Estimation of Distribution Algorithms for Permutation-based Optimization Problems

Josu Ceberio

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
University of the Basque Country UPV/EHU

NICaiA: Nature Inspired Computation and its Applications Meeting Donostia, 22-23 April 2013

Outline

- 1 Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **6** Some Experiments
- **6** Conclusions

Outline

- 1 Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **5** Some Experiments
- **6** Conclusions

Evolutionary Algorithms

Similar to Genetic Algorithms

Given set of candidate individuals

Given set of candidate individuals

Learn a probability distribution

Given set of candidate individuals

Learn a probability distribution

Sample the probability distribution to obtain the new population

Estimation of Distribution Algorithms

Extensively used for a wide variety of problems.

Extensively used for a wide variety of problems.

But not so much on permutation-based optimization problems.

Outline

- Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **5** Some Experiments
- 6 Conclusions

Permutation-based Optimization Problems Definition

A specific subset of NP-Hard optimization problems.

Permutation-based Optimization Problems Definition

Problems whose solution can be naturally represented as a permutation.

Permutation-based Optimization Problems What is a permutation?

A permutation π is...

Permutation-based Optimization Problems What is a permutation?

A permutation π is...

...a bijection of the set $\{1,\ldots,n\}$ into itself, $\pi=(\pi(1),\ldots,\pi(n))$.

Permutation-based Optimization Problems What is a permutation?

$$\pi = (1, 4, 5, 8, 2, 6, 3, 7)$$
 $n = 8$

Travelling Salesman Problem

Travelling Salesman Problem

Quadratic Assignment Problem

Travelling Salesman Problem

Quadratic Assignment Problem

Linear Ordering Problem

Travelling Salesman Problem

Quadratic Assignment Problem

Linear Ordering Problem

Rank Aggregation Problem

Travelling Salesman Problem

Quadratic Assignment Problem

Linear Ordering Problem

Rank Aggregation Problem

Flowshop Scheduling Problem

Travelling Salesman Problem

Quadratic Assignment Problem

Linear Ordering Problem

Rank Aggregation Problem

Flowshop Scheduling Problem

Let an $n \times n$ matrix $B = [b_{ij}]$ be given.

Let an $n \times n$ matrix $B = [b_{ij}]$ be given.

Determine a simultaneous permutation of rows and columns of H such that the sum of superdiagonal entries is maximized.

$$f(\pi) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{\pi(i)\pi(j)}$$

0	16	11	15	7
21	0	14	15	9
26	23	0	26	12
22	22	11	0	13
30	28	25	24	0

(1, 2, 3, 4, 5) f= 138

21 0 14 15 9 26 23 0 26 12 22 22 11 0 13 30 28 25 24 0	0	16	11	15	7	
22 22 11 0 13	21	0	14	15	9	
	26	23	0	26	12	→
30 28 25 24 0	22	22	11	0	13	
	30	28	25	24	0	

(1, 2, 3, 4, 5)	f= 138	(2, 3, 1, 4, 5)	f= 158
-----------------	--------	-----------------	--------

0	14	21	15	9
23	0	26	26	12
16	11	0	15	7
22	11	22	0	13
28	25	30	24	0

12

13

0	16	11	15	7		0	14	21	15	9
21	0	14	15	9		23	0	26	26	12
26	23	0	26	12	→	16	11	0	15	7
22	22	11	0	13		22	11	22	0	13
30	28	25	24	0		28	25	30	24	0
(1,	2, 3,	4, 5)	f= 1	138	•	(2,	3, 1,	4, 5)	f= 1	58

0	25	24	28	30
12	0	26	23	26
13	11	0	22	22
9	14	15	0	21
7	11	15	16	0

f= 247

(5, 3, 4, 2, 1)

Applications

Aggregation of Individual Preferences
Triangulation of Input-Output tables in economy
Ranking in Sports Tournaments
Scheduling with Precedences

