Содержание

Введени	ле	3	
1 A	налитический раздел	4	
1.1	Описание предметной области	4	
1.2	Существующие аналоги	5	
1.3	Описание бизнес-логики информационной системы	5	
1.4	Требования к разрабатываемой системе	6	
1.5	Выводы к разделу 1	8	
2 Конструкторский раздел			
2.1	Топология системы	9	
2.2	Описание используемых алгоритмов	11	
2.3	Диаграмма вариантов использования (Use-Case)	13	
2.4	Диаграмма последовательности (Sequence)	16	
2.5	Диаграмма компонентов (Component)	18	
2.6	Выводы к разделу 2	19	
3 Te	хнологический раздел	20	
3.1	Структура базы данных	20	
3.2	Тестирование	22	
3.3	Выводы к разделу 3	25	
Заключение			
Приложение А (обязательное) Библиографический список			

Введение

Информационный портал — это интернет-ресурс, предоставляющий пользователям целый комплекс сервисов со сложной разветвленной структурой.

В наше время информационные порталы пользуются большой популярностью во всех сферах жизни общества, которые подвергаются неминуемой автоматизации. Одной из таких сфер является музейный туризм, поскольку удобство покупки билетов в любой интересующий музей определяет потенциальное количество посетителей данного музея.

Таким образом, создание информационного портала, помогающему пользователю купить билет в интересующий его музей, а также получить подробную информацию о музеях и выставках, поможет сэкономить уйму времени, и повысить популярность музейного туризма.

Целью данного курсового проекта является проектирование и разработка информационного портала музеев Российской Федерации.

1 Аналитический раздел

Данный раздел курсовой работы предназначен для того, чтобы более точно понимать направленность решаемой задачи, а именно, разработки информационного портала музеев Российской Федерации. Анализ задачи всегда влечёт за собой определение её требований. Первым делом необходимо произвести описание предметной области, которое поможет сформировать более чёткое понимание разрабатываемого портала.

1.1 Описание предметной области

В настоящее время существует проблема поиска информации в сфере музейной деятельности на территории Российской Федерации. Клиенты не могут находить необходимую информацию о выставках, смотреть часы работы музея и покупать билеты на едином портале.

Некоторые из музеев не имеют своих собственных сайтов. Та часть российских музеев, которые представлены на информационных порталах имеют свою специфику и свои хранилища данных. Поэтому основной задачей является создание единого государственного портала, объединяющего все российские музеи, в том числе и те, у которых нет никакого представительства в интернете. Основной задача данного портала — рассказать обо всех музея Российской Федерации, представить их выставки и постоянные экспозиции, рассказать о часах работы, что будет интересно для туристов и повысить посещаемость музеев.

В настоящий момент существует множество сервисов, предоставляющих информацию только о конкретных музеях, что сильно затрудняет поиск потенциальным посетителям. Ввиду того, что роль автоматизации клиентского сервиса с каждым годом возрастает, появляется необходимость в решении задачи проектирования и разработки системы поиска информации о всех музеев Российской Федерации. К тому же, данная система поможет повысить популярность и посещаемость региональных музеев.

1.2 Существующие аналоги

Среди аналогов можно отметить порталы culture.gosuslugi.ru и museum.ru. Данный проект должен иметь следующие преимущества перед существующими аналогами:

- Поиск информации о музеях не только в больших городах, но и в регионах.
- Поиск актуальной информации о выставках и точном местоположении музеев.
 - Возможность покупки билета в музей на портале.
 - Удобный интерфейс и высокая скорость загрузки страниц портала.

1.3 Описание бизнес-логики информационной системы

Проект должен представлять собой портал для поиска информации и покупки билетов в музеи. В данной информационной системе предполагается наличие двух типов пользователей: посетитель и администратор.

Потенциальный посетитель регистрируется на портале и указывает информацию о себе: имя, фамилия, логин.

Администратор ответственен за добавление музеев на портал. При добавлении нового музея, он должен указать всю информацию о добавляемой организации: название музея, его описание, адрес местонахождения, наименование юридического лица, ИНН, ОГРН, тип музея, электронную почту.

После успешного добавления музея, появляется базовая страничка с главной информацией о нем, в которую он может вносить правки, а также добавлять информацию о проходящих выставках.

При добавлении информации о выставках, администратор должен указывать название, краткое описание выставки, информацию о билетах, даты проведения (в случае временной выставки).

