PAT-NO: JP02003017530A

DOCUMENT-IDENTIFIER: JP 2003017530 A

TITLE: SEMICONDUCTOR DEVICE AND ITS

MOUNTING METHOD

PUBN-DATE: January 17, 2003

INVENTOR-INFORMATION:

NAME COUNTRY
ISHIKAWA, TOMOKAZU N/A
ONISHI, TAKEHIRO N/A
TANAKA, HIDEKI N/A
KIMOTO, RYOSUKE N/A
NISHIDA, TAKAFUMI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY
HITACHI LTD N/A
HITACHI ULSI SYSTEMS CO LTD N/A

APPL-NO: JP2001196083

APPL-DATE: June 28, 2001

INT-CL (IPC): H01L021/60, H01L021/56 , H01L023/12 ,
H01L023/29 , H01L023/31

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a semiconductor device where filling properties can be improved by making the flow of an underfill material uniform and stress concentration can be relaxed and the directivity can be further given to a package.

SOLUTION: A WPP, where a prescribed circuit and a plurality of bumps are

formed in a wafer level, is composed of the package 1 where a plurality of

bumps are arranged in an array on a chip. A plurality of bumps 2 of this

package 1 comprise regular bumps 2a that are electrically connected to the

prescribed circuit, and dummy bumps 2b that are not electrically connected.

The regular bumps 2a are arranged at five lines of the periphery of a 18 rows

× 18 columns full matrix except the corners and the dummy bumps 2b are

arranged at the 8 rows × 8 columns matrix in a central part and the

corners of the 18 rows × 18 columns matrix. As a result, the dummy bumps

2b can be provided in the free space of the central part where the regular

bumps 2a become unnecessary, and thus the flow of the underfill material becomes uniform.

COPYRIGHT: (C) 2003, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-17530 (P2003-17530A)

最終質に続く

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H01L 21/60	311	H01L 21/60	311S 4M109
		21/56	E 5F044
21/56		23/12	501P 5F061
23/12	501	23/30	R
23/29		21/92	602N
	審査請求	未請求 請求項の数5 (DL (全 8 頁) 最終頁に続く
(21)出願番号	特顧2001-196083(P2001-196083)	(71)出顧人 000005100 株式会社	
(22) 出類日	平成13年6月28日(2001.6.28)	東京都千代田区神田駿河台四丁目 6番地 (71)出願人 000233169 株式会社日立超エル・エス・アイ・システムズ 東京都小平市上水本町 5 丁目22番 1 号 (72)発明者 石川 智和 東京都小平市上水本町五丁目20番 1 号 株 式会社日立製作所半導体グループ内 (74)代理人 100080001 弁理士 筒井 大和	

(54) 【発明の名称】 半導体装置およびその実装方法

(57)【要約】

【課題】 アンダーフィル材の塗れ広がりを一様にすることで充填性を向上させ、また応力集中を緩和することができ、さらにパッケージに方向性を持たせることができる半導体装置を提供する。

【解決手段】 ウェハの状態で所定の回路および複数のバンプが形成されるWPPであって、複数のバンプがチップ上にアレイ状に配置されたパッケージ1から構成され、このパッケージ1の複数のバンプ2は、所定の回路に電気的に接続された正規のバンプ2aと、電気的には未接続なダミーバンプ2bからなり、正規のバンプ2aが18行×18列のフルマトリクスのコーナー部を除いた外周5列に配置され、ダミーバンプ2bが中央部の8行×8列と18行×18列のコーナー部に配置され、正規のバンプ2aが不要となった中央部の空きスペースにもダミーバンプ2bを設けることでアンダーフィル材の塗れ広がりが一様になる。

