Data types with

Open 05-Data-Types.Rmd

What types of data are in this data set?

		time_hour [‡]	name	air_time [‡]	distance	day [‡]	delayed
	1	2013-01-01 05:00:00	United Air Lines Inc.	13620s (~3.78 hours)	1400	Tuesday	TRUE
	2	2013-01-01 05:00:00	United Air Lines Inc.	13620s (~3.78 hours)	1416	Tuesday	TRUE
	3	2013-01-01 05:00:00	American Airlines Inc.	9600s (~2.67 hours)	1089	Tuesday	TRUE
	4	2013-01-01 05:00:00	JetBlue Airways	10980s (~3.05 hours)	1576	Tuesday	FALSE
	5	2013-01-01 06:00:00	Delta Air Lines Inc.	6960s (~1.93 hours)	762	Tuesday	FALSE
	6	2013-01-01 05:00:00	United Air Lines Inc.	9000s (~2.5 hours)	719	Tuesday	TRUE
	7	2013-01-01 06:00:00	JetBlue Airways	9480s (~2.63 hours)	1065	Tuesday	TRUE
	8	2013-01-01 06:00:00	ExpressJet Airlines Inc.	3180s (~53 minutes)	229	Tuesday	FALSE
	9	2013-01-01 06:00:00	JetBlue Airways	8400s (~2.33 hours)	944	Tuesday	FALSE
	10	2013-01-01 06:00:00	American Airlines Inc.	8280s (~2.3 hours)	733	Tuesday	TRUE
by RSt	11	2013-01-01 06:00:00	JetBlue Airways	8940s (~2.48 hours)	1028	Tuesday	FALSE

(Applied) Data Science

(Applied) Data Science

Logicals

Most useful skills

1. Math with logicals

Math

When you do math with logicals, **TRUE becomes 1** and **FALSE becomes 0**.

Math

When you do math with logicals, **TRUE becomes 1** and **FALSE becomes 0**.

• The sum of a logical vector is the count of TRUEs

```
sum(c(TRUE, FALSE, TRUE, TRUE))
## 3
```


Math

When you do math with logicals, **TRUE becomes 1** and **FALSE becomes 0**.

• The sum of a logical vector is the count of TRUEs

```
sum(c(TRUE, FALSE, TRUE, TRUE))
## 3
```

• The mean of a logical vector is the proportion of TRUEs

```
mean(c(1, 2, 3, 4) < 4)
## 0.75
```


Warm Up

Did you fly here?
Did your flight arrive late?

Your Turn 1

Create a logical variable in flights that displays whether a flight was delayed (arr_delay > 0). Remove all NAs in the variable.

Then create a summary table that shows:

- 1. How many flights were delayed
- 2. What proportion of flights were delayed


```
flights %>%
 mutate(delayed = arr_delay > 0) %>%
 drop_na(delayed) %>%
  summarise(total = sum(delayed), prop = mean(delayed))
## # A tibble: 1 × 2
##
  total
               prop
## <int> <dbl>
## 1 133004 0.4063101
```


Strings

Warm Up

Decide in your group:

Are boys names or girls names more likely to end in a vowel?

(character) strings

Anything surrounded by quotes(") or single quotes(').

```
> "one"
> "one's"
> '"Hello World"'
  "foo
+ oops. I'm stuck in a string."
```


Most useful skills

- 1. How to extract/ replace substrings
- 2. How to find matches for patterns
- 3. Regular expressions

stringr

Simple, consistent functions for working with strings.

```
# install.packages("tidyverse")
library(stringr)
```


install.packages("tidyverse")

does the equivalent of

```
install.packages("ggplot2")
install.packages("dplyr")
install.packages("tidyr")
install.packages("readr")
install.packages("purrr")
install.packages("tibble")
install.packages("hms")
install.packages("stringr")
install.packages("lubridate")
install.packages("forcats")
install.packages("DBI")
install.packages("haven")
install.packages("httr")
install.packages("jsonlite")
install.packages("readxl")
install.packages("rvest")
install.packages("xml2")
install.packages("modelr")
install.packages("broom")
```

library("tidyverse")

does the equivalent of

```
library("ggplot2")
library("dplyr")
library("tidyr")
library("readr")
library("purrr")
library("tibble")
```

install.packages("tidyverse")

does the equivalent of

```
install.packages("ggplot2")
install.packages("dplyr")
install.packages("tidyr")
install.packages("readr")
install.packages("purrr")
install.packages("tibble")
install.packages("hms")
install.packages("stringr")
install.packages("lubridate")
install.packages("forcats")
install.packages("DBI")
install.packages("haven")
install.packages("httr")
install.packages("jsonlite")
install.packages("readxl")
install.packages("rvest")
install.packages("xml2")
install.packages("modelr")
install.packages("broom")
```

