Topic 3: Coordinate Geometry

- find the length, gradient and mid-point of a line segment, given the coordinates of the end-points;
- find the equation of a straight line given sufficient information (e.g. the coordinates of two points on it, or one point on it and its gradient);
- understand and use the relationships between the gradients of parallel and perpendicular lines;
- interpret and use linear equations, particularly the forms y = mx + c and $y y_1 = m(x x_1)$;
- understand the relationship between a graph and its associated algebraic equation, and use the relationship between points of intersection of graphs and solutions of equations (including, in simple cases, the correspondence between a line being tangent to a curve and a repeated root of an equation).

Equation of a Straight Line

The equation of a straight line is usually written as: y = mx + b or y = mx + c

What does it stand for?

How do you find "m" and "b"?

- b is easy: just see where the line crosses the y- axis.
- m (the Slope) needs some calculation:

Knowing this we can work out the equation of a straight line:

Example 1

b = 1 (where the line crosses the y-axis)

Therefore
$$y = 2x + 1$$

Linear Equations

- 1. Slope-Intercept form y = mx + b
- 2. Point-slope form $y y_1 = m(x x_1)$
- 3. General form ax + by + c = 0

Example 2

Find the equation of the line with gradient $\frac{1}{t}$ which passes through the point (t², 2t). If this line passes through the point (-2, 1), find the possible values of t.

Gradient, Length and Mid-point of a Line Segment

Gradient of a line

Distance between 2 Points

$$\mathbf{m} = \frac{change\ in\ y}{change\ in\ x} = \frac{y_A - y_B}{x_A - x_B} \qquad c = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$
 where c = length AB

Midpoint between Two Points

The midpoint is **halfway** between two points.

$$\mathbf{M} = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

Example 3

Show that the points A(0, -3), B(4, -2) and C(16, 1) are collinear.

Example 4

The distance between the points (-2, y) and (3, -7) is 13 units. What are the possible values for y?

Example 5

The straight line 3x + 4y = 24 cuts the y axis at the point A and cuts the x axis at the point B. What is the distance AB?

Example 6

The coordinates of the parallelogram ABCD are: A(5,2), B(2,4), C(6,7) and D(9,5) What is the length of the shorter diagonal of parallelogram ABCD?

Example 7

P(4, -4), Q(9, 6), R(-2, 4) and S are the vertices of a parallelogram. Find

- a) the midpoint of the diagonal PR.
- b) the coordinates of S.

Show that PQRS is a rhombus.

Parallel Lines

How do you know if two lines are parallel?

Their slopes are the same!

Perpendicular Lines

Two lines are perpendicular if they meet at a right angle (90°).

How do you know if two lines are perpendicular?

When you multiply their slopes, you get -1

Example 8

What is the equation of the line which is parallel to the line 3x + 2y - 6 = 0 and passes through the point (4, 5)?

Example 9

What is the equation of the line which is perpendicular to the line 4x + 5y - 20 = 0 and passes through the point (8, -3)?

Example 10

The straight line p passes through the point (10, 1) and is perpendicular to the line r with equation 2x + y = 1.

- a) Find the equation of p.
- b) Find also the coordinates of the point of intersection p and r, and deduce the perpendicular distance from the point (10, 1) to the line r.

Additional Information

1. Equilateral, Isosceles and Scalene

There are three special names given to triangles that tell how many sides (or angles) are equal.

There can be **3**, **2** or **no** equal sides/angles:

Example 11

P(2, 5), Q(12, 5) and R(8, -7) form a triangle.

- (a) Find the equations of the altitudes through
- (i) *R*; (ii) *Q*.
- (b) Find the point of intersection of these altitudes.
- (c) Show that the altitude through *P* also passes through this point.

2. Types of Quadrilaterals and the characteristics of quadrilaterals.

Exercise 1A – Pure Mathematics 1(page 6) Question 16, 17, 18, 19, 20, 21 and 22

3. Slope

$$\mathbf{m} = \frac{change in y}{change in x} = \tan \theta$$

Example: Oct/Nov 2005 Examination, Paper 1 - Question 9

4. Horizontal line – what is the gradient? and Vertical line - what is the gradient?

5. Area of a triangle

Area =
$$\frac{1}{2} \times b \times h$$
 or $= \frac{1}{2} \begin{vmatrix} x_A & x_B & x_C & x_A \\ y_A & y_B & y_C & y_A \end{vmatrix}$

Exercise 1A – Pure Mathematics 1(page 6) Question 7, 8, 9, 14 and 15

Exercise 1B – Pure Mathematics 1(page 11) Question 5, 7, and 9

Exercise 1C – Pure Mathematics 1(page 14) Question 3 and 5

Miscellaneous Exercise 1 – Pure Mathematics 1(page 15) Question 6, 7, 12, 13, 15 and 16