AIM OF THE PROJECT:

To Enhance the Advanced Digital Water Metering System with Precision Flow Measurement

PROBLEM STATEMENT AND SOLUTION:

The accurate measurement of water flow rate and volume is crucial for various applications, including maide water consumption monitoring, industrial process control, and irrigation systems. Traditional water meters & lack precision and reliability, leading to inaccuracies in billing, inefficient resource management, and increa costs. To address these challenges, there is a need for a digital water motering system that utilizes flow sem accurately measure both flow rate and volume.

PROJECT DESIGN SPECIFICATIONS:

- *Flow Measurement*
 - Measure water flow with an accuracy of ±0.5%
 - Measure flow rates from 0.1 to 100 liters per minute
 - Detect flow direction (forward and reverse)
- *Data Acquisition*
 - Record flow data at regular intervals (e.g., every 15 minutes)
 - Store data in non-volatile memory for at least 1 year
- *Communication*
 - Transmit data to a central server via wireless communication (e.g., GSM, GPRS, or LoRaWAN)
 - Support remote firmware updates
- *Power Management*
 - Operate on battery power (e.g., 3V, 3.6V, or 5V)
 - Achieve a battery life of at least 5 years
- *User Interface*
- Provide a user-friendly interface for configuration and data visualization (e.g., LCD display)
 - *Flow Sensor*
 - Type: Electromagnetic or ultrasonic flow sensor
 - Accuracy: ±0.5%
 - Resolution: 0.01 liters per minute
 - *Microcontroller*
 - Type: 32-bit microcontroller (e.g., ARM Cortex-M series)
 - Clock speed: at least 50 MHz
 - Memory: at least 256 KB flash, 64 KB RAM
 - *Communication Module*
 - Type: Wireless communication module (e.g., GSM, GPRS, or LoRaWAN)
 - Data rate: at least 9600 bps
 - *Power Supply*
 - Battery type: alkaline or lithium-ion
 - Battery capacity: at least 2000 mAh
 - *Environmental Requirements*
 - Operating temperature: -20°C to 50°C
 - Humidity: up to 90% RH

PROJECT ARCHITECTURE:

FLOW EXPLANATION:

WIRING DIAGRAM:

KiCad PCB Design:

COMPONENTS WORKING PRINCIPLES/FUNCTIONALITY:

Flow Sensor:

- Electromagnetic flow sensor: Measures the voltage induced by the flowing water, which is proportional to the flow rate.
- Ultrasonic flow sensor: Measures the time difference between transmitted and received ultrasonic waves, which is proportional to the flow rate.

Analog-to-Digital Converter (ADC):

 Converts the analog signal from the flow sensor to a digital signal for processing by the microcontroller.

Microcontroller:_

- Processes the digital signal from the ADC to calculate the flow rate and totalized volume.
- Stores data in memory and transmits it to the central server via wireless communication.

Wireless Communication Module:

 Transmits data from the microcontroller to the central server using wireless communication protocols (e.g., GSM, GPRS, or LoRaWAN).

Power Management IC:

- o Regulates power supply to the system components.
- Manages battery charging and monitoring.
- _LCD Display (optional):_
 - o Displays flow rate, totalized volume, and other relevant data.
- Push Buttons or Touch Sensors (optional):_
 - Allow user input for configuration and data visualization.

Program/Coding:

```
import serial
import time
import datetime
# Define serial port and baud rate
ser = serial.Serial('COM3', 9600)
# Define flow sensor calibration factor
calibration factor = 4.5
# Define water meter ID
meter_id = 'WM12345'
while True:
  # Read flow sensor data
  flow_data = ser.readline().decode('utf-8')
  flow_rate = float(flow_data) * calibration_factor
  # Calculate totalized volume
  total_volume = flow_rate * time.time()
  # Log data to file
  with open('water_meter_data.log', 'a') as f:
     f.write(f'{datetime.datetime.now()},{meter_id},{flow_rate:.2f},{total_volume:.2f}\n')
  # Transmit data to central server
  # (insert code for wireless communication module here)
  # Wait for next reading
  time.sleep(60)
```

PROJECT OUTCOME:

- Accurate water measurement
- Real-time monitoring
- Remote data access
- Water conservation
- Scalability and flexibility

.