Support Vector Machines

Main Ideas

- Supervised, binary, linear, discriminative
 - Used for classification or regression
- Optimal hyperplane
 - Outputs an optimal hyperplane to separate +ve and –ve training examples
- Maximize Margin of separation Classifier
 - Formalizes notion of the best linear separator
- Kernels
 - Projecting non-linearly separable data into higher-dimensional space makes it linearly separable

Main Ideas

- Lagrangian Multipliers
 - Way to convert a constrained optimization problem to one that is easier to solve
- Complexity
 - Depends only on the number of training examples, not on dimensionality of the kernel space!
- Regularization
 - Has a regularization parameter to relax optimization constraints for non separable data

Picnic example

Linear Support Vector Machines

Linear SVM 2

Data:
$$\langle \mathbf{x}_i, \mathbf{y}_i \rangle$$
, $i=1,...,l$
 $\mathbf{x}_i \in \mathbb{R}^d$
 $\mathbf{y}_i \in \{-1,+1\}$

All hyperplanes in R^d are parameterize by a vector (w) and a constant b. Can be expressed as w^T•x+b=0

$$\mathbf{W} = \begin{cases} \frac{w1}{w2} \\ \frac{w}{2} \end{cases} x = \begin{cases} \frac{x1}{x2} \\ \frac{x}{2} \end{cases}$$

 $\mathbf{W} = \begin{cases} \frac{w1}{w2} \\ x = \begin{cases} \frac{x1}{x2} \end{cases}$ Our aim is to find such a hyperplane $\underline{f(x) = \text{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})}$, that correctly classify our data.

Definitions

Define the hyperplane H such that:

$$\mathbf{x}_{i} \cdot \mathbf{w} + \mathbf{b} \ge +1 \text{ when } \mathbf{y}_{i} = +1$$

 $\mathbf{x}_{i} \cdot \mathbf{w} + \mathbf{b} \le -1 \text{ when } \mathbf{y}_{i} = -1$

H1 and H2 are the planes:

H1: $x_i \cdot w + b = +1$

H2: $x_i \cdot w + b = -1$

The points on the planes

H1 and H2 are the

Support Vectors

d+ = the shortest distance to the closest positive point d- = the shortest distance to the closest negative point The <u>margin</u> of a separating hyperplane is $d^+ + d^-$.

Maximizing the margin

We want a classifier with as big margin as possible.

Recall the distance from a point(x_0, y_0) to a line: Ax+By+c = 0 is $|A x_0 + B y_0 + c|/sqrt(A^2+B^2)$

The distance between H and H1 is: $|\mathbf{w} \cdot \mathbf{x} + \mathbf{b}| / ||\mathbf{w}|| = 1 / ||\mathbf{w}||$

The distance between H1 and H2 is: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the condition that there are no datapoints between H1 and H2:

$$x_i \cdot w + b \ge +1$$
 when $y_i = +1$
 $x_i \cdot w + b \le -1$ when $y_i = -1$ Can be combined into $y_i(x_i \cdot w) \ge 1$

SVM – Maximize margin of separation Euclidean

Optimization problem

OBJECTIVE FUNCTION

CONSTRAINTS FULFILL

COMBINE

An Optimization problem and its dual

Quadratic Programming

- Why is this reformulation a good thing?
- The problem

Maximize
$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \mathbf{x}_{i} \cdot \mathbf{x}_{j} \rangle$$
subject to
$$\sum_{i} y_{i} \alpha_{i} = 0 \text{ and } \alpha_{i} \geq 0$$

- is an instance of what is called a positive, semi-definite programming problem
- For a fixed real-number accuracy, can be solved in time order = $O(|D|^2 \log |D|^2)$

Problems with linear SVM

What if the decision function is not a linear?

The kernel trick

 For many mappings from a low-D space to a high-D space, there is a simple operation on two vectors in the low-D space that can be used to compute the scalar product of their two images in the high-D space.

$$K(x^a, x^b) = \phi(x^a).\phi(x^b)$$

Letting the doing the scalar product in the obvious way

(2

Kernel Trick

Data points are linearly separable in the space $(x_1^2, x_2^2, \sqrt{2}x_1x_2)$

We want to maximize
$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle F(\mathbf{x}_{i}) \cdot F(\mathbf{x}_{j}) \rangle$$
Define $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \langle F(\mathbf{x}_{i}) \cdot F(\mathbf{x}_{j}) \rangle$

K is often easy to compute directly!

