

Net-Zero America - florida state report

2021-03-15

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	. 1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	. 1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	. 2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	. 2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	4
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	5
14	E+ scenario - IMPACTS - Fossil fuel industries	. 7
15	E+ scenario - IMPACTS - Health	. 7
16	E+ scenario - IMPACTS - Jobs	. 7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	9
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	10
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	. 11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	14
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	15
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	16
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	. 19
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	. 19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	20
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	21
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	21
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	22

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	25
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	25
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	27
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	27
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	31
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	32
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	32
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	32
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	33
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	35
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		66,758	74,510				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	32	46	79.9	86.5	86.9	86.9	86.9
Resistance (%)							
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric	23.9	27	70.6	83.8	84.8	85	85.1
Heat Pump (%)							
Sales of space heating units - Electric	22.7	8.53	10.3	12.4	13.2	13	12.8
Resistance (%)							
Sales of space heating units - Fossil (%)	0	3.82	0.711	0.031	0	0	0
Sales of space heating units - Gas Furnace	53.5	60.7	18.4	3.73	1.99	2	2.02
(%)							
Sales of water heating units - Electric	0.849	10.5	54.3	64	64.4	64.5	64.5
Heat Pump (%)							
Sales of water heating units - Electric	20.9	11.5	28.7	32.5	32.7	32.7	32.7
Resistance (%)							
Sales of water heating units - Gas Furnace	69.5	73.9	14	0.589	0	0	0
(%)							
Sales of water heating units - Other (%)	8.69	4.13	3.09	2.85	2.86	2.83	2.82

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.9	7.56	13.5	13.9	16.3	17
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	437	427	413	402	400	406
Final energy use - Industry (PJ)	555	584	599	624	651	665	684
Final energy use - Residential (PJ)	511	493	475	450	430	422	425
Final energy use - Transportation (PJ)	1,917	1,804	1,617	1,384	1,172	1,037	974

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		16.2	21.3				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96.9	99.5	100	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	3.99	3.14	0.538	0.027	0	0	0
Sales of space heating units - Electric	51.7	60.3	83.9	89.2	89.3	89.1	89
Heat Pump (%)							
Sales of space heating units - Electric	40	35.5	15	10.4	10.3	10.5	10.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0.822	0.7	0.133	0.006	0	0	0
Sales of space heating units - Gas (%)	7.51	3.51	0.99	0.435	0.414	0.413	0.412
Sales of water heating units - Electric	0	12.3	65.2	77	77.6	77.6	77.6
Heat Pump (%)							
Sales of water heating units - Electric	88.4	81.8	31.6	20.4	19.9	19.9	19.9
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.27	0.619	0.026	0	0	0
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.53

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		3,333	8,621	13,843	21,020	22,822	21,789
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.717		5.18		21.9		35.3
units)							
Public EV charging plugs - L2 (1000 units)	3.3		124		526		848
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.29	1.58	1.16	0.367	0.07	0.013	0
Vehicle sales - Light-duty - EV (%)	4.79	17.9	50.4	83.4	96.5	99.3	100
Vehicle sales - Light-duty - gasoline (%)	88.5	75	44.7	14.9	3.08	0.584	0
Vehicle sales - Light-duty - hybrid (%)	5.27	5.16	3.5	1.27	0.314	0.07	0
Vehicle sales - Light-duty - hydrogen FC	0.109	0.325	0.182	0.055	0.011	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.09	0.085	0.053	0.019	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0.003	0.163	0.013	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0.02	0.005	0.002	0.019
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0.043	0	0.006	2.06	0.012
Capital invested - Offshore Wind - Base (billion \$2018)		0.266	0	0	1.43	0.916	9.44
Capital invested - Solar PV - Base (billion \$2018)		12.2	26.3	41.1	26.3	22	0
Capital invested - Solar PV - Constrained (billion \$2018)		13.8	28.1	31.2	32.4	20.3	0
Installed renewables - OffshoreWind - Base land use assumptions (MW)	0	93.8	93.8	93.8	920	1,541	9,078
Installed renewables - OffshoreWind - Constrained land use assumptions (MW)	0	93.8	93.8	93.8	920	1,541	9,078
Installed renewables - Rooftop PV (MW)	723	1,179	1,661	2,333	3,256	4,426	5,903
Installed renewables - Solar - Base land use assumptions (MW)	3,072	13,748	39,484	83,145	112,759	139,025	139,025
Installed renewables - Solar - Constrained land use assumptions (MW)	2,996	10,804	38,344	71,601	103,101	132,894	189,932
Installed renewables - Wind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed renewables - Wind - Constrained land use assumptions (MW)	0	0	0	0	0	0	0

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	5.92	326	351	351	351	351
Biomass w/ccu allam power plant (GWh)	0	0	0	20.2	24.9	26.9	45.8

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Biomass w/ccu power plant (GWh)	0	0	48.5	48.5	55.5	2,368	2,382
OffshoreWind - Base land use	0	285	285	285	2,790	4,681	27,587
assumptions (GWh)							
OffshoreWind - Constrained land use	0	285	285	285	2,790	4,681	27,587
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	6,248	24,952	69,352	144,033	194,716	239,156	239,156
Solar - Constrained land use assumptions	6,093	19,784	67,349	124,210	178,091	228,553	328,145
(GWh)							
Wind - Base land use assumptions (GWh)	0	0	0	0	0	0	0
Wind - Constrained land use assumptions	0	0	0	0	0	0	0
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		7.28	21.8	58.6	333	579	700
Conversion capital investment -		3.4	221	785	5,743	5,424	2,560
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	2	3	4
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	1	7	9	12
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	1	2	3	4
Number of facilities - Power (quantity)	0	1	1	1	1	1	1
Number of facilities - Power ccu	0	0	1	1	2	4	5
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	1
Number of facilities - Pyrolysis ccu	0	0	0	1	2	3	4
(quantity)							
Number of facilities - Sng (quantity)	0	1	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	1

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.08	3.73	14.5	24.6	31.4
Annual - BECCS (MMT)		0	0.05	0.98	8.35	15.1	18.4
Annual - Cement and lime (MMT)		0	0	0	3.32	6.84	7.07
Annual - NGCC (MMT)		0	0.03	2.75	2.87	2.62	5.94
Cumulative - All (MMT)		0	0.08	3.81	18.3	42.9	74.3
Cumulative - BECCS (MMT)		0	0.05	1.03	9.38	24.5	42.8
Cumulative - Cement and lime (MMT)		0	0	0	3.32	10.2	17.2
Cumulative - NGCC (MMT)		0	0.03	2.78	5.65	8.27	14.2

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	739	1,095	1,533	2,279	3,321
Cumulative investment - All (million \$2018)		0	3,102	3,325	3,600	4,157	4,755
Cumulative investment - Spur (million \$2018)		0	55	278	553	1,109	1,708
Cumulative investment - Trunk (million \$2018)		0	3,047	3,047	3,047	3,047	3,047
Spur (km)		0	104	460	897	1,644	2,685
Trunk (km)		0	636	636	636	636	636

