ECRICOME 2017

Exercice 1 -

Partie I - Calcul matriciel

1. Calculons le produit PQ.

$$PQ = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 9 & -9 & 3 \\ -2 & 4 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I_3.$$

Par conséquent, on a $P \times \left(\frac{1}{6}Q\right) = I_3$, ce qui suffit à prouver que la matrice P est inversible et que son inverse vaut $P^{-1} = \frac{1}{6}Q$.

2. Notons $X_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Le vecteur X_1 est non-nul et $MX_1 = \begin{pmatrix} 5 \\ 10 \\ 15 \end{pmatrix} = 5X_1$.

Ainsi X_1 est vecteur propre de la matrice M, associé à la valeur propre 5.

Notons $X_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Le vecteur X_2 est non-nul et $MX_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = X_2$.

Ainsi X_2 est vecteur propre de la matrice M, associé à la valeur propre 1.

Notons $X_3 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$. Le vecteur X_3 est non-nul et $MX_3 = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix} = 2X_3$.

Ainsi X_3 est vecteur propre de la matrice M, associé à la valeur propre 2.

3. La matrice M est une matrice de taille 3×3 et elle possède trois valeurs propres distinctes. On en déduit qu'elle est diagonalisable. En outre, on remarque que la matrice P contient la juxtapostion des trois vecteurs propres X_1 , X_2 et X_3 .

Ainsi, en posant D la matrice diagonale composée des valeurs propres de M : $D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, on a que

$$M = PDP^{-1} = PD\left(\frac{1}{6}Q\right) = \frac{1}{6}PDQ.$$

4. Notons \mathcal{P}_n la proposition : " $M^n = \frac{1}{6}PD^nQ$ ".

Initialisation : Pour n = 0,

$$M^0 = I_3$$
 et $\frac{1}{6}PD^0Q = \frac{1}{6}PI_3Q = \frac{1}{6}PQ = I_3$,

donc \mathcal{P}_0 est vraie.

Hérédité: Soit $n \in \mathbb{N}$. Supposons que \mathcal{P}_n est vraie et montrons que \mathcal{P}_{n+1} est vraie aussi. Par hypothèse de récurrence, $M^n = \frac{1}{6}PD^nQ$ et d'après la question 3, on sait $M = \frac{1}{6}PDQ$. Par conséquent,

$$M^{n+1} = M^n M = \left(\frac{1}{6}PD^nQ\right)\left(\frac{1}{6}PDQ\right) = \frac{1}{6}PD^n\left(Q \times \frac{1}{6}P\right)DQ.$$

Comme $P^{-1} = \frac{1}{6}Q$, on a $Q \times \frac{1}{6}P = I_3$ et donc

$$M^{n+1} = \frac{1}{6}PD^nI_3DQ = \frac{1}{6}PD^nDQ = \frac{1}{6}PD^{n+1}Q.$$

Donc \mathcal{P}_{n+1} est vraie et ainsi la proposition est héréditaire.

Conclusion : Comme la propriété est héréditaire et que \mathcal{P}_0 est vraie, alors, par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbb{N} , i.e.

$$\forall n \in \mathbb{N}, \quad M^n = \frac{1}{6}PD^nQ.$$

5. La première colonne de la matrice M^n est obtenue en effectuant le produit de la matrice M^n par la matrice colonne $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. D'après la question précédente, on sait que $M^n = \frac{1}{6}PD^nQ$, et comme la matrice D est diagonale, alors pour tout n dans \mathbb{N} ,

$$D^{n} = \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 1^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} = \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix}.$$

