Defining Normative Cerebral Hemodynamics in Cognitively Healthy Older Adults with 4D Flow MRI

<u>Grant S. Roberts</u>¹, Anthony Peret², Carson A. Hoffman², Leonardo A. Rivera-Rivera^{1,3}, Karly A. Cody³, Howard A. Rowley², Oliver Wieben^{1,2}, Sterling C. Johnson³, Kevin M. Johnson^{1,2}, & Laura B. Eisenmenger²

University of Wisconsin – Madison: Dept. of ¹Medical Physics, ²Radiology, ³Medicine

JOINT ANNUAL MEETING ISMRM-ESMRMB ISMRT 31ST ANNUAL MEETING

07-12 MAY 2022 | LONDON, ENGLAND, UK

A HYBRID EXPERIENCE

Declaration of Financial Interests or Relationships

Speaker Name: Grant S. Roberts

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare

Type of Relationship: Institutional Research Support (UW-Madison)

Background

- Adequate cerebral blood flow is important
- As we age, neurovascular changes begin to occur
 - Arterial stiffening¹
 - Breakdown of neurovascular unit²
 - Affect cerebral hemodynamics and cognition
- Relationship with Alzheimer's disease (AD)
 - Macrovascular changes³⁻⁵
 - Microvascular (perfusion) changes⁶
 - Normative data is still lacking
- Important to establish normal cerebrovascular hemodynamics in older adults

Courtesy: Leonardo Rivera-Rivera, PhD

¹Mitchell GF, et al (2011). *Brain* 134(11). ²Tarantini S, et al (2017). *Exp Gerontol* 94. ³Rivera-Rivera LA, et al (2016). *JCBFM* 36(10).

Background

- 4D flow MRI is a comprehensive vascular imaging technique
 - Post-processing is still a challenge
- We developed a cranial 4D flow analysis tool^{1,2}
 - Open Source: https://github.com/uwmri/QVT
 - Added visualization tools
 - Interactive vessel selection

Control Window

Interactive Vessel Selection

4D Flow Visualization Tool

Purpose

- This tool will then be used to analyze 4D flow data from 759 older adults:
 - <u>Aim 1</u>: Obtain reference values for (1) blood flow and (2) pulsatility in 13 major cerebral arteries and 4 major sinuses
 - Aim 2: Assess the relationship between age, sex, and ASCVD vascular risk scores on blood flow and pulsatility

Methods – Subjects

- Subjects retrospectively obtained from:
 - Wisconsin Alzheimer's Disease Research Center (ADRC)
 - Wisconsin Registry for Alzheimer's Prevention (WRAP)
 - Between March 2010 March 2020
- Exclusion criteria:
 - Abnormal cognitive status
 - PiB index $> 1.19^{1}$
 - Image quality and cardiac gating quality
- Take only most recent 4D flow MRI
- 759 subjects (mean age 65 years)
 - Some measures deviate from "normal"
 - Sex (67% females)
 - APOE4 carriers
 - · Parental history of dementia

Subject demographics							
		Count (n)	Percent (%) N*			
Sex				759			
	Female	506	66.7				
	Male	253	33.3				
Race				757			
	White	645	85.3				
Black or African	American	82	10.7				
America	an Indian	24	3.2				
	Asian	2	0.3				
	Other	4	0.5				
Diabetes		63	9.1	689			
Smoker		29	4.2	689			
On Anti-hypertensive I	Meds	240	34.8	689			
Parental history of den	nentia	500	67.6	740			
APOE ε4 carrier**		247	35.6	694			
		Mean	SD	N *			
Age (years)		64.7	7.7	759			
Systolic Blood Press. (1	mmHg)	125.1	16.4	751			
Diastolic Blood Press.	(mmHg)	76.9	8.3	751			
Total Cholesterol (mg/	dL)	199.0	39.4	744			
Triglycerides (mg/dL)		106.4	56.7	744			
*Total number of measured data points over all subjects (759 total). **APOE &4 carrier defined as presence of at least one APOE &4 allele.							

