Bayes Inference and Gaussian Process

Siqiao Xue

Version 1.1, 2019-08-30.

Abstract

This document introduces Gaussian distribution and Gaussian process from a mathematical perspective. Base on this, the principles and application of Bayesian inference is summarized.

Contents

1	Multivariate Gaussian distribution
	1.1 Probability density function
	1.2 Marginal and conditional distribution
2	Gaussian process
3	Appendix
	3.1 Theorems on linear algebra
	3.1.1 Inverse and determinant of partitioned symmetric matrix

1 Multivariate Gaussian distribution

1.1 Probability density function

A vector-valued random variable $\boldsymbol{x} \in \mathbb{R}^n$ follows a multivariate Gaussian distribution with mean $\boldsymbol{\mu} \in \mathbb{R}^n$ and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{S}^n_{++}$ if the probability density function of \boldsymbol{x} is

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

We can write as $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Note that \mathbb{S}^n_{++} refers to the space of symmetric positive definite $n \times n$ matrix.

1.2 Marginal and conditional distribution

Consider a random vector $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Suppose that variables in \boldsymbol{x} has been partitioned into two sets $\boldsymbol{x}_A = (x_1, ... x_r)^{\top} \in \mathbb{R}^r$ and $\boldsymbol{x}_A = (x_{r+1}, ... x_n)^{\top} \in \mathbb{R}^{n-r}$ (similarly for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$), such that

$$oldsymbol{x} = \left(egin{array}{c} oldsymbol{x}_A \ oldsymbol{x}_B \end{array}
ight), oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_A \ oldsymbol{\mu}_B \end{array}
ight), oldsymbol{\Sigma} = \left(egin{array}{c} oldsymbol{\Sigma}_{AA} & oldsymbol{\Sigma}_{AB} \ oldsymbol{\Sigma}_{BB} \end{array}
ight)$$

Here $\Sigma_{AB} = \Sigma_{BA}^{\top}$ since $\Sigma = \mathbb{E}[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{\top}] = \Sigma^{\top}$.

In many situations it is convenient to work with the inverse inverse of the covariance matrix $\Lambda = \Sigma^{-1}$. and according to the same partitioning of the vector \boldsymbol{x} the partitioned form of Λ follows

$$oldsymbol{\Lambda} = \left(egin{array}{cc} oldsymbol{\Lambda}_{AA} & oldsymbol{\Lambda}_{AB} \ oldsymbol{\Lambda}_{BA} & oldsymbol{\Lambda}_{BB} \end{array}
ight)$$

Lemma 1.1. The partitioning of the vector x leads to an equivalent expression of the quadratic form of x

$$(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = (\boldsymbol{x}_A - \boldsymbol{\mu}_A)^{\mathsf{T}} \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_A - \boldsymbol{\mu}_A) + (\boldsymbol{x}_B - \boldsymbol{b})^{\mathsf{T}} \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_B - \boldsymbol{b})$$

where $\boldsymbol{b} = \boldsymbol{\mu}_B + \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} (\boldsymbol{x}_A - \boldsymbol{\mu}_A).$

Proof. By substituting the partitioned form of x, μ and Λ , one obtains

$$(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$

$$= \left(\begin{bmatrix} \boldsymbol{x}_{A} \\ \boldsymbol{x}_{B} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_{A} \\ \boldsymbol{\mu}_{B} \end{bmatrix} \right)^{\top} \left(\begin{array}{c} \boldsymbol{\Lambda}_{AA} & \boldsymbol{\Lambda}_{AB} \\ \boldsymbol{\Lambda}_{BA} & \boldsymbol{\Lambda}_{BB} \end{array} \right) \left(\begin{bmatrix} \boldsymbol{x}_{A} \\ \boldsymbol{x}_{B} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_{A} \\ \boldsymbol{\mu}_{B} \end{bmatrix} \right)$$

$$= (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A}) + (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})$$

$$+ (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})^{\top} \boldsymbol{\Lambda}_{BA} (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A}) + (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})^{\top} \boldsymbol{\Lambda}_{BB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})$$

$$= (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A}) + 2(\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B}) + (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})^{\top} \boldsymbol{\Lambda}_{BB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})$$

