Chapitre 26

Intégration sur un segment

26	Intégration sur un segment	1
	26.12Image d'une fonction en escalier	2
	26.14Subdivision commune	2
	26.15Structure de l'ensemble des fonctions en escalier	2

26.12 Image d'une fonction en escalier

Propostion 26.12

L'image d'une fonction en escalier est un ensemble fini. En particulier, une fonction en escalier est bornée.

Si $v = {\sigma_0, \dots, \sigma_n}$ est une subdivision associée à f, alors :

$$|Im(f)| \le \underbrace{n}_{\text{valeurs sur chaque intervalle ouvert}} + \underbrace{n+1}_{\text{valeurs de } f(v_i)} = 2n+1$$

26.14 Subdivision commune

Lemme 26.14

Soit f et g deux fonctions en escalier. Il existe une subdivision commune associée à f et g.

Si σ est une subdivision associée à f et τ est une subdivision associée à g :

$$\sigma \cup \tau \leq \sigma \\ \leq \tau$$

Donc $\sigma \cup \tau$ est une subdivision commune associée à f et g.

26.15 Structure de l'ensemble des fonctions en escalier

Théorème 26 15

L'ensemble Esc([a,b]) des fonctions en escalier sur [a,b] est un sous-espace vectoriel de $\mathbb{R}^{[a,b]}$ (c'est même une sous-algèbre).

PRAS (26.14)