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

	•						
Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	4.39	10.6	19.9	31	42.9
Injection wells (wells)		0	8	32	56	92	116
Resource characterization, appraisal, permitting costs (million \$2020)		159	552	785	785	785	785
Wells and facilities construction costs (million \$2020)		0	245	955	1,702	2,846	3,533

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,077
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29.6
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,107
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,066
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.8
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,081
deployment - Total (1000 tC02e/y)							.,00.
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							Ū
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,091
Aggressive deployment - Cropland							1,071
measures (1000 hectares)							
Land impacted for carbon sink -							53.8
Aggressive deployment - Permanent							55.6
conservation cover (1000 hectares)							
,							11//
Land impacted for carbon sink -							1,144
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							559
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate	T		T	T			26.9
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							586
deployment - Total (1000 hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,328
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-38,862
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,923
deforestation (1000 tC02e/y)							/ 105
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tCO2e/y)							0.701
Carbon sink potential - High - Improve							-3,791
plantations (1000 tC02e/y)							0.007
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tC02e/y)							-983
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tC02e/y) Carbon sink potential - High - Reforest							-462
cropland (1000 tCO2e/y)							-402
Carbon sink potential - High - Reforest							-8,095
pasture (1000 tC02e/y)							-0,073
Carbon sink potential - High - Restore							-4,781
productivity (1000 tC02e/y)							-4,101
Carbon sink potential - Low - Accelerate							-665
regeneration (1000 tCO2e/y)							-003
Carbon sink potential - Low - All (not							-11,529
counting overlap) (1000 tC02e/y)							-11,027
Carbon sink potential - Low - Avoid							-654
deforestation (1000 tC02e/y)							004
Carbon sink potential - Low - Extend							-2,380
rotation length (1000 tC02e/y)							2,000
Carbon sink potential - Low - Improve							-1,929
plantations (1000 tCO2e/y)							.,, =,
Carbon sink potential - Low - Increase							-3,101
retention of HWP (1000 tCO2e/y)							-, -
Carbon sink potential - Low - Increase							-344
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-231
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-613
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,612
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-997
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-25,162
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-2,289
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-4,287
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-2,827
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,203
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-664
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-346
cropland (1000 tC02e/y)							,
Carbon sink potential - Mid - Reforest							-4,354
pasture (1000 tC02e/y)							2424
Carbon sink potential - Mid - Restore							-3,196
productivity (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							217
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							531
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,159
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,397
High - Improve plantations (1000							,
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							70.4
(1000 hectares)							
Land impacted for carbon sink potential -							30.5
High - Reforest cropland (1000 hectares)							30.3
Land impacted for carbon sink potential -							230
·							230
High - Reforest pasture (1000 hectares)							4 505
Land impacted for carbon sink potential -							1,585
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,243
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							109
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							499
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							49.2
Low - Increase trees outside forests							77.2
(1000 hectares)							
Land impacted for carbon sink potential -							15.3
Low - Reforest cropland (1000 hectares)							15.5
Land impacted for carbon sink potential -							39.9
							37.7
Low - Reforest pasture (1000 hectares)							050
Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,579
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							163
Mid - Accelerate regeneration (1000							
hectares)		I				1	

Tahla 12. Fx	econario -	DILLAD 6.	Land sinks -	Enrecte	(continued)
Table 15. Et	SCEIIUI 10 -	PILLAK O.	LUIIU SIIIKS -	. คบา ยอเอา	COHUHUEUT

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							515
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,185
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,051
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							71.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		1,143	964	773	582	366	254
Natural gas consumption - Cumulative (tcf)							23,282
Natural gas production - Annual (tcf)		0.703	0.665	0.579	0.49	0.388	0.302
Oil consumption - Annual (million bbls)		251	213	161	113	74.7	44.5
Oil consumption - Cumulative (million bbls)							4,994
Oil production - Annual (million bbls)		2.38	2.39	2.39	1.89	1.54	1.02

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		524	2.32	1.71	0.784	0.369	0.022
Monetary damages from air pollution - Natural Gas (million 2019\$)		741	692	577	515	242	48.8
Monetary damages from air pollution - Transportation (million 2019\$)		5,828	5,517	4,260	2,502	1,148	438
Premature deaths from air pollution - Coal (deaths)		59.2	0.262	0.193	0.088	0.042	0.002
Premature deaths from air pollution - Natural Gas (deaths)		83.7	78.1	65.2	58.1	27.3	5.51
Premature deaths from air pollution - Transportation (deaths)		655	621	479	281	129	49.3

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		441	914	474	917	1,127	1,077
By economic sector - Construction (jobs)		23,021	35,821	49,347	48,665	48,605	43,930
By economic sector - Manufacturing		24,447	45,256	46,005	37,098	42,104	34,014
(jobs)							
By economic sector - Mining (jobs)		5,402	3,987	2,732	1,719	1,176	734

