Advanced Revenue Modeling with Feature Engineering

NOTE: Total revenue is the target variable and I dint ahve enough data to decide what kindof revenue so i just assumed it to row wise revenue (revenue amount is very small 0 to around 84)

We will:

- 1. Load and preprocess the dataset with extensive feature engineering.
- 2. Use target encoding for high-cardinality categorical variables.
- 3. Train Ridge, Lasso, Random Forest, XGBoost, and LightGBM models with hyperparameter tuning.
- 4. Evaluate each model on the test set.
- 5. Visualize feature importances.
- 6. Use the best model to simulate a "what-if" scenario (doubling impressions).

```
In []: # 1. Load necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV, Randomized:
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
from category_encoders import TargetEncoder
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
import seaborn as sns
```

Data Loading and Feature Engineering

```
In []: file_path = "AD-Tech.csv"
df = pd.read_csv(file_path, parse_dates=['date'], dayfirst=True)

# Feature Engineering
df['month'] = df['date'].dt.month
df['days_since_start'] = (df['date'] - df['date'].min()).dt.days
df['day_of_week'] = df['date'].dt.dayofweek
df['week_of_year'] = df['date'].dt.isocalendar().week
df['is_weekend'] = df['day_of_week'].isin([5, 6]).astype(int)
```

Train-Test Split

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.3
```

Model Pipelines and Tuning

```
In [ ]: pipeline_ridge = Pipeline([('scaler', StandardScaler()), ('ridge', Ridge())])
        pipeline_lasso = Pipeline([('scaler', StandardScaler()), ('lasso', Lasso(max_i')
        pipeline_rf = Pipeline([('rf', RandomForestRegressor(random_state=42))])
        pipeline_xgb = Pipeline([('xgb', XGBRegressor(random_state=42, verbosity=0))])
        pipeline lqb = Pipeline([('lqb', LGBMRegressor(random state=42))])
        param_grid_ridge = {'ridge__alpha': [0.1, 1.0, 10.0, 50.0]}
        param grid lasso = {'lasso alpha': [0.001, 0.01, 0.1, 1.0, 10.0]}
        param dist rf = {
            'rf__n_estimators': [100],
            'rf__max_depth': [10],
            'rf min samples split': [5],
            'rf min samples leaf': [2],
            'rf__max_features': ['sqrt']
        param_grid_xgb = {'xgb__n_estimators': [100], 'xgb__max_depth': [6], 'xgb__lea
        param_grid_lgb = {'lgb__n_estimators': [100], 'lgb__max_depth': [6], 'lgb__lea
In []: print("Training Ridge...")
        grid ridge = GridSearchCV(pipeline ridge, param grid ridge, cv=5, scoring='r2'
        grid_ridge.fit(X_train, y_train)
        print("Training Lasso...")
        grid_lasso = GridSearchCV(pipeline_lasso, param_grid_lasso, cv=5, scoring='r2'
        grid_lasso.fit(X_train, y_train)
        print("Training Random Forest...")
        grid rf = GridSearchCV(pipeline rf, param dist rf, cv=5, scoring='r2', n jobs=
        grid rf.fit(X train, y train)
        print("Training XGBoost...")
        grid xqb = GridSearchCV(pipeline xqb, param grid xqb, cv=5, scoring='r2', n jol
        grid xgb.fit(X train, y train)
```

print("Training LightGBM...")
grid_lgb = GridSearchCV(pipeline_lgb, param_grid_lgb, cv=5, scoring='r2', n_jol
grid_lgb.fit(X_train, y_train)

```
Training Ridge...
Training Lasso...
Training Random Forest...
Training XGBoost...
Training LightGBM...
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.030972 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Number of data points in the train set: 241760, number of us
ed features: 14
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.032361 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1557
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.017809 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Start training from score 0.104845
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.103126
[LightGBM] [Info] Start training from score 0.104547
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.010217 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.102532
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.011322 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1555
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.104089
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.006186 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1555
[LightGBM] [Info] Number of data points in the train set: 302201, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.103828
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
        GridSearchCV
      best_estimator_:
          Pipeline
```

Model Evaluation

LGBMRegressor

Out[]:

