

FERMIONIC FORM AND BETTI NUMBERS

G. LUSZTIG

ABSTRACT. We state a conjectural relationship between the fermionic form [HKOTY]■ and the Betti numbers of a Grassmannian over a preprojective algebra or, equivalently, of a lagrangian quiver variety.

1. Notation. We fix a graph of type ADE with set of vertices I . Let E be a \mathbf{R} -vector space with a basis $(\alpha_i)_{i \in I}$ and a positive definite symmetric bilinear form $(,) : E \times E \rightarrow \mathbf{R}$ given by $(\alpha_i, \alpha_i) = 2$, $(\alpha_i, \alpha_j) = -1$ if i, j are joined in the graph, $(\alpha_i, \alpha_j) = 0$ if $i \neq j$ are not joined in the graph. Let $(\varpi_i)_{i \in I}$ be the basis of E defined by $(\varpi_i, \alpha_j) = \delta_{i,j}$. For $\xi \in E$ define ${}^i\xi, {}_i\xi$ in \mathbf{R} by

$$\xi = \sum_i ({}^i\xi) \varpi_i = \sum_i ({}_i\xi) \alpha_i.$$

Let $P = \{\xi \in E | {}^i\xi \in \mathbf{Z} \quad \forall i \in I\}$, $P^+ = \{\xi \in E | {}^i\xi \in \mathbf{N} \quad \forall i \in I\}$. Let $\rho = \sum_i \varpi_i \in P^+$. We consider the usual partial order on P :

$$\xi \leq \xi' \Leftrightarrow {}_i\xi' - {}_i\xi \in \mathbf{N} \text{ for all } i.$$

For $i \in I$ define $s_i : E \rightarrow E$ by $s_i(\xi) = \xi - (\xi, \alpha_i)\alpha_i$. Let W be the (finite) subgroup of $GL(E)$ generated by $\{s_i | i \in I\}$. Let $\mathbf{Z}[P]$ be the group ring of P with obvious basis $([\xi])_{\xi \in P}$. For $\xi \in P^+$ define $V_\xi \in \mathbf{Z}[P]$ by Weyl's formula

$$\sum_{w \in W} \det(w)[w(\xi + \rho)] = V_\xi \sum_{w \in W} \det(w)[w(\rho)].$$

2. The fermionic form [HKOTY]. Let q be an indeterminate. For $p, m \in \mathbf{N}$ define

$$\begin{bmatrix} p+m \\ m \end{bmatrix} = \frac{(q^{p+1}-1)(q^{p+2}-1) \dots (q^{p+m}-1)}{(q-1)(q^2-1) \dots (q^m-1)} \in \mathbf{Z}[q].$$

Let $\nu = \{\nu_k^{(i)} \in \mathbf{N} | i \in I, k \geq 1\}$ where all but finitely many $\nu_k^{(i)}$ are zero. Let $\lambda \in P^+$. In [HKOTY, 4.3] a "fermionic form" $M(\nu, \lambda, q)$ (or $M(W, \lambda, q)$ in the

Supported in part by the National Science Foundation

notation of *loc.cit.*) is attached to ν, λ . This is a q -analogue of an expression which first appeared in Kirillov and Reshetikhin [KR]. For $q = 1$ it conjecturally gives the multiplicities in certain representations of an affine quantum group when restricted to the ordinary quantum group. In [Kl], Kleber rewrites the formula of [KR] in the form of a computationally efficient algorithm. (In his paper, it is assumed that one of the $\nu_k^{(i)}$ is 1 and the other s are 0 but, as he pointed out to me, the same procedure works in general for $q = 1$.)

In the remainder of this note we assume that

$$\nu_k^{(i)} = 0 \text{ for } i \in I, k \geq 2.$$

In this case we identify ν with the element of P^+ such that ${}^i\nu = \nu_1^{(i)}$ for all i . By definition,

$$(a) \quad M(\nu, \lambda, q) = \sum_{\{m\}} q^{c(\{m\})} \prod_{i \in I; k \geq 1} \left[\begin{matrix} p_k^{(i)} + m_k^{(i)} \\ m_k^{(i)} \end{matrix} \right],$$

$$c(\{m\}) = \frac{1}{2} \sum_{i, j \in I} (\alpha_i, \alpha_j) \sum_{k, l \geq 1} \min(k, l) m_k^{(i)} m_l^{(j)} - \sum_{i \in I} \sum_{k \geq 1} {}^i \nu m_k^{(i)},$$

$$p_k^{(i)} = {}^i \nu - \sum_{j \in I} (\alpha_i, \alpha_j) \sum_{l \geq 1} \min(k, l) m_l^{(j)},$$

