Probabilidade e estatística - Aula 9

Alguns modelos probabilísticos discretos - Continuação

Dr. Giannini Italino Alves Vieira

Universidade Federal do Ceará - Campus de Crateús

2024

Distribuição de Poisson

2 / 14

Dr. Giannini Italino Probabilidade e estatística 2024

Alguns modelos probabilísticos discretos

Continuação

- Na aula passada vimos três modelos discretos, a saber: modelo uniforme discreto, modelo binomial e modelo geométrico.
- Veremos, na aula de hoje, mais dois dos principais modelos probabilísticos discretos, ou seja, veremos as distribuições binomial negativa e a distribuição d Poisson.

Recordando

Na aula passada vimos o modelo geométrico, ou seja, vimos que se considerarmos uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de sucesso. Então a variável aleatória definida como o número de tentativas até que o primeiro sucesso ocorra é dita ser uma geométrica de parâmetro 0 e sua função de probabilidade é

$$f(x) = (1-p)^{x-1}p, \quad \forall x = 1, 2, \dots$$

Dr. Giannini Italino

Alguns modelos probabilísticos discretos

Continuação

- Na aula passada vimos três modelos discretos, a saber: modelo uniforme discreto, modelo binomial e modelo geométrico.
- Veremos, na aula de hoje, mais dois dos principais modelos probabilísticos discretos, ou seja, veremos as distribuições binomial negativa e a distribuição de Poisson.

Recordando

Na aula passada vimos o modelo geométrico, ou seja, vimos que se considerarmos uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de sucesso. Então a variável aleatória definida como o número de tentativas até que o primeiro sucesso ocorra é dita ser uma geométrica de parâmetro 0 e sua função de probabilidade é

$$f(x) = (1-p)^{x-1}p, \forall x = 1, 2, ...$$

Alguns modelos probabilísticos discretos

Continuação

- Na aula passada vimos três modelos discretos, a saber: modelo uniforme discreto, modelo binomial e modelo geométrico.
- Veremos, na aula de hoje, mais dois dos principais modelos probabilísticos discretos, ou seja, veremos as distribuições binomial negativa e a distribuição de Poisson.

Recordando

Na aula passada vimos o modelo geométrico, ou seja, vimos que se considerarmos uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de sucesso. Então a variável aleatória definida como o número de tentativas até que o primeiro sucesso ocorra é dita ser uma geométrica de parâmetro 0 e sua função de probabilidade é

$$f(x) = (1-p)^{x-1}p, \quad \forall x = 1, 2, \dots$$

Veremos agora a distribuição binomial negativa, que é uma generalização do modelo geométrico.

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

• Note que no caso de r=1 nós temos a distribuição geométrica de parâmetro p.

2024

Dr. Giannini Italino

Veremos agora a distribuição binomial negativa, que é uma generalização do modelo geométrico.

Distribuição binomial negativa

Considere novamente um experimento aleatório nas condições do experimento geométrico, ou seja, uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de um sucesso. Seja X a variável aleatória definida como o número de tentativas que até r sucessos ocorram. Então X é dita ser uma variável binomial negativa com parâmetros $r=1,2,\ldots$ e 0< p<1 e sua função de probabilidade é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

• Note que no caso de r=1 nós temos a distribuição geométrica de parâmetro p.

2024

Veremos agora a distribuição binomial negativa, que é uma generalização do modelo geométrico.

Distribuição binomial negativa

Considere novamente um experimento aleatório nas condições do experimento geométrico, ou seja, uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de um sucesso. Seja X a variável aleatória definida como o número de tentativas que até r sucessos ocorram. Então X é dita ser uma variável binomial negativa com parâmetros $r=1,2,\ldots$ e 0< p<1 e sua função de probabilidade é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

• Note que no caso de r=1 nós temos a distribuição geométrica de parâmetro p.

2024

Veremos agora a distribuição binomial negativa, que é uma generalização do modelo geométrico.

