Example 4.7.(a) Consider the flow on $[-\frac{\pi}{2},\frac{\pi}{2}]$ defined by $\phi(t,x):=\arctan(\tan x-t)$, $x\in[-\frac{\pi}{2},\frac{\pi}{2}]$, $t\in\mathbb{R}$ (it belongs to the differential equation $y'=-\cos^2 y$), and a continuous function $h:[-\frac{\pi}{2},\frac{\pi}{2}]\to\mathbb{R}$ with $h(-\frac{\pi}{2})\le h(\frac{\pi}{2})$. Then we have $\underline{c}(h,\phi)=h(-\frac{\pi}{2})$ and $\overline{c}(h,\phi)=h(\frac{\pi}{2})$. The spectrum of the corresponding semigroup is given by $\sigma(A)=\{\lambda\in\mathbb{C}:h(-\frac{\pi}{2})\le Re\ \lambda\le h(\frac{\pi}{2})\}$.

(b) Consider $K = \{z \in \mathbb{C} : 1 \le |z| \le 2\} = \{r \cdot e^{i\omega} : \omega \in \mathbb{R}, 1 \le r \le 2\}$ and a continuous function $\kappa : [1,2] \to \mathbb{R}_+$.

Let $\bar{\phi}$ be the flow on K governed by the differential equation $\dot{\omega} = \kappa(r)$, $\dot{r} = 0$ (hence $\bar{\phi}(t,r^*e^{i\,\omega}) = r^*e^{i\,(\omega+\kappa\,(r)\,t)}$). For a continuous function $h: K \to \mathbb{R}$ let $h^*(r) := \frac{1}{2\pi} \cdot \int_0^{2\pi} \, h(r^*e^{i\,t}) \, dt$ (1 $\leq r \leq 2$). The spectrum of the semigroup corresponding to ϕ and h (cf. (4.1)) is given by

 $\sigma(A) = \{h^{\hat{}}(r) + ik_{\kappa}(r) : k \in \mathbb{Z}, 1 \le r \le 2\} \cup \{h(z) : \kappa(|z|) = 0\}.$

<u>Proposition</u> 4.8. Suppose the semigroup $(T(t))_{t\geq 0}$ on C(K) is given by (4.1) and let $\underline{c}(h,\phi)$, $\overline{c}(h,\phi)$ be defined as in (4.4). Then the following assertions hold:

- (a) $\{\lambda \in \mathbb{C} : \text{Re } \lambda > \overline{c}(h, \phi)\} \subset \rho(A)$;
- (b) $\bar{c}(h,\phi)$ and $\underline{c}(h,\phi)$ are spectral values;
- (c) If $\phi(t,x_0) = x_0$ for every $t \ge 0$, then $h(x_0) \in R\sigma(A)$;
- (d) Assume \mathbf{x}_{O} has a finite orbit (i.e., $\phi(\mathbb{R}_{+},\mathbf{x}_{O}) = \phi([0,T],\mathbf{x}_{O})$ for some $T<\infty$) and $\tau:=\inf\{t>0:\phi(T+t,\mathbf{x}_{O})=\phi(T,\mathbf{x}_{O})\}>0$, then $h^{\wedge}(\mathbf{x}_{O})+\frac{2\pi}{\tau}i\mathbb{Z}\subset R\sigma(A)$ where $h^{\wedge}(\mathbf{x}_{O}):=1/\tau/T^{T+\tau}h(\phi(s,\mathbf{x}_{O}))ds$.
- (e) If x_0 has an infinite orbit and $h^* := \lim_{t \to \infty} h(\phi(t, x_0))$ exists, then $h^* + i\mathbb{R} \subseteq \sigma(A)$.

<u>Proof.</u>(a) and (b): A look at (4.4) shows that $\overline{c}_t(h,\phi) = 1/t \cdot \log \|T(t)\|$ hence $\overline{c}(h,\phi) = \omega(A)$ (cf. A-I,(1.1)). Consequently, we have $\{\lambda \in \mathbb{C} : \text{Re } \lambda > \overline{c}(h,\phi)\} \subseteq \rho(A)$ and $\overline{c}(h,\phi) \in \sigma(A)$ by Thm.1.6. To prove $\underline{c}(h,\phi) \in \sigma(A)$, we can assume by Thm.4.4 that $K_{\infty} = K_{S}$ for some s and that ${}^{\varphi}|K_{\infty}$ is injective. It is easy to see that $\underline{c}(h,\phi) = \underline{c}({}^{h}|K_{\infty},{}^{\varphi}|K_{\infty})$, moreover, we have $\sigma({}^{A}|I_{\infty}) = \emptyset$ hence $\sigma(A) = \sigma(A/I_{\infty})$ by A-III,Prop.4.2. This shows that we also can assume that $K = K_{\infty}$, i.e., φ is bijective or A is the generator of a group. Now the assertion follows from

 $\underline{\mathbf{c}}(\mathbf{h},\phi) = \underline{\mathbf{c}}(\mathbf{h},\phi^{-1}) = -\overline{\mathbf{c}}(-\mathbf{h},\phi^{-1}) = -\mathbf{s}(-\mathbf{A}) .$

(c) and (d): One can check easily that in case of (c) the Dirac functional ${}^{\delta}x_{\circ}$ is an eigenvector of A' corresponding to $h(x_{\circ})$.