Private Data Stream Analysis for Universal Symmetric Norm Estimation

Vladimir Braverman Joel Manning Steven Wu Samson Zhou

Symmetric Norms

❖ A norm is symmetric if it is invariant under permutations and sign flips on an input frequency vector

$$a = [1,3,-2,0,0,5,-2,4]$$

 $b = [1,3,2,0,0,5,2,4]$
 $c = [0,0,1,2,2,3,4,5]$
 $||a|| = ||b|| = ||c||$
 $L(a) = L(b) = L(c)$

L_p Norms

 \clubsuit Let F_p be the frequency moment of the vector $f \in \mathbb{R}^n$:

$$F_p = f_1^p + f_2^p + \dots + f_n^p$$

 \clubsuit Then the L_p norm of the frequency vector f is:

$$L_p(f) = \left(F_p(f)\right)^{1/p}$$

- \Leftrightarrow Goal: Given an accuracy parameter α , output a $(1 + \alpha)$ -approximation to L_p
- Motivation: Entropy estimation, linear regression

Differential Privacy

❖ [DworkMcSherryNissimSmith06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$,

$$\Pr[A(f) \in E] \le e^{\varepsilon} \Pr[A(f') \in E] + \delta$$

Multiple Privately Queries

ightharpoonup Privately query $f \in \mathbb{R}^n$ multiple times?

- \clubsuit Add noise to each query with scale parameter depending on the number Q of queries
- \diamondsuit Accuracy degrades as the number Q of queries increases

Can we answer multiple queries without sacrificing accuracy?

"Beating the union bound"

"Avoid privacy analysis per algorithm"

Streaming Model

- Arrow Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

Symmetric Norms in the Streaming Model

 \Leftrightarrow Given a stream S of m elements from [n], let f_i be the frequency of element i. (How often it appears)

❖ Goal: Given a stream S of length m that defines a frequency vector $f ∈ R^n$ and an accuracy parameter α , output a $(1 + \alpha)$ -approximation to ||f||, using space sublinear in n and m

Our Result

There exists an (ε, δ) -differentially private algorithm such that:

- \clubsuit Input: on a stream S of length m that defines a frequency vector $f \in \mathbb{R}^n$ that
- **Output:** a set C, from which the $(1 + \alpha)$ -approximation to any symmetric norm with maximum modulus of concentration M can be computed with probability 1δ .
- \clubsuit The algorithm uses $M^2 \cdot \operatorname{poly}\left(\frac{1}{\alpha}, \frac{1}{\varepsilon}, \log(n, m), \log\frac{1}{\delta}\right)$ space

Applications

- ❖ For L_p norms, $M(\ell) = O(\log m)$ for $p \in [1,2]$ and $M(\ell) = O(n^{1/2-1/p})$ for p > 2 [MilmanSchectman86, KlartagVershynin07]
- \diamond Our algorithm achieves space $\operatorname{poly}\log(m)$ for $p\in[1,2]$ and $\tilde{O}\left(n^{1-2/p}\right)$ for p>2 in the constant α and $\delta=\frac{1}{\operatorname{poly}(m)}$ regime
- Matches known lower bounds up to log factors [Bar-YossefJayramKumarSivakumar04]
- ❖ For top k norms, $M(\ell) = \tilde{O}\left(\sqrt{\frac{n}{k}}\right)$ [BlasiokBravermanChestnutKrauthgamerYang17]

Maximum Modulus of Concentration

 \clubsuit Maximum modulus of concentration [MilmanSchectman86] of a norm measures the worst-case ratio of the maximum value to the median value of a norm on the L_2 -unit sphere for any restriction of the coordinates

Intuitively, quantifies the "difficulty" of computing a norm

Modulus of Concentration

- ❖ Let $f ∈ R^n$ be a random vector drawn from the uniform distribution on the L_2 -unit sphere S^{n-1}
- ❖ Let b_L denote the maximum value of L(f) over S^{n-1} and let M_L denote the median of L(f), i.e., the unique value such that $\Pr[L(f) \ge M_L] \ge \frac{1}{2}$ and $\Pr[L(f) \le M_L] \ge \frac{1}{2}$

Arr The ratio $\operatorname{mc}(L) = \frac{b_L}{M_L}$ is the modulus of concentration of L

Modulus of Concentration

 b_L is the maximum value of L(f) over S^{n-1} M_L is the median of L(f)

Maximum Modulus of Concentration

 \clubsuit Maximum modulus of concentration of a norm is the maximum of the modulus of concentration of the norm restricted to subcoordinates of \mathbb{R}^n

Definition is robust to "average" norms that "hide" challenging behavior embedded in lower-dimensional space

$$L(x) = \max\left(\frac{L_1(x)}{\sqrt{n}}, L_{\infty}(x)\right)$$

Symmetric Norms

❖ A norm is symmetric if it is invariant under permutations and sign flips on an input frequency vector

$$a = [1,3,-2,0,0,5,-2,4]$$

 $b = [1,3,2,0,0,5,2,4]$
 $c = [0,0,1,2,2,3,4,5]$
 $||a|| = ||b|| = ||c||$

Approximating Symmetric Norms

� Only care about number of coordinates in each range $[\xi^i, \xi^{i+1})$ for some $\xi > 1$ a function of the desired accuracy parameter α

```
v = [0,0,1,2,2,3,4,5]
#coordinates in [1,2): 1
\xi = 2 #coordinates in [2,4): 3
#coordinates in [4,8): 2
```