Given a set of n jobs and m machines and known processing times p_{ij}

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Example n=5 & m=4

M1

M2 M3

M4

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

Permutation-based Optimization Problems The Flowshop Scheduling Problem (FSP)

Given a set of n jobs and m machines and known processing times p_{ij}

Find the sequence for scheduling jobs optimally.

$$\pi = (1, 3, 2, 5, 4)$$

Outline

- Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **5** Some Experiments
- 6 Conclusions

Existing approaches Adaptations of existing EDAs

EDAs for discrete domains: UMDA, MIMIC, Dependency Trees, EBNA

Existing approaches Adaptations of existing EDAs

EDAs for discrete domains: UMDA, MIMIC, Dependency Trees, EBNA

Learn a probability distribution over a set $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ where $\Omega_i = \{1, \dots, r_i\}$ and $r_i \in \mathbb{N}, i = 1, \dots, n$.

Existing approaches Adaptations of existing EDAs

EDAs for discrete domains: UMDA, MIMIC, Dependency Trees, EBNA

Learn a probability distribution over a set $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ where $\Omega_i = \{1, \dots, r_i\}$ and $r_i \in \mathbb{N}, i = 1, \dots, n$.

The sampling does not provide a permutation individual, but an individual in Ω .

Existing approaches Adaptations of existing EDAs

EDAs for discrete domains: UMDA, MIMIC, Dependency Trees, EBNA

Learn a probability distribution over a set $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ where $\Omega_i = \{1, \dots, r_i\}$ and $r_i \in \mathbb{N}, i = 1, \dots, n$.

Modifying the sampling step (PLS), the learnt relation between variables is denaturalized.

Existing approaches Adaptations of existing EDAs

Standard representations are not effective due to the **mutual** exclusivity constraints associated with permutations.

Existing approaches Adaptations of existing EDAs

EDAs for the real domain: UMDA_c, MIMIC_c, EGNA

Existing approaches Adaptations of existing EDAs

EDAs for the real domain: $UMDA_c$, $MIMIC_c$, EGNA

The sampled real vectors are transformed into permutations with the Random Keys strategy.

```
\begin{array}{lll} (0.30,\ 0.10,\ 0.40,\ 0.20) \\ (0.25,\ 0.14,\ 0.35,\ 0.16) \\ (0.60,\ 0.20,\ 0.80,\ 0.40) & \rightarrow & (3,\ 1,\ 4,\ 2) \\ (0.33,\ 0.05,\ 0.35,\ 0.29) \\ (0.27,\ 0.15,\ 0.31,\ 0.20) \end{array}
```

Existing approaches Adaptations of existing EDAs

EDAs for the real domain: $UMDA_c$, $MIMIC_c$, EGNA

The sampled real vectors are transformed into permutations with the Random Keys strategy.

However, the high redundancy between the sampled real vectors and the permutations make this approaches very ineffective.

Existing approaches Models based on low-order marginals

Maintain the information relative of first order marginals, i.e. the probability of item i being at position j.

Existing approaches Models based on low-order marginals

Maintain the information relative of first order marginals, i.e. the probability of item i being at position j.

Node Histogram-Based Sampling Algorithm (NHBSA)

Edge Histogram-Based Sampling Algorithm (EHBSA)

Existing approaches Experiments

EDAs	TSP	QAP	LOP	FSP
UMDA	0.507	0.029	0.151	0.053
MIMIC	0.676	0.039	0.149	0.035
EBNA _{BIC}	0.505	0.031	0.150	0.054
TREE	1.255	0.052	0.176	0.060
$UMDA_c$	1.279	0.211	0.330	0.153
$EGNA_{ee}$	1.183	0.165	0.311	0.142
IDEA-ICE	1.209	0.080	0.174	0.073
$EHBSA_{wt}$	0.003	0.025	0.137	0.027
NHBSA _{wt}	1.068	0.011	0.136	0.027

Models based on low-order marginals A Natural Extension - Store higher order marginals

Calculate the probability of a specific set of items (i_1, \ldots, i_k) being at specific positions (j_1, \ldots, j_k) .

