5ARIP10 Final Presentation Speaker Notes

Slide 1

Introduction to TACE for HCC

What is TACE?

- A treatment for advanced liver tumors, particularly hepatocellular carcinoma (HCC).
- Used for tumors that cannot be removed with surgery.
- HCC: Most frequent liver cancer, representing about 90% of primary liver cancers.
- Third leading cause of cancer death worldwide in 2020.

Image: TACE Overview

Figure 1: TACE intervention overview

Description:

Effectiveness of TACE:

- Based on selective blood flow manipulation.
- Liver blood supply: Hepatic portal vein and hepatic artery.
- Tumor blood supply: Mainly from the hepatic artery.
- Catheter navigated to tumor site to block hepatic artery and inject chemotherapy.

• Procedure:

• Catheter threaded through an artery in the groin.

- o Chemotherapeutic agents injected at tumor site.
- Ensures concentrated chemotherapy and minimizes systemic exposure.
- o Embolization restricts tumor's access to nutrients and oxygen.

Ideal Candidates for TACE:

- Preserved liver function.
- Multinodular tumors or isolated large tumors (>3 cm).

Conclusion:

- TACE: Minimally invasive, effective approach for targeting liver cancer.
- Enhances therapeutic effect while minimizing damage to healthy tissue.

Slide 2

Current Challenges and Innovations in TACE Visualization

- Single-Plane 2D X-Ray (Fluoroscopy)
 - Usage:
 - Real-time X-ray images to guide catheter placement during TACE.
 - Limitations:
 - 2D perspective hampers understanding of 3D arterial structures.
 - Limited visibility of blood vessels due to similar densities with surrounding tissues.
 - Impact:
 - Precise catheter guidance is challenging.
 - Potential for suboptimal treatment outcomes.
 - Estimated failure rate up to 60%, leading to financial and emotional burdens.

Slide 3

Contrast Agents in TACE

- Purpose:
 - Enhance arterial visualization.
- Challenges:
 - Contrast-Induced Nephrotoxicity:
 - Risk of kidney damage, especially in patients with pre-existing kidney issues.
 - Allergic Reactions:
 - Range from mild discomfort to life-threatening complications.

Image: 2D Fluoroscopy with Contrast Agent

Figure 2: 2D Fluoroscopy

example with contrast agent.

Slide 4

Current Image Guidance Techniques

• 2D-3D Registration Techniques:

- Used in cardiac, cranial, abdominal, and orthopedic interventions.
- Approaches:
 - Extrinsic, intrinsic, and calibration-based methods.
- Challenges in Abdominal Procedures:
 - Respiratory motion causing structure deformations.
 - Compounded reliance on contrast agents.

Dynamic Coronary Roadmaps (DCR)

• Technology:

- Displays real-time blood vessel paths on live X-ray images.
- o Overlays coronary vessel shapes from angiographic frames.

• Effectiveness:

- o Deemed "fit for use" in the majority of cases by specialists.
- o 28.8% reduction in contrast agent usage.

• Limitations:

Lack of depth in vessel overlay.

Image 2: Dynamic Coronary Roadmaps (DCR)

Figure 3: Dynamic Coronary Roadmaps

(DCR) technology.

Slide 5

Project Aim: Deep Learning-Based System for TACE

• Goals:

- Enhance arterial visibility for precise catheter placement.
- Reduce reliance on contrast agents.

• Benefits:

- Increased patient safety by mitigating risks associated with contrast agents.
- o Improved interventional oncology outcomes.

Objective:

• Develop an automatic, continuously updated roadmap during TACE procedures.

• Focus:

- Enhance arterial visibility.
- Ensure precise catheter placement even with anatomical rotations and deformations.
- Reduce reliance on contrast agents.

Impact:

- o Significant improvement in guidance for doctors.
- Enhanced treatment outcomes for patients undergoing TACE.

Introduction to the Business Case

• Objective:

• Establish a startup to commercialize advanced imaging technology for TACE interventions.

Focus:

- Target hospitals and collaborate with healthcare companies.
- Provide a valuable tool for healthcare providers.

Slide 7

Assumptions for Success

1. Feasibility:

- Al-based medical technologies are feasible within reasonable time frames and budgets.
- Significant advancements in AI frameworks enhance medical image analysis.

2. Regulatory Compliance:

- Anticipate meeting medical device regulations and obtaining FDA and CE approvals.
- Regulatory acceptance of Al-based medical tools is increasing.

3. Demand for Improved Visualization Methods:

o Growing demand for advanced diagnostic tools to enhance patient care.

4. Competitive Advantage:

• Proposed solution offers better visibility and reduced patient risk.

5. Data Availability and Quality:

Access to high-quality medical imaging datasets is assumed (e.g., TCIA).

6. Respiratory Motion Compensation:

 Al-based TACE technology must robustly compensate for respiratory motions during the intervention.

Slide 8

Stakeholder Identification

Patients:

Safer procedures and reduced side effects.

