Table 1: Treatment details for each group. Treatment times are referenced to the contamination with ¹⁵³Gd.

Treatment Licender Times Treatment

Group	Ligand	Time	Treatment
A	Saline	1 hr pre	$100 \ \mu \text{mol} \ / \ \text{kg}$
В	HOPO	24 hr pre	$100 \ \mu \text{mol} \ / \ \text{kg}$
$^{\mathrm{C}}$	HOPO	1 hr pre	$100 \ \mu \text{mol} \ / \ \text{kg}$
D	DTPA	1 hr pre	$100 \ \mu \text{mol} \ / \ \text{kg}$
\mathbf{E}	HOPO	1 hr post	$100 \ \mu \text{mol} \ / \ \text{kg}$
F	DTPA	1 hr post	$100~\mu\mathrm{mol}$ / kg
G	HOPO	24 hr post	$100 \ \mu \text{mol} \ / \ \text{kg}$
H	HOPO	48 hr post	$100~\mu\mathrm{mol}$ / kg

Table 1: 153 Gd content of murine tissues and excreta for all groups. Data are reported as arithmatic means \pm standard deviations in % of the recovered dose. Excreta were collected by group, therefore only the mean is reported

Excreta	Feces Urine	6.90 36.19	66.00 28.02	74.00 24.80	2.50 88.07	46.00 36.50	8.80 49.20	30.00 35.88	26.00 39.69
	Thymus	0.0456±0.014	0.0138 ± 0.014	0.0183 ± 0.0054	0.0209 ± 0.0084	0.0296±0.009	0.0312 ± 0.0096	0.0165 ± 0.0021	0.0405 ± 0.021
	Brain	0.063 ± 0.0032	0.0511 ± 0.019	0.0373 ± 0.016	0.0293 ± 0.014	0.0328 ± 0.0063	0.0407 ± 0.011	0.0254 ± 0.0087	0.0276 ± 0.0081
	Spleen	0.106±0.019	0.0422 ± 0.012	0.0331 ± 0.011	0.0315 ± 0.013	0.073 ± 0.011	0.0848 ± 0.023	0.0793 ± 0.015	0.0778 ± 0.0047
	Lungs	0.225 ± 0.049	0.0885 ± 0.02	0.0584 ± 0.011	0.0798 ± 0.0043	0.0971 ± 0.0067	0.133 ± 0.015	0.14 ± 0.011	0.154 ± 0.023
Tissues	Heart	0.0981 ± 0.028	0.019 ± 0.0074	0.00633 ± 0.0048	0.0117 ± 0.0074	0.351 ± 0.052	0.201 ± 0.055	0.219 ± 0.016	0.159 ± 0.026
	Kidneys	0.622±0.09	0.369 ± 0.21	0.0556 ± 0.017	0.0764 ± 0.011	0.143 ± 0.022	0.253 ± 0.027	0.179 ± 0.058	0.392 ± 0.2
	ART	0.998 ± 0.18	0.296 ± 0.086	0.0865 ± 0.014	0.167 ± 0.027	0.454 ± 0.016	0.881 ± 0.12	0.655 ± 0.14	1.05 ± 0.16
	Soft	3.71 ± 0.29	0.931 ± 0.3	0.584 ± 0.13	0.63 ± 0.061	1.88 ± 0.17	2.59 ± 0.3	2.42 ± 0.22	2.61 ± 0.31
	Liver	10.5土1.4	0.576 ± 0.31	0.122 ± 0.02	0.781 ± 0.33	0.556 ± 0.13	6.32 ± 1.6	0.81 ± 0.073	1.68 ± 0.24
	Skeleton	40.5±1.3	3.88 ± 0.99	0.0359 ± 0.072	7.59 ± 1	13.6 ± 1.6	31.4 ± 1.7	29.2 ± 1.2	28.4 ± 1
	Group	A	В	Ö	Д	臼	Ή	ŭ	Н

Table S2: Equilibria and corresponding stability constants used in the speciation study.

