Landmarks Detection by Applying Deep Networks

Van-Linh LE^{1,3}, Marie BEURTON-AIMAR¹, Akka ZEMMARI¹, Nicolas PARISEY²

linhlv@dlu.edu.vn/van-linh.le@labri.fr, beurton@labri.fr
akka.zemmari@labri.fr, nicolas.parisey@inra.fr

¹LaBRI-CNRS 5800, Bordeaux University, France ²IGEPP, INRA 1349 Rennes, France ³ITDLU, Dalat University, Vietnam

MAPR. Conference

Ho Chi Minh City, 5-6 April, 2018

Context

Morphometry analysis

- Used to study the complex interaction between the evolution of insect and environmental factors.
- Characterize the common information of biological shape, such as, shape, sizes, or landmarks,....

Landmark

- A kind of point of interest
- ➤ A specific point defined by biologist. For example, intersection of viens on fly wing, the tip of beetle's mandible,...

Dataset

2

- Images have been taken from 293 beetles, seperate into 5 parts (images),
- ► Format: 2D in RGB color.
- ► Focus on **pronotum** images.

(a) Left mandible

(b) Right mandible

(c) Body

(d) Head

Problems

With segmentable images:1

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Problems

With segmentable images:1

With un-segmentable images:

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Problems

With segmentable images:1

With un-segmentable images:

How to predict the landmarks coordinates?

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Content

Deep learning and Convolutional Neural Networks

Deep learning Convolutional neural networks (CNNs)

Proposed method

Network architectures Data augmentation Training

Result

Conclusion

Deep learning

Definition

- ► A class of machine learning¹,
- Use a cascade of multiple layers for feature extraction and transformation,
- Learn multiple levels of representation in supervised or unsupervised.

¹ Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, 2015

Deep learning

Definition

- ► A class of machine learning¹,
- Use a cascade of multiple layers for feature extraction and transformation,
- Learn multiple levels of representation in supervised or unsupervised.

Applications

- Computer vision (image recognition and classification)²
- Speech recognition³
- ▶ Question answering ⁴, language translation⁵

¹ Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, 2015

²A. Krizhevsky et al, "Imagenet classification with deep convolutional neural networks", 2012.

 $^{^3}$ T. N. Sainath et al, "Deep convolutional neural networks for lvcsr", 2013.

⁴ A. Bordes et al, "Question answering with subgraph embeddings", 2014.

⁵I. Sutskever et al, "Sequence to sequence learning with neural networks", 2014.

CNNs

- 6
- Consists an input, an output and multiple hidden layers¹
- ► Arranges the data in 3 dimensions: width, height and depth
- Classical layers: convolutional layers (CONV), pooling layers (POOLING), dropout layers (DROPOUT), full-connected layers (FC), . . .

¹ Y. LeCun et al, "Convolutional networks and applications in vision", 2010.

The first model includes:

- An gray-scale input,
- 3 CNN layers,
- ▶ 3 POOLING layers,
- ▶ 3 FC layers.

Problems:

- Output is not good enough,
- Overfitting.

The second model:

- Has the same architecture with the first one,
- Modify the output of FC layers,
- Result is not improved.

The third model includes:

- An gray-scale input,
- 3 CNN layers,
- ▶ 3 POOLING layers,
- 4 DROPOUT layers,
- ▶ 3 FC layers.

Proposed method Data augmentation

Dataset: 293 pronotum images in RGB format.

Proposed method Data augmentation

Augmentation methods:

► Increase the value of each channel,

Proposed method Data augmentation

Augmentation methods:

► Split the channels.

Proposed method

Data augmentation

Dataset: 293 pronotum images in RGB format. Augmentation methods:

- ▶ Increase the value of each channel,
- ▶ Split the channels.

Total: $293 \times 7 = 2051$ images

Proposed method Training

- ▶ Model: the third model in 5000 epochs²
- ► Training dataset: 1820 images (260 × 7)
- ► Testing set: 33 images
- ► Images shows training and validation losses of the models. Blue curves are training losses, green curves are validation losses.

(b) The third architecture

²An epoch is a single pass through the full training set.

Result Landmarks on images

Images show the result on testing images.

(a)

(b)

Result Average distance

- Run the trained model to predict the landmarks on testing images,
- Calculate the distance between predicted landmarks and corresponding manual landmarks,
- Compute the average distance of all images per landmark.

#Landmark	Distance (in pixels)		
1	4.002		
2	4.4831		
3	4.2959		
4	4.3865		
5	4.2925		
6	5.3631		
7	4.636		
8	4.9363		

Result

Statistic on acceptable predicted landmarks

Chart shows the propotion of acceptable predicted landmarks

- ▶ Average accuracy: ~ 75%
- ► Highest accuracy: 87.88%
- ► Lowest accuracy: 66.67%

Result

Distribution of distance on the first landmark

► Good prediction: 56.66%

Acceptable prediction: 40.27%

▶ Bad prediction: 3.07%

Result Comparing with related works

Quality metrics: coefficient of determination (r^2) , explained variance (EV), Pearson correlation.

Metric	r ²	EV	Pearson
Cintast et al.3	0.884	0.951	0.976
Proposed architecture	0.9952	0.9951	0.9974

³ Cintas, "Automatic ear detection and feature extraction using geometric morphometrics and convolutional neural networks," IET Biometrics, vol. 6, no. 3, pp. 211–223, 2016

Conclusion

Conclusion

- Proposed a CNN to predict the landmarks on pronotum images.
- Proposed procedure to augment the dataset.
- ► The location of the predicted landmarks are acceptable with high accuracy (~75%). It allows to replace manual landmarks.

Conclusion

Conclusion

- Proposed a CNN to predict the landmarks on pronotum images.
- Proposed procedure to augment the dataset.
- ► The location of the predicted landmarks are acceptable with high accuracy (~75%). It allows to replace manual landmarks.

Future works

Continue improving the landmarks coordinates by continuing on deep learning, *for example*, using transfer learning.

