

(12) (19) (CA) Demande-Application

an (an 2,255,456

(22) 1998/12/11 (43) 1999/06/12

(12) SIRAY, Mustafa, DE

(72) SCHEFFLER, Jochen, DE

O) DECRESA AKTERIGESELLSCHAPT, DE

(51) Int.CL⁶ C01B 33/18, C09D 7/12

(30) 1997/12/12 (197 55 287.0) DE

(54) SILICE PRECIPITE

(54) PRECIPITATED SILICA

(57) Precipitated silies which has the following physics chamical parameters. BET so face area (DIN 65131) in m²1g 400 - 600, DBP index (DDN 53601) in g/100 g 300 - 360. Compacted density (DDN 53194) in g/170 - 140, Grindometer value: (18O 1524) in mirror (5 - 50, Sizze distribution index 1 < 1.0, measured with a Malvery informant, Sizze distribution index: I = (see above feminula). It is propared by milling a procapitated silica in a classifier million a fluidised bed counter they mill. A polyethylene was combine may be added believe the milling precedure. The precipitated silien then has the following physico-chemical parameters: DET surface area (DIN 66131) in m³/g 351 - 600, DBP index (DIN 53601) as a % 300 - 360, Carbon content as a % 1 - 8, Compacted density (DIN 5319i) in gd 70 - 140, Orinformeter value (ISO 1524) in mum 15 - 50, Size distribution index 1 < 1.0. The precipitated silicas may be used as matting apents in Jacquer systems.

Industrie Canada Industry Canada

ABSTRACT

Precipitated silica which has the following physicochemical parameters:

BET surface area (DIN 66131) in m2/g	400 - 600
DBP index (DIN 53601) in g/100 g	300 - 360
Compacted density (DIM 53194) in g/l	70 - 140
Grindometer value (ISO 1524) in µm	15 - 50
Size distribution index I	< 1.0
measured with a Malvern intrument	

Size distribution index I $\sim \frac{d_{90}-d_{10}}{2d_{50}}$

It is prepared by milling a precipitated silica in a classifier mill or a fluidised bed counter-flow mill. A polyethylene wax emulsion may be added before the milling procedure. The precipitated silica then has the following physico-chemical parameters:

BET surface area (DIN 66131) in m^2/g	351 - 600
DBP index (DIN 53601) as a %	300 - 360
Carbon content as a %	1 - 8
Compacted density (DIN 53194) in q/1	70 - 140
Grindometer value (ISO 1524) in µm	15 - 50
Size distribution index I	< 1.0

The precipitated silicas may be used as matting agents in lacquer systems.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. Precipitated silica having the following physicochemical parameters:

BET surface area (DIN 66131) in m^2/q	400 - 600
DBP index (DIN 53601) in g/100 g	300 - 360
Compacted density (DIN 53194) in g/l	70 - 140
Grindometer value (ISO 1524) in µm	15 - 50
Size distribution index I	< 1.0
measured with a Malvern intrument	

Size distribution index I = $\frac{d_{\infty} - d_{\omega}}{2d_{\omega}}$

2. A process for preparing precipitated silica with the physico-chemical parameters as defined in claim 1, in which a precipitated silica which has the following physico-chemical characteristics:

BET surface area (DIN 66131) in m²/g	400 - 600
DBP index (DIN 53601) as a %	340 - 380
Compacted density (DIN 53194) in g/1	180 - 220
"Alpine" sieve residue > 63 µm wt.%	25 - 60,

is milled using a classifier mill or a fluidised bed counter-flow mill.

3. Precipitated silica coated with a polyethylene wax emulsion, having the following physico-chemical parameters:

BET surface area (DIN 66131) in m*/g	351 - 600
DBP index (DIN 53601) as a %	300 - 360
Carbon content as a %	1 - 8
Comparted density (DJN 53194) in g/1	70 - 140
Grindometer value (ISO 1524) in µm	15 - 50
Size distribution index I	< 1.0.

4. A process for preparing precipitated silica coated with polyethylene wax emulsion as defined in claim 3, in which a polyethylene wax emulsion is added to a precipitated silica which has the following physicochemical characteristics:

BET surface area (DIN 66131) in m2/g	400 - 600
DBP index (DIN 53601) as a %	340 - 380
Compacted density (DIN 53194) in g/1	180 - 220
"Alpine" sieve residue > 63 µm wt.%	25 - 60,

and the mixture is then dried and milled using a classifier mill or a fluidised bed counter-flow mill.

- 5. A process according to claim 4, in which the precipitated silica is prepared, a resultant filter cake is liquefied under the action of shear forces, polyethylene wax emulsion is added, and the mixture is spray dried and milled using a classifier mill or a fluidised bed counterflow mill.
- 6. Use of precipitated silica in accordance with claim 1 or 3 as a matting agent in lacquer systems.

