Tópicos de Matemática Teste Global/ 2º Teste 12/01/2011

(duração: 2 horas)

Proposta de resolução do 2º Teste e do Teste Global

- 1. Considere a fórmula proposicional $\varphi:(p_1\Rightarrow (p_0\vee p_2))\wedge (\neg p_1\vee p_2)$. Diga se são verdadeiras as seguintes afirmações:
 - (a) A fórmula φ é uma contradição.

Uma fórmula proposicional diz-se uma contradição se assume sempre o valor lógico falso (F) independentemente do valor lógico das variáveis proposicionais que nela ocorrem. Da tabela de verdade da fórmula proposicional φ

p_0	p_1	p_2	$p_0 \vee p_2$	$\neg p_1$	$\neg p_1 \lor p_2$	$p_1 \to (p_0 \vee p_2)$	φ
F	F	F	F	V	V	V	V
F	F	V	V	V	V	V	V
F	V	F	F	F	F	F	F
F	V	V	V	F	V	V	V
V	F	F	V	V	V	V	V
V	F	V	V	V	V	V	V
V	V	F	V	F	F	V	F
V	V	V	V	F	V	V	V

podemos verificar que esta fórmula nem sempre é falsa. Por exemplo, quando as variáveis proposicionais p_0 , p_1 e p_2 assumem todas o valor lógico falso (F), a fórmula proposicional φ assume o valor lógico verdadeiro (V). Logo a fórmula φ não é uma contradição e, portanto, a afirmação do enunciado é falsa.

(b) Uma condição suficiente para p_0 ter valor lógico falso é φ ter valor lógico falso.

Esta afirmação é verdadeira se a variável proposicional p_0 assumir valor lógico falso (F) sempre que a fórmula φ assumir valor lógico falso (F). Ora, como podemos verficar pela sétima linha da tabela de verdade, a fórmula φ tem valor lógico falso (F) e, no entanto, a variável p_0 tem valor lógico verdadeiro (V). Logo φ ter valor lógico falso não é uma condição suficiente para p_0 ter valor lógico falso. Assim, a afirmação do enunciado é falsa.

2. Sejam

$$A = \{-2, 2, -4, 4\}, \quad B = \{x \in \mathbb{R} : x^2 \in A \land 2x \in A\}, \quad C = \{1, \{2, \{3\}\}\}\} \quad D = \{\{1\}, \{2, \{3\}\}\}\}.$$

(a) **Determine** $(A \times B) \setminus (B \times A)$.

Tem-se

$$B = \{x \in \mathbb{R} : x^2 \in A \land 2x \in A\}$$

$$= \{x \in \mathbb{R} : x^2 \in A\} \cap \{x \in \mathbb{R} : 2x \in A\}$$

$$= \{-\sqrt{2}, \sqrt{2}, -2, 2\} \cap \{-1, 1, -2, 2\}$$

$$= \{-2, 2\}$$

Agora, por definição de produto cartesiano de dois conjuntos,

$$A \times B = \{(a,b) : a \in A \land b \in B\}$$

$$= \{(-2,-2), (-2,2), (2,-2), (2,2), (-4,-2), (-4,2), (4,-2), (4,2)\}$$

$$B \times A = \{(b,a) : b \in B \land a \in A\}$$

$$= \{(-2,-2), (2,-2), (-2,2), (2,2), (-2,-4), (2,-4), (-2,4), (2,4)\}.$$

Logo

$$\begin{array}{lcl} (A \times B) \setminus (B \times A) & = & \{(x,y) : (x,y) \in A \times B \ \land \ (x,y) \not \in B \times A\} \\ & = & \{(-4,-2), (-4,2), (4,-2), (4,2)\} \end{array}$$

(b) **Determine** $\mathcal{P}(C) \cap \mathcal{P}(\mathbb{N})$.