$$= (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A}) + 2(\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A})^{\top} \boldsymbol{\Lambda}_{AB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B}) + (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})^{\top} \boldsymbol{\Lambda}_{BB} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})$$

$$(1.1)$$

From Lemma(3.1) we construct the relations between Λ and Σ

$$\begin{split} \boldsymbol{\Lambda}_{AA} &= \boldsymbol{\Sigma}_{AA}^{-1} + \boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB} (\boldsymbol{\Sigma}_{BB} - \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} \\ \boldsymbol{\Lambda}_{BB} &= \left(\boldsymbol{\Sigma}_{BB} - \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB}^{\top} \right)^{-1} \\ \boldsymbol{\Lambda}_{AB} &= -\boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB} (\boldsymbol{\Sigma}_{BB} - \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB}^{-1})^{-1} \end{split}$$

and plug in into the Equation (1.2). Using elementary calculation and the techniques in Lemma (3.2) we will finally arrives at the conclusion. \Box

Lemma 1.2. The joint density function equals to the product of two Gaussian densities, i.e.

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\boldsymbol{x}_A; \boldsymbol{\mu}_A, \boldsymbol{\Sigma}_{AA}) p(\boldsymbol{x}_B; \boldsymbol{b}, \boldsymbol{V}_{AA})$$

where
$$\boldsymbol{b} = \boldsymbol{\mu}_B + \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} (\boldsymbol{x}_A - \boldsymbol{\mu}_A)$$
 and $\boldsymbol{V} = \boldsymbol{\Sigma}_{BB} - \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB}$

Proof. For notation simplicity, set $Q(\boldsymbol{x}_A, \boldsymbol{x}_B) = (\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}), Q_1(\boldsymbol{x}_A) = (\boldsymbol{x}_A - \boldsymbol{\mu}_A)^\top \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_A - \boldsymbol{\mu}_A), Q_2(\boldsymbol{x}_A, \boldsymbol{x}_B) = (\boldsymbol{x}_B - \boldsymbol{b})^\top \boldsymbol{\Lambda}_{AA} (\boldsymbol{x}_B - \boldsymbol{b}).$

By the definition of the joint density

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|} \exp\left(-\frac{1}{2} Q(\boldsymbol{x}_A, \boldsymbol{x}_B)\right)$$

$$= \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}_{AA}|^{1/2} |\boldsymbol{\Sigma}_{BB} - \boldsymbol{\Sigma}_{AB}^{\top} \boldsymbol{\Sigma}_{AA}^{-1} \boldsymbol{\Sigma}_{AB}|^{1/2}} \exp\left(-\frac{1}{2} Q(\boldsymbol{x}_A, \boldsymbol{x}_B)\right) \quad \text{(Apply Theorem (3.2) to } |\boldsymbol{\Sigma}|\text{)}$$

$$= \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_{AA}|^{1/2}} \exp\left(Q_1(\boldsymbol{x}_A)\right) \frac{1}{(2\pi)^{q/2} |\boldsymbol{V}|^{1/2}} \exp\left(Q_2(\boldsymbol{x}_A, \boldsymbol{x}_B)\right) \quad \text{(Apply Lemma (1.1) to } Q(\boldsymbol{x}_A, \boldsymbol{x}_B)\text{)}$$

$$= p(\boldsymbol{x}_A; \boldsymbol{\mu}_A, \boldsymbol{\Sigma}_{AA}) p(\boldsymbol{x}_B; \boldsymbol{b}, \boldsymbol{V}_{AA})$$

Theorem 1.1. The marginal densities

$$p(\boldsymbol{x}_A) = \int p(\boldsymbol{x}_A, \boldsymbol{x}_B; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\boldsymbol{x}_B$$

 $p(\boldsymbol{x}_B) = \int p(\boldsymbol{x}_A, \boldsymbol{x}_B; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\boldsymbol{x}_A$

are Gaussian:

$$egin{aligned} oldsymbol{x}_A &\sim \mathcal{N}(oldsymbol{\mu}_A, oldsymbol{\Sigma}_{AA}) \ oldsymbol{x}_B &\sim \mathcal{N}(oldsymbol{\mu}_B, oldsymbol{\Sigma}_{BB}) \end{aligned}$$

