

**Figura 9.8.:** Tipos de ponto de equilíbrio de um sistema linear com duas variáveis de estado.

### 9.3.4. Nós próprios e impróprios

Quando o determinante  $\det(\mathbf{A})$  é exatamente igual  $\operatorname{tr}(\mathbf{A})^2/4$  (pontos na parábola na figura 9.8), existe unicamente um valor próprio real.

Essa situação conduz a dois tipos diferentes de ponto de equilíbrio. Se a matriz é diagonal, os elementos na diagonal são ambos iguais ao valor próprio e qualquer vetor do espaço de fase é vetor próprio da matriz. Isso implica que todas as curvas de evolução do sistema são retas que passam pela origem, afastando-se, se o valor próprio é positivo (lado esquerdo na figura 9.9) ou aproximando-se, se o valor próprio é negativo. O ponto de equilíbrio denomina-se **nó próprio**, estável ou instável, dependendo do sinal do valor próprio.

Na segunda situação possível, quando a matriz não é diagonal, existe uma única reta no retrato de fase e o ponto de equilíbrio chama-se **nó** 

250 Sistemas lineares



**Figura 9.9.:** Retratos de fase de um nó próprio instável (esquerda) e de um nó impróprio estável (direita).

**impróprio**. Existem unicamente duas curvas de evolução retas, ambas na mesma direção; todas as outras curvas de evolução acumulam-se nessa direção. Se o valor próprio é negativo, o nó impróprio é estável (lado direito na figura 9.9) e se o valor próprio é positivo o ponto de equilíbrio é um nó impróprio instável.

Uma forma conveniente de identificar o tipo de equilíbrio num sistema linear é a seguinte: se a matriz é diagonal, os elementos na diagonal são os valores próprios. Se os dois valores próprios na diagonal são iguais, o ponto é um nó próprio, instável se o valor próprio é positivo ou estável se o valor próprio é negativo; nesse caso qualquer vetor no plano de fase é vetor próprio.

Se a matriz não é diagonal, escreve-se a equação caraterística 9.11 e encontram-se os valores próprios. Em função dos valores próprios obtidos, usa-se a tabela 9.1 para classificar o ponto de equilíbrio.

#### 9.3.5. Sistemas lineares conservativos

Nos sistemas lineares e conservativos, a condição 7.14 de que a divergência é nula implica, a partir das equações 9.2,

$$A_{11} + A_{22} = 0 (9.14)$$

ou seja, o traço da matriz do sistema, tr(A), é nulo e, de acordo com o gráfico 9.8, o ponto de equilíbrio na origem pode ser unicamente um

| Valores próprios $\lambda$       | Tipo de ponto  | Equilíbrio |
|----------------------------------|----------------|------------|
| 2 reais; sinais opostos          | ponto de sela  | instável   |
| 2 reais, positivos               | nó repulsivo   | instável   |
| 2 reais, negativos               | nó atrativo    | estável    |
| 2 complexos; parte real positiva | foco repulsivo | instável   |
| 2 complexos; parte real negativa | foco atrativo  | estável    |
| 2 imaginários                    | centro         | estável    |
| 1 real, positivo                 | nó impróprio   | instável   |
| 1 real, negativo                 | nó impróprio   | estável    |
|                                  |                |            |

Tabela 9.1.: Classificação dos pontos de equilíbrio dos sistemas lineares.

centro, se for estável, ou um ponto de sela, se for instável. Os sistemas lineares conservativos nunca têm nem nós nem focos.

### 9.4. Osciladores lineares

Nos sistemas mecânicos com um único grau de liberdade s, a equação de movimento conduz a um sistema dinâmico linear quando é uma combinação linear de s e v:

$$a_{t} = C_{1} s + C_{2} v {(9.15)}$$

onde  $C_1$  e  $C_2$  são constantes. O termo  $C_1$  s é a componente conservativa da força tangencial, dividida pela massa m e o termo  $C_2$  v é a componente não conservativa da força tangencial, dividida por m.

#### Exemplo 9.3

Um **oscilador invertido** é um sistema com equação de movimento  $\ddot{s} = C s$ , onde C é uma constante positiva. Analise a estabilidade do sistema e represente o retrato de fase em unidades em que C = 1.

252 Sistemas lineares

**Resolução**. As variáveis de estado são s e v e a forma matricial das equações de evolução (equação 9.5) é:

$$\begin{bmatrix} \dot{s} \\ \dot{\nu} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ C & 0 \end{bmatrix} \begin{bmatrix} s \\ \nu \end{bmatrix}$$

O traço da matriz é nulo e o determinante é igual a -C, que é negativo. Assim sendo, a equação caraterística é  $\lambda^2 - C = 0$  e os valores próprios são  $\sqrt{C}$  e  $-\sqrt{C}$ . De acordo com a tabela 9.1 o ponto de equilíbrio na origem é um ponto de sela (instável).

O retrato de fase, no caso C = 1, constrói-se com o comando:

```
(%i11) plotdf ([v, s], [s, v])$
```

A figura 9.10 mostra o gráfico obtido, após traçar manualmente algumas trajetórias.



Figura 9.10.: Retrato de fase do oscilador invertido.

#### Exemplo 9.4

Analise a estabilidade e as curvas de evolução de um oscilador harmónico simples.

**Resolução**. O oscilador harmónico simples foi estudado na secção 6.4, onde se mostra que a equação de movimento é (equação 6.32):

$$\ddot{s} = -C s$$

onde C é uma constante positiva.

Essa equação de movimento conduz ao sistema dinâmico:

$$\begin{bmatrix} \dot{s} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -C & 0 \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix}$$

O traço da matriz é zero e o determinante é *C*, que é positivo. Consequentemente, os valores próprios são dois números imaginários puros:

$$\lambda = \pm i\sqrt{C}$$

e o ponto de equilíbrio é um centro.



**Figura 9.11.:** As curvas de evolução do oscilador harmónico simples são todas ciclos.

Se o oscilador estiver inicialmente no estado de equilíbrio, s=v=0, permanecerá em repouso; caso contrário, a curva de evolução será uma elipse (figura 9.11), que corresponde a um movimento harmónico simples com frequência angular  $\Omega=\sqrt{C}$ . Isto é, sempre que os valores próprios de um sistema linear de duas variáveis sejam imaginários puros, o sistema é um oscilador harmónico simples, com frequência angular  $\Omega$  igual ao módulo dos valores próprios,  $|\lambda|$ . No caso de um corpo de massa m ligado a uma mola com constante elástica k, a constante C é k/m e a frequência angular é  $\sqrt{k/m}$ .

254 Sistemas lineares

### 9.4.1. Osciladores amortecidos

O oscilador harmónico simples do exemplo 9.4 é um sistema idealizado, pois na prática existem forças dissipativas. Um exemplo é o sistema de amortecimento de um automóvel (figura 9.12). Cada roda está ligada à carroçaria por meio de uma mola elástica; no interior de cada mola há um cilindro (amortecedor) com um pistão que se desloca dentro de óleo.



Figura 9.12.: Sistema de suspensão de um automóvel.

Se y for a altura do ponto da carroçaria onde está apoiado o amortecedor, medida desde a posição de equilíbrio y = 0, a força vertical resultante sobre a carroçaria é:

$$F_{\nu} = -k \, y - C \, \nu \tag{9.16}$$

em que k e C são constantes positivas; k é a constante elástica da mola e C depende do tamanho do pistão e do coeficiente de viscosidade do óleo dentro do amortecedor.

Essa força conduz ao seguinte sistema linear:

$$\begin{bmatrix} \dot{y} \\ \dot{\nu_y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\Omega^2 & -\alpha^2 \end{bmatrix} \begin{bmatrix} y \\ \nu_y \end{bmatrix} \tag{9.17}$$

onde  $\Omega$  é a frequência angular,  $\sqrt{k/m}$ , e  $\alpha$  é igual a  $\sqrt{C/m}$ .

O traço da matriz do sistema é  $-\alpha^2$ , negativo, e o determinante é  $\Omega^2$ , positivo. Assim sendo, os valores próprios são ou números reais negativos ou números complexos com parte real negativa. Isso implica que o sistema é sempre estável, acabando por ficar em repouso em y = 0 e  $v_y = 0$ .

No entanto, a forma como o sistema se aproxima do ponto de equilíbrio dependerá do tipo de ponto. Diz-se que o amortecimento é fraco quando,

$$\alpha^4 < 4\Omega^2 \tag{9.18}$$

e nesse caso os valores próprios são complexos; a matriz do sistema está na região dos focos estáveis na figura 9.8. A evolução de *y* em função do tempo é um movimento oscilatório com amplitude decrescente, como mostra a figura 9.13.



**Figura 9.13.:** Variação da altura *y* em função do tempo, para os três tipos de amortecimento.

No caso em que:

$$\alpha^4 = 4\Omega^2 \tag{9.19}$$

diz-se que há **amortecimento crítico**. Nesse caso existe um único valor próprio real. Como a matriz não é diagonal, o ponto de equilíbrio é um nó impróprio estável. A evolução de y em função de t é apresentada na figura 9.13.

Finalmente, no caso de amortecimento forte,

$$\alpha^4 > 4\Omega^2 \tag{9.20}$$

existem dois valores próprios diferentes e negativos. O ponto de equilíbrio é um nó estável e *y* aproxima-se mais rapidamente do ponto de equilíbrio (figura 9.13).

O sistema de suspensão deve garantir que o sistema se aproxime diretamente do equilíbrio sem passar várias vezes por esse ponto, o que tornava o automóvel muito inseguro. Como tal, o amortecimento deve ser suficientemente forte para que o ponto de equilíbrio seja um nó.

