Derivation of Lasso Regression Equations

Mohamed Hozien

December 8, 2024

Contents

	TIY	pothesis Function	2
2	Cos	t Function	2
3		dient Descent	3
	3.1		3
	3.2	Gradient of L1 Regularization	
	3.3	Total Gradient	4
		ght Update Rule	4
		nmary of Key Equations	4
		nmary of Key Equations	
	Sun	nmary of Key Equations	4
	Sun 5.1	nmary of Key Equations Hypothesis	4 4 4
	Sun 5.1 5.2	mmary of Key Equations Hypothesis	4 4 4 4
	Sun 5.1 5.2 5.3	mmary of Key Equations Hypothesis	4 4 4 4

1 Hypothesis Function

The hypothesis function models the linear relationship between the input features X and the target y. It is defined as:

$$\hat{y} = Xw + b$$

Where:

- X is the feature matrix of size $m \times n$, where m is the number of samples and n is the number of features.
- w is the weight vector of size $n \times 1$.
- b is the bias term, which can be included as part of w if a column of ones is appended to X.

For a single training sample \mathbf{x}_i , the predicted value \hat{y}_i is:

$$\hat{y}_i = \sum_{j=1}^n w_j x_{ij} + b$$

For all m samples, it is written in matrix form as:

$$\hat{y} = Xw + b$$

2 Cost Function

The cost function for Lasso Regression combines the Mean Squared Error (MSE) with an L1 regularization penalty. It is defined as:

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{n} |w_i|$$

Where:

- \hat{y}_i is the predicted value for the *i*-th sample.
- y_i is the true value for the *i*-th sample.
- λ is the L1 regularization strength.
- w_j represents the weight (parameter) of the model for the j-th feature.

The MSE term is:

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

The L1 regularization penalty is:

L1 Penalty =
$$\lambda \sum_{j=1}^{n} |w_j|$$

The total cost function is:

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 + \lambda \sum_{j=1}^{n} |w_j|$$

3 Gradient Descent

To update the weights w and bias b, we compute the gradients of the cost function J(w) with respect to each parameter w_i .

3.1 Gradient of MSE

The derivative of the MSE with respect to the weight w_j is:

$$\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i) x_{ij}$$

In vectorized form, it is written as:

$$\nabla_w \text{ MSE} = \frac{1}{m} X^T (\hat{y} - y)$$

3.2 Gradient of L1 Regularization

The derivative of the L1 regularization term $|w_j|$ with respect to w_j is:

$$\frac{d}{dw_j}|w_j| = \operatorname{sign}(w_j)$$

Thus, the total gradient of the L1 penalty is:

$$\nabla_w L1 = \lambda \operatorname{sign}(w)$$

3.3 Total Gradient

The total gradient of the cost function J(w) with respect to w is the sum of the gradients of the MSE and the L1 penalty:

$$\nabla_w J = \nabla_w \operatorname{MSE} + \nabla_w \operatorname{L1}$$

Substituting the two gradients, we get:

$$\nabla_w J = \frac{1}{m} X^T (\hat{y} - y) + \lambda \operatorname{sign}(w)$$

4 Weight Update Rule

Using the gradient descent algorithm, the weight w is updated as follows:

$$w = w - \alpha \nabla_w J$$

Where α is the learning rate. Substituting the total gradient of J(w), we get:

$$w = w - \alpha \left(\frac{1}{m}X^{T}(\hat{y} - y) + \lambda \operatorname{sign}(w)\right)$$

5 Summary of Key Equations

Here is a summary of the key equations for Lasso Regression.

5.1 Hypothesis

$$\hat{y} = Xw + b$$

5.2 Cost Function

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{n} |w_i|$$

5.3 Gradient of MSE

$$\nabla_w \text{ MSE} = \frac{1}{m} X^T (\hat{y} - y)$$

5.4 Gradient of L1 Regularization

$$\nabla_w L1 = \lambda \operatorname{sign}(w)$$

5.5 Total Gradient

$$\nabla_w J = \frac{1}{m} X^T (\hat{y} - y) + \lambda \operatorname{sign}(w)$$

5.6 Weight Update Rule

$$w = w - \alpha \nabla_w J$$