SVS Bachelor-Projekt Network Security

Blatt 5: Beschreibung der Experimentierumgebung

Louis Kobras 6658699 Utz Pöhlmann 6663579

1 Netzwerkeinstellungen

1.2

ClientVM:

IP-Adresse	(ifconfig -a):	Standard-Gateway	(route	DNS-Nameserver (nslookup
192.168.254.44		-n): 192.168.254.2		ubuntu.com): 10.1.1.1

RouterVM:

eth0	eth1	
172.16.137.222	192.168.254.2	

ServerVM:

IP-Adresse der Server-VM: 172.16.137.144

2 Absichern eines Einzelplatzrechners mit iptables (ClientVM)

2.1

Anzeigen der Firewall-Regeln mit sudo iptables -L; alle Regeln löschen mit sudo iptables -F¹; OpenSSH-Server nach Paketquellen-Update via apt-get installiert (automatisch gestartet).

2.2

Regelwerk siehe [2.2: ClientVM-Filterregeln (S. 5)].

iptables säubern mit sudo iptables -F, einladen der Regeln aus einem Textfile mit sudo iptables-restore < 7iptable (Dateiinhalt im Anhang ebenda).

2.3

- SSH-Verbindungsversuch von RouterVM mit sudo ssh 192.168.254.44 erfolgreich
- SSH-Verbindungsversuch in die andere Richtung nicht erfolgreich (Connection refused)
- hosten eines Servers mit netcat -1 5555 erfolgreich, Verbindung (sudo netcat 192.168.254.44 5555) erwartungsgemäß fehlgeschlagen
- Firefox ist bei DROP schneller als bei REJECT

2.4

Dynamische Regeln vgl. [2.4: ClientVM Stateful Filtering (S. 5)].

Man muss nicht jeden Port und jedes Protokoll einzelnd abdecken. Stateful Filter sind effizienter, da sie sich nur die Paket-Header ansehen.

 $^{^1}$ löscht alle Regeln nacheinander

3 Absichern eines Netzwerks (RouterVM)

3.1

Der Aufruf bedeutet (nach [1]): "Maskiere alles, was an eth
0 ausgeht". Es wird die Adressumsetzung (NAT) aktiviert und die Schnittstelle markiert ([2]). Source: 192.168.254.0; Maske: 24

3.2

Die Client-VM kann die Server-VM anpingen; umgekehrt geht dies nicht. Vermutung: Die Client-VM ist von außen nicht direkt ansprechbar, da sie hinter der RouterVM versteckt ist.

3.3

Regelsatz im Anhang unter [3.3: Filterregeln (S. 5)] **ACHTUNG:** Funktioniert nicht! Ab hier alle Angaben theoretische Überlegungen

3.4

Folgender Eintrag in der iptable *filter an Stelle [0] sollte den SSH-Tunnel zulassen: -A FORWARD -d 172.16.137.144 -p tcp -port 22 -j ACCEPT

3.5

Folgende Regeln sollte die Aufgabe erfüllen:
 iptables -A PREROUTING -t nat -i eth0 -p tcp -dport 5022 -j DNAT -to 192.168.254.44:22
 iptables -A FORWARD -p tcp -d 192.168.254.44 -dport 22 -j ACCEPT
Zusätzlich muss der öffentliche Port mithilfe von netcat geöffnet werden: nc -1 5022

3.6

.

4 SSH-Tunnel

4.1

.

4.2

.

4.3

.

4.4

.

Utz Pöhlmann

6663579

5 OpenVPN

5.1

.

5.2

.

5.3

.

5.4

.

5.5

.

5.6

.

6 HTTP-Tunnel

6.1

.

6.2

.

6.3

.

6.4

•

6.5

.

6.6

.

Seite 3

Literatur

- $[1] \ {\tt www.netfilter.org/documentation/HOWTO/de/NAT-HOWTO-6.html}$
- [2] https://wiki.ubuntuusers.de/Router/

ANHANG

2.2: ClientVM-Filterregeln

TODO: textfile

2.4: ClientVM Stateful Filtering

TODO: textfile

3.3: Filterregeln

```
iptables -t filter -A FORWARD -d 10.1.1.2/32 -j DROP

iptables -t filter -A FORWARD -d 10.0.0.0/8 -j DROP

iptables -t filter -A FORWARD -p udp --dport 53 --sport 53 -J ACCEPT

iptables -t filter -A FORWARD -i eth1 -m state --state NEW -j ACCEPT

iptables -t filter -A FORWARD -m state --state ESTABLISHED, RELATED -j

ACCEPT

iptables -t filter -A FORWARD -p tcp -m multiport ! --ports 80,443,8080 -j

DROP
```