Theory behind Application: PAC, VC-Dimension and Related Topics

Richard Liu

June 5, 2020

- Introduction
- Overfitting
 - Theorem 1: Finite Hypothesis Classes
- More Formal Definition: PAC Learnability
 - Theorem 2: Bayes Optimal Predictor
- More about B-V Decomposition
 - Theorem 3: No-Free-Lunch
- **S** VC-Dimension

Source

• Shai Shalev-Shwartz, Shai Ben-David, *Understanding Machine Learning: From Theory to Algorithms*

Section 1

Introduction

Introduction

- We have introduced ways to do machine learning in practice, however, why does it work? Why not work?
 - No versatile model: No-Free-Lunch Principle.
 - Why training error only is insufficient?
 - Bias-Variance Decomposition: How to understand?
- This chapter will focus mainly on some interesting theorems for explaining these interesting and confusing phenomenons.

Theorem 1: Finite Hypothesis Classes

Section 2

Overfitting

Empirical Risk Minimization (ERM): Terminologies

- Training set S
- Distribution \mathcal{D} (Unknown)
- Target Function f
- Predictor h (Difference?)

Empirical Risk Minimization (ERM)

Definition 1: Training Error

Suppose that there exists a training set S sampled from an unknown distribution \mathcal{D} and labeled by some target function f and the predictor based on the sample set S $(h_S: \mathcal{X} \to \mathcal{Y})$, then we define

$$L_S(h) = \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

be the training error.

Empirical Risk Minimization (ERM)

Definition 2: Generalization Error

Define the error of a prediction rule $h: \mathcal{X} \to \mathcal{Y}$ be

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] = \mathcal{D}(\{x : h(x) \neq f(x)\})$$

Proposition 1

Let $\mathcal H$ be a class of binary classifiers over a domain $\mathcal X$, $\mathcal D$ be an unknown distribution over $\mathcal X$, and let f be the target hypothesis in $\mathcal H$, Then fix some $h \in \mathcal H$, we have

$$\mathbb{E}_{S|_{x}\sim\mathcal{D}^{m}}[L_{S}(h)]=L_{(\mathcal{D},f)}(h)$$

• What does it mean?

Empirical Risk Minimization (ERM): Overfitting

Definition 3: ERM

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \arg\min_{h \in \mathcal{H}} L_{S}(h)$$

- Problem: Overfitting, which means high $L_D(h_S)$ but $L_S(h_S) = 0$.
- An example?
- Why discuss training error is enough? Where is the set?

Deep Theories of ML

Empirical Risk Minimization (ERM): Overfitting

• Goal: Restrict \mathcal{H} , this is the source of model complexity.

Theorem 1: Finite Hypothesis Classes

Subsection 1

Theorem 1: Finite Hypothesis Classes

Prevent Overfitting: Finite Case

Assumption 1

Assume there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$.

• This means we can train a model *h* to achieve a generalization error 0 in the finite hypotheses class.

Theorem 1

In finite hypotheses classes case, if we have taken sufficient large number of i.i.d samples, then with a high probability we could bound the generalization error to a sufficient small number.

• Proof?

Preparation for Proof

- Suppose we have sampled the training data $S|_{x} = (x_{1}, \dots, x_{m}).$
- Suppose the confidence parameter is denoted by δ .
- Suppose we want to bound the generalization error to ϵ .
- Suppose \mathcal{D}^m be the distribution of sampled m-tuples.
- Goal: Find the upper bound of

$$\mathcal{D}^m(\{S|_{x}:L_{(\mathcal{D},f)(h_S)}>\epsilon\})$$

As a reminder, h_S is the predictor found by ERM principle.

Proof

• Let "bad" hypotheses be

$$\mathcal{H}_B = \{h \in \mathcal{H} : L_{(\mathcal{D},f)(h)} > \epsilon\}$$

• If h_S is a bad hypothesis, then it must belong to \mathcal{H}_B , also, it must satisfy $L_S(h) = 0$ (Why?). So we have

$$\{S|_X:L_{\mathcal{D},f}(h_S)>\epsilon\}\subset M, M=\bigcup_{h\in\mathcal{H}_B}\{S|_X:L_S(h)=0\}$$

Proof

Up to now, we have got

$$\mathcal{D}^{m}(\{S|_{x}: L_{(\mathcal{D},f)(h_{S})} > \epsilon\}) \leq \mathcal{D}^{m}(\cup_{h \in \mathcal{H}_{B}} \{S|_{x}: L_{S}(h) = 0\})$$
$$\leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\})$$

Note that

$$\mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\}) = \prod_{i=1}^{m} \mathcal{D}(\{x_{i}: h(x_{i}) = f(x_{i})\})$$

$$\leq (1 - \epsilon)^{m} \leq e^{-\epsilon m}$$

So the upper bound is $|\mathcal{H}|e^{-\epsilon m}$.