Com o uso, a sujidade e as impurezas no óleo dentro dos amortecedores do automóvel fazem com que o coeficiente de viscosidade diminua; há também perdas de óleo. Esses fatores reduzem o valor da constante  $\alpha$  por baixo do valor crítico. Se, empurrando a carroçaria do automóvel para baixo, o automóvel oscila ligeiramente, está na altura de substituir os amortecedores.

# **Perguntas**

1. Quantas dimensões tem o espaço de fase de um oscilador harmónico simples em três dimensões (x, y, z)?

A. 1

C. 3

E. 6

B. 2

D. 4

2. Os valores próprios de um oscilador harmónico simples são 4i e −4i (em unidades SI). Calcule o período de oscilação, em segundos.

Α. 4π

C.  $\pi/4$ 

E.  $\pi/2$ 

Β. π

D.  $2\pi$ 

**3.** Se *F*<sub>t</sub> é a componente tangencial da força resultante sobre uma partícula, *s* é aposição na trajetória e *v* a velocidade, qual das seguintes expressões conduz a um sistema linear?

A.  $F_t = 3 s v$ 

D.  $F_t = 2 s (1 - s)$ 

B.  $F_{t} = 2 v$ 

E.  $F_t = 3 s^2$ 

C.  $F_t = 2 \sin(s)$ 

**4.** O espaço de fase de um sistema é o plano  $(x, \dot{x})$ . Qual pode ser a equação diferencial associada a esse sistema?

A.  $\ddot{x} = x^2 - 2t$ 

D.  $\dot{x} = x^2 - 2t$ 

B.  $3x\ddot{x} + 2\dot{x} = x^2$ 

E.  $3t\ddot{x} + 2\dot{x} = x^2$ 

C.  $3\dot{x} + 2x\dot{x} = x^2$ 

**5.** A matriz de um sistema linear de segunda ordem tem traço igual a 4 e determinante igual a 3. Que tipo de ponto fixo é a origem?

A. nó instável

D. foco instável

B. nó estável

E. foco estável

C. ponto de sela

### **Problemas**

 Em cada caso, use o Maxima para encontrar os valores e vetores próprios do sistema. Diga que tipo de ponto equilíbrio tem cada sistema e represente os retratos de fase.

$$(a) \dot{x} = x + y \qquad \dot{y} = 4x + y$$

(b) 
$$\dot{x} = -3x + \sqrt{2}y \dot{y} = \sqrt{2}x - 2y$$

(c) 
$$\dot{x} = x - y$$
  $\dot{y} = x + 3y$ 

2. A figura mostra a curva de evolução hipotética de uma bola que cai em queda livre e é disparada para cima novamente após ter batido no chão, se não existisse nenhuma força dissipativa. A parte do gráfico para valores positivos de *y* corresponde ao lançamento vertical de um projétil, ignorando a resistência do ar. A parte do gráfico para valores negativos de *y* corresponde à deformação elástica da bola quando choca com o chão; durante o tempo de contacto com o chão, admite-se que o movimento vertical da bola é um movimento harmónico simples, sem dissipação de energia.



258 Sistemas lineares

Sabendo que a altura máxima atingida pela bola é h = 10 = m e que a deformação máxima quando a bola bate no chão é A = 1 cm, determine:

- (a) A velocidade máxima da bola ao longo do seu movimento.
- (b) A frequência angular da deformação elástica da bola.
- (c) O tempo que a bola pernaece em contacto com o chão.
- 3. Um bloco com massa m = 0.6 kg que se encontra sobre uma mesa horizontal está ligado a uma mola elástica com constante k = 50 N/m (s = 0 é a posição em que a mola não está nem comprimida nem alongada). O coeficiente de atrito cinético entre o bloco e a mesa é  $\mu_c = 0.4$ .
  - (*a* ) Trace o retrato de fase e a curva de evolução correspondente às posições iniciais  $s = \pm 0.07$  m e  $s = \pm 0.09$  m, com velocidade inicial v = 0.001 m/s.
  - (*b* ) Com base no retrato de fase na alínea anterior, diga quais são os pontos de equilíbrio do sistema.



- **4.** Um cilindro de massa *m* está pendurado, na vertical, de uma mola com constante elástica *k*, tal como na figura 6.2. Em termos da altura *y* do centro de massa do cilindro, a partir da posição em que a mola não está nem esticada nem comprimida, e desprezando a resistência do ar:
  - (a) Encontre a equação de movimento, a partir da equação de Lagrange, ou se preferir, a partir da segunda lei de Newton.
  - (b) Encontre o valor de y no ponto de equilíbrio.
  - (c) Mostre que o sistema pode escrever-se como sistema linear, com uma mudança de variável de y para uma nova variável z e que a equação de movimento em função de z é a equação de um oscilador harmónico simples com frequência angular  $\sqrt{k/m}$ .
- 5. Um cilindro tem base circular de área  $A=10~{\rm cm}^2$ , altura  $h=16~{\rm cm}~{\rm e}$  massa volúmica  $\rho=0.9~{\rm g/cm}^3$ . Como essa massa volúmica é menor que a da água,  $\rho_{ag}=1~{\rm g/cm}^3$ , quando o cilindro é colocando num recipiente com água flutua na superfície, com uma parte x da sua altura por fora da água, como mostra a figura  $(0 \le x \le h)$ . Empurrando o cilindro para baixo, começará a oscilar com x a variar em função do tempo. Use o

Problemas 259

seguinte procedimento para analisar a oscilação do cilindro:

(a) Sabendo que a força da impulsão da água, para cima, é igual ao peso da água que ocupava a parte do volume do cilindro que está dentro da água, ou seja,

$$I = A(h - x) \rho_{ag} g$$

Encontre a expressão para a força resultante no cilindro, em função de x (pode ignorar a força de resistência da água, que é muito menor que o peso e a impulsão).

- (b) Encontre a equação de movimento do cilindro (expressão para  $\ddot{x}$  em função de x).
- (*c* ) Encontre o valor de *x* na posição de equilíbrio do cilindro.
- (d) Mostre que o sistema dinâmico associado ao movimento do cilindro é linear e encontre a matriz do sistema.
- (*e* ) Mostre que o ponto de equilíbrio é um centro, implicando que o movimento é oscilatório e determine o valor do período de oscilação do cilindro.



**6.** A equação de movimento  $a_t = C_1 s + C_2 v$ , com  $C_1 > 0$ , descreve um oscilador invertido, com dissipação de energia (se  $C_2$  é negativa) ou com aumento da energia (se  $C_2$  é positiva). Mostre que a condição  $C_1 > 0$  é suficiente para garantir que existem dois valores próprios reais diferentes, um positivo e o outro negativo, independentemente do valor de  $C_2$ . Como tal, o ponto de equilíbrio é sempre ponto de sela.

**260** Sistemas lineares

7. Num transformador há duas bobinas, a primária, com resistência  $R_1$  e indutância  $L_1$  e a secundária, com resistência  $R_2$  e indutância  $L_2$ . Quando se liga uma fonte na primeira bobina, produzindo corrente  $I_1$  nela, na segunda bobina é induzida outra corrente  $I_2$ . Quando se desliga a fonte na primeira bobina, as duas correntes começam a diminuir gradualmente, de acordo com as seguintes equações:

$$L_1 \dot{I}_1 + M \dot{I}_2 + R_1 I_1 = 0$$
  
$$L_2 \dot{I}_2 + M \dot{I}_1 + R_2 I_2 = 0$$

onde M é a indutância mútua entre as duas bobinas e as constantes M,  $L_1$ ,  $L_2$ ,  $R_1$  e  $R_2$  são todas positivas.

- (*a*) Escreva as equações do transformador como equações de evolução de um sistema dinâmico linear e encontre a matriz do sistema.
- (*b*) Num transformador real,  $M^2$  é menor que  $L_1L_2$ . Que tipo de ponto de equilíbrio terá o sistema no caso  $L_1=2$ ,  $L_2=8$ , M=3,  $R_1=1$ ,  $R_2=2$  (usando unidades que conduzem a valores entre 0 e 10) e determine que tipo de ponto é o ponto de equilíbrio.
- (c) Trace o retrato de fase do sistema no caso considerado na alínea anterior.
- (d) Os valores  $L_1=2$ ,  $L_2=8$ , M=5,  $R_1=1$  e  $R_2=2$ , correspondem a um caso hipotético que não pode descrever um transformador real porque  $M^2>L_1L_2$ . Diga que tipo de ponto seria o ponto de equilíbrio nesse caso e explique porque esse sistema não pode descrever um transformador real.
- **8.** Um isótopo radioativo A, decai produzindo outro isótopo radioativo B e este decai produzindo um isótopo estável C.

$$A \longrightarrow B \longrightarrow C$$

Sendo  $N_1$  e  $N_2$  o número de isótopos das espécies A e B existentes em qualquer instante t, as suas derivadas em ordem ao tempo verificam as seguintes equações:

$$\dot{N}_1 = -k_1 N_1$$
  
 $\dot{N}_2 = k_1 N_1 - k_2 N_2$ 

onde  $k_1$  é a constante de decaimento dos isótopos A (probabilidade de que um isótopo da espécie A se desintegre durante uma unidade de tempo) e  $k_2$  é a constante de decaimento dos isótopos B.

