Procesamiento del Lenguaje Natural

(y un par de apuntes sobre redes de neuronas)

Víctor M. Darriba Bilbao

Área de Ciencias de la Computación e Inteligencia Artificial

Mayo 2021

Procesamiento del Lenguaje Natural

Resumen:

- Estudio de las interacciones entre humanos y máquinas a través del Lenguaje Natural.
- Mecanismos para la comprensión y generación de lenguaje humano.
- Uso de técnicas de Aprendizaje Automático.
 - 1990s-2010s: Modelos de Markov, Modelos de Máxima Entropía, Árboles de Decición, SVMs, CRFs....
 - 2010s-hoy: Redes de Neuronas Artificiales y Aprendizaje Profundo.

Aplicaciones:

- Traducción Automática
- Sistemas de Diálogo
- Análisis de Sentimiento Sistemas de Recomendación
- Recuperación/Extracción de Información Búsqueda de Respuestas
- Síntesis del Habla
- Generación de Resúmenes
- Comprensión/Generación del Lenguaje Natural

2/14

Procesamiento del Lenguaje Natural (II)

Tareas comunes:

- Procesamiento de texto y habla: OCR, reconocimiento del habla, segmentación del habla, segmentación de texto (tokenización).
- Morfología: lematización, segmentación morfológica, etiquetación morfosintáctica (desambiguación), stemming.
- Sintáxis: inducción de gramáticas, desambiguación de límite de la oración, análisis sintáctico.
- Semántica:
 - Léxica: semántica léxica, semántica distribucional, reconocimiento de entidades nombradas, análisis de sentimiento, extracción de terminología, desambiguación del sentido de las palabras.
 - Relacional: extracción de relaciones, análisis semántico, etiquetación de roles semánticos.
- Discurso: resolución de coreferencia, análisis de discurso, segmentación y reconocimiento de temas, detección del juício de implicación, minería de argumentos.

Procesamiento del Lenguaje Natural (III)

Frecuentemente, secuencia de tareas:

- Preprocesamiento y tokenización.
- Análisis Morfológico.
 - Lematización
 - Etiquetación Morfosintáctica
 - Stemming
- Análisis sintáctico
 - Parsing Superficial chunking
 - Análisis de Constituyentes
 - Análisis de Dependencias
- Análisis Semántico
 - Reconocimiento de entidades
 - Etiquetación de roles semánticos

4/14

Etiquetación Morfosintáctica (POS tagging)

Asignar a cada constituyente de la frase (token) una etiqueta con:

- Categoría léxica (Part-of-Speech, POS): sustantivo, adjetivo, verbo, ...
- Rasgos morfológicos (opcionales): género, número, persona, caso, ...

Problema: Ambigüedad

Token	Lema₁	POS ₁	Lema ₂	POS_2	Lema ₃	POS₃	Lema₄	POS_4
Si	si	CS	1 1 1	NOMO				
trabajo	trabajar	VMIP1S0	trabajo	NCMS000				
bajo	bajar	VMIP1S0	bajo	AQ0MS0	bajo	NCMS000	bajo	SPS00
presión	presión	NCFS000						
bajo	bajar	VMIP1S0	bajo	AQ0MS0	bajo	NCMS000	bajo	SPS00
la	la	DA0FS0						
atención	atención	NCFS000						
		Fp						

5/14

VMDB (CCIA) Doctorado: segunda sesión Mayo-2021

Etiquetación Morfosintáctica (POS tagging) (II)

Solución: Desambiguación ⇒ etiquetación de secuencias

- Caso particular de predicción estructurada
- Similar a clasificación
- En lugar de predecir una clase para cada token, se predicen varias (con pesos/probabilidades)
- Se emplea un algoritmo de búsqueda (recorrido de grafos) para obtener la secuencia de etiquetas más probable para la frase.
- Ejemplo: modelos de Markov, modelos de campo aleatorio condiccional (CRFs)

Datos de entrenamiento: corpora anotados con etiquetas morfosintácticas Características:

- Aproximación tradicional: feature engineering
- Aprendizaje profundo: embeddings

