Summary of

"On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-shift Alternatives"

Wittawat Jitkrittum (wittawatj@gmail.com)

November 25, 2015

Created on 22 Nov 2015. This is a summary of Ramdas et al. [2014]. The paper also appeared in AISTATS 2015.

Summary

Given two samples $\{x_i\}_{i=1}^n \sim P$ and $\{y_i\}_{i=1}^n \sim Q$ with unknown P,Q defined on \mathbb{R}^d , the goal of the two sample test is to test the hypotheses $H_0: P=Q$ v.s. $H_1: P\neq Q$. A nonparameteric kernel-based test which considers such general alternatives was recently proposed by Gretton et al. [2012]. Although the power of the test was studied under the setting that $n\to\infty$ with fixed d, it is unclear how the power is affected when $(n,d)\to\infty$. The main contribution of the paper is to characterize the power of the linear MMD (with a Gaussian kernel) test under a mean-shift alternative (i.e., $H_0: \mathbb{E}_{x\sim P}[x] = \mathbb{E}_{y\sim Q}[y]$ and $H_1: \mathbb{E}_{x\sim P}[x] \neq \mathbb{E}_{y\sim Q}[y]$) under the $(n,d)\to\infty$ setting.

1 Hypothesis testing

Let $X^{(n)} := \{x_i\}_{i=1}^n$ and $Y^{(n)} := \{y_i\}_{i=1}^n$. A test is a function to a specific hypotheses H_0 and H_1 , that takes $X^{(n)}$ and $Y^{(n)}$ and outputs either 0 or 1, where 1 indicates the rejection of H_0 , and 0 means failure to reject H_0 due to insufficient evidence. The **type-1 error** α or false positive rate is defined as

$$\alpha = p(\text{reject } H_0 \mid H_0 \text{ is true}).$$

The **type-2 error** β or false negative rate is defined as

$$\beta = p(\text{not reject } H_0 \mid H_1 \text{ is true}).$$

Generally decreasing one will increase the other. We refer to $1-\beta$ as the **power** of the test i.e., the probability of correctly rejecting H_0 . Many tests compute a **test statistic** $T := T(X^{(n)}, Y^{(n)})$ and reject H_0 if $T > c_{\alpha}$ where the rejection threshold c_{α} depends on the distribution of T under H_0 , and a prechosen **significance level** α .

1.1 Two-sample test with MMD

One of the most popular tests for nonparameteric two-sample testing is the kernel two-sample test proposed by Gretton et al. [2012]. The test uses maximum mean discrepancy (MMD) as the test statistic T. Given a symmetric positive definite kernel function k(x,y), MMD is defined as

$$\mathrm{MMD}^{2}(P,Q) := \mathbb{E}_{x \sim P} \mathbb{E}_{x' \sim P} k(x,x') + \mathbb{E}_{y \sim Q} \mathbb{E}_{y' \sim Q} k(y,y') - 2\mathbb{E}_{x \sim P} \mathbb{E}_{y \sim Q} k(x,y).$$

An unbiased estimator is given by

$$MMD_u^2 = \frac{1}{n(n-1)} \sum_{i \neq j}^n k(x_i, x_j) + \frac{1}{n(n-1)} \sum_{i \neq j}^n k(y_i, y_j) - \frac{2}{n^2} \sum_{i,j=1}^n k(x_i, y_j),$$

which can be computed in $O(n^2)$. A linear unbiased statistic is given by

$$MMD_l^2 = \frac{1}{n/2} \sum_{i=1}^{n/2} \left[k(x_{2i-1}, x_{2i}) + k(y_{2i-1}, y_{2i}) - k(x_{2i-1}, y_{2i}) - k(y_{2i-1}, x_{2i}) \right].$$

2 Power of MMD_1

Let $z_i := (x_i, y_i)$. Define $h(z_i, z_i)$ as

$$h(z_i, z_j) := k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i).$$

Then, we have $\text{MMD}_l^2 = \frac{1}{n/2} \sum_{i=1}^{n/2} h(z_{2i-1}, z_{2i})$. Gretton et al. [2012] showed that under both H_0 and H_1 with fixed d and $n \to \infty$, we have

$$F := \frac{\sqrt{n}(\mathrm{MMD}_l^2 - \mathrm{MMD}^2)}{\sqrt{V}} \xrightarrow{d} \mathcal{N}(0, 1),$$

where $V = 2\mathbb{V}_{z,z'}h(z,z')$. Equivalently, $\mathrm{MMD}_l^2 \sim \mathcal{N}(\mathrm{MMD}^2,V/n)$. Note that under $H_0: P = Q$, we have $\mathrm{MMD}^2 = 0$. The test rejects H_0 if $\mathrm{MMD}_l^2 > z_\alpha \sqrt{\frac{\hat{V}}{n}}$ where z_α is the $(1-\alpha)$ quantile of $\mathcal{N}(0,1)$, and \hat{V} is the empirical estimator of V.

