

B.TECH FIRST YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: BASIC MECHANICAL ENGINEERING

COURSE CODE : MA 2101

LECTURE SERIES NO: 26 (TWENTY SIX)

CREDITS : 03

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. ANAMIKA JAIN

EMAIL-ID : anamika.jain@Jaipur.manipal.edu

PROPOSED DATE OF DELIVERY: 14 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,

SESSION OUTCOME

"UNDERSTAND THE CONCEPT

OF

GENERATING FUNCTION"

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I, II

END TERM EXAMINATION

ASSESSMENT CRITERIA'S

GENERATING **FUNCTION FOR** THE SEQUENCE OF REAL **NUMBERS**

If $(a_0, a_1, a_2, a_r, ...)$ is a sequence of real or complex numbers, then the power series given by

$$A(z) = \sum_{r=0}^{\infty} a_r z^r a_0, +a_1 z + a_2 z^2 \dots a_n z^n + \dots$$

Is called the Generating function for the given sequence.

Multiplying a generating function by a constant

=> scales every term in the associated sequence by the same constant.

$$<1,0,1,0,\ldots> \leftrightarrow 1+0x+1x^2+0x^3+\ldots = \frac{1}{1-x^2}$$

Multiply the generating function by 2 gives

$$\frac{2}{1-x^2} = 2 + 2x^2 + 2x^4 + 2x^6 + \dots$$

which generates the sequence:

$$< 2, 0, 2, 0, \ldots >$$

Addition

Adding generating functions corresponds to adding sequences term by term.

$$<1,1,1,1,1,1,\dots>$$
 \longleftrightarrow $\frac{1}{1-x}$

$$<1,-1,1,-1,1,-1,\ldots>$$
 \longleftrightarrow $\frac{}{1+x}$

$$<2,0,2,0,2,0,\ldots> \qquad \leftrightarrow \quad \frac{1}{1-x} + \frac{1}{1+x}$$

The same result as in the previous slide.

$$=\frac{2}{1-x^2}$$

Right Shift

$$<1,1,1,1,\ldots> \qquad \leftrightarrow \qquad \frac{1}{1-x}$$

How to generate the sequence <0, 0, ..., 0, 1, 1, 1, 1, 1...>?

k zeros

$$<\underbrace{0,0,\ldots,0}_{\text{k zeros}},1,1,1,1,\ldots> \qquad \leftrightarrow \qquad x^k+x^{k+1}+x^{k+2}+\ldots$$

$$=x^k(1+x+x^2+\ldots)$$

$$=\underline{x^k}$$

Adding k zeros \Leftrightarrow multiplying x^k on the generating function.

Differentiation

How to generate the sequence <1, 2, 3, 4, 5, ...>?

The generating function is
$$1 + 2x + 3x^2 + 4x^3 + \dots$$

How to obtain a closed form of this function?

$$\frac{d}{dx}(1+x+x^2+x^3+\ldots) \qquad \leftrightarrow \qquad \frac{d}{dx}(\frac{1}{1-x})$$

$$1+2x+3x^2+4x^3+\ldots \qquad \leftrightarrow \qquad \frac{1}{(1-x)^2}$$

$$<1,2,3,4,\ldots> \qquad \leftrightarrow \qquad \frac{1}{(1-x)^2}$$

We found a generating function for the sequence <1,2,3,...> of positive integers!

More Differentiation

How to generate the sequence <1, 4, 9, 16, 25, ...>?

$$\frac{d}{dx}(1+2x+3x^2+4x^3+...)$$

$$= 2 + 6x + 12x^2 + 20x^3 + \dots$$

$$\leftrightarrow$$
 < 2, 6, 12, 20, ... >

Nice idea. But not what we want.

More Differentiation

How to generate the sequence <1, 4, 9, 16, 25, ...>?

$$1 + 2x + 3x^{2} + 4x^{3} + \dots \longleftrightarrow \frac{1}{(1-x)^{2}}$$

$$0 + x + 2x^{2} + 3x^{3} + 4x^{4} + \dots \longleftrightarrow \frac{x}{(1-x)^{2}}$$

$$\frac{d}{dx}(0 + x + 2x^{2} + 3x^{3} + 4x^{4} + \dots) \longleftrightarrow \frac{d}{dx}\frac{x}{(1-x)^{2}}$$

$$= 1 + 4x + 9x^{2} + 16x^{3} + 25x^{4} + \dots \longleftrightarrow \frac{1+x}{(1-x)^{3}}$$

$$<1,4,9,16,25,...> \leftrightarrow \frac{1+x}{(1-x)^3}$$

The following table represents some sequences and their generating functions.

	Sequence	Generating Function
1	1	1
	172, 1905-1714	$\frac{1-z}{1}$
2	$(-1)^n$	
		1+z
3	a^n	, <u>, , , , , , , , , , , , , , , , , , </u>
		1 - az
4	$(-a)^n$	
_		1 + az
5	n+1	52 - 10
		$1-(z)^2$
6	n	1
		$(1-z)^2$
7	n^2	z(1+2)
		$(1-z)^3$
8	na^n	az
		$(1 - az)^2$
		55 35

Theorem: Let a, b and c be numeric functions and let A(z), B(z) and C(z) be respectively the generating functions of a, b and c then

- (i) If $b_r = \alpha a_r$, for some constant α , then B(z) = α A(z)
- (ii) If $c_r = a_r + b_r$, then C(z) = A(z) + B(z)
- (iii) If c is the convolution of a and b; i.e. c = a*b, then C(z) = A(z)B(z)
- (iv) If $b_r = \alpha^r a_r$, where is a constant, then B(z) = A(α z)

Theorem: Let A(z) be the generating function of the numeric function a=

 $(a_0, a_1, a_2, \dots, a_r, \dots)$. Then $\frac{1}{(1-z)}$ A(z) is the generating function of the numeric

function b which is accumulated sum of a.

Example Find the generating function of the following series $1, -1, 1, -1, 1, -1, \ldots$

Solution: The given series can be directed as $a_0 = 1$, $a_1 = -1$, $a_2 = 1$, $a_3 = -1$

The required generating function is given by

$$A(z) = \sum_{r=0}^{\infty} a_r z^r = a_0 + a_1 z + a_2 z^2 + \dots = 1 - z + z^2 - z^3 + \dots = \frac{1}{1+z} = (1+z)^{-1}$$

[sum of infinite G.P. series $S_{\infty} = \frac{a}{1-a}$

Example : Find the generating function of the following series 1, 1, 1, 1, 1, 1.

Solution: The given series is directed as

$$a_0 = 1$$
, $a_1 = 1$, $a_2 = 1$, $a_3 = 1$, $a_4 = 1$, $a_5 = 1$, $a_6 = 1$.

The required generating function is given by

required generating random
$$a_1 = a_1 + a_2 + a_3 = a_1 + a_4 = a_5 = a_6 = a$$