1: パッケーシ 2a: 正規のパンプ 2: パンプ 2b: ダミーパンプ

【特許請求の範囲】

【請求項1】 ウェハの状態で形成された所定の回路お よび複数の外部端子からなり、前記複数の外部端子がチ ップ上にアレイ状に配置されたパッケージを有し、

前記複数の外部端子は、前記所定の回路に電気的に接続 された第1外部端子および電気的には未接続な第2外部 端子を有し、

前記第1外部端子を配置した空き領域に前記第2外部端 子が配置されていることを特徴とする半導体装置。

【請求項2】 請求項1記載の半導体装置において、 前記第2外部端子は前記アレイ状の中央部に配置されて いることを特徴とする半導体装置。

【請求項3】 請求項1記載の半導体装置において、 前記第2外部端子は前記アレイ状の角部に配置されてい ることを特徴とする半導体装置。

【請求項4】 請求項3記載の半導体装置において、 前記アレイ状の角部に配置されるべき4個の第2外部端 子のうち、少なくとも1~3個が配置されていることを 特徴とする半導体装置。

よび複数の外部端子からなり、前記複数の外部端子がチ ップ上にアレイ状に配置され、前記所定の回路に電気的 に接続された第1外部端子および電気的には未接続な第 2外部端子を有し、前記第1外部端子を配置した空き領 域に前記第2外部端子が配置されているパッケージを用 意する工程と、

前記パッケージを実装基板に実装し、前記パッケージの 外部端子と前記実装基板のパッドとを電気的に接続する 工程と、

前記パッケージと前記実装基板との接続部分に樹脂封止 30 材を供給し、前記樹脂封止材の塗れ広がりを一様にして 前記パッケージの外部端子と前記実装基板のパッドとの 接続部分を封止する工程とを有することを特徴とする半 導体装置の実装方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置の製造 技術に関し、特にウェハレベルCSP(ChipSiz e Package)や、WPP(Wafer Pro cess Package) のバンプレイアウト設計に 40 ものである。 適用して有効な技術に関する。

[0002]

【従来の技術】本発明者が検討した技術として、半導体 装置の製造技術に関し、ウェハレベルCSPやWPPに ついては、以下のような技術が考えられる。このウェハ レベルCSPやWPPは、ウェハ状態で後工程と呼ばれ る加工処理を行うウェハレベルパッケージング技術であ り、チップとほぼ同じ外形寸法のLSIパッケージとし

【0003】なお、このようなウェハレベルパッケージ 50 れるウェハレベルCSPやWPPに適用され、複数の外

ング技術に関しては、たとえば2000年7月28日、 株式会社工業調査会発行、社団法人エレクトロニクス実 装学会編の「エレクトロニクス実装大事典」P525に 記載される技術などが挙げられる。

[0004]

【発明が解決しようとする課題】ところで、前記のよう なウェハレベルパッケージング技術について、本発明者 が検討した結果、以下のようなことが明らかとなった。 たとえば、前記のようなウェハレベルCSPやWPPに 10 おいては、その開発にあたり、バンプの配置を16行× 16列のフルマトリクス配置 (256個)から18行× 18列の外周5列配置 (256+4 (ダミーバンプまた は未配置)個)に変更する必要性が生じている。この際 に、中心の8行×8列は空きスペースとなるため、バン プがないことからアンダーフィル材の充填性に悪影響が 生じることが考えられる。

【0005】また、バンプ配置がパッケージのコーナー 部に位置するバンプは応力が集中するため、アクティブ バンプが配置された場合の影響を考慮する必要がある。

【請求項5】 ウェハの状態で形成された所定の回路お 20 さらに、半導体装置のウェハレベルCSP化、WPP化 にあたり、外形がほぼ正方形であることから、実装装置 でパッケージの方向性を認識可能とすることも必要であ

> 【0006】そこで、本発明者は、アンダーフィル材の 充填性への悪影響、アクティブバンプへの応力集中、パ ッケージの方向性の認識の3点に着目し、バンプ配置を 工夫することで、課題である3点に対処することが可能 となることを見出した。

