. VIII. p. 123. It may also be noted that in these Moriori horizontal contours, there is a decided flattening at the occipital.

Before we discuss the quantitative value of these contours it is well to examine the arithmetical results obtained for the measured characters.

TABLE I. Mean Values.

Character	3	φ	Character	ð	2
Capacity	1422.07	1310-73	$\begin{array}{c} G_1 \\ G_2 \\ GL \end{array}$	53.12	50.46
	(1423.03)*	(1308-47)*	G_2	38.85	37.10
Weight	764.27	622.23	GL	100.93	97.36
F	182.00	176.09	fml	35.29	34.41
L'	185.64	177.77	fmb	30.78	30.15
L	186-87	178.60	GH	121.8	108.57
B_{-}	141.40	138-41	w_1	123.6	114.0
B'	95.31	94.01	w_2	106.4	101.87
H	135.91	132.81	h_1	33.17	30.27
OH	117.05	115.08	22	51.48	48.5
LB	105.60	102.31	Oc I	$62 \cdot 17$	$64 \cdot 15$
Q	316.11	310.00	B/L'	76.51	77.90
Q'	315.94	310.20	H/L'	73.23	74.76
S	368.77	354.40	B/L	76.07	77.52
S_1	126.03	121.39	H/L	72.78	74.52
S_2^-	122.40	117.36	B/H	104.53	103.64
S_3^-	121.10	115.95	G'H/GB	74.13	72.09
$egin{array}{c} Q \ Q' \ S \ S_1 \ S_2 \ S_3 \ S' \ U \ \end{array}$	$102 \cdot 34$	99.60	NB/NH	43.91	48.22
U	522.79	502.59	O_2/O_1L	84.03	84.30
G'H	76.40	70.01	$O_{2}/O_{1}R$	84.35	84.59
GB	103-15	96.63	$O_2/O_1R \ G_2/G_1$	73.20	73.71
J	137.43	128.93	fml	07.40	07.70
NH	57.33	52.53	\overline{fmh}	87.43	87.78
NB	25.30	25.27	$\stackrel{fmb}{N}$ $\!$	64.84	65-67
$O_{1}R$ $O_{1}L$ $O_{2}R$ $O_{2}L$ G'_{1}	44.61	42.67	AL	71.75	73.64
$\hat{O_1}L$	44.42	42.36	B L	43.39	40.67
$O_{2}R$	37.59	36.01	θ_2	12.88	10.84
O_2L	37.29	35.52	θ_{-}^{2}	30.33	29.83
\hat{G}'_1	50.10	47.38	$\stackrel{ heta_1}{P}$ $\stackrel{ heta_2}{ heta}$	84°-69	84°.50

^{*} Values obtained by "loose packing."

4. Mean Values of Characters. To judge of the degree of accuracy possible in reaching a Moriori type, we must note that the means were based for males on 33 to 35 crania and for females on 20 to 23 crania, according to the character measured; the one exception being capacity, for which only 28 male and 19 female crania were available. The non-adult crania have been omitted from the mean value determinations. The values are given in Table I. The question now arises: how far can we consider these values as adequately describing the Moriori skull? We may first compare our results with those obtained by Dr Duckworth for the Moriori crania at Cambridge*. Owing to the smallness of his series (7 male and 3 female) he has pooled his sexes to obtain his means. We have pooled ours in the same proportions; the following values result:

		Thomson	Duckworth
Maximum Length		$184 \cdot 4$	182.5
Maximum Breadth	• • •	140.5	142.5
Ophryo-Iniac Length		170.5†	173.0
Basi-bregmatic Height		135.0	132.5
Nasal Height		55.9	54.2
Nasal Width		25.3	$24 \cdot 2$
Basi-nasal Length		104.6	101.2
Basi-alveolar Length		99.9	97.2
Horizontal Circumference		516.7	513.6

With the exception of the breadth and our doubtful ophryo-iniac length, Dr Duckworth's crania appear slightly smaller than those at the Royal College of Surgeons. A somewhat closer result is obtained if we pool our males and females without regard to Duckworth's proportions. His numbers are, however, too few for us to do more than say that his results agree not unreasonably with ours ‡.

$$C=1300,\ L=170,\ B=137,\ H=126,\ S_1=121,\ S_2=124,\ S_3=108,\ GH=97.$$

The second child skull is metopic, has no 3rd molars and the palate is not yet closed; further it is deformed, a large area on right side of temporal and left side of parietal being much depressed. The measurements given are:

$$C=1140,\ L=164,\ B=133,\ H=126,\ S_1=116,\ S_2=104,\ S_3=125,\ GH=93.$$

The aged skull has depression of the parietals, alveolar rim much absorbed after loss of incisors and the three sutures completely synostosed. The measurements given are:

$$C=1450,\ L=183,\ B=136,\ H=136,\ S_1=130,\ S_2=125,\ S_3=120.$$

The greatest length, assuming it a male, is somewhat below the average, H is about normal, S_3 and B somewhat below average, but the other characters including the capacity above the average, but not greatly. It appears from the description—namely roof shaped, with slightly retreating forehead,

^{*} loc. cit. p. 150. No. 4 is given ? \bigcirc . No. 2 is given as sex doubtful on p. 142, but as definite \circlearrowleft in table on p. 150.

[†] Obtained only from contours.

[‡] The German anthropological catalogue (Die Anthropologische Sammlungen Deutschlands, Bd. 1. 1877—1902, Berlin v. S. 51—2, Bresike Catalogue, 1880) provides measurements of three Moriori crania from the Chatham Islands in the Anatomical Museum of Berlin University. Two of the skulls are of children and the third of an aged person. They are thus of little use for comparative purposes. The measurements given of one of the young skulls which retains one milk tooth and is metopic are:

More valuable comparative material is that of Scott*. I have placed in parallel columns in Table II those measurements of Dr Scott which in any degree correspond with mine. We agree so closely in the main straightforward measurements, that where a really substantial difference is apparent, I think it must be attributable to differences in method of measuring rather than to differences of material. I ought to say that I am responsible for the determination of the means from Dr Scott's tables of measurements. While the sex ratio in my material is roughly as 3:2 that of Dr Scott's is 3:1, so that he has only about half my number of females, although his males are about the same in number as mine. I think it probable that we have followed a different appreciation of sex, because, while his male measurements are on the whole very close to mine, practically all his absolute female measurements are less; thus, the difference he gets between the sexes is far greater than my difference, and rather greater than is usual among uncivilised races, where there is a greater tendency to equality in the measurements than among civilised races. I would venture with all deference to suggest that possibly size has weighed too much with him in sexing †. The first difference between our results to be noted is 33 cm.3 in the male capacity, but he used shot and I used mustard seed and a difference of this order may well arise with such difference of method. It is more or less confirmed by the result for female crania, because although his skulls are distinctly less than mine in size, he gets only a difference of 19 cm.3 in the capacity. Our F, L, B, B', H and (?) LB‡ values are in good agreement for males; so also are our U, G'H, J, NH, NB, O₂L, G₁, GL, fml, fmb, and all the indices except the orbital index for the same sex. Our difference in the orbital index is due to measurement of the breadth O_1L , but this is precisely a measurement, which, without absolutely identical method, often leads to great divergence. Turning to our differences we first note Q, the transverse arc; the considerable difference here is repeated in the females.

prognathous, and with the teeth very much ground down—to have the usual Moriori characteristics. Four crania, one a child's, two male and one female, were collected during the Challenger Expedition. They are described and measured in the Challenger Reports, Zoology, Vol. x. p. 73, Report on the Human Crania. The two males are clearly fine crania, exceeding our average, the female is below average. Three crania are described by Zuckerkandl in the Reise der Novara; Anthropologischer Theil, 1 Abth. S. 104; but the few measurements given are of small use for comparative purposes. Finally five at Paris are considered by de Quatrefages and Hamy in the Crania Ethnica, p. 461, Paris, 1882. The three male crania appear to be very large as compared with our series, giving a mean $C=1600~\mathrm{cm}$, (!), U=548, L=194, B=146, H=137 and J=142, while the two females have a mean $C=1565~\mathrm{cm}$. (!), U=524, L=185, B=144, H=141, J=132.

Either the measurements are not according to our standards or the crania have been selected as specially remarkable skulls.

^{*} loc. cit. on our p. 82.

[†] We have included Scott's three doubtful crania with his females, not only because he himself in his table puts them in that section, but because, being the rather larger crania of the section, they somewhat reduce the differences between his and our female mean characters.

[‡] I think it possible that Dr Scott and I have not determined the alveolar point in precisely the same manner, and I have accordingly bracketed this measurement and the resulting Gnathic Index in Table II.

TABLE II*.

Mean Characters of Moriori Crania, Thomson and Scott.

				Males	3					Femal	es		
	The	omson	ı	Scot	t	Combin	ed	Thoms	on	Scot	t	Combin	ned
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1422- 182- 186- 141- 95- 135- 105- 316- 126- 122- 121- 368- 522- 76- 137- 25- 44- 37- 25- 44- 37- 53-	707 (300 (300 (300 (300 (300 (300 (300 (28) 35) 35) 34) 34) 34) 34) 34) 34) 34) 35) 35) 35) 35) 35) 35) 36) 37) 38) 38) 38) 38) 38)	1454-97 181-08 186-84 142-10 94-09 135-59 103-75 307-12 130-25 122-56 122-84 375-75 521-97 75-86 138-89 57-50 26-47 41-53 36-75 54-10 101-42	(29) (32) (31) (31) (32) (32) (32) (32) (32) (32) (32) (28) (28) (32) (32) (32) (32) (32) (32) (32) (32	1438-81 181-56 186-86 141-74 94-73 135-75 [104-70] [310-81] [128-09] 122-48 121-94 [372-15] 522-40 76-16 138-09 57-41 25-86 [43-04] 37-03 53-59 101-16	(57) (67) (66) (65) (67) (66) (66) (66) (66) (66) (63) (67) (67) (67) (63) (63)	1310-73 176-09 178-60 138-41 94-02 132-81 102-31 310-00 121-39 117-36 115-95 354-40 502-59 70-01 128-93 52-53 25-27 42-36 35-52 50-46 97-36	(19) (22) (22) (22) (22) (21) (21) (23) (23) (22) (22) (21) (21) (21) (21) (21) (21	1291·22 172·60 175·60 134·20 91·20 128·10 98·70 289·00 120·40 117·00 114·00 351·40 493·80 67·25 127·10 50·90 24·80 39·10 35·30 49·00 96·50	(9) (10) (10) (10) (10) (10) (10) (10) (10	1304·46 175·00 177·66 137·09 93·14 131·29 [101·15] [303·23] 121·09 117·25 115·34 353·46 499·74 69·25 128·32 52·00 25·12 [41·31] 35·45 49·97·08	(28) (32) (32) (32) (32) (31) (31) (33) (33) (32) (32) (32) (32) (32) (31) (31) (31) (31) (31) (31)
$egin{array}{lll} fml \dots & \dots & \dots & \dots \\ fmb & \dots & \dots & \dots \\ B/L & \dots & \dots & \dots \\ H/L & \dots & \dots & \dots \\ O_2/O_1 & \dots & \dots & \dots \\ fml/fmb & \dots & \dots & \dots \\ Gnathic Index \end{array}$	30· 76· 72· 43· 84· 87·	78 (07 (78 (92 (03 (33) 34) 34) 34) 34) 33) 32) 34)	35·53 30·94 76·29 72·60 46·14 88·64 87·20 97·81	(32) (32) (30) (30) (32) (32) (32) (31)	$\begin{array}{c} 35 \cdot 41 \\ 30 \cdot 86 \\ 76 \cdot 17 \\ 72 \cdot 70 \\ 44 \cdot 99 \\ [87 \cdot 65] \\ 87 \cdot 32 \\ [96 \cdot 64] \end{array}$	(65) (66) (64) (64) (66) (65) (64) (65)	34·41 30·15 77·52 74·52 48·22 84·30 87·78 95·16†	(20) (22) (22) (21) (21) (21) (20) (21)	34·00 29·70 76·44 72·96 48·75 90·32 87·44 97·18	(10) (10) (10) (10) (10) (10) (10) (10)	34·27 30·01 77·18 74·02 48·39 [86·24] 87·67 [95·81]	(30) (32) (32) (31) (31) (31) (30) (31)

^{*} Figures in round brackets give the number of skulls measured. Means in square brackets are based on possibly non-comparable methods of measurement. † Found from mean lengths only.

I think it is due to difference in method. Assuming Scott to have measured from auricular margin to auricular margin, he has probably measured the least (or geodesic) arc, and not through the "apex"*. Our difference in the frontal part of the sagittal arc, S_1 , is very possibly due to his more careful pressing of the tape round the glabella, especially as it is less sensible in the female results. The upper face height is a measurement subject to some variation and doubt if the alveolar ridge be at all worn; our value of G'H seems reasonable, but Scott's to be in excess of any comparative material. His values for the female

^{*} He measured the entire transverse circumference and divided it into "supra-" and "infra-" auricular parts, not further defined.

differ in upper face height in exactly the opposite direction. Thus in the 27 measurements compared in the case of the male crania, our differences in four, the capacity, the transverse arc, the frontal section of sagittal arc and the orbital breadth (involving a fifth, the orbital index) are, I believe, due to differences in the methods of measurement. In the case of the female measurements the comparison is not so satisfactory; not only are my numbers small, but Scott's are still smaller. This fact, however, would not account for his absolute lengths being almost invariably smaller than mine. As I have said I think he may have laid too great stress on mere smallness of the skull in sexing. Notwithstanding the combined measurements, transverse arc, orbital breadth and orbital index excepted, give even in the case of the female crania by no means unsatisfactory results. Unless -which seems now very improbable-further long series of Moriori crania are found, Table II, combining Scott's results with my new measurements, must stand as the best available system of Moriori cranial data. It involves measurements of nearly 100 skulls of a race now practically extinct, and should be helpful in determining the racial affinities of the Moriori.

Before leaving Scott's important paper, I should like to note some of the peculiarities of the Moriori crania emphasised by him. He states that typical Moriori crania are usually large and heavy; our table of comparative measurements (Table III) amply verifies this statement as to size. As to the weights we find:

Mean Weight of Crania.

			Moriori (Thomson)	Fuegian (Sergi and Martin)	$\begin{array}{c} {\rm Egyptian} \\ {\rm (Davin)} \end{array}$
Males	•••		764.3 grs.	872·3 grs.	623.6 grs.
Females	•••	•••	$622 \cdot 2$ grs.	722.5 grs.	482·4 grs.

It is possible that the Fuegian crania were weighed, unlike ours, with mandible attached. If so this would account for some, if not all the difference observed. Clearly the Fuegians have very heavy crania, and the Moriori heavy crania, but the latter are not absolutely unique in this respect. The average weight of an Egyptian mandible is 73·1 grs., but of course in the case of these crania the material is in a very different state to the Moriori crania. Still I do not think that the observed difference, 108 in males and 100 in females, can be wholly due to mandibles being included in Sergi and Martin's weighings of Fuegian and not included in our weighings of Moriori. I am inclined to think that while the Moriori crania are heavy, they are not as heavy as the Fuegian. The contours also bring out the same point of great size.

Scott further draws attention to the prominent parietal eminences, the roof-like vertices and the pentagonal character of the *norma occipitalis*: Our Plates XIV, XV, IV, and VI will amply demonstrate to the reader these Moriori features. Further he remarks on the low flattened retreating frontal region as a most striking feature (cf. our Plates III, VII and XV). This character is well measured

by the frontal index = $100 \times \text{subtense}$ of nasio-bregmatic arc/nasio-bregmatic chord. The value of this index for the Moriori crania is $319\cdot39$, $21\cdot14$. Comparative numbers are:

Cranium of the Murderer Thurtell		***.	♂ 21·65
Whitechapel English of 17th century			♂ 22·21
Guanche Crania	• • •		3 22·50
Egyptians of XXVI-XXX Dynasty	• • •		♂ 22·77
Eskimo Crania			♂ 22·78
Negroes (Congo)			ð 22·80
Cro-Magnon Skull			3 24·27

It will be seen that the male Moriori stands lowest on the list of racial values available.

Of further points noted by Scott the statement* that "the excess of width over height is generally well-marked; indeed in the most typical members of the group the brain case is distinctly flattened," needs, perhaps, further consideration. The feature in question may be measured by the use of Pearson's index 100 (B-H)/L. We have then the following racial table:

Values of 100 (B - H)/L.

Würtemberg Women		+ 9.6	Aino Women		+ 0.9
Würtemberg Men		+ 9.5	Aino Men		+ 0.9
Bavarian Women		+ 9.2	Gaboon Men (1880)	• • •	+ 0.9
Bavarian Men		+ 9.0	Maori Men		+ 0.7
English Women (Moorfields)		+ 7.9	Maori Women	• • •	+ 0.5
French Men		+ 7.2	Coptic Women		+ 0.5
English Men (Moorfields)		+ 7.1	Gaboon Women (1864)		+ 0.5
English Women (Whitechape	el) -	+ 5.6	Theban Mummies, Men		+ 0.4
English Men (Whitechapel)		+ 4.2	Gaboon Men (1864)		+ 0.0
Moriori Men		+ 3.5	Kaffir Men		+ 0.0
Moriori Women		+ 3.2	Australian Men		- 0.2
Congo Men		+ 2.6	Coptic Men		-0.2
Australian Women		+ 2.4	Prehistoric Egyptian (Naqao	la)	
Long Barrow Women		+ 2.3	Men		- 0.3
Long Barrow Men		+ 2·2	Gaboon Women (1880)		-0.4
Fuegian Men		+ 2.0	Zulu Men		- 0.7
Congo Women†		+ 1.9	Angoni Men		- 1.2
Theban Mummies, Women		+ 1.8	Negro Men (North Africa)		- 1.3
Prehistoric Egyptian (Naqad					
Women		⊦ 1 ·0			

Judged by this index the Moriori stand for excess of breadth over height per unit of length at the top of all the early and primitive races and nearest to modern Europeans, and this is a feature which differentiates them from Maori and

^{*} loc. cit. p. 25.

[†] Erroneously placed as - 1.9 in Biometrika, Vol. VIII. p. 307.

Australians and markedly from the full-blooded negro races. Scott continues: "the orbits are as a rule high, and the appearance of height is increased by the form of the superciliary ridges; while the nasal opening is narrow*." Table III (p. 98) will show that the orbits (O_2L) are higher than any of the comparative material provided, although the Fuegians come fairly close and the Maori follow them, but they are distinctly higher than modern European races and the Negroes. On the other hand the orbits are distinctly broader than those of any other race, and the result is that relatively to the breadth they about equal the Fuegians in orbit, fall behind the Maori and about equal the Negroes and Bavarians. It would probably be better to state that Moriori orbits are large rather than high. Again the statement that the Moriori nasal opening is narrow requires qualification. Its absolute breadth is about the same as Maori, Fuegian and Aino, and in excess of modern Europeans. It will be found that it is the nasal height of the Moriori which is the noteworthy absolute feature of their noses, and the result is that their nasal index falls below that of any of the races placed in Table III for comparison. This is markedly true of the males.

Of general descriptive properties Dr Scott says there were no metopic crania in his series, that the coronal and sagittal sutures were simple, but the lambdoid often very complicated; these remarks would apply well to the Royal College of Surgeons' collection, although two of the skulls of Moriori children at Berlin are, as might well be, metopic. The Moriori cranium does, indeed, strike one as "primitive," but in a different sense to the Australian cranium. A comparison of the following table will show how very little resemblance there is between the Australian and Moriori crania:

	Australians (Robertson†)	Moriori (Thomson)		
Character	ਰੋ (78)	♀ (22)	ੋਂ (34)	♀ (22)	
Maximum Length (L)	183.56	175.59	186-87	178.60	
Maximum Breadth (B) Basio-apical Height (H) $100 \ B/L$	130.60 131.13 71.29	128.73 124.50 73.36	141·40 135·91 76·07	$\begin{array}{c c} 138.41 \\ 132.81 \\ 77.52 \end{array}$	
$100 \ B/L \dots	71·50 100·50	70·95 96·64	72·78 96·12	74·52 95·95	

It is clear that the Moriori is a much larger skull than the aboriginal Australian, and of wholly different proportions. And yet those who have handled the Moriori skull cannot doubt that in its special manner it is as primitive as the Australian. The very bulging glabella, the low receding forehead, the considerable flattening

^{*} loc. cit. p. 25. It should be noted that Scott means these remarks to apply to his first type, but he admits the continuity of his first with his second type (p. 26).

[†] Proceedings R. S. Edinburgh, 1910—1911, Vol. XXXI. pp. 1—16. Craniological Observations on the Length, Breadth and Height of 100 Australian Aboriginal Crania.

on either side of the sagittal suture giving rise to the sagittal crest, combined with great weight strike one at once. Anatomical peculiarities as will be noticed from my "Remarks" are frequent. Thus flattening of the obelion, parietal bulging, ossicles of the lambda are common; epipteric ossicles were noted in 17 out of the 63 crania. There were four cases of asymmetric foramina of which the most pronounced is photographed in Plate XIII. Marked inions or inionic ridges occur in several cases, while of rarer anomalies I noted an incisura crotaphitico-buccinatorus in one female, an ossicle of the coronal suture (Plate XV), and para-occipital processes articulating with the axis in other cases. Of non-congenital deformities, perhaps the most remarkable is a healed fracture of the mandible on the left side (Plates XX—XXII). Extreme attrition of teeth* was also noticed in a large proportion of the crania in this collection, a feature on which Dr Duckworth has already laid great stress in his paper. The general asymmetry of the skulls will be well realised, not only from a perusal of the remarks on the individual crania, but also by examining the measurements right and left given on the horizontal and transverse type contours. To sum up in the language of Flower and Turner, the Moriori are a megacephalic, mesatricephalic, metriocephalic, mesoseme (although close to the borders of microseme), leptorhine in male, mesorhine in female, orthognathous, brachyuranic† race. They are thus mediocre in most cranial characters, but their non-mediocre features, those of megacephaly, orthograthy and brachyurany, associate them rather with the more highly civilised than with the low races. As we have already said, the "primitive" character of the Moriori cranium does not lie in the same characters as differentiate the Australian aborigines or even the Negro from the European. It is a type of primitiveness hardly described by such characters as we have studied above. It is, perhaps, better considered in reference to the contours.

* A similar attrition of the teeth was noticed in the prehistoric Egyptians and has been attributed by some to the use of stone mortars for grinding the grain.

† Scott (loc. cit. p. 4) defines palato-maxillary index as 100 × palato-maxillary length/palato-maxillary breadth. But his lengths are always less than his breadths, just as are Turner's corresponding values for the four Moriori skulls acquired on the Challenger Expedition. Scott has accordingly, since his indices are over 100, really used, like Turner, the ratio of breadth to length. Turner following Flower measures the length as the distance from the alveolar point to the line drawn between the most posterior parts of the maxillary tuberosities. This is not exactly our palate length, but appears close to it in value. On the other hand Scott and Turner include in their palate breadth the alveolar arch and thus get a breadth very largely in excess of ours, and, we consider, no true palate breadth at all. To allow for the breadth of the alveolar arch, we have supposed it proportional to the palate breadth as measured in our manner. But we can only compare our breadth with Scott's breadth for our two series as we have not the two measurements in either case. There results for the mean breadth of the (double) alveolar arch at the second molars:

Moriori males, 26.47, Moriori females, 22.79.

We thus deduce for our Moriori the palato-maxillary index of Turner as 123 for males and 119 for females corresponding to the brachyuranic group. If we reverse the process, altering the above values in the ratio of Scott's palatal breadth for Maori to his palatal breadth for Moriori, i.e. subtract $26\cdot47\times62\cdot77/65\cdot32$ from $62\cdot77$ and $22\cdot79\times59\cdot40/59\cdot89$ from $59\cdot40$ for males and females respectively, we obtain the values for the palatal breadths on our plan, i.e. $37\cdot33$ and $36\cdot80$ recorded in brackets under Maori in Table III, and the corresponding values of the palatal index.

TABLE III. Comparison of Moriori and other Races in Cranial Characters.

Cl	haracter		Мог	riori	Ма	ori	Ai	no	Fue	gian	Egyj (Naq	ptian (adas)	Northern Negroes
	1010000		3 (c. 34)	♀ (c. 22)	♂ (c. 43)	♀ (c. 20)	ਤੋਂ (c. 88)	♀.(c. 63)	♂ (c. 34)	♀ (c. 24)	3 (c. 98)	우 (c. 123)	ð (c. 39)
C			1498	1378	1476	1288	1462	1308	[1474]	[1290]	1381	1288	1348
L			186.9	178.6	185.5	175.6	185.8	177.2	192.0	185.0	185-1	177.5	182.9
B	•••		141.4	138.4	140.1	134.8	141.2	136.8	145.0	141.0	134.9	131.5	133.2
B'			95.3	94.0	95.7	91.2	96.2	92.4	97.1	91.0	91.1	88.2	95.9
H			135.9	132.8	137.6	133.0	139.5	135.1	141.0	137.0	135.2	129.5	135.3
OH			117.1	115-1	_	_	119-3	115.0			115.5	113.1	115.0
LB			105.6	102.3	103.9	100.5	105.4	100.3	{104.5}	{96.3}	99.3	94.9	103.0
P \angle	• • •	***	84°.7	84°-5			82°-0	81°-0	\ \{82°\.0	Sergi}	84°-4	84°-5	82°-0
Q			316.1	310.0	307.5	293.8	328.5	$317 \cdot 1$	{316.5}	{298.6}	304.2	296.5	306.8
S			368.5	354.4	378.1	361.8	372.8	360.7	{390.0}	{370.0}	373.0	363-6	367.7
U	• • •		522.8	502.6	518.0	496.8	522.5	501.7	531.0	502.0	511.0	493.7	508.5
G'H	• • •		70.6	69.6	71.4	64.4	69.8	65.5	{71.3}	{69.7}	67.6	65.8	68.0
GB		.,.	103.2	96.6	-		102.1	96.7	[110.0?]	[103.2?]	95.9	92.5	96.6
J			137.4	128.9	136.8	127.9	137.3	129.7	143.6	132.1	125.6	117.0	129.5
NH	• • •		57.3	52.5	53.8	49.4	50.5	47.4	{54.0}	{49.6}	48.9	46.7	49.5
NB			25.3	25.3	25.6	23.4	25.6	24.7	{26:3}	{23.8}	25.1	24.3	27.3
O_1L			44.4	42.4	40.5	39.2	40.9	39.8	$\{42.5\}$	{40⋅3}	38.1	37.2	39.6
O_2L		.,.	37.3	35.5	35.0	33.6	34.9	33.9	{36.0}	$\{34.7\}$	$32 \cdot 3$	32.0	34.2
G_1			53.1	50.5	$52 \cdot 4$	48.5	53.0	51.4	[{56.0}]	[{54.0}]	55.8	53.9	49.4
G_2			38.9	37.1	[37.3]	[36.8]	38.2	37.4	[{43.0}]	[{39.0}]	40.3	38.9	39.7
GL	• • •		100.9	97.4	100.8	96.9	104.9	100.1	{100.0}	{96.0}	94.7	91.0	105.3
fml	•••		35.3	$34 \cdot 4$	35.2	33.1		_	{36.0}	{37.3}	_	<u></u>	_
fmb	• • •		30.8	30.2	30.8	29.0			{31.0}	{31.7}	_		
100 B	B/L		76-1	77.5	75.4	74.7	76.5	77.6	76.6	77-7	73.0	74.2	72.9
100~H			72.8	74.5	74.7	74.2	75.6	76.7	73.4	72.9	73.3	$73 \cdot 2$	74.2
100 B			104.5	103.6	[101.8]	[101.4]	101.24	101.24	[102.8]	[102.9]	99.8	101.6	98.3
	B/NH		43.9	48.2	47.9	49.1	50.7	50.5	{48.5}	$\{47.9\}$	51.1	$52 \cdot 3$	55.4
100 O	$_{2}/O_{1}$		84.0	84.3	86.1	86.2	85.3	85.2	{84.6}	{85.0}	84.8	86.0	87.2
100 G	$_2/G_1$		$74 \cdot 1$	$72 \cdot 1$	[71.2]	[75.9]	$72 \cdot 1$	72.8	[{76.8{]	[{72.2]}	71.9	$72 \cdot 3$	81:5
100 fn	$nb/ar{f}ml$		87.4	87-8	87.4	88.6			``89·0´`	84.2	NAME OF TAXABLE PARTY.		
Gnath	ic Inde	X	[95.6]	[95.2]	97.0	96.4	[99.5]	[99-8]	96.2	99.3	[95.4]	[95.9]	[102.3]

Characte	ņ	Cor Bar	ngo ntus		oon itus		glish echapel)	Lo Ba	ng rrow	Bava (Alt-bay	rian zerische)
Characte		♂ (c. 50)	♀ (c. 27)	♂ (c. 50)	♀ (c. 44)	♂ (c. 72)	♀ (c. 80)	♂ (c. 12)	♀ (c. 8)	♂ (c. 100)	♀(c. 100)
C .:.		1344	1206	1381	1232	1477	1300		_	1504	1336
$L \qquad \dots$		177.8	171.4	179.5	171.6	189-1	180.4	190.6	182.6	180.6	173.5
$B \qquad \dots$		138.5	130.9	135.5	130.6	140.7	134.7	142.4	138.6	150.5	144.0
$B' \qquad \dots$		97.5	92.6	96.5	92.8	98.0	93.1	98.9	94.1	103.7	96.3
H_{-}		133.8	127.5	135.4	130.1	132.0	124.6	137.8	135.1	133-8	128.0
OH		113.9	109.0	<u> </u>	<u> </u>	114.6	109.2	120.7	118.0	[111.5?]	
LB		98.2	93.3	100.3	95.8	101.6	95.3	102.0	96.8	100.3	96.3
$P \perp \dots$		82°-8	81°⋅1			86°⋅1	87°-1	83°·0	?	89°-1	88°-8
$Q \qquad \dots$		310.7	298.2	310.5	296.3	307.9	294.0	321.8	312.0	329.7	318.7
Š		361.8	349.8	364.3	350.4	377.1	$362 \cdot 8$	384.8	382.0	365.1	353.4
<i>U</i>	* * *	504.3	489.3	501.2	481.2	524.3	503.8	534.9	518.7	524.4	501.4
G'H		63.4	59.3	66.4	62.7	70.2	65.9	69.9	66.8	70.8	66.8
GB		94.8	$92 \cdot 2$	95.6	90.9	90.9	84.9	95.9	92.8	95.1	89.7
J	* ***	126.5	122.1	129.0	120.5	130.1	120.3	134.0	132.5	135.0	126.3
NH		47.2	45.0	48.2	45.1	51.2	48.7	49.4	47.0	50.9	48.2
$NB \dots$		26.0	25.0	26.6	24.7	24.3	23.2	$24 \cdot 1$	22.8	24.8	23.7
O_1L	• • •	40.4	40.5	41.5	39.6	43.1	41.2	38.1	36.9	39.9	38.3
O_2L		34.6	33.4	35.0	33.7	33.5	33.6	31.8	30.6	33.7	33.2
G_1	• • • •	50.3	50.2	52.1	50.1	48.3	45.1	55.3	57.0	[44.3?]	[42.2?]
G_2		38.9	35.9	39.5	37.4	36.8	35.2	43.7	$\{36.0\}$	[33.2?]	$[32 \cdot 1?]$
GL	• • •	96.5	93.9	100.5	98.5	95.9	90.4	95.3	92.6		
fml		35.9	35.3	35.9	34.0	35.4*	34.3*	35.7	34.5	_	_
fmb		30.0	28.8	30.0	28.1	29.7*	29.0*	27.7	30.3		
100 B/L		78.0	76.5	75.5	76.2	74.3	74.7	74.9	76.3	83.2	83.1
100 H/L	• • •	75.4	74.6	75.5	75.7	70.0	69.1	72.7	74.0	74.2	73.9
100 B/H	****	103.6	102.6	100.1	100.7	106.3	108.5	[103.3]	[102.6]	112.5	112.5
100 NB/NH	i	55.2	55.8	55.3	54.9	47.6	47.8	49.0	49.1	48.7	49.2
$100 \ O_2/O_1$	• • •	85.7	82.5	84.6	85.2	77.9	81.7	83.4	81.7	84.5	86.6
$100 \ G_2/G_1$	• • • •	76.8	70.8	76.1	74.8	76.3	77.7	[79.0]	$[\{63 \cdot 2\}]$	[74.4]	[76.0]
100 fmb/fml	• • •	83.5	81.8	83.9	81.2	84.2*	84.5*	[77-7]	[87.7]	_	_
Gnathic Inde	ex	[98.2]	[100.6]	[100.4]	[101.8]	[94.4]	[94.8]	[99.4]	[99.9]	_	

5. Comparison of Moriori cranial Characters with those of other Races. In Table III I have gathered together such material as seemed of interest for comparative purposes. Unfortunately I have not been able to obtain a good series of Australian measurements for comparison, but the values of the few characters given by Robertson for fairly long series, show that there is little relationship between the two races. In the first place we put Scott's Maori values. We follow these by data for the Aino, the means being calculated from the measurements in Koganei's* Tables; then such slender results as we have been able to obtain for the Fuegians†. Lastly we place three Negro races, North Africans‡ and Benington's Congo and Gaboon measurements§, to complete the series of non-European primitive races. For European races we give English || and Bavarians ¶ as modern representatives, and the Long Barrow ** as an ancient race, unfortunately with very slender numbers. Finally the Egyptians find representation in Fawcett's Naqada measurements††.

In Table III we have been obliged to make various assumptions to deduce certain of the values provided. They are either not provided by the authorities cited, or have been differently measured. The difficulties are greatest when we come to deal with orbital and palate measurements, where most divergence of method has existed. We have in certain cases had to allow for length of spine or breadth of alveolar arch as obtained from other cranial series. Again some authorities do not record the index $\ddagger 100~B/H$ or the gnathic index, and these have had to be supplied from the ratio of mean values. All such measurements are enclosed in square brackets, and when especially doubtful are marked by queries. In other cases where the numbers dealt with are quite inadequate the values are enclosed in curled brackets. We cannot in the present paper deal at length with the basis of these corrections and modifications but a few words as to our treatment of Fuegian data may make clear certain points. The fundamental memoir here is that of Rudolf Martin. He had only five Fuegian crania, but before his date,

- * "Beiträge zur physischen Anthropologie der Aino." Mittheilungen aus der medicinischen Facultät der k. j. Universität. Tokio, 1894, Bd. n. Reduced in 1900 in the Biometric Laboratory.
- † Rudolph Martin, "Zur physischen Anthropologie der Feuerländer," Zeitschrift für Anthropologie, Bd. xxII. S. 155—218, 1893. J. V. Hultkrantz, "Zur Osteologie der Ona und Yahgan Indianer des Feuerlandes," Wissenschaftliche Ergebnisse der schwedischen Expedition nach den Magellanländern 1895—97 unter Leitung von O. Nordenskjoeld. Stockholm, 1900.
 - ‡ Reduced in the Biometric Laboratory in 1900 from data in the German Anthropological Catalogues.
- § R. Crewdson Benington, "A Study of the Negro skull with special reference to the Congo and Gaboon Crania." *Biometrika*, Vol. viii. pp. 292—337, 1912.
- || Results for Whitechapel 17th century English used; see W. R. Macdonell, "A Study of the Variation and Correlation of the Human Skull, with special reference to English Crania." *Biometrika*, Vol. III. pp. 191—244, 1904.
- ¶ Reduced in Biometric Laboratory in 1900 from the data in J. Ranke's paper, "Beiträge zur physischen Anthropologie der Baiern," Bd. I.
- ** Edgar H. J. Schuster, "Long Barrow and Round Barrow Skulls in the Oxford Museum." Biometrika, Vol. iv. pp. 351—362, 1905.
- †† C. D. Fawcett, "A Second Study of the Variation and Correlation of the Human Skull with special reference to the Naqada Crania." *Biometrika*, Vol. 1. pp. 408—465, 1902.
- ‡‡ Unfortunately in the tables (Biometrika, Vol. 1. pp. 426—7) Fawcett has for the two races Bavarian and Aino (β and φ) the values of 100 H/B put under 100 B/H.

1893, Mantegazza had dealt with 16, Sergi with 14, Garson with 8, Hyades with 8, Sir William Turner with 4 and Quatrefages with 2 skulls. Since his date Hultkrantz has had six additional specimens to measure. Thus there are really between 60 and 70 Fuegian crania certainly available and no doubt if further search were made we might run the value up to nearly 100, and get substantial and important results. Unfortunately some of the writers referred to made very inadequate series of measurements, even on the few crania they had at their command. Martin puts together a good deal of their measurements, but apparently thinks it sufficient to average their averages. This is somewhat dangerous considering the large differences in the numbers they have dealt with. He does not also, we think, sufficiently emphasise the wide divergencies to be expected when means are based on 2 to 10 crania. We have endeavoured to weight the results of the various recorders and such are the numbers given without curled brackets in the Fuegian column. The values in curled brackets are based solely on Martin's 23 and 39 crania. The statistically trained mind would say that they are worthless as a determination of type. With this statement we should not fail to concur, did not the means provided by Hultkrantz for his six skulls combined accord so closely with our results for male Fuegians as to force us to the conclusion that his crania were practically all males and that by a lucky chance we have reached even with such miserably slender material results closely approximating to a true Fuegian type*.

Character	Table III 3	Hultkrantz	Character	Table III 3	Hultkrantz
Capacity Maximum Length Maximum Breadth Basio-bregmatic Height Minimum Frontal Breadth Profile Angle Horizontal Circumference Transverse Circumference Bizygomatic Breadth Profile Length	1474 192·0 145·0 141·0 97·1 82°·0 531·0 390·0 316·5 143·6 100·0	1443 191-5 146-1 140-6 98-0 83°-6 531-0 381-0 316-1 143-5 106-0	Nasal Height Nasal Breadth Orbital Breadth Orbital Height Orbital Index Cephalic Index Height Index Breadth-Height Index Foraminal Length Foraminal Breadth Foraminal Index	54·0 26·3 42·5 36·0 84·6 76·6 73·4 102·8 36·0 31·0 89·0	54·6 25·3 40·0 35·3 87·4 76·3 72·1 103·9 35·3 31·0 87·9

We see how remarkably alike the results are even for such short series, and there is sufficient indication that with uniform methods of measurement the existing Fuegian crania would suffice to provide a quite good typical series of values.

Turning to examine Table III a little more closely, we see that we can dismiss any relation to the Negro race, either in Sudanese or Bantu form. Egyptians and central Europeans show no affinities. It is only with the English or the Long Barrow crania that there is any approach, and the latter are so slender in number

^{*} A more thorough collection and examination of all available Fuegian data will shortly be undertaken.

that it seems idle to deal in more detail with them. On the other hand there is undoubted affinity to the Maori; and rather surprising resemblances to the Aino and to the Fuegians are worth taking into consideration. The full discussion of the proper method of representing racial affinity by a single coefficient must remain undiscussed at present. A rough measure will only be used here; we take the mean percentage difference of each race, for males only, on the basis of the Moriori means, and then consider the mean of these percentages as a working coefficient.

Table IV gives these percentage differences to a single decimal place, and we note at once the following points:

- (i) While the Maori are nearest of the races considered to the Moriori, both Aino and Fuegian are surprisingly close.
- (ii) Seventeenth century English are more distant than the Fuegians, but have very far from the deviation of a race like the Sudanese Negroes (i.e. 3.92 as compared with 5.80).
- (iii) The current view that the Moriori are like the Maori an intermixture of Polynesian and Melanesian stock scarcely receives confirmation from Table IV; the Moriori stand nearer to the Londoner of the 17th century than to the Negro.
- (iv) The Maori themselves are still more closely related to the Fuegian (2.87 as against 3.13) than the Moriori.

Thus it is difficult to believe that there has not at some time been a race-link between the present denizens of extreme South America and the denizens of extreme Polynesia.

It is very regrettable that our data for the Long Barrow inhabitants of Britain are so slender. Macdonell has already pointed out their relative closeness to 17th century Londoners and the work of Crewdson Benington* seems to show that the English commonalty of to-day is one with the 17th century Londoners. We have to look to the bulk of the English population to-day as being non-Teutonic in origin, and much talk of our Germanic relationship may ultimately prove to be idle. Craniologically the English commonalty belong in bulk to an earlier and probably more primitive race. It would be unprofitable to speculate until we have larger series and more complete measurements—especially of Polynesian, Melanesian and American Indian crania—on the meaning of the results suggested in the present comparison between the denizens of the extreme fringes of enormous areas. They give one at least a suggestion of vast folk-wanderings in a world possibly of different conformation. Practically they warn us at least to consider the problem of the relationship of the American Indian to either a north-Asiatic or a Polynesian stock as still unsettled †. Even the English relationship shows that the European origin of the American is still a workable hypothesis. We have confidence that if our craniological series consisted of hundreds instead of often units, statistical methods would enable us to construct a racial human

^{*} Biometrika, Vol. vIII. p. 131.

[†] It is in our opinion impossible to accept the views of either Brinton or Hale as final.

pedigree which would throw immense additional light on human descent. The first desideratum at the present time is the collection of crania from what we may call "fringe" races, and the second desideratum the construction of type crania, both by mean measurements and by contours, of the material thus collected. Only then will the science of craniology become a really useful guide to the anthropologist. At present arguments based on half-a-dozen crania—unaccompanied by any previous study of cranial variability—are of the most slender weight and should simply be disregarded by the anthropologist*.

TABLE IV. Comparison of Male Crania of Moriori with those of other Races.

Character	Percentage ex	xcess value o	of Moriori cha	racter over:	Northern
Character	Maori	Aino	Fuegian	English	negro
Capacity Maximum Length Maximum Breadth Minimum Frontal Breadth Basio-bregmatic Height Auricular Height Cranial Base Profile angle Transverse Arc Sagittal Arc Horizontal Circumference Upper Face Height Face Breadth Bizygomatic Breadth Nasal Height Orbital Length Orbital Breadth Palate Length Palate Length Profile Length Froraminal Length Foraminal Breadth Foraminal Index Vertical Index Nasal Index Orbital Index Orbital Index	$\begin{array}{c} + \ 1 \cdot 5 \\ + \ 0 \cdot 7 \\ + \ 0 \cdot 9 \\ - \ 0 \cdot 4 \\ - \ 1 \cdot 3 \\ - \\ - \\ + \ 1 \cdot 6 \\ - \\ - \\ + \ 2 \cdot 7 \\ - \ 2 \cdot 6 \\ + \ 0 \cdot 9 \\ - \ 1 \cdot 1 \\ - \\ - \\ + \ 0 \cdot 4 \\ + \ 6 \cdot 1 \\ - \ 1 \cdot 2 \\ + \ 8 \cdot 8 \\ + \ 6 \cdot 2 \\ + \ 1 \cdot 3 \\ + \ 3 \cdot 9 \\ + \ 0 \cdot 1 \\ - \ 0 \cdot 0 \\ + \ 0 \cdot 8 \\ - \ 2 \cdot 6 \\ + \ 2 \cdot 6 \\ - \ 9 \cdot 1 \\ - \ 2 \cdot 5 \\ \end{array}$	$\begin{array}{c} + \ 2 \cdot 4 \\ + \ 0 \cdot 6 \\ + \ 0 \cdot 1 \\ - \ 0 \cdot 9 \\ - \ 2 \cdot 6 \\ - \ 1 \cdot 9 \\ + \ 0 \cdot 2 \\ + \ 3 \cdot 2 \\ - \ 3 \cdot 9 \\ - \ 1 \cdot 2 \\ + \ 0 \cdot 1 \\ + \ 1 \cdot 1 \\ - \ 1 \cdot 2 \\ + \ 7 \cdot 8 \\ + \ 6 \cdot 4 \\ + \ 0 \cdot 2 \\ + \ 1 \cdot 8 \\ - \ 4 \cdot 0 \\ - \\ - \ 0 \cdot 5 \\ - \ 3 \cdot 8 \\ + \ 3 \cdot 2 \\ - \ 1 \cdot 5 \\ - \ 1 \cdot 5 \\ - \ 1 \cdot 5 \end{array}$	$\begin{array}{c} +\ 1.6 \\ -\ 2.7 \\ -\ 2.5 \\ -\ 1.9 \\ -\ 3.8 \\ -\ \\ -\ \\ -\ 1.0 \\ +\ 3.2 \\ -\ 0.1 \\ -\ 5.8 \\ -\ 1.6 \\ -\ 1.3 \\ -\ 6.6 \\ -\ 4.5 \\ +\ 5.8 \\ -\ 4.0 \\ +\ 4.3 \\ +\ 3.5 \\ -\ 5.5 \\ -\ 10.6 \\ +\ 0.9 \\ -\ 2.0 \\ -\ 0.6 \\ -\ 0.7 \\ -\ 0.8 \\ +\ 1.5 \\ -\ 0.7 \end{array}$	$\begin{array}{c} + \ 1\cdot 4 \\ - \ 1\cdot 2 \\ + \ 0\cdot 5 \\ - \ 2\cdot 8 \\ + \ 2\cdot 9 \\ + \ 2\cdot 1 \\ + \ 3\cdot 8 \\ - \ 1\cdot 7 \\ + \ 2\cdot 6 \\ - \ 2\cdot 3 \\ - \ 0\cdot 3 \\ + \ 0\cdot 6 \\ + \ 11\cdot 9 \\ + \ 5\cdot 4 \\ + \ 10\cdot 6 \\ + \ 4\cdot 0 \\ + \ 2\cdot 9 \\ + \ 10\cdot 2 \\ + \ 9\cdot 0 \\ + \ 5\cdot 4 \\ + \ 3\cdot 8 \\ - \ 1\cdot 6 \\ - \ 2\cdot 4 \\ + \ 3\cdot 8 \\ - \ 1\cdot 6 \\ - \ 8\cdot 2 \\ + \ 7\cdot 3 \end{array}$	+10.0 $+2.1$ $+5.8$ -0.6 -0.4 $+1.7$ $+2.5$ $+3.2$ $+2.9$ $+2.7$ $+3.7$ $+6.3$ $+5.1$ $+13.6$ -7.9 $+11.0$ $+8.3$ $+6.8$ -2.3 -4.4 $ +4.2$ -1.9 $+5.9$ -26.2 $+3.8$
Palatal Index Foraminal Index Gnathic Index	+ 3·9 + 0·1 - 1·5	$\begin{array}{c c} + 2.7 \\ - \\ - 4.1 \end{array}$	- 3·6 - 1·8 - 0·6	- 3·0 + 3·7 + 1·3	- 9·8 - 7·0
Number of Characters	28	28	30	31	28
Mean Percentage Deviation	2.31	3.00	3.13	3.92	5.80

^{*} It is astounding to note what wide reaching results even the examination of a mere half-dozen Moriori, Fijian, Maori or Eskimo crania led the older craniologists to propound!

6. Study of the Moriori Type Contours. The purposes served by these contours are (i) the comparison with the like contours of other races, and (ii) their use as a method for actually determining the mean values of certain characters. We shall consider them from both aspects.

For the first purpose the sole available material consists in the contours for Bantu, Egyptian (XXVI—XXX Dyn.), English, Eskimo and Guanche crania drawn to scale and published with tracings in Crewdson Benington's paper*. Some attempts to obtain type contours by other processes are either based on inadequate numbers, are deduced from far too few plotted points by an unsuitable method, or are reproduced to no standard, or at any rate to no easily comparable scale. For a type contour to be really valuable it should be drawn to full-size and published not only on ordinary but also on transparent paper. It is only in this form that it can be of real value for comparative purposes. Further the contour in the case of the sagittal section should contain the basal triangle and the occipital region. These were included in Dr Benington's individual contours, but unfortunately he omitted to add their mean values to his type contour. We have included them in the Moriori contours.

Starting with the transverse section, we note that the length of the interauricular line is relatively large as compared with the Bantu or Egyptian crania; it is more nearly approached by those of the Guanche or 17th century English, which, however, still fall short of it. The Eskimo transverse section, with a somewhat larger interauricular diameter, has near the "apex" a more marked sagittal crest; this crest so marked in the Moriori crania is, however, thrown as a rule further back in their case. If we consider a primitive form like the Cro-Magnon which has an interauricular length nearly as large as the Moriori type skull, its auricular height is so great that the Moriori transverse section falls entirely inside it. The following table suggests the nature of these results, and confirms the conclusion

Measurements or	the	Transverse	Tupe	Section †.	38.
-----------------	-----	------------	------	------------	-----

Race		Interauricular Length	Auricular Height	Index	
Moriori	•••	125.2	109.5	87.5	
Eskimo		128.0	114.2	89.2	
English		122.4	111.5	91.1	
Guanche		119-6	109.8	91.8	
Egyptian		117.4	110.2	93.9	
Congo, Bantu‡		116.8	113.6	97.3	
Cro-Magnon		124.0	121.0	97.6	

^{*} Biometrika, Vol. vIII. p. 123.

[†] These measurements are from the type sections; it must be carefully borne in mind that they may differ from measurements of the same name on the crania themselves.

[‡] Fernand Vaz, 1864 Series.

previously reached, i.e. that the Moriori cranium approaches to a certain European type represented by modern English and by prehistoric Guanche* far more closely than it does to the Negro skull.

As measured on the actual skull Scott obtains values of the interauricular length which give a male mean = 126.8, and we have obtained directly for the auricular height of our series of males 117.1; the reasons for these divergencies will be considered later. It would have been of the greatest value had we possessed type sections of the Aino and Fuegian crania for further comparison.

Let us now consider the horizontal section. This as we have stated is taken through the glabella, while the cranium is arranged so that the plane of the drawing is parallel to the standard horizontal plane. Now the glabella is not a well-defined point, but rather a small area, and a little personal equation will make a considerable change in appearance of the horizontal section according as the plane of section recedes very little from the zygomatic and approaches slightly to the stephanic region. But as the horizontal sections discussed in the present paper are all drawn by members of the same school we are fairly certain that the concavity in the contour behind the temporal line is far more marked in the Moriori than in other crania we have drawn. But it has seemed to us-in view of the importance of the temporal lines from the evolutionary standpoint—desirable in future to take additional coordinates for the points, T_R and T_L , where the section cuts the temporal line on the frontal bone. Otherwise these important points are lost in the general averaging out of the contours. Allowing, however, for some difference of treatment our contours as well as our plates (see especially Plates II, III, VII, IX, etc.) indicate how marked is the linea temporalis of the Moriori skull, and we think that this is an essential factor of our appreciation of its primitive character. If the reader will compare our Moriori horizontal contour with those of the Eskimo, Bantu and English crania, he will realise how relatively great is the depression of the facies temporalis in the Moriori frontal bone. A similar opinion will be formed by comparing the photographs of English crania on Plates II and V of Macdonell's memoir ‡ with the corresponding photographs of Moriori crania on Plates IX, XV, XVI and XXI, where the shadows indicate the massive character of the linea temporalis. This depression of the facies temporalis so noteworthy in the Moriori cranium is recognisable in the Cro-Magnon contour, but scarcely more than indicated in Egyptian, Congo and English crania. Now if the reader will superpose the English type horizontal section§ on the Moriori so that the point V falls on F and O on O, he will perceive that it

^{*} The resemblance of 17th century English to the Guanche type has already been insisted on: see *Biometrika*, Vol. VIII. p. 135.

[†] The general asymmetry of the Moriori cranium is well illustrated by the fact that T_R lies posteriorly to T_L in the type cranium: anteriorly the ordinates show that the left side, posteriorly the right side of the Moriori skull is larger.

[‡] Biometrika, Vol. III. p. 191 et seq.

[§] Tracing Fig. XXIX of Crewdson Benington's paper, to which the other figures when attached to tracings refer.

is at ordinates 3 and 4 that the maximum difference takes place; it is the depression of the facies temporalis which is the marked differential feature of the two contours. If the Guanche contour (Fig. XXVI) be superposed in the same manner, the depression is substantial, but not so marked. When we turn to the Egyptian and Congo contours (Figs. XX and XI), we must adopt a somewhat different superposition. We place O on O and OF in the direction OF. We find at once that the posterior portions of these contours fit surprisingly close to the Moriori contour, but that the massive frontal development of the Moriori is completely lacking. To bring out this special feature of the Moriori we may form a Temporal Index by measuring the percentage that Ordinate 3 is of the length of the section. We have the following results:

Race	Temporal Index	$100.\frac{\text{Ordinate 3}}{\text{Minimum Frontal Breadth}}$
Moriori	50.9	99-1
Cro-Magnon	55.7	ph
Egyptian	56.2	112.0
Eskimo	57.2	_
Congo, Bantu*	57.5	104.8
Guanche	58.3	
English	58.8	111.6

There are clearly somewhat mixed factors at work here, but the essentially differentiated character of the Moriori cranium is well-marked. It is the development of the fronto-temporal regions which especially distinguishes the crania of the English commonalty and the Guanche crania from the Moriori.

We now turn to the sagittal contours, where, as we have already remarked, we have not unfortunately the basal triangle and occipital portion of the Benington contours for full comparison. The first problem is: Which standard line is to be superposed? We have actually the inion, the lambda, the bregma and the nasion as definite points, and the glabella and occipital as less definite localities. Schwalbe takes the glabella-inion line, Klaatsch the glabella-lambda line; we may also take the nasio-lambda line, or the nasio-gamma line, which is a line through the nasion parallel to the Frankfurt standard horizontal plane, meeting the occipital in γ . Personally we doubt the value of any line drawn to either glabella or inion, as applied to the *individual* cranium; the terminals are too vague, although doubtless when we deal with a type contour, these so-called points average out to fairly reliable positions. The glabella-lambda line has been asserted to be nearly parallel to the standard horizontal plane \dagger , but we know of no properly drawn type contour in which the height of the lambda is not two to three times as great as the height of the glabella above the nasio-gamma line. In default of

^{*} Fernand Vaz, 1864 Series.

[†] Quain's Elements of Anatomy, Vol. IV. Part I. p. 132.

other points on defective portions of crania either glabella or inion may be used. About the standard horizontal plane three statements may be made in the case of type crania:

- (i) It passes very nearly through, but a little below the inion.
- (ii) It is approximately parallel to the basio-opisthion line, i.e. parallel to the plane of the foramen magnum.
- (iii) It is approximately parallel to the maximum length, i.e. the glabella-occipital line.

None of these statements are of course true of the individual skull, but on an average or in type cranial contours they are nearly true as the reader will observe if he examines the Moriori type contours.

If we put aside the glabella as an indefinite "point," and the inion as not available in our comparative contours, we are left with three available lines for superposition: (i) $N\beta$, the nasio-bregmatic line; (ii) $N\lambda$, the nasio-lambda line; and (iii) N_{γ} , the nasio-gamma or standard horizontal. We will examine the comparison by each of these lines as superposition lines. Let us first, however. recall to mind the essential features of the Moriori skull as revealed by measurement, simple inspection and photograph. These are the flattening of the frontal region and the sagittal ridge or crest behind the apex. We superpose first the English typical sagittal contour (Fig. XXVII). Nasion on nasion and the lines N_{γ} in the same direction. We have at once brought out the Moriori characters, the flattening of the frontal and the sagittal crest starting at the bregma or before, eaching behind the apex and extending towards the lambda. There is no question of these striking features. Rotate the tracing until $N\lambda$ coincides in direction with $N\lambda$, all trace of the crest disappears, there is increased frontal flattening, but it is the English skull which now might be thought crested! Now make $N\beta$ coincide with $N\beta$. Here we get a really true measure of the flattening of the frontal bone, but practically the English and Moriori contours now coincide from bregma to lambda. In our opinion there is not the least doubt that comparison by the nasio-gamma line, not the nasio-lambda line, brings out the characteristic features of the Moriori cranium in a manner which fails entirely when we use the nasio-lambda line. Even in the question of the appreciation of frontal flattening, it is by no means certain that the flattening of the frontal bone is the sole source of the physiognomic impression; the rotation of the frontal bone as a whole (which would not alter the ratio of subtense to nasio-bregmatic chord (see p. 110)) may have equal physiognomic value. In the present case this physiognomic factor gives an aspect of flatness to the English skull, although there is a high value of the nasio-bregmatic frontal index. Anyone looking at the photographs in Macdonell's memoirs on the English skull* would assert that there is physiognomically a flattened frontal. It is largely produced by rotation of the frontal bone and not by its flattening.

^{*} See Biometrika, Vol. v. p. 104, Plates XII, XVI, etc.

All these points are well brought out when we compare by the standard horizontal planes and have no suggestiveness at all when we superpose the nasio-lambda lines, which give the English skull a protrusion of the frontal both by rotation of $N\beta$ and curving of the frontal bone, while actually the two factors act in opposed directions.

Another point which tells considerably against the use of the nasio-lambda line as reference line in the case of two type contours is the experience that this superposition usually throws out very much the two basal triangles (i.e. nasion, basion, alveolar point). As a matter of fact when the basal triangles are as nearly as possible superposed, then the nasio-bregma lines will be closest together, next the nasio-gamma lines and last the nasio-lambda lines, but sufficient material is not yet available to study properly this point, and accordingly no stress is laid on it here.

If the Guanche tracing (Fig. XXIV) be superposed on the Moriori, N on N and N_{γ} along N_{γ} , we have the same result, the frontal flattening and the postbregmatic crest; this is equally so if N_{β} be set to N_{β} , but the crest disappears entirely, if we set N_{λ} to N_{λ} . When we compare the Negro contour (Congo Bantu, Fig. IX) with the Moriori we have still, for N_{γ} to N_{γ} , the flattening of the frontal (N_{β}) almost coincides with N_{β}) and the emphasis of the crest, but a new feature comes in, namely the dwarfing of the occipital portion of the Negro cranium. To a less marked extent this occurs with the Egyptian type contour (Fig. XVIII), but the emphatic flattening of the Moriori frontal bones appears reduced in this case by the physiognomic flattening of the Egyptian due to rotation of the frontal bone.

From other aspects there are considerable objections to the use of $N\lambda$ as a reference line especially in the case of *individual* crania. While the suborbital and auricular points are capable of fairly accurate determination when the skull is on the craniophor and the bregma likewise as the coronal suture is not usually deeply serrated, the lambdoid suture is often most markedly serrated and the actual position of the lambda may be the result of a random serration, which appears to have little bearing on the average sweep of the lambdoid suture, and the intersection of that sweep with the sagittal suture.

It is not possible to compare the constants of the type sagittal section of the Moriori as found for Schwalbe's glabella-inion line with the like constants for the races dealt with in Benington's paper, for the position of the inion has not been averaged off from his individual contours. We shall accordingly content ourselves with comparison of the indices obtained from bregmatic subtense and maximum subtense on the nasio-gamma, the nasio-lambda and Klaatsch's glabella-inion lines as base, giving further the angles which the nasio-bregmatic or glabella-bregmatic line as the case may be makes with these base lines. We shall still have to confine our attention to male crania as the Benington paper has not provided the contours for female crania.

Table V results:

TABLE V. Values of Constants of Sagittal Contours.

			A. N	asio-ga	mma E	Base L	ine.					
	Base Max. Line Subtense		β Sub	tense	Ind Max.	lex Sub.	Index β Sub.		Δ (Ind. Max. Sub. $-$ Ind. β Sub.)		Breg- matic	
Race	B_o	y	x	y	x	y/B_o	x/B_o	y/B_o	x/B_o	y/B_o	x/B_o	Angle
	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	(xii)
Eskimo Moriori English Guanche Egyptian* Congo, Bantu†	186·1 180·2 183·5 183·4 181·9 175·6	93·9 90·0 84·9 84·8 84·4 85·4	104·1 103·8 103·7 99·0 106·2 97·7	89·3 84·9 83·0 83·0 82·5 83·5	72·1 73·0 77·2 74·4 79·0 70·6	50·5 49·9 46·3 46·2 46·4 48·6	55·9 57·6 56·5 54·0 59·5 55·6	48·0 47·1 45·2 45·3 45·4 47·6	38·7 40·5 42·1 40·6 43·4 40·2	2·5 2·8 1·0 0·9 1·0 1·0	17·2 17·1 14·4 13·4 16·1 15·4	51°·1 49°·3 47°·1 48°·1 46°·2 49°·8
			В. 1	Vasio-la	mbda	Base L	ine.					
Eskimo Moriori English Guanche Egyptian* Congo, Bantu†	183·1 180·0 181·2 181·5 180·1 176·3	$71 \cdot 2$ $66 \cdot 0$ $68 \cdot 7$ $68 \cdot 5$ $70 \cdot 2$ $69 \cdot 8$	89·5 100·2 90·0 79·8 85·2 90·1	71·2 66·0 68·7 68·1 70·0 69·8	88·5 91·0 90·0 88·0 89·6 84·0	$ \begin{array}{r} 38.9 \\ 36.7 \\ 37.9 \\ 37.7 \\ 39.0 \\ 39.6 \end{array} $	48.9 55.7 49.7 44.0 46.8 51.1	$ \begin{array}{r} 38.9 \\ 36.7 \\ 37.9 \\ 37.5 \\ 38.9 \\ 39.6 \end{array} $	48·3 50·6 49·7 48·5 49·8 47·6	0 0 0 0·2 0·1	$ \begin{vmatrix} 0.6 \\ 5.1 \\ 0 \\ -4.5 \\ -3.0 \\ 3.5 \end{vmatrix} $	38°·8 35°·9 37°·4 37°·7 38°·0 39°·7
			C. Gla	bella-la	mbda I	Base L	ine.					
Eskimo Moriori English Guanche Egyptian* Congo, Bantu†	184·5 181·0 182·8 183·2 180·9 176·6	66·0 61·2 65·7 64·6 66·8 64·7	$\begin{array}{c} 100.4 \\ 102.0 \\ 92.5 \\ 82.3 \\ 91.5 \\ 91.7 \end{array}$	65·2 60·6 65·6 64·6 66·8 64·3	87·1 88·7 88·6 82·3 88·9 80·9	35·8 33·8 35·9 35·3 36·9 36·6	54·4 56·4 50·6 44·9 50·6 51·9	35·3 33·5 35·9 35·3 36·9 36·4	47·2 49·0 48·5 44·9 49·1 45·8	0.5 0.3 0 0 0 0.2	$ \begin{array}{c c} 7 \cdot 2 \\ 7 \cdot 4 \\ 2 \cdot 1 \\ 0 \\ 1 \cdot 5 \\ 6 \cdot 1 \end{array} $	36°·8 34°·3 36°·5 38°·1 36°·9 38°·5

^{*} XXVI—XXX Dynasties.

In the above table columns (i)—(v) give absolute measurements, (vi)—(xi) provide indices and (xii) the "bregmatic angle," or angle the base line makes with the line joining nasion or glabella to bregma. It has been suggested that this angle measures in some manner the flattening of the frontal. It seems to us incapable of really determining the grade of primitiveness in the cranium. Other things being equal this angle will merely measure the extent to which the bregma is thrown back on the cranial vault, a relatively large frontal bone will in itself produce a small bregmatic angle. This is seen at once by comparing the relative position of the bregma as measured by the index x/B_o for the bregma (column (ix)):

[†] Fernand Vaz, 1864 Series.

Nasio-gamma Base Line.

Race		Angle	x/B_o	y/B_o	Position as to size	
Eckimo			$46^{\circ} \cdot 2$ $47^{\circ} \cdot 1$ $48^{\circ} \cdot 1$ $49^{\circ} \cdot 3$ $49^{\circ} \cdot 8$ $51^{\circ} \cdot 0$	43·4 42·1 40·6 40·5 40·2 38·7	45·4 45·2 45·3 47·1 47·6 48·0	Fourth Second Third Fifth Sixth First

We see at once from this table that the bregmatic angle has little if any relation to size of the skull. It gives absolutely the same order as the relative horizontal position of the bregma, and (except for the anomalous Egyptian, which is, however, greater than the English and Guanche by a slender difference) the same order as the bregmatic height difference. In biometric language we should say that the bregmatic angle is highly and negatively correlated with the horizontal position of the bregma, and is highly and positively correlated with the vertical position of the bregma. These results might be anticipated from its functional form $\tan^{-1}(y/x)$, but we shall learn little as to racial order from the bregmatic angle. Indeed we might even state the more primitive the race the bigger the bregmatic angle. This conclusion is amply confirmed by the Cro-Magnon skull which gives:

Angle	x/B_o	y/B_o
55°-2	34.6	49.6

Thus we must conclude that a high bregmatic angle is the result of a relatively forward bregma and is a sign of primitive rather than advanced cranial type. The reader must carefully distinguish between a "forward" bregma and a relatively large frontal bone. If we take as measure of the latter, the base $N\beta$ of the frontal bone in proportion to $N\gamma$, the order is:

Congo, Bantu	$63 \cdot 1$	English		61.5
Egyptian	62.5	Cro-Magnon	• • •	61.0
Moriori	$62 \cdot 1$	Guanche	•••	60.5
Eskimo	61.5			

an order, to which it would be difficult to give any interpretation of value.

When we turn to either the nasio-lambda or the glabella-lambda as base line we find none of the above identical order of vertical index, horizontal index and bregmatic angle. We do now find that the Moriori have a low instead of a high bregmatic angle, but if we were to associate this with a racially primitive condition, then the Congo Bantus would stand as the most advanced race in our list judged from either base line. As a matter of fact we see the explanation lies in the fact that the Moriori have from the nasio-lambda base the relatively least forward, and the Bantus the most forward position of the bregma, while the same is nearly

true for the glabella-lambda base. The results found for these two base lines whether we consider the bregmatic angle or the horizontal or vertical bregmatic index are not in any accordance, and although these base lines must be used when the subject consists merely of a skull cap, or even lacks the nasion, we doubt whether for racial inter-relations they are nearly as valuable as the nasio-gamma base. The general measure of the flattening of the frontal bone is best read off as on our p. 95, and this gives the Moriori the premier position on the list. If we desire to measure the total physiognomic flatness we might, I think, combine the bregmatic angle for the nasio-gamma line with the angle the line joining the nasion to the arc end of the nasio-bregmatic subtense makes with the nasio-bregmatic line. The following table brings out the contributions to frontal flattening due (i) to flattening of the frontal bone and (ii) rotation of the frontal bone as a whole.

Race	-	Frontal Bone Flatness	Rotation of base of Frontal Bone	Physiognomic Angle of Flatness
Cro-Magnon		24°·7	55°·2	79°-9
Eskimo		28°·0	51°⋅1	79°-3
Bantu		27°·3	49°-8	77°·1
Guanche	• • •	26°·4	48°·1	74°-5
English		26°-6	47°·1	73°·7
Moriori		22°·3	49°-3	71°.6
Egyptian		24°.9	46°-2	71°·1′

This table seems of some interest. As we have before noted the physiognomic flatness consists of two factors; of these the rotation is roughly twice as important as the actual flattening of the frontal bone. Thus the English low physiognomic flatness is largely due to rotation; the Cro-Magnon skull with much frontal flattening is physiognomically at the top of the list owing to the excess of rotation, and in appearance has consequently a well-developed frontal. The Moriori stands at the bottom of the list for frontal bone flattening, but has less physiognomic flatness than the Egyptian, although the difference is very minute. It is clearly impossible to judge any grade of "primitiveness" by the mere smallness of the bregmatic angle, and we venture to hold that physiognomic flatness must in future be distinguished from flatness of frontal bone.

Returning to our Table V, we note that in the case of the nasio-lambda base the maximum subtense for all practical purposes is the bregmatic subtense. In other words if the nasion, but not the lambda, be ascertainable on a skull cap a rough approximation can be made to the nasio-lambda line by drawing through the nasion a parallel to the tangent to the sagittal arc at the bregma. The reader will see by examining Δ Index x/B, column (xi), Table V, that the maximum falls sometimes on one side, and sometimes on the other of the bregma, but its position. never more than half-a-dozen millimetres from the bregma, causes the two subtenses to be equal owing to the general flatness in the region of the bregma. The maximum

difference between the two subtenses is 0.2 for the Guanche type contour, a difference well within our probable error of determination. If we use the glabella-lambda base line very little difference can be made between the maximum and bregmatic subtenses, although the maximum subtense now always falls behind the bregma, but by something less than 8 mm. As a matter of fact if we set off on the contour βf anteriorly and βl posteriorly to bregma both equal to about 15 mm., then the parallel to fl will give approximately $N\lambda$ and the parallel to βl the glabella-lambda line. While these constructions are merely approximate for type contours, they will give some idea of the position of the λ , if only the bregma and either the nasion or glabella are known. If we want the actual position of the lambda we can only note that the foot of the bregmatic subtense is at an average distance ·474 from the glabella in the glabella-lambda line, but these distances vary much for individual races, and a fortiori will vary more for individual crania*.

Now the point just discussed, i.e. the practical equality of the bregmatic and maximum subtenses for both the nasio-lambda and glabella-lambda cases, suggests how important it is to use a base line which will determine the extent to which the vertex of the cranium rises above and recedes behind the bregma. For the rising of the parietals above the frontal bone, throwing the vertex far back, is one of the marked features of primitive man. Whatever may be said against the Frankfurt standard horizontal plane—and many of the criticisms arise from insufficient experience of its value—it can hardly be disputed that on the average, i.e. in type contours, it is a fair approximation to the "horizontal," remembering that even for the same individual the "horizontal" is only itself a sort of average position. Some plane must be taken to express the marked physiognomic characters conveyed by the idea of a retreating vertex and an elevated vertex. This no nasio-lambda or glabella-lambda line can accomplish. As far as we can find no very definite statement as to how the vertex is to be determined has yet been accepted †. We define the "apex" to be the point of the sagittal suture vertically above the auricular line when the skull is adjusted to the standard horizontal position on the craniophor. The "vertex" is the highest point of the sagittal or medial plane when the skull is in the same position. It is the point of contact of the tangent to the sagittal contour drawn parallel to the nasio-gamma line. From this standpoint we are able to give quantitative measures to the elevation and recession of the vertex relative to the bregma. All we need do is to subtract the indices y/B

^{*} Thus we attempted to reconstruct the Cro-Magnon skull from a knowledge of glabella and bregma. A very poor value of λ was found from '474, but an excellent one when the skull was assumed to be Guanche. In any such reconstructions it is probably desirable to use any suggestion of racial affinity.

[†] See Quain's Anatomy, Vol. Iv. Part I. p. 124 (1915), for example, where the vertex is defined to be the "highest point of the arch of the sagittal section." In the diagram, Fig. 104 of this section, the nasio-lambda line appears to slope downwards instead of upwards and the "vertex" for this position appears to be in front of the bregma. In Fig. 112 the nasio-lambda line is made nearly horizontal and this adds much to the prognathous physiognomic effect aimed at!

and x/B of the vertical and bregmatic subtenses. There results the following table:

	Race			Elevation	Recession
Moriori				2.8	17.1
Eskimo				2.5	17.2
Egyptian,	XXVI	-XXX	Dyn.	1.0	16.1
Congo, Ba				1.0	15.4
English				1.0	14.4
Guanche				0.9	13.4

The Cro-Magnon cranium stands between the Eskimo and Egyptian with a recession of 17·2 and an elevation of 1·5. Owing to the flatness of the skull in the neighbourhood of the vertex, the values of the recession can only be looked upon as approximations. Far more racial determinations are desirable before conclusions can be drawn, but undoubtedly these measures of the elevation and recession of the vertex suffice to differentiate those races like Moriori and Eskimo in which a receding sagittal crest is a marked feature.

As a last feature of the sagittal section we may consider the angle between the nasio-lambda line and the standard horizontal. We have found no case of the depression of this line below the nasio-gamma line; the racial elevation is always about 9° to 13°. We have:

	Race			Slope of Nasio-lambda Line
Moriori				13°-5
Cro-Magnon	•••	• • •		12°-6
Eskimo				12°·3
English	• • • •			10°.5
Guanche				10°·3
Congo, Ferdi	inand	Vaz,	1864	9 \circ \cdot 9
Congo, Bate	telu			. 9°.9
Egyptian, X	XVI–2	XXX	Dyn.	8°·4

Thus we again see the Moriori and Eskimo at the top. It might be thought accordingly that the elevation and recession of the vertex in Moriori and Eskimo was due to a mere tilt of the cranium. The reply to this is that there is an actual physical ridge, there being actual concavity in some cases of the parietals on either side of the sagittal suture.

A useful piece of work would be to add the basion, the inion, the opisthion and the suborbital and auricular points to Crewdson Benington's contours—they are given on his individual tracings; so that racial comparisons might be made of the lower portion of the cranium from his sagittal type contours.

7. On Mean Values found from Type Contours. We now turn to the second problem relating to the type contours: How far can we be certain of mean values obtained from them? We may note several general points before we proceed to

Fig. III. Moriori Type Vertical Contour. 3. (33 skulls.)

Fig. IV. Moriori Type Vertical Contour. Q. (21 skulls.)

Fig. V. Moriori Type Horizontal Contour. &. (33 skulls.)

Fig. VI. Moriori Type Horizontal Contour. Q. (21 skulls.)

1)

	,
	,

details. After all the values have been averaged, some error is almost invariably introduced in plotting, especially as the contours have to be somewhat thickened up for the engraver; thus readings should be made to the *middle* of the contour boundary. But even then with the greatest care the engraver seems to find it difficult to reproduce to exactly the same size; however strict the injunctions may be we rarely find the engraver's final result to agree absolutely with the plotted contour. There may indeed be as much as a millimetre difference. In deducing new indices therefore it is well to read off the diagrams, disregarding the numbers placed upon them and take the ratio of lengths thus read. We will now turn to the type contours. Let us consider first the glabella-occipital length. We ought to be able to get this exactly from the sagittal mean sections, and approximately from the horizontal sections. There results by measurement:

Mean glabella-occipital Length L.

	М	ales	Females		
	No.	Value	No.	Value	
Direct Measurement From Sagittal Contour	35 33	186·9 186·5	22 21	178·6 178·3	
From Horizontal Contour	33	185.4	21	177.3	

That the horizontal contour does not give the same result as the sagittal is to be anticipated, for the horizontal line through the glabella does not necessarily pass through the exact occipital point, but the measurement on the sagittal section should theoretically agree with direct measurement. Is the slight difference due in this case to the fact that one or two skulls could not be used for type contours? Unfortunately the type crania in the earlier cases were not finished so fully in the occipital region as the present samples, but I give the following examples:

Mean glabella-occipital Length L for Males.

Race	English		Egyptia -XXX	n, XXVI X Dyn.	Congo,	Batetelu	Gaboo	n, Bantu
	No.	Value	No.	Value	No.	Value	No.	Value
Direct Measurement From Sagittal Contour From Horizontal Contour	137 100 100	186·9 186·8 185·9	100* 100 100	184·1 184·4 183·5	50 41 41	177·8 178·4 177·5	50 50 50	179·5 177·9 177·6

^{*} The 100 of crania to which direct measurement was applied were not absolutely the same as the 100 selected for contouring. Fawcett gives 185·1, MacIver 184·5 for prehistoric Egyptians.

I think we may conclude from these results that:

- (i) It is needful to add about 1 mm. to make the measurement on the horizontal contour agree with that on the sagittal contour.
- (ii) Unless the occipital and glabella are reconstructed with great accuracy, we may have an average error of something like 0.6 mm. in determining the glabella-occipital length from the sagittal section.

Of course the maximum breadth B cannot be read off on the horizontal section; the temporal breadth should be something greater than the minimum frontal breadth; it is for 3s 95·5 and for 9s 92·3 against minimum frontal breadth, 3s 95·3 and 9s 94·0. I am unable to account for the defect of 1·7 in the females except by the difference of errors of reading with callipers and reading with a scale on the diagrams*. Probably it would be best in future contour drawings with the Klaatsch to mark off specially the temporal ridges, as one is apt in turning a sharp point on the contour to bring the side of the needle rather than its point into contact with the ridge, but I do not think this would lessen the dimensions; such a lessening might arise from shear of the plasticine on which the skull is bedded, if too great pressure were applied. Whatever the source of the error, the lesson must be to test each individual contour against the available individual measurement before proceeding to the type contour.

I now pass to the transverse section. In drawing this we pass from "auricular point" to "auricular point," the "auricular line" being defined as the tangent to the upper borders of the external meatus. We have been forced to the conclusion that when the skull rests on the Ranke craniophor, the "auricular line" corresponding to the top of the plugs (wedge type, not conical type) does not coincide with the auricular line determined by joining the upper borders of the external meati as marked on the transverse contour. The ear wedges have to be thrust some distance into the auditory meatus† and thus their horizontal tops are considerably below the line joining the upper borders. They are of course not as low as the line joining the "centres" of the external meatus. Thus it comes about that we can get three auricular heights. The one from the centre of the auricular passages is that usually determined on the living, and by field workers on craniological material; the one given by the contour tracer is that which we ought to find in strict accordance with the Frankfurt Concordat, and the one actually found in laboratory work with a craniophor is only strictly in accordance with the Concordat, when the external meatus has an upper surface, actually horizontal and accurately passing through the uppermost point of the border of the auditory external meatus.

We now turn to the type transverse contours and note in the light of the above remarks the auricular heights:

^{*} The cranium which it was not possible to contour had a large frontal breadth, but its omission only reduces the mean to 93.8 mm.

[†] In order that the skull may be stable on the craniophor.

Moriori Auricular Height OH.

	1	Male	Female		
	No.	Value	No.	Value	
Measured on Craniophor Measured on Transverse Contour	 34 33	117·5 109·5	22 21	115·1 108·8	
Measured on Sagittal Contour	 33	116.5	21	112.4	

Let us examine similar data for other races:

Male Auricular Height OH.

- Race	English		$\begin{array}{c} \operatorname{English} & \begin{array}{c} \operatorname{Egyptian}, \mathbf{XXVI} \\ -\mathbf{XXX} \ \mathrm{Dyn}. \end{array} \end{array}$		Congo, Batetelu		Gaboon, Bantu	
	No.	Value	No.	Value	No.	Value	No.	Value
Measured on Craniophor Measured on Transverse	135	114-6	100	113.6	47	113-9	?	?
Contour	100	111.5	100	110.2	41	112.0	50	113.6

It will be seen that there is not much comparative material, but in all cases the craniophor auricular height is in excess of the transverse contour height. Dr Benington was more successful than I have been in making his type transverse contour approach the auricular height of the craniophor measurement*, but even he may be 2 to 5 mm. in defect. My determinations from the sagittal contour are in better agreement with my craniophor measurements, but may be 2 to 3 mm. divergent, while the transverse contour differs by 6 to 8 mm. I attribute these big differences to the very different manner in which the auricular point is determined (i) when the skull is on the craniophor, (ii) when it is orientated by auricular points and apex, (iii) when it is orientated by nasion, bregma and lambda. In the latter case in particular there is no certainty that the auricular line is perpendicular to the plane of the paper. In (ii) the auricular point is reached by a stile arriving from the apex, in (iii) by a stile adjusted from the basal side of the orientated skull, and there is far more personal equation in its determination than may be at once realised. It is clear, I think, that determinations of the auricular height from the transverse type contour are of small value. But I doubt very much whether the auricular height as found on the Ranke craniophor accords well with the definition of the Frankfurt concordat, or indeed whether

^{*} It is possible that the top of the auricular passage is less nearly horizontal in the case of the Moriori than in the races which Dr Benington dealt with.

the "auricular line" is capable of sufficiently close definition*. At any rate the transverse contours need clearer determination at their lower terminals. In further work it might be valuable to place upon them the projections of the basion, suborbital and alveolar points.

I have not taken directly the interauricular breadth of my Moriori skulls. Read off from the transverse contours, I find: σ s, 125·2, and φ s, 117·6, which agree fairly well with Scott's measurements, namely σ s, 126·8, and φ s, 118·5, although mine for both sexes are consistently less.

I made an attempt to ascertain the circumferences from the contours and found:

Circumference	Male		Female	
	By Tape	From Contour	By Tape	From Contour
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$316 \cdot 1$ $522 \cdot 8$ $126 \cdot 0$ $122 \cdot 4$ $121 \cdot 0$ $369 \cdot 4$	300·1 (316·1) 522·0 125·7 122·9 118·9 367·5	310·0 502·6 121·4 117·4 116·0 354·8	297·3 (309·6) 501·0 121·6 117·4 110·0 349·0

After the contour measurements for Q are placed in brackets the results which would be reached by adding to the contour arc twice the difference in the auricular heights. The agreement is then very close, showing that the divergence is solely due to difference in position of the auricular line and not to shape of contour. The results on the whole are fairly close; the occipital arc is the worst, and I have possibly not accentuated sufficiently the ridges of the occipital and inionic regions \dagger .

I now give (Table VI) a number of other characters which can be read off the type sagittal contour with comparison of their measured values. On the whole the agreement is not bad. Indeed it is sufficiently good to suggest that with the experience now gained an improved technique would enable the sagittal type section to be directly used as a means of determining the customary racial characters of the skull, or that at all events this section would serve as a valuable control method for verifying the mean values determined by direct measurement and arithmetic. The measurements of greatest divergence are:

- (i) The foraminal length. The type contour exaggerates it by 2 mm. about for men and 4 mm. for women. But the draughtsman has plotted in the case of the female skull the opisthion with an abscissa of 44.6 instead of 46.6 mm. from the gamma. Clearly the error observed in the occipital arcs is largely due to this displacement of the opisthion 2 mm. in the male and 4 mm. (2 of which are by
- * It is proposed to follow this matter up by actually continuing the tracing of the transverse section into the auditory meatus to the limit of the Klaatsch tracer's possibilities and comparing with the craniophor auricular heights.

[†] See, however, the remarks later on this point.

Moriori Crania. Typical Male Skull, No. 765^{45} . N. facialis.

			÷
			č
			•

Moriori Crania. Typical Male Skull, No. 765 45 . N. occipitalis.

	·	
	·	

Moriori Crania. Typical Male Skull, No. 765¹⁹. N. lateralis.

	1
	Ì
	ı
	į
	Ì
	h
	ě
	á
	ä
	ı
	ă
	1
	ì
	1
	J
	I
	1

Moriori Crania. Typical Male Skull, No. 765^{10} . N. occipitalis,

		,	

Moriori Crania. Typical Male Skull, No. 76525. N. lateralis.

Moriori Crania. Typical Male Skull, No. 765 25 . N. basalis.

Moriori Crania. Typical Female Skull, No. 765. N. lateralis.

Moriori Crania. Typical Female Skull, No. 765³². N. lateralis.

	·	

Moriori Crania. Typical Female Skull, No. 763. N. verticalis.

Moriori Crania. Typical Female Skull, No. 763. $N.\ basalis.$

	·	

 ${\it Moriori~Crania.}~~{\it Male~Skull,~No.~765^5.}~~{\it Marked~asymmetry~of~for amen~magnum.}~~{\it N.~occipitalis.}$

		·	
			•

		,
	·	

Moriori Crania. Male Skull, No. 762. Ossiele of coronal suture; occipital bathrocephalic in character. N. lateralis.

		·	

Moriori Crania. Male Skull, No. 762. Ossicles of the lambdoid suture. N. occipitalis.

Moriori Crania. Male Skull, No. 76527, with epipteric. N. lateralis.

	-	

Moriori Crania. Male Skull, No. 765^{27} . Massive glabella. N. facialis.

		. !

Moriori Crania. Skull, No. 765^{17} , with marked bilateral paraoccipital processes articulating with atlas. For a unilateral case: see Biometrika, Vol. v. p. 104, Plate X.

Moriori Crania. Male Skull, No. 7652, illustrating fracture of left ramus of mandible. N. lateralis, R. side with sound ramus.

					•
				•	
	•				
				•	
			•		
		•			

Moriori Crania. Male Skull, No. 7652, illustrating fracture of left ramus of mandible. N. facialis, showing asymmetry produced by the injury.

·			

Morioii Crania. Male Skull, No. 7652, illustrating fracture of left ramus of mandible. N. lateralis, L. side with healed fracture and dwarfing of ramus and perigonal region.

•		
	·	

		Ma	le .	Fem	ale
Characte	r	By Cranial Average	By Type Contour	By Cranial Average	By Type Contour
F		182.0	182-2	176-1	175.8
I.'		185.6	185.6	177.8	178-2
H		135.9	135.4	132.8	131.4
LB		105.6	106.0	102.3	101.5
G'H		76.4	77.0	70.0	71.1
GB		103.2	101.0	96.6	97.5
fml		35.3	37.2	$34 \cdot 4$	38.5
Oc I		$62 \cdot 2$	$62 \cdot 1$	$64 \cdot 2$	$64 \cdot 2$
Frontal Ind	lex	21.6	19.4	21.9	$21 \cdot 1$
N4		64°.9	64°.8	65°.7	66°·3
A4		71°-8	71°⋅9	$73^{\circ} \cdot 6$	$72^{\circ} \cdot 2$
B4		43°-4	$43^{\circ} \cdot 2$	40°⋅7	41°.5
PL		84°-7	88°-0	84°.5	86°-8

TABLE VI. Measurements from Sagittal Type Contours.

draughtsman's error) in the female. I take it that in the measurement of the foramen with the dividers the tendency is to measure the inside border of the foramen, but with the Klaatsch contour tracer to stop just short of the edge. It seems to me reasonable to suppose that if the basion and opisthion were first marked off as points and the foraminal length then compared with actual measurement, we should insure not only the exactitude of the foraminal length, but of the occipital arc.

(ii) The profile angle. Here the difference is $3^{\circ}\cdot 3$ in the males and $2^{\circ}\cdot 3$ in the females; this is serious. I take it to arise from a divergence in the determination of the alveolar point (i) with the sagittal contour vertical and using the goniometer, and (ii) with the sagittal contour horizontal and using the Klaatsch. But I must reserve the discussion of the point until further experiments have been made. The fundamental triangles are in quite good accordance, and accordingly the evil may lie in the determination of the auricular point, when the skull is off the craniophor. We note how closely the occipital indices deduced from the contours approach those obtained from the measurement of occipital arc and chord. Indices from the contours were taken as i = occipital subtense/occipital chord. Then if I be the occipital index as defined by

$$I = 100 \frac{S_3}{S^{'}_3} \sqrt{\frac{S_3}{24 \left(S_3 - S^{'}_3\right)}} \, ,$$

it is easy to deduce that

$$I = 100 \left(\frac{1}{2}i + \frac{1}{8i}\right).$$

Biometrika xI

The occipital indices so far obtained are:

	Male	\mathbf{Female}
English (Moorfields) .	 58.5	59.2
Moriori	 $62 \cdot 2$	64.2
Gaboon, Bantus .	 68.3) 60.5	$69.2 \atop 67.0$ 68.1
Congo, Batetelus .	 $\frac{68 \cdot 3}{68 \cdot 8}$ $68 \cdot 5$	67.0

The smaller the index the smaller is the radius of curvature of the occipital arc in relation to its chord, i.e. the occipital is more rounded. The order shows that the English have most, the Negro least occipital development, and that the Moriori male stands nearer to the European than to the Negro.

The Frontal Index is on another footing. If the nasio-bregmatic chord and are be given, i.e. S'_1 and S_1 , then

$$I_f = 100 \frac{S_1}{S'_1} \sqrt{\frac{S_1}{24 (S_1 - S'_1)}}$$

gives the frontal index in the form of the ratio of the radius of curvature of the frontal arc to the frontal chord. To obtain this index the distance from nasion to bregma along the chord should be measured with the callipers. Not having measured this, I took the values from the contours which should be extremely close to the measured values as the terminals are very definite points. The results were:

Males,
$$68.7$$
; Females, 67.9 .

If now we wish to replace the index by $i_f = 100 \times \text{subtense/chord}$, we must deduce i_f from

$$i_f = 100 \left(\frac{I_f}{100} - \sqrt{\left(\frac{I_f}{100} \right)^2 - 25} \right).$$

There resulted the values $21\cdot6$ and $21\cdot9$ to compare with the direct contour values of i_f , $19\cdot4$ and $21\cdot1$. The reason for the excess is clear: it is due to the exaggeration of the length of the frontal arc (treated as a circular arc) owing to the massive glabella, more divergent in the case of the male than the female*. On the other hand if we take English males, we find from arc and chord measurements of the frontal $I_f = 70\cdot1$ leading to $i_f = 21\cdot0$, which is in closer accord with $22\cdot2$, the direct value of the subtense to chord index, thus indicating that with less glabellar prominence, the results of the two methods would be more nearly equal and would more closely justify the assumption of the approximate circularity of the frontal arc†. On the whole if the frontal curvature is to be determined by direct measurement, i.e. not by contour drawing, it will be desirable to adopt a modified form of Merejkowsky's simometer‡. It would not be hard to devise, but it would have to be considerably larger, and the subtense would have to be obtained by contact—it would not necessarily be at the bisector of the chord.

^{*} Had we supposed the arc to be catenary rather than circular the values (see *Tables for Biometricians and Statisticians*, p. 64) would have been 22·7 and 23·1, still more divergent. A parabolic arc was found to be even less successful.

[†] Tasmanian aborigines (Berry and Robertson, R. S. Edin. Proc. Vol. XXXI. Table p. 60) give for combined sexes, from I_f (64:91), $i_f = 22:33$.

[‡] Biometrika, Vol. vIII. p. 317.

To sum up: the comparison we have made suffices to show that cranial type contours can be of great service; they are justified by the generally good concordance they give when tested against average measurements of the skull made in the ordinary manner. But if they are to serve for the purpose of accurate measurement and for more than a rough comparison of race with race, we think a considerably improved technique will be essential and if, as we believe, it is desirable to compare the contours of the individual crania step by step with their actual measurements, then the contour drawing will not relieve us from the usual craniometric processes, but at first serve only as a control. In particular the difficulties which have arisen in our own case centre especially round: (a) a better agreement in the position of the auricular point as determined (i) by the craniophor and (ii) on the transverse and sagittal contours; (b) in the better location of the opisthion and alveolar point on the sagittal contour.

These do not seem substantial difficulties, but they need practice and caution. The basion can always be inserted from the nasio-basionic length and basio-bregmatic lengths (LB and H); the opisthion from the foraminal length and the lambda opisthionic chord (fml and S'_3). The alveolar point is then determined by the upper face height (GH') and the profile length (GL). To avoid the contour determination of the auricular point, we might mark the apex (A) of the individual skull when on the craniophor as well as the gamma. Then on the type contour by drawing a line through the average apex perpendicular to the average N_{γ} , and plotting off along this line the mean auricular height (OH), we should obtain an auricular point which would agree with the cranial measure ents. The parallel to N_{γ} through the auricular point thus determined would give the standard horizontal plane, and the profile angles by contour and measurement should now coincide.

A marked feature of the type Moriori sagittal contours for both male and female is evident on inspection—the auricular point is vertically above the basion. It is not true for individual crania, but it may be true for type crania (i.e. on the average) for other races than the Moriori. If so the vertical through the basion would give the apex and the auricular point could be determined from the mean auricular height, and control would be easier to establish. In general the basiauricular line as an approximate or average vertical of the head deserves consideration*.

^{*} It is proposed shortly to observe skull by skull the difference between the contour and the direct measurements with a view to improving technique. The English male sagittal type contour when the basion and alveolar points were added as above suggested gave a profile angle of 86°·3, according reasonably with the measured angle 86°·1, but the same method applied to the Congo Batetelu cross-section only gave a profile angle of 81°·2 as against 82°·8 measured directly on the crania. The actual marking of apex and gamma when the skull is on the craniophor and the transfer of these marked points to the contour will undoubtedly aid in ascertaining what is needful to bring contour measurement and direct measurement systems into full unison. At the same time it must be remembered that the characters of a mean or type contour cannot be demonstrated theoretically to coincide absolutely with the means of characters not used in constructing the contour.

8. On the Moriori Mandible. A difficulty arises in treating mandibles in general from the fact that they are usually very few in number, often separated from the skulls, and then difficult to sex, and further that as many writers neglect them altogether there are few data for comparative purposes*. The present material contains only eleven mandibles and of these one certainly did not belong to the skull with which it was associated. Four were female and seven were male. Scott has fourteen mandibles, twelve male and two female. In the case of the Maori he has 24 male and seven female mandibles. In the following table I have added Scott's data to mine for the Moriori and compare results with Macdonell's for English, Fawcett's for Naqada Egyptians, Koganei's for the Aino, and a few scattered results for Negro races.

TABLE VII. Measurements of the Mandible.

Race		Moriori			Maori			Aino	
Sex	ð	Ŷ.	3+2	ð	9	3+2	₫ .	φ	♂+₽
Bicondylar Width Bigonal Width Height at Middle Incisors Mental Distance	124·1 106·4 35·3 51·6	114·8 101·6 30·7 49·1	122·3 105·3 34·2 51·0	127·2 104·5 34·5 50·5	120·9 97·3 29·7 49·1	125·8 102·8 33·4 50·2	102·0 33·8 	95·6 — 32·6 —	99·5 — 33·4 —
Total Numbers (round)	19	6	25	24	7	31	60	35	95

Race	English	Gab	oon, Ba	ntus	Northern Negro	Fuegian	Egyp	tian, Na	aqada
Sex	♂ +♀	8	9	3+2	र्द	3+9	ð	2	3+₽
Bicondylar Width Bigonal Width Height at Middle Incisors Mental Distance	113·2 95·4 30·8 43·7	112·6 94·3 32·7 45·4	110·0 90·1 30·5 44·3	111.6 94.4 31.8 44.9	117·0 97·2 —	120·6 103·4 35·4	110·5 93·6 32·9 44·4	106·4 87·6 31·6 43·1	108·2 90·4 32·2 43·7
Total Numbers (round)	140	29	20	49	16	5	50	60	110

Now these results, slender as are the numbers, seem of extreme interest. All comparison of the English and Aino mandible with that of the Moriori is now out of place. The Moriori, Maori and Fuegian are the only mandibles with a bicondylar width over 120 mm. and a bigonal width over 100. But the most

^{*} The Laboratory has in hand a series of many hundred Egyptian mandibles on which a much fuller system of measurements has been made. It is hoped to reach more definite criteria for sexing from this material.

marked differentiation of the Moriori and Maori from those of other races is the distance apart of the foramina mentalia which is over 50 cms. It is a misfortune that we have not this distance for the Fuegian mandibles, in order that we might ascertain whether it is usual for heavy large mandibles to have a mental distance of these dimensions, or whether it is a special racial character in Moriori and Maori. Judged by the general massiveness of mandible the racial order is:

Moriori and Maori—Fuegian—Northern Negro—English—Gaboon Bantu— Egyptian—Aino.

Taken in order of depth of chin, we have:

Fuegian-Moriori-Maori-Aino-Egyptian-Gaboon Bantu-English.

Lastly, if we class these races by the index $100 \times \text{bigonal width/bicondylar}$ width, which to some extent measures the verticality of the ramus, we have the order:

Moriori (86·1)—Fuegian (85·7)—Gaboon Bantu (84·6)—English (84·3)—Egyptian (83·6)—Northern Negro (83·1)—Maori (81·7)—Kaffir (81·0).

These orders are not very illuminating except as grouping the primitive races of the southern hemisphere together by massiveness of mandible, and showing the Moriori with the most vertical, the Kaffir with the most sloping ramus. It is clear that two racial types of skull may approach each other fairly closely, while there can at the same time be a wide difference between their mandibles.

9. Description of and Remarks on the Photographic Plates of Moriori Crania. Plates II, III and IV show a typical Moriori male cranium, No. 76545. Plate II gives the norma facialis and indicates the high nose, the massive glabella, the flattened frontal and receding temporals. Plate III, the norma lateralis, left profile, indicates not only the same last three points, but the post-bregmatic depression followed by the sagittal crest, and further the massive mandible with vertical ramus. Plate IV, the norma occipitalis, marks the pentagonal form of this aspect as well as the generally massive character of the Moriori skull. The apex of the "pentagon" is the result of the sagittal crest.

Plates V and VI, No. 765¹⁰, give another typical male cranium. Plate V, the *norma lateralis*, right profile, shows well the characteristic frontal region and the marked sagittal crest, also general massiveness in the occipital, inion and mastoid regions. Plate VI, the *norma occipitalis*, brings out, in a still more marked manner than even Plate IV, the sagittal crest and indicates well the flattening of the parietals on either side of the sagittal suture.

Plates VII and VIII are again photographs of a male skull, No. 765²⁵. Plate VII, the *norma lateralis*, left profile, is an endeavour to catch the marked temporal line and the recession of the temporal bone behind it, which gives the characteristic aspect to the horizontal contour. Plate VIII gives the *norma basalis* and indicates well the large and rotund character of the *foramen magnum*, although the foraminal index of this cranium does not reach the mean value. The heavy inion ridge is to be noted.

Plate IX, No. 765, and Plate X, No. 765³², give the norma lateralis, left and right profiles respectively, of typical female crania. We see the same features as in the male, the massive frontal, marked temporal lines, receding facies temporalis, and the elevation and recession of the vertex produced by the sagittal crest. These features are less emphasised than in the male, but are in striking contrast to the female characters of less primitive races.

Plates XI and XII provide the *norma verticalis* and *norma basalis* of a typical female, No. 763. In Plate XI we see the pear-shaped vertical aspect*, and in Plate XII the characteristic palate, and the asymmetrical foramen.

Plates XIII and XIV further illustrate in a male cranium, No. 765⁵, the racial characteristics. Plate XIII shows in the *norma basalis* a marked asymmetry of the foramen as well as the general massiveness of the base. Plate XIV, the *norma lateralis*, right profile, gives the usual primitive factors of massive frontal sinuses, receding forehead, sagittal crest and vertical ramus; but the vertex in this case while markedly elevated does not recede; as the sagittal contour of this cranium indicates it is practically at the apex.

Plates XV and XVI give norma lateralis, left profile, and norma occipitalis of a male skull, No. 762. Besides all the usual racial features of which the depression of the facies temporalis is especially marked, we see a rarely occurring ossicle of the coronal suture, and a protrusion of the occipital almost amounting to bathrocephaly. Plate XVI indicates the source of this in the conglomeration of ossicles in the lambdoid suture.

Plates XVII and XVIII reproduce another male skull, No. 765²⁷, with massive frontal, receding forehead, depressed *facies temporalis* and sagittal crest. Plate XVII, the *norma lateralis*, left profile, shows an epipteric†. Plate XVIII, the *norma facialis*, indicates how much of the frontal bulge is really due to glabellar protrusion, and how little nasal resemblance the Moriori has to the Negro.

We conclude this series of photographs with reproductions of two crania of some interest. Plate XIX, No. 765¹⁷, shows a cranium with marked paraoccipital processes articulating with the atlas. Macdonell has figured in Plate X of his memoir on the Liverpool Street English crania; a case of unilateral paraoccipital process of a like character, the present Moriori instance is bilateral.

Plates XX, XXI and XXII of a male skull, No. 765², illustrate how without surgical aid recovery from a serious injury is possible in a primitive people. The

^{*} The pear-shaped cranium of Plate XI should be compared with the pear-shaped cranium Plate XI of Macdonell's paper, Biometrika, Vol. v. p. 104. The reader will understand at once what we mean by the heavy temporal lines and the depression of the facies temporalis in the Moriori. Indeed, if the reader will compare the photographs of the norma verticalis in Macdonell's two papers (Biometrika, Vol. III. p. 216, and Vol. v. p. 104) on the English skull, with our Plate XI, he will appreciate why the Moriori horizontal type contour differs so essentially from the English horizontal type contour. I regret that I have not provided more Moriori photographs illustrating this essential difference. In the Moriori crania the norma verticalis shows the temporal ridges, in the English they rarely appear at all.

[†] The curved dental arch is also worthy of note.

[‡] Biometrika, Vol. v. p. 104.

Biometrika, Vol. XI, Parts I and II

ofile

GL

REMARKS

- Basilar synchondrosis. 3rd molars still in alveolus. Small epipterics on R. Infra-orbital suture meets cillary suture R. and L. Flattening on both sides of sagittal suture. Bulging of parietals. Flattening of
- th. Sutures open. Flattening of obelion. Sagittal crest.
- 104.5 ondrosis. Sutures open. Malar marginal processes R. and L. Small ossicles in lambdoid suture. Infraures R. and L. Sagittal crest. Flattening of obelion. Ossicle near R. asterion.
- Sutures open. Infra-orbital sutures R. and L. Sagittal crest. Flattening of obelion. Narrow head with
- 100 |ar synchondrosis. 3rd molars still in alveolus. Very asymmetric foramen. Sutures open. Bulging parietals.
- 97.5 als. Sutures open; remaining teeth good. Curious bony bridge on R. of foramen. Many wormans in famoe. Bulging parietals. Flattening of obelion.

 94.5 ninence with highly receding forehead. Sagittal crest. Ossicle in coronal suture. Great complication of lambdoid suture. Infra-orbital suture meets malar maxillary suture R. and L. Asymmetric foramen. Large
- 103 utures R. and L. Sutures open. No 3rd molars. Large shallow palate. Torus palatinus. Small ossicle in Bulging glabella. Marked malar marginal processes. Marked inion ridge. Incisura crotaphiticosuture. us on R.
- 98 crest. Bulging parietals. Marked inion. Sagittal suture almost entirely obliterated, coronal suture obliterated. Bulging glabella. Marked malar marginal processes.

 104 Fluttening of obelion. Bulging parietals. Marked malar marginal process on R.
- 99 stoids. Teeth good. Sagittal suture almost entirely obliterated. Lambdoid suture becoming obliterated.
- tlar marginal processes R. and L. Ridge on parietals R. and L. Deep palate.

 103 forehead with bulging glabella. Asymmetric flattening of frontal bone. Bulging parietals. Numerous in lambdoid suture. Symmetric flattening of parietals each side of lambdoid suture.

 d., especially face and base. Very flat head with very bulging parietals. Sutures very open.
- 98peets malar maxillary suture R. and L. Teeth very worn. Small epipterics R. and L. Sutures very open.
- at R. pterion. Bulging at mid-sagittal.

 103ng, with slight depression. Coronal and sagittal sutures much obliterated. Considerable absorption of n. Heavy inion ridge. Mandible fractured.

 102ull. Sutures open. Teeth good, but bad abscess of bone round R. canine. Anterior supra-mastoid tubercles Bulging parietals. Flattening at obelion.

 108nead. Infra-orbital suture meets malar maxillary suture on R. Sagittal suture considerably obliterated.
- inion. Marked malar marginal processes. Mid-sagittal crest.
- 104 forehead, and high sagittal crest. Sutures open. Some absorption of alveolus. Anterior sagittal bulging. ılar marginal process on R. Asymmetric foramen.
- 9aead. Sagittal crest; bulging parietals with some depression. Bulging occipital. 10obliterated. Infra-orbital meet malar maxillary sutures R. and L. Epipteric on R. 21 mm. long. Receding
- ulging parietals. Marked malar marginal processes R. and L.

 10la. Receding forehead with sagittal crest. Depression at obelion. Sutures very open. Some absorption

 Infra-orbital suture on L. Ossicle at lambda (18 × 18). Small epipteric on R.
- 10forehead. Infra-orbital suture on R. Teeth good. Sutures becoming obliterated at pterion and obelion. lambdoid suture. Heavy inion ridge.
- creceding forehead. Curious high mid-sagittal crest. Bulging occipital with heavily marked inion ridge. coming obliterated. Ossicle at lambda. Some depression of parietals.
- 10tures R. and L. Marked malar marginal process on R. Flattening at obelion. Bulging parietals. Sutures lightly obliterated. Epipteric on R. (25 mm. long).
- tuture meets malar maxillary suture R. and L. Marked malar marginal processes. Bulging parietals; high l crest. Sutures open. Teeth worn.
- 15al bulging. Teeth much worn. Curious ridge on occipital base. Flattening at obelion. Aural exostosis
- pped superciliary ridges. Low receding forehead. Infra-orbital sutures R. and L. Coronal suture open; sure becoming obliterated. Many ossicles at lambda, and in lambdoid suture. Occipital bulging. Heavy y marked supra-mastoid tubercles R. and L.
- astoids. Flattening of obelion. Very heavy skull. Receding forehead. Malar marginal processes R. and s open. Small epipteric on R.

mbdoid suture. Teeth good. Para-occipitals, especially the left, are large. Two tubercles on the basi-occipital.

tla. Receding forehead. nigh sagittal crest. Asymmetric occipital bulging. Marked malar marginal processes. Small epipteric R. and L.

		pacity and W	8		Length					Arcs				Face	Nose)	Orb	it	· Pa	alate and	Profile	Fore	men		Mandible							Indices							Angles			
No. Se	X	C W. i	in grs. F	L' L	В	B' H 0	$H \mid LB \mid$	Q Q	Q' S	S_1 S_2	S ₃ S' ₃	, U	G'H	GB J	NH	$NB O_1R$	$O_{\mathfrak{t}}L$	O_2R O_2L	G' ₁	G_1	G_2 GL	fml	fmb G	$H = w_1$	w_2	h ₁ z	z Oc	I B/L'	H/L'	B/L H	//L B/H	G'H/GB	NB/NH O	O_2/O_1 O_2/O_2 O_2/O_3 O_3/O_4	G_1 G_2/G_1	$\frac{fmb}{fml}$	NL AL	B 4	θ_2	θ_1	PL ·	Remarks
758 Ch	ld	d 4	407 170.5	170.5 170.	5 134 8	9 125 11	0.5 94.5	299 29	99 341	117 115	109 92	5 481	59 8	83.5 115?	47.5	25 40	39	35 34	40?	42? 2	9 87:	35	29.	d d	d	d a	d 62·	·ı 78·59	73·31	78.54 73	3·27 107·20	71.06	52-85 8	37.40 87.5	50 69.52	83.33	54°·1 77°	9.8 38°·1	10°·2	27°·9	88° 7	Very young. Basilar synchondrosis. 3rd molars still in alveolus. Small epipterics on R. Infra-orbital suture meets malar maxillary suture R. and L. Flattening on both sides of sagittal suture. Bulging of parietals. Flattening of
759	1280	(1278)	660 174	176 176	135	9 132 11	0 101	295 29	95 352	119 122	111 98	493	68 9	94 126.5	? 52.5	25 43.5	42.5	37.5 36	45.5	48 3	6 92	35.5	32.5 10	8 114	99	27 46	67.	2 76.70	75.00	76-70 75	;·00 I02·27	72.34	47.05 8	85.17 85.3	35 75.00	9i·26 6	52°·o 76°	9.9 410.1	9°∙1	32°·0	86° \	obelion. Very good teeth. Sutures open. Flattening of obelion. Sagittal crest.
760 You	ng∂	d	608 180	184 184	136 9	5 132 11	7 109	318 31	14 358	120 123	115 100-	5 512?	73	97 127.5	56	25 45	45	39 39	50	52 4	.0 104-5	37.5	31 (d d	d	d d	65.	·5 73·91	71.74	73.91 71	103.03	75.10	44.64 8	86.28 86.2	76.62	82.57	66°-9 73°	°·0 40°·1	12°·9	27°·I	86° I	Basilar synchondrosis. Sutures open. Malar marginal processes R. and L. Small ossicles in lambdoid suture. Infra-
7601 9	1230	0 (1235)	605 169 .	172 172	136 8	6.5 133 11	4 101	300 30	00 349	120 119	110 98	480	72	94 127	54.5	22 41	40?	38 37.5	49	53 3	5 103	30	29.5	d d	d	d d	d 69.	4 79.07	77:44	79.07 77	·44 102·10	76·8o	40.37 9	3.75 92.6	66.04	97·01 7	71°-8 66°	°·6 41°·6	14°-4	27°·2	81° 1	orbital sutures R. and L. Sagittal crest. Flattening of obelion. Ossicle near R. asterion. Teeth good. Sutures open. Infra-orbital sutures R. and L. Sagittal crest. Flattening of obelion. Narrow head with
760° 9	1410		505 m, 590) 175.5	175 176	135	5 132 11	4.5 100.5	314 31	350	122 117	111 100	500	67 8	88.5	48	25 42	40	37.5 36	49	50.5	00 ن آ	d	33 103	3 105	95.5	30.5	71.	5 77.14	75.43	76.70 75	102-27	75.71	52.08 9	0.50 89.2	70.89	d ϵ	58°∙2 73°	°·ı 38°·7	8°-9	29°.8	82° Y	bulging parietals. Young. Basilar synchondrosis. 3rd molars still in alveolus. Very asymmetric foramen. Sutures open. Bulging parietals
761 4	1420			172 173	143	0 139.5 11	9 103	325 32	26 353	127 111	115 100	504	73.5	06 136	55.5	23 43	43.5	35 36	48	53 3.	5? 97.5	35	30	d d	d	d d	d 65.	83.14	81.10	82.66 80	0.63 102.51	69.34	41.59 9	0.50 81.0	66-28	85.95	54°·1 72°	.8 43°·1	τ3°·2	29°·9	86° I	Bulging parietals. Sutures open; remaining teeth good. Curious bony bridge on R. of foramen. Many wormians in lamb
762 d	1360	0 (1368)	625 182.5	188 189.	5 136 8	9 127 10	8.5 98	295 29	99 372	121 129	122 99.	5? 528	74	99.5 133	57	24 46	43	39 38	53	55 3	9.5 94.5	33.2	30	d d	d	d d	<i>t</i> ₅₈ ⋅	·I 72·34	67.44	71.80 66	94 107.25	74*37	42.25 8	87.50 84.3	71.82	89.57	64°∙6 70°	°·2 45°·2	120.8	32°·4	83° G	doid suture. Bulging parietals. Flattening of obelion. Glabellar prominence with highly receding forehead. Sagittal crest. Ossicle in coronal suture. Great complication o
763	2 7760	(===0)	6			00																																				ossicles in lambdoid suture. Infra-orbital suture meets malar maxillary suture R. and L. Asymmetric foramen. Larg palate. Slight torus palatinus.
/63	1 1100	0 (1159)	670 172	175 175	133.5	8 128.5 11	4 100	311 30	346	115 123	108 91	489	67	95 126	50	24.2	42.5	34.5 35.5	52.5	56 3	8 103	33.2	30.5	d d	d	d d	61.	76.28	73.48	76.28 73	103.81	70.53	48.60 8	3.33 84.3	39 68.20	90-91 7	73°•o 68°	'·3 38°·7	120.7	26°·0	81° I	Infra-orbital sutures R. and L. Sutures open. No 3rd molars. Large shallow palate. Torus palatinus. Small ossicle in lambdoid suture. Bulging glabella. Marked malar marginal processes. Marked inion ridge. Incisura crotaphitico
764 d	1545	5 (1539)	672 185	188 189	146.5	3 132.5 11	6 102	310 3:	377	133 124	120 99	530	82.5	08 136	61	26 45	44.5	37.5 38.5	51	54 4	.0 98	38	31 12.	4 122	106	31 52	2.5 59.	o 77·81	70.47	77:40 70	110.41	76.48	42.48 80	83.5	74.07	82.01	53°·ı 68°	·ı 48°.8	14°.9	33°·9	83° F	buccinatoris on R. High sagittal crest. Bulging parietals. Marked inion. Sagittal suture almost entirely obliterated, coronal suture
765	1426		837 184	185 185	143	6 142.5 12	2.5 107	327 33	376	128 130	118 103	519	71.5	95 127	53.2	25 41	41.2	36.5 36	48	51 3	8 104	38	33.5	d d	d	d	l 65.	9 77.30	76.91	77.30 76	91 100.49	75.05	46.73 8	7.16 89.2	6 74.70	87.63	58°-1 72°	.5 39°·4	10°·5	28°·9	83° S	becoming obliterated. Bulging glabella. Marked malar marginal processes. Sutures open. Flattening of obelion. Bulging parietals. Marked malar marginal process on R.
(B. D.)	1300	, (1300)	677 182	186 187	140 10	129.5	7.5 107	315 3	300	125 120	115 97	517	73.5	98 135	00.5	24 43	44.2	37 38	40	47.5 4	99.5	36.5	31	d d	d	d d	61.	4 75°27	69.51	74.87 69	108.27	75.05	39.80 8	85.65 85.8	85.89	85.39	59°·7 66°	.3 44°.0	220.7	21°·3		Very large mastoids. Teeth good. Sagittal suture almost entirely obliterated. Lambdoid suture becoming obliterated Marked malar marginal processes R. and L. Ridge on parietals R. and L. Deep palate.
(B. D.)		d	d 176	183.5 183.	.2 133.2 5	1 135	1 108	299 29	351	128 106	117 101	504	08 10	03 137.5	54	25 44	43.2	36 d	51	54 3	7 103	37.5	31.2	d d	d	d d	63.	8 72.64	73.67	72.64 73	98.59	66.02	46-30	d 81.8	82 68.52	84.45	58°•0 75°	37°-c	8°·o	29°•0		Very receding forehead with bulging glabella. Asymmetric flattening of frontal bone. Bulging parietals. Numerou wormians in lambdoid suture. Symmetric flattening of parietals each side of lambdoid suture.
(B. D.)	77	d	$d \mid d \mid$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	d	$d \mid d \mid$	a a		d 337	120 107	110 d	480	d	d d	d	$d \mid d$		$d \mid d$	d	d	d d	32	29	d d	d	d d	d	d	d	d	d d	d	d	d d	d	90.63	d d	d	d	d		Very damaged, especially face and base. Very flat head with very bulging parietals. Sutures very open.
7651	1320	0 (1320) (+ 1	592 176 m, 675)	176 177	.2 138	4.2 132 11	5 102	313 3	359	125 119	115 99	504	76 10	02 129	57	27 44.5	43.5	35 35	46	50 3	5.2 68	31	30 118	8.5 116	109	35.5 46	63.	6 78.41	75.00	77.75 74	·37 104·55	74.31	47:37 8	79.1	70-80	96.77	54°-5 71°	°·0 44°·5	17°•0	27°·5	88° I	Infra-orbital meets malar maxillary suture R. and L. Teeth very worn. Small epipterics R. and L. Sutures very open Depression at R. pterion. Bulging at mid-sagittal.
765° 6	1348		812 181·5 m, 895)	183.5 183.	5 150 10	1 136 12	108	330 3	330 364	135 120	109 97	532	80.5	96 136	59?	27 44	44	38 37:	5 51	54 3	4.2 103.2	30.5	30.2	6 126	104	32? 51	ı 69·	6 81.74	74.11	81.74 74	.11 110.29	83.75	45.76 8.	34.38 86.3	64.25	99.34	54°·8 70°	°.7 44°.5	т7°∙т	27°·4	88° I	Parietal bulging, with slight depression. Coronal and sagittal sutures much obliterated. Considerable absorption of alveolar rim. Heavy inion ridge. Mandible fractured.
765° d	1470	0 (1472)	(050 180 m, 1200)	182 183	150	2 140.5 12	106	33I 3	328 373	124 122	127 108	531	77	09 137	55	25 43.5	5 42.5	37 36	55	58 4	2 102.5	33	32 120	6 128.5	108	34.5 52	2 62.	82.42	77.08	81.97 76	·66 106·91	70.82	45.62 8.	85.0	72.66	95.78	55°•8 70°	°·8 43°·4	110.2	32°·2	82° \	Very heavy skull. Sutures open. Teeth good, but bad abscess of bone round R. canine. Anterior supra-mastoid tubercle R. and L. Bulging parietals. Flattening at obelion.
765⁴ d	1410		712 178 m, 849)	182.5 183	142 10	2 131.5 11	4 101	310 3	369	131 125	113 96	528	77.5	01.5 144	. 58-5	27 45	45	37.5 37	53	59 3	8 108	32.5	31 128	8? 130	114	34 49	9.5 62.	77.85	72.09	77.60 71	-85 107-98	76.25	46.23 8	83.1	64.41	95.09	73°-3 63°	°·4 43°·3	16°·6	26°·7		Receding forehead. Infra-orbital suture meets malar maxillary suture on R. Sagittal suture considerably obliterated Projecting Injon. Marked malar marginal processes. Mid-sagittal crest.
765⁵ d	1410	0 (1406)	590 179	180 182	.5 138	2.5 133 11	7 104.5	313 3	353 353	123 124	106 95	510	74 10	01 136	57	27 45	45	36 35	52	53.5 3	7.5 104.5	d	32	d 121	103	37 49	70.	76-67	73.89	75.65 72	:-91 103-76	73.06	47.37 7	8.12 80.0	69.81	d 6	59°∙3 69°	°·5 41°·2	16°·5	24°.7	86° V	Very receding forchead, and high sagittal crest. Sutures open. Some absorption of alveolus. Anterior sagittal bulging Marked malar marginal process on R. Asymmetric foramen.
765 ⁶ 6	1630	0 (1625)	727 190	193 194	.5 148 9	6 140 12	106	318 3	387	131 129	127 103	545	78	02 138	60·5	27 45	43 46	37.5	48	49.5	9 99	36 36	29 ($\begin{pmatrix} d & d \\ d & d \end{pmatrix}$	d	d d	57	76.68	72.54	76.17 72	105.71	76-47	44.95 8	87.21 82.8	30 79.19	81.11	52°-8 72°	3 44° ·9	11°.7	33°·2	84° I	Receding forehead. Sagittal crest; bulging parietals with some depression. Bulging occipital. Sutures much obliterated. Infra-orbital meet malar maxillary sutures R. and L. Epipteric on R. 21 mm. long. Receding
700	1540	0 (1320)	-002 104	100 190	147	2.5 720 13	16 105	312 2	255 255	T2T T20	112 05	5 550	76	10:5	57	25.5 46.0	46	38 30	52	560.5 2	8 100	25.5	28	a a	4	<i>a a</i>	59.	9 78-19	72.07	77.37 71	100.40	07.57	45.01 7.	75.00	62.97	78.01	73	5 42 4	0-	-00 -		forehead, bulging parietals. Marked malar marginal processes R. and L.
765°	1200	0 (1273)	700 170	103 103	141	0 132	105	323 3	333	702	113 93	303	75	105 1405	57	25 5 40 5	12:5	34 34	32	50 5 5	8.5	33 3	2.5	a a		a a	, 00.	77.05	72.13	77.13 72	100-81	08-95	44.73	94.40 82.2	55 07.49	78.89	71	43.7	15.7	28-0	· 1	Bulging glabella. Receding forehead with sagittal crest. Depression at obction. Sutures very open. Some absorption of alveolus. Infra-orbital suture on L. Ossicle at lambda (18 × 18). Small epipteric on R. Low receding forehead. Infra-orbital suture on R. Teeth good. Sutures becoming obliterated at pterion and obelion
765	1300	0 (1301)	729 178.5	102 102	'5 133	133	104	307 3	305	125	131 105	500	60 -	132.5	54	2/ 4.5	- 433	10.5	49.5	32 3	100	34 3	2015	a a			57.	73-08	73.08	72-91 72	.91 100.00	70.15	50.00 7	79.12 75.5	73.08	90.08	72	40.0	1112	29*-4		Ossicles in lambdoid suture. Heavy inion ridge.
765 ¹⁰ 6		d	697? 185	189 190	134	9 137 17	15 110	299 3	300 375	125 134	110 95	520	66	02.5	54.2	43.3	431	40.5	.0	u 3	98	34.5	30.2		a	d a	58.	70.90	72.49	70.53 72	97.81	65-49	47.88 9	93.0	02 d	d (585.8 715	7.6 39°·6	14.4	250.2	İ	Very narrow receding forehead. Curious high mid-sagittal crest. Bulging occipital with heavily marked inion ridge Sutures becoming obliterated. Ossicle at lambda. Some depression of parietals.
76511	1230	0 (1244)	667 173	177 178	139.5	4.2 133.2 1	15 103	317 3	346	120 112	114 98	498	00 1	05 131	52	27.5 43	43	30 37	40	50 3	100	30.5	30-5	$d \mid d$	d	d a	63.	·i 78·81	75.36	78.45 75	104.57	62.86	52.50 8	86.05 88.3	78.00	83.33	58°·I 73°	,.8 38°·1	140.2	23°-9		Infra-orbital sutures R. and L. Marked malar marginal process on R. Flattening at obelion. Bulging parietals. Suture becoming slightly obliterated. Epipteric on R. (25 mm. long).
76512	1362	4 (1366)	647 175	181 182	140	3 135 11	107	320 3	318 361	117 122	122 100	513	75	08 144.5	58	25 46	40.5	37 30	51	54 4	7 101.5	34	29	$d \mid d$	d	d d	d 64·	9 77.35	74.59	76.92 74	103.70	69-44	43.10 2	77.43 80.0	00 87.36	85.88	54°·8 73°	0.0 42°·2	110.0	31°·2	84° I	Infra-orbital suture meets malar maxillary suture R. and L. Marked malar marginal processes. Bulging parietals; high mid-sagittal crest. Sutures open. Teeth worn.
76513	1445	5 (1425)	625 182	187 187	143	7 132 11	106	318 3	320 370	125 123	122 102	5 532	80.5	04 143	62	25 44	44.2	37 37	49	52 4	102	35	31	$d \mid d$	d	d	d 61.	·5 76·47	70-59	76.47 70	108-33	77:21	40.19 8	33.15 84.0	9 76.53	88-57	64°•3 70°	°·I 45°·€	17°-4	28°•2	87°-5	Anterior sagittal bulging. Teeth much worn. Curious ridge on occipital base. Flattening at obelion. Aural exostosi on the L.
76514	1420	0 (1430)	670 180	186 187	148	135	15 103.5	318 3	318 368	124 111	133 110	5 522	83 1	08 144	62	26 47:	5 46	39 38	48	55 4	2 101	35	29	$d \mid d$	d	d d	d 59.	-6 79.57	72-47	79.14 71	109.79	77:03	41.94 8	32.61 82.1	76.00	82.86	64°·0 67°	°-8 48°-2	13°-2	35° • 0	81° H	Heavily developed superciliary ridges. Low receding forchead. Infra-orbital sutures R. and L. Coronal suture open sagittal suture becoming obliterated. Many ossicles at lambda, and in lambdoid suture. Occipital bulging. Heavy
76515	3 131	8 (1335)	845 177	181 181	140	2 137 11	18 99.5	321 3	320 365	126 120	119 102	507	77	04 127.5	55.5	24.5 41.	5 42.5	35.5 36	46.	49 3	35 96	37	29	d d	d	d	d 63	.0 77:35	75.69	77:35 75	5.69 102.19	74-04	43.96 8	34.63 85.0	95 71.02	78-80	64°·2 69°	46°·2	17°·6	28°-8	870	inion. Very marked supra-mastoid tubercles R. and L. Very heavy mastoids, Flattening of obelion. Very heavy skull. Receding forehead. Malar marginal processes R. and
1	ž 138	So (1377)	747 183.5	т86 т88	137	5 130.5 1	16.5 106	317 3							!					53 3	35 100.5			d d	d	d	d 62	73.66	75.00	72.94 74		1 ' '	45.09 8	31:40 81:8	82 65.78	83-79	63°.8 71°	0.0 45°·2	16°.2		'	L. Sutures open. Small epipteric on R. Bulging glabella. Receding forehead
765 ¹⁶ 765 ¹⁷	3? 137	8 (1368)	635	183 184	.5 143	5 133·5 II	100	295 2	295 363	121 122	120 103	522	74.5	01 141 99 138	58	26 43	43	38 38	46	49 3	38.5 94	35	30 33	d d	d	d			72.95		2.28 107.11			87.9			63°·0 72°	°·0 45°·0	16°·2 12°·0	33°•o	84°	Very marked high sagittal crest. Asymmetric occipital bulging. Marked malar marginal processes. Small epipteric R. and L. Complex lambdoid suture. Teeth good. Para-occipitals, especially the left, are large. Two tubercles on the basi-occipital
				1]							<u> </u>	-		,	1			The me	asurements	s are ta	bulated t	to the n	earest 0:5	millime	res the	indices	are give	en for the	a full ma	ggurements	s, using E	rnet's Tak	hles									,

The measurements are tabulated to the nearest 0.5 millimetres; the indices are given for the full measurements, using Ernst's Tables.

Capacity and Weight

(1001) 1001

1445 (1425)

1420 (1430)

CONTRACT!

160

76513

76514

7651

76517

-

W. in grs. . 7. Child 758 135 1280 (1278) 759 1230 (1235) 760^{1} 350 314 1410 (1397) 760° 761 m. 765 188 1360 (1368) 8 762 1160 (1159) 22 : 185 765 1380 (1365) 1016 (B. D.) 1015 (B. D.) 10154 1320 (1320) 1651 1348 (1349) 7653 (1406) 1045 765 765° ThT 1540 (1520) 1250 (1273) 765* 7659 3 177 1230 (1244) 76511

183

139.5: 116.5

Biometrika, Vol. XI, Parts I and II

REMARKS

Itals R. and L. Sutures open. Teeth worn. Palatine bridge on R. Marked occipital ridge. Ossicle at lambda. epipteric on L. Marked malar marginal processes. tal suture on L. Marked malar marginal processes. Small epipteric on R. Open complex sutures. Small le on occipital base. Slight depression at obelion. ry skull. Infra-orbital suture on L. meets malar maxillary suture. Coronal and sagittal sutures much obliterated, ossicles in lambdoid suture. Marked malar marginal process on R. Depression at obelion. Very small mastoids. ossicies in lambdoid suture. Marked malar marginal process on K. Depression at obelion. Very small mastoids, irn. Sutures considerably obliterated. Marked malar marginal processes. Depression at obelion. Lalar marginal processes. Receding forehead. Sagittal suture considerably obliterated. Bulging occipital. good. Small epipteric on R. Bulging parietals. Ossicle in lambdoid suture. Ital suture on L. Slightly bulging glabella. Coronal suture becoming slightly obliterated. Inion very pronounced. absorption of alveolus. Sagittal crest marked. Flattening of obelion. Sutures open. Teeth Some parietal bulging. Some parietal bulging.
ding forehead. Sutures open. Heavy inion ridge. Anterior supra-mastoid tubercles R. and L.
vy skull. Sagittal suture almost entirely obliterated; coronal and lambdoid suture becoming obliterated. Marked ridge. Flattening of obelion. Teeth good but worn. Deep palate. ling forehead. Infra-orbital sutures R. and L. Anterior supra-mastoid tubercles R. and L. Epipterics R. and L. palate; worn teeth. Group of ossicles at lambda.
y receding forehead. Considerable parietal absorption. Coronal and sagittal sutures much obliterated. Large ids. Bulging occipital. Teeth very worn. malar marginal processes. Sutures open. Ossicle at lambda. Anterior supra-mastoid tubercles R. and L. ig occipital. Depression at obelion. y receding forehead. Sagittal suture much obliterated. Teeth worn. suture entirely obliterated. Marked mid-sagittal crest. Coronal suture fairly open, lambdoid suture much rated. Epipteric on R. Anterior supra-mastoid tubercles R. and L. Marked inion. ry worn. Sutures slightly obliterated. tal suture meets malar maxillary suture R. and L. Slight post-coronal constriction. Sutures open, Marked marginal processes. Slight asymmetry of foramen magnum. pen. Infra-orbital suture meets malar maxillary suture R. and L. Depression at pterion on R. Teeth good. No 3rd molars. Sutures open. Flattening at obelion. Epipterics R. and L. Palatine bridge on L. st-coronal constriction. Bulging glabella. Sutures open. Infra-orbital suture on L. Basilar synchondrosis, of skull extremely asymmetric. Mid-sagittal crest. Third occipital articular surface. ital suture meets malar maxillary suture R. and L. Small epipteric on L. Sutures open. Small ossicles in al, lambdoid and sagittal sutures. Bulging occipita.

very open. 3rd molars not fully developed. Epipterics R. and L., large on L. (36.8 × 11.0 mm.). Ossicle on R. abda (25 × 26.5 mm.). Bulging occipital.

ng. Basilar synchondrosis. Infra-orbital suture meets malar maxillary suture on R.; not on L. Malar marginal sses R. and L. Small ossicles in lambdoid suture. Basilar synchondrosis. 3rd molar on L. not yet erupted. Small epipteric on R. Flattening of obelion, ling forehead. Bulging parietals. Sutures open. Some bulging of occipital. ng. Basilar synchondrosis. Some of 2nd teeth not yet erupted, still in alveolus. Surface of bone much mutilated. epipteric on R. and L. Many ossicles in lambdoid suture. Ossicles very open. Infra-orbital sutures R. and L. siderably damaged. Sutures very obliterated. y damaged. Sutures very open.

eding forehead. Bulging and projecting parietals. Markedly good set of teeth in both lower and upper jaws.

ed malar marginal processes. Coronal and sagittal sutures considerably obliterated. Occipital bone asymmetric.

becoming obliterated. Parietal depression. Teeth extremely worn. Some absorption of alveolus. Bad abscess ne on L. maxillary. Mid-sagittal projection.

and coronal suture much obliterated. Teeth very worn. Low receding forehead. Bulging parietals. Marked inion.

ital suture meets malar maxillary suture R. and L. Coronal and sagittal sutures becoming obliterated. Some ning of obelion. Marked malar marginal processes. Teeth extremely worn and decayed.

ry worn; sutures becoming slightly obliterated. Infra-orbital suture meets malar maxillary suture on L. Marked r marginal processes. Slight bulging at mid-sagittal. Bulging parietals. sicle on L. occipital, 51 × 31 mm. Heavy projecting inion. Small epipteric on L. Sutures becoming obliterated prion; and obelion. Teeth very worn.

	(Capacity an	nd Weight	,		Lengt	hs					Ares				Face		Nose			Orbit		Pal	ate and P	rofile	For	amen		Ma	ndible							Indices							Ang	gles		
No.	Sex	C	W. in grs.	F 1	Z' L	В	B' H	ОН		Q Q'	s s	$S_1 \mid S_2 \mid$	83 8	S'3 U	G'H	GB	J	NH N	$B O_1$	R O ₁ L	O_2R		G' ₁	G_1 G	g GL	fml	fmb	GH .	w_1 i	v_2 h_1	zz	Oc I	B/L' 1	H/L' B	B/L H/	L B/H	G'H/GB	NB/NH	$egin{array}{c c} O_2/O_1 & & & \\ L & & & \\ \end{array}$	O ₂ /O ₁	G_2/G_1 $\frac{fm}{fm}$	$\frac{b}{l}$ $N \angle$	AL	BL	θ_2	θ_1	PL REMARKS
76518	ð I	440 (1444)	785	185 18	7 188	142.5	90 140	119	III	322 322	376 I	126 120	130 10	4 522	2 80	98.5	138	6r 2	5.5 47		37	37	51.5	56 36	106.5	30:5	20			${d}$		56.0	76.00	74.87 75	5.73 74*	49 101.64	81.01	41-94	85.51	79.14	64.29 95.	70 65°°	2 71°·5	43°-3	18°-8	24°·5 9	100° Infra-orbitals R. and L. Sutures open. Teeth worn. Palatine bridge on R. Marked occipital ridge. Ossicle at lambda.
76519	Q I	(1425)	605	182.5 18	5 186	139.5	99 132	2.5 114	108	315 313	358 1	27 115	116 10	3 522	2 71	103	133	55.5 2	3 47	43 3	24:5	3/	5T	54.5	107	36.5	22	d	d	d	d	68.7	75.41	71.56	5.00 71.	18 105-36	68-93	51.89	79:53	77.95	73.40 87.	91 70°-	2 71°·3	38°-5	10°-7	27°-8 8	Small epipteric on L. Marked malar marginal processes. Infra-orbital suture on L. Marked malar marginal processes. Small epipteric on R. Open complex sutures. Small tubercle on occipital base. Slight depression at obelion.
76520	ð? I	390 (1404)	899	183 18	4 185	146	96 140	0.5 120	106-5	325 325	374 I	127 123	124 10	3 526	6 74	100	140	55 2	3 14	43	38	38	50	52 36	101	33	31	d	d	d d	d	59.7	79:35	76.36 78	8-92 75-	95 103.91	73.85	41.82	87.50	86.66	64.49 93.	94 65°·	73°·3	41°.7	10°-7	31°·o 8	Very heavy skull. Infra-orbital suture on L. meets malar maxillary suture. Coronal and sagittal sutures much obliterated. Many ossicles in lambdoid suture. Marked malar marginal process on R. Depression at obelion. Very small mastoids.
76521	Ω?	d	630	180-5 18	5 185	139	102 127	7 118	103	317 317	363 I	123 122	117 0	3 517	7 70.5	04	137.5	52:5	5 42	43	36	25	47	40 41	06	d d	27	d	<i>d</i>	d		56.6	75.14	68-65 79	5.14 68.	65 100.45	74.78	49.42	81.40	83.72	83·26 d	64°·	74°·9	410.1	15°·1	26° 0 9	Many ossicies in lambdoid suture. Marked malar marginal processes. Depression at obelion. Teeth worn. Sutures considerably obliterated. Marked malar marginal processes. Depression at obelion. Heavy malar marginal processes. Receding forehead. Sagittal suture considerably obliterated. Bulging occipital.
76522	ð I	510 (1525)	734	186 18	9 191	140	93 142	2 119	112	311 311	370 1	126 121	123 10	528	8 78.5	109	137.5	58.5	9 46	46	38.5	37.5	52.5	56.5 38	107	4º.5	32	d	$\overset{\omega}{d}$	d d	$ \tilde{d} $	67.9	74.07		3.30 74.	35 98.59	71.87	49.57	81.08	84.06	67.14 79.	02 65°	5 72°·5	42°·0	10°·5	31°·5 8	Heavy malar marginal processes. Receding forenead. Sagittal structer consisterable. Dulging deceptions. Teeth good. Small epipteric on R. Bulging parietals. Ossicle in lambdoid suture. Infra-orbital suture on L. Slightly bulging glabella. Coronal suture becoming slightly obliterated. Inion very pronounced.
765 ²³	오 I	1218 (1216)	654	178 17	9 181	133	97 132	2.5 113	100	297 300	358 1	123 119	116 9	508	8 70	95.5	126?	52 2	8 42	2.5 42	35	36	47	50 35	.5 97	37	30	d	d	d d	d	59.4	74.30	73.96 73	3.48 73.	14 100-45	73.22	53.85	86.11	82.36	70.60 81.	o8 67°∙0	71°·2	41°-8	11°-8	30°·o 8	Same absorption of already Sagittal great marked Flattening of obelian.
76524	₽? I	(1425)	662	181 18	2.5 185	144	95 138	8 117	ioi	313 313	364 1	117 130	117 10	52	1 71	99	132	50 2	6.5 42	41.5	33*5	33.2	48	52 39	101.5	36.5	31	d	d	d d	d	62.4	78-85	75.57 7	7.84 74	59 104.35	71.57	53.00	80-48	79.90	75.00 85.	39 69° 9	9 69°·1	41°·0	100.9	30°• 1 8	Receding forehead. Symmetrical flattening on either side of sagittal suture. Flattening of obelion. Sutures open. Teeth good. Some parietal bulging.
765 ²⁵		1440 (1444) 1680 (1672)	887 88 <i>e</i>	185 18	7 190	140	98 141	1 112.5	5 107	305 307	374 1	130 125	119 10	528	8 76.5	104	143	57.5	7 43	3 45	37	36.5	49	54.5	100	41	33.2	d	d	d d d	d	60.8	74.87	75.40 7	3.68 74	2I 99·29	1 1 2 2 3	46.96	81·02 86·36	85·58 85·90	76.69 81.	71 63°.	73°·3	43°·3	9°·7	33°·6 8	Very receding forehead. Sutures open. Heavy inion ridge. Anterior supra-mastoid tubercles R. and L. Large heavy skull. Sagittal suture almost entirely obliterated; coronal and lambdoid suture becoming obliterated. Marked
765 ²⁷		1360 (1368)	820	100 19	2 182	14/	90 13	7.5 110	103	324 324	359 1	130 123	130 11	34	6 75.5	102	135 3	03.5	4 44	44	30	30	50	52 5 3	90	. 33	30		<i>a</i>	a a		67-6	70 90	75.54	8.57 75	TO 100 90	60:44	41.82	84.23	84.01	77:65 80:	00 70°4	67°.8	42°·2	16°-8	25°·4 8	inion ridge. Flattening of obelion. Teeth good but worn. Deep palate. Low receding forehead. Infra-orbital sutures R. and L. Anterior supra-mastoid tubercles R. and L. Epipterics R. and L.
765 ²⁸	2 1	1300 (1300)	872	170 10	6 107	144	91 13	6.5 119	104	322 324	330 1	125 104	129 10	20.5	733	100.5	137	55 2	3 40	7 40.5	39	39	21.2	53 43	105.2	40	32	a	a	a a	a l	56.8	79.01	50.64	73	20 104 30	60.07	44:07	83:04	80.00	75.56 80.	TO 60°4	71°.0	400.0	13°0	27°·0 8	Large palate; worn teeth. Group of ossicles at lambda. Extremely receding forehead. Considerable parietal absorption. Coronal and sagittal sutures much obliterated. Large
1 .00	o,	a a	, ,	191 19	197	7.50	94 13	05 117	100	311 312	3/0 1	120 122	130 10	25'5 55	75 5	105	728.5	59 2	47	7 40	37'5	30	51	34 3 4	107	3/	33		<i>a</i>	a a	<i>u</i>	50-6	72.45	7.	2.00 09	29 10403	70:41	20.22	87.50	00:70	73:47 04:	20 620	2 730.3	440.3	13°·5	30°-8 8	mastoids. Bulging occipital. Teeth very worn. 87° Marked malar marginal processes. Sutures open. Ossicle at lambda. Anterior supra-mastoid tubercles R. and L.
76529	6	a	904	191 19	193	150	99 14	2 3 119	111.5	340 339	304 1	135	131 9	90.5	4 01	102	130.5	50.5	3 43	3 44	39	30.2	47.5	49 30	103	35.2	33.5		<i>a</i>	a a		54.0	70-13	74.11 7	7/33 /3	5/ 105 41	7941	50:00	8r:6r	87:78	77145 02	720.	75°:0	38°:0	120.7	25°·3	Bulging occipital. Depression at obelion.
765 ³⁰ 765 ³¹	ਹੈ I	a 1640 (1654)	701 982	194 19	8.5 199	150	104 13	7 120	109	324 323 333 333	35 ² 1	132 132 132 145	114 9	98 55.	5 77	100	139	58 2	4.5 43	45 44	39	30.2 41	49	55 39	.2 103.2	5 33.3	30	d	d	d d d	a d	63.4	75.57	59·01 7	5.38 68	84 109.49	76.84	41.89	92.76	88.78	79.42 87.	64 64	o 73°-3	42°·7	11°.7	31°·0 8	83° Extremely receding forenead. Sagittal stutie lines obliterated. Ferral work. 87° Sagittal suture entirely obliterated. Marked mid-sagittal crest. Coronal suture fairly open, lambdoid suture much obliterated. Epipteric on R. Anterior supra-mastoid tubercles R. and L. Marked inion.
765 ³² 765 ³³		1300 (1292) 1180 (1178)	602 565	175°5 17	8 179 170	139 135	93 I30 92 I3	0 11 ₄ 112	103 101·5	304 304 300 300	350 I 340 I	120 120 115 116	110 9	96 50 94.5 48	73 66 69	96 96	134 124	54 2 52 2	5 46 3 43	5 44 3 44	38 37·5	38 36·5	47 45	50 39 49 34	93 92	32·5 33	28 27	$d \atop d$	$d \atop d$	$\begin{pmatrix} d & d \\ d & d \end{pmatrix}$	$d \\ d$	65·6 64·6	78·09 79·29	73·03 7 77·06 7	77·65 72 79·29 77	63 93·53 66 102·96	76·25 71·51	46·38 44·23	85·90 82·95	82·17 86·97	78·20 87 69·39 82	30 61°· 61°·	75°·4 77°·0	43°·5 41°·3	9°•0 . 9°•0	34°·5 32°·3	84°.5 Teeth very worn. Sutures slightly obliterated. Infra-orbital suture meets malar maxillary suture R. and L. Slight post-coronal constriction. Sutures open. Marked malar marginal processes. Slight asymmetry of foramen magnum.
76534	7. -	1360 (1349)	635	180 18	3o 18o	141	88 13	1.5 114	101	304 304	364	124 118	122 10	03.5 50	8 65	93	125	49	6 39	9 39	33	32.5	43.2	44.5 3.	95	34	30.5	d	d	d d	d	61.8	78.22	72.94 7	78-22 72	94 107.2	69·89 75:27	52·84 44·81	83·07 80·93	84·31 83·72	79.55 89	·71 65°·	2 76°·0	38°.8	7°·0 8°·5	31°.8 8	83° Sutures open.
765 ³⁴ 765 ³⁵ 765 ³⁶ 765 ³⁷	Ž I	1200 (1216) 1280 (1273)	417 619	172.5 17	73.5 175	133	95 13	6 117	105	298 298 322 322	342 I	115 116	117 9	99 49	00 72	93 97·5	130	54 2	3.5 4	3 43 4·5 43	39.2	35	44.2	53°5 3°47°5 4°	91	35 32·5	29	d d	d	$\begin{array}{c c} a & a \\ d & d \end{array}$	d d	63.8	82.18	73.24 7 78.16 8	31.71 77	71 105.1	73·99 74·57	42.36	90.70		- T	·21 58°·	3 79°·4		10°.6 7°.0	3- 1	Young. Teeth good. No 3rd molars. Sutures open. Flattening at obelion. Epipterics R. and L. Palatine bridge on L. Slight root constriction. Bulging glabella. Sutures open. Infra-orbital suture on L. Basilar synchondrosis.
	ρ l	1400 (1392)	632	173 17	77.5 177.	5 144.5	93 13.	5 119	105.5.	320 320	362	121 120	115	51	70	94	120	53 2	3.5 4.	3.5 44	37.5	30.2	49	53.5 4	101	33	29.5	a	d			79.2	01.30	70.05	51.30 70	107.0	3 74.57	44.34	02.30	04:05	68.55	59 69	74 0	200.2			Base of skull extremely asymmetric. Mid-sagittal crest. Third occipital articular surface. Infra-orbital suture meets malar maxillary suture R. and L. Small epipteric on L. Sutures open. Small ossicles in
76538	Child	1360 (1349)	504	173 17	73 173	140	90.5 13	0 115	92	312 312	352	119 121	112	93 48	57 61	82		45 2	37	7 37	35	35	42	44 3	89	34	29	d	a		a	59.7	91.01	75.23	75	107.00	9 74-20	44.41	94.59	08.00	00.77 03	79 60%	8 800.3	380.0	60.7	220.2	coronal, lambdoid and sagittal sutures. Bulging occipita. Sutures very open, 3rd molars not fully developed. Epipterics R. and L., large on L. (36.8 × 11.0 mm.). Ossicle on R.
765 ³⁹	Young♀	d	510	185	35 186	143	95 12	6.5 113	96	309 310	367 1	124 106	137 11	11.5 51	7 01	87.5		47	37	7 39	36.2	34	39	41 3	85	38.5	33	d	d	d	d	58.1	77:30	68-38 7	76.88 68	-51 113-0.	4 09.87	55.32	07.40	90.92	76.05	.73 00	820.3	380.0	80.7	300.0	of lambda (25 × 26·5 mm.). Bulging occipital. Very young Basilar synchondrosis. Infra-orbital suture meets malar maxillary suture on R.; not on L. Malar marginal
76540	Child	1320 (1311)	475	174 17	73.2	137	. 89 13	0 115	92 ?	310 310	361	123 126	112	98 48	37 58	86	114.5	44	22.5 39	9 37	32	32	38.5	41 3	5 80	29.5	27	d	d	d d	d	66.0	78.96	74.92 7	79.19 75	105.3	8 07.05	51.13	00'49	02-05	70.34 92	.15 59	0 62 3	36 -7	100.2	3T°10	processes R. and L. Small ossicles in lambdoid suture.
76541	Child	1390 (1387)	485	180 18	183	144	93 12	5 114	99.5	306 307	356 1	123 120	113	95 51	14 68.5	5 89	d	51	24 49	0 39	35	34	47	49 3	94	35.5	32	<i>d</i>	d	d d	d	60.6	79.12	68.79 7	78-69 68	·41 115·0	76.96	47.24	87.18	07.10	70.00 90	.05	73 7	41 3	00.0	31°-8	Receding forehead. Bulging parietals. Sutures open. Some bulging of occipital.
76542	Child	d	422	169 17	70 1.70	133	90 12	112	87	305 304	350 1	118 125	107	94 48	30? 58	88.5	114	43	21 3	8.5 38	35	. 34	38	41 3	78	39	29	d	d	d d	· d	66.3	78.11	75.29 7	78.11 75	.29 103.7	5 65-91	48.00	88.94	90.38	82.43 74	.30 01	2 77 0	41.0	9 2	31.0	Small epipteric on R. and L. Many ossicles in lambdoid suture. Ossicles very open. Infra-orbital sutures R. and L. Skull considerably damaged. Sutures very obliterated.
76543	3??	$\frac{d}{d}$	$\begin{pmatrix} d \\ d \end{pmatrix}$	188	d 192 d 180	d 137.5	98	$egin{array}{c c} d & d \\ d & d \end{array}$	$\begin{pmatrix} d \\ d \end{pmatrix}$	$\begin{array}{c c} d & 3115 \\ d & d \end{array}$		128 147 126 121	$\left egin{array}{c} d \\ d \end{array} \right $	$\begin{pmatrix} d & d \\ d & d \end{pmatrix}$	$d = \begin{cases} 60.5 \\ d \end{cases}$	$\begin{bmatrix} 5? & d \\ d & . \end{bmatrix}$	$\begin{vmatrix} d \\ d \end{vmatrix}$	47.5 ?	$d \mid d$	$\begin{pmatrix} d & 4^2 \\ d & d \end{pmatrix}$	$\begin{pmatrix} d \\ d \end{pmatrix}$	34 d	$d \atop d$	$d \atop d$	$\left[egin{array}{c c} l & d \\ d & d \end{array} \right]$	d d	$\begin{vmatrix} d \\ d \end{vmatrix}$	d d	$d \atop d$	$\begin{pmatrix} d & d \\ d & d \end{pmatrix}$	$\begin{pmatrix} d \\ d \end{pmatrix}$	$\begin{pmatrix} d \\ d \end{pmatrix}$	d d	$\begin{pmatrix} d \\ d \end{pmatrix}$	d 76·39	$\begin{pmatrix} t & d \\ d & d \end{pmatrix}$	d	d	a d	d	d	$d \qquad d \qquad d$		d d	d d	d d	d Skull very damaged. Sutures very open.
765 ⁴⁵	₹.	1370 (1387)	686	174 18	3o 181	139	94 13	2.5 112	99.5	303 303	360	124 111	124 10	07.5 50	06 78	107	135	58.5	4.2	6 45	37	36	50.5	52.5 4	95	5 37.5	30	d 1	121 1	10 32	57	64.3	77.22	73.50 7	76.80 73	.09 105.0	6 72.71	41.23	79.55	80.78	80-38 80	0.42 63°	.8 69.1	47 -1	11 .9	35 2	Marked malar marginal processes. Coronal and sagittal sutures considerably obliterated. Occipital bone asymmetric.
70546	4	1340 (1330)	715	170.5	81 183	130	92.5 14	0 117	104	312 311	368	124 120	124 10	08 50	09 78.5	5 103	138	57.5	26 40	6 47	40	39.5	48	49.5	3 91	36	34.5	117.5	[23.5]	34*	5 50	65.2	76.80	77:35 7	75.96 76	-50 99.2	9 76.21	45.22	83.82	86.96	66.73 95	5.27 57°	·8 75°·1	47°·1	9°·4	31°.7	84°-5 Sutures becoming obliterated. Parietal depression. Teeth extremely worn. Some absorption of alveolus. Bad abscess
765 ⁴⁶	Ŭ	1340 (1330)	(+ m, 819)) 767.5	72 172	136	03 12	6 110	101.5	307 307	344	117 108	110 10	01.5	76	100	127.5	57	22 4:	2 42	37	35	51.5	53 4	98	30	30	119.5	(17 1	02 31	51.5	62.2	79.07	73.26	78.61 72	-83 107-9	76.00	38-94	82.46	88-10	75.00 100	0.00 65°	.o 70°⋅1	44°-9	12°.9	32°·0	83° Sagittal and coronal suture much obliterated. Teeth very worn. Low receding forenead. Building parieties. Market mion.
76547			(+ m, 932	2) 1773	74 775	128	01.5 12	6 116	105	315 315	351	122 111	118 1	00 40	97 67	100	135	52	25 4	5 45	34	33	48.5	52 3	7 98	35	30	104.5	121 1	28	51.5	61.7	79.31	78-27	78.86 78	33 101.3	67.00	48.08	73.45	75.89	71.81 85	5·71 65°	-o 76°⋅8	38°-2	10°·2	28°•o	Infra-orbital suture meets malar maxillary suture R. and L. Coronal and sagittal sutures becoming obliterated. Some flattening of obelion. Marked malar marginal processes. Teeth extremely worn and decayed.
76548	7	1310 (1311)	599 (+ m, 695	(3)	14 1/3 Ra 180	140	03 TA	1.5 121	108	323 323	373	127 125	121 10	04 52	22 78	103	129	56	26 4	4.5 45.	5 38	37	50	53 2	5 102.	5 34	20	d	d	d d	d	63.4	74.87	75.72	74.07 74	98.8	75.87	46.43	80.96	85.40	67.92 85	5·88 64°	·5 72°·2	43°·3	8°-8	34°.5	Tooth rows worn; sutures becoming slightly obliterated. Infra-orbital suture meets malar maxillary suture on L. Marked
76549		1370 (1368)	814	103 10	109	140	702:5	7 121	100	216 216	3/3	130 120	130	13 52	30 73	103	132	51.5	22 4	4 44	36	36	48	51 2	7 04	27.5	31	d	d	d d	d.	64.7	76.06	71.81	75.66 71	105.0	71.06	43.10	81.44	81.82	72.55 83	3·10 63°	.o 73°-0	44°:0	II.o.o	32°·0	malar marginal processes. Slight bulging at mid-sagittal. Bulging parietals. 85° Large ossiele on L. occipital, 51 × 31 mm. Heavy projecting inion. Small epipteric on L. Sutures becoming obliterated
76550	. ♂	1460 (1454)	719	187 1	189	143	103.2	119	101	310 310	, 300	130 120	130 1.	-3 33	73	103	134	J* J	4	7 44	30	30	7	3	. 94	3/3	3*	w				04/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	1300	45 45	, , = 33	15									at pterion; and obelion. Teeth very worn.
								1									1																			· T	7 (3 (7)		'					· · · · · · · · · · · · · · · · · · ·			

The measurements are tabulated to the nearest 0.5 millimetres; the indices are given for the full measurements, using Ernst's Tables.

Cape by and Welch

In Kgrun

1			,,	er som ser iller er		Fig. ()	ga al				Fd 9,9 //	pur Ag edg)		
18	i 'o	\$	17.7	180	B	B'	δ.].	1. 1.	- II.		. 0	X8	No.
47. 6	. 44	. 222	TIL	. 017	01.1			e e, 1			,	144.2		7654
358	313	315	801	ļ.II	132.5	99		61	185	182.5	605	ju, regie	, ît	78519
374	325	325	1 2:001	021	140.5	gú			181	183	668	f		765**
3031	776	317	101	113	127	roz	· 575 T		ıSs.	180.5	630	, <u>}</u>	100	765**
3070	311	33.1	SII.	611	142	93		1.11	6g1	184	734	in the state of	5	7652
358	300	197	1001	113	132.5	70,		: <	179.	178	1.53	$\lim_{t\to\infty} e^{-t} \cdot 1 = S(\frac{t}{t}, t)$	7	765-1
304	313	. 118	IOI	117	SET		, _i . T	- 72,	182.5	181	662	-:11.	1 31	765=:
379	307	305	105	121	137.5	96		001	161	168	885	1 (1) (1) 12 (1) (1)		765°° 765°°
567.	344	344	3.01	QH	137:5	TQ	+, 1	/ 1	182	176	830	** () () () ()	, E	76511
378	SIE	311	CCI	711	156.3	+6	*	, \$ · £	-961	101	872	,,	:	765
384	1339	3.50	5-111	Ģ11	1.1215	66	5 . 1	1	102	161	Po6	١,		76529
3 ·			< ,	9. 11.4		(* /	* a		£83	1771	707	English open		765 ³⁰ 765 ³¹
03.50 30#6	300	304	103	LII	130	93 - 92 -	1 1 7	ω <u>ζ</u> (1 - 7 (1)	178	175.5	602 . 565	1300 (1202)	4	765³°
1.36.1	322	304	105.2	1117 1117 1117	131.5 127.5 136 135	88 89:5 95 - 93 -			177.5	172.5	635 417 632 632	1360 (1349) 1260 (1275) 1360 (1275)	-4-	765*** 765*** 765** 765**
<u>.</u>	-1"	1.13	1 1	115	130	90.2	- 11 1	τ,	173	173	50-1	in more	blu()	76535
- 415	14	300	· 11	113	120-5	95	1,13	Uri	er1	185	org	1	. Youn .	765 "
301	Olf ;	310	922	1115	. 061	68 .	7.1	071	173.5	FZ1	475	1320 (1311)	biil) :	76540
e.	. 1	· d	714	, 11	6-1	F	f-F : :	: 1	182	180	- 58F	1390 (1387)	blid)	7654
350	1001	č0{,	87	11.2	128.	- 00	(C)	0,3	170	r69	422	d	blide (765**
b. 1	3113	h h	j :	5 1 1 1 1 1 1 1 1 1	d d	60 111 ,	5-727 6-137	181 181	\. ` `	1771	1.		1.5	765 ¹³ 765 ¹⁴ 765 ¹⁶
368	SII	312	LOI	117		\$40 ·	o/X	. , 21	€31		775	00-1,001	<i>λ</i> .	76546
	708	t (%)	5.600	011	051	ξω .	egr.	173	(~)	Second ((+ m in +)	(8377) 0377		76547
,	-37	, i	1 1	OII	136	2	48 I :	3,5	ŀ,	. ,	(m 1.1 m)	1310 (1311)	19	76518
!	G. C	£55		121	141.5	ر ن	101.1	. ~ 1	-°.	0	(+ 10.105)	TO BETT OFFI	ő	
	0	O.E	J 17 1	611	135	5:	L T	, , & ,	181	र्≃इ.	,11;	Transpel		765"
			·	-	-									

left ramus of the mandible has been broken right across about the level of the alveolar ridge, possibly sheared across by a chin or side blow. Plate XX shows the right profile with the ramus and right side of the corpus normal; the only very obvious defect being the shortening of the mandible relative to the upper jaw. Plate XXI, the norma facialis, shows the asymmetry produced by the accident, the whole of the lower jaw is tilted. The source of this is explained on examining Plate XXII with the left profile; we see that the ramus has been broken right across, and both corpus and ramus on this side have ceased to develop properly. posterior edge of the ramus is no longer nearly vertical as on the right profile, but slopes forward to a diminutive perigonal region. The whole mandible has, so to speak, been rotated round a vertical axis to allow for the dwarfing of the left side of the corpus, thus causing the upper jaw to protrude as seen in the profiles, and further has been rotated round a medial horizontal axis to allow for the dwarfing of the upper portion of the left ramus; the combination of these two rotations has given the remarkable skew effect produced in the norma facialis. The subject must have had a difficult time during life, but appears to have long survived his original trouble.

10. Conclusions. While I am by no means fully satisfied with this study of the Moriori skull and see many ways in which, if I could restart this investigation, it might be substantially improved, yet I must plead that what I have done has been sufficiently laborious to occupy fully my year's tenure of the Crewdson Benington Studentship. I can only say that experience has taught me certain difficulties which could be rectified should opportunity again offer, and that the detailed account I have given of these difficulties may aid others who plan cranial contour work. Further I hope to have provided an account of the Moriori skull, based on wider data than have hitherto been available; it will, I trust, in the future assist in settling racial affinities as more and more cranial material is reported on in a standardised form. If the racial affinities I find in the Moriori do not wholly coincide with the views of more authoritative anthropologists, they may at least serve as suggestions for the further examination of the primitive races who still or till recently bordered the Pacific Ocean. I feel confident that in the craniology of these races will be found a definite key to the evolution of man in prehistoric times; there have, I believe, been more extensive folkwanderings, possibly rendered feasible by geological changes, than we have yet recognised. Craniological material from the outlying islands, and the fringes of the Pacific continents-if feasible of extinct races-is what one must above all things desire.

MISCELLANEA.

Note on the Probable Error of the Coefficient of Correlation in the Variate Difference Correlation Method.

By A. RITCHIE-SCOTT, B.Sc.

In Biometrika, Vol. x. p. 278, Dr Anderson of Petrograd has given the following expression for the probable error of the correlation coefficient between differences of the mth order.

Probable error of $_{m}r_{xy} = .67449 \,_{m}\sigma_{rxy}$

$$\begin{split} &= \cdot 67449 \, \frac{1 - {}_{m} r^{2}_{xy}}{\sqrt{n - m}} \left\{ \frac{1}{n - m} \left[n - m + 2 \, (n - m - 1) \left(\frac{m}{m + 1} \right)^{2} \right. \right. \\ &+ 2 \, (n - m - 2) \left(\frac{m \cdot m - 1}{m + 1 \cdot m + 2} \right)^{2} + 2 \, (n - m - 3) \left(\frac{m \cdot m - 1 \cdot m - 2}{m + 1 \cdot m + 2 \cdot m + 3} \right)^{2} + \text{etc.} \right] \right\}, \end{split}$$

where m =order of difference,

n = size of original population (i.e. number of years in series of observations etc.).

In this formula the population is supposed to be reduced by unity at each difference taken. It is, however, found more convenient in practice to keep the population constant by taking in an additional observation at each successive operation of taking the difference. If we denote this constant population by n' the expression within the brackets reduces to

$$\begin{split} \frac{1}{n'} \bigg[n' + 2 \left(n' - 1 \right) \left(\frac{m}{m+1} \right)^2 + 2 \left(n' - 2 \right) \left(\frac{m \cdot m - 1}{m+1 \cdot m + 2} \right)^2 + 2 \left(n' - 3 \right) \left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3} \right)^2 + \text{etc.} \bigg] \\ &= 1 + 2 \left(1 - \frac{1}{n'} \right) \left(\frac{m}{m+1} \right)^2 + 2 \left(1 - \frac{2}{n'} \right) \left(\frac{m \cdot m - 1}{m+1 \cdot m + 2} \right)^2 \\ &\quad + 2 \left(1 - \frac{3}{n'} \right) \left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3} \right)^2 + \text{etc.} \\ &= 2 \left\{ 1 + \left(\frac{m}{m+1} \right)^2 + \left(\frac{m \cdot m - 1}{m+1 \cdot m + 2} \right)^2 + \left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3} \right)^2 + \text{etc.} \right\} \\ &\quad - 1 - \frac{2}{n'} \left\{ \left(\frac{m}{m+1} \right)^2 + 2 \left(\frac{m \cdot m - 1}{m+1 \cdot m + 2} \right)^2 + 3 \left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3} \right)^2 + \text{etc.} \right\} \\ &= 2 \phi \left(m \right) - 1 - \frac{2f \left(m \right)}{n'} . \end{split}$$

The series $\phi(m)$ and f(m) have been summed as follows by Professor Pearson:

$$\phi\left(m\right) = 1 + \left(\frac{m}{m+1}\right)^2 + \left(\frac{m \cdot m - 1}{m+1 \cdot m + 2}\right)^2 + \left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3}\right)^2 + \text{etc.}$$

$$\therefore$$
 Multiply both sides by $\left(\frac{\lfloor 2m}{\lfloor m \rfloor m}\right)^2$

$$\begin{split} \left(\frac{|2m|}{|m|m}\right)^2 \phi(m) &= \left(\frac{|2m|}{|m|m}\right)^2 + \left(\frac{|2m|}{|m-1| \cdot |m+1}\right)^2 + \left(\frac{|2m|}{|m-2| \cdot |m+2}\right)^2 + \text{etc.} \\ &= (C_m^{2m})^2 + (C_{m+1}^{2m})^2 + (C_{m+2}^{2m})^2 + \dots (C_{2m}^{2m})^2 \\ &= \frac{1}{2} \sum_{0}^{2m} (C_r^{2m})^2 + \frac{1}{2} (C_m^{2m})^2 \end{split}$$

(since the number of terms is odd)

$$= \frac{1}{2} \left\{ C_{2m}^{4m} + \left(C_{m}^{2m} \right)^{2} \right\}$$

$$= \frac{1}{2} \left\{ \frac{|4m|}{|2m| \cdot |2m|} + \left(\frac{|2m|}{|m| m} \right)^{2} \right\},$$

$$\therefore \quad \phi(m) = \frac{1}{2} \left\{ \frac{|4m|}{|2m| |2m|} \times \left(\frac{|m| |m|}{|2m|} \right)^{2} + 1 \right\}$$

$$= \frac{1}{2} \left\{ \left| \frac{4m}{|2m|} \left(\frac{|m|}{|2m|} \right)^{4} + 1 \right\}.$$

The series

$$f(m) = \left(\frac{m}{m+1}\right)^2 + 2\left(\frac{m \cdot m - 1}{m+1 \cdot m + 2}\right)^2 + 3\left(\frac{m \cdot m - 1 \cdot m - 2}{m+1 \cdot m + 2 \cdot m + 3}\right)^2 + \text{etc.}$$

has the value $\frac{1}{4}m$, a discovery I made when starting to table it. It is a particular case of a more general series which may be summed as follows:

Consider the following identity:

$$\frac{(m+\overline{m-1})^2}{4m} = (m-1) + m \cdot \left(\frac{m-\overline{m-1}}{m+m}\right)^2.$$

Multiply both sides by

$$\left(\frac{m-\overline{m-2}}{m+\overline{m-1}}\right)^2$$
.

Then

$$\frac{(m-\overline{m-2})^2}{4m} = (m-1)\left(\frac{m-\overline{m-2}}{m+\overline{m-1}}\right)^2 + m\left(\frac{m-\overline{m-1}}{m+m} \cdot \frac{m-\overline{m-2}}{m+\overline{m-1}}\right)^2.$$

The process may be continued, thus

$$\frac{(m+\overline{m-2})^2}{4m} = (m-2) + m\left(\frac{m-\overline{m-2}}{m+m}\right)^2 = (m-2) + \frac{(m-\overline{m-2})^2}{4m}$$
$$= (m-2) + (m-1)\left(\frac{m-\overline{m-2}}{m+\overline{m-1}}\right)^2 + m\left(\frac{m-\overline{m-1}}{m+m} \cdot \frac{m-\overline{m-2}}{m+\overline{m-1}}\right)^2.$$

Multiply both sides by

$$\left(\frac{m-\overline{m-3}}{m+\overline{m-2}}\right)^2$$

Then

$$\frac{(m-\overline{m-3})^2}{4m} = (m-2)\left(\frac{m-\overline{m-3}}{m+\overline{m-2}}\right)^2 + (m-1)\left(\frac{m-\overline{m-2}}{m+\overline{m-1}}\cdot\frac{m-\overline{m-3}}{m+\overline{m-2}}\right)^2 + m\cdot\left(\frac{m-\overline{m-1}}{m+m}\cdot\frac{m-\overline{m-2}}{m+\overline{m-1}}\cdot\frac{m-\overline{m-3}}{m+\overline{m-2}}\right)^2.$$

Assume now that this operation has been performed q times and that as a result the following equation is identically true:

$$\frac{\{m - (m - \overline{q + 1})\}^2}{4m} = (m - q) \left\{ \frac{m - (m - \overline{q + 1})}{m + (m - q)} \right\}^2 + (m - \overline{q - 1}) \left\{ \frac{m - (m - \overline{q + 1})}{m + (m - q)} \cdot \frac{m - (m - q)}{m + (m - \overline{q - 1})} \right\}^2 + \text{etc.}$$

Operating as before, we have

$$\frac{\{m+(m-\overline{q+1})\}^2}{4m}=(m-\overline{q+1})+\frac{\{m-(m-\overline{q+1})\}^2}{4m}.$$

Multiplying by $\left\{\frac{m-(m-\overline{q+2})}{m+(m-\overline{q+1})}\right\}^2$ and inserting the value of $\frac{\{m-(m-\overline{q+1})\}^2}{4m}$ we have

$$\begin{split} \frac{\{m-(m-\overline{q+2})\}^2}{4m} &= (m-\overline{q+1}) \left\{\frac{m-(m-\overline{q+2})}{m+(m-\overline{q+1})}\right\}^2 \\ &+ (m-q) \left\{\frac{m-(m-\overline{q+1})}{m+(m-q)} \cdot \frac{m-(m-\overline{q+2})}{m+(m-\overline{q+1})}\right\}^2 \\ &+ (m-\overline{q-1}) \left\{\frac{m-(m-\overline{q+1})}{m+(m-q)} \cdot \frac{m-(m-q)}{m+(m-\overline{q-1})} \cdot \frac{m-(m-\overline{q+2})}{m+(m-\overline{q+1})}\right\}^2 \\ &+ \text{etc.} \end{split}$$

Hence if the expansion be true for q + 1 it will be true for q + 2. But it has been shown true for 1 and 2 and it is therefore true generally.

If now in the expansion for $\frac{\{m-(m-\overline{q+1})\}^2}{4m}$ we put q=m-1, we get

$$\frac{m}{4} = \left(\frac{m}{m+1}\right)^2 + 2\left(\frac{m}{m+1}, \frac{m-1}{m+2}\right)^2 + 3\left(\frac{m}{m+1}, \frac{m-1}{m+2}, \frac{m-2}{m+3}\right)^2 + \dots = f(m).$$

Collecting these results together we may now write the probable error of mrzy

$$= \cdot 67449 \frac{1 - {_{m}r^{2}}_{xy}}{\sqrt{n'}} \left\{ 2\phi (m) - 1 - \frac{m}{2n'} \right\}^{\frac{1}{2}}.$$

Values of the function $(2\phi(m)-1)$ have been calculated for values of m from m=1 to m=20 and are given in the table below.

m	$2\phi\left(m ight)-1$	m	$2\phi(m)-1$
1 2	1·5000	11	4·2282
	1·9444	12	4·4100
$\begin{array}{c} 2\\3\\4 \end{array}$	2·3100	13	4·5845
	2·6265	14	4·7527
5	2·9094	15	4·9151
6	3·1673	16	5·0723
7	3·4059	17	5·2248
8	3·6289	18	5·3730
9	3·8390	19	5·5172
10	4·0383	20	5·6578

After m = 20, the approximate value

$$2\phi(m) - 1 = \sqrt{1.570796(m + .375)}$$

given by Stirling's Theorem is close enough for practical purposes, e.g. m=20, it gives 5.6573 or 5.6578.

On certain Types of Compound Frequency Distributions in which the Components can be individually described by Binomial Series.

By KARL PEARSON, F.R.S.

Certain difficulties with regard to the interpretation of negative binomials, which are of constant occurrence in observational frequency series, have suggested the following investigation.

Consider a number u of binomial series of which the sth is $v_s (p_s + q_s)^n$ and let us suppose a frequency series compounded by adding together the rth terms of all these series, such will be the compound frequency series it is proposed to discuss. We can realise its nature a little more concretely by supposing n balls drawn out of a bag containing Np white and Nq black balls, N being very large as compared with n, or else each ball returned before a fresh draw, while the values of p and q change discontinuously at the $v_1 + 1$, $v_1 + v_2 + 1$, $v_1 + v_2 + v_3 + 1$, etc. draws. We shall take as origin the point at which the sum of the first terms of all the binomials may be supposed to be plotted. S will denote summation to u terms.

Let $N=S(\nu_s)$, and $N\mu_1$, $N\mu_2$ be the moments of the compound system about this origin, $N\mu_1$, $N\mu_2$ its moments about its mean. Thus

$$egin{aligned} N\mu_{1}^{'} &= S\left(
u_{s}nq_{s}
ight),\ N\mu_{2}^{'} &= S\left\{
u_{s}\left(np_{s}q_{s}+n^{2}q_{s}^{2}
ight)
ight\}.\ N\mu_{2} &= nS\left\{
u_{s}q_{s}\left(1-q_{s}
ight)
ight\}+n^{2}\left(S\left(
u_{s}q_{s}^{2}
ight)-rac{\left\{S\left(
u_{s}q_{s}
ight)
ight\}^{2}}{N}
ight)\ &= N\mu_{1}^{'}+rac{n}{N}\left[nS\left\{
u_{s}
u_{s}^{'}\left(q_{s}-q_{s}^{'}
ight)^{2}
ight\}-NS\left(
u_{s}q_{s}^{2}
ight)
ight], \end{aligned}$$

Hence

since $N=S(\nu_s)$. Accordingly, if σ be the standard deviation and m the mean of the compound series, i.e. $\mu_2=\sigma^2$, $\mu_1'=m$, then

$$rac{\sigma^2}{m} - 1 = rac{1}{N} \left(rac{nS \left\{
u_s
u_{s'} \left(q_s - q_{s'}
ight)^2
ight\} - NS \left(
u_s q_s^2
ight)}{S \left(
u_s q_s
ight)}
ight)$$
.(i)

Now suppose we had endeavoured to fit a binomial $N(P+Q)^{\kappa}$ to the compound series, we should have had

$$m = \kappa Q, \qquad \sigma^2 = \kappa PQ,$$

and accordingly have found

$$Q = -\frac{1}{N} \left(\frac{nS \left\{ \nu_s \nu_{s'} \left(q_s - q_{s'} \right)^2 \right\} - NS \left(\nu_s q_s^2 \right)}{S \left(\nu_s q_s \right)} \right), \qquad (ii)$$

$$\kappa = -n \frac{\left\{ S \left(\nu_s q_s \right)^{\frac{2}{3}} \right\}}{nS \left\{ \nu_s \nu_{s'} \left(q_s - q_{s'} \right)^2 \right\} - NS \left(\nu_s q_s^2 \right)} \qquad (iii)$$

Thus, had we attempted to fit a binomial to the heterogeneous series, we should have found Q negative and P greater than unity provided

$$nS \{ \nu_s \nu_{s'} (q_s - q_{s'})^2 \} \text{ be } > NS (\nu_s q_s^2),$$

a condition which will frequently be found to be satisfied, especially if q_s be small and n large.

In the limit let us take $nq_s = m_s$ and q_s vanishingly small, i.e. suppose the sth binomial to be replaced by the Poisson series

$$e^{-m_8}\left(1+m_8+rac{m_8^2}{1\cdot 2}+\ldots+rac{m_8^i}{|i|}+\ldots\right),$$

then we have at once

$$Q = -rac{S\left\{
u_{s}
u_{s'}\left(m_{s}-m_{s'}
ight)^{2}
ight\}}{NS\left\{
u_{s}m_{s}
ight\}}, \ P = 1 + rac{S\left\{
u_{s}
u_{s'}\left(m_{s}-m_{s'}
ight)^{2}
ight\}}{NS\left(
u_{s}m_{s}
ight)}, \ \kappa = -rac{\left(S\left\{
u_{s}
u_{s'}\left(m_{s}-m_{s'}
ight)^{2}
ight\}}{S\left\{
u_{s}
u_{s'}\left(m_{s}-m_{s'}
ight)^{2}
ight\}}.$$

Thus, if two or more Poisson's series be combined term by term from the first, then the compound will always be a negative binomial. This theorem was first pointed out to me by "Student" and suggested by him as a possible explanation of negative binomials occurring in

material which theoretically should obey the Law of Small Numbers, e.g. "Student's" own Haemacytometer counts*. Of course the negative binomial may quite conceivably arise from other sources† than heterogeneity, but if this be the source of its origin in the material of Bortke-witsch, Mortara and McKendrick‡, it is certainly most unfortunate that such material should have been selected to illustrate Poisson's limit to the binomial.

Now we know that the values about the mean of the successive moment coefficients of the binomial are

$$\mu_2 = npq,$$
 $\mu_3 = npq (p - q),$
 $\mu_4 = npq (1 + 3 (n - 2) pq).$ (v)

Further the mean is at a distance nq from the first term p^n . We shall call this distance m.

Let μ_1' , μ_2' , μ_3' and μ_4' be the moment coefficients round the start of each binomial. Then

$$\mu_{1}' = nq, \qquad \mu_{2}' = npq + n^{2}q^{2},$$

$$\mu_{3}' = npq (p - q) + 3npq \times nq + n^{3}q^{3},$$

$$\mu_{4}' = npq (1 + 3(n - 2)pq) + 4npq (p - q)nq + 6(npq)n^{2}q^{2} + n^{4}q^{4}.$$
(vi)

From these equations we deduce

$$\mu_{1}' = nq, \qquad \mu_{2}' - \mu_{1}' = n (n - 1) q^{2},$$

$$\mu_{3}' - 3\mu_{2}' + 2\mu_{1}' = n (n - 1) (n - 2) q^{3},$$

$$\mu_{4}' - 6\mu_{3}' + 11\mu_{2}' - 6\mu_{1}' = n (n - 1) (n - 2) (n - 3) q^{4}.$$

$$a_{1} = \mu_{1}' \text{ for the combined series,}$$

$$a_{2} = \mu_{2}' - \mu_{1}' \text{ for the combined series,}$$

Now let

 $a_3 = \mu_3' - 3\mu_2' - 2\mu_1'$ for the combined series,

 $a_4 = \mu_4' - 6\mu_3' + 11\mu_2' - 6\mu_1'$ for the combined series.

Then we have, if $\lambda_1 = \nu_1/N$, $\lambda_2 = \nu_2/N$:

$$1 = \lambda_{1} + \lambda_{2},$$

$$\frac{a_{1}}{n} = \lambda_{1}q_{1} + \lambda_{2}q_{2},$$

$$\frac{a_{2}}{n(n-1)} = \lambda_{1}q_{1}^{2} + \lambda_{2}q_{2}^{2},$$

$$\frac{a_{3}}{n(n-1)(n-2)} = \lambda_{1}q_{1}^{3} + \lambda_{2}q_{2}^{3},$$

$$\frac{a_{4}}{n(n-1)(n-2)(n-3)} = \lambda_{1}q_{1}^{4} + \lambda_{2}q_{2}^{4}.$$
(viii)

Multiply each equation by q_1 and subtract from that below it and we find:

$$\frac{a_{1}}{n} - q_{1} = \lambda_{2} (q_{2} - q_{1}),$$

$$\frac{a_{2}}{n (n-1)} - \frac{a_{1}q_{1}}{n} = \lambda_{2}q_{2} (q_{2} - q_{1}),$$

$$\frac{a_{3}}{n (n-1) (n-2)} - \frac{a_{2}q_{1}}{n (n-1)} = \lambda_{2}q_{2}^{2} (q_{2} - q_{1}),$$

$$\frac{a_{4}}{n (n-1) (n-2) (n-3)} - \frac{a_{3}q_{1}}{n (n-1)(n-2)} = \lambda_{2}q_{2}^{3} (q_{2} - q_{1}).$$
(ix)

^{*} Biometrika, Vol. v. p. 356, and see also L. Whitaker's examination of these data, Vol. x. p. 48. † Pearson, Biometrika, Vol. iv. p. 209. † For an examination of Bortkewitsch and Mortara's instances see L. Whitaker, loc. cit. pp. 49-66. McKendrick has recently reached Poisson's series (Proceedings of the London Mathematical Society, Vol. XIII. (1914), pp. 405 et seq) without apparently recognising that he was on familiar ground, and has suggested its application to the frequencies obtained by counts of the bacilli ingested by leucocytes. He has fitted his series not by moments, but from the first two terms, and has failed to recognise that a large proportion of such leucocyte counts give also negative binomials.

Hence dividing each equation by the preceding one:

Hence dividing each equation by the preceding one:
$$\frac{\frac{a_2}{n(n-1)} - \frac{a_1q_1}{n}}{\frac{a_1}{n} - q_1} = \frac{\frac{a_3}{n(n-1)(n-2)} - \frac{a_2q_1}{n(n-1)(n-2)}}{\frac{a_2}{n(n-1)} - \frac{a_1q_1}{n}} = \frac{\frac{a_4}{n(n-1)(n-2)(n-3)} - \frac{a_3q_1}{n(n-1)(n-2)}}{\frac{a_3}{n(n-1)(n-2)} - \frac{a_2q_1}{n(n-1)}} = q_2.$$

Writing $q_1q_2 = P_2$ and $q_1 + q_2 = P_1$, we obtain

$$a_{2} - (n-1) a_{1} P_{1} + n (n-1) P_{2} = 0,$$

$$a_{3} - (n-2) a_{2} P_{1} + (n-1) (n-2) a_{1} P_{2} = 0,$$

$$a_{4} - (n-3) a_{3} P_{1} + (n-2) (n-3) a_{2} P_{2} = 0,$$
(xi)

three equations to determine n, P_1 and P_2 .

Eliminating $-P_1$ and P_2 we find:

$$\begin{vmatrix} a_2 & (n-1) a_1 & n (n-1) \\ a_3 & (n-2) a_2 & (n-1) (n-2) a_1 \\ a_4 & (n-3) a_3 & (n-2) (n-3) a_2 \end{vmatrix} = 0, \dots (xii)$$

which expanded gives us the cubic for n:

$$n^3 \left(2 a_1 a_2 a_3 - a_2{}^3 - a_1{}^2 a_4 + a_2 a_4 - a_3{}^2\right) + n^2 \left(-12 a_1 a_2 a_3 + 7 a_2{}^3 + 4 a_1{}^2 a_4 - 3 a_2 a_4 + 4 a_3{}^2\right) \\ + n \left(22 a_1 a_2 a_3 - 16 a_2{}^3 - 5 a_1{}^2 a_4 + 2 a_2 a_4 - 3 a_3{}^2\right) + \left(-12 a_1 a_2 a_3 + 12 a_2{}^3 + 2 a_1{}^2 a_4\right) = 0. \dots (\text{xii})^{\text{bis}}$$

A root of this cubic substituted in the first two equations of (xi) will give P_1 and P_2 and then the quadratic

$$p^2 - P_1 p + P_2 = 0$$
(xiii)

will determine the two values q_1 and q_2 corresponding to the value of n. The first two equations of (viii) then complete the solution by providing λ_1 and λ_2 .

Until the roots of the cubic (xii)bls have been discussed we can only assume that three solutions are possible. As a matter of fact in the examples so far dealt with some of these solutions have usually to be discarded.

For the special case of Poisson's limit to the binomial, we make n indefinitely large, q indefinitely small, and nq = m finite. Hence equations (viii) become

$$1 = \lambda_1 + \lambda_2,$$

$$a_1 = \lambda_1 m_1 + \lambda_2 m_2,$$

$$a_2 = \lambda_1 m_1^2 + \lambda_2 m_2^2,$$

$$a_3 = \lambda_1 m_1^3 + \lambda_2 m_2^3,$$

$$a_4 = \lambda_1 m_1^4 + \lambda_2 m_2^4,$$

$$a_2 - a_1 Q_1 + Q_2 = 0,$$
(xiv)

leading to

$$a_{2} - a_{1}Q_{1} + Q_{2} = 0,$$
 $a_{3} - a_{2}Q_{1} + a_{1}Q_{2} = 0,$
 $a_{4} - a_{3}Q_{1} + a_{2}Q_{2} = 0,$
 $a_{4} - a_{5}Q_{1} + a_{5}Q_{2} = 0,$

if

$$Q_1 = m_1 + m_2, \qquad Q_2 = m_1 m_2.$$

Thus we find:

$$\begin{split} Q_1 &= (a_3 - a_1 a_2)/(a_2 - a_1^2), \\ Q_2 &= (a_3 a_1 - a_2^2)/(a_2 - a_1^2), \end{split}$$

subject to the condition*

$$a_4(a_2 - a_1^2) + 2a_1a_2a_3 - a_3^2 - a_2^3 = 0.$$
(xv)

Hence m_1 and m_2 are roots of

$$m^2(a_2 - a_1^2) - m(a_3 - a_1a_2) + a_3a_1 - a_2^2 = 0.$$
(xvi)

^{*} Of course equations of condition hold for the 5th and higher moments in the case of the two binomial components. But they are of small service as the probable errors of these high moments are usually very considerable.

$$\lambda_1 = rac{{\mu_1}' - m_2}{m_1 - m_2}, \quad \lambda_2 = rac{{\mu_1}' - m_1}{m_2 - m_1}, \ldots (xvii)$$

which determine λ_1 and λ_2 .

It is thus quite easy to resolve a series into the sum of two Poisson's binomial limits provided the roots of the above quadratic are real. As illustration I take "Student's" first count of yeast cells on the 400 squares of a haemacytometer. He found:

No. of yeast cells	0	1	2	3	4	5	Total	
Frequency	213	128	37	18	3	1	400	

giving: mean = $\mu_1' = .6825$, $\mu_2 = .8117$, $\mu_3 = 1.0876$.

From the above values of "Student" I determined

$$\mu_2' = 1.2775, \qquad \mu_3' = 3.0675.$$

Whence

and the resulting quadratic is

$$\cdot 129,194m^2 - \cdot 193,913m + \cdot 055,475 = 0.$$

The roots are $m_1 = .3847$ and $m_2 = 1.1163$, leading to $\lambda_1 = .59,295$ and $\lambda_2 = .40,705$, or, the series has for its two components

$$\nu_1 = 237 \cdot 18,$$
 $m_1 = \cdot 3847,$
 $\nu_2 = 162 \cdot 82,$
 $m_2 = 1 \cdot 1163.$

Calculating out the Poisson's series for these components we have:

No. of yeast cells	0	1	2	3	4	5	6	7
1st Compt. 2nd Compt. Round totals	161·44 53·32 215	62·11 59·52 122	11·95 32·22 44	1·53 12·36 14	·15 3·45 4			·00 ·02
Observed	213	128	37	18	3	1		

The test for "goodness of fit" for these six groups gives $\chi^2 = 2.82$ and P = .73, or the fit is very good. The negative binomial gave P = .52 and a single Poisson's series only P = .04. But the double Poisson's series places of course one constant more at our disposal than the binomial, and we can do still better with a double binomial, as we have four constants and only six frequencies, while the double Poisson has three constants to six frequencies. It is clear that neither of the above components forming 41% and 59% of the total number of cells, and having their means at .3847 and 1.1163 instead of .6825, gives any idea of a dominant constitution in the solution sampled. If in this case heterogeneity accounts for the negative binomial, then the difference of the components is not slight, and the heterogeneity being gross would indicate some considerable failure in technique.

If we assume that the counts with a haemacytometer ought to follow the Poisson distribution, and this seems to be theoretically probable,—then the criterion of the binomial might well be adopted to ascertain the possibility of some failure in technique. The actual binomial in "Student's" first case should be $(\frac{1}{4}\frac{1}{60} + \frac{3}{4}\frac{99}{60})^{273}$ and any binomial with p very small and np = .6825 would effectively represent the series; we could not anticipate getting n = 273 and $p = \frac{1}{400}$ closely from the data, but we might certainly anticipate a positive binomial, if the theory of a Poisson distribution be correct. If on the other hand we say in this and many similar cases that the negative binomial arises from heterogeneity, then it appears to me that we have saved our theory at the expense of our technique. I propose now to test this point further by considering the component binomials. If the theory of heterogeneity be correct, unless it be very

manifold, we might anticipate two binomial components, $\nu_1 (p_1 + q_1)^n + \nu_2 (p_2 + q_2)^n$, with n positive and large, both q_1 and q_2 being small, while n_1q_1 and n_2q_2 would be approximately ·3847 and 1·1163, the frequencies ν_1 and ν_2 being roughly in the ratio of 3 to 2.

Returning to "Student's" data we find $\mu_4' = 8.9275$, whence

$$a_1 = .6825$$
, $a_2 = .5950$, $a_3 = .6000$, $a_4 = .4800$.

Substituting in (xii)bis we obtain for the cubic:

$$-021,3269n^3+028,2321n^2+0363,3020n+051,0825=0.$$

This has three real roots, approximately.

$$n' = 4.89997$$
, $n'' = -.14234$, and $n''' = -.3.43390$.

We will consider in succession these cases: (i) n' = 4.89997. The first two equations of (xi) provide

$$\cdot 5950 - 2 \cdot 66173 P_1 + 19 \cdot 10974 P_2 = 0,$$

$$\cdot 6000 - 1.72548P_1 + 7.71894P_2 = 0,$$

leading to $P_1 = .55304$, $P_2 = .04590$, and the quadratic

$$q^2 - .55304q + .04590 = 0,$$

whence we deduce the binomial factors

$$q_1 = .4514$$
, $p_1 = .5486$, and $q_2 = .1017$, $p_2 = .8983$.

The first two equations of (viii) give

$$1 = \lambda_1 + \lambda_2, \qquad \cdot 6825/4 \cdot 89997 = \cdot 451,355\lambda_1 + \cdot 101,685\lambda_2,$$

leading to

$$\lambda_1 = .107,535, \qquad \lambda_2 = .892,465,$$

or, in a population of 400,

$$v_1 = 43.014, \qquad v_2 = 356.986.$$

Accordingly the compound series is given by

$$43.014 (.5486 + .4514)^{4.89997} + 356.986 (.8983 + .1017)^{4.89997}$$

with means of the components at

$$m_1 = 2.2118$$
 and $m_2 = .4983$.

We see that neither the sizes of the component populations nor their means have any relation to the previously discussed component Poisson series; further the present series* diverge widely from Poisson series, n is not large nor q_1 or q_2 very small. Calculated to the nearest whole numbers we obtain:

No. of yeast cells	0	1	2	3	4	5
1st Compt. 2nd Compt. Combination	$ \begin{array}{c} 2 \\ 211 \\ 213 \end{array} $	9 117 126	15 26 41	12 3 15	4 0 4	1 0 1
Observed	213	128	37	18	3	1

which leads to $\chi^2 = 1.27$ and P = .93.

Thus the fit is excellent, but it does not correspond to the heterogeneity of a double Poisson series.

(ii)
$$n'' = -.14234$$
. Here the first two equations of (xi) provide

$$\begin{array}{lll} \cdot 5950 + & \cdot 77965P_1 + & \cdot 16260P_2 = 0, \\ \cdot 6000 + & 1 \cdot 27469P_1 + & 1 \cdot 75727P_2 = 0, \\ P_1 = & - \cdot 81529, & P_2 = \cdot 24996, \\ & q^2 + \cdot 81529q + \cdot 24996 = 0. \end{array}$$

and give

* It should be noted that such fractional binomial series tend ultimately to become negative, although with negligibly small frequencies.

This gives imaginary values of q_1 and q_2 and thus the solution can for the present purpose be discarded.

$$(iii) \quad n''' = -\ 3\cdot 43390. \quad \text{We deduce} \\ \cdot 5950 + \ 3\cdot 02614P_1 + 15\cdot 22557P_2 = 0, \\ \cdot 6000 + \ 3\cdot 23317P_1 + 16\cdot 44372P_2 = 0, \\ \text{giving} \qquad \qquad P_1 = -\ 1\cdot 21441, \qquad P_2 = \cdot 20229 \\ \text{and} \qquad \qquad q^2 + \ 1\cdot 21441q + \cdot 20229 = 0. \\ \text{Hence} \qquad q_1 = -\ 1\cdot 0151, \qquad p_1 = 2\cdot 0151, \qquad q_2 = -\ \cdot 1993, \qquad p_2 = 1\cdot 1993. \\ \text{The allowations are} \qquad P_1 = -\ 1\cdot 1993, \qquad P_2 = 1\cdot 1993. \\ \text{The allowations are} \qquad P_3 = -\ 1\cdot 1993, \qquad P_4 = 1\cdot 1993. \\ \text{The allowations are} \qquad P_4 = -\ 1\cdot 1993, \qquad P_5 = 1\cdot 1993. \\ \text{The allowations are} \qquad P_5 = -\ 1\cdot 1993, \qquad P_7 = 1\cdot 1993. \\ \text{The allowations are} \qquad P_7 = -\ 1\cdot 1993, \qquad P_8 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993. \\ \text{The allowations are} \qquad P_8 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993. \\ \text{The allowations are} \qquad P_8 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993. \\ \text{The allowations are} \qquad P_9 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 1993. \\ \text{The allowations are} \qquad P_9 = -\ 1\cdot 1993, \qquad P_9 = -\ 1\cdot 199$$

The λ equations are

$$\begin{split} 1 &= \lambda_1 + \lambda_2, & - \cdot 6845/3 \cdot 4339 = - \ 1 \cdot 0151\lambda_1 - \cdot 1993\lambda_2, \\ \lambda_1 &= \cdot 000043, & \lambda_2 &= \cdot 999957, \\ \nu_1 &= \cdot 0172, & \nu_2 &= 399 \cdot 9828. \end{split}$$

Thus the component series is

$$\cdot 0172\ (2\cdot 0151\ -\ 1\cdot 0151)^{-3\cdot 4339}\ +\ 399\cdot 9828\ (1\cdot 1993\ -\ \cdot 1993)^{3\cdot 4339},$$

with means at

leading to

or,

$$m_1 = 3.4858$$
 and $m_2 = .6847$.

The first of these components is negligible, it contains roughly only ·02 individuals in 400, and the second is sensibly identical with the negative binomial obtained by "Student," i.e.

$$400(1.1893 - .1893)^{-3.6054}$$

with slightly modified constants. It provides:

No. of yeast cells	0	1	2	3	4	5
Calculated Observed	214 213	122 128	45 37	14 18	4 3	1

leading to $\chi^2 = 3.12$ and P = .68, which for all practical purposes is as good as the double Poisson.

Conclusions. It having been suggested that the appearance of negative binomials as better "fits" than Poisson's series for material that is supposed to follow the law of small numbers is due to heterogeneity, formulae have been provided for testing whether this heterogeneity is due to a second component. If so this component should be small and the first component should substantially agree with the primary Poisson's series. The smallness of the second component would measure the goodness of the technique in haemacytometer or opsonic index counts. Applied to "Student's" first series of counts of yeast cells we obtain (a) two Poisson's series neither of which dominates the data or approximates to the primary Poisson's series; (b) two positive binomials, neither of which has any approach to a Poisson series or any agreement with the components of (a); and lastly (c) two negative binomials, one of which dominates the series, and agrees with the primary negative binomial. This investigation as far as it goes suggests either that "Student's" first count is really described homogeneously by a negative binomial, or, if it be heterogeneous, then the heterogeneity is manifold, and no weight can be given to the results of fitting by the primary Poisson's series.

The general numerical discussion by the formulae of this paper of a variety of data assumed to follow the "law of small numbers" is in hand and will shortly be published.

NOTE.

With this double Part of Biometrika is issued an Appendix containing the Records of the late W. F. R. Weldon's Mice Breeding Experiments. It was intended originally to issue these Records as an Appendix to the memoir in which the reduced observations are discussed. While the reductions have made considerable progress there has been unfortunately great delay in their completion owing to Assistants to whom they were entrusted being called away for other work, and owing to the whole Laboratory Staff for the past twelve months having other duties. As the present Records were set up more than two years ago, it is convenient to issue them at once, in anticipation of the explanatory memoir, which, it is hoped, will not be too long delayed. The determinations of colour and extent of pigmentation from the scales are due to F. J. W. upon whom also the more laborious part of the preparation for press of these Records has fallen. K. P.

APPENDIX TO BIOMETRIKA.

W. F. R. WELDON'S MICE BREEDING EXPERIMENTS. RECORDS OF MATINGS.

For an Explanation of the Symbols used and Notes on the Individual Mice, see the conclusion of the Records.

APPENDIX. W. F. R. Weldon's Breeding Experiments. Records of Mice Matings.

Parents	Mother	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PAN	Father	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ING		$a^{3} \zeta + \beta q 48. 1. 1(2e)$ $a^{3} \zeta + \beta q 49. 46. 2(2-3e)$ $a^{3} \zeta - q - e - e - (2d)$ $a^{3} \zeta - q - e - e - (2d)$ $a^{3} \zeta + q q 48. 46. 1(2e)$ $a^{3} \zeta - q - e - e - (5a)$ $a^{3} \zeta - q - e - e - (5a)$ $a^{3} \zeta + q q 48. 46. 1(2e)$ $a^{3} \zeta + q q q 48. 1. 1(3e)$ $a^{3} \zeta + q q q q 48. 1. 1(3e)$ $a^{3} \zeta - q - e - e - (3d)$ $a^{3} \zeta - q - e - e - (3d)$ $a^{3} \zeta - q - e - e - (5e)$ $a^{$
OFFSPR		$\begin{array}{c} a^2 \phi & 55 \ q49. \ 1. \ 1(3a) \\ a^3 \phi & - q (3c) \\ a^4 \phi & - q (3c) \\ a^5 \phi & 1005 q48. 1. \ 1(2c) \\ a^5 \phi & 1005 q48. 46.12(5c) \\ a^5 \phi & 1005 q48. 1. \ 1(2c) \\ a^5 \phi & 30 \ q46. \ 1. \ 1(2c) \\ a^5 \phi & - q (5c) \\ a^5 \phi & - q (3d) \\ a^5 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^6 \phi & - q (5c) \\ a^5 \phi $
		0H1 $a^{1} \xi + \beta 949.46$, $2(2d)$ $a^{1} \xi - q (2c)$ $a^{1} \xi + \beta 949.46$, $7(5c)$ $a^{1} \xi + \beta 949.46$, $1, 12c$ $a^{1} \xi + \beta 946.4c$, $1, 12c$ $a^{1} \xi + \beta 947$, $a^{1}
MATING		0.000 0.000

Bt no. $59 \circ 00p (A1 ?)$ Bt no. $46 \circ p$ W no. $46 \circ p$ W no. $46 \circ p$ W no. $33 \circ p$ A $1a^6$ A $1a^6$ $9 \circ 00p (A2 ²)$ A $1a^8$ $9 \circ 00p (A2 ²)$ A $1a^8$ $9 \circ 00p (A2 ²)$ A $1a^8$ $9 \circ 00p (A2 ²)$ W no. $47 \circ p$ B $p (42 ²)$ W no. $44 \circ p$ B $p (42 ²)$ W no. $44 \circ p$ B $p (42 ²)$ W no. $44 \circ p$ B $p (42 ²)$ W no. $44 \circ p$ B $p (42 ²)$ A $15a^3$ A $100p (A × 3)$ A $15a^3$ A $100p (A × 3)$ A $127a^4$ $100p (A × 3)$ A $127a^3$ $10p (A × 3)$ A $11p \circ 00p (A × 2)$ B $11p \circ 00p $	$1 \frac{H27a^{4}}{1H27a^{2}} \stackrel{\Diamond}{\downarrow} 00p (A \times 2) \\ 1 H27a^{2} \stackrel{\Diamond}{\downarrow} 00p (A \times 2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	If no. 31 ζ $p = -(W\beta)$ If no. 31 ζ $p = -(W\beta)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} a^{4} & -q & & (5c) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{(6)} = 4 1002p35.35$, $4(6a)$ $a^{(7)} = 4 (3c)$ $a^{(6)} = 4 (3c)$
$\begin{array}{c} a_1 \\ a_2 \\ a_4 \\ a_4 \\ a_4 \\ a_5 \\$	$a^{5} \frac{\varphi}{\varphi} - \rho (6a)$ $a^{4} \frac{\varphi}{\varphi} Inn_{2}q_{4}9_{4}6_{1}2(5c)$ $a^{4} \frac{\varphi}{\varphi} \frac{\delta \beta}{\rho} \beta 7_{*} 1. 1(3a-b)$
0H86 0H90 0H91 0H91 0H100 0H100 0H101 0H101 0H101 0H101 0H113 0H1124 0H124 0H124 0H125 0H128 0H128 0H128 0H132	$0H133 \\ 0H134$

	0				Parents
Mating	OFFS	PRING	N Veloco	Father	Mother
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} a^{\dagger} \hat{\nabla} - \hat{q} & - (3e) \\ 0 & 3e^{\dagger} \hat{\nabla} & - (3e) \\ 0 & 4e^{\dagger} \nabla$	$ \begin{vmatrix} a \cdot \beta & t00z & 48.46 & 7(3d) \\ \cdots & \cdots & \cdots \\ a \cdot \beta & q & - (3d) \\ a \cdot \beta & q & - (3d) \\ \cdots & \cdots & \cdots \\ a \cdot \beta & q & - (2d) \\ \cdots & \cdots & \cdots \\ a^{+}\beta & -q & - (5v) \\ a^{+}Q & q & - (5v) \\ \end{vmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) $a^2\partial_{-}^{2}$ fit q 18.46. 4, 4c) $a^0\nabla$ 100 cq 57.56.56(5 cr)) $a^2\nabla = q$ (5 a^2 ,) $a^2\nabla = q$ – (5 a^2 ,) $a^2\nabla = q$ – (5 a^2 ,) $a^2\nabla$ 100 cq 93.33.30,5 a^2 ,) $a^2\nabla$ 2 00 cq 93.33.30,5 a^2 ,) $a^2\partial_{-}^{2} = q$ – (8 c^2)	$a \stackrel{?}{\circ} 55 q 48.46, 1(4e)$ $a^{\circ} \varphi \uparrow 0 q 61.61, 1(4e)$ $a^{\circ} \varphi - q (2e)$ $a^{\circ} \varphi \uparrow 0002935, 33.39 (5a)$ $a^{\circ} \varphi \uparrow 1002935, 33.28 (5a)$ $a^{\circ} \varphi = q (5d)$ $a^{\circ} \varphi = q (5d)$ $a^{\circ} \varphi = q (5d)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W no. 16 & p (Was W no. 8 & p Was 41a ⁴ & mp (121 W no. 54 & p (125 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0#/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 \stackrel{?}{\otimes} 1002q49 \stackrel{?}{46.28(5c)} = a^6 \stackrel{?}{\circ} q + - \stackrel{?}{\circ} \stackrel{?}{\circ} (5c)$	$a^{\dagger} \circ - q - (3c)$ $a^{\dagger} \circ - q - (5c)$	$a^{\dagger} Q = q = - 3c$	$W = \mathcal{S} - p = Wa\beta$	Bt no. 59 ♀ 00p (.11 })
07/90 19/70	$a^{\dagger} \stackrel{\circ}{\varphi} = \stackrel{\chi}{q} = \stackrel{(5c)}{(5c)}$ $a^{\dagger} = q = \stackrel{(5c)}{(6c)}$	$a^{\pm} \stackrel{\uparrow}{\delta} \qquad \stackrel{\uparrow}{q} = - \stackrel{(5c)}{\sim}$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bt $\Leftrightarrow (00p) = -(41\%)$ W no. $46 \Leftrightarrow p = -(41\%)$
07/94	al 2 60 q49 46, 1 3ct	$a^2 = q - 3c$			$A4a^2 = 3.00p - (A2\frac{1}{3})$	W no. 33 $Q = p$ W_0
01/100	$a^{1}g^{2} = 30 \text{ q } 10^{-1}$, $1(3e^{-1}g^{2}) = 25 \text{ q } 46^{-1}$, $1(2e)$	$a^{b} = 55 q 49.46, 9.3c$	$a^{\overline{i}} \hat{\nabla} - q (5c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	₩ no. 54 g p (₩ḡ)	$A1a^6 \qquad Q \theta \dot{\theta} p = A25 \qquad \dots$
07/101	at 35 949 1, 1 2c)	a ² & 50 q49.46, 4c3c)	$a^2 \tilde{\beta} = q^{-} - (5v)$, a ¹ d y 5e)	₩ no. 54 ♂ y = - (11/β)	$A1a^6 = 900p = +A23$
.,,,,,,,,,	av 3 100 748 46.12,5c)	$u^6 \stackrel{\bigcirc }{\circ} 45 \stackrel{\bigcirc }{q} 19.46, \ 1(3c)$		$a^{q} \circ q (5e)$		‡ 10p = 112 <u>5</u>
07// 102	# 8 70 945 46 ≥ 4e,	$a^{2} \stackrel{?}{\gtrsim} 55 q 48 \stackrel{?}{=} 1. \stackrel{?}{=} 3c_{f} = a^{6} \stackrel{?}{=} -(5e)$	$a^{1}\stackrel{?}{\otimes} 95 \ q48.46 \ 7(4e) = a^{7}\stackrel{?}{\otimes} 100zq49.46.14 \ 5e)$	$a^{4} \delta = q - (5v)$ $a^{5} = q - (4v)$	W no. 54 ₫ p − − − (W 対)	A1a ⁷
1	$a^{*} = a = ac_{I}$			***	*** *** ***	*** *** ***
0 1/103	$a^{\dagger} \vec{\beta} = \hat{q}$ (5c) $a^{\dagger} \vec{2} = 55 \ q49.46, \ 4(3c)$	$a^2 = \begin{cases} q & (5c) \\ a^* = 9 & 50 & q49.46 & 3(3c) \end{cases}$		$a^4 ? = 55 q 49, 1, 3(3c)$ $a^8 = q = - (2c)$	$W = g - h = -(Ma\beta)$	$A1n^8 = 2.00p + (A2\frac{1}{2})$
0//104	$a^{1} \circ q = q - (2v)$ $a^{5} = q - (4v)$	$a^{2} \stackrel{?}{\circ} - q \stackrel{?}{\circ} - (1e)$ $a^{0} = q \stackrel{?}{\circ} - (2e)$	$a^{1} = \begin{cases} 40 & q = 46, \\ a^{7} & = q \end{cases}$ (50)	a ⁴ & 40 q48.46, 2(3c)	Ш - б р (Waβ)	$A1a^9 = 900p = (42\frac{1}{2})$
	al \$ 1005q49 46,20 5c	$a^2 = 5.5 \frac{1}{9} 61.57, 1(3e)$			$A13a^{4} = 3.00\mu - (A \times 3)$	II' no. 24 ♀ p · (Waβ)
	$\frac{a^{4}}{6}\frac{\dot{d}}{b\theta} = \frac{\dot{d}}{q48}\frac{\dot{d}}{46}, \frac{\dot{d}}{1(3c)} =$	1.0 (% 63.10 3.93)		***		$\frac{W}{W}$ no. $47 \circ p = -(Wa3)$
	[a, Q] = a, A = 0; $[a, Q] = 0$; $[a, Q]$	$\begin{vmatrix} a^2 & Q & 60 & q52, 46, & 2 & 3c \\ a^2 & 5 & -q & - & & (5a) \end{vmatrix}$	1 (5d)	$a^{\dagger}\hat{\Psi} = q$ (5d)	$A14a^2 = 3 \theta \theta p = -(A1)$ W no. 39 $3 = p = -1$, $Wa\beta$)	If no. $44 \stackrel{\circ}{Q} \stackrel{\circ}{p} = - \stackrel{\circ}{Q} \stackrel{\circ}{H} \stackrel{\circ}{u} \stackrel{\circ}{u} \stackrel{\circ}{u} = - \stackrel{\circ}{Q} \stackrel{\circ}{H} \stackrel{\circ}{u} $
	1 2 7 3/	10 3 9 31	7 1 av	1 8 \$ July 35 85 80 57		
07/112	$\frac{a}{a^4} + \frac{1000}{3} \frac{10}{9} \frac{10}{10} + \frac{1}{1} \frac{1}{1} \frac{2}{2} \frac{2}{2} \frac{1}{1}$	$\begin{bmatrix} a^1 & \downarrow & q \\ a^2 & \delta & -q \end{bmatrix} = \begin{pmatrix} ad_r \\ (5c) \end{bmatrix}$	$\overrightarrow{a}^{\dagger} \widehat{\xi} \cdot \widetilde{s} \overrightarrow{n} \ \overrightarrow{q48}, 46, \ \overrightarrow{1(3c)} =$	$\overrightarrow{a^{\dagger }} \overrightarrow{\mathbb{Q}} \Rightarrow \overrightarrow{t} \overrightarrow{t} \overrightarrow{q} \overrightarrow{\mathfrak{f}} \overrightarrow{\mathfrak{g}}, \ 1, \ 1(2c)$	П по, 54 д	.15a ³ 900p (.1 x 3)
o# 113	$\frac{(ar)}{a^2} \frac{3}{5} = \frac{30}{9} \frac{9}{19}, 1, 1, 2r = -\frac{1}{4r}$	a2 2 50 a49 46 2 3c)	$a^{\dagger}Q = q^{**} - (3c)$	a^{1} \supseteq $100zq49$ $46.12,5c)$	$W = \mathcal{E} p = - \cdot (Wa\beta)$.18a1 ♀00p (A × 2 or 3)
	n 2 Hirogan 46, 43 5c,	$(a \cdot \hat{Q}) 100 \hat{Q} 49.36.20(5c)$	$\vec{a} \cdot \vec{b} = \vec{q} = -(5c)$	$a^{\mu} \delta = q = -(5e)$.,	
	$\frac{1}{2} \frac{d}{d} \frac{d}{d} = \frac{1}{2} \frac{1}{2} \frac{d}{d} \frac{d}{d} = \frac{1}{2} \frac{1}{2} \frac{d}{d} \frac{d}{d} = \frac{1}{2} \frac{1}{2} \frac{d}{d} = \frac{1}{2} \frac{d}$	$a^2 \otimes 35 \stackrel{?}{q} 49.40, 1 \stackrel{?}{3}e) =$	a ¹ ♀ 100zq49,46.12(5c)	a ³ S 50 q46,30, 5(3c)	₩ д р (Waз)	$A8a^2 = 2.00p = -(A \times 2 \text{ or } 3)$
0// 117	a ¹ ± 80 g 19 46. Lete,	at 2 95 949.46. 1 4c,	$n \cdot Q = q$ (3c)	$a^4 \ ? \ m \ q 49.36. \ 1(4c)$	W no. 39 ♂ p ~ (Waß)	$A27a^4 = 200p (A \times 3)$
0#118	$\frac{a^5 Q}{a^4 A} = \frac{65}{85} \frac{q}{q} \frac{48.36}{48.46.11} = \frac{4}{16}$	$\begin{vmatrix} a^6 & 3 & 65 & q48, 46, & 3 & 3c \\ a^2 & 9 & -q & - & -5c \end{pmatrix}$	$a^{7} \stackrel{?}{\otimes} = \frac{90}{q} \stackrel{?}{=} \frac{9(4e)}{(5e)}$	$a^{\dagger} = q^{\dagger} = (5c_i)$	Ψ no, 39 δ p = (Ψaβ)	.127a; 900p (.1 × 3)
0#120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} u^2 & \overrightarrow{\sigma} & -q &(3c) \\ a^6 & 9 & 75 & q49.46, & 1(4c) \end{vmatrix}$	$a^3 \bigcirc 45 \ q49, 1, 1(2c)$ $a^7 \bigcirc 50 \ q48, 46, 3(3c)$	at 8 60 q49,46, 1(3c)	В по. 35 β р = − - (Баβ)	.16a1 \Q 00p (.1 x 2)
0// 12	$a^{1/4} f I60 ag 49/21.20 Ac$		$a^{-1}Q = q (4e)$	$\begin{bmatrix} a^k Q - q \cdot - (2c_i) \\ a^k - q - (4c_i) \end{bmatrix}$	1//11a1 800p (4×2)	W - ♀ p (Waβ)
	a) 100±33.51.14	7 4 7 7 7 10 10 10		*** *** ***	$1H14a^{1} - 3 \theta \theta p = -(.1 \times 2)$	If no. $38 \circ p = (H_{\overline{s}})$
011 127	$a^{5} = 50 \ q53, \ 1, \ 1(3c)$ $a^{5} = 65 \ q49 \ 46, \ 1, 44c)$	a^2 δ 50 q 52.46. 1(3 e)	a 3 50 q52. 1. 2(3c)	a ⁴ & − q	W no. 35 δ $p = (Wa\beta)$	$1H12a^{1} \stackrel{\circ}{\vee} \theta \theta p = -(.1 \times 2)$
	3 d Q 85 g 19.46, 1.4m	$a^2 = q = (3vw)$	$g^{+} = g^{-} = (3eie)$	$d^4 = -q + -(3r)$	W no. 39 $\beta - p = -(W_0\beta)$	$1H2a^{1} = 9.00p = (.1 \times 2)$
07/ 12!	$\frac{a^{1}}{a^{0}}\frac{2}{\delta} + \frac{q}{\delta} = -(3c)$ $\frac{a^{0}}{\delta}\frac{2}{\delta}\frac{35}{9}\frac{q}{49}, 1, 1.3c_{q}$	$a^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	a^{\dagger} Q 25 \dot{q} 49. 1. 1(2c)	$a^4\vec{s} = 35 \ q 46.46, \ 3(2r)$	$W' = \partial p = -(Wa\beta)$	$1H24a^{1} + 2\theta\theta\hat{p} = (A \times 2)$
	$0 \mid a^{1} = q + \cdots + 2c)$	$ u^2 = q = (2v)$			W no. 36 β p = ~ ~ (Waβ)	$1H20\sigma^2 - 9H0p = (4 \times 1)$
0H 13	1 at 3 1005935 33,29(1-5a 1 q Ga			$a^4 = 95 \ q35,35 \ 29 (6a)$	W no. $423 - p = - + (Wa3)$	$1H40a^{+} \stackrel{?}{\circ} \theta 0p - = -(A \times 2)$
0H13	2 a 2 Sa q 49.16. 7(5e)	$a^2 \circ y - y - z = (5ew)$ $a^a \circ 100zp35,35, 4,6a)$	a ³ \(\sigma \)100zp36.35.28 (6a)		$W = \delta p = -(Wa\beta)$	$1H40a^2 \ \ Q \ \theta\theta p (A \times 2)$
	$3 \cdot e^{1/2} \cdot 100 eq 49 \cdot 46.12 (5e) =$	$a^2 = -a = -(3c)$	$a^{q} = q = -(5e)$	e^{4} $q = -(5c)$	W no. 31 β p ~ = − (Wβ)	1H27a1 200p = - (4 × 2)
0H 13	$4 \sigma^1 \beta 55 \ \hat{p}37. \ 1. \ 1 \ 3a \ b)$	$-\dot{q} = -(3c)$		101 111	W no. 31 β $p = -(W\beta)$	$1H27a^{2} + 900p (A \times 2)$
i i	1	1	*	1		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $Bt = - \Leftrightarrow 00 \ p = - (A1 \ ?)$ $OH1 \ \alpha^4 = \varphi = 0 \ \varphi = - (A1 \ ?)$ $OH1 \ \alpha^5 = \varphi = 0 \ \varphi = - (A1 \ ?)$ $OH3 \ \alpha^2 \Rightarrow 00 \ p = - (A1 \ ?)$ $OH9 \ \alpha^2 \Rightarrow 00 \ p = - (A1 \ ?)$ $OH8 \ (or 7) \ \alpha^4 \varphi = q = - (5c)$ $OH8 \ (or 7) \ \alpha^4 \varphi = q = - (5c)$
W no. 37 δ $p (W\beta)$ A W no. 37 δ $p (W\beta)$ A W no. 37 δ $p (W\beta)$ A H no. 42 δ $p (W\alpha\beta)$ δ W no. 42 δ $p (W\alpha\beta)$ δ W no. 37 δ $p (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ $\rho (W\beta)$ δ W no. 37 δ δ δ δ	$0H1a^{1} \qquad \stackrel{\leftarrow}{\circ} \ 45 \ q+9.46. \ 2(2d) \ 0H1a^{2} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{4} = -\frac{q (5e)}{abb},$ $a^{4} = 00 \ p (abb),$ $a^{4} = 1000 \ q + (36.20) \ 55.55 \ 5d,$ $a^{4} = 00 \ p (abb),$ $a^{4} = -q (5e),$ $a^{4} = -q (6e),$ $a^{4} = -q (2e),$ $a^{4} = -q (abb),$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^3 \\ a^3 & 0 & q^ (5e) \\ a^3 & 00 & p^ (40b) \\ a^3 & 100xq48.46.11(4d) \\ a^3 & 100xq49.46. 7(6e) \\ a^3 & - q^ (abb) \\ a^3 & 100xq49.46.47(6d) \\ a^3 & 100xq49.46.47(6d) \\ a^3 & 0 & q^ (6d) \\ a^3 & 0 & p^ (4a) \\ a^3 & 0 & p^ (abb) \\ a^3 & 0 & 0 & 0 \\ a^3 & 0 & 0 & 0 \\ a^3 & 0 & 0 & 0 \\ a^3 & 0 & 0 & 0 \\ a^3 & 0 & 0 & 0 \\ a^3 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

M. mung i		0	PRPRING		1	Pa	RENTS	
MATING		OF.	SPRING			Father	1	Mother
0H 135	a¹ ♂ 50 q49.46. 1(3c)	a ² ♀ 45 q52.46. 1(2cm)	$a^3 \ 9$ 45 $g49.46$. $4(2c)$	a4 \Q 100zq49.48.14'5c)	W no. 35 ♂	p (Waβ)	1 <i>H</i> 47 <i>n</i> t	900p (A × 2
0H 136	$a^{5} \stackrel{?}{\circ} 100_{2}q49.46.12(5cw)$ $a^{1}\stackrel{?}{\circ} 40 q47.28. 2(3c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ³ & 25 q48. 1. 1(2c)	a4 *** - q · · · (5v)	И′ no. 39	_	$1H\overline{47}a^2$	♀ 00p (A × 2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} a^6 & q &(5c) \\ a^2 & - q &(5-6c) \\ a^2 & d & q & - (5c) \end{vmatrix} $	$ \begin{vmatrix} a^7 & q + (5v) \\ a^3 \delta - q (5v) \\ a^3 Q & 30 & q49, 1, 2(2v) \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	₩ - d W no. 40 d	$p = (Wa\beta)$	$1H49a^{1} \\ 1H32a^{1}$	\$\frac{\Quad 00p (1 \times 2)}{\Quad 00p (1 \times 2)}\$
	$a^5 \ Q \ a^1 \ Q \ d5 \ q53 \ 53, \ 1(2c)$	$a^{6} = q = -(2e)$ $a^{2} = 85 \ q52.53 \ 12(4e)$	a 9 35 q48, 1, 1(2e)	α ⁴ ♀ 35 q49.46. 4(2e)	₩ no. 40		$1H32a^{2}$	$- \circ oop (A \times 2$
0H142	a ⁵ & 40 q49.46, 1(3c) a ¹ & 45 q49, 1, 1,3c)	a ⁶ \(\text{Q} \) \(\lambda \) \(\lamb	$a^{7} = q - (3c)$ $a^{3} \gtrsim 100z q 49.36, 7(5c)$	a ⁴ ♀ βθ q 49. 1. 4,2c)	₩ но. 42 _ д	p (Waß)	.151a1	900p(A×2
0H143	$a^{5} \circ q - q (2e)$ $a^{1} \circ q (5e)$ $a^{5} \circ q (5e)$	$\begin{bmatrix} a^4 & Q & 80 & q49.36, & 4(5e) \\ a^2 & Q & - & q & - & (5e) \\ a^4 & Q & - & q & - & -(5e) \end{bmatrix}$	$a^{7} \delta^{7} - q(5c)$ $a^{7} \delta^{7} - q(5c)$	a4 Q '5c'	Ш во, 35 ♂		Bt -	900p (A×1
0H144	$a^{\dagger} = q - (5c)$ $a^{\dagger} = q - (5c)$	$\begin{bmatrix} a^2 & q(5e) \\ a^6 & q (5e) \end{bmatrix}$	$a^3 - q - \cdot - (5c)$	a4 - q (5c)		p (Wnβ	.171a4	\$ 00p (A24)
0H145	$a^{1} \stackrel{?}{\mathcal{Z}} 100zq49.48, 9(5c)$ $a^{5} \stackrel{?}{\mathcal{Z}} 00 p = - \text{(alb.)}$	a ² ≥ 100zq35 35 30,5a-b) a ⁶ ♀ 100zq35.33.30 5 6a-b'	$1 a^3 3 1002q 35 35 35 30 (5a-b)$	a ⁴ & 100±q36,30,2× 5a b a ⁵ ♀ 100±q39 35,30(5 6a b)	17742b¹ ♂			\$ 00p = - (A2?)
0H146	$a^{\dagger} \stackrel{?}{\circ} = 90 \stackrel{?}{\circ} 49.34 2(4e)$ $a^{\dagger} \stackrel{?}{\circ} = 00 \stackrel{?}{\circ} p = (alb.)$	$a^2 \notin 100zq35,33, 4(5a)$ $a^6 \notin 00rp$ (alb.)	$ \begin{vmatrix} a^3 & 00 & p \\ a^7 & 00 & p \end{vmatrix} = - (alb.) $ $ \begin{vmatrix} a^7 & 00 & p \\ a^7 & 0 & p \end{vmatrix} = - (alb.) $	$\begin{bmatrix} a^4 & -\hat{q} & (5v) \\ a^8 & q & -(5v) \end{bmatrix}$	17/42b) 3	p (3a-ba	.130a4	Q 00p = - (.123)
0H147	$a^{\pm} = q \cdot \cdot \cdot - (5e)$ $a^{\pm} \cdot \cdot q \cdot \cdot - 3e$	$a^2 = 100 \frac{1}{2} 453.51.14(5e)$ $a^6 = q = -(5e)$	a ³	$q = -\sqrt{5c}$	W no. 37 ♂		.167//-	♀ 00p (A x)
0 <i>H</i> 148	$a^{1} \circ 55 \stackrel{?}{q} 53, 1, 1(3c)$ $a^{6} = q = -(3c)$	$a^2 = 55 \stackrel{?}{q} 49.36, \ 3(3c)$ $a^0 = q (3c)$	a ³ ♀ 45 q49.36, 1(3c)	$e^4 - q - (3e)$	11' no. 36 – 3		1H18a3	9 onp = - (1×
- 1	$\frac{a^{1}}{a^{5}} \stackrel{?}{=} \frac{15}{q} \stackrel{?}{=} \stackrel{?}{q} \stackrel{?}{=} \stackrel{?}{=} \frac{1}{2e}$	$a^2 = 55 \ q47.47, \ 1(3c)$	$a^3 = 35 \ q47. \ 1. \ I(2c)$	q = -(2c)	***	ρ· - (IVβ	1 H 19 e	♀ mp · (1×)
- 1	a) 85 q53.46, 2(5e) a) 80 q33 51, 2 5c	$a^2 \notin 55 \ q46, \ 1, \ 1(3c)$ $a^6 = q = -(4c)$	a ³ & 30 q53, 1, 1(2c)	a ⁴ 3 75 q53.46. 1(4e)	W no. 35 ♂		1 H28b3	\$00p (1 x:
- 1	al 8 80 q44 47, 2(5d)	$\begin{vmatrix} a^2 & \hat{\sigma} & -\hat{q} (5c) \\ a^6 & q (6c) \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{4} \stackrel{\frown}{Q} = q = -(5c)$	W no. 35 &	* ***	1 H28b4	900p (A×5
- 1	$u^{\dagger} \stackrel{\bigcirc}{Q} = 60 \stackrel{\widehat{q}}{q} 44 \stackrel{47.}{47.} \stackrel{1(3c)}{1(3c)} = e^{-} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	$a^{3} = \begin{cases} 90 & q44.46.11(4c) \\ a^{6} = q - (3c) \end{cases}$	a ³ d 95 q 44.53. 2,4d)	$a^4 - q(4v)$	W no 35 8		1//2965	♀ 00p (.1 x:
- 1	$a^{\dagger} = 35 \ p37, \ 1, \ 2(2a-b)$ $a^{\dagger} = q = -(3a)$		a ³ & 10 p35, 1, 4(1-2a-b)		W no. 54 8		1H58a2	$900p = -(4 \times 3)$
$0H156 \\ 0H159$	$a^{1} \stackrel{?}{\mathcal{S}} 100 \stackrel{?}{p} 25.35.30 \stackrel{?}{\mathfrak{S}a} = (alb.)$ $a^{1} \stackrel{?}{\mathcal{S}} = 00 \stackrel{?}{p} = - (alb.) = (5e)$	$ \begin{vmatrix} a^2 & Q & \theta \theta p & -(alb.) \\ a^2 & \delta & \theta \theta p & -(alb.) \\ a^2 & \delta & -q(5e) \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1#42b1 d 1#42b1 d W no. 31 d			$\begin{array}{cccc} Q \ \theta \theta p = & - & - & (A \times 3) \\ Q \ \theta \theta p = & - & - & - & (A 1 \frac{1}{2}) \end{array}$
0H160	$a^{5} \subsetneq 100zq52,46, \ 7(5c)$ $a^{1} \stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\stackrel{?}{\underset{?}{\underset$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \ ? \ 100.vq49.46, \ 2(5e)$	a4 9 1002q49.46. 7(5c)	W no. 31 3		A141a4	\$ 00p (A1\frac{1}{2}
H_{161}	$a^5 ? 100zq49.46, 7(5c)$ $a^1 ? - q(5c)$ $a^5 ? 100zq49.46.12 5c)$	a^{2} δ 80 q 48,46. $7(5c)$ a^{0} 9 - q $(5c)$	$a^{3} \circ - q - (5c)$	$a^{\dagger}Q - q - (5c)$	W no. 56		.1182a3	\$ 00p (.11½
H_{162}	$a^{1} \stackrel{?}{Q} 1003q49.46.12 3c)$ $a^{1} \stackrel{?}{Q} 1002q49.46 11(5c)$ $a^{5} - q (5c)$	$\begin{bmatrix} a^6 & Y - q (5c) \\ a^2 & \delta & 8\theta & q48.46, 7(5c) \\ a^6 & q & + (5c) \end{bmatrix}$	a ³ q (5c)	a4 + q (5c)	W no. 56		.1182a4	♀00p (A1½
H163	$a^{\alpha} = q = -(5c)$ $a^{1} \delta = 75 \ q44.51.11(5c) = -(5c)$	a ² & 80 q 14.51.11(5c)	a ³ Q 80 q44.51.11(5c)	$a^4 Q = 95 \ q44.51.14(5c)$	W no. 56		.1182a5	\$ 00p (A1\frac{1}{2})

0 <i>H</i> 165	$\begin{bmatrix} a^1 & 70 & q48.46, & 2(4c) \\ a^5 & \sim & q & \sim (5c) \end{bmatrix}$	$\frac{a^2}{a^6} - q (5a^6)$ $\frac{a^6}{a^6} - q (5a^6)$	$\begin{vmatrix} a^3 & q & (5c) \\ a^7 & -q &(5c) \end{vmatrix}$	$a^4 = q = 5c$		γ (Wβ)	$21143a^{2}$	200 p - ~ (12)
0H166		$+a^2 = q (4-5e)$	$\begin{bmatrix} a^3 & 55 & q47.21.11(3.4c) \end{bmatrix}$	1 a4 & 95 q48.36.28 5c)	W no. 37 - 3		$A143a^{3}$	200 p . (.12
0H167	a^1 80 $q49.46$ 1(5c a^5 - q (4c)	$a^2 = 85 \ q49.46.11(5c)$	$a^3 \sim q \sim (5c)$	u4 q (4v)	W no. 37	$\beta = p = (W\beta)$	$A143a^{4}$	9 00 p (12)
0H169 0H170	$g^{\dagger} \circ g = g = -(6e \ d)$ $u^{\dagger} \circ d = g = -(6e \ d)$ $u^{\dagger} \circ d = g = -(6e \ d)$		a³ ♀ 100zq49,46 12(5c)			\$B0p = -(.12)	W no. 24	φ p (Waβ)
	a ¹ 2 90 q49 35, 2 4c) a ¹ 40 q49 46, 1 3c)	$a^2 \stackrel{?}{\beta} \qquad q = (3e)$ $a^2 \stackrel{?}{\longrightarrow} 5a_{q}48.46, \ 1.3e)$		$a^4 \circ - q - (5c)$			A184a6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	a' = y 5	* * * * * * * * * * * * * * * * * * * *	a ³	a ⁴ 45 q49 36, 1(3c)	U no. 42		.1184a ⁶	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0H172	$u^5 = q^2(5\varepsilon)$	$a^0 = q(5c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W no. 42 &	***	.1184a ⁷	
0H176	$\epsilon e^{3} = q$ (5c)	$\begin{bmatrix} a^2 & - & q & (5v \\ a^6 & - & q & -5v \end{pmatrix}$	$a^3 - q(5e)$ $a^7 - q(5e)$	$a^4 = \tilde{q} = -(\tilde{s}v)$.1167a ⁵	♀ (m p (A × 2)
	$ a'\rangle = q - (5c)$	$\begin{bmatrix} a^2 & q & - & -(5c) \\ a^6 & q & & (5c) \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a* - q (5c)			.1167v ⁰	$900p (A \times 2)$
	$a^{\alpha} = q = -(5e)$	$\begin{vmatrix} a^2 & \beta \theta & q47, 1, 4(3r) \\ a^6 & -q & (5v) \end{vmatrix}$	$\begin{bmatrix} a^3 & 55 & q & 49.46, & 2(3c) \\ a^7 & -q & & -(5c) \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		p (Waβ)	$A163a^{4}$	$ \bigcirc 00 \ p (A \times 2) $
0H 184	$d^{\alpha} = q (5\epsilon)$	$\begin{vmatrix} a^2 & 100zq49.46.12(5v) \\ a^6 & q & - + (5v) \end{vmatrix}$	$\begin{bmatrix} a^3 & - & q & - & (5c) \\ a^7 & - & q & - & (5c) \end{bmatrix}$	$\begin{vmatrix} a^4 & -q(5v) \\ a^8 & -q(5c) \end{vmatrix}$	W no. 37 &	р – – (WB)	$A154a^{2}$	♀ 00 p = (A × 2)
0///185	$\frac{a^9}{a^4} = \frac{q}{q} = \frac{(5c)}{(6c)}$	$\begin{vmatrix} a^{10} & - & q - & (5v) \\ a^2 & - & q - & (6v) \end{vmatrix}$	*** *** ***	***	*** ***	***		Q 00 p = (A1)
1H1 $1H2$	心 る 100ミq 48.46.11(4d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} a^3 - q (5c) \\ a^3 \stackrel{?}{\circ} 00 \stackrel{?}{p} (alb.) \\ a^5 \stackrel{?}{\circ} 100z q 48.46 11(4d) \end{vmatrix}$	a^4 , $q = -(5c)$ $a^4 \stackrel{?}{\circ} 00 \stackrel{?}{p} = -(alb.)$ $a^6 \stackrel{?}{\circ} 100 i q 57 55 55 (5d)$	$0H1a^2$ δ	45 q49.46, 2,2d) 55 q49, 1, 1,3c)	Bt - Bt -	© 00 p = - (A1?) © 00 p = - (A1?)
1#3	$a^{0} \stackrel{\circ}{\mathcal{S}} = \frac{60}{60} \stackrel{\circ}{p} = - \frac{\text{(alb.)}}{\text{(alb.)}}$ $a^{6} \stackrel{\circ}{\mathcal{S}} = \frac{80}{946,36}, 5(5c)$	α ⁶ δ 00 p ~ (alb.)	a ³ \$ 100zq49.46. 7(6c) a ⁷ \$ 00 p = - (alb.)	a ⁴ \(\times \) 100zq46,36,20 5c \ a ⁸ \(\tilde{\psi} \) 00 \(p \) (alb.)	o#1a+ ∂		Bt	♀ 00 p (A1 i)
1 <i>H</i> 4	$\frac{a^{g}}{a^{4}} \stackrel{q}{\preceq} - \frac{(5r)}{q} = -(5d)$	$\begin{vmatrix} a^{10} & -q & -(5c) \\ a^2 & 00p & -(alb_c) \end{vmatrix}$	113 - 9 (Ge)	$a^4 - q$ (50)		1002948-36 7(50)		2 nap = (A1)
$1H_5$	$a = 000 p$, alb., $a^{1} \otimes 100zq49 = 46.47(6d)$	a2 \$ 1002q48.46.47(6d)	a3 & 1002y 49 46.47(6d)	a4 d - q (6e)		1002g49.46, 7(5c)		9 00 p (A1?)
1 <i>H</i> 6 1 <i>H</i> 7	$a^{5}\vec{\beta} = 00 \ \hat{p}$ - (alb.) $a^{1}\vec{\gamma} = (ee_{P})$ - alb. $a^{1}\vec{\gamma} = a_{P}24 - 1 - 1 = 26e_{P}$ $b^{2}\vec{\beta} = 4n_{P}237.37, 4(2b_{P})$	$\frac{\sigma^2}{\sigma^2} \stackrel{i}{\neq} \frac{600}{400} \frac{j}{p37}, 1, 1, 2a_1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ⁴ ↑ 1(a), q 49 46 47 6d b ¹ ♂ 50 q 49, 46, 2(3e)	$0H7a^{1}$ 3	Im q49 46 7 5c	 Bi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 8 1 <i>H</i> 9	$a^{1} \stackrel{\bigcirc}{Q} = p = (3b)$ $a^{1} \stackrel{\bigcirc}{Q} = p p p p p p q q 36 = 3/3a$	$ \begin{bmatrix} b^3 & Q & 25 & q49, & 1, & 2(2d) \\ a^2 & Q & p & p & (4a) \\ a^2 & Q & 3B & q59 & 1 & 1 & 3e & cw \end{bmatrix} $	$b^3 \ Q \ 80 \ q49, \ 1, \ 2(2d)$ $a^3 \ Q \ - \ p \ - \ - \ (4a)$ $a^4 \ Q \ 70 \ p \ 42 \ 50 \ 1 \ 3f$	$b^5 = q = -(2e)$ $a^4 \circ - q = -(3e)$ $a^4 \circ 55 \ q \ 40 \ 1, 1 \ 3b$	0H7a ² of 0H7a ¹ t	45 q48, 1, 1(2c)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 11	$u^{\dagger} \stackrel{?}{>} u^{\dagger} \stackrel{?}{>} $	$\alpha^2 \circ mp = - \text{(alb.)}$	a ³ ♀ 00 p (alb.)	a43 00 p (alla)		55 q47.46. 1(3d)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1H12	$a^{a} \lesssim 100 eq58.58.55(6e)$ $a^{1} \lesssim 00 p = -(alb_{*})$	$d^{0} = tH(n) = -(alb)$	$u^3 (0) p = - + (alb.)$	$a^4 - q (6v)$	***			2 80 q46, 1, 1(2c)
1 <i>H</i> 13	$a^{\dagger} \stackrel{q}{\not=} \stackrel{-}{u^{\dagger}} \stackrel{-}{\not=} \stackrel{(ab)}{u^{\dagger}}$	a2 & 80 a48.46.11(5d)	a ³ \$ 100.cy58.58.55(Ge)		***	***	***	Q = q (5c)
1H14	$\mathbf{I}^{(C)} \subset \mathbb{R}^{n} P^{(c)} = (AH)_{c}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α ³ δ θθ p (alb.)	a4 d 00 p (alb.)			0H8 (or 7) a ⁵	Q 1002q 49.46.12(5c)

W. F. R. Weldon's Records of Mice Matings (continued).

MATING		Оерерина				PAI	Parents	
					; ; 1	Father		Mother
1 <i>H</i> 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \alpha^2 & \beta & 00 & p = - & -(\text{alb.}) \\ \alpha^6 & 70 & q61.58, 1(3e) \\ \alpha^2 & 55 & 458.55, 1(3e) \end{vmatrix}$	100+10	$a^{4} \stackrel{Q}{\circ} I00zq35.35.30(6a)$ $a^{8} \stackrel{Q}{\circ} 00 \ p (alb.)$ $a^{4} \stackrel{Q}{\circ} 00 \ p (alb.)$	$0H8(\text{or }7)c$ $0H7a^{1}$	$0H8 (\text{or} 7) a^2 \zeta_3 100 z_q 49.46.7 (5c)$ $0H7 a^1$ $\zeta_3 100 z_q 49.46.7 (5c)$	Bt - Bt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1#17	888 888	00 5 2 00 1 00 1 00 1 00 1 00 1 00 1 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \stackrel{?}{\swarrow} 45 q61. 1. 1(3d)$	0H8(or 7)	0.00000000000000000000000000000000000	Bt	d 00
1H18		$a^{\frac{1}{2}} \varphi = 55 \text{ p37. 1. 1(3bw)}$	$a^3 = 00 p = -(alb.)$	$a^4 \xi \ 35 \ p40. \ 1. \ 1(3b)$	$0H7a^2$	$\vec{\zeta}$ 45 q48. 1.1(2c)	$0H9a^3$	$\dot{\varphi}$ 45 q48.46. 1(2c)
	$a^1 - q^2(2cw)$ $a^5 \neq 00 p(alb.)$	$x^{2} = 0$ $y^{2} = 0$ $x^{3} = 0$ $y^{2} = 0$ $y^{2} = 0$ x^{6} y^{6} y^{6} y^{6} y^{6} y^{6} y^{6} y^{6}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \stackrel{\frown}{\nabla} 30 q 49. 1. 1(2c)$ $b^2 40 p 35. 1. 1(2b)$	0H7a³	\updownarrow 55 $q49.46.2(2-3c)$	$0H9\alpha^4$	\$\tilde{\pi} 50 q49.\tilde{1}. 1(2c)\tilde{1}
	$a^{1} \stackrel{?}{\circ} 00 \stackrel{p}{p} (\text{alb.} w)$ $a^{5} \stackrel{?}{\circ} - p (2f)$	$a^2 = 00 \ p = 0$	$\frac{1}{3}$ $\frac{1}{45}$ $\frac{9}{9}$ 1. 1	5 - 9 - 5	$0H9a^1$	$\delta - q (2c)$	$0H6a^1$: :
1 H26	$a^{1} + b^{2} = -(a1b.)$ $a^{5} + b^{2} + b$	00 00 00 00 00 00 00 00 00 00 00 00 00		$a^4 = 00 p = - (alb.)$	0H13æ	3 100 zq 48.46.7(5c) 3 7 15 059 1 1 (3c)		$9 \ 00 \ p (41 \ i)$
	$a^{1} \neq 00 \ p = - (alb.)$ $a^{5} \neq 00 \ p = - (alb.)$	$a^2 + 00 p^- = -$	$-d \theta \theta = -d \theta \theta$	$a^4 \stackrel{\circ}{\zeta} 00 \stackrel{\circ}{p} (alb.)$	Bt –	$\delta = 00 \ p (A1)$	$0H7a^5$	$\frac{1}{7}$ 50 $\frac{7}{4}$ 8.36. 2(3c)
1 <i>H</i> 28	$a^{1} \stackrel{?}{\circ} 100zq \stackrel{?}{+} 9.46.47(\stackrel{?}{\circ} -d)$ $a^{3} \stackrel{?}{\circ} 00 \stackrel{?}{=} -(\stackrel{?}{\circ} 1b)$	0+0 0+0	$b^1 \stackrel{\frown}{\zeta} - q^ (6d)$	$b^2 \not\subset 100zq \ 48.34. \ 9(5d)$	Bt	3.00 p (A1)	$0H7a^6$	<i>♀100zq</i> 48.46.12(5c)
1 <i>H</i> 29	$a^{+} + 00 p^{-} - (alb.)$	$a^2 \xi = 60 \frac{p}{2} = -40.46$.	A = A = A = A	55	$0H\overline{16}a^{1}$	$\vec{\zeta} = 50 \ q47. \ 1.1(3c)$	$0H9\alpha^5$	\$\tilde{\pi} 25 q46. 1. 1(2c)
1H30	\$ 35 p23. 1. 1(2001	\$ 20 pzs. 1.	$p = -\frac{p}{p^2}$	$0H12a^1$	$\vec{\delta} - q (5c)$	$0H9\alpha^6$	\$ 40 q49. 1. 1(2d)
$\begin{array}{c c} 1H31 \\ 1H32 \end{array}$	$a^{+} = 00 \ q^{\pm 0.5} = 0.3a)$ $a^{+} = 00 \ p^{-} = -(alb.)$ $a^{+} = 00 \ p^{-} = -(alb.)$	$ \alpha$ 00 α	::~		$0H12a^2$ $A1a^3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Bt \stackrel{\cdots}{=} 0H7a^7$	
1 H33	$a^{5} \stackrel{?}{\circ} 100z_{1}49.46. \ 4(5-6c)$ $a^{1} \stackrel{?}{\circ} 00 \ p (alb.)$	d 00 t	d 00 5	$a^4 \bigcirc 100y958.58.55(6e)$	$\widetilde{0H8}(\text{or}7)a^1$	$\frac{1}{6} \frac{100zq48.36.7}{100zq48.36.7}$	Bt	7 00 00
1//34	$a^5 \stackrel{?}{\checkmark} 00 \stackrel{?}{p} (alb.)$ $b^1 \stackrel{?}{\checkmark} 00 \stackrel{?}{p} (alb.)$	$ a^6\vec{\delta} - q (6e) $ $b^2\vec{\delta} = 95 \frac{q}{4}8.46.1(5e)$	7	$a^{8} - q(6e)$ $b^{4} - q(6d)$ $a^{8} - q(6d)$	Bt = Bt	$(i \ F) d \ 00 \ \mathcal{F}$	$0H16a^{2}$	18.46.
1/136	$b^{5} \circ 1002q$ 16.46.14(5 d) $a^{1} \zeta \circ 00$ $b^{-} = -(a b)$	$ b^{6} \stackrel{?}{\leq} 00 \stackrel{?}{=} - (alb.)$ $ b^{6} \stackrel{?}{\leq} 00 \stackrel{?}{=} - (alb.)$	$a^3 \lozenge \ 75 \ a48.46. \ 1(3c-d)$	$0.6 \cdot 0.002q + 0.12(9a)$	D_{ℓ} 0.00	1 1	$0.216a^{\circ}$ $0.116a^{4}$	$\frac{1}{7} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1H37	$a^5 \stackrel{?}{\circ} 15 \stackrel{?}{q} 37. 1. 1 (1aw)$ $a^1 \stackrel{?}{\circ} 65 \stackrel{?}{q} 49.48. 1 (2a)$		$\varphi - q (3c-dw)$	a4 €:+	$0H35a^{1}$: 1	$0H16a^5$	b -
1H38 1H39	$a^2 \xi = 35 \ q47. \ 1. \ 1(2c)$ $a^1 \xi = 00 \ p (alb.)$ $a^1 \xi = 00 \ p (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{100zq}{0.0} \frac{48.46.43(5-6d)}{0.0}$	$a^4 \subsetneq 100zq 49.46. \ 9(5-6d)$ $a^4 \nleq 00 \ p (alb.)$	Bt Bt	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H\overline{20a^4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 40	$a^1 \stackrel{?}{\circ} 00 \stackrel{p}{p} \stackrel{(alb.)}{\circ} a^5 \stackrel{?}{\circ} 00 \stackrel{p}{p} \stackrel{(alb.)}{\circ} a^1 \stackrel{?}{\circ} 00 \stackrel{p}{p} \stackrel{(alb.)}{\circ}$	d d d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \le 00 \ p = -(alb.)$	Bt	$00 \frac{d}{dt} = -\frac{d}{dt} \frac{\partial \theta}{\partial t}$	0H12a ³	b -
1H42	$\frac{2}{3}100zq49.46.14$	$a^2 4 \ 90 \ p39.35.4$	Q 45 q49. 1. 1	$a^4 \bigcirc 35 \ 946. \ 1. \ 2(3c)$	$0H^{1}\alpha^{2}$	55 q49. 1.1($0H_12a^5$	- <i>q q</i>
11H43	$a^{-5} = 0.0 \ psg.39$. $a^{-5} = 0.0 \ psg$ $a^{-5} = 0.0 \ psg$	α^2 - q	$a^3 = q (ab)$ $a^3 = 00 p (ab)$	$\alpha^4 \mathcal{E} = q(6e)$	$0H9a^{1}$		Bt	$\bigcirc 00 \ p (A1 \ ?)$
			4			1		,

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} a^3 \varphi \ 100eq 49.46. \ 9(5e-d) \\ a^3 \varphi \ 000 \ p (alb.) \\ a^3 \varphi \ 000 \ p (alb.) \\ a^3 \varphi \ 000 \ p (alb.) \\ a^3 \varphi \ 100eq 47.46.14(5d) \\ a^3 \varphi \ 100eq 47.46.14(5d) \\ a^3 \varphi \ 000 \ p (alb.) \\ a^3 \varphi \ 000 \ p (alb$
(a) $a^2 \neq 00 \ p = (alb.)$ (a) $a^2 \neq 00 \ p = (alb.)$ (a) $a^2 \neq 00 \ p = (alb.)$ (a) $a^2 \neq 00 \ p = (alb.)$ (a) $a^2 \neq 000 \ p = (alb.)$ (b) $a^2 \neq 100xq58.57.55(6e)$ (c) $a^2 \neq 100xq58.57.55(6e)$ (d) $a^2 \neq 100xq58.57.55(6e)$ (e) $a^2 \neq 100xq58.57.55(6e)$ (f) $a^2 \neq 100xq58.57.55(6e)$ (g) $a^2 \neq 100xq58.57.55(6e)$ (g) $a^2 \neq 100xq58.57.55(6e)$ (g) $a^2 \neq 100xq58.58.56(6e)$ (g) $a^2 \neq 100xq48.46.11(5e)$ (g) $a^2 \Rightarrow 10xq48.46.11(5e)$ (g) $a^2 \Rightarrow 10xq48.46.11(5e)$ (g) $a^2 \Rightarrow 10xq48.46.11(5e)$ (g) $a^2 \Rightarrow 10xq48.46.1$
$ \begin{array}{c} a^{\delta} \varphi \ 100xq49.46.12(5e-d) \\ a^{\delta} \varphi \ 100xq58.58.56(e) \\ a^{\delta} \varphi \ 100xq58.58.56(e) \\ 1H46 \\ a^{\delta} \varphi \ 100xq58.58.55(e) \\ a^{\delta} \varphi \ 00 \ p (alb.) \\ a^{\delta} \varphi \ 00 \ p ($

, .			