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 16: E+ scenario - IMPACTS - Jobs (co	ntinueaj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		2,780	5,563	9,110	9,284	9,894	8,443
By economic sector - Pipeline (jobs)		1,350	1,447	948	737	544	481
By economic sector - Professional (jobs)		10,172	14,469	19,882	20,821	21,996	21,481
By economic sector - Trade (jobs)		7,298	9,870	13,623	13,902	14,675	13,914
By economic sector - Utilities (jobs)		21,345	26,089	33,401	37,627	39,598	39,980
By education level - All sectors -		30,512	45,799	56,567	55,218	58,114	53,112
Associates degree or some college (jobs)							
By education level - All sectors -		19,613	28,143	33,852	32,816	34,634	31,824
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		601	834	1,066	1,065	1,112	1,047
degree (jobs)							
By education level - All sectors - High		41,000	62,278	76,175	73,863	77,628	70,372
school diploma or less (jobs)							
By education level - All sectors - Masters		4,531	6,361	7,863	7,810	8,231	7,700
or professional degree (jobs)							
By resource sector - Biomass (jobs)		1,893	2,520	1,351	2,761	4,109	4,599
By resource sector - CO2 (jobs)		82	2,816	892	1,078	1,646	2,234
By resource sector - Coal (jobs)		1,089	0	0	0	0	0
By resource sector - Grid (jobs)		25,278	35,441	55,390	65,497	70,923	74,895
By resource sector - Natural Gas (jobs)		16,891	14,613	12,227	11,292	9,629	6,185
By resource sector - Nuclear (jobs)		1,917	1,707	1,058	520	302	0.792
By resource sector - Oil (jobs)		11,673	9,194	6,500	4,263	2,686	1,516
By resource sector - Solar (jobs)		37,316	75,398	96,770	80,832	79,408	58,456
By resource sector - Wind (jobs)		117	1,727	1,334	4,528	11,015	16,170
Median wages - Annual - All (\$2019 per		53,711	53,020	53,538	54,596	55,319	56,620
job)							
On-Site or In-Plant Training - Total jobs - 1		15,713	23,361	28,856	28,205	29,563	27,056
to 4 years (jobs)							
On-Site or In-Plant Training - Total jobs - 4		6,192	8,882	11,382	11,417	11,790	10,959
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		15,682	23,565	28,751	27,791	29,270	26,568
None (jobs)							
On-Site or In-Plant Training - Total jobs -		814	1,210	1,516	1,503	1,577	1,459
Over 10 years (jobs)				-	-		
On-Site or In-Plant Training - Total jobs -		57,855	86,398	105,017	101,854	107,518	98,013
Up to 1 year (jobs)				-			•
On-the-Job Training - All sectors - 1 to 4		20,187	29,911	37,029	36,265	37,968	34,809
years (jobs)			.		•		•
On-the-Job Training - All sectors - 4 to 10		6,024	8,699	11,283	11,375	11,734	10,921
years (jobs)							
On-the-Job Training - All sectors - None		5,170	7,689	9,484	9,179	9,645	8,745
(jobs)			,	•	,	,	•
On-the-Job Training - All sectors - Over 10		1,000	1,561	1,867	1,738	1,821	1,605
years (jobs)		,	,		,		•
On-the-Job Training - All sectors - Up to 1		63,876	95,555	115,859	112,215	118,551	107,975
year (jobs)		,	-,	-,	,	,	, -
Related work experience - All sectors - 1		34,489	50,873	62,242	60,724	63,879	58,467
to 4 years (jobs)				,	,		•
Related work experience - All sectors - 4		22,355	32,886	40,298	39,289	41,252	37,817
to 10 years (jobs)		,	- ,	-,	- , -	, -	- ,-
Related work experience - All sectors -		13,844	20,624	25,395	24,891	26,193	23,942
None (jobs)		,.		=5,515	,		,-
Related work experience - All sectors -		6,133	9,149	10,989	10,544	11,139	10,136
Over 10 years (jobs)		5,100	,,,,,,	.0,,0,	.0,044	,	10,100
Related work experience - All sectors - Up		19,435	29,884	36,599	35,324	37,257	33,693
to 1 year (jobs)		.,, 100	,00 /	23,077	55,52	0.,20.	00,070
Wage income - All (million \$2019)		5,170	7,605	9,398	9,325	9,943	9,290
ago moomo - An (minon 42017)		5,110	1,000	7,070	7,020	7,740	7,270

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		66,742	74,583				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	32	36.2	40.9	53.4	71	81.7	85.5
Resistance (%)							
Sales of cooking units - Gas (%)	68	63.8	59.1	46.6	29	18.3	14.5
Sales of space heating units - Electric	23.9	18.7	23.8	38	60.4	76.6	82.8
Heat Pump (%)							
Sales of space heating units - Electric	22.7	8.23	8.33	9.11	10.8	11.9	12.5
Resistance (%)							
Sales of space heating units - Fossil (%)	0	4.41	4	3.07	1.56	0.485	0.126
Sales of space heating units - Gas Furnace	53.5	68.6	63.8	49.8	27.3	11	4.53
(%)							
Sales of water heating units - Electric	0.849	2.05	7.03	21.4	43.4	57.8	62.8
Heat Pump (%)							
Sales of water heating units - Electric	20.9	8.16	9.94	15.6	24.4	30	32
Resistance (%)							
Sales of water heating units - Gas Furnace	69.5	85.5	78.7	59.1	28.9	9.24	2.41
(%)							
Sales of water heating units - Other (%)	8.69	4.32	4.29	3.91	3.39	3	2.87

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		6.42	5.91	9.28	9.23	14.5	15.1
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	438	434	430	423	419	420
Final energy use - Industry (PJ)	555	584	600	630	661	675	696
Final energy use - Residential (PJ)	511	494	487	477	464	448	440
Final energy use - Transportation (PJ)	1,919	1,820	1,686	1,572	1,479	1,369	1,239

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		16	20				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96.1	96.5	97.4	98.8	99.6	99.9
Resistance (%)							
Sales of cooking units - Gas (%)	4.01	3.91	3.54	2.57	1.23	0.395	0.106
Sales of space heating units - Electric	51.7	55.7	58.3	66.2	77.9	85.5	88.2
Heat Pump (%)							
Sales of space heating units - Electric	40	39.5	37.2	30.4	20.2	13.6	11.3
Resistance (%)							
Sales of space heating units - Fossil (%)	0.822	0.81	0.749	0.558	0.266	0.083	0.021
Sales of space heating units - Gas (%)	7.51	3.99	3.69	2.89	1.63	0.801	0.513
Sales of water heating units - Electric	0	2.12	8.14	25.5	52.1	69.4	75.5
Heat Pump (%)							
Sales of water heating units - Electric	88.4	91.5	85.8	69.3	44.1	27.6	21.9
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.79	3.49	2.63	1.29	0.412	0.107
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.52

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		0	553	1,131	3,850	12,021	17,546
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.717		1.71		8.21		22.6
units)							
Public EV charging plugs - L2 (1000 units)	3.3		41.1		197		543
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.3	1.76	2.01	1.59	0.995	0.506	0.218
Vehicle sales - Light-duty - EV (%)	2.19	5.36	13.2	28	50.7	73.5	88.2
Vehicle sales - Light-duty - gasoline (%)	90.8	86.2	77.5	63.9	43.6	23.3	10.3
Vehicle sales - Light-duty - hybrid (%)	5.48	6.25	6.9	6.15	4.49	2.58	1.22
Vehicle sales - Light-duty - hydrogen FC	0.112	0.373	0.311	0.232	0.161	0.088	0.041
(%)							
Vehicle sales - Light-duty - other (%)	0.092	0.095	0.085	0.073	0.052	0.028	0.013
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,077
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29.6
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,107
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,066
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.8
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,081
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,091
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							53.8
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,144
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							559
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							26.9
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							586
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

