CS204: 數位系統設計

Combinational Logic

Outline of Chapter 4

- **4.1 Introduction**
- 4.2 Combinational Circuits
- 4.3 Analysis Procedure
- 4.4 Design Procedure
- 4.5 Binary Adder-Subtractor
- 4.6 Decimal Adder
- 4.7 Binary Multiplier
- 4.8 Magnitude Comparator
- 4.9 Decoders
- 4.10 Encoders
- 4.11 Multiplexers

4.1 Introduction (p.141)

- Logic circuits for digital systems may be combinational or sequential
- A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs

4.2 Combinational Circuits (p.141)

Logic circuits for digital system

- Sequential circuits
 - » Contain memory elements
 - » The outputs are a function of the current inputs and the state of the memory elements
 - » The outputs also depend on past inputs

Combinational Circuits (p.142)

A combinational circuits

2ⁿ possible combinations of input values

Figure 4.1 Block diagram of combinational circuit

- Specific functions
 - » Adders, subtractors, comparators, decoders, encoders, and multiplexers

4-3 Analysis Procedure (p.143)

- Determine the function that the circuit implements
- Given a logic diagram → a set of Boolean functions, a truth table, or possibly an explanation of the circuit operation
- Steps
 - Make sure that it is combinational not sequential
 - » No feedback path
 - Derive its Boolean functions (or truth table)
 - A verbal explanation of its function

A Straight-forward Procedure (p.143, 144)

Figure 4.2 Logic Diagram for Analysis Example

A Straight-forward Procedure (p.143, 144)

 $F_1 = T_3 + T_2 = F_2'T_1 + ABC = (AB + AC + BC)'(A + B + C) + ABC = (A' + B')(A' + C')(B' + C')(A + B + C) + ABC = (A' + B'C')(AB' + AC' + BC' + B'C) + ABC = A'BC' + A'B'C + AB'C' + ABC$

Truth Table for Logic Diagram (p.145)

The truth table

Table 4.1 *Truth Table for the Logic Diagram of Fig. 4.2*

A	В	C	F ₂	F' ₂	<i>T</i> ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

4-4 Design Procedure (p.145)

- Specification of the design objective → a logic circuit diagram of a set of Boolean functions
- The design procedure of combinational circuits
 - State the problem (system specification (spec.))
 - Determine the inputs and outputs
 - The input and output variables are assigned symbols
 - Derive the truth table
 - Derive the simplified Boolean functions
 - Draw the logic diagram and verify the correctness

Design Procedure (p.146)

- Functional description
 - Boolean function
 - HDL (Hardware description language)
 - » Verilog HDL
 - » VHDL
 - Schematic entry
- Logic minimization
 - Number of gates
 - Number of inputs to a gate
 - Propagation delay
 - Number of interconnection
 - Limitations of the driving capabilities

Code Conversion Example (p.146, 147)

BCD to excess-3 code

The truth table

Table 4.2 *Truth Table for Code-Conversion Example*

	Inpu	t BCD		Output Excess-3 Code			
A	В	C	D	W	X	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

BCD Maps (p.148)

Figure 4.3 Maps for BCE to Excess-3 Code Converter

Digital System Design

BCD Functions (p.148)

The simplified functions

- \rightarrow z = D'
- \rightarrow y = CD + C'D'
- \rightarrow x = B'C + B'D + BC'D'
- ϕ W = A + BC + BD

Another implementation

- \rightarrow z = D'

BCD to Excess-3 (p.149)

■ The logic diagram (fewer gates, no more than two inputs)

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

4-5 Binary Adder-Subtractor (p.149, 150)

Half adder

- \bullet 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 10
- Two input variables: x, y
- ◆ Two output variables: C (carry), S (sum)
- Truth table

Table 4.3 *Half Adder*

X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder (p.150)

Simplified sum-of-products

- \rightarrow S = x'y + xy'
- \bullet C = xy

The flexibility for implementation

- \bullet $S = x \oplus y$
- $\bullet S = (x + y)(x' + y')$
- \diamond S' = xy + x'y'
- \bullet S = (C + x'y')'
- C = xy = (x' + y')'

Table 4.3 *Half Adder*

X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
		1	

Implementation of Half-Adder (p.150)

Figure 4.5 Implementation of Half-Adder

Full-Adder (p.151)

Full-Adder

- The arithmetic sum of three input bits
- Three input bits
 - » x, y: two significant bits
 - » z: the carry bit from the previous lower significant bit
- ◆ Two output bits: C, S

Table 4.4 *Full Adder*

X	y	Z	C	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Full-Adder (p.152)

Fig. 4-7 Implementation of Full Adder in Sum of Products

Full-Adder (p.152, 153)