.		Offsen				Parents	
ATING		OFFSPI	118.0		Father		Mother
	ald 00 p = (alb.)	a ² 3 00 p (alb.)	a ⁵ d 65 q33.33, 3(3a) a ⁷ Q 00 p · − (alb.)	$a^4 \circ 100zq 35,35,30(6a)$ $a^8 \circ 00 \ p = - \text{ (alb.)}$	0H8(or7)a ² & 1002q49.46.7(5c)	Bt -	♀ 00 p (A1 ?)
H16	$a^3 \circ 45 \ q39, \ 1, \ 1(3a)$ $a^1 \circ 95 \ q41, 50, \ 4(4g)$	$\begin{bmatrix} a^{0} & 70 & 961.58, & 1(3r) \\ a^{2} & 55 & 958.55, & 1(3r) \end{bmatrix}$	$n^3 \delta / n p = - (alb_s)$	a 3 θθ p = - (alb)	$0H7a^{1}$ $= 6.1002q49.46.7(5c)$	Bt -	9 00 p (A13)
	$a^5 \delta^{-(0)} p = - \text{ (alb.)}$ $a^1 \delta^{-85} q 49 46.11(5-6c-d)$	$\begin{array}{cccc} a^6 & 0n & p & - & - & (alb.) \\ a^2 & 0n & p & - & - & - & (alb.) \end{array}$		a d d 45 q61. 1. 1(3d)	0H8(or7)a ¹ & 100zq48.36.7(5c)	Bt	9 00 p (A1 i)
<i>II</i> 18	$\frac{a^6 \tilde{X}}{a^4} = \frac{80}{q} \frac{\tilde{q}}{5} 8.58.55 (3a) = \frac{a^4}{q} = \frac{3c}{q}$	a ² ♀ 55 p37. 1. 1(3hw)	$a^3 \stackrel{\cdots}{\mathbb{Q}} a a p \stackrel{\cdots}{\longrightarrow} = (alb.)$	a ⁴ & 35 p40, 1, 1(3b)	0H7a ² & 45 q48, 1.1(2c)	0 <i>H</i> 9a³	9 45 q48.46. 1(2c)
	$\frac{a}{a^1} = \frac{mp}{q} = \frac{3\ln}{(2rm)}$	$a^2 = 00 p = - \text{(alb.)}$ $a^2 = q = - \text{(4ew)}$	$a^{\dagger} = (a) \stackrel{\circ}{p} = -(alb)$ $a^{\dagger} = q = -(2c)$	$a^4 Q = 30 \cdot q 49$, 1, $1(2c)$	0//7a3		♀ 50 q49. 1. 1(2c)
	$a^{\dagger}Q = \theta \theta p$ (alb.) $a^{\dagger}Q = \theta \theta p$ (alb.)	$u^6 \circ u \circ p = - \text{(alb.)}$ $u^2 \circ u \circ p = - \text{(alb.)}$	$b^{\dagger} \stackrel{\circ}{Q} 40 q58, 1, 1(2e)$ $a^{\dagger} \stackrel{\circ}{d} 45 q49, 1, 1(3em)$	$b^2 + 40 \stackrel{*}{p}35$, 1, 1(2b) $a^3 \stackrel{*}{r} = q = -(2r)$	$0H9a^1$ $\delta = q = -(2e)$		Q - q - (2c)
	$a^5 \vec{\delta} = p - (2f)$ $a^1 \vec{Q} = 00 p - (alb.)$	$a^{6} = q = -(2cic)$ $a^{2} \circ 2tmzq49.46.47(6d)$	a ³ dm p = - (alb.)	a4 & 00 p (alb.)	0H13a ² & 1002q48.46.7(5c)		φ ου p = -(41?)
	a 3 95 q49.46, 2(4d)	a6 g 200 q49.46, 4(4d)		a ⁴ Z 100zq 46.46.11(5d)	0H13a4 & 45 q52, 1.1(3e)		2 00 p = - (A×10)
H27	$a^{\dagger} \stackrel{\lozenge}{\circ} 100zq49.46.11(5d)$ $a^{\dagger} \stackrel{\lozenge}{\circ} 00 p = - \text{ (alb.)}$	$a^2 \stackrel{\circ}{Q} 00 \stackrel{\circ}{p} = - \text{(alb.)}$ $a^2 \stackrel{\circ}{Q} 00 \stackrel{\circ}{p} = \text{(alb.)}$	$\begin{array}{cccc} a^{\dagger} & & & q & & -(6e) \\ a^{\dagger} & & & & p & & -(6b) \end{array}$	a 3 00 p (alb.)	$Bt = -\delta \hat{\theta} \hat{p}$ (A1)	$0H7a^{h}$	\$ 50 q48.36, 2(3c
	$a^5 \stackrel{?}{=} 00 p = - \text{nlb.})$ $a^1 \stackrel{?}{=} 100zq 49.46.47 \stackrel{?}{=} 6c \stackrel{?}{=} 0$		$b^{\dagger} \delta = q (6d)$	b ² d 100zq 48.34. 9(5d)	Bt - 5 00 p (411)	0 <i>H</i> 7ah	♀ 100cq 48.46.12(5c)
H_{29}	$b^{\dagger} \stackrel{Q}{\circ} (00 \stackrel{\circ}{p} = - \text{ (alb.)}$ $a^{\dagger} \stackrel{Z}{\circ} (00 \stackrel{\circ}{p} = - \text{ (alb.)}$	$b^4 \stackrel{Q}{\circ} 00 \stackrel{D}{p}$ (alb.) $a^2 \stackrel{Z}{\circ} 00 \stackrel{Q}{q} 49 \stackrel{Q}{46}, 1.4c$)	$\begin{vmatrix} b^a Q & 00 & \hat{p} = - & - & \text{(alb.)} \\ a^a Q & q & - & (2c) \end{vmatrix}$	a ⁴ 9 55 q49 46, 2 3d)	0H16a1 3 50 q47. 1.1(3e)	$0H9a^5$	9 25 q46. 1. 1/2e)
	$a^5 = q - \frac{2e}{35 \rho 23}, \frac{2e}{1.1(2f)}$	$b^1 \supseteq 50 \ q49, 1, 2(2ew)$ $a^2 \supseteq 100eq 48.21.43(5ew)$	$\begin{bmatrix} b^2 & 50 & p23, & 1, & 2 & 3f, \\ a^3 & 2 & 45 & p36, & 1, & 1, & 3b \end{bmatrix}$	$\begin{cases} b^3 & d & 00 & p = \text{(alb.)} \\ \alpha^4 & 45 & p23, 1, 2, 2f \end{cases}$	$0H12a^{\dagger}$ $\stackrel{\cdots}{\mathcal{J}}$ $\stackrel{\cdots}{q}$ $\stackrel{\cdots}{}$ $\stackrel{\circ}{(5e)}$		Ŷ 40 q49. 1. 1(2d)
H31	$a^{h} \stackrel{?}{\circ} 60 \stackrel{?}{\cdot} 49.46, 3(3d)$ $a^{1} 00 \stackrel{?}{\cdot} p = - \text{ (alb.)}$	q = - (2dr)			$0H12a^2 = \vec{\phi} - q(5c)$	Bt -	Q θθ p = (A1)
	$a^{\dagger} \circ a^{\dagger} = -$ (alb.	$a^2 \ \ 00 \ p = - \text{ (alb.)}$ $a^6 \ \ 00 \ \mu = \text{ (alb.)}$	$a^3 ? 100zq 49.46, 2(4c)$ $a^7 = q = -(6c)$	a ⁴ ♀ 100xq58,57,55(6e)	$A1a^3$ $3 00 p (A2\frac{1}{2})$		Q - Q - (2d)
¥33		$a^2 \stackrel{\circ}{\beta} = 00 p = - \text{(alb.)}$ $a^0 \stackrel{\circ}{\beta} = q = - \text{(fiv)}$	$a^3 \stackrel{\circ}{Q} = 00 \stackrel{\circ}{p} = - (alb.)$ $a^7 \stackrel{\circ}{\rightarrow} \stackrel{\circ}{q} = - (6e)$	$a^{4} \stackrel{\bigcirc}{\circ} 100yq58 58.55(6r) = a^{8} = q = (6r)$	$0H8(or7)a^{1}\beta 1\theta 0zq48.36.7(5c)$	Bt	\$ 00 p · (.11 %)
7/3 E	h ≠ 00 p. 3lh	12 2 95 948 46 1/5e) - le ± 1/00:749 46 43 5d	163 & 100000 19 46 47/500 b) \$ 10000 45 16 43 5d	b 2 10024 48 46 12 5d	$Be = \frac{\cancel{x}}{\cancel{x}} \frac{\partial \theta}{\partial x_{P}} = -\frac{11}{\cancel{x}} \frac{\cancel{x}}{\cancel{x}}$	0H16a-	2 00 948 46 1 3c 2 00 948, 1 1 3c
	$b \in 10^{-7} 49 46 11 4d$ $b \in 2 1002q 46.46.14(5d)$	$b^{0} \stackrel{?}{>} 00 \stackrel{?}{p} = - \text{ (alb.)}$		$a^4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 \circ p = p = -$ (alb.)	a ³ ♀ 75 q48.46. 1(3r-d)				\$ 55 q49.46. 1(4e)
- 1	a^{1} $\bigcirc 65$ q 49 48 -1 $\bigcirc 2a$ a^{5} $\bigcirc 27$ q 47 , $[1, 1(2c)]$	$a^2 \circ r (2a)$	$a^{\dagger} \stackrel{Q}{\circ} - q$ (3r dw)	a4 & 25 p40, 1, 1(2aio)	$0H35a^1$ $\delta - q (2e)$	0 H16a5	Q = q = -(4e)
I_{39}	$a^{\dagger} \stackrel{?}{\partial} \begin{array}{ccc} \theta \theta \stackrel{?}{\rho} = & - & -(alh_{\epsilon}) \\ a^{\dagger} \stackrel{?}{Q} & \theta \theta \stackrel{?}{\rho} = & - & (alh_{\epsilon}) \end{array}$	$a^2 \stackrel{\bigcirc}{\downarrow} 00 p = (alb_i)$ $a^2 \stackrel{\bigcirc}{\downarrow} 00 p = -(alb_i)$	$a^3 \lozenge 100 eq 48.46,43(5-6d)$ $a^3 \circlearrowleft 00 \ p = (alb.)$	$a^{4} \circlearrowleft 100 iq 49.46, \ 9.5 \ 6d)$ $a^{4} \circlearrowleft 00 \ p = -(n lb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H20a^{\circ}$	\$\frac{\partial g49 \text{ 1 \text{ 1 \text{ 2d}}}{25 \text{ q49. 1, 1 \text{ 2d}}
	$a^{\dagger} \stackrel{\circ}{Q} = 00 \stackrel{\circ}{p} = - \text{(alb.)}$	$a^2 \stackrel{\circ}{\nabla} \theta p = - \text{(alb.)}$ $a^6 \stackrel{\circ}{\nabla} \theta p = - \text{(alb.)}$		a ⁴ 3 00 p (alb.)	Bt = - & 00 p = - & 0.11 t		$\mathcal{G} = y \cdot(5a)$
		$a^2 \stackrel{\circ}{\circ} b 0 \stackrel{\circ}{p} \text{ (alb.)}$	$a^3 \stackrel{?}{\underset{\longrightarrow}{\longrightarrow}} u\theta \stackrel{?}{\underset{\longrightarrow}{\nearrow}} \text{(alb.)}$	a ⁴ & 100.vq61.61.57(6e)	Bt - 3 00 p (A1?	$0H12a^4$	Q - q (5c)
442	$a^1 \stackrel{?}{\circ} (a) \stackrel{?}{p} = (alb, w)$ $b^1 \stackrel{?}{\circ} (57 p35, 33, 1 3a-bw)$	a ² f 90 p39.35, 4 4a;	$\begin{vmatrix} a^3 & 45 & q49, & 1, & 1(3c) \\ b^3 & -q & -q & -q(1cw) \end{vmatrix}$	$a^4 \ \bigcirc \ 35 \ q 46, \ 1, \ 2 \ 3c)$ $b^4 \ \bigcirc \ 100 qq 35, 33, 30 (6a)$	0H1a ² & 55 q49, 1,1,3c)	$0H12a^{5}$	$Q - q - \cdot (5a)$
	$h^{\tilde{p}} \tilde{\mathbb{Q}} = 00^{\circ} p = -$ (alb.)	$a^2 = q(6e)$	a ³ 00 p (alb.)	$\alpha^4 \mathcal{S} = q (6e)$		Bt	9 00 p (A1 i)

1#44	$a^{5} \stackrel{?}{\circ} 100z q 49.46.12(5c-d)$ $a^{4} \stackrel{?}{\circ} 00 p$ (alb.) $a^{*} = 45 q 49.48. 1.3c$,		a³ ♀ 1002q 49,46. 9(5c -d)	a ⁴ ♀ 85 q48.46, 1(4c)	0 <i>H</i> 1 <i>a</i> 1	∂ 45 q49.46.2(2d)	Bt	9 00 p (A13)
1 <i>H</i> 45 1 <i>H</i> 46	a ¹ & 100xg58,58,55(6e)	$\begin{cases} a^{\frac{1}{2}} \delta & 00 \ p & = -(\text{alb.}) \\ a^{2} & q = -\sqrt{3}c \\ a^{6} & 00 \ p & = -\sqrt{3}lb. \end{cases}$	$\begin{pmatrix} a^3 \delta & 00 & p = - & - & (alb.) \\ a^3 & - & q & (3c) \\ a^7 & 00 & p & - & (alb.) \end{pmatrix}$	a ⁴ 00 p - (alb.) a ⁴ 00 p - (alb.) a ⁸ 00 p - (alb.)	$0H7a^2$		Bt - Bt -	9 00 p (A×1or2) 9 00 p (A1)
	$a^{1} \circ 00^{\circ} p = \text{(alb.)}$ $a^{6} \stackrel{?}{d} 100.0958,57,55(6e)$	a ² Q 100 p - (alb.) a ⁰ Z 100xq58.57.55(6e)	$\begin{bmatrix} a^3 & 00 & p & - & (alb.) \\ a^3 & 00 & p & - & - & (alb.) \\ & & & & & & & & & & & & & & & & & & $	a4 8 00 p (alb.)	0 <i>H</i> 7a3	♂ 55 y49.46.2(2-3c)	Bt	φ ου p (A×1or2)
1H48	$a^{\dagger} \stackrel{?}{\downarrow} a a p = -(a b_c)$ $a^{\dagger} \stackrel{?}{\downarrow} a a p = -(a b_c)$ $a^{\dagger} \stackrel{?}{\downarrow} a a p = -(a b_c)$ $a^{\dagger} \stackrel{?}{\downarrow} a a p = -(a b_c)$	$\begin{vmatrix} a^2 & 100.eq58.57.55 & 6e \\ a^2 & 100.eq48.36, & 7(6^8g) \\ b^4 & 55 & q46, & 1, & 1(3e) \end{vmatrix}$	$\begin{bmatrix} a^3\vec{\delta} & 0\theta & p & - & - & (alb.) \\ a^3\vec{\delta} & 100 & eq58.57.55(bc) \\ b^2 & 2 & 100zq 47.46.14(5d) \end{bmatrix}$	a ¹ d 00 p - (alb.) a ¹ d 00 p (alb.) b ³ d 00 p (alb.)	0H13a ² 0H13a ³	8 1002q48.46.7(5c) 8 1002q49.46.7 5d	Bt Bt	\$ 00 p 11 \$ 00 p
$\frac{1H51}{1H52}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} b^6 & Q & Q & - & - & (6e) \\ a^2 & & 55 & q48, 1, 3(4e) \\ a^2 & Danger 757, 57, 57 \end{bmatrix},$	a ³ Q 75 q58, 1, 2(4e)	$a^{\dagger} \stackrel{\bigcirc}{\circ} 00 p = (alb.)$		$\vec{\delta} = q = (5c)$ $\vec{J} = 40 48.46 1.2$	Lb ···-	0 00 p(A x lor 2) 11 l _j
$1H_{55}$	$a^1 = 45 \text{ q37.37. } 1(3*a)$ $a^1 \neq aa_{-p}$ alb	$a^2 \circ B^0 p = -(alb.)$ $a^6 \circ 100 \circ 41 \circ 150 \circ 69$	α ³ δ 00 p (alb.)	u4 5 00 p (alb.)	$A1a^{1}$	ð 00 p	0 <i>H</i> 1 <i>u</i> 5	Q - q (1c)
$1H56 \\ 1H57$	$a^{1} \stackrel{?}{\circ} \qquad q = - \frac{(4e)}{(4e)}$ $a^{1} \stackrel{?}{\circ} \qquad 90 q48.46, \ 1, 4e)$ $a^{5} 90 p = - \text{(alb.)}$	$a^{2} \stackrel{?}{\circ} 90 q48.46 12(4c)$ $a^{2} \stackrel{?}{\circ} 1002q49.36.12(5-6d)$ $a^{6} 00 p = \text{(nlb.)}$	a ³ \(\times\) 1002\(q\) 49.48.12(5-6d) a ³ \(\times\) (00 \(p\) (alb.) a ⁷ \(\tilde\) 85 \(q\) 48.46. 1(4e)	$a^4 \circ 00 \ p = (alb.)$ $a^4 \circ 00 \ p = (alb.)$ $a^6 \circ 00 \ p = (alb.)$ $a^6 \circ 00 \ q49.46. \ 1(4c)$	$0H8(0r7)a^{1}$	₫ 00 p (.11) ₫ 100zq48.36.7(5c)	0H1a6 Lb -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$a^{1} = 30 q^{3} = 1 + 2a$ $a^{1} = 00 p = - \text{(alb.)}$ $a^{5} = 00 p = - \text{(alb.)}$	a^{2} Q (00) p	a^{7} Q a^{7}	a ¹ \$\frac{\pi 00 q45,40. 1(4c)}{\pi^4 \times 100 p} \text{alb.}, \\ a^4 \times 100 zq 48.46.12(5c)	.18a' .14a'	$ \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial \theta} \frac{\partial}{\partial \theta} = -\frac{(1 \times 2 \text{ or } 3)}{(12 \text{ R})} $	$0H7a^7$	\tilde{\text{Q}} - \frac{q}{q} \big(\frac{2c}{2d}\)
1H60	$a^{1} \stackrel{?}{>} 100.eq57.57.55.6e) a^{5} = q = -(6e)$	$a^2 = 00 p - (alb.)$ $a^0 = 00 p - (alb.)$	a ³ d 75 q46.46. 4(4c)	a ⁴ d 55 q49.46, 2(4c)		♂ 45 q52, 1.1(3c)	Bt	\$ 00 p (A1?)
1 <i>H</i> 61 1 <i>H</i> 63	한경 60 p - 36 한경 10 741 1 1 2g -	a ² 2 1005q 46 46 11 5c a-\$ 100.0q58.58.55,6c _j	a o o p albo	$a^{\dagger} \Im 100 a / 48.48.12 (5d)$	$0H12n^{2}$	3 q 5, 5, 12 lt)		2 45 q48.46, 1(2)
1 <i>H</i> 64 1 <i>H</i> 65	$a^{5}\vec{\beta} = 00 \ \hat{p} = -(a\hat{b},)$ $a^{1}\vec{\beta} = q = -(2e)$ $a^{1}\vec{Q} = 100.xq58.58.55 \ Ge)$ $b^{1}\vec{Q} = q = -(Ge)$	a^2 \bigcirc 35 q 49. 1. 1(2 d) a^2 \bigcirc 60 p (alb.) b^2 \bigcirc 100 xq 58.58.56(6 e)	u ³ 9 00 p (alb.) a ¹ 5 00 p - (alb.)	$a^4 \delta = 00 \ p (alb.)$ $a^4 \delta = 00 \ p (alb.)$	$A5a^{1}$ $A14a^{3}$	3 00 p (A×3) 3 00 p (A1)	$0H9a^{2} \ 0H27a^{1}$	♀ 80 q46, 1, 1(2c) ♀ 40 q58, 1, 2(2c)
1H66	$a^{\dagger} \stackrel{?}{\delta} = \stackrel{q}{q} = \stackrel{(0e)}{-(3e)}$ $a^{5} \stackrel{?}{\delta} \stackrel{?}{\beta} q47, 1, 1(1e)$	$\begin{vmatrix} a^2 & 85 & p23 & 23 & 1(4f) \\ a^6 & -p & - & (2f) \end{vmatrix}$	$\begin{bmatrix} b^{\dagger} & 00 & p & -(\text{alb.}) \\ a^{\dagger} & 35 & q46. & 1, & 1(3e) \end{bmatrix}$	$u^{\dagger}\delta = q (2uw)$	$0H1a^3$	д 45 q48. 1.1(2e)	0 <i>H</i> 35a²	Q - q (3d)
1//68	$a^1 \theta \theta \stackrel{p}{=} - (\operatorname{nlb}_s)$ $a^1 \stackrel{q}{=} - \stackrel{q}{=} - (\operatorname{1r})$ $a^6 = \stackrel{q}{=} - (\operatorname{3r})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ³ - q (1cw)	a4 00 p (alb. w)	$0H35a^{6}$	$ \vec{\delta} = q (2c) $ $ \vec{\delta} = q (4d) $	$0H35a^3 = 0H35a^4$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$1H71 \\ 1H72 \\ 1H73$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^2 & 55 & q37.33.30(3a) \\ a^2 & 00 & p \text{ (alb.)} \\ \dots & \dots \\ a^2 & 1002q49.46.43(5d) \end{bmatrix}$	$a^3 = q - (2e)$ $a^3 = 1002q 48 46 12(5e)$		$0H45a^3 = 0H75a^2 = 0H59a^3$	$\delta = q (2d)$ $\delta = q (2d)$ $\delta = 35 \ q49, \ 1.1(2e)$ $\delta = 100zq \ 10 \ 16.7(6d)$	0H59a ¹ 0H75a ¹ 0H45a ⁴ 0H73a ¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1H75 \\ 1H76 \\ 1H77 \\ 1H78$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} b^1 & 35 & p23. & 1. & 1(2a) \\ \vdots & \vdots & \vdots & \vdots \\ a^2 & 00 & p - & - & - & (alb.) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a^2 & 00 & p - & - & - & (alb.) \\ a^2 & 00 & p - & - & - & (alb.) \end{bmatrix}$	b ³ \(50 \) \(p36.36. \(2(3a \) \) \(a^3 \) \(00 \) \(p \) \(\text		1 H4a ¹ 0 H77a ² 0 H77a ³ 0 H75a ⁵	$\delta 100z_q^248.46.7(5c)$ $\delta = q = (5d)$ $\delta 60 q48.46.4(4c)$ $\delta 55 q48.46.1(4c)$ $\delta 15 q49. 1.1(1c)$	$0H73a^2$ $0H73a^3$ $0H75a^3$ $0H75a^4$ $1H4a^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \stackrel{\circ}{\circ} 00 p (alb.)$ $a^4 \stackrel{\circ}{\circ} 00 p (alb.)$ $a^3 \stackrel{\circ}{\circ} \sim q (6e)$	$A12a^6$	3 45 q49.46.2(2d) 3 00 p (.1 × 2)	$Bt = (0H77a^4) \\ (0H77a^5) \\ (0H77a^6)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	•	1						

	,	3.56(5e) 1.14e) - (5c) - (5c) - (5c) 3.4(5c)	$ \begin{array}{c} -(A \times 3) \\ -(A \times 3) \\ \vdots \\ -(alb.) \end{array} $	P = (A12.?) P = (A2.?) q = (5.?) q = (5.?) q = (5.?)	- (5a) - (5a)	.12(5c)	q (5c) $q + 8.46.12(3c)$ $q (5-6d)$	- (5d) - (4d) - (4d)	. 1 (2c)
	Mother	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33.11		\$\text{100zq} 48.46.12(5c)\$	\$\frac{\phi}{\phi} = q \phi - \phi \\ \phi \ \ \frac{\phi}{\phi} \ \frac{\phi}{\phi} \ \frac{\phi}{\phi} \ \frac{\phi}{\phi} \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.45 949. 1.
Parents		$0H77a^{6}$ $0H77a^{7}$ $0H77a^{7}$ $0H77a^{8}$ $0H77a^{8}$ $0H784a^{1}$ $0H84a^{1}$	$(A15a^{1})$ $(A15a^{2})$ \vdots \vdots $A15a^{2}$ \vdots	$A1a^{9}$ $OH84a^{?}$ $OH62a^{3}$	$0H12a^3 = 0H12a^5 = 0$	0H7a6	$0H82a^{2}$ $0H82a^{1}$ $$ $$ $0H85a^{4}$ $0H85a^{4}$	$0H85a^3$ $0H85a^1$ $0H85a^1$	0 <i>H</i> 120 <i>a</i> ³ ♀
PA	Father	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H13a^{1}$ \$\(\frac{1}{5}\tilde{0}\) $946.46.1(3c)$	$0H73a^{6} \ \mathring{\zeta} - q (3c)$ $0H84a^{?} \ \mathring{\zeta} - q (5?)$ $0H62a^{1} \ \mathring{\zeta} - q (20?)$	0.00000000000000000000000000000000000	$0H111a^{1} - q (5d)$	$0H84a^{8} \xi q - - (5c)$ $0H13a^{4} \xi 4\bar{j} q\bar{j}2. 1. 1(3c)$ $0H84a^{9} \xi 100z_{I} + 8.46.28(5c)$	$0H20a^3$ & $100zq$ 48.46. $7(5d)$ $0H120a^4$ & 60 q 49.46. $1(3c)$	0H120a' & 50 q48.46. 3(3c)
		$b^{4} \stackrel{?}{\varsigma} - q^{-} - (6e)$ $b^{4} \stackrel{?}{\varsigma} 00 p^{-} - (alb.)$ $a^{4} \stackrel{?}{\varsigma} 00 p^{-} - (alb.)$ $a^{4} \stackrel{?}{\varsigma} 00 p^{-} - (alb.)$	$a^4 - q (6e)$ $b^2 \circ 00 \ p (8e)$ $b^6 \circ - q (8e)$	$a^{4} \delta = 00 \ p = (alb.)$ $a^{4} \delta = 00 \ p = (alb.)$ $a^{4} \delta = 100x (-1.1.50(6*))$ $a^{4} \delta = 100x (-1.1.50(6*))$: 1 1 1	$a^4 \stackrel{?}{\nabla} 100zq 49.46.30(5c) \\ b^1 80 p37.37. 2(5b) \\ b^5 00 \ p (\text{alb.})$	a^{4} 00 p (alb.) a^{4} φ 65 q 49.46. 1(3 e d) b^{2} φ 60 q 55.46. 1(4 e) b^{3} φ 00 p (alb.) α^{4} - q (5 e)	$b^2 \neq 100xq49.48.46(6c)$ $b^6 \neq -p = -6*b - g)$ $a^4 \neq 100xq58.57.57(6c)$ $b^2 \neq -p = -(6f)$ $b^1 \neq 60dx^140.39.1(4b - c)$ $b^5 = q = -(3b)$	$a^4 \frac{\varphi}{2} \ 00 \ p^{-} (alb.)$
ING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$a^{3} &cde (6c)$ $a^{3} &cde (6c)$ $a^{3} &cde (6c)$ $a^{3} &cde (6c)$ $a^{3} &cde (6c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} \zeta 100zq 49.46. 4(6c)$ $a^{7} 00 p (alb.)$ $b^{4} - q (5c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} b^1 & 00 & p (\text{alb.}) \\ b^5 & 00 & p (\text{alb.}) \\ a^3 & 5 & 1002q \ 37.37. \ 4(5b - c) \\ b^5 & 25 & p \ 37. \ 1. \ 1(1-2b) \\ b^5 & - q (3c) \\ a^3 & 2 & q (4b - c) \\ b^4 & 55 & q \ 61.60. \ 1(3c) \end{array}$	$a^{3} \stackrel{\varphi}{\circlearrowleft} 50 \ p37.36. \ 3(3b)$ $b^{2} \stackrel{\varphi}{\circlearrowleft} - q (3b-c)$
OFFSPRING			a^{2} 00 p (alb.) a^{6} - q (5c) $b^{4} \neq 00 \ p$ (alb.) $a^{2} \neq 00 \ p$ (alb.)	$a^{2} \stackrel{?}{\circ} 60 q 58. 1. 1(4e)$ $a^{6} \stackrel{?}{\circ} 00 p (alb.)$ $a^{2} \stackrel{?}{\circ} - p (6aw)$ $a^{2} \stackrel{?}{\circ} - q (2e)$	$\begin{array}{lll} \alpha^6 & 00 & p & (alb.) \\ \alpha^2 & \xi & 100\varepsilon_4 & 35.33.28(5-6b) \\ b^2 & \xi & & & (5aw) \\ b^1 & \psi & p & & (alb.) \end{array}$	$a^2 \stackrel{?}{\leftarrow} 80 q61.57. 1(4e)$ $a^6 85 p26. 9. 3(5-6b)$ $b^3 - q - - (5c)$		$a' 75 49.46; 9$ $b^4 \triangleleft 00 p = (alb.)$ $a' 00 p = - (5bu)$ $a' 00 p = (alb. w)$ $b^4 \triangleleft 100xp24.24.15(67w)$ $a^2 p = (3bw)$ $b^3 \triangleleft 80 p36.34. 3(4b)$	$^{2}\delta - ^{2}\theta - ^{-}(2e)$
		$\begin{array}{cccc} - & - & (alb.) \\ 61.60. & 2(4e) \\ - & - & -(4e:g) \\ - & - & -(alb.) \\ - & - & -(alb.) \\ - & - & -(alb.) \\ - & - & -(ge) \\ - & - & -(6e) \end{array}$	(alb.) (5c) (alb.)	49.46. $1(3e)$ (alb.) $(5dw)$ $(3e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.35.28(6b) $-$ (alb. w) $37. 1. 1(2b)$ $-$ (alb.) $-$ (alb.)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} ar \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
		\$\\ \alpha_{\begin{subarray}{c} \cdot \cdo	a^{1} 00 p^{2} $a^{3} \Rightarrow 0$ p^{2} $a^{1} \Rightarrow 0$ p $a^{1} \Rightarrow 0$ p	$a^{1} \Leftrightarrow 50 \ q$ $a^{5} \Leftrightarrow 00 \ p$ $a^{1} \Leftrightarrow -q$ $a^{1} \Leftrightarrow -q$	$a^{5} \stackrel{\triangleleft}{\downarrow} 00 \ p$ $a^{1} \stackrel{\triangleleft}{\downarrow} 100zq$ $b^{1} \stackrel{\triangleleft}{\downarrow} 00 \ p$ $a^{1} \stackrel{\triangleleft}{\downarrow} 100zq$ $a^{1} \stackrel{\downarrow}{\downarrow} 100zq$	100+		$a^{3} + C = 0$ $a^{3} + C = 0$ $a^{3} + C = 0$ $a^{5} - C = 0$ $a^{3} + C = 0$ $a^{3} + C = 0$ $a^{4} + C = $	$a_1^6 + b_0^6 - a_1^6 + a_2^6 - a_1^6$
MATING		1H83 1H84 1H85 1H86 1H87	1 <i>H</i> 88	1H92 $1H94$ $1H95$	1 <i>H</i> 96	1H98	1 <i>H</i> 99 1 <i>H</i> 100 1 <i>H</i> 101	1H102 $1H103$	11104

$0H120a^{6} \ \varphi \ 75 \ q49.46. \ 1(4c)$ $0H1a^{6} \ \varphi \ - q \ (3c)$ $0H16a^{5} \ \varphi \ 25 \ q46. \ 1. \ 1(2c)$ $0H101a^{6} \ \varphi \ 45 \ q49.46. \ 1(3c)$ $0H101a^{8} \ \varphi \ - q \ (5c)$	$0H61a^{7}$ $\circ - q (5c)$ $0H61a^{6}$ $\circ 65$ $q49.30.$ $7(3c)$ $0H101a^{7}$ $\circ (4c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$0H120a^{2} - q (3c)$ $0H120a^{1} - q (4c)$ $0H110a^{1} - q (4c)$ $0H101a^{1} - q (4c)$ $0H101a^{2} - q (4c)$ $0H101a^{2} - q (4c)$ $0H101a^{2} - q (5c)$	$0H101a^{3} - q (5c)$ $0H75a^{5} $ 15 $q49$. 1. 1(1c) $0H720a^{2} $ - $q (3c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$a^4 \zeta + 40 p37. 1. 1(2b)$ $b^4 - p (4b)$ $b^3 55 q44.47.29(3dw)$ $a^4 00 p (alb.)$ $b^2 \zeta - q (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$a^3 \stackrel{?}{\circ} 50 \ p23.23 \ 1(3f)$ $b^3 = 75 \ p37.33 \ 1(4b)$ $b^3 = 35 \ p26. \ 1. \ 2(2f)$ $a^3 = 00 \ p = (alb.)$ $a^3 = 25 \ q58. \ 1. \ 2(2e)$ $b^4 \stackrel{?}{\circ} 25 \ q58. \ 1. \ 2(2e)$ $b^4 \stackrel{?}{\circ} 00 \ p = (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 q 58.55. 2 - p or r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a^2 80 p26.37. 2(5bw) a^6 - p (4b) b^4 δ 00 p (alb.) a^2 δ 35 q 44. 3. 1(2cw) a^6 00 p (alb.) a^5 δ 65 q 58. 1. 1(3e)	$b_1 \neq 295 \ q48.46. \ 4(3-4c)$ $b_2 \neq 295 \ q49. \ 1. \ 1(1c)$ $a_2 \neq 10 \ q58. \ 1. \ 1(1e)$ $a_3 = -6 \ q58. \ 1. \ 1(1e)$ $a_4 \Rightarrow 45 \ q58.57. \ 2(3e)$ $a_5 \Rightarrow 45 \ q58.57. \ 2(4e)$ $a_5 \Rightarrow 45 \ q58.57. \ 2(4e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 45 \ q58. \ 1. \ 1(3e)$ $a_5 \Rightarrow 46. \ 1(3e)$ $a_5 \Rightarrow 60 \ p = (alb.)$ $a_7 \Rightarrow 00 \ p =$
(alb.) 37. 1. 1(36) 37.37.33(36) (36) 48.46. 7(3cw) (alb.) 37.37.28(4b-c) (alb.) (alb.) (alb.) (alb.) (alb.) 39.33. 3(5-6a)	$\begin{array}{c} -bw) \\ -bw) \\ 35. \ 1.34bw \\ 41.41.50(5-6g) \\ (5-6e) \\ 47. \ 1.1(1cw) \\ (alb.) \\ (alb.) \\ 37. \ 2. \ 2(2-3b) \end{array}$. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
H 05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ದರ್ಶಗಿದ್ದರು ರೈನ್ಸ್ ರಿಡಿಕ್ಕಿಸಿದ್ದರು ದರ್ಭದ ದರ್ಭದ ರಾಜ್ಯ ಪ್ರಾಸ್ತ್ರಿಗೆ ರಿಡಿಕ್ಕಿಸಿದ್ದರು ರಾಜ್ಯ ರ

	1			· · ·	Pol	0 VIS
MATING		•	Offspr	120	Father	Mother
11/83		(alb.) b		$b^3 \circ - q - \cdots \circ b^e$ $b^i \circ - q - \cdots \circ b^e$ $\cdots \cdots \cdots \cdots \cdots$	412a ⁶ & 00 p - (A×2)	0H77a ⁶ ♀ 100,eq57,56,56 5
	$a^{\dagger} = \hat{q}$	(4c:g) a	$q^2 - q - (3c : g)$	a ³ - q (3e)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 85 1 <i>H</i> 86 1 <i>H</i> 87	15 8 1111 p	= (alb.) b = - (5c) a	${}^{2} \stackrel{\circ}{\circ} 00 p (alb.) = (alb$	$a^3 \delta = 00 p = -(alb.)$ $a^4 \Omega = 00 p = -(alb.)$	112a ⁷ \$ 00 p (A×2) 112a ⁷ \$ 00 p - (A×2) 112a ⁷ \$ 00 p (A×2)	0H84a ¹ Q - y - (5c)
	a5 9 − a	(6c)	00 p (alb.)			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 90	$a^5 - q$ $b^3 \supsetneq a00 p$ $a^1 \supsetneq a00 p$	(alb.) b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0H7a ¹ & 100zq49,46, 7(5c)	$1H6a^{1} Q m p a (alb_{1}) H6a^{2} Q m p a (alb_{1}) (alb_{2}) (alb_{3}) (alb_{4}) (alb_{5})
	$a^{1} \stackrel{\frown}{Q} 50 q$ $a^{5} \stackrel{\frown}{G} 00 p$ $a^{1} \stackrel{\frown}{Q} \qquad q$ $a^{1} \stackrel{\frown}{Q} \qquad q$	= - (alb.) (alb.) (alb.) (alb.)		*** *** *** ***	0H84a t & - q (5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$a^{1} \stackrel{?}{\circ} 10012q$ $b^{1} \stackrel{?}{\circ} 10012q$ $a^{1} \stackrel{?}{\circ} 10012q$	$\frac{1}{33,30.28(5-6bl)} \frac{b}{b}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0H84a^{\dagger} = 3 100zq35.33 28(5a)$ $0H111a^{2} 3 = q = -(5a)$	$0H12a^{3} \bigcirc \qquad \qquad \cdots \qquad \cdots \\ 0H12a^{3} \bigcirc \qquad \qquad - \qquad \qquad (5a) \\ \cdots \\ 0H12a^{5} \bigcirc \qquad \qquad - \qquad - \qquad (5a)$
11198	b^2 p	$ \begin{array}{c cccc} (4e) & a \\ 48.46, & 4(5-6e) & a \\ - & -(6f) & b \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{7} = 00 \stackrel{p}{p} = (alb.) b^{4} = q = -(5c) \begin{vmatrix} b^{1} & 80 \stackrel{p}{p} 37.37, 2(5b) \\ b^{5} & 00 \stackrel{p}{p} +(alb.) \end{vmatrix}$	0H111a ¹ & q (5d)	0 <i>H</i> 7 <i>a</i> ⁶
1///100	a ¹ \$ 1002p a ¹ ↓ 00 p a ⁵ ♀ 30 p	39,35 28 6b) [a ,lb.a , a 37, 1, 1(2b) = a	$\frac{d}{dt} = \frac{30}{8} \frac{q}{9} \frac{16}{16} \frac{1}{3} \frac{1}{126} \frac{1}{126}$ $\frac{d}{dt} = \frac{30}{8} \frac{q}{9} \frac{16}{16} \frac{1}{126} \frac{1}{126} \frac{1}{126}$	$\begin{bmatrix} a & \beta & q & 2cl, & \{a^4\}_{1}^2 & 65 & q49 & 46, & 1 & 3c & d, \\ b^4 & 55 & q49 & 46, & 1(3c) & b^2 & 66 & q55 & 46 & 1(4c) \end{bmatrix}$	0H13a ³ 3 45 /52, 1 1,3 ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1#101	$a^{\dagger} = 100 \times p$ $a \cdot 9 = q$	24 24.17'6f) a - (6e) a	75 49.46. 9	a^3 65 961.60 , $3.3e$, a^4 q $(5e$, b^4 00 p (alb.) b^2 $\Omega 100 \alpha q 49.48.46 (6e)$	0H84a ⁰ & 1005y 18 46.28(5c)	0H85a⁴ ♀ - q · 5 6J
11/102	$a^1 \stackrel{?}{\circ} 1002q$ $a^5 - q$	52.51. 9(5dw) a - (1cw) a		$a^{1}\vec{\delta} \ 100z\hat{q} \ 37.37, \ 4(5b-c) \ b^{1}\vec{\delta} \ 25 \ p37, \ 1, \ 1(1-2b) \ b^{2}\vec{\delta} \ p \ p \ - \ 6f)$	0H20a1 & 100zq 48.46, 7(5d)	0H85a³ ♀ - q 5 l
1 <i>H</i> 103	$b^3 \stackrel{\circ}{\delta} \qquad \stackrel{\circ}{p} \\ a^1 \stackrel{\circ}{Q} \qquad 57 \stackrel{\circ}{q} \\ b^2 \stackrel{\circ}{Q} \qquad 55 \stackrel{\circ}{por} \\ de$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} = q - (4b^{\circ}c) b^{1} = 60dr(40.39,1(4b^{\circ}c))$	0H120a4 & 60 q49.46. 1(3c)	$0H85a^{1} + q $
1#104	ba - q	- (3b-c) (alb.)	$t^{2}\vec{S} = q - (2e)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0H120a ⁷ & 50 q48.46. 3(3c)	0H120u ³ Q 45 q 49 1. 1 (2c)

$1H105 \begin{vmatrix} a^1 & 2 & 40 & p \\ b^1 & 60 & p \end{vmatrix}$	$-37.37.33.3h$ $b^2 = 00^{\circ} \rho$ (alb. w) l	$b^3 = 75 \mu 37 \ 33 \ 1 \ 4b = b^4 = p = -(4b)$		120a ⁶ ♀ 75 q49.46. 1(4c)
1H106 at 100 q	$-48.46 - 7.3cm - b^{\dagger} - 60 - q^{\dagger}44. \ 1, \ 1(3c) = -l$	$b^2 = 35 p26$, 1, $2(2f) = b^3 = 55 q44.47.29(3dw)$	$0H120a^{1}J - q - (4c) 0H$	$1a^6$ \downarrow $q \sim -(3c)$
$\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a^3 00 p - $-(alb.)$ a^4 00 p - $-(alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$1H109$ a^{\dagger} p a^{\dagger} a^{\dagger} a^{\dagger} a^{\dagger}	$ (2bw)$ a^2 70 $p37.37$, $4(3bw)$ a^2 $ (alb.)$ a^0 00 p $(alb. w)$ t	$b^{\dagger} = 25 \ g58, \ 1, \ 2(2e) \ b^{2} = 4 \ g^{-2} = (3c)$		101a ⁶ 9 45 q49.46, 1(3c)
$1H110 \begin{vmatrix} h \cdot \vec{x} & 00 & p \\ a^1 & 85 & p \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h^{h} = 00 \stackrel{\circ}{p} = - \text{ (alb.)} \qquad \qquad .$		1010 ⁸ \$ q (5c)
# 3 95 p	19.19. $9(6\sigma)$ a^2 80 p26.37. $2(5bw)$ 6 35. 1. $3(4bw)$ a^0 - p - (4b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H101a^{3}\delta - q (5v)$ 0H6	$61a^7$ Q - q $(5c)$
a, a , a	47. 1. $1(1cw)$ $a^2 \circ 35 \ q$ 44. 3. $1(2cw)$ $a^2 \circ 40 \ p = -(alb.)$	$a^3 - p(2f)$ $b^1 \circlearrowleft 30 \ p26. \ 1. \ 1(2b-f)$ $\begin{vmatrix} a^4 & 00 & p(alb.) \\ b^2 & 35 & q48. \ 1. \ 3(2c) \end{vmatrix}$	0H75a ⁵ & 15 q49, 1, 1(1e) 0H6	61a ⁶ Q 65 q49.30. 7(3c)
6 / 1111)	(alb.)	$a^{3} \ \lozenge \ 00 \ p (alb.) a^{4} \ \lozenge \ 00 \ q48.36. \ 4(3cw)$		101a ⁷ Q - q (4c)
1#114 bt ♀ 30 q at ⊋ 05 p	49. 1. $1(2e)$ $b^5 = 25$ q 49. 1. $1(1e)$ b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H62a^{\dagger}$ $d - q (2c)$ $0H6$	$3a^1$ $Q - q (2c)$
$= \frac{1H_{115}}{a^{1/2}} \frac{a^{1/2}}{a^{1/2}} \frac{a^{1/2}}{a^{1/2}} \frac{a^{1/2}}{a^{1/2}}$	47.46. 1.1c, $a^2 = q = -(3c)$ 6 (alb.) $b^1 \circ 45 = 45 = 57 = 2(3c)$ 6	a^{1} Q 85 q 58.55. $1(4e)$ a^{4} $q = -(2ew)$ b^{2} Q		4a ⁵ 9 80 q49.46. 2(4c)
1H116 $w = 40 p$	4r + a = 7 + 00 n = -4 alb = 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*** *** *** ***	4α° ♀ 80 q49.48. 1(4c)
1//117 a g t 10 g	49 46 ± 5 $\frac{a^2}{2f} \frac{d}{L^2} \frac{q}{2} = -(6e)$ a	$a^3 \stackrel{\circ}{\delta} \stackrel{\circ}{\partial} 00 \stackrel{\circ}{p} - \cdots - (alb.)$ $b^1 \stackrel{\circ}{Q} 100xq41.41.50(5g)$	0H102a43 - q (5e) 0H6	2a ⁵ Q 1002q 49.48.12(5c)
11/118 at \(\xi_1 \) \(\frac{7}{4}\) \(\frac{7}\) \(\frac{7}{4}\) \(\frac{7}{4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0H45a3 & - q (2d) 0H6	4 4- 7 - 1000
u° 3 00 p	$a = -(a)b$, $a = a \neq 0$, $a = -(a)b$, $a = a \neq 0$		0H100a4 & 100.q 19 46 7,5c) 0H6	2a ⁶ \$ 100zq 49.46.12(5c)
$1H120$ $\begin{vmatrix} a & c & c \\ a & c & lon, p \\ b^3 \stackrel{?}{\nearrow} & 00 \stackrel{?}{\nearrow} \\ 0 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{b} = 00 \ p = (alb.)$ $b^{b} = 35 \ y58.55, \ 2(4e) = b^{2} = 80 \ y48.46, \ 2(5e)$	0H59a ² & 100zq 49.46. 7(6d) 0H6	2a ⁴ \$ 1002q 49:46, 7(5c)
a ⁵ d 55 q b ² Q 75 p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 - 4 (40)	0H102a ¹ & 70 q48.46, 2(4c) 0H1	10a² ♀ 60 q52.46. 2(3e)
$-11H122 1a^1 = 00 \cdot n$	$r = (allb) r^2 = q 3c a$	$a^{3} \delta - q (4e)$ $a^{4} \delta = 55 \ p23. \ 1. \ 1(3f)$	0H102a ² 5 55 q48. 1. 2(3c) 0H7:	3a ⁵ 9 - q (3c)

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Fa	$0H100a^{3} \dot{\sigma} - q (5c)$ $0H100a^{2} \dot{\sigma} - q (5c)$ $0H85a^{5} \dot{\sigma} - q (5d)$ $0H112a^{1} \dot{\sigma} 30 q49. 1. 1(2c)$ $0H112a^{2} \dot{\sigma} - q (5c)$ $0H112a^{2} \dot{\sigma} - q (5c)$ $0H104a^{4} \dot{\sigma} 100zq49.46. 2(3c)$ $0H104a^{3} \dot{\sigma} + q q48.46. 2(3c)$ $0H114a^{6} \dot{\sigma} 65 q48.46. 3(3c)$ $0H117a^{5} \dot{\sigma} 65 q48.46. 3(3c)$ $0H113a^{7} \dot{\sigma} - q (5c)$ $0H113a^{7} \dot{\sigma} - q (5c)$ $0H117a^{7} \dot{\sigma} 90 q49.46. 9(4c)$ $0H117a^{7} \dot{\sigma} 100zq49.46. 9(4c)$ $0H107a^{7} \dot{\sigma} 100zq49.46. 20(5c)$ $0H103a^{7} \dot{\sigma} - q (45c)$ $0H103a^{7} \dot{\sigma} - q (5c)$	
FSPRING		$\begin{array}{c} b^4 \stackrel{\wedge}{\varsigma} - p - p (3a - b) \\ b^3 \stackrel{\wedge}{\varsigma} 100xx^57.56.56(e) \\ b^3 \stackrel{\wedge}{\varsigma} 100xx^57.56.56(e) \\ b^3 \stackrel{\wedge}{\varsigma} 100xx^57.56.56(e) \\ b^3 \stackrel{\wedge}{\varsigma} 100xx^57.56.56(e) \\ b^3 \stackrel{\wedge}{\varsigma} 00 p (alb. w) \\ b^3 \stackrel{\wedge}{\varsigma} 00 p (alb. w) \\ a^3 \stackrel{\wedge}{\varsigma} 00 p (alb. w) \\ b^3 \stackrel{\wedge}{\varsigma} 00 p (alb. w) \\ a^3 \stackrel{\wedge}{\varsigma} 00 p (alb. w) \\ b^4 \stackrel{\wedge}{\varsigma} 05 p^3.3. 4(5b - c) \\ a^7 - q (1cw) \\ b^4 \stackrel{\wedge}{\varsigma} 05 p^3.7. 1. 1(1a) \\ b^4 \stackrel{\wedge}{\varsigma} 05 p^37. 1. 1(1a) \\ b^3 \stackrel{\wedge}{\varsigma} 100xp^26.26.17(6fw) \\ b^4 \stackrel{\wedge}{\varsigma} 00 p (alb.) \\ b^3 \stackrel{\wedge}{\varsigma} 00 p (alb.) \\ b^4 \stackrel{\wedge}{\varsigma} 00 p (a$	· ·
OFFSI	٠	$\begin{array}{c} b^2 \neq 70 \ 949.46, \ 4(4c) \\ b^1 \neq 60 \ 978.51, \ 4(5c) \\ b^1 \neq 60 \ 978.51, \ 4(5c) \\ b^1 \neq 60 \ 978.51, \ 4(3c) \\ b^1 \neq 60 \ 978.51, \ 4(3c) \\ b^2 \neq 10022935.33.28(5-6b) \\ b^2 \Rightarrow 10022935.33.28(5-6b) \\ b^2 \Rightarrow 10022935.33.28(5-6b) \\ b^3 \Rightarrow 10022935.33.28(5-6b) \\ b^3 \Rightarrow 10022935.33.28(5-6b) \\ b^3 \Rightarrow 10022935.33.28(5-6b) \\ c^3 \Rightarrow 10022935.33.28(5-6b) \\ c^3 \Rightarrow 10022935.33.28(5-6b) \\ c^3 \Rightarrow 10022935.35.29(5c) \\ c^3 \Rightarrow 10022935.35.29(5c) \\ c^3 \Rightarrow 10022935.35.30(4a-f) \\ c^4 \Rightarrow 10022935.35.30(6a-f) \\ c^4 \Rightarrow 10022935.35.30(6a-f) \\ c^4 \Rightarrow 10022935.35.30(6a-f) \\ c^4 \Rightarrow 10022935.35.30(6a-f) \\ c^4 \Rightarrow 10022935.55(6a-f) \\ c^4 \Rightarrow 10022935.5$	4 Ł
MATING		1.H122 1.H123 1.H124 1.H126 1.H126 1.H127 1.H128 1.H133 1.H133 1.H135 1.H135 1.H135 1.H136 1.H136 1.H137 1.H136 1.H137 1.H137 1.H137 1.H138	

2-2

$A43a^3$ φ $00 p (A2?)$ OH 112 $a^5 \varphi$ ψ $q49.$ 1. $1(2c)$ OH 112 $a^4 \varphi$ $s5 q46.$ 1. $1(2c)$ OH 111 $a^4 \varphi$ $s5 q48.46.$ 1. $1(2c)$ OH 111 $a^4 \varphi$ $s6 q48.46.$ 1. $1(2c)$ OH 111 $a^4 \varphi$ $s6 q49.36.$ 1. $4(2c)$ OH 117 $a^4 \varphi$ $s6 q49.36.$ 1. $4(3c)$ OH 103 $a^4 \varphi$ $s6 q49.46.$ 1. $3(3c)$ OH 103 $a^5 \varphi$ $s6 q49.46.$ 3. $3(3c)$ OH 100 $a^5 \varphi$ $s6 q49.46.$ 1. $1(2c)$ OH 10 $a^5 \varphi$ $s6 q49.46.$ <	$\begin{array}{c} 0H111a^{9} \subsetneq 100zq35.35.30(5a) \\ 0H111a^{9} \subsetneq 100zq35.34.29(5a) \\ 0H111a^{10} \subsetneq - q (5a) \\ A133a^{1} \subsetneq 00 p (A \times 2) \\ A133a^{3} \subsetneq 00 p (A \times 2) \\ A133a^{3} \end{cases}$
\$\begin{align*} \$a^{4}\phi & 50 & 946.30. \\ \$\delta & 00 & p & & & \\delta & & \\ \$\delta & 00 & p & & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00 & p & & \\delta & 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{4} \stackrel{\frown}{\circ} 00 \ p (alb.)$ $a^{4} \stackrel{\frown}{\circ} - q (4c)$ $b^{1} \stackrel{\frown}{\circ} - q (6e)$ $b^{5} \stackrel{\frown}{\circ} 00 \ p (alb.)$ $a^{4} \stackrel{\frown}{\circ} - q (5c)$ $a^{8} - q (5c)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} \neq 100zq49.48. \ 9(5c)$ $a^{3} \neq 00 \ p (alb.)$ $a^{3} \neq 00 \ p (alb.)$ $b^{4} \neq 00 \ p (alb.)$ $a^{3} \neq 00 \ p (alb.)$ $a^{3} \neq 00 \ p (alb.)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1005248.46. 17 1005248.46. 17 1005248.36. 9 100526.36. 9 100526. 17 100526. 17 10052
$a^{3} \del{d} \delded \delded \delded} \delded$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 144 1 <i>H</i> 145 1 <i>H</i> 146 1 <i>H</i> 148 1 <i>H</i> 150 1 <i>H</i> 151 1 <i>H</i> 152 1 <i>H</i> 153 1 <i>H</i> 154 1 <i>H</i> 155 1 <i>H</i> 156 1 <i>H</i> 156 1 <i>H</i> 156 1 <i>H</i> 156 1 <i>H</i> 156	1 <i>H</i> 161 1 <i>H</i> 162 1 <i>H</i> 163 1 <i>H</i> 164 1 <i>H</i> 165 1 <i>H</i> 165

Matino		OFFSI	PRING		PA	BENTS
MATING					Father	Mother
1 <i>H</i> 123	$a^1 \stackrel{?}{\circ} 80 \stackrel{?}{\circ} 48.51. \ 4(5c) \ b^1 \stackrel{?}{\circ} 60 \stackrel{?}{\circ} 58.55. \ 1(3e) \ b$	$p^{2} = \frac{1}{2}	b3 \$ 100xq57,56.55(6e)	$a^4 - q (5e)$ b^4 \$ 80 q46.46 4(5c-d)	0H100a ³ S - q (5c)	0₩100a ^s ♀ - q (5c)
	$\sigma^1 \mathcal{X} = g = -(3e)$	6 40 q44. 1. 1(3c) 6 90 p37.37, 2(5b-c) 1 9 65 q58. 1. 1(3-4e)	$\begin{vmatrix} a^3 & - & q & - & - & - & (6e) \\ b^2 & 00 & p & - & - & - & (alb. w) \end{vmatrix}$	$a^4 \circ - q (4c)$ $b^3 \circ 65 \circ q58.54. \circ 2(4e)$	0H100a ² & - q (5c)	0H111a³♀ - q (5d)
H_{125}	a ¹ 9 85 a53.51, 4(5c) a	$ \begin{array}{rcl} & 5 & - & \bar{p} & (5b) \\ & 2 & - & q & (5c) \\ & 3 & - & p & (5bw) \end{array} $	a ³ Q 80 q39.39, 4(5b c) a ⁷ - q (3c)	a4 - q (6c)	0H85a5 5 - q (5d)	$0H100a^{T}Q - q - (5c)$
	$\begin{bmatrix} a^1 & 0 & 0 & p & - & (alb.) \\ a^5 & - & q - & - & (3c) \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} a^3 & - & q & - & - & (1cw) \\ a^7 & - & q & - & - & (1em) \\ b^4 & 05 & p37, 1, 1(1a) \end{vmatrix}$	$a^4 \circ - q (2c)$ $b^1 \circ 25 p37.37, 5(2-3a-b)$ $b^5 \circ 00 p (alb.)$	0H112a ¹ & 30 q49. 1. 1(2c)	0H45a4 Q - q (2d)
H127	$a^1 \stackrel{?}{\circ} 00 \stackrel{?}{p} - (alb.) \begin{vmatrix} a \\ a^5 - q (5c) \end{vmatrix} b^4$	$^{3} \circ 100z_{q}^{2} 47.51.20(5c)$ $^{1} \circ q = q = -(3c)$	$\begin{bmatrix} a^3 & 100z_q^2 & 48,46, & 9(5e) \\ b^2 & 85 & p37,36, & 4(5-6bw) \end{bmatrix}$	$a^4 \stackrel{\frown}{Q} \stackrel{\frown}{q} \stackrel{\frown}{q} \stackrel{\frown}{(5e)} b^3 \stackrel{\frown}{Q} 100xq41.41.50(6g)$	$0H112a^2\delta \qquad q +\langle 5e \rangle$	0H102a ⁶ ♀ q (5c)
H128	$a^{1} = 00 \stackrel{\circ}{p} = (\text{alb.} ir) \stackrel{\circ}{a} = a^{5} \underbrace{51002p37,35.30(4a-f)} \stackrel{\circ}{a} = a^{5} \underbrace{61002p37,35.30(4a-f)} \stackrel{\circ}{a} = $	$\vec{\delta} \cdot \vec{\delta} = \vec{p} (5-6b)$ $\vec{\delta} \cdot \vec{\delta} = \vec{p} (alb, w)$ $\vec{\delta} \cdot \vec{\delta} = q (4e)$	a ³ & 100 vp26.26.17(6fr) a ⁷ 85 q44.47. 2(5cw)	$\begin{array}{c} a^4 \not\in 100zp36.35.30(5a-f) \\ b^1 \not\in 100zp35.35, \ \ 4(5-6b) \end{array}$	0H86a2 & 100 q49.46,28(5c)	0H102a ⁵ ? - q (5c)
H129	$\begin{bmatrix} a^1 & -q(5c) & a' \\ b^1 & 20 & q46, 1, 1(1 & 2c) \end{bmatrix} \begin{bmatrix} a' \\ b' \end{bmatrix}$	2 d - q (6e) 2 d 100zp 37.37. 4(5bw)	$a^3 \ 2 \ 100 xp 24.23.15 (6f)$ $b^3 \ 95 \ q 52.46, \ 7 (5 cw)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0H86α¹ δ100zq49.46. 9(5c)	0H102α [†] Q 1002q 49,46.14(5c
H130	a 9 50 q61.60. 1(4ew) a 9 00 p (alb.)	65 q61. 1. 1(4e) 2 \$ 35 p19.34. 3(3bw) 30 p37. 1. 1(2a-b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \stackrel{\circ}{\circlearrowleft} 00 p = - \text{ (alb.)} \\ b^3 \stackrel{\circ}{\circlearrowleft} 35 p39.35. 1(2\alpha - b)$	0H104a ⁴ of 40 q48.46. 2(3c)	0 <i>H</i> 94α ¹ ♀ 60 q49,46, 1(3c)
H131 H133	$a^{1} \stackrel{?}{\partial} 45 \stackrel{?}{q} 49.46. \ 1(3c) \qquad a^{2} \stackrel{?}{\partial} 00 \stackrel{?}{p} (alb.) \qquad a^{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} b^0 & Q & 00 & p \text{(alb.)} \\ a^3 & d^2 & - q$	$a^{4} \stackrel{\circ}{b}^{2} - q (2e) \\ b^{2} \stackrel{\circ}{00} \stackrel{\circ}{p} (alb.)$	$0H104a^{3}$ 40 $q46$, 1, $1(3c)$ $0H114a^{6}$ q	$A43a^{1}$ Q 00 p ($A5$ $OH114a^{1}$ Q - q ($5c$ $OH114a^{2}$ Q - q -
H134	$a^1 \stackrel{?}{=} 00 \stackrel{?}{p} = - \text{(alb.)} a^2$	2	$b^{\dagger} \stackrel{?}{\circ} - \stackrel{?}{q} \stackrel{?}{\circ} \stackrel{?}{\circ} \stackrel{?}{\circ}$	$b^2 \delta = q - (2c)$	0H1170° & 65 q48.46. 3(3e)	0H114a ² Q 35 q49.46. 1(3c
H_{135}	a1 2 100cp37.37. 2(5bl-c) a2	2 30 q60, 1, 1(2e) 2 00 p = (alb.)	a ³ 00 p (alb. w,	a^4 – q – (6e)	$0H113a^7 = q = -(5c)$	0H113a ¹ ♀ 100zq 49.46.12(5c
Ħ136	a1 Q 100zq 48.46. 9(5ew) α2	\$\frac{100zp}{90} 33.33.28(5a)\$\$\frac{90}{90} \text{p39.35. 2(4a)}\$\$\$	$a^3 \circ - q (5a)$ $b^2 \circ 100zp33.33,30(5-6a)$	$a^4 \circ 35 p39. 1. 1(2b)$ $b^3 \circ 1002p37.35.28(5*b)$	0H113a8 & - q (5c)	0H84a³ ♀ 100zq35.33.30(5a
<i>H</i> 137 <i>H</i> 138∶	$a^{1} \stackrel{?}{\circ} 6v \stackrel{r}{r} 48.48, 2(3g^{*})$ b^{1} $a^{1} \stackrel{?}{\circ} 100zq 48.46.11(5cw)$ a^{2} $b^{1} \stackrel{?}{\circ} 85 p39.35, 2(5bw)$ b^{2}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{2} = 00 \ p \qquad \text{(alb.)}$ $a^{3} = q = -(3c; g)$ $b^{3} = 3 \ 100zq \ 49.47. \ 9(5c)$	$b^{3} \partial u \ p - (alb.)$ $a^{4} \partial \theta \ p - - (alb. w)$ $b^{4} \ Q \partial \theta \ p - - (alb.)$	0 <i>H</i> 117 <i>a</i> ⁷ <i>d</i> 90 <i>q</i> 49.46. 9.4 <i>e</i>) 0 <i>H</i> 107 <i>a</i> ¹ <i>d</i> 1002 <i>q</i> 49.46.20(5 <i>c</i>)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H139	$b^5 - p (5b)$ $a^1 \circ 60 \ p26.23. \ 2(3fw)$ α^2	 2 d - p (1-2f)	α ³ ♀ 00 p (alb.)	$b^1 \stackrel{?}{\circ} 100xq58.57.55(6e)$	0H107a ² & 55 q61.57. 1(3e)	0H78a1 Q - q (5e
4140	$a^1 = 55 \ q52.51, \ 1(3c) = a^2$	100zq 52.51. 9(6e)	$a^{\mathfrak{I}} \stackrel{\cdots}{\Diamond} \theta \theta p \stackrel{\cdots}{} (alb.)$	a49 00 p (alb.)	A26a1 3 00 p (A21	0H113a ⁵ Q 100zq48.46.43(5c
7142	$a^1 \ 2 \ 100.rq58.57.55(6e)$ a^2	9 00 p (alb.)	a ³ ♀ 00 p (alb.)	b1 & 80 q48.46. 2(5c)	0H103a ¹ & q (5c)	0H111a ⁵ Q - q (5a
7143	$\alpha^{1} \stackrel{?}{\circ} 100z\stackrel{?}{q} 48.46. \ 2(5c) \qquad \alpha^{2}$	\$\text{\$\exiting{\$\text{\$\exititin}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	b^{\downarrow} p . (6f) $a^{3} \supseteq 100zq 51.46.14(6e)$ $b^{1} \supseteq 95 \ q46.33. \ 1(4e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0H103a^2 = q (5c)$	A43a2 Q 00 p (A

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		b3 & 1002q 49.46.14(5e)	b1 00 n = = = (alb.)	I			
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4$	1H144	$a^{1}\delta = q = -(2e)$	$a^2 d^* 00 p (alb.)$	b¹ ♀ 00 p (alb)	$h^2 = a - (5a)$	OFFICE AND AND AND	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 277 15	$b^{3} \stackrel{?}{\circ} 00 p \text{(alb.)}$	b4 & 00 p (alb.)				T E (*****)
H146	111143	$u^5 \stackrel{?}{=} 95 a51 7 a(3a)$	$p = -\frac{a^2 + a^2}{b^2} = 00 p = -\frac{ab}{b^2}$	$ a^{3} + 00 p = (alb.)$	$1\alpha^4 \circ 00 \circ (alb)$	0H114a5 \$ 25 a49, 1, 2(2c)	0H119a50 10 a10 1 1/93
		bi 3 30 p37. 1. 1.261		p = -(1fiv)	$6^3 ? ? ? 9 q46. 1. 3(2e)$		
H4747 deg 65 g 44.3 33 deg 7 collision 65 g 7 60 g 43 46.20 60 e d 65 g 43 43 33 deg 65 g 44.3 33	1 <i>H</i> 146	a^{1} Q 100zq 48.47, 9(5c)	$a^2 = 100 xq 48.51.47(6c)$	$\alpha^3 \circ 00 p = - \sim (alh)$	1 a 1 0 00 m (alb)	100 3 4 00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$n^b \circ 00 \ p (alb.)$	$a^0 - \bar{q} (6e)$	10' \ 10029 52.46,20(5c d	100za49.46.20(5c)	0 00 P (ABi)	
	1H147	$a^{1} \circ a^{2} \circ b \circ a^{2} \circ $	$b^{\alpha} \stackrel{\circ}{\circ} 00 p \sim \text{(alb,)}$	$b^{6} - q (5c)$	***		
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $,	a' & 00 p = .alb)			' α ⁴ ♀ 00 p = - (alb.)		0H112a3 9 50 g48.46, 1(3c)
$ M 10 a^2 S = q - (-6c) \\ 2 = q - (-6c) \\ 3 = 0 p - (-alb) \\ 4 = 0 p - ($	1H148	a1 \$ 100,rq58,58,55(6e)	a^2 3 80 $a49.46$, $4(5c)$		at 0 (att p. (alls)	n Mico 2 4	
III 149 0 0 0 0 0 0 0 0 0		40 80 q49,48. 3(5e)	$ a^{6} \circ \circ 00 p (alb.)$	$b^1 \vec{c} - p (4\vec{r})$	b2 2 00 n = = - (all)		$0H111a^{6}$? - q (5 d)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.H149	$a^1 \vec{x} = q = -(5e)$	$b^{\alpha} \circ f H p = (alb_{\alpha})$	bb & 00 p - (alb. b	Α'		
IIII50		u ⁶ β 00 p = = −(alb)	a ⁰ - a - (5c)	h 1 2 00 p (alb.)	$a^4 = 00 p \text{(alb.)}$		$0H111a^{4}Q - q - (5d)$
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		b) 2 1005a 19 16 20 5d.	b+ 3 - 9 Gd,	$ b^0 \circ \circ (n) \rangle \rho = -(alb_0)$	b ⁰ 0 1000 49 48 12.550		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	177150	$\frac{\alpha^i}{12}$ $\frac{\beta}{\beta}$ $\frac{q}{12}$ $\frac{4e^{i\phi}}{2}$	a of 1002q 48,46, 7 4c)	q = (5c)	$b^{\dagger} \vec{\delta} = \vec{q} \cdot - (4c)$		01117 40 00 1000 1011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/151	$\alpha^1 \stackrel{\circ}{\circ} 100 \stackrel{\circ}{\circ} 49 48.34 5c)$	$a^2 \circ = q - (5c)$	30			071114. ¥ 90 q49.36. 1(4c)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$a^{5} \stackrel{?}{\sim} 00 p = 0$ alb)	b1 2 100zq 49, 48 47(6c)	$b^2 \circ - q (6e)$	43 Q 80 q49.48.34(5c)	$A46a^3$ & 00 p = -(A2?)	0H117a ⁵ ♀ 65 q49.36, 4(3c)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1 1/1 50	$b^{4} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} p = - \text{alb}$	$ F \stackrel{\mathcal{E}}{\underset{\sim}{\mathcal{E}}} = 00 \ p = - \text{(alb.)}$	***	$0^{\circ} \circ 00^{\circ} p = -\infty \text{(alb.)}$		*** *** ***
$ \begin{array}{c} 1/1153 & a^2 & b^2 & b$	177102	$u^{*} \downarrow 100 q 49.48 47.66$		$a^3 \circ \theta = -(alb_t)$	α4 3 00 p (nlb.)		0.4102010 55 -10 1 2/0
$ \begin{array}{c} 1H153 \\ a^{0} & 00 & p & - & - & (alb.) \\ a^{0} & 00 & p & - & - & (alb.) \\ a^{0} & 01 & p & - & - &$		$e^{i} \circ 00$ $a = -in 1b$	$e^{iQ} \bigcirc H P = -(alb_i)$	c1 d (00 p - (alb.)	$e^2 = 00 p \text{ (alb.)}$	U E (1221)	01110ad \ \ 35 q49. 1, 3(3c)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17/153	a d 75 y 10,34, 1(4b-c)	a ² ♀ 75 y61.60, 1(3e)	(a) 2 (0) n = = -(alb)	(a) d - q (5e)	*** *** *** ***	414
$ \begin{array}{c} 1H155 \\ 1H256 $						$A25a^3$ C 00 p ($A27?$)	0H103a ⁶ ♀ 55 q49.46, 4(3c)
$ \begin{array}{c} H163 & H^2 & G^2		40 Q (10) n = (alb)		$a^3\delta - q(5b-e)$	a4 & 00 p (alb.)	425a4 3 00 p = (427)	0.H103/46 Q 50 040 46 9/9
$ \begin{array}{c} H156 \\ 1H157 \\ 1H157 \\ 1H158 \\ 1H158 \\ 1H158 \\ 1H158 \\ 1H158 \\ 1H158 \\ 1H158 \\ 1H159 \\ 1H158 \\ 1H159 \\$	1111190	at 2 30 q 52.46, 1(4c)	a2 7 85 a49.46, 4(5c)		-4.4 00	*** *** ***	*** *** ***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$a_0 = a_0 = a_0$	$a^0 - q \ell 4c$		a o o p = (alb.)	$A32a^{7}$ C 00 p ($A2?$)	0H100a ⁵ ♀ 25 q46. 1. 1(2c)
$ \begin{array}{c} 1H158 \\ a^{-\frac{1}{2}} & 0 & p^{-} & - \text{ (alb.)} \\ a^{-\frac{1}{2}} &$	1 <i>H</i> 157	$u^{1} \stackrel{?}{\downarrow} 10017q58.57.55(6e)$	$a^2 = 00 p (alb.)$	$ a^3 \circ 00 p = \text{(alb.)}$	a4 & 00 p (alb.)	$A32a^8$ \$ 00 n = -(.19 h)	0.H100off 0. 55 - 40 40 000
$\begin{array}{c} H_1 \otimes H_2 \otimes H_3 \otimes H_4 \otimes H_4 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_4 \otimes H_4 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_4 \otimes H_4 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_5 \otimes H_4 \otimes H_5 \otimes$		ar 2 ar a . 11	$d^{\dagger}\hat{\nabla} = q (\delta a)$ $d^{\dagger}\hat{\nabla} = \theta \theta + - (\delta B_{\bullet})$		(4 \$\times 00 p (alb.)	148a4 8 00 p = -(.1214)	0H84a4 9 100za35.33 30(5a)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17/158	$a^{1}\vec{a} \leftarrow a (5c)$	w ² ♀ 10029 49.48, 9(5cmt)	a ³ ♥ 100za 49.48 34(5c)	at 0 00 m (at 5)	111 111 111 111	
$ \begin{array}{c} 1H159 & a^{\dagger} \bigcirc -\frac{a}{q} = -(5e) \\ 1H160 & a^{\dagger} \bigcirc 0 = p = -(4lb), \\ a^{\dagger} \bigcirc 0 = p = -(4$		F 2 1111120 33 39 1/50	$\sigma^{\alpha} = 00 p = \text{(alb.)}$	b1 & 100 g 46,46, 9(5c)	$b^{2} \stackrel{?}{<} 00 p = - \text{(ain.)}$		$0H84a^5 \Leftrightarrow 100zq33.30.28(5a)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12(109)	61 9 w a (5a)	$a^2 \circ a = 00$ $a = 0.30$	$b^5 \ ? \ 100zq \ 49.48.14(5c)$	bo 9 - q (5c)	141 414 114	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 H 160	$a^{\mu} = \theta \theta p = - \langle a b \rangle$	$a^2 = 00 \ p = \text{calh}$	a 8 00 p (alh.)		$A81a^3 = 3 00 p = -(.12\%)$	0H84a ⁶ ♀ 100zq39,33,30(5a)
$ \begin{array}{c} 1H162 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	17/161	$q^2 = q + (5c)$	$d^{0} = u = -50$			Assa 8 00 p(.12 x)	$0H111a^{\tau} = q (5a)$
$ \begin{array}{c} \bullet & 1H163 \\ \bullet & 1H164 $			$(a^* \le 100za48.46, 7(5e)$	a ³ ♀ 100zq 49.48. 9(5c)		428a1 \$ 00 n = (.193)	0.H11180 too25 25 2007
$ \begin{array}{c} 11103 \\ \text{c} \\ 11164 \\ \text{d} \\ 1d \\ 1d \\ 1d \\ 1d \\ 1d \\ 1d \\ 1d \\ $	17/162	$a^{1/2} = a = ie$	$a^{2}\vec{\beta} - a = -(5a-b)$	/30 00 m (-11-)		*** *** *** ***	***
$ \begin{vmatrix} b^{2} \vec{\phi} - q (6e) \\ b^{2} \vec{\phi} - 0p (alb) \\ a^{2} \vec{\phi} - 0p - (alb) \\ a^{2} \vec{\phi} - 0p - (alb) \\ a^{2} \vec{\phi} - 0p (alb) \\ a^{2} \vec{\phi} - 0p (alb) \\ a^{2} \vec{\phi} - 0p - (alb) \\ a^{2} \vec{\phi} - 0p - (alb) \\ a^{2} \vec{\phi} - 0p - (alb) \\ a^{2} \vec{\phi} - 0p - ($	6 TX 109	(0,0) = 0 = -(5a, 1)	$a^{2}\delta - g (5a)$			$A34a^1$ & 00 $p(A \times 3)$	0H111α ⁹ Q 100:q35.34.29(5α)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		bid - 0 (80)	$\frac{d^2}{h^3} \stackrel{?}{\neq} \frac{100zq}{900} 36.36, 9(5c)$	$u^3 = 00 p = - \text{(alb.)}$	$b^{1} \circ - q (6e)$	$Aoia \ 00p (A233)$	$0H111a^{10}Q - q (5q)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$b^{o} Q = b D = -a 1 \hat{b}$.	167 \$ 00 p = = (alb)	64 4 100 p (alb.)	$b^{\alpha} \stackrel{\circ}{\downarrow} 00 \rho = (alb_{\alpha})$	O oo 440.40. 1(0c)	1100a + (A×2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 122 100	101 X 80 039 36 11/5.5	$a^{2}\beta = 00 \ p = -(n \ln 1)$	111 111		*** *** *** ***	
$q^{s} = -(a(b)) q^{s} = -(a($		$a^{5}\vec{c} = a (alb_{1})$	(a2 00 p (alb.)	$a^3 = 00 p (alb.)$		0H101a2 5 50 q49,46, 4(3c)	$A133a^2 \circ 00 p (A \times 2)$
		- I	7 7 mp (all)	$a^{\dagger} \stackrel{\circ}{\downarrow} = 00 p - (alb)$			

W. F. R. Weldon's Records of Mice Matings (continued).

$ A185a^3 + 00p (A10r^2) $	$A142a^{4} \subsetneq 00 \ p (A1072)$ $A142a^{6} \subsetneq 00 \ p (A1072)$ $A142a^{6} \subsetneq 00 \ p (A1072)$ $A150a^{6} \subsetneq 00 \ p (A1072)$ $A153a^{5} \subsetneq 00 \ p (A1072)$ $A153a^{5} \subsetneq 00 \ p (A1072)$ $A146a^{3} \subsetneq 00 \ p (A2\times)$ $0H12a^{5} \subsetneq 00 \ p (5a)$ $0H11a^{3} \circlearrowleft 00 \ p (5a)$ $0H111a^{3} \circlearrowleft 00 \ p (5a)$ $0H111a^{3} \circlearrowleft 00 \ p (5a)$ $0H111a^{3} \circlearrowleft 00 \ p (42\times)$ $0H111a^{3} \circlearrowleft 1002q35.34.29(5a)$ $A160a^{2} \circlearrowleft 00 \ p (A2\times)$ $0H62a^{5} \circlearrowleft 1002q35.33.30(5a)$ $A146a^{4} \circlearrowleft 00 \ p (A2\times)$ $A146a^{5} \circlearrowleft 1002q35.33.30(5a)$ $A146a^{4} \circlearrowleft 00 \ p (A2\times)$ $A146a^{5} \circlearrowleft 00 \ p (A2\times)$ $A146a^{6} \circlearrowleft 00 \ p (A2\times)$ $A146a^{5} \circlearrowleft 00 \ p (A2\times)$ $A146a^{5} \circlearrowleft 00 \ p (A2\times)$: 00 :
$0H112a^2 - q (5c)$	$0H111a^{4} - q (5a)$ $0H84a^{3} + \int 1002q48.46.28(5c)$ $0H90a^{2} + \int -q (5c)$ $0H100a^{3} + \int -q (5a)$ $0H110a^{3} + \int -q (5c)$ $0H110a^{3} + \int -q (5c)$ $0H111a^{2} + \int -q (5c)$ $0H111a^{2} + \int -q (5c)$ $0H1113a^{3} + \int 00 (41) \cdot (41)$ $0H113a^{3} + \int 00 (41) \cdot (41)$ $0H113a^{3} + \int 00 (41)$ $0H113a^{3} + \int 00 (41)$ $0H113a^{3} + \int 00 (41)$ $0H113a^{3} + \int 00 (41)$ $0H113a^{3} + \int 00 (41)$ $0H112a^{3} + \int 00 (3c)$: 000
:	$a^{4} \leftarrow 00 p^{-} - a^{-}$ $a^{3} \leftarrow 00 p^{-} - a^{-}$ $a^{3} \leftarrow 000 q^{5} = 47.15$ $a^{3} \leftarrow 100 q^{5} = 47.15$ $a^{4} \leftarrow 00 p^{-} - a^{-}$ $a^{4} \leftarrow 00 q^{2} = 1.51.7$ $a^{4} \leftarrow 00 p^{-} - a^{-}$	\$ - q \$ 55 q40.37. 3
:	83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	b - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
$ a^2 \circlearrowleft 00 \ p (alb.)$	100 $xxy48.48.47$ (6c: e) 100 $xxy48.48.47$ (6c: e) 100 $xxy48.48.47$ (6c: e) 100 $xyy48.12$ (5c) 100 $xyy48.12$ (5d) 100 $xyy48.12$ (5d) 100 $xyyy48.12$ (5d) 100 $xyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy$	$a^6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
a^{1} \$\(\frac{100xq58.58.55(6e)}{}\)	$a^{4} \\cap \\cap \\cap \\cap \\cap \\cap \\cap \\cap$	$a^{5} \circ \varphi - q (6e)$ $a^{1} \circ \varphi = q \circ \varphi = (6e)$ $a^{1} \circ \varphi = \varphi \circ \varphi = (a1b.)$ $a^{5} \circ \varphi = \varphi \circ \varphi \circ \varphi = - (a1b.)$
1H193	1H195 1H196 1H196 1H198 1H200 1H200 1H203 1H204 1H205 1H206 1H209 1H209 1H210 1H211 1H212	1 <i>H</i> 216 1 <i>H</i> 217

```
1 H\text{I}93 \mid \alpha^1 \stackrel{?}{\sim} 100 xq58.58.56 (6\varepsilon) \quad \mid \alpha^2 \stackrel{?}{\sim} \ 00 \ p---- (\text{alb.})
                                                                                                                                                                    0H112a^2\delta - q - - (5c)
                                                                                                                                                                                                                     A185a3 ♀ 00 p - - - (A1or2)
                    1H194
                                                                                        a3♀ 00 p -
                                                                                                           - - (alb.)
                                                                                                                           a^4 \stackrel{?}{\circ} 00 p - - - \text{(alb.)}
a^8 \stackrel{?}{\circ} 95 q 52.46.12(5d)
                                                                                                                                                                                                                      or A2×)
A142a<sup>4</sup> ♀ 00 p - - - (A1or2)
                                                                                                                                                                    0H111a^{\text{I}} \circ - q - - - (5d)
                                                                                        a7 3 100zq 48,46,43(5c)
                    - q - - (3e)

- q - - - (3e)

- 00 p - - - (alb)
                                                                                      a \circ 0

a^3 \circ 00 \circ p = -(ano.)

a^7 \circ 1002q \circ 52 \circ 46 \circ 43 \circ 67

a^3 \circ 00 \circ p = -(alb.)

a^3 \circ 00 \circ 51.51.47(6d)
                                                                                                                                                                      ...
                                                 ***
                                                                                                                                          q - -
1//195
                    90 \hat{p} = -(alb_s)
90 q49.46.12(5c)
                                                                                                                            \begin{vmatrix} a^4 \vec{o} & -q - -(6e) \\ a^8 \vec{o} & 100zq & 52.47.12(5d) \\ a^4 \vec{o} & 00 & p - -(alb) \end{vmatrix}
                                                                                                                                                                                                                     0H84a<sup>0</sup> & 1002q48.46.28(5c)
1H196
                    00 p = - - (alb.)
00 p = - - (alb.)
                                                                                                                                                                   0H90a^2 \delta - q - - - (5c)
                                                                                      \begin{vmatrix} a^3 & 00 & p - - & \text{calb.} \\ a^7 & 100xq51.51.47(6d) \end{vmatrix}
                                                                                                                                                                                                                      1142a6 ♀ 00 p - - - (Alor2)
                                                                                                                                    00 p - - - (alb.)
                                                                                                                             a8 d 100xq49.46.47(6d)
                   100.vq48.46.47(6d)
                                                                                      α<sup>3</sup> Q 00 p = - (alb)
1 H 197
                                                                                                                             a4 $ 00 p - - - (alb.)
                                     - (alb.)
                                                                                                                                                                   0H85a^{6} \delta - q - - (5d)
                                                                                                                                                                                                                      A150a6 9 00 p - - - (A1or2)
                                                 95 q49.51.14(5c)
                                                                                                   q -
                                                                                                                                         q - - - (6e)

q - - - (4e)
1H198
                   00 p - - (alb.)
- q - - - (6e)
                                                                                                               - (6e)
                                                                                                                                                                   0H100a3 & q - - - (5c)
                                                                                                                                                                                                                     .1153a<sup>5</sup> ♀ 00 p - - - (Alor2)
                                                                                              85 q49.46.11(5c-d)
                                     (4c)
                                                       00 p - - - (alb.)
00 p - - - (alb.)
00 p - - - (alb.)
                                                                                       a^3 \ ? \ 00 \ p - - - (alb.)

a^7 \ 6 \ - \ q - - - (4e)

a^3 \ ? \ 00 \ p - - - (alb.)
1H199
                  10029 48.46.43(50
                                                                                                                                             ...
                                                                                                                                                                   0H102a4 & - q - - - (5c)
                                                                                                                                                                                                                     1153a<sup>6</sup> ♀ 00 p - - - (A1or 2)
                                                                                                                             a4 & 00 p - - - (alb.)
                   00 p - - - (alb.)
50 q40, 1, 1(3b-c)
1H200
                                                                                                                             \alpha^4 \stackrel{\sim}{\mathcal{S}} 00 p = - - (alb.)
                                                                                                                                                                                                                     0H114a^{6}\delta - q - (5c)
                   00 p - - - (alb.)
- q - - - (5a)
                                                                                      1#201
                                                                                                                             α<sup>1</sup>♀ - q - - ,5α)
α<sup>1</sup>♀ 00 p - - - (alb.)
                                                       \begin{array}{cccc}
00 & p - & - & - & (alb.) \\
00 & p - & - & - & (alb.) \\
- & p - & - & - & (5a) \\
05 & -51 & 51 & 9(5a)
\end{array}
                                                                                                                                                                                                                     0H84a7 & 100zq35.33.28(5a)
                                   - (5a)
                                              1H_{202}
                                                                                                                                                                   0H111a^2 \delta - q - - (5a)

4182a^1 \delta 00 p - - (41 \text{ or } 2)
                   85 p39.35. 3(4a)
                                                       1H203
                  85 q53,51, 1(5e)
00 p = - (alb.)
                                                                                                                             a4 3 100yq33.30.30(5a)
1H204
                  80 q52,51, 4(5e)
00 p - - (alb.)
100zq35,33 30(5a)
                                                                                      a^{\frac{1}{4}}Q - q - \sim -(5a)
                                                                                                                                                                   A182a^2 \stackrel{?}{\circ} 00 p - - - (A1 \text{ or } 2) 0 H111a^9 ? 100zq35.34.29(5a)
                                                             \hat{p} = - - (alb_i)
1.4905
                                                                                                                                                                   a4 & 90 q51.51. 7(5c)
                  80 q53 51 7 5e

00 ρ - calb

80 q52.51, 7 5e,

85 q52.51, 4 5e
                                                                                                                            \alpha^4 \circ - q - - (6e)

\alpha^8 \circ 60 \ q 44.47. \ 4(3-4e)
11/206
                                                                                       a^3 \circ 00 \ p - - - (alb.)

a^7 \circ - q - - (3-4c)
                                                                                                                                                                   0H113a^{7}d - q - - - (5c)
                                                                                                                                                                                                                     A160a1 Q 00 p - - - (A2×)
                                                a^2 \stackrel{\circ}{\downarrow} 00 \stackrel{\circ}{p} - - - \text{(alb.)}
a^0 \stackrel{\circ}{\downarrow} - q - - - \text{(6e)}
                                                                                                                                                                                         ---
                                                                                                                                                                                                                     ... ... ...
                                                                                     a^3 \stackrel{?}{\circ} 80 \stackrel{?}{p} - - - \text{(alb.)}
a^7 \stackrel{?}{\circ} 80 \stackrel{?}{q} 44.47. 2(4d)
1\,H207
                                                                                                                            a^4 \vec{o} - q - - - (6e)

a^8 - q - - - (4e)
                  00 p - + - (alb.)
- q - - - (6e)
                                                                                                                                                                  0H113a<sup>8</sup>♂ - q - - - (5c)
                                                                                                                                                                                                                    A160a<sup>2</sup> ♀ 00 p - - - (A2×)
                                                                                                                                                                    ... ...
111208
                                                                                      a<sup>3</sup> d 00 p - - - (alb.)
a<sup>7</sup> 00 p - - - (alb.)
                                                                                                                            α<sup>i</sup> ♀ 00 p - - - (alb.)
                   95 q53.51. 1(4c)
                                                a^2 \circ 100xq41.41.50(6g)
                                                                                                                                                                  A158a1 & 00 p - - - (A1)
                                               a^{0} \stackrel{?}{\circ} 00 p - - - \text{(alb.)}
a^{2} \stackrel{?}{\circ} 100zq 40.37, 2(5b-c)
                  00 p - - - (alb.)
00 p - - - (alb.)
                                                                                                                                                                                                                   0H62a<sup>5</sup> ♀ 100zq49.48.12(5c)
1H209
                                                                                                                                                                 - (alb.)
                                                       1002q 40.51, 2(50-c)

00 p - - (alb.)

35 q53, 1, 1(2c)

00 p - - (alb.)

- q - - (6e)

00 p - - (alb.)

00 p - - (alb.)
                                                                                                                                                                                                                   \begin{array}{cccc} 0.H84a^3 & \bigcirc 100zq35.33.30(5a) \\ 0.H84a^6 & \bigcirc 100zq39.33.30(5a) \\ A146a^4 & \bigcirc 00 & p---\langle A2\times \ \ \ \ \end{array}
1 H940
                                                                                     a^{3} \stackrel{?}{\circ} 95 \ p37.35.34(4b)

a^{3} \stackrel{?}{\circ} 100zq \ 41.26, \ 8(5c)

a^{7} \stackrel{?}{\circ} 00 \ p - - (alb.)
1H211
                   40 960.60, 1(3e)
                                                                                                                            a4 & 10mxq58.58.60(6e)
                       v - - - (alb.)
1H212
                   GO
                        958.57. 1(3e)
                                                                                                                           4 3 00 p - - - (alb.)
                                                                                                                                                                                                                   A146a<sup>5</sup> Q 00 p - - - (A2×)
                   q = - (6e)
                                                                                                                                                                 0H112a<sup>1</sup> 3 30 q49. 1. 1(2c)
                                                                                     1\, H213
                                                                                                                           a⁴♀ 85 q51.51. 1(4e)
                                                                                                                                                                                                                   A146a<sup>6</sup> ♀ 00 p - - - (A2×)
                   40 r 40, 1, 3(3b-c)
                                                                                                                                                                  0H102a2 & 55 q48. 1. 2(3c)
1//214
                  00 p - - - (alb.)
- y - - (6e)
                                                                                                                           a*$ 00 p - - - (alb.)
a*$ - q - - (3-4e)
                                                                                                                                                                                                                   Δ146α<sup>7</sup> ♀ 00 p - - - (Δ2×)
                                                                                                                                                                  0H120a<sup>2</sup> d - g - - - (3c)
           a^1 \colon 55 \ q41.50, \ 5(3g)

a^1 \colon 90 \ p--- (alb.)

a^6 \colon 75 \ q41.50, \ 2(4g)
                                               1H216
                                                                                                                                                                                                                     ...
                                                                                                                                                                 0H104a^4\delta 40 q48.46.2(3c)
A147a^1\delta 00 p - - - (A2 \times)
1H217
                                                                                                                                                                                                                  A158a^4 \cite{Q} 00 \ p - - - (A1) 0H85a^1 \cite{Q} - \ q - - - (4d) ...
                                                                                      a 9 00 p - - - (alb.)
                                                                                                                          a4 5 55 q40.37, 3(3b-c)
```

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p(A1 or 2) = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 q49.46. 4(3c) 0H120a ⁶ \(\triangle 75 q49.46. 1(4c)	49.46. 1(3c) 0H61a ⁶ \(\frac{1}{2}\) 65 q49.30.	-(2a) 5(3c)	1(3c) $0H112a^4 \updownarrow 35 q46. 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2(4c)$ $0H59a^1$ φ	$q49. \ 1. \ 1(1c)$ $0H100a^{6} \varphi \ 55 \ q49.46. \ 9(3c)$	$q (5c)$ $0H27a^{1} + 40 q58. 1. 2(2e)$	$q (5c)$ $0H_{100}a^5 \div 25 q46$. 1. $1(2c)$	$q48.46.11(4c)$ $0H35a^2$ Q	$q (5c)$ $0H128a^{1}$ φ 85 $q49.46$. $1(4c)$	$40\ q49.46.\ 1(3c)$ $0H133a^{1}$ φ $100zq$ $49.46.12(5c)$	$q (5c)$ $0H140a^{6}$ φ $\psi 0$ $q46. 1.$	$q46.46. \ 3(2c) \ 0.H131a^3 \ \varphi \ 95 \ q35.35. \ 2(4a)$
	Ä	$A147a^{2} \zeta 00 \ p$ $A152a^{1} \zeta 00 \ p$	$A152a^2$ \$ 00	$A152a^{3} & 00 \ p$ $A159a^{1} & 00 \ p$	$\begin{array}{cccc} 1159a^2 & 00 \\ 0H13a^4 & 00 \end{array}$	0H101a² & 50		$0H114a^4$ 50 $946.30.$	$0H_{100a^1}$ \$ 40 q49. 1.	$0H110a^{1} \stackrel{\leftarrow}{\zeta} \stackrel{\leftarrow}{60} \\ 0H120a^{7} \stackrel{\leftarrow}{\zeta} \stackrel{\leftarrow}{50}$	$0H102a^{1}$ \$ 70 q48.46.	0H75a5 & 15	$0H\overline{103a^2}$ ${\circlearrowleft}$	$0H101a^4 \zeta^{-}$	$0H118a^1$ \$ 85	$0H138a^3c^7$ –	*o	$0H152a^2 \zeta$ -	0H129a4 & 35
		$a^4 \mathcal{L} \ \ 40 \ 940.37. \ \ 3(3b-c)$ $a^4 \mathcal{L} \ 100cq 51.51. \ \ 4(5c)$	a^{4} 00 p^{-} (alb.)	$a^4 \stackrel{\frown}{>} 00 p (alb.)$ $a^4 \stackrel{\frown}{>} 00 p (alb.)$ $a^8 - q (alb.)$	$\alpha^4 - p! (3f)$	$a^4 \stackrel{\checkmark}{\varsigma} 00 p (alb.)$	(4° 9 55 961.60, 1(4ew)	3 00 p	a^4 25 $q47$. 1. 1(2c)	 \$ 50 q40. 1. 1	$a^8 00 p = - \text{ (alb.)}$ $a^4 \circ 35 p37. 1. 1(2b)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \subsetneq 40 \ q49. \ 1. \ 1(3c)$	α^4 - q (2c)	$b^1 - q (3d)$	$\alpha^4 - 35 \ p23.36. \ 3(5bw)$	b -	35 q41. 1.	$\begin{vmatrix} \alpha^* \delta & 55 & q35.35 & 1(3a) \\ \cdots & \cdots & \cdots \\ \end{vmatrix}$
RING		$a^3 \subsetneq 00 \ p (alb.)$ $a^7 \circlearrowleft 50 \ q58. \ 1, \ 1(3-4e)$ $a^3 \thickspace \circlearrowleft 00 \ p (alb.)$	$a^3 - q (5c)$	$a^3 \zeta = 85 \ q47.51. \ 4(5c)$ $a^3 \zeta = 00 \ p (alb.)$ $a^7 \zeta = 80 \ q52.51. \ 3(3c)$	$a^3 \stackrel{\frown}{\varphi} 90 \stackrel{\textbf{q41.23.}}{q41.23.} 1(49)$ $a^3 \stackrel{\frown}{\varphi} 5p p 23. 1. 1(2-3f)$	$a^3 \stackrel{\cdot \cdot \cdot}{\zeta} - p (2a)$ $a^7 \stackrel{\cdot \cdot \cdot}{\zeta} - p (3f)$	39. 1. 1(b - £	$a^3 \varphi \ 35 \ q48. \ 1. \ 5(3c)$	d 00 \$	$a' \neq 85 \ q57.55. \ 1(4-5e)$ $a^3 \neq 55 \ p39.39. \ 2(3b)$	$a^{3} - c - c = c = c = c = c = c = c = c = c$	a^{3} \uparrow 100 x p22.15.15(5–6 f)	a^3 $ q$ $ (3e)$	$a^3 - q (3c)$ $b^4 = 00 \ m (3lh)$	$a^{3} \neq 95 \ psr.34. \ 3(5bw)$ $a^{7} \neq 100zq 48.36. \ 9(5c)$	$\frac{100zq}{52.46.2}$	\$ 90 p37.36.	$a^{3} + 3^{5} p^{3} \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot$
Offspring		$a^2 \varphi = 00 \ p = (alb.)$ $a^6 \varphi = 60 \ q58.57. \ 1(3-4e)$ $a^2 \varphi = 00 \ p = - (alb.)$ $a^2 \varphi = 000 \ p = - (alb.)$	$a^2 + 100xq + 9.96.99(9e)$	$a^2 \subsetneq 100xq58.58.57(6e)$ $a^2 \nleq 00 \ p (alb.)$ $a^6 \nleq 100xq41.21.19(5b-c)$	46. 7(1 7	a ² \$ 00 a ⁶ \$ 55 a ² \$ 55	$a^{6} \varphi = 25 \ q58. \ 1. \ 10$ $a^{2} \varphi = 55 \ q52. \ 1. \ 10$	$a^{6} \stackrel{?}{\circ} 00 \stackrel{p}{p} (alb.w)$ $a^{2} \stackrel{?}{\circ} 60 \stackrel{q}{q} 49. \stackrel{1}{1}. \stackrel{1}{1} \stackrel{1}{4}c)$		90	\$ 35 q48. 1. 3 - q	$a^2 \stackrel{?}{\circlearrowleft} 100xp37.19. \ 9(5-6f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$00 \ p^{-} 40 \ p^{-} \ 1.4 \ p^{-} \ p^$	85 $p37.36.3($	$a^{6} = 65 \frac{48.34}{48.34}$ 3(3c)
		0 0	$85 \frac{q-}{q}48.46.11(5c)$	$\begin{array}{l} 200 \ P = (ato.) \\ 700xq58.58.52(6e) \\ 200 \ P = (alb.) \\ 3100xq40.37.36(56-c) \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} - q(1cw)$ $a^{1} \xi \ 35 \ q49.48. \ 1(3c)$ $a^{5} - q(3c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^5 \stackrel{?}{\downarrow} 65 \stackrel{?}{p}37.35. 1(3-4bw)$ $a^1 \stackrel{?}{\downarrow} 45 q48. 1. 3(3c)$	$a^3 \xi \ 00 \ p (a15.)$ $a^1 \xi \ 20 \ p22. \ 1. \ 1(3fv)$ $a^5 \xi \ 50 \ n18 \ 1 \ 1(2f)$	$a^{1} \bigcirc 85 p35.35 3(45)$ $a^{1} \bigcirc 657 p0.36 3(45)$ $a^{1} \bigcirc 657 p0.36 3(35-c)$	$a^{\circ} \neq 00$ q_{4} 3.40, $1(3c - a)$ $a^{1} \neq 65$ q_{4} 9.33, $1(3c)$ $a^{\circ} \neq 00$ $a = -(31b)$	$a^{+}_{1} + b^{-}_{2} + b^{-}_{3} + b^{-$	$a^9 00 p = - \text{ (alb.)}$ $a^1 \xi 100zq 49.48.20(5cw)$	$a^1 = p = -(2/w)$ $a^1 = 80$ $q53.51$. $4(5c)$ $a^5 = 00$ $p = -(3 b)$	$a^1 - p - (4a)$ $b^2 - q - (3c)$	$a^{1} \stackrel{>}{\varsigma} 60 \stackrel{p}{p}37. \ 3. \ 3(36w)$ $a^{5} \stackrel{?}{\varphi} 80 \stackrel{p}{p}37.33. \ 4(5b)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$90 \ p18.18.$ $60 \ q49.46.$	85 q35.33.
MATING		1 <i>H</i> 218 1 <i>H</i> 219	1H220	1 <i>H</i> 221	1H223 1H224	1H225	1H226 1H227	1 <i>H</i> 228	1H229	$\frac{1H230}{1H231}$	1H232	1 <i>H</i> 233	1H234	1H235	1H236	1 <i>H</i> 237	1,7000	1 4940	

$0H131a^{4} \varphi 60 q49.46. 3(3d)$ $0H131a^{4} \varphi 95 q35.35.29(6x)$ $0H129a^{3} \varphi 25 q49. 1. 1(2c)$ $0H129a^{3} \varphi 26 q49. 1. 1(3c)$ $0H143a^{2} \varphi - q (5c)$ $0H143a^{4} \varphi - q (5c)$ $0H143a^{4} \varphi 50 q49. 1. 1(3c)$ $0H143a^{4} \varphi 50 q49. 1. 1(3c)$ $0H145a^{5} \varphi 100xq35.33.3(5-6)$ $0H145a^{5} \varphi 100xq35.33.3(5-6)$ $0H146a^{4} \varphi - q (5c)$ $0H146a^{5} \varphi 100xq39.35.30(5-6)$	$0H124\alpha^2 \subsetneq 90 \ q49.34. \ 1(4c)$ $0H85\alpha^3 \subsetneq - q (5d)$ $0H112\alpha^3 \subsetneq 50 \ q48.46. \ 1(3c)$ $0H84\alpha^4 \thickspace \subsetneq 100zq35.33.30(5a)$ $0H118\alpha^2 \subsetneq - q (5c)$ $0H73\alpha^5 \thickspace \subsetneq - q (3c)$ $0H84\alpha^5 \thickspace \subsetneq 100zq33.30.28(5a)$ $0H85\alpha^4 \thickspace \subsetneq - q (5c)$
0H129 a^{3} ζ 35 q49.36. 1(2c) 0H136 a^{1} ζ 40 q47.28. 2(3c) 0H131 a^{1} ζ 1002q35.33.29(4-5a) 0H129 a^{5} ζ 35 q49. 1. 1(3c) 0H127 a^{5} ζ 65 q49.46. 1(4? c) 0H127 a^{3} ζ 50 q52. 1. 2(3c) 0H135 a^{1} ζ 67 q49.46. 1(3c) 0H135 a^{1} ζ 70 q49.46. 1(3c) 0H135 a^{1} ζ 70 q q 9.46. 1(3c) 0H143 a^{3} ζ 7 q (5c) 0H145 a^{2} ζ 1002q49.21.20(4c) 0H145 a^{2} ζ 1002q49.35.33.30(5a) 0H145 a^{3} ζ 1002q49.48. 9(5c) 0H145 a^{3} ζ 00 p (alb.) 10H145 a^{3} ζ 00 p (alb.) 4167 a^{1} ζ 600 p (A × 2) 4163 a^{1} ζ 600 p (A × 2) 4163 a^{1} ζ 600 p (A × 2) 10H104 a^{3} ζ 600 p (A × 2)	$0H\overline{139}\alpha^{2} \zeta - q (5c)$ $4150\alpha^{3} \zeta 00 p (410r2)$ $0H\overline{102}\alpha^{2} \zeta 55 q48. 1. 2(3c)$ $0H84\alpha^{7} \zeta 100zq35.\overline{33}.28(5\alpha)$ $0H\overline{103}\alpha^{3} \zeta - q (5c)$ $4150\alpha^{4} \zeta 00 p (410r2)$ $0H\overline{111}\alpha^{2} \zeta - q (5a)$ $48\overline{1}\alpha^{2} \zeta 00 p (42??)$
$a^4 - q (3c)$ $a^4 - q (3c)$ $a^4 - q (3c)$ $a^4 - q (3c)$ $a^4 - q (3c)$ $a^4 - q (3c)$ $a^4 - q (6d)$ $a^4 - q - q (6d)$ $a^4 - q - q (6d)$ $a^4 - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q (6d)$ $a^4 - q - q - q - q (6d)$ $a^4 - q - q - q - q - q - q - (6d)$	a^{4} φ 00 p — — — (alb.) a^{4} 100 xq 61.61.54(6 e) a^{4} 00 p — — — (alb.) a^{4} 100 zq 35.33.28(5 a) a^{4} 100 zq 48.46.43(5 ev) a^{4} 00 p — — — (alb.) a^{4} 100 zq 48.46. 4(5 e) a^{4} 100 zq 48.46. 4(5 e)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{3} \subsetneq 100zq 48.46.20(5e)$ $a^{3} = 80 q52.51.11(5e)$ $a^{3} = 00 p (alb.)$ $a^{3} = 100zq 39.39.30(5a)$ $a^{3} = - p (5b)$ $a^{3} = - p (3b)$ $a^{3} = - (3b)$ $a^{3} = 00 p (3b)$ $a^{3} \rightleftharpoons 70 p35.33. 2(5a-b)$
$a^{2} + b (a)$ $a^{2} + b (a)$ $a^{2} + b (a)$ $a^{2} + b - b (a)$ $a^{2} + b - b - b (a)$ $a^{2} + b - b - b - (a)$ $a^{2} + b - b - b - (a)$ $a^{2} + b - b - b - b - (a)$ $a^{2} + b - b - b - b - (a)$ $a^{2} + b - b - b - b - b - b$ $a^{2} + b - b - b - b - b - b$ $a^{2} + b - b - b - b - b - b$ $a^{2} + b - b - b - b - b - b$ $a^{2} + b - b - b - b - b - b$ $a^{2} + b - b - b - b - b$ $a^{2} + b - b - b - b - b$ $a^{2} + b - b - b - b - b$ $a^{2} + b - b - b - b$ $a^{2} + b - b - b - b$ $a^{2} + b - b - b - b$ $a^{2} + b - b - b - b$ $a^{2} + b - b - b - b$ $a^{2} + b - b - b$ $a^{2} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
117242 117243 117245 117246 117246 117249 117250 117253 117254 117254 117256 117256 117256 117256 117256 117257 117256 117257 11	1 <i>H</i> 263 1 <i>H</i> 264 1 <i>H</i> 265 1 <i>H</i> 266 1 <i>H</i> 267 1 <i>H</i> 269 1 <i>H</i> 270

					· · · · · · · · · · · · · · · · · · ·	
Mating		Offsp	RING		Pare	
					Father —	Mother
1 <i>H</i> 218	a ¹ ♂ 00 p = = -(alb.) a ⁵ ♂ 30 q51, 1 2(3c)	$\begin{vmatrix} a^2 & 00 & p \text{(alb.)} \\ a^0 & 60 & q58.57 & 1(3-4\epsilon) \end{vmatrix}$	$\begin{vmatrix} a^3 & 00 & p \\ a^7 & 50 & q58 & 1. & 1 \end{vmatrix}$	(alb.) \alpha^4 \displays 40 q40.37. 3(3b-d) \\ \displays \displays \qquad \	1147a ² 3 00 p (12 x)	
1H219	$a^{1} \circ 00 \ p = - + (alb.)$ $a^{5} \circ - q = - (6e)$	$a^2 \delta 00 p \text{(alb.)}$ $a^6 \circ 100 xq58,58.55 \text{(Ge)}$	a3 & 00 p	(alb.) a ⁴ ♀ 100xq 51.51. 4(5c)	A152a1 3 00 p (A1or2)	
1H220	$a^{1} \stackrel{?}{\circ} 85 \stackrel{?}{q} 48.46.11(5c)$ $a^{6} 00 p (alb.)$	a ² & 100zq 49,46, 7(5c)	a ³ - q		A152a ² & 00 p (A1or2)	
	$a^{1} \circ 100x q58.58.52 \ 6e)$ $a^{1} \circ 00 \ p = alb.)$ $a^{5} \not= 100x q40.37.36 (5b-c)$	$\begin{vmatrix} a^2 & 0.00 & rq & 58.57 & 6e \end{vmatrix}$ $\begin{vmatrix} a^2 & 0.00 & p & - & - & - & - & - & - & - & - & -$	a ³ & 85 q47.51. 4 a ³ & 60 p a ³ & 80 q52.51. 3	alb $a^4 \circ m p = -(alb)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 <i>/</i> //223 1 <i>/</i> //224	$a^9 = q = -(5c)$ $a^1 \bigcirc ou p$ (all) $a^1 \stackrel{?}{\circ} 30 q36$. 1. 1(2a)	a ² \$ 100.q48.46, 7 5c) a ² ♀ 20 q61. 1, 1(2c)	a ¹ Q 90 q41.23, 1 a) 25 pt23, 1, 1	(4g)	$A159a^2$ $\stackrel{?}{\circ}$ 00 $p = -(A1)$ $0H13a^4$ $\stackrel{?}{\circ}$ 45 $q52$. 1. $1(3c)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 225	$a^{b} = q (1cw)$ $a^{1} \stackrel{?}{\mathcal{S}} = 35 q49.48, 1(3c)$	a^{0} 00 $p = -$ (alb.) a^{2} 85 q 57.55. $1(4e)$	a3 d - p	$(2a)$ $a^4 = 6 00 p (alb.)$	0H101α ² & 50 q49.46. 4(3c)	0H12Oa ⁶ 2 75 q49.46. 1(4c)
1H226	$a^{b} - q (3c)$ $a^{1} \stackrel{?}{\circ} 00 p (alb)$	$a^{6} = 00 \ p = - \text{ (alb. } iv)$ $a^{2} = 00 \ p = - \text{ (alb.)}$	a ³ ♀ 45 p39. 1. 1	$(3b)$ $\alpha^4 \ 9 \ 55 \ q61.60, \ 1(4ew)$	01/120a4 & 60 q49.46. 1(3c)	0H61a ⁶ ♀ 65 q49,30. 7(3·,
1H227	$a^{5} \stackrel{\bigcirc}{\circ} 00 \stackrel{\frown}{p} = - \text{ (alb.)}$ $a^{1} \stackrel{\bigcirc}{\circ} 35 \stackrel{\frown}{q} 48 \stackrel{\frown}{1} 1(2cw)$		a³♀ 60 p22. 1. 1		$0H45a^3$ $d - q (2d)$	0H74a ⁶ ♀ 80 q49.46. 2(4c)
1H228	$a^{5} \stackrel{?}{\circ} 65 \stackrel{?}{p} 37.35. \ 1(3-4bw)$ $a^{1} \stackrel{?}{\circ} 45 \stackrel{?}{q} 48. \ 1. \ 3(3c)$	$a^{0} \ \ 25 \ \ q58. \ \ 1. \ \ 1(2e)$ $a^{2} \ \ 55 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	a3 d - q	(2c) \(a^4 \frac{1}{6} \) 00 \(p \) (alb.)	0H114a ⁴ \$ 50 q46.30, 5(3c)	0H117a ⁵ ♀ 65 q49.36. 4(3c)
1H229	$a^{4} \stackrel{?}{\partial} \stackrel{?}{\partial} 00 \stackrel{?}{p} = - \stackrel{?}{(alb.)}$ $a^{4} \stackrel{?}{\partial} 20 \stackrel{?}{p} 22. 1. 1 \stackrel{?}{3} fa_{f}$ $a^{5} \stackrel{?}{\partial} \stackrel{?}{\partial} 0p l 18. 1. 1 \stackrel{?}{(2f)}$	$a^2 \stackrel{?}{\vee} 60 \stackrel{?}{p} = - (2fw)$ $a^6 = p = - (2fw)$	u³♀ 35 y i8. 1. 3	$\delta(3c) = {}^{1}a^{4} = 25 \ q47. \ 1. \ I(2c) =$	$0\Pi 100a^{1}\delta^{-}40\ q49.\ 1.\ 1(3e)$	0H112a ⁴ ? 37 q46, 1, 1(2e)
	$a^{1} \stackrel{\frown}{Q} = 85^{\circ} p35.35, \ 3(4b) = a^{1} \stackrel{\frown}{S} = 67 (40.36 - 4.3b)$	$a = \frac{1}{2} = \frac{1}{2}$ (3r)	a³ \$ 00 p	(alb.) a 9 50 q40. 1. 1(3c)	$0H110a^{1}\delta = 60 q48.46. \ 1(3c) = 0H120a^{7}\delta = 50 q48.46. \ 3(3c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 <i>H</i> 232	$a^{\frac{1}{2}} \stackrel{?}{\underset{=}{\stackrel{\circ}{\circ}}} a^{\frac{1}{2}} q^{\frac{1}{2}} 40 \stackrel{1}{\underset{=}{\stackrel{\circ}{\circ}}} a^{\frac{1}{2}} \stackrel{?}{\underset{=}{\stackrel{\circ}{\circ}}} q^{\frac{1}{2}} 9 33 \stackrel{1}{\underset{=}{\stackrel{\circ}{\circ}}} 13_{\frac{1}{2}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} \circ 55 \ p39.39.$	$2(3b)$ a^4 9 35 p 37. 1. $1(2b)$	0H102α ¹ δ 70 q48.46, 2(4c)	0H59a¹ ♀ 50 q48, 1, 4(3d)
1H233	$a^{b} \circ 00 \ p - (alb.)$ $a^{1} \circ 30 \ q46. \ 1. \ 3(1-2c)$ $a^{2} \circ 00 \ p (alb.)$	$\begin{bmatrix} a^2 & -\frac{1}{2} & -$	$a_3 = -a_1 - a_2$	$(2v)$ $a^6 - q (2ew)$	0 <i>H</i> 75a ⁵ ♂ 15 q49. 1. 1(1c)	0 <i>H</i> 100 <i>a</i> ⁶ ♀ 55 <i>q</i> 49.46. 9(3 <i>c</i>)
1 <i>H</i> 234	$a^{p} = 00 \ p = - \text{ (alb.)}$ $a^{1} = 100zq 49.48.20(5ew)$	a ² & 100.cp37.19. 9(5-6f)	a ¹ \$ 100xp22.15 1	5(5-6f) a Q 40 q 49. 1. 1(3c)	$0H103a^2\delta - q (5c)$	0H27a1 \$ 40 q58, 1, 2(2e)
1H235		$a^2 - q (4dw)$ $a^0 00 p (alb.)$	a3 - q	$\alpha^{(3e)}$ $\alpha^{(4)}$ $ q$ $ \langle 2e \rangle$	0H101a ⁴ d - q (5c)	0 <i>H</i> 100a ⁵ ♀ 25 q46. 1. 1(2c)
1H236	$a^{1} = p (alb.)$ $a^{1} = p (4a)$ $b^{2} = a - (3c)$	$a^2 - q (4c)$ $b^3 - p (3b)$	a ³ - q		0H118a¹♂ 85 q48.46.11(4c)	0H35a² ♀ - q (3d)
1H237	$a^1 \stackrel{?}{=} 60 \stackrel{?}{p}37, 3, 3(3bw)$ $a^5 \stackrel{?}{\circ} 80 \stackrel{?}{p}37,33, 4(5b)$	a ² Q 30 p37. 1. 1(2aw) a ⁶ Q 100zq 53.51. 9,5c,	a \$ 100.448.36.	3(5bw) a4 & 95 p23.36. 3(5bw)	$0H138a^{3}c - q (5c)$	0H128a ¹ ♀ 85 q49.46. 1(4c)
1H238	$a^{1} \stackrel{?}{Q} = 00 \ p + \text{(alb.)}$ $a^{n} \stackrel{?}{Z} = 37 \ p34 \ 1 \ 1 \ 2h$	$a^2 \stackrel{?}{=} 00 \stackrel{?}{p} \text{(alb.)}$ $a^6 \stackrel{?}{=} 40 \stackrel{?}{p} 37 \stackrel{?}{=} 1.4 \stackrel{?}{=} 36,$	$a^{3} \stackrel{?}{\circ} 100zq 52.46.2$ $a^{7} \stackrel{?}{\circ} 15 p 37. 1.$	$0(5d)$ $a^4 = q (5d)$	0H140a ⁵ ♂ 40 q49.46. 1(3c)	0H133a ¹ ♀ 100zq49.46,12(5c)
1H239	a ¹ d 90 p18 18. 3(4fw) a ⁵ Ω 60 q49 46. 4(4c)	$a^2 \stackrel{?}{\vee} 85 p37.36. 3(4bw)$ $a^6 - q - - (3c)$	$a^3 \stackrel{?}{\vee} 90 p37.36.$	$3(5b)$ a^4 \times 35 q41. 1. 1(3g)	$0H152a^2\delta - q (5c)$	0H140a ⁰ ♀ 40 q46. 1. 1(3c)
1H240	a ¹ \$ 80 p35. 1. 1(3aw) 1a ⁵ 85 p35.33. 3(4a)	$a^2 = 3 - 90 p35 = 33 = 28(4a)$ $a^6 = 65 q48.34. 3(3c)$	$a^{3} \circ 35 p37. 3.$ $a^{7} \circ 00 p = -$	3(3b) a ⁴ & 55 q35.35, 1(3a)	0H129a ⁴ of 35 q46.46. 3(2c)	0H131a ³ ♀ 95 q35.35. 2(4a)

```
1 H241 | a1
                 40 p37. 1. 1(3b)
                                                                                                                                          [0H129a° ₹ 5+q4936 12+
                                                                                                                                                                                     0H131n<sup>2</sup>♀ 60 q49 46 3 3d)
                                                                           a^3 Q - p - - - (5a)
                                           a<sup>2</sup>♀ 00 p - - - (alb.)
                                                                                                          |a^4\vec{A} - \sigma - - (3c)|
 1 1/242
          a1 3 35 q48.46. 1(2-3e)
                                                                                                                                            0H136a1 A 40 a47.28, 2(3c)
                                                                                                                                                                                      0H131a+9 95 q35.35.29(6a)
              \delta = q - - (3e)
\delta = 100eq 35.35.28(5aw)
                                                                           0H129a¹♀ - q - - - (3c)
11/243
                                           a2 8 90 q36.33. 1(5a)
                                                                                                           a 3 60 948.46, 3(3c)
                                                                                                                                            0H131a1 & 1002g35.33.29(4-5a)
                 55 p37.29, 3(3b)
                                          a^{2}\vec{G} 60 q49.46. 4(3c)

a^{4}\vec{\nabla} 60 p q5.46. 4(3c)

a^{2}\vec{\nabla} 65 q53. 1. 3(3c)

a^{4}\vec{\nabla} 9 55 p37.19. 4,3b)

a^{2}\vec{\nabla} 100.eq48.51.47(6d)
                                                                           a^3 \circ - q - - (3c)
1H244
                40 q51. 2. 2(3cw)
3 · q46. 1 1.2 3c)
- q - - - (3-4c)
                                                                                                            a 9 85 p37 35 1(2a b
                                                                                                                                            0H129a^5 \stackrel{?}{\nearrow} = 5 a49, 1 - 1 3c
                                                                                                                                                                                      0H129a^{4}9 - 25 a49, 1, 1(2c)
1//245
              a<sup>3</sup> & 20 p37, 1, 1(2bw)
                                                                                                           a 3 85 p37 37 1(3b)
                                                                                                                                            0H127a5 & 65 q49.46, 1(4?c)
                                                                                                                                                                                      0H129a2 9 50 q49, 1, 1 3c)
1H246
          a4 & - q - - - (6d)
                                                                                                                                                                                      0H143a^2? q = -(5e)
                                                                                                                                            0H127a3 $ 50 a52, 1, 2(3c)
1//248
                                                                                                                                                                                      0H143a<sup>6</sup>♀ - q -
                                                                                                           a d 100zp37.37. 9(5bw)
                                                                                                                                            0H135a^{1} $\infty$ 50 949,46, 1(3c)
                                                                                                                                                                                                                 (50)
                                                                                              0H138a^{1}Q = q = -(5c)
1H249 a^{1}
          # 50 q53.46.11(5ew)

# 5 1000 q 52 46 47 6.6

# 6 45 q44. 3. 3(3c d)

# 6 00 p = - (-1)
                                                                                                                                            0H143a1 & - g - - - (5c)
                                           a^2 \stackrel{*}{\circ} - \stackrel{q}{\circ}
17/250
                                                                                                                                            0H143a³♂ - q - - - (5c)
                                                                           a3 8 00 p = −
                                                                                              - (alb.)
                                                                                                                                                                                      0H138a4 9 50 q49, 1, 1(3c)
                                          a^{2} \stackrel{?}{\circ} 00 p - - - (alb. w)

a^{2} 100 vq39.35.36 5a
                                                                                                                                                                                     0H154a<sup>2</sup> Q S5 q49, 1, 1(2–3c)
0H145a<sup>6</sup> Q 100zq35,33,30(5–6)
                -\frac{q}{9a} - -\frac{(4e)}{q39.36}
                                                                                                                                           0H124a^{1} & 100xq49.21.20(4c)
0H145a^{2} & 100xq35.35.30(5a-b)
177253
                                                                                                                                                                                     0H145a^7 \bigcirc 100x2a39.35.30(5a-b) 0H145a^7 \bigcirc 100x2a39.35.30(5a-b) 0a4145a^7 \bigcirc 100x2a39.35.30(5a-b)
                                          17/95
          a^{1}Q = p = -(5a-b)

a^{1}Q = 100zq35/33/28/5um
                              - (5a-bir)
                                                                                                                                           0H155a^{1} & 100xq35.35.30(5a)
0H146a^{2} & 100xq35.33. 4.5a,
                                                                           a 3 110 p -
17/255
                                                                                                           a $\frac{1}{2} 100xy30 30 28 5a)
                                                                                                 talb.
1H256 a^{\dagger} \ 2100zq 49.46.12(5cw)
                                                                                                                                                                                     0H146a49 - q - - - (5c)
                                           a2 & 85 p37.37. 3(5b)
                                                                           a3 & 10029 48.46.12(5c)
                                                                                                           a<sup>4</sup>♀ 70 p37.37. 2(4b)
                                                                                                                                           0H145a1 & 100zq49.48. 9(5c)
                - p · - - (4bw)

- p · - - (4bw)

- 00 p - - (alb. w
                                          a^2 \colone{Q} 00 \ p - - - (alb.) \ a^2 \colone{Q} 00 \ p - - (alb.) \ a^2 \colone{Q} 00 \ p - - (alb.)
                                                                                                                                                                                     0H146a6 ♀ 00 p - - (alb.)
                                                                           a<sup>3</sup> ♂ 00 p - - - (alb.)
1H257
                                                                                                           a4 & 00 p - - - (alb.)
                                                                                                                                           0H145a<sup>5</sup> ♂ 00 p - - - (alb.)
                00 p
00 p - - (alb.)
00 p - - (alb.)
                                                                                                                                           1 1/258
                                                                          b^2
                                                                                                           b1 00 p ...
                                                                                                           bi...
                                                                                                                                                                                                                 (alb.)
                00 p - \all all 75 q48.48 1(4c
                                                                          ~ (alla)
1//261
             ∂ 100 p (alb.)
∂ 100xp19. 6. 6(5b)
                                                                                                                               ~ (alb )

 calb.;

                                                                                                                                                                                     0H111a+9 - q- - (5d)
14I262
                                                                                                           a49 40 p37. 1. 1(3b)
                                                                                                                                           0H104a3 $ 40 q46. 1. 1(3c)
                00 p - - - (alb.)
35 q53, 4, 4(3cw)
                                          a^{q} - q - - (5c)

a^{2} \circ 00 \ p - - - (alb. w)
1H263
                                                                          a3 Q 100zq 48.46.20(5c)
                                                                                                           a4♀ 00 p - - - (alb.)
                                                                                                                                           0H139a^2A - q - - - (5c)
                                                                                                                                                                                     0H124a2 9 90 q49.34. 1(4c)
               40 q49. 1. 1(2-3c)
100xq53.51.47(6c)
11/264
                                               100xq52.51.47(6c)
                                                                           a3 80 q52,51.11(5c)
                                                                                                                                           A150a1 & 00 p - - (A1 or 2
                                                                                                                                                                                     0H85a^3 Q q = -(5d)
                                                                                                           a4 100xy61.61.54(6e)
                00 p - - (alb.)

35 q48. 1. 1(2c)

00 p - - - (alb.)
                                                                          a<sup>3</sup> 80 q<sub>02,01,12</sub>(05)

a<sup>7</sup> 00 p = - - (alb.)

a<sup>3</sup> 00 p - - - (alb.)
                                                00 p - - - (alb.)
- p - - - (4b)
 14265
                                                                                                           a4 00 p - - - (alb.)
                                                                                                                                           0H102a2 5 55 q48. 1. 2(3c)
                                                                                                                                                                                     0H112a3 9 50 q48.46. 1(3c)
                1H266
                                                                          α<sup>g</sup> 100zq 39.39.30(5α)
                                                 80 p30.28. 4(4aw)
                                                                                                           a4 100zq 35.33.28(5a)
                                                                                                                                           0H84a7 & 100zq35.33.28(5a)
                                                                                                                                                                                     0H84a<sup>4</sup> ♀ 100zq35.33,30(5a)
                                                 p - -
1\,H267
                                                                                                           a^{4} = 100zq\ 48.46\ 43(5cw)
                                                                                                                                           0H103a^3 \stackrel{...}{\circ} q = - (5c)
                                                                                                                                                                                     0H118a29 - q - - - (5c)
                                                              (4c)
- (3e)
                                                                          a^{3} 00 p - - - (alb.)
141268
               100zq 49.46. 9(5c)
                                                                                                                00 p - - (alb.)
 \begin{array}{llll} 1H269 & a^{**} & 2008f 95.40, & 8/36) \\ 1H269 & a^{5} & 00 & p & - & -(alb.) \\ a^{4} & 0 & 5p & 933.28, & 2(5a) \\ a^{6} & 00 & p & - & -(alb.) \\ a^{4} & 2 & 100xy95.58,55(fe) \\ a^{**} & 00 & p & - & -(alb.) \\ \end{array} 
                                                                                                                                            1150a4 & 00 p - - - (Alor2)
                                                                                                                                                                                     0H73a5 9 - q - - - (3c)
                                                                 (alb.)
                                          a³♀ 70 p35.33. 2(5a-b)
                                                                                                          a4 ...
                                                                                                                                           0H111a<sup>2</sup>d - q - - - (5a)
                                                                                                               1002q 48.46. 4(5c)
                                                                                                                                                                                     0H84a<sup>5</sup> ♀ 100zq33.30,28(5a)
                                                                                                          a4 - q - - (5c)
                                                                                                                                                                                    0H85a^4 \circ - q - - - (5-6a)
                                                                                                                                           181a2 & 00 p - -
                                                                                                                                                                        (1277)
                                                                                                                                                                                                                    ...
```

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Mother	2) $0H45a^4 \ \ \varphi - a (2d)$ 2) $0H94a \ \ \varphi - a (3c)$ 3) $0H94a \ \ \varphi - a (3c)$ 4) $0H114a^2 \ \ \varphi \ 55 \ q49.46. \ 1(3c)$ 4) $0H114a^3 \ \ \varphi \ 60 \ p (41)$ 6) $0H155a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H155a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H155a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H155a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H155a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H156a^3 \ \ \varphi \ 00 \ p (3b)$ 6) $0H16a^4 \ \ \varphi \ 00 \ p (3b)$ 6) $0H16a^4 \ \ \varphi \ 00 \ p (3b)$ 6) $0H106a^3 \ \ \varphi \ q \ q \ q \ q \ q \ q \ q \ q \$
	Father	$A153a^{1} & \zeta & 00 \ p (A1 \text{ or } 2)$ $A150u^{5} & \zeta & 00 \ p (A1 \text{ or } 2)$ $A153a^{2} & \zeta & 00 \ p (A1 \text{ or } 2)$ $A153a^{3} & \zeta & 00 \ p (A1 \text{ or } 2)$ $0H36a^{3} & \zeta & 00 \ p (a1b.)$ $0H156a^{2} & \zeta & 00 \ p (a1b.)$ $0H156a^{2} & \zeta & 00 \ p (a1b.)$ $0H156a^{2} & \zeta & 00 \ p (a1b.)$ $0H145a^{3} & \zeta & 100xq36.39.28(5a-b)$ $0H145a^{3} & \zeta & 100xq36.35.35.30(5a-b)$ $0H160a^{2} & \zeta & - q (5c)$ $0H161a^{3} & \zeta & 2q + 3.4.6. 3(3c)$ $0H161a^{3} & \zeta & q + 4.6.6.6$ $0H100a^{3} & \zeta - q (5c)$ $0H100a^{3} & \zeta - q (5c)$ $0H102a^{4} & \zeta - q (5c)$ $0H102a^{4} & \zeta - q (5c)$ $0H103a^{3} & \zeta - q (5c)$ $0H13a^{3} & \zeta - q (5c)$ $0H13a^{3} & \zeta - q (5c)$ $0H13a^{3} & \zeta - \zeta - \zeta - \zeta - \zeta - \zeta - \zeta - \zeta - \zeta - \zeta$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FFSPRING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Offsp		$a^{2} 75 q48.34. 4(4c)$ $a^{6} 000 p (alb.)$ $a^{2} 000 p (alb.)$ $a^{3} 000 p (alb.)$ $a^{4} 000 p (alb.)$ $a^{2} 000 p (alb.)$ $a^{3} 000 p (alb.)$ $a^{4} 000 p (alb.)$ $a^{5} 000 p (alb.)$ $a^{5} 000 p (alb.)$ $a^{6} 000 p (alb.)$
		80 $q58.58.2(4e)$ $00 p (alb.)$ $05 q - 49.46.1(4e)$ $- q (4c)$ $1002q 49.34.9(5e)$ $100xq 57.57.55(6e)$ $100xq 57.57.55(6e)$ $100xq 57.57.55(6e)$ $100xq 57.57.55(6e)$ $00 p (alb. w)$ $00 p (alb.)$ 00
Mating		1H271 a a a a a a a a a

0.H.140a° \$\(\frac{9}{4}\) \$\(\frac{9}{4}\) \$\(\frac{1}{13}\) \$\(\	d 00 \$
$0H140a^{5} + 40 + 949.46. 1(3c)$ $0//138a^{3} + - q (5c)$ $0H152a^{3} + 50 + q^{2} (5c)$ $0H143a^{3} + - q (5c)$ $0H143a^{3} + - q (5c)$ $0H135a^{4} + 50 + q^{2} + 46. 1(3c)$ $0H135a^{4} + 50 + q^{2} + 46. 1(3c)$ $0H135a^{4} + 50 + q^{2} + 6. 1(3c)$ $0H135a^{4} + 6 + q^{2} + 6 + 6c$ $0H138a^{4} + 6 + q^{2} + 6c$ $0H13a^{4} + 6 + q^{2} + 1. 1(3c)$ $0H101a^{2} + 50 + q^{2} + 1. 1(3c)$ $0H101a^{3} + 6 + q^{2} + 1. 1(3c)$ $0H101a^{3} + 6 + q^{2} + 1. 1(3c)$ $0H101a^{3} + 6 + q^{2} + 1. 1(3c)$ $0H101a^{3} + 60 + q^{2} + 1. 1(3c)$ $0H101a^{3} + 60 + q^{2} + 1. 1(3c)$ $0H104a^{3} + 60 + q^{2} + 1. 1(3c)$ $1152a^{3} + 600 + (41)$ $4153a^{4} + 600 + (41)$ $4133a^{6} + 600 + (41)$	$0H102a^3 $ $\circlearrowleft 95 $ 948.46
	$\begin{vmatrix} a^* & 00 & p (a.0.0) \\ a^4 & 1002q 48.36, & 9(5e) \\ & & & & & & & & & & & & & & & & & & $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.740. 1. $100xq49.46.4$ 00 p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{29}{1002q} \frac{p.93}{49.46.20(5c)} = -\frac{1002q}{90} \frac{49.46.20(5c)}{p-100}$
65 $q49.34.$ 1(3c) 80 $q48.46.$ 7(5c) 80 $q48.46.$ 7(5c) 100 $xq58.85.$ 7(6cw) 90 $q(3c)$ 50 $q55.46.$ 1(2c) 100 $xq49.$ 48.47(6cw) 00 $p(3b)$ 100 $xq5.$ 48.47(6cw) 00 $p(3b)$ 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.47(6cw) 100 $xq5.$ 48.48.48.11(2cw) 100 $xq5.$ 48.49.48.11(2cw) 100 $xq5.$ 48.49.48.11(2cw) 100 $xq5.$ 48.49.48.11(2cw) 100 $xq5.$ 48.41(2cw)	39 19 19 19 100 100 49 49 49 49 49 49 10 10
1H304 4 4 4 4 4 4 4 4 4	

	W. F.	R. Weldon's Records of Mice Matings (
MATING	Offi	Offsbring			
L			Father	Mother	
1 <i>H</i> 271		$\begin{bmatrix} a^3 & + & q - & - & -(5c) \\ -7 & 0c0 & 2 & -(5b) \end{bmatrix} a^4 = 00 \ p - & - & -(alb.)$	A153a1 3 00 p (A1or2)	$0H45a^4$ Q $-q(2d)$	
1 <i>H</i> 272		$\begin{bmatrix} a^7 & 00 & p (alb.) \\ a^3 & 85 & q49.46. & 1(4c) \end{bmatrix}$ $\begin{bmatrix} a^4 & 100zq 48.46. & 9(5c) \end{bmatrix}$	A150a5 & 00 p (A1or2)	0H94a Q - q (3c)	
11/273	$a^{5} = q = -(4c)$ $a^{6} = \theta \theta p = -(alb.)$ $a^{1} = 100zq49.34, 9.5c$ $a^{2} \neq 100zq58.58.56$ 6e)	$ \begin{vmatrix} a^T & \theta \theta & p = - & -(\text{alb.}) \\ a^T & q = & 5c \end{vmatrix} = \begin{vmatrix} a^T & (\theta) & p = & \text{alb.} \end{vmatrix} $	A153a2 & 00 p =11or2)	0H114a2 2 85 q49,46, 1,3c,	
	$a^{5} = an^{*}p = -(alb.)$ $a^{1} \circ 100 \circ q57.57.55 \circ (6e)$ $a^{2} \circ 100 \circ q58.57.55 \circ (6e)$	a ² \(\frac{9}{100}, \q 48.46 \) 14(5-6e;e) \(\text{e} \) 2 100xq58.58.55(6e)	0H86a1 \$100.949.46, 9(5c	A182a6 2 00 p (A1)	
	a^{6} 100x q 57.57.55(6e) $ a^{6} $ 00 p (alb.)	$\begin{bmatrix} a^{\dagger} & 00 & p & - & - & (alb.) \\ a^{3} & 00 & p & - & - & - & (alb.) \end{bmatrix} \begin{bmatrix} a^{4} & 00 & p & - & - & - & (alb.) \end{bmatrix}$	0H139a ¹ & 20 q49. 1, 2(2c)	0H148a³ ♀ 45 g49.36, 1(3c)	
	$a^5 = 00 \stackrel{?}{p} (alb, w)$		$0H156a^{\dagger}\mathcal{F}$ 0θ $p=-$ (alb.)	0H155a ² ♀ 00 p (alb.)	
1H277		$+a^3 = 00^2 p = \text{(alb.)} a^4 = 00 p = \text{(alb.)}$	$0H156a^2 \tilde{g} = 00 p \text{(alb.)}$	$0H155a^3$ $\stackrel{?}{Q}$ $\theta\theta$ $\stackrel{?}{p} = -$ (alb.)	
1 <i>H</i> 278	$a^6 = 00^{\circ} p = - \text{ (alb.)}$ $a^6 = 00^{\circ} p = - \text{ (alb.)}$ $a^1 = q = - \text{ (5c)}$ $a^2 = 00^{\circ} p = - \text{ (alb.)}$	$a^{7} = \theta \theta \ p (alb) = \cdots = \cdots = \cdots = \cdots = \cdots = \cdots = \cdots = \cdots = \cdots = $	$0H145a^4$ \$\delta 100zq36.30.28(5a-b)	0H156a³♀ 00 p (alb.)	
1 <i>H</i> 279 1 <i>H</i> 280	a^1 85 $q49.48.$ $1(4c)$ a^2 00 p (alb.) a^1 9 100 zp 39.39. $6(5b)$ a^2 q^2 q^2 q^2 q^2 q^2	a^3 00 p $ (alb.)$ a^3 $ q$ $ (5b)$ a^4 $ p$ $ (5b)$ a^3 $ p$ $ (5b)$ a^4 00 p $ (alb.v)$	0H146a ¹ & 90 q49.34, 2(4c) 0H145a ³ & 1002q35,35,30(5a ⁻ b) 0H160a ² & - q (5c) 0H159a ³ & q (5c) 0H16a ² & 80 q48.46, 7(5c)	$\begin{array}{c} 0H156a^{\dagger} + \Omega 100zq48.46.20(5b-c\\ 0H146a^{\dagger} + \Omega 100zq48.46.20(5b-c\\ 0H161a^{\dagger} + \Omega 100zq48.46.20(5b-c\\ 0H161a^{\dagger} + \Omega 100zq48.46.20(5b-c\\ 0H170a^{\dagger} + \Omega 100zq48.46.20(5b-c\\ 0H150a^{\dagger} + \Omega 100zq48.40(5b-c\\ 0H15$	
H287 H288 H289	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{vmatrix} a^2 & 75 & q61, & 1, & 1(3vw) \\ a^3 & \theta\theta & p - & -(allb.) \\ a^3 & 1\theta\theta x p 15.15.15 (6f) \end{vmatrix} = \begin{vmatrix} a^4 & 8\theta & p37.37, & 1(4b) \\ \dots & \dots & \dots \\ a^6 & \theta\theta & p - & -(allb.) \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1//290		a^3 95 q49.34, 9(4c) a^4 00 p (alb)	0H90a2 & - q (5c)	0H117a ⁴ ♀ 90 q49.36. 1(4c)	
H291		a^3 85 p37.35. 3(5b) a^4 - q (3c)	0H111a1 & - q (5d)	0H7a6 91002q48.46.12 5r	
1H292	$a^{s} = 00^{\circ} p = - \text{ (alb.)}$ $a^{6} = 00^{\circ} p = - \text{ (alb.)}$ $a^{1} = 100yp23.23.15(5f)$ $a^{2} = 100yp19.19.9(5f)$	$a^7 = 00^{\circ} p (alb.)$ $a^4 = 90^{\circ} q61.54. 1(4e)$	$0H102a^4 = q (5c)$	0H62a ⁵ Q 100zq49.48.12(5c)	
1 <i>H</i> 293	$a^6 = 100zq 49.46.11(5c)$ $a^6 = q = -(5c)$	a^3 00 $p = -$ (alb.) a^4 00 $p = -$ (alb.)	$0H100a^2\beta - q (5c)$	$0H111a^3 \circ q (5d)$	
	$a^b = \theta \theta^b p = \text{(alb.)}$	a ³ 100zp37,37, 4(5b) a ⁴ 25 p26, 1, 1(2f)	$0H112a^2A - q (5c)$	$0H102a^{6} \circ - q (5e)$	
1//236	$a^4 = 100iq 48 46 11 5c$ $a^2 = 50 \tilde{p}37 1 1 3b$	a3 1005q 46 46 7 5c a4 1005p 36 36 30 5b	$0H103a^{3}\hat{c} = \hat{q}$ (5c)	$0H111a^{\dagger}\hat{Q} = \hat{q} = -(5\hat{d})$	
	$a^{6} - q (4c)$	a. 1002ý 49, 9, 9(5c) a. 1002ý 49,25, 2(5c)	0H59a ² & 1002q49.46, 7(6d)	0H62a4 Q 100zq49.46. 7(5r)	
	$a^a = \theta \theta \hat{p} - (alb.) a^a = \theta \theta \hat{p} (alb.)$	$a^3 = 100xp24.24.15(5fw)$ $a^4 = q (5c)$	$0H103a^3\beta - q (5c)$	0 <i>H</i> 111 <i>a</i> ⁶ ♀ - <i>q</i> (5 <i>d</i>)	
1 <i>H</i> 300	a^1 85 $q49.46$, 2(4c) a^2 65 $q61.61$, 1(3ew) a^6 80 $p23.34$, 4(4b) a^0 00 p (alb,)	a ³ 40 p37, 1, 1(3b) a ⁴ 80 p37,35, 4(4b)	0H120α ⁴ δ 60 q49.46, 1(3c)	0H85α¹ ♀ - q (4d)	
1H301	a 50 q49.46. 1(2c) a 30 q49. 1. 1(2c)	$ a^3 - p(2b \cdot c) a^4 - q(2ew)$	0 <i>H</i> 114 <i>a</i> ⁵ ♂ 25 <i>q</i> 49. 1. 2(2 <i>c</i>)	0H112a ⁶ ♀ 40 q49. 1. 1(2c)	
1H302		$a^3 = 90 \cdot p36.36 \cdot 9 \cdot 5b $ $a^4 = 15 \cdot p40 \cdot 1 \cdot 1 \cdot 2b$ $a^8 = 00 \cdot p = (alb.)$	0H86a ² & 1002q49.46.28(5c)	0 <i>H</i> 102a ⁵ ♀	

W. F. R. Weldon's Records of Mice Matings (continued).

NTS	Mother	$ \begin{array}{c} 1H19b^1 & \subsetneq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Parents	Father	$ \begin{aligned} & 1H70a^2 & \stackrel{\wedge}{\circ} 55 \ q37.33.30(3a) \\ & 1H42a^3 & \stackrel{\wedge}{\circ} 50 \ p39.35. \ 4(4a) \\ & 1H112a^4 & \stackrel{\wedge}{\circ} 55 \ p23. \ 1. \ 1(3f) \\ & 1H111a^5 & \stackrel{\wedge}{\circ} 55 \ p23. \ 1. \ 1(3f) \\ & 1H111a^5 & \stackrel{\wedge}{\circ} 55 \ p23. \ 1. \ 1(3f) \\ & 1H111a^5 & \stackrel{\wedge}{\circ} 56 \ p35. \ 1. \ 3(4bv) \\ & 1H161a^2 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 7(5c) \\ & 1H161a^2 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 7(5c) \\ & 1H160a^3 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 4(5c) \\ & 1H160a^3 & \stackrel{\wedge}{\circ} 15 \ q46.46. \ 4(4c) \\ & 1H160a^3 & \stackrel{\wedge}{\circ} 15 \ q46.46. \ 4(5c) \\ & 1H98a^4 & \stackrel{\wedge}{\circ} - q (4e) \\ & 1H98a^4 & \stackrel{\wedge}{\circ} 1002q 49.46. \ 4(5c) \\ & 1H98a^3 & \stackrel{\wedge}{\circ} 1002q 49.46. \ 4(5c) \\ & 1H98a^3 & \stackrel{\wedge}{\circ} 1002q 49.46. \ 4(5c) \\ & 1H13a^2 & \stackrel{\wedge}{\circ} 35 \ q48. \ 1. \ 1(2c) \\ & 1H111a^3 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 7(5c) \\ & 1H111a^3 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 7(5c) \\ & 1H111a^3 & \stackrel{\wedge}{\circ} 1002q 48.46. \ 7(5c) \\ & 1H113a^2 & \stackrel{\wedge}{\circ} 65 \ q58. \ 1. \ 1(2e) \\ & 1H113a^2 & \stackrel{\wedge}{\circ} 65 \ q58. \ 1. \ 1(2e) \\ & 1H1100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H100a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H1010a^2 & \stackrel{\wedge}{\circ} 30 \ q46. \ 1. \ 1(2e) \\ & 1H10$
		$a^{4} \dot{\varphi} - p (4a^{-}b)$ $a^{4} \dot{\varphi} + 4b p 29.32.18(6f)$ $a^{4} \dot{\varphi} + 4b p 29.35.18(6f)$ $a^{4} - p (6f)$ $a^{4} - q (3d)$ $a^{4} \dot{\varphi} - q (6e)$ $a^{4} \dot{\varphi} - q (5b^{-}cw)$ $a^{4} \dot{\varphi} - q (5b^{-}cw)$ $a^{4} \dot{\varphi} - q (3e)$
Đ		$a^{3} \neq 100 \neq p 39.34(5b-c)$ $a^{3} \neq 100 x p 23.23.17(6f)$ $a^{3} = -q (3b)$ $a^{3} = -q (5c)$ $a^{3} \neq 100 x q 39.35.28(5a)$ $a^{3} \neq -q (5c)$ $a^{3} \neq 100 x q 48.48.20(5c)$ $a^{3} \neq 100 x q 48.48.40(5c)$ $a^{3} \neq 100 x q 48.46.41(5c)$ $a^{3} \neq 100 x q 48.46.43(5c)$ $a^{3} \neq 100 x q 49.48.40(5c)$ $a^{3} \Rightarrow 100 x q 49.48.7(5c)$ $a^{3} \Rightarrow 100 x q 49.7(5c)$ $a^{3} \Rightarrow 100 x q$
Offspring		$a^{2} \varphi = p (2-3b)$ $a^{2} \varphi = 100zp26.23.19(6f)$ $a^{2} \varphi = p (3b)$ $a^{2} \varphi = - p (3b)$ $a^{2} \varphi = - p (3b)$ $a^{2} \varphi = - p (3b)$ $a^{2} \varphi = - q (3b)$ $a^{2} \varphi = (3b)$
		$\begin{array}{c} a^{\dagger} \zeta \ \ 45 \ p40.39. \ 1(2b) \\ a^{\dagger} \zeta \ \ 40 \ p33. \ 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 40 \ p33. \ 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 60 \ p33. \ 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 600 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 1000 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ 1000 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ \ 1000 \ p - 1. \ 1(2b) \\ a^{\dagger} \zeta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
MATING		2.H11 2.H13 2.H13 2.H15 2.H19 2.H20 2.H22 2.H22 2.H23 2.H23 2.H23 2.H23 2.H23 2.H23 2.H23 2.H33 2.H34 2.H36

3-2

$ \begin{array}{c} 1H80\alpha^{6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$1H113a^5 $ φ 95 $q49.48.12(4c)$ $1H100a^4 $ φ 65 $q49.46. 1(3c-d)$ $1H101a^5 $ φ $- q$ $ (6e)$	$1H_{118a^{1}}$ φ p q	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\ddot{H}96a^{3}$ φ 00 p – – (alb.) $1\ddot{H}96a^{4}$ φ 00 p – – (alb.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1H123a^3 \subsetneq 00 \ p (\mathrm{alb.}) \\ 1H149a^4 \subsetneq 00 \ p (\mathrm{alb.}) \\ 1H142a^3 \subsetneq 00 \ p (\mathrm{alb.}) \\ 1H140a^4 \subsetneq 00 \ p (\mathrm{alb.}) \\ \end{array} $	$1H147\alpha^{4} \varphi 00 \ p (alb.)$ $1H143\alpha^{5} \varphi 00 \ p (alb.)$
948.46. 949.46. 947.46. 949. 1. 948.46.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\ddot{H}115a^{5} \mathring{\zeta} = 00 p = (\text{aib.})$ $1\ddot{H}88b^{1} \mathring{\zeta} = 00 p = (\text{aib.})$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\ddot{H}92a^{4}$ \$\frac{7}{5} 00 p (alb.) \\ 1\langle{H}92a^{5}\$ \$\frac{7}{5} 00 p (alb.) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$a^{4} \varphi 00 p (alb.)$ $a^{4} \varphi 00 p (alb.)$ $a^{4} \varphi 00 p (alb.)$ $a^{4} \varphi 100zq 49.46.11(5c-d)$ $a^{4} \varphi 55 q46. 1. 1(2c)$ $b^{3} - q (4e)$	$a^{+} \circ - q^{-} - (e^{0})$ $a^{+} 100zq 49.46.12(5c)$ $a^{+} \circ - q^{-} - (3-4e)$ $a^{8} 00 p^{-} - (alb.w)$ $b^{4} - q^{-} - (6e)$	$\begin{vmatrix} a^{4} & - & p^{-} & - & (5a) \\ a^{4} & 00 & p^{-} & - & (alb.) \\ a^{4} & 00 & p^{-} & - & (alb.) \end{vmatrix}$	$a^4 \stackrel{\frown}{\mathcal{C}} 00 \ p (alb.)$ $a^4 \stackrel{\frown}{\mathcal{C}} 00 \ p (alb.)$ $b^2 00 \ p (alb.)$	$a^{4} \stackrel{\cdots}{\not=} 00 \ p^{-} (alb.)$ $a^{4} \stackrel{\cdots}{\not=} 00 \ p^{-} (alb.)$	$a^4 \subsetneq 00 \ p (alb.)$ $a^4 \circlearrowleft 00 \ p (alb.)$ $a^4 \longrightarrow 00 \ p (alb.)$	a^4 φ 00 p — — — (alb.) a^4 φ 00 p — — — (alb.)	a^4 00 p (alb.) a^4 00 p (alb.) b^2 00 p (alb.)
$a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$ $a^{3} + b^{4} = 0$	$a^{3} = q^{-}$ $a^{3} = q^{-}$ $a^{3} = q^{-}$ $a^{7} = q^{-}$ $b^{3} = q^{-}$	$a^3 \stackrel{\leftarrow}{\leftarrow} 10 \ p37. \ 1. \ 1(1a-b)$ $a^3 \stackrel{\leftarrow}{\leftarrow} 00 \ p (alb.)$ $a^3 \stackrel{\leftarrow}{\leftarrow} 00 \ p (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \subsetneq 00 \ p = (alb.)$ $a^3 \nleq 00 \ p = (alb.)$ $a^3 = 00 \ p = (alb.)$	$a^3 \stackrel{?}{\circlearrowleft} 00 \ p^ (alb.)$ $a^3 \stackrel{?}{\circlearrowleft} 00 \ p^ (alb.)$	$a^3 = 00 \ p = (alb.)$ $a^3 \neq 00 \ p = (alb.)$ $b^1 = 00 \ p = (alb.)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 q48.46.	$a^2 \stackrel{?}{\varphi} 35 p39.39. \ 3(2a-b)$ $a^2 \stackrel{?}{\varphi} 00 \ p (alb.)$ $a^2 \stackrel{?}{\varphi} 00 \ p (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} b^{4} & 00 \ p - & - & (\mathrm{alb.}) \\ a^{2} \mathcal{L} & 00 \ p - & - & (\mathrm{alb.}) \\ \alpha^{6} \mathcal{L} & 00 \ p - & - & (\mathrm{alb.}) \\ a^{2} \mathcal{L} & 00 \ p - & - & (\mathrm{alb.}) \end{array}$	$a^{2} \stackrel{?}{\leftarrow} 00 \ p (alb.)$ $a^{2} \stackrel{?}{\leftarrow} 00 \ p (alb.)$ $a^{6} \stackrel{?}{\leftarrow} 00 \ p (alb.)$ $a^{2} \stackrel{?}{\leftarrow} 00 \ p (alb.)$ $a^{6} 00 \ p (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 p39. 1. 4(1) 6 00 p (1) 6 00 p (2) 7 00 p (3) 6 00 p (4) 6 00 p (4) 7 00 p (4)	000 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{lll} b^3 & 00 & p (alb.) \\ a^1 \varphi & 00 & p (alb.) \\ a^5 \varphi & 00 & p (alb.) \\ a^4 \varphi & 00 & p (alb.) \\ a^5 \varphi & 00 & p$	00 to to to	$\begin{array}{lll} b^1 & 00 & p - & - & (\mathrm{alb.}) \\ a^1 & 00 & p - & - & (\mathrm{alb.}) \\ a^5 & 00 & p - & - & (\mathrm{alb.}) \\ a^1 & 00 & p - & - & (\mathrm{alb.}) \\ a^1 & 00 & p - & - & (\mathrm{alb.}) \\ a^5 & 00 & p - & - & (\mathrm{alb.}) \\ a^5 & 00 & p - & - & (\mathrm{alb.}) \\ a^5 & 00 & p - & - & (\mathrm{alb.}) \end{array}$	
2 <i>H</i> 45 2 <i>H</i> 46 2 <i>H</i> 48 2 <i>H</i> 49 2 <i>H</i> 50		2H55 2H59 2H60	$\begin{array}{c} 2H61 \\ 2H62 \\ 2H63 \\ \end{array}$	2H64 $2H65$	2H66 2H67 2H69	2 <i>H</i> 70 2 <i>H</i> 71 2 <i>H</i> 73 2 <i>H</i> 75	2 <i>H</i> 76

	0			Pari	RENTS
LATING	Offspri	NG		Father	Mother
2H12	$a^{1} \stackrel{*}{\Diamond} 45 \ p40.39, \ 1(2b) \ a^{2} \stackrel{?}{\Diamond} - p (2-3b) \ a^{1} \stackrel{?}{\Diamond} 00 \ p37 \ 30 \ 4 \ 5a \ b \ a^{2} \stackrel{?}{\Diamond} 100zp37 \ 30 \ 3 \ 5a \ b$	a 2 1004 39 39 34(5b c)	a49 p (4a b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 1H19b^1 & Q & 40 & q58, & 1, & 1(2e) \\ 1H129a^3 & Q & 160zp & 39 & 35 & 30'5b) \end{vmatrix} $
2 <i>H</i> 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a \cdot d \cdot 1001 p22.23.17.0 f$, $a^3 d \cdot p = -(3b)$	a ⁴ \$\frac{1000zp 23.23.18(6f)}{a^4 \qquad \psi 0 p39.35, 1(3b)}	$1H122a^4$ δ 55 $p23$, 1, 1(3f) $1H111a^6$ δ 95 $p35$, 1, 3(4bw)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 <i>H</i> 18	$a^{6} \stackrel{?}{\circ} 00 \stackrel{?}{p} (alb.)$ $a^{1} = p \stackrel{?}{\circ} (6b \stackrel{?}{\circ}) a^{2} = q (6d)$	a^3 q (6 d)	a4 - p (6f)	$1H154a^2\delta - q (6e)$	1H152a¹ ♀ 1002q 49.48.47(6c)
2 <i>H</i> 19	$a^{6} = 00 \ p = - = -(alb.)$ $a^{1} \stackrel{?}{\circ} = 00 \ p = - = -(alb.)$ $a^{5} = q = - = -(5c)$ $a^{5} = q = - = -(5c)$	a3 - q (5c)	a4 - q (3d)	1H161a ² & 1002q 48.46. 7(5c)	1H154a1 Q 100xq 58 58.55c6e
H_{20}	a^{6} q $ -\langle 3v \rangle$ \dots \dots $a^{1} \stackrel{\circ}{\Diamond} 00 \stackrel{\circ}{p}$ $ -\langle alb. \rangle$ $a^{2} \stackrel{\circ}{\Diamond} 00 \stackrel{\circ}{p} -\langle alb. \rangle$ $a^{6} \stackrel{\circ}{\Diamond} -q$ $-\langle 4u \rangle$	$a^{\dagger} \stackrel{d}{\circ} 100zq 39.35.28(5a)$ $a^{7} = q + - (5a)$	a d d - q (5d)	I H I 61a° &	1H151a ⁴ ♀ 80 q49.48.34(5c)
H_{22}	$a^{+} \stackrel{?}{\downarrow} = q - (4a)$ $a^{+} \stackrel{?}{\downarrow} = q - (4a)$ $a^{0} \stackrel{?}{\downarrow} = q - (4c)$ $a^{0} \stackrel{?}{\downarrow} = q - (4c)$ $a^{0} \stackrel{?}{\downarrow} = q - (4c)$ 	$a^3 \circ q - q (5c)$	a4 & 00 p (alb.)	1H16a ² & 55 q58.55, 1(3e)	1 H151a1 Q 100zq 49.48.34(5c)
H_{23}		$a^3 \ 2 \ 100 zq \ 48.48.20(5v)$	a4 & 00 p (nlb.)	1H148a ² & 80 q49.46, 4(5c)	1#161a3 \(\frac{1}{2}\) 100zq 49.48. 9(5c
H26	$\begin{bmatrix} a^1 \stackrel{\circ}{\nabla} & 00 \stackrel{\circ}{p} = - & - & \text{(alb.)} \\ a^1 \stackrel{\circ}{\nabla} & q & - & \text{(3)} \end{bmatrix} \begin{bmatrix} a^2 \stackrel{\circ}{\nabla} & 00 & p & - & \text{(alb.)} \\ a^2 \stackrel{\circ}{\nabla} & 00 & p & \text{(alb.)} \end{bmatrix}$	$a^{\dagger} \stackrel{*}{\circ} 00 p (alb.)$ $a^{3} 1007q 18 16 4(4r)$	$\begin{bmatrix} a^4 & q & q & (6e) \\ a^4 & 00 & p & (alb) \end{bmatrix}$	1H60a1 & 100.eq57.57.55(6e) 1H60a3 & 25 q4646, 4(4c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{\dagger} \lozenge 100zq35.33 \ 28(5a)$	a ⁴ ♀ 100zq35.33.28(5a)	1H80a† & 100xq57.57.55(6e)	1H157a2Q - q (5a
	$a^{5}\beta^{+} - q (3e)$ $a^{1}\beta^{+}100zq55.46, 7.5r)$ $a^{5}\beta^{+} - q (5e)$ 	a3 & - q (6e)	a4♀ - q (6e)	1H98a1 3 - q (4e)	1H157a ³ \(\right\) 1002q 49.48.14(5a
H29 H32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \stackrel{\frown}{S} - g - (6e)$ $a^4 \stackrel{\frown}{S} - g (5e)$	1H98a ³ & 100zq 49.46, 4(6c) 1H96a ¹ & 100zq 48.46, 4(5c)	1 <i>H</i> 156a ⁴ ♀ 100xq58.57.55(6e 1 <i>H</i> 3a ³ ♀ 100zq49.46, 7(6e
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a48 - q (5b-cw)	$1H96a^2$ & 1002q 35.33.28(5-6b)	1 <i>H</i> 3a⁴ ♀ 100zq 46.36.20(5c
H34	$\begin{bmatrix} a^5 \vec{\mathcal{J}} & \vec{p} & -(4bw) \\ a^1 \vec{\mathcal{J}} & 60 & q44.21, & 2(3e) \\ a^5 & q & -(4e) \end{bmatrix} \begin{bmatrix} a^6 \vec{\mathcal{J}} & 100zq & 49.25, & 7(5e) \\ a^2 \vec{\mathcal{J}} & q & -(3e) \in e \\ a^6 & -(q) & -(6e) \end{bmatrix}$	a^3 q (6 v) $a^{\bar{i}}$ p q q q	at ou p (all.)	1H135a ² ♂ 30 q60, 1, 1(2e)	1H3a2 9 - q (66
H37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{+}9$ 55 $g39.33$, $4(3a)$		$1H101a^3 \stackrel{?}{\circ} 65 q61,60, 3(3e) \\ 1H144a^1 \stackrel{?}{\circ} - q (2e)$	
	$a^{b} \stackrel{\Diamond}{\nearrow} 00 \stackrel{\partial}{p} = - \text{ (alb.)} \begin{vmatrix} a^{0} \stackrel{\partial}{\nearrow} 00 \stackrel{\partial}{p} & \text{ (alb.)} \\ a^{1} \stackrel{\partial}{\nearrow} 60 & q48 & 1, & 4(3b & c) \end{vmatrix} \begin{vmatrix} a^{0} \stackrel{\partial}{\nearrow} & 00 \stackrel{\partial}{p} & 2 \\ a^{2} \stackrel{\Diamond}{\nearrow} & 55 & p40.39, & 1(3bw) \end{vmatrix}$	a ³ Q 1002q 49 48. 7(5d)	$u^{\dagger} \circ p = -(5b)$	$1H114a^5 {5} 35 q48. 1. 1(2c)$	11165b1 Q - q (6e
H39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{vmatrix} a^1 \delta & - & q - & - & - & (1c) \\ b^1 \delta & - & p - & - & - & (5b) \end{vmatrix}$	1H114a ² & 10 q58, 1, 1(1c)	1H98a ⁴ Q 100zq 49.46.30(5c
	$b^{+} = q^{-} (2c) - [b^{0} = q^{-} (3c)]$ $a^{1} \stackrel{?}{,} 100 \stackrel{?}{,} q^{10} \stackrel{?}{,} 16 = 9 \stackrel{?}{,} 5b = a^{2} \stackrel{?}{,} 100 \stackrel{?}{,} q^{1} \stackrel{?}{,} 6 = 3c \stackrel{?}{,} 5c$ $[a^{1} \stackrel{?}{,} 00 \stackrel{?}{,} p^{-} - (6c)]$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{5} - q \cdot - (5c)$ $ a^{4}Q - q \cdot - (6e) $	1#131a1 ₹ 77 q49 46, 1·3a 1#111a3 ₹ 100zq 48.46, 7(5c)	$1H_{98a^{+}} \otimes 100, q 48 46 - 4 5$ $1H_{65}b^{\circ} \otimes 100, rq 58.58.56 (6e$
	$a^6 \stackrel{\circ}{\downarrow} 45 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\alpha^3 \circ - q (3e)$	$a^4 \delta - q (3e)$	1H113a ² & 65 q58. 1. 1(3e)	1H87a1 \Q 100.vq58.58.57(6a
1/41	$a^{\mu} = p - 3t - a^{\mu} - g$ (i.e.	$a^7 - q^2 - (6e)$ $a^3 \circ 00 p (alb.)$ $a^7 \circ 40 p37.33, 1(3a)$	$a^8 = p$ $3t$	1 H 100a ² & 30 q 46. 1. 1(2c)	1 <i>H</i> 32 <i>a</i> ⁵ ♀ 100 <i>zq</i> 49.46. 4(5-

2H45	$b^2 = 100iq 49.46.12(5c)$ $a^4 \stackrel{?}{\circ} 100iq 49.46.11(4c)$ $a^5 \stackrel{?}{\circ} 00 p = \text{(alb.)}$	$b^3 = 80 \ q48, \ 1. \ 1(2c)$ $a^2 \stackrel{\frown}{Q} = q = (5c)$ $a^6 \stackrel{\frown}{Q} = \theta\theta \ p = (alb,)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} b^5 & \theta\theta & p (\text{alb.}) \\ a^4 & \theta\theta & p (\text{alb.}) \\ \dots & \dots & \dots \end{bmatrix}$	$1H143a^{1}$ δ $100zq$ 48.46 . $2(5r)$	1H80a° 9 1002q 37.36. 4(*g
2 <i>H</i> 46 2 <i>H</i> 48		$a^{\frac{1}{2}} \stackrel{\bigcirc}{\circ} - q (5a)$	a ¹ & 00 p (alb.)		$1H117a^{1}\delta$ 60 $q49.46$, $1(5c)$ $1H115a^{1}\delta$ 30 $q47.46$, $1(1c)$	$ \begin{vmatrix} 1H121a^3 & q & -(4d) \\ 1H136a^3 & q & -(5a) \end{vmatrix} $
2H49	$a^{\dagger} \vec{c} - q - (6e)$	a ² of 100rq58.57.55(6e)	$a^3 ? 100xq58.57.55(6e)$	a4 & 100zq 49.46,11(5c-d)	1H119a ³ 5 55 q49, 1, 1(3c)	1H142a ¹ ♀ 100.cq58.57.55(6c)
2H50	$a^{5}\beta - q + (6e)$ $a^{1}Q + 30 + q46 + 1 + 1(3e)$ $a^{5}Q + 00 + p (alb.)$	$a^{0} \circ 1002q 49.48.14(5c \ d)$ $a^{2} \circ d - q \cdot - (3 \ 4e)$ $b^{1} - q \cdot - (2e)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a^4 δ 55 q 46. 1. 1(2 e) b^3 - q (4 e)	1 <i>H</i> 121 <i>a</i> ^h 5 55 q48.46, 2(3 <i>c</i>)	1H115e ³ \(\text{ 85 q58.55, 1(4e)} \)
2H51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\alpha^3 \circ - q (3c)$	a d d - q (3e)	1 <i>H</i> 122 <i>a</i> ⁵ <i>§</i> 25 <i>q</i> 46. 1. 1(2 <i>c</i>)	1 <i>H</i> 113 <i>u</i> ⁵ ♀ <i>95 q</i> 49.48.12(4 <i>c</i>)
2H52	$a^{5} - q(1c)$ $a^{1} \leq 100zp36.36, 2(5b)$	a^2 75 $q48.46.11(5c)$	a ³ 60 q46.46. 7(3c)	a ⁴ 100zq 49.46.12(5c)	1H99a ³ & 80 q48.46. 7(5d)	1H100a4 Q 65 q49.46. 1(3c-d)
2H53	$a^{h} \bigcirc 00 \ p - \cdots - (alb.)$ $a^{1} \stackrel{?}{\circ} q = (3e)$ $a^{5} \bigcirc - q - \cdots - (4-5e)$ $b^{1} = q - \cdots - (3e)$	$a^{2}\vec{\phi} - q - (3e)$ $a^{0}\vec{\phi} - q - (5e)\vec{\phi}$ $b^{2} - p - (3b)$	$a^{3} \stackrel{?}{\circ} - q (6e)$ $a^{7} \stackrel{?}{\circ} q (6e)$ $b^{3} - q (3e)$	$\begin{bmatrix} a^4 \vec{\phi} & -q(3-4v) \\ a^8 & 00 & p(alb,w) \\ b^4 & -q(6v) \end{bmatrix}$	1H118a ² & 55 q49. 1. 2(3c)	$1H101a^{5}$ \bigcirc q $ (6e)$
2 <i>H</i> 55	$b^5 = q = -(5ew)$ $a^4 ? -25 p39, 1, 4(1-2a-b)$	a ² ♀ 85 µ39,39, 3(2a−b)	a ³ ₹ 10 p37, 1, 1(1a-b)	a4 - n (5a)	1H99a ¹ \$ 100zp39.35,28(6b)	$1H118a^{1}Q - p (2b)$
2M39	$a, t = aa, b = -a \cdot p$	$ a^2 - Q = 00 p $	a3 & 00 p (alb.)	a4 9 00 p (alb.)	$1H157a^5 = 00^4 p \text{(alb.)}$	1H152a3 Q 00 p (all)
	<i>u</i> ¹ ♀ (00 p ~ (alb,)	a ² & 00 p (alb.)	a³♀ 00 p ~ · · (alb.)	a4♀ 00 p (alb.)	$1H153a^3 = 00 \ p \text{(alb.)}$	1 <i>H</i> 152 <i>a</i> ⁵ ♀ 00 <i>p</i> − − − (alb.)
2 <i>H</i> 61 2 <i>H</i> 62	$a^1 \circ 00 p = - \text{(alb.)}$ $a^1 \circ 00 p = - \text{(alb.)}$	a² 5 00 p - (alb.)		a+5 00 p (alb.)	$1H153a^4\delta = 00 p (alb.)$ $1H143a^4\delta = 00 p (alb.)$	1H16a ⁸ Q 00 p (alb.) 1H16a ⁷ Q 00 p (alb.)
21163		$a^2 \delta = 00 \ p = \text{(alb.)}$	a3 8 00 p (alb.)	a49 00 p - (alb.)	1H112a d d 00 p (alb.)	1.H85b³ ♀ 00 p (alb.)
o He t		$\begin{bmatrix} a^0 \delta & \theta \theta & p = - \text{ (alb.)} \\ b^4 & \theta \theta & p = - \text{ (alb.)} \end{bmatrix}$	$b^5 = \theta \theta p = - \text{(alb.)}$	$b^2 = \theta p (alb_i)$	*** *** *** ***	*** 144 *** ***
	$m \circ Q = m \circ p = -$ (alb.)	$a^{0} \stackrel{?}{\circ} 00 \stackrel{?}{p} = - \text{(alb.)}$ $a^{0} \stackrel{?}{\circ} 00 \stackrel{?}{p} = - \text{(alb.)}$		a⁴♀ 00 p (alb.)	1 <i>H</i> 115 <i>a</i> ⁵ & 00 <i>p</i> (alb.)	1H96u³ ♀ 00 p (alb.)
2H65	ab 8 00 p = (alb.)	$a^{2}\delta = \theta \theta p = \text{(alb.)}$		a⁴♀ 00 p (alb.)	1 <i>H</i> 88 <i>b</i> ¹ \$ 00 p (alb.)	1H96u ⁴ ♀ 00 p (alb.)
2H66 2H67	$a^1 \stackrel{?}{=} 00 \stackrel{p}{p}$ (alh.)	$\begin{vmatrix} a^2 \xi & \theta \theta & p = & \text{(alb.)} \\ a^2 \xi & \theta \theta & p = & \text{(alb.)} \end{vmatrix}$	$a^3 \stackrel{\bigcirc}{\circ} 00 p \text{(alb.)}$ $a^3 \stackrel{\bigcirc}{\circ} 00 p \text{ (alb.)}$	$a^{\dagger} \stackrel{Q}{\varsigma} = 00 \ p \text{(alb.)}$ $a^{\dagger} \stackrel{Z}{\varsigma} = 00 \ p \text{(alb.)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2H69	$a^{\dagger} = \theta \theta p = (alb.)$	$\begin{vmatrix} a^0 & Q & \theta \theta & p \text{(alb.)} \\ a^2 & \theta \theta & p \text{(alb.)} \end{vmatrix}$	α ³ 00 p (alb.)		1H149ab & 00 p (alb.)	1H88b4 Q 00 p (alb.)
2 <i>H</i> 70 2 <i>H</i> 71	$b^1 = 00 p + - \text{(alb.)}$	$\begin{vmatrix} a^0 & 00 & p = - & - & (alb.) \\ b^2 & 00 & p = - & - & (alb.) \end{vmatrix}$	1			1H123a ³ Q 00 p (alb.)
21173	a' & 100 P = - (alb.)		a t ou p , alb.)	$a^4 \stackrel{\circ}{\downarrow} - 60 p = - (alb.)$	$1H16a^4$ $\stackrel{?}{\ }$ 00 $\stackrel{?}{\ }$ - (alb.)	$1H149a^4$ $\stackrel{?}{Q}$ $\theta\theta$ $\stackrel{?}{p}$ - $(alb.)$
	$\begin{array}{ccccc} a^1 & 00 & p & - & - & (all h) \\ a^1 & 00 & p & - & - & (all h) \\ a' & 3 & 00 & p & & (all h) \\ a' & 3 & 00 & p & & (all h) \end{array}$	$\begin{vmatrix} a^2 & 00 & p (alb_s) \\ a^2 & 00 & p (alb_s) \end{vmatrix}$	$\begin{vmatrix} a^3 & \theta\theta & p \text{(alb.)} \\ a^3 & \theta\theta & p \text{(alb.)} \end{vmatrix}$	a43 00 p (alb.)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1H142a^3 \circ 00 \ p = - \text{(alb.)} 1H140a^4 \circ 00 \ p = - \text{(alb.)}$
2 <i>H</i> 76	a^1 00 p (alb.) a^6 00 p - (alb.)		α ³ 00 p = = = (alb.)	a4 00 p (alb.)	1H92a4 5 00 p (alb.)	1H147a4 Q 00 p (alb.)
2 <i>H</i> 77	ald 00 p (alb.)	a2 & 00 p = - (alb.)	$a^3 \circ 00 p = \text{(alb.)}$	u ⁴ ♀ 00 p (alb.)	1H92a5 & 00 p (alb.)	1H143a ⁵ ♀ 00 p (alb.)
		$\begin{bmatrix} b^4 & 00 & p & - & - & (alb.) \\ 0 & 0 & p & - & - & (alb.) \end{bmatrix}$	b1 00 p (alb.)	b^2 00 p (alb.)	*** *** *** ***	*** *** *** ***
	•					

W. F. R. Weldon's Records of Mice Matings (continued).

	Mother	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Parents		$A159a^{3} \neq 00 p$ $A159a^{4} \neq 00 p$ $A158a^{5} \neq 00 p$ $A91a^{2} \neq 00 p$ $A91a^{2} \neq 00 p$ $A911a^{2} \neq 00 p$ $A911a^{3} \neq 0$
144	Father	1H70a² ξ 55 q37.33.30(3a) 1H122a³ ξ 55 p23. 1. 1(3f) 1H60a¹ ξ 95 q41.50. 4(4g) 1H60a¹ ξ 100 ι q57.57.55(6e) 1H74b¹ ξ 35 p23. 1. 1(2a) A153a³ ξ 00 $p (A1)^{\frac{1}{2}}$ A158a² ξ 00 $p (A1)^{\frac{1}{2}}$ A158a² ξ 00 $p (A1)^{\frac{1}{2}}$ 1H700b² ξ 00 $p (A2 \times)$ 1H150a² ξ 100 ι q48.46. 7(4e) 1H150a² ξ 100 ι q48.46. 7(4e) 1H15b³ ξ 60 q55.46. 1(4c) 1H115b³ ξ 60 q55.46. 1(3e) 1H123b³ ξ 100 ι q98.46. 3(4e) 1H123b³ ξ 100 ι q98.55. 1(3e) 1H130b³ ξ 30 p37. 1 1(2a-b) 1H130b³ ξ 55 p39.35. 1(2a-b) 1H130b³ ξ 55 q58.54. 1 (2a-b) 1H130b³ ξ 55 q58.54. 1 (2e-b) 1H130b³ ξ 56 q58.57. 1 (2e-b) 1H130b³ ξ 60 q58.57. 1 (2e-b) 1H130b³ ξ 700 ι q48.1. 3(2e) 1H130b³ ξ 100 ι q48.1. 1 (2e) 1H130b³ ξ 100 ι q48.1. 1 (2e) 1H130b³ ξ 100 ι q48.1. 2(6e) 1H13b³ ξ 100 ι q48.1. 2(6e) 1H15b³ ξ 100 ι q48.46. 20(5d) 1H15b³ ξ 100 ι q48.46. 20(5d) 1H15b³ ξ 100 ι q48.46. 9(5e)
Opperpring		$a^{4} \stackrel{\circ}{\circ} - q^{-} (4c)$ $a^{4} \stackrel{\circ}{\circ} 0 p^{-} (6e)$ $a^{4} \stackrel{\circ}{\circ} 0 p^{-} (alb.)$ $a^{4} \stackrel{\circ}{\circ} 0 q^{4} 1. 1(4c)$ $a^{4} \stackrel{\circ}{\circ} 0 q^{2} - (4c)$ $a^{4} \stackrel{\circ}{\circ} 0 - (4c)$ a^{4}
		$a^{3} \stackrel{\circ}{\varphi} - q^{-} (4c)$ $a^{3} \stackrel{\circ}{\varphi} - q^{-} (4g)$ $a^{3} \stackrel{\circ}{\varphi} - q^{-} (4g)$ $a^{3} \stackrel{\circ}{\varphi} - q^{-} (6e)$ $a^{3} \stackrel{\circ}{\varphi} - q^{-} (6e)$ $a^{3} \stackrel{\circ}{\varphi} 30 \ p37. \ 1. \ 1(2-3b)$ $a^{3} = q^{-} (4c)$ $a^{3} = q^{-} (6e)$ $a^{3} = q^{-}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c} a^1 \varphi & 85 \ q49.51. \ 4(3c) \\ a^5 \varphi & - q (3e) \\ a^4 \varphi & - q (3e) \\ a^4 \varphi & - q (3e) \\ a^4 \varphi & 00 \ p (alb.) \\ a^5 \varphi & 00 \ $
MATING		2H79 2H82 2H82 2H83 2H85 2H85 2H867 2H867 2H89 2H99 2H99 2H100 2H100 2H100 2H100 2H100 2H100 2H110

52.46.20(5c-d) 49.46.20(5c) 49.46.20(5c) 49.48.12(5d) 49.46. 4(4c) 49.4. 1.1(1c) 52.46.43(5c) (alb.) (alb.) 39.34. 1(4a-b) (alb.) 39.35. 2(4a) 37.35.28(5b) (3c-dw) 37.35.28(5b) (5a)
$\begin{array}{c} \dots \\ 1H'146b' \neq 100cq \\ 1H'149b' \neq 100cq \\ 1H'122b' \neq 7'0 \neq 11'122b' \neq 7'0 \neq 11'132b' \neq 7'0 \neq 11'134b' \neq 100cq \\ 1H'119a'' \neq 100cq \\ 1H'119a'' \neq 100cq \\ 1H'136b' \neq 9'0 \neq 11'136b' \neq 9'0 \neq 11'136a'' \neq 100cq \\ 1H'136a'' \neq 100cq \\ 1H'151a'' \neq 9'' \neq 9'' \neq 11'135a'' \neq 0'' \neq 0'' \neq 11'135a'' \neq 0'' \neq 0'' \neq 11'135a'' \neq 0''
1H167 $a^4 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} a^3 & 60 \ q49.46. \ 1(4d) \\ a^3 - q (5d) \\ a^3 - q (5b) \\ a^3 - q (5b) \\ a^3 & 1002q 48.46.12(5c) \\ a^3 & 65 \ q58. \ 1. \ 1(4e) \\ a^3 & - p (5b) \\ a^3 & 1002q 49.46. \ 7(5c) \\ a^3 & 80 \ q46.46. \ 3(4cw) \\ a^3 - q (3b-c) \\ a^3 & 80 \ q48.35. \ 7(5c) \\ a^3 & 35 \ p37. \ 1. \ 1(2b) \\ a^3 & 35 \ p37. \ 1. \ 1(2b) \\ a^3 & 1002q 48.46.12(5cw) \\ a^3 & 1002q 48.46.12(5cw) \\ a^3 & 57 \ q48.46. \ 3(3c) \\ a^3 & 100xq58.58.55(6e) \\ a^3 & 95 \ p39.35.33(4b) \\ a^3 & 100xq58.38.328(5a) \\ a^3 & 100xq933.33.28(5a) \\ a^3 & 100xq933.33.28(5a) \\ a^3 & 100xq937.37. \ 2(5a) \\ a^3 & 100xq58.58.55(6e) \\ a^3 & 65 \ q41. \ 1. \ 1(3g) \\ a^3 & 65 \ q41. \ 1. \ 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$a^{5} 00 p (alb)$ $a^{1} \stackrel{?}{\uparrow} 1002q58.58.56(6e)$ $a^{1} \stackrel{?}{\downarrow} 1002p39.35.28(5b)$ $a^{5} 00 p (4e)$ $a^{5} 65 q49.46. 14c)$ $a^{5} 65 q49.46. 14c)$ $a^{5} 1002q37.37.30(5b)$ $a^{1} 1002q37.37.30(5b)$ $a^{5} 1002q38.58.56(6e)$ $a^{6} 00 p (alb.)$ $a^{5} 1002q37.37.30(5b)$ $a^{6} 00 p (alb.)$ $a^{6} 1002q58.58.56(6e)$ $a^{6} 00 p (ab.)$ $a^{6} 1002q58.57.56(6e)$ $a^{6} 00 p (ab.)$ $a^{6} 1002q39.33.28(5a.)$ $a^{6} 1002q48.46.1(5e)$ $a^{6} 1002q48.46.1(5e)$ $a^{6} 1002q48.46.30(5e)$ $a^{6} 1002q48.46.2(3e)$
2H114 2H116 2H116 2H118 2H119 2H129 2H124 2H127 2H126 2H127 2H127 2H127 2H127 2H127 2H128 2H127 2H128 2H127 2H128 2H127 2H128 2H127 2H133 2H142 2H143 2H143 2H144 2H144 2H145 2H145 2H145 2H146 2H147 2H146 2H147 2H146 2H147 2H146 2H147 2H148

ATING		Offsph	ing			I	PARENTS	
						Father	Moth	ier
a ⁵	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} a^2 & -q &(4c) \\ a^0 & -q &(3c) \end{vmatrix}$	$\begin{vmatrix} a^3 & - & q & - & (4c) \\ a^7 & - & q & - & - & (3c) \end{vmatrix}$	$\begin{bmatrix} a^4 & -q &(4c) \\ a^8 & -q &(6c) \end{bmatrix}$		55 q37.33.30(3a)	A159a³ ♀ 00 p	(A1
$\frac{9}{9}$ $\frac{6}{9}$ $\frac{6}{9}$	$\begin{array}{lll} Q = & q + (6e) \\ Q & 100xq58,57.56(6e) \\ Q & 95.441, & 1(4g) \end{array}$	$a^2 = 60 \ q58, \ 1, \ 1(3 \ 4e)$ $a^2 = 87 \ q41.50, \ 3 \ 4g,$	a; $Q = -4g$	and map = - (alb.)	1 <i>H</i> 122a ⁴ 3 1 <i>H</i> 16a ¹ -3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1
$I83 = a^1$ a^5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{0} \stackrel{?}{\circ} 00 \stackrel{?}{p} \text{(alb.)}$ $a^{2} \stackrel{?}{\circ} - q \text{(4}e)$ $a^{6} \stackrel{?}{\circ} 00 \stackrel{?}{p} \text{(alb.)}$	$\begin{bmatrix} a^3 & -q & & -(6e) \\ a^7 & 00 & p & & (alb.) \end{bmatrix}$	a⁴♀ - q (6e) a³♂ 00 p (alb.)	1 <i>H</i> 60a¹ ♂	100xq57.57.55(6e)	A91a² ♀ 00 p	= 11
	Q = p - (3b)	$a^2 \circ p - p (3b)$	α ³ δ 30 p37. 1. 1(2-3b)	a4 & 45 p37. 1. 1(2-3b)		$\beta \tilde{s}$ $p23.$ 1. $1\langle 2a \rangle$	1 <i>H</i> 117 <i>b</i> ² ♀ - <i>p</i>	· (3 <i>f</i>)
187 a ¹ 188 a ¹ 190 a ¹	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} a^0 & -p (3b) \\ a^2 & 00 & p (alb.) \\ a^2 & 90 & q 48.39 & 30 & 4b & c \\ a^2 & -q (5c) \end{vmatrix} $	$\begin{bmatrix} a^3 & 0 & p + \langle alb. \rangle \\ a^3 & s \cdot q & 37.36 & 3 & 4b & c \rangle \\ a^3 & -q & (5c) \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1153년 중 1158년 중 1147년 중	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35.33.28(5a
92 a ⁵ 93 a ¹ a ⁵	60 q48.46, 1.3c) - p (2f)	$ \begin{vmatrix} a^{6} & - & q & - & (5c) \\ a^{2} & - & q & - & (3c) \\ a^{2} & - & q & - & (3c) \\ b^{1} & \mathcal{J} & 100c \rho 35, 35, 28(5b) \end{vmatrix} $	$a^3 - q (4e)$ $a^3 q - (3e)$ $b^2 100z 48,46,30(5d^{*})$	$\begin{bmatrix} a^4 & -p_{-} & -(4f) \\ b^3 & 85 & 49.39. \ 1(4b \ c^*) \end{bmatrix}$	1 <i>H</i> 150a ² よ 1 <i>H</i> 100b ² よ	100zq 48.46. 7(4c) 60 q55.46. 1(4c)	1 <i>H</i> 115 <i>b</i> ¹ ♀ <i>45 q</i> 1 <i>H</i> 115 <i>b</i> ² ♀ − <i>q</i>	38 57, 2 3 (10
96 u ¹	85 ¹ 49. 1. 1(2d [®]) ∂ 100xq58.57,55(6c)	$b^5 = 35 - 49$, 1, $1(2d^4)$ $a^2 = 50 - 958.58$, $2(3e)$	a ³ 1002q49.51.30(5c)	a ⁴ 1002q52,31.29(5d)	***	65 q49.46, 3(4c)	1 <i>H</i> 142 <i>b</i> ³ ♀ <i>Dimoq</i>	55,57 55 G
99 a ⁵	65 q40.40. 1(4b-c)	$\begin{vmatrix} a^6 & -q^2(3y) \\ a^2 & 80 & q37.36, & 4(4b-c) \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a4 00 p (alb.)	1 <i>H</i> 142 <i>b</i> 1 ♂	80 q48.46. 2(5e)	1 <i>H</i> 103 <i>a</i> ³ ♀ - <i>q</i>	(1
$\begin{vmatrix} a^{5} \\ a^{1} \\ 01 \end{vmatrix} = \begin{vmatrix} a^{5} \\ a^{1} \\ a^{5} \end{vmatrix}$	$00 \ p = - \text{(alb.)} $ 100xq33.30.28(5a)	a ² 00 p (alb.) a ² 100xq48.46.47(6c)	a ³ 00 p (alb.) a ³ 100.cq49.46.47(Ge)		$\frac{1H123b^4}{1H123b^3}$ $\frac{3}{5}$	80 q46 46. 4(5c-d) 100.rq57.56.55(6e)	$1H168a^{6} \circ 100zq \ 1H168a^{7} \circ 100zq$	33 33 25 5 35,30,28 5
	£ 100xy58.57.55(6e)	$a^{0} = 00 \ \hat{p} = - \text{ (alb.)}$ $a^{2} = 100 xy 33.30.28 (5a)$	$\begin{bmatrix} a^7 & \theta\theta & p - & \text{(alb.)} \\ a^3 & q - & - & \text{(fig.)} \end{bmatrix}$	a4 - q (5a)	$1H123b^{5}$ 3	100zp 35.33.28(5 6b)	1 <i>H</i> 168a⁴♀ 00 p	(n)
	2 - q (4-5e)	$a^{0} - q (5v)$ $a^{2} \vec{\delta} 70 \ q 58.55. \ 1(4e)$	$a^7 - q (5c)$ $a^3 - 70 \ q 49.46, \ 4(5c)$	a4 40 q49. 1. 3(3c)	1 <i>H</i> 123 <i>b</i> [†] ♂	60 q58.55. 1(3e)	1 <i>H</i> 158 <i>b</i> ⁵ ♀ 100zq	49,48,14(5
$ \begin{array}{c cccc} 104 & a^1 \\ 105 & a^1 \\ 106 & a^1 \\ 107 & a^1 \end{array} $	1002448 46, 9(5c) 70 448,34, 3(4c) 45 458 1, 1 2c 70 44448 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^3 & -q(3c) \\ a^3 & 00 P & \text{all} \\ a^4 & 7 P 0 37 & 1 37 \end{bmatrix}$	$a^4 + q = -(3a)$ $a^4 + m p = -a B$ $a^4 - 55 p 48 36, 1(3)$	1 <i>H</i> 130 <i>b</i> ³ さ 1 <i>H</i> 130 <i>b</i> ³ さ 1 <i>H</i> 124 <i>b</i> さ 1 <i>H</i> 112/- *	30 p37, 1, 1(2a b) 35 p39,35, 1(2a-b) 65 q58 54, 2 4 30 q48 1, 3 2c	1 H 169a¹ ♀ 00 p	(n) (n) 49 48,47 56 48 46 4 6
	Q 100xq58.57.56(6e)	$a^{\mu} = 100 \varepsilon \rho 26.35.30(5b)$ $a^{2} = 3 \cdot 100 \varepsilon q 58.56.56(6ew)$	a ³ ♀ 55 q58.55, 3(3-4e)	a4 100zq 48.46. 9(5v)	 1 <i>H</i> 139a²♂	- p (1-2f)	$1H171a^2Q \stackrel{\cdots}{\theta} p$	(n)
09 a ⁵	90 q58.58.55(4e)	$a^0 - q - (4e)$ $a^2 - 90 \ q + 8 \ 46.12(4e)$	$\begin{bmatrix} a^7 & -q & -(5c) \\ a^3 & 75 & q48.46, & 1(4c) \end{bmatrix}$	$a^8 = q (6e)$ $a^4 = 60 \ q48. \ 1. \ 1(4e)$	1 <i>H</i> 105a⁴♂	40 p37. 1. 1(2h)	1 <i>H</i> 171a ⁵ ♀ 00 p	(al
$12 - a^{\dagger}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 = q = -(6dw)$ $a^3 = 160\eta p 35, 35, 28 c 5 b$ $a^3 = 85, q 58, 55, -2.4 c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 <i>H</i> 149 <i>b</i> 3 ま 1 <i>H</i> 1584つま	100zq 49.46.20(5d) 100zq 33 33, 4(5a) 100zq 35 30 28 5a)	$1H167a^{2} + 100.eq$ $1H167a^{4} + 100.eq$ $1H167a^{4} + 100.eq$ $1H143b^{4} + 95^{4}$	58 58 55 66 49 46.21 66 46 33, 1 46
	95 q49.35, 2(4d)		$a^{7} - q (4a)$	$a^{g} - q(4e)$		100zq 46.46. 9(5c)	1 <i>H</i> 151 <i>b</i> ¹ ♀ 100 <i>zq</i>	49.48.47(Ge

2H114 2H115	$\begin{array}{cccc} u^{o} & to & p-& -& -& (alb,) \\ a^{1} & to & to & q & 58.58.55 (6e) \\ a^{i} & \downarrow & q & & \downarrow^{i}, \\ a^{1} & \delta & to & e & p & 39.35.25, 5b) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^{4} & - & q - & - & -(6d) \\ a^{4} & - & p' & - & -(5b) \\ a^{4} & - & p - & - & -(5b) \end{bmatrix}$	$\begin{array}{c} 1H167a^4 \uparrow 199zq 48.46.47(6c) \\ 1H167a^5 \uparrow 196zq 48.46.47(6c) \\ 1H165a^4 \uparrow 80 q 49.46.11(5c) \end{array}$	1H146b ¹ Q 100zq 1H146b ² Q 100zq 1H149b ⁸ Q 100zq	52 46,20 % -d 49 46,20 % 49,48,12(5d)
2//117	$a^0 = \theta \theta p = - \text{(alb.)}$ $a^1 f = q$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a3 f 20 p23 15 2'4 5f)	a ⁴ 55 q48 46 1(4c)	1H164a ⁴ & 100 aq 58 58 55 Ge)	1H1921/2 Q 70 q	49,46, 4 40
27/118	11 65 q 49.46, 1(4c) 11 85 q 46.51, 4,5c)	$ \begin{vmatrix} a^0 & 00 & p_+ (alb_t) \\ a^2 & 100zq48.46.43(5c) \end{vmatrix} $	$a^3 = 100eq 48.46.12(5e)$	a4 55 q37. 1, 3(3b)	1 <i>H</i> 164 <i>a</i> ² & 100zq 36.36. 9(5c)	1 <i>H</i> 122 <i>b</i> ¹ ♀ 25 <i>q</i>	49. 1 1 1c)
	$a^5 = 1000, j37, 37, 30, 5h$ $a^1 \subsetneq 1000, j58, 58, 55, 6c$	a-¥ 1001458 58,55 6er	$a^{1} = 65 / q58$, $1 - 1(4c)$	q = -(5d)	1H169a 3 100 (q58,58,55 Ge)	1H119a- $2H00zq$	52.46.43(5c)
	$\begin{array}{cccc} a^{b} & \theta \theta & p = - & \text{(alb.)} \\ a^{1} & - & q = - & - & \text{(fic)} \\ \iota^{1} & 100 \iota_{4} & 58.58.56 & \text{(Ge)} \end{array}$	$a^2 - g(5c)$ $a^2 - 100zq 48.46.34(5c)$	$a^3 - p (5b)$ $a^3 - 100zq 49.46, 7(5c)$	u4 q - (2e)	$\begin{array}{c} 1H128b^1 & 1002p \ 35.35. & 4(5-6b) \\ 1H102b^1 & 25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(alb.) (alb.)
2//121	$a^{3} = q = -(4e)$ $a^{4} \subsetneq 100_{ef} 58 57 56 6e$	$\begin{vmatrix} a^0 & -q & -(4e) \\ a^2 & 87 & q58.55 & 24e^* \end{vmatrix}$	a ³ 80 q46.46, 3(4cm)	a4 100z 44.47 14(5ch*)	1H153a ^q o 00 P (alb.)	$1H121b^2$ \bigcirc 75 p	39,34. 1,4a b)
2H125	$a^{6} = 00 \ \rho \text{(alb.)}$ $a^{1} = 100.vq48.46.47(5c)$	$a^0 = 00 \stackrel{?}{p} \text{(alb.)}$ $a^2 = -q (2c)$	a^3 $q (3\dot{b} - c)$	a4 - q (4c)	1#111b ¹ & 50 p37. 1. 2(3b)	1 <i>H</i> 149 <i>b</i> ⁵ ♀ 00 <i>p</i>	(alb.)
2H126		$a^{0} - q (5c)$ $a^{2} - 50 \ q49, 1, 2(3c)$	a ³ 30 q47. 1. 1(3c)	a4 95 q35.33. 1(4a)	1 <i>H</i> 164 <i>a</i> ³ <i>d</i> 00 <i>p</i> ~ (alb.)	$1H136b^1$ \bigcirc 90 p	39.35. 2(4a)
2H127	$a^{b} = q (hd)$ $a^{t} \circ 160 \circ q58.57.55 \text{ Ge}$	a ² & 100xq56.55,55(5-6d-e)	a ³ 80 q48.35. 7(5c)	a4 75 q48.46, 2(4e)	1 <i>H</i> 165 <i>a</i> ² ♂ 00 <i>p</i> (alb.)	1 <i>H</i> 136 <i>b</i> ³ ♀ 100 <i>εp</i>	37.35.28(5b)
$2H129 \ 2H135$	$a^{1} - \hat{p} = -(5b)$	$a^2 - q - (2c)$ $a^2 - p - (5b)$	a^3 - p - $-$ (5 b)	α ⁴ - p (5b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1H37u^3 \circ - q 1H129a^3 \circ 100xp$	(3 <i>c</i> - <i>dw</i>) 24.23.15(6 <i>f</i>)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a^3 35 p37, 1, 1(2b) a^3 100zq 48,46,12(5cw)	$a^4 - p (2b)$ $a^4 100.q58.55.55(6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39. 1. 1(2b) (5a)
$_{1}^{2}H_{142}$	$a^5 = 100 \exp 23.23.17(6 fw)$ $a^1 = 100 \exp 39.36.28(5 bw)$ $a^5 = q = -(5c)$	a ² 100zp39.39.28(5b-c)	$a^3 - q (5b-c)$ $a^7 - q (5c)$	a4 - q (5b-v)	$1H148a^2$ δ 80 $q49.46$, $4(5c)$	1 <i>H</i> 98a ⁵ ♀ 100zq	48,46. 4(5-6c)
2H143	$a^1 = 100xq58.58.55(6e)$	$\begin{vmatrix} a^0 & - & q - & - & -(5c) \\ a^2 & 80 & q61, 1, 1(3e) \end{vmatrix}$	a ³ 100.vq58.58,57(6e)	$\begin{bmatrix} a^8 & - & q - & - & -(5cw) \\ a^4 & 35 & p26, 1, 1(2fw) \end{bmatrix}$	1H60a ¹ & 100xq57,57,55(6e)	1 <i>H</i> 65 <i>b</i> ¹ ♀ − <i>q</i>	(6e)
2H144	a ¹ \(\text{\$\text{\$00}} \q 58.56. \q (3e)	a ⁰ 100xp23.23.18(6fic) a ² & 80 q58.57, 1(4e)	$a^7 = 100xq58,58,55,6e$) $a^3 = 95 = q41.41,50(6g)$	a4 - q (6g)	1 <i>H</i> 16a¹ ♂ 95 q41.50. 4(4g)	1 <i>H</i> 157 <i>a</i> ² ♀ − <i>q</i>	(5a)
2H145	a1 100zq 48,46,11(5c)	$a^0 = \begin{array}{ccc} a^0 & 00 & P \text{(alb.)} \\ a^2 & 80 & q48.46.11(4c) \end{array}$	a ³ 75 q48.46. 3(3r)	a4 00 p (alb.)	1H111a ³ & 1002q 48.46. 7(5c)	11/156a¹♀100.vq	58.57.55(6e)
2H146	a1 60 949,48, 1(3c)	$a^2 = 100zq$ 48 36.12(5c)	a ³ 95 p39.35.33(4b)	a4 1002p 39.35.28(5b)	1H143a1 & 100zq 48.46. 2(5c)	1 H158a ^q ♀ 100zq	49,48.34(5c)
2H147	$n^4 = 55 \ q(39 \ 1. \ 2(3 \ i))$	a ⁶ 100xq58.58.55(Ge) u ² 100xq41.41.50(Gg)	$a^7 = 00 \ p (alb.)$ $a^3 = 55 \ p/30. \ 1. \ 1(3a)$	a^4 q $(5a)$	1H92a3 & 100.rq57.57.55(6e)	$1H157a^{1}$ \$ · q ·	(5a)
2 <i>H</i> 148	a ¹ 100 rp 37 36 36/5 r) a ⁵ 100 rq 48.46,30(5e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^7 & 60 \\ p \text{(alb.)} \\ a^3 & 100zq 49.46, 9(3c) \\ a^7 & 100zp 37.37, 2(5a) \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 <i>H</i> 161 <i>a</i> ² & 100 <i>zq</i> 48.46. 7(5c)	1H151a19 80 q	49,48,34(5c)
2//151	$a^4 = 100zpt35.33 \ 28(5a)$	a ² 100eq 46.46, 2(5c)	$a^3 = 100zq733.33.28(5a)$	a4 100zq333, 2, 2,5a)	$1H99a^{1}$ & $100zp$ $39.35.28(6b)$	1 <i>H</i> 97 <i>a</i> ¹ ♀ 100zq	33.30.28(5 661)
2H152	a^5 95 $q48.46.12(4c)$ a^1 5 60 $q58.$ 1. 1(2-3c)	a^0 00 $p = -$ (alb.) a^2 5 65 q 55. 1. 2(3-4 e)	$\begin{bmatrix} a^7 & 00 & p \text{(alb.)} \\ a^3 & 65 & q 41. & 1. & 1 (3g) \end{bmatrix}$	a (4c)	1 <i>H</i> 102 <i>b</i> ¹ ♂ ≈ ≈ p37. 1. 1(1–2 <i>b</i>)	A43a ² ♀ 00 p	(A2?)
2H154	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a²♀10034258.57 26(6c)	a ³ § 1101xq58.58.55(6e)	a ⁴ 1002q 48.46.12(5c)	1//128b ¹ \$ 100zp 35.35. 4(5-6b) 1//111b ¹ \$ 50 p37. 1. 2(3b) 1//105a ¹ \$ 40 p37. 1. 1(2b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(alb.) (alb.) (d × 3)
<u> </u>	_			[

W. F. R. Weldon's Records of Mice Matings (continued).

NTS	Mother	$1H28b^4 + 9 00 p (alb.)$ $430a^2 + 9 00 p (42?)$ $1H3a^2 + - 9 (6a)$ $1H270a^4 + 9 100xq58.58.55(6e)$ $1H274a^2 + 9 100xq58.57.55(6e)$ $1H274a^3 + 9 100xq58.58.55(6e)$ $1H274a^4 + 9 100xq58.58.55(6e)$ $1H274a^4 + 9 100xq58.58.55(6e)$ $1H274a^4 + 9 100xq58.58.55(6e)$ $1H276a^3 + 9 100xp22.15.15(5-6f)$ $1H276a^3 + 9 100xp23.15.15(5-6f)$ $1H276a^3 + 9 100xp23.15.15(5-6f)$ $1H276a^3 + 9 100xp23.15.15(5-6f)$ $1H276a^3 + 9 100xp23.15.15(5-6f)$ $1H276a^3 + 9 100xp23.35.35.28(5b)$ $1H283a^4 + 80 p39.35. 2(5b)$ $1H283a^4 + 80 p39.35. 2(5b)$
PARENTS	Father	$1H\ddot{1}39a^2 \zeta - p (1-2f)$ $1H\ddot{1}30b^3 \zeta 35 p39.35. 1(2a-b)$ $1H\ddot{1}11b^2 \zeta 60 q58.55. 1(3e)$ $1H\ddot{1}39b^1 \zeta 100xq58.57.55(6e)$ $2H\ddot{1}4a^1 \zeta 100xq58.58.58.56(6e)$ $2H\ddot{1}4a^1 \zeta 100xq58.58.58.56(6e)$ $2H\ddot{1}4a^1 \zeta 100xq58.58.58.56(6e)$ $2H\ddot{1}4a^1 \zeta 100xq58.58.58.56(6e)$ $1H\ddot{1}3b^3 \zeta 100xq58.58.58.56(6e)$ $1H\ddot{1}23b^5 \zeta 100xp37.19. 9(5-6f)$ $1H\ddot{1}23b^5 \zeta 100xp37.19. 9(5-6f)$ $1H\ddot{1}30b^3 \zeta 30 p37. 1. 1(2a-b)$ $1H\ddot{1}30b^3 \zeta 35 p39.35. 1(2a-b)$ $1H\ddot{1}30b^3 \zeta 35 p39.35. 1(2a-b)$
		$\begin{array}{c} a^4 & 100xq57.56.56(6e) \\ a^4 & 95 & 948.48.28(4c) \\ a^4 & 100xq48.46.20(4c) \\ a^4 & - p (3f) \\ b^5 & 00 & p (3f) \\ b^5 & 00 & p (3h) \\ b^5 & 100xp26.22.18(4-5f) \\ b^4 & 100xp28.23.15.15(6f) \\ b^5 & 100xp28.23.15.15(6f) \\ b^5 & 100xp28.23.15(6f) \\ b^5 & 100xp28.55.56e) \\ c^4 & 100xp28.55.56e) \\ c^5 & 100xp28.55.56e) \\ a^4 & 100xp28.53.15(6f) \\ b^5 & 100xp28.23.15(6f) \\ b^5 & 100xp28.23.15(6f) \\ b^5 & 100xp28.23.15(6f) \\ b^5 & 0 & 2^2 \\ a^4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
NG		$\begin{array}{c} a^3 \zeta 100xq58.57.55(6e) \\ a^3 100zq48.35.20(5e) \\ a^3 100zq48.46. 9(5e) \\ a^3 100zq48.46. 9(5e) \\ a^3 \zeta 100zq48.46. 9(5e) \\ a^3 \zeta 00 p (alb.) \\ a^3 \zeta 00 p (alb.) \\ a^3 \zeta 00 p (alb.) \\ a^3 \zeta 95 q58.55. 1(4e) \\ a^3 \zeta 95 q58.55. 1(4e) \\ a^3 \zeta 95 q58.55. 1(4e) \\ b^6 \zeta 00 \zeta 00 \zeta 00 \zeta 00 \zeta 00 \zeta 00 \\ a^3 \zeta 95 \alpha 26.85. 1(4e) \\ a^3 \zeta 100xq58.55. 1(4e) \\ a^3 \zeta 100xq58.55. 1(4e) \\ a^3 \zeta 100xq58.58.55(6e) \\ a^3 \zeta 100xp58.58.56(6e) \\ a^3 \zeta 100xp58.58.56(6e) \\ a^3 \zeta 100xp58.58.56(6e) \\ a^3 \zeta 100xp58.58.51. 1(2f) \\ a^3 \zeta 100xp58.58.51. 1(2f) \\ a^3 \zeta 100xp59.39.36(5b) \\ a^3 \zeta 100xp59.39.39.8(5b) \\ a^3 \zeta 100xp59.39.39.8(5b) \\ a^3 \zeta 100zp40.36.28(5b) \\ $
OFFSPRING		$\begin{array}{c} \alpha^2 \zeta 100 x q 56.56.56(6e) \\ \alpha^2 100 x q 48.46. 20(5e) \\ \alpha^6 100 x q 48.46. 20(5e) \\ \alpha^2 100 x q 28.46. 20(5e) \\ \alpha^2 200 x q 28.57.56(6e) \\ \alpha^2 200 x q 28.57.56(6e) \\ \alpha^2 200 x q 28.57.56(6e) \\ \alpha^2 200 x 28.57.14e) \\ \alpha^2 200 x 28.57.14e) \\ \alpha^2 200 x 28.55.14e) \\ \alpha^2 200 x 28.55.14e) \\ \alpha^2 200 x 28.55.14e) \\ \alpha^2 200 x 28.56(6e) \\ \alpha^2 200 x 28.53.17(6f) \\ \alpha^2 200 x 29.53.17(6f) \\ \alpha^2 200 x 29.53.1$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MATING		2H155 2H156 2H157 2H300 2H301 2H304 2H305 2H305 2H305 2H306 2H306 2H309 2H309

$1H156a^{1} \varphi 100xq58.57.55(6e)$ $1H227a^{6} \varphi 25 q58. 1. 1(2e)$ $1H187b^{1} \varphi 55 q58.57. 1(3e)$ $1H270a^{2} \varphi 90 q58.55. 2(4-5e)$ $$ $1H232a^{3} \varphi 55 p39.39. 2(3b)$	$2H124a^{1}$ Q $100zq58.57.56(6e)$	$2H156a^{1}$ \supsetneq $100xq^{5}8.56.56(6e)$	$2H155a^3 + 100xq58.58.55(6e)$	$2H119a^{1}$ \bigcirc $100.xq58.58.55(6e)$
$1H139b^{1} & 100xq & 58.57.55(6e)$ $1H225a^{2} & 85 & q57.55. & 1(4e)$ $1H109b^{1} & 25 & q58. & 1. & 2(2e)$ $1H232a^{2} & 65 & q58.57. & 1(4e)$ $1H2332a^{2} & 65 & q58.57. & 1(4e)$ $1H102b^{1} & 25 & p37. & 1. & 1(1-2b)$	$^2H_{114a^1}$ & 1002q 58.58.55(6e)	$2H155a^{1}$ & $100xq^{5}8.57.55(5-6e)$ $2H156a^{2}$ & $100xq56.56.56.56(6e)$	$2H156a^3 & 100xq58.57.55(6e)$ $2H49a^1 & 0 - q(6e)$	$2H96a^{1}$ \$ 100xq58.57.55(6e)
$\begin{array}{c} \alpha^4 \overline{\bigcirc} \ 100xq58.57.55(6e) \\ b^1 \overline{\bigcirc} \ - \ q^ (6e) \\ b^5 \overline{\bigcirc} \ 000 \ p^ (alb.) \\ c^2 \overline{\bigcirc} \ 100xq58.58.55(6e) \\ c^3 \overline{\bigcirc} \ 100xq58.58.55(6e) \\ c^4 \overline{\bigcirc} \ 000 \ p^ (alb.) \\ c^4 \overline{\bigcirc} \ 000 \ p^ (alb.) \\ c^1 \overline{\bigcirc} \ 000 \ p^ (alb.) \\ c^3 \overline{\bigcirc} \ 85 \ q58.57. \ 1(3-4e) \\ c^4 \overline{\bigcirc} \ - \ q^ \\ c^4 \overline{\bigcirc} \ - \ q^ (4e) \\ \cdots \\ \end{array}$	$a^{4} \stackrel{Q}{\circ} 100xp36.26.23(6f)$ $a^{5} \stackrel{Q}{\circ} 100xq58.57.55(6e)$ $b^{4} \stackrel{Q}{\circ} 100xq58.58.56(6e)$ $b^{8} \stackrel{G}{\circ} 70 \stackrel{Q}{q}58.58.2(4e)$ $c^{6} \stackrel{Q}{\varphi} \stackrel{G}{\circ} \frac{q}{q}58.55.2(4e)$ $c^{10} \qquad q =$	$\begin{array}{c} \alpha^{4}\zeta 100xq58.55(5-6e) \\ b^{4}\zeta 00 p (aib.) \\ b^{5}\zeta 100xp22.15.18(6f) \\ \cdots \\ \alpha^{4}\zeta 100xp15.15.18(6f) \\ \alpha^{8}\zeta 100xp15.15.18(6f) \\ b^{5}\zeta - q (4e) \\ b^{7}\zeta 100xq58.58.55(6e) \\ c^{2}\zeta 100xq57.58.56(6e) \\ c^{2}\zeta 100xq57.58.56(6e) \\ c^{2}\zeta 100xq57.58.56(6e) \\ c^{3}\zeta 00xq57.58.56(6e) \\ c^{4}\zeta 00xq57.58.56(6e) \\ c^{5}\zeta 00xq57.58(6e) \\ c^{5}\zeta 00xq57.58($	$c^{10} - p $	a^{4} $\stackrel{\circ}{\varphi}$ 100yq58.58.55(5e)
$a^{3} \varphi 85 q58.57. 2(4e)$ $a^{7} - p $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^3 \not f 100xq5755(5e) \\ a^7 \not f 100xq5655(5e) \\ b^4 \not f 100xq5755(5e) \\ b^4 \not f 100xq575655(5e) \\ c^3 \not f 00 p (alb.) \\ a^3 \not f 100xq585855(5e) \\ a^7 \not f 00 p (alb.) \\ b^2 \not f 795555(4e) \\ b^6 \not f 100xq5756(5e) \\ c^1 \not f 00xq5756(5e) \\ c^1 \not f 00xq5756(5e) \\ c^2 \not f 00p56522(3f) \\ c^3 \not f 00p56522(3f) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a^{3} ζ 100xq57.57.56(5–6e)
$\begin{array}{c} a^2 \varphi & 00 \ \ p (alb.) \\ a^6 \varphi - q (4e) \\ b^3 \varphi & 100xq 58.57.55(6e) \\ b^4 \varphi & 90 \ q58.57. \ 2(5e) \\ a^2 \varphi & 35 \ q58. \ 1. \ 1(3e) \\ b^4 \varphi & 00 \ p (alb.) \\ a^2 \varphi & 35 \ p37. \ 1. \ 1(3e) \\ b^2 \varphi - q (2e) \\ b^1 \varphi & 90 \ q58.58. \ 1(4e) \\ b^2 \varphi & 00 \ p (alb.) \\ b^2 \varphi & 00 \ p (alb.) \\ b^2 \varphi & 00 \ p (alb.) \\ c^2 \varphi & 85 \ q58.57. \ 3(4e) \\ a^2 \qquad 30 \ p37. \ 1. \ 1(2b-f^*) \end{array}$	400+400+ 40	$a^{2} = p - b - a^{2}$ $a^{2} \notin 35 \ q58.55. \ 2(4e)$ $a^{2} \notin 45 \ q55. \ 1. \ 1(4e)$ $b^{3} \notin 100xp22.17.18(6f)$ $c^{2} \notin 00 \ p (alb.)$ $a^{2} \notin 60 \ p23. \ 1. \ 1(3f)$ $a^{3} \notin 00 \ p (alb.)$ $b^{4} \notin 00 \ p (alb.)$ $b^{4} \notin 100xq58.55.55(6e)$ $b^{3} \notin 100xq58.55.55(6e)$ $c^{4} \notin 00 \ p (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 \stackrel{?}{\circlearrowleft} 100yq58.57. \ 2(5e)$
$ \begin{array}{c} 2H312 & a^1 \ & \ t5 \ p37. \ 1.1 (1b) \\ a^5 \ 000 \ p (alb.) \\ a^5 \ 2100x q^5 8.56.55 (5-6e) \\ b^2 \ 00 \ p (alb.) \\ b^2 \ 00 \ p (alb.) \\ b^3 \ 00 \ p (alb.) \\ 2H313 \ a^1 \ 00 \ p (alb.) \\ b^3 \ \varphi \ 40 \ q^5 8. \ 1.2 (3e) \\ a^1 \ 00 \ p (alb.) \\ b^1 \ \varphi \ 00 \ p (alb.) \\ b^1 \ 00 \ p (alb.) \\ b^1 \ 00 \ p (alb.) \\ a^1 \ 00 \ p (alb.) \\ b^1 \ 00 \ p (alb.) \\ a^1 \ 00 \ 00 \ p (alb.) \\ a^1 \ 00 \ 00 \ p (alb.) \\ a^1 \ 00 \ 00 \ p (alb.) \\ a^1 \ 00 \ 00 \ p (alb.) \\ a^1 \ 00 \ 00 \ 00 \ p (alb.) \\ a^1 \ 00 \ $	$a^{1}\xi$ 60 q58.57. 1(3e) $a^{5}\xi$ 100 r p26.23.18(6f) $b^{1}\xi$ 65 dr 41.50. 3(4g) $b^{5}\xi$ 4 q55.56. 3(3e) $b^{9}\xi$ 7 q55.56. 3(3e) $b^{9}\xi$ 7 100 xr 41.41.50(6g)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} c^7 \not\in 00 \ p (alb.) \\ a^4 \not\in - p (6f) \\ a^5 \not\in 100xy57.57.56(6e) \\ b^3 \not\in 100xy53.58.55(6e) \\ b^7 - p - 2 \\ - p - 2 \\ c^4 \not\in 45 \ q58.58. \ 1(2-3e) \\ c^8 \not\in 100xq58.57.55(6e) \\ a^1 \not\in 100xq58.57.55(6e) \\ a^5 \not\in 00 \ p (alb.) \\ b^3 \not\in 100xq58.58.55(6e) \\ b^4 \not\in 100xq58.58.55(6e) \\ b^4 \not\in 100xq58.57.55(6ev) \\ b^4 \not\in 100xq58.57.57(6ev) \\ b^4 \not\in 100xq58.57(6ev) \\ b^4 \not\in 100x$	j
2 <i>H</i> 312 2 <i>H</i> 313 2 <i>H</i> 314 2 <i>H</i> 315	3 <i>H</i> 1	3 <i>H</i> 2	3H4	3H6

