Cursul 4

Serii numerice cu termeni oarecare. Serii de puteri

Serii cu termeni oarecare

În această secțiune, vom analiza seriii de numere reale cu termeni ce nu sunt neapărat pozitivi.

Spunem că seria $\sum_{n=1}^{\infty} x_n$ este o serie cu termeni oarecare, dacă termenul general al seriei, x_n , nu are același semn pentru orice $n \in \mathbb{N}^*$. Un caz particular de serii cu termeni oarecare sunt seriile alternate. Spunem că seria $\sum_{n=1}^{\infty} x_n$ este alternată, dacă $x_n x_{n+1} \leq 0, \forall n \in \mathbb{N}^*$.

Înainte de a prezenta unele criterii de convergență pentru astfel de serii, vom analiza următorul exemplu:

Exemplu: Seria armonică alternată $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ este convergentă.

Notăm $x_n = (-1)^{n+1} \frac{1}{n}, n \in \mathbb{N}^*$, și arătăm că șirul sumelor parțiale atașat seriei $\sum_{n=1}^{\infty} x_n$, $(S_n)_{n \in \mathbb{N}^*}$, este Cauchy. Fie $n, p \in \mathbb{N}^*$. Atunci avem:

$$|S_{n+p} - S_n| = |x_{n+1} + x_{n+2} + \dots + x_{n+p}| = \left| (-1)^{n+2} \frac{1}{n+1} + (-1)^{n+3} \frac{1}{n+2} + \dots + (-1)^{n+p+1} \frac{1}{n+p} \right|$$

$$= \left| (-1)^{n+2} \left(\frac{1}{n+1} - \frac{1}{n+2} + \dots + (-1)^{p-1} \frac{1}{n+p} \right) \right|$$

$$\leq \frac{1}{n+1} - \frac{1}{n+2} + \dots + (-1)^{p-1} \frac{1}{n+p} \leq \frac{1}{n+1}.$$

Cum $\lim_{n\to\infty}\frac{1}{n+1}=0$, rezultă că, pentru orice $\varepsilon>0$, $\exists n_\varepsilon\in\mathbb{N}*$, (spre exemplu, $n_\varepsilon=\left[\frac{1-\varepsilon}{\varepsilon}\right]+1$) astfel încât $\frac{1}{n+1}<\varepsilon$, $\forall n\geq n_\varepsilon$. Aşadar, pentru orice $n\geq n_\varepsilon, p\in\mathbb{N}^*$, avem $|x_{n+1}+\ldots+x_{n+p}|<\varepsilon$, de unde rezultă că $(S_n)_{n\in\mathbb{N}^*}$ este şir Cauchy, deci convergent. Prin urmare, seria armonică alternată este convergentă.

Criterii de convergență

Dacă suntem în situația în care o serie $\sum_{n=1}^{\infty} x_n$ nu este neapărat convergentă, însă are șirul sumelor parțiale mărginit, prin înmulțirea termenului general x_n cu termenul general y_n , al unui șir monoton și convergent la 0, obținem că seria produs, $\sum_{n=1}^{\infty} x_n y_n$, este convergentă. Atunci, are loc următorul rezultat:

Teorema 4.1 (Criteriul lui Dirichlet)

Fie $(x_n)_{n\in\mathbb{N}}$ şi $(y_n)_{n\in\mathbb{N}^*}$ două şiruri de numere reale, şi fie $S_n=x_1+x_2+\ldots+x_n, n\in\mathbb{N}^*$. Dacă

- $\operatorname{sirul}(S_n)_{n\in\mathbb{N}^*}$ este mărginit;
- $\operatorname{sirul}(y_n)_{n\in\mathbb{N}^*}$ este monoton descrescător $\operatorname{cu}\lim_{n\to\infty}y_n=0,$

atunci seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.