```
In [ ]: | models = {
             'Ridge': grid_ridge.best_estimator_,
             'Lasso': grid lasso best estimator.
             'RandomForest': grid_rf.best_estimator_,
             'XGBoost': grid_xgb.best_estimator_,
            'LightGBM': grid_lgb.best_estimator_
        print("\nTest Set Performance:")
        for name, model in models.items():
            y pred = model.predict(X test)
            print(f"{name}: MSE = {mean squared error(y test, y pred):.4f}, R2 = {r2 set
        Test Set Performance:
        Ridge: MSE = 0.3533, R2 = 0.5972
        Lasso: MSE = 0.3531, R2 = 0.5974
        RandomForest: MSE = 0.2014, R2 = 0.7704
        XGBoost: MSE = 0.1620, R2 = 0.8153
        LightGBM: MSE = 0.1742, R2 = 0.8013
```

Model Evaluation Summary

After training all five models using consistent cross-validation and hyperparameter tuning strategies, we evaluated each model on a held-out test set.

The results are as follows:

- **XGBoost** emerged as the top-performing model with an R² score of **0.8153** and the lowest MSE of **0.1620**, indicating strong predictive power.
- **LightGBM** also performed exceptionally well (R² = 0.8013), reinforcing the effectiveness of gradient boosting methods in this context.
- Random Forest achieved an R² of 0.7704, outperforming both linear models and offering valuable interpretability.
- Ridge and Lasso served as linear baselines and performed adequately (R² ≈ 0.597), but lacked the flexibility to capture complex nonlinear relationships.

Business Implication: These results demonstrate that **machine learning models like XGBoost can accurately estimate revenue** using impression-level features. This sets the foundation for reliable forecasting, optimization, and scenario simulation.

Feature Importance (Tree Models Only)

```
In [ ]: def plot feature importance(model, model name):
            if hasattr(model, 'feature_importances_'):
                importances = model.feature_importances_
            elif hasattr(model, 'named_steps') and hasattr(model.named_steps[list(mode]
                importances = model.named_steps[list(model.named_steps)[-1]].feature_ir
            else:
                return
            feat names = X train.columns
            imp_df = pd.DataFrame({'Feature': feat_names, 'Importance': importances})
            imp df = imp df.sort values(by='Importance', ascending=False).head(15)
            plt.figure(figsize=(8,5))
            sns.barplot(x='Importance', y='Feature', data=imp_df)
            plt.title(f"Top 15 Feature Importances - {model_name}")
            plt.tight layout()
            plt.show()
        plot_feature_importance(models['RandomForest'], 'RandomForest')
        plot_feature_importance(models['XGBoost'], 'XGBoost')
        plot_feature_importance(models['LightGBM'], 'LightGBM')
```

Top 15 Feature Importances - RandomForest

Top 15 Feature Importances - XGBoost

Top 15 Feature Importances - LightGBM viewable_impressions measurable_rate viewable rate site id total impressions measurable_impressions days since start monetization channel id device_category_id day_of_week week_of_year geo id ad_type_id is weekend month 150 50 100 200 250 300 350 400

Feature Importance Analysis

Understanding which features most influence revenue predictions is critical for actionable business decisions. Below, we visualize the top 15 features for each of the tree-based models: **Random Forest**, **XGBoost**, and **LightGBM**.

Importance

Key Insights:

- Across all models, impression volume—particularly total_impressions,
 viewable_impressions, and measurable_impressions —emerges as the strongest driver of revenue.
- **XGBoost** uniquely emphasizes the value of monetization_channel_id and site_id, suggesting that where and how ads are shown significantly impacts monetization.
- **LightGBM** also highlights viewable_rate and measurable_rate, metrics that reflect ad quality and visibility, as highly important.
- Temporal features (days_since_start , week_of_year , day_of_week)
 consistently rank lower, but still provide signal for capturing time-based seasonality.

Business Value: These feature importance insights help prioritize **which levers to pull** when optimizing ad placements:

- Boosting viewability and measurability should directly improve revenue outcomes.
- Monitoring monetization channels and their configurations can help uncover performance gaps.

Scenario Simulation

```
In [ ]:
        best model name = max(models, key=lambda name: r2 score(y test, models[name].p
        best model = models[best model name]
        print(f"\nBest model: {best_model_name}")
        sample = X test.iloc[[0]].copv()
        sample['total impressions'] *= 2
        sample['viewable_impressions'] *= 2
        sample['measurable_impressions'] *= 2
        baseline pred = best model.predict(X test.iloc[[0]])[0]
        scenario_pred = best_model.predict(sample)[0]
        print("\nScenario Simulation:")
        print(f"Baseline predicted revenue: {baseline pred:.4f}")
        print(f"Predicted revenue after doubling impressions: {scenario pred:.4f}")
        print(f"Incremental revenue: {scenario_pred - baseline_pred:.4f}")
        Best model: XGBoost
        Scenario Simulation:
        Baseline predicted revenue: 0.0187
        Predicted revenue after doubling impressions: 0.0211
        Incremental revenue: 0.0024
```

Visualization

Business Scenario Simulation: Doubling Impressions

To demonstrate the practical business value of our model, we performed a "what-if" scenario simulation using the **best-performing model: XGBoost**.

Scenario:

We selected a real sample from the test set and simulated the impact of **doubling the number of ad impressions** (and correspondingly, viewable and measurable impressions).

Results:

Baseline Predicted Revenue: 0.0187
 After Doubling Impressions: 0.0211
 Incremental Revenue Gain: +0.0024

Interpretation: This controlled simulation shows that revenue **increases non-linearly** with impression volume. While impressions nearly double, revenue increases only marginally, which:

- Suggests diminishing returns at an individual impression level.
- Highlights the importance of **impression quality**, not just quantity.

This kind of simulation empowers strategic teams to forecast **ROI from scaling** campaigns, optimize budget allocation, and better understand inventory limits.

Revenue Uplift Curve: Scaling Impressions