Matino		Offspr	ing				Pat	RENTS		
			Father		Mother					
2 <i>H</i> 155 2 <i>H</i> 156	$a^5 - q(5c)$ $a^1 ? 100.xq58.56.56(6e)$	a ² & 100xq 56.56.56(6e)	a ³ & 100xq 58.57.55(6e)	a4 & 100xq 57.56.56(6e)	1 <i>H</i> 139 <i>a</i> ² &	- 22	- (1-2f)	1 17 10 14	Q 00 n = _	
2H157	a ⁵ - q (6g) a ¹ 90 q 48.46, 2(4c) a ⁵ 100zq 48.46 20(5c)	a ² 100zq 48.46.20(5c)	a ³ 100zq 49.35,20(5c)	a4 95 q 48.48.28(4c)	1H130b3 &		111		♀ 00 p= - ♀ 00 p=	- (alb.) (.127
2 <i>H</i> 159		$\begin{bmatrix} a^8 & 100z_4^2 & 48.46, & 7(5r) \\ a^2 & 100yp23.19, & 9(5bw) \\ a^6 & 00 & p = - & (alb w) \end{bmatrix}$	$\begin{vmatrix} a^7 & 100cq 48 46, 9(5c) \\ a^3 & 100cp 23 36.28(5bw) \\ a^7 & 00 p - \text{ (alb.)} \end{vmatrix}$	$\begin{vmatrix} a^4 & 100zq 48.46.20(4c) \\ a^4 & -p(3f) \end{vmatrix}$	$1H\widetilde{1}\widetilde{1}b^2 \not \subset$	60 q 58.55	. 1(3e)	1 <i>Π</i> 3α²	? ?	- clid
2 <i>H</i> 300	$a^{1} \circ 00 p (alb.)$ $b^{2} \circ 00 p - (alb.)$ $c^{1} \circ 00 p (alb.)$	$a^2 \supseteq 100xq 58.57.56(6e)$ $b^3 \supseteq 100xq 58.56.56(6e)$ $c^2 \supseteq 00 p =$	a ³ \(\frac{45}{5} \) \(\frac{q}{61} \). 1. 1(2 \(\frac{3e}{2} \) \(\frac{b^4}{5} \) \(\text{00} \) \(\phi \) \(\text{alb.}_j \) \(\varphi^3 \Q \) 100xq58.56.56(6e)	b1 \$ 00 p (alb.) b6 8 00 p (alb.)	1 <i>H</i> 139 <i>b</i> 1 ♂ 10	00.xq58,57.	.55(6e)	1 <i>H</i> 270 <i>a</i> 1	Q 100rq58.58	3,55,6,
2 <i>H</i> 301	e ⁵ ♀ 100 rq 58 57,55(6e) ⊆ u ¹ ♂ 100 rq 58 58 55 6e,	en p = a- £ 100 r f 58 57 55 6d e	e ² # 2002436,36,66(6e) e ³ P e ³ # 95 958 55 1 4c	c ¹ \(\text{2} \) 100xq 57.56.55(6e)	2H114a13 10	 	75.0	1 1111-1	2	
2H302	$a^5 \stackrel{?}{\circ} 160 rq 58 57 55 6e^{-}$ $a^1 = p =(f)$ $b^2 \stackrel{?}{\circ} 100 rq 58 57 55 (6e)$	$\begin{bmatrix} a^6 & 2 & 100x \hat{q} & 58 & 57 & 56 \\ a^2 & - & q & - & - & - \\ b^7 & 3 & q & - & (6e) \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^* ? 100xp23.23, 8.5f / b^4 & 100xp23.15.15(6f)$	2H114a1 & 10	***			? 100 cy57,51 ? 100 cy58,51	
	$b^0 \stackrel{?}{\circ} 100x_q^4 58.57.55(6e)$ $c^2 \stackrel{?}{\circ} - q - (5e)$ $c^6 \stackrel{?}{\circ} 100x_q^4 58.57.56(6e)$	$b^7 = q =$	$b^8 - p $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	***	***	***		***	
27/303	ਰਾਂ ਨੂੰ 190 rg58 57 55(6e) = ੋਮ ਤੋਂ == ρ	$a^{q} = p$	$\begin{bmatrix} c^8 & - & q - & - & - \\ a^3 & 90 & q58.55, & 1(4e) \\ b^3 & 90 & q58.57, & 1(5e) \end{bmatrix}$	a ⁴ § 100xq58.57 55(6e) b ⁴ \$ 100xq58.58.55(5e)	2H114a 3 10		55(6e)	1 <i>H</i> 274 <i>a</i> 3	? 100:q48.46	.14(5-6c:
2//304	lê है 100 (458 57 55 6e) a ¹ है 1004/23,23 18 6f c a ⁵ है 85 (458 55 2 4 (5e)	$b^6 \stackrel{?}{\nabla} 100xq58 58.55(6e)$ $a^2 \stackrel{?}{\mathcal{A}} 80 \stackrel{?}{u}^23 18 4(4-5f)$	a d 100 r 158 58 55 6	a¹♀ 60 q58. 1. 1(3e)	2H114at & 10	 1029 58,58	55 Gr)	1 <i>H</i> 274a4	? 100xq58.58	1.55(6a)
	b [†] ₹ 100 cy58 58,55 6e) = b = ♀ 100 cp26 26 23,6£, =	$b^{2} \stackrel{?}{Q} 100 rq 58 56 55 (6e)$	$b^3 \circ 100vq585855(6e) = b^7 = q = -$	$a^8 - q $:		•			
1/305	* \$ 100 p26 26 17(6f) r! \$ 100 p26 23 23 6r r. r. l. lov. p23 23 18 6r	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} \stackrel{Q}{\circ} 100 \stackrel{q}{\circ} 61.58. \ 1(3e)$ $a^{3} \stackrel{Q}{\circ} 100 \stackrel{q}{\circ} 26.18.17(6f)$	nt 9 1000 p22,22 15 07	 3H9a¹ ⊅		 G/	1 <i>H</i> 231 <i>i</i> *	? 1000p22 15	- - 15.5 G/
	F ₹ 100 ip23 15 15 6j 4 ₹ 100 ip23 23.15(5f)	b 2 100pp23 23 17 6f s - 2 100pp26,23, 1 5f	$b^4 \stackrel{P}{\circ} 36 \stackrel{P}{\circ} 26 \stackrel{1}{\circ} 1 \stackrel{1}{\circ} 2f) = 0$ $c \stackrel{P}{\circ} 100 i p 26, 23 \stackrel{1}{\circ} 18 \circ f_1$	$\frac{b^4}{b^6} \stackrel{?}{=} \frac{1005}{p} \frac{26}{23} \frac{23}{1865} f$		***		***		
#306 a	$i^{1} \stackrel{?}{Q} 100qp_{2}6.23 - 2(5f) = 6.764 + 23.23.18(5f)$	b ¹ & 2 p26, 1, 2 2 3f)	$\frac{b!}{h} \stackrel{Q}{=} \frac{55}{p} \frac{p23}{2} = 1, \ 1 \stackrel{Q}{=} \frac{27}{7} = 1$	$b^{2} \stackrel{?}{<} 100 rp23.23 15(5f)$ $b^{6} = p =$	1H234a' \$ 10	iг ₍₁₎ 37.19	9 5 67	1//227a 9	g 60 p22, 1	1 1/
- I-	p = p = -(5b)	$\begin{bmatrix} e^{1} & \partial \bar{\partial} & \hat{\rho} 26 & 23 & 1 & 3f \\ e^{2} & \hat{Q} & 10002\hat{\rho} 39 & 35 & 30 & 5b \\ u & \mu \sim & - \end{bmatrix}$	$e^2 \stackrel{?}{Q} 100 ep 23 \stackrel{?}{Q} 3 \stackrel{?}{4} 8 \stackrel{?}{6} f$ $e^2 \stackrel{?}{Q} 100 ep 39 \stackrel{?}{3} 9 \stackrel{?}{3} 6 \stackrel{?}{5} h$ $e^2 = p = -$	$\begin{bmatrix} c^3 & 30 & p26. & 1. & 3(1 & 2f) \\ a^4 & 5 & -p & -(5b) \\ a^5 & -p & - \end{bmatrix}$	1 <i>H</i> 123 <i>b</i> ⁵ ♂ 10	02p 35.33,	28(5 6b)		55 p37.39	. 4(4b)
- 10	1 \$ 100 $x\hat{p}$ 35,35 30(5 b) 5 \$ 95 p 39,35, 2(5 b) 1 \$ - p (5 b)	$a^0 \circ 100 \circ p \circ 36.35.30(5b-f)$	a ³ ♀100zp39.35, 9.5b	, a ⁴ ♀ 100.cp39.35.30(5b)	1#123b° & 10					
6	p = p = -(50) p = p = -(50) $19 \times 1002p39,35.30(5b)$	a - p	$a^3 \subsetneq 100zp39.39.28,5b$ $a^7 = p$ $b^3 \nleq 100zp40.36.28,5b$	$a^{3} \stackrel{?}{\downarrow} 100 \downarrow p39 \ 35 \ 28 \ 5b)$ $b^{3} = p$ $b^{4} = p$	1 <i>H</i> 130 <i>b</i> ¹ ♂ ♂	0 p37. 1.	$1(2a \cdot b)$	$1H281a^{1}$? 100:p39,39,	6(5b)
b c	100zp40.36. 4(5b)	$\begin{vmatrix} b^0 & -p $	b ⁷ - p	e ¹ 1002p40.37, 4(5b)		•••		* *		
7310 a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ² 2 80 p39.36. 4(5b)	c^{8} - p a^{3} \vec{c} 10 p 37. 1. 1(2 b) b^{2} \vec{c} 65 p 39. 1. 3(4 b)	σ ⁴ δ 55 p37. 1. 1(3b, b ¹ Q 75 p36.35. 4(5a-b)	1 <i>H</i> 130 <i>b</i> ³ & 3.	 5 p39.35,	 1(2a-b)	 1 <i>H</i> 283a¹♀	 80 p39 35.	2(5b)

	c¹ & 15 p37. 1. 1(1b)							***	**	
2 <i>H</i> 312	$\begin{bmatrix} a^1 \tilde{\mathcal{J}} & \theta \theta & p = - & (n \ln h) \\ a^6 & 2 & 100 x y 58.56.55 (5-6e) \end{bmatrix}$	$a^2 \circ (00 \ p = (alb.))$ $a^6 \circ (4e)$ $b^3 \circ 100 \circ g \circ 58.57,55(6e)$	$a^3 \circ 85 \ q \ 58 \ 57 \ 2(4e)$ $a^2 - p b^4 \circ 1000 \ p15.15.10(6f)$	$a^{\dagger} \neq 100.eq58.57.55, 6e,$ $b^{\dagger} \stackrel{?}{\circ} = q = - (6e)$ $b^{\dagger} \stackrel{?}{\circ} = 00 p = - (alb.)$	$1H130b^{1}$ \lesssim	100 q 58 57	55 %	1H156al + 1	00 (q58.57 7	55 Ge
	$b^{\dagger}_{-4} = q = \epsilon 6\epsilon_{T}$	$b^{7} = q = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	$c^{1} \stackrel{?}{=} 00 \stackrel{?}{p} (alb.)$	$e^{0} = p = -$	· .					
2 <i>H</i> 313	at 3 00 p - (alb.)	$a^{\frac{1}{2}} \stackrel{\bigcirc}{Q} = 35 \stackrel{\bigcirc}{q} 58 = 1, \ 1(3e)$ $b^{\frac{1}{2}} \stackrel{\bigcirc}{Q} = 400 \stackrel{\bigcirc}{\mu} = \text{(alb.)}$	<i>b</i> ¹ ₹ <i>θ</i> 0 <i>p</i> = - (alb.)	b ² Q \(\theta\theta\text{ p} (alb.)	1 <i>H</i> 225 i →	87 957.55.	1(4e)	1 <i>H</i> 227 <i>a</i> ⁿ ♀	25 /58, 1,	1 2
2H314	$a^1 \stackrel{?}{\circ} 00 \stackrel{?}{p} = - (alb.,$	$a^{2} \stackrel{?}{\downarrow} = 35 p37. 1. 1(3b) = 0.5 2 q -(2e)$	$h \ \ ? \ \ 40 \ \ q \ 58, \ 1, \ 1(3e) \ h \ \ ? \ \ 00 \ \ p \ - \ - \ - \ (alb.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1H109b^{eff}$	35 q58, 1.	2 2,	1 <i>H</i> 187 <i>b</i> ¹ ♀	55 q58.57.	$\frac{1\langle 3\theta \rangle}{\dots}$
2 <i>H</i> 315		$b = 00 \ p = - \text{(alb.)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{3} \stackrel{\bigcirc}{\circ} 85 q 58.57. 1(3-4e)$	$1H232a^{2}\beta$	65 q58 57	1(4e)	1 <i>H</i> 270 <i>a</i> ² ♀	90 458.55,	2(4-5e)
2 <i>H</i> 317	a^{1} , $a \neq 5$ 8 1 4 3 4 $a \neq 7$ 7 5 5 5 1 3 a^{1} 65 p 26 1, $1(3-4f^{*})$	*	. \$ 65 58.57. 1(3e)	c ₁ g - d (4n)	 1 <i>H</i> 102b1 ₹	25 p37. 1.	 1(1-2b)	 1//232a³♀	55 p39.39.	2(3b)
	,					•			_	
3H1		$a^2 \int_0^{\pi} 50 \ r 42 50, \ 1(3g)$	a ♀ 55 p26 26 1 3/	a*\P 100 rp26,26 23 6f	$2H114a^{1}\beta$	100zq58.58	55 Ge)	$2H124a^{1}$ \bigcirc 1	-	
		a ⁴ Q 45 q58,55, 1(3e) b ² S 55 q54, 1, 1(4e)	$\ell \gtrsim 35/p2647/33f$ $\log 340mg 37.57.56.5/6$	(a ⁸			-	***	***	
	$b^5 = 45 - q'55.56, \ 3(3e)$	b ⁶ ? God r41.41, 3(4g)	$E_{\pm} = \hat{q} = 5.6$	Is g						
	1	$\frac{h^{12}}{r^4} \frac{f^2}{3.100 cr!} \frac{f^2}{41.41.50 (6g)} = -$	1 \$ 100 (p22 29 17 6f) 8 \$ 100 (p58 58,55 6c)	er 1 70 95858 ± 4 2 ± 63 95855 ± 4c					***	
		c ⁸	, " g	· 10				***	***	***
3//2		i. 19	c & 100 cg 57 57 55 5e	at \$ 100ay 58,58 55 5 6c	9.H155a1.t	 100 vg 58 57.	55(5-6c)	2H156a191	 (ii) ry38,56 (56 6c)
	a) 9 00 p - (alb.)	$q^6 \hat{4} \sim \hat{q} 55 + 1.4 c$	y 2 100 (g 56,57 55 5 €).	$b^1 \stackrel{?}{=} 00 \stackrel{?}{p} = - \text{(alb.)}$					* -	
		b) \$ 100xp22.17.18(6r c) \$ 00 p = -(nlb.)	$b^{3} \stackrel{?}{\circ} 100xq 57.56.55(5 \text{ Ge} - c^{3} \text{ Q} 00 \text{ p} \text{ (alb.)}$	b ⁵ ♀ 100xp22 15 18 Gf	***			***	***	
3H3	a 5 55 958.56, 1(4eir)	$a^2 \stackrel{?}{\mathcal{E}} = 60 \text{ p23. 1. } 1(3f)$	$a^3 \stackrel{?}{Q} 100xq58.58.55(5-6e)$	a \$ 100 (q 58,58 55 6)	$2H156\sigma^2\mathcal{J}$	tmoxq56.56.		$2H155a^{2}$ $\bigcirc 1$	00.cq58.57.3	56(Ge)
		$a^0 \stackrel{\circ}{\downarrow} 0\theta \stackrel{\circ}{p} = - (alb.)$ $b^1 \stackrel{\circ}{\downarrow} \theta 0 \stackrel{\circ}{p} = - (alb.)$	$a^7 \circ 00 \ p = (alb.)$ $b^2 \circ 75 \ q 58.55.55 \ 4e)$	$a^8 ? 100xp15,15,15 \ b^7 \ \delta^7 - q - 4e$		***				
	# 3 100 kg 58 57 55 € c	bb & 100xy58.57 55 Ge	b ⁶ & 100xy57,57.56(5)	bi d 100x/58.58 55 6c,	, .	***				
		b ⁹ ♀ 100 cq58.58.55(6c)	p = -(6f)	c2 & 100.eq 57 58 56 6c	•••	***			***	
		$c^4 \delta = \theta \theta p (alb_e)$ $c^8 = - q + (6e)$	c ⁵ Q 60 p26.22 2(3f)	$\frac{e^{p} + 60e^{p} \cdot e^{-alb}}{e^{10} \cdot e^{-e}}$ alb)	***	***		***		***
3H4	$ u \vec{q} = p (6f) $	$a^2 \delta - q(6e)$	$a^{\dagger} \circ 1000p23(22.18(6f))$	a Q 100 cp23.23.17 6f)	2 <i>H</i> 156a ³ ♂	100xq58.57.		2H155a ³ ♀1		
	# ⁵ ♀ 100xq57,57,56(6e) h ³ ♂ 100xq58 58 55 6c	$a^{6} \circ 100xq58.57.55(6c)$	$b^{\dagger} \stackrel{?}{\circ} q (5e)$	b ² \$ 100.cq58,58 55(6e)	***		***			***
	b' - p	$b^4 \stackrel{?}{\circ} 00 \stackrel{?}{p} = - (alb.)$	$b^{5} \ Q \ 85 \ q57.57. \ 2(4e)$ $c^{2} \ \vec{\beta} \ \theta \theta \ p = (alb.)$	$b^0 = 00^{\circ} p$ (alb _i) $c^3 \stackrel{?}{\mathcal{A}} 100 x p 23, 22.17 (5a - f)$	***				***	
	[c! ₹ 45 q. 858 1 ± 3e)	e6 8 95 958.55, 2(5e)	$c^{0} - p$	e^{τ} $Q = -$ the	•••					***
3 <i>H</i> 5	2 x 100 cq 58 57 55 6; 10 \$ 100 xq 41.41.50,6q)	7" 2 NO 958 57, 2(4c)	7.4.00			***		2//100 10		50.00
02217		$a^{3} \stackrel{?}{\circ} 100xq58.58.55(6e)$ $a^{6} \stackrel{?}{\circ} 00 p =$	$a^3 \stackrel{?}{\circ} 100xq57.57.55(6e)$ $b^1 \stackrel{?}{\circ} 00 p =(alb, w)$	u ⁴ & 100 eq58,58,55(Ge b ² & 100 eq41 50.26 6qw,	2H49a1 &	x	- (6e)	2H108a1 Q 1	nurgao.ar.:	00(00)
	b ³ ₹ 100 cq58 58,55 Ge	$b^4 = q (6e)$	b ⁵ 2 75 r41.41, 3(4gw)	$b^{6} \stackrel{?}{?} 90 \ q 58.58. \ 2(4e)$	***	***		***		
		cl Q 100.rq 58.58.55(5r)	$c^2 = q (6e)$	ea 3 00 p (alb.)	***	* * *		***	***	
3116		c ⁶ ♀ 100.eq 57.57.56 (6e) a ² ♂ 100yq58,57. 2(5e	a ³ & 100xq57.57.56(5-6e)	a4 Q 100yq58,58,55(5e)	2 <i>H</i> 96a¹ ♂	 100.vq58. 57 .	55(6e)	2 <i>H</i> 119a¹♀1	00xq58.58.	55(Ge)

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father		$\frac{2H96a^{1}}{2H9a^{2}} \stackrel{?}{\swarrow} 100xq58.57.55(6e) = \frac{2H119a^{2}}{2H19a^{2}} \stackrel{?}{\swarrow} 100xq58.58.55(6e) = \frac{2H19a^{2}}{2H23a^{1}} \stackrel{?}{\swarrow} 100xa58.58.56(6e) = \frac{2H19a^{2}}{2H23a^{2}} \stackrel{?}{\longleftrightarrow} 100xa58.58.56(6e) = \frac{2H19a^{2}}{2H23a^{2}} \stackrel{?}{\longleftrightarrow} 100xa58.58.56(6e) = \frac{2H19a^{2}}{2H23a^{2}} \stackrel{?}{\longleftrightarrow} 100xa58.58(6e) = \frac{2H19a^{2}}{2H23a^{2}} ?$	\$\frac{100xq58.57.55(6e)}{\cdots}\$	$ 2H_{108a^2} & 2H_{100xq58.56.56(6ew)} & 2H_{49a^3} & 2H_{00xq58.57.55(6e)} \\ & \cdots & \cdots & \cdots \\ & \cdots & \cdots & \cdots \\ & \cdots & \cdots &$	2H127a ¹	$2H127a^2 & & & & & & & & & & & & & & & & & & &$	$q_{58.55}$, $2(4e)$ $2H96a^2$ φ 50 $q_{58.58}$.	$ZH15Za^2\mathcal{E}$	$2H_144\alpha^2 \mathcal{E}$ 80 q58.57. $1(4e)$ $2H_{111}\alpha^1 \mathcal{P}$ 60 q58. 1. $3(4e)$	$\begin{array}{c c} 2H108\alpha^3 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$	$2H152a^1\xi \ 60 \ q58. \ 1. \ 1(2-3e) \ \ 2H115a^1\xi - q (4e) \ 2H116a^1\xi \ 100zp \ 39.35.28(5b) \ \ 2H12a^3 \ \ \varphi \ 100zp \ 39.39.34(5b-c)$
FSPRING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} Q & 00 & p & - & - & (\text{alb.}) & \alpha^4 & Q & 1000 x q 58.58.5 \\ Q & 1000 x q 57.57.56 (5-6e) & \alpha^8 & - & p & - & - & - & - \\ \end{array} $	a^3 15 p23. 1. 1 - a^4 40 p23.18. 2 - a^3 - q^2 a^8 - p^2 a^8 - q^2 a^8 - q^2 a^8 - a^2 a^8 -	90 p37.19. 1(5b) $a^4 \neq 60 \ q58.58. \ 1(3-4e)$ $b^4 \neq 00 \ p (alb.)$	$a^{3} + 00 \ p (alb.)$ $a^{4} + 5 \ 70 \ 949.$ 1. $2(4eh)$ $b^{3} + 5 \ 00 \ p (alb.)$ $b^{3} + 5 \ 0 \ 958.$ 1. $2(3-4e)$ $b^{4} + 6 \ 00 \ p (alb.)$ $c^{4} + 6 \ 0 \ 945.$ 1. $2(3eh)$ $c^{4} + 6 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$a^3 + 5 = \frac{7}{4}58.55$. 2(2–3e) $a^4 + 5 = 65 = 958$. 1. 2(3e) $a^3 + 5 = 65 = 958$. 1. 3(3+4e) $a^3 + 6 = 65 = 958$. 2 (4e) $b^3 + 6 = 6 = 68$. 1. 1(4e) $a^2 + 6 = 68$. 2 (4e) $a^3 + 6 = 68$. 2 (4e) $a^3 + 6 = 68$. 2 (4e) $a^3 + 6 = 68$. 3 (4e) $a^3 + 6 = 68$. 3 (4e) $a^3 + 6 = 68$. 3 (4e)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^2 \stackrel{\cdots}{\circ} - p (5b)$ $b^3 \stackrel{\cdots}{\circ} - p (5b)$
OFFE		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^{-} \neq 100x4795, 35.35, 39$ $a^{2} = 100x4941.41.50(6gw)$ $a^{3} = 00$ $a^{3} = 100x458.58.56(6ew)$ $c^{2} \neq 100x i 41.41.26(6g)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^4 \le 00 \ p = (a \cdot b_1)$ $a^2 \le 00 \ p = (a \cdot b_2)$ $a^5 \le - \frac{q}{q} = - (a \cdot b_2)$ $b^4 \le 65 \ q57. \ 1. \ 1(4ck)$ $b^5 \le 00 \ p = - (a \cdot b_2)$ $a^5 = - \frac{q}{q} =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a^{1} $\stackrel{>}{\circ}$ 85 $q^{5}8.58.$ $4(4-5e)$ a^{1} $\stackrel{>}{\circ}$ 60 $p^{3}9.39.$ $39.$ $3(3b)$ a^{1} q^{1} q^{1} q^{2} q^{2
MATING	İ	3H6	3 <i>H</i> 7		3 <i>H</i> 10	_	3 <i>H</i> 12		3H14	3//15	3 <i>H</i> 16	3 <i>H</i> 17 3 <i>H</i> 19

$2H116a^2 \updownarrow 100xp35.35.30(5-6b)$ $2H117a^2 \updownarrow 80 p39.39. 2(5b)$ $2H137a^1 \updownarrow 85 p37. 1. 1(2b)$ $2H137a^2 \updownarrow 55 p39.33. 1(3b)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{11}{11} \frac{1}{269a^2} \circ 100zp33.30.30(5a-b)}{2}$ $\frac{2}{11} \frac{1}{11} \frac{1}$	$1H115b^2 \circ - q (4e)$ $1H231a^7 \circ 85 \ q57.55. \ 1(4-5e)$ $1H721b^2 \circ 75 \ p39.34. \ 1(4a-b)$ $2H303a^4 \circ 100xq58.57.55(6e)$
$2H93b^{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$2H85a^4$ & 45 p37. 1. 1(2–36) $2H85a^4$ & 45 p37. 1. 1(2–36) $2H55a^3$ & 10 p37. 1. 1(1a-b) $2H55a^3$ & 10 p37. 1. 1(1a-b)	$2H85a^5 \Leftrightarrow 30 p36.1.2(2-36)$ $2H13a^1 \Leftrightarrow 100xp26.23.18(6f)$ $2H13a^3 \Leftrightarrow 100xp22.23.17(6f)$	$2H116a^{3} - p (5b)$ $2H144a^{2} + 80 + 958.57, 1(4e)$	$2H127a^2 & 100xq56.55.55(5-6d-e)$ $2H124a^2 & 85 & q58.55. 2(4e)$ $2H93b^1 & 100xp35.35.28(5b)$ $2H301a^1 & 100xq58.58.55(6e)$
$\begin{array}{c} a^4 \varphi 100 z p 39.35.28(5b) \\ a^4 \varphi \ 80 p 39.39. 4(5b) \\ a^8 - p \\ a^4 - p \\ a^4 \varphi 50 p 37. 1. 3(3b) \\ a^8 \varphi \varphi p 939. 1. 4(2b) \\ b^4 \varphi \varphi \varphi p 939. 1. 4(2b) \\ b^4 \varphi \varphi \varphi p p 25. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi \varphi p p 27. 1. 3(2b) \\ b^8 \varphi \varphi \varphi \varphi p \varphi \varphi \varphi \varphi \varphi$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} a^{4} \varphi 00 p \text{ (alb.)} \\ a^{4} \varphi 00 p \text{ (alb.)} \\ a^{4} \varphi 90 q58.58. 1(5e) \\ b^{5} \varphi 65 q58.57. 2(3e) \\ b^{2} \varphi 100xp15.15.17(6f) \\ a^{4} \varphi 100xq58.58.55(6e) \\ b^{3} \varphi 100xq58.58.55(6e) \\ c^{2} \varphi q - - - \\ c^{6} - p - - - \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} a^3 \not\in 55 \ p35.35. \ 2(2b) \\ a^3 \not\in 100 a 91.46.47(6e) \\ a^7 \not\in 80 \ q56.57. \ 1(4e) \\ b^3 \not\in 75 \ q49. \ 1. \ 1(4-5e) \\ b^7 \not\in 100 a q9.49.48.46(6e) \\ c^3 \not\in 100 a q9.49.48.46(6e) \\ c^3 \not\in 100 a q9.49.48.46(6e) \\ c^3 \not\in 100 a q9.48.46(6e) \\ c^4 \not\in 100 a q9.85.57.55(6e) \\ b^4 \not\in 100 a q9.85.85.66(6e) \\ b^6 \not\in 80 \ a q8.85.85(6e) \\ b^6 \not\in 80 \ a q8.85.85(6e) \\ b^6 \not\in 80 \ a q8.85(6e) \\ b^6 \not\in 80 \ $	$a^{\dagger} \neq 100x\sqrt{5}8.58.55$ (e) $a^{\dagger} \neq 100x\sqrt{5}8.58.55$ (fe) $a^{3} \neq 80 \ p36.35. \ 3(5b)$ $a^{3} \neq 00 \ p = (alb.)$ $b^{2} \neq 00 \ p = (alb.)$ $b^{2} \neq 90 \ q57.55. \ 6(4e)$ $a^{3} \neq 90 \ q58.55. \ 1(5e)$	$c^{7} - p (alb.)$ $a^{3} \stackrel{?}{\neq} 00 p (alb.)$ $b^{3} \stackrel{?}{\neq} 00 p (alb.)$ $b^{2} \stackrel{?}{\neq} 80 q58.55.1(4e)$ $b^{3} \stackrel{?}{\neq} 80 q58.58.55(4-5e)$ $b^{4} \stackrel{?}{\neq} 85 q58.56.4-5e)$ $b^{4} \stackrel{?}{\neq} 100xp 23.35.28(5b)$ $c^{2} - p $
\$ 80 p36.36. \$ 80 p36.36. \$ 80 p39.35. \$ 1002p39.39.39.39.39.39.39.39.39.39.39.39.39.3	20 p37. 1. 2 30 p39. 1. 2 15 p39. 1. 2 - p 70 p37.39. 3 55 p39.39. 1	$\begin{array}{llll} c^5 & \zeta & - & p - & - & - (2-3b) \\ a^2 \zeta & 40 & p40, 1, 2(2b) \\ a^2 \zeta & 100xq49, 48.46(6c) \\ b^2 \zeta & - & q - & - & (3e) \\ b^2 \zeta & - & q - & - & (3e) \\ b^2 \zeta & - & q - & - & (3e) \\ b^2 \zeta & 100xq49, 48.46(6c) \\ c^2 \zeta & 95 & q49.47, 2(5c) \\ c^2 \zeta & 90 & q58.55, 2(4e) \\ a^2 \zeta & 100xq58.57, 55(6e) \\ a^6 \zeta & 100xq58.58, 55(6e) \\ b^4 \zeta & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\ \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 & \gamma_0 \\$	$b^{8} \neq 100x_{0}^{2}58.55(6)$ $c^{4} \neq 100x_{0}^{2}58.55(6)$ $c^{8} \neq 100x_{0}^{2}58.55(6)$ $c^{8} \neq 100x_{0}^{2}58.56(6)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45 P37. 1. 45 P38. 1. 45 P39.39. - P 46 P39. 1. 40 P38.36.	$\begin{array}{c} 45 \ p37. \ 1. \ 2(36) \\ 45 \ p23. \ 1. \ 2(2f) \\ 46 \ p23. \ 1. \ 2(2f) \\ 100xq58.58.55(6e) \\ 100xp39.35.34(6b) \\ - q (6e) \\ 100xp39.35.30(6b) \\ 100xq58.55.55(6e) \\ 100xq58.55.55(6e) \\ 100xq58.58.57.14e) \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^{5} \not\subseteq 00 \ \vec{p} (alb.)$ $a^{4} \not\subset - p (5b)$ $b^{4} \not\subset - q (1e)$ $a^{4} \not\subset 70 \ p50.50. \ 1(4f)$ $a^{5} 85 \ p23.23. \ 2(5f)$ $b^{4} \not\in 85 \ q57.55. \ 1(4e)$ $a^{1} - p $
3 <i>H</i> 20 3 <i>H</i> 21 3 <i>H</i> 24 3 <i>H</i> 25	$\frac{3H26}{3H27}$ $\frac{3H27}{3H28}$	3 <i>H</i> 30 3 <i>H</i> 31 3 <i>H</i> 33	3 <i>H</i> 37	3 <i>H</i> 39 3 <i>H</i> 40 3 <i>H</i> 42 3 <i>H</i> 44

			W.	F. R. WELDON'S Rec	ords of Mice Matings	(continuea).	4
						Pari	ENTS
	Mating		Ori	PSPRING		Father	Mother
	3 <i>H</i> 6	b! ♀ 100xq58 58,55 Ge b' ♂ 100xq57,57,56 5c) c' ♂ 100xq58 57,55 5c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1	3 <i>H</i> 7	$c^{6} = p - +$ $a^{1}\beta = q (6e)$ $a^{6} \ \ 100xq58.58.55(6e)$ $b^{1}\beta \ 100xp23.23.17(6f)$	$a \cdot 9 85 q61. 1. 3(3v)$ $b^1 \stackrel{?}{\circ} - q (5-6e)$ $b^6 \stackrel{?}{\circ} 100xq58.57.55(5v)$	u ³ 2 100 (q58,58,55 6e) b ² ₹ 100 (q58 58 55 5–6e) b ³ Q 50 (p26,23, 4 5f)	b1 - q	2H96a ¹ & Itan rq58.57 55(6e)	2H119a ² Q 100xq58.58.55,6, ,
	3H8	a1 3 00 p (alb.)	$a^2 \circ 35 \circ 41.41. \ 3(2-3g)$	a ³ ⊋ 100 (457,58 55 5c)	4 - q	2H49a ² \$100xq58.57.55(6e)	2H123a ¹ ♀ 100.cq58.58.56 Ge,
	3 <i>H</i> 9	$a^{1}\vec{A} - \vec{p} - (6f)$ $a^{5}\vec{Q} - q (4e)$ $b^{4}\vec{A} = 40 \ a58, 1 3 3c$	$b^1 \stackrel{?}{\circ} 00 p = - \text{(alb.)}$ $b^5 \stackrel{?}{\circ} 00 p = - \text{(alb.)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H102a1 & 100xq58.57 55 Ge	2H80a ¹ Q 100 rq 58 57.56 6e,
	3 <i>∐</i> 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^2 = 0.00 \ p = -0.0005$ $c^2 = 0.00x p 58.58.55 (5e)$ $a^2 = 100x p 11.41.50 \ 6pr$, $a^0 = 00 \ p = -0.000$ $b^3 = 100x p 58.58.55 \ 6rec$ $c^2 = 3.100x p 141.41.20 \ 6q$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H108a- & 1000 q58 56 56 6ew)	2H49u ³ Q 100xq58.57,55 Ge
1	3 <i>H</i> 11	e ² $9 \ \theta\theta \ \dot{p} = -4 \ b$ $a^{1} \frac{3}{3} 109 x q 57 57 55 5 6 \phia^{5} \frac{3}{4} 109 x \dot{q} 57 57 56 5 6 \phi$	$a^{0} = p - q^{2} = a^{2} \circ 100 xp23.22.17(5f)$ $a^{0} \circ 100 xq58.58.55(5 - 6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H117a1 & - q (6e)	2H127a1 Q 100xq58.57.55(6e)
	3H12	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H127a ³ & 100xq56 55 55 5 6d e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3//13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ⁴ ♀ 80 r 41.50, 1(4g) b ² ♀ 70 g 58, 1, 1(4g)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{4} \circ a^{2} = a^{2} \circ a^{2$	2H124a ² f 85 q58.55, 2 4e	2H96a ² Q 50 q58.58. 2(3e)
	3 <i>H</i> 14	$\begin{array}{cccccc} b^{\mu} & & \hat{p} + + \\ u^{\mu} & \bar{r} & a\theta & p & & \text{th} \\ a & \hat{\tau} & & q + - + \sqrt{5}eh \end{array}$	a ² d 00 p (alb.) b ¹ d 65 q58.58, 2(4e)	$a^3 \stackrel{?}{\circ} 00 p = - \text{(alb.)}$ $b^2 \stackrel{?}{\circ} 00 p = - \text{(alb.)}$	a^4 7 70 q 45, 1, 2(4 ch) 1. Q 50 q 58, 1, 2(3 4 e)	2//152a ² & 65 q55 1. 2(3-4e)	2H144a ¹ \(\text{9} \) 60 \(q 58 \) 56. \(1(3e) \)
	- 1	$b^4 = 65 \hat{q} 57, 1, 1(4ch)$ $c^2 = p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c ³ = 40 q45, 1, 2(3(h) c ³ = q =		
		$a^{1/2}$ to $p = -$ (alb.) $a^{1/2}$ 57 $q58.58$, $3(3-4e)$ $b^{1} \gtrsim$ 27 $q58.58$, $1(4e)$ $b^{2} \subsetneq$ 74 $q58.58$, $2 + 5e$)	$a^2 \delta = 00 \ p = - \text{ (alb.)}$ $a^0 \delta = 65 \ a57.55 \ 3(4e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{8} \hat{\Psi} = 65 \hat{q} 58, 58, 2(4e)$ $b^{4} \hat{g} = 00 \hat{p} = + \text{(alb.)}$ $c^{2} \hat{g} = 65 \hat{q} 58, 58, 2(4e)$	2H144a ² d 8n q58 57 1 4e	2H111a ¹ \(\rightarrow \) 60 \(q58. \) 1. 3(4e) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	3//16	$e^{3} \stackrel{?}{\times} 10 \stackrel{?}{y} 58 - 1 - 2 3e$ $e^{7} \stackrel{?}{\downarrow} = q = - 2e$ $e^{3} \stackrel{?}{\times} 80 \stackrel{?}{y} 98 57 - 2 e$ $e^{3} \stackrel{?}{\times} 40 \stackrel{?}{y} 61, 1 - 3 3e$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3\frac{C}{4}}$ a^{5} $\neq 26$ 1, $2(3f)$	$a^4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2H103α ² δ 70 q58 55, 1c4e	2H108a ³ Q 55 q58.55. 3(3-4e)
	- 1	big 65 956 58 1 4 alig 85 958 38 4 1 5c		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^3 \stackrel{\frown}{\nabla} = p = -(5b)$	2H152a ¹ & 60 q58. 1. 1(2–3e) 2H116a ¹ & 100zp39.35.28(5b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			_		gr.		
		$a^{1}\vec{\phi}$ = 7.5 ρ 36 35 = 4.5 b a^{2} ? 100 $z\rho$ 35 35 28 6 b a^{2} > e_{1} 3 +3 + 2.5 b a^{2} \$ 100 ρ 39 39 28 5 b	$a^{2}\mathcal{E}$ 80 p36.36, 4(5b) $c^{2}\mathcal{E}$ 80 p36.36, 4(5b) $c^{2}\mathcal{E}$ 80 p3 +35 2.5b $a^{2}\hat{+}$ 100 p3 +39 30 5 6b,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2H93b^1 & 3 & 100zp35 & 35 & 28(5b) \\ 2H116a^3 & -p - & 5b \\ & \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3//25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^4 & P \\ a^4 \stackrel{?}{\times} & a\ell \stackrel{p}{p} 37 & 1 & 3 & 3b \\ a^8 \stackrel{?}{\Sigma} & 4r & p 39 & 1 & 4 & 2b\ell \end{bmatrix}$	2H85a ³ & 30 p37, 1, 1,2-3b 2H85a ³ & 30 p37, 1, 1,2-3b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{0} \stackrel{?}{\neq} \frac{p}{6 \stackrel{?}{\neq} 5 p37} \frac{3b_{1}}{1 + 2b_{1}}$	$\begin{bmatrix} h^{\mu}\beta^{\mu} & \lambda \theta & p37 & 1 & 1(4h) \\ h^{\mu}Q^{\mu} & 4\theta & p39.39.25 & 3h \\ e^{\mu}\beta^{\mu} & 2\delta & p39. & 1. & 2 & 1 & 2h \end{bmatrix}$	$\begin{array}{c} b^{\dagger} \overset{\circ}{\delta} \\ b^{\ast} \overset{\circ}{\subsetneq} & 2 \cdot \stackrel{P}{\cancel{I}} 37, \ 1, \ 3 \overset{\circ}{\cancel{2}b} \end{array}$		
	3H27 3H28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} b - 3 & 20 & p37 & 1, & 1 & 2b_1 \\ a^4 & & p & & \\ b^2 & & & p & & \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	3H20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^{2} \neq 70 / 37 33, 3 3 4b = b^{2} \neq 55 / 39 39 1(4b) = 6 2 2 7 20 / 23 1, 2 2 f$	$\begin{cases} ar \xi & f \\ br \hat{\xi} & ar f 39,39 - 3,36 \\ c^2 \hat{\xi} & 70, p26 - 1, 204f \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2H55a3 & 10 p37 1 1 1a b	2H15a1 Q 80 p36. 1. 3(4b)
	3 <i>H</i> 30	$\frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + f \cdot p23 + 1 + 2 + 26} = \frac{e^{4} + f \cdot p23 + 1 + 2 + 26}{a^{4} + 2 + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 2 + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66 + 66} = \frac{e^{4} + f \cdot p37 + 1 + 236}{a^{4} + 66} = $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a = 5 p35 35 = 2 2b a 2 100 p51 46 47 6c	σ ⁴ δ 85 ρ36.36 1c4b	2H85a ⁵ f 30 p36, 1, 2(2-3b 2H13a ¹ f 100xp26 23 18 6f)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$a^5 \supsetneq 100x\dot{q}49 \ 48 \ 46 \ 6$ $b^1 \supsetneq 100x\dot{p}10 \ 10 \ 10 \ 66 \ 6$ $b^2 \not\supseteq 1000x\dot{p}39 \ 35 \ 34 \ 6b$ $c^{1/2} = I = 0$	$a^{0} ? 100xq49.48.46(6c)$ $b^{2} ? = q + (3e)$ $b^{0} ? 100xq49.48.46(6c)$ c ? 95 q49.47 - 2.5e	a^{7} \bigcirc 80 q 56.57. $1(4e)$ b^{3} \bigcirc 75 q 49. 1 . $1(4-5e)$ b^{7} \bigcirc 100 zq 49.48.46(6 e) c^{3} \bigcirc 100 zq 49.48.46(6 e)	$a^* \supseteq 100ep39,39,38,6b$ $b^* \supseteq 70ep49,46,4e4,5e)$ $b^* \supseteq 100ep49,48,46,6e$ $e^4 \supseteq 100ep49,48,46,6e$		
	3 <i>H</i> 33	e 3 1000 p33 35 30 Gb al 3 1000 p38 57 55 Ge; al 2 1000 p58 58 57 Ge	ਾ ਨੂੰ 190 ਸੂੰ 1855 ਪੁੱਖਿਆ ਕੁੱਟ੍ਹੇ 1903 ਸੂਰੋਬ ਹੋਏ 55 ਉਹ ਕੁੱਪੂ 190 ਸੂਰੋਬ 58 55 ਉਹ	= ₹ ₹ 100 \$\bar{g}\$17 17 18(6f = ar & 100 rg58 57 55 (6c D \$ 100 rg58 58 55(6c	C \$ 100 q58 58 55 6c) a4 \$ 100 q58.57.55(6c) b2 \$ 2.85 a58 57 1(4c)	2H13a ³ & 100xp22,23,17(6f)	Z173
		$b \not\geq 60 \hat{q} 58.57 \cdot 1.4$ $b \not\in 100 \cdot q 58.58.55 \cdot 60$ $c \not\in 3.100 \cdot q 58.58.55 \cdot 60$ $c \not\in 3.100 \cdot q 57.57 \cdot 50 \cdot 60$	b ³ Q 70 q58 a7 2 4 b ³ Q 100 rq58 (8 55 6c) c ³ Q 100 rq58 58 55 6c) c ³ Z 100 rq58 58 56 6c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
1	3 <i>H</i> 37	$\frac{a^{4}\hat{s}^{2}}{a^{2}\hat{s}^{2}} = \frac{p}{p} = \frac{5b}{5b} = \frac{5b}{a^{2}\hat{s}^{2}} = \frac{5b}{5b} = \frac{5b}{a^{2}\hat{s}^{2}} = \frac{5b}\hat{s}^{2} = \frac{5b}{a^{2}\hat{s}^{2}} = \frac{5b}{a^{2}\hat{s}^{2}} = \frac{5b}$	a+ 3 85 35 35 4 5h a+ 2 80 p35 35 28(5h	a' & 80 p36.35, 3(5b)	a ⁴ ♀ 100zp 35.33.28(5a)	$2H116a^{3}\beta - p (5b)$	1 H269a ² ♀ 100zp 33.30.30(5a-b)
	3 <i>H</i> 38	θ	#2 # 75 of 158 2(de)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^4 & 0 & 00 & p (alb.) \\ b^3 & 0 & 75 & q58.57. & 3(4e) \\ b^7 & 0 & - q (4e) \end{bmatrix}$	2H144a ² of 80 q58.57. 1(4e)	2H80a ²
1	3 <i>H</i> 39	$\begin{array}{cccc} e^1 \overset{?}{\leftarrow} & - & q & + & - & (3e) \\ e^2 \overset{?}{\leftarrow} & 00 & p & - & - & (alb.) \\ a^1 \overset{?}{\leftarrow} & p & - & 5b) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} c^3 & 3 & 90 & \hat{q}58.55. & 1(5e) \\ c^7 & -p \\ a^3 & (0) & p & (alb.) \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H127a ² & 100xq56.55.55(5 6d-e	*** *** *** ***
	3 <i>H</i> 40	$\begin{bmatrix} b^1 & q & (1e) \\ a^1 & 70 & p50.50 & 1.4f \end{pmatrix}$ $\begin{bmatrix} w^2 & 8.5 & p93.93 & 9.56 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 ? 00 p = - (alb.)$ $a^3 ? 70 q58.57. 1(4e)$	a4 9 90 a58.58, 1(5e)	2H124a ² & 85 q58.55. 2(4e)	1 <i>H</i> 231 <i>a</i> ⁷ ♀ <i>85 q</i> 57.55, 1(4–5 <i>e</i>)
	3 <i>H</i> 42	$\begin{bmatrix} a^1 & 85 & p23 & 23 & 2 & 5f \\ b^3 & & & 85 & q57 & 55 & 1 & 4f \\ a^4 & & & p = 1 \end{bmatrix}$	$ b' = 0 q58.45 - 1(4e) a^2 \vec{\delta} - 55 p23.23 - 1(2.3f) $	b^2 \$ 80 q58.58.55(4-5e) b^0 \$ 85 q58.56. 2(4-5e) b^1 \$ 1002p 23.35.28(5b)	$b^{3} = 6$ 95 q58.55. 2(4-5e) $b^{7} = 9$ 65 q58.57. 2(3e) $b^{2} = 100 x p 15.15.17(6f)$	2H93b1 \$100zp35.35.28(5b)	1H121b ² 9 75 p39.34. 1(4a-b)
÷	3 <i>H</i> 44	$a^{\dagger} \stackrel{?}{\circ} 100xq58.58.55(6e)$ $a^{\dagger} \stackrel{?}{\circ} 100xq58.58.57(6e)$ $b^{\dagger} \stackrel{?}{\circ} 100xq58.58.57(6e)$	$a^{1}\vec{\delta} = 50 \ \mu 35 = 1, \ 3(3 \ 4b)$ $a^{2}\vec{\delta} = q = - (6e)$ $b^{1}\vec{\delta} = 100xq58.58.57, (6e)$ $b^{2}\vec{\delta} = q =$	$\begin{bmatrix} c^2 & -p \\ a^3 \delta - q (6e) \\ b^2 \delta 100 xq58.58.55 (6e) \\ c^4 \delta 100 xq58.58.55 (6e) \end{bmatrix}$	α ⁴ Q 100xq58.58,55(6e) b ³ Q 100xq58,58,55(6e)	2H301a ¹ & 100xq58.58.55(6e)	2H303a ⁴ Q 100xq58.57.55(6e)
		c ³ \$ 190xq58.58.55(6e)	$v^4 \circ - q - \sim (6r)$	$c^{5} \stackrel{?}{?} 100xq58.58.55(6e)$	$\begin{bmatrix} c^2 & d & - & q - & - & - & (6e) \\ e^0 & - & p - & - & - & - \end{bmatrix}$		

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Mother	58.57.55(6d-e) 2H300a² \$\tilde{2}\$ 100xq58.57.56(6e)	$26.22.18(4-5f) 2H306a^{1} \ Q \ 100yp26.23. \ 2(5f)$ $$ $68.57.55(6a) 2H301a^{5} \ Q \ 100xq58.57.55(6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39. 1. $3(4b)$ $2H309b^1 \downarrow 100zp39.35.30(5b)$	39.35. $9(5-6b)$ $2H307a^{2} \circ 100zp$ 39.35.30(5b)		
	Father	2H301a² & 100xq 5	$2H301a^4 & 100xp & 2$ $2H303a^1 & 100xq & 5$	$2H_{303a^{1}} \zeta_{100xq}$ 5 $2H_{305a^{1}} \zeta_{100xp}$ 5	$2H305a^{1} & 100ap & 2 \\ & & \\ & & \\ & & \\ & & \\ & & \\ 100ap & 2 \\ 200ap & 2$	$2H310b^2 \stackrel{\checkmark}{\leftarrow} 65 \stackrel{P}{p} \stackrel{?}{=} \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots$	$2H308a^{2} & 100zp \ 3$	d - p	or q
		$a^4 \neq 100xq58.58.55(6e)$ $a^8 = p = b^4 \neq 00 p = c^4 \neq 100xq58.58.55(6e)$ $c^5 \neq 100xq58.55(6e)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^{1} \stackrel{?}{\leq} 100xp26.23.17(6f)$ $c^{5} \stackrel{?}{\leq} 100xp19.19.9(5b)$ $c^{3} \stackrel{?}{\leq} 100xp26.23.15(5f)$ $c^{3} \stackrel{?}{\leq} 100xp26.23.15(5f)$ $c^{3} \stackrel{?}{\leq} 100xp25.25.15(5f)$ $c^{3} \stackrel{?}{\leq} 100xp25.25.15(5f)$	$a^4 \not\subseteq 50 \ p37. \ 1. \ 1(3b)$ $b^4 \not\subseteq -p(5b)$ $c^2 \not\subseteq 45 \ p39. \ 1. \ 2(2b)$ $c^6 - p$	$a^4 \not\in 100xp35.35.30(6b)$ $b^3 \not\in 100xp35.35.30(6b)$ $b^7 \qquad p \qquad c^2 \not\in 100xp39.35.28(6b)$ $c^4 \cap p p c^4 \cap p p c^4 \cap p p c^4 \cap p p c^4 \cap p c$	$a^{-\frac{1}{4}}$ 100 a position $a^{-\frac{1}{4}}$ 100 a position $a^{-\frac{1}{4}}$ $a^$	$b^1 \nleq 90 \ r41.41. \ 1(4g)$ $b^5 \nleq 100xp19. \ 6. \ 6(6b)$
OFFSPRING		$\begin{array}{c} a^3 \neq 100xq58.58.55(6e) \\ a^7 \neq 100xq58.57.55(6e) \\ b^3 \neq 100xq58.57.55(6e) \\ b^4 \neq 100xq57.57.55(6e) \\ a^4 \land 100xy17.17.15(f^2) \end{array}$	$a^3 \stackrel{?}{\circ} 100xp26.26.23(6f)$ $a^7 \stackrel{?}{\circ} 0 p26.23. 2(4-5f)$ $a^3 \stackrel{?}{\circ} 100xq58.58.55(6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{10} = p$	$a^3 \varphi 100zp 39.35, 3(5b)$ $b^3 \varphi 45 p40.36, 3(3h)$ $c^1 \varphi - p (4b)$ $c^5 \varphi 75 p39.35, 2(4b)$	$a^3 \zeta 100xp39.35.31(6b)$ $b^2 \zeta 100xp39.35.38(6b)$ $b^6 \zeta 100xp39.35.31(6b)$ $c^2 \zeta 80 p36.34. 4(5b)$ $c^3 \zeta 100xp36.36. 4(5b)$	$a^{+} + b^{-$	$\begin{vmatrix} a^7 & -p & \\ b^4 & 9 & 85 & r41.50, 1(4g) \end{vmatrix}$
OFF		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 \xi \ 55 \ p26. \ 1. \ 3(3f)$ $a^2 \xi \ 15 \ p26. \ 1. \ 1(1f)$ $b^1 \xi \ 100xp23.23.17(6f)$ $b^5 \ - p$ $a^2 \xi \ 100xq58.58.56(6e)$	$a^2 \zeta = 90 \ q58.60. \ 2(4e)$ $a^2 \zeta = 100yp23.17. \ 1(5f)$ $b^4 \zeta = 100xp23.22.17(6f)$ $b^4 \zeta = 100xp23.23.17(5f)$ $b^5 \zeta = -6f$	$\begin{array}{c} b^{9} \\ c^{3} \neq 100xp26.21.22(5f) \\ a^{2} \Leftarrow 100xp26.26.26.23(5f) \\ a^{6} \neq 100xp26.26.23(6f) \\ b^{2} \triangleq 35 \text{ p50} \cdot 1.1(3f) \\ b^{6} \triangleq 7 \text{ p5} \cdot 1.1(3f) \end{array}$	$a^2 \neq 100zp39.35. 3(5b)$ $b^2 \neq 75 p39.39. 4(5b)$ $b^6 \neq 100xp26.23.23(6f)$ $c^4 \neq 100xp39.35. 2(5b)$	$a^2 \neq 100zp 39.39.29(5b)$ $b^1 \neq 100xp 39.35.30(6b)$ $b^5 \neq 100xp 39.35.9(5b)$ $c^1 \neq 100xp 39.35.9(5b)$ $c^2 \neq 100xp 39.35.3(5b)$ $c^2 \neq 100xp 39.35.30(6b)$	$b^{2} \stackrel{?}{\checkmark} \stackrel{?}{\checkmark} 100 x p 26.26.26.26(5b)$ $c^{2} \stackrel{?}{\checkmark} \stackrel{?}{\checkmark} 5 p 37. 1. 1(2b)$ $a^{2} \stackrel{?}{\checkmark} 25 p 39. 1. 1(2b)$ $a^{2} \stackrel{?}{\checkmark} 80 r 41. 1. 1(4gv)$	$\begin{vmatrix} a^6 & -p & \\ b^3 & 100xr & 41.41.50(5g) \end{vmatrix}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^6 \oint_{a^1} \int_{a^1}^{a} \int_{a^2}^{a} \int_{a$	$a^5 \xi - q (6e)$ $a^1 \xi 100xq58.58.55(5e)$ $a^1 \xi 100xp22.12.17(5f)$ $a^5 \xi 100xp26.26.22(5f)$ $a^6 \xi 100xp26.23.23(6f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1981	$a^1 \xi$ $b^2 - b^2 - b^2$ $a^5 \xi 100zp35.30(5b)$ $b^4 \xi 100zp35.35.28(5b)$ $b^8 \xi 100zp35.35.28(5b)$ $b^8 \xi 100zp35.35.34(6b)$ $a^1 \xi 100zp39.35.34(6b)$	$b_1 \leq 100xp37.19.19(5b)$ $c_1 \leq 35 p36. 1. 1(2b)$ $c_2 = p = a_1 \leq 100xp39.35.28(5b)$ $a_5 \leq 80 p39.39. 4(5b)$ $a_1 \leq 100xq41.41.50(6e-g)$	$a^{5} \stackrel{Q}{\circ} 55 \ p36. \ 9. \ 3(4bw)$
MATING		$\frac{3H44}{3H45}$	3H46 $3H48$	$\begin{array}{c} 3H49 \\ 3H50 \end{array}$	3 <i>H</i> 51	3H52	3H53 3H54	3H57 3H59	

STR66	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 8^6 - P - P \\ 8 - 6 + 6 + 6 + 6 \\ 3 - 6 + 6 + 6 + 6 + 6 \\ 3 - 6 + 6 + 6 + 6 + 6 \\ 3 - 6 + 6 + 6 + 6 + 6 \\ 3 - 6 + 6 + 6 + 6 + 6 \\ 4 - 6 + 6 + 6 + 6 + 6 \\ 4 - 6 + 6 + 6 + 6 + 6 \\ 4 - 6 + 6 + 6 + 6 \\ 4 - 6 + 6 + 6 + 6 \\ 4 - 6 + 6 + 6 \\ 4 - 6 + 6 + 6 \\ 4 - 6 + 6 + 6 \\ 4 - 6 + 6 + 6 \\ 4 - 6 \\ 4 - 6 + 6 \\ 4 - 6 \\ 4 $	$ c^2 \oint_{a} - r (3g) $ $ c^4 \oint_{a} 60 \ p19. \ 9. \ 1(4b) $ $ c^4 \oint_{a} 50 \ p26. \ 1. \ 1(3f) $ $ c^4 \oint_{a} 60 \ p26. \ 1. \ 3(3f) $ $ b^1 \oint_{b} 6 \ p26. \ 26. \ 23(6f) $ $ c^4 \oint_{a} 100x p19.19.18(6f) $ $ b^2 \oint_{b} 100x p22.17.15(6f) $ $ b^3 \oint_{b} 100x p23.23.17(6f) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^4 & 2 & 100 x q 58.58.666) \\ b^3 & 2 & q - b - c - d \\ b^3 & - q - b - c - c - d \\ c^4 & 2 & 100 x p 24.24.15(6f) \\ c^4 & 2 & 100 x q 58.58.57(6e) \\ b^3 & 2 & 0 & p - c - (alb.) \\ b^3 & q - c - c - (alb.) \\ b^3 & q - c - c - (alb.) \\ c^4 & 2 & 100 x q 58.58.55(6e) \\ c^4 & 2 & 400 x q 58.58.55(6e) \\ c^2 & 2 & 400 x q 58.58.55(6e) \\ c^2 & 2 & 400 x q 58.58.55(6e) \\ c^2 & 2 & 400 x q 58.$	$a^4 \zeta = a^{} - (6e)$ $a^4 \zeta = a^{} - (6e)$ $b^1 \zeta 100xq58.57.55(6e)$ $c^3 \zeta 100xq57.57.52(5e)$	45 q58. 1. 00 p 00 p
3.86 $a^{4} \leq 8p = p = a^{4} \leq 8p + p = 0$ $a^{4} \leq 6p + p = 0$ $a^$	$ c^{1} & & & \\ c^{2} & & & \\ c^{2} & & \\$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ζ roughests ζ - p ζ - q ζ - q ζ - q ζ - q ζ - q ζ - q ζ - q ζ - q	$a^3 \not\in 100aq58.57.55(6e)$ $a^7 \not\in 100xr41.41.50(5g)$ $a^3 \not\in 100xq58.57.56(6e)$ $a^7 \not\in 100xq58.57.66(e)$
3H60 3H61 3H64 3H65 3H67 3H67 3H70 3H71 4H1 4H1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} c^5 \\ a^2 \not\in 100xp22.22.18(5f) \\ a^6 \\ b^3 \not\in 100xp23.17.17(5f) \\ c^4 \not\in 100xp22.18.10(5f) \\ a^2 \not\in 100xp22.18.10(5f) \\ a^2 \not\in 100xp22.18.10(5f) \\ a^2 \not\in 100xp22.18.10(5f) \\ a^2 \not\in 100xp22.18.10(2f) \\ a^2 \not\in 100xp22.19(2f) \\ a^$	$c^{AA} = p = (6e)$ $b^{4} \stackrel{?}{\checkmark} 00p = (3lb.)$ $b^{5} \stackrel{?}{?} 100xp23.23.23(6f)$ $c^{2} \stackrel{?}{\checkmark} 90 \stackrel{?}{?} 61.52. 6(4e)$ $c^{2} \stackrel{?}{\checkmark} 100xp23.23.17(6f)$ $b^{4} \stackrel{?}{?} 100xq58.58.55(6e)$ $b^{5} \stackrel{?}{?} 0p = (3lb.)$ $c^{6} \stackrel{?}{?} 0p = (3lb.)$ $c^{6} \stackrel{?}{?} 100xq58.58.55(6e)$ $c^{6} \stackrel{?}{?} 100xq58.58.55(6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 \stackrel{?}{\sigma} 100xq58.57.55(6e)$ $a^6 \stackrel{?}{\sigma} 100xr41.41.50(6g)$ $a^2 \stackrel{?}{\sigma} 100xq58.57.56(6e)$ $a^6 \stackrel{?}{\varphi} 90 \stackrel{?}{q} 57.55. 1(5e)$
3H60 3H64 3H65 3H66 3H67 3H70 3H71 4H1 4H1	b^6 - p - a	$\begin{array}{c} c^4 & \text{Q-}100xp13.10.10(6f) \\ a^4 & \text{Q-}100xp23.22.17(6f) \\ a^5 & \text{Q-}100xp22.22.17(6f) \\ b^2 & \text{Q-}100xp22.22.15(5f) \\ a^4 & \text{G-}5 & \text{D-}26. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 2. \ \ \ \$	<u> </u>	65 458.58. 65 458.1. - q 7 - q 7 - q 7 - q 7 - q 7 - q 7 - q 7 - q 7 - q 7 - q 7 - q 8 - 100xq58.58.8 100xq58.58.8	
		3.465			4 <i>H</i> 1

MATING		0.00	SPRING					Pabe	NTS			
MATINO	2				_	Fath	er			Mot	her	
3 <i>H</i> 44 3 <i>H</i> 45	$\begin{array}{lll} c^{7} & -p = - & \text{(alb,} w) \\ a^{1} \delta^{2} & \theta \theta & p = - & \text{(alb,} w) \\ a^{5} \Im^{2} & 1\theta \theta xq58.58.55(6e) \\ b^{1} \delta^{2} & 1\theta \theta xq58.58.55(6e) \\ b^{5} \Im^{2} & 1\theta \theta xq58.58.55(6e) \\ c^{2} \Im^{2} & 1\theta \theta xq58.58.55(6e) \end{array}$	c ⁸	a ³ § 100xy58.58.55(6) a ⁷ q q b ³ g 100xy58.57.55(6e) b ⁵ § 100xy58.57.55 6e c ⁴ § 100 p17 17 15 6f,	$ \begin{vmatrix} a^{1} 2 & 100x & g58.58.55(6e) \\ a^{8} & -p \\ b^{1} 5 & 00 & p (alb.) \\ +^{1} 5 & 100x & g58.55(6e) \\ c^{2} 5 & 00 & p alb.(e) \end{vmatrix} $	2 <i>H</i> 301 <i>o</i> 2	₫ 100xy 	58.57.	55(Gd~c)	2 <i>H</i> 300a ²	ç 100x	q58.57 5	56(6e)
3#46	$c^0 = 00 \ \hat{p}$ (alb.) $c^1 = 00 \ \hat{p}$ (alb.) $c^1 = 000 \ \hat{p}$ (alb.)	$a^{2} \stackrel{?}{\mathcal{E}} 55 p26, \ 1, \ 3 3f)$ $a^{0} \stackrel{?}{\mathbb{Q}} 15 p26, \ 1, \ 1 1f$ $b^{1} \stackrel{?}{\mathcal{E}} 1000 p23 23 17 6f)$ $b^{2} a^{2}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H301a ¹	д 1001ер 	26.22.	18 1 5f) 	2#306a1	♀ 100y	p26.23.	2(5f)
37/48	# 8 5 p41 41 1 47 9	a- 3 1000 q58 59 55 60	a ³ of 100x phs 58 55 66	$a^{4} ? 100xq58.58.55(6v)$	27/30371	# Imorq	58 57	55 G	2H301a ^t	\$ 100x		55(6e
3 <i>H</i> 49 3 <i>H</i> 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 = 90 \ q58.60 \ 2.4i$ $a^2 \notin 1009p23.17 \ 1.5i$, $a^6 \notin 100xp23.22.17.6i$, $b^4 \notin 100xp23.23.17.6i$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2H303a ¹ 2H305a ¹	\$ 100xq	58.57		2H301a ⁶ 2H305a ³	2 10m	455.57.5	
3 <i>∐</i> 51 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H305a ¹	3 1002 p	26.23 	23(6f)	2H305a4	\$ 100x	p22 22.1	18 6f.,
3 <i>H</i> 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a' x 1000;p.39 35 - 3.5b b: \$2.77 p.39 39 - 4.5b b: \$7.10 apgs 23.23 6; c! x 100;p.39 35 - 2.5b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 <i>H</i> 310 <i>b</i> 3	∂ 65 p	39. 1.	3(4b)	2//309b1	♀ 100zi	p39.35.3	10(5b)
3 <i>H</i> 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ² ₹ 100cp39 3 + 29 5b b) ₹ 100cp39 35 30 6b b' ₹ 100cp39 35 - 9 5b c) ₹ 100cp39 35 - 3 - b	a 2 1000 p 35 31 Ch b ≥ ₹ 1000 p 35 35 28 6b b ≥ ₹ 1000 p 35 33 1 6b c ≥ ₹ 80 p 36 34 4 5b	a^{4} $\stackrel{?}{?}$ $100xp35.35.30 (b)$ b^{3} $\stackrel{?}{$>}$ $100zp35.35.30 (b)$ b^{c} $\stackrel{?}{$>}$ $10cp39.35.28 (b)$	2H308a ² 	∂ 100zp 	39.35.	9(5 6b)	2//307/	Ç 160.	p39.35 5	30 5h
	$b^{\dagger} \stackrel{?}{\mathcal{S}} 100 \stackrel{?}{x_f} 37 19 19 5 b$ $c^{\dagger} \stackrel{?}{\mathcal{S}} = 35 p36 - 1 - 1 2 b$	$\begin{array}{cccc} c^{b} & & & & & \\ c^{b} & & & & \\ c^{2} & & & & \\ c^{2} & & & \\ c^{2} & & & \\ c^{2} & & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ \end{array} \begin{array}{ccccc} 30.35 & 30.5b \\ c & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ c^{2} & & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} P \\ b^{4} + 100 cp35 35 30 \ 6hc \\ b^{4} + 100 cp15 10 10 \ 5f \\ c^{4} + 100 yp23.15 \ 10 \ 5f \end{array},$	3 <i>H</i> 308a ¹	д 100гр	35.35 	.30(5 <i>b</i>)	2H307a3	\$ \$ 100a	rp39.39.1	36(5b)
	c ^b - p - a ¹ ₹ 100zµ39 3 + 28 5b a ⁵ ♀ 80 µ39,39, 4(5b)	a^2 d 25 p39. 1. $1(2b)$	a^3 $\stackrel{\frown}{\circ}$ 20 p 39 1, $1(2b)$	a^{\dagger} \bigcirc 55 $p39.$ 1. $1(3$ $4b)$	2H309a3	~ 4		- (5b)	2H308a	1 ♀ 100:	p 39.35.	9(5b)
3 <i>H</i> 59	α° ¥ 80 p39.39. 4(50) α¹ δ 100 vq41.41.50(6ε-g)	a^2 \lozenge 80 r 41. 1. $1(4gw)$	a^3 \bigcirc 60 r (41 37, 1 (4 g)	a^4 \bigcirc 45 r 41. 1. 2(3 4 g)	$3H1c^4$	₹ 100xr 01 y		50(6g)	2 <i>H</i> 314 <i>e</i> 2	\$ 70	q42.50.	1/3g)
	$a^6 ? 55 p36, 9, 3(4bw) = b^2 ? 100xr41.41.50(6q)$	$a^6 - p - b^3 \circ 100xr 41.41.50(5g)$	a; p	b ¹ & 90 r41.41. 1(4g) b ⁶ ♀ 100xp19. 6. G(6b)				* * *	* * *	* *		

	L^{a} . $p = e^{3} \notin S^{5} / 37.34. \ 3(5b)$ $u^{1} \notin 50 / \mu 32.33. \ 1(3f)$ $u^{1} \notin 100 x p 23.17.18(6f)$ $a^{5} \notin 40 / p 50. \ 1. \ 1(3f)$ $a^{0} = b^{2} \notin 50 / p 26. \ 1. \ 2(3f)$	$\begin{array}{lll} b^{7} & = & g \\ e^{4} \varphi & 80 & e^{4} 1.50 & 1.4g) \\ e^{2} \varphi & 60 & p26 & 11(4r) \\ e^{5} \varphi & 60 & p23.315(5r) \\ e^{5} \varphi & p = & 3r \\ e^{6} & p = & 3r \\ b & \pm & 60 & p26 & 13(3r) \end{array}$	$\begin{array}{c} c^1 \notin Iu0xr41.41.50(5g) \\ c^5 \notin Iu0xr41.4150(5-6g) \\ a^1 \notin Iu0xr41.4150(5-6g) \\ a^1 \notin Iu0yp23.15.10(5f) \\ a^7 = -P \\ a^{11} = -P \\ b^1 \oplus 5^5 p50-1,1(3f) \end{array}$	(2 t	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 <i>1</i> /64	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \ddot{g} - p - (6f)$ $b^1 \ddot{g} - p - (6f)$ $b^5 - p$ $c^2 \ddot{g} 100xp23.15.18(6f)$	a^4 \$ 100xp19.19.18(6f) b^2 \$ 100xp22.17.15(6f) b^6 \$ 100rp23.23.17(6f)	2H306h [†] & 100rp 23 23 18 5f, 2H312b [‡] \(\frac{2}{100xp}\)15.15.10(6f)
3 <i>H</i> 65	e ⁴ § 100 cp13.10.10(6f) a ¹ † 10a p23 22 17(6f) a ‡ 10a p24 17 14 5f b ‡ 10a p22 22 1 65f, c ‡ 10a p26 26 2 5f	P	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H3066 ² & 100xp 23 23 15 5f , 2H305a ⁶ Q 100xp23.23.18(6f)
3 <i>H</i> 66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{3} \stackrel{?}{\otimes} \qquad \stackrel{?}{?} \qquad -2I, \\ a^{7} \stackrel{?}{\otimes} \qquad 80 p25 1 2 2f \\ b^{4} \stackrel{?}{\otimes} \qquad 25 p26, 1, 1(2f \\ b^{2} \qquad -p + \\ c^{3} \stackrel{?}{\otimes} \qquad 10 p23, 1, 1(1f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 <i>H</i> 67	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c^7 - p	c^{5} - P a^{4} \(\Q \) 100xq58.58.55(6e) b^{3} \(\frac{1}{3}\) 100xq58.58.55(6e) b^{7} \(\frac{q}{2} \) c^{4} \(\Q \) 100xp24.24.15(6f)	2H312e ² f 100 eq 58 58 55.6e ₇ 2H302b ⁵ Q 100xq58.58.55(6e)
3 <i>H</i> 69	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H312b ³ & 100xq 58.57.55(6e) 2H300b ³ Q 100xq58.56.56(6e)
3 <i>1</i> /70	$a^{\dagger} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c^{i} q^{-} $\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H303b ⁴ \$ 100xq 58.58.55(5e) 2H300e ³ \$ 100xq58.56.56(6e)	
3#71	a) d 100 x_q^4 58,58,56(6e) a6 Q = Q = -(5e) d 2 100 y 58,58,55,6e c4 Q 100 xq 58,55,55(6e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^4 \dot{\beta} & q (6e) \\ b^1 \dot{\beta} & 100xq58.57.55(6e) \\ c^3 \dot{\beta} & 100xq57.57.52(5e) \\ \dots & \dots \end{bmatrix}$	2H303b ⁵ & 100xq 58.57.55(6e) 2H300c ⁴ Q 100xq57.56.55(6e)
4H1 4H2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} n^2 \stackrel{?}{\mathcal{C}} 100xq58.57.55(6e) \\ n^6 \stackrel{?}{\mathbb{C}} 100 rr 41.41.50(6g) \\ n^2 \stackrel{?}{\mathcal{C}} 100xq58.57.56(6e) \\ n^6 \stackrel{?}{\mathbb{C}} 90 q57.55, \ 1(5e) \end{array}$	$a^{3} \int 100xq58.57.55(6e)$ $a^{7} \bigcirc 100xx41.41.50(5g)$ $a^{3} \int 100xx458.57.56(6e)$ $a^{7} \bigcirc 100.eq58.58.57(6e)$	a ⁴ ? 45 q58. 1. 1(3e) 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

W. F. R. Weldon's Records of Mice Matings (continued).

		$\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots $: :
	Mother	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
NTS		$3H3a^3$ \circ I $3H7a^4$ \circ I $3H7a^4$ \circ I $3H7a^4$ \circ I $3H7a^4$ \circ I $3H7a^3$ \circ I $3H7a^3$ \circ I $3H7a^3$ \circ I $3H7a^3$ \circ I I I I I I I I I I	: :
PARENTS	er	$\begin{array}{cccccccccccccccccccccccccccccccccccc$::
	Father	3.H2a ⁴ \$\(\frac{100xq58.58.4}{100xq58.58.4}\) 3.H2a ³ \$\(\frac{100xq57.57.4}{200xq57.57.57.4}\) 3.H6a ³ \$\(\frac{100yq58.57.}{60	::
			3-4e)
		$\begin{array}{c} b^5 \ \zeta \ 90 \ q58.55 \ 2(4e) \\ c^2 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.56(6e) \\ b^5 \ \zeta \ 100xq58.57.56(6e) \\ c^5 \ \zeta \ 100xq58.57.56(6e) \\ c^3 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^4 \ \zeta \ 100xq58.57.55(6e) \\ c^5 \ \zeta \ 100xq58.57.56(6e) \\ c^5 \ \zeta \ 100xq58.57.56(6e) \\ c^6 \ \zeta \ $	\$ 60
ING		$\begin{array}{c} d \ 70 \ q58.57. \ 2(3-4e) \\ d \ 1000xq58.57.55(6e) \\ d \ 00 \ p(alb.) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.55(6e) \\ d \ 1000xq58.58.52(6e) \\ d \ 1000xq58.58.52(6e) \\ d \ 1000xq58.58.52(6e) \\ d \ 1000xq57.57.56(6e) \\ d \ 1000xq58.57.14(e) \\ d \ 1000xq58$	75 q58.55. 2
OFFSPRING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$00 \ p = -d \ 00$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 00 p
MATING		4H2 4H3 4H4 4H4 4H7 4H9 4H9 4H11 4H11	_

$3H21a^3 $ $\checkmark $ $75 $ $p39.39. $ $4(5b)$ $3H21a^4 $ $90 $ $p39.39. $ $4(5b)$	$3H21a^{5}$ \supsetneq $100c_{2}p39.39.28(5b)$	$3H21a^6 \supsetneq 100zp \ 39.39.30(5-6b)$	$3H29a^4$ \downarrow $40 p37.39. 3(2-3b)$	$3H20a^3 \circ - p (5b)$ $3H20a^4 \circ 100zp 39.35.28(5b)$	$3H20a^5 \downarrow 100cp 35.35.28(6b)$	$3H8a^{2}$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$3H4a^5$ $\bigcirc 100xq57.57.56(6e)$	3H4a ⁶ \(\triangle \text{100xq58.57.55(6e)}\)
$3H20a^{1}$ $\overleftarrow{\zeta}$ 75 $p36.35$. $4(5b)$	$3H20a^{2}$ \$ 80 p36.36. 4(5b)	$3H20a^2$ & 80 p36.36. 4(5b)	$3H30a^2 $ \$\frac{7}{4}0 p40. 1. 2(2b)	$3H21a^{1} \stackrel{?}{\circlearrowleft} 80 \ p39.35. \ 2(5b)$ $3H21a^{1} \stackrel{?}{\circlearrowleft} 80 \ p39.35. \ 2(5b)$	3 H 21 a^2 c 780 p 39.35. 2(5 b)	$3H5a^{1}$ \$\(\frac{100xq41.41.50(6g)}{}\) $3H5a^{3}$ \$\(\frac{100xq57.57.55(6e)}{}\)	$3H5a^{4}$ \$\(\frac{100aq}{5}\) 100.	3H5a² & 100xq58.58.55(6e)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^4 \varphi & 80 \ p39.39.28(5b) \\ a^8 \varphi & 75 \ p39.35. \ 2(5b) \\ b^4 \varphi & 75 \ p39.35. \ 2(5b) \\ b^8 & -p \\ c^4 \varphi & 75 \ p39.39.28(4-5b) \\ \end{array}$	$a^{4} \subsetneq 100z_{p} 39.39.30(5a-b)$ $b^{2} \nleq p - p (5a)$ $b^{6} \circlearrowleft 75 p 35.35.28(5a)$	$a^{4} \subsetneq 45 p39. 1. 3(3b)$ $b^{3} \nleq 25 p39. 1. 2(2b)$ $b^{7} \updownarrow 45 p39. 1. 3(3b)$	$a^4 \notin 100xp33.23.15(6f)$ $b^3 \notin 100xp39.35.30(5-6b)$ $a^4 \notin -p = -(5b)$	$a^{4}\int 100zp35.35.30(5b)$ $b^{2}\int 80 p35.35.28(5b)$ $b^{6}\bigvee 75 p35.35.2(5b)$ $c^{3}\int 100xp15.15.10(6f)$	$\begin{array}{c} b^2 & 100xp37.19.9(5-6a-f) \\ b^6 & 2100xp19.19.31(6a-f) \\ c^4 & 300 p (alb.) \\ \hline a^4 & 900 p (alb.) \\ \end{array}$	$b^1 \leq 100 yq57.5.55(5e)$ $b^5 \neq 100 yq57.57.55(5e)$ $b^9 = q^- = c^4 = q^- = b^1 \leq 100 xq58.58.55(6e)$ $b^5 = p^- = -$	a^{4} $Q = 100 x p 26.23.23(6a-f)$ b^{3} $d = 100 x p 23.23.18(6f)$ c^{3} $d = 75 p 26.19.2(4f)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \subsetneq 100zp 39.39.28(5b)$ $a^7 480 \ p35.35. \ 2(5b)$ $b^3 \thickspace 100zp 39.39.28(5b)$ $b^7 \thickspace - p^2 = -$ $c^3 \thickspace \subsetneq 75 \ p39.39. \ 4(5b)$	$a^3 \not\in 100xp23.23.18(6f)$ $b^1 \not\in 100yp23.23.18(6f)$ $b^5 \not\in 100xp23.23.23(6f)$	$a^3 = 40 p26.1.4(3f)$ $b^2 = 20 p37.1.1(2b)$ $b^6 = 30 p39.1.3(3b)$	$a^3 \neq 100zp 39.39.28(5b)$ $b^2 \neq 100zp 39.39.39.28(5b)$ $b^6 \neq 100zp 39.35.31(6b)$ $a^3 \neq -p = -(5b)$	$a^3\xi$ 85 p35.35.28(5b) $b^1\xi$ 85 p39.35.28(5b) $b^5\xi$ 100zp39.39.28(5b) $c^2\xi$ 100xp15.15.10(6f)	$\begin{array}{c} c^{\delta} & f = 0 & p = 1 \\ c^{\delta} & f = 100 c p 37.19.31 (6 a - f') \\ b^{\delta} & \varphi & 00 & p = -1 \\ c^{\delta} & \varphi & 100 c p 19.19. & 9(5b) \\ c^{7} & \varphi & 00 & p = -1 \\ a^{3} & \varphi & 100 c q 58.58.55 (6e) \end{array}$	a' a' a' a' a' a' a' a'	$a^3 + 85$ $a^2 = 22.18(6f)$ $b^2 = 6100 x p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^2 \frac{p}{2} - p (5b) \\ a^6 \sqrt{2} 1002p39.35.28(5b) \\ b^2 \sqrt{2} 1002p39.39.28(4-5a-b) \\ b^6 \sqrt{2} 60 \ p26.26. \ 1(3b) \\ c^2 \sqrt{2} 1002p40.40.31(5b) \end{array}$	$a^{2} \stackrel{?}{\sim} 100 x p 26.26.17(6f)$ $a^{6} \stackrel{?}{\sim} 80 \ p 35.35.28(5a)$ $b^{4} \stackrel{?}{\sim} 100 x p 23.23.18(6f)$	$a^2 \zeta = 55 \ p39. \ 1. \ 4(3b)$ $b^1 \zeta = 25 \ p39. \ 1. \ 2(2b)$ $b^5 \zeta \neq 40 \ p37. \ 1. \ 2(3b)$	$a^2 \notin 100xp35.35.30(6b)$ $b^1 \notin 100xp23.23.17(6f)$ $b^5 \notin 100xp39.35.31(6b)$ $a^2 \notin 100xp39.35.34(6b)$	a^{0} \forall 75 p40.35. 256) a^{2} \forall 85 p35.35. 2(56) a^{0} \forall 100xp23.23.18(6f) b^{4} \forall 80 p35.35.28(56) c^{1} \forall 7 p39.35. 2(56)	- 5 100x 100x 2100x	$a^{\alpha} = q^{-} = -(alb.)$ $b^{7} \neq 00 \ p^{-} = -(alb.)$ $c^{2} \neq 00 \ p^{-} = -(alb.)$ $c^{3} \neq 100xq57.57.56(6e)$ $b^{3} \neq 100xq58.58.58.56(6e)$ $c^{2} \neq 100xx958.58.18(6f)$	$a^2 \zeta = q (6e)$ $b^1 \zeta 100xq58.58.55(6e)$ $c^1 \zeta 100xq58.57.55(6e)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	229)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.7 \pm 49 \ post.33, 2(30)$ $a^5 \zeta = 30 \ post.1, 2(2-3b)$ $a^6 \zeta = 30 \ post.1, 2(2-3f)$ $b^4 \zeta = 30 \ post.1, 1(3b)$ $c^4 \zeta = 60 \ post.1, 1(3b)$		$a^{3} \neq 100xp39.39.36(6b)$ $a^{1} \triangleq 80 p39.39. 2(5b)$ $a^{5} \neq 80 p39.39. 3(5b)$ $b^{3} \neq 75 p39.39. 3(5b)$ $b^{7} \neq 100p39.39.39(5b)$	$\begin{array}{c} (o0\ pso.so.\ 2(90)) \\ q = -1 \\ 100xp37.19.31(6a-f) \\ 100x741.41.50(5-6g) \\ 00\ p = -(alb.) \\ 100xq58.57.55(5-6e) \end{array}$		$a^{1}\dot{\zeta} - \frac{q}{q} (6e)$ $a^{5}\dot{\gamma} 100xq^{5}8.56(6e)$ $b^{4} - q $
4 <i>H</i> 14	4 <i>H</i> 16	4 <i>H</i> 17	4 <i>H</i> 19	4 <i>H</i> 20	4 <i>H</i> 22	4 <i>H</i> 23	4H25	4 <i>H</i> 26

		·

	Offerning							PAR	ENTS			
MATING		OFFSPILNO			Father				Mo	- other		
4 <i>H</i> 2	$b^2 \lesssim 100xq58.57.56(6e)$ $b^6 - p$ $c^3 \lesssim 100xq58.57.55(6e)$	b ³ \(\frac{1}{0}\) 100xq58.57.55(6e)	b ⁴ & 70 q58.57. 2(3-4e) c ¹ & 100.rq58.57.55(6e) c ⁵ & 00 p (alb.)	b ⁵ d 90 q58,55, 2(4e) c ² d 100xq58,57,55(6e) c ⁰ Q 100xq58,57,56(6e)								
4 <i>H</i> 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3H2a ⁴ 	ð 100x	958.58.	55(5-6e) 	3 <i>H</i> 3 <i>a</i> ³	♀ 100x	eq58.58.	.55(5–6e)
4H4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a^4 \supsetneq 100.eq58.57,55(5e) \\ b^3 \supsetneq 100.eq58.57.55(6e) \\ b^7 - \rho \\ c^4 \supsetneq 100.eq58.55, \ 1(5e) \\ c^8 - q \end{array}$	3H2a1		g57,57.8		3H6a4		1q58.58.	
4 <i>H</i> 6	$c^0 - q $	$\begin{vmatrix} e^{10} & - & q & - & - & - \\ a^2 Q & 95 & q58.57.55(5e) \\ b^4 Q & 95 & q58.57. & 2(5e) \\ c^3 Q & 100 qq58.56, & 2(5e) \end{vmatrix}$	b ¹ d 100yq58.55, 2(5e) b ⁵ Q 100yq57.57,55(5e) c ⁴ Q 100xq57.57,56(6e)	$b^2 \stackrel{?}{\circ} 100 yq 57.56.55(5e)$ $c^1 \stackrel{?}{\circ} 100 xq 58.57.55(5e)$ $c^6 \stackrel{?}{\circ} 100 xq 58.57.57(6e)$	3H6a2		q58.57.		3H7a4	♀ <i>100.</i>	y58 58	55(Ge
4H7 4H8	a^{1} & 100xq58,57,55(5e) a^{1} \(\rightarrow \) 8\(\rho \) p26.23. 1(4-5f)	$a^{2} \stackrel{?}{\partial} 100 \stackrel{?}{\partial} 258.57.56 \stackrel{?}{(5)} 6e = a^{2} \stackrel{?}{\partial} 65 p26.23. 1 (4f)$	a ³ Q 55 p26 22, 1(3-4f)	$a^4\delta = 65 \ p26.23. \ 2(3 \ 4f)$	$3H6a^{7} \ 3H3a^{2}$	8 60	p23. 1.	56(5 Ge) 1(3f)	$3H1a^{3}$	\$ 55	q58 58 p26.26.	
<i>¥H</i> 9	a ⁶ f 50 p19, 9, 3(3f) a ¹ f 97 p26 22,18(4-5f) a ⁶ 9 55 p37,37, 1(4f) b ¹ 9 70 p26 23, 1(4f)	$\begin{bmatrix} a^{0} & 6 & 90 & p26. & 3, & 3(5f) \\ n^{2} & 6 & -p & (4f) \\ a^{0} & 9 & 60 & p37,37, & 4(4f) \\ b^{1} & 9 & 60 & p26. & 1, & 2(4f) \\ a^{1} & 9 & 60 & p26. & 1, & 2(4f) \end{bmatrix}$	$\begin{bmatrix} a^7 \frac{3}{5} & 55 & p23.22. & 2(3f) \\ a^3 \frac{3}{5} & \frac{17}{17} & j37 & 1. & 2(3f) \\ a^7 \frac{3}{5} & 40 & q58. & 1. & 1(3e) \\ c^1 \frac{3}{5} & 75 & q58. & 1. & 2(4e) \\ \frac{3}{5} & \frac{3}{5} & \frac{3}{7} & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3#1n1 	***	•		3 <i>H</i> 2a°	2.3.5	q55. 1	1 4e
4 <i>H</i> 10	$c^{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	a^4 Q 65 p23. 1. 3(4f) a^2 G 65 q58. 1. 2(4cv) a^6 Q 90 q58.55. 4(4-5e) a^{10} = q =	$\begin{vmatrix} c^5 & -p \\ a^3 \xi & 00 & p & (nlb.) \\ a^7 \xi & 55 & q58.57. & 1(4e) \\ b^1 \xi & 90 & p26.1b. & 2(4fw) \\ b^1 \xi & 90 & p26.1b. & 2(4fw) \end{vmatrix}$	$a^4 \ \ \ 70 \ p26.26. \ 1(4f)$ $a^8 \ \ 55 \ q58. \ 1. \ 2(3ew)$ $b^2 \ \ \ 55 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			q58,55.	2(4e)	3 <i>H</i> 9a5	Ŷ 	q	- (4e, ::
4 <i>E</i> [11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} b^6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$b^{0}\delta = q + - 4$ $a^{4} \circ 80 \ q57.56, \ 1(4e)$ $a^{5} \circ P$ $b^{4} \circ ab \ q58.57, \ 2.3 \ 4e$	3H15a	d 65	q57.55.	3(4e)	3 <i>H</i> 13a	4 Q ' GO	q58.58,	. 1(3—le)
4 <i>H</i> 12	b) $q = a^{1} \delta = 55 \text{ r} 42.50, 2(4g)$ $a^{0} \circ = 36 \text{ r} 42.50, 2(3g)$ $b \circ \circ = 95 \text{ r} 41.50, 3 + 5g$ $c^{2} \circ = 25 \text{ r} 41, 1, 2(2g)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3H1\alpha^2$	***	r 42,50,	1(3g)	3 <i>H</i> 13 <i>a</i>	2 Q 80	r 41.50.	1(4g)
4 <i>H</i> 13	$e^{0} \stackrel{\triangle}{\Rightarrow} 00 \stackrel{D}{p} = - \text{ (alb.)}$ $e^{1} \stackrel{\triangle}{\Rightarrow} 60 \stackrel{D}{q} 58.58 \stackrel{\bullet}{3} 4e_{1}$	$c^{7} = q^{-} - q^{-}$ $c^{7} = q^{-} - q^{-}$ $a^{4} \stackrel{?}{\sim} 0^{7} 958.56. 2 \stackrel{?}{\sim} 24.5e)$ $a^{4} \stackrel{?}{\sim} 0^{7} 958.55. 2(3-4e)$ $b^{7} \stackrel{?}{\sim} 75 958. 1. 2(3-4e)$	$c^8 = q$	$a^{4} \stackrel{?}{\circ} q = 3 \stackrel{?}{\circ} 4ew$ $b^{1} \stackrel{?}{\circ} 85 \stackrel{?}{\circ} 958.55. 1(4 \stackrel{?}{\circ} 5e)$ $b^{5} \stackrel{?}{\circ} 55 \stackrel{?}{\circ} 957.55. 2(3ew)$ $b^{9} = p = -$	3H15ac			2(3r)	3H1a6	9 45	q58,55	
	c ¹ d 00 p (alb. w)		c3 & 75 q58.55. 2(4e)	A A GO A GO W MICH A C							***	***

A. HTLA	c ⁵ ♀ S5 q58, 1. 2√3ew) a¹ ♀ 75 p35.35. 2(5b)	$c^{0} \bigcirc 05 \ q58, 1. \ 3(3-4e)$ $a^{2} \bigcirc 75 \ p35, 35, \ 2(5b)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3H20a ¹ & 75 p36.35. 4(5)	3H21a ³ Q 75 p39.39. 4(5b)
	u ⁵ d 75 p39.35 28(5b)	a 75 p35 35. 2(5b)	a	b^1 3 75 p39 39.28(5b)		
	b ² 3 100zp39.35.28(5b)	$b^3 \stackrel{?}{Q} 75 p39.39.28(5b)$	$b^{\dagger} \ \ \ 75 \ \ p39.39.28(5b)$	b ♀ 80 p39 39, 2(5a) = l ∂ ₹ 77 p39 39 ≥ 5b	*** *** ***	
	$b^{\mu} = \rho =$	$b^7 = p +$	e ¹ & 75 p36 35, 4(5b) ∴ 9 1002p35 33.28(5b)	e 9 100. p35 35.28,5b		
	6 6 1 portor 11 au			111	***	1 10 10 00 00 00 1(51)
4H15	al \$ 25 pag 23 2 5q-b	a2 2 foorp23 23 18 6f	a3 f 100.rp10.10.10(6f)	al of 100ep 15.15, 5(6f)	3 <i>H</i> 20a¹∂ 75 p36,35, 4′5	b, 3H21a ⁴ \(80 \ p39.39. 4(5b)
	u6♀ 75 p3c(30 ± 56 -)	h) 2 1002p39 3 (28 5) f	$\frac{b^2}{b^2} = \frac{p}{p} = 5b$	$b^3 = p (6f)$ $b^7 - p$	***	
-	b\ \times 100zp35 35 25 5b b* = p -	$h \cdot \varphi = P$ 5h	12° P	o - p	*** *** ***	
47/16	a^{1} ? 50° a^{3} 9 39 4 4 5 b°	$a \cdot Q = p$ (5b)	$a^3 \circ 100zp39.39.28(5b)$	$a^4 = 80 \ \rho 39.39 \ 28(5b)$	3H20a ² ₹ 80 p36 36, 4(5	$h_j = 3H21a^5 ? 100z\rho 39.39.28(5b)$
	a ± 100. p35 35 28 5b	ab 3 1002/39 35 28 5b	a ⁷ & 80 p35,35, 2(5b)	w ₹ 75 p39 35, 2 5b)	***	
	$\frac{b^4 \neq 1007}{b^2 \neq 100253939305b} = \frac{5}{2}$	ht t 100,p39 39 28 4-5a h h t 60 p26 26, 1 3h	$b^3 = 100 : p39.39.28(5b)$ $b^7 = p = + -$	14 3 75 739,35, 2.5h		
	# 3 1005p33 3 3 30 50 √ 3 1005p39 35 29 5b)	14 ± 100cp40 10,31 5b	c ³ ♀ 75 p39.39, 4(5b)	@ 9 75 p39.39.28(4 5b)	**	
	of 7 65 p39,39, 2 4b)				***	n Hat so 100 m 20 20 30(5-6h)
	$a^{1/4} I00 i p 23/23.18/6 f j$	a- 2 100 rp26 26 17 (6f)	$a^{\dagger} \neq 100 xp23,23.18(6f)$	$a^4 + 100 z_P 39,39.30(5a-b)$	3H20a ² J 80 p36.36, 4(5	b) 3H21a ⁶ ♀ 100zp 39.39.30(5-6b)
	$\frac{ac_4}{b} = 75 \frac{p39}{p} \frac{39}{5b} = \frac{85b}{5b}$	nº4 80 p35 35 28 5a) b) ± 10(a)p23,23 18 6r)	$b^1 \not\in 100pp23,23.18(6f)$ $b^5 \not\in 100xp23,23,23,6f)$	$b^2 \stackrel{?}{\circ} - p = -(5a)$ $b^3 \stackrel{?}{\circ} 75 p35.35.28(5a)$		
	b7 4 47 /30 39 2 3h	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			***	10
4H19	$a^{1} \stackrel{?}{\downarrow} = i0$ $p39 \stackrel{?}{\downarrow} 1. 2.2 3b_{1}$	af 3 55 p39 1, 4(3b)	a ³ \$ 40 p26, 1, 4 3f)	a4 Q 45 p39, 1, 3(3b)	3 <i>H</i> 30₁1² ₹ 40 p40, 1, 2(2	b) 3H29a4 Q 40 p37.39. 3(2-3b)
	a) 2 30 p23 1 2 2-3f)	b^{1} 3 25 p39 1, 2(2b)	b ³ of 20 p37. 1. 1(2b) b ⁶ of 30 p39. 1. 3(3b)	$b^3 \stackrel{?}{\ \ } 25 p39, 1, 2(2b)$ $b^7 \stackrel{?}{\ \ } 37 p39, 1, 3 3b)$	***	
	$\frac{b4}{c^3} \pm \frac{36}{65} \frac{p37}{p39} + \frac{1}{1} + \frac{1}{2} \frac{3b}{4b}$	h 3 30 μ37 1, 2(3b)	0° 0 30 pag. 1. 5(50)	0 ± 47 / mm. 1 mm.)		*** *** *** ***
4H20	n1 + 10 - p 36 36 30 6b	a ² ♀ 100xp35 35 30 6h	$a^3 \circ 100zp 39.39.28(5b)$	$a^4 \notin Im(ep 23/23.15/6f)$	3H21a ¹ ≥ 80 p39.35. 2(5	b) $3H20a^3 = p (5b)$
	$a \notin Ion_{i,p}10.23.15.6f_{j}$	b) 2 100 cp23 23.17 Gf	$b^2 \ 3 \ 100 \approx p \ 39.39.28(5b)$	b3 \$ 1002µ39.35.30(5-6b)	***	
4H21	bt ⊋ 100±µ35 35 28 5b; at ₹ -25 -µ35 35 28 5b)	$b \notin 100, \mu 39 35 31(6b)$ $a \in \mathcal{J} 100, \mu 39 35 34(6b)$	$\begin{vmatrix} b^0 & 100 & p39.35.31(6b) \\ a^3 & -p & -(5b) \end{vmatrix}$	a4 & - p (5b)	3H21a1 & 80 p39 35. 2(5	b, 3H20a4 2 100zp 39.35.28(5b)
43321	a' 4 100 cp39 39 36 6b	a 2 75 740 35 2 5b	a o = p = -(00)			
4H22	at 7 80 p39 39 2 5b	10-2 85 jas 85 2 5b	a3 & 85 p35 35 28 5h	a4 & 100zp 35,35,30 5h	3H21a ² & 80 p39.35, 2,5	b) 3H20a ⁵ ♀ 100zp 35.35.28(6b)
,	at 7 80 p35 35 3 5b	a ⁶ Q 100.rp23 23.18 6f	b) \$ 85 p39.35.28.5b,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	***	
	$b \subseteq 75 p39 39 3 5b$ b ? 2 100, p39 39 28 5b)	b ⁴ \(\text{\$\text{\$\gamma\$}} \) 80 \(\pa_3 5.35.28 \) 5b) \(\text{\$\delta\$} \) 75 \(\pa_3 9.35 \) 35 \(2.5b) \(\text{\$\delta\$} \)	$b^6 \stackrel{?}{Q} 100zp39.39.28(5b)$ $c^2 \stackrel{?}{Z} 100zp15.15.10(6f)$	c3 \$ 100.xp15.15.10(6f)	444	
1	et 9 80 p35 35 2 5b	e ♀ 80 µ35 35, ± 5b)	c ⁰ p			3 HBg2 O 85 r41.41, 3(2 3g)
4 <i>H</i> 23	q	p = p	b) ≥ 100, ip37 19 31 6a f	L- & 100 cp37.19.9 5-6a-f)	3H5a1 & 100xq41 41 50 f	9) 31100 + 00 - 111-11
	$h^* \stackrel{?}{\times} 100 ep37.19.31.6a_f = e^4 \stackrel{?}{\times} 100 xr.41.41.50(5-6g)$	$c^{14} = 00 \ p - \text{(alb.)}$ $c^{2} \neq 100 \ cr = 41.41 \ 26 \ 5 \ 6q$	$b^{5} = 00 \ p = - \text{ (alb.)}$ $c^{3} \neq 100 x p 19.19, 9(5b)$	$b^{\mu} = 100xp19.19.31(6a \ f)$ $c^{\dagger} = \frac{1}{6} \frac{1}$		***
		1 d 9 100 cq58 58 44 6e	c ⁷ 9 00 p (alb.)	(4101)		111
4H24	a 7 100 cq58,57 55(5-6e)	$a^2 \hat{\phi} = \hat{q}$ 5=6e)	a ³ Q 100.rq58.58.55(6e)	a4 ♀ 00 p (alb.)	$3H5a^3$ $3100xq57.57.55(0$	(se) 3H8a3 Q 100xq57.58.65(5e)
	P. P	a" q -	47 - q	b1 \$ 1009q57.57.55(5e)	***	***
	$b^{4} \stackrel{?}{=} 100 \stackrel{?}{=} 98.57,55.5i$	$\begin{array}{cccc} b^* \stackrel{?}{\mathcal{E}} & 60 & p = & -(\text{alb}) \\ b^* & = & q = & \end{array}$	$b^4 ? 100xq58.57.57(6e)$ $b^8 - q$	$b^6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
1	$c^1 ? 100yq58.58.55(5e)$	$ c^2 \circ \partial p \text{(alb.)} $	$c^3 - p$	+ c4 - q		FT. 1 O 100 PE EZ ER/RA
4H25	$\hat{p} = \hat{p} = -$	a ¹ \$ 100xq57,57,56(6e)	$a^2 \stackrel{?}{=} 100xq58 58.55(6e)$	$b^1 \stackrel{?}{>} 100 \stackrel{?}{>} q58.58.55 (6e)$	3H5a4 & 100xq58,58,55(6	3H4a ⁵ Q 100xq57.57.58(6e)
	$b^2 \stackrel{?}{\leq} 100 \stackrel{?}{_{*}} q58.57.55.6e_j = c^1 \stackrel{?}{\leq} 100 x q 57.57.56(6e)$	b ³ \(\text{100xq58.58.55, 6e} \) c ² \(\frac{d}{d} \) \(100xp23.23.18.6f \)	b ⁴ Q 100xq58.57.55(6e) c ³ Q 100xq58 57.55(6e)	b5 - p	***	
4H26	$a^{1}\vec{\delta} - q (6e)$	$a^2 d^2 - q (6e)$	a ³ £ 85 q58,55. 2(4-5e)	a Q 100.cp26.23.23(6a-f)	3H5a2 & 100xq58.58.55(0	5e) 3H4a ⁸ \(\text{Q}\) 100xq58.57.55(6e)
	$a^5 ? 100xq58 58.56(6e)$	b1 & 100xq58.58.55(6e)	$b^2 = 100 x p 22.22.18 (6f)$	$b^3 \gtrsim 100 ep 23.23.18(6f)$		
!	b4 - q	$c^1 \stackrel{?}{\circ} 100.cq58.57.55(6e)$	c ² & 100xq58.57.55(6e)	c3 & 75 p26.19. 2(4f)	417 114 114	***
	1					

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father Mother	(a - p (6f)) $(a + q)$ $(a$	$-p (6f)$ $3H4a^4$ $\circ 100xp23.23.17(6f)$	$3H42a^2\xi$ 55 $p23.23$. $1(2-3f)$ $3H40a^1\varphi$ 70 $p50.50$. $1(4f)$ $3H10^4$ ξ $100\alpha g58.58.56(6e)$ $3H3a^5$ φ $100\alpha g56.56.56.6e)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		[Co.]]]	10 :::::	$3\ddot{H}42a^2\zeta$ $3\ddot{H}1b^4$ ζ	3H1b3 &1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3H4b^2$ ξ $3H3b^3$ ξ		3H2b³ &
		$a^4 \not\subseteq 100xp23.23.18(5f)$ $a^8 = b^4 \not= 100xp23.23.15(6f)$ $b^8 = b^4 \not= 100xp26.23.15(6f)$ $b^8 = b^4 \not= 100xp26.23.18(6f)$ $c^8 \not\in 100xp26.23.18(6f)$ $c^6 \not\in 70 p26.23.2(4f)$	a^{4} Q $100xp$ 19.19.31($6a$ – f) b^{2} Q $100xp$ 19.19.31($6f$) b^{6} Q $100xp$ 19.19.31($6f$) c^{3} Q $100xp$ 26.23.17($6f$) c^{7} Q $100xp$ 26.23.16($6f$)	\$ 65 p26. 9. 1 \$100xq58.57.55	$a^8 = q - (6e)$ $a^4 Q 100xq58.58.57(6ew)$ $b^1 Q 100xq57.57.55(6ew)$ $b^5 Q 100xp23.23.18(6f)$ $c^4 Q 100xy58.58.55(6e)$	$a^4 \stackrel{Q}{\circ} 100xp15.15.18(6f)$ $c^2 \stackrel{Q}{\circ} - q (6e)$ $c^3 \stackrel{Q}{\circ} - q (6e)$ $a^4 \stackrel{Q}{\circ} - p (6f)$ $b^3 \stackrel{Q}{\circ} 00 \ p (alb)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{cases} -p \\ 100xp23.23. \\ 100xp26.26. \\ -p - \\ 100xp23.23. \\ 100xp23.23. \\ 100xp26.26. \end{cases}$	$a^4 \varphi 100 x p 23.23.18 (6f)$ $b^4 \varphi 100 x p 17.15.15 (6f)$ $b^1 \varphi 100 x p 23.23.17 (6f)$
ING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \not\in 90 \ p26.26. \ 2(4a-f)$ $b^1 \not\in 100xp26.23.18(6f)$ $b^2 \not\in 100xp23.23.17(6f)$ $c^2 \not\in 100xp19.19. \ 9(6a)$ $c^6 \not\in 100xp19.19. \ 9(6a)$	\$\frac{65}{65} \textit{p23.23. 2}{p23.23. 1}\$\frac{9}{5} \left(\frac{100xq58.57.55}{6} \frac{100xq58.57}{6} \frac{100xq58.57}	$a^{\prime} = q (6e)$ $a^{\prime} \neq 100xq^{\prime}58.58.55(6ev)$ $a^{\prime} = p$ $b^{\prime} \neq 100xp^{\prime}23.23.18(6f)$ $c^{\prime} \neq 100xp^{\prime}23.23.8(6f)$	$a^3 \not\subseteq 100ap15.15.15(6f)$ $c^1 \not\subseteq q (6e)$ $c^2 \not\subseteq 00 \ p (alb.)$ $c^3 - p (alb.)$ $a^3 \not\subseteq 00 \ p (alb.)$ $b^2 \not\subseteq 100xq58.58.55(6e)$	$b^6 - \frac{q}{q} - \frac{1}{q}$ $a^3 \not\in 100xq58.57.56(6e)$ $b^2 \not\in 100xq58.57.56(6e)$ $b^4 \not\in 100xq57.57.56(6e)$ $c^4 \not\in 00$ $a^3 \not\in 100xq58.57.56(6e)$ $a^3 \not\in 100xq58.27.56(6e)$	$a^7 \stackrel{?}{\circ} 55 \stackrel{?}{\circ} 26.23. \stackrel{?}{\circ} 3f)$ $b^2 \stackrel{?}{\circ} 70 \stackrel{?}{\circ} 26.23. \stackrel{?}{\circ} 2(4f)$ $b^6 \stackrel{?}{\circ} 100xp26.26.23(6f)$ $b^{10} - p $	a^3 φ 7.5 p26.26. 1(4f) b^3 φ 100xp23.23.18(6f) a^3 φ 100xp23.23.17(6f)
OFFSPRING		$\begin{array}{c} a^2 \not\leftarrow 100 x p 23.23.18 (6f) \\ a^6 \not\in 100 x p 23.23.17 (6f) \\ b^2 \not\leftarrow 100 x p 19.19. (6fa) \\ b^2 \not\leftarrow 45 p 26.26. 3(3-4f) \\ b^{10} & p - p$	$a^2 \stackrel{?}{\Diamond} 100xp19.19.9(5a-f)$ $a^6 \stackrel{?}{\Diamond} 50 p23.1.2(3f)$ $b^4 \stackrel{?}{\Diamond} 100xp19.9.9(6b)$ $c^1 \stackrel{?}{\Diamond} 100yp26.23.2(4-5f)$ $c^5 \stackrel{?}{\Diamond} 65 p26.1.2(4f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$a^{2} \stackrel{?}{\circ} 100xq58.58.55(6e)$ $b^{2} \stackrel{?}{\circ} 00 \ p (alb. w)$ $c^{4} \stackrel{?}{\circ} 100xq58.58.56(5e)$ $c^{8} - p (alb.)$ $a^{2} \stackrel{?}{\circ} 00 \ p (alb.)$ $b^{1} \stackrel{?}{\circ} - q (6e)$	100x 100x 100x 100x		$a^2 \varphi \ 65 \ p26.23. \ 2(3f)$ $b^2 \varphi \ 55 \ p26.26. \ 1(3f)$ $c^2 \varphi \ 45 \ p26. \ 1. \ 1(3f)$ $a^2 \varphi \ 100 \alpha p23.23.18(6f)$
		$\begin{array}{c} 100xq58.57.55(5e) \\ 5100xp23.23.18(6f) \\ 9100xp19.19.9(6a) \\ 5100xp26.23.17(6f) \\ \varphi = 0 & p= \\ f100xp23.23.17(6f) \\ \end{array}$	Ć.	-			$\begin{array}{c} I = q = -(6e) \\ I = q = -(6e) \\ I = q = -(6e) \\ I = q = -(6e) \\ I = q = q \\ I = q = q \\ I = q = -(6e) \\ I = q = -(6e) \\ I = q = q \\ I = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q \\ I = q = q \\ I = q = q \\ I = q = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\ I = q \\$		100xp25.25.160(6) 50 $p26.$ 1. $2(3f)100xp23.23.17(6f)100xp15.15.18(6f)$
MATING		4 <i>H</i> 26 4 <i>H</i> 27	4 <i>H</i> 28	4 <i>H</i> 29	4 <i>H</i> 31	4 <i>H</i> 33	4 <i>H</i> 37		4H39 4H40

$3H11a^{3} \circ 100xp23.22.17(5f)$ $3H13b^{3} \circ - r (4g)$ $3H2b^{5} \circ 100xp22.15.18(6f)$	$3H11a^6 \circ 100 xq58.58.55(5-6e)$ $$ $3H9c^2 \circ 100 xq58.58.55(5e)$	$3H9c^{1}$ \$\times 100xq58.58.56(6e) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$3H1c^7$ $\bigcirc 100xq58.58.56(6e)$ $3H4c^8$ $\bigcirc 100xq58.57.55(6e)$	$3H5c^{1}$ $\bigcirc 100xq58.58.55(5e)$ $3H15c^{6}$ $\bigcirc 60$ $q58.$ 1. $3(4e)$	$3H15c^{7} \circ - q (3e)$ $3H13b^{2} \circ 70 \ q58. \ 1. \ 1(4e)$ $3H16b^{1} \circ 85 \ q56.55. \ 3(4-5e)$
$3H116^{1}$ & $100xp22.22.15(6f)$ $3H16^{1}$ & $65 r41.50.3(4g)$ $3H1c^{1}$ & $100xp22.22.17(6f)$	$3H2b^{4}$ \$\(\frac{100xq57.56.55(5-6e)}{}\)	$3H2c^{1}$ \$\left\{ 100aq58.58.55(6e) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$3H4c^{5}$ \$\frac{\psi}{95}\$	$3H6b^4$ \$\(\frac{7}{100}xq58.57.55(5-6e)\) $3H16a^2$ \$\(\frac{7}{7}0\) \(q^58.58.\) 2(4e)	$3H38a^2\zeta$ 75 $q61.58.$ 2(4e) $3H15b^2\zeta$ 75 $q58.55.$ 4(4e) $3H15b^3\zeta$ q q q q q q q q q q
$\begin{array}{c} c^2 \neq 100xp15.15.15(6f) \\ a^4 \circ - p (5f) \\ c^2 \neq 100xp26.26.23(6f) \\ a^4 \circ - q = \\ a^4 \circ - q = \\ a^8 = - q \\ a^4 \circ - q = \\ a^4 \circ - q = \\ a^4 \circ - q = \\ b^4 \circ - q = \\ b^5 \circ - q =$	$a^4Q 100xq58.58.57(6e)$ $b^4Q 100xq58.58.57(6e)$ $c^2Q 100xq58.57.60(6e)$ $c^6Q 100xq58.57.56(6e)$ $c^4Q 100xq58.57.56(6e)$ $b^4Q 100xq58.38.56(6e)$ $b^4Q 100xq58.38.38.56(6e)$ $b^4Q 100xq58.38.38(6e)$		$\begin{array}{c} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{4} \\ a^{5} & \sum_{A} a^{5} \\ a^{5} & \sum$	$c^4 \oint IUUx d^5 S S S S S S S S S S S S S S S S S S S$	$a^{2} \xi \ 4p \ q^{3} \cdot 1 \ 1 \ (3e)$ $a^{4} \xi \ 60 \ q^{5} \cdot 55 \ 2 \ (4e)$ $a^{8} - q^{5} \cdot 55 \ 2 \ (4e)$ $a^{8} - q^{5} \cdot 55 \ 2 \ (4e)$ $b^{4} \xi \ 80 \ q^{5} \cdot 55 \ 3 \ (4e)$ $b^{3} \varphi \ 00 \ p^{-}$ $b^{3} \varphi \ 00 \ p^{-}$
$\begin{array}{c} c^1 & \varphi \ 100xp23.23.15(6f) \\ a^3 & \varphi \ 100xp23.23.18(6f) \\ a^7 & \varphi \ - p \\ c^1 & \varphi \ 100xp23.23.18(6f) \\ a^3 & \varphi \ 100xp23.23.18(6fw) \\ a^7 & - q \\ a^3 & \varphi \ 100xp23.23.18(6fw) \\ b^6 & \varphi \ 100xp23.23.18(6fw) \\ b^6 & \varphi \ 100xp23.23.18(6f) \\ \phi \ 100xp23.23.23.18(6f) \\ \phi \ 100xp23.23.23.23.23.23.23.23.23.23.23.23.23.2$	a^{\prime} a^{\prime} a^{\prime} a^{\prime} b^{\prime} a^{\prime} b^{\prime} a^{\prime} b^{\prime} a^{\prime} $c^{6} \neq 100xq^{7}8.58.55(6e)$ $c^{3} \neq 100xq^{5}8.58.55(6e)$ $c^{4} \neq 100xq^{5}8.58.56(6e)$ $c^{4} \neq 100xq^{2}3.15.18(6fw)$ $c^{4} \neq 00 p (alb.)$ $c^{3} \neq 100xq^{5}8.58.55(5e)$ $c^{4} \neq 00 p (alb.)$ $c^{4} \neq 100xq^{5}8.58.55(5e)$ $c^{4} \neq 100xq^{5}8.58.55(5e)$	$a^3 \frac{100 x p_1 19.19.18(6f)}{80 q 58.55.1(3e)}$ $a^3 \frac{100 x p_2 8.55.6(e)}{6}$ $a^3 p_2 p_3 p_3 p_3 p_3 p_3 p_3 p_3 p_3 p_3 p_3$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$a^{3}\zeta$ 60 q57. 1. 1(4ew) $a^{3}\zeta$ 75 q58. 1. 1(4e) a^{7} a^{7}	
$\begin{array}{c} b^3 \neq 100 x p 15.15.18(6f) \\ a^2 \neq 100 x p 23.23.18(6f) \\ b^2 \neq 100 x p 23.23.17(6f) \\ b^2 \neq 100 x p 26.26.17(6f) \\ \vdots \\ a^2 \neq 0 p 37. 1. 144b \\ a^2 \neq 100 x p 23.23.18(6f) \\ a^6 = p = -(6f) \\ b^7 = p = -($	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} c \delta \int IO0xp15.15.186(f) \\ a^2 \delta \int IO0xp15.15.186(f) \\ a^6 \varphi =$	24 \$\to 1000 24 \$\to 1000 21 \$\to 1000 22 \$\to 1000 24 \$\to 1000 25 \$\to 1000 2	$c^2 \neq 100 \text{ mps}$ $c^2 \Rightarrow 66$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} Q 100xp15.15.16(6f) \\ d 100xp23.23.18(6f) \\ d 100xp23.23.18(6f) \\ d 100xp23.23.18(6f) \\ \varphi - P (6f) \\ \varphi - \delta F + 41.1.1.2(3) \\ \varphi 60 F + 4141.1(3.4g) \\ d 100xp23.23.17(6f) \\ - P \\ d 100xp26.23.18(6f) \\ d $			$\begin{array}{c} \varphi \ 100x_{1}^{2}5.5.5(e_{e}) \\ \delta \ - \ q \ - \ - \ (4-5e) \\ \varphi \ 70 \ \rho 23.23 \ 1(4f) \\ \varphi \ 100x_{1}53.57.55(e_{e}) \\ \varphi \ 100x_{2}53.57.55(e_{e}) \\ \delta \ 100x_{2}58.57.55(e_{e}) \\ \delta \ 100x_{2}58.58.55(e_{e}) \\ \delta \ 100x_{2}58.57.55(e_{e}) \\ \delta \ 100x_{2}58.57.55(e_{e}) \\ \delta \ 100x_{2}58.57.55(e_{e}) \end{array}$	$a^{1} \xi 100xp26.23.15(6f)$ $a^{1} \xi 100xp26.23.15(6f)$ $b^{1} \xi 100xp26.23.15(6f)$ $b^{5} = \frac{q}{4} - \frac{q}{4}$ $a^{1} \xi 50 \ q58. \ 1. \ 3(4e)$ $b^{2} \xi 75 \ q57.56. \ 3(4e)$	$a^{\circ} \neq 7$ $a^{\circ} \neq 8$ $a^{\circ} \Rightarrow 8$ $a^{\circ} \neq 8$ $a^{\circ} \Rightarrow 8$ $a^{\circ} \Rightarrow 8$ $a^{\circ} \Rightarrow 4$ $a^{\circ} \Rightarrow 6$ a°
4 <i>H</i> 41 4 <i>H</i> 43 4 <i>H</i> 45	4 <i>H</i> 46	4 <i>H</i> 48	4H50	4H52 4H54	4H55 $4H56$ $4H57$

LATING		Offspi	ING			r.	RENIS		
						Father		Mothe	r
H26 H27	$e^4 \ \ Pinny 58,57,55,5e)$ $a^4 \ \ Jinny p23 \ 23 \ 18 \ 6f)$ $a^6 \ \ Pinny p19 \ 19, \ 9 \ 6a)$ $b^4 \ \ Jinny p26 \ 23,17,6f)$ $b^5 \ \ \ 9a \ \ p37,19 \ \ 1(4a)$ $b^9 \ \ \ \ Proper = -$ $a^2 \ \ Jinny p23 \ 23 \ 17,6f$	$\begin{array}{c} a^2 & 6 & 100 \\ xp23,23,18(6f) \\ a^0 & 9 & 100 \\ xp23,23,17(6f) \\ b^2 & 9 & 100 \\ xp19,19, 6(6a) \\ b^0 & 9 & 45 \\ p26 & 26, 3(3-4f) \\ b^{10} & p - p - q - q \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{b^8}{c^2} \frac{p}{d} \frac{100xp26.23}{18(6f)}$?	å p67,	3 <i>H</i> 4 <i>u</i> ³	\$ 100vp23	3 22 18 6
U28	$e^{i} = p$ $e^{i} \leq 100 e \rho 23,23 \cdot 17 (6f)$ $e^{i} \leq 200 \cdot \rho 19 \cdot 19 \cdot 1, 5 e^{i} f$ $e^{i} \leq 100 e \rho 19 \cdot 19, 9, 6 b$ $e^{i} \leq 100 e \rho 19, 19, 23, 1, 2(3f)$ $e^{i} \leq 100 e \rho 15 \cdot 15 \cdot 17 \cdot 6f$	$\begin{array}{c} \epsilon^4 \supsetneq 100rp23\ 23.18(6f)\\ a^2 \circlearrowleft 100xp19.19,\ 9(5a-f)\\ a^6 \supsetneq\ 50\ p23.\ 1,\ 2(3f)\\ b^4 \supsetneq\ 100xp19,\ 9\ 9(6b)\\ \epsilon^4 \smallint\ 100rp26.23,\ 2(4\ 5f)\\ \epsilon^6 \supsetneq\ 67\ p26,\ 1,\ 2(4f) \end{array}$	c^{b} $\[\]$ $\[\]$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	3 − p	3 <i>H</i> 4 <i>a</i> 4	9 100xp23	3.23.17(6
_	$\mathcal{E}^8 \oplus 100rp23(23.17(6f))$ $a^1\mathcal{A} = 90 - p19(23-2(4f))$ $a^6 \oplus 75 - p15.15-2(4f)$ $a^1\mathcal{E} = 100rp58(57.55(6e))$	$ \begin{array}{c} e' \\ a^2 & 75 & p26, 23 & 2 & 4f) \\ a^6 & 65 & p50 & 1, & 2 & 4f) \\ a' & 100, q58 & 57 & 55 & 6) \end{array} $	a^3 δ δ δ ρ 23.23. $2(4f)$ a^7 Q δ δ ρ 23.23. 1 $4f$ a^3 δ $100xq58.57.55 6c$	a ⁴ \$\delta\$ 65 p26. 9. 1(4f) a ⁴ \$\times\$ 100xq58.57.55(6e)	3H42a	\$ 55 p23.23. 1(2-3f)		 1 ♀ 70 ₽50 ♀ 10011¶56).50, I(4
	a Q 100 (q58,57.55(6e) a Z 100 (q58,58.55 Ge) a Q 100 (q58,58.55(6e)) b Z 100 (q58,58.55(6e)) c Z 100 (q58,58.55(6e)) c Q 100 (q58,58.55(6e))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>H</i> 1 <i>b</i> ³	\$ 100xq57.57 56 5 6c)		\$ 100xq58	***
- 1	$a^{1}\vec{\delta}$ (00 p ~ (alb.) b^{1} ? 100. q 58.58.58(6 ev) $c^{2}\vec{\delta}$ (00 p ~ - (alb.) c^{3} ~ - q ~	$a^{2} \stackrel{?}{\otimes} 100xq58 58.55(6e)$ $b^{2} \stackrel{?}{\otimes} 000 p = - \text{ (alb. } w)$ $c^{4} \stackrel{?}{\otimes} 100xq58.58.55(5e)$ $c^{8} = - p =$	$a^3 \supseteq 100x p15,15,15(6f)$ $c^1 \stackrel{?}{\circ} - q (6e)$ $c^2 \supseteq 00 p (alb_1)$ $c^3 = p$	$\begin{bmatrix} a^4 & 100 x p & 15.15.18 & 6f \\ c^2 & -q &6e \\ c^6 & -q & \end{bmatrix}$	3 <i>H</i> 3b	₫ 100xq58.57.55(Ge)	3 <i>H</i> 11 <i>a</i> · · · · · · · · · · · · · · · · · · ·	°⊋ 100kq57 ∵	57,56 :
.	$a^{1} \stackrel{?}{\circ} 100x_{q}^{4}58.57.55(6e)$ $a^{6} = q =$	$a^2 \stackrel{?}{\circ} 00 \stackrel{?}{p} \text{(alb.)}$ $b^1 \stackrel{?}{\circ} - q \text{(6e)}$ $b^5 \stackrel{?}{\circ} 100xq58.58.55(6e)$	$a^3 \stackrel{?}{\circ} 00 \stackrel{?}{p} (alb_i)$ $b^2 \stackrel{?}{\circ} 100 eq 58.58.55 (6e)$ $b^6 - q$	$\begin{bmatrix} a^4 Q & - & p - & & & 6f \\ b^4 S & on & p & & & (alb.) \\ b^7 & & p - & & & \end{bmatrix}$	3 <i>H</i> 4 <i>h</i> 3	d 100 rq58.58 55(6r)	$3\overset{\cdots}{H}6b^2$	♀ 100xq58 	1,58,55c
	$a^{4}J_{100},q58.58.55(6e)$ $a^{6}Q_{100},cq58.58.55(6e)$ $b^{4}Q_{100},cq58.58.55(6e)$ $c^{2}J_{100},p=$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a^{5} \bigcirc $100xq58.57.56(6e)$ b^{2} \bigcirc $100xq58.57.56(6e)$ b^{6} \bigcirc $100xq57.57.56(6e)$	a 19 160 cp26 26.17 6f) b 2 160 cq58 58,56 6c, c 3 00 p alb,	3 //4b2	3 100xq58 58 55 6c	3 <i>H</i> 6b ³	\$ 100.xq56	 1.57,55 ₁
738	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{a^2}{6}\frac{3}{1000}\frac{100}{926}\frac{26}{26}\frac{18}{6}\frac{67}{6}$ $\frac{a^6}{6}\frac{5}{6}\frac{5}{9}\frac{926}{19}\frac{23}{22}\frac{237}{1000}\frac{19}{126}\frac{23}{23}\frac{18}{18}\frac{67}{19}$ $\frac{49}{1000}\frac{19}{126}\frac{23}{23}\frac{18}{18}\frac{67}{19}$	$c^4 \ \ c^{00} \ p$ alb) $a^{*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>H</i> 2 <i>h</i> 3	₹ 100.cp 22 17 18(6f)	3#1a4 	♀ 100xp26	 1.26,23 (
- 1	β1- ^A ₹ 100 rp26 23 18 6f ₁ ^A § 100 rp23 23.18 6f t ¹ ₹ −60 −p26 −1 −2 3f ₁	d ₹ 100gp23 23 15 6f)	c ² & 100xp23.23.18(6f) c ⁶ & 40 p26, 1, 2(2f)	e of 1001 p23,23 18 6f) ∈ \$ 1001 p26,26 23 6f)		*** *** ***			
	$b^{\dagger} \stackrel{?}{\circ} 0^{\dagger} p26, 1, 2, 3f)$ $b^{\dagger} \stackrel{?}{\circ} 100 xp23.23.17(6f)$	b ₹ 55 p26.26. 1(3f) ₹ 45 p26. 1. 1(3f)	$a^3 \ ? \ 75 \ p26.26. \ 1(4f)$ $b^3 \ ? \ 100xp23.23.15 \ 6f)$	a ⁴ § 100 rp23 23.18(6f) b ⁴ § 100 rp17.15 15.6f) b ¹ £ 100 xp23.23.17(6f)	3H2b3	\$ 100xp22.17.18(6f) \$ 100xp23.23.17(6f)	***	♀ 100xp26 ♀ 100xp15	***

4H41	$b^2 \supsetneq 100ep15 15 15 6t$ $a^4 \nleq 100ep23 23 18 6t$	b ³ Q 100 cp15.15.18(6f) a ² Z 100 xp23.23.18(6f)	$\begin{array}{c} c^{1} \ni 100 \circ p23 \ 23 \ 15 \ 6f \\ a^{1} \notin 100 \circ p23 \ 23 \ 18 \ 6f \end{array}$	$\frac{c^2}{a^4}$? $\frac{100xp15.15}{p}$ 15 6f	3H11b1 3 100xp22 22 15 6/	3 <i>H</i> 11 <i>a</i> ² Q 100.rp23.22.17(5 <i>f</i>)
	a ⁵ ξ 100 τρ23 23.18(5f) b ¹ ξ 100 τρ23.23.18(6f) τ ρ τ	$\begin{bmatrix} a^0 & 9.100x p23.23.17(6f) \\ b^2 & 9.100x p26.26 & 17.6f \end{bmatrix}$	" p p	$c^{2} \ \ p$ $ c^{2} \ \ 100xp26.26 \ 23(6f)$		
4//43	$a^{1/2} = 0.741 + 2.37$ a = 60.741 + 1.3.4a	$a^{2} \stackrel{?}{\circ} - \stackrel{?}{\circ} 4g)$ $a^{0} \stackrel{?}{\circ} 80 p37, 1, 1, 4b,$	$\frac{a^3}{a^7} = \frac{807}{9} = \frac{41.50.}{2} = \frac{2}{49} = \frac{49}{9}$	$a^4 \stackrel{?}{\circ} 100 ep 19.19, 9(4-5b)$ $a^5 - q$	3H1b¹ ₹ 65 r41 50, 3 4q	3H13b ³ ♀ - r - · · - (4g)
4H45	$\frac{a^{1/2}}{a} \frac{1000}{p} \frac{p23}{23} \frac{23}{17} \frac{17}{6f}$	$a^2 \stackrel{?}{\vee} 100xp23.23.18(6f)$ $a^0 = p =$	a 2 100 cp23 23 18 6fw = p + =	a ¹ = p = = = = = = = = = = = = = = = = =	3H1c1 & 1000 p22,22,17 6f ,	3 <i>H</i> 2 <i>b</i> ⁵ ♀ 100xp22,15.18(6 <i>f</i>)
	$\frac{b_7}{b_6} \stackrel{?}{=} \frac{1000}{p} \frac{p26}{23} \frac{23}{18} \frac{18}{66} \frac{66}{p}$	$b^3 = p (6f)$	b) 2 100 èp23 23 18 6f i b p	$b^5 \stackrel{?}{Q} 100 x por r 23.23.18(6f)$ b' = p'		1
11100	$c^{1} eq 100 ip 23/23/15/6t) = c^{5} - p + \frac{1}{2}$	$c^{0} = p$	e ¹ 9 100 ip26 23 18 6f)	10 to 100	3H2b+ \$100 (q57 56.55 5 6e)	3H11a ⁶ 9 100xq58.58.55(5-6e)
41146	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^2 \delta & t00 & p \\ b^2 \delta & 100yq57.55 & 1.5cc \\ b^0 & -p = - \end{bmatrix}$	a 3 100/q58.57 56(5e) b 3 100/q58 57,55(6e) c 3 100/q58 58 55 6e)	a [†] ♀ 100 cg 58 58,57 (6) b [†] ♀ 100 cp 17,17,17 (6) cf) c [†] ₹ 100 cg 58 57 (6) (6)		
4H47	e ¹ & 00 p - − − (alb.) a ¹ & 100xp22.22.18(6f)	c ¹ d = 00 p = 0.4b a ² d 100 cp22 22 15 Gr	e° \$ 100rq57 57 55(5€) a° \$ 100rq57,57 55 6€	-2° ⊋ 100 (q̂ 58 57 56 6e) -25 ⊊ 100 (q̂ 58 58 56 6c)	3H11a ¹ & 100xq57,57,55,5 (6c)	
	$a^{\dagger} Q = 00^{\circ} p = -(\text{alb.})$ $b^{\sharp} Q = 100 e p 19.19 = 8(6f)$ $c^{\sharp} \stackrel{?}{=} 100 e q 57 = 57.56(5e)$	a ⁰ Q m p db c ¹ Q 100x p38 57 55 6 c ³ Q 100x p15 15 18 67	a' p c' ± 100 cp58 57 55 6c c ⁸ ♀ 100 cq58,58,55 6c	b) \$ 100xp23 23 18 6f , c ³ \$ 100xq57 57 55 6c , c ⁴		
4 <i>H</i> 48	$a^{1} \stackrel{?}{\partial} 00 \stackrel{p}{p} = - \text{ (alb.)}$ $a^{5} \stackrel{?}{Q} 100 rp 23 23 18 (6f.)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ¹ δ 00 μ alb in u ¹ ξ 100 η 58,58 56 Ge	$a^4 \stackrel{Q}{>} 00 \stackrel{P}{P} = alh) = b^1 \stackrel{Z}{>} 85 \stackrel{Q}{>} 58 55 - 1 4e$	3H2e ¹ & 100.eq58.58.55(Gr	3H9c1 Q 100xq58.58.56(Ge)
(17 (6)	$b^2 \stackrel{?}{\circ} 100 rp22 22 18 \stackrel{?}{\circ} 6f)$ $c^2 \stackrel{?}{\circ} 100 rp23.23.18 \stackrel{?}{\circ} 6f)$	b ³ & 100 cp23 23 17 6r c ³ & 100 cp17.17. 4 6fw	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ो है 100 हो 58 57 55 6ह। हो दे 100 हो 58 58 55 6	3H3e ⁴ \$ 100 (q57.55,56,6e)	3H7b ⁵ \Q 100,rq58.57.55(5e)
11140	$a^{4} \stackrel{?}{\circ} 100 x p 26, 26 23 \stackrel{?}{\circ} 6f) = b^{4} \stackrel{?}{\circ} 100 x q 58 57, 55 (6e) = b^{5} = q = -$	$\begin{bmatrix} a^{2} & 160 & 757 & 57 & 5a & 5a \\ b^{2} & Q & Q & G_{0} \\ b^{0} & a & a \end{bmatrix}$	a) ₃ 100 rq58 58 55 5c b) 2 100 rq58 58 55c5c; c ¹ 3 100 rq58 58 55c6c;	$a^3 - q - b^4 ? 100xp26 26 23 6t) = c^2 d^2 - q - (6e)$		
4H50	$a^{1} \stackrel{Q}{\circ} 100xq57.57.55(6e)$ $a^{1} \stackrel{Q}{\circ} - q = -(4-5e)$ $a^{6} = q = -$	c ⁴ \Q 100, c ₁ 58 58 55 5c ₃ \alpha^2 \delta \ 70 \q 657,57 \ \Lambda \tau \cdot \\ b^4 \delta \ 100, \cdot \cdot \delta \tau \tau \tau \tau \tau \tau \tau \t	a ³ & 100kp19.19.18(6f, c ¹ & 80 q58,55, 1 3c,	a ¹ Q 100 (q58 56 56(6c) c ² Q 80 (q58,58, 1 4c)	3H4¢ 3 95 q58 55 2(5e)	3H1c ⁷ Q 100xq58.58.56(6e)
4 <i>H</i> 51	$e^3 \ \ 70^\circ \ \hat{p}23.23. \ \ 1(4f)$ $a^4 \ \hat{\sigma} \ 100xq58.57.55(6e)$ $a^5 \ \ \ 100xq57.57.56(5-6e)$	a ² § 100x q57 57 55 5 (e) a ⁸ § 100x p23 23 18 (f)	a) & 100 v j 58 58 55 (6e)	α ⁴ ♀ 100xq58 57 56 6e)	3H1c° & 100.xq58.58.55(6e)	3H4c ⁸ ♀ 100xq58.57.55(6e)
	b ¹ & 100 rq58,58,55(6e) b ⁵ ♀ 100 rq58 57,55(6e)	$b^{1} \stackrel{?}{\partial} 100 \stackrel{?}{vq} 58.58.55 \stackrel{?}{6e})' = b^{6} \stackrel{?}{Q} 100 \stackrel{?}{vp} 23.23.18 \stackrel{?}{6f} =$	$b^3 \notin 100.rq58.57.55(6e)$ $b^7 \otimes 100.rr40.40.37(6g)$	b ¹ & 100 e ₁ 58 58 55(6e) b ⁸ \Q 100xe40 40 37 6q ₁	111	
4 <i>H</i> 52	e ¹ & 100xp26.23.15(6f) a ¹ & 100xq58 57.55(6e) b ¹ & 100xp26.23.15(6f) b ⁵ = a = -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \notin 100xp23.23.18(6\hat{f})$ $a^3 \notin 100xp23.23.18(5\hat{f})$ $b^4 = q = -$	c ⁴ \(\frac{9}{100.xd}, r40, 40, 26, 6q \) = \(\frac{a^4}{2} \) \(\frac{100.xq58}{57.56}, \frac{6q}{16} \) = \(\frac{b^4}{q} \) = \(\frac{q}{3} \)	3H6b ⁴ & 100xq58.57.55(5-6e)	3H5c1 Q 100xq58.58.55(5e)
41/54	$a^{1} \neq -5i q^{2} \otimes -1 -3 + i$ $b^{2} \neq -75 q_{2} 7 56 -3 + i$	$a^{4}\frac{\partial}{\partial t} I m g \dot{q} 58.58.56, 5a$ $a^{2}\frac{\partial}{\partial t} = q^{2} - 4c_{1}$ $b^{3}\frac{\partial}{\partial t} \beta_{3} - q 58.55, 1(3.4e)$	a \Q \tau p \tag{alb.} b \& 05 \q 57. 1. 1(4e)	$b^{1} \stackrel{?}{\circ} 9.5 q57.55, 1.5e) + b^{5} \stackrel{?}{\circ} 95 q57.55, 1(4e)$	3H16a ² & 70 q58.58. 2(4e)	3H15e ⁸ ♀ 60 q58. 1. 3(4e)
4H55	b ⁰ ♀ 73 q58 57 3 4c o ¹ ₹ 80 q58 54 ⊇ 1cc	$\frac{b^{7}}{a^{2}}\frac{\dot{q}}{c^{2}} \stackrel{(n)}{=} \frac{\dot{p}}{q} = -\frac{(alb_{i})}{-(3c)}$	e ⁴ \$ 60 q57. 1. 1(4ew) a ³ \$ 45 q61. 1. 2(3e)	c ³ d 45 q57. 1. 1(3e) a ⁴ Q 60 q58.55, 2(4e)	3H38a ² & 75 q61.58. 2(4s)	3H15c ⁷ ♀ - q (3e)
4H56	$a^5 \stackrel{?}{\circ} 70 \stackrel{?}{\circ} 58 \stackrel{?}{\circ} 1 \stackrel{4}{\circ} 4e) = a^5 \stackrel{?}{\circ} 85 \stackrel{?}{\circ} 957 \stackrel{55}{\circ} 1 \stackrel{4}{\circ} 4e) = a^6 \stackrel{?}{\circ} 60 \stackrel{?}{\circ} 958, \stackrel{?}{\circ} 1 \stackrel{?}{\circ} 4e)$	$a^{b} \stackrel{Q}{\circ} 00 \stackrel{p}{p} = -(alb)$ $a^{2} \stackrel{Q}{\circ} 80 \stackrel{q}{q} 57. \stackrel{1}{1}. \stackrel{1}{1} (4e)$ $a^{6} \stackrel{q}{q} =$	a ³ & 75 q58. 1. 1(4e)	a 5 85 q57.55. 2(4e)	3H15b ² & 75 q58.55. 4(4e)	3H13b ² ♀ 70 q58. 1. 1(4e)
1750-	b ¹ ₹ 80 q58 57 52 4c) b ⁶ ♀ 90 q58 55 1 4c)	$b^2 = 0$ 60 q 58. 1. 1(4e)	$b^{3} \stackrel{?}{\circ} \stackrel{?}{\circ} 80 \stackrel{?}{q} 57.55, 1(4e)$ $b^{7} \stackrel{?}{-} q \stackrel{?}{-} \stackrel{?}{-} \stackrel{?}{-} \stackrel{?}{-}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*** *** *** ***	
4H57	a ¹ ♀ 80 q58 57. 2 ‡ 5e)	b1 & - q (Ge)	h² ♂ 00 p (alb.)	$b^3 \circlearrowleft \theta \theta \stackrel{\alpha}{p} (alb_*)$	3H15b ³ ♂ - q (4e)	3H16b ¹ Q 85 q56.55. 3(4-5e)

W. F. R. Weldon's Records of Mice Matings (continued).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	1(4e)	: :	2(4e)	:	: :	: :	3(3e)	:	: :	:	2(4-5e)	:	: :	1(40)	::	:	2(3e)	:	: :	:	:	3(4e)	:	: :	2(4e)	:	:	: :	
Pathers Apple Pathers Pather		her	:		: :		: :	:	: :		:	: :	:		:	: :			:		:	: :	:	: :		:	: :		:	:	: :	:
Partier 1 (2) Partier 1 (2)		Mot	:	99	: :		: :	:	: :	::45	:	: :	:	85		: :	 9.85	:	:	\$ ¢	:	: :	:	: :	75	:	: :	÷ 75	:	:	: :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RENTS		:	3 <u>H</u> 16b	: :	$3\ddot{H}^{1}c^{6}$: :	:	::	$3\ddot{H}1b^5$:	: :	:	$3\ddot{H}_{40}b$:	: :	3406	:	:		:	: :	:	: :	3H38b	:	: :	3H38b	:	:		:
Prince Quickenino Prince Quickenino Prince Quicket Quicke	m Pa		*		: :	2(3e)	: :	:	: :	1(2-3e)		: :	:	2(4e)	:	: :	1(4e)	:	:	1(2	:	: :	:	: :		:	: :	2(4e)	:	:		:
φ -		ather	:	958.58.	: :		: :	:	: :		:	: :	:		:	: :		:	:		:	: :	:	: :		:	ŀi		:	: :	:	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F	:	· 10	: :	·*0	: :	:	: :	· 40	:	: :	:		:	: :	*0	:	:	**0	:	: :	:	: :		:	: :	· 40	÷	: :	:	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:		: :		: :	:	::	3	:	: :	:	$3\ddot{H}$ 1	:	: :	3.HT	.: (6	:		:	: :	:	: :	3H4(:	: :		:	: :	:	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	- (alb.	1.4(4e)	1. 1(3-4				1(2e)	[. 1(1e) 	1	-(2e)		5. 2(4e)	5. $2(4e)$				- (alb.	1(30)	- (alb.	1. $2(3e)$:	7. 3(4e)	(at)o .	 1(4e) 	0.1	1 -	5.45(5ch)	- (alb.)	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			b	, .			-b					q q	-b				$\frac{q_{-}}{q_{57}}$.			,	910	H 821		, : 7							- 1	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- 19			· *~	as 649	*	00+	: 0+1	60			• 0+	*	040		100	+ ;	: 10	0	+0+	40	:	0+0	+	10	• 0+1	~ K	040	140	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			I	1(3f)	- (alb.)	1(4e)	 _ (4e)	3(30)	1(3-4e)	1(3e)	$\frac{1}{1(1-2e)}$	1	4(4e)	1(4e)		2(4e)	$\stackrel{z(ze)}{55(4e)}$		- (a10.)	- (alb.)	$-\frac{(a_{\rm ID})}{2(3e)}$	- (alb.)	3(3e) 			(a±\0	1(4e)	೧೦	1 -	1	3(4e)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			b	-	- $ d$	$\frac{q}{q}$ 58.57.	a-b	$\frac{q}{a55}$ 1			_				b	$q_{57.55}$.	$q_{58.58.1}$	-b	1 :			-d	q^{58} .									d
OFFERENCE OF STATES AND STATES A	ING		- 99		*	*0		$b^{\prime} \leftarrow - b^{\prime}$ $c^{1} \neq b^{\prime}$	0+		0+				- 5eq	c4 & 85				+00	+ 0+	-0+1	60				10		210	+*0	10	١
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OFFSPR			$\frac{4e}{3f-q)}$	alb.)	- 10)e)	1 1		2-3e)	3-4e)		5-4e)	2e)	1-5e)	1e)	4e)	alb.)	(a) -	-4e)			3e))e)			: 5	2k)		19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 1	8. 4. 4(1 1	1. 2(1. 1) - T	1 1 2	5.55, 1(ē	8, 1, 1(9	8.57. 2(4)) - 1	$8.57. \ 3($) (- 1,0	1 1	33	8.55. 20	$8.57. \ 1$	<u>,</u> 4		7.55.2(1 -	1	8.55. 2(4	5.44. 4(7.44. 4(3 58 55/4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- b -	65	00	80	55	- b -	45	53	40	1 5	00	35	90	1 0	85	86	1	09	55	90	- 65		90	3	1	96	55	1	1 6	,
೫೦೩ ಚಿಚ್ಚ. ೫೮೫ ಬಿಂದ ಕಂತಾಗಳು ಕುಂತಾ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರವಿ ಪ			99	$\frac{\alpha^2}{b^3}$, C ₁	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	62		4. E								270	$\frac{\alpha^{6}}{5e}$	$\frac{1}{b}$	$4e$ $\alpha^2 d$	+c/ a +	$4e) b^6 \stackrel{?}{5}$	 		Z Z	24	98	. 22.	2 2 2 2 2 3	92	(. 20 42	<u> </u>
೫೦೩ ಚಿಚ್ಚ. ೫೮೫ ಬಿಂದ ಕಂತಾಗಳು ಕುಂತಾ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರತಿ ಪ್ರವಿ ಪ			1 1	\sim				1 1	1. $1(4e)$	1. 1(2-1)	1. $1(3e)$ 1. $1(2e)$		1. 2(3-4	7. 2(4e)	5. 1(4e)	(±e)	$5. \ 2(4e)$	1. $1(4e)$		6. 1(3–	1. $1(2e)$	(3-	$\frac{1}{1}$, $\frac{2}{3}$		1. $2(3e)$ 1. $2(3e)$	7. 3(4e)	1 5	1. 1(3e)	:0. 1(4 <i>c</i> / 	5. 3(4e)	14	
ಕಂಡಿಯ ಕಂಡಿಕ ಕಂಡಿಯ ಕಂಡಿಯಿಂದು ಕ್ರಾಪ್ ಪ್ರತಿಕ್ಷಣೆ ಪ್ರತಿಕ್ಷಣೆ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಟಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರತಿಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಷಿಸ್ಟ್ ಪ್ರಕ್ಷಣೆ ಕ್ರಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್ಟ್ ಪ್ರಕ್ಟಿಸ್		1							958.		40 900. 30 958.	$\frac{d}{dz}$	20 gos. - a	75 958.5 70 958.5	60 958.E	9- 9-	90 458.E	85 q57. 85 q58.7	- 6 -	80 957.F	45 958.	- b -	55 q58.	- d - d	$55 ext{ } q58.$ $50 ext{ } q58.$	80 957.		55 458.				7
LATING LH57 LH58 LH69 LH61 LH62 LH64 LH64																																
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mating		4H57	4H58		4H59				4H60				4H61			4H62			4H63				, 440	4H64			4H65				

$3H38b^5 \ \varphi \ 85 \ q57.55. \ 4(4e)$ $3H38b^4 \ \varphi \ 80 \ q57.55. \ 6(4e)$ $3H19b^1 \ \varphi \ 100xp39.39.34(6b)$	$3H3b^{8}$ $\bigcirc 100yp23.23.18(6fw)$ $3H14a^{5}\bigcirc -q(5ch)$ $3H57a^{5}\bigcirc 80$ $p39.39.$ $4(5b)$	$3H52\alpha^2 \downarrow 100zp 39.35. \ 3(5b)$ $$ $3H54c^3 \downarrow 100zp 35.35. \ 9(5b)$ $3H54c^3 \downarrow 100zp 35.35. \ 9(5b)$	$3H64e^3 \supsetneq 100xp23.23.17(6f) \ 3H64e^4 \supsetneq 100xp13.10.10(6f) \ 3H67e^3 \supsetneq 1100xq58.58.55(6e) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
$3H6b^{5}$ \$ 100xq57.57.56(5e) $3H13b^{1}$ \$\$ 60 q58.55. 2(3e) $$ $3H27b^{1}$ \$\$ 30 p39. 1. 1(2b)	$4H10b^{1}\zeta$ 90 p26.18. $2(4fw)$ $3H14c^{1}\zeta$ 40 q45. 1. $2(3ch)$ $3H53a^{2}\zeta$ 100zp 39.39.29(5b)	$3H57a^{1}$ \$\frac{7}{100}zp\$\frac{39.35.28(5b)}{9.35.28(5b)}\$	$3H60a^3 \xi$ 65 p23.15. $1(4f)$ $3H60a^1 \xi$ 50 p23.23. $1(3f)$ $3H71c^1 \xi$ 100 xq 58.57.55(6e)	$3H71.^3$ \$\frac{100xq57.57.52(5e)}{}\$ 3H70e ¹ \$\frac{65}{65}\$\$ q58. 1. 1(3e)} 3H59a ¹ \$\frac{100xq41.41.50(6e-g)}{}\$
		£ 28 24. 3 C C C C C C C C C C C C C C C C C C	100xp23.23.18 $100xp23.23.18$ $100xp23.23.18$ $100xp26.26.26$ $100xp13.13.18$	$a^{4}\zeta = 00 \ p = (alb.)$ $a^{4}\zeta = 90 \ q58.57.55(5e)$ $b^{2}\zeta = 100xq58.57.55(6e)$ $c^{3}\zeta = 80 \ q58.60.55(6e)$ $c^{4}\zeta = 80 \ q58.60.60(3e)$ $a^{4}\zeta = 100xp23.23.18(6f)$
* \$\frac{\pi}{\pi} \frac{\pi}{\pi} \frac{\pi}{	$\begin{array}{c} c^{2} \leqslant I \cdot U02p33.33.3(15b) \\ c^{3} \leqslant -5 P^{2} \\ c^{3} \leqslant -9 \cdot 23.33.18(4fv) \\ b^{2} \leqslant I \cdot U02p23.23.18(6fvv) \\ \cdots \\ c^{3} \leqslant - q^{-} (4ch) \\ b^{2} \leqslant 00 p^{-} (4ch) \\ b^{3} \leqslant 00 p^{-} (4ch) \\ b^{3} \leqslant 75 p39.35. 3(5b) \\ b^{3} \leqslant - p^{-} (5b) \\ b^{3} \leqslant - p^{-} $	$\begin{array}{c} c^2 \neq 80 \ \ p35.35.\ 3(5b) \\ a^4 \neq 100cp35.36.30(5b) \\ b^2 \neq 100cp39.35.28(5b) \\ b^6 \neq 75 \ p36.36.\ 3(5b) \\ a^3 \neq 55 \ p35.36.\ 3(4b) \\ a^7 \neq 80 \ p35.35.\ 3(5bw) \\ a^3 \neq 100cp26.23.15(6f) \end{array}$	rp23.23 rp26.26.2 rp23.23. rp26.26. rp213.13. rp13.13. g61.60.	$c^{2} \leq 90 \ q.98.00. \ 2(9e)$ $c^{5} \leq 100 \ q.97.55.56(4e)$ $b^{4} \leq 100 xq.57.55.56(4e)$ $b^{5} \leq 100 xq.88.55(5-6e)$ $c^{4} \leq 100 xq.58.88.55(5-6e)$ $a^{3} \leq 100 xq.58.89.55(5-6e)$ $b^{2} \leq 100 xq.58.89.55(5-6e)$
$a^2 \le 100xq58.57.5$ $a^6 \ne 100yq58.58.5$ $b^1 \ne 40$ $q^6 = 1.1.5$ $a^5 \ne 60$ $a^7 = 1.1.5$ $a^6 \ne 90$ $a^5 = 1.5$ $a^5 \ne 100xp39.39.5$ $a^5 \ne 75$	$ \begin{array}{c} c < L (0.02p 53) \cdot 39 \cdot 51 (00) \\ c < d (1002p 39) \cdot 39 \cdot 28 (5b) \\ a^2 d $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^4 \leqslant 100xp23.23.15(6f)$ $b^5 \leqslant 100xp25.23.15(6f)$ $a^2 \leqslant 100xp26.26.15(5f)$ $a^2 \leqslant 100xp15.15.15(5f)$ $b^4 \leqslant 100xp23.23.18(6f)$ $a^2 \leqslant 100xp15.15.10(6f)$ $a^2 \leqslant 6 g61.60.1(3e)$ $a^2 \leqslant 6 g61.60.1(3e)$	$c^{4} \notin 100 \times p = -(400.)$ $c^{4} \notin 100 \times p = -(400.)$ $a^{2} \notin 100 \times p \approx 3.23.15 (6)$ $b^{4} \notin 100 \times p \approx 3.23.15 (6)$ $c^{3} \notin 100 \times q \approx 8.58.55 (6e)$ $a^{2} \notin 100 \times q \approx 8.58.56 (6e)$ $a^{2} \notin 100 \times q \approx 9.56 \times 60 (6e)$ $b^{4} \notin 100 \times q \approx 9.56 \times 60 (6e)$ $a^{2} \notin 100 \times q \approx 9.56 \times 60 (6e)$ $b^{4} \notin 100 \times q \approx 1.60 \times 60 (6e)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c' $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			(a)
4H67 4H67	4 <i>H</i> 71 4 <i>H</i> 73	4H76	4 <i>H</i> 79 4 <i>H</i> 80	4H8± 4H85 4H87

, 1	-	w, F.	R. WELDON'S Records	s by mice mainings (
MATING		Orese	RING			Parents —	
-					Father 	Mother	!
4 <i>H</i> 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		b ⁷ - q			
4H58	$a^1 \stackrel{?}{\mathcal{F}} 35 \stackrel{?}{p} 23. 1. 2(2f)$ $b^2 \stackrel{?}{\mathcal{F}} p = -(3f)$ $b^0 = p =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^4 - q \cdot$	$b^1 \delta = 00 \ p + \text{(alb.)}$ $b^5 = - p$ $c^3 ? 85 \ q58. \ 1. \ 4(4e)$	3H1c ² 5 70 q58.58, 2(-		1(4e)
4 <i>H</i> 59	$\begin{bmatrix} b^0 & -ppppppp$	$e^{\delta} = q$	$c^{0} - q$	a ⁴ of 70 g57. 1. 1(3 4e)	3//15c3 & 50 q58. 1, 2(3	3 <i>E</i>) 3 <i>H</i> 1 <i>e</i> ⁸ 9 <i>65 q</i> 58.55.	2(4e)
	$\frac{g^{5}}{b^{4}}$, $\frac{\pi}{5}$, $\frac{g}{g}$ 57, 57, $\frac{1}{3}$ 36, $\frac{1}{b^{4}}$ 37, 75, $\frac{g}{g}$ 58, $\frac{1}{1}$, $\frac{1}{1}$ 36	$\frac{d^2q}{ds} = \frac{80}{3} \frac{q}{3} \frac{80}{3} \frac{3}{3} \frac{1}{3} \frac{1}{3} \frac{3}{3} \frac{3}{3}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{a^8}{b^1} \delta - \frac{q}{q} - \frac{-}{-} (4e)$	***		
	b q b q c 2 10 78 1 1 b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3(3e) 1 3(3e)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			* .
4 1160	et 9 75 q58 55, 3(4-5e) q1 d5 q58, 1, 1(2 3e)	e g	w^{i} $\delta = 0$ $\psi = 0$ ω^{i} $\delta = 0$ $\delta = 0$ $\psi = 0$ $\delta = 0$ $\psi = 0$ $\delta = $	$a^{\frac{1}{4}}$ \bigcirc 25 g 61. 1. 1(2 e)	3H15& 3 80 q58, 1, 1(444 104 144 444	3(3e)
	$\begin{bmatrix} a^a & 50 & q58, & 1, & 1 & 3c \\ L^2 & 30 & q58, & 1, & 1 & 1 & 1 \\ L^6 & - & a & - & - & - \end{bmatrix}$	$\begin{bmatrix} a^{0} \hat{\nabla} & 45 & \hat{q}58 & 1, & 1(3e) \\ b^{1} \hat{\mathcal{S}} & - & q - & - & (3-4e) \\ b^{7} & a - & - & - & - \end{bmatrix}$	$b^4 = 30 \ q61.61, \ 1(1-2e)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*	*** *** ***	***
1	$\frac{1}{4} \stackrel{?}{=} \frac{57}{9} \stackrel{?}{=} \frac{958}{9} = \frac{1}{2} \cdot \frac{2(3-4e)}{4}$	c ² d 65 q58.55, 1(3 4e)	e ⁷ - 9	$e^{A} \delta = \hat{q}(2e)$	lugge ungger		
4 //61	a13 75 q58 57, 2(4e) ary 70 q58 57 1 b b1 7 60 q58 55 1 b	$\begin{bmatrix} a^2 & 35 & 458 & 1 & 1(2e) \\ a^4 & 95 & 458 & 55 & 4-5e \\ 4^2 & 90 & 458 & 57 & 2(4-5e) \end{bmatrix}$	q = -	$a^4 \circ 60 \ q58.57. \ 3(3e)$ $a^8 = q =$ $e^1 \circ 90 \ 758.75 \ 274$	3H15c ² f 65 q58,58, 2(4e) 3H40b ⁶ ♀ 85 q58,56	24.5
	1 3 85 438 77.55 b.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e ⁴ & 85 \q	ල් දී 60 95555 වූ 1 එ			
41/62	$a^{1} \stackrel{?}{\circ} 90 q58.55, 2(4e) = a^{5} \stackrel{?}{\circ} 1 1 1 4$	$a^{a} \stackrel{?}{\circ} 85 \stackrel{?}{\circ} 958 \stackrel{?}{\circ} 57. \stackrel{?}{\circ} 3(4e)$	$\begin{vmatrix} a^3 & 95 & q58.58.55(4e) \\ a^2 & -q & \end{vmatrix}$	$a^4 \ \ 85 \ \ q^5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3₩15c ¹ ₹ 60 q58, 1, 1(1 4
4//63	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} b^4 \delta & \theta \theta & p & \cdot & \text{(alb.)} \end{vmatrix}$ $\begin{vmatrix} a^4 \delta & \theta \theta & p & - & - & \text{(alb.)} \end{vmatrix}$	$b^5 \circ 90 \ q58.58. \ 2(5e)$ $m^4 \circ 90 \ p = - \text{(alb)}$	3H4c ⁴ & 45 g58.58. 1((2 3e) 3H40b ⁷ Q 65 y58 57	2 3e
	$\frac{ar_{+}^{2}}{b^{1/2}} \stackrel{50}{\neq} \frac{728}{4^{5}} \stackrel{57}{\neq} \stackrel{3}{\Rightarrow} \stackrel{3}{\downarrow} \stackrel{4}{\downarrow}$	a ^e ♀ 60 q58, 1, 3(3-4e) b ² ♂ 55 q58,55, 2(3e)	$\begin{bmatrix} a^7 & 00 & p \\ b^3 & 00 & q58.57, & 2(3e) \end{bmatrix}$	$a^{h} = q = -$ $b^{4} \oplus 60 \ q58. \ 1. \ 1(3e)$			
	$\begin{bmatrix} b & & q & & 3 & b \\ -1 & 2 & 0 & \rho & & \text{i.b.} \\ c^5 & 2 & 55 & 958 & 1, & 2(3c) \end{bmatrix}$	$b^{*} \circ \circ \circ g \circ q 58.57, \ 1(4e)$ $c^{2} \circ \circ \circ \circ q \circ (2-3e)$ $c^{6} \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ$	$ \begin{vmatrix} b^{\bar{i}} & Q & 000 & \hat{p} = - & \text{(alb.)} \\ e^{3} & 55 & q58, & 3, & 3, 3e_{j} \\ e^{\bar{i}} & - & q & - & - & - \end{vmatrix} $	$c^{1} \stackrel{\circ}{\beta} \begin{array}{cccccccccccccccccccccccccccccccccccc$			• • •
4 <i>H</i> 64	$\frac{d^{9}}{d^{1}} \frac{q}{d^{1}} \frac{q}{d^{2}} = \frac{1}{35} \frac{q}{958} \frac{1}{1} \cdot \frac{2(3e)}{1}$	u ² \(\text{90 } \text{27.55. } \(2(4-5e) \)	a ¹ Q 65 q58. 1. 1(4-5c)	a ⁴ 9 65 q58,57, 3(4e)	3H40b ¹ & 90 q58.55. 2((4e) 3H38b ³ ♀ 75 q58.57.	3(4e)
	$a^{5} \stackrel{?}{\downarrow} 50 \stackrel{?}{q}58 \stackrel{1}{\downarrow} 2(3e)$ $b^{3} \stackrel{1}{\downarrow} 80 \stackrel{?}{q}57.57. 3(4e)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ b^{5} - q$	$b^{2} \stackrel{\bigcirc}{Q} = 60 \stackrel{}{q}58.57. \ 3(4e) = b^{0} = -q = - = - = c^{2} \stackrel{\bigcirc}{Z} = 75 \stackrel{\bigcirc}{q}58.55. \ 1(4e) = - = - = - = - = - = - = - = - = - = $			
47765	$e^{0} \pm \frac{75}{25} \frac{758}{758} \frac{55}{15} \frac{1}{13} \frac{3}{4}e^{0}$ $e^{0} \frac{1}{c^{2}} \frac{55}{55} \frac{758}{958} \frac{1}{15} \frac{1}{1(3e)}$	(a- ♀ 90 q58 55, 2,4e)	$u^{2} = 27 \ q58.55, \ 3(4e)$	a ⁴ ¥ 90 q58.55, 2(4e,	3H14b1 & 65 q58,58, 20	(4e) 3H38b ¹ Q 75 g58.57.	2(4e)
	$a^{5} \circ 75 \circ 45.45. \ 1(4ch)$ $a^{9} = p = -\frac{1}{2}$ $a^{1} \circ 90 \circ 55. \ 2(4c)$	$\begin{bmatrix} a^0 & 90 & q55 & 14 & 4(4 & 5eh) \\ b^1 & 2 & 55 & q57, 44 & 4(4eh) \\ b & 5 & 7 & 9 & 9 & 9 & 9 \end{bmatrix}$	$b^2 \ ? \ 70 \ q57.58. \ 1(4ch)$	a ⁸ Q 00 p (alb.) b ³ d 55 q58.58. 1(4e)			
	b^4 \$ 80 q58,55, 3(4e) b^8 \$ 00 p — (alb.) e^3 \$ 95 q58,55, 4(4e)	$ \begin{vmatrix} b^5 & -q & -(3e) \\ b^6 & -q & \\ -q & \\ -q & 95 & q58.58.55(4e) \end{vmatrix} $	$\begin{bmatrix} b^{0} & d^{0} & p & - & \text{(alb)} \\ e^{1} & d^{0} & q58.57. & 3(4e) \\ e^{5} & - & p - & - & - \end{bmatrix}$	$b^7 = 95 - 945.45.45(5ch)$ $c^2 = 90 - 96 - 96$	*** *** ***		
		_		γ-			-
1. I fine		ett aj 8 955 16	'a'& 1009g58 57.55 5c)	Marian in the state of	3H6b & 1001y57.57.560	5c) 3H38b*\C 85 q57,55.	la fan
477100	$a^{1} \stackrel{?}{\circ} 100 rq 57 72,35 7c,$ $q = q = -(6e)$	be 1 10 10 1 1 2 30	a^{\dagger} § 80 $q_0 8.57$ 1(4c)	a [*] \$ 1, 7 1 1 1 3 b [*] \$ 1000 gas 18 55 ac			4147)
47/67	ht : 1000 f57 58 55 to at 1 : 758 7 2 3 40 at 1 : 701 1 1 36	$\frac{h^{r}}{a^{2}} = 60 \frac{q}{r} 41, \ 1 - 2 \ 3 \rightarrow r$	$f = \frac{1}{4} \cdot $	$a^4 \stackrel{?}{Q} = 85 \ q58.58, \ 2(4r) \\ b^2 \stackrel{?}{\beta} = 75 \ p23, \ 1.18(3-4f)$	3//13/13 an 958,55, 20	3e 3//38h + 8 - 207 55	G, 4e)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 P 15 P	h q	$b^{0} = q$			
4.7 fees	1 5 45 as 1 1 50	C + C 1/18 7 3 4 C + m y 8 8 50 1 50	() II 1 1 3g	# \$ 80 755 57 ± 4 0	3H27b1 & 30 p39, 1, 1(all allentic a con on on	
47/69	at 3 poorpan a n. 9 ab a 4 sa pan an 28 56 - a n.	af 4 100 bj39 39 36 5bs af 4 - 15 p3 139 98 5b b 3 100 bj. 139 3 15b		$a^{6} = p = b^{4} 2 100 \eta_{f} \approx 15.14 5 f$	311210-6 30 pss. 1. 10	$(2b) = 3H19b^{4} \oplus 100\tau_{P}39.39$:	. 14.10
	$\frac{1}{c^{1/2}} = \frac{50}{7} \frac{739}{2939} \frac{39}{30} \frac{30}{5} \frac{56}{5}$ $\frac{1}{c^{1/2}} = \frac{5}{7} \frac{739}{30} \frac{3}{35} = \frac{3}{3} \frac{16}{16}$	is 1 100 i p30 30 31 Gb 201 100 i p30 30 28 5b	ε - ₹ 160 [p39 33 30 ab -] '	e 3 80 p39.35. 6(5b)		Water at the second	
4//71	$\begin{bmatrix} a & \uparrow & \downarrow / 23 & 1 & 1 & 2 t a \\ \uparrow & \downarrow & / & 4 t \\ b^{1} & \downarrow total p 2 3 & 23 & 15 & 6 t a \end{bmatrix}$	E t 20 7 20 23, 1(4fic) E t 20 7 20 15 1 3 4m	$b^2 \circ 1000 / 23.23.18.07$	$a^4 \bigcirc 65 \ p26, \ 1, \ 1(4fw)$ $b^3 \bigcirc 100xp19.23.18(6fw)$	41/10b ₹ 50 p26.18 2	3 <i>H</i> 3 <i>b</i> * ♀ 100yp23 23	18(6fw
4//73	$\frac{3}{2} = \frac{3}{2} \frac{1}{12} \frac{3}{12} = \frac{3}{2} \frac{1}{12} \frac{1}{12} = \frac{3}{2} \frac{1}{12} \frac$	0 + 10 q 20 h 3 4ch,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3H14c1,7 40 q45, 1, 20	$(3ch) 3H14a^6 \mathcal{Q} = q = -$	- (5ch)
47/74	$b_{-\pm}^{1} = 80 \text{ g} 44 44 - 3 + a$ $a_{-5}^{1} = 80 \text{ g} 39 39 39 56$ $a_{-5}^{2} = 0 \text{ g} 313 (28 56)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h^0 = \theta \theta \rho \text{(alb.)}$	$\begin{array}{c} \dots \\ a^{\frac{1}{4}} \ \ 2\ 100zp\ 39\ 39\ 28(5h) \\ h^{\frac{1}{2}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	31153a ² & 1002p39.39.29	(5b) 3H57ah Q 80 p39.39.	4(5b)
	$\frac{b^4 + b \cdot c_f}{b^8} = \frac{3 \cdot 35 \cdot 3 \cdot 56}{f}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{I}{1} = \frac{P}{4} = 80 \frac{P}{P} 35/35/3 \text{ alo}$	$\frac{b}{c} + \frac{p}{4} \frac{p}{100 \ p39} 35 30(5b)$			
4/175	$\frac{d^{4}z^{4}}{dt} = e^{i}\frac{1}{2}36.36 - 1.5b$ $\frac{d^{4}}{dt} = \frac{t^{2}}{1}30.35.28.5b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a) * 100 p35 36 30 5b b = t 100 p39 35 28 5b	b \(\frac{1}{2} \) 80 \(p40 \) 36.28\(5b \) b \(\frac{1}{2} \) 80 \(3H57a ¹ & 1002p30 35 28		3(5b)
	$\frac{b^{\alpha}}{c^{1}} = \frac{p}{c^{3}} = \frac{1}{3} \frac{1}{(5b)}$	2 80 p 15 3 r 3 5 b	e t 25 β3630 3656	c¹ ♀ 80 µ39.39.28(5b)			
1//76 1//77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ² 7 - 75 ² p35 35 - 4 5h a ³ 4 1004p35 35 28 5h a 2 1004p1a 1a 10 6f)	$a \not\geq 55 \ p35.80, \ 3(4b)$ $at \ 9 \ 50 \ p35.35 \ 3(5bw)$ $at \ 9 \ 100 \ cp 26.23, 15.67$	$a^4 \stackrel{?}{\circ} 100xp35.35.30(5b)$ $a^8 \stackrel{?}{\circ} 15 p39, 1, 1(1bw)$ $a^4 \stackrel{?}{\circ} 100xp15.15.15.66)$	3H53b ³ & 100zp35,35,30, 3H70b ¹ & 100xp15,15,18		142 1
	b 100 / 23 23 15 ()	b + 1 m p 15 15.17 61	$b^2 \neq too(p23, 23.17/6f)$	$b^3 \ 3 \ 100 x p 23, 23.18 (6f)$	*12 241 114	***	
17/79	$\frac{a^{1/2}}{a} \frac{1000 p_2 3}{p} \frac{23}{23} \frac{15}{15} \frac{5t}{5t}$	as 2 1000 p26 26 15 5f		a - p	3H60a ³ & 65 p23.15, 1 3Hcom ³ & 50 p23.23 1	711 111 111 111	
	0 2 100 pl5 15 10 66 x	ht 1 100 ip 3 23 18 6/ i J. 100 ip 15 15.10 6/	$h_{\tau} \stackrel{\text{def}}{\neq} 100 e \mu 23.23.15(6f)$ $h_{\tau} \stackrel{\text{def}}{\neq} 100 e \mu 26.26.15(6f)$ $e^3 \stackrel{\text{def}}{\neq} 100 e \mu 13.13.15(6f)$	¹ a ¹ ♀ 100xp23 ±3 15 67 b ¹ ♀ 100xp26 ±6 ±3 67 c ⁴ ♀ 100xp13.13.15(5f)			
17752	a 2 160 a g 58 57 55 66 b - ± 85 g 61.60 3 1 50	$b^3 \circ \theta \circ p = -(alb)$	a^{3} Q 85 q61.60, 2(4e) a^{3} Q 90 q58.60, 2(5e)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3H71e [†] ₹ 100 rq58 57 55 	6r 3H67r3⊋ 100 cq58 583	55 (6)
17/×1	$c^{3} \otimes 100xq60.57.55 \text{ to}$ $a^{4} \stackrel{?}{\otimes} 100xq58.57.55 \text{ to}$ $a^{4} \stackrel{?}{\otimes} 100xq58.63.55.5$	$e^4 \lozenge 100xq58.60 55(6e)$ $a^2 \circlearrowleft 100xq58.57 55(6e)$ $a^4 \lozenge 100xp23.23.15(6f)$	$c^5 \subsetneq 00 \ p = (all h)$ $a^3 \stackrel{?}{\circ} 100 trq 57.55.56 (6e)$ $b^1 \stackrel{?}{\circ} 60 \ q61, 1, 1 (3e)$	a ¹ \$ 90 q58 57 55(5c) b ² \$ 100xq58 57 55 6c.	3H71c3 & 100xq57.57.52		56(6e)
Ct 1 after	# 1 00 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= b ⁴ ♀ 100 è ₇ 58,58,55(€e) = c ∓ 100 c ₁ 55 58 60 €c	b ⁵ Q 100xq58.5× 55 5 · 6e) e ⁴ Q 100xq58.60.55(5 · 6e)	e ¹ ₹ 100±958,60,55 G e ⁴ ♀ 80 958,60,60(3e)			
4//85	at 1005, 22 22 17 ta	$a^{g} \stackrel{?}{=} 100xq61.61.60(6e) b^{1} \stackrel{?}{=} 100xq61.61.60(6e)$	$a^3 \stackrel{?}{\otimes} 100 \stackrel{?}{x} p 18.15.15 (6f)$ $b^2 \stackrel{?}{\otimes} 100 \stackrel{?}{x} q 61.60.60 (6e)$	a ⁴ Q 100xp23.23 18(6f)	3H70c 5 65 q58, 1, 10 3H59a 4 100ro41 41.50	(3e) 3H45e ² \(\hat{2}\) 100 eq58.58 : \(\hat{3}\) (6e-g) 3H59e ⁴ \(\hat{2}\) 80 \(\tau 41.50\).	
- 44 - 15			***		0110ma-6 1004q41,41.00		1(49)

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Mother	$4H17a^3 + 100xp23.23.18(6f)$	$4H22a^{6} \supsetneq 100xp23.23.18(6f)$	$4H20a^4 \ominus 100xv23.23.15(6f)$		1 Honob 0 100mm10 92 15/8£)	$4H27a^{4} + 100xp23.23.18(5f)$: : :	$4H27a^{6} \updownarrow 100xp23.23.17(6f)$		$4H19a^{\circ} + 30 pz3. 1. z(z-3f)$:		$AH4a^4 + 9100xq58.57.55(5e)$	$4H2a^7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$: :	4H7a ² \$ 100xq58.57.56(5-6e)	: : : : : : : : : : : : : : : : : : : :	$4H24a^2$ $\stackrel{\cdots}{\downarrow}$ $\stackrel{\cdots}{\downarrow}$ $\stackrel{\cdots}{\downarrow}$ $\stackrel{\cdots}{\downarrow}$ $\stackrel{\cdots}{\downarrow}$ $\stackrel{\cdots}{\downarrow}$	$4H26a^{5}$ $\bigcirc 100xq58.58.56(6e)$		$4H25a^2$ $\bigcirc 100xq58.58.55(6e)$				$ 4H10a^{8}$ \circlearrowleft 55 q58. 1. 2(3ew) $ 4H1a^{6}$ \circlearrowleft 100xr41.41.50(6q)		:
PA	Father	$4H17 \begin{cases} a^1 & \text{d} 100ap23.23.18(6f)$ \\ a^2 & \text{d} 100xp26.26.17(6f)$ \end{cases}$	$4H27a^2 & 100xp23.23.18(6f)$	$4H17a^{4} \stackrel{?}{\swarrow} 100xp23.23.18(6f)$		(7) 4 108 com 001 4 108 cm	$4H15a^2 + 100xp23.23.18(6f)$		$ 4H4a^{1} \lesssim 100xp23.23.18(6f)$		$4H17a^{2}\beta 100xp26.26.17(6f)$: : : : : : : : : : : : : : : : : : : :		$4H1a^{1} \iff 100xq58.57.55(6e)$	$4H1a^2 \iff 100xq58.57.55(6e)$:		$4H1a^3$ \$ 100xq58.57.55(6e)		$4H7a^{1}$ \$ 100xy58.57.55(5e)	$4H24a^{1} \lesssim 100xq58.57.55(5-6e)$:	$4H25a^{1} + 100xq57.57.56(6e)$				$4H13\alpha^4 \zeta - q (3-4ew) + H12b^1 \zeta 65 r41.50, 2(3-4a)$:
		$a^4 \dot{\mathbb{Q}} I00 x p 23.23.17 (6f)$	$a^{3} = 3100xp24.24.17(6f)$	$ a^7 - p - (6f) $ $ a^4 - 100xp15.15.15(6f) $	$b^3 \neq 100xp26.23.15(6f)$	7 100 m 93 93 15(8.f.)	$a^4 - p $	(fa) 01.02.02.02.00.01 \$ -0	$a^4 & 100xp26.26.23(5f) \\ b^2 & 100xp23.23.17(6f)$		$a^4 \not\in 100xp22.22.18(5f)$ $b^3 \not\in 100xp26.23.17(5f)$	$c^{1} = b^{-} - (6f)$	((n)or.oz.ozdmoor ± -2	$a^{4} \uparrow 100xq58.58.55(6e)$	a^{4} \$ 100xq58.57.55(6e)	$6^2 \lesssim 100xq57.56.55(6e)$	$e^{5} \leq 100xq58.57.56(6e)$	$a^{4} \subsetneq 100xq58.58.55(6e)$	$b^4 - q$	$a^{4} \stackrel{?}{\circ} 100xq58.57.56(5-6e)$	$a^4 - q$	\$ 100g	a4 & 100xp37.37.18(6f)	a ⁸ - p	$c^2 \neq 100xq58.57.55(6e)$	2100xp22.22.18(6f)	(i)	(60)	0 \$ 10000 OUT 41.41.4000
FFSPRING		$a^3 \not = 100x \mu 26.26.23(6f)$	$a^2 = 100 x p 26.26.23(6f)$	$ a^6 \bigcirc 100xp23.23.17(6f)$ $ a^3 \bigcirc 100xp23.23.17(6f)$	$b^2 \nleq 100xp22.22.17(6f)$	3 4 100 mm 99 99 15(8+)	$a^3 \bigcirc 100xp26.23.17(6f)$ $b^3 \bigcirc 100xp26.23.17(6f)$	(/o)er.ez.ezdroor ± -o	$a^3 \not\in 100xp23.15.17(6f)$	$b^{5} \stackrel{Q}{\circ} 100xp26.23.17(6f)$	$\begin{vmatrix} a^3 & 95 & p15.15.18(5f) \\ b^2 & 100xp23.23.15(6f) \end{vmatrix}$	$b^6 - p $	$\begin{vmatrix} c^2 & 100xp20.23.10(0f) \\ c^8 & -p \end{vmatrix}$	$a^{3} \stackrel{?}{\varsigma} 100 \stackrel{?}{xq} 57.55.55(5e)$	$a^{3} = 4 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	$ b^1 \le 100xq57.56.55(6e)$	$c^{4} \nleq 100xq55.95.90(9e)$	a ³ £ 100.xq57.57.55(6e)	$b^3 - q$	$a_3^3 \not = 100xq58.57.56(6e)$	$\begin{vmatrix} a' & -p \\ a^3 & 100xq58.57.55(6e) \end{vmatrix}$	b3 \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fr	$ a^2 \neq 100xq58.58.55(5e)$ $ a^3 \neq 100xq58.57.56(6e)$	$a^7 \not \in 100xp15.15.18(6f)$	6 5 100xp17.17.18(6f)		$a^3 \diamondsuit 45 q58. 1. 1(3ew)$	$b^1 \neq 100xr41.41.26(5g)$	0 7 INUAT 41.41.20(5-09)
OFFSI		$a^2 \neq 100 x p 23.23.22 (6f)$	$a^{1} {\zeta} 100 xp 13.13.15 (6f)$		$b^1 \leqslant 100xp22.15.15(6f)$		$a^2 \oint 100x p^{13.13.19(9)}$ $a^2 \oint 100x p^{23.23.15(6f)}$ $b^2 \neq 100x p^{23.23.15(6f)}$	(6))), restendant 9 -0	$a^2 \stackrel{?}{\sim} 100xp23.23.15(6fw)$	$b^4 \stackrel{\downarrow}{\circ} 100xp23.23.17(6f)$	$a^2 \not\in 100xp23.23.17(6f)$ $b^1 \not\in 100xp26.26.17(6f)$	$b^5 \not = 100x^2 p 23.23.18(5f)$	$c^{\prime} \leq 100gpzo.zo.zo(3f)$	$a^2 \leq 100xy58.57.55(6e)$	$a^{2} + a^{2}	$a^6 - q^$	$ c^{3} + 100xq57.57.56(6e)$	$a^{2} + \frac{q^{2}}{100xq57.57.55(6e)}$	$\begin{array}{c} b^2 \stackrel{?}{\circ} 100xq58.57.55(6e) \end{array}$	$a^{2} \stackrel{q}{\circ} 100xq58.57.56(6e)$	$a^{0} \not\in 00 \ p (alb.)$ $a^{2} \not\in 100xq57.57.55(6e)$	b2 & 100xq57.57.55(5e)	$a^{-1} \leq 100yq58.58, 2(5e)$ $a^{2} \leq 100xq58.57.56(6e)$	a6 \times 100xq58.57.55(6e)	$b^2 \leq 100xq58.58.55(6e)$ $b^6 \leq 100xp93.93.18(6f)$	c4 \(\frac{100xq58.57.55(6e)}{} \)	$a^2 \rightleftharpoons 50 \ \hat{q}58. \ 1. \ 1(3ev)$	$\alpha^6 \varphi - q(6g)$	$(60-e) u - \pm e0$
		$a^1 \not \circ 100 x p 26.23.15 (6f)$	$a^5 - p (6f)$ i - p	3.23.17(6f) 5.15.15(6f)	_	0.00 p (alb.)	$a^* \leqslant 100xp_{13.13.10}(9)$ $a^1 \leqslant 100xp_{23.23.15}(6f)$		$a^{1} \stackrel{?}{\leftarrow} 100xp23.23.17(6fw)$	5f	$a^{1} \stackrel{?}{\triangleleft} 100xp26.23.15(5f)$ $a^{5} - n$	$b^4 \neq 100 x p 26.23.17(6f)$	$c^2 \delta = p = -(6f)$ $c^6 \circ 100xp26.23.15(6f)$		4100xq58.57.55(6e)		$e^2 \nleq 100xq58.51.55(6e)$	$c^6 \not\in 100x\bar{q}58.58.55(6e)$ $a^1 \not\in 100xq58.57.55(6e)$	$b_1 \neq 100x_{4}^{2}58.58.55(5-6e)$	$-\frac{q}{100xr41.41.26(6g)}$	$a^5 \not = 00 \ p (alb.)$ $a^1 \not = 100xa58.57.55(6e)$		$b^5 \supsetneq 100xq58.58.56(6e) \ a^1 \oiint 100xq58.57.56(6e)$				$a^{1} \stackrel{?}{\circ} 70 \stackrel{r}{q}58. 1. 1(4ew)$		
MATING		5H1	5H3	5 H4	± 770	71.	9H2		5H7		5H8			5H10	5H11			5H12		5H14	5H15		5H17				5H18 5H19		_

$4H6a^{2} + 95 + 95 + 95 + 95 + 95 + 95 + 95 + 9$	9 q57.55.	$4H1a^{4}$ φ 45 $q58.$ 1. $1(3e)$	$4H3b^6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$4H65a^{4}$ φ 90 $q58.55.$ 2(4e)	$4H37a^3 $ $\bigcirc 100xq58.57.56(6e)$ $-4H37a^5 $ $\bigcirc 100xq58.58.55(6e)$
$4H13a^2 3 \ 90 \ q58.56. \ 2(4-5e)$	5 90 q58.55.	$4H13a^{5}$ ξ 40 $q58.$ 1. $2(3e)$	4H2b² & 100nq58.57.56(6e)	$4H67a^{\dagger}$ 3 75 458.57 $2(3-4e)$ $4H65a^{\dagger}$ 55 458 1 $1(3e)$	$4H30a^{1}$ \$\frac{100a}{100}\$\$155.55(6e) \\ 4H30a^{2}\$\$100aq58.57.55(6e) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$\begin{array}{c} c^1 & \text{Q } 100xr 41.41.28(6g) \\ c^5 & \text{Q } 100yr 41.50.50(5g) \\ a^4 & \text{Q } 100xq58.58.55(5e) \\ a^8 & -q^- \\ b^7 & -q^- \\ -q^ \\ a^7 & -q^- \\ \end{array}$		2 2 2 2 2	$c^{2} \stackrel{?}{\circlearrowleft} \stackrel{?}{\hookrightarrow$	$\begin{array}{c} b^1 \ \delta \ 60 \ 957. \ 4.4 \ 4(4e) \\ b^5 \ 45 \ 958. \ 1. \ 1(2-3e) \\ c^4 \ 90 \ 958.55. \ 2(4e) \\ \cdots \\ \alpha^4 \ 95 \ 957.56. \ 1(3e) \\ b^2 \ 9 \ 55 \ 958. \ 1. \ 2(4e) \\ b^6 \ \varphi \ - \ 97. \ - \ - \ - \ 4eh \\ c^1 \ \delta \ 85 \ 958.44. \ 1(4e) \\ c^5 \ \delta \ 50 \ 961.60. \ 1(3e) \\ c^9 \ - \ q \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $	$\begin{array}{c} a^4 \varphi 100xq57.57.56(5e) \\ b^3 \varphi 100xq58.57.56(6e) \\ c^2 \varphi - q - - (6e) \\ a^4 \varphi 100xq58.58.55(6e) \\ a^8 - p - - \\ b^4 \varphi 100xp23.23.15(6f) \\ c^4 \varphi 100xp15.15.15(6f) \end{array}$
100x750.50.2 100xq58.58.5 100xq58.58.5 80 q58.57. - q	4 55 458.2. 4 95 457.55. 5 90 458.55. 5 00 458.55. 6 00 P	$b^5 \xi \ 50 \ q45.45. \ 3(36)$ $b^5 \xi \ 55 \ q41.26. \ 1(3g)$ $b^6 \varphi \ 35 \ q42.50. \ 1(2g)$ $c^4 \varphi \ 40 \ q41.41. \ 2(3g)$ $c^3 \xi \ 90 \ r41.26. \ 1(4g)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^3 \subsetneq 100 a q 58.57.55(6e)$ $b^2 \nleq 100 a q 58.57.55(6e)$ $c^1 \end{gathered} \ifter \ifte$
7	\$\frac{\phi}{60} \frac{\phi}{60} $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 60\ 958.57.\ 1(3e) \\ 90\ p22.15.\ 1(4f) \\ 100cq58.57.55(6e) \\ 40\ p37.\ 1.\ 1(3f) \\ -q (6e) \\ -q \end{array}$.58. 1(3- (5e) (5e) .57. 1(4e) 1 (3e) (3e) (3e) 1 (3e) 1 (3e) 1 (3e) 1 (3e)	$a^2 \subsetneq 100xq58.58.56(6e)$ $b^4 \nleq 100xq58.58.57(5e)$ $b^5 \thickspace 00 \ p (alb.)$ $a^4 \i 00 \ p (alb.)$ $a^2 \i 00 \ p (alb.)$ $a^6 = p (alb.)$ $a^6 = p (alb.)$ $b^2 \thickspace 100xp23.23.15(6f)$ $b^6 \thickspace \thickspace 101xq78.57.55(6e)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{l} q_{5}(,,,0.0) & q_{5}(,0.0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} a^{c} & c \\ c & c \\ c & c \\ d^{5} & 2 & 100xq57.57.56(5e) \\ a^{5} & - p \\ c & 2 & 100xq58.58.55(6e) \\ c^{1} & 2 & 100xq58.58.56(6e) \\ c^{1} & 2 & 100xq58.58.56(6e) \\ c^{1} & 2 & 100xq58.58.55(5e) \\ b^{1} & 00 & p \\ b^{2} & 2 & 100xq58.58.55(6e) \\ b^{3} & 2 & 100xq58.58.55(6e) \\ \end{array}$
5 <i>H</i> 20	5H22	5 <i>H</i> 23 5 <i>H</i> 24		5 <i>H</i> 26 5 <i>H</i> 27	5 H29

	1					
MATING		OFFS	PRING		PAR	BENTS
					Father	Mother
5 <i>H</i> 1	$a^1 \bigcirc 100xp26.23.15(6f)$	$a^2 ? 100.rp23.23.22(6f)$	$a^3 \supsetneq 100xp26.26.23(6f)$	$a^4 ? 100 xp 23.23.17(6f)$	$4H17$ $\begin{cases} a^{1} \stackrel{?}{\circ} 100 \circ p23 \ 23.18(6f) \\ a^{2} \stackrel{?}{\circ} 100 \circ p26.26.17(6f) \end{cases}$	4H17a³♀100.xp23.23.18(6f)
5 <i>H</i> 3	$a^b - p (6f)$	a ¹ & 100xp13,13.15(6f)	a2 & 100xp26.26 23(6f)	a d 100xp24.24.17(6f)	4H27a2 & 100xp23 23 18 6f)	4H22a \(\frac{1}{4}\) too \(\p23.23\) 18 6f
5 <i>H</i> 1	$a^4 \stackrel{?}{\otimes} 100 \stackrel{?}{\times} p23.23.17 (6f)$ $a^4 \stackrel{?}{\times} 100 \stackrel{?}{\times} p15.15.15.6f$ $a^5 = p = -$ $c^4 \stackrel{?}{\otimes} 100 \stackrel{?}{\times} p23.23.15.6f$	$ \begin{vmatrix} a^5 & 2.100 x p 13.13.18(6f) \\ a^2 & 4.100 x p 23.23.15(6f) \\ b^4 & 3.100 x p 22.15.15(6f) \\ c^2 & 3.100 x p 17.17.15(6f) \end{vmatrix} $	a ⁰ \Q 100xp23 23.17(6f) a ¹ \Q 100xp23 23 17 6f b ² \Z 100xp22.22.17(6f) c ² \Z 100xp22 22.1 x 6f	$ \begin{vmatrix} a^7 \circ -p(6f) \\ a^4 \circ f00rpV 15 15 15 6f \\ b^3 \circ f00rpV 26.23.15(6f) \\ e^4 \circ f00rp23 23 17(6f) \end{vmatrix} $	4H17a+ 7 100crp23-23.1866	$4H\dot{2}0a^{3} \pm 100rp2\dot{3}/2\dot{3}/15/6f$
5 <i>H</i> 5 5 <i>H</i> 6	$e^{\xi} \stackrel{\nabla}{Q} = 00^{\circ} p = - \text{ (alb.)}$ $a^{1} \stackrel{\mathcal{J}}{d} = 100 c p 15 15 10 6 f$ $a^{1} \stackrel{\mathcal{J}}{Q} = 100 c p 23 23 15 6 f$ $b^{1} \stackrel{\mathcal{J}}{d} = 100 c p 23 23 15 6 f$	$\begin{bmatrix} \frac{1}{a^2\beta} & 100 & (p15.15 & 10 & 6f) \\ \frac{1}{a^2\beta} & 100 & (p23.23 & 15 & 6f) \\ \frac{1}{b^2\beta} & 100 & (p23.23.17 & 6f) \end{bmatrix}$	a ³ \$\frac{100xp23}{23.15} \frac{6f}{6f} a \frac{100xp26}{23.17} \frac{6f}{6f} , b ³ \frac{100xp23.23}{23.15} \frac{6f}{6f} ,	$\begin{bmatrix} a^4 & 100 & cp 23 & 23 & 15 & 6f \\ a^4 & p & p \\ b^4 & 2 & 100 & cp 26 & 23 & 10 & 6f \end{pmatrix}$	$\begin{array}{c} 4H28a^{\dagger} \stackrel{?}{\circ} 100rp23.23 \ 17(5t) \\ 4H15a^{2} \stackrel{?}{\circ} 100xp23.23.18(6t) \\ \end{array}$	$\begin{array}{c} 4H20a \Leftrightarrow 100rp10.23 \; 15(6f) \\ 4H27a^4 & 100vp23 \; 23 \; 18 \; 5t \\ \end{array}$
	$b^6 \stackrel{?}{\circ} 1000 \ \rho 26 \ 23 \ 15 \ 56 \ a^4 \stackrel{?}{\circ} 1000 \ \rho 23 \ 23 \ 17 \ 66 \sigma \ a^5 \stackrel{?}{\circ} 1000 \ \rho 23 \ 23 \ 18 \ 66$	a ² \$ 100 cp23 23 15 6fm a 3 100 cp23 23.18 6f c	a ³ & 100xp23 15.17 6f b ³ & 100xp23 23 17 6f b ³ & 100xp26 23 17 6f	$\frac{a^3\vec{x}}{b^2}\frac{100rp26.26(23(5\tilde{t}))}{100rp23(23(17(6\tilde{t})))}$	4H4a ¹ & 100 vp23.23 18 67	4H27a6 \(\frac{1}{2}\) 100 (p23/23/17/66) -
5H8	$b^{\dagger} \stackrel{?}{\downarrow} = p23 \ 23.17 \ 4 \ 5f$ $a^{\dagger} \stackrel{?}{\downarrow} = 100 \ ep26 \ 23 \ 15 \ 5f$ $a^{\dagger} \stackrel{?}{\downarrow} = 100 \ ep26 \ 23 \ 17 \ 6f$ $a^{\dagger} \stackrel{?}{\downarrow} = 100 \ ep26 \ 23.15 \ (6f)$	a ² Q 100 cp23 23 17 (a) b ³ δ 100 cp26 26 17 (a) b ⁵ Q 100 cp23 23 18 5a c ² I 100 cp26 26,23 5a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} c^{1} \mathbb{C} \ (merp22\ 22\ 18\ 5f) \\ b^{3} \mathcal{J} \ (100xp26.23.17(5f)) \\ c^{1} \mathcal{J} = p = -(6f) \\ c^{2} \mathbb{C} \ (100xp23.23.18\ 6f) \end{array}$	4H17 is 3 Total p26,26,17 6t	4H19a* ; [50 p23] 1, 2 2 3t)
57/10	a 3 100 1 q 58 55.55(6 -	$\frac{e^{i}}{a^{2}}\frac{p}{\delta}\frac{p}{100xq58.57,55.6e}$	ar 3 100 cq57,55 55 5c	a ⁴ ♀ 100 cq 58 58 55(6c)	4H1at & 100xy58,57,55 6e)	$(4H4a^4 + 2H6a_1q58.57.55/5c)$
5 <i>H</i> 11	$a^6 \hat{\mathbb{Q}} 100x \hat{\mathbb{Q}}58,58,55 (5e)$ $a^4 \hat{\mathcal{A}} 100x \hat{\mathbb{Q}}58,57,55 (6e)$ $a^5 \hat{\mathcal{A}} = \hat{\mathbb{Q}} - \hat{\mathbb{Q}} - \hat{\mathbb{Q}} + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ⁷	a) ₹ 1000 q58 57 55(6e) b) ₹ 1000 q58 57 55 6e) c) ₹ 1000 q58 57 55 6e, c ₹ 1000 q58 57 56 6e,	4Hla ² - 5 100 eq58 57 55 6c	4H2a; Q 100xq58.58,57(6e)
5H12	6 1 100 g58 (8.5) 6 a) 2 100 g58 57 55 6 b) 2 100 g58 58 55 5-6 b) q	a^{2} , g = a^{2} , t 100 t 557 55 6 c = b^{2} Q 100 t g 58.57 55 6 c = b^{6} = g =	$\begin{cases} \frac{a}{b^3} & \frac{3}{4} & 100 \\ \frac{1}{b^3} & \frac{q}{q} = -\frac{1}{4} \\ \frac{1}{b^3} & \frac{1}{q} = -\frac{1}{4} \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4H1a3 \$ 100, q58,57,55 6.	$4H_{7}^{2}as = 100 r_{I}58.57.56 \zeta 5.6c$
57/14	a ¹ ₹ 100 cc 41.41.26 67 a ⁵ ₹ -00 p	a- ♀ 10เก⊈ร8 57,56 เก as ♀ 00 p albor	a 1 2 100 a 458 57 56,6c	a⁴♀100xq58.57.56(5-6e)	4H7a\ \$100rq5857,5565e	$4H24a^2 \mp -q + -\sqrt{5} (6e)$
5H15	a) \$\frac{1}{3}1000000000000000000000000000000000000	a- (100 (q57,57,55)(6) b2 (100 (q57,57,55)(6) c1 (100)(q58,58, 2-5)	a 3 100 (q38 57 55 6c b 2 100 (q58 58 55(6c) c ≟ 100 (q58 58 55 5c)	$\begin{bmatrix} a^4 & -q \\ b^1 & Tonyq58.57, & 2.5e \end{bmatrix}$	4H24a ¹ & 100 (q58 57.55 5-6b)	4H26a* \(\text{\$\text{\$\text{\$100 eq58,58,56 Ge}}}\)
5 <i>H</i> 17	a t 100xq58.57.56(6r) a 6 100xq58.57.55(6r) b 3 100xq58.57.55 6r b 9 100xq58.57.55 6r b 9 100xq58.58 55 6r a 10 70 q58. 1, 1(4ew)	a ² \(\)	a \$ 100xy58 57.56 6c) a \$ 2 100xy58 57.56 6c) b \$ 3 100xy51.71.718 6f, c \$ 3 100xy58.58.55(6c) c \$ 2 100xy58.58.57(6c) a \$ 2 45 y58. 1. 1(3cw)	$a^4 \xi 100 x p 37.37 18(6f)$ $a^6 = p = -$ $b^4 = 100 x q 58.57 55 6e$ $c^2 \xi 100 x q 57.57 56 6e$ $c^4 \xi 100 x p 22.22 18.6f$, $a^4 \xi - 45 q 58.1.1(2ew)$	4H25al & 100xq57.57.56(6e)	4H25rd Q Hanay 58,58,55 Ge,
5H19	$a^{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{bmatrix} a^2 & 5 & 100xr41 & 41.26 & 6g \\ a^6 & q & (6g) \end{bmatrix}$	$a^3 \stackrel{?}{\circ} 100x^r 41.41.50(6g) b^3 \stackrel{?}{\circ} 100x^r 41.41.26(5g)$	a ⁴ § 100xr41.41.26(6g) b ² § 100xr41.41 26 6g) b ³ § 100xq orr41.41.26(6g)	$4H12b^1 \delta = 65 \hat{r} 41.50. \ 2(3-4g)$	4H1a ⁶ § 100xr41.41.50(6g)

	$ \begin{cases} b^2 & q = -\frac{1}{e^2} \circ 100x^2 \cdot 41.41.26 \text{ for } \\ e^{\alpha_{\pm}} \circ 100x^2 \cdot 41.59.50 \text{ for } \\ a^{-1} \circ 100x^2 \cdot 41.59.50 \text{ for } \\ a^{-1} \circ 100x^2 \cdot 57.60 \text{ for } \\ a^{-1} \circ 100x^2 \cdot 57.60 \text{ for } \\ a^{-1} \circ 100x^2 \cdot 41.10 \text{ for } \\ b^{-1} \circ 100x^2 \cdot 41.10 \text{ for } \\ a^{-1} \circ 100x^2 \cdot 40$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4H13a ² & 50 q58.56. 2(4-5e) 	$4H6a^{2} + 2^{-9}5 + q58, 57, 55, 56$ $4H3a^{4} + 2^{-55} + q58, 1, 2(3e)$
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b^{\dagger} \stackrel{?}{\circ} \stackrel{?}{\circ} 00 \ q61. \ 1. \ 1(4e)$ $b \stackrel{?}{\circ} 80 \ q58.58. \ 1(4e)$ $^{-1} \stackrel{?}{\circ} 85 \ q58.55. \ 1(4e)$ $^{-5} \stackrel{?}{\circ} 85 \ q58 \ 57. \ 1(4e)$	b ² \(\frac{7}{5} \) \(75 \) \(q58.55. \) \(1(4e) \) \(b^0 \) \(95 \) \(q57.55. \) \(1(4e) \) \(\frac{1}{5} \) \(90 \) \(q58.55. \) \(3(4e) \) \(\frac{1}{5} \) \(90 \) \(q58.55. \) \(3(4e) \) \(\frac{1}{5} \) \(90 \) \(q58.55. \) \(3(4e) \) \(\frac{1}{5} \) \(90 \) \(100	b ³ Q 50 q61, 1, 2(3e) b ⁷ Q 60 q58,58, 1(4e) c ³ Q 60 q61,61, 1(3-4e)		
5 <i>H</i> 22 5 <i>H</i> 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{+}\dot{\delta}$ 55 \dot{q} 58 47, 2(3 e) a^{0} q (alb.) $b^{+}\dot{\delta}$ 00 p (alb.) $b^{+}\dot{\psi}$ 95 q 58.58, 2(5 e) $b^{+}\dot{\phi}$ 36 q 58. 1, 1(2 e) $c^{+}\dot{\psi}$ 55 q 61, 1, 1(2 e) $c^{+}\dot{\phi}$ 75 r 44.41, 1(4 g)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4#13a ³ \$ 90 q58.55, 2.4.5e	4H2a ^a Q 90 q57.55, 1 5r,
5 <i>H</i> 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a 5 90 r41.26. 1(4g) c - q - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4H2a ¹ & 7a q58 55, 2 4s	4H11a ¹ Q 95 q58.56. 2(4-5e)
57/25	$c^3 \stackrel{f}{\circ} 45 \stackrel{f}{\circ} 23. \ 1. \ 1 \stackrel{3f}{\circ} a^4 \stackrel{f}{\circ} 10 a c_f 58 \stackrel{5}{\circ} 85 \stackrel{5}{\circ} 6c$ $c^4 \stackrel{f}{\circ} 2 \stackrel{f}{\circ} 2 \stackrel{f}{\circ} 2 \stackrel{f}{\circ} 2 \stackrel{f}{\circ} 6f$ $c^3 \stackrel{f}{\circ} 100 x_f 58.57.55(6c)$ $c^5 \stackrel{f}{\circ} 100 x_f 26.26 \stackrel{2}{\circ} 23.6f$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 <i>H2h</i> 2 & 10my58 57.56 бе,	4H3b ⁹ \(\text{2} \text{100xq58.57.56(60)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5H26	$a^{1}\beta = 80^{\circ}q$ 57 55, 1 3e be 2 9a 9a7 55 1 4e) el $\beta = 9a$ 9a8 57 1 5e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4H67a13 25 q58 57, 2,3 4c)	4H65a ⁴ ♀ 90 q58.55. 2(4e)
5 <i>H</i> 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4H65a ⁴ & 55 q58, 1, 1(3e)	11/67a5 Q 55 q61. 1. 1(3v)
5 H29	a ¹ \$ 100.xq57,57,56(5e) a ⁵ p b ⁴ ♀ 100 xq58 58,55 6e c ♀ 100 xq58 58 56 6e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4H30a ¹ & 100x ₁ 58.57.55 ₁ 6e) 4H30a ² & 100x ₁ 58.57.55 ₁ 6e)	4H37a+Q 10meq58.57.56(6e) 4H37a+Q 10meq58.58.55(6e)

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.25(6e)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{vmatrix} 4H51 \rbrace b^2 \delta \\ \cdots \\ \cdots \\ \cdots \\ \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -(\mathrm{alb.}) \\ -(\mathrm{alb.}) \\ -(\mathrm{alb.}) \\ 55(6e) \\ \hline \end{array} \begin{array}{c} A2b^1 \ \ \vec{b} \ \ \vec{00} \ \ p- \ - \ -(\mathrm{alb.} \ \vec{A1}) \\ \hline \end{array} \begin{array}{c} 4H17b^4 \vec{\varphi} \ 100xp23.23.18(6f) \\ \hline \\ \hline \\ 55(6e) \\ \hline \\ 56(6e) \\ \hline \end{array} \begin{array}{c} -(\mathrm{alb.}) \\ \hline \\ \hline \\ 56(6e) \\ \hline \end{array} \begin{array}{c} 42b^1 \ \ \vec{\phi} \ \ \vec{00} \ \ p- \ - \ -(\mathrm{alb.} \ \vec{A1}) \\ \hline \end{array} \begin{array}{c} 4H48\alpha^6 \vec{\varphi} \ - \ p- \ - \ -(6f) \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
PFSPRING		c5 a4 a8 b3	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} a^3 \varphi 100xq58.58.55(6e) & \alpha^4 \varphi 100xq58.58.56(6e) \\ b^1 \varphi 100xq58.57.55(6e) & c^1 \varphi 100xq58.58.55(6e) \\ c^4 \varphi 100xq58.23.17(6f) & c^5 & - P & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2100zp39.35.30(5b) & b^1\\ 2100yp18.18.18(5b) & c^2\\ 9100xq58.58.55(6e) & a^4\\ 2100xy58.58.56(6e) & b^2\\ 369q48.46.11(5e) & c^2\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \alpha^3 & \uparrow 100zq \ 48.46.11(5e) \\ \alpha^7 & \downarrow 100xq \ 48.46.25(6e) \\ \end{array} \begin{array}{ccc} \alpha^4 & \uparrow 100zq \ 48.46.28(5e) \\ b^1 & \downarrow 100xq \ 38.55(6e) \\ \end{array}$
OFFSI			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} -(60) & a^2 \cancel{L} 1/00xq58.55(6e) \\ 1/4e) & a^6 \cancel{L} 00 \ p (alb.) \\ 55(6e) & b^4 \cancel{L} 100xq58.57.55(6e) \\ 66(6e) & e^3 \cancel{L} 100xq58.57.55(6e) \end{array}$	$\begin{array}{lll} 55(6e) & a^2 & 4 & 100 x q 58.57.56(6e) \\ 18(6f) & b^2 & 4 & 100 x q 58.57.55(6e) \\ 66(6e) & b^6 & 2 & 100 x q 58.57.55(6e) \\ \end{array}$	$\begin{array}{lll} 15(6f) & a^2 \varphi 100xq58.57.55(6e) \\ 57(6e) & a^6 \varphi 100xp23.23.18(6f) \\ 55(6e) & e^3 \varphi 100xq58.58.55(6e) \end{array}$	$\begin{array}{cccc} -(5b) & a^2 \varphi I^{101/2} p39.35.28(5b) \\ -(5b) & a^2 \varphi I^{101/2} p35.35.30(5b) \\ -(5b) & a^6 & p & - & - \\ -(5b) & a^6 & p & - & - \\ -(5b) & a^6 & - & - \\ -(5b) & a^6 & - \\ -(5b) & a^6 & - \\ -(5b) & a^6 & $		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
MATING		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^{\alpha} = q^{-1}$ $b^{4} \leq 100yq57.57.56(5-6e)$ $b^{8} = 100xp22.22.18(6f)$ $c^{2} \leq 100xq58.58.57(6e)$ $c^{6} \leq 100xq58.58.57(6e)$ $c^{6} \leq 100xq58.58.58(6e)$	$5H32 a^{1} \stackrel{?}{\circ} = P = - \stackrel{?}{\circ} \stackrel{?}{\circ} \\ a^{5} \stackrel{?}{\circ} 90 q^{5} \stackrel{?}{\circ} 8.58. 1(4e) \\ b^{3} \stackrel{?}{\circ} 100xq^{5} 8.58. \stackrel{?}{\circ} 5(6e) \\ c^{2} \stackrel{?}{\circ} 100xq^{5} 8.58. \stackrel{?}{\circ} 6(6e) \\ c^{4} \stackrel{?}{\circ} 100xq^{5} 8.58. \stackrel{?}{\circ} 6(6e)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 <i>H</i> 34 $a^{1} \zeta 100 ep23.23.15 (6f)$ $a^{5} \zeta 100 xq58.58.57 (6e)$ $c^{2} \zeta 100 xq58.57.55 (6e)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} c^3 & 0.0 & 0 & - & - & \text{(alb)} \\ a^1 & 5 & 95 & q58.55 & 4(4e) \\ a^5 & 2 & 100 aq58.85.7(6e) \\ b^1 & 5 & 00 & p & - & - & \text{(alb)} \\ c^5 & 0 & p & - & - & \text{(alb)} \\ a^1 & 2 & 100 aq58.58.55(6e) \\ a^5 & 0 & p & - & - & \text{(alb)} \\ a^1 & 2 & 100 aq58.57.55(6e) \\ \end{array}$	$\frac{a^5}{5H46} + \frac{100xq58.58.55(6e)}{a^1 d^2} + \frac{75}{7} \frac{948.46.11(5e)}{q^6 d^2 - q^2 (5d)}$

	$\delta \ 000 \ p = - \ (ano.)$ $0.000 \ p = - \ (ano.)$ $0.000 \ p = - \ (alb.)$	$\frac{4H66a^{1} \mathcal{E} 100xq57.57.55(5e)}{4H66a^{3} \mathcal{E} 100yq58.58.56(5e)} \qquad \frac{4H52b^{2} \mathcal{E} 100yq58.58.56(5e)}{4H49a^{3} \mathcal{E} 100xq58.58.56(5e)} \\ 4H52a^{4} \mathcal{E} 100yq58.58.56(5e) \qquad \frac{4H51a^{4} \mathcal{E} 100xq58.58.56(6e)}{4H51a^{4} \mathcal{E} 100xq58.57.56(6e)}$	$4H63a^{3} \stackrel{\checkmark}{\mathcal{C}} \ \ \overrightarrow{u0} \ \ p (alb.) \\ 4H47c^{4} \stackrel{\checkmark}{\mathcal{C}} 100xq58.57.55(6e) \\ 4H46c^{4} \stackrel{\checkmark}{\mathcal{C}} 100xq58.58.55(6e) \\ 4H51c^{2} \stackrel{\checkmark}{\mathcal{C}} 100xq58.58.55(6e) \\ 4H51c^{2} \stackrel{\checkmark}{\mathcal{C}} 100xq58.58.55(6e) \\ 4H56c^{4} \stackrel{\checkmark}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - q (6e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - (6e) \\ 4H65b^{4} \stackrel{\checkmark}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - q (6e) \\ 4H65b^{4} \stackrel{\checkmark}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - q (6e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - q (6e) \\ 4H65b^{4} \stackrel{\checkmark}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{\checkmark}{\mathcal{C}} - q (6e) \\ 4H65b^{4} \stackrel{?}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{?}{\mathcal{C}} - q (6e) \\ 4H65b^{4} \stackrel{?}{\mathcal{C}} 80 \ q58.55. \ 3(4e) \\ 4H496^{2} \stackrel{?}{\mathcal{C}} - q (6e) \\ 4H65^{2} \stackrel{?}{\mathcal{C}} - q $
$\begin{array}{c} b^{5} \ \ 7.5 \ \ q + 8.46. \ \ 4.5c) \\ a^{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} c^{-} \zeta \ 100xq98.51.20(3e) \\ c^{1} \varphi \ 45 \ q61.61. \ 1(3e) \\ a^{4} \zeta \ 100yq58.57.55(4e) \\ b^{3} \zeta \ 80 \ q57.55. \ 1(4e) \\ c^{2} \varphi \ 100xq58.58.55(6e) \end{array}$	$\begin{array}{c} \alpha^{4} \stackrel{\leftarrow}{\nabla} 100xq58.58.55(5e) \\ b^{3} \stackrel{\leftarrow}{\nabla} 100xq57.57.56(5e) \\ c^{4} \stackrel{\leftarrow}{\nabla} - q (6e) \\ c^{5} - q \\ q^{4} \stackrel{\leftarrow}{\nabla} 100yq58.58.55(5e) \\ b^{4} \stackrel{\leftarrow}{\nabla} 100xq57.57.56(6e) \\ b^{5} \stackrel{\leftarrow}{\nabla} 100xq57.57.56(6e) \\ b^{5} \stackrel{\leftarrow}{\nabla} 100xq58.58.56(6e) \\ \end{array}$	c ² ζ 100xq58.58.56 (6e) c ³ ζ 100xq58.57.55 (5e) α ⁴ ζ 00 p = - (alb.) α ⁴ ζ 100xq58.57.55 (6e) b ¹ ζ 100xq58.55.60 (6e) α ⁴ ζ 100xq58.55.60 (6e)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \zeta \\ \zeta \\ 100yq57.55(56) \\ 000xq58.55(56) \\ \zeta \\ 100xq58.55.6(5e) \\ \zeta \\ 00 \\ \zeta \\ 00 \\ \zeta \\ 0 \\ 0$	$\begin{array}{c} v' \notin U0 L x q 28.38.57(5e) \\ v' \notin T 0 d 26.53.1(3e) \\ v' \notin T 0 d 26.53.1(3e) \\ v' \notin T 0 d 26.53.1(3e) \\ v' \notin T 0 d$
$\begin{array}{c} b^2 \stackrel{?}{\circ} & 50 & 948.46. & 2(5c) \\ b^6 \stackrel{?}{\circ} & 77 & 949.46. & 4(5c) \\ c^2 \stackrel{?}{\circ} & 70 & 961.55. & 1(3c) \\ a^1 \stackrel{?}{\circ} & 00 & p (alb.) \\ a^5 \stackrel{?}{\circ} & - q (5c) \\ b^6 \stackrel{?}{\circ} & - p \\ b^4 \stackrel{?}{\circ} & 1002q48.46.11(5c) \\ b^8 \stackrel{?}{\circ} & - p \\ c^4 \stackrel{?}{\circ} & 00 & p (alb.) \\ a^1 \stackrel{?}{\circ} & 00 & p (alb.) \\ a^1 \stackrel{?}{\circ} & 799.46.11(5c) \\ b^1 \stackrel{?}{\circ} & 799.46.11(5c) \\ b^1 \stackrel{?}{\circ} & 799.35.35. & 3(5b) \\ a^1 \stackrel{?}{\circ} & 799.35.35. & 3(5b) \\ a^1 \stackrel{?}{\circ} & 799.35.35. & 3(5b) \\ a^1 \stackrel{?}{\circ} & 1000p935.35. & 3(5b) \\ a^1 \stackrel{?}{\circ} & 50 & p (alb.) \\ a^1 \stackrel{?}{\circ} & 50 & p (alb.) \\ a^1 \stackrel{?}{\circ} & 50 & 1000x4948.47(6c) \\ b^2 \stackrel{?}{\circ} & 25 & q49.46. & 1(3c) \\ b^2 \stackrel{?}{\circ} & $	$a^4 \zeta IOUxp13.13.13(bf)$ $a^4 \zeta IOUxp13.13.13(bf)$ $a^2 \zeta G G G G G G G G G G G G G G G G G G $	$5H57 a^{1}Q 100x_{7}57.57.56(5e)$ $a^{5}Q - q^{-} - - (5e)$ $b^{4}Q 75 q^{5}8.57. 4(4e)$ $c^{2}Q 100x_{7}57.57.56(6e)$ $5H58 a^{1}Q - q^{-} - - (6e)$ $a^{5}Q 100x_{7}58.55.56e)$ $a^{5}Q 100x_{7}58.55(6e)$ $a^{5}Q 100x_{7}58.55(6e)$ $a^{5}Q 100x_{7}58.55(6e)$ $a^{5}Q 100x_{7}58.55(6e)$	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Nating	Mother
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$? 100xq58.56.56(6e)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100xq58.56.56(6e)
$e^{q} \stackrel{Q}{Q} 100 \psi_{q}^{4} 59.58.55(6e) \stackrel{e^{2}}{=} \stackrel{Q}{Q} 100 \psi_{q}^{4} 58.58(57(6e)) \stackrel{e^{2}}{=} \stackrel{Q}{Q} \stackrel{q}{=} -(6e) \stackrel{q}{=} \stackrel{q}{=} \stackrel{p}{=} \stackrel{67}{=}	
	1001958 57 55 Ge
$\begin{array}{cccccccccccccccccccccccccccccccccccc$? imay58 57 55 6c
the 8 fundable of tendent	? 100xq58.57.56(6e)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	(100zp35.35,28 5b)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75 p39 39 3 5b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$? - p (5b)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 p (alb.)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 100xp23.23.18(6f)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - p (6f)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80 p39.39.28(5b)

1	b2 80 948 46. 2(5c)	$\frac{b^4}{b} \stackrel{?}{\circ} \frac{75}{co} \frac{q48}{q61} \stackrel{46}{\circ} \frac{2,5c)}{13} \stackrel{ }{\downarrow}$		b & 75 q48.46 4(5c)	*** *** ***	
	10 7 7 9 10 10 4 5 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	c 4 100 cý 58, 18,55 dc,	2 1 ± 3 € ,	, û	record a more called	$4H16c^2 \ 2\ 100zp\ 40.40.31(5b)$
5H47	$a^{\dagger} \stackrel{\circ}{\circ} = a \qquad \qquad (alb.)$ $a^{\dagger} \stackrel{\circ}{\circ} = a \qquad \qquad 5c$	$a^2 \stackrel{?}{Q} = 00 \stackrel{?}{p} = -$ (alb.)	a) \$ 100rq58,58,57 Ge)	a ⁴ Q 85 q58.57, 2(4e)	$4H46a^{\dagger} \stackrel{\circ}{\mathcal{F}} \stackrel{\circ}{\mathcal{H}} \stackrel{\circ}{\mathcal{H}} =(alb.)$	4M16/- ¥ 1005/140.40.41(00)
	$a^{\alpha} = p$	$b^{\dagger} \stackrel{?}{=} 00 \stackrel{?}{p} = - (alb.)$	$h^{2} g^{2} u n \hat{p} = (alb.)$	b3 3 00 P (alb.)	•	***
	b* 3 1000 g48 46 11(5c)		$b^0 \ ? \ 70 \ q48.46. \ 1(4c)$ $e^2 \ d^2 \ 00 \ p = -(alb.)$	$\begin{vmatrix} b^7 & - & q & - \\ c^3 & \delta & \theta & \theta & - & - \text{ (alb.)} \end{vmatrix}$		
1	et த் எம் ந alb. ட	e ⁱ ♀ 00 p = -(alb.)	r ⁰ ♀ 100.5g58 58 57(6e)	$e^{\overline{i}}$ - q	4 H 16h \$ 100zp 39.39.30(5b)	4H55a ⁰ 9 00 p (alb.)
5H50		$ u^{2} \stackrel{?}{\gtrsim} 100zq 49 46.12(5e)$ $ b^{1} \stackrel{?}{\lesssim} 75 q49.46.11(5e)$	$a^{+}Q = 75 - q 49.46, 7(5c)$ $b^{+}Q = 90 - q 49.48, 1(4c)$	a ⁴ ♀ 65 q48.46, 1(4c) b ⁴ ♀ 65 q49.48, 1(3 4c)	4 11 100. S 100. h 22. 22. 20. (20)	411300. I 00 b = (212)
. 77.	$b^6 Z = q = (5c)$	ੀ ਨੂੰ 80 g 10.46, 7.5e)	$e^{2} \hat{Q} = q = -(3-4e)$	$c^3 = \hat{q} = -$	4H36b3 & 600 p (all)	4H16.3 9 75 p39.39. 4(5b)
91191	$a \stackrel{?}{\downarrow} = 5 \stackrel{?}{\downarrow} 35 35 \stackrel{?}{\downarrow} 3 \stackrel{?}{\downarrow} b$ a = 2 Ioo ip 35, 35, 3(5b)	$a^{0} \circ b \circ p = alb \circ a^{0} \circ b \circ p = -(alb \circ b) \circ a^{0} \circ b \circ a^{0} \circ b \circ a^{0} \circ b \circ a^{0} \circ b \circ a^{0} \circ a^{0} \circ b \circ a^{0}$	$a^{\dagger} \circ \beta = a \circ p$ (alb.)	$a^{3} ? 80 q49 46 14 5e^{5} = a^{8} = p + \cdots = -$	411300.9 (m b = - (vro.)	pooline (
	$\frac{a^2}{b^4} \stackrel{p}{\supseteq} \frac{p}{na_p} = \frac{-}{\text{(alb.)}}$	bt q -	$b^2 \stackrel{\circ}{\varphi} = \theta \theta \stackrel{\circ}{p} = - \text{(alb.)}$	$b^{\perp} \circ (b) p = - (alb.)$,	
5H52	al Q 55 948,46, 4,2-3c)	a^{2} Q 35 q 49. 1. 1(2c)	$a^{3}\delta - q (c)$	b1 & 50 q48.46, 1(3c)	4H57b2 & 00 p (alb.)	4H69a ⁶ 9 75 p39.39.28(5b)
	$b^2 \ \Omega \ 100 x y 49.48.47 (6c)$ $b^6 \ \Omega \ \ 55 \ \ y 49.46. \ \ 1 (3c)$	b ³ \(\text{100yq49.48.} \) 1(5c) c ¹ \(\text{2} \) 100yq48.46. 2(5c)	b ⁴ Q 30 q48, 1, 2(2c) c ² 3 50 q48, 1, 1(3c)	$\begin{vmatrix} b^6 & 9 & 50 & q49.46, & 1(3c) \\ c^3 & 9 & 1002q & 48.46, & 12(5c) \end{vmatrix}$	***	
5 <i>H</i> 53	$\sigma^1 = 3.100 x g 57.57.56 (6e)$	$a^2 \gtrsim 100 x p 15, 15, 15 (6f)$	a^{1} δ 100 $xp22.17.17(6f)$	a4 3 75 p36.35, 2(5b)	4H22cl & 75 p39.35, 2(5b)	4 <i>H</i> 33ℓ ⁵ ♀ 00 <i>p</i> = (alb.)
5 <i>H</i> 54	$a^{\dagger} Q = p(5b)$ $a^{\dagger} \tilde{c} 1000 p15.15.15(6f)$	$a^{0} \supseteq 100xp15.15.15(6f)$ $a^{2} \stackrel{?}{\underset{\sim}{\downarrow}} 35 \ g61. \ 1. \ 1.2e)$	$a^{7} \ \ \ 100xy58.58.55(6e)$ $b^{1} \ \ \ \delta \ 100xy58.58.56,5e)$	$a^{\mu} Q 100zq 48 46.43(5c)$ $b^{\mu} Z 100zq 58.57.56(5e)$	4H58b1 & 00 p (alb.)	4H69b3 Q 100yp22.15.18(5f)
	b & m 78 1 136	h 4 100 cp10 10 10 1d	b \$ 1000 pla 15 15 6f	₫ ♀ 47 g61 61 1c3c		
5H55	$e^2 = p = -$ $a^1 \hat{\beta}_{-} 90^{\circ} \hat{q} 57.56, 2(4e)$	u ² ₹ 60 q57, 1, 1(3e)	a ¹ of 75 q56. 1. 1(3e)	α ⁴ δ 100yq58,57,55(4e)	4H45a1 & 100xp23.23.17(6f)	4H63a ⁷ ♀ 00 p (alb.)
5 <i>H</i> 56	a ⁵ ♀ 80 g58 59, 2(4e) a ¹ ♂ 100xg58,58,55,6e)	b1 & q (6e)	b ² & 90 q57.57.55(4e)	b3 \$ 80 q57.55. 1(4e)	4H65b0 & 00 p (alb.)	4H41b2 Q 100xp26.26.17(6f)
04400	13 ± 100 (jak as 55 B).	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c1 & 80 q58.55. 2(4e)	c ² ♀ 100xy58,58,55(6e)	(are)	
, 5 <i>H</i> 57	r \ 95 q58,55, 1(5e) at \$\frac{1}{5}100xq57,57,56(5e)	$a^{2}\delta - q - (3-4e)$	a3 ○ 1110 ra58 57 55(6e)	a ⁴ ♀ 100xq58,58,55(5e)	4H66a 3 100xq57.57.55(5e)	4H52b2 \ 100yq58.58.56(5e)
	a' = q = 5c	b1 2 100yq57 57 5665c	$b^2 \stackrel{?}{>} 100xq58.57.55(5e)$	b3 & 100x957.57.66(5e)		
	b ⁴ ♂ 75 q58.57, 4(4e) c ² ♂ 1005 q58.57.55(6e)	$b^{\circ} \circ 100xq58.58,56(5e)$ $c^{\circ} \circ 100xq58.58,56(6e)$	$b^0 - q $	$\begin{bmatrix} c^1 \vec{\delta} & - & \vec{q} - & (6c) \\ c^b & - & \vec{q} - & - & - \end{bmatrix}$	*** *** ***	***
$5H_{58}$	$a^{1} \stackrel{?}{\circ} = q = -(6e)$ $a^{5} \stackrel{?}{\circ} 100x q58.58.55(5e)$	$a^2 \delta = 60 \hat{q} 58. 1. 1(3e)$	$\alpha^3 \stackrel{\circ}{Q} = 00 \stackrel{\circ}{p} \text{(alb.)}$	a4 Q 100yq58.58.55(5e)	4H66u ³ & 100yq58.57.55(5e)	4 H49a3 Q 100xq58,58,55(5e)
5H59	a 1 3 100 y 58, 57, 56(6e)	a ² & 100xy58.57.55(5e)	a3 £ 40 q58.58. 1(2e)	α ⁴ ♀ - q (6e)	$4H52e^{1}$ § $100yq58.58.56(5e)$	4H51a4 \2 100xq58.57.56(6e)
	$b^{1} \stackrel{?}{\mathcal{L}} 100 v_{q}^{2} 58.58.55 (6e) = b^{2} \stackrel{?}{\mathcal{L}} 100 v_{q} 58.58.56 (6e)$	$a^{0} \stackrel{\bigcirc}{Q} 75 \stackrel{\bigcirc}{q} 58.55, \ 1(4e)$ $b^{3} \stackrel{\bigcirc}{d} 65 \stackrel{\bigcirc}{q} 58, \ 1, \ 1(4e)$	$\begin{vmatrix} a^7 \hat{Q} & 75 & \hat{q}58.57, & 1(4e) \\ b^4 \hat{Z} & -q (3e) \end{vmatrix}$	$b^1 \stackrel{?}{\circ} 100xq57.57.56(6c)$ $b^5 \stackrel{?}{\circ} 100xq58.58.55(6e)$	*** ***	984
1	b ⁶ ♀ 100 rg58.58 57(5e)	bi Q 100xy58 58.57(5e)	el & 100xq58,58,55(5 Ge)	≥ 2 100.cq54,58.56(6e)		*** *** ***
	e ³ & 100yq58.58,55(5e) e ⁷ ♀ 100xq58.57.55(6e)	c ⁴ ♀ 75 q58.55, 1(3e) c ⁵ ♀ 100.cq58.58.55(5e)	$c^5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	e ⁰ ♀ 100xq58,57.55(5e)		*** *** *** *** . 525
5H60	$a^{\dagger} \delta = 00 p (alb.)$ $a^{\dagger} \varphi = 00 p (alb.)$	$a^2 = 00 \ \hat{p} = (alb.)$	$u^3 = 00 \ p \text{(alb.)}$	a4 8 00 p (alb.)	$4H63a^3 = 00 p \text{(alb.)}$	$4H57b^3 = 00 \ p = \text{(alb.)}$
5H62	at \$ 100xy58 60.55(5=6e)	$a^0 ? 00 p (alb_0)$ $a^2 ? 100 yq 60.60, 2(5e)$	$a^{7} \stackrel{?}{\downarrow} 00 p = - \text{ (alb.)}$ $a^{1} \stackrel{?}{\downarrow} 100xq58.60.55(5ew)$	$a^{8} \stackrel{\bigcirc}{\circ} 00 p = - \text{ (alb.)}$ $a^{4} \stackrel{\bigcirc}{\circ} 100xq58.57.55(6e)$	4H47c1 & 100xq58.57.55(Ge)	4H49c ³ Q 100xq57.57.55(6e)
	$a^{\dagger} \stackrel{?}{Q} 100xq58 60.55(5-6e) b^{\dagger} \stackrel{?}{Q} 100xq60.60.54(5-6e)$	a Q 100xq58.57.55(5 6e)	a* - p	b1 \$ 100xq58.58.55(6e)		100 100 100 100 100 100 100 100 100
5H63	at 2 100 c 58 58 55 6	(42 2 100 cq58 58,55 Geir)	a ♀ 100 sq58 60 55(6ev	b) \$ 100x q58,55,60(6e)	$4H46c^{4}$ & $100xq58.58.55(6e)$	$4H51e^2 \ 9190xq58.58.55(6e)$
5 <i>B</i> 64	$b^2 \le 100 \ eq58.57.60(5ew)$ $a^4 \ge 100 \ eq58.58.55(6e)$	b³ ♀ 100xq58.57.55(6e)	$b^4 \ 2 \ 100xq58.58.55(6ew)$	***	4H51b4 & 100xq58.58.55(Ge)	4H46c5 Q 100xq57.57.55(5e)
5 H69	a^{1} δ $100xq58.60.60(6e)$	$a^2 ? 100xq58.60.60(6e)$	a^{1} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	a4 Q 100xq58.57.55(6e)	41165b4 & 80 958.55. 3(4e)	$4H49b^2 \circ - q (6e)$
	•			1	<u>L</u>	

W. F. R. Weldon's Records of Mice Matings (continued)

Parents	Mother	$4H56b^4 \neq 80 \ q58.55. \ 3(4e)$ $4H75b^3 \neq 90 \ q58.55. \ 1(4e)$ $4H75b^3 \neq 75 \ p39.35.28(5b)$ $4H75a^5 \neq 100zp39.35.38(5b)$ $4H75a^5 \neq 100zp39.35.38(5b)$ $4H76a^6 \neq 100zp33.33.18(6f)$ $4H75c^2 \neq 100xp23.23.18(6f)$ $4H51c^3 \neq 100xp23.23.18(6f)$	$5H50a^{1} \subsetneq 90 \ q48.46. \ 2(5c)$ \vdots $5H50a^{2} \subsetneq 100zq 49.46.12(5c)$
Đ	Father	$4H60c^2 \ \ \ 65 \ q58.55. \ 1(3-4e)$ $4H48c^4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$5H40a^{1}$ & 75 $q46.46.$ 2(5-6c)
		$a^{4} \downarrow \forall 70 \ q58.57. \ 1(4e)$ $b^{5} \downarrow 85 \ q58.60. \ 1(4e)$ $b^{5} \uparrow 85 \ q58.60. \ 1(4e)$ $a^{4} \uparrow 80 \ q58.55. \ 1(4e)$ $a^{4} \downarrow 80 \ q58.57. \ 1(4e)$ $a^{4} \downarrow 100xq60.60.55(5e)$ $b^{3} \downarrow 100xq60.60.55(5e)$ $a^{4} \downarrow 100xq60.60.55(5e)$ $a^{4} \downarrow 100xq60.60.55(5e)$ $a^{4} \downarrow 100xq60.60.60.55(5e)$ $a^{4} \downarrow 100xq60.60.60.55(5e)$ $a^{4} \downarrow 100xq60.49.46.43(5e)$ $a^{4} \downarrow 100xq49.46.43(5e)$ $a^{4} \downarrow 100xq49.46.43(5e)$ $a^{4} \downarrow 100xq49.46.43(5e)$ $a^{4} \downarrow 100xq49.46.43(5e)$ $a^{4} \downarrow 100xq99.8.35.28(5b)$ $a^{4} \downarrow 100xq99.8.35.28(5b)$ $a^{4} \downarrow 100xqp28.23.23(6f)$ $a^{4} \downarrow 100xqp28.23.23(6f)$ $a^{4} \downarrow 100xqp28.23.33(6f)$	$a^{4} \circ 100n + 758.58.55 (6e)$ $a^{6} \circ 100 = -(a)b,$ $b^{6} \circ 100cp 36.36.4 (5b)$ $b^{6} \circ - p =$ $c^{4} - q =$ $a^{4} \circ 100cp 23.22.17 (5fw)$ $b^{1} \circ 100cp 28.57.55 (6e)$ $b^{5} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$ $c^{3} \circ 00 p =(a)b,$
OFFSPRING		$a^3 \varphi 70 q58.57. 1(4e)$ $a^4 \varphi 000 p = (alb.)$ $b^4 \varphi 000 p = (alb.)$ $a^3 \varphi 600 q58.60. 1(3-4e)$ $a^3 \varphi 85 q61.60. 1(4e)$ $a^3 \varphi 100eq 48.46. 43(5-6e)$ $b^2 \varphi 100yq 98.60. 55(5e)$ $a^3 \varphi 100eq 48.46. 43(5e)$ $a^3 \varphi 75 p35.35. 4(5b)$ $b^2 \varphi 75 p34.34. 3(5b)$ $b^2 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 75 p34.34. 3(5b)$ $b^3 \varphi 100eq 49.46. 43(5e)$ $a^3 \varphi 100eq 49.46. 43(5e)$ $a^3 \varphi 100eq 49.35. 3(5e)$ $a^4 \varphi 95 p39.35. 3(5e)$ $a^4 \varphi 95 p39.35. 3(5e)$ $a^4 \varphi 100eep 35.35. 4(5e)$ $a^4 \varphi 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep 100eep $	$\begin{array}{c} a^3 \stackrel{?}{\circ} 80 \ q + 8 + 46.11 (5c) \\ a^7 \stackrel{?}{\circ} 1002q 46 + 46.14 (5c) \\ b^3 \stackrel{?}{\circ} 75 \ p35.35 \ 2(5b) \\ c^3 - q \\ c^7 - q^2 \\ a^3 \stackrel{?}{\circ} 1002q 49.48 \ 7(5c) \\ a^4 \stackrel{?}{\circ} 1002q 49.48 \ 46.45c) \\ b^4 \stackrel{?}{\circ} 1002q 48.46 \ 4(5c) \\ b^8 \stackrel{?}{\circ} 100xq 58.55 (5c) \\ c^4 \stackrel{?}{\circ} 80 \ p36.35 \ 3(5b) \end{array}$
OFFS		$a^2 \c 65 q 42.50. 1(4g)$ $a^6 \c 95 q 41.26. 1(4-5g)$ $b^5 \c 95 q 41.26. 1(4-5g)$ $b^5 \c 85 \c 958.55. 1(4e)$ $a^2 \c 50 \c 958.58. 1(3e)$ $b^1 \c 50 \c 958.58. 1(3e)$ $b^1 \c 6100xq 49.46. 2(5e)$ $b^1 \c 6100xq 49.46. 2(5e)$ $b^2 \c 6100xq 49.46. 2(5e)$ $b^2 \c 6100xq 48.46. 1(5e)$ $b^2 \c 6100xq 48.46. 11(5e)$ $b^2 \c 6100xq 48.48. 11(5e)$ $b^2 \c 6100xq 48.48. 11(5e)$ $b^2 \c 6100xq 48.48. 11(5e)$ $b^2 \c 6100xq 61.26. 8(6f)$ $b^2 \c 6100xq 61.26. 8($	$a^{2} \zeta 100xq58.58.55(6e)$ $b^{2} \zeta 60 q48.46, 75c)$ $b^{3} \zeta 60 q48.46, 415c)$ $b^{3} \zeta 60 q48.46, 415c)$ $c^{3} - q^{4}$
		$a^{1} \stackrel{\uparrow}{\varsigma} \ b^{} \ f^{} $	$\begin{array}{c} a^1 \zeta 100xq58.58.55(6e) \\ a^5 \varphi 100xq58.58.55(6e) \\ b^1 \zeta 100zq48.46.43(6a) \\ b^5 \zeta 00 \ p (alb.) \\ c^1 \ - q \\ c^5 \ - p \\ a^1 \zeta 100zq48.46.11(5c) \\ a^5 \zeta 80 \ p35.35.4(5b) \\ b^2 \zeta 100zq48.46. 7(5c) \\ b^2 \zeta 100zq52.46.14(5c) \\ c^2 \zeta 100zq48.46. 11(5c) \\ c^2 \zeta 100zq48.46. 11(5c) \\ c^2 \zeta 100zq52.46.14(5c)
MATING		5H72 5H76 5H77 5H81 5H84 5H85 5H85	6.11

$5H51\alpha^4 \updownarrow 80 \ q49.46.14(5c)$ $5H53\alpha^8 \updownarrow 100zq \ 48.46.43(5c)$ $5H52b^2 \updownarrow 100xq49.48.47(6c)$	$5H52b^3 + 700yq49.48.1(5c)$ $5H47b^6 + 700yq48.46.1(4c)$	$5H50b^3 \circ 90 $ $949.48. $ $1(4c)$ $5H52b^5 \circ 90 $ $949.46. $ $1(3c)$	$5H52b^{6} \updownarrow 55 q49.46. 1(3c)$ $5H52b^{4} \updownarrow 30 q48. 1. 2(2c)$	$5H50c^{2}$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	$5H52c^3 $ $\uparrow 100zq48.46.12(5c)$	$5H34c^3 \ \c 100xq58.58.55(6e)$ $5H32c^2 \ \c 100xq58.58.56(6e)$
$5H46a^{3} + 2100zq + 48.46.11(5c)$ $5H46a^{4} + 2100zq + 48.46.11(5c)$ $5H47b^{4} + 2100zq + 48.46.11(5c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5H46b^6$ & 75 $q49.46$. $4(5c)$ $5H46b^3$ & 75 $q48.46$. $2(5c)$	$5H46b^4$ & 1002q 48.46. 4(5c)	$5H40c^{1}$ ξ 80 q 48.46.11(5 ϵ)	$5H50c^{1}$ $\stackrel{?}{\varsigma}$ 80 $q49.46$. $7(5c)$	$5H32e^{1}$ \$\(\frac{100xq58.57.55(6e)}{5H34e^{1}}\$\(\frac{100xq58.58.55(6e)}{}\)
$a^4 \stackrel{?}{\uparrow} 100zq 48.46.14(5c)$ $a^8 \stackrel{?}{\uparrow} 100xq 58.58.55(6e)$ $b^4 \stackrel{?}{\uparrow} 75 q 48.48.26(5c)$ $c^2 \stackrel{?}{\downarrow} 100zq 38.35.4(5b)$ $a^4 \stackrel{?}{\uparrow} 100zq 548.48.48(5c)$ $a^8 \stackrel{?}{\uparrow} 00 p (alb.w)$ $b^2 \stackrel{?}{\downarrow} 00 p (alb.w)$	$e^2 \oint_{\mathbb{R}} 85 \ p^3 \pm 34. \ 3(5b)$ $b^1 \oint_{\mathbb{R}} 1002p 35.35. \ 2(5b)$ $b^2 \oint_{\mathbb{R}} 100xq 58.58.55(6e)$ $e^2 \oint_{\mathbb{R}} 100xq 58.48.46. \ 7(5e)$ $e^3 \oint_{\mathbb{R}} 100xq 58.46. \ 7(3e)$	$a^{4} \neq a^{2}$ $a^{4} \neq b^{2} \neq b^{2} = 1.1(1f)$ $b^{2} \neq b^{2} \neq b^{2} \neq 3.7.1.1(3b)$ $b^{6} \neq 3.5 \neq 48.1.1(3c)$ $c^{4} \neq 45 \neq 57 \neq 48.1.1(3b)$	0001	C < 1002 p =	$a^{4} \subsetneq 100zq 48.48.12(5c)$ $b^{1} \circlearrowleft 50 p37. 1. 1(2b)$ $c^{3} \end{gathered} 00 p = (alb.)$ $a^{4} \end{dcases} 100xq58.60.55(6e)$ $a^{2} \end{dcases} 100xq58.58.55(6e)$	$a^4 = 100xq58.60.55(6e)$ $a^4 = 100xq58.60.55(6e)$ $b^3 = 100yq58.55.1(5ew)$
$\begin{array}{c} c^8 \neq 0 & p = (alh,) \\ a^3 \neq 100xq58.58.55(6e) \\ a^7 \neq 100xq58.57.56(6e) \\ b^3 \neq 100xq58.57.56(6e) \\ c^4 \neq 80 q48.46. 4(5c) \\ c^5 \neq 00 p = (alh,) \\ a^7 \neq - p = (alh,) \\ b^4 \neq 00 p = (alh,) \\ b^5 \neq 00 p = (alh,) \\ b^5 \neq 00 p = (alh,) \\ a^7 \neq - q =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 50 100z	$c^{*} \circ g_{0} \ p_{23} \ \text{LLD}(4f)$ $b^{1} \circ g_{0} \ g_{24} \ g_{1} \ g_{2} \circ g_{2}$	$a^3 \notin 1002q 49.48.20(5e)$ $a^7 = q = c^2 \notin 00 p = -$ (alb.) $c^6 \notin 60 q 48.46.44e)$ $a^3 \notin 100xq58.7.57.55(6e)$ $b^1 \notin 100xq58.66.55(6e)$	+0+400+4040
$\begin{array}{c} c^7 \not\subseteq 1002q 52.46.14(5c) \\ a^2 \not\subseteq 100xq 58.60.55(6c) \\ a^6 \not\subseteq 100xq 48.46.11(5c) \\ b^2 \not\subseteq 100xq 57.57.56(6c) \\ b^6 \not\subseteq 100xq 48.46.11(5c) \\ c^4 \not\subseteq 00 p (alb.) \\ a^2 \not\in 100xp 23.23.15(6f) \\ a^6 \not\subseteq 75 p 35.35.3(5b) \\ a^{10} &= - (alb.) \\ a^2 \not\in 100xp 36.36.30(6b) \\ a^2 \not\in 100xp 36.36.30(6b) \\ a^2 \not\in 100xp 48.47(6c) \\ b^3 \not\in 100xq 48.47(6c) \\ b^4 \not\in 100xq 48.47(6c) \\ b^3 \not\in 100xq 48.47(6c) \\ b^4 \not\in 100xq 48.47$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c^{6} \stackrel{.}{\varphi} 00 \stackrel{.}{p} (\text{alb.})$ $a^{2} \stackrel{.}{\varphi} 1002q 48.48. \ 2(5c)$ $a^{6} \stackrel{.}{\varphi} 00 \stackrel{.}{p} (\text{alb.})$ $b^{3} \stackrel{.}{\varphi} 85 \ q48.46.33 4c)$ $a^{2} \stackrel{.}{\varphi} 00 \stackrel{.}{p} (\text{alb.})$ $a^{2} \stackrel{.}{\varphi} 00 \stackrel{.}{\varphi} 00 \frac{.}{\varphi} 016.$	$c^{\dagger} \neq 1002q^{\dagger} + c^{\dagger} + $	$a^2 \stackrel{?}{\diamond} 00 \stackrel{p}{p} (alb.)$ $a^6 \stackrel{?}{\diamond} 00 \stackrel{p}{p} (alb.)$ $c^1 \stackrel{?}{\diamond} 100xp23.23.15(6f)$ $c^5 \stackrel{?}{\diamond} 100xq48.46.14(5c)$ $a^2 \stackrel{?}{\diamond} 100xq58.60.55(6e)$ $a^6 \stackrel{?}{\diamond} 100xx58.85.57(5e)$	$c^4 \oint \frac{1}{4} (100xq58.55.55) (69)$ $a^2 \oint 100xq58.57.55.59$ $a^6 \oint 100xq57.57.55 (6e)$ $a^2 \oint - \frac{q}{4} (6e)$ $b^1 \oint 100xq58.58.45 (6e)$
$\begin{array}{c} \alpha^6 \varphi \ 75 \ p36.35. \ 3(5b) \\ \alpha^1 \beta \ 1002p \ 36.36.30(5b) \\ \alpha^5 \beta \ 1002p \ 49.46.43(5c) \\ b^1 \beta \ 1002q \ 49.46.14(5c) \\ b^5 \varphi \ 1002q \ 49.46.14(5c) \\ c^3 \beta \ 00 \ p (alb.) \\ a^5 \beta \ 1002p \ 39.39. \ 3(5bw) \\ a^6 \beta \ 1002q \ 48.46.11(5cw) \\ a^1 \beta \ 1002p \ 48.46.11(5cw) \\ a^1 \beta \ 1002p \ 26.23(6f) \\ a^2 \beta \ 00 \ p alb. \\ a^3 \beta \ 0002p $	$ \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 $p (alb.)$ 1002 q 48.48.28(5 e) 55 p 37.39. 4(3 b) 100 x p23.23.18(6 f)	$\begin{array}{c} 7 + 1002q & 40.40.11 & (90) \\ 6 - 100xq^2 & 8.55 & (60) \\ 6 - 100xq^2 & 8.55 & (60) \\ 6 - 100 & p & (alb.) \\ 6 - 00 & p & (alb.) \\ 6 - 00 & p & (alb.) \\ 6 - 00 & p & (alb.) \\ 7 - 100xq^2 & (alb.) \\ 8 - 100xq^2 & (alb.) \\ 9 - 100xq^2 & (alb.) \\ 100x$	a^{1} $\stackrel{?}{\zeta}$ 1002 p 39.35. 35b) a^{5} $\stackrel{?}{\zeta}$ 1002 p 29.22.17(6 f) b^{2} $\stackrel{?}{\zeta}$ 1002 p 39.39.30(5b) c^{4} $\stackrel{?}{\zeta}$ 1002 q 52.48.11(5c) a^{1} $\stackrel{?}{\zeta}$ 1002 q 58.60.55(6e) a^{2} $\stackrel{?}{\zeta}$ 1002 q 58.58.55(6e)	$a^{3} \downarrow 100xq58.88.56(6e)$ $a^{4} \downarrow 100xq58.88.55(6e)$ $a^{3} \downarrow 00 \ p (alb.)$ $a^{3} \downarrow 100xq58.55.55(6e)$ $a^{5} \downarrow - q$
6H3 6H4	$^{2H9}_{9H9}$	$6H8 \\ 6H10$	6 <i>H</i> 111	6 <i>H</i> 13	6 <i>H</i> 14	6H16 6H17

