Geometry Exercises

Nicholas Sales

$\boldsymbol{\alpha}$			1
$\mathbf{C}\mathbf{c}$	ากา	tΩĭ	า†จ

1	Chapter 1	2
	1.1 I-1	2
2	Chapter 6	2

1 Chapter 1

1.1 I-1

Show that the function $f:\mathbb{E}^n\to\mathbb{E}^n$ defined by $f(\vec{v})=2\vec{v}$ is bijective but not an isometry.

We first show f is bijective. It is easy to see that f is invertible by defining $f^{-1}(\vec{v}) = \frac{1}{2}\vec{v}$ since:

$$f^{-1}(f(\vec{v})) = f^{-1}(2\vec{v}) = \frac{1}{2}(2\vec{v}) = \vec{v}.$$

Thus, f is bijective.

To show f is not an isometry, we proceed by counterexample. Let $(1,5), (2,3) \in \mathbb{E}^n$. For f to be an isometry we must have:

$$||(1,5) - (2,3)|| = ||f(1,5) - f(2,3)||$$

$$||(-1,2)|| = ||(-2,4)||$$

$$\sqrt{(-1)^2 + (2)^2} = \sqrt{(-2)^2 + (4)^2}$$

$$\sqrt{5} = \sqrt{20}$$

$$\sqrt{5} = 2\sqrt{5}.$$

which is clearly false.

Therefore, f is bijective but not an isometry. \square

2 Chapter 6