高温合金课题组会会议纪要

课题名称: 机器学习在镍基单晶高温合金材料中的应用

参加成员:上海大学材料科学与工程学院施思齐、上海大学计算

机工程与科学学院刘悦、吴军明、蔡飞、唐爱华、孙

琪。

主 持 人: 刘悦、施思齐

会议时间: 2018年8月1日星期三

会议内容

汇报人	本周汇报内容	讨论点	下一步讨论时间
吴军明/	2018年7月27日北京	1、目前预测蠕变性能,只考虑	2018年8月20日
唐爱华	汇报情况反馈和讨论	了蠕变断裂寿命这一蠕变评价	
		指标。将来可以考虑加入更多	
		的蠕变性能评价指标,比如蠕	
		变速率、蠕变应变等,构造多决	
		策属性的学习样本,实现多自	
		变量多因变量的预测。其中输	
		入 (X1,X2,X3Xn) , 输 出 为	
		(Y1,Y2,Yn), Xi 为蠕变描述因	
		子,Yi 为不同的蠕变性能评价	
		指标。机器学习算法需要拟合	
		的 函 数 关 系 式 如	
		F(X1,X2,Xn)=Y,其中 Y 是向量,	
		而不是标量。	
		2、从高温合金蠕变性能的预测	
		扩充到其他性能(力学性能、物	
		理性能、热学性能等)的预测。	
		3.新属性的计算一考虑并引入	
		新的且重要的组元 Ru 元素。	
		4.新属性的计算一考虑并引入	
		位错的运动对蠕变的影响(位	
		错的滑移、攀移、交叉滑移等)	
		以及如何定量定性的去刻画位	
		错这一重要因素。目前的思路	

有两个:将论文中对位错的定	
性刻画转成定量刻画(定性一	
定量); 直接通过计算获得。	
5.新属性的计算—进一步考虑	
力学参量对蠕变的影响,目前	
只考虑和计算了剪切模量 G,	
未考率体积模量 B、杨氏模量	
E、泊松比v等,是否可以通过	
计算直接获得这些参量	

注: 讨论点 3、4、5 的具体内容请查看表 1

表 1 影响蠕变性能的关键因素分类情况及完成情况

蠕变性能参 量分类	描述因子/参量	考虑和完成情况
化学元素	Ni, Re, Co, Al, Ti, W, Mo, Cr, Ta, C, B, Y, Nb, Hf, Ru	已考虑并完成
位错	位错的滑移、位错的攀移、位错的交叉滑移、 位错的发射、位错的分解	未考虑
力学参量	剪切模量 G、杨氏(弹性)模量 E、泊松比 v、体积模量 B	只考虑了剪切模量 G,其余未考虑
加工处理条件	固溶处理、热处理、时效处理	已考虑并完成
外界施加条 件	温度、压强	已考虑并完成