TATING		Off	BPRING		Paren	1.8
		_		_	Father	Mother
H72	a^{1} \$\frac{45}{2}\$ \$q61, 1, 1(2e)\$ a^{5} \$\frac{5}{2}\$ \$50 61, 60, 1(3 \cdot 4e)\$ b^{6} \$\frac{9}{2}\$ \$90	$\begin{vmatrix} a^2 & 65 & q42.50. & 1(4g) \\ a^6 & 95 & q41.26. & 1(4-5g) \\ b^3 & 60 & p(alb.) \\ b^7 & 85 & q58.55. & 1(4e) \\ a^2 & 50 & q58.58. & 1(3e) \end{vmatrix}$	$ \begin{vmatrix} a^3 & 70 & q58.57. & 1(4e) \\ a^7 & 000 & p = - & (alb.) \\ b^4 & 000 & p = - & (alb.) \\ b^5 & 600 & q58.60. & 1(3-4e) \\ a^3 & 85 & q61.60. & 1(4e) \end{vmatrix} $	b ⁵ Q 85 g58.55, 1(4e)	4H60c ² d 65 q58.55, 1(3-4c) 4L	
	ary out all	10 8 100 p (alb)			*** *** *** *** *** ***	756b ⁵ ♀ 90 q58 55, 1(4e
5 <i>H</i> 76	$a^4 \beta 1002q 49.48 43(5r)$ $a^5 9 1007 p 23 23 15(6f)$ $b^4 9 1007 q 58,57,60 pc$	$\begin{bmatrix} a^2 & 100zq & 49.46, & 2(5c) \\ b^1 & 100xq & 58.60 & 60.6c_1 \\ b^6 & 100zp & 35 & 35 & 3.5b \end{bmatrix}$	$ \begin{array}{l} \left \begin{array}{l} a^{3} \lozenge 100zq 48.46.43(5 \cdot 6e) \\ b^{2} \circlearrowleft 100y p58.69 55(5e) \\ c^{4} \circlearrowleft 100x p58 69.60 5-6e \end{array} \right $	$a^{4} \stackrel{?}{\downarrow} 100 a q 60,60 55,5e \rangle - b^{4} \stackrel{?}{\circlearrowleft} 100 a q 58,57 55 5c \rangle - c^{2} 100 x q 60 60 60 5 c 6e \rangle$	*** *** *** *** ***	7556 ♀ 80 p40.36.28(50
1177	$c = 9.100 \cdot q58.60.55(5c)$ $a^{4} \stackrel{?}{<} 100 \cdot p35.35.34.5b$ $b^{4} \stackrel{?}{<} 100 z p.36.36, 3(5b)$ $c^{2} \stackrel{?}{<} 100 z q.49.46.43(5c)$	$\begin{array}{c} a^2 \stackrel{?}{\otimes} 160 zp 36 33 28 \ 5b \\ b^2 \stackrel{?}{\otimes} 160 zq \ 48.46 \ 43 \ 5c \end{array}$	$\begin{array}{c} a^3 \stackrel{?}{\circ} 100zq \ 48.46.14 \ 5c \\ b^3 \stackrel{?}{\circ} 100zq \ 48.46.43(5c) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4H48c^4$ $\stackrel{\cdots}{\circ}$ 00 p (alb.) $4H$	175 <i>b</i> ⁴
5//78	$a^{1} \stackrel{?}{\mathcal{J}} 75 \mu 39.35, \ 1(5b)$ $a^{6} \stackrel{?}{\mathcal{J}} 1002q 49.46,43(5c)$ $b^{6} \stackrel{?}{\mathcal{J}} 77 \mu 36.36 4.5b$	$\frac{a^2 - \frac{3}{5} 100 c_f}{b^4 - \frac{3}{5} 80 \cdot \frac{3}{6} 36 \cdot \frac{3}{6} \frac{5b}{6}}{b^6 + \frac{3}{5} 80 \cdot \frac{3}{6} 36 \cdot \frac{3}{6} \cdot \frac{5b}{6}}$	$a \in 75 \ p35 \ 35 \ 4(5b)$ $b \in 3 \ 75 \ p34.34, \ 3(5b)$ $b^6 \in 1002q \ 49.46.43(5c)$	a ⁴ § 100zq 49 46.43 5; b ³ § 100zq 48.46 43 5; b ⁷ § 100zq 49.46, 13 5;	4H48c4 & 00 p (alb.) 4H	756 \$ 75 p39.39, 4(56
1//51	$a^{-\frac{1}{2}} \neq b^{33+30-4+30}$ $a^{-\frac{1}{2}} \neq b^{2} p36-33-3-5b$ $a^{-\frac{1}{2}} \neq b^{2} p39-1-1-2b$ $b^{1} \neq \cdots \neq 35-35-3-5b$	$a_{2} \stackrel{?}{=} 50 p39 \stackrel{?}{=} 1 \stackrel{?}{=} 2 3b$ $b_{1} \stackrel{?}{=} 95 p37 \stackrel{?}{=} 35 \stackrel{?}{=} 28 \stackrel{?}{=} 5b$ $b_{2} \stackrel{?}{=} 80 p39 \stackrel{?}{=} 3 \stackrel{?}{=} 5b$		a ³ Q 30 p39, 1, 1 2b b ³ Z 35 p37, 1, 1 2b c ¹ Z 100 p36 35 28 56	4H69c² & 100xp39 39 31 66 4L	75a Ş 1002p39 35 3065
1182		** 1 100. p39 36 -4 5h ** 2 100. p36 36 -9 5h ** 1 100 cp3 (39 31 5 Ch	$\begin{array}{ccc} A \gtrsim & c & p3 & (35.3) & 5b \\ c \gtrsim & 100 & p35.35 & 4.5b \\ c \lesssim & 100 & p35.39.35 & 5b \end{array}$	$\begin{array}{c} c \not \approx 100, p37.36 - 3.5b \\ a^{3/2} tomp 39.39.15.5 - 6b \\ a^{5/2} tomp 39.39.28.5b \end{array}$	4H69c3 & 1002p 39 33 30 5h 4L	
5//54	1. 2 Princip 26 26 5 67	$b^{1} \otimes 1002p 26 34 28 5b$ $a^{2} \circ 100xp 26 26 - 8 6t$ $a^{3} \circ 100xp 26 23 10 6r$ $b^{4} \circ 100xp 23 23 16 6r$	+ 7 temp 19 23 18 67 1 - 7 temp 20 26 17 67 h - 4 temp 23 23 15 67	$a^4 \stackrel{?}{\circ} 1005 p26 23 23 (f)$ $b^2 \stackrel{?}{\circ} 1005 p23 23 15 6f$ $c \stackrel{?}{\circ} 1005 p23 23 1^{\circ} 6f$	4H51e ¹⁻² 160ep26/23/15/6t 4L	f39b ¹ ♀ 100xp23.23.18(6)
57/85 1/87 :	$a^{4} \stackrel{?}{\otimes} 100x_{f}^{2} 23/23/18/6t$ $a^{4} \stackrel{?}{\otimes} 100x_{f}/26/23/17/6t$ $b^{4} \stackrel{?}{\otimes} 100x_{f}/23/23/15/6t$ $b^{2} \stackrel{?}{\otimes} 100x_{f}/23/15/14/6t$	$\frac{7160ep22.2218.67}{a^2 \sqrt{3}100ep23.23.15.67}$ $\frac{a^2 \sqrt{3}100ep23.23.15.67}{b^2 \sqrt{3}100ep23.23.15.57}$ $\frac{a^2 \sqrt{3}100ep23.23.15.57}{a^2 \sqrt{4}100ep26.23.15.67}$	1 2 100 rp 23 23 15 6r a z 100 rp 22 22 23 6r r z 9 rp 22 23 - 1 5r b f 85 p26 23 - 1 4 5r b 2 80 p26 - 1 - 1 4r	+ 2 100 (p23/23/15 6) σ ⁴ \$ 100 (p22/22/18 6) σ ⁴ \$ 85 p22/22 1 4r δ ³ \$ 100xp26/23/15 6) σ ⁴ \$ 100xp26/23/17 6)	4H38c1 & 100 cp.22 22 15 6f 4H48b2 & 100xp22 22 18 6f 4H	1456 † 2 1000 p15 15,15(6) 151c4 † 1000 p23 23 18 6)
	e² ⊈ 100.4j.23 23 15 6r	et 3 Imaqa23 23 10 6t	C. Imrij 23 23 15 6f	e ⁵ ₹ 100 cp 26/26/26/67		•
://}	a^{1} , $f(an)$, $f(8)$, $f(6)$, e^{1} , $e^{$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 H 40 n ¹ 3 75 q 46.46, 2(5-6c) 5 E	750a ¹ ♀ 90 q48.46. 2(5a
H2	c^{5} - \hat{p} a^{4} δ $100zq$ $48.46.11(5c)$ a^{6} Q 80 $p35,35$, $4(5b)$ b^{2} δ $100zq$ 48.46 , $7(5c)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 4 al x 100xp23 22 17 5fw bl 3 100xf58 57 55 6c) br 3 00xp alb,	5H46a" 3 75 q48.46.11(" 5E	150a² ♀ 100zq 49.46.12(5a
	$b^{0} \supsetneq 100zq 52.46.14(5c)$ $c^{2} \stackrel{?}{>} 100zq 48.46.11(5c)$	bi ♀ 100 β39 35 28 56, ≥ ₹ 100 β52 46 7(5)	b ⁸ ♀ 100.eq58 57,55 5e e ⁴ ₹ 80 µ36,35, 3 5b,	e ¹ Å 200 q 18 46 14.5e e ² ⊋ 80 p35 35, 3(5b)	***	

67/3	r^3 9 7.5 $p36.35$, $3(5h)$	e ⁷ ♀ 100zq 52.46.14(5e)	- ^ ? = m p == a1b a ≠ 100 aq58 55 55(6c) ==	a4 & 100zq 48,46 14 5ci	5#46a 2 100 q 48 16 11 5c	5H51a*C 8a a49 46 14 5c
6/13	a^{1} \$ 1002 p 36,36,30(5 b) = a^{-1} 1007 p 17-17-15-6 t	$a^2 \stackrel{?}{\times} 100 \stackrel{?}{\times} q58 \stackrel{?}{\times} 60.55 \stackrel{?}{\times} 6e^{-1}$ $a^6 \stackrel{?}{\times} 100 \stackrel{?}{\times} q.48 \stackrel{?}{\times} 16.11 \stackrel{?}{\times} 6e^{-1}$	ar 2 100 y 52.46 4 5c	u ⁵ ♀ 100 ey 68.58 55 to		
	D & 100 9 11 16 15 5	L- x 1000 957 57 56 6	L 2 100 1958 57 56 6	b ♀ 75 q48,48, ± 5,	***	
	h . 100 q 19 46 11 5c	$b^6 \stackrel{\circ}{\nabla} 100zq 48.46 11 5$	d & 80 948.46. 4(5c)	e ² & 100zp 39.35. 4(5b)		**
	or÷ orjo dh	e!∮ 00 p = Lb =	$v^5 \supseteq vo p = - \text{(alb.)}$	$c^0 \ \ 2100zq \ \ 48 \ \ 46 \ \ 43(5c)$	Transfer of the second	- 11-0 11-11-11-11-1
67/4	at 2 fon, p39 39 3 olar		a 3 75 p36.36. 3(5b)	$u^4 \circ 8\theta = q48.48, \ 4(5c)$	5 II 46n ⁴ & 100zq 48,46 25 5c	$5H53m^{2} \mp 100, q.48(46.43(5c))$
	$a \pm 10 \approx 239.39 \pm 8.5 hr$	a^{b} 9 75 p 35 35 3 5 b	$u^{\dagger} Q = p (5b)$	$u^8 \stackrel{\frown}{\downarrow} 00 p = (alb.w)$ $b^2 \stackrel{\frown}{\downarrow} 00 p = (alb.)$	1	
	h 1 10 + 9 18 46 11 5 v	a^{10} $p =$ $b^{\dagger} \circ 00^{\circ} p = -$ (alb.)	$b^1 \delta 00 p = - \text{(alb.)}$ $b^6 \Omega 00 p = - \text{(alb.)}$	0° 8 00 p = (an)		
6H5	n 100 7262623.07	$a^2 \stackrel{?}{\nearrow} 100 \times p36.36.30(6b)$	n3 d 80 p36 35. 3(5b)	a4 & 100zq 52,46.43(5c)	5H47b) 2 100 q 48 46 11 5c	5H52b- \ 100xq494847.6c.
112277	ar mp all	a ⁶ ♀ 100xq49.48 47(6c)	u^{i} - q	b 2 100: p39 36 3 56		1
	$J_{2} = I_{1} \times - \frac{1}{2} 30.34 + 3.5h$	b * 1007 /49 46 47 6	14 & 00 p = (alb.)	$b^{5} ? Itt0.iq48.46.46(Ge)$		***
	B & 100 / 48 46 13 5c	$L7 \supseteq DH \hat{p} = - \text{(alb.)}$	c ¹ & 100.rq58.58.55(6c)	$r^2 = 85 p34.34. 3(5b)$		
	e (* 10 e) y 40 40 43 5	$e^{\pm \frac{1}{2}}$ 80 p36.35, 3(5b)	$e^5 \ \ 2100zq \ 48.46.11(5c)$	***	5H50b) 1 75 g49.46.11(5c)	5H52b3 ♀ 100yq49.48. 1(5c)
	$a^{1/4}$, $5/746.46.11$ $a^{1}\beta .100x_{D}20.23.18.67$	ac = p = ac ≠ 65 g49,46 3 4c	a3 & m p (alb.)	bt 2 100cm35.35, 2 5b	5H50b- 2 75 q49,46.11(5c)	5#47b6 \(\text{70 q48.46. 1(4c)} \)
0711	t ≥ 2 Toro q 52 46 13 5c	to d (10) p = - (alb.)		L & 100542525 28 22 00	mine a ro quoi don trata	mate to drough v(x)
	L 100 958 37 33 30	$b^{\dagger} \pm \theta \theta p = \text{(alb)}$	c1 & 10029 48.46, 4(5c)	8 8 100 ag 48.46 7 5		
	e 1 100. ji 39 35 3 1 b	$r + r = \theta \theta p = -r = -r = -r$	r ♀ 45 y49.46, 1(3c)	v Q 40 q49.46. 1.3.		
	e. p				- trold down to the	5 (FOLL) 0 (W) 10 (F) 7(1)
6H8	$a^{\dagger} \circ a^{\dagger} p$ all	a- ∓ 00 P ilb	20 00 5055 3/8		5#46b ⁶ \$ 75 q49.46, 4(5c) 5#46b ³ \$ 75 q48.46 2(5c)	$5H50b^3 \ \ \ \ 90 \ \ q49.48, \ \ 1(4c) \ \ 5H52b^5 \ \ \ 50 \ \ q49.46, \ \ 1(3c)$
6H10	$a \ge 100^{\circ} f 18 46 - 7.5$ $a^{b} ? = 35^{\circ} g 49, 1, 1/2e$	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ³ ♀ 80 q58,55, 1(3e) b ¹ ♂ 75 p36,35, 3(5b)	$a^4 \subsetneq -25 p23 - 1 - 14t = b^2 \nearrow -60 p37 - 1, 1 3b)$	111400. Q 10 440 40 5(0c)	32020 ¥ 30 q45.40. 1(5c)
	b ¹ \(\frac{1}{2} \) 100. \(q \) 49. 48 \(\text{13} \) \(\text{i} \)	b ⁴ 2 100 g 19,46 43c4	b ⁶ ♀ 100zp36.35. 3(5b)	$b \in A5 948 1 1 2$		
	1 85 948 46. 3 h	e2 Q 100zq 48.46.43(5c)	c ♀ 50 p37.35. 1(2b)	11 \$ 45 \(\hat{p37} \) 1 3 2b)		
	€ Q 110 p . (alb.)	$e^{i\delta} \stackrel{\circ}{Q} = \theta \theta \stackrel{\circ}{p} = -(alb.)$	v ♀ 00 p (alb.)			1 22
6//11	a \ \ \ 1002q 48.48.28(5c)	a ² & 1005q 48.48, 2(5v)	$u^{3} = 50 \ q48.35. \ 3(3c)$	124 8 00 p (alb.)	5H46b4 & 100zq 48.46. 4(5c)	5H52b ⁰ ♀ 55 q49.46. 1(3c)
	$a^6 = 55 p37.39, 4(3b)$	$a^0 \circ \partial p = (alb.)$	47 - q	b) of 10024 48.46. 7(5)		
6//12	$b^2 \notin 100 cp23.23.18(0f)$ $a^4 ? 100 cq 48.46.14(5c)$	$b^3 \notin 85 \ q48.46.33(4c)$ $a^2 \notin 900 \ p = -(alb.)$	$b^4 = 00 \ p = - \text{ (alb.)}$ $b^4 = 100zq49.46.43.5r$	h² 3 1002q 49 46, 4 5c	5H46b5 & 75 q48.46. 4(5c)	5H52b ⁴ ♀ ∃0 q48. 1. 2(2c)
	b3 9 10029 48.48 11(5c)	b4 9 10029 48.46.14(5c)	c d 90 p23. 1.15(4f)	c2 & 100 ap 36.36. 3 5h		
1	c3 2 00 p (alb.)	e & 00 p = (alb)		1-1		The same of the sa
$\pm 6H13$	$a^1 \gtrsim 100xq58.58.55(6e)$	$a^2 \lesssim 100 z p 35.35, 3(5b)$	b & 50 q48, 1 1(2 3c)		5 H40c1 & 80 q48.46.11(5c)	$5H50e^{3}Q - q (3-4e)$
1	$\vec{b}^3 \not\in \theta 0 \hat{\rho} \text{(alb.)}$ $\vec{b}^7 \not\subseteq \theta 0 \hat{\rho} \text{(alb.)}$	bi \(\text{100} \text{100} \text{123.17 17 6} \(\text{17} \)	b ⁶ ♀ 90 p26.26. 3(5f)	$b^0 = 90 q48.35.28(4c)$		111
	$c^1 \stackrel{?}{\underset{\sim}{\circ}} 00 \stackrel{?}{\underset{\sim}{\circ}} \text{(alb.)}$	$e^{i} \stackrel{?}{\mathcal{J}} = 80 q48.46. 3(4e) = e^{b} \stackrel{?}{\mathcal{V}} = 75 q48.46. 7(4e)$	$c^2 \stackrel{?}{\circ} 100zp36.36, 3(5b)$ $c^0 \stackrel{?}{\circ} 70 q49.48, 3(4c)$	$\vec{v}^3 \vec{\delta} = 00 \ \vec{p} = - \text{ (alb.)}$ $\vec{v}^7 \vec{\Sigma} = 60 \ q48.46. \ 2(3c)$		
1	$e^{8} \hat{\nabla} = (00 \hat{p} (a)b.)$	$e^{0} \circ 00 p = -$ (alb.)	c. ‡ 10 danace o(ac)	1 1 00 940.40. 2(01)		***
6//14	a^{1} δ 100 : ρ 39.35 . $3(5b)$	a 3 3 00 p (alb.)	$a^3 \circ 100zq 49.48.20(5c)$	$a^{4} \circ 2002q \cdot 48.48.12(5c)$	5H50el & 80 q49.46, 7(5c)	5H52c3 Q 100zq48.46.12(5c)
	$a^{5} \circ PD0xp22 \circ 22.17(0f)$	$a^{0} \circ \theta p = (alb)$	a^{7} - q - \cdots - $-$	b^1 8 50 p37. 1. 1(2b)		
	$b^{1} \oplus 100cp 39.39.30(5b)$	$c^1 \stackrel{?}{_{\sim}} 100xp23.23.15(6f)$	$c^2 = \theta \theta p \text{(alb.)}$	$e^{3} \delta = 00 p \text{(alb.)}$		
67/15	e ⁴ ♀ 100zq 52.48.11(5e) e ¹ ♂ 100zq58.60.55(6e)	$c^{5} \ ? \ 100 eq \ 48.46.14(5e)$ $a^{2} \ \beta \ 100 eq \ 58.60.55(6e)$	$e^{6} = 60 \cdot q48.46.4(4c)$ $a^{3} \stackrel{?}{\mathcal{Z}} 100.vq57.57.55(6e)$	a4 9 100.rq58.60,55(6e)	5//57c2 & 100xq58.57.55(Ge)	5H59e7 Q 100xq58,57,55(Ge)
	$a^5 ? 100xq58.58.55(6v)$	a ⁶ ♀ 100xy58.58.57(5e)	b1 2 100xy58.60 55 Gc,	$b^2 \stackrel{?}{\leq} 100xq58,58,55(6e)$	311516- 0 100m dog 111.00(06)	52275¢ 1200xg00,07,00(00)
	E^1 $\stackrel{?}{>}$ 100 xq 58 58.55(5e)	$b^{\dagger} \stackrel{?}{Q} 100xq58.58.55(6e)$	c1 \$ 100xq58.58.55(6e)	e2 9 100.rq58.57.55(Ge)		
0.741.0	$c^3 = 100xq58,58,55(6e)$	$e^{4/\hat{Q}} 100 eg58.55 55 (6e)$	c ⁵ ♀ 1(m,rq58,58,57(5-6e)			
63/16	al 3 100 vq58.58.55(6e)	$u^2 d I00 u q 58.57.55 (5e)$	$a^{1}\delta = 00 \ p (alb.)$		5H32c [†] ♂ 100.cq58 57.55(6e)	$5H34c^3 \ 2100xq58.58.55(6e)$
6//17	$a^{b} \vec{\beta} = 00 \ \hat{p} = - \ (alb_{c}) = a^{1} \vec{\beta} = 100.cq58.55 55.6e_{c}$	$a^{0} ? 100 cq 57.57.55(6e)$ $a^{2} ? q (6e)$	$a^7 \circ 100xq58.57.55(6e)$	10 100	5H34c1 & 100xq58,58,55(6e)	5H32c2 Q 100xq58.58.56(6e)
	ali y	$b^1 = 100xq58.58.45(6e)$	a ³ \(\frac{100.cy60.57.55(6e)}{b ² \(\frac{100.xq58.57.55(6e)}{6e} \)	$a^4 \ 2 \ 100 xq 58.60.55 (6e)$ $b^3 \ 3 \ 100 yq 58.55. \ 1 (5ew)$	3H34c- 8 1(0)xq36,56,56(6c)	011026- 1 10000 doc-00-00(06)
1	,	. 0	0 1002/0001200(00)	0 0 1009400,00. 1(000)		
					•	

W. F. R. Weldon's Records of Mice Matings (continued).

Parents	Father	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4	5. H29c-1 5. H29c-1 5. H36c-1 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ² 5. H38b ²
		$\begin{array}{c} b^f \ Q \ Io00xq58.58.55(5e) \\ c^4 \ \Delta \ Io00xq58.58.55(6e) \\ c^8 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.57.55(6e) \\ c^9 \ Q \ Io00xq58.58.55(6e) \\ c^9 \ Q \ Io00xq58.58.58.56(6e) \\ c^9 \ Q \ Io00xq52.23.15(6f) \\ c^9 \ Q \ Io00xq52.23.1$
ING		$b^{6} \neq 1000xq58.55.55(6e)$ $c^{3} \neq 1000xq58.55.45(5e)$ $a^{3} \neq 1000xq58.60.55(5e)$ $a^{7} \neq 1000xq58.60.55(6e)$ $b^{4} \neq 1000xq58.60.55(6e)$ $c^{8} \neq 1000xq58.60.55(6e)$ $c^{8} \neq 1000xq58.57.55(6e)$ $c^{8} \neq 1000xq58.57.55(6e)$ $c^{9} \neq 1000xq58.57.55(6e)$ $c^{9} \neq 1000xq58.57.55(6e)$ $c^{9} \neq 1000xq58.57.55(6e)$ $c^{9} \neq 1000xq57.57.55(6e)$ $c^{9} \neq 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.58.55(6e)$ $c^{9} \Rightarrow 1000xq58.46.7(5e)$ $c^{9} \Rightarrow 1000xq48.46.7(5e)$ $c^{9} \Rightarrow 1000xq48.46.7(5e)$ $c^{9} \Rightarrow 1000xq58.21.51(6f)$
OFFSPRING		$b^{5} \subsetneq 100xq58.57.55(6-6)$ $c^{3} \nleq 100xq58.57.55(6-6)$ $c^{3} \nleq 100xq58.57.55(6-6)$ $c^{3} \nleq 100xq58.57.55(6-6)$ $b^{2} \end{gathered} 100xq58.57.55(6-6)$ $b^{3} \nleq 100xq58.58.55(6-6)$ $c^{3} \nleq 100xq58.58.55(6-6)$ $c^{3} \nleq 100xq58.58.55(6-6)$ $c^{3} \nleq 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.58.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.58.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.58.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.58.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.55(6-6)$ $c^{3} \end{Bmatrix} 100xq58.57.56(6-6)$ $c^{3} \end{Bmatrix} 100xq58.75.56(6-6)$ $c^{3} \end{Bmatrix} 100xq58.75.756(6-6)$ c^{3
1		$\begin{array}{c} b^4 & \forall 100 x q 58.58.66 \\ c^5 & \forall 100 x q 58.55.66 \\ c^5 & \forall 100 x q 58.55.56 \\ c^6 & \forall 100 x q 58.55.56 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.57.55 \\ c^6 & \forall 100 x q 58.55.5 \\ c^6 & \forall 100 x q 58.55.5 \\ c^6 & \forall 100 x q 58.55.5 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 58.55.2 \\ c^6 & \forall 100 x q 28.35.2 \\ c^6 & \forall 100 x q 28.35.2 \\ c^6 & \forall 100 x q 28.2 \\ c^6 &$
MATING		6H18 6H20 6H20 6H21 6H23 6H24 6H25 6H25 6H26 6H26 6H27 6H27

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{aligned} & 1H143b^2 \not \subset 00 \ p (alb.) \\ & 1H120b^4 \not \subseteq 100cq 49.46.14(5c) \\ & 1H1109b^3 \not \subseteq 100cq 49.46.14(5c) \\ & 1H1109b^3 \not \subseteq 100cq 49.46.14(5c) \\ & 1H111b^2 \not \subseteq 00 \ p (alb.) \\ & 1H111b^3 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H111b^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H112a^4 \not \subseteq 00 \ p (alb.) \\ & 1H118a^2 \not \subseteq 00 \ p (alb.) \\ & 1H118a^2 \not \subseteq 00 \ p (alb.) \\ & 1H118a^2 \not \subseteq 00 \ p (alb.) \\ & 1H118a^2 \not \subseteq 00 \ p (alb.) \\ & 1H118a^2 \not \subseteq 00 \ p (alb.) \\ & 1H18a^2 \not \subseteq 00 \ p ($
$a^4 \subsetneq 100xp26.22.17(6f)$ $c^3 \nleq 100xp26.26.23(6f)$ $a^4 \subsetneq 45 \ q56.24.1(3ch)$ $a^4 \Leftrightarrow 100xp22.22.17(6f)$ $a^4 \Leftrightarrow 100xp22.22.17(6f)$ $a^4 \Leftrightarrow 100xp22.22.15(6f)$ $b^2 \Leftrightarrow 100xp15.15.15(6f)$ $a^4 \Leftrightarrow 100xp15.15.15(6f)$ $a^4 \Leftrightarrow 100xp15.15.15(6f)$ $b^1 \Leftrightarrow 100xp23.23.15(6f)$ $b^2 \Leftrightarrow 100xp23.23.15(6f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} b^1 \varphi 100xp26.26.23(6f) \\ c^2 \varphi 100xp26.23.16(6f) \\ a^3 \varphi 56 976.23.16(6f) \\ a^3 \varphi 56 944.43. 2(3ch) \\ \cdots \\ \cdots \\ a^3 \varphi 100xp15.15.18(6f) \\ \cdots \\ a^3 \varphi 100xp15.15.18(6f) \\ b^1 \varphi 100xp36.36.30(5b) \\ b^2 \varphi 100xp15.15.10(6f) \\ a^3 \varphi 100xp15.15.10(6f) \\ a^3 \varphi 100xp15.15.10(6f) \\ a^7 \varphi 100xp15.10(6f) \\ a^7 \varphi 100xp15.10(6f) \\ a^7 \varphi 100xp15.10(6f) \\ a^7 \varphi 100$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} a^2 \varphi I00 x p 50.26.23 6f \\ c^4 \varphi I00 x p 22.15.15 6f \\ c^5 \varphi I00 x p 22.15.15 6f \\ b^6 \varphi \delta 244.54. 13ch \\ b^1 \varphi \delta 55 q 44.54. 13ch \\ b^1 \varphi \delta \delta q 44.54. 13ch \\ c^2 h \delta \varphi \delta \varphi Q \delta \delta \delta 44.6ch \\ a^2 \varphi 40 q 58.44. 12ch \\ a^2 \varphi 100 x p 24.44. 1 (5b) \\ a^2 \varphi 100 x p 22.17.17 (6f) \\ a^2 \varphi 100 x p 22.17.17 (6f) \\ a^2 \varphi 100 x p 23.3. 3 (5b) \\ b^3 \varphi 100 x p 36.33. 3 (5b) \\ a^2 \varphi 100 x p 15.15 (6f) \\ a^2 \varphi 100 x p 15.15.15 (6f) \\ a^2 \varphi 100 x p 15.15.15 (6f) \\ b^3 \varphi 100 x p 23.3.18 (5f) \\ b^3 \varphi 100 x p 23.3.318 (5f) \\ c^2 \varphi 100 x p 23.3.316 (6f) \\ c^2 \varphi 100 x p 23.3.316 (6f) \\ c^3 \varphi 100 x p 23.316 (6f) \\ c^3 \varphi 100 x p 23.316 (6f) \\ c^4 \varphi 100 x p 23.316 (6f) \\ c^5 \varphi 100 x p 23.316 (6f) \\ c^6 \varphi 100 x p 23.316 (6f$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} a^1 & \forall 100 x p 2 2.22.23(6f) \\ b^3 & \forall 100 x p 2 2.12.15(6f) \\ a^1 & \forall 200 x p 2 2.15.15(6f) \\ a^1 & \forall 200 x p 2.15.15(6f) \\ a^2 & \forall 60 q 43.44, 4(3)a 6 6 6 q 50.26, 2(4) \\ a^1 & \forall 60 q 50.26, 2(4) \\ a^1 & \forall 60 q 50.26, 2(4) \\ a^1 & \forall 60 x p 2 2.1, 17(6f) \\ a^2 & \forall 100 x p 2.1, 17(6f) \\ a^3 & \forall 100 x p 2.1, 17(6f) \\ a^4 & \forall 100 x p 2.1, 11(6f) \\ a^5 & \forall 100 x p 2.2, 115(6f) \\ a^5 & \forall 100 x p 2.2, 22, 115(6f) \\ a^5 & \forall 100 x $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6H30 6H32 6H33 6H34 6H35 6H35	K1 K3 K4 K4 K6 K10 K10 K11 K15 K16 K18 K18 K23 K23 K23

MATING		Offspring				Pa	RENTS		
_						Father		Mot	her
6 <i>H</i> 17	b ⁴ ♀ 100xq58.58.55(Ge) c ¹ ♂ 100xq58.60.55(Ge)	b ⁶ ♀ 100xq58.57.55(6e) c ² ♂ 100 cq60.57.55(5 6c)	b ⁰ \(\text{100xq58,55.55(6e)} \) c ³ \(\text{100xq58,55.45(5e)} \)	$b^7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
6 <i>H</i> 18	$v^5 \supseteq 100xq58.55.55(6e$ $a^1 \circlearrowleft 100xq58.57.55(6e$ $a^0 \supseteq 100xq58.57.55(6e)$ $b^1 \circlearrowleft 100xq58.57.55(6e)$ $b^1 \circlearrowleft 100xq58.57.55(6e)$	c ⁶ \(\frac{100\text{tr}(\gamma\) \(\frac{8.58.55(6-6e)}{0.23.100\text{tr}(\gamma\) \(2000000000000000000000000000000000000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ⁴ Q 100 x q 58,58,55 (br) a ⁸ Q 100 x p 23 23,15 (br) b ⁴ Q 100 x q 58,58 (br)	5 H29d1	д 160.vy58.58,55(бе,	5 #30e3	Ç 100a ∵	y58,56,55
3 <i>H</i> 19	$b^5 \circ 100xq58.58.55(6e)$ $c^2 \circ 100xq58.60.55(5*6e)$ $c^6 \circ 100xq58.57.55(6e)$ $c^6 \circ 100xq58.58.55(6e)$	$c^{3} \circ 100xq58.58.55(6e)$ $c^{3} \circ 100xp23.23.15(6f)$ $c^{7} \circ 100xq58.58.55(6e)$ $a^{2} \circ 100xq58.57.55(6e)$	$b^{\dagger} \supseteq 100 cp17.15.15(6f)$ $c^{\dagger} \supseteq 100 cq60.60,55(6e)$ $c^{\dagger} \supseteq 100 cq58.57,55(6e)$ $a^{\dagger} \supseteq 100 cq26,26.23(6f)$	$c^{1} \stackrel{?}{\circ} 100xq58.58.55(6e)$ $c^{5} \stackrel{?}{\circ} 100xq58.58.55(6e)$ $c^{9} - p$ $b^{1} \stackrel{?}{\circ} 100xq57.57.55(6e)$	5 //31r ⁴		 5.H29e3	 0 1000	y58,58,5G
	$b^2 \stackrel{?}{\otimes} 100 eq^5 8.58 \stackrel{?}{\otimes} 5.6e_1$ $e^2 \stackrel{?}{\otimes} 100 eq^5 8.60 \stackrel{?}{\otimes} 5.6e_1$ $e^6 \stackrel{?}{\otimes} 100 eq^5 7.55 \stackrel{?}{\otimes} 56(6e_1$ $e^{10} \stackrel{?}{\rho} = -$	b ³ \(\frac{9}{100x\q^58.58.55(6e)}\) c ³ \(\frac{9}{100x\q^58.58.55(6e)}\) c ⁷ \(\frac{9}{100x\q^58.57.55(6e)}\)	b ³ \(\frac{Q}{1000}\)eq58\(60.55(6c)\) \[\begin{align*} c^4 \qquad 1001\ q57.57.55(6c) \\ \begin{align*} c^8 \qquad q \qquad \qquad \qquad \qquad \qqquad \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqqq	c ¹ & 100xp22 23.15 (f) c ⁵ Q 100xq57.55 55,0× c ⁹ = q				‡ 1014)	ησο,υς,υ(
3 <i>H</i> 20	æ³ δ δ	$a^{3} \stackrel{?}{\circ} \sim q (4e)$ $a^{6} - q$	aid 90 q56 55, 2(3e	$a^{\dagger} \delta = q (4r)$	$5H27e^{1}$	d 85 q58.44. 1(4e)	$5 {\cancel{U}} 26 c^4$	\$ 90	q58.55, 2(
$3H21 \ 3H22$	$e^{4} \stackrel{C}{\downarrow} = 95 \stackrel{?}{\eta} 58,58, \; 2(4e)$ $e^{1} \stackrel{P}{\mathcal{S}} = 100, v_{2}56,58,55, \; 6e$ $e^{5} \stackrel{C}{\downarrow} = 80 \stackrel{P}{\eta} 58,55, \; 1(4e)$	$a^{2} \stackrel{\bigcirc}{Q} S5 \stackrel{\widehat{q}}{q} 58.60. 1(4c)$ $a^{2} \stackrel{\widehat{G}}{G} - q - (5e)$ $a^{6} \stackrel{\bigcirc}{Q} \partial 0 \stackrel{\widehat{p}}{p} = (alb_{c})$	10 Q 100xq57,55,55,6c) b1 & 100xq57,57,55(6e	a ⁴ \(\frac{100.rq57.57.55(6e)}{b^2 \frac{5}{6} \) 100.rq58.57.55(6e)	5 // 26ct 5 // 33b2	g 90 q58.57. 1(5e) g 100.rq58 57.55(6e)	$5H27e^{6} \\ 5H58a^{4}$	♀ 75 ♀ 100q	 g58.5 6. 1(/g58.58 55)
	$b^3 \notin 100 y q 56.55$, $1(5e - b^7 + 9.00 p - 4 \text{dB}_3)$ $c^4 + 9.5 = 0.00 p - 4.4 = 0.00$	$b^{3} \stackrel{Q}{\circ} 100 x q 58 57,55 6 e$ $e^{1} \stackrel{Q}{\circ} 100 x q 58 58 55 (6e)$	h ♥ 100 v/58,57 55(6e) c² ♥ 100.c/58 58,55(6e)	$b^{6} \stackrel{Q}{Q} 100.vq58.58.55(6c)$ $c^{3} \stackrel{Q}{Q} 100.vq58.58.55(6c)$					
H23	e ⁻ \(\psi \) \(\psi \) \(\) \($a^2 \bigcirc 100xq58.58.55(6e)$ $b^1 \stackrel{?}{\otimes} 100xq58.60.55(6e)$ $b^6 \bigcirc 100xq58.60.55(5e)$	$a^3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} a^4 \ ? \ 100xq58.55.55(5e \\ b^3 \ ? \ 100xq58.60.55 \ 6e \end{array}$	$5\overset{.}{H}\overset{.}{5}8a^{2}$	ਰੱ 60 q58. 1. 1(3e)	5 <i>H</i> 33 <i>b</i> ⁵	Ç Inna	 1955.57,56
	$a^1 \stackrel{?}{Q} 100zp37.35 30(5L)$ $b^3 \stackrel{?}{G} 100zq 48.46.43(5c)$ $b^7 \stackrel{?}{Q} 100zq 48.46.11(5c)$	n ² Q 100zq 52,46,14(5c) b ⁴ S 100zq 48,46, 4(5c)	b ¹ of 100zp 36 34, 3(5b) b ⁵ of 100zq 48,46, 7(5c)	$b^2 \stackrel{?}{\otimes} 100zq48.46.43.5a$ $b^6 \stackrel{?}{\otimes} 100zp36.36, 4.5b$	5 <i>H</i> 33 <i>h</i> 3	3 1001q58.58.55 (6e)	5 //35a'	♀ i00z,	p 39.35,28(
H25	$a^{1} \stackrel{?}{\beta} 100 \stackrel{?}{\gamma} 58.60.55 \stackrel{?}{5} \stackrel{?}{6}e^{-}$ $a^{5} \stackrel{?}{Q} = 95 \stackrel{?}{q} 58.60, 4(5e)$ $a^{9} = -q$	$a^{2} \stackrel{?}{\circ} 100xq58.57.56(5c)$ $a^{0} \stackrel{?}{\circ} 100zq48.46, 2(5c)$ $b^{1} \stackrel{?}{\circ} 100zq44.47.11(5c)$	σ ³ & 100.q 52.46 12(5c σ ⁷ \$ 100zq 48.46.43(5c) b ² \$ 100zq 48.46, 7(5c)	$a^4 \delta 100zq 49.46.14(5c)$ $a^8 - q$	5H31h ⁸	8 100aq58 58 55 5e)	5 <i>H</i> 37a²	Ŷ –	p
ļ	$a^{1} \stackrel{?}{_{\sim}} 100z_{p}^{1} 36.35, \ 3.5h$ $a^{5} \stackrel{?}{_{\sim}} 75 \stackrel{?}{_{\sim}} 34.36, \ 3.5h$ $b^{3} \stackrel{?}{_{\sim}} 100z_{p} 15.46, \ 7.5w$ $c^{2} \stackrel{?}{_{\sim}} 100z_{p} 26.37, \ 4.5h$	a ² d, 1002q 52.46.14 5a) a ⁰ Q 1002q 48.46.43(5c) b ³ Q 1002q 48.46.11(5c) c ³ q -	$a^3 \int 100zq \ 48.46. \ 7(5c)$ $b^1 \Im 100zp \ 39.35. \ 3(5b)$ $b^5 \Im 100zq \ 48.46. \ 4(5c)$	$ \begin{vmatrix} a^4 \stackrel{?}{\circ} & 55 & q49.46, & 3 & 3e \\ b^2 \stackrel{?}{\circ} & 50 & p39.39 & 1 & 2 & 3b \\ e^1 \stackrel{?}{\circ} & 60 & q48.47, & 1(3e) \end{vmatrix} $	5 H29r4	\$100xy58.58.55 Ge	5 <i>H</i> 37 <i>a</i> 3	♀ 100z	p39.35,30
H27	a ¹ § 100 i p 22,2 2,18(6) a' ♀ 160 v p 22 22 17 6) b' ♀ 100 i j 23 23,3 7 6)	a ² & 100 vp22,15 18 6f b ¹ & 100xp26,26 17 6f	$\begin{array}{c} a^3 & ? & 100xp22,22,17(6f) \\ b^2 & 3 & 100xp22,15,15(6f) \end{array}$	$\begin{array}{c} a^4 \ ? \ 100xp22.15.17(6f) \\ b^3 \ ? \ 100xp23.23.18(6f) \end{array}$	5 <i>II</i> 36 <i>b</i> 2	8 1000 j 23.23.18(8f)	5 <i>II</i> /37 <i>le</i> ³	\$ 100a	τρ13.13.18
1/26	a ³ \$ 100 cp 23 23 10 67 cb ³ \$ 100 cp 23 23 15 67 cb ³ \$ 100 cp 23 23 15 67 cb ³ \$ 100 cp 26 26 23 67	$a^{2} \stackrel{?}{\delta} 100 vp 26 15 15 6f$ $b^{2} \stackrel{?}{\delta} 100 vp 26.26.15 (6f + b^{2})$ $b^{6} \stackrel{?}{\varphi} = p - q - q - q - q - q - q - q - q - q -$	a ³ \(\varphi\) 100xp26 26.23 6f : b ³ \(\varphi\) 100xp26.26 23 5~6f c ⁴ \(\varphi\) 100 cp26 23.15(6f	$a^4 \odot 100 r p 23.23.15 \ 6f,$ $b^4 \odot 100 r p 23.23.15 \ 6f)$	5 <i>H</i> 33 <i>b</i> 1	∂ 100 cp23.15 18(6f)	$5H31b^{8}$	2 1000	y-22 22,18
H29	e ^{(Q} 1001)23 23.15(6); a ¹ 3 1001 p22.23 18 6; a ⁵ 5 1002 p26.23 18 6)	$e^{1} \stackrel{?}{\Im} 100 ep23 23.1566f$ $a^{\prime} \stackrel{?}{\mathop{\sim}} 100 ep19 19 1666f$ $a^{6} = p = -$	e ⁵ ♀ 100xp23.23 15c5f a ≥ 100xp23.23.15 6f	c= \$\frac{2}{c} \frac{100}{c} \chi p26.23 15 6f\) c= \frac{100}{c} 23 23 15 \q	5 <i>H</i> 30r1	∂ 100rp15 15.15(6/)	 5 <i>H</i> 31 <i>a</i> *	 ♀ 100 c	 p23,23 18
	h / / -	b4 - p	$\frac{b^4}{b^2} = \frac{100 vp 23.15}{p} = \frac{10(6f)}{p}$	$b^2 \stackrel{?}{\downarrow} 100.vp26.23.15 \text{ Gf}$			***		

	6 <i>H</i> 30	$a^1 ? 100xp22.22.23 6f \rangle = b^1 ? 100xp22.15.15 6f \rangle$	$\begin{bmatrix} a^2 ? 100.cp50.26.23 & 6f \\ e^1 \not 0 & 100xp24.24.24 & 6f \end{bmatrix}$	$b^1 \supseteq 100xp26.26.23(6f)$ $c^2 \supsetneq 100xp26.26.23(6f)$	$\begin{array}{c} b^2 \ \ 2 \ 100 xp26.22.17(6f) \\ c^3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5H31a ² & 100xp23.23.18(6f)	5 <i>H</i> 30 <i>a</i> ³ ♀ 100+ p23,23,18,6/)
	6 <i>H</i> 31	c ⁴ \(\frac{1}{100.ep50.50.26(6f)} \) a ¹ \(\frac{3}{5}\) 50 \(q44. \] 1. \(1(3ch) \) a ⁵ \(\frac{9}{5}\) 60 \(q58.44. \] 4(3ch)	$\begin{bmatrix} c^5 & ? & 100 vp 22.15.15 & 6f \\ a^2 & 55 & q 44.54. & 4(3ch) \\ b^1 & 55 & q 44.54. & 1(3ch) \end{bmatrix}$	$c^{0} \ ? \ 100.cp 26.23.15(6f)$ $a^{3} \ \vec{\delta} \ 55 \ q 55, \ 1. \ 3(3ch)$ $b^{2} \ \vec{\delta} \ 60 \ q 44.43, \ 2(3ch)$	a^4 Q 45 $q58.58$. $1(3ch)$ b^3 d 55 $q45.54$. $1(3ch)$	5H27r2 d 45 q44, 1, 1(3ch)	5//27b 9 80 q57.57 1(4ch
	6 <i>H</i> 32 6 <i>H</i> 33	$\begin{bmatrix} b^4 \ \vec{\sigma} \end{bmatrix} = b0 \ q50.26, \ 2(4g \ ch)$ $\begin{bmatrix} a^1 \ \vec{\sigma} \end{bmatrix} = 55 \ q44.44, \ 1(3ch)$ $\begin{bmatrix} a^1 \ \vec{\sigma} \end{bmatrix} = p - q - q(6f)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ³ § 100,rp15,15,18(6/	α ¹ ♀ 100xp22.22.17(6f)	5H27c° & 40 q52, 1, 1(3ch) 5H53a ⁴ & 75 p36,35, 2(5b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	67/34	a^{5} \bigcirc 75 $[\rho 36.35, 4]$ $5h$ a^{1} \bigcirc 100 $xp17.17.17$ $6f$, a^{5} \bigcirc 100 $xp15.15.15$ $6f$ b^{3} \bigcirc 100 $2p$ 36 35.30 $5b$	$\begin{array}{l} a^{2} \stackrel{?}{\wedge} 100xy22.17.17 \ 6f \\ a^{6} \stackrel{?}{\vee} 75 \ p36 \ 35 \ 3(5b) \\ b^{4} \stackrel{?}{\vee} 100zp \ 36.33, \ 3(5b) \end{array}$	$a^3 \stackrel{?}{\circ} 00 \stackrel{?}{p}$ (alb.) $b^1 \stackrel{?}{\circ} 100zp36.36.30(5b)$ $b^2 \stackrel{?}{\circ} 100zp35.34. 3c5b$	$a^4 \stackrel{?}{\nearrow} 00 p = - \text{(alb.)}$ $b^2 \stackrel{?}{\nearrow} 100 p 22.22.15 (6f)$ $b^6 \stackrel{?}{\nearrow} 00 p = - \text{(alb.)}$	5H51a ¹ & S5 p35,35. 3(5b)	5 <i>H</i> 53 <i>a</i> ^b \(\text{?} \(\text{tourp} \) 15.15.15(6f) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	6 <i>II</i> 35	$b^{7} = \rho = a^{4} \stackrel{?}{\neq} 100 \alpha p \stackrel{!}{\downarrow} 2.10.10(6f)$	a2 & 00 p (alb.)	$a^{\circ} \circ 100xp15.15.10(6f)$	a ⁴ ♀ 100xp15.15,15(6f)	5H53a ² & 100xp15.15.15(6f)	5H54b4 \$ 100xp10.10.10(6f)
	6 <i>1</i> //36	$a^{j} \Omega I00 i p 15.15.10 (6f)$ $a^{1} \frac{3}{5} I00 i p 22.22.15 (6f)$	$\alpha^6 \circ 00 p = -(alb.)$ $\alpha^2 \circ 100xp15.15.15(6f)$	$a^7 - p$ $a^3 \lesssim 100 vp 17.17.15, 6f$	a4 & 100xp15.15.15(6f)	5H53α ³ δ 100xp22,17.17(6f)	5H54bh \$ 100xp15.15.15(6f)
		b4 & 100xp15.15.15(6f)	$\begin{bmatrix} a^0 & 100xp15.15.15(6f) \\ b^3 & 100xp23.23.18(5f) \end{bmatrix}$	$a^{\dagger} \stackrel{\bigcirc}{\circ} 100xp23.23 \ 15(5f)$ $b^{\dagger} \stackrel{\bigcirc}{\circ} 100xp15.15.10(6f)$	$\begin{vmatrix} b^1 & f - p (6f) \\ b^5 & 100 & p23.23.15 & 6f \end{vmatrix}$		*** *** *** ***
		b ⁶ Q 100xp23.23 17 6f , c ¹ & 100xp26.26 17(6f)	$b^7 \bigcirc 100xp17.17.15(6f)$ $c^2 \bigcirc 100xp23.23.15(6f)$	$b^{8} \stackrel{?}{Q} 100 vp 15.15.15 (5f)$ $c^{3} \stackrel{?}{Q} 100 vp 23.23.15 (6f)$	$\begin{vmatrix} b^0 & 00 & p \text{(alb.)} \\ c^4 & 100xp15.15.15 \text{(6}f \) \end{vmatrix}$		4+4 888 7+7 4+4 4+4 444 444
		c ⁶ ♀ 100.cp15.15.15(6f)	c ⁶ ♀ 100.rp15.15.10(6f)	$e^{a} \circ 00 p (alb_{\bullet})$	200 200 200		*** ***
	K1 K2	$a^1 = q (6e)$ $a^1 = q (5e)$	$\begin{vmatrix} a^2 & - & q - & - & - & (5d) \\ a^2 & - & q - & - & - & (5c) \end{vmatrix}$	$a^3 = q = -(5d)$ $a^3 = q = -(5d)$	u ⁴ - q (4c	$1H143b^2 \stackrel{?}{\circ} 00 \stackrel{?}{p} = \text{(alb.)}$ $1H143b^3 \stackrel{?}{\circ} 1007a494614(5c)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	К3	a^{5} 00 p (alb.) a^{1} - q (5 c)	$u^{\epsilon} = q = (\delta t)$	$q^3 - q (5c)$	y	1H109b3 & 00 p (alls.)	1
	K4 $K5$	$a^1 = q = -(5c)$ $a^1 = q = -(5c)$	a = a = a = p (alb.) a = q = -5c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a^4 $\theta\theta$ p (alb.) a^4 $\theta\theta$ p (alb. w)	$1H148b^2 \gtrsim 00 p$ (alb.)	$1H111b^6 \stackrel{\downarrow}{\circ} 100xq58.57.55(6e) 1H148b^4 \stackrel{\downarrow}{\circ} 00 p (alb.)$
	Æь	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a^0 & \theta \theta & p + & +(alb_0) \\ a^2 & q & +(5c) \\ a^0 & \theta \theta & \mu & (alb_0) \end{bmatrix}$	a^3 (0) p (alb, w)	α ⁴ 00 p (alb.)	1H1111b4 & 00 p (alb.)	1H101b2 9 100xq49.48.46(6c)
	K10 K11 K12	$a^{1} - q = -(4b)$ $a^{1} - q = -(4b)$ $a^{1} - q = -(6c)$ $a^{1} - q = -(3c)$	$a' = b' = (4b \ r) = a^2 = b' = (6b)$	a^{7} 00 p - + - (alb.) a^{8} p^{7} (3bw) a^{1} p^{7} (6f) a^{7} a^{7} a^{7} (8bc)	a4 00 p (alb.) a4 00 p (alb.)	$1H101b^4 \stackrel{?}{\circ} 00 p (alb.)$ $1H101b^4 \stackrel{?}{\circ} 00 p (alb.)$ $1H120b^3 \stackrel{?}{\circ} 00 p (alb.)$	$1H32a^4 + 2 100xq58.57.55(6e)$
	K15	a^{5} $\theta\theta \stackrel{q}{p} = -(ab)$ a^{1} $p = -(6b)$	$\begin{bmatrix} a' & q - & 3c \\ a'' - p - & 3b \end{bmatrix}$	$q = -(3bv)$ $q' = -(alb_0)$	α θθ p = = - (alb.)		1H117b1 Q 100xq 41.41.50(5g)
	K16	$a^{\xi} = 00 \stackrel{f}{p} = -(\text{alb.})$ $a^{\xi} = 00 \stackrel{f}{p} = -(\text{alb.})$	$\frac{p}{a^2} = \frac{p}{g}$ (3e)	a^* $y = -(2e)$	a (4c)		1H124b1 Q 65 q58. 1. 1(3-4e)
	K19	$a^6 = q = (3c)$ $a^1 = q = (4c)$	$a^{\prime\prime\prime} = \frac{1}{q} \cdot \frac{1}{3\epsilon_1}$	$a^3 = oo p^2 = -(alb_e)$, , , , , , , , , , , , , , , , , , ,	1H119a ³ & 55 q49. I. 1(3c)	1#149a ⁴ \(\text{\$\text{\$00 \ p (alb.)}} \)
	K21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^2 = q + (6d)$	a (4e)	$a^4 - q (4e)$	1H114a ² d 10 q58. 1. 1(1e)	1H152a3 Q 00 p (alb.)
σ.	K23	a^{1} $q = (5c)$ a^{6} (0) $p = -(alb.)$	$\begin{vmatrix} a^2 & q & (5c \\ a^0 & 0a p + 1 \end{vmatrix}$ alb)	$a^{\dagger} = q (5c)$ $a^{\dagger} = 00$ $p (alb.)$	$\begin{vmatrix} a^4 & - & q - & - & -(4c) \\ a^6 & 00 & p - & - & (alb.) \end{vmatrix}$	1H119a ⁵ & 00 p (alb.)	1H87a¹ ♀ 100xq58.58.57(6e)
	K24	$a^1 = q = -(1e)$ $a^2 = 00 p = -(alb.)$	$\begin{vmatrix} d^2 & q & - & (2v) \\ d^3 & 60 & p & - & (alb.) \end{vmatrix}$	" y (2e)	a4 00 p (alb.)	1H100b1 & 00 p (alb.)	1H65b ² Q 100xq58.58.56(6e)
	K27	$a^{\dagger} = q (6e)$ $a^{\dagger} = \theta \theta p (all_b)$	α² - q (Ge)	a on p - (alb.)	α ⁴ 00 p (alb.)	1H118a ² & 55 q49. 1, 2(3e)	1 <i>H</i> 88 <i>b</i> ² ♀ 00 <i>p</i> − − − (aIb.)
	K_{28}	$a^{1} - q - (5c)$ $a^{5} \theta \theta \rho (alb.)$	$\begin{bmatrix} a^2 & q & (4c) \\ a^6 & 00 & p & -(\text{alb.}) \end{bmatrix}$	$a^3 > -q - (4c)$ $a^7 = 00 p (alb.)$	a4 - q (6g)	1H122a ⁵ & 25 q46. 1. 1(2c)	1 <i>H</i> 16 <i>a</i> ⁶ ♀ 00 <i>p</i> (alb.)

W. F. B. Weldon's Records of Mice Matings (continued).

Matrix Matrix Mother Father Mother Father Mother Mo			- (alb.) - (alb.) - (alb.) - (alb.) - (alb.) - (alb.)	$\begin{array}{c} \cdots \\ -(alb.) \\ \cdots \\ \cdots \end{array}$	- (alb.) 	- (alb.) 	$\begin{array}{l} \cdots \\ -(\text{alb.}) \\ -(\text{alb.}) \\ \cdots \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		other	2 222		d	. 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	0+ 0+0+0+	:0+::		α †	:0+0+	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ENTS		$1H16a$ $\frac{1}{1H152}$ $2H26a$ $2H52a$ $2H52a$ \cdots \cdots	2.H63b	2H96a	2H113	2H116 2H147	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PAR		2(3c) 1(2c) 55(6e) 55(6e) 	55(6e) 	55(6e) 	 56(6ew) 	$\frac{-(6e)}{1(2a-b)}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ıer	748.46 1	q58.57.	<i>q</i> 58.57.	758.56.	$rac{7-}{637.}$ 1.	: : : : :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fatl	\$ 55 \$ 30 \$ 100x	₹100x	\$100x	 ∂ 100x	 	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$1H121a^5$ $H100a^2$ $2H96a^1$ $2H156a^3$ \dots \dots		$2H102a^1$	$2H_{108\alpha^2}$	$H117a^{1}$ $H130b^{1}$:::::
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(alb.)	:		: 1 1	:111	1 1 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11111	1 1	1111		1 1 1	1 1 1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			- d b -	- b -	-b - -b - -b -	- d -	- d - d - d -	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} a_4 \\ b_2 \\ c_3 \\ c_3 \end{array}$	$\frac{\alpha^4}{b^2}$		b_1	α_4	60 50 E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 1 1 1 1	: 1 1	1 1 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1::1			: 0	$-\frac{d}{-b}$	t t t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97			111	1 1 1 1 1	1 1	111	1111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FESPRIN		- ·	653	<i>c</i> ¹ <i>c</i> ² <i>c</i> ³ <i>c</i> ₁			**************************************
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l		- (3c) - (3d) - (all) - (all) - (all) - (all) - (all)			1 1	(0)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				b d b		$-\frac{d}{b}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ļ						
		ļ	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	1 1 1 1				
9 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°			TITLLE		1 1 1 1	1 1 ; 1 1 1	\sim	1111
ರಿ ಕ್ರಾಪ್ ಕ್ರಿಸ್ ಕ್ಟಿಸ್ ಕ್ರಿಸ್								
Маттие K29 K50 K53 K53 K55 K55 K55 K55							*0	
	MATING		K29 K30 K50 K53	K54	<i>K</i> 55	K56	K57 K59	

EXPLANATION OF RECORDS.

In the nomenclature adopted by Weldon, 0H80 (say) represents the eightieth cross of the original races, i.e. Japanese waltzers and ordinary white mice. The resulting offspring of the first litter of this cross are a^1 , a^2 , a^3 , etc., of the second litter of the same cross b^1 , b^2 , b^3 , etc., and of the third litter c^1 , c^2 , c^3 , c^4 , etc. The matings of hybrids are denoted by 1H90 for the first generation of hybrids, 2H90 for the second generation and so on. Thus a mouse $6H17b^2$ denotes that it was the second mouse of the second litter resulting from the 17 mating in the 6th generation of hybrids. The characters of any mouse are given by a scheme of the following kind: $4H64 \mid c^2 \stackrel{?}{\circ} 75958.55.1(4e) \mid$

This signifies that the mouse $4H64c^2$ was a male; 75 denotes that the pigmented areas covered '75 of the total skin as determined by our scale of pigmented areas (see Plate I). q denotes that the eyes are black in this case, p would have marked that they were pink, the ordinary albino colour, r and d.r that they were red or dark red corresponding to blood and very dark blood colour; as a rule mice with such eyes have only incompletely albinotic eyes, i.e. there is more or less pigment found on dissection. The next three figures in the present case, 58, 55 and 1, mark the skin colour of the mouse on the mouse skin pigment scale of the Biometric Laboratory. This scale was formed by matching glass mosaics to the actual colours of the mouse skins. This scale contains 61 tints. Tints 1—9 are the "belly whites," leading up to 10—18, the palest blue greys; 19—27 are pale blue greys; 28—33 are yellow; 34—39, fawn yellow; 40—41 are chocolate; 43—45, chinchilla; 46—54, wild colour of various intensities, and 55—61, black of various intensities.

Of the three tints obtained from this scale the first, 58 in our case, marks the colour at the centre of the median plane of the skin, or if this should fall on a leucotic patch in the case of the piebald, the tint of the nearest dark patch. The second number gives the colour of the skin halfway between the centre of the back and the centre of the belly, 55 in our case; and the third number is that of the colour of the belly. Very often the first two numbers are the same, but we found in a good many cases that the tint shaded off from centre of the back to the belly, and our second number is a rough measure of the lightening of the pigment as we proceed from back towards belly. The final symbols given in brackets are Weldon's appreciation of the area of pigmentation given by the numbers 1 to 6 and his appreciation of colour as given by the letters a-g, ch. In the case of mice alive at his death and not then classed, these colour appreciations and pigment extents were provided as far as possible in accordance with his recorded judgments of other mice.

In the figures on p. 44, reproduced from *Biometrika*, Vol. III. p. 3, Fig. 6 represents a normal waltzing mouse.

Fig. 1 is Weldon's Class 1, more white and less extent of colour patches than a normal waltzer.

Fig. 2 is Weldon's Class 2, having about the same amount of colour patches as a normal waltzer.

Fig. 3 is Weldon's Class 3, having somewhat greater extent of colour patches than Class 2.

Fig. 4 is Weldon's Class 4.

Fig. 5 is Weldon's Class 5 with only a whitish belly.

Weldon's Class 6 is a whole colour mouse with nearly the same colour on the belly as on the back. Read with a planimeter Weldon's Classes are represented very roughly by:

We ourselves found considerable difficulty with "whole coloured" mice, and finally arranged them in three classes as follows:

100x are mice with the skin pigmented all over, i.e. the same colour on belly as on the back; 100y are those with a line of paler belly pigment, but not sufficient to take the skin out of the

Records of Mice Matings

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

100 percentage; 100z have a skin pigmented all over, but a strip of paler belly colour which, if white, would make the skin fall in the 80 to 95 percentage classes. This means that our 100x and 100y ought to be Weldon's 6. As a rule our 100z are also his 6, but sometimes he denotes them by 5-6, and on some occasions he has called them 5. We have carefully considered these cases, but believe that our judgment, where not modified, must stand, as the belly pigment in these cases is often almost as intense as the back—e.g. 55 as against 58—and even when it is 9 against 19, this is not a pure white (1 only) but a shade of grey. We think our 100x for a pigmented belly with lighter hairs is more definite than terming the whole belly white, in which case our first number giving the extent of piebaldism would have to be modified, but the measurement would be exceedingly difficult as the pigment is there and only gets more plentiful towards the back. As a rule Darbishire and Weldon judged the amount of pigment on the living mouse and the nature of the belly pigment was not so open to full observation as when determined from the skin.

Weldon's colour classification was as follows:

 $a = \text{yellow} \qquad \qquad e = \text{black}$ $b = \text{fawn-yellow} \qquad \qquad f = \text{pale blue grey ("lilac")}$ $c = \text{pale wild colour} \qquad \qquad g = \text{chocolate}$ $d = \text{dark wild colour} \qquad \qquad ch = \text{chinchilla}$

Roughly Weldon's a = our 28 - 33; his b = our 34 - 39; his c and d = our 46 - 54; his e = our 55 - 61; his f = our 10 - 27; his g = our 40 - 42; his ch = our 43 - 45. Naturally there is a good deal of personal equation in colour-determination, perhaps less with a colour scale than with mere verbal classification. Thus we should a priori have supposed c would range from about 46 to 49 or 50 and d from 50 to even 55 or 56. But we find c used for as dark a tint as 55 and d for as light a tint as 48. In the later records Weldon rarely, if ever, uses d, only c, so that its practical use is in the first or second hybrid generations, as in Mr Darbishire's paper. There d may be as low as 45, a tint we should call chinchilla. Our experience would make us doubt whether a rigid line can possibly be drawn between the various colour classes, with the possible but not certain exception of the yellows. Even here such judgments as b-c and b-f may occur. The differences of d and e, and f and g, may be so slight that intermediate classes may be formed as d-e, f-g.

A w following the Weldon colour class in the brackets at the end of the description of the individual mouse marks that it was a waltzer. Intermediates in colour or in piebald class are marked by a hyphen, e.g. a-b or 3-4.

Of the original stocks, the Japanese Waltzers were either bought or bred in the Laboratory. They were of pure stock, for they bred true to the parents when crossed only among themselves. There were very slight differences of the fawn colour in the body, and all eyes were pink. A waltzer is distinguished by the letter W, and as a rule by its laboratory number. The

skins of these Waltzers were not preserved, but in the case of most of the animals a rough appreciation of the extent of the colour patches was conveyed by the use of the letters a and β and their combination $a\beta$. Figure 7 on p. 45 represents an average waltzer = $(a\beta)$, all waltzers with appreciably less colour are noted by a, all waltzers with appreciably more colour by β .

With regard to the albino parents we have distinguished ten classes, which are indicated in the following manner, the great difficulty is to be certain of the ancestry of albinos bought from dealers. In the Index Bt = Bought, Lb = Laboratory-bred.

Albino Classes.

(1)	Parents and grandparents all albino, ancestry beyond unknown	.12
` /		
(2)	Both parents albino, but one or more grandparents known not to be albino	$A \times 3$
(3)	One parent albino, and the other not albino	$A \times 2$
(4)	Neither parent albino	$A \times 1$
(5)	Nothing known of ancestry	A1?
(6)	Said to be pure-bred albino	A1
(7)	Both parents albino, no definite knowledge of grandparents	A2?
(8)	Back to grandparents all albino, but beyond known to be cross-bred	$A2 \times$
(9)	Both parents and two grandparents known to be albino, no definite know-	
	ledge of the other two	$A2\frac{1}{2}$
(10)	Back to grandparents all albino, 1 or 2 grandparents pure bred albinos, no	
	definite knowledge of others' ancestry	$A1\frac{1}{2}$

In Weldon's later breeding work on first crossss, i.e. the high numbered 0H and 1H, he paid much attention to the ancestry of his albinos, and the following pedigrees illustrate the ancestry in typical cases. The reader must note that the offspring stand at the top of the pedigrees, and we descend to parents and ancestry.

(1) $A43a^2$ Alb. in 1H143, 2H152

(2) $A58a^4$ Alb. in 2H155

(3) $1H153a^3$ Alb. in 2H124 $3 1H153a^3$ (Alb.) $A \times 2$ $3 A25a^3$ Alb. $= A2\frac{1}{2}$ 4 Alb. from Föckelmann, Steer, No. 89 = A1? 5 Alb. from Bacon, Steer, No. 57 = A1? 6 Alb. from Steer, No. 57 = A1? 7 Alb. from Steer, No. 57 = A1?

(4) $A159\alpha^4$ Alb. in 2H80

(5) $A26a^3$ Alb. in 1H146

(6) $A32a^8$ Alb. in 1H156

(7) $A46a^2$ Alb. in 1H149

(8) A48a4 Alb. in 1H157

(9) A81a2 Alb. in 1H158, 1H270

Records of Mice Matings

(10) \circlearrowleft $A133a^1$ Alb. in 1H164; \circlearrowleft $A133a^2$ Alb. in 1H165; \circlearrowleft $A133a^4$ Alb. in 1H167; 3 A133a⁶ Alb. in 1H168; 3 A133a⁷ Alb. in 1H169. $A133a^{1-7}$ (Alb.)= $A \times 2$ These are 3 black-bred whites $A60a^{1} = 6e$ Ω A35 α^2 Alb. = $A \times 2$ ♂ Black from Austin ♀ Black from Austin 3 Black \bigcirc from Föckelmann=A1? (11) $A136a^4$ Alb. in 1H171 $3 \text{ A} 136a^4 \text{ (Alb.)} = A \times 1$ ₹ A18a2 black ♀ A18a¹ chocolate 3 Chocolate from Field, \bigcirc Alb. from Steer=A1, d Alb., No. 79 9 Alb., No. 78 Alb. No. 79 Alb. No. 78 (12) A147a5 Alb. in 1H187 \bigcirc A147 a^5 (Alb.) = A2 \times $\stackrel{?}{\sim} A95a^1 \text{ Alb.} = A2 \times$ \bigcirc A34b3 Alb. = A \times 3 $3 \text{ A} 13a^1 \text{ Alb.} = A \times 3$ ♀ Alb. from Strong, 3 Alb. from Bacon = A1? ♀ Lab. × bred No. 12 = A1? No. 57 $Virgin Alb. = A \times$ ♀ Cross-bred Alb. from 3 Alb. from Steer, No. 3 = A1Broxup, No. $69 = A \times$ (13) $A153a^2$ Alb. in 1H183, 1H273 $\angle A153a^2 \text{ (Alb.)} = A1\frac{1}{2}$ $A48a^3 \text{ Alb.} = A2\frac{1}{3}$ $9 \text{ A} 32a^5 \text{ Alb.} = A2?$ Q Alb. from Föckelmann 3 Alb. from Föckelmann & Alb. from Broxup, ♀ Alb. from Steer, No. 18 = A1? No. 80 = A1= A1 ?= A1?(14) $A182a^6$ Alb. in OH164, 1H274 $QA182a^6 \text{ (Alb.)} = A1\frac{1}{2}$ $A79a^1 \text{ Alb.} = A2\frac{1}{9}$ $9 A79a^2 \text{ Alb.} = A2\frac{1}{9}$ ♂ Pure bred from ♀ Alb. from Föckelmann ? Pure bred from Q Alb. from Föckelmann Steer = A1= A1?Steer = A1= A1 ?

 $0H156a^{1}$ is the same except that the mother is $A58a^{5}$ instead of a^{4} .

In the following Notes on Individual Mice, we have entered chiefly Weldon's remarks, but occasionally we show reason for differing from the account given of individual mice in Darbishire's memoir. We have only done so where on due consideration it seemed necessary, and chiefly because we found a wrong transcription from the records, or a characterisation not in accordance with the skins in our possession. From 0H to 2H matings we reproduce largely the results as given by Darbishire, although Weldon himself increased the number of these matings and had preserved for his own work all the skins possible. From 3H to 6H the matings are taken entirely from the card indices of Weldon, which were completed after his death when the stock in existence was killed and the skins preserved.

The notes we think throw considerable light on the difficulties of a large series of experiments of this kind; they mark the extent to which the mothers destroyed their offspring; the reasons why gaps occur in the matings, or in the skins preserved*; the occurrence of deformities or pathological states; the possibility of the young mating at a very early stage, and the difficulty of preventing at least some escapes. We note also how hard at times is colour classification by mere verbal categories. The following terms are abbreviated:

outbred = OB; cross-bred = XB; inbred = IB; pure-bred = PB.

NOTES ON INDIVIDUAL MICE.

0H Matings.

0H8 or 7 A wild coloured mouse from Cross 7 got loose but was caught; it was put back with the young of Cross 8. Anyone of the litter called 8a therefore may be 7a.—0H8 or $7a^2$ A huge mouse, looks like a rat.—0H8 or $7a^6$ Died young.— $0H9a^1$ Mangy.—0H17, 0H19 Young all eaten.— $0H35a^3$, $0H35a^4$, $0H35a^5$ Mangy.—0H45 In Book of Crosses it is distinctly stated under Cross 45 that the father was the 3 from Cross 10. Under Cross 6 the 3 from Cross 10 is said to be No. 6. No. 6 in picture is $W\beta$ but under Cross 45 in Biometrika, Vol. III. the father is stated to be Wa.— $0H45a^3$ This mouse waltzed, but not in a very close circle.—0H53, 0H55 Young eaten.— $0H61a^7$ Skin not worth keeping.—0H62 Mother inbred 5 years.—0H72 Offspring died young.— $0H84a^7$ The colour of coat is almost cream.— $0H84a^8$ Escaped.— $0H85a^6$ Mange on face.—0H87 Offspring born dead.—0H90 Three offspring eaten.— $0H91a^1$ Died young.—

^{*} Occasionally if two skins in one mating were identical only one was preserved, but usually all were kept, if possible.

0H99Offspring born dead.— $0H102a^6$ Given away.— $0H113a^1$ Killed by relatives.— $0H113a^3$ Skin not kept.—0H113a⁷ Killed by his doe.—0H113a⁸ Escaped.—0H114a¹ Ill and killed.—0H117a³ Mange on face.— $0H120a^8$ Unhealthy and very small.— $0H124a^3$ Escaped.—0H128 The two 3cw offspring were killed and mangled beyond recognition.—0H130, 0H131, 0H132 The three waltzer fathers are brothers.— 0H138a² Very small.—0H139a⁵ Escaped.—0H142 Mother OB, XB. --0H142a⁵ Skin destroyed.--0H143 Mother extracted recessive Albino from Prof. Cuénot.-0H144 Mother refused to suckle young, so all died; mother IB, PB.-0H145 These 5's are catalogued as 6's. The colour is present but light on belly.—0H147 Several offspring died young; mother IB, XB.—0H150 Several offspring died young.—0H152a⁵, 0H152a⁶, 0H152a⁷ Died young.—0H153 Several offspring died young. Two 4c's are w.—0H156a4 The lightest of c's.— 0H159 Mother OB, PB.—0H159a1, 0H159a2, 0H159a3, 0H159a4 Escaped.—0H160 Mother OB, PB.—0H161, 0H162, 0H163 Mothers IB, PB.—0H163a⁵ Died young.—0H165, 0H166 Mothers OB, PB.—0H166a1 Escaped and killed.—0H167 Mother OB, PB.—0H168 Mother ate young.—0H169 Father IB, PB.—0H169a¹ Escaped.—0H170 Mother black inbred.—0H171 Mother black inbred,—0H172 Mother black inbred, several offspring died young.—0H175, 0H176 Mothers $\frac{7}{8}$ black bred.—0H179, 0H184 Mothers OB, XB.—0H185 Mother IB, PB.

1H Matings.

1H1 All 4 young died at birth.—1H3a¹, 1H3a² Died young.—1H3a⁴, 1H3a⁵ Very pale "wild."— $1H4a^4$ Escaped.— $1H5a^4$ Mangy.— $1H6a^3$ Escaped and died.— $1H7a^3$ Very light "wild." -1H9a⁴ Very light c.-1H18a¹ Died young, also 2 albino offspring of 1H18 mating.-1H18a⁴ No head movements.—1H19a3, 1H28b1 Escaped.—1H29a2 Is misprinted e for c in Biometrika and so in Catalogue.—1H29a³ Skin destroyed.—1H34a, 1H35a Both young born in the same cage, no good therefore and killed.— $1H36a^4$ The colour of the coat is intermediate between fawn and c.— $1H36a^5$ The coat colour is nearer c than that of the last.— $1H37a^2$, $1H37a^4$ The coat colour is intermediate between fawn and c.-1 H42b4 The coat colour is curious. There is a "blaze" of c on the face and top of head.— $1H43a^2$, $1H43a^3$ Escaped.— $1H43a^4$ Too rotten to skin.— 1H46 All young killed.—1H49a2 Described as chocolate; it is intermediate between chocolate and a very pale homogeneous c.— $1H49b^5$ Mangy.— $1H51a^1$, $1H51a^2$ Very pale c.—1H55, 1H56Note that the does in these two crosses are sisters, and that the one in 1H55 is crossed with an outbred pure-bred albino, and that the one in 1H56 is crossed with an inbred pure-bred albino.—1 $H55a^1$ Colour only very slightly darker than fawn, though in the direction of c.— $1H56a^1$ Mange.— $1H57a^5$, $1H57a^6$ Died young.— $1H58a^1$ Colour between fawn and c with, perhaps, a soft chocolate tinge.—1H59a¹, 1H59a⁵, 1H59a⁶, 1H59a⁷ Back legs paralysed of these albino young.— $1H59a^4$ The colour is rather a soft c.— $1H60a^5$ Mange and a damaged foot.— $1H60a^6$ Died young.— $1H63a^4$ The d is very soft.— $1H64a^1$ Skin not worth keeping.— $1H64a^2$ Rather tending to chocolate.— $1H66a^2$ The colour is not quite f: it has a suspicion of yellow in it.— $1H66a^4$ The yellow is very dull, not unlike that of a normal waltzer, but merging very slightly to lilac.— $1H66a^6$ The colour is almost completely intermediate between that of a waltzer and lilac.—1H67 One 3 and one 9 offspring. Both mangy and killed.—1H68 Note that in 1H68, the only hybrid incest pair, there are 3 waltzers out of 5 young. One 3 and one 9 offspring mangy.—1H70a² Waltzer's colour.—1H70a³ General form of waltzer. Mangled beyond recognition.—1H71 Albino offspring died young, the rest eaten.—1H72 Young eaten.—1H80a6 The colour is a very pale chocolate.—1H81, 1H82, 1H83a Young born together: they are described as 81α and were killed.—1H84, $1H85\alpha$ Born together. They are described as 1H84 and were chloroformed. 1H84 comes to an end. 1H85 goes on as 1H85b.-1H88, 1H89 Two or one family: born in cage before isolation; the young are described as 1H88a and were killed. One Q is left with d as 1H88b. 1H89 comes to an end.—1H90, 1H91 Born together. 1H90continued as 1H90b. 1H91 comes to an end. Young recorded and killed.

Note by W. F. R. WELDON:

The last two crosses had three objects (1st) to see whether whites (produced by crossing whites with first crosses) when crossed with first crosses—i.e. 1st generation hybrids—give the Mendelian numbers in their offspring, i.e. 50 °/o albinos and 50 °/o hybrids, (2nd) to see whether albinos produced in this way behave the same when crossed with waltzers as do ordinary purebred albinos, and (3rd) whether albinos whose ancestry has been "watered down" in this way for many generations will breed true when paired. With regard to the "watering down" of the albino ancestry of an albino, if hybrids at the first generation are paired with albinos, and the resulting albinos are paired back with hybrids of the first generation, the following table shows what happens:

The fractions in brackets after Hyb. or Alb, indicate the amount of albino ancestry in the animal.

From which it will be seen that to find the albino ancestry of an albino in a given generation the denominator of the fraction indicating the albino ancestry of the previous generation must be doubled to produce that of the desired generation: and to find the numerator of the generation in question that of the previous one must be doubled and 1 subtracted.

But it is evident, that continually breeding back with a first cross is bad: because the ancestry of the desired albino can never be reduced below a half. The first step (that taken in 1H90 to 91) is all right because the $\mathfrak P$ in 1H91 is Alb. $\binom{3}{4}$ and the young produced (i.e. 1H91 $a^{1,2}$, etc.) will be alb. $\binom{5}{8}$, i.e. an $\frac{1}{8}$ less albino ancestry $\frac{5}{8} = \frac{1}{2} \frac{60}{56}$; then the degree in which the "watering down" diminishes is shown in the following series:

or
$$\frac{160}{256}, \quad \frac{144}{256}, \quad \frac{136}{256}, \quad \frac{132}{256}, \quad \frac{129}{256}, \quad \frac{129}{256},$$
or
$$16, \quad 8, \quad 4, \quad 2, \quad 1, \quad -$$
or
$$\operatorname{ancestry of } \mathbb{Q} \text{ in } 1H91, \text{ i.e. } H6a^2 \qquad = 750$$

$$, \quad , \quad 1H91a^1, \text{ etc.} \qquad = 625$$

$$, \quad , \quad Albino \text{ in next generation} = 562$$

$$, \quad , \quad , \quad , \quad , \quad , \quad = 531$$

$$, \quad , \quad , \quad , \quad , \quad , \quad = 515$$

$$, \quad , \quad , \quad , \quad , \quad , \quad = 507$$

$$, \quad , \quad , \quad , \quad , \quad = 503$$

that is to say starting with Alb. $(\frac{3}{4})$ (e.g. $H6a^2$ in 1H91) we can in the 6th generation produce Alb. (*503).

1H94 Parents doubtful, at any rate in colour of father and the 4 does H84a were pregnant when sexed. Offspring destroyed.—1H95 The parent females H62a etc. were pregnant when sexed.—1H95 a^3 Colour a mixture, between fawn, chocolate and $c.-1H95a^4$ Colour pale chocolate.—1H95 a^6 Killed by relations.—1H96 a^2 Colour a very pale fawn.—1H97 a^1 Pale fawn, with little white on belly.—1H98 a^4 Much paler than $a^3.-1H98a^5$ Extremely like $1H98a^4$, but with less white below.—1H98 a^6 A very blue fawn colour.—1H99 a^1 Dark fawn. The belly lighter but hardly any real white.—1H99 a^2 Pale c. Skin not kept.—1H99 a^4 Died young.—1H100 a^5 Skin not kept.—1H100 a^5 Rather dark fawn.—1H100 a^6 Pale fawn.—1H101 a^1 Colour a pale blue-grey,

like a mixture of fawn and lilac.— $1H101a^4$ Colour not black.— $1H101a^5$ Died young.— $1H101a^7$ No record except skin.— $1H101b^6$ Mixture of dark b and very pale chocolate with a look of fawn.— $1H102a^3$ Colour exactly intermediate between b and c.— $1H102b^2$ The palest lilac imaginable: if not placed beside an albino, it is taken for an albino,—1H102b3 A pale but obvious f.—1H102b4 A darker f than 1H102b3.—1H103a1 Colour dark fawn.—1H103a2 Colour yellow fawn. Skin rotten and not kept.—1H103a³ Colour very dark fawn or very pale "wild."— 1H103b3 The appearance, behaviour and complaints of waltzers are present in this mouse.— $1H104a^5$ Died young. $-1H105a^3$ Colour a brownish lavender. $-1H105b^1$ Escaped. $-1H105b^2$ Died young.—1H107a¹ Very pale "wild."—1H108, 1H109a All offspring died young.—1H109a¹ Very like pure race.— $1H109a^2$ Colour greyer than in $1H109a^1$.— $1H109b^5$ Died young.— $1H111a^1$ A uniform pale grey almost intermediate between α and e.—1 $H111a^2$ Colour a grey fawn. Died young.—1 $H111a^4$ Colour paler than a^3 but the belly less white.—1 $H111a^6$ Died young.— $1H112a^3$ Colour called f but it is really too brown for lilac.— $1H112a^4$ Exhibits waltzing tendencies.—1 $H114a^4$ Skin not worth keeping.—1 $H115a^2$, $1H115a^4$ Died young.—1 $H115b^1$ Some parts of ears are clothed with yellow hair.—1H117b1 A sharp patch of white between fore legs, another much smaller on belly.—1H118b2, 1H118b7 Escaped.—1H121a1 Colour very pale.— $1H121a^3$ Colour very dark.— $1H121b^4$ A very dark d.— $1H121b^5$ A measly specimen. Escaped.— 1H122a⁶, 1H122a⁷ Skins not kept.—1H124a¹, 1H124a⁴, 1H124a⁵ Skins not kept. Head destroyed in $1H124a^{1}$.— $1H124b^{4}$ Rather of a dark b.— $1H124b^{5}$ Died young.— $1H125a^{2}$, $1H125a^{4}$, $1H125a^{5}$, $1H125a^6$, $1H125a^7$ Skins not kept.—1H125b All offspring died.— $1H126a^3$ Died young.— 1H126b² Waltzing and neurotic tendency very well pronounced.—1H126b³ Called erroneously e in Biometrika, Vol. III.—1H127b4 Darker than 1H127b2.—1H127b5 Mange.—1H128b1 A dark b.— $1H129a^1$ Died before being painted.— $1H129a^2$ Skin not kept.—1H129b Catalogue, Biometrika, Vol. III. and skins differ wholly from Children of Hybrids record book.—1H129b7 Died young Only mentioned in mating book.—1H130a² Very pale b.—1H133b¹, 1H133b² Died young.— $1H133b^3$ Very pale.— $1H133b^4$, $1H133b^5$ Very pale, died young.— $1H135a^3$, $1H135a^4$ Died young.— $1H136b^3$ Colour intermediate between b and chocolate,— $1H137a^1$ Colour intermediate between chocolate and $c.-1H137b^2$ Died young. $-1H137b^3$, $1H138a^3$, $1H138a^3$ Died young. $-1H139b^1$ Called 6e. But by no means a pure black. Several hairs on chest, between front legs, have brown pigment; and a silvery appearance given by a very few scattered white (?) hairs on sides, and a very few on back. Claws white. Hair on hands and feet white: most caudal hairs white. Skin of tail pink with a few dark patches.—1H140a¹ Died young.—1H140a² Died Young. Distinctly a 5c. Called 6c in Biometrika, Vol. III. but 5c in Mating book.—1H140a6 Died young.—1H142b3 A very small admixture of long whitish hairs on sides and belly. Digits pink with some white hairs. Tail with patches of pink skin, and on these white hairs. Vibrissae black.—1H146b⁵ Killed before sexing.—1H149a⁶ Died young.—1H149b⁴, 1H150b³ Escaped.—1H152b Young eaten.—1H152c⁶ Skin colour same as 1H152c⁶.—1H153a⁶, 1H154a², 1H155a5, 1H155a6 Escaped.—1H156a1 The hair of the belly rather a dark brown than black. On haunches and sides of belly a very few white hairs. One or two white vibrissae. Nails pink. Digits and tail with white hairs.—1H158a1 Killed accidentally.—1H160a Offspring died young.—1*H*161*a*⁶ Eaten.—1*H*162*a*¹ Not very healthy, skin destroyed.—1*H*163*a*¹, 1*H*163*a*³ Skins not kept.—1H164 Mother black bred.—1H164a² c very pale.—1H165, 1H166 Mothers black bred.—1H167 Mother again black bred.—1H168, 1H169 Fathers black bred.—1H170 Mother black bred.— $1H170a^5$ Very pale. (We should certainly have called it a pale blue grey verging on chocolate. K. P. and F. J. W.).—1H171, 1H172 Fathers black bred.—1H172\alpha^4 Escaped.— 1H172α⁵ Killed accidentally.—1H173α⁵ Really a very dark chocolate, a very wonderful colour.— 1H177 All offspring eaten.— $1H178a^8$ Colour same as $1H178a^7$.— $1H179a^5$, $1H179a^6$ Coats same as $1H179a^3$.— $1H182a^6$ Yellow underneath.—1H187a One stillborn offspring only.— $1H196a^9$ Skin identical with $1H196a^3$.— $1H201a^1$ Very pale.— $1H204a^2$ Skin like $1H204a^4$.— $1H204a^4$ Skin like $1H204a^3$.— $1H205a^2$ Skin like $1H205a^1$.— $1H205a^6$ Skin like $1H205a^3$.— $1H206a^7$ Skin like $1H206a^6$.—1H206, 1H207 Mothers IB, PB.—1H208, 1H209 Fathers IB, PB.— $1H211a^3$ (We

consider this mouse a chocolate. K. P. and F. J. W.).—1H217a⁴ Colour almost chocolate.— $1H220a^3$, $1H220a^4$, $1H220a^5$ Escaped.— $1H222a^6$ Darker than $1H222a^5$.— $1H222a^8$ Same colour as $1H222a^7$.— $1H227a^2$ Not found in Catalogue.—1H237 Both parents from extracted albinos.— $1H237a^4$ Paler, more f than $1H237a^3$.— $1H237a^7$ Little browner than $1H237a^6$.—1H238 Both parents from extracted albinos. -1H238a4 Skin like 1H238a3. -1H239a6 Escaped. -1H239, 1H240, 1H241, 1H242 Both parents from extracted albinos.— $1H242a^4$, $1H242a^5$ Skins like $1H242a^3$.—1H243, 1H244 Both parents from extracted albinos.— $1H244a^3$ Colour like $1H244a^2$.— 1H245 Both parents from extracted albinos.—1H246 Mother from Cuénot's extracted ♀ albino. $-1H246a^4$ Skin like $1H246a^3$. -1H248 Both parents from extracted albinos, the mother from Cuénot's extracted ♀ albino.—1H248a⁵, 1H248a¹ Colour like 1H248a³.—1H249 Both parents from extracted albinos, the father from Cuénot's extracted ♀ albino.—1H249a⁶ Colour like 1H249a5.—1H250 Both parents from extracted albinos, the father from Cuénot's extracted $\c 2$ albino. —1 $H250a^2$ Skin not kept. —1H252 Both parents from extracted albinos. —1 $H252a^2$ The waltzing movements of this mouse were extraordinary; it was incapable of locomotion.— 1H253 Both parents are hybrids from the extracted G'G' 1H42b1.—1H254 Mother is hybrid from the extracted G'G', $1H42b^{\dagger}$.—1H255, 1H256, 1H257, 1H258 Both parents are hybrids from the extracted G'G' $1H42b^1-1H262a^1$ The b is curious: rather like a very pale g.-1H263Both parents from extracted albinos.—1H266 One 5a offspring is a w.—1 $H270a^{\rm I}$ Black generally: but a few of the longer hairs on the sides and thighs white or yellow. A little white hair on the toes. The nails pink. The tail mottled brown and pink, the hairs on it white: A mixture of white hairs round the anus.—1H270a4 Escaped.—1H273a2 Considerable mixture of long brownish and whitish hairs over whole body. All digits and most of dorsum of R. pes with white hairs. Some brown (and white?) vibrissae. Tail hairs mixed.—1H278, 1H280 Fathers are hybrid from the extracted G'G' 1H42b1.—1H282 Young eaten.—1H292 One 5c offspring is w.-1H297 One 5c offspring is w.-1H301 Two of the 2c offspring are w.-1H308One 2c offspring is w.—1H310 One 5c offspring is w.—1H312 One 2c offspring is w.—1 $H313a^2$ No record except skin. 6e taken from skin, $-1H324a^{1}$ No record except skin. 2e taken from skin.—1H329 One 5c offspring and one 5b are w.

2H Matings.

 $2H12a^2$ Darker than a^1 .— $2H12a^3$ The colour simulates pale g.— $2H22a^3$ Skin like a^2 .— $2H22a^5$ Skin like $a^1-2H27a^4$ (Skin we think must be described as an a like the Catalogue and not b, c like Biometrika. K. P. and F. J. W.).—2H28a5 Colour like a2.—2H32a3, 2H32a4, $2H32a^5$ Skins like a^2 .— $2H33a^5$ Hardly any hair.— $2H38a^1$ Colour intermediate between chocolate and $c.-2H38a^2$ The b is dark tending to chocolate. $-2H38a^4$, $2H38a^5$ The b is not very yellow.— $2H40a^1$ Homogeneous grey tending to chocolate.— $2H40a^3$ Tending to dark b.— $2H45a^2$, $2H45a^3$ Colour like a^1 — $2H49a^1$ Much blacker than any hybrid in present stock. No white or brown hairs on back: a very few scattered brown and white hairs on sides; more on belly: and grey ring round perineum. Tail hairs white. Dorsum of digits white. Claws pink. Vibrissae all black.— $2H49a^2$ A distinctly greater mixture of yellow or brown hairs along sides of body than in $2H49a^{1}$, and a group of very few white hairs in middle of belly. Dorsum of feet and hands with much pink skin and many white hairs. About ½ the tail pink: the tail hairs white. Brown hairs round base of ears, as is usual in "black" mice. Vibrissae black.— $2H79a^2$, 3, or 4 One of these 4c's given as 5c in Biometrika.— $2H79a^2$ Colour like a^1 .— $2H79a^3$, $2H79a^4$ Skins like a^2 .— $2H79a^7$ Skin like a^1 .— $2H82a^3$ Skin like a^2 .— $2H92a^1$ or a^2 One of these 3c's is a waltzer.—2H93b* Supplied from skins as no records are given.—2H96a¹ Fairly black. A few (very few) yellowish hairs on sides and haunches. Perineal patch grey; a good many wildcoloured hairs mixed with the black on belly, and a very small spot of a few nearly white hairs about umbilicus. Digits pink, with white hairs. Whiskers black. Hairs of tail some black (?), some white.— $2H101a^2$, a^3 , a^4 or a^5 One of these 6c's is a waltzer.— $2H102a^1$ Very good pure black dorsally: perineum, sides, and upper part of limbs with mixture of wild-coloured hairs. A few white hairs on belly. Brown hairs round bases of ears well marked. Fingers and toes pink, with white hairs. Tail with dark skin, the hairs wild colour and white. Vibrissae black.- $2H104a^{1}$ or a^{2} One of these is a waltzer.— $2H108a^{1}$ A very good black, with very few white and brown hairs on sides and belly. The perineal patch wild-coloured. Hardly any brown hairs at base of ears. Digits pink, with white hairs. Tail skin pink and dark. Hairs of tail some white, some brown or black. Vibrissae black.—2H108a2 Colour almost like 2H108a1, but with more brown hairs on belly.—2H109 One 4c offspring is a waltzer.—2H114c1 A very good deep black, with a very few whitish hairs dorsally and few scattered brownish hairs on sides, and more, but not many, on belly. Hardly any brown hair round base of ears. Perineal patch grey. Digits white. Skin of tail pigmented, but many hairs white. Two or three white vibrissae on L. side, three on R. side, the rest black,— $2H117a^1$ A brownish black above, with considerable mixture of whitish or white hairs on limbs and a few on sides of trunk. Belly and perineal patch grey from mixture of white and brown hairs. Digits and dorsum of hands and feet with much white hair. Tail brown, with much white hair. Hair at base of ears pale brown. Some white vibrissae.—2H124a1 A very black mouse, with very small admixture of brownish hairs on sides and belly. Perineal patch very small, brown. Hardly any brown hairs round base of ears. Toes and fingers pink with white hairs. Vibrissae black.—2H143 One 6e offspring is a waltzer.— $2H147a^1$ or a^3 One of these has pink eyes.— $2H151a^1$, a^3 or a^4 One of these has pink eyes.— $2H155a^1$ Really very little white. A small patch of pure white on belly: the fingers and toes pink with white hairs. The skin of the tail nearly all dark, but with many white hairs. The rest a very good black with the long hairs darker than usual. Pale brown hair round base of ears. Vibrissae black.—2H155a2 A good black with very few lighter hairs. Fingers and toes pink with white hairs: the tail skin pink for about 4 its length, with white hairs. Brown hairs round base of ears. Whiskers black.— $2H155a^3$ A fair black above, and at sides, with a very few white hairs. Perineal hairs mixed with white. Considerable mixture of white hairs on belly, Hairs round base of ears pale brown. Digits pink, and much white hair on hands and feet. Most of tail pink, the hairs white. Vibrissae black.— $2H156a^2$ A poor black, with many long, whitish hairs at sides. Perineal patch considerable, yellowish white. Belly with not much more white than sides. Much white hair on fore-limbs, and on hands and feet. Digits pink. Hair round base of ears very pale. Some white vibrissae.— $2H156a^3$ Almost exactly like $2H156a^2$, but the whitish hairs on sides and belly a little more plentiful.— $2H156a^4$ Almost like $2H156a^2$, but without any white whiskers, and with the hair round the base of the ears still paler.-2H300a2 A very good black; extremely few brown or white hairs scattered on belly and perineal area. Skin of tail dark above, also below except near base. Vibrissae black. Most hairs on ears black, the rest deep brown. Claws pink. Dorsum of manus and pes black; white hairs on phalanges III, II, and parts of I in each digit.—2H300b3 Very good black. Very little brownish hair on belly and perineum. Ears and hair behind them brown. Phalanges of feet pink, with white hairs; those of hand darker, with few or no white hairs. Tail skin dark, with some white hairs. Whiskers black.—2H300c3 A good black: a little scattered (white? or) yellowish hair on sides and belly. Hands and feet pink. Tail pigmented with pale hairs. Many pale whiskers. Perineal patch small. Ears brown,—2H300c4 A rustier black than 2H300c3; the hands with more white hair: a little unpigmented skin round base of tail. - 2H300c5 Generally like 2H300c3, but the pale hairs whiter, and the distal $\frac{1}{4}$ of the tail unpigmented.— $2H301a^1$ Much scattered pale brown (b or c?) hair on sides: belly with distinct brown tinge. Ears and hair behind brown. Tail dark with brown hairs. Distal phalanges of foot pink, with white hairs; those of manus pink with few or no white but some brown hairs.— $2H301a^2$ A very uniform brown-black, darker than $d.-2H301a^4$ A yellowish lilac. $-2H301a^5$ Little scattered pale (a and white) hair. Perineum pale a. Ears pale brown; hair behind them nearly white. Nostrils pink. All digits more or less pink, with pale or white hairs. Tail, skin darker above, paler below, with white hairs. Many vibrissae white.—2H301a6 General colour black, with a little scattered white hair; but about 3 very small white spots on R. haunch. Whiskers black. Otherwise like 2H301a5.—

2H302b2 A good black: the scattered hairs distinctly yellow. Digits pale with yellowish hairs. Perineal patch yellowish. Tail pigmented with yellowish hairs. Many pale whiskers.—2H302b3 Like 302b² but with less coloured hair. The toes and tail darker.—2H302b⁴ Small white blaze on forehead: white snout: white patch on belly: grizzly line on haunches.— $2H302b^5$ An extremely good black; even the digits with much pigment. Ears still brown.—2H302b6 Body nearly or quite as black as 302b5, but the digits pink.—2H302c4 Fair black. Long hairs on sides, and quarters yellowish white. Digits pink. Ears brown. Whiskers black. Tail pigmented with whitish hairs.—2H302c5 Fair black. Long hairs on sides yellower than in 302c4. Digits pinker. Perineal patch larger and yellowish white. Some pale whiskers. Tail pigmented with whitish hairs.—2H302c⁶ Rather more scattered pale hairs than 2H302c⁵. One or two isolated pale hairs on forehead. The digits pinker than in 302c5; the whiskers conspicuously mixed black and pale, $-2H303a^{1}$ A good black above: scattered pale hairs at sides and below: perineum pale grey. Ears brown; hair behind them pale. Most digits pink with white hairs. Skin of tail dark with white hairs. Some white vibrissae.—2H303a² Fair black. Feet, hands and tail pink, with white hairs. A white patch on one side of snout. All (?) whiskers white. A white patch across belly, running as narrow band up each side.— $2H303a^3$ A large white belly patch, with narrow white band obliquely across back. Hands, feet and tail pink.—2H303a4 Body a good black, with very few pale hairs on belly and perineum. Tail dark, with some pale hairs below. Digits pink: those of R. pes with white hairs only: those of L. with fewer: those of manus with very few or none. Ears brown, the hair behind them brown. Whiskers black.—2H303b3 Minute white patch on forehead: large white belly patch; faint white bar across haunches,— $2H303b^4$ Small white belly patch.—2H303b5 A fair black. Hands and feet very pink, with white hair. The scattered lateral hairs more yellowish.—2H304 One black eyed offspring born dead, a mating previous to a,-2H304a3 A fair black. Scattered yellowish hairs on sides. Perineal patch yellowish. Tail pigmented with pale hairs. Digits of manus slightly pigmented, of pes pink. Hair on and behind ears brown. Whiskers black.—2H304a6 Good black. Few scattered yellowish hairs. Perineal patch yellowish. Digits pink. A few pale whiskers. Tail feebly pigmented with pale or nearly white hairs.—2H304b² Tail coloured.—2H304b³ Tail ringed pink. $-2H305a^{1}$, $2H305a^{3}$, $2H305a^{4}$, $2H305a^{4}$, $2H305a^{5}$ A yellowish lilac. $-2H307a^{1}$ Killed by $9.-2H308a^{1}$ A fairly typical fawn, the belly white.—2H308a2 A pale and rather "blue" fawn. Belly coloured except for a small angular patch of pure white.—2H308a³ A rather dark fawn. Belly white.—2H308a4 A rather "blue" fawn: belly coloured with sharply defined white patch.— $2H308a^5$ Paler than a^4 . The white of the belly comes on to the sides at the waist. $-2H308a^6$ Almost exactly intermediate between fawn and lilac. Belly white.—2H309a1 A typical fawn. Skin not kept.— $2H309a^2$ A typical fawn.— $2H309a^3$, $2H309a^4$ Rather grey fawn.— $2H309e^1$, e^2 , c3, c4 Died before sexing.—2H309c5, c6, c7, c8 Died and half eaten.—2H312a4 Some scattered pale hairs at sides: belly with many pale hairs: perineum pale. Ears and hair behind them brown. Tail skin dark, with white hair, especially at tip. Digits pink with white hair. Some white vibrissae.—2H312a5 A fair black: tail pinkish with white hairs, and a narrow linear streak of white on belly. Digits pink with white hairs.—2H312b1 Escaped.—2H312b3 Fairly uniform, but very rusty black. Perineum grey. Tail dark with white hairs. Hands and feet pink with white hairs. Ears and hair behind them brown.—2H312b6 A good black. Ears dark brown, hair behind them lighter. Very little paleness on belly and perineum. Digits pink, with some white hairs.--2H317 Data marked * supplied from skins.

3H Matings.

 $3H1a^2$ A dark chocolate.— $3H1a^3$ A yellowish lilac.— $3H1a^4$ A yellowish lilac: colour very uniform.— $3H1a^5$ A yellowish lilac: indistinguishable from $3H1a^4$.— $3H1a^8$ Some scattered light hairs on belly. Hairs behind ears nearly white. White hairs on digits. Whiskers black. Tail with dark skin.— $3H1b^3$ A rusty black, with scattered yellow (a?) hairs. Belly and perineum with so much yellow hair that the mouse can hardly be put in Class 6. Ears brown: hair behind them

very pale. Feet pink: terminal phalanges of hand with white or pale yellow hairs. Tail skin dark, hairs pale. Whiskers black.— $3H1b^4$ Body a good black above (darker than in $3H1b^3$), belly and perineum with much yellowish scattered hair. Ears and hair behind them brown. All digits with white or pale hairs. Tail pigmented except at tip, with pale hairs. A few pale whiskers.— $3H1b^7$ Almost exactly like $3H1b^3$. Escaped.— $3H2a^3$ A rusty black: a narrow pure white patch on belly; much scattered pale hair among black, at sides and below. Perfineal patch with much white hair. Hair on and behind ears fawn coloured. Digits and dorsum of hands and feet with white hairs. Tail with patches of pink skin and some white hairs. Some pale whiskers.— $3H2a^4$ No definite white patch but much scattered pale (fawn?) hair on sides and belly. Hands and feet with much pink skin and white (?) hair. Tail almost all dark skinned, with pale hair. Hair on ears pale fawn: behind ears nearly white. Vibrissae black.— $3H2a^7$ Much scattered white hair. Much pink skin and white hair on hands, feet and tail. Hair behind ears whiter than in a4. Whiskers black.—3H2b4 Much fawn hair scattered on sides, more on belly. Perineum yellowish white. Tail skin feebly pigmented: hair light. Digits pink, almost all hair on them white or pale. Snout and chin with pale hairs. Hair on inside of ears and behind them pale fawn: on outside dark or black. A few fawn whiskers.— $3H2b^5$ A good uniform lilac, but very pale (nearly white) at root of tail.—3H3a3 Poor black. Much scattered pale hair on sides: a very small spot (3—4 sq. mm.) pure white on belly. Digits pink, with white hairs; some white hairs on dorsum of hands and feet. Skin of tail dark near base, the rest pink. Caudal hairs all pale. Hair behind ears nearly or quite white: hair inside ears fawn. Some pale vibrissae.— $3H3\alpha^4$ Black: much scattered pale (white?) hair on sides and belly. Perineum nearly white. Only last 2 phalanges of digits pink. Hair behind ears dark; within ears very pale. Some pale whiskers. Tail dark skinned with pale hair.—3H3a5 Black, with little mixture of pale hairs. Digits pink, with white hairs. A pink portion, with white hair, near extremity of tail. Some pale whiskers.—3H3a8 Very pale "pearl grey" rather than "lilac," $-3H3b^3$ More white than $3b^2$. $-3H3b^4$ A good black above: a fair quantity of scattered fawn hair on belly, on fore-limbs and throat. Perineal patch pale fawn. Tail skin pigmented, hair fawn. Digits pink, hair white or fawn. Hair within and behind ears pale. Many pale whiskers.—3H3b⁵ A very good black. Few scattered fawn hairs on sides, belly and throat. Tail pigmented except at tip: its hairs white or pale. Digits pink, hairs white or pale. Perineum with very little pale hair. Inside and behind ears, hair fawn: darker outside. Whiskers black.-3H3b6 A good black above: dark slaty grey, with small median white patch, below. Digits and whole R. foot, pink with white hairs. Tail nearly all pink. Many pale whiskers.—3H3b7 Like $3b^5$, but with less pale hair, and with no pink on tail.— $3H3b^9$ A very good black: very little pale hair on belly and throat. Digits pink, with some pale hair. Tail pigmented. Whiskers black.— 3H3c⁸ Died before sexing.—3H4a⁵ Good black. Very few scattered pale hairs. Terminal phalanges pink, with white hairs. Perineal patch very dark. Tail pale-skinned, but not pink, with light hairs. Hair within and behind ears pale. Vibrissae black.— $3H4a^6$ Very like $4a^5$, but feet whiter, and tip of tail pink.— $3H4b^1$ A very small patch pure white in middle of belly. Digits pink. Terminal 12—15 mm. of tail pink.—3H4b2 A good black, with scattered pale hairs ventrally. Perineal patch small. Only phalanges II and III pink, except on R. foot, where they are all pink. Tail slightly pigmented, with small pink patches; hair fawn (?). Hair on and behind ears brown. Many pale whiskers. $-3H4b^3$ Almost exactly like $4b^2$, but both hind feet have pink digits.—3H4c3 Small white belly streak.—3H4c7 Dwarf.—3H5a1 A very dark chocolate: eyes quite black.—3H5a² Good black. Some scattered (fawn?) hair on sides and belly. Very little pale hair behind ears: hair within ears brown. Digits pink, with white hair. Tail feebly pigmented, with about 1 cm. at end pink: the hair fawn (?). Some pale whiskers.- $3H5a^3$ More pink on toes than a^2 , and $\frac{1}{3}$ of tail pink.— $3H5a^4$ Less pink on toes than a^2 , and none on tail.—3H5b3 A good black: some scattered (fawn?) hair below: perineal patch small. Terminal cm. of tail pink. Hair behind ears very pale. Digits feebly pigmented.—3H5b4 Much as $5b^3$, but digits pink, and tail ringed with pink.— $3H5b^7$ A good black, like $5b^3$, but with the

digits pink.—3H6a2 A good black: very little scattered light hair; a small white spot on forehead. Belly with much scattered white hair and a pure white patch. Hair in and behind ears brown. Digits and all L. hand pink with white hairs. More than ½ the tail pink skinned, with white hairs. Whiskers mostly white.—3H6a3 Rusty black: scattered white hairs on sides: perineal patch very pale: belly almost slate-coloured, with linear central streak of white. Tail feebly pigmented, the hair white. Hair in ears brown. Digits white. Some white whiskers.—3H6a4 Back and sides fairly good black. Snout and whiskers white, with white streak on forehead. Hair behind ears nearly white, within ears pale yellow. Digits and parts of dorsum of manus and pes pink, with white hairs. Tail pink, with patches of pale pigment, the hair white. Belly grey (i.e. black with much scattered white hair), with large central white patch.—3H6b1 Fair black above: much scattered white hair at sides and below. Tail pigmented, hair white. Digits pink with white hairs. Perineal patch whitish. Hair on ears yellow, nearly white behind ears. Whiskers black.—3H6b2 A very slaty black: much diffuse white hair, and about a dozen conspicuous white hairs on forehead. Hands and feet with much white hair. Many white whiskers.—3H6b3 Very like 3H6b2.—3H6b4 Very like 3H6b2.—3H6b5 Median white belly patch.—3H6c4 Mange.—3H7a1 Very good black dorsally: perineum yellowish, belly with fair mixture of light hairs. Tail dark, hair yellowish except at the extreme tip, where it is pure white. Hair behind ears black, inside ears yellow. Skin of ears darker than usual. Digits dark, with extremely little light hair.—3H7a3 Much light hair on sides and belly. Perineal patch almost white. Hair behind ears almost white: within ears pale yellow. Much white on digits and on dorsum of L. foot. Tail with patches of dark and of pink skin, early all the hair white. Whiskers black.— $3H7a^4$ Almost identical with $7a^3$, but with less white on the ears.— $3H7a^5$ Almost like $7a^3$, but with more pink at tip of tail.— $3H7b^1$ A rusty black dorsally, the belly dark slate grey. All digits and dorsum of hands and feet pink, with much pale hair. Tail feebly pigmented, the hair pale. Hair behind ears pale, inside ears yellow. Many pale whiskers. Perineal patch yellow-white.—3H7b2 Body a good black; slightly grey below, from a little scattered pale hair. Perineum yellow-white. Feet and the digits of the hands white. Tail feebly pigmented, the hairs white. Very few pale hairs behind ears. A few pale whiskers.— $3H7b^{5}$ A rusty black above: belly grey, with faint linear white streak.— $3H8a^{3}$ A very rusty black. Hind feet and digits of hands white; 3 of tail pink, with white hair on all the tail. Belly with much diffuse white hair, and a small white patch. Pale patch behind ear well marked. Hair within ears yellow. Some light whiskers.—3H9a2 Generally a good black, with scattered whitish hairs at sides, and a line of thickly grouped whitish hairs, making a very pale band, along middle of belly. Perineal patch pale yellowish white. Pale tufts behind ears well marked: hair inside ears yellow: some white whiskers. Skin of tail dark except at tip, where it is bright pink: the tail hair white. Fingers white. The R. toes and part of dorsum of R. foot white; only terminal phalanges of L. foot white.—3H9a3 No white patch, but much scattered pale hair on sides and shoulders. The pale hair yellowish. Perineal patch yellow. Digits white. Extreme tip of tail white. Pale patch behind ear less conspicuous than in α^2 . Some whiskers pale.— $3H10c^2$ Eye-colour not noted (but not pink),— $3H11a^1$ Poor black, with much pale or white hair on sides, fore-limbs, and inside of thighs: rather less on belly. Digits white, Tail feebly pigmented below, darker above. Pale patch behind ears very small: hair inside ears yellow. Nearly all whiskers pale.—3H11a2 Nearly completely white below (belly darkened with age).—3H11a4 Poor black, but with little scattered pale hair. Perineal patch very pale. Hair behind ears nearly white: hair within ears yellow. Terminal phalanges of digits white. Tail with pigmented skin but with white hair. Some whiskers white.—3H11a⁵ Almost like a⁴, but with more white on toes.—3H11a6 A pale ring on tail. A patch of densely clustered white hairs on belly. Otherwise like a4.—3H11a7 Exactly like a5. Later; developed much brown hair on shoulders.—3H12b Nine offspring born, seven eaten.—3H14a4 A "chinchilla" mixture of black and white.—3H14a5 "Chinchilla" grey like a4.—3H14b1 The black with a good many scattered white hairs. Cf. the chinchilla of $14a.-3H14b^3$ The black with scattered white hairs. $-3H14c^1$

"Grey"="chinchilla" mixture of dark grey or black hairs with white ones.—3H25a2 Much white on head: fawn patch round each ear: fawn patch on L. side, and large patch on hind quarters.— $3H25a^3$ Head and much of shoulders fawn: white blaze on face. Large fawn patch on hind quarters: no lateral patch.— $3H25a^4$ Head fawn with white streak on forehead. Fawn continued backwards on left side as large patch. A large fawn patch on hind quarters. Much white on right side.—3H25α⁵ Head and shoulders fawn: muzzle white: hind quarters fawn: large blotches of fawn on L. side and over back to R. side. Much more colour than the others.—3H25a⁶ Head and shoulder patch small. Snout white. Hind quarter patch small. -3H25a⁷ Snout white. Head and shoulder patch larger. A patch on R. side. Hind quarter patch small.—3H25a8 Head with practically no white. Patch on hind quarters divided.— $3H26a^1$ Head patch covers both eyes.— $3H26a^2$ Head patch very small: area round L, eye white.— $3H29a^3$ Escaped.—3H31 Z 139 albino mother pure-bred for 3 generations.— $3H31a^1$ A fairly uniform, very dark black: the tail with some pink: the belly slightly paler than the back. Digits white haired. Whiskers black. Patch behind ears not very light.—3H31a2 Perfect wildcolour, grey beneath.—3H31a3 Perfect wild-colour, grey beneath, but the tail ringed with pink.— 3H31a⁶ With some pink on tail.—3H31b⁷ With much pink on tail.—3H31b⁸ With a little pink on tail.—3H33 The Z mother pure-bred for 3 generations.—3H33a1 Fair black, with few scattered light hairs. Belly with more light hair. Perineum nearly white. Tail very slightly pigmented with white hair. Digits pink, with white hair. Some white hair on dorsum of pes. Ears pale. Hair behind them very pale. Some white whiskers. Tip of muzzle with some white hairs.— $3H33a^2$ A very fair black: belly darker than in a^1 : perineum yellowish. Some white on digits, but less than in a^1 . Many white whiskers. Ears as in a^1 .— $3H33a^3$, $3H33a^4$ Almost identical with a².—3H33a⁵ Very good black. Perineum nearly white. Digits pink with white hair. Tail pigmented, with little pink patch near extremity. Ears darker than in males: a few white whiskers.—3H33a⁶ Very like a⁵ but no pink on tail and no (?) pale whiskers. Perineum and hair on tail yellowish.—3H37α¹ Killed by brother.—3H39b³ A dwarf.—3H40 Ancestry black.— $3H40a^2$ Killed by brother.—3H42 Ancestry fawn.— $3H42a^1$ Disappeared and record lost.— $3H50a^2$ Dark lilac.— $3H51b^3$ Minute white ventral spot.— $3H53a^1$ Mangy.— $3H53c^4$ Belly pale but not white.—3H59a¹ Very dark chocolate. Eyes black.—3H59b¹ Ears malformed.— $3H59b^3$ Very small white ventral streak.— $3H61a^2$, $3H61a^3$ Small white belly patch.— $3H64a^2$ Very small white ventral patch.— $3H64a^3$ Very pale lilac.— $3H65b^1$ Small ventral white streak.— $3H65b^2$ Small oblique ventral streak.— $3H65b^3$ Very small linear ventral streak.— $3H65c^3$ Fairly large ventral patch.—3H65c⁴ Small ventral patch.—3H65c⁵ Very small ventral patch.—3H66b³, $3H66b^4$, $3H66b^5$ Very dark lilac.— $3H66b^6$, $3H66b^7$ Very brown lilac.— $3H71a^4$, $3H71a^2$, $3H71a^3$, $3H71a^4$ Dwarfs.

4H Matings.

 $4H1a^1$ Extremely good black above, dark slate colour below. Longer hairs at sides, and perineal patch, yellowish. Tail pigmented, hairs yellowish. Digits pink, with pale hairs. Hair on and behind ears brown. Whiskers black.— $4H1a^2$ Like $4H1a^1$, but the long hairs more nearly white and some whiskers white.— $4H1a^3$ Like $4H1a^1$, but more pink on feet.— $4H2a^2$ Good black above. Scattered hairs on sides and belly fawn. Digits pink.— $4H2a^3$ Like $4H2a^2$, but with less scattered fawn hair.— $4H2c^3$ Tip of tail pink.— $4H3b^1$ Fair black: little scattered very pale (? white) hair at sides. Perineal patch nearly white. Hair behind ears very pale yellow. Digits pink, hairs white. Tail pigmented, with white hairs. Many white whiskers.— $4H3b^2$ Better black than $3b^1$; no white whiskers.— $4H3b^3$ Good black. Scattered hairs yellower than in the other two: tail pink at end: toes much pinker than in $3b^1$ or $3b^2$.— $4H3b^5$ A very good black, with few scattered pale hairs. Some whiskers white. Digits pink with white hair. Tail pink except at base and tip.— $4H3b^6$ Like $4H3b^5$, but tail pigmented.— $4H4a^2$ Good black above. Tail pigmented. Digits pink, with white hairs. Some white whiskers. Ear hairs brown. Slaty grey below, with very small linear streak of nearly pure white (say 5 mm. $\times \frac{1}{2}$ mm.)

on belly.—4H4a3 Very small white blaze on forehead: white patch on belly.—4H4a4 Minute white streak on forehead: larger but still very small white streak on belly. Most of the whiskers white. Digits pink with white hairs. Tail mottled pink and white.—4H4b1 Narrow white belly streak. Tail pink.— $4H4b^2$ White speck on forehead. Trace of white ventral streak. Tail pink.— $4H6a^2$ Blaze on forehead: large white patch on belly.— $4H6b^1$ Small white blaze on forehead, long patch on belly.— $4H6b^2$ No blaze on forehead: white patch on belly.— $4H6b^3$ Like $4H6b^2$, but a smaller mouse. $-4H6b^4$ White blaze on forehead: white belly patch. $-4H6b^5$ No blaze. White belly patch.— $4H6c^2$ Streak on belly.— $4H6c^3$ Blaze on forehead; streak on belly. -4H7a¹ Small white ventral patch, unusually far back.—4H7a² Very faint streak of scattered white hairs on belly.—4H8 Ancestry black.—4H12a1, 4H12a2, 4H12a3 Dwarfs.—4H12a4 No record.—4H12a⁵, 4H12a⁶ Dwarfs.—4H12a⁷ Omitted in Index, referred to in Mating Book, no record.—4H13b1 Small blaze on forehead and very thin white band across haunches.— 4H13b⁶ Very small white blaze on forehead.—4H14a¹, 4H14a², 4H14a³, 4H14a⁴, 4H14a⁵, 4H14a⁶ Belly uniformly white.—4H15a² Dark lilac.—4H15a³, 4H15a⁴ Very pale lilac.— 4H15b3 Very pale lilac-pearl grey. Killed (tumour).—4H16b2 White face.—4H17a3 Bred with one brother before sexing as $5H1.-4H20b^3$ Small linear white streak on belly. $-4H20b^4$ Belly white,—4H23a¹, 4H23a² Eaten.—4H23b² Small white belly streak.—4H23c¹, 4H23c² Very little white on belly, -4H24a1 A very good black above: scattered white hairs below. Tail pigmented. Fingers slightly pigmented, toes pink. Whiskers black. Perineal patch small. Faint trace of white line below appeared later.—4H24a2 Small white line on back part of belly. Tail ringed pink and dark.—4H24a3 Good black above: scattered greyish hairs sides and below. Digits pink. Whiskers black. Tail pigmented.—4H24b1, 4H24b2, 4H24b4, 4H24b5, 4H24c1, 4H24c² Dwarfs.—4H25x This the only young of the first brood. Eaten. Next brood called $4H25a.-4H25a^{1}$ A good black. Very little scattered pale hair. Digits largely pigmented. Tail pigmented. Whiskers black.— $4H25a^2$ A good black. Very like $4H25a^1$ but digits pinker. -4H26a² Much scattered hair (nearly white) at sides. Some white whiskers. Fingers and all feet pink. Tail pigmented.—4H26a3 Face and most of belly pure white.—4H26a5 Few scattered white hairs close together on belly.—4H27 Ancestry black. Father uncertain.—4H27c1 Dwarf. -4H28 Ancestry black. Father uncertain.-4H28a¹, 4H28a² Linear white belly streak.-4H29 Father's ancestry fawn, mother's ancestry black.—4H30a7, 4H30a8 Escaped while brood was being sexed.— $4H33a^2$ Much scattered pale hair ventrally. Tail partly pink,— $4H36a^4$ Mangy.—4H38, 4H39, 4H40 Ancestry black.—4H40 α^1 Very pale. Face nearly white.—4H41, 4H45 Ancestry black.—4H45 b^1 Very light f.—4H45 b^2 , 4H45 b^5 Dark f.—4H46 b^4 The palest "coloured" mouse yet seen.—4H49c² Killed by brothers.—4H51a² Very small ventral streak.— $4H51\alpha^5$ Very small linear white ventral streak.— $4H51b^4$ Perhaps a trace of ventral white.— $4H52\alpha^3$ Very small ventral streak.— $4H58b^3$ Nearest intermediate between lilac and chocolate yet seen.—4H63a3 Albino with traces of colour on shoulders.—4H66a1 Trace of white dorsal streak,—4H66a² Merest trace of ventral white streak.—4H66a⁶ Trace of blaze on forehead.— 4H66b3 Small white ventral patch.—4H69 Fawn ancestry.—4H69b1 Small white patch.— $4H69b^2$ Belly white.—4H71 Ancestry black.— $4H75a^2$ Record lost.— $4H84b^5$ A few white hairs on belly.

5H Matings.

 $5H1a^5$ Escaped.—5H3x Eaten soon after birth.— $5H8a^1$ Very small white ventral streak.— $5H8a^3$ Very pale lilac.— $5H8a^4$ Small forehead blaze.— $5H8b^5$ Small white ventral patch.— $5H8c^1$ Dark lilac.— $5H8c^2$ Pale lilac.— $5H8c^3$, $5H8c^4$ Dark lilac.— $5H10a^3$ Very small ventral streak and forehead blaze.— $5H10a^5$ Very small forehead blaze. No ventral streak.— $5H11a^5$ Escaped.— $5H12a^3$ Dwarf.— $5H12b^1$ Very small white patch on forehead.— $5H14a^4$ Few white ventral hairs.— $5H15a^2$ Tip of tail pink.— $5H15a^3$ Tail lost.— $5H15b^2$ Small round belly patch.— $5H19b^4$ Few white hairs on forehead.— $5H29b^2$ Very small white patch.— $5H30b^3$ Extremely pale (nearly white). Ought to have a new colour

category.— $5H30b^4$ Normal lilac.— $5H31b^3$, $5H31b^4$ Very small ventral group of white hairs.— $5H31b^6$ Few white hairs on belly.— $5H32b^1$ Poor black, but no white patch ventrally: small white patch on forehead.— $5H32b^4$ Scattered white ventral hairs.— $5H35a^1$ Escaped.— $5H37a^1$ Belly very pale but not white.— $5H37b^3$ Pale.— $5H40a^1$ Belly pale but not white.— $5H40a^5$ Escaped.— $5H40b^1$ Trace of white ventral group of hairs.— $5H52a^3$ Escaped.— $5H54a^1$ Very pale.— $5H54b^1$ Very small ventral streak.— $5H62a^1$ A faint streak of white on belly.— $5H82a^4$, $5H82a^5$, $5H82a^6$ A few white hairs on belly.

6H Matings.

 $6H1a^7$ White blaze on nose.— $6H7b^6$ A small patch of white hairs on belly.— $6H11a^2$ Small white patch on back.— $6H15c^5$, $6H17c^2$, $6H17c^6$, $6H18a^6$, $6H25a^1$ A few white hairs on belly.—6H27 Fawn ancestry.—6H28 Black ancestry.— $6H28b^3$ A few white hairs on belly.— $6H28c^6$ No record except skin.—6H29, 6H30 Black ancestry.— $6H33a^3$, $6H34a^1$, $6H34a^2$, $6H35a^3$, $6H35a^4$, $6H35a^5$ Very pale.

	•
	•

The Cambridge University Press, Fetter Lane, London, E.C., and their Agents, are now the sole agents for the sale of the following publications of the Galton and Biometric Laboratories, University of London:

BIOMETRIC LABORATORY PUBLICATIONS Drapers' Company Research Memoirs.

Biometric Series.

I. Mathematical Contributions to the Theory of Evolution.—XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. By KARL PEARSON, F.R.S. Price 4s. net.

II. Mathematical Contributions to the Theory of Evolution.—XIV. On the Theory of Skew Correlation and Non-linear Regression. By KARL PEARSON, F.R.S. Price 5s.

III. Mathematical Contributions to the Theory of Evolution.—XV. On the Mathematical Theory of Random Migration. By Karl Pearson, F.R.S., with the assistance of John Blakeman, M.Sc. Price 5s. net.

IV. Mathematical Contributions to the
Theory of Evolution.—XVI. On Further
Methods of Measuring Correlation. By
KARL PEARSON, F.R.S. Price 4s. net.

V. Mathematical Contributions to the Theory of Evolution.—XVII. On Homotyposis in the Animal Kingdom. A Cooperative Study. [Shortly.

VI. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part I, and Atlas, Part I. Price 35s. net.

VII. Mathematical Contributions to the Theory of Evolution.—XVIII. On a Novel Method of Regarding the Association of two Variates classed solely in Alternative Categories. By Karl Pearson, F.R.S. Price 4s. net.

VIII. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part II, and Atlas, Part II. Price 30s. net.

IX. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part IV, and Atlas, Part IV. Price 21s. net.

Studies in National Deterioration.

I. On the Relation of Fertility in Man to Social Status, and on the changes in this Relation that have taken place in the last 50 years. By DAVID HERON, M.A., D.Sc. Price 3s. net. Sold only with complete sets.

II. A First Study of the Statistics of Pulmonary Tuberculosis (Inheritance). By Karl Pearson, F.R.S. Price 3s. net.

KARL PEARSON, F.R.S. Price 3s. net.

A Second Study of the Statistics of Pulmonary Tuberculosis. Marital Infection. By Ernest G. Pope, revised by Karl Pearson, F.R.S. With an Appendix on Assortative Mating by Ethel M. Elderton. Price 3s. net.

IV. The Health of the School-Child in relation to its Mental Characters. By KARL PEARSON, F.R.S. [Shortly.

V. On the Inheritance of the Diathesis of Phthisis and Insanity. A Statistical Study based upon the Family History of 1,500 Criminals. By CHARLES GORING, M.D., B.Sc. Price 3s. net.

VI. A Third Study of the Statistics of Pulmonary Tuberculosis. The Mortality of the Tuberculous and Sanatorium Treatment. By W. P. Elderton, F.I.A., and S. J. Perry, A.I.A. Price 3s. net.

VII. On the Intensity of Natural Selection in Man. (On the Relation of Darwinism to the Infantile Death-rate.) By E. C. Snow, D.Sc. Price 3s. net.

VIII. A Fourth Study of the Statistics of Pulmonary Tuberculosis: the Mortality of the Tuberculous: Sanatorium and Tuberculin Treatment. By W. Palin Elderton, F.I.A., and Sidney J. Perry, A.I.A. Price 3s. net.

IX. A Statistical Study of Oral Temperatures in School Children with special reference to Parental, Environmental and Class Differences. By M. H. WILLIAMS, M.B., JULIA BELL, M.A., and KARL PEARSON, F.R.S. Price 6s. net.

Technical Series.

I. On a Theory of the Stresses in Crane and Coupling Hooks with Experimental Comparison with Existing Theory. By E. S. Andrews, B.Sc. Eng., assisted by Karl Pearson, F.R.S. Issued. Price 3s. net.

II. On some Disregarded Points in the Stability of Masonry Dams. By L. W. Atcherley, assisted by Karl Pearson, F.R.S. Issued. Price 3s. 6d. net.

III. On the Graphics of Metal Arches with special reference to the Relative Strength of Two-pivoted, Three-pivoted and Built-in-Metal Arches. By L. W. Atcherley and Karl Pearson, F.R.S. Issued. Price 5s. net.

IV. On Torsional Vibrations in Axles and Shafting. By KARL PEARSON, F.R.S. Issued. Price 6s. net.

V. An Experimental Study of the Stresses in Masonry Dams. By Karl Pearson, F.R.S., and A. F. Campbell Pollard, assisted by C. W. Wheen, B.Sc. Eng., and L. F. Richardson, B.A. Issued. Price 7s. net.

VI. On a Practical Theory of Elliptic and
Pseudo-elliptic Arches, with special reference to the ideal Masonry Arch. By Karl
Pearson, F.R.S., W. D. Reynolds, B.Sc.
Eng., and W. F. Stanton, B.Sc. Eng.
Issued. Price 4s. net.

Drapers' Company Research Memoirs—(cont.).

Questions of the Day and of the Fray.

I. The Influence of Parental Alcoholism on the Physique and Ability of the Offspring. A Reply to the Cambridge Economists. By Karl Pearson, F.R.S. Price 1s. net.

II. Mental Defect, Mal-Nutrition, and the Teacher's Appreciation of Intelligence. A Reply to Criticisms of the Memoir on 'The Influence of Defective Physique and Unfavourable Home Environment on the Intelligence of School Children.' By David

HERON, D.Sc. Price 1s. net.

III. An Attempt to correct some of the Misstatements made by Sir Victor Hors-Ley, F.R.S., F.R.C.S., and Mary D. Sturge, M.D., in their Criticisms of the Memoir: 'A First Study of the Influence of Parental Alcoholism,' &c. By Karl Pearson, F.R.S.

- IV. The Fight against Tuberculosis and the Death-rate from Phthisis. By Karl Pearson, F.R.S. Price 1s. net.
- V. Social Problems: Their Treatment,
 Past, Present and Future. By KARL
 PEARSON, F.R.S. Price 1s. net.
- VI. Eugenics and Public Health. Lecture to the York Congress of the Royal Sanitary Institute. By Karl Pearson, F.R.S. *Price* 1s. net.
- VII. Mendelism and the Problem of Mental

 Defect. I. A Criticism of Recent American

 Work. By David Heron, D.Sc. (Double
 Number.) Price 2s. net.
- VIII. Mendelism and the Problem of Mental
 Defect. II. The Continuity of Mental
 Defect. By KARL PEARSON, F.R.S., and
 GUSTAV A. JAEDERHOLM, Ph.D. Price 1s. net.
- IX. Mendelism and the Problem of Mental Defect. III. On the Graduated Character of Mental Defect, and on the need for standardizing Judgments as to the Grade of Social Inefficiency which shall involve Segregation. By Karl Pearson, F.R.S. (Double Number.) Price 2s. net.

Eugenics Laboratory Publications

MEMOIR SERIES.

I. The Inheritance of Ability. By Edgar Schuster, D.Sc., Formerly Galton Research Fellow, and Ethel M. Elderton, Galton Scholar. *Price* 4s. net.

II. A First Study of the Statistics of
Insanity and the Inheritance of the Insane
Diathesis. By DAVID HERON, D.Sc., Formerly Galton Research Fellow. Price 3s. net.

erly Galton Research Fellow. Price 3s. net.

III. The Promise of Youth and the
Performance of Manhood. By Edgar
Schuster, D.Sc., Formerly Galton Research
Fellow. Price 2s. 6d. net.

IV. On the Measure of the Resemblance of First Cousins. By Ethel M. Elderton, Galton Research Fellow, assisted by Karl Pearson, F.R.S. Price 3s. 6d. net.

V. A First Study of the Inheritance of
Vision and of the Relative Influence of
Heredity and Environment on Sight. By
AMY BARRINGTON and KARL PEARSON,
F.R.S. Price 4s. net.

VI. Treasury of Human Inheritance
(Pedigrees of physical, psychical, and pathological Characters in Man). Parts I and II
(double part). (Diabetes insipidus, Split-Foot, Polydactylism, Brachydactylism, Tuberculosis, Deaf-Mutism, and Legal Ability.) Price 14s. net.

VII. The Influence of Parental Occupation and Home Conditions on the Physique of the Offspring. By Ethel M. Elderton, Galton Research Fellow. Shortly.

The Influence of Unfavourable Home

VIII. The Influence of Unfavourable Home
Environment and Defective Physique on
the Intelligence of School Children. By
DAVID HERON, M.A., D.Sc., Formerly Galton
Research Fellow. Price 4s. net. Sold only
with complete sets.

IX. The Treasury of Human Inheritance
(Pedigrees of physical, psychical, and pathological Characters in Man). Part III.
(Angioneurotic Oedema, Hermaphroditism, Deaf-Mutism, Insanity, Commercial Ability.) Price 6s. net.

- X. The Influence of Parental Alcoholism on the Physique and Intelligence of the Offspring. By Ethel M. Elderton, assisted by Karl Pearson. Second Edition. Price 4s. net.
- XI. The Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Part IV.
 (Cleft Palate, Hare-Lip, Deaf-Mutism, and Congenital Cataract.) Price 10s. net.
- XII. The Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Parts V and
 VI. (Haemophilia.) Price 15s. net.
- XIII. A Second Study of the Influence of
 Parental Alcoholism on the Physique and
 Intelligence of the Offspring. By Karl
 Pearson, F.R.S., and Ethel M. Elderton.
 Price 4s. net.
- XIV. A Preliminary Study of Extreme
 Alcoholism in Adults. By Amy Barrington and Karl Pearson, F.R.S., assisted
 by David Heron, D.Sc. Price 4s. net.
- XV. The Treasury of Human Inheritance.

 Dwarfism, with 49 Plates of Illustrations and 8 Plates of Pedigrees. Price 15s. net.
- XVI. The Treasury of Human Inheritance.

 Prefatory matter and indices to Vol. I.

 With Frontispiece Portraits of Sir Francis
 Galton and Ancestry. Price 3s. net.
- XVII. A Second Study of Extreme Alcoholism in Adults. With special reference to the Home-Office Inebriate Reformatory data. By DAVID HERON, D.Sc. Price 5s. net.
- XVIII. On the Correlation of Fertility with Social Value. A Cooperative Study. Price 6s. net.
- XIX—XX. Report on the English Birthrate.

 Part I. England, North of the Humber.

 By Ethel M. Elderton, Galton Research
 Fellow. Price 9s. net.

Vol. I of *The Treasury of Human Inheritance* (VI+IX+XI+XII+XV+XVI of the above memoirs) may now be obtained bound in buckram, price 52s. 6d. net. Buckram cases for

Eugenics Laboratory Publications—(cont.).

binding can be purchased at 2s. 9d. with impress of the bust of Sir Francis Galton. A photograph (11" × 13") of Sir Francis Galton by the late Mr Dew Smith can be obtained by sending a postal order for 10s. 6d. to the Secretary to the Laboratory, University College, London, W.C.

LECTURE SERIES. Price 1s. net each (Nos. III and X excepted).

- I. The Scope and Importance to the State of the Science of National Eugenics. By Karl Pearson, F.R.S. Third Edition.
- II. The Groundwork of Eugenics. By Karl Pearson, F.R.S. Second Edition.
- The Relative Strength of Nurture and Nature. Much enlarged Second Edition. Part I. The Relative Strength of Nurture and Nature. (Second Edition revised.) By ETHEL M. ELDERTON. Part II. Some Recent Misinterpretations of the Problem of Nurture and Nature. (First Issue.) By KARL PEARSON, F.R.S.
- IV. On the Marriage of First Cousins. By ETHEL M. ELDERTON.

- V. The Problem of Practical Eugenics.

 By Karl Pearson, F.R.S. Second Edition.
- VI. Nature and Nurture, the Problem of the Future. By Karl Pearson, F.R.S. Second Edition.
- VII. The Academic Aspect of the Science of National Eugenics. By KARL PEARSON, F.R.S.
- VIII. Tuberculosis, Heredity and Environment. By Karl Pearson, F.R.S.
- IX. Darwinism, Medical Progress and Eugenics. The Cavendish Lecture, 1912. By Karl Pearson, F.R.S.
- X. The Handicapping of the First-born. By Karl Pearson, F.R.S. Price 2s. net.

The following work prepared in the Biometric Laboratory can be obtained as a Government Report from Messrs Wyman and Sons, Ltd.

The English Convict, A Statistical Study. By Charles Goring, M.D.

Text. Price 9s. Tables of Measurements (printed by Convict-Labour). Price 5s.

THE UNIVERSITY OF CHICAGO PRESS

THE EVOLUTION OF SEX IN PLANTS. (The University of Chicago Science Series.) By John Merle Coulter, Head of the Department of Botany in the University of Chicago.

Pp. viii + 140. Small 12mo, cloth. 4s. net.

In this first volume of the new "University of Chicago Science Series" Professor Coulter, the editor of the Botanical Gazette and the author of numerous volumes of botanical science, has given a presentation of the results of research showing that all reproduction is the same in its essential features and methods of reproduction are natural responses to the varying conditions encountered by plants in their life histories. Sex reproduction, the author says, is simply one kind of response, the sex feature not being essential to reproduction, but securing something in connection with the process. Various phases of the subject discussed include the evolution of sex organs, the alternation of generations, the differentiation of sexual individuals, and parthenogenesis. The last chapter, which offers a theory of sex, reviews the more prominent facts set forth in preceding parts of the volume, and serves both as a summary and a working hypothesis.

ARTIFICIAL PARTHENOGENESIS AND FERTILIZATION. By JACQUES LOEB, Member of the Rockefeller Institute for Medical Research.

Pp. x + 312. 12mo, cloth. 10s. net.

The first complete treatment of the subject of artificial parthenogenesis in English. It gives an account of the various methods by which unfertilized eggs can be caused to develop by physico-chemical means, and the conclusions which can be drawn from them concerning the mechanism by which the spermatozoon induces development. Since the problem of fertilization is intimately connected with so many different problems of physiology and pathology, the bearing of the facts recorded and discussed in the book goes beyond the special problem indicated by the title.

The University of Chicago Press

The Cambridge University Press
Agents for the British Empire
London, Fetter Lane

Journal of Anatomy and Physiology

CONDUCTED BY

SIR WILLIAM TURNER, K.C.B.

ARTHUR THOMSON, University of Oxford.

ALEX. MACALISTER, University of Cambridge

ARTHUR KEITH, Royal College of Surgeons

ARTHUR ROBINSON, University of Edinburgh

VOL. L

ANNUAL SUBSCRIPTION 21/- POST FREE

CONTENTS OF PART I.—OCTOBER 1915

Professor Frederic Wood Jones, D.Sc. The Homologies of the Chelonian and Mammalian Types of Genitalia. David Waterston, M.D. Developmental Changes in the Pericardium, the Mesocardia, and the Pleural Sacs in the Human Embryo. F. J. F. Barrington. The Mucinous Changes of the Vaginal Epithelium of Certain Mammals in Pregnancy. Walter E. Collinge, M.Sc., F.L.S., etc. Some Abnormal Developments in the Vascular System of the Frog (Rana temporaria). Professor Arthur Thomson. On the Presence of Genial Tubercles on the Mandible of Man, and their Suggested Association with the Faculty of Speech. J. Ernest Frazer, F.R.C.S., and R. H. Robbins, M.D. (Cantab). On the Factors concerned in causing Rotation of the Intestine in Man.

LONDON: CHARLES GRIFFIN AND COMPANY, Ltd., Exeter Street, Strand

JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE

Vol. XLV. January—June, 1915

Contents:-

Minutes of the Annual General Meeting, January 26th. The Bronze Age Invaders of Britain. The Presidential Address. By A. Keith, M.D., Ll.D., F.R.S. Bori Beliefs and Ceremonies. (With Plates I and II.) By Major A. J. N. Tremearne, M.A., Ll.M., M.Sc., Dip.Anth. Notes on the Initiation Ceremonies of the Koko, Papua. By E. W. P. Chinnery and W. N. Beaver, F.R.G.S., F.R.A.I. Stone Implements from South African Gravels. By Major E. R. Collins, D.S.O., and Reginald A. Smith, F.S.A. Saxon Graveyard at East Shefford, Berks. (With Plates III—IX.) By Harold Peake and E. A. Hooton. Beliefs and Tales of San Cristoval (Solomon Islands). By C. E. Fox and F. H. Drew.

185 PAGES, WITH 9 PLATES AND MANY ILLUSTRATIONS IN THE TEXT.
PRICE 15s. NET

LONDON: THE ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W. C General Agent: FRANCIS EDWARDS, 83a, High Street, Marylebone, W.

OR THROUGH ANY BOOKSELLER

MAN

A MONTHLY RECORD OF ANTHROPOLOGICAL SCIENCE

Published under the direction of the Royal Anthropological Institute of Great Britain and Ireland. Each number of **MAN** consists of at least 16 Imp. 8vo. pages, with illustrations in the text together with one full-page plate; and includes Original Articles, Notes, and Correspondence; Reviews and Summaries; Reports of Meetings; and Descriptive Notices of the Acquisitions of Museums and Private Collections.

Price, 1s. Monthly or 10s. per Annum prepaid.

TO BE OBTAINED FROM THE

ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W.C.

AND THROUGH ALL BOOKSELLERS

UNIVERSITY OF LONDON, UNIVERSITY COLLEGE

The Biometric Laboratory

(assisted by a grant from the Worshipful Company of Drapers)

Until the phenomena of any branch of knowledge have been submitted to measurement and number it cannot assume the status and dignity of a science. FRANCIS GALTON.

Under the direction of Professor Karl Pearson, F.R.S. Assistants: Andrew Young, M.A., B.Sc.; I. Horwitz, B.Sc.; Adelaide G. Davin, B.Sc.; Crewdson Benington Student in Anthropometry: Appointment in 1916.

This laboratory provides a complete training in modern statistical methods and is especially arranged so as to assist research workers engaged on biometric problems.

The Francis Galton Eugenics Laboratory

National Eugenics is the study of agencies under social control, that may improve or impair the racial qualities of future generations, either physically or mentally.

The Laboratory was founded by Sir Francis Galton and is under the supervision of Professor Karl Pearson, F.R.S. Assistant-Director: DAVID HERON, D.Sc. Galton Research Fellow: Ethel M. Elderton. Assistant: Beatrice M. Cave. Librarian: Vacant.

It was the intention of the Founder, that the Laboratory should serve (i) as a storehouse of statistical material bearing on the mental and physical conditions in man, and the relation of these conditions to inheritance and environment; (ii) as a centre for the publication or other form of distribution of information concerning National Eugenics; (iii) as a school for training and assisting research-workers in special problems in Eugenics.

Short courses are provided for those who are engaged in social, medical, or anthropometric work.

For information as to either Laboratory application should be made to the Acting Secretary, ADELAIDE G. DAVIN, University College, London.

Biometrika, Vol. XI, Parts I and II

Biometrika, Vol. XI, Parts I and II

Biometrika, Vol. XI, Parts I and II

Biometrika, Vol. XI, Parts I and II

Fig. III. Moriori Type Vertical Contour. 3. (33 skulls.)

Biometrika, Vol. XI, Parts I and II

Fig. III. Moriori Type Vertical Contour. J. (33 skulls.)

Biometrika, Vol. XI, Parts I and H

Fig. IV. Moriori Type Vertical Contour. Q. (21 skulls.)

Biometrika, Vol. XI, Parts I and II

Fig. W. Moriori Type Vertical Contour. C. (21 skalls.)

Bone of the X of the

Fig. V. Moriori Type Horizontal Contour. 3. (33 skulls.)

Fra. V. Moriori Type Herizental Centern. J. (32 skulls.)

Fig. VI. Moriori Type Horizontal Contour. Q. (21 skulls.)

Frg. VI. Moriori Type Horizontal Contour. Q. (21 skulls.)

CONTENTS

(All Rights reserved)

	PAGE
I. On the Association of Temperature, Pulse and Respiration with Physique and Intelligence in Criminals. By Madeline H. Whiting. (With Four Diagrams in the text)	1
II. Variation and Correlation of the Number of Umbel Rays of some Umbelliferae. By C. Cool and A. N. Koopmans. (With Plate I and Three Diagrams in the	
por progretart) as many respectively and a second s	38
III. On the Partial Correlation-Ratio, Part II. Numerical. By L. ISSERLIS.	50
IV. Correlation of Anthropometrical Measurements in Cairo-born Natives. By MYER M. ORENSTEEN. (With Six Diagrams in the text).	67
V. A Study of the Crania of the Moriori or Aborigines of the Chatham Islands, now in the Museum of the Royal College of Surgeons. By Eveline Y. Thomson, Crewdson-Benington Student. (With Plates II to XXII; Tables; Six Contour Diagrams in the text; and Six Duplicates on Tissue in the pocket)	82
Miscellanea:	
(i) Note on the Probable Error of the Coefficient of Correlation in the Variate Difference	
Correlation Method. By A. RITCHIE-SCOTT	136
(ii) On certain Types of Compound Frequency Distributions in which the Components	
can be individually described by Binomial Series. By Karl Pearson, F.R.S.	139
With this number is issued an Appendix to Biometrika, Vol. xx, being:	
W. F. R. Weldon's Mice Breeding Experiments, Records of Matings. (With	
Seven Figures in the text and a Plate of Mice Skins.) Prepared for press by F. J. W. and K. P.	
The state of the s	

The publication of a paper in Biometrika marks that in the Editor's opinion it contains either in method or material something of interest to biometricians. But the Editor desires it to be distinctly understood that such publication does not mark assent to the arguments used or to the conclusions drawn in the paper.

Biometrika appears about four times a year. A volume containing about 500 pages, with plates and

tables, is issued annually.

Papers for publication and books and offprints for notice should be sent to Professor Karl Pearson, University College, London. It is a condition of publication in Biometrika that the paper shall not already have been issued elsewhere, and will not be reprinted without leave of the Editor. It is very desirable that a copy of all measurements made, not necessarily for publication, should accompany each manuscript. In all cases the papers themselves should contain not only the calculated constants, but the distributions from which they have been deduced. Diagrams and drawings should be sent in a state suitable for direct photographic reproduction, and if on decimal paper it should be blue ruled, and the lettering only pencilled.

Papers will be accepted in French, Italian or German. In the last case the manuscript should be

in Roman not German characters. Russian contributors may use either Russian or German but their

papers will be translated into English before publication.

Contributors receive 25 copies of their papers free. Fifty additional copies may be had on payment of 7/- per sheet of eight pages, or part of a sheet of eight pages, with an extra charge for Plates; these should be ordered when the final proof is returned.

The subscription price, payable in advance, is 30s. net per volume (post free); single numbers 10s. net. Volumes I—X (1902—15) complete, 30s. net per volume. Bound in Buckram 34/6 net per volume. Index to Volumes I to V, 2s. net. Subscriptions may be sent to C. F. Clay, Cambridge University Press, Fetter Lane, London, E.C., either direct or through any bookseller, and communications respecting advertisements should also be addressed to C. F. Clay

Till further notice, new subscribers to Biometrika may obtain Vols. I-X together for £11 net-or

bound in Buckram for £13 net.

The Cambridge University Press has appointed the University of Chicago Press Agents for the sale of Biometrika in the United States of America, and has authorised them to charge the following prices: \$7.50 net per volume; single parts \$2.50 net each.

BIOMETRIKA

A JOURNAL FOR THE STATISTICAL STUDY OF BIOLOGICAL PROBLEMS

FOUNDED BY

W. F. R. WELDON, FRANCIS GALTON AND KARL PEARSON

EDITED BY
KARL PEARSON

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER LONDON: FETTER LANE, E.C. EDINBURGH: 100, FRINCES STREET

also

H. K. LEWIS AND CO., LTD., 136, GOWER STREET, LONDON, W.C. WILLIAM WESLEY AND SON, 28, ESSEX STREET, LONDON, W.C. CHICAGO: UNIVERSITY OF CHICAGO PRESS

BOMBAY, CALCUTTA AND MADRAS: MACMILLIAN AND CO., LIMITED TORONTO: J. M. DENT AND SONS, LIMITED TOKYO: THE MARUZEN-KABUSHIKI-KAISHA

Price Ten Shillings

The Life, Letters, and Labours of Francis Galton

By KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

Vol. I. Birth 1822 to Marriage 1853

WITH 5 PEDIGREE PLATES AND 72 PHOTOGRAPHIC PLATES, FRONTISPIECE AND 2 TEXT-FIGURES

Price 21s. net

"It is not too much to say of this book that it will never cease to be memorable. Never will man hold in his hands a biography more careful, more complete."—The Times

"A monumental tribute to one of the most suggestive and inspiring men of modern times,"—Westminster Gazette

"It was certainly fitting that the life of the great exponent of heredity should be written by his great disciple, and it is gratifying indeed to find that he has made of it, what may without exaggeration be termed a great book."—Daily Telegraph

Tables for Statisticians & Biometricians

EDITED BY KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

48SUED WITH ASSISTANCE FROM THE GRANT MADE BY THE WORSHIPFUL COMPANY OF DRAPERS TO THE BIOMETRIC LABORATORY.

Price 12s. net

"To the workers in the difficult field of higher statistics such aids are invaluable. Their calculation and publication was therefore as inevitable as the steady progress of a method which brings within grip of mathematical analysis the highly variable data of biological observation. The immediate cause for congratulation is, therefore, not that the tables have been done but that they have been done so well......The volume is indispensable to all who are engaged in serious statistical work."—Science

"The whole work is an eloquent testimony to the self-effacing labour of a body of men and women who desire to save their fellow scientists from a great deal of irksome arithmetic; and the total time that will be saved in the future by the publication of this work is, of course, incalculable......To the statistician these tables will be indispensable."—Journal of Education

"The issue of these tables is a natural outcome of Professor Karl Pearson's work, and apart from their value for those for whose use they have been prepared, their assemblage in one volume marks an interesting stage in the progress of scientific method, as indicating the number and importance of the calculations which they are designed to facilitate."—Post Magazine

(Copies of the *Corrigenda* to these Tables can be obtained by former purchasers by sending a stamped and directed envelope to Mr C. F. Clay)

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER

LONDON: FETTER LANE, E.C. EDINBURGH: 100, PRINCES STREET

ON THE GENERAL THEORY OF MULTIPLE CONTINGENCY WITH SPECIAL REFERENCE TO PARTIAL CONTINGENCY.

By KARL PEARSON, F.R.S.

(1) Let there be l variates or characteristics $A, B, C, \ldots L$, each of these variates or characteristics being subdivided into categories $A_1, A_2, \ldots A_a, B_1, B_2, \ldots B_{\beta}, C_1, C_2, \ldots C_{\gamma}, \ldots L_1, L_2, \ldots L_{\lambda}$, where $\alpha, \beta, \gamma, \ldots \lambda$ are arbitrary numbers. Then if N be the total population, and $n_{a_1}, n_{a_2}, \ldots n_{a_n}$ the number of individuals in the A-categories; $n_{b_1}, n_{b_2}, \ldots n_{b_{\beta}}$ those in the B-categories and so on, we have relations

$$S_{\mathbf{1}^{\alpha}}(n_{a_{n}}) = S_{\mathbf{1}^{\beta}}(n_{b_{n}}) = S_{\mathbf{1}^{\gamma}}(n_{c_{n}}) = \dots = N.$$

Further, if there be no relationship whatever between the variates or characteristics, we should anticipate that the frequency of the group A_u , B_v , C_w , ... L_{ψ} in a sample of M would on the average be

$$M.rac{n_{a_u}}{N}.rac{n_{b_v}}{N}.rac{n_{c_w}}{N} ...rac{n_{l_\psi}}{N}$$
 .

Actually we find in the sample M the number $m_{uvw...\psi}$, and the problem arises whether the system represented by $m_{uvw...\psi}$ is so improbable that in the selected population M the characteristics A, B, C, ... L cannot be considered independent, i.e. M is really not a random sample from the supposed population N. Clearly the answer to this problem has already been given. We have to find the value of χ^2 :

$$=S_{uvw\dots\psi}\left[\frac{\left(m_{uvw\dots\psi}-M\cdot\frac{n_{a_u}}{N}\cdot\frac{n_{b_v}}{N}\dots\frac{n_{l_\psi}}{N}\right)^2}{M\cdot\frac{n_{a_u}}{N}\cdot\frac{n_{b_v}}{N}\dots\frac{n_{l_\psi}}{N}}\right] \qquad \qquad (i),$$

and apply the tables for "goodness of fit." Of course in many cases the sampled population is not known and accordingly we can only put for $\frac{n_{a_u}}{N}$, $\frac{n_{b_v}}{N}$, ... $\frac{n_{l_\psi}}{N}$ the values given by the sample itself, i.e. $\frac{m_{a_u}}{M}$, $\frac{m_{b_v}}{M}$, ... $\frac{m_{l_\psi}}{M}$, and test from this substitution the degree of divergence from independence. If we take the mean value of χ^2 , i.e. $\phi^2 = \chi^2/M$, ϕ^2 is termed the mean square contingency, and $C_2 = \sqrt{\phi^2/(1+\phi^2)}$ Biometrika xi

gives a measure of the divergence from independence*. This is a multiple contingency coefficient.

Another case not infrequently arises; the population N has the characteristics A, B, C, ... not independent, but related; the cell $uvw \dots \psi$ contains $n_{uvw \dots \psi}$ and the question arises how far it is safe to consider the population M as a sample of this population. In this case \dagger

$$\chi^2 = S_{uvw...\psi} \left[rac{m_{uvw...\psi} - rac{M}{N} n_{uvw...\psi}}{rac{M}{N} n_{uvw...\psi}}
ight]$$
 (ii).

In both these cases we have the relation

$$S_{uvw...\psi}(m_{uvw...\psi}) = M$$
(iii),

and accordingly the number of cell frequencies is one more than the number of independent variates. Thus in using the tables \ddagger of "goodness of fit" the n' of the argument is $\alpha\beta\gamma\ldots\lambda$, but the value of P, the probability, has actually been determined from n'-1.

(2) Now there are a number of cases in which not only do the cell-contents of the sample obey the linear relation (iii), but also other linear relations are imposed on the cell-contents. In the most general case we can suppose q linear relations between the cell-contents $m_{uvw....\psi}$, and obtain the probability P corresponding to a value of χ^2 limited by these q relations. The theory of sampling, when such conditions are introduced, I term the theory of partial contingency. The reason for this terminology will be clearer as we develop the theory.

As far as we are concerned at present, it is of no importance whether we are dealing with one or other of our two cases, i.e. whether we are questioning the possibility of our material being a sample from a population with independent $A, B, C, \dots L$ characteristics, i.e. determining a coefficient of mean squared contingency, or are investigating the possibility of its being a probable sample from a population with any associations between these characteristics. We can accordingly write χ^2 in the form

or for convenience we may even drop the descriptive subscripts and, numbering the cells in some sequence 1, 2, 3, ... s, ... $(a\beta\gamma ... \lambda)$, write

$$\chi^2 = S_s \, rac{(m_s - \overline{m}_s)^2}{\overline{m}_s} \, \ldots \ldots (v).$$

^{*} If the characteristics may be assumed to be continuous variates, certain corrections for units of grouping can be made. There is also a correction due to the necessarily positive value of ϕ^2 . These corrections, which have been for some time in use, will be considered elsewhere.

[†] We must in this case of course actually know the value of $n_{uvw...\psi}$, it cannot be judged from the sample.

[‡] For discussion of the deduction of P from χ^2 : see Phil. Mag. Vol. L. p. 157 (July 1900); and for Tables: see Tables for Statisticians and Biometricians, Table XII (Cambridge University Press).

Here $\overline{m}_{uvw...\psi} = \overline{m}_s$ will be either

$$M \cdot rac{n_{a_u}}{N} \cdot rac{n_{b_v}}{N} \ldots rac{n_{l_\psi}}{N} \quad ext{or} \quad rac{M}{N} \ n_{uvw \ldots \, \psi}$$
 ,

as the case may be.

Now we shall find it convenient to write

$$X_s = (m_s - \overline{m}_s)/\sqrt{\overline{m}_s}$$
(vi),

and thus

$$\chi^2 = S_s (X_s^2)$$
(vii).

Further, if our q linear equations be of type

$$h_{t1}m_1 + h_{t2}m_2 + ... + h_{ts}m_s + ... = H_t$$
.....(viii),

where h and H are constants and t takes every value from 1 to q, we can write our conditions in the form

where

$$\begin{aligned} k_{t1} X_1 + k_{t2} X_2 + \ldots + k_{ts} X_s + \ldots &= K_t \\ k_{ts} &= \frac{h_{ts} \sqrt{\overline{m}_s}}{\sqrt{h^2_{t1} \overline{m}_1 + h^2_{t2} \overline{m}_2 + \ldots + h^2_{ts} \overline{m}_s + \ldots}} \\ K_t &= \frac{H_t - h_{t1} \overline{m}_1 - h_{t2} \overline{m}_2 - \ldots - h_{ts} \overline{m}_s - \ldots}{\sqrt{h^2_{t1} \overline{m}_1 + h^2_{t2} \overline{m}_2 + \ldots + h^2_{ts} \overline{m}_s + \ldots}} \end{aligned}$$
 (ix).

and

We shall speak of the first of (ix) as the prepared condition. Clearly it corresponds to a plane in n-dimensional space in which the constants k_{t1} , k_{t2} , ... k_{ts} , ... are the direction-cosines and K_t the perpendicular from the origin on the plane. It is convenient to use the notation

$$k_{t1}k_{t'1} + k_{t2}k_{t'2} + \dots + k_{ts}k_{t's} + \dots = \cos(tt')$$
(x),

for (tt') is now the angle between the tth and t'th planes.

Assuming that the frequency surface with which we have to deal may be taken as

$$z = z_0 e^{-\frac{1}{2}\chi^2}$$
(xi),

we may suppose before applying equations of condition (ix) that $K_1, K_2, ..., K_t, ..., K_q$ are variates and that we eliminate $X_1, X_2, ..., X_q$, expressing our χ^2 in terms of $K_1, K_2, ..., K_q, X_{q+1}, X_{q+2}, ..., X_n$. We shall have then

$$z=z_0$$
 expt. $-\frac{1}{2}$ (quadratic function of these n new variables).

We now proceed to put K_1 , K_2 , ... K_q constant, but leave the other n-q quantities to vary; we are therefore seeking the value of χ^2 for certain variates constant. This is the essence of partial contingency, and the analogy in contingency to partial correlation.

(3) As a rule in partial contingency we do not seek to discuss χ^2 when single cells of our multiple contingency solid are constant in frequency, although our theory covers that case. What we require usually is the value of χ^2 when we make the contents of certain marginal total cells constant. For example, let us consider

a population of uniform sex and let there be three characteristics: (i) frequency of age groups, (ii) frequency of occupational categories and (iii) frequency of survival and of death, the latter classified by various special disease classes—the whole, say, representing the returns for one year of a large area or country. We then require to determine, whether the like contingency solid for a sub-district, or for another population entirely, may be considered as significantly different from the above general population, i.e. we require to find the probability of its being a random sample of this general population. Now we may do this in the most universal manner, by assuming that not only survivals and deaths, but that age groups and occupations all have frequencies, which are random samples of the above general population. But this is not very often what we require; we admit that the age distribution is differentiated, we admit that the occupational frequencies are peculiar to the locality, and we ask whether, notwithstanding these differences, the death distribution is to be considered as a random sample.

In other words, we do not only fix the size of our sample M; we fix all one face—that of age groups and occupational categories of our contingency solid—and ask what is the distribution of samples of M taken from this solid, subject to the linear conditions that the totals of age-occupational categories are constant. For example, if A be age and B occupation, we make $n_{a_ub_v}$ constant for all values of u and v, but

$$n_{a_ub_v} = n_{a_ub_vc_1} + n_{a_ub_vc_2} + n_{a_ub_vc_3} + \dots,$$

where $n_{a_ub_vc_s}$ is the frequency of the *uvs* cell, c denoting the category C of type of death and survival.

Now clearly in making this investigation we shall be studying the mean square contingency and the resulting probability of a partial sample—a sample of survival and death-type in a population of constant age groups and occupational classes. Again, we might treat a population as a sample with only constant age groups or only constant occupational frequencies and again investigate its probability as a sample with regard to deaths and occupations or with regard to deaths and age groups respectively. These would be partial contingencies of the order α or β , while the previous partial contingency was of the order $\alpha + \beta$, α being the number of categories in A (i.e. age groups) and β being the number in B (i.e. mortality and survival classes).

- (4) Now the value of χ^2 given above, and of the frequency surface (xi), was discussed by me in the year 1900* from the general normal frequency surface by evaluation of determinants. The demonstration depends on two hypotheses:
 - (i) The approach of the binomial $M(p+q)^n$ to the normal curve

$$y = \frac{M}{\sqrt{2\pi}\sqrt{npq}} e^{-\frac{x^2}{2npq}}.$$

We know that this is true if n be considerable and neither p nor q very small.

* Phil. Mag. Vol. L. p. 157, 1900. I have recently given a more elementary proof with the probable error of P: see Phil. Mag. April, 1916.

The hypothesis is justified therefore if no cell be taken so small that its contents are very small compared with the size of the sample.

(ii) That the sampling takes place out of a population indefinitely greater than the sample. If this be not true, then the distribution of frequency of any given cell for a series of samples follows not a binomial but a hypergeometrical series. The necessary modifications in the formulae are not very substantial and have been discussed elsewhere*.

Supposing the above two conditions to be fulfilled, then in true random samples the mean of a cell frequency will be

$$\overline{m}_s = M \frac{n_s}{\overline{N}}$$
(xii),

where M is size of sample, n_s the contents of the sth cell in the sampled population N, and condition (i) amounts to saying that no cell is to be chosen so that n_s/N is indefinitely small.

Further, the frequency of the sth cell will follow the binomial

$$\left\{\frac{n_s}{N}+\left(1-rac{n_s}{N}
ight)
ight\}^M$$
 ,

and thus have a standard deviation given by

$$\sigma^2_{n_s} = M \, rac{n_s}{N} \Big(1 - rac{n_s}{N} \Big) \, \ldots \ldots (ext{xiii}).$$

Lastly the correlation $r_{ss'}$ between deviations in the sth and s'th cells is given by

$$\sigma_{n_s}\sigma_{n_{s'}}r_{ss'} = -M\frac{n_s}{N}\frac{n_s}{N}$$
(xiv).

(5) The following deduction of the value of χ^2 is a variant from my *Phil. Mag.* proof. I owe the suggestion of it to Mr H. E. Soper, although I have deviated somewhat from his track. Let an indefinitely large population N consist of the classes C_0 , C_1 , ... C_l in the quantities n_0 , n_1 , n_2 , ... n_l respectively. Then $p_s = n_s/N =$ chance of drawing a member of the class C_s , and the standard deviation of the distribution of frequency in samples of M drawn from the population will in this class C_s be as above

$$\sigma_{\mathrm{s}} = \sqrt{Mp_{\mathrm{s}} \left(1-p_{\mathrm{s}}
ight)} \ldots \ldots \left(\mathrm{xiii}\right)^{\mathrm{bis}}.$$

Further, the mean of samples for this class will be Mp_s by (xii).

In the next place the correlation between deviations from the means in classes C_s and C_t will be in our present notation

$$\sigma_s \sigma_t r_{ss'} = -M n_s n_{s'}/N^2(\text{xiv})^{\text{bis}},$$
 or by (xiii)^{bls}
$$r_{ss'} = -\frac{\sqrt{p_s p_{s'}}}{\sqrt{1-p_s \sqrt{1-p_{s'}}}}.....(\text{xv}).$$

^{*} Phil. Mag. p. 239, 1899 and Biometrika, Vol. v. p. 174

The distribution of frequency of the different classes in these samples of M will be given by the terms of the multinomial

$$(p_0C_0 + p_1C_1 + p_2C_2 + ... + p_lC_l)^M$$
(xvi),

the general term being

$$\frac{M!}{u_0! \ u_1! \ u_2! \dots \ u_i!} \ p_0^{u_0} \ p_1^{u_1} \ p_2^{u_2} \dots \ p_l^{u_l} \ C_0^{u_0} \ C_1^{u_1} \dots \ C_l^{u_l} \dots \dots (xvii),$$

where C_0 , C_1 , ... C_l are only logical symbols to denote that this general term is the frequency of the group, where the class C_s occurs u_s times in the sample. Clearly $u_0 + u_1 + ... + u_l = M$.

But (xvi) may be put into the form of a binomial, it is

$$= \mathop{S}\limits_{m=0}^{m=M} \frac{M\,!}{m\,!\,(M-m)\,!}\,(p_{0}C_{0})^{M-m}\,(p_{1}C_{1}+p_{2}C_{2}+\ldots+p_{l}C_{l})^{m}\ldots ({\rm xviii}).$$

Let $(p_1 + p_2 + ... + p_l) = \lambda$, then the *m*th term of the above series may be read as

$$\frac{M!}{m! (M-m)!} (p_0 C_0)^{M-m} \lambda^m (p_1' C_1 + p_2' C_2 + \ldots + p_l' C_l)^m \ldots (xix),$$

where

$$p_1' + p_2' + \dots + p_l' = 1$$
,

and

$$\frac{p_1}{p_1'} = \frac{p_2}{p_2'} = \frac{p_3}{p_3'} = \dots = \frac{p_1}{p_1'} = \lambda = 1 - p_0 \dots (xx).$$

Now it is clear that the factor

$$(p_1'C_1 + p_2'C_2 + ... + p_l'C_l)^m$$

gives the frequency distribution of samples of m drawn from a population of indefinitely large size of which the proportions of the classes C_1 , C_2 , ... C_l are p_1' , p_2' , ... p_l' and in which no class C_0 occurs. But by (xx) these proportions are the same as in the original population which contains C_0 .

Hence if we take samples of M from an indefinitely large population with classes C_0 , C_1 , C_2 , ... C_l , those that contain m of the classes C_1 , C_2 , ... C_l will be distributed in the same proportions as if we had extracted m from an indefinitely large population consisting only of those l classes in the same proportions.

Now thus far the nature of the class C_0 is at our choice. In the original population N it appears with the total frequency n_0 . Let $n_0 + n' = N$, and suppose n_0 is indefinitely greater than n', then p_0 will be indefinitely greater than $p_1, p_2, \ldots p_n$. It follows that p_s if s be not zero is very small compared to unity, because

$$p_0 + p_1 + p_2 + \ldots + p_n = 1.$$

Hence in such a system from (xiii)bis, if s be not zero,

$$\sigma_s = \sqrt{Mp_s}$$
(xxi),

and from (xv) to the same degree of approximation $r_{st} = 0$. That is to say, if p_0 be large in taking samples of size M from an indefinitely large population, there will be no correlation in deviations in the frequency of the classes $C_1, \ldots C_l$.

On the other hand r_{s0} is not zero, but equals by (xv)

$$-\sqrt{p_s p_0}/\sqrt{1-p_0} = -\sqrt{p_s}/\sqrt{1-p_0}$$

to the same degree of approximation. Hence by (xx)

$$r_{s0} = -\sqrt{p_{s}'}$$
(xxii).

But if we form the partial correlation of deviations in classes C_s and C_t for constant frequency of number in C_0 , we have

$$\begin{split} _{0}r_{st} &= (r_{st} - r_{s0}r_{t0})/\sqrt{(1 - r_{s0}^{2})(1 - r_{t0}^{2})} \\ &= (0 - \sqrt{p_{s}'}\sqrt{p_{t}'})/\sqrt{(1 - p_{s}')(1 - p_{t}')}, \\ _{0}r_{st} &= -\frac{\sqrt{p_{s}'p_{t}'}}{\sqrt{1 - p_{s}'}\sqrt{1 - p_{t}'}}......(xxiii), \end{split}$$

or

which agrees with (xv), the classes being now reduced by unity. Further, the reduced standard deviation must now be

$$_{0}\sigma_{s} = \sigma_{s} \sqrt{1 - r_{0s}^{2}}$$

$$= \sigma_{s} \sqrt{1 - p_{s}'}$$

$$= \sqrt{Mp_{s} (1 - p_{s}')}$$

$$= \sqrt{M\lambda p_{s}' (1 - p_{s}')} \dots (xxiv).$$

Now take the mean value ${}_{0}\overline{x}_{s}$ of x_{s} the frequency in class C_{s} for a constant x_{0} or for constant frequency in class C_{0} ; in our case, if the sample is to be m this will be M-m, we have

or

The partial values ${}_{0}\bar{v}_{s}$, ${}_{0}r_{ts}$ of the means and correlations of classes for constant number in class C_{0} are given by (xxiii) and (xxv), and are what we might anticipate. But (xxiv) should be $\sqrt{mp_{s}'(1-p_{s}')}$. It is accordingly needful to take

$$\lambda = m/M$$
,

or

$$p_0 = 1 - m/M$$
(xxvi).

These results have been reached on the assumption that p_0 is very large as compared with $p_1, p_2, \ldots p_n$. It follows accordingly that the sample M must be large as compared with m, and further the sum of the classes $C_1, C_2, \ldots C_l$ must

be to that of the class C_0 in the total population in the ratio of the partial sample m to the total sample M. Without this condition it is not possible to replace Mp_s by mp_s . Assuming these conditions to be satisfied, then samples of the size m in classes $C_1, C_2, \ldots C_l$ picked out of very large samples of M will reproduce the same distribution of frequencies in those classes as samples of m picked out of an indefinitely large population with the same relative frequencies in those classes.

But in the case of samples of M, the deviations have their correlations zero for the classes C_1 , C_2 , ... C_n , or they will be approximately distributed by the product of their independent probabilities. The standard deviation being $\sqrt{mp_s'}$ and the mean mp_s' , we see that the frequency distribution would really follow a Poisson's binomial limit, but as shown by L. Whitaker* this binomial limit is approximately Gaussian with fairly low values of mp_s' ; see the Diagrams for $mp_s' = 10$ and $mp_s' = 30$ in the plate of her memoir. We may accordingly therefore take the distribution of the frequency in the sth class or cell to be given by

$$z_s = rac{1}{\sqrt{2\pi}\sqrt{\overline{m}}_c}e^{-rac{1}{2}rac{(m_s-\overline{m}_s)^2}{\overline{m}_s}}$$
.....(xxvii),

and the general distribution to be

$$z = \left(rac{1}{\sqrt{2\pi}}
ight)^{l} rac{1}{\sqrt{m^{l} p_{1}^{'} p_{2}^{'} \dots p_{l}^{'}}} e^{-rac{1}{2}\chi^{2}}$$
 $\chi^{2} = S_{s} \left\{rac{(m_{s} - \overline{m}_{s})^{2}}{\overline{m}_{s}}
ight\}$ (xxviii).

where

Here, if the size of the sample only be fixed, we shall have

$$S\left(m_{s}\right)=m=mS\left(p_{s}'\right)=S\left(\overline{m}_{s}\right),$$

$$S\left(m_{s}-\overline{m}_{s}\right)=0.$$

or

$$X_s=rac{m_s-\overline{m}_s}{\sqrt{\overline{m}_s}}$$
 ,

If we take

we have:

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_{l^2}$$
(xxix)

subject to the condition:

$$\sqrt{\overline{m}_1}X_1 + \sqrt{\overline{m}_2}X_2 + \ldots + \sqrt{\overline{m}_l}X_l = 0 \ldots (xxx).$$

It is clear that χ^2 equal to a constant gives a sphere in l-fold space, and that (xxx) is a plane passing through its centre, and therefore cutting the sphere in l-fold space in a sphere of the same radius in (l-1)-fold space. Hence if we desire to find the volume of the frequency surface (xxxiii) which lies outside a value of $\chi = \chi_0$ subject to the condition (xxx), all we have to do is to transfer to polar

^{*} Biometrika, Vol. x. p. 36. If $\overline{m}_s = mp_s'$ be the mean, $\beta_1 = 1/\overline{m}_s = \beta_2 - 3$, so that $\beta_1 = 0.03$, $\beta_2 = 3.03$ already for $\overline{m}_s = 33$.

coordinates and integrate the value of z for the (l-1)-fold surface beyond the value χ_0^* . Accordingly

$$P = \frac{\int_{\chi_0}^{\infty} e^{-\frac{1}{2}\chi^2} \chi^{l-2} d\chi}{\int_{0}^{\infty} e^{-\frac{1}{2}\chi^2} \chi^{l-2} d\chi} \qquad(xxxi)$$

is the chance of a sample occurring with as great or greater deviation as the χ_0 sample from the general population. This is the expression from which the Tables of "Goodness of Fit" were calculated, the arguments being χ_0^2 and l, i.e. the value of χ^2 for the sample and the total number of categories in the sample. Thus far there is only difference of method of deduction, not of results.

(6) We now propose to replace condition (xxx) by a series of q linear equations of form (viii). These in the case of sampling will, if the size of the sample be fixed, either directly or indirectly involve (xxx).

The type of these equations in their prepared form is

$$k_{t1}X_1 + k_{t2}X_2 + \dots + k_{ts}X_s + \dots = K_t.$$

Each such plane will intersect

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_s^2 + \dots$$

in a sphere of lower order. For example, if there be n variates X, the first plane gives a sphere of the (n-1)th order, this will be intersected by the second plane in a sphere of the (n-2)th order, so that ultimately we find ourselves reduced to a sphere of the (n-q)th order, by the intersection of the qth plane. If K_1 , K_2 , ... K_q were all zero, the radius of the sphere of the (n-q)th order would be the same, i.e. χ^2 as the radius of the sphere of the nth order. But since these quantities are usually not zero we have to determine the radius of this sphere. The centre of this sphere must lie in every one of the q planes of the nth order, and accordingly on the plane of order n-(q-1) in which they intersect. But the centre of the sphere of n-q order is where the perpendicular, K, from the origin meets this plane of the (n-q)th order, and the radius χ' of the sphere of the (n-q)th order is given by $\chi'^2 = \chi^2 - K^2$. To determine χ' we must find P.

Now P will be the minimum distance from the origin to the plane of the (n-q-1)th order in which the q planes intersect. In other words to find P we must make

$$D^{\mathbf{2}} = X_{\mathbf{1}}{}^{\mathbf{2}} + X_{\mathbf{2}}{}^{\mathbf{2}} + \ldots + X_{\mathbf{s}}{}^{\mathbf{2}} + \ldots + X_{u}{}^{\mathbf{2}}$$

a minimum subject to the q conditions of type

$$k_{t1}X_1 + k_{t2}X_2 + \dots + k_{ts}X_s + \dots + k_{tu}X_u = K_t$$

where

$$k_{t1}^2 + k_{t2}^2 + \dots + k_{ts}^2 + \dots + k_{tu}^2 = 1.$$

Using the method of indeterminate multipliers we find n equations of the form

$$X_s + \lambda_1 k_{1s} + \lambda_2 k_{2s} + \dots + \lambda_q k_{qs} = 0.$$

^{*} Phil. Mag. Vol. L. p. 158.

154 On the Theories of Multiple and Partial Contingency

Multiply by X_s and add the series, and we find

$$-K^2 = \lambda_1 K_1 + \lambda_2 K_2 + \ldots + \lambda_\sigma K_\sigma \quad \ldots (xxxii).$$

Multiply by k_{1s} and add the series, and we find, by aid of (x),

$$-K_1 = \lambda_1 + \lambda_2 \cos(12) + \lambda_3 \cos(13) + ... + \lambda_q \cos(1q).$$

Similarly:

$$\begin{split} &-K_{2} = \lambda_{1}\cos{(21)} + \qquad \lambda_{2} \qquad + \lambda_{3}\cos{(23)} + \ldots + \lambda_{q}\cos{(2q)}, \\ &-K_{t} = \lambda_{1}\cos{(t1)} + \lambda_{2}\cos{(t2)} + \ldots + \qquad \lambda_{t} + \ldots + \lambda_{q}\cos{(tq)}, \\ &-K_{q} = \lambda_{1}\cos{(q1)} + \lambda_{2}\cos{(q2)} + \ldots + \qquad + \ldots + \lambda_{q}. \end{split}$$

These are q equations to find λ_1 , λ_2 , ... λ_q , and we can then substitute in (xxxii) to find the required P^2 .

Now consider the determinant

$$R = \begin{bmatrix} 1, & K_1, & K_2, & K_3, & \dots & K_q \\ K_1, & 1, & \cos{(12)}, & \cos{(13)}, \dots & \cos{(1q)} \\ K_2, & \cos{(21)}, & 1, & \cos{(23)}, \dots & \cos{(2q)} \\ K_3, & \cos{(31)}, & \cos{(32)}, & 1, & \dots & \cos{(3q)} \\ \dots & \dots & \dots & \dots & \dots \\ K_q, & \cos{(q1)}, & \cos{(q2)}, & \cos{(q3)}, \dots & 1 \end{bmatrix} \dots (xxxiii),$$

and let us call the first row and the first column the 0 row and 0 column, then clearly $-\lambda_t = -R_0 t/R_{00},$

where R_{st} is the minor of the sth row and tth column, and

or

If we call Δ the minor R_{00} , we have:

$$\begin{split} R_{0\,t} &= -\,K_1\Delta_{1\,t} - K_2\Delta_{2\,t} - \ldots - K_{\,t}\Delta_{\,t\,t} - \ldots \\ K^2 &= S\left(K_{\,t}^2\frac{\Delta_{\,t\,t}}{\Delta}\right) + 2S\left(K_{\,t}K_{\,t'}\,\frac{\Delta_{\,t\,t'}}{\Delta}\right) \ldots \ldots (\text{xxxv}). \end{split} \label{eq:R0t}$$

Thus

From this we deduce that the probability of a sample which gives $\chi^2 = \chi_0^2$ with q linear conditions must be obtained from

$$P = \frac{\int_{\chi_0^2 - K^2}^{\infty} e^{-\frac{1}{2}\chi^2} \chi^{n-q-1} d\chi}{\int_0^{\infty} e^{-\frac{1}{2}\chi^2} \chi^{n-q-1} d\chi} \qquad \dots (xxxvi).$$

We must therefore in order to find P enter the Tables of "Goodness of Fit" with $\chi^2 = \chi_0^2 - K^2$ and with n' = n - q + 1*.

The reader who is familiar with the theory of the multiple total and partial correlation coefficients will note how closely analogous the formulae (xxxiii) to (xxxv) are to results in that theory. The fundamental determinant of the correlation may be made to agree with Δ , if we merely write $r_{ss'} = \cos{(ss')}$. In fact both theories really reduce to the discussion of the formulae of spherical trigonometry in multiple space.

(7) A simple illustration of the above formulae may be taken from the case of the distribution of mortality in two districts, where the problem is to ascertain the probability that the difference of mortality observed allowing for the frequency of the age groups could be due to random sampling.

Let the population sampled be represented by

where D_s are the dead, L_s the living and A_s the exposed to risk in the sth age group, there being u such groups in the total population P, of whom in the given period Δ die and Λ survive.

Let the districts be represented by

and

respectively. Then the problem is to ascertain the probability that the last two distributions could both be samples of the same first population.

The general formula has been given by met; we have to evaluate

$$\chi^2 = S \left\{ rac{\left(rac{f_t}{p} - rac{f_t'}{p'}
ight)^2}{\left(rac{1}{p} + rac{1}{p'}
ight)rac{F_t}{P}}
ight\}$$
 ,

^{*} The tables are constructed for n'-1 independent variables; in our case there are n-q such variables, hence n'-1=n-q.

[†] Biometrika, Vol. viii. p. 252.

where f_t must take the value of every frequency in the cells of (β) , f_t' the corresponding cell frequency for (γ) , and F_t that for (α) . We have to seek for P under the argument n'=2u in our tables, if we have no restrictions on our variates. Actually we have such restrictions, for we are going to seek the partial χ^2 when we suppose the age groups in each sample to be constant. Now

Thus it follows that

$$d_s+l_s=a_s \quad ext{and} \quad d_s'+l_s'=a_s'.$$

$$\frac{d_s}{p}-\frac{d_s'}{p'}+\frac{l_s}{p}-\frac{l_s'}{p'}=\frac{a_s}{p}-\frac{a_s'}{p'} \ldots (xxxvii).$$

We have accordingly u equations of condition or n' as argument will be reduced to u+1. Now we take

$$egin{align} X_s &= \sqrt{rac{pp'}{p+p'}} rac{\left(rac{d_s}{p} - rac{d_s'}{p'}
ight)}{\sqrt{D_s/P}} \,, \ Y_s &= \sqrt{rac{pp'}{p+p'}} rac{\left(rac{l_s}{p} - rac{l_s'}{p'}
ight)}{\sqrt{L_s/P}} \,. \ \chi^2 &= S_1{}^u\left(X_s{}^2
ight) + S_1{}^u\left(Y_s{}^2
ight), \end{align}$$

Thus

with u conditions of form

$$\sqrt{D_s/P}\,X_s + \sqrt{L_s/P}\,\,Y_s = \sqrt{rac{pp'}{p+p'}} \Big(rac{a_s}{p} - rac{a_s'}{p'}\Big)$$
 ,

or in the prepared form

$$\sqrt{rac{D_s}{A_s}}\,X_s + \sqrt{rac{L_s}{A_s}}\,Y_s = \sqrt{rac{pp'}{p+p'}}rac{\left(rac{a_s}{p} - rac{a_s'}{p'}
ight)}{\sqrt{rac{A_s}{P}}}.
onumber$$
 $K_s = \sqrt{rac{pp'}{m+n'}}rac{\left(rac{a_s}{p} - rac{a_s'}{n'}
ight)/\sqrt{rac{A_s}{P}}.$

Thus

Further, all the cosines like cos (ss') are zero, for no equations of condition involve the same variates*. Thus

Accordingly

$$\chi_0{}^2 = \chi^2 - K^2 = \frac{pp'}{p+p'} \left\{ S_1{}^u \frac{P}{D_s} \Big(\frac{d_s}{p} - \frac{d_s'}{p'} \Big)^2 + S_1{}^u \frac{P}{L_s} \Big(\frac{l_s}{p} - \frac{l_s'}{p'} \Big)^2 - S_1{}^u \frac{P}{A_s} \Big(\frac{a_s}{p} - \frac{a_s'}{p'} \Big)^2 \right\}.$$

We shall now substitute from the relation (xxxvii), getting rid of $\frac{l_s}{p} - \frac{l_s'}{p'}$.

^{*} This will necessarily be true if our equations of condition refer to parallel rows or columns, not if they refer to certain rows and columns.

We find

$$\begin{split} \chi_0{}^2 &= \frac{pp'}{p+p'} \left\{ S_1{}^u \frac{PA_s}{D_sL_s} \left(\frac{d_s}{p} - \frac{d_s'}{p'}\right)^2 - \frac{2P}{L_s} \left(\frac{d_s}{p} - \frac{d_s'}{p'}\right) \left(\frac{a_s}{p} - \frac{a_s'}{p'}\right) + \frac{PD_s}{A_sL_s} \left(\frac{a_s}{p} - \frac{a_s'}{p'}\right)^2 \right\} \\ &= \frac{pp'}{p+p'} S_1{}^u \left\{ \frac{PA_s}{D_sL_s} \left[\frac{d_s}{p} - \frac{d_s'}{p'} - \frac{D_s}{A_s} \left(\frac{a_s}{p} - \frac{a_s'}{p'}\right)\right]^2 \right\}. \end{split}$$
 Let $\frac{D_s}{A_s} = p_s$, $\frac{L_s}{A_s} = q_s$, then we may write
$$\chi_0{}^2 = \frac{pp'}{p+p'} S_1{}^u \left\{ \frac{P}{A_sp_sq_s} \left(\frac{d_s-p_sa_s}{p} - \frac{d_s'-p_sa_s'}{p'}\right)^2 \right\}. \end{split}$$

Now if we know the population sampled, we have only to insert the values of P, A_s , and p_s , q_s to obtain the value of χ_0^2 . But if we do not, and this is usually the case, then our problem is: Are the two districts samples of the same unknown general population? For example, we might enquire whether the death distributions in Bradford and Leeds were, correcting for age, significantly different. It might be supposed that it would be correct to give A_s/P , p_s and q_s , the values found for all England and Wales. But it may be doubted whether this would be satisfactory. The populations of Bradford and Leeds might fairly be considered as samples of a general population which is very far indeed from being that of all England. Accordingly it seems much more reasonable to suppose that they are samples of a population whose mortality characters will be best represented by the combination of those of the two districts themselves, or we take

$$p_s=rac{d_s+{d_s}'}{a_s+{a_s}'}, \qquad rac{A_s}{P}=rac{a_s+{a_s}'}{p+p'}.$$

Substituting the first of these relations we find

$$\chi_{0}^{2} = S_{1}^{u} \left(\frac{\frac{a_{s}}{p} \frac{a_{s}'}{p'}}{\frac{a_{s} + a_{s}'}{p + p'} \frac{A_{s}}{P}} \right) \left(\frac{a_{s} a_{s}' \left(\frac{d_{s}}{a_{s}} - \frac{d_{s}'}{a_{s}'} \right)^{2}}{\left(d_{s} + d_{s}' \right) \left(1 - \frac{d_{s} + d}{a_{s} + a_{s}'} \right)} \right) \dots (xxxix).$$

If we substitute the second relation, (xxxix) becomes

$$\chi_0{}^2 = S_1{}^u \left\{ rac{rac{a_s}{p} rac{a_s'}{p'}}{\left(rac{a_s + a_s'}{p + p'}
ight)^2} rac{a_s a_s' \left(rac{d_s}{a_s} - rac{d_s'}{a_s'}
ight)^2}{\left(1 - rac{d_s + d_s'}{a_s + a_s'}
ight)}
ight\} \qquad \qquad \qquad \qquad \ldots (ext{xl}),$$

and this, I take it, is the best measure of significance in the difference of the death distributions allowing for age groups in the two districts.

It is clear that the first factor will in many cases differ but little from unity. For we should anticipate that approximately

$$a_s = rac{p}{P} A_s$$
, $a_s' = rac{p'}{P} A_s$.

Hence it would follow that

$$rac{a_s}{p}rac{a_{s}'}{p'}=\left(rac{A_s}{P}
ight)^2=\left(rac{a_s+{a_s}'}{p+p'}
ight)^2$$
 ,

or the first factor is approximately unity. The value of χ_0^2 then becomes

$$Q^2 = S_1^u \left\{ rac{a_s a_{s'} \left(rac{d_s}{a_s} - rac{d_{s'}}{a_{s'}}
ight)^2}{(d_s + d_{s'}) \left(1 - rac{d_s + d_{s'}}{a_s + a_{s'}}
ight)}
ight\}$$
(xli),

a quantity which I have shown elsewhere* has an important relation to the question of the significant difference of corrected death rates.

It is obvious that the present method is of wide generality and I propose to illustrate it later by considering whether the general death distributions of various national groups allowing for age distribution, occupation distribution and character of mortality are or are not significantly different.

Meanwhile (xxxix) provides us with a formula which enables us readily in the case of districts, special diseases or class groups to assert whether mortality experiences corrected for age distribution are or are not significantly different. As far as I can see (xxxix) and its extensions to occupation groups provide the proper means of ascertaining whether the populations at risk in various insurance offices or friendly societies are or are not materially different in character. It should be a guide to the actuary also as to which classes of the population it is most desirable to cater for.

I have to thank my friends Mr H. E. Soper and Mr A. W. Young for suggestions and help at several points. In the following paper numerical illustrations of (xl) are provided.

^{*} See Biometrika, Vol. xr. p. 164

ON CRITERIA FOR THE EXISTENCE OF DIFFERENTIAL DEATHRATES.

BY KARL PEARSON, F.R.S. AND J. F. TOCHER, D.Sc.

To determine whether the general deathrates or the deathrates for special diseases in two towns or in two classes of the general population are significantly different is a problem of very great importance. It is now generally recognised that crude deathrates are of little service for this purpose, the age distribution in the two districts or in the two classes of the population may be widely different, and the general deathrate or the special deathrate, i.e. the deathrate for a special disease, usually is a marked function of age*. The deathrate is therefore corrected by reduction to a "standard population." We ask what would be the deathrate in the given district or class if its age distribution were constituted in a given or "standard" manner. This deathrate is spoken of as the "corrected deathrate." Now we usually suppose the deathrate to be subject to "probable error." In other words in a population of size n, if p be the chance of a person dying in the year, q the chance of a person surviving, then the standard deviation of the number of deaths is \sqrt{npq} , or the probable error of the corresponding deathrate m is $\frac{\cdot 67449}{\sqrt{n}}\sqrt{pq}$. If there be a second town of deathrate m' and population n', and chances p' and q', we are tempted to compare without very full consideration m'-m with $\cdot 67449 \sqrt{\frac{pq}{n}+\frac{p'q'}{n'}}$ to obtain a measure of significant differentiation probably using a table of the probability integral. This method is for several reasons unreliable and fallacious. In the first place if it be applied to the crude deathrates, p and p' can hardly be applied to the individual, they are so markedly a function of age. In the next place for many diseases, or for many ages in a general deathrate, p and p' will be very small; accordingly there will be no approach to Gaussian distribution, but the binomials will approach Poisson's Exponential Limit, in which case the meaning of the standard deviation of a difference requires much further consideration and probabilities will not be given by a table of the probability integral.

^{*} It is also well known to be a marked function of class. This is customarily disregarded in a comparison of local deathrates. But to test real sanitary efficiency a standardised class population may be as important as a standardised age population.

But the method outlined above has this importance: it suggests that the deathrate obtained is only a "sample" deathrate, and subject to the variations of sampling; thus it forces the problem upon us in a very definite form: Can two populations dying in a known manner during a given period be considered as samples drawn at random from the same material? Here again the age distribution difficulty arises, for by hypothesis we admit the age distributions of our two samples are not the same. Let us fix our attention for a time on a fairly narrow age group, say that d_s deaths occur in an age group of size a_s in a certain population and that the chance of death in the age group is p_s and the chance of survival q_s in the population out of which the sample is supposed to be drawn. Then undoubtedly the standard deviation of samples would be $\sqrt{a_s p_s q_s}$, but as before the distribution would hardly be Gaussian. Now let us suppose the standard population, size A, to consist of the age groups A_1 , A_2 , ..., then the "corrected" deathrate M will be given by

$$M = S\left(\frac{d_s}{a_s}\frac{A_s}{A}\right)$$
(i),

and if δ denote a variation due to random sampling, we shall have

$$\delta \cdot M = S\left(\frac{\delta \cdot d_s}{a_s} \frac{A_s}{A}\right).$$

Now speaking generally we do not "draw" our deaths in such a manner that their total remains constant. A shot so to speak fired at one age group is not to be supposed if it misses that group to have a chance of hitting a second age group. There will thus not be any of the usual negative correlation between a variation in d_s and one in $d_{s'}$. Of course epidemics which in a given period attacked individuals in certain age groups only might show a positive correlation between δd_s and $\delta d_{s'}$. But in general it will be sufficient to suppose the variations of the d_s 's independent, and measured by the probability of death in each group. Thus we should have

$$\begin{split} \sigma_{M}^{2} &= S\left(\frac{\sigma_{d_{s}}^{2}}{a_{s}^{2}} \frac{A_{s}^{2}}{A^{2}}\right) \\ &= S\left(\frac{p_{s}q_{s}}{a_{s}} \frac{A_{s}^{2}}{A^{2}}\right) \dots (ii). \end{split}$$

Similarly if there be another population with age groups a'_s and corrected deathrate M', then

$$M' = S\left(rac{d'_s}{a'_s}rac{A_s}{A}
ight),$$
 $\sigma_{M'}^2 = S\left(rac{p_sq_s}{a'_s}rac{A_s^2}{A^2}
ight).$

and

We do not write p'_s and q'_s in this population, because we are supposing both to be samples from one and the same population. Now clearly

$$M'-M=S\left\{\left(\frac{d'_s}{a'_s}-\frac{d_s}{a_s}\right)\frac{A_s}{A}\right\}....$$
(iii),

and there will be no reason for supposing any correlation between d'_s and d_s . Thus it will follow that the standard deviation of M' - M is $\sqrt{\sigma_{M}^2 + \sigma_{M'}^2}$. Hence:

$$\sigma^{2}_{M'-M} = S\left\{p_{s} q_{s} \left(\frac{1}{a_{s}} + \frac{1}{a'_{s}}\right) \frac{A_{s}^{2}}{A^{2}}\right\} \dots (iv).$$

Now assuming p_s and q_s for the moment to be known, can we learn more from the relative values of M'-M and $\sigma_{M'-M}$ than we thought possible from the distribution of the deaths in a single age group owing to the latter's non-Gaussian form?

It seems probable that we can for the following reasons. Let z be the sum of u variates $x_1 + x_2 + \ldots + x_u$, these variates following arbitrary laws of frequency and being in no way correlated together, i.e. z is to be found by taking a random selection of each of our u-variates and adding them together, then from

$$z = x_1 + x_2 + \ldots + x_n$$

we can find the moments of z. Obviously we can measure all variates from their means, and accordingly we find:

$$\begin{split} {}_{z}\mu_{2} &= S\left({}_{x}\mu_{2}\right) = u \times {}_{x}\bar{\mu}_{2}, \\ {}_{z}\mu_{3} &= S\left({}_{x}\mu_{3}\right) = u \times {}_{x}\bar{\mu}_{3}, \\ {}_{z}\mu_{4} &= S\left({}_{x}\mu_{4}\right) + 6S\left({}_{x}\mu_{2} \cdot {}_{x}\mu'_{2}\right), \\ &= u \times {}_{x}\bar{\mu}_{4} + 6\frac{u\left(u - 1\right)}{2}\left({}_{x}\bar{\mu}_{2}\right)^{2}, \end{split}$$

where $_{x}\bar{\mu}_{2}$, $_{x}\bar{\mu}_{3}$ and $_{x}\bar{\mu}_{4}$ denote the mean values of the moment coefficients for the various x-distributions. Accordingly if B_{1} and B_{2} be the β -coefficients for z:

$$\begin{split} B_1 &= \frac{1}{u} \frac{_x \bar{\mu}_3^2}{_x \bar{\mu}_2^3} = \frac{1}{u} \, \tilde{\beta}_1, \, \dots \dots (\text{v}), \\ B_2 &= \frac{1}{u} \frac{_x \bar{\mu}_4}{_x \bar{\mu}_2^2} + 3 \left(1 - \frac{1}{u} \right), \\ B_2 &- 3 = \frac{1}{u} \, (\tilde{\beta}_2 - 3) \, \dots \dots (\text{vi}). \end{split}$$

where $\tilde{\beta}_1$ and $\tilde{\beta}_2$ denote β -coefficients found from the mean moments. Now in the case of the Poisson's Exponential Limit to the Binomial we have*

$$\beta_1 = \beta_2 - 3 = \frac{1}{np} = \frac{1}{m}$$
 (vii),

where m is the mean number of deaths in the age groups. Hence, if we dealt with a fairly large population, where the number of deaths in any group were say 5 to 10 and we made 10 age groups, we could reckon on B_1 and $B_2 - 3$ being of the order $\cdot 02$ to $\cdot 01$, or the distribution would be closely Gaussian. Thus there need be small hesitation in applying the tables of the probability integral to the investigation of the relationship of M' - M to $\sigma_{M'-M}$.

^{*} Biometrika, Vol. v. p. 353 and Vol. x. p. 39.

(2) Two points, however, arise in this work. We do not know p_s and q_s nor have we yet selected the standard population, i.e. the values of ratios like A_s/A .

With regard to p_s it may be held by some that the value obtaining in the general population should be given to it. This might be reasonable if that population were immensely large as compared with either group under consideration, but very often the group dealt with is quite considerable as compared to the remainder. Thus in Scotland for certain administrative purposes we consider Scotland (Clyde), and Scotland (excluding Clyde). In England for similar purposes we find nine official districts* selected, so that if we were comparing the Northwestern district with the London district, it would be curiously difficult to demonstrate why if these are samples, we take them plus the remainder to be more representative and fixed than either alone. We doubt very much whether the material we suppose we are sampling is to be considered as the general population. Rather we look upon that general population as the indefinitely large group who might be considered as living and dying under the same environmental conditions, if they continued indefinitely in force.

Again, is it quite correct to take p_s from the general population of the country when the problem is to discover whether the two districts are themselves random samples from some population which may not be the same as that of the general population of the country? Thus Aberdeen and Inverness might both well be random samples of a population which is not that of Scotland as a whole†. Hence as in cases of probable error it will usually be best to calculate p_s from the observed material itself, i.e. if our two groups be really samples of the same population, then probably the best thing we can do is to take

$$p_s = rac{d_s + d'_s}{a_s + a'_s}$$
 and $q_s = 1 - rac{d_s + d'_s}{a_s + a'_s}$.

If p_s be small, as it usually is, then it will be sufficient to take

$$\sigma^2_{M'-M} = S\left\{\left(rac{d_s + d'_s}{a_s a'_s}
ight)rac{A_s^2}{A^2}
ight\}.$$

It remains to consider A_s/A . Here again it is not unusual to take A_s/A as given by the general population. Or if the "corrected deathrates" for a series of years are being compared, it is not unusual to reduce the age distributions to that of a certain year, e.g. in the manner of the English Registrar-General for tuberculosis and cancer deathrates to the population of 1901. For the same reasons as in the case just discussed we might, perhaps, find it fitting to take A_s/A as given by the material under discussion, i.e. $= (a_s + a'_s)/(a + a')$. Or, again, we might reduce one district to the population of the other, i.e. take $A_s/A = a_s/a$, or a'_s/a' . It is of interest to see practically what differences such divergent reductions make.

^{*} By the Board of Trade for example.

[†] Or again lawyers and the clergy may have or may not have significantly different mortalities, but the mortality of both differs essentially from that of all England.

Another solution of the-standard-population-problem, which seems to us of some importance, arises from the consideration that we ought to select our standard population so that the probability that the two districts or classes under consideration are samples of one and the same population should be a minimum. In other words we ought to select A_s/A (= X_s) so that

$$Q = S(\lambda_s X_s) / \sqrt{S(\nu_s X_s^2)},$$

where

$$\lambda_s = d'_s/a'_s - d_s/a_s,$$

$$\nu_s = p_s q_s (1/a'_s + 1/a_s),$$

is a maximum, subject to the relation $S(X_s) = 1$.

Proceeding by the usual rules for finding a max.-min. we have

$$egin{aligned} \delta Q &= Q imes S\left(rac{\lambda_s}{S\left(\lambda_s X_s
ight)} - rac{
u_s X_s}{S\left(
u_s X_s^2
ight)}
ight) \delta X_s, \ S\left(\delta X_s
ight) &= 0. \end{aligned}$$

Therefore if P be an indeterminate multiplier:

$$\frac{\lambda_{s}}{S\left(\lambda_{s}X_{s}\right)} - \frac{\nu_{s}X_{s}}{S\left(\nu_{s}X_{s}^{2}\right)} + P = 0.$$

Multiply by X_s and sum all such equations and we find P=0. Hence:

$$\chi_s = rac{\lambda_s}{
u_s} \cdot rac{S\left(
u_s X_s^2
ight)}{S\left(\lambda_s X_s
ight)}.$$

Sum all such equations and we have

$$1 = S\left(\frac{\lambda_s}{\nu_s}\right) \frac{S\left(\nu_s X_s^2\right)}{S\left(\lambda_s X_s\right)}.$$

Thus we deduce:

$$X_s = rac{\lambda_s}{
u_s} rac{1}{S\left(rac{\lambda_s}{
u_s}
ight)},$$

whence

$$S\left(\lambda_s X_s\right) = S\left(\frac{\lambda_s^2}{\nu_o}\right) / S\left(\frac{\lambda_s}{\nu_o}\right),$$

$$S\left(\nu_{s}X_{s}^{2}\right)=S\left(\frac{\lambda_{s}^{2}}{\nu_{s}}\right)\left/\left\{S\left(\frac{\lambda_{s}}{\nu_{s}}\right)\right\}^{2}$$
 ,

and accordingly

$$Q = \sqrt{S\left(\frac{{\lambda_s}^2}{{
u_s}}\right)}$$
.

A little consideration shows that this is a maximum value of Q. The argument we then use is that if on the standard population which provides a maximum for Q, there be no significance in the deathrate difference, there cannot be any significance at all in the difference. While on the other hand if on any population whatever used as standard, we do find a significant difference, such a difference really exists.

Returning to our deathrate symbols we have

Hence the age classes A_s of the standard population must be taken proportional to

$$\frac{a'_s a_s \left(\frac{d'_s}{a'_s} - \frac{d_s}{a_s}\right)}{(d'_s + d_s) \left(1 - \frac{d'_s + d_s}{a'_s + a_s}\right)}, \text{ or very approximately to } \frac{a'_s a_s \left(\frac{d'_s}{a'_s} - \frac{d_s}{a_s}\right)}{d'_s + d_s}.$$

We note at once that this method would give irrational values for A_s in the case of any material for which the age deathrate was not invariably greater for one district or class. On the other hand Q the ratio of the difference of corrected deathrates to the standard deviation of that difference is always real and given by

$$\begin{split} Q^2 &= S \left\{ \frac{a'_s a_s \left(\frac{d'_s}{a'_s} - \frac{d_s}{a_s} \right)^2}{(d'_s + d_s) \left(1 - \frac{d'_s + d_s}{a'_s + a_s} \right)} \right\} \qquad \text{(ix),} \\ &= S \left\{ \frac{a'_s a_s \left(\frac{d'_s}{a'_s} - \frac{d_s}{a_s} \right)^2}{d'_s + d_s} \right\} \text{ approximately.} \end{split}$$

If for every value of s, d'_s/a'_s is either greater than d_s/a_s , or, on the other hand, is always less than d_s/a_s , then the odds are about 50 to 1 if Q be as great as 2 that there is significant divergence of the two corrected deathrates. On the other hand if Q has no significant magnitude, the deathrates will not be significantly different. Supposing the condition as to the relative magnitude of d'_s/a'_s and d_s/a_s be not satisfied, then if Q has no significant magnitude for these irrational age classes, it will certainly have no significant magnitude for any other size of age classes, and accordingly we conclude that the difference of the deathrates is not significant. But if Q be of significant magnitude for the irrational age classes, it does not follow that it will be significant for rational age classes, and further discussion is needful. Of course any case in which for the bulk of groups d'_s/a'_s is greater than d_s/a_s , but for one or two groups d_s/a_s is the greater, will have $Q = (M' - M)/\sigma_{M'-M}$ lessened by the inclusion of these cases, for the numerator of Q is decreased and the denominator increased. We should therefore be at liberty to consider only the groups where the deathrate goes one way, for the age groups are actually independent, and it is really a fictitious balancing of the corrected deathrates which arises, when one age class with deaths in excess compensates for another age class with deaths in defect, and so tends to equalise M and M'. This is of course a grave difficulty which must arise when we deal with any corrected deathrate at all. Two such deathrates might show no significant difference although the aged were dying in one population and the young in the other in excess*. We might work only with the groups for which $d'_s/a'_s - d_s/a_s$ is of the same sign, and this would indicate, by the same test, differentiation or its absence in the manner of dying; but of course we should then be dropping the idea of a "corrected deathrate"; that idea is, however, essentially imperfect and does not really distinguish effectually between differences in the manner of dying.

(3) We now ask whether it is not feasible to interpret the value of Q in Eqn (ix) as a measure of the probability of a differential mortality without regard to the theory of "corrected deathrates."

As before let d_s be the number of deaths in the age group of size a_s in one district or class. We suppose this to be a sample of a population of which p_s is the chance of dying in this age group, then if there be u age groups in each district or class, we have 2u deviations, all of which are independent, and given by $d_s - p_s a_s$ and $d'_s - p_s a'_s$. These deviations have respectively standard deviations $\sqrt{a_s p_s q_s}$ and $\sqrt{a'_s p_s q_s}$. Accordingly if every deviation be measured in terms of its standard deviation we shall have a second moment coefficient given by

$$\Sigma^2 = \frac{1}{2u} \left[S\left(\frac{(d_s - p_s a_s)^2}{a_s p_s q_s} \right) + S\left(\frac{d'_s - p_s a'_s)^2}{a'_s p_s q_s} \right) \right],$$

and Σ^2 ought to be unity.

Now in the above expression p_s , q_s are the unknown values of the death and survival chances in the population from which the two districts or classes are supposed to be sampled, and the best values we probably can take for them are $p_s = 1 - q_s = (d_s + d'_s)/(a_s + a'_s)$. But inserting these values in the above expression, we find with the value of Q given in Eqn (ix):

$$\Sigma^2 = rac{1}{2u}\,Q^2$$
, or $\Sigma = Q imes\sqrt{rac{1}{2u}}.$

But the standard deviation of a second moment coefficient is $\sqrt{\mu_4 - \mu_2^2}/\sqrt{n}$ and this in the case of a normal distribution $(\mu_4 = 3\mu_2^2)$ equals $\sqrt{\frac{2}{n}}\,\mu_2$, so in our case, since $\mu_2 = 1$ and n = 2u, the standard deviation of Σ^2 equals $1/\sqrt{u}$. Thus we have to measure $\Sigma^2 - 1$ in terms of $1/\sqrt{u}$, or to ascertain the probability of a ratio of deviation to standard deviation of magnitude greater than $(\frac{1}{2}Q^2 - u)/\sqrt{u}$. We see again therefore Q arising as a constant which naturally determines the mortality resemblance or difference of the two districts. But while in the previous approach to the solution of the problem from the corrected deathrates we found Q alone sufficed to obtain our criterion, we require in the case of

^{*} Another factor, sometimes overlooked when deathrate after correction is taken as a measure of local health, is emigration. If the sth age class tend to migrate from A to B, it is usually the healthy who migrate; thus the deathrate of the sth class in A will be inflated and that in B reduced. If the migration be chiefly that of males, as to mining districts and colonies, a spurious correlation between deathrate and sex ratio may be created.

this second criterion to make use explicitly as well as implicitly of the number of age classes. We can thus give a physical meaning to Q, $\sqrt{2}Q$ is the ratio of the standard deviation of the 2u age classes' deathrates—each supposed to be drawn from the same population and measured in terms of its own standard deviation—to the standard deviation of this standard deviation, i.e. to $\frac{1}{\sqrt{2}\sqrt{2}}$. It by no means follows that this second criterion will give the same

result as may be drawn from the first. But this new aspect of Q frees us from many of the difficulties essentially associated with "corrected deathrates" and the indefinite category of a standard population. We must observe, however, that to evaluate the probability of the occurrence of Q we have again to justify the assumption that Σ^2 will follow a normal distribution. We could not justify this for the distribution of deaths in any single age group, nor even for the distribution of factors like $(d_s - p_s a_s)^2/(a_s p_s q_s)$ and $(d'_s - p_s a'_s)^2/(a'_s p_s q_s)$ summed for our two populations on one occasion, but we can do this for the distribution of Σ^2 on the basis of a number of random samples*.

(4) We can again approach the problem by considering quantities like

$$rac{d_s - p_s a_s}{\sqrt{a_s p_s q_s}}$$
 and $rac{d'_s - p_s a'_s}{\sqrt{a'_s p_s q_s}}$.

The mean of these deviations measured each in terms of its own standard deviation should be zero; and the standard deviation of this mean should be $\frac{1}{\sqrt{2u}}$, since there are 2u variates and, each being measured in terms of its own standard deviation, the standard deviation of the series is as before unity. Thus if

$$\overline{m} = \frac{1}{2u} S_1{}^u \left[\left(\frac{d_s - p_s a_s}{\sqrt{a_s} p_s q_s} \right) + S_1{}^u \left(\frac{d'_s - p_s a'_s}{\sqrt{a'_s} p_s q_s} \right) \right] \text{,}$$

 $\overline{m}/\left(\frac{1}{\sqrt{2u}}\right) = \sqrt{2u} \times \overline{m}$ may be looked up in the tables of the probability integral, and the probability of the system, as a result of random sampling from a population p_s , q_s , thus again determined. If we use the values of p_s and q_s so often adopted above, the quantity with which to enter the probability table, i.e. the ratio of deviation to standard deviation, is expressed by

where $l_s = a_s - d_s$ and $l'_s = a'_s - d'_s$ are the survivors in the sth age groups.

^{*} We can show in a manner similar to that on p. 161 that the distribution of μ_2 's approaches the normal when each of the constituent x^2 's is drawn from different populations, none of these populations being in themselves accurately normal.

(5) The previous methods are all more or less inadequate; they test whether a certain *single* character of the distribution does or does not present significant difference in the two populations compared. If we want to test the distributions as a whole, we must adopt a modification of the method given in *Biometrika*, Vol. VIII. p. 250 for determining the probability that two systems of frequency are random samples of the same population. It has been shown in a memoir dealing with partial contingency* that the proper test is to determine

$$\chi_0^2 = S_1^u \left\{ \frac{a_s a'_s}{(a_s + a'_s)^2} \frac{(p + p')^2}{pp'} \frac{a_s a'_s \left(\frac{d_s}{a_s} - \frac{d'_s}{a'_s}\right)^2}{(d_s + d'_s) \left(1 - \frac{d_s + d'_s}{a_s + a'_s}\right)} \right\} \dots (xi)$$

entering the Tables of Goodness of Fit with n' = s + 1. Here p and p' are the numbers in the sampled populations. Now the factor

$$\frac{a_s a'_s}{(a_s + a'_s)^2} \frac{(p + p')^2}{p p'}$$

is for most practical purposes unity, as we shall illustrate in the sequel. Hence for such purposes

$$\chi_{0}^{2} = S_{1}^{u} \left\{ \frac{a_{s} a'_{s} \left(\frac{d_{s}}{a_{s}} - \frac{d'_{s}}{a'_{s}}\right)^{2}}{\left(d_{s} + d'_{s}\right) \left(1 - \frac{d_{s} + d'_{s}}{a_{s} + a'_{s}}\right)} \right\} = Q^{2} \quad (xi)^{bis}$$

of our earlier investigations. Thus to obtain the probability of the two districts being random samples of the same population all we have to do is to look up Q^2 for n' = u + 1, u being the number of age groups, in the Tables of Goodness of Fit. It will be seen that Q has a wide meaning, and generally speaking we may treat it as a constant, which can be used in a variety of criteria for testing the existence of differential deathrates. We propose to illustrate this in the following sections, applying in each case the four tests discussed above, namely:

- (a) The probable error of the "corrected" deathrates' difference reduced to the standard population of maximum difference.
 - (b) The significance of the means of the 2u deathrate classes.
- (c) The significance of the squared standard deviations of the 2u deathrate classes.
 - (d) The general χ_0^2 test of partial contingency with its approximate value Q^2 .

The following illustrations have been used:

- (i) General Deathrates of Liverpool and Birmingham.
- (ii) Cancer Deathrates of Edinburgh and Dundee.
- (iii)—(viii) Cancer Deathrates for all England and Wales divided into four groups: (a) London, (b) County Boroughs other than London, (c) Urban Districts other than (a) and (b), (d) Rural Districts.
 - (ix)—(xiv) Diabetes Deathrates precisely as in the preceding Cancer case.

^{*} Biometrika, Vol. xr. p. 157.

168 On Criteria for the Existence of Differential Deathrates

Illustrations. (i) We have for Birmingham and Liverpool the following data for all Males in 1911:

	Birming	ham	Liverpool		
Age Group	Population	Deaths	Population	Deaths	
0	32,552	2003	45,889	3117	
5—	58,653	161	78,518	326	
15—	48,431	162	62,751	309	
25—	47,212	252	58,216	476	
35—	37,897	382	47,711	632	
45—	25,431	454	32,664	775	
55	15,384	575	20,198	944	
65—	7,535	511	10,215	904	
75	1,944	321	2,194	335	
85	173	58	191	62	
Totals	275,212	4879	358,547	7880	

Our problem is to discover whether there is actual differentiation between these two systems of deaths, and if so, what is the measure of it. We work with ten age groups.

The actual arithmetical work is indicated on the following page. It leads to $Q^2 = 165.5031$ or Q = 12.8648. Hence applying first test $\frac{M' - M}{\sigma_{M' - M}} = 12.8648$.

Or: the difference of the two deathrates corrected to the population of maximum ratio is no less than 12.86 times the standard deviation of the difference. We conclude that the chance of such a difference arising from random sampling is enormous*, or the two deathrates are most certainly and markedly different.

There is no difficulty in correcting the deathrates to the population of maximum difference as standard, but it is of interest to note what happens, if the standard population has other values.

For example, when we correct to the male population of all England and Wales for 1901, we find using the formula of p. 161

$$\frac{M' - M}{\sigma_{M' - M}} = 10.0198.$$

If we use the general male population of England and Wales in 1911 we find

$$\frac{M'-M}{\sigma_{M'-M}}=10{\cdot}1567.$$

^{*} The chance is approximately $3.3508/10^{38}$. This test is practically valid in this case for the general deathrate of Liverpool males is greater at all ages except 75 onwards than that of Birmingham and the age groups above 75 contribute nothing of importance to the value of Q^2 .

Liverpool and Birmingham Male Deaths from all Causes, 1911.

Liverpool: Dashed letters. Birmingham: Undashed letters.

	(i)	(ii)	(iii)	(iv)	(a)	(vi)	(vii)	(viii)	(ix)	(x)
Age Group	a_s	d_s	d_s/a_s	a_s'	d'_s	d'_s/a'_s	$\frac{a'_s}{a'_s} - \frac{d_s}{a_s}$	$10^3 \times \left(\frac{d_s}{a_s} - \frac{d'_s}{a'_s}\right)^2$	asa's	$a_s a'_s \left(\frac{d_s}{a_s} - \frac{d'_s}{a'_s}\right)^2$
0-5	32,552	2003	.061,532,318	45,889	3117	.067,924,775	+ .006,392,457	.0408.635.065	1.493.778.728	61.041.037
5—15	58,653	191	002,744,958	78,518	326	.004,151,914	+ .001,406,956	.0019,795,252	4,605,316,254	9,116.340
15-25	48,431	162	-003,344,965	62,751	309	-004,924,224	+ .001,579,259	-0024,940,590	3.039.093.681	7 579-679
25-35	47,212	252	.005,337,626	58,216	476	.008,176,446	+ .002,838,820	.0080,588,990	2.748,493,792	22,149.834
35-45	37,897	382	-010,079,954	47,711	632	-013,246,421	+ .003,166,467	.0100,265,133	1,808,103,767	18,128.976
45-55	25,431	454	$\cdot 017,852,228$	32,664	775	.023,726,427	+ .005,874,199	.0345,062,139	830,678,184	28.663.559
55—65	15,384	575	-037,376,495	20,198	944	.046,737,301	+ .009,360,806	-0876.246.890	310,726,032	27, 227-272
65-75	7,535	511	-067,816,855	10,215	904	-088,497,308	+ .020,680,453	.4276.811.363	76,970,025	32.918.628
75—85	1,944	321	$\cdot 165, 123, 457$	2,194	335	152,689,152	012,434,305	.1546,119,408	4.265.136	659-441
85 and over	173	58	$\cdot 335,260,116$	191	62	324,607,330	010,652,786	.1134,818,496	33,043	3.750
	m = 975.919 $A = 4870$	4- 4870		080 - /-	7/5					

(xx) $\chi_s^2 = (xix) \times (xv)$	12.6037 18.7158 16.1727 30.8370 18.1694 23.8701 18.7047 25.1376 1.2112
$\frac{a_s a'_s}{p p'} \left(\frac{p + p'}{a_s + a'_s}\right)^2$.98817 .99626 1.00071 1.00652 1.00182 .99895 .99440 1.01388
$\left(rac{a_{\scriptscriptstyle R}+a'_{\scriptscriptstyle S}}{p+p'} ight)^2$	015,3193 046,8463 036,7766 027,6733 018,2466 008,4029 003,1522 000,78442 000,042632
$(xvii) \\ a_s + a'_s \\ p + p'$	123,771 216,440 175,433 166,353 135,080 -091,667 -056,144 -028,007 -006,5293
(xvi) a,a',s' p'p'	015,1381 046,6709 030,7986 027,8536 018,3236 008,4182 000,1489 000,780,024 000,043,2234
$(\mathbf{x}\mathbf{v}) \cdot Q_s = (\mathbf{x})/(\mathbf{x}\mathbf{i}\mathbf{v})$	12-7546 18-7861 16-1612 30-6372 18-0930 23-8267 18-7238 25-2793 1-1946
$(a_s + d'_s) \left(1 - \frac{d_s + d'_s}{a_s + a'_s}\right)$	4,785-8074 485-2710 489-0047 722-9730 1,001-9895 1,203-0005 1,454-1537 1,302-1986 552-0039 80-4396
$(xiii) \\ \frac{d_s + d'_s}{a_s + a'_s}$.065.271,988 .003,550,313 .004,236,297 .006,905,186 .011,844,687 .021,155,005 .042,690,124 .079,718,310 .158,530,691
(xii) $a_s + a'_s$	78,441 137,171 111,182 105,428 85,608 58,095 35,582 17,750 4,138
(xi) $d_s + d'_s$	5120 487 471 728 1014 1229 1519 1415 656
Age Group	0-5 5-15 15-25 25-35 35-45 45-55 65-65 65-75 85 and over

d + d' = 12,759 p + p' = 633,759pp' = 98,676,436,964

 $Q^2 = 165 \cdot 5031$ $Q = 12 \cdot 8648$

 $\chi_0^2 = 165.4695$

This table exhibits in one out of the fourteen cases dealt with in this memoir the work of determining Q^2 and χ_0^2 .

170 On Criteria for the Existence of Differential Deathrates

These values of course lead to the same conclusion but show that the ratio $(M'-M)/\sigma_{M'-M}$ varies from standard population to standard population, and may be increased more than 20 % when we pass to the population of maximum difference as standard. Such an increase might be of considerable importance in our estimate of differentiation if the ratio $(M'-M)/\sigma_{M'-M}$ lay between 1.8 and 2.2, say.

Our third test is given by the formula on p. 165:

$$(\frac{1}{2}Q^2 - u)/\sqrt{u} = 72.7515/\sqrt{10} = 23.01.$$

The probability of a deviation as great or greater than this arising is immense.

Thus we see that the distribution of the squares of the actual deviations is excessively improbable.

Proceeding to our second test we find

$$\overline{m} = -.16625$$

and accordingly $\overline{m}/(\frac{1}{\sqrt{2u}}) = .745$, or \overline{m} does not differ significantly from zero.

Thus by this test no essential difference would be indicated. This does not show that it does not exist, but only indicates the inadequacy of the test. In fact since

$$d_s - p_s a_s + d'_s - p_s a'_s = 0,$$

and there is no great difference between $\sqrt{a_s p_s q_s}$ and $\sqrt{a'_s p_s q_s}$, \overline{m} tends to be zero, even with considerable differences between d_s and $p_s a_s$ or d'_s and $p_s a'_s$.

We have seen that the value of Q^2 in the Liverpool and Birmingham case is 165.5031. We will now investigate the value of the factors

$$\left(\frac{a_s}{p} \, \frac{a'_s}{p'} \right) \! / \! \left(\frac{a_s + a'_s}{p + p'} \right)^{\! 2}$$

for the ten age groups. They run

Age	Factor	Age	Factor
0—5	·98817	45—55	1·00182
5—15	·99626	55—65	·99895
15—25	1·00071	65—75	·99440
25—35	1·00652	75—85	1·01376
35—45	1·00422	85 and over	1·01510

It will be seen that the factors differ very little from unity and introducing them into the several terms of Q^2 we find

$$\chi_0^2 = 165.4695,$$

or χ_0^2 only differs by 0.02 % from Q^2 . Applying the test for goodness of fit to χ_0^2 for n' equal *eleven* groups* we find

$$P = 2.40/10^{30}$$

^{*} See Tables for Statisticians, p. xxxiii.

or the odds against Liverpool and Birmingham general mortality experiences being samples of the same population are gigantic. This test which takes the distributions as wholes seems to us absolutely conclusive. The differences in deathrates in Liverpool and Birmingham are not due to difference of age constitutions, but are fundamental*.

(ii) Cancer Deathrates in Edinburgh and Dundee, 1891-1900 (Males) †.

Age Group	Edir	nburgh	Dundee		
Age Group	Population	Deaths, Cancer	Population	Deaths, Cancer	
0—5	149,763	5	89,775	6	
5—15	280,655	8	168,510	2	
1525	274,343	18	142,917	7	
2535	214,063	47	98,953	10	
35—45	158,133	117	76,132	47	
45—55	115,206	295	59,066	114	
55—65	69,954	356	37,337	151	
6575	32,966	266	16,958	109	
75—85	10,311	93	4,625	30	
85 and over	1,045	8	535	3	
Totals	1,306,439	1213	694,808	479	

Proceeding as before we find $Q^2 = 28.4837$. The factors for the age classes to give χ_0^2 from the Q^2 terms for the separate age groups are given below. They differ more from unity, but some being in excess and some in defect, there is no substantial difference between χ_0^2 and Q^2 .

We have
$$\chi_0^2 = 28.0393$$
,

or, χ_0^2 is 1.6 % less than Q^2 .

Age Group	$oxed{ ext{Factor:} rac{a_s a'_s}{p p'} ig/ \left(rac{a_s + a'_s}{p + p'} ight)^2}$	Age Group	$ ext{Factor: } rac{a_s a'_s}{pp'} \left/ \left(rac{a_s + a'_s}{p + p'} ight)^2$
0—5	1·03386	45—55	·98855
5—15	1·03427	55—65	1·00711
15—25	·99360	65—75	·98966
25—35	·95387	75—85	·94318
35—45	·96788	85 and over	·98812

We now apply the same tests as before: we have

$$(M'-M)/\sigma_{M'-M} = Q = 5.3370.$$

 $\frac{1}{2}(1+\alpha) = .99999,99527,$

Hence

* This only means that the differentiation cannot be accounted for by age differences, it might well be accounted for by class or occupation differences.

† The results are sums of ten years' population found on assumption of arithmetical progression.

or, the chance of a deviation so great as this appearing is only $4.73/10^8$, or the "corrected" cancer deathrates for males are significantly different in Dundee and Edinburgh.

Using the General Population of Scotland, 1891-1901, as a standard population, we find

$$(M'-M)/\sigma_{M'-M} = 4.7399.$$

Using the General Population of England and Wales (1901, males) as a standard, we find

$$(M'-M)/\sigma_{M'-M} = 4.7630.$$

These again both mark significant deviations in the corrected deathrates, but fail to give the maximum of significance.

Now let us apply the test of distribution of squares of differences. We have

$$(\frac{1}{2}Q^2 - u)\sqrt{u} = 4.24186/\sqrt{10}$$

= 1.3414.

Such a deviation would occur about once in ten trials and is not necessarily significant.

Again applying the test of mean value, we have

$$\overline{m} = -\cdot 1564$$

and accordingly

$$\overline{m} / \left(\frac{1}{\sqrt{2u}}\right) = \cdot 6994$$
,

and this is an insignificant ratio of the deviation to its standard deviation.

We now turn to the χ_0^2 test, where we have $\chi_0^2 = 28.0393$. The Tables of Goodness of Fit provide for n' = eleven:

$$P = .00178$$
.

or the odds are nearly 500 to 1 against such a deviation on random sampling. We conclude that there is a significant difference between cancer mortality in Dundee and Edinburgh. It is noteworthy that the corrected deathrates criterion which when analysed seems so very unsatisfactory gives here as in the case of the Liverpool and Birmingham General Deathrates far greater significance to the observed differences of mortality.

We have not considered it worth while to investigate for this case the test of the significance of the mean of the 2u deathrates. It is we believe inadequate and further is laborious to calculate. It is, we hold, sufficient and more enlightening to calculate χ_0^2 , and, what is almost deduced in the same process, the quantity Q^2 .

There is a further point which may be illustrated on the Liverpool-Birmingham and Dundee-Edinburgh data. We have supposed in the course of our work that $(d_s + d'_s)/(a_s + a'_s)$ is an extremely reasonable value to give to p_s . If we assume

that the distributions of quantities like d_s are given with sufficient accuracy by the normal curve then the probability of the whole result observed is given by

$$\Pi = \text{Product} \left[\frac{1}{\sqrt{a_s p_s q_s}} e^{-\frac{1}{2} \frac{(d_s - p_s a_s)^2}{a_s p_s q_s}} \right]_{1}^{u} \times \left[\frac{1}{\sqrt{a'_s p_s q_s}} e^{-\frac{1}{2} \frac{(d'_s - p_s a'_s)^2}{a'_s p_s q_s}} \right]_{1}^{u} V \dots (\text{xii}),$$

where V is the continued product of the differentials of the d_s 's and the d'_s 's, and we require to make this a maximum for the variation of all quantities like p_s . In other words we have u equations found by differentiating the above expression for $p_1, p_2, \dots p_s, \dots p_n$ (of course $q_s = 1 - p_s$) to determine the best values of these quantities. Taking the logarithmic differential of the above product with regard to p_s and equating it to zero, we find since $\delta q_s = -\delta p_s$:

$$0 = -\frac{1}{p_s} + \frac{1}{q_s} + \frac{d_s - p_s a_s + d'_s - p_s a'_s}{p_s q_s} + \frac{1}{2} \left(\frac{(d_s - p_s a_s)^2}{a_s p_s^2 q_s^2} + \frac{(d'_s - p_s a'_s)^2}{a'_s p_s^2 q_s^2} \right) (p_s - q_s).$$

Hence:

$$p_s = \frac{d_s + d'_s}{a_s + a'_s} + \frac{1}{2} \frac{q_s - p_s}{(a_s + a'_s)} \frac{\{(d_s - p_s a_s)^2 + \frac{(d'_s - p_s a'_s)^2}{a'_s} - 2p_s q_s\} \dots (xiii).$$

Now assuming to a first approximation $p_s = \frac{d_s + d'_s}{a_s + a'}$ we find to a second approximation \tilde{p}_s

$$\tilde{p}_{s} = \frac{d_{s} + d'_{s}}{a_{s} + a'_{s}} - \frac{1 - 2p_{s}}{a_{s} + a'_{s}} \left(1 - \frac{1}{2} \frac{a_{s}a'_{s} \left(\frac{d_{s}}{a_{s}} - \frac{d'_{s}}{a'_{s}}\right)^{2}}{(d_{s} + d'_{s})\left(1 - \frac{d_{s} + d'_{s}}{a_{s} + a'_{s}}\right)}\right).$$

Calling as before

$$Q_s^2 = rac{a_s a'_s \left(rac{d_s}{a_s} - rac{d'_s}{a'_s}
ight)^2}{(d_s + d'_s)\left(1 - rac{d_s + d'_s}{a_s + a'_s}
ight)},$$

we have

$$ilde{p_s} = rac{d_s + {d'}_s}{a_s + {a'}_s} - rac{\left(1 - 2rac{d_s + {d'}_s}{a_s + {a'}_s}
ight)(1 - rac{1}{2}Q_s^2)}{a_s + {a'}_s}.$$

Hence we may write
$$ilde{p}_s = rac{d_s + d'_s - \delta_s}{a_s + a'_s}$$

this amounts to altering the deaths by

$$\delta_s = \left(1 - 2\frac{d_s + d'_s}{a_s + a'_s}\right) (1 - \frac{1}{2}Q_s^2),$$

which is usually a very small number, or we may write

$$ilde{p}_s = rac{d_s + {d'}_s}{a_s + {a'}_s} \left\{ 1 - (1 - \frac{1}{2}Q_s^2) \left(rac{1}{d_s + {d'}_s} - rac{2}{a_s + {a'}_s}
ight) \right\},$$

where the factor

$$f_s = 1 - (1 - \frac{1}{2}Q_s^2) \left(\frac{\cdot 1}{d_s + d'_s} - \frac{2}{a_s + a'_s}\right)$$

will only differ slightly from unity.

