

Magyarország, 2025. február 6.

lake2 • HU

Tóparti séta 2 (lake2)

Figyelem, szokatlanul kicsi memórialimit!

Carlo sikerén felbuzdulva Alessandro is úgy döntött, hogy saját szoftvercéget alapít a hegyekben. Azonban Carlóval ellentétben ő egy olyan városban telepedett le, ahol az időjárás nagyon kiszámíthatatlan.

Kezdetben az egész város száraz, de Q nap alatt az esőzések és a napsütés folyamatosan változtatja a körülményeket.

1. ábra. Az Alessandro által választott város.

A várost egy $N \times M$ -es rácsként ábrázoljuk, a cellák indexe (1,1)-től (N,M)-ig terjed.

Az *i*-edik napon $(0 \le i < Q)$ a rács egy téglalap alakú területe időjárásváltozáson megy keresztül. Adott x_1, x_2, y_1, y_2 egész számok esetén minden (x, y) cella, amelyre

$$x_1 \le x \le x_2$$
 és $y_1 \le y \le y_2$

teljesül, állapotot vált – a nedves cellák szárazakká, a száraz cellák pedig nedvesekké válnak.

Minden nap végén Alessandro elgondolkodik: Mennyi a nedves területek teljes kerülete? Sajnos nincs ideje kiszámolni ezt. Tudnál neki segíteni meghatározni az összkerületet az egyes napi változások után?

Az értékelő rendszerből letölthető csatolmányok közt találhatsz lake2.* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

Bemenet

A bemenet a következőkből áll:

- Egy sor, amely az $N,\ M,\ Q$ egész számokat tartalmazza: N és M a város méretét, Q a napok számát jelöli.

1 / 3. oldal

• Q sor, amelynek i-edik sora \mathbf{x}_{1i} , \mathbf{x}_{2i} , \mathbf{y}_{1i} , \mathbf{y}_{2i} egész számokból áll, amelyek az i-edik napon változó téglalap alakú területet jelölik.

Kimenet

Írj ki egyetlen sorba Q egész számot: P_0, \ldots, P_{Q-1} , az egyes változások utáni nedves területek kerületeit.

Korlátok

- $1 \le N, M \le 1000000$.
- $N \cdot M < 10000000$.
- $1 \le Q \le 200\,000$.
- $1 \le x_{1i} \le x_{2i} \le N$ és $1 \le y_{1i} \le y_{2i} \le M$ minden $i = 0 \dots Q 1$ esetén.

Pontozás

A megoldásodat sok különböző tesztesetre lefuttatjuk. A tesztesetek részfeladatokba vannak csoportosítva. Egy-egy részfeladatot akkor tekintünk megoldottnak, ha volt legalább egy olyan beadásod, amely az adott részfeladat minden tesztesetére helyes megoldást adott. A feladat összpontszámát a megoldott részfeladatokra kapott pontszámok összege adja.

O. Részfeladat (0 pont) Példák.
I. Részfeladat (9 pont) N, M ≤ 100, Q ≤ 100.
I. Részfeladat (33 pont) N, M ≤ 1000, Q ≤ 10 000.
I. Részfeladat (25 pont) N ⋅ M ≤ 100 000.
I. Részfeladat (25 pont) N ⋅ M ≤ 100 000.
I. Részfeladat (33 pont) N ⋅ M ≤ 100 000.
I. Részfeladat (33 pont) Nincs további megkötés.

Példák

input	output
4.5.4	
4 5 4	8
1 2 3 4	16
2 3 4 5	24
1 4 2 5	22
1 4 3 5	

Magyarázat

Az első tesztesetben a várost egy 4×5 -ös rácsként ábrázoljuk, amelynek a bal alsó sarka az (1,1)-es cella.

A következő ábrákon minden nap végén a nedves cellák kék színre vannak festve, egy piros vonal jelöli a nedves régiók kerületét, és egy szaggatott fekete vonal jelöli az időjárásváltozás által érintett régiót.

1ake2 2 / 3. oldal

Az első nap végén a kerület teljes hossza 8.

A második nap végén a kerület teljes hossza 16.

A harmadik nap végén a kerület teljes hossza 24.

 ${\bf A}$ negyedik nap végén a kerület teljes hossza 22.

1ake2 3 / 3. oldal