where the sum $\sum_{\{m\}}$ is taken over $\{m_k^{(i)} \in \mathbf{N} | i \in I, k \geq 1\}$ satisfying $p_k^{(i)} \geq 0$ for $i \in I, k \geq 1$ and

$$\sum_{i \in I} \sum_{k \geq 1} k m_k^{(i)} \alpha_i = \nu - \lambda$$

for $i \in I$. We rewrite this by extending the method of [Kl] to the q -analogue; we obtain

$$(b) \quad M(\nu, \lambda, q) = \sum_{\omega} q^{c(\omega)} \prod_{i \in I; k \geq 1} \left[\begin{matrix} {}^i \omega_k + {}_i \mu_k \\ {}_i \mu_k \end{matrix} \right]$$

sum over all sequences ω in P^+ of the form

$$\nu = \omega_0 > \omega_1 > \omega_2 > \cdots > \omega_s = \omega_{s+1} = \omega_{s+2} = \cdots = \lambda$$

such that

$$\omega_0 - \omega_1 \geq \omega_1 - \omega_2 \geq \omega_2 - \omega_3 \geq \dots$$

that is,

$$\mu_k = \omega_{k-1} - 2\omega_k + \omega_{k+1} \geq 0 \text{ for } k \geq 1, \quad \mu_k = 0 \text{ for } k \gg 0,$$

and

$$c(\omega) = \frac{1}{2} \sum_{k \geq 1} (X_k, X_k) - (\nu, X_1)$$

where

$$X_k = \omega_{k-1} - \omega_k \text{ for } k \geq 1.$$

The connection between (a) and (b) is as follows: in terms of the data in (a) we have

$$\omega_k = \sum_i p_k^{(i)} \varpi_i, \quad \mu_k = \sum_i m_k^{(i)} \alpha_i.$$

Since $\mu_k = X_k - X_{k+1}$ for $k \geq 1$, we have for $i, j \in I$:

$$\begin{aligned} \sum_{k,l \geq 1} \min(k, l) m_k^{(i)} m_l^{(j)} &= \sum_{k,l \geq 1} \min(k, l) ({}_i X_k - {}_i X_{k+1}) ({}_j X_l - {}_j X_{l+1}) \\ &= \sum_{k,l \geq 1} \min(k, l) ({}_i X_k ({}_j X_l) - {}_i X_{k+1} ({}_j X_l) - {}_i X_k ({}_j X_{l+1}) + {}_i X_{k+1} ({}_j X_{l+1})) \\ &= \sum_{k,l \geq 1} (\min(k, l) - \min(k-1, l) - \min(k, l-1) + \min(k-1, l-1)) {}_i X_k ({}_j X_l) \\ &= \sum_{k \geq 1} {}_i X_k ({}_j X_k), \\ \sum_{k \geq 1} {}^i \nu m_k^{(i)} &= \sum_{k \geq 1} {}^i \nu ({}_i X_k - {}_i X_{k+1}) = ({}^i \nu) ({}_i X_1), \end{aligned}$$

hence $c(\{m\}) = c(\omega)$.

The following result is stated without proof in [HKOTY].

Lemma 3. $M(\nu, \lambda, q) \in \mathbf{N}[q^{-1}]$.

Let ω be as in Sec.2. The product of q -binomial coefficients in the term corresponding to ω is a polynomial in q of degree

$$\begin{aligned} N &= \sum_{i \in I; k \geq 1} {}^i \omega_k ({}_i \mu_k) = \sum_{k \geq 1} (\omega_k, \mu_k) \\ &= \sum_{k \geq 1} (\nu - X_1 - X_2 - \cdots - X_k, X_k - X_{k+1}) = (\nu, X_1) - \sum_{k \geq 1} (X_k, X_k). \end{aligned}$$

It is enough to show that $c(\omega) + N \leq 0$. We have

$$c(\omega) + N = -\frac{1}{2} \sum_{k \geq 1} (X_k, X_k)$$

and this is clearly ≤ 0 .

Lemma 4. Let $\xi \in P^+$ and let $\eta \in P$ be such that $\eta \geq 0$. Then $(\xi, \eta) \geq 0$.

This is obvious.

Lemma 5. If $\nu \geq \lambda$ then $M(\nu, \lambda, q) = q^{-(\nu, \nu)/2 + (\lambda, \lambda)/2} +$ strictly larger powers of q .