Distribuição binomial negativa

Considere novamente um experimento aleatório nas condições do experimento geométrico, ou seja, uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de um sucesso. Seja X a variável aleatória definida como o número de tentativas que até r sucessos ocorram. Então X é dita ser uma variável binomial negativa com parâmetros $r=1,2,\ldots$ e 0< p<1 e sua função de probabilidade é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Obs.: Note que $\binom{x-1}{r-1}$ é igual ao número total de sequências diferentes de tentativas que contem r-1 sucessos em x-1 tentativas.

ullet Note que no caso de r=1 nós temos a distribuição geométrica de parâmetro p.

Dr. Giannini Italino

Veremos agora a distribuição binomial negativa, que é uma generalização do modelo geométrico.

Distribuição binomial negativa

Considere novamente um experimento aleatório nas condições do experimento geométrico, ou seja, uma série de tentativas Bernoulli, de modo que as tentativas sejam independentes e com mesma probabilidade p de um sucesso. Seja X a variável aleatória definida como o número de tentativas que até r sucessos ocorram. Então X é dita ser uma variável binomial negativa com parâmetros $r=1,2,\ldots$ e 0< p<1 e sua função de probabilidade é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Obs.: Note que $\binom{x-1}{x-1}$ é igual ao número total de sequências diferentes de tentativas que contem r-1 sucessos em x-1 tentativas.

• Note que no caso de r=1 nós temos a distribuição geométrica de parâmetro p.

4 D > 4 A > 4 B > 4 B > 2024

Note que a probabilidade de se obter r-1 sucessos em x-1 tentativas pode ser simplesmente calculada pela distribuição binomial. Ou seja, essa probabilidade é

$$\binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}$$

 \bullet Como as tentativas são independentes e a probabilidade do r-ésimo sucesso

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Note que a probabilidade de se obter r-1 sucessos em x-1 tentativas pode ser simplesmente calculada pela distribuição binomial. Ou seja, essa probabilidade é

$$\binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}$$

 \bullet Como as tentativas são independentes e a probabilidade do r-ésimo sucesso

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Note que a probabilidade de se obter r-1 sucessos em x-1 tentativas pode ser simplesmente calculada pela distribuição binomial. Ou seja, essa probabilidade é

$$\binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}$$

ullet Como as tentativas são independentes e a probabilidade do r-ésimo sucesso ocorrer na tentativa x é p, então temos que a probabilidade de termos que realizar x tentativas até obter r sucessos é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Note que a probabilidade de se obter r-1 sucessos em x-1 tentativas pode ser simplesmente calculada pela distribuição binomial. Ou seja, essa probabilidade é

$$\binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}$$

ullet Como as tentativas são independentes e a probabilidade do r-ésimo sucesso ocorrer na tentativa x é p, então temos que a probabilidade de termos que realizar x tentativas até obter r sucessos é dada por

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, r+2, \dots$$

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?
 - Sol.: Note que se definirmos a variável X como sendo o número de manhãs até a segunda manhã em que o sinal esteja verde, então X tem distribuição binomial negativa de parâmetro r=2 p=0.2. Ou seja,

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

ou seja, queremos calcular P(X = 4) = f(4). Logo,

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

2024

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?
 - Sol.: Note que se definirmos a variável X como sendo o número de manhãs até a segunda manhã em que o sinal esteja verde, então X tem distribuição binomial negativa de parâmetro r=2 p=0.2. Ou seja,

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

ou seja, queremos calcular P(X = 4) = f(4). Logo,

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

- 《ㅁ》 《畵》 《본》 《본》

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?
 - Sol.: Note que se definirmos a variável X como sendo o número de manhãs até a segunda manhã em que o sinal esteja verde, então X tem distribuição binomial negativa de parâmetro r=2 p=0.2. Ou seja,

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

ou seja, queremos calcular P(X = 4) = f(4). Logo,

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

- 《日》《圖》《意》《意

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?
 - Sol.: Note que se definirmos a variável X como sendo o número de manhãs até a segunda manhã em que o sinal esteja verde, então X tem distribuição binomial negativa de parâmetro r=2 p=0.2. Ou seja,

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

ou seja, queremos calcular P(X = 4) = f(4). Logo,

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

Considere novamente o último exemplo utilizado para ilustrar o modelo geométrico: Em seu caminho matinal, você se aproxima de um sinal de transito que está verde 20% do tempo. Suponha que cada manhã representa uma tentativa independente.

