Algorithms and applications in computer vision, Spring 2021, Quiz #9 Due: June 6, 23:59 PM

- Q1 In class we have proven that the essential matrix equals $E=R[dC_{\times}]$ Show it can also be expressed as $E=[t_{\times}]R$ with t=-RdC
- Consider three images I_1, I_2, I_3 that have been captured by a system of three cameras, and suppose the fundamental matrices F_{12}, F_{13}, F_{23} are known. Notation: F_{ij} satisfies the constraint $p_j^T F_{ij} p_i = 0$ for any corresponding pair of points $p_i \leftrightarrow p_j$ in images I_i, I_j
 - 1) Show that in the general case we can predict the position p_3 in the 3rd image given $p_{1,}$ p_2 and the Fundamental matrices. Write an expression for p_3 .
 - 2) Describe a degenerate configuration of 3 cameras where this point cannot be determined uniquely.
- Consider a 3D point which is projected in both cameras to the point p = (0,0) p' = (0,0)Show that this implies that the entry F(3,3) of the fundamental matrix is 0.