Let ω be as in Sec.2. We show that

$$(a) \quad c(\omega) \geq -(\nu, \nu)/2 + (\lambda, \lambda)/2$$

that is,

$$\frac{1}{2} \sum_{k \geq 1} (X_k, X_k) - (\nu, X_1) - \frac{1}{2}(\nu - \lambda, \nu - \lambda) + (\nu, \nu - \lambda) \geq 0.$$

Since $\nu - \lambda = X_1 + X_2 + X_3 + \dots$, this is equivalent to

$$(b) \quad (\nu, X_2 + X_3 + \dots) - \sum_{1 \leq k < l} (X_k, X_l) \geq 0.$$

Applying Lemma 4 to $\xi = \nu - X_1 - X_2 - \dots - X_{k+1} = \omega_{k+1}$, $\eta = X_{k+1}$, we obtain

$$(\nu - X_1 - X_2 - \dots - X_{k+1}, X_{k+1}) \geq 0.$$

Adding these inequalities over all $k \geq 1$ we obtain

$$\sum_{k \geq 1} (\nu - X_1 - X_2 - \dots - X_k - X_{k+1}, X_{k+1}) \geq 0,$$

that is,

$$(\nu, X_2 + X_3 + \dots) - \sum_{1 \leq k < l \geq 1} (X_k, X_l) \geq \sum_{k \geq 2} (X_k, X_k) \geq 0.$$

Thus, (b) hence (a) are proved. This proof shows also that the inequality (a) is strict unless ω satisfies $X_2 = X_3 = \dots = 0$. If this last condition is satisfied then ω is the sequence $\nu = \omega^0 \geq \omega^1 = \omega^2 = \dots = \lambda$ and (a) is an equality. The lemma is proved.

6. Inversion. Define $M^*(\nu, \lambda, q) \in \mathbf{Z}[q^{-1}]$ for any $\nu, \lambda \in P^+$ by the requirement that the matrix $(M^*(\nu, \lambda, q))_{\mu, \lambda}$ is inverse to the matrix $(M(\nu, \lambda, q))_{\mu, \lambda}$ (which is lower triangular with 1 on diagonal). Thus, $M^*(\nu, \nu, q) = 1$ and $\sum_{\lambda \in P^+} M^*(\nu, \lambda, q) M(\lambda, \xi, q) = 0$ for any $\nu > \xi$ in P^+ . There is some evidence that the matrix M^* is simpler than M . For example, in type A_1 , we have

$$M^*(\nu, \lambda, 1) = (-1)^{i(\nu - \lambda)} \binom{i\lambda + i(\nu - \lambda)}{i(\nu - \lambda)}$$

for any $\nu \geq \lambda$ in P^+ .

7. Path algebra. Let \mathbf{I} be the set of all sequences i_1, i_2, \dots, i_s (with $s \geq 1$) in I such that i_k, i_{k+1} are joined for any $k \in [1, s-1]$. Let \mathcal{F} be the \mathbf{C} -vector space spanned by elements $[i_1, i_2, \dots, i_s]$ corresponding to the various elements of \mathbf{I} . We regard \mathcal{F} as an algebra in which the product $[i_1, i_2, \dots, i_s][j_1, j_2, \dots, j_{s'}]$ is equal to $[i_1, i_2, \dots, i_s, j_2, \dots, j_{s'}]$ if $i_s = j_1$ and is zero, otherwise. For $i \in I$, let $\vartheta_i = \sum_j [iji]$ where j runs over the elements of I that are joined with i . For $i, j \in I$ let \mathcal{F}_{ij} be the subspace of \mathcal{F} spanned by the elements $[i_1, i_2, \dots, i_s]$ with $i_1 = i, i_s = j$. For $u \in \mathbf{Z}$ let \mathcal{F}^u be the subspace of \mathcal{F} spanned by the elements $[i_1, i_2, \dots, i_s]$ with $s = u + 1$. (For $u < 0$ we have $\mathcal{F}^u = 0$.) Let $\mathcal{F}_{ij}^u = \mathcal{F}_{ij} \cap \mathcal{F}^u$. We have

$$\mathcal{F} = \bigoplus_{i,j} \mathcal{F}_{ij}, \mathcal{F} = \bigoplus_u \mathcal{F}^u, \mathcal{F} = \bigoplus_{i,j,u} \mathcal{F}_{ij}^u.$$