Demonstrație: Fie $S_n = x_1 + x_2 + \ldots + x_n, n \in \mathbb{N}^*$. Cum $(S_n)_{n \in \mathbb{N}^*}$ este mărginit, există M > 0, astfel încât $|S_n| \leq M, \ \forall \ n \in \mathbb{N}^*$. Pe de altă parte, cum şirul $(y_n)_{n \in \mathbb{N}^*}$ este convergent la 0, avem:

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^*, : |y_n| < \frac{\varepsilon}{2M}, \forall n \ge n_{\varepsilon}.$$

Mai mult, cum $(y_n)_{n\in\mathbb{N}^*}$ este descrescător, avem $y_n>0, \forall n\in\mathbb{N}^*$.

Aplicând criteriul general al lui Cauchy de convergență pentru seria cu termenul general $x_n y_n$, obținem că, oricare ar fi $\varepsilon > 0$, există n_{ε} de mai sus, $n_{\varepsilon} \in \mathbb{N}^*$, aşa încât, $\forall n \geq n_{\varepsilon}$ și $\forall p \in \mathbb{N}^*$, avem:

$$|x_{n+1}y_{n+1} + \dots + x_{n+p}y_{n+p}| = |(S_{n+1} - S_n)y_{n+1} + (S_{n+2} - S_{n+1})y_{n+2} + \dots + (S_{n+p} - S_{n+p-1})y_{n+p}|$$

$$= |-S_ny_{n+1} + S_{n+1}(y_{n+1} - y_{n+2}) + \dots + S_{n+p-1}(y_{n+p-1} - y_{n+p}) + S_{n+p}y_{n+p}|$$

$$\leq My_{n+1} + M(y_{n+1} - y_{n+2}) + \dots + M(y_{n+p-1} - y_{n+p}) + My_{n+p}.$$

Aşadar, vom obţine

$$|x_{n+1}y_{n+1} + \ldots + x_{n+p}y_{n+p}| \le 2My_{n+1} < \varepsilon.$$

Prin urmare, seria $\sum_{n\in\mathbb{N}^*} x_n y_n$ este convergentă.

Exemplu: Seria $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$ este convergentă.

Considerăm $x_n = \cos n$ și $y_n = \frac{1}{\sqrt{n}}$. Observăm că $(y_n)_{n \in \mathbb{N}^*}$ este monoton descrescător, cu limita 0. Așadar, rămâne să arătăm că $(S_n)_{n \in \mathbb{N}^*}$ este mărginit.

Fie $S_n := \cos 1 + \cos 2 + \ldots + \cos n$. Putem calcula S_n în mod explicit, înmulţindu-l cu $2 \sin \frac{1}{2}$:

$$2\sin\frac{1}{2} \cdot S_n = 2\sin\frac{1}{2} \cdot \cos 1 + 2\sin\frac{1}{2} \cdot \cos 2 + \dots + 2\sin\frac{1}{2} \cdot \cos n$$

$$= \left[\sin\left(1 + \frac{1}{2}\right) - \sin\left(1 - \frac{1}{2}\right)\right] + \dots + \left[\sin\left(n + \frac{1}{2}\right) - \sin\left(n - \frac{1}{2}\right)\right]$$

$$= \sin\left(n + \frac{1}{2}\right) - \sin\frac{1}{2} = 2\sin\frac{n}{2} \cdot \cos\frac{n+1}{2}, \ n \in \mathbb{N}^*.$$

Deci $|S_n| \leq \frac{1}{\left|\sin\frac{1}{2}\right|} = \frac{1}{\sin\frac{1}{2}}, \, \forall n \in \mathbb{N}^*.$ Fiind îndeplinite condițiile criteriului lui Dirichlet, rezultă că seria

$$\sum_{n=1}^{\infty} \left(\cos n \cdot \frac{1}{\sqrt{n}}\right) \text{ este convergentă.}$$

Teorema 4.2 (Criteriul lui Abel) Fie $(x_n)_{n\in\mathbb{N}^*}$ şi $(y_n)_{n\in\mathbb{N}^*}$ două şiruri de numere reale. Dacă

- $seria \sum_{n=1}^{\infty} x_n$ este convergentă;
- $\operatorname{sirul}(y_n)_{n\in\mathbb{N}^*}$ este monoton $\operatorname{sirminginit}$,

atunci seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.