Models based on low-order marginals A Natural Extension - Store higher order marginals

Calculate the probability of a specific set of items (i_1, \ldots, i_k) being at specific positions (j_1, \ldots, j_k) .

By increasing the order of the marginals, better performance is obtained,

...but the computation is not longer affordable.

Outline

- Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **5** Some Experiments
- **6** Conclusions

A distance-based exponential model.

A distance-based exponential model.

Analogous over permutations to the Gaussian distribution.

A distance-based exponential model.

Analogous over permutations to the Gaussian distribution.

Two parameters:

Consensus ranking σ_0

Spread parameter θ

A distance-based exponential model.

Analogous over permutations to the Gaussian distribution.

Two parameters:

Consensus ranking σ_0

Spread parameter θ

Kendall- τ distance: counts the number of pairwise disagreements.

A distance-based exponential model.

Analogous over permutations to the Gaussian distribution.

Two parameters:

Consensus ranking σ_0

Spread parameter θ

Kendall- τ distance: counts the number of pairwise disagreements.

Probability distribution:

$$P(\sigma) = rac{1}{\psi(heta)} \mathrm{e}^{- heta D_{ au}(\sigma, \sigma_0)}$$

Probability Models on Rankings The Mallows EDA- Experiments

A preliminary approach - Flowshop Scheduling Problem

Instance	MaEDA	EHBSA	NHBSA
20×05	0.010	0.003	0.006
20×10	0.025	0.006	0.007
50×10	0.034	0.032	0.033
100×10	0.008	0.019	0.015
100×20	0.066	0.067	0.063

NHBSA and EHBSA can be outperformed.

Probability Models on Rankings The Mallows EDA- Experiments

Drawbacks:

Unimodality

Permutations at the same distance from σ_0 have the same probability

Probability Models on Rankings Multistage Ranking Models

If the distance D can be written as

$$D(\pi,\sigma) = \sum_{j=1}^{n-1} V_j(\pi,\sigma)$$

and the V_j are independent under the uniform distribution

Probability Models on Rankings Multistage Ranking Models

If the distance D can be written as

$$D(\pi,\sigma) = \sum_{j=1}^{n-1} V_j(\pi,\sigma)$$

and the V_j are independent under the uniform distribution, then the Mallows model can be generalized to a n-parameters model

$$P(\sigma) \propto \exp(-\sum_{i=1}^{n-1} \theta_j V_j(\sigma, \sigma_0))$$

Probability Models on Rankings Multistage Ranking Models

If the distance D can be written as

$$D(\pi,\sigma) = \sum_{j=1}^{n-1} V_j(\pi,\sigma)$$

and the V_j are independent under the uniform distribution, then the Mallows model can be generalized to a n-parameters model

$$P(\sigma) \propto \exp(-\sum_{j=1}^{n-1} \theta_j V_j(\sigma, \sigma_0))$$

The Generalized Mallows model.

Probability Models on Rankings The Generalized Mallows EDA - The Flowshop Scheduling Problem

Outperformed the best performing EDAs.

The Generalized Mallows EDA - The Flowshop Scheduling Problem

	AGA	VNS_4	GM-EDA	HGM-EDA
20×05	13932	13932	13934	13932
20×10	20003	20003	20009	20003
20×20	32911	32911	32920	32911
50×05	66301	66757	66309	13932
50×10	85916	86479	86948	85958
50×20	121294	121739	122830	121317
100×05	240102	242974	241346	240122
100×10	288988	292425	292472	288902
100×20	374974	378402	379691	374664
200×10	1039507	1048520	1046146	1036303
200×20	1243928	1252165	1252545	1237959
250×10	1047364	1055969	1054471	1043985
250×20	1249242	1258841	1259104	1244851
250×10	1602649	1613663	1610820	1594830
250×20	1867750	1879368	1880471	1859296
300×10	2248455	2262178	2266665	2236464
300×20	2606219	2616542	2618186	2589509
350×10	3045116	3060581	3077427	3026653
350×20	3472808	3486846	3513912	3458190
400×10	3915780	3933989	4000044	3915542
400×20	4435249	4450237	4584215	4461403
450×10	4922402	4943671	5140331	4975776
450×20	5554795	5566587	5830506	5618526
500×20	6754943	6770472	7225665	6861070

Probability Models on Rankings The Generalized Mallows EDA - The Flowshop Scheduling Problem

The proposed approach outperformed the state-of-the-art algorithms of the FSP.