Summary

- If we take $m = \frac{\ln(|\mathcal{H}/\delta|)}{\epsilon}$, then the probability of making mistakes (ERM principle chooses a bad hypothesis) is only δ . This is acceptable for solving overfitting problem.
- The assumption MUST hold in finite hypotheses classes.

Section 3

More Formal Definition: PAC Learnability

Simple Definition of PAC

Definition 4: Probably Approximately Correct (PAC) Learnability

If there exist a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$ and for every $\epsilon,\delta\in(0,1)$, every distribution \mathcal{D} and every $f:\mathcal{X}\to\{0,1\}$, assumption holds w.r.t. $\mathcal{H},\mathcal{D},f$, and if $m\geq m_{\mathcal{H}}(\epsilon,\delta)$, the algorithm will return a predictor h such that with probability of at least $1-\delta$, the generalization error is less than ϵ . Then the hypotheses class \mathcal{H} is PAC learnable.

• $m_{\mathcal{H}}(\epsilon, \delta)$ is the minimal sample complexity . In the previous case, it is $\frac{\ln(|\mathcal{H}/\delta|)}{\epsilon}$.

Subsection 1

Theorem 2: Bayes Optimal Predictor

Bayes Optimal Predictor

- What if we remove assumption 1?
 - Bayes Optimal Predictor!

Definition 5: Bayes Optimal Predictor

BOP is defined as

$$f_{\mathcal{D}}(x) = egin{cases} 1 & \mathbb{P}[y=1|x] \geq rac{1}{2} \ 0 & ext{otherwise} \end{cases}$$

Bayes Optimal Predictor

Theorem 2

For every classifier g, we have $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

Proof

$$L_{\mathcal{D}}(f_{\mathcal{D}}) = \mathbb{P}(f_{\mathcal{D}}(x) \neq y) = \mathbb{E}(I\{f_{\mathcal{D}}(x) \neq y\})$$

= $\mathbb{E}_{x \sim \mathcal{D}}[\mathbb{P}(f_{\mathcal{D}}(x) = 0)\mathbb{P}(y = 1|x) + \mathbb{P}(f_{\mathcal{D}}(x) = 1)\mathbb{P}(y = 0|x)]$
For each specific x_0 , if $P(y = 1|x_0) \geq \frac{1}{2}$, then we should let $f_{\mathcal{D}}(x_0) = 1$, vise versa. \square

An Extension of PAC Learnability

Definition 6: Agnostic PAC Learnability

 $L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$ and hold other assumptions unchanged compared with definition 4.

Section 4

More about B-V Decomposition

Subsection 1

Theorem 3: No-Free-Lunch

No-Free-Lunch

- Question: Whether there exists a learning algorithm A and a training set size m, such that for every distribution \mathcal{D} , if A receives m i.i.d. examples from \mathcal{D} , there is a high chance that it outputs a predictor h that has a low risk?
 - Unfortunately, no.
 - No-Free-Lunch theorem.

No-Free-Lunch

Theorem 3

Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, then there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that

- 1. There exists a function f such that $L_{\mathcal{D}}(f) = 0$.
- 2. With probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(A(S)) \geq 1/8$
 - Proof?

• Let C be a subset of \mathcal{X} of size 2m, then there are $T = 2^{2m}$ possible functions from C to $\{0,1\}$, let \mathcal{D}_i be the distribution defined by

$$\mathcal{D}_i(\{(x,y)\}) = \begin{cases} 1/|\mathcal{C}| & y = f_i(x) \\ 0 & \text{otherwise} \end{cases}$$

Then obviously $L_{\mathcal{D}_i}(f_i) = 0$.

 If we could prove that under such distribution, the second conclusion holds, then theorem 3 is shown t true.

We will show that

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} [L_{\mathcal{D}_i}(A(S))] \ge \frac{1}{4}$$

for every algorithm A. This means that there exists one learning task f such that $\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A'(S))] \geq \frac{1}{4}$. The remaining part could be solved by Markov Inequality (shown later).

• Note that there are $k = (2m)^m$ possible permutations of m examples from C, denoted by S_1, \ldots, S_k (k different datasets). Denote $S_j^i = ((x_1, f_i(x_1)), \ldots, (x_m, f_i(x_m)))$ the j-th dataset labeled by f_i .

Deep Theories of ML

• For uniform sampling we have

$$\mathbb{E}_{S \sim \mathcal{D}_i^m}[L_{\mathcal{D}_i}(A(S))] = \frac{1}{k} \sum_{j=1}^k L_{\mathcal{D}_i}(A(S_j^i))$$

Taking maximum yields

$$LHS \geq \min_{j \in [k]} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i}(A(S_j^i))$$

(Why?) We only need to consider the behavior of *i*.