【0007】そこで、本発明の目的は、アンダーフィル 材の塗れ広がりを一様にすることで充填性を向上させる ことができる半導体装置を提供するものである。

【0008】また、本発明の他の目的は、バンプ配置に おいて、コーナーバンプをダミーバンプ、あるいは未配 置とすることで応力集中を緩和することができる半導体 装置を提供するものである。

【0009】また、本発明のさらに他の目的は、4箇所 のコーナーバンプに関して、少なくとも1~3個のバン プを配置してバンプ配置の対称性をなくし、パッケージ に方向性を持たせることができる半導体装置を提供する

【0010】本発明の前記ならびにその他の目的と新規 な特徴は、本明細書の記述および添付図面から明らかに なるであろう。

[0011]

【課題を解決するための手段】本願において開示される 発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。

【0012】すなわち、本発明による半導体装置は、ウ ェハの状態で所定の回路および複数の外部端子が形成さ

部端子であるバンプがチップ上にアレイ状に配置された パッケージを有し、複数のバンプは所定の回路に電気的 に接続された第1バンプおよび電気的には未接続な第2 バンプを有し、第1バンプを配置した空き領域に第2バ ンプを配置するものである。

【0013】さらに、前記半導体装置において、第2バ ンプをアレイ状の中央部に配置するものである。すなわ ち、バンプ配置の結果、バンプが不要となった中央部の 空きスペースにも電気的に未接続なダミーバンプを設 け、樹脂封止材であるアンダーフィル材の塗れ広がりを 10 されている。これらの複数のバンプ2は、所定の回路に 一様にすることで充填性を向上させるようにしたもので ある。

【0014】また、前記半導体装置において、第2パン プをアレイ状の角部に配置するものである。すなわち、 バンプ配置のうち、アレイ状の角部のコーナーバンプを ダミーバンプとすることで、コーナー部に集中する応力 対策を施すようにしたものである。あるいは、アレイ状 の角部に第2バンプを配置しない構造においても、同様 に応力対策を施すことができるようになる。

【0015】さらに、前記半導体装置において、アレイ 20 状の角部に配置されるべき4個の第2バンプのうち、少 なくとも1~3個の第2バンプを配置するものである。 すなわち、コーナーバンプの4箇所のうち、少なくとも 1~3個のバンプを配置してバンプ配置の対称性をなく し、パッケージに方向性を持たせるようにしたものであ

【0016】また、本発明による半導体装置の実装方法 - は、ウェハの状態で形成された所定の回路に電気的に接 続された第1バンプおよび電気的には未接続な第2バン プを有し、第1バンプを配置した空き領域に第2バンプ 30 が配置されているパッケージを用意し、このパッケージ を実装基板に実装し、パッケージのバンプと実装基板の パッドとを電気的に接続し、パッケージと実装基板との 接続部分に樹脂封止材を供給し、この樹脂封止材の塗れ 広がりを一様にしてパッケージのバンプと実装基板のパ ッドとの接続部分を封止する、各工程を有するものであ る。

[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて詳細に説明する。なお、実施の形態を説明す るための全図において、同一の機能を有する部材には同 一の符号を付し、その繰り返しの説明は省略する。

【0018】(実施の形態1)まず、図1および図2に より、本発明の実施の形態1の半導体装置の一例の構成 を説明する.図1は本実施の形態の半導体装置を示す平 面図、図2は図1の半導体装置の断面図であり、それぞ れ(a)はA-A'切断線、(b)はB-B'切断線、 (c)はC-C'切断線による断面図である。

【0019】本実施の形態の半導体装置は、たとえばウ ェハの状態で所定の回路および複数のバンプが形成され 50 ッケル (Ni)によるめっき処理を施して再配線層15

るWPPとされ、複数のバンプがチップ上にアレイ状に 配置されたパッケージ1から構成されている。ここで は、WPPのウェハレベルパッケージング技術におい て、チップにバンプが形成されている状態をパッケージ と呼ぶものとする。

