객체 검출 I (Two stage detector)

강사: 김 남 범 교수

Object detection Milestones

(a) 2-Stage detector

(b) 1-Stage detector

Stage에 따른 모델분류

- Two stage detector
 - R-CNN (2014)
 - Fast R-CNN
 - Faster R-CNN
 - Mask R-CNN (Instance segmentation)
- One stage detector
 - Yolo series
 - Yolo1 Yolo11 (Object detection)
 - SSD series
 - SSD
 - RetinaNet

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

R-CNN: Region proposal

Selective search:

- Image segmentation
 (Graph-based segmentation)
 - felzenszwalb segmentation

- 2. Merge regions
 - Greedy algorithm
- 3. Candidate object location (~2)

R-CNN: Feature extraction

Alexnet (2012)

R-CNN: SVM Classification

R-CNN: Bounding box regression

Bounding box regression

$$egin{aligned} \hat{g}_x &= p_w d_x(\mathbf{p}) + p_x \ \hat{g}_y &= p_h d_y(\mathbf{p}) + p_y \ \hat{g}_w &= p_w \exp(d_w(\mathbf{p})) \ \hat{g}_h &= p_h \exp(d_h(\mathbf{p})) \end{aligned} \ t_x &= (g_x - p_x)/p_w \ t_y &= (g_y - p_y)/p_h \ t_w &= \log(g_w/p_w) \ t_h &= \log(g_h/p_h) \end{aligned}$$

Minimizing SSE loss =

$$\mathcal{L}_{ ext{reg}} = \sum_{i \in \{x,y,w,h\}} (t_i - d_i(\mathbf{p}))^2 + \lambda \|\mathbf{w}\|^2$$

Girshick et al. CVPR14.

R-CNN의 장단점

- 높은 Detection 정확도
- 2000개씩 생성된 region 이미지를 CNN Feature map 생성
 - 너무 느림
 - 이미지 한 장당 50초 소요
- End-to-End 학습이 안됨
 - CNN Feature Extractor + SVM and Bounding box regressor

R-CNN, Fast R-CNN, Faster R-CNN

RPN (Region proposal network)

- Anchor target generation
- Calculate the IOU of GT boxes
- Proposal generation

Non Maximum suppression

Sample IoU scores

R-CNN 계열 성능비교

System	Time	07 data	07 + 12 data
R-CNN	~ 50s	66.0	_
Fast R-CNN	~ 2s	66.9	70.0
Faster R-CNN	~ 198ms	69.9	73.2

Detection mAP on PASCAL VOC 2007 and 2012, with VGG-16 pre-trained on ImageNet Dataset

R-CNN Test-Time Speed

객체 검출 II (Real time detector)

강사: 김 남 범 교수

Single shot multibox detector (SSD, 2016)

VGG16 (2014)

Convolutional predictors

Jaccard overlap

True Positive

False Positive

False Negative

IoU = 0.922

IoU = 0.258

IoU = 0.00

IoU Threshold = 0.5

Scales and aspect ratios for default boxes

deepsystems.io

Slide from https://goo.gl/NsP6Wg

Yolo architecture (You Only Look Once, 2015)

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Unified detection

Class probability map

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

Yolo-3 architecture (2018)

Yolo-3 output layers

Objectness

Score

Class Scores

Box Co-ordinates

	저자	발표 시점	단체	출간처	특징	정확도 (mAP)	속도 (fps)	논문/github	코드 베이스	라이선스
Yolov1 ~ YOLOv3	Joseph Redmon, Ali Farhadi	2018 년 4 월	University of Washington	arXiv	Feature Pyramid Network(FPN), Multi-Scale Prediction	33.0% (COCO)	35 fps (Titan X)	<u>paper</u> <u>github</u>	Darknet	"YOLO" license
YOLOv4	Alexey Bochkovskiy, et al.	2020 년 4 월	(2,3저자) National Taiwan University	arXiv (YOLOv4)/ CVPR 2021 (Scaled- YOLOv4)	Bag of Freebies (BoF), Bag of Specials (BoS)	43.5% (COCO)	65 fps (V100)	paper paper(scaled) github (darknet) github(pytorch)	Darknet	"YOLO" license
YOLOv5	Glenn Jocher	2020 년 6 월	Ultralytics	-	PyTorch Implementation, CSP backbone	50% (COCO)	93 fps (RTX4090)	github	PyTorch	AGPL 3.0
YOLOv6	Chuyi Li, et al.	2022 년 6 월	Meituan	arXiv	Bi-directional Concatenation(BiC) module, Anchor- aided training(AAT) strategy	52.8% (COCO)	116 fps (T4)	paper(v1.0) paper(v3.0) github	PyTorch	GPL 3.0
YOLOv7	Chien-Yao Wang*, et al. (*v4 논문의 2 저자)	2022 년 7 월	Academia Sinica	CVPR 2023	Extended-ELAN, Model Reparameterization	55.9% (COCO)	56 fps (V100)	<u>paper</u> g <u>ithub</u>	YOLOv5 (PyTorch)	GPL 3.0
YOLOv8	Glenn Jocher, et al.	2023 년 1 월	Ultralytics	-	Anchor-free, Multi- task application	53.9% (COCO)	78 fps (T4)	<u>website</u>	PyTorch	AGPL 3.0
YOLOv9	Chien-Yao Wang, et al.	2024 년 2 월	Academia Sinica	arXiv	Programmable Gradient Information (PGI), Generalized ELAN	55.6% (COCO)	73 fps (T4)	<u>paper</u> g <u>ithub</u>	YOLOv5	(PyTorch)
YOLOv10	Ao Wang, et al.	2024 년 5 월	Tsinghua University	arXiv / NeurIPS 2024 poster	NMS-free training, spatial-channel separate downsampling	54.4% (COCO) 출처:	94 fps(T4) https://devo	paper github cean.sk.com/blog	Ultralytics(YOLOv8/PyTorch) /techBoardDetail.do?ID=166	AGPL 3.0 976&boardTy

e=techBlog

Yolo version comparison