En effectuant successivement les produits de matrices de droite à gauche dans le calcul suivant, on obtient successivement

$$\begin{split} M^{n} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} &= \frac{1}{6} P D^{n} Q \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 9 & -9 & 3 \\ -2 & 4 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ &= \frac{1}{6} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 \\ 9 \\ -2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} 5^{n} \\ 9 \\ -2^{n+1} \end{pmatrix} \\ &= \frac{1}{6} \begin{pmatrix} 5^{n} + 9 - 2^{n+2} \\ 2 \times 5^{n} - 2^{n+1} \\ 3 \times 5^{n} - 9 + 3 \times 2^{n+1} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5^{n} + 9 - 2 \times 2^{n+1} \\ 2 \times 5^{n} - 2^{n+1} \\ 3 \times 5^{n} - 9 + 3 \times 2^{n+1} \end{pmatrix} \\ &= \frac{1}{6} \begin{pmatrix} 5^{n} - 2^{n+2} + 9 \\ 2(5^{n} - 2^{n}) \\ 3(5^{n} + 2^{n+1}) - 9 \end{pmatrix}. \end{split}$$

En conclusion, la première colonne de la matrice M^n est bien

$$\frac{1}{6} \binom{5^n - 2^{n+2} + 9}{2(5^n - 2^n)} \cdot 3(5^n + 2^{n+1}) - 9$$

Partie II - Étude de l'entraînement d'un athlète au triathlon

1. L'athlète commence son entraînement par la natation donc

$$a_0 = 1$$
, $b_0 = 0$ et $c_0 = 0$.

D'après les règles de l'entraînement indiquées dans l'énoncé, puisque l'athlète a pratiqué la natation le jour 0, il pratiquera au jour 1 :

- la natation avec une probabilité 1/5,
- le cyclisme avec une probabilité 1/5,
- la course à pied avec une probabilité 3/5.

Autrement dit,

$$a_1 = \frac{1}{5}$$
, $b_1 = \frac{1}{5}$ et $c_1 = \frac{3}{5}$.

2. Soit un entier naturel n dans \mathbb{N} fixé. Les évènements A_n , B_n et C_n forment un système complet d'évènements donc, d'après la formule des probabilités totales,

$$\begin{aligned} a_{n+1} &= P(A_{n+1}) = P(A_n \cap A_{n+1}) + P(B_n \cap A_{n+1}) + P(C_n \cap A_{n+1}) \\ &= P(A_n) P_{A_n}(A_{n+1}) + P(B_n) P_{B_n}(A_{n+1}) + P(C_n) P_{C_n}(A_{n+1}) \\ &= a_n \times \frac{1}{5} + b_n \times \frac{2}{5} + c_n \times 0 = \frac{1}{5} a_n + \frac{2}{5} b_n. \end{aligned}$$

De la même manière, en utilisant à nouveau la formule des probabilités totales, on obtient

$$b_{n+1} = P(B_{n+1}) = P(A_n)P_{A_n}(B_{n+1}) + P(B_n)P_{B_n}(B_{n+1}) + P(C_n)P_{C_n}(B_{n+1}) = \frac{1}{5}a_n + \frac{3}{5}b_n + \frac{1}{5}c_n$$

et

$$c_{n+1} = P(C_{n+1}) = P(A_n)P_{A_n}(C_{n+1}) + P(B_n)P_{B_n}(C_{n+1}) + P(C_n)P_{C_n}(C_{n+1}) = \frac{3}{5}a_n + \frac{4}{5}c_n.$$

En conclusion, pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \frac{1}{5}a_n + \frac{2}{5}b_n$$
, $b_{n+1} = \frac{1}{5}a_n + \frac{3}{5}b_n + \frac{1}{5}c_n$ et $c_{n+1} = \frac{3}{5}a_n + \frac{4}{5}c_n$.