【0020】 パッケージ1は、ウェハの状態で所定の回 路が形成され、さらに通常の製造プロセスでは後工程で 実施されていたバンプ形成などもウェハの状態で行われ る半導体装置であり、複数のバンプ2がアレイ状に配置 電気的に接続された正規のバンプ2aと、所定の回路に 電気的には未接続なダミーバンプ2bからなり、たとえ ば図1においては、正規のバンプ2aが18行×18列 のフルマトリクスのコーナー部を除いた外周5列に配置 (256個)され、ダミーバンプ2bが中央部の8行× 8列の空きスペースと18行×18列のコーナー部に配 置(64+4個)されている。このダミーバンプ2b は、特にパッケージ1として製品化された段階で電気的 に未接続なバンプを意味する。

【0021】以上のように構成されるパッケージ1は、 後述する実装基板に実装され、パッケージ1のバンプ2 と実装基板のパッドとが電気的に接続され、さらにパッ ケージ1と実装基板との接続部分に樹脂封止材が供給さ れ、この樹脂封止材の塗れ広がりを一様にしてパッケー ジ1のバンプ2と実装基板のパッドとの接続部分が封止 される実装構造となっている。

【0022】次に、図3および図4により、本実施の形 態の半導体装置の製造方法の一例を説明する。図3およ び図4は本実施の形態の半導体装置の製造方法を示すフ ロー図であり、右側の図は左側の各工程に対応する半導 体装置の断面図をそれぞれ示す。

【0023】(1)ポリイミド樹脂塗布工程(ステップ S1)

この工程では、たとえばシリコン (Si) 基板のウェハ 11に所定の回路が形成され、この回路の内部端子がア ルミニウム (A1) により形成され、この内部端子を露 出するようにパッシベーション膜12が形成されている 状態に対して実施する。まず、、パッシベーション膜12 の表面上に感光性のポリイミド樹脂を塗布し、このポリ イミド樹脂による絶縁層13の内部端子の部分をフォト リソグラフィ技術により開口し、そして絶縁層13のべ ーク処理を行う。

【0024】(2)シード層形成工程(ステップS2) この工程では、ポリイミド樹脂による絶縁層13の表面 上にクロム (Cr) -銅 (Cu) からなるシード層14 を形成する。このシード層14は、スパッタリングを行 うためのスパッタ膜となる。

【0025】(3)再配線層形成工程(ステップS3) この工程では、シード層14の表面上に銅(Cu)-ニ

を形成する。

【0026】(4)ポリイミド樹脂塗布工程(ステップ S4)

この工程では、再配線層15の表面上に感光性のポリイ ミド樹脂を塗布し、このポリイミド樹脂による絶縁層1 6の電極の部分をフォトリソグラフィ技術により開口 し、そして絶縁層16のベーク処理を行う。

【0027】(5)めっき処理工程(ステップS5) この工程では、ポリイミド樹脂による絶縁層16から露 出された電極の部分に金(Au)によるめっき処理を施 10 きスペースにもダミーバンプ2bを設けることにより、 してめっき層17を形成する。

【0028】(6)プローブテスト工程(ステップS

この工程では、金によるめっき層17が形成された電極 にプローブ針を接触させ、プローブ針に接続されたプロ ーバによりウェハ11の各チップ毎にプローブテストを 行う。このプローブテストには、DCテスト、ACテス トや機能試験などがある。

【0029】(7)バンプ形成工程(ステップS7) ボールからなるバンプ2を形成する。このバンプ2に は、所定の回路に電気的に接続された正規のバンプ2a と、電気的には未接続なダミーバンプ2bとがあり、正 規のバンプ2aが外部端子となる。

【0030】(8)ダイシング工程(ステップS8) この工程では、ウェハ11を各チップ毎にダイシング し、チップ毎に個別に切り離す。

【0031】(9)テスト工程(ステップS9) この工程では、個別に切り離されたチップの最終テスト を行い、良品を製品として出荷する。この製品は、前述 30 置しないようにした点である。 した図1および図2のような形状のパッケージ1とな る。