Precipitated Silica

The invention relates to precipitated silica, a process for its preparation, and its use as a matting agent.

It is known that synthetic, precipitated silicas or silica gels can be used as matting agents (DE-PS 24 14 478, DE-PS 17 67 332, DE-OS 16 69 123, DE-AS 15 92 865, DE-A 38 15 670).

10

20

The matting power of a silica depends on a variety of factors, such as, for example, the type of silica, the particle size, the particle size distribution, the refractive index and also the lacquer system. The shape and size distribution of secondary particles in the silica are of particular importance.

In addition to being very efficient, expressed by the reduction in degree of gloss as compared with the non-matted lacquer film, a silica which is used as a matting agent also has to satisfy a number of other requirements. Thus, for example, there should be no undue thickening of the lacquer system due to the silica which is introduced. A smooth surface to the lacquer should be produced on the corresponding thin lacquer coatings. Specks which have an adverse effect on the surface quality must be avoided.

The document DE-A 31 44 299 describes precipitated silicas and a process for preparing these precipitated silicas,

which are characterised by the following physico-chemical properties:

BET surface area according to DIN 66131 in m'/g	400 - 600
DBP index according to DIN 53601 as a %	320 - 360
and	
BET surface area according to DIN 66131 in m²/g	400 - 600
DBP index according to DIN 53601 as a %	310 - 360
Compacted density according to DIN 53194 in g/1	75 - 120
"Alpine" sieve residue > 63 µm in wt.%	< 0.1

10

When preparing these silicas, an Alpine transverse flow mill or a jet mill is used to mill the product following spray drying. It is also specified in this document that these precipitated silicas are valuable, highly effective matting agents for lacquers. Precipitated silicas which are prepared using these types of mills lead to disadvantageous roughness of the surface due to the presence of large specks in the final lacquer. The grindometer value (according to ISO 1524) in black stoving enamel is greater than 100 µm and 85 to 90 µm respectively for the known precipitated silicas. Thus these precipitated silicas can only be used to a limited extent as matting agents.

It is an object of this invention to provided a precipitated silica which minimizes these disadvantages.

Precipitated silca according to this invention is characterised by the following physico-chemical parameters:

BET surface area according to DIN 66131 in m^2/g 400 - 600 DBP index according to DIN 53601 in g/100 g 300 - 360 Compacted density according to DIN 53194 in g/1 70 - 140 Grindometer value according to ISO 1524 in μm 15 - 50 Size distribution index I < 1.0 measured with a Malvern instrument

Size distribution index I = $\frac{d_{so} - d_{to}}{2d_{so}}$

10

Another aspect of the invention provides a process for preparing the precipitated silicas according to the invention in which a precipitated silica which has the following physico-chemical properties:

BET surface area according to DIN 66131 in m²/g 400 - 600

DBP index according to DIN 53601 as a t 340 - 380

Compacted density according to DIN 53194 in g/l 180 - 220

20 "Alpine" sieve residue > 63 µm wt.% 25 - 60,

is milled using a classifier mill or a fluidised bed counter-flow mill.

The initial silica is described in the document DE-A 31 44 299.

By way of example, a ZPS classifier mill (Zirkoplex® Alpine Aktiengesellschaft D-8900 Augsburg), or an AFG fluidised bed counter-flow mill may be used.

In one embodiment of the invention, the precipitated silica according to the invention may be classified after milling, in order to adjust to a specific granular fraction.

Classifying may be performed, for example, using an ATP Turboplex fine classifier (Alpine Aktiengesellschaft D-8900 Augsburg).

Another aspect of the invention provides a precipitated silica coated with a polyethylene wax emulsion, which is characterised by the following physico-chemical parameters:

BET surface area according to DIN 66131 in m^2/g	351 - 600
DBP index according to DIN 53601 as a %	300 - 360
Carbon content as a %	1 - 8
Compacted density according to DIN 53194 in g/l	7 - 140
Grindometer value according to ISO 1524 in μm	15 - 50
Size distribution index I	< 1.0

20

This precipitated silica can be prepared by adding polyethylene wax emulsion to a precipitated silica which has the following physico-chemical characteristics:

BET surface area according to DIN 66131 in m^2/g	400	ı –	600
DBP index according to DIN 53601 as a %	340	۱ -	380
Compacted density according to DIN 53194 in g/l	180) -	220
"Alpine" sieve residue > 63 µm wt.%	25	-	60,

and then drying and milling the product using a classifier mill or a fluidised bed counter-flow mill.

In a particular embodiment of the invention, the precipitated silica can be prepared by liquefying filter cake under the action of shear forces, adding polyethylene wax emulsion, spray drying, and then milling using a classifier mill or a fluidised bed counter-flow mill.

10 A precipitated silica in accordance with DE-A 31 44 299 is preferably used as the starting silica.

An advantage of precipitated silicas according to the invention is in particular their high matting efficiency, in addition to further advantages such as providing a very smooth surface of the dry lacquer, high transparency and a small effect on the rheology (viscosity) of the lacquer.