Problemas 261

- (a) Determine a matriz do sistema e os seus valores próprios.
- (b) Tendo em conta que as constantes de decaimento  $k_1$  e  $k_2$  são positivas, explique que tipo de ponto pode ser o ponto de equilíbrio para os possíveis valores dessas constantes.
- (c) Se num instante inicial o número de isótopos A, B e C forem, respetivamente,  $N_1 = 3 \, N_A$ ,  $N_2 = 1.5 \, N_A$  e  $N_3 = 4.5 \, N_A$ , onde  $N_A = 6.022 \times 10^{23}$  é o número de Avogadro, quais serão os valores de  $N_1$ ,  $N_2$  e  $N_3$  após um tempo muito elevado?
- 9. No sistema dinâmico com equações de evolução:

$$\dot{x} = -y \qquad \dot{y} = 10 \, x + k(x+y)$$

onde k é um parâmetro real com qualquer valor entre  $-\infty$  e  $+\infty$ , determine os intervalos de valores de k onde o ponto de equilíbrio (x=y=0) pode ser nó ou foco, atrativo ou repulsivo, centro ou ponto de sela.

**262** Sistemas lineares

# Respostas

Perguntas: 1. E. 2. E. 3. B. 4. B. 5. A.

#### **Problemas**

**1.** (a)  $\lambda_1 = 3$ ,  $\lambda_2 = -1$ ,  $\vec{v}_1 = \hat{i} + 2\hat{j}$ ,  $\vec{v}_2 = \hat{i} - 2\hat{j}$ , ponto de sela.



(b)  $\lambda_1 = -4$ ,  $\lambda_2 = -1$ ,  $\vec{v}_1 = \hat{\imath} - (\sqrt{2}/2)\,\hat{\jmath}$ ,  $\vec{v}_2 = \hat{\imath} + \sqrt{2}\,\hat{\jmath}$ , nó estável.



(c)  $\lambda = 2$ ,  $\vec{v} = \hat{\imath} - \hat{\jmath}$ , nó impróprio instável.



Respostas 263

- **2.** (a) 14 m/s (b)  $1400 \text{ s}^{-1}$  (c) 2.24 ms.
- **3.** (*b* ) O único ponto de equilíbrio é na origem; no entanto, em todos os pontos, diferentes da origem, no intervalo -0.024 < s < 0.024 o sistema desloca-se em pequenos "saltos" até à origem. Essa situação peculiar é devida a erro numérico; com intervalos de tempo suficientemente pequenos o bloco aproxima-se continuamente da origem. Na prática, existe também atrito estático, que faz com que todos os pontos no intervalo -0.047 < s < 0.047 sejam, de facto, pontos de equilíbrio ( $\mu_c mg/k = 0.047$ ).
- **4.** (a)  $\ddot{y} = -\frac{k}{m}y g$  (b)  $y_e = -\frac{mg}{k}$  (c) A mudança de variável é  $z = y + \frac{mg}{k}$  e a nova equação de movimento é  $\ddot{z} = -\frac{k}{m}z$  (a gravidade não interessa) e:  $\Omega = |\lambda| = \sqrt{\frac{k}{m}}$
- **5.** (*a* ) F = 15680 9800 x, em gramas vezes cm/s², x em centímetros e admitindo que F é positiva quando a força é para cima.

(b) 
$$\ddot{x} = \frac{980}{9} - \frac{1225}{18}x$$

(c) 1.6 cm.

$$(d) \begin{bmatrix} 0 & 1 \\ -\frac{1225}{18} & 0 \end{bmatrix}$$

- (e) Os dois valores próprios são números imaginários. O período é 0.762 segundos.
- **6.** Os dois valores próprios são  $\lambda_1=(C_2+\sqrt{C_2^2+4\,C_1})/2$  e  $\lambda_2=(C_2-\sqrt{C_2^2+4\,C_1})/2$ . Como  $C_2^2+4\,C_1$  é sempre maior que zero, os dois valores são sempre reais. Como  $\lambda_1-\lambda_2=\sqrt{C_2^2+4\,C_1}$  é diferente de zero, os dois valores próprios são diferentes. O produto dos dois valores próprios é  $\lambda_1\lambda_2=-C_1$  que, por ser negativo, implica que os dois valores têm sempre sinais opostos.

7. (a) 
$$\dot{I}_1 = \frac{L_2 R_1 I_1 - M R_2 I_2}{M^2 - L_1 L_2}$$
  $\dot{I}_2 = \frac{-M R_1 I_1 + L_1 R_2 I_2}{M^2 - L_1 L_2}$ 
A matriz é:  $\frac{1}{M^2 - L_1 L_2} \begin{bmatrix} L2 R_1 & -M R_2 \\ -M R_1 & L1 R_2 \end{bmatrix}$ 

(b) Nó atrativo.

264

(c) O retrato de fase é:



Sistemas lineares

(d) Ponto de sela. Não pode descrever um transformador real, porque a instabilidade do sistema implica que com correntes iniciais finitas as correntes aumentavam até infinito, que não é possível.

**8.** (a) A matriz é: 
$$\begin{bmatrix} -k_1 & 0 \\ k_1 & -k_2 \end{bmatrix}$$
 com valores próprios  $-k_1$  e  $-k_2$ .

(b) Se as duas constantes são diferentes, o ponto de equilíbrio é nó atrativo, se são iguais, é um nó impróprio atrativo.

(c) 
$$N_1 = 0$$
,  $N_2 = 0$  e  $N_3 = 9 N_A$ .

**9.** Se k < -10, é ponto de sela. Se  $-10 < k \le -2(\sqrt{11} - 1)$ , é nó atrativo. Se  $-2(\sqrt{11} - 1) < k < 0$ , é foco atrativo. Se k = 0, é centro. Se  $0 < k < 2(\sqrt{11} + 1)$ , é foco repulsivo. E se  $k \ge 2(\sqrt{11} + 1)$ , é nó repulsivo.

# 10. Sistemas não lineares



Um *hoverboard* tem apenas um eixo e duas rodas. A pessoa no *hoverboard* pode rodar com ele à volta do eixo, tal como um pêndulo. O pêndulo tem duas posições de equilíbrio, quando o seu centro de gravidade se encontra na mesma linha vertical que passa pelo eixo. O ponto de equilíbrio por baixo do eixo é ponto de equilíbrio estável e se o centro de gravidade estiver próximo desse ponto, o pêndulo oscila. No caso do *hoverboard*, o centro de gravidade encontra-se próximo do ponto de equilíbrio por cima do eixo, que é um ponto de equilíbrio instável; como tal, a pessoa rodará, caindo para o chão, ou para a frente ou para trás. O sistema de controlo automático do motor desloca o *hoverboard* e a pessoa na direção necessária para evitar essa queda. Um pêndulo com o seu centro de gravidade próximo do ponto de equilíbrio instável (por cima do eixo), chama-se pêndulo invertido. Um *hoverboard*, um *segway* e um monociclo são exemplos de pêndulos invertidos.

# 10.1. Aproximação linear

Nos sistemas dinâmicos com duas variáveis de estado:

$$\dot{x}_1 = f_1(x_1, x_2)$$
  $\dot{x}_2 = f_2(x_1, x_2)$  (10.1)

cada uma das funções  $f_1$  e  $f_2$  podem ser escritas na forma de uma série de Taylor, na vizinhança de um ponto qualquer (a, b) do espaço de fase:

$$f_{i}(x_{1}, x_{2}) = f_{i}(a, b) + (x_{1} - a) \frac{\partial f_{i}}{\partial x_{1}}(a, b) + + (x_{2} - b) \frac{\partial f_{i}}{\partial x_{2}}(a, b) + \dots$$
(10.2)

onde o índice i pode ser 1 ou 2. Se o ponto (a, b) é um ponto de equilíbrio, então  $f_1(a, b) = 0 = f_2(a, b)$  e, portanto, o primeiro termo das duas séries é nulo. Mudando a origem de coordenadas para o ponto de equilíbrio (a, b), isto é, num novo sistema de coordenadas:  $x = x_1 - a$ ,  $y = x_2 - b$ , as funções são, aproximadamente,

$$f_i(x,y) = x \frac{\partial f_i}{\partial x_1}(a,b) + y \frac{\partial f_i}{\partial x_2}(a,b) \qquad (i = 1,2)$$
 (10.3)

Ou seja, uma combinação linear das novas variáveis x e y, onde as constantes são os valores das derivadas parciais no ponto de equilíbrio (a, b). Substituindo essas aproximações no sistema 10.1, obtém-se um sistema linear  $(\dot{x} = \dot{x}_1 \text{ e } \dot{y} = \dot{x}_2)$ , porque a e b são constantes).

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(a,b)} \begin{bmatrix} x \\ y \end{bmatrix}$$
(10.4)

esta aproximação linear é válida apenas numa vizinhança da origem (x=0, y=0), ou seja, quando  $x_1$  e  $x_2$  estejam próximas de a e b.

A matriz quadrada na equação 10.4 chama-se **matriz jacobiana** e representa-se por  $J(x_1, x_2)$ . Substituindo as coordenadas (a, b) do ponto de equilíbrio na matriz jacobiana, obtém-se uma matriz constante. Por cada ponto de equilíbrio existe uma matriz de coeficientes constantes, que define o sistema linear que aproxima bem o sistema não linear na vizinhança do ponto de equilíbrio. Os valores e vetores próprios de cada uma dessas matrizes permitem analisar a estabilidade do sistema, na vizinhança de cada ponto de equilíbrio, da mesma forma que é feito para os sistemas lineares.

