FONCTIONS LINÉAIRES ET AFFINES

1. FONCTIONS LINÉAIRES

DÉFINITION

Une fonction **linéaire** est une fonction f définie sur $\mathbb R$ par une formule du type : $x\mapsto ax$ où $a\in \mathbb R$

a s'appelle le **coefficient de la fonction** f.

REMARQUE

La définition ci-dessus indique que si f est une fonction linéaire, les valeurs de f(x) sont proportionnelles aux valeurs de x, le coefficient de proportionnalité étant le coefficient a de la fonction f.

PROPRIÉTÉ

La courbe représentative d'une fonction linéaire est une **droite qui passe par l'origine** du repère.

EXEMPLE

Représentation graphique de la fonction linéaire $x \mapsto \frac{3}{2}x$

PROPRIÉTÉ

Soit f une fonction linéaire.

Pour tous réels x et x': f(x+x') = f(x) + f(x')

Pour tous réels k et x: f(kx) = kf(x)

2. FONCTIONS AFFINES

DÉFINITION

Une fonction **affine** est une fonction définie sur \mathbb{R} par une formule du type : $x \mapsto ax + b$ où $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

REMARQUE

Si b=0, la fonction est linéaire. Les fonctions linéaires sont donc des cas particuliers des fonctions affines.

PROPRIÉTÉ

La courbe représentative d'une fonction affine est une **droite**.

a est le **coefficient directeur** de la droite et b son **ordonnée à l'origine**.

EXEMPLE

Représentation graphique de la fonction affine $x \mapsto \frac{1}{2}x + 2$

PROPRIÉTÉ

Soit f une fonction affine de représentation graphique $\mathcal D$ et soient A et B deux points de $\mathcal D$.

Le rapport $\frac{y_B - y_A}{x_B - x_A}$ ne dépend pas des points A et B choisis et est égal au coefficient directeur de la droite \mathcal{D} :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

Coefficient directeur de \mathcal{D} : $a = \frac{y_B - y_A}{x_B - x_A} = \frac{1,5}{3} = 0,5$

THÉORÈME

Une fonction affine $x \mapsto ax + b$ est :

- **strictement croissante** si *a* est **strictement positif**.
- strictement décroissante si a est strictement négatif.
- **constante** si *a* est **nul**.

DÉMONSTRATION

Démontrons, par exemple, que la fonction $f: x \mapsto ax + b$ est strictement décroissante si a < 0.

Soient deux réels x_1 et x_2 tels que $x_1 < x_2$

Alors $ax_1 > ax_2$ (on change le sens de l'inégalité car on multiplie par un réel négatif) donc $ax_1 + b > ax_2 + b$ c'est à dire :

$$f(x_1) > f(x_2)$$

Le sens de l'inégalité est inversé donc f est strictement décroissante sur $\mathbb R$.

REMARQUE

Ce théorème s'applique aussi aux fonctions linéaires puisque les fonctions linéaires sont des fonctions affines particulières.