	s - Forests	2025	2020	2025	207.0	20/E	2050
Item	2020	2025	2030	2035	2040	2045	
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-1,328
Carbon sink potential - High - All (not							-38,862
counting overlap) (1000 tC02e/y)							00,002
Carbon sink potential - High - Avoid							-3,923
deforestation (1000 tC02e/y)							-3,723
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tCO2e/y)							0,170
Carbon sink potential - High - Improve							-3,791
plantations (1000 tC02e/y)							-0,171
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tCO2e/y)							7,004
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tCO2e/y)							700
Carbon sink potential - High - Reforest							-462
cropland (1000 tCO2e/y)							702
Carbon sink potential - High - Reforest							-8,095
pasture (1000 tC02e/y)							-0,075
Carbon sink potential - High - Restore							-4,781
productivity (1000 tCO2e/y)							7,101
Carbon sink potential - Low - Accelerate							-665
regeneration (1000 tCO2e/y)							000
Carbon sink potential - Low - All (not							-11,529
counting overlap) (1000 tC02e/y)							11,027
Carbon sink potential - Low - Avoid							-654
deforestation (1000 tC02e/y)							00 1
Carbon sink potential - Low - Extend							-2,380
rotation length (1000 tC02e/y)							_,000
Carbon sink potential - Low - Improve							-1,929
plantations (1000 tCO2e/y)							.,, = ,
Carbon sink potential - Low - Increase							-3,101
retention of HWP (1000 tCO2e/y)							-,
Carbon sink potential - Low - Increase							-344
trees outside forests (1000 tCO2e/y)							• • • • • • • • • • • • • • • • • • • •
Carbon sink potential - Low - Reforest							-231
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-613
pasture (1000 tC02e/y)							0.0
Carbon sink potential - Low - Restore							-1,612
productivity (1000 tC02e/y)							.,512
Carbon sink potential - Mid - Accelerate							-997
regeneration (1000 tCO2e/y)							,,,

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - All (not							-25,162
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-2,289
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-4,287
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-2,827
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,203
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-664
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-346
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-4,354
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,196
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							217
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							531
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,159
High - Extend rotation length (1000							0,107
hectares)							
Land impacted for carbon sink potential -							1,397
High - Improve plantations (1000							1,071
hectares)							
Land impacted for carbon sink potential -				+			0
High - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							73.4
-							
(1000 hectares)							20.5
Land impacted for carbon sink potential -							30.5
High - Reforest cropland (1000 hectares)							000
Land impacted for carbon sink potential -							230
High - Reforest pasture (1000 hectares)							4 505
Land impacted for carbon sink potential -							1,585
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,243
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							109
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							499
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							0.0
hectares)							
Land impacted for carbon sink potential -					+		0
Low - Increase retention of HWP (1000							U
	1	1					

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							49.2
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							15.3
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							39.9
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,579
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							163
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							515
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,185
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,051
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							71.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		524	2.32	1.71	0.784	0.369	0.022
Monetary damages from air pollution - Natural Gas (million 2019\$)		743	587	329	119	26.1	12.1
Monetary damages from air pollution - Transportation (million 2019\$)		5,938	6,110	6,052	5,549	4,499	3,142
Premature deaths from air pollution - Coal (deaths)		59.2	0.262	0.193	0.088	0.042	0.002
Premature deaths from air pollution - Natural Gas (deaths)		83.8	66.2	37.2	13.5	2.94	1.37
Premature deaths from air pollution - Transportation (deaths)		668	687	681	624	506	353

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)		66,758	74,510				
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	23.9	27	70.6	83.8	84.8	85	85.1
Sales of space heating units - Electric Resistance (%)	22.7	8.53	10.3	12.4	13.2	13	12.8
Sales of space heating units - Fossil (%)	0	3.82	0.711	0.031	0	0	0
Sales of space heating units - Gas Furnace (%)	53.5	60.7	18.4	3.73	1.99	2	2.02
Sales of water heating units - Electric Heat Pump (%)	0.849	10.5	54.3	64	64.4	64.5	64.5
Sales of water heating units - Electric Resistance (%)	20.9	11.5	28.7	32.5	32.7	32.7	32.7
Sales of water heating units - Gas Furnace (%)	69.5	73.9	14	0.589	0	0	0
Sales of water heating units - Other (%)	8.69	4.13	3.09	2.85	2.86	2.83	2.82

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.9	7.56	13.5	13.9	16.3	17
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

	,,						
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	437	427	413	402	400	406
Final energy use - Industry (PJ)	555	584	599	624	651	665	684
Final energy use - Residential (PJ)	511	493	475	450	430	422	425
Final energy use - Transportation (PJ)	1,917	1,804	1,617	1,384	1,172	1,037	974

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		16.2	21.3				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96.9	99.5	100	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	3.99	3.14	0.538	0.027	0	0	0
Sales of space heating units - Electric	51.7	60.3	83.9	89.2	89.3	89.1	89
Heat Pump (%)							
Sales of space heating units - Electric	40	35.5	15	10.4	10.3	10.5	10.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0.822	0.7	0.133	0.006	0	0	0
Sales of space heating units - Gas (%)	7.51	3.51	0.99	0.435	0.414	0.413	0.412
Sales of water heating units - Electric	0	12.3	65.2	77	77.6	77.6	77.6
Heat Pump (%)							
Sales of water heating units - Electric	88.4	81.8	31.6	20.4	19.9	19.9	19.9
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.27	0.619	0.026	0	0	0
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.53

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		3,333	8,621	13,843	21,020	22,822	21,789
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.717		5.18		21.9		35.3
units)							
Public EV charging plugs - L2 (1000 units)	3.3		124		526		848
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.29	1.58	1.16	0.367	0.07	0.013	0
Vehicle sales - Light-duty - EV (%)	4.79	17.9	50.4	83.4	96.5	99.3	100
Vehicle sales - Light-duty - gasoline (%)	88.5	75	44.7	14.9	3.08	0.584	0
Vehicle sales - Light-duty - hybrid (%)	5.27	5.16	3.5	1.27	0.314	0.07	0
Vehicle sales - Light-duty - hydrogen FC	0.109	0.325	0.182	0.055	0.011	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.09	0.085	0.053	0.019	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base		0.266	0	1.45	8.16	5.68	5.24
(billion \$2018)							
Capital invested - Solar PV - Base (billion		5.09	34.1	59.5	23.6	0	136
\$2018)							
Installed renewables - OffshoreWind -	0	93.8	93.8	801	5,502	9,350	13,530
Base land use assumptions (MW)							
Installed renewables - OffshoreWind -	0	0	0	0	0	0	18,155
Constrained land use assumptions (MW)							
Installed renewables - Solar - Base land	3,072	7,526	40,882	104,079	130,618	130,618	302,518
use assumptions (MW)							
Installed renewables - Solar -	6,144	17,372	99,159	225,614	261,291	261,291	617,489
Constrained land use assumptions (MW)							
Installed renewables - Wind - Base land	0	0	0	0	0	0	0
use assumptions (MW)							
Installed renewables - Wind - Constrained	0	0	0	0	0	0	0
land use assumptions (MW)							

