

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 06.11.2020

VIDEOEMPFEHLUNG

Prof. Dr. Markus Krötzsch hat im vergangenen Wintersemester 2020/21 die Vorlesung "Formale Systeme" (3. Semester) in Form von YouTube-Videos gehalten. Diese Vorlesung beschäftigt sich vertieft mit formalen Sprachen.

Die Einleitung entspricht ungefähr dem Inhalt der ersten Übung:

► https://youtu.be/Lma6jaPnD-I

Syntaxdiagramme

SYNTAXDIAGRAMME

Beispiel eines Syntaxdiagrammsystems mit Startdiagramm S:

- 🖹 . . . Nichtterminalsymbol = syntaktische Variable
- ⓐ ... Terminalsymbol

RÜCKSPRUNGALGORITHMUS

Rücksprungalgorithmus

- Ziel: Nachweis von Zugehörigkeit eines Wortes zu einer Sprache
- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt

Hauptaugenmerk:

Protokollierung von Wortentstehung & Markenkeller

- jede Zeile entspricht dem Aufenthalt in einem Syntaxdiagramm
- ▶ jede Zeile führt eine Operation auf dem Markenkeller durch

AUFGABE 1

Gegeben sei das folgende Syntaxdiagrammsystem $\mathcal U$ mit Startdiagramm $\mathcal S$:

AUFGABE 1

Gegeben sei das folgende Syntaxdiagrammsystem \mathcal{U} mit Startdiagramm S:

Beispiele für Wörter, die das System \mathcal{U} erzeugt:

- \triangleright a accb b
- ► a a accb b b
- ► a a accb d b
- ► a a a accb d d b
- ► a a a accb b d b

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
а	1

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
a	1
a	31

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb	Wort	Markenkeller
	a	1
	a	31
Protokollierungszeitpunkte:	aa	131

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

144	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile		

- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb	Wort	Markenkeller
	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131

aaaaccb

 jede Zeile führt eine Operation auf dem Markenkeller aus

einer Zeile

► 3 = Rücksprung zu Marke 3

*3*2131

M	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
▶ jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
▶ jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem		
Markenkeller aus		

► 3 = Rücksprung zu Marke 3

Alauta 2.32.2	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
▶ jede Zeile führt eine	aaaaccb	2 131
Operation auf dem	aaaaccbd	1⁄31
Markenkeller aus		

► 3 = Rücksprung zu Marke 3

147	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
► jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem	aaaaccbd	<i>1</i> /31
Markenkeller aus	aaaaccbdb	<i>3</i> 1

► 🔰 = Rücksprung zu Marke 3

200	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
► jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem	aaaaccbd	<i>1</i> /31
Markenkeller aus	aaaaccbdb	<i>3</i> 1
► 3 = Rücksprung zu Marke 3	aaaaccbdb	χ

Wort: aaaaccbdbb
Protokollierungszeitpunkte:
▶ ieder Aufenthalt in einem

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131
aaaaccb	<i>2</i> 131
aaaaccbd	1⁄31
aaaaccbdb	<i>3</i> 1
aaaaccbdb	X
aaaaccbdbb	_

$$L = L_A \cdot L_B$$

$$L = L_A \cdot L_B$$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n \ge 0\}$$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n > 0\}$$

$$L = L_A \cdot L_B$$
 S:

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n > 0\}$$
s:
$$s = \begin{cases} s & b \end{cases}$$

kleine Tricks:

$$ightharpoonup a^{2n} = (a^2)^n = (aa)^n$$

$$ightharpoonup a^{2n+1} = a a^{2n} = a (aa)^n$$

$$L = \left\{ a^{2i}cb^{3i}c^kd^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$S: \qquad A \qquad B$$

$$A: \qquad A \qquad b \qquad b \qquad b$$

$$E: \qquad C \qquad B \qquad d$$

Extended Backus-Naur-Form

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition: EBNF-Term

Seien V eine endliche Menge (syntaktische Variablen) und Σ eine endliche Menge (Terminalsymbole) mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die kleinste Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{S, A, B\} \quad \text{und} \quad R = \Big\{S ::= A \ \hat{\{} \ B \ \hat{\}},$$

$$A ::= aA \ \hat{(} \ bc \ \hat{|} \ d \ \hat{)},$$

$$B ::= \hat{[} \ B \ \hat{]} \ b \qquad \Big\}$$

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{S, A, B\} \quad \text{und} \quad R = \Big\{S ::= A \; \big(\widehat{B} \; \widehat{B}\big),$$

$$A ::= aA \; \big(\widehat{bc} \; \widehat{bd}\big),$$

$$B ::= \widehat{B} \; b \qquad \Big\}$$

Übersetzung in ein Syntaxdiagrammsystem:

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ (ab)^n c^{m+1} d^k b^m b^n : n, m \ge 0, k \ge 1 \right\}$$

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ (ab)^n c^{m+1} d^k b^m b^n : n, m \ge 0, k \ge 1 \right\}$$

EBNF-Definition:
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$, $V = \{S, A\}$ und $R = \left\{S ::= \hat{(}abSb \hat{)}A \hat{)}, A ::= \hat{(}cAb \hat{)}cd \hat{(}d \hat{)} \hat{)}\right\}$