Let \mathcal{I} be the two-sided ideal of \mathcal{F} generated by the elements ϑ_i ($i \in I$). The quotient algebra $\mathbf{P} = \mathcal{F}/\mathcal{I}$ has finite dimension over \mathbf{C} [GP]. Let $\mathbf{P}_{ij}, \mathbf{P}^u, \mathbf{P}_{ij}^u$ be the image of $\mathcal{F}_{ij}, \mathcal{F}^u, \mathcal{F}_{ij}^u$ in \mathbf{P} . We have

$$\mathbf{P} = \bigoplus_{i,j} \mathbf{P}_{ij}, \mathbf{P} = \bigoplus_u \mathbf{P}^u, \mathbf{P} = \bigoplus_{i,j,u} \mathbf{P}_{ij}^u.$$

Let \mathbf{D} a finite dimensional \mathbf{C} -vector with a given direct sum decomposition $\mathbf{D} = \bigoplus_{i \in I} \mathbf{D}_i$. Then $\mathbf{D}^\dagger = \bigoplus_{i,j} \mathbf{P}_{ij} \otimes \mathbf{D}_j$ is a left \mathbf{P} -module in an obvious way (in fact a projective \mathbf{P} -module of finite dimension over \mathbf{C}). Let $\nu = \sum_{i \in I} \dim \mathbf{D}_i \varpi_i \in P^+$. Let $\text{Grass}_{\mathbf{P}}(\mathbf{D}^\dagger)$ be the algebraic variety consisting of all \mathbf{P} -submodules of \mathbf{D}^\dagger . We have a partition

$$\text{Grass}_{\mathbf{P}}(\mathbf{D}^\dagger) = \sqcup_{\xi \in P} \text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$$

where $\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ consists of all \mathbf{P} -submodules \mathcal{V} such that $\sum_i \dim([i]\mathbf{D}^\dagger)/[i]\mathcal{V})\alpha_i = \nu - \xi$. Then

Conjecture A. *Let $q^{1/2}$ be an indeterminate. For any $\xi \in P$ we have*

$$(a) \quad \sum_{s \in \mathbf{N}} \dim H^s(\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)) q^{s/2} = \sum_{\lambda \in P^+} (\xi : V_\lambda) q^{(\nu, \nu)/2 - (\xi, \xi)/2} M(\nu, \lambda, q)$$

where $(\xi : V_\lambda)$ is the coefficient in ξ in V_λ and $H^s()$ denotes ordinary cohomology with coefficients in a field.

Since $(\xi : V_\lambda)$ and (ξ, ξ) are W -invariant in ξ , we see that the right hand side of (a) is W -invariant in ξ . The analogous property of the left hand side of (a) is known to be true. (See [L2].)

In [L1] it is shown that $\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ is isomorphic to a (lagrangian) quiver variety defined in Nakajima [NA] and, conversely, all such quiver varieties are obtained. Thus the conjecture above gives at the same time the Betti numbers of quiver varieties.

Assuming the conjecture, we show that $\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ is connected if $(\xi : V_\nu) \neq 0$ (an expected but not yet proved property of quiver varieties). We may assume

that $\xi \in P^+, \xi \leq \nu$. It suffices to show that $\dim H^0(\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)) = 1$ or that the constant term of

$$\sum_{\lambda \in P^+} (\xi : V_\lambda) q^{(\nu, \nu)/2 - (\xi, \xi)/2} M(\nu, \lambda, q)$$

is 1. By Lemma 5, the constant term of the term corresponding to $\lambda = \xi$ is 1. Consider now the term corresponding to $\lambda \neq \xi$; we show that its constant term is 0. We may assume that $\lambda \leq \nu$ and $(\xi : V_\lambda) \neq 0$ so that $\xi < \lambda$. By Lemma 5, $q^{(\nu, \nu)/2 - (\xi, \xi)/2} M(\nu, \lambda, q)$ is of the form

$$q^{(\nu, \nu)/2 - (\xi, \xi)/2} q^{-(\nu, \nu)/2 + (\lambda, \lambda)/2} + \text{strictly larger powers of } q.$$

Since $(\xi, \xi) < (\lambda, \lambda)$ for any λ, ξ in P^+ such that $\xi < \lambda$, our assertion is established.

The same argument shows that the right hand side of (a) is in $\mathbf{N}[q]$.

Assuming again that $\xi \in P^+, \xi \leq \nu$ we show that the polynomial in q given by the right hand side of (a) has degree $s = (\nu, \nu)/2 - (\xi, \xi)/2$. The term corresponding to $\lambda = \nu$ is $(\xi : V_\nu) q^s$ where $(\xi : V_\nu) > 0$. Consider now the term corresponding to $\lambda \neq \nu$. We may assume that $\lambda < \nu$. It suffices to show that in this case $M(\nu, \lambda, q) \in q^{-1}\mathbf{Z}[q^{-1}]$. This follows from the proof of Lemma 3. Our assertion is established. Note that this is compatible with the conjecture since the dimension of $\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ is known to be equal to $(\nu, \nu)/2 - (\xi, \xi)/2$.