Tem-se

$$\mathcal{P}(C) \cap \mathcal{P}(\mathbb{N}) = \{X : X \subseteq C\} \cap \{Y : Y \subseteq \mathbb{N}\}$$

$$= \{\emptyset, \{1\}, \{\{2, \{3\}\}\}, \{1, \{2, \{3\}\}\}\}\} \cap \{Y : Y \subseteq \mathbb{N}\}$$

$$\stackrel{(*)}{=} \{\emptyset, \{1\}\}.$$

- (*) Note-se que \emptyset e $\{1\}$ são subconjuntos de \mathbb{N} , mas o mesmo não acontece com os conjuntos $\{\{2,\{3\}\}\}\}$ e $\{1,\{2,\{3\}\}\}\}$.
- (c) Indique o menor conjunto X tal que $D \subseteq \mathcal{P}(X)$.

Uam vez que $D \subseteq \mathcal{P}(X)$ segue que $\{1\} \in \mathcal{P}(X)$ e $\{2, \{3\}\} \in \mathcal{P}(X)$ e, portanto, $\{1\} \subseteq X$ e $\{2, \{3\}\} \subseteq X$. Logo $\{1, 2, \{3\}\} \subseteq X$.

Se considerarmos $X=\{1,2,\{3\}\}$ é fácil verificar que X é o menor conjunto tal que $D\subseteq \mathcal{P}(X)$. Com efeito,

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{\{3\}\}, \{1, 2\}, \{1, \{3\}\}, \{2, \{3\}\}, \{1, 2, \{3\}\}\},$$

pelo que $D \subseteq \mathcal{P}(X)$. Além disso, se considerarmos um conjunto Y tal que $D \subseteq \mathcal{P}(Y)$, segue que $\{1,2,\{3\}\}\subseteq Y$, logo $X\subseteq Y$.

3. Sejam A, B conjuntos. Mostre que se $A \cup B \in \mathcal{P}(A \cap B)$, então A = B.

Sejam A, B conjuntos tais que $A \cup B \in \mathcal{P}(A \cap B)$. Então $A \cup B \subseteq A \cap B$. Logo, como

$$A \cap B \subseteq A$$
, $A \cap B \subseteq B$ e $A \subseteq A \cup B$, $B \subseteq A \cup B$

segue que $A \subseteq A \cup B \subseteq A \cap B \subseteq B$ e $B \subseteq A \cup B \subseteq A \cap B \subseteq A$. Assim, temos $A \subseteq B$ e $B \subseteq A$ e, portanto, A = B.

4. Para cada $n \in \mathbb{N}$, seja p(n) o predicado " $2+6+10+\ldots+(4n-2)=2n^2$ ". Prove que, para cada $n \in \mathbb{N}$, p(n) é verdadeira.

A prova é feita recorrendo ao Princípio de Indução Simples para N, o qual estabelece o seguinte:

Principio de Indução Simples para N

Seja q(n) um predicado sobre \mathbb{N} .

Se

- (i) q(1) é verdadeira;
- (ii) Para todo $k \in \mathbb{N}$, $q(k) \Rightarrow q(k+1)$

então, q(n) é verdadeiro, para todo $n \in \mathbb{N}$.

No que diz respeito ao predicado p(n) : " $2+6+10+\ldots+(4n-2)=2n^2$ ", verifica-se-se o seguinte:

(i) (Base de Indução)

Temos

$$4 \times 1 - 2 = 2 = 2 \times 1^2$$

e, portanto, p(1) é verdadeiro.

(ii) (Passo de Indução)

Dado $k \in \mathbb{N}$, admita-se, por Hipótese de Indução, que p(k) é verdadeiro, ou seja, que " $2+6+10+\ldots+(4k-2)=2k^2$ " é verdade. Com base nesta hipótese prova-se que p(k+1): " $2+6+10+\ldots+(4k-2)+(4(k+1)-2)=2(k+1)^2$ " também é verdadeiro. De facto, assumindo p(k), tem-se

$$2+6+10+\ldots+(4k-2)+(4(k+1)-2)=2k^2+(4(k+1)-2)$$
 (Hipótese de Indução)
$$=2k^2+4k+2\\ =2(k^2+2k+1)\\ =2(k+1)^2$$

e, portanto, p(k+1) também é verdadeiro. Logo, para todo $k \in \mathbb{N}$, $p(k) \Rightarrow p(k+1)$.