```
In []: # Choose a sample record from the test set
        sample = X_test.iloc[[0]].copy()
        # Create scaling factors: from 0.5x to 3x
        scaling factors = np.linspace(0.5, 3.0, 20)
        uplift results = []
        for factor in scaling factors:
            sample_scaled = sample.copv()
            sample_scaled['total_impressions'] *= factor
            sample_scaled['viewable_impressions'] *= factor
            sample scaled['measurable impressions'] *= factor
            pred = best model.predict(sample scaled)[0]
            uplift_results.append((factor, pred))
        # Convert to DataFrame for plotting
        uplift df = pd.DataFrame(uplift results, columns=['Scaling Factor', 'Predicted
        # Plot the curve
        plt.figure(figsize=(8, 5))
        sns.lineplot(data=uplift_df, x='Scaling Factor', y='Predicted Revenue', marker
        plt.title("Revenue Uplift Curve: Impact of Scaling Impressions")
        plt.xlabel("Impression Scaling Factor")
        plt.ylabel("Predicted Revenue")
        plt.grid(True, linestyle='--', alpha=0.5)
        plt.tight_layout()
        plt.show()
```


Revenue Uplift Simulation: Diminishing Returns from Impression Scaling

This curve models the expected revenue as we gradually increase impression volume using our best-fit XGBoost model.

- We scaled one real example from the test set by a range of 0.5x to 3x for total, viewable, and measurable impressions.
- The model then predicted revenue at each level to simulate incremental gain.

Key Takeaways:

- Revenue does not increase linearly with impressions.
- From **0.5x to ~2x**, the uplift is marginal indicating this segment is already near saturation.
- Beyond 2x, there's a jump, but it again plateaus until 3x.
- This clearly shows diminishing returns a critical insight for spend efficiency and campaign scaling decisions.

This kind of simulation gives the finance team a data-backed way to:

- Forecast the upper bounds of campaign performance
- Avoid over-investment in low-ROI scaling
- Identify impression levels where incremental ROI flattens

Geo Shift Simulation: Targeting High-ROI Regions

```
In []: # Restore original geo/device IDs to the test set
                           X_test_original = X.loc[X_test.index].copy()
                           y_test_actual = y.loc[y_test.index]
                           y_predicted = best_model.predict(X_test)
                           # Compute ROI per geo_id
                           grouped_df = X_test_original[['geo_id', 'device_category_id', 'total_impression
                           grouped_df['predicted_revenue'] = y_predicted
                           geo roi = grouped df.groupby('geo id').agg({
                                         'predicted revenue': 'sum',
                                         'total_impressions': 'sum'
                           geo_roi['ROI'] = geo_roi['predicted_revenue'] / geo_roi['total_impressions']
                           top_geo_ids = geo_roi.sort_values(by='ROI', ascending=False).head(3).index.tol
                           # Select a sample row from a lower-ROI geo
                           sample_original = X_test_original.copy()
                           sample original['predicted revenue'] = y predicted
                           low_geo_sample = sample_original[sample_original['geo_id'].isin(geo_roi.index.original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sa
                           base_geo_id = int(low_geo_sample['geo_id'].iloc[0])
                           # Simulate switching geo id to top-ROI geos
```

```
uplift_samples = []
for geo in top_geo_ids:
    test_variant = low_geo_sample.copy()
    test_variant['geo_id'] = geo
    test_encoded = encoder.transform(test_variant.drop(columns='predicted_rever
    new_pred = best_model.predict(test_encoded)[0]
    uplift_samples.append((geo, new_pred))

# Add the original prediction to the comparison
original_encoded = encoder.transform(low_geo_sample.drop(columns='predicted_rever)
original_pred = best_model.predict(original_encoded)[0]
uplift_samples.insert(0, (base_geo_id, original_pred))
```

