

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8A

FIG. 8B

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11

FIG. 12

1 Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro
10
21 Gln Ala Glu Gly Gln Leu Glu Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly
30
41 Val Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser
50
61 Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
70
81 Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Ser Ala Ile Lys Ser Pro
90
101 Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu
110
121 Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp
130
141 Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
150

FIG. 14A

FIG. 14B

1 Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro
10

21 Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly
30

41 Val Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser
50

61 Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
70

81 Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Ser Ala Ile Lys Ser Pro
90

101 Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu
110

121 Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp
130

141 Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
150

GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTGAGTCAGGAGAAAGAGTCAGT
AspIleLeuLeuThrGlnSerProAlaIleLeuSerValSerProGlyGluArgValSer

TTCCTCCTGCAGGCCAGTCAGTTCAGTGGCTCAAGCATCCACTGGTATCAGCAAAGAACAA
PheSerCysArgAlaSerGlnPheValGlySerSerIleHisTrpTyrglnGlnArgThr

AATGGTTCTCCAAGGCTTCTCATAAAGTAAAGTATGCTTCTGAGTCATGTCCTGGGATCCCTCC
AsnGlySerProArgLeuIleLysTyrAlaSerGluSerMetSerGlyIleProSer

AGGTTTAGTGGCAGTGGATCAGGGACAGATTACTCTTAGCATCAACACTGGAGTCT
ArgPheSerGlySerGlySerGlyThrAspPheThrIleSerIleAsnThrValGluSer

GAAGATATTGCAGATTACTGTCAGAAAGTCATAAGCTGGCCATTACGTTACGTTCTGGCTCG
GluAspIleAlaAspTyryrCysGlnGlnSerHisSerTrpProPheThrPheGlySer

GGGACAAATTGGAAGTAAA
GlyThrAsnLeuGluValLys

FIG. 16A

GAAGTGAAAGCTTGAGGGAGTCTGGAGGGCTTGGCAACCTGGAGGATCCATGAAACTC
GluValLysLeuGluSerGlyGlyLeuValGlnProGlyGlySerMetLysLeu

TCCTGTGCTCTGGATCATTTCAGTAACCACTGGATGAACTGGGTCCGCCAGTCT
SerCysValAlaSerGlyPheIlePheSerAsnHisTrpMetAsnTrpValArgGlnSer

CCAGAGAAGGGGCTTGAGTGCGGTGCTGAAATTAGATCAAATCTATTAAATTCTGCCAACA
ProGluLysGlyLeuGluTrpValAlaGluIleArgSerLysSerIleAsnSerAlaThr

CATTATGCCGAGTCCTGAAAGGGAGGTTCAAGAGATGATTCCAAAGTGCT
HisTyrAlaGluSerValLysGlyArgPheThrIleSerArgAspSerLysSerAla

GTGTACCTGCAAATGACCGACTTAAGAACCTGAAGCACACTGGCGTTATTACTGTTCCAGG
ValTyrLeuGlnMetThrAspLeuArgThrGluAspThrGlyValTyrTyrCysSerArg

AATTACTACGGTAGTACCTACGACTACTGGGCCAAGGCACCACTCTCACAGTGTC
AsnTyrTyrGlySerThrTyrAspTyrTrpGlyGlnGlyThrIleThrValSer

FIG. 16B

FIG. 18

FIG. 17

FIG. 20

FIG. 19

FIG. 22

FIG. 21

FIG. 23

FIG. 24

FIG. 25

FIG. 26A

FIG. 26B

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31A

FIG. 31B

FIG. 31C

FIG. 32

FIG. 33A

FIG. 33B

FIG. 33D

FIG. 33C

FIG. 33F

FIG. 33E

FIG. 33H

FIG. 33G