3. On a

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{5}a_n + \frac{2}{5}b_n \\ \frac{1}{5}a_n + \frac{3}{5}b_n + \frac{1}{5}c_n \\ \frac{3}{5}a_n + \frac{4}{5}c_n \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & 0 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\ \frac{3}{5} & 0 & \frac{4}{5} \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}.$$

On remarque alors que pour obtenir $A \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$, il suffit de poser

$$A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & 0\\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5}\\ \frac{3}{5} & 0 & \frac{4}{5} \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 2 & 0\\ 1 & 3 & 1\\ 3 & 0 & 4 \end{pmatrix} = \frac{1}{5}M.$$

On remarque alors que la matrice A s'exprime comme un multiple de la matrice M de la Partie I. Pour résumer, en posant $A = \frac{1}{5}M$, on a bien

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = A \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}.$$

4. Pour simplifier, nous noterons Y_n la matrice colonne $Y_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. L'expression à démontrer devient alors

$$\forall n \in \mathbb{N}, \quad Y_n = \frac{1}{5^n} M^n \begin{pmatrix} 1\\0\\0 \end{pmatrix},$$

alors que la question précédente se réécrit $\forall n \in \mathbb{N}$, $Y_{n+1} = \frac{1}{5}MY_n$. On procède alors par récurrence sur $n \in \mathbb{N}$.

Notons \mathcal{P}_n la proposition : " $Y_n = \frac{1}{5^n} M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ ".

Initialisation : Pour n = 0,

$$Y_0 = \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \text{et} \quad \frac{1}{5^0} M^0 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \times I_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons que \mathcal{P}_n est vraie et montrons que \mathcal{P}_{n+1} est vraie aussi. Par hypothèse de récurrence, $Y_n = \frac{1}{5^n} M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et d'après la question 3, on sait $Y_{n+1} = \frac{1}{5} M Y_n$. Par conséquent,

$$Y_{n+1} = AY_n = \frac{1}{5}M \times \frac{1}{5^n}M^n \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \frac{1}{5^{n+1}}M^{n+1} \begin{pmatrix} 1\\0\\0 \end{pmatrix}.$$

Donc \mathcal{P}_{n+1} est vraie et ainsi la proposition est héréditaire.

Conclusion : Comme la propriété est héréditaire et que \mathcal{P}_0 est vraie, alors, par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbb{N} , i.e.

$$\forall n \in \mathbb{N}, \quad Y_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \frac{1}{5^n} M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

5. Soit n dans \mathbb{N} . D'après la question 5 de la Partie I, on sait que

$$M^{n} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5^{n} - 2^{n+2} + 9 \\ 2(5^{n} - 2^{n}) \\ 3(5^{n} + 2^{n+1}) - 9 \end{pmatrix}.$$

Alors, en combinant avec la question précédente,

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \frac{1}{5^n} M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{5^n} \times \frac{1}{6} \begin{pmatrix} 5^n - 2^{n+2} + 9 \\ 2(5^n - 2^n) \\ 3(5^n + 2^{n+1}) - 9 \end{pmatrix},$$

et par identification des coefficients, il vient

$$a_n = \frac{1}{6} \times \frac{1}{5^n} \times \left(5^n - 2^{n+2} + 9\right) = \frac{1}{6} - \frac{2}{3} \left(\frac{2}{5}\right)^n + \frac{3}{2} \times \left(\frac{1}{5}\right)^n,$$

$$b_n = \frac{1}{6} \times \frac{1}{5^n} \times \left(2\left(5^n - 2^n\right)\right) = \frac{1}{3} \left(1 - \left(\frac{2}{5}\right)^n\right),$$

$$c_n = \frac{1}{6} \times \frac{1}{5^n} \times \left(3\left(5^n + 2^{n+1}\right) - 9\right) = \frac{1}{2} + \left(\frac{2}{5}\right)^n - \frac{3}{2} \left(\frac{1}{5}\right)^n.$$

En conclusion, $\forall n \in \mathbb{N}$,

$$a_n = \frac{1}{6} - \frac{2}{3} \left(\frac{2}{5}\right)^n + \frac{3}{2} \times \left(\frac{1}{5}\right)^n$$
, $b_n = \frac{1}{3} \left(1 - \left(\frac{2}{5}\right)^n\right)$ et $c_n = \frac{1}{2} + \left(\frac{2}{5}\right)^n - \frac{3}{2} \left(\frac{1}{5}\right)^n$.

