

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification⁶: G01N 21/35, 33/28		A1	(11) International Publication Number: WO 97/14953 (43) International Publication Date: 24 April 1997 (24.04.97)
(21) International Application Number: PCT/EP96/04599		(72) Inventors: VAN DOORN, Ronald; Badhuisweg 3, NL-1031 CM Amsterdam (NL). HOOYMAN-SPAARGAREN, Froukje, Haasje; Badhuisweg 3, NL-1031 CM Amsterdam (NL). NEUGEBAUER, Ronald, Johan; Badhuisweg 3, NL-1031 CM Amsterdam (NL). SMEETS, Louis, Marie; Badhuisweg 3, NL-1031 CM Amsterdam (NL).	
(22) International Filing Date: 17 October 1996 (17.10.96)		(81) Designated States: AU, CA, CZ, JP, NZ, SG, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 95307410.1 18 October 1995 (18.10.95) EP (34) Countries for which the regional or international application was filed: GB et al. 96301647.2 11 March 1996 (11.03.96) EP (34) Countries for which the regional or international application was filed: GB et al.		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant (for all designated States except CA): SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. [NL/NL]; Carel van Bylandtlaan 30, NL-2596 HR The Hague (NL).			
(71) Applicant (for CA only): SHELL CANADA LIMITED [CA/CA]; 400 - 4th Avenue S.W., Calgary, Alberta T2P 2H5 (CA).			

(54) Title: **METHOD FOR PREDICTING A PHYSICAL PROPERTY OF A RESIDUAL HYDROCARBONACEOUS MATERIAL**

(57) Abstract

The present invention provides a method for predicting a physical property of a residual hydrocarbonaceous material comprising the steps of: a) selecting a set of residual hydrocarbonaceous materials of different quality; b) determining a physical property of the residual hydrocarbonaceous materials by conventional measurement; c) measuring the (near) infrared spectra of the residual hydrocarbonaceous materials; d) selecting in the spectral region a range of wavelengths, and using the absorbance values measured at these wavelengths as an input for multivariate statistical analysis or a neural network; d) correlating the absorbance values obtained with the physical property as determined under b) by means of multivariate statistical analysis or a neural network and generating a predictive model; and subsequently e) applying this predictive model to (near) infrared spectra, taken under the same conditions, for residual hydrocarbonaceous materials of an unknown physical property, thus providing the physical property of the unknown residual hydrocarbonaceous material.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LJ	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

- 1 -

METHOD FOR PREDICTING A PHYSICAL PROPERTY
OF A RESIDUAL HYDROCARBONACEOUS MATERIAL

The present invention relates to a method for predicting a physical property of a residual hydrocarbonaceous material by correlation of its (near) infrared spectrum to the physical property.

5 The use of (near) infrared spectroscopy to control processes for the preparation of petroleum products is known for instance from "Hydrocarbon Processing", February 1995, pages 86-92. The processes described in said document include the preparation of gasolines and
10 gas oils by the controlled blending of various components. The quality of the final product is determined on-line using a Fourier transform-type of spectrometer which is connected to a computer. In this way the use of blend tables can advantageously be
15 avoided.

Another type of process widely applied in petroleum industry, in respect of which it would be highly advantageous to control continuously the product quality by means of (near) infrared spectroscopy, is
20 the preparation of bitumen compositions by blending various streams of different grades of bitumen. Attempts to use (near) infrared spectroscopy for controlling the quality of bitumen compositions have, however, been rather disappointing so far, which can
25 most likely be attributed to the very heavy components of which bituminous materials are built up.

In this respect reference is made to "Rapid Prediction and Evaluation of Bitumen Properties by Near Infrared Spectroscopy", G. Svechinsky and I. Ishia,
30 which paper was presented at the Third Annual Meeting of RILEM Committee TC PBM-152, Madrid, Spain, June

- 2 -

1995. In said paper the use has been described, without any details, of the reflection of near infrared radiation for characterization and prediction of different bitumen parameters.

5 Object of the present invention is to provide an advanced method for predicting a physical property of residual hydrocarbonaceous materials such as crude oil residues including residues, residual fuel oils and bituminous materials using (near) infrared spectra.

10 The present invention therefore provides a method for predicting a physical property of a residual hydrocarbonaceous material comprising the steps of:

- a) selecting a set of residual hydrocarbonaceous materials of different quality;
- 15 b) determining a physical property of the residual hydrocarbonaceous materials by conventional measurement;
- c) measuring the (near) infrared spectra of the residual hydrocarbonaceous materials;
- 20 d) selecting in the spectral region a range of wavelengths, and using the absorbance values measured at these wavelengths as an input for multivariate statistical analysis or a neural network;
- 25 e) correlating the absorbance values obtained with the physical property as determined under b) by means of multivariate statistical analysis or a neural network and generating a predictive model; and subsequently
- 30 f) applying this predictive model to (near) infrared spectra, taken under the same conditions, for residual hydrocarbonaceous materials of an unknown physical property, thus providing the physical property of the unknown residual hydrocarbonaceous material.

