As we will see later, most bilinear forms that we will encounter are equivalent to one whose matrix is of the following form:

1. $I_n, -I_n$.

2. If p + q = n, with $p, q \ge 1$,

$$I_{p,q} = \begin{pmatrix} I_p & 0\\ 0 & -I_q \end{pmatrix}$$

3. If n = 2m,

$$J_{m.m} = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix}$$

4. If n = 2m,

$$A_{m,m} = I_{m,m} J_{m,m} = \begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix}.$$

If we make changes of bases given by matrices P and Q, so that x = Px' and y = Qy', then the new matrix expressing φ is $P^{\top}MQ$. In particular, if E = F and the same basis is used, then the new matrix is $P^{\top}MP$. This shows that if φ is nondegenerate, then the determinant of φ is determined up to a square element.

Observe that if φ is a symmetric bilinear form (E = F) and if K does not have characteristic 2, then by Theorem 29.4, there is a basis of E with respect to which the matrix M representing φ is a diagonal matrix. If $K = \mathbb{R}$ or $K = \mathbb{C}$, this allows us to classify completely the symmetric bilinear forms. Recall that $\Phi(u) = \varphi(u, u)$ for all $u \in E$.

Proposition 29.6. Given any bilinear form $\varphi \colon E \times E \to K$ with $\dim(E) = n$, if φ is symmetric and K does not have characteristic 2, then there is a basis (e_1, \ldots, e_n) of E such that

$$\Phi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{r} \lambda_i x_i^2,$$

for some $\lambda_i \in K - \{0\}$ and with $r \leq n$. Furthermore, if $K = \mathbb{C}$, then there is a basis (e_1, \ldots, e_n) of E such that

$$\Phi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{r} x_i^2,$$

and if $K = \mathbb{R}$, then there is a basis (e_1, \ldots, e_n) of E such that

$$\Phi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2,$$

with $0 \le p, q$ and $p + q \le n$.