

Introduction to Microbiome Analyses in R

Alexander B. Chase Postdoctoral Fellow Paul Jensen Lab October 23, 2019

Biological Question

Design Experiment

Conduct Study

Collect Samples
Store Samples
Extract DNA, PCR, Sequencing

Microbial Community Analysis

16S rRNA marker gene Metagenomics

Statistical Analysis and Data Interpretation

Design Experiment

Conduct Study

Collect Samples
Store Samples
Extract DNA, PCR, Sequencing

Microbial Community Analysis

16S rRNA marker gene Metagenomics

Statistical Analysis and Data Interpretation

Microbial Community Analysis

16S rRNA marker gene Metagenomics

Which genes should you sequence? How much data do you need?

Microbial Community Analysis

16S rRNA marker gene Metagenomics

Fierer et al. PNAS. 2012

Microbial Community Analysis

16S rRNA marker gene Metagenomics

OTU1 OTU2 OTU3 16S Full Length - Aligned 99% similarity OTU1 OTU2 OTU3 OTU4 16S v4-v5 Region 100% similarity

Chase et al. Environ. Microb. 2018

DATA

Fastq files (*.fastq, *.fq, *.fq.gz, *.txt.gz)

Example:

mR049-L1-READ1-Sequences.txt.gz mR049-L1-READ2-Sequences.txt.gz

Amplicon (16S rRNA)

Metagenomics

DATA

Amplicon (16S rRNA)

Fastq files (*.fastq, *.fq, *.fq.gz, *.txt.gz)

Example:

mR049-L1-READ1-Sequences.txt.gz mR049-L1-READ2-Sequences.txt.gz

DATA

Fastq files (*.fastq, *.fq, *.fq.gz, *.txt.gz)

Example:

mR049-L1-READ1-Sequences.txt.gz

mR049-L1-READ2-Sequences.txt.gz

Data Processing

QIIME2 - Knight Lab UCSD DADA2 - R-based pipeline Mothur BBMap (metagenomes) Anvi'o (metagenomes)

- 1. Demultiplex
- 2. Denoise (QC filtering, trimming)

- 1. MAGs
 - 1. Assembly (MEGAHIT, metaSPAdes)
 - 2. Read mapping (bowtie, bwa)
 - 3. Binning (MetaBAT, CONCOCT)
 - 4. Bin Curation
- 2. Read-based Analysis
 - 1. Community Analysis (MIDAS)
 - 2. Functional genes (MetaQUBIC)

1. Clustering (OTU or ESV or ASV)

2. Feature Table

3. Community Analysis

- 1. MAGs
 - 1. Assembly (MEGAHIT, metaSPAdes)
 - 2. Read mapping (bowtie, bwa)
 - 3. Binning (MetaBAT, CONCOCT)
 - 4. Bin Curation
- 2. Read-based Analysis
 - 1. Community Analysis
 - 2. Functional genes

MAGs can be problematic and messy in complex communities (e.g., soil/sediments)

Chase et al. mBio. 2017

1. MAGs

- 1. Assembly (MEGAHIT, metaSPAdes)
- 2. Read mapping (bowtie, bwa)
- 3. Binning (MetaBAT, CONCOCT)
- 4. Bin Curation
- 2. Read-based Analysis
 - 1. Community Analysis
 - 2. Functional genes

Ecotype IVC

MAGs can be problematic and messy in complex communities (e.g., soil/sediments)

Ecotype VA Ecotype IVA Clade III Clade II Ecotype IA Tree scale: 0.1 Bootstrap >90% Ecotype IBC

Ecotype IVB

Chase et al. mBio. 2017

- 1. MAGs
 - 1. Assembly (MEGAHIT, metaSPAdes)
 - 2. Read mapping (bowtie, bwa)
 - 3. Binning (MetaBAT, CONCOCT)
 - 4. Bin Curation
- 2. Read-based Analysis
 - 1. Community Analysis
 - 2. Functional genes

MAGs can be problematic and messy in complex communities (e.g., soil/sediments)

Low representation in genomic databases

Nayfach et al. Genome Research. 2016

(% of cellular organism abundance)

https://benjjneb.github.io/dada2/tutorial.html

- 1. Demultiplex
- 2. Denoise (QC filtering, trimming)