Methods – Acquisition

- Subjects scanned at 3.0T
 - 3 different GE scanners
- Radially-undersampled acquisition
 - PCVIPR^{1,2}
- Data reconstructed into 20 cardiac frames
- Reconstruction
 - Temporal view sharing
 - Parallel imaging with localized sensitivities
 - Maxwell term phase correction
 - 3rd order background phase correction

MRI Scanners and Coils							
	Discovery MR750 (N=611)	Signa PET/MR (N=8)	Signa Premier (N=140)				
MRI Coil Type							
48 channel	-	-	140				
32 channel	565	-	-				
8 channel	46	8	-				

MRI Acquisition Parameters					
Characteristic	Value				
TR (ms)	7.71				
TE (ms)	2.63				
Flip Angle (degrees)	8				
Matrix Size	320				
Resolution Size (mm)	0.69				
Radial Projections	11000				
VENC (cm/s)	80				
Encoding Scheme	4-point (58%)				
	5-point (42%)				
Scan Time (min)	5.6 (58%)				
	7.1 (42%)				

Methods – Post-Processing

- Hemodynamic Measures
 - Volumetric flow rates (mL/min)
 - Pulsatility indices (a.u.)
 - $PI = (v_{max} v_{min})/v_{mean}$
- Vessel Segment Locations
 - 13 arteries + 4 veins

Vessel	Measurement Criteria
Total Cerebral Blood Flow (TCBF)	LICA + RICA + BA
Cervical ICA (x2)	C1 segment (1-10 CL points from end of vertical portion)
Cavernous ICA (x2)	C3 segment (1-10 CL points from end of vertical portion)
Middle Cerebral Artery (x2)	Middle M1 ± 5 CL points
Anterior Cerebral Artery (x2)	Middle A1 ± 5 CL points
Basilar Artery	10 ± 5 CL points superior from BA-VA junction
Vertebral Artery (x2)	10 ± 5 CL points inferior from BA-VA junction
Posterior Cerebral Artery (x2)	5-10 CL points before P1-P2 junction
Superior Sagittal Sinus	15 ± 5 CL points from SSS-TS-SS junction
Straight Sinus	15 ± 5 CL points from SSS-TS-SS junction
Transverse Sinus (x2)	15 ± 5 CL points from SSS-TS-SS junction

Results – Analysis

- All 759 cases were successfully analyzed
 - Observer 1 = 302 cases (40%)
 - Observer 2 = 457 cases (60%)
 - Approximately 5 minutes per case
- Aliasing? → Laplacian unwrapping¹
- Poor Segmentation? → manual segmentation

	Observed			Un	resolv	ed
Vessel	ALI	SEG	NV	ALI	SEG	NV
ICA_C1	О	1	2	О	0	-
ICA_C3	1	4	1	О	0	-
MCA	212	1	21	51	0	-
ACA	116	34	72	22	0	-
BA	4	3	2	О	0	-
VA	6	17	125	О	1	-
PCA	7	7	15	О	6	-
SSS	2	1	7	О	0	-
STR	5	1	6	О	0	-
TS	1	1	199	0	0	-

¹Loecher M, et al (2016). *JMRI* 43(4)

Results – Intra-observer Agreement

- Observer 1 re-analyzed 30 cases
 - 1 month between analysis
- Excellent reliability in 32/34 flow and pulsatility measures
 - Basilar artery and right VA only moderate reliability for pulsatility

