

Реализация алгоритма построения представления группы по машине Тьюринга

Автор: Шамрай Максим Борисович

Научный руководитель: доцент, к. ф.-м.н. Григорьев С. В.

Рецензент: ведущий инженер ООО "Ланит-Терком" Смирнов К. К.

JetBrains Research, Programming Languages and Tools Lab Санкт-Петербургский государственный университет Системное программирование

> 25.04.2020 $TM \rightarrow G$

Мотивация

- Кроме иерархии Хомского, есть довольно много классов формальных языков, например, конъюнктивные и Булевы
- Не у всех есть критерий непредставимости языка в классе $(Conj \subseteq Bool\ ?)$
- В последнее время все чаще прибегают к смежным дисциплинам для исследования языков
- Предлагается построить представление группы по языку, чтобы в дальнейшем можно было применять аппарат теории групп для исследований

Представление группы

Пусть Σ — конечный алфавит, $\Sigma^{-1}=\{a^{-1}\mid a\in \Sigma,\ aa^{-1}=a^{-1}a=1_G\}$, тогда

- ullet Σ^+ свободная полугруппа
- Σ* свободный моноид
- ullet ($\Sigma \cup \Sigma^{-1}$)* свободная группа

Представление группы

Пусть Σ — конечный алфавит,

$$\Sigma^{-1} = \{a^{-1} \mid a \in \Sigma, \ aa^{-1} = a^{-1}a = 1_G\}$$
, тогда

- ullet Σ^+ свободная полугруппа
- Σ* свободный моноид
- ullet $(\Sigma \cup \Sigma^{-1})^*$ свободная группа

 $G = \langle A \mid R \rangle$ — представление группы

- $G = \langle a, b \mid a^3, b^2, (ab)^2 \rangle = \{ \varepsilon, a, a^2, b, ab, a^2b \} = S_3$
- $G = \langle a \mid a^5 \rangle = Z_5$
- $G = \langle a, b \mid aba^{-1}b^{-1} \rangle$

Связь с теорией групп

• Представления групп описывают языки, которые могут быть заданы следующим выражением:

$$L(G) = \{ \omega = 1_G \mid \omega \in (A \cup A^{-1})^* \}$$

• Построение представления группы по машине Тьюринга, которая распознает некоторый язык, было описано в статье¹

Теорема 1

Пусть $L\subseteq \Sigma^+$ язык, принимаемый машиной Тьюринга M, тогда существует конечно представленная группа $G(M)=\langle A\mid R\rangle$ и инъективное отображение $K:\Sigma^+\to (A\cup A^{-1})^+$ такое что: $u\in L\iff K(u)=1_G$

¹Mark V. Sapir, Jean-Camille Birget and Eliyahu Rips "Isoperimetric and Isodiametric Functions of Groups" (2002)

Постановка задачи

Цель: Создать инструмент, с помощью которого можно будет рассматривать формальные языки как представления группп

Задачи:

- Реализовать алгоритм преобразования контекстно-свободной грамматики в машину Тьюринга
- Реализовать алгоритм построения представления группы по машине Тьюринга
- Разработать интерпретаторы промежуточных машин для проверки сохранения языка
- Провести эксперименты

Описание подхода

- Реализация магазинного автомата в терминах машины Тьюринга для построения машины Тьюринга из контекстно-свободной грамматики
- Построение представления группы из машины Тьюринга, основываясь на доказательствах теорем в статье², полностью повторяя их в алгоритме

²Mark V. Sapir, Jean-Camille Birget and Eliyahu Rips "Isoperimetric and Isodiametric Functions of Groups" (2002)

Схема построения представления группы

Симметризация недетерминированной машины Тьюринга

Теорема 2

Для любой машины Тьюринга М существует недетерминированная машина Тьюринга М' со следующими свойствами:

- М' симметричная
- Распознает тот же язык, что и М
- Каждая команда действует только на одной ленте
- Для сохранения языка добавляется лента, алфавитом которой яляются команды машины Тьюринга
- Получившаяся симметричная машина Тьюринга может иметь много состояний и состоять из многих команд, что говорит о ее сложности
- Но при этом ее можно построить и для детерминированной, и для недетерминированной исходной машины Тьюринга

Симметризация детерминированной машины Тьюринга

Теорема 3

Для любой детерминированной машины Тьюринга М существует эквивалентная симметричная машина Тьюринга, полученная из М добавлениями команд au^{-1} для каждой команды au из М.

