SoftEng306 Software Engineering Design 2

Dr Oliver Sinnen

Parallel and Reconfigurable Computing (PARC) lab Department of Electrical and Computer Engineering University of Auckland

2016

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous

processors

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous

processors

$P|prec, c_{ij}|C_{max}$

- Traditional and general problem
- Strong NP-hard
- ⇒ Heuristics, most popular is list scheduling

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous

processors

$P|prec, c_{ij}|C_{max}$

- Traditional and general problem
- Strong NP-hard
- ⇒ Heuristics, most popular is list scheduling

But here,

⇒ Optimal solver, based on state space search

Content

Scheduling problem

Exhaustive solution search

Tree search algorithms

Scheduling problem

Finding start time and processor allocation for every task

- $t_s(n)$: start time of task n
- proc(n): processor of task n

Given by task graph G = (V, E, w, c)

- w(n): execution time of task n
 - weight of node
- ullet $c(e_{ij})$: remote communication cost between tasks n_i and n_j
 - weight of edge

Constraints

Processor constraint

$$proc(n_i) = proc(n_j) \Rightarrow \begin{cases} t_s(n_i) + w(n_i) \le t_s(n_j) \\ \text{or} \quad t_s(n_j) + w(n_j) \le t_s(n_i) \end{cases}$$

Constraints

Processor constraint

$$proc(n_i) = proc(n_j) \Rightarrow \begin{cases} t_s(n_i) + w(n_i) \le t_s(n_j) \\ \text{or} \quad t_s(n_j) + w(n_j) \le t_s(n_i) \end{cases}$$

Precedence constraint

For each edge e_{ij} of E

$$t_s(n_j) \geq t_s(n_i) + w(n_i) + \begin{cases} 0 & \text{if } proc(n_i) = proc(n_j) \\ c(e_{ij}) & \text{otherwise} \end{cases}$$

Critical path and bottom level

- Path length (here): sum of task weights on path
- Critical path: longest path through graph
 - Here: a, d, h, k and a, b, f, j, k, length 14
- Bottom level: longest path to exist task starting with node
 - E.g.: $bl_w(a) = 14$, $bl_w(b) = 12$, $bl_w(h) = 7$

Exhaustive solution search

- State Space Search
 - Exhaustive search through all possible solutions
 - Every state (node) s represents partial solution
 - Combinatorial problems ⇒ search tree
 - Deeper nodes are more complete solutions

Exhaustive solution search

- State Space Search
 - Exhaustive search through all possible solutions
 - Every state (node) s represents partial solution
 - Combinatorial problems ⇒ search tree
 - Deeper nodes are more complete solutions
- Search techniques
 - Branch and Bound easy, limited memory search techniques
 - A* great performance, but memory problem !

Solution space for scheduling problem

One possibility: like list scheduling, trying out all task orders and all processor allocations

- State: partial schedule
- Initial state: empty schedule
- Cost function f(s): underestimate of makespan for complete schedule based on s

Solution space for scheduling problem

One possibility: like list scheduling, trying out all task orders and all processor allocations

- State: partial schedule
- Initial state: empty schedule
- Cost function f(s): underestimate of makespan for complete schedule based on s

Expansion

• Given state s, let free(s) be free tasks

```
for all i \in free(s) do for all P \in P do
```

Create new state: i scheduled on P as early as possible

Solution tree

• Task graph on two processors

Lower bounds on (partial) schedules

Perfect load balance plus current idle time

$$\frac{\sum_{i \in \boldsymbol{V}} w(n_i) + idle(s)}{|\mathsf{P}|}$$

Lower bounds on (partial) schedules

Perfect load balance plus current idle time

$$\frac{\sum_{i \in \mathbf{V}} w(n_i) + idle(s)}{|\mathbf{P}|}$$

Max (start time of scheduled tasks plus their bottom level)

$$\max_{n_i \in s} \{t_s(n_i) + bl_w(n_i)\}$$

DFS Branch and Bound

- Depth First Search (DFS) branch and bound
- Usual meaning of "Branch and Bound"

DFS Branch and Bound

- Depth First Search (DFS) branch and bound
- Usual meaning of "Branch and Bound"

B & B

```
B \leftarrow upperBound
```

DFS on state space (depth until $f(s) \ge B$):

if complete solution s_c found & $f(s_c) < B$ then

$$B \leftarrow f(s_c)$$

DFS Branch and Bound

- Depth First Search (DFS) branch and bound
- Usual meaning of "Branch and Bound"

B & B

```
B \leftarrow upperBound

DFS on state space (depth until f(s) \geq B):

if complete solution s_c found & f(s_c) < B then

B \leftarrow f(s_c)
```

- Memory required is O(|V|P)
- Benefits from tight upper bounds for initial B

A*

- Best first search
 - Expand most promising state first (best f(s)) \Rightarrow Head of *OPEN*
 - Cost f(s) must be underestimate to find optimal solution

A*

- Best first search
 - Expand most promising state first (best f(s)) \Rightarrow Head of *OPEN*
 - Cost f(s) must be underestimate to find optimal solution

```
OPEN \leftarrow emptyState
while OPEN \neq \emptyset do
s \leftarrow PopHead(OPEN)
if s is complete solution then
return s as optimal solution
Expand state s into children and compute f(s_{child}) for each OPEN \leftarrow new states
```

A*

- Best first search
 - Expand most promising state first (best f(s)) \Rightarrow Head of *OPEN*
 - Cost f(s) must be underestimate to find optimal solution

```
OPEN \leftarrow emptyState
while OPEN \neq \emptyset do
s \leftarrow PopHead(OPEN)
if s is complete solution then
return s as optimal solution
Expand state s into children and compute f(s_{child}) for each OPEN \leftarrow new states
```

- Very, very memory hungry (Breadth First Search)
- With given f(s) function, A* explores least number of states!