## CENTRO DE EDUCACIÓN TÉCNICA N°5 "DON JAIME FELIPE MORANT"

Análisis Matemático 3° Ciclo Superior Estudiantes en proceso 2020-2021-2022

Profesores: Mella Carmen, Rivero Axel



## Guía de trabajo para estudiantes de Matemática Aplicada 3° CS (5to año)

## Acreditación de saberes 2020-2021 y 2022

#### **MENSAJE PARA LAS FAMILIAS Y ESTUDIANTES:**

Estimadas familias y estudiantes:

Realizamos este Trabajo con el objetivo de que sea una guía para ejercitar, pero esa **NO** es la instancia final de acreditación y no se debe entregar. Se evaluará si efectivamente el estudiante comprendió los saberes a acreditar, por lo tanto, lo deberá defender de manera presencial.

Por lo tanto, el día de la acreditación final evaluar con ejercicios similares a los dados en el trabajo en un tiempo estimado de 80 minutos aproximadamente.

Los saludamos atentamente.

#### TRABAJO INTEGRADOR

1) Realiza el gráfico de las siguientes funciones y su análisis completo.

a) 
$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}x - 3$$
 b)  $h(x) = -\frac{1}{x+3} - 2$  c)  $g(x) = \log(3-x) + 1$ 

$$d) R(t) = \begin{cases} -2t - 11 & \text{Si } t \le -2 \\ t^2 - 11 & \text{Si } t > -2 \end{cases} \qquad e) f(x) = \begin{cases} \frac{1}{x} & \text{Si } x \le -1 \\ 2 & \text{Si } -1 < x < 4 \\ \log(x - 2) & \text{Si } x > 4 \end{cases}$$

$$f)f(x) = \begin{cases} -4x - 7 & \text{Si } x \le -3 \\ 2^x & \text{Si } -3 < x < 3 \\ (x - 3)^2 & \text{Si } x > 3 \end{cases} \qquad g) \begin{cases} \frac{1}{2}p - \frac{3}{2} & \text{Si } p < 1 \\ -p & \text{Si } 1 \le p < 4 \\ p - 8 & \text{Si } p > 4 \end{cases}$$

2) Calcular los siguientes límites:

## CENTRO DE EDUCACIÓN TÉCNICA N°5 "DON JAIME FELIPE MORANT"

# Análisis Matemático 3° Ciclo Superior

## Estudiantes en proceso 2020-2021-2022

Profesores: Mella Carmen, Rivero Axel





$$\lim_{x \to 0} f(x) \qquad \lim_{x \to 1} f(x)$$
$$\lim_{x \to +\infty} f(x) \qquad \lim_{x \to -\infty} f(x)$$



$$\lim_{x \to 1} g(x), \lim_{x \to 0} g(x), \lim_{x \to -1} g(x)$$
$$\lim_{x \to +\infty} g(x), \lim_{x \to -\infty} g(x)$$

#### Factorizar y simplificar las siguientes expresiones algebraicas fraccionarias

| $a)\left(\frac{x^2}{x+2}\right)\cdot\left(\frac{x^2-16}{x^3+4x^2}\right) =$               | $b)\left(\frac{x+2}{x^2-2x}\right)\cdot\left(\frac{x^2-4}{x^2+4x+4}\right)$ | $c)\left(\frac{4-x^2}{2x-4}\right)\cdot\left(\frac{6}{x^2+4x+4}\right)$ |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $d)\frac{x^2 + 5x + ax + 5a}{x^2 + 10x + 25} \cdot \frac{x^2 - a^2}{(x+a)^3} \cdot (x+5)$ | $e)\frac{x+1}{x^2+x} =$                                                     | $f)\frac{x^3 - 49x}{x^3 - 14x^2 + 49x} =$                               |
| $g)\frac{-x+2}{x^3-4x} =$                                                                 | $h)\frac{x+2}{x^2-4} =$                                                     | $i)\frac{x^4 - 16}{x - 2} =$                                            |
| $j)\frac{x^3 + 2x^2 + x + 2}{x + 2} =$                                                    | $k)\frac{x+6}{x^2-36} =$                                                    | $l)\frac{x^2+2}{x^3-x^2+2x-2} =$                                        |