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	285	285	2,430	16,673	28,401	41,096
assumptions (GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	55,174
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	6,248	14,014	71,600	179,721	224,672	224,672	522,445
Solar - Constrained land use assumptions	12,496	32,171	173,230	389,409	449,632	449,632	1,066,188
(GWh)							
Wind - Base land use assumptions (GWh)	0	0	0	0	0	0	0
Wind - Constrained land use assumptions	0	0	0	0	0	0	0
(GWh)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,077
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29.6
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-2,107
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,066
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.8
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,081
deployment - Total (1000 tC02e/y)							•
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,091
Aggressive deployment - Cropland							, -
measures (1000 hectares)							
Land impacted for carbon sink -							53.8
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -						+	1,144
Aggressive deployment - Total (1000							.,
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							·
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							559
deployment - Cropland measures (1000							007
hectares)							
Land impacted for carbon sink - Moderate						+	26.9
deployment - Permanent conservation							20.7
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							586
deployment - Total (1000 hectares)							550
uepioyillelit - Total (1000 nectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,328
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-38,862
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,923
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-3,791
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tCO2e/y)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tC02e/y)							1.16
Carbon sink potential - High - Reforest cropland (1000 tC02e/y)							-462
Carbon sink potential - High - Reforest pasture (1000 tC02e/y)							-8,095
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-4,78
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-665
Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y)							-11,529
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-654
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-2,380
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-1,929
Carbon sink potential - Low - Increase retention of HWP (1000 tCO2e/y)							-3,10
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-344
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-23
Carbon sink potential - Low - Reforest pasture (1000 tC02e/y)							-61
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-1,61
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-99
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)							-25,16
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-2,28
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)							-4,28
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)							-2,82
Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)							-6,20
Carbon sink potential - Mid - Increase trees outside forests (1000 tCO2e/y)							-66
Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)							-34
Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y)							-4,35
Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)							-3,19
Land impacted for carbon sink potential - High - Accelerate regeneration (1000 hectares)							21
Land impacted for carbon sink potential - High - Avoid deforestation (over 30 years)							53
(1000 hectares) Land impacted for carbon sink potential - High - Extend rotation length (1000 hectares)							3,15
Land impacted for carbon sink potential - High - Improve plantations (1000 hectares)							1,39

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050
High - Increase retention of HWP (1000							(
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							30.5
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							230
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,58
High - Restore productivity (1000							
hectares)							701
Land impacted for carbon sink potential -							7,243
High - Total impacted (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							109
Low - Accelerate regeneration (1000							101
hectares)							
Land impacted for carbon sink potential -							499
Low - Avoid deforestation (over 30 years)							77
(1000 hectares)							
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							•
hectares)							
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							49.
Low - Increase trees outside forests							
(1000 hectares)							15.3
Land impacted for carbon sink potential - Low - Reforest cropland (1000 hectares)							15.0
Land impacted for carbon sink potential -							39.9
Low - Reforest pasture (1000 hectares)							37.
Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							70
hectares)							
Land impacted for carbon sink potential -							3,57
Low - Total impacted (over 30 years)							,
(1000 hectares)							
Land impacted for carbon sink potential -							16
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							51
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,18
Mid - Extend rotation length (1000							
hectares)							1.05
Land impacted for carbon sink potential -							1,05
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							
Mid - Increase retention of HWP (1000							
hectares) Land impacted for carbon sink potential -							71.
Mid - Increase trees outside forests (1000							71.
hectares)							

Table 33: E+RE+	. cronaria -	DTII AD A.	I and cinke -	Forests	(continued)
14018 33. E+KE+	· SCEHUITO -	PILLAR O.	LUHU SHIKS -	FULESTS	COMUNICEUR

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		524	2.32	1.71	0.784	0.369	0.022
Coal (million 2019\$)							
Monetary damages from air pollution -		739	642	469	288	58.6	24.8
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		5,828	5,517	4,260	2,502	1,148	438
Transportation (million 2019\$)							
Premature deaths from air pollution -		59.2	0.262	0.193	0.088	0.042	0.002
Coal (deaths)							
Premature deaths from air pollution -		83.4	72.5	52.9	32.5	6.61	2.8
Natural Gas (deaths)							
Premature deaths from air pollution -		655	621	479	281	129	49.3
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)		66,758	74,510				
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	23.9	27	70.6	83.8	84.8	85	85.1
Sales of space heating units - Electric Resistance (%)	22.7	8.53	10.3	12.4	13.2	13	12.8
Sales of space heating units - Fossil (%)	0	3.82	0.711	0.031	0	0	0
Sales of space heating units - Gas Furnace (%)	53.5	60.7	18.4	3.73	1.99	2	2.02
Sales of water heating units - Electric Heat Pump (%)	0.849	10.5	54.3	64	64.4	64.5	64.5
Sales of water heating units - Electric Resistance (%)	20.9	11.5	28.7	32.5	32.7	32.7	32.7
Sales of water heating units - Gas Furnace (%)	69.5	73.9	14	0.589	0	0	0
Sales of water heating units - Other (%)	8.69	4.13	3.09	2.85	2.86	2.83	2.82

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.9	7.56	13.5	13.9	16.3	17
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	437	427	413	402	400	406

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	555	584	599	624	651	665	684
Final energy use - Residential (PJ)	511	493	475	450	430	422	425
Final energy use - Transportation (PJ)	1,917	1,804	1,617	1,384	1,172	1,037	974

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		16.2	21.3				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96.9	99.5	100	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	3.99	3.14	0.538	0.027	0	0	0
Sales of space heating units - Electric	51.7	60.3	83.9	89.2	89.3	89.1	89
Heat Pump (%)							
Sales of space heating units - Electric	40	35.5	15	10.4	10.3	10.5	10.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0.822	0.7	0.133	0.006	0	0	0
Sales of space heating units - Gas (%)	7.51	3.51	0.99	0.435	0.414	0.413	0.412
Sales of water heating units - Electric	0	12.3	65.2	77	77.6	77.6	77.6
Heat Pump (%)							
Sales of water heating units - Electric	88.4	81.8	31.6	20.4	19.9	19.9	19.9
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.27	0.619	0.026	0	0	0
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.53

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		3,333	8,621	13,843	21,020	22,822	21,789
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.717		5.18		21.9		35.3
units)							
Public EV charging plugs - L2 (1000 units)	3.3		124		526		848
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.29	1.58	1.16	0.367	0.07	0.013	0
Vehicle sales - Light-duty - EV (%)	4.79	17.9	50.4	83.4	96.5	99.3	100
Vehicle sales - Light-duty - gasoline (%)	88.5	75	44.7	14.9	3.08	0.584	0
Vehicle sales - Light-duty - hybrid (%)	5.27	5.16	3.5	1.27	0.314	0.07	0
Vehicle sales - Light-duty - hydrogen FC	0.109	0.325	0.182	0.055	0.011	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.09	0.085	0.053	0.019	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base (billion \$2018)		0.266	0	0	0	0	0
Capital invested - Solar PV - Base (billion \$2018)		14.6	17.6	1.46	0	0	0
Capital invested - Solar PV - Constrained (billion \$2018)		14.8	16.7	1.56	0	0.104	0
Installed renewables - OffshoreWind - Base land use assumptions (MW)	0	93.8	93.8	93.8	93.8	93.8	93.8
Installed renewables - OffshoreWind - Constrained land use assumptions (MW)	0	0	0	0	0	0	0
Installed renewables - Solar - Base land use assumptions (MW)	3,072	15,852	33,098	34,651	34,651	34,651	34,651
Installed renewables - Solar - Constrained land use assumptions (MW)	3,072	16,010	32,390	34,043	34,043	34,167	34,167
Installed renewables - Wind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed renewables - Wind - Constrained land use assumptions (MW)	0	0	0	0	0	0	0