The invention will be further described and exemplified in the following description, which makes reference to the accompanying drawings, in which:

Figure 1 shows the size distribution of classified precipitated silica.

Figure 2 shows the particle size distribution of precipitated sílicas according to the invention, compared to the particle size distribution of a precipitated sílica in accordance with DR-A 31 44 299.

6

Examples

Example 1

5 A precipitated silica prepared in accordance with example 1 from DE-A 31 44 299 is milled in a ZPS 100 Zirkoplex® classifier mill from the Alpine company, by varying the throughput and the process parameters such as speed of rotation of the classifier, milling throughput and milling air. The trial parameters, the physico-chemical data and the paint properties which are obtained in black stoving lacquer are given in table 1.

Example 2

15

A precipitated silica prepared in accordance with example 1 from DE-A 31 44 299 is milled in an AFG 200/1 fluidised bed counter-flow mill, from the Alpine company, while varying the throughput and the process parameters such as rate of rotation of the classifier, or the milling air. The trial parameters, the physico-chemical data and the paint properties which are obtained in black stoving lacquer are given in table 2.

25 Example 3

Precipitated silicas which are prepared in accordance with example 1c or example 2c (see table 1 and 2) are classified in an ATP 50 turboflex fine classifier to give a finer and 30 a coarser fraction. The process parameters, the physical data and the paint test results which are obtained in black stoving lacquer are given in table 3.

Example 4 (comparison example)

35

The unmilled, spray-dried silica, prepared in accordance with DE 31 44 299 (example 6), is milled on a UP 630 Alpine

7

transverse flow mill. The physico-chemical data and paint properties of the product obtained are given in table 4.

Example 5 (comparison example)

5

The unmilled, spray-dried silica, prepared in accordance with DE 31 44 299 (example 9), is milled using an MC 500 Microgrinding air jet mill. The physico-chemical data and paint properties are given in table 4.

10

The effectiveness and matting efficiency of the precipitated silicas prepared according to examples 1 to 3 are tested in a black stoving lacquer. The Lange gloss values, at angles of reflection of 60° and 85°, and the 15 Hegman grindometer value were also assessed.

The B. Lange gloss meter was used to determine the degree of gloss, which is a measure of the matting power of the matting silica tested. The B. Lange gloss meter uses angles of incidence and reflection of 60° and 85°. The degrees of gloss measured are cited as percentages. The lower this value, the better is the matting capacity of the precipitated silica. As a result, less matting agent has to be used in order to achieve a quite specific degree of gloss or a specified matting effect.

The grindometer value is determined using a grindometer. The grindometer value, which is measured in µm (micrometers) is a measure of the largest particles which 30 can be found after stirring the precipitated silica into the final, sprayable lacquer mixture. It can be related to the production of specks in the dry lacquer film, so undesired specks or sprayed granules can be detected using the grindometer (ISO 1524).

35

The quality of the lacquer film surface is determined using the scanning section method developed by the Hommelwerke

8

company and is cited as an average roughness value (R_{R}) according to DIN 4768/1, DIN 4762/1E and as an average depth of roughness (RZD) according to DIN 4768/1.

5 The black stoving lacquer used had the following composition:

	Parts by wt
Carbon black paste, tack 1	8.0
Jägalyd R40, 60 % strength in xylene	50.B
Maprenal MF 800, 55 % strength in butenol	25.9
Baysilone paint additive OL 17,1 % in	2.0
xylene	13.3
Thinner	
	1.00.0
Thinner	
. Xylene	75.0
Butanol	10.0
Ethoxypropanol	15.0
	100.0

- 4 g of precipitated silica are stirred into 100 g of lacquer with a blade stirrer at 2000 rpm for 10 minutes. The viscosity of the mixture is adjusted to a flow time of 20 seconds using xylene (DIN; 4 mm nozzle).
- 15 The lacquer is sprayed to give an approximately 30 μm thick dry layer on sheet metal, air dried and fired at 180°C for 30 minutes.

Example 6

20

The paint properties of the precipitated silicas propared according to examples la to c, a precipitated silica prepared according to DE 38 15 670 and a commercially available product (Nipsil 1009) are tested in two other

25 test lacquer systems.

9

CC lacquer

	Parts by wt.
Alftalat AN 950, 60% in Solvesso 150/Butylglycol	
Solvesso 150	29.30
	2.60
Titanium dioxide Kronos 2059	33.60
Aerosil R 972	0.20
Dispersion: 40 h ball mill KU 5, 60 rpm,	,,,,,
4900 g Alubite beads 19 mm	
Alftalat AN 950, 60 % in Solvesso 150/Butyl	13.00
glycol	
Maprenal MF 900, 100 %	8.10
Maprenal MF 577, 50 % in butanol	0.80
Butyl glycol	2.00
Solvesso 150	2.90
Xylene	6.70
DON CORNING PA 57	0.60
p-Toluylsulfonic scid, 20 % in butanol	0.30
Total	100.00

Before use, 3.2 g of matting agent are dispersed in 150 5 parts by weight of lacquer using a blade stirrer at 2000 rpm.