Assim, de (i), (ii) e do Princípio de Indução Simples para \mathbb{N} , concluímos que p(n) é verdadeiro, para todo $n \in \mathbb{N}$.

5. Considere a função $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} 2n & \text{se} \quad n \text{ \'e impar} \\ n+2 & \text{se} \quad n \text{ \'e par} \end{cases}$$

(a) Determine

(i) $f({3,4,8});$

Tem-se

$$f({3,4,8}) = {f(x) : x \in {3,4,8}} = {f(3), f(4), f(8)} \stackrel{\text{(*)}}{=} {6,10}.$$

(*) Note-se que: 3 é impar e, portanto, $f(3) = 2 \times 3 = 6$; 4 e 8 são pares, logo f(4) = 4 + 2 = 6 e f(8) = 8 + 2 = 10.

(ii) $f^{\leftarrow}(\{3,5,6\})$.

Por definição de pré-imagem de um conjunto temos

$$\begin{array}{lcl} f^{\leftarrow}(\{3,5,6\}) & = & \{n \in \mathbb{N} : f(n) \in \{3,5,6\} \\ & = & \{n \in \mathbb{N} : f(n) = 3\} \cup \{n \in \mathbb{N} : f(n) = 5\} \cup \{n \in \mathbb{N} : f(n) = 6\}. \end{array}$$

Para todo $n \in \mathbb{N}$, f(n) é par (se n é impar, f(n) = 2n é par; se n é par, f(n) = n + 2 é também par, pois a soma de dois naturais pares é par). Logo

$$\{n \in \mathbb{N} : f(n) = 3\} = \emptyset \text{ e } \{n \in \mathbb{N} : f(n) = 5\} = \emptyset.$$

Por outro lado.

$$\{n \in \mathbb{N} : f(n) = 6\} = \{n \in \mathbb{N} : (n \text{ \'e impar e } 2n = 6) \text{ ou } (n \text{ \'e par e } n + 2 = 6)\}$$

= $\{n \in \mathbb{N} : (n \text{ \'e impar e } n = 3) \text{ ou } (n \text{ \'e par e } n = 4)\}$
= $\{3, 4\}.$

Portanto

$$f^{\leftarrow}(\{3,5,6\}) = \emptyset \cup \emptyset \cup \{3,4\} = \{3,4\}.$$

(b) Diga se f é injetiva.

A aplicação f é injetiva se, para todo $x, y \in \mathbb{N}$,

$$f(x) = f(y) \Rightarrow x = y.$$

Ora, como vimos na alínea (a)-(i), temos f(3)=6=f(4) e, no entanto, $3\neq 4$. Logo f não é injetiva.

(c) Indique se f é sobrejetiva.

A aplicação f é sobrejetiva se

$$\forall y \in \mathbb{N} \ \exists x \in \mathbb{N} \ f(x) = y.$$

Da alinea (a)-(ii) sabemos que não existe qualquer $x \in \mathbb{N}$ tal que f(x) = 3. Logo f não é sobrejetiva.

6. Sejam A,B conjuntos, X um subconjunto de A e $f:A\to B$ uma função. Mostre que se f é injetiva, então $f^\leftarrow(f(X))=X$.

Admitamos que $f: A \to B$ é uma aplicação injetiva.

Por definição de imagem de um conjunto e de pré-imagem de um conjunto, temos

$$f(X) = \{f(a) : a \in X\} \text{ e } f^{\leftarrow}(f(X)) = \{a \in A : f(a) \in f(X)\}.$$

Comecemos por mostrar que $X\subseteq f^{\leftarrow}(f(X))$. Dado $x\in X$, é imediato, por definição de f(X), que $f(x)\in f(X)$. Logo $x\in f^{\leftarrow}(f(X))$, pois $x\in A$ $(x\in X\ e\ X\subseteq A)\ e\ f(x)\in f(X)$. Assim, $X\subseteq f^{\leftarrow}(f(X))$.