library("tidyverse")

does the equivalent of

```
library("ggplot2")
library("dplyr")
library("tidyr")
library("readr")
library("purrr")
library("tibble")
```

babynames

year <dbl></dbl>	sex <chr></chr>	name <chr></chr>	n <int></int>	prop <dbl></dbl>
1880	F	Mary	7065	7.238433e-02
1880	F	Anna	2604	2.667923e-02
1880	F	Emma	2003	2.052170e-02
1880	F	Elizabeth	1939	1.986599e-02
1880	F	Minnie	1746	1.788861e-02
1880	F	Margaret	1578	1.616737e-02
1880	F	Ida	1472	1.508135e-02
1880	F	Alice	1414	1.448711e-02
1880	F	Bertha	1320	1.352404e-02
1880	F	Sarah	1288	1.319618e-02
-10 of 1,8	58,689 rd	ws Previous	1 2 3 4	5 6 100 Next

str_sub()

Extract or replace portions of a string with str_sub()

```
str_sub(string, start = 1L, end = -1L)
```

string(s) to manipulate

position of first character to extract within each string

position of last character to extract within each string


```
What will this return?

str_sub("Garrett", 1, 2)
```

```
What will this return?

str_sub("Garrett", 1, 2)
```

"Ga"

```
What will this return?

str_sub("Garrett", 1, 1)
```

```
What will this return?

str_sub("Garrett", 1, 1)
```

"G"

What will this return?

str_sub("Garrett", 2)

What will this return?

str_sub("Garrett", 2)

"arrett"

```
What will this return?

str_sub("Garrett", -3)
```

```
What will this return?

str_sub("Garrett", -3)
```

"ett"

```
What will this return?

g <- "Garrett"

str_sub(g, -3) <- "eth"

g</pre>
```

```
What will this return?
g <- "Garrett"
str_sub(g, -3) <- "eth"
g

"Garreth"</pre>
```

Your Turn 2

In your group, fill in the blanks to:

- 1. Isolate the last letter of every name
- 2. and create a logical variable that displays whether the last letter is one of "a", "e", "i", "o", "u", or "y".
- 3. Use a weighted mean to calculate the proportion of children whose name ends in a vowel (by year and sex)
- 4. and then display the results as a line plot.


```
babynames %>%
 mutate(last = str_sub(name, -1),
   vowel = last %in% c("a", "e", "i", "o", "u", "y")) %>%
 group_by(year, sex) %>%
  summarise(p_vowel = weighted.mean(vowel, n)) %>%
  ggplot(aes(year, p_vowel, color = sex)) +
   geom_line()
```


Proportion of names that end in a vowel

help(package = stringr)

Simple, Consistent Wrappers for Common String Operations

Documentation for package 'stringr' version 1.2.0

- DESCRIPTION file.
- User guides, package vignettes and other documentation.

Help Pages

boundary Control matching behaviour with modifier functions.

<u>case</u> Convert case of a string.

collControl matching behaviour with modifier functions.fixedControl matching behaviour with modifier functions.

<u>fruit</u> Sample character vectors for practicing string manipulations.

<u>invert_match</u>
<u>modifiers</u>

Switch location of matches to location of non-matches.

Control matching behaviour with modifier functions.

Control matching behaviour with modifier functions.

Factors

Warm Up

Decide in your group:

Do married people watch more or less TV than single people?

gss_cat

```
library(forcats)
gss_cat
```

A sample of data from the General Social Survey, a long-running US survey conducted by NORC at the University of Chicago.

year marital <int>int>age race <int>cint>rincome <int>cint>partyid <fctr>cfctr>cfctr>partyid <fctr>lnd,near rep</fctr></fctr></int></int></int>	
2000 Never married 26 White \$8000 to 9999 Ind.near rep	
2000 Divorced 48 White \$8000 to 9999 Not str republican	
2000 Widowed 67 White Not applicable Independent	
2000 Never married 39 White Not applicable Ind, near rep	
2000 Divorced 25 White Not applicable Not str democrat	
2000 Married 25 White \$20000 - 24999 Strong democrat	
2000 Never married 36 White \$25000 or more Not str republican	
2000 Divorced 44 White \$7000 to 7999 Ind,near dem	
2000 Married 44 White \$25000 or more Not str democrat	

factors

R's representation of categorical data. Consists of:

- 1. A set of values
- 2. An ordered set of valid levels

factors

Stored as an integer vector with a levels attribute

```
unclass(eyes)
## 1 2 2
## attr(,"levels")
## "blue" "brown" "green"
```