Simplified sum-of-products

- \bullet C = xy + xz + yz

Full-adder by using 2 half-adder

- ♦ $S = z \oplus (x \oplus y) = z'(xy' + x'y) + z(xy' + x'y)' = z'xy' + z'x'y + z((x' + y)(x + y')) = xy'z' + x'yz' + xyz + x'y'z$
- $C = z(x \oplus y) + xy = z(xy' + x'y) + xy = xy'z + x'yz + xy = xy'z + x'yz + xy(z+1)$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary (Ripple-Carry) Adder (p.153, 154)

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Figure 4.9 Full-bit adder

Carry Propagation (p.154, 155)

Carry propagation

- Total propagation time = gate delay * number of gate levels
- The critical path (the longest propagation)
- $(A_0, B_0, C_0) \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow (C_4, S_3)$
- ◆ 4-bits full-adder → 8 gate levels (n-bits: 2n gate levels)

Figure 4.10 Full Adder with *P* and *G* Shown

Parallel Adders (p.155, 156)

- Reduce the carry propagation delay
 - Using faster gates
 - Parallel adders (e.g., carry look-ahead adder)
- Carry look-ahead adder (CLA)
 - ♦ Carry propagate: $P_i = A_i \oplus B_i$
 - ◆ Carry generate: G_i = A_iB_i
 - Sum: $S_i = P_i \oplus C_i$
 - \bullet Carry: $C_{i+1} = G_i + P_i C_i$
 - \leftarrow C_0 = input carry
 - $\bullet \quad C_1 = G_0 + P_0 C_0$
 - $\bullet \quad C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - \bullet $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Carry Look-ahead Adder (1/2) (p.156)

Logic diagram of carry-look-ahead generator

Fig. 4.11 Logic Diagram of Carry Look-ahead Generator

Combinational Logic-25

Carry Look-ahead Adder (2/2) (p.157)

4-bit carry-look ahead adder

- Propagation delay of C_3 , C_2 and C_1 are equal
- Propagation delay of S_3 , S_2 and S_1 are equal

Fig. 4.12 4-Bit Adder with Carry Look-ahead

Binary Subtractor (p.157, 158)

- Signed binary subtraction is performed by adding the minuend to the 2's complement of the subtrahend
- 4-bit adder-subtractor
 - → M=0: A + B; A + B + 0
 - \bullet M=1: A B; A + B' + 1

Fig. 4.13 4-Bit Adder Subtractor Combinational Logic-27

Overflow (p.159)

Overflow

- The number of bits is limited
- Add two positive numbers and obtain a negative number
- Add two negative numbers and obtain a positive number
- \lor V = 0, no overflow; V = 1, overflow

Example:

carries:	0 1	carries:	1 0
+70	0 1000110	-70	1 0111010
_+80	0 1010000	-80	1 0110000
+150	1 0010110	-150	0 1101010

4-6 Decimal Adder (p.160)

- Add two BCD's
 - 9 inputs: two BCD's and one carry-in
 - 5 outputs: one BCD and one carry-out
- Design approaches
 - ♦ A truth table with 2⁹ entries
 - Use 4-bit binary adder
 - » The maximum sum \leftarrow 9 + 9 + 1 = 19
 - » Binary to BCD

BCD Adder (1/3) (p.161)

■ BCD Adder: binary sum to BCD sum

Table 4.5

Derivation of BCD Adder

	Binary Sum					BCD Sum				
K	Z 8	Z 4	Z ₂	Z ₁	c	S 8	S 4	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	O	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD Adder (2/3) (p.161)

Modifications are needed if the sum > 9

- ♦ If sum > 9, then C = 1
 - K = 1, or
 - $Z_8Z_4 = 1 (11xx), or$
 - $Z_8Z_2 = 1 (1 \times 1 \times).$
- Modification: –(10)_d or + 6

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

BCD Adder (3/3) (p.162)

Block diagram

Fig. 4-14 Block Diagram of a BCD Adder

Combinational Logic-32

4-7 Binary Multiplier (1/3) (p.162)

Multiplication consists of

- **Generation of partial products**
- Accumulation of shifted partial products

Binary Multiplier (2/3) (p.163)

Partial products

AND operations

Fig. 4.15 Two-bit by two-bit binary multiplier

Combinational Logic-34

Digital System Design

Binary Multiplier (3/3) (p.164)

4-bit by 3-bit binary multiplier

Fig. 4.16 Four-bit by three-bit binary multiplier

Combinational Logic-35

Digital System Design

Various Multipliers

Combinational Logic-36

Digital System Design

4-8 Magnitude Comparator (1/3) (p.164)

- The comparison of two unsigned numbers
 - Outputs: A>B, A=B, A<B
- Design Approaches
 - **♦** The truth table of 2*n*-bit comparator
 - \rightarrow 2²ⁿ entries too cumbersome for large n
 - Use inherent regularity of the problem
 - » Reduce design efforts
 - » Reduce human errors