- Suponha agora que estamos interessados em calcular a probabilidade de o número de manhãs, até que a segunda manhã em que o sinal esteja verde ocorra, ser igual a 4?
 - Sol.: Note que se definirmos a variável X como sendo o número de manhãs até a segunda manhã em que o sinal esteja verde, então X tem distribuição binomial negativa de parâmetro r=2 p=0.2. Ou seja,

$$f(x) = {x-1 \choose 2-1} (0.2)^2 (1-0.2)^{x-2}, \quad x = 2, 3, 4, \dots$$

ou seja, queremos calcular P(X = 4) = f(4). Logo,

$$P(X=4) = {4-1 \choose 2-1} (0.2)^2 (1-0.2)^{4-2} = {3 \choose 1} (0.2)^2 (0.8)^2 = 0.0768.$$

2024

A probabilidade de um bit, transmitido por meio de um canal digital de transmissão, ser recebido com falha é 0.1. Suponha que as transmissões dos bits sejam eventos independentes. Calcule a probabilidade do número de bits transmitidos até o quarto erro ser igual a 10.

• Sol.: Observe que se definirmos a variável X como sendo do número de bits transmitidos até o quarto erro, então X tem distribuição binomial negativa de parâmetro r=4 e p=0.1. Ou seja,

$$f(x) = {x-1 \choose 4-1} (0.1)^4 (1-0.1)^{x-4}, \quad x = 4, 5, 6, \dots$$

ou seja, queremos calcular P(X=10)=f(10). Logo,

$$P(X = 10) = {10 - 1 \choose 4 - 1} (0.1)^4 (1 - 0.1)^{10 - 4} = {9 \choose 3} (0.1)^4 (0.9)^6 = 0.0768$$

Dr. Giannini Italino

Probabilidade e estatística

A probabilidade de um bit, transmitido por meio de um canal digital de transmissão, ser recebido com falha é 0.1. Suponha que as transmissões dos bits sejam eventos independentes. Calcule a probabilidade do número de bits transmitidos até o quarto erro ser igual a 10.

• Sol.: Observe que se definirmos a variável X como sendo do número de bits transmitidos até o quarto erro, então X tem distribuição binomial negativa de parâmetro r=4 e p=0.1. Ou seja,

$$f(x) = {\begin{pmatrix} x - 1 \\ 4 - 1 \end{pmatrix}} (0.1)^4 (1 - 0.1)^{x - 4}, \quad x = 4, 5, 6, \dots$$

ou seja, queremos calcular P(X=10)=f(10). Logo,

$$P(X = 10) = {10 - 1 \choose 4 - 1} (0.1)^4 (1 - 0.1)^{10 - 4} = {9 \choose 3} (0.1)^4 (0.9)^6 = 0.0768.$$

A probabilidade de um bit, transmitido por meio de um canal digital de transmissão, ser recebido com falha é 0.1. Suponha que as transmissões dos bits sejam eventos independentes. Calcule a probabilidade do número de bits transmitidos até o quarto erro ser igual a 10.

• Sol.: Observe que se definirmos a variável X como sendo do número de bits transmitidos até o quarto erro, então X tem distribuição binomial negativa de parâmetro r=4 e p=0.1. Ou seja,

$$f(x) = {\begin{pmatrix} x - 1 \\ 4 - 1 \end{pmatrix}} (0.1)^4 (1 - 0.1)^{x - 4}, \quad x = 4, 5, 6, \dots$$

ou seja, queremos calcular P(X=10)=f(10). Logo

$$P(X = 10) = {10 - 1 \choose 4 - 1} (0.1)^4 (1 - 0.1)^{10 - 4} = {9 \choose 3} (0.1)^4 (0.9)^6 = 0.0768.$$

A probabilidade de um bit, transmitido por meio de um canal digital de transmissão, ser recebido com falha é 0.1. Suponha que as transmissões dos bits sejam eventos independentes. Calcule a probabilidade do número de bits transmitidos até o quarto erro ser igual a 10.

