BacalhauNet: A Tiny CNN for Lightning-Fast Modulation Classification

BacalhauNet Team

José Nuno Grácio Rosa¹, Guilherme Carvalho², Daniel Granhão², Tiago Filipe Gonçalves²

¹Escola Superior de Tecnologia e Gestão - Politécnico de Leiria

²INESC TEC and Faculty of Engineering - University of Porto

Outline

- 1. Introduction
- 2. BacalhauNet: A Tiny CNN for Lightning-Fast Modulation Classification
- 3. Conclusions and Future Work

Introduction

Deep Learning for Improved Radio Efficiency

- There is a **need for improved radio efficiency**
 - Improved spectral allocation can be attained via high quality spectrum sensing and adaptation
 - Solutions such as Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) require Automatic Modulation Classification (AMC)
- Deep Learning has been shown to be competitive for AMC, but is computationally expensive!
 - There is a need to compress neural networks so that low latency and high throughput requirements can be met

Neural Networks used for Automatic Modulation Classification

The Challenge

- Main Goal: design a neural network that achieves accuracy >= 56% on dataset RadioML 2018.01A while minimizing inference cost (the evaluation metric)
- The inference cost is related to the number of parameters of the network as well as the number of required operations

Inference Cost Score = Submission Inference cost / Baseline Inference Cost

Overview of the Challenge

BacalhauNet: A Tiny CNN for Lightning-Fast Modulation Classification

Starting Point

- Baseline architecture based on a VGG architecture
- Tests using a MobileNetv3-Small based architecture were not satisfying (inference cost score ≈ 7.25)
- So we built our own network based on well known blocks

Top-1 Accuracy vs. Computational Complexity of Various Models

BacalhauNet: Proposed Architecture

- BacalhauNet is built on top of commonly used structures:
 - Depthwise separable convolutions
 - Residual connections
- We used a design space exploration approach to find the required number of layers and to optimize the parameters of each layer:
 - Kernel size (k)
 - Stride length (s)
 - Number of output channels (oc)

BacalhauNet Architecture

BacalhauNet: Results

- Models with lower inference cost score were found but discarded since the accuracy didn't allow us to compress the model as much or didn't reach the 56% threshold
- Selected model:
 - Accuracy ≈ 59%
 - o Inference cost score ≈ 1.42
- Selected model compressed using the baseline method (quantization to 8 bits):
 - O Accuracy ≈ 59%
 - o Inference cost score ≈ 0.146
 - ≈ 6.85x smaller than baseline

Quantization

- BacalhauNetV1 with floating-point (FP) inputs, weights and activations achieved a good initial inference cost score
- Inputs were quantized to 8 bits, while weights and activations were iteratively quantized down from 8 to 5 bits
- Bit-width of 6 selected due to it being a good compromise between accuracy and inference cost

Architecture	Bit Width	Test Accuracy Reached	Inference Cost Score
VGG (Baseline)	8 bit	59.47%	1.000
BacalhauNet (Ours)	FP	59.09%	1.416
	8 bit	59.06%	0.146
	7 bit	58.35%	0.100
	6 bit	58.67%	0.078
	5 bit	55.89%	0.056

Pruning

- Both structured and unstructured pruning methods were tested
 - Unstructured pruning was selected as that is the method most favored by the challenge evaluation method
- Several iterations of sparsity inducing training and pruning were performed
- Exploration of 2 variables:
 - Weight Decay
 - Minimum Weight Absolute Value

Step	Weight Decay	Min. Weight Abs. Value	Accuracy	Inference Cost Score
Original	0.0001	-	57.62 %	0.0735
1st prune	0.00005	0.15	58.26 %	0.0348
2nd prune	0.0001	0.25	57.55 %	0.0235
3rd prune	0.00005	0.25	56.24 %	0.0162

Pruning Results

Conclusions

Conclusions

- Our submission achieves an inference cost score of 0.0162 (≈ 61.73x compression)
- This enables the implementation of the proposed neural network in resource constrained devices

 FINN can be used to deploy our model onto an FPGA

BacalhauNet

Thank You!

BacalhauNet Team