DD lacquer

	Parts
	by wt.
CAB 381-0,5	0.3
Butyl acetate, 98 % strength	11.0
Ethoxypropyl acetate	16.5
Desmophan 800	15.0
Desmophen 1100	20.0
Mowilit, 50 % strength in ethyl acetate	3.0
Baysilone-lacquer additive	0.1
Xylene	34.1
. Total	100,00

10

Firstly 0.3 parts by weight of CAB 381-0.5 are carefully dissolved in 11.0 parts by weight of butyl acetate (98.0~% strength) and 16.5 parts by weight of ethoxypropyl acetate using a high speed stirrer. Then the other components are

10

added in the sequence given above and the mixture is homogenised by stirring.

Before use, the gloss lacquer is homogenised with the blade

5 stirrer. The matting agent (amount see table 6) is
dispersed in 100 parts by weight of lacquer using a blade
stirrer at 2000 rpm. After a degassing time of 15 minutes,
50 g of the hardener Desmodur L 75 are added and
homogenised with the blade stirrer for 2 minutes at 1000

10 rpm. The mixture is applied to a thoroughly pre-cleansed
glass block and to a black, high gloss, lacquered glass
block using a spreader with a 200 µm slit.

The test results in CC lacquer are given in table 5 and in 15 DD lacquer in table 6. For comparison the precipitated silicas according to DE 38 15 670 and the commercial product NIPSIL E 1009 are also given. A comparison of the data determined can be obtained from the tables.

	_				
Viscosity Thirdraess of coating	шđ	30	ဓ	28	Ø
Viscosity	S	န္တ	88	¥	38
mess	Ra	0.27	0.28		
Roughness	RZD	2.27	237		
Sheen		48.2	48.5	43.2	47.4
55	8 5	72.0	70.3	87.9	28.0 73.4
Gloss	8	23.8 72.0	21.8 70.3	24.7 67.9	26.0
Grindo	Emg.	23	72	28	33
	06 P	10 8.34 4.48 7.03 12.89	15 9.78 4.53 7.11 15.84	9.34 4.52 8.03 13.67	15 9.97 4.27 8.78 18.13
Particle size (Malvem)	443 410 450 490	7.03	7.11	8,03	8.78
rticle siz	d 10	4,48	4.53	4.52	4.27
ŀ	d 4.3	8.34	9.78	9.34	9.97
Throu Affiput	Ę,	5	15	8	55
eed of Class- Throu ssifer liter air -ghput	m ² /h	175	\$	200	145
Speed of classifier	ωd	11000	10500	0008	(10000
Ex. Speed of mill	E	10700	10000	10000	10000
ដ		- -	2	0	P.

													ľ		
ă	Speed of Milling Throu dassifier air ghput	Milling	illing Throu		Paríde size (Malvern) mícrometers (Jm)	e (Mah ters (un		Grinds	Gloss	88	Sheen	Rough	ness	Viecosity	Roughness Viscosity Thickness of coating
	Шď	E E	Rg/A	d 4.8	kg/h d4.8 d10 d50	d 50	d 90.	шd	-09	85		RZD	Ra	N)	EFA
29	11000	150	20	6.49 3.74	3.74	5.95	9.7	23	16.6	66.4	49.8	2.24	0.28	36	\$
7	11000	150	\$	12,9	3.69	8.68	24.3	23	21.9	59.0	36.1	2.00	0.24	39	88
2 c	40000	8	2	<u>+</u>	4.88 8.47 17.9	8.47	-17.9	27	16.6	58,B	422	324	0.42		
22	8000	150	30	12.2	12.2 5.78 11.5 19.5	11.5	19.5	39	15.6	43.8	26.2	4.30	0.55	38	\$
2.0	11000	150	8	7.6	30 7.6 3.55	80	8.1 1244 24	25	21.1	55.4	34.3				•