Resta, agora, mostrar que $f^{\leftarrow}(f(X)) \subseteq X$. Dado $x \in f^{\leftarrow}(f(X))$, temos que $f(x) \in f(X)$. Logo f(x) = f(a), para algum $a \in X$, e como f é injetiva, segue que x = a. Logo $x \in X$. Assim, $f^{\leftarrow}(f(X)) \subseteq X$.

Uma vez que $X \subseteq f^{\leftarrow}(f(X))$ e $f^{\leftarrow}(f(X)) \subseteq X$, temos $f^{\leftarrow}(f(X)) = X$.

7. Sejam A um conjunto e R a relação binária definida em $\mathcal{P}(A)$ por

$$XRY$$
 se e só se $X \setminus \{1,2\} = Y \setminus \{1,2\}.$

(a) Mostre que R é uma relação de equivalência.

A relação R é uma relação de equivalência se for reflexiva, simétrica e transitiva.

[Reflexividade]

Para todo $X \in \mathcal{P}(A)$, é óbvio que $X \setminus \{1,2\} = X \setminus \{1,2\}$. Logo, para todo $X \in \mathcal{P}(A)$, temos X R X e, portanto, a relação R é reflexiva.

[Simetria]

Para quaisquer $X, Y \in \mathcal{P}(A)$,

$$\begin{array}{rcl} X\,R\,Y & \Rightarrow & X\setminus\{1,2\} = Y\setminus\{1,2\} \\ & \Rightarrow & Y\setminus\{1,2\} = X\setminus\{1,2\} \\ & \Rightarrow & Y\,R\,X \end{array}$$

Logo R é simétrica.

[Transitividade]

Para quaisquer $X, Y, Z \in \mathcal{P}(A)$,

$$\begin{array}{ccc} X\,R\,Y \ \land \ Y\,R\,Z & \Rightarrow & X \setminus \{1,2\} = Y \setminus \{1,2\} \ \land \ Y \setminus \{1,2\} = Z \setminus \{1,2\} \\ & \Rightarrow & X \setminus \{1,2\} = Z \setminus \{1,2\} \\ & \Rightarrow & X\,R\,Z \end{array}$$

Logo R é transitiva.

Uma vez que R é reflexiva, simétrica e transitiva, então R é uma relação de equivalência.

(b) Considere $A = \{1, 2, 3\}$. Determine a classe de equivalência $[\{1\}]_R$ e o conjunto quociente $\mathcal{P}(A)/R$.

Temos

$$[\{1\}]_R = \{X \in \mathcal{P}(A) : \{1\} R X\}$$

$$= \{X \in \mathcal{P}(A) : \{1\} \setminus \{1, 2\} = X \setminus \{1, 2\}\}$$

$$= \{X \in \mathcal{P}(A) : \emptyset = X \setminus \{1, 2\}\}$$

$$= \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

Uma vez que $\mathcal{P}(A)/R$ é uma partição de $\mathcal{P}(A)$, então classes de equivalências distintas são disjuntas (ou seja, a sua interseção é o conjunto vazio). Logo, atendendo a que $\emptyset \in [\emptyset]_R$, $\{2\} \in [\{2\}]_R$, $\{1,2\} \in [\{1,2\}]_R$, segue que

$$[\{1\}]_R = [\emptyset]_R = [\{2\}]_R = [\{1,2\}]_R.$$

Por definição,

$$\mathcal{P}(A)/R = \{ [X]_R : X \in \mathcal{P}(A) \}.$$

Logo, como

$$[\{1\}]_R = [\emptyset]_R = [\{2\}]_R = [\{1,2\}]_R \qquad \text{e}$$

$$[\{3\}]_R = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} = [\{3\}]_R = [\{1,3\}]_R = [\{2,3\}]_R = [\{1,2,3\}]_R.$$
 temos $\mathcal{P}(A)/R = \{[\{1\}]_R, [\{3\}]_R\}.$

- (c) Dê um exemplo de ou justifique por que não existe
 - (i) um conjunto A não vazio tal que R é a relação universal em $\mathcal{P}(A)$.