35 By means of the above method it is for instance

- 3 -

possible to control continuously the quality of a hydrocarbonaceous feedstock and/or the product derived therefrom.

According to the present invention the (near) infrared spectra of a relatively large set of residual hydrocarbonaceous materials (suitably at least 10, preferably at least 50) of different quality are measured.

The number of hydrocarbonaceous materials of different quality in the set is important since this determines the generality and applicability of any subsequent statistical predictive pool.

The light from the (near) infrared region has wavelengths in the range of from 1000 to 10,000 nm, preferably in the range of from 1500 to 3000 nm, more preferably in the range of from 1640 to 2630 nm or one or more selected intervals thereof.

The spectra obtained can be analysed, together with determinations of the physical property by conventional measurements, using multivariate statistical analysis techniques such as Partial Least Squares, Multiple Linear Regression, Reduced Rank Regression, Principal Component Analysis and the like, or neural networks.

The above-mentioned multivariate statistical techniques and neural networks are as such known to those skilled in the art and will therefore not be described in detail.

Suitably, the absorbance values are measured at a large number of the wavelengths in the spectral region. Suitably, the absorbance values are measured at the whole range of wavelengths in the spectral region or at one or more selected intervals thereof.

Subsequently a predictive model is generated that can be applied to the (near) infrared spectra, taken under the same conditions, for residual hydrocarbonaceous materials of an unknown physical

- 4 -

property.

Correlation of the absorbance values with the physical property of the residual hydrocarbonaceous materials as determined under b) is done by known techniques mentioned before such as multiple linear regression or partial least squares regression.

The residual hydrocarbonaceous materials of which a physical property can be determined in accordance with the present invention comprise for instance heavy gas oils, crude oil residues, residual fuel oils and bituminous materials.

Crude oil residues may consist of straight run residues such as long (atmospheric) and short (vacuum) residues, processed residue streams such as thermally cracked, hydrocracked or catalytically cracked residues. Residual fuel oils may consist of residues and any known diluent streams such as any refinery stream to influence residue properties, and may contain any known additive such as stabilising or emulsifying agents.

Suitable bituminous materials include naturally occurring bitumens or derived from a mineral oil. Also blends of various bituminous materials can be analysed. Examples of suitable bituminous materials include distillation or "straight-run bitumens", cracked residues, polymer-modified bitumens, precipitation bitumens, e.g. propane bitumens, blown bitumens, e.g. catalytically blown bitumen, and mixtures thereof.

Other suitable bituminous materials include mixtures of one or more of these bitumens with extenders (fluxes) such as petroleum extracts, e.g. aromatic extracts, distillates or residues, or with oils. The bituminous materials to be analysed may contain any emulsifying agent known in the art.

The above-mentioned residual hydrocarbonaceous materials to be analysed by means of (near) infrared

- 5 -

spectroscopy have suitably a temperature of at least 50°C, preferably a temperature of at least 100°C.

The physical properties to be determined include properties such as penetration (PEN), softening point, density, viscosity, flash point, storage and handling stability, compatibility, and chemical composition related properties such as aromaticity, C7 asphaltenes content, wax content, paraffin content, volatility and retained PEN (after RTFOT (Rolling thin film oven test)), microcarbon residue, Conradson carbon residue and feedstock assessment parameters.

In accordance with the present invention two or more physical properties, e.g. softening point and PEN, of a residual hydrocarbonaceous material can be determined simultaneously.

The present invention will now be illustrated by means of the following Example.

Example 1

A set of 72 bituminous materials of different quality was selected. The samples were all rated for penetration and softening point values using the ASTM D 5 and ASTM D 36 methods respectively. The samples were subsequently measured in the near infrared region having wavelenghts in the range of from 1640 to 2630 nm. Samples of the bituminous materials were in turn contained in a transmission cell at a temperature of 200 °C and the near infrared spectra were recorded. A predictive model was generated using partial least squares regression as explained before. The standard deviations of prediction are 3 dmm for penetration in the range 20-140 dmm, and 0.7 °C for softening point in the range 42-62 °C, as determined by the leave-one-out cross-validation method.

Example 2

A set of 75 thermally cracked residues of different quality was selected. The samples were all rated for

- 6 -

Micro Carbon Residue content and viscosity using the ASTM D-4530-93 and ASTM D-445-94 methods respectively.

