CS201: Discrete Math for Computer Science 2024 Spring Semester Written Assignment #2

Due: 23:55 on Apr. 1th, 2024, please submit through Blackboard Please answer questions in English. Using any other language will lead to a zero point.

- **Q. 1.** Consider sets A and B. Prove or disprove the following.
 - (1) $\mathcal{P}(A \times B) = \mathcal{P}(B \times A)$.
 - (2) $(A \oplus B) \oplus B = A$, where $A \oplus B$ denotes the set containing those elements in either A or B, but not both.
 - (3) For any function $f: A \to B$, $f(S \cap T) = f(S) \cap f(T)$, for any two sets $S, T \subseteq A$.
 - (4) For function $f:A\to B$, suppose its inverse function f^{-1} exists. $f^{-1}(S\cap T)=f^{-1}(S)\cap f^{-1}(T)$, for any $S,T\subseteq B$.

Solution:

- (1) This statement is false. Consider a counterexample $A = \{1\}$ and $B = \{2\}$. Thus, $A \times B = \{(1,2)\}$ and $B \times A = \{(2,1)\}$. Hence, $\mathcal{P}(A \times B) = \{\emptyset, (1,2)\}$ and $\mathcal{P}(B \times A) = \{\emptyset, (2,1)\}$. Since $(1,2) \in \mathcal{P}(A \times B)$ and $(1,2) \notin \mathcal{P}(B \times A)$, $\mathcal{P}(A \times B) = \mathcal{P}(B \times A)$ does not hold.
- (2) This statement is true. This can be proven using membership table.

\overline{A}	В	$A \oplus B$	$(A \oplus B) \oplus B$
1	1	0	1
1	0	1	1
0	1	1	0
0	0	0	0

(3) The statement is false. A counterexample is: $f(n) = n^2$ for $A = \mathbf{R}$ and $B = \mathbf{R}^+$. Consider $S = \{1\}$ and $T = \{-1\}$. Then, $f(S) = \{1\}$ and $f(T) = \{1\}$. Thus, $f(S) \cap f(T) = \{1\}$. However, $S \cap T = \emptyset$ and hence $f(S \cap T) = \emptyset$.

- (4) This statement is true. Since the inverse function f^{-1} exists, f must be a bijection, i.e., it is both one-to-one and onto. Thus, f^{-1} is also a bijection. We complete the proof by showing that $f^{-1}(S \cap T)$ and $f^{-1}(S) \cap f^{-1}(T)$ are subsets of each other:
 - $-f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$: For any $x \in f^{-1}(S \cap T)$, there exists a y such that $y \in S \cap T$ and $f^{-1}(y) = x$. Thus, we have $y \in S$ and $y \in T$. This implies that $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$. Hence, $x \in f^{-1}(S) \cap f^{-1}(T)$.
 - To prove $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$: If $x \in f^{-1}(S) \cap f^{-1}(T)$, then $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$. Then, there exists $y_1 \in S$ and $y_2 \in T$ such that $f^{-1}(y_1) = x$ and $f^{-1}(y_2) = x$. Since f^{-1} is a bijection, it is one-to-one. Thus, $y_1 = y_2 \in S \cap T$. This implies that $x \in f^{-1}(S \cup T)$.
- **Q. 2.** Let A, B and C be sets. Prove the following using set identities.

(1)
$$(B-A) \cup (C-A) = (B \cup C) - A$$

(2)
$$(A \cap B) \cap \overline{(B \cap C)} \cap (A \cap C) = \emptyset$$

Solution:

(1) We have

$$(B-A) \cup (C-A) = (B \cap \overline{A}) \cup (C \cap \overline{A})$$
 by definition
= $\overline{A} \cap (B \cup C)$ ditributive law
= $(B \cup C) - A$ by definition

(2) We have

$$(A \cap B) \cap \overline{(B \cap C)} \cap (A \cap C)$$

$$= (A \cap B) \cap (A \cap C) \cap \overline{(B \cap C)} \quad \text{commutative law}$$

$$= (A \cap B \cap C) \cap \overline{(B \cap C)} \quad \text{associative law}$$

$$= (A \cap B \cap C) \cap \overline{(B \cup \overline{C})} \quad \text{De Morgan}$$

$$= ((A \cap B \cap C) \cap \overline{B}) \cup ((A \cap B \cap C) \cap \overline{C}) \quad \text{distributive law}$$

$$= \emptyset \cup \emptyset \quad \text{Complement}$$

$$= \emptyset.$$

Q. 3. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.

Solution: For the "if" part, given $A \subseteq B$, we want to show that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, i.e., if $C \subseteq A$, then $C \subseteq B$. Since $A \subseteq B$, $A \subseteq C$ directly follows.