### Exemplo 10.1

Classifique os pontos de equilíbrio e represente o retrato de fase do sistema:  $\dot{x}_1 = 4 - x_1^2 - 4 x_2^2$   $\dot{x}_2 = x_2^2 - x_1^2 + 1$ 

**Resolução**. Já foi demonstrado no exemplo 7.2 do capítulo 7, que este sistema tem quatro pontos de equilíbrio. As funções  $f_1$  e  $f_2$  e os pontos de equilíbrio são armazenados em duas listas assim:

```
(%i1) f: [4-x1^2-4*x2^2, x2^2-x1^2+1]$

(%i2) equilibrio: solve(f)$
```

Convém definir também outra lista com os nomes das variáveis de estado:

```
(%i3) v: [x1, x2]$
```

A matriz jacobiana, com duas linhas e duas colunas, obtem-se com o comando jacobian do Maxima, que precisa de duas listas: uma lista com as funções e outra lista com os nomes das variáveis

```
(%i4) J: jacobian (f,v);

(%o4)  \begin{bmatrix}
-2x1 & -8x2 \\
-2x1 & 2x2
\end{bmatrix}
```

Substituindo as coordenadas de cada ponto fixo, obtêm-se as matrizes dos sistemas lineares que aproximam o sistema na vizinhança do respetivo ponto de equilíbrio. Por exemplo, no primeiro ponto de equilíbrio,

```
(%i5) subst (equilibrio[1], J);

(%o5) \begin{bmatrix} \frac{2^{5/2}}{\sqrt{5}} & \frac{8\sqrt{3}}{\sqrt{5}} \\ \frac{2^{5/2}}{\sqrt{5}} & -\frac{2\sqrt{3}}{\sqrt{5}} \end{bmatrix}
```

Para estudar a estabilidade do sistema na vizinhança desse ponto de equilíbrio, calculam-se os valores próprios dessa matriz.

```
(%i6) eigenvectors (%)$

(%i7) float (%);

(%o7) [[[-3.963, 4.944], [1.0, 1.0]], [[[1.0, -1.048]], [[1.0, 0.3896]]]]
```

O resultado mostra 4 listas; a primeira lista são os valores próprios, a segunda lista são as multiplicidades de cada valor próprio, e as últimas duas listas são os vetores próprios.

Nesse ponto de equilíbrio os valores próprios são reais, com sinais opostos; conclui-se que é um ponto de sela. O quarto ponto de equilíbrio também é ponto de sela:

```
(%i8) subst (equilibrio [4], J);

(%o8)  \begin{bmatrix} -\frac{2^{5/2}}{\sqrt{5}} & -\frac{8\sqrt{3}}{\sqrt{5}} \\ -\frac{2^{5/2}}{\sqrt{5}} & \frac{2\sqrt{3}}{\sqrt{5}} \end{bmatrix} 
(%i9) eigenvectors (%)$

(%i10) float (%);

(%o10) [[[-4.944, 3.963], [1.0, 1.0]], [[[1.0, 0.3896]], [[1.0, -1.048]]]]
```

No segundo ponto de equilíbrio:

```
(%i11) subst (equilibrio[2], J);

\begin{bmatrix}
-\frac{2^{5/2}}{\sqrt{5}} & \frac{8\sqrt{3}}{\sqrt{5}} \\
-\frac{2^{5/2}}{\sqrt{5}} & -\frac{2\sqrt{3}}{\sqrt{5}}
\end{bmatrix}

(%i12) eigenvectors (%)$

(%i13) float (map (rectform, %));

(%o13) [[[-3.929i-2.04, 3.929i-2.04], [1.0, 1.0]],

[[[1.0,0.07912-0.634i]], [[1.0,0.634i+0.07912]]]]
```

Como os valores próprios são complexos, com parte real negativa, o ponto de equilíbrio é um foco atrativo (estável). Cálculos semelhantes para o terceiro ponto de equilíbrio mostram que também é um foco, mas repulsivo (instável), porque os valores próprios são complexos, com parte real positiva. O retrato de fase constrói-se usando o comando:

```
(%i14) plotdf (f, v, [x1,-3,3], [x2,-3,3])$
```

Na figura 10.1 mostra-se o resultado. Existe um único ponto de equilíbrio estável, um foco atrativo, em  $(x_1, x_2) = (1.265, -0.7746)$ . Os outros 3 pontos de equilíbrio, dois pontos de sela e um foco repulsivo, são instáveis. As

10.2 O pêndulo **269** 

duas curvas de evolução que foram traçadas a sair do foco repulsivo em  $(x_1, x_2) = (-1.265, 0.7746)$  e a continuação dessas curvas passando pelos pontos de sela, delimitam a região de estabilidade, em que se o estado inicial do sistema estiver nessa região, o estado final aproximar-se-á do ponto de equilíbrio estável.



**Figura 10.1.:** Retrato de fase do sistema  $\dot{x}_1 = 4 - x_1^2 - 4x_2^2$ ,  $\dot{x}_2 = x_2^2 - x_1^2 + 1$ .

## 10.2. O pêndulo

O tipo de pêndulo estudado nesta secção é formado por um objeto ligado a uma barra rígida atravessada por um eixo horizontal fixo (figura 10.2). Esse tipo de pêndulo pode rodar num plano vertical dando voltas completas. O sistema tem um único grau de liberdade,  $\theta$ , que é o ângulo que a barra faz com a vertical. Seja  $\theta=0$  quando o pêndulo está na posição mais baixa e  $\theta=\pi$  na posição mais alta. A velocidade angular é  $\dot{\theta}$  e a velocidade do centro de massa é  $r\dot{\theta}$  onde r é a distância desde o centro de massa até o eixo.



Figura 10.2.: Pêndulo.

A energia cinética é:

$$E_{\rm c} = \frac{1}{2} m r^2 \dot{\theta}^2 + \frac{1}{2} I_{\rm cm} \dot{\theta}^2$$
 (10.5)

Onde m é a massa total e  $I_{\rm cm}$  o momento de inércia em relação ao centro de massa. De acordo com o teorema dos eixos paralelos 5.28, o momento de inércia em relação ao eixo do pêndulo é  $I_{\rm e}=m\,r^2+I_{\rm cm}$ , que pode ser escrito  $I_{\rm e}=m\,r_{\rm g}^2$ , onde  $r_{\rm g}$  é o raio de giração em relação ao eixo. Como tal, a energia cinética é

$$E_{\rm c} = \frac{1}{2} m r_{\rm g}^2 \dot{\theta}^2 \tag{10.6}$$

A energia potencial gravítica é (arbitrando energia nula em  $\theta = \pi/2$ )

$$U = -m g r \cos \theta \tag{10.7}$$

Ignorando a resistência do ar, a equação de Lagrange conduz à equação de movimento:

$$\ddot{\theta} = -\frac{g}{I}\sin\theta\tag{10.8}$$

onde  $l = r_{\rm g}^2/r$  define o comprimento eficaz do pêndulo. No caso particular dum **pêndulo simples**, em que a massa da barra é desprezável e o objeto é pequeno, l é a distância desde o objeto até o eixo (ver exemplo 8.5 do capítulo 8).

As equações de evolução obtêm-se substituindo a derivada de  $\theta$  pela velocidade angular  $\omega$ :

$$\dot{\theta} = \omega$$

$$\dot{\omega} = -\frac{g}{I}\sin\theta \tag{10.9}$$

Estas equações não lineares não podem ser resolvidas analiticamente, mas podem ser resolvidas por aproximação numérica. O comando rk do Maxima usa-se para obter a solução numérica pelo método de Runge-Kutta de quarta ordem; é necessário dar 4 argumentos ao comando: uma lista de expressões para as componentes da velocidade de fase, uma lista com os nomes das variáveis de estado, uma lista com valores iniciais para essas variáveis e um intervalo de valores para a variável independente, incluindo o nome dessa variável, valor inicial, valor final e valor dos incrementos nesse intervalo. O comando rk produz uma lista de pontos que aproximam a solução; cada ponto terá as coordenadas da variável independente, seguida pelas variáveis de estado.

10.2 O pêndulo **271** 

Por exemplo, para um pêndulo com l igual a 50 cm, largado do repouso com ângulo inicial de 30°, a solução aproximada é obtida com (q e w representam  $\theta$  e  $\omega$ ):

```
(%i15) s: rk([w,-(9.8/0.5)*sin(q)],[q,w],[%pi/6,0],
[t,0,5,0.01])$
```

Os gráficos de  $\theta$  e  $\omega$  em função do tempo e a curva de evolução no espaço de fase  $\theta\omega$  obtêm-se com os seguintes comandos:

Os dois gráficos são apresentados na figura 10.3.



Figura 10.3.: Oscilações de um pêndulo de 50 cm com amplitude de 30°.

A lista de dados numéricos obtida permite concluir que o período de oscilação está entre 1.44 s e 1.45 s. Os gráficos na figura 10.3 são muito parecidos com os gráficos de um oscilador harmónico simples. Se o ângulo inicial for maior, essa semelhança começa a desaparecer. Por exemplo, a figura 10.4 mostra os resultados obtidos com ângulo inicial de 120°.

Nesse caso conclui-se a partir dos dados numéricos que o período de oscilação aumenta, em relação à amplitude de 30° e está entre 1.94 s e 1.95 s.



Figura 10.4.: Oscilações de um pêndulo de 50 cm com amplitude de 120°.

Nos dois casos apresentados nas figuras 10.3 e 10.4, a curva de evolução é um ciclo, indicando que existe um ponto de equilíbrio estável na região interna do ciclo.

Os pontos de equilíbrio do pêndulo, onde os lados direitos das equações 10.9 são nulos, encontram-se em  $\theta = 0, \pm \pi, \pm 2\pi \dots e$   $\omega = 0$ .

