Tutorial 5

- **1.** Problem 4.19 (modified): A system has a damping ratio of 0.15, a natural frequency of 20 rad/s, and a DC gain of 1.
- o Find the system's transfer function.
- Find the general form of the response to a step input.
- o Find the exact expression of the time response to a unit step input.
- **2.** A system with a forward path and a negative feedback of transfer functions $\frac{K_1}{s(s+1)}$ and $(1+K_2s)$, respectively, for some scalar gains K_1 and K_2 .
- o Compute the damping ratio.
- o Determine the values of the gains K_1 and K_2 so that the maximum overshoot is 0.2 and the peak time is 1 second.
- o Determine the values of the gains K_1 and K_2 so that the damping ratio is 0.7 and the settling time is 4 seconds.
- When $K_1 = 10$, for what value(s) of K_2 is the system over-damped?
- **3.** A negative unity feedback system with a forward path transfer function of $\frac{K_a}{Ks(\tau_m s+1)}$, for some scalar gains K_a , K and time constant τ_m .
- o Write down the system's transfer function.
- O Assuming that K = 2, find the values of K_a and τ_m so that the system has the fastest response to a step input with no overshoot and a settling time of 0.2 seconds.