The contribution of the Generalized Mallows EDA was essential for its success.

Probability Models on Rankings The Plackett-Luce model - Definition

Based on the Luce's Choice Axiom, this model assumes that the ranking process is composed of a sequence of stages, choosing the most preferred item of the remaining items at each stage.

Probability Models on Rankings The Plackett-Luce model - Definition

Based on the Luce's Choice Axiom, this model assumes that the ranking process is composed of a sequence of stages, choosing the most preferred item of the remaining items at each stage.

A parameters vector $\mathbf{w} = (w_1, w_2, \dots, w_n)$ defines the preference of each item to be ranked in top rank.

Probability Models on Rankings The Plackett-Luce model - Definition

Based on the Luce's Choice Axiom, this model assumes that the ranking process is composed of a sequence of stages, choosing the most preferred item of the remaining items at each stage.

A parameters vector $\mathbf{w} = (w_1, w_2, \dots, w_n)$ defines the preference of each item to be ranked in top rank.

Formally,

$$P(\pi|\mathbf{w}) = \prod_{i=1}^{n-1} \frac{w_{\pi\langle i\rangle}}{\sum_{j=i}^{n} w_{\pi\langle j\rangle}}$$

The Plackett-Luce model - Vase model interpretation

A vase with infinite coloured balls.

The Plackett-Luce model - Vase model interpretation

A vase with infinite coloured balls.

With known proportions of each colour. (w_r, w_g, w_b) .

The Plackett-Luce model - Vase model interpretation

A vase with infinite coloured balls.

With known proportions of each colour. (w_r, w_g, w_b) .

Draw balls from the vase until an ordering of coloured balls is obtained.

The Plackett-Luce model - Vase model interpretation

Stage 1

We draw a ball. And it is red.

The probability to extract a red ball at this stage is:

$$\frac{w_r}{w_r + w_g + w_b}$$

The Plackett-Luce model - Vase model interpretation

Stage 1

We draw a ball. And it is red.

The probability to extract a red ball at this stage is:

$$\frac{w_r}{w_r + w_g + w_b}$$

$$\pi = \bigcirc$$

$$P(\pi) = \frac{w_r}{w_r + w_g + w_b}$$

The Plackett-Luce model - Vase model interpretation

Stage 2

We draw another ball. And it is green.

The probability to extract a green ball from the remaining balls is:

$$\frac{w_g}{w_g + w_k}$$

The Plackett-Luce model - Vase model interpretation

Stage 2

We draw another ball. And it is green.

The probability to extract a green ball from the remaining balls is:

$$\frac{w_g}{w_g + w_k}$$

$$\pi = \bigcirc$$

$$P(\pi) = \frac{w_r}{w_r + w_g + w_b} \times \frac{w_g}{w_g + w_b}$$

The Plackett-Luce model - Vase model interpretation

Stage 2

We draw the blue ball.