Proof. The marginal density of x_A can be simplied to

$$p(\boldsymbol{x}_A) = \int p(\boldsymbol{x}_A, \boldsymbol{x}_B; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\boldsymbol{x}_B$$

$$= \int p(\boldsymbol{x}_A; \boldsymbol{\mu}_A, \boldsymbol{\Sigma}_{AA}) p(\boldsymbol{x}_B; \boldsymbol{b}, \boldsymbol{V}_{AA}) d\boldsymbol{x}_B \quad \text{(Because of Lemma1.2)}$$

$$= p(\boldsymbol{x}_A; \boldsymbol{\mu}_A, \boldsymbol{\Sigma}_{AA}) \quad \text{(Because } p(\boldsymbol{x}_A; \boldsymbol{\mu}_A, \boldsymbol{\Sigma}_{AA}) \text{ is independent of } \boldsymbol{x}_B)$$

The density function $p(x_A)$ indicates the distribution of x_A . By symmetric techniques we arrive at the same distribution for x_B .

Theorem 1.2. The conditional densities

$$p(\boldsymbol{x}_A|\boldsymbol{x}_B), p(\boldsymbol{x}_B|\boldsymbol{x}_A)$$

are Gaussian:

$$egin{aligned} oldsymbol{x}_A | oldsymbol{x}_B &\sim \mathcal{N}\left(oldsymbol{\mu}_A + oldsymbol{\Sigma}_{oldsymbol{AB}} oldsymbol{\Sigma}_{oldsymbol{BB}}^{-1}(oldsymbol{x}_B - oldsymbol{\mu}_B), oldsymbol{\Sigma}_{oldsymbol{AA}} - oldsymbol{\Sigma}_{oldsymbol{AB}} oldsymbol{\Sigma}_{oldsymbol{AB}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{AA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{AA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{AB}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{BA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{AA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{BA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{BA}}^{-1} oldsymbol{\Sigma}_{oldsymbol{BA}} oldsymbol{\Sigma}_{oldsymbol{BA}}^{-1} olds$$

Proof. The conditional density

$$p(\boldsymbol{x}_{B}|\boldsymbol{x}_{A}) = \frac{p(\boldsymbol{x}_{A}, \boldsymbol{x}_{B})}{p(\boldsymbol{x}_{A})}$$

$$= \frac{p(\boldsymbol{x}_{A}; \boldsymbol{\mu}_{A}, \boldsymbol{\Sigma}_{AA})p(\boldsymbol{x}_{B}; \boldsymbol{b}, \boldsymbol{V}_{AA})}{p(\boldsymbol{x}_{A}; \boldsymbol{\mu}_{A}, \boldsymbol{\Sigma}_{AA})p(\boldsymbol{x}_{B}; \boldsymbol{b}, \boldsymbol{V}_{AA})} \quad \text{(Because of Lemma(1.2) and Theorem(1.1)))}$$

$$= p(\boldsymbol{x}_{B}; \boldsymbol{b}, \boldsymbol{V}_{AA})$$

which coincides with the second Gaussian density in the theorem. Same procedure applies to $p(x_A|x_B)$ completes the proof.

2 Gaussian process

Definition 2.1. A Gaussian process $X(t), t \ge 0$ is a stochastic process with the property that for every set of times $0 \le t_1 \le t_2 \le ... \le t_n$, the set of random variables

$$X(t_1), X(t_2), ..., X(t_n)$$

is jointly normally distributed.

If X_t is a Gaussian process then its distribution is determined by its mean function

$$m(t) = \mathbb{E}X_t$$

and its covariance function

$$\rho(s,t) = \mathbb{E}[(X(s) - m(s))\dot{(}X(t) - m(t))]$$

3 Appendix

3.1 Theorems on linear algebra

3.1.1 Inverse and determinant of partitioned symmetric matrix

Lemma 3.1. Assume A, B, C, D are four matrix, then

$$(A + CBD)^{-1} = A^{-1} - A^{-1}C(B^{-1} + DA^{-1}C)^{-1}DA^{-1}$$

Proof.

