01

ICT 기술의 소개

1.1 ICT 기술과 디지털 혁명

1.2 컴퓨터와 정보통신의 발전

1.1 ICT 기술과 디지털 혁명

- 디지털 혁명과 지식기반사회
- ICT 기술의 구성요소와 활용의 변화

1.1.1 디지털 혁명과 지식기반사회

- ICT 기술과 컴퓨터 과학
 - 정보통신기술(ICT: Information and Communication Technology)이란?
 - 컴퓨터 하드웨어
 - 소프트웨어
 - 네트워크(통신)
 - 정보(데이터)

│ 그림 1-1 정보통신기술(ICT)의 의미

- ICT 기술과 컴퓨터 과학의 차이
 - 컴퓨터 과학: 개념, 이론 및 알고리즘
 - ICT 기술: 컴퓨터 과학을 기반으로 활용 및 실제

1.1 ICT 기술과 디지털 혁명

- 디지털 혁명과 지식기반사회
 - 두 가지 커다란 변혁
 - 증기기관의 발명으로 인한 산업혁명
 - 20 세기 중반 컴퓨터 발명으로 시작된 정보혁명
 - 다니엘 벨(1973), "탈산업화사회의 도래"
 - 마샬 맥루한, 1962년 '지구촌(Global Village)' 개념
 - 엘빈 토플러(1980), "제3의 물결"
 - 4차 산업혁명

1.1 ICT 기술과 디지털 혁명

- 컴퓨터의 범용성과 융통성
 - 컴퓨터는 범용 기계(General-Purpose Machine)
 - 튜링머신(Turing machine)의 개념(1937년)
 - 프로그램(소프트웨어)을 통해 범용성과 융통성 제공

│ 그림 1-6 튜링모델에 기반한 컴퓨터: 프로그램을 통한 프로세서의 작동

• 인간의 두뇌와 마이크로프로세서의 비교

1.1.2 ICT 기술의 구성요소와 활용의 변화

- ICT의 구성요소
 - 하드웨어, 소프트웨어, 프로시저(알고리즘), 통신망, 사람(이용자, 참여자), 정보

- 소프트웨어의 핵심은 문제를 해결하는 절차 (procedure), 즉 알고리즘
- 컴퓨터 과학을 '알고리즘의 과학'이라고도 함

1.1 ICT 기술과 디지털 혁명

- ICT 기술 중요성의 변화
 - 시대별 컴퓨터 활용의 변화

- 컴퓨터의 발전과 시대적 배경
- 컴퓨터의 유형
- 정보통신과 네트워크

1.2.1 컴퓨터의 발전과 시대적 배경

- 컴퓨터의 역사
 - 프랑스 파스칼(Pascal)의 덧셈기(1642년)
 - 영국의 수학자 바비지(Babbage)의 발전된 덧셈기
 - '튜링머신'(1936)을 이론적으로 제안
 - '콜로서스'라는 특수목적용 디지털 전자컴퓨터로 암호문 해독
 - 하바드 대학의 Aiken 교수, Mark I(1944년)

- 펜실베니아 대학 모클리(Mauchly)와 에커트(Eckert)의 ENIAC(1943~1946)
 - 세계 최초의 범용 컴퓨터,
 - 유연성 부족, 새로운 문제를 수행 때마다 배선을 다시
 - 길이 30m, 높이 3m, 무게 30톤, 18,000개의 진공관

(a) ENIAC 컴퓨터

(b) ENIAC에서 이용한 진공관

- 폰 노이만 구조(von Neumann Architecture)(1945년)
 - '폰 노이만 컴퓨터'를 '내장 프로그램 컴퓨터(Stored-Program Computer)'라고 부름

(1) 제1세대 컴퓨터(1946~1957)

- 진공관
- 주기억장치: 자기코어
- 입출력장치: 천공카드
- 프로그램: 기계어로 작성

(a) 제1세대 컴퓨터

(b) EL84 진공관

- (2) 제2세대 컴퓨터(1958~1963)
 - 트랜지스터(1948년)
 - 크기가 대폭 축소, 전력소모량, 계산속도, 높은 신뢰성
 - 활용 분야: 비즈니스, 산업계, 항공사, 대학교 등
 - 프로그램: FORTRAN, COBOL

