Introduction to IoT

School Year 2023-2024

Valsalice

Course Structure

Open your Virtual Machines

- 1. Turn on your Laptops
- 2. Login to Windows using "User"
- 3. Open the Virtual Box program
- 4. Add a new Virtual Machine (Ctrl + A)
- 5. Open the **VirtualBox** folder (NOT the .VirtualBox)
- 6. Select the nRF52840LAB file
- 7. Click **Start**

Prepare the Coding Environment

- Start the Virtual Machine nRF52840LAB
- Log-in using credentials:

Username: ubuntu

Password: ubuntu

Open Visual Studio Code (use the App bar on the left)

Prepare the Coding Environment

From the Terminal:

```
make setup
```

- o → valsalice-iot-23 git:(master) make setup Enter your username:
- Password
- ✓ Repository setup complete!
- If you see **any (yellow) errors** input the credentials again

Prepare the Coding Environment

Open the week07 folder in the terminal

```
> week01
                                          return false;
> week02
                               53
                               54
> week03
                               55
> week04
                                        Function to su
                               56
> week05
                                     int sumArray(int
                               57
 week06
          New File...
 > build
          New Folder...

∨ solut

          Open Containing Folder
                                            Alt+Ctrl+R
 C sol
          Open in Integrated Terminal
```

You should see the following in the terminal:

Recap: Data Types

C has a number of primitive data types:

Strings are NOT a primitive data type, and have special syntax.

Recap: Variables

A variable is a named container that stores data or values.

```
int x = 42;
float y = -0.12;
char w = 'A';
char z[50] = "Full sentence";
```

Booleans require a custom include statement:

```
#include <stdbool.h>
bool hello = true;
```


Recap: Boolean Operators

Greater than Greater or equal than Less than Less or equal than

> Equals Not equals

> > Not

Recap: Chaining Comparisons

and (both must be true)

```
true && false
```

or (either must be true)

```
true || false
```

not (negation)

Recap: If-Statement chaining

You can chain multiple conditions with else if.

What is the difference between these two snippets of code?

```
int num;
scanf("%d", &num);

if (num < 3) {
    printf("Small number\n");
} else if (num < 10) {
    printf("Medium number\n");
}</pre>
```

```
int num;
scanf("%d", &num);

if (num < 3) {
    printf("Small number\n");
}

if (num < 10) {
    printf("Medium number\n");
}</pre>
```


Recap: While-Loops

Repeat parts of your code!

```
int num;
printf("Input a number greater than 100: ");
scanf("%d", &num);
while (num <= 100) {
   printf("Wrong number, try again: ");
   scanf("%d", &num);
printf("Well done!\n");
```

Recap: For-Loops

Repeat a **specific** amount of times!

```
int x;

for (x = 1; x <= 5; x++) {
    printf("Hello %d\n", x);
}</pre>
```

```
int x = 0;
while (x < 5) {
    x += 1;
    printf("Hello %d\n", x);
}</pre>
```


Recap: Arrays

Modifiable containers for data.

With variables:

```
int num1 = 42;
int num2 = 100;
int num3 = 10;

printf("%d\n", num1);
printf("%d\n", num2);
printf("%d\n", num3);
```

With a **list**:

```
int array[] = {42, 100,
10};

for(int i = 0; i < 3; i++)
{
    printf("%d\n",
array[i]);
}</pre>
```


Recap: Arrays

Anatomy of an array:

- 1. Uses square brackets in the type declaration []
- 2. Uses curly brackets for initialization {}
- 3. Elements separated by comma,

```
int array[] = \{42, 100, 10\};
```

```
float array2[] = {0.23, 4.1};
```

```
char array3[] = {'a', 'Z'};
```


Recap: Accessing Array Elements

To <u>access</u> array elements you can use the [index] operator.