Equilibrium	log K	Reference
$Gd^{3+} + PO_4^{3-} = [GdPO_4]_{(aq)}$	12.19	NIST
$Gd^{3+} + HPO_4^{2-} = [GdHPO_4]^+$	5.91	NIST
$Gd^{3+} + 2 HPO_4^{2-} = [Gd(HPO_4)_2]^{-}$	9.97	NIST
$Gd^{3+} + H_2PO_4 = [GdH_2PO_4]^{2+}$	2.74	NIST
$Gd^{3+} + C_2O_4^{2-} = [GdC_2O_4]^+$	4.77	NIST
$Gd^{3+} + 2 C_2 O_4^{2-} = [Gd(C_2 O_4)]^{-}$	8.66	NIST
Gd ³⁺ + Lactate ⁻ = [GdLactate] ²⁺	2.91	NIST
Gd ³⁺ + 2 Lactate = [GdLactate ₂] ⁺	5.04	NIST
Gd ³⁺ + 3 Lactate = [GdLactate ₃]	6.24	NIST
Gd ³⁺ + Citrate ³⁻ + H ⁺ = [GdHCitrate]	21.2	Heller 2012 ^a
$Gd^{3+} + 2 Citrate^{3-} + 3 H^{+} = [Gd(H_2Citrate)(HCitrate)]^{2-}$	43.6	Heller 2012 ^a
$Gd^{3+} + 2 Citrate^{3-} + 2 H^{+} = [Gd(HCitrate)_{2}]^{3-}$	38.5	Heller 2012 ^a
$Gd^{3+} + 2 Citrate^{3-} = [GdCitrate_2]^{5-}$	21.0	Heller 2012 ^a
$Gd^{3+} + CO_3^{2-} = [GdCO_3]^+$	7.64	NIST
$Gd^{3+} + 2 CO_3^{2-} = [Gd(CO_3)_2]^{-}$	13.04	NIST
$Gd^{3+} + HCO_3^- = [GdHCO_3]^{2+}$	1.9	NIST
$Gd^{3+} + DTPA^{5-} = [GdDTPA]^{2-}$	22.39	NIST
[GdDTPA] ²⁻ + H ⁺ = [GdHDTPA] ⁻	2.39	NIST
$Gd^{3+} + DOTA^{4-} = [GdDOTA]^{-}$	24.0	NIST
$Gd^{3+} + DTPA-BMA^{3-} = [GdDTPA-BMA]$	16.86	NIST
$Gd^{3+} + EDTA^{4-} = [GdEDTA]^{-}$	17.35	NIST
[GdEDTA] + H ⁺ = [GdHEDTA]	1.3	NIST
Gd ³⁺ + HOPO ⁴⁻ = [GdHOPO] ⁻	20.5	Sturzbecher-Hoehne 2011 ^b
[GdHOPO] + H+ = [GdHHOPO]	1.2	Sturzbecher-Hoehne 2011 ^b
$Gd^{3+} + H_2O = [GdOH]^{2+} + H^+$	-8.1	Sturzbecher-Hoehne 2011 ^b
$Gd^{3+} + 2 H_2O = [Gd(OH)_2]^+ + 2 H^+$	-14.5	Sturzbecher-Hoehne 2011 ^b
$Gd^{3+} + 3 H_2O = [Gd(OH)_3] + 3 H^+$	-24.1	Sturzbecher-Hoehne 2011 ^b
$Zn^{2+} + DTPA^{5-} = [ZnDTPA]^{3-}$	18.2	NIST
$[ZnDTPA]^{3-} + H^{+} = [ZnHDTPA]^{2-}$	5.6	NIST
$[ZnDTPA]^{3-} + Zn^{2+} = [Zn_2DTPA]^{-}$	4.48	NIST
$Zn^{2^{+}} + EDTA^{4^{-}} = [ZnEDTA]^{2^{-}}$	16.5	NIST
[ZnEDTA] ²⁻ + H ⁺ = [ZnHEDTA] ⁻	3.0	NIST
$Zn^{2+} + DTPA-BMA^{3-} = [ZnDTPA-BMA]^{-}$	12.04	NIST
$Zn^{2+} + HPO_4^{2-} = [ZnHPO_4]$	2.46	NIST
$Zn^{2+} + H_2PO_4^{-} = [ZnH_2PO_4]^{+}$	1.2	NIST
Zn ²⁺ + Oxalate ²⁻ = [ZnOxalate]	4.0	NIST
$Zn^{2+} + 2 Oxalate^{2-} = [ZnOxalate_2]^{2-}$	6.45	NIST
Zn ²⁺ + Lactate ⁻ = [ZnLactate] ⁺	1.86	NIST
Zn ²⁺ + 2 Lactate = [ZnLactate ₂]	2.6	NIST
Zn ²⁺ + 3 Lactate = [ZnLactate ₃]	3.4	NIST
$Zn^{2+} + CO_3^{2-} = [ZnCO_3]$	3.9	NIST
$Zn^{2+} + 2 CO_3^{2-} = [Zn(CO_3)_2]^{2-}$	7.3	NIST
$Zn^{2+} + HCO_3^- = [ZnHCO_3]^+$	1.5	NIST
Zn ²⁺ + Citrate ³⁻ = [ZnCitrate]	4.93	NIST
$Zn^{2+} + 2 Citrate^{3-} = [ZnCitrate_2]^{4-}$	6.8	NIST
Zn ²⁺ + HCitrate ²⁻ = [ZnHCitrate]	3.00	NIST
$Zn^{2+} + H_2Citrate^{-} = [ZnH_2Citrate]^{+}$	1.2	NIST
$Zn^{2+} + HO^{-} = [ZnOH]^{+}$	4.6	NIST

