Códigos y criptografía

José Carlos García

17 de febrero de 2016

Índice general

1.	Introducción	ŀ
	1.1. Cuerpos finitos	5
2.	Códigos autocorrectores	7
	2.1. Parámetros de un código	7
	2.2. Códigos lineales	8
	2.3. Algunos códigos buenos	10
	2.4. Códigos cíclicos	10
3.	Criptografía	11
	3.1. Criptosistemas simétricos	11
	3.2. Criptosistemas de clave pública	11

4 ÍNDICE GENERAL

Capítulo 1

Introducción

1.1. Cuerpos finitos

Definición 1. Un cuerpo es un anillo conmutativo con unidad en el que todo elemento distinto de 0 tiene inverso.

Ejemplo 1. $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es anillo conmutativo con unidad, además, si n es primo entonces $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un cuerpo.

La suma y el producto de $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ se define como el resto de la suma de los elementos, para el producto de forma análoga.

Teorema 1. Si un K es finito, entonces $card(K) = p^r con p \in \mathbb{P}$ y $r \in \mathbb{N}$

Teorema 2. Dado $p \in \mathbb{P}, r \in \mathbb{N}$ entonces existe un cuerpo K tal que $card(K) = p^r$. Además, dos cuerpos finitos con el mismo cardinal son isomorfos.

Definición 2. Si $q = p^r$ denotamos por \mathbb{F}_q el cuerpo finito de q elementos.

Ejemplo 2. Construir un cuerpo con 4 elementos.

Consideremos $\mathbb{F}_2[x]$ y el ideal $< x^2 + x + 1 >$, claramente $< x^2 + x + 1 >$ es irreducible en $\mathbb{F}_2[x]$, además $\mathbb{F}_2[x]$ es D.I.P., no existe ningún ideal I, $< x^2 + x + 1 > \subset I \subset \mathbb{F}_2[x]$, por tanto $< x^2 + x + 1 >$ es maximal, de aquí, se tiene que $\mathbb{F}_2[x]/< x^2 + x + 1 >$ es cuerpo. Hacemos $\alpha = x + (x^2 + x + 1)$. Los elementos de $\mathbb{F}_2[x]/< x^2 + x + 1 >$ son:

$$\alpha = x + (x^2 + x + 1)$$

$$\alpha + 1 = (x + 1) + (x^2 + x + 1)$$

$$1 = 1 + (x^2 + x + 1)$$

$$0 = 0 + (x^2 + x + 1)$$

 $card(\mathbb{F}_2[x]/< x^2+x+1>)=4$ de la observación anterior.

Algoritmo 1. Se define el algoritmo de Euclides para calcularmáximo común divisor, de

forma que sean $a, b \in \mathbb{N}$, con $a \ge b$ hacemos:

$$a = c_1b + r_1$$

$$b = c_2r_1 + r_2$$

$$r_1 = c_3r_2 + r_3$$

$$r_2 = c_4r_3 + r_4$$
...
$$r_{s-2} = c_s + r_{s-1} + r_s$$

$$r_{s-1} = c_{s+1} + r_s$$

Podemos obtener $r_s = mcd(a, b)$ del modo siguiente:

$$r_1 = a - c_1 b$$

$$b = c_2 (a - c_1 b) + r_2$$

$$r_2 = -c_2 a + (1 + c_1) b$$

De este modo, podemos obtener r_s como continuación de a,b, de modo: $mcd(a,b)=r_s=\lambda a+\mu b$

Observación 1. λ, μ se obtienen de modo efectivo a partir de las divisiones anteriores.

Ejemplo 3. $Calcular \ mcd(139, 20)$.

Y además, $\lambda, \mu \in \mathbb{Z}$ tales que $\lambda 139 + \mu 20 = mcd(139, 20)$. Aplicando el algoritmo de Euclides:

$$139 = 6 \cdot 20 + 19$$

$$20 = 1 \cdot 19 + 1$$

$$19 = 139 - 6 \cdot 20$$

$$1 = 20 - 1 \cdot 19 = 20 - 1(139 - 6 \cdot 20) = 7 \cdot 20 - 1 \cdot 139$$

Observación 2. El inverso de 20 en \mathbb{F}_{139} :

$$7 \cdot 20 - 1 \cdot 139 = 1$$
.
Si reducimos mód 139:

$$7 \cdot 20 = 1 \mod 139$$

El inverso de 20 en \mathbb{F}_{139} es 7

Capítulo 2

Códigos autocorrectores

2.1. Parámetros de un código

Definición 3. Decimos que A es un alfabeto finito si A es conjunto finito de q símbolos.

