# Mathematics for Machine Learning

Vazgen Mikayelyan

August 11, 2020





#### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $0 < |x - a| < \delta$ ,  $x \in X$  follows that  $|f(x) - A| < \varepsilon$ .

V. Mikayelyan Math for ML August 11, 2020 2/

#### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $0 < |x - a| < \delta$ ,  $x \in X$  follows that  $|f(x) - A| < \varepsilon$ .

## Definition

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all sequences  $x_n \in X$  such that  $x_n \to a$ , holds  $f(x_n) \to A$ .

V. Mikayelyan Math for ML August 11, 2020 2/7

#### **Definition**

Let  $f:X\to\mathbb{R},\,X\subset\mathbb{R}$  is an interval and  $a\in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x\to a}f\left(x\right)=A$  or  $f\left(x\right)\xrightarrow[x\to a]{}A$ , if for all  $\varepsilon>0$  there exists  $\delta>0$  such that from  $0<|x-a|<\delta,\,x\in X$  follows that  $|f\left(x\right)-A|<\varepsilon$ .

## Definition

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all sequences  $x_n \in X$  such that  $x_n \to a$ , holds  $f(x_n) \to A$ .

## Questions

**1** What if X = (0, 1] and a = 0?

2/7

#### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $0 < |x - a| < \delta$ ,  $x \in X$  follows that  $|f(x) - A| < \varepsilon$ .

### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$  is an interval and  $a \in X$ . It is said the limit of f, as x approaches a, is A and written  $\lim_{x \to a} f(x) = A$  or  $f(x) \xrightarrow[x \to a]{} A$ , if for all sequences  $x_n \in X$  such that  $x_n \to a$ , holds  $f(x_n) \to A$ .

## Questions

- **1** What if X = (0,1] and a = 0?
- What about properties of limit of a function?

2/7



V. Mikayelyan Math for ML August 11, 2020 3/7

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$



V. Mikayelyan Math for ML August 11, 2020 3/

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e,$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a,$$



V. Mikayelyan Math for ML August 11, 2020 3/7

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a,$$

$$\lim_{x \to 0} \frac{x}{(1+x)^a - 1} = a,$$

< □ > < □ > < 亘 > < 亘 > □ ≥ < つへで

V. Mikayelyan Math for ML August 11, 2020 4/7

## Definition

Let  $f:X\to\mathbb{R}$ ,  $X\subset\mathbb{R}$  is an interval and  $a\in X$ . It is said f is continuous at a if

$$\lim_{x \to a} f\left(x\right) = f\left(a\right).$$

V. Mikayelyan Math for ML August 11, 2020 4/7

#### **Definition**

Let  $f:X\to\mathbb{R}$ ,  $X\subset\mathbb{R}$  is an interval and  $a\in X$ . It is said f is continuous at a if

$$\lim_{x \to a} f(x) = f(a).$$

## Questions

**1** What if X = (0, 1] and a = 0?

#### **Definition**

Let  $f:X\to\mathbb{R}$ ,  $X\subset\mathbb{R}$  is an interval and  $a\in X$ . It is said f is continuous at a if

$$\lim_{x \to a} f(x) = f(a).$$

## Questions

- **1** What if X = (0, 1] and a = 0?
- What about properties of continuous function?



## Theorem

Let  $f \in C[a,b]$ . If f(a) f(b) < 0 then there exists  $c \in (a,b)$  such that f(c) = 0.



#### Theorem

Let  $f \in C[a,b]$ . If f(a) f(b) < 0 then there exists  $c \in (a,b)$  such that f(c) = 0.

#### Theorem

Let  $f \in C[a,b]$ . If f(a) < f(b) then for all  $C \in (f(a),f(b))$  there exists  $c \in (a,b)$  such that f(c) = C.

V. Mikayelyan Math for ML August 11, 2020 5/

#### Theorem

Let  $f \in C[a,b]$ . If f(a) f(b) < 0 then there exists  $c \in (a,b)$  such that f(c) = 0.

#### Theorem

Let  $f \in C [a,b]$ . If f(a) < f(b) then for all  $C \in (f(a),f(b))$  there exists  $c \in (a,b)$  such that f(c) = C.

#### Theorem

If  $f \in C[a,b]$ , then f is bounded.

V. Mikayelyan Math for ML August 11, 2020 5/7

#### Theorem

Let  $f \in C[a,b]$ . If f(a) f(b) < 0 then there exists  $c \in (a,b)$  such that f(c) = 0.

#### Theorem

Let  $f \in C[a,b]$ . If f(a) < f(b) then for all  $C \in (f(a), f(b))$  there exists  $c \in (a,b)$  such that f(c) = C.

#### Theorem

If  $f \in C[a,b]$ , then f is bounded.

#### Theorem

If  $f \in C[a,b]$ , then f has maximum and minimum values.

V. Mikayelyan Math for ML August 11, 2020 5/7

# **Uniform Continuity**

#### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is uniformly continuous on the set X, if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $|x_1 - x_2| < \delta$ ,  $x_1, x_2 \in X$  follows that  $|f(x_1) - f(x_2)| < \varepsilon$ .

V. Mikayelyan Math for ML August 11, 2020 6/

# **Uniform Continuity**

#### Definition

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is uniformly continuous on the set X, if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $|x_1 - x_2| < \delta$ ,  $x_1, x_2 \in X$  follows that  $|f(x_1) - f(x_2)| < \varepsilon$ .

#### Theorem

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . If f is uniformly continuous on X, then it is continuous at every point of X.

V. Mikayelyan Math for ML August 11, 2020 6/7

# **Uniform Continuity**

#### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is uniformly continuous on the set X, if for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that from  $|x_1 - x_2| < \delta$ ,  $x_1, x_2 \in X$  follows that  $|f(x_1) - f(x_2)| < \varepsilon$ .

#### Theorem

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . If f is uniformly continuous on X, then it is continuous at every point of X.

#### Theorem

If  $f \in C[a,b]$ , then it is uniformly continuous on [a,b].

V. Mikayelyan Math for ML August 11, 2020 6/7

#### Definition

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is differentiable at interior point  $x_0 \in X$ , if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

#### Definition

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is differentiable at interior point  $x_0 \in X$ , if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is differentiable at interior point  $x_0 \in X$ , if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

## Proposition

$$f(x_0 + h) - f(x_0) = f'(x_0) h + o(h), h \to 0.$$



### **Definition**

Let  $f: X \to \mathbb{R}$ ,  $X \subset \mathbb{R}$ . It is said f is differentiable at interior point  $x_0 \in X$ , if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

## Proposition

$$f(x_0 + h) - f(x_0) = f'(x_0) h + o(h), h \to 0.$$

#### Theorem

If f has a finite derivative at  $x_0$  then it is continuous at  $x_0$ .



V. Mikayelyan Math for ML August 11, 2020 7/7