

Final Project Presentation

—— OYO rental price prediction in China

Brown University, Data Science Initiative,22fall

GitHub: https://github.com/AstrosiosaurQ7/data1030_final_project.git

Xiaoyan Liu

06/12/2022

1 Recap

2 Cross validation

3 Results

4 Improve

Data Resource

OYO APP, Chinese OTA platform: XieCheng / MeiTuan/FeiZhu

Kaggle Oyo Rental Price Prediction in China | Kaggle

 This report hopes to predict the rental price of OYO hotels according to the property type \(\) hotel location and so on. Target variable: rental price / \$

Regression / Right-skewed

Feature matrix shape: (5834,25)

Enlarge the coordinate axis by log function

EDA-Location features

df[['longitude(East)', 'latitude(North)']]

	longitude(East)	latitude(North)
0	114.059600	22.542900
1	114.043225	22.539490
2	114.079426	22.508573
3	114.079035	22.508697
4	114.055590	22.509502
5829	114.194588	22.619618
5830	114.201327	22.606116

Most hotels are concentrated in the surrounding cities of Shenzhen and Hong Kong, which are near to the seaport and have developed tourism and economic industries.

- Step 1. drop worthless features : amenities, has_availability
- Step 2. preprocessor encoding
- One-Hot encoder: 'bed_type', 'host_is_superhost', 'instant_bookable', 'room_type'
- Ordinal encoder: 'cancellation policy', 'property type'
- MinMax Scaler: 'accommodates', 'availability_30', 'calculated_host_listings_count', 'guests_included', 'number_of_reviews', 'bathrooms', 'bedrooms', 'beds', 'host_listings_count', 'review_scores_checkin', 'review_scores_communication', 'review_scores_location', 'review_scores_rating', 'review_scores_value'
- Standard Scaler: 'maximum_nights'

def MLpipe_KFold_RMSE

- Split 20% data to be test set
- Used Kfold (n_splits=4,shuffle=True)
- GridSearchCV function
- evaluation metric= RMSE
- Output best parameters and best score
- Save the scores and y_test for the baseline model

```
def MLpipe KFold RMSE(X, y, preprocessor, reg, param grid):
    test scores = np. zeros(nr states)
    for i in range(nr states):
        X other, X test, y other, y test = train test split(X, y, test size = 0.2, random state=42*i)
        kf = KFold(n splits=4, shuffle=True, random state=42*i)
        pipe = make pipeline(preprocessor, reg)
        grid = GridSearchCV(pipe, param grid=param grid, scoring = 'neg mean squared error',
                        cv=kf, return_train_score = True, n_jobs=-1, verbose=True)
        grid.fit(X_other, y_other)
        results = pd. DataFrame(grid.cv results)
        print('best model parameters:', grid. best params )
        print('validation score:', grid. best score )
        final models.append(grid)
        y test pred = final models[-1].predict(X test)
        test scores[i] = np. sqrt(mean squared error(y test, y test pred))
        print('RMSE test score:', test scores[i])
    return test scores, y test
```


L1 regularized linear regression(Lasso)

- ✓ alpha: 0.25, 2.5, 25
- ✓ random state=42

RandomForestRegressor

- ✓ max features: [3, 5, 7, 9]
- ✓ max depth: [3, 5, 7, 9]
- ✓ random state=42

SVR (Support Vector)

- ✓ gamma: [0.1, 10, 100]
- ✓ C: [0.1, 1, 10]
- ✓ kernel='rbf'

KNeighborsRegressor(

- √ n_neighbors': [5, 25, 50]
- ✓ weights='uniform'

L1:

- test score: [332.50481953, 321.1485038, 249.33466631, 369.32089209,298.27287924, 349.18486624, 364.13289666, 258.50704218,229.58742343, 337.10134802]
- test scores mean: 310.9095337515326
- test scores standard deviation: 47.198

RandomForestRegressor:

- test score: [307.10369093, 305.09515619, 215.86303583, 344.76157886,292.349, 336.76020741, 360.37117433, 239.6237,218.4528, 299.79961715]
- test scores mean: 292.01818453
- test scores standard deviation: 48.858289905

SVR:

- test score: [457.0634567, 439.1388, 352.7975, 502.4557654, 409.218457, 442.50976546yy, 495.1113467, 357.6800, 299.077, 460.71044]
- test scores mean: 421.576384
- test scores standard deviation: 62.8157611

KNeighborsRegressor:

- test score: [318.20838074, 320.60138962, 265.89838554, 371.5695846, 289.9438, 335.33792052, 384.54992622, 252.862433, 222.87348307, 338.97971562]
- test scores mean: 310.082503
- test scores standard deviation: 49,206679

- baseline RMSE: 415.7852569807543(y_mean=y_pred)
- test scores mean: 333.64
- test scores standard deviation :73.346

best model parameters: {'randomforestregressor_max_dept h': 9, 'randomforestregressor_max_featur es': 5}

- best model parameters:
 {'max depth': 9, 'max features': 5}
- train set shape : (4667, 30)
- > test set shape : (583, 30)
- > running time 0.3580458164215088
- test scores 202.72660072854498

Shuffling

TOP 10

SHAP Global

TOP 10

Randomforest feature_importanc es function

Those results are very similar to the previous, but the sort is different.

Point o

Point 20

```
[90]:
       #point
            2 | shap. force_plot(explainer.expected_value, shap_values[20,:], df_test.iloc[20,:])
Out[90]:
                                                                                          f(x)
                                                            base value
                                                                                              571.995
                           -12.52
                                       87.48
                                                   187.5
                                                              287.5
                                                                          387.5
                                                                                     487.5
                                                                                                            687.5
               -112.5
           num1 beds = 13.33 num1 accommodates = 33.33 num1 number of reviews = 0 num1 bedrooms = 30 num1 bathrooms = 25 n
```


> SHAP, LIME, and Anchors, provide local, model-agnostic interpretability methods.

Reference:

https://towardsdatascience.com/threeinterpretability-methods-to-considerwhen-developing-your-machinelearning-model-5bf368b47fac

https://christophm.github.io/interpretable-ml-book/interpretability.html

> XGBoost

THANK YOU FOR WATCHING

