Tanzanian Water Wells

Michael Mahoney

- The big picture
 - How should the program organize new construction and rehabilitation going into the future
 - Understand the overall status of wells
 - What do we have and how did we get here.
 - Our target variable in this case is the functionality of individual wells
 - Modeling as a suedo-auditing system
 - Managing maintenance and new construction
 - Finding patterns that will give insight into what wells are likely to fail in the short term
 - When well construction must occur, how to mitigate the risk of nonfunctionality

There's Water Everywhere...

This is an overview of the various status groups by geographic location

Data Understanding

Data Details:

Size: Originally 59000 x 40

Missing Data: Less than 5% missing overall

Data Quirks:

Features: Vast Number of Unique Categorical Features

Place Holder values: Several Columns had existing imputed data

Feature Engineering:

Categorical Columns with thousands of unique entries were binned into groups with similar frequencies

Rare Labels: Incredibly rare labels were absorbed into existing "other" classes within each column

Datetime: Datetime objects were re-engineered into separate columns. Categorical columns for months, day of the week and continuous columns for the calendar day and year.

Model Evaluation

Stack Train Report

	functional	functional needs repair	non functional	accuracy	macro avg	weighted avg
precision	0.901453	0.930289	0.949718	0.926776	0.927153	0.927153
recall	0.910757	0.960623	0.908948	0.926776	0.926776	0.926776
f1-score	0.906081	0.945213	0.928886	0.926776	0.926727	0.926727
support	29840.000000	29840.000000	29840.000000	0.926776	89520.000000	89520.000000

Stack Test Report

	functional	functional needs repair	non functional	accuracy	macro avg	weighted avg
precision	0.826522	0.403341	0.818681	0.783838	0.682848	0.792732
recall	0.819347	0.521605	0.783294	0.783838	0.708082	0.783838
f1-score	0.822919	0.454913	0.800597	0.783838	0.692809	0.787577
support	2419.000000	324.000000	1712.000000	0.783838	4455.000000	4455.000000

Overall Feature Importance

Recommendations:

- 1. Additional site analysis before building or rebuilding wells that are labelled (or likely to be labelled) dry.
- 2. If wells must be built in areas that are likely to run dry, perhaps alternative water sources should be explored

Feature Importance

- Dry wells are highly likely to be nonfunctional
- Enough quantity wells lean towards functionality when compared to the average

Feature Importance

- Gravity wells are slightly more likely to be functional than average, however, they are also more likely to require more maintenance.
- Other type wells are incredibly likely to be non-functional

Recommendations:

- 1. New builds should avoid well types that would fall under the other category.
- 2. Retro-fit old wells that are other type if possible.
- 3. Gravity wells should be reconsidered as the primary well extraction type due to maintenance issues.

Features Importance

- Communal standpipe appears to have a slight inclination towards functionality
- Communal standpipe multiple and other types are heavily biased towards nonfunctional.

Recommendations

 New builds and retro-fits should avoid the communal standpipe multiple and other types as the waterpoint.

Feature Importance

• Older wells are significantly more likely to be non-functional than newer wells.

Recommendations

- Wells older than 1990 should be targeted for rebuilds
- 2. Wells constructed in the 1990s should be placed on maintenance schedules to limit additional non-functionality

Observation

 Provides a loose roadmap for the aging pattern of modern wells.

Feature Importance

 Wells at higher elevation are much more likely to be functional than average.

Recommendations

 When planning a well in any given area. Lean towards picking locations with higher elevations.

Feature Importance

- Overall, the probability of wells being nonfunctional increases as population increases.
- The notable exception is with the population being 0 or 1.

Recommendations

 The sweet spot appears to be, 115 > populations > 8. Build wells near populations of this range.

Feature Importance

 Certain clusters around the country are more or less likely to be functional.

Recommendations

1. Further investigate before adding or rehabilitating wells in non-functional clusters.

Thank you