Numerical Methods

Math 3338 - Spring 2022

Worksheet 20

First Order Differential Equations

1 Reading

CP 8.1, 8.2 NMEP Chapter 7

Table 1: Sections Covered

2 Overview

Suppose y is a function of x. We want to solve equations of the form,

$$\frac{dy}{dx} = f(x, y).$$

3 Euler's Method

This is the simplest numerical method. Here is the process,

- 1. Start with a point (x_0, y_0) and a step size h
- 2. $f(x_0, y_0)$ is the slope at the point (x_0, y_0) , make the tangent line of the function at this point $y = f(x_0, y_0)(x x_0) + y_0$.
- 3. Set $x_1 = x_0 + h$ and $y_1 = f(x_0, y_0)(x_1 x_0) + y_0$.
- 4. Continue until you hit the upper limit of x-values.

This is an approximation technique. The smaller the step size, the better the approximation. It's error term is $\mathcal{O}(h^2)$ (this is derived in the book). However, this is a tricky bit here *each step* is accurate to $\mathcal{O}(h)$ and we are potential computing a ton of steps. The error will compound, you'll see this in the homework.

4 Runge-Kutta

We've already learned the first order Runge-Kutta method! It's the same as Euler's method. It's called "first order" because it is accurate to $\mathcal{O}(h)$ (in other words the error term is $\mathcal{O}(h^2)$).

4.1 Second order Runge-Kutta

This is accurate to $\mathcal{O}(h^2)$ with error terms $\mathcal{O}(h^3)$. The book has a full explanation for how this works. Very similar to Euler's method, this is an iterative technique except instead of approximating the slope at x, we approximate the slope at $x + \frac{1}{2}h$.

A single iteration is given by the calculations,

$$k_1 = hf(x, y)$$

 $k_2 = hf(x + \frac{1}{2}h, y + \frac{1}{2}k_1)$
 $y_{new} = y + k_2$

where
$$f(x,y) = \frac{dy}{dx}$$
.

4.2 Fourth order Runge-Kutta

This is more complicated than the second order, but also far more complicated. It's accurate to $\mathcal{O}(h^4)$, which is amazing.

$$k_1 = hf(x, y)$$

$$k_2 = hf(x + .5h, y + .5k_1)$$

$$k_3 = hf(x + .5h, y + .5k_2)$$

$$k_4 = hf(x + h, y + k_3)$$

$$y_{new} = y + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$$

5 Vector Fields

A vector field is a field of vectors. It tells you which direction of the slope at each point in the plane. These are easy to make in Python,

```
X,Y = np.meshgrid(np.linspace(xmin,xmax,Nx),np.linspace(ymin,ymax,Ny))
plt.quiver(X,Y,1,f(X,Y),color="lightgrey")
```

6 Mean Absolute Error

Suppose you have to vectors x and y. You can determine how "close" they are using the mean absolute error,

$$\frac{\sum_{i=1}^{n} |x_i - y_i|}{n}$$

This is a stats thing, feel free to Google it. It tends to be used quite often in Machine learning to as a measure of how close predictions are to data.

Numerical Methods

Math 3338 - Spring 2022

Homework 20 (Due: Thursday, March 31)

Problem 1 (1 pt) Create three functions, euler, runge_kutta2, and runge_kutta. The inputs to each of these should be (f, x, y_0) where f represents $\frac{dy}{dx}$ so f is a bivariate function, x is an array containing x-values (this will include the step size, h) and y_0 is the initial y-value. They should return an array of y-values.

Problem 2 (1 pt) Consider the differential equation,

$$\frac{dy}{dx} = xy$$

This is separable differential equation, so we can actually solve this. The solution is $y = A \cdot \exp\left(\frac{x^2}{2}\right)$. Plot the following on a single graph,

- 1. Create a vector field of $\frac{dy}{dx}$ for $-2 \le x, y \le 2$. Make the color of the vector field light grey. 2. Plot $f(x) = A \cdot \exp\left(\frac{x^2}{2}\right)$ for $-2 \le x \le 2$. You'll need to solve for A. Label this curve "exact" 3. Plot three more curves, one for euler, runge_kutta2 and runga_kutta. Make the x-vector start at
- -2, end at 2 with 10 equally spaced points between (in other words, a linspace). Label these appropriately.
- 4. Include a legend.

Include this graph in a PDF along with a visual description of what you see occurring. Note, a visual description uses words. Calculate the mean absolute error of each as well and make a table.

Problem 3 (1 pt) Use the same differential equation from the previous problem. Put the following on a single graph

- 1. Create a vector field of $\frac{dy}{dx}$ for $-2 \le x, y \le 2$. Make the color of the vector field light grey. 2. Plot $f(x) = A \cdot \exp\left(\frac{x^2}{2}\right)$ for $-2 \le x \le 2$. You'll need to solve for A. Label this curve "exact"
- 3. Plot an approximation using Euler's method with 1,000 steps.
- 4. Plot an approximation using Runge_Kutta2 with 100 steps.
- 5. Plot an approximation using Runge_Kutta method with 10 steps.
- 6. Include a legend.

Include this graph in a PDF along with a visual description of what you see occurring. Note, a visual description uses words. Calculate the mean absolute error of each as well and make a table.

Problem 4 (1 pt) Use the same differential equation from the previous problem. Put the following on a single graph

- 1. Create a vector field of $\frac{dy}{dx}$ for $-2 \le x, y \le 2$. Make the color of the vector field light grey. 2. Plot $f(x) = A \cdot \exp\left(\frac{x^2}{2}\right)$ for $-2 \le x \le 2$. You'll need to solve for A. Label this curve "exact"
- 3. Plot an approximation using Euler's method with 10,000 steps.
- 4. Plot an approximation using Euler's method with 100 steps.
- 5. Plot an approximation using Euler's method with 10 steps.
- 6. Include a legend.

Include this graph in a PDF along with a visual description of what you see occurring. Note, a visual description uses words. Calculate the mean absolute error of each as well and make a table.