

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЁТ

к лабораторной работе №1 по дисциплине «Математическое и копмьютерное моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.
Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.) (подпись)

Профессор к.ф.-м. н.

Пермяков М. С. (подпись)

« 17 » апреля 2024 г.

г. Владивосток

2024

Содержание

1	Вве	дение	3
2	Пос	троение математической модели	4
	2.1	Модель с терморегулятором	5
3	Ана	лиз модели	6
4	Вычислительные эксперименты		
	4.1	Вычисление точек покоя	8
	4.2	Алгоритм	8
	4.3	Программа	8
	4.4	Модель без терморегулятора	12
	4.5	Модель с терморегулятора	13
5	Zar	пиление	15

1. Введение

В повседневном мире люди каждый день используют различные приборы нагревания. Например, микроволновка для разогревания еды, утюг для глажки вещей, радиатор для нагревания помещения и т. д.

Однако, таких приборов существует большое количество и все они имеют различные параметры, которые влияют на скорость нагрева. И в быту людей интересует как быстро нагреется тот или иной прибор. Для этого можно создать математическую модель, которая будет учитывать параметры нагревателей и показывать изменение температуры.

Будем рассматривать электрические нагреватели, которые могут иметь или не иметь терморегулятора.

2. Построение математической модели

Главной характеристикой любого нагревателя является его температура. При включении нагревателя со временем температура изменяется. Поэтому нужно найти зависимость температуры (K) от времени (c): T(t).

Сделаем предположение, что нагревательный элемент состоит из одного материала и окружающая температура постоянная и равна T_0 .

Процесс нагревания можно описать уравнением теплового баланса. Изменение внутренней энергии тела на ΔQ (Дж) описывается формулой:

$$\Delta Q = cm\Delta T,$$

где c – удельная теплоёмкость тела $\left(\frac{\Pi \mathbb{X}}{\mathsf{K}\Gamma \cdot \mathsf{K}}\right)$, m – масса тела (кг), ΔT - изменение температуры.

Поскольку наш нагревательный прибор работает от электричества, он потребляет мощность во время работы, за счёт чего изменяет свою внутреннюю энергию:

$$\Delta Q_1 = P\Delta t$$

где P – мощность (Вт), Δt – изменение времени.

На внутреннюю энергию также влияют входящие и исходящие тепловые потоки. На единицу площади за единицу времени исходящий поток изменяет энергию на -kT, а входящий на kT_0 , где k>0 - коэффициент, который зависит от конструкции. Учитывая тепловые потоки, внутрення энергия изменяется на

$$\Delta Q_2 = -kS(T - T_0)\Delta t,$$

где S – площадь нагревателя (M^2).

Также любое тело, нагретое выше абсолютного нуля, начинает изучать, что описывает закон Стефана-Больцмана. На единицу площади за единицу времени нагреватель излучает энергию равную $-\sigma T^4$, а изучение из внешней сре-

ды изменяет энергию на σT_0^4 , где $\sigma \approx 5.68 \cdot 10^{-8} \frac{\rm Br}{\rm m^2 K^4}$ – постоянная Стефана– Больцмана. Значит, общее изменение энергии за счёт излучения:

$$\Delta Q_3 = -\sigma S(T^4 - T_0^4) \Delta t.$$

В итоге, применяя закон теплового баланса, получаем:

$$cm\Delta T = P\Delta t - kS(T - T_0)\Delta t - \sigma S(T^4 - T_0^4)\Delta t.$$

Делим обе части на $cm\Delta t$ и совершаем предельный переход при $\Delta t \to 0$:

$$\frac{dT}{dt} = \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

Получили дифференциальное уравнение, которое описывает поведение температуры нагревателя. Для получения единственного решения добавим начальное условие: $T(0) = T_0$.

2.1. Модель с терморегулятором

В быту, для того чтобы нагреватель не нагревался до опасных температур, целесообразно ограничить максимальную температуру. Для этого введём функцию «переключатель», которая по достижении максимальной температуры T_{max} отключит нагреватель, и после чего по достижении температуры включения T_{min} снова включит его.

$$H(T, T_{max}, T_{min}) = \begin{cases} 0, T > T_{max}, \\ 1, T < T_{min}. \end{cases}$$

Добавляя в уравнение:

$$\frac{dT}{dt} = \frac{P \cdot H(T, T_{max}, T_{min}) - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

3. Анализ модели

Найдём точки равновесия дифференциального уравнения.

$$\frac{dT}{dt} = 0 \Rightarrow \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm} = 0.$$

Заметим, что удельная теплоёмкость и масса находятся в знаменателе, а значит не влияют на нули, однако они влияют на скорость изменения температуры.

$$T^4 + \frac{k}{\sigma}T - \left(T_0^4 + \frac{kT_0 + \frac{P}{S}}{\sigma}\right) = 0.$$

Уравнение четвёртой степени, а значит оно имеет ровно 4 корня на С. Поставим задачу определить тип этих корней: их положительность или комплексность.

