Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2016/2017

5. prednáška

Hilbertovský a tablový kalkul

20. marca 2017

Obsah 5. prednášky

Výroková logika
 Kalkuly
 Hilbertovský kalkul
 Tablový kalkul
 Korektnosť

Organizačné poznámky

Konzultačné hodiny

streda 13:10-14:30

na I-16 (Kľuka) a I-7 (Šiška k praktickým cvičeniam)

Midterm

- piatok 7. apríla o 12:30 v A
- (pondelok 10. apríla o 18:10 v A)

Vysvetľovanie riešení

Vysvetľujte svoj postup, odvolávajte sa na definície, dajte najavo, že chápete súvislosť medzi definovanými pojmami, ktoré sa nachádzajú v zadaní a technikou, ktorú používate na vyriešenie úlohy

Domáce úlohy

Ohodnotené a okomentované riešenia na cvičeniach Konzultácie po cvičeniach alebo počas konzult. hodín

Usudzovacie pravidlá

Na úvodnej prednáške sme usudzovacie pravidlo neformálne zadefinovali ako vzor (šablóna) úsudkov, napríklad:

$$\begin{array}{c} \text{Ak } A, \text{ tak } B. \\ \underline{A.} \\ B. \end{array} \quad \begin{array}{c} \text{vzory premís} \\ \text{vzor záveru} \end{array}$$

- Úsudok získame dosadením výrokov (alebo výrokových foriem) na príslušné miesta v pravidle
- Teraz sa pokúsime:
 - ► formálne zadefinovať pravidlá,
 - ukázať, ako pravidlami budujeme dôkazy vyplývania,
 - diskutovať, či sú správne a či môžeme dokázať všetky vyplývania

Kalkul

Neformálne definície:

 Odvodzovacie pravidlo je množina (n + 1)-tíc formúl, zapisovaných

$$(\mathsf{R}) \ \frac{A_1 \quad \cdots \quad A_n}{A},$$

vytvorená substitúciou do jednej vzorovej (n+1)-tice. Formuly A_1, \ldots, A_n nazývame *premisami* pravidla (R). Formulu A nazývame *záver* pravidla (R).

Pravidlo bez premís (n = 0) nazývame schéma axióm a namiesto \overline{A}

ho zapisujeme iba A.

Kalkul je systém odvodzovacích pravidiel.

V.3.10 Hilbertovský kalkul

Hilbertovský kalkul — axiómy a pravidlo

Definícia 3.66

Hilbertovský kalkul sa skladá z axióm vytvorených podľa nasledujúcich schém axióm pre všetky formuly A, B, C:

(A1)
$$(A \rightarrow (B \rightarrow A))$$

(A2)
$$((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$$

(A3)
$$((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))$$

(A4)
$$((A \land B) \rightarrow A), ((A \land B) \rightarrow B)$$

(A5)
$$(A \rightarrow (B \rightarrow (A \land B)))$$

(A6)
$$((A \rightarrow (A \lor B)), (B \rightarrow (A \lor B))$$

$$(A7) \quad ((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$$

a pravidla modus ponens:

$$(MP) \quad \frac{A \quad (A \to B)}{B}$$

pre všetky formuly A a B.

Hilbertovský kalkul – dôkaz

Definícia 3.67

(Formálnym) dôkazom z množiny predpokladov S je postupnosť formúl Y_1, Y_2, \ldots, Y_n , v ktorej každá formula Y_i je

- predpoklad z množiny S, alebo
- záver odvodzovacieho pravidla, ktorého premisy sa nachádzajú v postupnosti pred Y_i, teda špeciálne
 - ► Y_i je axióma, inštancia jednej zo schém (A1)–(A7), alebo
 - existujú j < i a k < i také, že Y_i je záver pravidla (MP) pre formuly Y_j a $Y_k = (Y_j \rightarrow Y_i)$.

 $D\hat{o}kazom$ formuly X z S je taký dôkaz z S, ktorého posledným členom je X.

Formula X je dokázateľná z množiny predpokladov S (skrátene $S \vdash X$) vtt, keď existuje dôkaz X z S.