Most useful skills

- 1. Reorder the levels
- 2. Recode the levels
- 3. Collapse levels

Which religions watch the most TV?

```
gss_cat %>%
  drop_na(tvhours) %>%
  group_by(relig) %>%
  summarise(tvhours = mean(tvhours)) %>%
  ggplot(aes(tvhours, relig)) +
    geom_point()
```


levels()

Use levels() to access a factor's levels

```
levels(gss_cat$relig)
## [1] "No answer"
                                   "Don't know"
## [3] "Inter-nondenominational" "Native american"
                                  "Orthodox-christian"
## [5] "Christian"
## [7] "Moslem/islam"
                                  "Other eastern"
                                  "Buddhism"
## [9] "Hinduism"
## [11] "Other"
                                   "None"
## [13] "Jewish"
                                   "Catholic"
## [15] "Protestant"
                                   "Not applicable"
```


Reordering

forcats

Simple functions for working with factors.

```
# install.packages("tidyverse")
library(forcats)
```


fct_reorder()

Reorders the levels of a factor based on the result of fun(x) applied to each group of cases (grouped by level).


```
gss_cat %>%
 drop_na(tvhours) %>%
 group_by(relig) %>%
  summarise(tvhours = mean(tvhours)) %>%
  ggplot(aes(tvhours, fct_reorder(relig, tvhours))) +
    geom_point()
```


Your Turn 3

Repeat the previous exercise, some of whose code is in your notebook, to make a sensible graph of average TV consumption by marital status.


```
gss_cat %>%
  drop_na(tvhours) %>%
  group_by(marital) %>%
  summarise(tvhours = mean(tvhours)) %>%
  ggplot(aes(tvhours, fct_reorder(marital, tvhours))) +
    geom_point()
```


fct_infreq

gss_cat %>%

ggplot(aes(fct_infreq(marital))) + geom_bar()

fct_rev


```
gss_cat %>%

ggplot(aes(fct_rev(fct_infreq(marital)))) + geom_bar()
```

Changing level values

Your Turn 4

Do you think liberals or conservatives watch more TV?

Compute average tv hours by party ID an then plot the results.


```
gss_cat %>%
  drop_na(tvhours) %>%
   group_by(partyid) %>%
   summarise(tvhours = mean(tvhours)) %>%
   ggplot(aes(tvhours, partyid)) +
     geom_point()
```


fct_recode()

Changes values of levels


```
gss_cat %>%
  drop_na(tvhours) %>%
   mutate(partyid = fct_recode(partyid,
   "Republican, strong" = "Strong republican",
   "Republican, weak" = "Not str republican",
   "Independent, near rep" = "Ind, near rep",
   "Independent, near dem" = "Ind, near dem",
   "Democrat, weak"
                           = "Not str democrat",
                           = "Strong democrat")) %>%
   "Democrat, strong"
  group_by(partyid) %>%
   summarise(tvhours = mean(tvhours)) %>%
   ggplot(aes(tvhours, partyid)) +
    geom_point()
```


Collapsing levels

fct_collapse()

Changes multiple levels into single levels

```
fct_collapse(f, ...)
```

factor with levels

character vector (levels in the vector will be collapsed to the name of the argument)


```
gss_cat %>%
   drop_na(tvhours) %>%
    mutate(partyid = fct_collapse(partyid,
      conservative = c("Strong republican",
                       "Not str republican",
                       "Ind, near rep"),
      liberal = c("Strong democrat",
                  "Not str democrat",
                  "Ind, near dem"))) %>%
   group_by(partyid) %>%
   summarise(tvhours = mean(tvhours)) %>%
   ggplot(aes(tvhours, partyid)) +
     geom_point()
```


fct_lump()

Collapses levels with fewest values into a single level. By default collapses as many levels as possible such that the new level is still the smallest.

```
fct_lump(f, other_level = "Other", ...)

factor with
levels
name of new level
```



```
gss_cat %>%
 drop_na(tvhours) %>%
 mutate(partyid = partyid %>%
    fct_lump() %>%
    fct_collapse(
      conservative = c("Strong republican",
                       "Not str republican", "Ind, near rep"),
      liberal = c("Strong democrat", "Not str democrat",
                  "Ind, near dem")) %>%
    fct_reorder(tvhours, mean)
  ) %>%
  group_by(partyid) %>%
  summarise(tvhours = mean(tvhours)) %>%
  ggplot(aes(tvhours, partyid)) +
    geom_point()
```


Date times

Does every year have 365 days?

Does every day have 24 hours?

Does every minute have 60 seconds?

What does a month measure?

