BUSINESS CASE: SUNCHAIN

Transfert d'énergie et recharge de véhicules électriques via une Blockchain

Massil & Mastane Achab

25 Janvier 2017

Ecole Polytechnique

CONTEXTE - IDENTIFICATION ET DESCRIPTION DU BESOIN ET DES DÉFIS

Contexte

- En France, les particuliers producteurs d'énergie n'ont que deux options : consommer ou vendre à EDF.
- Les ventes de voitures électriques augmentent chaque année, mais l'offre de recharge reste limitée :
 - · Faible nombre de bornes de recharges
 - Prix de l'électricité susceptible d'augmenter (fermetures de centrales nucléaires et/ou dette d'EDF)
- · Les batteries de nouvelle génération sont matures, rendant possible l'ouverture du marché de l'énergie aux particuliers.

CONTEXTE - IDENTIFICATION ET DESCRIPTION DU BESOIN ET DES DÉFIS

Besoin

- Besoin d'une plateforme permettant de réguler de manière autonome l'offre et l'achat d'énergie, pour recharger les véhicules électriques.
- Besoin de transparence et d'une solution décentralisée pour offrir le meilleur prix aux clients.

Défis

- · Permettre le transfert physique de l'énergie
- · Standardiser et sécuriser les échanges

DESCRIPTION FONCTIONNELLE DE LA SOLUTION

Description

- · Réseau décentralisé de particuliers producteurs d'énergie renouvelable et d'acheteurs via des bornes de recharges.
- · Grâce aux smart contracts, il y aura exécution automatique de la transaction sans l'intervention d'une tierce partie.
- · Achat d'énergie électrique via les bornes existantes, Autolib' par exemple, et création de nouvelles bornes.
- · Accord possible avec Autolib' et/ou avec Belib', bornes de recharges de la Mairie de Paris, pour faire connaître la marque.

SCHÉMA FONCTIONNEL

AVANTAGES, RISQUES ET COMPARAISONS

Avantages et argumentaire d'utilisation d'une Blockchain

- Transparence des prix des transactions et diversification de l'offre permettront un marché plus efficient.
- · Transfert d'énergie en peer-to-peer : un consommateur utilise l'énergie de plusieurs producteurs lors d'une charge.
- · Faible coût de maintien du réseau et transactions rapides.

Analyse de risques, comparaison à l'offre existante

- Nécessité de systèmes de stockage d'énergie près des zones de forte production et/ou consommation.
- · Si pas assez de producteurs d'énergie sur le réseau, il faut basculer sur l'option classique.
- Offre existante : forfait unique proposé sur certaines bornes (à Paris, Autolib' et Belib').

BUSINESS PLAN (DONT ÉTUDE DE MARCHÉ)

Business Plan

- · Nous laissons à la charge des particuliers l'achat des panneaux solaires, et le raccordement au réseau électrique
- Dans un premier temps, partenariat avec une entreprise propriétaire de bornes. Financement du partenariat à l'aide de frais de commission (en pourcentage) sur chaque transaction.
- Dans un second temps, investissement dans un réseau de bornes électriques. Les producteurs paient un abonnement mensuel pour vendre leur énergie via nos bornes.

SPÉCIFICATIONS TECHNIQUES ET PISTES DE DÉVELOPPEMENT

Proof of Concept

- Dans un premier temps, implémentation d'un prototype à l'aide d'Ethereum. Nous simulerons une activité de production d'énergie et de consommation.
- Dans un second temps, nous avons prévu de contacter la Mairie de Paris. Idéalement, nous aimerions utiliser l'énergie produite par leurs panneaux solaires, ou ceux d'une start-up partenaire, et la proposer via les bornes Belib'.

7