8/29/2006

12

fable 3
Classifying precipitated silica, prepared according to example 1c

										i			•		140000	A. Carlon
Ex. Fraction Speed Class Throu		Class Throut	Thought -		ō.	article s	Particle size (Malvem)	em)	Grindo	Glass	S	STREET	Kougnness	ness	VISCOSITY	VISCOSITY I TRENIESS
mon m ⁸ /m kg/m d4.3	m ⁸ m kg/m	man kgm d4.3	kgm d 4.3	4.5		44.3 d 10	920	06 P	Ē	\$0r	.59		RZD	Ra	s	μπ
53 4,3 7.42	53 4,3 7.42	4,3 7.42	7.42	7.42	-1	4.24	6.78	11.13	22	25.3	75.7	50.4			ฆ	30
12.07	12.07	12.07	12.07	12.07		ROS	11,28	16.99	æ	12.1	27.6	16.5			21	30
FA. 18770 66 2.0 6.84	66 20	2.0	_	8		3.95	6,30	10.11	23	26.2	74.9	48.7			ន	30
11.18	11.18	11.18	11 18				10,93	14.45	33	12.3	28.4	14.1			21	30
the 13000 117 8.0 7.42	117 8.0 7.42	6,0 7,42	3	3		4.24	6.82	11.07	23	23.1	71.9	48.8	2.13 0.28	0.26	23	30
11.08	11.08	11.08	13.08	13.08	1	8.03	10,73	14.48	8	13.9	35.6	21.7			21	ဓင္တ
				-	_									١		

Classifying precipitated silica, prepared according to example 2c

ŭ	Frag Po Po	Yield	Frace Yield Speed of Milling Throw- Particle size (Malvern) ion dassifier air ghput	Milling	Theory-	Рац	írde síz	e (Mahve	(F	Grindo	Gloss	55	Sheen	Rough	ness	Roughness Viscosity
		28	upda	E F	m²m kg/m d4.3 d10 d50 d90	d 4.3	d 10	09 P	8	भिष्म	.D9	86°		RZD Ra	22	Ø
4 3	4.9 fine	85	13000		2.1	8.8	3.95	8,28	10.10	2.1 6.84 3.95 6.26 10.10 29	19.8	70,3	19.8 70.3 50.7 2.2 0.27	2.2	0.22	88
!	CORTSe 15	45				10.17	8.32	9.91	12.35	10.17 8.32 9.91 12.35 29	10.9 31.2	31.2	20.3			23
4 4	4b fine 85	8	18000		2,1	7.37	3.01	4.84	11.08	2,1 7.37 3.01 4.84 11.08 17 21.8 77.5	21.8	77.6	55.8			82
	92.50	3				9.36	8.45	9.28	10.4	9.26 8.45 9.28 10.4 Z7 10.5 38.2 25.7	10.5	38.2	25.7			24

	<u> </u>	Particle size (um)	aize (un	-	Grindo	હેં	Gloss	Sheen
	d £.3	d £.3 d 10 d 50 d 90	đ 50	d 90	um	60	60° 85°	
Comparison example 4 18.7 6.4 14.9 35.1	18.7	6.4	14.9	35.1	> 100	10.5	10.5 15.2 4.7	4.7
Comparison example 5 12.0 3.4 6.2 20.7	12.0	3.4	6.2	20.7	85 Specks, air bubbles	18.4	18.4 52.4 44.0	44.0

aple 5

e according to:	DE 38 15 670	1.3	1 b	20	1 c RIPSIL B 1009	
ne in Din seconds at 23 °C	140	149	148	135	118	
esa of ccating in um	₹₹	23	24	23	23	_
flectometer value (DIN 67530)	36.9	36.7	36.3	27.7	44.4	
flectometer value (DIN 67530)	€.67	78.9	6.77	5.77	96.5	
	42.8	42.2	41.4	8'6E	42.1	

WIPSIL B 1009 \$0.4 97.5 43.7 74.9 (% (% ન જ 30.2 58.3 2.17 41 68.1 42 30 DE 38 15 670 31 55.6 85° reflectometer value (DIN 67530) 60° reflectometer value (DIN 67530) Macbeth RD 918 densitometer value measured using yellow filter Plowtime in DIN seconds at 23 Amount of matting agent added Example according to:

Table 6 DD lacquer

15

Example 7

The matting efficiency is determined in a number of different lacquer systems, wherein the preparation and application of the lacquer took place under identical conditions each time.

A high matting efficiency means a low requirement (concentration) of matting agent in order to achieve a 10 specific degree of gloss (measured at an angle of 60°C (sic)). The matting efficiency of unknown matting agents is determined in a relative manner, i.e. by comparison with known matting agents, so that variations in the determination of the degree of gloss (depending on the made 15 of preparation and application of the lacquer) are avoided. One important physico-chemical parameter which has a critical effect on the matting efficiency of silica is the particle size distribution of the silica. Basically, it has been shown that with identical precipitation processes the 20 matting efficiency of the precipitated silica decreases with decreasing particle size (and vice versa). Fine fractions of precipitated silica have a lower matting efficiency than that of a more coarsely milled fraction.

25 The high matting efficiency of the precipitated silicas according to the invention is demonstrated as follows, in a variety of lacquer systems:

Table 7: Test in alkyd/melamine lacquer

Lacquer eystem: alkyd melamine in accordance with formulation Product from example Zc has higher matting efficiency than Syloid ED 5, although this product is more finely divided. Burthermore, product 2a is more efficient than Nipsil E 1009 and Syloid ED 3.