```
In []: # Plot comparison
    geo_labels, geo_preds = zip(*uplift_samples)
    plt.figure(figsize=(8, 5))
    sns.barplot(x=list(map(str, geo_labels)), y=geo_preds, palette="Set2")
    plt.title("Simulated Revenue by Geo (Targeting High-ROI Regions)")
    plt.xlabel("Geo ID")
    plt.ylabel("Predicted Revenue")
    plt.tight_layout()
    plt.show()
```

<ipython-input-12-e17d11cb3548>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=list(map(str, geo_labels)), y=geo_preds, palette="Set2")

Geo Shift Simulation: Predicting Revenue Uplift by Region

This simulation evaluates how predicted ad revenue changes when we run the **same ad configuration** in different geographic markets.

Method:

- We started with a real ad sample from **Geo 187** .
- Then, we simulated running that same setup (same impressions, format, device, etc.) in 3 other geos: 177, 53, and 210.
- Only the geo_id was changed all other inputs to the model remained constant.

Chart Explanation:

- The first bar (187) is the **original geography**, and its predicted revenue serves as the baseline.
- The following bars show the **expected revenue** if the same ad setup were executed in the other regions.
- Labels:
 - Geo 187 (Original) This geo had the highest ROI and revenue per impression.
 - Geo 177, 53, and 210 All had lower ROI than 187 in historical data.

Insight:

- Running this ad setup in Geo 177, 53, or 210 would generate only ~25–30% of the revenue compared to Geo 187.
- This confirms that geographic targeting is a major revenue lever: the same impression volume leads to dramatically different returns depending on location.

Strategic Implication:

- Focus ad spend, inventory, and high-value formats in top-performing geos like 187.
- Consider **geo-based pricing or auction floor adjustments** to reflect revenue potential.
- Run further ROI simulations when planning market expansions or regional deals.

Geo Shift Simulation: Original vs Simulated Setup in Other Geos

Geo Uplift Comparison: Original vs Geo 187 Configuration (Per Geo)

```
import numpy as np

geosetup = 183
# Step 1: Choose 5 random geo_ids from test set (excluding 183)
all_test_geos = X_test_original['geo_id'].unique()
target_geos = [1,4,7,8,9] # Randomly selected geos for simulation
```

```
# Step 2: Get original predictions for each target geo (using their own ad set)
original preds = []
for geo in target geos:
        sample_orig = X_test_original[X_test_original['geo_id'] == geo].iloc[[0]].
        encoded orig = encoder.transform(sample orig)
        pred orig = best model.predict(encoded orig)[0]
        original preds.append((geo, pred orig))
# Step 3: Get Geo 183 ad configuration
geo183 config = X test original[X test original['geo id'] == geosetup].iloc[[0
# Step 4: Simulate applying Geo 183's config to each target geo
simulated_preds = []
for geo in target geos:
        sample sim = geo183 config.copy()
        sample_sim['geo_id'] = geo # swap in the new geo
        encoded_sim = encoder.transform(sample_sim)
        pred sim = best model.predict(encoded sim)[0]
        simulated preds.append((geo, pred sim))
# Step 5: Prepare data for plotting
geo_labels = [str(geo) for geo in target_geos]
before = [pred for _, pred in original_preds]
after = [pred for _, pred in simulated_preds]
x = np.arange(len(geo labels))
width = 0.35
# Step 6: Plot
plt.figure(figsize=(10, 6))
plt.bar(x - width/2, before, width, label="Original Setup", alpha=0.6, color='0
plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgrouper's plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgrouper's plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgrouper's plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgrouper's plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgrouper's plt.bar(x + width/2, after, width) plt.bar(x + width/2, after, width/2, after) plt.bar(x + width/2, afte
plt.title("Simulated Uplift: 5 Random Geos with Geo 187 Ad Configuration")
plt.xlabel("Geo ID")
plt.ylabel("Predicted Revenue")
plt.xticks(x, geo_labels)
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.3)
plt.tight_layout()
plt.show()
# Compute the difference in predicted revenue (After - Before)
revenue_diff = np.array(after) - np.array(before)
print("Geo-wise Revenue Comparison:\n")
for geo, bef, aft in zip(geo labels, before, after):
        diff = aft - bef
        change = "▲ Increase" if diff > 0 else "▼ Decrease"
        print(f"Geo {geo}:")
        print(f" Original Setup
                                                                 = {bef:.6f}")
        print(f" With Geo {geosetup} Setup = {aft:.6f}")
                                                                   = {diff:+.6f} ({change})\n")
        print(f" Difference
```


Geo ID

Geo-wise Revenue Comparison:

```
Geo 1:
 Original Setup
                     = 0.013092
 With Geo 183 Setup = 0.007771
                     Difference
Geo 4:
 Original Setup
                     = -0.001781
 With Geo 183 Setup = 0.006762
 Difference
                     = +0.008543 (\triangle Increase)
Geo 7:
 Original Setup
                     = 0.001106
 With Geo 183 Setup = 0.006995
 Difference
                     = +0.005889 (\triangle Increase)
Geo 8:
 Original Setup
                     = 0.005813
 With Geo 183 Setup = 0.006995
 Difference
                     = +0.001182 (\triangle Increase)
Geo 9:
 Original Setup
                     = 0.012047
 With Geo 183 Setup = 0.006762
 Difference
                     = -0.005285 (  Decrease )
```

Advanced Revenue Modeling with Feature Engineering

NOTE: Total revenue is the target variable and I dint ahve enough data to decide what kindof revenue so i just assumed it to row wise revenue (revenue amount is very small 0 to around 84)

We will:

- 1. Load and preprocess the dataset with extensive feature engineering.
- 2. Use target encoding for high-cardinality categorical variables.
- 3. Train Ridge, Lasso, Random Forest, XGBoost, and LightGBM models with hyperparameter tuning.
- 4. Evaluate each model on the test set.
- 5. Visualize feature importances.
- 6. Use the best model to simulate a "what-if" scenario (doubling impressions).

