Math 230a Problem Set 10

Lev Kruglyak

Due: November 20, 2024

Collaborators: AJ LaMotta, Ignasi Vicente

Problem L. et X be a smooth manifold. Suppose $\gamma:(a,b)\to X$ is a smooth motion. Assume $0\in(a,b)$ and write $x=\gamma(0)$.

(a). Let G be a Lie group, let $\pi: P \to X$ be a principal G-bundle with connection. Suppose F is a smooth manifold equipped with a smooth left action of G on F. Let $\sigma: X \to F_P$ be a smooth section of the associated fiber bundle with fiber F. Explain how to use parallel transport to define a motion $\delta: (a,b) \to (F_P)_x$, where $(F_p)_x$ is the fiber of the associated bundle $F_P \to X$ at $x \in X$. Prove that δ is smooth.

Let $\tau_{\gamma(t)}: P_x \to P_{\gamma(t)}$ be the parallel transport map of the connection. Now let's choose some $p_t \in P_{\gamma(t)}$ such that $\sigma \circ \gamma(t) = [p_t, f_t] \in F_P$ for $f_t \in F$. We thus obtain a horizontal lift $\tilde{\gamma}_t(s)$ in P with $\tilde{\gamma}_t(0) = p_t$. The endpoint of this path lies in P_x and differs from a fixed point $p_0 \in P_x$ by some holonomy element $g \in G$. Let's call this element g(t). We then define the motion as

$$\delta(t) = [p_0, g(t) \cdot f_t] \in (F_P)_x.$$

(b). Now suppose X has a linear connection. Use parallel transport to define a motion $\delta:(a,b)\to T_xX$. Prove that δ is smooth.

Let $\tau_{\gamma(t)}: T_xX \to T_{\gamma(t)}X$ be the parallel transport associated to the curve γ . Define the motion δ as

$$\delta(t) = \tau_{\gamma(t)}^{-1} \circ \dot{\gamma}(t),$$

i.e. the parallel transport of the velocity vector at $\gamma(t)$ back to the tangent space at the origin. This map can be seen to be smooth by expressing it as a solution to a system of linear ODEs. In particular, if γ is a geodesic motion, this induced flow on T_xX will be the constant vector $\dot{\gamma}(0)$.

Problem 4. Let X be a Riemannian 2-manifold, and suppose x^1, x^2 is a local coordinate system. Compute the Gauss curvature in terms of the Riemann curvature tensor $R^i_{ik\ell}$.

Let's assume without loss of generality that we're working in an orthonormal frame. Recall that the Riemann curvature tensor can be given by

$$\Omega_i^j = \frac{1}{2} R_{jk\ell}^i \theta^k \wedge \theta^\ell.$$

The Gauss curvature is then given by $\Omega_{12} = K\theta^1 \wedge \theta^2$ so $K = R^1_{212}$ for some orthonormal frame.

(a). Use the global parallelism of E to induce a parallelism – a covariant derivative – on X. So if $\xi \in T_x X$ is a tangent vector at some point $x \in X$ and η a vector field on X defined in a neighborhood of X, use the natural covariant derivative on E to define the covariant derivative $\nabla_{\xi} \eta$ on X.

Suppose $\xi \in T_x X$ is a tangent vector, and η a vector field on X in a neighborhood of $x \in X$. Let V be the vector space of translations of E so that $TE = V \times E$. Thus, ξ can be considered as an element of V, and η as a map $X \to V$. Define the covariant derivative as

$$abla_{\xi} \eta = \lim_{t \to 0} \frac{\eta \circ \gamma_{\xi}(t) - \eta}{t}$$

for some curve $\gamma_{\xi}: (-\delta, \delta) \to X$ with $\gamma_{\xi}(0) = x$ and $\gamma'_{\xi}(0) = \xi$.

(b). Prove that ∇ preserves the induced Riemannian metric on X.

To show this, we must prove that for any $\xi \in T_x X$ and $\eta_1, \eta_2 \in \Gamma(TX)$, we have

$$\xi \langle \eta_1, \eta_2 \rangle = \langle \nabla_{\xi} \eta_1, \eta_2 \rangle + \langle \eta_1, \nabla_{\xi} \eta_2 \rangle.$$

Expanding the definitions, we get

$$\xi\langle\eta_{1},\eta_{2}\rangle = \lim_{t\to 0} \frac{\langle\eta_{1}\circ\gamma_{\xi}(t),\eta_{2}\circ\gamma_{\xi}(t)\rangle - \langle\eta_{1},\eta_{2}\rangle}{t} = \lim_{t\to 0} \frac{\langle\eta_{1}\circ\gamma_{\xi}(t)-\eta_{1},\eta_{2}\rangle + \langle\eta_{1},\eta_{2}\circ\gamma_{\xi}(t)-\eta_{2}\rangle}{t}$$
$$= \langle\nabla_{\xi}\eta_{1},\eta_{2}\rangle + \langle\eta_{1},\nabla_{\xi}\eta_{2}\rangle.$$

(c). Consider the example of a unit 2-sphere X in a 3-dimensional Euclidean space. Let C be the circle obtained by intersecting X with a plane whose distance from the nearest parallel tangent plane is d < 1. The holonomy of the parallel transport around C is rotation through some angle θ . Compute θ as a function of d. Make clear your orientations.