		Volum	Volumetric Flow Rates (mL/min)					Pulsatility Indices (a.u.)			
Vessel Segment	N	r	ICC*	Bias	Upper LOA	Lower LOA	r	ICC*	Bias	Upper LOA	Lower LOA
LICA_C1	30	0.995	0.997	0.932	-8.124	9.988	0.973	0.986	-0.004	-0.098	0.089
RICA_C1	30	0.996	0.998	0.171	-8.494	8.835	0.97	0.98	-0.009	-0.123	0.105
LICA_C3	30	0.993	0.997	0.007	-10.934	10.948	0.93	0.964	0.006	-0.134	0.145
RICA_C3	30	0.997	0.998	-0.539	-9.114	8.036	0.892	0.927	-0.041	-0.188	0.106
LMCA	30	0.998	0.999	-0.296	-4.276	3.683	0.94	0.968	0.016	-0.139	0.171
RMCA	29	0.999	1	0.127	-1.943	2.196	0.992	0.99	0	-0.179	0.179
LACA	29	0.999	1	-0.103	-2.126	1.921	0.997	0.997	-0.012	-0.125	0.1
RACA	30	0.993	0.996	1.365	-4.282	7.012	0.937	0.968	0.005	-0.142	0.153
BA	30	0.99	0.995	0.271	-6.442	6.983	0.49	0.623	-0.038	-0.541	0.465
LVA	30	0.991	0.995	-0.102	-7.434	7.229	0.933	0.966	-0.009	-0.207	0.188
RVA	29	0.991	0.996	0.558	-5.952	7.069	0.555	0.545	0.075	-1.061	1.211
LPCA	30	0.944	0.971	0.623	-5.971	7.217	0.871	0.931	-0.022	-0.278	0.233
RPCA	30	0.985	0.993	0.312	-3.71	4.334	0.903	0.948	0.004	-0.161	0.169
SSS	30	0.997	0.998	-0.03	-8.12	8.059	0.922	0.951	-0.021	-0.159	0.116
STR	30	0.978	0.989	0.419	-6.942	7.78	0.87	0.931	-0.016	-0.238	0.207
LTS	24	0.999	1	0.788	-4.982	6.559	0.921	0.96	0.007	-0.222	0.236
RTS	29	1	1	0.079	-5.787	5.945	0.953	0.976	0.007	-0.122	0.135

^{*}ICC(3,k) – Two-way mixed-effects model, absolute agreement, mean of measurements

Results – Inter-observer Agreement

- Observer 2 analyzed same 30 cases
 - 1 month between analysis
- Excellent reliability in 32/34 flow and pulsatility measures
 - Right VA and left transverse sinus moderate reliability for pulsatility

		Volumetric Flow Rates (mL/min)					F	Pulsatil	ity Indic	es (a.u.	.)
Vessel Segment	N	r	ICC*	Bias	Upper LOA	Lower LOA	r	ICC*	Bias	Upper LOA	Lower LOA
LICA_C1	30	0.986	0.992	2.979	-12.176	18.134	0.966	0.981	-0.019	-0.122	0.085
RICA_C1	30	0.993	0.996	0.498	-11.36	12.356	0.959	0.971	-0.034	-0.152	0.085
LICA_C3	30	0.987	0.993	1.745	-13.519	17.008	0.866	0.927	-0.01	-0.215	0.195
RICA_C3	30	0.98	0.987	5.039	-16.93	27.007	0.842	0.913	-0.01	-0.189	0.169
LMCA	30	0.981	0.99	1.867	-11.762	15.495	0.829	0.902	0.027	-0.228	0.281
RMCA	29	0.993	0.996	1.233	-5.846	8.311	0.939	0.968	-0.041	-0.372	0.29
LACA	29	0.968	0.981	-2.843	-14.494	8.807	0.926	0.952	0.047	-0.371	0.465
RACA	30	0.945	0.972	0.27	-15.288	15.827	0.924	0.959	0.018	-0.139	0.175
BA	30	0.99	0.995	0.343	-6.346	7.033	0.943	0.971	0.005	-0.119	0.129
LVA	30	0.983	0.992	-0.206	-9.862	9.45	0.919	0.955	0.031	-0.18	0.241
RVA	29	0.986	0.993	1.213	-7.111	9.537	0.47	0.466	0.067	-1.123	1.256
LPCA	30	0.891	0.94	-0.202	-10.189	9.784	0.9	0.949	-0.007	-0.237	0.222
RPCA	30	0.94	0.969	-0.686	-8.785	7.412	0.843	0.908	-0.025	-0.267	0.217
SSS	30	0.993	0.996	0.055	-11.954	12.064	0.971	0.985	-0.012	-0.098	0.075
STR	30	0.989	0.994	-0.737	-6.01	4.536	0.895	0.945	0.009	-0.192	0.209
LTS	24	0.996	0.998	2.223	-12.972	17.418	0.778	0.86	0.05	-0.302	0.403
RTS	29	0.999	0.999	0.457	-11.045	11.959	0.886	0.941	0	-0.191	0.191