For the "only if" part, given that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we want to show that $A \subseteq B$. Suppose that $a \in A$. Then $\{a\} \in \mathcal{P}(A)$. Since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, it follows that $\{a\} \in \mathcal{P}(B)$, which means that $\{a\} \subseteq B$. This implies that $a \in B$, and completes the proof.

Q. 4. Let $f_1: \mathbf{R} \to \mathbf{R}^+$ and $f_2: \mathbf{R} \to \mathbf{R}^+$. Let $g: \mathbf{R} \to \mathbf{R}$, and $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.

- (a) Prove that $f_1(x) + f_2(x)$ is $\Theta(g(x))$.
- (b) Suppose we change the range of functions $f_1(x)$ and $f_2(x)$ to the set of real numbers, i.e., $f_1: \mathbf{R} \to \mathbf{R}$ and $f_2: \mathbf{R} \to \mathbf{R}$. Prove or disprove that $f_1(x) + f_2(x)$ is always $\Theta(g(x))$.

Solution:

(a) By the definition of Θ , since $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$, there exist real numbers C_1 , C'_1 , C_2 , and C'_2 and positive real numbers k_1 and k_2 such that

$$C_1|g(x)| \le |f_1(x)| \le C_1'|g(x)|, \ x > k_1,$$

$$C_2|g(x)| \le |f_2(x)| \le C_2'|g(x)|, \ x > k_2.$$

Thus, let $k = \max\{k_1, k_2\}$. Then, since $f_1(x) > 0$ and $f_2(x) > 0$, we have

$$(C_1 + C_2)|g(x)| \le |f_1(x) + f_2(x)| \le (C_1' + C_2')|g(x)|, \ x > k.$$

Thus, $f_1(x) + f_2(x)$ is $\Theta(g(x))$.

(b) The statement $f_1(x) + f_2(x)$ is $\Theta(g(x))$ does not always hold. Suppose $f_1(x) = x^2$ and $f_2(x) = -x^2$. We have $f_1(x)$ and $f_2(x)$ are $\Theta(x^2)$. However, $f_1(x) + f_2(x) = 0$, which is no longer $\Theta(x^2)$.

- **Q. 5.** Let $f_1: \mathbf{Z}^+ \to \mathbf{R}^+$, and $f_2: \mathbf{Z}^+ \to \mathbf{R}^+$. Let $g: \mathbf{Z}^+ \to \mathbf{R}$, and suppose $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.
 - (a) Prove or disprove that $(f_1 f_2)(x)$ is $\Theta(g(x))$.
 - (b) Prove or disprove that $(f_1f_2)(x)$ is $\Theta(g^2(x))$, where $g^2(x)=(g(x))^2$.

Solution:

- (a) This is false. Consider a counterexample. Let $f_1(x) = x^2 + 2$, $f_2(x) = x^2 + 1$, and $g(x) = x^2$. Thus, $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$. Note that $(f_1 f_2)(x) = 1$, which is not $\Theta(g(x))$.
- (b) It is true that $(f_1f_2)(x)$ is $\Theta(g^2(x))$. By the definition of Θ , since $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$, there exist real numbers C_1 , C'_1 , C_2 , and C'_2 and positive real numbers k_1 and k_2 such that

$$C_1|g(x)| \le |f_1(x)| \le C_1'|g(x)|, \ x > k_1,$$

$$C_2|g(x)| \le |f_2(x)| \le C_2'|g(x)|, \ x > k_2.$$

Thus, let $k = \max\{k_1, k_2\}$, $C = C_1C_2$, and $C' = C'_1C'_2$. Then, since $f_1(x) > 0$ and $f_2(x) > 0$, we have

$$C(|g(x)|)^2 \le |(f_1 f_2)(x)| \le C'(|g(x)|)^2, \ x > k.$$

That is, $C|(g(x))^2| \le |(f_1f_2)(x)| \le |C'(g(x))^2|$, x > k. Thus, $(f_1f_2)(x)$ is $\Theta(g^2(x))$.