(a) 제2세대 컴퓨터

(b) 메모리보드에 사용한 트랜지스터

- (3) 제3세대 컴퓨터(1964~1970)
 - IC칩(1959~1961)
 - IC칩 하나가 수 백 개의 전자소자 포함,
 - 컴퓨터 크기가 획기적으로 축소, 신뢰도, 전력소모량 향상
 - 메인프레임, IBM System/360
 - 미니컴퓨터

│ 그림 1-13 제3세대 컴퓨터 IBM 360

- (4) 제4세대 컴퓨터(1971~현재)
 - LSI, VLSI, ULSI
 - 마이크로 컴퓨터
 - 1980년대, 퍼스널 컴퓨터(PC)
 - Apple, Apple I(1977)
 - IBM-PC(1981): Intel 8088칩 기반
 - 마이크로프로세서의 발전
 - 그래픽 사용자 인터페이스(GUI)
 - Lisa, 맥킨토시
 - 노트북 컴퓨터: 휴대성
 - 모바일 컴퓨터의 유용성: 스마트폰, 태블릿 PC

- 컴퓨터 활용의 시대적 변화
 - (1) 기관 위주의 컴퓨팅 시대(1950년대 시작)
 - 메인프레임 위주, 대기업, 정부기관, 대학 등
 - (2) 개인 컴퓨팅 시대(1975년 시작)
 - 사무자동화 분야
 - (3) 사람 간의 컴퓨팅 시대(1995년 시작)
 - WAN, LAN
 - 웹 서비스(1989~), 전자상거래, 온라인 게임 등
 - (4) 임베디드 및 사물인터넷 시대
 - 디지털 가전제품, 웨어러블 기기, 자동차 등

1.2.2 컴퓨터의 유형

- (1) 메인프레임 컴퓨터와 슈퍼컴퓨터
 - 메인프레임: 은행, 항공사, 대기업, 정부기관 등
 - 슈퍼컴퓨터: 일기예보, 유전탐사, 컴퓨터 시뮬레이션, 의학 이미지 처리 등

(a) CRAY-1 슈퍼컴퓨터

(b) NEC '지구 시뮬레이터'

│ 그림 1-15 슈퍼 컴퓨터

(2) 서버와 워크스테이션

- 서버컴퓨터
 - 미니컴퓨터나 워크스테이션 사용
- 고성능 데스크탑 컴퓨터
 - 과학자, 엔지니어, 재무 분석가, 디자이너, 애니메이션 제작
 - 최근 PC의 성능이 워크스테이션에 근접

(a) 미니컴퓨터 VAX 11/780

(b) Sun-1 워크스테이션

(3) PC와 노트북(랩탑)

(4) 모바일 컴퓨터

• 스마트폰, 태블릿 PC, e-북 단말기

(5) 임베디드 컴퓨터

- 특수 용도의 마이크로프로세서 칩 내장
 - 90% 이상의 마이크로프로세서 칩이 임베디드 컴퓨터 형태

1.2.3 정보통신과 네트워크

- 컴퓨터 네트워크와 인터넷
 - LAN(Local Area Network)
 - 한 건물이나 비교적 가까운 장소
 - WAN(Wide Area Network)
 - LAN을 다시 연결, 보다 광역화된 네트워크
 - 인터넷 망
 - 1969년 ARPAnet 으로 시작
 - 웹(WWW: World Wide Web), 1989 시작
 - 1994년 웹 브라우저

- 초고속 인터넷 서비스
 - 모뎀(Modem)
 - ADSL/VDSL, 케이블 모뎀
 - 광케이블(FTTH, FTTx)
 - 1990년대 후반부터 한국, 일본, 유럽연합 등 모든 선 진국들이 인터넷 속도를 획기적으로 증가
 - 정보의 수퍼 하이웨이(Information Superhighway)

- 컴퓨터 기술의 발전
 - 인텔사 창업자 무어(Gordon Moore)
 - 마이크로프로세서의 성능은 18개월마다 2배씩 증가, 가격은 매년 1/2씩 떨어짐

│ 표 1-1 컴퓨터 ICT 기술의 발전과 관련된 법칙

무어의 법칙	CPU의 집적도(처리속도)는 18개월마다 2배씩 증가
길더의 법칙	네트워크의 데이터 전송속도는 12개월에 3배씩 증가
저장장치 용량	저장장치의 집적도는 10년에 수백 배씩 증가하고 가격은 수백분의 일 이하로 떨어짐

