Tema di Statistica Matematica

I° appello - Sessione invernale

20 dicembre 2013

1) Sia $(X_1,...,X_n)$ un campione casuale (i.i.d.) da una distribuzione di Pareto di parametri (α,θ) , entrambi positivi, la cui funzione di densitá é data da

$$f(x; \alpha, \theta) = \theta \alpha^{\theta} x^{-(\theta+1)} \mathcal{I}_{(\alpha, \infty)}(x), \quad \alpha > 0, \ \theta > 0.$$

- a) Supponendo α noto, dire se il modello appartiene alla famiglia esponenziale e, in ogni caso, individuare la statistica sufficiente per θ ;
- b) rispondere alle stesse domande del quesito a) supponendo che sia invece noto il parametro θ ;
- b) assumendo α noto, determinare lo stimatore di massima verosimiglianza di θ ;
- c) sempre supponendo α noto, determinare lo stimatore UMVU di θ ;
- d) infine, assumendo θ noto, calcolare lo stimatore di massima verosimiglianza di α e calcolarne l'Errore Quadratico Medio.
- 2) Al fine di indagare la spesa mensile sostenuta dalle famiglie italiane per alimenti e bevande, si estrae un campione casuale di n=200 famiglie. Per ciascuna di esse si rileva la spesa X (in migliaia di euro) sostenuta nell'ultimo mese per i beni sopra menzionati, ottenendo le seguenti informazioni:

$$\sum_{i=1}^{200} x_i = 167.5, \quad \sum_{i=1}^{200} x_i^2 = 350.85.$$

Proporre uno stimatore non distorto e consistente rispettivamente per la media μ e per la varianza σ^2 della spesa sostenuta dalle famiglie italiane per alimenti e bevande. Assumendo che quest'ultima segua una distribuzione approssimativamente Normale,

- a) trovare le distribuzioni degli stimatori proposti;
- b) costruire un intervallo di confidenza di livello 0.95 per la media μ della spesa per alimenti e bevande;
- c) costruire un intervallo di confidenza di livello 0.95 per la varianza σ^2 della spesa per alimenti e bevande;
- d) fissato $\alpha = 0.05$, l'ipotesi $H_0: \mu = 800$ euro é supportata dai dati a disposizione?

 ${f 3}$) La variabile aleatoria X rappresenta la frazione di memoria principale allocabile di un server che viene richiesta da un job qualsiasi. Si assuma che X segua una distribuzione avente densitá

$$f(x;\theta) = \frac{1}{\theta} x^{\frac{1}{\theta} - 1} \mathcal{I}_{(0,1)}(x), \quad \theta > 0.$$
(1)

Un valore basso di θ implica la preponderanza di grossi job; invece, se $\theta=1$ la distribuzione delle richieste di memoria é uniforme.

Sia $(X_1, X_2, ..., X_n)$ un campione casuale estratto dalla distribuzione avente densit‡ $f(x; \theta)$ data in (1) e si considerino le seguenti ipotesi: $H_0: \theta = 2$ vs. $H_1: \theta = 0.2$.

- a) La famiglia di distribuzioni in questione é regolare?
- b) Trovare una statistica che sia sufficiente per il parametro θ .
- c) Determinare la densitá di $-\sum_{i=1}^{n} ln(X_i)$ sotto H_0 e sotto H_1 .
- d) Costruire il test più potente (MP) di livello α per il dato sistema di ipotesi. Il test più potente trovato è anche uniformemente più potente (per alternative unilaterali)?
- e) Sia $\alpha=0.05,\ n=10$ e $\prod_{i=1}^{10}x_i=0.00012$. Alla luce di questi dati, accettate o meno l'ipotesi H_0 ? E se α fosse uguale a 0.01? E se fosse $\alpha=0.10$?
- f) Calcolare la potenza del test MP di livello $\alpha=0.05$. Come varia la potenza in funzione di α ?
- 4) Sia Z_n una variabile casuale avente distribuzione di Poisson di parametro $\lambda = n$. Dimostrare che la distribuzione limite della variabile casuale

$$Y_n = \frac{Z_n - n}{\sqrt{n}}$$

é Normale standard (vale a dire, di media zero e varianza unitaria).