Análisis sintáctico de dependencias (Dependency parsing)

1	El	el	DA0MS0	DA	pos=determiner	 2	spec	
2	gato	gato	NCMS000	NC	pos=noun	 4	suj	
3	negro	negro	AQ0MS00	AQ	pos=adjective	 2	s.a	
4	come	comer	VMIP3S0	VMI	pos=verb	 0	sentence	
5	salmón	salmón	NCMS000	NC	pos=noun	 4	cd	
6	ahumado	ahumar	VMP00SM	VMP	pos=verb	 4	cpred	

Fuente: Demo de FreeLing (UPC)

VMDB (CCIA) Doctorado: segunda sesión Mayo-2021 7/14

Análisis sintáctico de dependencias (Dependency parsing) (II)

El árbol de análisis se representa como un grafo dirigido:

- Arcos representan relaciones binarias entre palabras o lemas (cabeza y dependiente)
- Cada arco se etiqueta con un tipo predefinido de estructura de dependencia

No precisa de una gramática:

- Las relaciones de dependencia se pueden aprenden
- Banco de árboles: corpus con anotación sintácticas
 - En este caso especificando la posición de cabeza y dependiente y etiqueta del arco

Problema: ambigüedad ⇒ muchos árboles son posibles Solución: predicción estructurada (con grafos en lugar de secuencias)

Reconocimiento de entidades nombradas (NER)

Detectar automáticamente nombres en un texto

- Pueden ser mono o multipalabra
- Determinar el tipo de entidad que representan (persona, lugar, organización, etc)

Solución: etiquetación de secuencias

- Esquema IOB (Inside, Outside, Beginning) + tipo de entidad
- Entrenamiento con corpora anotados

Token	POS	NER Tag	Token	POS	NER Tag
Nader	NNP	B-PER	а	DE	0
Jokhadar	NNP	I-PER	well-struck	NN	0
had	VBD	0	header	NN	0
given	VBN	0	in	IN	0
Syria	NNP	B-LOC	the	DT	0
the	DT	0	seventh	JJ	0
lead	NN	0	minute	NN	0
with	IN	0			0

Evaluación

Etiquetación morfosintáctica: Exactitud (Accuracy)

$$Accuracy = \frac{\#correct\ tags}{\#tokens}$$

Reconocimiento de Entidades: Precisión (*Precision*), Exahustividad (*Recall*), valor F1 (*F1-score*)

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$ $F1_score = 2 imes rac{Recal imes Precision}{Recall + Precision}$

 Análisis de dependencias: Unlabeled Attachment Score (UAS), Labeled Attachment Score (LAS)

$$\textit{UAS} = \frac{|\{\textit{e} \mid \textit{e} \in \textit{E}_{\textit{G}} \cap \textit{E}_{\textit{P}}\}|}{|\textit{V}|} \quad \textit{LAS} = \frac{|\{\textit{e} \mid \textit{I}_{\textit{G}}(\textit{e}) = \textit{I}_{\textit{P}}(\textit{e}), \textit{e} \in \textit{E}_{\textit{G}} \cap \textit{E}_{\textit{P}}\}|}{|\textit{V}|}$$

 $(e = arco, E_G = arbol \ correcto, E_P = arbol \ predicho, I_X(e) = etiqueta \ arco \ e \ en \ arbol \ X)$

VMDB (CCIA) Doctorado: segunda sesión Mayo-2021

10/14

Convolutional Neural Networks (CNNs/ConvNets)

11/14

VMDB (CCIA) Doctorado: segunda sesión Mayo-2021

Convolutional Neural Networks (CNNs/ConvNets) (II)

Convolución:

3	30	2_{1}	1_2	0
0	0_2	1_2	30	1
3	1_{0}	2_{1}	22	3
2	0	0	2	2
2	0	0	0	1

Fuente: towardsdatascience.com

Pooling:

Fuente: Stanford - CS231n

Gated Recurrent Units (GRUs)

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ \hat{h}_t &= \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

VMDB (CCIA)

Long Short-Term Memory (LSTMs)

Fuente: https://colah.github.io