Os pontos em  $\theta=0,\pm 2\pi,\pm 4\pi\dots$  são realmente o mesmo ponto físico, na posição mais baixa do pêndulo, correspondentes à passagem do pêndulo por essa posição, após um número qualquer de voltas. Os pontos em  $\theta=\pm\pi,\pm 3\pi\dots$  são também o mesmo ponto físico, na posição mais alta do pêndulo.

# 10.3. Aproximação linear do pêndulo

A matriz jacobiana correspondente às equações 10.9 do pêndulo é

$$\begin{bmatrix} 0 & 1 \\ -\frac{g}{I}\cos\theta & 0 \end{bmatrix} \tag{10.10}$$

No ponto de equilíbrio em  $\theta=0$  (em geral,  $0,\pm 2\pi,\pm 4\pi,\ldots$ ), a matriz é:

$$\begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{bmatrix} \tag{10.11}$$

que é a matriz de um oscilador harmónico simples, analisada no exemplo 9.4 do capítulo 9. Os dois valores próprios são  $\pm i \sqrt{g/l}$ , o ponto de

equilíbrio  $\theta=\omega=0$  é um centro e se o estado inicial do sistema está próximo desse ponto, o pêndulo oscila com frequência angular  $\Omega=\sqrt{g/l}$ . No caso do pêndulo de 50 cm analisado na secção anterior, essa expressão conduz ao período 1.42 s. Lembre-se que esse valor é apenas uma aproximação, que é melhor quanto menor for a amplitude; os valores do período calculados numericamente na secção anterior são mais realistas.

Na vizinhança do ponto de equilíbrio  $\theta=\pi$  (em geral,  $\pm\pi$ ,  $\pm3\pi$ ,...), a matriz jacobiana é

$$\begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix} \tag{10.12}$$

que é a matriz de um oscilador invertido, analisada no exemplo 9.3 do capítulo 9. Os dois valores próprios são  $\pm \sqrt{g/l}$  e o ponto de equilíbrio é ponto de sela (equilíbrio instável).

O retrato de fase no intervalo  $-10 < \theta < 10$ , mostrará 3 centros  $(-2\pi, 0 e 2\pi)$  e 4 pontos de sela  $(-3\pi, -\pi, \pi e 3\pi)$ . No caso l = 50 cm considerado na secção anterior, usa-se o comando:

```
(%i18) plotdf([w,-(9.8/0.5)*sin(q)],[q,w],[q,-10,10], [w,-20,20]);
```

O resultado é a figura 10.5. No eixo das abcissas está representado o ângulo  $\theta$  e no eixo das ordenadas a velocidade angular  $\omega$ . As duas curvas identificadas com as letras A e B formam parte de uma **órbita heteroclínica**.



Figura 10.5.: Retrato de fase de um pêndulo de 50 cm.

A órbita heteroclínica do pêndulo corresponde ao caso em que a energia mecânica do pêndulo é exatamente igual à energia potencial gravítica no ponto de altura máxima. Usando como referência U=0, na posição em que a barra do pêndulo está na horizontal ( $\theta=\pi/2$ ), a energia potencial no ponto mais alto é  $U=m\,g\,l$ . Cada uma das curvas A e B corresponde ao movimento em que inicialmente o pêndulo está parado na posição mais alta, desce completando uma oscilação completa e para novamente na posição mais alta, sem voltar a oscilar mais. A diferença entre a órbita heteroclínica e os ciclos, é que nos ciclos as oscilações repetem-se indefinidamente, enquanto que na órbita heteroclínica há apenas meia oscilação.

Dentro da órbita heteroclínica, os ciclos na sua vizinhança correspondem a oscilações em que o pêndulo chega quase até o ponto mais alto, parece ficar parado nesse ponto por alguns instantes e logo desce novamente até o ponto mais baixo, repetindo o movimento no outro lado da vertical.

As órbitas heteroclínicas também são **separatrizes** no retrato de fase, porque delimitam a região onde existe movimento oscilatório: região sombreada na figura 10.6. Se o estado inicial está dentro dessa região, o pêndulo oscila; caso contrário, o pêndulo descreve movimento circular não uniforme.



**Figura 10.6.:** As órbitas heteroclínicas delimitam a região de movimento oscilatório.

As figuras 10.3 e 10.4 mostram que com amplitude 30° a aproximação

linear é bastante boa, pois a curva de evolução é muito parecida à do oscilador harmónico simples e o período é próximo do período obtido com a aproximação linear, mas com amplitude de 120°, a aproximação linear já não é muito boa.

## 10.4. Espaços de fase com várias dimensões

Nos sistemas mecânicos autónomos, por cada grau de liberdade há uma equação de movimento, que implica duas variáveis de estado. Assim sendo, a dimensão do espaço de fase é o dobro do número de graus de liberdade. Se um sistema não é autónomo é necessário acrescentar mais uma dimensão ao espaço de fase, como se mostra na seguinte secção. Existem então sistemas mecânicos com espaços de fase de dimensão 2, 3, 4, 5, . . .

Nos casos em que o espaço de fase tem mais do que duas dimensões o programa plotdf não pode ser utilizado para esboçar o retrato de fase. É necessário resolver as equações de evolução para alguns valores iniciais específicos e construir gráficos mostrando apenas algumas das variáveis de estado.

### 10.4.1. Sistemas de equações não autónomas

A forma geral de um sistema com n equações diferenciais não autónomas é:

$$\begin{split} \dot{x}_1 &= f_1(x_1, x_2, \dots, x_n, t) \\ \dot{x}_2 &= f_1(x_1, x_2, \dots, x_n, t) \\ \vdots \\ \dot{x}_n &= f_1(x_1, x_2, \dots, x_n, t) \end{split}$$

Para caraterizar cada possível estado do sistema é necessário saber os valores das n variáveis  $x_i$  e o valor do tempo; ou seja, cada estado é um ponto com n+1 coordenadas  $(x_1, x_2, ..., x_n, t)$  e o espaço de fase tem n+1 dimensões e o tempo é também variável de estado. As componentes da velocidade de fase são as derivadas das variáveis de estado:  $(\dot{x}_1, \dot{x}_2, ..., \dot{x}_n, \dot{t})$ . As expressões para as primeiras n componentes são dadas pelo sistema de n equações diferenciais acima e a última componente  $\dot{t}$  é sempre igual

a 1 (derivada de t em ordem a t). Como tal, o sistema de n equações não autónomas considera-se é equivalente a um sistema autónomo com n+1 variáveis de estado.

Esse tipo de sistemas de equações podem ser resolvidos também com o comando rk, sem ser necessário indicar t como variável de estado, nem a última componente da velocidade de fase,  $\dot{t}=1$ ; o valor inicial de t dá-se no intervalo de integração e não na lista de valores iniciais das variáveis de estado. No entanto, há que ter em conta que se a velocidade de fase depende da variável independente t, essa variável é também variável de estado.

#### Exemplo 10.2

A equação diferencial:

$$t^2 \ddot{x} + t \dot{x} + \left(t^2 - \frac{1}{9}\right) x = 0$$

é uma equação de Bessel. Escreva a equação como sistema dinâmico e identifique o espaço de fase.

**Resolução**. Define-se uma variável auxiliar y igual a  $\dot{x}$ :

$$\dot{x} = y \tag{10.13}$$

assim sendo, a segunda derivada  $\ddot{x}$  é igual à primeira derivada de y e a equação de Bessel é:

$$t^2 \dot{y} + t y + \left(t^2 - \frac{1}{9}\right) x = 0$$

resolvendo para *y*, obtém-se:

$$\dot{y} = \left(\frac{1}{9t^2} - 1\right)x - \frac{y}{t} \tag{10.14}$$

Como esta equação não é autónoma, considera-se a variável independente t como mais uma variável de estado, com a equação de evolução trivial:

$$\frac{\mathrm{d}\,t}{\mathrm{d}\,t} = 1\tag{10.15}$$

O espaço tem três dimensões e cada estado tem coordenadas (t, x, y). O sistema dinâmico é definido pelas 3 equações 10.13, 10.14 e 10.15.

### 10.4.2. Lançamento de projéteis

No caso do lançamento de um projétil com velocidade oblíqua, sobre o corpo atuam três forças externas: o peso,  $m_{\rm p}\,g$ , a resistência do ar,  $F_{\rm r}$  e a impulsão  $m_{\rm a}\,g$ , onde  $m_{\rm p}$  é a massa do projétil e  $m_{\rm a}$  a massa do ar que ocupava o mesmo volume do projétil. O problema é semelhante ao problema da queda livre, estudado na secção 4.3.3 do capítulo 4, mas a força de resistência do ar deixa de ser vertical (ver figura 10.7). O peso e a impulsão são verticais, em senti-



Figura 10.7.: Projétil no ar.

dos opostos, podendo ser combinados numa única força vertical (peso eficaz) de módulo  $(m_p - m_a) g$ .

Admite-se que a massa volúmica do projétil é muito maior que a massa volúmica do ar e, portanto, o peso eficaz aponta para baixo e  $m_{\rm p}-m_{\rm a}$  é quase igual a  $m_{\rm p}$ . De qualquer modo, a massa do projétil costuma medir-se medindo o seu peso eficaz no ar, assim que o valor medido (m) da massa do projétil é realmente  $m_{\rm p}-m_{\rm a}$  e o peso eficaz é m g.

