

Optimal Real-Time Bidding for Display Advertising

Weinan Zhang, Shuai Yuan, Jun Wang

University College London

{w.zhang, s.yuan, j.wang}@cs.ucl.ac.uk

27 August 2014, KDD

US Real-Time Bidding (RTB) Digital Display Ad Spending, 2012-2017

billions, % change and % of total digital display ad spending

RTB digital display ad spending

% change % of total digital display ad spending

Note: includes all display formats served to all devices Source: eMarketer, Dec 2013

166097

What is Real-Time Bidding?

- Every online ad impression can be evaluated, bought, and sold, all individually, and all instantaneously.
- Instead of buying a bundle of impressions,
 advertisers are now buying users directly.

An Example

Weinan regularly reads articles on emarketer.com

Weinan recently checked the London hotels

Relevant ads on facebook.com

Even on supervisor's homepage! (User targeting dominates the context)

indirect spending will grow from 28% to 78%.

Scientifically, the further demand for automation, integration and optimization in RTB brings

٤

£223.38

Book now

£87.00

Book now

£134.10

Book now

How RTB works

Our Scope

Objective

Campaign's Key Performance Indicator

For example: Expected click number

Optimal bidder: the formulation

Functional Optimisation Problem

$$b()_{\mathrm{OI}} \ b()_{\mathrm{ORTB}} = \underset{b()}{\operatorname{arg\,max}} \ N_T \int_{\theta}^{\bullet} \theta w(b(\theta)) p_{\theta}(\theta) d\theta \iff \text{context+ad features}$$
 subject to
$$N_T \int_{\theta}^{\bullet} b(\theta) w(b(\theta)) p_{\theta}(\theta) d\theta \le B \implies \text{budget}$$
 Cost upper bound

- Components
 - x, the bid request, user and ad features
 - $\theta(x)$, the CTR prediction function
 - $b(\theta(x), x)$, the bidding function
 - w(b,x), the win probability function
- Dependency assumption:

Optimal bidder: the formulation

Functional Optimisation Problem

$$b()_{\mathrm{OI}} \ b()_{\mathrm{ORTB}} = \underset{b()}{\operatorname{arg\,max}} \ N_T \int_{\theta}^{\bullet} \theta w(b(\theta)) p_{\theta}(\theta) d\theta \ \leftarrow \ \text{context+ad features}$$

$$\text{subject to} \ N_T \int_{\theta}^{\bullet} b(\theta) w(b(\theta)) p_{\theta}(\theta) d\theta \leq B \\ \leftarrow \text{budget}$$

$$\text{Cost upper bound}$$

Solution: Calculus of variations

$$\mathcal{L}(b(\theta), \lambda) = \int_{\theta} \theta w(b(\theta)) p_{\theta}(\theta) d\theta - \lambda \int_{\theta} b(\theta) w(b(\theta)) p_{\theta}(\theta) d\theta + \frac{\lambda B}{N_T}$$

$$\lambda w(b(\theta)) = \left[\theta - \lambda b(\theta)\right] \frac{\partial w(b(\theta))}{\partial b(\theta)}$$

Bid Landscape: w(bid)

Optimal bidding strategy: the solution

(a) Winning function 1.

$$w(b(\theta)) = \frac{b(\theta)}{c + b(\theta)}$$

(b) Bidding function 1.

$$w(b(\theta)) = \frac{b(\theta)}{c + b(\theta)} \qquad b_{\text{ORTB1}}(\theta) = \sqrt{\frac{c}{\lambda}}\theta + c^2 - c$$
$$\lambda w(b(\theta)) = \left[\theta - \lambda b(\theta)\right] \frac{\partial w(b(\theta))}{\partial b(\theta)}$$

Optimal bidding strategy: the solution

$$w(b(\theta)) = \frac{b^2(\theta)}{c^2 + b^2(\theta)} \qquad b_{\text{ORTB2}}(\theta) = c \cdot \left[\left(\frac{\theta + \sqrt{c^2 \lambda^2 + \theta^2}}{c \lambda} \right)^{\frac{1}{3}} - \left(\frac{c \lambda}{\theta + \sqrt{c^2 \lambda^2 + \theta^2}} \right)^{\frac{1}{3}} \right]$$

$$\lambda w(b(\theta)) = \left[\theta - \lambda b(\theta)\right] \frac{\partial w(b(\theta))}{\partial b(\theta)}$$

Optimal bidding strategy: the solution

Thus reduce the bids at high CTR or CVR

Experiment

- We used iPinYou's dataset¹
 - 9 Campaigns, 15M impressions, 11K clicks, 935 conversions
- Evaluated bidding strategies
 - Const: Constant
 - Rand: Random
 - Mcpc: Bidding based on advertiser's given max eCPC [Chen et al. 2011]
 - <u>Lin</u>: Linear to pCTR [Perlich et al. 2012]
 - ORTB1, ORTB2: Optimal bidding strategies with two forms of winning rate functions

Offline Test Evaluation Flow

Overall performance – Optimising Clicks

Higher improvement when budget is more limited

Overall performance – Optimising Conversions

Online Evaluation Result of iPinYou Bidding Algorithm Competition Third Season

The iPinYou global RTB bidding algorithm competition third and last season has been successfully concluded. The UCL-CA, V_V, PoundsXXX, Run_Fast and Tiger teams have participated in the three-day online finals from Dec 26th,2013 to Dec 28th,2013. The final results, which have been carefully checked by the committee and audited by the jury, are as follows:

rank	team	score
1	UCL-CA	1304
2	V_V	983
3	Run Fast	901
4	PoundsXXX	885
5	Tiger	744

where the final score = clicks + N * reaches, N = 1 The sensible choice of N does not influence the final ranking.

Online Test

Parameter tuning – λ for ORTB1

Summary

Utility CTR/CVR **Estimator** Our **Optimal** Optimisation Cost **Bidding Function** Framework Bid Landscape Model Budget, Auction Volume

Future works

- More detailed bid landscape
 - From bid → P(win) to (bid, features) \rightarrow P(win)
- Control the dynamics
- Cold start problems

Thank You! Questions?

See our work on publisher-side optimisation:
Shuai Yuan et al. **An Empirical Study of Reserve Price Optimisation in Real-Time Bidding**1PM Wednesday, industrial & gov. track