Demonstrație: Cum șirul $(y_n)_{n\in\mathbb{N}^*}$ este monoton și mărginit, atunci el este convergent; fie $\ell = \lim_{n\to\infty} y_n$. Fără să restrângem generalitatea presupunem că șirul $(y_n)_{n\in\mathbb{N}^*}$ este descrescător întrucât, în caz contrar, putem considera seria

$$\sum_{n=1}^{\infty} x_n(-y_n) = -\sum_{n=1}^{\infty} x_n y_n,$$

care are aceeaşi natură cu seria $\sum_{n=1}^{\infty} x_n y_n$. Dacă notăm $\widehat{y}_n = y_n - \ell, n \in \mathbb{N}^*$, atunci vom obține că șirul $(\widehat{y}_n)_{n \in \mathbb{N}^*}$ este descrescător la 0.

Pe de altă parte, cum seria $\sum_{n=1}^{\infty} x_n$ este convergentă, obținem că seria $\sum_{n=1}^{\infty} x_n \widehat{y}_n$ este convergentă. Cum seria $\sum_{n=1}^{\infty} \ell x_n$ este convergentă (deoarece seria $\sum_{n=1}^{\infty} x_n$ este convergentă), obținem că seria $\sum_{n=1}^{\infty} x_n (\widehat{y}_n + \ell)$ este convergentă, adică seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.

Exemplu: Seria $\sum_{n=1}^{\infty} \frac{\sin n \cos \frac{1}{n}}{n}$ este convergentă.

Este uşor de demonstrat că seria $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ este convergentă. Pe de altă parte, cum şirul $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ este monoton descrescător și convergent la 0, luând valori între 0 și 1, iar funcția cosinus este descrescătoare pe intervalul $\left[0,\frac{\pi}{2}\right]$, rezultă că şirul $(y_n)_{n\in\mathbb{N}^*}$, $y_n=\cos\frac{1}{n}$ este crescător. În plus, (y_n) este mărginit, deoarece funcția cosinus este mărginită. Aşadar, conform criteriului lui Abel, rezultă că seria $\sum_{n=1}^{\infty} \frac{\sin n}{n} \cdot \cos\frac{1}{n}$ este convergentă.

In cele ce urmează, vom prezenta trei rezultate, consecințe ale unor teoreme prezentate în cursul anterior.

Corolarul 4.3 (Criteriul rădăcinii) Fie $\sum_{n=1}^{\infty} x_n$ o serie de numere reale cu termeni oarecare. Dacă există limita $\lim_{n\to\infty} \sqrt[n]{|x_n|} = \ell \in \overline{\mathbb{R}}$, atunci:

- i) $dac\check{a} \ \ell < 1$, $atunci \sum_{n=1}^{\infty} x_n(AC)$;
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} |x_n|(D)$;

Corolarul 4.4 (Criteriul raportului - D'Alembert) Fie $\sum_{n=1}^{\infty} x_n$ o serie de numere reale cu termeni oarecare. Dacă există limita $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} = \ell \in \overline{\mathbb{R}}$, atunci:

- i) dacă $\ell < 1$, atunci $\sum_{n=1}^{\infty} x_n(AC)$;
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} |x_n|(D)$;

Corolarul 4.5 (Criteriul lui Raabe-Duhamel) Fie $\sum_{n=1}^{\infty} x_n$ o serie de numere reale cu termeni oarecare.