• Sol.: Observe que se definirmos a variável X como sendo do número de bits transmitidos até o quarto erro, então X tem distribuição binomial negativa de parâmetro r=4 e p=0.1. Ou seja,

$$f(x) = {\begin{pmatrix} x - 1 \\ 4 - 1 \end{pmatrix}} (0.1)^4 (1 - 0.1)^{x - 4}, \quad x = 4, 5, 6, \dots$$

ou seja, queremos calcular P(X=10)=f(10). Logo,

$$P(X = 10) = {10 - 1 \choose 4 - 1} (0.1)^4 (1 - 0.1)^{10 - 4} = {9 \choose 3} (0.1)^4 (0.9)^6 = 0.0768.$$

4 D > 4 A > 4 B > 4 B > B 900

Dr. Giannini Italino

A probabilidade de um bit, transmitido por meio de um canal digital de transmissão, ser recebido com falha é 0.1. Suponha que as transmissões dos bits sejam eventos independentes. Calcule a probabilidade do número de bits transmitidos até o quarto erro ser igual a 10.

• Sol.: Observe que se definirmos a variável X como sendo do número de bits transmitidos até o quarto erro, então X tem distribuição binomial negativa de parâmetro r=4 e p=0.1. Ou seja,

$$f(x) = {\begin{pmatrix} x - 1 \\ 4 - 1 \end{pmatrix}} (0.1)^4 (1 - 0.1)^{x - 4}, \quad x = 4, 5, 6, \dots$$

ou seja, queremos calcular P(X=10)=f(10). Logo,

$$P(X=10) = {10-1 \choose 4-1} (0.1)^4 (1-0.1)^{10-4} = {9 \choose 3} (0.1)^4 (0.9)^6 = 0.0768.$$

◆ロ > ◆母 > ◆豆 > ◆豆 > ̄豆 の Q (*)

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

- $\mu = E(X) = \frac{r}{p}$ e
- $Var(X) = \frac{r(1-p)}{p^2}$.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de X é

$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{r(1-p)}{p^2}} = \sqrt{\frac{4(0.9)}{0.1^2}} \approx 18.97$$

4D > 4A > 4E > 4E > E 990

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

- $\mu = E(X) = \frac{r}{p}$ e
- $Var(X) = \frac{r(1-p)}{p^2}$.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de X é

$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{r(1-p)}{p^2}} = \sqrt{\frac{4(0.9)}{0.1^2}} \approx 18.97$$

4D>4B>4E>4E> 900

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

- $\bullet \ \mu = E(X) = \frac{r}{p} \ e$
- $Var(X) = \frac{r(1-p)}{p^2}$.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de X é

$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{r(1-p)}{p^2}} = \sqrt{\frac{4(0.9)}{0.1^2}} \approx 18.97$$

◆□ → ◆□ → ◆■ → ■ ◆9¢や

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

•
$$\mu = E(X) = \frac{r}{p}$$
 e

•
$$Var(X) = \frac{r(1-p)}{p^2}$$
.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de X é

$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{r(1-p)}{p^2}} = \sqrt{\frac{4(0.9)}{0.1^2}} \approx 18.97$$

4 D > 4 D > 4 E > 4 E > E 990

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

- $\mu = E(X) = \frac{r}{p}$ e
- $Var(X) = \frac{r(1-p)}{p^2}$.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de X é

$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{r(1-p)}{p^2}} = \sqrt{\frac{4(0.9)}{0.1^2}} \approx 18.97$$

Se X é variável aleatória binomial negativa com parâmetros r e p, então pode-se mostrar que

- $\mu = E(X) = \frac{r}{p}$ e
- $Var(X) = \frac{r(1-p)}{p^2}$.