• Let v_1, \ldots, v_p be the samples in C that do not appear in S_i , then we have $p \ge m$ and we have

$$L_{\mathcal{D}_i}(h) = \frac{1}{2m} \sum_{x \in C} I\{h(x) \neq f_i(x)\} \ge \frac{1}{2p} \sum_{r=1}^p I\{h(v_r) \neq f_i(v_r)\}$$

So for the same reasons, we have

$$\frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_{i}}(A(S_{j}^{i})) \geq \frac{1}{2} \min_{r \in [p]} \frac{1}{T} \sum_{i=1}^{T} I\{A(S_{j}^{i})(v_{r}) \neq f_{i}(v_{r})\}$$

$$= \frac{1}{4} \quad (Why?)$$

Markov Inequality

Lemma 1: Markov Inequality

Let X be a non-negative random variable, then for any $\alpha>0$, we have

$$\mathbb{P}[X \ge \alpha] \le \frac{\mathbb{E}[X]}{\alpha}$$

Proof

Define
$$f(X) = \begin{cases} 1 & X \ge \alpha \\ 0 & \text{otherwise} \end{cases}$$
, then we have $f(X) \le X/\alpha$, so

$$\mathbb{E}[f(X)] \leq \frac{\mathbb{E}[X]}{\alpha}$$
, $\mathbb{E}[f(X)] = \mathbb{P}[X \geq \alpha]$ yields the result. \square

- By Markov Inequality and $\mathbb{E}(\theta) \geq \frac{1}{4}$, we could prove the result by showing that $\mathbb{P}(\theta \geq \frac{1}{8}) \geq \frac{1}{7}$ (How?)
- No-Free-Lunch Theorem guarantees that no information will lead to no positive result.

Section 5

VC-Dimension

Introduction

- Question: Infinite hypotheses space = Not PAC learnable?
 - Fortunately, no.
 - An example?

Background

Let
$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$
, where $h_a(x) = I\{x < a\}$

Example

Proposition 2

Let $\mathcal H$ be the space defined before, then it is PAC learnable using the ERM rule with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \ln(\frac{2}{\delta}) \rceil$$

Proof (Part 1)

Let a^* be a threshold such that $L_{\mathcal{D}}(h^*)=0$. Also, let $\mathbb{P}_{x\sim\mathcal{D}_x}[x\in(a_0,a^*)]=\mathbb{P}_{x\sim\mathcal{D}_x}[x\in(a^*,a_1)]=\epsilon$. Let $b_0=\max\{x:(x,1)\in\mathcal{S}\}$ and $b_1=\min\{x:(x,0)\in\mathcal{S}\}$, then $b_S\in(b_0,b_1)$, where b_S corresponds to the ERM hypothesis.

Example

Proof (Part 2)

Note that if we want $L_{\mathcal{D}}(h_S) \leq \epsilon$, we must let $b_0 \geq a_0, b_1 \leq a_1$, so we have

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S) > \epsilon] \leq \mathbb{P}_{S \sim \mathcal{D}^m}[b_0 < a_0, b_1 > a_1]$$

$$\leq \mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m}[b_0 < a_0] + \mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m}[b_1 > a_1]$$

For we have $\mathbb{P}_{S \sim \mathcal{D}^m}[b_0 < a_0] = (1 - \epsilon)^m \le e^{-\epsilon m}$ and similar to the dual probability, we could conclude the proof. \square

- Idea: Observe what \mathcal{H} behaves like on a subset \mathcal{C} .
 - Recall: we have proved the No-Free-Lunch theorem by such method, we want to prevent such things happening again.

Definition 7: Restriction of \mathcal{H} on \mathcal{C}

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $\mathcal{C} = \{c_1,\ldots,c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} , which is

$$\mathcal{H}_{\mathcal{C}} = \{(h(c_1), \ldots, h(c_m) : h \in \mathcal{H}\}\$$

Definition 8: Shattering

A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if the restriction of \mathcal{H} to \mathcal{C} is the set of all functions from \mathcal{C} to $\{0,1\}$. That is, $|\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}$.

• What does it mean?

Example 1

Consider the hypotheses discussed before, then if we take $C = \{c_1\} \subset \mathbb{R}$, then C is shattered by \mathcal{H} . However, if we take $C = \{c_1, c_2\} \subset \mathbb{R}$, this is not the case.

Proposition 3

Assume that there exists a set $\mathcal{C} \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} , then the No-Free-Lunch Theorem holds.

• If someone can explain every phenomenon, his explanations are worthless.

Definition 9: VC-Dimension

The VC-Dimension is defined as the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} , denoted by $VCdim(\mathcal{H})$

VC Dimension: Examples

Example 1

See page 41, we have $VCdim(\mathcal{H}) = 1$.

Example 2

Consider the class of intervals, which means

$$\mathcal{H} = \{h_{a,b}: a, b \in \mathbb{R}, a < b\}$$
 and $h_{a,b}(x) = I\{x \in (a,b)\}$, then we have $VCdim(\mathcal{H}) = 2$.

VC Dimension: Examples

Example 3

For a finite class, we have $VCdim(\mathcal{H}) \leq log_2(|\mathcal{H}|)$.

Theorem 4

If ${\cal H}$ has a finite VC-Dimension, then it is PAC-learnable.

• Any other real examples?

Thank you!