Definición 4. Decimos que C es un **código** si $C \subset A^n$, $C \neq \emptyset$

Definición 5. Decimos que x es una palabra si $x \in A$.

Definición 6. Decimos que c es una palabra-código si $c \in C$.

Ejemplo 4. $A = \mathbb{F}_2$. Tomamos C = A, aquí hay más probabilidad de error. $C_2 = \{(000), (111)\} \subset \mathbb{F}_2^3$ código.

Definición 7. Los parámetros de un código son:

- Longitud: n.
- Razón de información: $\frac{\log_q \# \mathcal{C}}{n}$
- **Distancia de Hamming:** Sean $x = (x_1, x_2, ..., x_n) \in \mathcal{A}^n$, $y = (y_1, y_2, ..., y_n) \in \mathcal{A}^n$ se define $d(x, y) = \#\{i : x_i \neq y_i\}$. Define una distancia métrica.
- Distancia mínima: $d(C) = \min\{d(c,c') : c,c' \in C,c' \neq c\}$

Observación 3. Sea C un código con distancia mínima 2d(C) + 1. Además:

$$d(x, c_1) \le d(\mathcal{C})$$

$$d(x, c_2) \leq d(\mathcal{C})$$

Ahora, por la desigualdad triangular

$$d(c_1, c_2) \le d(c_1, x) + d(c_2, x) \le d(\mathcal{C}) + d(\mathcal{C})$$

Por tanto, el código se decodificará con mayor facilidad.

Observación 4. Si d(C) = 2d(C) + 1, dos bolas cualesquiera $B(c_1, d(C))$, $B(c_2, d(C))$, $c_1 \neq c_2 \in C$ son disjuntos.

Definición 8. Un código perfecto es un código con d(C) = 2d(C) + 1 y tal que $\{B(c, d(C) : c \in C)\} = A^n$

El Ejemplo 4 corresponde a un código perfecto.

Notación 1. Escribimos [n, M, d] – código si queremos representar un código de longitud n, M elementos y diistancia mínima d.

Ejemplo 5. Sea $C_1 = \{0, 1\}$ y $C_2 = \{(000), (111)\} \subset \mathbb{F}_2^3$. Sea 0 la probabilidad de que se produzca un error al trasmitir un bit.

Como $p < \frac{1}{2}$ proponemos un algoritmo de decodificación, por **máximo verosimilitud**, lo más probable es que la palabra enviada del código sea la palabra de las del código que está más cercana a la palabra recibida.

Para C_1 , la probabilidad de decodificar correctamente la palabra recibida es 1-p.

Para C_2 : (000) la decodificamos correctamente si al enviarla nos llega (000), la probabilidad de que sea correcta sería $(1-p)^3$, (100), la probabilidad de que sea correcta sería $p(1-p)^2$, (010), la probabilidad de que sea correcta sería $p(1-p)^2$ y (001) la probabilidad de que sea correcta sería $p(1-p)^2$.

Por tanto, la probabilidad sería $(1-p)^3 + 3p(1-p)^2$. Si tomamos p = 0,1, tendríamos para $C_1 : 0,9$ y para $C_2 : 0,972$.

Ejemplo 6. Sea $C = \{(000), (111)\} \subset \mathbb{F}_2^3$.

Recibida	Decodificar
(000)	(100)
(100)	(100)
(110)	(100)
(101)	(100)
(010)	(100)
(001)	(100)
(011)	(111)
(111)	(111)

De los que decodificamos como (100) tenemos una probabilidad de acierto de $(1-p)^3 + 3p(1-p)^2 + 2p^2(1-p)$, en el otro caso tenemos $(1-p)^3 + p(1-p)^2$.

2.2. Códigos lineales

Definición 9. Un código lineal $\mathcal{C} \subset \mathbb{F}_q^n$ donde \mathcal{C} es un subespacio vectorial de \mathbb{F}_q^n

Gracias a que es una estructura lineal, el código podemos simplificarlo teniendo en cuenta la base del subespacio vectorial.

Definición 10. Sea $x = (x_1, x_2, ..., x_n) \in \mathbb{F}_q^n$. El **peso** de x es $w(x) = \#\{i : x_i \neq 0\}$

Notación 2. $\mathcal{C} \subset \mathbb{F}_q^n$. Se define $W(\mathcal{C}) = \min\{w(x) : x \in \mathcal{C}/\{0\}\}$

9

Proposición 1. Si C es lineal, entonces d(C) = W(C)

Demostración. Sean $c_1 \neq c_2 \in \mathcal{C}$ que cumplen que $d(c_1, c_2) = d(\mathcal{C})$

Dado que $d(\mathcal{C}) = d(c_1, c_2) = w(c_1 - c_2)$, pero dado que $c_1 - c_2 \neq 0$, tenemos que $w(c_1 - c_2) \geq W(\mathcal{C})$, por tanto, $d(\mathcal{C}) \geq W(\mathcal{C})$.