A força de resistência do ar muda constantemente de sentido, porque é sempre tangente à trajetória e no sentido oposto à velocidade. Como foi explicado no capítulo 4, no caso do ar o número de Reynolds costuma ser elevado e admite-se que a resistência do ar é proporcional ao quadrado da velocidade. Se o projétil é uma esfera de raio R, a expressão do módulo de  $F_{\rm r}$  é dada pela equação 4.14 e a força é:

$$\vec{F}_{\rm r} = -\frac{\pi}{4} \rho R^2 v^2 \vec{e}_{\rm t} \tag{10.16}$$

onde  $\rho$  é a massa volúmica do ar e  $\vec{e}_{\rm t}$  é o versor tangencial, na direção e sentido do vetor velocidade:

$$\vec{e}_{t} = \frac{\vec{v}}{\nu} \tag{10.17}$$

Escolhendo um sistema de eixos em que a gravidade aponta no sentido negativo do eixo dos y e a velocidade inicial  $\vec{v}_0$  com que é lançado o projétil está no plano xy, o peso e a força de resistência do ar estão sempre no plano xy e o movimento do projétil dá-se nesse plano. Assim sendo, o

vetor velocidade é  $(v_x \hat{\imath} + v_y \hat{\jmath})$  e a força de resistência do ar é:

$$\vec{F}_{\rm r} = -\frac{\pi}{4} \rho R^2 \sqrt{v_x^2 + v_y^2} (v_x \,\hat{\imath} + v_y \,\hat{\jmath}) \tag{10.18}$$

O vetor do peso é  $-mg \hat{\jmath}$ . Aplicando a segunda lei de Newton, obtêm-se as componentes da aceleração:

$$a_x = -\frac{\pi \rho R^2}{4 m} v_x \sqrt{v_x^2 + v_y^2}$$

$$a_y = -g - \frac{\pi \rho R^2}{4 m} v_y \sqrt{v_x^2 + v_y^2}$$
(10.19)

Estas equações devem ser resolvidas em simultâneo porque as duas componentes  $v_x$  e  $v_y$  aparecem nas duas equações. É impossível encontrar a solução exata do problema, mas pode obter-se uma aproximação numérica.

A seguir vão-se comparar as trajetórias de duas esferas diferentes, lançadas com a mesma velocidade inicial para compará-las com a trajetória parabólica que teriam se pudessem ser lançadas no vácuo, sem resistência do ar. Considere-se o caso em que a velocidade inicial é 12 m/s, fazendo um ângulo de 45° com o plano horizontal; as componentes da velocidade inicial são,

```
(%i19) [vx0, vy0]: float (12*[cos(%pi/4),sin(%pi/4)])$
```

Começando pelo caso mais fácil, o lançamento dos projéteis no vácuo, as componentes da aceleração são  $a_x = 0$  e  $a_y = -9.8$ . O estado do projétil é  $(x, y, v_x, v_y)$  e a velocidade de fase  $(v_x, v_y, a_x, a_y)$ . Os valores iniciais da velocidade já foram calculados em (%i19) e arbitre-se que o projétil parte da origem com valores iniciais nulos para x e y. Para integrar as equações de movimento desde t = 0 até t = 2 s, com incrementos de 0.01 s, usa-se o comando:

```
(%i20) tr1: rk ([vx,vy,0,-9.8], [x,y,vx,vy], [0,0,vx0,vy0], [t,0,2,0.01])$
```

e o último ponto calculado na lista tr1 é,

```
(%i21) last (tr1);
(%o21) [2.0, 16.97, -2.629, 8.485, -11.11]
```

As 5 componentes do ponto são o tempo, as coordenadas da posição e as componentes da velocidade. Este resultado mostra que em t=2 a bola já está a cair, porque  $v_y$  é negativa e que já desceu debaixo da altura inicial, porque y é negativa.

Como pretendemos obter a trajetória até a bola regressar à altura y = 0, é necessário extrair unicamente os pontos da lista tr1 com terceira componente (y) positiva. Percorre-se a lista toda, comparando o terceiro elemento de cada ponto com 0, até encontrar o primeiro ponto em que o terceiro elemento é negativo. Isso consegue-se usando o comando sublist\_indices do Maxima:

```
(%i22) first (sublist_indices (tr1, lambda([p],p[3] < 0)));
(%o22) 175</pre>
```

Usou-se lambda que define um operador; neste caso esse operador compara o terceiro elemento da entrada que lhe for dada com zero. O comando sublist\_indices percorre a lista tr1 passando cada elemento como entrada para esse operador e, nos casos em que o operador produz o resultado "true", o índice do respetivo elemento da lista é acrescentado a uma sub lista. O comando first seleciona apenas o primeiro elemento nessa sub lista, neste caso, o índice do primeiro ponto em que y é negativo. Como tal, só interessam os primeiros 174 pontos na lista; se o objetivo é construir o gráfico da trajetória, cria-se outra lista com as coordenadas x e y dos primeiros 174 pontos:

```
(%i23) r1: makelist ([tr1[i][2], tr1[i][3]], i, 1, 174)$
```

A seguir vai repetir-se o mesmo procedimento para uma bola de ténis e uma bola de ténis de mesa, tendo em conta a resistência do ar. A massa volúmica do ar é aproximadamente 1.2 kg/m³. É conveniente definir uma função que calcula a constante que aparece nas equações de movimento 10.19, em função do raio e a massa de cada uma das bolas; também é conveniente definir a expressão do módulo da velocidade para não ter que escrevê-la várias vezes:

```
(%i24) c(R,m) := -%pi*1.2*R^2/4/m$
(%i25) v: sqrt(vx^2+vy^2)$
```

Uma bola de ténis típica tem raio de aproximadamente 3.25 cm e massa

62 gramas. No comando (%i20) é necessário substituir a aceleração da gravidade pelas duas componentes da aceleração (equações 10.19)

```
(%i26) tr2:rk([vx,vy,c(0.0325,0.062)*vx*v,-9.8+c(0.0325,0.062)*vy*v],
[x,y,vx,vy],[0,0,vx0,vy0], [t,0,2,0.01])$
```

O primeiro ponto com altura negativa é

```
(%i27) first (sublist_indices (tr2, lambda([p],p[3] < 0)));
(%o27) 167</pre>
```

e a trajetória da bola de ténis armazena-se noutra variável:

```
(%i28) r2: makelist ([tr2[i][2],tr2[i][3]],i,1,166)$
```

Repetem-se os mesmos cálculos para uma bola de ténis de mesa típica, com raio 1.9 cm e massa 2.4 g

O gráfico das 3 trajetórias constrói-se com o seguinte comando:

O resultado é apresentado na figura 10.8.

As trajetórias das bolas no ar não são parábolas, mas no fim curvam-se mais e terminam com uma queda mais vertical. O efeito da resistência do ar é mais visível na bola de ténis de mesa; apesar de ser mais pequena que a bola de ténis, a força de resistência do ar produz nela maior aceleração tangencial negativa, devido à sua menor massa volúmica. Lançadas com a mesma velocidade, o alcance horizontal da bola de ténis de mesa é 6.2 m e



**Figura 10.8.:** Trajetórias de uma bola no vácuo e bolas de ténis e ténis de mesa no ar.

o da bola de ténis 12.4 m. O alcance horizontal hipotético das duas bolas, se a resistência do ar pudesse ser ignorada, seria 14.7 m.

### 10.4.3. Pêndulo de Wilberforce

O pêndulo de Wilberforce (figura 10.9) é constituído por um cilindro pendurado de uma mola vertical muito comprida. Quando uma mola é esticada ou comprimida, cada espira muda ligeiramente de tamanho; no pêndulo de Wilberforce, o número elevado de espiras na mola faz com que seja mais visível essa mudança, de forma que enquanto a mola oscila, também se enrola ou desenrola, fazendo rodar o cilindro em relação ao eixo vertical.

O sistema tem dois graus de liberdade, a altura z do centro de massa do cilindro e o ângulo de rotação do cilindro à volta do eixo vertical,  $\theta$ . Se z=0 e  $\theta=0$  são escolhidos na posição de equilíbrio, é possível



**Figura 10.9.:** Pêndulo de Wilberforce.

ignorar a energia potencial gravítica que poderá ser eliminada das equações com uma mudança de variáveis (problema 4 do capítulo 9). A energia potencial elástica tem 3 termos, que dependem da elongação da mola z e do seu ângulo de rotação  $\theta$ ; as energias cinética e potencial são,

$$E_{\rm c} = \frac{1}{2}m\dot{z}^2 + \frac{1}{2}I_{\rm cm}\dot{\theta}^2 \qquad U = \frac{1}{2}kz^2 + \frac{1}{2}a\theta^2 + bz\theta$$
 (10.20)

em que k, a e b são constantes elásticas da mola. As equações de Lagrange, ignorando a resistência do ar e outras forças dissipativas, conduzem às seguintes equações de movimento:

$$\ddot{z} = -\frac{k}{m}z - \frac{b}{m}\theta \qquad \ddot{\theta} = -\frac{a}{I_{\rm cm}}\theta - \frac{b}{I_{\rm cm}}z \qquad (10.21)$$

Para resolver as equações de evolução numericamente, é necessário dar alguns valores típicos para a massa, o momento de inércia e as constantes elásticas,

A solução no intervalo de tempo desde 0 até 40, com condição inicial z = 10 cm e as outras variáveis iguais a 0, obtém-se com o seguinte comando:

```
(%i34) sol: rk(['v,w,-(k*z+b*ang)/m,-(a*ang+b*z)/I],
[z,ang,'v,w],[0.1,0,0,0],[t,0,40,0.01])$
```

A figura 10.10 mostra o gráfico obtido para o ângulo  $\theta$  e a elongação z, multiplicada por um fator de 100 para que seja visível na mesma escala do ângulo.