Príklad dôkazu v hilbertovskom kalkule

Príklad 3.68

Nájdime dôkaz formuly $Z=(X\to X)$ z množiny predpokladov $\{\}$ (pre ľubovoľnú formulu X):

$$\begin{array}{lll} Y_1 = & (X \rightarrow (X \rightarrow X)) & \text{inštancia (A1) pre } A = B = X \\ Y_2 = & (X \rightarrow ((X \rightarrow X) \rightarrow X)) & \text{inšt. (A1) pre } A = X, \ B = (X \rightarrow X) \\ Y_3 = & ((X \rightarrow ((X \rightarrow X) \rightarrow X)) \rightarrow ((X \rightarrow (X \rightarrow X)) \rightarrow (X \rightarrow X))) \\ & & \text{inšt. (A2) pre } A = C = X, \ B = (X \rightarrow X) \\ Y_4 = & ((X \rightarrow (X \rightarrow X)) \rightarrow (X \rightarrow X)) & \text{záver (MP) pre } Y_2 \text{ a } Y_3 \\ Y_5 = & (X \rightarrow X) & \text{záver (MP) pre } Y_1 \text{ a } Y_4 \\ \end{array}$$

Veta o dedukcii

Veta 3.69 (o dedukcii)

$$S \cup \{X\} \vdash Y \ \textit{vtt} \ S \vdash (X \rightarrow Y)$$

Dôkaz.

```
z S \cup \{X\}.
(⇒) Nech Y_1, \ldots, Y_n je dôkaz Y z S \cup \{X\}. Úplnou indukciou na k dokážeme, že
S \vdash (X \rightarrow Y_{\nu}).
Báza: Nech k=1. Y_1 nemohla byť odvodená pravidlom (MP), takže je buď axióma,
alebo patrí do S, alebo je X. V treťom prípade použijeme dôkaz (X \to X)
z predchádzajúceho príkladu 3.68. V prvých dvoch prípadoch je postupnosť
Y_1, (Y_1 \rightarrow (X \rightarrow Y_1)), (X \rightarrow Y_1) dôkazom (X \rightarrow Y_1).
Ind. krok: Nech k > 1 a platí IP: pre všetky j < k máme S \vdash (X \rightarrow Y_i).
Ak Y_k je axióma, patrí do S, alebo je X, postupujeme ako pre k=1.
Ak je Y_k záverom pravidla (MP) pre Y_i a Y_i = (Y_i \to Y_k), tak i, j < k a platí pre ne IP.
Teda existuje dôkaz A_1, \ldots, A_n formuly A_n = (X \to Y_i) z S a dôkaz B_1, \ldots, B_n
formuly B_b = (X \to (Y_i \to Y_k)) z S. Dôkazom formuly (X \to Y_k) potom je: A_1,
A_a, B_1, \ldots, B_h, ((X \rightarrow (Y_i \rightarrow Y_k)) \rightarrow ((X \rightarrow Y_i) \rightarrow (X \rightarrow Y_k))),
((X \rightarrow Y_i) \rightarrow (X \rightarrow Y_k)), (X \rightarrow Y_k).
```

 (\Leftarrow) Nech Y_1, \ldots, Y_n je dôkaz $(X \to Y)$ z S. Potom Y_1, \ldots, Y_n, X, Y je dôkaz Y

Dokazovanie s vetou o dedukcii

Príklad 3 70

```
Ukážme \{\} \vdash ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))
(pre ľubovoľné formuly A, B a C).
Podľa vety o dedukcii máme \{\} \vdash ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))
vtt \{(A \rightarrow B)\} \vdash ((B \rightarrow C) \rightarrow (A \rightarrow C)) vtt
\{(A \rightarrow B), (B \rightarrow C)\} \vdash (A \rightarrow C) \text{ vtt } \{(A \rightarrow B), (B \rightarrow C), A\} \vdash C.
Posledný dôkaz nájdeme veľmi ľahko:
```

$$egin{aligned} Y_1 &= A & ext{predpoklad} \ Y_2 &= (A
ightarrow B) & ext{predpoklad} \ Y_3 &= B & ext{(MP) pre } Y_1 \text{ a } Y_2 \ Y_4 &= (B
ightarrow C) & ext{predpoklad} \ Y_5 &= C & ext{(MP) pre } Y_3, \ Y_4 &= Y_4 \ \end{array}$$

Podľa úvodnej úvahy teda $\{\} \vdash ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$ (ale nevieme, ako tento dôkaz presne vyzerá).

Dokazovanie s vetou o dedukcii

Príklad 3.71 Ukážme $\{\} \vdash (\neg X \to (X \to Y))$ (pre ľubovoľné formuly X a Y). $Y_1 = (\neg X \rightarrow (\neg Y \rightarrow \neg X))$ (A1) pre $A = \neg X$. $B = \neg Y$ $Y_2 = ((\neg Y \rightarrow \neg X) \rightarrow (X \rightarrow Y))$ (A3) pre A = Y, B = Xdôkaz z príkladu 3.70 $Y_n = ((\neg X \rightarrow (\neg Y \rightarrow \neg X)) \rightarrow$ $(((\neg Y \rightarrow \neg X) \rightarrow (X \rightarrow Y)) \rightarrow (\neg X \rightarrow (X \rightarrow Y))))$ $Y_{n+1} = (((\neg Y \rightarrow \neg X) \rightarrow (X \rightarrow Y)) \rightarrow (\neg X \rightarrow (X \rightarrow Y)))$ (MP) pre Y_1 a Y_n $Y_{n+2} = (\neg X \rightarrow (X \rightarrow Y))$ (MP) pre Y_2 a Y_{n+1}