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	285	285	285	285	285	285
assumptions (GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	0
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	6,248	28,551	58,304	60,985	60,985	60,985	60,985
Solar - Constrained land use assumptions	6,248	28,832	57,133	59,957	59,957	60,169	60,169
(GWh)							
Wind - Base land use assumptions (GWh)	0	0	0	0	0	0	0
Wind - Constrained land use assumptions	0	0	0	0	0	0	0
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)							0
Carbon sink potential - Aggressive deployment - Cropland measures (1000 tCO2e/y)							-2,077
Carbon sink potential - Aggressive deployment - Permanent conservation cover (1000 tC02e/y)							-29.6
Carbon sink potential - Aggressive deployment - Total (1000 tC02e/y)							-2,107
Carbon sink potential - Moderate deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)							0
Carbon sink potential - Moderate deployment - Cropland measures (1000 tCO2e/y)							-1,066
Carbon sink potential - Moderate deployment - Permanent conservation cover (1000 tC02e/y)							-14.8
Carbon sink potential - Moderate deployment - Total (1000 tC02e/y)							-1,081
Land impacted for carbon sink - Aggressive deployment - Corn-ethanol to energy grasses (1000 hectares)							0

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,091
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							53.8
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,144
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							559
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							26.9
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							586
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,328
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-38,862
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,923
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-3,791
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-462
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-8,095
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-4,781
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-665
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-11,529
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-654
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,380
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1,929
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-3,101
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-344
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-231
cropland (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Conhon sink notantial Low Referent	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Reforest							-61
pasture (1000 tC02e/y)							4 (4
Carbon sink potential - Low - Restore							-1,61
productivity (1000 tC02e/y)							
Carbon sink potential - Mid - Accelerate							-99
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-25,16
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-2,28
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-4,28
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-2,82
plantations (1000 tC02e/y)							
Carbon sink potential - Mid - Increase							-6,20
retention of HWP (1000 tCO2e/y)							0,20
Carbon sink potential - Mid - Increase							-664
trees outside forests (1000 tC02e/y)							00
Carbon sink potential - Mid - Reforest							-34
cropland (1000 tC02e/y)							-541
Carbon sink potential - Mid - Reforest							-4,35
· ·							-4,354
pasture (1000 tC02e/y)							0.10
Carbon sink potential - Mid - Restore							-3,19
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							21
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							53
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,15
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,39
High - Improve plantations (1000							,
hectares)							
Land impacted for carbon sink potential -							
High - Increase retention of HWP (1000							,
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							93.4
(1000 hectares)							00
Land impacted for carbon sink potential -							30.
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							230
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,58
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,24
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							101
Low - Accelerate regeneration (1000							.5
hectares)							
Land impacted for carbon sink potential -						+	49
Low - Avoid deforestation (over 30 years)							47
(1000 hectares)							
•							1.014
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000 hectares)							
Land impacted for carbon sink potential -							49.2
Low - Increase trees outside forests							49.2
(1000 hectares)							
Land impacted for carbon sink potential -							15.3
Low - Reforest cropland (1000 hectares)							10.0
Land impacted for carbon sink potential -							39.9
Low - Reforest pasture (1000 hectares)							• • • • • • • • • • • • • • • • • • • •
Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,579
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							163
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							515
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,185
Mid - Extend rotation length (1000							
hectares)							4.054
Land impacted for carbon sink potential -							1,051
Mid - Improve plantations (1000 hectares)			+				0
Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							71.3
Mid - Increase trees outside forests (1000							11.0
hectares)							
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							22.7
Land impacted for carbon sink potential -			+				288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							,
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		524	2.32	1.71	0.784	0.369	0.022
Coal (million 2019\$)							
Monetary damages from air pollution -		732	705	536	481	218	32.4
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		5,828	5,517	4,260	2,502	1,148	438
Transportation (million 2019\$)							
Premature deaths from air pollution -		59.2	0.262	0.193	0.088	0.042	0.002
Coal (deaths)							
Premature deaths from air pollution -		82.6	79.6	60.5	54.3	24.6	3.65
Natural Gas (deaths)							
Premature deaths from air pollution -		655	621	479	281	129	49.3
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)		66,742	74,583				
Sales of cooking units - Electric Resistance (%)	32	36.2	40.9	53.4	71	81.7	85.5
Sales of cooking units - Gas (%)	68	63.8	59.1	46.6	29	18.3	14.5
Sales of space heating units - Electric Heat Pump (%)	23.9	18.7	23.8	38	60.4	76.6	82.8
Sales of space heating units - Electric Resistance (%)	22.7	8.23	8.33	9.11	10.8	11.9	12.5
Sales of space heating units - Fossil (%)	0	4.41	4	3.07	1.56	0.485	0.126
Sales of space heating units - Gas Furnace (%)	53.5	68.6	63.8	49.8	27.3	11	4.53
Sales of water heating units - Electric Heat Pump (%)	0.849	2.05	7.03	21.4	43.4	57.8	62.8
Sales of water heating units - Electric Resistance (%)	20.9	8.16	9.94	15.6	24.4	30	32
Sales of water heating units - Gas Furnace (%)	69.5	85.5	78.7	59.1	28.9	9.24	2.41
Sales of water heating units - Other (%)	8.69	4.32	4.29	3.91	3.39	3	2.87

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		6.42	5.91	9.28	9.23	14.5	15.1
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	438	434	430	423	419	420
Final energy use - Industry (PJ)	555	584	600	630	661	675	696
Final energy use - Residential (PJ)	511	494	487	477	464	448	440
Final energy use - Transportation (PJ)	1,919	1,820	1,686	1,572	1,479	1,369	1,239

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		16	20				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96.1	96.5	97.4	98.8	99.6	99.9
Resistance (%)							
Sales of cooking units - Gas (%)	4.01	3.91	3.54	2.57	1.23	0.395	0.106
Sales of space heating units - Electric	51.7	55.7	58.3	66.2	77.9	85.5	88.2
Heat Pump (%)							
Sales of space heating units - Electric	40	39.5	37.2	30.4	20.2	13.6	11.3
Resistance (%)							
Sales of space heating units - Fossil (%)	0.822	0.81	0.749	0.558	0.266	0.083	0.021
Sales of space heating units - Gas (%)	7.51	3.99	3.69	2.89	1.63	0.801	0.513
Sales of water heating units - Electric	0	2.12	8.14	25.5	52.1	69.4	75.5
Heat Pump (%)							
Sales of water heating units - Electric	88.4	91.5	85.8	69.3	44.1	27.6	21.9
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.79	3.49	2.63	1.29	0.412	0.107
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.52