$$(A + CBD) (A^{-1} - A^{-1}C(B^{-1} + DA^{-1}C)^{-1}DA^{-1})$$

$$= (A + CBD)A^{-1} - (A + CBD)A^{-1}C(B^{-1} + DA^{-1}C)^{-1}DA^{-1}$$

$$= I + CBDA^{-1} - (C + CBDA^{-1}C)(B^{-1} + DA^{-1}C)^{-1}DA^{-1}$$

$$= I + CBDA^{-1} - CB(B^{-1} + DA^{-1}C)(B^{-1} + DA^{-1}C)^{-1}DA^{-1}$$

$$= I + CBDA^{-1} - CBDA^{-1}$$

$$= I$$

Theorem 3.1. Assume a symmetric $n \times n$ matrix A is divided into four blocks

$$oldsymbol{A} = \left[egin{array}{cc} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{array}
ight] = \left[egin{array}{cc} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{12}^ op & oldsymbol{A}_{22} \end{array}
ight]$$

where A_{11} , A_{22} is $p \times p$, $q \times q$ matrix and p + q = n. Then we have the inverse matrix of $B^{-1} = A$ can also be partitioned into

$$oldsymbol{B} = \left[egin{array}{cc} oldsymbol{B}_{11} & oldsymbol{B}_{12} \ oldsymbol{B}_{21} & oldsymbol{B}_{22} \end{array}
ight] = \left[egin{array}{cc} oldsymbol{B}_{11} & oldsymbol{B}_{12} \ oldsymbol{B}_{12}^ op & oldsymbol{B}_{22} \end{array}
ight]$$

where

$$\begin{aligned} \boldsymbol{B}_{11} &= \left(\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top}\right)^{-1} = \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} (\boldsymbol{A}_{22} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12})^{-1} \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1} \\ \boldsymbol{B}_{22} &= \left(\boldsymbol{A}_{22} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12}^{\top}\right)^{-1} = \boldsymbol{A}_{22}^{-1} + \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top} (\boldsymbol{A}_{11} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12})^{-1} \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{22}^{-1} \\ \boldsymbol{B}_{12}^{\top} &= -\boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top} (\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top})^{-1} \\ \boldsymbol{B}_{12} &= -\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} (\boldsymbol{A}_{22} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12}^{-1})^{-1} \end{aligned}$$

Proof. By definition of the inverse matrix, we obtains

$$egin{aligned} m{I} = \left[egin{array}{ccc} m{A}_{11} & m{A}_{12} \ m{A}_{12}^ op & m{A}_{22} \end{array}
ight] \left[egin{array}{ccc} m{B}_{11} & m{B}_{12} \ m{B}_{12}^ op & m{B}_{22} \end{array}
ight] = \left[egin{array}{ccc} m{A}_{11} m{B}_{11} + m{A}_{12} m{B}_{12}^ op & m{A}_{11} m{B}_{12} + m{A}_{12} m{B}_{22} \ m{A}_{12}^ op m{B}_{12} + m{A}_{22} m{B}_{22} \end{array}
ight] = \left[egin{array}{ccc} m{I}_p & m{0} \ m{0} & m{I}_q \end{array}
ight] \end{aligned}$$

By equaling corresponding blocks we have

$$\boldsymbol{A}_{11}\boldsymbol{B}_{11} + \boldsymbol{A}_{12}\boldsymbol{B}_{12}^{\top} = \boldsymbol{I}_{p} \tag{3.1}$$

$$A_{11}B_{12} + A_{12}B_{22} = 0 (3.2)$$

$$A_{12}^{\mathsf{T}}B_{11} + A_{22}B_{12}^{\mathsf{T}} = \mathbf{0} \tag{3.3}$$

$$A_{12}^{\top}B_{12} + A_{22}B_{22} = I_a \tag{3.4}$$

From Equation(3.2) we find $B_{12} = -A_{11}^{-1}A_{12}B_{22}$ and plug it into Equation(3.1) to get

$$\boldsymbol{B}_{11} = \left(\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top} \right)^{-1} \tag{3.5}$$

Applying Lemma(3.1) to Equation(3.5) we obtains an equivalent expression

$$\boldsymbol{B}_{11} = \left(\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top}\right)^{-1} = \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} (\boldsymbol{A}_{22} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12})^{-1} \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{11}^{-1}$$

The same procedure applies to $B_{22}, B_{12}^{\top}, B_{12}$ to achieve the conclusion.