O gráfico mostra uma caraterística interessante do pêndulo de Wilberforce: se o pêndulo é posto a oscilar, sem rodar, a amplitude das oscilações lineares decresce gradualmente, enquanto que o cilindro começa a rodar com oscilações de torção que atingem uma amplitude máxima quando o cilindro deixa de se deslocar na vertical. A amplitude das oscilações de torção começa logo a diminuir à medida que a oscilação linear cresce novamente. Essa intermitência entre deslocamento vertical e rotação repete-se indefinidamente.

A projeção do retrato de fase nas variáveis z e  $\theta$  é apresentada na figura 10.11. Neste sistema existem duas frequências angulares. A frequência angular



Figura 10.10.: Elongação e ângulo de rotação no pêndulo de Wilberforce.

longitudinal e a frequência angular de torção,

$$\Omega_z^2 = \frac{k}{m} \qquad \Omega_\theta^2 = \frac{a}{I_{\rm cm}} \tag{10.22}$$

O cilindro num pêndulo de Wilberforce costuma ter quatro porcas que podem ser deslocadas, aumentando ou diminuindo o momento de inércia, para conseguir que as duas frequências sejam muito parecidas e o efeito de alternância entre oscilações lineares e rotacionais seja mais visível. Os



Figura 10.11.: Retrato de fase no plano formado pela elongação e o ângulo.

valores dos parâmetros usados no exemplo acima, foram escolhidos de forma a garantir duas frequências iguais.

# **Perguntas**

- 1. O valor aproximado do período de um pêndulo com comprimento l é  $2\pi\sqrt{l/g}$ , onde g é a aceleração da gravidade. Essa expressão é uma boa aproximação unicamente em algumas situações. Se o ângulo  $\theta$  é zero no ponto de equilíbrio estável, qual das condições seguintes garante que essa expressão seja uma boa aproximação do seu valor real?
  - A. valor máximo da velocidade angular pequeno.
  - B. aceleração da gravidade pequena.
  - C. comprimento *l* pequeno.
  - D. valor máximo do ângulo pequeno.
  - E. atrito com o ar desprezável.
- 2. A força tangencial numa partícula com velocidade v e posição na trajetória s é:  $F_t = 4 s (s - v^2)$ . Quantos pontos de equilíbrio tem esse sistema?
  - A. 1

C. 3

E. 0

B. 2

- D. 4
- **3.** Qual é a matriz jacobiana do sistema  $\dot{x} = y^2$ ,  $\dot{y} = x y$ ?
  - A.  $\begin{bmatrix} y^2 & 1 \\ 1 & xy \end{bmatrix}$
- C.  $\begin{bmatrix} 0 & 2y \\ y & x \end{bmatrix}$  E.  $\begin{bmatrix} 1 & 1 \\ 0 & 2y \end{bmatrix}$

- B.  $\begin{bmatrix} 0 & 2y \\ 1 & 1 \end{bmatrix}$  D.  $\begin{bmatrix} y & x \\ 0 & 2y \end{bmatrix}$
- **4.** As equações de evolução de um sistema dinâmico no espaço de fase (x, y)y), são  $\dot{x} = xy$ ,  $\dot{y} = y + 1$ . Qual dos seguintes vetores aponta na direção e sentido da velocidade de fase em (1, 2)?
  - A.  $4\hat{i} + 2\hat{j}$
- C.  $6\hat{i} + 4\hat{j}$
- E.  $-2\hat{i} 3\hat{j}$

- B.  $2\hat{i} + 4\hat{j}$
- D.  $4\hat{i} + 6\hat{j}$

**5.** No retrato de fase na figura, que tipo de ponto de equilíbrio é o ponto (1,0)?



- A. nó atrativo
- C. ponto de sela
- E. nó repulsivo

285

- B. foco repulsivo
- D. foco atrativo

### **Problemas**

- 1. Uma partícula com massa m, desloca-se ao longo do eixo dos x sob a ação de uma força resultante  $F_x$  que depende da posição x e da componente da velocidade  $v_x$ . Para cada um dos casos seguintes encontre os pontos de equilíbrio, diga que tipo de ponto equilíbrio é cada um (estável ou instável; centro, foco, nó ou ponto de sela) e desenhe o retrato de fase mostrando as órbitas mais importantes:
  - $(a) F_x = -m x (1 + v_x)$
  - (b)  $F_x = -m x (x^2 + v_x 1)$
- **2.** Em cada um dos casos seguintes encontre os pontos de equilíbrio e os valores próprios da matriz jacobiana nesses pontos e identifique os tipos de pontos de equilíbrio:
  - (a)  $\dot{x} = y^2 + 3y 10$   $\dot{y} = xy + x + 12$
  - (b)  $\dot{x} = 3xy^2 2y$   $\dot{y} = x y^2$
  - (c)  $\dot{x} = y^2 + 2xy + 2$   $\dot{y} = x^2 y^2 2$
  - (d)  $\dot{x} = -x + 4y y^3$   $\dot{y} = -y + 4x x^3$

3. O diagrama mostra o retrato de fase de um sistema com unicamente 3 pontos de equilíbrio, no caso idealizado em que não existe atrito. Faça (a mão) um esboço da energia potencial e de como seria o retrato de fase do sistema real, considerando as forças de atrito.



**4.** A amplitude de oscilação de um pêndulo decresce, devido à força de resistência do ar e ao atrito no eixo. Admita um pêndulo de comprimento  $l=50~\rm cm$  e massa  $m=0.150~\rm kg$ , em que o atrito no eixo é desprezável mas a resistência do ar não. A equação de movimento é a equação 8.8

$$\ddot{\theta} = -\frac{g}{l}\sin\theta - \frac{Cl}{m}|\dot{\theta}|\dot{\theta}$$

Se a massa m estiver concentrada numa esfera de raio R=2 cm, a expressão para a constante C é dada pela equação 4.14:  $C=\pi\,\rho\,R^2/4$ , onde  $\rho=1.2$  kg/m $^3$  é a massa volúmica do ar. Trace os gráficos de  $\theta(t)$ ,  $\omega(t)$  e da curva de evolução no espaço de fase e explique o significado físico da solução, para os dois casos seguintes:

- (a) O pêndulo parte do repouso com um ângulo inicial  $\theta = 120^{\circ}$ .
- (b) O pêndulo é lançado desde  $\theta=60^\circ$ , com velocidade angular inicial  $\omega=-7.8~{\rm s}^{-1}$ .
- **5.** A base do pêndulo da figura 10.2 roda no plano horizontal, com velocidade angular constante  $\omega_b$ , enquanto o pêndulo oscila.
  - (a) Demonstre que a equação de movimento é:

$$\ddot{\theta} = \frac{1}{I} \sin \theta \left( r \omega_b^2 \cos \theta - g \right)$$

onde r é a distância do centro de massa até o eixo e o comprimento eficaz l é o raio de giração ao quadrado, sobre r.

(b) Trace o gráfico de  $\sin\theta \left(r\,\omega_b^2\cos\theta-g\right)$  em função de  $\theta$ , entre  $-\pi$  e  $\pi$ , para um pêndulo com r=0.3 m e  $\omega_b=2$  s $^{-1}$ . Repita o gráfico para  $\omega_b=8$  s $^{-1}$ . Com base nos dois gráficos, identifique em cada caso os pontos de equilíbrio estável e instável.

Problemas 287

(c) Demonstre que quando  $\omega_b < \sqrt{g/r}$ , existe um único ponto de equilíbrio estável em  $\theta = 0$  e um único ponto de equilíbrio instável em  $\theta = \pm \pi$ .

- (d) Se  $\omega_b > \sqrt{g/r}$ , demostre que os pontos de equilíbrio em  $\theta = 0$  e  $\theta = \pm \pi$  são ambos instáveis e aparecem dois pontos de equilíbrio estável em  $\pm \theta_0$ , onde  $\theta_0$  é um ângulo entre zero e  $\pi/2$ .
- **6.** Na trajetória da bola de ténis de mesa calculada na secção 10.4.2, o alcance horizontal da bola é aproximadamente o valor da coordenada x do último ponto da lista de pontos r1. Repita os cálculos, com diferentes valores do ângulo de lançamento, para determinar os valores do alcance com ângulos de 35°, 36°, 37°, 38°, 39° e 40°. Registe numa tabela os valores obtidos para o alcance horizontal, em função do ângulo, com precisão até os milímetros. Com base na tabela, qual é o ângulo de lançamento que produz o maior alcance horizontal? Usando o resultado do problema 12 do capítulo 6, mostre que no vácuo o ângulo que produz o alcance máximo é 45°.
- **7.** Para analisar a equação diferencial não linear  $\ddot{x} + \dot{x}^2 + 4x^2 = 4$ ,
  - (a) Escreva as equações de evolução do sistema dinâmico associado à equação.
  - (b) Encontre os pontos de equilíbrio do sistema.
  - (c) Determine a matriz jacobiana.
  - (d) Caracterize cada um dos pontos de equilíbrio.
  - (*e* ) Se em t=0 os valores da variável x e da sua derivada são  $x_0=1$  e  $\dot{x}_0=1$ , determine (numericamente) os valores da variável e da sua derivada em t=2.
- 8. O sistema dinâmico com equações de evolução:

$$\dot{x} = 2xy^3 - x^4$$
  $\dot{y} = y^4 - 2x^3y$ 

tem um único ponto de equilíbrio na origem. A matriz jacobiana nesse ponto é igual a zero e, portanto, os valores próprios (nulos) não podem ser usados para caraterizar o ponto de equilíbrio. Use o seguinte método para analisar o retrato de fase do sistema:

- (a) Determine o versor na direção da velocidade de fase em qualquer ponto do eixo dos x e em qualquer ponto do eixo dos y.
- (b) Determine o versor na direção da velocidade de fase em qualquer ponto das duas retas y = x e y = -x.

