

CS-C3240 - Machine Learning D

Feature Engineering

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 1.0, February 14, 2022

Outline

Latent Semantic Indexing

Motivation

In information retrieval, a common task is to obtain from many documents that subset which best matches a query

Motivation

In information retrieval, a common task is to obtain from many documents that subset which best matches a query

→ Typical feature representations of documents are then term-document matrices:

Motivation

In information retrieval, a common task is to obtain from many documents that subset which best matches a query

→ Typical feature representations of documents are then term-document matrices:

Terms							D	сите	nts					
	MI	M2	M3	M4	M5	M6	M7	M8	M9	M10	MII	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0
ргезяште	0	0	0	0	0	0	0	0	0	0	1	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0
risa	0	0	0	1	0	0	0	0	0	0	0	0	0	1
study	1	0	1	0	0	0	0	0	1	0	0	0	0	0

Motivation

In information retrieval, a common task is to obtain from many documents that subset which best matches a query

- → Typical feature representations of documents are then term-document matrices:
- These matrices are typically huge but sparse

Tarms							D	эсите	nts					
	MI	M2	M3	M4	M5	M6	M7	MB	M9	MIO	MII	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0
pressure	0	0	0	0	0	0	0	0	0	0	1	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0
risa	0	0	0	1	0	0	0	0	0	0	0	0	0	1
study	1	0	1	0	0	0	0	0	1	0	0	0	0	0

Motivation

In information retrieval, a common task is to obtain from many documents that subset which best matches a query

- → Typical feature representations of documents are then term-document matrices:
- → These matrices are typically huge but sparse

How to identify those feature dimensions (or combinations thereof) which are most meaningful?

Terms	Documents													
	MI	M2	M3	M4	M5	M6	M7	M8	M9	MIO	MII	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0
pressure	0	0	0	0	0	0	0	0	0	0	1	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0
risa	0	0	0	1	0	0	0	0	0	0	0	0	0	1
study	1	0	1	0	0	0	0	0	1	0	0	0	0	0

Singular Value Decomposition

Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C = U \Sigma V^T$ where

 \bigcup m × m matrix: columns are the orthogonal eigenvectors of CC^T

 \vee $n \times n$ matrix; columns are the orthogonal eigenvectors of C^TC

 Σ Diagonal Matrix with $\Sigma_{ii} = \sqrt{\lambda_i}$; $\Sigma_{ii} = 0, i \neq i$

Singular Value Decomposition

Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C = U\Sigma V^T$ where

- $\bigcup m \times m$ matrix; columns are the orthogonal eigenvectors of CC^T
- \vee $n \times n$ matrix; columns are the orthogonal eigenvectors of C^TC
- Σ Diagonal Matrix with $\Sigma_{ii} = \sqrt{\lambda_i}$; $\Sigma_{ii} = 0, i \neq j$

Singular Value Decomposition

Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C = IJ\Sigma V^T$ where

 \bigcup m × m matrix; columns are the orthogonal eigenvectors of CC^T

 \vee $n \times n$ matrix; columns are the orthogonal eigenvectors of C^TC

→ First k eigenvectors map document vectors to lower dimensional representation It can be shown that this mapping resuls in the k-dim, space with smallest distance to the original space

Example

	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

U:

 Σ :

 V^T :

Example

				1	2	3	4	5
	shi	ip	-0.4	14	-0.30	0.57	0.58	0.25
	bo	at	-0.1	.3	-0.33	-0.59	0.00	0.73
	oce	ean	-0.4	18	-0.51	-0.37	0.00	-0.61
	vo	yage	-0.7	70	0.35	0.15	-0.58	0.16
U:	trij	p	-0.2	26	0.65	-0.41	0.58	-0.09
	2.1	6 0.	00 0	0.00	0.00	0.00		
	0.0	0 1	59 (0.00	0.00	0.00		
	0.0	0 0.	00 1	.28	0.00	0.00		
	0.0	0 0.	00 0	00.0	1.00	0.00		
Σ :	0.0	0 0.	00 0	0.00	0.00	0.39		
		d:	1	d_2	d_3	d_4	d_5	d_6
	1	-0.75	5 –(0.28	-0.20	-0.45	-0.33	-0.12
	2	-0.29	9 –(0.53	-0.19	0.63	0.22	0.41
	3	0.28	8 –(0.75	0.45	-0.20	0.12	-0.33
_	4	0.00) (0.00	0.58	0.00	-0.58	0.58
V':	5	-0.53	3 ().29	0.63	0.19	0.41	-0.22

Example

0.0 0.0 0.0	0 1.59 0 0.00 0 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
	d_1	d_2	d	3	d_4	d_5	d_6
1	-1.62	-0.60	-0.4	4 - 0).97	-0.70	-0.26
2	-0.46	-0.84	-0.3	0 1	1.00	0.35	0.65
3	0.00	0.00	0.0	0 (0.00	0.00	0.00
4	0.00	0.00	0.0	0 (0.00	0.00	0.00
5	0.00	0.00	0.0	0 (0.00	0.00	0.00
	0.0 0.0 0.0 0.0 1 2 3 4	$ \begin{array}{c cccc} 0.00 & 1.59 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ \hline & d_1 \\ \hline 1 & -1.62 \\ 2 & -0.46 \\ 3 & 0.00 \\ 4 & 0.00 \\ \end{array} $	$ \begin{array}{c ccccc} 0.00 & 1.59 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ \hline & d_1 & d_2 \\ \hline 1 & -1.62 & -0.60 \\ 2 & -0.46 & -0.84 \\ 3 & 0.00 & 0.00 \\ 4 & 0.00 & 0.00 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cosine-similarity

					d_5	
1	-1.62	-0.60	-0.44	-0.97	-0.70	-0.26
2	-0.46	-0.84	-0.30	1.00	0.35	0.65

†dim 2

Questions?

Stephan Sigg stephan.sigg@aalto.fi

Si Zuo si.zuo@aalto.fi

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