	_	_	_	_	_			_	_	_	$\overline{}$	_	_	~-	_	_
A STEPS OF THE STE	티		32	8	43	37	8	27	S	40	41	32	40	28		돲
Visco- sfiy	an-		3	37	36	33	8	38	36	33	32	37	34	35	£	83
Ra sough- ness (AM)			0.46		0.55	0.36	24			0.46	0.46	0.35			D.28	0.24
RZD raugh- ness (AAN)			3.43		4.30	3.05	3.24			3,43	3.65	2.80		•	2,37	2.03
Sheen			27.0	80	28.6	47.5	40.2	80.9	25.8	32.3	32.3	42.1	42.0	33,7	4B,5	51.0
G b9x			43.0	48.0	45.0	84.0	5B.B	47.8	43.6	50.2	51.0	61.9	63.0	55.2	70.3	73.0
30 30 30 30 30 30 30 30 30 30 30 30 30 3		_	16.D	16.0	16.4	16.5	16.6	16.9	17.B	17.9	18.7	19.8	21.0	21.5	21.8	22.0
Grindo -meter	틸		¥	x	各	31	8	3	3	88	32	53	25	34	27	21
4 8 8	ω'n	•	18.83	18,70	19.50		17.97	18.48	20.40	18.83	16.62	13.19	13,19	17.12	!	8.88
2 4 E	μd		11.4B	10.90	11.53	7.20	8 47	10.41	12.90.	11.4B	95.6	8.37	8.37	10.95	7,10	5.54
A 함께 하다.	Ē		6.58	5.99	5.78		4 99	5.55	6.42	6.58	8.30	4.50	4.50	F.83		3.62
Partic- le sbo GA 3			12.32	11.85	17.77		44 SD	05.01	13.24	12.32	10.47	B 85	8.85	2		80
Weight Partic- added les 20	ū		¥	~	V	1	· •	1 4	4	4	4	4		__	4	4
rocurt prepared seconding to example			6.	6 + +	,	25,20	יייייייייייייייייייייייייייייייייייייי	4 6	1	- 4 4	Salaid FD 5	1+3	01	<u>,</u>		Syloid ED 3

Thick ness of cooting	ELIA		S	33	33	41	30	80	30	28	34	
Vesco	\$		33	35	35	34	3B	36	38	ä	38	
RZD mugh- ress (A/M)			0.28	0.20	027	0.28	0.27				0.28	
RZD mugh- ress (AM)			2.44	1.70	2.20	2,08	227				2.13	
Sheen			48.0	56.0	51.7	51.0	48.2	48.6	4B.8	43.2	48.0	
28. 28.			20.02	78.5	74.6	74.1	72.0	7.57	71.0	679	78.0	
\$2 \$2 \$2			22.0	22.5	22.9	23.1	23.8	24.1	24.4	24.7	25.0	
-inelia -inelia	ш		77	18	23	Z	R	৪	ĸ	88	×	ı
08P 8각5 81	E		12,51		10.10	29.37	12.89	4	12.94	13.87	11.07	
Pertion Parlio Grindo te 350 18228 -meter d50 d50	Ē		6.97	4.20	8,28	7.17	7 03	7.80	7.57	8.03	6.82	;
Partice le size d10	Ē		4.24		3.05	433	4 49	503	4.84	4.52	4.24	ř
Parkity In size d4.3			282	8	8 84	40.47	Z	40 10	2	94	7.03	
Wegnt acted	þ	•	4	4		-	, ~		1		-	,
Product prepared seconding to exacting to			Alineil E 1009	CK AN		21.2	,	-	-	-	4 + 2	ر ج

Ιß

Lacquer system: DD lacquer in accordance with formulation Comparison example: Syloid ED 3

Table 8; Tests in DD lacquer

Lacquer	00	QQ	음	8	8	QQ	ΩΩ
Thick ness of coording	Ca. 40	Ca, 40	ca. 40				
Visco- stty- s	ח.ח.	32	æ	55	n.m.	23	52
Rough- ness Ra {AM]	0.24	0,55	0.26	0.28	0.27	0.24	0.24
Rough- ness RZD (AM)	2,00	4.30	2.13	2.24	2.27	1.95	2,03
Sheen	41.2	15.6	40.6	35.2	35.9	36.9	43.2
Gloss 25°	66.2	40.3	9'99	59.7	60,9	61.9	68.2
.03 කෙ	25.0	24.7	25.0	24.5	25.0	25.0	25.0
Denstto- meter :	2.11	2.16	2.12	2.11	2.08	2.01	2.24
Grindo- meter (AM)	x	용	22	24	25	23	2
Particia stra d80 mm	24.35	19,50	11.07	9.70	12.89	11.58	8.88
Particle See Can	6.68	11.53	6.82	5.95	7.03	71.7	5.54
Paricle Size d 10 pm	3.69	5.78	4.24	3.74	4.48	4.67	3.62
Malvem vatue d4.3 prn	12.93	12.22	7.42	8,48	8.34	7.83	8, 20,
Weight added	7.65	8	82	8.24	8.41	10.1	10.7
Praduct ref.	ধ	R	8		<u>-</u>	Precip silica	Sylair

