

Swin Transformer 从零解读

主讲人: DASOU

回复【Swin】获取对应PPT

扫码关注微信公众号

文章周更

知识分享

一起进步

求关注,求点赞,求一切!!

1. 回顾TRM和VIT模型,理清SwinTRM的创新点

2. SwinTRM使用到相对位置编码介绍

3. 窗口移动注意力机制SW-MSA介绍

4. Patch Merging介绍

回顾TRM模型

Figure 1: The Transformer - model architecture.

回顾VIT模型

Vision Transformer (ViT) Class Bird **MLP** Ball Head Car Transformer Encoder 3 Patch + Position **Embedding** * Extra learnable Linear Projection of Flattened Patches [class] embedding

- 1. 图片切分为patch
- 2. patch转化为embedding
- 3.位置embedding和tokensembedding相加
- 4. 输入到TRM模型
- 5. CLS 输出做多分类任务

- 3.1 生成CLS符号的TokenEMB
 - 3.2 生成所有序列的位置编码
 - 3.3 tonken+位置编码

知乎 @DASOU

SwinTRM做到了两点

1. 金字塔形状: 感受野是在不停的变大的

2. 注意力机制放在一个窗口内部

当时我们VIT模型中怎么把图片变成token的时候聊过

大部分人的思路

复杂度的问题

224*224*1

BERT的最大长度是512,相当于100倍

如何处理复杂度的问题?: 本质上是去解决随着像素增加,复杂度平方级增长的问题;

1.局部注意力机制

有很多中方法:

2. 改进attention公式

3.....

VIT是图片化整为零:由一个像素点转为一块像素点

一个简单的改进方式: <mark>图像化整为零,切分patch</mark>

也就说原来是一个像素点代表一个token, 现在是一大块的token一个patch作为一个token

VIT的<mark>问题就是如果图像过大,patch就变大了,复杂度还是不太好</mark>

Encoder

VIT

Swintrm

1: 224*224*3到(224/4)*(224/4)*(4*4*3)

来看SwinTRM的架构图

2. (224/4)*(224/4)*(4*4*3)到(224/4)*(224/4)*(96)

3. (224/4)*(224/4)*(96)到(224/4)*(224/4)*(96)

4. (224/4)*(224/4)*(96)到(224/8)*(224/8)*(96*2=192)

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

5. (224/8)*(224/8)*(96*2=192)到(224/8)*(224/8)*(96*2=192)

来看SwinTRM的架构图

代码中实现的方式,按照模块划分是以下红框的形式进行的,和论文中的方式不同

Patch数目就是: 56*56=3136

1: 224*224*3到(224/4)*(224/4)*(4*4*3)

2. (224/4)*(224/4)*(4*4*3)到(224/4)*(224/4)*(96)

也就说原架构图的PP和LE等价于PE,并且没把56*56 展平,这个无所谓

这里首先将图片的最小单位从像素转变为patch。论文中所给的示例为一个patch由4*4个pixel构成,每个patch的像素融入3通道,维度升至48 —— Patch Partition 然后通过线性embedding将维度提升至96维度 —— Linear Embedding

这里patch embedding和linear embedding是直接通过一层卷积实现的conv(3, 96, kernel=(4,4), stride=(4,4)), flatten和layernorm

第二个红色框框的操作

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

切分窗口: win_size=7一直保持不变

把一个图片的win数目移到bs维度上,就是整个patch有多少w

很简单:把每个元素点作为token,96个通道数作为token维度

位置编码问题

Figure 1: The Transformer - model architecture.

VIT中的位置编码:可学习的参数

这里一维和二维都是值得索引,通过索引从embedding获取向量

相对位置信息

SwinTRM位置编码有两点不同:

1. 加的位置不同: 放在了att矩阵中

ViT的位置信息是再embedding输入到Transformer前一步,但是这里作为B 放在softmax前一步

2.使用的是相对位置信息而不是绝对位置信息

最重要的相对位置编码讲解:

Attention
$$(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$$
, (4)

QK转置相乘除以根号dk,然后加上相对位置编码

所以你需要知道QK转置相乘除以根号dk的输出形状是啥,你猜知道你的B是个啥形状

思考一下?

QK转置相乘除以根号dk的输出形状是啥?

softmax函数里面这个东西本质是计算每个字符对每个字符的相似性对吧

		卷	起	来	吧	
形状不就应该是下面这种吗?	卷	20	5	4	9	softmax
Seq_len*seq_len	起	5	30	8	12	softmax
	来	4	8	15	14	softmax
只有这种形状,才能遍历到每个单词对每个单词的形状	吧	9	12	14	40	softmax

<mark>一个7*7的图像,每个像素点对每个像素点的相似性</mark>,形状不就应该是seq_le*seq_le

像素点3 像素点1 也就是49*49 像素点2 像素点4 像素点49 像素点1 5 softmax 20 4 1, 2, 3, 4, 5, 6, 7 像素点2 30 8, 9, 10, ... 5 8 12 softmax 4 像素点3 15 | 14 softmax 8 9 | 12 | 14 softmax 像素点4

