1

EE3900-Assignment 4

W Vaishnavi AI20BTECH11025

Download all latex-tikz codes from

https://github.com/vaishnavi-w/EE3900/blob/main/ Assignment4/latex4.tex

and python codes from

https://github.com/vaishnavi-w/EE3900/blob/main/ Assignment4/codes/linesplot.tex

1 Linear Forms Q.2.32

If the co-ordinates of the points A,B,C and D be $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 4\\5\\7 \end{pmatrix}$, $\begin{pmatrix} -4\\3\\-6 \end{pmatrix}$, $\begin{pmatrix} 2\\9\\2 \end{pmatrix}$. Then find the angle between lines AB and CD

2 Solution

The direction vector for the line AB is

$$\mathbf{m_1} = \mathbf{B} - \mathbf{A} \tag{2.0.1}$$

$$\implies \mathbf{m_1} = \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \tag{2.0.2}$$

$$\implies \mathbf{m_1} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \tag{2.0.3}$$

The direction vector for the line CD is

$$\mathbf{m}_2 = \mathbf{D} - \mathbf{C} \tag{2.0.4}$$

$$\implies \mathbf{m_2} = \begin{pmatrix} 2\\9\\2 \end{pmatrix} - \begin{pmatrix} -4\\3\\-6 \end{pmatrix} \tag{2.0.5}$$

$$\implies \mathbf{m_2} = \begin{pmatrix} 6 \\ 6 \\ 8 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} = 2\mathbf{m_1} \tag{2.0.6}$$

The lines are scalar multiples of one another. Hence, they are parallel.

Angle between two lines is given as

$$\cos \theta = \frac{\mathbf{m_1}^{\mathsf{T}} \mathbf{m_2}}{\|\mathbf{m_1}\| \|\mathbf{m_2}\|}$$
 (2.0.7)

$$\mathbf{m_1}^{\mathsf{T}} \mathbf{m_2} = \begin{pmatrix} 3 & 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \\ 8 \end{pmatrix} \tag{2.0.8}$$

$$= 68$$
 (2.0.9)

$$\|\mathbf{m_1}\| = \sqrt{(3)^2 + (3)^2 + (4)^2} = \sqrt{34}$$
 (2.0.10)

$$\|\mathbf{m}_2\| = \sqrt{(6)^2 + (6)^2 + (8)^2} = 2\sqrt{34}$$
 (2.0.11)

$$\implies \cos \theta = \frac{68}{2\sqrt{34} \times \sqrt{34}} \tag{2.0.12}$$

$$\theta = \cos^{-1}(1) \tag{2.0.13}$$

$$=0^{\circ}$$
 (2.0.14)

Fig. 0: Plot of lines AB and CD