- 정보통신과 인터넷 기술의 발전
 - 초고속 인터넷이 FTTH(Fiber to the Home)으로 발전
 - 무선인터넷 서비스가 중요한 인프라로 부상
 - 인터넷이 협업을 위한 환경
 - 인터넷 경제(Internet Economy)

- 모바일 혁명
 - 이동 중에 언제, 어디서나 원하는 정보
 - '모바일 혁명'
 - e-커머스가 모바일 커머스로

- 디지털 컨버전스(Digital Convergence)
 - BT, NT 등의 첨단 기술과 융합
 - ICT 기술은 기존의 전통산업과 융합하여 경쟁력 제공

컴퓨터 시스템의 구조

- 3.1 컴퓨터 시스템의 구성과 작동
- 3.2 프로세서
- 3.3 메모리 장치
- 3.4 입출력 장치
- 3.5 기기 간의 통신
- 3.6 병렬처리와 파이프라이닝

3.1 컴퓨터 시스템의 구성과 작동

- 컴퓨터 시스템의 구성
- 컴퓨터 시스템의 작동

3.1.1 컴퓨터 시스템의 구성

- 컴퓨터 시스템의 구성요소
 - 중앙처리장치(CPU: Central Processing Unit)
 - 사람의 두뇌에 해당, 수리적 연산 및 논리적 연산
 - 저장장치(기억장치)
 - 주기억장치와 보조기억장치
 - 입력장치
 - 외부로부터 데이터를 입력
 - 출력장치

│ 그림 3-1 컴퓨터 시스템의 하드웨어 구성

- 처리된 결과물을 시스템 외부로 출력

3.1.2 컴퓨터 시스템의 작동

■ 컴퓨터 시스템의 체계: 하드웨어와 소프트웨어

3.1 컴퓨터 시스템의 구성과 작동

- 컴퓨터 시스템의 작동 원리
 - 부팅(Booting)
 - 시스템을 켤 때 하드웨어 점검, 운영체제(OS)를 주기억장치 (RAM)로 가져옴
 - ROM 메모리에 저장
 - 컴퓨터의 모든 제어는 운영체제가 담당

│ 그림 3-3 컴퓨터 시스템의 작동 원리

- 프로세서의 구성
- 기계어와 어셈블리어
- 프로그램의 실행과 명령어처리 사이클
- 프로세서 성능의 발전

3.2.1 프로세서의 구성

- ALU(Arithmetic & Logical Unit): 산술논리장치
- 레지스터(Register): 빠른 속도의 기억장치
- 제어장치: 컴퓨터를 제어

│ 그림 3-4 버스에 의해 연결된 프로세서와 주기억장치

■ 프로세서의 구성요소

- (1) ALU
 - 프로세서의 가장 핵심 요소로 연산을 담당
 - 산술연산과 논리연산
- (2) 레지스터(Register)
 - 데이터 접근속도가 매우 빠른 적은 수의 메모리 회로
 - 범용 레지스터($R_0 \sim R_n$)와 특수 레지스터(PC, IR)

(3) 제어장치

- PC(Program Counter): 주기억장치에 신호를 보내 어떤 주소 에 있는 명령문을 가져올지 지정
- IR(Instruction Register): 가져온 명령문을 저장, IR 레지스터에 에 있는 코드를 해석하여 ALU와 범용 레지스터에 적절한 전기신호를 보냄
- 주기억장치의 주소(Address)와 내용(Contents)은 다름

│그림 3-6 주기억장치의 주소와 메모리셀

- 캐시 메모리(Cache memory)
 - 레지스터의 속도와 주기억장치의 속도 간의 차이
 - 캐시 메모리의 용량은 주기억장치보다 훨씬 작으나(수백 KB 수준) 데이터 접근 속도는 주기억장치보다 빠르다.
 - 주기억장치 속도 < 캐시 속도 < 레지스터 속도

- 버스(Bus)
 - 프로세서와 주기억장치를 연결하는 도선의 묶음
 - 데이터 버스
 - 주소 버스
 - 제어 버스: 예) "데이터를 읽어오라(Read)", "데이터를 저장하라(Write)"