174 On Criteria for the Existence of Differential Deathrates

The following table gives the values of p_s , \tilde{p}_s for the various age groups in the case of (a) Liverpool and Birmingham for General Deathrates, (b) Edinburgh and Dundee, Cancer Deathrates, (c) Rural and Urban Districts, England and Wales, Cancer Deathrates,

Illustrations of Approximate Deathrates for unknown sampled Populations.

Age Group	Birmingha	rpool and m, General nrates	`Dundee	ourgh and Cancer nrates	(c) Rural a Districts, E Wales, Cance	ngland and
	p_s	$ ilde{p}_{ ext{s}}$	p_s	$ ilde{m{p}}_{s}$	p_s	$ ilde{p}_{s}$
0-5	.065,272	.065,332	-000,046	.000,045	} .000,025	000 095
5—15	.003,550	.003,611	$\cdot 000,022$	$\cdot 000,021$) '	$\cdot 000,025$
1525	.004,236	$\cdot 004,299$	000,060	.000,058	.000,033	$\cdot 000,033$
25—35	.006,905	$\cdot 007,039$	$\cdot 000,182$	$\cdot 000,187$	-000,116	$ \cdot 000,116$
35—45	$\cdot 011,845$	$\cdot 011,937$	-000,700	$\cdot 000,698$	$\cdot 000,404$	-000,404
4555	$\cdot 021,155$	$\cdot 021,335$	-002,347	$\cdot 002,360$	$\cdot 001,500$	-001,500
<i>55—65</i>	.042,690	.042,905	-004,725	.004,726	.004,256	.004,256
6575	079,718	-080,269	.007,511	.007,532	007,787	-007,788
75—85	-158,531	$\cdot 158,498$	-008,235	-008,252	-009,653	.009,646
85 and over	-329.670	-328,756	-006.962	.006,405	-008,856	.008,847

It will be seen that the corrective factor contains the inverses of the total number $(d_s + d'_s)$ of deaths and the total numbers of individuals $(a_s + a'_s)$ in the combined age groups s and s'. Hence for big districts as in (c) the corrective factor is of small importance even for special diseases. general deathrates in two large towns as in (a) the difference between p_s and \tilde{p}_s is as a rule less than 1%. Even in special diseases in towns of moderate size, it is only where the total number of deaths in the combined age groups s and s' is very small that any substantial divergence between p_s and \tilde{p}_s arises, e.g. in (b) for the child or extreme old age groups. Thus the value of Q^2 is hardly likely to be modified practically, if we replace \tilde{p}_s by p_s . Accordingly $\frac{d_s + d'_s}{a_s + a'_s}$, besides being easy to calculate, is a reasonable approximation to the better value \tilde{p}_s . Of course \tilde{p}_s itself is only an approximation* to the "best value" and this "best value" also depends on the accuracy of replacing the binomial by a normal curve. Thus it is by no means certain that, if we obtained a true best value for the deathrate in the unknown sampled population, it would be markedly nearer to \tilde{p}_s than to p_s . We content ourselves by remarking that neither for practical nor theoretical reasons does there seem likelihood of a great gain resulting from taking any other value than $(d_s + d'_s)/(a_s + a'_s)$ for p_s .

^{*} We should have to solve a cubic for each age group to find the accurate "best value," on the above hypothesis of normality. Doubts may also be raised as to the legitimacy of the theory which makes II in (xii) a maximum. They are discussed in another paper.

(iii)—(viii) Cancer Deathrates for all England and Wales.

The object of the present illustrations is to ascertain whether there are significant differences in the cancer deathrates associated with urban and rural conditions. We divide the data into four groups: (a) London, (b) County Boroughs other than London, (c) Urban Districts other than County Boroughs, (d) Rural Districts. We compare pair and pair these four groups in order to ascertain the degree of their significant differences.

The following data are taken from the Registrar-General's 76th Annual Report and are for the year 1913*:

Populations and Cancer Deaths in Age Groups, 1913.

Populations (c) Urban (b) County (d) Rural Age Group (a) London Boroughs Districts Districts 0 - 15648,361 1,796,847 1,976,078 1,242,634 15 - 25383,601 1,006,039 1.126.179 716,323 25-35 362,967 938,541 1,017,991 580,305 35 - 45293,427 766,070 836,306 496,185 45--55213,635 536,949 395,443 586,962 276,814 -65131,423 331,209 369,840 65 - 7568,124 166,717 200,982 180,029 75 - 8518,830 43,125 60,407 65,453 85 and over 2,239 4,493 7,361 9,125 Cancer Deaths 0 - 1525 31 47 34 15-25 24 39 34 27 25-35 51 128 121 6535 - 45130 416 353 185 45---55 472 1075 971 50355 - 65723 1700 1675 1077 65 - 75655 1312 1607 1360 75---85 209 450 576 639 85 and over 29 2973 73 Populations 2,122,607 5,589,990 6,182,106 3,962,311 Total deaths 2,318 5,180 5,457 3,963 Crude deathrates per

How far are these differences in the crude deathrates really significant, when allowance is made for age groups? Above all: what is the *numerical measure* of this significance in the six cases? The following table gives the deathrates per 100,000 at each age in the four groups:

92.67

88.37

100.02

109.21

100,000

^{*} See pp. 4, 217, 234, 253, and 271.

Male Cancer Statistics, England and Wales, 1913.

Age Group	(a) London	(b) County Boroughs	(c) Urban Districts	(d) Rural Districts
0—15	3.86	1.73	2.38	2.74
1525	6.26	3.88	3.02	3.77
25—35	14.05	13.64	11.89	11.20
35-45	44.30	54.30	42.21	37.28
4555	220.94	200-21	165.43	127.20
55-65	550.13	513.27	452.90	389.07
6575	961.48	786-96	799.57	755.43
75-85	1109.93	1043-48	953.53	976-27
85 and over	1295.22	645-45	991.71	800-00
Corrected				
deathrates*	111.48	101.01	91.97	82.24
deathrates	109.21	92.67	88.27	100.02

In the first place we take the "corrected deathrates" reduced to the male population of 1913. We have:

Pair	M'-M	$\sigma_{M'-M}$	$(M'-M)/\sigma_{M'-M}$	Q
London and County Boroughs London and Urban Districts London and Rural Districts County Boroughs and Urban Districts County Boroughs and Rural Districts Urban Districts and Rural Districts	10·47 19·51 29·24 9·04 18·77 9·73	2·666 2·522 2·536 1·848 1·953 1·829	3·93 7·74 11·53 4·89 9·61 5·32	$6.96 \\ 8.95 \\ 13.09 \\ 7.39 \\ 12.25 \\ 6.76$

To begin with it will be seen that there is a very considerable difference in the values of $(M'-M)/\sigma_{M'-M}$ and Q, or the reduction to the general population of males gives nothing like the same intensity of significance to the differences between the means as the reduction to the standard populations of maximum difference. We are unable to determine what is the standard population of real maximum difference in any case†, and this very fact seems to discredit the use of the deathrates corrected to an arbitrary standard population as a means of adequately testing differences in mortality. For, although in this case all the differences of the deathrates corrected to the general male population are significant, in the next case—for example diabetes—they may not be, while the differences of the deathrates corrected to the standard population of maximum difference may be—as in the case of diabetes practically, they are—of significance.

^{*} The "corrected deathrates" are here reduced to the assumed male population of 1913 of all England and Wales. They differ therefore somewhat from the Registrar-General's "corrected deathrates"— $110\cdot0$, $98\cdot9$, $90\cdot2$, $80\cdot6$ respectively, which are deduced from the general population of England and Wales, 1901.

 $[\]dagger~Q$ may be deduced from an unreal population of maximum difference, i.e. one with some age classes negative.

If we consider the order of the significance deduced from the two standard populations we have:

Q	Pair	$(M'-M)/\sigma_{M'-M}$
13.09	London and Rural Districts	11.53
12.25	County Boroughs and Rural Districts	9.61
8.95	London and Urban Districts	7.74
7.39	County Boroughs and Urban Districts	4.89
6.96	London and County Boroughs	3.93
6.76	Urban Districts and Rural Districts	5.32

The Q order shows that London and the County Boroughs are markedly differentiated from the Rural and Urban Districts—in the higher degree from the former. Thus the city districts tend most to a high cancer rate. London is differentiated from the County Boroughs, and the Urban from the Rural Districts, but to a less extent than in the previous cases. The $(M'-M)/\sigma_{M'-M}$ test confirms this order except in the case of Urban and Rural Districts which are now more highly differentiated than County Boroughs and Urban Districts. Thus we note that a particular standard population may not only influence the significances of the differentiated deathrates, but also the order of these significances. This result will be confirmed in the case of diabetes.

The following are the values of Q^2 and χ_0^2 :

Pair	Q^2	χ_0^2
London and County Boroughs London and Urban Districts London and Rural Districts	48.4567 80.0869 171.3498	49·2414 80·6986 164·2686
County Boroughs and Urban Districts County Boroughs and Rural Districts Urban Districts and Rural Districts	54.5901 149.9172 45.6922	54.3279 151.0230 46.5109

It will be seen that the only considerable difference between Q^2 and χ_0^2 arises in the case of the London and Rural Districts pair, and more than half this difference is due to the very heavy deathrate in London from cancer of persons between 65 and 75.

Before we discuss the inferences to be drawn from these results, we will place on record the ratio of \overline{m} to its standard deviation $\frac{1}{\sqrt{2u}}$. The easiest way to calculate this ratio is from the components

$$Q_{s}^{2} = rac{a_{s}a'_{s}\left(rac{d_{s}}{a_{s}} - rac{d'_{s}}{a'_{s}}
ight)^{2}}{(d_{s} + d'_{s})\left(1 - rac{d_{s} + d'_{s}}{a_{s} + a'_{s}}
ight)}.$$

178 On Criteria for the Existence of Differential Deathrates

We have
$$\overline{m} = \frac{1}{2u}\,S_1{}^u\left\{\!\frac{\sqrt{a'_s}-\sqrt{a_s}}{\sqrt{a_s+a'_s}}\times\,Q_s\!\right\},$$

where Q_s must be given the sign of $\frac{d_s}{a_s} - \frac{d'_s}{a'_s}$. The advantage of this method is that the value of Q_s has usually been tabled as a stage to the finding of $Q^2 = S_1^u(Q_s^2)$. In the present case we deduce:

Arithmetic V	alue of	$\int_{\overline{1}} \sqrt{\overline{1}}$	$\frac{1}{\sqrt{2u}}$.		
London and County Boroughs					 1.0
London and Urban Districts					 1.9
London and Rural Districts					 1.9
County Boroughs and Urban Districts	s				 0.0
County Boroughs and Rural Districts				•••	 0.4
Urban Districts and Rural Districts				•••	 0.2

We can now calculate the probability that each pair are random samples of the same population by aid of our four tests. We place the pairs of districts in order of their improbability as random samples of the same population, taking χ_0^2 as our standard test.

Probability P of the Districts being Samples of the same Population.

Paired Districts compared for Cancer Mortality	${\chi_0}^2$ Test, or Goodness of Fit Test	Test from Difference of Corrected Deathrates $(M'-M)/\sigma_{M'-M} = Q$	Test from Distribution of Squares of Deviations $(\frac{1}{2}Q^2 - u)/\sqrt{u}$	Test from Mean of Deviations $\overline{m} / \left(\frac{1}{\sqrt{2u}}\right)$
London and Rural	0.007/1.000			
Districts County Boroughs and	$\cdot 9625/10^{30}$	$1.8031/10^{39}$	$1.9628/10^{144}$	·3121
Rural Districts	$\cdot 5414/10^{27}$	$\cdot 7929/10^{34}$	$1.9385/10^{107}$.0262
London and Urban Districts	$1 \cdot 1740/10^{13}$	$1.7497/10^{19}$	$\cdot 2555/10^{23}$.0262
County Boroughs and	11.10/10	1 1107/10	2000/10	0202
Urban Districts	$1.6355/10^{8}$	-6606/1013	·5133/10 ⁹	·4761
London and County				
Boroughs	$1.4996/10^{7}$	$1.6586/10^{12}$	$\cdot 1927/10^{6}$	·1587
Urban Districts and Rural Districts	4214/107	-6327/1011	$\cdot 1962/10^5$	·3974

The probability* in the first of these tests is deduced from the Goodness of Fit Tables; in the remaining three tests from the Tables of the Probability Integral. It will be seen that the first three tests give absolutely the same order of significance for the six pairs of differences. The fourth test is irregular and

^{*} The very high improbabilities given are only rough approximations, sufficient, however, for our present purposes. Since we enter the Goodness of Fit Tables with n=ten (i.e. u+1), we must use the first value of P in Equation (xxix), Tables for Statisticians, p. xxxi. The integral I may then be calculated by the first term of the Schlömilch formula (ibid. p. xxxiii), as this integral will only affect the fourth figure in the decimals. Table IV (ibid. p. 11) has been used to approximate to the extreme tails of the probability integral. Very useful work could be done by extending this Table between 5 and 50 to the first decimal place in the argument.

confirms the view already expressed that but little is to be gained from its use. The fact is that each test measures a different feature of the difference of the distributions and the worst test will be that which measures the least important characteristic. There is little doubt that the deviation from zero of the mean of all the deviations measured in terms of their S.D.'s is this characteristic. The second test measures the significance of the "corrected" deathrates for the standard population of maximum significance gives results which are most closely in accord with the χ_0^2 , but it suffers from two rather serious defects: (i) it is conceivable that M might be very close to M' and yet the actual distribution of deaths very different, (ii) the standard population which gives the maximum significance to the difference of the corrected deathrates may, as we have indicated (p. 164), be an impossible one. Hence the values of the significance may be very considerably exaggerated. It has been our experience, that when we have taken other standard populations, we have found the Q^2 considerably less than for the population of maximum significance, but not always most markedly less.

On the whole we think a test which considers the general distribution of deviations more likely to show definite results, than one which considers only a mean, and from this standpoint we hold that the χ_0^2 and $(\frac{1}{2}Q^2-u)/\sqrt{u}$ are the better criteria. The main assumptions on which these tests are based are for the latter: that the distribution of squared deviations (each measured in terms of its own S.D.) will, even if each deviation be selected from a non-normal frequency, give a second moment distribution which follows the normal law; and for the former: that the Gaussian curve accurately enough describes the frequency given by a binomial. This assumption would be more closely fulfilled by a general than by a special disease deathrate, but is probably more valid than the previous assumption. Hence we believe that while the three first tests have all a certain value, the first and third are to be preferred and the first is best of all.

Judged by the first, second and third tests we conclude that significant differences can be definitely said to exist between all these cancer mortalities, Urban and Rural Districts showing the least but still a very weighty significance; that London and the County Boroughs other than London have significantly different cancer mortality, while both London and the County Boroughs differ conspicuously from the Urban and Rural Districts.

It is clear that the degree of significance is closely associated with some variate which increases with difference of position in the scale (a) London, (b) County Boroughs, (c) Urban Districts, (d) Rural Districts, i.e. with some factor which increases with the city character. The increase during the past fifty years in the cancer deathrate has been associated by some with improved diagnosis. Is the variate correlated with the above order that of better diagnosis? It may, perhaps, be doubted whether the general practitioner is much more competent in cancer diagnosis in London now-a-days than in the Rural Districts. But an examination of the terms of Q^2 or χ_0^2 shows that nearly half of the significant difference arises from the terms Q_s^2 and χ_s^2 corresponding to the 45 to 55 group and nearly a third

corresponds to the 55 to 65 group. In fact in the case of London and Rural Districts about three-fourths and in the case of County Boroughs and Rural Districts about four-fifths of the value of Q^2 are contributed by the age groups 45 to 65. This is not the period in which the total number of deaths from cancer is a maximum; it may therefore be the period in which the less skilled medical man is less likely to diagnose cancer. It would be equally valid, however, to assert that cancer finds more susceptibility in town than in country dwellers and that this is particularly the case with men from 45 to 65 years of age. Further suggestions are, of course, emigration of cancerous persons to the towns* and the presence of certain occupations with high cancer deathrates in the towns. In both these cases we must find explanation for the particularly marked contributions for the age groups 45-65, unless we are content with the view that these are the age groups where the cancer deathrates are fairly high, and the population of the group with which the result is weighted fairly large.

It would be in every way desirable if we could, applying "Occam's razor," attribute to one source the rising cancer deathrate and the significant differences between cancer mortality in cities and in rural districts. Both may be due to differential diagnostic power or to varying accuracy of certification, but we gain little by merely throwing out suggestions, and omitting to demonstrate them.

(ix)—(xiv) Diabetes Deathrates for all England and Wales.

As a last illustration of the present method we take the deaths from Diabetes for the year 1913 from the Registrar-General's Report† in the same fundamental groupings; of course the populations at risk in age groups will remain the same.

Age Group	(a) London	(b) County Boroughs	(c) Urban Districts	(d) Rural Districts			
0—15	8	22	22	26			
1525	12	35	46	38			
2535	20	60	69	38			
35—45	21	63	66	44			
4555	49	86	102	51			
5565	59	158	196	106			
<i>65</i> —7 <i>5</i>	47	178	181	137			
7 <i>5</i> —8 <i>5</i>	16	47	57	50			
85 and over	0	5	6	1			
Total Deaths	232	654	745	491			
Crude deathrates	10.930	11.700	12.051	12.392			
Corrected deathrates (Both per 100,000)	11.099	12.649	12.433	10.948			

Diabetes Deaths in Age Groups, 1913.

^{*} It must be remembered of course that institutional deaths are since 1911 distributed to their locus of origin, and therefore immigration for operation no longer tends to swell the London or County Boroughs cancer deathrates. It would be otherwise with immigration for permanent residence in the initial stages of the disease. But there is no evidence at present to show that cancerous persons of ages 45 to 65 do move into the larger towns.

† See pp. 217, 235, 253 and 271.

The "Corrected" Deathrates in the table on p. 180 are based on the Age Groups of the total population for England and Wales in 1913. It will be seen that they modify entirely the order of the Crude Deathrates, which order appeared at first sight to be comparable with the cancer results, as showing a difference between the city and rural or urban areas—in this case indeed to the advantage of the former. Proceeding as in the case of cancer to compare significance of corrected deathrates when reduced to the general population of males (1913) as standard and when reduced to the standard population of maximum difference we find:

Pair	M'-M	$\sigma_{M'-M}$	$(M'-M)/\sigma_{M'-M}$	Q
London and County Boroughs London and Urban Districts London and Rural Districts County Boroughs and Urban Districts County Boroughs and Rural Districts Urban Districts and Rural Districts	$\begin{array}{c} -1.550 \\ -1.334 \\ +0.151 \\ +0.216 \\ +1.701 \\ +1.485 \end{array}$	-8898 -8794 -8829 -6727 -6998 -6790	1.74 1.52 0.17 0.32 2.43 2.19	4.16 3.16 3.95 2.34 5.76 5.03

Now with the single doubtful result for County Boroughs and Rural Districts none of the values of the ratio $(M'-M)/\sigma_{M'-M}$ can be definitely considered as rendering M'-M significant. On the other hand all the differences of the corrected deathrates reduced to the standard population of maximum difference must, with one possible exception, i.e. County Boroughs and Urban Districts, be considered as markedly significant. This illustration is of great interest. For it is quite easy to select a standard population where for real age classes there is a significant difference between the "corrected" deathrates of London and the County Boroughs, but reduced to the general population (males) for 1913 there is no such difference. We see therefore that the reduction to an arbitrary standard population may be absolutely misleading as a means of testing whether two class deathrates are differentiated. Again the order of pairs for significance in the case of diabetes is for Q:

Q	Pair	$(M'-M)/\sigma_{M'-M}$
5·49 5·03 4·16 3·95 3·16 2·34	County Boroughs and Rural Districts Urban Districts and Rural Districts London and County Boroughs London and Rural Districts London and Urban Districts County Boroughs and Urban Districts	2·43 2·19 1·74 0·17 1·52 0·32

It will be seen that the significance of London and Rural Districts is considerably displaced by the general population as standard. Or, we conclude, as in the case of cancer, that relative significance as well as absolute is determined by the special standard population selected and we cannot accept the current view that the

182 On Criteria for the Existence of Differential Deathrates

"standard population" to which the deathrates are corrected is a matter merely of convenience.

It is clear that there is nothing in the "corrected" deathrates to indicate in any group a substantial difference from the rate 11.883 per 100,000 for all England and Wales*. It will accordingly be of some interest in this case to test whether this result of non-significance which flows from the deathrates corrected to the general population is confirmed when more accurate methods are applied to test the distribution of deviations as well as mean rates. The following are the values of Q^2 and χ_0^2 :

Pair	Q^2	χ ₀ ²
London and County Boroughs London and Urban Districts London and Rural Districts County Boroughs and Urban Districts County Boroughs and Rural Districts Urban Districts and Rural Districts	17.3188 10.0126 15.5939 5.4693 30.1470 25.2912	18·0702 9·9831 15·4501 5·4236 30·4870 25·8263

It will be seen as in previous cases that there is no substantial difference between Q^2 and χ_0^2 .

The following table gives the deathrates from Diabetes per 100,000 exposed to risk in each age group of the four categories:

мане	Diabetes	Statistics,	Engiana	ana	wates,	1915.

Age Group	(a) London	(b) County Boroughs	(c) Urban Districts	(d) Rural Districts
0—15	1.23	1.22	1.11	2.09
15—25	3.13	3.48	4.08	5.30
2535	5.51	6.39	6.78	6.55
3545	7.16	8.22	7.89	8.87
4555	22.94	16.02	17.38	12.90
$55 - \!\!\!-\!\!\!\!-\!\!\!\!65$	44.89	47.70	53.00	38.29
6575	68.99	106.77	90.06	76.10
75—85	84.97	108.99	94.36	76.39
85 and over	0	112.28	81.51	10.96

The problem before us is again whether the above distributions of deathrates as a whole are or are not significantly different, and not whether the differences in one of their statistical constants (i.e. the "corrected" deathrate) are or are not significant. We shall apply only three tests, i.e. (i) the χ_0^2 test or Goodness of Fit Test, (ii) that of the difference of corrected deathrates for the standard

^{*} The deviations from the General Rate are (a) - .784, (b) + .766, (c) + .550 and (d) - .935, all of the order of the probable errors of the differences.

population of maximum difference, and (iii) the Test from Distribution of Squares of Deviations.

Proceeding as in the case of Cancer we have the following table:

Probability P of the two Groups being samples of the same Population.

Paired Districts compared for Diabetes Mortality	(i) χ ₀ ² Test or Goodness of Fit Test	(ii) Test from Difference of Corrected Deathrates $(M'-M)/\sigma_{M'-M} = Q$	(iii) Test from Distribution of Squares of Deviations $(\frac{1}{2}Q^2 - u)/\sqrt{u}$
Rural Districts and			-
County Boroughs Rural Districts and	•0004	·20/10 ⁷	.0215
Urban Districts London and County	.0022	$\cdot 25/10^{6}$	·1121
Boroughs Rural Districts and	.0344	.000,02	·4548
London London and Urban	-0801	.000,04	$\cdot 3442$
Districts Urban Districts and	⋅3520	-000,7	.0916
County Boroughs	.7943	.009,7	$\cdot 0184$

As before the order of significance, as we might expect, of the first two tests is the same*, but it is no longer as in the case of cancer the same as in the third The third test shows only significance between the members of the two pairs Rural Districts and County Boroughs and Urban Districts and County Boroughs, and neither difference is at all emphatic, while the last is out of accord with the χ_0^2 The χ_0^2 test shows distinct significance between Rural Districts on the one side and County Boroughs and Urban Districts on the other. The Rural Districts are not very significantly differentiated from London. Probably London and the County Boroughs have a different diabetes mortality. An examination of the table on p. 182 shows that the chief difference between the Rural Districts and the Urban and County Boroughs mortality is the much lessened deathrate after 50 years of age; while the difference between the Rural Districts and London lies in the much greater deathrate from diabetes under 45 in the Rural Districts. differences might be so balanced that there existed no significant difference in the corrected deathrates. No one could judge by the corrected deathrates of 10.948 and 11.099 with a probable error of .60 that the Diabetes mortalities of Rural Districts and of London are as significantly differentiated as they are.

We see that the second test enormously exaggerates the significances determined by the first test and this is precisely what we might anticipate. The second test

^{*} The order of significance in the third test will not now be the same as in the second, although it depends only on Q^2 because $(\frac{1}{2}Q^2 - u)$ can be positive or negative. It was the same in the case of cancer because Q^2 was always greater than 2u. Positive or negative values of $(\frac{1}{2}Q^2 - u)$ only signify that the mean of the squares or deviations exceed or fall short of the theoretical value respectively.

is the difference between the corrected deathrates, corrected to a standard population which gives the maximum difference between those rates. But this standard population is, if the individual age group deathrates are not all greater in one district than the other, an algebraical fiction and not a real standard population. But with the single possible exception of London and County Boroughs there is no approach in the case of diabetes mortality to greater deathrates in all the age groups of one district class. This was far more nearly the case in the cancer mortality. Hence the second test was more reasonable in that case.

We have retained this maximum difference of corrected deathrates to the end of our illustrations, because we think it serves to indicate the danger of any argument as to significant differences in mortality based on "corrected deathrates." In the case of diabetes, our district classes give no such significant differences. But our y_0^2 test shows that these differences actually exist, as indeed might be suspected, although their numerical valency could not be adequately tested by a mere examination of the age group deathrate table on p. 182. The reason for this failure of the corrected deathrate difference lies largely in the fact already insisted on that the significance of the difference in the corrected deathrates depends largely upon the standard population selected—a point often overlooked. What then is to be the standard population selected? Clearly it should be such as (i) to make the corrected deathrate difference a maximum and (ii) at the same time be a real population, i.e. not one with negative age classes. At present we do not see how to reach the maximum of a certain function of variates, subject to the condition that the variates are to take positive values only. The corrected deathrates for diabetes in certain districts show no significant differentiation when reduced to the general population of England and Wales as standard. They show a marked differentiation when reduced to the standard populations of maximum difference. It is true that these populations are merely algebraic fictions, but how far should we approach this marked differentiation, if we could discover the real maximum difference population? We cannot say; and in view of this uncertainty, it seems to us needful to drop for the present any criterion of mortality differentiation depending on the so-called corrected deathrates.

We can only conclude that the proper test for differentiated mortality is the χ_0^2 test used for the first time in the present paper. For this test does not depend on the measure of the divergence between two means—"corrected" it may be,—but on the general difference between two frequency distributions as wholes and this appears to us the essential feature of any true measure of differential mortality.

We have to thank our colleagues Mr A. W. Young, Mr I. Horwitz and Mr George Rae for much assistance in a piece of arithmetical work more arduous than may appear on the face of this paper.

ON CERTAIN PROBABLE ERRORS AND CORRELATION COEFFICIENTS OF MULTIPLE FREQUENCY DISTRIBUTIONS WITH SKEW REGRESSION.

By L. ISSERLIS, D.Sc.

(1) In the systematic investigation of the statistical constants of multiple correlation and of their probable errors, it is important to have to hand the probable errors and the mutual correlations of the more fundamental constants—the means, the standard deviations and the correlation coefficients. For the case in which the frequency distribution follows the normal law this need is supplied in the memoir by Pearson and Filon entitled "On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation*."

As regards the more general case in which the regression is skew, the probable error of a correlation coefficient was first given by Sheppard (*Phil. Trans.* Vol. 192, A, p. 128).

The probable error of a mean and the correlation between deviations in the value of the mean and that of a standard deviation, or of a correlation coefficient, and the correlation between two standard deviations, are given by Pearson (*Biometrika*, Vol. IX. 1913, pp. 1-10).

For reference we give here the results for the case of normal distributions obtained by Pearson and Filon in the memoir referred to above:

^{*} Phil. Trans. Vol. 191, A (1898), pp. 229-311.

[†] Phil. Trans. Vol. 191, A, Equations (xv)-(xviii), (xxxvii), (xxxvii) and (xl).

186

In the present paper the corresponding results are obtained for the case of skew regression. The method employed is different and by supposing the regression to be linear and the distribution to be normal, a confirmation is obtained of the above results which in Pearson and Filon's memoir depend on very complicated analysis.

(2) We may begin by discussing the correlation that exists between deviations from their means in the case of two correlation coefficients r_{xy} and r_{zt} .

We have
$$r_{xy}=p_{xy}/\sqrt{(p_{x^2}p_{y^2})}$$
(8), $r_{zt}=p_{zt}/\sqrt{(p_{z^2}p_{z^2})}$ (9),

where $p_{x^ly^mz^nt^k}$ is employed to denote the mixed moment of orders l, m, n, k in the variables, taken about the means so that

$$\frac{dr_{xy}}{r_{xy}} = \frac{dp_{xy}}{p_{xy}} - \frac{1}{2} \frac{dp_{x^2}}{p_{x^2}} - \frac{1}{2} \frac{dp_{y^2}}{p_{y^2}} \dots (10),$$

$$\frac{dr_{zt}}{r_{zt}} = \frac{dp_{zt}}{p_{zt}} - \frac{1}{2} \frac{dp_{z^2}}{p_{z^2}} - \frac{1}{2} \frac{dp_{t^2}}{p_{t^2}} \dots (11).$$

and

or

It is clear that we shall require the correlations between any one of p_{xy} , p_{x^2} , p_{y^2} and any one of p_{zt} , p_{z^2} and p_{t^2} . It will suffice to find the correlation between p_{xy} and p_{zt} .

Now
$$Np_{xy} = \underset{x}{SS} \{n_{xy} (x - \bar{x}) (y - \bar{y})\} \dots (12),$$

$$\therefore Ndp_{xy} = \underset{x}{SS} \{dn_{xy} (x - \bar{x}) (y - \bar{y})\} + \underset{x}{SS} \{-n_{xy} (y - \bar{y}) d\bar{x}\} + \underset{x}{SS} \{-n_{xy} (x - \bar{x}) d\bar{y}\} \dots (13),$$

$$Ndp_{xy} = \underset{x}{SS} \{dn_{xy} XY\} \dots (14),$$

if we denote the total population by N, $x-\bar{x}$ by X, $y-\bar{y}$ by Y and remember that

The mean value of $dn_{xy}dn_{zt}$ in many samples is the mean value of

$$\begin{split} &SS\left\{dn_{x_{s}y_{s'}z_{h}t_{h'}}\right\}\times SS\left\{dn_{x_{k}y_{k'}z_{l}t_{l'}}\right\}\\ &=-\frac{1}{N}SSSSS\left\{dn_{x_{s}y_{s'}z_{h}t_{h'}}dn_{x_{k}y_{k'}z_{l}t_{l'}}\right\} + n_{x_{s}y_{s'}z_{l}t_{l'}}(1-n_{x_{s}y_{s'}z_{l}t_{l'}}/N)...(16), \end{split}$$

where in the fourfold summation the term

$$(dn_{x_sy_{s'}z_lt_{l'}})^2$$

is omitted.

But clearly the right-hand member of (16) reduces to

$$n_{x_s y_{s'} z_l t_{l'}} - n_{x_s y_{s'}} n_{z_l t_{l'}} / N$$
 ,

hence the mean value of

$$N^2 dp_{xy} dp_{zt}$$
 is $N(p_{xyzt} - p_{xy}p_{zt})$ (17).

Putting t = z we deduce from (17)

Mean value of
$$dp_{xy}dp_{z^2} = (p_{xyz^2} - p_{xy}p_{z^2})/N$$
(18),

and putting y = x in this result,

Mean value of
$$dp_{x^2} dp_{z^2} = (p_{x^2z^2} - p_{x^2}p_{z^2})/N$$
(19).

If we multiply (10) and (11), sum for all samples and divide by the number of samples we deduce

$$\begin{split} N\sigma_{r_{xy}}\sigma_{r_{zt}}R_{r_{xy},r_{zt}}/r_{xy}r_{zt} \\ &= \frac{p_{xyzt} - p_{xy}p_{zt}}{p_{xy}p_{zt}} - \frac{1}{2}\frac{(p_{xyz^2} - p_{xy}p_{z^2})}{p_{xy}p_{z^2}} - \frac{1}{2}\frac{(p_{xyt^2} - p_{xy}p_{t^2})}{p_{xy}p_{t^2}} \\ &- \frac{1}{2}\frac{(p_{x^2zt} - p_{x^2}p_{zt})}{p_{x^2}p_{zt}} - \frac{1}{2}\frac{(p_{y^2zt} - p_{y^2}p_{zt})}{p_{y^2}p_{zt}} + \frac{1}{4}\frac{(p_{x^2z^2} - p_{x^2}p_{z^2})}{p_{x^2}p_{z^2}} \\ &+ \frac{1}{4}\frac{(p_{x^2t^2} - p_{x^2}p_{t^2})}{p_{x^2}p_{t^2}} + \frac{1}{4}\frac{(p_{y^2z^2} - p_{y^2}p_{z^2})}{p_{y^2}p_{z^2}} + \frac{1}{4}\frac{(p_{y^2t^2} - p_{y^2}p_{t^2})}{p_{y^2}p_{t^2}} \dots (20). \end{split}$$

This result like Sheppard's formula for $\sigma^2_{r_{xy}}$ is much simpler when expressed in reduced moments. Let us write

$$\frac{p_{x^l y^m z^n t^k}}{\sigma_{x^l} \sigma_{y^m \sigma_{z^n} \sigma_{t^k}}} = q_{x^l y^m z^n t^k},$$

so that q_{x^2} is unity and $q_{xy} = r_{xy}$. The numerical term in (20) is $-1 + \frac{1}{2}(4) + \frac{1}{2}(-4)$

or zero, hence

$$\begin{split} N\sigma_{r_{xy}}\sigma_{r_{zt}}R_{r_{xy},r_{zt}}/r_{xy}r_{zt} \\ &= \frac{q_{xyzt}}{r_{xy}r_{zt}} - \frac{1}{2} \left(\frac{q_{xyz^2} + q_{xyt^2}}{r_{xy}} + \frac{q_{x^2zt} + q_{y^2zt}}{r_{zt}} \right) + \frac{1}{4} \left(q_{x^2z^2} + q_{x^2t^2} + q_{y^2z^2} + q_{y^2t^2} \right) \end{split}$$

In the same notation Sheppard's formula becomes

$$\frac{\sigma^2_{r_{xy}}}{r^2_{xy}} = \frac{1}{N} \left\{ \frac{q_{x^2y^2}}{r^2_{xy}} + \frac{1}{4} (\beta_2 + \beta'_2) + q_{x^2y^2} - \frac{q_{x^3y} + q_{xy^3}}{r_{xy}} \right\} \dots (22)^*.$$

To find the correlation between r_{xy} and r_{xz} we have only to replace t by x in (21), thus

$$\begin{split} N\sigma_{r_{xy}}\sigma_{r_{xz}}R_{r_{xy},r_{xz}}/r_{xy}r_{xz} \\ &= \frac{q_{x^2yz}}{r_{xy}r_{xz}} - \frac{1}{2}\left(\frac{q_{xyz^2} + q_{x^3y}}{r_{xy}} + \frac{q_{x^3z} + q_{xy^2z}}{r_{xz}}\right) + \frac{1}{4}\left(q_{x^2z^2} + q_{x^4} + q_{x^2y^2} + q_{y^2z^2}\right) \\ &\qquad \qquad \dots \dots (23). \end{split}$$

(3) These correlation coefficients will simplify if the regression be linear and simplify to a considerable extent if at the same time the distribution be normal. For with *linear regression*

$$egin{aligned} Np_{x^2yz} &= egin{aligned} S \, S \, S \, (n_{xyz} x^2 y z) \, \dagger \ &= egin{aligned} S \, S \, (n_{xy} x^2 y \, imes ar{z}_{xy}), \end{aligned}$$

where \bar{z}_{xy} is the mean value of z for given values of x and y.

- * For the denominator of left-hand side, cf. Biometrika, Vol. 1x. p. 4.
- † The origin being taken at the mean.

But from the usual regression equation

$$\bar{z}_{xy} = x \left(\frac{r_{xz} - r_{xy} r_{yz}}{1 - r_{xy}^2} \right) \frac{\sigma_z}{\sigma_x} + y \left(\frac{r_{yz} - r_{xz} r_{xy}}{1 - r_{xy}^2} \right) \frac{\sigma_z}{\sigma_y},$$

so that for linear regression

 $p_{x^2yz} = \left(\frac{r_{xz} - r_{xy}r_{yz}}{1 - r_{xy}^2}\right)\frac{\sigma_z}{\sigma_x} p_{x^3y} + \left(\frac{r_{yz} - r_{xz}r_{xy}}{1 - r_{xy}^2}\right)\frac{\sigma_z}{\sigma_x} p_{x^2y^2} \dots (24).$

Further

$$p_{x^3y} = \frac{1}{N} \sum_{x} S \left(n_{xy} x^3 y \right)$$

$$= \frac{1}{N} \sum_{x} S \left(n_x x^3 \overline{y}_x \right)$$

$$= \frac{1}{N} \sum_{x} \left(n_x x^4 \frac{\sigma_y}{\sigma_x} r_{xy} \right),$$

$$p_{x^3y} = p_x r_{xy} \frac{\sigma_y}{\sigma_x} \qquad (25),$$

or

$$q_{x^2y^2} = 1 + r_{xy}^2 \sqrt{(\beta_2 - 1)(\beta_2 - 1)}$$
 approximately(26)*,

so that (23) can be evaluated approximately by the use of simple moment coefficients and correlation coefficients only. If in addition the distribution be normal, we know that

$$p_{x^3y} = 3p_{xy}p_{x^2}$$
 and $p_{x^2y^2} = (1 + 2r_{xy}^2)/p_{x^2}p_{y^2}$,

so that for normal distributions

$$\frac{p_{x^2yz}}{p_{xy}p_{xz}} = \left(\frac{r_{xz} - r_{xy}r_{yz}}{1 - r^2_{xy}}\right) \frac{3}{r_{xz}} + \frac{r_{yz} - r_{xz}r_{xy}}{1 - r^2_{xy}} \frac{1 + 2r^2_{xy}}{r_{xy}r_{xz}},$$
or
$$\frac{q_{x^2yz}}{r_{xy}r_{xz}} = 2 + r_{yz}/r_{xy}r_{xz} \tag{27}.$$
Similarly
$$\frac{q_{xyz^2}}{r_{xy}} = 1 + \frac{2r_{yz}r_{xz}}{r_{xy}} \tag{28},$$
and
$$\frac{q_{xy^2z}}{r_{xz}} = 1 + 2r_{yz}r_{xy}/r_{xz} \tag{29},$$

and

Substituting these values in (23) we obtain, after some reduction and using

$$\begin{split} \sigma_{r_{xy}} &= (1 - r_{xy}^2)/\sqrt{N}, \\ (1 - r_{xy}^2) \left(1 - r_{xz}^2\right) R_{r_{xy}r_{xz}} \\ &= r_{yz} \left(1 - r_{xy}^2\right) \left(1 - r_{xz}^2\right) - \frac{1}{2} r_{xy} r_{xz} \left(1 - r_{xy}^2 - r_{yz}^2 - r_{zx}^2 + 2 r_{xy} r_{yz} r_{zx}\right) \end{split}$$
(30)

agreeing with (6) the value obtained by Pearson and Filon for normal distributions.

As regards the more general case dealing with the correlation between deviations of r_{xy} and those of r_{zt} given by equation (22), we have when the regression is linear

$$\begin{split} p_{xyzt} &= \mathop{SSSS}_{x} \left\{ n_{xyzt} \left(xyzt \right) \right\} \\ &= \mathop{SSS}_{x} \left\{ n_{xyz} \left(xyz\bar{t}_{xyz} \right) \right\}, \end{split}$$

^{*} Biometrika, Vol. IX. p. 4.

where \bar{t}_{xyz} is the mean value of t for given values of x, y and z, so that as is well known

$$\bar{t}_{xyz} = -x \frac{\sigma_t}{\sigma_x} \frac{\Delta_{xt}}{\Delta_{tt}} - y \frac{\sigma_t}{\sigma_y} \frac{\Delta_{yt}}{\Delta_{tt}} - z \frac{\sigma_t}{\sigma_z} \frac{\Delta_{zt}}{\Delta_{tt}}$$
(31),

where

$$\Delta = \begin{vmatrix} 1, & r_{xy}, & r_{xz}, & r_{xt} \\ r_{xy}, & 1, & r_{yz}, & r_{yt} \\ r_{xz}, & r_{yz}, & 1, & r_{zt} \\ r_{xt}, & r_{yt}, & r_{zt}, & 1 \end{vmatrix} \dots (32),$$

and Δ_{pq} is the minor corresponding to r_{pq} . Thus

$$q_{xyzt} = -\left(\Delta_{xt}q_{x^2yz} + \Delta_{yt}q_{xy^2z} + \Delta_{zt}q_{xyz^2}\right)/\Delta_{tt} \quad(33),$$

so that $R_{r_{xy},r_{zt}}$ can be evaluated approximately in the case of linear regression without employing any mixed moments beyond the simple product moment occurring in a correlation coefficient.

For normal distributions we may use (27), 28) and (29) giving

$$q_{xyzt} = -\left[\Delta_{xt} \left(2r_{xy}r_{xz} + r_{yz}\right) + \Delta_{yt} \left(2r_{xy}r_{yz} + r_{xz}\right) + \Delta_{zt} \left(2r_{xz}r_{yz} + r_{xy}\right)\right]/\Delta_{tt} \dots (34).$$

By well-known properties of first minors of a determinant we have from (32)

$$\Delta_{xt} + r_{xy}\Delta_{yt} + r_{xz}\Delta_{zt} + r_{xt}\Delta_{tt} = 0 \dots (35),$$

$$r_{xy}\Delta_{xt} + \Delta_{yt} + r_{yz}\Delta_{zt} + r_{yt}\Delta_{tt} = 0$$
.....(36),

$$r_{xz}\Delta_{xt} + r_{yz}\Delta_{yt} + \Delta_{zt} + r_{zt}\Delta_{tt} = 0$$
(37).

Multiply these equations by r_{yz} , r_{zx} , r_{xy} respectively and add,

$$(r_{yz} + 2r_{xz}r_{xy}) \Delta_{xt} + (r_{xz} + 2r_{yz}r_{xy}) \Delta_{yt}$$

$$+ (r_{xy} + 2r_{yz}r_{xz}) \Delta_{zt} + (r_{yz}r_{xt} + r_{zx}r_{yt} + r_{xy}r_{zt}) \Delta_{tt} = 0.....(38).$$

Combining this result with (33) we see that for normal distributions

$$q_{xyzt} = r_{xy}r_{zt} + r_{yz}r_{xt} + r_{zx}r_{yt}$$
(39)*,

an interesting result likely to prove useful in other applications and probably capable of generalisation Particular cases of (39) are obtained by putting t=x so that $q_{x^2yz}=r_{yz}+2r_{xy}r_{xz}$ which is (27) and t=x, z=y giving $q_{x^2y^2}=1+2r_{xy}^2$ which is well known.

If we now substitute these values in equation (21) we find

$$\begin{split} N\sigma_{r_{xy}}\sigma_{r_{zt}}R_{r_{xy}r_{zt}} \\ &= 2r_{yz}r_{xt} + 2r_{zx}r_{yt} - 2r_{xz}r_{yz}r_{zt} - 2r_{xt}r_{yt}r_{zt} \\ &- 2r_{xz}r_{xt}r_{xy} - 2r_{yz}r_{yt}r_{xy} + r_{xy}r_{zt}\left(r^2_{xz} + r^2_{xt} + r^2_{yz} + r^2_{yt}\right). \end{split}$$

The right-hand member can be put in the form

$$\frac{1}{2} \left\{ (r_{xt} - r_{xz}r_{zt}) \left(r_{yz} - r_{xy}r_{xz} \right) + (r_{xt} - r_{xy}r_{yt}) \left(r_{yz} - r_{yt}r_{zt} \right) + (r_{xz} - r_{xy}r_{yz}) \left(r_{yt} - r_{yz}r_{zt} \right) + (r_{xz} - r_{xt}r_{yz}) \left(r_{yt} - r_{xy}r_{xt} \right) \right\},$$

^{*} This result, which is accurate for normal distributions, is given as approximately true for such distributions by H. E. Soper, *Biometrika*, Vol. 1x. p. 100

and if we remember that for normal distributions

$$\sigma_{r_{xy}} = (1-r^2_{~xy})/\sqrt{\overline{N}}, \hspace{0.5cm} \sigma_{r_{zt}} = (1-r^2_{~zt})/\sqrt{\overline{N}}, \label{eq:sigma_r_xy}$$

this result agrees with Pearson and Filon's value quoted above as equation (7).

(4) To find the probable error of a standard deviation.

$$\sigma_{x}^{2} = p_{x^{2}},$$

$$\therefore \frac{d\sigma_{x}}{\sigma_{x}} = \frac{dp_{x^{2}}}{2p_{x^{2}}} \qquad (40).$$

$$\frac{\Sigma_{\sigma_{x}}^{2}}{\sigma^{2}_{x}} = \frac{p_{x^{1}} - p^{2}_{x^{2}}}{4p^{2}_{x^{2}}N} \text{ by (17)}$$

$$= \frac{\beta_{2} - 1}{4N},$$

$$\therefore \Sigma_{\sigma_{x}} = \frac{\sigma_{x}\sqrt{\beta_{2} - 1}}{2\sqrt{N}} \qquad (41).$$

Hence

This result is well known, and for normal distributions, i.e. when $\beta_2 = 3$, becomes $\Sigma_{\sigma_x} = \frac{\sigma_x}{\sqrt{2N}}$, agreeing with (1).

To find the correlation between a standard deviation σ_x and a correlation coefficient r_{yz} , we multiply (40) by the equation

$$\frac{dr_{yz}}{r_{yz}} = \frac{dp_{yz}}{p_{yz}} - \frac{dp_{y^2}}{2p_{y^2}} - \frac{dp_{z^2}}{2p_{z^2}},$$

and sum for all samples and divide by their number in the usual way, obtaining $2N\sigma_{\sigma_x}\sigma_{r_{yz}}R_{\sigma_x,r_{yz}}/\sigma_x r_{yz}$

$$= (p_{x^2yz} - p_{x^2}p_{yz})/p_{x^2}p_{yz} - \frac{1}{2}(p_{x^2y^2} - p_{x^2}p_{y^2})/p_{x^2}p_{y^2} - \frac{1}{2}(p_{x^2z^2} - p_{x^2}p_{z^2})/p_{x^2}p_{z^2}$$

$$= \frac{q_{x^2yz}}{r_{yz}} - \frac{q_{x^2y^2} + q_{x^3z^2}}{2} \qquad (42),$$

a result which as before can be approximated to in the case of linear regression, and which for normal distributions becomes*

$$R_{\sigma_{x},r_{yz}} = \frac{r_{yz} + 2r_{xy}r_{xz} - \frac{1}{2}(2 + 2r^{2}_{xy} + 2r^{2}_{xz})}{2N \cdot \frac{\sigma_{x}}{\sqrt{2N}} \cdot \frac{(1 - r^{2}_{yz})}{\sqrt{N}} \cdot \frac{1}{\sigma_{x}r_{yz}}}$$

$$= \frac{2r_{xy}r_{xz} - (r^{2}_{xy} + r^{2}_{xz})r_{yz}}{\sqrt{2} \cdot (1 - r^{2}_{yz})}$$
(43),

agreeing with equation (5).

^{*} For the case z=x, i.e. $R_{\sigma_x, \, r_{xy}}$, cf. Biometrika, Vol. ix. p. 8.

ON THE CORRELATION BETWEEN THE "CORRECTED" CANCER AND DIABETES DEATHRATES.

By C. A. CLAREMONT, B.Sc., Biometric Laboratory, University College.

In a paper due to Maynard published in this journal* it is shown that in the United States in the case of both states and great towns there is a marked correlation between the corrected deathrates from cancer and diabetes. The point is of very great interest, and additional investigations by Pearson and others† and by Greenwood and Frances Wood‡ confirm Maynard's result for the material used by him. On the other hand Greenwood and Wood show that it is not apparently true for Switzerland.

Maynard writes§: "If the increased rates observed in the cases of cancer and diabetes were due to a common cause then it is probable that their rates of growth will be found to be fairly highly correlated. Not being able to obtain rates for a sufficient period of time from the United States reports, the rates given in the Registrar's Report for England and Wales, in five-yearly groups for the 35 years 1871 to 1905, were used and here $\rho = .8060 \pm .0893$. This high correlation shows I think a strong probability that there is a common factor influencing the increase of both diseases. That this value is explicable on the assumption that the increased rates are merely apparent and due to more careful diagnosis is in view of the facts already mentioned almost inconceivable."

In view of the development of the variate difference correlation method since the publication of Maynard's memoir, it seemed possible to test this point, and at the suggestion of Professor Pearson I undertook the necessary calculations. It is to be noted that it is partly the continuous rise in the deathrates from these two diseases during the last few decades that has suggested a possibly organic relation between them. This increase is effectively shown in the Diagrams of the corrected deathrates I and II for these diseases, and in the combined "spot" diagram for individual years, III, which brings out the contemporary rises.

^{*} Biometrika, Vol. vII. pp. 276-304.

[†] Journal of R. Statistical Society, Vol. 73, p. 534.

[‡] Journal of Hygiene, Vol. xIV. p. 83, 1914.

[§] loc. cit. p. 289.

^{||} I have heartily to thank Miss B. C. B. Cave for revision of my arithmetic and the correction of several errors.

Diagram showing rapid rise of corrected cancer deathrate for males between 1860 and 1915.

The diagram indicates an apparent highly correlated change.

It should be noted, however, that Newsholme and King* conclude that the increase of cancer is apparent only and due to improvement in diagnosis and more careful certification of causes of death. Whether there has been a real increase in diabetes is a question that these authors consider to be undecided. It is difficult, however, in the case of England and Wales to believe that the increase in the *corrected* deathrates for both cancer and diabetes that has gone on continuously since 1900 can have anything to do with increased accuracy

^{*} R. S. Proc. Vol. Liv. p. 228 (1893). An examination of our Diagram I shows that the increase of the corrected cancer deathrate from 1873 to 1893 was practically the same as from 1893 to 1913. If improved diagnosis is the source of the increased cancer rate it is certainly remarkable that the improvement should have been so uniform for the space of forty years.

Facsimile of large diagram used for deducing corrective factors for intercensal years from known corrective factors for census years.

of diagnosis of either disease in this recent period, and the general sweep of the plotted curves seems to show that the source of the increase whatever its nature has been continuous since the middle of last century.

In the following investigation I have correlated the deaths from cancer and diabetes for the *male* population only. I had intended to deal also with the female population, but the results for the male were so conclusive, that I did not think it needful to go further. But the idea of dealing with the female deathrates led me to select as standard population the total male and female population of England and Wales as given by the 1901 census. Of course the choice of the

DIAGRAM V. Associated Inflexion Points in Corrective Factors and % Males under 45.

Diagram illustrating that the inflexion point in the corrective factor diagram (IV) corresponds to actual changes in the age distribution of the population.

standard population to obtain a corrected deathrate is arbitrary, but if female deathrates are to be compared with male, we must take a common standard for both, and this is why the combined male and female age groups of 1901 were taken as the standard population classes.

A word must be said as to the manner of correcting the crude deathrate for age groups. Actually we only know the age groups accurately for the census years; the age groups for intervening years are more or less guesses not beyond suspicion. Accordingly it was considered best to obtain the corrective factors for the crude deathrates in each census year, then to plot these to the year, draw a continuous curve through the plotted points by aid of a spline and read off from

this curve the corrective factors for non-census years. This was done on a large diagram of which IV is a small reproduction.

A noteworthy feature of these corrective factor curves is the inflexion which occurs between 1861 and 1871. There are two tests of its reality. First the diabetes curve confirms the cancer curve and secondly as far as the data permit an approximative factor was obtained for the cancer corrective factor curve for the census of 1851; it is seen to substantiate the general sweep of the corrective factor curve and confirms the inflexion between 1861 and 1871. Diagram V shows that the inflexion also occurs in the age distribution of the population as exhibited in parentage of males under 45.

In dealing with the years 1875 to 1880, the few deaths separately recorded under Melanosis, Fungus Haematodes and Sweep's Cancer—now entitled simply cancer—were included under the total deaths from cancer.

The following table showing the work for the year 1911 indicates the manner in which the census year corrective factors were found. The crude deathrates per million of the male population in this year were: Diabetes 110.96 and Cancer 893.57.

	G.	G Dia-	Census	Deathrate	Death- rate per	Standard	Corrected Deathrates		
Age Groups	Cancer Deaths (Males) betes Deaths (Males)		Population per		$\begin{array}{c} \text{million,} \\ \text{million,} \\ \text{Diabetes} \\ = r_2 \end{array}$ $= r_2$ Population in the proposition of the propo		$ \begin{array}{c} \text{Cancer} \\ = \frac{r_1 A}{10^6} \end{array} $	Diabetes $= \frac{r_2 A}{10^6}$	
Under 5	G.A	11	1 000 110	99.1		114 000	9.70	0.5	
5—10	64 51	$\begin{array}{c c} 11 \\ 22 \end{array}$	1,936,113	33.1	5.7	114,262	3.78	.65	
10-15	39	36	1,847,295	27.6	11.9	107,209	2.96	1.27	
15-20	60	67	1,747,631	22.3	20.6	102,735	2.29	2.12	
20-25	95	71	1,654,895	36.3	40.5	99,796	3.62	4.04	
25-35			1,502,652	63.2	47.3	95,946	6.06	4.54	
35-45	317	157	2,831,655	111.9	55.4	161,580	18.08	8.95	
45-55	978	183	2,336,508	418.6	78.3	122,848	51.42	9.62	
55-65	2901	252	1,694,333	1712.2	148.7	89,222	152.77	13.27	
	4627	461	1,085,156	4263.9	424.8	59,741	254.73	25.38	
65-75	4602	512	602,764	7634.8	849.4	33,080	252.56	28.10	
75—85	1687	155	183,869	9175.0	843.0	12,090	110.93	10.19	
85	168	9	22,737	7388-8	395.8	1,491	11.02	•59	
All ages	15,589	1936	17,445,608	893.57	110-96	1,000,000	870-22	108.72	

TABLE I. Corrective Factors for Census Year 1911.

Accordingly for 1911 we have corrective factors for:

Cancer =
$$_{1}F_{1911} = 870 \cdot 22/893 \cdot 57 = \cdot 97386$$
.

Diabetes =
$${}_{2}F_{1911} = 108.72/110.96 = .97981$$
.

The accompanying Table II gives under each year the total male population, the total deaths from cancer and from diabetes, the crude deathrates, the corrective factors and the corrected deathrates. From the latter the first six differences, Δ_1 to Δ_6 , were found and these were correlated for the two diseases. The following correlations were found:

Correlation of Differences of Corrected Deathrates.

Corrected Dea	athrates		•••	• • •	•••		$+\cdot958\pm\cdot008$,
First Differences			•••	• • •	• • •		$+\cdot058\pm\cdot113$,
Second	,,	•••	• • •		• • •		$+ \cdot 043 \pm \cdot 130$,
Third	,,				•••	• • •	$+ \cdot 047 \pm \cdot 143$,
Fourth	,,	• • •					$+ .051 \pm .154$,
Fifth	,,	• • •	• • •				$+\ 050 \pm \cdot 164,$
Sixth	,,	•••		• • •			$+\cdot 045\pm \cdot 173$.

It will be seen that with the first differences we get an enormous drop in the correlation of the cancer and diabetes deathrates, i.e. from +.958 to +.058, and that very rapidly the correlation becomes steady* and insignificant. Thus with the removal of the time factor there appears to be no organic relationship between the prevalence of diabetes and cancer. A year in which there is an excess of diabetes deaths is not a year which will probably have an excess of cancer deaths.

Now this result although absolutely conclusive as far as it goes, must not be stretched beyond its exact limitation. There is nothing to show that an increase of cancer at any given epoch will be accompanied by an increase of diabetes. It might be argued that it is conceivable that an increase of diabetes will be followed at an interval by an increase of cancer. I have not directly tested this, but it is to some extent indirectly tested by the method of variate differences. The sixth difference correlation correlates functions of the deathrates for seven years in the case of two diseases, and would be likely to indicate if there were any such related succession. At the same time it must be remarked that previous investigators have all dealt with the contemporaneous deathrates of cancer and

^{*} This steadiness can be illustrated also by the method discussed in *Biometrika*, Vol. x. p. 272 and illustrated on p. 346.

Values of $\sigma^2_{\Delta^m x}/\sigma^2_{\Delta^{m-1}x}$	and their	approach	to	$4-\frac{2}{m}$.
--	-----------	----------	----	-------------------

m	Theoretical Ratio = $4 - \frac{2}{m}$	Cancer	Diabetes	Mean
1 2	2·000	0.655	0.830	0·742
	3·000	2.589	2.969	2·779
3	3·333	3·431	3 386	3·409
4	3·500	3·446	3 549	3·497
5	3.600	$3.719 \\ 3.653$	3·627	3·673
6	3.667		3·669	3·661

It will be seen that there is a rapid approach to the theoretical values of the ratio.

TABLE II. Cancer and Diabetes corrected Deathrates and Corrective Factors England and Wales 1860–1913.

	e u	g	· Q	φ.	- 9	Deaths from Diabetes	s es	, D	19 s eg
F4	Total Male Population	Deaths from Cancer	Crude Cancer Deathrate	Cancer Corrective Factor	Corrected Cancer Deathrate	eaths fro Diabetes	Crude Diabetes Deathrate	Diabetes Corrective Factor	Corrected Diabetes Deathrate
Year	l l l	hs no	Crude Cancer eathra	Cancer orrectiv Factor	orrecte Cancer eathrat	shs	Crude Diabete Sathra	rec	recarbe
	op	Co se	2 2 g	್ದಿ ಕ್ಷಿಕ್ಕ	g Co	Dia	Die	E E	Dis Dis
	EA	Ď		0	0	A.	- H	. 0	O. 1H
1860	9,704,394	2100	216.4	1.0544	228.2	346	35.7	1.0542	37.6
1861	9,801,152	2180	222.4	1.0523	234.0	363	37.0	1.0541	39.0
1862	9,923,272	2256	227.3	1.0498	238.6	382	38.5	1.0537	40.6
1863	10,046,909	2311	230.0	1.0480	241.0	359	35.7	1.0536	37.6
1864	10,172,089	2459	242.7	1.0465	252.9	454	44.6	1.0538	47.0
1865	10,298,826	2389	232.0	1.0452	242.5	430	41.8	1.0541	44.0
1866	10,427,146	2532	242.8	1.0444	253.6	437	41.9	1.0545	44.2
1867	10,557,066	2650	251.0	1.0439	262.0	434	41.1	1.0551	43.4
1868	10,688,600	2743	256.6	1.0440	267.9	445	41.6	1.0559	43•9
1869	10,821,775	2933	271.0	1.0446	283.1	497	45.9	1.0569	48.5
1870	10,956,608	2971	271.2	1.0460	283.7	470	42.9	1.0580	45.4
1871	11,092,620	3060	275.9	1.0478	289.1	541	48.8	1.0593	51.7
1872	11,242,495	3228	287.1	1.0506	301.6	513 550	$45.6 \\ 48.3$	1.0605	48.4
1873 1874	11,394,394	3337	292.9	1.0540	308.7	528	45.7	1.0623 1.0642	51·3 48·6
1874	11,548,346	$\frac{3470}{3614}$	300·5 308·8	1.0575 1.0615	317·8 327·8	614	52.5	1.0642	55.9
1876	11,862,519	3708	312.6	1.0650	332.9	582	49.1	1.0683	52.4
1877	12,022,796	3950	328.5	1.0686	351.0	663	55.1	1.0703	59.0
1878	12,185,238	4164	341.7	1.0719	366.3	669	54.9	1.0722	58.9
1879	12,349,875	4149	336.0	1.0747	361.1	645	52.2	1.0738	56.0
1880	12,516,737	4423	353.4	1.0770	380.6	624	49.9	1.0752	53.7
1881	12,673,435	4611	363.8	1.0787	392.4	769	60.7	1.0762	65.3
1882	12,808,460	4685	365.8	1.0795	394.9	733	57.2	1.0765	61.6
1883	12,944,923	4967	383.7	1.0800	414.4	838	64.7	1.0764	69.6
1884	13,082,837	5346	408.6	1.0804	441.5	886	67-7	1.0759	72.8
1885	13,222,216	5495	415.6	1.0803	449.0	896	67.8	1.0752	72.9
1886	13,363,079	5754	430.6	1.0798	465.0	978	73.2	1.0740	78.6
1887	13,505,441	6262	463.7	1.0794	500.5	1019	75.5	1.0724	80.9
1888	13,649,314	6284	460.4	1.0787	496.6	1070	78.4	1.0714	84.0
1889	13,794,721	6891	499.5	1.0777	538.3	980	71.0	1.0697	76.0
1890	13,941,671	7137	511.9	1.0766	551.1	$1076 \\ 1082$	77.2	1.0679	82.4
1891 1892	14,092,535	7294	517.6	1.0754	556.6	1142	76.8	1.0662	81.9
1893	14,232,190	7547 7908	529·5 548·6	$1.0740 \\ 1.0728$	568·7 588·5	1169	80·1 81·1	1.0642 1.0622	85·2 86·1
1894	14,576,948	8077	554.1	1.0715	593.7	1166	80.0	1.0603	84.8
1895	14,742,091	8628	585.3	1.0698	626.2	1262	85.6	1.0584	90.6
1896	14,909,104	9216	618-1	1.0682	660.3	1243	83.4	1.0560	88.1
1897	15,078,010	9573	634.9	1.0662	676.9	1303	86.4	1.0536	91.0
1898	15,248,823	9932	651.3	1.0639	692.9	1437	94.2	1.0510	99.0
1899	15,421,578	10337	670.3	1.0614	711.5	1448	93.9	1.0480	98.4
1900	15,596,283	10475	671.6	1.0583	710.8	1455	93.3	1.0445	97.5
1901	15,769,412	10891	690.6	1.0550	728.6	1565	99.2	1.0408	103.3
1902	15,933,658	11098	696:5	1.0505	731.7	1462	91.8	1.0368	95.1
1903	16,099,612	11799	732.9	1.0453	$766 \cdot 1$	1409	87.5	1.0322	90.3
1904	16,267,291	12086	743.0	1.0390	772.0	1612	99.1	1.0270	101.8
1905	16,436,707	12470	758.7	1.0318	782.8	1708	103.9	1.0214	106.1
1906 1907	16,607,890 16,780,848	13257	798.2	1.0238	817.2	1736	104.5	1.0153	106.1
1907	16,780,848	13199 13901	786.6	1.0056	798.4	1738 1842	103.6	1.0070	104.5
1909	17,132,182	14263	819·8 832·5	1.0056 0.9953	824·4 828·6	1898	108·6 110·8	1·0022 ·9948	108·8 110·2
1910	17,310,586	14843	857.5	0.9846	844.3	1982	114.5	9873	113.0
1911	17,490,847	15589	893.6	0.9739	870.2	1936	111.0	-9798	108.7
1912	17,672,985	16188	916.0	0.9620	881.2	2064	116.8	.9716	113.5
1913	17,857,014	16918	$947 \cdot 4$	0.9580	907.6	2122	118.8	.9637	114.5
L			1		1				1

Of course such an investigation as the present does not provide any measure of whether persons contracting diabetes are more liable to die of cancer, for the deaths would be registered as deaths from cancer, yet this not improbably is the vital problem*. The result reached, however, is consistent with a continuous increase of both cancer and diabetes not essentially related organically with each other. In this case Maynard's results for the United States would mean that in that huge population the towns and states were in heterogeneous stages of historical development, whether as to medical training, accuracy of record or cultural conditions, while the non-appearance of the high correlation in the Swiss data would merely signify that the units chosen there were homogeneous in such characters, and this considering the size of Switzerland is not improbable. In other words some American districts present with regard to cancer and diabetes the English conditions of 1870 and others the English conditions of 1910. The time correlation of the English deathrates may thus correspond to the geographical correlation of the American deathrates. If so, since, when the time factor is removed, the English diabetes and cancer deathrates show no organic correlation, we cannot use the English material to support the view that the American relationship is organic in character. The correlations that Maynard has indicated between both cancer and diabetes deathrates and the spread of insanity, suicides and the newspaper press, seem indeed to indicate not an organic relationship of the two diseases, but as Maynard himself has suggested a wider range of both with advancing cultural conditions.

^{*} The enquiry as to whether cancer patients are suffering or have suffered from diabetes should always be made and the answer recorded.

A CONTRIBUTION TO THE PROBLEM OF HOMOTYPOSIS

DATA FROM THE LEGUME CERCIS CANADENSIS

By J. ARTHUR HARRIS, Ph.D., Carnegie Institution of Washington, U.S.A.

I. Introductory Remarks.

In 1905, I began the collection of series of data for a comprehensive study of the problem of intra-individual or "homotypic"* correlation for fertility and fecundity characters in plants. Such characters were chosen not merely because of particular interest in that subject in general but because of the conviction that the intra-class and inter-class† correlation methods applied to the problem of fertility and fecundity might yield results of considerable physiological interest. Since that time, circumstances have prevented my carrying out the work along the lines originally laid down. The constants given here are drawn from notes of the work then done.

II. MATERIALS.

The data presented are exclusively those for pod length l, number of ovules formed o, number of seeds developing s, and number of ovules failing to develop f, in the small arborescent legume, Cercis Canadensis. Three collections are involved: one from Meramec Highlands, near St Louis, Mo., made in the autumn of 1905; one from the vicinity of Lawrence, Kansas, taken in 1905; one from the neighbourhood of Sharpsburg, Athens County, Ohio, gathered in 1908. These materials have already been considered in dealing with other problems quite distinct from the present one; the reader seeking more comprehensive information with regard to the materials used should consult the papers cited below:

For the Meramec Highlands collections two sets of symmetrical homotypic correlation tables were prepared.

^{*} K. Pearson, and others: Phil. Trans. B, Vol. cxcvii. pp. 286-288, 1901.

[†] Biometrika, Vol. 1x. pp. 446-472, 1913.

[‡] Bot. Caz. Vol. L. pp. 117-127, 1910; Bull. Torr. Bot. Club, Vol. XII. pp. 243-256, 1914

I used the first 26 pods taken from 112 trees. The desirability of working with a larger series of data from individual trees then appealed to me and a table comprising the first 100 pods from the 60 trees from which that number could be secured was undertaken. For both of these series all the possible direct and cross homotypic correlations were ascertained for the fertility characters.

The Kansas series comprised only 22 individual trees, from each of which 100 pods were counted. The Ohio series included 150 pods each from 26 trees. For these two series all possible homotypic correlations for the fertility characters have been determined.

III. METHODS.

The three direct intra-individual or homotypic correlations are:

- (1) Ovules of first pod and ovules of second pod, Tables I, II*.
- (2) Seed developing in first pod and seed developing in second pod, Tables III, IV.
 - (3) Ovules failing in first pod and ovules failing in second pod, Tables V, VI.

The cross-homotypic relationships are:

- (4) Ovules of first pod and seeds developing in second pod, Tables VII, VIII.
- (5) Ovules of first pod and ovules failing in second pod.
- (6) Seeds developing in first pod and ovules failing in second pod.

Tables for two of the cross correlations are unnecessary. Thus for the relationship between the number of ovules in the first pod and the number of ovules failing in the second pod, $r_{o_1 f_2}$, the slope of the regression line is clearly

$$r_{o_1 f_2} \frac{\sigma_{f_2}}{\sigma_{o_1}} = r_{o_1 o_2} \frac{\sigma_{o_2}}{\sigma_{o_1}} - r_{o_1 s_2} \frac{\sigma_{s_2}}{\sigma_{o_1}},$$

or in terms of correlation

$$r_{o_1 f_2} = r_{o_1 o_2} \frac{\sigma_{o_2}}{\sigma_{f_2}} - r_{o_1 s_2} \frac{\sigma_{s_2}}{\sigma_{f_2}}.$$
 (i)

Again, for number of seeds in the first pod and number of ovules failing to develop in the second pod the slope of the regression straight line is

$$egin{align*} r_{s_1f_2} rac{\sigma_{f_2}}{\sigma_{s_1}} &= r_{s_1o_2} rac{\sigma_{o_2}}{\sigma_{s_1}} - r_{s_1s_2} rac{\sigma_{s_2}}{\sigma_{s_1}}, \ & r_{s_1f_2} &= r_{s_1o_2} rac{\sigma_{o_2}}{\sigma_{f_o}} - r_{s_1s_2} rac{\sigma_{s_2}}{\sigma_{f_o}}. \end{array}$$
(ii)

whence

In calculating the correlations for length of pod in the Meramec Highlands series and for the fertility of characters of the Ohio and Kansas series I have had recourse to the direct and cross intra-class correlation formulae (v)-(xii) of

^{*} The numbers refer to the tables for the Meramec Highlands series.

Biometrika, Vol. ix. pp. 450-452, 1913. In present notation the product summations are for the several correlations:

where N is the population of individuals resulting from the n(n-1)-fold weighting, Σ denotes a summation for the individual pods of a class and S a summation for the classes (individual trees). For data see Table IX.

In the first three of these the negative sign term of the formula is merely the second moment of the unweighted population and in the fourth it is the product moment of the correlation surface r_{os} —the "organic" relationship between ovules and seeds of the same pod—from which the three second moments, Σ (o'2), Σ (s'2), Σ (f'2), may be calculated. The 5th and 6th cross correlations may be determined from the other correlations by (i) and (ii), or since f = o - s the minus terms in (vii) and (viii) are given by

$$\begin{split} S\left[\Sigma\left(o'f'\right)\right] &= S\left[\Sigma\left(o'^2\right)\right] - S\left[\Sigma\left(o's'\right)\right], \\ S\left[\Sigma\left(s'f'\right)\right] &= S\left[\Sigma\left(s'o'\right)\right] - S\left[\Sigma\left(s'^2\right)\right], \end{split}$$

which may be most easily calculated from the published tables for r_{os} , since all classes are equally large.

IV. PRESENTATION OF DATA.

The constants for both direct and cross homotypic correlations are shown for all series in Table A.

The reader, in examining these constants, will remember that the two Meramec Highlands series were taken from the same habitat and in the same year. They are known to differ only in (i) the smaller number of pods from each individual in the first series, (ii) the fact that the first series contains pods from 50 individuals which do not occur in the second lot. The Ohio and Kansas collections on the other hand represent materials of the same species from localities several hundreds of miles distant. Unfortunately, both of these contain too few individuals to be fully trustworthy.

There can be no reasonable question of the statistical trustworthiness of all the direct homotypic correlations. The lowest is that for ovules failing per pod and this is in all cases six or more times its probable error. The coefficients $r_{o_1o_2}$, $r_{s_1s_2}$ are from 25 to 45 times as large as their probable errors. For the most part the cross correlations may also be regarded as statistically trustworthy.

TABLE A.

Homotypic Correlations* for Cercis.

eramec ands, Mo., 2 Trees Meramec Highlands, Mo. 60 Trees	Sharpsburg, Ohio, 26 Trees	Lawrence, Kansas, 22 Trees
$24 \pm .0109$ $\cdot 3527 \pm .007$	$2768 \pm .0100$	·3999 ± ·0121
$77 \pm .0116$ $-2306 \pm .008$	$\cdot 1798 \pm \cdot 0104$	$\cdot 2019 \pm \cdot 0138$
70 + .0199 .0694 + .009	1756 + .0104	0.0858 + 0.0143
79 ± 10125 10084 ± 1008	1750 ± 10104	.0000 ± .0140
$58 \pm .0115$ $\cdot 2622 \pm .008$	$\cdot 1173 \pm \cdot 0106$	$\cdot 2574 \pm \cdot 0134$
79 .0195 .0201 .009	0769 .0107	$\cdot 1195 \pm \cdot 0142$
76 ± 10125 10501 ± 1006	0702 ± 0107	1133 ± 10142
$70 \pm .0125 \mid0261 \pm .008$	$1095 \pm .0107$	$\cdot 0344 \pm \cdot 0144$

The regression equations for the two Meramec Highlands series appear in Table B. The regression lines for the direct relationships $r_{o_1o_2}$, $r_{s_1s_2}$ are given in Diagrams I and II, and for the cross relationships $r_{o_1s_2}$, $r_{s_1o_2}$ in Diagrams III and IV.

TABLE B.

Regression Equations for Meramec Highlands Collection.

2912 Pods	6000 Pods
$\begin{array}{c} o_2 = 3 \cdot 0571 + \cdot 3524 o_1 \\ s_2 = 2 \cdot 9563 + \cdot 2677 s_1 \\ f_2 = \cdot 6171 + \cdot 0979 f_1 \\ s_2 = 2 \cdot 4485 + \cdot 3365 o_1 \\ f_2 = \cdot 6089 + \cdot 0159 o_1 \\ f_2 = \cdot 8671 - \cdot 0453 s_1 \\ \end{array}$	$\begin{array}{c} o_2 = 2 \cdot 9925 + \cdot 3527 o_1 \\ s_2 = 3 \cdot 0018 + \cdot 2306 s_1 \\ f_2 = \cdot 6722 + \cdot 0684 f_1 \\ s_2 = 2 \cdot 3982 + \cdot 3252 o_1 \\ f_2 = \cdot 5943 + \cdot 0275 o_1 \\ f_2 = \cdot 7965 - \cdot 0192 s_1 \end{array}$

Inspection indicates that the regression of the ovules of the second pod (Diagrams I and II, upper lines) on the ovules of the first and of the seeds of the second pod (Diagrams III and IV, steeper lines) on the ovules of the first are linear. It is not so clear in the case of ovules or seeds of the second pod on seeds

^{*} All probable errors are calculated on the basis of the actual, not the weighted, number of pods.

DIAGRAM I. Direct Homotyposis. Cercis Canadensis (Meramec Highlands, 1st Series).

Ovules on Ovules and Seeds on Seeds.

Diagram II. Direct Homotyposis. Cercis Canadensis (Meramec Highlands, 2nd Series).

Ovules on Ovules and Seeds on Seeds.

DIAGRAM III. Cross Homotyposis. Cercis Canadensis (Meramec Highlands, 1st Series).

Ovules on Seeds and Seeds on Ovules.

DIAGRAM IV. Cross Homotyposis. Cercis Canadensis (Meramec Highlands, 2nd Series).

Ovules on Seeds and Seeds on Ovules,

of the first, although even here (see Diagrams I and II, lower lines, III and IV, less steep lines) the deviation from linearity is not great*.

Returning now to the constants and considering them in detail, we note that for all localities the direct homotypic correlations are highest for the number of ovules per pod and lowest for the number of ovules failing. The averages ‡ are

 Ovules and Ovules ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ..

The cross relationships are highest for ovules formed and seeds developing per pod; much lower for ovules formed and ovules failing to develop; lowest for seeds developing and seeds failing to develop—three of the four values for $r_{s_1 f_2}$ are negative in sign.

The averages are:

Ovules and Seeds $+ \cdot 2168$ Ovules and Ovules failing ... $+ \cdot 0712$ Seeds and Ovules failing ... $- \cdot 0440$

From these data it appears that the individuality of the trees is more marked for number of ovules per pod than for either number of seeds matured or number of ovules failing per pod.

Number of ovules per pod may be regarded in comparison with number of seeds developing and number of ovules failing to develop as an independent variable§.

The number of seeds per pod is absolutely limited by (i) the number of ovules formed in the pod, and (ii) the number of these which are prevented from developing by peculiarities inherent in ovum or sperm, by accidents of fertilization, inadequacy of food supply, or other unknown causes. Or conversely, the number of ovules failing per pod is dependent upon the number of ovules formed and the number of seeds developing. Thus the number of ovules per pod determines within certain limits the number of seeds developing, or the number of ovules failing, per pod; but in the nature of things it cannot be influenced by either of these.

Now since the three characters under consideration are correlated, i.e. since r_{os} , r_{of} , r_{sf} have been found to have sensible values, it is clear that some homotypic relationship would arise for seeds because of the correlation for ovules, or for ovules failing because of the correlation for ovules and seeds. Thus a statistically significant value of an intra-individual correlation for seeds per pod does not

- * In the case of the relationship for ovules and ovules in the 60 trees from Meramec Highlands I have found the raw value of η to be ·35336, exceeding r by only ·00064.
 - † In the Ohio series $r_{o_1o_2}$ is very low; $r_{s_1s_2}$ and $r_{f_1f_2}$ are not sensibly different.
- ‡ The constants for the 112 trees from Meramec Highlands are alone used in obtaining the general averages.
- § This does not mean that in any given pod all three of these characters are not dependent upon the same ultimate causes, but merely that in a proximate sense number of ovules per pod is physiologically independent while number of seeds and number of ovules failing are physiologically dependent.

necessarily mean that there are any specific biological factors influencing the number of seeds developing or the number of ovules failing in all of the pods of the same individual in a similar manner. The observed values of correlations for (semi)dependent characters may be merely the resultant of independent variables with which they are correlated.

To remove the influence of $r_{o_1o_2}$ upon $r_{s_1s_2}$ we have recourse to the partial correlation coefficient for two variables, i.e. o_1 and o_2 , constant. In our notation this is

$$s_{1}s_{2}r_{s_{1}s_{2}} = \frac{r_{s_{1}s_{2}}(1-r_{o_{1}o_{2}}{}^{2})-r_{o_{1}s_{1}}r_{o_{1}s_{2}}-r_{o_{2}s_{1}}r_{o_{2}s_{2}}+r_{o_{1}o_{2}}(r_{o_{1}s_{1}}r_{o_{2}s_{2}}+r_{o_{1}s_{2}}r_{o_{2}s_{1}})}{\sqrt{(1-r_{o_{1}o_{2}}{}^{2}-r_{o_{2}s_{1}}{}^{2}-r_{o_{1}s_{1}}{}^{2}+2r_{o_{1}o_{2}}r_{o_{1}s_{1}}r_{o_{2}s_{1}})}\sqrt{(1-r_{o_{1}o_{2}}{}^{2}-r_{o_{2}s_{2}}{}^{2}-r_{o_{1}s_{2}}{}^{2}+2r_{o_{1}o_{2}}r_{o_{1}s_{2}}r_{o_{2}s_{2}})}}.$$

But since we are dealing with symmetrical tables we may write*

$${}_{o'o'}r_{s's'} = \frac{r_{s's'}\left(1-r_{o'o'}^2\right)-2r_{os}r_{o's'}+r_{o'o'}\left(r_{os}^2+r_{o's'}^2\right)}{1-r_{o'o'}^2-r_{o's'}^2-r_{os}^2+2r_{o'o'}r_{os}r_{o's'}}\,,$$

where the correlations without dashes are those for the same pod and those with dashes are for the relationships between different pods.

In applying this formula to the actual data, the values of r_{os} for the individual pods are essential. These have been deduced from Tables X, XI below and Tables VI, VII of a former paper \dagger .

Meramec Highlands.

6000 pods,
$$r_{os} = .6855 \pm .0046$$
, 2912 pods, $r_{os} = .6936 \pm .0065$, Sharpsburg, Ohio, $r_{os} = .4553 \pm .0086$, Lawrence, Kansas, $r_{os} = .6032 \pm .0091$.

The partial correlation coefficients for seeds per pod for constant numbers of ovules per pod are:

Series	o'o' ^{?*} s's'	$r_{\mathrm{s's'}}$	$\frac{o'o'T_{8'8'}}{T_{8'8'}}$
Meramec Highlands 112 Trees 60 Trees Sharpsburg, Ohio Lawrence, Kansas	·1063	·2677	·397
	·0700	·2306	·304
	·1645	·1798	·915
	·0582	·2019	·288

These give a mean value of .0998 as compared with the mean relationship uncorrected for the influence of ovules per pod, $r_{s's'} = .2164$.

Apparently, there are specific physiological; factors which tend to differentiate

- * Biometrika, Vol. vn. p. 328. For original see K. Pearson, Phil. Trans. A, Vol. cc. p. 31, 1902.
- † Bull. Torr. Bot. Club, Vol. xll. pp. 243–256, 1914.

[‡] Under the term physiological as used here are included (a) the ecological factors which determine whether an ovule shall receive a sperm, (b) the nutritional factors which determine the availability of food materials, and other environmental prerequisites for development, and (c) the innate vigour or other physiological characters of the individual which determine whether a fertilized ovule shall develop into a seed.

the trees with respect to seed production, but the bulk of the interdependence for seeds seems to be merely the resultant of $r_{o'o'}$ and r_{os} *.

Relative net individuality of the trees with respect to capacity for seed production is highest in the Ohio series. This is due to the fact that both $r_{o_1o_2}$ and r_{os} are lower for this series than for any other.

The frequency distribution of length of pod measured to the nearest millimetre in 50 pods each from 60 trees is shown in Table XII. The summed length for the individual trees, i.e. mean length \times 50, is given in Table XIII. By the direct intra-class formulae I find

$$r_{l_1 l_2} = .4784 \pm .0095,$$

a homotypic value distinctly higher than those found for the fertility characters.

V. DISCUSSION OF RESULTS.

The only homotypic constants available for fertility characters in plants are those furnished for several species of Leguminosae by Pearson and his associates †. They give the direct correlations as shown in Table C.

TABLE C.

Homotypic Correlations for Fertility Characters.

Species of Legume	Ovules	Abortive Ovules	Ripe Seeds
Cytisus Scoparius			•4155
Lotus Corniculatus	_		.2354
,, ,,		_	·1884
Lathyrus odoratus	$\cdot 2182$	-2679	-0830
	$\cdot 3658$	·1759	·2091
Lathyrus Sylvestris	$\cdot 1695$	·1376	·2184
,, ,,	_		-1877
Vicia Faba	·1724	·1493	·1243
Vicia Hirsuta	·2315	·1827	·2077

In addition to these values I have found in a short series of only 12 trees of the arborescent legume *Robinia Pseud-acacia* worked out as an illustration of method‡ the values $r_{o_1o_2} = \cdot 452$, $r_{s_1s_2} = \cdot 449$, $r_{o_1s_2} = \cdot 383$. For a short series (23 plants) of *Cytisus Scoparius* § I have found $r_{s_1s_2} = \cdot 198$.

The average homotypic values for ovules in *Cercis* are distinctly higher than the comparable values for other species hitherto adequately investigated. The

^{*} In Sanguinaria (Biometrika, Vol. vii. p. 328) the correlation for the number of seeds on the two placentae of the same fruit seems to be chiefly due to physiological factors. In this case an organic correlation is superimposed upon a homotypic. The point may profitably be discussed comparatively when other data now in hand are completely analyzed.

[†] K. Pearson and others, Phil. Trans. A, Vol. cxcvn. pp. 364-379, 1901.

[‡] Biometrika, Vol. 1x. pp. 456-458, 463, 1913.

[§] Amer. Nat. Vol. xLv. pp. 566-571, 1911. Possibly this material is of closely selected ancestry.

mean values for seeds are about the same as those found by English investigators. The mean correlation for ovules failing is lower.

The homotypic correlation for seeds matured per pod is statistically largely a resultant of the homotypic correlation for ovules and the "organic" correlation for ovules and seeds of the same pod. Thus homotypic correlation for seeds per pod does not entirely disappear when correction for $r_{o_1o_2}$ and r_{os} is made by the application of partial correlation formulae. There are, therefore, (proximately) independent ecological and physiological factors tending to differentiate individuals with respect to capacity for seed production.

The general rule for fertility characters in Leguminosae seems to be for the maximum value of the homotypic correlation to be that for number of ovules per pod, much lower values are found for seeds matured or abortive ovules per pod. I believe that the evidence also points in the direction of a lower correlation for ovules than for the more truly vegetative characters of the plant. Thus Pearson's average values for $r_{o_1o_2}$ are far lower than his average for leaves and other similar organs. The result given above for length of pod $r_{l_1 l_2}$ is practically $\cdot 500$, and distinctly higher than $r_{o_1o_2} = \cdot 352$ from the same habitat.

TABLE I.
Ovules per Pod.

		2	3	4	5	6	7	Totals
vules per Pod.	2 3 4 5 6 7	18 111 197 46 3 0	111 836 2382 942 239 15	197 2382 11770 8642 2599 160	46 942 8642 12134 5613 598	3 239 2599 5613 3742 529	0 15 160 598 529 148	375 4525 25750 27975 12725 1450
0	Totals	375	4525	25750	27975	12725	1450	72800

TABLE II.
Ovules per Pod.

1		2	3 .	4	5	6	7	8	Totals
Ovules per Pod.	2 3 4 5 6 7 8	98 1025 1775 419 49 0	1025 10608 25184 11257 2300 111 5	$1775 \\ 25134 \\ 101272 \\ 74059 \\ 18242 \\ 1296 \\ 31$	$\begin{array}{c} 419 \\ 11257 \\ 74059 \\ 92240 \\ 37849 \\ 4012 \\ 142 \end{array}$	49 2300 18242 37849 25458 3833 181	0 111 1296 4012 3833 712 35	$\begin{array}{c} 0 \\ 5 \\ 31 \\ 142 \\ 181 \\ 35 \\ 2 \end{array}$	3366 50490 221859 219978 87912 9999 396
	Totals	3366	50490	221859	219978	87912	9999	396	594000

TABLE III.

Seeds per Pod.

		1	2	3	4	5	6	7	Totals
Seeds per Pod.	1 2 3 4 5 6 7	16 95 179 207 94 9	95 710 1596 1691 693 152 13	179 1596 5106 6260 2975 747 62	207 1691 6260 10164 6106 1821 151	94 693 2975 6106 4986 2109 212	$\begin{array}{c} 9 \\ 152 \\ 747 \\ 1821 \\ 2109 \\ 1096 \\ 166 \end{array}$	$\begin{array}{c c} 0 \\ 13 \\ 62 \\ 151 \\ 212 \\ 166 \\ 46 \end{array}$	600 4950 16925 26400 17175 6100 650
	Totals	600	4950	16925	26400	17175	6100	650	72800

TABLE IV.

Seeds per Pod.

		1	2	3	4	5	6	7	8	Totals
Seeds per Pod.	1 2 3 4 5 6 7 8	394 1467 2965 2861 1412 283 23 0	$1467 \\ 7224 \\ 17224 \\ 16294 \\ 7546 \\ 1520 \\ 104 \\ 2$	2965 17224 47594 52375 27161 6032 388	2861 16294 52375 71576 45505 12278 1041 30	$1412 \\ 7546 \\ 27161 \\ 45505 \\ 36836 \\ 13121 \\ 1304 \\ 72$	283 1520 6032 12278 13121 6334 853 70	23 104 388 1041 1304 853 134 14	$egin{array}{c} 0 \\ 2 \\ 8 \\ 30 \\ 72 \\ 70 \\ 14 \\ 2 \\ \end{array}$	9405 51381 153747 201960 132957 40491 3861 198
	Totals	9405	51381	153747	201960	132957	40491	3861	198	594000

TABLE V.

Ovules failing per Pod.

				·				
Pod.		0	1	2	3	4	5	Totals
Ovules Failing per	0 1 2 3 4 5	19140 12531 3620 756 91 12	12531 9536 3182 692 97 12	3620 3182 1206 313 53	756 692 313 134 30 0	91 97 53 30 4 0	$\begin{array}{ c c } 12 \\ 12 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array}$	36150 26050 8375 1925 275 25
0 v	Totals	36150	26050	8375	1925	275	25	72800

TABLE VI.

Ovules Failing per Pod.

			_		-			
Pod.		0	1	2	3	4	5	Totals
les Failing per	0 1 2 3 4 5	143232 101090 32493 6712 1408 185	101090 78862 27035 6332 1227 185	32493 27035 10220 2735 596 82	6712 6332 2735 884 233 33	1408 1227 596 233 92 8	185 185 82 33 8 2	285120 214731 73161 16929 3564 495
Ovules	Totals	285120	214731	73161	16929	3564	495	594000

TABLE VII.

Seeds per Pod.

		1	2	3.	4	5	6	7	Totals
Ovules per Pod.	2 3 4 5 6 7	$7 \\ 57 \\ 261 \\ 206 \\ 67 \\ 2$	86 606 2213 1553 460 32	154 1726 7443 5511 1931 160	110 1568 10099 10150 4104 369	18 471 4660 7592 3953 481	0 92 1003 2697 1975 333	$\begin{array}{c} 0 \\ 5 \\ 71 \\ 266 \\ 235 \\ 73 \end{array}$	375 4525 25750 27975 12725 1450
	Totals	600	4950	16925	26400	17175	6100	650	72800

TABLE VIII.

Seeds per Pod.

		1	2	3	4	5	6	7	8	Totals
Ovules per Pod.	2 3 4 5 6 7 8	98 1158 4206 3066 800 72 5	658 7868 23467 15160 3923 294 11	1407 19077 67408 49891 14687 1238 39	953 15761 78277 76785 27312 2793 79	234 5710 40285 56232 27097 3260 139	16 882 7727 17265 12491 2005 105	$\begin{array}{c} 0 \\ 34 \\ 485 \\ 1525 \\ 1492 \\ 309 \\ 16 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 4 \\ 54 \\ 110 \\ 28 \\ 2 \end{bmatrix}$	3366 50490 221859 219978 87912 9999 396
	Totals	9405	51381	153747	201960	132957	40491	3861	198	594000

TABLE IX.

Tree Ovules Seeds Ovules Seeds		Kansas	Series	Ohio	Series
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tree				Total Seeds
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Σ (o')	$\Sigma\left(s'\right)$	Σ (ο')	$\Sigma (s')$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		522	461	740	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	471	377	690	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	480			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	456			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		591			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
24 — 800 632		444	403		
		-	_		
25 — 925 651		Ministration			
		_			$651 \\ 612$

TABLE X.

Seeds per Pod.

-									
		1	2	3	4	5	6	7	Totals
Ovules per Pod.	2 3 4 5 6 7	1 11 8 3 1	14 50 89 38 7	120 380 147 29 1	553 421 80 2	510 169 8			15 181 1030 1119 509 58
	Totals	24	198	677	1056	687	244	26	2912

TABLE XI.

Seeds per Pod.

		1	2	3	4	5	6	7	8	Totals
Ovules per Pod.	2 3 4 5 6 7 8	3 34 37 17 4 —	31 176 226 71 14 1	300 885 310 54 4	1093 784 153 9	1040 288 15	375 33 1	39		34 510 2241 2222 888 101 4
	Totals	95	519	1553	2040	1343	409	39	2	6000

TABLE XII.

Length of Individual Pods.

L f	L	f	$egin{array}{c c} L & f \end{array}$	L	f	L	f	L	f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 56 57 58 59 60 61 62 63 64	13 12 19 19 13 54 39 54 51 63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 76 77 78 79 80 81 82 83 84	213 152 122 117 53 187 82 86 64 56	85 86 87 88 89 90 91 92 93 94	53 28 26 18 3 21 7 11 5	95 96 97 98 99 100 101 102 103 104	2 3 2 1 3 3 1 -

TABLE XIII.

Total Lengths of 50 Pods for 60 Individual Cercis Trees.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3598 3739 3463 3945 3484 3806 3978 3725 3279 3502 3791 3749	3418 3848 3388 4026 3977 3244 3544 3223 3053 3765 3603 4117	3202 3642 3459 4086 4031 3590
---	---	---	--

STATION FOR EXPERIMENTAL EVOLUTION,

COLD SPRING HARBOR, LONG ISLAND, U.S.A.

ON THE PROBABLE ERROR OF A COEFFICIENT OF CONTINGENCY WITHOUT APPROXIMATION.

BY ANDREW W. YOUNG, M.A. AND KARL PEARSON, F.R.S.

(1) Introductory.

There have been two memoirs dealing with the probable error of a coefficient of contingency, namely that by Blakeman and Pearson in 1906* and that by Pearson in 1914†. In the former paper the authors started from the expression for the mean square contingency

 $\phi^2 = S\left(\frac{n^2_{ss'}}{n_{s} \cdot n_{s} s'}\right) - 1,$

and varied $n_{ss'}$, n_s , and $n_{ss'}$ but neglected the squares and products of these variations. The result was lengthy, and the arithmetical work laborious. In 1914 Pearson gave reasons for considering n_s , and $n_{s'}$ as constant during the sampling and got a much simpler value for σ_{ϕ^2} . The result in actual numerical cases did not differ widely from the much more elaborate formula of the earlier memoir. Recent work in other directions has, however, shown that caution must be used in neglecting the square and product terms of the variations due to random sampling, and the object of the present paper is to consider the variation of ϕ^2 on the hypothesis of Pearson's 1914 note but without approximation.

Let a population of size M be grouped into c divisions—for example, the cells of a contingency table—and let the contents of the sth division be m_s . Let a sample of size N be taken at random from the population and let n_s be the contents of the sth division according to the same grouping.

We shall here consider the variation of the quantity ϕ^2 defined by

$$1 + \phi^2 = S\left(\frac{n_s^2}{N\lambda_s}\right)$$
(i),

where λ_s is a number connected with the sth division and is for the present restricted only by the condition

 $S(\lambda_s) = N$ (ii),

—a condition which enables us to write

$$\phi^2 = S\left\{\frac{(n_s - \lambda_s)^2}{N\lambda_s}\right\}$$
(iii)

as equivalent to (i).

^{*} Biometrika, Vol. v. p. 191.

These undetermined numbers λ_s are thus in general of the nature of weights and may be chosen in a variety of ways. The most important particular case is that of the population being grouped in a contingency table with, say, two variates.

The sth division will be, say, the cell (u, v) and if λ_s be taken to be $N \frac{m_u m_v}{M^2}$, m_u and m_v being as usual the marginal totals of the uth row and vth column of the population M, ϕ^2 will be the mean square contingency*. Other cases will be discussed later.

The object of the present paper is to investigate the variation of the quantity ϕ^2 as determined from the samples of the population. We take the numbers λ to be a property of the whole population and accordingly to have no variation as long as the size N of the samples is constant. It is true that in most cases in practice there will be only one sample and that the values of the numbers λ will have to be deduced from that sample and will therefore deviate from the values which would be used if the sampled population were known. But what we are seeking is the variability of the samples on the understanding that the distribution of the whole population is definite although in practice we know only the approximation to that distribution which is given by our sample. If we had wanted the variability of the calculated values of ϕ^2 deduced from a large number of random samples, then we should have taken into account the variation of the λ 's as well as of the n's. In this lies the difference between the discussions in the two earlier papers of 1906 and 1914.

This investigation follows that of the second paper, but we shall here give the full expressions without approximation, i.e. without neglecting the square of δn_s as was done in 1914. It will appear from the numerical examples worked out later that this squared term makes a fairly great difference and, even if this were not so, it is always preferable to have such formulae in full in order to decide the legitimacy of neglecting any terms. This is especially the case in statistical theory where neglect of the later terms of a Taylor expansion often leads to false results.

(2) Mean Value of
$$\phi^2$$
.

Let $\bar{\phi}^2$ be the mean value of ϕ^2 and let \bar{n} , be the mean value of n_s , i.e. the value which would be given by taking a very large number of samples. Then we can write

$$rac{ar{n}_s}{N} = rac{m{m}_s}{M}$$
 .

Also if we define $\delta \phi^2$ and δn_s by the equations

$$\phi^2 = \phi^2 + \delta\phi^2,$$

$$n_s = \bar{n}_s + \delta n_s,$$

we have

$$1 + \bar{\phi}^2 + \delta\phi^2 = S\left(\frac{\bar{n}_s^2}{N\lambda_s}\right) + 2S\left(\frac{\bar{n}_s\delta n_s}{N\lambda_s}\right) + S\left(\frac{(\delta n_s)^2}{N\lambda_s}\right)$$
(iv).

^{*} Drapers' Research Memoirs, Biometric Series, I. On the Theory of Contingency, etc., Cambridge University Press, 1904; Biometrika, Vol. v. p. 191, 1906; Biometrika, Vol. x. p. 570, 1914.

Sum all such equations for a large number of samples and divide by the number of samples. Then, since Mean $\delta n_s = 0$ and Mean $\delta \phi^2 = 0$, we have

The expression Mean $(\delta n_s)^2$ is typical of several which we have to use in what follows and it will be useful to state or prove all the needful formulae before proceeding further.

(3) Formulae regarding Products of Deviations.

The deviations δn_s arrange themselves according to a hypergeometrical series and the moment coefficients of this series are known to be*

$$\mu_{2} = \chi_{1} N p q$$

$$\mu_{3} = \chi_{1} \chi_{2} N p q (p - q)$$

$$\mu_{4} = \chi_{1} N p q (3\chi_{3} N p q + \chi_{4})$$

$$\chi_{1} = 1 - \frac{N - 1}{M - 1}$$

$$\chi_{2} = 1 - \frac{2(N - 1)}{M - 2}$$

$$\chi_{3} = \left(1 - \frac{2}{N}\right) \left\{1 - \frac{N - 1}{M - 2}\left(\frac{N - 10}{N - 2} + \frac{9}{M - 3}\right)\right\}$$

$$\chi_{4} = 1 - 6\frac{N - 1}{M - 2}\left(1 - \frac{N - 2}{M - 3}\right)$$
.....(vi)

where

and in the present case

$$p = \frac{m_s}{\overline{M}} = \frac{\overline{n}_s}{\overline{N}}$$
 $q = 1 - \frac{m_s}{\overline{M}} = 1 - \frac{\overline{n}_s}{\overline{N}}$ (vii).

When M is very large as compared with N, as in the majority of cases in practice, we may write $\chi_1 = \chi_2 = \chi_3 = \chi_4 = 1$.

We can now make use of these formulae to derive the following:

(a) Mean $(\delta n_s)^2$. This is μ_2 in the notation of (vi) and

$$=\chi_1\bar{n}_s\left(1-\frac{\bar{n}_s}{N}\right)....(a).$$

(b) Mean $\delta n_s \delta n_{s'}$ where s and s' differ. Suppose first that δn_s remains constant and investigate the mean of $\delta n_{s'}$ for this constant value of δn_s . Now the distribution

^{*} Pearson, Phil. Mag. 1899, p. 239; Biometrika, Vol. v. p. 174.

of $n_{s'}$ for n_s constant is clearly given by the sub-hypergeometrical series with $N' = N - \bar{n}_s - \delta n_s$ as total population and

$$\begin{split} p' &= \frac{\bar{n}_{s'}}{N - \bar{n}_s}, \\ q' &= 1 - \frac{\bar{n}_{s'}}{N - \bar{n}_s}, \end{split}$$

so that the Mean $\delta n_{s'}$ for δn_s constant is

$$(N-ar{n}_s-\delta n_s)\,rac{ar{n}_{s'}}{N-ar{n}_s}-ar{n}_{s'}=-\,rac{\delta n_sar{n}_{s'}}{N-ar{n}_s}*.$$

Hence

Mean
$$\delta n_s \delta n_{s'} = -$$
 Mean $\delta n_s \cdot \frac{\delta n_s \overline{n}_{s'}}{N - \overline{n}_s}$

$$= -$$
 Mean $\delta n_s^2 \cdot \frac{\overline{n}_{s'}}{N - \overline{n}_s}$

$$= -\chi_1 \overline{n}_s \left(1 - \frac{\overline{n}_s}{N}\right) \frac{\overline{n}_{s'}}{N - \overline{n}_s} \text{ from } (a)$$

$$= -\chi_1 \frac{\overline{n}_s \overline{n}_{s'}}{N} \qquad (b).$$

(c) Mean $(\delta n_s)^3$. Directly from (vi) and (vii) $\text{Mean } \delta n_s^3 = \chi_1 \chi_2 \, \bar{n}_s \left(1 - \frac{\bar{n}_s}{N}\right) \left(1 - \frac{2\bar{n}_s}{N}\right) \quad \dots \dots (c).$

(d) Mean $(\delta n_s)^2 \delta n_{s'}$. Using the process of double summation as in (b) we have

Mean
$$(\delta n_s)^2 \delta n_{s'} = -$$
 Mean $(\delta n_s)^2 \cdot \frac{\delta n_s \bar{n}_{s'}}{N - \bar{n}_s}$

$$= -\frac{\bar{n}_{s'}}{N - \bar{n}_s} \cdot \chi_1 \chi_2 \bar{n}_s \left(1 - \frac{\bar{n}_s}{N}\right) \left(1 - \frac{2\bar{n}_s}{N}\right) \text{ from } (c)$$

$$= -\chi_1 \chi_2 \frac{\bar{n}_s \bar{n}_{s'}}{N} \left(1 - \frac{2\bar{n}_s}{N}\right) \dots (d).$$

(e) Mean $(\delta n_s)^4$. As in (c) we have immediately

Mean
$$(\delta n_s)^4 = \chi_1 \bar{n}_s \left(1 - \frac{\bar{n}_s}{N}\right) \left(3\chi_3 \bar{n}_s \left(1 - \frac{\bar{n}_s}{N}\right) + \chi_4\right) \dots (e).$$

(f) Mean $(\delta n_s)^2$ $(\delta n_{s'})^2$. We again use the double summation as in (b), but in this case the algebra is much more troublesome. From the constants of the sub-hypergeometrical as given in (b) we have

$$\chi_1'N'p'q' = \left(1 - \frac{N - \overline{n}_s - \delta n_s - 1}{M - m_s - 1}\right)(N - \overline{n}_s - \delta n_s)\frac{\overline{n}_{s'}}{N - \overline{n}_s}\left(1 - \frac{\overline{n}_{s'}}{N - \overline{n}_s}\right).$$

* Since $S(\delta n_s)$ must be zero, we can regard the Mean $\delta n_{s'}$ for a given δn_s as being the result of a distribution of a deviate $-\delta n_s$ distributed over all the divisions except the sth. The portion due to the s'th is then $\frac{n_{s'}}{N-n_s} \times (-\delta n_s)$, as obtained above.

But this is the Mean $(\delta' n_{s'})^2$, where $\delta' n_{s'}$ is measured from the mean of $n_{s'}$ in the case where δn_s is fixed and we must reduce to the general mean, i.e. where δn_s is not given, to obtain the mean value of $(\delta n_{s'})^2$ for constant δn_s . This is done by

adding the square of the difference between these means of $n_{s'}$, namely $\frac{\bar{n}_{s'}\delta n_s}{N-\bar{n}_s}$.

We thus obtain that the Mean $(\delta n_{s'})^2$ for constant δn_s

$$= \left(1 - \frac{N - \bar{n}_s - \delta n_s - 1}{M - m_s - 1}\right) (N - \bar{n}_s - \delta n_s) \frac{\bar{n}_{s'}}{N - \bar{n}_s} \left(1 - \frac{\bar{n}_{s'}}{N - \bar{n}_s}\right) + \frac{\bar{n}_{s'}^2 (\delta n_s)^2}{(N - \bar{n}_s)^2}$$

$$= \left\{\frac{N}{M} \left(1 - \frac{N}{M}\right) - \left(1 - \frac{2N}{M}\right) \frac{N \delta n_s}{M (N - \bar{n}_s)} - \frac{N^2 (\delta n_s)^2}{M^2 (N - \bar{n}_s)^2}\right\} \frac{M^2 \bar{n}_{s'} (N - \bar{n}_s - \bar{n}_{s'})}{N^2 \left(\frac{M}{N} (N - \bar{n}_s) - 1\right)}$$

$$+ \frac{\bar{n}_{s'}^2 (\delta n_s)^2}{(N - \bar{n}_s)^2},$$

when we substitute $M\bar{n}_s/N$ for m_s .

Thus we have to evaluate

$$\begin{split} \operatorname{Mean} \ & (\delta n_s)^2 (\delta n_{s'})^2 = \left\{ \frac{N}{M} \left(1 - \frac{N}{M} \right) \operatorname{Mean} \ (\delta n_s)^2 - \left(1 - \frac{2N}{M} \right) \frac{N}{M} \frac{\operatorname{Mean} \ (\delta n_s)^3}{N - \bar{n}_s} \right. \\ & \left. - \frac{N^2}{M^2} \frac{\operatorname{Mean} \ (\delta n_s)^4}{(N - \bar{n}_s)^2} \right\} \frac{M^2 \bar{n}_{s'} \left(N - \bar{n}_s - \bar{n}_{s'} \right)}{N^2 \left(\frac{M}{N} \left(N - \bar{n}_s \right) - 1 \right)} + \frac{\bar{n}_{s'}^2}{(N - \bar{n}_s)^2} \operatorname{Mean} \ (\delta n_s)^4. \end{split}$$

Substituting from (a), (c) and (e), we find

$$\begin{split} \text{Mean } (\delta n_s)^2 (\delta n_{s'})^2 &= \chi_1 \frac{\bar{n}_s \bar{n}_{s'}}{N} \left\{ \frac{N}{M} \left(1 - \frac{N}{M} \right) \frac{M^2 (N - \bar{n}_s) (N - \bar{n}_s - \bar{n}_{s'})}{N^2 \left(\frac{M}{N} (N - \bar{n}_s) - 1 \right)} \right. \\ &- \chi_2 \left(1 - \frac{2N}{M} \right) \frac{M (N - 2\bar{n}_s) (N - \bar{n}_s - \bar{n}_{s'})}{N^2 \left(\frac{M}{N} (N - \bar{n}_s) - 1 \right)} - 3\chi_3 \frac{\bar{n}_s (N - \bar{n}_s - \bar{n}_{s'})}{N \left(\frac{M}{N} (N - \bar{n}_s) - 1 \right)} \\ &- \chi_4 \frac{N - \bar{n}_s - \bar{n}_{s'}}{(N - \bar{n}_s) \left(\frac{M}{N} (N - \bar{n}_s) - 1 \right)} + 3\chi_3 \frac{\bar{n}_s \bar{n}_{s'}}{N} + \chi_4 \frac{\bar{n}_{s'}}{N - \bar{n}_s} \right\}. \end{split}$$

This expression must be symmetrical in s and s' and this will be the case only if the quantities $\frac{M}{N}(N-\bar{n}_s)-1$ and $N-\bar{n}_s$ in the denominator cancel with factors in the numerator. By taking the two terms in χ_4 together we get rid of the $N-\bar{n}_s$ factor and after a laborious expansion in substituting the values of the χ 's we reduce the whole expression to the comparatively simple form

$$\chi_1 \frac{\overline{n}_s \overline{n}_{s'}}{N} \left\{ \chi_3 N \left(1 - \frac{\overline{n}_s + \overline{n}_{s'}}{N} + \frac{3\overline{n}_s \overline{n}_{s'}}{N^2} \right) + \chi_4 \right\} \quad \dots \dots (f).$$

This agrees with the value obtained by Isserlis from the differential equation to the hypergeometric series and thus confirms his result obtained by a totally different procedure*.

^{*} Proc. Roy. Soc. Vol. xcn. p. 28. Our notations are different.

With these formulae we can now proceed to discuss the mean value of ϕ^2 and its variability.

(4) Mean Value of ϕ^2 (continued).

At the end of (2) we had arrived at the equation

$$1 + \overline{\phi}^2 = S\left(\frac{\overline{n}_s^2}{N\lambda_s}\right) + \operatorname{Mean} S\left(\frac{(\delta n_s)^2}{N\lambda_s}\right),$$

and substituting from (a) we now obtain

$$1 + \bar{\phi}^2 = S\left(\frac{\bar{n}_s^2}{N\lambda_s}\right) + \chi_1 \frac{1}{N} S\left\{\frac{\bar{n}_s}{\lambda_s}\left(1 - \frac{\bar{n}_s}{N}\right)\right\} \quad \dots (viii).$$

We can usually put $\chi_1 = 1$ and write

$$1 + \bar{\phi}^2 = \left(1 - \frac{1}{N}\right) S\left(\frac{\bar{n}_s^2}{N\lambda_s}\right) + \frac{1}{N} S\left(\frac{\bar{n}_s}{\lambda_s}\right) \dots (ix).$$

In the particular case of the contingency table

$$1 + \bar{\pmb{\phi}}^2 = \left(1 - \frac{1}{N}\right) S\left(\frac{\bar{n}_{uv}^2}{\bar{n}_u \bar{n}_v}\right) + \frac{1}{N} S\left(\frac{N\bar{n}_{uv}}{\bar{n}_u \bar{n}_v}\right) \dots (\mathbf{x}).$$

Now $S\left(\frac{\bar{n}_{uv}^2}{\bar{n}_u\bar{n}_v}\right) = 1 + \phi_p^2$, where ϕ_p^2 is the mean square contingency for the whole population, so that the mean value of ϕ^2 as determined from a large number of samples is in excess of the true mean square contingency by

$$\frac{1}{N} \left(S \left(\frac{N \bar{n}_{uv}}{\bar{n}_u \bar{n}_v} \right) - (1 + \phi_{p^2}) \right).$$

(5) Standard Deviation of ϕ^2 . Non-approximative Formulae.

From the equations

and

$$egin{aligned} 1 + ar{oldsymbol{\phi}}^2 + \delta \phi^2 &= S\left(rac{ar{n}_s^2}{N\lambda_s}
ight) + rac{2}{N}\,S\left(rac{ar{n}_s\delta n_s}{\lambda_s}
ight) + rac{1}{N}\,S\left(rac{(\delta n_s)^2}{\lambda_s}
ight), \ 1 + ar{oldsymbol{\phi}}^2 &= S\left(rac{ar{n}_s^2}{N\lambda_s}
ight) + \chi_1rac{1}{N}\,S\left\{rac{ar{n}_s}{\lambda_s}\left(1 - rac{ar{n}_s}{N}
ight)
ight\}, \end{aligned}$$

we have $N\delta\phi^2 = S\left(\frac{(\delta n_s)^2}{\lambda_s}\right) + 2S\left(\frac{\overline{n}_s\delta n_s}{\lambda_s}\right) - \chi_1 S\left\{\frac{\overline{n}_s}{\lambda_s}\left(1 - \frac{\overline{n}_s}{N}\right)\right\}$ (xi).

Squaring, summing for a large number of samples and dividing by the number of samples, we have

$$\begin{split} N^2 \sigma^2_{\phi^2} &= \text{Mean } N^2 \, (\delta \phi^2)^2 \\ &= \text{Mean } \left[\left(S \left(\frac{(\delta n_s)^2}{\lambda_s} \right) \right)^2 + 4 \left(S \left(\frac{\overline{n}_s \delta n_s}{\lambda_s} \right) \right)^2 + \chi_1^2 \left(S \left\{ \frac{\overline{n}_s}{\lambda_s} \left(1 - \frac{\overline{n}_s}{\overline{N}} \right) \right\} \right)^2 \\ &+ 4 S \left(\frac{(\delta n_s)^2}{\lambda_s} \right) \cdot S \left(\frac{\overline{n}_s \delta n_s}{\lambda_s} \right) - 2 \chi_1 S \left\{ \frac{\overline{n}_s}{\lambda_s} \left(1 - \frac{\overline{n}_s}{\overline{N}} \right) \right\} \cdot S \left(\frac{\delta n_s^2}{\lambda_s} \right) \right] \end{split}$$

$$\begin{split} &= \operatorname{Mean}\left[S\left(\frac{(\delta n_s)^4}{\lambda_s^2}\right) + SS\left(\frac{(\delta n_s)^2 (\delta n_{s'})^2}{\lambda_s \lambda_{s'}}\right) + 4S\left(\frac{\overline{n}_s^2 (\delta n_s)^2}{\lambda_s^2}\right) \\ &+ 4SS\left(\frac{\overline{n}_s \overline{n}_{s'} \delta n_s \delta n_{s'}}{\lambda_s \lambda_{s'}}\right) + 4S\left(\frac{(\delta n_s)^3 \overline{n}_s}{\lambda_s^2}\right) + 4SS\left(\frac{(\delta n_s)^2 \overline{n}_{s'} \delta n_s}{\lambda_s \lambda_{s'}}\right) \\ &- \chi_1^2 S\left(\frac{\overline{n}_s^2 (N - \overline{n}_s)^2}{\lambda_s^2 N^2}\right) - \chi_1^2 SS\left(\frac{\overline{n}_s \overline{n}_{s'}}{\lambda_s \lambda_{s'}}\frac{(N - \overline{n}_s) (N - \overline{n}_{s'})}{N^2}\right) \right], \end{split}$$

where S denotes the same as S, i.e. summation for all values of s, and S S denotes summation for all values of s' except s = s' followed by summation for all values of s^* .

Substituting from the equations (a), (b), (c), (d), (e), (f), we have

$$\begin{split} N^{2}\sigma^{2}_{\phi^{2}} &= S_{s} \left\{ \frac{1}{\lambda_{s}^{2}} \chi_{1} \frac{\overline{n}_{s} (N - \overline{n}_{s})}{N} \left(3\chi_{3} \frac{\overline{n}_{s} (N - \overline{n}_{s})}{N} + \chi_{4} \right) \right\} \\ &+ S_{s} S_{s} \left\{ \frac{1}{\lambda_{s} \lambda_{s'}} \chi_{1} \frac{\overline{n}_{s} \overline{n}_{s'}}{N} \left(\chi_{3} N \left(1 - \frac{\overline{n}_{s} + \overline{n}_{s'}}{N} + \frac{3\overline{n}_{s} \overline{n}_{s'}}{N^{2}} \right) + \chi_{4} \right) \right\} \\ &+ 4 S_{s} \left\{ \frac{\overline{n}_{s}^{2}}{\lambda_{s}^{2}} \chi_{1} \frac{\overline{n}_{s} (N - \overline{n}_{s})}{N} \right\} - 4 S_{s} S_{s'} \left\{ \frac{\overline{n}_{s} \overline{n}_{s'}}{\lambda_{s} \lambda_{s'}} \chi_{1} \frac{\overline{n}_{s} \overline{n}_{s'}}{N} \right\} \\ &+ 4 S_{s} \left\{ \frac{\overline{n}_{s}}{\lambda_{s}^{2}} \chi_{1} \chi_{2} \frac{\overline{n}_{s} (N - \overline{n}_{s}) (N - 2\overline{n}_{s})}{N^{2}} \right\} - 4 S_{s} S_{s'} \left\{ \frac{\overline{n}_{s} \overline{n}_{s'}}{\lambda_{s} \lambda_{s'}} \chi_{1} \chi_{2} \frac{\overline{n}_{s} \overline{n}_{s'} (N - 2\overline{n}_{s})}{N^{2}} \right\} \\ &- \chi_{1}^{2} S_{s} \left\{ \frac{\overline{n}_{s}^{2}}{\lambda_{s}^{2}} \frac{(N - \overline{n}_{s})^{2}}{N^{2}} \right\} - \chi_{1}^{2} S_{s} S_{s'} \left\{ \frac{\overline{n}_{s} \overline{n}_{s'}}{\lambda_{s} \lambda_{s'}} \frac{(N - n_{s}) (N - \overline{n}_{s'})}{N^{2}} \right\} \\ &= S_{s} \left\{ \frac{\chi_{1}}{\lambda_{s}^{2}} \left[\chi_{4} \overline{n}_{s} + \left(3\chi_{3} + 4\chi_{2} - \chi_{1} - \frac{\chi_{4}}{N} \right) \overline{n}_{s}^{2} + \left(4 - (6\chi_{3} + 12\chi_{2} - 2\chi_{1}) \frac{1}{N} \right) \overline{n}_{s}^{3} \right. \\ &+ \left(- \frac{4}{N} + (3\chi_{3} + 8\chi_{2} - \chi_{1}) \frac{1}{N^{2}} \right) \overline{n}_{s}^{4} \right] \right\} \\ &+ S_{s} S_{s'} \left\{ \frac{\chi_{1}}{\lambda_{s} \lambda_{s'}} \left[\left(\chi_{3} - \chi_{1} + \frac{\chi_{4}}{N} \right) \overline{n}_{s} \overline{n}_{s'} + (\chi_{1} - \chi_{3} - 2\chi_{2}) \frac{\overline{n}_{s} \overline{n}_{s'} \cdot (\overline{n}_{s} + \overline{n}_{s'})}{N} \right. \\ &+ \left(- \frac{4}{N} + (3\chi_{3} + 8\chi_{2} - \chi_{1}) \frac{1}{N^{2}} \right) \overline{n}_{s}^{2} \overline{n}_{s'}^{2} \right] \right\}, \end{split}$$

after expansion and rearrangement.

Now it is evident that in numerical work the double summation would involve much extra labour, but we can get rid of it by using the identities

$$\begin{split} \left(S\left(\frac{\overline{n}_s}{\overline{\lambda}_s}\right)\right)^2 &= S\left(\frac{\overline{n}_s^2}{\overline{\lambda}_s^2}\right) + SS\left(\frac{\overline{n}_s\overline{n}_{s'}}{\overline{\lambda}_s\overline{\lambda}_s}\right), \\ S\left(\frac{\overline{n}_s}{\overline{\lambda}_s}\right)^2 S\left(\frac{\overline{n}_s}{\overline{\lambda}_s}\right) &= S\left(\frac{\overline{n}_s^3}{\overline{\lambda}_s^2}\right) + SS\left(\frac{\overline{n}_s^2\overline{n}_{s'}}{\overline{\lambda}_s\overline{\lambda}_{s'}}\right) = S\left(\frac{\overline{n}_s^3}{\overline{\lambda}_s^2}\right) + \frac{1}{2}SS\left(\frac{\overline{n}_s\overline{n}_{s'}}{\overline{\lambda}_s\overline{\lambda}_{s'}}(\overline{n}_s + \overline{n}_{s'})\right), \\ \left(S\left(\frac{\overline{n}_s^2}{\overline{\lambda}_s}\right)\right)^2 &= S\left(\frac{\overline{n}_s^4}{\overline{\lambda}_s^2}\right) + SS\left(\frac{\overline{n}_s^2\overline{n}_{s'}}{\overline{\lambda}_s\overline{\lambda}_{s'}}\right), \end{split}$$

and so reducing all to single summations.

* As this notation may be somewhat unusual, it may be better to make it clear by taking a case with three variates only, for example:

$$(Sn_s)^2 = (n_1 + n_2 + n_3)^2 = n_1^2 + n_2^2 + n_3^2 + (n_2 + n_3) n_1 + (n_3 + n_1) n_2 + (n_1 + n_2) n_3 = Sn_s^2 + SSn_s n_{s'}.$$

This leads to

$$\begin{split} N^{2}\sigma^{2}_{\phi^{3}} &= \chi_{1}\chi_{4}S\left(\frac{\bar{n}_{s}}{\lambda_{s}^{2}}\right) + \chi_{1}\left(\chi_{3} - \chi_{1} + \frac{\chi_{4}}{N}\right)\left\{S\left(\frac{\bar{n}_{s}}{\lambda_{s}}\right)\right\}^{2} \\ &+ \chi_{1}\left(2\chi_{3} + 4\chi_{2} - \frac{2\chi_{4}}{N}\right)S\left(\frac{\bar{n}_{s}^{2}}{\lambda_{s}^{2}}\right) \\ &+ \chi_{1}\left(\frac{2\chi_{1} - 2\chi_{3} - 4\chi_{2}}{N}\right)S\left(\frac{\bar{n}_{s}^{2}}{\lambda_{s}}\right)S\left(\frac{\bar{n}_{s}}{\lambda_{s}}\right) \\ &+ \chi_{1}\left(4 - \frac{(4\chi_{3} + 8\chi_{2})}{N}\right)S\left(\frac{\bar{n}_{s}^{3}}{\lambda_{s}^{2}}\right) \\ &+ \chi_{1}\left(-\frac{4}{N} + (3\chi_{3} + 8\chi_{2} - \chi_{1})\frac{1}{N^{2}}\right)\left\{S\left(\frac{\bar{n}_{s}^{2}}{\lambda_{s}}\right)\right\}^{2} \dots(xii). \end{split}$$

(6) Standard Deviation of ϕ^2 . Approximate Formulae.

The result of the preceding section is an exact one since we have neglected no terms in arriving at it, but as mentioned before we can usually take M to be very large compared with N and make $\chi_1 = \chi_2 = \chi_3 = \chi_4 = 1$. With this simplification equation (xii) becomes

$$\begin{split} \sigma^2_{\phi^2} &= \frac{4}{N} \left[S\left(\frac{\overline{n}_s^3}{N\lambda_s^2}\right) - \left\{ S\left(\frac{\overline{n}_s^2}{N\lambda_s}\right) \right\}^2 \right] \\ &+ \frac{1}{N^2} \left[6S\left(\frac{\overline{n}_s^2}{\lambda_s^2}\right) - 4S\left(\frac{\overline{n}_s^2}{N\lambda_s}\right) S\left(\frac{\overline{n}_s}{\lambda_s}\right) - 10 \left\{ S\left(\frac{\overline{n}_s^2}{N\lambda_s}\right) \right\}^2 - 12S\left(\frac{\overline{n}_s^3}{N\lambda_s^2}\right) \right] \\ &+ \frac{1}{N^3} \left[S\left(\frac{N\overline{n}_s}{\lambda_s^2}\right) + \left\{ S\left(\frac{\overline{n}_s}{\lambda_s}\right) \right\}^2 - 2S\left(\frac{\overline{n}_s^2}{\lambda_s^2}\right) \right] \dots (xiii) \end{split}$$

In the great majority of cases it will be impossible to make rigorous use of this formula since we have no other knowledge of the whole population than what is given by the sample. In particular the \bar{n} 's are usually unknown and we must simply make use of the approximations at our disposal, namely the n's of the observed sample.

Again, it will usually happen that while \bar{n}_s may be fairly large $\bar{n}_s - \lambda_s$ will be small and it will give formulae which are much more convenient for computation if we write $\psi_s = \bar{n}_s - \lambda_s$ and substitute $\psi_s + \lambda_s$ for \bar{n}_s in equation (xiii), remembering that $S(\lambda_s) = N$.

After some reduction the formula becomes

$$\begin{split} \sigma^2_{\phi^2} &= \frac{4}{N} \left[S\left(\frac{\psi_s^3}{N\lambda_s^2}\right) + \phi^2 - \phi^4 \right] \\ &+ \frac{1}{N^2} \left[6S\left(\frac{\psi_s^2}{\lambda_s^2}\right) + \left(8 - 4\phi^2\right) S\left(\frac{\psi_s}{\lambda_s}\right) - 12S\left(\frac{\psi_s^3}{N\lambda_s^2}\right) + \left(2 - 4\phi^2\right) c - 22 - 56\phi^2 - 10\phi^4 \right] \\ &+ \frac{1}{N^3} \left[S\left(\frac{N\psi_s}{\lambda_s^2}\right) + S\left(\frac{N}{\lambda_s}\right) + \left\{ S\left(\frac{\psi_s}{\lambda_s}\right) \right\}^2 - 2S\left(\frac{\psi_s^2}{\lambda_s^2}\right) + 2\left(c - 2\right) S\left(\frac{\psi_s}{\lambda_s}\right) + c\left(c - 2\right) \right] \\ &\qquad \dots \dots (\text{xiv}), \end{split}$$

where c is the number of classes or categories in the population in question.

(7) First Application. Contingency.

As mentioned in (1), if we regard the sth division as the (u, v) cell of a contingency-table and if we take

$$\lambda_s = N \, rac{m_u m_v}{M^2} = rac{ar{n}_u ar{n}_v}{N},$$

then

$$1 + \phi^2 = S\left(\frac{n^2_{uv}}{\bar{n}_u \bar{n}_v}\right),\,$$

and

$$\phi^2 = S\left\{ \frac{\left(n_{uv} - \frac{\bar{n}_u \bar{n}_v}{N}\right)^2}{\bar{n}_u \bar{n}_v} \right\} = \text{Mean square contingency}.$$

Accordingly, with the notation

$$\lambda_s = \frac{\bar{n}_u \bar{n}_v}{N},$$

$$\psi_s = n_{uv} - \lambda_s = n_{uv} - \frac{\bar{n}_u \bar{n}_v}{N},$$

and

$$\phi^2 = S\left(\frac{\psi_s^2}{N\lambda_s}\right) = S\left\{\frac{\left(n_{uv} - \frac{\bar{n}_u\bar{n}_v}{N}\right)^2}{\bar{n}_u\bar{n}_v}\right\},\,$$

the equation (xiv) gives the standard deviation of the mean square contingency, when M is very large as compared with N.

The terms enclosed in the first bracket of (xiv) are exactly those of Pearson's 1914 paper in *Biometrika*, so that the second and third brackets contain the terms arising from the squares and higher products of δn_s .

Of the total correction due to the higher approximation it is of interest to find how much is due to the change of mean and consequently the change of origin of $\delta\phi^2$, when the square of δn_s is not neglected. The true mean is given by

$$1 + \bar{\phi}^2 = \frac{1}{N} S\left(\frac{\bar{n}_s^2}{\lambda_s}\right) + \frac{1}{N} S\left\{\frac{\bar{n}_s}{\lambda_s}\left(1 - \frac{\bar{n}_s}{N}\right)\right\},$$

and using the observed values of n_s as the best approximation available for \bar{n}_s

$$\begin{split} 1+\bar{\pmb{\phi}}^2 &= (1+\phi^2)\left(1-\frac{1}{N}\right) + \frac{1}{N}\,S\left(\frac{\pmb{\psi}_s+\pmb{\lambda}_s}{\pmb{\lambda}_s}\right) \\ &= (1+\phi^2) + \frac{1}{N}\left\{S\left(\frac{\pmb{\psi}_s}{\pmb{\lambda}_s}\right) - \phi^2 + c - 1\right\}\,, \end{split}$$

so that the difference between the true mean and the approximate mean obtained by neglecting squares of δn_s is

$$ar{m{\phi}}^2 - m{\phi}^2 = rac{1}{N} \left\{ S\left(rac{m{\psi}_s}{m{\lambda}_s}
ight) - m{\phi}^2 + c - 1
ight\}$$
 .

In accordance, then, with the formula for change of second moment with change of origin we get the effect of the change of mean on $\sigma^2_{\phi^2}$ by subtracting

$$rac{1}{N^2}\left\{S\left(rac{\psi_s}{\lambda_s}
ight)-\phi^2+c-1
ight\}^2$$

from the approximate value.

224 On the Probable Error of a Coefficient of Contingency

In the examples given below it will be seen that this is only a small part of the total correction and thus the main part of the correction is due to the retention of the squares and products in the value of $(\delta \phi^2)^2$ used in (5).

(8) Numerical Illustrations.

I. Contingency between Handwriting and Intelligence in Girls.

The probable errors of the contingency constants in this table have been worked out both in the 1905 and in the 1914 papers and below is given a table showing the effect of the corrective terms of the present discussion.

The new summations required are found to be

$$S\left(\frac{\psi_s}{\lambda_s}\right) = 12.788,$$
 $S\left(\frac{N}{\lambda_s}\right) = 15982,$ $S\left(\frac{\psi_s^2}{\lambda_s^2}\right) = 93.144,$ $S\left(\frac{N\psi_s}{\lambda_s^2}\right) = 57270,$

and in the following equation the numerical values of the various terms of equation (xiv) are given in the same order as their corresponding algebraic terms:

$$\begin{split} \sigma^2_{\phi} &= \frac{4}{1801} \left[\cdot 14865 + \cdot 09580 - \cdot 00918 \right] \\ &+ \frac{1}{(1801)^2} \left[558 \cdot 864 + 97 \cdot 404 - 1 \cdot 784 + 58 \cdot 205 - 22 - 5 \cdot 365 - \cdot 092 \right] \\ &+ \frac{1}{(1801)^3} \left[57270 + 15982 + 164 - 186 + 870 + 1224 \right]. \end{split}$$

The other calculations are summarised in the table below:

TABLE I. $\phi^2 = \cdot 09580, \quad C_2 = \sqrt{\frac{\phi^2}{1+\phi^2}} = \cdot 2957.$

	Various formulae used						
	Blakeman and Pearson (1905)	1st Term of (xiv) or Pearson (1914)	1st and 2nd Terms of (xiv)	All Terms of (xiv)			
σ_{ϕ^2} Probable error of ϕ^2 σ_c Probable error of C	·02023 ·01365* ·0285 ·0192	·02286 ·01542 ·03219 ·02171	·02709 ·01827 ·03815 ·02573	02729 01841 03844 02593			

In this table the work has been carried out to four significant figures with a view to showing the corrective effects of the various terms. It is apparent that the fineness of approximation given by (xiv) in full is more than is required in practice,

^{*} Incorrectly given as 0042 in Blakeman and Pearson's paper, loc. cit. footnote p. 196.

but there is a considerable difference between the values given according as the second term is used or not and it seems that in some cases it would be advisable to calculate this term or at least the most important terms in it, viz.

$$\frac{1}{N^2} \left(6S \left(\frac{\psi_s^2}{\lambda_s^2} \right) + 8S \left(\frac{\psi_s}{\lambda_s} \right) + 2c \right) \dots (xv).$$

Using this approximation in the above case, we obtain $\sigma_{\phi^2} = .02730$, a result which—by a mere chance, of course—is almost exactly that given by the full expression in (xiv).

II. Contingency between the Hair-colours of Pairs of Female Cousins.

In the example just given the total number N in the sample was fairly large, viz. 1801, and it might be expected that in smaller samples the corrective terms would be of increased importance. With a view to testing this a contingency-table given by Miss Elderton in her Memoir on "The Measure of the Resemblance of First Cousins" was selected. There are 36 cells in this table and the total number in the sample is only 218, there being several cells with zero or very small content.

The Table is given in full on p. 226 along with the quantities required for the calculation of ϕ^2 and σ_{ϕ^2} ; it is there evident from the figures how large a proportion of the variability depends on the cells of small content. This is of course to be expected but the importance of having large numbers in all the cells is not always appreciated. In this particular case physiological reasons would prevent us from clubbing together the "Fairs" and "Reds" and with the fewness of the observations at our disposal we must use the table simply as it stands.

The scheme followed in each cell of the table is shown in the last column, and in the marginal totals are given the values of all the summations required for (xiv). These are

$$\phi^{2} = S\left(\frac{\psi_{s}^{2}}{N\lambda_{s}}\right) = \cdot 14895, \qquad S\left(\frac{N\psi_{s}}{\lambda_{s}^{2}}\right) = -2336 \cdot 8.$$

$$S\left(\frac{\psi_{s}}{\lambda_{s}}\right) = -1 \cdot 8481, \qquad S\left\{\left(\frac{\psi_{s}}{\lambda_{s}}\right)^{2}\right\} = 19 \cdot 162,$$

$$S\left(\frac{N}{\lambda_{s}}\right) = 5170 \cdot 9, \qquad S\left(\frac{\psi_{s}^{3}}{N\lambda_{s}^{2}}\right) = \cdot 08277.$$

When these are substituted in equation (xiv), we have, preserving the algebraic order as before,

$$\begin{split} \sigma^2_{\phi^2} &= \frac{4}{218} \left[\cdot 08277 + \cdot 14895 - \cdot 02218 \right] \\ &+ \frac{1}{(218)^2} \left[114 \cdot 9714 - 13 \cdot 6837 - \cdot 9932 + 50 \cdot 5515 - 22 - 8 \cdot 3411 - \cdot 2219 \right] \\ &+ \frac{1}{(218)^3} \left[-2336 \cdot 8 + 5170 \cdot 9 + 3 \cdot 4 - 38 \cdot 3 + 125 \cdot 7 + 1224 \right], \end{split}$$

and the whole work is again summarised in Table III (p. 227):

* Eugenics Laboratory Memoirs, IV. Cambridge University Press 1907.

226 On the Probable Error of a Coefficient of Contingency

TABLE II. Contingency between the Hair-colours of Female Cousins

First Female Cousin

Tints	Very Dark	Dark Brown	Brown	Light Brown	Fair	Red	Tot	tals
Very Dark	9 5·945 36·67 ·5139 ·2641 18·84 ·00720 ·00370	9:248 23:57 -1894 -0359 4:46 -00152 -00029	3·5 6·523 33·42 4634 -2147 -15·49 -00642 00298	9·495 22·96 ·1585 ·0251 3·64 ·00109 ·00017	3·963 55·00 6214 ·3861 -34·18 ·00702 00436	0 0-826 263-93 -1-0000 1-0000 -263-93 -00379 00379	36 435·55 -1·2230 1·9259 -286·66 ·02705 -·00697	$ \begin{array}{l} = Sn_{s} \\ (\lambda_{s}) \\ = S \ (N/\lambda_{s}) \\ = S \ (\psi_{s}/\lambda_{s}) \\ = S \ (\psi_{s}/\lambda_{s}) \\ = S \ (N\psi_{s}/\lambda_{s}) \\ = S \ (N\psi_{s}/\lambda_{s}) \\ = S \ (\psi_{s}^{2}/N\lambda_{s}) \\ = S \ (\psi_{s}^{3}/N\lambda_{s}) \end{array} $
Dark Brown	11 9·248 23·57 ·1894 ·0359 4·46 ·00152 ·00029	13 14·385 15·16 0963 -0093 -1·46 -00061 00006	12 10·147 21·48 ·1826 ·0333 3·92 ·00155 ·00028	10 14·771 14·76 -·3230 ·1043 -4·77 ·00707 -·00228	$\begin{array}{c} 9 \\ 6 \cdot 165 \\ 35 \cdot 36 \\ \cdot 4598 \\ \cdot 2114 \\ 16 \cdot 26 \\ \cdot 00598 \\ \cdot 00275 \end{array}$	1 1·284 169·78 -·2212 ·0489 -37·56 ·00029 -·00006	56 280·11 ·1913 ·4431 -19·15 ·01702 ·00092	
Brown	3·5 6·523 33·42 -·4634 ·2147 -15·49 .00642 -·00298	12 10·147 21·48 ·1826 ·0333 3·92 ·00155 ·00028	8 7·157 30·45 ·1178 ·0139 3·59 ·00046 ·00005	9·75 10·419 20·92 -·0642 ·0041 -1·34 ·00020 -·00001	3·25 4·349 50·12 -·2527 ·0639 -12·67 ·00127 -·00032	3 0·906 240·61 2·3111 5·3412 556·07 ·02220 ·05131	39.5 	
Light Brown	9·495 22·96 ·1585 ·0251 3·64 ·00109 ·00017	10 14·771 14·76 3230 ·1043 -4·77 ·00707 00228	9·75 10·419 20·92 -·0642 ·0041 -1·34 ·00020 -·00001	16·5 15·166 14·37 ·0880 ·0077 1·26 ·00054 ·00005	9·25 6·330 34·44 ·4614 ·2129 15·89 ·00618 ·00285	$\begin{array}{c} \textbf{1} \\ 1 \cdot 319 \\ 165 \cdot 29 \\ - \cdot 2419 \\ \cdot 0585 \\ - 39 \cdot 98 \\ \cdot 00035 \\ - \cdot 00009 \end{array}$	57·5 272·74 -0788 -4126 -25·30 -01543 -00069	
Fair	3·963 55·00 -·6214 ·3861 -34·18 ·00702 -·00436	9 6·165 35·36 ·4598 ·2114 16·26 ·00598 ·00275	3·25 4·349 50·12 -·2527 ·0639 -12·67 ·00127 -·00032	9·25 6·330 34·44 ·4614 ·2129 15·89 ·00618 ·00285	2·642 82·51 -·6215 ·3863 -51·28 ·00468 -·00291	$\begin{matrix} \textbf{0} \\ 0.550 \\ 396.38 \\ -1.0000 \\ 1.0000 \\ -396.38 \\ \cdot 00252 \\00252 \end{matrix}$	$\begin{array}{c} \textbf{24} \\$	
Red	$\begin{matrix} \textbf{0} \\ 0.826 \\ 263.93 \\ -1.0000 \\ 1.0000 \\ -263.93 \\ .00379 \\00379 \end{matrix}$	1 1·284 169·78 -·2212 ·0489 -37·56 ·00029 -·00006	3 0·906 240·61 2·3111 5·3412 556·07 ·02220 ·05131	$\begin{array}{c} \textbf{1} \\ 1.319 \\ 165.29 \\2419 \\ .0585 \\ -39.98 \\ .00035 \\00009 \end{array}$	0 0·550 396·38 -1·0000 1·0000 -396·38 ·00252 -·00252	0 0·115 1895·66 -1·0000 1·0000 -1895·66 -00053 -·00053	$\begin{array}{c} 5 \\ \hline 3131 \cdot 65 \\ -1 \cdot 1520 \\ 8 \cdot 4486 \\ -2077 \cdot 44 \\ \cdot 02968 \\ \cdot 04431 \end{array}$	
Totals	!	Marginal To	tals are the	same as for	vertical mar	gin	N = 218 $\phi^2 = 14898$	5

 $S\left(\sqrt{N/\lambda_{s}}\right) = 5170 \cdot 9\;; \qquad S\left(\psi_{s}/\lambda_{s}\right) = -1 \cdot 8481\;; \qquad S\left(\psi_{s}^{2}/\lambda_{s}^{2}\right) = 19 \cdot 162\;; \qquad S\left(\sqrt{N/\lambda_{s}^{2}}\right) = -2336 \cdot 8\;; \qquad S\left(\sqrt{\sqrt{s/\lambda_{s}^{2}}}\right) = -2336 \cdot$

Second Female Cousin

TABLE III.

$$\phi^2 = \cdot 14895, \qquad C_2 = \sqrt{\frac{\phi^2}{1 + \phi^2}} = \cdot 36005.$$

	Various formulae used						
	1st Term of equation (xiv)	1st and 2nd Terms of equation (xiv)	All Terms of equation (xiv)				
σ_{ϕ^2}	.062006	.079848	·082317				
Probable error of ϕ^2	$\cdot 041822$.053857	$\cdot 055522$				
σ_C	16902	.21765	-22438				
Probable error of C	·11400	.14680	.15134				

The relative importance of the three terms of equation (xiv) is not markedly different in this table of small total content from what it was in the case of the Handwriting-Intelligence table and we cannot base different conclusions on the two cases.

Again, using the approximation given by selecting the large terms from the second bracket of (xiv), viz.

$$6S\left(\frac{\psi_s^2}{\lambda_s^2}\right) + 8S\left(\frac{\psi_s}{\lambda_s}\right) + 2c,$$

$$\sigma_{\phi^2} = \cdot 0864,$$

we obtain

which as in the previous example is a reasonable approximation to the full expression result.

Second Application. Test for Zero Contingency.

Suppose that we may expect in the sampled population an absence of contingency or correlation between the variates considered. In other words we will suppose

$$\lambda_s = \frac{\bar{n}_u \bar{n}_v}{N} = \bar{n}_s$$
.

If, however, we take a sample from that population, the quantity

$$\phi^2 = S \, \frac{(n_s - \bar{n}_s)^2}{N \bar{n}_s},$$

which is the mean square contingency in the case of a population with zero correlation, would certainly not vanish. The problem then arises: How great may the quantity ϕ^2 be without making it highly improbable that the sample in question is really a sample from a population of uncorrelated material?

First of all, the mean value of ϕ^2 as determined from a large number of samples would be

$$\bar{\phi}^2 = \chi_1 \frac{1}{N} (c - 1)$$
(xvi),

as is obtained by substitution of $\lambda_s = \bar{n}_s$ in (viii), or, if $\chi_1 = 1$,

$$\bar{\phi}^2 = \frac{1}{N} (c - 1).$$

In the same way we derive from equation (xiii)

$$\sigma^{2}_{\phi^{2}} = \frac{\chi_{1}}{N^{2}} \left\{ \chi_{4} \left(\frac{c}{H} + \frac{c (c-2)}{N} \right) + \chi_{3} (c^{2} - 1) - \chi_{1} (c-1)^{2} \right\} \dots (xvii),$$

where H is the harmonic mean of the mean cell contents, or for the usual particular case when M is very large as compared with N

$$\sigma^2_{\phi^2} = rac{1}{N^2} \left\{ rac{c}{H} + rac{c \ (c-2)}{N} + 2 \ (c-1)
ight\} \$$
(xviii),

an expression which is very easily calculated especially as $\frac{1}{H}$ will usually be small compared with c and hence a good rough approximation for a fairly large table will be got from

$$\sigma^2_{\phi^2} = rac{2c}{N^2}$$
(xix).

Thus if we take twice the standard deviation as a limit to the probability of a deviation being that of a random sample, we have as a rough upper limit to the value, which ϕ^2 may be expected to take in any sample,

$$\frac{1}{N}\left(c-1\right)+2\frac{\sqrt{2c}}{N}.$$

(10) Numerical Illustration.

In the example of the Contingency-table for Handwriting and Intelligence in Girls

$$\bar{\phi}^2 = \frac{1}{N} (c - 1) = .01943,$$

and when calculated from the more exact formula (xviii)

$$\sigma_{\phi^2} = .004879,$$

the approximation given by (xix) being .0046.

Hence in accordance with our assertion above, we should regard any observed value of ϕ^2 which exceeds $\cdot 01943 + 2 \times \cdot 00488$, i.e. $\cdot 02919$ or, say, $\cdot 03$, as being incompatible with zero contingency. The observed value of $\phi^2 = \cdot 0958$.

The corresponding mean value of C—the coefficient of contingency—is

$$\sqrt{\frac{.01943}{1.01943}} = .13806,$$

and the upper limit for C according to our assertion is ·1684 or, say, ·17. The observed value of C is ·2957. Clearly there is definite association between intelligence and handwriting.

(11) Summary of Formulae.

It will be convenient for purposes of reference to have all the formulae collected into one section.

General Formulae.

For ϕ^2 defined by

 $1 + \phi^2 = S\left(\frac{n_s}{N\lambda_s}\right)$ $\phi^2 = S\left\{\frac{(n_s - \lambda_s)^2}{N\lambda_s}\right\}$(A),

or

where N is the number in a sample, n_s is the number in the sth division of that sample and λ_s is a number connected with the sth division satisfying the condition $S(\lambda_s) = S(n_s) = N$, we have proved that for an "infinite" sampled population

$$1 + \bar{\phi}^2 = \left(1 - \frac{1}{N}\right) S\left(\frac{\bar{n}_s^2}{N\lambda_s}\right) + \frac{1}{N} S\left(\frac{\bar{n}_s}{\lambda_s}\right) \dots (B)^*,$$

and

$$\sigma^{2}_{\phi^{2}} = \frac{4}{N} \left[S\left(\frac{\psi_{s}^{3}}{N\lambda_{s}^{2}}\right) + \phi^{2} - \phi^{4} \right]
+ \frac{1}{N^{2}} \left[6S\left(\frac{\psi_{s}^{2}}{\lambda_{s}^{2}}\right) + (8 - 4\phi^{2}) S\left(\frac{\psi_{s}}{\lambda_{s}}\right) - 12S\left(\frac{\psi_{s}^{3}}{N\lambda_{s}^{2}}\right) + (2 - 4\phi^{2}) c - 22 - 56\phi^{2} - 10\phi^{4} \right]
+ \frac{1}{N^{3}} \left[S\left(\frac{N\psi_{s}}{\lambda_{s}^{2}}\right) + S\left(\frac{N}{\lambda_{s}}\right) + \left\{ S\left(\frac{\psi_{s}}{\lambda_{s}}\right) \right\}^{2} - 2S\left(\frac{\psi_{s}^{2}}{\lambda_{s}^{2}}\right) + 2 (c - 2) S\left(\frac{\psi_{s}}{\lambda_{s}}\right) + c (c - 2) \right]$$
(C)

where c is the number of divisions or cells and $\psi_s = \bar{n}_s - \lambda_s$, or, with a fair amount of approximation,

$$\sigma^2_{\phi^2} = \frac{4}{N} \left[S\left(\frac{\psi_s^3}{N \lambda_s^2}\right) + \phi^2 - \phi^4 \right] + \frac{1}{N^2} \left[6S\left(\frac{\psi_s^2}{\lambda_s^2}\right) + 8S\left(\frac{\psi_s}{\lambda_s}\right) + 2c \right] \dots (\mathbf{D}).$$

Contingency.

In the case of a contingency-table the sth division may be taken to be the (u, v) cell and $\lambda_s = \frac{\overline{n}_u \overline{n}_v}{N}$, where n_u and n_v are the marginal totals of the uth row and the vth column. Formulae (A), (B), (C), (D) are then directly applicable.

Test for zero contingency.

When there is zero contingency in the total population

$$\lambda_s = \frac{\bar{n}_u \bar{n}_v}{N} = \bar{n}_s,$$

and (B) reduces to

$$\bar{\phi}^2 = \frac{1}{N} (c - 1)$$
(B'),

^{*} As usual the bar over a letter denotes "the mean value of." It is to be noted that usually there is only one sample and the value of n_s in that sample has to be taken as \bar{n}_s .

230 On the Probable Error of a Coefficient of Contingency

and (C) to

$$\sigma^{2}_{\phi^{2}} = \frac{1}{N^{2}} \left\{ \frac{c}{H} + \frac{c (c-2)}{N} + 2 (c-1) \right\} \dots (C'),$$

where c is the number of cells in the table and H is the harmonic mean of the cell contents.

Rough approximations in the case of zero contingency are given by

$$ar{\phi}^{\,2}=rac{c}{N}$$
 ,

and

$$\sigma^2_{\phi^2} = rac{2c}{N^2},$$

and from these we can derive as a rough *upper limit* to the value of ϕ^2 given by a random sample from a population of zero contingency

$$\frac{c}{N} + 2\frac{\sqrt{2c}}{N} = \frac{c}{N} \left(1 + \frac{2 \cdot 8284}{\sqrt{c}} \right).$$

ON SOME NOVEL PROPERTIES OF PARTIAL AND MULTIPLE CORRELATION COEFFICIENTS IN A UNIVERSE OF MANIFOLD CHARACTERISTICS.

By KARL PEARSON, F.R.S.

(1) Let the universe consist of N individuals each the bearer of n characteristics symbolised by the numbers 1, 2, 3, ... s, s', s'', ... n respectively. Let $r_{ss'}$ be the correlation coefficient of the s and s' characteristics, and let the whole system of total correlations be provided by the determinant Δ , where

$$\Delta = \begin{bmatrix} 1, & r_{12} & \dots & r_{1s'} & \dots & r_{1n} \\ r_{21}, & 1, & \dots & r_{2s'} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{s1}, & r_{s2} & \dots & r_{ss'} & \dots & r_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1}, & r_{n2} & \dots & r_{ns'} & \dots & 1 \end{bmatrix}$$

This determinant being symmetrical because $r_{ss'} = r_{s's}$.

We shall use $\Delta_{ss'}$ for the first minor corresponding to the constituent in the sth row and s'th column, and $\Delta_{ss's''s'''}$ for the second minor corresponding to the first minor of $\Delta_{ss'}$ which is associated with the constituent in the s''th row and s'''th column.

Then if $R_{s.123...(s)...n}$ denote the multiple correlation coefficient of the sth characteristic on the other n-1 characteristics, i.e. the n without s, and $s_s \rho_{123...(s)...(s')...n}$ denote the partial correlation coefficient of the sth and s'th characteristics for the remaining n-2 characteristics constant, the following results are fundamental and well-known:

To abbreviate the subscripts we shall write these

$$R_{s,1-n}$$
 and $ss'\rho_{1-n}$,

but where others of the variates are to be left out of account we shall be obliged to introduce the bracket system to mark partial or multiple correlation coefficients

of lower orders. Thus $R_{s.1-(s'')-(s''')-n}$ or simply $R_{s.1-(s''s''')-n}$ would signify the multiple correlation coefficient of the sth characteristic for n-3 other characteristics, s'', s''' and of course s being excluded. Similarly $ss' \rho_{1-(s''s'''s^{iv})-n}$ would be the partial correlation of the sth and s'th characteristics for n-5 other characteristics supposed constant, i.e. the n variates with the exception of

(2) Preliminary Propositions. To express First Minors in Terms of Second Minors.

While values of the second minors in terms of the first have long been known, i.e. the equations of the form

$$\Delta_{sss's'} = rac{\Delta_{ss}\Delta_{s's'} - \Delta^2_{ss'}}{\Delta}$$
....(iv),
$$\Delta_{sss's''} = rac{\Delta_{ss}\Delta_{s's''} - \Delta_{ss'}\Delta_{ss''}}{\Delta}$$
....(v),

the reversed results, i.e. the expressions for first minors in terms of second, seem to me less familiar, at any rate I have not come across them in the literature with which I am acquainted.

The forms to be demonstrated are

s, s', s'', s''' and s^{iv} .

$$\Delta_{ss} = \frac{\Delta^2}{\nabla_{ss's''}} \left(\Delta_{sss's'} \Delta_{sss's'} - \Delta^2_{sss's''} \right) \dots (vi),$$

$$\Delta_{s's''} = \frac{\Delta^2}{\nabla_{ss's''}} \left(\Delta_{s's's''s''} \Delta_{sss's''} + \Delta_{s's'ss''} \Delta_{s''s''ss'} \right) \dots (vii),$$
where
$$\nabla_{ss's''} = \begin{vmatrix} \Delta_{ss}, & \Delta_{ss'}, & \Delta_{ss''} \\ \Delta_{s's}, & \Delta_{s's'}, & \Delta_{s's''} \\ \Delta_{s''s}, & \Delta_{s''s''}, & \Delta_{s''s''} \end{vmatrix} \dots (viii),$$
and
$$\nabla^2_{ss's''} = \Delta^3 \begin{vmatrix} \Delta_{s's's''s''}, & -\Delta_{s''s''ss'}, & -\Delta_{s's's''s} \\ -\Delta_{s's''ss'}, & \Delta_{s''s''s}, & -\Delta_{sss's''} \\ -\Delta_{s's's''s}, & -\Delta_{sss's''}, & \Delta_{sss's'} \end{vmatrix} \dots (ix).$$

and

To prove these results I start from (iv) and (v) to express the value of

$$\Delta_{s's's''s''}\Delta_{sss's''}+\Delta_{s's'ss''}\Delta_{s''s''ss'}.$$

We find

$$\begin{split} \Delta_{s's's''s''}\Delta_{sss's''} + \Delta_{s's'ss''}\Delta_{s''s''ss'} &= \frac{(\Delta_{s's'}\Delta_{s''s''} - \Delta^2_{s's''})}{\Delta} \times \frac{(\Delta_{ss}\Delta_{s's''} - \Delta_{ss'}\Delta_{ss''})}{\Delta} \\ &\quad + \frac{(\Delta_{s's'}\Delta_{s''s} - \Delta_{s's''}\Delta_{s's})}{\Delta} \times \frac{(\Delta_{s''s''}\Delta_{ss'} - \Delta_{s''s}\Delta_{s''s})}{\Delta} \\ &= \frac{\Delta_{s's''}}{\Delta^2} \left(\Delta_{ss}\Delta_{s's'}\Delta_{s''s''} - \Delta_{ss}\Delta^2_{s's''} - \Delta_{s's'}\Delta^2_{s''s} - \Delta_{s''s''}\Delta^2_{ss'} + 2\Delta_{s's''}\Delta_{s''s}\Delta_{ss'}\right) \\ &= \frac{\Delta_{s's''} \cdot \nabla_{ss's''}}{\Delta^2}, \end{split}$$

which gives us at once (vii).

Similarly we have by (iv) and (v)

$$\begin{split} & \Delta_{sss's'} \Delta_{sss''s''} - \Delta^2_{sss's''} \\ &= \frac{\Delta_{ss} \Delta_{s's'} - \Delta^2_{ss'}}{\Delta} \times \frac{\Delta_{ss} \Delta_{s''s''} - \Delta^2_{ss''}}{\Delta} - \frac{(\Delta_{ss} \Delta_{s's''} - \Delta_{ss} \Delta_{ss''})^2}{\Delta^2} \\ &= \frac{\Delta_{ss}}{\Delta^2} \left(\Delta_{ss} \Delta_{s's'} \Delta_{s''s''} - \Delta_{ss} \Delta^2_{s's''} - \Delta_{s's'} \Delta^2_{s''s} - \Delta_{s''s''} \Delta^2_{ss'} + 2\Delta_{s's''} \Delta_{s''s} \Delta_{ss'} \right) \\ &= \frac{\Delta_{ss}}{\Delta^2} \nabla_{ss's''}, \end{split}$$

which gives at once the result (vi).

We shall now substitute values like (vi) and (vii) in our definition (viii) of $\nabla_{ss's''}$ and so deduce (ix).

We have

but the determinant on the right is the square of the determinant

$$egin{array}{lll} \Delta_{s's's''s'}, & -\Delta_{s''s''ss'}, & -\Delta_{s's's''s}, \ -\Delta_{s''s''ss'}, & \Delta_{s''s''ss}, & -\Delta_{sss's''} \ -\Delta_{s's's''s}, & -\Delta_{sss's'}, & \Delta_{sss's'} \end{array},$$

whence by taking the square root we have the result (ix).

(3) Application to Multiple and Partial Correlation Coefficients.

Equation (viii) may be put into the form

$$\nabla_{ss's''} = \Delta_{ss} \Delta_{s's'} \Delta_{s''s''} \qquad 1, \qquad \frac{\Delta_{ss'}}{\sqrt{\Delta_{ss} \Delta_{s's'}}}, \qquad \frac{\Delta_{ss''}}{\sqrt{\Delta_{ss} \Delta_{s''s''}}} \\ \frac{\Delta_{ss'}}{\sqrt{\Delta_{ss} \Delta_{s's'}}}, \qquad 1, \qquad \frac{\Delta_{s's''}}{\sqrt{\Delta_{s's'} \Delta_{s''s''}}} \\ \frac{\Delta_{ss''}}{\sqrt{\Delta_{ss} \Delta_{s''s''}}}, \qquad \frac{\Delta_{s's''}}{\sqrt{\Delta_{s's'} \Delta_{s''s''}}}, \qquad 1, \\ = \frac{\Delta^3}{(1 - R^2_{s' \cdot 1 - n})(1 - R^2_{s' \cdot 1 - n})(1 - R^2_{s'' \cdot 1 - n})} \qquad 1, \qquad -\frac{1}{ss'\rho_{1 - n}}, \qquad -\frac{1}{s's'\rho_{1 - n}} \\ -\frac{1}{ss'\rho_{1 - n}}, \qquad 1 \\ -\frac{1}{ss''\rho_{1

234 Novel Properties of Partial and Multiple Correlation

Turning to the expression (ix) we may write it

$$\nabla^2_{ss's''} = \Delta^3 \Delta_{s's's''s''} \Delta_{s''s''ss} \Delta_{sss's'} \qquad 1, \qquad \frac{-\Delta_{s''s''ss'}}{\sqrt{\Delta_{s's's''s''}} \Delta_{s''s''ss}}, \qquad \frac{-\Delta_{s's's''s}}{\sqrt{\Delta_{s's's''s''}} \Delta_{sss's'}} \qquad 1, \qquad \frac{-\Delta_{s's's''s}}{\sqrt{\Delta_{s's's''ss}} \Delta_{sss's'}} \qquad 1, \qquad \frac{-\Delta_{sss's''}}{\sqrt{\Delta_{s''s''ss}} \Delta_{sss's'}} \qquad 1$$

The determinant on the right can be expressed in terms of partial correlation coefficients of one lower order, i.e. it equals

$$\begin{vmatrix} 1, & s_{s'}\rho_{1-(s'')-n}, & s_{s''}\rho_{1-(s)-n} \\ s_{s'}\rho_{1-(s'')-n}, & 1, & s_{s''}\rho_{1-(s)-n} \\ s_{s''}\rho_{1-(s')-n}, & s_{s''}\rho_{1-(s)-n}, & 1 \end{vmatrix}$$

Further:

Thus:

$$\begin{aligned} &(1-R^2_{s,\mathbf{1}^{-(s')}-n})\left(1-R^2_{s',\mathbf{1}^{-(s)}-n}\right)\left(1-R^2_{s'',\mathbf{1}^{-(s')}-n}\right) \\ &=(1-R^2_{s,\mathbf{1}^{-(s')}-n})\left(1-R^2_{s',\mathbf{1}^{-(s')}-n}\right)\left(1-R^2_{s'',\mathbf{1}^{-(s)}-n}\right).....(xi). \end{aligned}$$

This is a relation between sets of three multiple correlation coefficients of the (n-2)th order.

Squaring (x) and combining with (xii) we find

$$\begin{vmatrix} 1, & -ss'\rho_{1-n}, & -ss''\rho_{1-n} \\ -ss'\rho_{1-n}, & 1, & -s's''\rho_{1-n} \\ -ss''\rho_{1-n}, & -s's''\rho_{1-n}, & 1 \end{vmatrix}$$

$$\frac{1}{(1-R^2_{s.1-n})(1-R^2_{s'.1-n})(1-R^2_{s''.1-n})}$$

$$\frac{1}{(ss'\rho_{1-(s'')-n}, & 1, & ss''\rho_{1-(s)-n} \\ ss''\rho_{1-(s'')-n}, & 1, & s's''\rho_{1-(s)-n} \\ \frac{1}{(1-R^2_{s.1-(s')-n})(1-R^2_{s'.1-(s'')-n})(1-R^2_{s''.1-(s)-n})} \dots (xiii).$$

The denominator on the right-hand side of (xiii) can be replaced by the left-hand side of (xi), or by the square root of the product of both sides of (xi). This is a relation between partial correlation coefficients of the (n-2)th order with multiple coefficients of the (n-1)th order and partial correlation coefficients of the (n-3)th order with multiple coefficients of the (n-2)th order. In the particular case of three variates 1, 2, 3 with total correlations r_{12} , r_{23} , r_{31} (xiii) reduces to

$$\begin{vmatrix} 1, & -\frac{1}{12}\rho_{3}, & -\frac{1}{13}\rho_{2} \\ -\frac{1}{21}\rho_{3}, & 1, & -\frac{1}{23}\rho_{1} \\ -\frac{1}{31}\rho_{2}, & -\frac{1}{32}\rho_{1}, & 1 \end{vmatrix}^{2} = \frac{(1-R^{2}_{1.23})(1-R^{2}_{2.31})(1-R^{2}_{3.12})}{(1-r^{2}_{23})(1-r^{2}_{31})(1-r^{2}_{12})} \begin{vmatrix} 1, & r_{12}, & r_{13} \\ r_{21}, & 1, & r_{23} \\ r_{31}, & r_{32}, & 1 \end{vmatrix}$$
.....(xiv),

a result which might possibly be of practical value in testing the accuracy of the determination of the first order partial and multiple correlation coefficients.

I now return to equations (vi) and (vii), and I divide (vii) by the square root of the product of $\Delta_{s's'}$ and $\Delta_{s''s''}$ obtained by cyclical interchange from (vi). We find

$$\begin{split} \frac{\Delta_{s's'}}{\sqrt{\Delta_{s's'}\Delta_{s''s''}}} &= \frac{\Delta_{s's's''s''}\Delta_{sss's''} + \Delta_{s's'ss''}\Delta_{s''s''ss'}}{\sqrt{\Delta_{s's's''s''}}\Delta_{s''s''s}} - \Delta^2_{s's's''s}\sqrt{\Delta_{s''s''ss}}\Delta_{s''s''ss'} - \Delta^2_{s''s''ss'}} \\ &= \frac{\Delta_{sss's''}}{\sqrt{\Delta_{s's'ss}\Delta_{s''s''ss}}} + \frac{\Delta_{s's'ss''}}{\sqrt{\Delta_{s's'ss}\Delta_{s's's''s'}}}\sqrt{\Delta_{s''s''ss}\Delta_{s''s''ss'}}}{\sqrt{1 - \frac{\Delta^2_{s''s''ss}\Delta_{s''s''ss'}}{\Delta_{s''s''ss}\Delta_{s''s''ss'}}}}, \end{split}$$

or, changing sign throughout,

$$s's'' \rho_{1-n} = \frac{s's'' \rho_{1-(s)-n} - ss'' \rho_{1-(s')-n} \times ss' \rho_{1-(s'')-n}}{\sqrt{1 - ss'' \rho^{2}_{1-(s')-n}} \sqrt{1 - ss' \rho^{2}_{1-(s'')-n}}} \dots (xv).$$

(xv) is the familiar result for obtaining a partial correlation coefficient of the (n-2)th order from those of the (n-3)th order, but the proofs usually given of it seem to be based on some appeal to general analogy rather than to the definite algebraical form of the coefficients concerned. It was, indeed, a lecture proof of the relation (xv) from the determinantal forms of the coefficients which led me to the results (vi) and (vii), as apparently novel determinantal relations.

We can next consider results (vi) and (vii) individually. From (vi) we find

$$\frac{\Delta_{ss}}{\Delta} = \frac{\Delta^3}{\nabla_{ss's''}} \frac{\Delta_{s's'}}{\Delta} \frac{\Delta_{s's'}}{\Delta} \frac{\Delta_{sss's'}}{\Delta} \frac{\Delta_{sss's'}}{\Delta_{e'e'}} \frac{\Delta_{sss's''}}{\Delta_{e''e''}} \left(1 - \frac{\Delta^2_{sss's''}}{\Delta_{sss's'}} \Delta_{sss's''}\right),$$

or, converting into partials and multiples, and writing

we have

$$\begin{split} \frac{1}{1-R^2_{s.1-n}} &= \frac{(1-R^2_{s.1-n}) \left(1-R^2_{s'.1-n}\right) \left(1-R^2_{s''.1-n}\right)}{\operatorname{`P}_{n-2}} \frac{1}{(1-R^2_{s''.1-n}) \left(1-R^2_{s''.1-n}\right)} \\ &\times \frac{1}{(1-R^2_{s.1-(s')-n}) \left(1-R^2_{s.1-(s'')-n}\right)} \times (1-{}_{s's''}\!\rho^2_{1-(s)-n}). \end{split}$$

Hence

$$(1 - R_{s,1-n}^2)^2 = \frac{(1 - R_{s,1-(s')-n}^2) (1 - R_{s,1-(s')-n}^2) P_{n-2}}{1 - P_{s's'} \rho_{1-(s)-n}^2} (xvi).$$

This is an expression for a multiple coefficient of the (n-1)th order in terms of multiple coefficients of the (n-2)th order and partial coefficients of the (n-2)th and (n-3)th orders.

Equation (xvi) just obtained may be put into another form by aid of the relations*

$$egin{aligned} 1 - {}_{ss'}
ho^2{}_{1-n} &= rac{1 - R^2{}_{s+1-n}}{1 - R^2{}_{s+1-(s')-n}}, \ 1 - {}_{ss''}
ho^2{}_{1-n} &= rac{1 - R^2{}_{s+1-(s')-n}}{1 - R^2{}_{s+1-(s')-n}}, \end{aligned}$$

leading to

$$\begin{split} (1-{}_{ss'}\rho^2{}_{1-n})\,(1-{}_{ss''}\rho^2{}_{1-n}) &= \frac{(1-{}R^2{}_{s\cdot 1-n})^2}{(1-{}R^2{}_{s\cdot 1-(s''-n)})\,(1-{}R^2{}_{s\cdot 1-(s'')-n})} \\ &= \frac{{}^{\bf P}{}_{n-2}}{1-{}_{s's''}\rho^2{}_{1-(s)-n}} \ \ {\rm by} \ \ ({\rm xvi}). \\ 1-{}_{s's''}\rho^2{}_{1-(s)-n} &= \frac{{}^{\bf P}{}_{n-2}}{(1-{}_{ss'}\rho^2{}_{1-n})\,(1-{}_{ss''}\rho^2{}_{1-n})}......({\rm xvi})^{\rm bis}. \end{split}$$

Hence

Thus $(xvi)^{bis}$ is the reverse of (xv), giving a partial correlation of the (n-3)th order in terms of those of the (n-2)th order. For example, if there be three variates, 1, 2, 3,

$$1 - r_{23}^2 = \frac{1 - {}_{32}\rho_1{}^2 - {}_{13}\rho_2{}^2 - {}_{21}\rho_3{}^2 + 2{}_{32}\rho_1 \cdot {}_{13}\rho_2 \cdot {}_{21}\rho_3}{(1 - {}_{12}\rho_3{}^2)(1 - {}_{13}\rho_2{}^2)},$$

leading to

$$r_{23} = \frac{{}_{32}\rho_1 + {}_{12}\rho_3 \cdot {}_{13}\rho_2}{\sqrt{1 - {}_{12}\rho_3^2}\sqrt{1 - {}_{13}\rho_2^2}},$$

which can be easily verified by substitution of the values of the partial correlations, or be seen at once from the polar triangle.

For the particular case of three variates we may use (xvi) instead of (xvi)bis, writing it

$$(1 - R_{1.23}^2)^2 = \frac{(1 - r_{12}^2) (1 - r_{13}^2)}{1 - r_{23}^2} \begin{vmatrix} 1, & -\frac{12}{9}, & -\frac{13}{9} \\ -\frac{12}{9}, & 1, & -\frac{23}{9} \\ -\frac{13}{9}, & -\frac{23}{9}, & 1 \end{vmatrix} \dots (xvii),$$

which will be found on substitution of the values of the partial coefficients on the right and the multiple on the left to reduce to the familiar result that the square of a 3 by 3 determinant is equal to the determinant formed by its minors. In this case of three variates, if r_{23} , r_{31} , r_{12} be taken as the cosines of the sides of a spherical

triangle, then $_{23}\rho_1$, $_{31}\rho_2$, $_{12}\rho_3$ are the cosines of the angles, and $R_{2.31}$, $R_{1.23}$, $R_{3.12}$ are the cosines of the perpendiculars from the angles on the opposite sides. If a, b, c are the sides, A, B, C the opposite angles, pa, pb, pc the perpendiculars on the sides, then the above relation is

$$\sin^4 pa = \frac{\sin^2 b \sin^2 c}{\sin^2 a} \begin{vmatrix} 1, & -\cos C, & -\cos B \\ -\cos C, & 1 & -\cos A \\ -\cos B, & -\cos A, & 1 \end{vmatrix}.$$

It is greatly to be desired that the "trigonometry" of higher dimensioned plane space should be fully worked out, for all our relations between multiple correlation and partial correlation coefficients of n variates are properties of the "angles," "edges" and "perpendiculars" of sphero-polyhedra in multiple space. It would be a fine task for an adequately equipped pure mathematician to write a treatise on "spherical polyhedrometry"; he need not fear that his results would be without practical application for they embrace the whole range of problems from anatomy to medicine and from medicine to sociology and ultimately to the doctrine of evolution.

Lastly we may turn to (vii), and express it also in multiple and partial correlation coefficients. We have

$$egin{align*} rac{\Delta_{s's''}}{\sqrt{\Delta_{s's'}\Delta_{s''s''}}} &= rac{\Delta^3}{
abla_{s's'}} rac{\Delta_{s's's''s''}}{\sqrt{\Delta_{s's'}\Delta_{s''s''}}} \sqrt{rac{\Delta_{s's'ss}}{\Delta_{s's'}}} rac{\Delta_{s''s''ss}}{\Delta_{s''s''}} \sqrt{rac{\Delta_{s's'}}{\Delta_{s''s''}}} \sqrt{rac{\Delta_{s's'}}{\Delta_{s''s''}}} \ imes \left(rac{\Delta_{sss's''}}{\sqrt{\Delta_{s's'ss}\Delta_{s''ss'}}} + rac{\Delta_{s''s''ss}}{\sqrt{\Delta_{s's'ss}\Delta_{s's's''s''}}} imes rac{\Delta_{s''s''ss'}}{\sqrt{\Delta_{s''s''ss}\Delta_{s''s''s''}}}
ight), \end{split}$$

or using the correlation symbols

This is a complicated form and unlikely to be of material service.

If we use the symbol P_{n-3} to represent the determinant

$$\begin{vmatrix} 1, & ss'\rho_{1-(s'')-n}, & ss''\rho_{1-(s')-n} \\ ss'\rho_{1-(s'')-n}, & 1, & s's''\rho_{1-(s)-n} \\ ss''\rho_{1-(s')-n}, & c's''\rho_{1-(s)-n}, & 1 \end{vmatrix},$$

we can throw (xviii) into the form

Here on the right we have only partial correlations of the order n-3, but the expression involves a multiple of the order n-1 as well as those of order n-2. Of course in the second radical s'' and s' may be interchanged owing to the existence of (xi). On the whole it appears best to confine our attention to (xv) and (xvi) as the fittest representatives of (vi) and (vii) expressed in correlation forms. (xv) has long been in use either to determine the partial correlation coefficients of higher orders by repetitional processes, or better to verify results given by (iii). The calculation of the higher multiple correlation coefficients by (ii) can be verified by the aid of (xvi) if the partials have also been found. But if once the value of Δ_n has been determined the continuous product formula may often be advantageously used. Looked at from the determinantal standpoint this may be rear hed as follows:

$$egin{align*} \Delta_n &= rac{\Delta_n}{\Delta_{ss}} \cdot rac{\Delta_{ss}}{\Delta_{sss's'}} \cdot rac{\Delta_{sss's'}}{\Delta_{sss's's''}} \cdot rac{\Delta_{sss's''s'''}}{\Delta_{sss's's''s'''s'''}} \cdots rac{\Delta_{ss}}{1} & 1 \ &= (1-R^2_{s,1-n}) \left(1-R^2_{s'\cdot 1-(s)-n}
ight) \left(1-R^2_{s''\cdot 1-(ss')-n}
ight) \left(1-R^2_{s''\cdot 1-(ss')'-n}
ight) \cdots \left(1-r^2pq
ight), \end{split}$$

if the pth and qth variates be the last to be excluded.

Hence*

$$1 - R^{2}_{s.1-n} = \frac{\Delta_{n}}{(1 - R^{2}_{s'.1-(s)-n})(1 - R^{2}_{s''.1-(ss')-n})(1 - R^{2}_{s'''.1-(ss's'')-n})\dots(1 - r^{2}pq)}$$
......(xix).

The trouble of this method is that Δ_n has to be calculated at each stage, if we deduce $R_{s,1-n}$ by a repetitional process. If we use it merely as a verification process for (ii) we shall not verify Δ_n unless it is worked out twice. Of course Δ_n , if n be at all large, is more troublesome to calculate than the 3×3 determinants of formula (xvi).

However the primary object of the present paper is not so much to provide verification formulae as to show by direct determinantal analysis certain relations known and unknown between the higher multiple and partial correlation coefficients.

* This must not be confused with the formula

$$1 - {_{ss'}}{\rho^2}_{12...n} = \frac{1 - R^2_{s.1-n}}{(1 - {_{ss''}}{\rho^2}_{1-(s')-n}) (1 - {_{ss'''}}{\rho^2}_{1-(s's'')-n}) (1 - {_{ss'''}}{\rho^2}_{1-(s's'')-n}) \dots (1 - r^2pq)}$$

see Yule, R. S. Proc. A, Vol. LXXIX. p. 189, and Pearson, R. S. Proc. A, Vol. XCI. p. 496.

ON THE APPLICATION OF "GOODNESS OF FIT" TABLES TO TEST REGRESSION CURVES AND THEORETICAL CURVES USED TO DESCRIBE OBSERVATIONAL OR EXPERIMENTAL DATA.

By KARL PEARSON, F.R.S.

Let us suppose that a sample of size N with class groups n_{qp} is taken out of an indefinitely large population of size M with class groups ν_{qp} , these classes being arranged according to two variates x and y. Then the mean of any array of x's for a given range of y variates connoted by the centre, y_p , of this (usually small) range will be

$$m_p = \frac{S(n_{qp}x_q)}{n_p} \quad \dots (i).$$

Here n_{qp} , the number in the x_q , y_p class, and n_p , the total number in the pth array of x's, will vary from sample to sample. But x_q and y_p will remain of course the same. Now let \overline{m}_p be the mean value of m_p found from a large number λ of samples and let us measure $m_p = \overline{m}_p + \delta m_p$ from \overline{m}_p and n_{qp} from $\overline{n}_{qp} = N\nu_{qp}/M$, and n_p from $N\nu_p/M$, or take $n_{pq} = \overline{n}_{pq} + \delta \overline{n}_{pq}$, and $n_p = \overline{n}_p + \delta n_p$. Here the differentials are statistical differences and do not at present denote that we are going to neglect their higher powers. From (i) we have

$$\begin{split} \overline{m}_p + \delta m_p &= S\left(\frac{\overline{n}_{qp}x_q}{\overline{n}_p}\right) \left\{1 - \frac{\delta n_p}{\overline{n}_p} + \left(\frac{\delta n_p}{\overline{n}_p}\right)^2 - \left(\frac{\delta n_p}{\overline{n}_p}\right)^3 + \ldots\right\} \\ &+ S\left(\frac{\delta n_{qp}x_q}{\overline{n}_p}\right) \left\{1 - \frac{\delta n_p}{\overline{n}_p} + \left(\frac{\delta n_p}{\overline{n}_p}\right)^2 - \left(\frac{\delta n_p}{\overline{n}_p}\right)^3 + \ldots\right\}. \end{split}$$

Now we shall sum this for all λ samples (dividing by λ) and suppose that third order powers and products of $\frac{\delta n_{qp}}{\overline{n}_p}$ and $\frac{\delta n_p}{\overline{n}_p}$ are negligible as compared with lower order powers and products*. If Σ denote a summation for all λ samples

$$\frac{\Sigma\left(\delta m_{p}\right)}{\lambda} = \frac{\Sigma\left(\delta n_{qp}\right)}{\lambda} = \frac{\Sigma_{\cdot}(\delta n_{p})}{\lambda} = 0,$$

since all these quantities are measured from their mean values. Thus we find

$$\overline{m}_{p} = S\left(\frac{\overline{n}_{qp}x_{q}}{\overline{n}_{p}}\right)\left(1 + \frac{\sum (\delta n_{p})^{2}}{\lambda \overline{n}_{p}^{2}}\right) - S\left(\frac{x_{q}}{\overline{n}_{p}^{2}} \frac{\sum (\delta n_{qp}\delta n_{p})}{\lambda}\right).$$

* Actually terms of the third order also vanish. I have not investigated whether this be true for terms of the fourth and higher orders.

But*
$$\frac{\sum (\delta n_p)^2}{\lambda} = \bar{n}_p \left(1 - \frac{\bar{n}_p}{N} \right), \quad \frac{\sum (\delta n_{qp} \delta n_p)}{\lambda} = \bar{n}_{qp} \left(1 - \frac{\bar{n}_p}{N} \right).....(ii),$$
 and accordingly
$$\bar{m}_p = S \left(\frac{\bar{n}_{qp} x_q}{\bar{n}_p} \right) \left\{ 1 + \frac{1}{\bar{n}_p} \left(1 - \frac{\bar{n}_p}{N} \right) - \frac{1}{\bar{n}_p} \left(1 - \frac{\bar{n}_p}{N} \right) \right\}$$
$$= \frac{S \left(\bar{n}_{qp} x_q \right)}{\bar{n}_p} = \frac{S \left(\nu_{qp} x_q \right)}{\nu_p}$$

= mean of the array in the sampled population.

Thus to a high order of approximation at least the mean of the array means is the mean of the corresponding array in the sampled population. This result cannot be taken as obvious, as the size of the array in the sample varies †.

We can now write to a second approximation:

since

We shall now find the mean value of $(\delta m_p)^2$ as far as third order terms. Let O_2 and O_3 give the second and third order terms; let Σ denote a summation for all samples and λ their number; write \tilde{x}_q for $x_q - \overline{m}_p$. Then

$$O_{2} = \frac{1}{\lambda} \frac{\sum \{S \left(\delta n_{qp} \widetilde{x}_{q}\right)\}^{2}}{\overline{n}_{p}^{2}}$$

$$= \frac{1}{\lambda} \frac{S \left\{\sum \left(\delta n_{qp}\right)^{2} \widetilde{x}_{q}^{2}\right\}}{\overline{n}_{p}^{2}} + \frac{2}{\lambda} \frac{S_{1} \left\{\sum \left(\delta n_{q'p} \delta n_{q''p}\right) \widetilde{x}_{q'} \widetilde{x}_{q''}\right\}}{\overline{n}_{p}^{2}}.$$
But
$$\frac{\sum \left(\delta n_{qp}\right)^{2}}{\lambda} = n_{qp} \left(1 - \frac{n_{qp}}{N}\right)$$

$$\frac{\sum \left(\delta n_{q'p} \delta n_{q''p}\right)}{\lambda} = -\frac{n_{q'p} n_{q''p}}{N}$$

$$O_{2} = \frac{S \left(\overline{n}_{qp} \widetilde{x}_{q}^{2}\right)}{\overline{n}_{p}^{2}} - \frac{S \left(\overline{n}_{qp}^{2} \widetilde{x}_{q}^{2}\right)}{\overline{n}_{p}^{2} N} - \frac{2S_{1} \left(\overline{n}_{q'p} \overline{n}_{q''p} \widetilde{x}_{q'} \widetilde{x}_{q''}\right)}{\overline{n}_{p}^{2} N}$$

$$= \frac{\sigma^{2} \overline{n}_{p}}{\overline{n}_{p}} - \frac{1}{N} \left\{\frac{S \left(\overline{n}_{qp} \widetilde{x}_{q}\right)}{\overline{n}_{p}}\right\}^{2}$$

$$= \frac{\sigma^{2} \overline{n}_{p}}{\overline{n}_{p}}, \text{ since } S \left(\overline{n}_{qp} \widetilde{x}_{q}\right) = 0.....(v).$$

^{*} Biometrika, Vol. IX. p. 2.

[†] The assumption that the mean value of a character in a number of samples is the value in the sampled population is often made, but is nearly as often erroneous. Thus the mean value of the correlation of a character in samples is *not* the correlation of these characters in the sampled population.

Hence to this order we have $\sigma_{m_p} = \sigma_{\bar{n}_p}/\sqrt{\bar{n}_p}$, precisely the value of the standard deviation of the mean on the hypothesis that the array is of constant size equal to the mean size \bar{n}_p . We next turn to the third order terms O_3 . Here

$$\begin{split} O_3 &= -\frac{2}{\lambda} \sum \left\{ \frac{S \left(\delta n_{qp} \tilde{x}_q\right) \times S \left(\delta n_{qp} \delta n_p \tilde{x}_q\right)}{\bar{n}_p^3} \right\} \\ &= -2 \left[\frac{S \sum \left(\delta n_{qp}^2 \delta n_p \tilde{x}_q^2\right)}{\lambda \bar{n}_p^3} + 2 \frac{S \sum \left(\delta n_{q'p} \delta n_{q''p} \delta n_p x_{q'} x_{q''}\right)}{\lambda \bar{n}_p^3} \right]. \end{split}$$

But the summations marked by Σ can be expressed by aid of (e) and (f) on p. 244 below. We have

$$\begin{split} O_{3} &= -\frac{2}{\overline{n}_{p}^{3}} \left[S\left\{ \overline{n}_{qp} \left(1 - \frac{2\overline{n}_{qp}}{N} \right) \left(1 - \frac{\overline{n}_{p}}{N} \right) \widetilde{x}_{q}^{2} \right\} - 2S\left\{ \frac{\overline{n}_{q'p} \overline{n}_{q''p}}{N} \left(1 - \frac{\overline{n}_{p}}{N} \right) \widetilde{x}_{q'} \widetilde{x}_{q''} \right\} \right] \\ &= -\frac{2}{\overline{n}_{p}^{2}} \left(1 - \frac{\overline{n}_{p}}{N} \right) \left[\frac{S\left(\overline{n}_{qp} \widetilde{x}_{q}^{2} \right)}{\overline{n}_{p}} - \frac{2\overline{n}_{p}}{N} \left\{ \frac{S\left(\overline{n}_{qp} \widetilde{x}_{q} \right)}{\overline{n}_{p}} \right\}^{2} \right] \\ &= -\frac{\sigma^{2} \overline{n}_{p}}{\overline{n}_{p}} \times \frac{2}{\overline{n}_{p}} \left(1 - \frac{\overline{n}_{p}}{N} \right), \text{ since } S\left(\overline{n}_{qp} \widetilde{x}_{q} \right) = 0. \end{split}$$

$$\text{Accordingly} \qquad \sigma^{2}_{m_{p}} = O_{2} + O_{3} = \frac{\sigma^{2} \overline{n}_{p}}{\overline{n}_{p}} \left\{ 1 - \frac{2}{\overline{n}_{p}} \left(1 - \frac{\overline{n}_{p}}{N} \right) \right\} \qquad (vi). \end{split}$$

The corrective term O_3 is, I think, of marked importance for it indicates that the standard deviation of the mean of an array in a sample is not the same thing as the standard deviation of an array of constant size. It is not therefore legitimate to assume, as some authors have done, that the standard deviation of the mean of an array is given by the same formula, i.e. $\sigma_{\overline{n}_p}/\sqrt{\overline{n}_p}$, as for an array of constant size equal to the mean number in that array for a large number of samples.

Had we included the terms of the next order in (vi) we should have obtained in the curled brackets terms of the order $1/\bar{n}_p^2$. For a small array this might be equally important with the term already given in 1/N. Hence some caution must be exercised in retaining that term and dropping terms in $1/\bar{n}_p^2$; at the same time for the larger arrays \bar{n}_p/N may be commensurable with unity.

We may throw (vi) into the form

$$\sigma^{2}_{m_{p}} = \frac{\sigma^{2}_{\overline{n}_{p}}}{\overline{n}_{p} \left(1 - \frac{2}{N}\right) + 2} \dots (vi)^{\text{bis}}$$

$$= \frac{\sigma^{2}_{\overline{n}_{p}}}{\overline{n}_{p} + 2}, \text{ for many purposes.}$$

This result agrees only with that given by me in 1905*, i.e.

$$\sigma_{m_p} = rac{\sigma_{\overline{n}_p}}{\sqrt{\overline{n}_n}}$$
 ,

to a first approximation, i.e. when we may neglect 2/N as compared with unity and 2 as compared with the mean number in the array. To assume without proof

* "On the General Theory of Skew Correlation," p. 14. Drapers' Company Research Memoirs, Cambridge University Press.

the above value to be true is not legitimate as there is no a priori reason why the standard deviation of the mean of an array of variable size should take, even to a first approximation, the value of the standard deviation of the mean of arrays of constant size, that constant size being the reduced frequency (i.e. $\bar{n}_p = \nu_p N/M$) of the sampled population. Actually a better approximation to σ_{m_p} appears to be obtained if we add two units to the mean frequency—a correction which may be of considerable importance for small arrays.

We next turn to the correlation of means and we have to evaluate the product of two expressions like (iii) for δm_p and $\delta m_{p'}$ where p is not equal to p'. We shall obtain, summing for λ samples and dividing by λ , the value of $\sigma_{m_p}\sigma_{m_{p'}}R_{m_pm_{p'}}$, where $R_{m_pm_{p'}}$ is the correlation of the means. We shall again treat the square and cubic order terms separately:

$$\begin{split} \text{Square order terms in } & \sigma_{m_p}\sigma_{m_p}R_{m_pm_{p'}}\\ &= S\left\{\frac{\sum\left(\delta n_{qp}\delta n_{q'p'}\right)x_qx_{q'}}{\lambda\bar{n}_p\bar{n}_{p'}}\right\} - m_{p'}S\left\{\frac{\sum\left(\delta n_{qp}\delta n_{p'}x_q\right)}{\lambda\bar{n}_p\bar{n}_{p'}}\right\}\\ & - m_pS\left\{\frac{\sum\left(\delta n_{q'p'}\delta n_px_{q'}\right)}{\lambda\bar{n}_p\bar{n}_{p'}}\right\} + \frac{m_pm_{p'}}{n_pn_{p'}}\frac{\sum\left(\delta n_p\delta n_{p'}\right)}{\lambda}\\ &= -\frac{S\left(\bar{n}_{qp}\bar{n}_{q'p'}x_qx_{q'}\right)}{N\bar{n}_p\bar{n}_{p'}} + m_{p'}\frac{S\left(\bar{n}_{qp}\bar{n}_{p'}x_q\right)}{N\bar{n}_p\bar{n}_{p'}}\\ &+ m_p\frac{S\left(\bar{n}_{q'p'}\bar{n}_px_{q'}\right)}{N\bar{n}_p\bar{n}_{p'}} - \frac{m_pm_{p'}}{\bar{n}_p\bar{n}_{p'}}\frac{\bar{n}_p\bar{n}_{p'}}{N}\\ &= -\frac{m_pm_{p'}}{N} + \frac{m_{p'}m_{p'}}{N} + \frac{m_pm_{p'}}{N} - \frac{m_pm_{p'}}{N}\\ &= 0. \end{split}$$

Thus we see that as far as square order terms are concerned:

$$R_{m_n m_{n'}} = 0$$
(vii),

notwithstanding that there exists a correlation between the numbers in the two arrays on which the means are based. So far this result is only true to a *first* approximation*. But we now turn to the cubic terms given by the product of the square terms in δm_p with the linear terms in $\delta m_{p'}$. There results the four separate terms:

$$-\frac{\Sigma\left\{S\left(\delta n_{qp'}x_q\right)S\left(\delta n_{qp}\delta n_px_q\right)\right\}}{\lambda\overline{n}_p{}^2\overline{n}_{p'}}+\frac{\overline{m}_pS\left\{\Sigma\left(\delta n_{qp}\delta n_p\delta n_p\delta n_{p'}x_q\right)\right\}}{\lambda\overline{n}_p{}^2\overline{n}_{p'}}\\ +\frac{\overline{m}_{p'}S\left\{\Sigma\left(\delta n_{qp'}\left(\delta n_p\right)^2\right)x_q\right\}}{\lambda\overline{n}_p{}^2\overline{n}_{p'}}-\frac{\overline{m}_p\overline{m}_{p'}\Sigma\left\{\delta n_{p'}\left(\delta n_p\right)^2\right\}}{\lambda\overline{n}_p{}^2\overline{n}_{p'}}\,.$$

I have evaluated each of these terms in succession by the use of formulae similar to those on p. 244, and all these terms give the same result, i.e. their sum with proper signs to its constituents

$$=\frac{\overline{m}_{p}\overline{m}_{p'}}{N\overline{n}_{p}}\Big(1-\frac{2\overline{n}_{p}}{N}\Big)-\frac{\overline{m}_{p}\overline{m}_{p'}}{N\overline{n}_{p}}\Big(1-\frac{2\overline{n}_{p}}{N}\Big)-\frac{\overline{m}_{p}\overline{m}_{p'}}{N\overline{n}_{p}}\Big(1-\frac{2\overline{n}_{p}}{N}\Big)+\frac{\overline{m}_{p}\overline{m}_{p'}}{N\overline{n}_{p}}\Big(1-\frac{2\overline{n}_{p}}{N}\Big)=0.$$

^{*} I have given this result in memoir just cited, p. 13.

Interchanging p and p' we obtain precisely the same result for all the four terms in the product of the square terms in $\delta m_{p'}$ with the linear terms in δm_p . Thus the cubic terms in the values of $\sigma_{m_p}\sigma_{m_{p'}}R_{m_pm_{p'}}$ are also zero. We have thus established to a high order of approximation that (i) $\overline{m}_p = \text{mean of array in sampled population, (ii)}$ that there is no correlation between the means in any two different arrays, while (iii) to a lower order of approximation only $\sigma_{m_p} = \sigma_{\overline{n}_p} / \sqrt{\overline{n}_p}$.

Now we know that the distribution of means of samples of constant size taken from a population following any law of frequency approximates very rapidly as the size of the sample increases to the normal law. How far may we extend this result to the present case of the means of arrays the total frequency of which varies from sample to sample?

With the view of considering the approach to a normal distribution, let us investigate the third moment coefficient of m_p for the samples of the pth array. From (iii) keeping only lowest order terms we have

$$\delta m_p = rac{S\left(\delta n_{qp} \widetilde{x}_q
ight)}{\overline{n}_m}$$
 ,

and accordingly

$$\begin{split} \frac{\Sigma \left(\delta m_{p}\right)^{3}}{\lambda} &= \frac{1}{\bar{n}_{p}^{3}} \left[S \left\{ \frac{\Sigma \left(\delta n_{qp}\right)^{3} \tilde{x}_{q}^{3}}{\lambda} \right\} + 3S \left\{ \frac{\Sigma \left(\delta n_{qp}\right)^{2} \delta n_{q'p} \tilde{x}_{q}^{2} \tilde{x}_{q'}}{\lambda} \right\} \\ &+ 6S \left\{ \frac{\Sigma \left(\delta n_{qp} \delta n_{q'p} \delta n_{q'p} \delta n_{q''p}\right) \tilde{x}_{q} \tilde{x}_{q'} \tilde{x}_{q''}}{\lambda} \right\} \right], \end{split}$$

or, using (a), (b) and (c) on p. 244,

$$\begin{split} \frac{\Sigma \left(\delta m_p\right)^3}{\lambda} &= \frac{1}{\bar{n}_p{}^3} \left[S \left\{ \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N} \right) \left(1 - \frac{2\bar{n}_{qp}}{N} \right) \tilde{x}_q{}^3 \right\} \\ &- 3S \left\{ \bar{n}_{qp} \left(1 - \frac{2\bar{n}_{qp}}{N} \right) \frac{\bar{n}_{q'p}}{N} \tilde{x}_q{}^2 \tilde{x}_{q'} \right\} + 12S \left\{ \frac{\bar{n}_{qp} \bar{n}_{q'p} \bar{n}_{q'p}}{N^2} \tilde{x}_q \tilde{x}_{q'} \tilde{x}_{q''} \right\} \right] \\ &= \frac{1}{\bar{n}_p{}^3} \left[S \left(\bar{n}_{qp} \tilde{x}_q{}^3 \right) - \frac{3}{N} S \left(\bar{n}_{qp} \tilde{x}_q{}^2 \right) S \left(\bar{n}_{qp} \tilde{x}_q \right) + \frac{2}{N^2} \{ S (\bar{n}_{qp} \tilde{x}_q) \}^3 \right]. \end{split}$$

The last two terms vanish with the factor $S(\bar{n}_{qp}\tilde{x}_q)$. Thus

$$rac{\Sigma}{\lambda} rac{(\delta m_p)^3}{\lambda} = rac{1}{\overline{n}_p{}^2} {}_a \mu_3 \,,$$

where $_a\mu_3$ is the third moment coefficient of the array about its own mean in the population sampled. We have seen also that to the same degree of approximation $\frac{\sum (\delta m_p)^2}{\lambda} = \frac{a\mu_2}{\bar{n}p}$, where $_a\mu_2 = \sigma^2_{\bar{n}_p}$. Accordingly if $_pB_1$ be the value of the first β -coefficient for the distribution of the means of the pth array in samples:

$$\begin{split} {}_{p}B_{1} &= \left\{ &\frac{\Sigma}{\lambda} \frac{(\delta m_{p})^{3}}{\lambda} \right\}^{2} / \left\{ &\frac{\Sigma}{\lambda} \frac{(\delta m_{p})^{2}}{\lambda} \right\}^{3} \\ &= \frac{1}{\overline{n}_{p}} \frac{{}_{a}\mu_{a}^{2}}{({}_{a}\mu_{2})^{3}} = \frac{1}{\overline{n}_{p}} {}_{p}\beta_{1}, \end{split}$$

where $_{p}\beta_{1}$ is the first β -coefficient of the pth array in the sampled population. Hence whatever be the nature of the frequency distribution in that population, if the number in the array be not too small, the distribution of the means of arrays will approach symmetry, i.e. $_{p}B_{1}$ will be small*.

The following values have been used in the previous investigations, some of which have and some of which have not, as far as I am aware, yet been published †. The remainder will be required in investigating $_{p}B_{2}$, or the value of Σ $(\delta m_{p})^{4}/\lambda$.

Third Order Mean Products for Random Samples in the case of an indefinitely large Sampled Population.

$$\frac{\sum (\delta n_{qp})^3}{\lambda} = \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N} \right) \left(1 - \frac{2\bar{n}_{qp}}{N} \right),$$

$$\frac{\sum \left\{ (\delta n_{qp})^2 \, \delta n_{q'p} \right\}}{\lambda} = - \, \frac{\bar{n}_{qp} \, \bar{n}_{q'p}}{N} \left(1 - \frac{2\bar{n}_{qp}}{N} \right),$$

$$\frac{\Sigma \left(\delta n_{qp} \delta n_{q'p} \delta n_{q''p}\right)}{\lambda} = \frac{2\bar{n}_{qp} \bar{n}_{q'p} \bar{n}_{q''p}}{N^2},$$

$$\frac{\sum (\delta n_p^2 \delta n_{qp})}{\lambda} = \bar{n}_{qp} \left(1 - \frac{\bar{n}_p}{N} \right) \left(1 - \frac{2\bar{n}_p}{N} \right),$$

(e)
$$\frac{\sum \left(\delta n_p \delta n_{qp} \delta n_{q'p}\right)}{\lambda} = -\frac{2\bar{n}_{qp} \bar{n}_{q'p}}{N} \left(1 - \frac{\bar{n}_p}{N}\right),$$

$$\frac{\Sigma \left\{\delta n_{p} \left(\delta n_{qp}\right)^{2}\right\}}{\lambda} = \bar{n}_{qp} \left(1 - \frac{2\bar{n}_{qp}}{N}\right) \left(1 - \frac{\bar{n}_{p}}{N}\right),$$

$$\frac{\Sigma \left(\delta n_{p}\right)^{3}}{\lambda} = \bar{n}_{p} \left(1 - \frac{\bar{n}_{p}}{N}\right) \left(1 - \frac{2\bar{n}_{p}}{N}\right),$$

$$\frac{\sum \left\{\delta m_p \left(\delta n_p\right)^2\right\}}{\lambda} = 0,$$

$$\frac{\Sigma \left(\delta m_p \delta n_{pq} \delta n_p\right)}{\lambda} = \frac{\overline{n}_{qp}}{\overline{n}_p} \left(1 - \frac{\overline{n}_p}{N}\right) (x_q - \overline{m}_p),$$

$$\frac{ \Sigma \left\{ (\delta m_p)^2 \, \delta n_p \right\} }{\lambda} = \frac{\sigma^2_{\,\overline{n}_p}}{\overline{n}_p} \bigg(1 - \frac{\overline{n}_p}{N} \bigg) \, ,$$

$$\frac{\Sigma\left\{(\delta m_p)^2\,\delta n_{qp}\right\}}{\lambda} = \frac{\overline{n}_{qp}}{\overline{n}_p^2} \left\{(x_q - \overline{m}_p)^2 - \frac{\overline{n}_p}{N}\,\sigma^2_{n_p}\right\}\,,$$

$$\frac{\Sigma \left\{\delta m_p \left(\delta n_{qp}\right)^2\right\}}{\lambda} = \frac{\overline{n}_{qp}}{\overline{n}_p} \left(x_q - \overline{m}_p\right) \left(1 - \frac{2\overline{n}_{qp}}{N}\right),$$

$$(m) \qquad \frac{\sum (\delta m_p \delta n_{q'p} \delta n_{q'p})}{\lambda} = -\frac{\overline{n}_{qp} \overline{n}_{q'p}}{\overline{n}_n N} \{x_q - \overline{m}_p + x_{q'} - \overline{m}_p\}.$$

^{*} Even if the array diverged considerably from the Gaussian value, i.e. $_p\beta_1=\cdot 2$, say, then $_pB_1$ for an array of even 10 only would be but $\cdot 02$ and the asymmetry very slight.

^{† (}a) and (g), Phil. Trans., Vol. 186, A, p. 347 (Pearson, 1894); (b) and (c), Biometrika, Vol. 1x. p. 95 (Soper, 1913); (d)–(m) probably here for the first time.

The following fourth order mean products are deduced from the more general values given by Isserlis*:

$$(n) \frac{\sum \left(\delta n_{qp} \delta n_{q'p} \delta n_{q''p} \delta n_{q''p} \delta n_{q'''p}\right)}{\lambda} = 3 \left(1 - \frac{2}{N}\right) \frac{\overline{n}_{qp} \overline{n}_{q'p} \overline{n}_{q''p} \overline{n}_{q''p}}{N^2},$$

$$(o) \qquad \frac{\sum \left\{ (\delta n_{qp})^2 \, \delta n_{q'p} \delta n_{q''p} \right\}}{\lambda} = -\left(1 - \frac{2}{N}\right) \frac{\overline{n}_{qp} \, \overline{n}_{q'p} \, \overline{n}_{q''p}}{N} \left(1 - \frac{3\overline{n}_{qp}}{N}\right),$$

$$(p) \qquad \qquad \Sigma \left. \{ (\delta n_{qp})^3 \, \delta n_{q'p} \right\} = - \, \frac{\bar{n}_{qp} \, \bar{n}_{q'p}}{N} \left\{ 3 \left(1 - \frac{2}{N} \right) \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N} \right) + \, 1 \right\} \, , \label{eq:self-point}$$

$$(q) \qquad \qquad \frac{\Sigma \left\{ (\delta n_{qp})^2 \left(\delta n_{q'p} \right)^2 \right\}}{\lambda} = \bar{n}_{qp} \bar{n}_{q'p} \left\{ \left(1 - \frac{2}{N} \right) \left(1 - \frac{\bar{n}_{qp}}{N} - \frac{\bar{n}_{q'p}}{N} + \frac{3\bar{n}_{qp} \bar{n}_{q'p}}{N^2} \right) + \frac{1}{N} \right\},$$

while

$$(r) \qquad \frac{\sum \left(\delta n_{qp}\right)^4}{\lambda} = n_{qp} \left(1 - \frac{\bar{n}_{qp}}{N}\right) \left\{3\left(1 - \frac{2}{N}\right) \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N}\right) + 1\right\}$$

is due to Pearson†.

I shall now use (n) to (r) to determine $\sum (\delta m_p)^4/\lambda$ to the first order terms.

$$\begin{split} \Sigma \left(\delta m_{p}\right)^{4} &/\lambda = \frac{\Sigma}{\lambda} \left\{ \frac{S \left(\delta n_{qp} \widetilde{x}_{q}\right)}{\overline{n}_{p}} \right\}^{4} \\ &= \frac{1}{\overline{n}_{p}^{4}} \left[S \left(\frac{\Sigma \left(\delta n_{qp}\right)^{4} \widetilde{x}_{q}^{4}}{\lambda} \right) + 4S \left(\frac{\Sigma \left(\delta n_{qp}\right)^{3} \delta n_{q'p} \widetilde{x}_{q}^{3} \widetilde{x}_{q'}}{\lambda} \right) \\ &+ 6S \left(\frac{\Sigma \left(\delta n_{qp}\right)^{2} \left(\delta n_{q'p}\right)^{2} \widetilde{x}_{q}^{2} \widetilde{x}_{q'}^{2}}{\lambda} \right) + 12S \left(\frac{\Sigma \left(\delta n_{qp}\right)^{2} \delta n_{q'p} \delta n_{q''p} \widetilde{x}_{q}^{2} \widetilde{x}_{q'} \widetilde{x}_{q''}}{\lambda} \right) \\ &+ 24S \left(\frac{\Sigma \delta n_{qp} \delta n_{q'p} \delta n_{q'p} \delta n_{q''p} \delta n_{q''p} \widetilde{x}_{q} \widetilde{x}_{q'} \widetilde{x}_{q''} \widetilde{x}_{q''} \widetilde{x}_{q''}}{\lambda} \right) \right]. \end{split}$$

Substituting from (n)-(q) above we obtain the following result:

$$\begin{split} \frac{\Sigma\left(\delta m_{p}\right)^{4}}{\lambda} &= \frac{1}{\bar{n}_{p}^{4}} \left[S\left\{ \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N}\right) \left(3\left(1 - \frac{2}{N}\right) \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N}\right) + 1\right) \tilde{x}_{q} \right\} \\ &- 4S\left\{ \frac{\bar{n}_{qp} \bar{n}_{q'p}}{N} \left(3\left(1 - \frac{2}{N}\right) \bar{n}_{qp} \left(1 - \frac{\bar{n}_{qp}}{N}\right) + 1\right) \tilde{x}_{q}^{3} \tilde{x}_{q'} \right\} \\ &+ 6S\left\{ \bar{n}_{qp} \bar{n}_{q'p} \left(\left(1 - \frac{2}{N}\right) \left(1 - \frac{\bar{n}_{qp}}{N} - \frac{\bar{n}_{q'p}}{N} + \frac{3\bar{n}_{qp} \bar{n}_{q'p}}{N^{2}}\right) + \frac{1}{N}\right) \tilde{x}_{q}^{2} \tilde{x}_{q'}^{2} \right\} \\ &- 12S\left\{ \frac{\bar{n}_{qp} \bar{n}_{q'p} \bar{n}_{q'p} \bar{n}_{q''p}}{N} \left(1 - \frac{2}{N}\right) \left(1 - \frac{3\bar{n}_{qp}}{N}\right) \tilde{x}_{q}^{2} \tilde{x}_{q'} \tilde{x}_{q''} \right\} \\ &+ 24S\left\{ \frac{3\bar{n}_{qp} \bar{n}_{q'p} \bar{n}_{q''p} \bar{n}_{q''p} \bar{n}_{q'''p}}{N^{2}} \left(1 - \frac{2}{N}\right) \tilde{x}_{q} \tilde{x}_{q'} \tilde{x}_{q''} \tilde{x}_{q'''} \right\} \right]. \end{split}$$

^{*} R. S. Proc. Vol. 92, A, pp. 28-29 (1915).

[†] Phil. Trans. Vol. 186, A, p. 347 (1894).

I now rearrange this into terms not involving the factor $1 - \frac{2}{N}$ and those involving it. The former are:

$$\begin{split} \frac{1}{\overline{n}_{p}^{4}} \bigg[S \left\{ \overline{n}_{qp} \left(1 - \frac{\overline{n}_{qp}}{N} \right) \widetilde{x}_{q}^{4} \right\} - 4 S \left\{ \frac{\overline{n}_{qp} \overline{n}_{q'p}}{N} \widetilde{x}_{q}^{3} \widetilde{x}_{q'} \right\} + 6 S \left\{ \frac{\overline{n}_{qp} \overline{n}_{q'p}}{N} \widetilde{x}_{q}^{2} \widetilde{x}_{q'}^{2} \right\} \bigg] \\ &= \frac{1}{\overline{n}_{p}^{4}} \big[S \left(\overline{n}_{qp} \widetilde{x}_{q}^{4} \right) + 3 \left\{ S \left(\overline{n}_{qp} \widetilde{x}_{q}^{2} \right) \right\}^{2} / N - 4 S \left(\overline{n}_{qp} \widetilde{x}_{q}^{3} \right) \times S \left(\overline{n}_{qp} \widetilde{x}_{q} \right) / N \big] \\ &= \frac{1}{\overline{n}_{p}^{3}} \left[{}_{p} \mu_{4} + \frac{3 \overline{n}_{p}}{N} {}_{p} \mu_{2}^{2} \right] \text{,} \end{split}$$

since $S(\bar{n}_{qp}\tilde{x}_q) = 0$. Here $_p\mu_s$ is the sth moment coefficient of the pth array about the mean. I now take the terms involving the factor $1 - \frac{2}{N}$. They give

$$\begin{split} \frac{1}{\overline{n}_{x}^{4}} \Big(1 - \frac{2}{N}\Big) \left[3S \left\{ \overline{n}^{2}_{qp} \left(1 - \frac{2\overline{n}_{qp}}{N} + \frac{\overline{n}^{2}_{qp}}{N^{2}} \right) \widetilde{x}_{q}^{4} \right\} - 12S \left\{ \frac{\overline{n}^{2}_{qp} \overline{n}_{q'p}}{N} \left(1 - \frac{\overline{n}_{qp}}{N} \right) \widetilde{x}_{q}^{3} \widetilde{x}_{q'} \right\} \\ &+ 6S \left\{ \overline{n}_{qp} \overline{n}_{q'p} \left(1 - \frac{\overline{n}_{qp}}{N} - \frac{\overline{n}_{q'p}}{N} + \frac{3\overline{n}_{qp} \overline{n}_{q'p}}{N^{2}} \right) \widetilde{x}_{q}^{2} \widetilde{x}_{q'}^{2} \right\} \\ &- 12S \left\{ \frac{\overline{n}_{qp} \overline{n}_{q'p} \overline{n}_{q''p}}{N} \left(1 - \frac{3\overline{n}_{qp}}{N} \right) \widetilde{x}_{q}^{2} \widetilde{x}_{q'} \widetilde{x}_{q''} \right\} \\ &+ 72S \left\{ \frac{\overline{n}_{qp} \overline{n}_{q'p} \overline{n}_{q''p} \overline{n}_{q'''p}}{N^{2}} \widetilde{x}_{q} \widetilde{x}_{q'} \widetilde{x}_{q''} \widetilde{x}_{q'''} \right\} \right] \\ &= \frac{3}{\overline{n}_{p}^{4}} \Big(1 - \frac{2}{N} \Big) \left[\left\{ S \left(\overline{n}_{qp} \widetilde{x}_{q}^{2} \right) \right\}^{2} - \frac{2S \left(\overline{n}_{qp} \widetilde{x}_{q}^{2} \right) \times \left\{ S \left(\overline{n}_{qp} \widetilde{x}_{q} \right) \right\}^{2} + \frac{\left\{ S \left(\overline{n}_{qp} \widetilde{x}_{q} \right) \right\}^{4}}{N^{2}} \right] , \end{split}$$

where the equivalence is most easily verified by expanding the latter expression and ticking off the corresponding terms in the previous one.

Since $S(\bar{n}_{qp}\tilde{x}_q)=0$, we are left with the single term

$$\frac{3}{\bar{n}_{p}^{2}} \left(1 - \frac{2}{N} \right) {}_{p} \mu_{2}^{2}.$$

Thus we deduce combining our two sets of terms:

$$\begin{split} \frac{\Sigma \left(\delta m_p\right)^4}{\lambda} &= \frac{_p\mu_4}{\overline{n}_p{}^3} + 3\left(1 - \frac{1}{N}\right)\frac{_p\mu_2{}^2}{\overline{n}_p{}^2}\,,\\ {_pB_2} \times \left\{\frac{\Sigma \left(\delta m_p\right)^2}{\lambda}\right\}^2 &= \frac{_p\mu_2{}^2}{\overline{n}_p{}^2}\left\{\frac{_p\beta_2}{\overline{n}_p} + 3\left(1 - \frac{1}{N}\right)\right\}\,, \end{split}$$

where $_{p}B_{2}$ is the second β -coefficient of the distribution of m_{p} for the pth array, and $_{p}\beta_{2}$ is the second β -coefficient for the pth array itself in the sampled population.

Now to the degree of approximation needful

$$\frac{\sum (\delta m_p)^2}{\lambda} = \frac{{}_p\mu_2}{\bar{n}_p} \left\{ 1 - \frac{2}{\bar{n}_p} \left(1 - \frac{\bar{n}_p}{N} \right) \right\}.$$
 Accordingly
$${}_pB_2 = \frac{{}_p\beta_2 - 3}{\bar{n}_p} + 3 \left\{ 1 + \left(\frac{1}{\bar{n}_p} - \frac{1}{N} \right) \right\} \left\{ 1 + \frac{4}{\bar{n}_p} \left(1 - \frac{\bar{n}_p}{N} \right) \right\}.$$

$$_{p}B_{2}-3=rac{_{p}eta_{2}-3}{\overline{n}_{p}}+15\left(rac{1}{\overline{n}_{p}}-rac{1}{N}
ight)*.$$

Thus we see that the condition for normality of the array mean, i.e. $_pB_2=3$, is by no means so nearly satisfied as is the condition for symmetry of the array mean, $_pB_1=0$. For, while the latter might be fairly closely approximated to by an array of 15, even if the array distribution were not normal, yet the former even in the case of normality and of a big sample would give $_pB_2=4$, a wide deviation from the normal. Thus the array must be fairly considerable for the distribution of its means to become reasonably Gaussian. As a rule the distribution will be reasonably symmetrical but is leptokurtic, i.e. $_pB_2>3$, and therefore is to be described by a curve of my Type VII or one of the form

$$y = y_0 \left(1 + \frac{x^2}{a^2} \right)^{-s},$$

rather than by a curve of the normal type†. Practically multiple frequency of this form is at present undiscussed and we are thrown back on treating the arrays as giving normal distributions of their means. Thus the assumption made by Slutsky in the paper cited p. 248 can only be considered as approximative, and that assumption was not legitimate until its degree of approximation had been investigated. It is singular that the goodness of fit theory can actually be applied with greater accuracy to test physical laws than to test regression lines.

It is clearly only in the large arrays that the kurtosis $({}_{p}B_{2}-3)$ approaches the normal value zero. What must be understood by "large" can easily be estimated roughly. For

$$_{p}B_{2}-3=rac{_{p}eta_{2}+12}{\overline{n}_{n}}$$
 nearly = $15/\overline{n}_{p}$ roughly.

Hence if $\bar{n}_p = 75$, $_pB_2$ would equal $3\cdot 2$, which is certainly a limit to what may be roughly treated as a normal distribution. Accordingly when we assume a normal distribution for the means of an array, we must remember that this is really very rough in the case of the smaller arrays, and that we only do it in default of a better theory. At the same time it must be noted that the small arrays will have less weight than the larger, and the error made in assuming their distribution normal will be of far less significance for the same deviation. Thus far we have shown that (i) the means of different arrays are uncorrelated, (ii) that the standard deviations of these means are given by $\pi_0 / \sqrt{\bar{s}_{11}^{(1)}}$ where $\bar{s}_{11}^{(1)} = \bar{s}_{11} / \bar{s}_{12}^{(1)} = \bar{s}_{12} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s}_{13} / \bar{s}_{13}^{(1)} = \bar{s$

deviations of these means are given by $\sigma_{\overline{n}_p}/\sqrt{\overline{n}''_p}$, where $\overline{n}''_p = \overline{n}_p \left(1 - \frac{2}{N}\right) + 2$,

^{*} This agrees with the result given by Isserlis (loc. cit. p. 31) only when $\overline{n}_p = N$, i.e. the "array" is as in his case a marginal total.

[†] For the curve to be of normal type s must be large. If the array were normal in the sampled population and the sample large, then $s=(2\bar{n}_p+25)/10$, and this would be only 8.5, if \bar{n}_p were 30. Thus the application of Gaussian theory to samples with even minimum arrays of 30 can only be approximative.

[‡] The deviations in the means of the small arrays are likely, however, to be much more irregular and greater than in the case of the large arrays.

and (iii) that the distribution of the means of arrays is for the larger arrays approximately normal, but that for the smaller arrays the distribution is approximately symmetrical and markedly leptokurtic. The small arrays will, however, have small relative weight and this is the only and not very satisfactory reason for adopting a Gaussian system throughout. Slutsky* assumes the normality without I think adequate investigation, and for that reason I have been unable to consider his paper as adequate and final in this matter.

With the assumption stated above we can use for the multiple regression surface

$$\begin{split} z &= z_0 e^{-\frac{1}{2}S} \left. \frac{\left\langle \overline{n}''_p \left(m_p - \overline{m}_p \right)^2}{\sigma^2 \overline{n}_p} \right\rangle}{\sigma^2 \overline{n}_p} \right\rangle, \\ \bar{n}''_p &= \overline{n}_p \left(1 - \frac{2}{N} \right) + 2. \end{split}$$

where

Here m_p is the observed value of the mean of the pth array, and \overline{m}_p , $\sigma_{\overline{n}_p}$ and \overline{n}_p are constants which if it were feasible ought to be obtained from the sampled population. S denotes a summation for all values of p from the first to the last array. Now if we suppose \overline{m}_p , $\sigma_{\overline{n}_p}$ and \overline{n}_p known, we can calculate

$$\chi^2 = S \left\{ rac{ar{n}^{\prime\prime}_{p} \left(m_p - \overline{m}_p
ight)^2}{\sigma^2_{\overline{n}_p}}
ight\}$$
 ,

for, say, the series of t arrays, and as there will be t independent variables all we have to do is to determine from this value of χ^2 the value of P, the probability, corresponding to it in the tables for "goodness of fit" \dagger under the value n' = t + 1. This applies to any form of frequency surface giving any type of regression line, i.e. locus of \overline{m}_p .

Thus far the problem looks straightforward, but now arises the difficult question as to what values are to be given to \bar{n}_p , \bar{m}_p and $\sigma_{\bar{n}_p}$, which represent the unknown sampled population. Usually in problems, as of probable error, where we have the unknown constants of the sampled population we replace them by the corresponding constants of the sample. But it appears a somewhat arbitrary course to do this in the present instance (as suggested by Slutsky‡) for \bar{n}_p and $\sigma_{\bar{n}_p}$, but not for \bar{m}_p . I do not think it accordingly legitimate to substitute for \bar{n}_p and $\sigma_{\bar{n}_p}$ the sample values and leave \bar{m}_p to be determined from other considerations. Clearly since our object is to test the goodness of fit of the regression line we have to replace \bar{m}_p by $f(y_p)$, where

 $\overline{m}_{p} = f(y_{p})$

gives the regression curve or mean value of the array of x's corresponding to the value y_p of the other variate y. Of course this regression curve is determined from the whole series of observations and not from an individual array. But

^{* &}quot;On the Criterion of Goodness of Fit of the Regression Lines, etc." Journal of the R. Statistical Society, Vol. LXXVII. p. 79.

[†] Tables for Statisticians, p. 26.

[‡] loc. cit. pp. 78-84.

 \overline{m}_p is nevertheless subject to the probable error of the random sampling. I have shown that the probable error of \overline{m}_p , if the regression be linear, is

$$\frac{\cdot 67449 \sigma_x \sqrt{1-r_{xy}^2}}{\sqrt{N}} \Big(1 + \frac{(y_{p} - \overline{y})^2}{{\sigma_y}^2}\Big)^{\frac{1}{2}} *.$$

But this of course is not the probable error of m_p , but of \overline{m}_p as found from the regression line, and will generally be small as compared with the probable error of m_p found from a single array \dagger .

Just as we have found \overline{m}_p , however, from the whole system of observations, so it appears to me we ought to determine $\sigma^2_{\overline{n}_p}$ and \overline{n}_p from the whole system and not from a single array. The centre of $\sigma_{\overline{n}_p}$ is \overline{m}_p and not m_p and to calculate a value for $\sigma_{\overline{n}_p}$ with m_p as centre seems to be an erroneous step especially when, owing possibly to n_p differing considerably from \overline{n}_p , m_p is much displaced from \overline{m}_p . I hold that for satisfactory results it is just as needful to find \overline{n}_p and $\sigma_{\overline{n}_p}$ from the whole range of data—not from the individual array—as it is to find \overline{m}_p . This means that we must have some knowledge of the form of the frequency surface, and until we have this we cannot apply the test for goodness of fit to the regression line. There are accordingly two separate factors remaining for solution after we have determined the regression line:

- (i) We need to determine \bar{n}_p . This is the total frequency of the pth array of x's. It can clearly be determined, when we know the frequency of the y's in this group. That is to say, we must determine a theoretical distribution for the marginal distribution of the y-variate. In some cases it will be sufficient to assume it Gaussian and then the table of the probability integral will suffice. In other cases it will be advisable to determine a skew frequency curve. But as a rule it will certainly be needful to graduate the array frequencies by some process, and not to assume them given by the observed marginal frequencies. The bringing of the determination of \bar{n}_p into line with that of \bar{m}_p does not seem therefore to present great difficulties.
- (ii) We need to determine $\sigma_{\overline{n}_p}$. If the frequency surface be homoscedastic, then $\sigma^2_{\overline{n}_p} = \overline{\sigma}_x^2 (1 \overline{\eta}^2_{x,y})$, if $\overline{\eta}_{x,y}$ be the correlation ratio of x on y, and the regression be skew. But if the regression be both homoscedastic and linear, then $\sigma^2_{\overline{n}_p} = \overline{\sigma}_x^2 (1 \overline{r}^2_{xy})$, where \overline{r}_{xy} is the correlation coefficient. In these two cases we may write respectively

$$\chi^2 = \frac{1}{\overline{\sigma}_{x}^2 (1 - \overline{\eta}^2_{x,y})} S \left\{ \overline{n}^{\prime\prime}_{p} (m_p - \overline{m}_p)^2 \right\},$$

- * Biometrika, Vol. IX. p. 10, with the necessary changes in notation to fit the notation of this paper.
- † Extreme arrays here again form an exception.
- ‡ A precisely similar difficulty arises in working the ordinary expression for mean square contingency, i.e. $1+\phi^2=S\left(\frac{n^2_{pq}}{\overline{n}_p,\overline{n},q}\right)$, where \overline{n}_p and $\overline{n}_{\cdot q}$ are the marginal frequencies (reduced of course in the proportion of size of sample to population) in the sampled population, not in the sample, although we ultimately use their sample values. There is more justification, however, in this use, for contingency is usually applied to broad categories and in such cases we have, perhaps, 3 to 7 marginal groups only; there is thus relatively less fear of big irregularities in \overline{n}_p or $\overline{n}_{\cdot q}$ such as arise with the small arrays of regression lines.

and
$$\chi^2 = \frac{1}{\overline{\sigma_x}^2 \left(1 - \overline{r}_{xy}^2\right)} S\left\{\overline{n}^{\prime\prime}_{p} \left(m_p - \overline{m}_p\right)^2\right\},$$

which admit of easy calculation when once we have determined that characters of the sampled population \overline{m}_{x} , \overline{n}_{y} , $\overline{\sigma}_{x}$, \overline{r}_{xy} or $\overline{\eta}_{x,y}$ may be replaced by the like characters calculated not from a single array but from the whole material of the sample. I am inclined to believe that

$$\chi^2 = N \, rac{(\eta_{x.\,y})^2 - (ar{\eta}_{x.\,y})^2}{1 - ar{\eta}_{x.\,y}^2}$$

would be an effective measure of χ^2 , where, however, we must not put $\eta_{x,y} = \bar{\eta}_{x,y}$ in the numerator for we are actually measuring the improbability of the deviations of $\eta_{x,y}$ from $\bar{\eta}_{x,y}$, i.e. of m_p from \bar{m}_p . But such a form would be of little use unless we knew the sampled population. It indicates, however, how risky is the problem of replacing only certain of the sampled population values of the constants by those of the sample.

In any given case it appears best to draw the scedastic curve, i.e. plot σ_{n_n} to This curve may be fitted with either a straight line or parabola of the second order, according as the array variability decreases or increases in one or both directions from some fairly central array. This is perfectly easy, but care must be taken to weight the standard deviations of the arrays with their frequencies. Very rarely as I have pointed out previously are the data ample enough to justify anything but a linear scedastic curve. If this line be practically horizontal then we can take $\sigma^2_{\vec{n}_n} = \sigma_x^2 (1 - \eta^2_{x,y})$ throughout. I propose to illustrate the whole process on the two examples selected by Slutsky.

Illustration I. Prices of Rye in Samara.

The example is given in Slutsky's recent paper* and is as follows:

Correlation between prices of rue at monthly intervals.

Price of rye in Samara a month earlier

	Copecks per pud	25	30	35	40	45	50	55	60	65	70	75	Totals
Price of rye in Samara	25. 30 35 40 45 50 55 60 65 70 75	3 6 —	5 13 3	1 2 3 1 1 ——————————————————————————————			2 19 3 1		1 2·5 5·5 3·5	1·5 5 5 1		 1 1	9 21 8 4 15 26 9 12·5 11·5 6 2
	Totals	9	21	8	4	15	25	9	12.5	12.5	6	2	124

^{* &}quot;On the Criterion of Goodness of Fit of the Regression Lines and on the Best Method of Fitting them to the Data." Journal of the R. Statistical Society, Vol. LXXVII. p. 81.

The data are not very suitable, but I use them because Slutsky has done so. Their unsuitability arises (i) from the smallness of the total population, but especially (ii) from the marked signs of heterogeneity obvious in the marginal totals. If y be the vertical, x the horizontal variate I obtain, assuming that the column headings represent central values, the following constants for the distribution:

 $m_x = 47.1572$ copecks per pud, $\sigma_x = 13.7769$, $m_y = 47.0363$ copecks per pud, $\sigma_y = 13.6852$, $r_{xy} = .953,545$,

Regression line: $y_x = .947,205x + 2.3687$.

My values of σ_x , σ_y , r_{xy} , and of the regression line constants, differ very considerably from Slutsky's. I have not used Sheppard's correction which would, however, only have emphasised our differences. I have not reworked Slutsky's first method with these changes because I do not think it is the correct method, i.e. he uses observational values for $\sigma^2_{\tilde{n}_p}$, and thus I cannot say whether the above values would improve his bad fit (i.e. P = 0.02), but I have adopted my own value

$$\sigma^2_{\overline{n}_p} \Big/ \Big(\overline{n}_p \left(1 - rac{2}{N}
ight) + 2\Big)$$
,

using for $\sigma^2_{\overline{n}_p}$ the mean value $\sigma_y^2 (1 - r^2_{xy}) = 16.9965$. Slutsky takes for the value of $\sigma_{\overline{n}_p}$, on the assumption of homoscedastic arrays, the mean of the observed standard deviations of the arrays, i.e.

$$\overline{\sigma}_{n_p} = \frac{1}{N} S (n_p \sigma_{n_p}) = 3.8022$$

according to his values, or he takes

$$\sigma^2_{\overline{n}_p} = 14.4567.$$

This value is, I think, theoretically incorrect, the mean value of $\sigma_{n_p}^2 = \sigma_y^2 (1 - r_{xy}^2)$ and this must be the homoscedastic value. Clearly Slutsky's value is too small. The point remaining is the value of \bar{n}_p . I should naturally determine it from the frequency curve for the marginal x-totals, but the extreme irregularity of the marginal x-totals—due partly to paucity of data, but more to probable heterogeneity—makes any such process unsatisfactory. I have therefore taken $\bar{n}_p =$ to the observed array frequency—a result with which I am thoroughly dissatisfied, but which appears to be the only course. We have then the table on p. 253.

Thus $\chi^2 = \frac{256.81196}{16.9965} = 15.11.$

Looking this out in the Tables for Goodness of Fit we find for n' = 11 + 1 = 12, $P = \cdot 18$.

Thus we see that the fit is passable, although not brilliant, much better than Slutsky's P = .02.

Slutsky also gives by his second method $\chi^2 = 15.1$ and P = .18 for the fit on the hypothesis of homoscedasticity, but I think this can only arise from a curious

x array	$n^{\prime\prime}_{p} = n_{p} \left(1 - \frac{2}{N} \right) + 2$	Observed m_p	Theoretical \overline{m}_p	$(m_p - \widetilde{m}_p)^2$	$n^{\prime\prime}_{p} (m_{p} - \overline{m}_{p})^{2}$
25	10.8548	28.333	26.049	5.2167	56-6262
30	22.6613	29.523	30.785	1.5926	36.0904
35	9.8710	34.375	35.521	1.3133	12.9636
40	5.9355	42.500	40.257	5.0310	29.8615
45	16.7581	44.000	44.993	-9860	16.5235
50	26.5967	50.800	49.729	1.1470	30.5064
55	10.8548	55.500	54.465	1.0712	11.6277
60	14.2984	59.600	59.201	$\cdot 1592$	2.27631
65	14.2984	$62 \cdot 200$	63.937	3.0172	43.1411
70	7.9032	70.000	68-673	1.7609	13.9167
75	3.9677	72.500	73.409	·8263	3.2785

$$S\{n''_p(m_p - \overline{m}_p)^2\} = 256.81196.$$

balancing of errors. For (i) his theoretical \overline{m}_p 's differ considerably from mine owing to the divergence in our values of standard deviations, correlation and regression, and (ii) he has used a different value to mine for \overline{n}_p , and what I believe to be an erroneous value of $\sigma^2_{\overline{n}_p}$ —namely too low a value. It appears to be thus a mere chance that we should reach the same result.

Illustration II. Auricular Height of School Girls.

Slutsky takes this example from my memoir on Skew Correlation*, and it is a peculiarly good illustration for the following reasons:

(i) The regression line is distinctly skew. In my paper \tilde{Y}_p , the mean deviation in auricular height from the mean auricular height of the general population of girls who differ from the mean age of the general population by X_p , is given by the cubic

$$\tilde{Y}_{n} = .296,076 + .722,886 \times X_{n} - .029,580X_{n}^{2} - .002,223X_{n}^{3}$$

and the goodness of fit of this regression line is to be tested.

162

(ii) The frequency distribution of the ages of the 2272 girls is:

Age	3—4	45	5—6	6—7	7—8	89	9—10	10—11	11—12	12—13	13—14
Frequency	1	7	18	40	76	152	177	235	261	309	263
Age	14-	-15	15—16	16—17	17-	-18 1	8—19 1	19—20 2	0-21 2	21—22	22—23

61

13

7

2

This is not normal. We find for its constants:

214

Frequency

198

Mean age =
$$12.7007$$
 years, $\beta_1 = .001,335$, $\sigma_x = 3.064,819$ years, $\beta_2 = 2.710,593$.

95

The probable error of β_2 is about 045 and thus β_2 cannot be the result of sampling from Gaussian material. β_1 is sufficiently near zero to mark the distribution as substantially symmetrical.

^{*} Drapers' Company Research Memoirs. Biometric Series II. p. 34. Cambridge University Press.

or

The distribution can accordingly be described by a symmetrical limited range curve of my Type II:

$$y = y_0 \left(1 - \frac{x^2}{b^2} \right)^m.$$

The values of the constants being found we have

$$y = 283 \cdot 7415 \left\{ 1 - \left(\frac{x}{13 \cdot 264,696} \right)^2 \right\}^{7 \cdot 866,024}.$$

This curve was drawn on a large scale and the frequencies for each age integrated with the following results:

	Freq	uency	•	Frequency		
Age	Observed	Calculated	${f A}{ m ge}$	Observed	Calculated	
3—4	1	1.5	13—14	263	275	
45	7	7.5	14—15	198	246	
56	18	19	15—16	214	197	
6-7	40	41.5	16—17	162	143.5	
7—8	76	76	17—18	95	91.5	
89	125	123.5	1819	61	53	
910	177	178	19-20	13	26	
10—11	235	227.5	20-21	7	9	
11—12	261	265.5	2122	8	7	
12-13	309	282.5	22-23	2	1.5	

The goodness of fit of the calculated to the observed array frequencies was tested. I found $\chi^2 = 25 \cdot 4769$ giving $P = \cdot 146$, or such a sample would occur about once in seven trials. The fit therefore is a fairly reasonable one, and the above values, not the observed ones, have been used for the array frequencies. Clearly they effectively smooth the random sampling.

(iii) The standard deviations of the arrays have been given by me*, and it has been shown that the arrays are very far from homoscedastic. The value of η is 303,024, which combined with σ_x gives for the mean square standard deviation of the arrays in squared 2 mms. units

$$\overline{\sigma}_p^2 = 10.835,433.$$

I now somewhat diverged from the plan of my memoir on skew regression. I sought the best fitting straight line to the weighted squares of the standard deviations, i.e. I made

$$u = S\{n_p (\sigma_p^2 - Ax - B)^2\}$$

a minimum, where n_p is the frequency of the pth array of auricular heights for girls of age x, and σ_p is the standard deviation of this array. In working this I omitted the first and last arrays as quite unreliable. I found $A = \cdot 436,706$, giving for the line

$$\sigma_p^2 - \overline{\sigma}_p^2 = \cdot 436,706 \ (x - \overline{x}),$$

 $\sigma_p^2 = \cdot 436,706x + 5\cdot 290,970.$

* Loc. cit. p. 34, Table and Plate I, Diagram II.

From this equation the squared standard deviations of the arrays were calculated with the following results, the unit being 2 mms.:

	Squared Stand	lard Deviation		Squared Standard Deviation		
Age array	Observed	Calculated	Age array	Observed	Calculated	
34	[0?]	6.8194	13—14	11.2822	11.1865	
45	$8.3\overline{2}50$	7.2561	1415	12.8630	11.6232	
5—6	8.5708	7.6929	15—16	12.0152	12.0599	
6-7	8.7859	8.1296	16—17	14.9738	12.4966	
78	8.9293	8.5663	17—18	10.0356	12.9333	
89	6.9517	9.0030	1819	9.7563	13.3700	
9—10	11.4765	9.4397	19-20	23.4314	13.8067	
10-11	8.7930	9.8764	20-21	6.4065	14.2434	
11-12	10.2970	10.3131	21-22	17.1512	14.6801	
12-13	10.2791	10.7498	22-23	[.9166?]	15.1169	

The calculated results give a reasonable graduation of the somewhat erratic observed values, and these values were used in evaluating the formula

$$\chi^2 = S \left\{ \frac{\bar{n}''_p (m_p - \overline{m}_p)^2}{\sigma^2_{\overline{n}_p}} \right\}.$$

The following table now gives all the required data for the calculation of χ^2 , and we deduce $\chi^2 = 9.5845$ corresponding to P = .974 for n' = 20 + 1 = 21 as argument.

Regression Curve for Girls' Auricular Height with Age.