Interventional Radiologists:

Improved procedural outcomes and efficiency.

• Hospitals and Clinics:

• Enhanced service quality and reduced complication costs.

Investors:

Opportunity to support innovative technology with potential high returns.

• Regulatory Bodies:

• Ensure safety and efficacy standards.

• Insurance Companies:

Lower costs due to shorter hospital stays and fewer complications.

Market Assessment

Total Addressable Market (TAM):

• Global market size for TACE projected to reach \$25.9 billion by 2031.

Serviceable Available Market (SAM):

- Focus on regions with advanced healthcare infrastructures (North America, Europe, parts of Asia).
- Estimated 60-70% of TAM.

Serviceable Obtainable Market (SOM):

- Target early adopters and top-tier hospitals and clinics.
- Estimated 10-15% of SAM.

Image: Liver Cancer Map

Figure 4: Incidence rates of primary liver cancer according to geographical distribution in Europe.

Slide 10

Strategic Approach

Advantages:

- Enhanced precision through improved arterial visibility.
- Reduced reliance on contrast agents.
- Cost efficiencies through minimized complications and shorter recovery times.

Revenue Model:

- Direct sales of software licenses to hospitals and clinics.
- Maintenance and service contracts.
- Potential for technology licensing.

• Go-to-Market Strategy:

- Pilot programs in leading hospitals.
- Strategic partnerships with medical device companies and healthcare providers.
- Robust marketing strategy to educate stakeholders.

• Financial Projections:

- Short-term focus on R&D, regulatory approvals, and market entry.
- Long-term goals of scaling production, expanding market reach, and achieving significant market penetration.

• Risk Analysis and Mitigation:

- Address technological challenges through continuous R&D.
- o Engage regulatory bodies early to manage approval delays.
- Mitigate market risks through targeted education and marketing campaigns.

Summary

- The business case presents a strategic approach to launch and scale an innovative TACE visualization solution.
- Emphasis on patient safety, procedural efficiency, and cost-effectiveness.
- A robust methodology supports the technical innovation driving the business strategy.

Slide 11

Overview of Methodology

- Introduction to the goal: Developing a deep learning-based system to enhance vessel architecture visibility during TACE.
- Brief mention of key components: data acquisition, preprocessing, algorithm approach, network architecture, X-ray simulation, and training procedure.
- Visual: Flowchart of the methodology steps.

Slide 12

Data Acquisition & Preprocessing

- Data Source: "Multimodality Annotated Hepatocellular Carcinoma" dataset.
- Details:
 - 105 HCC patients, pre- and post-procedure CT scans.
 - Includes multiphasic contrast-enhanced CT scans and manually curated segmentations.

Preprocessing Steps:

- Resizing all samples to [512, 512, 96].
- o Isolating vessel segmentation maps.
- o Controlling intensity values and applying augmentation techniques.
- Visual: Example images of raw CT data and preprocessed vessel segmentation maps.

Slide 13

Algorithm Approach

- **Objective**: Combine pre-operative 3D CT data with intra-operative 2D X-ray images.
- Methodology:
 - Using a conditional deep learning architecture.
 - o Extracting latent embeddings from 3D CT data.
 - Real-time fusion with 2D DRR images.
 - o Generating continuously updated roadmaps.
- Visual: Diagram illustrating the integration of 3D CT and 2D X-ray images.

Network Architecture - Encoding 3D CT Information

• Encoding Module:

- Extract latent embeddings from 3D CT data.
- Use of 3D max pooling and convolutional layers.
- Dimensionality reduction to 2D latent embeddings.
- Application of ReLU activation function.
- Visual: Schematic of the encoding module with convolutional layers and pooling.

Figure 5: TACENet Architecture

Network Architecture - Data Fusion for Vessel Enhancement

• Data Fusion Process:

- o Combining 3D CT latent embeddings with 2D DRR images.
- o Conv3DTo2D module for dimensional compatibility.
- o ConvNet for refining and enhancing vessel network.

Mathematical Representation:

- Bayesian inference notation: (p(DRRe|DRR_r, CT{embed})).
- Visual: Diagram showing the data fusion process and ConvNet.

X-ray Simulation with Digitally Reconstructed Radiographs

• Data Generation Technique:

- Use of DiffDRR for generating 2D DRR images from 3D CT volumes.
- Advantages: variability in camera poses, controlled vessel enhancement.

• Impact on Training:

- o Training on diverse poses and enhancement levels.
- o Improved model generalization to real-world scenarios.
- Visual: Example of simulated DRR images with varying enhancement levels.

Slide 17

Training Procedure

• Optimization Details:

- Loss function: Mean Squared Error (MSE).
- o Optimizer: Adam with learning rate of 0.001.
- Batch size: 1 (due to VRAM limitations).
- Weight decay: (1 \times 10^{-5}).

• Training Environment:

- o Hardware: Ryzen 5 5600X CPU, Nvidia RTX 4080 GPU, 32GB RAM.
- o Training duration: 8 hours.
- Visual: Graph showing training loss over time.

