Лабораторный практикум по курсу «Математическая статистика»

# Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

| студента | и <u>Мельниковой М.Н.</u> |               |         | _Дата сдачи: |
|----------|---------------------------|---------------|---------|--------------|
| Ведущий  | преподаватель:            | Трофимов А.Г. | оценка: | подпись:     |

# Вариант №9

*Цель работы*: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

#### 1. Исходные данные

Характеристики наблюдаемых случайных величин:

| СВ    | Распределение   | Параметры             | Математическое ожидание, $m_i$ | Дисперсия, $\sigma_i^2$ | Объем<br>выборки, <i>n<sub>i</sub></i> |
|-------|-----------------|-----------------------|--------------------------------|-------------------------|----------------------------------------|
| $X_1$ | N(10, 2)        | $m = 10$ $\sigma = 2$ | 10                             | 4                       | 50                                     |
| $X_2$ | <i>N</i> (5, 2) | $m = 5$ $\sigma = 2$  | 5                              | 4                       | 50                                     |
| $X_3$ | N(10, 5)        | $m = 10$ $\sigma = 5$ | 10                             | 25                      | 50                                     |

Количество случайных величин k = 3

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

#### Выборочные характеристики:

| СВ     | Среднее, $\overline{x}_i$ | Оценка дисперсии, $s_i^2$ | Оценка с.к.о., $s_i$ |
|--------|---------------------------|---------------------------|----------------------|
| $X_1$  | 9.714443023899921         | 4.723387428367179         | 2.173335553559822    |
| $X_2$  | 4.828114676459174         | 3.971797523457107         | 1.9929369090508378   |
| $X_3$  | 11.386237826833872        | 23.18653468642451         | 4.8152398368538725   |
| Pooled | 8.642931842397653         | 18.36947119470521         | 4.28596210840754     |

#### 2. Визуальное представление выборок

# Диаграммы Box-and-Whisker:



Примечание: для построения диаграмм использовать функции boxplot, vartestn (matplotlib.pyplot.boxplot)

# 3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза:  $H_0: \sigma_1^2 = ... = \sigma_k^2$ 

# Критерий Бартлетта:

| Выборочное значение статистики критерия | p-value             | Статистическое решение при $\alpha = 0.05$ | Ошибка стат.<br>решения |
|-----------------------------------------|---------------------|--------------------------------------------|-------------------------|
| 49.285264254844634                      | 1.9853672219890e-11 | $ m H_0$ отклоняется                       | нет                     |

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

## 4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

| I westing a Antireptine in with mount |                               |                              |                                          |  |  |
|---------------------------------------|-------------------------------|------------------------------|------------------------------------------|--|--|
| Источник<br>вариации                  | Показатель вариации           | Число<br>степеней<br>свободы | Несмещённая оценка                       |  |  |
| Группировочный признак                | $D_b^* = 130.662450811$       | <i>K</i> –1=2                | $n * D_b^*/(K - 1) = 9799.683810845048$  |  |  |
| Остаточные<br>признаки                | $D_{\rm w}^* = 10.6272398794$ | n–K=148                      | $n * D_w^*/(n - K) = 10.844122325934963$ |  |  |
| Все признаки                          | $D_X^* = 141.289690690$       | n-1=149                      | $n * D_X^*/(n-1) = 142.23794364833918$   |  |  |

Эмпирический коэффициент детерминации  $\eta^2 = 0.9247840388957904$ 

Эмпирическое корреляционное отношение  $\eta = 0.9616569236977345$ 

Статистическая гипотеза:  $H_0: m_1 = ... = m_k$ 

| Выборочное<br>значение статистики<br>критерия | p-value                | Статистическое решение при $\alpha = 0.05$ | Ошибка стат.<br>решения |
|-----------------------------------------------|------------------------|--------------------------------------------|-------------------------|
| 53.54673538290311                             | 3.3947003972580522e-18 | Н <sub>0</sub> отклоняется                 | нет                     |

Примечание: при расчетах использовать функцию anoval (scipy.stats.f oneway)

## 5. Метод линейных контрастов



Доверительные интервалы для  $m_1, ..., m_k$ :

### Попарные сравнения $m_i$ и $m_j$ :

| Гипотеза         | Выборочное<br>значение<br>статистики<br>критерия | p-value | Статистическое решение при $\alpha = 0.05$ | Ошибка стат.<br>решения |
|------------------|--------------------------------------------------|---------|--------------------------------------------|-------------------------|
| $H_0: m_1 = m_2$ | -4.8863                                          | 0.0     | Н <sub>0</sub> отклоняется                 | нет                     |
| $H_0: m_1 = m_3$ | 1.6718                                           | 0.0324  | Н <sub>0</sub> отклоняется                 | 1-го рода               |
| $H_0: m_2 = m_3$ | 6.5581                                           | 0.0     | Н <sub>0</sub> отклоняется                 | нет                     |

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise\_tukeyhsd)