【0032】次に、図5により、本実施の形態の半導体 装置の実装方法の一例を説明する。図5は本実施の形態 の半導体装置の実装方法を示すフロー図であり、右側の 図は左側の各工程に対応する半導体装置の断面図をそれ ぞれ示す。

【0033】(1)用意工程(ステップS11) この工程では、ウェハの状態で形成された所定の回路に 電気的に接続された正規のバンプ2aと、電気的には未 40 接続なダミーバンプ2bを有し、正規のバンプ2aを配 置した空き領域にダミーバンプ2bが配置されているパ ッケージ1や、実装基板3などを用意する。

【0034】(2)実装工程(ステップS12) この工程では、パッケージ1を実装基板3に実装し、パ ッケージ1のバンプ2と実装基板3のパッドとを電気的 に接続する。

【0035】(3)封止工程(ステップS13) この工程では、前記の製造方法により完成された、パッ ケージ1と実装基板3との接続部分に樹脂封止材のアン 50 ダーフィル材4を供給し、パッケージ1のバンプ2と実 装基板3のパッドとの接続部分、パッケージ1の側面部 分を封止する。この際に、正規のバンプ2aが配置され た空きスペースにもダミーバンプ2bが配置され、バン プ2が18行×18列のフルマトリクスに配置されてい るので、アンダーフィル材4の塗れ広がりを一様にする ことができる。

【0036】従って、本実施の形態によれば、バンプ配 置の結果、正規のバンプ2 aが不要となった中央部の空 アンダーフィル材4の塗れ広がりが一様になることで、 アンダーフィル材4の充填性を向上できる。よって、ア ンダーフィル材4内のボイドの低減による信頼性の向上 が可能となる。

【0037】また、バンプ配置のうち、コーナー部にダ ミーバンプ2bを配置することにより、コーナー部のバ ンプに集中する応力対策を施すことができる。すなわ ち、ダミーバンプ2bは機能を持たないので、実装時、 コーナー部への応力集中によるバンプクラックおよびデ この工程では、ウェハ11の各チップの電極上にはんだ 20 バイス特性の劣化を防止できる。よって、コーナー部へ の応力集中の回避による実装信頼性の向上が可能とな

> 【0038】(実施の形態2)図6により、本発明の実 施の形態2の半導体装置の一例の構成を説明する。図6 は本実施の形態の半導体装置を示す平面図である。

> 【0039】本実施の形態の半導体装置は、前記実施の 形態1と同様に、たとえばウェハの状態で所定の回路お よび複数のバンプが形成されるWPPとされ、前記実施 の形態1との相違点は、コーナー部にダミーバンプを配

> 【0040】すなわち、本実施の形態のパッケージ1a においては、図6に示すように、正規のバンプ2 aが1 8行×18列のコーナー部を除いた外周5列に配置(2 56個) され、ダミーバンプ2bが中央部の8行×8列 の空きスペースのみに配置されて、18行×18列のコ ーナー部は空きスペースとなっている。

【0041】従って、本実施の形態においては、前記実 施の形態1と同様に、アンダーフィル材4の塗れ広がり が一様になることで、アンダーフィル材4の充填性を向 上できるので、アンダーフィル材4内のボイドの低減に よる信頼性の向上が可能となる。また、前記実施の形態 1と異なり、コーナー部にダミーバンプ2bを配置しな い場合にも、前記実施の形態1と同様に、実装時、コー ナー部への応力集中によるバンプクラックおよびデバイ ス特性の劣化を防止できるので、コーナー部への応力集 中の回避による実装信頼性の向上が可能となる。

【0042】(実施の形態3)図7により、本発明の実 施の形態3の半導体装置の一例の構成を説明する。 図7 は本実施の形態の半導体装置を示す平面図である。

【0043】本実施の形態の半導体装置は、前記実施の

形態1と同様に、たとえばウェハの状態で所定の回路お よび複数のバンプが形成されるWPPとされ、前記実施 の形態1との相違点は、コーナー部の3箇所にダミーバ ンプを配置するようにした点である。