 $Dac \ a\ exist \ a\ limit \ a\lim_{n \to \infty} n \left(\frac{|x_n|}{|x_{n+1}|} - 1 \right) = \ell \in \overline{\mathbb{R}}, \ atunci:$

i) dacă
$$\ell > 1$$
, atunci $\sum_{n=1}^{\infty} x_n(AC)$;

ii) dacă
$$\ell < 1$$
, atunci $\sum_{n=1}^{\infty} x_n(D)$;

Serii alternate. Criteriul lui Leibniz

Amintim că o serie $\sum_{n=1}^{\infty} x_n$ se numește **serie alternată** dacă termenii săi alternează ca semn (adică, $x_n \cdot x_{n+1} < 0$,

pentru orice $n \in \mathbb{N}^*$). Orice serie alternată poate fi scrisă astfel: $\sum_{n=1}^{\infty} (-1)^n y_n$, unde $y_n \ge 0, \forall n \in \mathbb{N}^*$.

Se poate observa cu ajutorul criteriului lui Dirichlet, că pornindu-se de la seria $\sum_{n=1}^{\infty} (-1)^n$, cu şirul sumelor parțiale mărginit, prin înmulțirea termenului general $(-1)^n$ cu termenul general y_n al unui şir monoton descrescător la 0 se obține o serie convergentă. Mai precis are loc următorul rezultat:

Teorema 4.6 (Criteriul lui Leibniz) Dacă $(y_n)_{n\in\mathbb{N}^*}$ este un şir de numere reale pozitive, descrescător şi convergent la 0, atunci seria $\sum_{n=1}^{\infty} (-1)^n y_n$ este convergentă.

Demonstrație: Fie $x_n = (-1)^n, n \in \mathbb{N}^*$. Cum $S_n = x_1 + x_2 + \ldots + x_n = \begin{cases} 0, & \text{când } n \text{ este par} \\ 1, & \text{când } n \text{ este impar} \end{cases}$, avem că $|S_n| \leq 1, \ \forall n \in \mathbb{N}^*$. Cum şirul $(y_n)_{n \in \mathbb{N}^*}$ este descrescător și convergent la 0, rezultă conform criteriului lui Dirichlet, că seria $\sum_{n=1}^{\infty} (-1)^n y_n$ este convergentă.

Exemplu: Seria $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ este convergentă (șirul $y_n = \frac{1}{n}, n \in \mathbb{N}^*$ este descrescător cu limita zero).

Serii absolut convergente

Definiția 4.7 Spunem că seria de numere reale $\sum_{n=1}^{\infty} x_n$ este

i) absolut convergentă, dacă seria
$$\sum_{n=1}^{\infty} |x_n|$$
 este convergentă (vom nota $\sum_{n=1}^{\infty} x_n(AC)$);

Observație: Pentru serii cu termeni pozitivi, absoluta convergență este echivalentă cu convergența.

Exemplu: Seria armonică alternată $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ este semiconvergentă deoarece $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ este convergentă (vezi exemplul anterior), însă $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă (seria armonică simplă).

Propozitia 4.8 Dacă o serie de numere reale este absolut convergentă, atunci ea este convergentă.

Demonstrație: Fie $\sum_{n=1}^{\infty} x_n$ o serie absolut convergentă. Fie $\varepsilon > 0$; deoarece $\sum_{n=1}^{\infty} |x_n|(C)$, există $n_{\varepsilon} \in \mathbb{N}^*$ astfel încât $|x_{n+1}| + \ldots + |x_{n+p}| < \varepsilon, \forall n \geq n_{\varepsilon}, \forall p \in \mathbb{N}^*$. Însă cum $|x_{n+1} + \ldots + x_{n+p}| \leq |x_{n+1}| + \ldots + |x_{n+p}|$, obţinem $|x_{n+1} + \ldots + x_{n+p}| < \varepsilon, \forall n \geq n_{\varepsilon}, \forall p \in \mathbb{N}^*$. Conform teoremei lui Cauchy, seria $\sum_{n=1}^{\infty} x_n$ este convergentă. \square

Produsul Cauchy al două serii

Definiția 4.9 Fie $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$ două serii de numere reale. Se numește **produs Cauchy** al seriilor $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$, seria $\sum_{n=1}^{\infty} z_n$, unde $z_n = x_1 y_n + x_2 y_{n-1} + \ldots + x_n y_1$.