The test power β is x

$$\beta = P_{H_1} \left(\text{MMD}_l^2 > z_{\alpha} \sqrt{\frac{\hat{V}}{n}} \right) = P_{H_1} \left(\frac{\sqrt{n} (\text{MMD}_l^2 - \text{MMD}^2)}{\sqrt{V}} > \sqrt{\frac{n}{V}} \left[z_{\alpha} \sqrt{\frac{\hat{V}}{n}} - \text{MMD}^2 \right] \right)$$

$$= P_{H_1} \left(F > \sqrt{\frac{\hat{V}}{V}} z_{\alpha} - \sqrt{\frac{n}{V}} \text{MMD}^2 \right)$$
(1)

$$(as n \to \infty, d \text{ fixed}) \to P_{H_1} \left(Z > z_{\alpha} - \sqrt{\frac{n}{V}} \text{MMD}^2 \right)$$

$$= 1 - \Phi \left(z_{\alpha} - \sqrt{\frac{n}{V}} \text{MMD}^2 \right)$$

$$= \Phi \left(\sqrt{\frac{n}{V}} \text{MMD}^2 - z_{\alpha} \right),$$
(2)

where $Z \sim \mathcal{N}(0,1)$ and Φ is the CDF of Z. Observe that the power behaves like $\Phi(\Theta(\sqrt{n}))$. The expression for power holds for general alternatives i.e., $H_0: P = Q$.

2.1 Challenges in high dimensions

The goal of this paper is to characterize the power as $(n,d) \to \infty$, not just $n \to \infty$, under the mean-shift alternatives i.e., $H_0: \mu_P = \mu_Q$ and $H_1: \mu_P \neq \mu_Q$ where $\mu_P = \mathbb{E}_{x \sim P}[x]$. There are four challenges

- 1. MMD does not depend on n. But, it depends on d.
- 2. The variance V in the last line depends on d.
- 3. We relied on the fact that $F \to Z$ as $n \to \infty$. Does it still hold if $(n,d) \to \infty$?
- 4. We need $\hat{V} \to V$ in Eq. 2. Is it still true if $(n, d) \to \infty$?

We will see that the power can still be characterized under the assumption that $(n,d) \to \infty$.

3 Assumptions and contributions

Assumptions

- 1. (A1) $x_i = Us_i + \mu_P \in \mathbb{R}^d$. Similarly, $y_i = Ut_i + \mu_Q$. The d coordinates are i.i.d. zero-mean, and U is orthogonal i.e., $UU^{\top} = I$.
 - Note that U is the same for both x and y. Also, it is assumed that the moments of s and t are the same. This should not be a problem as it only makes H_0 more difficult to reject. The derived power should still holds even when the moments of s and t are different. The authors did not comment on this point.

- A1 implies that $\mathbb{V}[x] = \mathbb{V}[y] = \sigma^2 I$ because $\mathbb{V}[x] = \mathbb{E}_s[Uss^\top U^\top] = U(\sigma^2 I)U^\top$. This means x and y have spherical covariances, but not necessarily follow a Gaussian. According to the paper, the results still hold even with a diagonal covariance.
- 2. (A2) $\mathbb{E}[|s_{(k)}|^6] < \infty$ and $\mathbb{E}[|t_{(k)}|^6] < \infty$ where $\cdot_{(k)}$ means the k^{th} coordinate. This implies that all moments up to 6 exist.
 - The existence of 3^{rd} and 4^{th} moments is needed for the Berry-Esseen lemma to guarantee that $F \to Z$ and $\hat{V} \to V$ when $(n, d) \to \infty$.
 - The existence of 6^{th} moments is to bound the Taylor expansion of $\exp(-x)$ for the Gaussian kernel.
- 3. (A3) Assume $k(x,y) = \exp\left(-\frac{\|x-y\|^2}{\gamma^2}\right)$, a Gaussian kernel with width γ .

3.1 Main result

Define $\delta := \mu_P - \mu_Q$. Let $\sigma^2 := \mathbb{E}[s_{(k)}^2] = \mathbb{E}[t_{(k)}^2] = \mathbb{V}[x_{(k)}]$.

Theorem 1. Consider the mean-shift alternatives. Assume $\gamma = \Omega(\sqrt{d})$. Under A1-A3, with $(n,d) \to \infty$, the asymptotic test power β of MMD_l^2 is

$$\beta = \Phi\left(\frac{\sqrt{n}\|\delta\|^2}{\sqrt{8d\sigma^4 + 8\sigma^2\|\delta\|^2}} - z_\alpha\right).$$

The notation $\gamma = \Omega(\sqrt{d})$ means $\limsup_{d\to\infty} \gamma/\sqrt{d} > 0$. That is, γ grows at least as fast as \sqrt{d} .

Remarks about the theorem

- 1. The power is independent of the Gaussian bandwidth γ as long as $\gamma = \Omega(\sqrt{d})$. In particular, this growth rate applies to the popular median heuristic. The assumption that $\gamma = \Omega(\sqrt{d})$ is to control the residual term in the Taylor expansion of the Gaussian kernel.
- 2. Define the signal to noise ratio (SNR) as $\Psi := \|\delta\|/\sigma$. The power behaves like $\Phi\left(\frac{\sqrt{n}\Psi^2}{\sqrt{8d+8\Psi^2}} z_{\alpha}\right)$. A natural question to ask: when is the power independent of d? This is characterized by the following corollaries.

