Нейронные сети глубокого обучения (курсовой проект)

1 курс ФИИТ, магистратура

преподаватель – доцент кафедры программных систем Жданова А.Н., к.т.н., доцент

1. Поиск частоты встречаемости слов по частям речи

По произвольному тексту составить словарь текста, определив слова по частоте их употребления, распределив по частям речи.

2. Анализ тональности (sentiment analysis)

- а рекуррентная;
- б сверточная

Определить по тексту его тональность, то есть позитивное ли отношение несет этот текст или негативное.

Применение: в онлайн-торговле для анализа отзывов пользователей, в финансах и трейдинге для анализа статей в прессе, отчетов компаний и тому подобных текстов и т. д.

3. Порождение подписей к картинкам (рекуррентные сети)

Распознавание и определение сути картинки.

4. Выделение отношений или фактов (relationship extraction, fact extraction)

Выделить из текста хорошо определенные отношения или факты об упоминающихся там сущностях; например, кто с кем находится в родственных отношениях, в каком году основана упоминающаяся в тексте компания и т. д.

Создать веб интерфейс, чтобы разбирать предложения.

Пример: http://lindat.mff.cuni.cz/services/udpipe/ http://ufal.mff.cuni.cz/udpipe/

5. Языковые модели (language models)

По заданному отрывку текста предсказать следующее слово или символ.

6. Создание чат-бота с искусственным интеллектом

Dialogflow: добавление заранее заготовленных диалогов с ботом, обучение бота: создание сложных диалогов, распознавание смысла сообщения пользователя; работа с контекстом: поддержание ветки диалога на протяжении нескольких сообщений.

Датасеты:

- https://datasetsearch.research.google.com/
- https://www.kaggle.com/datasets

Условия:

- 1. Работа в паре
- 2. Язык программирования: Python
- 3. Язык текста: русский
- 4. Разработка проекта ведется на GitHub в организации Algorithm-SSAU
- 5. Повторение вариантов НЕ допускается.

Структура отчета:

- 1. Математическая постановка задачи
- 2. Обоснование выбора нейронной сети
- 3. Описание архитектуры сети, параметров, метода обучения и т.д.
- 4. Структурная схема алгоритма
- 5. Описание вычислительных экспериментов с целью оценки эффективности модели. Сравнительный анализ
- 6. Результаты работы
- 7. Выводы
- 8. Листинг программы