The probability to extract a blue ball is:

$$\frac{w_b}{w_b}$$

$$\pi = \bigcirc$$

$$P(\pi) = \frac{w_r}{w_r + w_g + w_b} \times \frac{w_g}{w_g + w_b} \times \frac{w_b}{w_b}$$

Outline

- Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **6** Some Experiments
- 6 Conclusions

Some Experiments The Linear Ordering Problem

Size	Instance	PLEDA	MaEDA	GMEDA	NHBSA	EHBSA
150	t65b11xx	0.056	0.072	0.065	0.064	0.107
	t65d11xx	0.064	0.081	0.074	0.078	0.123
	t65f11xx	0.062	0.081	0.074	0.077	0.121
	t65l11xx	0.041	0.058	0.052	0.041	0.082
	t65n11xx	0.052	0.070	0.065	0.060	0.113
	t70b11xx	0.058	0.074	0.068	0.065	0.109
	t70d11xx	0.067	0.084	0.076	0.076	0.117
	t70f11xx	0.069	0.088	0.078	0.082	0.123
	t70l11xx	0.052	0.074	0.069	0.054	0.102
	t70n11xx	0.056	0.073	0.066	0.061	0.112
	t75d11xx	0.064	0.078	0.073	0.071	0.115
	t75e11xx	0.048	0.069	0.062	0.300	0.300
	t75k11xx	0.055	0.074	0.064	0.292	0.291
	t75n11xx	0.060	0.078	0.071	0.302	0.299
250	t65b11xx	0.074	0.086	0.080	0.088	0.146
	t65d11xx	0.083	0.099	0.090	0.105	0.161
	t65f11xx	0.078	0.094	0.086	0.097	0.159
	t65l11xx	0.061	0.075	0.071	0.068	0.132
	t65n11xx	0.075	0.092	0.084	0.094	0.162
	t70b11xx	0.074	0.088	0.081	0.092	0.157
	t70d11xx	0.080	0.095	0.086	0.097	0.157
	t70f11xx	0.087	0.101	0.094	0.109	0.162
	t70l11xx	0.066	0.082	0.076	0.078	0.150
	t70n11xx	0.074	0.091	0.081	0.094	0.162
	t75d11xx	0.075	0.088	0.080	0.090	0.155
	t75e11xx	0.079	0.094	0.086	0.078	0.143
	t75k11xx	0.079	0.096	0.087	0.082	0.142
	t75n11xx	0.075	0.090	0.082	0.074	0.140

Some Experiments The Linear Ordering Problem

Size	Instance	PLEDA	MaEDA	GMEDA	NHBSA	EHBSA
150	t65b11xx	0.056	0.072	0.065	0.064	0.107
	t65d11xx	0.064	0.081	0.074	0.078	0.123
	t65f11xx	0.062	0.081	0.074	0.077	0.121
	t65l11xx	0.041	0.058	0.052	0.041	0.082
	t65n11xx	0.052	0.070	0.065	0.060	0.113
	t70b11xx	0.058	0.074	0.068	0.065	0.109
	t70d11xx	0.067	0.084	0.076	0.076	0.117
	t70f11xx	0.069	0.088	0.078	0.082	0.123
	t70l11xx	0.052	0.074	0.069	0.054	0.102
	t70n11xx	0.056	0.073	0.066	0.061	0.112
	t75d11xx	0.064	0.078	0.073	0.071	0.115
	t75e11xx	0.048	0.069	0.062	0.300	0.300
	t75k11xx	0.055	0.074	0.064	0.292	0.291
	t75n11xx	0.060	0.078	0.071	0.302	0.299
250	t65b11xx	0.074	0.086	0.080	0.088	0.146
	t65d11xx	0.083	0.099	0.090	0.105	0.161
	t65f11xx	0.078	0.094	0.086	0.097	0.159
	t65l11xx	0.061	0.075	0.071	0.068	0.132
	t65n11xx	0.075	0.092	0.084	0.094	0.162
	t70b11xx	0.074	0.088	0.081	0.092	0.157
	t70d11xx	0.080	0.095	0.086	0.097	0.157
	t70f11xx	0.087	0.101	0.094	0.109	0.162
	t70l11xx	0.066	0.082	0.076	0.078	0.150
	t70n11xx	0.074	0.091	0.081	0.094	0.162
	t75d11xx	0.075	0.088	0.080	0.090	0.155
	t75e11xx	0.079	0.094	0.086	0.078	0.143
	t75k11xx	0.079	0.096	0.087	0.082	0.142
	t75n11xx	0.075	0.090	0.082	0.074	0.140