Por exemplo, se X é a variável aleatória do exemplo anterior, então temos que a média de X é

$$E(X) = \frac{r}{p} = \frac{4}{0.1} = 40.$$

que representa o numero médio de transmissões até que o quarto erro seja encontrado. Temos ainda que o desvio-padrão de \boldsymbol{X} é

$$\sigma = \sqrt{Var(X)} = \sqrt{rac{r(1-p)}{p^2}} = \sqrt{rac{4(0.9)}{0.1^2}} pprox 18.97.$$

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

- A distribuição Poisson é um importante modelo discreto que é largamente usado quando se quer contar o número de eventos de certo tipo que ocorrem em um determinado intervalo, por exemplo, de tempo ou superfície ou de volume. Por exemplo
- A distribuição de Poisson surge a medida que o número de tentativas de um
- Na distribuição de Poisson, uma suposição usualmente feita é a de que a

- A distribuição Poisson é um importante modelo discreto que é largamente usado quando se quer contar o número de eventos de certo tipo que ocorrem em um determinado intervalo, por exemplo, de tempo ou superfície ou de volume. Por exemplo
 - X é o número de chamadas recebidas por um telefone durante 10 minutos:
- A distribuição de Poisson surge a medida que o número de tentativas de um
- Na distribuição de Poisson, uma suposição usualmente feita é a de que a

- A distribuição Poisson é um importante modelo discreto que é largamente usado quando se quer contar o número de eventos de certo tipo que ocorrem em um determinado intervalo, por exemplo, de tempo ou superfície ou de volume. Por exemplo
 - X é o número de chamadas recebidas por um telefone durante 10 minutos;
 - imes X é o número de falhas de um computador em um dia de operação.
- A distribuição de Poisson surge a medida que o número de tentativas de um experimento binomial aumenta até infinito $(n \to \infty)$ enquanto a média da distribuição permanece constante, ou seja, p diminui proporcionalmente a medida que n aumenta.
- Na distribuição de Poisson, uma suposição usualmente feita é a de que a probabilidade de se obter mas de um evento em um intervalo muito pequeno é desprezível.

9 / 14

- A distribuição Poisson é um importante modelo discreto que é largamente usado quando se quer contar o número de eventos de certo tipo que ocorrem em um determinado intervalo, por exemplo, de tempo ou superfície ou de volume. Por exemplo
 - X é o número de chamadas recebidas por um telefone durante 10 minutos;
 - imes X é o número de falhas de um computador em um dia de operação.
- A distribuição de Poisson surge a medida que o número de tentativas de um experimento binomial aumenta até infinito $(n \to \infty)$ enquanto a média da distribuição permanece constante, ou seja, p diminui proporcionalmente a medida que n aumenta.
- Na distribuição de Poisson, uma suposição usualmente feita é a de que a probabilidade de se obter mas de um evento em um intervalo muito pequeno é desprezível.

- A distribuição Poisson é um importante modelo discreto que é largamente usado quando se quer contar o número de eventos de certo tipo que ocorrem em um determinado intervalo, por exemplo, de tempo ou superfície ou de volume. Por exemplo
 - X é o número de chamadas recebidas por um telefone durante 10 minutos;
 - imes X é o número de falhas de um computador em um dia de operação.
- A distribuição de Poisson surge a medida que o número de tentativas de um experimento binomial aumenta até infinito $(n \to \infty)$ enquanto a média da distribuição permanece constante, ou seja, p diminui proporcionalmente a medida que n aumenta.
- Na distribuição de Poisson, uma suposição usualmente feita é a de que a probabilidade de se obter mas de um evento em um intervalo muito pequeno é desprezível.

