Rey David Gutiérrez Torres Daniel Rivera López

Universidad Autónoma del Estado de Morelos

29 de junio de 2020

- Conceptos y relaciones
- Algoritmo de las inflaciones
- \bigcirc Caso \mathbb{A}_n
- 4 Descripción de el problema

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}(\mathbf{Z})$ es casi Cartan si A es simétrica y $(A)_{i\,i} = 2$ para toda $i = 1, \dots, n$.
- Se denotan por sqC.

Eiemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}(\mathbf{Z})$ es casi Cartan si A es simétrica y $(A)_{i\,i} = 2$ para toda $i = 1, \dots, n$.
- Se denotan por sqC.

Eiemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es casi Cartan si A es simétrica $y(A)_{ij} = 2$ para toda $i=1,\ldots,n$.
- Se denotan por sqC.

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Forma unitaria

• Una forma cuadrática es un polinomio $q:R^n \to R$ (con n>0) si cada monomio del mismo es una variable al cuadrado o la multiplicación de dos variables. Esto es equivalente a decir que q se puede expresar como:

$$q(x) = \sum_{i=1}^{n} q_{ii} x_i^2 + \sum_{1 \le i \le j \le n} q_{ij} x_i x_j \in \mathbb{Z}[x_1, \dots, x_n]$$

• Una forma cuadratica unitaria es un caso especial donde $q_{ii}=1$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

Definición

Una matriz casi Cartan simétrica A es **definida positiva** si y sólo si $\mathbf{q}_{A}(x) = \frac{1}{2}x^{\mathrm{T}}Ax > 0$, para toda $x \in \mathbb{Z}$ con $x \neq 0$.

Bigráfica asociada a una matriz casi Cartan

Matriz casi-Cartan simétrica ↔ Bigráfica

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1,0,1\}$

La bigráfica bigr (A) asociada a la matriz A tiene vértices

- ① Si $A_{ii} = -1 = A_{ii}$ trazamos una arista solida entre los
- ② Si $A_{ij} = 1 = A_{ii}$ trazamos una arista punteada entre los

Bigráfica asociada a una matriz casi Cartan

Matriz casi-Cartan simétrica ↔ Bigráfica

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1,0,1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- ① Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los

Teorema

Conceptos y relaciones

000000000

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces

(a) $0 \leqslant A_{ij}A_{ji} < 4$

Matriz casi-Cartan simétrica ↔ Bigráfica

(b) $A_{ij} \in \{-1,0,1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (i)—
- ② Si $A_{ij} = 1 = A_{ii}$ trazamos una arista punteada entre los

Bigráfica asociada a una matriz casi Cartan

Matriz casi-Cartan simétrica ↔ Bigráfica

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces

- (a) $0 \leq A_{ii}A_{ii} < 4$
- (b) $A_{ij} \in \{-1,0,1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices. (i)—
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, (i).....(j)

Equivalencia de conceptos

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Equivalencia de conceptos

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Equivalencia de conceptos

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}(\mathbf{Z})$ es **Z**-invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}(\mathbf{Z}).$
- $A, A' \in \operatorname{sqC}$ son **Z**-equivalentes si existe una matriz **Z**-invertible M tal que $A' = M^{\mathrm{T}}AM$.

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}(\mathbf{Z})$ es **Z**-invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}(\mathbf{Z}).$
- ullet $A,A'\in\operatorname{sq}\mathbf{C}$ son \mathbf{Z} -equivalentes si existe una matriz **Z**-invertible M tal que $A' = M^{\mathrm{T}}AM$.

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1 \qquad \boxed{1} \qquad \boxed{2} \qquad \cdots \qquad \boxed{n}$ $\mathbb{D}_n, \ n \geqslant 4 \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \cdots \qquad \boxed{n}$

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1$ $\mathbb{D}_n, \ n \geqslant 4$ \mathbb{D}_n \mathbb{D}_n

La clasificación A-D-E

Teorema (S. Ovsienko – 1978)

Toda bigráfica G definida positiva es \mathbf{Z} -equivalente a una bigráfica sin aristas punteadas, que está determinada de forma única hasta isomorfismo de gráficas, y es la unión disjunta de diagramas de Dynkin.

Demostración.

Demostración constructiva mediante el **algoritmo de las inflaciones**.