На основе этой информации клиенты, посещающие портал, производят поиск подходящих музеев, узнают их особенности, а также имеют

возможность приобрести билеты на представленные на портале выставки.

Помимо этого, зарегистрированный пользователь должен иметь возможность просмотра своего профиля, купленных им билетов и менять цветовую тему портала.

Администратор имеет возможности удаления музеев, выставок, а также просмотра статистики о регистрации пользователей и поступлении средств после покупки билетов на счет музеев.

1.4 Требования к разрабатываемой системе

- 1. Система должна обеспечивать разделение пользователей на две роли:
 - клиент;
 - администратор;
- 2. Каждый музей, представленный на портале, должен быть классифицирован по типу его деятельности. Система должна обеспечивать музею выбор категории из представленного ниже списка:
 - архитектурно-ансамблевый;
 - естественнонаучный;
 - краеведческий;
 - исторический;
 - художественный;
 - научно-технический;
 - литературный;
 - театральный;
 - музыкальный;
 - музей-заповедник.
- 3. В случае недоступности некритичного функционала, должна осуществляться деградация функциональности.

- 4. Система должна обеспечивать валидацию вводимых данных через интерфейс приложения при операциях добавления, изменения контента портала, а также при аутентификации и регистрации.
 - 5. Система должна обеспечивать регистрацию.
- 6. Система должна обеспечивать авторизацию и аутентификацию пользователей.
 - 7. Система должна предоставлять клиенту следующие функции:
 - просмотр информации о представленных музеях: тип музея, описание, местоположение, контактные данные, представленные в нем выставки;
 - покупка билетов на выставки;
 - просмотр профиля;
 - просмотр истории купленных билетов;
 - смена цветовой палитры портала.
- 8. Система должна предоставлять **администратору** следующие функции:
 - добавление информации о музеях;
 - изменение информации о музеях;
 - удаление информации о музеях;
 - добавление информации о проходящих выставках;
 - удаление информации о выставках музея;
 - возможность просмотра статистики поступлений денежных средств на счет музеев;
 - возможность просмотра статистики о регистрации новых пользователей;
 - просмотр профиля;
 - смена цветовой палитры портала.

- 9. Каждый сервис разрабатываемой системы при необходимости может иметь доступ к связанной с ним базе данных, но не должен иметь доступа к базам данных других сервисов.
 - 10. Все запросы между сервисами требуют авторизации.

1.5 Выводы к разделу 1

В представленном разделе произведен анализ предметной области и существующих аналогов. Были определены основные требования, которым должна удовлетворять разрабатываемая система. Так же в данном разделе было произведено подробное описание бизнес-логики данного информационного портала.

2 Конструкторский раздел

Каждая информационная система должна обеспечивать требуемую производительность, функциональность, безопасность, безотказную работу, пропускную способность и множество других важнейших для эффективной работы факторов. Это достигается путем грамотного проектирования системы.

В данном разделе курсового проекта будет описана архитектура и алгоритмы разрабатываемой системы, описаны отдельные компоненты системы, а также спроектированы основные диаграммы, описывающие работу системы и взаимодействие отдельных компонентов.

2.1 Топология системы

Система будет состоять из фронтэнда и пяти сервисов, что наиболее целесообразно для реализации ее основного назначения. Топология разрабатываемой системы представлена на рисунке 2.1.

Рисунок 2.1 – Топология системы

Сервис авторизации и регистрации отвечает за пользователей портала и реализует следующие функции:

• регистрация пользователя;

- аутентификация пользователя;
- просмотр профиля;
- авторизация пользователя;
- валидация токена;
- получение и изменение цветовой темы портала.

Сервис музеев отвечает за хранение информации о представленных на портале музеях и реализует следующие функции:

- получение списка музеев с условиями фильтрации по типу и местоположению;
 - получение информации о конкретном музее;
- получение информации о проходящий в музее выставках и постоянных экспозициях;
 - добавление нового музея;
 - изменение информации конкретного музея;
 - удаление музея;
 - добавление выставки;
 - удаление выставки;
 - получение списка всех музейных типов;
 - начисление на счет музея средств после продажи билета.

Сервис билетов отвечает за хранение информации о билетах и реализует следующие функции:

- покупка билета на конкретную экспозицию или выставку музея;
- просмотр истории купленных пользователем билетов.