In the A_1 case, the left hand side of (a) is a q -binomial coefficient; the right hand side can be computed by results in [Ki], [KSS]; the conjecture holds in this case.

8. The conjecture implies that

$$(a) \quad \chi(\text{Grass}_{\mathbf{P}}(\mathbf{D}^\dagger)) = \sum_{\lambda \in P^+} \dim(V_\lambda) M(\nu, \lambda, 1)$$

where χ denotes Euler characteristic and $\dim(V_\lambda) = \sum_{\xi \in P} (\xi : V_\lambda)$. Let $f(\nu)$ (resp. $g(\nu)$) be the left (resp. right) hand side of (a). According to [HKOTY], it is expected that $g(\nu + \nu') = g(\nu)g(\nu')$ for any $\nu, \nu' \in P^+$. The corresponding identity $f(\nu + \nu') = f(\nu)f(\nu')$ is known [L3, 3.20].

9. We can partition I into two disjoint subsets I^0, I^1 so that no two vertices in I^0 are joined and no two vertices in I^1 are joined. For any $u \in \mathbf{Z}$ let

$${}^u \mathbf{D}^\dagger = \bigoplus_{i \in I^\delta, j \in I} (\mathbf{P}_{ij}^u \oplus \mathbf{P}_{ij}^{u-1}) \otimes \mathbf{D}_j$$

where $\delta \in \{0, 1\}$ is defined by $u = \delta \pmod{2}$. We have $\mathbf{D}^\dagger = \bigoplus_u {}^u \mathbf{D}^\dagger$. Consider the \mathbf{C}^* -action $t, d \mapsto td$ on \mathbf{D}^\dagger with weight u on ${}^u \mathbf{D}^\dagger$. This action is compatible with the \mathbf{P} -module structure in the following sense: $t(pd) = (tp)(td)$ for $t \in \mathbf{C}^*, p \in \mathbf{P}, d \in \mathbf{D}^\dagger$ where tp is given by the \mathbf{C}^* -action on \mathbf{P} (through algebra automorphisms) for which \mathbf{P}^u has weight u . Hence we have an induced \mathbf{C}^* -action on $\text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ for any ξ . Let $\text{Grass}'_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ be the fixed point set of this \mathbf{C}^* -action (a smooth variety). It consists of all $\mathcal{V} \in \text{Grass}_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)$ such that $\mathcal{V} = \bigoplus_u (\mathcal{V} \cap {}^u \mathbf{D}^\dagger)$.

Conjecture B. *For any $\xi \in P$ we have*

$$\sum_{s \in \mathbf{N}} \dim H^s(\text{Grass}'_{\mathbf{P}, \xi}(\mathbf{D}^\dagger)) q^{s/2} = \sum_{\lambda \in P^+} (\xi : V_\lambda) M(\nu, \lambda, q^{-1}).$$

One can show that this is equivalent to Conjecture A.

I wish to thank M. Kleber and A. Schilling for useful discussions.

REFERENCES

- [GP] I.M. Gelfand, V.A. Ponomarev, *Model algebras and representations of graphs*, Funkt. analiz **13** (1979), 1-12.
- [HKOTY] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, *Remarks on fermionic formula*, qa/9812022.
- [KR] A.N. Kirillov, N.Yu. Reshetikhin, *Representations of Yangians and multiplicity of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras*, J.Soviet Math. **52** (1990), 3156-3164.
- [Ki] A.N. Kirillov, *Dilogarithm identities*, Progress of Theor.Phys. **118** (1995), 61-142.
- [KSS] A.N. Kirillov, A. Schilling, M. Shimozono, *A bijection between Littlewood-Richardson tableaux and rigged configurations*, co/9901037.
- [Kl] M. Kleber, *Combinatorial structure of finite dimensional representations of Yangians: the simply laced case*, Int.Math.Res.Notices (1997), 187-201.
- [L1] G. Lusztig, *On quiver varieties*, Adv.Math. **136** (1998), 141-182.
- [L2] G. Lusztig, *Quiver varieties and Weyl group actions*, Ann.Inst.Fourier (to appear).
- [L3] G. Lusztig, *Remarks on quiver varieties*, Duke J. Math (to appear).
- [NA] H. Nakajima, *Quiver varieties and Kac-Moody algebras*, Duke J.Math. **91** (1998), 515-560.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139