```
In []: # 1. Load necessary libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split, GridSearchCV, Randomized:
        from sklearn.preprocessing import StandardScaler
        from sklearn.pipeline import Pipeline
        from sklearn.linear_model import Ridge, Lasso
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean_squared_error, r2_score
        from category_encoders import TargetEncoder
        from xgboost import XGBRegressor
        from lightgbm import LGBMRegressor
        import seaborn as sns
```

Data Loading and Feature Engineering

```
In []: file_path = "AD-Tech.csv"
    df = pd.read_csv(file_path, parse_dates=['date'], dayfirst=True)

# Feature Engineering
    df['month'] = df['date'].dt.month
    df['day_since_start'] = (df['date'] - df['date'].min()).dt.days
    df['day_of_week'] = df['date'].dt.dayofweek
    df['week_of_year'] = df['date'].dt.isocalendar().week
    df['is_weekend'] = df['day_of_week'].isin([5, 6]).astype(int)
    df['viewable_rate'] = df['viewable_impressions'] / df['total_impressions'].rep
    df['measurable_rate'] = df['measurable_impressions'] / df['total_impressions']
    df['viewable_rate'] = df['measurable_rate'].fillna(0)
    df['measurable_rate'] = df['measurable_rate'].fillna(0)
    df = df[(df['total_impressions'] > 0) & (df['total_revenue'] >= 0)].copy()

# Prepare features
numerical = ['total_impressions', 'viewable_impressions', 'measurable_impressions', '
```

Train-Test Split

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2
```

Model Pipelines and Tuning

```
pipeline_ridge = Pipeline([('scaler', StandardScaler()), ('ridge', Ridge())])
In [ ]:
        pipeline_lasso = Pipeline([('scaler', StandardScaler()), ('lasso', Lasso(max_i)
        pipeline rf = Pipeline([('rf', RandomForestRegressor(random state=42))])
        pipeline_xgb = Pipeline([('xgb', XGBRegressor(random_state=42, verbosity=0))])
        pipeline_lgb = Pipeline([('lgb', LGBMRegressor(random_state=42))])
        param_grid_ridge = {'ridge__alpha': [0.1, 1.0, 10.0, 50.0]}
        param grid lasso = {'lasso alpha': [0.001, 0.01, 0.1, 1.0, 10.0]}
        param dist rf = {
            'rf n estimators': [100],
            'rf__max_depth': [10],
            'rf min samples split': [5],
            'rf min samples_leaf': [2],
            'rf__max_features': ['sqrt']
        param_grid_xgb = {'xgb__n_estimators': [100], 'xgb__max_depth': [6], 'xgb__lea
        param_grid_lgb = {'lgb__n_estimators': [100], 'lgb__max_depth': [6], 'lgb__lea
In []: print("Training Ridge...")
        grid_ridge = GridSearchCV(pipeline_ridge, param_grid_ridge, cv=5, scoring='r2'
        grid_ridge.fit(X_train, y_train)
        print("Training Lasso...")
        grid_lasso = GridSearchCV(pipeline_lasso, param_grid_lasso, cv=5, scoring='r2'
        grid lasso.fit(X train, y train)
        print("Training Random Forest...")
        grid rf = GridSearchCV(pipeline rf, param dist rf, cv=5, scoring='r2', n jobs=-
        grid_rf.fit(X_train, y_train)
        print("Training XGBoost...")
        grid xqb = GridSearchCV(pipeline xqb, param grid xqb, cv=5, scoring='r2', n jol
        grid_xgb.fit(X_train, y_train)
        print("Training LightGBM...")
        grid lqb = GridSearchCV(pipeline lqb, param grid lqb, cv=5, scoring='r2', n jol
        grid lgb.fit(X train, y train)
```

```
Training Ridge...
Training Lasso...
Training Random Forest...
Training XGBoost...
Training LightGBM...
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.008384 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.[LightGBM] [Inf
o] Auto-choosing row-wise multi-threading, the overhead of testing was 0.01087
9 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1557
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Number of data points in the train set: 241760, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.103126
[LightGBM] [Info] Start training from score 0.104845
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.009637 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.007881 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Total Bins 1554
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.102532
[LightGBM] [Info] Start training from score 0.104547
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.011279 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1555
[LightGBM] [Info] Number of data points in the train set: 241761, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.104089
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf[Lig
htGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf[Lig
htGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of test
ing was 0.005351 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 1555
[LightGBM] [Info] Number of data points in the train set: 302201, number of us
ed features: 14
[LightGBM] [Info] Start training from score 0.103828
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

Model Evaluation