Q. 6. Prove or disprove that there exists an infinite set A such that $|A| < |\mathbf{Z}^+|$.

Solution: This statement is false. Suppose there exists an infinite set A such that $|A| < |\mathbf{Z}^+|$. This means that $|A| \le |\mathbf{Z}^+|$ and $|A| \ne |\mathbf{Z}^+|$.

- Since $|A| \neq |\mathbf{Z}^+|$, there does not exist any one-to-one correspondence that maps from A to \mathbf{Z}^+ . Thus, A cannot be countable infinite.
- Since $|A| \leq |\mathbf{Z}^+|$, there exists a one-to-one function maps from A to \mathbf{Z}^+ . There is a subset $S \subset \mathbf{Z}^+$ such that there exists a one-to-one correspondence that maps from A to S. Since the subset of a countable set is also countable, S is countable. Thus, S is either finite or there exists a one-to-one correspondence from S to \mathbf{Z}^+ . This leads to the fact that A is either finite or countable infinite.

Thus, contradiction occurs. This complete the disprove.

Q. 7. Let x be a real number. Show that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.

Solution:

Certainly every real number x lies in an interval [n, n+1) for some integer n; indeed n = |x|.

- if $x \in [n, n + \frac{1}{3})$, then 3x lies in the interval [3n, 3n + 1), so $\lfloor 3x \rfloor = 3n$. Moreover in this case $x + \frac{1}{3}$ is still less than n + 1, and $x + \frac{2}{3}$ is still less than n + 1. So, $\lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor = n + n + n = 3n$ as well.
- if $x \in [n + \frac{1}{3}, n + \frac{2}{3})$, then $3x \in [3n + 1, 3n + 2)$, so $\lfloor 3x \rfloor = 3n + 1$. Moreover in this case $x + \frac{1}{3}$ is in $[n + \frac{2}{3}, n + 1)$, and $x + \frac{2}{3}$ is in $[n + 1, n + \frac{4}{3})$, so $\lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor = n + n + (n + 1) = 3n + 1$ as well.

• if $x \in [n + \frac{2}{3}, n + 1)$, similar and both sides equal 3n + 2.

Q. 8. Derive the formula for $\sum_{k=1}^{n} k^3$.

Solution: Again, we use "telescoping" to derive this formula. Since $k^4 - (k-1)^4 = k^4 - (k^4 - 4k^3 + 6k^2 - 4k + 1) = 4k^3 - 6k^2 + 4k - 1$, we have

$$\sum_{k=1}^{n} [k^4 - (k-1)^4] = 4 \sum_{k=1}^{n} k^3 - 6 \sum_{k=1}^{n} k^2 + 4 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1$$

$$= 4 \sum_{k=1}^{n} k^3 - 6n(n+1)(2n+1)/6 + 4n(n+1)/2 - n$$

$$= 4 \sum_{k=1}^{n} k^3 - n(n+1)(2n+1) + 2n(n+1) - n$$

$$= n^4.$$

Thus, it then follows that

$$4\sum_{k=1}^{n} k^{3} = n^{4} + n(n+1)(2n+1) - 2n(n+1) + n$$
$$= n^{2}(n+1)^{2}.$$

Then we get the formula $\sum_{k=1}^{n} k^3 = n^2(n+1)^2/4$.

Q. 9. For each set defined below, determine whether the set is <u>countable</u> or <u>uncountable</u>. Explain your answers. Recall that N is the set of natural numbers and R denotes the set of real numbers.

- (a) The set of all subsets of students in CS201
- (b) $\{(a,b)|a, b \in \mathbf{N}\}$
- (c) $\{(a,b)|a \in \mathbf{N}, b \in \mathbf{R}\}$

Solution:

- (a) Countable. The number of students in CS201 is finite, so the size of its power set is also finite. All finite sets are countable.
- (b) Countable. The set is the same as $N \times N$. We now show that these elements can be listed in a sequence:

$$(0,0), (1,0), (1,1), (0,1), (2,0), (2,1), (2,2), (1,2), (0,2), \dots$$

That is, we start with a=0, list (0,0). Then, we work on a=1, list (1,0), (1,1), (0,1). Subsequently, for any a=i, we list (i,0), (i,1), ..., (i,i), (i-1,i), ...(0,i). Then, we set a=i+1 and continue the process. It can be easily checked that all elements in set $\{(a,b)|a, b \in \mathbb{N}\}$ are in this sequence. (Note: as long as students can show there is a sequence that can list all the elements or there is a one-to-one corresponds from the set of positive integers to this set, then it is correct.)