Сервис статистики отвечает за хранения информации о статистике и реализует следующие функции:

- добавление и получение информации о всех поступлениях на счет музеев;
- добавление и получение информации о новых пользователях системы.

Сервис координатор отвечает за диспетчеризацию запросов и предоставляет оптимальный унифицированный API.

Фронтэнд принимает запросы от пользователей по протоколу НТТР и анализирует их. На основе проведенного анализа фронтэнд выполняет запросы к координационному сервису, получает ответы и отсылает их пользователю.

2.2 Описание используемых алгоритмов

Все сервисы разрабатываемого портала используют протокол HTTP для получения и отправления информации. Все запросы, кроме получения токена проходят через координационный сервис.

Аутентификация на портале реализована с помощью Json Web Token. Json Web Token (JWT) — это открытый стандарт (RFC 7519) для создания токенов доступа, основанный на формате JSON [1]. Как правило, используется для передачи данных для аутентификации в клиент-серверных приложениях. Токены создаются сервером, подписываются секретным ключом и передаются клиенту, который в дальнейшем использует данный токен для подтверждения своей личности [2].

Типичный алгоритм аутентификации на основе токенов представлен на рисунке 2.2.

Рисунок 2.2 – Аутентификация на основе токенов

В разрабатываемой системе аутентификация на основе JWT-токена реализована следующим образом:

- 1. При успешной авторизации или регистрации нового пользователя, сервис авторизации и регистрации генерирует токен сроком действия в 10 минут и отправляет его на фронтэнд, который в свою очередь записывает токен в куки.
- 2. При выполнении запросов, требующих авторизации, json web token подставляется в заголовок запроса. Сервис координатор перед выполнением запроса валидирует токен на сервисе авторизации и регистрации.
- 3. Валидация токена осуществляется путем проверки даты действия токена и совпадения исходной уникальной подписи с тестовой. Если тестовая подпись совпадает с исходной, то это означает, что полезная нагрузка и заголовок не были изменены. Для генерации уникальной подписи используется секрет.

4. В случае валидности токена, сервис координатор продолжает успешное выполнения запроса. В случае невалидности токена, сервис координатор возвращает 401 код ошибки HTTP.

Помимо этого, из важных особенностей реализации стоит отметить, что каждый сервис, кроме сервиса координатора имеет свое собственное хранилище данных, доступ к которому есть только у него.

База данных сервиса авторизации и регистрации хранит пользовательские пароли в хэшированном виде. В качестве алгоритма хэширования используется bcrypt.

bcrypt — адаптивная криптографическая хэш-функция формирования ключа, используемая для защищенного хранения паролей [3]. Функция основана на шифре Blowfish. Для защиты от атак с помощью радужных таблиц, bcrypt использует соль, кроме того, функция является адаптивной, время её работы легко настраивается и её можно замедлить, чтобы усложнить атаку перебором.

Также, в системе организована пагинация некоторых запросов для уменьшения поискового трафика и фильтрация данных, выполняемая на фронтэнде.

2.3 Диаграмма вариантов использования (Use-Case)

Диаграмма вариантов использования описывает функциональное назначение системы, то есть что система будет делать в процессе своего функционирования [4].

Use Case является исходной концептуальной моделью системы в процессе ее проектирования и разработки.

Цели построения диаграммы Use Case:

- Определение общих границ и контекста моделируемой предметной области на начальных этапах проектирования.
- Формулирование общих требований к функциональному проектированию системы.

- Разработка исходной концептуальной модели системы для ее последующей реализации.
- Подготовка документации для взаимодействия разработчика системы с ее заказчиком и пользователями.

В ходе проектирования система представляется в виде множества актеров, взаимодействующих с системой с помощью прецедентов.

Таким образом, основными компонентами диаграммы вариантов использования являются:

- Актеры взаимодействуют с системой и используют ее функциональные возможности для достижения определенных целей и решения частных задач. Представляют собой внешнюю по отношению к моделируемой системе сущность. Может рассматриваться как некая роль относительно конкретного варианта использования.
- Прецеденты определяют последовательность действий, которую должна выполнять система при взаимодействии ее с соответствующим актером.
- Отношения показывают тип взаимодействия актеров и прецедентов. Один актер может взаимодействовать с несколькими вариантами использования и наоборот.