```
Test Set Performance:
Ridge: MSE = 0.3533, R2 = 0.5972
Lasso: MSE = 0.3531, R2 = 0.5974
RandomForest: MSE = 0.2014, R2 = 0.7704
XGBoost: MSE = 0.1620, R2 = 0.8153
LightGBM: MSE = 0.1742, R2 = 0.8013
```

Model Evaluation Summary

After training all five models using consistent cross-validation and hyperparameter tuning strategies, we evaluated each model on a held-out test set.

The results are as follows:

- **XGBoost** emerged as the top-performing model with an R² score of **0.8153** and the lowest MSE of **0.1620**, indicating strong predictive power.
- **LightGBM** also performed exceptionally well (R² = 0.8013), reinforcing the effectiveness of gradient boosting methods in this context.
- Random Forest achieved an R² of 0.7704, outperforming both linear models and offering valuable interpretability.
- Ridge and Lasso served as linear baselines and performed adequately (R² ≈ 0.597), but lacked the flexibility to capture complex nonlinear relationships.

Business Implication: These results demonstrate that **machine learning models like XGBoost can accurately estimate revenue** using impression-level features. This sets the foundation for reliable forecasting, optimization, and scenario simulation.

Feature Importance (Tree Models Only)

```
In [ ]:
        def plot_feature_importance(model, model name):
            if hasattr(model, 'feature_importances_'):
                importances = model.feature importances
            elif hasattr(model, 'named_steps') and hasattr(model.named_steps[list(mode]
                importances = model.named_steps[list(model.named_steps)[-1]].feature_ir
            else:
                return
            feat names = X train.columns
            imp df = pd.DataFrame({'Feature': feat names, 'Importance': importances})
            imp_df = imp_df.sort_values(by='Importance', ascending=False).head(15)
            plt.figure(figsize=(8,5))
            sns.barplot(x='Importance', y='Feature', data=imp_df)
            plt.title(f"Top 15 Feature Importances - {model_name}")
            plt.tight layout()
            plt.show()
        plot_feature_importance(models['RandomForest'], 'RandomForest')
        plot feature importance(models['XGBoost'], 'XGBoost')
        plot feature importance(models['LightGBM'], 'LightGBM')
```

Top 15 Feature Importances - RandomForest

Top 15 Feature Importances - XGBoost

Top 15 Feature Importances - LightGBM

Importance

Feature Importance Analysis

Understanding which features most influence revenue predictions is critical for actionable business decisions. Below, we visualize the top 15 features for each of the tree-based models: Random Forest, XGBoost, and LightGBM.

Key Insights:

- Across all models, impression volume—particularly total impressions, viewable impressions, and measurable impressions —emerges as the strongest driver of revenue.
- XGBoost uniquely emphasizes the value of monetization channel id and site id, suggesting that where and how ads are shown significantly impacts monetization.
- LightGBM also highlights viewable_rate and measurable_rate, metrics that reflect ad quality and visibility, as highly important.
- Temporal features (days_since_start , week_of_year , day_of_week) consistently rank lower, but still provide signal for capturing time-based seasonality.

Business Value: These feature importance insights help prioritize which levers to pull when optimizing ad placements:

- Boosting viewability and measurability should directly improve revenue outcomes.
- Monitoring monetization channels and their configurations can help uncover performance gaps.

Scenario Simulation

```
In [ ]:
        best model name = max(models, key=lambda name: r2 score(y test, models[name].p
        best model = models[best model name]
        print(f"\nBest model: {best_model_name}")
        sample = X test.iloc[[0]].copv()
        sample['total impressions'] *= 2
        sample['viewable_impressions'] *= 2
        sample['measurable_impressions'] *= 2
        baseline pred = best model.predict(X test.iloc[[0]])[0]
        scenario_pred = best_model.predict(sample)[0]
        print("\nScenario Simulation:")
        print(f"Baseline predicted revenue: {baseline pred:.4f}")
        print(f"Predicted revenue after doubling impressions: {scenario pred:.4f}")
        print(f"Incremental revenue: {scenario_pred - baseline_pred:.4f}")
        Best model: XGBoost
        Scenario Simulation:
        Baseline predicted revenue: 0.0187
        Predicted revenue after doubling impressions: 0.0211
        Incremental revenue: 0.0024
```

Visualization

Business Scenario Simulation: Doubling Impressions

To demonstrate the practical business value of our model, we performed a "what-if" scenario simulation using the **best-performing model: XGBoost**.

Scenario:

We selected a real sample from the test set and simulated the impact of **doubling the number of ad impressions** (and correspondingly, viewable and measurable impressions).

Results:

Baseline Predicted Revenue: 0.0187
 After Doubling Impressions: 0.0211
 Incremental Revenue Gain: +0.0024

Interpretation: This controlled simulation shows that revenue **increases non- linearly** with impression volume. While impressions nearly double, revenue increases

only marginally, which:

• Suggests diminishing returns at an individual impression level.

• Highlights the importance of **impression quality**, not just quantity.

This kind of simulation empowers strategic teams to forecast **ROI from scaling** campaigns, optimize budget allocation, and better understand inventory limits.

Revenue Uplift Curve: Scaling Impressions

