

CONTENTS

- 1. Background
- 2. Method
- 3. Discussion

Abstract

CT Scan Image

Lesion

Detection

Tagging

Segmentation

CT (Computed Tomography)

CT Scan Image

Lesion

Detection

Tagging

Segmentation

CT란 X-선을 인체에 투과해 그 흡수차이를 컴퓨터로 재구성하여 인 체의 단면영상을 얻거나 3차원적인 입체영상을 얻는 영상진단법

A lesion is any damage or abnormal change in the tissue of an organism

CT Scan Image

Lesion

Detection

Tagging

Segmentation

Sentence: Within the right middle lobe there is a stable nodule that measures BOOKMARK.

Tags: Right mid lung, nodule

Sentence: Low density left adrenal nodule BOOKMARK, likely adenoma.

Tags: Hypoattenuation, left adrenal gland, nodule, adenoma

CT Scan Image

DeepLesion Dataset

Lesion

- National Institutes of Health(NIH) Clinical Center, USA

Detection

- Contains 32,735 lesions on 32,120 axial computed tomography (CT) slices from 10,594

CT scans (studies) of 4,427 unique patients.

Tagging

- lesions in each image with accompanying bounding boxes and size measurements, adding up to 32,735 lesions altogether.

Segmentation

- Semantic labels (tags) for the lesions mined from radiological reports. The labels describe the lesions' body part, type, and attributes. (2019. 4. added, the label with tags = Train :

20,266 / Valid: 1,976 / Test: 1879)

- Lesion size : 0.2mm ~ about 340 mm

DeepLesion Dataset

CT Scan Image

Lesion

Detection

Tagging

Segmentation

DeepLesion Dataset

Sentence: Within the <u>right</u> middle lobe there is a stable nodule that measures BOOKMARK.

Tags: Right mid lung, nodule

Sentence: A <u>large</u> right <u>hepatic</u> <u>mass</u>, incompletely characterized BOOKMARK.

Tags: Large, liver, liver mass, mass

CT Scan Image

Lesion

Detection

Tagging

Segmentation

- [1] Backbone
- [2] 3D feature fusion
- [3] Mask R-CNN
- [4] 3 branches
- [5] Refinement

[1] Backbone

[2] 3D feature fusion

[3] Mask R-CNN

[4] 3 branches

- DenseNet-121 with the last dense block and transition layer removed
- ImageNet pretrained
- Feature pyramid strategy (increase the size of final feature map, which will benefit the detection and segmentation of small lesions)
- Attach the head branches only to the finest level

Method

[1] Backbone

[2] 3D feature fusion

[3] Mask R-CNN

[4] 3 branches

- 3D context information is very important!!
- First, group consecutive axial slices in a CT volume into 3-channel
- With a 1x1 Conv layer (3D fusion layer)
- Fuse features of multiple slices(9) in eariler Conv layers. (after dense block 2 and the last layer of the feature pyramid)
- All FMs are fed to subsequent Conv layer, with Central FM is replaced by the FM(feature map)s are fused with the 3D fusion layer, upper FM and lower FM. 11

Method

[1] Backbone

[2] 3D feature fusion

[3] Mask R-CNN

[4] 3 branches

- 1. Faster R-CNN: bbox + class \rightarrow bbox + class + seg
- 2. ROI Pooling 대신 ROI Align 을 사용함
- 3. Mask prediction 과 class prediction 을 decouple 함 (클래스 상관없이 masking) 출처: https://mylifemystudy.tistory.com/82 [ENCAPSULATION]

Method

[1] Backbone

[2] 3D feature fusion

[3] Mask R-CNN

[4] 3 branches

Left adrenal gland: 0.998 Adenoma: 0.99

[1] Backbone

[2] 3D feature fusion

[3] Mask R-CNN

[4] 3 branches

$$L = L_{\text{det,seg}} + L_{\text{tag,WCE}} + L_{\text{tag,RHEM}} + L_{\text{cls,SRL}} + L_{\text{tag,WCE,SRL}}$$

$$L_{\text{det,seg}} = L_{\text{RPN,cls}} + L_{\text{RPN,box}} + L_{\text{det,cls}} + 10L_{\text{det,box}} + L_{\text{seg,dice}}$$

$$L_{\text{tag,WCE}} = \sum_{i=1}^{B} \sum_{c=1}^{C} (\beta_c^{p} y_{i,c} \log \sigma_{i,c} + \beta_c^{n} (1 - y_{i,c}) \log (1 - \sigma_{i,c}))$$

^{*}relational hard example mining (RHEM)

Result

	Detection (%)	Tagging (%)		Segmentation (mm)	
	Avg. sensitivity	AUC	F1	Distance	Diam. err.
ULDor [13]	69.22	_	_	_	_
3DCE [15]	75.55	_	_	_	_
LesaNet [16] (rerun)	_	95.12	43.17	_	_
Auto RECIST [11]	_	_	_	-	1.7088
MULAN	86.12	96.01	45.53	1.4138	1.9660
(a) w/o feature pyramid	79.73	95.51	43.44	1.6634	2.3780
(b) w/o 3D fusion	79.57	95.88	44.28	1.4120	1.9756
(c) w/o detection branch	_	95.16	40.03	1.2445	1.7837
(d) w/o tagging branch	84.79	_	_	1.4230	1.9589
(e) w/o mask branch	85.21	95.87	43.76	_	_
(f) w/o score refine. layer	84.24	95.65	44.59	1.4260	1.9687

Table 3. Sensitivity (%) at various FPs per image on the test set of DeepLesion (the 171 tags were used for training MULAN).

FPs per image	0.5	1	2	4	8	16	Avg. of [0.5,1,2,4]
3DCE [15]	62.48	73.37	80.70	85.65	89.09	91.06	75.55
ULDor [13]	52.86	64.80	74.84	84.38	87.17	91.80	69.22
MULAN	76.12	83.69	88.76	92.30	94.71	95.64	85.22

heterogeneous, large, exophytic, lobular mass, liver, round, circumscribed, nonenhancing, necrosis

left adrenal gland,

adenoma, nodule, mass

2 stage Object detection algorithm – MASK-RCNN

An effective **3D feature fusion** strategy

Jointly learning to automate radiologists' process

!!!

THANK YOU