

Team Member

Theeranat Sringamdee 6410412014

Navapol Sanguansub 6410422002

Pakawut Kamolrungwarakul 6410422003

Supisara Poopair 6410422024

Kantima Techaphonprasit 6410422027

Agenda

Real-Time Model

- Assumption
- Data Sources
- EDA
- Diagram

- Data Management
- Data Monitoring

(Grafana Dashboard)

Analytical insights and Conclusion

ASSUMPTION

เพราะ อากาศ KU10 ทำให้ ค่าฝู่น PM2.5 พุ่งสูงขึ้น थि หรือไม่?

ตามปกติแล้วอากาศที่อยู่บริเวณเหนือพื้นดินจะมีอุณหภูมิสูงกว่าอากาศที่ลอยอยู่บนท้องฟ้า และ<mark>อากาศจะ</mark> เคลื่อนตัวจากบริเวณที่อุณหภูมิสูงไปยังอุณหภูมิต่ำ (พื้นดิน → ท้องฟ้า) หมายความว่าในภาวะปกติ อากาศเหนือพื้นดินที่มี อุณหภูมิสูงจะเคลื่อนตัวขึ้นไปยังชั้นบรรยากาศที่สูงขึ้นเรื่อยๆ และจะพัดพาเอาฝุ่นละออง ควัน และสิ่งอื่นๆ ที่ปะปนอยู่ในอากาศ ลอยขึ้นไปด้วย

แต่ในช่วงฤดูหนาว หรือช่วงปลายฤดูหนาว ประเทศไทยของเราจะได้รับความกดอากาศสูงจากทางตอนเหนือแผ่ลง มาปกคลุม ทำให้อุณหภูมิในประเทศต่ำลง ส่งผลให้พื้นดินมีการคายความร้อนอย่างรวดเร็ว อากาศเหนือพื้นดินจึงเริ่มเย็นลงตาม ไปด้วย ทำให้การเคลื่อนตัวของอากาศเกิดการเปลี่ยนแปลง เรียกว่าภาวะอุณหภูมิผกผัน (Temperature inversion) มีอากาศ ร้อนเข้าไปแทรกอยู่ตรงกลางกลายเป็นเกราะหนาคล้ายเพดานห้อง ทำให้อากาศไม่ไหลเวียนตามปกติ ไม่มีลม ไม่มีการถ่ายเทอากาศ หรือที่เรียกกันว่า **'อากาศปิด'** ดังนั้น วันที่อากาศปิดซึ่งจะเกิดในช่วงหน้าหนาว **จึงเป็นวันที่มีค่าฝุ่นละออง หรือ PM2.5** พุ่งสูง เพราะฝุ่นเหล่านี้โดนเพดานเกราะปิดกั้นเอาไว้ไม่ให้ลอยขึ้นสู่ชั้นบรรยากาศ จึงสะสมกันอยู่บนท้องฟ้า และบางครั้งก็สามารถ มองเห็นได้ด้วยตาเปล่า ซึ่งเมื่อถึงวันที่อากาศเปิด หรือความกดอากาศสูงพัดผ่านไป อากาศสามารถเคลื่อนตัวได้ตามปกติ ฝุ่น ละอองขนาดเล็ก PM2.5 ก็จะเบาบางลง

Data Source and 4 Parameters

Area: Bangkok

Time scope:

5 Aug 2022 - 31 Dec 2022 (hourly)

1) PM 2.5 (μg/m³)

smaller than 2.5 μ m (PM_{2.5}) close to surface (10 meter above ground)

2) UV_index

UV index considering clouds and clear sky.

3) Temperature_2m (°C)

Air temperature at 2 meters above ground

4) Relativehumidity_2m (%)

Relative humidity at 2 meters above ground

https://open-meteo.com/en/docs/air-quality-api

https://www.weatherapi.com/docs/#apis-example

เมื่อเข้าสู่ฤดูหนาว ตั้งแต่เดือนตุลาคมเป็นต้นไป ค่า PM 2.5 เริ่มพุ่งสูงขึ้น จนเป็นอัตรายต่อสุขภาพ

Air pollutants measured in AQI

Daily Average PM 2.5 in 5 months

https://www.igair.com/th-en/newsroom/what-is-ag

Pattern ของค่า PM 2.5
ในช่วงฤดูหนาว (ต.ค. - ธ.ค.)
ค่อนข้างชัดเจนว่าค่า PM 2.5
จะเธิ่มพุ่งสูงขึ้นในช่วงกลางคืน
ขณะที่เดือน ส.ค.และ ก.ย.
ค่า PM 2.5 จะสูงในช่วงกลางวัน
และในฤดูหนาวค่า PM 2.5 จะสูงกว่า
เดือนอื่นๆอย่างเห็นได้ชัด

Average PM2.5 per month in each hour

อุณหภูมิ, ความชื้น และ UV index ต่างก็มีความสัมพันธ์ที่เป็น pattern กับเวลาในแต่ละช่วงวัน แต่ความสัมพันธ์ของค่า PM 2.5กับเวลา ไม่ค่อยชัดเจนนัก

The Relationship of Each Parameter To Hour

แน่นอนว่าค่า UV index และอุณหภูมิ ย่อมมีความสัมพันธ์กันและกัน เห็นได้จากค่า Correlation 0.55 แต่สำหรับ PM 2.5 กับค่า Parameters อื่นๆ ค่อนข้างมีความสัมพันธ์กันต่ำ เห็นได้จากค่า Correlation และ Scatter plot ที่ไม่มี pattern

Diagram

Data sources 1

- 1) PM 2.5 (μg/m³)
- 2) UV_index

Data sources 2

- 3) Temperature_2m (°C)
- 4) Relativehumidity_2m (%)

Grafana

Data Management

```
lines=read_file('./data/air_quality.csy
                                                           Switch to coding
 lines2=read_file('./data/temperature.csv
 lines_len=len(lines)
 lines=read_file('./data/air_quality.csv')
 lines2=read_file('./data/temperature.csv')
 lines_len=len(lines)
v for i in range(lines_len):
     lst=tranform(lines[i])
     1st2=tranform(lines2[i])
     df_temp_source1=pd.DataFrame({'time':[lst[0]],'pm2_5':[lst[1]],'uv_index':[lst[2]]})
     df_temp_source2=pd.DataFrame({'time':[1st2[0]],'temperature_2m':[1st2[1]],'relativehumidity_2m':[1st2[2]]})
     df=pd.merge(df_temp_source1,df_temp_source2,on='time')
     df['us_aqi_level']=df['pm2_5'].apply(lambda x:us_aqi_level(x))
     df['rh_level']=df['relativehumidity_2m'].apply(lambda x:rh_level(x))
     data_str = json.dumps(df.to_dict('records')[0])
     data = data_str.encode("utf-8")
     future = publisher.publish(topic_path, data)
     print(future.result())
     time.sleep(2)
```

Diagram

Data sources 1

- 1) PM 2.5 (μg/m³)
- 2) UV_index

Data sources 2

- weather 3) Temperature_2m (°C)
- apl 4) Relativehumidity_2m (%)

Grafana

Data Monitoring