Inflaciones

- I denota la matriz identidad con vectores columna e_i .
- $E_{s,r}^{\sigma} := I + \sigma e_s e_r^{\mathrm{T}} \ (s,r \in \{1,\ldots,n\},\ \sigma \in \mathbb{R})$ denota una
- ullet Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{sr} = 1$ entonces $(m{E}_{sr}^{-1})^{\mathrm{T}} m{A} (m{E}_{sr}^{-1})$ es una

Inflaciones

- I denota la matriz identidad con vectores columna e_i .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbb{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- ullet Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{sr} = 1$ entonces $(m{E}_{sr}^{-1})^{\mathrm{T}} m{A} (m{E}_{sr}^{-1})$ es una

Inflaciones

- I denota la matriz identidad con vectores columna e_i .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbb{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- ullet Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{s\,r} = 1$ entonces $\left(m{E}_{s\,r}^{-1}
 ight)^{\mathrm{T}} m{A} \left(m{E}_{s\,r}^{-1}
 ight)$ es una inflación de A.

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones (A):

repetir mientras exista una entrada no diagonal

$$(\mathbf{A})_{s\,r} = 1$$
:
$$\begin{bmatrix} \mathbf{A} := (\mathbf{E}_{s\,r}^{-1})^{\mathrm{T}} \mathbf{A} \ (\mathbf{E}_{s\,r}^{-1}) \end{bmatrix}$$

- \bullet Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $|\mathbf{q}_{A}^{-1}(1) \cap \mathbf{N}^{n}|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones (A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1$$
:
 $oldsymbol{L} oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- \bullet Se justifica en que $\left|\mathbf{q}_{\pmb{A}}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones (A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1:$$
 $oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- \bullet Se justifica en que $\left|\mathbf{q}_{\pmb{A}}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska – 2012).

A-bloques

Definiciones

• Sean X y Y conjuntos disjuntos de vértices. Denotamos por F[X, Y] el bigrafo no separable obtenido uniendo cada par de vértices (x, y) con $x \in X$ e $y \in Y$ por una arista sólida, y todos los demás pares de vértices por una arista punteada, tal bigrafo se llama un A bloque.

Caso \mathbb{A}_n

•000000

A-bloques

Definiciones

• Sean X y Y conjuntos disjuntos de vértices. Denotamos por F[X, Y] el bigrafo no separable obtenido uniendo cada par de vértices (x, y) con $x \in X$ e $y \in Y$ por una arista sólida, y todos los demás pares de vértices por una arista punteada, tal bigrafo se llama un A bloque.

Caso \mathbb{A}_n

•000000

Ejemplo $F_{1.0}$ $F_{1,2}$

Caso \mathbb{A}_n

000000

Definiciones

Una componente biconexa de una gráfica, es una subgráfica biconexa maximal (no contenida propiamente en ninguna otra subgráfica biconexa).

Caso \mathbb{A}_n

0000000

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Caso \mathbb{A}_n

0000000

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- \bullet $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Caso \mathbb{A}_n

0000000

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un **vértice de corte** si $\kappa(G) < \kappa(G-v)$.

Ejemplo

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un **vértice de corte** si $\kappa(G) < \kappa(G v)$.

Ejemplo

Corolario

Una forma unitaria q es de tipo \mathbb{A}_n si y solo si $\mathbf{B}_{\mathbf{q}}$ es conexa, sus componentes biconexas son A-bloques y todo vértice de corte pertenece a exactamente dos de estas componentes.

Caso \mathbb{A}_n

0000000

Demostración.

Mediante el algoritmo de las inflaciones y el algoritmo de recorrido en profundidad.

 $\mathsf{Caso}\ \mathbb{A}_n$

0000000

Lema

Todo \mathbb{A} -bloque es de tipo \mathbb{A}_n

Caso \mathbb{A}_n

0000000

A-bloques

Lema

Sean B_1 y B_2 particiones de B, si B_1 y B_2 son A-bloques, entonces B es de tipo \mathbb{A}_n

Caso \mathbb{A}_n

000000

A-bloques

Lema

 $Si B_1, B_2 \dots B_n$ son \mathbb{A} -bloques, entonces B es de tipo \mathbb{A}_n

Descripción de el problema

- El problema propuesto es la clasificación algorítmica en gráficas de tipo \mathbb{D}_n
- Para esto se propone usar el algoritmo de componentes triconexas para caracterizar las de tipo D_n

Algoritmo de Componentes triconexas

- Divide las aristas múltiples para formar enlaces triples y un grafo biconexo simple G'.
- 2 Encuentra los componentes de separación de G'.
- Ombina los enlaces triples y triángulos en enlaces y polígonos.

Componentes triconexas

Sea G=(V,E) un multigrafo. Sea H=(W,F) un subgrafo de G, defininimos una relacion de equivalencia sobre E-F como sigue:

Definiciones

- 2 $\forall e,f\in E-F$, $e\widetilde{=}f$ si y solo si existe un camino que une e,f que no tiene un vértice en W.

Si $H = \{\{a, b\}, \emptyset\}$ las clases de equivalencia son llamadas clases de separación relativas al par $\{a,b\}$.

