

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής
Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι

40 Εξάμηνο, Ακαδημαϊκό Έτος 2021-2022

3η Σειρά Ασκήσεων

Καθ. Παύλος-Πέτρος Σωτηριάδης

6 Μαΐου 2022

Μελέτη: Από το βιβλίο Μικροηλεκτρονικά Κυκλώματα του Sedra Smith, 7^{η} έκδοση το 6° κεφάλαιο (Τρανζίστορ BJT) τις υποενότητες 6.1, 6.2 και 6.3.

Διευκρινίσεις:

- Οι ασκήσεις είναι ατομικές και παραδίδονται **ηλεκτρονικά** στη σελίδα του μαθήματος στο helios, έως και την Κυριακή, **22 Μαϊου** 2022. Η μορφή του αρχείου να είναι μόνο **PDF.** Προτείνεται η συμπίεσή του.
- Κάθε επιστημονικά τεκμηριωμένη λύση θα θεωρηθεί ορθή.
- Σε όσες ασκήσεις ζητείται χρήση LT SPICE, να παρουσιάσετε και σχολιάσετε συνοπτικά τις κατάλληλες γραφικές παραστάσεις για τα αποτελέσματα των προσομοιώσεων.
- Σε όσες ασκήσεις δεν δίνονται τιμές στοιχείων βρείτε την απάντηση σε μορφή γενικού τύπου.
- Ορθή επίλυση όλων των σειρών ασκήσεων που θα δοθούν μέσα στο εξάμηνο προσδίδει βαθμολογική ενίσχυση ως και 1 μονάδα στον τελικό βαθμό. Η παράδοσή τους δεν είναι υπογρεωτική, αλλά συνίσταται για την κατάλληλη προετοιμασία.

Άσκηση 1^η LT SPICE

Σχήμα 1

Για τα κυκλώματα του παραπάνω σχήματος (a)-(e), υπολογίστε τις DC τιμές των τάσεων V1-V9, θεωρώντας $|V_{BE}|$ =0.7V και β=100. Στη συνέχεια, εκτελέστε DC operating point προσομοίωση στο LT SPICE, με βάση το μοντέλο 2N2222 για τα NPN BJT transistors και 2N2907 για τα PNP BJT transistors.

Άσκηση 2^η LT SPICE

Σχήμα 2

Για το κύκλωμα του σχήματος 2, θεωρώντας $|V_{BE}|$ =0.7V, ότι το τρανζίστορ βρίσκεται στην ορθή ενεργό περιοχή και λαμβάνοντας υπόψη το ρεύμα βάσης, να υπολογίσετε τις τάσεις στους ακροδέκτες του BJT transistor, σαν συνάρτηση της αντίστασης R_B . Στη συνέχεια, χρησιμοποιώντας το LT SPICE και παραμετρική προσομοίωση, να εξάγετε τις γραφικές παραστάσεις των τάσεων αυτών, σαν συνάρτηση της R_B . (Χρησιμοποιήστε τιμές $1 k\Omega$, $2 k\Omega$, $5 k\Omega$, $10 k\Omega$, $20 k\Omega$, $50 k\Omega$ και $100 k\Omega$).

Σχήμα 3

Για το κύκλωμα του παραπάνω σχήματος, θεωρήστε R_1 =2 $k\Omega$, R_2 =2 $k\Omega$, R_3 =2 $k\Omega$, R_4 =8 $k\Omega$, R_5 =500 Ω και R_6 =2 $k\Omega$. Υπολογίστε τις αναγραφόμενες DC τάσεις θεωρώντας ότι όλα τα τρανζίστορ βρίσκονται στην ορθή ενεργό περιοχή, $|V_{BE}|$ =0.7V και A) β άπειρο, B) β =100.

Λσκηση 4^η

Σχήμα 4

Για το κύκλωμα του παραπάνω σχήματος, υπολογίστε τις DC τάσεις σε όλους τους κόμβους θεωρώντας $|V_{BE}|$ =0.7V, V_{D} =0.7V και A) β άπειρο, B) β=100.