Sea $c \in \mathcal{C} - \{0\}$, tal que cumple que $w(c) = W(\mathcal{C})$.

$$W(\mathcal{C}) = w(c) = w(c-0) = d(c,0) \ge d()$$

Notación 3. Si $\mathcal{C} \subset \mathbb{F}_q^n$ lineal, $dim_{\mathbb{F}_1}\mathcal{C} = k$ decimos que \mathcal{C} es un [n,k] – código.

Definición 11. Matriz generadora de un [n,k] – código es un matriz G, con dimensiones $k \times n$ cuyas filas forman una base de C

Ejemplo 7. $Si C = \{(000), (111)\}, la matriz generadora es (111)$

Definición 12. *Matriz de control de paridad* de un [n,k] – código lineal es una matriz H de orden $(n-k) \times n$ tal que:

$$\mathcal{C} = \{ x \in \mathbb{F}_q^n : xH^t = 0 \}$$

Observación 5. Si $\mathcal{G} = (I_k|P)$ es generadora, con P con n-k columnas, entonces $H = (-p^t|I_{n-k})$ es de control de paridad.

Ejemplo 8. En \mathbb{F}_3^5 consideramos el código con matriz generadora:

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Tratemos de dar una base de la matriz:

$$\mathcal{C} = \{\lambda_1 \vec{u_1} + \lambda_2 \vec{u_2} + \lambda_3 \vec{u_3} : \lambda_i \in \mathbb{F}_3\}$$

$$= \{(\lambda_1, \lambda_2, \lambda_3, \lambda_1 + \lambda_2, \lambda_1 + \lambda_3) : \lambda_i \in \mathbb{F}_3\} =$$

$$= \{(x_1, x_2, x_3, x_4, x_4) \in \mathbb{F}_3^5 : (-x_3 - x_2 + x_4 = 0, x_4 = x_1 + x_2, x_5 = x_1 + x_3)\} =$$

La matriz de las ecuaciones anterior es:

$$\begin{pmatrix} -1 & -1 \\ -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = (0,0)$$

La transpuesta de la matriz anterior es la matriz de control de paridad de $\mathcal C$

Algoritmo 2 (Algoritmo de decodificación usando el síndrome). Supongamos que $\mathcal{C} \subset \mathbb{F}_q$ es un código lineal, sea $x \in \mathbb{F}_q^n$, podemos decodificar x usando el código \mathcal{C} comparando x con cada una de las palabras del código.

Consideramos:

$$x - \mathcal{C} = \{x - c : c \in \mathcal{C}\} = x + \mathcal{C}$$

 $x+\mathcal{C}$ es el conjunto de elementos que están en la misma clase $\mathbb{F}_q^n/\mathcal{C}$.

En el conjunto x - C consideramos un elemento e que tenga peso mínimo.

Si $e \in \mathcal{C}$ será de la forma e = x - c. Entonces $c \in \mathcal{C}$ está a la menor distancia de la palabra x.

Podemos decodificar la palabra x por la palabra c, que es c = x - e.

A la palabra e se le llama **vector error** (asociado a x).

Definición 13. Sea H la matriz de control de paridad del código C, consideramos $x \in \mathbb{F}_q^n$, se define **el síndrome** de x como $xH \in \mathbb{F}_q^{n-k}$.

Observación 6. Dos palabras $x, x' \in \mathbb{F}_q^n$ tienen el mismo síndrome si y sólo si $x + \mathcal{C} = x' + \mathcal{C}$. En efecto, si $x + \mathcal{C} = x' + \mathcal{C} \iff xH^t - x'H^t = 0 \iff xH^t = x'H^t$

Algoritmo 3. A continuación se nuestra el algoritmo de decodificación usando síndrome

- 1. Para cada clase x + C de \mathbb{F}_q^n/C consideramos un $e \in x + C$ de peso mínimo.
- 2. Para cada clase x + C calculamos el síndrome xH^t . Asociamos a ese síndrome el vector error e.
- 3. Cuando recibimos una palabra x, calculamos su síndrome, que tiene asociado un vector error e, y decodificamos x por c = x e.

Ejemplo 9. En \mathbb{F}_2^5 consideramos el código \mathcal{C} con matriz generadora:

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

2.3. Algunos códigos buenos

2.4. Códigos cíclicos

Capítulo 3

Criptografía

- 3.1. Criptosistemas simétricos
- 3.2. Criptosistemas de clave pública