1. Problem Definition

Hopfield Model, as discussed in lectures can be used in learning applications, such that a neural network can retrieve data under noise. As an example in the following task; we are given 5 arbitrary (ideally patterns that are not close to each other) input patterns and distort them with different level of noise (variance is changing between 1 to 3). The task is, using Hopfield network, recover the distorted patterns to their initial values. Following is example of this process for the input patterns [1,2,4,7,8].

Each figure consists of 7 sub-figures; 1st one is the original pattern and the next 3 of them are distorted versions of the input pattern with increasing variance levels. The last 3 of them are the recovered version of the distorted versions, each tagged with associated variance level in the title.

2. Conclusion

One might see that as the variance increases, the recovery task gets harder as expected. Moreover, as discussed within the lecture, the network might converge to a different equilibrium point than the desired the one if the input patterns are chose "close" to each other. While this phenomenon has not taken place in screen shots; one can achieve this wrong conclusion of the network simply iterating with the algorithm with random inputs.