Exercise 1.4.1: Recall that I stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$ then ab and $a + b \in \mathbb{Q}$ as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $a \neq 0$ then $at \in \mathbb{I}$ as well.
- (c) Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about st and s + t when $s, t \in \mathbb{I}$?
- (a) *Proof.* Select two arbitrary elements from the rational numbers, since they are rational we can represent them as i/j and m/n where $i, j, m, n \in \mathbb{Z}$ and $j \neq 0$ and $n \neq 0$.

Note that $i/j * m/n = \frac{im}{jn}$, from the definition of multiplication of rational numbers. Since the multiple of any two non-zero numbers is non-zero and since the multiple of any two integers is a integer so $jn \in \mathbb{Z} - \{0\}$ and $im \in \mathbb{Z}$ therfore $\frac{im}{in} \in \mathbb{Q}$.

Note that $i/j + m/n = \frac{in+mj}{jn}$, from the definition of addition of rational numbers. Since the multiple of any two non-zero numbers is non-zero and since the multiple of any two integers is a integer so $jn \in \mathbb{Z} - \{0\}$ and $in, mj \in \mathbb{Z}$ and so also $in + mj \in \mathbb{Z}$ therfore $\frac{in+mj}{jn} \in \mathbb{Q}$.

(b) *Proof.* Proof by contradiction.

Suppose that there exists $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ where $a+t=b \notin \mathbb{I}$. Since the reals are closed under addition we can say $b \in \mathbb{R}$. Note that $b \in \mathbb{R} - \mathbb{I} = \mathbb{Q}$. We can do a little math and see a+t=b means t=b+(-a). Since the addative inverse of a rational is a rational and since the sum of two rationals is rational we conclude $t \in \mathbb{Q}$. A contradiction has been reached, the rationals and irrationals are, by deffinition, mutually exclusive and so t cannot be a element of both.

Proof by contradiction.

Suppose that there exists $a \in \mathbb{Q} - \{0\}$ and $t \in \mathbb{I}$ where $at = b \notin \mathbb{I}$. Since the reals are closed under multiplication, and since the multiple of any two non zero numbers is itself non zero, we can say $b \in \mathbb{R} - \{0\}$. Note that $b \in \mathbb{R} - \{0\} - \mathbb{I} = \mathbb{Q} - \{0\}$. We can do a little math and see at = b means $t = b(a^{-1})$. Since the multiplicative inverse of a non zero rational is a rational (informaly $(\frac{i}{m})(\frac{m}{i}) = 1$) and since the multiple of two rationals is rational we conclude $t \in \mathbb{Q}$. A contradiction has been reached, the rationals and irrationals are, by deffinition, mutually exclusive and so t cannot be a element of both.

(c) All we can conclude is that $st \in \mathbb{R} - \{0\}$ and that $s + t \in \mathbb{R}$. As a example that the irrationals are not closed with respect to multiplication or addition note that $\sqrt{2}\sqrt{2} = 2$ and that $\pi + (-\pi) = 0$.

Exercise 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper bound for A. Show that $s = \sup A$.

Proof.

Exercise 1.4.3: Show that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$.

Proof. □

Exercise 1.4.4: (W) (Hand this one in to David.)

Let a < b be real numbers and let $T = [a, b] \cap \mathbb{Q}$. Show that sup T = a.

Proof.

Exercise 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 by considering real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof.

Exercise Supplemental 1: Show that the sets [0, 1) and (0, 1) have the same cardinality.