Teorema 4.10 (Mertens) Fie $\sum_{n=1}^{\infty} x_n$ şi $\sum_{n=1}^{\infty} y_n$ două serii de numere reale. Dacă $\sum_{n=1}^{\infty} x_n (AC)$ şi $\sum_{n=1}^{\infty} y_n (C)$, atunci produsul Cauchy al seriilor $\sum_{n=1}^{\infty} x_n$ şi $\sum_{n=1}^{\infty} y_n$ este convergent. Mai mult, suma produsului Cauchy este egală cu produsul sumelor celor două serii.

Propoziția 4.11 Produsul Cauchy al două serii absolut convergente este o serie absolut convergentă.

Observaţie: Produsul Cauchy al două serii convergente nu este în mod necesar convergent. Spre exemplu, pentru $x_n = (-1)^n \frac{1}{\sqrt{n+1}}$ şi $y_n := x_n$, seriile $\sum_{n=1}^{\infty} x_n$ şi $\sum_{n=1}^{\infty} y_n$ sunt convergente, însă produsul lor Cauchy nu este o serie convergentă.

Dezvoltarea p-adică a numerelor reale

Teorema 4.12 Fie $p \in \mathbb{N}^* \setminus \{1\}$. Dacă $(a_n)_{n \in \mathbb{N}^*}$ este un şir de numere naturale, așa încât $0 \le a_n < p$, $\forall n \in \mathbb{N}^*$, atunci seria $\sum_{n=1}^{\infty} \frac{a_n}{p^n}$ este convergentă, iar suma sa este un număr real între 0 și 1.

Teorema 4.13 Fie $p \in \mathbb{N}^* \setminus \{1\}$ şi $a \in (0,1]$. Atunci există un unic şir de numere naturale $(a_n)_{n \in \mathbb{N}^*}$, ce satisfac $0 \le a_n \le p-1$, $\forall n \in \mathbb{N}^*$ şi $\{n \in \mathbb{N}^* \mid a_n \ne p-1\}$ este infinită astfel încât

$$\sum_{n=1}^{\infty} \frac{a_n}{p^n} = a \tag{1}$$

Relația (1) se numește reprezentarea p-adică a numărului real a.

Aproximarea seriilor

Teorema 4.14 (de aproximare a sumei unei serii alternate) Fie seria $\sum_{n=1}^{\infty} (-1)^n x_n$, cu $(x_n)_{n \in \mathbb{N}^*}$ descrescător și convergent la 0. De asemenea, fie S suma acestei serii și $(S_n)_{n \in \mathbb{N}^*}$ șirul corespunzător al sumelor parțiale. Atunci:

$$|S - S_n| < x_{n+1}, \forall n \in \mathbb{N}^*.$$

Teorema 4.15 (de aproximare a sumei unei serii absolut convergente)

Fie $\sum_{n=1}^{\infty} x_n$ o serie de numere reale, S suma sa şi $(S_n)_{n\in\mathbb{N}^*}$ şirul sumelor parţiale. Atunci,

i) dacă există $\lambda < 1$ și $n_0 \in \mathbb{N}^*$ astfel încât $\sqrt[n]{|x_n|} \le \lambda$, $\forall n \ge n_0$, atunci $\sum_{n=1}^{\infty} x_n(AC)$ și avem:

$$|S - S_n| \le \frac{\lambda^{n+1}}{1-\lambda}, \forall n \in \mathbb{N}^*;$$

 $ii) \ \ dac\ \ \ \ astfel\ \hat{n} c\hat{a}t \ \left|\frac{x_{n+1}}{x_n}\right| \leq \lambda, \ \forall \ n \geq n_0, \ \ atunci\ \sum_{n=1}^\infty x_n(AC) \ \ \text{$\it gi avem:}$