Slide 18

Summary & Key Visuals

- Recap of key points from each section.
- Visual: Combined flowchart summarizing the entire methodology from data acquisition to model training.

Slide 19

Overview of Results

- Introduction to the results section.
- Overview of key areas: Vessel enhancement, initial model performance, deformation robustness, and inference time.
- Visual: Diagram summarizing the results covered.

Vessel Enhancement and Initial Model Performance

- Presentation of the initial outcomes.
- Importance of enhancing vessel visibility during TACE procedures.
- Visual: Figure showing latent representation of the vessel volume.

Slide 21

Visualization of Latent Representation

- Figure Explanation: Visualization of the model including latent representation.
- Outcome: Improved visibility and contrast enhancement.
- Visual: Figure showing the latent representation (Fig. 6).

Slide 22

Model Performance Metrics

- Evaluation Metric: Mean MSE over rotation range for different enhancement factors.
- Optimal Performance: Highlighting the best performance at 0.6 enhancement factor.
- Clinical Significance: 40% reduction in contrast fluid usage.
- Visual: Table showing Mean MSE for different enhancement factors (Table 1).

Slide 23

Enhanced Vessel Visibility

- Visualization: Al-enhanced images for different levels of contrast fluid.
- **Observation**: Best reconstruction and visibility at 40% reduction.
- Visual: Figure showing Al-enhanced images with varying contrast fluid levels (Fig. 5).

Slide 24

Real-Time Inference Performance

- Inference Time: Average inference time for TACEnet and ConvNet module.
- Real-Time Suitability: 221 fps theoretical maximum frame rate.
- Application: Ensuring suitability for real-time enhancements.
- Visual: Chart showing inference times and frame rates.

Slide 25

Deformation Robustness

- Evaluation Focus: Model's robustness against deformations.
- Constant Parameters: Enhancement factor at 0.6, no rotation.
- Visual: Figure showing Al-enhanced image and latent representation for deformed CT volume (Fig. 7).

Quantitative Evaluation of Deformation Robustness

- **Performance Metric**: MSE across 20 different deformations.
- **Robustness**: Average MSE demonstrating robust performance.
- Visual: Figure showing MSE for different deformations (Fig. 8).

Slide 27

Summary & Final Observations

- **Recap of Results**: Key findings from vessel enhancement, performance metrics, and robustness evaluations.
- Implications: Potential impact on TACE procedures and clinical practice.
- Visual: Comprehensive summary diagram.

Slide 28

Overview of Discussion

- Introduction to the discussion of results and their significance.
- Overview of key points: effectiveness, findings, performance, limitations, and future work.
- Visual: Summary diagram highlighting the main discussion points.

Slide 29

Effectiveness of TACEnet

- Key Achievements:
 - Enhanced visibility of vascular networks in real-time X-ray images.
 - Significant improvements using advanced deep learning techniques.
 - o Effective data generation and augmentation with DRRs.
- Clinical Impact:
 - Reduced contrast fluid requirements.
 - Improved vessel enhancement with minimal side effects.
- Visual: Before and after images showing enhanced vessel visibility.

Slide 30

Key Findings

• Optimal Performance:

- Enhancement factor of 0.6 (60% of normal contrast fluid dose).
- Lowest mean squared error (MSE) over rotation range.
- 40% reduction in contrast fluid usage.

Comparison with State-of-the-Art:

- o Outperformed current standards in contrast fluid reduction.
- Reference to Philips DCR technology.
- Visual: Graph showing MSE versus enhancement factor.

Slide 31

Model Learning and Generalization

• Training Insights:

- Controlled enhancement allowed learning of intricate relationships between raw and enhanced DRR images.
- Effective generalization to different poses and deformations.

• Training Data Variability:

- o Inclusion of different rotations and enhancement factors.
- Enhanced model robustness.
- Visual: Diagram illustrating training process with various poses and enhancements.

Slide 32

Limitations of the Study

• Enhancement Levels:

- Limited dramatic differences in all cases.
- Need for refinement in enhancement techniques.

• Scope of Current Study:

- Focus on vascular structures only.
- o Potential for integrating other anatomical features.
- Visual: Example images showing varying levels of enhancement success.

Slide 33

Future Work

Enhancement Techniques:

- Refining current techniques.
- Exploring additional data augmentation methods.

Model Architecture:

o Investigating alternative model architectures.

• Clinical Validation:

- Further validation across diverse patient populations.
- o Ensuring efficacy and safety in clinical settings.

• Visual: Flowchart of proposed future research directions.

Slide 34

Summary & Conclusion

• Recap of Key Points:

- Effectiveness and key findings.
- o Performance and limitations.
- Future research directions.

• Final Thoughts:

- Importance of TACEnet in enhancing TACE procedures.
- Potential for further improvements and clinical applications.
- Visual: Comprehensive summary diagram.