Exercices du Chapitre 1

1. Modéliser le problème de mélange suivant, à 4 contraintes et 9 inconnues : Le but est de trouver un mélange de 9 alliages standards de plomb, de zinc et d'étain, qui permet de fabriquer à coût minimal un alliage contenant :

- 30% de plomb;
- 30% de zinc;
- 40% d'étain.

La composition et le coût des 9 alliages standards sont donnés dans le tableau suivant :

Alliage	1	2	3	4	5	6	7	8	9
plomb %	20	50	30	30	30	60	40	10	10
zinc %	30	40	20	40	30	30	50	30	10
étain %	50	10	50	30	40	10	10	60	80
coût unitaire	7,3	6,9	7, 3	7, 5	7, 6	6,0	5,8	4, 3	4,1

2. Modéliser le problème de transport suivant. Préciser, en particulier, les variables et les contraintes.

On suppose que 250 (resp. 450) containers sont disponibles au dépôt D_1 (resp. au dépot D_2) et que les magasins A, B et C ont commandé 200 containers chacun.

Les coûts de transport par containers sont les suivants :

magasin	A	В	C
dépôt D_1	3, 4	2, 2	2,9
dépôt D_2	3,4	2, 4	2, 5

Le but est de minimiser le coût total de transport des containers des dépôts vers les magasins en respectant les disponibilités et les demandes.

- 3. Cet exercice a pour but de généraliser formellement le problème de l'exercice précédent avec :
 - \bullet q magasins $M_1, M_2, \cdots, M_q,$ b_j étant la quantité demandée par le magasin M_j ;
 - \bullet p dépôts $D_1,D_2,\cdots,D_p,\,a_i$ étant la quantité disponible dans le dépôt $D_i\,;$
 - \bullet $f_{i,j}$ coût unitaire de transport du dépôt D_i vers le magasin $M_j.$
- 4. Résoudre graphiquement le programme linéaire suivant :

$$\begin{cases} 4x_1 + 3x_2 = z[\max] \\ 3x_1 + 4x_2 \le 12 \\ 7x_1 + 2x_2 \le 14 \\ x_1 , x_2 \ge 0 \end{cases}$$