^{*}ICC(3,k) – Two-way mixed-effects model, absolute agreement, mean of measurements

Results – Blood Flow

Blood Flow Rates in All Vessel Segments

Results – Vascular Pulsatility

Results – Blood Flow

- Conservation of flow
 - LVA + RVA \approx BA
 - Similar results for ACA + MCA ≈ ICA
- Flow and PI were significantly correlated between all vessel segments

Results – Flow vs. Age/Sex

Total Cerebral Blood Flow

Results – Flow vs. Age/Sex

Flow \sim Age + Sex + (1 + Age | Vessel)

	β (coefficients)					
	Intercept	Age	Sex (male)			
FIXED EFFECT	205.4***	-1.00***	-3.46**			
ICA_C1	295.4	-1.33	-3.46			
ICA_C3	305.4	-1.38	-3.46			
MCA	188.4	-0.98	-3.46			
ACA	115.9	-0.72	-3.46			
BA	198.4	-1.23	-3.46			
VA	117.6	-0.72	-3.46			
PCA	88.5	-0.55	-3.46			
TS	247.0	-0.47	-3.46			
STR	111.7	-0.58	-3.46			
SSS	386.0	-2.04	-3.46			

T-tests using Satterthwaite's method

Linear Mixed-Effects Model - Flow vs. Age

^{**}p<0.01

^{***}p<0.001

Results – Pulsatility vs. Age/Sex

$$PI \sim Age + Sex + (1 + Age | Vessel)$$

	β (coefficients)						
	Intercept	Age	Sex (male)				
FIXED EFFECT	0.275***	0.014***	-0.012				
ICA_C1	0.174	0.014	-0.012				
ICA_C3	0.227	0.014	-0.012				
MCA	0.271	0.014	-0.012				
ACA	0.333	0.016	-0.012				
BA	0.286	0.015	-0.012				
VA	0.329	0.017	-0.012				
PCA	0.441	0.016	-0.012				
TS	0.211	0.011	-0.012				
STR	0.405	0.011	-0.012				
SSS	0.069	0.011	-0.012				

T-tests using Satterthwaite's method ****p<0.001

Linear Mixed-Effects Model - Pulsatility vs. Age

Results – ASCVD

Discussion

- 4D flow MRI allowed for hemodynamic assessment in 17 vessels in 759 subjects
 - One of the most comprehensive intracranial flow studies
 - Possible with our semi-automated tool
- Flow decreases and pulsatility increases with increasing age
 - Contributing factors:
 - Decreased brain metabolism¹
 - Decreased parenchyma¹
 - Increased arterial stiffness²
- Flow decreases and pulsatility increases with increasing cardiovascular risk score
 - · Reflects effect of systemic cardiovascular disease on neurovascular health

Conclusion

- Future studies will investigate how flow/pulsatility is related to:
 - APOE genotype
 - White matter hyperintensities
 - Other risk scores (Framingham risk score, LIBRA)
- First-step towards defining normal cerebral blood flow and pulsatility values in older adults
 - Determine abnormal hemodynamic ranges
 - Help power future neurovascular studies

Acknowledgements

ADRC Vascular Team

Sterling Johnson, PhD

Kevin Johnson, PhD

Jill Barnes, PhD

<u>Leonardo Rivera-Rivera, PhD</u>

Karly Cody, MS

Mulan Jen, MS

Brandon Fico, PhD

Erin Jonaitis, PhD

Rebecca Koscik, PhD

Howard Rowley, MD

Eisenmenger Group

Laura Eisenmenger, MD

Anthony Peret, MD

Chenwei Tang, MS

Wieben Group

Oliver Wieben, PhD

Carson Hoffman, PhD (alumni)

Phil Corrado, MS

Daniel Seiter, MS

Ruiming Chen, BS

Alma Spahic, BS

Tarun Naren, BS

UW MRI Imaging Team Waisman Brain Imaging Team