Problem 7. Let $S^3 \subset \mathbb{E}^4$ be a sphere of radius R in Euclidean 4-space.

(a). Introduce local coordinates. Compute the Christoffel symbols and Riemann curvature tensor in the coordinate system.

A common coordinate system is to use hyperspherical coordinates, i.e.

$$x_0 = R\cos\psi,$$

$$x_1 = R\sin\psi\cos\theta,$$

$$x_2 = R\sin\psi\sin\theta\cos\varphi,$$

$$x_3 = R\sin\psi\sin\theta\sin\varphi.$$

In these coordinates, the metric is given by

$$ds^2 = R^2 \left[d\psi^2 + \sin^2 \psi \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) \right].$$

Using the formula

$$\Gamma^i_{jk} = rac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{jl} - \partial_l g_{jk})$$

which is implemented in the GREAT.m package in Mathematica, we get the following Christoffel symbols:

$$\begin{split} \Gamma^{\psi}_{\mu\nu} &= -\begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin(\psi)\cos(\psi) & 0 \\ 0 & 0 & \cos(\psi)\sin^2(\theta) \end{pmatrix}, \quad \Gamma^{\theta}_{\mu\nu} &= \begin{pmatrix} 0 & \cot(\psi) & 0 \\ \cot(\psi) & 0 & 0 \\ 0 & 0 & -\sin(\theta)\cos(\theta) \end{pmatrix}, \\ \Gamma^{\varphi}_{\mu\nu} &= -\begin{pmatrix} 0 & 0 & \cot(\psi) \\ 0 & 0 & \cot(\psi) \\ \cot(\psi) & \cot(\theta) & 0 \end{pmatrix}, \end{split}$$

Finally, using the formula

$$R^{\mu}_{\lambda\alpha\beta} = \partial_{\alpha}\Gamma^{\mu}_{\beta\lambda} - \partial_{\beta}\Gamma^{\mu}_{\alpha\lambda} + \Gamma^{\mu}_{\alpha\sigma}\Gamma^{\sigma}_{\beta\lambda} - \Gamma^{\mu}_{\beta\sigma}\Gamma^{\sigma}_{\alpha\lambda},$$

and the aforementioned Mathematica package, we get the Riemann tensors:

$$\begin{split} R^{\psi}_{\alpha\mu\nu} &= \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & \sin^2(\psi) & 0 \\ -\sin^2(\psi) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & \sin^2(\psi)\sin^2(\theta) \\ 0 & 0 & 0 \\ -\sin^2(\psi)\sin^2(\theta) & 0 \end{pmatrix}\right), \\ R^{\theta}_{\alpha\mu\nu} &= \left(\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sin^2(\psi)\sin^2(\theta) \\ 0 & -\sin^2(\psi)\sin^2(\theta) & 0 \end{pmatrix}\right), \\ R^{\varphi}_{\alpha\mu\nu} &= \left(\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sin^2(\psi) & 0 \end{pmatrix}\right), \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sin^2(\psi) & 0 \end{pmatrix}\right). \end{split}$$

Putting all of this together to get the scalar Riemann curvature $R = g^{\alpha\beta}g_{\mu\nu}R^{\nu}_{\mu\alpha\beta}$, we get $R = 6/R^2$.

(b). Write S^3 as a homogeneous manifold for a Lie group of isometries. Is there a homogeneous connection? Does it induce the Levi-Civita connection? If so, recover the curvature you computed in (a) from the curvature of the homogeneous connection.

We can write S^3 as the quotient SO_4/SO_3 . Recall that the Lie algebra \mathfrak{so}_n consists of skew-symmetric $n \times n$ matrices. Thus, there is an SO_3 -invariant complement \mathfrak{p} to \mathfrak{so}_4 isomorphic to \mathbb{R}^4 . There is a homogeneous connection $D_{\mathfrak{p}} \subset T$ SO_4 with curvature $\Omega \in \Omega^2(G;\mathfrak{so}_3)$ given by $\Omega_e(\xi,\eta) = -[\xi,\eta]_{\mathfrak{so}_3}$ for $\xi,\eta \in \mathfrak{p}$. Let's choose standard bases p_1,p_2,p_3 for \mathfrak{p} and h_1,h_2,h_3 for \mathfrak{so}_3 . The commutator relations are:

$$[p_1, p_2] = h_3, \quad [p_1, p_3] = -h_2, \quad [p_2, p_3] = h_1.$$

Recall that the Ricci tensor is given by:

$$\operatorname{Ricci}(p_i, p_j) = \sum_k \langle R(p_k, p_i) p_j, p_k \rangle = 2\delta_{ij}.$$

The scalar curvature R is the trace of the Ricci tensor, i.e. R = Tr(Ricci) = 2 + 2 + 2 = 6. This aligns with the calculation of scalar curvature from the previous problem assuming R = 1.

