Distrify

Relatório Intercalar

Mestrado Integrado em Engenharia Informática e Computação

Programação em Lógica

Grupo Distrify_2:

André Rodrigues Barros – up201303567 Edgar Duarte Ramos – up201305973

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn, 4200-465 Porto, Portugal

11 de Setembro de 2015

Índice

1. O jogo Distrify	3
2. Representação do estado do jogo	4 a 6
3. Visualização do Tabuleiro	7 a 9
4. Jogadas	10

1 - O jogo Distrify

Distrify é um jogo de conexão jogado por dois jogadores, constituído por peças pretas e brancas, num tabuleiro de 9x9 até 19x19.

O jogador que controla as peças pretas joga primeiro, colocando uma peça preta em qualquer local do tabuleiro. As jogadas seguintes são alternadas entre os jogadores e cada jogada consiste na colocação de uma ou duas peças em qualquer espaço livre. No caso em que sejam jogadas duas peças:

- a) só podem ser jogadas na vertical ou horizontal
- b) não podem resultar na formação de um *triplet* ou *crosscut*.

Um *triplet* refere-se a três peças da mesma cor seguidas em qualquer direção.

Um *crosscut* refere-se a um bloco de 2x2 em que cantos opostos são controlados por jogadores diferentes

O jogador que controla as peças pretas ganha se, em qualquer momento do jogo, existir um caminho de peças pretas que se prolongue desde a linha superior até à inferior. As peças brancas ganham se houver um caminho que ligue a coluna mais à esquerda até à mais à direita.

2 - Representação do Estado de jogo

Representação do estado inicial do jogo:

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0],

Representação de um estado intermédio do jogo:

[[1,0,0,0,0,0,0,0,0],

[0,2,2,0,0,0,0,0,0],

[2,0,0,0,0,0,0,0,0],

[0,2,0,0,1,0,0,0,0],

[0,2,0,0,1,0,0,0,0],

[2,0,1,1,0,0,0,0,0],

[2,1,0,0,0,0,0,0,0],

[2,1,0,0,0,0,0,0,0],

[1,0,0,0,0,0,0,0,0]]

1 X 0 0 0 3 0 4 0 X X 7 0 X 8 0 X 9		a	ь	С	d	е	f	g	h	i
3 0 0 X X X X 7 0 X 8 0 X 9	1	X								
3 0	2		0	0						
5 0 X X 7 0 X 8 0 X	3	0								
6 0 X X X 7 0 X 8 0 X	4		0			Х				
0 X X X X X X X X X X X X X X X X X X X	5		0			Х				
8 0 X	6	0		Х	Х					
	7	0	Х							
9	8	0	Х							
	9	X								

Representação de um estado final do jogo:

[[1,0,0,2,2,1,0,0,0],

[0,2,2,0,0,1,0,0,0],

[2,0,0,0,0,1,0,0,0],

[0,2,0,0,1,0,0,0,0],

[0,2,0,0,1,0,0,0,0],

[2,0,1,1,0,0,0,0,0],

[2,1,0,0,0,0,0,0,0],

[2,1,0,0,0,0,0,0,0],

[1,0,0,0,0,0,0,0,0]]

	a 	Ь	С	d	e	f	g	h	i
1	Х	 	 	0	0	X	 	 	
2		0	0			Х			
3	0	 						 	
4		0			Х		 	 	
5		0			Х		 	 	
6	0		Х	Х					
7	0	Х					 	 	
8	0	Х							
9	X						 	 	

3 - Visualização do Tabuleiro

Para mostrar o tabuleiro de jogo, será utilizado, em princípio, o seguinte código:

starting_state([
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0]]).

Num estado inicial define o estado inicial do tabuleiro.

printColumnId:- write(' a b c d e f g h i \n').

printInitialSeperator:- write(' ------\n').

Posteriormente, preenchemos a linha de cabeçalho do tabuleiro com as letras que servirão de guia para a colocação das peças no mesmo, aquando do começo do jogo. Após essa linha imprimese uma linha continua para começar as divisórias do tabuleiro.

```
write_piece(0):-write('| ').
write_piece(1):-write('| X ').
write_piece(2):-write('| 0 ').
```

Três predicados onde se define o que apresentar no tabuleiro quando colocamos os diferentes números apresentados (0, 1 ou 2)

Esta secção do código apresentado, por sua vez, imprime uma linha do tabuleiro.

```
write_line([]):- write('|').
write_line([H|T]):-
write_piece(H),
write_line(T).
```

Usando os predicados apresentados anteriormente (write_line), o predicado show_lines imprime todas as linhas do tabuleiro, bem como as divisórias necessárias para que a apresentação do tabuleiro seja a mais correta.

show_board(Board):
nl, printColumnId, printInitialSeperator,

show_lines(1, Board), nl.

start:- starting_state(Board),
show_board(Board).

Secção do código encarregue de imprimir o tabuleiro completo. De notar que o predicado show_board usa o show_lines.

4 - Jogadas

Cabeçalho do predicado de colocação de uma peça:

One_piece(Row, Column, Board)

Cabeçalho do predicado de colocação de duas peças:

Two_pieces(Row, Column, Row, Column, Board)