- (c) Uncountable. We will prove by contradiction. Suppose $\{(a,b) \mid a \in \mathbb{N}, b \in \mathbb{R}\}$ is countable. Then, it's subset $\{(a,b) \mid a=1, b \in \mathbb{R}, 0 < b < 1\}$ is also countable. Thus, we can list all the elements in this set in a sequence. Let $(1,r_1)$, $(1,r_2)$, $(1,r_3)$... be the elements in the sequence, where
 - $r_1 = 0.d_{11}d_{12}d_{13}...$
 - $r_2 = 0.d_{21}d_{22}d_{23}...$
 - $r_3 = 0.d_{31}d_{32}d_{33}...$

— ...

Now, we aim to construct a tuple (1, r) that is not in this sequence. Let $r = d_1 d_2 d_3 \dots$ Set $d_i = 3$ if $d_{ii} \neq 3$, and $d_i = 2$ if $d_{ii} = 3$. It can be seen that r is different from any element in the sequence. Thus, this leads to a contradiction.

Q. 10. Show that the set $\mathbf{Z}^+ \times \mathbf{Z}^+$ is countable by showing that the polynomial function $f: \mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+$ with f(m,n) = (m+n-2)(m+n-1)/2+m is one-to-one and onto.

Solution: It is clear from the formula that the range of values the function takes on for a fixed value of m+n, say m+n=x, is (x-2)(x-1)/2+1 through (x-2)(x-1)/2+(x-1), because m can assume the values $1,2,3,\ldots,(x-1)$ under these conditions, and the first term in the formula is a fixed positive integer when m+n is fixed. To show that this function is one-to-one and onto, we merely need to show that the range of values for x+1 picks up precisely where the range of values for x left off, i.e., that f(x-1,1)+1=f(1,x). We have $f(x-1,1)+1=(x-2)(x-1)/2+(x-1)+1=(x^2-x+2)/2=(x-1)x/2+1=f(1,x)$.

Q. 11. Assume that |S| denotes the cardinality of the set S. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.

By definition, we have one-to-one and onto functions $f:A\to B$ and $g:B\to C$. Then $g\circ f$ is a one-to-one and onto function from A to C, so we have |A|=|C|.

Q. 12. (5 points) Suppose that f(x), g(x) and h(x) are functions such that f(x) is $\Theta(g(x))$ and g(x) is $\Theta(h(x))$. Show that f(x) is $\Theta(h(x))$.

Solution: The definition of "f(x) is $\Theta(g(x))$ " is that f(x) if both O(g(x)) and $\Omega(g(x))$. This means that there are positive constants C_1, k_1, C_2 , and k_2 such that $|f(x)| \leq C_2|g(x)|$ for all $x > k_2$ and $|f(x)| \geq C_1|g(x)|$ for all $x > k_1$. Similarly, we have that there are positive constants C'_1, k'_1, C'_2 , and k'_2 such that $|g(x)| \leq C'_2|h(x)|$ for all $x > k'_2$ and $|g(x)| \geq C'_1|h(x)|$ for all $x > k'_1$. We can combine these inequalities to obtain $|f(x)| \leq C_2C'_2|h(x)|$ for all $x > \max(k_2, k'_2)$ and $|f(x)| \geq C_1C'_1|h(x)|$ for all $x > \max(k_1, k'_1)$. This means that f(x) is $\Theta(h(x))$.

Q. 13. Consider **Horner's method**. This pseudocode shows how to use this method to find the value of $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ at x = c.

Algorithm 1 Horner $(c, a_0, a_1, \ldots, a_n)$: real numbers)

```
y := a_n

for i := 1 to n do

y := y * c + a_{n-i}

end for

return y \{ y = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 \}
```

Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degree n at x=c? (Do not count additions used to increment the loop variable.)

Solution:

n multiplications and n additions.