Age group	\overline{n}_p	$\overline{n}_p''_p = \overline{n}_p \left(1 - \frac{2}{N} \right) + 2$	m_p*	$\overline{m}_{p}*$	$(m_p - \overline{m}_p)^2 *$	$\sigma^2 \overline{n}_p$ †	$\frac{\bar{n}^{\prime\prime}{}_{p}(m_{p}-\bar{m}_{p})^{2}}{\sigma^{2}\bar{n}_{p}}$
3-4	1.5	3.4987	115.25	116.90	2.7225	6.8194	1:3968
45	7.5	9.4934	116.96	117.66	4900	7.2561	.6411
56	19	20.9833	117.47	118-42	.9025	7.6929	2.4617
67	41.5	43.4635	119-10	119.24	.0196	8.1296	·1048
7—8	76	77.9331	120.30	120.03	.0484	8.5663	•4403
89	123.5	125-3913	121.63	120.93	· 4 900	9.0030	6.8246
9 - 10	178	179.8433	121.72	121.78	.0036	9.4397	.0686
10-11	227.5	$229 \cdot 2997$	$122 \cdot 82$	122-62	·0400	9.8764	-9287
11-12	265.5	267-2663	123.14	123.42	.0784	10.3131	2.0318
12-13	282.5	284.2513	123.89	124.18	.0841	10.7498	2.2238
13—14	275	276.7579	124.86	124.88	.0004	11.1865	.0099
14—15	246	247.7834	125.71	125.52	.0361	11.6232	-7696
15—16	197	198.8266	126.16	126.07	.0081	12.0599	.1335
16-17	143.5	145.3737	126.53	126.52	.0001	12.4966	.0012
17—18	91.5	93.4195	126.91	126.87	.0016	12.9333	.0116
18—19	53	54.9533	127.02	127.09	-0049	13.3700	.0201
1920	26	27.9771	129.56	127.18	5.6644	13.8067	11.4780
20-21	9	10.9921	123.82	$127 \cdot 11$	10.8241	14.2434	8.3533
21-22	7	8.9938	126.50	126.88	·1444	14.6801	-0885
22 —23	1.5	3.4987	125.25	126.48	1.5129	15.1169	•3502
	2272					Total	$\chi'^2 = 38.3381$

True $\chi^2 = \frac{1}{4} \chi'^2 = 9.5845$

^{*} In millimetre units. For values of m_p and \overline{m}_p (cubic (c)) see loc. cit. p. 37.

[†] In 2 millimetre units. Hence χ^2 as given above must be divided by four, to obtain true value.

We are now in a position to appreciate the influence of the various factors in the solution for this case. I hold that as \overline{m}_p must be given the theoretical or calculated value, so also must the standard deviations of the arrays, i.e. σ_p^2 . But as we do not know the sampled population in this case we must obtain σ_p^2 in precisely the same manner as we find \overline{m}_p , i.e. not by taking a value obtained from the individual array*, but by values graduated from the whole sample. Further it does not appear correct to take $\sigma_a^2 = \sigma^2_{\overline{n}_p}/\overline{n}_p$. The latter is only true when the number in the array is a priori fixed, that is to say is not itself provided by the random sampling. In the latter case we must take $\sigma_p^2 = \sigma^2_{\overline{n}_p}/\overline{n}''_p$, where

$$ar{n}^{\prime\prime}_{p}=ar{n}_{p}\left(1-rac{2}{N}
ight)+2$$
 ,

to a second approximation and this modifies considerably the standard deviations of the small frequency arrays. If in the above example we use \bar{n}_p , the theoretical frequency of the array, instead of the value \bar{n}''_p , we find, still using the theoretical $\sigma^2_{\bar{n}_p}$, $\chi^2 = 8.6166$ giving P = .986. Slutsky*, who has used both the observed frequencies and the observed standard deviations† of the individual arrays, finds $\chi^2 = 9.17$ and P = .980. It will be seen that the correction for \bar{n}''_p is the more important factor. In this case no marked changes are produced by using observed quantities instead of graduated values, but I think that in short series very fallacious results might be reached by this process, and the present paper is written to suggest caution at this point. \bar{n}_p and $\sigma^2_{\bar{n}_p}$ are as definitely at \bar{m}_p values in the sampled population, not in the sample itself.

Application of "Goodness of Fit" Theory to testing Physical, Technical or Astronomical Measurements.

In these cases there is no question in the ordinary sense of a frequency surface. The physicist makes a few measurements of a variate A for each of a series of values of a variate B. He plots the mean of his measurements for A to each value of his variate B, and he enquires whether the curve given by his series of mean values for A is closely approximate to some theoretical curve. It will be seen that his problem is very similar to that of the statistician. He has a number of means for the A variate, $m_1, m_2 \dots m_p \dots$, and he considers whether they are good fits to a theoretical curve—the statistician's regression curve. Obviously in this case these means are non-correlated as approximately in the statistical case. Further the variability of a mean will be given definitely by $\sigma_{\overline{n}_p}/\sqrt{\overline{n}_p}$ —not now as an approximation. Here \overline{n}_p is the number of observations in the array on which m_p depends while $\sigma_{\overline{n}_p}$ is

^{*} Loc. cit. p. 81.

[†] In the case of the 3–4 array of one with observed $\sigma_a=0$ Slutsky says this is due to random sampling and extrapolates a standard deviation; this is of course only a first slight step towards the proper graduation of the whole system of array variations. In the case of the array of two for 23–24, the observed value is $\sigma_a=1.9148$, which is just as much an inconsistency due to random sampling, but this value although about $\frac{1}{8}$ of the real value is retained and used by him.

the standard deviation (mean square error) of an indefinitely great number of measurements which he might make of A for the given value of B. He attributes these variations in A to "errors of observation," and he usually supposes such errors to obey the Gaussian law. This attribution is somewhat dogmatic. There is very little definite proof that errors of observation actually do obey the Gaussian law and secondly his "errors" are not in all probability solely due to observation. It is impossible to repeat each experimental measurement under precisely the same physical conditions for other variates C, D, E, \ldots and changes in these variates may be as influential as personal errors of observation. Further it is far from certain that the value of B has remained without some variation and this alone would tend to cause some variation in A. The physicist aims at a constant value of B—it is by no means certain that he always reaches it. Without much more investigation than is easy, or is at all likely to be made, we probably can at present do no better than assume the distribution of A's for constant B to be Gaussian. Thus the distribution of means determined by the physicist will have for its distribution surface

$$z=z_{0}e^{-rac{1}{2}\chi^{2}}$$
,

where

$$\chi^2 = S \left\{ rac{n_p \left(m_p - \overline{m}_p
ight)^2}{\sigma^2_{\overline{n}_p}}
ight\}$$
 ,

and the corresponding value of the probability to be taken from the "goodness of fit" tables will be found by taking out P for the given value of χ^2 under the argument n'+1, where n' is the number of arrays, for there are now n' independent variables, i.e. m_p 's.

In the above value for χ^2 , \overline{m}_p is the theoretical value of A corresponding to the given B, m_p is the observed value and n_p is the number of observations on which it depends. The real difficulty arises in determining $\sigma_{\overline{n}_p}$ which is the standard deviation of the array for an indefinitely large number of observations and cannot be determined properly from the few observations made to determine the A corresponding to a given B.

If there are a considerable number of observations in an array and σ_{n_p} be the standard deviation of the array found from the observations themselves, then it is well known that the "best" or most probable value of $\sigma_{\overline{n}_p}$ is given by

$$\sigma^2_{\overline{n}_p} = \frac{n_p}{n_p-1} \, \sigma^2_{n_p}.$$
 In this case
$$\chi^2 = S \left\{ \frac{(n_p-1) \, (m_p-\overline{m}_p)^2}{\sigma^2_{n_p}} \right\},$$

a form which shows us that if we have arrays with only a single individual and use the observed σ_{n_p} 's, χ^2 will be indeterminate, for $n_p - 1 = 0$ and $\sigma^2_{n_p} = 0$. But the observed σ_{n_p} would be very risky for any system of small arrays, and this method of approaching the difficulty must I think be dropped unless the physicist be inclined to increase very much the number of measurements he makes of A for a given value of B. But the above method of approaching the subject indicates

how a single value of A for each value of B cannot lead to any measure whatever of the "goodness of fit." I suggest the following method of determining a suitable value for $\sigma_{\overline{n}_p}$. Let us assume that the arrays are homoscedastic, i.e. that the physicist's difficulty in measuring A is the same for all values of B. This will not always be true, but is a fair working hypothesis for many cases. Then we have

$$\sigma^2_{\overline{n}_p} = \sigma_A^2 (1 - \eta^2_A \cdot_B),$$

where σ_A is the standard deviation of *all* the measurements made on A (without regard to the value of B), a much more reliable quantity than the standard deviation of any array values of A. Further $\eta_{A \cdot B}$ is the correlation ratio of A on B or

$$\eta^2_{A\cdot B} = \frac{S\left\{n_p\left(m_p-\ \overline{m}\right)^2\right\}}{N{\sigma_A}^2}\,,$$

where \overline{m} is the mean value of all measurements of A and N is their total number. Thus

$$\chi^{2} = \frac{S\left\{n_{p}\left(m_{p} - \overline{m}_{p}\right)^{2}\right\}}{\sigma_{A}^{2}\left(1 - \eta^{2}_{A} \cdot B\right)}$$

can be readily determined as soon as \overline{m} , σ_A and η_{AB} have been found.

Of course it is needful for a test of this kind that the number of measurements of A should considerably exceed the number of values of B tested. It would fail entirely if only one value of A were taken for each value of B, however numerous the latter might be. We must have some basis on which to determine the error made in single determinations of A. This is a point I think often overlooked by the physicist. A fairly good determination—I mean a quantitative determination—of the goodness of fit of theory to observation could be made from 10 series of 8 observations of A corresponding to 10 values of B. But no measure of "goodness of fit" could be found from 80 observations of A corresponding to 80 values of B, and yet the latter system would probably make the greater appeal to most physicists. I do not see how quantitatively to obtain any measure of the goodness of fit of theory to observation in the latter method of procedure. It is not unusual to determine the mean square residual, i.e.

$$S (m_p - \overline{m}_p)^2/N$$
,

but before we can really make use of this, i.e. find χ^2 and so P, the probability of as great or greater divergence between theory and observation, we must know $\sigma^2_{\overline{n}_p}$ and this can in no way be deduced from such a system of observations. In fact without a knowledge of $\sigma^2_{\overline{n}_p}$ —the unit in which $(m_p - \overline{m}_p)^2$ is to be measured—the mean square residual is as delusive as the ocular comparison of a graph of the theoretical and observed results, where all turns on the arbitrary scale of the vertical ordinate.

Illustrations. As illustrations I will take some of the data connecting length of arc with loss of carbon per coulomb provided in a recent memoir by Professor Duffield*. My only reason for taking this material is that it is recent work and

that I was as a mere statistician struck by the appearance of the curves as I turned over the pages of the *Proceedings*. I have considered the cases of 2 and 4 ampères for the anode, Diagram I. The data for individual experiments are given on Prof. Duffield's diagrams, but his tables only give mean values. I have therefore had to measure off individual values from his diagrams. The means obtained from these measurements agree in the main with the author's recorded means. but in a few cases it would appear that there is some discordance between table and diagram. On the diagrams curves are drawn presumably representing in each case the smoothed relation which the author considers to hold between loss of weight and length of arc. My object is to enquire how far these curves are probable representations of the phenomena in question. It will be seen that the observations are usually made in pairs, more rarely in triplicate or are even There are a considerable number of isolated observations. We have thus rather slender material from which to determine the error of a single observation, and clearly but little conclusion could be drawn did we not assume that a measurement at each arc length was of equal weight*.

The following table exhibits the work—first for the 4-ampère curve; the weight lost being per coulomb \times 10⁵ grammes.

Arc length	n_p	Weight lost, w_p	m_p	\overline{m}_p	$w_p - \overline{w}$	$m_{\mathcal{D}}-\overline{w}$	$m_p - \overline{m}_p$	$S\left\{\overline{n}_{p}\left(m_{p}-\overline{m}_{p} ight)^{2} ight\}$
1	1	17.62	17.620	17.52	- 3.32	- 3.32	+ ·10	·0100
2	2	$17.92 \} \\ 18.30 \}$	18.110	18.24	$\begin{pmatrix} -3.02 \\ -2.64 \end{pmatrix}$	- 2.83	- 13	∙0338
3 }	2	$19.19 \ 19.62 \$	19.405	19.15	$ \begin{array}{r} -1.75 \\ -1.32 \\ \end{array} $	- 1.54	+ .25	·1250
4	2	19.70 19.32	20.010	20.12	$\begin{pmatrix} -1.24 \\ -0.62 \end{pmatrix}$	93	11	.0242
5	1	21.43	21.430	21.29	+ .49	+ .49	+ .14	∙0196
7	1	21.35	21.350	22.26	+ .41	+ .41	91	-8281
8 }	2	$\{ 22.40 \ 22.63 \}$	22.515	22.51	$+ 1.46 \\ + 1.69 $	+ 1.57	.00	•0000
10	2	$21.37\)\ 22.89\)$	22.130	22.71	+ ·43) + 1·95}	+ 1.19	58	-6728
	2	$22.55 \ 23.07$	22.810	22.79	$\left. \begin{array}{c} +1.61 \\ +2.13 \end{array} \right\}$	+ 1.87	+ .02	-0008
15	1	22.69	22.690	22.79	+ 1.75	+ 1.75	10	·0100
20	i	22.89	22.890	22.79	+ 1.95	+ 1.95	+ .10	-0100
Totals	17	355.94	_		Sum of squares $= 57.2166$	$ \begin{vmatrix} S\{n_p(m_p - \overline{w})^2\} \\ = 55.5422 \end{vmatrix} $		
		$\overline{w} = 20.94$	_		$\sigma_{\scriptscriptstyle A}{}^2 = 3.3657$	$\Sigma^2 = 3.2672$		$\chi^2=17.607$
n' =	n +	1 = 11 + 1 =	12, P =	- ∙0920	$\eta^2 = rac{\Sigma^2}{\sigma_{J}^2}$	$_2 = \cdot 9709$		

^{*} This is probably not true, but there is no evidence of multiple measurements at points where the measurements might be assumed to be critical.

Thus the probability, if the inscribed curve represented the phenomenon, that a system of observations as unfavourable or more unfavourable than the observed would arise is about 1 in 11, i.e. in eleven trials we should have had one result as bad. This is not very great odds (10 to 1) against the inscribed curve describing the facts, but it cannot be called a highly satisfactory concordance.

I now take the anode 2 ampère's data. The work is given in the following table:

Arc length	n_p	Weight lost, w_p	m_p	\overline{m}_p	$w_p - \overline{w}$	$m_p - \overline{w}$	$m_p - \overline{m}_p$	$n_p (m_p - \overline{m}_p)^2$
$\left\{\begin{array}{c}1\\ \\ \\ \\ 2\end{array}\right\}$	2	$25.31 \ 26.04$	25.68	25.68	- 4·80 - 4·07}	- 4.43	+ .02	•0008
,,	3	$ \begin{bmatrix} 26.04 \\ 26.77 \\ 26.95 \end{bmatrix} $	26.59	26.46	$ \begin{vmatrix} -4.07 \\ -3.34 \\ -3.16 \end{vmatrix} $	- 3.52	+ ·13	∙0507
3 }	2	26.83 28.30	27.57	27.68	- 3·28 - 1·81	- 2.54	11	.0242
4	2	28·93) 29·15 }	29.04	30.73	- 1·18) - ·96}	- 1.07	- 1.69	5.7122
6 ,,	4	$ \begin{vmatrix} 34.00 \\ 34.28 \\ 34.89 \\ 35.11 \end{vmatrix} $	34.57	34.46	$\begin{vmatrix} +3.89 \\ +4.17 \\ +4.78 \\ +5.00 \end{vmatrix}$	+ 4.46	+ •11	-0484
8 }	2	33.98 \\ 35.00 }	34.49	34.61	$+3.87 \\ +4.89$	+ 4.38	- 12	.0288
Totals	15	451.58			Sum of squares = 212.92	$S\{n_p (m_p - \overline{w})^2\} = 209.51$	uniterated in the second	$= S\{(n_p (m_p - \overline{m}_p)^2\}$
		$\overline{w}=30\cdot 11$			$\sigma_{{\scriptscriptstyle A}}{}^2 = 14 {\cdot} 1947$	$\Sigma^2 = 13.9673$	$\sigma_{A}^{2} (1 - \eta^{2}) = 2274$	$\chi^2 = 25.72$
n' = n	$n' = n + 1 = 6 + 1 = 7$, $\therefore P = \cdot 0003$				$\eta^2 = rac{\Sigma^2}{\sigma_A{}^2}$	= •9839		

Thus only three times in 10,000 trials if the inscribed curve actually represented the phenomenon would a series of observations so widely divergent as those observed arise. In other words the inscribed curve must be definitely rejected as a probable description of the series of phenomena. Now the great advantage of this "goodness of fit" method is that by the very working of it out the actual regions at which the theoretical results diverge with a maximum of improbability from the observations are indicated, and the investigator is able to say here are the points where discordance is greatest and where theory or observation needs modification. Clearly in this case the whole burden of the discordance falls on the observations at arc length 4. The special examples selected are of no real importance; the author probably laid no stress on his inscribed curves, and a little better draughtsmanship might have bettered them to some extent. They are used simply to illustrate that a new instrument is ready to the hand of the physicist. He must have felt very desirous at times in the past of being certain how far his observations were in accord with theory. How many times must he not have put to himself the

question: What is the probability that my theory describes adequately my facts? Meanwhile the statistician who examines the physicist's diagrams has often been forced to smile by the degree of discordance which the physicist has allowed to pass as if some graph could demonstrate adequately the harmony of physical law and experiment. I look forward to the time when no physical paper will be considered complete unless it provides at the end of each series of experiments the value of P, i.e. the measure of the goodness of fit of observations recorded to theory adopted. There will be no excuse, there really is no excuse, now that tables are provided, for its omission. It is always possible in the course of an hour or so's arithmetic to measure the accordance between supposed law and recorded observation.

One of the important steps in the work given is undoubtedly the measurement by means of the correlation ratio of the mean square error of the physicist's determinations. I think that is undoubtedly the best way of finding it. The physicist is apt to use "mean errors" instead of mean square errors. He does not recognise that the probable error of a mean error is sensibly greater than that of a mean square error. But he may wish in the present case to have some test of the accuracy of the determination of σ_a , the standard deviation of an array, from other processes. One which it appears to me ought to be satisfactory is the following: Let the observations of A for a given value of B be taken in pairs, and let all these pairs of A values be formed and their differences $x_1 - x_2$ be taken in each case, x_1 being greater than x_2 , then the following relation should hold if the distribution of errors be Gaussian:

$$\sigma_{a}{}^{2} = \frac{\mathrm{Mean}\; (x_{1} - x_{2})^{2} - (\mathrm{Mean}\; (x_{1} - x_{2}))^{2}}{\cdot 72676} \, .$$

For Professor Duffield's 4-ampère curve this gives

$$\sigma_a^2 = .2444$$
 against $\sigma_A^2 (1 - \eta^2) = .0977$,

and for his 2-ampère curve

$$\sigma_a^2 = .1987$$
 against $\sigma_A^2 (1 - \eta^2) = .2274$.

The latter, considering that we deal only with 13 pairs, is fairly accordant; the agreement in the case of the former is very poor, but in this case there are only six pairs. I have purposely introduced this case, because no real verification of the η method could be obtained on the basis of six pairs only, and yet for the 4-ampère curve the whole question of whether the graph is a reasonable description of the data actually depends on the existence of six paired observations in the total of 17. We are really left without adequate material to determine effectively the probable error of any observation. This may be of no importance in the present case, but the absence of adequate repetition of the value of A for a given value of B in order to determine the probable error of observation and so the "goodness of fit" of observation to theory is characteristic of much current physical research.

I am much indebted to Mr Andrew W. Young for algebraical and arithmetical aid.

ON THE 'BEST' VALUES OF THE CONSTANTS IN FREQUENCY DISTRIBUTIONS.

By KIRSTINE SMITH.

(1) If we attempt to fit the normal or Gaussian curve to a system of observations, we almost invariably determine the constants \bar{x} and σ of the equation

$$y = \frac{N}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\overline{x})^2}{\sigma^2}}$$

by the method of moments. This method of moments has been extended by Thiele, Pearson, Lipps and others to obtain the constants involved in various skew frequency curves and series. It is an undoubtedly utile and accurate method; but the question of whether it gives the 'best' values of the constants has not been very fully studied. It is perfectly true that if we deal with individual observations then the method of moments gives, with a somewhat arbitrary definition of what is to be a maximum, the 'best' values for σ and \bar{x} in the above equation to the Gaussian. Pearson* has shown that the method of moments agrees with the method of least squares in the case where the distribution is given by a high order parabola, and accordingly the method of moments is likely to give a very good result, when an expansion by Maclaurin's Theorem would closely give a frequency function. But the method of least squares itself can now-a-days hardly be spoken of as more than a utile and accurate method of fit, indeed its utility, owing to the cumbersome nature of the equations which frequently arise, is often far less than that of the method of moments.

Gauss' original proof that the probability of the observed individual results was a maximum when \overline{x} and σ have been determined by moments has led to the extension of the conception that for *grouped* data, and for other results than the Gaussian curve, the 'best' values of the constants must be given by the lowest possible moments. This is of course not true For example, if we had as frequency curve

$$y = y_0 e^{-\frac{1}{4} \frac{(x - \bar{x})^4}{\sigma^4}},$$

and used individual observations, then the Gaussian 'best' value for \overline{x} would be that found by determining the point for which the third moment coefficient

vanished, and the 'best' value of σ would be determined by $\sigma = \sqrt[4]{\mu_4}$, where μ_4 is to be taken about the point for which $\mu_3 = 0$ *.

From another standpoint, however, the 'best values' of the frequency constants may be said to be those for which

$$\chi^2 = \frac{S \; (n_s - \bar{n}_s)^2}{\bar{n}_s}$$

is a minimum, where n_s is the observed frequency and \bar{n}_s the theoretical frequency of the sth group \dagger . For when χ^2 is a minimum then P, the probability of occurrence of a result as divergent as or more divergent than the observed, will be a maximum, or the frequency constants will have been so chosen as to make the probability P of results, as divergent from theory as the observed data occurring, a maximum.

It sounds somewhat paradoxical, but it is none the less true to say that the 'best value' of the mean is not necessarily the mean value, nor the 'best value' of the mean square deviation necessarily the mean square deviation. I shall illustrate this in the following five cases:

- I. Fit of a normal curve to unilateral data.
- II. Fit of a normal curve to bilateral data.
- III. Fit of a Poisson limit to the binomial.
- IV. Fit of a binomial to binomial data.
- V. Fit of regression lines.

The general method is as follows. Suppose f to be any independent frequency constant; then χ^2 is to be a maximum with the variation of f. Accordingly we have from

$$1 + \chi^2 = S\left(\frac{n_s^2}{\bar{n}_s}\right)$$

- * University of London, Honours B.Sc., Papers in Statistics, Thursday, Oct. 28, 1915.
- † Phil. Mag. Vol. L. p. 157, 1900.
- ‡ There is a point of some philosophical interest here which deserves further consideration. As is well known the Gaussian demonstration depends on making the product

$$P\left\{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\frac{(x_s-\overline{x})^2}{\sigma^2}}\right\},\,$$

s being taken so as to include each individual observation, a maximum by varying σ and \bar{x} , the result being that the 'best' values are found from the first two moments. Now it will be observed that this is not the same idea as lies in the χ^2 test of goodness of fit. The conception of 'goodness' in that case is that we should measure the probability of a drawing from a certain population giving as divergent or a more divergent result than that observed. In other words while the Gaussian test makes a single ordinate of a generalised frequency surface a maximum, the χ^2 test makes a real probability, namely the whole volume lying outside a certain contour surface defined by χ^2 a maximum. Logically this seems the more reasonable, for the above product used in the Gaussian proof is not a probability at all. To make it a probability it must be multiplied by the product $\{\delta x_s\}$, and then the probability of the actually observed result, namely $x_1, x_2, \dots x_s, \dots x_q$, will of course be infinitely small, and what is made a maximum is an infinitely small probability. The exact meaning of $P\{\delta x_s\}$ when x_s is an actual observation is obscure, but it appears that the probability for constant indefinitely small ranges of the variates in the neighbourhood of the observed values is made a maximum. But probability means the frequency of recurrence in a repeated series of trials and this probability is in the case supposed indefinitely small. It seems far more reasonable to make a finite probability, i.e. the probability of a divergence as great or greater than the observed a maximum, i.e. to use the χ^2 test and not the Gaussian principle.

a number of equations of type

$$S\left(\frac{n_s^2}{\bar{n}_s^2}\frac{d\bar{n}_s}{df}\right) = 0 \quad \dots (1)$$

These equations will generally be far too involved to be directly solved. Accordingly we proceed thus: We suppose that the values of the frequency constants given by the method of moments are good starting-points, and we put, if \bar{f} denote the moment value of a frequency constant, $f = f + \Delta f$. Accordingly if there be a number $f_1, f_2, \ldots f_q$ of independent frequency constants, we shall have a series of equations to find $\Delta f_1, \Delta f_2, \ldots \Delta f_q$ of the type

$$0 = S\left\{\frac{n_s^2}{\bar{n}_s^2} \left[\frac{d\bar{n}_s}{df_1}\right]\right\} + S\left\{\frac{n_s^2}{\bar{n}_s^2} \left(\left[\frac{d^2\bar{n}_s}{df_1^2}\right] - \frac{2}{\bar{n}_s} \left[\left(\frac{d\bar{n}_s}{df_1}\right)^2\right]\right)\right\} \Delta f_1$$

$$+ S\left\{\frac{n_s^2}{\bar{n}_s^2} \left(\left[\frac{d^2\bar{n}_s}{df_1df_2}\right] - \frac{2}{\bar{n}_s} \left[\frac{d\bar{n}_s}{df_1} \frac{d\bar{n}_s}{df_2}\right]\right)\right\} \Delta f_2$$

$$+ \dots$$

$$+ S\left\{\frac{n_s^2}{\bar{n}_s^2} \left(\left[\frac{d^2\bar{n}_s}{df_1d\bar{f}_q}\right] - \frac{2}{\bar{n}_s} \left[\frac{d\bar{n}_s}{df_1} \frac{d\bar{n}_s}{df_q}\right]\right)\right\} \Delta f_q \dots (2 a),$$

where a square bracket round the differential coefficients signifies that the frequency constants $f_1, f_2, ..., f_q$ therein are to be given their moment values $\bar{f_1}, \bar{f_2}, ..., \bar{f_q}$. These values are of course also to be used in $\bar{n_s}$.

Since $S(\bar{n}_s) = N$, it is clear that

$$S\left(\frac{d\bar{n}_s}{df_1}\right) = S\left(\frac{d\bar{n}_s}{df_2}\right) = S\left(\frac{d^2\bar{n}_s}{df_1df_2}\right) = \text{etc.} = 0.$$

Accordingly the above equations may be reduced to the type

$$0 = S\left\{\frac{n_{s}^{2} - \bar{n}_{s}^{2}}{\bar{n}_{s}^{2}} \left[\frac{d\bar{n}_{s}}{df_{1}}\right]\right\} + S\left\{\frac{n_{s}^{2} - \bar{n}_{s}^{2}}{\bar{n}_{s}^{2}} \left[\frac{d^{2}\bar{n}_{s}}{df_{1}^{2}}\right] - \frac{2n_{s}^{2}}{\bar{n}_{s}^{3}} \left[\left(\frac{d\bar{n}_{s}}{df_{1}}\right)^{2}\right]\right\} \Delta f_{1}$$

$$+ S\left\{\frac{n_{s}^{2} - \bar{n}_{s}^{2}}{\bar{n}_{s}^{2}} \left[\frac{d^{2}\bar{n}_{s}}{df_{1}df_{2}}\right] - \frac{2n_{s}^{2}}{\bar{n}_{s}^{3}} \left[\frac{d\bar{n}_{s}}{df_{1}} \frac{d\bar{n}_{s}}{df_{2}}\right]\right\} \Delta f_{2}$$

$$+ \dots$$

$$+ S\left\{\frac{n_{s}^{2} - \bar{n}_{s}^{2}}{\bar{n}_{s}^{2}} \left[\frac{d^{2}\bar{n}_{s}}{df_{1}df_{q}}\right] - \frac{2n_{s}^{2}}{\bar{n}_{s}^{3}} \left[\frac{d\bar{n}_{s}}{df_{1}} \frac{d\bar{n}_{s}}{df_{2}}\right]\right\} \Delta f_{2}.$$

It might reasonably be anticipated that terms involving the product of Δf and $(n_s^2 - \bar{n}_s^2)/\bar{n}_s^2$ could be neglected in the first place and accordingly that we should have as approximate type

$$\frac{1}{2}S\left\{\frac{n_s^2 - \bar{n}_s^2}{\bar{n}_s^2} \left[\frac{d\bar{n}_s}{df_1}\right]\right\} = S\left[\frac{n_s^2}{\bar{n}_s^3} \left(\frac{d\bar{n}_s}{df_1}\right)^2\right] \Delta f_1 + S\left\{\frac{n_s^2}{\bar{n}_s^3} \left[\frac{d\bar{n}_s}{df_1} \frac{d\bar{n}_s}{df_2}\right]\right\} \Delta f_2 \\
+ \dots + S\left\{\frac{n_s^2}{\bar{n}_s^3} \left[\frac{d\bar{n}_s}{df_1} \frac{d\bar{n}_s}{df_2}\right]\right\} \Delta f_q \dots (2b),$$

but this approximation has not in every case numerically justified itself, and thus it cannot be invariably used as more than a reasonable starting-off point.

(2) Fit of a Normal Curve.

Differentiating
$$\bar{n}_s = \frac{N}{\sqrt{2\pi} \, \sigma} \int_{x_s}^{x_{s+1}} e^{-\frac{1}{2} \frac{(x-m)^2}{\sigma^2}} dx,$$

and then putting

$$z_s = rac{N}{\sqrt{2\pi}} e^{-rac{1}{2}rac{(x_s-m)^2}{\sigma^2}} \quad ext{and} \quad x_s/\sigma = h_s$$
 ,

we have on substituting the differentials in (2a):

$$\begin{split} 0 &= \overline{\sigma} \, S \left\{ \frac{n_s^2}{\overline{n}_s^2} [z_{s+1} - z_s] \right\} \\ &+ \Delta \overline{m} \left(S \left\{ \frac{n_s^2}{\overline{n}_s^2} [h_{s+1} z_{s+1} - h_s z_s] \right\} + 2N \, S \left\{ \frac{n_s^2}{\overline{n}_s^3} [z_{s+1} - z_s]^2 \right\} \right) \\ &+ \Delta \overline{\sigma} \left(S \left\{ \frac{n_s^2}{\overline{n}_s^2} [-z_{s+1} + z_s + h^2_{s+1} z_{s+1} - h_s^2 z_s] \right\} + 2N \, S \left\{ \frac{n_s^2}{\overline{n}_s^2} [z_{s+1} - z_s] [h_{s+1} z_{s+1} - h_s z_s] \right\} \right) \\ 0 &= \overline{\sigma} \, S \left\{ \frac{n_s^2}{\overline{n}_s^2} [h_{s+1} z_{s+1} - h_s z_s] \right\} \\ &+ \Delta \overline{m} \left(S \left\{ \frac{n_s^2}{\overline{n}_s^2} [-z_{s+1} + z_s + h^2_{s+1} z_{s+1} - h_s^2 z_s] \right\} + 2N \, S \left\{ \frac{n_s^2}{\overline{n}_s^3} [z_{s+1} - z_s] [h_{s+1} z_{s+1} - h_s z_s] \right\} \right) \\ &+ \Delta \overline{\sigma} \left(S \left\{ \frac{n_s^2}{\overline{n}_s^2} [(h^3_{s+1} z_{s+1} - h_s^3 z_s) - 2(h_{s+1} z_{s+1} - h_s z_s)] \right\} + 2N \, S \left\{ \frac{n_s^2}{\overline{n}_s^2} [h_{s+1} z_{s+1} - h_s z_s]^2 \right\} \right) \\ &\text{the differential coefficients of } \chi^2 \text{ being} \end{split}$$

$$\frac{d\left(\chi^{2}\right)}{dm} = \frac{N}{\overline{\sigma}} S\left\{ \frac{n_{s}^{2}}{\overline{n}_{s}^{2}} \left(z_{s+1} - z_{s}\right) \right\}$$

$$\frac{d\left(\chi^{2}\right)}{d\sigma} = \frac{N}{\overline{\sigma}} S\left\{ \frac{n_{s}^{2}}{\overline{n}_{s}^{2}} \left(h_{s+1} z_{s+1} - h_{s} z_{s}\right) \right\}$$
(4)

and

Illustration I. Fit of Normal Curve to Unilateral Data.

Our first illustration treats a series of measurements by Bradley discussed by Bessel*. The mean of the observations is fixed, for in dealing with the observations Bessel has added positive and negative variations together.

TABLE I. Measurements of Right Ascension.

Limits	Observed	Gaussian curve by moments	Gaussian curve improved by minimum χ^2
0"·0—0"·1 0"·1—0"·2 0"·2—0"·3 0"·3—0"·4 0"·4—0"·5 0"·5—0"·6 0"·6—0"·7 0"·7—0"·8 0"·8—0"·9	114 84 53 24 14 6 3	101·61 84·12 57·65 32·71 15·36 5·974 1·923 ·5122 ·1370	98·63 82·59 57·91 34·00 16·72 6·881 2·372 ·6843 ·2053

^{*} Emanuel Czuber, Theorie der Beobachtungsfehler, p. 192. Search has been made in vain in the Fundamenta Astronomiae for the original data in order to remove the unilateral limitation.

266 On 'Best' Values of Constants in Frequency Distributions

 $\overline{\sigma}$ was found equal to 2·282542 and the second formula of (3) gave the value 2·341735 for σ . As $\Delta \sigma$ was found so large that the approximation could not be expected to be very good, the following values of $\frac{d(\chi^2)}{d\sigma}$ were calculated from the second formula of (4):

σ	$\frac{d(\chi^2)}{d\sigma}$
2.282542	- 32.53
$\frac{1}{\cdot 43} = 2 \cdot 325581$	- 11.81
$\frac{1}{42} = 2.380952$	+ 8.06

By interpolation in this table $\sigma = 2.355860$ was found as the value for which $\frac{d(\chi^2)}{d\sigma}$ equals zero, and this is the σ of the improved Gaussian given above.

From χ^2 the 'goodness of fit' P was found:

	χ^2	P	$\frac{d (\chi^2)}{d\sigma}$
Gaussian	10·833	0·211	- 32·53
Impr. Gaussian	9·720	0·285	+ 0·20

As will be seen the better fit is obtained by making σ bigger than the Gaussian value, the improvement therefore cannot be looked upon as a correction for grouping. On the contrary the Sheppard correction would have given $\sigma = 2.264214$ and have raised χ^2 to 11.52. Thus we see that although the two methods give close values for P, the 'better value' is obtained as it should be from the lesser value of $d(\chi^2)/d\sigma$.

(3) Illustration II. Fit of a Normal Curve to Bilateral Data.

For the next illustration I have used a table giving frequencies of cephalic index in Bavarian skulls*. Both σ and m have here been varied. As the formulae (3) are somewhat laborious to work with, the approximations were used roughly suggested by the process on p. 264, but the results were not satisfactory† and these approximate results are therefore not given here. But $\frac{d(\chi^2)}{dm}$ and $\frac{d(\chi^2)}{d\sigma}$ for the two

* J. Ranke, Beiträge zur physischen Antropologie der Baiern, München, 1883. The table includes the material from Tables I-VI and VIII-X inclusive which may be treated as typically 'Alt-Baierisch.'

† In fact the calculation of the exact value of $\frac{d^2(\chi^2)}{d\sigma^2}$ showed that the part of it neglected in formula $(2\,b)$ was about $_{17}^{17}$ of the whole value. It essentially arose from the one tail group, this being $\frac{2\,0\,0}{2\,0\,7}$ of the whole neglected part. As $\frac{n_8^2 - \overline{n_8}^2}{\overline{n_8}^2}$ for this group was only as big as 1 0348, the approximate formula $(2\,b)$ cannot be expected to be of great value for the normal curve.

Gaussians found in this way were used for interpolation purposes and their constants are therefore given in the following table under (b) and (c). By (a) is indicated the Gaussian from which we started, namely that found by moments, Sheppard's correction being used.

Assuming $\frac{d(\chi^2)}{dm}$ and $\frac{d(\chi^2)}{d\sigma}$ to be linear functions of σ and m, we determined from the cases (a), (b) and (c) values of σ and m, given under (d), so as to make the differential coefficients zero. In the same way we found at last from the cases (a), (b) and (d) the constants of the Gaussian (e), the constants of which will be found in the following table. As will be seen we have succeeded in bringing the values of $\frac{d(\chi^2)}{dm}$ and $\frac{d(\chi^2)}{d\sigma}$ near to zero, certainly close enough for all practical purposes.

TABLE II.

	m	σ	χ^2	P	$\frac{d\left(\chi^2\right)}{dm}$	$\frac{d\left(\chi^{2} ight)}{d\sigma}$
(a)	83.06889	3.431833	10.205	-895	57	+ 14.42
(b)	83.01498	3.358380	10.301	-891	- 10.56	- 9.97
(c)	82.98832	3.331365	11.048	.854	- 15.89	- 20.76
(d)	83.05329	3.349421	10.108	-899	- 4.59	- 12.10
(e)	83.07774	3.385991	9.858	.909	+ .07	+ .71

TABLE III.

	Observed	Gaussian curve by moments	Gaussian improved by minimum χ ²
75 and under	9.5	12.3387	11.3504
76	12.5	12.6842	12.0767
77	17	22.0702	21.3463
78	37	35.2942	34.6005
79	55	51.8794	51.4323
80	71.5	70.0925	70.1100
81	82	87.0421	87.6432
82	116	99.3519	100.4734
83	98	104.2329	105.6275
84	107	100.5128	101.8352
85	82	89.0879	90.0352
86	74	72.5781	72.9998
87	58	54.3468	54.2778
88	34.5	37.4049	37.0099
89	19	23.6625	23.1422
90	10	13.7588	13.2703
91	8	7.3532	6.9782
92 and over	9	6.3093	5.7910

(4) Fit of a Poisson Limit to the Binomial. For a Poisson limit with the general term $\frac{e^{-\overline{m}}\overline{m}^s}{s!}$ we find

and putting $m = \overline{m} + \Delta m$,

$$\Delta m = \frac{S\left(\frac{n_s^2}{\bar{n}_s}(s-\overline{m})\right)}{S\left(\frac{n_s^2}{\bar{n}_s}((s-\overline{m})^2+s)\right)}\,\overline{m} \qquad (6).$$

Starting with \overline{m} equal to the mean of the observations I have found the improved values in the following two numerical examples.

Illustration III. The first table given by L. Whitaker* contains the number of deaths per day of women over 85 years, published in the *Times* newspaper during the years 1910–1912.

TABLE IV.

Number of deaths per day	Observed	Poisson by first moment	Poisson improved by minimum χ^2
0	364	336.250	331.133
1	376	397.302	396.334
2	218	234.720	$237 \cdot 186$
3	89	92.446	94.630
4	33	27.308	28.316
5	13	6.4532	6.7782
6	2	1.2708	1.3521
7	1	0.2508	0.2715

The m, χ^2 , P and $\frac{d(\chi^2)}{dm}$ calculated from (5) were determined for the two distributions as given in Table V.

TABLE V.

	m	χ^2	P	$\frac{d(\chi^2)}{dm}$
Poisson	1·181569	15·226	·0332	- 35·61
Poisson improved	1·196903	14·943	·0361	- 0·75

Illustration IV. As our second illustration we have taken a table of phagocytic frequencies published by Major McKendrick†:

TABLE VI.

No. of Deaths	Observed	Poisson by first moment	Poisson improved by minimum χ^2
0 1 2 3 4 5	$\begin{array}{c} 620 \\ 282 \\ 79 \\ 16 \\ 2 \\ 1 \end{array}$	$605.924 \\ 303.568 \\ 76.044 \\ 12.699 \\ 1.5906 \\ \cdot 1738$	600·676 306·164 78·026 13·257 1·6892 ·1881

^{*} Biometrika, Vol. x. p. 67.

[†] Proceedings of the London Mathematical Society, Vol. XIII. 1913, p. 401.

The numerical values of the constants of the series and of the 'goodness of fit' are

TABLE VII.

	m	χ²	P	$\frac{d\left(\chi^2\right)}{dm}$
Poisson	·501000	6·865	·231	- 41·86
Poisson improved	·509700	6·672	·246	- 1·21

This table is of interest because it illustrates the apparent paradox, already seen in the case of the second Gaussian curve illustration, that the 'mean' is not necessarily the 'best value' of the constant termed the 'mean.'

(5) Fit of a Binomial to Binomial Data.

Let \bar{n}_s be equal to the (s+1)th term of the binomial $(p+q)^i$, where p+q=1, or to

$$p^{n-s}(1-p)^{s}\frac{l(l-1)...(l-s+1)}{s!};$$

we then find

$$rac{dn_s}{dp} = ar{n}_s rac{l-pl-s}{p\left(1-p
ight)} = ar{n}_s rac{m-s}{p\left(1-p
ight)}$$
 ,

where m is the mean or stand for l(1-p),

$$\begin{split} \frac{d^2n_s}{dp^2} &= \frac{n_s}{p^2 \, (1-p)^2} \, \{ (l-pl-s)^2 - (l-pl-s) \, (1-2p) - lp \, (1-p) \} \\ &= \frac{n_s}{p^2 \, (1-p^2)} \, \{ (m-s)^2 + (m-s) \, (1-2p) + mp \}, \\ \frac{dn_s}{dl} &= \bar{n}_s \, \left(\log_e p + \frac{1}{l} + \frac{1}{l-1} + \ldots + \frac{1}{l-s+1} \right), \\ \frac{d^2n_s}{dl^2} &= \bar{n}_s \, \left\{ \left(\log_e p + \frac{1}{l} + \frac{1}{l-1} + \ldots + \frac{1}{l-s+1} \right)^2 - \frac{1}{l^2} - \frac{1}{(l-1)^2} - \ldots - \frac{1}{(l-s+1)^2} \right\}, \\ \frac{d^2n_s}{dldp} &= \frac{\bar{n}_s}{p \, (1-p)} \, \left\{ (m-s) \, \left(\log_e p + \frac{1}{l} + \frac{1}{l-1} + \ldots + \frac{1}{l-s+1} \right) + (1-p) \right\}. \end{split}$$

Hence we have

$$\begin{split} \frac{d\left(\chi^{2}\right)}{dp} &= -S\left[\frac{n_{s}^{2}}{\overline{n}_{s}}\frac{m-s}{p\left(1-p\right)}\right] \\ \frac{d\left(\chi^{2}\right)}{dl} &= -S\left[\frac{n_{s}^{2}}{\overline{n}_{s}}\left(\log_{e}p + \frac{1}{l} + \frac{1}{l-1} + \ldots + \frac{1}{l-s+1}\right)\right] \end{split}(7),$$

270 On 'Best' Values of Constants in Frequency Distributions

and the equations (2a) take the form

$$S\left(\frac{n_{s}^{2}}{\overline{n}_{s}}\frac{m-s}{p(1-p)}\right) = S\left(\frac{n_{s}^{2}}{\overline{n}_{s}p^{2}(1-p)^{2}}\left[(m-s)^{2}+(m-s)\left(1-2p\right)+mp\right]\right)\Delta p \\ + S\left(\frac{n_{s}^{2}}{\overline{n}_{s}p\left(1-p\right)}\left[(m-s)\left(\log_{e}p+\frac{1}{l}+\frac{1}{l-1}+\ldots+\frac{1}{l-s+1}\right)-(1-p)\right]\right)\Delta l \\ S\left(\frac{n_{s}^{2}}{\overline{n}_{s}}\left[\log_{e}p+\frac{1}{l}+\frac{1}{l-1}+\ldots+\frac{1}{l-s+1}\right]\right) \\ = S\left(\frac{n_{s}^{2}}{\overline{n}_{s}p\left(1-p\right)}\left[(m-s)\left(\log_{e}p+\frac{1}{l}+\frac{1}{l-1}+\ldots+\frac{1}{l-s+1}\right)-(1-p)\right]\right)\Delta p \\ + S\left(\frac{n_{s}^{2}}{\overline{n}_{s}}\left[\left(\log_{e}p+\frac{1}{l}+\frac{1}{l-1}+\ldots+\frac{1}{l-s+1}\right)^{2}+\frac{1}{l^{2}}+\frac{1}{(l+1)^{2}}+\ldots+\frac{1}{(l-s+1)^{2}}\right]\right)\Delta l\right)$$

while the approximate formulae of the type (2b) are

$$S\left(\frac{n_{s}^{2}}{\bar{n}_{s}} \frac{m-s}{p(1-p)}\right) = 2S\left(\frac{n_{s}^{2}}{\bar{n}_{s} p^{2} (1-p)^{2}} [m-s]^{2}\right) \Delta p$$

$$+ 2S\left(\frac{n_{s}^{2}}{\bar{n}_{s} p(1-p)} \left[(m-s) \left(\log_{e} p + \frac{1}{l} + \frac{1}{l-1} + \dots + \frac{1}{l-s+1}\right) \right] \right) \Delta l$$

$$S\left(\frac{n_{s}^{2}}{\bar{n}_{s}} \left[\log_{e} p + \frac{1}{l} + \frac{1}{l-1} + \dots + \frac{1}{l-s+1}\right] \right)$$

$$= 2S\left(\frac{n_{s}^{2}}{\bar{n}_{s} p(1-p)} \left[(m-s) \left(\log_{e} p + \frac{1}{l} + \frac{1}{l-1} + \dots + \frac{1}{l-s+1}\right) \right] \right) \Delta p$$

$$+ 2S\left(\frac{n_{s}^{2}}{\bar{n}_{s}} \left[\log_{e} p + \frac{1}{l} + \frac{1}{l-1} + \dots + \frac{1}{l-s+1}\right] \right) \Delta l$$

$$(9).$$

Illustration V. Weldon's Dice Data.

For illustration are used the following data due to the late Professor W. F. R. Weldon*. They give the observed frequencies of dice with five or six points when a throw of twelve dice was made 26306 times.

TABLE VIII.

Number of dice in cast with 5 or 6 points	Observed frequency	Binomial by method of moments	Improved binomial (a) by χ^2 a minimum	$\begin{array}{c} \text{Improved binomial} \\ (b) \text{ by } \chi^2 \text{ a} \\ \text{minimum} \end{array}$
0	185	189.679	190-651	190.659
1	1149	$1154 \cdot 441$	1157-607	1157.600
2	3265	$3223 \cdot 426$	3226.085	3225.959
3	5475	5461.01	5458.07	5457.78
4	6114	$6253 \cdot 64$	6245.98	6245.71
5	5194	5101.31	5095.82	5095.79
6	3067	3041.04	3041-47	3041.69
7	1331	1335.82	1339-55	1339-81
8	403	$429 \cdot 627$	432.815	432.984
9	105	98.865	100.351	100.419
10	14	15.5133	15.9413	15.9595
11	4	1.57640	1.65879	1.66210

^{*} Phil. Mag. July, 1900, p. 167.

Fitting the frequencies from the end by means of two moments we obtain the binomial

$$(.6658208 + .3341792)^{12.126379}$$

the terms of which are given in the table above under the head Binomial.

From these starting values of p and l we found by the equations (8) the constants of the improved binomial (a) p = .6674922 and l = 12.188945.

A comparison between the coefficients of the two sets of formulae (8) and (9) gave the result that they only diverged by between 1·4 and 5 per mille of their value. As $\frac{n_s^2 - \bar{n}_s^2}{\bar{n}_s^2}$ for the tail group was as big as 5·44, we are from this justified in expecting the approximate formulae (9) to be useful for binomial data.

Starting from the improved binomial (a) another improved binomial (b) was found by means of the formulae (9). As will be seen I only succeeded in diminishing $\frac{d(\chi^2)}{dp}$ by raising $\frac{d(\chi^2)}{dl}$, and χ^2 came out with exactly the same value as by the former formula. The constants for the improved binomial (b) are $p=\cdot6675432$ and $l=12\cdot191141$.

The constants illustrating the 'goodness of fit' were found as follows:

				1
	χ^2	P	$\frac{d(\chi^2)}{dp}$	$\frac{d(\chi^2)}{dl}$
Binomial Improved Binomial (a) ,, (b)	11·643 11·513 11·513	·390 ·401 ·401	159·47 26·02 - ·02	- 8·15 - ·84 + 1·96

TABLE IX.

It will be seen from the above illustrations that the probability of happening as determined by the χ^2 test of 'goodness of fit' being a maximum can always be made somewhat greater than the same probability deduced from a fit by the method of moments, which at any rate for the Gaussian curve is usually assumed to be the 'best.'

(6) On the 'Best' Values of the Constants of Regression Curves.

If we apply the test of 'goodness of fit' to regression curves as recently indicated by Pearson* modifying Slutsky's methods†, we shall experience the same divergence between the curves of regression found by the method of least squares and the curves calculated so as to make χ^2 a minimum, as we found when dealing with frequency distributions.

In the paper cited χ^2 for a regression curve is given as

$$\chi^2 = S\left(\frac{n_p (m_p - \overline{m}_p)^2}{\sigma^2_{\overline{n}_p}}\right) \quad \dots (10),$$

^{*} Biometrika, Vol. XI. pp. 239 et seq.

[†] Journal of the Royal Statistical Society, Vol. LXXVII. pp. 78-84.

272 On 'Best' Values of Constants in Frequency Distributions

where m is the mean of the pth array of the sample of size M from a population of size N, while \overline{m}_p is the theoretical mean as found from the regression curve, n_p , $= \overline{n}_p M/N$, is the mean frequency and $\sigma_{\overline{n}_p}$ the mean standard deviation of the pth array in the samples. The difficulty in applying the 'goodness of fit' test lies in finding adequate values for n_p and $\sigma_{\overline{n}_p}$. Let us assume them to be found. The 'best' values of the constants f_1, f_2, \ldots of the regression curve, i.e. the values which make χ^2 a minimum, will then be found from equations of the type

$$0 = -2S \left\{ \frac{n_p}{\sigma^2_{\overline{n}_p}} (m_p - \overline{m}_p) \frac{d\overline{m}_p}{df_1} \right\} + S \left\{ (m_p - \overline{m}_p)^2 \frac{d \left(\frac{n_p}{\sigma^2_{\overline{n}_p}} \right)}{df_1} \right\} \dots (11).$$

As will be seen these equations fall into the equations resulting from using the method of least squares if $\frac{n_p}{\sigma^2 \overline{n_p}}$ is independent of the constants of the regression curve and at the same time for the different arrays proportional to the n_p of the sample. Even if our sample be derived from truly Gaussian data, these conditions will only approximately be satisfied, the $\sigma_{\overline{n_p}}$, although constant, being dependent upon the constants of the regression curve and the n_p of the formula not being really the sample value.

Supposing $\frac{n_p}{\sigma^2_{n_p}}$ to be independent of the constants of the regression line $\overline{m}_p = ax + b$, the equations (11) take the form

$$S \{v_p (m_p - ax - b) x\} = 0,$$

 $S \{v_p (m_p - ax - b)\} = 0,$

when we put v_p for

$$\frac{\frac{n_p}{\sigma^2_{\overline{n}_p}}}{S\left(\frac{n_p}{\sigma^2_{\overline{n}_p}}\right)}.$$

From these equations we find

$$\begin{split} a &= \frac{S\left(v_{p}m_{p}x\right).S\left(v_{p}\right) - S\left(v_{p}m_{p}\right)S\left(x\right)}{S\left(v_{p}x^{2}\right).S\left(v_{p}\right) - \{S\left(v_{p}x\right)\}^{2}} \\ b &= \frac{S\left(v_{p}m_{p}\right)}{S\left(v_{p}\right)} - a\frac{S\left(v_{p}x\right)}{S\left(v_{p}\right)}, \end{split}$$

and

formulae agreeing with those derived from the method of least squares if v_p equals the marginal frequencies of the sample. But not agreeing with them if, for example, the material be heteroscedastic.

(7) Illustration VI. Auricular Height of School Girls.

This example was first used by Pearson in the memoir on skew correlation* and later as an illustration of the test of 'goodness of fit' of regression curves†.

^{*} Drapers' Company Research Memoirs, Biometric Series II. p. 34.

[†] Biometrika, Vol. xi. p. 253.

For the present use theoretical values of n_{ν} and $\sigma_{\bar{n}_{\rho}^2}$ were determined, from which the values of v_p given in Table X are calculated. The n_p and v_p of the table represent the weights given to the means of arrays respectively by the method of least squares and by our method of making χ^2 a minimum. It will be seen that our method throws

TA	BI	Æ.	X

Age	n_p observed	v_p	m_p observed	m_p from χ^2 a minimum	$m_{ ho} \ ext{from least} \ ext{squares}$
3—4	1	5.3790	115.25	117.76	117.95
45	7	13.7170	116.96	118.44	118.61
56	18	28.5973	117-47	119.13	119.27
67	40	56.0527	119.10	119.81	119.94
7—8	76	95.3828	120.30	120.49	120.60
89	125	146.023	121.63	121.17	121.26
9-10	177	199.783	121.72	121.86	121.92
10-11	235	$243 \cdot 414$	122.82	122.54	122.59
11—12	261	271.704	123.14	123.22	123.25
12-13	309	$277 \cdot 232$	123.89	123.90	123.91
13-14	263	$259 \cdot 386$	124.86	124.59	124.58
14—15	198	223.505	125.71	$125 \cdot 27$	125.24
15—16	214	$172 \cdot 851$	126.16	125.95	125.90
16—17	162	121.965	126.53	126.63	126.57
17—18	95	75.7303	126.91	127.32	127.23
1819	61	43.0926	127.02	128.00	127.89
19-20	13	21.2448	129.56	128.68	128.55
20-21	7	8.09110	123.82	129.36	129-22
21-22	8	6.42326	126.50	130.05	129.88
22-23	2	$2 \cdot 42653$	125.25	130.73	130.54

the weight more to the first half part of the groups of ages than the method of least squares. This is due to the heteroscedasticity of the material, the $\sigma^2_{\overline{n}_p}$ varying from 27·2776 in the youngest group to 60·4676 in the eldest. The two last columns of Table X contain the m_p calculated from our regression formula and from the usual formula; as might be expected our m_p 's are closer to the means of the observations for the younger groups of ages and differ more for the higher ages than do the m_p values obtained by the method of least squares. The χ^2 calculated by (10) are for the two cases 18·45 and 18·67 and we have only raised the 'goodness of fit' P from ·543 to ·558 although the weighting in the two methods appeared sensibly different.

The usual regression line is

$$m_p = 124.0467 + .662979 (x_p - 12.7007),$$

124.0467 and 12.7007 being the general means, and regression line from the χ^2 formula may be written

$$m_p = 124.0411 + .682455 (x_p - 12.7007)$$

from which is seen that it passes not far from the mean.

In a similar way I have treated the regression of ages on height of head. Also I have here calculated the heteroscedasticity and have had to use a parabola to Biometrika xı

274 On 'Best' Values of Constants in Frequency Distributions

Diagram I. Comparison of Regression Straight Lines found by method of Least Squares and by χ^2 Test.

DIAGRAM II. Scedastic Curve of Age on Auricular Height in Girls.

represent $\sigma^2_{\overline{n}_p}$, the squared standard deviation of the arrays of same height, to obtain a reasonable description; this is shown on the diagram. The marginal frequencies of the height variate could be expressed fairly well by a Gaussian curve. These theoretical values of $\sigma^2_{\overline{n}_{p'}}$ and $n_{p'}$ are given in Table XI together with the weights

$$v' = \frac{\frac{n_p'}{\sigma^2_{\overline{n}_p'}}}{S\left(\frac{n_p'}{\sigma^2_{\overline{n}_p'}}\right)}$$

calculated from them.

TABLE XI.

Millims	$\sigma^2 \overline{n}_p{}'$ theoretical	$n_p{}' \ ext{theoretical}$	v'	$n_{p'}$ observed	m_p' observed	$m_{p^{'}}$ from χ^{2} minimum	m_p^\prime from least squares
102.25—104.25	8.456	4.73	4.7123	2	5.00	9.92	9.99
$104 \cdot 25 - 106 \cdot 25$	8.748	6.62	6.3809	10	10.40	10.18	10.25
106.25-108.25	8.987	13.89	13.0282	10	11.10	10.45	10.51
$108 \cdot 25 - 110 \cdot 25$	9.172	26.80	24.6339	27	11.54	10.72	10.77
110.25 - 112.25	9.304	47.59	43.1217	56	11.71	10.99	11.03
$112 \cdot 25 - 114 \cdot 25$	9.382	77.76	$69 \cdot 8648$	59	11.81	11.26	11.29
$114 \cdot 25 - 116 \cdot 25$	9.408	116-90	104.750	115	11.62	11.53	11.55
116.25 - 118.25	9.380	161.71	145.332	142	11.70	11.80	11.81
$118 \cdot 25 - 120 \cdot 25$	9.298	205.83	186.597	244	11.80	12.06	12.08
$120 \cdot 25 - 122 \cdot 25$	9.164	241.06	221.744	265	12.15	12.33	12.34
$122 \cdot 25 - 124 \cdot 25$	8.976	259.78	243.960	261	12.52	12.60	12.60
$124 \cdot 25 - 126 \cdot 25$	8.735	257.59	248.580	265	12.83	12.87	12.86
$126 \cdot 25 - 128 \cdot 25$	8.441	235.02	234.710	219	12.98	13.14	13.12
$128 \cdot 25 - 130 \cdot 25$	8.093	197.30	205.508	197	13.78	13.41	13.38
130.25 - 132.25	7.692	152.41	167.023	131	13.85	13.67	13.64
$132 \cdot 25 - 134 \cdot 25$	7.238	108.33	$126 \cdot 167$	88	13.78	13.94	13.90
$134 \cdot 25 - 136 \cdot 25$	6.730	70.85	88.7361	77	14.28	14.21	14.16
$136 \cdot 25 - 138 \cdot 25$	6.170	42.64	58.2529	52	14.40	14.48	14.42
138.25 - 140.25	5.556	23.61	35.8204	20	14.05	14.75	14.69
$140 \cdot 25 - 142 \cdot 25$	4.888	12.03	20.7416	16	14.56	15.02	14.95
$142 \cdot 25 - 144 \cdot 25$	4.168	5.64	11.4040	11	14.95	15.29	15.21
144.25 - 146.25	3.394	2.43	6.0407	4	18.00	15.55	15.47
$146 \cdot 25 - 148 \cdot 25$	2.567	1.49	4.8835	1	19.50	15.82	15.73

The usual regression line is

$$m_p' = 12.7007 + .130489 (y_p - 124.0467),$$

and the line for which χ^2 is a minimum is

$$m_p' = 12.7071 + .1342345 (y_p - 124.0467).$$

For χ^2 were found in the two cases the values 44.411 and 44.109 and for the 'goodness of fit' P the values .0047 and .0051*.

^{*} A case was purposely chosen in which the regression was known to be far from linear, in order to ascertain whether this fact itself would separate at all widely the least square and χ^2 regression lines.

276 On 'Best' Values of Constants in Frequency Distributions

The intersection point of the two χ^2 regression lines is m = 124.0453, m' = 12.7070, which is seen to be very near to the general means. Introducing that point into the equations of the lines, they take the form

$$m_p' = 12 \cdot 7070 + \cdot 1342345 (y_p - 124 \cdot 0453),$$

 $m_p = 124 \cdot 0453 + \cdot 682455 (x_p - 12 \cdot 7070).$

From the slopes of the lines we find the value ·3027 for the correlation coefficient, whereas the method of least squares gives the value ·2941.

Although we have found the material to be decidedly heteroscedastic and the weighting of the two series of means rather different from that of the marginal frequencies, we nevertheless see that the resulting regression lines differ very little from the ordinary regression lines, both the deviations of the means and the correlation coefficient derived from them being less than their probable errors.

- (8) The conclusions to be drawn from the present investigation are:
- (i) The definition of 'best,' which leads to the method of moments being considered 'best' and incidentally to the method of least squares being considered 'best,' is undoubtedly somewhat arbitrary. If we use Pearson's 'Goodness of Fit' test, then the method of moments is not necessarily the 'best,' the best value of the constant termed the mean is not necessarily the mean, nor generally the best value of the correlation coefficient between two variates that calculated by the moments and product moment method.
- (ii) On the other hand the present numerical illustrations appear to indicate that but little practical advantage is gained by a great deal of additional labour, the values of P are only slightly raised—probably always within their range of probable error. In other words the investigation justifies the method of moments as giving excellent values of the constants with nearly the maximum value of P or it justifies the use of the method of moments, if the definition of 'best' by which that method is reached must at least be considered somewhat arbitrary.

The present paper was worked out in the Biometric Laboratory and I have to thank Professor Pearson for his aid throughout the work.

MISCELLANEA.

Note on the Standard Deviations of Samples of Two or Three.

BY ANDREW W. YOUNG, M.A.

In an "Editorial" contained in Vol. x of Biometrika*, there is a discussion of the distribution of the values of the standard deviation of a population which are deduced from small samples of the population. It is there shown how the distribution approaches normality as the number, n, in the sample increases, a table of the characteristic constants of the frequency curves for various values of n being given. The smallest sample considered is that of n = 4, but samples of two and three are of occasional occurrence especially in physical work and now and again a value of the probable error of an experimental result is deduced from a set of two or of three observations. A knowledge of the theoretical distribution of the standard deviations for such small samples will give us some idea of the reliability of this procedure and it is the object of this note to supply this omission from the former paper.

"Student's" formula for the distribution of samples of standard deviation is

$$y = y_0 \Sigma^{n-2} e^{-\frac{1}{2} \frac{n \Sigma^2}{\sigma^2}},$$

where σ is the standard deviation of the whole population and Σ is the standard deviation given by a sample of size n. Thus the distribution for samples of two is

$$y = y_0 e^{-\frac{\Sigma^2}{\sigma^2}}.$$

extending from $\Sigma = 0$ to $\Sigma = \infty$, i.e. the distribution is simply half of a normal curve; and the distribution for samples of three is

$$y = y_0 \sum e^{-\frac{3}{2} \frac{\sum^2}{\sigma^2}},$$

also, of course, extending from $\Sigma = 0$ to $\Sigma = \infty$.

It is easy to find by direct integration the moment coefficients of these curves.

If we denote by N the total number of samples in the assumed distribution,

$$N = y_0 \int_0^\infty e^{-\frac{\Sigma^2}{\sigma^2}} d\Sigma = y_0 \sigma \frac{\sqrt{\pi}}{2}.$$

Taking the first four moment coefficients about the origin to be μ_1' , μ_2' , μ_3' , μ_4' , and the moment

coefficients about the mean to be, as usual,
$$\mu_2$$
, μ_3 , μ_4 , we have
$$\mu_1' = \text{Mean value of } \Sigma = \overline{\Sigma} = \frac{y_0}{N} \int_0^\infty \Sigma e^{-\frac{\Sigma^2}{\sigma^2}} d\Sigma = \frac{y_0 \sigma^2}{2N} = \frac{\sigma}{\sqrt{\pi}} = \cdot 5642 \sigma.$$

$$\mu_2' = \frac{y_0}{N} \int_0^\infty \Sigma^2 e^{-\frac{\Sigma^2}{\sigma^2}} d\Sigma = \frac{y_0 \sigma^3 \sqrt{\pi}}{N} = \frac{\sigma^2}{2},$$
 giving:
$$\mu_2 = \sigma^2 \left(\frac{1}{2} - \frac{1}{\pi}\right) = \cdot 1817 \sigma^2,$$

giving:

and the standard deviation of $\Sigma = \sigma_{\Sigma} = .4263\sigma$.

* "On the Distribution of the Standard Deviations of Small Samples." Appendix I to papers by "Student" and R. A. Fisher. Biometrika, Vol. x. p. 522, 1915.

giving:
$$\mu_{3}' = \frac{y_{0}}{N} \int_{0}^{\infty} \Sigma^{3} e^{-\frac{\Sigma^{2}}{\sigma^{3}}} d\Sigma = \frac{y_{0}}{N} \frac{\sigma^{4}}{2} = \frac{\sigma^{3}}{\sqrt{\pi}},$$
giving:
$$\mu_{4} = \frac{\sigma^{3}}{\sqrt{\pi}} \left(\frac{2}{\pi} - \frac{1}{2}\right) = \cdot 0771\sigma^{3}.$$

$$\mu_{4}' = \frac{y_{0}}{N} \int_{0}^{\infty} \Sigma^{4} e^{-\frac{\Sigma^{2}}{\sigma^{2}}} d\Sigma = \frac{y_{0}}{N} \frac{3\sigma^{5} \sqrt{\pi}}{8} = \frac{3}{4}\sigma^{4},$$
giving:
$$\mu_{4} = \sigma^{4} \left(\frac{3}{4} + \frac{5}{\pi} - \frac{11}{\pi^{2}}\right) = \cdot 1277\sigma^{4}.$$
From these we derive
$$\beta_{1} = \cdot 9906, \quad \beta_{2} = 3\cdot 8692.$$

$$Case \ of \ Samples \ of \ Three.$$

$$\mu_{1}' = \overline{\Sigma} = \sqrt{\frac{\pi}{6}} \cdot \sigma = \cdot 7236\sigma.$$

$$\mu_{2}' = \frac{2\sigma^{2}}{3},$$
giving:
$$\mu_{2} = \sigma^{2} \left(\frac{2}{3} - \frac{\pi}{6}\right) = \cdot 1431\sigma^{2},$$
and
$$\sigma_{\Sigma} = \cdot 3782.$$

$$\mu_{3}' = \sigma^{3} \sqrt{\frac{\pi}{6}},$$
giving:
$$\mu_{3} = \sigma^{3} \sqrt{\frac{\pi}{6}} \left(\frac{\pi}{3} - 1\right) = \cdot 0342\sigma^{3}.$$

$$\mu_{4}' = \frac{8}{9}\sigma^{4},$$
giving:
$$\mu_{4} = \sigma^{4} \left(\frac{8}{9} - \frac{\pi^{2}}{12}\right) = \cdot 0664\sigma^{4},$$

$$\beta_{1} = \cdot 3983, \quad \beta_{2} = 3\cdot 2451.$$

$$Modal \ Values.$$

In the case of n=2, the mode of the theoretical curve is at the origin $\Sigma=0$, but it is to be borne in mind that it is the *areas* of strips of the frequency-curve which are to be used to estimate the probability. In practice, therefore, seeing that all measurements must be made in discrete amounts and cannot be mathematically continuous, we can only assert that the most frequently occurring values of Σ are those which are nearest zero—not actually zero. The example given below will make this clear.

For n = 3, the mode is obtained by differentiating the equation

$$\begin{split} y &= y_0 \mathbf{\Sigma} e^{-\frac{3}{2}\frac{\mathbf{\Sigma}^2}{\sigma^2}},\\ 0 &= \frac{1}{y}\frac{dy}{d\mathbf{\Sigma}} = \frac{1}{\mathbf{\Sigma}} - \frac{3\mathbf{\Sigma}}{\sigma^2}, \end{split}$$

This gives, for the mode,

thus the modal value ∑ of ∑ is given by

$$y \ d\Sigma \quad \Sigma \quad \sigma^2$$

$$\widetilde{\Sigma} = \frac{\sigma}{\sqrt{3}} = .5774\sigma.$$
Skewness.

The skewness of the distributions is for n=2, 1·3236, and for n=3, ·3867.

Thus whether we consider the mean or the modal values of the distributions, it is evident that the probable error determined from a set of three observations is very untrustworthy and that when there are only two observations it is very much worse.

With the preceding calculations we can now complete the Table on p. 529 of *Biometrika*, Vol. x, with the following

TABLE I.

Table of Values of the Constants of the Frequency Distributions of the Standard Deviations of Samples of Size 2 and 3 drawn at random from a Normal Population.

$\begin{bmatrix} \text{Size of} & \text{Mode} \\ \text{sample} & \widetilde{\Sigma}/\sigma \end{bmatrix}$	Mean	Standard Deviation		Measures of Deviation from Normality			
	$\tilde{\Sigma}/\sigma$	$ \sigma = \overline{\Sigma}/\sigma$	σ_{Σ}/σ	$\sigma_{\Sigma}/(\sigma/\sqrt{2n})$	Skewness	eta_1	eta_2
2 3	0·0 ·5774	·5642 7236	·4263 ·3782	·8525 ·9265	1·3236 ·3867	·9906 ·3983	3·8692 3·2451

Experimental Verification for the Case of Samples of Two.

The frequency distribution of the number of stigmatic bands on the capsules of a growth of Shirley poppies is as follows*:

TABLE II.

No. of Stigmatic Bands 5 No. of Capsules 1	$\begin{bmatrix} 6 & 7 \\ 11 & 32 \end{bmatrix}$	8 9 56 148	10 11	$oxed{ \begin{vmatrix} 12 & 13 \\ 925 & 954 \end{vmatrix}}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1	17 18 51 12	19 Total 1 4443	
--	--	---------------	-------	---	--	---	----------------	--------------------	--

the standard deviation of the distribution, as calculated by the ordinary method, being 1.8977.

We will examine the frequency distribution of the values of the standard deviation of this series which are given by samples of two capsules taken at random. Now the standard deviation of two measurements x_1 and x_2 is easily shown to be $\frac{x_1 - x_2}{2}$, taken with the plus sign, so that in this case, the variate being measurable only in units, the possible standard deviations will be 0, ·5, 1, 1·5, ..., and we can find the theoretical frequencies (column (b) of Table III) of these values by taking the areas of the strips of the half-Gaussian

$$y = \frac{2N}{1.8977 \sqrt{\pi}} e^{-\left(\frac{\Sigma}{1.8977}\right)^2},$$

whose bounding ordinates cut the axis of Σ at 0, \cdot 25; \cdot 25, \cdot 75; \cdot 75, $1\cdot$ 25; Thus the breadth of the first strip is only half that of the others and it will be found that it is the value \cdot 5 which is the real mode of the probability.

In the case of such a distribution we can find the frequencies of the standard deviations of samples of two by actual calculation. For if we denote the chance of a capsule occurring with 5, 6, 7, 8, 9, ... stigmatic bands by a, b, c, d, e, ... respectively, it is clear that the chance of the value 0 of the standard deviation occurring is $a^2 + b^2 + c^2 + d^2 + ...$, and the chance of the value $\cdot 5$ occurring is the chance of a sample of two flowers whose numbers of stigmatic bands differ by 1, i.e. is

$$ab + b(a + c) + c(b + d) + \dots = 2(ab + bc + cd + \dots),$$

and similarly for $\Sigma = \cdot I$ the chance is

$$ac + bd + c(a + e) + d(b + f) + \dots = 2(ac + bd + ce + \dots),$$

and so on.

By this means the theoretical frequencies given in column (a) of Table III were calculated. A histogram of these values will be found to be well in accord with the half-Gaussian given above.

^{*} Pearson, Phil. Trans. Vol. 197 A, p. 314, Hampden Series.

With a view to confirming the theoretical results, a practical random sampling was made in the following way. A circle, about 20 inches in diameter, was carefully divided into sectors whose angles (and therefore areas) were proportional to the class-frequencies given in Table II. For each sampling a pointer was placed at random inside the circle and the number of the sector in which it was placed was noted. It appeared that, if the observer kept his eyes shut and rotated the circle for a time between each pointing, the method would give quite satisfactorily random sampling. In this way an ordered series of 648 samples was made and by taking samples of two by pairing in accordance with three different rules, the series of numbers given in Table III were obtained. Alongside of each series in the Table is given the ratio of the number in each set to the total. These ratios are to be compared with the "theoretical chances." In all three samples the number with standard deviation 0 is considerably less than the theoretical numbers, but from the values of the Goodness of Fit "P" given at the ends of the columns it appears that this can be accounted for by the variations of random sampling.

TABLE III.

Frequency distribution of Standard Deviations of Samples of Two
Capsules from the Shirley Poppy Series.

			Experimental Results							
Standard Deviation	$\begin{array}{c} \textbf{Theoretical} \\ \textbf{Chance} \end{array}$		I		п		III			
	(a)	(b)	Number of samples	Chance	Number of samples	Chance	Number of samples	Chance		
0	·1522	-1478	39	·1204	38	·1172	37	·1142		
.5	$\cdot 2820$.2760	102	$\cdot 3148$	99	.3056	109	$\cdot 3364$		
1	$\cdot 2249$.2246	75	$\cdot 2315$	75	.2315	74	$\cdot 2284$		
1.5	$\cdot 1553$.1594	55	$\cdot 1698$	58	$\cdot 1790$	44	$\cdot 1358$		
2.0	$\cdot 0937$.0986	26	-0802	26	$\cdot 0802$	31	$\cdot 0957$		
2.5	$\cdot 0503$.0532	7	$\cdot 0216$	15	·0463	15	0463		
3.0	0243	.0250	12	$\cdot 0370$	5	$\cdot 0154$	8	$\cdot 0247$		
3.5	.0108	.0102	5	$\cdot 0154$	5	$\cdot 0154$	5	$\cdot 0154$		
4.0	.0043	.0037	3	-0093	2	$\cdot 0062$	0	.0000		
4.5	$\cdot 0015$	-0011	0	-0000	1	.0031	1	-0031		
5.0	$\cdot 0005$.0003	0	-0000	0	.0000	0	-0000		
5.5	.0001	•0001	0	.0000	0	.0000	0	•0000		
Using T	heoretical C	hance (a)	$\chi^2 = 15.0$,	P = .18	$\chi^2 = 8.3$	P=69	$\chi^2 = 10.5$,	P = .49		
Using T	heoretical C	hance (b)	$\chi^2=16.6$,		$\chi^2=8.9$	P = .63	$\chi^2=11\cdot3$,	$P=\cdot 42$		

The mean standard deviations given by these sets are for I, $1\cdot06$, for II, $1\cdot07$, for III, $1\cdot05$, while those derived from the half-Gaussian and from the "theoretical chances" are $1\cdot071$ and $1\cdot050$ respectively. It will be noticed also that although the calculated chances (a) appear to give a better fit than the half-Gaussian, the differences in the "P's" are very slight, and the half-Gaussian would suffice for most purposes. These results form a strong confirmation of the correctness of the theory.

The Cambridge University Press, Fetter Lane, London, E.C., and their Agents, are now the sole agents for the sale of the following publications of the Galton and Biometric Laboratories, University of London:

BIOMETRIC LABORATORY PUBLICATIONS Drapers' Company Research Memoirs.

Biometric Series.

I. Mathematical Contributions to the Theory of Evolution.—XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. By KARL PEARSON, F.R.S. Price 4s. net.
 II. Mathematical Contributions to the

II. Mathematical Contributions to the Theory of Evolution.—XIV. On the Theory of Skew Correlation and Non-linear Regression. By Karl Pearson, F.R.S. Price 5s.

net

III. Mathematical Contributions to the Theory of Evolution.—XV. On the Mathematical Theory of Random Migration. By KARL PEARSON, F.R.S., with the assistance of John Blakeman, M.Sc. Price 5s. net.

IV. Mathematical Contributions to the
Theory of Evolution.—XVI. On Further
Methods of Measuring Correlation. By
KARL PEARSON, F.R.S. Price 4s. net.

V. Mathematical Contributions to the

Theory of Evolution.—XVII. On Homotyposis in the Animal Kingdom. A Cooperative Study.

[Shortly.]

VI. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part I, and Atlas, Part I. Price 35s. net.

VII. Mathematical Contributions to the Theory of Evolution.—XVIII. On a Novel Method of Regarding the Association of two Variates classed solely in Alternative Categories. By Karl Pearson, F.R.S. Price 4s. net.

VIII. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part II, and Atlas, Part II. Price 30s. net.

IX. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part IV, and Atlas, Part IV. Price 21s. net.

Studies in National Deterioration.

I. On the Relation of Fertility in Man to Social Status, and on the changes in this Relation that have taken place in the last 50 years. By DAVID HERON, M.A., D.Sc. Price 3s. net. Sold only with complete sets.
 II. A First Study of the Statistics of

II. A First Study of the Statistics of Pulmonary Tuberculosis (Inheritance). By KARL PEARSON, F.R.S. Price 3s. net.

III. A Second Study of the Statistics of
Pulmonary Tuberculosis. Marital Infection. By Ernest G. Pope, revised by Karl
Pearson, F.R.S. With an Appendix on
Assortative Mating by Ethel M. Elderton.
Price 3s. net.

V. The Health of the School-Child in relation to its Mental Characters. By Karl Pearson, F.R.S. Shortly.

V. On the Inheritance of the Diathesis of Phthisis and Insanity. A Statistical Study based upon the Family History of 1,500 Criminals. By Charles Goring, M.D., B.Sc. Price 3s. net.

VI. A Third Study of the Statistics of Pulmonary Tuberculosis. The Mortality of the Tuberculous and Sanatorium Treatment. By W. P. ELDERTON, F.I.A., and S. J. Perry, A.I.A. Price 3s. net.

VII. On the Intensity of Natural Selection in Man. (On the Relation of Darwinism to the Infantile Death-rate.) By E. C. Snow, D.Sc. Price 3s. net.

VIII. A Fourth Study of the Statistics of Pulmonary Tuberculosis: the Mortality of the Tuberculous: Sanatorium and Tuberculin Treatment. By W. Palin Elderton, F.I.A., and Sidney J. Perry, A.I.A. Price 3s. net.

IX. A Statistical Study of Oral Temperatures in School Children with special reference to Parental, Environmental and Class Differences. By M. H. WILLIAMS, M.B., JULIA BELL, M.A., and KARL PEARSON, F.R.S. Price 6s. net.

Technical Series.

I. On a Theory of the Stresses in Crane and Coupling Hooks with Experimental Comparison with Existing Theory. By E. S. Andrews, B.Sc. Eng., assisted by Karl Pearson, F.R.S. Issued. Price 3s.net.

On some Disregarded Points in the Stability of Masonry Dams. By L. W. Atcherley, assisted by Karl Pearson, F.R.S. Issued. Price 3s. 6d. net.

vith special reference to the Relative Strength of Two-pivoted, Three-pivoted and Built-in-Metal Arches. By L. W. Atcherley and Karl Pearson, F.R.S. Issued. Price 5s. net.

IV. On Torsional Vibrations in Axles and Shafting. By KARL PEARSON, F.R.S. Issued. Price 6s. net.

V. An Experimental Study of the Stresses in Masonry Dams. By Karl Pearson, F.R.S., and A. F. Campbell Pollard, assisted by C. W. Wheen, B.Sc. Eng., and L. F. Richardson, B.A. Issued. Price 7s. net.

VI. On a Practical Theory of Elliptic and Pseudo-elliptic Arches, with special reference to the ideal Masonry Arch. By Karl Pearson, F.R.S., W. D. Reynolds, B.Sc. Eng., and W. F. Stanton, B.Sc. Eng. Issued. Price 4s. net.

Complete sets may be purchased at 25s. net.

Drapers' Company Research Memoirs—(cont.).

Questions of the Day and of the Fray.

I. The Influence of Parental Alcoholism on the Physique and Ability of the Offspring. A Reply to the Cambridge Economists. By Karl Pearson, F.R.S. Price 1s. net.

II. Mental Defect, Mal-Nutrition, and the Teacher's Appreciation of Intelligence. A Reply to Criticisms of the Memoir on 'The Influence of Defective Physique and Unfavourable Home Environment on the Intelligence of School Children.' By David Heron, D.Sc. Price 1s. net.

III. An Attempt to correct some of the Misstatements made by Sir Victor Hors-Ley, F.R.S., F.R.C.S., and Mary D. Sturge, M.D., in their Criticisms of the Memoir: 'A First Study of the Influence of Parental Alcoholism,' &c. By Karl Pearson, F.R.S. Price 1s. net. IV. The Fight against Tuberculosis and the Death-rate from Phthisis. By KARL PEARSON, F.R.S. Price 1s. net.

V. Social Problems: Their Treatment,
Past, Present and Future. By KARL
PEARSON, F.R.S. Price 1s. net.

VI. Eugenics and Public Health. Lecture to the York Congress of the Royal Sanitary Institute. By Karl Pearson, F.R.S. Price 1s. net.

VII. Mendelism and the Problem of Mental
Defect. I. A Criticism of Recent American
Work. By DAVID HERON, D.Sc. (Double
Number.) Price 2s. net.

VIII. Mendelism and the Problem of Mental

Defect. II. The Continuity of Mental
Defect. By KARL PEARSON, F.R.S., and
GUSTAV A. JAEDERHOLM, Ph.D. Price 1s, net.

IX. Mendelism and the Problem of Mental Defect. III. On the Graduated Character of Mental Defect, and on the need for standardizing Judgments as to the Grade of Social Inefficiency which shall involve Segregation. By Karl Pearson, F.R.S. (Double Number.) Price 2s. net.

Eugenics Laboratory Publications

MEMOIR SERIES.

I. The Inheritance of Ability. By Edgar Schuster, D.Sc., Formerly Galton Research Fellow, and Ethel M. Elderton, Galton Scholar. *Price 4s. net.*

II. A First Study of the Statistics of Insanity and the Inheritance of the Insane Diathesis. By DAVID HERON, D.Sc., Formerly Galton Research Fellow. Price 3s. net

erly Galton Research Fellow. Price 3s. net.

The Promise of Youth and the
Performance of Manhood. By Edgar
Schuster, D.Sc., Formerly Galton Research
Fellow. Price 2s. 6d. net.

IV. On the Measure of the Resemblance of First Cousins. By Ethel M. Elderton, Galton Research Fellow, assisted by Karl Pearson, F.R.S. *Price* 3s. 6d. net.

V. A First Study of the Inheritance of
Vision and of the Relative Influence of
Heredity and Environment on Sight. By
AMY BARRINGTON and KARL PEARSON,
F.R.S. Price 4s. net.

VI. Treasury of Human Inheritance

(Pedigrees of physical, psychical, and pathological Characters in Man). Parts I and II (double part). (Diabetes insipidus, Split-Foot, Polydactylism, Brachydactylism, Tuberculosis, Deaf-Mutism, and Legal Ability.) Price 14s. net.

VII. The Influence of Parental Occupation and Home Conditions on the Physique of the Offspring. By Ethel M. Elderton, Galton Research Fellow. Shortly.

VIII. The Influence of Unfavourable Home

VIII. The Influence of Unfavourable Home
Environment and Defective Physique on
the Intelligence of School Children. By
DAVID HERON, M.A., D.Sc., Formerly Galton
Research Fellow. Price 4s. net. Sold only
with complete sets.

IX. The Treasury of Human Inheritance
(Pedigrees of physical, psychical, and pathological Characters in Man). Part III.
(Angioneurotic Oedema, Hermaphroditism, Deaf-Mutism, Insanity, Commercial Ability.) Price 6s. net.

X. The Influence of Parental Alcoholism on the Physique and Intelligence of the Offspring. By ETHEL M. ELDERTON, assisted by KARL PEARSON. Second Edition. Price 4s. net.

XI. The Treasury of Human Inheritance
(Pedigrees of physical, psychical, and pathological Characters in Man). Part IV.
(Cleft Palate, Hare-Lip, Deaf-Mutism, and Congenital Cataract.) Price 10s. net.

XII. The Treasury of Human Inheritance
(Pedigrees of physical, psychical, and pathological Characters in Man). Parts V and
VI. (Haemophilia.) Price 15s. net.

XIII. A Second Study of the Influence of
Parental Alcoholism on the Physique and
Intelligence of the Offspring. By Karl
Pearson, F.R.S., and ETHEL M. ELDERTON.
Price 4s. net.

XIV. A Preliminary Study of Extreme
Alcoholism in Adults. By AMY BARRINGTON and KARL PEARSON, F.R.S., assisted
by DAVID HERON, D.Sc. Price 4s. net.

XV. The Treasury of Human Inheritance.

Dwarfism, with 49 Plates of Illustrations and 8 Plates of Pedigrees. Price 15s. net.

XVI. The Treasury of Human Inheritance.

Prefatory matter and indices to Vol. I.

With Frontispiece Portraits of Sir Francis
Galton and Ancestry. Price 3s. net.

XVII. A Second Study of Extreme Alcoholism in Adults. With special reference to the Home-Office Inebriate Reformatory data. By DAVID HERON, D.Sc. Price 5s. net.

XVIII. On the Correlation of Fertility with
Social Value. A Cooperative Study.

Price 6s. net.

XIX—XX. Report on the English Birthrate.

Part I. England, North of the Humber.

By Ethel M. Elderton, Galton Research
Fellow. Price 9s. net.

Vol. I of The Treasury of Human Inheritance (VI+IX+XI+XII+XV+XVI of the above memoirs) may now be obtained bound in buckram, price 52s. 6d. net. Buckram cases for

Eugenics Laboratory Publications—(cont.).

binding can be purchased at 2s. 9d. with impress of the bust of Sir Francis Galton. A photograph $(11'' \times 13'')$ of Sir Francis Galton by the late Mr Dew Smith can be obtained by sending a postal order for 10s. 6d. to the Secretary to the Laboratory, University College, London, W.C.

LECTURE SERIES. Price 1s. net each (Nos. III and X excepted).

- I. The Scope and Importance to the State of the Science of National Eugenics. By Karl Pearson, F.R.S. Third Edition.
- II. The Groundwork of Eugenics. By Karl Pearson, F.R.S. Second Edition.
- III. The Relative Strength of Nurture and Nature. Much enlarged Second Edition. Part I. The Relative Strength of Nurture and Nature. (Second Edition revised.) By ETHEL M. ELDERTON. Part II. Some Recent Misinterpretations of the Problem of Nurture and Nature. (First Issue.) By KARL PEARSON. F.R.S.
- IV. On the Marriage of First Cousins. By ETHEL M. ELDERTON.

- V. The Problem of Practical Eugenics.

 By Karl Pearson, F.R.S. Second Edition.
- VI. Nature and Nurture, the Problem of the Future. By Karl Pearson, F.R.S. Second Edition.
- VII. The Academic Aspect of the Science of National Eugenics. By Karl Pearson, F.R.S.
- VIII. Tuberculosis, Heredity and Environment. By Karl Pearson, F.R.S.
- IX. Darwinism, Medical Progress and Eugenics. The Cavendish Lecture, 1912. By KARL PEARSON, F.R.S.
- X. The Handicapping of the First-born. By Karl Pearson, F.R.S. Price 2s. net.

The following work prepared in the Biometric Laboratory can be obtained as a Government Report from Messrs Wyman and Sons, Ltd.

The English Convict, A Statistical Study. By Charles Goring, M.D. Text. Price 9s. Tables of Measurements (printed by Convict-Labour). Price 5s.

THE UNIVERSITY OF CHICAGO PRESS

THE EVOLUTION OF SEX IN PLANTS. (The University of Chicago Science Series.) By John Merle Coulter, Head of the Department of Botany in the University of Chicago.

Pp. viii + 140. Small 12mo, cloth. 4s. net.

In this first volume of the new "University of Chicago Science Series" Professor Coulter, the editor of the Botanical Gazette and the author of numerous volumes of botanical science, has given a presentation of the results of research showing that all reproduction is the same in its essential features and methods of reproduction are natural responses to the varying conditions encountered by plants in their life histories. Sex reproduction, the author says, is simply one kind of response, the sex feature not being essential to reproduction, but securing something in connection with the process. Various phases of the subject discussed include the evolution of sex organs, the alternation of generations, the differentiation of sexual individuals, and parthenogenesis. The last chapter, which offers a theory of sex, reviews the more prominent facts set forth in preceding parts of the volume, and serves both as a summary and a working hypothesis.

ARTIFICIAL PARTHENOGENESIS AND FERTILIZATION. By JACQUES LOEB, Member of the Rockefeller Institute for Medical Research.

Pp. x + 312. 12mo, cloth. 10s. net.

The first complete treatment of the subject of artificial parthenogenesis in English. It gives an account of the various methods by which unfertilized eggs can be caused to develop by physico-chemical means, and the conclusions which can be drawn from them concerning the mechanism by which the spermatozoon induces development. Since the problem of fertilization is intimately connected with so many different problems of physiology and pathology, the bearing of the facts recorded and discussed in the book goes beyond the special problem indicated by the title.

The University of Chicago Press

The Cambridge University Press
Agents for the British Empire
London, Fetter Lane

Journal of Anatomy and Physiology

CONDUCTED BY

ALEX. MACALISTER, University of Cambridge ARTHUR KEITH, Royal College of Surgeons
ARTHUR THOMSON, University of Oxford ARTHUR ROBINSON, University of Edinburgh

VOL. L

ANNUAL SUBSCRIPTION 21/- POST FREE

CONTENTS OF PART II.—JANUARY 1916

Professor J. Symington, M.D., F.R.S. Endocranial Casts and Brain Form: A Criticism of some Recent Speculations. J. S. B. Stopford, M.D. The Arteries of the Pons and Medulla Oblongata. Thomas Walmsley, M.B. The Costal Musculature. W. Sohier Bryant, A.M., M.D. The Transition of the Ciliated Epithelium of the Nose into the Squamous Epithelium of the Pharynx. H. Drinkwater, M.D., M.R.C.S. (Eng.), F.L.S. Hereditary Abnormal Segmentation of the Index and Middle Fingers. Professor Kenelm H. Digby, M.B., F.R.C.S. The Measurement of Diaphysial Growth in Proximal and Distal Directions. Professor Frederic Wood Jones, D.Sc. The Genitalia of Galeopithecus. Gilbert I. Strachan, M.D. Observations on the Popliteal Groove on the Femur.

LONDON: CHARLES GRIFFIN AND COMPANY, LTD., Exeter Street, Strand

JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE

Vol. XLV. July-December, 1915

Contents:-

C. E. Fox and F. H. Drew. Beliefs and Tales of San Cristoval (Solomon Islands). W. H. R. Rivers, M.A., M.D., F.R.S. Descent and Ceremonial in Ambrim. The Hon. Charles Dundas. The Organization and Laws of Some Bantu Tribes in East Africa. (With Plates X—XIII.) Miss Margaret Murray. Royal Marriages and Matrilineal Descent. Miss A. Werner. The Bantu Coast Tribes of the East Africa Protectorate. (With Plates XIV and XV.) R. Grant Brown. The Taungbyôn Festival, Burma. (With Plates XVI and XVII.) Miscellanea. Index. Table of Contents to Vol. XLV. List of Fellows.

178 PAGES. 8 PLATES.

PRICE 15s. NET

LONDON: THE ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W.C. General Agent: FRANCIS EDWARDS, 83a, High Street, Marylebone, W.

OR THROUGH ANY BOOKSELLER

MAN

A MONTHLY RECORD OF ANTHROPOLOGICAL SCIENCE

Published under the direction of the Royal Anthropological Institute of Great Britain and Ireland. Each number of **MAN** consists of at least 16 Imp. 8vo. pages, with illustrations in the text together with one full-page plate; and includes Original Articles, Notes, and Correspondence; Reviews and Summaries; Reports of Meetings; and Descriptive Notices of the Acquisitions of Museums and Private Collections.

Price, 1s. Monthly or 10s. per Annum prepaid.

TO BE OBTAINED FROM THE

ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W.C.

AND THROUGH ALL BOOKSELLERS

UNIVERSITY OF LONDON, UNIVERSITY COLLEGE

The Biometric Laboratory

(assisted by a grant from the Worshipful Company of Drapers)

Until the phenomena of any branch of knowledge have been submitted to measurement and number it cannot assume the status and dignity of a science. Francis Galton.

Under the direction of Professor Karl Pearson, F.R.S. Assistants: Andrew Young, M.A., B.Sc.; one vacancy; Adelaide G. Davin, B.Sc.; Crewdson Benington Student in Anthropometry; Appointment in 1916.

This laboratory provides a complete training in modern statistical methods and is especially arranged so as to assist research workers engaged on biometric problems.

The Francis Galton Eugenics Laboratory

National Eugenics is the study of agencies under social control, that may improve or impair the racial qualities of future generations, either physically or mentally.

The Laboratory was founded by Sir Francis Galton and is under the supervision of Professor Karl Pearson, F.R.S. Assistants: Galton Research Fellow: Ethel M. Elderton; one vacancy; Beatrice M. Cave. Secretary: H. Gertrude Jones.

It was the intention of the Founder, that the Laboratory should serve (i) as a storehouse of statistical material bearing on the mental and physical conditions in man, and the relation of these conditions to inheritance and environment; (ii) as a centre for the publication or other form of distribution of information concerning National Eugenics; (iii) as a school for training and assisting research-workers in special problems in Eugenics.

Short courses are provided for those who are engaged in social, medical, or anthropometric work.

At press and to appear shortly:

A Monograph on the English Long Bones. By KARL PEARSON, F.R.S. and JULIA BELL, M.A. Part I. The Femur. Text Part I and Atlas of Plates Part I.

CONTENTS

(All Rights reserved)

		PAGE
I.	On the General Theory of Multiple Contingency with Special Reference to Partial Contingency. By KARL PEARSON, F.R.S.	145
II.	On Criteria for the Existence of Differential Deathrates. By	110
- 2	KARL PEARSON, F.R.S., and J. F. Tocher, D.Sc.	159
III.	On Certain Probable Errors and Correlation Coefficients of Multiple Frequency Distributions with Skew Regression. By L. ISSERLIS,	
, f	D.Sc. Science and American Control of Science and Control of the C	185
IV.	On the Correlation between the "corrected" Cancer and Diabetes Deathrates. By C. A. CLAREMONT, B.Sc	191
V.	A Contribution to the Problem of Homotyposis. By J. ARTHUR HARRIS, Ph.D.	201
VI.	On the Probable Error of a Coefficient of Contingency without Approximation. By ANDREW W. YOUNG, M.A., and KARL PEARSON, F.R.S.	215
VII.	On some Novel Properties of Partial and Multiple Correlation Coefficients in a Universe of Manifold Characteristics. By KARL PEARSON, F.R.S.	231
VIII.		239
IX.	On the "Best" Values of the Constants in Frequency Distributions. By Kirstine Smith	262
	Miscellanea:	
	Note on the Standard Deviations of Samples of Two or Three. By Andrew W. Young, M.A.	277

The publication of a paper in Biometrika marks that in the Editor's opinion it contains either in method or material something of interest to biometricians. But the Editor desires it to be distinctly understood that such publication does not mark assent to the arguments used or to the conclusions drawn in the paper.

Biometrika appears about four times a year. A volume containing about 500 pages, with plates and

tables, is issued annually.

Papers for publication and books and offprints for notice should be sent to Professor KARL PEARSON, University College, London. It is a condition of publication in Biometrika that the paper shall not already have been issued elsewhere, and will not be reprinted without leave of the Editor. It is very desirable that a copy of all measurements made, not necessarily for publication, should accompany each manuscript. In all cases the papers themselves should contain not only the calculated constants, but the distributions from which they have been deduced. Diagrams and drawings should be sent in a state suitable for direct photographic reproduction, and if on decimal paper it should be blue ruled, and the lettering only pencilled:

Papers will be accepted in French, Italian or German. In the last case the manuscript should be in Roman not German characters. Russian contributors may use either Russian or German but their papers will be translated into English before publication.

Contributors receive 25 copies of their papers free. Fifty additional copies may be had on payment of 7/- per sheet of eight pages, or part of a sheet of eight pages, with an extra charge for Plates; these should be ordered when the final proof is returned.

The subscription price, payable in advance, is 30s. net per volume (post free); single numbers 10s. net. Volumes I—X (1902—15) complete, 30s. net per volume. Bound in Buckram 34/6 net per volume. Index to Volumes I to V, 2s. net. Subscriptions may be sent to C. F. Clay, Cambridge University Press, Fetter Lane, London, E.C., either direct or through any bookseller, and communications respective advertisements should also be addressed to C. F. Clay respecting advertisements should also be addressed to C. F. Clay.

Till further notice, new subscribers to Biometrika may obtain Vols. I—X together for £11 net—or

bound in Buckram for £13 net.

The Cambridge University Press has appointed the University of Chicago Press Agents for the sale of Biometrika in the United States of America, and has authorised them to charge the following prices:-\$7.50 net per volume; single parts \$2.50 net each.

BIOMETRIKA

A JOURNAL FOR THE STATISTICAL STUDY OF BIOLOGICAL PROBLEMS

FOUNDED BY

W. F. R. WELDON, FRANCIS GALTON AND KARL PEARSON

EDITED BY
KARL PEARSON

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER LONDON: FETTER LANE, E.C. 4 EDINBURGH: 100, PRINCES STREET

also

H. K. LEWIS AND CO., LTD., 136, GOWER STREET, LONDON, W.C. 1
WILLIAM WESLEY AND SON, 28, ESSEX STREET, LONDON, W.C. 2
CHICAGO: UNIVERSITY OF CHICAGO PRESS
BOMBAY, CALCUTTA AND MADRAS; MACMILLAN AND CO., LIMITED
TORONTO: J. M. DENT AND SONS, LIMITED
TOKYO: THE MARUZEN-KABUSHIKI-KAISHA

Price Ten Shillings

The Life, Letters, and Labours of Francis Galton

By KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

Vol. I. Birth 1822 to Marriage 1853

WITH 5 PEDIGREE PLATES AND 72 PHOTOGRAPHIC PLATES, FRONTISPIECE AND 2 TEXT-FIGURES

Price 21s. net

"It is not too much to say of this book that it will never cease to be memorable. Never will man hold in his hands a biography more careful, more complete."—The Times

"A monumental tribute to one of the most suggestive and inspiring men of modern times."—Westminster Gazette

"It was certainly fitting that the life of the great exponent of heredity should be written by his great disciple, and it is gratifying indeed to find that he has made of it, what may without exaggeration be termed a great book."—Daily Telegraph

Tables for Statisticians & Biometricians

EDITED BY KARL PEARSON, F.R.S.

GALTON PROFESSOR, UNIVERSITY OF LONDON

ISSUED WITH ASSISTANCE FROM THE GRANT MADE BY THE WORSHIPFUL COMPANY OF DRAPERS TO THE BIOMETRIC LABORATORY.

Price 12s. net

"To the workers in the difficult field of higher statistics such aids are invaluable. Their calculation and publication was therefore as inevitable as the steady progress of a method which brings within grip of mathematical analysis the highly variable data of biological observation. The immediate cause for congratulation is, therefore, not that the tables have been done but that they have been done so well......The volume is indispensable to all who are engaged in serious statistical work."—Science

"The whole work is an eloquent testimony to the self-effacing labour of a body of men and women who desire to save their fellow scientists from a great deal of irksome arithmetic; and the total time that will be saved in the future by the publication of this work is, of course, incalculable.......To the statistician these tables will be indispensable."—Journal of Education

"The issue of these tables is a natural outcome of Professor Karl Pearson's work, and apart from their value for those for whose use they have been prepared, their assemblage in one volume marks an interesting stage in the progress of scientific method, as indicating the number and importance of the calculations which they are designed to facilitate."—Post Magazine

(Copies of the *Corrigenda* to these Tables can be obtained by former purchasers by sending a stamped and directed envelope to Mr C. F. Clay)

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, MANAGER

LONDON: FETTER LANE, E.C. 4 EDINBURGH: 100, PRINCES STREET

W. R. MACDONELL (1852-1916)
Contributor to and Assistant Editor of Biometrika

W. R. MACDONELL.

Born October 16, 1852. Died May 15, 1916.

For the third time the hand of death has fallen heavily on this Journal. Dr W. R. Macdonell died on May 15 at the relatively early age of 63. On his retirement from business in 1899, at the suggestion of W. H. Macaulay he joined the Biometric Laboratory to do research work, and his patient labour, his wise counsel and lovable disposition soon made him an essential part of the place. It would be difficult to appraise adequately the help he gave to the Biometric School in its early days. It was not only in material and apparatus, it was not only in resourceful suggestion to his fellow-workers, but it was especially in the general sense of courage and in the spirit of readiness to undertake the tedious because it meant profit to science in the future, which he diffused around him that his help was so invaluable. And there was need of the heartening which Macdonell gave! The first greeting that Fawcett's paper on the Naqada crania, involving years of work, received from anthropologist and anatomist was anything but favourable, but Macdonell persisted on the lines thus laid down in his great memoirs on the 17th century English crania, and it would have gladdened him to have seen Fawcett's memoir now described by a distinguished anthropologist as Fawcett's "classical memoir," and the anatomical author of the most recent British cranial research stating that he "cannot do better than follow the scheme adopted by Fawcett in her study of the Naqada crania and also by Macdonell in his study of the Whitechapel English crania and other series of English skulls." It takes a long while to reform any branch of science, but when the history of craniometry comes to be written, those early workers in the Biometric Laboratory will be remembered, and not the least Macdonell, who gave heart to them all.

When Biometrika was founded Macdonell joined the little group of men who provided the guarantee fund—there is small harm now in mentioning their names: Francis Galton, W. F. R. Weldon, W. R. Macdonell, Lord Parker of Waddington, and the present Editor—and the aid then provided carried this Journal through the troublous days of infancy to the completely self-supporting stage which preceded the war. It is a sad element in the fate of this Journal that it has to meet a new crisis in its existence with many new friends it is true, but without the majority of the old supporters. From the first issue until this very year, Macdonell acted as assistant editor of Biometrika, and his name appeared on the title page as such for several years after the death of Weldon. Our readers were, however, very little conscious of all the labour Macdonell put into proof-reading and many

Biometrika xı

a contributor has profited in a way he little realised by Macdonell's assiduity and not infrequently by his suggestions. Scotland has preserved its knowledge and appreciation of grammar long after grammar has been discarded in England, and few abler proof-readers can be found than a Scotsman trained in Oxford, especially if he has graduated in science, and tempered his science with modern European literature as a hobby. The width of Macdonell's studies and of his interests was effectively demonstrated by his memoir "On the Expectation of Life in Ancient Rome and in the Provinces of Hispania and Lusitania and Africa." Few men could have been found to combine the necessary biometric with the still more needful literary training requisite for a study of this character, and fewer still would have concluded it with such words of modesty as Macdonell did. With his death biometry loses a sturdy champion, our subscribers and contributors more than they yet realise, and some of us a close and most trustworthy friend. Not least will this be recognised by the little band of pupils he formed around him during his occupancy of the lectureship on biometry in the University of Aberdeen. He acted straightly and he advised wisely both in his mercantile and in his scientific career. He had the reticence which flows from strength, and the persistency and courage of the strong who are reticent. Life seemed a spacious thing in his handling. What more could we have desired for him?

We owe to the kindness of Professor W. Paton Ker the following brief notes on Macdonell which, emphasising the width of his interests and his genial personality, will enable those of our readers who only know him from his memoirs in *Biometrika* to understand better another of the early members of the Biometric School.

I first met Macdonell in my freshman's term at Balliol: I succeeded him in rooms possibly the worst in College, and he came in a few days later to ask if I had seen his copy of Victor Hugo's poems lying about. This I had already found and now restored to him; it provided something to talk about afterwards. He was a Mathematical Scholar of Balliol and did not neglect his subject, but he always seemed more interested in other things, especially Greek. He had been at Aberdeen along with R. A. Neil of Pembroke, Cambridge, always one of his greatest friends; at Balliol he found another Greek scholar, William Gunion Rutherford. Rutherford and he used to read Greek together for a time. Then Macdonell left Oxford to go into business, and for a year or two I saw nothing of him. But I found him in London when I went there in 1879 after taking my degree; Rutherford was there also, a master at St Paul's School, and we made it a regular thing to meet on Saturday evenings, the three of us, at Rutherford's rooms in Mitre Court. It was a good time while it lasted, but soon we went different ways -Macdonell to India-and I lost sight of him and did not hear much, for several Soon after he got to Bombay he wrote to me, asking for the Journal of Philology to be sent to him; he was keeping up his Greek and Latin; he was also amused at the manners of scholars in disputation. At Bombay he was once asked by the Danish merchants there to choose for himself a present which they wished to give him in acknowledgement of services rendered by him in connexion

with their business. He chose, as the best thing obtainable from Copenhagen, Madvig's edition of Cicero *De Finibus*, and thought that they were pleased with his choice.

Macdonell was chairman of the Chamber of Commerce in Bombay, and additional member of Council there, 1893–1895. Then he came home, and for some time worked in the London office of his firm. He retired from business in 1899. He had carried out his plans, and earned his leisure. Probably few men are to be trusted with leisure at the age of 47, but Macdonell made the most of his life. He never lost interest in any study that once had engaged his attention, though he had so many interests—in books, pictures, music and travelling—that naturally he could not always attend to everything. He never forgot a friend. He had been six years married when he came home from India, and the friend that was made welcome by his wife, and his children, as well as himself in his house at Enfield has much to thank him for. He made new friends as he went on, through common interests for the most part, and particularly through the investigations in which he took part along with Weldon and Pearson. He felt very deeply the loss of friends; he could scarcely bear to speak of the death of Neil of Pembroke.

He inherited his love of books; one of his early recollections was the farm-house in the Highlands where it was the custom to read aloud in the evenings, usually from some of the English classics but sometimes Don Quixote to the farm-servants; light being provided for the reader from a stock of pine splinters, lighted in succession one from another: one of the party was employed in cutting these brands, and a boy held up the light over the book, and renewed it from the supply that was passed to him. Macdonell's people were Catholics, and his study of the humanities may have owed something to the traditions of the Church. Among his friends was Monsignor Fraser, Rector of the Scots College in Rome. I remember Macdonell bringing back from a visit to Rome a story of a pibroch heard at night there, and how the music was traced to the roof of the College—a story that would have delighted Sir Walter Scott.

No weakness of the human race gave Macdonell more amusement than the vanity of biographers, and I can almost see him looking over these notes of mine, and making disrespectful remarks about them. But I am glad to have been allowed to write them, such as they are.

W. P. KER.

University College, London. 3 July 1916.

FURTHER SUPPLEMENTARY TABLES FOR DETERMINING HIGH CORRELATIONS FROM TETRACHORIC GROUPINGS.

By ALICE LEE, D.Sc.

The difficulty of determining correlations between $\cdot 80$ and $1\cdot 00$ by the tetrachoric method, owing to the slow convergency of the terms of the fundamental equation for 'tetrachoric r' has long been recognised. In 1912 Everitt* published "Supplementary Tables for Determining High Correlations from Tetrachoric Groupings." These tables much simplified the work within the field in which it is really possible to determine accurately a high correlation—beyond certain values of 'h and k' such determination is impossible owing to the influence of random sampling on a quadrant category which in most practical cases will only contain an isolated unit or two. Everitt's tables covered the values of r from $+\cdot 80$ to $+\cdot 1\cdot 00$ for values of the dichotomic planes given by h and k varying from $+\cdot 0$ to $+\cdot 2\cdot 6$. They admitted at once of our dealing with those cases of negative values of r, for which either h or k was negative, but not with cases in which r was negative and both h and k remained of the same sign. The present tables provide for this omitted portion of the possible field and thus complete Everitt's work.

I have followed his method of quadrature in evaluating my integrals. But I have preserved more decimal places than he has done, partly because my significant figures are thrown into higher decimal places than his by the nature of the case, and partly because recent experience in other fields has shown workers in the Biometric Laboratory, that tables are often of service for purposes other than those for which they were originally calculated, and that it is worth while preserving every reliable figure. I think my results are always correct to six figures and generally to the actual number tabulated. While many of the entries would only be of service in the case of total populations approaching the magnitude of census populations, their indication of the high decimal place in which the first significant figure can occur in the 'd' quadrant, will help to dispel the illusion that absence of frequency in a quadrant is necessarily indicative of absolute association, when the table is based on a limited sample. A further reason for the number of figures I have preserved may be found in what I believe to be one of the principal uses of tables of this type. They are not only valuable for the calculation of the correlation in the case of given data, but also in many theoretical investigations where the correlation is supposed known a priori and we require to ascertain how many individuals may be expected to possess a combination of characters each of which exceeds a given value. I have adopted throughout Pearson's original notation in his memoir on the fourfold table*, i.e. d is the frequency of the quadrant diagonally opposed to that in which the mean falls, i.e.:

$$\frac{d}{N} = \frac{1}{2\pi\sqrt{1-r^2}} \int_{h}^{\infty} \int_{x}^{x} e^{-\frac{1}{2}\frac{1}{1-r^2}(x^2-2rxy+y^2)} dx dy,$$

where in our case r is given values from $-\cdot 8$ to $-1\cdot 0$. This is the integral I have tabled. For the case of $r=-1\cdot 0$, d/N will be zero for all values of h and k, so that it is not needful to provide a table for $r=-1\cdot 0$ and interpolation between $-\cdot 95$ and $-1\cdot 0$ must be between the values given in the table for $-\cdot 95$ and zero values.

Illustration I. An appreciation of sex was made by two different observers on 216 femora. It is required to find a measure of the association in judgment between the two observers.

In appreciating sex by the examination of a bone the observers opinion varies from practical certainty of maleness through every shade of doubt to practical certainty of femaleness. The strength of the judgment is therefore a continuous character, although the actual sex forms a rigid categorical differentiation. It is with the judgment, and not with the actual sex that we are here concerned, and we have simplified those judgments down to unique categories β and φ classifying under each all queried values.

The table is:

		First of	server		
ver		3	9	Totals	
observer	ð	98	16	114	Mean
Second	9	6	96	102	
Sec	Totals	104	112	216	
		Me	an		

Rearranging in standard form:

16	98	114
96	6	102
112	104	216

we see that h and k will now both be positive and r will be negative.

^{*} Phil. Trans. Vol. 195, A, p. 1.

286 Supplementary Tables for High Tetrachoric Correlations

We have
$$\begin{split} d/N &= 6/216 = \cdot 02778, \\ \frac{102}{216} &= \frac{1}{2} \left(1 - \alpha_1 \right) = \cdot 47222, & \frac{104}{216} &= \frac{1}{2} \left(1 - \alpha_2 \right) = \cdot 48148, \\ h &= \cdot 06969, & k = \cdot 04644. \end{split}$$

From the Tables for r = -.95

or

$$\begin{array}{c} h=0 \\ k=0 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 050,542 \\ h=\cdot 1 \\ k=0 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 033,024 \end{array} , \quad \text{hence} \quad h=\cdot 06969 \\ k=0 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 038,334, \\ k=0 \end{array}$$

$$\begin{array}{c} h=0 \\ k=\cdot 1 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 033,024 \\ k=\cdot 1 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 020,318 \end{array} , \quad \text{hence} \quad h=\cdot 06969 \\ k=\cdot 1 \end{array} \} \begin{array}{c} d \\ \overline{N} = \cdot 024,169. \end{array}$$

From the last column on right we deduce:

$$h = .06969$$
, $k = .04644$, $\frac{d}{N} = .031,756$.

For the given values of h and k we have accordingly:

$$r = 1.00,$$
 $r = -.95,$ $d/N = 0,$ $d/N = .031,756.$

Thus for d/N = .02778, we have r = -.9562.

Accordingly for the table returned to its original form, we conclude that the association between judgments of sex made by two independent and competent observers from the femur is measured by a tetrachoric correlation of +.956.

Illustration II. The following data are for the French long bones in the male, maximum lengths:

Femur: Mean = 452.28 mm. Humerus: Mean = 330.10 mm.

Standard deviation = 23.72 mm. Standard deviation = 15.38 mm.

Correlation of femur and humerus = $\cdot 8421$.

(a) Find the percentage of cases in which a humerus of under 300 mm. will be combined in the same individual with a femur of over 480 mm.

Here $h = 27 \cdot 72/23 \cdot 72 = 1 \cdot 16863$; $k = -30 \cdot 10/15 \cdot 38 = -1 \cdot 95709$.

Since h is positive, k negative and r positive, we must replace our system by

$$h = 1.16863$$
, $k = 1.95709$, and $r = -.8421$.

Our tables for r = -.80 and -.85 show that for the given values of h and k the required frequency would probably be less than 1 in 50,000,000. We may conclude therefore that no such individuals would occur in the total French male population. This is a result whose order would hardly be appreciated without an examination of the present tables.

(b) Find the percentage of cases in which a humerus of under 320 mm. will be associated with a femur of over 460 mm.

h = 7.72/23.72 = .32546; k = -10.10/15.38 = -.65670. Accordingly our system is

$$h = .32546, \qquad k = .65670, \qquad r = -.8421.$$

Our Tables give for r = -.80

$$\begin{array}{ll} h = \cdot 3 \\ k = \cdot 6 \end{array} \} \, d/N = \cdot 009,0146 \, ; \qquad \begin{array}{ll} h = \cdot 3 \\ k = \cdot 7 \end{array} \} \, d/N = \cdot 006,2334 \, .$$

Thus, for $h = \cdot 3$, $k = \cdot 65670$, $d/N = \cdot 007,4377$

Again

$$\begin{array}{l} h = \cdot 4 \\ k = \cdot 6 \end{array} \} \; d/N = \cdot 006,3352 \; ; \qquad \begin{array}{l} h = \cdot 4 \\ k = \cdot 7 \end{array} \} \; d/N = \cdot 004,3066.$$

Thus for h = .4, k = .65670, d/N = .005,1850. Accordingly for

$$h = .32546, \qquad k = .65670,$$

we find

$$d/N = .006,8642.$$

We must now repeat this work for r = -.85.

$$\begin{array}{l} h = \cdot 3 \\ k = \cdot 6 \end{array} \} \, d/N = \cdot 004,6616 \, ; \qquad \begin{array}{l} h = \cdot 3 \\ k = \cdot 7 \end{array} \} \, d/N = \cdot 002,9477.$$

Thus for h = .3, k = .65670, d/N = .003,6898

$$\begin{array}{c|c} h = \cdot 4 \\ k = \cdot 6 \end{array} d/N = \cdot 002,9950 \, ; \qquad \begin{array}{c} h = \cdot 4 \\ k = \cdot 7 \end{array} d/N = \cdot 001,8483.$$

Thus for h = 4, k = 65670, d/N = 002,3448. Accordingly for

$$h = .32546, \qquad k = .65670,$$

we find

$$d/N = .003,3474.$$

We have accordingly for the given values of h and k:

$$r = - \cdot 80,$$
 $r = - \cdot 85,$ $d/N = \cdot 006,8642,$ $d/N = \cdot 003,3474,$ $r = - \cdot 8421,$ $d/N = \cdot 003,9006.$

or, for

Accordingly the occurrence of individuals with femur and humerus within the limits given is about 0.4 per cent. of the male French population.

Many other illustrations will occur to the biometric reader of cases wherein these additional tables are likely to be of service. I have to record my very hearty thanks to Dr W. F. Sheppard for the loan of his manuscript tables of the probability integral which enabled me to work to a larger number of figures than his published tables, which go to fewer figures, would have permitted.

288 Supplementary Tables for High Tetrachoric Correlations

 $d/N \ for \ r = -.80.$

		h=0	h = 1	$h = \cdot 2$	h = 3	h='4	h = .5	h = '6	$h = \cdot 7$	h = :8
		2024 202		2222 222	1					
k =		1024,160	0835,592	.0669,639	.0526,767	0406,497	.0307,541	.0227,991	.0165,531	.0117,648
		.0835,592	0673,159		.0413,006	$\cdot 0314,152$	$\cdot 0234,157$	$\cdot 0170,936$	0122,156	.0085,420
		.0669,639	.0532,349		$\cdot 0317,511$	$\cdot 0237,937$	0174,638	0125,482	$\cdot 0088,225$.0060,673
		$\cdot 0526,767$.0413,006	$\cdot 0317,511$	$\cdot 0239,210$	0176,518	$\cdot 0127,520$.0090,146	0062,334	$\cdot 0042,143$
	•4	0406,497	$\cdot 0314,152$	$\cdot 0237,937$	-0176,518	$\cdot 0128,207$	$\cdot 0091,123$	$\cdot 0063,352$	0043,066	.0028,615
	.5	$\cdot 0307,541$	$\cdot 0234,157$	$\cdot 0174,638$	$\cdot 0127,520$	$\cdot 0091,123$	$\cdot 0063,694$.0043,534	$\cdot 0029,084$.0018,986
	6	$\cdot 0227,991$	$\cdot 0170,936$	$\cdot 0125,482$	$\cdot 0090,146$	$\cdot 0063,352$.0043,534	$\cdot 0029,242$	$\cdot 0019,193$.0012,306
	-7	$\cdot 0165,531$	$\cdot 0122,156$.0088,225	.0062,334	$\cdot 0043,066$.0029,084	$\cdot 0019,193$	$\cdot 0012,373$	-0007,790
	-8	$\cdot 0117,648$.0085,420	.0060,673	.0042,143	0028,615	.0018,986	.0012,306	.0007,790	.0004,814
	.9	.0081,817	.0058,423	0040,797	0027,849	0018,578	0012,107	$\cdot 0007,705$.0004,788	-0002,904
		.0055,652	.0039,068	.0026,812	.0017,982	.0011,782	.0007,539	0004,710	.0002,873	.0001,710
		.0037,010	.0025,535	.0017,217	0011.342	.0007,297	.0004,583	.0002,810	.0001,682	.0000,982
		.0024,056	.0016,307	.0010,799	-0006,985	.0004,412	.0002,720	.0001,637	.0000,961	.0000,550
	1.3	0015,278	.0010,172	.0006,615	.0004,200	0002,604	.0001,575	.0000,930	.0000,535	.0000,301
	1.4	.0009,477	.0006,196	.0003,956	0001,200	0001,499	.0000,890	.0000,515	-0000,291	.0000,160
	1.5	0005,477	0000,130	0003,330	0002,403	0001,499	.0000,890	.0000,313	0000,251	.0000,180
	1.6	0003,741	0003,083	0002,309				0000,278		0000,083
	1.7	0003,393			.0000,789	.0000,462	.0000,264		-0000,080	
	1		0001,211	.0000,731	0000,430	0000,247	-0000,138	0000,075	-0000,040	0000,021
	1.8	0001,104	-0000,669	.0000,396	.0000,229	0000,129	.0000,071	.0000,038	.0000,020	.0000,010
	1.9	-0000,606	.0000,361	.0000,209	.0000,118	.0000,065	.0000,035	.0000,018	-0000,009	.0000,005
	2.0	.0000,3252	.0000,1897		.0000,0599	.0000,0324	-0000,0171	.0000,0088	.0000,0044	.0000,002
	$2 \cdot 1$.0000,1700	.0000,0972		$\cdot 0000,0295$	0000,0156	.0000,0081	$\cdot 0000,0041$	$\cdot 0000,0020$.0000,0010
	$2 \cdot 2$	$\cdot 0000,0867$	-0000,0486	-0000,0266	$\cdot 00000,0142$	$ \cdot 0000,0074 $.0000,0037	.0000,0018	$\cdot 0000,0009$.0000,0004
	$2 \cdot 3$.0000,0431	$\cdot 0000,0237$	$\cdot 0000,0127$	$\cdot 0000,0066$	-0000,0034	$\cdot 0000,0017$.0000,0008		$\cdot 0000,0002$
	$2 \cdot 4$	-0000,0209	$\cdot 0000,0112$	$\cdot 0000,0059$.0000,0030	.0000,0015	-0000,0007	0000,0003	-0000,0002	-0000,000
	2.5	+0000,0099	$\cdot 0000,0052$	-0000,0027	.0000,0013	+0000,0007	[.0000,0003]	$\{.0000,0001$	$\cdot 0000,0001$	+0000,0000
	2.6	.0000,0045	.0000,0023	.0000,0012	.0000,0006	0000,0003	.0000,0001	.0000,0001	.0000,0000	
		h = 9	h=1.0	$h=1\cdot 1$	$h = 1 \cdot 2$	h = 1.3	h=1.4	h=1.5	h = 1.6	h=1.7
k=	= 0	-0081,817	-0055,652	-0037,010	-0024,056	-0015,278	.0009,477	.0005,741	0003,395	-0001,960
n -	1	0051,517	0039,032	0037,010	.0016,307	0010,273	.0006,196	0003,741	.0002,139	.0001,300
	$\cdot \frac{1}{2}$.0099,009		.0010,307		.0003,190	.0003,085	0002,139	
	* 4		0006 010			.0006,615	- 'UUU.a. 9600'	PUUUZ.509	: 'UUUI . 5 1 6	
		.0040,797	0026,812	.0017,217		0004 000				0000,731
	•3	$\cdot 0027,849$	$\cdot 0017,982$.0011,342	0006,985	0004,200	$\cdot 0002.465$	$\cdot 0001,412$.0000,789	$\cdot 0000,430$
	·3 ·4	.0027,849 .0018,578	.0017,982 .0011,782	-0011,342 -0007,297	$\begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \end{array}$.0002,604	.0002,465 .0001,499	0001,412 0000,842	.0000,789 .0000,462	$\begin{array}{c} \cdot 0000,\!430 \\ \cdot 0000,\!247 \end{array}$
	·3 ·4 ·5	0027,849 0018,578 0012,107	·0017,982 ·0011,782 ·0007,539	·0011,342 ·0007,297 ·0004,583	$\begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \\ \cdot 0002,720 \end{array}$	-0002,604 -0001,575	·0002,465 ·0001,499 ·0000,890	·0001,412 ·0000,842 ·0000,490	·0000,789 ·0000,462 ·0000,264	.0000,430 .0000,247 .0000,138
	·3 ·4 ·5 ·6	·0027,849 ·0018,578 ·0012,107 ·0007,705	·0017,982 ·0011,782 ·0007,539 ·0004,710	·0011,342 ·0007,297 ·0004,583 ·0002,810	·0006,985 ·0004,412 ·0002,720 ·0001,637	-0002,604 -0001,575 -0000,930	·0002,465 ·0001,499 ·0000,890 ·0000,515	·0001,412 ·0000,842 ·0000,490 ·0000,278	·0000,789 ·0000,462 ·0000,264 ·0000,147	·0000,430 ·0000,247 ·0000,138 ·0000,075
	·3 ·4 ·5 ·6 ·7	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \end{array} $	·0017,982 ·0011,782 ·0007,539 ·0004,710 ·0002,873	·0011,342 ·0007,297 ·0004,583 ·0002,810 ·0001,682	·0006,985 ·0004,412 ·0002,720 ·0001,637 ·0000,961	-0002,604 -0001,575 -0000,930 -0000,535	·0002,465 ·0001,499 ·0000,890 ·0000,515 ·0000,291	·0001,412 ·0000,842 ·0000,490 ·0000,278 ·0000,154	·0000,789 ·0000,462 ·0000,264 ·0000,147 ·0000,080	·0000,430 ·0000,247 ·0000,138 ·0000,075 ·0000,040
	·3 ·4 ·5 ·6 ·7 ·8	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \end{array} $	·0017,982 ·0011,782 ·0007,539 ·0004,710 ·0002,873 ·0001,710	·0011,342 ·0007,297 ·0004,583 ·0002,810 ·0001,682 ·0000,982	$\begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \\ \cdot 0002,720 \\ \cdot 0001,637 \\ \cdot 0000,961 \\ \cdot 0000,550 \end{array}$	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301	$\begin{array}{c} \cdot 0002, 465 \\ \cdot 0001, 499 \\ \cdot 0000, 890 \\ \cdot 0000, 515 \\ \cdot 0000, 291 \\ \cdot 0000, 160 \end{array}$	·0001,412 ·0000,842 ·0000,490 ·0000,278 ·0000,154 ·0000,083	·0000,789 ·0000,462 ·0000,264 ·0000,147 ·0000,080 ·0000,042	·0000,430 ·0000,247 ·0000,138 ·0000,075 ·0000,040 ·0000,021
	·3 ·4 ·5 ·6 ·7	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \end{array} $	·0017,982 ·0011,782 ·0007,539 ·0004,710 ·0002,873	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559	·0006,985 ·0004,412 ·0002,720 ·0001,637 ·0000,961 ·0000,550 ·0000,307	-0002,604 -0001,575 -0000,930 -0000,535	·0002,465 ·0001,499 ·0000,890 ·0000,515 ·0000,291	·0001,412 ·0000,842 ·0000,490 ·0000,278 ·0000,154	·0000,789 ·0000,462 ·0000,264 ·0000,147 ·0000,080	·0000,430 ·0000,247 ·0000,138 ·0000,075 ·0000,040
	·3 ·4 ·5 ·6 ·7 ·8 ·9	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \end{array} $	·0017,982 ·0011,782 ·0007,539 ·0004,710 ·0002,873 ·0001,710	·0011,342 ·0007,297 ·0004,583 ·0002,810 ·0001,682 ·0000,982	$\begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \\ \cdot 0002,720 \\ \cdot 0001,637 \\ \cdot 0000,961 \\ \cdot 0000,550 \end{array}$	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301	$\begin{array}{c} \cdot 0002, 465 \\ \cdot 0001, 499 \\ \cdot 0000, 890 \\ \cdot 0000, 515 \\ \cdot 0000, 291 \\ \cdot 0000, 160 \end{array}$	·0001,412 ·0000,842 ·0000,490 ·0000,278 ·0000,154 ·0000,083	·0000,789 ·0000,462 ·0000,264 ·0000,147 ·0000,080 ·0000,042	·0000,430 ·0000,247 ·0000,138 ·0000,075 ·0000,040 ·0000,021 ·0000,011
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \end{array} $	$ \begin{array}{c} \cdot 0017,982 \\ \cdot 0011,782 \\ \cdot 0007,539 \\ \cdot 0004,710 \\ \cdot 0002,873 \\ \cdot 0001,710 \\ \cdot 0000,993 \\ \cdot 0000,562 \\ \cdot 0000,311 \end{array} $	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559	·0006,985 ·0004,412 ·0002,720 ·0001,637 ·0000,961 ·0000,550 ·0000,307	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,165 -0000,088 -0000,046	·0002,465 ·0001,499 ·0000,890 ·0000,515 ·0000,291 ·0000,160 ·0000,086	·0001,412 ·0000,842 ·0000,490 ·0000,278 ·0000,154 ·0000,083 ·0000,044	·0000,789 ·0000,462 ·0000,264 ·0000,147 ·0000,080 ·0000,042 ·0000,022	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,011 -0000,005 -0000,002
	·3 ·4 ·5 ·6 ·7 ·8 ·9	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \end{array} $	$ \begin{array}{c} \cdot 0017,982 \\ \cdot 0011,782 \\ \cdot 0007,539 \\ \cdot 0004,710 \\ \cdot 0002,873 \\ \cdot 0001,710 \\ \cdot 0000,993 \\ \cdot 0000,562 \end{array} $	$\begin{array}{c} \cdot 0011,342 \\ \cdot 0007,297 \\ \cdot 0004,583 \\ \cdot 0002,810 \\ \cdot 0001,682 \\ \cdot 0000,982 \\ \cdot 0000,559 \\ \cdot 0000,311 \end{array}$	$ \begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \\ \cdot 0002,720 \\ \cdot 0001,637 \\ \cdot 0000,961 \\ \cdot 0000,550 \\ \cdot 0000,307 \\ \cdot 0000,167 \end{array} $	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,165 -0000,088	$ \begin{array}{c} \cdot 0002,465 \\ \cdot 0001,499 \\ \cdot 0000,890 \\ \cdot 0000,515 \\ \cdot 0000,291 \\ \cdot 0000,160 \\ \cdot 0000,086 \\ \cdot 0000,045 \end{array} $	$ \begin{array}{c} \cdot 0001,412 \\ \cdot 0000,842 \\ \cdot 0000,490 \\ \cdot 0000,278 \\ \cdot 0000,154 \\ \cdot 0000,083 \\ \cdot 0000,044 \\ \cdot 0000,023 \end{array} $	$ \begin{array}{c} \cdot 0000, 789 \\ \cdot 0000, 462 \\ \cdot 0000, 264 \\ \cdot 0000, 147 \\ \cdot 0000, 080 \\ \cdot 0000, 042 \\ \cdot 0000, 022 \\ \cdot 0000, 011 \\ \end{array} $	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,011 -0000,005 -0000,002
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \end{array} $	$ \begin{array}{c} \cdot 0017,982 \\ \cdot 0011,782 \\ \cdot 0007,539 \\ \cdot 0004,710 \\ \cdot 0002,873 \\ \cdot 0001,710 \\ \cdot 0000,993 \\ \cdot 0000,562 \\ \cdot 0000,311 \end{array} $	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559 -0000,311 -0000,168	$ \begin{array}{c} \cdot 0006,985 \\ \cdot 0004,412 \\ \cdot 0002,720 \\ \cdot 0001,637 \\ \cdot 0000,961 \\ \cdot 0000,550 \\ \cdot 0000,307 \\ \cdot 0000,167 \\ \cdot 0000,089 \end{array} $	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,165 -0000,088 -0000,046	$ \begin{array}{c} \cdot 0002,465 \\ \cdot 0001,499 \\ \cdot 0000,890 \\ \cdot 0000,515 \\ \cdot 0000,291 \\ \cdot 0000,160 \\ \cdot 0000,086 \\ \cdot 0000,045 \\ \cdot 0000,023 \end{array} $	$ \begin{array}{c} \cdot 0001,412 \\ \cdot 0000,842 \\ \cdot 0000,490 \\ \cdot 0000,278 \\ \cdot 0000,154 \\ \cdot 0000,083 \\ \cdot 0000,044 \\ \cdot 0000,023 \\ \cdot 0000,011 \end{array} $	$ \begin{array}{c} \cdot 0000, 789 \\ \cdot 0000, 462 \\ \cdot 0000, 264 \\ \cdot 0000, 147 \\ \cdot 0000, 080 \\ \cdot 0000, 042 \\ \cdot 0000, 022 \\ \cdot 0000, 011 \\ \cdot 0000, 005 \end{array} $	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,005 -0000,002
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \end{array} $	·0017,982 ·0011,782 ·0007,539 ·0004,710 ·0002,873 ·0001,710 ·0000,993 ·0000,562 ·0000,311 ·0000,167 ·0000,088	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,559 -0000,311 -0000,168 -0000,089 -0000,046	-0006,985 -0004,412 -0002,720 -0001,637 -0000,550 -0000,307 -0000,167 -0000,089 -0000,046	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,165 -0000,088 -0000,046 -0000,023	·0002,465 ·0001,499 ·0000,890 ·0000,515 ·0000,291 ·0000,086 ·0000,045 ·0000,023 ·0000,011 ·0000,006	-0001,412 -0000,842 -0000,490 -0000,278 -0000,083 -0000,044 -0000,023 -0000,011 -0000,005 -0000,003	-0000,789 -0000,462 -0000,264 -0000,147 -0000,080 -0000,042 -0000,022 -0000,011 -0000,005 -0000,003	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,011 -0000,005 -0000,002 -0000,001 -0000,001 -0000,001
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,086 \end{array} $.0017,982 .0011,782 .0007,539 .0004,710 .0002,873 .0001,710 .0000,993 .0000,562 .0000,311 .0000,167 .0000,088 .0000,045	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559 -0000,311 -0000,168 -0000,089 -0000,046 -0030,023	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,550 -0000,307 -0000,089 -0000,046 -0000,023 -0000,011	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,088 -0000,046 -0000,023 -0000,012	-0002,465 -0001,499 -0000,890 -0000,515 -0000,291 -0000,086 -0000,045 -0000,045 -0000,011 -0000,006 -0000,003	-0001,412 -0000,842 -0000,490 -0000,278 -0000,083 -0000,044 -0000,023 -0000,011 -0000,005 -0000,003 -0000,001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,147 \\ \text{-}0000,080 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0001 \\ \text{-}0000,0005 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,005 -0000,002 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \end{array} $	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,311 -0000,167 -0000,088 -0000,045 -0000,023	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559 -0000,168 -0000,089 -0000,046 -0000,023 -0000,011	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,550 -0000,307 -0000,089 -0000,046 -0000,023 -0000,011 -0000,005	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,165 -0000,088 -0000,046 -0000,023 -0000,012 -0000,006 -0000,003	**0002,465 **0001,499 **0000,890 **0000,515 **0000,291 **0000,086 **0000,045 **0000,023 **0000,011 **0000,006 **0000,003 **0000,001	-0001,412 -0000,842 -0000,278 -0000,154 -0000,083 -0000,044 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,001 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0000 \\ \text{-}0000,00000 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \end{array} $	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,167 -0000,088 -0000,045 -0000,023 -0000,011	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,311 -0000,168 -0000,089 -0000,046 -0000,023 -0000,011 -0000,005	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,167 -0000,089 -0000,046 -0000,023 -0000,011 -0000,005 -0000,003	-0002,604 -0001,575 -0000,930 -0000,535 -0000,081 -0000,088 -0000,023 -0000,012 -0000,006 -0000,003 -0000,001	-0002,465 -0001,499 -0000,890 -0000,515 -0000,291 -0000,086 -0000,045 -0000,023 -0000,011 -0000,006 -0000,003 -0000,001 -0000,0001	-0001,412 -0000,842 -0000,490 -0000,278 -0000,083 -0000,044 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0005	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,044 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,011 \end{array} $	$ \begin{array}{c} \cdot 0017,982 \\ \cdot 0011,782 \\ \cdot 0007,539 \\ \cdot 0004,710 \\ \cdot 0002,873 \\ \cdot 0001,710 \\ \cdot 0000,993 \\ \cdot 0000,562 \\ \cdot 0000,311 \\ \cdot 0000,088 \\ \cdot 0000,045 \\ \cdot 0000,023 \\ \cdot 0000,011 \\ \cdot 0000,005 \end{array} $	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,311 -0000,168 -0000,089 -0000,046 -0000,023 -0000,011 -0000,005 -0000,002	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,167 -0000,089 -0000,046 -0000,023 -0000,011 -0000,003 -0000,003	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,046 -0000,023 -0000,012 -0000,006 -0000,003 -0000,001 -0000,0001	-0002,465 -0001,499 -0000,890 -0000,515 -0000,291 -0000,086 -0000,045 -0000,023 -0000,001 -0000,006 -0000,003 -0000,001 -0000,0005 -0000,0005	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,001 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,0001 \\ \text{-}0000,0005 \\ \text{-}0000,0000 \\ \text{-}0000,00000 \\ \text{-}0000,00000 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,011 \\ \cdot 0000,005 \end{array} $	$ \begin{array}{c} \cdot 0017,982 \\ \cdot 0011,782 \\ \cdot 0007,539 \\ \cdot 0004,710 \\ \cdot 0002,873 \\ \cdot 0001,710 \\ \cdot 0000,993 \\ \cdot 0000,562 \\ \cdot 0000,311 \\ \cdot 0000,067 \\ \cdot 0000,088 \\ \cdot 0000,045 \\ \cdot 0000,023 \\ \cdot 0000,011 \\ \cdot 0000,005 \\ \cdot 0000,002 \\ \end{array} $	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,311 -0000,168 -0000,089 -0000,046 -0000,002 -0000,001	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,089 -0000,046 -0000,023 -0000,011 -0000,003 -0000,001 -0000,0001	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,046 -0000,023 -0000,006 -0000,006 -0000,000 -0000,0001 -0000,0005 -0000,0002	.0002,465 .0001,499 .0000,890 .0000,515 .0000,291 .0000,086 .0000,045 .0000,023 .0000,011 .0000,006 .0000,003 .0000,001 .0000,0005 .0000,0002	-0001,412 -0000,842 -0000,490 -0000,278 -0000,083 -0000,044 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0005	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6 1·7	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,011 \\ \cdot 0000,005 \\ \cdot 0000,002 \\ \end{array} $	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,311 -0000,088 -0000,045 -0000,023 -0000,011 -0000,005 -0000,002 -0000,001	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,559 -0000,016 -0000,089 -0000,046 -0030,023 -0000,011 -0000,005 -0000,001 -0000,001 -0000,001	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,550 -0000,307 -0000,089 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0005	-0002,604 -0001,575 -0000,930 -0000,535 -0000,301 -0000,088 -0000,023 -0000,012 -0000,006 -0000,003 -0000,001 -0000,0005 -0000,0001	-0002,465 -0001,499 -0000,890 -0000,515 -0000,291 -0000,086 -0000,045 -0000,023 -0000,001 -0000,006 -0000,003 -0000,001 -0000,0005 -0000,0005	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6 1·7 1·8 1·9 2·0	$\begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,011 \\ \cdot 0000,005 \\ \cdot 0000,002 \\ \cdot 0000,001 \\ \cdot 0000,001 \\ \cdot 0000,001 \\ \cdot 0000,001 \\ \cdot 0000,001 \\ \end{array}$	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,167 -0000,088 -0000,045 -0000,023 -0000,001 -0000,005 -0000,001 -0000,001 -0000,0001	-0011,342 ·0007,297 ·0004,583 ·0002,810 ·0001,682 ·0000,982 ·0000,559 ·0000,016 ·0000,089 ·0000,046 ·0000,023 ·0000,001 ·0000,005 ·0000,001 ·0000,0005 ·0000,0005 ·0000,0002	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,089 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0002 -0000,0002 -0000,0002	-0002,604 -0001,575 -0000,930 -0000,535 -0000,0165 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0000 -0000,0001 -0000,0001 -0000,0001 -0000,0000	.0002,465 .0001,499 .0000,890 .0000,515 .0000,291 .0000,086 .0000,045 .0000,023 .0000,011 .0000,006 .0000,003 .0000,001 .0000,0005 .0000,0002	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 ·9 ·1·0 ·1·1 ·1·2 ·1·3 ·1·4 ·1·5 ·1·6 ·1·7 ·1·8 ·1·9 ·2·0 ·2·0 ·2·1 ·2·0 ·2·1 ·2·1 ·2·1 ·2·1	$\begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,0165 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,001 \\ \cdot 0000,005 \\ \cdot 0000,001 \\ \cdot 0000,0001 \\ \cdot 0000,0004 \end{array}$	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,011 -0000,088 -0000,045 -0000,023 -0000,011 -0000,005 -0000,001 -0000,0005 -0000,0005 -0000,0005	-0011,342 ·0007,297 ·0004,583 ·0002,810 ·0001,682 ·0000,982 ·0000,559 ·0000,168 ·0000,089 ·0000,046 ·0000,002 ·0000,001 ·0000,002 ·0000,0002 ·0000,0002 ·0000,0002 ·0000,0002	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,550 -0000,307 -0000,089 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0005	-0002,604 -0001,575 -0000,930 -0000,535 -0000,0165 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0000 -0000,0001 -0000,0001 -0000,0001 -0000,0000	.0002,465 .0001,499 .0000,890 .0000,515 .0000,291 .0000,086 .0000,045 .0000,023 .0000,011 .0000,006 .0000,003 .0000,001 .0000,0005 .0000,0002	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000
	·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3 1·4 1·5 1·7 1·8 1·9 2·0 2·1 2·2	$ \begin{array}{c} \cdot 0027,849 \\ \cdot 0018,578 \\ \cdot 0012,107 \\ \cdot 0007,705 \\ \cdot 0004,788 \\ \cdot 0002,904 \\ \cdot 0001,719 \\ \cdot 0000,993 \\ \cdot 0000,559 \\ \cdot 0000,307 \\ \cdot 0000,165 \\ \cdot 0000,086 \\ \cdot 0000,044 \\ \cdot 0000,022 \\ \cdot 0000,011 \\ \cdot 0000,005 \\ \cdot 0000,0000 \\ \cdot 0000,0000 \\ \cdot 0000,00000 \\ \cdot 0000,00000 \\ \cdot 00000,0000 \\ \cdot 00000,0000 \\ \cdot 00000,00000 \\ \cdot 00000,0000 \\ \cdot 000000 \\ \cdot 0000000 \\ \cdot 00000000$	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,562 -0000,311 -0000,065 -0000,045 -0000,002 -0000,002 -0000,002 -0000,000 -0000,0002 -0000,0002 -0000,0002	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,311 -0000,168 -0000,046 -0000,023 -0000,001 -0000,002 -0000,001 -0000,0002 -0000,0001 -0000,0001 -0000,0001 -0000,0001	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,089 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0002 -0000,0002 -0000,0002	-0002,604 -0001,575 -0000,930 -0000,535 -0000,0165 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0000 -0000,0001 -0000,0001 -0000,0001 -0000,0000	.0002,465 .0001,499 .0000,890 .0000,515 .0000,291 .0000,086 .0000,045 .0000,023 .0000,011 .0000,006 .0000,003 .0000,001 .0000,0005 .0000,0002	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,011 -0000,005 -0000,002
	·3 ·4 ·5 ·6 ·7 ·8 ·9 ·9 ·1·0 ·1·1 ·1·2 ·1·3 ·1·4 ·1·5 ·1·6 ·1·7 ·1·8 ·1·9 ·2·0 ·2·0 ·2·1 ·2·0 ·2·1 ·2·1 ·2·1 ·2·1	-0027,849 -0018,578 -0012,107 -0007,705 -0004,788 -0002,904 -0000,559 -0000,307 -0000,086 -0000,044 -0000,022 -0000,011 -0000,005 -0000,002 -0000,001 -0000,0004 -0000,0004 -0000,0004 -0000,0004 -0000,0004 -0000,0002 -0000,0001	-0017,982 -0011,782 -0007,539 -0004,710 -0002,873 -0001,710 -0000,993 -0000,562 -0000,011 -0000,088 -0000,045 -0000,023 -0000,011 -0000,005 -0000,001 -0000,0005 -0000,0005 -0000,0005	-0011,342 -0007,297 -0004,583 -0002,810 -0001,682 -0000,982 -0000,311 -0000,168 -0000,046 -0000,023 -0000,001 -0000,002 -0000,001 -0000,0002 -0000,0001 -0000,0001 -0000,0001 -0000,0001	-0006,985 -0004,412 -0002,720 -0001,637 -0000,961 -0000,307 -0000,089 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0002 -0000,0002 -0000,0002	-0002,604 -0001,575 -0000,930 -0000,535 -0000,0165 -0000,046 -0000,023 -0000,001 -0000,003 -0000,001 -0000,0000 -0000,0001 -0000,0001 -0000,0001 -0000,0000	.0002,465 .0001,499 .0000,890 .0000,515 .0000,291 .0000,086 .0000,045 .0000,023 .0000,011 .0000,006 .0000,003 .0000,001 .0000,0005 .0000,0002	-0001,412 -0000,842 -0000,490 -0000,278 -0000,154 -0000,083 -0000,011 -0000,005 -0000,003 -0000,001 -0000,0005 -0000,0002 -0000,0001	$\begin{array}{c} \text{-}0000,789 \\ \text{-}0000,462 \\ \text{-}0000,264 \\ \text{-}0000,080 \\ \text{-}0000,042 \\ \text{-}0000,022 \\ \text{-}0000,011 \\ \text{-}0000,005 \\ \text{-}0000,003 \\ \text{-}0000,001 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,0005 \\ \text{-}0000,00005 \\ \text{-}0000,00005 \\ \text{-}0000,00000 \\ \text{-}00000,00001 \\ \end{array}$	-0000,430 -0000,247 -0000,138 -0000,075 -0000,040 -0000,021 -0000,001 -0000,002 -0000,001 -0000,000 -0000,000 -0000,000

d/N for r = - .80.

	h=1.8	h=1.9	h=2.0	h = 2.1	$h=2\cdot 2$	h=2:3	h=2.4	h=2.5	h = 2.6
·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 1·0 1·1 1·2 1·3	-0000,669 -0000,396 -0000,229 -0000,071 -0000,038 -0000,020 -0000,005 -0000,005 -0000,001 -0000,0005 -0000,0005 -0000,0005 -0000,0005	-0000,606 ·0000,361 ·0000,209 ·0000,118 ·0000,065 ·0000,001 ·0000,009 ·0000,005 ·0000,002 ·0000,000 ·0000,0002 ·0000,0002 ·0000,0001		$\begin{array}{c} \cdot 0000,0972 \\ \cdot 0000,0542 \\ \cdot 0000,0295 \\ \cdot 0000,0156 \\ \cdot 0000,0081 \\ \cdot 0000,0041 \\ \cdot 0000,0020 \\ \cdot 0000,0010 \\ \cdot 0000,0004 \end{array}$	·0000,0009 ·0000,0004 ·0000,0002 ·0000,0001	-0000,0127 -0000,0066 -0000,0034 -0000,0017 -0000,0004 -0000,0002 -0000,0001 -0000,0000	.0000,0015	·0000,0052 ·0000,0027 ·0000,0013	·0000,0001 ·0000,0000
	.0000,0001 .0000,0000	.0000,0000							

$d/N \ for \ r = -.85.$

	h=0	h = 1	h='2	h=:3	$h = \cdot 4$	h=.2	h = .6	h = .7	h=:8
= 0	-0883,010	.0696,651	.0537,127	.0404,314	.0296,851	0212,402	.0147,991	.0100,334	.0066,146
.1	.0696,651	.0539,919	.0408,547	$\cdot 0301,542$.0216,905	0151,935	$\cdot 0103,559$.0068,639	.0044.211
.2	.0537,127	.0408,547	0303,123	-0219,192	.0154,352	$\cdot 0105,767$.0070.478	-0045.639	0028.703
-3	.0404,314	.0301,542	.0219,192	-0155,166	-0106,889	0071,604	.0046,616	.0029.477	.0018.09
•4	.0296,851	.0216.905	.0154,352	$\cdot 0106.889$	0071.984	.0047,113	.0029,950	.0018,483	.0011.068
.5	.0212,402	.0151,935	.0105,767	-0071,604	.0047,113	.0030,109	.0018.680	.0011.246	-0006.560
•6	$\cdot 0147,991$	$\cdot 0103,559$.0070,478	0046,616	.0029,950	.0018,680	.0011,306	.0006.637	.0003.77
-7	$\cdot 0100,334$.0068,639	.0045,639	-0029,477	0018.483	.0011.246	.0006.637	-0003.797	-0002.100
.8	.0066,146	.0044,211	.0028,705	.0018,094	.0011,068	.0006.566	$\cdot 0003.777$	-0002,106	.0001.13
.9	.0042,377	.0027,658	.0017,526	-0010.778	.0006,428	+0003,717	.0002.083	.0001.131	.0000.59
1.0	.0026,368	.0016,797	.0010.383	-0006.226	.0003.620	0002.039	.0001.113	+0000.589	-0000.30
1.1	.0015,927	.0009,897	-0005,966	-0003.487	.0001.975	.0001.084	.0000,576	.0000,297	.0000,148
1.2	.0009,335	.0005,656	$\cdot 0003.323$	0001.893	.0001.044	.0000.558	.0000.289	$\cdot 0000.145$	-0000.07
1.3	.0005,306	.0003,134	.0001.794	-0000.995	$\pm 0000,535$.0000,278	.0000,140	.0000,068	.0000.03
1.4	$\cdot 0002,924$.0001,682	-0000,938	-0000,507	.0000,265	$\cdot 0000.134$.0000.066	-0000.031	-0000.014
1.5	.0001.561	.0000,875	.0000.475	.0000.250	.0000.127	.0000,063	.0000.030	.0000.014	-0000.000
1.6	.0000,808	.0000,441	.0000.233	-0000.119	.0000.059	0000.028	+0000.013	.0000,006	.0000.003
1.7	.0000,405	.0000.215	-0000.111	-0000.055	-0000.027	$\cdot 0000.012$.0000,006	.0000,002	.0000.00
1.8	$\cdot 0000,196$.0000, 102	.0000,051	.0000,025	.0000,012	.0000,005	.0000.002	.0000,001	.0000,000
1.9	.0000,092	.0000,046	.0000,023	-0000.011	.0000,005	.0000,002	-0000,001	.0000,0004	.0000,000
2.0	0000,0419	.0000,0205	-0000,0097	-0000,0045	-0000,0020	-0000.0009	.0000,0004		-0000.000
$2 \cdot 1$.0000,0088	.0000.0040	.0000,0018	.0000,0008	.0000,0003	.0000,0001	.0000,0000	-0000.000
$2 \cdot 2$	-0000,0079	.0000,0036	-0000,0017	-0000,0007	-0000,0003	+0000,0001	.0000,0000	0000,0000	
$2 \cdot 3$	-00000032	.0000,0015	-0000,0006	-0000,0003	.0000,0001	.0000,0000	,		
2.4		.0000,0006		.0000.0001	.0000,0000	,			
2.5		-0000,0002	-0000,0001	-0000,0000					
2.6		.0000,0001	.0000,0000						

290 Supplementary Tables for High Tetrachoric Correlations

 $d/N \ for \ r = -.85.$

	7 0	7 10	7 7 7 7	7 70	7 70	, , ,	7 7 2	7 70	7 7 -
	h=:9	h=1.0	$h=1\cdot 1$	h=1.2	h=1.3	h=1.4	h = 1.5	h=1.6	h=1.7
k=0	.0042.377	.0026,368	.0015,927	.0009.335	.0005.306	.0002.924	.0001.561	.0000.808	.0000,405
·1	.0027.658	.0016,797	.0009,897	.0005,656	.0003,134	.0001,682	.0000,875	•0000,441	0000,405
$\cdot 2$.0017,526	.0010.383	.0005,966	.0003,323	.0001,794	0001,032	.0000,375	0000,221	.0000,213
.3	.0010.778	0006,226	.0003,487	0003,823	.0000,995	-0000,507	.0000,250	.0000,230	0000,111
.4	.0006,428	.0003,620	.0001.975	.0001.044	.0000,535	.0000,265	.0000,127	.0000,059	.0000.027
.5	.0003.717	.0002,039	.0001,084	.0000,558	.0000.278	.0000,134	.0000,063	.0000,028	.0000,012
•6	.0002.083	.0001,113	.0000.576	.0000,289	.0000.140	.0000,066	.0000,030	.0000,013	.0000,006
.7	.0001,131	.0000,589	.0000.297	.0000,145	.0000,068	.0000,031	.0000,014	.0000,006	.0000,002
-8	$\cdot 0000,595$	-0000.301	.0000,148	-0000,070	.0000,032	.0000.014	-0000,006	.0000,003	.0000,001
.9	.0000.303	.0000.149	.0000,071	+0000,033	.0000.015	-0000,006	-0000,003	.0000,001	.0000,0004
1.0	.0000,149	.0000,072	+0000.033	-0000,015	+0000,006	.0000,003	.0000,001	-0000,0004	.0000,0002
1.1	.0000,071	.0000,033	.0000,015	.0000,007	-0000,003	.0000.001	-0000,0004	$\cdot 0000.0002$.0000,0001
1.2	.0000,033	.0000,015	.0000,007	.0000,003	.0000,001	-0000,0005	.0000,0002	-0000,0001	.0000,0000
1.3	$\cdot 0000,015$.0000,006	-0000,003	.0000,001	-0000,0005	0000,0002	.0000,0001	.0000,0000	
1.4	.0000,006	.0000,003	-0000,001	$\cdot 0000,0005$	-0000,0002	-0000,0001	.0000,0000		
1.5	.0000,003	.0000,001	-0000,0004	-0000,0002	-0000,0001	-0000,0000			
1.6	-0000,001	+0000,0004	-0000,0002	-0000,0001	-0000,0000				
1.7	-0000,0004	-0000,0002	-0000,0001	.0000,0000					
1.8	+0000,0002	-0000,0001	.0000,0000						
1.9	-0000,0001	.0000,0000							
2.0	.0000,0000								
	h=1.8	h=1.9	h=2.0	h = 2.1	h=2·2	h = 2.3	h = 2.4	h=2.5	h = 2.6
	0000 100	0000 000		0000 010 (0000 0070		0000 0019	0000 0005	0000 0000
k = 0	0000,196 0000,102	·0000,092 ·0000,046	0000,0419 0000,0205	0000,0184 0000,0088	·0000,0079 ·0000,0036	0000,0032 0000,0015	·0000,0013 ·0000.0006	0000,0005	0000,0002
12	0000,102	0000,046	0000,0203	.0000,0088		.0000,0015	·0000,0006	·0000,0002	.0000,0001
•3	0000,031	0000,023	0000,0097	.0000,0040	0000,0017		.0000,0002	.0000,0001	.0000,0000
•4	0000,023	0000,011	.0000,0043	.0000,0018	.0000,0007		.0000,0001	.0000,0000	
.5	0000,012	0000,003	.0000,0020	.0000,0003	.0000,0003	.0000,0001	.0000,0000		
·6		.0000,002	.0000,0009	0000,0003	.0000,0001	-0000,0000			
.7	0000,002	.0000,001	.0000,0004	-0000,0001	.0000,0000				
-8	.0000,001	.0000,0004	0000,0001	-0000,0000					
.9	-0000,0004	0000,0001	.0000,0001						
		.0000,0001	.0000,0000						
1.0									
$\frac{1.0}{1.1}$	·0000,0001 ·0000,0000	0000,0000							

 $d/N \ for \ r = - .90.$

	h=0	h = 1	h = 2	h=:3	h = 4	h=.5	h='6	h=.7	h=.8
k=	0.0717,832	.0535,024	.0385,698	0268,454	.0180,108	.0116,302	.0072,185	.0043,011	.0024,576
	$1 \cdot 0535,024$.0387,680	$\cdot 0271,230$	-0182,917	$\cdot 0118,733$	-0074,080	.0044,371	$\cdot 0025,486$	$\cdot 0014,024$
	$2 \cdot 0385,698$	$\cdot 0271,230$	-0183,863	-0119,967	$\cdot 0075,240$	0045,302	$\cdot 0026,157$	0014,469	.0007,661
	$3 \cdot 0268,454$	$\cdot 0182,917$.0119,967	0075,631	0.0045,775	-0026,569	$\cdot 0014,774$	+0007,863	$\cdot 0004,003$
	$4 \cdot 0180,108$	$\cdot 0118,733$	$\cdot 0075,240$	$\cdot 0045,775$	-0026,707	$\cdot 0014,928$.0007,987	$\cdot 0004,087$.0001,999
	$5 \cdot 0116,302$.0074,080	.0045,302	.0026,569	$\cdot 0014,928$	$\cdot 0008,029$.0004,130	$\cdot 0002,030$	+00000,953
	$6 \cdot 0072, 185$.0044,371	$\cdot 0026,157$	0014,774	.0007,987	.0004,130	$\cdot 0002,041$	$\cdot 0000,963$	$\cdot 0000,434$
	$7 \cdot 0043,011$	$\cdot 0025,486$	-0014,469	.0007,863	.0004,087	$\cdot 0002,030$	$\cdot 0000,963$	$\cdot 0000,436$	$\cdot 0000,189$
	8 .0024,576	$\cdot 0014,024$	-0007,661	.0004,003	.0001,999	.0000,953	.0000,434	$\cdot 0000,189$	-0000,078
	$9 \cdot 0013,452$	$\cdot 0007,386$.0003,879	-0001,947	+0000,934	.0000,427	.0000,187	$\cdot 0000,078$	$\cdot 00000,031$
1	0.0007,048	$\cdot 0003,721$	-0001,878	+0000,905	$\cdot 0000,416$	$\cdot 0000,183$	$\cdot 9000,077$	$\cdot 0000,031$	$\cdot 0000,012$
1	$1 \cdot 0003,532$.0001,791	.0000,868	-0000,401	-0000,177	.0000,075	-0000,030	$\cdot 0000,011$.0000,004
1	$2 \cdot 0001,692$	$\cdot 0000,824$.0000,383	-0000,170	$\cdot 0000,072$	-0000,029	.0000,011	$\cdot 0000,004$	$\cdot 00000,001$
1	$3 \cdot 0000,774$	$\cdot 0000,362$.0000,161	.0000,069	$\cdot 0000,028$.0000,011	.0000,004	-0000,001	$ \cdot 0000,0005$
1	4 .0000,338	$\cdot 0000,151$	-0000,065	.0000,026	.0000,010	.0000,004	.0000,001	.0000,0005	-0000,0001
1	$5 \cdot 0000, 141$.0000,060	-0000,025	.0000,010	$\cdot 0000,004$	-0000,001	-0000,0004	.0000,0001	-0000,0000
1	6.0000,056	+0000,023	-0000,009	.0000,003	.0000,001	-0000,0004	$\cdot 0000,0001$	-0000,0000	
1	$7 \cdot 0000,021$.0000,008	$\cdot 0000,003$	$\cdot 0000,001$	$\cdot 0000,0004$	$\cdot 0000,0001$.0000,0000		
1	8 .0000,008	$\cdot 0000,003$	$\cdot 0000,001$	0000,0004	-0000,0001	.0000,0000			
1	$9^{+}.0000,003$	-0000,001	$\cdot 0000,0003$	-0000,0001	$\cdot 0000,0000$				
2	0 .0000,0009	$\cdot 0000,0003$.0000,0001	-0000,0000					
2	1:0000,0003	$\cdot 0000,0001$	-0000,0000						
2	$2 \cdot 0000,0001$	$\cdot 0000,0000$							
2	3 -0000,0000							1	

d/N for r = -.90.

	h=:9	h=1:0	$h=1\cdot 1$	h=1.2	h=1:3	h=1:4	h=1.5	h=1.6	h=1.7
k= (1 ·0007,386 2 ·0003,879 3 ·0001-947 4 ·0000,934 5 ·0000,187 7 ·0000,078 8 ·0000,031 9 ·0000,012 1 ·0000,001 2 ·0000,000 3 ·0000,0005 3 ·0000,0002	-0007,048 ·0003,721 ·0001,878 ·0000,905 ·0000,416 ·0000,183 ·0000,077 ·0000,031 ·0000,004 ·0000,004 ·0000,004 ·0000,0005 ·0000,0000	-0003,532 -0001,791 -0000,868 -0000,401 -0000,075 -0000,030 -0000,011 -0000,004 -0000,001 -0000,000 -0000,0002 -0000,0000	-0001,692 ·0000,824 ·0000,383 ·0000,170 ·0000,072 ·0000,011 ·0000,004 ·0000,001 ·0000,0005 ·0000,0000	-0000,0000	-0000,0000	.0000,141 .0000,060 .0000,025 .0000,010 .0000,004 .0000,0004 .0000,0004 .0000,00001 .0000,00001	-0000,056 -0000,023 -0000,009 -0000,003 -0000,001 -0000,0004 -0000,0001 -0000,0000	-0000,021 -0000,008 -0000,003 -0000,001 -0000,0004 -0000,0001 -0000,0000
k= (-1) -5 -5 -5 -5 -6 -6	0000,003 0000,001 0000,0004 0000,0001	h=1·9 -0000,003 -0000,001 -0000,0003 -0000,0001 -0000,0000	h=2·0 	h=2·1 	· h=2·2 				

$d/N \ for \ r = -.95.$

	h=0	h=·1	h=:2	h=:3	h='4	h=:5	h=:6	h=.7	h=.8
1.0 1.2 1.3 1.4	0330,242 0202,154 0115,376 0061,136 0029,965 0013,543 0005,629 0000,749 0000,070 0000,070 0000,019 0000,001 0000,001	0330,242 ·0203,181 ·0116,555 ·0062,076 ·0030,582 ·0013,893 ·0005,804 ·0002,224 ·0000,078 ·0000,073 ·0000,000 ·0000,000 ·0000,000 ·0000,0000	·0202,154 ·0116,555 ·0062,393 ·0030,895 ·0014,107 ·0005,923 ·0000,805 ·0000,260 ·0000,076 ·0000,005 ·0000,005 ·0000,000 ·0000,000 ·0000,0000 ·0000,0000	-0115,376 -0062,076 -0030,895 -0014,179 -0005,984 -0002,317 -0000,266 -0000,079 -0000,021 -0000,005 -0000,001 -0000,0002 -0000,0000	-0061,136 -0030,582 -0014,107 -0005,984 -0002,329 -0000,830 -0000,027 -0000,080 -0000,005 -0000,001 -0000,0002 -0000,0000	-0029,965 -0013,893 -0005,923 -0000,317 -0000,830 -0000,272 -0000,081 -0000,002 -0000,001 -0000,0003 -0000,0000	-0013,543 ·0005,804 ·0002,282 ·0000,822 ·0000,081 ·0000,002 ·0000,000 ·0000,0003 ·0000,0000	.0005,629 .0002,224 .0000,805 .0000,266 .0000,080 .0000,006 .0000,006 .0000,001 .0000,0003	·0002,146 ·0000,781 ·0000,260 ·0000,079 ·0000,002 ·0000,001 ·0000,0003 ·0000,0000
	h=:9	h=1.0	h = 1.1	h=1.2	h=1·3	h=1.4	h=1:5		
$k = 0 \\ \cdot 1 \\ \cdot 2 \\ \cdot 3 \\ \cdot 4 \\ \cdot 5 \\ \cdot 6 \\ \cdot 7$	·0000,250 ·0000,076 ·0000,021 ·0000,005 ·0000,001 ·0000,0003	·0000,239 ·0000,073 ·0000,021 ·0000,005 ·0000,001 ·0000,0003 ·0000,0000	-0000,070 -0000,020 -0000,005 -0000,001 -0000,0002 -0000,0000	-0000,019 -0000,005 -0000,001 -0000,0002 -0000,0000	·0000,004 ·0000,001 ·0000,0002 ·0000,0000	-0000,001 -0000,0002 -0000,0000	-0000,0002 -0000,0000		

ON THE PROBABLE ERROR OF BISERIAL 7.

By KARL PEARSON, F.R.S.

(1) In a paper in *Biometrika*, Vol. VII, pp. 248-257, entitled "On a New Method of determining Correlation where one Variable is given by alternative and the other by multiple Categories," I gave in 1910 the process of determining what is now generally termed "biserial η ."

Let x be the alternative, y the multiple variate, \bar{x}_y the distance from the division between the alternative categories of the mean of the array of x's corresponding to a given value of y, $_y\sigma_x$ its standard deviation and n_y its frequency. Let \bar{x} , σ_x and N be the corresponding quantities for the marginal total. Then, if

 $\gamma = ar{x}/\sigma_x, \quad \gamma_y = \overline{x}_y/_y\sigma_x$,

I showed that

$$\eta = \left[\frac{\frac{1}{N} S\left\{ n_y \left(\frac{\bar{x}_y}{y \sigma_x} \right)^2 \right\} - \left(\frac{\bar{x}}{\sigma_x} \right)^2 \right]^{\frac{1}{2}}}{1 + \frac{1}{N} S\left\{ n_y \left(\frac{\bar{x}_y}{y \sigma_x} \right)^2 \right\}} \right]^{\frac{1}{2}}$$
 (i),

and explained that η might be found from the usual tables of the probability integral. I did not publish the probable error of this method of determining "biserial η " at the time, and it has remained one of the few outstanding cases where probable errors were still wanting. I now add the determination of the probable error, and owing to the kindness of my colleagues, Miss Ethel M. Elderton and Miss B. M. Cave, am able to give a table for its fairly easy computation.

(2) I take as my biserial table the following:

Here n_s stands for n_y , and the y variate is the horizontal or multiple category variate. We shall write

and thus

Accordingly to a first approximation

$$\eta \delta \eta = \frac{1 + \gamma^2}{(1 + \kappa^2)^2} \kappa \delta \kappa - \frac{\gamma \delta \gamma}{1 + \kappa^2},$$

where η , κ and γ are now mean values and $\delta \eta$, $\delta \kappa$ and $\delta \gamma$ are variations from those means. Squaring, summing for all values, and dividing by the number of cases:

$$\eta^2 \sigma_{\eta}^2 = \frac{(1-\eta^2)^4}{(1+\gamma^2)^2} \kappa^2 \sigma_{\kappa}^2 + \frac{\gamma^2}{(1+\kappa^2)^2} \sigma_{\gamma}^2 - \frac{2\gamma\kappa}{(1+\kappa^2)^3} \operatorname{Mean} \left(\delta\kappa\delta\gamma\right) \, \dots (iii).$$

Hence to find σ_{η} we require to evaluate σ_{κ} , σ_{γ} and Mean $(\delta \gamma \delta \kappa)$. We shall now proceed to the consideration of these quantities.

We have

$$u_1/N = \frac{1}{\sqrt{2\pi}} \int_{\gamma}^{\infty} e^{-\frac{1}{2}x^2} dx.$$

Hence

$$\delta
u_1/N = -\delta \gamma \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}
onumber \ = -\delta \gamma z,$$

where z is the ordinate of the frequency curve of the marginal total at the boundary of the alternative categories.

Thus

$$\sigma^2_{\
u_1}/N^2=\sigma_{\gamma}^2z^2.$$

But if the sample has been taken from an indefinitely large population

$$\sigma_{\nu_1}^2 = \nu_1 (1 - \nu_1/N).$$

Accordingly

$$\sigma_{\gamma}^2 = \frac{\nu_1 \nu_2}{N^3 z^2}....$$
 (iv).

Again

$$\kappa \delta \kappa = S(\kappa_s \delta \kappa_s),$$

where

$$\kappa_s^{\;2}=rac{n_s}{N}\gamma_s^{\;2},$$

$$\kappa^2 \sigma_{\kappa^2} = S\left(\kappa_s^2 \sigma_{\kappa_s}^2\right) + 2S\left\{\kappa_s \kappa_{s'} \operatorname{Mean}\left(\delta \kappa_s \delta \kappa_{s'}\right)\right\} \quad \dots \dots \dots \dots \dots (v).$$

We require therefore to find $\sigma^2_{\kappa_s}$ and Mean $(\delta \kappa_s \delta \kappa_s')$. Now

$$2\kappa_s\delta\kappa_s=rac{\delta n_s}{N}\gamma_s^2+2rac{n_s}{N}\gamma_s\delta\gamma_s$$
(vi).

But

$$n_{1s}=n_srac{1}{\sqrt{2\pi}}\int_{\gamma_s}^{\infty}\!\!e^{-rac{1}{2}x^2}\,dx,$$

$$\frac{\delta n_{1s}}{n_s} - \frac{n_{1s}\delta n_s}{n_s^2} = -\delta \gamma_s z_s \dots (vii).$$

And accordingly:

$$rac{\sigma^2_{n_{1s}}}{n_s^2} - rac{2n_{1s}}{n_s^3} \, ext{Mean} \, (\delta n_{1s} \delta n_s) + rac{n_{1s}^2}{n_s^4} \, \sigma^2_{n_s} = z_s^2 \, \sigma^2_{\gamma_s}.$$

But $\sigma^2_{n_{1s}} = n_{1s} \left(1 - \frac{n_{1s}}{N} \right), \quad \sigma^2_{n_s} = n_s \left(1 - \frac{n_s}{N} \right),$

$$\begin{split} \text{Mean } (\delta n_{1s}\delta n_s) &= \text{Mean } (\delta n_{1s}\delta n_{2s}) + \text{Mean } (\delta n_{1s})^2 \\ &= -\frac{n_{1s}n_{2s}}{N} + n_{1s}\left(1 - \frac{n_{1s}}{N}\right) \end{split}$$

$$N + n_{1s} \left(1 - \frac{1}{N}\right)$$

 $= n_{1s} \left(1 - \frac{n_s}{N} \right).$

 $\sigma^2_{~\gamma_s} = rac{n_{1s}n_{2s}}{n_s^3 z_s^2}.....$ (viii).

It will be seen that (viii) is of the same form as (iv), although the value of n_s is variable, while that of N is constant.

Now multiply (vii) by δn_s and sum and we have

$$rac{n_{1s}}{n_s}\left(1-rac{n_s}{N}
ight)-rac{n_{1s}}{n_s^2}\,n_s\left(1-rac{n_s}{N}
ight)=-\,z_s\,{
m Mean}\,(\delta\gamma_s\delta n_s).$$

Thus

Thus

Mean
$$(\delta \gamma_s \delta n_s) = 0$$
(ix).

Returning to (vi), squaring and summing, we find

$$4\kappa_s^2 \sigma_{\kappa_s}^2 = \frac{1}{N^2} \left\{ \gamma_s^4 n_s \left(1 - \frac{n_s}{N} \right) + 4n_s^2 \gamma_s^2 \frac{n_{1s} n_{2s}}{n_s^3 z_s^2} \right\},\,$$

or,

$$\kappa_s^2 \sigma_{\kappa_s}^2 = rac{1}{N^2} \left\{ rac{1}{4} \gamma_s^4 n_s \left(1 - rac{n_s}{N}
ight) + rac{n_{1s} n_{2s}}{n_s} \left(rac{\gamma_s}{z_s}
ight)^2 \right\} \dots (\mathbf{x}).$$

Again returning to (vi), multiplying it by the corresponding values of $2\kappa_{s'}\delta\kappa_{s'}$ and summing, we reach

$$4\kappa_s\kappa_{s'}\operatorname{Mean}\left(\delta\kappa_s\delta\kappa_{s'}\right) = -\frac{n_sn_{s'}}{N^3}\gamma_s^2\gamma_{s'}^2 + 4\frac{n_sn_{s'}}{N^2}\gamma_s\gamma_{s'}\operatorname{Mean}\left(\delta\gamma_s\delta\gamma_{s'}\right)$$

$$+~2~rac{n_s}{N^2}\,\gamma_s{\gamma_s'}^2~{
m Mean}~(\delta n_{s'}\delta\gamma_s) + 2~rac{n_{s'}}{N^2}\,\gamma_{s'}\gamma_s^2~{
m Mean}~(\delta n_s\delta\gamma_{s'}).$$

But

$$\text{Mean } (\delta \gamma_s \delta \gamma_{s'}) = \frac{1}{z_s z_{s'}} \left(- \frac{n_{1s} n_{1s'}}{n_s n_{s'} N} - \frac{n_{1s} n_{1s'}}{n_s^2 n_{s'}^2} \frac{n_s n_{s'}}{N} + \frac{n_{1s'}}{n_s n_{s'}^2} \frac{n_{1s} n_{s'}}{N} + \frac{n_{1s}}{n_s^2 n_{s'}} \frac{n_{1s'} n_{s}}{N} \right) = 0.$$

Further multiplying (vii) by $\delta n_{s'}$ we find

$$\text{Mean } (\delta n_{s'}\delta \gamma_s) = -\,\frac{1}{z_s} \left(-\,\frac{n_{1s}n_{s'}}{n_sN} + \frac{n_{1s}n_sn_{s'}}{n_s^{\,2}N} \right) = 0, \ \, \text{also}.$$

Accordingly

$$\kappa_s \kappa_{s'} \, {
m Mean} \, (\delta \kappa_s \delta \kappa_{s'}) = - \, rac{1}{4} \, rac{n_s n_{s'}}{N^3} \, \gamma_s^2 \gamma_{s'}^2 \, \ldots \ldots (xi).$$

Returning to (v) we can now evaluate it by aid of (x) and (xi); thus we have

$$\kappa^2 \sigma_{\kappa}^2 = \frac{1}{N^2} \left\{ \frac{1}{4} S \left\{ \gamma_s^4 n_s \left(1 - \frac{n_s}{N} \right) \right\} + S \left\{ \frac{n_{1s} n_{2s}}{n_s} \left(\frac{\gamma_s}{z_s} \right)^2 \right\} - \frac{1}{2} S \left(n_s n_{s'} \gamma_s^2 \gamma_{s'}^2 \right) \right\} \text{ (xii)}.$$

It now remains to find Mean $(\delta \kappa \delta \gamma)$. We have:

$$κ Mean (δκδγ) = S (κs {Mean (δκsδγ)})$$

$$= \frac{1}{2}S \left\{ \frac{{\gamma_s}^2}{N} Mean (δγδn_s) \right\} + S \left\{ \frac{n_s \gamma_s}{N} Mean (δγsδγ) \right\}.$$

We must now find Mean $(\delta \gamma \delta n_s)$ and Mean $(\delta \gamma_s \delta \gamma)$.

$$\begin{split} \operatorname{Mean}\left(\delta\gamma\delta n_{s}\right) &= -\frac{\operatorname{Mean}\left(\delta\nu_{1}\delta n_{s}\right)}{Nz} \\ &= -\frac{1}{Nz}\Big(n_{1s} - \frac{\nu_{1}n_{s}}{N}\Big). \\ \operatorname{Mean}\left(\delta\gamma_{s}\delta\gamma\right) &= \operatorname{Mean}\left\{\frac{\delta\nu_{1}}{Nz}\Big(\frac{\delta n_{1s}}{n_{s}z_{s}} - \frac{n_{1s}\delta n_{s}}{n_{s}^{2}z_{s}}\Big)\right\} \\ &= \frac{1}{Nzn_{s}z_{s}}\left\{n_{1s}\left(1 - \frac{\nu_{1}}{N}\right) - \frac{n_{1s}}{n_{s}}\left(n_{1s} - \frac{\nu_{1}n_{s}}{N}\right)\right\} \\ &= \frac{n_{1s}}{Nzn_{s}z_{s}}\Big(1 - \frac{n_{1s}}{n_{s}}\Big). \end{split}$$

Thus

$$\kappa \operatorname{Mean}\left(\delta \kappa \delta \gamma\right) = -\frac{1}{N^2 z} \left\{ \frac{1}{2} S\left(n_{1s} \gamma_s^2\right) - \frac{\nu_1}{2N} S\left(n_s \gamma_s^2\right) - S\left(\frac{n_{1s} n_{2s}}{n_s z_s} \gamma_s\right) \right\} \quad \text{(xiii)}.$$

We can now substitute in (iii) from (iv), (xii) and (xiii) and obtain σ_{η}^2 . We have

$$\begin{split} \eta^2 \sigma_{\eta}^2 &= \frac{(1 - \eta^2)^4}{(1 + \gamma^2)^2} \left[\frac{1}{N^2} \left\{ \frac{1}{4} S \left(\gamma_s^4 n_s \left(1 - \frac{n_s}{N} \right) \right) + S \left(\frac{n_{1s} n_{2s}}{n_s} \left(\frac{\gamma_s}{z_s} \right)^2 \right) - \frac{1}{2} S \left(n_s n_{s'} \gamma_s^2 \gamma_{s'}^2 \right) \right\} \right] \\ &+ \frac{(1 - \eta^2)^2}{(1 + \gamma^2)^2} \frac{\nu_1 \nu_2}{N^3} \left(\frac{\gamma}{z} \right)^2 \\ &+ \frac{(1 - \eta^2)^3}{(1 + \gamma^2)^2} \frac{1}{N^2} \frac{\gamma}{z} \left\{ S \left(n_{1s} \gamma_s^2 \right) - \frac{\nu_1}{N} S \left(n_s \gamma_s^2 \right) - 2 S \left(\frac{n_{1s} n_{2s}}{n_s} \frac{\gamma_s}{z_s} \right) \right\} \\ &= \frac{(1 - \eta^2)^2}{N \left(1 + \gamma^2 \right)^2} \left[\frac{\nu_1 \nu_2}{N^2} \left(\frac{\gamma}{z} \right)^2 + \frac{(1 - \eta^2)^2}{4} \left\{ S \left(\frac{\gamma_s^4 n_s}{N} \right) - \left(S \left(\frac{n_s \gamma_s^2}{N} \right) \right)^2 \right\} \\ &+ (1 - \eta^2)^2 S \left\{ \frac{n_{1s} n_{2s}}{n_s n_s} \frac{n_s}{N} \left(\frac{\gamma_s}{z_s} \right)^2 \right\} \\ &+ (1 - \eta^2) \left(\frac{\gamma}{z} \right) \left\{ S \left(\frac{n_{1s} \gamma_s^2}{N} \right) - \frac{\nu_1}{N} S \left(\frac{n_s}{N} \gamma_s^2 \right) - 2 S \left(\frac{n_{1s} n_{2s}}{n_s N} \left(\frac{\gamma_s}{z_s} \right) \right) \right\} \right] \\ &- \dots (xiv). \end{split}$$

Now we know all the quantities in the sums on the right of (xiv), because γ_s has had to be found for each array, and z_s can be at once determined from $\bar{x}_y/_y\sigma_x$ which is known. But the labour would be very considerable and hardly commensurate with the result desired, i.e. an approximate measure of the accuracy of determining the correlation by the biserial η method. We shall accordingly investigate the values of the above terms on the hypothesis of a large number of

arrays with linear regression and homoscedasticity, or even with a complete Gaussian distribution of frequency.

In the first place let the division between the two series be the line LL. Let C be the centroid of the frequency surface and RR the regression line. Let $\bar{x} = CN$ and $\bar{x}_y = PM$. Then by the equation to the regression line (correlation $r = \eta$)

$$PQ/\sigma_x = rCQ/\sigma_y, \ (\bar{x} - \bar{x}_y)/\sigma_x = ry/\sigma_y, \ \frac{\bar{x}_y}{\sigma_x \sqrt{1 - r^2}} = \frac{1}{\sqrt{1 - r^2}} \left(\frac{\bar{x}}{\sigma_x} - r \frac{y}{\sigma_y}\right), \ \gamma_s = \frac{1}{\sqrt{1 - r^2}} (\gamma - ry') \dots (xv).$$

Hence

$$\begin{split} &\gamma_s{}^2 = \frac{1}{1-r^2} (\gamma^2 - 2ry'\gamma + r^2y'^2), \\ &\gamma_s{}^4 = \frac{1}{(1-r^2)^2} (\gamma^4 - 4ry'\gamma^3 + 6r^2y'^2\gamma^2 - 4r^3y'^3\gamma + r^4y'^4). \end{split}$$

Thus, since we may suppose $S(n_s y') = S(n_s y'^3) = 0$ approximately:

$$egin{align} S \; (n_s {\gamma_s}^2)/N &= rac{1}{1-r^2} \, ({\gamma}^2 + r^2), \ S \; (n_s {\gamma_s}^4)/N &= rac{1}{(1-r^2)^2} \, ({\gamma}^4 + 6 r^2 {\gamma}^2 + r^4 {eta_2}'), \ \end{array}$$

where β_2 is the second statistical β -constant for the y'-array, and since to our approximation $\eta = r$:

$$\begin{split} \frac{(1-\eta^2)^2}{4} \left[\frac{S\left(n_s \gamma_s^{\ 4}\right)}{N} - \left\{ \frac{S\left(n_s \gamma_s^{\ 2}\right)}{N} \right\}^2 \right] &= \eta^2 \left\{ \gamma^2 + \frac{1}{4} \eta^2 \left(\beta_2{}' - 1\right) \right\}(\text{xvi}). \\ \text{Again} \quad S\left(\frac{n_{1s} \gamma_s^{\ 2}}{N}\right) &= \frac{1}{(1-r^2)} \left\{ \frac{n_{1s}}{N} \left(\gamma^2 - 2r \gamma y' + r^2 y'^2\right) \right\} \\ &= \frac{1}{(1-r^2)} \left\{ \frac{\nu_1 \gamma^2}{N} - 2r \gamma \frac{S\left(n_{1s} y'\right)}{N} + r^2 \frac{S\left(n_{1s} y'^2\right)}{N} \right\}. \end{split}$$

But as in the theory of biserial r^*

$$r = rac{S\left(n_{1s}y'
ight)}{N} / \left(z\,rac{
u_1}{N}
ight),$$

* Biometrika, Vol. vii. p. 97.

and thus

$$S\left(\frac{n_{1s}y'}{N}\right) = rz \frac{\nu_1}{N}.$$

Again

$$\frac{S\left(n_{1s}y^{\prime2}\right)}{N} = \frac{1}{N}\,S^{\prime}\,\left\{n_{x}\left(1\,-\,r^{2}\right) +\,r^{2}\,\frac{x^{2}}{\sigma_{x}^{\,2}}\right\},$$

where the summation S' is from $x = \bar{x}$ to ∞ ; thus

$$\begin{split} \frac{S}{N} \frac{(n_{1s}y'^2)}{N} &= \frac{\nu_1}{N} (1 - r^2) + r^2 \int_{\gamma}^{\infty} \frac{1}{\sqrt{2\pi}} \, x^2 e^{-\frac{1}{2}x^2} dx \\ &= \frac{\nu_1}{N} (1 - r^2) + r^2 \gamma z + r^2 \frac{\nu_1}{N} \\ &= \frac{\nu_1}{N} + r^2 \gamma z. \end{split}$$

Accordingly we have

$$S\left(\frac{n_{1s}{\gamma_s}^2}{N}\right) = \frac{1}{1-\eta^2} \left\{ \frac{\nu_1}{N} \left(\gamma^2 - 2\eta^2 \gamma z + \eta^2\right) + \eta^4 \gamma z \right\},$$

and accordingly

$$\begin{split} (1-\eta^2)\frac{\gamma}{z}\left\{&\frac{S\left(n_{1s}\gamma_s^2\right)}{N}-\frac{\nu_1}{N}\left.S\left(\frac{n_s\gamma_s^2}{N}\right)\right\}=\frac{\gamma}{z}\left\{\frac{\nu_1}{N}\left(\gamma^2-2\eta^2\gamma z+\eta^2-\gamma^2-\eta^2\right)+\eta^4\gamma z\right\}\\ &-\eta^2\gamma^2\left(\eta^2-2\frac{\nu_1}{N}\right) \ldots (\text{xvii}). \end{split}$$

Now substitute (xvi) and (xvii) in (xiv) and we find

This form for the value of σ_{η}^2 shows that the probable error of η does not become infinite when $\eta=0$; for in that case, we shall have $\frac{n_{1s}}{n_s}=\frac{\nu_1}{N}$ for all values of s, and $\frac{\gamma_s}{z_s}=\frac{\gamma}{z}$, so that the last two terms in $1/\eta^2$ take indeterminate forms which need evaluating. For calculation it is best to use the form

$$\begin{split} \sigma_{\eta}^{2} &= \frac{(1-\eta^{2})^{2}}{N(1+\gamma^{2})^{2}} \left[\frac{1}{2} \eta^{2} + \gamma^{2} \left(\eta^{2} + \frac{\nu_{2} - \nu_{1}}{N} \right) \right. \\ &+ \frac{1}{\eta^{2}} \left\{ \frac{\nu_{1} \nu_{2}}{N^{2}} \left(\frac{\gamma}{z} \right)^{2} + (1-\eta^{2})^{2} S\left(\frac{n_{1s} n_{2s}}{n_{s} n_{s}} \left(\frac{\gamma_{s}}{z_{s}} \right)^{2} \frac{n_{s}}{N} \right) - 2 \left(1 - \eta^{2} \right) \frac{\gamma}{z} S\left(\frac{n_{1s} n_{2s}}{n_{s} n_{s}} \left(\frac{\gamma_{s}}{z_{s}} \right) \frac{n_{s}}{N} \right) \right\} \right] \\ &- \dots \dots (\text{xix}). \end{split}$$

The functions
$$\begin{aligned} \psi_s{}'' &= \frac{n_{1s}.n_{2s}}{n_s.n_s} \left(\frac{\gamma_s}{z_s}\right)^2 = \frac{1}{2} \left(1 - \alpha^2\right) \left(\frac{x}{z}\right)^2. \\ \psi_s{}' &= \frac{n_{1s}.n_{2s}}{n_s.n_s} \frac{\gamma_s}{z_s} = \frac{1}{2} \left(1 - \alpha^2\right) \frac{x}{z}. \end{aligned}$$

where x, $\frac{1}{2}(1+a)$ and z are the values given in the tables of the probability function, have been calculated by my colleagues Miss Ethel M. Elderton and Miss B. M. Cave in the table given on p. 302 below. The labour was considerable as owing to the smallness of z for high values of x, the quantities involved had to be calculated to many places of decimals. If this table be used we can put (xix) in the form:

$$egin{aligned} \sigma_{\eta}^{\,2} &= rac{(1 - \eta^2)^2}{N\,\,(1 + \gamma^2)^2} \left[rac{1}{2} \eta^2 + \gamma^2 \left(\eta^2 + rac{
u_2 -
u_1}{N}
ight)
ight. \ &+ rac{1}{\eta^2} \left\{ rac{
u_1
u_2}{N^2} \left(rac{\gamma}{z}
ight)^2 + (1 - \eta^2)^2 S\left(\psi_s{}'' rac{n_s}{N}
ight) - 2\,\,(1 - \eta^2) rac{\gamma}{z}\,S\left(\psi_s{}' rac{n_s}{N}
ight)
ight\}
ight] \ &. \ldots \ldots (\mathbf{x}\mathbf{x}). \end{aligned}$$

I propose to illustrate this on the following example correlating nature of vaccination and severity of attack in the case of smallpox.

Severity of Attack.

Nature of Vaccination	Haemorrhagic	(2) Confluent	(3) Abundant	(4) Sparse	(5) Very sparse	Totals
0 to 25 yrs. since Over 25 yrs. or not at all	5 44	$\begin{array}{c} 38 \\ 251 \end{array}$	120 388	176 308	148 211	487 1202
Totals	49	289	508	484	359	1689
Positions of means	$ \begin{array}{c c} \bar{x}_1/\sigma_1 = \pmb{\gamma_1} \\ = + \ 1 \cdot 2700 \end{array} $	$ \bar{x}_2/\sigma_2 = \gamma_2 \\ = + 1.1194 $	$\begin{array}{l} \bar{x}_3/\sigma_3 = \gamma_3 \\ = + \cdot 7185 \end{array}$	$ \bar{x}_4/\sigma_4 = \gamma_4 \\ = + \cdot 3488 $	$egin{aligned} ar{x}_5/\sigma_5 &= \gamma_5 \ &= \cdot 2218 \end{aligned}$	$egin{aligned} & \hat{x}/\sigma_x = \gamma \ & = \cdot 5583 \end{aligned}$
Ordinates at dichotomic line	$z_1 = \cdot 17810$	$z_2=\cdot 21321$	$z_3 = \cdot 30818$	$z_4=\cdot 37540$	$z_5=\cdot 38925$	$z=\cdot 34137$
$n_{ m ls}/n_{ m s}$	·10204	·13149	.23622	. ·36364	·41226	$\frac{\nu_1}{N} = \cdot 28834$
n_{2s}/n_s	·89796	·86851	$\cdot 76378$	-63636	.58774	$\frac{\nu_2}{N} = .71166$
n_s/N	.02901	·17111	.30077	.28656	·21255	Sum = 1.00000
n_{18}/N	.00296	-02250	-07105	.10420	.08763	$Sum = \cdot 28834 = \nu_1/N$
${\gamma_s}^2$	1.61290	1.25306	.51624	·12166	.04920	$\gamma^2 = -31170$
γ_s/z_s	7.13083	5.25022	2.33143	·92914	.56981	y/z = 1.63547
$(\gamma_{\circ}/z_{\circ})^2$	50.84867	27.56489	5.43556	-86331	•32469	$(\gamma/z)^2 = 2.67476$
$n_s \gamma_s^2/N \ n_s \gamma_s^4/N \ n_{1s} \gamma_s^2/N$	04679	.21441	15527	.03486	.01046	$\kappa^2 = -46179$
$n_s \gamma_s^4/N$.07547	-26867	.06812	.00424	.00051	$\gamma^4 = .09716$
	.00477	0.02819	∙03668	·01268	.00431	Sum = -08663
$rac{n_{1s}}{n_s} rac{n_{2s}}{n_s} rac{n_s}{N} rac{\gamma_s}{z_s}$	-018955	·102594	¹ ·126515	-061613	.029346	$Sum = \cdot 339023$
$rac{n_{1s}}{n_s} rac{n_{2s}}{n_s} rac{n_s}{N} \left(rac{oldsymbol{\gamma}_s}{z_s} ight)^2$	·135162	.538639	·294961	.057247	.016722	Sum = 1.042731

$$\eta^2 = (\kappa^2 - \gamma^2)/(1 + \kappa^2) = \cdot 102,6755$$
 and $\eta = \cdot 3204$.

Again, $S(n_s\gamma_s^4)$ $N=\cdot 41701$ actually; but if it be calculated from the value of p. 296, i.e.

$$S\left(n_{s}\gamma_{s}^{4}
ight)N=rac{1}{(1-\eta^{2})^{2}}(\gamma^{4}+6\eta^{2}\gamma^{2}+\eta^{4}eta_{2}{}'),$$

taking $\beta_2' = 3$, its value = ·39843, which is approximate enough for most practical purposes,

$$\frac{(1-\eta^2)^2}{4} \left\{ S\left(\frac{{\gamma_s}^4 n_s}{N}\right) - \left(\frac{S\left(n_s {\gamma_s}^2\right)}{N}\right)^2 \right\},$$

taken actually, $= \cdot 201,298 \{ \cdot 41701 - (\cdot 46179)^2 \} = \cdot 041,0165$, while the approximate value in (xvi) gives $\cdot 037,2751$.

In the next place

$$\left. (1-\eta^2)\frac{\gamma}{z} \left\{ S\left(\frac{n_{1s}\gamma_s^2}{N}\right) - \frac{\nu_1}{N} \, S\left(\frac{n_s}{N} \, \gamma_s^2\right) \right\},$$

taken actually, = -.068,270, while the approximate value in (xvii) gives -.01517.

Further*,

$$(1-\eta^2)\frac{\gamma}{z} \times 2S\left(\frac{n_{1s}n_{2s}}{n_sn_s}\frac{n_s}{N}\frac{\gamma_s}{z_s}\right) = 1.794,649 \times 1.63547 \times .339,023 \dagger$$

= .995.062.

and will be seen to be of wholly different order to the terms already computed.

Again,
$$\frac{\nu_1\nu_2}{N^2}\left(\frac{\gamma}{z}\right)^2 = \cdot 28834 \times \cdot 71166 \times 2 \cdot 67476$$

$$= \cdot 548.861.$$

Lastly we have the term

$$(1-\eta^2)^2 S\left\{\frac{n_{1s}n_{2s}}{n_sn_s}\frac{n_s}{N}\left(\frac{\gamma_s}{z_s}\right)^2\right\} = \cdot 805,191 \times 1\cdot 042,731 \ddagger - \cdot 839.598$$

Thus substituting in (xiv) we have

$$\sigma_{\eta}^{2} = \frac{(1 - \eta^{2})^{2}}{N\eta^{2} (1 + \gamma^{2})^{2}} \{ \cdot 548,861 + \cdot 041,0165 + \cdot 839,598 - \cdot 068,270 - \cdot 995,062 \}$$

$$= \frac{\cdot 805,191 \times \cdot 366,144}{1689 \times \cdot 102,6755 \times (1\cdot 31170)^{2}} - \cdot 000,988,065.$$

$$\therefore \ \sigma_{\eta} = \cdot 03143,$$

and

Probable Error =
$$\cdot 67449\sigma_{\eta} = \cdot 0212$$
.

- * In this case γ_s is of the same sign throughout, but caution must be taken to see from the data whether for certain arrays it changes sign.
 - † Found from the table of ψ' , this is $\cdot 338,961$.
- ‡ Found from the table of ψ'' , this is 1.044,911. The differences in this and the previous value for ψ' depend on cutting off at 5 or 6 decimal places and in using in the different processes only first differences.

For comparison we will investigate the value as given by the less exact formula (xix):

$$\sigma_{\eta}^{2} = \frac{\cdot 805,191}{1689 \times (1 \cdot 31170)^{2}} \left[\cdot 051,338 + \cdot 31170 \left(\cdot 102,676 + \cdot 423,327 \right) + 9 \cdot 739,422 \left(\cdot 548,861 + \cdot 839,598 - \cdot 995,062 \right) \right]$$

$$= \cdot 000,277,077 \times 4 \cdot 046,752 = \cdot 001,121,26.$$

Hence

$$\sigma_{\eta} = .03349$$

and

Probable Error =
$$\cdot 0226$$
.

Thus for all practical purposes (xix) gives as good a result as the more lengthy formula (xiv). Had the value $r = \cdot 3204$ been computed by the product moment method for a population of 1689 the probable error would have been $\cdot 0147$. Thus the accuracies of the product-moment and the biserial η methods appear to be about roughly in the ratio of 2 to 3 for this case.

We will now turn back to the formula (xviii) and endeavour to express the quantities in curled brackets in powers of r or η . We have

$$egin{align} z_{arsigma} &= rac{1}{\sqrt{2\pi}} \, e^{-rac{1}{2}\gamma_8^2} = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}rac{(\gamma - ry')^2}{1 - r^2}} \ &= rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}\gamma^2} \{1 + r\gamma y' + rac{1}{2}r^2 \, (\gamma^2 y'^2 - y'^2 - \gamma^2)\}. \end{split}$$

Hence

$$\begin{split} &\frac{\gamma_s}{z_s} = \frac{\gamma}{z} \left(1 - r \frac{y'}{\gamma} + \frac{1}{2} r^2 \right) \{ 1 - r \gamma y' + \frac{1}{2} r^2 \left(\gamma^2 y'^2 + y'^2 + \gamma^2 \right) \} \\ &= \frac{\gamma}{z} \left\{ 1 - r y' \frac{1 + \gamma^2}{\gamma} + r^2 \left(y'^2 \right) + \frac{1}{2} r^2 \left(1 + \gamma^2 \right) \left(1 + y'^2 \right) \right\} \dots (xxi). \end{split}$$

Again

$$\frac{n_{1s}}{n_s} = \frac{1}{\sqrt{2\pi}} \int_{\gamma_s}^{\infty} e^{-\frac{1}{2}x^2} dx,$$

and

$$\gamma_s = \gamma - ry' + \frac{1}{2}r^2\gamma.$$

Thus

$$\frac{n_{1s}}{n_s} = \frac{\nu_1}{N} + \frac{1}{\sqrt{2\pi}} \int_{\gamma - ry' + \frac{1}{2}r^2\gamma}^{\gamma} e^{-\frac{1}{2}x^2} dx.$$

Take $x = \gamma - x'$, so that x' will be small, thus

$$\begin{split} \frac{n_{1s}}{n_s} &= \frac{\nu_1}{N} + z \int_0^{ry' - \frac{1}{2}r^2\gamma} (1 + \gamma x' + \frac{1}{2}\gamma^2 x'^2) (1 - \frac{1}{2}x'^2) dx' \\ &= \frac{\nu_1}{N} + z \left(ry' - \frac{1}{2}\gamma r^2 + \frac{1}{2}r^2\gamma y'^2 \right) + \text{etc.} \end{split}$$

Similarly:

$$\begin{split} \frac{n_{2s}}{n_s} &= \frac{\nu_2}{N} - z \, (ry' - \frac{1}{2} \gamma r^2 + \frac{1}{2} r^2 \gamma y'^2) - \, \text{etc.}, \\ \frac{n_{1s} n_{2s}}{n_s n_s} &= \frac{\nu_1 \nu_2}{N^2} - z \, \frac{\nu_2 - \nu_1}{N} \, ry' - z^2 r^2 y'^2 + Z \, \frac{\nu_2 - \nu_1}{N} \, \frac{1}{2} \gamma r^2 \, (1 - y'^2) + \, \text{etc....}(\text{xxii}). \end{split}$$

$$S\left(\frac{n_s}{N}\right) = 1, \quad \frac{S\left(n_s y'\right)}{N} = 0, \quad S\left(\frac{n_s y'^2}{N}\right) = 1,$$

and accordingly:

$$S\left(rac{n_{1s}n_{2s}}{n_{s}n_{s}}rac{n_{s}}{N}
ight) = rac{
u_{1}
u_{2}}{N^{2}} - z^{2}
u^{2} + ext{etc.}$$

We have then

$$\left| \frac{1}{\eta^2} \left(\frac{\gamma}{z} \right)^2 \left\{ \frac{\nu_1 \nu_2}{N^2} - S\left(\frac{n_{1s} n_{2s}}{n_s N} \right) \right\} = \gamma^2 + \text{terms in } \eta^2 \dots (xxiii).$$

Again turning back to (xxi):

$$\left(1-\eta^2
ight)rac{\gamma_s}{z_s}-rac{\gamma}{z}=rac{\gamma}{z}\left(-\left.ry
ight)^{-1}rac{+}{\gamma}rac{\gamma^2}{z}+\left.r^2\left(y^{\prime2}-1
ight)
ight)+rac{1}{2}r^2\left(1+\gamma^2
ight)\left(1+y^{\prime2}
ight).$$

Square this, multiply by (xxii) and n_s/N , sum and note that sum of odd powers of y' go out. We find

$$\frac{1}{\eta^2} S \left\{ \frac{n_{1s} n_{2s}}{n_s N} \left((1 - \eta^2) \frac{\gamma_s}{z_s} - \frac{\gamma}{z} \right)^2 \right\} = \frac{\nu_1 \nu_2}{N^2} \frac{(1 + \gamma^2)^2}{z^2} + \text{terms in } \eta^2 ... (\text{xxiv}).$$

Substituting (xxiii) and (xxiv) in (xviii) we deduce

$$\begin{split} \sigma_{\eta}^{\;2} &= \frac{(1-\eta^2)^2}{N} \left[\frac{\gamma^2}{(1+\gamma^2)^2} \frac{\nu_2 - \nu_1}{N} + \frac{\gamma^2}{(1+\gamma^2)^2} + \frac{\nu_1 \nu_2}{N^2 z^2} + \text{terms in } \eta^2 \right] \\ &= \frac{(1-\eta^2)^2}{N} \left[\frac{\nu_1 \nu_2}{N^2 z^2} + \frac{2\nu_2}{N} \frac{\gamma^2}{(1+\gamma^2)^2} + \text{terms in } \eta^2 \right]. \end{split}$$

$$\text{Probable Error of } \eta = \frac{\cdot 67449 \, (1 - \eta^2)}{\sqrt{N}} \left\{ \frac{\nu_1 \nu_2}{N^2 z^2} + \frac{2 \nu_2}{N} \frac{\gamma^2}{(1 + \gamma^2)^2} \right\}^{\frac{1}{2}}$$

$$\times$$
 (1 + terms in η^2 and higher powers)(xxv).

This expression is of value for two reasons. First it indicates that the probable error of η found for non-associated variates is

$$=\frac{\cdot 67449}{\sqrt{N}} \left\{ \frac{\nu_1 \nu_2}{N^2 z^2} + \frac{2\nu_2}{N} \frac{\gamma^2}{(1+\gamma^2)^2} \right\}^{\frac{1}{2}} \(xxvi).$$

And secondly (xxv) may give a good approximate value of the probable error of η , when we neglect the last factor altogether, say for values of η under $\cdot 4$ or $\cdot 5$. Thus in the illustration given above

$$\begin{split} \left\{ \frac{\nu_1 \nu_2}{N^2 z^2} + \frac{2\nu_2}{N} \frac{\gamma^2}{(1+\gamma^2)^2} \right\}^{\frac{1}{2}} &= \left\{ \frac{\cdot 548,861}{\cdot 31170} + 1 \cdot 42332 \frac{\cdot 31170}{(1 \cdot 31170)^2} \right\}^{\frac{1}{2}} \\ &= 1 \cdot 4208. \end{split}$$

We have therefore to multiply the probable error as given by the product-moment method, i.e. in our case ·0147 by 1·4208, giving ·0209, in fair accordance with the more accurate value ·0226, it being remembered that a probable error is rarely worth more than one or two significant figures.

Table of Values of the Biserial η Functions, ψ' and ψ'' .

x	ψ'	$\psi^{\prime\prime}$	x	ψ'	$\psi^{\prime\prime}$
00	0	0	2.00	·82357	30.5078
.05	$\cdot 03132$.00393	2.05	-83084	34.9079
·10	0.06258	$\cdot 01577$	2.10	·83770	39.9960
.15	-09371	.03563	2.15	.84416	45.8899
-20	$\cdot 12465$.06375	2.20	$\cdot 85025$	52.729
.25	$\cdot 15534$.10043	2.25	-85599	60.680
.30	.18571	.14608	2.30	.86140	69-9410
.35	-21572	.20121	2.35	-86650	80.746
•40	$\cdot 24530$.26644	2.40	$\cdot 87132$	93.378
.45	$\cdot 27441$	-34251	2.45	$\cdot 87587$	108-173
-50	$\cdot 30299$	-43030	2.50	-88016	125.535
.55	-33099	-53083	2.55	$\cdot 88422$	145.946
.60	$\cdot 35839$	$\cdot 64531$	2.60	$\cdot 88807$	169-991
-65	-38513	$\cdot 77509$	2.65	-89171	198-369
.70	.41118	-92177	2.70	$\cdot 89516$	231.930
.75	$\cdot 43651$	1.08716	2.75	$\cdot 89843$	271.696
-80	$\cdot 46110$	1.27337	2.80	-90154	318-909
.85	$\cdot 48493$	1.48278	2.85	-90449	375.075
.90	-50797	1.71815	2.90	$\cdot 90731$	442.028
.95	$\cdot 53022$	1.98263	2.95	-90998	521.999
1.00	-55165	2.27983	3.00	$\cdot 91254$	617.713
1.05	$\cdot 57228$	2.61391	3.05	$\cdot 91498$	732.506
1.10	-59208	2.98961	3.10	$\cdot 91730$	870.463
1.15	-61108	3.41242	3.15	$\cdot 91953$	1036.599
1.20	$\cdot 62926$	3.88863	3.20	$\cdot 92166$	1237.088
1.25	$\cdot 64665$	4.42549	3.25	$\cdot 92371$	1479.538
1.30	$\cdot 66324$	5.03136	3.30	$\cdot 92567$.	$1773 \cdot 344$
1.35	-67906	5.71590	3.35	$\cdot 92755$	2130.136
1.40	$\cdot 69412$	6.49026	3.40	$\cdot 92936$	2564.332
1.45	$\cdot 70844$	7.36736	3.45	$\cdot 93110$	3093.849
1.50	$\cdot 72203$	8.36218	3.50	$\cdot 93277$	3740.988
1.55	$\cdot 73493$	9.49211	3.55	$\cdot 93438$	4533.572
1.60	$\cdot 74715$	10.77737	3.60	$\cdot 93593$	5506.376
1.65	$\cdot 75871$	12.24149	3.65	$\cdot 93743$	6702.955
1.70	$\cdot 76965$	13.91195	3.70	$\cdot 93888$	8177.972
1.75	$\cdot 77999$	15.82082	3.75	-94027	10,000.169
1.80	$\cdot 78975$	18.00564	3.80	$\cdot 94162$	12,256.169
1.85	$\cdot 79896$	20.51038	3.85	$\cdot 94292$	15,055.358
1.90	$\cdot 80765$	23.38668	3.90	$\cdot 94418$	18,536.141
1.95	$\cdot 81584$	26.69522	3.95	$\cdot 94540$	22,874.013
2.00	$\cdot 82357$	30.50747	4.00	-94658	28.291.951

A PRELIMINARY REPORT ON SOME BREEDING EXPERIMENTS WITH FOXGLOVES.

By ERNEST WARREN, D.Sc. (LOND.).

In 1914 in the garden of the writer there occurred among some ordinary foxgloves (Digitalis gloxiniaeflora) a specimen of the variety known as monstrosa in which there is a large, more or less regular, peloric or crown flower arising by the fusion of a variable number of ordinary flowers at the top of the axis. The idea arose that it would be of interest to ascertain whether this peloric character would blend in the offspring when the two forms of foxgloves were crossed, or whether, as would appear more likely, the character would be transmitted in its entirety or not at all.

In working at this particular character it was found that the shape, the spotting, and the general intensity of colouration of the ordinary zygomorphic flowers varied greatly, and accordingly a record has been made of these different characters in the first generation. The second generation is now being raised; but, as it will be some time before flowering takes place, a preliminary report on the results of the observation on the first generation will be of interest, since they indicate the general trend of the experiment.

I am much indebted to Dr Conrad Akerman for making most of the measurements and for ever-ready assistance in the experiment; to Mr A. W. Cullingworth, Mr W. G. Rump and Miss R. Meanwell for general help in the cultivation of the plants, mounting the pressed flowers, etc., and to Mr George Carter, Mr W. Bainbridge, Mr C. R. C. McDonald and Mr H. C. Burnup for growing some of the plants in their gardens, also to Mr J. F. Nicolson for allowing me to examine and take specimens of plants from his private grounds.

I. Material.

The parent plants were the following:

- (1) Medium-purple crowned foxglove raised from seed from Erfurt, Germany = A.
- (2) Very-pale-purple crowned foxglove from Mr George Carter's Nursery, Pietermaritzburg, raised from Erfurt seed = C(1).
 - (3) White ordinary foxglove (Carter) = C(2).
 - (4) Light-purple ordinary foxglove (Carter) = C (3).
- (5) Medium-purple ordinary foxglove from Mr P. T. Badock's garden, Hilton Rd = B(1).

- (6) Pale-purple ordinary foxglove (Badock) = B(2).
- (7) Medium-purple ordinary foxglove (Badock) = B (3).
- (8) Dark-purple ordinary foxglove (Badock) = B(4).
- (9) Dark-purple crowned foxglove from Mr J. F. Nicolson's garden, Boshoff Rd; seed from Messrs Dobbie, Edinburgh = N (1).
 - (10) Dark-purple creased lip ordinary foxglove (Nicolson) = N (2).

These plants were variously crossed or self-fertilized so that seed-capsules of some 36 different pairings were obtained. Unfortunately many of the families were completely killed soon after germination owing to scorching by the semi-tropical sun of Natal. There were ultimately obtained records of the flowering of 188 plants, the product of 19 families. In every case the contents of one capsule only were sown. Sowing was done in the middle of December, 1914, and flowering occurred in October and November of 1915. Most of the plants grew very luxuriantly and the flower-axes reached a height of 4 to 5 ft.

The following is a list of the families showing the parentage (seed-plant placed first) and the number of plants which flowered. Except where indicated the pollen was taken from the ordinary zygomorphic flowers:

ΙA	A (self-fertilized)	35	XI	$A \times C$ (3)		17
I	C(1) (self-fertilized)	7	XII	$C(3) \times A^*$		1
\mathbf{H}	$C(1) \times B(4)$	8	XIV	$A \times C$ (2)		14
III	$B(4) \times C(1)$	5	XV	$C(2) \times A^*$	• • •	8
IV	B (4) (self-fertilized)	5	XV A	$A \times C(2)$		7
V	$C(1) \times B(3)$	23	XV B	$C(2) \times A\dagger$		1
VIII	$C(1) \times C(2)$	10	XXIV	$A \times B$ (4)		13
IX	$C(2) \times C(1)$	10	XXV	$B\left(4 ight) imes A\dagger$		6
IX A	$C(1) \times N(2)$	4	XXIX	$A \times N(1)$		3
\mathbf{X}	C(2) (self-fertilized)	11				

All the families except I a were grown in beds on a piece of land close to the Natal Museum. I a plants were raised in different private gardens of Pietermaritzburg.

II. The Inheritance of certain Characters.

The characters dealt with are:

- (1) The possession of a crown or a terminal peloric flower at the top of the flower-axis.
- (2) The presence of brown spots in place of dark-purple spots on the lower inside surface of the ordinary zygomorphic flower.
- (3) The amount of spotting on the lower inside surface of the ordinary flower, expressed as the percentage of area of this surface covered by the spots.

^{*} Pollen from crown flower.

[†] Pollen from terminal crown flower of side flower-axis.

- (4) The intensity of the purple colouration over the general outer surface of the ordinary flower.
- (5) The ratio of the maximum width of the corolla at the mouth to the total length of the corolla, expressed $\frac{\text{width}}{\text{length}} \times 1000$.

With reference to the spotting on the inside of the flower the percentage area covered by the spots was estimated by the help of a diagram consisting of a series of equal sized rectangles each of which was spotted to a known extent: 4%, 8%, 12%, 16%,64%.

For estimating the intensity of the purple colouration over the general outer surface a colour scale was obtained in the following way. A very weak solution* of a mixture of aniline dyes was prepared which resembled the purple colour of the flowers. This solution was placed in upright rectangular glass jars of varying With transmitted light the intensity of colour, of course, internal dimensions. varied according to the depth of fluid. Jars of internal dimensions, measured from back to front, of 20 mm., 30 mm., 40 mm., 50 mm., 60 mm., 70 mm., 80 mm., 90 mm., 100 mm., 140 mm., 280 mm., were employed, and the colour of the solution, as viewed from the front of the jar with light coming from behind, was compared with the general colour of the flowers. Thus, if the colour of the flower was nearest, say, to the colour of the solution in a jar with a thickness of fluid of 70 mm. the colour of the plant was said to be 70. For a comparatively small range, as from 20 to 100 mm., the method appeared to work satisfactorily, but less reliance can be placed on the greater depths. In any case a scale of some definite physical significance is obtained.

The colour of the flowers is due to the presence of a purple cell-sap. In the case of the general colouration of the whole surface both the outside and the inside epidermal cells bear this coloured sap. In the spots, where the colouration is much more intense, the coloured cells are confined to the epidermis on the inside of the flower. In flowers which are white, with the exception of the deeply coloured spots, there may be some exceedingly faint traces of isolated streaks of purple on the inside of the flower, these are due to a slight colouration of the inside epidermal cells.

The flowers were measured with compasses and scale. The width was the maximum distance between the reflexed margins of the mouth, measured from right to left, and the length, measured along the adcauline surface, was the distance from the middle of the straightened-out margin of the mouth to the middle of the insertion-edge of the corolla.

1. The peloric Character.

The peloric flower at the top of the axis would appear to arise by the fusion of a varying number of the uppermost flowers and the concurrent entire suppression of the internodes between such flowers. Usually the apex of the main axis is un-

^{*} Water 100 c.c., rubin 2.375 mg., gentian violet 0.125 mg. (Grübler).

affected, and after the peloric flower has withered it continues to grow through the centre of the crown and may produce a considerable number of zygomorphic flowers. On this out-growing axis a second and subsequently even a third peloric or crown flower may be produced. These are always less perfect than the first. In other plants the peloric flower is permanently the terminal flower, and the main axis ends in ovary and pistil.

In plant A the peloric flower consisted of four fused flowers, in plant C (1) of about eight flowers, and in both cases the main axis continued to grow on the withering of the crown. In N (1) the peloric flower was a regular deep cup consisting of only three fused flowers and the main axis terminated in an ovary.

In the case of side flower-shoots the axis seldom continues to grow, but generally terminates in a pistil. In plant A the terminal flower of the side shoot consisted of only two flowers which had fused laterally and the resulting structure was bilaterally symmetrical. In plant C(1) the side shoots terminated in a beautifully regular shallow cup consisting of three fused flowers.

In connection with the formation of the crown flower it is clear from the arrangement of the stamens, and the lobing and spotting of the corolla, that the structure arises as if the flowers had split along the middle line of the upper surface, spread out and fused with their neighbours along the split edges.

As an abnormality there occasionally occurred among the plants zygomorphic flowers completely split along the upper surface: they were otherwise quite normal flowers. Sometimes where split the edges gaped apart, and thus there is a tendency for the flowers to arise in a flat, leaf-like condition.

It may be supposed in fact that the complete suppression of certain internodes causes a definite number of flower-buds to fuse together in such a manner that when growth occurs the resulting structure has the appearance of being produced by the joining together of several zygomorphic flowers which have been cut open along the middle line of the upper surface and have been connected together to form a cup or shallow saucer.

It was soon found that imperfect crowns of different degrees of incompleteness could occur, and this fact raised the presumption that in the cross of a crowned plant and an ordinary plant the offspring would exhibit more or less intermediate characters.

It seemed quite hopeless to attempt to find a natural scale by means of which the intensity of the peloric character in different plants could be measured, and the following empirical grading was adopted.

(1) Plants in which the main axis carried a perfect crown of a variable number of flowers (3, 4, 8) was placed in the 100 % grade. On some few plants the corolla of the crown flowers was quite small and green, or even entirely absent, but the arrangement of the sepals indicated clearly that the peloric character was fully developed; such plants were also placed under the 100 % grade.

- (2) Sometimes the main axis had its terminal portion spirally twisted in 1-2 turns, and in this region the flowers were excessively crowded owing to the great reduction in the length of the internodes. The flowers were very abnormal, and were usually split open and formed large, flat, coloured, petaloid structures which matured long before the lower normal flowers of the axis. The side shoots of such plants usually carried more or less perfect crowns. These plants were placed in the 75 % grade.
- (3) Plants in which the main axis was ordinary and carried no crown, but the side flower-axes terminated in crowns, consisting of two or more fused flowers, were placed in the 50 % grade.
- (4) Plants in which the main axis was markedly dwarfed, lumpy and curved, owing to the shortening of the internodes, but the flowers more or less normal, were placed in the 50% grade.
- (5) Plants in which the terminal portion of the main axis was somewhat curved, in which the upper internodes were reduced and of which the side shoots also showed such a tendency, were placed in the 25 % grade.

Spiral bending of the axis always occurs with the peloric condition when the crown consists of more than three flowers and the axis continues to grow through the crown. It is doubtless caused by the suppression of the internodes.

In the following table the results obtained in the first generation are summarized.

				Offsp	ring		
Parentage		Cro	wned o	r tende	ency fo	r same	
1	No.	100 %	75 %	50 %	25 %	Total crowned	Not crowned
IA. A (crowned 100 %) $\hookrightarrow \times \circlearrowleft$ (self)	33	33	0	0	0	33	0
I. $C(1)$ (crowned 100 %) $\mathcal{L} \times \mathcal{L}$ (self)	7	3	0	4	0	7	0
X. C (2) (ordinary) $\mathcal{Q} \times \mathcal{J}$ (self)	11	1	1	1	0	3	8
IV. B (4) (ordinary) $\mathcal{Q} \times \mathcal{O}$ (self)	5	0	0	0	0	0	5
VIII. C (1) (crowned) $\mathcal{Q} \times C$ (2) (ordinary) \mathcal{J}	10	2	0	1	0	3	7
IX. C (2) (ordinary) $\mathcal{Q} \times C$ (1) (crowned) \mathcal{C}	10	5	0	1	0	6	4
\int II. C (1) (crowned) $\mathcal{Q} \times B$ (4) (ordinary) \mathcal{S}	8	0	0	0	0	0	8
V. B (4) (ordinary) $\mathcal{Q} \times C$ (1) (crowned) \mathcal{O} V. C (1) (crowned) $\mathcal{Q} \times B$ (3) (ordinary) \mathcal{O}	$\frac{5}{23}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	5
f XI. A (crowned) $\mathcal{L} \times \mathcal{L}$ (3) (ordinary) $\mathcal{L} \times \mathcal{L}$	$\frac{23}{17}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	4	$\frac{0}{3}$	0	0	23
XII. $C(3)$ (ordinary) $\mathcal{L} \times A$ (crowned) $\mathcal{L} = \mathcal{L}$	1	0	1	0	$\frac{1}{0}$	$\frac{10}{1}$	7
$\int XIV. \ A \ (\text{crowned}) \ \ \stackrel{?}{\circ} \times C \ (2) \ (\text{ordinary}) \ \stackrel{?}{\circ} \dots$	14	7	$\frac{1}{2}$	0	0	9	0 5
$XV.$ C(2) (ordinary) $\mathcal{L} \times A$ (crowned) $\mathcal{L} \dots$	8	2	0	ĭ	0	3	5
XVA. A (crowned) $\mathcal{Q} \times C$ (2) (ordinary) \mathcal{J}	7	$\frac{1}{2}$	ŏ	0	ŏ	2	5
XVB. $C(2)$ (ordinary) $\hookrightarrow A$ (crowned) \circlearrowleft	i	0	ŏ	ŏ	l ĭ	ī	0
IXA. $C(1)$ (crowned) $\mathcal{L} \times N(2)$ (ordinary) \mathcal{L}	4	1	0	Ö	ō	î	3
XXIX. A (crowned) $\mathcal{L} \times N(1)$ (crowned) $\mathcal{L} \dots$	4	4	0	0	0	4	o o
XXIV. A (crowned) $\mathcal{L} \times B$ (4) (ordinary) \mathcal{L}	13	0	0	0	0	0	13
XXV. $B(4)$ (ordinary) $\mathcal{Q} \times A$ (crowned) \mathcal{S}	6	0	0	0	0	0	6
Totals		***			***	83	104

It will be of interest to compare these figures with those that would be expected if the character behaved as a Mendelian unit. In the experimental results it will be noticed that all plants showing any tendency for a crown are grouped together as opposed to the plants exhibiting no such tendency.

To obtain the theoretical figures, and speaking in Mendelian terminology, it will be necessary to make certain assumptions as to the homozygous or heterozygous nature of the parent plants with regard to the presence or absence of a crown. The absence is dominant over the presence of a crown.

In the cases of parents A, C(1), C(2) and B(4) we have experimental evidence of the gametic nature of the plants. Reference to the above table will show that A and C(1) are pure recessives (families I A and I), C(2) is heterozygous (family X), and B(4) almost certainly homozygous dominant (family IV). For the other parents we assume that B(3) and B(4) are homozygous dominant, N(1) pure recessive, and C(3) and N(2) heterozygous.

With these assumptions, which are warranted by the behaviour of the parents in the various crossings, we can calculate the theoretical expectation for each family. The totals, to the nearest whole figure, are 83 plants crowned and 104 plants not crowned. The experimental result as shown above gives the same figures. In the light of other investigations this identity between the theoretical expectation and experimental result is to be regarded, of course, as unusual and accidental.

Of the 83 plants with a crown or a tendency for a crown the number in each grade is given below:

100 %	75 %	50 %	25 %	Total
62	8	11	2	83

In the various crossings of crowned parents and non-crowned parents there is thus a marked tendency for the character to be transmitted in its entirety or not at all. Notwithstanding this fact it nevertheless appears that the character can be diluted; for example in cross no. XI, A (crowned) $\mathcal{L} \times C$ (3) (ordinary) \mathcal{L} , we have:

	Crow	rned		Not
100 %	75 %	50 %	25 %	crowned
2	4	3	1	7

Thus, although the character appears to be capable of blending yet it is usually transmitted as a simple Mendelian unit.

2. The Presence of Brown Spots.

Among the various families there occurred plants with white corolla which possessed brown or greenish spots in place of the usual dark-purple spots. Such brown-spotted flowers only occurred when the corolla was white. If there was the faintest trace of purple on any part of the general surface of the corolla the spots were almost invariably purple. On the other hand the intensity of the colouration of the spots appeared to be in no way related to the intensity of the general colouration of the corolla, since some of the darkest coloured spots were found in flowers with an otherwise white corolla. In the terminology of the Mendelians it may be said that distinct factors control the general colouration of the corolla and the colour of the spots.

In this connection it is interesting to remember that the general colouration of the corolla is due to coloured sap in the cells of both the outer and inner epidermis of the flower, while the colouration of the spots arises through the colour in the inner epidermal cells only.

A microscopical examination of the brown spots revealed the presence of a granular brownish substance and of a great accumulation of typical starch grains. Such starch grains were few or absent in the surrounding epidermal cells; also they did not occur in the normal dark purple or crimson spots. The brown substance is almost certainly a decomposition product of anthocyanin, the normal colouring matter. Dr F. W. Bews, Professor of Botany, Natal University College, has suggested that possibly the starch also is to be regarded as a decomposition product of the anthocyanin: but the great abundance of the starch somewhat militates against this view.

The brown substance is insoluble in alcohol, ether, HCl (50 %) and potash (1 %).

With the naked eye there is a sharp discontinuity between white flowers with purple spots and white flowers with brown spots. Microscopical examination, however, shows that the discontinuity is not really so sharply defined. In many of the coloured cells of the purple spots traces of the brown substance may be detected, and at first it was thought possible that the removal of the purple colouring substance with alcohol would leave brown spots. This, however, was found not to be the case. Only rarely is the brown substance in sufficient quantity to mark out the spot on the removal of the anthocyanin. The point to notice is that brownish purple spots intermediate between the normal purple spots and the brown spots are only rarely found. Traces of an intermediate condition can be found microscopically, but there appears to be normally a gap between a small amount of decomposition product and total decomposition.

It will be remembered that there occurs a similar gap between ordinary foxgloves and crowned foxgloves; intermediate conditions are possible but only rarely occur.

If we assume that absence of decomposition (purple spots) is dominant and total decomposition (brown spots) recessive, and that the parents which produced white offspring were heterozygous dominants with respect to this character, we can compare the experimental result with the theoretical Mendelian expectation.

				Offspr	ring		
(Hete	Parentage (Heterozygous dominants)		Observ	vation	Theoretical expectation		
			Purple spots	Brown spots	Purple spots	Brown spots	
Х.	C (2) (self-fertilize	(be	9	2	8.25	2.75	
IA.	A (self-fertilized)		26	7	24.75	8.25	
XV_{A} .	$(\hat{A} \circ \times C(2))$		6	1	5.25	1.75	
XVB.	$C(2) \hookrightarrow A \stackrel{?}{\circ}$		0	1	0.75	0.25	
XI.	$(A \hookrightarrow C (3))$		12	5	12.75	4.25	
XII.	$C(3) \hookrightarrow A \circlearrowleft$		1	0	0.75	0.25	
XIV.	$(A \ \ \times \ C(2) \ \)$		9	5	10.50	3.50	
XV.	$(C(2) \ \circ \times A \ \circ$	• • •	6	2	6.00	2.00	
	Totals		69	23	69.00	23.00	

The assumption as to the heterozygous nature of the parents is warranted by the consistency which is shown when a supposed heterozygous dominant is crossed with an undoubted homozygous dominant. Thus we have:

	Offspring						
Parentage	Obser	vation	Theoretical expectation				
	Purple	Brown	Purple	Brown			
C (2) Heterozygous dominant $\mathcal{C} \times C$ (1) homozygous dominant \mathcal{C}	10	0	10	0			
C (1) Homozygous dominant $\mathbb{Q} \times C$ (2) heterozygous dominant \mathbb{Z}	10	0 .	10	0			
Totals	20	0	20	0			

The fact that the observed result and the theoretical expectation in the above two tables should be identical may be regarded as somewhat accidental, but nevertheless the agreement is rather striking.

3. The Amount of Spotting on the inner Surface of the Flower.

By means of the diagram already referred to the percentage area, with respect to the lower portion of the inside surface of the flower, covered by the spots was estimated in six ordinary zygomorphic flowers in each plant. This character appeared to exhibit no discontinuity in its inheritance. All intermediate conditions seemed to occur in the offspring; for example a parent with much spotting crossed with a parent with few spots tended to have offspring with a medium amount of spotting. It was quite impossible to sort out the parents or offspring into two or more groups of "much spotting," "little spotting," "medium spotting," etc. As far as can be judged from the material at hand the units of spotting, if such occur, are so small that the series is practically a continuous one.

The only satisfactory way of dealing with such a character which exhibits no discontinuity is the statistical method of Galton and Pearson. From the nature of the crossings it may not be always possible to deal statistically with the relationship of both male and female parent to the offspring. For example, if a single plant be crossed with the pollen of a dozen different plants, and families raised, there will be one female parent only, but 12 different male parents and twelve different mid-parents. Such a method of procedure is not free from objection, but it is the only course that is possible with the material at present available. In each plant the amount of spotting was determined in the bottom six flowers of the main axis, that is in the first six flowers which opened.

Another point to note is that some of the families were raised from seed obtained by self-fertilization. Now, the differences, if any, in the strength of inheritance in parthenogenesis, self-fertilization and cross-fertilization have not yet been fully investigated from an experimental point of view, and accordingly the heredity constants have been calculated both with the inclusion and the exclusion of the self-fertilized families.

Ordinary correlation tables have been made, utilizing the six flowers of each plant, and Prof. Pearson's constants have been calculated.

As an example the following table is given:

Spotting: Mid-Parent and Offspring (omitting self-fertilized Plants).

Mid-parent, percentage of spotting	54	96	189	144	105	91	45	31	12	6	Totals
8—11 12—15 16—19 20—23 24—27 28—31 32—35	34 20 — — —	36 43 3 - 9 5	36 72 53 - 27 1	2 39 55 4 39 5	7 47 5 18 28			24 - 2 5	4 4 4		108 181 258 12 113 78 23
Offspring, percentage of spotting	0—3	4-7	8—11	12—15	6191	20—23	24-27	28—31	32-35	3639	773

The general results m	ay be summarized	in the form	of a table:
-----------------------	------------------	-------------	-------------

Relationship	No. of mid-parents	No. of off- spring	No. of flowers	Standard deviation of mid- parent	Standard deviation of offspring	Coefficient of correlation
Mid-parent and offspring (including self-fertilized families)	15	176	1027	10.509	8.500	•563
Mid-parent and offspring (excluding self-fertilized families)	11	127	773	6-610	7.790	-545
Male parent and offspring (including self-fertilized families)	15	176	1027	16.733	8.595	-431
Male parent and offspring (excluding self-fertilized families)	11	127	773	15.249	7.790	-320

With the small number of parents available the constants are bound to be erratic, and the results can only be regarded as giving a rough indication of the strength of inheritance. The general tendency is for a low parental correlation: the mean of the two paternal correlations is 38. The average of some 52 correlation coefficients of parental heredity obtained from a variety of different animal species with various characters has been given by Prof. Karl Pearson as 45, while the mean of the parental coefficients for a series of characters in the Shirley Poppy was 33.

4. General Colouration of Corolla.

We have seen that the general colouration of the corolla is due to coloured sap in the epidermal cells of both the inside and outside of the corolla. The intensity of this colouration was estimated, as already described, by a colour-scale obtained by viewing by transmitted light varying depths of a standard tinted solution. There is discontinuity in the colour of the flowers of the plants. The flowers can be divided into (1) purple and (2) not purple (white). For this subdivision a purple flower must be defined as one in which the general surface of the corolla is coloured. The colour may be quite pale or very dark. A white flower is one in which the general surface is white, but there may be a few extremely faint blushes of purple on the corolla, especially on the inner surface.

Such definitions may seem empirical and unsatisfactory, but nevertheless it was found in practice to work quite easily owing to the fact that exceedingly faint *general* colouration of the whole corolla did not occur. There was a clear gap in the series between faintly "purple flowers" and the "white flowers." In the whole series the palest purple flower was represented by a depth of 15 mm. of coloured fluid and there was only one such plant.

In the accompanying table the families are arranged in the order of the midparental colour—the mean of the colours of the male and female parents.

	ગ	Not Purp	000000000000000000000000000000000000000	14
		Total Purple	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	139
		₹-0		0
ŀ		69		0
		<i>₹1-01</i>		0
	·	61-91	1	1
		₹2-02		අත
		62-97	8 4 1 1 1 1 1 1 0 1 1 1 1	6
		₽Е 0Е	1-01-1-00-1-1-4-1-1-1	6
		68-98		11
	_	₹₹0₹	0 0 0 0	4
	rface	6F-9F	1-0 00 20 00 01	4
	ır su	₹909	00 01 4 80 121	11
	oute	69-99		8
	ı of	₹9-09	0 21 4 8 0 0 1 2 1 1 1	14
ng gu	Purple (Unitorm colouration of outer surface)	6999		17
Offspring	nolo	₹2-02		16
0	o m	64-94	1	7
	nito	₹808		7
	e (U	6898	110011 10 11 10 11 11 11 11 11 11 11 11	9
	urpl	₹606	0000	2
	I	66-96		0
		<i>₹01</i> —001		4
		• • • •		:
		₹22-022	1	2
		622-922		0
		₹87—087		0
		682-982		0
		₹₹₹₩	1111111111111	0
		642-542		0
		₹92—092		4
	lsti	rərsq-biM ruoloo	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			ೆಡ್ರ : : : : : : : : : : : : : : : : : : :	:
			7 (2) (1) (2) (1) (2) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	
age		ple	W W W W W W W W W W	:
Parentage		R = Purple $W = White$	C (2), W × Q (2), W ×	Totals
Pa		R= W=		Tc
			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

By reference to the horizontal line of totals at the bottom of the table it will be seen that among the purple offspring there are none under the first three units of the colour scale, 0-4, 5-9, 10-14. There would also appear to be discontinuity at the other end of the scale, but it is very doubtful as to how far reliance can be placed on the colour-scale where the depth of the fluid is considerable.

Taking the families altogether there were 139 purple plants and 41 white. The Mendelian expectation may be calculated for each family on making the following assumptions: purple colour dominant to white; C(2) pure recessive; A, C(1) and C(3) heterozygous dominants; B(3), B(4), N(1) and N(2) homozygous dominants.

Justification for these assumptions is given by the consistency with which the different parents act in different pairings. The sum totals of the calculated expectations for all the families are 131 purple and 49 white. It will be seen that these figures are in very fair agreement with the experimental result which is 139 purple and 41 white. This may be regarded as a typical Mendelian result.

A point of interest is to ascertain as to how far the various intensities of the colouration among the purple plants are inherited. It is possible that some observers would regard the different intensities of the purple colouration in a family as representing mere fluctuating variations which could not be inherited. According to the pure-line theory the different intensities of purple colouration occurring within the limits of a family resulting from self-fertilization cannot be inherited. It will be possible to test this theory in the generation of plants now being raised, but the present material cannot give a definite reply to the question.

An inspection of the above table (p. 313) will show that as we pass to the higher mid-parental colours there is a *gradual* rise in the colouration of the families. This implies that the various shades of purple are not distinct types, but that they can blend perfectly with one another.

The fact that in closely similar matings the families raised show a regular progressive rise in the intensity of colouration with the rise in the mid-parental colouration does not favour the expectation that any support for the pure-line theory will be forthcoming from the present investigation.

It is desired to find the correlation with respect to the intensity of colour between the purple parents and the purple offspring. For this purpose, in order to have strictly homogeneous material, the parents should be homozygous dominants. The material will not permit such a calculation. The purple plants of the different families include both homozygous dominants and heterozygous dominants. Now the homozygous dominants are found to be darker in colour than the heterozygous dominants, and so in any family consisting of an equal number of heterozygous

and homozygous dominants we may approximately divide the individuals into the two groups by regarding the darker half as homozygous and the lighter half as heterozygous dominant. In this way we can form a correlation table between the parents and the heterozygous or the homozygous offspring.

Using the symbols introduced by Prof. Bateson, namely RR homozygous recessive, DR heterozygous dominant, DD homozygous dominant, we have, on crossing individuals of the different gametic constitutions, the following theoretical results:

```
RR \times DR = 1 \ DR (light purple) + 1 RR (white),

DR \times DR = 1 \ DD (dark purple) + 2 DR (light purple) + RR (white),

DR \times DD = 1 \ DD (dark purple) + 1 DR (light purple).
```

In calculating the correlation it is advisable to use only parents and offspring of similar gametic constitution; thus, DR parents with DR offspring, or DD parents and DD offspring. RR parents and RR offspring being white are excluded.