【0044】すなわち、本実施の形態のパッケージ1b においては、図7に示すように、正規のバンプ2aが1 8行×18列のコーナー部を除いた外周5列に配置(2 56個) され、ダミーバンプ2bが中央部の8行×8列 の空きスペースと18行×18列のコーナー部のうちの 3箇所のみに配置されて、1箇所 (左下) は空きスペー 10 パッケージ1 cの方向認識が可能となる。また、エリア スとなっている。

【0045】従って、本実施の形態においては、前記実 施の形態1と同様に、アンダーフィル材4の塗れ広がり が一様になることで、アンダーフィル材4の充填性を向 上できるので、アンダーフィル材4内のボイドの低減に よる信頼性の向上が可能となる。また、前記実施の形態 1と同様に、実装時、コーナー部への応力集中によるバ ンプクラックおよびデバイス特性の劣化を防止できるの で、コーナー部への応力集中の回避による実装信頼性の 向上が可能となる。

【0046】さらに、本実施の形態においては、コーナ 一部の3箇所にダミーバンプ2bが配置され、1箇所が 空きスペースとなっているので、パッケージ1 bに方向 性を持たせることができるので、 搭載機でパッケージ1 bの方向認識が可能となる。すなわち、正方形のエリア パッケージでは、バンプ配置も点対称であるとパッケー ジに方向性がないため、本実施の形態による構造が有効 となる。また、逆に、コーナ一部の1箇所のみにダミー バンプ2bを配置し、3箇所を空きスペースにすること せることが可能である。

【0047】(実施の形態4)図8により、本発明の実 施の形態4の半導体装置の一例の構成を説明する。図8 は本実施の形態の半導体装置を示す平面図である。

【0048】本実施の形態の半導体装置は、前記実施の 形態1と同様に、たとえばウェハの状態で所定の回路お よび複数のバンプが形成されるWPPとされ、前記実施 の形態1との相違点は、フルマトリクスのエリア外にダ ミーバンプを配置するようにした点である。

【0049】すなわち、本実施の形態のパッケージ1c 40 においては、図8に示すように、正規のバンプ2aが1 8行×18列のコーナー部を除いた外周5列に配置(2 56個) され、ダミーバンプ2bが中央部の8行×8列 の空きスペースと18行×18列のコーナー部に加え て、エリア外の1箇所、すなわち左上コーナー部のダミ ーバンプ2bの左隣にも配置されている。

【0050】従って、本実施の形態においては、前記実 施の形態1と同様に、アンダーフィル材4の塗れ広がり が一様になることで、アンダーフィル材4の充填性を向 上できるので、アンダーフィル材4内のボイドの低減に 50 ―部に集中する応力対策を施し、実装時、コーナーバン

よる信頼性の向上が可能となる。また、前記実施の形態 1と同様に、実装時、コーナー部への応力集中によるバ ンプクラックおよびデバイス特性の劣化を防止できるの で、コーナー部への応力集中の回避による実装信頼性の 向上が可能となる。

【0051】さらに、本実施の形態においては、フルマ トリクスのエリア外の1箇所にダミーバンプ2bが配置 されているので、前記実施の形態3と同様に、パッケー ジ1 c に方向性を持たせることができるので、搭載機で 外のダミーバンプ2bは、左上コーナー部のダミーバン プ2bの左隣に限らず、左上コーナー部のダミーバンプ 2 bの上隣や、他のコーナー部に配置することによって も同様に、パッケージ1 c に方向性を持たせることが可 能である。

【0052】以上、本発明者によってなされた発明をそ の実施の形態に基づき具体的に説明したが、本発明は前 記実施の形態に限定されるものではなく、その要旨を逸 脱しない範囲で種々変更可能であることはいうまでもな 61