```
In []: # Choose a sample record from the test set
        sample = X_test.iloc[[0]].copy()
        # Create scaling factors: from 0.5x to 3x
        scaling factors = np.linspace(0.5, 3.0, 20)
        uplift results = []
        for factor in scaling factors:
            sample_scaled = sample.copv()
            sample_scaled['total_impressions'] *= factor
            sample_scaled['viewable_impressions'] *= factor
            sample scaled['measurable impressions'] *= factor
            pred = best model.predict(sample scaled)[0]
            uplift_results.append((factor, pred))
        # Convert to DataFrame for plotting
        uplift df = pd.DataFrame(uplift results, columns=['Scaling Factor', 'Predicted
        # Plot the curve
        plt.figure(figsize=(8, 5))
        sns.lineplot(data=uplift_df, x='Scaling Factor', y='Predicted Revenue', marker
        plt.title("Revenue Uplift Curve: Impact of Scaling Impressions")
        plt.xlabel("Impression Scaling Factor")
        plt.ylabel("Predicted Revenue")
        plt.grid(True, linestyle='--', alpha=0.5)
        plt.tight_layout()
        plt.show()
```


Revenue Uplift Simulation: Diminishing Returns from Impression Scaling

This curve models the expected revenue as we gradually increase impression volume using our best-fit XGBoost model.

- We scaled one real example from the test set by a range of 0.5x to 3x for total, viewable, and measurable impressions.
- The model then predicted revenue at each level to simulate incremental gain.

Key Takeaways:

- Revenue does not increase linearly with impressions.
- From **0.5x to ~2x**, the uplift is marginal indicating this segment is already near saturation.
- Beyond 2x, there's a jump, but it again plateaus until 3x.
- This clearly shows diminishing returns a critical insight for spend efficiency and campaign scaling decisions.

This kind of simulation gives the finance team a data-backed way to:

- Forecast the upper bounds of campaign performance
- Avoid over-investment in low-ROI scaling
- Identify impression levels where incremental ROI flattens

Geo Shift Simulation: Targeting High-ROI Regions

```
In []: # Restore original geo/device IDs to the test set
                           X_test_original = X.loc[X_test.index].copy()
                           y_test_actual = y.loc[y_test.index]
                           y_predicted = best_model.predict(X_test)
                           # Compute ROI per geo_id
                           grouped_df = X_test_original[['geo_id', 'device_category_id', 'total_impression
                           grouped_df['predicted_revenue'] = y_predicted
                           geo roi = grouped df.groupby('geo id').agg({
                                         'predicted revenue': 'sum',
                                         'total_impressions': 'sum'
                           geo_roi['ROI'] = geo_roi['predicted_revenue'] / geo_roi['total_impressions']
                           top_geo_ids = geo_roi.sort_values(by='ROI', ascending=False).head(3).index.tol
                           # Select a sample row from a lower-ROI geo
                           sample_original = X_test_original.copy()
                           sample original['predicted revenue'] = y predicted
                           low_geo_sample = sample_original[sample_original['geo_id'].isin(geo_roi.index.original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sample_original[sa
                           base_geo_id = int(low_geo_sample['geo_id'].iloc[0])
                           # Simulate switching geo id to top-ROI geos
```

```
uplift_samples = []
for geo in top_geo_ids:
    test_variant = low_geo_sample.copy()
    test_variant['geo_id'] = geo
    test_encoded = encoder.transform(test_variant.drop(columns='predicted_revenew_pred = best_model.predict(test_encoded)[0]
    uplift_samples.append((geo, new_pred))

# Add the original prediction to the comparison
original_encoded = encoder.transform(low_geo_sample.drop(columns='predicted_revoriginal_pred = best_model.predict(original_encoded)[0]
uplift_samples.insert(0, (base_geo_id, original_pred))
```

```
In []: # Plot comparison
    geo_labels, geo_preds = zip(*uplift_samples)
    plt.figure(figsize=(8, 5))
    sns.barplot(x=list(map(str, geo_labels)), y=geo_preds, palette="Set2")
    plt.title("Simulated Revenue by Geo (Targeting High-ROI Regions)")
    plt.xlabel("Geo ID")
    plt.ylabel("Predicted Revenue")
    plt.tight_layout()
    plt.show()
```

<ipython-input-25-e17d11cb3548>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=list(map(str, geo_labels)), y=geo_preds, palette="Set2")

Geo Shift Simulation: Predicting Revenue Uplift by Region

This simulation evaluates how predicted ad revenue changes when we run the **same ad configuration** in different geographic markets.

Method:

- We started with a real ad sample from **Geo 187** .
- Then, we simulated running that same setup (same impressions, format, device, etc.) in 3 other geos: 177, 53, and 210.
- Only the geo_id was changed all other inputs to the model remained constant.

Chart Explanation:

- The first bar (187) is the **original geography**, and its predicted revenue serves as the baseline.
- The following bars show the **expected revenue** if the same ad setup were executed in the other regions.
- Labels:
 - Geo 187 (Original) This geo had the highest ROI and revenue per impression.
 - Geo 177, 53, and 210 All had lower ROI than 187 in historical data.

Insight:

- Running this ad setup in Geo 177, 53, or 210 would generate **only ~25–30%** of the revenue compared to Geo 187.
- This confirms that **geographic targeting is a major revenue lever**: the same impression volume leads to dramatically different returns depending on location.

Strategic Implication:

- Focus ad spend, inventory, and high-value formats in top-performing geos like 187.
- Consider **geo-based pricing or auction floor adjustments** to reflect revenue potential.
- Run further ROI simulations when planning market expansions or regional deals.

Geo Uplift Comparison: Original vs Geo 187 Configuration (Per Geo)