(c). Compute yet another way by constructing a local orthonormal frame.

Let's consider S^3 with radius R as the space of unit quaternions SU_2 . Let e_1, e_2, e_3 be the vector fields corresponding to left multiplication by iR, jR, kR respectively, with dual coframe $\theta^1, \theta^2, \theta^3$. This gives a local orthonormal frame on S^3 with Lie bracket relations

$$[e_i,e_j]=rac{2\epsilon_{ijk}e_k}{R}$$
 where $\epsilon_{123}=1$ alternates in indices.

The structure equations give us connection 1-forms ω_{ij} satisfying $de_i + \omega_{ij}e_j = 0$. However since e_i are left-invariant under SU₂, the differentials are given by

$$de_i = -\frac{1}{2}[e_j, e_k] \, \theta^j \wedge \theta^k \quad \text{where} \quad \theta^i(e_j) = \delta^i_j.$$

Now $d\theta^k = \epsilon_{k\ell m} \theta^\ell \wedge \theta^m$. This means that the curvature has the form

$$\Omega_{ij} = d\omega_{ij} + \omega_{ik} \wedge \omega_{kj}
= -\frac{1}{R} \epsilon_{ijk} \left(\epsilon_{k\ell m} \, \theta^{\ell} \wedge \theta^{m} \right) + \frac{1}{R^{2}} \epsilon_{ik\ell} \epsilon_{kjm} \, \theta^{\ell} \wedge \theta^{m}
= \frac{1}{R^{2}} \theta^{i} \wedge \theta^{j}.$$

Recall now that the Riemann curvature tensor is given by

$$\Omega_{ij} = \frac{1}{2} R^{i}_{jk\ell} \, \theta^{k} \wedge \theta^{\ell} \quad \Longrightarrow \quad R^{i}_{jk\ell} = \frac{1}{R^{2}} \left(\delta_{ik} \delta_{j\ell} - \delta_{i\ell} \delta_{jk} \right)$$

$$R_{ij} = \sum_{k} R^{i}_{kjk} = \frac{1}{R^{2}} \delta_{ij} \sum_{k} \left(\delta_{kk} - \delta_{ij} \right) = \frac{2}{R^{2}} \delta_{ij}.$$

Taking the trace of R_{ij} gives us a scalar curvature of $6/R^2$, which agrees with the previous problem.

Problem 9. Let X be a smooth manifold and $E \subset TX$ a distribution of rank k. Let $\mathcal{B}_E(X) \subset \mathcal{B}(X)$ be the subbundle of frames for which the first k vectors form a basis for E. Prove that $\mathcal{B}_E(X) \to X$ admits a torsion-free connection if and only if E is involutive.

Note that $\mathcal{B}_E(X)$ is a principle $(\mathrm{GL}_k \times \mathrm{GL}_{n-k})$ -subbundle of $\mathcal{B}(X)$. It's easier to work with the covariant derivative associated to the connection, so we will do this throughout the problem. Let's first suppose that ∇ is a torsion-free affine connection on TX which preserves E. This means that for any $\xi, \eta \in \Gamma(E)$, we have $\nabla_{\xi} \eta \in \Gamma(E)$, and the torsion-free condition implies that $\nabla_{\xi} \eta - \nabla_{\eta} \xi = [\xi, \eta] \in \Gamma(E)$. This shows that the distribution is involutive.

Conversely, suppose E is involutive. By the Frobenius theorem, we can find local coordinates such that we have commuting vector fields $\partial/\partial x^1, \ldots, \partial/\partial x^k$ spanning E. We can extend these local coordinates by some vector fields $\partial/\partial x^{k+1}, \ldots, \partial/\partial x^n$ complement E to span TX. We then define the covariant derivative by

$$\nabla_{\xi} \eta = \sum_{0 \le i, j \le n} \xi^i \frac{\partial \eta^j}{\partial x^i} \frac{\partial}{\partial x^j}.$$

This is clearly torsion free, a covariant derivative, and preserves $\Gamma(E)$.

Problem 10. On a smooth manifold with linear connection, is it possible for a geodesic to intersect itself? Give an example or counter-proof.

There are many examples of such manifolds. For a simple 2-dimensional example, consider the "plus sign" as a closed subset of \mathbb{A}^2 . If we identify adjacent edges as shown in Figure 1, we get a surface with boundary homeomorphic to a sphere with three disks cut out. Since the attaching maps are affine, the flat connection on \mathbb{A}^2 descends to this quotient surface. Clearly, the path pictured in Figure 1 is a geodesic motion on this surface – and an immersion of S^1 to a submanifold homeomorphic to $S^1 \vee S^1$.

Figure 1: A surface with self intersecting geodesics.