Существует 4 вида отношений между актерами и прецедентами:

- Ассоциативное отношение устанавливает какую конкретную роль актер играет при взаимодействии с вариантом использования.
- Отношение расширения определяет взаимосвязь базового варианта использования с некоторым другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а при выполнении некоторых дополнительных условий.
- Отношение обобщения служит для указания того факта, что некоторый вариант использования может быть обобщен до другого варианта использования.

• Отношение включения — указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования.

Разработанные диаграммы вариантов использования для актеров клиент и администратор представлены на рисунках 2.3 и 2.4 соответственно.

Рисунок 2.3 – Диаграмма вариантов использования для клиента

Рисунок 2.4 — Диаграмма вариантов использования для администратора

2.4 Диаграмма последовательности (Sequence)

Диаграммы последовательности действий отображают взаимодействие объектов, упорядоченное во времени [5].

К основным компонентам диаграммы последовательности можно отнести:

- Объекты основные компоненты системы.
- Линия жизни вертикальная линия, которая показывает создание и уничтожение объекта, а также на ней находится фокус управления.
- Сообщения законченный фрагмент информации, который отправляется одним объектом другому.

В ходе проектирования информационного портала музеев Российской Федерации была построено несколько диаграмм последовательности, которые показывают основную функциональность системы.

Диаграмма последовательности для авторизации пользователя представлена на рисунке 2.5.

Рисунок 2.5 – Авторизация пользователя

Диаграмма последовательности покупки билета представлена на рисунке 2.6. Объекты баз данных сервиса авторизации и регистрации, сервиса билетов, сервиса статистики и сервиса музеев объединены в одном объекте БД для большей наглядности удобства отображения диаграммы.

Рисунок 2.6 – Покупка билета

Таким образом, в данном подразделе курсового проекта была построена диаграмма последовательности информационного портала всех музеев Российской Федерации.

2.5 Диаграмма компонентов (Component)

Диаграмма компонентов — статическая структурная диаграмма, показывает разбиение системы на структурные компоненты и связи между ними. В качестве физических компонентов могут выступать файлы, библиотеки, модули, исполняемые файлы и пакеты. Такой вид диаграммы позволяет переходить от логического представления системы к ее реализации в виде программного кода [6].

Для представления физических сущностей в языке UML применяется термин – компонент. Компонент реализует некоторый набор интерфейсов и служит для общего обозначения элементов физического представления

модели. Компонент может иметь также свои собственные свойства, такие как атрибуты и операции.

Диаграмма компонентов разрабатываемой системы представлена на рисунке 2.7.

Рисунок 2.7 – Диаграмма компонентов

На данном этапе работы над курсовым проектом была спроектирована диаграмма компонентов, показывающая основные структурные компоненты информационной системы и связи между ними.

2.6 Выводы к разделу 2

В рассмотренном выше разделе описана архитектура, основные алгоритмы разрабатываемой системы и отдельные компоненты информационного портала.

Помимо этого, были спроектированы диаграммы вариантов использования для каждой из представленных на портале ролей. А также диаграммы последовательности действий, показывающие взаимодействие микросервисов.

3 Технологический раздел

На данном этапе разработки информационного портала будет произведено описание типов и структур данных в нотации IDEF1x, а также тестирование, обработка ошибок и поведение системы в случае отказа.

3.1 Структура базы данных

Модели данных служат для проектирования структуры постоянных хранилищ данных, используемых системой. При проектировании информационного портала всех музеев Российской Федерации были разработаны модели данных сервиса авторизации и регистрации, сервиса музеев, сервиса билетов и сервиса статистики в нотации IDEF1x [7].

Диаграммы базы данных сервиса авторизации и регистрации, сервиса музеев, сервиса билетов и сервиса статистики представлены на рисунках 3.1 – 3.4 соответственно.

Рисунок 3.1 – БД сервиса авторизации и регистрации

Рисунок 3.2 – БД сервиса музеев

ticket

Рисунок 3.3 – БД сервиса билетов

money_transfer id : serial (PK) id : serial (PK) id : serial (PK) user_uuid: uuid ticket_uuid: uuid date_of_registration: dateTime accrual: int

Рисунок 3.4 – БД сервиса статистики

3.2 Тестирование

При разработке информационного портала всех музеев Российской Федерации необходимо учитывать случаи отказа отдельных компонентов системы. В случае ошибки или недоступности некритичного функционала должна производиться деградация функциональности.