【0053】たとえば、前記実施の形態においては、所 定の回路に電気的には未接続なバンプをダミーバンプと 呼んだが、パッケージとして製品化された段階では電気 的に未接続であるが、実装前のテストの段階で、このテ ストのための電位を加えたり、信号を加えたりする場合 などに、このバンプを用いることは可能である。

【0054】また、前記実施の形態では、18行×18 列のフルマトリクスにコーナー部を除いた外周5列に2 56個の正規のバンプを配置した例を説明したが、これ などによっても同様に、パッケージ1bに方向性を持た 30 に限定されるものではなく、他の行列構成や、正規のバ ンプの個数についても種々変更可能である。

> 【0055】さらに、本発明は、WPPに限らず、ウェ ハレベルCSPにも適用可能であることはいうまでもな

[0056]

【発明の効果】本願において開示される発明のうち、代 表的なものによって得られる効果を簡単に説明すれば、 以下のとおりである。

【0057】(1)所定の回路に電気的に接続された第 1バンプ、および電気的には未接続な第2バンプを有 し、第1バンプを配置した空き領域に第2バンプを配置 することで、アンダーフィル材の塗れ広がりを一様にす ることができるので、アンダーフィル材の充填性を向上 させることが可能となる。

【0058】(2)前記(1)により、アンダーフィル 材の内部のボイド低減によって信頼性の向上が可能とな る半導体装置を実現することができる。

【0059】(3)第2バンプをアレイ状の角部に配置 したり、あるいは配置しない構造とすることで、コーナ

プへの応力集中によるバンプクラックおよびデバイス特性の劣化を防止することが可能となる。

【0060】(4)前記(3)により、コーナーバンプへの応力集中の回避によって実装信頼性の向上が可能となる半導体装置を実現することができる。

【0061】(5)アレイ状の角部に配置されるべき4個の第2バンプのうち、少なくとも1~3個の第2バンプを配置することで、バンプ配置の対称性をなくし、バッケージに方向性を持たせることができるので、パッケージを基板へ搭載する際の方向認識が可能となる。

【0062】(6)前記(5)により、実装時の誤搭載、認識エラーの改善が可能となる半導体装置を実現することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1の半導体装置を示す平面 図である。

【図2】(a),(b),(c)は本発明の実施の形態 1の半導体装置において、それぞれ図1のA-A、切断 線、B-B、切断線、C-C、切断線による断面図であ る。

【図3】本発明の実施の形態1の半導体装置の製造方法を示すフロー図である。

【図4】本発明の実施の形態1の半導体装置の製造方法

を示す、図3に続くフロー図である。

【図5】本発明の実施の形態1の半導体装置の実装方法を示すフロー図である。

10

【図6】本発明の実施の形態2の半導体装置を示す平面 図である。

【図7】本発明の実施の形態3の半導体装置を示す平面図である。

【図8】本発明の実施の形態4の半導体装置を示す平面 図である。

10 【符号の説明】

1, 1a, 1b, 1c パッケージ

2 バンプ

2a 正規のバンプ

2b ダミーバンプ

3 実装基板

4 アンダーフィル材

11 ウェハ

12 パッシベーション膜

13,16 絶縁層

20 14 シード層

15 再配線層

17 めっき層

【図1】

1:パッケージ 2a:正規のパンプ 2:パンプ 2b:ダミーパンプ

【図2】

2 2

【図7】

A 7

【図8】

27 8

フロントページの続き

(51) Int. C1.7

識別記号

HO1L 23/31

"(72)発明者 大西 健博

東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内

(72)発明者 田中 英樹

東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 FΙ

テーマコード(参考)

(72)発明者 木本 良輔

東京都小平市上水本町5丁目22番1号 株式会社日立超エル・エス・アイ・システム ズ内

(72)発明者 西田 隆文

東京都小平市上水本町5丁目22番1号 株式会社日立超エル・エス・アイ・システム ズ内

F ターム(参考) 4M109 AA01 BA03 CA05 DB17 5F044 LL11 QQ02 QQ04 RR18 RR19 5F061 AA01 BA03 CA05