3.2 프로세서

- 저장 프로그램 개념(폰 노이만 구조)
 - '저장 프로그램(Stored Program)' 개념
 - 초기에 컴퓨터는 새로운 응용을 처리하기 위하여 프로세서 하드웨어의 회로를 다시 구성
 - 프로그램을 주기억장치에 저장했다가 프로세서가 명령어를 해석하여 처리 → 유연성의 증가
 - 폰 노이만 구조(von Neumann Architecture)

3.2.2 기계어와 어셈블리어

- 기계어(Machine Instruction)- 연산자와 피연산자
 - 기계어: 연산자(Opcode)와 피연산자(Operand)로 구성
 - 기계어의 길이는 일반적으로 워드 크기와 일치
 - 연산자는 프로세서가 처리할 작업을 지정, 피연산자는 처리할 목적물
 - 예) 가상의 프로세서: 워드 크기 16 비트, 연산자 4 비트, 피연산자 12 비트

그림 3-10 가상 프로세서의 기계어 명령어 예

3.2 프로세서

- 어셈블리어
 - 기계어 명령어를 문자화, 기호화
 - 프로그램의 작성이 용이
 - 기계어와 어셈블리어는 1:1 매핑 관계
 - 예) 앞의 예 '0011 0101 1010 0111'에서
 - 연산자 '0011' → "STORE"
 - 레지스터 주소 '0101' → "R5(Register 5)"
 - 주기억장치 주소 '1010 0111' → "MemAdd"

비트열 '0011 0101 1010 0111' ⇒ STORE R5 MemAdd

3.2 프로세서

- 프로세서 설계 방식
 - 프로세서의 설계 철학에 따라 기계어 집합이 간단 또 는 복잡
 - CISC(Complex Instruction Set Computer) 머신 예) INTEL 프로세서
 - RISC(Reduced Instruction Set Computer) 머신 예) ARM 프로세서, MIPS 프로세서

| 표 3-1 CISC 머신과 RISC 머신의 비교

CISC	RISC
하드웨어 강조	소프트웨어 강조
명령어가 복잡하고 종류가 많음	명령어가 간단하고 종류가 적음
적은 수의 레지스터 이용	많은 수의 레지스터 이용
다양한 주소 모드	적은 주소 모드
명령어 처리를 위해 몇 클록사이클 필요	명령어를 한 클록사이클에 처리
파이프라이닝 어려움	파이프라이닝 용이함

- 입력장치
- 출력장치

3.4.1 입력장치

- 자판(Keyboard)
- 모바일 기기의 자판
- 마우스
- 조이스틱
- 펜타입 입력장치
- 3D 스캐너(3D Scanner)

(a) 엔젤바트가 고안한 최초의 마우스 프로토타입

| 그림 3-27 3차원 스캐너

3.4.2 출력장치

- LCD 디스플레이
- 차세대 디스플레이
 - OLED
 - 전자잉크를 이용한 전자종이(e-Paper)
 - 두루마리 디스플레이
- 프린터
- 플로터

(b) 전자잉크를 이용한 두루마리 디스플레이(Flexible Display)

■ 3D 프린터

- 그래픽스 소프트웨어를 이용하여 모델링한 3차원모 델로부터 물리적 형태를 빠른 시간 내에 제작
 - 빠른 프로토타입의 개발
- 활용 분야: 산업용, 일반 고객용, 의학용 등
- 의학용 3D 프린터: 바이오 기술을 적용하여 인간의 뼈를 비롯한 귀나 장기 같은 세포 조직의 제작

운영체제와 시스템 소프트웨어

- 4.1 운영체제의 개념과 발전
- 4.2 운영체제의 구성
- 4.3 컴퓨터 실행의 제어
- 4.4 시스템 소프트웨어

- 운영체제의 목적과 발전
- 플랫폼 개념

4.1.1 운영체제의 목적과 발전

- 운영체제의 목적
 - 응용 소프트웨어
 - 예) 포토샵, 일러스트레이터, 엑셀, 파워포인트 등의 상업적 소프트웨어
 - 개인이나 기관이 개발한 프로그램
 - 시스템 소프트웨어
 - 운영체제, 파일 압축 소프트웨어, 보안 소프트웨어, 컴파일러 등