Seja
$$A = \{1, 2\}$$
. Então $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ e, para quaisquer $X, Y \in \mathcal{P}(A)$,

$$X\setminus\{1,2\}=\emptyset=Y\setminus\{1,2\}.$$

Logo, para quaisquer $X,Y\in\mathcal{P}(A)$, temos $X\,R\,Y$, pelo que R é a relação universal em $\mathcal{P}(A)$.

(ii) um conjunto A não vazio tal que R é a relação identidade em $\mathcal{P}(A)$.

Seja $A = \{3\}$. Então $\mathcal{P}(A) = \{\emptyset, \{3\}\} \in \mathcal{P}(A) \times \mathcal{P}(A) = \{(\emptyset, \emptyset), (\{3\}, \{3\}), (\emptyset, \{3\}), (\{3\}, \emptyset)\}$. Dado que R é uma relação binária em $\mathcal{P}(A)$ tem-se $R \subseteq \mathcal{P}(A) \times \mathcal{P}(A)$. Por outro lado, como R é reflexiva segue que $\{(\emptyset, \emptyset), (\{3\}, \{3\})\} \subseteq R$. No entanto, $(\emptyset, \{3\}), (\{3\}, \emptyset) \notin R$, pois $\emptyset \setminus \{1, 2\} = \emptyset \neq \{3\} = \{3\} \setminus \{1, 2\}$. Logo $R = \{(\emptyset, \emptyset), (\{3\}, \{3\})\}$ e, portanto, R é a relação identidade em $\mathcal{P}(A)$.

- 8. Dê exemplo de ou justifique por que não existe(m)
 - (a) funções $f:A\to B$ e $g:B\to C$, com A,B,C conjuntos não vazios, tais que g seja sobrejetiva e $g\circ f$ seja não sobrejetiva;

Consideremos os conjuntos $A = \{1, 2\}, B = \{3, 4\}, C = \{5, 6\}$ e as funções

Então g é sobrejetiva, pois g(B) = C, mas a aplicação $g \circ f : A \to C$ não é sobrejetiva, pois $(g \circ f)(A) = g(f(A)) = g(\{3\}) = \{5\} \neq C$.

(b) uma relação binária R definida num conjunto A que não seja simétrica nem antissimétrica;

Sejam
$$A = \{1, 2, 3\}$$
 e $R = \{(1, 2), (2, 3), (3, 2)\}$.

A relação R não é simétrica, pois $(1,2) \in R$, mas $(2,1) \notin R$, e também não é antissimétrica, uma vez que $(2,3) \in R$, $(3,2) \in R$ e $2 \neq 3$.

(c) uma relação de equivalência R definida em $A = \{1, 2, 3, 4, 5\}$ tal que

$$A/R = \{\{1\}, \{2,3\}, \{1,4\}, \{5\}\}.$$

Se S é uma relação de equivalência definida num conjunto X, então X/S é uma partição de X. Por sua vez, se X/S é uma partição de X, tem-se, por definição de partição de um conjunto, que para quaisquer $C, D \in X/S$,

$$C \neq D \Rightarrow C \cap D = \emptyset.$$

Logo A/R não é uma partição de A, pois $\{1\} \neq \{1,4\}$ e $\{1\} \cap \{1,4\} \neq \emptyset$. Portanto, não existe qualquer relação de equivalência R definida em A tal que $A/R = \{\{1\}, \{2,3\}, \{1,4\}, \{5\}\}$.

(d) uma partição Π do conjunto $\{1,2,3\}$ tal que a relação de equivalência R_{Π} associada a Π seja antissimétrica.