Definiciones

• Sean S_1, S_2, \ldots, S_k , las clases de separación relativas a el par (a,b). Si existe una partición (A,B) de $\{1,2,...,k\}$ tal que $|E_1 = \bigcup_{i \in A} S_i| \geqslant 2$ y $|E = \bigcup_{i \in B} S_i| \geqslant 2$, decimos que $\{a, b\}$ es un par de separación.

Componentes triconexas

Definiciones

ullet Si G es biconexa y G no tiene par de separación entonces G es triconexa.

- Estos grafos son biconexos.
- Por lo tanto podemos dividir los grafos de división hasta que no sea posible dividir.
- Los grafos obtenidos se dividen en tres clases, los tres enlaces, los triángulos y los grafos triconexos con mas de 3 aristas.
- Estos son llamados los componentes de división de G. No son únicos.

El siguiente resultado es debido a Hopcroft and Tarjan[6].

Lema

El número total de aristas en todos los componentes de división no excede 3|E|-6

Sea G el bigrafo y $H = \{\{2,3\},\emptyset\}$

Ejemplo

La clase de equivalencia de 2—5 es el conjunto:

$$S_1 = \{2-5, 3 - 5\}$$

La clase de equivalencia de 1 - 4 es el conjunto:

$$S_1 = \{1 - 4, 1 - 2, 4 - 3\}$$

La clase de equivalencia de 2—3 es el conjunto:

$$S_1 = \{2 - 3\}$$

P

ara saber si $\{2,3\}$ es un par de separación hay que encontrar una partición de $\{1,2,3\}=A\cup B,\ A\cap B=\{\emptyset\}$ tal que se cumple que $|E(H_1)|\geqslant 2, |E(H_2)|\geqslant 2.$

En este caso $A = \{1,3\}$, $B = \{2\}$ es una partición posible que buscamos y entonces $\{2,3\}$ es un par de separación.

Α

hora supongamos $\{a,b\}$ es un para de separación. Si $H=\{\{a,b\}\emptyset\}$ y S_1,S_2,\ldots,S_k son las clases de separación del par $\{a,b\}$ (las clases de equivalencia definidas por H). Sea A,B la partición del conjunto $\{1,2,\ldots,k\}$ tal que $|E(H_1)|\geqslant 2, |E(H_2)|\geqslant 2.$ Si $H_1=(V(E_1,E_1))$ y $H_2=(V(E_2,E_2))$ entonces $V(E_1)\cap V(E_1=\{a,b\}.$ Sea $G_i=H_i+a$ —b para $i\in\{1,2\}.$ Las G_i son los bigrafos de división de G en $\{a,b\}.$ La arista a—b es llamada arista virtual.

Donde
$$A = \{1, 3\}$$
 y $B = \{2\}$

Donde
$$A = \{2, 3\}$$
 y $B = \{1\}$

A esta arista se le coloca una etiqueta n para distinguirla de otras arista virtuales. o

Donde
$$A = \{1, 3\}$$
 y $B = \{2\}$

Ejemplo

Donde $A = \{2, 3\}$ y $B = \{1\}$

Ejemplo

A esta arista se le coloca una etiqueta n para distinguirla de otras arista virtuales. o

La operación de unión

- Sean H_1 y H_2 particiones de G tal que ambas contengan la misma arista virtual (a,b,n).
- Combinamos estos dejando que $H = H_1 + H_2 (a, b, n)$.

- ullet Ahora supongamos que dividimos G en sus componentes de división.
- Entonces los enlaces triples son combinados tanto posible para formar un conjunto de enlaces y triángulos son combinados tanto posible para formar un conjunto de polígonos.
- El conjunto final de grafos es llamado conjunto completo de componentes de G.

Lema

Un conjunto completo de componentes triconexos es único hasta isomorfismo.

Definiciones

Una bigráfica cumple la condición de ciclo si todo ciclo sin cuerdas tiene un número impar de aristas punteadas.

Ejemplo

- Una bigráfica cíclica $H = x_1 x_2 \cdots x_h x_1$ (todos los x_i distintos para $1 \le i \le h$) que satisface la condición de ciclo.
- Por convención exigimos h > 2 permitiendo a H colapsar en un doble enlace cuando h = 2 (un *n*-enlace es un manojo de n aristas paralelas).
- A esta bigráfica H le llamaremos el \mathbb{D} -núcleo.

Lecturas complementarias I

M. Abarca & D. Rivera Graph Theoretical and Algorithmic Characterizations of Positive Definite Symmetric Quasi-Cartan Matrices. Fundamenta Informaticae. 149(3):241–261, 2016.

M. Barot.
A characterization of positive unit forms.
Boletín de la Sociedad Matemática Mexicana. 5:87–94, 1999.

M. Barot. A characterization of positive unit forms, part II. Boletín de la Sociedad Matemática Mexicana. 7:13–22, 2001.