Corollary 1. If $\Psi = o(\sqrt{d})$ i.e., $\lim_{d\to\infty} \Psi/\sqrt{d} = 0$ (SNR is small), then $\beta \to 1$ at the rate $\Phi\left(\sqrt{n}\Psi^2/\sqrt{d}\right)$.

Corollary 2. If $\Psi = \omega(\sqrt{d})$ i.e., $\lim_{d\to\infty} \sqrt{d}/\Psi = 0$ (SNR is large), then $\beta \to 1$ at the rate $\Phi(\sqrt{n}\Psi)$.

The switch occurs at Ψ being on the order of \sqrt{d} .

4 Proof of the theorem

We need to address the four challenges in Sec. 2.1. We first consider four lemmas.

Lemma 1. Under A1-A3 and $\gamma = \Omega(\sqrt{d})$,

$$MMD^{2} = \frac{2\|\delta\|^{2}}{\gamma^{2}} (1 + o(1)).$$

The idea of the proof relies on the use of Taylor's expansion for the Gaussian kernel. The first term of the MMD^2 is

$$\mathbb{E}_x \mathbb{E}_{x'} k(x, x') = \int_{\mathbb{R}^d} \exp\left(-\frac{\|x - y\|^2}{\gamma^2}\right) p(x) p(y) \, \mathrm{d}x \mathrm{d}y = \left(1 - \frac{2\sigma^2}{\gamma^2}\right)^d,$$

relying on Taylor expansion of $\exp(-x)$ around 0 i.e., $\exp\left(-\frac{\|x-y\|^2}{\gamma^2}\right) = 1 - \frac{\|x-y\|^2}{\gamma^2} + \frac{\exp\left(-\lambda \frac{\|x-y\|^2}{\gamma^2}\right) \|x-y\|^2}{2\gamma^4}$ for some $\lambda \in [0,1]$. This gives the expression for MMD² to be used in Eq. 3.

Lemma 1 is wrong? Kacper and Arthur found that the expression of MMD^2 does not match the one given, when applied to the case where P, Q are Gaussians.

Lemma 2. Under A1-A3 and $\gamma = \Omega(\sqrt{d})$, $V = \mathbb{V}_{z,z'}h(z,z')$ (from here on the definition of V changed a bit) is given by

$$V = \frac{16d\sigma^4 + 16\sigma^2 ||\delta||^2}{\gamma^4} (1 + o(1)).$$

The proof involves a long algebra as a result of expanding the definition $V = \mathbb{E}_{z,z'}h^2(z,z') - \text{MMD}^4$. This will be used in Eq. 3.

Lemma 3 (Berry-Esseen bound). Under A1-A3 and $\gamma = \Omega(\sqrt{d})$,

$$\sup_{t} \left| p \left(\frac{\sqrt{n} \left(\text{MMD}_{l}^{2} - \text{MMD}^{2} \right)}{\sqrt{2V}} \le t \right) - \Phi(t) \right| \le 20 / \sqrt{n}.$$

The proof is more or less directly given by the Berry-Esseen theorem which gives a bound on the difference of CDF of $\frac{\sqrt{n}}{\sigma} \times \text{empirical}$ average (which follows a Gaussian by the central limit theorem) and $\Phi(t)$. Berry-Esseen theorem requires the existence of the third moment. We need this to conclude that $F \to Z$ in Eq. 2.

Lemma 4. Under A1-A3 and
$$\gamma = \Omega(\sqrt{d})$$
, $\sqrt{\hat{V}/V} = 1 + O_P(n^{-1/4})$.

The proof relies on a general theorem characterizing the bias and variance of U-statistics given in Serfling [1980, Theorem A, Sec. 2.2.3].

Proof of the theorem

- By Lemma 4, $\hat{V} \to V$ in Eq. 1.
- By Lemma 3, $F \to Z$ in Eq. 2 when $(n, d) \to \infty$.
- We get the theorem by using Lemma 1 to rewrite MMD^2 in Eq. 3, and Lemma 2 to rewrite V in Eq. 3.

References

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Scholkopf, and Alexander Smola. A Kernel Two-Sample Test. *Journal of Machine Learning Research*, 13:723–773, March 2012. URL http://jmlr.csail.mit.edu/papers/v13/gretton12a.html. 1, 2

Aaditya Ramdas, Sashank J. Reddi, Barnabas Poczos, Aarti Singh, and Larry Wasserman. On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-difference Alternatives. arXiv:1411.6314 [cs, math, stat], November 2014. URL http://arxiv.org/abs/1411.6314. arXiv: 1411.6314. 1

R. J. Serfling. Approximation theorems of mathematical statistics. Wiley series in probability and mathematical statistics. Wiley, New York, 1980. ISBN 0-471-02403-1. URL http://opac.inria.fr/record=b1086006. Includes indexes. 4