dropR: Analyze and Visualize Dropout

Annika Tave Overlander, Matthias Bannert & Ulf-Dietrich Reips

2024-07-09

What is dropout (DO)?

- Psychological online research is great! (Reips 2000)
 - We can reach many people \rightarrow high statistical power
 - We can ask questions in several formats, e.g. 5-point rating scales or visual analog scales (similar to sliders)
 - There is less social pressure, so participants may as well be honest
 - There is less social pressure, so participants may as well leave

What to do about dropout?

There are several ways to deal with dropout (Reips 2002a, 2002b):

- Avoid/ Control: give incentives to stay (e.g. study credits for students or \$\$\$)
- Use as dependent variable for analysis!
 - Do participants drop out more in one experimental condition vs. others?
 - Can give information on motivation of participants for different versions of the same survey (Kaufmann and Reips 2024)

Why is dropout analysis important?

- In-lab there is little dropout due to social pressure
 - → Valuable information might be lost
- Online we can use dropout to improve survey methods
 - A condition shows higher rates of dropout? Maybe it is too difficult or boring
 - Females show higher rates of dropout? Maybe our survey is too specifically male
 - Older participants drop out more? Maybe text is too small or people don't have necessary knowledge

Introducing dropR

Dropout analysis should be a routine part of analyzing online data and reported as such.

- dropR is a free R package and Shiny App to facilitate dropout analysis for everyone in the scientific community
 - Statistically solid analyses for everyone
 - Clean and simple reporting conducted & downloaded from the App for everyone
 - More advanced/ customized outputs from the R package for more advanced R users

dropR - the Shiny App

dropr.eu

(https://iscience-kn.shinyapps.io/dropR/)

- Can also be started locally in R directly with dropR::start_app()
- Leads users through analysis process with tabs
 - Start: Upload
 - Visual Inspection
 - Contingency Analyses
 - Survival Analyses

Shiny App

dropR: Visual Inspection Tab

dropR - the R package

- Install the official CRAN package with install.packages("dropR")
- You can always install the developer version from GitHub using devtools::install_github("isciencekn/dropR")
- All features from the app can be used as individual functions from the package

dropR Workflow

There are 2-3 preparatory steps:

- 1. Load the dropR package using library(dropR)
- 2. Add a dropout index to your data using the function add_dropout_idx() and specify your research questions
- 3. Compute the dropout statistics with compute_stats() either only for the overall data or, in most cases, by experimental condition

dropR Workflow

Your initial data should look something like the dropRdemo demo dataset:

ID	condition	item_1	•••	item_51	item_52
7a9f33	11	1	•••	1	1
e11f94	22	1	•••	NA	NA
e72a50	22	1	•••	1	1

- Wide, tidy data
- You can use tidyverse workflow as a nice way to conduct a whole analysis + visualization in basically one step

dropR Workflow Example

```
1 do_stats <- dropRdemo %>%
2 add_dropout_idx(q_pos = 3:54) %>%
3 compute_stats(by_cond = "experimental_condition", no_of_vars = 52
4 plot_do_curve(do_stats, full_scale = FALSE)
```


dropR Workflow Example

With a bit of customization...

```
do_stats %>%
  plot_do_curve(full_scale = F, linetypes = F) +
  labs(title="Custom Dropout Plot") +
  scale_color_manual(values = c("white", "wheat", "dodgerblue", "violet")
```

Custom Dropout Plot

Advanced Analyses

Easy to use in the workflow:

- Kaplan-Meier Estimation for survival differences: do_kpm()
 & plot_do_kpm()
- Chi² analysis identifies difference between conditions at a specific question: do_chisq()
- Kolmogorov-Smirnov test of the most different conditions at a specific question: do_ks() & plot_do_ks()

Most Different Conditions Kolmogorov-Smirnov Test & Visualization

So, why dropR?

- dropout is a fairly well-known phenomenon in data collection (Reips 2009)
- dropout analysis, however, is not so common
- We are currently aware of one other standardized tool, the R package dropout
 - Also helps with basic analysis
 - Lacks plotting tools and advanced analyses

Conclusion

- Dropout can provide a lot of information that other measures cannot
 - dropout analysis should be a routine part of analyzing online data
- dropR facilitates such analyses for everyone
 - Duality of App and Package offers balance between accessibility and advanced options

Outlook

- Make code used in shiny app available to copy (similar to reading in data with readr)
- Potentially migrate from shinydashboard to bslib
- Hopefully many valuable ideas and contributions from the community!

Sources

- Kaufmann, Esther, and Ulf-Dietrich Reips. 2024. "Meta-Analysis in a Digitalized World: A Step-by-Step Primer." *Behavior Research Methods*, April. https://doi.org/10.3758/s13428-024-02374-8.
- Reips, Ulf-Dietrich. 2000. "The Web Experiment Method: Advantages, Disadvantages, and Solutions." In *Psychological Experiments on the Internet*, edited by Michael H. Birnbaum, 89–117. San Diego: Academic Press. https://doi.org/10.1016/B978-012099980-4/50005-8.
- ———. 2002a. "Internet-Based Psychological Experimenting Five Dos and Five Don'ts." *Social Science Computer Review* 20 (September): 241–49.
- ——. 2002b. "Standards for Internet-Based Experimenting." *Experimental Psychology* (Formerly Zeitschrift für Experimentelle Psychologie) 49 (4): 243–56. https://doi.org/10.1027//1618-3169.49.4.243.
- ———. 2009. "Internet Experiments: Methods, Guidelines, Metadata." In *Human Vision and Electronic Imaging XIV*, 7240:53–61. SPIE. https://doi.org/10.1117/12.823416.

Find us after the talk!

dropR on GitHub:

https://github.com/iscience-kn/dropR

iscience website: https://iscience.uni-konstanz.de/

