RUN-ZE FAN (樊润泽)

HuaiRou District, Beijing, China

(+86) 13381803609 \diamond runze.fan@icloud.com

EDUCATION

University of Chinese Academy of Sciences

Sep. 2021 - Jun. 2024(Expected)

M.S. in Computer Science and Technology

CAS Key Lab of Web Data Science and Technology, Institute of Computing Technology (ICT)

Advisor: Prof. Jiafeng Guo.

Shanghai Maritime University

B.E. in Computer Science and Technology

Department of Information Engineering

Sep. 2017 - Jun. 2021

Overall GPA: 3.85/4.0

Ranking: 1/109

RESEARCH INTERESTS

My research interest majorly lies in Natural Language Processing and Machine Learning, including Information Extraction and Deep Learning.

RESEARCH EXPERIENCES

The Final Project in Natural Language Processing

Oct. 2021 - Dec 2021

Neural Event Extraction at Sentence Level

- · As the team leader, I implemented a baseline for **Event Extraction** using BERT. In this model, trigger identification and classification were regarded as a sequence labeling task and arguments identification and classification were regarded as classification task. To address the error propagation problem, a multi-task learning was adopted including Relation Extraction, Named Entity Recognition and Event Extraction.
- · Furthermore, I wrote a Survey of Neural Event Extraction(Chinese). (Presentation(6/300))

[PDF] [Slides]

Bachelor's Graduation Project

Dec. 2020 - May 2021

A Study of Key Entity Extraction Methods at Document Level Excellent Bachelor's Graduation Thesis

- · To address **Key Entity Extraction** problem, I proposed and implemented a key entity extraction algorithm based on similarity weight transfer. Firstly, I used BERT and CRF model for named entity recognition, then I used the graph-based unsupervised model TextRank algorithm to find the key phrases and their importance weights, and finally I used **the proposed key entity extraction algorithm KEE-SWT** to find the key entities, i.e., key person, key location and key organization.
- The experimental results showed that the KEE-SWT algorithm proposed in this paper outperforms the MultiRank algorithm (F1-Score improves by 18% on Top-1 and 12.5% on Top-3), and the title entity weight enhancement method could significantly improve the performance of KEE-SWT and MultiRank algorithms (F1-Score improves by 13% on average on Top-1 and 6.6% on Top-3).

SELECTED COMPETITIONS

Dec. 2018 Asia and Pacific Mathematical Contest in	Modeling International 2nd Prize
Apr. 2019 Accreditation Cup Mathematical Modelin	ng Competition National 3rd Prize
Nov. 2018 Mathematics Competition of Chinese Col	lege Students National 3rd Prize
Dec. 2019 China Undergraduate Mathematical Cont	est in Modeling Municipal 2nd Prize
Dec. 2018 Physics Competitions for College Student	s in Shanghai Municipal 2nd Prize

SELECTED AWARDS

Excellent Bachelor's Graduation Thesis	2021 Shanghai Maritime University
Excellent Graduate	2021 Shanghai Maritime University
First Class Scholarship of Shanghai Maritime University	2019, 2020, 2021
Merit Student of Shanghai Maritime University	2018, 2019, 2020

TECHNICAL SKILLS

Programming PyTorch, Python, MATLAB

Software & Tools LaTeX, Git English CET-6: 470