BICEPS Modelling of Metrics

Revision 1, 2018-10-03

Orientation

DEFINITION

DefinitionMetric

BICEPS defines a metric as component of a medical device that is able to generate or store direct and derived, quantitative and qualitative biosignal measurements, settings, and status values.

CLASS DIAGRAM

Class diagram

Placement in MDIB

Class diagram

Derived types

PROPERTIES

pm:AbstractMetricDescriptor I

MetricCategory

 Defines if the metric is a measurement, setting, presetting, calculation, or recommendation

DerivationMethod

Is the metric value derived manually or automatically?

MetricAvailability

 Is the metric value available continuously or intermittently?

Unit

- What is the metric's measurement unit?
 - → pm:CodedValue

pm:AbstractMetricDescriptor II

BodySite [list]

Where is the metric derived from? → pm:CodedValue

ActivationDuration [optional]

 Maximum time period the metric's activation is "On" before it changes to any other state.

Relation [list]

- Modelling of relationships between metrics
- Semantic description via pm:CodedValue
- Relationship flavors like recommendation, pre-setting, ...

Temporal attributes [optional]

 MaxMeasurementTime, MaxDelayTime, DeterminationPeriod, LifeTimePeriod → later slide

pm:AbstractMetricState

ActivationState

On, Off, NotReady, Shutdown, Standby, Failure

ActiveDeterminatonPeriod [optional]

• Overrides DeterminationPeriod from descriptor if present

LifeTimePeriod [optional]

Overrides LifeTimePeriod from descriptor if present

BodySite [list]

 Only for body sites that provide more details and change during runtime; others are defined in descriptor

PhysicalConnector [optional]

 Number to point out a physical entity of the device in order to guide clinical users in case of failures

pm:AbstractMetricState

ActivationState

On, Off, NotReady, Shutdown, Standby, Failure

ActiveDeterminatonPeriod [optional]

• Overrides DeterminationPeriod from descriptor if present

LifeTimePeriod [optional]

Overrides LifeTimePeriod from descriptor if present

BodySite [list]

 Only for body sites that provide more details and change during runtime; others are defined in descriptor

PhysicalConnector [optional]

 Number to point out a physical entity of the device in order to guide clinical users in case of failures

ActivationState state transitions

Properties pm:AbstractMetricValue

Temporal attributes

 StartTime, StopTime, DeterminationTimeTimerelated attributes → later slide

MetricQuality

 Gives information on the validity of a value (e.g., questionable, valid) and generation mode (real, demo)

Annotation [list]

 Assign semantic information to metrics (e.g., triggers in waveform curves) → pm:CodedValue

Properties Temporal attributes String Metric Distribution Sample Array Metric RealTimeSampleArrayMetric Nume ric Me tric Period after a metric value has become useless Maximum time interval between two determination steps of observed values LifeTimePeriod DeterminationPeriod Start of measurement activity StartTime t Physical > StopTime DeterminationTime StartTime t=t+1 Physical Event n Event n=n+1Stop of MaxDelayTime MaxDelayTime measurement activity MaxMeasurementTime MaxMeasurementTime Timepoint when a metric value has been derived Maximum duration Maximum delay to real between StartTime and time

StopTime of measurment

pm:StringMetricDescriptor

- String metrics provide an arbitrary sequence of characters.
- The pm:StringMetricDescriptor type does not define further attributes.

Properties pm:StringMetricDescriptor

MetricValue [optional]

 MetricValue is of type pm:StringMetricValue, which is derived from pm:AbstractStringMetricValue and supplements the base type by a string value

pm:EnumStringMetricDescriptor

Temporal attributes

 StartTime, StopTime, DeterminationTimeTimerelated attributes → later slide

MetricQuality

 Gives information on the validity of a value (e.g., questionable, valid) and generation mode (real, demo)

Annotation [list]

 Assign semantic information to metrics (e.g., triggers in waveform curves) → pm:CodedValue

pm:EnumStringMetricState

- The pm:EnumMetricState type is derived from pm:StringMetricState and does not define further attributes
- The string value of the StringMetricState represents the current enumeration selection
- Multiple selection is not supported

pm:NumericMetricDescriptor

Resolution

Minimum determinable difference between two observed values

AveragingPeriod [optional]

 Timespan from where the measured values are used to determine the observed value by averaging with some algorithm

TechnicalRange [list]

- Technical possible range that determined values can accept
- A list is used to facilitate modelling of gaps

Properties pm:NumericMetricState

ActiveAveragingPeriod [optional]

Overrides the period from descriptor if present

MetricValue [optional]

 MetricValue is of type pm:NumericMetricValue, which is derived from pm:AbstractMetricValue and supplements the base type by a decimal value

PhysiologicalRange [list]

- Physiological reasonable range of determined values
- A list is used to facilitate modelling of gaps

pm:RealTimeSampleArrayMetric Descriptor

[Definition]

 Declares a sample array that represents a real-time continuous waveform. RealTimeSampleArrayMetric is conceivable as a two dimensional graph with a temporal domain unit and any range unit.

Resolution

Minimum determinable difference between two determined values

SamplePeriod

- "How often are samples generated", e.g., every 5ms
- SamplePeriod does not reflect the rate in which frames are sent; this is done through pm:RealTimeSampleArrayMetricDescriptor/@DeterminationPeriod

TechnicalRange [list]

- Technical possible range that determined values can accept
- A list is used to facilitate modelling of gaps

pm:RealTimeSampleArrayMetric State

MetricValue [optional]

- MetricValue is of type pm:SampleArrayValue, which is derived from pm:AbstractMetricValue and supplements the base class with a whitespace separated list of decimal numbers
- pm:RealTimeSampleArrayMetricState/@DeterminationTime points to the first decimal number of the MetricValue's whitespace separated list
- Successive determination times detTime(smpIdx) are computable by

```
• smpPrd =
  pm:RealTimeSampleArrayMetricDescriptor/@SamplePeriod
```

- detTime(0) =
 pm:RealTimeSampleArrayMetricState/@DeterminationTime
- detTime(smpIdx) = detTime(0) + smpPrd * smpIdx

PhysiologicalRange [list]

- Physiological reasonable range of observed values
- A list is used to facilitate modelling of gaps

pm:DistributionSampleArrayMetric Descriptor

Resolution

Minimum determinable difference between two determined values

TechnicalRange [list]

- Technical possible range that determined values can accept
- A list is used to facilitate modelling of gaps

DomainUnit

A pm:CodedValue to designate the unit on the x axis

DistributionRange

Minimum and maximum domain value range

pm:DistributionSampleArrayMetric State

MetricValue [optional]

 MetricValue is of type pm:SampleArrayValue, which is derived from pm:AbstractMetricValue and supplements the base class with a whitespace separated list of decimal numbers

PhysiologicalRange [list]

- Physiological reasonable range of observed values
- A list is used to facilitate modelling of gaps

Thank you for your attention!

Contact information

David Gregorczyk

david.gregorczyk@draeger.com