Experimentation The Flowshop Scheduling Problem

Config.	Instance	PLEDA	MaEDA	GMEDA	NHBSA	EHBSA
100×20	1	0.074	0.045	0.026	0.060	0.062
	2	0.076	0.044	0.026	0.059	0.057
	3	0.075	0.047	0.026	0.057	0.057
	4	0.075	0.048	0.027	0.061	0.060
	5	0.077	0.048	0.026	0.061	0.060
	6	0.080	0.053	0.029	0.061	0.061
	7	0.076	0.044	0.027	0.061	0.062
	8	0.074	0.047	0.025	0.058	0.057
	9	0.071	0.042	0.025	0.058	0.055
	10	0.078	0.052	0.030	0.061	0.059
200×20	1	0.083	0.070	0.027	0.071	0.076
200×20	2	0.085	0.070	0.027	0.071	0.076
	3	0.085	0.073	0.023	0.074	0.082
	4	0.087	0.001	0.034	0.076	0.070
	5	0.083	0.066	0.024	0.075	0.082
	6	0.079	0.050	0.022	0.073	0.084
	7	0.079	0.051	0.019	0.073	0.085
	8	0.085	0.073	0.019	0.074	0.003
	9	0.085	0.062	0.022	0.078	0.086
	10	0.082	0.074	0.022	0.073	0.077
250×20	1	0.082	0.076	0.041	0.075	0.085
	2	0.085	0.081	0.067	0.075	0.082
	3	0.077	0.065	0.024	0.072	0.082
	4	0.084	0.076	0.037	0.076	0.089
	5	0.090	0.085	0.075	0.079	0.086
	6	0.080	0.074	0.037	0.074	0.086
	7	0.078	0.074	0.041	0.070	0.077
	8	0.088	0.080	0.032	0.078	0.085
	9	0.080	0.074	0.023	0.074	0.083
	10	0.085	0.079	0.029	0.076	0.084

${\sf Experimentation}$

The Flowshop Scheduling Problem

Config.	Instance	PLEDA	MaEDA	GMEDA	NHBSA	EHBSA
100×20	1	0.074	0.045	0.026	0.060	0.062
	2	0.076	0.044	0.026	0.059	0.057
	3	0.075	0.047	0.026	0.057	0.057
	4	0.075	0.048	0.027	0.061	0.060
	5	0.077	0.048	0.026	0.061	0.060
	6	0.080	0.053	0.029	0.061	0.061
	7	0.076	0.044	0.027	0.061	0.062
	8	0.074	0.047	0.025	0.058	0.057
	9	0.071	0.042	0.025	0.058	0.055
	10	0.078	0.052	0.030	0.061	0.059
200×20	1	0.083	0.070	0.027	0.071	0.076
	2	0.085	0.073	0.023	0.074	0.082
	3	0.085	0.081	0.054	0.070	0.070
	4	0.087	0.077	0.024	0.076	0.082
	5	0.083	0.066	0.022	0.075	0.085
	6	0.079	0.050	0.020	0.073	0.084
	7	0.080	0.051	0.019	0.074	0.085
	8	0.085	0.073	0.029	0.074	0.081
	9	0.085	0.062	0.022	0.078	0.086
	10	0.082	0.074	0.022	0.073	0.077
250×20	1	0.082	0.076	0.041	0.075	0.085
	2	0.085	0.081	0.067	0.075	0.082
	3	0.077	0.065	0.024	0.072	0.082
	4	0.084	0.076	0.037	0.076	0.089
	5	0.090	0.085	0.075	0.079	0.086
	6	0.080	0.074	0.037	0.074	0.086
	7	0.078	0.074	0.041	0.070	0.077
	8	0.088	0.080	0.032	0.078	0.085
	9	0.080	0.074	0.023	0.074	0.083
	10	0.085	0.079	0.029	0.076	0.084

Experimentation Conclusions

The PLEDA performs the best for the LOP, but is the worst for the FSP.