$Zn^{2+} + 2 HO^{-} = [Zn(OH)_{2}]$	11.1	NIST
$Zn^{2+} + 3 HO^{-} = [Zn(OH)_3]^{-}$	13.6	NIST
$Zn^{2+} + 4 HO^{-} = [Zn(OH)_4]^{2-}$		
211 + 4 HO = [211(OH)4]	14.8	NIST
$Ca^{2+} + DTPA^{5-} = [CaDTPA]^{3-}$	10.75	NIST
[CaDTPA] ³⁻ + H ⁺ = [CaHDTPA] ²⁻	6.11	NIST
$\frac{[CaDTPA]^{3}}{[CaDTPA]^{3}} + Ca^{2+} = [Ca_2DTPA]^{-}$	1.6	NIST
$Ca^{2+} + EDTA^{4-} = [CaEDTA]^{2-}$	10.65	NIST
$Ca^{2+} + DTPA - BMA^{3-} = [CaDTPA - BMA]^{-}$	7.17	NIST
$Ca^{2+} + HPO_4^{2-} = [CaHPO_4]$	1.62	NIST
$Ca^{2+} + H_2PO_4^{-} = [CaH_2PO_4]^{+}$	0.6	NIST
$Ca^{2+} + Oxalate^{2-} = [CaOxalate]$	2.46	NIST
$Ca^{2+} + CO_3^{2-} = [CaCO_3]$	3.22	NIST
$Ca^{2+} + CO_3^{-} = [CaCO_3]^{+}$	0.29	NIST
Ca ²⁺ + Citrate ³⁻ = [CaCitrate]	3.48	NIST
Ca ²⁺ + HCitrate ²⁻ = [CaHCitrate]	2.07	NIST
Ca ²⁺ + Lactate ⁻ = [CaLactate] ⁺	1.12	NIST
Ca ²⁺ + 2 Lactate = [CaLactate ₂]	1.62	NIST
$Ca^{2+} + HO^{-} = [CaOH]^{+}$	1.3	NIST
Ca + HO - [CaOH]	1.5	INIST
$PO_4^{3-} + H^+ = HPO_4^{2-}$	11.8	NIST
$HPO_4^{2-} + H^+ = H_2PO_4^{-}$	6.88	NIST
$H_2PO_4^- + H^+ = H_3PO_4$	1.99	NIST
$O_{3}^{2} + H^{+} = HO_{3}^{-}$	9.9	NIST
$HCO_3^- + H^+ = H_2CO_3$	6.13	NIST
$Oxalate^{2^{-}} + H^{+} = HOxalate^{-}$	3.82	NIST
HOxalate $+ H = H_2Oxalate$	1.2	NIST
Lactate $+ H^{\dagger} = H_2OXalate$		
Citrate-O + H = Citrate ³⁻ (Hydroxyl proton)	3.67 13.5	NIST Heller 2012 ^a
Citrate ³⁻ + H ⁺ = HCitrate ²⁻	5.7	Heller 2012
HCitrate 2 + H $^{+}$ = H ₂ Citrate		Heller 2012
	4.4	Heller 2012
H_2 Citrate $^+$ H $^+$ = H_3 Citrate DOTA $^{4-}$ + H $^+$ = HDOTA $^{3-}$	2.9	
$HDOTA^{3-} + H^{+} = H_{2}DOTA^{2-}$	9.73	NIST
$H_2DOTA^2 + H^+ = H_2DOTA^-$	4.44	NIST NIST
	4.34	NIST
$H_3DOTA^- + H^+ = H_4DOTA$ $H_4DOTA + H^+ = H_5DOTA^+$		
DTPA ⁵⁻ + H ⁺ = HDTPA ⁴⁻	2.35	NIST
$HDTPA^{4-} + H^{+} = H_{2}DTPA^{3-}$	10.4 8.55	NIST
$H_2DTPA^{3-} + H^+ = H_3DTPA^{2-}$		NIST
	4.28	NIST
$H_3DTPA^{2^+} + H^+ = H_4DTPA^-$	2.7	NIST
$H_4DTPA^- + H^+ = H_5DTPA^+$	2.0	NIST
$H_5DTPA + H^+ = H_6DTPA^+$	1.6	NIST
$H_6DTPA^+ + H^+ = H_7DTPA^2$	0.7	NIST
DTPA-BMA ²⁻ + H ⁺ = HDTPA-BMA ²⁻	9.37	NIST
$HDTPA-BMA^{2-} + H^{+} = H_{2}DTPA-BMA^{-}$	4.38	NIST
$H_2DTPA-BMA^+ + H^+ = H_3DTPA-BMA$	3.31	NIST
$HOPO^{4-} + H^{+} = HHOPO^{3-}$	6.64	Abergel 2009 ^c
$HHOPO^{3-} + H^{+} = H_{2}HOPO^{2-}$	5.68	Abergel 2009 ^c
$H_2HOPO^2 + H^+ = H_3HOPO^-$	5.01	Abergel 2009 ^c
$H_3HOPO^- + H^+ = H_4HOPO$	3.87	Abergel 2009 ^c
$H_2O = H^+ + HO^-$	-13.77	NIST