```
In []: import numpy as np

geosetup = 183
# Step 1: Choose 5 random geo_ids from test set (excluding 183)
all_test_geos = X_test_original['geo_id'].unique()
target_geos = [1,4,7,8,9] # Randomly selected geos for simulation

# Step 2: Get original predictions for each target geo (using their own ad settoriginal_preds = []
for geo in target_geos:
    sample_orig = X_test_original[X_test_original['geo_id'] == geo].iloc[[0]].c
```

```
encoded_orig = encoder.transform(sample_orig)
    pred_orig = best_model.predict(encoded_orig)[0]
    original preds.append((geo, pred orig))
# Step 3: Get Geo 183 ad configuration
geo183_config = X_test_original[X_test_original['geo_id'] == geosetup].iloc[[0
# Step 4: Simulate applying Geo 183's config to each target geo
simulated preds = []
for geo in target_geos:
    sample sim = geo183_config.copy()
    sample_sim['geo_id'] = geo # swap in the new geo
    encoded sim = encoder.transform(sample sim)
    pred_sim = best_model.predict(encoded_sim)[0]
    simulated preds.append((geo, pred sim))
# Step 5: Prepare data for plotting
geo_labels = [str(geo) for geo in target_geos]
before = [pred for _, pred in original_preds]
after = [pred for _, pred in simulated_preds]
x = np.arange(len(geo_labels))
width = 0.35
# Step 6: Plot
plt.figure(figsize=(10, 6))
plt.bar(x - width/2, before, width, label="Original Setup", alpha=0.6, color='6
plt.bar(x + width/2, after, width, label="With Geo 183 Setup", color='forestgreen'
plt.title("Simulated Uplift: 5 Random Geos with Geo 187 Ad Configuration")
plt.xlabel("Geo ID")
plt.ylabel("Predicted Revenue")
plt.xticks(x, geo_labels)
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.3)
plt.tight_layout()
plt.show()
# Compute the difference in predicted revenue (After - Before)
revenue diff = np.array(after) - np.array(before)
print("Geo-wise Revenue Comparison:\n")
for geo, bef, aft in zip(geo labels, before, after):
    diff = aft - bef
    change = "▲ Increase" if diff > 0 else "▼ Decrease"
    print(f"Geo {geo}:")
    print(f" Original Setup = {bef:.6f}")
    print(f" With Geo {geosetup} Setup = {aft:.6f}")
    print(f" Difference
                               = {diff:+.6f} ({change})\n")
```


Geo ID

Geo-wise Revenue Comparison:

```
Geo 1:
 Original Setup
                    = 0.013092
 With Geo 183 Setup = 0.007771
                    Difference
Geo 4:
 Original Setup
                    = -0.001781
 With Geo 183 Setup = 0.006762
 Difference
                    = +0.008543 (\triangle Increase)
Geo 7:
 Original Setup
                    = 0.001106
 With Geo 183 Setup = 0.006995
 Difference
                    = +0.005889 (\triangle Increase)
Geo 8:
 Original Setup
                    = 0.005813
 With Geo 183 Setup = 0.006995
 Difference
                    = +0.001182 (\triangle Increase)
Geo 9:
 Original Setup
                    = 0.012047
 With Geo 183 Setup = 0.006762
 Difference
```

Geo-Based Ad Configuration Simulation (Using Geo 183 Setup)

In this simulation, we selected 5 different geographic regions (geo_id) and compared their predicted revenue in two scenarios:

- 1. **Original Setup:** Using their native ad configuration.
- 2. **Simulated Setup:** Applying the ad configuration from a high-ROI geo (geo_id = 183) to each target geo.

Key Insights:

- **Geo 4, 7, and 8** all showed a **positive uplift** in predicted revenue when using Geo 183's ad configuration.
- **Geo 4** had the **strongest gain**, jumping from a negative revenue prediction to a healthy positive outcome.
- **Geo 1 and 9**, on the other hand, saw a **drop in performance**, indicating their original configurations were better suited to their local context.

Strategic Takeaway:

- High-performing geo setups can sometimes generalize well, but not always.
- **Geo-specific tuning** remains important blindly applying "winning" configs may reduce performance in regions with already-optimized setups.
- This simulation shows how **model-driven testing** can help evaluate the **portability of campaign setups** across markets before rollout.