NOTE: List indices start from **0**

index:	0	1	2	3	4	
<pre>int array[] =</pre>	{17,	28,	33,	56,	6};	

```
printf("%d\n", array[0]);
```

```
printf("%d\n", array[3]);
```


Assigning Array Elements

To <u>assign</u> array elements you can use the **[index]** operator on the left-hand-side of a statement (like a variable)

```
int array[] = {17, 28, 33, 56, 6};
array[3] = 100;
array[2] = -7;
```

```
printf("%d\n", array[0]);
```

```
printf("%d\n", array[3]);
```

Simple Recap Exercises

Fill in all functions in (simple.c):

- int find_max(int a, int b)
 Find the maximum of two numbers
- int calculate_sum(int n)
 Calculate the sum of integers from 1 to n
- int array_sum(int arr[], int size)
 Find the sum of elements in an integer array

```
To execute: make simple.run To test: make simple.test plantice
```

Save remotely your Changes

make save

Password

Git: https://aspina@git.spina.me (Press 'Enter' to confirm or 'Escape' to cancel)

☑ Changes committed and pushed. All done!

Advanced Recap Exercises

Fill in all functions in (advanced.c):

- void replace_even_with_8(int arr[], int size)
 Replace integers at even indices with 8
- int find_max_element(int arr[], int size)
 Find the maximum element in an integer array
- void reverse_array(int arr[], int size)
 Reverse an integer array

To execute: make advanced.run To test: make advanced.test salice

Save remotely your Changes

make save

Password

Git: https://aspina@git.spina.me (Press 'Enter' to confirm or 'Escape' to cancel)

Changes committed and pushed. All done!

Live Demo

Live Demo

Live Demo

What is IoT?

IoT stands for "Internet of Things." It refers to a network of interconnected physical devices, vehicles, buildings, and other objects embedded with sensors, software, and connectivity, allowing them to collect and exchange data over the internet.

What are Wireless Sensor Networks?

It refers to a **network of interconnected physical devices**, embedded with **sensors**, software, and connectivity, allowing them to **collect and exchange data** over the radio.

What is Contiki?

Contiki is an OS with configurable network layers:

What is the nRF52840?

Turning the LED On

Attach the nRF52840 chip to your laptops

Ensure the device is in **bootloader mode** (blinking red light)

Program the firmware

make blinker.dfu-upload

Attach to the serial output

make login

Anatomy of a Contiki-NG Program

```
PROCESS THREAD (simple led program, ev, data) {
        static struct etimer blink timer;
3
        PROCESS BEGIN();
4 5 6
        etimer set(&blink timer, BLINK INTERVAL);
        while (true) {
              PROCESS WAIT EVENT ();
              if (etimer expired(&blink timer)) {
                     rgb led set (RGB LED GREEN);
9
                     etimer set (&blink timer, BLINK INTERVAL);
        PROCESS END();
```


Anatomy of a Contiki-NG Program

Make the LED blink

Attach the nRF52840 chip to your laptops

Sensure the device is in **bootloader mode** (blinking red light)

Program the firmware

make blinker.dfu-upload

Attach to the serial output

make login

Blinking Light Exercise

```
PROCESS THREAD(simple led program, ev, data) {
    static struct etimer blink_timer;
     static int counter = 0;
     PROCESS BEGIN();
     etimer set(&blink timer, BLINK INTERVAL);
     while (true) {
           PROCESS WAIT EVENT();
           if (etimer_expired(&blink_timer)) {
                 if (counter % 2 == 0) {
                       rgb led set (RGB LED GREEN);
                  else {
                       rgb led off();
                 etimer set(&blink timer, BLINK INTERVAL);
           counter++;
     PROCESS END();}
```


Blinking Light Exercise

Alberto Spina Introduction to IoT School Year 2023-2024

Save remotely your Changes

make save

Password

Git: https://aspina@git.spina.me (Press 'Enter' to confirm or 'Escape' to cancel)

Changes committed and pushed. All done!

End of Class

See you all next week!