19

Table 9: Tests in DD lacquer
Dacquer system: DD lacquer in accordance with formulation
Comparison example: Sipsil B 1009

Product Weight Particle P		,		
rod vot. Weight August Particle Part	Lacque system	8	20	
rodical Noegist Particle Particle State Particle Particle State Particle State Grid on Particle State	Thick- ness of 18/er p.m.	G 40	Sa. 各	£a. 40
rodical Weight Particle Particle Particle Particle Galido Denisho Gloss Gless Sheen Rough-Radio 1 326 326 326 435 443 443 443 443 443 443 443 443 443 7,03 12.89 25 2,11 25.0 68.2 41.2 2.00 1 8.41 8.34 4.48 7,03 12.89 25 2.08 25.0 60.9 35.9 2.74 10cg 11.3 7.92 4.34 8.97 12.51 27 1.96 25.0 60.5 35.5 2.44	Visco- city	n.m.		35
rodicut Weight Paricile Pariticle Pariticle Pariticle Gentucide Gent		0.24	0.27	0.28
rod vor. Weight August Particle Part	Rough- nest RZD (A/M)	2.00	2.27	2.44
rod vor. Weight Neight Particle Particle Particle Particle Particle Particle Chindo- Densition Geless rof. ad4.3 44.3 44.0 44.3 44.0 44.3 44.0 44.3 44.0	Sheen	41.2	35.9	35.5
roduct Weight Particle Particle <th< td=""><td>GN58 85*</td><td>68.2</td><td>6.09</td><td>60.5</td></th<>	GN58 85*	68.2	6.09	60.5
roduct Weight Particle Particle Porticle Opticle Ghindonind. Size Size Size Size Size Size Meter Size Size Meter Size Size Meter Size Size Meter Size Size Size Meter Size Size Size Size Size Size Size Size	1 - 1	25.0	25.0	25.0
reduct Weight Pertce Puritabe Particle Puritice red. Added size state attraction of the state attracts and added da.s and adde		2.11	2.08	1.96
reduct Weight Particle Particle Particle 1870 1870 1870 1870 1870 1870 1870 1870	Gråndo- meter value	25	25	12
reduct Weight Particle Particle strain added d4.3 410 410 100 100 100 100 100 100 100 100	Portice stos d30 pm	24.35	12.89	12.51
reduce Weight Particle ref. added 44.3 44.3 2b 7.65 12.83 10.81 8.84 18.84 10.9 10.9 10.9 11.3 7.92	다. 12년 12년 12년 12년	8,68	7.03	8.97
reduce Weight ref. added \$\frac{1}{2}\$ 7.65 1a 8.41 lpsif 11.3	828 828 62 등 금 급	3,69	4.48	4.34
ref. ref. lipsif 1009	Particle Size 44.3 Jun	12.83	6.94	7.92
Product of the Nipsil E 1003	Weight added	7.65	8.41	
	Product ref.	25	1.3	Nipsif E 1009

Table 10: Tests in coil coating lacquer Lacquer system: coil coating lacquer in accordance with formulation

	8. 18. 18. 18. 18. 18. 18. 18. 18. 18. 1	*	_	32	90	101	102	11
	Sheer			21.0	17.0	21.0	20.0	13.0
	Gloss 85°			45.0	44.0	48.0	48.0	42.0
	G03\$:	24.0	27.0	27.0	28.0	0.6%
	Odinato- menar	Turt.		8	8	32	40	44
	Size Size	FEG.		17.35		19.31	73,30	22.98
	왕 왕	LELT.		9.65	12.50	1.33	13.34	13.22
	Participa STS DE	Ē		48	6.40	6.20	8.62	
	Particity SED 94.3	•				12.36	14.93	
Į	Weight	ō		27	^	0	1	0
	Product prepared secondary to	1,		美 43	Syloid C 812	-	-	LOVETHSF

rable il: Test in an acrylic dispersion (aqueous)

Lacquer system: acrylate dispersion (MB 2399-134), aqueous, from the Rohm and Haas company Comparison product: AQ 75 N