Theorem 3.2. Assume matrix **A** is partitioned as

$$oldsymbol{A} = \left[egin{array}{cc} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{array}
ight]$$

4

, then its determinant

$$|\pmb{A}| = |\pmb{A_{22}}| \, |\pmb{A_{11}} - \pmb{A^{-1}} \pmb{A_{22}}^{-1} \pmb{A_{12}}^{ op}| = |\pmb{A_{11}}| \, |\pmb{A_{22}} - \pmb{A_{12}}^{ op} \pmb{A_{11}}^{-1} \pmb{A_{12}}|$$

Proof. Note that

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & 0 \\ A_{12}^{\top} & I \end{bmatrix} \begin{bmatrix} I & A_{11}^{-1}A_{12} \\ 0 & A_{22} - A_{12}^{\top}A_{11}^{-1}A_{12} \end{bmatrix}$$

$$= \begin{bmatrix} I & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} A_{11} - A_{12}^{\top}A_{22}^{-1}A_{12}^{\top} & 0 \\ A_{22}^{-1}A_{21} & I \end{bmatrix}$$

By elementary matrix operations, we find

$$\left| \left[\begin{array}{cc} \boldsymbol{A}_{11} & 0 \\ \boldsymbol{A}_{12}^\top & \boldsymbol{I} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \\ 0 & \boldsymbol{A}_{22} - \boldsymbol{A}_{12}^\top \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \end{array} \right] \right| = \left| \boldsymbol{A}_{11} (\boldsymbol{A}_{22} - \boldsymbol{A}_{12}^\top \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12}) \right| = \left| \boldsymbol{A}_{11} | \left| \boldsymbol{A}_{22} - \boldsymbol{A}_{12}^\top \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \right|$$

With the same reasoning, the following can be obtained

$$\left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{A}_{12} \\ 0 & \boldsymbol{A}_{22} \end{array}\right] \left[\begin{array}{cc} \boldsymbol{A}_{11} - \boldsymbol{A}_{12}^{\top} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top} & 0 \\ \boldsymbol{A}_{21}^{-1} \boldsymbol{A}_{21} & I \end{array}\right] = \left|\boldsymbol{A}_{22}\right| \left|\boldsymbol{A}_{11} - \boldsymbol{A}^{-1} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{12}^{\top}\right|$$

Then the theorem is proved.

Lemma 3.2. Assume A is a symmetric matrix, then the following equation holds for any vectors u, v.

$$\boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{u} - 2 \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{v} + \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} = (\boldsymbol{v} - \boldsymbol{u})^{\top} \boldsymbol{A} (\boldsymbol{v} - \boldsymbol{u})$$

Proof.

$$\begin{aligned} & \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{u} - 2 \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{v} + \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} \\ &= \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{u} - \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{v} + \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} - \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{v} \\ &= \boldsymbol{u}^{\top} \boldsymbol{A} (\boldsymbol{u} - \boldsymbol{v}) + (\boldsymbol{u} - \boldsymbol{v})^{\top} \boldsymbol{A} \boldsymbol{v} \\ &= (\boldsymbol{u} - \boldsymbol{v})^{\top} \boldsymbol{A} \boldsymbol{u} + (\boldsymbol{u} - \boldsymbol{v})^{\top} \boldsymbol{A} \boldsymbol{v} \quad \left(\text{Because } \boldsymbol{A} \text{ is symmetric, } \boldsymbol{u}^{\top} \boldsymbol{A} (\boldsymbol{u} - \boldsymbol{v}) = (\boldsymbol{u} - \boldsymbol{v})^{\top} \boldsymbol{A} \boldsymbol{u} \right) \\ &= (\boldsymbol{v} - \boldsymbol{u})^{\top} \boldsymbol{A} (\boldsymbol{v} - \boldsymbol{u}) \end{aligned}$$

References

- [1] Chuong B. Do, Gaussian Process, lecture note of Standard University, 2007.
- [2] G. Pages, Introduction to Numerical Probability, lecture note of École Polytechnique, 2011.
- [3] D. Revuz and M. Yor. Continuous martingales and Brownian motion, 2nd edition. Springer, 1994.
- [4] R. Wang. Marginal and conditional distributions of multivariate normal distribution, http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html, 2006.