В данном проекте деградация функциональности реализована при запросах к сервису статистики. В случае, если при регистрации нового пользователя сервис статистики не отвечает, то пользователь получает ответ об успешной регистрации, а сервис координатор ставит запрос на добавление статистики о зарегистрированных пользователях в очередь. После чего, сервис координатор каждые 5 секунд выполняет запрос из очереди. В случае неудачи, запрос снова помещается в очередь.

Также, деградация функциональности реализована и при покупке билета на выставку. В случае, если при покупке билета сервис статистики не отвечает, то пользователь получает ответ об успешном приобретении билета, а сервис координатор ставит запрос на добавление истории начислений на счет музея в очередь. После чего, сервис координатор каждые 5 секунд выполняет запрос из очереди. В случае неудачно запрос снова помещается в очередь.

Для выполнения запросов, создается отдельный поток для каждой очереди.

Помимо этого, в разрабатываемой системе была предусмотрена обработка ошибок запросов получения информации. Для этого, на фронтэнде проверяется ответ, пришедший от сервисов. В случае возникновения ошибки, фронтэнд не прогружает компоненты, содержащие запрашиваемые данные. К примеру, в случае возникновения ошибки в запросе получения истории билетов, фронтэнд не станет добавлять данный компонент. Примеры успешной и ошибочной работы запросов представлены на рисунках 3.5 и 3.6 соответственно.

Рисунок 3.5 – Успешный запрос

Рисунок 3.6 – Ошибочный запрос

Также, для устойчивой работы сервисов в разрабатываемом портале предусмотрена валидация вводимых данных на всех представлениях.

Валидация включает в себя проверку заполненности обязательных полей, проверку соответствия вводимой информации требуемому шаблону (реализовано с помощью регулярных выражений), а также проверку уникальности вводимых значений. В случае ввода невалидной информации, фронтэнд отобразит пользователю всплывающее уведомление о неправильности введенных данных. Примеры всех перечисленных выше типов валидации представлены на рисунках 3.7 – 3.9.

Рисунок 3.7 – Проверка заполненности обязательных полей

Рисунок 3.8 – Проверка уникальных данных

Зарегистрироваться

Рисунок 3.9 – Проверка соответствия шаблону

3.3 Выводы к разделу 3

Такой логин уже занят

В рассмотренном выше разделе было произведено описание структур баз данных всех сервисов, представленных в системе, а также описано поведение системы в случае ошибок и отказов.

Заключение

В ходе работы над курсовым проектом были проанализированы предметная область и определены требования к информационному порталу, что помогло при дальнейшем его проектировании.

Помимо этого, была описана топология системы, алгоритмы взаимодействия сервисов портала. Построены диаграммы вариантов использования, диаграммы последовательности действий и диаграмма компонентов.

Были описаны структуры данных всех сервисов, а также поведение системы в случае отказов и ошибок.

Приложение А

(обязательное)

Библиографический список

1.	JavaInUse	[Электронный	pecypc]	//	JWT.	URL:		
https://www.javainuse.com/spring/boot-jwt (дата обращения: 15.03.2022).								

- 2. Stackoverflow [Электронный ресурс] // What is secret key for JWT and how to generate it. URL: https://stackoverflow.com/questions/31309759/what-is-secret-key-for-jwt-based-authentication-and-how-to-generate-it (дата обращения: 15.03.2022).
- 3. Wikipedia [Электронный ресурс] // bcrypt. URL: https://ru.wikipedia.org/wiki/Bcrypt (дата обращения: 17.03.2022).
- 4. Testengineer [Электронный ресурс] // Что такое use case? Теория и примеры. URL: https://testengineer.ru/chto-takoe-use-case (дата обращения: 24.03.2022).
- 5. Wikipedia [Электронный ресурс] // Диаграмма последовательности. URL: https://ru.wikipedia.org/wiki/Диаграмма_последовательности (дата обращения: 27.03.2022).
- 6. Maccase [Электронный ресурс] // UML Component. URL: https://maccase.ru/android/uml-diagramma-komponentov-opisanie-modelirovanie-na-uml-diagrammy.html (дата обращения: 14.04.2022).
- 7. Analyst [Электронный ресурс] // IDEF1x. URL: http://analyst.by/diagrams/logicheskaya-model-predmetnoy-oblasti (дата обращения: 21.04.2022).