6. On cherche les limites de ces trois suites. Or il s'agit de sommes de suites géométriques dont on connait les limites.

on connait les limites. Comme $\frac{2}{5} \in]-1,1[$ et $\frac{1}{5} \in]-1,1[$, on sait que $\lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0$ et $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$. Par conséquent, par somme de limites, on a

$$\lim_{n \to +\infty} a_n = \frac{1}{6}, \qquad \lim_{n \to +\infty} b_n = \frac{1}{3} \quad \text{et} \quad \lim_{n \to +\infty} c_n = \frac{1}{2}.$$

Exercice 2 -

Partie I - Tirages dans une urne

1. (a) En considérant comme succés l'évènement "piocher une boule noire", la variable aléatoire X compte le nombre de succès lors de la répétition successive de 400 expériences de Bernoulli identiques et indépendantes. Donc X suit une loi binomiale de paramètres n=400 et $p=\frac{1}{4}$, puisque une seule boule parmi les quatre boules de l'urne est noire. En particulier, on a $X(\Omega)=\llbracket 0,400 \rrbracket$ et pour tout $k \in X(\Omega)$,

$$P(X=k) = \binom{400}{k} \left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{400-k}.$$

(b) Puisque *X* suit une loi binomiale, on a

$$E(X) = np = 400 \times \frac{1}{4} = 100$$
 et $V(X) = np(1-p) = 100 \times \frac{3}{4} = 75$.

2. (a) Y compte cette fois le nombre de tirages nécessaires avant d'obtenir un premier succès, lors de la répétition successive d'expériences de Bernoulli identiques et indépendantes. Donc Y suit une loi géométrique de paramètre $p=\frac{1}{4}$. En particulier, on a $Y(\Omega)=\mathbb{N}^*$ et pour tout $k\in Y(\Omega)$,

$$P(Y=k) = \frac{1}{4} \times \left(\frac{3}{4}\right)^{k-1}.$$

(b) Puisque Y suit une loi géométrique, on a

$$E(Y) = \frac{1}{p} = \frac{1}{\frac{1}{4}} = 4$$
 et $V(Y) = \frac{1-p}{p^2} = \frac{\frac{3}{4}}{\left(\frac{1}{4}\right)^2} = \frac{\frac{3}{4}}{\frac{1}{16}} = \frac{3}{4} \times 16 = 12.$

3. (a) La variable aléatoire Z ne semble pas suivre un loi usuelle. En revanche, il s'agit d'une variable aléatoire discrète finie. En effet, il est clair que l'on a $Z(\Omega) = \llbracket 1, 4 \rrbracket$. Ainsi, pour déterminer la loi de Z, il suffit de calculer P(Z=1), P(Z=2), P(Z=3) et P(Z=4), en utilisant la formule des probabilités composées. On obtient alors

$$P(Z=1) = \frac{1}{4},$$

$$P(Z=2) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4},$$

$$P(Z=3) = \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{4},$$

$$P(Z=4) = \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} \times 1 = \frac{1}{4}.$$

Alors, après calculs, on remarque que Z suit une loi uniforme sur [1,4].

(b) Puisque Z suit une loi uniforme, on a

$$E(Z) = \frac{n+1}{2} = \frac{4+1}{2} = \frac{5}{2}$$
 et $V(Z) = \frac{n^2-1}{12} = \frac{4^2-1}{12} = \frac{15}{12} = \frac{5}{4}$.

Partie II - Tirages dans une urne choisie au hasard

- 1. La variable aléatoire T compte le nombre de boules noires obtenues après deux tirages. On peut avoir pioché zéro, une ou deux boules noires. Donc $T(\Omega) = [0, 2]$.
- 2. Notons P l'évènement "obtenir Pile", F l'évènement "obtenir Face", et, pour tout $k \in [0,2]$, N_k l'évènement "obtenir une boule noire au k-ième tirage" et B_k l'évènement "obtenir une boule blanche au k-ième tirage".