To accomplish this it is necessary in any given family, obtained by crossing together RR, DR and DD parents, to sort out the purple offspring into DR and DD individuals. To do this with complete certainty it would be necessary to self-fertilize each individual and obtain families. The labour involved is too great to be undertaken lightly. Owing to the fact that DR offspring are paler than DD offspring we may approximately divide the families into the two groups of individuals by taking the darker half (in the case of DR and DD parentage) or the darker one-third (in the case of DR and DR parentage) of the plants as being DD individuals in constitution and the remainder as being DR individuals.

Thus for example:

Parentage	Family under Colour-Scale (see preceding table)
I. $C(1) \times C(1) = DR \times DR$	1, 2, 4 (<i>DR</i>), <i>RR</i> (excluded from table) 1, 0, 1, 1, 2, 1 ($\frac{1}{3}$ <i>DD</i> and $\frac{2}{3}$ <i>DR</i>) = 1, 0, 1 <i>DD</i> + 1, 2, 1 <i>DR</i> 1, 0, 3 ($\frac{1}{2}$ <i>DD</i> and $\frac{1}{2}$ <i>DR</i>) = 1, 0, 1 <i>DD</i> + 2 <i>DR</i>

In this way a correlation table can be made with fair accuracy between DR parent and DR offspring. The paucity of the material, however, prevents much reliance being placed on the actual figures obtained. At most the figures can give only a rough indication of the strength of inheritance.

When a heterozygous purple plant is crossed with a white plant (recessive) both purple and white offspring are produced. The coloured offspring, however, tend to be paler than the coloured parent. Thus the colour of the coloured

DR Female Parent and DR Offspring.

Female parent, general colouration	2	6	8	8	3	3	12	5	5	12	8	2	1	1	Totals
30—34 35—39 40—44 45—49 50—54 55—59 60—64 65—69 70—74		4 2	3	5 3	3 0		8 4	4 1			8				29 0 0 0 1 0 0 0 46
Offspring, general colouration	20-24	25-29	30-34	35-39	4044	45—49	5054	2559	60-64	6999	70—74	75—79	80—84	85—89	76

DR Male Parent and DR Offspring.

Male parent, general colouration	1	2	3	6	5	2	1	3	1	5	6	7	1	1	Totals
30—34 35—39 40—44 45—49 50—54 55—59 60—64 65—69 70—74			2 - 0 - 1	2 - 4 - 0	5 - 0 - 0		0 - 0 - 1	0 - 1 - 2	1 - 0 - -	0 - 1 - 4	0 - - 1 - - - 5	0 7			12 0 0 0 8 0 0 0 0 24
Offspring, general colouration	15—19	20-24	25—29	30-34	35—39	40—44	45-49	2024	6555	<i>F9</i> — <i>09</i>	69—59	7074	75-79	80—84	44

parent has been diluted by crossing with the colourless parent. Since such blending occurs it will be of interest to find the correlation between the midparental colour and the colour of the DR offspring. The DD and DR offspring were separated from one another by the method above described.

Mid-Parent and DR Offspring (including self-fertilized Families).

Mid-parent, general colouration	I	3	9	9	11	4	3	10	6	9	12	9	3	2	1	Totals
15—19 20—24 25—29 30—34 35—39 40—44 45—49 50—54 55—59 60—64 65—69 70—74 75—79	1		6 - 3 - 0 -	3 - 1 1 - - 4	3 2 3 - 3 0		- - 0 - 2 0 0 0	1 - 4 2 1 - 2	0 		5 - 0 2 - 3 2					12 0 0 4 21 0 0 14 7 9 0 15 10
Offspring, general colouration	15—19	20-24	25—29	30—34	35—39	40—44	45—49	5054	55—59	£9—09	62—69	70—74	75—79	80—84	85—89	92

The general results may be summarized as follows:

Relationship	No. of mid- parents or parents	No. of DR off-spring	Standard deviation of parents	Standard deviation of DR offspring	Co- efficient of corre- lation
Mid-parent colour and colour of DR offspring (including self-fertilized families)	17	92	19.280	17.520	·675
Mid-parent colour and colour of DR offspring (excluding self-fertilized families)	15	74	18.514	17.800	-587
Male parent (RD) colour and colour of DR off- spring (including self-fertilized families)	8	44	17.249	18.336	·471
Female parent (DR) colour and colour of DR offspring (including self-fertilized families)	12	76	19.351	16.563	•415

We see from the above that the strength of inheritance, with respect to the intensity of colouration, between individuals of similar gametic constitution follows a similar statistical law to that exhibited by characters where discontinuity cannot be detected, where complete blending occurs and no trace of segregation can be found.

It might have been anticipated by some that the varying intensities of the general colouration among individuals of similar gametic constitution were casual, fluctuating variations which could not be inherited. The above results point to the view that small variations of this nature are inheritable, and consequently they can be of importance in the evolution of species.

5. The Ratio of the Breadth to the Length of the Corolla.

The parent plants differed markedly in the relative width of the corolla. C (1), C (2) and N (1) were wide, B (1), B (3) and B (4) were narrow, and the remainder were of medium width. As in the case of the amount of spotting of the corolla, no distinct discontinuity in the variation of the character could be noticed either in the parents or offspring. As far as could be judged the variation was a continuous one, or one with such small steps as practically to be equivalent to the same.

The following tables of correlation are given as records:

Ratio, Mid-parent and Offspring (excluding self-fertilized Families).

Mid-parent. Breadth Length 1000	3	4	11	28	39	47	77	80	102	103	80	61	45	30	31	9	7	6	7	3	1	Totals
503—516 517—530 531—544 545—558 559—572 573—586 587—600 601—614	3 -	2	3 3 - 5 -	14 3 1 10 -	17 0 3 19 —	11 5 29 - 1	16 0 10 44 —	$ \begin{array}{c} 14 \\ 2 \\ 10 \\ 47 \\ - \\ 5 \\ 2 \end{array} $	$ \begin{array}{c} 15 \\ 1 \\ 23 \\ 54 \\ \\ 5 \\ 4 \end{array} $	$ \begin{array}{c c} 11 \\ -24 \\ 53 \\ -\\ 10 \\ 5 \end{array} $	7. 11. 51. 		2 25 - 16 2	3 10 — 15 2	$-\frac{2}{9}$ $-\frac{18}{2}$	- - 4 - 4 1		2 4	1 6	3		114 12 108 396 0 0 120 24
Offspring. Breadth 1000 Length	419—432	433—446	447—460	161-474	475—488	489—502	503—516	517-530	531—544	545558	559—572	573—586	287—600	601—614	615—628	629—643	643—656	657—670	671—684	685—698	699—712	774

Ratio, Male parent and Offspring (including self-fertilized Families).

$\frac{\text{Male parent.}}{\text{Length}} 1000$	1	9	27	58	86	121	145	164	147	109	74	28	9	16	5	1	Totals
$\begin{array}{c} 480 - 499 \\ 500 - 519 \\ 520 - 539 \\ 540 - 559 \\ 560 - 579 \\ 580 - 599 \\ 600 - 619 \end{array}$	1	$\frac{3}{4}$	7 1 15 -4 -	$ \begin{array}{c c} 20 \\ 2 \\ \hline 25 \\ \hline 8 \\ \hline 3 \end{array} $	$ \begin{array}{c} 32 \\ 14 \\ 23 \\ \hline 13 \\ \hline 4 \end{array} $	$ \begin{array}{c} 18 \\ 24 \\ 30 \\ \hline 36 \\ \hline 13 \end{array} $	31 17 48 — 34 — 15	$ \begin{array}{r} 19 \\ 34 \\ 53 \\ \hline \hline 31 \\ \hline 27 \end{array} $	$ \begin{array}{c c} 15 \\ 24 \\ 48 \\ \hline 35 \\ \hline 25 \\ \end{array} $	$ \begin{array}{c} 11 \\ 12 \\ 29 \\ \hline 25 \\ \hline 32 \end{array} $		$-\frac{1}{5}$ $-\frac{1}{18}$ $-\frac{4}{4}$	$\begin{bmatrix} 0 \\ 2 \\ \hline 6 \\ \hline 1 \end{bmatrix}$	$ \begin{array}{c c} \hline 1\\ 2\\ \hline 10\\ \hline 3 \end{array} $	$\frac{-}{2}$		156 138 298 0 252 0 156
Offspring. Breadth 1000 Length	400—419	420—439	440—459	460-479	480—499	500—519	520—539	540559	560579	580—599	619-009	620—639	640659	629099	669—089	700—719	1000

Relationship	No. of parents	No. of off- spring	No. of flowers	Standard devia- tion of parents	Standard deviation of offspring	Coefficient of correlation
Mid-parent and offspring (including self-fertilized families)	15	176	1000	29.626	49-220	•554
Mid-parent and offspring (excluding self-fertilized families)	11	127	774	25.886	47.164	-509
Male parent and offspring (including self-fertilized families)	15	176	1000	38.783	49.236	.341
Male parent and offspring (excluding self-fertilized families)	11	127	774	38.898	47.358	·300

The parental correlation is thus low as in the case of the area covered by spots. Such a condition increases the probable error of the numerical results, and many more parents would be necessary in order to obtain more reliable figures. Nevertheless it may be noted that the statistical results obtained with the various characters are very fairly consistent with one another and the parental inheritance of the characters investigated tends to be somewhat low.

III. The Variability of the Race and of the Families.

According to the pure-line theory the variability within a family consisting of individuals of similar gametic constitution and arising by self-fertilization of the parent should be small, supposing that no new mutation should arise, and it is of such a nature that it is incapable of being transmitted by inheritance. Selection within such a family would not be effective. In other words, families obtained by self-fertilizing individuals at the two ends of the range of variation would exhibit the same mean. The material at present to hand will not throw direct light on the question, but indirectly it lends no support to the theory.

The comparative variabilities of the race and of the individual families are given in the table on p. 320. The colour of the different flowers on an axis was found to be essentially uniform; but in the two other characters there was some variability among the flowers on the same axis. Therefore in these two characters (the area covered by spots, and the ratio of the width to the length of the corolla) the mean of the six basal flowers of the axis was taken as expressive of the nature of the plant.

Thus the mean variability of a family is 67 % of the variability of the whole race. Owing to the fact that the majority of these families arose through cross-fertilization this large family variability is not a proof against the pure-line theory. It may be stated here that with the four self-fertilized families raised there was some tendency for a reduction in the variability, but nevertheless it remained very considerable.

The average percentage variability of the self-fertilized families is 50 % of the variability of the race. This is to be compared with 67 % for cross-fertilized

families. The number of the families is, however, too few for drawing any absolute conclusions. With such a high variability in these families it would appear improbable that the families obtained by self-fertilizing the individuals at the extremes of the range would both exhibit the same mean. It may be added that in the parthenogenetic aphis (Hyalopterus) it has been shown that the variability of the family amounted to 60 % of that of the race.

Character	No. of individuals in generation	Standard deviation (S.D.) of generation	No. of families with six or more individuals	No. of individuals	Mean standard deviation (S.D.) of the families	S.D. fam. S.D. gen. × 100
Intensity of general colouration (DR individuals)	90	3.490	8	69	2.349	67
Ratio $\frac{\text{Breadth}}{\text{Length}}$ corolla	172	3.324	13	154	2.414	73
Spotting	178	1.816	13	160	1.000	61
			Mean o	of percentages	s	67

It must be remembered that Johanessen's experiments have been shown by Karl Pearson to be inconclusive with reference to the pure-line theory. The size of the different seeds produced by any given individual plant varies greatly, and there is no inherent reason to suppose that the offspring obtained from the small seeds and large seeds taken from the same plant would exhibit any difference in the size of their seeds. It might reasonably be supposed that a small seed and a large seed from the same plant would both inherit the average character of the parent irrespective of their actual size. One might as well expect that the plants obtained by budding from a small begonia leaf would have smaller leaves than those obtained from a larger leaf of the same plant.

IV. Fraternal Correlation.

The likeness of brothers to one another has been investigated, and the relationship was studied after the method adopted by Prof. Pearson. He takes each individual of a family and compares its deviation from the mean with that of every other member of the family. These combinations can be plotted out in a correlation table in a similar manner to the relationship of offspring and parent. The coefficient of correlation for all possible pairs of brethren will be a measure of their resemblance, just as the standard deviation is a measure of their dissimilarity.

The fraternal correlation was calculated for (1) the intensity of the general colouration of the purple flowers, (2) the area of the spots, (3) the ratio of the width to the length of the corolla.

For the intensity of the general colouration only offspring having a similar gametic constitution were taken. Heterozygous individuals, or those which are

supposed to produce two kinds of gametes, were used. With regard to the ratio and the area covered by the spots the nature of the individual was determined by taking the mean of the varying values obtained from six different flowers from the flowering axis. This procedure was unnecessary in the case of the colour, as the individual flowers on the same axis did not differ from one another perceptibly.

As a record the fraternal correlation table for spotting is herewith given:

Percentage spotting, 1st brother	281	378	425	596	300	168	147	21	16	4	Totals
0—3 4—7 8—11 12—15 16—19 20—23 24—27 28—31 32—35 36—39	64 98 70 47 2 —	98 138 73 65 4 — — —	70 73 124 91 34 20 8 1 4	47 65 91 178 107 53 48 5 2	2 4 34 107 64 49 30 8 2	20 53 49 20 19 4 2	8 48 30 19 36 1 4 1	1 5 8 4 1 0 1	- 4 2 2 2 4 1 0 1		281 378 425 596 300 168 147 21 16 4
Percentage of spotting, 2nd brother	0—3	4-7	8—11	12—15	91—91	20—23	24-27	28—31	32—35	36—39	2336

The comparative results obtained for parental correlation and fraternal correlation are shown in the following table:

		Parents	ıl	Fraternal			
Character	No. of families	No. of offspring	Correlation	No. of pairs of brothers	Correlation		
Intensity of purple colouration of corolla	14	98	·47	318	52		
Area of spots	19	178	.53	1168	·61		
$rac{ ext{Width}}{ ext{Length}} ext{ corolla} \qquad \dots$	19	170	•37	1032	•29		
Mean of co	rrelations		•46		·47		

The parental correlations given above differ somewhat from those given in an earlier part of the paper owing to the fact that the mean of the character, as it occurred in the six flowers, was taken instead of using the individual flowers of the plant.

The means of the coefficients of the three characters are ·46 and ·47 for the parental and fraternal correlation respectively. These results are not very divergent from those obtained by Prof. Pearson from very various sources; he gives the average parental correlation as about ·48.

V. Summary.

The data at present available were derived from crossing in various ways 10 cultivated foxglove plants with different characteristics, namely: crowned or peloric, not crowned, purple of different intensities, white, relatively wide and relatively narrow corolla, etc. There were 19 families; each family being raised from the seed of a single capsule. Altogether 188 offspring which flowered were obtained.

The nature of the inheritance of the following characters was studied: (1) peloric or crown character, (2) the colour of the spots, (3) the relative area covered by the spots, (4) the colour of the corolla and the degree of intensity of the purple colouration of the general surface, (5) the ratio of the width to the length of the corolla.

The numerical results obtained are given below:

			Inheritance d offspring)			tical Relationsh nt and offspring		
	Obse	erved		retical etation	Coeffic	ient of Correlati	on	
Character	No. with	No. with	No. with	No. with	Foxg	loves	Mean of coeffi-	
	character present	character	character present	character absent	Including self-fertilized families	Excluding self-fertilized families	from various sources	
Crown	83	104	83	104	_	_		
Brown spots	23	69	23	69	_			
Percentage area covered by spots	-		_	phragmagh	•43	·32		
General purple colouration	41	139	49	131	.47	-41	.45	
Ratio of breadth to length of corolla					$\cdot 34$	•30		
Totals	147	312	155	204	•41	·34		
Totals	ls 147 312			12 155 304 -		•38		

(1) The peloric character may be regarded as arising by the suppression of certain internodes of the flower-axis and the concurrent fusion of the flower-buds resulting in a more or less regular cup or saucer-shaped flower at the top of the

axis, which matures before the ordinary zygomorphic flowers. This variety is known as monstrosa.

When a peloric plant is crossed with a non-peloric plant the offspring are generally either completely peloric or completely non-peloric. There is no marked tendency for the offspring to be intermediate in character. Notwithstanding this fact the character is capable of dilution, since in the case of one family arising from such a cross nearly all of the offspring were more or less intermediate in nature. Certain of the internodes were much reduced, but not entirely suppressed, and the flowers involved arose in the form of petaloid blades which matured before the lower normal flowers, as in the case of a typical crowned plant.

The gametic nature of the parents, as to whether they were pure or impure in the Mendelian sense with reference to the peloric character, could be judged either by raising families obtained by self-fertilization or by their action in the various crosses that were made. Families derived from self-fertilization from four parents were successfully raised, and in the case of the remaining parents the marked consistency in their behaviour in the different crosses indicated clearly as to whether they were homozygous or heterozygous.

The non-peloric condition was dominant.

On dividing the offspring into peloric plants (including those which showed any tendency towards a peloric condition) and non-peloric plants, the numbers were 83 peloric and 104 non-peloric. Calculating the Mendelian expectation for each family and adding the results the figures obtained were identically the same.

- (2) The results of reciprocal crosses appeared to be the same; that is the families obtained from $\mathcal{A} \times \mathcal{A} B$ did not differ in any constant manner from those derived from $\mathcal{A} \times \mathcal{A} A$.
- (3) The results obtained by using pollen from the crown flower, the ordinary zygomorphic flower and of flowers with abnormally split open corolla did not appear to differ from one another in the least.
- (4) The colour of the seeds is very definitely related to the colour of the flowers of the seed-plant. Plants with white flowers had very pale buff-coloured seeds, those with light purple corollas had light brown seeds, while those with dark purple corollas had very dark brown seeds. As might be expected, a plant with white flowers crossed with pollen from a plant with dark purple flowers produced pale coloured seeds, since the coloured testa of the seed is formed by the seed-plant and is not a result of fertilization.

This observation emphasizes the fact that great caution is necessary in regarding characters as being independent of one another. It is often stated that an organism may be pure bred in one character and not in another; but probably this is true only in a very limited sense. De Vries holds that a change in any one character involves some change in the constitution of the organism as a whole.

(5) In plants in which the general internal and external surfaces of the corolla are white, the spots which occur may be purple or brown. Sometimes spots were nearly absent and the corolla appeared to be practically pure white, but when such was the case some sign of brown spots could be found on some few of the flowers. An obviously intermediate condition between purple spots and brown spots was rare, and judged by ordinary inspection the spots were either purple or brown, seldom brownish purple. The brown colouring matter may be regarded as a decomposition product of the purple anthocyanin. In plants in which the corolla was coloured purple over the general surface the spots were never entirely brown. Thus it would appear from the present observations that the causes which lead to the total decomposition of the anthocyanin in the purple spots of otherwise white flowers are never wholly effective in flowers with purple corolla. Accordingly although there is some independence between the two characters, the colouration of the spots and the colouration of the general surface of the corolla, yet nevertheless there seems to be a certain relationship between the two, since the spots were never found to be completely brown unless the general surface of the corolla was white. A feature of unknown significance may be mentioned, the cells of the spots containing the brown colouring matter were found to be densely crowded with typical starch grains, while the cells of the purple spots containing the anthocyanin in solution in the cell-sap contained little or no starch.

Purple spots were dominant and brown spots recessive.

The observed results in the different families totalled 69 plants with purple spots and 23 with brown spots. The Mendelian expectation calculated for each family and added together yielded exactly the same figures. Since completely brown spots were never found in coloured flowers, only those families in which plants with white flowers occurred were included in this calculation.

(6) With regard to the general colouration of the corolla it was found that some of the parents were heterozygous and others homozygous. The results of the crossings were distinctly Mendelian in character. Purple was dominant and white recessive. There were 41 white and 139 purple offspring; the theoretical expectation, calculated for each family and added together, was 49 white and 131 purple.

A point of considerable interest was noticed, namely that in dealing with parents and offspring of similar gametic constitution (i.e. heterozygous and homozygous dominant) the inheritance of the intensity of colouration followed the usual statistical laws. A light purple plant crossed with a dark purple plant might give some perfectly white offspring, but those offspring that were coloured, if of the same gametic character as the parent, tended to be intermediate in shade between the two parents. Thus the intensity of colouration is not a mere fluctuating uninheritable character, but its inheritance follows the usual laws found by statisticians to hold in the case of characters where a Mendelian relationship cannot be detected. The parental coefficient of correlation between heterozygous

dominant parents and heterozygous dominant offspring including self-fertilized families was ·47 for male parent and ·41 for female parent. These figures are not far removed from Prof. Pearson's mean coefficient ·45.

- (7) The remaining two characters dealt with, viz. the percentage area covered by the spots and the relative width of the corolla, exhibited no discontinuity in their inheritance, and consequently a Mendelian relationship could not be detected. The parental coefficients of correlation for the spotting, including and excluding the self-fertilized families, were ·43 and ·32 respectively, and for the width ·34 and ·30. The mean of all four coefficients is ·35 which has to be compared with Prof. Karl Pearson's mean coefficient of ·45 derived from various sources. Owing to the fewness in the number of parents the probable errors of the foxglove coefficients of correlation are large, but nevertheless there appears to be a distinct tendency for the parental correlation to be low. Similarly Prof. Karl Pearson found parental inheritance to be low in the Shirley Poppy: the mean value being ·33.
- (8) The mean of the seven mid-parental correlations, calculated for the crown character, the spots, the general colouration and width of the corolla, is .57 and the mean of the six parental correlations is .38.
- (9) The experiment at the present stage cannot throw any direct light on the pure-line theory. The variability which occurred among cross-fertilized families amounted to 67 % of the variability of the race, and among several self-fertilized families it was 50 %. With such a high variability it would appear to be unlikely that the families, raised by self-fertilizing the two brethren at the two ends of the range of variation of the families, would exhibit the same mean.
- (10) The resemblance of the individuals of a family to one another with reference to several characters was calculated, and the mean of these fraternal correlations was found to be ·47. Prof. Karl Pearson gives a mean value of ·5 or a little more for the fraternal correlation of a series of diverse characters.

VI. Theoretical Conclusions.

We thus see that among the characters examined we find typical Mendelian and typical non-Mendelian results, and the relationship between the two types of inheritance is by no means clear. It has been said that Mendelian inheritance occurs in the case of characters which do not mix, but this view is not warranted by the present results. For example, the peloric character can be diluted by crossing with the ordinary type, but such dilution does not usually take place; also, the general purple colouration of the corolla is diluted when a dark parent is crossed with a pale parent; but, nevertheless, a very pale general colouration is exceedingly rare, and the flower is as a rule either distinctly purple (although perhaps rather pale) or white. Thus we have discontinuity even when characters are capable of dilution.

From the experimental data which have been accumulated during the last decade there is no doubt that segregation of characters may occur in crossing

hybrids, and by defining the unit-character in a suitable manner the familiar ratios so well known to Mendelians do appear in the case of certain characters. The above expression "defining the unit-character in a suitable manner" is well illustrated in the case of the general colouration of the foxglove flowers. Provided we define a "purple flower" as meaning a flower in which the corolla is more or less uniformly tinted all over we obtain a simple Mendelian relationship; but many of the white flowers, on being closely scrutinized, were seen to possess an excessively faint tinge of purple over small isolated areas, the remainder of the corolla being dead white. If these plants had been included under the category of "purple flowers" no Mendelian relationship would be apparent. There is, however, a certain justification for excluding such from the category of "purple flowers," since there is a distinct gap in the series between the flowers which are tinted faintly purple all over and the white flowers with an extremely slight blush of purple over small irregularly placed areas.

A similar relation occurs in connection with the brown spots. Provided the spots are examined with the naked eye they are very generally either brown or purple; brownish purple spots were seldom observed, and a simple Mendelian relationship occurs, brown spots being recessive. If, however, the purple spots are examined under the microscope the distinction between the two kinds of spots is seen to be not so sharp, since a certain amount of decomposition product may be present, although not as a general rule in sufficient quantity to give a spot a brownish purple appearance to the naked eye. Here, again, we have a distinct gap in the series; it occurs between a small amount of decomposition and total decomposition. A strict Mendelian might hold that in the first case the slight tinge of purple occurring in the white flowers was a character distinct from the purple colouration of the general surface of the corolla, and was controlled by a different determinant or group of determinants; but such a supposition could scarcely be applied to explain the occurrence of the gap between the small amount of decomposition and the total decomposition of the anthocyanin of the spots. By presupposing the existence of many factors controlling a character and the linkage of factors it may be possible to express in Mendelian terms almost any experimental result that may be obtained, but it must be confessed that there is an artificiality about the process which does not inspire confidence in the interpretation.

With regard to the peloric character, in order to obtain a simple Mendelian relationship, it is necessary to include in the peloric category all plants which exhibited any distinct tendency towards the peloric condition. There is a gap in the series between flower-axes which exhibit some shortening of the internodes of the upper flowers and a marked shortening resulting in a distinct abnormality; and it is this gap in the series which gives the clue as to where the line of division should be drawn between peloric plants and non-peloric plants.

The question arises as to how far a so-called unit-character is capable of change. In the course of evolution any given character must of necessity have arisen in some way from some other character, and according to de Vries it arose by a sudden mutation. It is clear, however, that the somatic nature of an individual tends to reflect its gametic constitution, and obversely any change in the somatic nature of an individual tends to imply a change in the determinants of the germ-cells; and therefore the factor or determinant, say, of the general colouration of the corolla in a pale purple heterozygous dominant foxglove differs to some extent from that in a darker purple heterozygous plant: and the offspring of these two plants, if crossed with the same pollen, and bred under the same environment (in its widest sense) would not be the same. I have deduced some evidence in this investigation to show that the relationship of parents and offspring with respect to the fluctuations in the intensity of expression of a Mendelian character is similar to that of a non-Mendelian character provided the parents and offspring are of the same class, i.e. all heterozygous or all homozygous. It follows from this that a slight variation in the nature of the factor in the parent is accompanied by a slight somatic variation in the offspring and will be subjected to natural selection.

It appears to be premature to attempt to visualize these complicated phenomena in the nuclear behaviour of the sexual cells, although Morgan and others* have made ingenious attempts at so doing. In any such attempt it seems necessary to assume the existence of factors, determinants, plasms or something, no matter what it is called, which bears the heredity influence. Speaking in these mechanical terms it may be suggested that characters which exhibit no discontinuity in their inheritance, i.e. show no Mendelian relationships, are transmitted by a determinant or a system of determinants uniformly distributed through the chromosomes, and perhaps also through the cytoplasm of the germinal cells; while those characters which do exhibit Mendelian relationships depend on determinants which are localized in the chromosomes only, and possibly in definite places in the chromosomes. Morgan has recently referred to this last conception as the linear arrangement of factors in the chromosome.

In both cases, whether localized or not, the determinants controlling a particular character are variable in nature and are therefore subject to gradual modification by the natural selection of the individuals which bear the genital cells.

Mendelian inheritance in its original simple form, as it sometimes appears in the crossing of varieties, would seem to be, so to speak, an incidental phenomenon arising through the nuclear changes and the localization of the determinants, and it is open to question whether it has had any marked influence in the evolution of species. It is conceivable that evolution has taken place in spite of, rather than by the aid of, such Mendelian inheritance. The hereditary influence of the parent varies slightly through changes from unknown causes in the nature of the determinants, and the small resulting somatic variations in the offspring would appear to constitute the chief means by which evolution may slowly proceed and adaptation to the environment can be effected.

^{*} Morgan, T. H. and others, The Mechanism of Mendelian Heredity, New York, 1915.

ON THE DISTRIBUTION OF THE CORRELATION CO-EFFICIENT IN SMALL SAMPLES. APPENDIX II TO THE PAPERS OF "STUDENT" AND R. A. FISHER.

A COOPERATIVE STUDY

By H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE AND K. PEARSON

CONTENTS

		PAGE
(1)	Introductory	328
(2)	Properties of the Function $U = \cos^{-1}(-x)/\sqrt{1-x^2}$. (Ordinates of the	
` ,	Frequency curves)	329
(3)	On the Determination of the Moment-Coefficients. Series and Difference	
	Formulae	332
(4)	On the Determination of the Mode	342
(5)	Determination of Ordinates and Mode by Expansion	346
(6)	Equation for Mode and Antimode $(n = 3)$	350
(7)	Tables and Models	351
(8)	On the Determination of the "most likely" Value of the Correlation in the	
	Sampled Population	352
(9)	Special Cases of Frequency for n small:	
	(i) Samples of Two	360
	(ii) Samples of Three	361
	(iii) Samples of Four	369
	(iv) General Case of small Samples, $n > 4$	371
(10)	Approach of the Distribution as n increases to a Normal Character .	371
(11)	Table for determining the Mode of the Frequency Distribution for n of	
	considerable size	373
(12)	Table for determining the "most probable" value of the correlation for	
	n of considerable size	374
	$f^{\frac{1}{2}}\pi$	
(13)	Construction of Table of $q_n = \int_0^{\frac{1}{2}\pi} \sin^{n-1}\phi d\phi$	375
	* 0	379
	Appendix of Tables A—C	0/8

(1) Introductory. In a paper of 1908* "Student" dealt experimentally with the distribution of the correlation coefficient of small samples, and gave empirical curves—in particular for the case of zero correlation in the sampled population—which have proved remarkably exact. The problem was next considered in 1913 by H. E. Soper† who obtained the mean correlation and the standard deviation of the distribution of correlations to second approximations. Of the

^{*} Biometrika, Vol. vi. p. 302 et seq.

[†] Biometrika, Vol. IX. p. 91 et seq.

formulae he gives for \bar{r} and σ_r of the distribution of the correlation r in samples of n from a population of correlation ρ , we have found in practice the most exact are*

$$\bar{r} = \rho \left\{ 1 - \frac{1}{2n} (1 - \rho^2) - \frac{3}{8n^2} (1 - \rho^2) (1 + 3\rho^2) \right\} \dots (i)$$

and

$$\sigma_r^2 = \frac{(1-\rho^2)^2}{n} \left(1 + \frac{1+5\cdot 5\rho^2}{n}\right)$$
(ii).

Soper also by assuming a Pearson curve of limited range + 1 to - 1 of type

$$y = y_0 \left(1 - \frac{x}{a_1} \right)^{n_1} \left(1 + \frac{x}{a_2} \right)^{n_2}$$

deduces the modal value \tilde{r} of r as approximately

$$\breve{r} = \bar{r} \frac{\{1 - (\sigma_r^2 + \tilde{r}^2)\}}{1 + 2\bar{r}^2 - 3(\sigma_r^2 + \bar{r}^2)}$$
(iii),

so that \breve{r} would be determined from a knowledge of \bar{r} and $\sigma_r^2 + \bar{r}^2$.

The next step was taken by R. A. Fisher who gave in 1915 \dagger the actual frequency distribution of r, namely the curve

$$y_n = f_n(r) = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d(r\rho)^{n-2}} \left(\frac{\cos^{-1}(-\rho r)}{\sqrt{1-\rho^2 r^2}} \right) \dots (iv).$$

Except for very low values of n this expression for y_n does not provide a formula from which the ordinates of the frequency curve for r can be readily determined, and as the problem was left by Fisher there were no rapid means of numerically determining either \bar{r} or \check{r} or again σ_r^2 .

Clearly in order to determine the approach to Soper's approximations, and ultimately to the normal curve as n increases we require expressions for the moment coefficients of (iv), and further for practical purposes we require to table the ordinates of (iv) in the region for which n is too small for Soper's formulae to provide adequate approximations. These are the aims of the present paper. It is only fair to state that the arithmetic involved has been of the most strenuous kind and has needed months of hard work on the part of the computers engaged \ddagger . On the other hand the algebra has often been of a most interesting and suggestive character.

(2) On Properties of the Function
$$U = \cos^{-1}(-x)/\sqrt{1-x^2}$$
.

We have

$$\frac{dU}{dx} = \frac{1}{1 - x^2} + \frac{x \cos^{-1}(-x)}{(1 - x^2)^{\frac{3}{2}}},$$

or

$$(1-x^2)\frac{dU}{dx} = 1 + xU.$$

^{*} See loc. cit. pp. 105 and 107.

[†] Biometrika, Vol. x. p. 507 et seq.

[‡] Besides those whose names are given under the title, we have to thank I. Horwitz for some calculating aid, Ethel M. Elderton and D. Heron for occasional assistance, especially in the experimental part of the work, and lastly but very far from least we have to acknowledge the untiring work of H. Gertrude Jones and Adelaide G. Davin in the construction of the models the beauty and accuracy of which are not more than suggested in the plates.

Apply Leibnitz's Theorem and we have

$$(1-x^2)\frac{d^nU}{dx^n} - 2x(n-1)\frac{d^{n-1}U}{dx^{n-1}} - 2\frac{(n-1)(n-2)}{1\cdot 2}\frac{d^{n-2}U}{dx^{n-2}} = x\frac{d^{n-1}U}{dx^{n-1}} + (n-1)\frac{d^{n-2}U}{dx^{n-2}},$$
 or,
$$(1-x^2)\frac{d^nU}{dx^n} - x(2n-1)\frac{d^{n-1}U}{dx^{n-1}} - (n-1)^2\frac{d^{n-2}U}{dx^{n-2}} = 0 \qquad \dots \dots (v).$$

Put x = 0 and we have

$$\left(\frac{d^n U}{dx^n}\right)_0 = (n-1)^2 \left(\frac{d^{n-2} U}{dx^{n-2}}\right)_0,$$

but clearly $U_0 = \frac{1}{2}\pi$ and $(dU/dx)_0 = 1$.

Hence by Maclaurin's Theorem

$$\begin{split} \frac{\cos^{-1}\left(-\,x\right)}{\sqrt{1-x^2}} &= \frac{\pi}{2} \left(1 \,+\, \frac{1^2}{2\,!}\,x^2 \,+\, \frac{3^2\,.\,1^2}{4\,!}\,x^4 \,+\, \ldots \,+\, \frac{(2s\,-\,1)^2\,(2s\,-\,3)^2\,\ldots\,1^2}{(2s)\,!}\,x^{2s} \,+\, \ldots\right) \\ &\quad + \left(x \,+\, \frac{2^2}{3\,!}\,x^3 \,+\, \frac{4^2\,.\,2^2}{5\,!}\,x^5 \,+\, \ldots \,+\, \frac{(2s)^2\,(2s\,-\,2)^2\,\ldots\,2^2}{(2s\,+\,1)\,!}\,x^{2s+1} \,+\, \ldots\right) \ldots (\text{vi}). \end{split}$$

We are now in a position to give the successive differentials of U which may be either even or odd. We have for the two cases

$$\begin{split} \frac{d^{2s}}{dx^{2s}} & \left\{ \frac{\cos^{-1}(-x)}{\sqrt{1-x^2}} \right\} \\ &= \frac{\pi}{2} \left(2s-1 \right)^2 \left(2s-3 \right)^2 \dots 1^2 \left\{ 1 + \frac{(2s+1)^2}{2!} \, x^2 + \frac{(2s+1)^2 \left(2s+3 \right)^2}{4!} \, x^4 + \dots \right\} \\ &\quad + \left(2s \right)^2 \left(2s-2 \right)^2 \dots 2^2 \left\{ x + \frac{(2s+2)^2}{3!} \, x^3 + \frac{(2s+2)^2 \left(2s+4 \right)^2}{5!} \, x^5 + \dots \right\} \dots (\text{vii}), \\ \frac{d^{2s-1}}{dx^{2s-1}} & \left\{ \frac{\cos^{-1}(-x)}{\sqrt{1-x^2}} \right\} \\ &= \frac{\pi}{2} \left(2s-1 \right)^2 \left(2s-3 \right)^2 \dots 1^2 \left\{ x + \frac{(2s+1)^2}{3!} \, x^3 + \frac{(2s+1)^2 \left(2s+3 \right)^2}{5!} \, x^5 + \dots \right\} \\ &\quad + \left(2s-2 \right)^2 \left(2s-4 \right)^2 \dots 2^2 \left\{ 1 + \frac{(2s)^2}{2!} \, x^2 + \frac{(2s)^2 \left(2s+2 \right)^2}{4!} \, x^4 + \dots \right\} \dots (\text{vii})^{\text{bis}}, \end{split}$$

the development of the several series being clear.

For calculation of y_{2s} or y_{2s-1} the above series are idle, just as they are when substituted in the equation for $dy_n/dr = 0$ which gives \check{r} . They converge far too slowly to be of use for numerical evaluations. But as we shortly shall show, they are, after certain transformations, most valuable in determining the moment coefficients.

Now
$$y_n = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}U}{dx^{n-2}};$$
 multiply (v) by
$$(1-\rho^2)^{\frac{n+1}{2}} (1-r^2)^{\frac{n-2}{2}} / (\pi (n-1)!),$$

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 331

and we have

$$(1-\rho^2r^2)\,y_{n+2}-\frac{\rho r\,(2n-1)\,\sqrt{1-\rho^2\,\sqrt{1-r^2}}}{n-1}\,y_{n+1}-\frac{(1-\rho^2)\,(1-r^2)}{(n-1)\,(n-2)}\,(n-1)^2\,y_n=0,$$

thus

$$y_{n+2} = \frac{2n-1}{n-1} \kappa_1 y_{n+1} + \frac{n-1}{n-2} \kappa_2 y_n$$
(viii).

Here

$$\kappa_1 = \frac{\rho r \sqrt{1 - \rho^2} \sqrt{1 - r^2}}{1 - \rho^2 r^2} \,, \qquad \kappa_2 = \frac{(1 - \rho^2) \, (1 - r^2)}{1 - \rho^2 r^2}$$

are constant for ρ and r given and thus (viii) enables us to deduce y_{n+2} from y_{n+1} and y_n for a given ρ and r. But by simple differentiation

$$y_{3} = \frac{1 - \rho^{2}}{\pi \sqrt{1 - r^{2}}} \left(\frac{1}{1 - \rho^{2} r^{2}} + \frac{\rho r \cos^{-1}(-\rho r)}{(1 - \rho^{2} r^{2})^{\frac{3}{2}}} \right)$$

$$y_{4} = \frac{(1 - \rho^{2})^{\frac{3}{2}}}{\pi} \left(\frac{3\rho r}{(1 - \rho^{2} r^{2})^{2}} + \frac{(1 + 2\rho^{2} r^{2}) \cos^{-1}(-\rho r)}{(1 - \rho^{2} r^{2})^{\frac{3}{2}}} \right)$$
(ix).

Hence if y_3 and y_4 be calculated for a series of values of r and ρ all higher values may be reached by a repeated use of (viii). The values chosen were: ρ proceeding by ·1 from 0 to 1 and r proceeding by ·05 from -1 to +1.

The disadvantage of this method of calculating y_n is that, except by independent computing, there is no means of checking accuracy until all the ordinates have been deduced, and any mistake in y_n for a low value of n is perpetuated throughout the series. When all the ordinates have been found, say for n=25, then the smoothness of these ordinates and the fact that they give the correct total area with a suitable graduation-formula will be checks on the accuracy of the whole system of ordinates. In this manner Table A, p. 379, was calculated.

Another method of approaching the value of y_n is of some advantage. We may take

$$y_n = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \left(\frac{v_n}{(1-\rho^2 r^2)^{n-2}} + \frac{u_n \cos^{-1}(-\rho r)}{(1-\rho^2 r^2)^{\frac{2n-3}{2}}} \right) \dots \dots (x),$$

where v_n and u_n are functions of ρr in integer positive powers, and if we substitute in (viii) we obtain

$$egin{aligned} v_{n+2} &= (2n-1)\,
ho r v_{n+1} + (n-1)^2\, (1-
ho^2 r^2)\, v_n \ u_{n+2} &= (2n-1)\,
ho r u_{n+1} + (n-1)^2\, (1-
ho^2 r^2)\, u_n \end{aligned} \dots \dots (xi).$$

We may write y_n in the form

$$y_n = \frac{n-2}{(n-2)!} \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d(\rho r)^{n-2}} \left\{ \frac{\cos^{-1}(-\rho r)}{\sqrt{1-\rho^2 r^2}} \right\},$$

or

$$y_2 = (n-2)_{n=2} \frac{\sqrt{1-\rho^2}}{\pi (1-r^2)} \left(\frac{0}{(1-\rho^2 r^2)^0} + \frac{\cos^{-1}(-\rho r)}{(1-\rho^2 r^2)^{\frac{1}{3}}} \right).$$

Hence $v_2 = 0$ and $u_2 = 1$, while y_2 will vanish for all values of r, except $r = \pm 1$ owing to the factor $(n-2)_{n=2}$. Thus (ix) gives us

$$v_3 = 1, u_3 = \rho r,$$

whence by (xi)

$$\begin{aligned} v_4 &= 3\rho r, & u_4 &= 1 + 2\rho^2 r^2, \\ v_5 &= 4 + 11\rho^2 r^2, & u_5 &= \rho r \left(9 + 6\rho^2 r^2\right), \\ v_6 &= \rho r \left(55 + 50\rho^2 r^2\right), & u_6 &= 9 + 72\rho^2 r^2 + 24\rho^4 r^4, \end{aligned}$$

and the successive values can be rapidly calculated, much faster than by actually differentiating out (iv). It is, however, shortest to insert the numerical values of ρ and r in (xi) and deduce the v_n 's and u_n 's numerically in succession. (Table A was, however, in the present case deduced from (viii). We did this by direct calculation of the values of

$$\left(\frac{y_n}{n-2}\right)_{n=2} = \frac{\sqrt{1-\rho^2}}{\pi (1-r^2)} \frac{\cos^{-1}(-\rho r)}{(1-\rho^2 r^2)^{\frac{1}{2}}},$$

and y_3 in equation (ix). Equation (viii) then gave us the numerical values of y_4 , y_5 , etc. in succession.)

We may write (x) in the form

$$y_n = \frac{(1 - \rho^2)^{\frac{3}{2}}}{\pi} V_n (v_n + u_n U) \dots (xii),$$

where

$$V_n = \frac{\left\{ (1 - \rho^2) (1 - r^2) \right\}^{\frac{n-4}{2}}}{(n-3)! (1 - \rho^2 r^2)^{n-2}} \quad \text{and} \quad U = \frac{\cos^{-1}(-\rho r)}{\sqrt{1 - \rho^2 r^2}}.$$

Here V_n , v_n , u_n and U are symmetrical in ρ and r and accordingly ρ and r can be interchanged. The problem approached this way involves:

- (a) calculating $(1 \rho^2)^{\frac{3}{2}}/\pi$ for various values of ρ ;
- (b) U for various values of ρr ;
- (c) V_n for various values of ρ , r and n;
- (d) determining u_n and v_n in succession from (xi) for various values of ρr and n.

Lastly we may use the series for y_n to be given later (see Eqn. (xliii)) which develops y_n in inverse powers of (n-1). Actually we have adopted (viii) for tabling the ordinates of the first 25 curve-series, and the last expansion for verification and higher cases.

(3) On the Determination of the Moment Coefficients. We shall next determine the value of the moment coefficients about r=0, as origin, and shall deal with the even and odd coefficients independently. Let them be μ'_{2p} and μ'_{2p+1} . Clearly, the total area having been taken as unity:

$$\begin{split} \mu'_{2p} &= \int_{-1}^{+1} y_n r^{2p} dr \\ &= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi \; (n-3) \, !} \int_{-1}^{+1} (1-r^2)^{\frac{n-4}{2}} r^{2p} \; \frac{d^{n-2} U}{d \; (\rho r)^{n-2}} \, dr. \end{split}$$

Now

$$r^{2p} = r^{2p} - (r^2 - 1)^p + (-1)^p (1 - r^2)^p$$

$$= pr^{2p-2} - \frac{p(p-1)}{2!} r^{2p-4} + \frac{p(p-1)(p-2)}{3!} r^{2p-6} - \dots + (-1)^p (1 - r^2)^p.$$

Hence

$$\mu'_{2p} = p\mu'_{2p-2} - \frac{p(p-1)}{2!}\mu'_{2p-4} + \frac{p(p-1)(p-2)}{3!}\mu'_{2p-6} - \ldots + (-1)^p\chi_{2p} \quad \text{(xiii)},$$

where

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} \frac{d^{n-2}U}{d(\rho r)^{n-2}} dr.$$

Thus using (vii)^{bis} on the assumption that n is odd and remembering that odd powers of r will now disappear we reach:

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi\;(n-3)\,!}\;(n-3)^2\;(n-5)^2\;\ldots\; 2^2\left(i_0+\frac{(n-1)^2}{2\;!}\;\rho^2\;i_2+\frac{(n+1)^2\;(n-1)^2}{4\;!}\;\rho^4\;i_4+\ldots\right)\;,$$

where

$$i_{2m} = \int_{-1}^{+1} (1 - r^2)^{\frac{n - 4 + 2p}{2}} r^{2m} dr.$$

Now we may write $r = \cos \phi$, so that

$$i_{2m} = 2 \int_0^{\frac{\pi}{2}} \sin^{n+2p-3} \phi \cos^{2m} \phi \ d\phi,$$

and we have

$$i_{2m} = \frac{2m-1}{n+2p-3+2m} i_{2m-2}$$
(xiv).

Thus

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (n-3)^2 (n-5)^2 \dots 2^2 i_0 \left(1 + \frac{(n-1)^2}{2!} \rho^2 \frac{1}{n-1+2p} + \frac{(n+1)^2 (n-1)^2}{4!} \rho^4 \frac{1}{n-1+2p} \frac{3}{n+1+2p} + \dots\right)$$

$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (n-3)^2 (n-5)^2 \dots 2^2 i_0 F\left(\frac{n-1}{2}, \frac{n-1}{2}, \frac{n-1}{2} + p, \rho^2\right),$$

where F as usual denotes the hypergeometrical series. But by a well-known transformation due to Euler

•
$$F(\alpha, \beta, \gamma, x) = (1-x)^{\gamma-\alpha-\beta} F(\gamma-\alpha, \gamma-\beta, \gamma, x)$$
(xv),

334 Distribution of Correlation Coefficient in Small Samples

and accordingly

$$F\left(\frac{n-1}{2}, \frac{n-1}{2}, \frac{n-1}{2} + p, \rho^2\right) = (1-\rho^2)^{p-\frac{n-1}{2}} F\left(p, p, \frac{n-1}{2} + p, \rho^2\right)$$
or
$$\chi_{2p} = \frac{(1-\rho^2)^p}{\pi (n-3)!} (n-3)^2 (n-5)^2 \dots 2^2 i_0 \cdot F\left(p, p, \frac{n-1}{2} + p, \rho^2\right).$$
Now
$$i_0 = 2 \int_0^{\frac{\pi}{2}} \sin^{n+2p-3} \phi \, d\phi = 2q_{n+2p-2}, \text{ say,}$$
and
$$2q_n = 2 \int_0^{\frac{\pi}{2}} \sin^{n-1} \phi \, d\phi$$
is known to be
$$(n-2) (n-4) \dots 1$$

is known to be

 $= \frac{(n-2)(n-4)\dots 1}{(n-1)(n-3)\dots 2}\pi \qquad(xvi),$

if n be odd as supposed above. Thus finally we have

$$\chi_{2p}=(1-
ho^2)^prac{q_{n+2p-2}}{q_{n-2}}F\left(p,\;p,\;rac{n-1}{2}+p,\;
ho^2
ight).....(ext{xvii}).$$

A Table of $q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} \phi \, d\phi$ from n = 1 to n = 105 is given on p. 377 below.

Now (xvii) has only been proved for n odd. If n be even we must take the first series of (vii) and this gives

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \frac{\pi}{2} (n-3)^2 (n-5)^2 \dots 1^2 i_0' \left(1 + \frac{(n-1)^2}{2!} \rho^2 \frac{1}{n+2p-1} + \frac{(n+1)^2 (n-1)^2}{4!} \rho^4 \frac{1}{n+2p-1} \cdot \frac{3}{n+2p+1} + \dots\right),$$

where

$$i_0' = 2 \int_0^{\frac{\pi}{2}} \sin^{n+2p-3} \phi \, d\phi = 2q_{n+2p-2}$$

and

$$2q_n = \frac{(n-2)(n-4)\dots 2}{(n-1)(n-3)\dots 3} \cdot 2\dots$$
 (xviii),

since n is even. Thus

$$\begin{split} \chi_{2p} &= (1-\rho^2)^{\frac{n-1}{2}} \frac{q_{n+2p-2}}{q_{n-2}} F\left(\frac{n-1}{2},\, \frac{n-1}{2},\, \frac{n-1}{2}+p,\, \rho^2\right) \\ &= (1-\rho^2)^p \frac{q_{n+2p-2}}{q_{n-2}} F\left(p,\, p,\, \frac{n-1}{2}+p,\, \rho^2\right) \ldots \ldots (\text{xix}), \end{split}$$

or (xvii) holds whether n be even or odd.

As particular cases we have for p=1

$$\begin{split} \mu_{2}{'} &= \bar{r}^{2} + \sigma_{r}^{2} = 1 - \chi_{2} \\ &= 1 - \frac{q_{n}}{q_{n-2}} (1 - \rho^{2}) \left(1 + \frac{2^{2}}{n+1} \frac{\rho^{2}}{2} + \frac{2^{2} \cdot 4^{2}}{1 \cdot 2 \cdot (n+1) \cdot (n+3)} \frac{\rho^{4}}{4} \right. \\ &\qquad \qquad + \frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{1 \cdot 2 \cdot 3 \cdot (n+1) \cdot (n+3) \cdot (n+5)} \frac{\rho^{6}}{8} + \ldots \right) \\ &\qquad \qquad \qquad \cdots \cdots (\mathbf{x} \mathbf{x}) \end{split}$$

$$\sigma_r^2 = 1 - \bar{r}^2 - \frac{n-2}{n-1} (1 - \rho^2) \left(1 + \frac{2^2}{n+1} \frac{\rho^2}{2} + \frac{2^2 \cdot 4^2}{1 \cdot 2 \cdot (n+1) \cdot (n+3)} \frac{\rho^4}{4} + \frac{2^2 \cdot 4^2 \cdot 6^2}{1 \cdot 2 \cdot 3 \cdot (n+1) \cdot (n+3) \cdot (n+5)} \frac{\rho^6}{8} + \ldots \right)$$

$$\dots \dots (xx)^{\text{bis}},$$

and again for p=2

$$\mu_{4}' = \mu_{4} + 4\mu_{3}'\mu_{1}' - 6\mu_{2}'\mu_{1}'^{2} + 3\mu_{1}'^{4}$$

$$= 2\mu_{2}' - 1 + \frac{n(n-2)}{(n+1)(n-1)}(1-\rho^{2})^{2} \left\{ 1 + \frac{4^{2}}{n+3} \frac{\rho^{2}}{2} + \frac{4^{2} \cdot 6^{2}}{1 \cdot 2(n+3)(n+5)} \frac{\rho^{4}}{4} + \frac{4^{2} \cdot 6^{2} \cdot 8^{2}}{1 \cdot 2 \cdot 3(n+3)(n+5)(n+7)} \frac{\rho^{6}}{8} + \ldots \right\} \dots (xxi).$$

The series in (xx) and (xxi) for n=25 and upwards converge with sufficient rapidity to determine μ_2 and μ_4 rapidly and therefore with accurate values for μ_1 and μ_3 will give μ_2 or σ_r^2 and μ_4 , and thus provide the determination of β_2 .

We will now determine μ'_{2v+1} in like manner. We have

$$\mu'_{2p+1} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4}{2}} r^{2p+1} \frac{d^{n-2}U}{d(\rho r)^{n-2}} dr,$$

but

$$r^{2p+1} = r \left\{ r^{2p} - (r^2 - 1)^p + (-1)^p (1 - r^2)^p \right\}$$

$$= r \left\{ pr^{2p-2} - \frac{p(p-1)}{2!} r^{2p-4} + \frac{p(p-1)(p-2)}{3!} r^{2p-6} - \dots + (-1)^p (1 - r^2)^p \right\}.$$

Hence

$$\mu'_{2p+1} = p\mu'_{2p-1} - \frac{p(p-1)}{2!} \mu'_{2p-3} + \frac{p(p-1)(p-2)}{3!} \mu'_{2p-5} - \dots + (-1)^p \chi_{2p+1} \dots (xxii),$$

where

$$\chi_{2p+1} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} r \frac{d^{n-2}U}{d(r\rho)^{n-2}} dr$$

$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \frac{1}{n-2+2p} \int_{-1}^{+1} \frac{d^{n-2}U}{d(r\rho)^{n-2}} d(-(1-r^2)^{\frac{n-2+2p}{2}}),$$

or integrating by parts

$$= \frac{\rho \left(1-\rho^2\right)^{\frac{n-1}{2}}}{\pi \left(n-3\right)! \left(n-2+2p\right)} \int_{-1}^{+1} \left(1-r^2\right)^{\frac{n-2+2p}{2}} \frac{d^{n-1}U}{d \left(r\rho\right)^{n-1}} dr.$$

Assuming n odd we must keep the first series in the value of $\frac{d^{n-1}U}{d(r\rho)^{n-1}}$, and we reach

$$\begin{split} \chi_{2p+1} &= \frac{\rho \; (1-\rho^2)^{\frac{n-1}{2}}}{\pi \; (n-3)! \; (n-2+2p)} \frac{\pi}{2} \; (n-2)^2 \; (n-4)^2 \ldots \, 1^2 \, . \, 2q_{n+2p} \\ &\times \left(1+\frac{n^2}{2!} \rho^2 \, \frac{1}{n+1+2p} + \frac{n^2 \; (n+2)^2}{4!} \, \frac{1}{n+1+2p} \, \frac{3}{n+3+2p} \rho^4 + \text{etc.} \ldots \right) \\ &= \frac{\rho \; (1-\rho^2)^{\frac{n-1}{2}}}{2 \; (n-3)! \; (n-2+2p)} \, 2q_{n+2p} \; (n-2)^2 \; (n-4)^2 \ldots \, 1^2 \\ &\qquad \qquad \times F \left(\frac{n}{2}, \, \frac{n}{2}, \, \frac{n+1}{2} + p, \, \rho^2 \right) \\ &= \frac{\rho \; (1-\rho^2)^p \; (n-2)}{n-2+2p} \, \frac{q_{n+2p}}{q_{n-1}} \, F \left(p+\frac{1}{2}, \, p+\frac{1}{2}, \, \frac{n+1}{2} + p, \, \rho^2 \right) \; \ldots \ldots (\text{xxiii}), \end{split}$$

if we use Euler's reduction formula, and note that for n odd, or n-1 even

$$2q_{n-1} = \frac{(n-3)(n-5)\dots 2}{(n-2)(n-4)\dots 1} \cdot 2.$$

If we start with n even we reach an absolutely identical formula by a different route. Thus we have

$$\mu'_{2p+1} = p\mu'_{2p-1} - \frac{p(p-1)}{2!} \mu'_{2p-3} + \frac{p(p-1)(p-2)}{3!} \mu'_{2p-5} - \dots$$

$$+ (-1)^{p} \frac{\rho(1-\rho^{2})^{p}(n-2)}{n-2+2p} \frac{q_{n+2p}}{q_{n-1}} F\left(p+\frac{1}{2}, p+\frac{1}{2}, \frac{n+1}{2}+p, \rho^{2}\right)$$
.....(xxiv)

Taking p in succession equal to zero and to unity we find

$$\begin{split} \mu_{1}' &= \bar{r} = \rho \, \frac{q_{n}}{q_{n-1}} \Big(1 + \frac{1^{2}}{n+1} \frac{\rho^{2}}{2} + \frac{1^{2} \cdot 3^{2}}{1 \cdot 2 \cdot (n+1) \cdot (n+3)} \frac{\rho^{4}}{4} \\ &\qquad \qquad + \frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{3 ! \cdot (n+1) \cdot (n+3) \cdot (n+5)} \frac{\rho^{6}}{8} + \ldots \Big) \ldots \ldots (\text{xxv}), \\ \mu_{3}' &= \mu_{3} + 3 \mu_{2}' \bar{r} - 2 \bar{r}^{3} = \bar{r} - \rho \cdot (1 - \rho^{2}) \frac{q_{n+2}}{q_{n-1}} \frac{n-2}{n} \\ &\qquad \qquad \times \Big(1 + \frac{3^{2}}{n+3} \frac{\rho^{2}}{2} + \frac{3^{2} \cdot 5^{2}}{1 \cdot 2 \cdot (n+3) \cdot (n+5)} \frac{\rho^{4}}{4} + \frac{3^{2} \cdot 5^{2} \cdot 7^{2}}{3 ! \cdot (n+3) \cdot (n+5) \cdot (n+7)} \frac{\rho^{6}}{8} + \ldots \Big) \\ &\qquad \qquad \ldots \ldots (\text{xxvi}). \end{split}$$

Equations (xxv) and (xxvi) provide the values of the odd moment coefficients about zero and this in fairly rapidly converging series. From them we can deduce the value about the mean μ_3 and thus find the fundamental β_1 . Table X, p. 377, again gives the requisite values of q_n for the range n=1 to 105.

Illustration. Samples of 25 are taken out of a population in which two variates have the correlation $\rho = \cdot 6$. Determination of the nature of the distribution of r in these samples.

Here n=25, and with $\rho=\cdot 6$ we find from (xx), (xxi), (xxv) and (xxvi) the values*

$$\mu_1' = \bar{r} = \cdot 591,825,$$
 $\mu_2' = \cdot 368,739,$
 $\mu_3' = \cdot 238,293,$
 $\mu_4' = \cdot 158,510.$
 $\mu_2 = \cdot 018,482,$
 $\sigma_r = \cdot 135,950,$
 $\mu_3 = -\cdot 001,812,380,$
 $\mu_4 = \cdot 001,279,141,$
 $\beta_1 = \cdot 520,265,$
 $\beta_2 = 3\cdot 744,573.$

giving

Further

The distribution is thus very far from normal.

Hence by the formula †:

Distance from mean to mode =
$$\frac{\sigma_r \sqrt{\beta_1} (\beta_2 + 3)}{2 (5\beta_2 - 6\beta_1 - 9)}$$
.....(xxvii),

we find

$$\breve{r} - \bar{r} = .050,094,$$

$$\ddot{r} = .64192.$$

We shall see later that the actual value is

$$\tilde{r} = .64194$$
.

or the approximation is very close.

The skewness is given by

$$Sk. = (\breve{r} - \bar{r})/\sigma_r = \cdot 36847$$
,

thus indicating that there is but little approach to normality.

Fig. 1, p. 338, shows the excellent fit of a Pearson curve of Type II to the distribution. The equation is

$$y = .31004 \left(1 - \frac{x}{.31075}\right)^{5.7536} \left(1 + \frac{x}{9.64157}\right)^{178.5135}$$
.

We see that when n=25, Pearson's curves—fitted by moments not by range—adequately describe the frequencies, but there is still no real approach to a Gaussian distribution.

The series-expansions which have been given for the determination of the moments are of very little service when n is less than 25. We have therefore to consider formulae for deducing in succession the moments about r = 0 for n = 5 to n = 25.

^{*} The values were in every case worked out to nine places of decimals.

[†] Pearson: Mathematical Contributions to the Theory of Evolution, XII, p. 7. Drapers' Company Research Memoirs, Biometric Series, Cambridge University Press.

$$\begin{split} \bar{r}_{n+2} &= \rho \, \frac{q_{n+2}}{q_{n+1}} \left(1 + \frac{1^2}{n+3} \, \frac{\rho^2}{2} + \ldots + \frac{1}{s \, ! \, (n+3) \, (n+5) - (n+2s+1)} \, \frac{\rho^{2s}}{2^s} + \ldots \right), \\ \bar{r}_n &= \rho \, \frac{q_n}{q_{n-1}} \left(1 + \frac{1^2}{n+1} \, \frac{\rho^2}{2} + \ldots + \frac{1^2 \, . \, 3^2 \, \ldots \, (2s-1)^2}{s \, ! \, (n+1) \, (n+3) \, \ldots \, (n+2s-1)} \, \frac{\rho^{2s}}{2^s} + \ldots \right), \\ \bar{r}_{n+2} &- \bar{r}_n &= \rho \, \frac{q_{n+2}}{q_{n-1}} \left\{ \frac{n}{n-1} \left(1 + \frac{1^2}{n+3} \, \frac{\rho^2}{2} + \ldots + \frac{1^2 \, . \, 3^2 \, \ldots \, (2s-1)^2}{s \, ! \, (n+3) \, (n+5) \, \ldots \, (n+2s+1)} \, \frac{\rho^{2s}}{2^s} + \ldots \right) \right\}, \\ &- \frac{n+1}{n} \left(1 + \frac{1^2}{n+1} \, \frac{\rho^2}{2} + \ldots + \frac{1^2 \, . \, 3^2 \, \ldots \, (2s-1)^2}{s \, ! \, (n+1) \, (n+3) \, \ldots \, (n+2s-1)} \, \frac{\rho^{2s}}{2^s} + \ldots \right) \right\}, \end{split}$$

since

$$\frac{q_{n-1}}{q_{n+1}} = \frac{n}{n-1} \, .$$

The general term is therefore

$$\frac{1}{(n-1)(n-2)} \rho \frac{q_{n+2}}{\rho} \frac{n-2}{q_{n-1}} \left(\frac{n^2(n+1)}{n+2s+1} - (n^2-1) \right) \\ = \frac{1^2 \cdot 3^2 \dots (2s-1)^2}{s!(n+1)(n+3) \dots (n+2s-1)} \frac{\rho^{2s}}{2^s}.$$

Now in (xxvi) we have seen that

$$\begin{split} \overline{r}_n - \mu'_{3,n} &= \rho \; (1 - \rho^2) \, \frac{q_{n+2}}{q_{n-1}} \, \frac{n-2}{n} \, \left\{ 1 + \frac{3^2}{n+3} \, \frac{\rho^2}{2} + \ldots \right. \\ &+ \frac{3^2 \cdot 5^2 \ldots (2s+1)^2}{s \, ! \; (n+3) \; (n+5) \ldots (n+2s+1)} \, \frac{\rho^{2s}}{2^s} + \ldots \right\}, \end{split}$$

and the general term is

Distribution of Correlation Coefficient in Small Samples

This result expresses the mean for samples of n+2 in terms of the mean for samples of n and the third moment of samples of n.

Next let

$$\chi_{2p,n} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} \frac{d^{n-2}U}{d(\rho r)^{n-2}} dr$$
$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} f_{p,n}.$$

Now integrate $f_{p, n}$ by parts twice:

$$\begin{split} f_{p,\,n} &= \frac{n-4+2p}{\rho} \int_{-1}^{+1} r \, (1-r^2)^{\frac{n-6+2p}{2}} \frac{d^{n-3}U}{d \, (\rho r)^{n-3}} \, dr \\ &= \frac{n-4+2p}{\rho} \int_{-1}^{+1} \left\{ (n-6+2p) \, (1-r^2)^{\frac{n-8+2p}{2}} \right. \\ &\qquad \qquad - \left. (n-6+2p+1) \, (1-r^2) \right\}^{\frac{n-6+2p}{2}} \times \frac{d^{n-4}U}{d \, (\rho r)^{n-4}} \, dr \\ &= \frac{n-4+2p}{\rho^2} \, \left\{ (n-6+2p) \, f_{p-1,\,n-2} - (n-6+2p+1) \, f_{p,\,n-2} \right\}. \end{split}$$

Or returning to the $\chi_{2p,n}$ notation

$$\chi_{2p,n} = \frac{1-\rho^2}{\rho^2} \frac{n-4+2p}{(n-3)(n-4)} \left\{ (n-6+2p) \chi_{2p-2,n-2} - (n-6+2p+1) \chi_{2p,n-2} \right\}.$$

As special cases put p = 1 and 2, and change n to n + 2. We have*

$$\chi_{2,n+2} = \frac{1-\rho^2}{\rho^2} \cdot \frac{n}{n-1} \cdot \left\{ \chi_{0,n} - \frac{n-1}{n-2} \chi_{2,n} \right\} \dots (xxix),$$

$$\chi_{4,n+2} = \frac{1-\rho^2}{\rho^2} \cdot \frac{n+2}{n-1} \cdot \left\{ \frac{n}{n-2} \chi_{2,n} - \frac{n+1}{n-2} \chi_{4,n} \right\} \dots (xxx).$$
But
$$\chi_{0,n} = 1 \quad \text{and} \quad \chi_{2,n} = 1 - \mu'_{2,n},$$

$$\chi_{4,n} = 1 - 2\mu'_{2,n} + \mu'_{4,n}.$$

Accordingly

$$\mu'_{2,n+2} = 1 - \frac{1-\rho^2}{\rho^2} \frac{n}{n-2} \left(\mu'_{2,n} - \frac{1}{n-1} \right) \dots (xxxi),$$

which can be verified directly from (xx) or (xx)bis. Again instead of working with the series for $\chi_{4,n+2}$ above (xxx), we can replace it by one involving the moments about r = 0, directly:

$$\mu'_{4,n+2} = 1 - \frac{1-\rho^2}{\rho^2} \left\{ \frac{(n+1)(n+2)}{(n-1)(n-2)} \mu'_{4,n} + \frac{n^2 - 6n - 4}{(n-1)(n-2)} \mu'_{2,n} - \frac{1}{n-1} \right\}$$
......(xxxii).

^{*} The process of integrating by parts shows that we must have n > 2.

BIOMETRIKA, Vol. XI, Part IV

The diagram referred to on p. 341 will appear with Part II of the paper.

It remains to determine the formula for $\mu'_{3,n+2}$. We have

$$\chi_{2p+1,n} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} r \frac{d^{n-2}U}{d(r\rho)^{n-2}} dr,$$

whence by double integration by parts to reduce the U differential coefficient we obtain

$$\chi_{2p+1,n} = \frac{1-\rho^2}{\rho^2} \frac{n-4+2p}{(n-3)(n-4)} \left\{ (n-6+2p) \chi_{2p-1,n-2} - \frac{n-4+2p+1}{n-4} \chi_{2p+1,n-2} \right\}.$$

Putting p = 1 and changing n to n + 2 we have

$$\chi_{3,n+2} = \frac{1-\rho^2}{\rho^2} \frac{n}{n-1} \left\{ \chi_{1,n} - \frac{n+1}{n-2} \chi_{3,n} \right\} \dots (xxxiii).$$

This may again be read as a formula for $\mu'_{3,n+2}$:

$$\boldsymbol{\mu'_{3,\,n+2}} = \bar{r}_n \left(1 - \frac{n}{n-1} \, \frac{1-\rho^2}{\rho^2} \right) + \frac{\bar{r}_n - \boldsymbol{\mu'}_{3,\,n}}{(n-1)\,(n-2)} \left(1 + n\,(n+1) \, \frac{1-\rho^2}{\rho^2} \right) \, (\text{xxxiv}).$$

Starting with the values of the μ 's for n=3, 4, 25 and 26, the moment coefficients about r=0 have been determined for n=5 to 25 in succession. As controls the values for n=20 had already been determined and those for n=10were also obtained at a very considerable expenditure of labour from the very slowly converging series of Formulae (xx), (xxi), (xxv) and (xxvi). The initial values of the moment coefficients (i.e. those for n=3, 4, 25 and 26) had to be calculated generally to 15 and sometimes to 20 significant figures, owing to the numerical factors in (xxviii), (xxxi), (xxxii) and (xxxiv) being frequently greater than unity, and thus errors in the last figure being repeatedly multiplied. According to the special value of ρ , it was found best sometimes to deduce moment coefficients of n+2 from those for n, and sometimes those of n from those for n+2, i.e. to work up from 3 and 4, or down from 25 and 26. It seems unnecessary to enter at length here into the many difficulties that arose in the course of these calculations. We think they have all been successfully surmounted and that our final values may be trusted to the figures actually recorded in the tables. We thus found the moment coefficients and from them the values of β_1 and β_2 for the ten values of ρ from 0 to .9, and for the values of n, 2 to 25, 50, 100 and 400. Diagram I shows that our 270 frequency curves are fairly well distributed over the most frequently occurring portion of the β_1 , β_2 plane. Now our view is that the constants β_1 , β_2 describe adequately for statistical purposes the bulk of the usual frequencies distributions. But we have provided tables of the values of the ordinates for the above 270 curves. Hence by interpolation it will now be possible to determine rapidly ordinates which will graduate with reasonable accuracy any frequency distribution whatever quite apart from the idea of sampling normally correlated variates*.

^{*} Francis Galton frequently insisted on the importance of forming Tables of frequency ordinates, which would graduate any frequency distribution in the β_1 , β_2 plane. A scheme for covering this plane

342 Distribution of Correlation Coefficient in Small Samples

In order to make use of our ordinates for graduating frequency curves we must express the distance from our origin to our mean (i.e. from r=0 to $r=\bar{r}_n$) in terms of the standard deviation, and further the unit of argument of the abscissae, i.e. $\cdot 05$ in r, also in terms of the standard deviation. Our interpolated frequency ordinates (reduced of course, to the size of the actual population) will then have to be plotted to intervals of $\cdot 05\,\sigma_g/\sigma_r$, the origin being $\bar{r}_n\sigma_g/\sigma_r$ from the mean of the graduated data, where σ_g is the standard deviation of the graduated data. Care must be taken to so choose the axis of abscissae of the graduated data that the sign of μ_3 is the same in the graduated material and the graduating frequencies. Table C gives the distance from the mean to the origin of coordinates in each case and also the abscissal unit for plotting both in terms of the standard deviation.

(4) On the Determination of the Mode. Differentiating (iv) we have

$$\frac{dy_n}{dr} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \left\{ (1-r^2)^{\frac{n-4}{2}} \rho \frac{d^{n-1}U}{d(r\rho)^{n-1}} - r(n-4)(1-r^2)^{\frac{n-6}{2}} \frac{d^{n-2}U}{d(r\rho)^{n-2}} \right\}.$$

Hence the mode \tilde{r} is given by

$$0=(1-\breve{r}^2)\rho^2\left(\frac{d^{n-1}U}{d\ (r\rho)^{n-1}}\right)-\breve{r}\rho\ \frac{d^{n-2}U}{d\ (r\rho)^{n-2}}\ (n-4),$$

or writing $\check{\rho}^2 = \check{r}\rho$, we have

$$(\rho^2 - \breve{\rho}^4) \frac{d^{n-1} \breve{U}}{d \ (\breve{\rho}^2)^{n-2}} = (n-4) \ \breve{\rho}^2 \frac{d^{n-2} \breve{U}}{d \ (\breve{\rho}^2)^{n-2}} \quad \dots \dots (xxxv),$$

where \check{U} is U with $\check{\rho}$ put for $r\rho$.

Now (xxxv) is by no means easy to solve adequately, for if we solve it by approximation, $r = \rho$ and $\check{\rho} = \rho^2$ is not sufficiently close for an effective first approximation, especially when ρ differs considerably from zero. We have indeed from (v) the relation

$$(1-\check{\rho}^4)\frac{d^{n-1}\check{U}}{d\,(\check{\rho}^2)^{n-1}}-\check{\rho}^2\,(2n-3)\,\frac{d^{n-2}\,\check{U}}{d\,(\check{\rho}^2)^{n-2}}-(n-2)^2\,\frac{d^{n-3}\,\check{U}}{d\,(\check{\rho}^2)^{n-3}}=0\ (\text{xxxvi}),$$

and this might be combined with (xxxv) to deduce in succession relations between lower pairs of differential coefficients, till we ultimately reach a relation between $d \, \breve{U} / d \check{\rho}^2$ and \breve{U} , but the process is too laborious except for very low values of n.

Fisher has outlined another method of approaching the mode*. It is easy to see that

$$\begin{split} \frac{\cos^{-1}\left(-\,x\right)}{\sqrt{1-x^2}} &= \frac{2}{\sqrt{1-\,x^2}} \left(\tan^{-1}\frac{1-\,x}{\sqrt{1-\,x^2}} - \,\tan^{-1}\frac{-\,x}{\sqrt{1-\,x^2}} \right) \\ &= \frac{2}{\sqrt{1-\,x^2}} \left[\tan^{-1}\left(\frac{\xi-\,x}{\sqrt{1-\,x^2}}\right) \right]_0^1 \\ &= 2 \int_0^1 \frac{d\xi}{(\xi-\,x)^2+\,1-\,x^2} = 2 \int_0^1 \frac{d\xi}{\xi^2-2x\xi+\,1} \,, \end{split}$$

with a series of Pearson-curves has been long under consideration, but the immense labour of calculating the ordinates of 400 to 500 curves has so far prevented the actualisation of this idea. The present ordinate-tables go some way to supply the need Galton pointed out.

* Biometrika, Vol. x. p. 520.

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 343

or, if
$$\xi = e^{-z}$$
,
$$= \int_0^\infty \frac{dz}{\cosh z - x} = \int_0^\infty \frac{dz}{\cosh z - \rho r}, \text{ if } x = \rho r.$$
But
$$y_n = \frac{(1 - \rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1 - r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d (\rho r)^{n-2}} \left(\frac{\cos^{-1}(-\rho r)}{\sqrt{1 - \rho^2 r^2}}\right)$$

$$= \frac{(1 - \rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1 - r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d (\rho r)^{n-2}} \int_0^\infty \frac{dz}{\cosh z - \rho r}$$

$$= (n-2) \frac{(1 - \rho^2)^{\frac{n-1}{2}}}{\pi} (1 - r^2)^{\frac{n-4}{2}} \int_0^\infty \frac{dz}{(\cosh z - \rho r)^{n-1}} \dots (xxxvii),$$

$$= \frac{(n-2) (1 - \rho^2)^{\frac{n-1}{2}}}{\pi} (1 - r^2)^{\frac{n-4}{2}} I_{n-1}, \text{ say} \dots (xxxvii)^{\text{bis}}.$$

Substituting in Eqn. (viii) we find

$$n (1 - \rho^2 r^2) I_{n+1} = (2n - 1) \rho r I_n + (n - 1) I_{n-1}$$
(xxxviii),

as the reduction formula for the I_n 's.

Similarly, if
$$I'_{n-1} = \int_0^\infty \frac{dz}{(\cosh z - \rho_0^2)^{n-1}},$$
 then
$$n (1 - \rho_0^4) \, I'_{n+1} = (2n-1) \, \rho_0^2 I'_n + (n-1) \, I'_{n-1} \, \dots (\text{xxxviii})^{\text{bis}}.$$

Now using value (xxxvii) bis for y_n , the equation for the mode is

$$(n-4)\ reve{r}reve{I}_{n-1}=
ho\ (1-reve{r}^2)\ (n-1)\ reve{I}_n$$
 ,

or, if as before, $\check{\rho}^2 = \rho \check{r}$, we have:

$$(n-4) \ \check{\rho}^2 \check{I}_{n-1} = (\rho^2 - \check{\rho}^4) (n-1) \, \check{I}_n \dots (xxxix).$$

This combined with

$$n (1 - \check{\rho}^4) \check{I}_{n+1} = (2n-1) \check{\rho}^2 \check{I}_n + (n-1) \check{I}_{n-1} \dots (xl),$$

should determine the mode.

Now assume $\check{\rho}^2 = \rho_0^2 + \epsilon$, where ρ_0^2 is some first approximation to $\check{\rho}^2$, then we find

$$\epsilon = -\frac{(n-4)\,\rho_0{}^2I'_{n-1} - (n-1)\,(\rho^2 - \rho_0{}^4)\,I_{n'}}{(n-4)\,I'_{n-1} + (n-1)\,(n-2)\,\rho_0{}^2I_{n'} - (n-1)\,(\rho^2 - \rho_0{}^4)\,I'_{n+1}} \dots (xli).$$

If we had obtained an approximation ρ_0^2 to $\check{\rho}^2$, we could start with

$$I_{\mathbf{1}'} = \frac{\cos^{-1}{(-\rho_{\mathbf{0}}^2)}}{\sqrt{1-\rho_{\mathbf{0}}^4}} \quad \text{and} \quad I_{\mathbf{2}'} = \frac{1}{1-\rho_{\mathbf{0}}^4} + \frac{\rho_{\mathbf{0}}^2 \cos^{-1}{(-\rho_{\mathbf{0}}^2)}}{(1-\rho_{\mathbf{0}}^4)^{\frac{3}{2}}} \quad \dots \dots (\mathbf{x}\mathbf{l}\mathbf{i}\mathbf{i}),$$

and by aid of $(xxxviii)^{bis}$ determine the I''s in succession. If $E_n = I_n/I_{n-1}$ we can put our results in the forms (xliii) and (xliv) below, and calculate successive E's:

$$\epsilon = -\frac{\left\{ \frac{\left(n-4 \right) {\rho_0}^2}{E_n} - \left(n-1 \right) \left({\rho^2 - {\rho_0}^4} \right) \right\}}{\frac{n-4}{E_n} + \left(n-1 \right) \left(n-2 \right) {\rho_0}^2 - n \left(n-1 \right) \left({\rho^2 - {\rho_0}^4} \right) E_{n+1}} \quad ... \text{(xliii),}$$

and
$$(n-1) (1-\rho_0^4) E_n = (2n-3) \rho_0^2 + \frac{n-2}{E_{n-1}} \dots (xliv).$$

But even this would be laborious had we to find successive values of E_n from (xliv). Actually, if n be moderately large, E_n and E_{n-1} tend to equality fairly rapidly. For example the following are the values of E_n for $\rho_0 = .6$:

$$I_1 = 2 \cdot 078,4173, \ I_2 = 1 \cdot 873,8688 \ \ \text{and therefore} \ \ E_2 = \cdot 901,5845.$$

$E_{2} \\ E_{3} \\ E_{4} \\ E_{5} \\ E_{6} \\ E_{7} \\ E_{8}$	·901,5845 1·257,5588 1·183,5106 1·451,8703 1·377,5430 1·453,2879 1·445,7342	$E_{9} \ E_{10} \ E_{11} \ E_{12} \ E_{13} \ E_{14} \ E_{15}$	$1 \cdot 470,8511 \\ 1 \cdot 475,5703 \\ 1 \cdot 486,5966 \\ 1 \cdot 492,1848 \\ 1 \cdot 498,5199 \\ 1 \cdot 503,1022 \\ 1 \cdot 507,3770$	$E_{16} \ E_{17} \ E_{18} \ E_{19} \ E_{20} \ E_{21} \ E_{22}$	1.511,0031 $1.514,1874$ $1.516,9985$ $1.519,5018$ $1.521,7436$ $1.523,7636$ $1.525,5928$	$E_{23} \\ E_{24} \\ E_{25} \\ E_{26} \\ E' \\ E''' \\ E'''$	1·527,2571 1·528,7778 1·530,1728 1·531,4570 1·529,7263 1·531,0459 1·530,1488
---	---	---	--	--	--	--	--

Clearly E_n and E_{n-1} approach equality. Now put $E_{25} = E_{24}$ for n = 25 in (xliv) and we have for $\rho_0 = .6$

$$20.8896E^{\prime 2} - 16.92E^{\prime} - 23 = 0,$$

which gives for the root required

$$E' = 1.529,7263.$$

But we might also have made $E_{25} = E_{26}$ and so reached

$$21.7600E^{\prime\prime2} - 17.64E^{\prime\prime} - 24 = 0,$$

which gives

$$E^{\prime\prime} = 1.531,0459.$$

It is better therefore in finding E_n to equate E_n and E_{n-1} than E_n and E_{n+1} .

A still closer approximation may be found by noting that

$$E_n - E' = \epsilon = E_{n+1} - E''$$
, nearly,

where ϵ is very small. Hence since

$$n\left(1-\rho_0^4\right)E_{n+1}E_n-(2n-1)\,\rho_0^2E_n-(n-1)=0,$$

we have

or,

For the case of $\rho_0 = .6$ and n = 25 we find

$$E^{\prime\prime\prime} = 1.530,1488,$$

and $E_{25} - E''' = .000,0240$, a close agreement. As a matter of fact as we only use E_n in a small term the approximation E' is generally quite sufficient.

In the above method all turns on finding a good value of ρ_0^2 , i.e. a first approximation to the value of the product of ρ and \check{r} . This may be obtained in either of the following ways:

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 345

First, choose the values of ρ_0^2 and E' to satisfy the simultaneous equations

$$\frac{(n-4)\,\rho_0^2}{E'} - (n-1)\,(\rho^2 - \rho_0^4) = 0,$$

and

$$(n-1)(1-\rho_0^4)E'=(2n-3)\rho_0^2+\frac{n-2}{E'}.$$

Or, we have for ρ_0 the equation

$$\frac{\left(n-1\right) \left(n-4\right) \left(1-\rho_0{}^4\right) \rho_0{}^2}{\left(n-1\right) \left(\rho^2-\rho_0{}^4\right)}=\left(2 n-3\right) \rho_0{}^2+\frac{\left(n-2\right) \left(n-1\right) \left(\rho^2-\rho_0{}^4\right)}{\left(n-4\right) \rho_0{}^2}\,,$$

which writing $\rho_0^4 = z$ gives us

$$(n-4)^2 (1-z) z = (2n-3) (n-4) z (\rho^2-z) + (n-2) (n-1) (\rho^2-z)^2,$$

$$6z^2 - z \{(n-4)^2 + \rho^2 (5n-8)\} + (n-2) (n-1) \rho^4 = 0 \dots (xlvi).$$

As illustration if n = 25 and $\rho = \cdot 6$

$$6z^{2} - 483\cdot12z + 71\cdot5392 = 0,$$

$$z = \cdot148,351,$$

$$\rho_{0}^{2} = \tilde{r}\rho = \cdot385,164,$$

$$\tilde{r} = \cdot64194.$$

giving or.

or

and

a value* in excellent agreement with the results on p. 337, and needing no further approximation.

Again suppose
$$n=5$$
, and $\rho=\cdot 6$, we have
$$6z^2-7\cdot 12z+1\cdot 5552=0.$$

Hence z = .288,6295 and $\rho_0^2 = .537,2425$ leading to $\tilde{r} = .895,404$ as our approximation. We shall now use this value of ρ_0^2 to determine the true system of E's corresponding to this value.

We have
$$n (1 - \rho_0^4) E_{n+1} = (2n - 1) \rho_0^2 + \frac{n - 1}{E_n},$$
 while
$$E_2 = \rho_0^2 + \frac{1}{\sqrt{1 - \rho_0^4 \cos^{-1}(-\rho_0^2)}} \dots \dots (xlvii)$$
 = 1.091.8073.

Substituting in

$$n \times \cdot 711,3705 E_{n+1} = (2n-1) \times \cdot 537,2425 + \frac{n-1}{E_n}$$
 ,

we obtain the series

$$E_2=1\cdot091,8073, \qquad E_3=1\cdot776,5988, \ E_4=1\cdot786,2042, \qquad E_5=1\cdot911,8858, \qquad E_6=1\cdot947,6088.$$

The values show us that $E_5 = E_4$ was naturally much rougher in this case than that of n = 25. However we find $\epsilon = +.001,1177$, $\rho_0^2 = .538,3602$ and $\tilde{r} = .897,267$, as our next approximation, involving no very great change.

^{*} Repeated use of Eqn. (xli) only modified this result to $\dot{r} = .641,939$.

Distribution of Correlation Coefficient in Small Samples

To confirm this value of \ddot{r} we take as the first approximation to \ddot{r} the value given in the method of the following section, i.e. $\check{r} = .91344$ giving $\rho_0^2 = .548,064$ and

$$n imes ``699,6259 E_{n+1} = (2n-1) imes ``548,0640 + rac{n-1}{E_n} \,.$$

Using (xlvii) we find $E_2 = 1.103,9149$ and hence

$$E_3=1.822,4446,$$
 $E_4=1.828,4768,$ $E_5=1.957,1738,$ $E_6=1.994,3056,$ $\epsilon=-.008,8172,$ $\rho_0{}^2=.539,2468,$

 $\ddot{r} = .89875$

leading to and

or

It will be seen that our two methods of approaching the true value of \tilde{r} still differ to some extent, although probably serviceable enough for practical purposes. Accordingly we will now make a further approximation starting from $\check{r}=\cdot 8980$ or $\rho_0^2 = .5388$, and we have

$$\begin{split} E_2 &= 1 \cdot 093,5399, & E_3 &= 1 \cdot 783,0638, & E_4 &= 1 \cdot 792,1629, \\ E_5 &= 1 \cdot 918,2742, & E_6 &= 1 \cdot 954,1949. \end{split}$$

These give

$$\epsilon = -.000,4924,$$

and consequently

$$ho_0^2 = \cdot 538,3036,$$

with

$$\tilde{r} = .89717$$
,

a value no doubt correct to four figures.

It is clear that the process of finding the mode for n small is much more laborious than for n=25 or over, because E_n is not nearly E_{n+1} . Actually the value given for E' by the simultaneous equation process from which we started is

$$E' = 1.881,8787,$$

which is only a rough approximation to the value $E_5 = 1.911,8858$. That method must therefore be followed by further approximations when n is much smaller than 25.

(5) Determination of Ordinates and Mode by Expansions.

Approximate Expression for the Ordinates. We may proceed to expand the Eqn. (xxxvii) in powers of 1/n or 1/(n-1). This will involve a knowledge of the expansion of

$$I_n = \int_0^\infty rac{dz}{(\cosh z -
ho_0^{\ 2})^n}$$
, where $ho_0^{\ 2} =
ho reve{r}$,

and can be achieved by a process to which Pearson drew attention in 1902*.

Let
$$\frac{1}{\cosh z - \rho_0^2} = \frac{1}{1 - \rho_0^2} e^{-(a_2'z^2 + a_4'z^4 + a_6'z^6 + a_8'z^8 + \dots)} \dots (xlviii).$$
* Biometrika, Vol. 1. p. 393.

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 347

Then, if

$$v = \log\left(\cosh z - {
ho_0}^2\right) = \log\left(1 - {
ho_0}^2\right) + {a_2}'z^2 + {a_4}'z^4 + {a_6}'z^6 + \dots$$

it follows that

$${a_2}' = rac{1}{2\,!} {\left(rac{d^2 v}{dz^2}
ight)_0} \, , \qquad {a_4}' = rac{1}{4\,!} {\left(rac{d^4 v}{dz^4}
ight)_0} \, ,$$

and so on.

Now
$$\frac{dv}{dz} = \frac{\sinh z}{\cosh z - {\rho_0}^2}, \quad \text{or} \quad (\cosh z - {\rho_0}^2) \frac{dv}{dz} = \sinh z.$$

Apply Leibnitz's Theorem, differentiating (2s-1) times, and we have

$$\sinh z \frac{dv}{dz} + (2s-1)\cosh z \frac{d^2v}{dz^2} + \frac{(2s-1)(2s-2)}{2!}\sinh z \frac{d^3v}{dz^3} + \dots$$

$$+ (\cosh z - \rho_0^2) \frac{d^{2s}v}{dz^{2s}} = \cosh z.$$

Hence when z = 0

$$(2s-1)\Big(\frac{d^2v}{dz^2}\Big)_{\mathbf{0}} + \frac{(2s-1)\;(2s-2)\;(2s-3)}{3\;!}\Big(\frac{d^4v}{dz^4}\Big)_{\mathbf{0}} + \ldots + (1-\rho_0{}^2)\Big(\frac{d^{2s}v}{dz^{2s}}\Big)_{\mathbf{0}} = 1.$$

Now put s in succession 1, 2, 3, etc. and there results

$$\begin{split} (1-\rho_0{}^2)\left(\frac{d^2v}{dz^2}\right)_0 &= 1, \qquad 3\left(\frac{d^2v}{dz^2}\right)_0 + (1-\rho_0{}^2)\left(\frac{d^4v}{dz^4}\right)_0 = 1, \\ & 5\left(\frac{d^2v}{dz^2}\right)_0 + 10\left(\frac{d^4v}{dz^4}\right)_0 + (1-\rho_0{}^2)\left(\frac{d^6v}{dz^6}\right)_0 = 1, \\ & 7\left(\frac{d^2v}{dz^2}\right)_0 + 35\left(\frac{d^4v}{dz^4}\right)_0 + 21\left(\frac{d^6v}{dz^6}\right)_0 + (1-\rho_0{}^2)\left(\frac{d^8v}{dz^8}\right)_0 = 1, \\ & 9\left(\frac{d^2v}{dz^2}\right)_0 + 84\left(\frac{d^4v}{dz^4}\right)_0 + 126\left(\frac{d^6v}{dz^6}\right)_0 + 36\left(\frac{d^8v}{dz^8}\right)_0 + (1-\rho_0{}^2)\left(\frac{d^{10}v}{dz^{10}}\right)_0 = 1, \\ & \text{etc., etc.} \end{split}$$

These lead to

$$\begin{split} a_2' &= \frac{1}{2} \frac{1}{1 - {\rho_0}^2}, \qquad a_4' = -\frac{2 + {\rho_0}^2}{24 \left(1 - {\rho_0}^2\right)^2}, \\ a_6' &= \frac{16 + 13 {\rho_0}^2 + {\rho_0}^4}{720 \left(1 - {\rho_0}^2\right)^3}, \qquad a_8' = -\frac{(272 + 297 {\rho_0}^2 + 60 {\rho_0}^4 + {\rho_0}^6)}{40320 \left(1 - {\rho_0}^2\right)^4}, \\ a_{10}' &= \frac{7936 + 10841 {\rho_0}^2 + 3651 {\rho_0}^4 + 251 {\rho_0}^6 + {\rho_0}^8}{3,628,800 \left(1 - {\rho_0}^2\right)^5}, \quad \text{etc.} \end{split}$$

Accordingly we have, raising (xlviii) to the *n*th power and expanding the exponential after the term in $a_2'z^2$,

$$\frac{1}{(\cosh z - \rho_0^2)^n} = \frac{1}{(1 - \rho_0^2)^n} e^{-na_2'z^2} \{ 1 - na_4'z^4 - na_6'z^6 - n\left(a_8' - \frac{1}{2}na_4'^2\right)z^8 - n\left(a_{10}' - na_4'a_6'\right)z^{10} - n\left(a_{12}' - na_4'a_8' - \frac{1}{2}na_6'^2 + \frac{1}{6}n^2a_4'^3\right)z^{12} + \ldots \}.$$

$$23-2$$

348 Distribution of Correlation Coefficient in Small Samples

Remembering that

$$\int_{-\infty}^{+\infty} e^{-\frac{nz^2}{2\left(1-\rho_0{}^2\right)}} \, z^{2s} dz = \sqrt{2\pi} \, \sqrt{\frac{1-\rho_0{}^2}{n}} \, (2s-1) \, (2s-3) \, ... \, 1 \times \frac{(1-\rho_0{}^2)^s}{n^s} \, ,$$

we find

$$\begin{split} I_n &= \int_0^\infty \frac{dz}{(\cosh z - {\rho_0}^2)^n} = \frac{1}{2} \frac{\sqrt{2\pi}}{(1 - {\rho_0}^2)^n} \sqrt{\frac{1 - {\rho_0}^2}{n}} \left(1 + \frac{1}{8} \frac{{\rho_0}^2 + 2}{n} + \frac{1}{128} \frac{9{\rho_0}^4 + 12{\rho_0}^2 + 4}{n^2} \right. \\ &\quad + \frac{75{\rho_0}^6 + 90{\rho_0}^4 - 20{\rho_0}^2 - 40}{1024n^3} \\ &\quad + \frac{3675{\rho_0}^8 + 4200{\rho_0}^6 - 2520{\rho_0}^4 - 3360{\rho_0}^2 - 336}{32768n^4} + \text{etc.} \right) \, \dots (\text{xlix}). \end{split}$$

But $y_n = \frac{(n-2)(1-\rho^2)^{\frac{n-1}{2}}(1-r^2)^{\frac{n-4}{2}}}{\pi}I_{n-1}$, if $\rho_0^2 = \rho r$,

and thus we have

$$y_{n} = \frac{1}{\sqrt{2\pi}} \frac{n-2}{\sqrt{n-1}} (1-\rho^{2})^{\frac{13}{2}} \chi_{0}(\rho, r)$$

$$\times \left(1 + \frac{\phi_{1}(\rho r)}{(n-1)} + \frac{\phi_{2}(\rho r)}{(n-1)^{2}} + \frac{\phi_{3}(\rho r)}{(n-1)^{3}} + \frac{\phi_{4}(\rho r)}{(n-1)^{4}} + \dots\right) \dots (l),$$

$$\chi_{0}(\rho, r) = \frac{(1-\rho^{2})^{\frac{n-4}{2}}}{(1-\rho r)^{n-\frac{3}{2}}}$$

where

is symmetrical in ρ and r and

$$\phi_1\left(\rho r\right) = \frac{r\rho + 2}{8} , \qquad \phi_2\left(\rho r\right) = \frac{(3r\rho + 2)^2}{128} ,$$

$$\phi_3\left(\rho r\right) = \frac{5\left\{15\left(r\rho\right)^3 + 18\left(r\rho\right)^2 - 4\left(r\rho\right) - 8\right\}}{1024} ,$$
 ...(li)
$$\phi_4\left(\rho r\right) = \frac{3675\left(r\rho\right)^4 + 4200\left(r\rho\right)^3 - 2520\left(r\rho\right)^2 - 3360\left(r\rho\right) - 336}{32768}$$

thus depend only on the product of ρ and r.

We may write

$$y_{n} = \frac{n-2}{\sqrt{n-1}} (1-\rho^{2})^{\frac{5}{2}} \chi(\rho, r) \left\{ 1 + \frac{\phi_{1}(\rho r)}{(n-1)} + \frac{\phi_{2}(\rho r)}{(n-1)^{2}} + \frac{\phi_{3}(\rho r)}{(n-1)^{3}} + \frac{\phi_{4}(\rho r)}{(n-1)^{4}} + \ldots \right\}$$
......(lii)

where

$$\log \chi(\rho,r) = -(n-1)\log \chi_1 - \log \chi_2,$$

and

$$\chi_1 = \frac{1 - \rho r}{\{(1 - \rho^2) (1 - r^2)\}^{\frac{1}{2}}},$$

$$\chi_2 = rac{\sqrt{2\pi}\,\{(1-
ho^2)(1-r^2)\}^{rac{3}{2}}}{(1-
ho r)^{rac{1}{2}}}$$
 ,

both being symmetrical in r and ρ

Table C in Appendix gives the values of $\log \frac{n-2}{\sqrt{n-1}}$, $\log (1-\rho^2)^{\frac{3}{2}}$, $\log \chi_1$,

 $\log \chi_2$, ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , and enables the ordinates of the frequency curves to be calculated with considerable rapidity for n=25 and upwards*.

Approximate Expressions for the Mode.

Writing

$$I_{n'} = \int_0^\infty \frac{dz}{(\cosh z - \rho \check{r})^n},$$

we find

$$I_{n'} = \frac{1}{2} \frac{\sqrt{2\pi}}{(1-\rho\breve{r})^n} \sqrt{\frac{1-\rho\breve{r}}{n}} \left(1 + \frac{{\phi_1}'}{n} + \frac{{\phi_2}'}{n^2} + \frac{{\phi_3}'}{n^3} + \ldots \right),$$

where ϕ_s stands for ϕ_s ($\rho \tilde{r}$). We now use Eqn. (xxxix) and find

$$\frac{\breve{r}-\rho\breve{r}^2}{\rho-\rho\breve{r}^2} = \frac{n-1}{n-4}\sqrt{\frac{n-1}{n}} R,$$

where

$$R = \left(1 + \frac{{\phi_1}'}{n} + \frac{{\phi_2}'}{n^2} + \frac{{\phi_3}'}{n^3} + \ldots\right) / \left(1 + \frac{{\phi_1}'}{(n-1)} + \frac{{\phi_2}'}{(n-1)^2} + \frac{{\phi_3}'}{(n-1)^3} + \ldots\right) - \ldots \ldots (\text{liii})$$

If we expand this in inverse powers of $\frac{1}{n-1}$, we deduce

$$R = 1 - \frac{{\phi_1}'}{(n-1)^2} + \frac{{\phi_1}'^2 - 2{\phi_2}' + {\phi_1}'}{(n-1)^3} - \frac{{\phi_1}'^3 + {\phi_1}'^2 + {\phi_1}' - 3{\phi_1}'{\phi_2}' - 3{\phi_2}' + 3{\phi_3}'}{(n-1)^4} + \dots.$$

Again

$$\frac{n-1}{n-4}\sqrt{\frac{n-1}{n}} = 1 + \frac{5}{2(n-1)} + \frac{63}{8(n-1)^2} + \frac{373}{16(n-1)^3} + \frac{8987}{128(n-1)^4} + \dots$$

Thus we have

$$\begin{split} \frac{\breve{r} - \rho \breve{r}^2}{\rho - \rho \breve{r}^2} &= 1 + \frac{5}{2 \; (n-1)} + \frac{63 - \phi_1{}'}{8 \; (n-1)^2} + \frac{373 - 24 \phi_1{}' + 16 \phi_1{}'^2 - 32 \phi_2{}'}{16 \; (n-1)^3} \\ &\quad + \frac{8987 - 816 \phi_1{}' + 192 \phi_1{}'^2 - 128 \phi_1{}'^3 + 384 \phi_1{}' \phi_2{}' - 256 \phi_2{}' - 384 \phi_3{}'}{128 \; (n-1)^4} + \ldots. \end{split}$$

Bringing the first term on the right to the left we reach after substituting for the ϕ' 's

$$\begin{split} \breve{r} &= \rho \left(1 + \frac{5}{2} \frac{(1 - \breve{r}^2)}{(n - 1)} + \frac{(61 - \rho \breve{r}) (1 - \breve{r}^2)}{8 (n - 1)^2} + \frac{(367 - 5\rho \breve{r} - 2\rho^2 \breve{r}^2) (1 - \breve{r}^2)}{16 (n - 1)^3} \right. \\ &\qquad \qquad + \frac{(17606 - 195\rho \breve{r} - 81\rho^2 \breve{r}^2 - 50\rho^3 \breve{r}^3) (1 - \breve{r}^2)}{256 (n - 1)^4} + \ldots \right) \ldots \ldots (liv). \end{split}$$

^{*} The ordinates calculated by the rising difference formula were tested in this manner. For n=25 the accordance was excellent, and quite good enough for practical purposes at n=10. Below this (lii) becomes less reliable and needs more terms.

This series has now to be inverted and leads after considerable algebra to

$$\begin{split} \breve{r} &= \rho \left(1 + \frac{5}{2} \frac{(1-\rho^2)}{(n-1)} + \frac{(61-101\rho^2) (1-\rho^2)}{8 (n-1)^2} + \frac{(367-1480\rho^2+1273\rho^4) (1-\rho^2)}{16 (n-1)^3} \right. \\ &\quad + \frac{(17606-125727\rho^2+246783\rho^4-143782\rho^6) (1-\rho^2)}{256 (n-1)^4} + \ldots \right) \ldots \ldots (lv). \end{split}$$

The above series is of very considerable interest from more than one standpoint*. In the first place it appears that Soper's approximation (Biometrika, Vol. 1x. p. 108) was not valid. He obtained

$$\breve{r} = \rho \left\{ 1 + \frac{3}{2} \, \frac{(1-\rho^2)}{(n-1)} + \frac{(41+23\rho^2)(1-\rho^2)}{8 \, (n-1)^2} + \ldots \right\}.$$

Thus for n = 25, $\rho = .6$, Soper's formula gives .62811, and (lv) gives .64205, while the exact value is .64194. It is clear that the coefficient 3 in Soper's second term of the series can never approach the $\frac{5}{2}$ of the more exact expression. At first the difference was found very perplexing, especially when the algebra had been verified; but the solution appears to lie in the consideration that the best fitting Pearson curve to the frequency is not one tied down to the range -1 to +1. That curve is fitted by two moments only, but if we fit a curve by the first four moments and use the general expression

$$\ddot{r} = \bar{r} + \frac{\sigma_r \sqrt{\beta_1} (\beta_2 + 3)}{2 (5\beta_2 - 6\beta_1 - 9)}$$
(lvii),
$$\ddot{r} = .64192.$$

we obtain

a value close to the true value. In other words the use of the third and fourth moments to find the mode is far more important than fixing down the range to the theoretically possible values; that process determines much more quickly the form of the frequency curve, but it does not give nearly such a good fit as allowing the Pearson curve freedom to adjust itself by means solely of the first four moments†. On the other hand a Pearson curve determined by the first four moments does describe fairly accurately the frequency distributions of r for n=25 and upwards: see p. 337.

(6) Equation for Modes and Antimodes (n = 3).

Still another method of approaching the modal value has been found occasionally of service ‡.

* We have used the expansion in terms of 1/(n-1) rather than 1/n as (n-1) appears to arise more

simply in all the formulae. The form in
$$1/n$$
 is
$$\check{r} = \left(1 + \frac{5(1-\rho^2)}{2n} + \frac{(81-101\rho^2)(1-\rho^2)}{8n^2} + \frac{(651-1884\rho^2+1273\rho^4)(1-\rho^2)}{16n^3} + \dots\right) \dots (\text{lvi}).$$

† The Pearson curve determined from the range does not give good values of the frequency for n=25, even when we use the true values of \bar{r} and σ_r and not Soper's approximations to these constants.

‡ It was used successfully in calculating the antimode in the case of samples of three, when the correlation in the sampled population was low. It gave a fairly good "jumping off point" even for higher values of the correlation.

Starting from the equation (xxxix)

$$(n-4)\ \check{
ho}^2 I_{n-1} = (
ho^2 - \check{
ho}^4)\ (n-1)\ I_n$$
,

where $I_n = \int_0^\infty \frac{dz}{(\cosh z - \check{\rho}^2)^{n-1}}$ and $\check{\rho}^2 = \rho \check{r}$, \check{r} being the modal value of r, we may expand I_n and I_{n-1} in terms of powers of $\check{\rho}^2$, the coefficients involving

$$\int_0^\infty \frac{dz}{(\cosh z)^{m-1}} = \int_0^{\frac{\pi}{2}} \sin^{m-1}\theta \, d\theta = q_m.$$

We find at once

$$\begin{split} (n-4) \ \check{\rho}^2 \Big(q_{n-1} + (n-1) \ \check{\rho}^2 q_n + \frac{(n-1) \ n}{1 \cdot 2} \ \check{\rho}^4 q_{n+1} \\ \\ + \frac{(n-1) \ n \ (n+1)}{1 \cdot 2 \cdot 3} \ \check{\rho}^6 q_{n+2} + \ldots \ldots \Big) \\ = (\rho^2 - \check{\rho}^4) \ (n-1) \left(q_n + n \check{\rho}^2 q_{n+1} + \frac{n \ (n+1)}{1 \cdot 2} \ \check{\rho}^4 q_{n+2} \right. \\ \\ \left. + \frac{n \ (n+1) \ (n+2)}{1 \cdot 2 \cdot 3} \ \check{\rho}^6 q_{n+3} + \ldots \ldots \right). \end{split}$$

Rearranging and substituting $\rho \ddot{r}$ for $\ddot{\rho}^2$ and noting that

$$q_{m+1} = \frac{m-1}{m} \, q_{m-1},$$

we have

$$\begin{split} \rho \ (n-1) \ q_n &= \breve{r} q_{n-1} \left(n-4-\rho^2 \left(n-1\right)^2\right) + \frac{1}{2} (n-1) \ \breve{r}^2 \rho q_n \left(2 \left(n-3\right)-\rho^2 n^2\right) \\ &+ \frac{(n-1) \ n}{6} \ \breve{r}^3 \rho^2 q_{n+1} \left(3 \left(n-2\right)-\rho^2 \left(n+1\right)^2\right) + \text{etc.} \ \dots \dots (\text{lviii}), \end{split}$$

where the form of the successive terms is sufficiently obvious, and the series converges rapidly if ρ be small.

For the particular case in which we have chiefly used this equation to determine \ddot{r} , namely samples of three, \ddot{r} corresponds to an antimode and the equation is for n=3:

$$\begin{split} 2\rho q_3 &= -\ \check{r}q_2\ (1+4\rho^2) - \check{r}^2q_39\rho^3 + \check{r}^3q_4\rho^2\ (3-16\rho^2) \\ &+ \check{r}^4q_5\rho^3\ (8-25\rho^2) + \check{r}^5q_6\rho^4\ (15-36\rho^2) \\ &+ \check{r}^6q_7\rho^5\ (24-49\rho^2) + \check{r}^7q_8\rho^6\ (35-64\rho^2) \\ &+ \text{etc.} \end{split} \tag{lix}$$

An equation which led to \check{r} with singular accuracy and comparative ease for small values of ρ by aid of Table X for q_n .

(7) Tables and Models.

Table A (p. 379) gives the values of the mean, of the mode, of the standard deviation, of β_1 and β_2 and thus of the skewness of the frequency distributions of r. It will be seen that long after we have reached the limit of what are usually treated as small samples, the skewness of the distribution of r is very considerable. The

approach to the normal curve is very slow, and the "probable error of the correlation coefficient," i.e. $\cdot 67449 \; (1-r^2)/\sqrt{n}$ as usually recorded, has very little worth. Models have been prepared to illustrate these points as follows:

Model A gives for n=2 to n=25, the distribution of r for $\rho=\cdot 6$.

Model B gives for n=2 to n=25, the distribution of r for $\rho=\cdot 8$.

Model C gives for n=3, the distribution of r for $\rho=0$ to 9.

Model D gives for n = 4, the distribution of r for $\rho = 0$ to 9.

Model E gives for n = 25, the distribution of r for $\rho = 0$ to $\cdot 9$.

Model F gives for n = 50, the distribution of r for $\rho = 0$ to $\cdot 9$.

(Further models are in process of construction for low values of n.)

Even the photographs of such models form a striking warning of the dangers which arise (i) from small samples, and (ii) from judging results from even repeated small samples; the modal value of the frequency distribution for the correlation of these will be very sensibly higher than the correlation of the sampled population.

(8) On the Determination of the "most likely" Value of the Correlation in the Sampled Population, i.e. $\hat{\rho}$.

We now turn to another point. Suppose we have found the value of the correlation in a small sample to be r, what is the most reasonable value $\hat{\rho}$ to give to the correlation ρ of the sampled population?

Now we know that

$$y_n = (n-2)\frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi}(1-r^2)^{\frac{n-4}{2}}\int_0^\infty \frac{dz}{(\cosh z - \rho r)^{n-1}},$$

and if ϕ (ρ) $d\rho$ were the law of distribution of ρ 's, we ought to make

$$\frac{n-2}{\pi} (1-\rho^2)^{\frac{n-1}{2}} \phi(\rho) (1-r^2)^{\frac{n-4}{2}} \int_0^\infty \frac{dz}{(\cosh z - \rho r)^{n-1}} d\rho$$

a maximum with ρ , or in other words deduce the value of ρ for a given r from

$$\frac{d}{d\rho} \left\{ \int_0^\infty \frac{(1-\rho^2)^{-2} \phi(\rho) dz}{(\cosh z - \rho r)^{n-1}} \right\} = 0 \quad (lx).$$

Fisher puts ϕ (ρ) equal to a constant and then differentiating out reaches the equation

 $\int_0^\infty \frac{(r - \rho \cosh z) dz}{(\cosh z - \rho r)^n} = 0....(lxi),$

which should provide the value of ρ in terms of r. He solves this only to a first approximation, obtaining,

 $\rho = r\left(1 - \frac{1 - r^2}{2n}\right) \quad \dots \tag{lxii}.$

Correlation in Small Samples. $\rho=0.6$. Frequency curves for samples of sizes two to twenty-five, showing the changes in type from a skew "cocked hat" to J. and U-forms. Model A.

Correlation in Small Samples. $\rho = 0.8$. Frequency curves for samples of sizes two to twenty-five, showing the changes in type from a skew "cocked hat" to J. and U-forms. Model B.

·		
	·	

Correlation in Small Samples, $\rho = 0.0$ to $\rho = 0.9$. Frequency curves for samples of size three. Model C in two aspects, illustrating the various U-forms of curves, which occur in this case.

•			

Correlation in Small Samples, $\rho = 0.9$ to $\rho = 0.9$ for samples of four. Model D, illustrating forms of frequency passing from the rectangle to marked J-forms of curves, which occur in this case.

Correlation in Samples of 25 and 50 for $\rho = 0.0$ to $\rho = 0.9$. Models E and F, illustrating forms still deviating very considerably from normality and increasing in skewness with increase of ρ .

This is a lower approximation than Soper's second approximation, in similar cases, and we know that even Soper's values are not sufficiently accurate when n is as large as 25. Hence no very great confidence can be put in (lxii).

But there is another point about (lx) which is of great importance. Fisher's equation, our (lxi), is deduced on the assumption that $\phi(\rho)$ is constant. In other words he assumes a horizontal frequency curve for ρ , or holds that $\dot{\alpha}$ priori all values of ρ are equally likely to occur. This raises a number of philosophical points and difficulties. We ask:

When we are in absolute ignorance as to ρ , is it according to our experience that all values of the correlation are equally likely to occur? We think this question must probably if not certainly be answered in the negative. Very high correlations are relatively rare, and most biometricians would find it difficult to eite straight away a couple of cases of the correlation equal to -.95 although they could cite a score in which the correlation was sensibly zero, or again about .5. Every biometrician is seeking high correlations, for these are for him the all important data, but he knows how difficult and rare they are to find*. The equal distribution of ignorance which applies so well to many statistical ratios, does not seem valid in the case of correlations†. We generally know quite approximately

* We have recently had occasion to table (a) nearly 400 correlations between characters of the human femur, and (b) over 300 for characters of the human skull. The distributions were very far indeed from horizontal straight lines, and to suppose à priori such distributions horizontal could only lead to grave errors.

† A similar problem arises in the case of standard deviations. If Σ be the s.p. of the sample and σ of the sampled population, then the frequency curve for s.p.'s is (Biometrika, Vol. x. p. 523)

$$y = y_0 \frac{\sum_{n=1}^{n-2} e^{-\frac{1}{2} \frac{n \Sigma^2}{\sigma^2}}.$$

Now, if we make this a maximum for variation of σ , we obtain

$$\sigma = \sqrt{\frac{n}{n-1}} \Sigma$$
....(a)

as the "best value" of σ .

This was pointed out to the Editor by "Student," and was a desirable criticism of the statement made (Vol. x. pp. 528-9) that the most reasonable value to give to Σ was the mode of the sampled

population, i.e. to take the observed
$$\Sigma = \check{\Sigma} = \sqrt{\frac{n-2}{n}} \sigma$$
 or suppose
$$\sigma = \sqrt{\frac{n}{n-2}} \Sigma \qquad (\beta).$$

Equations (a) and (β) are not identical. But again (a) is based on the assumption that all values of the s.d. are à priori equally likely to occur. But surely this is not a result in accordance with our experience! Values of σ from 0 to ∞ are not equally within our experience, and there is almost an absurdity in talking about a standard deviation varying from 0 to ∞ ; are we to include all possible scales in this distribution? The s.d. of stature might certainly be anything from practically zero to infinity if we measured it first in "light years" and then in microns. Or, are we to measure our s.d.'s all in the same units, when we suppose the distribution of s.d.'s to be of equal probability from zero to infinity? How is this to be done in the case of an absolute length and an index? Given a definite problem, there is certainly no à priori likelihood that the s.d. will have every value from 0 to ∞ , if we confine ourselves to one scale. It must practically be less than the mean value, and in most actual

the correlation of the characters in the population samples, and desire to ascertain whether a small sample of some population similar to a known population confirms our experience.

For example, we may have twenty pairs of brothers recorded for some special character. Our à priori knowledge is certainly not that all correlations between pairs of brothers from -1 to +1 are equally likely to occur! On the contrary we anticipate a value which will not be very far from 0.5. And this à priori conviction is so great, that if the small sample did not give a value which considering the size of the sample was compatible with the correlation in the sampled population being near 0.5, we should suspect errors in the measurement or some form of disturbing selection. In such cases, and something like them appears to us most frequent in biometric practice, it is we think erroneous to apply Bayes' Theorem. All it seems possible to do is to assume that we have drawn a value near the mode of our distribution, for our sampled population is much more likely to have a single value, that of our à priori experience, than every possible value from -1 to +1. If Bayes' Theorem confirms this value—so much the better; if it does not, its fundamental hypothesis is usually so unjustified that it seems most unreasonable to assert that it must give the most likely value of the correlation in the sampled population.

The fuller solution of Eqn. (lxi) thus appears to have academic rather than practical value. Still certain points of theoretical interest arise in the discussion of both (lx) and (lxi). Let us suppose that our à priori knowledge consists in the distribution of ρ about a mean $\bar{\rho}$ with a standard deviation κ . It is convenient to take $\kappa^2 = m \ (1 - \bar{\rho}^2)$, where m is an arbitrary constant. Probably $\kappa = 0$, whenever $\bar{\rho} = 1$, and this suggested this form; but since m is quite arbitrary we lay no stress on this point. The equation to determine the most likely value of ρ now becomes

Now this equation cannot in general be solved unless we know the order of the product m(n-1). Certain cases, however, can be considered. If m be very large, i.e. if there be very considerable scatter in our past experience of ρ , then

$$ho I_{n-1} = (1 -
ho^2) r I_n \dots (lxiv),$$

problems is very narrowly limited. For example we measure twenty individuals of a population for stature, and seek the best value of the variability of the sampled population from the result. Would it not be unreasonable to suppose that à priori this variability may be equally likely to have any value from 0 to ∞ ? Our à priori knowledge is that it is somewhere between 2".5 and 3".0 and very far from equally likely even between these values. To justify the equal distribution of our ignorance, we should have to assume that we neither knew the exact character measured, nor the unit in which it was measured, and such ignorance can only be very exceptional in the present state of our knowledge.

an equation identical with what we obtain by the "equal distribution of our ignorance." The same result is also reached if m be only moderately large and n very big. In other words "the equal distribution of our ignorance," even if we really have some knowledge of the frequency distribution of ρ , will not lead us badly astray in the case of big samples. The matter is quite otherwise, however, in the case of small samples; unless our knowledge is very limited (m very large) we have no right whatever to take (lxiv) as applying to such small samples. Indeed when m is fairly small ρ will not differ substantially from $\bar{\rho}$, and the solution of (lxiii) will differ widely from that of (lxiv). We may consider these cases in succession.

Case (i). Very slight knowledge of ρ , or on the other hand a large sample.

Here we are justified in using (lxiv). We can attempt its solution in two different ways as in the case of the mode.

Let $\hat{\rho}$ be the most likely value of ρ and let us write $\hat{\rho}r = \rho_1^2$, then

$$(1-\hat{\rho}^2) \, r \hat{I}_n = \hat{\rho} \hat{I}_{n-1},$$

 $(r^2 - \rho_1^4) \, \hat{I}_n = \rho_1^2 \hat{I}_{n-1}.$

or

Now let ρ_0^2 be a first approximation to ρ_1^2 and suppose $\rho_1^2 = \rho_0^2 + \epsilon$, where ϵ is small. Then

$$(r^{2} - \rho_{0}^{4} - 2\rho_{0}^{2}\epsilon) (I_{n'} + n\epsilon I'_{n+1}) = (\rho_{0}^{2} + \epsilon) (I'_{n-1} + \overline{n-1} \epsilon I_{n'}),$$

$$I_{n'} = \int_{0}^{\infty} \frac{dz}{(\cosh z - \rho_{0}^{2})^{n}}.$$

where

Hence remembering that

$$\begin{split} n\left(1-\rho_{0}^{4}\right)I'_{n+1} &= \left(2n-1\right)\rho_{0}^{2}I_{n'} + \left(n-1\right)I'_{n-1},\\ \epsilon &= \frac{I_{n'}\left(r^{2}-\rho_{0}^{4}\right)-\rho_{0}^{2}I'_{n-1}}{I'_{n-1}+\rho_{0}^{2}\left(n+1\right)I_{n'} - n\left(r^{2}-\rho_{0}^{4}\right)I'_{n+1}}, \end{split}$$

we find

$$\epsilon = (1 - \rho_0^4) \frac{(r^2 - \rho_0^4) E_n - \rho_0^2}{(1 - \rho_0^4) - (n - 1)(r^2 - \rho_0^4) + \rho_0^2 \{(n + 1)(1 - \rho_0^4) - (2n - 1)(r^2 - \rho_0^4)\} E_n}$$
(1xv)

where $(1-\rho_0^4)\,(n-1)\,E_n=(2n-3)\,\rho_0^{\,2}+\frac{n-2}{E_{n-1}}\,.....(lxvi),$ and $E_n=I_n'/I'_{n-1}.$

Now (lxv) and (lxvi) may be treated exactly like the corresponding equations for the determination of the mode. If n be moderately large, we may put

$$E_n = E_{n-1} = E'$$

in (lxv), and if we know ρ_0^2 obtain the value of E', which value substituted for E_n in (lxvi) gives us ϵ and thus a new approximation. If we cannot guess a good value for ρ_0^2 (although $\rho_0^2 = \rho^2$ is in this case usually sufficient) we can treat the

numerator of (lxv) equated to zero, and (lxvi) with E' for E_n and E_{n-1} as simultaneous equations to find E' and ρ_0^2 , and so obtain a good approximation straight off, when n is of the order 25, or a fair first approximation when n is smaller.

Applying this we have from (lxv)

$$E_n = E_{n-1} = \rho_0^2/(r^2 - \rho_0^4).$$

Hence

$$\left(n-1\right) \left(1-\rho_{0}^{4}\right) \rho_{0}^{4} - \left(2n-3\right) \rho_{0}^{4} \left(r^{2}-\rho_{0}^{4}\right) - \left(n-2\right) \left(r^{2}-\rho_{0}^{4}\right)^{2} = 0 \text{,}$$

$$\rho_{0}^{2} = r^{2} \sqrt{\frac{n-2}{n-1-r^{2}}} \text{,}$$

and therefore

 \mathbf{or}

$$\hat{
ho}=r imes\sqrt{rac{n-2}{n-1-r^2}}$$
......(lxvii).

In the hypothesis of the equal distribution of ignorance will differ less than $\cdot 99402$ from unity. On the other

Thus it will be seen that on the hypothesis of the equal distribution of ignorance for n=100, the ratio of $\hat{\rho}$ to r will differ less than $\cdot 99402$ from unity. On the other hand if n be 5, the ratio of $\hat{\rho}$ to r may differ from unity by as much as $\cdot 8660$ does. For example, if n=5, then $\hat{\rho}=\cdot 26278$ if $r=\cdot 3$. But for a sample of five the standard deviation of a value of ρ between $\cdot 2$ and $\cdot 3$ is of the order $\cdot 18$ to $\cdot 20$, so that there is little to be gained by treating the observed $\cdot 30$ as corresponding to a sampled population of $\cdot 26$.

We shall now proceed to determine an expansion for $\hat{\rho}$. If R be the ratio of Eqn. (liii), we find from (lxiv)

$$\begin{split} \hat{\rho} &= r \, (1 - \hat{\rho}^2) \, \hat{I}_n / \hat{I}_{n-1}, \\ \text{or} \qquad \hat{\rho} &= \frac{r \, (1 - \hat{\rho}^2)}{1 - \hat{\rho}r} \, \sqrt{\frac{n-1}{n}} \, R \\ &= \frac{r \, (1 - \hat{\rho}^2)}{1 - \hat{\rho}r} \, \Big(1 + \frac{1}{n-1} \Big)^{-\frac{1}{2}} \, \Big(1 - \frac{\phi_1}{(n-1)^2} + \frac{\phi_1^2 - 2\phi_2 + \phi_1}{(n-1)^3} + \ldots \Big), \end{split}$$

whence on substituting

$$\hat{\rho} = r \left(1 - \frac{1}{2} \frac{1 - \hat{\rho}^2}{n - 1} + \frac{1}{8} \frac{(1 - r\hat{\rho}) (1 - \hat{\rho}^2)}{(n - 1)^2} + \frac{1}{16} \frac{(1 + r\hat{\rho} - 2r^2\hat{\rho}^2) (1 - \hat{\rho}^2)}{(n - 1)^3} + \ldots \right),$$

and after inversion

$$\hat{\rho} = r \left(1 - \frac{1}{2} \frac{1 - r^2}{n - 1} + \frac{(1 - 5r^2)(1 - r^2)}{8(n - 1)^2} + \frac{(1 + 8r^2 - 17r^4)(1 - r^2)}{16(n - 1)^3} + \ldots \right)$$
(lxviii).

This result gives us a measure of the correctness of (lxvii), for that equation may be written

$$\begin{split} \hat{\rho} &= r \left(\frac{1 - \frac{1}{n-1}}{1 - \frac{r^2}{n-1}} \right)^{\frac{1}{2}} \\ &= r \left\{ 1 - \frac{(1-r^2)}{2(n-1)} - \frac{(1+3r^2)(1-r^2)}{8(n-1)^2} - \frac{(1+2r^2+5r^4)(1-r^2)}{16(n-1)^3} + \ldots \right\} (\text{lxix}). \end{split}$$

Thus the divergence begins as early as the term in $1/(n-1)^2$ and (lxvii) can only be trusted for rough approximations to $\hat{\rho}$.

Illustration. Suppose r = .6, what is the "most likely" value of ρ , on the assumption of equal distribution of ignorance? Let n = 25, then we find from (lxviii)

$$\hat{\rho} = .59194$$

while (lxvii) gives .59182, an agreement adequate for most statistical purposes.

If n = 5, and $r = \cdot 6$, we find

There is now considerable divergence in the two methods and another approximation is desirable. Let us take $\rho_0^2 = \hat{\rho}r = .33035$, then to find E_n we have

$$(n-1) \times .890,8689E_n = (2n-3) \times .33035 + \frac{n-2}{E_{n-1}}$$

 E_2 will be given by (xlvii) and equals .885,5939, whence we determine

$$E_3 = 1.189,9819$$
, $E_4 = 1.246,8946$, $E_5 = 1.324,1082$,

and accordingly from (lxv)

$$\epsilon = .001,3081,$$

$$r\hat{\rho} = \rho_0^2 + \epsilon = .331,8581,$$

and $\hat{\rho} = .553,097$, a value not far removed from that found by the first approximation. We conclude that even when n is small, quite good results will be found from (lxviii) and that it is probably better to use this rather than (lxvii) in such cases as the starting point for a second approximation.

Case (ii). Close à priori Knowledge of p.

We will now suppose m small, so that the first approximation to ρ may be taken as $\bar{\rho}$. We substitute in (lxiii) $\rho = \bar{\rho} + \psi$ and we find, neglecting squares of ψ ,

$$\left(\frac{\psi}{m\left(n-1\right)}+ar{
ho}+\psi
ight)(ar{I}_{n-1}+\left(n-1
ight)r\psiar{I}_{n})=\left(1-ar{
ho}^{2}-2ar{
ho}\psi
ight)\left(rar{I}_{n}+nr\psiar{I}_{n+1}
ight),$$

where

$$\bar{I}_n = \int_0^\infty \frac{dz}{(\cosh z - \bar{\rho}r)^{n-1}}.$$

This leads us to

$$\psi = \frac{\left(1 - \bar{\rho}^2\right) r \bar{I}_n - \bar{\rho} \bar{I}_{n-1}}{\bar{I}_{n-1} \left(1 + \frac{1}{m (n-1)}\right) + \bar{\rho} (n+1) r \bar{I}_n - (1 - \bar{\rho}^2) n r^2 \bar{I}_{n+1}},$$

whence remembering that

$$n (1 - (r\bar{\rho})^2) \bar{I}_{n+1} = (2n-1) r\bar{\rho} \bar{I}_n + (n-1) \bar{I}_{n-1}$$

and writing $\bar{E}_n = \bar{I}_n/\bar{I}_{n-1}$, we have after some transformations

The method is now straightforward, at least for n moderately large. We put $\bar{E}_n = \bar{E}_{n-1} = \bar{E}'$ in (lxxi) and substitute the resulting value of \bar{E}' for \bar{E}_n in (lxx), and thus reach the small correction on $\bar{\rho}$.

Illustration. In a sample of 25 pairs only of parent and child the correlation for a certain character was found to be $\cdot 6$. What is the most reasonable value to give to ρ in the sampled population?

If we distributed our ignorance equally the result would be that stated on p. 357, i.e.

 $\hat{\rho} = .59194.$

But, in applying Bayes' Theorem to this case, to what result of experience do we appeal? Clearly the only result of experience by which we could justify this "equal distribution of ignorance" would be the accumulative experience that in past series the correlation of parent and child had taken with equal frequency of occurrence every value from -1 to +1. To appeal to such a result is absurd; Bayes' Theorem ought only to be used where we have in past experience, as for example in the case of probabilities and other statistical ratios, met with every admissible value with roughly equal frequency. There is no such experience in this case. On the contrary the mean value of ρ for very long series of frequencies of 1000 and upwards is known to be $+\cdot 46$ and the range is hardly more than $\cdot 40$ to $\cdot 52$. We may accordingly take $\bar{\rho}=\cdot 46$ and $m(1-\bar{\rho}^2)=\kappa^2=$ about $\cdot 0004$, whence

$$m = \cdot 0004 / \cdot 7884 = \cdot 000,507$$
 say.

Thus $\frac{1}{m(n-1)} = 82.1828$ and the term containing it is the dominating term in

Equation (lxiii). Thus $\hat{\rho}$ will differ little from $\bar{\rho}$. We find

$$\hat{\rho} = \overline{\rho} + \frac{\cdot 437,006 \, \overline{E}_n - \cdot 424,959}{70 \cdot 034,491 + 2 \cdot 790,925 \, \overline{E}_n},$$

from (lxx).

We next determine $\bar{E}_n = \bar{E'}$ from (lxxi), i.e.

$$24 imes \cdot 923$$
, $824ar{E}'^2 - 47 imes \cdot 276ar{E}' - 23 = 0$,

which gives us $\bar{E}'=1.352,\!2185$, thus $\psi=.00225$ and

$$\hat{\rho} = \cdot 46225,$$

a totally different "most likely value" from that obtained by "equally distributing our ignorance."

Statistical workers cannot be too often reminded that there is no validity in a mathematical theory pure and simple. Bayes' Theorem must be based on experience, the experience that where we are à priori in ignorance all values are equally likely to occur. This is not the case in the present illustration, and we must use our past experience in the same way as we should use our past experience of equal frequency; the appeal to this experience has here absolutely the same validity as in Bayes' case and cannot be for a moment neglected. We see that our new experience scarcely modifies the old and this is what we should naturally conjecture would be the case. If we increase the size of the new sample, then ultimately 1/m (n-1) becomes very small, and we approach nearer the value $\cdot 59194$ given by Bayes' Theorem. But past experience will bias the value obtained from the new material for a long time, and we see that according to the value of the past experience $\hat{\rho}$ may vary from $\cdot 46225$ to $\cdot 59194$. It will thus be evident that in problems like the present the indiscriminate use of Bayes' Theorem is to be deprecated. It has unfortunately been made into a fetish by certain purely mathematical writers on the theory of probability, who have not adequately appreciated the limits of Edgeworth's justification of the theorem by appeal to general experience.

Case (iii). Past Experience a Factor, but not the Dominating Factor of Judgment.

Cases can arise in which $\rho = \bar{\rho}$ is not a very close approximation, i.e. when we have some past experience, but not a very concentrated one of like correlations. In this case we must return to Equation (lxiii), and we shall assume $\hat{\rho}r = \rho_0^2 + \epsilon$, where ρ_0^2 is some fairly close approximation to $\hat{\rho}r$. We shall write $\bar{\rho}r = \bar{\rho}_0^2$. We find

$$\Xi = \frac{\left(r^{2} - \rho_{0}^{4}\right) I_{n} - \left\{\rho_{0}^{2} + \frac{\left(\rho_{0}^{2} - \bar{\rho}_{0}^{2}\right) \left(r^{2} - \rho_{0}^{4}\right)}{m \left(n - 1\right) \left(r^{2} - \bar{\rho}_{0}^{4}\right)}\right\} I_{n-1}}{\left\{1 + \frac{r^{2} + 2\rho_{0}^{2}\bar{\rho}_{0}^{2} - 3\rho_{0}^{4}}{m \left(n - 1\right) \left(r^{2} - \bar{\rho}_{0}^{4}\right)}\right\} I_{n-1} + \left\{\left(n + 1\right)\rho_{0}^{2} + \frac{\left(\rho_{0}^{2} - \bar{\rho}_{0}^{2}\right) \left(r^{2} - \rho_{0}^{4}\right)}{m \left(r^{2} - \bar{\rho}_{0}^{4}\right)}\right\} I_{n} - n \left(r^{2} - \rho_{0}^{4}\right) I_{n+1}} \dots \left(lxxii\right),$$

where $n (1 - \rho_0^4) I_{n+1} = (2n-1) \rho_0^2 I_n + (n-1) I_{n-1}$ (lxxiii), equations which can be readily expressed in terms of E's.

Unfortunately the approximation obtained by equating the numerator of ϵ to zero and using (lxxiii) as simultaneous equations is not very rapidly obtained as the resulting equation is now of the eighth order. It is better from the data themselves to guess a reasonable value for ρ_0^2 and start the approximation from this.

Illustration. The correlation between the maximum length and breadth of crania is not very definitely known. Its mean is about ·30, but the values determined for it range from nearly zero to ·6. Assuming the standard deviation to be ·1, what is the "most likely value" to give to this correlation in the case of a sample of 25 skulls showing a correlation of ·50?

Here $\bar{\rho} = \cdot 30$, $m(1 - \bar{\rho}^2) = \cdot 01$, and n = 25. $\bar{\rho}_0^2 = r\bar{\rho} = \cdot 15$. We will assume as a first approximation to $\hat{\rho}$, $\hat{\rho} = \cdot 40$, hence $\rho_0^2 = \cdot 20$. Equation (lxxiii) for n = n - 1 gives

$$(n-1) \times .96E_n = (2n-3) \times .20 + (n-2)/E_{n-1}$$
.

Put n=25, and $E'=E_n=E_{n-1}$, and we have to find E',

$$23.04E'^2 - 9.4E' - 23 = 0$$

which gives $E'=1\cdot 223,7367$; from this we deduce $E_{n+1}=1\cdot 225,5025$, and

$$\epsilon = -.029,9238,$$

leading to $r\hat{\rho} = .170,0762$, or $\hat{\rho} = .34015$.

Starting again with $\rho_0^2 = .17008$, we find

$$23 \cdot 305.7472E'^2 - 7 \cdot 99376E' - 23 = 0$$

giving

$$E' = 1.179,6109$$
 and $E_{n+1} = 1.181,3579$.

Whence we deduce

$$\epsilon = + .003,999$$
.

and accordingly $r\hat{\rho} = \cdot 174,079$ and $\hat{\rho} = \cdot 34816$, a close enough approximation.

But if we had "equally distributed our ignorance" we should have found* $\hat{\rho} = .49217$.

These results seem extremely suggestive. If we were to observe the correlation of length and breadth of skull in a new sample of 25 skulls, then an observed value of .50 would give a "most likely value" on the equal distribution of ignorance of .4922.

But no biometrician would admit absolute ignorance in such a case; the correlation has been determined rather vaguely and not very adequately so that results range from something like zero to ·6. But this à priori knowledge leads on precisely the same basis as Bayes' Theorem to the value $\hat{\rho} = .3482$ —a result very much closer to previous experience of the mean value, than to the observed result. And there are relatively few cases in which some such, if only vague, à priori experience does not exist.

In the light of the above illustrations we consider it justifiable to assert that the results deduced from the principle of the "equal distribution of ignorance" have academic rather than practical value, and we hold that to apply it without consideration of its basis to the problem of finding the most likely values of the statistical constants of a sampled population from the values observed in a small sample may lead to results very wide from the truth.

(9) Special Cases of Frequency for n small.

We shall now discuss individually the lowest sample sizes.

(i) Samples of Two, n = 2. Here

$$ar{r} = rac{\sin^{-1}
ho}{rac{1}{2}\pi}$$
 ,

* Equation (lxvii) would give $\dot{\rho} = .49204$, nearly as good practically as (lxviii)

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 361

and the distribution consists of $\frac{\cos^{-1}(-\rho)}{\pi}$ at r=+1 and $\frac{\cos^{-1}\rho}{\pi}$ at r=-1*, or at what is the same thing $\frac{1}{2}(1+\bar{r})$ and $\frac{1}{2}(1-\bar{r})$.

The moments are

$$\mu_1' = \mu_3' = \bar{r}, \qquad \mu_2' = \mu_4' = 1,$$

and accordingly

$$\mu_2 = 1 - \bar{r}^2$$
, $\mu_3 = -2\bar{r} (1 - \bar{r}^2)$, $\mu_4 = (1 - \bar{r}^2) (1 + 3\bar{r}^2)$...(lxxiv).

and accordingly

$$eta_1 = 4ar{r}^2/(1-ar{r}^2), \qquad eta_2 = (1+3ar{r}^2)/(1-ar{r}^2), \ eta_2 - eta_1 - 1 = 0.$$

TABLE I. Samples of Two.

ρ, value of correlation in sampled population	$ar{r}$, mean correlation of samples	σ_r	eta_1	eta_2	Number of positive cor- relations per 1000 samples	Number of negative cor- relations per 1000 samples
0.0	0	1	0	1	500.000	500.000
0.1	-063,7686	$\cdot 997.965$	-016,332	1.016,332	531.884	468-116
0.2	$\cdot 128,1884$	-991,750	-066,827	1.066,827	564 094	435.906
0.3	$\cdot 193,9734$	-981,007	.156,387	1.156,387	596.987	403.013
0.4	-261,9798	-965,007	294,764	1.294,764	630.990	369.010
0.5	333,3333	942,809	500,000	1.500,000	666-667	333-333
0.6	-409,6655	912,236	806,686	1.806,686	704.833	$295 \cdot 167$
0.7	·493,6334	-869,670	1.288,724	2.288,724	746.817	253.183
0.8	$\cdot 590,3345$.807,164	$2 \cdot 139.534$	3.139,534	795.167	204.833
0.9	$\cdot 712,8674$	-701,299	4.133,056	5.133,056	856.434	$143 \cdot 566$
1.0	1.000,0000	.000,000	oc	oc	1,000.000	-000,000

The distributions are two lumps given by the last two columns, and are accurately given by Pearson's skew frequency distributions for the relation $\beta_2 - \beta_1 - 1 = 0$ (see *Phil. Trans.* Vol. 216 A, p. 433).

(ii) Samples of Three, n = 3.

$$y_3 = N \, rac{1 -
ho^2}{\pi} \, rac{1}{\sqrt{1 - r^2}} \, rac{dU}{dx} \, ,$$

where

$$x=r
ho \ \ {
m and} \ \ U=\cos^{-1}{(-x)}/\sqrt{1-x^2}$$

as before. Hence

$$\begin{split} \mu_{p'} &= \int_{-1}^{+1} r^{p} y_{3} dr = \frac{1}{\rho^{p+1}} \int_{-\rho}^{+\rho} x^{p} y_{3} dx \\ &= \frac{\rho (1 - \rho^{2})}{\pi \rho^{p+1}} \int_{-\rho}^{+\rho} \frac{x^{p}}{\sqrt{\rho^{2} - x^{2}}} \frac{dU}{dx} dx. \end{split}$$

* Since we can determine at sight whether any pair is positively or negatively correlated, this gives a method of determining ρ by simply counting the number of +1 and -1 correlations in the arrays, say m_p and m_n , then $\rho = \cos \pi \left(\frac{m_n}{m_n + m_p} \right)$ and the probable error of the determination is

$$rac{\cdot 67449}{\sqrt{N}}\sqrt{1-
ho^2}\,\sqrt{rac{m_n}{N}\left(1-rac{m_n}{N}
ight)}$$
 ,

N being the number of pairs used. Cf. "Student," Biometrika, Vol. vi. p. 304.

Distribution of Correlation Coefficient in Small Samples

Now let $x = \rho \sin \phi$, then

$$\mu_{p'} = \frac{1-\rho^2}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^p \phi \, \frac{dU}{dx} \, d\phi.$$
Now
$$\sin \phi \, \frac{dU}{dx} = \frac{dU}{d\rho},$$
hence
$$\mu_{p'} = \frac{1-\rho^2}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^{p-1} \phi \, \frac{dU}{d\rho} \, d\phi$$

$$= \frac{1-\rho^2}{\pi} \frac{d}{d\rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^{p-1} \phi \, U \, d\phi.$$
But
$$U = \int_0^{\infty} \frac{dz}{\cosh z - \rho \sin \phi},$$
thus
$$\mu_{p'} = \frac{1-\rho^2}{\pi} \frac{d}{d\rho} \int_0^{\infty} dz \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\sin^{p-1} \phi}{\cosh z - \rho \sin \phi} \, d\phi....$$
Write
$$\psi = \frac{\pi}{2} + \phi \text{ and } \cosh z = \eta,$$
we have
$$\mu_{p'} = \frac{1-\rho^2}{\pi} \frac{d}{d\rho} \int_0^{\infty} dz \int_0^{\pi} \frac{(-1)^{p-1} \cos^{p-1} \psi \, d\psi}{\pi + \rho \cos \psi}(lxxv).$$

Let p = 1, then we find

$$\mu_{1}' = \frac{2(1-\rho^{2})}{\pi} \frac{d}{d\rho} \int_{0}^{\infty} dz \int_{0}^{\pi} \frac{d(\tan \frac{1}{2}\psi)}{(\eta+\rho) + (\eta-\rho) \tan^{2} \frac{1}{2}\psi}.$$

But

we have

$$\int_0^\pi \frac{d \left(\tan \frac{1}{2} \psi\right)}{(\eta + \rho) + (\eta - \rho) \tan^2 \frac{1}{2} \psi} = \left[\frac{1}{\sqrt{\eta^2 - \rho^2}} \tan^{-1} \left(\frac{\tan \frac{1}{2} \psi}{\sqrt{\frac{\eta + \rho}{\eta - \rho}}} \right) \right]_0^\pi = \frac{\pi}{2} \frac{1}{\sqrt{\eta^2 - \rho^2}}.$$

 $\mu_1' = (1 - \rho^2) \frac{d}{d\rho} \int_0^\infty \frac{dz}{\sqrt{n^2 - \rho^2}}.$ Thus

 $\eta = \frac{1}{\sin \phi'} = \cosh z,$ Now take

 $-\frac{\cos\phi'}{\sin^2\phi'}d\phi' = \sinh zdz,$ hence $=\sqrt{n^2-1}\,dz$.

 $dz = -\csc\phi' d\phi'$. thus

 $\mu_1' = (1 - \rho^2) \frac{d}{d\rho} \int_0^{\frac{\pi}{2}} \frac{d\phi'}{\sqrt{1 - \rho^2 \sin^2 \phi'}}$ It follows that

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 363

Let as usual
$$F\left(k,\ \frac{\pi}{2}\right) = \int_0^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}}\,,$$
 and
$$E\left(k,\ \frac{\pi}{2}\right) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2\phi}\,d\phi\,.$$
 Then we have
$$\mu_1' = (1-\rho^2) \frac{dF\left(\rho,\ \frac{\pi}{2}\right)}{d\rho}\,.$$
 But
$$\frac{dF_1}{dk} = \frac{1}{kk'^2}(E_1-k'^2F_1),$$

where

$$k' = \sqrt{1 - k^2},$$

 E_1 and F_1 denoting the complete elliptic integrals*.

Thus finally

$$\bar{r} = \frac{1}{\rho} \{ E_1 - (1 - \rho^2) F_1 \}$$
(lxxvi),

and \bar{r} is known, as soon as ρ is given, from tables of the complete elliptic integrals.

Returning to Equation (xx) and putting n = 3 we have

and further

$$\sigma_r^2 = \mu_2 = 1 - \bar{r}^2 + \frac{1}{2} \frac{1 - \rho^2}{\rho^2} \log_e (1 - \rho^2)$$
(lxxviii).

We now turn to the third moment and may anticipate a recurrence of the elliptic integrals. We shall obtain our result on the whole most briefly by appealing to Equations (xxii) and (xxiii) on pp. 335 and 336. We have

$$\mu_{3}' = \chi_{1} - \chi_{3} = \frac{\rho (1 - \rho^{2})}{2} \left\{ I_{3} \cdot F\left(\frac{3}{2}, \frac{3}{2}, 2, \rho^{2}\right) - \frac{1}{3} I_{5} \cdot F\left(\frac{3}{2}, \frac{3}{2}, 3, \rho^{2}\right) \right\},$$
or since
$$I_{3} = \frac{\pi}{2}, \quad I_{5} = \frac{3}{4} \frac{\pi}{2},$$

$$I_{5} = \frac{3}{4} \frac{\pi}{2},$$

$$I_{7} = \frac{3}{4} \frac{\pi}{2},$$

$$I_{7} = \frac{3}{4} \frac{\pi}{2},$$

$$\begin{split} \mu_{3}' &= \frac{\rho \; (1-\rho^2)}{2} \frac{\pi}{2} \Big\{ F \left(\frac{3}{2} \; , \; \frac{3}{2} \; , \; 2 \; , \; \rho^2 \right) - \frac{1}{4} \; F \left(\frac{3}{2} \; , \; \frac{3}{2} \; , \; 3 \; , \; \rho^2 \right) \Big\} \\ &= \frac{\rho \; (1-\rho^2)}{2} \frac{\pi}{2} \left\{ S \left[\frac{(3 \; . \; 5 \; \ldots \; 2s+1)^2}{2^{2s} \; (s) \, ! \; (s+1) \, !} \; \rho^{2s} \right] - \frac{1}{2} \; S \left[\frac{(3 \; . \; 5 \; \ldots \; 2s+1)^2}{2^{2s} \; (s) \, ! \; (s+2) \, !} \; \rho^{2s} \right] \right\} \\ &= \frac{\rho \; (1-\rho^2)}{2} \frac{\pi}{2} \left\{ S \left[\frac{(3 \; . \; 5 \; \ldots \; 2s+1)^2}{2^{2s} \; (s) \, ! \; (s+1) \, !} \left(1 - \frac{1}{2s+4} \right) \rho^{2s} \right] \right\} \end{split}$$

^{*} Cayley, Elementary Treatise on Elliptic Functions, p. 48.

364 Distribution of Correlation Coefficient in Small Samples

$$\begin{split} &=\frac{\rho\ (1-\rho^2)}{2}\frac{\pi}{2}\bigg\{S\left[\frac{(3.5\ldots2s+3)^2}{2\cdot2^{2s}(s+2)!}\frac{(s+1)\,(s+2)}{2s+3}\rho^{2s}\right]\bigg\}\\ &=\frac{(1-\rho^2)}{2\rho^2}\frac{\pi}{2}\frac{d}{d\rho}\bigg\{S\left[\frac{(3.5\ldots2s+3)^2}{2^{2s}(s+2)!}\frac{s+1}{2s+3}\frac{\rho^{2s+4}}{2^2}\right]\!\bigg\}\\ &=\frac{1-\rho^2}{\rho^2}\frac{d}{d\rho}\left\{\frac{\pi}{2}S\left[\frac{(3.5\ldots2s+3)^2}{2^4\cdot2^{2s}(s+2)!}\left(1-\frac{1}{2s+3}\right)\rho^{2s+4}\right]\!\right\}\\ &=\frac{1-\rho^2}{\rho^2}\frac{d}{d\rho}\left\{\frac{\pi}{2}F\left(\frac{1}{2},\frac{1}{2},1,\rho^2\right)+\frac{\pi}{2}F\left(-\frac{1}{2},\frac{1}{2},1,\rho^2\right)\right\}\\ &=\frac{1-\rho^2}{\rho^2}\frac{d}{d\rho}\left\{F_1\left(\rho\right)+E_1\left(\rho\right)\right\}\\ &=\frac{1-\rho^2}{\rho^2}\left\{\frac{E_1-(1-\rho^2)\,F_1}{\rho\,(1-\rho^2)}+\frac{E_1-F_1}{\rho}\right\}\,, \end{split}$$

or

$${\mu_3}' = \frac{2-\rho^2}{\rho^3} \, E_1 - \frac{2 \, (1-\rho^2)}{\rho^3} \, F_1 \quad \dots \qquad \qquad (\mathrm{lxxix}),$$

where E_1 and F_1 are as before the complete elliptic integrals.

In order to obtain the fourth moment coefficient about zero we will return to formulae (xx) and (xxi) of pp. 334-5 and write

$$\mu_2' = 1 - \frac{n-2}{n-1} (1-\rho^2) f_2$$

$$\mu_4' = 2\mu_2' - 1 + \frac{n(n-2)}{(n+1)(n-1)} (1-\rho^2)^2 f_4.$$

and

where f_2 and f_4 are the hypergeometrical series.

Now the general term of f_2 is

$$\frac{(2.4.6.8...2s+2)^2 \rho^{2s+2}}{(s+1)! (n+1) (n+3) ... (n+2s+1) 2^{s+1}},$$

and the general term of f_4 is

$$\frac{(4.6.8...2s+2)^2 \rho^{2s}}{(s)! (n+3) (n+5) ... (n+2s+1) 2^s}.$$

Hence it follows that

$$\frac{n+1}{4\rho}\frac{df_2}{d\rho} = f_4,$$

or we have

$$\mu_{\mathbf{4}'} = 1 - \frac{2(n-2)}{n-1}(1-\rho^2)f_2 + \frac{n(n-2)}{4(n-1)}(1-\rho^2)^2 \frac{df_2}{\rho d\rho}$$
(lxxx).

Thus if we are able to sum f_2 algebraically, we can determine μ_4 algebraically*

* The corresponding formula for μ_3 and μ_1 = \bar{r} is

$$\mu_{3}' = \overline{r} - (1 - \rho^{2}) (n - 2) \frac{d}{d\rho} \left(\frac{\overline{r}}{\rho}\right)$$
.....(lxxxi).

If we put n=3 and $\bar{r}=\frac{1}{\rho}(E_1-(1-\rho^2)F_1)$ we find

$${\mu_3}' = \frac{2 \, - \, \rho^2}{\rho^3} \, E_1 - \frac{2 \, (1 \, - \, \rho^2)}{\rho^3} \, F_1$$

confirming the result in Eqn. (lxxix).

Putting
$$n = 3$$
 and writing $f_2 = -\frac{1}{\rho^2} \log_e (1 - \rho^2)$, we have
$$\mu_{\mathbf{4}}' = 1 + \frac{1 - \rho^2}{\rho^2} \log_e (1 - \rho^2) - \frac{3}{8} \frac{(1 - \rho^2)^2}{\rho} \frac{d}{d\rho} \left\{ \frac{\log_e (1 - \rho^2)}{\rho^2} \right\}$$
$$= 1 + \frac{1 - \rho^2}{4\rho^4} \left\{ 3\rho^2 + (3 + \rho^2) \log_e (1 - \rho^2) \right\} \dots (lxxxii).$$

This completes the moment coefficients for samples of three.

As ρ may be determined by considering the ratio of negative to positive correlations in samples of two, so it may be determined by considering the ratio of positive to negative correlations in samples of three. Let m_p be the number of positive and m_n the number of negative correlations, then since

$$\begin{split} y_3 &= N \, \frac{1 - \rho^2}{\pi} \, \frac{1}{\sqrt{1 - r^2}} \, \frac{1}{r} \, \frac{dU}{d\rho} \, , \\ m_p &= \frac{1 - \rho^2}{\pi} \, \frac{d}{d\rho} \int_0^{+1} \frac{U dr}{r \sqrt{1 - r^2}} \\ &= \frac{1 - \rho^2}{\pi} \, \frac{d}{d\rho} \int_0^{+1} \frac{\cos^{-1}(-\rho r) \, dr}{r \sqrt{(1 - r^2) \, (1 - r^2 \rho^2)}} \\ m_n &= \frac{1 - \rho^2}{\pi} \, \frac{d}{d\rho} \int_{-1}^0 \frac{\cos^{-1}(-\rho r) \, dr}{r \sqrt{(1 - r^2) \, (1 - r^2 \rho^2)}} \end{split}$$

and

Now put in the latter integral r = -r, then

$$m_n = \frac{1 - \rho^2}{\pi} \frac{d}{d\rho} \int_0^{+1} \frac{-\cos^{-1}(\rho r) dr}{r \sqrt{(1 - r^2)(1 - r^2 \rho^2)}}.$$

But $\cos^{-1}(-\rho r) + \cos^{-1}(\rho r) = \pi$, hence

$$\begin{split} \frac{m_p - m_n}{m_p + m_n} &= (1 - \rho^2) \frac{d}{d\rho} \int_0^{+1} \frac{dr}{r \sqrt{(1 - r^2)(1 - r^2 \rho^2)}} \\ &= (1 - \rho^2) \int_0^1 \frac{r^2 \rho dr}{\sqrt{1 - r^2(1 - r^2 \rho^2)^{\frac{3}{2}}}}, \end{split}$$

or if $r = \sin \phi$, $= (1 - \rho^2) \int_0^{\frac{\pi}{2}} \frac{\rho \sin \phi d\phi}{(1 - \rho^2 \sin^2 \phi)^{\frac{3}{2}}}$

$$=-\left(1-
ho^{2}
ight)\int_{0}^{rac{\pi}{2}}rac{d\left(
ho\cos\phi
ight)}{\left(1-
ho^{2}+
ho^{2}\cos^{2}\phi
ight)^{rac{3}{2}}}.$$

Or again if $\rho \cos \phi = \sqrt{1 - \rho^2} \tan \theta$,

$$\begin{split} \frac{m_p - m_n}{m_p + m_n} &= + (1 - \rho^2) \int_0^{\sin^{-1}\rho} \frac{\sqrt{1 - \rho^2 \cos^3 \theta}}{(1 - \rho^2)^{\frac{3}{2}}} \, \frac{d\theta}{\cos^2 \theta} \\ &= \int_0^{\sin^{-1}\rho} \cos \theta \, d\theta = \rho, \end{split}$$

or
$$ho = (m_p - m_n)/(m_p + m_n)$$
(lxxxiii),

a very simple formula if m_p or m_n has been found.

Clearly
$$ho = (2m_p - N) \, N,$$
 and $\delta
ho = 2\delta m_p/N,$

$$\sigma_{\!
ho}{}^2 = 4 \sigma^2_{m_{\,p}} = 4 \, rac{m_p}{N^2} \Big(1 - rac{m_p}{N} \Big) \, .$$

Thus the probable error of ρ found in this manner is

$$\frac{\cdot 67449}{\sqrt{N}} 2 \sqrt{\frac{m_p}{N} \left(1 - \frac{m_p}{N}\right)}$$
.....(lxxxiv),

and can easily be evaluated, for it gives:

Probable Error of
$$\rho = \frac{.67449}{\sqrt{N}} \sqrt{1 - \rho^2}$$
(lxxxv).

We see it is larger by the factor $\frac{1}{\sqrt{1-\rho^2}}$, which is greater than unity, than the usual value for the product moment process of the correlation. But a new point arises: N is the number of triplets in the present process, and N the number of individuals in the product moment process. If we take M triplets and N individuals,

$$\cdot 67449 \sqrt{1-\rho^2}/\sqrt{M}$$
 with $\cdot 67449 (1-\rho^2)/\sqrt{N}$,

and these probable errors will be equal if

we have to compare

$$M = N/(1 - \rho^2).$$

If the number of triplets be $> N/(1-\rho^2)$ the triplet process will be more accurate than the product moment method. The number of triplets required for equality of probable errors are for the various values of ρ :

This series would seem to suggest, since a triplet contains three individuals, that to use the triplet process with equal exactness with the product moment process, in the case, say, of $\rho=\cdot 5$, we should need a population of 4N. But this assumes that each triplet is based upon three independent individuals. Actually a population of N provides $\frac{1}{6}N(N-1)(N-2)$ triplets and if these could be considered as an independent sample of M triplets, we should have a less value of the probable error of ρ by the triplet process using all possible sets than by the product moment process, provided

$$\rho^2 < 1 - \frac{6}{(N-1)(N-2)}.$$

For example if N=10, for all values of ρ between $+\cdot 957$ and $-\cdot 957$, the 120 triplets will give a better result than the 10 individuals. Even 50 triplets would be better than 10 individuals for all values of ρ between $+\cdot 894$ and $-\cdot 894$. But the question arises whether we can consider the 120 triplets from a sample of 10 individuals as much a random sample as 120 triplets from an indefinitely large population, and this can hardly be the case. It may be, however, that 50 triplets out of the 120 would be sufficiently independent to give a better result than 10 individuals. It is very desirable that a full study should be made of such restricted sampling, for without such study it is not possible to assert how far the probable errors of doublet or triplet procedure are greater than those of the product moment method.

Of course in such a case as that referred to, the labour of the triplet process will be considerably greater, for we have to determine the sign of the correlation in 50 or 120 cases, instead of applying the product moment process to 10 individuals, and the labour rapidly increases with increase in the size of the set (doublet, triplet, etc.) and the size of the sample. Still the labour may be worth while in the case of small populations, where the best result is of considerable importance. We have not endeavoured to extend the theory to quadruplets or quintettes, because the labour of determining the sign of the correlation in these cases is very considerable.

In the case of triplets, we require the sign of the product moment

$$\frac{x_1y_1+x_2y_2+x_3y_3}{3}-\frac{(x_1+x_2+x_3)\left(y_1+y_2+y_3\right)}{9}\,,$$

or the sign of

$$(x_2-x_1)(y_2-\overline{y})+(x_3-x_1)(y_3-\overline{y}).$$

Now suppose the triplet arranged according to the character x in ascending order x_1 , x_2 , x_3 , then x_2-x_1 and x_3-x_1 will always be positive, and accordingly if either both $y_2-\overline{y}$ and $y_3-\overline{y}$ are positive, or both negative the sign of the correlation is obvious. On the other hand if $y_2-\overline{y}$ and $y_3-\overline{y}$ are of opposite sign, the matter has got to be a little more carefully considered. But if \overline{y} has been found and the above differences determined, in most cases it is not needful to actually multiply out, in order to realise the sign. A graphic process depending on the plotting of the triplet triangle seemed on the whole more laborious than the above.

Of course in samples of three the U-shaped distributions give a minimum where dy/dr=0, and we have therefore an antimode, not a mode. The values of this antimode are recorded in Table II, p. 368. It will be seen that all the antimodes are negative for positive correlations in the sampled population. The antimode asymptotes to the value $-\cdot 613,9616$, which it reaches when $\rho=+1$. In this case the value actually fails at $\rho=+1$, for the equation dy/dr=0 is satisfied

then for all values of r, owing to the presence of the factor $(1-\rho^2)^{\frac{n-1}{2}}$: see Equation (xxxvii). Nevertheless the antimode curve goes right up to the point indicated above and this value must be used for the purpose of interpolation

between $\rho = .95$ and $\rho = 1.00$. The curve is shown in Fig. 2, and both antimodal and mean lines on the photograph of the model of the frequency surface.

The distributions are after $\rho=2$ very skew U-shaped frequency curves, whose β_1 , β_2 lie in the U-area of Pearson's skew curves, which, however, do not reproduce the antimode very closely. The ordinates are given in Table A (p. 379).

TABLE II. Samples of Three.

ρ, value of correlation in sampled population	r, mean correlation of samples	ř, antimode of samples	σ_r	eta_1	$oldsymbol{eta_2}$	Number of positive correla- tions per 1000 samples	Number of negative correla- tions per 1000 samples
0.0	-0000,0000	.000,0000	-707,1068	.000,0000	1.500,0000	500	500
0.1	.0786,3836	151,2541	$\cdot 704,5029$	-028,0136	1.532,3082	550	450
0.2	$\cdot 1578,7706$	275,5141	-696,5708	115,2406	1.632,9424	600	400
0.3	-2383,6407	367,9037	682,9273	.272,2374	1.814,1763	650	350
0.4	3208,5431	435,4082	-662,8536	.520,5707	2.101,1480	700	300
0.5	-4062,9889	485,5321	$\cdot 635,1363$.901,7817	2.542,3242	750	250
0.6	4960,0160	523,8811	$\cdot 597,7313$	1.500,1840	3.236,2938	800	200
0.7	5919,3885	553,8751	$\cdot 546,9866$	2.510,5375	4.411,4204	850	150
0.8	-6975,5118	577,9216	.475,4818	4.503,0667	6.738,8238	900	100
0.9	8204,3635	597,5916	363,4654	10.222,6204	13.467,2160	950	50
0.95	·8742,5455	606,1358	.268,4676	21.078,0376	26.340,9890	975	25
1.00	1.0000,0000	613,9616	.000,0000	00	∞	1,000	0

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 369

(iii) Samples of Four, n = 4.

Here, if $x = r\rho$,

$$y_4 = \frac{N (1 - \rho^2)^{\frac{3}{2}}}{\pi} \frac{d^2}{dx^2} \left(\frac{\cos^{-1}(-x)}{\sqrt{1 - x^2}} \right) ;$$

and if

$$U = \cos^{-1}(-x)/\sqrt{1-x^2},$$

then

$$\mu_{q'} = \frac{(1-\rho^2)^{\frac{3}{2}}}{\pi \rho^{q+1}} \left\{ \left[x^q \frac{dU}{dx} - qx^{q-1}U \right]_{-\rho}^{+\rho} + q (q-1) \int_{-\rho}^{+\rho} x^{q-2}U dx \right\}.$$

To find the first four moments about r = 0, we have to determine

$$\int_{-\rho}^{+\rho} x^2 U dx, \qquad \int_{-\rho}^{+\rho} x U dx, \qquad \int_{-\rho}^{+\rho} U dx,$$

$$x^4 \frac{dU}{dx} - 4x^3 U, \qquad x^3 \frac{dU}{dx} - 3x^2 U, \qquad x^2 \frac{dU}{dx} - 2x U \qquad \text{and} \qquad x \frac{dU}{dx} - U.$$

The results are most briefly expressed by using Fisher's notation $\rho = \sin \alpha$ and remembering that

$$\cos^{-1}(-\rho) + \cos^{-1}(\rho) = \pi$$
, and $\alpha = \cos^{-1}(-\rho) - \frac{\pi}{2}$.

For the purposes of integration we put $x = -\cos \theta$ and integrate in terms of θ . We find

$$\int_{-\rho}^{+\rho} x^{2} U dx = \frac{1}{2} \pi \left\{ a - \cos a \sin a \right\},$$

$$\int_{-\rho}^{+\rho} x U dx = 2 \left\{ \sin a - a \cos a \right\},$$

$$\int_{-\rho}^{+\rho} U dx = \pi a,$$

$$x^{4} \frac{dU}{dx} - 4x^{3} U = \pi \left\{ \frac{\sin^{5} a}{\cos^{3} a} - 4 \frac{\sin^{3} a}{\cos a} \right\},$$

$$x^{3} \frac{dU}{dx} - 3x^{2} U = 2 \left\{ \frac{\sin^{3} a}{\cos^{2} a} + a \frac{\sin^{4} a}{\cos^{3} a} - 3a \frac{\sin^{2} a}{\cos a} \right\},$$

$$x^{2} \frac{dU}{dx} - 2x U = \pi \left\{ \frac{\sin^{3} a}{\cos^{3} a} - 2 \frac{\sin a}{\cos a} \right\},$$

$$x \frac{dU}{dx} - U = 2 \left\{ \frac{\sin a}{\cos^{2} a} + a \frac{\sin^{2} a}{\cos^{3} a} - a \frac{1}{\cos a} \right\}.$$

Hence substituting in the several values of μ_q , we obtain*

$$\bar{r} = \mu_1' = \frac{2}{\pi} \{\cot \alpha + \alpha (1 - \cot^2 \alpha)\}....(lxxxvi),$$

* Tested by formulae (lxxx) and (lxxxi), p. 364, which can be put in the forms

$$\begin{split} &\mu_3{}' = \,\mu_1{}' \,\left\{ (n-2)/\rho^2 - (n-3) \right\} - \frac{(n-2)\,(1-\rho^2)}{\rho} \frac{d\mu_1{}'}{d\rho} \quad \dots \dots (\text{xe}), \\ &\mu_4{}' = \frac{1}{2}\,(n-2) - \frac{1}{2}\,(n-4)\,\mu_2{}' - \frac{1}{4}\,n \frac{1-\rho^2}{\rho} \frac{d\mu_2{}'}{d\rho} \quad \dots (\text{xei}). \end{split}$$

and

370 Distribution of Correlation Coefficient in Small Samples

From these formulae were calculated the values given in the following table.

TABLE III. Samples of Four.

ρ, value of correlation of sampled population	\overline{r} , mean value of correlation in samples	μ_3 , 3rd moment coefficient	σ_r	Usual value assumed for σ_r , i.e. $\frac{1-\rho^2}{\sqrt{n-1}}$	eta_1	$oldsymbol{eta}_2$	$eta_2 eta_1$
0.0	0	0	.577,3503	$\cdot 577,3503$	0	1.800,000	00
0.1	.084,9678	033,6268	.574,5653	.571,5768	.031,429	1.839,929	58.5418
0.2	170,4532	- 065,2863	-566,0965	.554,2563	129,510	1.964,665	15.1700
0.3	257,0089	092,9620	$\cdot 551,5835$.525,3887	306,862	$2 \cdot 190,708$	7.1391
0.4	345,2652	114,5383	$\cdot 530,3576$	484,9742	•589,510	2.552,205	4.3294
0.5	+435,9911	127,7520	$\cdot 501,3081$	$\cdot 433,0127$	1.028,270	3.116,256	3.0306
0.6	$\cdot 530,1976$	130,1567	$\cdot 462,6087$	$\cdot 369,5042$	1.728,423	4.022,982	2.3275
0.7	-629,3378	$-\cdot 119,1407$	411,1087	294,4486	2.940,226	5.609,288	1.9078
0.8	$\cdot 735,7362$	092,1708	-340,7311	207,8461	5.428,946	8.922,221	1.6435
0.9	853,9806	048,1281	236,6586	-109,6966	13.184,043	19.571,006	1.4844
0.95	920,8889	-021,4678	$\cdot 157,7942$.056,2917	29.8558	43.4082	1.4539
0.98	965,7599	- 006,4363	-088,2666	-022,8631	87.5994	130-1935	1.4862
0.99	982,1321	002,4358	0.055,4859	.011,4893	203.3250	311.7316	1.5332
1.00	1	0	0	0	∞	00	1.8305†

* These expressions cannot be applied to the case of $\rho = 0$. We must return to Equation (ix) and put $\rho = 0$, finding $y_4 = \frac{1}{2}N$ or a horizontal line.

† The ratio β_2/β_1 equals in the limit $(27\pi^2 - 256)(3\pi^2 - 16)/(9\pi^2 - 80)^2 = 1.8305$. This may be shown by putting $\alpha = \frac{1}{2}\pi - \epsilon$, or $\rho = 1 - \frac{1}{2}\epsilon^2$, or $\epsilon = \sqrt{1 - \rho^2}$, where ϵ is small. We then find for values of ρ near unity

$$\begin{split} \widehat{r} &= \rho^2 - \frac{8}{3\pi} \left(1 - \rho^2 \right)^{\frac{3}{2}}, & \mu_2 &= \left(\pi - \frac{16}{3\pi} \right) \left(1 - \rho^2 \right)^{\frac{3}{2}}, \\ \mu_3 &= - \left(3\pi - \frac{80}{3\pi} \right) \left(1 - \rho^2 \right)^{\frac{3}{2}}, & \mu_4 &= \left(9\pi - \frac{256}{3\pi} \right) \left(1 - \rho^2 \right)^{\frac{3}{2}}. \end{split}$$

These lead to

$$\beta_1 = \frac{\left(3\pi - \frac{80}{3\pi}\right)^2}{\left(\pi - \frac{16}{3\pi}\right)^3 (1 - \rho^2)^{\frac{3}{2}}}, \qquad \beta_2 = \frac{\left(9\pi - \frac{256}{3\pi}\right)}{\left(\pi - \frac{16}{3\pi}\right)^2 (1 - \rho^2)^{\frac{3}{2}}},$$

and give the above result.

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 371

(iv) General Case of small Samples, n > 4.

Equations (xxviii), (xxxi), (xxxii), and (xxxiv) enable us to express the moment-coefficients of a sample of n+2 in terms of those of a sample of n. But we have found algebraic expressions for the moment-coefficients for n=3 and n=4 in terms of (a) the complete elliptic integrals and logarithmic functions, (b) trigonometrical functions of a and $\cot a$. Hence all even samples can have their moment-coefficients expressed in terms of a and $\cot a$, and all odd samples can have their odd moment-coefficients expressed in terms of the complete elliptic integrals and their even moments in terms of logarithmic functions. The former result has been already noticed by Fisher*. The arithmetical calculation of the successive moment-coefficients after n=4 by the difference formulae is, however, shorter than obtaining the algebraical expressions and then substituting arithmetical values, and has been followed in our calculations.

(10) Approach of the Distribution as n increases to a Normal Character.

It is well known that for the "probable error" to have meaning the distribution must approach the Gaussian for which $\beta_1 = 0$, $\beta_2 = 3$. It is clear that these conditions are by no means fulfilled for samples of 25 or 50, whatever be the value of ρ . There is nearer approach in the *low* values of ρ in samples of 100, but there is considerable deviation for $\rho = 5$ and upwards.

TABLE IV. Values of the Frequency Constants for the Correlation in Samples of 25.

ρ	$ar{r}$ mean	Actual ř†	ř from Pearson's formula‡	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	eta_1	$oldsymbol{eta}_2$
0.0	0	0	0	.2041.241	-2041,241	0	2.769,2305
0.1	.0979,577	·11173	·11127	2022,954	-2020,829	.012,3106	2.791.6002
0.2	1960,288	-22258	·22177	$\cdot 1967,883$	$\cdot 1959.592$.049,8655	2.860,0511
0.3	-2943,287	·33172	∙33090	$\cdot 1875.386$.1857,530	$\cdot 114.6242$	2.978,8302
0.4	3929,765	·43840	·43758	$\cdot 1744.356$	$\cdot 1714,643$	-210,1771	3.155,8537
0.5	·4920,974	.54197	-54149	$\cdot 1573,152$	1530,931	•342,3386	3.404,2283
0.6	•5918,251	.64194	-64190	1359,499	-1306,395	$\cdot 520,2635$	3.745,3432
0.7	•6923,054	•73792	•73826	·1100,322	$\cdot 1041,033$.758,5549	4.214,8982
0.8	·7937,001	·82966	·83025	.0791,481	$\cdot 0734,847$	1.081,1286	4.869,2635
0.9	-8961,933	·91703	·91736	.0427,345	.0387,836	1.533,4124	5-858,3872
1.0	1	1	1	0	0	∞	00

It will be realised that while the ordinary value for the standard deviation of r and the distribution of r by a normal curve is fairly close for samples of 400, there is still a quite sensible deviation from normality in the case of $\rho = .8$ or over. In fact it may be said that for the size of ordinary samples, there is always a sensible

^{*} Fisher, Biometrika, Vol. x. p. 516.

[†] See Sections (4) and (5) above.

 $[\]ddagger \tilde{r} = \bar{r} + \mu_3 (\beta_2 + 3) / \{ \mu_2 (10\beta_2 - 12\beta_1 - 18) \}.$

372 Distribution of Correlation Coefficient in Small Samples

TABLE V. Values of the Frequency Constants for the Correlation in Samples of 50.

ρ	$ar{r}$ mean	Actual ř mode	ř from Pearson's formula*	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	eta_1	eta_2
0.0	0	0	0	.142,857	.142,857	0	2.88236
0.1	0.098,995	.1054	·1053	141,505	$\cdot 141,429$.00666	2.89184
0.2	198,047	·2104	·2102	$\cdot 137,439$.137,143	$\cdot 02683$	2.93350
0.3	-297,218	·3147	-3144	.130,634	·130,000	.06107	2.99909
0.4	-396,565	·4180	·4177	$\cdot 121,049$	-120,000	·11041	3.09417
0.5	496,150	-5198	∙5196	$\cdot 108,620$.107,143	$\cdot 17635$	3.22240
0.6	-596,038	.6201	·6199	0.093,260	091,429	-26110	3.38912
0.7	-696,295	.7184	·7183	-074,878	.072,857	-36774	3.60222
0.8	.796,989	·8146	·8146	.053,324	051,429	$\cdot 50037$	3.87312
0.9	-898,198	•9085	·9085	$\cdot 028,434$	$\cdot 027,143$	-66608	4.22186
1.0	1	1	1	Ó	0	90	00

TABLE VI. Values of the Frequency Constants for the Correlation in Samples of 100.

ρ	\overline{r} mean	Actual ř mode	ř from Pearson's formula*	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	eta_1	$oldsymbol{eta}_2$
0·0 0·1 0·2 0·3 0·4 0·5 0·6	0 ·099,5016 ·199,0319 ·298,6219 ·398,3013 ·498,1002 ·598,0498	0 ·10258 ·20499 ·30708 ·40868 ·50964 ·60982	0 ·10255 ·20494 ·30701 ·40860 ·50957 ·60976	·100,5038 ·099,5260 ·096,5887 ·091,6832 ·084,7934 ·075,8968 ·064,9640	·100,5038 ·099,4987 ·096,4836 ·091,4584 ·084,4232 ·075,3778 ·064,3224	0 ·00346 ·01390 ·03147 ·05644 ·08919 ·13025	2·94060 2·94736 2·96774 3·00213 3·05118 3·11583 3·19739
0·7 0·8 0·9 1·0	·698,1815 ·798,5279 ·899,1225 1	·70907 ·80726 ·90427	.70903 $.80724$ $.90423$ 1	·051,9577 ·036,8329 ·019,5352 0	·051,2569 ·036,1814 ·019,0957 0	·18031 ·24027 ·31148 ∞	3·29767 3·41896 3·57898 ∞

TABLE VII. Values of the Frequency Constants for the Correlation in Samples of 400.

ρ	$ar{r}$ mean	Actual ř mode	\tilde{r} from Pearson's formula*	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	$oldsymbol{eta}_1$	eta_2
0.0	0	0	0	.0500,626	.0500,626	0	2.9850
0.1	-0998,760	$\cdot 1006,250$	$\cdot 1006,232$	0495,654	0495,620	.00089	2.9868
0.2	-1997,595	-2012,116	-2012,082	-0480,733	-0480,601	$\cdot 00357$	2.9921
0.3	.2996,579	3017,217	-3017,171	-0455,851	0455,570	-00804	3.0010
0.4	-3995,788	$\cdot 4021,171$	$\cdot 4021,115$	-0420,988	0420,526	$\cdot 01433$	3.0138
0.5	·4995,297	.5023,602	-5023,584	0376,115	0375,470	$\cdot 02250$	3.0297
0.6	.5995,181	6024,134	6024,089	0321,195	.0320,401	$\cdot 03245$	3.0498
0.7	$\cdot 6995.517$	-7022,401	$\cdot 7022,386$	0.0256,183	0255,319	$\cdot 04435$	3.0725
0.8	$\cdot 7996,380$	8018,037	-8018,013	$\cdot 0181,023$	-0180,255	$\cdot 05820$	3.1017
0.9	.8997,849	9010,725	9010,668	.0095,653	0095,119	$\cdot 07402$	3.1342
1.0	1	1	1	0	0	00	90

^{*} $\ddot{r} = \bar{r} + \mu_3 (\beta_2 + 3) / \{ \mu_2 (10\beta_2 - 12\beta_1 - 18) \}.$

deviation from normality for high values of ρ in the sampled population, and the usual "probable error of r" must be treated with caution in these cases. Pearson's curves would give better results, as is indicated by the agreement of \ddot{r} to five figures.

(11) Table for determining the Mode \check{r} of the Frequency Distribution of considerable Size n when the Correlation in the sampled Population is known to be ρ .

The required value of the mode is

$$\breve{r} = \rho + \frac{\nu_1\left(\rho\right)}{n-1} + \frac{\nu_2\left(\rho\right)}{(n-1)^2} + \frac{\nu_3\left(\rho\right)}{(n-1)^3} + \frac{\nu_4\left(\rho\right)}{(n-1)^4},$$

when ρ is positive; if ρ be negative \tilde{r} has the same value as for ρ positive, but with opposite sign.

TABLE VIII. Functions required in determining the Mode of a large or fairly large Sample.

ρ	ν_1 (ρ)	$\nu_2\left(ho ight)$	$\nu_3(\rho)$	$\nu_4\left(ho ight)$
.00	0	0	0	0
.05	$\cdot 12468,75000$	$+ \cdot 37872,26953$	+1.13249,90199	+3.36913,85919
·10	-24750,00000	+ .74237,62500	+2.18002,51688	+6.33154,83878
.15	36656,25000	+1.07636,49609	+3.06395,34936	+8.53428,44284
.20	-48000,00000	+1.36704,00000	+3.71804,16000	+9.72192,80640
.25	-58593,75000	+1.60217,28516	+4.09383,77380	+9.77504,47690
•30	$\cdot 68250,00000$	+1.77142,87500	+4.16514,90563	+8.72821,01391
.35	-76781,25000	+1.86684,01172	+3.93125,67461	+6.77045,11170
•40	·84000,00000	+1.88328,00000	+3.41856,48000	+4.22414,17686
.45	-89718,75000	+1.81893,55078	+2.68036,91046	+1.50278,32653
.50	93750,00000	+1.67578,12500	+1.79443,35938	94981,38428
.55	-95906,25000	+1.46005,27734	+ .85806,01815	-2.73364,0534
-60	-96000,00000	+1.18272,00000	01966,08000	-3.57140,42880
.65	93843,75000	+ .85996,06641	72873,29366	-3.38017,64160
.70	89250,00000	+ .51363,37500	-1.17258,21188	-2.31971,9366
.75	82031,25000	+ ·17175,29297	-1.28614,42566	79706,2844
·80	$\cdot 72000,00000$	- ·13104,00000	-1.05802,56000	$+$ $\cdot 59787,92160$
$\cdot 85$	-58968,75000	35300,16797	- 55704,89418	+1.25603,36736
-90	$\cdot 42750,00000$	44481,37500	+ .03650,10188	+ .84819,1019
.95	·23156,25000	- ·34910,94141	$+ \cdot 39461,98756$	- 19874,71350
1.00	Ó	0	0	0

The above Table will give the value of \check{r} correctly to about the sixth figure if n=100 or more, to about the fourth figure if n=25 or more. Below 25 it can only serve as a "taking off point" for more accurate approximations, and these are fairly troublesome if n be very low. It will be found best to interpolate for the expression to be added to ρ .

Illustration. To find the modal \tilde{r} for samples of 9 when $\rho = .2852$.

$$\ddot{r} = \rho + .106,272$$
, for $\rho = .25$,

$$\ddot{r} = \rho + .121,126$$
, for $\rho = .30$.

Hence

$$\tilde{r} = \rho + .116,729$$
, for $\rho = .2852$
= .4019, say.

We cannot, however, be certain that this is correct to more than two figures.

Equation (xlvi) gives us $\tilde{r} = .4038$.

We will therefore start with $\tilde{r} = \cdot 4030$, say, as the basis of a more elaborate approximation, or $\rho_0^2 = \cdot 1149372$ say.

Hence calculating I_1 and I_2 and using the difference formula we find

$$\begin{array}{lll} I_1 = 1 \cdot 6972,\!3599, & I_6 = 1 \cdot 0465,\!6745, \\ I_2 = 1 \cdot 2110,\!7453, & I_7 = 1 \cdot 0879,\!1327, \\ I_3 = 1 \cdot 0715,\!7031, & I_8 = 1 \cdot 1443,\!9624, \\ I_4 = 1 \cdot 0262,\!1201, & I_9 = 1 \cdot 2145,\!9528, \\ I_5 = 1 \cdot 0236,\!1262, & I_{10} = 1 \cdot 2980,\!8251. \end{array}$$

Thus the equality of I_9 and I_{10} has not been reached, so that we could hardly anticipate (xlvi) giving a very good result. Using (xli) we find

$$\epsilon = + .0006,0228,$$

a sufficiently small correction, leading to $\rho_0^2 = \cdot 1155{,}3948$, and $\tilde{r} = \cdot 40512$, correct to the fourth figure. Table VIII for n = 9 gives \tilde{r} in error by about 0.8%.

(12) Table for determining the "most probable" value $\hat{\rho}$ of the correlation in a sampled population from the knowledge of the correlation r in a sample of size n, when n is considerable and it is legitimate to distribute ignorance equally.

The required value is

$$\hat{\rho} = r - \frac{\lambda_1(r)}{n-1} - \frac{\lambda_2(r)}{(n-1)^2} - \frac{\lambda_3(r)}{(n-1)^3},$$

when r is positive; if r be negative, $\hat{\rho}$ has the same value as for r positive, but with opposite sign.

The above formula using Table IX will give $\hat{\rho}$ correct to five figures if n=25 or over, and correct to four figures if n=10 or over.

It appears best to interpolate not for the separate λ -functions, but for the total value to be subtracted from r to find $\hat{\rho}$. Thus, suppose we require to find $\hat{\rho}$ for r = .6781 and for n = 16. We have for r = .65

$$\hat{\rho} = .65 - .0127,3515,$$

 $\hat{\rho} = .70 - .0121,8204.$

and for r = .70

Therefore a difference of -.0005,5311 corresponds to a rise of .05 and accordingly one of -.0003,1085 to a rise of .0281. Thus

$$\hat{\rho} = .6781 - .0124,2430$$

= .6657, accurately.

TABLE IX. Functions required in determining the "most probable" value $\hat{\rho}$ of the Correlation.

r	$\lambda_1(r)$	$\lambda_{2}\left(r ight)$	$\lambda_3^{}(r)$
-00	0	0	0
.05	$\cdot 02493,75000$	00615,64453	00317,92000
·10	$\cdot 04950,00000$	01175,62500	00667,19813
.15	$\cdot 07331,25000$	- 01626,62109	01073,47255
.20	$\cdot 09600,00000$	01920,00000	01551,36000
-25	$\cdot 11718,75000$	- 02014,16016	02099,99084
.30	$\cdot 13650,00000$	01876,87500	02699,79938
·35	$\cdot 15356,25000$	01487,63672	- 03310,98746
.40	·16800,00000	00840,00000	03874,08000
.45	$\cdot 17943,75000$	+.00056,07422	04312,99059
.50	$\cdot 18750,00000$	+.01171,87500	04541,01563
.55	$\cdot 19181,25000$	+.02457,59766	- ·04470,17533
•60	$\cdot 19200,00000$	+.03840,00000	04024,32000
.65	$\cdot 18768,75000$	+.05220,05859	- 03156,41987
.70	$\cdot 17850,00000$	+.06470,62500	- 01870,45688
.75	$\cdot 16406,25000$	+.07434,08203	- 00248,33679
·80	$\cdot 14400,00000$	+.07920,00000	+.01517,76000
-85	$\cdot 11793,75000$	$+\cdot 07702,79297$	+.03087,17070
•90	$\cdot 08550,00000$	+.06519,37500	+.03926,26688
∙95	$\cdot 04631,25000$	+.04066,81641	+.03257,27752
1.00	0	0	0

(13) On the Table for
$$q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} \phi \, d\phi$$
.

While Table X, p. 377, gives the value of $q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1}\phi \,d\phi$ to ten figures, and therefore will be of use in calculating the values of the moments, the reader may be compelled to deal with values of n greater than those tabled, or even may need more than ten significant figures. The present values were calculated to twelve figures, by means of the simple relations

$$q_{2p+2} = q_{2p} - rac{1}{2p+1}\,q_{2p}, \ q_{2p+1} = q_{2p-1} - rac{1}{2p}\,q_{2p-1},$$

with the control relation $q_{2p} \times q_{2p-1} = \frac{\pi}{2} \frac{1}{2p-1}$, and the occasional direct calculation of individual q_n 's to control the accuracy by use of Degen's Tables* and Briggs's $Arithmetica \ Logarithmica \dagger$.

^{*} Tabularum ad faciliorem et breviorem probabilitatis computationem utilium Enneas. C. F. Degen, Havniae, 1824.

[†] Londini, W. Jones, 1624.

and Degen gives the logarithms of the factorials up to 1200! to eighteen mantissa figures, there is no difficulty in getting the logarithms of the q_n 's to 18 figures.

All we need is the value of either $\log \frac{\pi}{2}$ or $\frac{\pi}{2}$ to an adequate number of places*.

But for modern methods of machine calculation the logarithm is of small service and we need in this case to find also the antilogarithm. Let us illustrate the process in the determination of q_{104} :

$$\log q_{104} = 104 \log 2 \\ + 2 \log (52 !) \\ - \log 104 \\ - \log (104 !) \\ = \bar{1} \cdot 99587,229,900,504,620.$$
 = $31 \cdot 307119,549054,044280 \\ + 135 \cdot 813296,784409,541764 \\ - 2 \cdot 017033,339298,780355 \\ - 166 \cdot 012795,764264,301069$

Thus far the work is very straightforward. But to obtain the antilogarithm to twelve figures is another matter. Tables like the original Vega (to 10 figures) or Mendizabel (to 8 figures) are not of service. We are thus compelled to use Briggs's 14 figure Table of Logarithms, but the fundamental defect of that magnificent piece of work is the largeness of the differences. The nearest logarithm to the above is $\log(.12319) = 1.090575,455222,21$ with the remainder

$$r = .000011,774678,29,$$

and the difference $\cdot 000035,252606,20$. Mere linear interpolation gives $\cdot 1231,9334,0087,32$,

which is wrong in the tenth figure.

We have therefore used the method of inverse interpolation given in the *Tables for Statisticians*† as (vii)^{bis} on p. xiv. Unfortunately there are two misprints in the value given there (corrected in the *Errata*); it should run

$$\theta^{2} \frac{1}{4} \left(-u_{0} - u_{1} + u_{-1} + u_{2} \right) + \theta \frac{1}{4} \left(5u_{1} - 3u_{0} - u_{-1} - u_{2} \right) + u_{0} - u_{0} \left(\theta \right) = 0$$
......(xeiv).

But from Briggs's tables,

$$\begin{split} u_{-1} &= \cdot 0905,\! 4019,\! 9754,\! 24,\\ u_{0} &= \cdot 0905,\! 7545,\! 5222,\! 21,\\ u_{+1} &= \cdot 0906,\! 1070,\! 7828,\! 41,\\ u_{+2} &= \cdot 0906,\! 4595,\! 7573,\! 32, \end{split}$$

whence

$$\cdot 0001,4101,614786 \ \theta = \cdot 0000,4709,8713,16 + \theta^2 \times \cdot 0000,00005723,06,$$

or,
$$\theta = \frac{.4709,8713,16}{1.4101,6147,86} + \theta^2 \frac{.0000,5723,06}{1.4101,6147,86}.$$

^{*} $\frac{\pi}{2} = 1.570796,326794,8966$; $\log \frac{\pi}{2} = .196119,877030,1527$.

[†] Cambridge University Press, 1914.

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 377

To a first approximation

$$\theta_1 = \frac{\cdot 4709,8713,16}{1\cdot 4101,6147} \left(1 - \frac{\cdot 0000,0000,86}{1\cdot 4101,6147}\right) \text{,}$$

arranging it thus as most machines cannot divide by more than nine figures. Hence

$$\theta_1 = .3339,9517,625.$$

Substitute in the θ^2 term and we find

$$\theta_2 = .3339,9970,356,$$

or the value of $q_{104}=\cdot 1231,9333,9997$ to twelve figures. Found by the continuous process it was $\cdot 1231,9333,9996$, so that the value tabled is correct to the tenth figure.

TABLE X. Values of the Integral $q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1}\phi d\phi = \int_0^{\frac{\pi}{2}} \cos^{n-1}\phi d\phi$.

n	q_n	n	I_n	n	I_n
1	1.5707,9632,68	36	.2103,4114,55	71	.1492,6566,48
2	1.0000,0000,00	37	.2074,4030,47	72	1482,1822,53
3	.7853,9816,34	38	2046,5624,97	73	1471,9253,06
4	-6666,6666,67	39	-2019,8134,93	74	1461,8783,86
5	5890,4862,25	40	1994,0865,35	75	1452,0344,23
6	.5333,3333,33	41	1969,3181,56	76	1442,3866,74
7	-4908,7385,21	_42	$\cdot 1945,4502,78$	77	1432,9287,07
8	4571,4285,71	43	$\cdot 1922,4296,29$	78	1423,6543,80
9	4295,1462,06	44	1900,2072,49	79	1414,5578,26
10	.4063,4920,63	45	$\cdot 1878,7380,46$	80	1405,6334,38
11	3865,6315,85	46	$\cdot 1857,9804,21$	81	-1396,8758,53
12	.3694,0836,94	47	1837,8959,15	82	1388,2799,39
13	.3543,4956,20	48	1818,4489,23	83	1379,8407,82
14	.3409,9234,10	49	1799,6064,16	84	-1371,5536,75
15	3290,3887,90	50	$\cdot 1781,3377,19$	85	1363,4141,06
16	3182,5951,83	51	-1763,6142,88	86	1355,4177,49
17	3084,7394,91	52	$\cdot 1746,4095,29$	87	1347,5604,54
18	.2995,3837,01	53	$\cdot 1729,6986,29$	88	1339,8382,35
19	2913,3650,74	54	1713,4584,06	89	1332,2472,67
20	$\cdot 2837,7319,28$	55	1697,6671,73	90	1324,7838,73
21	.2767,6968,21	56	$\cdot 1682,3046,16$	91	1317,4445,19
22	2702,6018,36	57	1667,3516,87	92	1310,2258,08
23	.2641,8924,20	58	$\cdot 1652,7905,00$	93	1303,1244,70
24	2585,0974,08	59	1638,6042,44	94	-1296,1373,58
25	-2531,8135,69	60	$\cdot 1624,7771,02$	95	1289,2614,44
26	2481,6935,12	61	$\cdot 1611,2941,74$	96	1282,4938,07
27	2434,4361,24	62	1598,1414,12	97	1275,8316,37
28	.2389,7789,37	63	1585,3055,58	98	1269,2722,22
29	.2347,4919,77	64	.1572,7740,88	99	$\cdot 1262,8129,47$
30	2307,3727,67	65	.1560,5351,59	100	1256,4512,90
31	2269,2422,44	66	.1548,5775,63	101	1250,1848,17
32	-2232,9413,87	67	.1536,8906,87	102	$\cdot 1244,0111,78$
33	2198,3284,24	68	.1525,4644,65	103	1237,9281,04
34	2165,2764,98	69	.1514,2893,53	104	1231,9334,00
35	2133,6717,06	70	1503,3562,85	105	.1226,0249,49

378 Distribution of Correlation Coefficient in Small Samples

Something corresponding to the above process must be used for values of q_n with n > 105, if we require the function correct to ten or twelve figures. The usual approximate formulae for the factorial, or for the Γ -function, do not converge rapidly enough and generally give the logarithm, so that they really involve the use of the logarithm tables to 14 places and the antilogarithm process.

For values of 100 and upwards the following formula will be found good:

For n even we deduce by Stirling's Theorem from Eqn. (xcii)

$$q_n = \frac{1 \cdot 2533,1413,7315}{\sqrt{n}} \left(1 + \frac{\cdot 25}{n} + \frac{\cdot 03125}{n^2} - \frac{\cdot 039,0625}{n^3} - \frac{\cdot 0102,5390,625}{n^4}\right) \text{ (xev)}.$$

For example, n = 100

$$\begin{split} q_{100} &= 1 \cdot 2533,\!1413,\!7315 \times \cdot 1002,\!5031,\!64165, \\ &= \cdot 1256,\!4512,\!9017,\!89, \end{split}$$

which is correct to twelve places.

For n odd we deduce by Stirling's Theorem from Eqn. (xcii) by somewhat more lengthy algebra precisely the same value.

[Owing to the growth of this memoir far beyond its original limits, it has been found impossible to include in this first portion the experimental work which accompanied the algebraical investigations, nor to give illustrations of the various uses which the tables serve. These matters are therefore reserved for a continuation of this memoir, which will appear later.]

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 379

APPENDIX.

CORRELATION IN SMALL SAMPLES.

TABLE A. Ordinates and Constants of Frequency Curves*.

n=3. ρ variate (correlation in population sampled).

	0	•1	.2	•3	.4	.5	.6	-7	-8	.9
- 1.00	00	∞	∞	∞	∞	00	00	∞	∞	00
95	1019-41	874.99	744.21	624.87	515.25	413.97	319.92	232.19	150.04	72.8
90	730.25	631.33	540 26	456.01	377.73	304.70	236.31	172.05	111.49	54.2
85	604.25	526.19	453.08	384.48	319.97	259.17	201.74	147.37	95.78	46.7
80	530.52	465.35	403.21	344.03	287.69	234.02	182.85	134.03	87.38	42.7
75	481.24	425.22	370.79	318.13	267.34	218.43	171.35	126.04	82.44	40.4
70	445.72	396.74	348.18	300.44	253.76	208.27	164.05	121.12	79.49	39.1
65	418.87	375.59	331.78	287.95	244.48	201.60	159.47	118-20	77.84	38.4
60	397.89	359.43	319.60	279.03	238.18	197.36	156.81	116.70	77.14	38.2
- ·55	381.13	346.87	310.50	272.73	234.08	194.94	155.60	116.29	77.18	38.3
50	367.55	337.02	303.74	268.44	231.71	193.97	155.57	116.79	77.82	38.8
45	356.44	$329 \cdot 29$	298.82	265.77	230.74	194.20	156.54	118.06	79.02	39.6
40	347.30	323.28	295.41	264-44	230.97	195.48	158.40	120.05	80.72	40.6
35	339.80	318.70	293.29	$264 \cdot 28$	$232 \cdot 26$	197.72	161.09	122.71	82.91	41.9
30	333.68	315.35	292.30	$265 \cdot 17$	234.53	200.85	164.58	126.05	85.60	43.5
25	328.75	313.08	292.30	267.01	237.71	204.86	168.86	130.08	88.82	45.3
20	$324 \cdot 87$	311.77	$293 \cdot 24$	269.76	241.79	209.74	173.97	134.82	92.59	47.5
15	321.95	311.36	295.05	$273 \cdot 39$	246.77	215.51	179.94	140.33	96.98	50.1
10	319.91	311.80	297.71	277.91	$252 \cdot 66$	222.22	186.82	146.69	102.04	53.0
05	318.71	313.06	301.21	$283 \cdot 32$	259.51	229.93	194.72	153.99	107.88	56.5
.00	318.31	315.13	305.58	289.66	$267 \cdot 38$	238.73	203.72	162.34	114.59	60.4
+ .05	318.71	318.02	310.83	296.99	276.35	248.73	213.97	171.89	122.33	65.0
+ .10	319.91	321.75	317.02	305.38	286.51	260.05	225-63	182.84	131.27	70.4
+ .15	321.95	326.39	324.22	314.94	298.02	272.89	238.91	195.41	141.63	76.7
+ .20	324.87	331.99	332.52	325.79	311.04	287.45	254.08	209.89	153.71	84.2
+ .25	328.75	338.66	342.06	338-10	325.78	304.00	271.45	226.66	$167 \cdot 88$	93.1
+ .30	333.68	346.53	353.00	352.08	342.52	322.88	291.45	246.18	184.60	103.7
+ .35	339.80	355.76	365.56	368.00	361.58	344.53	314.60	269.08	204.53	116.6
+ .40	347.30	366.59	380.02	386.21	383.43	369.48	341.59	296.15	228.52	132.5
+ .45	356.44	379.33	396.75	407.18	408.63	398.48	373.30	328.48	257.73	152.3
+ .50	367.55	394.39	416.27	431.53	437.95	432.48	410.96	367.53	293.80	$177 \cdot 4$
+ .55	381.13	412.36	$439 \cdot 27$	460.12	$472 \cdot 45$	472.82	456.23	415.36	339.09	210.0
+ .60	$397 \cdot 89$	434.08	466.77	494.15	513.63	521.35	511.47	474.92	397.07	253.3
+ .65	418.87	460.81	500.25	535.44	563.68	580.81	580.15	550.63	$473 \cdot 12$	312.6
+ .70	445.72	494.50	542-05	586.77	626.01	655.44	667.63	649.38	575.90	396.9
+ .75	481.24	538.43	596.05	652.77	$706 \cdot 23$	$752 \cdot 17$	782.72	782.63	720-25	523.2
+ .80	530.52	598.63	$669 \cdot 27$	741.91	814.50	883.48	941.21	971.06	933.85	724.9
+ .85	604.25	687.68	776.82	871.73	971.83	1074.99	1175.29	1256.88	1274.71	1079-6
+ .90	730.25	838.25	956.77	1087.46	1232.06	1391.88	1566.09	1745.85	1890-70	1804.9
+ .95	$1019 \cdot 41$	1180.31	1361.48	1568.00	1806.93	2088.24	$2426 \cdot 12$	2839.55	3341.78	3802.3
+ 1.00	00	00	00	00	00	∞	∞	00	00	∞
Mean	.0000	-0786	·1579	·2384	-3209	•4063	·4960	-5919	-6976	-820
Antimode	0000	1513	2755	3679	4354	4855	5239	5539	5779	597
σ	-7071	.7045	.6966	-6829	.6629	.6351	-5977	.5470	.4755	-363
$-\rho^2)/\sqrt{n-1}$.7071	.7000	-6788	.6435	.5940	.5303	•4525	-3606	.2546	·134
$eta_1 \ eta_2$	-0000	.0280	.1152	.2722	-5206	-9018	1.5002	2.5105	4.5031	10.222
I-L	1.5000	1.5323	1.6329	1.8142	2.1011	2.5423	3.2363	4.4114	6.7388	13.467

 $[\]ast\,$ In all cases the total frequency of the curve is taken as 1000.

TABLE A. Ordinates and Constants of Frequency Curves.

n=4. ρ variate (correlation in population sampled).

	0	·1	·2	•3	•4	•5	:6	.7	-8	•9
- 1.00	500.00	386.33	295.47	222.28	163-11	115.34	77.06	46.93	24.03	8.05
95	500.00	390.84	301.85	228.97	$169 \cdot 22$	120.41	80-89	49.50	25.46	8.5
90	500.00	$395 \cdot 43$	308.42	235.94	175.66	125.79	84.99	52.27	27.01	9.0
85	500.00	400.09	$315 \cdot 19$	$243 \cdot 21$	182.44	131.52	89.38	55.26	28.69	9.6
80	500.00	404.83	$322 \cdot 17$	250.79	189.59	137.61	94.10	58.49	30.52	10.3
75	500.00	409.64	$329 \cdot 36$	258.71	197.13	144.10	99.16	61.99	32.51	11.0
70	500.00	414.54	336.78	266.97	205.09	151.02	104.61	65.79	34.69	11.8
65	500.00	419.52	344.44	275.61	213.51	158-41	110.48	69.92	37.08	12.7
60	500.00	424.58	352.34	284.64	$222.42 \ 231.85$	166-31	116.82	74.41	39.70	13.7
55	500.00	429.73	360.49	294.09	231.85	174.77	123.68	79.32	42.58	14.8
50	500.00	434.96	368.90	303.97	241.84	183.84	131.10	84.68	45.76	16·0 17·3
45	500.00	440.28	377.59	314.32	252.44	193.57	139.16	90.56	49.28	17.5
40	500.00	445.69	386.57	325.17	263.69	204.03	147.92	97.03	53.19	18-9
- ·35 - ·30	500·00 500·00	$451 \cdot 20$ $456 \cdot 80$	395.84 405.43	336·54 348·48	$275.65 \\ 288.38$	$215 \cdot 29 \\ 227 \cdot 44$	$157.46 \\ 167.88$	104.15	$57.54 \\ 62.40$	20·5 22·5 24·6
- ·25	500.00	462.50	415.34	361.01	301.94	240.55	179.28	$\begin{array}{c c} 112.01 \\ 120.72 \end{array}$	67.85	94.6
20	500.00	468.30	425.59	374.17	316.40	254.74	191.79	130.41	73.98	27.
- ·15	500.00	474.19	436.20	388.01	331.84	270.11	205.53	141.20	80.91	29.9
10	500.00	480.20	447.17	402.57	348.34	286.81	220.69	153.27	88.77	33.2
- ·05	500.00	486.30	458.53	417.89	366.00	304.96	237.43	166.83	97.73	37.0
00	500.00	492.52	470.30	434.04	384.94	324.76	256.00	182.11	108.00	41.
+ .05	500.00	498.85	482.49	451.07	405.26	346.38	276.64	199.40	119.83	46.
+ .10	500.00	505.29	495.13	469.04	427.09	370.06	299.67	219.05	133.53	52.
+ .15	500.00	511.84	508.23	488.02	450.60	396.04	$325 \cdot 45$	241.50	149.52	59.8
+ .20	500.00	518.52	521.81	508.08	475.94	424.63	354.41	267.28	168.29	68-6
+ .25	500.00	525.31	535.90	529.31	503.31	$456 \cdot 16$	387.08	297.05	190.49	79.
+ ·30	500.00	532.23	550.53	551.79	532.91	491.05	424.09	331.63	216.99	92.
+ •35	500.00	539.28	565.72	575.62	564.99	529.75	$466 \cdot 20$	$372 \cdot 07$	248.90	108:
+ ·40	500.00	546.46	581.49	600-89	599.81	$572 \cdot 82$	514.35	419.70	287.74	128
+ .45	500.00	553.77	597-89	627.74	637.68	620.92	569.71	476.24	335.53	154
+ .50	500.00	561.22	614.93	656.28	678.96	674.81	633.70	543.96	395.13	188
+ .55	500.00	568.81	632.65	686.66	724.05	735.44	708.15	625.86	470.54	234
+ .60	500.00	576.54	651.09	719.03	773.41	803.91	795.33	725.97	567.57	296
+ .65	500.00	584.41	670.29	753.55	827.57	881.57	898-20	849.83	694.88	384
+ .70	500.00	592.44	690.28	790.43	887.15	970.08	1020-55	1005.20	865.74	514
+ .75	500.00	600.62	711.11	829.86	952.87	1071.44	1167-38	1203.12	1101.28	712
+ .80	500·00 500·00	608.96	732·82 755·47	872.07	1025.55	$1188 \cdot 16$ $1323 \cdot 35$	1345·36 1563·48	$1459.79 \\ 1799.62$	1436·61 1933·28	1037· 1612·
+ ·85 + ·90	500.00	$617.46 \\ 626.13$	779.10	917·33 965·92	1106·18 1195·91	1480.93	1834-16	2260.62	2706.28	2751
+ ·90 + ·95	500.00	634.97	803.76	1018.17	1296.08	1665.90	2174.80	2904.38	3989.04	5425
$^{+}$ 1.00	500.00	643.98	829.53	1074.43	1408.32	1884.66	2610.44	3835.42		13781
	300.00	049.90	020 00	1014.49	1400.32	1004.00	2010 44	3030 42	0303.30	10101
Mean	.0000	∙0850	.1705	.2570	·3453	·4360	-5302	·6293	.7357	-85
Mode Non-	existent									
σ	.5774	-5746	.5661	.5516	.5304	.5013	.4626	·4111	•3407	•23
$1-\rho^2)/\sqrt{n-1}$	-5774	-5716	.5543	.5254	.4850	·4330	⋅3695	.2944	.2078	.10
$egin{array}{cccc} eta_1 & & & & & & & & & & & & & & & & & & &$.0000	0314	·1295	3069	•5895	1.0283	1.7284	2.9402	5.4289	13.18
1-1	1.8000	1.8399	1.9647	2.1907	2.5522	3.1163	4.0230	5.6093	8.9222	19.57

TABLE A—(continued).

n = 5. ρ variate (correlation in population sampled)

	0	•1	•2	.3	•4	.5	.6	.7	•8	.9
- 1.00	•00	-00	.00	.00	.00	-00	.00	.00	•00	•00
95	198.78	141.35	99.03	67.80	44.87	28.25	16.49	8.50	3.48	-80
90	277.50	200.54	142.43	98.66	65.96	41.90	24.65	12.79	5.27	1.22
85	335.36	246.33	177.39	124.35	84.01	53.86	31.94	16.70	6.92	1.62
80	381.97	285.19	208.27	147.80	100.93	65.32	39.06	20.58	8.59	2.02
- ·75	421.08	319.60	236.74	170.10	117.44	76.75	46.30	24.59	10.33 12.20 14.24	2.45
70	454.64	350.80	263.63	191.85	133.96	88.43	53.84	28.82	12.20	2.91
65	483.79	379.53	$289 \cdot 41$	213.36	150.72	100.55	61.79	33·37 38·30	14.24	3.42
60	509.30	406.24	314.40	234.88	167.91	113.24	70.28	38.30	16.48	3.99
55	531.68	431.25	338.80	256.56	185.68	126.63	79.40	43.68	18.96 21.72	4.62
50	551.33	454.76	362.75	278.52	204.14	140.84	89.26	49.59	21.72	5·34 6·16
45	568.52	476.92	386.34	300·86 323·65	223.41	156.00	99.98	56.12	24·82 28·32	6.16
40	$583 \cdot 47$	497.83	409.64	323.65	243.58	172.23	1111-67	63.37	28.32	7.10
- •35	596.35	517.56	432.68	+346.96	264.76	189.65	124.47	71.45	32.27	8.17
30	607.30	536.16	455.50	370.82	287.04	208.40	138.53	80.49	36.78	9.41
25	616.40	553.64	478.09	$395 \cdot 29$	310.51	228.62	154.02	90.65	41.92	10.86
20	623.76	570.02	500.44	420.38	335.28	250.49	171-14	102.08	41·92 47·83	10.86 12.54
15	$629 \cdot 42$	585.27	522.52	446.12	361.44	274.17	190.10	115.02	54.64	14.59
10	$633 \cdot 43$	599.37	544.31	472.50	389.09	$299.86 \\ 327.76$	211.15	129.71	62.54	16.86
05	$635 \cdot 82$	612.28	565.73	499.53	418.31	327.76	234.60	146.44	71.74	19.65
.00	$636 \cdot 62$	623.95	586.71	527.18	449.20	358.10	260.76	165.58	82.51	16·86 19·65 22·98
+ .05	635.82	634.31	607.16	555.41	481.84	391.13	290.03	187.57	95·19 110·22	1 - 27.01
+ .10	$633 \cdot 43$	$643 \cdot 27$	626.97	584.15	516.30	427.11	322.86	212.91	110.22	31·91 37·93
+ .15	$629 \cdot 42$	650.74	645.99	613.31	552.65	466.33	359.76	242.26	128.14	37.93
+ .20	623.76	656.59	664.06	642.76	590.91	509.09	401.33	276.40	149.65	45.39
+ .25	616.40	660-68	680.97	$672 \cdot 33$	631.08	555.72	448.27	316.29	175.68	54.74
+ .30	607.30	$662 \cdot 86$	696.46	701.77	673.11	606.51	501.37	363.13	207.42	66.60
+ .35	$596 \cdot 35$	662.91	710.24	730.79	716.87	661.77	561.55	418-41	246.48	81.84
+ .40	$583 \cdot 47$	660.60	721.95	758.98	762.14	721.75	629.83	483.98	295.00	81·84 101·75 128·18
+ •45	568.52	655.66	731-14	785.81	808.54	786.62	707.37	562.17	355.92	128.18
+ .50	551.33	647.74	737-25	810-60	855.49	856.39	795.39	655.88	433.30	163.98 213.57 284.13
+ .55	531.68	$636 \cdot 41$	739.59	832.42	902.10	930.77	895.14	768.74	532.81	213.57
+ .60	509.30	$621 \cdot 15$	737.29	850.06	947.05	1009.03	1007.71	905.20	662.54	284.13
+ .65	483.79	601.26	729-21	861.85	988.36	1089.62	1133.68 1272.51	1070.61	834.18	-387.69
+ .70	454.64	575.83	713.82	865.50	1023.03	1169-66	1272.51	1270.96	1064.70	545·45 796·89
+ .75	421.08	543.59	689.01	857.73	1046.50	1243.92	1421.02	1511.86	1378.85	796.89
+ .80	381.97	502.63	651.67	833.60	1051.45	1302.93	$1570 \cdot 47$	$1795 \cdot 27$	1811.55	1220-21
+ .85	335.36	449.87	596.86	785-20	1025.58	1328.96	1699.62	2109.71	2406.01	1981-91
+ .90	277.50	379.52	515.46	698.04	945.84	1286.02	1756.53	2398.74	$3182 \cdot 44$	3457.80
+ .95	198.78	277.21	385.59	538.03	757.76	1085-21	1595.22	2436.67	3917.02	$6392 \cdot 40$
+ 1.00	.00	.00	.00	.00	.00	-00	•00	.00	•00	.00
Mean	-0000	.0884	.1773	·2671	3584	4517	.5480	.6482	.7541	-8687
Mode	.0000	.3264	.5520	-6936	·7863	8500	·8965	-9318	-9595	-9817
σ	•5000	-4972	·4886	$\cdot 4740$	·4528	•4239	.3858	-3358	-2691	.1748
$\rho^2)/\sqrt{n-1}$	-5000	·4950	·4800	•4550	.4200	·3750	-3200	.2550	.1800	-0950
β_1	.0000	0315	1299	.3077	•5909	1.0315	1.7297	2.9374	5.4065	13.0290
$eta_1 \ eta_2$	2.0000	2.0429	2.1769	2.4201	2.8097	3.4191	4.4027	6.1333	9.7830	21.7579

TABLE A. Ordinates and Constants of Frequency Curves.

n = 6. ρ variate (correlation in population sampled).

		0	-1	.2	.3	·4	•5	•6	.7	.8	.9
	- 1.00	.00	.00	.00	.00	-00	-00	•00	.00	•00	•00
	95	73.125	47.28	30.03	18.55	10.99	6.12	3.10	1.35	.44	.07
	90	142.500	94.07	60.81	38.13	22.88	12.89	6.60	2.89	.95	.15
	85	$208 \cdot 125$	140.28	92.30	58.76	35.74	20.37	10.54	4.66	1.54	.25
	80	270.000	185.83	124.49	80.50	49.64	28.64	14.97	6.68	2·23 3·03	•36
	75	328-125	230.63	$157 \cdot 34$	103.38	64.65	37.76	19.96	9.00	3.03	-50
	70	382.500	274.58	190.82	$127 \cdot 43$	80.85	47.84	25.59	11.66	3.96	-66
	65	$382.500 \\ 433.125$	317.59	224.87	152.69	98.33	58.96	31.92	11.66 14.71	5.05	-88
	60	480.000	359.54	$259 \cdot 44$	$179 \cdot 18$	$117 \cdot 16$	71.24	39.06	18.20	6.32	1.07
	55	523.125	400.33	294.48	206.94	137.45	84.78	47.09	22.22	7.79	. 1.39
	50	562.500	439.82	329.89	235.97	$159 \cdot 29 \\ 182 \cdot 79$	99.73	56.16	26.83	$9.52 \\ 11.55$	1.64
	- ·45	598.125	477.89	$365 \cdot 60$	$266 \cdot 29$	182.79	116.21	66.38	32.13	11.55	1.64 2.02 2.46
	40	630.000	514.41	401.49	297.90	208.03	134.39	77.92	38.25	13.93	2.4
	35	658.125	$549 \cdot 23$	437.46	330.80	235.13	$154 \cdot 44$	90.95	45.31	$13.93 \\ 16.73$	3.0
	30	682.500	$582 \cdot 20$	473.37	364.95	264.20	176.55	105.68	$53.47 \\ 62.92$	20·03 23·94	3·6· 4·4
	25	703.125	$613 \cdot 16$	509.07	400.33	295.32	200.93	$122 \cdot 35$	62.92	23.94	4.4
	- ·25 - ·20	720.000	641.93	544.37	436.88	328-62	227.80	141.22	73.89	28.59	5.3
	15	733-125	668.33	579.08	$474 \cdot 49$	364.17	$257 \cdot 41$	$162 \cdot 61$	86.65	$34 \cdot 12$	6.5
	10	742.500	692-18	612.97	513.07	402.05	290.01	186.88	101.53	40.75	7.9
	05	$748 \cdot 125$	713.27	645.79	552.46	442.32	325.89	214.44	118.92	48.71	9.6
	.00	750-000	731.39	677.23	592.47	485.02	$365 \cdot 35$	245.76	139-31	58.32	9·6 11·8
	+ .05	748-125	746.31	706.99	632.84	530.14	408.70	281.39	163.28	69.98	14.5
	+ .10	742.500	757.78	734.67	673.26	577.63	$456 \cdot 23$	321.94	191.55	84.21	17.9
	$+\cdot 15$	733.125	765.56	759-87	713.34	627.35	$508 \cdot 26$	$368 \cdot 14$	224.98	101-67	17·9 22·2
	+ .20	720.000	769.38	782.10	752.61	679.10	565.04	420.76	264.66	$123 \cdot 24$	27.8
	+ · ·25	703.125	768.94	800.84	790.47	732.53	$626 \cdot 81$	480.72	311.90	150.07	35.0
	+ .30	682.500	763.96	815.48	826-21	787.15	693.69	548.97	368.33	183.69	44.6
	+ .35	658-125	754.11	825.36	858.93	842.24	765.62	626.56	$435.94 \\ 517.20$	226.18	57.3
	+ ·40	630.000	739.06	829.70	887.57	896-80	842.35	714.54	517.20	280.35	74.6
	+ .45	598.125	718.45	827.66	910·82 927·11	949.48	923.20	813.87	615.10	350.06	98.4
	+ .50	562.500	691.90	818-27	927.11	998.43	1006.98	925.29	733-19	440.67	98·4 132·1
	+ .55	523.125	$659.02 \\ 619.39$	800.46	934.53	1041.18	1091-61	1048.92 1183.82	875.62	$559 \cdot 69$	180.6
	+ .60	480.000	619.39	772.99	930.76	1074.42	1173.81	1183.82	1046.92	717.69	180·6 252·6
	+ .65	433.125	572.56	734.52	913.01	1093.74	$1248 \cdot 41$	1326-99	1251.36	929.54	-362.7
	+ .70	382.500	518.05	683.50	877-89	1093.27	1307.53	1471.73	1491.35	1215.82	537.7
	+ .75	328-125	455.38	618.19	821.29	$1065 \cdot 22$	1339.14	1604.80	1763.58	1603.56	828-0
	+ .80	270.000	384.02	536.66	738-25	$999 \cdot 24$	$1325 \cdot 11$	1701.20	2050.08	2122.58	537·7 828·0 1334·3
	+ .85	208.125	303.41	436.70	622.74	881.50	1237.97	1714.92	$2297 \cdot 17$	2783.31	2265.9
	+ .90	142.500	212.95	315.86	467.45	693.60	1036.09	1561.73	2364.83	$3479 \cdot 97$	4043.9
	+ .95	73.125	112.04	171.33	263.48	410.83	655.98	1086.58	1899-93	3578.10	7013.7
	+ 1.00	.00	.00	•00	.00	.00	•00	.00	.00	.00	.0
	Mean	-0000	-0906	-1816	.2734	·3665	·4614	•5587	.6594	·7646	-876
	Mode	-0000	2197	4101	.5599	-6747	•7630	8321	·8870	·9319	-968
		•4472	·2197 ·4444	•4360	·4216	•4007	·3725	-3356	2878	•2253	139
(3	σ 2)/4/										
(I -	$-\rho^2)/\sqrt{n-1}$	•4472	-4427	•4293	•4070	·3757	•3354	-2862	-2281	-1610	.085
	$eta_1 eta_2$	•0000	0304	.1251	2959	•5667	·9838	1.6418	2.7599	4.9848	11.455
	β_2	2.1429	2.1863	2.3222	2.5682	2.9615	3.5746	4.5585	6.2752	9.8417	21.165

TABLE A—(continued).

n = 7. ρ variate (correlation in population sampled).

	0	•1	•2	•3	•4	•5	•6	.7	.8	.9
- 1.00	.00	.00	.00	.00	-00	-00	-00	.00	.00	•00
95	25.84	15.19	8.75	4.87	2.58	1.27	•56	.20	.05	.01
90	70.30	42.38	24.93	14.14	7.62	3.81	1.69	.63	·16	.02
85	124.08	76.72	46.12	26.66	14.60	7.39	3.34	1.25	.33	•04
80	183.35	116.30	71.46	42.10	23.44	12.05	5.51	2.08	.56	.06
75	245.63	159.85	100.42	60.33	34.17	17.84	8.26	3.16	-85	-10
70	309.15	206.44	132.64	81.28	46.85	24.84	11.67	4.53	1.24	.14
65	372.52	255.27	167.80	104.93	61.59	33.20	15.83	6.22	1.72	.20
60	434.60	305.66	205.61	131.26	78.49	43.03	20.83	8.30	2.32	.27
55	494.46	356.96	245.82	160.28	97.70	54.50	26.81	10.85	3.08	.37
- ·50	551.33	408.59	288.14	191.98	119.36	67.80	33.92	13.93	4.01	•49
- ·45	604.53	459.99	332.29	226.24	143.61	83.12	42.31	17.66	5.16	.69
40	653.49	510.59	377.96	$226.34 \\ 263.34$	170.62	100.70	52.20	22.16	6.58	·63 ·82
35	697.73	559.87	424.83	302.91	200.54	120.78	63.81	27.58	8.32	1.05
30			472.53	244.00				34.10	10.49	1.35
25	736.85 770.51	$607.28 \\ 652.32$	520.67	344.98	233.54	143.64	77.42	34.10	10·48 13·13	1.70
	770.91	604.44	520.01	389.43	269.77	169.60	93.33	41.94	13.13	1·72 2·19
20	798.41	694.44	568.81	436.10	309.36	198.97	111.92	51.36	16.41	2.18
15	820.34	733.15	616.47	484.78	352.43	232.12	133.60	62.69	20.47	2.80
10	836.13	767.91	663.12	535.18	399.06	269.42	158.87	76.33	25.50	3.56
05	845.65	798.24	708-17	586.95	449.29	311.28	188-29	92.77	31.77	4.55
.00	848.83	823.62	750.99	639-65	. 503-10	358.10	222.51	112.60	39.60	5.82
+ .05	845.65	843.56	790.87	692.72	560.37	410.29	262 29	136.56	49.43	7.48
+ .10	836.13	857.59	827.06	745.49	620.88	468.23	308.46	165.58	61.82	9.65
+ .15	820.34	865.26	858.73	797.15	684.25	$532 \cdot 27$	361.98	200.77	77.52	12.53
+ .20	798.41	866-13	884.99	846.70	749.91	602.63	423.92	243.54	97.54	16.38
+ .25	770.51	859.80	904.89	893.00	817.07	679.42	495.43	295.61	$123 \cdot 21$	$21.58 \\ 28.71$
+ .30	736.85	845.93	$917 \cdot 44$	934.67	884.59	$762 \cdot 49$	577.72	359.10	156.38	28.71
+ ·35	697.73	$824 \cdot 21$	921.57	970.10	950.96	851.33	671.98	436.64	199.53	38.62
+ .40	$653 \cdot 49$	794.40	916.22	997.43	$1014 \cdot 18$	944.93	$779 \cdot 26$	531.38	256.18	52.62
+ •45	604.53	756.38	900.29	1014.55	1071.64	1041.52	900.25	$647 \cdot 10$	331.09	72.76
+ .50	551.33	710.11	872.71	1019-07	1120.03	1138.25	1034.91	788.14	431.03	102.38
+ .55	494.46	655.69	$832 \cdot 49$	1008.34	$1155 \cdot 12$	1230.82	1181.85	959.18	565.53	147.00
+ .60	434.60	593.44	778.80	979.51	1171.74	1312.87	1337.35	1164.60	747.90	216.12
+ .65	372.52	523.87	711.02	929.65	1163.57	1375.33	1493.80	1406.95	996.60	326.69
+ .70	$309 \cdot 15$	447.82	628.96	855.90	1123.23	1405.52	$1637 \cdot 17$	1683.53	1336.03	326.69 510.28
+ .75	245.63	366.56	533.05	755.92	$1042 \cdot 49$	1386-41	1743.33	1979-38	1794.82	828-27
+ .80	$183 \cdot 35$	281.92	424.74	628.49	913.07	$1296 \cdot 13$	$1772 \cdot 80$	2252.77	2393.94	1404.91
+ .85	124.08	196.62	307.09	474.80	728.55	$1109 \cdot 20$	1664.80	$2407 \cdot 27$	$3099 \cdot 80$	2495.12
+ •90	70.30	114.82	186.02	300.94	489.11	802.95	1336.07	2244.07	3664.14	4555.85
+ .95	25.84	43.51	73.17	124.05	214.20	381.46	$712 \cdot 23$	1426.14	3147.79	7414.56
+ 1.00	•00	•00	.00	.00	.00	.00	.00	.00	.00	•00
Mean	-0000	-0921	-1845	.2777	•3720	-4678	.5658	-6667	·7713	·8814
Mode	.0000	1813	3484	·4919	·6106	.7087	·7894	·8563	9122	9595
σ	·4082	•4055	-3973	.3832	.9690	-3356	-3001	•2545	1059	·9595 ·1175
					·3629				-1958	
$-\rho^2)/\sqrt{n-1}$	·4082	•4042	3919	·3715	-3429	-3062	.2613	.2082	1470	.0776
$oldsymbol{eta_1}$.0000	0288	.1186	•2798	.5340	.9222	1.5263	2.5318	4.4611	9.6408
eta_2^-	2.2500	2.2929	2.4267	2.6686	3.0535	3.6503	4.5968	6.2238	9.5129	19.3424

TABLE A. Ordinates and Constants of Frequency Curves.

n=8. ρ variate (correlation in population sampled).

		0	·1	•2	•3	·4	.5	.6	.7	•8	.9
	- 1·00 - ·95	.00	.00	.00	-00	.00	.00	-00	.00	-00	.00
	95	8.91	4.76	2.49	1.25	-59	.26	·10	.03	.01	•00
	- •90	$8.91 \\ 33.84$	18.63	9.97	5.12	·59 2·47	1.10	-42	.13	-03	•0
	85	$ \begin{array}{c} 72 \cdot 19 \\ 121 \cdot 50 \\ 179 \cdot 44 \end{array} $	40.95	22.48	11.80	5.82	2.62	1.03	.33	.07	.0
	80	121.50	71.02	40.02	21.48	10.80	4·95 8·22	1.98	.63	.13	.0
	- ·75	179.44	108.11	62.53	34.34	17.61	8.22	3·33 5·19 7·66	1.08	·23	.0
	- ·70 - ·65	243.84	151.45	89.96	50.58	26.48	12.58	5.19	1.71	.38	.0
	65	312.66	200.21	89·96 122·17	70.35	37.63	18.23	7.66	2.57	.57	-0
	60	384.00	253.56	158.99	93.82	51.30	25.35	10.84	3.69	.83	•0
	55	456·10 527·34	310.59	200.22	191.19	67·75 87·25 110·08	34.18	14.89	5.16	1.18	-1
	50	527.34	370.40	$\begin{array}{ c c c c c c }\hline 245.57 \\ 294.69 \\ \hline \end{array}$	152.40	87.25	44.96	19.98	7.06	1.64	1
	- •45	596·26	432.05	294.69	187.72	110.08	58.00	26.31	9.47	2.25	-19
	40	661.50	494.55	347.19	227.13	136.53	73.61	34.12	12.53	3.03	.2
	- ⋅35	721.88	556.91	402.57	270.64	166.89	92.15	43.68	16.38	4.04	-3
	- ·35 - ·30 - ·25 - ·20 - ·15 - ·10 - ·05	$\begin{array}{c} 661.50 \\ 721.88 \\ 776.34 \end{array}$	556·91 618·14 677·22	460.28	152·40 187·72 227·13 270·64 318·19	136·53 166·89 201·43	$92.15 \\ 114.03$	55.33	$16.38 \\ 21.22$	5.34	.4
	25	823-97	677.22	519.66	$369.65 \\ 424.79$	240.45	139.67	69.47	27.27	7.03	-6
	20	864.00	⊢ 733·11	579·99 640·42	424.79	284.17	$169.57 \\ 204.24$	86·55 107·11	34.83	9.19	-8
	15	895.79	784.83	640.42	483.31	332.81	204.24	107.11	44.26	11.98	·8 1·1
	10	918.84	831.37	700.04	544.75	386.52	244.24	131.79	56.00	15.57	1.5
	− ·05	918·84 932·82	831·37 871·77	757.84	608·54 673·93	445.36	290·13 342·52	131·79 161·34	70.61	20.22	2.0
	.00	937.50	905.10	812-68	673.93	509.27	342.52	196.61	88.81	26.24	2.8
	+ ·05 + ·10	932.82	930.49	863.38	740.00	578.06 651.31 728.36	401.96	238.59	88·81 111·47	34.07	3.7
	+ ·10	918.84	947.15	968.63	805.60	651.31	468.99	288.43	139·69 174·87 218·74	44.29	5.0
	+ ·15	895.79	954.37	947.08	869.36	728.36	544.03	347.39	174.87	57.69	6.8
	+ .20	864.00	951.55	977.31	929.66	808·23 889·50 970·27	627.31	416.87	218.74	75.35	9.4
	+ .25	823-97	$938.24 \\ 914.13$	997.87	984.60	889.50	718-81	498.39	273.48	98.76	9·4: 12·9
	+ ·30	776.34	914.13	1007-32	1031-99	970.27	818-08	593.47	341.77	129.97	18.0
	+ ·35	721.88	879-12	1004.28	1069.38	-1048.02	924.04	703.52	426.94	171.88	25.4
	+ ·40	661.50	833·34 777·15	987-47	1094.05	1119·51 1180·66 1226·48	1034·75 1147·03	829·63 972·16	532.99	228.55	36.2
	$+ \cdot 45$	596.26	777.15	955.78	1103.06	1180.66	1147.03	972.16	664·66 827·21	305.76	52.5
	+ .50	527.34	1.711.26	908.44	1093.37	1226.48	1256.06	1130.10	$827 \cdot 21$	411.69	77.4
	+ .55	456.10	636.70	845.06	1061·99 1006·21	1251.03	1354.86	1300-15	1025.98	558.02	116.8
	+ .60	384.00	554.91	765.85	1006-21	$1247 \cdot 49$	1433.64	1475.18	1265.10	761-16	180.5
	+ .65	312.66	467.80	671.79	924.01	1251·03 1247·49 1208·46	1479.32	$\begin{array}{c} 1475.18 \\ 1642.00 \end{array}$	1544.83	1043.60	287.3
	+ .70	943.84	377.81	564.92	814.59	1126.64	1475.21	1778.44	1856-10	1434.02	473.0
	+ .75	179.44	287.97	448.65	679.20	996.09	1401.54	1849-45	2169.84	1962-40	809.4
	$+\cdot 80$	179·44 121·50	287·97 202·00	328.13	522.33	814.61	1401.54 1237.97	1804.24	2418.01	$1962 \cdot 40 \\ 2637 \cdot 69$	1445.3
	+ .85	72.19	124.36	210.79	353.40	587.92	970.50	1578.45	$2464 \cdot 22$	3372.91	2684.7
	+ .90	33.84	60.42	106.94	189.15	336.77	607.69	1116.43	2080-31	3769.68	5016.0
	+ .95	8.91	16.49	30.50	57.02	109.05	216.63	456.02	1045.85	2706.04	7661-1
	+ 1.00	.00	-00	.00	.00	.00	.00	.00	.00	.00	•0
	Mean	.0000	-0932	·1867	-2808	-3759	·4725	•5709	.6718	·7760	-884
	Mode	.0000	1613	•3135	•4505	-5698	.6722	.7594	-8338	-8975	•952
	TI OUE	·3780	•3753	•3673	•3536	-3339	3074	.2733	2299	1746	102
/ 1	$\sigma - \rho^2)/\sqrt{n-1}$										
1 -	$-\rho^2)/\nabla n-1$	·3780	.3742	·3628	•3439	·3175	-2835	.2419	.1928	-1361	•071
	$eta_1 \ eta_2$	·0000 2·3333	0272	.1117	2630	·5000 3·1101	·8586	1.4088	2.3044	3.9581	8·043 17·251
	β_2	2.3333	2.3751	2.5051	2.7393	3.1101	3.6800	4.5751	6.0839	9.0368	17.251

TABLE A—(continued).

n = 9. ρ variate (correlation in population sampled).

	0	·1	.2	•3	•4	.5	.6	.7	.8	.9
- 1.00	-00	-00	-00	-00	-00	-00	-00	-00	.00	-0
95	3.02	1.47	-69	·31	·13	.05	.02	•00	•00	
90	16.03	8.06	3.92	1.82	.79	-31	-10	.03	.00	
85	41.32	21.50	10.78	5.14	2.28	·91 2·00	-31	-08	.01	
80	79.21	42.66	22.04	10.78	4.89	2.00	.70	.19	.03	
75	128.96	71.93	38.30	19.23	8.93	3.72	1.32	.37	.06	•0
70	189.20	109.29	60.01	30.95	14.72	6.27	2.27	.64	.11	•0
65	258.15	154.47	87.49	46.39	22.61	9.85	3.64	1.04	.19	·C
60	333.77	206.90	120.93	65.95	32.98	14.69	5.55	1.62 2.42	.29	.0
55	413.87	265.84	160.41	90.03	46.21	21.08	8.14	2.42	.45	-0
50	496.20	330.31	205.86	118.99	62.73	29.33	11.58	3.52	-66	.0
45	578.53	399.18	257.08	153.13	83.00	39.81	16.09	4.99	-96	•0
40	658.72	471.20	313.71	192.70	107.46	52.93	21.93	6.97	1.37	-0
35	734.71	544.95	375.25	237.86	136.60	69.16	. 29.41	6·97 9·57	$1.37 \\ 1.93$	·i
30	804.64	618.94	441.03	288.69	170.90	89.03	38.90	12.99	2.68	.1
25	866.82	691.61	510.20	345.14	210.81	113.15	50.86	17.45	3.70	•2
20	919.77	761.33	581.74	407.03	256.77	142.16	65.83	23.24	5.06	-3
15	962.26	826.48	654.46	473.98	309-16	176.78	84.46	30.73	6.89	•4
10	993.32	885.42	726.99	545.46	368-27	217.80	107.54	40.41	9.36	.6
05	1012.24	936.57	797.78	620.65	434.27	266.02	135.99	52.88	12.66	.9
.00	1018-59	978.46	865.14	698.50	507.13	322.29	170.89	68.91	17.11	1·3 1·8 2·6
+ .05	1012.24	1009-68	927-20	777.65	586.61	387.41	213.52	89.51	23.11	1.8
+ .10	993.32	1029.05	982.02	856.41	672.14	462.13	265.33	115.94	31.22	2.6
+ .15	962.26	1035.54	1027.55	932.73	762.75	547.03	327.98	149.85	42.24	3.7
+ .20	919.77	1028-41	1061.74	1004-19	856.97	642.43	403.32	193.30	57.27	5.3
+ .25	866.82	1007.20	1082.54	1068.00	952.68	748.20	493.28	248.93	77.88	5·3 7·6 11·1
+ .30	804.64	971.79	1082-34	1121.01	1047.05	863.56	599.83	320.04	106.28	11.1
+ .35	734.71	922.48	1076.68	1159.76	1136.34	986.80	724.70	410.75	145.67	16.4
+ .40	658.72	859.99	1047.01	1180-62	1215.85	1114.86	869.09	526.05	200.65	94.5
+ .45	578.53	785.54	998.27	1179.91	1279.81	1242.93	1032.99	671.79	277.86	$\frac{24.5}{37.2}$
	496.20	700.05	930.34	1154.15	1321.44	1363.83	1214.32	854.38	386.97	57.7
	413.87	700.85 608.22	843.95	1100.46	1333.12	1467.50	1407.47	1079.97	541.89	91.3
				1016.99			1601.27	1352.44		148.5
+ .60	333.77	510.46	740.94	903.63	1306.81	1540.47	1776.21	1660.96	762.41	148.0
+ .65	258.15	410.96	624.47	769.01	1234.97	1565.77	1770.21	1669.36	1075.58	248.8
+ .70	189-20	313.58	499-21	762·81 600·46	11111.97	1523.66	1901-22	2014.01	1515.00	431.6
+ .75	128.96	222.57	371.51	497.14	936.53	1394.27	1930-95	2341.13	2111.97	778-7
+ .80	79.21	142.39	249.41	427.14	715.16	1163.62	1807-20	2554.55	2860-84	1463.9
+ .85	41.32	77.38	142.36	258.83	466.86	835.66	1472.97	2482.96	3612-89	2844.1
+ .90	16.03	31.28	60.49	116.98	228.19	452.62	918-20	1898.32	3818.02	5437.4
+ .95	3.02	6.15	12.51	25.79	54.64	121.08	287.39	755.00	2290.26	7794-3
+ 1.00	.00	-00	.00	.00	.00	.00	.00	.00	.00	.(
Mean	•0000	.0940	-1883	.2832	·3789	·4760	.5747	-6756	.7793	-886
Mode	.0000	.1492	2920	·4238	.5420	6463	-7374	·8168	-8861	.946
σ	•3536	•3510	•3431	·3298	·3107	.2852	.2524	•2109	1586	.09
$-\rho^2)/\sqrt{n-1}$	3536	•3500	3394	.3217	-2670	.2652	-2263	.1803	.1273	.067
$-\rho / V n - 1$.0000	0256	1051	2468	.4677	·7983	1.2989	2.0963	3.5152	6.756
$eta_1^{eta_1}_{eta_2}$	2.4000	2.4403	2.5657	2.7907	3.1456	3.6857	4.5239	5.9099	8.5326	15.313
β_2	2.4000	2.4409	2.0001	2.1901	9.1490	9.0991	4.0798	9.9099	0.0970	19.919

TABLE A. Ordinates and Constants of Frequency Curves.

n=10. ρ variate (correlation in population sampled).

