

Броене на гъби (mushrooms)

Експертът по гъбите Андрей проучва местните гъби в Сингапур.

Като част от неговото проучване, Андрей е събрал n гъби, номерирани с числата от 0 до n-1. Всяка гъба принадлежи на един от два вида, които се наричат A и B.

Андрей знае, че **гъба** 0 **е от вид A**, но понеже двата вида изглеждат по един и същ начин, той не знае видовете на гъбите с номера от 1 до n-1.

За щастие, Андрей има машина в своята лаборатория, която може да му помогне да открие видовете на останалите гъби. За да се използва тази машина, трябва в нея да се поставят последователно две или повече гъби (в избрана от вас наредба). След което се включва машината. Тя пресмята броят на двойките \mathbf{c} -седни гъби, които са от различен вид. Например, ако се поставят гъби от видовете [A,B,B,A] (в този ред) в машината, резултатът ще е 2.

Обаче, използването на машината е доста скъпо и тя може да бъде използвана ограничен брой пъти. В допълнение, общият броя на гъбите, които се поставят в нея за всички използвания не трябва да надвишава $100\ 000$. Използвайте тази машина, за да помогнете на Андрей да намери броят на гъбите от вид A сред събраните от него гъби.

Имплементация

Трябва да напишете следната функция:

```
int count_mushrooms(int n)
```

- *n*: броят на гъбите, събрани от Андрей.
- Тази функция се вика веднъж и трябва да върне броят на гъбите от вид А.

Горната функция може да прави извиквания към следната функция:

```
int use_machine(int[] x)
```

- x: масив с дължина от 2 до n включително, описващ номерата на гъбите, които се поставят в машината в същия ред, като е описано в масива.
- Елементите на x трябва да бъдат **различни** цели числа от 0 до n-1 включително.
- Нека d е дължината на масива x. Тогава функцията връща броя на различните индекси j, такива че $0 \le j \le d-2$ и гъбите x[j] и x[j+1] са от различни видове.

- Тази функция може да бъде извикана най-много $20\ 000$ пъти.
- Общата дължина на масивите x, подадени на функцията use_machine, за всички извиквания не трябва да надвишава $100\ 000$.

Примери

Пример 1

Нека разгледаме следният сценарий, в който има 3 гъби от видовете [A,B,B] в този ред. Функцията $count\ mushrooms\ ce\ извиква\ по\ следния\ начин:$

```
count_mushrooms(3)
```

Тази функция може да извика $use_machine([0, 1, 2])$, която (в този сценарий) връща 1. След което, може да извика $use_machine([2, 1])$, която връща 0.

Сега вече има достатъчно информация, за да се заключи, че има 1 гъба от вид A. Така че функцията $count\ mushrooms\ трябва да върне\ 1$.

Пример 2

Нека разгледаме следният случай, в който има 4 гъби от видовете [A,B,A,A] в този ред. Функцията count mushrooms се извиква по следния начин:

```
count_mushrooms(4)
```

Тази функция може да извика $use_machine([0, 2, 1, 3])$, която (в този сценарий) връща 2. След което, може да извика $use_machine([1, 2])$, която връща 1.

Сега вече има достатъчно информация, за да се заключи, че има 3 гъби от вид A. Така че функцията $count\ mushrooms\ трябва да върне <math>3$.

Ограничения

• $2 \le n \le 20\ 000$

Оценяване

Ако на някой тест, извикванията на функцията $use_machine$ не спазват гореспоменатите правила или върнатата стойност на $count_mushrooms$ е неправилна, броят точки на вашето решение ще е 0. Иначе, нека Q е максималният брой извиквания на функцията $use_machine$ за всички тестове. Тогава, броят точки ще бъдат изчислени по следната таблица:

Условие	Брой точки
$20\;000 < Q$	0
$10~010 < Q \leq 20~000$	10
$904 < Q \leq 10\ 010$	25
$226 < Q \leq 904$	$rac{226}{Q}\cdot 100$
$Q \leq \qquad 226$	100

На някои тестове, поведението на грейдъра е адаптивно. Това означава, че за тези тестове, грейдърът няма фиксирана наредба на видове гъби. Вместо това, отговорите, които се дават от грейдъра зависят от предходни извиквания на use_machine. Гарантирано е, че грейдърът винаги отговаря по такъв начин, че след всеки отговор има поне една възможна наредба на видове гъби, които спазват дадените отговори досега.

Примерен грейдър

Примерният грейдър чете масив от цели числа s, задаващ видовете гъби. За всички $0 \le i \le n-1,\ s[i]=0$ означава, че видът на гъба с номер i е A, а s[i]=1 означава, че видът на гъба с номер i е B. Примерният грейдър чете входа в следния формат:

- line 1: *n*
- ullet line 2: s[0] s[1] \dots s[n-1]

Изходът на примерния грейдър е в следния формат:

- line 1: върната стойност на count mushrooms.
- line 2: броят извиквания на use machine.

Имайте предвид, че примерният грейдър не е адаптивен.