Alors, d'après la formule des probabilités totales, comme les évènements P et F forment un système complet d'évènements,

$$P(T=0) = P(F) \times P_F(B_1 \cap B_2) + P(P) \times P_P(B_1 \cap B_2)$$
$$= \frac{1}{2} \times \left(\frac{1}{2}\right)^2 + \frac{1}{2} \times \left(\frac{3}{4}\right)^2 = \frac{1}{8} + \frac{9}{32} = \frac{13}{32}.$$

De même, on a

$$P(T=2) = P(F) \times P_F(N_1 \cap N_2) + P(P) \times P_P(N_1 \cap N_2)$$
$$= \frac{1}{2} \times \left(\frac{1}{2}\right)^2 + \frac{1}{2} \times \left(\frac{1}{4}\right)^2 = \frac{1}{8} + \frac{1}{32} = \frac{5}{32}.$$

Et donc

$$P(T=1) = 1 - P(T=0) - P(T=2) = 1 - \frac{13}{32} - \frac{5}{32} = \frac{14}{32} = \frac{7}{16}$$
.

3. Comme il s'agit d'une variable aléatoire discrète finie, on a

$$E(T) = 0 \times P(T = 0) + 1 \times P(T = 1) + 2 \times P(T = 2) = 0 \times \frac{13}{32} + 1 \times \frac{7}{16} + 2 \times \frac{5}{32} = \frac{24}{32} = \frac{3}{4}$$

Si la variable aléatoire T suivait une loi binomiale $\mathcal{B}(n,p)$, comme $T(\Omega) = [0,2]$, nécessairement on aurait n=2. Alors l'espérance serait E=np=2p, ce qui force $p=\frac{3}{8}$.

Ainsi la seule loi binomiale possible serait $\mathcal{B}\left(2,\frac{3}{8}\right)$.

Or dans ce cas, on devrait avoir $P(T=2) = p^2 = \left(\frac{3}{8}\right)^2 = \frac{9}{64}$, ce qui n'est pas le cas puisque $P(T=2) = \frac{5}{32}$. On en déduit donc que T ne suit pas une loi binomiale.

4. Calculons $P_{T=1}(P)$ et $P_{T=1}(F)$, puis comparons les. On a

$$P_{T=1}(P) = \frac{P(P \cap [T=1])}{P(T=1)} = \frac{\frac{1}{2} \times (\frac{1}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{1}{4})}{\frac{7}{16}} = \frac{\frac{3}{16}}{\frac{7}{16}} = \frac{3}{7}.$$

Et donc

$$P_{T=1}(F) = 1 - P_{T=1}(P) = 1 - \frac{3}{7} = \frac{4}{7}.$$

Il est donc plus probable d'avoir obtenu Face que Pile si une seule boule noire est piochée.

5.

```
T = 0
if grand(1,1,"uin",1,2) == 1 then
    for k = 1 : 2
        if grand(1,1,"uin",1,4)<2 then
            T = T+1
        end
    end
else
    for k = 1 : 2
        if grand(1,1,"uin",1,4)<3 then
            T = T+1
        end
    end
end
end
end
end
disp(T,"Une simulation de T donne :")</pre>
```

Exercice 3 -

Partie I - Étude d'une fonction

- 1. Notons D_f l'ensemble de définition de la fonction f. On sait que la fonction ln est définie sur \mathbb{R}_+^* , donc $D_f \subset \mathbb{R}_+^*$. L'autre condition est que x^3 ne doit pas s'annuler sur D_f donc $0 \notin D_f$. Ainsi on obtient que l'ensemble de définition de f est $D_f = \mathbb{R}_+^* =]0, +\infty[$.
- 2. Soit x > 0. On a directement que $x^3 > 0$ donc on a les équivalences suivantes

$$f(x) \geqslant 0 \iff \frac{4\ln(x)}{x^3} \geqslant 0 \iff \ln(x) \geqslant 0 \iff x \geqslant 1.$$