Для удобства переобозначим:

$$a = \frac{k}{\sigma} > 0, \quad b = \left(T_0^4 + \frac{kT_0 + \frac{P}{S}}{\sigma}\right) > 0, \quad T^4 + aT - b = 0.$$

Воспользуемся теоремой Декарта: «Число положительных корней многочлена с вещественными коэффициентами равно числу перемен знаков в ряду его коэффициентов или на чётное число меньше этого числа». Знак коэффициентов нашего уравнения меняется только раз — между последними двумя, значит существует ровно один положительный корень. Подставляя в уравнение T=-T, найдём количество отрицательных корней.

$$T^4 - aT - b = 0.$$

Знак меняется также один раз, значит существует ровно один отрицательный корень.

Из предыдущего следует, что остаётся два комплексных корня. Покажем это. Данное уравнения можно свести к кубическому уравнению разольвенты

$$x^4 + px^2 + qx + r = 0 \Rightarrow y^3 - 2py^2 + (p^2 - 4r)y + q^2 = 0,$$

корни которой связаны с корнями исходного уравнения

$$y_1 = (x_1 + x_2)(x_3 + x_4), y_2 = (x_1 + x_3)(x_2 + x_4), y_3 = (x_1 + x_4)(x_2 + x_3).$$

Сведём наше уравнения к разольвенте

$$y^3 + 4by + a^2 = 0.$$

Данное уравнение представлено в виде $(y^3 + py + q = 0)$, к которому можно применить формулу Кардано, а более конкретно, найти величину Q, которая определит типы корней.

$$Q = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2 = \left(\frac{4b}{3}\right)^3 + \left(\frac{a^2}{2}\right)^2.$$

Поскольку Q>0, то у уравнения один вещественный корень и два сопряжённых комплексных.

Из того, что среди y_i есть комплексный корень, следует, что и среди корней T_i тоже есть комплексный. Известно, что комплексные корни многочленов с вещественными коэффициентам всегда образуют комплексно-сопряжённые пары, значит, что среди T_i есть комплексно-сопряжённая пара.

В итоге получили, что уравнение имеет один положительный, один отрицательный и пару комплексно-сопряжённых корней.

Исследуем устойчивость. Воспользуемся методом первого приближения. Вычислим производную и найдём значения, при которых она отрицательная. Обозначим правую часть дифференциального уравнения за R.

$$\frac{dR}{dT} = \frac{-kS - 4\sigma ST^3}{cm} < 0 \Rightarrow T > -\sqrt[3]{\frac{k}{4\sigma}}$$

Значит любой положительный корень будет устойчивым, но не любой отрицательный будет неустойчивым.

4. Вычислительные эксперименты

4.1. Вычисление точек покоя

Вычислим теоретически точки покоя и проверим результаты полученные при анализе. Возьмём параметры:

$$P = 3000$$
Вт, $m = 0.5$ кг, $c = 897 \frac{Дж}{кг \cdot K}$, $S = 0.4$ м², $k = 2$, $T_0 = 296$ К.

Найдём точки устойчивости уравнения с данными параметрами:

$$T_1 = -645.06..., T_2 = 599.58..., T_{3,4} = 22.73... \pm i623.15...$$

Данные точки согласуются с теоретическим анализом. Исследуем вещественные нули.

$$\left. \frac{dR}{dT} \right|_{T_1} = 0.053 \dots, \quad \left. \frac{dR}{dT} \right|_{T_2} = -0.045 \dots$$

Для T_1 получили положительное значение, значит данное положение равновесия неустойчивое. Для T_2 получили отрицательное, значит оно устойчивое.

4.2. Алгоритм

Для компьютерного вычисления будем использовать метод Рунге-Кутты, с помощью которого получим численное решение дифференциального уравнения с заданными параметрами.

4.3. Программа

Для расчётов и визуализации была написана программа с использованием языка Python и библиотек numpy и matplotlib.