The samples were subsequently measured in the near infrared region having wavelengths in the range of from

5 1640 to 2630 nm. Samples of the residues were in turn

contained in a transmission cell at a temperature of 200 °C and the near infrared spectra were recorded. A predictive model was generated using partial least squares regression as explained before. The standard

10 deviations of predictions are 0.4 %w/w for Micro Carbon Residue content in the range of 24.3 - 35.2 %w/w, and

6.5% for viscosity in the range of 65 - 554 cSt, as determined by the leave-one-out cross validation method.

15 It will be clear from the foregoing that the present invention provides a very attractive method for predicting physical properties of residual hydrocarbonaceous materials.

C L A I M S

1. A method for predicting a physical property of a residual hydrocarbonaceous material comprising the steps of:
 - a) selecting a set of residual hydrocarbonaceous materials of different quality;
 - b) determining a physical property of the residual hydrocarbonaceous materials by conventional measurement;
 - c) measuring the (near) infrared spectra of the residual hydrocarbonaceous materials;
 - d) selecting in the spectral region a range of wavelengths, and using the absorbance values measured at these wavelengths as an input for multivariate statistical analysis or a neural network;
 - e) correlating the absorbance values obtained with the physical property as determined under b) by means of multivariate statistical analysis or a neural network and generating a predictive model; and subsequently
 - f) applying this predictive model to (near) infrared spectra, taken under the same conditions, for residual hydrocarbonaceous materials of an unknown physical property, thus providing the physical property of the unknown residual hydrocarbonaceous material.
2. The method according to claim 1, wherein the (near) infrared region has wavelengths in the range of from 1000 to 10,000 nm.
- 30 3. The method according to claim 2, wherein the wavelengths range of from 1500 to 3000 nm.
4. The method according to any one of claims 1 to 3, wherein the set of residual hydrocarbonaceous materials is at least 50.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/04599

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G01N21/35 G01N33/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 09362 A (SHELL CANADA LTD ;SHELL INT RESEARCH (NL)) 28 April 1994 see claim 1 ---	1
A	WO 94 08226 A (SHELL CANADA LTD ;SHELL INT RESEARCH (NL)) 14 April 1994 see claim 1 ---	1
A	EP 0 304 232 A (BP OIL INT) 22 February 1989 see claims 1,12 ---	1
A	EP 0 285 251 A (BP OIL INT ;BP CHEM INT LTD (GB)) 5 October 1988 see claim 1 -----	1-3

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

1

Date of the actual completion of the international search	Date of mailing of the international search report
30 January 1997	21.02.97
Name and mailing address of the ISA	Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+ 31-70) 340-3016

Krametz, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/04599

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9409362	28-04-94	AU-A-	5151493	09-05-94
		CA-A-	2146985	28-04-94
		EP-A-	0671003	13-09-95
		FI-A-	951720	11-04-95
		JP-T-	8502360	12-03-96
		NO-A-	951416	11-04-95
		NZ-A-	256694	27-02-96
		ZA-A-	9307593	03-05-94
<hr/>				
WO-A-9408226	14-04-94	AU-A-	5149393	26-04-94
		EP-A-	0663998	26-07-95
		FI-A-	951570	03-04-95
		JP-T-	8501878	27-02-96
		NO-A-	951284	03-04-95
		NZ-A-	256675	27-11-95
		ZA-A-	9307297	25-04-94
		AU-A-	5971994	15-08-94
		BR-A-	9405871	12-12-95
		CA-A-	2154786	04-08-94
		CN-A-	1116878	14-02-96
		WO-A-	9417391	04-08-94
		EP-A-	0681693	15-11-95
		FI-A-	953579	26-07-95
		JP-T-	8505944	25-06-96
		NO-A-	952957	26-07-95
		ZA-A-	9400536	09-09-94
<hr/>				
EP-A-0304232	22-02-89	FR-A-	2619623	24-02-89
		FR-A-	2619572	24-02-89
		FR-A-	2619625	24-02-89
		FR-A-	2619626	24-02-89
		FR-A-	2619627	24-02-89
		FR-A-	2619628	24-02-89
		FR-A-	2619629	24-02-89
		FR-A-	2619630	24-02-89
		FR-A-	2634283	19-01-90
		AT-T-	146880	15-01-97
		AU-B-	603919	29-11-90
		AU-A-	2095388	23-02-89
		CA-A-	1333447	13-12-94

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/EP 96/04599

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0304232		JP-A- 1113637 US-A- 5452232		02-05-89 19-09-95
EP-A-0285251	05-10-88	FR-A- 2611911 AU-B- 603868 AU-A- 1200988 CA-A- 1321895 DE-D- 3864432 JP-A- 63243736 NO-B- 178448 US-A- 5490085		09-09-88 29-11-90 01-09-88 07-09-93 02-10-91 11-10-88 18-12-95 06-02-96