- 3. On a $\lim_{x\to 0^+} 4\ln(x) = -\infty$ et $\lim_{x\to 0^+} x^3 = 0^+$ donc, par quotient, $\lim_{x\to 0^+} f(x) = -\infty$. On en déduit que l'axe des ordonnées est asymptote verticale à la courbe \mathcal{C}_f . Par ailleurs, par croissances comparées, $\lim_{x\to +\infty} \frac{4\ln(x)}{x^3} = 0$, *i.e.* $\lim_{x\to +\infty} f(x) = 0$. On en déduit que l'axe des abscisses est asymptote horizontale à la courbe \mathcal{C}_f en $+\infty$.
- 4. La fonction f est dérivable sur \mathbb{R}_+^* et est de la forme $\frac{u}{v}$, avec $u(x) = 4\ln(x)$ et $v(x) = x^3$. Comme $u'(x) = \frac{4}{x}$ et $v'(x) = 3x^2$, on en déduit que

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{\frac{4}{x} \times x^3 - 4\ln(x) \times 3x^2}{x^6} = \frac{4(1 - 3\ln(x))}{x^4}.$$

Ainsi f'(x) est du signe de $1-3\ln(x)$, car 4 et x^4 sont toujours positifs. Or

$$1 - 3\ln(x) \geqslant 0 \iff 3\ln(x) \leqslant 1 \iff \ln(x) \leqslant \frac{1}{3} \iff x \leqslant e^{\frac{1}{3}},$$

et

$$f\left(e^{\frac{1}{3}}\right) = \frac{4\ln\left(e^{\frac{1}{3}}\right)}{\left(e^{\frac{1}{3}}\right)^3} = \frac{4 \times \frac{1}{3}}{e} = \frac{4}{3e}.$$

De toutes ces informations, on déduit le tableau de variation de f.

X	0		$e^{rac{1}{3}}$		+∞
f'(x)		+	0	_	
f	$-\infty$		$\frac{4}{3e}$		· 0

Ainsi f admet le maximum $\frac{4}{3e}$ comme unique extremum, atteint lorsque $x = e^{\frac{1}{3}}$.

5. La tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1 a pour équation y = f'(1)(x-1) + f(1). Or

$$f(1) = \frac{4\ln(1)}{1^3} = 0$$
 et $f'(1) = \frac{4(1-3\ln(1))}{1^4} = 4$,

donc une équation de \mathcal{T} est y = 4(x - 1), *i.e.*

$$y = 4x - 4$$
.

6. Voici l'allure de la courbe \mathcal{C}_f et de sa tangente $\mathcal{T}.$

Partie II - Étude d'une variable aléatoire à densité

1. Soit $A \ge 1$. On pose

$$\begin{cases} u'(x) &= \frac{4}{x^3} \\ v(x) &= \ln(x) \end{cases} \text{ et on a } \begin{cases} u(x) &= -\frac{2}{x^2} \\ v'(x) &= \frac{1}{x} \end{cases}$$

Alors, par intégration par parties, on a

$$\int_{1}^{A} \frac{4\ln(x)}{x^{3}} dx = \int_{1}^{A} u'(x)v(x) dx = \left[u(x)v(x) \right]_{1}^{A} - \int_{1}^{A} u(x)v'(x) dx$$

$$= \left[-\frac{2\ln(x)}{x^{2}} \right]_{1}^{A} - \int_{1}^{A} -\frac{2}{x^{2}} \times \frac{1}{x} dx = -\frac{2\ln(A)}{A^{2}} + 0 + \int_{1}^{A} \frac{2}{x^{3}} dx$$

$$= -\frac{2\ln(A)}{A^{2}} + \left[-\frac{1}{x^{2}} \right]_{1}^{A} = -\frac{2\ln(A)}{A^{2}} - \frac{1}{A^{2}} + 1.$$

On a bien montré que $\int_{1}^{A} \frac{4 \ln(x)}{x^{3}} dx = 1 - \frac{1}{A^{2}} - \frac{2 \ln(A)}{A^{2}}$.