$$|S - S_n| < \frac{|x_{n+1}|}{1 - \lambda}, \forall n \in \mathbb{N}^*.$$

Serii de puteri

Definiția 4.16 Fie $(a_n)_{n\in\mathbb{N}}$ un șir de numere reale și fie $y_0\in\mathbb{R}$. Se numește **serie de puteri** centrată în y_0 , cu coeficienții $a_n, n\in\mathbb{N}$, o serie de forma

$$a_0 + a_1(y - y_0) + \ldots + a_n(y - y_0)^n + \ldots = \sum_{n=0}^{\infty} a_n(y - y_0)^n, y \in \mathbb{R}.$$
 (2)

Dacă facem schimbarea de variabilă $x = y - y_0$, seria (2) se poate scrie sub forma

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots = \sum_{n=0}^{\infty} a_n x^n$$
 (3)

Mulțimea acelor elemente $x \in \mathbb{R}$ pentru care seria $\sum_{n=0}^{\infty} a_n x^n$ este convergentă (absolut convergentă) se numește domeniu de convergență (respectiv, domeniu de absolută convergență). Uneori vom nota aceste mulțimi cu D_c , respectiv D_{ac} .

Teorema 4.17 (Abel) Pentru orice serie de puteri $\sum_{n=0}^{\infty} a_n x^n există un număr R$, $0 \le R \le +\infty$, numit rază de convergență a lui $\sum_{n=0}^{\infty} a_n x^n$, astfel încât:

i. Seria
$$\sum_{n=0}^{\infty} a_n x^n(AC)$$
 pentru orice $x \in (-R, R)$;

ii. Seria
$$\sum_{n=0}^{\infty} a_n x^n(D)$$
 pentru orice $x \in \mathbb{R} \setminus [-R, R]$.

Observatii:

1. Pentru orice serie de puteri $\sum_{n=0}^{\infty} a_n x^n$ are loc

$$(-R,R) \subseteq D_{ac} \subseteq D_c \subseteq [-R,R].$$

2. Putem rescrie teorema lui Abel şi astfel:

Pentru orice serie de puteri $\sum_{n=0}^{\infty} a_n x^n$ există un număr R, $0 \le R \le +\infty$ astfel încât:

- i) dacă R=0, atunci unicul punct de (absolută) convergență pentru seria $\sum_{n=0}^{\infty} a_n x^n$ este x=0;
- ii) dacă R > 0, atunci seria $\sum_{n=0}^{\infty} a_n x^n$ este absolut convergentă pe intervalul (-R, R);
- iii) dacă $0 < R < +\infty$, atunci seria $\sum_{n=0}^{\infty} a_n x^n$ este divergentă pe $(-\infty, -R) \cup (R, +\infty)$;
- iv) dacă $R=+\infty$, atunci seria $\sum_{n=0}^{\infty}\overline{a_nx^n}$ este convergentă pe \mathbb{R} ;

Determinarea razei de convergență

Propoziția 4.18 Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri și fie R raza ei de convergență.

 $Dacă\ există\ \rho = \lim_{n\to\infty} \sqrt[n]{|a_n|},\ atunci\ raza\ de\ convergență\ a\ seriei\ \sum_{n=0}^\infty a_n x^n\ este\ dată\ de$

$$R = \begin{cases} 0, & c \hat{a} n d \ \rho = +\infty \\ \frac{1}{\rho}, & c \hat{a} n d \ 0 < \rho < +\infty \\ \infty, & c \hat{a} n d \ \rho = 0 \end{cases}.$$

 $Dac \ \ a \ \ u \ \ exist \ \ \lim_{n \to \infty} \sqrt[n]{|a_n|}, \ \ vom \ \ calcula \ R \ \ similar, \ \ doar \ \ c \ \ \ de \ \ data \ \ asta, \ \rho = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$