			1					1							
Shem	23.0	30.9	37.3	43.0	22.5	29.2	17.1	40.8	29.1	12.8	50.7	25.6	30.2	23.6	
Gloss 85°	92.3	87.0	62.0	73.4	53.8	68.2	35.2	58,5	61.0	25.2	65.0	53.3	51.5	35.8	
Gloss 80°	69.3	56.1	44.7	30.4	31,3	39.0	18.1	18.7	31.9	12.4	15.3	27.7	21.3	12.2	
Denstander velue	25	24	228	217	2.09	36.	1.89	1.82	1.91	1.79	1.8	1.89	1.87		
Grindometer	44	=	44	F F	28	8	1 8	¥	88	29	4	28	38	200	3
Weight added	200	3	5 C	: -	- -	- -	- -	3 4	5 et	3 6	,	,	2.5		.
Product name	S sop (Commercial	product from Dequesa AGI	product from Degussa AG) To 100 (Commercial	preduct from Degussa AG) TS 400 (Commercial)	product from Degrassa AG) Prescripted siles	according to example 1b	product from Crectived)	according to example 10	Draduct from Degussa AG)	product from Creditetd] Precipitated sifica	according to example 1b	progret from Cogussa AG) AQ 75 M (Connected)	Potuct from Crasfield) AD 75 to Commercial	Program Pom Crosfield)	conduct them Crossfield)

CA 01255456 1998-11-11

22

Particle sizes are determined using a laser beam diffractometer from the Malvern company. Before the measurement, the silica is dispersed in water using a stirrer and ultrasound. This silica dispersion is them .5 pumped round the instrument into the path of the beam (cell) using a pump.

Sheen is the difference in the degree of gloss measured at an angle of 85° and the degree of gloss measured at an 10 angle of 60°.

The viscosity is determined using a 4 mm DIN cup. The flow time in seconds of the lacquer is measured in accordance with DIN 53 211.

15

Key to the abbreviations:

CC lacquer: coil coating larguer

Desmodur Desmophen lacquer DD lacquer:

20

Desmodur is a hardener based on isocyanates Desmophen is a polyalcohol, used as the

binder component

Desmodur/Desmophen are the registered trade

names of Bayer AG

25 CAB cellulose acetobutyrate

A/M alkyd/melamine lacquer

Example 8

30 Coating with polyethylene wax emulsion.

Precipitated silica is prepared according to DE-OS 31 44 299, example 1. A wax emulsion (5 % wax with respect to silica) is added to the filter cake which has been 35 liquefied under the action of shear forces (solids content 10.8 wt.%) and them stirred vigorously for a further 30 minutes. The wax emulsion is prepared in an autoclave which

23

is steam-heatable and has a disperser. 4.8 parts by weight of an alkylpolyglycol ether (Marlowet® CFW) in 81.0 parts by weight of water at about 100°C is initially introduced. Then 14.2 parts by weight of low pressure polyethylene wax are added and heated to 130°C. On reaching 130°C, the disperser is switched on and dispersion takes place for 30 minutes. During this time the temperature is held at between 130°C and 140°C. After switching off the disperser and cooling to about 110°C, the final emulsion is discharged.

The polyathylene used is characterised by the following properties:

15	Average molecular weight.		1000
	Solidifying point		100 - 104 °C
	Dropping point	•	110 - 117 °C
	Density (g/cm³)		0.93

The silica suspension coated with wax in this way is then dried in a rapid dryer (e.g. a spray drier) by atomising (e.g. two-fluid nozzle, 2.8 bar of atmospheric air). The dried product is milled in a mechanical classifier mill of the ZPS 50 type from the Alpine company. The physicochemical data are given in table 12:

Table 12

	8a	d8
N ₂ surface area m ² /g	373	373
CTAB-eurtace area m²/g	333	333
DBP absorption g/100 g	330	330
C content %	3.4	3.4
pH	7.2	7.2
Compacted density g/l	106	87
Particle size distribution (Malvern) in μπ d ₉₀	26.25	12.28
d ₅₀	14.85	8.21
d _{1D}	6.91	4,66

24

Table 13: Alkyl melamine lacquer

				Comparison example ?	
		Ва	8 b	OK 500	OK 520
Flow lime in DIN - seconds at 28 °C		31	29	30	32
Grindometer value	μm	41	26	25	28
Thickness	hus	30	29	29	28
60°-Reflectometer value (DIN 67530)		11.0	17.3	19,0	21,0
85°-Reflectometor value (DIN 87530)	24.3	42.9	69,5	76,9
Sheen		13.3	25.6	50.5	55.9

*) Degussa commercial product

Table 14: DD lacquer

	8 a	8 b	Comparison example *)	
			OK 500	OK 520
Flow time in DIN- seconds at 23 °C	23	27	29	30
Weight of matting agent added (g)	8,5	8.5	8.5	8.5
60°-Reflectometer value (DIN 67530)	21.6	34.4	69.9	8.6
65°-Reflectomater value (DIN 67630)	33.2	67.4	88.2	32,5
Sheen	11.6	33.0	18.3	23,9
Densitometer value - Marbeth RD 918 measured using yellow filter	2.12	2.32	2.31	1.69

^{*)} Degussa commercial product

$$\frac{d_{90}^{-}d_{10}}{2d_{50}}$$