#### 4) Graficar y calcular los limites solicitados. Justificar en cada caso

a) 
$$f(x) = \begin{cases} -x^2 + 9 & Si \ x \le -2 \\ 5 & Si - 2 < x < 2 \\ -x^2 + 9 & Si \ x \ge 2 \end{cases}$$
, El límite cuando:  $x \to -2$ ;  $x \to -3$ ;  $x \to 0$ ;  $x \to 2$ ;  $x \to +\infty$ 

## CENTRO DE EDUCACIÓN TÉCNICA N°5 "DON JAIME FELIPE MORANT"

# Análisis Matemático 3° Ciclo Superior

## Estudiantes en proceso 2020-2021-2022

Profesores: Mella Carmen, Rivero Axel



b) 
$$g(x) = \begin{cases} -x - 11 & \text{si } x \le -3 \\ -x^2 + 9 & \text{si } -3 < x < 3 \end{cases}$$
, El límite cuando:  $x \to -3$ ;  $x \to 0$ ;  $x \to \frac{3}{2}$ ;  $x \to x \to 0$ 

$$-\infty$$
;  $x \to +\infty$ 

c) 
$$h(x) = 2^x + 4$$
 El límite cuando:  $x \to -3$ ;  $x \to 0$ ;  $x \to \frac{3}{2}$ ;  $x \to -\infty$ ;  $x \to +\infty$ 

d) 
$$j(x) = \frac{1}{x+2} + 6$$
 El límite cuando:  $x \to -2$ ;  $x \to 0$ ;  $x \to -\infty$ ;  $x \to +\infty$ 

e) 
$$k(x) = log(x + 2)$$
 El límite cuando:  $x \to -2$ ;  $x \to 0$ ;  $x \to +\infty$ 

#### 5) Resolver los siguientes límites

| a) $\lim_{x \to \frac{1}{2}} \frac{3}{1 - 2x}$                    | $b) \lim_{x \to -\infty} \frac{3x^5 + 5x}{2x^2 - x}$ | $c)\lim_{x\to 1}\frac{x^3-1}{x-1}$                  |
|-------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| $d) \lim_{x \to -\infty} \frac{x^3}{x^2 + x}$                     | $e) \lim_{x \to 1} \frac{2x - 2}{\sqrt{x} - 1}$      | $f) \lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$      |
| $g) \lim_{x \to \frac{1}{2}} \frac{2x^2 - 7x + 3}{2x^2 - 5x + 2}$ | $h) \lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$  | $i) \lim_{x \to -2} \frac{x^5 - 32}{x^2 - 4x - 12}$ |
| $j) \lim_{x \to -1} \frac{3x+3}{x^2+2x+1}$                        | $k) \lim_{x \to -1} \frac{x^4 - 1}{x^5 + 1}$         | $l) \lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$    |

### 6) Aplicando las propiedades del logaritmo, calcular:

- a)  $\log_2(16.8)=$
- b)  $\log_3(27:3) =$
- c)  $\log_2 4^3 =$
- d)  $\log_5 (25.5)^3 =$
- e)  $\log_5 \frac{625}{125} =$
- f)  $\log_2(2^4.16) =$
- g)  $[\log_3(9.3) + \log_3 81]^2$

#### 7) Resolver las siguientes ecuaciones logarítmicas y exponenciales:

a) 
$$2^{x+1} - 2^x = 128$$
 b)  $\log_3(5x + 4) = 3$  c)  $\log_{12}(4x + 2) = 0$  d)  $3^{5x+2} = 243$ 

e) 
$$8^{4x+2} = 1$$
 f)  $\frac{1}{2} \cdot 2^x - 4 = g$ )  $10 \log_5 x - 5 \log_5 x + 5 = 0$  h)  $4 \cdot 3^x - 4 = 0$ 

*i*) 
$$\log_7(x+9) = 0$$