Digital Image Processing

Lecture 2

The basic concepts of Digital Image Processing

Lecturer: Associate Prof. Lý Quốc Ngọc

2. The basic concepts of Digital Image Processing

- 2.1. Digital Image Formation
- 2.2. Color Model and Image function
- 2.3. Spatial Relationships between image pixels
- 2.4. Basic features of digital images

Figure 2.5. The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

- 2.2.1. Image Function
- 2.2.2. Color model RGB
- 2.2.3. Color Model HSV

2.2.1. Image Function

Continuous Image function

- The image function value corresponds to the brightness in the pixels.
- The image on the retina or TV camera sensor is a two-dimensional image. Calling a twodimensional image that carries the brightness information is the intensity image.
- The intensity image is the result of a perspective projection of 3D realistic scenes.

2.2.1. Image Function

2.2.1. Image function

Digital Image Function

- Single spectral image function f is the defined mapping:

$$f:[0..M-1]\times[0..N-1]\to[0..L-1]$$

M, N are the number of pixels in the horizontal and vertical directions of the image.

L is the number of gray levels in the image.

2.2.1. Image function

- Digital Image Function
- Multi spectral image function f_{MUL} is the defined mapping:

$$f_{MUL}(x, y) = \{f_1(x, y), f_2(x, y), ..., f_n(x, y)\}$$

 $f_i(x, y)$ is single spectral image function

2.2.1. Image function

2.2.1. Image Function

Figure 2.8. Semantic gap

2.2.2. RGB Color Model

The color values at the pixel are composed of a

triple of value (R,G,B),

R,G,B \in [0..255].

Figure 2.9. RGB Color model

2.2.3. HSV Color Model (Hue, Saturation, Value)

The color values at the pixel are composed of a triple of

value(H,S,V).

H ϵ [0..360),

S,V € [0..1].

2.2.3. HSV Color Model (Hue, Saturation, Value)

 $RGB \rightarrow HSV$

$$\begin{bmatrix} V \\ V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \sqrt{3}/3 & \sqrt{3}/3 & \sqrt{3}/3 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} \quad H = \tan^{-1}(V_2/V_1)$$

$$S = \sqrt{V_1^2 + V_2^2}$$

$$H = \tan^{-1}(V_2/V_1)$$
$$S = \sqrt{V_1^2 + V_2^2}$$

 $HSV \rightarrow RGB$

$$V_1 = S \cos H$$

$$V_2 = S \sin H$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} \sqrt{3}/3 & 0 & 2/\sqrt{6} \\ \sqrt{3}/3 & 1/\sqrt{2} & -1/\sqrt{6} \\ \sqrt{3}/3 & -1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} \vee \\ V_1 \\ V_2 \end{bmatrix}$$

Figure 2.11. HSV Color model and rainbow color

Figure 2.12. HSV Color model and Color Quantization

Figure 2.13. HSV Color model and Variations of Hue and Saturation at specified Value.

Figure 2.14. HSV Color model and Variations of Hue and Saturation at some Value.

2.3. Spatial Relationships between image pixels

- 2.3.1. Neighbourhood of image pixels
- 2.3.2. Distance between image pixels

2.3. Spatial Relationships between image pixels

2.3.1. Neighbourhood of image pixels

Figure 2.15. Neighbourhood of image pixels.

2.3. Spatial Relationships between image pixels

2.3.2. Distance between image pixels

$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^r\right)^{1/r},$$

 p_i,q_i là tọa độ thứ i của điểm p,q

$$0 < r < \infty$$

Figure 2.16. Minkowski distance and visualization on unit sphere

2.4. Basic features of digital images

- 2.4.1. Color features
- 2.4.2. Texture features
- 2.4.3. Shape features

2.4. Basic features of digital images

Color cues Texture cue Shape cue

Figure 2.17. Basic features of digital images: Color, Texture and shape

Color histogram

Color space HSV is quantified as follows:

$$H = 12, S = 3, V = 3$$

The number of color is 108.

$$h(i) = \frac{N(i)}{N}, i = 0..107$$

 $h(i):i^{th}$ component of color histogram

N(i): number of pixels in color i

N: total number of pixels of image

Color Histogram

The color histogram h^{color} of an image I^C is a vector defined as follows:

$$h^{\text{color}} = (h^{\text{color}}[0], \dots, h^{\text{color}}[M-1]),$$

where each component is computed as

$$h^{\text{color}}[m] = \frac{1}{I_x I_y} \sum_{x=0}^{I_x - 1} \sum_{y=0}^{I_y - 1} \begin{cases} 1 & \text{if } Q^{color}(\mathbf{I}^{\mathbf{C}}(x, y)) = m \\ 0 & \text{otherwise,} \end{cases}$$

where m is the index of each one of the M possible colors in the quantized color palette. Each component $h^{\text{color}}[m]$, known as bin, represents the number of pixels in the quantized image valued to that color. Analogously, we denote the color histogram of a frame I_t^C as h_t^{color} .

Color Histogram

Figure 2.18. Color quantization based on HSV Color Model

Figure 2.19. Color-based features for (a) city and (b) landscape image; (c) and (d) show the color histogram features for (a) and (b)

Color Histogram

Fig.2.20. Image before color quantization

(in RGB color model)

Fig.2.21. Image after color quantization

(in HSV color model)

Fig. 2.22. Color histogram after color quantization

Edge Direction Histogram

EDH consisted of 73 elements:

72 *elements* are denoted by EDH(I,i) (i = 0,1,...71)

The last element includes the number of pixels are not on edge.

$$EDH(i) = \frac{m(i)}{n_E(I)}, i = 0,1,...71; EDH(72) = \frac{EDH(72)}{n(I)}$$

m(i): number of pixels of bin i,

bin i consisted of edge directions α_i in range:

$$i*5 \le \alpha_i < (i+1)*5)$$

 $n_E(I)$: number edges' pixels; n(I): number of image pixels

Edge Direction Histogram

Fig. 2.23. Edge Direction Histogram

Edge Direction Histogram

scape image; The distance, d(b, d), between these two histograms is 0.0147.

Edge Direction Histogram

Fig. 2.25. Color-based retrieval results; (a) query image; (b) top-10 retrieved images from 2,145 city and landscape images; (c) top-10 retrieved images from 760 city images; filtering out landscape images prior to querying improves the retrieval results.

ages from 2,145 city and landscape images; (c) top-10 retrieved images from 1,386 landscape images; filtering out city images prior to querying improves the retrieval results.