Most useful skills

- 1. Parse a string into a date time class
- 2. Access and change parts of a date
- 3. Deal with time zones
- 4. Do math with instants and time spans

Warm Up

Decide in your group:

- What is the best time of day to fly?
- What is the best day of the week to fly?

Parsing dates and times

hms

A class for representing just clock times.

```
# install.packages("tidyverse")
library(hms)
```


hms

2017-01-01 12:34:56

Stored as the number of seconds since 00:00:00.*

```
library(hms)
hms(seconds = 56, min = 34, hour = 12)
## 12:34:56
unclass(hms(56, 34, 12))
## 45296
```


hms()

2017-01-01 12:34:56

```
library(hms)
hms(seconds, minutes, hours, days)
```


* on a typical day

Your Turn 5

What is the best time of day to fly?

Use the **hour** and **minute** variables in flights to compute the time of day for each flight as an hms. Then use a smooth line to plot the relationship between time of day and **arr_delay**.


```
flights %>%
  mutate(time = hms(hour = hour, minute = minute)) %>%
  ggplot(aes(time, arr_delay)) + geom_smooth()
```


lubridate

Functions for working with dates and time spans

```
# install.packages("tidyverse")
library(lubridate)
```


ymd() family

To parse strings as dates, use a y, m, d, h, m, s combo

```
ymd("2017/01/11")
mdy("January 11, 2017")
ymd_hms("2017-01-11 01:30:55")
```


Parsing functions

function	parses to		
ymd_hms(), ymd_hm(), ymd_h()			
ydm_hms(), ydm_hm(), ydm_h()	POSIXct		
dmy_hms(), dmy_hm(), dmy_h()	ΡΟΞΙΛΟΙ		
mdy_hms(), mdy_hm(), mdy_h()			

ymd(), ydm(), mdy() myd(), dmy(), dym(), yq()

Date (POSIXct if tz specified)

hms(), hm(), ms()

Period

Accessing and changing components

Accessing components

Extract components by name with a singular name

```
date <- ymd("2017-01-11")
year(date)
## 2017</pre>
```


Setting components

Use the same function to set components

```
date
## "2017-01-11"
year(date) <- 1999
date
## "1999-01-11"</pre>
```


Accessing date time components

function	extracts	extra arguments
year()	year	
month()	month	label = FALSE, abbr = TRUE
week()	week	
day()	day of month	
wday()	day of week	label = FALSE, abbr = TRUE
qday()	day of quarter	
yday()	day of year	
hour()	hour	
minute()	minute	
second()	second	

Accessing components

```
wday(ymd("2017-01-11"))
## 2017
wday(ymd("2017-01-11"), label = TRUE)
## [1] Wed
## 7 Levels: Sun < Mon < Tues < Wed < Thurs < ... < Sat
wday(ymd("2017-01-11"), label = TRUE, abbr = FALSE)
## [1] Sunday
## 7 Levels: Sunday < Monday < Tuesday < ... < Saturday
```


Your Turn 6

Fill in the blanks to:

Extract the day of the week of each flight (as a full name) from time_hour.

Calculate the average dep_delay by day of the week.

Plot the results as a column chart (bar chart) with geom_col().


```
flights %>%
  mutate(weekday = wday(time_hour, label = TRUE, abbr = FALSE)) %>%
  group_by(weekday) %>%
  drop_na(dep_delay) %>%
  summarise(avg_delay = mean(dep_delay)) %>%
  ggplot() +
  geom_col(mapping = aes(x = weekday, y = avg_delay))
```


Parsing functions

function	parses to		
ymd_hms(), ymd_hm(), ymd_h()			
ydm_hms(), ydm_hm(), ydm_h()	POSIXct		
dmy_hms(), dmy_hm(), dmy_h()	ΡΟΞΙΛΟΙ		
mdy_hms(), mdy_hm(), mdy_h()			

ymd(), ydm(), mdy() myd(), dmy(), dym(), yq()

Date (POSIXct if tz specified)

hms(), hm(), ms()

Period

Parsing functions

			_ •)	
fu	n				n
IU		L	L	V	

parses to

ymd_hms(), ymd_hm(), ymd_h()

ydm_hms(), ydm_hm(), ydm_h()

dmy_hms(), dmy_hm(), dmy_h()

mdy_hms(), mdy_hm(), mdy_h()

POSIXct

Same name as hms() in hms

ymd(), ydm(), mdy()

myd(), dmy(), dym(), yq()

Date (POSIXct if tz specified)

hms(), hm(), ms()

Period

package name

function name

* on a typical day

hms::hms()

lubridate::hms()

hms()

```
hms::hms(seconds = 3, hours = 5)
```

Use the hms() function in the hms package

* on a typical day

Data types with