Demonstrație: Fie x_0 un punct oarecare. Aplicăm criteriul rădăcinii asupra seriei $\sum_{n=0}^{\infty} |a_n| |x_0|^n$. Cum $\lim_{n\to\infty} \sqrt[n]{|a_n| |x_0|^n} = \lim_{n\to\infty} |x_0| \sqrt[n]{|a_n|} = \rho |x_0|$, distingem următoarele situații:

- dacă $\rho = 0$, atunci $\lim_{n \to \infty} \sqrt[n]{|a_n||x_0|^n} = 0 < 1$. Din criteriul rădăcinii avem că seria este absolut convergentă oricare ar fi $x_0 \in \mathbb{R}$. Prin urmare, $R = +\infty$.
- dacă $\rho = +\infty$ și $x_0 \neq 0$, rezultă că $\lim_{n \to \infty} \sqrt[n]{|a_n| |x_0|^n} = +\infty > 1$. Așadar, seria este divergentă pentru orice $x_0 \neq 0$, adică R = 0.
- dacă $0 < R < +\infty$, atunci rezultă că $\lim_{n \to \infty} \sqrt[n]{|a_n| |x_0|^n} = \rho |x_0|$.
 - dacă $\rho|x_0|<1$, atunci seria $\sum_{n=0}^{\infty}|a_n||x_0|^n$ este absolut convergentă, iar punctele de convergență sunt acelea pentru care $|x_0|<\frac{1}{\rho}=R$.
 - Dacă $\rho|x_0| > 1$, atunci seria $\sum_{n=0}^{\infty} |a_n| |x_0|^n$ este divergentă.

Exemplu: Studiaţi convergenţa seriei $\sum_{n=0}^{\infty} 3^n x^n$.

Pentru a determina raza de convergență, calculăm

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{3^n} = 3.$$

Aşadar, $R = \frac{1}{\lim\limits_{n \to \infty} \sqrt[n]{|a_n|}} = \frac{1}{3}$. Prin urmare, seria este convergentă (absolut) pe $\left(-\frac{1}{3}, \frac{1}{3}\right)$.

Dacă $x = \frac{1}{3}$, atunci $\lim_{n \to \infty} a_n = 1$, deci seria este divergentă.

Dacă $x = -\frac{1}{3}$, se aplică același raționament.

Prin urmare, seria este convergentă pentru $x \in \left(-\frac{1}{3}, \frac{1}{3}\right)$ și divergentă pentru $x \in \left(-\infty, -\frac{1}{3}\right] \cup \left[\frac{1}{3}, +\infty\right)$.

Propoziția 4.19 Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri și fie R raza ei de convergență.

Dacă există $\ell = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \in \overline{\mathbb{R}}$, atunci raza de convergență este dată de

$$R = \begin{cases} 0, & c \hat{a} n d \ \ell = +\infty \\ \frac{1}{\ell}, & c \hat{a} n d \ 0 < \ell < +\infty \\ \infty, & c \hat{a} n d \ \ell = 0 \end{cases}.$$

Demonstrație: Fie $x_0 \neq 0$ un punct oarecare. Considerăm seria $\sum_{n=1}^{\infty} |a_n| |x|^n$ și aplicăm criteriul raportului. Avem,

$$\lim_{n \to \infty} \frac{|a_{n+1}| |x_0|^{n+1}}{|a_n| |x_0|^n} = |x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x_0| \ell.$$

- dacă $\ell = 0$, atunci $\lim_{n \to \infty} \frac{|a_{n+1}||x_0|^{n+1}}{|a_n||x_0|^n} = 0 < 1$, deci seria este absolut convergentă pentru orice $x_0 \in \mathbb{R}$. Prin urmare, $R = \infty$.
- dacă $\ell = +\infty$, atunci $\lim_{n \to \infty} \frac{|a_{n+1}||x_0|^{n+1}}{|a_n||x_0|^n} > 1$. Deci seria este divergentă pentru orice $x_0 \neq 0$, adică R = 0.
- dacă $0 < \ell < +\infty$, atunci avem $\lim_{n \to \infty} \frac{|a_{n+1}||x_0|^{n+1}}{|a_n||x_0|^n} = |x_0|\ell < 1 \Leftrightarrow |x_0| < \frac{1}{\ell} = R$. Deci seria $\sum_{n=1}^{\infty} |a_n||x|^n$ este absolut convergență, iar punctele de convergență sunt acelea pentru care $|x_0| < R$.