- Авторы теоремы Е. Post и А. А. Markov (1947)
- Получившаяся симметричная машина Тьюринга гораздо легче машины, полученной по предыдущей теореме
- Но ее можно построить только для детерминированной машины Тьюринга

Построение представления группы

S-машина — система переписывания символов на ленте, которая поддерживает обратный алфавит.

Теорема 4

Для любой машины Тьюринга M' существует S-машина, которая симулирует M'

Теорема 5

Для любой S-машины существует соответствующая конечно-представленная группа

Нотация машины Тьюринга

Машина Тьюринга имеет k лент и k голов и может быть описана как шестиместный кортеж: $M = \langle X, \Gamma, Q, \Theta, \overline{s_1}, \overline{s_0} \rangle$, где

- X входной алфавит.
- Г алфавит лент.
- $Q = \bigcup_{i=1}^k Q_i$ множество состояний голов на лентах машины.
- Θ множество команд машины.
- $\overline{s_1}$ k-вектор начальных состояний машины.
- $\overline{s_0}$ k-вектор конечных состояний машины.

Команда одноленточной машины Тьюринга имеет вид:

$$uqv \rightarrow u'q'v'$$

где u, v, u', v' — ячейки, q, q' — состояния

Интерпретация

- Необходимо проверять, сохраняется ли язык после каждого шага преобразования
- Так как авторы статьи используют свою эквивалентную нотацию машины Тьюринга, нами были разработаны интерпретаторы и S-машины, и машины Тьюринга
 - ▶ Дерево вычислений, корень стартовая конфигурация
 - ▶ Обход дерева в ширину
 - ▶ В интерпретаторе S-машины используется множество пройденных конфигураций и построение дерева определенной высоты с выводом в DOT (graph description language)

Архитектура решения

Эксперименты

Для оценки размера получившегося представления группы, запустили алгоритмы с недетерминированной и детерминированной симметризацией на трех грамматиках:

• one rule:
$$S \rightarrow a$$

$$S \rightarrow AS$$

$$ullet$$
 a^* : $S o \epsilon$

$$A \rightarrow a$$

$$S o AC$$
 $S o \epsilon$
 $C o SD$
 $D o BS$
 $A o a$
 $B o b$

Эксперименты³

В таблице приведены мощности множеств

	Grammar			TM			
	Σ	N	R	X	Γ	Q	Θ
1 rule	1	1	1	1	3	6	5
a*	1	2	3	1	4	8	10
Dyck	2	4	6	2	8	13	21

TM'			SM			G		
X	Γ	Q	Θ	Y	Q	Θ	Α	R
1	14	270	206	14	88246	2363	89508	56187
1	26	547	434	26	344118	5741	347370	204903
2	54	1131	900	54	1469136	15064	1478859	957619

 $^{^{3}}$ Используя алгоритм симметризации недетерминированных машин Тьюринга

Эксперименты⁴

В таблице приведены мощности множеств

	Grammar			TM			
	Σ	Ν	R	X	Γ	Q	Θ
1 rule	1	1	1	1	3	6	5
a*	1	2	3	1	4	8	10
Dyck	2	4	6	2	8	13	21

TM'				SM	G			
X	Γ	Q	Θ	Y	Q	Θ	Α	R
1	6	39	34	6	6058	501	6410	7637
1	8	73	72	8	15888	1024	16565	17657
2	16	161	158	16	67754	2837	69772	71533

 $^{^4}$ Используя алгоритм симметризации детерминированных машин Тьюринга

Эксперименты

- Можно заметить, что размер получившихся представлений групп при симметризации в детерминированном случае гораздно меньше (для грамматики языка Дика более миллиона порождающих и отношений против 70 тысяч)
- А чем меньше получившееся предсталение группы, тем проще потом сказать о словах в группе, которые равны единице
- Из этого можно сделать вывод, что в случае детерминированных грамматик, нужно использовать симметризацию для детерминированных машин

Результаты

- Реализован алгоритм преобразования контекстно-свободной грамматики в машину Тьюринга
- Реализован алгоритм построения представления группы по машине Тьюринга
- Разработаны интерпретаторы промежуточных машин для проверки корректности преобразований
- Проведен ряд экспериментов

Проблема слов

$$G = \langle A \mid R \rangle, \ \Sigma = A \cup A^{-1}$$

 $\phi : \Sigma^* \to G$
 $W(G) = \phi^{-1}(1)$

- W(G) регулярна $\iff G$ конечна (Anisimov)
- W(G) контекстно-свободна $\iff \exists H < G$ конечного идекса (Muller–Schupp)