3

ı **import** numpy as np

import matplotlib.pyplot as plt

```
def runge_kutta(function, y0: float, a: float, b: float, h: float):
       num = int((b - a) / h + 1)
       x_a = np.linspace(a, b, num=num, endpoint=False)
       y a = [y0] * num
       for i in range(num - 1):
10
           k0 = function(x_a[i], y_a[i])
11
           k1 = function(x_a[i] + h / 2, y_a[i] + h * k0 / 2)
12
           k2 = function(x_a[i] + h / 2, y_a[i] + h * k1 / 2)
13
           k3 = function(x_a[i] + h, y_a[i] + h * k2)
14
           y_a[i + 1] = y_a[i] + h / 6 * (k0 + 2 * k1 + 2 * k2 + k3)
15
16
       return x_a, np.array(y_a)
17
19
  KC = 276
20
   sigma = 5.67e-8
22
  T_l = 190 + KC
  T_u = 200 + KC
25
  is_turned = True
27
   def H1(T):
       global is_turned
29
30
       if T > T_u:
31
           is_turned = False
32
       elif T < T l:</pre>
33
           is_turned = True
34
35
       return int(is_turned)
37
   def H0(T):
38
       return 1.
39
  H = ()
  leg = []
```

```
def utug(P, m, c, S, k):
        def dTdt(t, T):
45
             return (P * H(T) - k * S * (T - T0) - sigma * S * (T**4 - T0**4)) / (c *
46
                  m)
        x = np.linspace(a, b, n)
48
49
        x, y = runge_kutta(dTdt, T0, a, b, (b-a)/n)
50
        \# y -= KC
51
        leg.append(f''\{P_{\sqcup}=_{\sqcup}\},_{\sqcup}\{m_{\sqcup}=_{\sqcup}\},_{\sqcup}\{c_{\sqcup}=_{\sqcup}\},_{\sqcup}\{k_{\sqcup}=_{\sqcup}\}'')
        plt.plot(x, y)
53
54
   a, b = 0, 250
55
   n = 10000
56
58
   P = 3000
   m = 0.5
   с = 897 # Алюминий
   S = 0.4
   k = 2
   T0 = 20 + KC
   def roots():
66
        def diff(T):
67
             return (-4 * sigma * S * T**3 - k * S) / (c*m)
68
69
        coeff = np.zeros(5)
70
        coeff[0] = sigma
71
        coeff[3] = k
72
        coeff[4] = -sigma*T0**4 - k*T0 - P/S
73
74
75
        for root in np.roots(coeff):
76
             print(root, diff(root))
77
78
   def without_term():
79
        global H
        H = H0
81
        utug(P, m, c, S, k)
82
```

```
utug(P, 1.0, c, S, k)
83
        utug(P, m, 554, S, k) # Чугун
84
        utug(P, m, c, S/2, k)
85
        utug(2500, m, c, S, k)
86
        utug(P, m, c, S, 4)
88
        plt.legend(leg)
89
90
        plt.plot([a, b], [600, 600], 'y--')
91
        plt.savefig("./sem6-matmodelling/utug1.pdf")
93
   def with_trem(P, m, c, S, k):
94
        global H, T_l, T_u
95
        H = H1
96
        leg2 = []
97
        def al2():
98
            leg2.append(f"T_min_u=u{T_l}, uT_max_u=u{T_u}")
99
100
        T l = 490
101
        T_u = 500
102
        al2()
103
104
        utug(P, m, c, S, k)
105
        T_l = 530
106
        T u = 560
107
        al2()
108
        utug(P, m, c, S, k)
109
110
        T_l = 510
111
        T u = 515
112
        al2()
113
        utug(P, m, c, S, k)
114
115
        plt.legend(leg2)
116
        plt.savefig("./sem6-matmodelling/utug2.pdf")
117
118
119
120
   plt.xlabel('t⊔-⊔Время')
121
   plt.ylabel('T(t)_-_Tемпература_в_кельвинах')
```

```
124 # without_term()
125 with_trem(2500, 1, c, S/2, 2)
126
127 plt.xlabel('tu-uBpeмя')
128 plt.ylabel('T(t)u-uТемпературацвыкельвинах')
129 plt.xlim([a,b])
130 plt.show()
```

Итогом программы является график с одним или несколькими решениями дифференциального уравнения на некотором отрезке времени $[0,t_0]$.

4.4. Модель без терморегулятора

Построим несколько решений уравнения для модели без терморегулятора с разными параметрами.

Рис. 1: Графики при $T_0 = 296$.

На графике (Рис. 1) построены несколько решений с указанными параметрами, а также жёлтый пунктир на отметке T=600 — округлённое значение точки равновесия, найденное при анализе.

Как можно увидеть, первые три решения, которые отличаются только массой и удельной теплоёмкостью, возрастают до определённого значения — точки равновесия.

Остальные различаются в параметрах, которые влияют на максимальное значение, что можно также увидеть.

4.5. Модель с терморегулятора

Построим несколько решений уравнения для модели с терморегулятором с разными параметрами. На каждом рисунке находятся решения дифференциального уравнения с одними и теми же параметрами, кроме максимальной и минимальной температуры терморегулятора.

Рис. 2: Графики при $P=3000 {\rm Bt}, \; m=0.5 {\rm kf}, \; c=897 \frac{\rm Дж}{\rm kf}, \; S=0.4 {\rm m}^2, \; k=2, \; T_0=296 {\rm K}.$

Рис. 3: Графики при

$$P=2500 {
m Bt}, \; m=0.4 {
m kr}, \; c=554 {
m rac{\Pi {
m w}}{{
m kr} \cdot {
m K}}}, \; S=0.2 {
m m}^2, \; k=4, \; T_0=296 {
m K}.$$

Рис. 4: Графики при

$$P=2500$$
Вт, $m=1$ кг, $c=897\frac{\mbox{Дж}}{\mbox{кг}\cdot\mbox{K}},~S=0.2\mbox{m}^2,~k=2,~T_0=296$ К.

5. Заключение

Таким образом, была построена математическая модель электрического нагревателя с терморегулятором и без него. Написанная программа позволяет построить графики изменения температуры в зависимости от времени, а также найти найти максимальную температуру модели с конкретными параметрами.