9 / 14

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- (i) a probabilidade de mais de um evento ocorrer em um subintervalo é zero;
- (ii) a probabilidade de um evento em um subintervalo é a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo.
- (iii) o evento em cada subintervalo é independente de outros subintervalos

Então, se X for uma variável aleatória definida como o numero de eventos no intervalo, X é uma variável aleatória de Poisson, com parâmetro $\lambda>0$, e sua função de probabilidade é dada por

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- (i) a probabilidade de mais de um evento ocorrer em um subintervalo é zero;

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- (i) a probabilidade de mais de um evento ocorrer em um subintervalo é zero;
- (ii) a probabilidade de um evento em um subintervalo é a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo.
- (iii) o evento em cada subintervalo é independente de outros subintervalos

Então, se X for uma variável aleatória definida como o numero de eventos no intervalo, X é uma variável aleatória de Poisson, com parâmetro $\lambda>0$, e sua função de probabilidade é dada por

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

10 / 14

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- a probabilidade de mais de um evento ocorrer em um subintervalo é zero;
- a probabilidade de um evento em um subintervalo é a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo.
- o evento em cada subintervalo é independente de outros subintervalos.

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- a probabilidade de mais de um evento ocorrer em um subintervalo é zero;
- a probabilidade de um evento em um subintervalo é a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo.
- o evento em cada subintervalo é independente de outros subintervalos.

Então, se X for uma variável aleatória definida como o numero de eventos no intervalo, X é uma variável aleatória de Poisson, com parâmetro $\lambda > 0$, e sua função de probabilidade é dada por

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

Formalmente, a distribuição de Poisson é definida da seguinte forma:

Dado um intervalo de números reais, suponha que eventos ocorram ao acaso através de todo o intervalo. Se o intervalo puder ser dividido em subintervalos, de comprimentos suficientemente pequenos, de modo que

- (i) a probabilidade de mais de um evento ocorrer em um subintervalo é zero;
- (ii) a probabilidade de um evento em um subintervalo é a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo.
- (iii) o evento em cada subintervalo é independente de outros subintervalos.

Então, se X for uma variável aleatória definida como o numero de eventos no intervalo, X é uma variável aleatória de Poisson, com parâmetro $\lambda>0$, e sua função de probabilidade é dada por

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

Probabilidade e estatística 2024 10 / 14

Média e variância da Poisson

$$E(X) = Var(X) = \lambda$$

- \bullet Ou seja, λ representa o número médio de eventos ocorrendo no intervalo
- Note que se X tem distribuição Poisson, então informação na variabilidade é
- Contudo, se a variância dos dados for muito maior que a média dos mesmos, então

Média e variância da Poisson

$$E(X) = Var(X) = \lambda.$$

- \bullet Ou seja, λ representa o número médio de eventos ocorrendo no intervalo
- Note que se X tem distribuição Poisson, então informação na variabilidade é
- Contudo, se a variância dos dados for muito maior que a média dos mesmos, então

Média e variância da Poisson

$$E(X) = Var(X) = \lambda.$$

- Ou seja, λ representa o número médio de eventos ocorrendo no intervalo considerado
- Note que se X tem distribuição Poisson, então informação na variabilidade é
- Contudo, se a variância dos dados for muito maior que a média dos mesmos, então

Média e variância da Poisson

$$E(X) = Var(X) = \lambda.$$

- ullet Ou seja, λ representa o número médio de eventos ocorrendo no intervalo considerado
- Note que se X tem distribuição Poisson, então informação na variabilidade é facilmente obtida
- Contudo, se a variância dos dados for muito maior que a média dos mesmos, então

Média e variância da Poisson

$$E(X) = Var(X) = \lambda.$$

- ullet Ou seja, λ representa o número médio de eventos ocorrendo no intervalo considerado
- Note que se X tem distribuição Poisson, então informação na variabilidade é facilmente obtida
- Contudo, se a variância dos dados for muito maior que a média dos mesmos, então o modelo Poisson não é um modelo adequado para a distribuição da variável aleatória

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?
- Qual é a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos?