Magnitude Comparator (2/3) (p.165)

■ Algorithm → logic

- $A = A_3 A_2 A_1 A_0$; $B = B_3 B_2 B_1 B_0$
- ◆ A=B
 - » $A_3=B_3$, $A_2=B_2$, $A_1=B_1$, and $A_1=B_1$
 - Equality: $x_i = A_i B_i + A_i' B_i'$ (equivalence)
 - $(A=B) = x_3x_2x_1x_0=1$
- (A>B)

$$A_3B_3' + X_3A_2B_2' + X_3X_2A_1B_1' + X_3X_2X_1A_0B_0'$$

◆ (A<B)</p>

»
$$A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Implementation

Magnitude Comparator (3/3) (p.166)

Combinational Logic-39

Digital System Design

4-9 Decoder (1/2) (p.167, 168)

A n-to-m decoder

- ♦ A binary code of n bits = 2ⁿ distinct information
- n input variables; up to 2ⁿ output lines
- Only one output can be active (high) at any time

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

	Inputs	5				Out	puts			
X	y	z	D_0	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder (2/2)

An implementation

Fig. 4.18 Three-to-eight-line decoder

Combinational Logic-41

Digital System Design

Decoder with Enable Input (p.168)

Decoder with enable

- A decoder with an enable input
- Receive information on a single line and transmits it on one of 2ⁿ possible output lines

		D_0
E A B	D_0 D_1 D_2 D_3	
1 X X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A \longrightarrow D_1$
$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	1 0 1 1	D_2
$\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 1 & 1 \end{array}$	1 1 0 1 1 1 1 0	$B \longrightarrow B$
	<u> </u>	D_{0}
		$E \longrightarrow$

Fig. 4.19 Two-to-four-line decoder with enable input (NAND implementation)

Decoder/Demultiplexer

Decoder/demultiplexer

(a) Decoder with enable

(b) Demultiplexer

Demultiplexer

- Forward the data input to one of the outputs
- **1** input lines, *n* selection lines, and 2ⁿ input lines

Decoder Expansion (p.169)

Decoder expansion

♦ Two 3-to-8 decoder with enable: a 4-to-16 decoder

Fig. $4.20.4 \times 16$ decoder constructed with two 3×8 decoders

SOP Implementation (1/2) (p.170)

Combinational logic implementation

- ◆ Each output = a minterm
- Use a decoder and an external OR gate to implement any Boolean function of *n* input variables
- A full-adder
 - $S(x, y, z) = \Sigma(1, 2, 4, 7)$
 - » $C(x, y, z) = \Sigma(3, 5, 6, 7)$

Fig. 4.21 Implementation of a full adder with a decoder

SOP Implementation (2/2)

- Two possible approaches using decoder
 - » OR (minterms of F): k inputs (k minterms)
 - » NOR (minterms of F'): $2^n k$ inputs
- In general, it is not a practical implementation for a large design
 - Too many minterms

4-10 Encoders (1/2) (p.171)

The inverse function of a decoder

Table 4.7 *Truth Table of an Octal-to-Binary Encoder*

Inpu	Inputs								Outputs		
D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	х	y	Z	
1	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

The encoder can be implemented with three OR gates

Encoders (2/2)

An implementation

Limitations

- » Illegal input: $D_3 = D_6 = 1$
 - The output = 111 (D_7 =1)
- » Illegal input: $D_0 = D_1 = D_2 = D_3 = D_4 = D_5 = D_6 = D_7 = 0$
 - The output = 000 (D_0 =1)

Priority Encoder (1/3) (p.172)

- Resolve the ambiguity of illegal inputs
- Only one of the input is encoded

Table 4.8 *Truth Table of a Priority Encoder*

	Inp	uts	Outputs			
D ₀	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

- ◆ D₃ has the highest priority
- D₀ has the lowest priority
- X: don't-care conditions
 - » NOTICE: input and output don't-cares are different
- **♦** *V*: valid output indicator
 - » Avoid $D_0 = D_1 = D_2 = D_3 = 0$

Priority Encoder (2/3)

The maps for simplifying outputs x and y

Fig. 4.22 Maps for a priority encoder

Priority Encoder (3/3)

Implementation of priority encoder

Fig. 4.23 Four-input priority encoder

$$x = D_{2} + D_{3}$$

$$y = D_{3} + D_{1}D_{2}'$$

$$V = D_{0} + D_{1} + D_{2} + D_{3}$$

4-11 Multiplexers (p.174)

- Select binary information from one of many input lines and direct it to a single output line
- **2** input lines, *n* selection lines, and one output line

Fig. 4.24 Two-to-one-line multiplexer

Four-to-one-line Multiplexer (p.175)

■ 4-to-1 line multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Fig. 4.25 Four-to-one-line multiplexer