Korektnosť a úplnosť hilbertovského kalkulu

Veta 3.72

Pre každú množinu formúl S a každú formulu X platí:

(korektnosť) ak je X dokázateľná z S ($S \vdash X$), tak X výrokovologicky vyplýva z $S(S \models X)$;

(úplnosť) ak X výrokovologicky vyplýva $z S (S \models X)$, tak X je dokázateľná z S $(S \vdash X)$.

Korektnosť (angl. soundness) hilbertovského kalkulu vyplýva matematickou indukciou na dĺžku dôkazu z korektnosti pravidiel:

Ak S je množina výrokových formúl a

$$A_1 \quad \cdots \quad A_n$$
 A

je pravidlo (axióma alebo (MP)), potom ak A_1, \ldots, A_n súčasne vyplývajú z S, tak aj A vyplýva z S.

Úplnosť (angl. completeness) je komplikovanejšia.

Vyskúšajte si V.1

Ukážte
$$\{\} \vdash (\neg \neg X \to X).$$

$$(A1) \quad (A \to (B \to A))$$

$$(A2) \quad ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$$

(A3)
$$((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))$$

(A4)
$$((A \land B) \rightarrow A), ((A \land B) \rightarrow B)$$

(A5)
$$(A \rightarrow (B \rightarrow (A \land B)))$$

(A6)
$$((A \rightarrow (A \lor B)), (B \rightarrow (A \lor B))$$

(A7)
$$((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$$

$$(MP) \quad \frac{A \quad (A \to B)}{B}$$

$$S \cup \{X\} \vdash Y \text{ vtt } S \vdash (X \rightarrow Y)$$

$$\{\} \vdash (X \rightarrow X)$$

$$\{\} \vdash ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$$

$$\{\} \vdash (\neg X \rightarrow (X \rightarrow Y))$$

V.3.11 Tablový kalkul

Dôkaz tautológie sporom

V slovenčine

Príklad 3.73

Je formula $X = (p \rightarrow (q \rightarrow (p \land q)))$ tautológia? Dokážme tvrdenie sporom: Zoberme ľubovoľné ohodnotenie v a predpokladajme (1) $v \not\models (p \rightarrow (q \rightarrow (p \land q)))$. Potom podľa definície spĺňania (2) $v \models p$ a (3) $v \not\models (q \rightarrow (p \land q))$, teda opäť podľa definície spĺňania (4) $v \models q$ a (5) $v \not\models (p \land q)$. Z faktu (5) dostávame, že (6) $v \not\models p$ alebo (7) $v \not\models q$. Nevieme, ktorá z týchto možností platí pre v, ale môžeme ich predpokladať nezávisle od seba:

- Nech platí (6), teda $v \not\models p$. To je však v spore s faktom (2).
- Nech platí (7). To je v spore s faktom (4).

V oboch prípadoch sme dospeli k sporu a ďalšie možnosti nie sú. Preto $v \models X$.

Dôkaz tautológie sporom

Notácia

Príklad 3.74

Predchádzajúcu úvahu môžeme stručne zapísať, ak sa dohodneme, že:

- FX označuje, že v nespĺňa X;
- TX označuje, že v spĺňa X;
- ak z niektorého z predchádzajúcich faktov vyplýva priamo z definície spĺňania nový fakt, zapíšeme ho do ďalšieho riadka;
- ak z niektorého faktu vyplýva, že platí fakt F₁ alebo fakt F₂ rozdelíme úvahu na dve nezávislé vetvy, pričom prvá začne faktom F_1 a druhá faktom F_2 ;
- ak nastane spor, pridáme riadok so symbolom *.

Dôkaz tautológie sporom

Použitím notácie

Spĺňanie a priame podformuly

Pozorovanie 3.76

Nech v je ľubovoľné ohodnotenie výrokových premenných. Nech X a Y sú ľubovoľné formuly.

