17452

21314					
3 Hours / 100 Marks	Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
 - (8) Use of Steam tables, logarithmic, Mollier's chart is permitted.

Marks

1. Attempt any <u>TEN</u> of the following:

20

- a) Differentiate between real fluid and ideal fluid.
- b) Define viscosity. State its unit.
- c) State different types of flows.
- d) Define Reynolds number and classify the flow based on it.
- e) State minor losses with expressions in pipe.

17452 [2] **Marks**

- f) What is water hammer in pipes?
- g) Draw the different shapes of artificial channels.
- h) Define Froud's number.
- i) State any two factors on which selection of pump depends.
- j) What is meant by priming of pump?
- k) What is cavitation?
- 1) Define discharge and state its S.I. unit.
- m) Explain the principle of hydraulic Jack.
- n) Explain the use of Pitot tube.

2. Attempt any <u>FOUR</u> of the following:

16

- a) Distinguish between Hydrostatic and Hydrodynamics.
- b) A liquid weights 15 kN and occupies 3.75 m³. Find its specific weight and mass density.
- c) Draw a neat sketch of Bourden's tube pressure gauge and explain its working.

Marks

d) U-tube differential mercury manometer is connected to horizontal pipe carrying water of two points 'A' and 'B'. The difference in levels of mercury in the two limbs is $0.35 \, \text{m}$. Calculate pressure difference at 'A' and 'B' in kN/m^2 . Refer Figure No. 1

Fig. No. 1

e) Explain the term atmospheric pressure, absolute pressure, gauge pressure by drawing line diagram.

17452 [4]

Take f = 0.04.

friction factor.

d) Explain Moody's diagram. Give its uses.

e) Define friction factor and state any four factors affecting

1/4	132	[4]	
		Ma	arks
3.		Attempt any FOUR of the following:	16
	a)	Define uniform flow and non uniform flow.	
	b)	State Bernoulli's theorem and explain each term.	
	c)	A venturimeter $100 \text{ mm} \times 50 \text{ mm}$ size is used to measure the flow of liquid of specific gravity 0.8. If the mercury differential manometer head is 200 mm . Find discharge through the venturimeter. Take $Cd = 0.96$.	
	d)	Write the advantages of V-notch over rectangular notch.	
	e)	Draw sketches of simple U-tube manometer to measure:	
		i) Positive pressure and	
		ii) Negative pressure	
4.		Attempt any FOUR of the following:	16
	a)	What is meant by loss of head and major losses?	
	b)	What is meant by T.E.L. and H.G.L? Explain with sketch.	
	c)	A reservoir connected with two parallel pipes of diameter 175 mm and 225 mm each 150 m long carries a total discharge 0.17 cum / sec. Calculate head loss due to friction.	

Γ5] 17/152

17/4	152	[5]	
5.		Attempt any <u>FOUR</u> of the following:	rks 16
	a)	Define the following term:	
	,	i) Wetted perimeter.	
		ii) Hydraulic mean depth	
	b)	Write the Chezy's equation and assumptions made in Chezy's formula.	
	c)	A pipe laid at a slope of 0.0002 flowing half full conveys a discharge of 1000 litres per second. Calculate the diameter of pipe. Take Manning's coefficient. $N = 0.014$.	
	d)	What do you mean by a hydraulic jump? State the locations in hydraulic structures where hydraulic jump occurs.	
	e)	Find the maximum discharge for least excavation of rectangular channel 3 m wide, when $C = 60$ and bed slope 1 in 1200.	
6.		Attempt any FOUR of the following:	16
	a)	Define suction head and delivery head.	
	b)	Compare between reciprocating pump and centrifugal pump.	
	c)	Explain the working principle of double acting reciprocating pump.	
	d)	Draw a sketch showing typical installation of sub-mersible pump on a tube well.	
	e)	A centrifugal pump has 70% efficiency. It is used to deliver 30 lit/sec. of water for a static head of 18.0 m. The delivery and suction pipe together are 100 m long and are of 10 cm diameter and $f = 0.04$ for both the pipes. What will be the power of the pump required?	