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		0	553	1,131	3,850	12,021	17,546
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.717		1.71		8.21		22.6
units)							
Public EV charging plugs - L2 (1000 units)	3.3		41.1		197		543
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.3	1.76	2.01	1.59	0.995	0.506	0.218
Vehicle sales - Light-duty - EV (%)	2.19	5.36	13.2	28	50.7	73.5	88.2
Vehicle sales - Light-duty - gasoline (%)	90.8	86.2	77.5	63.9	43.6	23.3	10.3
Vehicle sales - Light-duty - hybrid (%)	5.48	6.25	6.9	6.15	4.49	2.58	1.22
Vehicle sales - Light-duty - hydrogen FC	0.112	0.373	0.311	0.232	0.161	0.088	0.041
(%)							
Vehicle sales - Light-duty - other (%)	0.092	0.095	0.085	0.073	0.052	0.028	0.013
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0.004	0.523	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0.038	0.007	0.016	0.021
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0.049	11.5	2.18	5.85	0

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	7.52	1,035	1,035	1,035	1,035	1,035
Biomass w/ccu allam power plant (GWh)	0	0	0	37.7	44.2	60.6	81.5
Biomass w/ccu power plant (GWh)	0	0	55.3	12,921	15,365	21,928	21,928

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

	•	<u> </u>					
Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		1.01	80.4	1,065	1,523	2,465	2,875
Conversion capital investment -		4.32	629	12,720	5,513	11,510	4,739
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	2	3	4
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	2	6	13	18
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	1	2	3	3
Number of facilities - Power (quantity)	0	1	1	1	1	1	1
Number of facilities - Power ccu	0	0	1	10	12	17	17
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	1
		•	•	•	•	•	

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Pyrolysis ccu	0	0	0	1	2	4	5
(quantity)							
Number of facilities - Sng (quantity)	0	1	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	1

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.07	17.3	27.8	45.3	53
Annual - BECCS (MMT)		0	0.06	15.5	22.4	36.8	42.7
Annual - Cement and lime (MMT)		0	0	0	3.32	6.84	7.07
Annual - NGCC (MMT)		0	0.02	1.74	2.06	1.65	3.24
Cumulative - All (MMT)		0	0.07	17.3	45.1	90.4	144
Cumulative - BECCS (MMT)		0	0.06	15.6	38	74.8	118
Cumulative - Cement and lime (MMT)		0	0	0	3.32	10.2	17.2
Cumulative - NGCC (MMT)		0	0.02	1.76	3.82	5.47	8.71

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	886	1,358	1,622	2,448	3,203
Cumulative investment - All (million \$2018)		0	3,177	3,655	4,152	4,884	5,383
Cumulative investment - Spur (million \$2018)		0	129	608	902	1,634	2,133
Cumulative investment - Trunk (million \$2018)		0	3,047	3,047	3,250	3,250	3,250
Spur (km)		0	251	722	986	1,813	2,568
Trunk (km)		0	636	636	636	636	636

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	3.69	15	33.3	45.3	48.5
Injection wells (wells)		0	8	34	62	102	128
Resource characterization, appraisal, permitting costs (million \$2020)		159	625	906	906	906	906
Wells and facilities construction costs (million \$2020)		0	270	1,053	1,877	3,138	3,896

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-12.5
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,056
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-29.1
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,098
deployment - Total (1000 tCO2e/y)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-12.5
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,05
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							(
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Moderate							(
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Moderate							-14.6
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,08
deployment - Total (1000 tCO2e/y)							-1,00
Land impacted for carbon sink -							7.89
Aggressive deployment - Corn-ethanol to							1.0
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,67
•							2,674
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							5.3
Aggressive deployment - Cropland to							
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							36
Aggressive deployment - Pasture to							
energy crops (1000 hectares)							
Land impacted for carbon sink -							52.
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							3,10
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							7.8
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							55
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							5.3
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate	+	+					36
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate	+	+					26.
deployment - Permanent conservation							20.
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							961
							70
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

	0.0					
2020	2025	2030	2035	2040	2045	2050
						-1,328
						-38,862
						-3,923

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tC02e/y)							
Carbon sink potential - High - Improve							-3,791
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-462
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-8,095
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-4,781
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-665
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-11,529
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-654
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,380
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1,929
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-3,101
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-344
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-231
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-613
pasture (1000 tC02e/y)							0.0
Carbon sink potential - Low - Restore							-1,612
productivity (1000 tCO2e/y)							1,012
Carbon sink potential - Mid - Accelerate							-997
regeneration (1000 tC02e/y)							771
Carbon sink potential - Mid - All (not							-25,162
counting overlap) (1000 tC02e/y)							-20,102
Carbon sink potential - Mid - Avoid							-2,289
deforestation (1000 tC02e/y)							-2,207
Carbon sink potential - Mid - Extend							-4,287
							-4,207
rotation length (1000 tCO2e/y)							0.00
Carbon sink potential - Mid - Improve							-2,827
plantations (1000 tC02e/y)							/ 000
Carbon sink potential - Mid - Increase							-6,203
retention of HWP (1000 tC02e/y)							
Carbon sink potential - Mid - Increase							-664
trees outside forests (1000 tC02e/y)							0
Carbon sink potential - Mid - Reforest							-346
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-4,354
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,196
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							217
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							531
High - Avoid deforestation (over 30 years)							
(1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Ttom	2020	2025	2030	2035	2040	2045	2050
Item Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	3,159
							3,139
High - Extend rotation length (1000							
hectares)							4.007
Land impacted for carbon sink potential -							1,397
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							30.5
High - Reforest cropland (1000 hectares)							00.0
Land impacted for carbon sink potential -							230
·							230
High - Reforest pasture (1000 hectares)							4 505
Land impacted for carbon sink potential -							1,585
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,243
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							109
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							499
Low - Avoid deforestation (over 30 years)							7//
(1000 hectares)							
							1.010
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							49.2
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							15.3
Low - Reforest cropland (1000 hectares)							13.3
							000
Land impacted for carbon sink potential -							39.9
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,579
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							163
Mid - Accelerate regeneration (1000							.00
hectares)							
Land impacted for carbon sink potential -							515
							סוס
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -			1				2,185
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,051
Mid - Improve plantations (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							71.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		524	2.32	1.71	0.784	0.369	0.022
Coal (million 2019\$)							
Monetary damages from air pollution -		758	617	449	255	130	43.3
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		5,938	6,110	6,052	5,549	4,499	3,142
Transportation (million 2019\$)							
Premature deaths from air pollution -		59.2	0.262	0.193	0.088	0.042	0.002
Coal (deaths)							
Premature deaths from air pollution -		85.6	69.7	50.7	28.7	14.7	4.89
Natural Gas (deaths)							
Premature deaths from air pollution -		668	687	681	624	506	353
Transportation (deaths)							