Level Sets

Level set i is the set of coordinates with magnitude in range ξ^i, ξ^{i+1}

Contribution of Level Sets

The contribution of the level set is the "amount" the level set contributes to the norm of the entire frequency vector

$$v = [0,0,1,2,2,3,4,5]$$

 $v' = [0,0,0,2,2,3,0,0]$

Level set 1

Important Level Sets

A level set is *important* if its contribution is an $\frac{\alpha}{O(\log m)}$ fraction of the norm of the entire frequency vector

It suffices to estimate the contribution of the important level sets within $\left(1 + \frac{\alpha}{o(\log m)}\right)$ -approximation

[BlasiokBravermanChestnutKrauthgamerYang17]

Important Level Sets

Intuition: Important level sets must either have large magnitude coordinates or a large number of coordinates

$$v = [1,1,1,...,1,1,10000]$$

$$[1,1,1,...,1,1,0]$$

 $[0,0,0,...,0,0,10000]$

How to privately release important level sets?

Important Level Sets

� Definition: Define thresholds T_1 and T_2 . A level set i is "high" if $\xi^i \geq T_1$. A level set i is "medium" if $\xi^{i+1} \leq T_1$ and $\xi^i \geq T_2$. A level set i is "low" if $\xi^{i+1} \leq T_2$

❖ Intuition: Important high level sets have large coordinates, important low level sets have a large number of coordinates, important medium level sets have a combination of the two

Heavy-Hitters

- \clubsuit Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- \clubsuit Let L_2 be the norm of the frequency vector:

$$L_2 = \sqrt{f_1^2 + f_2^2 + \dots + f_n^2}$$

- \clubsuit Goal: Given a set S of m elements from [n] and a threshold ε , output the elements i such that $f_i > \varepsilon L_2$...and no elements j such that $f_j < \frac{\varepsilon}{16} L_2$
- Motivation: DDoS prevention, iceberg queries

CountSketch

- \clubsuit Given a threshold/accuracy parameter α , there exists a one-pass streaming algorithm COUNTSKETCH that outputs an estimated frequency for each element, with additive error $\alpha \cdot L_2(f)$
- \clubsuit The algorithm uses $O\left(\frac{1}{\alpha^2}\log^2 m\right)$ space

CountSketch

 \Leftrightarrow COUNTSKETCH with threshold/accuracy parameter $O\left(\frac{\text{poly}(\alpha, \varepsilon)}{M \text{ poly} \log m}\right)$ will find the important high level sets because their magnitude is so large, but it will miss the others

$$c = [1,1,1,...,1,1,100000]$$

$$[1,1,1,...,1,1,0]$$

$$[0,0,0,...,0,0,100000]$$

Subsampling the Universe

Sample coordinates of the universe with probability $\frac{1}{2^j}$ for $j = 0,1,...,O(\log n)$ [IndykWoodruff05]

```
c = [1,1,1,1,1,1,1,1,...,1,1,1,1,1,1,1,1,1,0000]

[1,0,1,0,0,1,0,...,1,0,0,1,1,1,0000]

[1,0,0,0,0,1,0,...,0,0,1,0,0]
```

The important medium and low level sets will be heavy-hitters in the subsampled streams!

Subsampling the Universe

Sample coordinates of the universe with probability $\frac{1}{2^j}$ for $j = 0,1,...,O(\log n)$ [IndykWoodruff05]

```
c = [1,1,1,1,1,1,1,1,...,1,1,1,1,1,1,1,1,1,0000]

[1,0,1,0,0,1,0,...,1,0,0,1,1,1,0000]

[1,0,0,0,0,1,0,...,0,0,1,0,0]
```

Will find the important medium and low level sets

Towards Privacy

PRIVCOUNTSKETCH, private release of heavy-hitters, by adding Laplacian noise to each coordinate

\$\leftrigo Even though PRIVCOUNTSKETCH estimates n frequencies, only $O\left(\frac{1}{\alpha^2}\right)$ frequencies are released, so only need to add Laplacian noise with scale $O\left(\frac{1}{\alpha^2}\right)$

Towards Privacy

\Leftrightarrow Even Laplacian noise with scale $O\left(\frac{1}{\alpha^2}\right)$ is too much noise for important low level sets

Instead add Laplacian noise to the size of each important low level set Important High Level Sets

PRIVCOUNTSKETCH

Private magnitudes of coordinates

Important
Medium Level
Sets

Subsampling

PRIVCOUNTSKETCH
+ Rescaling level set
sizes

Private sizes of level sets

Important Low Level Sets

Subsampling

Adding noise to level set sizes

Private sizes of level sets

Additional Challenges

❖ Privately identify coordinates for each level set → Two instances of PRIVCOUNTSKETCH

❖ Classification error for each level set from privacy noise → Thresholds are robust for high, medium, and low important levels

❖ Classification error for each level set from frequency estimation → Randomly choose boundaries of each level set

Summary

There exists an (ε, δ) -differentially private algorithm such that:

- \clubsuit Input: on a stream S of length m that defines a frequency vector $f \in \mathbb{R}^n$ that
- **Output:** a set C, from which the $(1 + \alpha)$ -approximation to any symmetric norm with maximum modulus of concentration M can be computed with probability 1δ .
- \clubsuit The algorithm uses $M^2 \cdot \operatorname{poly}\left(\frac{1}{\alpha}, \frac{1}{\varepsilon}, \log(n, m), \log \frac{1}{\delta}\right)$ space
- Algorithm splits important level sets into high, medium, and low coordinates and separately releases private statistics for each