Notes: Most log K values are given for an ionic strength of 0.1M and at 25°C, see corresponding reference for more information. NIST: A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. a: Heller et al. *Dalton Trans.*, 2012, 41, 13969. Values for the Gd-citrate complexes were considered identical to those of the Eu-citrate complexes. b: Sturzbecher-Hoehne et al., *Dalton Trans.*, 2011, 40, 8340-8346. The protonation constant of the [GdHOPO] complex was considered similar to that of the [EuHOPO] complex. c: Abergel et al. *Inorg. Chem.* 2009, 48, 10868–10870.

Figure Sx: Calculated speciation of gadolinium under physiological conditions and for a concentration of Gd corresponding to 5% of the typical amount of GBCA injected to a patient. [Gd] = 7.15 μ M. [Phosphate] = 1.1 mM, [Carbonate] = 25 mM, [Oxalate] = 9.2 μ M, [lactate] = 1.5 mM, [Citrate] = 160 μ M. pH = 7.4. Citrate species are displayed in yellow, the phosphate species in red, and the carbonate species in blue.

Figure Sx: Calculated speciation of gadolinium under physiological conditions and for a concentration of Gd corresponding to 0.05% of the typical amount of GBCA injected to a patient. [Gd] = 715 nM. [Phosphate] = 1.1 mM, [Carbonate] = 25 mM, [Oxalate] = 9.2 μ M, [lactate] = 1.5 mM, [Citrate] = 160 μ M. pH = 7.4. Citrate species are displayed in yellow, the phosphate species in red, and the carbonate species in blue.

Figure Sx: Calculated percentage of gadolinium bound to DTPA as a function of dilution and in the presence of bio-relevant chelators. Calculations in the presence of calcium (1.1 mM) or zinc (15 μ M) ions are also given for comparison. Total concentrations of phosphates (1.1 mM), carbonates (25 mM), oxalates (9.2 μ M), lactates (1.5 mM), and citrates (160 μ M) held constant to match physiological conditions. Ratio Gd/DTPA = 1.0 mol/mol. pH = 7.4. See Table S2 for stability constants used in these speciation simulations.

Figure Sx: Calculated percentage of gadolinium bound to DTPA-BMA as a function of dilution and in the presence of bio-relevant chelators. Calculations in the presence of calcium (1.1 mM) or zinc (15 μ M) ions are also given for comparison. Total concentrations of phosphates (1.1 mM), carbonates (25 mM), oxalates (9.2 μ M), lactates (1.5 mM), and citrates (160 μ M) held constant to match physiological conditions. Ratio Gd/DTPA-BMA = 1.0 mol/mol. pH = 7.4. See Table S2 for stability constants used in these speciation simulations.