	0	•1	.2	•3	·4	.5	-6	-7	.8	.9
- 1.00	.00	-00	.00	.00	-00	-00	.00	.00	.00	•(
95	1.01	.45	-19	-08	.03	.01	.00	.00	_	_
90	7.50	3.44	1.53	.64	.25	.09	.03	.01	-	
85	23.37	11.15	5.11	2.21	·88 2·19	·31	·09 ·24	.02	•00	-
80	51.03	25·33 47·29	12.00	5.34	2.19	-80	•24	.06	•01	_
75	91.59	47.29	23.18	10.64	4.47	1.67	.52	.12	.02	_
70	145.09	77.94	39.56	18.72	8.09	3.09	.98	23	.03	
- ·65 - ·60	210.66 286.72	117.77	61.92	30.23	13.43	5·25 8·41	1.71 2.81 4.39	.42	.06	
60	286.72	166.85	90.90	45.82	20.95	8.41	2.81	• 70	·10	-(
55	371·15 461·43 554·77 648·27	224.86	127-01	66.13	31.14	12.85	4.39	1.12	.17	-(
- ·50 - ·45	461.43	291.10	170.55	91.82	44.57	18.91	6.63 9.73	1.73	·26	
45	554.77	364.50	221.63	123.45	61.84	27.00	9.73	2.60	•41	•
40	648.27	443.69	280-14	161.56	83·58 110·50	37.60	13.93	3.83	.61	-0
35	739.03	526.99	345.68	206.59	110.50	51.29	$19.56 \\ 27.02$	5.52	.91	-(
30	739·03 824·22 901·22	612.48	417.62	258.84	143.28	68.70	27.02	1.12 1.73 2.60 3.83 5.52 7.85 11.03 15.32 21.09	·61 ·91 1·33 1·92 2·76 3·92	-
- ·25 - ·20	901.22	698.04	495.03	318-47	182.65 229.29 283.82 346.77	90·58 117·77	36.79	11.03	1.92	•
20	$\begin{array}{c} 967.68 \\ 1021.57 \\ 1061.26 \end{array}$	781.38	576.65	385.42	229.29	117.77	49.48	15.32	2.76	
15	1021.57	860.14	660.97	459.39	283.82	151.22	65.82	21.09	3.92	-2
10	1061-26	931.94	746.13	539.76	346.77	191.94	86.73		5.55 7.83 11.02 15.49 21.75	
05	1085.57	994.42	830.01	625.59	418.49	241.06	113.28	39.13	7.83	*4
.00	1093.75	1045.39	910-20	715.49	499·09 588·33	299.70	146.80	52.84	11.02	
+ .05	1085-57	1082.81	984.11	807.66	588.33	369.02	188.84	71.03	15.49	
+ .10	1061-26	1104.96	1048.94	899.79	685.53	450.06	241.23	95.11	21.75	1.
+ .15	1021.57	1110-49	1101.85	989·04 1072·04	789.44	543.65	306.06	126·91 168·83	30·57 43·03 60·70	1.9
+ .20	967-68	1098-49	1139.99	1072.04	898-05	650.25	385.66	168.83	43.03	2.9
$^{+}$ $\cdot 25$ $+$ $\cdot 30$	967-68 901-22 824-22 739-03 648-27 554-77 461-43 371-15	1068-59	1139·99 1160·70 1161·60	$\begin{array}{c} 1144.96 \\ 1203.51 \end{array}$	1008-47	769·73 900·98 1041·59 1187·27	482.55	223.95	60.70	1.5 1.9 2.9 4.4
+ ·30	824.22	1021.01	1161.60	1203.51	1116.77	900.98	599.22	296.23	85.91	6.8 10.8 16.4 26.1
+ .35	739.03	956-66	1140.83	1243.14	1217.79	1041.59	737.88	390.62	122.04	10.8
+ .40	648.27	877.13	1097-21	1259-23	1305.16	1187.27	899.90	513.21	174.12	16.4
+ ·45	554-77	784.74	1030-51	1247·45 1204·17	1371.20	1331·27 1463·74	$1084.96 \\ 1289.77$	671·18 872·31 1123·76	249.62	26.1
+ .50	461.43	682.54	941.67	1204.17	1407.27	1463.74	1289.77	872.31	359.56	42.5
+ .55	371.19	574.23	833.02	1127.09	1404.16	1571.18	1506-11	1123.76	520.21	70.6
+ .60	286·72 210·66 145·09	$464 \cdot 10$ $356 \cdot 82$ $257 \cdot 23$	708-50	1015.97	1305·16 1371·20 1407·27 1404·16 1353·14	$1636 \cdot 20 \\ 1638 \cdot 20$	1718·18 1899·37 2009·23	$1429 \cdot 27$ $1783 \cdot 34$	754·96 1095·94	120·7 213·0
+ .65	210.00	356.82	573.73	873.46	1247.48	1638.20	1899.37	1783.34	1095.94	213.0
+ ·70 + ·75	145.09	257.23	436.02	706.04	1084.83	1555-63	2009.23	2160-46	1582.39	389-4
	$91.59 \\ 51.03$	170.01	304.07	524.71	870.38 620.62	1371·13 1081·22 711·33	1993·01 1789·53	2497·22 2668·18	2247.23	740.7
	51.03	99-20	187.37	345.25	620.62	1081.22	1789.53	2668.18	3067-85	1466-0
+ ·85 + ·90	23.37	47.59	95.03	187.37	366.47	711.33	1358-89	2473.52	3826-37	2979-2
+ .95	7.50	16.01	33.82	71.51	152.84	333.27	746.59	1712-69	3823.56	5828-6 7841-7
$^{+}_{+} \overset{.95}{1.00}$	1.01	$2.27 \\ \cdot 00$	5.07	11.53	27.06	66.90	179.06	538.90	1916-67	1841.
+ 1.00	.00	.00	.00	.00	.00	.00	•00	.00	•00	.(
Mean	-0000	.0946	·1896	.2850	·3813	·4787	.5776	·6785	·7819	-888
Mode	-0000	.1411	.2774	•4050	.5219	6270	.7206	·8036	·8771	.942
	.3333	.3308	3232	·3103	2917	2671	-2355	.1958	.1461	.083
$-\rho^2)/\sqrt{n-1}$.3333	-3300	·3200	•3033	2800	2500	·2133	.1700	-1200	•063
B.	.0000	.0949	-0989	2317	·4374	·7431	1.2002	1.9122	3.1377	5.747
$eta_1 eta_2$	2.4545	·0242 2·4933	2.6137	2.8292	3.1669	3.6774	4.4598	5.7290	8.0534	13.666
12	4.4040	2 1000	2.0191	2 0292	9.1009	9.0114	T. TO 20	0.1790	0.0004	19,000

TABLE A—(continued).

n = 11. ρ variate (correlation in population sampled)

	0	·1	.2	•3	•4	•5	.6	.7	*8	.9
- 1.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	•0
95	.34	.14	.05	.02	.01	.00	.00		_	_
90	3.48	1.46	.59	.22	-08	.02	.01	-00		_
85	13.10	5.73	2.40	.94	34	-11	.03	-01		_
80	32.59	$14.90 \\ 30.82$	6.47	2.63	-97	.31	·08 ·20 ·42	-02		
75	64.48	30.82	13.91	5.84	2.22	.74	-20	.04	-00	
70	110.28	55.10	25.85	11.22	4.40	1.51	.42	.09	.01	
65	170.38	89·00 133·37	43.43	19.52	7.90	2.78	.80 1.41 2.35	.17	.02	_
60	244.13	133.37	67.72	31.55	13.19	4.77	1.41	-30	.04	
55	$329 \cdot 91$	188.52	99.67	48.15	20.80	7.76	2.35	·51 ·84	.06	
50	425.31	254.27	140.04	70.22	31.39	12.08	3.76 ↓	.84	·10	-(
45	$527 \cdot 29$	329.89	$189.38 \\ 247.94$	98.64	45.66	18.15	5·83 8·77	1.34	-17	•(
40	632.37	414.10	247.94	134.25	64.43	26.48	8.77	2.08	.27	-(
35	736.81	$505 \cdot 13$	315.62	177.84	88.59	37.70	12.90	$\frac{3.16}{4.71}$	•43	•
30	836.83	600.74	391.97	230.03	119.07	52.54	18.61	4.71	·65 ·99 1·49 2·21 3·27	•
25	928.73	698.31	476.06	291.27	156.85	71.87	26.38	6·91 10·01	-99	-1
20	1009-12	794.88	566.57	361.75	202.94	96.71	36.86	10.01	1.49	-1
- ·15 - ·10	1074.98	887.29	661.66	441.31	$258 \cdot 26$	$128 \cdot 20$	50.84	14.35	2.21	
<i>- ⋅10</i>	1123.87	$972 \cdot 26$	759.03	$529 \cdot 42$	$323 \cdot 64$	167.66	69.32	20.37	3.27	
05	1153.95	1046.54	855.92	625.00	399.73	216.51	93.53	28.70	$\frac{4.80}{7.04}$	
-00	1164-10	1107.05	$949 \cdot 18$	726.44	486.84	$276 \cdot 25$	124.99	40.16	7.04	
+ .05	1153.95	1150.99	$949 \cdot 18$ $1035 \cdot 30$	831.45	584.86	$348 \cdot 45$	165.55	55.88	10.29	٠
+ .10	1123.87	1176.02	1110.55	937.05	693.05	434.44	217.39	77.34	15.02	
+ .15	1074.98	1180·37 1163·01	1171.11	1039.52	809.89	535.54	283.09	106.54	10.29 15.02 21.93	1.
+ .20	1009.12	1163.01	1213·24 1233·55 1229·19 1198·19	1134.42	932.85	652.40	365.55	$146.17 \\ 199.73$	32.04	1.4 1.4
+ .25	928.73	1123.74	1233.55	1216.69	1058-17	784.94	467.92	199.73	$46.90 \\ 68.83$	2.
+ .30	836-83	$1063 \cdot 29$	$1229 \cdot 19$	1280.75	1180.68	931.80	593.39	271.79	68.83	4.
+ .35	736.81	983.38	1198-19	1320-82	1293.66	$1089 \cdot 82$	744.74	368-23	101.35 149.79 222.30	6· 10· 18· 31· 54·
+ .40	632.37	886.74	1139.72	1331·30 1307·30	1388.77	1253.34	923.68	496.34	149.79	10.
+ .45	527.29	777.05	$1054 \cdot 45$	1307.30	1456.28	1413.46	1129.63	664.75	222.30	18.
+ .50	425.31	658.86	944.78	1245.35	1485.58	1557.29	1358-02	882.89	331.21	31.
+ .55	329.91	537.38	815.03	1144.27	1466.08	1667.54	1597.69	$1159 \cdot 22$	495.09	54.
+ .60	244.13	418·24 307·09	671.55	1006.07	1388-90	1722.77	1827.66	1497.43	741.14	97.
+ .65	170·38 110·28	307.09	815·03 671·55 522·51	836.93	$1249 \cdot 15$	1699-11	2013-49	1888-67	1107.09	180-
+ .70	110.28	209.16	377.49	647.80	1049-15	1574.50	2105.04	2297.63	1638-62	348
+ .75	64.48	128.73	246.69	454.52	801.88	1336.70	2039.33	2640.85	2370.71	97· 180· 348· 698· 1455·
+ .80	32·59 13·10	68.50	139.53	276.64	533.90	995.96	1756.78	2762.99	3261.77	1455
+ .85	13.10	29.01	62.88	134.46	285.17	600.28	1242.87	2443.04	4017-99	1 3094·
+ .90	3.48	8.12	18.74	43.33	101.48	243.28	601.85	1532.03	3796.61	6195
+ .95	.34	.83	2.04	5.11	13.29	36.65	110.61	381.37	1590.43	7823
+ 1.00	.00	.00	•00	.00	.00	.00	.00	.00	.00	
Mean	-0000	.0952	·1906	.2865	-3831	-4808	.5799	-6807	·7839	-89
Mode	.0000	.1352	.2667	•3912	-5066	-6121	.7074	·7930	-8697	.03
σ	·3162	·3138	•3064	•2938	.2758	2519	.2214	.1833	.1360	·93
$-\rho^2)/\sqrt{n-1}$	-3162	·3131	•3036	2878	2656	.2372	-2024	-1613	-1138	•06
β_1	0000	0228	-0932	2179	•4101	.6933	1.1112	1.7516	2.8193	4.95
$oldsymbol{eta}_2$	2.5000	2.5372	2.6527	2.8587	3.1798	3.6616	4.3914	5.5540	7.6188	12.28
P2	2 5000	2 0012	2 0021	2 0001	0 1100	0 0010	TOOLT	0.0040	, 0100	20

TABLE A. Ordinates and Constants of Frequency Curves.

n = 12. ρ variate (correlation in population sampled).

	0	·1	•2	•3	•4	-5	.6	.7	•8	.9
- 1.00	•00	-00	.00	-00	.00	.00	.00	.00	•00	•0
95	·11	.04	.01	.00	.00	.00			_	_
90	1.60	·61	.22	.08	.02	·01	.00	******		
85	7.30	2.93	1.12	•40	·13	$\begin{array}{c} \cdot 04 \\ \cdot 12 \end{array}$.01	_		
80	20.67	8.71	3.47	1.28	•43	·12	.03	.00	_	_
75	45.08	19.94	8.29	3.18	1.10	•33	.08	.01		
70	83.24	38.68	16.77	$6.68 \\ 12.52$	2.38	.73	.18	.03	.00	-
65	136.86	66.80	30.25	12.52	4.62	1.46	.37	.07	•01	
60	206.44	105.87	50.10	21.57	8.24	2.69	.70	•13	·01	_
55	291.24	156.97	77.68	34.81	13.80	4.65	1·25 2·12	.23	.02	
- ⋅50	389.33	220.58	114.20	53.33	21.95	7.66	2.12	·41	.04	
45	497.73	296.51	160.71	78.27	33.48	12.11	3.46	.69	.07	_
40	612.62	383.82	217.93	110.79	49.33	18.52	5.48	1.13	·12	I -
35	729.56	480.84	286-20	152.04	70.53	27.52	8.45	1.80	•20	•(
30	843.79	585.17	365.35	203.01	98·26 133·77	39.90	12.72	2.80	•32	.0
25	950.51	693.78	454.68	264.55	178.37	56.63	18.79	4.30	•51	•(
- ·20 - ·15	1045·09 1123·41	803.05	552.83	$337 \cdot 18$ $421 \cdot 03$	233.38	78·86 107·94	27·27 39·00	6·49 9·69	·80 1·24	.(
	1123.41	908-99	657.79	515.70	299.98	145.45	55.03	14.30	1.24	.(
- ·10 - ·05	1181.98	1007.35	766·83 876·57	620.13	379.19	193.12	76.70	20.91	2.93	.(
00	1218·21 1230·47	1093.82	983.02	732.48	471.64	252.88	105.70	30.32	4.46	.]
	1230.47	1164.30		850.05	577.41	326.69	144.13	43.65	6.79	.2
$^{+}\overset{\cdot 05}{\cdot 10}$	1181.98	1215.06	1081.67 1167.70	969.15	695.83	416.49	194.57	62.45	10.30	
+ ·10	1123.41	1243.05	1236.18	1085.08	825.16	523.93	260.05	88.83	15.62	-8
+ .20	1045.09	1246·03 1222·86	1282.35	1192.20	962.35	650.07	344.11	125.68	23.70	.6
+ .25	950.51	1173.63	1301.99	1284.05	1102.71	794.98	450.63	176.90	35.99	1.4
+ .30	843.79	1099.72	1291.80	1353-61	1239.72	957.09	583.60	247.67	54.78	2.4
+ .35	729.56	1003.12	1249.80	1393.76	1364.85	957.09 1132.50	746.54	344.77	83.60	4.2
+ .40	612.62	890.31	1175.76	1397.87	1467.64	1314.07	941.64	476.75	127.99	7.2
+ .45	497.73	764.16	1071.56	1360-66	1536.09	1490.50	1168-15	653.92	196.63	12.5
+ .50	497·73 389·33	631.64	941.41	1279.15	1557.56	1645.55	1420-17	887.55	303.03	22.4
+ .55	291.24	499.45	791.98	1153.78	1520.32	1757.80	1683.36	1187.72	468.00	41.2
+ .60	206.44	374.33	632.17	989-48	1415.90	1801.62	1930-97	1558-25	722.68	77.9
+ .65	136.86	262.47	472.60	796.46	1242.33	1750.35	2120.06	1986-75	1110-84	152.4
+ .70	83.24	168.90	324.59	590.32	1007.76	$1750.35 \\ 1582.81$	2190.55	2427.07	1685.48	309.5
+ .75	45.08	96.80	198.77	391.03	733.76	1294.33	$2190.55 \\ 2072.67$	2774.00	2484.25	654.5
+ .80	20.67	46.98	103.20	220.15	456.19	911.23	1713.02	2842.00	3444.82	1435.8
+ .85	7.30	17.56	41.32	95.84	220.41	$503 \cdot 13$	1129.13	2396.80	4191-11	3192.5
+ .90	1.60	4.09	10.31	26.08	66.93	176.39	481.91	1361.28	3744.80	6541.1
+ .95	-11	-30	-81	2.25	6.48	19.94	67.87	268-10	1310.98	7752.8
+ 1.00	.00	.00	•00	•00	-00	.00	•00	.00	.00	•(
Mean	-0000	-0956	·1914	-2877	-3847	·4826	·5818	-6826	·7855	-891
Mode .	-0000	·1309	.2586	·3805	4948	·6004	.6968	·0820 ·7843	·8636	•935
	·3015	·1309 ·2991	2919	.2797	2622	2390	2096	.1729	.1276	.071
$-\begin{array}{c}\sigma\\-\rho^2)/\sqrt{n-1}\end{array}$	-3015	·2991 ·2985	2895	.2744	2533	2350	1930			
$-\rho^{-j/\sqrt{n-1}}$	-3019	02985	·2895 ·0880	·2744 ·2054	·2533 ·3854	-6487	1.0220	·1538 1·6118	1085	.057
$eta_1 \ eta_2$	2.5385	2.5742	2.6848	2.8816	3.1870	3.6417	1.0329 4.3231		2.5509	4.332
ρ_2	2.9999	2.9142	2.0949	2.0010	9.1910	9.0414	4.9791	5.3905	7.2330	11.159

TABLE A—(continued).

n = 13. ρ variate (correlation in population sampled).

	0	•1	.2	•3	·4	.5	•6	.7	•8	.9
- 1.00	.00	•00	•00	.00	•00	.00	.00	-00	.00	•00
95	.04	.01	•00	.00	.00		_	_		
90	.73	.26	•09	.03	.01	-00	_			
85	4.04	1.49	.52	.17	.05	.01	-00			_
80	13.03	5.06	1.85	.62	-19	.05	.01			
75	31.34	12.84	4.91	1.72	.54	.14	.03	.00		
70	$62 \cdot 49$	27.00	10.82	3.95	1.28	.35	.08	.01		_
65	109.33	49.86	20.96	7.99	2.69	.76	.17	.03		
60	173.60	83.57	36.87	14.67	5.13	1.51	.35	.05	•00	
- ⋅55	255.68	129.97	60.20	25.03	9.10	2.78	·66 1·19	-11	.01	_
50	354.43	190.29	92.61	40.28	15.26	4.83	1.19	·20	.02	
− ·45	467.24	265.03	135.62	61.76	24.42	8.04	2.05	.35	.03	_
40	590.21	353.79	190.50	90.93	37.56	12.88	3.41	.61	.05	
35	718.39	$455 \cdot 19$	258.08	$129 \cdot 26$	55.84	19.97	5.50	1.01	.09	_
30	846.13	566.86	338.66	178.18	80.64	30.14	8.65	1.66 2.66	·15	_
− ·25	$967 \cdot 43$	685.47	431.85	238.96	113.45	44.38	13.30	2.66	.26	:0
20	1076.39	806.84	536.45	312.55	155.92	63.95	20.07	4.19	.42	.0
<i>- ⋅15</i>	1167.55	$926 \cdot 10$	650.33	399.46	209.73	90.38	29.75	6.51	•69	•0
10	$1236 \cdot 25$	1037.95	770-44	499.56	276.51	$125 \cdot 48$	43.44	9.98	1.11	.0
05	1278.96	1136.93	892.78	611.89	357.72	171.31	62.54	15.15	$\begin{array}{c} 1.77 \\ 2.82 \end{array}$.0
.00	$1293 \cdot 45$	1217.76	1012.46	734.51	454.39	230.21	88.89	22.76	2.82	.0
+ .05	1278.96	$1275 \cdot 64$	1123.90	864.29	566.93	304.67	124.80	33.91	4.45	·1
+ ·10	1236.25	1306.66	1221.04	996.83	694.79	397.09	173.18	50.15	7.03	-1
+ ·15	1167.55	1308.10	1297.68	1126-41	836.11	509.76	237.58	73.66	$\begin{array}{c} 7.03 \\ 11.07 \end{array}$	-29
+ .20	1076-39	1278.72	1347.93	1246.04	987.33	644.20	322.16	107.48	17.43	.50
+ .25	967.43	1218.98	1366.66	1347.70	1142-82	800.73	431.61	155.83	27.47	-8
+ .30	846.13	1131-13	1350.13	1422.76	1294.58	977.68	570.83	224.46	43.35	1.4
+ .35	718.39	$1019 \cdot 23$	1296.48	1462.65	1432.08	1170.41	744.26	321.04	68.58	2.6
+ ·40	$590 \cdot 21$	888-97	1206.29	1459.72	1542.51	$1370 \cdot 21$	954.71	455.44	108.77	4.7
+ .45	$467 \cdot 24$	747.35	1082.96	1408.44	1611-41	$1563 \cdot 16$	1201.40	639.76	172.98	8.6
+ .50	$354 \cdot 43$	$602 \cdot 21$	932.90	1306.67	1624.11	$1729 \cdot 32$	1477.09	887.39	275.75	16·2: 31·2·
+ .55	255.68	461.64	765.35	1157.00	1567.94	$1842 \cdot 84$	1763.97	1210.31	440.01	31.2
+ .60	173.60	333.18	591.84	967.83	1435.55	$1873 \cdot 82$	2029.03	1612.76	700-88	62.0
+ .65	109.33	223.11	$425.11 \\ 277.57$	753.80	1228.80	1793.32	2220·16 2267·17	2078.63	1108.60	127.8
+ .70	$62 \cdot 49$	135.64	277.57	534.99	962.72	$1582 {\cdot} 52$	$2267 \cdot 17$	2549.96	$1724 \cdot 34$	273.5
+ .75	31.34	72.39	159.28	334.58	667.77	$1246 \cdot 49$	2095.16	2898.15	$2589 \cdot 24$	609.9
+ .80	13.03	32.04	75.91	174.24	387.67	$829 \cdot 19$	1661.34	2907.54	3618.62	1408.6
+ .85	4.04	10.58	27.01	67.94	$169 \cdot 42$	419.43	1020.26	2338.80	$4348 \cdot 30$	3276.40
+ .90	.73	2.05	5.65	15.61	43.90	$127 \cdot 20$	383.80	1203.06	3673.97	6869.8
+ .95	·04	·11	-32	-98	3.14	10.79	41.42	187.46	1074.87	7642.5
+ 1.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
Mean	-0000	∙0960	•1921	.2887	-3859	·4841	.5834	-6841	·7868	-891
Mode	.0000	.1274	.2522	•3721	·4853	-5908	.6880	.7772	-8585	•932
σ	.2887	.2863	•2793	.2674	·2504	$\cdot 2279$.1994	.1640	·1206	•067
$(1-\rho^2)/\sqrt{n-1}$.2887	·2858	.2771	-2627	·2425	.2165	1848	.1472	.1039	.054
$(-\rho^{-})/(\sqrt{n}-1)$.0000	.0204	.0833	.1941	·2425 ·3631	.6087	.9636	1.4902	2.3236	3.833
β_1	2.5714	2.6057	2.7117	2.8999	3.1904	3.6201	4.2575	5.2404	6.8937	10.245
$oldsymbol{eta}_2$	2.0714	2.0001	2.1111	2.0999	9.1904	9.0201	4.7919	0.7404	0.0994	10.749

TABLE A. Ordinates and Constants of Frequency Curves.

 ρ variate (correlation in population sampled). n = 14.

	0	.1	.2	.3	·4	-5	•6	.7	•8	.9
- 1:00	-00	-00	•00	•00	.00	-00	.00	•00	.00	.0
95	.01	.00	-00	.00						
90	.34	.11	.03	.01	.00					
85	2.23	.75	.24	.07	.02	-00		<u> </u>		
80	8.18	2.93	.98	.30	.08	.02	.00		_	
75	21.69	8.22	2.90	-93	.26	-06	.01		_	
70	46.70	18.77	6.95	2.33	-69	-17	.03	.00		_
65	86.94	37.04	14.45	5.07	1.55	.40	.08	.01		
60	145.33	$65.68 \\ 107.13$	27.00	9.93	3.17	.84	.17	.02	—	
- ⋅55	$223 \cdot 45$	107.13	46.44	17.91	5.98	1.65	·35	.05	.00	_
50	$321 \cdot 20$	$163 \cdot 42$	74.76	30.28	10.57	3.04	.66	.09	.01	
- ·45	436.63	235.83	113.94	$48.51 \\ 74.28$	17.73	5.31	1.21	.18	.01	
40	566.06	324.64	165.76	74.28	28.46	8.92	2.11	.32	.02	_
35	$704 \cdot 20$	428.97	231.67	109.39	44.02	14.43	3.57	.57	•04	
30	844.64	546.64	312.50	155.68 214.86	65.88	22.66	5.86	-98	.07	_
25	980.21	674.21	408.32	214.86	95.78	34.62	9.38	1.64	.13	_
20	1103.62	806.97	518.19	288.41	135.67	51.63	14.70	2.69	.23	•
15	1207.94	939.26	$640.05 \\ 770.57$	288·41 377·28 481·74	135·67 187·62 253·73	$\begin{array}{c} 75.34 \\ 107.76 \end{array}$	22.59	4.35	-38	•1
10	$1287 \cdot 18$	1064.65	770.57	481.74	253.73	107.76	34.14	6.94	.64	•
05	1336.68	1176.41	905.17	601.04	335.93	151.28	50.77	10.92	1.07	•(
.00	1353.52	1267.92	1038-07	733·22 874·80	435.79 554.12	208.62	74.41	17.01	1.77	•
+ .05	1336.68	1333-18	1162.50	874.80	554.12	282.80	107.57	26.23	2.91	•
+ ·10	1287.18	1367.32	1271.05	1020.68	690.62	376.89	153.45	40.10	4.77	•
+ .15	1207.94	1367.06	1356-11	1164.04	843·38 1008·40	493.74	216.07	60.80	7.81	
+ .20	1103.62	1331.09	1410.48	1296.43	1008.40	635.51	300.25	91.50	12.76	•:
+ .25	980-21	1260.37	1428.09	1408.13	1179.07	802.90	411.53	136.65	20.87	•
+ .30	844.64	1158.20	1404.74	1488.72	1345.78	994·23 1204·16	555.84	202.51	34.16	1.0
+ ·35	704.20	1030-12	1338-84	1528.05	1495.87	1204.16	738-66	297.60	56.01	3.
+ ·40	566.06	883.63	1232.03	1517.46	1613.92	1422.35	963-63	433.15	92.02 151.50	5.
+ •45	436.63 321.20	727·61 571·57	1089-56	1451.35	1682-84	1632.02	1230.08	623.12	249.81	11.
+ .50	321.20	571.57	920.31	1328.79	1685.90	1809-23	1529-42	883.27	411.85	23.
+ .55	223.45	424.77	736-29	1155.02	1609.82	1923.36	1840-21	1227-85	676.71	49.5
+ .60	145.33	295.23	551·59 380·68	$942.42 \\ 710.22$	1448·96 1209·98	1940-22	2122.58	$1661.76 \\ 2165.10$	1101.47	106.
+ .65	86.94	188.79	380.08	110.22	1209.98	1829-15	2314.64		1756.31	240
+ .70	46.70	108·45 53·89	$236 \cdot 30$ $127 \cdot 07$	$482.68 \\ 284.99$	915·58 605·00	1575.19	2336.05	2667.21 3014.47	2686.77	565
+ .75	21.69 8.18	21.76		137.29	327.97	1195·09 751·18	2108·50 1604·06	2961.44	3784.47	1375
+ ·80 + ·85	$\frac{8.18}{2.23}$	6.34	55·58 17·57	47.94	129.65	348.10	917.81	2901.44	4491.55	3347
+ ·85 + ·90	·34	1.02	3.08	9.30	28.67	91.32	304.31	1058.56	3588.66	7183
+ .95	.01	.04	.13	•43	1.52	5.81	25.17	130.49	877.42	7501
$^{+}_{+}1.00$.00	.00	.00	•00	.00	-00	.00	.00	.00	
7 100										
Mean	-0000	-0963	·1927	·2896	⋅3870	4853	.5847	-6854	-7879	-892
Mode	.0000	.1246	-2470	·3652	·4775	.5828	-6808	·7711	.8541	.930
σ	$\cdot 2774$	$\cdot 2751$.2682	.2566	$\cdot 2401$	·2182	·1906	·1564	·1145	-063
$(1 - \rho^2)/\sqrt{n-1}$.2774	.2746	.2663	.2524	.2330	-2080	-1775	-1414	-0998	.052
Mean Mode σ $(1-\rho^2)/\sqrt{n-1}$ β_1 β_2	0000 2.6000	.0194	.0790	.1838	·3430 3·1912	.5729	-9020	1.3838	$2 \cdot 1298$	3.429
β_{\circ}	2.6000	2.6329	2.7346	2.9145	3.1912	3.5979	4.1955	5.1038	6.5961	9.488

n=15.

 ρ variate (correlation in population sampled).

	0	·1	.2	•3	•4	•5	-6	.7	-8	.9
- 1.00	.00	.00	.00	.00	.00	.00	.00	-00	-00	.00
- ⋅95	.00	.00	-00	_					-	
90	.15	-04	.01	.00	.00				_	
- ·95 - ·90 - ·85	1.22	-38	·11	.03	.01	.00	_		_	
80	1.22 5.12 14.96 34.77	$\begin{array}{c} \cdot 38 \\ 1 \cdot 69 \\ 5 \cdot 25 \\ 12 \cdot 99 \\ 27 \cdot 42 \end{array}$.52	.14	.04	-01				
- ·75 - ·70	14.96	5.25	1.70	·50 1·37	.13	.03	-00			
70	34.77	12.99	4.45	1.37	-37	-08	-01		_	
<i>-</i> ⋅65	68·88 121·21	27.42	9·93 19·70 35·70 60·13 95·35	3.21	.90	.21	·04 ·08	•00		
60	121.21	51·42 87·97	19.70	6.69	1.96 3.91	-47	.08	·01 ·02		
55	194·55 289·98	87.97	35.70	12.77	3.91	.97	·18 ·37 ·71 1·30	.02		
- ·50	289.98	139.82	60.13	22.68	7.29	1.90	.37	05 09 07 07 07 07 07 07 07 07	.00	
45	406.50	209.05	95.35	97 OC 1	12.82	3.50	.71	.09	·01 ·01 ·02	
− ·40	540·85 687·70	296.76	$143.69 \\ 207.17$	60·46 92·23 135·50 192·47 265·12 354·99	21.49	6.15	1.30	.17	-01	
35	687.70	402.73	207.17	92.23	34.56	10.39	2.30	.32	.02	
30	839.97	$525 \cdot 16$	287.27	135.50	53.62	16.97	3.95	.57	-04	
- ·25	989.42	660-62	384.61	192.47	80.56	26.90	6.59	1.00	.07	
- ·25 - ·20 - ·15	$989.42 \\ 1127.28$	804·07 949·02 1087·93 1212·67	384·61 498·68 627·56	265.12	80·56 117·61 167·21	41.52	10.72	1.72	·07 ·12	
- ·15	1245.03	949.02	627.56	354.99	167.21	62.56	17.09	2.90	-21	
- ·10 - ·05 ·00	1335·15 1391·74	1087.93	767·80 914·28 1060·32 1197·90 1318·13 1411·83	462·81 588·16 729·17 882·11 1041·17 1198·41 1343·80	231.94 314.29	$92 \cdot 19$	26.73	4.80	·37 ·64 1·11 1·89 3·23 5·49 9·31 15·80	-00
− ·05	1391.74	1212.67	914.28	588.16	314.29	133.08	41.06	7.85	.64	•0
.00	1411.04		1060.32	$729 \cdot 17$	416.38	188.35	62.06	12.66	1.11	-0.
+ ·05 + ·10 + ·15	1411·04 1391·74 1335·15	1315·18 1388·08 1425·42 1423·30 1380·40 1298·27 1181·45	1197.90	882.11	539.56	261.56	92.37	20.21	1.89	.02
+ .10	1335.15	1425.42	1318-13	1041.17	683.89	356.36	135.46	31.94	3.23	•04
+ ·15	$1245.03 \\ 1127.28$	1423.30	1411.83	1198-41	847.52	476.43	195.77	50.00	5.49	·02 ·04 ·08
+ .20	1127.28	1380.40	1470.37	1343.80	1026.06	694.58	278.78	77.60	9.31	·14
+ .25	989·42 839·97 687·70	1298.27	1400.00	1409.14	1211.89	802·05 1007·27 1234·25 1470·94	390-92	119.38	15.80	·18
+ ·30	839.97	1181.45	$1456.06 \\ 1377.39$	1551.88	1393.76	1007.27	539.22	182.03	26.81	-55
+ .35	687.70	1037.21	1377.39	1590.37	1556.64	1234.25	730.36	274.85	45·57 77·56	1.02
+ .40	540.85	0/0.02	$1253.60 \\ 1092.09$	$1571.56 \\ 1489.95 \\ 1346.21$	$1682 \cdot 30$	1470.94	069.00	410.40	77.56	1·02 2·03 4·04 8·33 17·70
+ .45	$406.50 \\ 289.98$	705.73	1092.09	1489.95	1750.86		1254.73	604.65	132.19	4.04
$^{+}_{+}\overset{\cdot 50}{\cdot 55}$	289.98	540.45	004.40	1346.21	1743.50	1885.77	1577.71	875.91	225.46	8.35
+ .55	194.55	389.38	705.68	1148.73	1646.64	1999.91	1912.58	1241.01	384.06	17.70
+ .60	121.21	260.61	$512 \cdot 15$	1148·73 914·23	1457.04	2001.47	2212.18	$1241.01 \\ 1705.89$	650.97	1 38°87
$+\cdot 65$	194·55 121·21 68·88	159.16	339.61	666.66	$1457.04 \\ 1187.01$	1858.75	1254·73 1577·71 1912·58 2212·18 2404·17	2246.82	1090.34	88.7
+ .70	34.77	86.37	200.40	433.86	867.51	1562.05	$+2398 \cdot 10^{-}$	2779.52	$1782 \cdot 27$	211.0
+ .75	14.96	86·37 39·97 14·72 3·79	705·68 512·15 339·61 200·40 100·99	433·86 241·85 107·77	546.09	1885.77 1999.91 2001.47 1858.75 1562.05 1141.54 677.98	2114.05	2779·52 3123·86 3005·21	1090·34 1782·27 2777·70	88·74 211·0 523·0
+ .80	5.12	14.72	$40.55 \\ 11.39$	107.77	276.43	677.98	1543.04	3005.21	3943.34	-1339.09
+ .85	1.22	3.79	11.39	33.71	98.85	287.83	822.59	2199.24	4622-48	3408·02 7483·96
+ .90	.15	-51	1.67	5.52	18.65	65.32	240.39	$2199.24 \\ 927.98$	3492.48	7483-96
+ .95	.00	.01	.05	-19	.73	3.12	15.23	90.51	713.62	7335.23
+ 1.00	.00	·01 ·00	.00	.00	.00	.00	.00	.00	.00	.00
Mean	.0000	·0965	·1932	•2903	-3879	-4864	-5858	-6865	-7888	-8932
Mode	.0000	·1224	.2429	·3595	·4710	.5761	.6745	.7659	.8504	-9283
σ	.2673	.2650	.2583	.2470	.2309	2096	-1828	·1496	.1093	.0602
$n = n^2 \left(\frac{1}{\sqrt{n} - 1} \right)$.2673	.2646	.2566	.2423	.2245	-2004	.1710	·1363	-0962	-0508
B-	-0000	.0184	0751	1745	-3248	•5407	-8472	1.2904	1.9635	3.0956
Mode σ $1 - \rho^2)/\sqrt{n-1}$ β_1 β_2	$0000 \\ 2.6250$	2.6566	2.7542	$ \begin{array}{r} $	·3248 3·1904	3.5759	·8473 4·1375	4.9799	1.9635 6.3347	8.8548
№2	20200	2 0000	2 1012	20200	9 1004	9 9199	¥.1019	T.9199	0.9941	0.0049

TABLE A. Ordinates and Constants of Frequency Curves.

n = 16. ρ variate (correlation in population sampled).

		0	.1	.2	-3	•4	-5	.6	-7	-8	.9
- 1	·00	.00	.00	.00	-00	.00	.00	.00	-00	.00	.0
_	$\cdot 95$	•00									_
-	$\cdot 90$	-07	.02	-00	.00						-
-	$\cdot 85$.67	.19	.05	.01	.00					
_	.80	3.19	•97	.27	.07	.02	.00		_		_
_	$\cdot 75$	10.28	3.34	1.00	.27	.06	.01	•00			
-	.70	25.80	8.97	2.84	·80	.19	.04	-01		_	
-	·65	54.39	20.23	6.80	2.02	.51	.11	02	—		-
_	$\cdot 60$	100.76	40.12	14.33	4.50	1.20	.26	.04	•00		
_	.55	168.85	72.01	27.35	9.08	2.55	.57	.09	.01		
-	·50	260.97	119.24	48.20	16.93	5.01	1.18	·20	.02	_	-
-	·45	377.23	184.72	79.55	29.61	9.24	2.29	•41	.05		
	$\cdot 40$	515.11	270.42	$124 \cdot 16$	49.05	16.17	4.23	·80	.09	.00	
-	·35	669-43	376.88	184.68	77.51	27.05	7.46	1.48	·18	.01	_
-	.30	832.67	502.91	263.24	117.56	43.50	12.67	2.65	•34	.02	
-	.25	995.53	645.25	361.12	171.85	67.54	20.84	4.61	.61	.03	
	-20	1147.76	798.62	478.36	242.94	101.63	33.28	7.80	1.10	.06	<u> </u>
_	·15	$1279 \cdot 16$	955.82	613.35	332.95	148.55	51.78	12.89	1.93	·12	_
_	.10	1380.50	1108-16	762.59	443.20	211.35	78.63	20.86	3.32	.21	
_	.05	1444.45	1246.06	920.53	573.72	293.10	116.70	33.10	5.62	.38	_
	.00	1466.31	1359-84	1079.59	722.83	396.57	169·51 241·10	51.59	9.40	.69	•(
+	.05	1444.45	1440.62	1230-45	886-63	523.71	241.10	79.06	15.52	1.23	•
+	.10	1380.50	1481-25	1362-60	1058-69	675.07	335.89	119.19	25.36	2.18	-(
+	.15	$1279 \cdot 16$	1477.14	1465.15	1229.86	848.97	458.26	176.81	40.99	3.84	-(
+	20	1147.76	1426.97	1527.93	1388-46	1040-70	611.89	258.02	65.60	6.77	•(
+	.25	995.53	1333.04	1542.70	1520.86	1241.67	798.66	370-16	103.97	11.92	•]
+	.30	832.67	1201.32	1504.45	1612.58	1438.86	1017-24	521.43	163.10	20.98	•:
+	.35	669.43	1041.01	1412.54	1649.98	1614.73	1261.08	719.87	253.03	36.96	.(
+	.40	515.11	863.74	1271.49	1622.42	1748.02	1516.38	971.31	387.62	65.16	1·3 2·
+	•45	377.23	682.33	1091-14	1524.73	1815-85	1760-11	$1275.84 \\ 1622.38$	584.87	114·98 202·85	5.9
+	·50 ·55	260.97	509.39	886-11	1359.54	1797-36	1959-32		865.86	357.03	13.2
+	.60	168·85 100·76	355·79 229·32	674.19	1138-85	1678.96	2072-94	1981·54 2298·30	1250·36 1745·69	624.23	30.6
	·65	54.39	133.74	474.01	884.08	1460.52	2058·14 1882·87	2489.31	2324.29	1075.93	73.5
++	.70	25.80	68.58	302·02 169·43	623·79 388·74	1160.78	1544.13	2454.04	2887.46	1802.95	184-4
+	.75	10.28	29.55	80.00	204.59	819·36 491·36	1086.96	2112.96	3227.08	2862.73	481.9
+	.80	3.19	9.92	29.49	84.33	232.25	609.99	1479.67	3040.08	4096.07	1299
+	-85	.67	2.25	7.36	23.62	75.13	237.24	734.93	2121.99	4742.40	3458-6
+	.90	.07	.25	.90	3.27	12.09	46.58	189.31	810.97	3388-31	7772-8
+	.95	-00	-00	.02	.08	•35	1.67	9.19	62.58	578.60	7150-9
	1.00	.00	.00	.00	.00	-00	•00	.00	.00	•00	•(
7.7.			0000	1005	2000	8000	4070		6077	7006	.000
	ean	.0000	·0968	·1937	•2909	-3888	•4873	•5868	-6875	.7896	-893
	ode -	•0000	1206	•2394	•3548	•4655	•5705	·6692	.7614	·8471	926
	7	.2582	•2560	•2495	·2384	•2227	•2020	·1759	•1437	·1047	.057
$1 - \rho^2$	$\sqrt[n]{n-1}$	•2582	•2556	.2479	•2350	·2169	·1936	·1652	·1310	.0930	.049
) (3	1	·0000	.0176	.0716	•1660	•3083	.5117	.7983	1.2080	1.8195	2.818
(3	S ₂	2.6471	2.6775	2.7712	2.9363	3.1883	3.5545	4.0836	4.8677	6.1046	8.323

H. E. Soper, A. W. Young, B. M. Cave, A. Lee, K. Pearson 393

TABLE A—(continued).

n = 17. ρ variate (correlation in population sampled).

	0	·1	.2	•3	•4	.5	-6	.7	-8	•9
- 1.00	•00	•00	.00	-00	•00	-00	.00	.00	•00	•00
95	•00	•00		_	_					
90	.03	-01	.00							
85	.37	·10	.02	.01	.00		_			
80	1.98	.56	.14	.03	.01	.00				_
75	7.05	$2 \cdot 12$.58	.14	.03	.01				-
70	19.10	6.17	1.81	.47	·10	.02	.00			***************************************
65	42.84	14.88	4.64	1.27	.29	.05	.01			_
60	83.54	31.23	10.39	3.02	.74	.14	.02	_	_	
55	146.13	58.78	20.89	6.43	1.66	.34	.05	.00	_	
50	234.22	101.41	38.54	12.61	3.43	.74	.11	.01		
- ·45	$349 \cdot 12$	162.78	66.18	23.04	6.64	1.50	.24	.02		
- ·40	489.26	245.73	106.99	39.68	12.14	2.90	•49	.05	_	
- ·35	$649 \cdot 87$	351.73	164.17	64.96	$21 \cdot 11$	5.33	-95	-10	.00	
- ⋅30	823.17	480.28	240.55	101.72	35.19	9.43	1.78	•20	.01	
25	998.93	628.51	338.14	153.03	56.47	16.10	3.22	.37	•02	_
− ·20	1165.43	791.03	457.61	222.01	87.57	26.61	5.66	.70	•03	
15	1310.64	960.04	597.82	311.43	131.60	42.74	9.69	1.28	•06	
<i>- ⋅10</i>	1423.48	1125.69	755.35	423.25	192.06	66.87	16.23	2.28	.12	_
− ·05	1495.05	1276.87	924.29	558.10	272.60	102.06	26.61	4.01	•23	
.00	1519.58	1402.18	1096-21	714.59	376.67	152-13	42.77	6.95	•43	•0
+ .05	1495.05	1491.07	1260.42	888.75	506.94	221.67	67.49	11.89	•79	•0
+ .10	1423.48	1535.05	1404.71	1073.56	664.54	315.72	104.60	20.08	1.46	•0
+ .15	1310.64	1528.81	1516.33	1258.69	848.09	439.58	$159 \cdot 26$	33.51	2.68	-0
+ .20	1165.43	1471.07	1583.40	1430.69	1052.66	597.82	238.16	55.31	4.91	•0
+ .25	998.93	1365.00	1596.49	1573.74	1268.71	$793 \cdot 12$	349.55	90.30	8.97	.0
+ ·30	823.17	$1218 \cdot 19$	1550-21	1671.08	1481.38	1024.51	502.86	145.74	16.37	.1
+ .35	649.87	1041.98	1444.64	1707.15	1670.43	1284.98	707-60	232.31	29-89	•3
$+$ $\cdot 40$	489.26	850.26	$1286 \cdot 11$	1670.36	1811-36	1558.97	970.98	365.12	54.60	.8
+ .45	349.12	657.90	1087.22	1556.06	$1878 \cdot 12$	1820.03	1293.78	564.21	99.74	1.8
+ .50	234.22	478.81	865.73	$1369 \cdot 26$	1847.84	$2030 \cdot 22$	1663.80	853-62	182.02	4.2
+ .55	146.13	324.22	$642 \cdot 35$	1125.98	$1707 \cdot 27$	2142.80	$2047 \cdot 42$	1256.38	331.00	9.9
+ .60	83.54	201.23	437.52	852.59	1460.03	2110-68	2381.31	1781.59	596.99	24.0
+ .65	42.84	112.08	267.85	582.09	1132.06	$1902 \cdot 13$	2570.49	2397.95	1058.86	60.8
+ .70	19.10	54.30	142.84	347.36	771.78	$1902 \cdot 13$ $1522 \cdot 30$	2504.51	2991.52	1818-97	160-7
+ .75	7.05	21.79	63.21	172.59	440.91	$1032 \cdot 18$	2106.17	3324.73	2942.45	442.9
+ .80	1.98	6.67	21.38	65.80	194.61	547.33	1415.08	3067-10	4243.31	1257.0
+ .85	·37	1.34	4.74	16.51	56.94	195.02	654.85	2042-00	4852.41	3500.6
+ .90	.03	·12	.49	1.93	7.82	33.12	148.67	706.81	3278.45	8051.4
+ .95	.00	.00	.01	.03	.17	-89	5.53	43.15	467.87	6952.6
+ 1.00	.00	.00	.00	•00	.00	-00	•00	.00	.00	•0
Mean	-0000	-0970	·1941	2915	-3895	-4881	.5876	-6883	•7903	-894
Mode	-0000	1190	•1941	·3507	·3895 ·4608	·4881 ·5656	-6646	.7575	-8442	925
σ		2479	2304	.2307			1696	1384	1006	.055
	•2500				•2153	.1951	1		-0900	.047
$1-\rho^2)/\sqrt{n-1}$	•2500	•2475	•2400	•2275	•2100	.1875	1600	1.1275	1.6940	2.583
β_1	0000	0168	0683	.1582	•2934	•4855	.7543	1.1348	5.9012	7.874
eta_2^*	2.6667	2.6960	2.7861	2.9446	3.1855	3.5340	4.0337	4.7661	9.9012	1.014

TABLE A. Ordinates and Constants of Frequency Curves.

n = 18. ρ variate (correlation in population sampled).

	0	•1	.2	•3	•4	.5	·6	.7	.8	•9
- 1.00	.00	•00	.00	•00	.00	.00	.00	.00	-00	-00
95	.00			_	_					_
90	.01	.00	.00	-		-	_	_		
85	20	.05	.01	.00	—				_	
- ·80 - ·75	1.23	.32	.08	.02	.00		_	_	_	_
	4·82 14·10	1.34	.34	.08	.01	.00			_	
	14.10	4.24	1.15	.27	.05	-01			_	_
	33.66 69.10	10.93	3.16	$^{\cdot 80}_{2 \cdot 02}$.17	.03		_	_	
- ·60 - ·55	126.18	24.24	7.52		.45	.08	.01			
- ·50 - ·50	209.71	47.87	15.93	4.55	$\frac{1.08}{2.35}$.20	·03 ·06	_		_
- ·45	322.33	86·05 143·10	30.73	$9.36 \\ 17.88$	2·35 4·76	•46	.14	.01	_	_
- ·40 - ·40	463.60	222.77	54.93	32.03	9.09	-98	.30	.03	_	
- ·40 - ·35	629.39	327.48	91.98	$\frac{32.03}{54.32}$	16.44	1.98	·61	.06		_
- ·30	811.85	327·48 457·58	$145.60 \\ 219.30$	87.80	28.40	$\frac{3.80}{7.01}$	1.19	-11		_
25	999.97	610.75	$\frac{219.30}{315.87}$	135.94	47·10	$\frac{7.01}{12.40}$	2.24	•23	-01	
- ·25 - ·20	1180.56	781.66	436.73	202.39	75.28	$\frac{12.40}{21.22}$	4.09	.44	.02	
15	1339.70	961.98	581.30	290.60	116.32	35.20	7.27	-84	.03	_
- ·10	1464.32	1140.77	746.40	403.25	174.11	56·74	12.60	1.57	.07	
05	1543.76	1305.33	925.87	541.62	252.92	89.04	21.34	2.86	.14	
00	1571.04	1442.41	1110.44	704.76	356.91	136.21	35.38	5.13	.27	
+ .05	1543.76	1539.62	1288.06	888.76	489.54	203.29	57.47	9.09	.51	.0
+ ·10	1464.32	1587.04	1444.69	1086.05	652.63	296.06	01.57	15.86	.98	.0
+ ·15	1339.70	1578.54	1565.59	1285.14	845.22	420.66	91.57 143.10	27.33	1.87	·0
+ .20	1180.56	1512.94	1637.00	1470.71	1062.25	582·69	219.31	46.52	3.55	.0
+ .25	999.97	1394.42	1648.23	1624.60	1293.27	785.76	329.31	78.24	6.73	·0
+ .30	811.85	1232.37	1593.57	1727.60	1521.54	1029.39	483.81	129.92	12.75	·ĭ
+ .35	629.39	1040.48	1473.96	1762.12	1723.97	1306.25	693.90	212.79	24.12	.2
+ .40	463.60	835.02	1297.82	1715.64	1872.57	1598.97	968.37	343.11	45.64	•5
+ .45	322.33	632.84	1080.74	1584.29	1937.95	1877.54	1308.88	543.00	86.32	1.2
+ .50	209.71	449.00	843.82	1375.79	1895.25	2098.72	1702.25	839.57	162.94	3.0
+ .55	126.18	294.75	610.56	1110.63	1731.96	2209.80	2110.51	1259.46	306.15	7.3
+ .60	69.10	176.17	402.90	820-29	1456.10	2159.46	2461.52	1813-97	569.59	18.8
+ .65	33.66	93.71	236.98	541.90	1101.45	1917.07	2648.10	2468.15	1039.63	50.1
+ .70	14.10	42.89	120.15	309.66	725.26	1497.24	2550.03	3092.09	1830-85	139.7
+ .75	4.82	16.03	49.82	145.26	394.72	977.87	2094.49	3417.34	3017.33	406.1
+ .80	1.23	4.48	15.47	51.23	162.68	489.96	1350.14	3087.13	4385.61	1213-4
+ .85	-20	.79	3.05	11.51	43.06	159.94	582.14	1960-44	4953.44	3534.9
+ .90	·01	.05	•26	1.14	5.05	23.50	116.49	614.60	3164.79	8320-6
+ .95	.00	.00	-00	.01	.08	•47	3.32	29.69	377.45	6744.3
+ 1.00	.00	.00	.00	.00	•00	.00	.00	.00	•00	•0
Mean	-0000	.0071	.1044	•2920	·3901	4000	.5884	-6890	·7909	-894
Mean Mode	.0000	·0971 ·1176	·1944 ·2338	·2920 ·3472	·3901 ·4567	·4888	·5884 ·6605	·7540	·8417	923
	•2425	·1176 ·2405	·2338 ·2342	2237		-5613	.1641	1337	0970	•053
σ					•2086	·1889				046
$1-\rho^2)/\sqrt{n-1}$	•2425	•2401	•2328	-2207	•2037	1819	·1552	1.0605	-0873	
$eta_1 eta_2$.0000	.0161	.0653	.1511	•2797	•4617	.7147	1.0695	1.5839	2.383
β_2	2.6842	2.7124	2.7992	2.9515	3.1823	3.5144	3.9873	4.6737	5.7207	7.4908

TABLE A—(continued).

n = 19.

 ρ variate (correlation in population sampled).

	0	•1	•2	•3	.4	•5	.6	-7	.8	•9
- 1.00	.00	.00	.00	.00	•00	.00	.00	.00	.00	•00
- ·95 - ·90	.00									_
90	.01	-00		_		_			_	_
85	·11	.02	-00	.00						_
80	.76	⋅18	.04	.01	.00					_
75	3.29	.85	•20	.04	.01			_		
70	10.39	2.90	.73	·16	.03	-00		_	_	
65	26.39	8.00	2.15	.50	·10	.01	-			_
60	57.03	18.78	5.43	$1.35 \\ 3.21$.27	.04	•00			
55	108·73 187·37	38·90 72·86	12.11	3.21	.70	·12 ·28	·01 ·03		_	
50	187.37	72.86	24.46	6.94	1.60	.28	.03	.00		
45	296.98	125.54	45.49	13.84	3.41	.64	.08	·01 ·01 ·03		_
40	438.38	$201.54 \\ 304.27$	78.91	25.79	6.79	1.35	.18	.01	_	
35	608.28	304.27	78.91 128.86 199.51	45.32	12.77	2.71	·08 ·18 ·39 ·79	.03	_	
30	799.03	435.05	199.51	75.63	22.88	5.19	.79	.07		
25	998.93 1193.40	592-25 770-79	294·45 415·93	120.51	39.21	9.54	$1.56 \\ 2.96$	·14 ·28	.00	_
20	1193.40	770.79	415.93	184.13	64.59	16.89	2.96	·28	.01	_
15	1366.56	961.93	564.06 736.02 925.52 1122.52	270.60	102.59	28.93	5.45	.56 1.07 2.03 3.78	.02	_
10	$1503 \cdot 20 \\ 1590 \cdot 74$	1153.66	736.02	383.39	157.51	48.04	9.76	1.07	.04	_
05	1590.74	1331.66	925.52	524.53	234.18	77.52	17.08	2.03	.08	
.00	l 1620⋅88 l	1480.70	1122.52	693.62	337.49	121.70	$29 \cdot 20$	3.78	·16	
+ .05	1590·74 1503·20	1586.45	1313.57	886-92	471.76	186-07	48.84	6.93	.33	
+ .10	1503.20	$1586 \cdot 45 \\ 1637 \cdot 37$	1313·57 1482·73	1096.42	639.60	277.05	80·00 128·32	12.50	.66	.00
+ ·15	1366.56	-1626.51	□1613-08	1309.42	840.60	401.73	128.32	$22 \cdot 24$	·66 1·30 2·57	.01
+ .20	1193.40	1552·77 1421·51 1244·13	1688·90 1698·12 1634·75	1508.71 1673.64	1069.70	566.77	201·53 309·60	39.05	2.57	.01
+ .25	998-93	1421.51	$1698 \cdot 12$	1673.64	1315.58	776.85	309.60	67.65 115.58	5.04 9.90 19.43	.03
+ .30	799.03	1244.13	1634.75	1782.33	1559.56	$1032 \cdot 16$	464.51	115.58	9.90	.06
+ .35	608.28	$1036 \cdot 82$	1500·76 1306·92	1815·10 1758·51 1609·70	1775.54	$1325 \cdot 12$	679·05 963·78 1321·43	$194.50 \\ 321.76$	19.43	.15
+ .40	438.38	818.35	1306.92	1758.51	1931-83	1636-61	963.78	321.76	38.08	-35
+ .45	296.98	$607 \cdot 48$	1079.00	1609.70	1995.55	1932.88	1321.43	521.51	74.55	2·12 5·48
+ .50	187.37	420.16	820.76	1379·49 1093·22 787·57	1939.87 1753.38	2165.06	1738-01	824.05	145.56	2.12
+ .55	108.73	267.40	$579 \cdot 15$	1093.22	1753.38	$2274 \cdot 19$	2171.08	1259.96	282·59 542·34	5.48
+ .60	57.03	153.91	370.23	787.57	$1449 \cdot 19$	2204.82	$2539 \cdot 21$	1843-14	542.34	14.73
+ ·65 + ·70	26.39	78.18	209.24	503·43 275·47	$1069 \cdot 45$	2274·19 2204·82 1928·16	1738·01 2171·08 2539·21 2722·44	$2535 \cdot 20$	1018-65	41.32 121.27
+ .70	10.39	33.81	100.85	275.47	680.14	1469.57	2591.04	3189-48	1839-04	121.2
+ .75	3.29	420·16 267·40 153·91 78·18 33·81 11·76	820·76 579·15 370·23 209·24 100·85 39·19 11·17	122.01	352.63	924.51	2078.60	3505.34	3087.80	371.57
+ .80	.76	3.00	11.17	39.80	135.72	437.70	1285.55	3100.93	4523.43	1169.00
+ .85	·11	-47	1.90	8.01	32.49	130.90	516.43	1878-29	$5046 \cdot 26$	3562.39
+ .90	.01	.02	·14	.67	3.25	16.63	91.09	533.33	3048.86	8581.50
+ .95	.00	00	-00	.01	.04	.25	1.99	20.38	303.89	6528.96
+ 1.00	.00	.00	-00	.00	.00	.00	.00	•00	.00	•00
Mean	.0000	.0973	·1947	·2924	·3906	•4894	·5890	-6896	·7915	-8948
Mode	.0000	·1165	.2316	.3442	.4531	.5576	.6569	.7509	8394	-9224
σ	•2357	.2337	2275	.2172	•2025	·1832	.1590	1294	.0937	.0511
$1-\rho^2)/\sqrt{n-1}$	2357	•2333	.2263	·2145	·1980	.1768	1508	.1202	0849	.0448
1 - p / v n - 1	0000	.0154	0626	1446	2672	•4400	-6789	1.0110	1.4866	2.2105
$eta_1 eta_2$	2.7000	$0154 \\ 2.7272$	2.8109	2.9573	3.1787	3.4958	3.9447	4.5897	5.5597	7.1586
μ_2	2.1000	2.1212	4.0109	4.9013	9.1191	9.4999	9.9447	4.0991	9.9994	1.1990

TABLE A. Ordinates and Constants of Frequency Curves.

n = 20.

 ρ variate (correlation in population sampled).

	0	•1	.2	•3	.4	.5	.6	.7	.8	.9
- 1.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
− ·95								_		_
- ·90	•00	-00				_			· —	_
85	-06	.01	.00					l —	_	
80	.47	·10	.02	-00				1 —	1 —	
75	2.24	.53	.11	.02	•00				_	_
- ·70	7.64	1.99	.46	.10	.02	.00		_	_	
− ·65	20.65	5.85	1.46	-31	.05	.01		<u> </u>		_
60	46.98	14.53	3.91	•90	.17	.02	:00	_		_
55	93.51	31.56	9.20	2.26	.45	-07	.01	<u>-</u>	_	<u> </u>
− ·50	167-11	61.57	19.43	5.14	1.09	.17	.02			-
45	273.13	109.93	37.61	10.70	2.44	.42	.05	-00	_	_
40	413.76	181.99	67.57	20.74	5.06	.92	.11	.01		·
− ·35	586.81	282.18	113.83	37.75	9.91	1.93	.25	-02	_	
30	784.96	412.86	181-17	65.03	18.39	3.84	.53	•04.	_	_
25	996.07	573.27	273.98	106.64	32.57	7.32	1.08	-08		-
20	$1204 \cdot 17$	758.68	395.39	167.20	55.31	13.42	2.13	·18	-00	
− ·15	1391.40	960.11	546.33	251.51	90.32	23.73	4.07	.37	-01	_
10	1540.28	1164.55	724.46	363.84	142.24	40.60	7.55	.73	.02	_
05	$1636 \cdot 14$	1356.03	923.47	507.05	216.43	67.37	13.64	1.44	.05	_
$\cdot 00$	$1669 \cdot 24$	1517.23	1132.65	681.41	318.54	108.54	24.06	2.78	.10	
$+\cdot 05$	1636.14	1631.71	1337.14	883.46	453.78	169.98	41.43	5.27	.21	_
+ ·10	1540.28	1686-21	1518.98	1104.85	625.68	258.79	69.76	9.84	.44	
+ ·15	1391.40	1672.86	1658-98	1331-72	$834.48 \\ 1075.23$	382.94	114.86	18.07	.90	
+ .20	1204.17	1590.74	$1739 \cdot 26$	1544.87	1075.23	550.27	184.86	32.72	1.85	
+ .25	996.07	1446.47	1746.32	1720-99	1335.82	766.63	290.54	58.39	3.77	
+ .30	784.96	1253.70	1673.93	1835-44	1595.60	1033.05	445.18	102.63	7.68	
$+\cdot 35$	586.81	1031.28	$1525 \cdot 25$	1866.25	1825.32	1341.82	663.32	177.47	15.62	
$+ \cdot 40$	413.76	800.54	1313.68	$1799 \cdot 15$	1989-34	1672.08	957.45	301.19	31.71	
$+\cdot 45$	273.13	582.06	1061.54	1632.51	2051-11	1986.22	1331.67	499.96	64.26	
$+\cdot 50$	167.11	392.47	796.88	1380-68	1981-92	2229.43	1771.29	807.35	129.80	1.
$+\cdot 55$	93.51	242.15	548.35	$1074 \cdot 11$	1771.83	2336.21 2247.04	2229.32	1258-17	260.36	4.
+ .60	46.98	134.22	339.60	754.79	1439.68	2247.04	2614.58	1869-39	515.46	11.
$+\cdot 65$	20.65	65.11	184.41	466.85	1036.50	1935.78	2793.79	2599.35	996.30	33.
+ .70	7.64	26.60	84.50	244.62	636-66	1439.79	2627.94	3283.99	1843.93	105
+ .75	2.24	8.62	30.77	102.29	314.46	872.48	2059-10	3589.11	3154.22	339.
+ .80	.47	2.00	8.05	30.87	113.01	390.31	1221.83	3109.18	$4657 \cdot 18$	1124.
+ .85	-06	-28	1.25	5.56	24.47	106.93	457.32	1796.33	5131.57	3583
+ .90	•00	•00	-08	-39	2.09	11.76	$71 \cdot 10$	461.97	2931.90	8834
+ .95	_		.00	•00	.02	.13	1.19	13.97	244.23	6309
+ 1.00	•00	.00	-00	.00	-00	.00	-00	•00	.00	•(
Mag.:	0000	00=1	7070	9000	0077	4000	F000		#010	
Mean	.0000	.0974	·1950	•2928	-3911	•4900	•5896	·6902	•7919	-895
Mode	.0000	.1154	•2297	.3415	•4500	.5543	.6538	•7482	.8374	.921
σ /	•2294	.2274	·2214	·2113	.1969	·1780	.1543	·1254	.0907	.049
$-\rho^2)/\sqrt{n-1}$	-2294	$\cdot 2271$.2202	2088	1927	.1721	.1468	·1170	⋅0826	.043
eta_1	.0000	.0148	.0600	1386	.2557	•4202	$\cdot 6464$	9584	1.4001	2.060
eta_2^*	2.7143	2.7406	2.8213	2.9623	3.1749	3.4783	3.9055	4.5131	5.4154	6.868

TABLE A—(continued).

n=21. p variate (correlation in population sampled)

	0	·1	•2	•3	•4	.5	.6	-7	·8	.9
- 1.00	.00	-00	.00	.00	•00	.00	.00	.00	.00	.0
95	.00	—		_		_				
90	.00	.00		_	_	_			-	_
85	.03	.01	.00			_			_	
80	-29	.06	.01	.00			_	_	_	
75	1.52	·34 1·36	$.07 \\ .29$.01	.00				_	
70	5·61 16·13	1.30	-29	·05 ·19	.01					
- ·65 - ·60	38.65	$4.27 \\ 11.22$	$^{\cdot 99}_{2 \cdot 82}$.60	·03 ·10	·00 ·01				
- ·55	80.30	25.56	6.97	1.59	•29	.04	-00			
- ·50 - ·50	148.80	51·95	15.41	3.79	.74	.11	.00			
- ·30 - ·45	250.78	96.10	21.04	8.26	1.74	.27	.03			
- ·40	389.90	164.07	$31.04 \\ 57.77$	16.64	1·74 3·77	.69	.07	-00		_
35	565.17	961.97	100.39	31.39	$\frac{3.77}{7.67}$	·63 1·37 2·84	.16	.01		
30	769.89	$261 \cdot 27$ $391 \cdot 17$	164.25	55.82	14.76	9.94	·16 ·35	.02		
25	001.50	553.98	254.51	94.20	27.02	5.61	.75	.05		
20	991·59 1213·06	745.68	275.96	151.59	47.28	10.64	1.53	-11	.00	
15	1414.38	056.73	$375 \cdot 26 \\ 528 \cdot 29$	233.39	79.38	19.43	$1.53 \\ 3.04$.24	.01	
10	1575.70	956·73 1173·63	711.91	344.73	128.23	34.26	5.83	.50	.01	
05	1680-10	1378.59	919.93	489.35	199.70	58.45	5·83 10·88	·50 1·02	.03	_
.00	1716.23	1552.13	1141.00	668.33	300.17	96.65	19.79	2.04	-06	
+ .05	1716·23 1680·10	1675.52	1358-90	878.59	435.79	155.05	35.09	2·04 4·01 7·73	·14	
+ .10	1575.70	1733-68	1553.58	1111.53	611.07	155·05 241·33	$35.09 \\ 60.74$	7.73	-29	
+ .15	1414.38	1717.73	1703.39	1352-20	827.05	364.44	102.64	14.66	-63	
+ .20	1213.06	1626.97	1788-20	1579.31	1079.03	533.39	$\begin{array}{c} 102.64 \\ 169.29 \\ 272.20 \end{array}$	27.37	1.33	
+ .25	991.59	1469.48	1788·20 1792·97 1711·25	1766-81	1354-17	755.33	272.20	50.31	1·33 2·82	-(
+ .30	769-89	1469·48 1261·29	1711.25	1887.05	1629.83	1032.26	425.95	90.99	5.95	>(
+ .35	565.17	1024.10	1547.62	1915.72	1873.44	1356.52	646.90	161.66	12.53	.(
+ .40	389.90	781.85	1547.62 1318.32	1915·72 1837·75 1652·96	2045.23	1705.56 2037.72	646.90 949.63 1339.82	281.48	5.95 12.53 26.36	•(
+ .45	250.78	556.80	1049.40	1652-96	2104.80	2037.72	1339-82	281·48 478·52	55.31	
+ .50	148.80	366.00	772.43	1379.62 1053.63	2021.59	2291.99	1802.29	789-71	115.56	1.0
+ .55	148·80 80·30	$366.00 \\ 218.92$	772·43 518·34	1053.63	2021.59 1787.57	2396.03	2285.43	1254.35	239.50	3.
+ .60	38.65	116.85	311.00	722-19	1427.92	2286.37	2687.85	1892.96	489.12	8.
+ .65	16.13	54.13	162.26	432.22	1002.93	1940-29	2862.39	2660.83	972.87	3.6 8.9 27.5
+ .70	5.61	20.90	70.68	216.87	595.00	1408.33	2661.07	3375.86	1845.86	90.
+ .75	1.52	6.31	24.12	85.61	279.97	822.04	2036.49	3668-97	3216.90	90·309·
+ .80	5·61 1·52 ·29	1.34	5.79	23.90	93.95	1408·33 822·04 347·48	1159-40	3112.44	4787.20	1079
+ .85	.03	.16	-80	3.86	18-41	87.22	404.32	1715.20	5209.97	3599
+ .90	.00	.00	.04	.23	1.34	8.29	55.40	399.51	2814.91	9080
+ .95	_	_	-00	.00	·01	.07	.71	9.56	195.96	6087
+ 1.00	•00	•00	.00	.00	.00	.00	.00	.00	.00	
Mean	.0000	-0976	.1952	•2932	-3916	•4905	•5902	-6907	·7924	-895
Mode	-0000	.1145	.2279	-3391	.4472	.5515	-6509	.7457	8354	920
σ	-2236	.2216	2157	-2058	-1917	.1732	.1500	.1218	-0880	.047
$-\rho^2)/\sqrt{n-1}$	•2236	.2214	·2147	·2035	.1878	.1677	·1431	.1140	.0805	.042
B.	·0000	0142	.0577	-1331	-2451	4020	-6166	9107	1.3227	1.928
$eta_1 \ eta_2$	2.7273	2.7527	2.8306	2.9666	3.1711	3.4617	3.8683	4.4432	5.2858	6.616

TABLE A. Ordinates and Constants of Frequency Curves.

n=22. ρ variate (correlation in population sampled).

		0	·1	.2	•3	·4	•5	•6	.7	.8	.9
	1.00	•00	•00	•00	•00	•00	•00	-00	.00	.00	•00
-	.95	.00		_	_					_	_
-	- 90	.01				_		_		_	_
	· 85 · 80	.02	.00	.00			_	_			_
_	· ·80 · ·75	-18	.03	·01	.00	_		_	_	_	
_		1·03 4·11	·21 ·92	·04 ·18	.01	-00					
_	- 65	12.59	3.11	.67	·01 ·03 ·12	.02	-00	_		_	
_		31.74	8.65	2.02	•40	-06	.01				
_		68.85	20.67	5.28	1.12	-19	.02	-00			
_	50	$ \begin{array}{c} 68.85 \\ 132.30 \\ 229.92 \end{array} $	43.77	12.21	2.80	50	.07	-01			
_	.45	229.92	83.90	25.58	6.36	1.24	.17	.02			_
-		366.87	147.70	49.31	13.34	2.80	•43	.04	-00		
_	35	543.53	241.56	88.41	26.06	5.93	-97	.10	·01	_	_
_	-30	754.00	370.08	148-69	47.84	5.93 11.83	2.09	·23	-01		
_	25	985.69	534.57	236.09	83.10	22.38	4.29	.52	.03	_	
_	20	1220.22	731.56	355.63	137.23	40.36	8.43	1.10	.07		_
-	· ·15	1435.65	951.98	510.10	216.26	69.67	15.89	2.26	·16	.00	
-	· ·10	1609.59	1181.06	698.57	$326 \cdot 14$	115.44	28.86	4·49 8·67 16·25	•34	.01	
-		1722.72 1761.97 1722.72	$1399 \cdot 48$	915.06	471.58	183·99 282·44	50.64	8.67	.72	.02	<u> </u>
	.00	1761.97	1585.51	1147.75	654.54	282.44	85·93 141·20	16.25	1.50	•04	
+	· ·05	1722.72	1718.00	1379.01	872.46	417.89	141.20	29.67	3.04	-09	
+	· ·10	-1609.59	1779.88	1586.65	1116.63	595.93	224.73	52.80	6.06	·20	_
+	· 15	1435.65	1761-23	1746.45	1370.99	818·50 1081·27	346.33	91.59	6.06 11.87 22.86	•43	
+	· ·20	1220-22	1661.60	1835.83	1612-18	1081.27	516.27	154.80	22.86	·96 2·10	
+	.25	985.69	1490.67	1838-17	1811-21	1370.78	743.10	254.65	43.29	4.60	·00
+		754.00 543.53	1267.07	1746.86	1937-29	1662.37	1029.97 1369.38	406.96	80·55 147·04	10.04	.03
+	.40	366.87	1015·49 762·48	1568.03 1321.06	1963·65 1874·43	1920·03 2099·64	1737.17	629·96 940·51	262.68	21.88	.09
+	45	229.92	531.86	1035.89	1671.23	2156.76	2087.52	1346.06	457.35	47.54	•26
+		132.30	340.82	747.64	1376.56	2059.06	2352.90	1831.17	771.34	102.73	.75
+	55	68.85	197.63	489.26	1032.04	1800.84	2453.82	2339.55	1248.74	219.99	·75 2·23
+		$68.85 \\ 31.74$	101.58	284.38	690.00	1414.20	2323.01	2759.17	1914.05	463.46	6.97
+		12.59	44.94	142.57	399.58	969.04	2323·01 1942·00	2928.43	2719.83	463·46 948·62	6·97 22·83
+	70	4.11	16.39	59.04	191.99	555.25	1375.57	2690.72	3465.29	1845-14	78.45
+	.75	1.03	4.60	18.88	71.56	248.90	773.40	2011-22	3745.20	3276.10	281.79
+	80	·18	-89	4.16	18.48	78.00	773·40 308·91	$2011.22 \\ 1098.57$	3111.21	4913.78	1034.74
+	· ·85	$\cdot 02$.10	-51	2.67	13.82	71.03	356.95	1635-37	5281.97	3609.52
+	.90	.01	•00	.02	.13	·86	5.84	43.11	345.00	2698.71	9320.25
+		.00	_	•00	.00	•00	.04	•42	6.53	157.01	5864.34
+	1.00	•00	.00	•00	•00	•00	•00	•00	•00	.00	•00
7	Mean	-0000	-0977	·1955	•2935	-3920	·4910	•5906	•6912	·7928	·8956
Ī	Mode	.0000	-1137	$\cdot 2264$.3369	.4447	-5486	.6484	·7435	-8339	•9194
	σ	.2182	·2162	.2105	.2007	·1869	.1688	.1461	·1185	-0855	.0464
l – o	$(2)/\sqrt{n-1}$.2182	·2160	2095	·1986	⋅1833	.1637	·1396	·1113	.0786	.0415
- μ	β_1	-0000	·0137	.0555	$\cdot 1279$.2354	-3853	.5893	·8674	1.2532	1.8125
	Mode σ $2)/\sqrt{n-1}$ β_1 β_2	2.7391	2.7630	2.8390	2.9703	3.1672	3.4461	3.8328	4.3790	5.1687	6.3926

${\bf TABLE} \ \ {\bf A---} (continued).$

n=23. ρ variate (correlation in population sampled).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.52	·00 ·00 ·02 ·13 ·63 2·26 6·66	-00 -00 -11	·00	-00	-00	-00	.00	.00	.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·00 ·01 ·11 ·70 3·01 9·81 6·04 8·96 7·47 0·52	·02 ·13 ·63 2·26 6·66	.11			_				,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·01 ·11 ·70 3·01 9·81 6·04 8·96 7·47 0·52	·02 ·13 ·63 2·26 6·66	.11		_					_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·11 ·70 3·01 9·81 6·04 8·96 7·47 0·52	·02 ·13 ·63 2·26 6·66	.11	_			-	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·11 ·70 3·01 9·81 6·04 8·96 7·47 0·52	·13 ·63 2·26 6·66	.11	-					_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.70 3.01 9.81 6.04 8.96 7.47 0.52	·13 ·63 2·26 6·66	.11							_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3·01 9·81 6·04 8·96 7·47 0·52	$2.26 \\ 6.66$.11	_				_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9·81 6·04 8·96 7·47 0·52	$2.26 \\ 6.66$.00	.00		_		_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6·04 8·96 7·47 0·52	6.66	.45	-08	.01		_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8·96 7·47 0·52		1.45	.26	.04	.00	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$7.47 \ 0.52$	16.69	3.99	.78	.12	.01			_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.52	36.83	9.65	2.06	·34	.04	.00	_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 77	73.14	21.06	4.90	.88	.11	.01	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.75	132.79	42.04	10.68	2.08	.29	.02			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.03	223.04	77.76	21.61	4.58	.69	•06	-00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.47	349.67	134.43	40.95	9.47	1.54	.15	-01		
- · · · · · · · · · · · · · · · · · · ·	8.54	515.16	218.71	73.21	18.51	3.28	.36	.02		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		716.90	336.58	124.07	34.41	6.67	.79	.04	_	_
- ·10		946.00	491.89	200.13	61.07	12.98	1.68	.10		
- ·05 1764·1 1806·5 + ·05 1764·1 1642·6 + ·10 1455·3 + ·20 1225·8 + ·25 978·5 + ·30 522·6 + ·35 522·6 + ·40 344·7 + ·45 210·5 + ·50 117·4 + ·55 + ·60 26·6 + ·65 9·8 + ·70 + ·75 + ·80 + ·85 + ·90 + ·95 -6 6 6 6 6 6 6 6 6	2.05	1186.97	684.57	308.15	103.79	24.29	3.46	.23	-00	
-00 1806.5 1764.1 1764.1 1764.1 1455.5 1225.5 14.5	4.10	1418-82	909.02	453.86	169.29	43.81	6.89	.51	.01	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1617.48	1153.02	640.19	265.41	76.30	13.33	1.10	.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.10 1	1759.25	1397.58	865.25	400.21	128.44	25.06	2.30	-06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1824.91	1618.30	1120.27	580.40	208.99	45.84	4.75	•13	_
+ · · · · · · · · · · · · · · · · · · ·	5.22 1	1803.46	1788.25	1388.22	808.98	328.68	81.62	9.60	-30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.99 1	1694.75	1882.27	1643.56	1082.09	499.05	141.37	19.07	-69	
+ ·30	9.54	1510.18	1882.05	1854.28	1385.76	730.12	237.92	37.20	1.56	
+ · ·35 522·6 + · 40 344·7 + · 45 210·5 + · 50 117·4 + · 55 58·5 + · 60 26·6 + · 65 + · 70 3·6 + · 75 + · 80 + · 85 + · 90 + · 95 - 60	7.47	$1271 \cdot 20$	1780.86	1986.26	1693.34	1026.34	388.31	71.21	3.55	
+ ·40 344·7 + ·45 210·5 + ·50 117·4 + ·55 58·9 + ·60 26·0 + ·65 9·8 + ·70 3·0 + ·75 ·7 + ·80 ·1 + ·80 ·1 + ·90 ·0	0.09 1	1005.63	1586.63	2010-13	1965.21	1380.56	612.67	133.58	8.04	
+ ·45 210·5 117·4 + ·55 + ·60 + ·65 + ·70 + ·75 + ·80 + ·90 + ·95 -60	4.75	742.61	1322.06	1909.35	2152.67	1767.06	930.25	244.82	18.14	
+ ·50 + ·55 + ·60 + ·65 + ·70 + ·75 + ·80 + ·85 + ·90 + ·95	0.50	507.37	1024.00	1909.30	2132.07 2207.11	2135.75	1350.57	436.53	40.80	
+ · · · · · · · · · · · · · · · · · · ·	U·5Z	316.95	$1021 \cdot 21$ $722 \cdot 70$	1687.50	2094.49	2412.26	1858.09	752.42	91.21	
+ ·60 + ·65 + ·70 + ·75 + ·80 + ·85 + ·90 + ·95	0.00	178.18	122.10	1371.71	1811.83	2509.73	2391.84	1241.53	201.81	1.
+ ·65 + ·70 + ·75 + ·80 + ·85 + ·90 + ·95		88.20	$461.21 \\ 259.71$	1009.57		2359.15 2357.16	2828.70	1932.86	438.57	5.
+ ·70. + ·75 + ·80 + ·85 + ·90 + ·95		37.26	259.71	658.38	$1398.78 \\ 935.07$	1941-17	2992.09	2776.53	923.77	18.
+ ·75 + ·80 + ·85 + ·90 + ·95			125.10	368.92	517.49		2717.16		1842.02	
+ ·80 + ·85 + ·90 + ·95	.70	12·84 3·36	49.25	169.74	220.99	1341.82 726.69	1983.68	3552.48	3332.08	67.
+ ·85 + ·90 + ·95			$\frac{14.76}{2.99}$	59.73		274.26	1039.58	3818·06 3105·96	5037.18	256· 990·
+ ·90 + ·95	.11	·59 ·06		14.27	64.66		314.71		5348.05	
+ .95	·01 ·00	.00	.33	1.85	10.37	57.78	33.50	1557.24		3615· 9553·
		.00	.01	-08	•55	4.11	•25	$297.55 \\ 4.46$	$2583.97 \\ 125.64$	5642
+ 1.00	.00	-00	.00	•00	.00	·02 ·00	•00		.00	
	.00	.00	-00	.00	.00	.00	*00	-00	.00	•
Mean ·000	0000	.0978	·1957	-2938	.3923	•4914	·5911	-6916	·7931	·895
Mode ⋅000	000	·1130	-2250	.3351	.4424	.5462	•6461	-7415	·8324	·918
σ ·213	132	.2113	2056	•1960	.1825	.1647	.1425	·1155	.0832	.048
$-\rho^2)/\sqrt{n-1}$ •213		.2111	.2047	1940	.1791	1599	.1364	1087	.0768	•040
β_1 000	1.5%	0132	0535	1232	2264	3698	•5645	-8279	1.1905	1.709
β_2 2.750		2.7738	2.8467	2.9735	3.1633	3.4313	3.8024	4.3197	5.0623	6.195

TABLE A. Ordinates and Constants of Frequency Curves.

n=24. ρ variate (correlation in population sampled).

	0	•1	.2	•3	·4	.5	.6	.7	-8	.9
- 1.00	-00	.00	.00	.00	.00	-00	-00	.00	.00	•00
95		—		_				_		_
90	-00			_	_			- 1		_
85	.01	<u> </u>								-
80	.07	-00	.00		_		_	_		_
75	.48	-08	.01]						
70	2.20	.43	.07	-00	_	_	_	_		
65	7.63	1.65	.30	-05	-00					
60	21.33	5.12	1.04	.17	.02	.00	_	_	_	
55	50.42	13.46	3.01	.55	.08	.01		Mercania.		
50	104.18	30.95	7.63	1.52	.23	.03	-00	_		_
45	192.53	63.69	17.31	3.76	-63	.08	·01		-	
40	323.58	119.24	35.80	8.54	1.54	.20	.02	_		_
35	500.79	205.69	68.31	17-90	3.53	•49	.04		_	-
30	720.45	$329 \cdot 99$	121.39	35.02	7.57	1.13	-10	-00		_
25	970.29	495.86	$202 \cdot 37$	$64 \cdot 42$	15.29	2.51	.25	.01		_
20	1229.99	701.70	318-18	112.03	29.30	5.27	.57	.03	_	
15	1473.52	938.94	473.77	184.97	53.46	10.58	1.25	.07	_	
10	$1673 \cdot 17$	1191.49	670.05	290.81	93.20	20.41	2.66	.16	.00	
05	1804.33	1436.72	901.95	436.29	155.59	37.86	5.48	.36	.01	_
.00	1850.07	1648-13	1156.93	625.41	249.11	$67 \cdot 67$	10.92	-80	-01	
+ .05	1804.33	1799-35	1414.71	857.07	382.82	116.68	21.14	1.74	.04	
+ .10	1673.17	1868-86	1648-62	1122-60	564.61	194.13	39.75	3.71	•09	
+ .15	1473.52	1844.51	1828-88	1403.99	798.61	311.57	72.65	7.76	.21	-
+ .20	1229-99	1726.50	1927.58	1673.57	1081.63	481.83	72.65 128.95	15.89	•49	
+ .25	970.29	1528.14	1924.68	1896-13	1399-26	716.52	222.03	31.93	1.16	
+ .30	720.45	1273.84	1813.38	2034.06	1722.83	1021.51	370.08	62.89	2.74	
+ .35	500.79	994.68	1603.54	2055.28	2009.07	1390.19	595.15	121.20	6.42	
+ .40	323.58	722.40	1321.50	1942.61	2204.43	1795.33	919.02	227.90	15.02	-
+ .45	192.53	483.43	1005.54	1701.90	2255.95	2182.51	1353.49	416.18	34.98	
+ .50	104.18	294.40	697.76	1365.25	2128.00	2470.20	1883.18	733.09	80.88	
+ .55	50.42	160.45	434.25	986.41	1820.73	2563.87	2442.41	1232.91	184.91	1.
+ .60	21.33	76.48	236.89	627.46	1381-90	2388.99	2896.56	1949.56	414.53	4.
+ .65	7.63	30.86	109.64	340.21	901.23	1938.06	3053.53	2831.08	898.52	15:
+ .70	2.20	10.05	41.03	149.89	481.72	1307.36	2740.64	3637.57	1836.75	58.
+ .75	•48	2.45	11.52	49.80	195.98	682.00	1954.22	3887.76	3385.03	232
+ .80	.07	39	2.14	11.00	53.55	243.21	982.60	3097.07	5157.63	947
+ .85	-01	.03	214	1.28	7.76	46.94	277.15	1481.10	5408.62	3616
+ .90	.00	-00	01	•04	.35	2.89	26.01	256.32	2471.22	9781
+ .95	.00	.00	-00	-00	.00	-01	15	3.04	100.42	5422
+ 1.00	-00	.00	-00	.00	.00	.00	.00	.00	.00	0122
Mean	-0000	.0979	·1959	·2941	·3927	-4918	•5915	⋅6920	·7934	-89€
Mode	-0000	·1124	·2238	√3334	·4404	$\cdot 5441$.6440	·7397	⋅8310	.917
σ	-2085	2067	.2011	·1916	.1783	·1609	·1391	·1127	.0811	•043
$-\rho^2)/\sqrt{n-1}$	-2085	.2064	.2002	⋅1897	$\cdot 1752$.1564	·1334	.1063	-0751	-039
β_1	.0000	.0127	.0516	.1187	.2180	.3557	.5419	.7918	1.1335	1.616
eta_2	2.7600	2.7826	2.8537	2.9764	3.1596	3.4174	3.7774	4.2653	4.9654	6.016

TABLE A—(continued).

n = 25. ρ variate (correlation in population sampled).

			,	·			alaulou s		1		1
		0	•1	-2	•3	•4	•5	•6	.7	.8	.9
	- 1.00	•00	•00	•00	.00	.00	.00	.00	.00	•00	.00
	- ·95 - ·90				_	_			_		
	90	_	_	_				_	_		_
	85	.00									
	80	.04	•00		_	_					
	- ⋅75	•32	.05	•00		_		_			_
	- ·70	1.61	•29	.05	•00		_				
	65	5.93	1.20	•21	.03	.00					
	60	17.46	3.93	.75	.12	.01	—	_		_	
	55	43.08	10.85	2.27	.38	.05	.00	_			_
	50	$92 \cdot 30$	25.99	6.01	1.11	·16	.01				
	45	175.88	55.40	14.22	2.89	•44	.05	.00			
	40	303.38	106.96	30.45	6.82	1.14	.13	-01			
	35	479.90	189.49	59.94	14.80	2.72	.34	.03	_		
	30	703.06	311.08	109.50	29.91	6.05	.83	.07	.00		
	25	961.07	476.77	187.04	56.62	12.62	1.80	.17	.01		_
	20	$1232 \cdot 83$	686-08	300.46	101.06	24.92	4.15	.41	02		
	15	1490.32	930.93	455.82	170.78	46.75	8.62	.93	.04		
	10	1703.04	1194.73 1453.28	655.13	274.14	83.60	17.14	2.04	·11		
	05	1843.49	1453.28	893.96	418.94	142.84	32.68	4.35	.25	.00	
	.00	1892.58	1677.56	1159.60	610.31	233.56	59.95	8.94	.59	.01	
	+ .05	1843-49	1838-37	1430.51	848.05	365.78	105.89	17.81	1.32	.02	
	+ .10	1703.04	1911-80	$1430.51 \\ 1677.69$	1123.71	548.65	180.12	34.44	$1.32 \\ 2.90$	•06	
	+ .15	1490.32	1884.46	1868.40	1418-41	787.53	295.02	64.59	6.26	.14	
	+ .20	1232.83	1756.95	1971.86	1702-29	1080.00	464.70	117.49	13.22	.35	
	+ .25	961.07	1544.63	1966-16	1936.84	1411.36	702.41	206.98	27.37	·86	
	+ .30	703.06	1275.10	1844.50	2080.76	1750.96	1015.61	$352 \cdot 32$	55.47	2.11	•00
	+ .35	479.90	982.79	1618.89	$2099 \cdot 17$	2051.69	$1398 \cdot 37$ $1822 \cdot 10$	577.51	109.85	5.13	•01
	+ .40	303.38	701.99	1319.51	1974.33	2255.00	1822-10	906.95	211.92	12.43	.02
	+ .45	175.88	460.12	989.05	1714.58	2303.40	2227.89	1354.96	396.34	29.95	•08
	+ .50	92.30	$273 \cdot 17$	672.95	1357·37 962·75	2159.72	$2526.88 \\ 2616.37$	1906.56	713.49	71.65	•26
	+ .55	43.08	144.33	408.43	962.75	1827.71	2616.37	2491.37	1223.04	$169 \cdot 24$	-90
	+ .60	17.46	66.25	215.85	597.36	1363.75	$ \ 2418.65 $	2962.87	1964.30	391.39	3.26
	+ .65	5.93	25.53	95.99	313.40	867.68	1932.87	3112.90	2883.60	873.02	12.46
	+ .70	1.61	7.85	34.15	132.22	447.95	1932.87 1272.41	$3112.90 \\ 2761.35$	3720.72	873.02 1829.54	50.16
	+ .75	·32	1.78	8.99	41.47	173.61	639.37	1923.13	3954.50	$3435 \cdot 16$	50·16 211·20
	+ .80	.04	·26	1.53	8.48	44.30	215.45	927.75	3084.92	$5275 \cdot 33$	905.21
	+ .85	.00	.02	·13	.88	5.81	38.09	243.81	1407.18	5464.05	3614.59
	+ .90		•00	.00	-00	-22	2.03	20.16	220.57	2360-87	10004.61
	+ .95		-			.00	.01	.09	2.07	80.18	5206.06
	+ 1.00	•00	.00	.00	.00	.00	•00	.00	•00	.00	•00
	Mean	.0000	-0980	·1960	-2943	·3930	·4921	·5918	-6923	.7937	-8962
	Mode	.0000	.1118	.2227	·3318	•4385	.5421	.6420	·7380	8297	9170
	σ	•2041	•2023	1968	.1875	.1744	1573	1359	1100	-0791	.0427
1	$\rho^2)/\sqrt{n-1}$	2041	.2023	1960	1858	1715	1573	•1306			
1	p / v n - 1	·2041 ·0000	.2021	.0499	·1858 ·1146				-1041	.0735	.0388
	β_1	2.7692	2.7916	2.8601	2.9788	·2102 3·1559	•3423	•5203	·7586	1.0816	1.5334
	β_2	2.1097	4.1910	7.9001	2.9188	9.1998	3.4042	3.7453	4.2149	4.8769	5.8584

TABLE A. Ordinates and Constants of Frequency Curves.

 ρ variate (correlation in population sampled). n = 50.

		0	·1	•2	•3	-4	•5	•6	-7	-8		.9
	1.00	.00	.00	.00	.00	.00	•00	•00	-00	.00	-67	.5
-	.95	_		_			_	_	_		·68	-5
-	.90		-		_						•69	•
-	.85	_	_	_						_	.70	1.
_	.80	_		_		_	_	_	_	_	.71	1.
-	.75				_		_	_	_	,	.72	2.
-	.70	.00	_		_	_		_		terminal .	.73	5.
-	.65	.01		_		_			_	_	.74	8.
-	.60	·10	-00		ar venezunir	_		_	_		•75	15.
-	·55 ·50	·69 3·68	$.04 \\ .27$	·00 ·01	_		_	_		_	77	26· 46·
	.45	15.10	1.40	·01	00					_		80-
-	.40	49.85	5.82	•44	.02						sample)	138
_	.35	136.13	20.06	1.88	.11	.00					g .80	238
	.30	314.21	58.57	6.85	.48	.02		_	_		82 ·81	406
_	.25	623.17	147.07	21.50	1.85	-09	_					683
_	.20	1075.24	321.70	59.02	6.32	•36	•00				.∃ :82 :83	1134
_	.15	1629-13	618.58	142.88	19.11	1.35	.04	_		_	₽ .84	1848
_	$\cdot 10$	2182-12	1052.79	307.18	51.61	4.55	-18	.00			₹ .85	2936
_	$\cdot 05$	2595.77	$1593 \cdot 19$	$589 \cdot 27$	125.03	13.87	.68	.01	_	_	(correlation 88 · 88 · 88 · 88 · 88 · 88 · 88 · 88	4519
	.00	2749.60	$2149 \cdot 47$	1011.38	272.76	38.38	2.39	-05		-	3 .87	6673
+	$\cdot 05$	2595.77	2587.70	1554.59	535.97	96.53	7.70	.20	.00		5 .88	9340
+	·10	$2182 \cdot 12$	$2777 \cdot 44$	2138.36	948.41	220.60	22.82	.78	.01	_	0.0	12187
+	$\cdot 15$	$1629 \cdot 13$	$2650 \cdot 80$	$2625 \cdot 45$	1507.84	457.26	62.11	2.82	.02	_	€ .90	14502
+	.20	$1075 \cdot 24$	2239.38	$2864 \cdot 46$	2144.80	856.50	154.86	9.46	.11	_	· 91	15261
+	.25	$623 \cdot 17$	1663.32	2758.76	2712.27	1441.46	351.85	29.47	.48		variate .90 .92 .93	13599
+	.30	314.21	1076.19	2323.98	3022.24	2161.66	723.72	84.89	1.99	.00		9630
+	.35	136.13	599.07	1691.43	2932.02	2856.13	1333.93	224.22	7.75	.02	s ·94	4918
+	.40	49.85	282.26	1046.45	$2437.43 \\ 1700.04$	3274.68 3192.62	2172.97 3070.40	536.92 1147.17	28.37 96.36	·09 ·51	.95	1550
+	·45 ·50	$15.10 \\ 3.68$	$110.16 \\ 34.61$	538.66 224.22	967.26	2575.61	3668.50	2138.79	298.71	2.85	96	230
+	·55	- 69	8.42	72.63	432.21	1656.86	3578.51	3372.39	824.60	15.26	.98	9
++	.60	.10	1.51	17:37	143.93	807.35	2713.26	4300.25	1954.75	76.77	.99	
+	.65	·01	-18	2.84	33.16	276.92	1489.70	4152.55	3764.57	350.56	00	
+	.70	.00	.01	.29	4.73	59.97	532.70	2747.94	5398.21	1367-63		
+	.75		.00	.01	-35	6.91	104.96	1061-91	4990.96	4092.05		
+	.80			.00	.01	.32	8.58	181.98	2306.06	7650.44		
+	.85				.00	.00	.17	8.16	322.77	5817.30		
+	$\cdot 90$	_	_		_	_	.00	.03	4.26	621.81		
+	.95							-00	-00	.24		
	1.00	-00	.00	• • • • • • • • • • • • • • • • • • • •	-00	.00	•00	.00	.00	.00		

For the constants of the curves for n=50: see p. 372 above.

TABLE A—(continued).

n = 100.

y variant (corresament in sample).

 ρ variate (correlation in population sampled).

		0	·1	.2	•3	•4	•5	·6	-7	•8			.9	.9 (normal curve)*
-1	.00	.00	.00	•00	-00	.00	.00	•00	.00	-00		:75	-1	.0
	.95	_	_	_		_		_				.76	.2	
	.90		_									-77	.5	<u> </u>
- ·	.85				_					_		.78	1.4	_
	.80				_	_		_				$\cdot 79$	4.0	•0
	.75	_									sample).	$\cdot 80$	11.3	•2
	.70	_	_			_					1p	.81	31.3	.3
	.65	—	_								, u	-82	84.7	3.2
	.60			_				—				.83	221.8	25.3
	.55	_				_	_		-		n.	-84	$556 \cdot 2$	150.2
	.50	.00	—	_		_			 1			.85	1320.0	678.6
	.45	.08	.00		_		—			_	(correlation	.86	2919.0	2330.1
	•40	.91	.01				—				£.	-87	5895.9	6082.6
	35	7.43	·15	.00		_		_			els	.88	$10597 \cdot 3$	11944.8
	.30	42.60	1.41	.02			_				H	.89	16373.8	18211-3
	.25	177.84	9.50	.18	.00		<u> </u>	_			00	$\cdot 90$	$20754 \cdot 4$	20887-0
	.20	$555 \cdot 18$	48.00	1.55	.02			_	_		ì	.91	20233.5	18211.3
	.15	$1321 \cdot 36$	185.37	9.53	16	.00					te	.92	13848.4	11944.8
	.10	2431.67	554.86	45.84	1.24	-01		_	_		variate	.93	$5823 \cdot 1$	6082.6
	.05	$3493 \cdot 29$	1299.62	173.78	7.57	.09					ar	.94	1227.8	2330.1
	.00	$3939 \cdot 27$	2395.29	522-21	36.98	.70	.00					.95	93.7	678.6
	.05	3493-29	3480.22	1246.23	145.32	4.56	.03				7.	.96	1.5	150.2
	.10	2431.67	3979-11	2358-16	458.62	24.21	.25					.97	_	25.3
	.15	1321.36	3560.42	3519.22	1156.81	104.66	1.87	-00		_		.98		3.2
	.20	555.18	2469.56	4103.61	2311.65	365.76	11.67	.04				-99		•3
	.25	177.84	1309-30	3687.36	3611.32	1021.01	59.96	.41		_		1.00		·2
	.30	42.60	520.41	2504.77	4329.36	2237.43	249.60	3.35	.00					
	.35	7.43	151-11	1253-64	3884.32	3759.08	824.50	22.96	.03					:
	.40	. •91	30.98	446.88	2522.86	4690.55	2099-42	127.86	•35					1
	•45	.08	4.29	108.49	1135.08	4166-27	3962.12	558.78	3.87					
	.50	-00	•38	16.90	333.60	2488-44	5254.02	1829-25	35.59	.00				
	.55		.02	1.56	59.16	925.05	4549.13	4200.10	254.84	.02				
	.60		.00	-08	5.68	192.25	2320.57	6157.92	1316.29	2.01				
	·65 ·70			.00	·25 ·00	19·17 ·73	601·45 63·47	5023·96 1850·41	4363.45 7728.87	38.45 519.97				
	.75	_			.00	01	1.92	220.19	5408.23	3951.47				
	.80					- 00		4.76	876.76	$\frac{3951.47}{10951.32}$				
	·85					.00	·01	·01	11.56	4488.65				1
	.90						.00	.00	.00	29.37				
	.95							.00	.00	29.37				
+1		-00	00	.00	-00	-00	.00	-00	00	•00				

^{*} These ordinates indicate how poor is the approximation of a normal curve to the frequency of r, where n is 100, but ρ is large.

For the constants of the curves for n = 100: see p. 372 above.

TABLE A. Ordinates and Constants of Frequency Curves. p variate (correlation in population sampled).

	ormal*	ō.	l						-		,		}	1						İ	1	J		1	1			1	-			٦	s e	900.9	4598.7	24134.5	41941.4	24134.5	4598.7	290.2	9.	÷	1	1		1	0.
	6.	Ģ	1		1							1	1		1						1				-		1	ļ			> -	J. 6	40.7	658.1	5308-0	22606.9	41873.1	25806.1	3626-0	8.99	7	o.	1	1		1	0
c	.8 normal*	o.	1		1	1	1	1		1	1			1	-			Ģ	7	- 6:1	1.5	80.98	471.8	1885.6	5538.9	11958.6	18977-4	22135.7	18977-4	0.8cgIT	0.0000	0.174	8668	11.7	1.2	7	Ģ	1						1			Ō.
	∞.	Ō.		1							1	,		-		Ģ		Ġ	6		52.5	213.0	751.2	2248.2	5595.6	11311.7	18071.0	22139-3	19920-7	12665.6	0.0000.0	#.0000	0.00	10.	÷	1			1	1	1	1	1	1		1	o.
red).	normal*	Ģ			o.	ç.	1.4	7.3	31.3	115.3	364.4	287.7	2296.4	4579.8	7834.8	11497.0	14471.6	15695.9	14471.6	11497.0	7834.8	4579.8	2296-4	987.7	364.4	115.3	31.3	7.3	1.4 4.0	Ņ	?	ŀ								1	1	1	1	1	ł		o.
dinas in	2.	0	7	5	œ́	2.8	6.3	28.7	82.9	221.2	542.5	1212.0	2478.7	4553.8	7487.9	10922-9	13000.7	15598.3	14031.6	19106.9	8919.0	4572.5	2052-1	726.6	198.1	40.5	0.9	Ō.	1			İ]	1			1			1	o.
opulation		79	.55	.56	.57	.58	.59	09-	19-	29.	.63	79.	.65	99.				3 S Iu			ui.	u V		3.5.								#0.	98.	28.	88.	68.	06:	16.	26.	.93	76.	.95	96.	.97	86.	66.	1.00
p variate (corresation in population sampled)	9.	00		1					1		1		1]		-	90.	35	1.7%	167.53	3668.41	12429-40	3688-70	40.04	00-	}				3																	
COLLEIA	ç.	00.	l	1						1	1			1	ę	Ģ	10.75	399.98	4978.40	10606.00	4491.43	212.53	91.	000	3	1	1	1	1	ş		-															
Valland	4.	00	1.		1					-			00.	.52	30.13	642.95	4567.01	9469.37	4810.90	473.96	5.55	80,	\$ 8	}				1		ş							-				_		_				
2	ث	00-	1							9	Ģ	1.37	55.10	846.48	4701.88	8740-76	4006.74	794.97	93.50	81.	3 8	3		!					1	Ş																	
	ċί	00-	i					0 <u>0</u>	÷03	2.31	77.24	990.50	4767.51	8285.39	4910.62	917.19	48.55	. E9.	8 8	}		-	1		1	1	1	1		Ę																	
	· I	90			1	9			89.41	1071.03	4809.08	8034.24	4878.55	1037-29	72.74	1.55	5	38	3		1				1		1		1	3																	
-	0	90.		1	9	2.46	87.84	1087.30	4845.66	7953-88										1					1	1	1	1	J	€																	
2 -		40			25			01	05	00-	+ .05				+ .25					09- +	+ - 55	09. +	9. +	0% +	+ .75	08· +	+ -85	06. +	+ .95	00.7+	75.00																
									.(εįć	Ιu	re	S	ui	τ	[O]	171	3[9	LL	CO)	91	Bİ	B.	Δ	d																					

TABLE B*. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

$$\log \frac{n-2}{\sqrt{n-1}} . \qquad \log \frac{n-2}{\sqrt{n-1}} \quad n \quad \log \frac{n-2}{\sqrt{n-1}} \quad r \quad \log \chi_1 \quad \log \chi_2 \quad \phi_1 \quad \phi_2 \quad \phi_3 \quad \phi_4$$

* If the ordinate at r be y, then (see p. 348)

$$y = Y \left(1 + \frac{\phi_1}{n-1} + \frac{\phi_2}{(n-1)^2} + \frac{\phi_3}{(n-1)^3} + \frac{\phi_4}{(n-1)^4} \right),$$

where

 $\cdot 7722016$

 $\cdot 7783099$

 $\cdot 7842513$

-7900346

77

78

 $\begin{array}{c} 79 \\ 80 \end{array}$

-9346545

.9375682

.9404434

 $\cdot 9432811$

38

39

40

41

$$\log Y = \log \frac{n-2}{\sqrt{n-1}} + \log (1-\rho^2)^{\frac{3}{2}} - (n-1) \log \chi_1 - \log \chi_2.$$

+.80

+.85

+.90

+.95

 $\cdot 2218487$

 $\cdot 2783685$

-3606232

 $\cdot 5054977$

 $\bar{1}$:7335437

1.5639844

 $\bar{1} \cdot 3172203$

 $\bar{2}$ ·8825969

All these quantities are given for r = -.95 to +.95 and $\rho = 0.0$ to 0.9 in this Table B.

TABLE B. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

$$\rho = 1. \\ \log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9934528.$$

$$\rho = 2.$$

$$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9734068.$$

r	$\log \chi_1$	$\log \chi_2$	4	ϕ_2	ϕ_3	ϕ_4	r	log	$\log \chi_2$	ϕ_1
	10g X1	log χ ₂	ϕ_1	ψ_2	Ψ3	Ψ4	,	$\log \chi_1$	ιοg χ ₂	Ψ1
95	.5470942	Ī·8563426	-238125	-0229783	0364766	0013075	-·95	-5899090	Ī·8182302	-22625
90	$\cdot 4002321$	$\bar{1} \cdot 2919599$	$\cdot 23875$	$\cdot 0233820$	0366462	0017344	90	$\cdot 4413696$	$\bar{1} \cdot 2546862$	$\cdot 2275$
85	-3159806	$\bar{1}$.5397223	$\cdot 239375$	$\cdot 0237893$	0368123	0021666	85	$\cdot 3554188$	$\bar{1}.5032983$	$\cdot 22875$
80	$\cdot 2574549$	$\bar{1}$ ·7102846	.24	$\cdot 0242$	- 0369750	0026040	80	$\cdot 2951711$	$\bar{1}$ ·6747215	.23
75	$\cdot 2131018$	$\tilde{1}.8383056$	-240625	$\cdot 0246143$	0371342	0030466	75	$\cdot 2490732$	$\bar{1}$ ·8036150	$\cdot 23125$
70	·1777811	$\bar{1}$.9392061	$\cdot 24125$	$\cdot 0250320$	0372898	0034943	70	$\cdot 2119841$	$\bar{1}$ 9053996	$\cdot 2325$
65	$\cdot 1487560$	-0211959	$\cdot 241875$	$\cdot 0254533$	0374417	0039470	65	·1811668	$\bar{1}$ 9882856	$\cdot 23375$
$-\cdot 60$	$\cdot 1243983$	-0891598	$\cdot 2425$	0.0258781	0375900	0044047	60	$\cdot 1549924$	0571577	
55	$\cdot 1036628$	$\cdot 1462328$	$\cdot 243125$	$\cdot 0263064$	0377346	0048672	55	$\cdot 1324153$	·1151516	-23625
50	0.0858411	-1945400	$\cdot 24375$	$\cdot 0267383$	0378754	- ·0053345	50	$\cdot 1127264$	$\cdot 1643923$	
45	$\cdot 0704333$	-2355806	$\cdot 244375$	$\cdot 0271736$	0380123	0058066	$-\cdot 45$	$\cdot 0954255$	$\cdot 2063796$	-23875
$-\cdot 40$	0.0570761	-2704450	$\cdot 245$	-0276125	0381453	0062833	$-\cdot 40$	0.0801485	$\cdot 2422038$	$\cdot 24$
35	$\cdot 0454992$	$\cdot 2999432$	$\cdot 245625$	$\cdot 0280549$	0382744	0067646	35	-0666246	-2726756	-24125
30	-0354989	$\cdot 3246862$	$\cdot 24625$	-0285008	0383994	0072503	30	0546496	$\cdot 2984059$	$\cdot 2425$
$-\cdot 25$	$\cdot 0269206$	·3451377	$\cdot 246875$	$\cdot 0289502$	0385204	0077405	- ⋅25	-0440680	$\cdot 3198590$	$\cdot 24375$
20	$\cdot 0196470$	-3616495	-2475	$\cdot 0294031$	0386373	0082349	20	$\cdot 0347621$	$\cdot 3373870$	$\cdot 245$
15	-0135901	·3744849	$\cdot 248125$	$\cdot 0298596$	0387500	0087336	15	$\cdot 0266432$	·3512533	$\cdot 24625$
10	•0086862	-3838348	$\cdot 24875$	$\cdot 0303195$	0388585	0092363	10	$\cdot 0196470$	·3616495	$\cdot 2475$
$-\cdot 05$	-0048920	⋅3898291	$\cdot 249375$	$\cdot 0307830$	0389627	0097431	<i>-</i> ⋅ <i>0</i> 5	$\cdot 0137293$	$\cdot 3687055$	$\cdot 24875$
$\cdot \theta \theta$	+0021824	$\cdot 3925427$	$\cdot 25$	$\cdot 03125$	0390625	0102539	.00	$\cdot 0088644$	$\cdot 3724968$	·25
$+\cdot\theta 5$	-0005490	-3920005	$\cdot 250625$	$\cdot 0317205$	0391579	0107685	$+\cdot \theta 5$	$\cdot 0050431$	-3730485	·25125
$+\cdot 10$	•0	-3881779	$\cdot 25125$	0321945	0392490	- 0112869	$+\cdot 10$	$\cdot 0022729$	$\cdot 3703365$	$\cdot 2525$
$+\cdot 15$	-0005603	-3809998	-251875	$\cdot 0326721$	0393354	0118089	+.15	$\cdot 0005777$	$\cdot 3642861$	$\cdot 25375$
$+\cdot 20$	$\cdot 0022729$	$\cdot 3703365$	-2525	0331531	0394174	0123344	+ 20	•0	-3547680	$\cdot 255$
+.25	-0052014	·3559973	$\cdot 253125$	-0336377	0394947	0128634	+.25	$\cdot 0006024$	•3415919	$\cdot 25625$
$+\cdot 3\theta$	$\cdot 0094334$	⋅3377189	$\cdot 25375$	$\cdot 0341258$	0395674	0133957	+.30	0024715	$\cdot 3244949$.2575
+.35	-0150862	·3151498	$\cdot 254375$	$\cdot 0346174$	0396353	0139313	+.35	$\cdot 0057238$	•3031260	.25875
$+ \cdot 40$	$\cdot 0223140$	·2878260	$\cdot 255$	0351125	0396984	- 0144700	$+ \cdot 40$	$\cdot 0105126$	$\cdot 2770218$.26
$+ \cdot 45$.0313204	$\cdot 2551371$	$\cdot 255625$	-0356111	- 0397568	- 0150118	$+ \cdot 45$	0170404	$\cdot 2455721$	-26125
$+\cdot 50$	$\cdot 0423754$	2162728	-25625	-0361133	0398102	0155564	+.50	0255763	-2079674	.2625
+.55	0.0558421	$\cdot 1701431$	-256875	-0366189	0398587	0161038	+.55	0364823	·1631181	•26375
$+\cdot 60$	$\cdot 0722203$	1152488	$\cdot 2575$.0371281	0399021	0166540	+.60	$\cdot 0502571$	1095254	.265
+.65	-0922180	0494649	$\cdot 258125$	$\cdot 0376408$	- 0399406	- 0172067	+.65	0676076	0450651	.26625
+.70	-1168803	$\bar{1}$ 9696565	-25875	$\cdot 0381570$	- 0399739	- 0177618	+.70	.0895777	1.9666028	.2675
+.75	$\cdot 1478351$	1.8709390	$\cdot 259375$	-0386768	0400021	0183193	÷·75	$\cdot 1177943$	1.8692544	.26875
+.80	-1878190	$\bar{1}$ ·7451026	·26	⋅0392	0400250	- 0188790	+.80	$\cdot 1549924$	$\bar{1}$ ·7448109	·27
+.85	-2419720	1.5767267	-260625	-0397268	0400427	0194408	+.85	·2063110	1.5778522	27125
+ .90	-3218470	$\bar{1}$ ·3311524	-26125	.0402570	0400550	0200045	$+\cdot 90$.2833014	$\bar{1}$ ·3337203	.2725
+.95	•4643287	$\bar{2} \cdot 8977254$	$\cdot 261875$	$\cdot 0407908$	0400620	0205702	+.95	•4228471	2.9017612	.27375

TABLE B—(continued).

$$\rho = \cdot 2.$$

$$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9734068.$$

$$\begin{split} \rho = \cdot 3. \\ \log (1-\rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9385621. \end{split}$$

		7101000.				Ι — ρ)-			
ϕ_2	ϕ_3	ϕ_4	r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_4
0159758	0326811	+ .0057193	95	-6348801	$\bar{2}$ ·7667074	·214375	·0102424	0280527	+ .010496
·0166531	0331264	+ .0050816	90	4849062	$\bar{1} \cdot 2038806$	·21625	.0110633	0288235	+.009898
.0173445	0335620	+ 0044192	85	·3974915	$\bar{1}.4532246$	·218125	.0119158	0295824	+.009241
.01805	0339875	+.0037321	80	.3357497	$\bar{1}.6253949$.22	.0128	0303250	+.0085266
0187695	- •0344025	+ .0030208	75	2881264	$\bar{1}.7550511$	-221875	.0137158	0310528	+.007751
0195031	0348065	+ 0022856	70	-2494796	$\bar{1}.8576146$.22375	.0146633	0317633	+.006918
0202508	0351990	+ 0015269	65	$\cdot 2170712$	1.9412961	-225625	.0156424	0324549	+.006028
0210125	0355797	+ 0007451	60	.1892713	0109810	-2275	0166531	0331264	+.005081
0217883	0359481	- 0000593	55	-1650331	.0698054	$\cdot 229375$.0176955	0337760	+ .004078
0225781	0363037	0008860	50	.1436465	1198950	23125	.0187695	0344025	+ .003020
0233820	0366462	0017344	45	.1246098	$\cdot 1627501$	-233125	.0198752	0350042	+.001909
0242	0369750	0026040	$-\cdot \widetilde{40}$.1075577	1994619	·235	0210125	0355797	+ 000745
0250320	0372898	0034943	35	.0922180	2308416	236875	.0221814	0361275	- 000469
0.0258781	0375900	- 0044047	30	0783851	2575009	23875	.0233820	0366462	001734
0267383	0378754	0053345	25	.0659021	2799047	240625	.0246143	0371342	003046
0276125	0381453	0062833	20	.0546496	2984059	.2425	.0258781	0375900	004404
0285008	0383994	0072503	15	.0445372	3132690	-244375	-0271736	0380123	- 005806
0294031	0386373	0082349	10	0354989	3246862	.24625	.0285008	0383994	007250
0303195	0388585	0092363	05	.0274889	-3327884	.248125	.0298596	0387500	- 008733
03125	0390625	0102539	.00	.0204793	-3376520	.25	0230330	- 0390625	- 010253
0321945	0392490	0112869	$+\cdot 05$	0204790	·3393033	-251875	03120 0326721	0393354	- 011808
0331531	0394170	- 0123344	+ 10	0094334	-3377189	251375	0341258	- 0395674	- 013398
0341258	0395674	- 0133957	+.15	0054334	3328255	255625	0356111	0397568	-·015011
0351125	0396984	- 0144700	+.20	0034243	3324233	2575	0371281	0399021	- 016654
0361133	0398102	- 0155564	+ 25	.0006354	3125381	259375	0386768	0400021	- 018319
0371281	0399021	0166540	+.30	-00006554	2966934	-26125	0380708	0400550	- 020004
0381570	0399021			-					
0392		- 0177618	+ ·35	0006788	•2766112	·263125	0418689	0400595	021700
0402570	-·0400250 -·0400550	0188790	+ .40	0028223	•2518296	-265	0435125	0400141	- 023421
		0200045	+ 45	.0066301	•2217400	·266875	.0451877	0399172	- 025145
0413281	0400635	0211375	+ .50	.0123676	1855345	·26875	.0468945	0397675	- 026878
0424133	0400500	0222767	+.55	.0203937	·1421251	-270625	.0486330	0395633	- 028607
0435125	0400141	0234213	+.60	.0312032	-0900151	.2725	.0504031	0393033	030337
0446258	0399553	0245700	+.65	.0454992	0270821	$\cdot 274375$	0.0522049	0389860	032060
0457531	0398732	- 0257219	+.70	0.0643213	1.9501937	$\cdot 27625$	$\cdot 0540383$	- 0386098	- 033773
0468945	0397675	0268757	+.75	0.0892920	1.8544683	$\cdot 278125$.0559033	- 0381733	- 03547
04805	0396375	- 0280304	+.80	$\cdot 1231416$	1.7316990	·28	.0578	- 0376750	037149
0492195	0394829	- 0291847	+.85	$\cdot 1710041$	<u>1</u> ·5664684	$ \cdot 281875 $	+0597283	0371134	- 038802
0504031	0393033	0303374	$+\cdot 90$	$\cdot 2444254$	1.3241210	-28375	$\cdot 0616883$	0364871	040426
.0516008	0390982	0314873	+.95	·3802830	1.8940059	-285625	0.0636799	0357945	042017

TABLE B. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

 $\rho = 4.$ $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 8864189.$

 $\rho = .5.$ $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1}.8125919.$

		10g (1 -	$-\rho^2)^2$	= 1.88641	.09.		I	$\log (1-\rho)$	$(-2)^2 = 1.812$	
r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_4	r	$\log \chi_1$	$\log \chi_2$	ϕ_1
95	-6832371	$\bar{2}$ ·6990762	.2025	-0057781	0229682	+.0129113	95	·7367591	$\bar{2}$ ·6107927	·190625
90	.5320225	$\bar{1}$ ·1368698	.205	.0066125	0240578	+ .0125970	90	.5844606	$\bar{1}$ ·0491282	.19375
85	$\cdot 4433337$	$\bar{1}.3868509$.2075	$\cdot 0075031$	0251404	+.0121802	85	-4946527	$\tilde{1}$ -2996689	196875
80	-3802830	$\bar{1}.5596756$	·21	.00845	0262125	+ .0116596	80	$\cdot 4304462$	$\bar{1}$ ·4730716	.2
75	·3313147	$\bar{1}$ ·6900043	·2125	$\cdot 0094531$	0272705	+.0110342	75	$\cdot 3802830$	$\bar{1}$ ·6039976	.203125
70	$\cdot 2912852$	$\bar{1}$ ·7932591	·215	$\cdot 0105125$	0283109	$+ \cdot 0103034$	70	-3390180	$\bar{1}$ ·7078702	.20625
− ·65	$\cdot 2574549$	$\bar{1}.8776516$.2175	$\cdot 0116281$	- 0293303	+.0094672	65	·3039093	1.7929019	209375
60	$\cdot 2281921$	$\bar{1}$.9480680	.22	·0128	0303250	+.0085260	60	$\cdot 2733227$	1.8639801	·2125
55	-2024481	·0076453	$\cdot 2225$	$\cdot 0140281$	0312916	$+ \cdot 0074804$	55	$\cdot 2462074$	$\bar{1}$ ·9242431	$ \cdot 215625 $
50	$\cdot 1795110$	-0585101	.225	-0153125	0322266	+.0063318	50	$\cdot 2218487$	1.9758187	$ \cdot 21875 $
45	·1588770	$\cdot 1021639$	$\cdot 2275$.0166531	0331264	+.0050816	$- \cdot 45$	$ \cdot 1997401 $	$\cdot 0202098$	221875
$-\cdot 40$	$\cdot 1401787$	$\cdot 1396988$	·23	-01805	0339875	+.0037321	40	·1795110	.0585101	.225
35	1231416	·1719271	·2325	-0195031	0348065	$+ \cdot 0022856$	$-\cdot 35$	1608837	.0915336	-228125
30	$\cdot 1075577$	·1994619	.235	$\cdot 0210125$	0355797	+.0007451	30	1436465	·1198950	•23125
-·25	0932674	2227694	·2375	$\cdot 0225781$	0363037	0008860	- ⋅25	$\cdot 1276363$	$\cdot 1440625$	234375
20	.0801485	·2422038	·24	.0242	0369750	- 0026040	20	$\cdot 1127264$	1643923	·2375
15	0681078	2580318	·2425	$\cdot 0258781$	- 0375900	0044047	15	0988194	·1811527	-240625
10	$\cdot 0570761$	·2704450	.245	0.0276125	0381453	0062833	10	0858411	1945400	.24375
05	-0470041	-2795781	.2475	$\cdot 0294031$	- 0386373	- 0082349	05	.0737368	2046893	-246875
.00	.0378604	2855089	·25	03125	0390625	0102539	-00	.0624694	-2116818	.25
+ .05	.0296300	-2882652	.2525	-0331531	- 0394174	- 0123344	+.05	.0520175	•2155489	•253125
+.10	.0223140	-2878260	.255	0.0351125	- 0396984	- 0144700	+.10	.0423754	·2162728	25625
+.15	$\cdot 0159298$.2841201	.2575	$\cdot 0371281$	0399021	0166540	+.15	0335527	-2137861	$ \cdot 259375 $
+ .20	.0105126	·2770218	.26	.0392	- 0400250	0188790	+.20	0255763	2079674	•2625
+ .25	.0061172	-2663445	.2625	.0413281	0400635	0211375	+.25	0184918	1986347	•265625
+ ·30	.0028223	-2518296	.265	0435125	0400141	0234213	+.30	0123676	1855345	-26875
+ 35	.0007352	·2331303	.2675	.0457531	0398732	0257219	+ 35	.0072998	1683255	271875
+ 40	•0	-2097881	.27	.04805	0396375	0280304	+ 40	0034197	11065558	•275
+ .45	.0008089	·1811980	•2725	0504031	0393033	- 0303374	+ •45	0009057	·1196270	•278125
+ .50	.0034197	·1465558	.275	0528125	0388672	0326331	+ .50	.0	0867431	.28125
+ 55	.0081829	-1047779	.2775	0552781	0383256	-·0349072	+.55	-0010353	0468291 $\overline{1} \cdot 9984028$.284375
+.60	.0155840	$ \begin{array}{c c} \cdot 0543720 \\ \hline 1 \cdot 9932210 \end{array} $	·28 ·2825	·0578 ·0603781	-·0376750 -·0369119	0371490	+ .60	·0044774 ·0109971	1.9393579	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+ .65	.0263161					- 0393475	+.65	0109971 0215976	1.8665804	·290625 ·29375
+.75	0.0414078 0.0624694	$\frac{1.9181979}{1.8244269}$	$.285 \\ .2875$	0.0630125 0.0657031	-·0360328 -·0350342	- ·0414911 - ·0435679	+·70 +·75	0215976	$\frac{1.8003804}{1.7752089}$	296875
+.80	0024094 0922180	$\frac{1.8244269}{1.7037082}$	2875	06845	-·0330342 -·0339125	-·0435679 -·0455654	+.73	0624694	1.6570600	3
+ .85	.1357728	1.5406314	$+29 \\ -2925$	00845	- 0326643	- ·0455054 - ·0474709	+.85	1005057	1.4967424	303125
+ .99	.1337728	1.3005493	·2925 ·295	0712531 0741125	0312859	-·0474709 -·0492710	+.90	1634553	1.2596309	30625
+ .95	·3357497	$\frac{1.5005495}{2.8728199}$	0.295	0770281	0297740	-·0492710 -·0509521	+ .95	2881264	2·8351091	30025
+ 30	9991491	4 0140199	4910	0110201	0201140	- 00000021	+ .90	2001204	2 0001001	909919
		-			1			1		1

TABLE B—(continued).

$$ho = \cdot 5.$$
 $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 8125919.$

$$\rho = .6.$$

$$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 7092700.$$

10g (1 -		1							
ϕ_2	ϕ_3	ϕ_4	r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_4
-0025830	0178043	+ .0130733	95	·7983074	$\bar{2}$ ·4939170	.17875	.0006570	- ·0129380	+ .0113096
.0033008	0191498	+ 0132346	90	6450539	$\frac{1}{2} \cdot 9327299$.1825	.0011281	0148103	+ 012045
.0041064	0205090	+.0132540	85	$\cdot 5542555$	$\bar{1} \cdot 1837659$	$\cdot 18625$	-0017258	0159569	+.012623
.005	0218750	+ 0131250	80	·4890205	$\bar{1}$:3576828	.19	.00245	0175375	+.013024
.0059814	0232410	+.0128423	75	·4377890	1.4891430	19375	-0033008	0191498	+ 013234
.0070508	0246002	+.0124015	70	+3954124	$\bar{1}.5935710$.1975	$\cdot 0042781$	0207818	+.013240
.0082080	0259457	+.0117995	65	.3591488	$\bar{1}$.6791805	-20125	0.0053820	- 0224218	+ .013030
.0094531	0272705	+.0110342	60	.3273589	$\bar{1}$ ·7508604	.205	0066125	0240578	+.012597
$\cdot 0107861$	0285679	+.0101042	55	-2989895	$\bar{1}.8117504$.20875	$\cdot 0079695$	0256780	+.011933
.0122070	0298309	+.0090097	50	$\cdot 2733227$	$\bar{1}$ 8639801	$\cdot 2125$	$\cdot 0094531$	0272705	+.011034
.0137158	0310528	+.0077516	45	$\cdot 2498484$	$\bar{1}$ -9090541	-21625	$\cdot 0110633$	0288235	+.009898
.0153125	0322266	+.0063318	40	-2281921	$\bar{1}.9480680$.22	.0128	0303250	+.008526
$\cdot 0169971$	0333454	+.0047535	35	-2080718	$\bar{1}$.9818379	$\cdot 22375$	$\cdot 0146633$	- 0317633	+.006918
$\cdot 0187695$	0344025	+.0030208	30	.1892713	-0109810	$\cdot 2275$	$\cdot 0166531$	0331264	+.005081
0206299	0353909	+.0011389	-·25	$\cdot 1716222$	-6359679	.23125	-0187695	0344025	+.003020
0225781	0363037	0008860	20	$\cdot 1549924$	-0571577	-235	-0210125	- 0355797	+.000745
0246143	0371342	0030466	15	$\cdot 1392781$	$\cdot 0748218$	-23875	.0233820	0366462	001734
$\cdot 0267383$	0378754	0053345	10	-1243983	-0891598	.2425	+0258781	0375900	004404
$\cdot 0289502$	0385204	0077405	05	-1102908	·1003106	-24625	0285008	0383994	007250
.03125	0390625	0102539	.00	-0969100	·1083599	.25	-03125	0390625	- 01025
.0336377	0394947	- 0128634	+.05	0.0842253	·1133434	$\cdot 25375$	$\cdot 0341258$	0395674	- 013398
.0361133	0398102	0155564	+.10	-0722203	·1152488	.2575	-0371281	0399021	016654
.0386768	0400021	0183193	+.15	-0608930	1140143	-26125	-0402570	0400550	020004
$\cdot 0413281$	0400635	0211375	+.20	-0502571	$\cdot 1095254$	·265	0.0435125	0400141	02342
.0440674	0399876	0239952	+.25	-0403433	-1016073	-26875	-0468945	0397675	026878
0468945	~ .0397675	0268757	+.30	-0312032	-0900151	-2725	0.0504031	0393033	03033
$\cdot 0498096$	0393963	0297613	+.35	$\cdot 0229135$.0744170	-27625	0540383	- •0386098	033773
$\cdot 0528125$	0388672	0326331	+.40	.0155840	$\cdot 0543720$	-28	.0578	0376750	037149
$\cdot 0559033$	0381733	0354711	+ .45	.0093675	-0292945	-28375	-0616883	0364871	040420
0.0590820	0373077	0382544	+.50	0.0044774	$\bar{1}$ 9984028	-2875	-0657031	0350342	04356
.0623486	0362637	0409610	+.55	-0012127	$\bar{1}$ -9606388	-29125	-0698445	0333044	046536
$\cdot 0657031$	0350342	0435679	+.60	.0	1.9145399	-295	0.0741125	0312859	04927
.0691455	0336124	0460509	+.65	-0014639	1.8580230	-29875	-0785070	0289669	051743
$\cdot 0726758$	- 0319916	0483849	+.70	$\cdot 0065529$	$\bar{1}$.7880012	-3025	.0830281	0263353	053900
$\cdot 0762939$	0301647	0505437	+.75	.0167837	$\bar{1}$ ·6996456	-30625	-0876758	0233795	055690
.08	0281250	0525000	+.80	$\cdot 0347621$	$\bar{1}.5848120$	·31	09245	0200875	057063
.0837939	0258656	0542255	+.85	0.0654746	$\bar{1}$ ·4281563	-31375	-0973508	0164474	05796
-0876758	0233795	- 0556908	+.90	-1202910	$\bar{1} \cdot 1951114$	·3175	$\cdot 1023781$	0120568	05833
.0916455	0206600	0568656	+.95	.2358762	$\bar{2}$ ·7751326	-32125	$\cdot 1075320$	0080757	- 05811

410 Distribution of Correlation Coefficient in Small Samples

TABLE B. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

$$\begin{split} \rho = & \cdot 7. \\ \log{(1 - \rho^2)^{\frac{3}{2}}} = & \bar{1} \cdot 5613553. \end{split}$$

$$\rho = .8.$$

$$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 3344538.$$

		10g (1 -	108	(1 - P)-	= 1.99449					
r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_4	r	$\log \chi_1$	$\log \chi_2$	ϕ_1
95	·8731268	$\bar{2}$ ·3332450	·166875	-0000002	0087458	+.0081651	95	-9728591	2·0942943	.155
90	$\cdot 7190257$	$\frac{1}{2}$.7724818	.17125	0000002	- 0101880	+.0094402	90	-8180004	$\bar{2}.5339099$.16
85	-6273441	$\bar{1}$.0239593	.175625	.0003611	0117540	+ .0105881	85	$\cdot 7255265$	$\frac{1}{2}$.7857835	165
80	.5611883	$\bar{1}$ ·1983367	.18	.0008	- 0134250	+.0115710	80	-6585413	$\bar{2} \cdot 9605755$.17
75	$\cdot 5089957$	$\bar{1}$ ·3302774	.184375	.0014111	0151821	+.0123553	75	.6054797	$\bar{1}$.0929508	-175
70	-4656161	$\bar{1}$ ·4352073	18875	.0021945	- 0170065	+ .0129113	70	-5611883	$\bar{1}$ ·1983367	.18
65	$\cdot 4283019$	$\bar{1}.5213417$.193125	.0031502	0188794	+.0132135	65	.5229163	$\bar{1}$ · 2849499	·185
60	$\cdot 3954124$	$\bar{1}.5935710$.1975	.0042781	- 0207818	+ 0132403	60	·4890205	1.3576828	.19
55	$\cdot 3658926$	$\bar{1}$ -6550366	-201875	.0055783	0226951	+.0129741	55	.4584391	$\bar{1}.4196788$.195
50	-3390180	$\bar{1}$ ·7078702	20625	.0070508	0246002	+ 0124015	50	-4304462	$\bar{1}$ ·4730716	.2
45	$\cdot 3142753$	$\bar{1}$.7535784	210625	.0086955	- 0264785	+ 0115131	45	.4045223	1.5193703	205
40	$\cdot 2912852$	$\bar{1}$.7932591	.215	.0105125	0283109	+.0103034	40	-3802830	$\bar{1}.5596756$.21
35	$\cdot 2697607$	$\bar{1} \cdot 8277312$	219375	.0125018	0300788	+.0087711	35	.3574352	1.5948094	.215
30	$\cdot 2494796$	1.8576146	-22375	.0146633	0317633	+.0069189	30	-3357497	$\bar{1}$ ·6253949	.22
25	$\cdot 2302671$	$\bar{1}$ ·8833832	228125	.0169971	0333454	+.0047535	25	.3150444	$\bar{1}$ ·6519100	.225
20	$\cdot 2119841$	$\bar{1}$ 9053996	2325	.0195031	- 0348065	+.0022856	20	$\cdot 2951711$	$\bar{1}$ -6747215	.23
15	$\cdot 1945188$	$\bar{1}$ 9239392	$\cdot 236875$	0221814	0361275	0004699	15	-2760084	$\bar{1}$ -6941098	.235
10	-1777811	$\bar{1}.9392061$	$\cdot 24125$.0250320	- 0372898	- 0034943	10	.2574549	$\bar{1} \cdot 7102846$.24
05	$\cdot 1616988$	$\bar{1}.9513444$	$\cdot 245625$.0280549	- 0382744	0067646	05	-2394256	$\bar{1}$ ·7233964	.245
.00	$\cdot 1462149$	$\bar{1}.9604452$.25	.03125	0390625	0102539	.00	-2218487	$\bar{1}$.7335437	.25
$+\cdot 05$	$\cdot 1312858$	$\bar{1}$ -9665509	$\cdot 254375$.0346174	0396353	0139313	+.05	$\cdot 2046635$	$\bar{1}.7407774$.255
+.10	$\cdot 1168803$	$\bar{1}$ 9696565	$\cdot 25875$.0381570	0399739	0177618	+.10	.1878190	$\bar{1}.7451026$.26
+.15	$\cdot 1029796$	$\bar{1} \cdot 9697088$	$\cdot 263125$.0418689	0400595	0217064	+.15	-1712730	$\bar{1}.7464775$	265
+.20	0895777	$\bar{1}$ -9666028	-2675	.0457531	0398732	0257219	+.20	.1549924	$\bar{1}.7448109$.27
+.25	$\cdot 0766832$	$\bar{1}$ ·9601751	$\cdot 271875$.0498096	0393963	- 0297613	+.25	-1389531	$\bar{1}$.7399556	.275
+.30	0643213	$\bar{1}$ ·9501937	-27625	0.0540383	0386098	- 0337735	+ .30	.1231416	$\bar{1}$.7316990	.28
+.35	0525383	$\bar{1}$.9363424	-280625	.0584393	0374949	0377031	+ .35	.1075577	$\bar{1}$.7197481	.285
+ .40	$\cdot 0414078$	$\bar{1}$.9181979	-285	0.0630125	0360328	0414911	$+ \cdot 40$	0.0922180	$\bar{1} \cdot 7037082$.29
+ .45	$\cdot 0310401$	$\bar{1}$ ·8951960	-289375	-0677580	0342047	0450741	+ .45	.0771634	1.6830497	.295
+.50	$\cdot 0215976$	$\bar{1}$ ·8665804	$\cdot 29375$	$\cdot 0726758$	0319916	0483849	+.50	0.0624694	1.6570600	.30
+ • 55	$\cdot 0133179$	$\bar{1}$ ·8313240	$\cdot 298125$	$\cdot 0777658$	0293748	0513521	+ .55	0482647	1.6247660	√305
$+\cdot 6\theta$	$\cdot 0065529$	$\bar{1} \cdot 7880012$	-3025	0.0830281	0263353	0539003	+.60	.0347621	$\bar{1}.5848120$	·31
+ .65	$\cdot 0018354$	$\bar{1}$:7345749	$\cdot 306875$	0884627	0228545	0559500	+.65	-0223140	$\bar{1}$ ·5352510	·315
+.70	.0	$\bar{1}$ ·6680154	$\cdot 31125$.0940695	0189134	0574179	+.70	.0115163	$\bar{1}$ ·4731726	.32
+.75	$\cdot 0024195$	Ī·5835655	$\cdot 315625$	-0998486	0144932	0582164	+.75	$\cdot 0034197$	$\bar{1}$ ·3939808	·325
+.80	$\cdot 0115163$	$\bar{1}$ -4731726	.32	·1058	0095750	0582540	+.80	.0	1.2898462	+33
+.85	-0320384	1.3216122	$\cdot 324375$	·1119236	0041400	0574351	+·85	-0053672	$\bar{1}$ ·1458632	.335
$+\cdot 9\theta$	$\cdot 0750398$	1.0944747	-32875	$\cdot 1182195$	+.0018306	0556601	+.90	.0296300	$\bar{2} \cdot 9280951$.34
+.95	$\cdot 1767574$	$\bar{2}$ ·6814297	$\cdot 333125$	$\cdot 1246877$	+.0083557	0528253	+.95	·1075577	$\mathbf{\bar{2}} \cdot 5269450$	⋅345
1										

TABLE B—(continued).

$$\rho = .8.$$
 $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 3344538.$

$$\rho = .9.$$

$$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{2}.9181304.$$

10g (1	$-\rho^2)^2=1.6$)044000. 			10g (1	$(-\rho^2)^2 =$	= 2.918130	J4.	
ϕ_2	ϕ_3	ϕ_1	r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_1
.0006125	0056047	+ .0044070	95	1.1344648	3.6665553	·143125	.0024939	0038913	+.0010198
.0002	0067750	+.0060060	90	9789250	$\frac{1}{2} \cdot 1065114$.14875	.0014445	0045010	+.0025068
0000125	0081703	+.0075898	85	-8857364	$\bar{2} \cdot 3587425$.154375	-0006799	0054756	+.0042099
.00005	0097625	+ 0090871	80	·8180004	$\bar{2}.5339099$.16	.0002	0067750	+.0060060
$\cdot 0003125$	0115234	+.0104333	75	·7641490	$\bar{2}$ · 6666800	$\cdot 165625$.0000049	0083591	+.0077831
.0008	0134250	+ 0115710	70	$\cdot 7190257$	$\bar{2}$ ·7724818	$\cdot 17125$	0000945	0101880	+.0094402
0.0015125	0154391	+ .0124493	65	-6798765	$\bar{2}$ ·8595337	.176875	-0004689	0122216	$+ \cdot 0108873$
0.00245	- 0175375	+.0130246	60	$\cdot 6450539$	$\bar{2}$ · 9327299	•1825	•0011281	0148103	+.0120455
$\cdot 0036125$	0196922	+ 0132598	55	$\cdot 6134923$	$\bar{2}$ · 9952161	.188125	-0020721	0167425	+.0128469
.005	0218750	+.0131250	50	-5844606	$\bar{1}.0491282$	$\cdot 19375$.0033008	0191498	+.0132346
.0066125	-0240578	+.0125970	45	$\cdot 5574342$	$\bar{1}.0959782$	$\cdot 199375$	0048143	0216015	$+ \cdot 0131629$
.00845	0262125	+.0116596	40	.5320225	$\bar{1}$ ·1368698	.205	0066125	- 0240578	+.0125970
.0105125	0283109	+.0103034	35	$\cdot 5079254$	$\bar{1}$ ·1726281	-210625	0.0086955	0264785	+.0115131
.0128	0303250	+.0085260	$-\cdot 30$	·4849062	$\bar{1}$ ·2038806	-21625	$\cdot 0110633$	0288235	+.0098985
0153125	0322266	+.0063318	25	$\cdot 4627737$	1.2311092	221875	0137158	0310528	+.0077516
.01805	0339875	+.0037321	20	·4413696	1.2546862	.2275	-0166531	0331264	+.0050816
$\cdot 0210125$	0355797	+.0007451	- ·15	-4205607	1.2748976	-233125	$\cdot 0198752$	0350042	$+ \cdot 0019092$
.0242	0369750	0026040	$-\cdot 10$	•4002321	1.2919599	$\cdot 23875$	$\cdot 0233820$	0366462	0017344
.0276125	0381453	0062833	$-\cdot 05$	→3802830	1.3060315	$\cdot 244375$	$\cdot 0271736$	- 0380123	0058066
.03125	0390625	- 0102539	$\cdot 00$	$\cdot 3606232$	1.3172203	.25	$\cdot 03125$	0390625	- 0102539
.0351125	0396984	- 0144700	+ .05	·3411701	1.3255880	$\cdot 255625$	$\cdot 0356111$	0397568	- 0150118
.0392	0400250	0188790	$+\cdot 10$	·3218470	1.3311524	.26125	$ \cdot 0402570 $	0400550	0200045
0435125	0400141	- •0234213	+ • 15	-3025809	1.3338874	-266875	-0451877	0399172	0251457
.04805	0396375	0280304	+.20	$\cdot 2833014$	$\bar{1}$ ·3337203	.2725	.0504031	0393033	0303374
.0528125	0388672	0326331	+.25	$\cdot 2639393$	1.3305264	$\cdot 278125$	0559033	0381733	0354711
.0578	0376750	0371490	+.30	$\cdot 2444254$	1.3241210	$\cdot 28375$	-0616883	0364871	0404269
.0630125	0360328	0414911	+.35	$\cdot 2246902$	1.3142457	$\cdot 289375$	-0677580	0342047	0450741
.06845	0339125	0455654	$+ \cdot 40$	$\cdot 2046635$	<u>1</u> ·3005493	·295	$\cdot 0741125$	0312859	0492710
0741125	0312859	0492710	$+ \cdot 45$	$\cdot 1842748$	1.2825579	⋅300625	∙0807518	0276909	0528645
.08	0281250	- 0525000	+.50	$\cdot 1634553$	1.2596309	-30625	0.0876758	0233795	- 0556908
.0861125	0244016	0551378	+.55	$\cdot 1421425$	1.2308910	⋅311875	0948846	0183117	0575750
.09245	0200875	0570629	+.60	-1202910	1.1951114	·3175	$\cdot 1023781$	- 0120568	0583312
0990125	0151547	0581467	+.65	0978953	1.1505243	-323125	·1101564	0057467	0577622
·1058	0095750	0582540	+.70	0.0750398	1.0944747	-32875	-1182195	+.0018306	- 0556601
1128125	0033203	0572424	+.75	-0520175	$\bar{1}$ ·0227457	334375	$\cdot 1265674$	+.0103245	- 0518057
12005	+ .0036375	0549629	+.80	-0296300	$\bar{2}$ 9280951	-34	·1352	+.0197750	0459690
1275125	+.0113266	0512594	+.85	·0100596	2.7965809	•345625	.1441174	+ .0302222	0379088
·1352	+ .0197750	0459690	+.90	.0	2.5959739	-35125	.1533195	+ .0417061	0273728
·1431125	+.0290109	0389219	+.95	.0274889	2.2200433	⋅356875	$\cdot 1628064$	+.0542668	- 0140979

TABLE C. Position of Origin and Abscissal Unit in terms of Standard Deviation.

The first Number gives the Position of the Origin, the second the Abscissal Unit.

n	$\rho = 0$	$ ho = \cdot 1$	$\rho = \cdot 2$	$\rho = \cdot 3$	$ ho=\cdot 4$
2	0	(·1116225	(.2266490	(·3490329	(.4840501
3	{ ⋅0707107	₹ .0709720	0717802	0732142	0754314
4) 0	1.1478819	3011028	·4659475	6510044
4:	₹ 0866025	1 ⋅0870223	0883242	₹ -0906481	₹ .0942760
5	1 0	1 1778638	∫ ⋅3643600	∫ •5634956	√7915154
9	1.1000000	1 .1005663	1 .1023258	1 .1054792	1 .1104330
6	.) 0	∫ ·2038711	∫ .4165411	∫ ⋅6485234	∫ .9145610
0	1.1118034	1.1125038	1 1146829	11185985	1 .1247759
7	{ 0	(.2271065	4645401	1.7246924	1.0250662
	1.1224745	1.1232981	1 .1258629	1 .1304802	1.1377861
8	1000000	3 -2482790	5083017	\ \cdot .7942029	1.1260506
	1.1322876	1 .1332252	1 .1361468	1 .1414136	1 .1497650
9	1474014	3 .2678441	5487533	(.8584888	1.2195137
	(-1414214	1424651	1 .1457192	() 1515911	1.1609168
10	1500000	2861133	5865316	9185423	1.3068548
	(-1500000	(1511433	1.1547090	1 .1611481	1.200061
11	1581139	·3033102 ·1593510	6220953	·9750815 ·1701841	1.3890961
	(.1991198	(.3196014	\(\cdot\) \(\cdo	(1.0286451	(1.4670090
12	1658312	1671572	1712949	1.0280451	1.4070090
	(0	(.3351148	(.6878684	(1.0796486	(1.5411920
13	1 1732051	1746157	1790180	1869796	1996684
	(173203)	(3499533	(.7185489	(1.1284203	(1.6121199
14	1802776	1817701	1864240	1948454	-2082735
	(0	(.3641907	·7479946	(1.1752248	(1.6801759
15	1.1870829	1886516	1935489	2024107	2165466
-	0	3779001	.7763419	(1.2202786	(1.745675]
16	1.1936492	1952922	3 .2004222	2097070	2245228
-1 PV	(0	(3911338	8037041	(1.2637617	(1.8088795
17	1.2000000	2017147	-2070688	2167611	•2322314
10	0	(.4039379	.8301762	(1.3052186	(1.8700099
18	-2061553	2079391	2135096	.2234913	2396972
70	0	·4163514	√8558391	(1.3465992	(1.9292543
19	(-2121320	·2139828	2197626	-2302287	√2469416
20	0	(.4284077	·8807623	(1.3861929	(1.9867744
,50	(-2179449	₹ -2198606	2258433	2366781	·2539828
21) 0	√4401360	9050057	(1.4247026	(2.0427101
21	(•2236068	2255854	(2317651	₹ .2429578	2608369
22	1 0	√4515616	9286218	1.4622122	52.0971840
~~	1.2291288) -2311687	2375398	2490805) .2675179
23	} 0) ·4627064	9516565	1.4987939	(2.1503024
	1.2345208	l ·2366202	1 .2431779	2550572	(.2740380
24	{ 0	4735903	9741508	1.5345139	(2.2021616
	1.2397916	1 .2419491	1 .2486887	2608980	2804084
25	0	(.4842308	9961404	1.5694295	2.2528457
	(-2449490	(.2471633	1.2540801	2666117	2.2866387
50	3500000	(.6995857	1.4409868	2.2751863	3.2760792
	,	(.0007549	3637983	3827476	4.6072140
100	$\left \begin{array}{c} 0 \\ \cdot 4974937 \end{array} \right $	9997548	(2.0606127	3.2571060	4.6973149
	(1974937	(2.0150254	1 (4.1552100	(6.5725000	\(\frac{1}{2}\cdot \cdot 5896685 \\ \(\frac{9}{2}\cdot 4914497 \)
400	9987492	1.0097694	4.1553109	(6.5735909 (1.0968491	1.1876817
	(.999149Z	1.0087684	1.0400784	(1.0909491	(1.1910911

 ${\bf TABLE} \ \ {\bf C---} (continued).$

n	$\rho = -5$	$\rho = \cdot \theta$	$\rho = .7$	ρ=•8	$\rho = \cdot 9$
	(.6397035	(.8298069	(1.0821815	1.4670408	(2.2572614
3	0787233	0836496	0914099	1051565	1375647
	8697069	1.1461037	1.5308211	2.1592865	3.6084918
4	0997391	1080827	1216223	1467433	2112748
_	1.0657049	1.4204694	1.9303003	2.8019830	4.9700548
5	1179621	1296152	1488972	1857778	2860585
	1.2384801	1.6646016	2.2906234	3.3941363	6.2758785
6	1342232	1489755	1737018	2219447	3579595
N	(1.3941989	1.8857159	2.6192262	3.9396570	7.499232
7	1490074	$\cdot 1666372$	1964454	2553750	4253943
0	1.5367713	2.0886726	2.9218412	4.4441908	8.636330
8	1626318	1829343	2174712	-2863637	4881149
0	1.6688524	2.2769195	3.2029089	4.9133944	9.6932562
9	1753174	1981116	2370570	-3152309	546438
10	1.7923354	2.4529927	3.4658872	5.3522889	(10.679101)
10	1872248	2123532	2554247	3422692	600860
77	1.9086231	2.6188112	3.7134918	5.7651162	(11.6030258
11	1984751	2258005	2727512	3677294	-6518808
10	2.0191978	2.7758616	3.9478808	6.1553948	(12.473232
12	2092046	2385646	2891787	√3918213	699949
7.0	2.1236943	2.9253194	4.1707880	6.5260261	(13-296714
13	2193627	2507341	3048225	4147185	·745449
7.4	2.2238984	3.0681290	4.3836241	6.8794080	14.0793565
14	-2291249	2623809	3197770	4365653	788704
15	2.3200595	3.2050605	4.5875494	7.2175324	(14.8260439
10	2385095	2735636	3341195	4574817	- 8299820
16	2.4125823	3.3367521	4.7835297	7.5420659	15.541290
10	2475526	2843315	₹ 3479156	4775684	₹ -869531
17	2.5018385	3.4637416	4.9723756	7.8544126	(16.2273355)
11	2562879	·2947261	₹ 3612200	4969104	907472
18	(2.5881420	3.5864801	5.1547751	8.1557645	(16.888283)
10	2647443	₹ 3047823	3740794	5155798	(⋅944032
19	2.6717601	3.7053440	5.3313166	8.4471433	(17.5262030
19	2729462	3145295	₹ 3865338	-5336387	- (→979325′
20	1 2.7529232	3.8206677	5.5025071	8.7294265	(18.143234
W 0	₹ .2809148	₹ 3239936	₹ 3986177	₹ 5511403	1.013468
21	J 2.8318307	3.9341863) 5.6687868	9.0033775	18.741171
~ <u>.</u>	₹ .2886686	₹ 3333199	4103611	₹ .5681311	1.046559
22	2.9086578	1 4.0418750	5.8305409	9.2696624	19.321644
22	₹ 2962240	(⋅3421658	1 .4217904	₹ .5846516	1.078689
23	2.9835558	§ 4·1481734	5.9881082	9.5288659	j 19·886001'
~ 0	₹ 3035949	3509062	4329287	6007373	1.109930
24	3.0566623	4.2518695	6.1417876	9.7815042	(20.435503)
14 3.	3107942	(.3594371	(.4437967	6164198	1.140353
25	3.1280980	4.3532587	6.2918434	10.0281639	20.971189
	3178324	3677825	4544124	6317351	1.1700149
50	4.5677713	6.3911451	9.2990780	14.9462808	31.588421
	4603212	1 .5361355	6677547	9376711	1.758433
100	6.5628599	9.2058648	13.4374982	121.6797456	46.025763'
	6587893	1 .7696570	9623213	1.3574820	2.559482
400	13.2812941	18.6652227	27.3067557	44.1732879	194.067664
	1.3293798	1.5566854	1.9517326	2.7620803	5.227230

MISCELLANEA.

I. Tables for estimating the Probability that the Mean of a unique Sample of Observations lies between $-\infty$ and any given Distance of the Mean of the Population from which the Sample is drawn.

By "STUDENT."

In the last number of *Biometrika* Mr Young completes the table given in Vol. x. p. 522 of the standard deviation frequency curves for small samples by working out the cases where the numbers in the sample are as low as two and three.

In the course of his note he writes "The smallest sample considered is that of n=4 but samples of two and three are of occasional occurrence, especially in physical work, and now and again a value of the probable error of an experimental result is deduced from a set of two or of three observations."

Further on he states "it is evident that the probable error determined from a set of three observations is very untrustworthy and that when there are only two observations it is very much worse."

Now in my original paper (Biometrika, Vol. vi. p. 1) I stopped at n=4 because I had not realised that anyone would be foolish enough to work with probable errors deduced from a smaller number of observations, but now I too will complete my tables which will I think emphasise the moderation of the second quotation from Mr Young's note.

Generally speaking there are two objects in determining the standard deviation of a set of observations, namely (1) to compare it with the standard deviation of similar sets of observations, and (2) to estimate the accuracy with which the mean of the observations represents the mean of the population from which the sample is drawn.

The former purpose is served by the table which Mr Young was engaged in completing, the latter, which is by far the most common use of the s.d., by the table which I gave in my original paper and which I now propose to complete downwards by including n=2 and n=3 and to extend upwards as far as n=30.

In the tables the probability is given (to four places of decimals) that the mean of a unique sample shall lie between $-\infty$ and a distance z from the mean of the population, z being measured in terms of the s.D. (s) of the sample.

[By unique I mean to say that all the information which we have (or at all events intend to use) about the distribution of the population is given by the sample in question.]

To compare with the last column of the table (n = 30) I have given the corresponding probability calculated from the nearest normal curve, namely the one with s.p. $\frac{s}{\sqrt{n-3}}$ (not $\frac{s}{\sqrt{n-1}}$ as is usually given) and this shows I think that for ordinary purposes Sheppard's tables may be used with n > 30.

With regard to samples of two it will be seen that odds of 9:1 are reached at a little more than three times the s.D., of 99:1 at a little more than thirty times, of 999:1 at a little more than 300 times, while 9999:1 is reached at in or about 3000 times the s.D.!

Perhaps I may be permitted to restate my opinion as to the best way of judging the accuracy of physical or chemical determinations.

After considerable experience I have not encountered any determination which is not influenced by the date on which it is made, from this it follows that a number of determinations of the same thing made on the same day are likely to lie more closely together than if the repetitions had been made on different days.

It also follows that if the probable error is calculated from a number of observations made close together in point of time much of the secular error will be left out and for general use the probable error will be too small.

Where then the materials are sufficiently stable it is well to run a number of determinations on the same material through any series of routine determinations which have to be made, spreading them over the whole period.

Thus if an analyst is determining the percentage of nitrogen in different samples of seed corn and wishes to know the probable error of the determination, i.e. how accurately his figures give the percentage of nitrogen in a bulk of corn.

Let us suppose that he makes ten determinations a day for sixty days and that it is of some real importance to him to get a clear idea of his error; he will do well to get sixty different samples from the same bulk of corn and analyse one of these on each of the sixty days; unless I am much mistaken he will have a more modest idea of his infallibility than he had before he compared the sixty results together. He will also, in so far as his repeated sample is representative, get a close approximation to the probable error of a single determination.

In some cases it is not possible to obtain a sufficient bulk of material and then it may be better to determine each result in duplicate, the repetitions being separated as widely as possible in point of time. Then the square root of the mean of the squares of the differences between corresponding pairs gives twice the standard deviation of the average of a pair, and if enough pairs can be taken and the determinations made on different samples this is a better method than the other, as the error of the sampling is better sampled.

In the preparation of the tables a slight mistake was discovered in the second row of the odd numbers in the original table by Mr W. L. Bowie to whom I am indebted for the calculation of the new figures.

n = 19	.6619 .7965 .8904 .9466 .9760 .9899 .9984 .9984	6666.		
n = 18	.6575 .7896 .8836 .9413 .9725 .9879 .9949 .9979	6666-		
n = 17	.6529 .7824 .8762 .9354 .9686 .9856 .9936 .9936	86666·	1	
n = 16	.6481 .7748 .8683 .9289 .9640 .9827 .9920 .9964 .9983	7686. 9696. 9696.		
n = 15	.6432 .7668 .8598 .9217 .9588 .9793 .9900 .9952	.9995 .9997		
n = 14	.6380 .7583 .8505 .9135 .9527 .9752 .9873 .9937 .9968	.9999 .9998 .9999 .9999		
n = 13	.6326 .7493 .8404 .9045 .9455 .9701 .9840 .9916 .9956	99886. 99996. 99996. 99999		
n = 12	6269 7397 82942 8942 9373 9798 9798 9888 9938	.9981 .9989 .9994 .9998 .9998		
n = 11	.6210 .7295 .8174 .8827 .9275 .9565 .9744 .9851 .9913	.9970 .9982 .9990 .9994 .9996 .9998 .9999		
n = 10	.6146 .7185 .8042 .8697 .9161 .9473 .9675 .9801 .9878	.9954 .9971 .9982 .9983 .9993 .9995 .9998	I	
n = 9	.6079 .7066 .7896 .98547 .9025 .9360 .9585 .9733 .9828	.9928 .9953 .9969 .9970 .9986 .9990 .9995 .9995	8666·	
<i>n</i> = 8	.6006 .6936 .7733 .8375 .8863 .9218 .9468 .9640 .9756	.9887 .9922 .9946 .9962 .9973 .9981 .9980 .9990	9666 9666 9666 9666 9666 9666	
n=7	.5928 .6795 .7549 .8175 .9040 .9314 .9512 .9512	9821 9870 9905 9948 9948 9970 9970 9987	.9989 .99993 .99996 .9996 .99997 .9998 .9998	6666
n=6	.5841 .6634 .7340 .7940 .8428 .8813 .9109 .9332 .9498	9714 9782 9832 9832 9890 9920 9937 9950 9959	.9973 .9982 .9982 .9987 .9981 .9991 .9993 .9993	.9995 .9996 .9996 .9997
n=5	.5745 .6453 .7096 .7096 .7657 .8131 .8518 .8830 .9076 .9269	9537 9628 9700 9756 9800 9884 9884 9886 9904	.9931 .9941 .9950 .9957 .9967 .9972 .9978	.9983 .9984 .9986 .9988 .9989
n=4	5633 6241 6804 7309 7749 8125 8440 8701 8915 9092	9236 9354 9451 9451 9531 9598 9652 9699 9737 9770	9821 9841 9858 9873 9886 9898 9908 9916	.9937 .9942 .9947 .9951
n=3	.5498 .5981 .6437 .6857 .7236 .7573 .7867 .8123 .8345 .8345	.8700 .8841 .8963 .9069 .9160 .9240 .9371 .9425	9514 9552 9585 9615 9667 9667 9689 9727 9727	.9759 .9772 .9785 .9797 .9808
n=2	.5317 .5628 .5928 .6211 .6476 .6720 .6944 .7148 .7333	7651 7789 7789 77913 8026 8128 82128 8222 8308 8308 8386 8458	.8585 .8642 .8642 .8743 .8743 .8789 .8831 .8871 .8908 .8943	.9007 .9036 .9063 .9089 .9114
z = (x/s)	_		99999999999999999999999999999999999999	00 00 00 00 1 01 00 4 70

For comparison $\left(\frac{\sqrt{27}}{\sqrt{2\pi}}\int_{-\infty}^{x} e^{-\frac{27}{2}dx}\right)$.6983	.8507	.9405	.9802	.9953	1666.	6666.			
n = 30	.7030	.8550	.9415	.9801	.9942	.9985	-9997	6666		
n = 29	-6997	.8506	.9383	-9784	·9934	-9985	9666	6666		
n = 28	-6964	.8462	.9347	.9763	.9925	6266	-9995	6666		
n = 27	.6929	8415	.9309	.9742	.9915	.9975	·9994	6666		-
n = 26	6894	.8367	.9270	.9717	.9903	.9970	.9992	8666	6666	
n = 25	-6858	-8316	.9227	$\cdot 9691$	0686.	·9964	0666	-9997	6666	
n = 24	.6821	·8264	.9182	-9662	.9875	.9958	.9987	9666	6666	
n = 23	-6783	·8209	.9133	-9630	-9858	-9950	1 866.	-9995	8666	6666
n = 22	.6744	.8152	-9085	-9595	.9838	.9940	6266	-9993	2666	6666
n = 21	.6703	·8093	.9056	-9556	-9815	.9929	·9974	.9991	9666	6666
n = 20	-6662	.8030	-8967	.9513	6826	.9915	-966	·9988	-9995	6666
$z = \frac{z}{s}$.1	ં	÷	4	÷	9.	1.	œ	6.	1.0

86666 66666		n=2 -670 -670 -809 -902 -981 -992 -997
-9994 -9997 -9998 -9999		n = 20 -6662 -8030 -8967 -9513 -9789 -9915 -9915
.9969 .9977 .9988 .9988 .9990 .9990 .9996 .9996 .9996 .9996	66666	$\begin{pmatrix} x = \\ -\hat{s} \\ \hat{s} $
9851 9983 9919 9932 9942 9956 9956 9961 9966 9969	.9989 .9994 .9996 .9998 .9998 .9998	
9220 9303 9372 9428 9474 9514 9514 9604 9604 9668	9788 9841 9843 9843 9843 9840 9840 9847 9965 9966 9966	9973 9977 9977 9980 9982 9984 9991 9993 9993
4 4 4 4 4 6 6 6 5 5 8 8 8 8 8 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	120-0 140-0 150-0 160-0 180-0 250-0 250-0 350-0 450-0 500-0

II. On the Representation of Statistical Data.

By L. ISSERLIS, D.Sc.

§ 1. In a paper entitled "On the Mathematical Representation of Statistical Data*" Professor Edgeworth gives several examples of the fitting of what he calls the generalized curve of error and some of his recent modifications of it to frequency data. The examples to which he applies his methods are taken, with a single exception, from a paper by the present writer, in which double hypergeometrical series were fitted to frequency distributions in two variables. Professor Edgeworth describes these data as "well suited to test and illustrate methods of representing frequency distributions." Judged by the usual criterion for the testing of goodness of fit these examples indicate that Professor Edgeworth's curves are decidedly unsatisfactory, but he maintains that the fault lies in the criterion and not in the curves. Professor Edgeworth proposes therefore a new criterion for the testing of the goodness of fit of theory to observation, viz. the magnitude of the sum $S(e^2/U)$, where U is the ratio of the frequency in any category of the data to the total frequency (called by Professor Edgeworth the relative frequency) and e is the difference between this and the theoretical relative frequency. He adds erroneously that this is Professor Pearson's χ^2 divided by the total frequency N. To quote from Professor Edgeworth's paper (p. 461) "His (i.e. Professor Pearson's) χ^2 being, in our notation, equal to $S(N^2e^2)/S(NU)$, where N is the total number of observations, is N times as great as our criterion $S(e^2/U)$." As a matter of fact Professor Pearson's χ^2 is equal to $S\{(m'-m)^2/m'\}$ where m' is the theoretical and m the observed frequency, and in Professor Edgeworth's notation this would be $NS(e^2/u)$ where u is the theoretical relative frequency. The fact that the denominator U employed by Professor Edgeworth is the observed relative frequency must make the test nugatory in practice, for $S(e^2/U)$ will be infinite whenever the data contain one category with zero frequency. Very little difference results in Professor Edgeworth's examples when the U's are replaced by u's in the criterion proposed by him, but the later part of his paper claims to give methods of curve fitting which; "not only do or may give better values for the coefficients than the use of moments, but also must give better results than moments or any other process." Professor Edgeworth attempts in the section entitled "some new constructions" to achieve this highly desirable end by, as he says, minimising the Pearsonian criterion χ^2 . Actually he minimises $S(e^2/U)$, a very much easier thing to do since the denominators are constant, but leading to equations which are altogether irrelevant.

Professor Edgeworth's proposed criterion is an absolute one, independent of the number of categories. The value $S\left(e^2/U\right)$ is usually small and apparently we are to judge of the goodness of fit by the number of zeroes between the decimal point and the first significant figure.

In what follows we fit Pearsonian frequency curves of the appropriate type to the examples used by Professor Edgeworth. In addition to calculating χ^2 and the corresponding value of P for each, we give also the values of $S\left(e^2/U\right)$ and $S\left(e^2/u\right)$. All these are compared with the corresponding values for the curves fitted by Professor Edgeworth||. It will appear that Professor Edgeworth's curves are a poorer fit than the Pearsonian types not only when judged by the legitimate criterion but even according to the criterion proposed by Professor Edgeworth, and this in spite of the fact that he does not as a rule attempt to fit his curve to the whole of each distribution but confines himself to the central compartments.

- * Journal of the Royal Statistical Society, Vol. LXXIX. Part IV. (July, 1916).
- † Phil. Mag. September, 1914.

‡ Loc. cit. p. 476.

 $\$ Professor Edgeworth's italics.

|| So far as that was possible. Several of Professor Edgeworth's calculations in the later sections of the paper are not finished, and some of the arithmetic would have to be rectified before completing the calculations.

§ 2. Example I. Distribution of 25,000 Deals at Whist according to the Number of Trumps held by the First Hand.

TABLE I.

Number of trumps	0	1	2	3	4	5	6	7	8	Total
Frequency	215	1724	5262	7440	6371	2950	852	166	20	25000
Relative frequency	.00860	-06896	·21048	·29760*	.25484	-11800	.03408	.00664	.00080	1.00000

We quote from the *Phil. Mag.* paper previously referred to the following values: Mean at $3\cdot24944$ trumps, moments about the mean $\mu_2=1\cdot66130$, $\mu_3=\cdot39094$, also $\beta_1=\cdot03333$, $\beta_2=2\cdot93469$. These values lead to the Type I curve

$$y = 7596.005 \left(1 + \frac{x}{6.52180}\right)^{16.21927} \left(1 - \frac{x}{12.76682}\right)^{31.75022}$$

with origin at the mode (= 3.12682 trumps) represented by the continuous line in Fig. 1.

Fig. 1. ⊙⊙⊙ Distribution of 25,000 deals at Whist according to the number of Trumps held by the First Hand according to theory.

$$\begin{array}{c} \text{Continuous Line: Type I Frequency Curve} \\ y \! = \! 7596 \! \cdot \! 005 \left(1 \! + \! \frac{x}{6 \! \cdot \! 52180}\right)^{\! 16 \! \cdot \! 21927} \left(1 \! - \! \frac{x}{12 \! \cdot \! 76682}\right)^{\! 31 \! \cdot \! 75022}. \end{array}$$

* ·29776 in Prof. Edgeworth's paper is clearly a misprint.

The following table gives the theoretical frequencies of this curve compared with the observed frequencies and the theoretical frequencies for the two curves fitted by Professor Edgeworth. These last being obtained by multiplying the values he gives of the theoretical relative frequencies by 25,000.

TABLE II.

Number of trumps	- 1	0	1	2	3	4	5	6	7	8	9	10	Totals
Observed frequency		215	1724	5262	7440	6371	2950	852	166	20		_	25000
Type I	4.91	202.85	1698.32	5201.23	7643.49	6218.30	2993.16	871.65	152.89	15.34	-85	.02	25003
	Sum =	$\widetilde{\text{Sum}} = 207.76$								Sum	=16	21	
Prof. Edgeworth's 1st curve, p. 461	_	-		5120	7338	6128	3028	_	_	_	_	-	· <u> </u>
Prof. Edgeworth's 2nd curve, p. 467	_	258	1778	5093	7420	6183	3098	965	208	_	_	_	25003

For the Type I curve $\chi^2 = 13.60$ while n' = 9 so that P = .0938.

Professor Edgeworth's first curve gives $\chi^2 = 17.48$, n' = 4 and P = .000574*. His second curve gives $\chi^2 = 41.55$ for n' = 8 so that P is less than .000001. If in the second curve we take the four central compartments only (i.e. 2 to 5 trumps) we have $\chi^2 = 19.48$, n' = 4 so that P = .000222.

Judged by the usual criterion then, both of Professor Edgeworth's curves are a very much poorer fit than Pearson's Type I. If we calculate the value of the criterion proposed by Professor Edgeworth we find that

 $S\left(e^{2}/U\right)$ is $\cdot 000814$ for Professor Edgeworth's first curve (four compartments),

·00181 for eight compartments of his second curve,

and .00077 for the four central compartments of the second curve.

These values of $S\left(e^2/U\right)$ may be compared with $\cdot 000544$ for nine compartments or $\cdot 000420$ for four compartments for Pearson's Type I.

Professor Edgeworth says (p. 467) of this example that "the correspondence between fact and theory is very satisfactory."

Example II. The theoretical Frequency Distribution of black Balls in 210 Draws of four Balls out of a Bag containing four white and six black Balls.

The frequencies are

TABLE III.

0	1	2	3	4	Total
1	24	90	80	15	210

The mean is at 2·4 black balls, the moments about the mean are $\mu_2 = \cdot 64$, $\mu_3 = -\cdot 032$, $\mu_4 = 1\frac{1}{7}$ so that $\beta_1 = \cdot 00390625$, $\beta_2 = 2\cdot 747768$. The corresponding Pearsonian frequency curve is of Type II,

 $y = 101 \cdot 06905 \left[1 - \frac{x^2}{(3 \cdot 7341772)^2} \right]^{9 \cdot 3938124},$

represented by the continuous line in Fig. 2. The origin is at mode = mean = 2.4.

* Professor Edgeworth calls this $\chi^2=40$, n'=6 but only states the calculated (relative) frequencies for four compartments.

Fig. 2. $\odot \odot \odot$ Theoretical Distribution of Black Balls in 210 draws of 4 balls out of a bag containing 4 white and 6 black balls, i.e. terms of the hypergeometrical series F(-4, -6, 1, 1).

Continuous Line: Type II Frequency Curve

$$y = 101 \cdot 06905 \left[1 - \left(\frac{x}{3 \cdot 734177} \right)^2 \right]^{9.393812}$$
.

The table below gives the theoretical frequencies deduced from this equation and the values given by Professor Edgeworth on p. 471 of his paper*.

TABLE IV.

Number of Black Balls drawn	0	1	2	3	4	Totals
Data		= 24	90	80	15	210
Type II	.677	= 25 24.322 24.999	90.669	79:051	15.036	209.755
Professor Edgeworth's curve, p. 471	28	$\stackrel{\cancel{}}{\cancel{\cdot}39}$	86.71	76.56	28.44	220·10

^{*} Professor Edgeworth's are relative frequencies. These have been multiplied by 210 to obtain the entries in the table.

The value of χ^2 for the Type II curve is only 016 while n'=4. This value is so small as to be outside Elderton's table, so we put

$$P = \sqrt{\frac{2}{\pi}} \int_{\gamma}^{\infty} e^{-\frac{1}{2}\chi^2} d\chi + \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}\chi^2} \chi,$$

and from Sheppard's table find the first term to be $\cdot 89894$ while the second is $\cdot 10052$ so that $P=\cdot 99946$. The fit is practically perfect. This is not surprising since we have fitted a curve which is known to be the so-called "parallel" to the hypergeometrical series to a hypergeometrical distribution. The value of χ^2 for Professor Edgeworth's curve is 7.035 which with n'=4 gives $P=\cdot 071$. The sum $S\left(e^2/U\right)$ is $\cdot 000077$ for the Type II curve and $\cdot 061^*$ for Professor Edgeworth's curve. He says (p. 470) that "the calculated frequencies correspond fairly well with the observed frequencies." The divergence between the total for the data (210) and for the calculated frequencies (220·1) is extraordinarily great and suggests that some errors may have crept into Professor Edgeworth's arithmetic. The values of $S\left(e^2/u\right)$ are $\cdot 000077$ for the Type II curve and $\cdot 0335$ for Professor Edgeworth's curve.

Example III. Distribution according to ages, of the Marriages of 235,252 Spinsters.

This example is described by Professor Edgeworth as one of "considerable abnormality," and he states (p. 462) "I should be considerably surprised if the Pearsonian types would stand the Pearsonian criterion in the case of Dr Isserlis' second example which consists of the distribution of 235,252 ages at marriage."

The answer is that at any rate they stand the test much better than the curve fitted to this example by Professor Edgeworth. That the fit is a poor one is probably due not so much to the size of the total frequency (as Professor Edgeworth suggests) but to heterogeneity of the material†, due to misstatement of age.

The observed frequencies are as follows:

TABLE V.

Age	15—	20—	25—	30-	35	40—	45—	50-	55	60—	65—	70—	Total
Frequency	17546	118542	70411	20241	5873	1706	636	171	64	28	23	1.1	235252

Again quoting from the *Phil. Mag.* (loc. cit. p. 385): with arbitrary origin at 22·5 years and unit 5 years, the mean is at ·5227798, the moments are $\mu_2 = \cdot8294195$, $\mu_3 = 1\cdot2482896$, $\mu_4 = 5\cdot9016221$ whence $\beta_1 = 2\cdot730913$, $\beta_2 = 8\cdot578766$. These values of β_1 , β_2 indicate a curve of Type VI, but the criterion

$$\kappa = \beta_1 (\beta_2 + 3)^2 / 4 (4\beta_2 - 3\beta_1) (2\beta_2 - 3\beta_1 - 6) = 1.151975$$

is so nearly unity, that (having regard to the large values of β_1 , β_2) we may expect the transition curve of Type V to give nearly as good a fit.

The curve of Type VI is

$$y = (4.29787) \, 10^{14} (x - 2.305660)^{6.599764} x^{-18.410607}$$

with origin at 4.655444 years, mode at 22.625624 years, mean at 25.113899 years and x measured in 5 year units.

- * Not .07 (Prof. Edgeworth's value on p. 470).
- † On this point cf. W. Palin Elderton, Frequency Curves and Correlation, pp. 142-3.
- ‡ The *Phil. Mag.* value, $\beta_1 = 8.77876$ is wrong (though μ_2 , μ_3 , μ_4 are correct). Professor Edgeworth has used the wrong value, but the error is not enough seriously to influence his figures.

The curve of Type V is $y = (1.43044) \ 10^{13} \ x^{-10.7294715} \ e^{-\frac{22.1029363}{x}}$

Here also x is in 5 year units, the origin is at $12\cdot453948$ years and the mode at $22\cdot754053$ years. The two curves are shown in Fig. 3.

Fig. 3. Distribution of Ages at Marriage of 235,252 Spinsters. Actual Fiequencies represented by the histogram.

Continuous Curve: Type VI Frequency Curve

$$y = (4.29787) \, 10^{14} \, \frac{(x - 2.305660)^{6.599764}}{x^{18.410607}}$$

Dotted Curve: Type V Frequency Curve

$$y = (1.43044) \ 10^{16} \ x^{-10.729472} \ e^{-\frac{22.1029363}{x}}$$

The observed and calculated frequencies are given in the table below.

TABLE VI.

Age at Marriage of Spinsters.

Age	Observed frequency	Type VI	Type V	Prof. Edgeworth's* curve, p. 469	
15— 20— 25— 30— 35— 40— 45— 50—	$\begin{array}{c} 17546 \\ 118542 \\ 70411 \\ 20241 \\ 5873 \\ 1706 \\ 636 \\ 171 \\ 97 \end{array}$	15969† 120458 69289 21009 5896 1732 582 191	16448‡ 120061 69508 20907 5770 1692 544 191	14633 123696 68811 19596 5740	
55— 60— 65— 70— Totals	28 23 23 22 235252	$ \begin{array}{c c} 71 & & \\ 28 & & \\ 12 & & \\ 16 & & \\ \hline 235253 \end{array} $		235228	

^{*} I.e. Professor Edgeworth's relative theoretical frequencies multiplied by 235252.

^{† 16.184} years to 20 years.

 $[\]ddagger$ 12·454 years to 20 years.

[§] All beyond 70 years.

It is worth noting that with the exception of one age group (30—35) the theoretical frequencies corresponding to Professor Edgeworth's curve are consistently worse than both the Type V and Type VI frequencies.

The values of χ^2 , $S(e^2/U)$, and $S(e^2/u)$ for the three curves are given by the following table:

TABLE VII.

	χ^2	$S\left(e^{2}/U ight)$	$S\left(e^{2}/u ight)$
Type V	129	.00053	∙00055
Type VI	232	•00090	-00099
Prof. Edgeworth's curve	868	-00366	-00369

Neither Type V nor Type VI fits the data well, but all the criteria agree in making Professor Edgeworth's curve a much poorer fit than either of the others. It should be observed that in order to make comparison with Professor Edgeworth's curve possible we have followed him in grouping all ages above 40 together. This gives a fictitious improvement to the Type V curve, for Type VI which depends on the first four moments will fit the "tail" of the experience better than Type V whose constants depend on the first three moments only. The value of μ_4 is of course heavily influenced by the marriages at the higher ages.

The source of heterogeneity in the spinster curve is misstatement (false or in ignorance) of age. I am indebted to Professor Pearson for the remark that Table V shows a lumping up of frequency before the decades. If we compare Type VI against the observed, we find a redundancy of women just below 30, i.e. at 25, and this is repeated at 45. Again the group 15—20 is increased by the minors who misstated their age as over 15. Professor Pearson informs me that these points have come up for consideration in the treatment of very ample statistics not only English but Italian, and in both cases the males give better results than the females.

We may attempt to circumvent the women who object to entering a new decade by grouping in ten year periods round the decades. The following table shows that the removal of this source of heterogeneity at once renders Type VI a very good fit, the transition curve Type V a fair fit, but leaves Professor Edgeworth's curve a very poor fit.

TABLE VIII.

Age	Observed frequency	Type VI	Type V	Prof. Edgeworth's curve
15— 25— 35— 45— 55— 65—	136088 90652 7579 807 92 \ Sum 34 \} = 126	136427 90298 7628 773 99 \ Sum 28 \} = 127	$ \begin{array}{c} 136509 \\ 90415 \\ 7462 \\ 735 \\ 103) \text{ Sum} \\ 26 \int = 129 \end{array} $	$\left.\begin{array}{c} 138329 \\ 88407 \\ \end{array}\right\}$
Totals	235252	235253	235250	235228

We now have $\chi^2 = 4.56$ when n' = 5 for the Type VI curve so that P = .34 indicating quite a good fit. For Type V the value of χ^2 is 11.01 with n' = 5 giving P = .027, while for Professor Edgeworth's curve χ^2 is 96.31 with n' = 3 so that P is still negligible.

§ 3. Professor Edgeworth has on several occasions advocated the value of his generalized frequency curve, and endeavoured to illustrate its numerical advantages. On the present occasion he has introduced what appears to be an erroneous formula for testing its "goodness of fit." In his paper he gives no theoretical discussion of the test. It would be well if Professor Edgeworth tried on some future occasion to give a demonstration of its validity. Any such attempt would have to account for the departure from Bernoulli's law that accuracy varies as the square root of the number of observations. According to Professor Edgeworth's test results obtained from 100 observations and from 1,000,000 would be equally accurate provided the relative frequencies were the same*! However taking him on his own ground we find his curves give a very poor fit compared with Pearson's well-known types, and offer no easy systematical methods of treating frequency. He escapes what is the real hard work of curve fitting by adopting the higher moments calculated by the biometricians and then appears to say how very much shorter his methods are! We are prepared on any occasion to race him in fitting a frequency curve ab initio and getting a better fit as a result.

Added April 12th, 1917. Professor Edgeworth in reply to a letter in which I suggested that there might be an error in his numerical values quoted in my Table IV, has replied that owing to a clerical error the frequency in the last column is wrong. On using his amended relative frequency, that entry becomes 18.35 instead of 28.44. With this alteration χ^2 becomes 1.297 instead of 7.035, so that the corresponding value of P is .733. This of course denotes a good fit, but one which is still very inferior to the Pearsonian Type II curve for which P = .999.

III. Relation of the Mode, Median and Mean in Frequency Curves.

By ARTHUR T. DOODSON, M.Sc.

§ 1. It is well known that in frequency curves of a moderate degree of asymmetry the distance from the mode to the median is approximately two-thirds of the distance from the mode to the mean. So far as the author knows there has not been published any investigation of this property except in the case of one type of curve where

$$y = y_0 x^p e^{-x}$$
.

Professor Karl Pearson, in his memoir on "Skew Variation in Homogeneous Material" (Phil. Trans. 1895), remarks on this property of the curve and he gives an expression for the ratio of the two distances in the form

$$c = .6691 + .0094/p$$
(1).

This was obtained from a few particular cases by the method of least squares.

§ 2. Let $y = y_0 \phi(x)$ represent a frequency curve which has a maximum at x = 0 and which is zero at $x = -a_1$ and at $x = a_2$. As a rule there is only one maximum in frequency curves of this type. On these assumptions Laplace has given a method of approximating to the definite integral, the limits of integration lying between $x = -a_1$ and $x = a_2$. Following Laplace, we assume

$$y = y_0 \phi(x) = y_0 e^{-t^2}$$
(2),

where y_0 is the maximum ordinate, or the mode. Since x vanishes with t we may assume

$$x = B_1 t + B_2 t^2 + B_3 t^3 + \dots$$
 (3).

* Cf. on the other hand Pearson's χ^2 test. Let there be two series of observations with populations N_1 , N_2 and same relative frequency leading to $S(e^2/u) = \chi_0^2$. The two values of χ^2 would be $\chi_1^2 = N_1 \chi_0^2$,

 $\chi_2^2 = N_2 \chi_0^2$ so that the probabilities would be proportional to $e^{(\overline{1/\sqrt{N_1}})^2}$ and $e^{(\overline{1/\sqrt{N_2}})^2}$, comparing with standard deviations of form $1/\sqrt{N_1}$ and $1/\sqrt{N_2}$.

Biometrika XI

Then, taken between appropriate limits,

$$\int y \, dx = \int y_0 e^{-t^2} \cdot \frac{dx}{dt} \cdot dt = \int y_0 e^{-t^2} (B_1 + 2B_2 t + 3B_3 t^2 + \dots) \, dt \dots (4).$$

This method is most useful where the range of t is either $-\infty$ to $+\infty$ or 0 to $+\infty$. The first case gives the "whole" area N; the second gives N_m , the area from the mode to the upper limit of x. Therefore

$$N = \int_{-\infty}^{+\infty} y_0 e^{-t^2} \left(B_1 + 3B_3 t^2 + \ldots \right) dt = y_0 \sqrt{\pi} \left(B_1 + \frac{3}{2} B_3 + \ldots \right)$$
 (5),

$$N_m = \frac{1}{2}N + \int_0^x y_0 e^{-t^2} (2B_2 t + 4B_4 t^3 + \dots) dt = \frac{1}{2}N + y_0 (B_2 + 2! B_4 + 3! B_6 + \dots) \dots (6).$$

Hence the area from the mode to the median is

$$y_0(B_2+2! B_4+3! B_6+...)$$
(7).

The evaluation of B_1 , B_2 , ... we shall perform by means of the method of indeterminate coefficients, using (3) and $\frac{dx}{dt}$

 $\frac{dx}{dt} \cdot \frac{d\phi}{dx} + 2t\phi = 0 \qquad (8)$

which is obtained by logarithmic differentiation of (2) with respect to t. De Morgan* gives the values of the first five coefficients in terms of the differential coefficients at the mode of $\log \phi(x)$. It may be shown that when $\phi(x)$ contains high exponents or a large number of factors the coefficients B_1, B_2, B_3, \ldots are of decreasing magnitude and the series (5) and (7) are convergent enough for use. This is generally the case with frequency curves. When the skewness is small the coefficients B_2, B_4, \ldots must be small; in this case, then, if d be the abscissa of the median we have the area from the mode to the median approximately equal to y_0d , and usually we may neglect B_4, B_6, \ldots in comparison with B_2 . Hence approximately

$$d = B_2$$
(9).

If we let D be the distance of the mean from the mode we have

$$D = \frac{1}{N} \int_{-a_1}^{a_2} xy dx = \frac{1}{N} \int_{-\infty}^{+\infty} y_0 e^{-t^2 \frac{1}{2}} \left(2C_2 t + 3C_3 t^2 + \dots \right) dt \dots (10),$$

where C_r is the coefficient of t^r in the expansion of x^2 in powers of t. Then from (5) we have

$$D = \frac{y_0}{N} \sqrt{\pi} \left(\frac{3}{4} C_3 + \ldots \right) = \frac{\frac{3}{2} B_1 B_2 + \ldots}{B_1 + \ldots}$$
 (11).

Therefore to a first approximation $D = \frac{3}{2}B_2 = \frac{3}{2}d$ (12).

This is the relation that has been noticed in practical statistical work and it holds under the conditions stated.

§ 3. The relation just found is quite general provided that the frequency curves are moderately asymmetrical. It would, of course, be possible to give general formulae for the more accurate representation of the relation between the distances of the mean and median from the mode in the very general type of curve already used. But in practice nearly all the types of frequency curves are included in Professor Pearson's system and it is for these curves that we shall now obtain a closer approximation to the true value of d/D. In the memoir already quoted Professor Pearson takes the differential equation of frequency curves in the form

$$\frac{1}{y}\frac{dy}{dx} = \frac{x}{a_0 + a_1x + a_2x^2}$$
 (13),

the origin of x being at the mode.

If we write $y = e^{-t^2}$ we obtain, as in (8),

$$\frac{dx^2}{dt} + 4ta_2x + 4t(a_0 + a_1x) = 0 \qquad (14),$$

$$x^2 = C_2t^2 + C_3t^3 + \dots (15),$$

and writing

^{*} Differential and Integral Calculus, p. 602.

we have the following equations for the determination of B_1 , B_2 , ...

$$C_{2} + 2a_{0} = 0 C_{2} = B_{1}^{2}$$

$$3C_{3} + 4a_{1}B_{1} = 0 C_{3} = 2B_{1}B_{2}$$

$$4C_{4} + 4a_{2}C_{2} + 4a_{1}B_{2} = 0 C_{4} = 2B_{1}B_{3} + B_{2}^{2}$$

$$5C_{5} + 4a_{2}C_{3} + 4a_{1}B_{3} = 0 C_{5} = 2B_{1}B_{4} + 2B_{2}B_{3}$$

$$(16).$$

The solution of these equations gives the following values of B_1 , B_2 , ...

$$B_{1}^{2} = -2a_{0}$$

$$B_{2} = -\frac{2}{3}a_{1}$$

$$B_{3} = \frac{1}{B_{1}} \left(\frac{1}{9}a_{0}^{2} + a_{0}a_{2} \right)$$

$$B_{4} = -\frac{2}{135} \frac{a_{1}^{3}}{a_{0}} + \frac{2}{5}a_{1}a_{2}$$

$$B_{5} = -\frac{1}{B_{1}} \left(\frac{1}{540} \frac{a_{1}^{4}}{a_{0}} + \frac{a_{1}^{2}a_{2}}{30} + \frac{5}{12}a_{0}a_{2}^{2} \right)$$

$$B_{6} = -\frac{4}{8505} \frac{a_{1}^{5}}{a_{0}^{2}} + \frac{8}{945} \frac{a_{1}^{3}a_{2}}{a_{0}} - \frac{44}{315}a_{1}a_{2}^{2}$$

$$B_{7} = -\frac{1}{B_{1}} \left(\frac{139}{340200} \frac{a_{1}^{6}}{a_{0}^{2}} - \frac{53}{12600} \frac{a_{1}^{4}a_{2}}{a_{0}} + \frac{a_{1}^{2}a_{2}^{2}}{4200} - \frac{a_{0}a_{2}^{3}}{8} \right)$$

$$B_{8} = \frac{2}{25515} \frac{a_{1}^{7}}{a_{0}^{3}} - \frac{2}{2835} \frac{a_{1}^{5}a_{2}}{a_{0}^{2}} + \frac{2}{2835} \frac{a_{1}^{3}a_{2}^{2}}{a_{0}} + \frac{2}{63}a_{1}a_{2}^{3}$$

The area from the mode to the median is then

$$y_0 \left\{ -a_1 \left(\frac{2}{3} - \frac{4}{5} a_2 + \frac{88}{105} a_2^2 - \frac{16}{21} a_2^3 + \ldots \right) - \frac{a_1^3}{a_0} \left(\frac{4}{135} - \frac{16}{315} a_2 - \frac{16}{945} a_2^2 + \ldots \right) - \frac{a_1^5}{a_0^2} \left(\frac{8}{2835} + \frac{16}{945} a_2 + \ldots \right) + \frac{a_1^7}{a_0^3} \left(\frac{16}{8505} + \ldots \right) + \ldots \right\} \quad \dots \dots (18).$$

§ 4. Now this area can be found in another way in terms of d, the distance from the mode to the median, by assuming that $\phi(x)$ can be expanded in powers of x by Maclaurin's Theorem. Professor Pearson* has shown that a high order parabola does not adequately fit these curves throughout the range, but if we assume that the skewness is small and therefore d small, we may use Maclaurin's expansion legitimately within the range x=0 to x=d. Since $\frac{d\phi}{dx}$ is zero at the mode we have

$$y = y_0 (1 + A_2 x^2 + A_3 x^3 + ...)$$
(19),

and substituting in $\int_0^d y dx$ we have the required area equal to

$$y_0 \left(d + \frac{A_2}{3} d^3 + \frac{A_3}{4} d^4 + \dots\right)$$
 (20)

The values of the coefficients A_2 , A_3 , ... may be obtained by using the differential equation (13) and the expansion (19); whence we obtain

$$A_{s} = (s + 2) \, A_{s + 2} \, a_{0} + (s + 1) \, A_{s + 1} \, a_{1} + s A_{s} \, a_{2} \text{,} \label{eq:As}$$

and therefore

$$A_2 = \frac{1}{2a_0}$$
, $A_3 = -\frac{a_1}{3a_0^2}$, $A_4 = \frac{a_1^2}{4a_0^3} + \frac{1-2a_2}{8a_0^2}$, $A_5 = -\frac{a_1}{6a_0^3} + \dots$

Thus the area required is

$$y_0 \left\{ d + \frac{d^3}{6a_0} - \frac{d^4a_1}{12a_0^2} + \frac{d^5\left(1 - 2a_2\right)}{40a_0^2} + \frac{d^5a_1^2}{20a_0^3} - \frac{d^6a_1}{36a_0^3} + \ldots \right\} \quad \dots \tag{21}.$$

This expression is in descending powers of a_0 and so is the one obtained in (18). Hence we may assume

$$d = d_0 + \frac{d_1}{a_0} + \frac{d_2}{a_0^2} + \frac{d_3}{a_0^3} + \dots$$
 (22),

* Biometrika, Vol. II. p. 19.

and substituting for d in (21) we may then equate to (18). After considerable reduction, we have, to the approximation taken throughout the course of the work,

$$d_0 = -a_1 \left(\frac{2}{3} - \frac{4}{5} a_2 + \frac{88}{105} a_2^2 - \frac{16}{21} a_2^3 + \ldots \right) \qquad d_2 = a_1^5 \left(\frac{64}{5103} - \frac{1184}{14175} a_2 + \ldots \right) \\ d_1 = -a_1^3 \left(\frac{8}{405} - \frac{8}{63} a_2 + \frac{656}{1575} a_2^2 + \ldots \right) \qquad d_3 = a_1^7 \left(\frac{21688}{3444525} + \ldots \right)$$
...(23).

§ 5. We have assumed that the skewness is small; this is so if a_1 be small, and as the coefficient of a_0^{-3} is approximately $a_1^{7}/170$ it will be seen that we have a fairly rapidly convergent series for the value of d expressed in terms of the coefficients of the differential equation. We now proceed to transform the series so as to obtain the value of d/D in terms of the skewness.

It is easily shown from the differential equation that

$$a_1 = -D (1 + 2a_2)$$

 $a_0 = -\mu_2 (1 + 3a_2) + D^2 (1 + a_2)$ (24),

It is easily shown from the differential equation that
$$a_1 = -D (1 + 2a_2) \\ a_0 = -\mu_2 (1 + 3a_2) + D^2 (1 + a_2)$$
 (24), where μ_2 is the second moment coefficient about the mean. Hence
$$\frac{a_1^2}{a_0} = -\frac{D^2}{\mu_2} \cdot \frac{(1 + 2a_2)^2}{1 + 3a_2} \cdot \left(1 - \frac{D^2}{\mu_2} \cdot \frac{1 + a_2}{1 + 3a_2}\right)^{-1}$$
 (25).

Now the differential equation is obtained on the assumption that $\frac{1}{u}\frac{dy}{dx} = \frac{x}{f(x)}$ and that f(x) is represented for all practical purposes by $a_0 + a_1x + a_2x^2$; this implies that a_3 , a_4 , ... of the complete expansion are negligibly small and usually a_2 is small also. If we restrict a_2 and $\frac{D^2}{\mu_2}$ (the square of the skewness) to the cases where they are small we may expand by the binomial theorem all the quantities involved in (22), and after some reduction we obtain

$$\begin{split} \frac{d}{D} &= \left(\frac{2}{3} + \frac{8}{15}\,a_2 - \frac{16}{21}\,a_2^2 + \frac{32}{35}\,a_2^3 - \ldots\right) + \left(\frac{8}{405} - \frac{64}{945}\,a_2 + \frac{64}{675}\,a_2^2 + \ldots\right)(sk.)^2 \\ &\quad + \left(\frac{184}{25515} - \frac{9424}{127575}\,a_2\right)(sk.)^4 + \frac{1328}{3444525}(sk.)^6 + \ldots (26), \end{split}$$

where (sk.) = skewness.

The values of the coefficients of the successive powers of the skewness are given in the following table:

	(sk.)°	$(sk.)^{2}$	(sk.)4	$(sk.)^{6}$	
-	·66666667 ·53333333	.01975309	.00721144	.00038554	_
	- ⋅76190476	- ·06772486 ·09481481	- ·07387027 —	_	$egin{array}{c} a_2 \ a_2^3 \ a_2^3 \end{array}$
	·91428571			_	a_2^3

§ 6. The types of curves for which the value of d/D is given by (26) are given below * with the values of a_2 :

$$\begin{array}{lll} \text{Type I.} & y = y_0 \left(1 + \frac{x}{a_1}\right)^{m_1} \left(1 - \frac{x}{a_2}\right)^{m_2}, & a_2 = \frac{1}{m_1 + m_2}. \\ \\ \text{Type III.} & y = y_0 e^{-\gamma x} \left(1 + \frac{x}{a}\right)^{\gamma a}, & a_2 = 0. \\ \\ \text{Type IV.} & y = \frac{y_0}{\left(1 + \frac{x^2}{a^2}\right)^m} e^{-\gamma \tan^{-1} \frac{x^2}{a}}, & a_2 = -\frac{1}{2m}. \\ \\ \text{Type V.} & y = y_0 x^{-p} e^{-\gamma/x}, & a_2 = -\frac{1}{p}. \\ \\ \text{Type VI.} & y = y_0 (x - a)^{m_1} x^{-m_2}, & a_2 = \frac{1}{m}. \end{array}$$

^{*} These are not in all cases referred to the mode as the origin of x.

It is very doubtful whether the series can be simplified any further and the question of convergency is a very difficult one, for no simple law can be given for any of the coefficients involved. The series has been tested with curves of Types I and III and the results are tabled below:

Туре	a_2	(sk.) ²	d/D from formula	$\frac{d/D}{(\mathrm{correct})}$	Error
I	0·1	·1733333	·715706	·715702	+ *600004
	0·1	·4160000	·719087	·719048	+ *000039
	0·05	·2582456	·696072	·696072	*000000
	0·05	·4657500	·700078	·700181	- *000103
III	0	0·1	·66871448	•66871460	- ·00000012
	0	0·2	·670909	•670909	·000000
	0	0·5	·678394	•678347	+ ·000047
	0	1·0	·69402	•69315	+ ·00087

These show that the formula gives very good results even for high values of the skewness. It will be noted that in the case of Type III curves we have quite good results even when the skewness is unity. If the equation of Type III be taken in the form

$$y = y_0 e^{-x} \left(1 + \frac{x}{p} \right)^p$$

then the square of the skewness is $\frac{1}{p+1}$ and when the skewness is unity p is zero. But the value of d as given by (22) and (23) is

$$d_0 - \frac{d_1}{p} + \frac{d_2}{p^2} - \frac{d_3}{p^3} + \dots,$$

and this formula is of no great value if p be small. The processes of § 5 give

$$d = d_0{'} + \frac{d_1{'}}{p+1} + \frac{d_2{'}}{(p+1)^2} + \frac{d_3{'}}{(p+1)^3} + \dots$$

by what is practically Montfort's Theorem, and the transformed series is simpler and of more value than the untransformed series.

The formula given in \S 3 for the area from the mode to the median has also been tested and gives results similar to those for the ratio of d to D. This may be useful if the area on either side of the mode be required.

In conclusion I tender my thanks to Professor Pearson for his valuable criticism and help.

IV. The Probable Error of a Mendelian Class Frequency.

EDITORIAL.

Dr Raymond Pearl in a recent paper entitled "The Probable Error of a Mendelian Class Frequency*," provides a striking illustration of how the capable biologist needs a long continued training in the logic of mathematics before he ventures into the field of probability. Dr Pearl writes: "With the increased volume of Mendelian experimentation there is an evergrowing need for adequate and clearly understood tests for the statistical significance of differences between observed results and expectation." Now there is absolutely no obscurity about the test for a single class frequency in a Mendelian result. I cannot conceive that there ever could be or ever has been such obscurity in the mind of a trained mathematician. If on the basis of Mendelian theory the relative frequency of that class be \bar{p} and the relative frequency of all other classes be $1 - \bar{p} = \bar{q}$, then in observation samples of m, the frequencies of this particular class distribute themselves according to the binomial law $N(\bar{p} + \bar{q})^m$ in N samples. To determine the impro-

^{*} American Naturalist, Vol. LI. p. 144, March, 1917.

bability of any observed result we have only to calculate the terms of this series. The mean of this frequency distribution is well known to be $m\bar{p}$, and its standard deviation $\sqrt{m\bar{p}q}$. When neither \bar{p} nor \bar{q} is very small, then for practical purposes (when m of course is of a fair size, not a few units) it is quite adequate to calculate the probabilities of occurrence in such a single class frequency by the tables of the probability integral. The Mendelian worker who wishes to be more exact has merely to evaluate the terms of the binomial, or if m be too large, to approximate to those terms by the aid of my Type III curve, which falls for the cases excepted above much closer to the binomial than the normal curve does*.

Two observations may here be made: First, if according to Mendelian theory there must be zero frequency in any particular class, then the improbability of any occurrence in that class is Secondly, the χ^2 test can be applied to any number whatever of Mendelian classes, to s classes individually and all the remainder, or in a particular case to one class and all the remainder. When applied to one class and all the remainder, it reduces to exactly the process given above, i.e. to the application of the probability table on the basis of the standard deviation $\sqrt{m\overline{p}q}$; or, referring to the genesis of the χ^2 test, which started by replacing the binomial by a normal curve, to using if we please the binomial. There is thus no contradiction between the two methods. This absence of contradiction was indicated by me in Biometrika, Vol. IX. p. 312, and was perfectly familiar to Weldon, who applied the binomial test to cases where it is proper to apply it. Now let us examine Dr Pearl's remarks in the light of these observations. He writes of Weldon's and Johannsen's use of the standard deviation of the binomial for entering the probability tables †: "In the first place it assumes the Gaussian distribution of errors, an assumption not often strictly warranted, as Pearson has clearly shown, and in many cases grossly in error." Now this statement requires considerable modification, (i) it does not assume the Gaussian law of errors, but the fact that the Gaussian or better Laplacian integral for practical purposes gives adequately the frequencies of the binomial when extreme values of m, \bar{p} and \bar{q} are not included. Dr Pearl makes no attempt to show that Weldon (or Johannsen for the matter of that) was dealing with such extreme cases, but repeats the suggestion of his previous paper; that Weldon somehow blundered. (ii) Further Dr Pearl cites for my view on the subject my paper "On the Influence of Past Experience on Future Expectation §." In that paper, which deals as we shall show below with an entirely different matter, the standard deviation is not $\sqrt{m\bar{p}\bar{q}}$, but the standard deviation characteristic of a second sample, so that criticism on this ground is out of place. Incidentally, however, I do recite in that paper the warning as to the use of the Laplacian integral when m, \bar{p} , or \bar{q} are extreme, and it was open to Dr Pearl to investigate whether Weldon had used the χ^2 test in such cases.

Let us look again at Dr Pearl. He writes: "The χ^2 test gives a measure of the goodness of fit of the whole distribution, and only that. Now besides being interested in that point the Mendelian worker quite as often wants to know, in addition, something about the probability that particular classes observed are significantly different from the expected. To that sort of knowledge the χ^2 test helps him not at all. It is an 'all or none' sort of method ||."

Now Dr Pearl's italics absolutely give him away, for they demonstrate that he does not in the least understand how to handle the χ^2 test or what it means! Any test applied to s out of n classes must of course include the remaining n-s classes as a single group, for their total frequency is fixed, when the frequencies of the s classes are given. The χ^2 test can be applied to a single class or to any number of classes up to n-1, and it can only be a total misunderstanding of the test which can lead Dr Pearl to say that it is an "all or none" sort of method. Every test is an "all or none" test, if Dr Pearl means that it involves the total number observed.

^{*} The area of Type III curve up to any deviation from the mean is given by the incomplete Γ -function. Tables of that function have been long in hand and are approaching completion and publication. Delay has arisen only from urgent war work.

Again let me cite Dr Pearl: "The χ^2 test leads to this absurdity: if I perform a Mendelian experiment in which I get ten thousand million offspring agreeing perfectly with expectation save for one lone individual (perhaps a mutation, perhaps a mistake in the record, or what not) which is of a sort not expected, then Pearson and the χ^2 test agree that the probability is infinitely great that the ten thousand million do not follow Mendelian law!*"

Now this paragraph is I fear "characteristically" partizan, for in my criticism of Dr Pearl's paper I said nothing whatever about ten thousand millions obeying or not obeying the Mendelian law. Dr Pearl in his paper on the inheritance of fertility in hens got very frequently (from my standpoint) exceptions to his Mendelian theory. He drew in fact blue balls from a bag which his theory asserted contained only green or red balls. As a result he rejected the "goodness of fit" theory, which provided as it ought to do an infinite improbability. I asserted that he must either "remould his theory or explain away his observations†"; it was not a question of my test being fallacious. That he appears to be doing now when he states that exceptions may be "mutations" or "mistakes in records" or "what nots," or as he did in his original paper when he remarked of such exceptions that they are of "a type which is continually arising in Mendelian work." In other words he then emphasised and now again emphasises the "elasticity" of his observations. That is certainly the horn of the dilemma upon which I was prepared to drive him. But he is not content with such elasticity of Mendelian, or with badness of records or with "what nots," he seeks to show that a true test of Mendelian theory will be as plastic as the observations are elastic, in which case he will have successfully polled both horns.

In order to achieve this end he starts with a paper of mine published in the *Philosophical Magazine* for 1907, which he describes as "a very important paper, which is apparently almost entirely unknown to biologists." While feeling grateful for the compliment, I regret that it should be brought to the notice of biologists in regard to a matter which it cannot possibly cover. Let me briefly state the purport of that paper. A bag, a population, or a theoretical frequency is presented, the distribution law of which is absolutely unknown. The number in this fundamental distribution is supposed indefinitely great or else individuals must be returned before each draw. A first sample of n is drawn of which p present one characteristic and q do not. A second sample of m is now drawn, what is the chance that r individuals of this m will present the characteristic?

I showed that the mean of second samples would be

$$m\frac{p}{n} + \frac{m}{n+2}\frac{q-p}{n} \qquad (i),$$

and the standard deviation σ would be given by

$$\sigma^2 = m \left(\frac{p}{n} + \frac{q-p}{n(n+2)} \right) \left(\frac{q}{n} - \frac{q-p}{n(n+2)} \right) \left(1 + \frac{m-1}{n+3} \right) \quad \dots \tag{ii)},$$

the whole frequency distribution being provided by a hypergeometrical series. It is this hypergeometrical series which Dr Pearl proposes to employ as a test of "goodness of fit" in Mendelian class frequencies.

At first sight it seems almost impossible to determine how it can be applied, for the Mendelian Law which is supposed known is the theoretical frequency, the bag or original population, which my memoir supposes to be unknown except as suggested by the first sample. The only adequate method of applying the theory—and then it would be using a sledge hammer to crack nuts—would be to suppose the first sample indefinitely large. In this case p/n represents the class frequency of Mendelian theory \bar{p} , and the ratio of the observed sample m to the total possible Mendelian population n is vanishingly small, and accordingly there results

$$mean = m\bar{p}, \qquad \sigma^2 = m\bar{p}\bar{q},$$

and the hypergeometrical series collapses into $N(\bar{p} + \bar{q})^m$. Thus we fall back on the obvious binomial test with its infinite improbability for the cases of $\bar{p} = 0$, which Dr Pearl finds not

"plastic" enough for his observations. But this, the logical application of the method, is not what Dr Pearl adopts although he has commenced his paper by emphasising the "ever-growing need for adequate and clearly understood tests for the statistical significance of differences between observed results and expectation*" and cited in this respect the χ^2 and the $\sqrt{m\bar{p}\bar{q}}$ tests both of which are criteria of goodness of fit of observed results as a sample of the results to be expected from an indefinitely large and rigidly proportioned theoretical population.

What Dr Pearl actually does had better be stated in his own words (italics his): "The proposal which I wish to make for the expression of a Mendelian result is that the expectation be expressed as the quartile limits of each class of frequency in a second sample of the same size as the observed sample†."

Now it is very difficult to understand this sentence, for we are not told what the "expectation" is. If it is the Mendelian expectation, then why is the Mendelian expectation the second sample and not the first sample? And further why should its size be the *same* as that of the observation and not indefinitely large?

If we seek enlightenment in the working of the illustrations provided we can find it on pp. 150–151. Here to begin with we have the observations of F. L. Platt on the mating of Blue Andalusian fowls set out. There are 58 offspring of the mating Blue \times Blue of which almost 7% instead of being the white, blue or black of Mendelian theory are "dark red." These "mutations," "errors of record" or "what nots" are thrown in with the blacks and classed as "pigmented not blue" (elastic observations!). Dr Pearl now assumes a first sample of 58 to be given in the actual Mendelian proportions of 1:2:1, i.e., 14.5:29:14.5, and he then uses (i) and (ii) to obtain the mean = 14.9833 and $\sigma = 4.6364$ for testing the actual data.

Now what is the real significance of this procedure? Clearly he has made the Mendelian theory absolutely plastic. He has taken it not as the rigid law of the population sampled, but as the variable distribution of a very small first sample of 58 from a population of which the actual law is absolutely unknown or rather merely suggested by a very small sample. The smaller the observed series, the weaker will be the theory. The artifice is clear when it is clearly expressed, but no biologist with the average biologist's knowledge of mathematics would realise what Dr Pearl has done and he would thus run the danger of accepting Dr Pearl's test as a valid one. Suppose the sampled population to contain 1000 blue balls, 800 green balls, 500 red balls and 10 yellow balls. A sample of 50 would as a rule produce no yellow balls, say it produced 22 blue, 17 green and 11 red. This would be used to represent the "Mendelian" ratio 22:17:11 but later samples of 50 might occasionally produce yellow balls. These it is true would not appear in the "Mendelian theory" of 22:17:11, but would give no indefinite improbability, because the Mendelian theory has been shifted from being the rigid law of an indefinitely large population, to being the chance distribution of a sample, of just the same size as the observations themselves. Its accuracy or weight fluctuates with the observations themselves, and the "goodness of fit" test suggested by this process becomes no test whatever of the accordance of theory and observation, for the theory is made to have just the same weight as the observations, and the fewer the observed data, the greater ceteris paribus will be the likelihood of accordance between the two samples.

Shortly Dr Pearl's method is entirely fallacious, as any trained mathematician would have informed Dr Pearl had he sought advice before publication. It is most regrettable that such extensions of biometric theory should be lightly published, without any due sense of responsibility, not solely in biological but in psychological journals. It can only bring biometry into contempt as a science if, professing a mathematical foundation, it yet shows in its manifestations most inadequate mathematical reasoning.

* Loc. cit., p. 144. The italics are mine.

† Loc. cit., p. 148.

The Cambridge University Press, Fetter Lane, London, E.C. 4, and their Agents. are now the sole agents for the sale of the following publications of the Galton and Biometric Laboratories, University of London:

BIOMETRIC LABORATORY PUBLICATIONS Drapers' Company Research Memoirs.

Biometric Series.

I. Mathematical Contributions to the Theory of Evolution. - XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. By Karl Pearson, F.R.S. Price 4s. net.

II. Mathematical Contributions to the

Theory of Evolution.—XIV. On the Theory of Skew Correlation and Non-linear Regression. By KARL PEARSON, F.R.S. Price 5s.

III. Mathematical Contributions to the Theory of Evolution.—XV. On the Mathematical Theory of Random Migration. By KARL PEARSON, F.R.S., with the assistance of John Blakeman, M.Sc. Price 5s. net.

IV. Mathematical Contributions to the Theory of Evolution.—XVI. On Further Methods of Measuring Correlation. By Karl Pearson, F.R.S. Price 4s. net.

Mathematical Contributions to the Theory of Evolution.—XVII. On Homotyposis in the Animal Kingdom. A Co-[Shortly. operative Study.

Albinism in Man. By KARL PEARSON,
E. NETTLESHIP, and C. H. USHER. Text,
Part I, and Atlas, Part I. Price 35s. net. VI.

- Mathematical Contributions to the Theory of Evolution.—XVIII. On a Novel Method of Regarding the Association of two Variates classed solely in Alternative Categories. By Karl Pearson, F.R.S. Price 4s. net.
- VIII. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part II, and Atlas, Part II. Price 30s. net.
- IX. Albinism in Man. By Karl Pearson, E. Nettleship, and C. H. Usher. Text, Part IV, and Atlas, Part IV. Price 21s. net.

Studies in National Deterioration.

I. On the Relation of Fertility in Man to Social Status, and on the changes in this Relation that have taken place in the last 50 years. By DAVID HERON, M.A., D.Sc. Price 6s. net. Sold only with complete sets.

II. A First Study of the Statistics of Pulmonary Tuberculosis (Inheritance). By KARL PEARSON, F.R.S. Price 3s. net.

III. A Second Study of the Statistics of

Pulmonary Tuberculosis. Marital Infection. By Ernest G. Pope, revised by Karl PEARSON, F.R.S. With an Appendix on Assortative Mating by ETHEL M. ELDERTON. Price 3s. net.

IV. The Health of the School-Child in relation to its Mental Characters. By KARL Pearson, F.R.S.

V. On the Inheritance of the Diathesis of Phthisis and Insanity. A Statistical Study based upon the Family History of 1,500 Criminals. By Charles Goring, M.D., B.Sc. Price 3s. net.

- VI. A Third Study of the Statistics of Pulmonary Tuberculosis. The Mortality of the Tuberculous and Sanatorium Treatment. By W. P. ELDERTON, F.I.A., and S. J. PERRY, A.I.A. Price 3s. net.
- VII. On the Intensity of Natural Selection in Man. (On the Relation of Darwinism to the Infantile Death-rate.) By E. C. Snow, D.Sc. Price 3s. net.
- VIII. A Fourth Study of the Statistics of Pulmonary Tuberculosis: the Mortality of the Tuberculous: Sanatorium and Tuberculin Treatment. By W. Palin Elderton, F.I.A., and Sidney J. Perry, A.I.A. Price 3s. net.
- A Statistical Study of Oral Temperatures in School Children with special IX. reference to Parental, Environmental and Class Differences. By M. H. WILLIAMS, M.B., JULIA BELL, M.A., and KARL PEARSON, F.R.S. *Price* 6s. net.

Technical Series.

- Comparison with Existing Theory. By E. S. Andrews, B.Sc. Eng., assisted by Karl Pearson, F.R.S. Issued. Price 3s. net.
- II. On some Disregarded Points in the Stability of Masonry Dams. By L. W. Atcherley, assisted by Karl Pearson, F.R.S. Issued. Price 7s. net. Sold only with complete sets.
- III. On the Graphics of Metal Arches with special reference to the Relative Strength of Two-pivoted, Three-pivoted and Built-in-Metal Arches. By L. W. ATCHERLEY and KARL PEARSON, F.R.S. Issued. Price 5s. net.
- I. On a Theory of the Stresses in Crane and Coupling Hooks with Experimental and Shafting. By Karl Pearson, F.R.S. Issued. Price 6s. net.
 - V. An Experimental Study of the Stresses in Masonry Dams. By Karl Pearson, F.R.S., and A. F. Campbell Pollard, assisted by C. W. Wheen, B.Sc. Eng., and L. F. RICHARDSON, B.A. Issued. Price 7s. net.
 - On a Practical Theory of Elliptic and Pseudo-elliptic Arches, with special reference to the ideal Masonry Arch. By KARL Pearson, F.R.S., W. D. Reynolds, B.Sc. Eng., and W. F. Stanton, B.Sc. Eng. Issued. Price 4s. net.

Complete sets may be purchased at 25s. net.

Drapers' Company Research Memoirs—(cont.).

Questions of the Day and of the Fray.

- I. The Influence of Parental Alcoholism on the Physique and Ability of the Offspring. A Reply to the Cambridge Economists. By Karl Pearson, F.R.S. *Price* 1s. net.
- II. Mental Defect, Mal-Nutrition, and the Teacher's Appreciation of Intelligence. A Reply to Criticisms of the Memoir on 'The Influence of Defective Physique and Unfavourable Home Environment on the Intelligence of School Children.' By DAVID HERON, D.Sc. Price 1s. net.
- III. An Attempt to correct some of the Misstatements made by Sir Victor Hors-Ley, F.R.S., F.R.C.S., and Mary D. Sturge, M.D., in their Criticisms of the Memoir: 'A First Study of the Influence of Parental Alcoholism,' &c. By Karl Pearson, F.R.S. Price 1s. net.

- IV. The Fight against Tuberculosis and the Death-rate from Phthisis. By KARL PEARSON, F.R.S. Price 1s. net.
- V. Social Problems: Their Treatment,
 Past, Present and Future. By KARL
 PEARSON, F.R.S. Price 1s. net.
- VI. Eugenics and Public Health. Lecture to the York Congress of the Royal Sanitary Institute. By Karl Pearson, F.R.S. Price 1s. net.
- VII. Mendelism and the Problem of Mental
 Defect. I. A Criticism of Recent American
 Work. By DAVID HERON, D.Sc. (Double
 Number.) Price 2s. net.
- VIII. Mendelism and the Problem of Mental
 Defect. II. The Continuity of Mental
 Defect. By KARL PEARSON, F.R.S., and
 GUSTAV A. JAEDERHOLM, Ph.D. Price 1s. net.
- IX. Mendelism and the Problem of Mental Defect. III. On the Graduated Character of Mental Defect, and on the need for standardizing Judgments as to the Grade of Social Inefficiency which shall involve Segregation. By Karl Pearson, F.R.S. (Double Number.) Price 2s. net.

Eugenics Laboratory Publications

MEMOIR SERIES.

- I. The Inheritance of Ability. By Edgar Schuster, D.Sc., Formerly Galton Research Fellow, and Ethel M. Elderton, Galton Scholar. Price 4s. net.
- II. A First Study of the Statistics of Insanity and the Inheritance of the Insane Diathesis. By David Heron, D.Sc., Formerly Galton Research Fellow. Price 3s. net.
- erly Galton Research Fellow. Price 3s. net.

 III. The Promise of Youth and the
 Performance of Manhood. By EDGAR
 SCHUSTER, D.Sc., Formerly Galton Research
 Fellow Price 2s. 6d. net
- Fellow. Price 2s. 6d. net.

 IV. On the Measure of the Resemblance of First Cousins. By ETHEL M. ELDERTON, Galton Research Fellow, as 6td net.

 PEARSON F.R.S. Price 3s. 6td net.
- V. A First Study of the Inheritance of
 Vision and of the Relative Influence of
 Heredity and Environment on Sight. By
 AMY BARRINGTON and KARL PEARSON,
 F.R.S. Price 4s. net.

 VI. Treasury of Human Inheritance
- VI. Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Parts I and II
 (double part). (Diabetes insipidus, Split-Foot, Polydactylism, Brachydactylism,
 Tuberculosis, Deaf-Mutism, and Legal Ability.) Price 14s. net.
- VII. The Influence of Parental Occupation and Home Conditions on the Physique of the Offspring. By ETHEL M. ELDERTON, Galton Research Fellow. Shortly.
- VIII. The Influence of Unfavourable Home
 Environment and Defective Physique on
 the Intelligence of School Children. By
 DAVID HERON, M.A., D.Sc., Formerly Galton
 Research Fellow. Price 4s. net. Sold only
 with complete sets.
 - IX. The Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Part III.
 (Angioneurotic Oedema, Hermaphroditism, Deaf-Mutism, Insanity, Commercial Ability.) Price 6s. net.

- X. The Influence of Parental Alcoholism on the Physique and Intelligence of the Offspring. By Ethel M. Elderton, assisted by Karl Pearson. Second Edition. Price 4s. net.
- XI. The Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Part IV.
 (Cleft Palate, Hare-Lip, Deaf-Mutism, and Congenital Cataract.) Price 10s. net.
- XII. The Treasury of Human Inheritance
 (Pedigrees of physical, psychical, and pathological Characters in Man). Parts V and
 VI. (Haemophilia.) Price 15s. net.
- XIII. A Second Study of the Influence of
 Parental Alcoholism on the Physique and
 Intelligence of the Offspring. By Karl
 Pearson, F.R.S., and Ethel M. Elderton.
 Price 4s. net.
- XIV. A Preliminary Study of Extreme
 Alcoholism in Adults. By AMY BARRINGTON and KARL PEARSON, F.R.S., assisted
 by DAVID HERON, D.Sc. Price 4s. net.
- XV. The Treasury of Human Inheritance.

 Dwarfism, with 49 Plates of Illustrations and 8 Plates of Pedigrees. Price 15s. net.
- XVI. The Treasury of Human Inheritance.

 Prefatory matter and indices to Vol. I.

 With Frontispiece Portraits of Sir Francis
 Galton and Ancestry. Price 3s. net.
- XVII. A Second Study of Extreme Alcoholism in Adults. With special reference to the Home-Office Inebriate Reformatory data. By David Heron, D.Sc. Price 5s. net.
- XVIII. On the Correlation of Fertility with Social Value. A Cooperative Study. Price 6s. net.
- XIX—XX. Report on the English Birthrate.

 Part I. England, North of the Humber.

 By Ethel M. Elderton, Galton Research
 Fellow. Price 9s. net.

Vol. I of The Treasury of Human Inheritance (VI+IX+XI+XII+XV+XVI of the above memoirs) may now be obtained bound in buckram, price 52s. 6d. net. Buckram cases for

Eugenics Laboratory Publications—(cont.).

binding can be purchased at 2s. 9d. with impress of the bust of Sir Francis Galton. A photograph $(11'' \times 13'')$ of Sir Francis Galton by the late Mr Dew Smith can be obtained by sending a postal order for 10s. 6d. to the Secretary to the Laboratory, University College, London, W.C.

LECTURE SERIES. Price 1s. net each (Nos. III and X excepted).

- I. The Scope and Importance to the State of the Science of National Eugenics. By Karl Pearson, F.R.S. Third Edition.
- II. The Groundwork of Eugenics. By Karl Pearson, F.R.S. Second Edition.
- III. The Relative Strength of Nurture and Nature. Much enlarged Second Edition. Part I. The Relative Strength of Nurture and Nature. (Second Edition revised:) By ETHEL M. ELDERTON. Part II. Some Recent Misinterpretations of the Problem of Nurture and Nature. (First Issue.) By KARL PEARSON, F.R.S. Price 28. net.
- IV. On the Marriage of First Cousins. By ETHEL M. ELDERTON.

- V. The Problem of Practical Eugenics.
 By Karl Pearson, F.R.S. Second Edition.
- VI. Nature and Nurture, the Problem of the Future. By Karl Pearson, F.R.S. Second Edition.
- VII. The Academic Aspect of the Science of National Eugenics. By Karl Pearson, FRS
- VIII. Tuberculosis, Heredity and Environment. By Karl Pearson, F.R.S.
- IX. Darwinism, Medical Progress and Eugenics. The Cavendish Lecture, 1912. By Karl Pearson, F.R.S.
 - X. The Handicapping of the First-born. By Karl Pearson, F.R.S. Price 2s. net.

The following work prepared in the Biometric Laboratory can be obtained as a Government Report from Messrs Wyman and Sons, Ltd.

The English Convict, A Statistical Study. By Charles Goring, M.D. Text. Price 9s. Tables of Measurements (printed by Convict-Labour). Price 5s.

THE UNIVERSITY OF CHICAGO PRESS

THE ORIGIN OF THE EARTH. (The University of Chicago Science Series.) By Thomas Chrowder Chamberlin, Head of the Department of Geology in the University of Chicago.

xii + 272 pp. 12mo. Cloth. 6s. net.

This book, by one of the leading geologists of the world, sets forth the disclosures that led to the rejection, one after another, of the older views of the origin of our planet, the futile attempts then made to emend these or to build others upon the same foundations, the final rejection of all these, and the construction of a radically new view based on a new dynamic foundation. The later chapters of the book treat of the early stages of the earth and of the way in which its leading processes took their start from their cosmogonic antecedents, these being held to be essential factors in the genesis of the planet. The beginning of the inquiry is set forth in the Introduction; the successive chapters are entitled: "The Gaseous Theory of Earth-Genesis in the Light of the Kinetic Theory of Gases"; "Vestiges of Cosmogonic States and Their Significance"; "The Decisive Testimony of Certain Vestiges of the Solar System"; "Futile Efforts"; "The Forbidden Field"; "Dynamic Encounter by Close Approach"; "The Evolution of the Solar Nebula into the Planetary System"; "The Juvenile Shaping of the Earth"; "Inner Reorganization of the Juvenile Earth"; "Higher Organization in the Great Contact Horizons."

SENESCENCE AND REJUVENESCENCE. By CHARLES MANNING CHILD, Associate Professor of Zoology in the University of Chicago.

xii + 482 pp. 8vo. Cloth. 16s. net.

The author of this volume, after some fifteen years of experimental investigation of the nature and origin of the organic individual, has established certain facts which afford a more adequate foundation for the general consideration and interpretation of the age changes in the organic world than we have hitherto possessed.

Certain experimental methods have made it possible not only to follow the physiological age changes in some of the lower animals, but to learn something of their nature. The most important result of the investigation is the demonstration of the occurrence of rejuvenescence quite independently of sexual reproduction. The book differs from most previous studies of senescence in that it attempts to show that in the organic world in general rejuvenescence is just as fundamental and important a process as senescence.

The Cambridge University Press Agents for the British Empire London, Fetter Lane, E.C. 4

JOURNAL OF ANATOMY

(ORIGINALLY THE JOURNAL OF ANATOMY AND PHYSIOLOGY)

CONDUCTED, ON BEHALF OF THE ANATOMICAL SOCIETY OF GREAT BRITAIN AND IRELAND, BY

Professor THOMAS H. BRYCE, University of Glasgow Professor EDWARD FAWCETT, University of Bristol Professor J. P. HILL, University of London Professor G. ELLIOT SMITH, University of Manchester

Professor ARTHUR KEITH, Royal College of Surgeons

VOL. LI

ANNUAL SUBSCRIPTION 21/- POST FREE

CONTENTS OF PART III.—APRIL 1917

- KATHARINE M. PARKER, B.Sc. (Lond.). The Development of the Hypophysis Cerebri, The Pre-Oral Gut, and Related Structures in the Marsupialia.
- J. S. B. STOPFORD, M.D. The Arteries of the Pons and Medulla Oblongata: Part III.
- W. COLIN MACKENZIE, M.D. Further Studies on the Peritoneum and Intestinal Tract in Monotremes and Marsupials.
- J. L. AYMARD, Capt. R.A.M.C. (Temp.). Some New Points on the Anatomy of the Nasal Septum, and their Surgical Significance.
- M. Amin Abdel Rahman. A Subject with Complete Transposition of Viscera.
- S. RUTHERFORD MACPHAIL, M.D. Note on Length of Vermiform Process in 220 Consecutive Post-Mortem Examinations.

LONDON: CHARLES GRIFFIN AND COMPANY, Ltd., Exeter Street, Strand, W.C. 2

NOW READY

JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE

Vol. XLVI. July—December, 1916

CONTENTS

- Sir James George Frazer. Ancient Stories of a Great Flood. (The Huxley Memorial Lecture for 1916.)
- H. LING ROTH. Studies in Primitive Looms. (With Plate XII.)
- H. D. SKINNER. Evolution in Maori Art. II.—Pendants. (With Plates XIII—XVIII.)
- GUNNAR LANDTMAN. The Magic of the Kiwai Papuans in Warfare.
- A. C. HADDON. The Kabiri or Girara District, Fly River, Papua. (With Plates XIX and
- Bronislaw Malinowski. Baloma; The Spirits of the Dead in the Trobriand Islands.
- R. S. RATTRAY. The Iron Workers of Akpafu. (With Plates XXI—XXIV.)
- Miscellanea. (With Plates XXV-XXVII.) Table of Contents to Vol. XLVI.

210 PAGES, WITH 16 PLATES AND MANY ILLUSTRATIONS IN THE TEXT.

PRICE 15s. NET

LONDON: THE ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W.C. 1 General Agent: FRANCIS EDWARDS, 83a, High Street, Marylebone, W. 1

OR THROUGH ANY BOOKSELLER

MAN

A MONTHLY RECORD OF ANTHROPOLOGICAL SCIENCE

Published under the direction of the Royal Anthropological Institute of Great Britain and Ireland. Each number of MAN consists of at least 16 Imp. 8vo. pages, with illustrations in the text together with one full-page plate; and includes Original Articles, Notes, and Correspondence; Reviews and Summaries; Reports of Meetings; and Descriptive Notices of the Acquisitions of Museums and Private Collections.

Price, 1s. Monthly or 10s. per Annum prepaid.

TO BE OBTAINED FROM THE

ROYAL ANTHROPOLOGICAL INSTITUTE, 50, Great Russell Street, W.C. 1

AND THROUGH ALL BOOKSELLERS

UNIVERSITY OF LONDON, UNIVERSITY COLLEGE

The Biometric Laboratory

(assisted by a grant from the Worshipful Company of Drapers)

Until the phenomena of any branch of knowledge have been submitted to measurement and number it cannot assume the status and dignity of a science. Francis Galton.

Under the direction of Professor Karl Pearson, F.R.S. Assistants: Andrew Young, M.A., B.Sc.; Leslie Ince, M.A.; Adelaide G. Davin, B.Sc.; Crewdson Benington Student in Anthropometry: Arnold Frobisher, B.Sc.

This laboratory provides a complete training in modern statistical methods and is especially arranged so as to assist research workers engaged on biometric problems.

The Francis Galton Eugenics Laboratory

National Eugenics is the study of agencies under social control, that may improve or impair the racial qualities of future generations, either physically or mentally.

The Laboratory was founded by Sir Francis Galton and is under the supervision of Professor Karl Pearson, F.R.S. Assistants: Galton Research Fellow: Ethel M. Elderton; Arthur T. Doodson, M.Sc. Secretary: H. Winifred Husbands, B.A.

It was the intention of the Founder, that the Laboratory should serve (i) as a storehouse of statistical material bearing on the mental and physical conditions in man, and the relation of these conditions to inheritance and environment; (ii) as a centre for the publication or other form of distribution of information concerning National Eugenics; (iii) as a school for training and assisting research-workers in special problems in Eugenics.

Short courses are provided for those who are engaged in social, medical, or anthropometric work.

At press and to appear shortly:

A Monograph on the English Long Bones. By KARL PEARSON, F.R.S. and JULIA BELL, M.A. Part I. The Femur. Text Part I and Atlas of Plates Part I.

CONTENTS

(All Rights reserved)

TO STATE A GOOD AND A CONTRACT OF A CONTRACT	PAGE
I. W. R. MACDONELL, Born October 16, 1852; Died May 15, 1916 (Notice with Portrait)	281
II. Further Supplementary Tables for Determining High Correlations from Tetrachoric Groupings. By ALICE LEE, D.Sc.	284
III. On the Probable Error of Biserial η. By KARL PEARSON, F.R.S. (With One Figure in the Text)	292
IV. A Preliminary Report on some Breeding Experiments with Foxgloves. By ERNEST WARREN, D.Sc.	303
V. On the Distribution of the Correlation Coefficient in Small Samples. Appendix II to the Papers of "Student" and R. A. Fisher. A Cooperative Study by H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE and K. Pearson. (With Plates XXIV—XXVIII and Two Figures in the Text)	328
Miscellanea:	4
 (i) Tables for estimating the Probability that the Mean of a unique Sample of Observations lies between −∞ and any given Distance of the Mean of 	474
the Population from which the Sample is drawn. By "STUDENT".	414
(ii) On the Representation of Statistical Data. By L. ISSERLIS, D.Sc. (With Three Figures in the Text)	418
(iii) Relation of the Mode, Median and Mean in Frequency Curves. By ARTHUR T. Doodson, M.Sc.	425
(iv) The Probable Error of a Mendelian Class Frequency. By KARL PEARSON F.R.S.	429

Notice to Subscribers

The great delay in the issue of this part of Biometrika has been due to a variety of causes which it is desirable to indicate here. In the first place the Editor and the whole of his Staff have been engaged on war work, which since July 1916 has become so incessant and engrossing that all research investigations have had to be placed on one side. In the next place three members of the Staff, who were originally engaged on the very heavy calculations of the memoir in this part dealing with the correlation coefficient in small samples have left to undertake special work in the present crisis. And lastly the war depletion of the staff of the Cambridge University Press has inevitably delayed the setting up of a part involving such a great mass of numerical matter.

The publication of a paper in Biometrika marks that in the Editor's opinion it contains either in method or material something of interest to biometricians. But the Editor desires it to be distinctly understood that such publication does not mark assent to the arguments used or to the conclusions drawn in the paper.

Biometrika appears about four times a year. A volume containing about 500 pages, with plates and

tables, is issued annually.

Papers for publication and books and offprints for notice should be sent to Professor KARL PEARSON, University College, London. It is a condition of publication in Biometrika that the paper shall not already have been issued elsewhere, and will not be reprinted without leave of the Editor. It is very desirable that a copy of all measurements made, not necessarily for publication, should accompany each manuscript. In all cases the papers themselves should contain not only the calculated constants, but the distributions from which they have been deduced. Diagrams and drawings should be sent in a state suitable for direct photographic reproduction, and if on decimal paper it should be blue

ruled, and the lettering only pencilled.

Papers will be accepted in French, Italian or German. In the last case the manuscript should be in Roman not German characters. Russian contributors may use Russian but their papers will be

translated into English before publication.

Contributors receive 25 copies of their papers free. Fifty additional copies may be had on payment of 7/- per sheet of eight pages, or part of a sheet of eight pages, with an extra charge for Plates; these should be ordered when the final proof is returned.

The subscription price, payable in advance, is 30s. net per volume (post free); single numbers 10s. net. Volumes I—XI (1902—17) complete, 30s. net per volume. Bound in Buckram 34/6 net per volume. Index to Volumes I to V, 2s. net. Subscriptions may be sent to C. F. Clay, Cambridge University Press, Fetter Lane, London, E.C. 4, either direct or through any bookseller, and communications respecting advertisements should also be addressed to C. F. Clay.

Till further notice, new subscribers to Biometrika may obtain Vols. I—XI together for £13 net—or

bound in Buckram for £14 net.

The Cambridge University Press has appointed the University of Chicago Press Agents for the sale of Biometrika in the United States of America, and has authorised them to charge the following prices: \$7.50 net per volume; single parts \$2.50 net each.

atrick

			·	
	·			

smithsonian institution Libraries

3 9088 01230 9886