Seja
$$\Pi = \{\{1\}, \{2\}, \{3\}\}.$$

Facilmente se verifica que Π é uma partição de $\{1, 2, 3\}$, pois

- i. para todo $X \in \Pi, X \neq \emptyset$;
- ii. para quaisquer $X, Y \in \Pi, X \neq Y \Rightarrow X \cap Y = \emptyset;$
- iii. para todo $x \in A$, existe $X \in \Pi$ tal que $x \in X$.

Por definição de relação de equivalência associada à partição Π , temos

$$R_{\Pi} = \{(x, y) \in A \times A : \exists X \in \Pi, \{x, y\} \subseteq X\} = \{(1, 1), (2, 2), (3, 3)\}.$$

Como é simples verificar, esta relação é anitssimétrica, pois não existem $x, y \in A$ tais que

$$x \neq y \land (x, y) \in R_{\Pi} \land (y, x) \in R_{\Pi}.$$

9. Seja $A \subseteq \mathcal{P}(\mathbb{N})$ tal que (A,\subseteq) tem o diagrama de Hasse a seguir representado:

Considere o conjunto $B = \{\{1, 2\}, X\}$.

(a) Determine os elementos maximais e minimais de A.

Um elemento $M \in A$ diz-se um maximal de A se $\neg(\exists C \in A : M \subsetneq C)$. Assim, são elementos maximais de A: $\{1,2,3\}, \{1,2,4,6,7\}$ e $\{1,2,4,5,6\}$.

Um elemento $M \in A$ diz-se um minimal de A se $\neg(\exists C \in A : C \subsetneq M)$. Então $\{2\}$ é o único elemento minimal de A.

(b) Determine os majorantes e os minorantes de B e, caso existam, o supremo e o ínfimo de B.

Diz-se que $M \in A$ é um majorante de B se, para todo $C \in B$, $C \subseteq M$. Logo são majorantes de B os conjuntos: Y, $\{1, 2, 4, 6, 7\}$ e $\{1, 2, 4, 5, 6\}$.

Diz-se que $M \in A$ é um minorante de B se, para todo $C \in B$, $M \subseteq C$. Então $\{2\}$ é o único minorante do conjunto B.

Um elemento $M \in A$ diz-se supremo de B se M é um majorante de B e é o menor dos majorantes de B. Logo Y é o supremo B.

Um elemento $M \in A$ diz-se ínfimo de B se M é um minorante de B e é o maior dos minorantes de B. Assim, $\{2\}$ é o infímo de B.

(c) Determine os conjuntos X e Y.

Uma vez que $Y\subseteq\{1,2,4,6,7\}$ e $Y\subseteq\{1,2,4,5,6\}$ segue que $Y\subseteq\{1,2,4,6\}$. Dado que $\{2,6\}\not\subseteq Y$, então $2\not\in Y$ ou $6\not\in Y$. Mas $2\in Y$, pois $\{1,2\}\subseteq Y$ e, portanto, $6\not\in Y$. Assim, $\{1,2\}\subseteq Y\subseteq\{1,2,4\}$. Por último, atendendo a que $\{1,2\}\subsetneq Y$, temos $Y=\{1,2,4\}$. Como $X\subsetneq Y$, temos que $X\in\{\emptyset,\{1,2\},\{1,4\},\{2,4\}\}$. Mas $X\mid\mid\{1,2\}$ e, portanto, $X\neq\{1,2\}$. Por outro lado, como $\{2\}\subseteq X$, temos $X\neq\{1,4\}$ e $X\neq\emptyset$. Logo $X=\{2,4\}$.

Cotação:

- **1.** (2,5 valores) **2.** (3,5 valores) **3.** (2,0 valores) **4.** (2,0 valores)
- **5.** (3,0 valores) **6.** (2,0 valores) **7.** (4,0 valores) **8.** (6,0 valores)
- **9.** (3,0 valores)