- (c) Faça a mão um gráfico mostrando os versores que encontrou nas alíneas a e b, em vários pontos nos 4 quadrantes do espaço de fase, e trace algumas curvas de evolução seguindo as direções da velocidade de fase. Com base nesse gráfico, que tipo de ponto de equilíbrio julga que é a origem?
- (d) Diga se existem ciclos, órbitas homoclínicas ou heteroclínicas e, caso a resposta seja afirmativa, quantas. Uma partícula de massa m desloca-se no plano xy sob a ação de uma força conservativa com energia potencial,

$$U = \frac{k_x}{2} x^2 + \frac{k_y}{2} y^2$$

onde  $k_x$  e  $k_y$  são duas constantes positivas. As trajetórias da partícula obtidas com diferentes valores dessas constantes chamam-se **figuras** de Lissajous.

- (a) Encontre as duas equações de movimento para  $\ddot{x}$  e  $\ddot{y}$
- (*b*) Resolva numericamente as equações de movimento, no caso m = 0.3,  $k_x = 2$  e  $k_y = 8$  (unidades SI), entre t = 0 e t = 2.43, se a partícula partir do ponto (1, 0) com velocidade inicial  $\vec{v} = 0.6 \,\hat{\jmath}$ . Trace o gráfico da trajetória da partícula no plano xy.
- (*c* ) Repita a alínea anterior, mas admitindo que a partícula parte do ponto (1, 0) com velocidade inicial  $\vec{v} = 0.3 \,\hat{\imath} + 0.6 \,\hat{\jmath}$ .
- (d) Observe que o sistema pode ser considerado como um conjunto de dois osciladores harmónicos independentes, nas direções x e y. Calcule o período de oscilação para cada um dos dois osciladores e diga qual é a relação entre os dois períodos.
- (*e*) Repita os cálculos da alínea *c*, mudando o valor de  $k_y$  para 18. Que relação observa entre os gráficos da trajetória e  $k_y/k_x$ ?
- **9.** Qualquer corpo celeste (planeta, cometa, asteroide, sonda espacial, etc) de massa *m* no sistema solar tem uma energia potencial gravítica produzida pelo Sol, que é responsável pelas órbitas elípticas desses corpos. A expressão para a energia potencial é,

$$U = -\frac{GMm}{\sqrt{x^2 + y^2}}$$

onde G é a constante de gravitação universal, M é a massa do Sol, e as coordenadas x e y são medidas no plano da órbita do corpo celeste,

Respostas 289

com origem no Sol. Se as distâncias forem medidas em unidades astronómicas, UA, e os tempos em anos, o produto GM será igual a  $4\pi^2$ .

- (*a*) Encontre as equações de movimento do corpo celeste, em unidades de anos para o tempo e UA para as distâncias.
- (*b*) O cometa Halley aproxima-se até uma distância mínima do Sol igual a 0.587 UA. Nesse ponto, a sua velocidade é máxima, igual a 11.50 UA/ano, e perpendicular à sua distância até o Sol. Determine numericamente a órbita do cometa Halley, a partir da posição inicial 0.587  $\hat{\imath}$ , com velocidade inicial 11.50  $\hat{\jmath}$ , com intervalos de tempo  $\Delta t = 0.05$  anos. Trace a órbita desde t = 0 até t = 100 anos. Que pode concluir acerca do erro numérico?
- (c) Repita o procedimento da alínea anterior com  $\Delta$  t = 0.02 anos e trace a órbita desde t = 0 até t = 150 anos. Que pode concluir acerca do erro numérico?
- (*d*) Diga qual é, aproximadamente, a distância máxima que o cometa Halley se afasta do Sol, e compare a órbita do cometa com as órbitas do planeta mais distante, Neptuno (órbita entre 29.77 UA e 30.44 UA) e do planeta mais próximo do Sol, Mercúrio (órbita entre 0.31 UA e 0.39 UA. Plutão já não é considerado um planeta).

### Respostas

Perguntas: 1. D. 2. A. 3. C. 4. D. 5. E.

#### **Problemas**

- **1.** (a) Unicamente um centro em  $(x, v_x) = (0, 0)$ .
  - (*b*) Um ponto de sela em  $(x, v_x) = (0, 0)$ , um foco instável em  $(x, v_x) = (-1, 0)$  e um foco estável em  $(x, v_x) = (1, 0)$ .





- **2.** (*a*) Dois pontos de equilíbrio: (3, -5), com valores próprios 7 e -4, é ponto de sela; (-4, 2), com valores próprios 3 e -7 é ponto de sela.
  - (b) Dois pontos de equilíbrio: (0, 0), com valores próprios  $\pm i\sqrt{2}$  é centro; (0.763, 0.874), com valores próprios -2.193 e 2.736 é ponto de sela.
  - (c) Dois pontos de equilíbrio:  $(-2\sqrt{6}/3, \sqrt{6}/3)$  e  $(2\sqrt{6}/3, -\sqrt{6}/3)$ , ambos pontos de sela com valores próprios  $\pm 2\sqrt{2}$ .
  - (*d*) Nove pontos de equilíbrio. Um ponto de sela em (0,0), com valores próprios 3 e -5, outros dois pontos de sela em  $(\sqrt{5},-\sqrt{5})$  e  $(-\sqrt{5},\sqrt{5})$ , com valores próprios 10 e -12, outros dois pontos de sela em  $(\sqrt{3},\sqrt{3})$  e  $(-\sqrt{3},-\sqrt{3})$  com valores próprios 4 e -6 e quatro focos atrativos em  $(b\sqrt{a},\sqrt{a})$ ,  $(-b\sqrt{a},-\sqrt{a})$ ,  $(a\sqrt{b},\sqrt{b})$  e  $(-a\sqrt{b},-\sqrt{b})$ , com valores próprios  $-1+\pm i\sqrt{23}$ , onde  $a=2+\sqrt{3}$  e  $b=2-\sqrt{3}$ .
- **3.** Os pontos de sela continuam sendo pontos de sela e o centro passa a ser foco estável.



**4.** (a) O pêndulo oscila com amplitude que decresce lentamente:





(*b*) O pêndulo faz três voltas completas, rodando no sentido horário, e quando passa a quarta vez pela posição de equilíbrio estável, começa a oscilar com amplitude que decresce lentamente:





Respostas 291

#### **5.** (*b*)



Com  $\omega_b = 2 \, \mathrm{s}^{-1}$ , há um ponto de equilíbrio estável em  $\theta = 0$  e um ponto de equilíbrio instável em  $\theta = \pm \pi$ . Com  $\omega_b = 8 \, \mathrm{s}^{-1}$ , há dois pontos de equilíbrio instável em  $\theta = 0$  e  $\theta = \pm \pi$  e dois pontos de equilíbrio estável em  $\theta \approx -1$  e  $\theta \approx 1$ .

6. Alcance em função do ângulo:

| Ângulo | Alcance (m) |
|--------|-------------|
| 35°    | 6.293       |
| 36°    | 6.299       |
| 37°    | 6.301       |
| 38°    | 6.299       |
| 39°    | 6.325       |
| 40°    | 6.314       |

O ângulo de 37° produz o alcance máximo. No problema 12 do capítulo 6, o valor máximo do seno é 1, quando  $2\theta = 90^{\circ}$  e, portanto,  $\theta = 45^{\circ}$ .

7. (a) 
$$\dot{x} = v$$
,  $\dot{v} = 4 - v^2 - 4x^2$  (b)  $(x, \dot{x}) = (1, 0)$  e  $(x, \dot{x}) = (-1, 0)$  (c)  $J = \begin{pmatrix} 0 & 1 \\ -8x & -2\dot{x} \end{pmatrix}$  (d)  $(1, 0)$  é um centro e  $(-1, 0)$  é ponto de sela. (e)  $x = 0.5869$ ,  $\dot{x} = 0.8277$ .

**8.** (*a* ) No eixo dos x,  $-\hat{\imath}$ . No eixo dos y,  $\hat{\jmath}$ . (*b* ) Na reta y = x,  $(\hat{\imath} - \hat{\jmath})/\sqrt{2}$ . Na reta y = -x,  $(-\hat{\imath} + \hat{\jmath})/\sqrt{2}$ . (*c* ) Ver figura; a origem é ponto de sela. (*d* ) Nenhum ciclo nem órbita heteroclínica; número infinito de órbitas homoclínicas (todas as curvas de evolução no primeiro e terceiro quadrantes).



(d) Na direção x, 2.433 s. Na direção y, 1.217 s. O período na direção x é o dobro do período na direção de y. (e) Se  $\sqrt{k_y/k_x}$  for um número inteiro, o estado da partícula regressa ao estado inicial depois de descrever uma figura de Lissajous com  $\sqrt{k_y/k_x}$  loops segundo o eixo dos x.



10. (a) 
$$\ddot{x} = -\frac{4\pi^2 x}{(x^2 + y^2)^{3/2}}$$
  $\ddot{y} = -\frac{4\pi^2 y}{(x^2 + y^2)^{3/2}}$   
(b) e (c)



Na alínea b o erro numérico é muito elevado; a energia do cometa não permanece constante mais diminui. Na alínea c o erro numérico é muito menor, mas o cometa continua a perder energia; seria necessário reduzir ainda mais o valor de  $\Delta t$  para diminuir o erro. (d) 34.4 UA. A órbita sai por fora da órbita de Neptuno, e entra até um ponto entre órbitas de Mercúrio e Vénus.