Here,
$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle^2$$

Some commonly used kernels

Polynomial:
$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}.\mathbf{y} + 1)^p$$

Gaussian radial basis function $K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^2/2\sigma^2}$ Parameters that the user must choose function $K(\mathbf{x}, \mathbf{y}) = \tanh(k \mathbf{x}.\mathbf{y} - \delta)$

Mercers condition

Kornel M should be 1) seal 2) symmetric 3 + re, definite 3 M 3 is strictly the E.g. I dentity Matrix
$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^2 + b^2$$
3 The strictly of th

XOR example

Input vector
$$\frac{1}{x_{1}}$$
 datel $\frac{1}{x_{2}}$ $\frac{1}{x_{1}}$ $\frac{1}{x_{2}}$ $\frac{1}{x_{1}}$ $\frac{1}{x_{2}}$ $\frac{1}{x_{2$

Image of input vector x in high dimensional feature space

$$K = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \end{bmatrix} \rightarrow KERNEL$$

$$1 & 9 & 1 & 1 & 1 \\ 1 & 1 & 9 & 1 & 1 \\ 1 & 1 & 1 & 9 & 1 \end{bmatrix} \Rightarrow KERNEL$$

$$Row = \begin{cases} 2 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \end{cases} \Rightarrow KERNEL$$

$$Row = \begin{cases} 2 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{cases} \Rightarrow K(x, x_1)$$

$$Row = \begin{cases} 2 & 1 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 9 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 9 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 9 \\ 2 & 1 & 1 & 1 \\ 2 &$$

oflinize
$$Q(x) - w.r.t. \ \alpha_1 \alpha_2 \alpha_3 \alpha_4 :$$
 $9\alpha_1 - \alpha_2 - \alpha_3 + \alpha_n = 1$
 $-\alpha_1 + 9\alpha_2 + \alpha_3 - \alpha_4 = 1$
 $-\alpha_1 + \alpha_2 + 9\alpha_3 - \alpha_4 = 1$
 $\alpha_1 - \alpha_2 - \alpha_3 + 9\alpha_4 = 1$
 $\alpha_1 - \alpha_2 - \alpha_3 + 9\alpha_4 = 1$
 $\alpha_2 - \alpha_3 + 9\alpha_4 = 1$
 $\alpha_3 - \alpha_4 = 1$
 $\alpha_4 - \alpha_5 - \alpha_5 = 1$
 $\alpha_1 - \alpha_2 - \alpha_3 + 9\alpha_4 = 1$
 $\alpha_2 - \alpha_3 + 9\alpha_4 = 1$
 $\alpha_3 - \alpha_4 = 1$
 $\alpha_4 - \alpha_5 - \alpha_5 = 1$
 $\alpha_5 -$

We need to calculate equation of plane- $ightarrow \omega$ - | wo | = 1: because constants NW

The Optimal hyperplane is

$$\left[\begin{array}{c} \omega_{s}^{T} \\ \omega_{s}^{T} \end{array}\right]$$

$$\left[\begin{array}{c} 2^{2} \\ 2^{2} \\ 2^{2} \end{array}\right]$$

$$\left[\begin{array}{c} 2^{2} \\ 2^{2} \\ 2^{2} \end{array}\right]$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

Overtraining/overfitting

A well known problem with machine learning methods is overtraining. This means that we have learned the training data very well, but we can not classify unseen examples correctly.

An example: A environmentalist knows rivers very well. Everytime he sees a new river, he says it is not a river!

Overtraining/overfitting 2

A measure of the risk of overtraining with SVM (there are also other measures).

It can be shown that: The portion, n, of unseen data that will be missclassified is bounded by:

n ≤ Number of support vectors / number of training examples

Ockham's razor principle: Simpler system are better than more complex ones. In SVM case: fewer support vectors mean a simpler representation of the hyperplane.

Example: Understanding a certain cancer if it can be described by one gene is easier than if we have to describe it with 5000.

Regularization

- Also the 'C' parameter in Python's SkLearn Library
- Optimises SVM classifier to avoid misclassifying the data.
- $C \rightarrow large$
- \bullet C \rightarrow small

Margin of hyperplane → small

Margin of hyperplane → large

- •misclassification(possible)
- 1. C ---> large, chance of overfit
- 2. C ---> small, chance of underfitting

Gamma

- Defines how far influences the calculation of plausible line of separation.
- Low gamma ----> points far from plausible line are considered for calculation
- High gamma ----> points close to plausible line are considered for calculation

A practical example, protein localization

- Proteins are synthesized in the cytosol.
- Transported into different subcellular locations where they carry out their functions.
- Aim: To predict in what location a certain protein will end up!!!

Subcellular Locations

Method

- Hypothesis: The amino acid composition of proteins from different compartments should differ.
- Extract proteins with know subcellular location from SWISSPROT.
- Calculate the amino acid composition of the proteins.
- Try to differentiate between: cytosol, extracellular, mitochondria and nuclear by using SVM

Input encoding

Prediction of nuclear proteins:

Label the known nuclear proteins as +1 and all others as -1.

The input vector xi represents the amino acid composition.

Eg xi =
$$(4.2,6.7,12,...,0.5)$$

A, C, D,..., Y)

Caution on overfitting

Image classification of tanks. Autofire when an enemy tank is spotted. Input data: Photos of own and enemy tanks. Worked really good with the training set used. In reality it failed completely.

Reason: All enemy tank photos taken in the morning. All own tanks in dawn. The classifier could recognize dusk from dawn!!!!