- 1 T) Ak v spĺňa ¬X, tak v nespĺňa X.
 - F) Ak v nespĺňa ¬X, tak v spĺňa X.
- 2 T) Ak v spĺňa (X ∧ Y), tak v spĺňa X a v spĺňa Y.
 - F) $Ak \ v \ nespĺňa \ (X \land Y)$, tak $v \ nespĺňa \ X \ alebo \ v \ nespĺňa \ Y$.
- 3 T) Ak v spĺňa (X ∨ Y), tak v spĺňa X alebo v spĺňa Y.
 - F) $Ak \ v \ nespĺňa \ (X \lor Y)$, tak $v \ nespĺňa \ X \ a \ v \ nespĺňa \ Y$.
- igg(4) T) Ak v spĺňa (X o Y), tak v nespĺňa X alebo v spĺňa Y .
 - F) $Ak \ v \ nespĺňa \ (X o Y)$, tak $v \ spĺňa \ X \ a \ v \ nespĺňa \ Y$.

Označené formuly a ich sémantika

Definícia 3.77

Nech X je formula výrokovej logiky.

Postupnosti symbolov **T**X a **F**X nazývame označenými formulami.

Definícia 3.78

Nech v je ohodnotenie výrokových premenných a X je formula. Potom

- v spĺňa TX vtt v spĺňa X;
- v spĺňa FX vtt v nespĺňa Y.

Dohoda

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+ , X_7^+ . Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+ , T_3^+ .

Tablové pravidlá

Podľa pozorovania 3.76 a definície 3.78 môžeme sformulovať pravidlá pre označené formuly:

$$\begin{array}{c|c}
\frac{\alpha}{\alpha_{1}} & \frac{\beta}{\beta_{1} \mid \beta_{2}} \\
\hline
T(X \land Y) & F(X \land Y) & T \neg X \\
\hline
TX & FX \mid FY & FX \\
\hline
TY & TY & TX \\
\hline
F(X \lor Y) & T(X \lor Y) & F \neg X \\
\hline
FX & TX \mid TY & TX \\
\hline
FY & FX \mid TY & TX
\end{array}$$

$$\begin{array}{c|c}
F(X \to Y) & T(X \to Y) \\
\hline
TX & FX \mid TY \\
\hline
FX \mid TY & FX \mid TY
\end{array}$$

Jednotný zápis označených formúl — α

Definícia 3.79 (Jednotný zápis označených formúl typu α)

Označená formula A^+ je typu α , ak má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať písmenom α ;

 α_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a α_2 príslušnú formulu z pravého stĺpca.

α	α_1	α_2
$T(X \wedge Y)$	TX	T Y
$F(X \vee Y)$	FX	$\mathbf{F}Y$
$\mathbf{F}(X \to Y)$	TX	$\mathbf{F}Y$
$T \neg X$	FX	FX
$\mathbf{F} \neg X$	TX	TX

Pozorovanie 3.80 (Zostručnené vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Ak v spĺňa α , tak v spĺňa α_1 a v spĺňa α_2 .

Jednotný zápis označených formúl — β

Definícia 3.81 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je typu β , ak má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y. Takéto formuly budeme označovať

písmenom β ;

 β_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a β_2 príslušnú formulu z pravého stĺpca.

β	β_1	β_2
$\mathbf{F}(X \wedge Y)$	FΧ	$\mathbf{F}Y$
$T(X \vee Y)$	TX	T Y
$T(X \rightarrow Y)$	FX	T Y

Pozorovanie 3.82 (Zostručnené vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Ak v spĺňa β , tak v spĺňa β_1 alebo v spĺňa β_2 .

Tablo pre množinu označených formúl

Definícia 3.83

Analytické tablo pre množinu označených formúl S+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \mathcal{T} je tablo pre S^+ a γ je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktoroukoľvek z operácií:
 - A: Ak sa na vetve π_v (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B: Ak sa na vetve π_v vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - Ax: Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Uzavretosť

Definícia 3.84

Vetva π tabla \mathcal{T} je *uzavretá* vtt obsahuje označené formuly $\mathbf{F}X$ a $\mathbf{T}X$ pre nejakú formulu X. Inak je π otvorená.

Tablo $\mathcal T$ je *uzavreté* vtt každá jeho vetva je uzavretá.

Naopak, \mathcal{T} je *otvorené* vtt aspoň jedna jeho vetva je otvorená.

Korektnosť tablového kalkulu

Veta 3.85 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 3.86

Nech S je množina formúl a X je formula.

Ak existuje uzavreté tablo pre $\{TA \mid A \in S\} \cup \{FX\}$ (skr. $S \vdash X$), tak X vyplýva $z \in S$ ($S \models X$).

Pozorovanie 3.87

Formula X je tautológia vtt **F**X je nesplniteľná.

Dôsledok 3.88

Nech X je formula a existuje uzavreté tablo pre $\{FX\}$ (skr. $\vdash X$). Potom X je tautológia ($\models X$).

Logika pre informatikov

J. Kľuka. J. Šiška

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.