像素点49

所以我的相对位置编码也必须是一个49*49的

7*7窗口对应的这个49*49太大了,我以winsize=2为例

winsize=2, attention矩阵就是: 4*4对吧, 在我接受范围之内啊

什么是绝对位置编码: <mark>一种绝对位置信息</mark>

绝对位置信息有很多种,就用最简单的例子来说啊

我的瞄点其实没动,我的原点这种位置没变啊

什么是相对位置信息

刚才是一个线段的绝对位置信息和相对位置,再看网格绝对

网格绝对位置

像素1	像素2
像素3	像素4

网格相对位置信息

像素1	像素2
像素3	像素4

0	1
2	3

-1	0
1	2

-2	-1
0	1

-3	-2
-1	0

怎么把四种相对位置信息融合起来,放入到我attention矩阵呢?

像素1 ^{像素2}像素3 像素4

像素1	20	5	4	9
像素2	5	30	8	12
像素3	4	8	15	14
像素4	9	12	14	40

0	
2	3

-1	0
1	2

-2	-1
0	1

-3	-2
-1	0

像素1 ^{像素2}像素3 像素4

像素1	20	5	4	9	以1为原点
像素2	5	30	8	12	以2为原点
像素3	4	8	15	14	以3为原点
像素4	9	12	14	40	以4为原点

将这里不同位置作为原点的相对信息拉平拼接在一起,每行代表以 这一行表示的位置为原点,各个像素点的索引

像素1 像素2 像素3 像素4

像素1	20	5	4	9
像素2	5	30	8	12
像素3	4	8	15	14
像素4	9	12	14	40

0	1
2	3

-1 0	1	2
------	---	---

-2 -1	0	1
-------	---	---

以4为原原	点
-------	---

以1为原点

-3	-2
-1	0

SwinTRM中的相对位置编码是怎么搞的呢?很简单,就是把我刚才讲的位置信息全部变为二维

像素1	像素2
像素3	像素4

0, 0	0, 1
1, 0	1, 1

0, -1	0,	0
1, -1	1,	0

所以这里在代码中就是先分为x和y两个坐标信息的相对信息矩阵

0,	0	0,	1
1,	0	1,	1

0, 0	0, 1	1, 0	1, 1
0, -1	0, 0	1, -1	1, 0
-1, 0	-1, 1	0, 0	0, 1
-1, -1	-1, 0	0, -1	0, 0

0维度*(2M-1)

0, 0	0, 1	1, 0	1, 1	M-1	1, 1	1, 2	2, 1	2, 2		3, 1	3, 2	6, 1	6, 2	
	0, 0				1, 0	1, 1	2, 0	2, 1		3, 0	3, 1	6, 0	6, 1	x+y →
-1, 0	-1, 1	0, 0	0, 1	•	0, 1	0, 2	1, 1	1, 2		0, 1	0, 2	3, 1	3, 2	
-1, -1	-1, 0	0, -1	0, 0		0, 0	0, 1	1, 0	1, 1	X	0, 0	0, 1	3, 0	3, 1	

索引对应到参数

						(1)	1	
4	5	7	8			4		
3	4	6	7		+			
1	2	4	5					
0	1	3	4	_				
				(2	2M-1)	* (2M -1	1)	
0.2	0.	3	0.7	0.1	0.9	0.31	0.74	0.15

像素1 ^{像素2}像素3 像素4

像素1	20	5	4	9
像素2	5	30	8	12
像素3	4	8	15	14
像素4	9	12	14	40

```
1. 首先固定位置的二维坐标
window size = (2,2)
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.meshgrid([coords_h, coords_w])
coords = torch.stack(coords)
coords flatten = torch.flatten(coords, 1)
x: [0, 0, 1, 1]
y: [0, 1, 0, 1]
2. 计算相对位置坐标
relative coords first = coords flatten[:, :, None]
relative coords second = coords flatten[:, None, :]
relative_coords = relative_coords_first - relative_coords_second
分别对coords_flatten的x和y轴在最后和中间添加一个维度,再进行广播和相减:
1. 首先进行广播:
first:
                    second:
x:
[[0, 0, 0, 0],
                      [[0, 0, 1, 1],
 [0, 0, 0, 0],
                      [0, 0, 1, 1],
 [1, 1, 1, 1],
                      [0, 0, 1, 1],
                      [0, 0, 1, 1]],
 [1, 1, 1, 1]],
y:
[[0, 0, 0, 0],
                      [[0, 1, 0, 1],
 [1, 1, 1, 1],
                      [0, 1, 0, 1],
 [0, 0, 0, 0],
                       [0, 1, 0, 1],
                       [0, 1, 0, 1]
 [1, 1, 1, 1]]
2. 然后相减,可以看作原坐标减去原每个的像素的坐标作为远点:
比如以[0,1]作为原点,这样所有的在[0,0],[0,1],[1,0],[1,1]都要减去[0,1]
x :
[[0, 0, -1, -1],
[0, 0, -1, -1],
[1, 1, 0, 0],
[1, 1, 0, 0]],
[0, -1, 0, -1],
[1, 0, 1, 0],
[0, -1, 0, -1],
[1, 0, 1, 0]]
```

```
3. 然后维度转换后,加上偏置,确保坐标大于0:
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative coords[:, :, 0] += window size[0] - 1
relative coords[:, :, 1] += window size[1] - 1
     [[1, 1],
     [1, 0],
     [0, 1],
     [0, 0]],
     [[1, 2],
     [1, 1],
     [0, 2],
     [0, 1]],
     [[2, 1],
     [2, 0],
     [1, 1],
     [1, 0]],
     [[2, 2],
     [2, 1],
     [1, 2],
     [1, 1]]]
4. 最后0维度乘以2M-1确保x和y坐标取值不一样,区分诸如[0,1]和[1,0]的问题
         [[3, 1],
         [3, 0],
          [0, 1],
          [0, 0]],
         [[3, 2],
          [3, 1],
          [0, 2],
          [0, 1]],
        [[6, 1],
          [6, 0],
          [3, 1],
          [3, 0]],
         [[6, 2],
          [6, 1],
          [3, 2],
          [3, 1]]
```