2. La fonction h est nulle donc positive sur $]-\infty,1[$ et, d'après la question 2 de la Partie I, pour $x\geqslant 1$ on a $h(x)=f(x)\geqslant 0$. Donc h est positive sur $\mathbb R$.

La fonction h est nulle donc continue sur $]-\infty,1[$. De plus h est continue sur $[1,+\infty[$ comme quotient de fonctions usuelles dont le dénominateur ne s'annule pas. Ainsi h est continue sur $\mathbb R$ sauf éventuellement en un seul point, d'abscisse 1.

La fonction h est nulle sur $]-\infty,1[$ donc l'intégrale $\int_{-\infty}^{1}h(x)\,\mathrm{d}x$ converge et vaut 0. D'après la question 1, pour tout $A\geqslant 1$, on a

$$\int_{1}^{A} h(x) dx = \int_{1}^{A} f(x) dx = \int_{1}^{A} \frac{4 \ln(x)}{x^{3}} dx = 1 - \frac{1}{A^{2}} - \frac{2 \ln(A)}{A^{2}}.$$

Or $\lim_{A \to +\infty} \frac{1}{A^2} = 0$ et par croissances comparées, $\lim_{A \to +\infty} \frac{\ln(A)}{A^2} = 0$ donc

$$\lim_{A \to +\infty} \left(1 - \frac{1}{A^2} - \frac{2\ln(A)}{A^2} \right) = 1.$$

Ce qui prouve que l'intégrale $\int_{-\infty}^{+\infty} h(x) dx = \int_{-\infty}^{1} h(x) dx + \int_{1}^{+\infty} h(x) dx$ converge et vaut 0+1=1. En conclusion, la fonction h est bien une densité de probabilité.

3. (a) Par définition de la fonction de répartition de X, on sait que

$$\forall x \in \mathbb{R}, \quad F(x) = \int_{-\infty}^{x} h(t) \, \mathrm{d}t.$$

- Si x < 1 alors $F(x) = \int_{-\infty}^{x} 0 \, dt = 0$.
- Sinon $x \ge 1$, et en utilisant la question 1, on a

$$F(x) = \int_{-\infty}^{1} 0 \, dt + \int_{1}^{x} f(t) \, dt = 1 - \frac{1}{x^{2}} - \frac{2 \ln(x)}{x^{2}}.$$

Ainsi la fonction de répartition F de X est donnée par

$$F(x) = \begin{cases} 0 & \text{si } x < 1\\ 1 - \frac{1}{x^2} - \frac{2\ln(x)}{x^2} & \text{si } x \geqslant 1 \end{cases}$$

(b) Le programme suivant répond à la question posée.

- (c) Exécuter les lignes 9 à 11 du programme permet de tracer la courbe représentative de la fonction *F* sur l'intervalle [-2,5].
- 4. Soit $A \ge 1$. On a

$$\int_{1}^{A} x h(x) dx = \int_{1}^{A} \frac{4 \ln(x)}{x^{2}} dx.$$

On pose

$$\begin{cases} u'(x) &= \frac{4}{x^2} \\ v(x) &= \ln(x) \end{cases} \text{ et on a } \begin{cases} u(x) &= -\frac{4}{x} \\ v'(x) &= \frac{1}{x} \end{cases}$$

Alors, par intégration par parties, on a

$$\int_{1}^{A} \frac{4\ln(x)}{x^{2}} dx = \int_{1}^{A} u'(x)v(x) dx = \left[u(x)v(x) \right]_{1}^{A} - \int_{1}^{A} u(x)v'(x) dx$$

$$= \left[-\frac{4\ln(x)}{x} \right]_{1}^{A} - \int_{1}^{A} -\frac{4}{x} \times \frac{1}{x} dx = -\frac{4\ln(A)}{A} + 0 + \int_{1}^{A} \frac{4}{x^{2}} dx$$

$$= -\frac{4\ln(A)}{A} + \left[-\frac{4}{x} \right]_{1}^{A} = -\frac{4\ln(A)}{A} - \frac{4}{A} + 4.$$

On a bien montré que $\int_1^A x h(x) dx = 4 - \frac{4}{A} - \frac{4 \ln(A)}{A}$.