Υπόδειξη: Αφού βρείτε τις V_{B1} , V_{E1} , εκφράστε την τάση V_{C1} του συλλέκτη του Q_1 , μέσω του ρεύματος I_{C1} , ως V_{C1} = A_1 + B_1V_{C2} και την τάση V_{C2} , του συλλέκτη του Q_2 , μέσω του ρεύματος I_{C2} , ως V_{C2} = A_2 + B_2V_{C1} .

Άσκηση 5^η LT SPICE

Σχήμα 5

Στο παραπάνω κύκλωμα τα τρανζίστορς βρίσκονται στην ενεργό περιοχή. Θεωρούμε το μοντέλο μεγάλου σήματος με την δίοδο $X\Omega PI\Sigma$ το φαινόμενο Early. Χρησιμοποιώντας την εκθετική σχέση του ρεύματος συλλέκτη, I_C , του κάθε τρανσίστορ ως προς την τάση Βάσης-Εκπομπού του, V_{BE} και αγνοώντας το ρεύμα βάσης I_B , να απαντηθούν τα παρακάτω ερωτήματα.

- Α) Εκφράζοντας τα ρεύματα συλλέκτη των $Q_{1,2}$ συναρτήσει των u_1,u_2 και u_E υπολογίστε το λόγο $\frac{i_{C2}}{i_{C1}}$
- B) Με χρήση του λόγου i_{C2}/i_{C1} από το παραπάνω ερώτημα και με εξίσωση ρευμάτων Kirchhoff στον κοινό κόμβο των εκπομπών u_E να υπολογίσετε το ρεύμα i_{C2} (αγνοώντας το ρεύμα βάσης I_B).
- Γ) Χρησιμοποιώντας το i_{C2} και υπολογίζοντας το i_{C1} βρείτε την v_2 - v_1 συναρτήσει του u_1 - u_2 . Η συνάρτηση υπερβολικής εφαπτομένης εκφράζεται ως $\tanh(x) = (e^x e^{-x})/(e^x + e^{-x}).$

Δ) Υλοποιείστε το διαφορικό ενισχυτή στο LT SPICE, θεωρώντας u₂=0 και χρησιμοποιώντας το transistor 2N2222. Θεωρείστε ότι η u_1 μεταβάλλεται από -0.25 μέχρι 0.25 V. Θεωρήστε επίσης ότι V_{dd}=10 V και I=2mA. Χαράξτε τη χαρακτηριστική μεταφοράς της διαφορικής εξόδου ν2-ν1 ως προς την είσοδο σε κοινούς άξονες για τις ακόλουθες τιμές της αντίστασης R: 100Ω, 500Ω, 1kΩ, 2kΩ, 5kΩ, 10kΩ. Τι παρατηρείτε; Είναι αναμενόμενο από τη θεωρητική σας ανάλυση;

Ασκηση 6^η

Για το παρακάτω κύκλωμα θεωρείστε ότι όλα τα τρανζίστορ είναι ίδια και βρίσκονται στην ορθή ενεργό περιοχή λειτουργίας. Θεωρείστε δεδομένα τα $I_{\rm S}$ και V_T καθώς και ότι $\boldsymbol{\beta} = \infty$ και $V_A = \infty$.

Με χρήση αποκλειστικά της (προσεγγιστικής) εκθετικής σχέσης ανάμεσα στο ρεύμα συλλέκτη και την τάση βάσης-εκπομπού, απαντήστε τα παρακάτω ερωτήματα.

- Α) Να υπολογιστεί η τάση V_{BE1} συναρτήσει των V_T , I_S , I_1 και I_2 .
- Β) Να υπολογιστεί η τάση V_{BE2} συναρτήσει των V_T , I_S , I_1 και I_2 .
- Γ) Να υπολογιστεί η τάση V_1 συναρτήσει των V_T , I_S , I_1 και I_2 .
- Δ) Να υπολογιστεί η τάση $V_{\rm BE4}$ συναρτήσει των V_T , I_S , I_1 και I_2 .
- Ε) Να εκφραστεί (απλή σχέση) το ρεύμα I_0 συναρτήσει των I_1 και I_2 .