窗口注意力机制

7*7的win直接输入TRM就可以

存在的一问题: 窗口之间没有交互

但是我是这么理解的,没有交互只能说是在当前视野没有,

下一个阶段其实干感受野变大了,现在的窗口之间其实有交互,

但是在下一个阶段的窗口之间有没有交互了;所以为了在当前阶段就有交互,做了一个移动窗口注意力

但是问题是计算窗口att的时候,有的本不相邻的也会被计算: mask的重要性就出来了

举个例子,我们从头说

roll(x, shifts=-1, dims=1)								roll(x, shifts=-1, dims=2)					
1	2	3	4		5	6	7			6	7		5
5	6	7				10	11	12		10	11	12	
9	10	11	12		13	14	15	16		14	15	16	13
13	14	15	16		1	2	3	4		12	/3/	4	101928

有相邻的,有不相邻的,我们编上窗口索引

这边是5不是2_, 注释一下

4	4	4	4	2	2	2
4	4	4	4	2	2	2
4	4	4	4	2	2	2
4	4	4	4	2	2	2
6	6	6	6	8	8	8
6	6	6	6	8	8	8
6	6	6	6	8	8	8

4	5 -	- 3 -
7	8	6
1	2	0

ALIR HOLLING

每次shift之后,都会再shift回去,还原原先的坐标

4	2
6	8

	4	4	4	4	2	2	2
	4	4	4	4	2	2	2
	4	4	4	4	2	2	2
7	4	4	4	4	2	2	2
	6	6	6	6	8	8	8
	6	6	6	6	8	8	8
	6	6	6	6	8	8	8

4 4 4

两个tensor相减

代码里对特征图移位是通过 torch roll 来实现的, 下面是示意图

如果是一个2乘以2 的窗口,问题在于8和5是没办法attention,他们没关系 但是8和12是在一个窗口的

复杂度的问题

$$\Omega(\text{MSA}) = 4hwC^2 + 2(hw)^2C, \qquad (1)$$

$$\Omega(\text{W-MSA}) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

- 1. 代码中的 $to_qkv()$ 函数,即用于生成 Q,K,V 三个特征向量:其中 $Q = x \times W^Q, K = x \times W^K, V = x \times W^V$ 。 x 的维度是 (hw, C) , W 的维度是 (C,C) ,那么这三项的复杂度是 $3hwC^2$; 2. 计算 QK^T : Q,K,V 的维度均是 (hw,C) ,因此它的复杂度是 $(hw)^2C$;
- 3. softmax之后乘 V 得到 Z : 因为 QK^T 的维度是 (hw,hw) ,所以它的复杂度是 $(hw)^2C$
- 4. Z 乘 W^Z 矩阵得到最终输出,对应代码中的 $\mathsf{to_out}()$ 函数:它的复杂度是 hwC^2 。

hw是长度,C是每个token的维度

hwC^2

Z矩阵的最后的这个映射作用是什么?有的TRM代码实现可没这个步骤

一个头,四维度到了三维度

多头就是多个三维度拼在一起

TRM本身不改变形状的,不然不能堆叠,对从多个三拼接再到4维度就好了

窗口注意力机制

$$\Omega({\rm MSA}) = 4hwC^2 + 2(hw)^2C$$

一个win

=
$$4$$
 MM C^2 $+ 2($ MM $)^2C$

h/M *w/M个win

$$_{ ilde{\star}}~4$$
 MM $C^2+2(_{
m MM})^2C$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

PatchMerging如何实现的: 降采样

在行方向和列方向,间隔取2,通道维度会变成原先的4倍,接一个linear转为两倍

整体梳理一遍

H是224, W是224

