CS4670: Computer Vision

Noah Snavely

Lecture 2: Edge detection

From Sandlot Science

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

• Edges are caused by a variety of factors

Images as functions...

 Edges look like steep cliffs

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

$$\frac{\partial f}{\partial x}$$
:

$$\frac{\partial f}{\partial y}$$
:

Source: S. Seitz

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

• how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient

Source: L. Lazebnik

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us one operation:

Source: S. Seitz

2D edge detection filters

Gaussian $h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$

derivative of Gaussian (x) $\frac{\partial}{\partial x}h_{\sigma}(u,v)$

The Sobel operator

• Common approximation of derivative of Gaussian

$$\begin{array}{c|ccccc}
1 & 2 & 1 \\
\hline
8 & 0 & 0 & 0 \\
-1 & -2 & -1
\end{array}$$

$$Sy$$

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude

• original image (Lena)

gradient magnitude

	Questions?	