┃그림 4-1 소프트웨어의 분류

- (1) 하드웨어 자원의 효율적 이용
 - 컴퓨터 시스템의 프로세서, 주기억장치, 보조 기억장치, 입출 력장치, 컴퓨터 네트워크와 같은 자원의 효율적 관리
 - 다수 사용자에게 하드웨어 자원의 효율적 배분
- (2) 자원의 편리한 이용
 - 컴퓨터 시스템의 복잡한 자원을 편리하게 사용할 수 있도록
 - 예) Windows 운영체제: 과거 명령어 방식인 MS-DOS에서 GUI 방식으로 지원

■ 운영체제의 역사

- 초창기의 운영체제:
 - 컴퓨터 시스템마다 자체 운영체제,예) IBM OS/360, CDC SCOPE
- 유닉스(UNIX) 운영체제
 - 1969년 AT&T사 벨 연구소의 토마스 리치 등이 어셈블리어로 개발, 1971년 C 언어로 다시 작성
 - UNIX 개발자들에게 무상으로 제공, 다양한 컴퓨터에서 구현
- 리눅스(Linux)
 - UNIX 계열의 운영체제 중 대표적인 공개 소프트웨어, 1991 년 리누스 토발즈(Torvalds)가 개발
 - 공개 소프트웨어 운동은 원래 MIT 리차드 스톨만(Stallman) 교수가 GNU를 개발하면서 시작, '오픈 소스(Open Source)' 용어 탄생

- 데스크탑 운영체제
 - DOS, MS Windows, Mac OS, UNIX, Linux 등
 - GUI 방식: 1984년 Mac OS, 1980년대 후반 MS Windows

■ 모바일 운영체제

- 컴퓨터에 비하여 장치 규모가 작으며 각 기기의 특수한 상황에서의 기능을 주로 요구하므로 운영체제의 핵심 기능만 필요
- 임베디드 장치에 필요한 시스템 소프트웨어를 임베디드 운영 체제, 고사양의 임베디드 운영체제로 Windows CE와 임베디 드 Linux
- 초창기 스마트폰: Symbian OS, Windows mobile 2000년 이후: 애플의 iOS, 구글의 개방형 모바일 운영체제 안드로이드(Android)

4.1.2 플랫폼 개념

- 플랫폼 이란?
 - 어떤 일을 하기 위해 필수적으로 거쳐야 하는 장소를 의미
 - 운영체제는 필수적인 핵심 소프트웨어로 플랫폼 역할
 - "기반" 또는 "매개"의 개념
 - ICT 분야의 플랫폼
 - 예) 구글, 애플, 아마존, 페이스북, 이베이, 네이버, 카카오, 라쿠텐, 알리바바 등, ARM 칩과 Intel 칩의 프로세서
 - 플랫폼이란 어떤 목적을 위한 환경을 구축하여 이용자, 개발자, 사업자들이 모여 하나의 생태계를 이름
 - 개발자나 사업자들이 용이하게 개발하고 사업할 수 있도록 여러 가지 장치와 도구 제공
 - "네트워크 효과(Network Effect)"

4.2 운영체제의 구성

- 컴퓨터의 시동
- 사용자 인터페이스와 커널(Kernel)
- 메모리 관리
- 파일관리 시스템

4.2 운영체제의 구성

■ 운영체제의 역할

4.2.1 컴퓨터의 시동

- 부트로더(Boot Loader): 운영체제를 컴퓨터 시스템 내부 로 가져와 작동
- 부트로더는 ROM 메모리에 저장
 - DRAM은 휘발성 기억장치, ROM은 비휘발성
 - ROM에 저장되어 있는 부트로더는 펌웨어(Firmware)

4.2.2 사용자 인터페이스와 커널(Kernel)

- 사용자 인터페이스
 - 컴퓨터 사용자가 컴퓨터 시스템에게 원하는 작업을 요청하기 위한 상 호작용을 지원. UNIX에서는 사용자 인터페이스를 쉘(Shell), GUI 방식의 쉘을 윈도우 관리자(Windows Manager)

- 사용자 인터페이스의 유형
 - 명령어(Command Line) 방식
 - 메뉴 방식
 - 그래픽 사용자 인터페이스(GUI: Graphic User Interface)

4.2 운영체제의 구성

- 커널(Kernel)
 - 프로세스 관리자(Process manager)
 - 메모리 관리자(Memory manager)
 - 파일 관리자(File manager)
 - 장치 관리자(Device manager)

│그림 4-16 운영체제(OS)의 구성요소