2ⁿ-to-1 Multiplexer

- **■** Note: 2ⁿ-to-1 multiplexer
 - ◆ n-to-2ⁿ decoder
 - ◆ Add the 2ⁿ input lines to each AND gate
 - OR (all AND gates)
 - n selection lines
 - An enable input (optional)

Quadruple 2-to-1-line MUX with Enable

Combinational Logic-56

Digital System Design

Boolean Function Implementation (1/4)

(p.176)

- MUX: a decoder + an OR gate
- n inputs Boolean function implementation
 - ◆ 2ⁿ-to-1 MUX: trivial (p.176)
 - » Each minterm value (0 or 1) is assigned to corresponding MUX input line
 - 2ⁿ⁻¹-to-1 MUX
 - » n-1 of these variables: MUX selection lines
 - » The last variable: MUX input lines

Boolean Function Implementation (2/4)

1 An example: $F(x, y, z) = \Sigma(1, 2, 6, 7)$

Fig. 4.27 Implementing a Boolean function with a multiplexer

Boolean Function Implementation (3/4)

Procedure:

- Assign an ordering sequence of the input variable
- The rightmost variable will be used for the input lines
- Assign the remaining n-1 variables to the selection lines w.r.t. their corresponding sequence
- Construct the truth table
- Consider a pair of consecutive minterms starting from m₀
- Determine the input lines

Boolean Function Implementation (4/4)

Example: $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

(p.178)

Fig. 4.28 Implementing a four-input function with a multiplexer

16-to-1 MUX Implementation (1/4)

	Α	В	С	D	F	16 x 1 MUX	(p.178)
-	0	0	0	0	0		·
	0	0	0	1	1	$c \longrightarrow s_o s_i$	
	0	0	1	0	0	$B \longrightarrow S_2$	
	0	0	1	1	1	$A \longrightarrow S_3$	
	0	1	0	0	1	o	
	0	1	0	1	0	1	
	0	1	1	0	0	2 3	
	0	1	1	1	0	4	F
	1	0	0	0	0	5 6	
	1	0	0	1	0	7	
	1	0	1	0	0	8 9	
	1	0	1	1	1	10	
	1	1	0	0	1	11 12	
	1	1	0	1	1	13	
	1	1	1	0	1	14 15	
	1	1	1	1	1		

Combinational Logic-61

Digital System Design

8-to-1 MUX Implementation (2/4)

	A	В	С	D	F	
•	0	0	0	0	0	5 - D
	0	0	0	1	1	$F_0 = D$
•	0	0	1	0	0	F ₁ = D
	0	0	1	1	1	r ₁ - D
•	0	1	0	0	1	5 DI
	0	1	0	1	0	$F_2 = D'$
	0	1	1	0	0	E - 0
	0	1	1	1	0	$F_3 = 0$
	1	0	0	0	0	E - 0
	1	0	0	1	0	$F_4 = 0$
	1	0	1	0	0	5 - 0
	1	0	1	1	1	F ₅ = D
	1	1	0	0	1	F ₆ = 1
	1	1	0	1	1	- 6 –
	1	1	1	0	1	F ₇ = 1
	1	1	1	1	1	7

4-to-1 MUX Implementation (3/4)

Α	В	С	D	F			
0	0	0	0	0			4 x 1 MUX
0	0	0	1	1	5 - D		
0	0	1	0	0	$F_0 = D$	В	S_o
0	0	1	1	1		Α	S_{2}
0	1	0	0	1			
0	1	0	1	0			
0	1	1	0	0	$F_1 = C'D'$	_	
0	1	1	1	0		F_o	0 F
1	0	0	0	0		F ₁	1
1	0	0	1	0	5 60	1	
1	0	1	0	0	$F_2 = CD$	F ₂	2
1	0	1	1	1			
1	1	0	0	1		F ₃	3
1	1	0	1	1	F - 1		
1	1	1	0	1	F ₃ = 1		
1	1	1	1	1			

Combinational Logic-63

Digital System Design

2-to-1 MUX Implementation (4/4)

A B C D F	
0 0 0 0	_
0 0 0 1 1 1 2x1MUX	
0 0 1 0 0	
$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad \qquad s_o$	
$F_0 = B'D + BC'D'$	
0 1 0 1 0	
0 1 1 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F
1 0 0 0 0	
1 0 0 1 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 0 1 1 1	
1 1 0 0 1 $F_1 = B'CD + B$	
1 1 0 1 1	
1 1 1 0 1	
1 1 1 1 1 1 Combinational Logic-64 Digital	System Desian

Three-state (Tri-state) Gates (p.178, 179)

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)

Fig. 4.29 Graphic symbol for a three-state buffer

С	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Multiplexer Examples

Fig. 4.30 Multiplexer with three-state gates