北京科技大学 2009—2010 学年度第二学期

一.填空题(本题每小题3分,共1 1.甲乙射击一个目标,甲命中的概率 中的概率是。	5分) ^医 是 0.6,乙命中的概率是 0.7,两人同时各射击一次,目标被命
2. 若 ξ 服从 $(0,5)$ 上的均匀分布,那么	么方程 $4x^2 + 4\xi x + \xi + 2 = 0$ 有实根的概率是。
3. 若二维随机变量 (X,Y) 在以原点	为圆心的单位圆内的概率密度为 $\frac{1}{\pi}$, 其它区域都是 0, 那么
$P\left\{X<\frac{1}{2}\right\}=\underline{\hspace{1cm}}$ °	
4. 设 η_n 是 n 次独立试验中事件 A 出现	见的次数, p 为 A 在每次试验中出现的概率,则对任意的 $\varepsilon > 0$,
有 $\lim_{n\to+\infty} P\left\{\left \frac{\eta_n}{n}-p\right >\varepsilon\right\}=$	
5. 若 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是参数 θ 的无偏估计量,且 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,这时我们通常称统计量 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 。 二. 选择题(本题每小题 3 分,共 15 分)	
,	
(A) P(A)-P(B)	(B) $P(A)-P(AB)$
(C) $P(A)-P(B)+P(AB)$	(D) $P(A)+P(B)-P(AB)$
2. 已知 X,Y 是相互独立的随机变量,	同分布于标准正态分布。有人作出如下四个论断:
(1) X+Y 服从正态分布,但是 X-	-Y 不服从正态分布;
(2) <i>X</i> + <i>Y</i> 服从标准正态分布;	
(3) <i>X</i> + <i>Y</i> 与 <i>X</i> - <i>Y</i> 是不相关的;(4) <i>X</i> + <i>Y</i> 与 <i>X</i> - <i>Y</i> 是相互独立的。	
在这四个断言中,正确断言的个数是	<u>1</u>
	(C) 3 (D) 4
3. 设 X_1, X_2, \dots, X_n 相互独立, 且同	$]$ 分布于标准正态分布,下列随机变量中服从 χ^2 – 分布的
是。	
$(A) X_1 + X_2 + \dots + X_n$	(B) $(X_1 + X_2 + \dots + X_n)^2$
(C) $\sqrt{X_1^2 + X_2^2 + \dots + X_n^2}$	(D) $X_1^2 + X_2^2 + \dots + X_n^2$
4. 设 X_1, X_2, \dots, X_n 是来自某总体的一是。	一个样本,下面统计量中可以作为总体均值 μ 的无偏估计量的
••	$\frac{X_2 + \dots + X_n}{n}$ (C) $\frac{X_1 + X_2 + \dots + X_n}{n-1}$ (D) $\frac{X_1 + X_2 + \dots + X_n}{n} - \mu$

- 5. 设 X,Y 是相互独立的随机变量,它们的分布函数分别为 $F_{x}(x),F_{y}(y)$,则 $Z = \max(X,Y)$ 的分布函 数是。
 - (A) $F_{z}(z) = F_{y}(z)F_{y}(z)$
- (B) $F_z(z) = \max(|F_x(z)|, |F_y(z)|)$
- (C) $F_Z(z) = \max(F_X(z), F_Y(z))$ (D) $F_Z(z) = 1 \max(F_X(z), F_Y(z))$
- 三. (本题 14 分)设随机变量 X 服从区间(0,1)上的均匀分布,记 $Z = -\ln X$ 。
 - 求: (1) 随机变量 Z 的分布函数以及分布密度;
 - (2) 概率 $P\{Z > 2|Z > 1\}$;
 - (3) 若 Y_1, Y_2 独立且与X同分布,求 $Y = Y_1 + 2Y_2$ 的分布密度。
- 四. (本题 18 分) 独立抛掷骰子 420 次,以 X_k (1 $\leq k \leq$ 420) 记第 k 次抛掷得到的点数, $X = \sum^{420} X_k$ 表 示抛掷的总点数。
 - (1) 请写出 X_{ι} (1 \leq k \leq 420) 的分布律;
 - (2) 计算 $X_1 + X_2 + X_3 = 6$ 的概率;
 - (3) 计算 X_k (1 $\leq k \leq 420$) 的数学期望及方差;
 - (4) 计算X 的数学期望及方差:
 - (5)请你给出一个点数的范围,使得抛掷420次骰子的总点数落入该范围的概率不低于0.95。
- 五. (本题 16 分) 以函数 $f(x) = \frac{1}{2a}e^{\frac{|x|}{a}}$, a > 0, 为其概率密度函数的分布称为拉普拉斯分布。
 - (1) 求拉普拉斯分布的数学期望和方差;
 - (2) 若有一总体服从拉普拉斯分布,其中a>0是未知参数。现有来自该总体的容量为n的样本 X_1, X_2, \dots, X_n , 试求参数 a 的矩估计量与极大似然估计量;
 - (3) 若有一组样本观察值为5,-2,3,-3,2,用上述两种方法给出参数 a 的估计值。
- 六. (本题 15 分) 某批零件,其重量应服从正态分布 $N\left(\mu,\sigma^2\right)$,其中 μ,σ^2 都是未知的。从中抽取容 量为9的一个样本,样本值为(单位:公斤)

5. 5 5. 4 5, 8 5.3 5.3 5. 6 5. 7 5. 2 5. 7.

- (1) 求零件重量 μ 的置信区间,置信度为0.95;
- (2) 是否可以认为这批零件的重量 $\mu_0 = 5.1$? 显著性水平 $\alpha = 0.05$;
- (3) 是否可以认为这批零件的重量 $\mu \le 5.1$? 显著性水平 $\alpha = 0.05$ 。

已知数据: $z_{0.05} = 1.65$; $t_{0.05}(8) = 1.860$; $t_{0.05}(9) = 1.833$; $t_{0.05}(10) = 1.813$;

$$z_{0.025} = 1.96$$
; $t_{0.025}(8) = 2.306$; $t_{0.025}(9) = 2.262$; $t_{0.025}(10) = 2.228$.

- 七. (本题7分)有甲乙两只口袋,甲袋中有两只白球,三只红球;乙袋中有两只白球,两只红球。 从甲袋中随机抽取一只球放入乙袋,然后再从乙袋中随机抽取一只球放回甲袋。
 - (1) 请你分析此时甲袋中最有可能的情况是什么?
 - (2) 若此时甲袋中球的情况没有发生变化,请分析第一次的取球情况。