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		65,779	68,382				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	32	34.3	34.3	34.3	34.4	34.3	34.3
Resistance (%)							
Sales of cooking units - Gas (%)	68	65.7	65.7	65.7	65.6	65.7	65.7
Sales of space heating units - Electric	23.9	29.3	65.2	72.1	72.1	72.3	72.4
Heat Pump (%)							
Sales of space heating units - Electric	22.7	9.78	14.9	20.3	25.2	25.6	25.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	4.02	2.38	1.17	0.182	0.016	0
Sales of space heating units - Gas Furnace	53.5	56.8	17.5	6.48	2.56	2.06	2.02
(%)							
Sales of water heating units - Electric	0.849	0.3	0.292	0.292	0.293	0.29	0.29
Heat Pump (%)							
Sales of water heating units - Electric	20.9	7.47	7.27	7.29	7.31	7.22	7.19
Resistance (%)							
Sales of water heating units - Gas Furnace	69.5	87.9	88	88	87.9	88	88.1
(%)							
Sales of water heating units - Other (%)	8.69	4.37	4.46	4.43	4.48	4.48	4.46

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		8.36	8.08	14.3	14.8	14.9	15.4
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	434	444	452	461	471	489	515
Final energy use - Industry (PJ)	555	597	628	656	683	707	739
Final energy use - Residential (PJ)	511	502	512	530	554	579	605
Final energy use - Transportation (PJ)	1,917	1,833	1,727	1,667	1,682	1,736	1,802

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		15.8	16.2				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	96	96	96	96	96	96	96
Resistance (%)							
Sales of cooking units - Gas (%)	4.04	4.04	4.04	4.04	4.04	4.04	4.04
Sales of space heating units - Electric	51.1	66.6	66.9	67.9	68.8	70.5	73.6
Heat Pump (%)							
Sales of space heating units - Electric	40.4	30.3	30.1	29.2	28.4	26.7	23.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0.826	0.333	0.334	0.332	0.321	0.314	0.316
Sales of space heating units - Gas (%)	7.6	2.83	2.7	2.57	2.51	2.48	2.48
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	88.4	93.5	93.5	93.5	93.5	93.5	93.5
Resistance (%)							
Sales of water heating units - Gas Furnace	6.88	3.89	3.9	3.92	3.93	3.93	3.93
(%)							
Sales of water heating units - Other (%)	4.69	2.6	2.57	2.58	2.57	2.54	2.53

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
(%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.29	1.74	2.14	2	1.79	1.66	1.58
Vehicle sales - Light-duty - EV (%)	4.42	6.72	7.55	9.34	11.3	12.8	14.1
Vehicle sales - Light-duty - gasoline (%)	88.8	85	82.5	80.4	78.1	76.3	74.8
Vehicle sales - Light-duty - hybrid (%)	5.29	6.1	7.39	7.93	8.43	8.88	9.17
Vehicle sales - Light-duty - hydrogen FC	0.109	0.367	0.331	0.29	0.285	0.285	0.294
(%)							
Vehicle sales - Light-duty - other (%)	0.09	0.094	0.09	0.091	0.09	0.088	0.09
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

lable 64: REF scenario - PILLAR 6: Land s			0000	0005	00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,328
regeneration (1000 tC02e/y)							00.070
Carbon sink potential - High - All (not							-38,862
counting overlap) (1000 tCO2e/y)							0.000
Carbon sink potential - High - Avoid							-3,923
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-6,195
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-3,791
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,304
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-983
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-462
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-8,095
pasture (1000 tCO2e/y)							5,515
Carbon sink potential - High - Restore							-4,781
productivity (1000 tC02e/y)							4,101
Carbon sink potential - Low - Accelerate			+			-	-665
regeneration (1000 tC02e/y)							-005
Carbon sink potential - Low - All (not							11 500
							-11,529
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-654
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,380
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1,929
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-3,101
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-344
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-231
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-613
pasture (1000 tCO2e/y)							0.0
Carbon sink potential - Low - Restore							-1,612
productivity (1000 tC02e/y)							-1,012
Carbon sink potential - Mid - Accelerate							-997
regeneration (1000 tCO2e/y)							-771
							05 1/0
Carbon sink potential - Mid - All (not							-25,162
counting overlap) (1000 tCO2e/y)							0.000
Carbon sink potential - Mid - Avoid							-2,289
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-4,287
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-2,827
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,203
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-664
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-346
cropland (1000 tCO2e/y)							3-10
Carbon sink potential - Mid - Reforest		-					-4,354
pasture (1000 tC02e/y)							7,004
	ı						
Carbon eink notantial Mid Doctors							_2 10/-
Carbon sink potential - Mid - Restore productivity (1000 tC02e/y)							-3,196

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Iable 64: REF scenario - PILLAR 6: Land sii Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2023	2030	2033	2040	2045	2030
High - Accelerate regeneration (1000							211
hectares)							
Land impacted for carbon sink potential -							531
High - Avoid deforestation (over 30 years)							001
(1000 hectares)							
Land impacted for carbon sink potential -							3,159
High - Extend rotation length (1000							0,107
hectares)							
Land impacted for carbon sink potential -							1,397
High - Improve plantations (1000							,-
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							93.4
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							30.5
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							230
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,585
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,243
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							109
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							499
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,210
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							698
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							/ 0.0
Land impacted for carbon sink potential -							49.2
Low - Increase trees outside forests							
(1000 hectares)							15.0
Land impacted for carbon sink potential -							15.3
Low - Reforest cropland (1000 hectares)							20.0
Land impacted for carbon sink potential -							39.9
Low - Reforest pasture (1000 hectares) Land impacted for carbon sink potential -							959
Low - Restore productivity (1000							909
hectares)							
Land impacted for carbon sink potential -							3,579
Low - Total impacted (over 30 years)							3,319
(1000 hectares)							
Land impacted for carbon sink potential -							163
Mid - Accelerate regeneration (1000							163
hectares)							
nectaresj							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							515
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,185
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,051
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							71.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							22.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							288
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,931
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,227
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural	-24.6		-13.3				-10.8
uptake (Mt CO2e/y)							
Business-as-usual carbon sink - Retained	-2.53		-4.22				-4.44
in Hardwood Products (Mt CO2e/y)							
Business-as-usual carbon sink - Total (Mt	-27.1		-17.5				-15.2
CO2e/y)							

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		1,997	1,381	985	861	785	768
Coal (million 2019\$)							
Monetary damages from air pollution -		785	831	885	1,027	1,024	986
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		5,924	6,179	6,441	6,746	7,065	7,402
Transportation (million 2019\$)							
Premature deaths from air pollution -		226	156	111	97.2	88.6	86.7
Coal (deaths)							
Premature deaths from air pollution -		88.6	93.9	99.9	116	116	111
Natural Gas (deaths)							
Premature deaths from air pollution -		666	695	724	759	795	832
Transportation (deaths)							