Experimentation Conclusions

The PLEDA performs the best for the LOP, but is the worst for the FSP.

The GMEDA performs the best for the FSP, and is still competitive for LOP.

Outline

- Estimation of Distribution Algorithms
- 2 Permutation-based Optimization Problems
- 3 Previous approaches
- 4 Probability Models on Rankings
- **5** Some Experiments
- **6** Conclusions

Conclusions

Probability Models on Rankings are very powerful over permutation-based optimization problems.

Conclusions

But, their performance in each case varies depending on the problem.

Conclusions

And we haven't got the slightest idea, apart from intuition, of which model is the most appropriate for solving a particular problem.

Study the structure of the problems.

Which dependencies are relevant in each problem?

Can we speak about additively decomposable functions?

And the conditional independence?

Study the structure of the problems.

Which dependencies are relevant in each problem?

Can we speak about additively decomposable functions?

And the conditional independence ?

Study the structure of the problems.

Which dependencies are relevant in each problem?

Can we speak about additively decomposable functions?

And the conditional independence ?

Study the structure of the problems.

Which dependencies are relevant in each problem?

Can we speak about additively decomposable functions?

And the conditional independence ? \rightarrow Riffle Independence?

Study the structure of the problems.

Which dependencies are relevant in each problem? Can we speak about additively decomposable functions? And the conditional independence? \rightarrow Riffle Independence?

New properties need to be proposed.

Future work

The Boltzmann Distribution associated to the problem

$$P(\pi) = \frac{e^{-\beta f(\pi)}}{Z_f(\beta)}$$

f: Objective function.

 β : Boltzmann constant.

 $Z_f(\beta)$: partition function.

Estimation of Distribution Algorithms for Permutation-based Optimization Problems

Josu Ceberio

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
University of the Basque Country UPV/EHU

NICaiA: Nature Inspired Computation and its Applications Meeting Donostia, 22-23 April 2013

Parameters Settings

Population size 10*n*

Selection size n

Offspring size 10n - 1 Max. Evaluations 1000n

n denotes the size of the problem.

The Mallows and Generalized Mallows Learning

Consensus ranking $\sigma_0 \to \mathsf{Borda}$ algorithm.

Mallows model

 $\sum_{j=1}^{n-1} \bar{V}_j = \frac{n-1}{e^{\theta}-1} - \sum_{j=1}^{n-1} \frac{n-j+1}{e^{(n-j+1)\theta}-1} \quad \bar{V}_j = \frac{n-1}{e^{\theta}j-1} - \frac{n-j+1}{e^{\theta}j(n-j+1)-1}$

Generalized Mallows model

n-1 spread parameters

One spread parameter

The Mallows and Generalized Mallows Sampling

Probability of a permutation σ is factorized in n-1 independent terms

$$P(\sigma) = \prod_{j=1}^{n-1} P(V_j(\sigma \sigma_0^{-1}) = r_j) = \prod_{j=1}^{n-1} \frac{\exp(-\theta_j r_j)}{\psi_j(\theta_j)} \qquad r_j \in \{0, ..., n-j\}$$

The Plackett-Luce model

Assuming a set $\pi = \{\pi_1, \dots, \pi_N\}$ and given $\mathbf{w} = (w_1, \dots, w_n)$, the probability to observe the set,

$$P(\boldsymbol{\pi}|\boldsymbol{w}) = \prod_{k=1}^{N} \prod_{i=1}^{n-1} \frac{w_{\pi^{k}\langle i\rangle}}{\sum_{j=i}^{n} w_{\pi^{k}\langle j\rangle}}$$

Maximum likelihood estimation of w is given by those parameters that maximize the equation above, or

$$\ell(\boldsymbol{w}) = \sum_{k=1}^{N} \sum_{i=1}^{n-1} \left(\ln w_{\pi^k \langle i \rangle} - \ln \sum_{j=i}^{n} w_{\pi^k \langle j \rangle} \right)$$