Methodology

Importing Data

- All the important libraries for data analysis were imported into the Jupyter Notebook
- Libraries Imported NumPy, Pandas, Matplotlib, Seaborn, os
- The Airbnb dataset which was in csv format was imported

Data Understanding

Column	Description
id	listing ID
name	name of the listing
host_id	host ID
host_name	name of the host
neighbourhood_group	location
neighbourhood	area
latitude	latitude coordinates
longitude	longitude coordinates
room_type	listing space type
price	
minimum_nights	amount of nights minimum
number_of_reviews	number of reviews
last_review	latest review
reviews_per_month	number of reviews per month
calculated_host_listings_count	amount of listing per host

availability_365 number of days when listing is available for booking

• Methods such as info(), describe(), dtypes, etc. were used to get basic understanding of data

Data Cleaning

A total of 4 columns had null values which were 'name', 'host_name', 'last_review', 'reviews_per_month'.

Imputing null values

- The columns 'name' and 'host_name' were of object data type and had listing names and host names.
- As 'host_name' has 0.033% null values and 'name' has 0.043% null values we directly
 dropped these rows as imputing them with any modal value does not makes sense.
- After dropping these rows, 99.9% of data was retained.

- The columns 'last_review' and 'reviews_per_month' had huge number of null values so to understand and underlying cause for it; creating a new dataframe where the aforementioned rows have null values
- Also, wherever 'last_review' had null value, 'reviews_per_month' had null value and viceversa.
- After analyzing the new dataframe, the reason for null vales was listing had received no reviews at all so it had 'last_review' and 'reviews_per_month' empty.
- After knowing the reason, all missing values in 'reviews_per_month' column were imputed with '0' and 'last review' column with a dummy date '1970-1-1'

Detecting Outliers

- Boxplots were used to detect outliers.
- The columns like longitude, latitude, id, host_id, etc. are not expected to have a range so ignoring these columns.
- The 'price', 'minimum_nights', 'number_of_reviews', 'reviews_per_month' and 'calculated_host_listings_count' had huge number of outliers.

Binning

- All the above-mentioned column were binned into proper bins and new columns were created by analyzing their data distribution.
- To analyze the data distribution kdeplots and describe() methods were used.
- Functions were made to plot kdeplots and adjusted kdeplots

```
def kdeplot(col,num): # plotting the kdeplot with data being capped till num
    plt.figure(figsize = [20,5])
    sns.kdeplot(airbnb[col][airbnb[col], shade = True)
    plt.axvline(airbnb[col].mean(), color='purple') # plotting the original mean as a line
    plt.axvline(airbnb[col].median(), ls='--', color='purple') # plotting median line

def kdeplot_adjusted(col,num): # plotting the kdeplot with data being capped till num and adjusted mean
    plt.figure(figsize = [20,5])
    sns.kdeplot(airbnb[col][airbnb[col], shade = True)
    plt.axvline(airbnb[col][airbnb[col], shade = True)
    plt.axvline(airbnb[col][airbnb[col], num]. mean(), color='purple') # plotting adjusted mean as a line
    plt.axvline(airbnb[col][airbnb[col], num_.median(), ls='--', color='purple') # plotting median line
```

- Numeric columns were binned based on data distribution seen in kdeplots like below
- The 4 new columns which were created are 'price_range', 'minimum_nights_range', 'number_of_reviews_range', 'number_of_listings_range'

Outlier Treatment

 After creating binned columns, outliers were handled by deleting the outliers which were extremely far from the expected range

```
airbnb[(airbnb.reviews_per_month<8) &
    (airbnb.price<2000) & (airbnb.number_of_reviews<400)].shape[0]/len(airbnb)*100
# checking % rows retained after deleting outliers

99.23656310123215

We still retain 99.2% data
```

• After Data cleaning and creating necessary columns the cleaned dataframe was exported in csv format so to analyze data in Tableau.

The exported <u>Clean Dataset</u>

Data cleaning <u>Jupyter Notebook</u>

Data Analysis

- Data Analysis was performed in Tableau.
- The Calculated fields created in it are as follows
 - Available/ Unavailable {Categorical specifies if a listing is available or not i.e., 'available 365' > 0}
 - 2. Availability = 0 {Flag 1 if listing is unavailable else 0}
 - 3. Availability > 0 {Flag 1 if listing is available for booking at least once a year}
 - 4. Review per month (availability > 0) {Filters reviews per month where if a listing is unavailable then 0 else keeps the original data}
- Insights were derived using bar plots, dual axis charts, line charts and heatmaps with median reviews per month being the popularity metric
- The Tableau Notebook used for analysis <u>Airbnb Storytelling</u>