DM 9 : Magnétostatique Éléments de correction

	Création d'un champ $ec{B}_1$ « tournant »	
1	A travers une surface quelconque $\Phi_B = \iint_{M \in S} \vec{B}(M) \cdot \overrightarrow{dS}$. Pour une surface fermée $\Phi_S = 0$. Si on découpe une surface fer-	
	mée S en deux surfaces S_1 et S_2 partageant le même contour,	
	on peut écrire $\Phi_S = \iint_{S_1} \vec{B}(M) . \vec{dS} + \iint_{S_2} \vec{B}(M) . \vec{dS} = 0$ or	
	$\overrightarrow{\mathrm{d}S}$ est toujours orienté vers l'extérieur on peut avoir	
	\overrightarrow{dS} de même orientation que $\overrightarrow{dS_2}$ et d'orientation opposée à	
	$\overrightarrow{\mathrm{d}S_1}$, d'où $-\iint_{S_1} \overrightarrow{B}(M) . \overrightarrow{\mathrm{d}S_1} + \iint_{S_2} \overrightarrow{B}(M) . \overrightarrow{\mathrm{d}S_2} = 0$. Enfin on a	
	$\iint_{S_1} \vec{B}(M) . \overrightarrow{dS_1} = \iint_{S_2} \vec{B}(M) . \overrightarrow{dS_2}$ le flux se conserve bien entre	
	surface partageant le même contour car $\Phi_{S_1} = \Phi_{S_2}$	
2	On fait un schéma d'une infinité de spires perpendiculaire à l'axe	
	(Oz). On a le plan $(M, \vec{e}_x, \vec{e}_y)$ comme plan de symétrie donc $B(M)$	
	est perpendiculaire au plan de symétrie, donc $\vec{B}(M) = \vec{B}(M)\vec{e}_z$.	
	Le solénoïde est invariant par translation selon \vec{e}_z , donc $\vec{B}(M) =$	
	$B(r,\theta)\vec{e}_z$, de plus le solénoïde est invariant par rotation autour de	
	l'axe (Oz) donc $B(M) = B(r)\vec{e}_z$. On peut ensuite tracer les lignes	
	de champ magnétique comme des droites parallèles à l'axe (Oz).	
3	On refait la démo du cours avec un schéma, ensuite on choisi	
	un contour rectangulaire dans un plan $(O, \vec{u}_{\Delta}, \vec{e}_r)$ avec un côté à	
	l'extérieur et un côté à l'intérieur du solénoïde, on déduit que le	
	champ est uniforme dans le solénoïde d'expression $\vec{B} = \mu_0 n I \vec{u}_{\Delta}$.	
4	Principe de superposition, on ajoute le champ	
	créé par les deux bobines $\vec{B}_1 = \mu_0 n I_x \vec{e}_x + \mu_0 n I_z \vec{e}_x$	
	$\mu_0 n I_y \vec{e}_y = \mu_0 n I_0 \left(\cos \left(\Omega t \right) \vec{e}_x + \cos \left(\Omega t + \frac{\pi}{2} \right) \vec{e}_y \right) =$	
	$\mu_0 n I_0 \left(\cos\left(\Omega t\right) \vec{e}_x + \sin\left(-\Omega t\right) \vec{e}_y\right), \text{donc} \vec{B}_1 = B_1 \vec{u}_{-\Omega t}, \text{avec}$	
	$B_1 = \mu_0 n I_0$ et $\vec{u}_{-\Omega t}$ le vecteur unitaire tournant d'angle $-\Omega t$,	
	donc de vitesse angulaire $\omega = -\Omega$.	

5	Le champ tournant établit précédemment est $\vec{B}_{1-} = B_1 (\cos{(\Omega t)} \vec{e}_x + \sin{(-\Omega t)} \vec{e}_y)$ celui tournant en sens opposé, est $\vec{B}_{1+} = B_1 (\cos{(\Omega t)} \vec{e}_x + \sin{(\Omega t)} \vec{e}_y)$, la somme des deux donne $\vec{B}_1' = \vec{B}_{1-} + \vec{B}_{1+} = 2B_1 \cos{(\Omega t)} \vec{e}_x$	
	Création d'un champ permanent intense $ec{B}_0$	
6	Une spire est de côté a et elles sont empilés sur une hauteur $R_2 - R_1 = e$. Il y a donc $\frac{e}{a}$ spire empilées radialement, donc le nombre de solénoïde est $\frac{e}{a}$. Pour un de ses solénoïdes une spire prend une longueur de taille a donc il y a 1 spire toutes les longueurs a , soit une densité linéique de $n = \frac{1}{a}$.	
7	On ajoute les $\frac{e}{a}$ champs créé par un solénoïde de densité linéique de spire $\frac{1}{a}$ parcours par un courant I_0 . On obtient $B = \frac{e}{a}\mu_0\frac{1}{a}I_0 = \frac{\mu_0eI_0}{a^2}$. Donc $I_0 = \frac{a^2B}{\mu_0e} = \frac{a^2B}{\mu_0(R_2-R_1)} = 16$ A	