Comme $\lim_{A \to +\infty} \frac{4}{A} = 0$ et que, par croissances comparées, $\lim_{A \to +\infty} \frac{4\ln(A)}{A} = 0$, on en déduit que

$$\lim_{A \to +\infty} 4 - \frac{4}{A} - \frac{4\ln(A)}{A} = 4.$$

De plus, h est nulle sur] $-\infty$, 1[donc l'intégrale $\int_{-\infty}^{1} xh(x) dx$ converge et vaut 0. Par conséquent, X admet une espérance et $E(X) = \int_{-\infty}^{+\infty} xh(x) dx = 0 + 4 = 4$.

5. Soit $A \ge 1$. On a

$$\int_{1}^{A} x^{2} h(x) dx = \int_{1}^{A} \frac{4 \ln(x)}{x} dx = 4 \int_{1}^{A} \frac{1}{x} \times \ln(x) dx = \left[2 \left(\ln(x) \right)^{2} \right]_{1}^{A} = 2 \left(\ln(A) \right)^{2}.$$

Or $\lim_{A \to +\infty} 2(\ln(A))^2 = +\infty$, donc l'intégrale $\int_{-\infty}^{+\infty} x^2 h(x) dx$ diverge. Donc X n'admet pas de variance.

6. Soit $A \ge 1$. Par définition d'une probabilité conditionnelle,

$$P_{[X>A]}(X>2A) = \frac{P\big([X>A]\cap [X>2A]\big)}{P(X>A)} = \frac{P(X>2A)}{P(X>A)} = \frac{1-F(2A)}{1-F(A)}.$$

En utilisant le résultat obtenu à la question 3a, comme $A \ge 1$, il vient que

$$P_{[X>A]}(X>2A) = \frac{1 - \left(1 - \frac{1}{(2A)^2} - \frac{2\ln(2A)}{(2A)^2}\right)}{1 - \left(1 - \frac{1}{A^2} - \frac{2\ln(A)}{A^2}\right)} = \frac{\frac{1}{4A^2} + \frac{2\ln(2A)}{4A^2}}{\frac{1}{A^2} + \frac{2\ln(A)}{A^2}} = \frac{\frac{1 + 2\ln(2A)}{4A^2}}{\frac{4 + 8\ln(A)}{4A^2}} = \frac{1 + 2\ln(2A)}{4 + 8\ln(A)}.$$

Par propriété du logarithme, ln(2A) = ln(2) + ln(A). Alors, en factorisant par ln(A),

$$P_{[X>A]}(X>2A) = \frac{1+2\ln(2)+2\ln(A)}{4+8\ln(A)} = \frac{\ln(A)\left(\frac{1}{\ln(A)} + \frac{2\ln(2)}{\ln(A)} + 2\right)}{\ln(A)\left(\frac{4}{\ln(A)} + 8\right)} = \frac{\frac{1}{\ln(A)} + \frac{2\ln(2)}{\ln(A)} + 2}{\frac{4}{\ln(A)} + 8}.$$

Alors, comme $\lim_{A \to +\infty} \ln(A) = +\infty$, on en déduit que

$$\lim_{A \to +\infty} \frac{\frac{1}{\ln(A)} + \frac{2\ln(2)}{\ln(A)} + 2}{\frac{4}{\ln(A)} + 8} = \frac{2}{8} = \frac{1}{4}.$$

En conclusion,

$$\lim_{A\to +\infty} P_{[X>A]}(X>2A) = \frac{1}{4}.$$