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?
- (b) Qual é a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos?
 - Sol.: (a) Seja X a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Note que X tem distribuição Poisson de parâmetro $\lambda = 3$ (média de carros no cruzamento em 30 segundos). Logo, temos que a função de

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?
- (b) Qual é a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos?
 - Sol.: (a) Seja X a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Note que X tem distribuição Poisson de parâmetro $\lambda=3$ (média de carros no cruzamento em 30 segundos). Logo, temos que a função de probabilidade de X é

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Queremos P(X=0), ou seja, $P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978$.

atística 2024

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?
- (b) Qual é a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos?
 - Sol.: (a) Seja X a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Note que X tem distribuição Poisson de parâmetro $\lambda = 3$ (média de carros no cruzamento em 30 segundos). Logo, temos que a função de probabilidade de X é

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

2024 12 / 14

Tráfego de carros é tradicionalmente modelado como uma distribuição de Poisson. Um engenheiro de tráfego monitora o fluxo de carros em um cruzamento que tem uma media de seis carros por minuto. Para estabelecer o tempo de um sinal, as seguintes probabilidades são usadas.

- (a) Qual a probabilidade de nenhum carro passar pelo cruzamento em 30 segundos?
- (b) Qual é a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos?
 - Sol.: (a) Seja X a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Note que X tem distribuição Poisson de parâmetro $\lambda=3$ (média de carros no cruzamento em 30 segundos). Logo, temos que a função de probabilidade de X é

$$f(x) = \frac{(e^{-3})3^x}{x!}, \quad x = 0, 1, 2, \dots$$

Queremos P(X=0), ou seja, $P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978$.

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404$$

4 D > 4 A > 4 B > 4 B > B = 400

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})^{30}}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = 0.22404.$$

4 D > 4 D > 4 B > 4 B > B = 400

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = 0.22404.$$

4 D > 4 D > 4 B > 4 B > B = 400

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404.$$

4 D > 4 A > 4 B > 4 B > B = 900

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404.$$

4 D > 4 A > 4 B > 4 B > B = 400

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

Note que

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404$$

4 D > 4 A > 4 B > 4 B > 9 Q G

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

 Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular P(X > 3). Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404.$$

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

$$P(X=0) = \frac{(e^{-3})3^0}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = 0.22404.$$

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular $P(X \ge 3)$. Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

$$P(X=0) = \frac{(e^{-3})3^{0}}{0!} = e^{-3} \approx 0.04978;$$

$$P(X=1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404.$$

No item (b) queremos calcular a probabilidade de três ou mais carros passarem pelo cruzamento em 30 segundos.

• Sol.: Note que se X é a variável definida no item (a), ou seja, a variável aleatória que representa o número de carros que passam no cruzamento em 30 segundos. Então queremos calcular nesse item a probabilidade de X assumir valores maiores ou iguais a 3, ou seja, calcular P(X > 3). Mas note que

$$P(X \ge 3) = 1 - P(X < 3)$$

Logo, como X é Poisson, então

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2).$$

$$P(X=0) = \frac{(e^{-3})3^{0}}{0!} = e^{-3} \approx 0.04978;$$

$$P(X = 1) = \frac{(e^{-3})3^1}{1!} = e^{-3}3 = \approx 0.14936.$$

 $P(X = 2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404.$

$$P(X=2) = \frac{(e^{-3})3^2}{2!} = \frac{e^{-3}9}{2} = \approx 0.22404$$

Logo, como

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)],$$

então temos que

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [0.04978 + 0.14936 + 0.22404]$$

ou seja,

$$P(X \ge 3) = 1 - P(X < 3) = 0.57682.$$

Logo, como

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)],$$

então temos que

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [0.04978 + 0.14936 + 0.22404]$$

ou seja,

$$P(X \ge 3) = 1 - P(X < 3) = 0.57682.$$

Logo, como

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)],$$

então temos que

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [0.04978 + 0.14936 + 0.22404]$$

ou seja,

$$P(X \ge 3) = 1 - P(X < 3) = 0.57682.$$

Logo, como

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)],$$

então temos que

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [0.04978 + 0.14936 + 0.22404],$$

ou seja,

$$P(X \ge 3) = 1 - P(X < 3) = 0.57682.$$

Logo, como

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)],$$

então temos que

$$P(X \ge 3) = 1 - P(X < 3) = 1 - [0.04978 + 0.14936 + 0.22404],$$

ou seja,

$$P(X \ge 3) = 1 - P(X < 3) = 0.57682.$$

