Assignment one Report

1) Data Preprocessing

Steps taken and problems solved

1) Input Header row in the following list

```
["fLength","fWidth","fSize","fConc","fConc1","fAsym","fM3Long","fM3Trans","fAlp ha","fDist","class"]
```

- 2) Omit duplicates
- 3) Check for nulls or nan's and they were not found
- 4) Label encode categorical data (class)
- 5) Solving data imbalance between gamma and hadrons by under sampling And under sampling was chosen because the dataset was big enough. The below Pie chart shows the imbalance

6) Visualizing the correlation between the features and the class column using R value

R value is between -1 and 1, where 1 indicates a sharp positive correlation and -1 is the opposite

And according to the below table 'fConc', 'fDist', 'fConc1' and 'fM3trans' were omitted

class fAlpha fLength fWidth fSize fDist fM3Trans	1.000000 0.460449 0.308131 0.265939 0.117780 0.063824 0.004500
-	
fSize	0.117780
fDist	0.063824
fM3Trans	0.004500
fConc1	-0.006059
fConc	-0.025440
fAsym	-0.172092
fM3Long	-0.193497

7) Visualizing correlations between features So according to the below diagram width,length and size were combined into one feature called magnitude where magnitude = length*width*size

Training Logistic Regression

- 1) Split data to training and test
- 2) Normalize data using standard scalar in sklearn

It makes the mean = 0 and std = 1

3) Training logistic regression using default c value = 1 lead to the following scores

 Mean squared error = 0.2297160243407708 Accuracy = 77.03% Classification Report:							
	precision	recall	f1-score	support			
0	0.84	0.73	0.78	2191			
1	0.71	0.82	0.76	1753			
accuracy			0.77	3944			
macro avg	0.77	0.78	0.77	3944			
weighted avg	0.78	0.77	0.77	3944			
Confusion Matr [[1592 599] [307 1446]]	rix:						

4) After tuning c value we found the best c at 200 and best penalty to be I2 and got the following scores

Mean squared error = 0.2297160243407708							
Accuracy = 77.03%							
Classification Report:							
	precision	recall	f1-score	support			
				10000			
0	0.84	0.73	0.78	2191			
1	0.71	0.82	0.76	1753			
accuracy			0.77	3944			
macro avg	0.77	0.78	0.77	3944			
weighted avg	0.78	0.77	0.77	3944			
Confusion Matrix:							
[[1592 599]							
[307 1446]]							

Training KNN

1) Training at default k = 5 we got the following results

Mean squared Accuracy = 78 Classification	.96%			
Classification	precision	recall	f1-score	support
0	0.84	0.75	0.79	2125
1	0.74	0.83	0.79	1819
accuracy			0.79	3944
macro avg	0.79	0.79	0.79	3944
weighted avg	0.80	0.79	0.79	3944
Confusion Mate [[1597 528] [302 1517]]	rix:			

2) After tuning K we found the best K at k=11 which gave us the following improvement

