Machine Learning HW5

學號:R05943005 系級:電子所碩一姓名:呂丞勛

1. (1%)請問 softmax 適不適合作為本次作業的 output layer? 寫出你最後選擇的 output layer 並說明理由。

Softmax 並不適合使用於這次的作業當中,由於 softmax 會一起考慮所有的 classes,並轉換成機率,但是在 multilabel 的 task 當中,每個 class 最好都分開 考慮,因此用 sigmoid,這樣出來的 output 等同於該 class 為 1 的機率,不受到 其他 classes 的影響。

2. (1%)請設計實驗驗證上述推論。

以下是利用 kaggle 上傳的分數來作佐證,model 架構為 GRU (800), Dense (600, 250, 38)並設定 dropout rate = 0.5。

Output Layer	Kaggle Score
Softmax	0.45553
Sigmoid	0.50181

3. (1%)請試著分析 tags 的分布情況(數量)。

SATIRE	35
HORROR	192
DETECTIVE-FICTION	178
ALTERNATE-HISTORY	72
UTOPIAN-AND-DYSTOPIAN-FICTION	11
THRILLER	243
COMIC-NOVEL	37
MEMOIR	35
FANTASY	773
HISTORICAL-NOVEL	222
SUSPENSE	318
COMEDY	59
TECHNO-THRILLER	18
HISTORICAL-FICTION	137
CHILDREN'S-LITERATURE	777
ROMANCE-NOVEL	157
SPECULATIVE-FICTION	1448
AUTOBIOGRAPHY	51
WAR-NOVEL	31
SPY-FICTION	75
DYSTOPIA	30
HIGH-FANTASY	15
SHORT-STORY	41
NOVEL	992

CRIME-FICTION	368
BIOGRAPHY	42
FICTION	1672
HISTORY	40
SCIENCE-FICTION	959
NOVELLA	29
APOCALYPTIC-AND-POST-APOCALYPTIC-FICTION	14
NON-FICTION	102
GOTHIC-FICTION	12
ADVENTURE-NOVEL	109
HUMOUR	18
MYSTERY	642
YOUNG-ADULT-LITERATURE	288
AUTOBIOGRAPHICAL-NOVEL	30

可以看出,不同種類之間的差異其實算滿大的,這對 training 的過程會有些影響,對於這種 unbalanced data,keras 中可以定義 class_weights 來送進 fit 中,讓訓練時對於較少 sample 的種類比較重視,否則的話 model 很容易將 data 分類到較多 sample 的種類。

4. (1%)本次作業中使用何種方式得到 word embedding?請簡單描述做法。

本次使用的 word embedding 的方式主要参考 keras 以及助教的範例。

Glove 主要是利用 unsupervised 的方式來訓練,Model 為 log-bilinear model 並利用機率模型為基礎。

- a. 先利用 keras 內部的 tokenizer fit 所有 text (train + test)
- b. 在將 texts 轉成 sequence 後利用 pad sequence 轉換
- c. 最後利用 glove 6B 100d 的資料,轉換成 embedding matrix,查不到的字就給 與全零的向量
- d. 將 embedding matrix 當成 layer 的 weights 即可

5. (1%)試比較 bag of word 和 RNN 何者在本次作業中效果較好。

在本次的作業中,分別實作的 bag of word 以及 RNN,拿 bag of word + 3xDense,與 word embedding + 1xGRU + 3xDense,以 Kaggle 的 public testing score 來比較,bag of word 可以得到較好的結果,猜測是因為 bag of word 會把所有單字都考慮 進來,不會像是 word embedding 那樣把不認識的字拿掉,可能會因此 loss 掉許多有用的參數。