- 1. Clustering (OTU or ESV or ASV)
- 2. Feature Table
- 3. Community Analysis

https://docs.qiime2.org/2019.7/tutorials/

https://docs.qiime2.org/2019.7/tutorials/

"dada2 to denoise my pair-ended reads in qiime2-2019.7 and R (dada2 version, 1.12.1), and got 3533 and 2535 features in the raw ASV table, respectively"

- 1. Demultiplex
- 2. Denoise (QC filtering, trimming)

- 1. Clustering (OTU or ESV or ASV)
- 2. Feature Table
- 3. Community Analysis

https://benjjneb.github.io/dada2/tutorial.html

https://docs.qiime2.org/2019.7/tutorials/

"dada2 to denoise my pair-ended reads in qiime2-2019.7 and R (dada2 version, 1.12.1), and got 3533 and 2535 features in the raw ASV table, respectively"

- 1. Demultiplex
- 2. Denoise (QC filtering, trimming)

- 1. Clustering (OTU or ESV or ASV)
- 2. Feature Table
- 3. Community Analysis

```
qiime demux emp-paired \
  --m-barcodes-file sample-metadata.tsv \
 --m-barcodes-column barcode-sequence \
  --p-rev-comp-mapping-barcodes \
  --i-seqs emp-paired-end-sequences.qza \
  --o-per-sample-sequences demux.qza \
  --o-error-correction-details demux-details.gza
qiime demux summarize \
 --i-data demux.qza \
 --o-visualization demux.qzv
qiime dada2 denoise-paired \
 --i-demultiplexed-seqs demux.qza \
  --p-trim-left-f 13 \
  --p-trim-left-r 13 \
  --p-trunc-len-f 150 \
  --p-trunc-len-r 150 \
  --o-table table.qza \
  --o-representative-sequences rep-seqs.qza \
  --o-denoising-stats denoising-stats.qza
```


OTU Feature Table

OTU = Operational Taxonomic Unit

Traditionally defined at 97% sequence similarity
Recently defined using exact sequence variants (ESV) or 100% OTUs

"one limitation of the 16S rRNA gene is that it is rather conserved and hence is **NOT** reliable for taxonomic identifiers at the <u>species level</u>" -J. Cole et al. 2010.

Niche Axis

OTU Feature Table

OTU = Operational Taxonomic Unit

Traditionally defined at 97% sequence similarity
Recently defined using exact sequence variants (ESV) or 100% OTUs

OTU Feature Table

OTU = Operational Taxonomic Unit

Traditionally defined at 97% sequence similarity
Recently defined using exact sequence variants (ESV) or 100% OTUs

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	 Sample N
OTU 1	1	2	0	1	0	1
OTU 2	0	2	0	0	0	0
OTU 3	0	2	1	0	0	0
OTU 4	1	0	1	1	1	1
OTU 5	6	0	0	9	2	2
OTU i	0	0	8	5	0	5

Goal - reduce tons and tons of sequence data to OTU table

Fastq files (*.fastq, *.fq, *.fq.gz, *.txt.gz)

Example:

mR049-L1-READ1-Sequences.txt.gz mR049-L1-READ2-Sequences.txt.gz

OTU Feature Table

Now what?

PERSPECTIVE published: 23 October 2019 doi: 10.3389/fmich 2019.02407

2000 True taxonomic richnesses 1500 Environment A Environment B 0 2500 5000 7500 10000 1250 No. reads

Rarefaction, Alpha Diversity, and Statistics

Amy D. Willis*

Department of Biostatistics, University of Washington, Seattle, WA, United States

Goal - reduce tons and tons of sequence data to OTU table

Fastq files (*.fastq, *.fq, *.fq.gz, *.txt.gz)

Example:

mR049-L1-READ1-Sequences.txt.gz mR049-L1-READ2-Sequences.txt.gz

OTU Feature Table

Now what?

R - programming language for statistical computation

Benefits:

- 1. Robust tons of user developed packages for data analysis
- 2. Reproducible anyone with data and code can generate same results
- 3. Free and open-source friendly and helpful user community
- 4. Publication quality figures are easy to generate

R - programming language for statistical computation

R

Benefits:

- 1. Robust tons of user developed packages for data analysis
- 2. Reproducible anyone with data and code can generate same results
- 3. Free and open-source friendly and helpful user community
- 4. Publication quality figures are easy to generate

R - programming language for statistical computation

R

Benefits:

- 1. Robust tons of user developed packages for data analysis
- 2. Reproducible anyone with data and code can generate same results
- 3. Free and open-source friendly and helpful user community
- 4. Publication quality figures are easy to generate

