Electromagnetismo Intermedio – Clase 2

Profesor: Víctor Cárdenas

Hoja de T	rabajo en	Parejas
-----------	-----------	---------

Nombre	(\mathbf{s})	!
,	(- , .	

Parte A – Análisis Visual de Campos

- 1. Observa los siguientes campos vectoriales utilizando el simulador online Falstad Vector Field o el notebook entregado:
 - $\bullet \ \vec{F}_1 = x\hat{i} + y\hat{j}$
 - $\bullet \ \vec{F}_2 = -y\hat{i} + x\hat{j}$
 - $\bullet \ \vec{F}_3 = x\hat{j} y\hat{i}$

Para cada uno, responde:

- ¿Hay líneas que nacen o mueren? ¿Dónde?
- ¿Hay rotación observable? ¿En qué sentido?
- ¿Qué esperas del valor de la divergencia o el rizo?

Parte B – Aplicaciones de Teoremas

- 2. Calcula el flujo del campo $\vec{F}_1 = x\hat{i} + y\hat{j}$ a través de una superficie circular de radio 1 centrada en el origen en el plano XY.
- 3. Calcula la circulación del campo $\vec{F}_2 = -y\hat{i} + x\hat{j}$ alrededor de una curva circular cerrada (radio 1, centro en el origen).
- 4. Compara tus resultados con lo que esperas de los teoremas de Gauss y Stokes. ¿Son consistentes? ¿Qué interpretación física tienen?

Parte C – Evaluación Cualitativa

- 5. A partir de la forma del campo $\vec{F}(x,y,z) = z\hat{i} + x\hat{j} + y\hat{k}$, responde sin calcular:
 - ¿Tiene divergencia? ¿Dónde?
 - ¿Tiene rotor? ¿En qué dirección?

Electromagnetismo Intermedio – Clase 3

Profesor: Víctor Cárdenas

Hoja de Trabajo Grupal: Derivación del Laplaciano de $\frac{1}{r}$

Nombre(s): _____

Objetivo

Guiar la derivación de la identidad:

$$\nabla^2 \left(\frac{1}{r} \right) = -4\pi \delta^3(\vec{r})$$

utilizando coordenadas esféricas y argumentos de simetría.

Instrucciones

Trabajen en grupos. Completen cada paso de la derivación usando sus apuntes, el texto de Griffiths, y sus conocimientos de cálculo vectorial.

Parte A – Laplaciano en Coordenadas Esféricas

1. Escriban la expresión general del laplaciano de una función escalar f(r) con simetría esférica:

$$\nabla^2 f(r) = \underline{\hspace{1cm}}$$

2. Apliquen la expresión al caso $f(r) = \frac{1}{r}$, con $r \neq 0$. ¿Qué resultado obtienen?

$$\nabla^2 \left(\frac{1}{r} \right) = \underline{\hspace{1cm}}$$

Parte B – Comportamiento en r = 0

3. Consideren una esfera de radio ϵ centrada en el origen. Calculen el flujo del campo $\vec{E} = -\nabla \left(\frac{1}{r}\right)$ a través de la superficie:

$$\oint_S \vec{E} \cdot d\vec{A} = \underline{\hspace{1cm}}$$

4. Usen el teorema de Gauss para relacionar el flujo con la integral del laplaciano en el volumen encerrado. ¿Qué implica esto para $\nabla^2 \left(\frac{1}{r}\right)$ en r=0?

Parte C – Conclusión

5. Justifiquen por qué la única forma consistente de extender $\nabla^2\left(\frac{1}{r}\right)$ al origen es mediante una función delta tridimensional. Completen:

$$\nabla^2 \left(\frac{1}{r} \right) = \underline{\hspace{1cm}}$$

6. ¿Cómo se conecta esta identidad con la ecuación de Poisson y la ley de Coulomb para una carga puntual?