Exemplu: Fie seria de puteri $\sum_{n=0}^{\infty} \frac{1}{n(n+1)} x^n$. Dacă notăm cu $a_n = \frac{1}{n(n+1)}$, atunci avem

$$\ell = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}} = \lim_{n \to \infty} \frac{n}{n+2} = 1 > 0.$$

Prin urmare, raza de convergență este R=1.

Pentru x = 1, seria devine $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, care este convergentă, conform criteriului Raabe-Duhamel, sau conform

criteriului de comparație la limită, utilizând ca termen de comparație $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Pentru x=-1, seria devine $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$, și este convergentă, conform criteriului lui Leibniz.

Prin urmare, mulțimea de convergență a seriei de puteri este [-1,1].

8

Exemple de serii de puteri de forma $\sum_{n=0}^{\infty} a_n x^n$:

- 1. Seria nulă: $a_n=0, n\in\mathbb{N}.$ În acest caz, $R=\infty,$ $D_{ac}=D_c=\mathbb{R}.$
- 2. Seria geometrică, $\sum_{n=0}^{\infty} x^n$. Avem $R=1, D_{ac}=D_c=(-1,1)$.
- 3. Seria $\sum_{n=0}^{\infty} n! x^n$: $R = 0, D_{ac} = D_c = \{0\}$.
- 4. Seria $\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}} x^{n}, \text{ cu } \alpha \in \mathbb{R}. \text{ Avem } R = 1 \text{ și } D_{ac} = \left\{ \begin{array}{ll} (-1,1), & \alpha \leq 1; \\ [-1,1], & \alpha > 1; \end{array}, D_{c} = \left\{ \begin{array}{ll} (-1,1), & \alpha \leq 0; \\ [-1,1), & \alpha \in (0,1]; \\ [-1,1], & \alpha > 1; \end{array} \right.$
- 5. Seria exponențială, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Avem $R = +\infty$, $D_{ac} = D_c = \mathbb{R}$. Mai mult

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

6. Seriile trigonometrice, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \text{ şi } \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}. \text{ Avem } R = \infty, D_{ac} = D_c = \mathbb{R}. \text{ Mai mult, avem } R = \infty$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \ \forall x \in \mathbb{R};$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \ \forall x \in \mathbb{R};$$

7. Seriile hiperbolice, $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$ şi $\sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}$. Avem $R = \infty$, $D_{ac} = D_c = \mathbb{R}$. Mai mult, avem

$$\operatorname{shx} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} := \frac{\operatorname{e}^{x} - \operatorname{e}^{-x}}{2}, \ \forall x \in \mathbb{R}; (\text{sinus hiperbolic})$$

$$\operatorname{chx} = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} := \frac{e^{x} + e^{-x}}{2}, \ \forall x \in \mathbb{R}; (\operatorname{cosinus \ hiperbolic})$$

Bibliografie orientativă

- [1] Anca Precupanu Bazele analizei matematice, Editura Polirom, Iași, 1998.
- [2] V. Postolică *Eficiență prin matematică aplicată. Analiză matematică*, Editura Matrix Rom, București, 2006.
- [3] Emil Popescu Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- [4] M. Postolache Analiză matematică (teorie și aplicații), Editura "Fair Partners", București, 2011.
- [5] Steven Heilman Sequences and Series of Functions. Convergence, UCLA Department of Mathematics, Los Angeles, 2015.
- [6] M. Deisenroth, M. Cheraghchi *Mathematical Methods (Chap.4:Power Series)*, Imperial College London, Department of Computing, 2016.