Campus Party Bahia

Oficina de loT Conhecendo ESP8266

Sobre min

Douglas Esteves

Engenheiro da Computação Co-fundador do @loTMakers Membro do LHC Laboratório Hacker de Campinas

Em breve! Cursos online de loT

Makers

cursosiotmakers.com.br

needinfo

ESP8266

Hardware e Software

Módulos com ESP8266

ESPecificações

Categories	Items	Parameters
Wi-Fi	Standard	CCC / FCC / CE / TELEC / SRRC
	Protocols	802.11 b/g/n
	Frequency Range	2.4 G ~ 2.5 G (2400 M ~ 2483.5 M)
	Tx power	802.11 b: +20 dBm
		802.11 g: +17 dBm
		802.11 n: +14 dBm
	Rx Sensitivity	802.11 b: - 91 dbm (11 Mbps)
		802.11 g: - 75 dbm (54 Mbps)
		802.11 n: - 72 dbm (MCS7)
	Antenna	PCB on-board, external, IPEX connector, ceramic chip
	Peripheral interface	UART / SDIO / SPI / I2C / I2S / IR Remote Control
		GPIO / PWM
Hardware	Operating voltage	3.0 V ~ 3.6 V
	Operating current	Average: 80mA
	Operating temperature range	-40 °C ~ 125 °C
	Storage temperature range	-40 ℃ ~ 125 ℃

ESPecificações

Categories	Items	Parameters
	Package size	QFN32-pin (5 mm x 5 mm)
	External interface	N/A
Software	Wi-Fi mode	station / softAP / SoftAP + station
	Security	WPA / WPA2
	Encryption	WEP / TKIP / AES
	Firmware upgrade	UART Download / OTA (via network)
	Software development	SDK for customised development / cloud server development
	Network Protocols	IPv4, TCP / UDP / HTTP / FTP
	User configuration	AT Instruction Set, Cloud Server, Android/ iOS App

Funcionalidades do ESP e Hardware

- O ESP é 3.3V. Em tensões maiores? Queima!
- O Mesmo se aplica as GPIOS e a Serial/UART
- O ESP consome, em picos, cerca de 250mA
- Ligar no máximo 12mA em cada GPIO
- Algumas GPIOs tem funções no boot!
- O ADC tem 10bits (0-1023 & 0-1V)
- Somente 4 PWMs

Primeiros passos com ESP8266

Programação com nodeMCU

- Programação em LUA script
- Curta curva de aprendizado
- Se faz um programa com poucas linhas de código
- http://nodemcu.com/index en.html

https://hackaday.io/project/7763-nodelhc-esp8266-development-board

https://lhc.net.br/wiki/NodeLHC

omakers ESPWear

https://hackaday.io/project/28790-espwear-esp8266-for-wearables

http://iotmakers.com.br/esp8266/iot-for-wearables-espwear/

Conhecendo a Wemos D1

WeMos D1 (primeira versão)

http://pedrominatel.com.br/esp32/wemos-d1-o-esp8266-com-cara-de-arduino/

WeMos D1

- 11 Pinos de IO
- 1 ADC (max 3.2V)
- Micro USB (CH340)
- Entrada DC 9-24V

- ESP12
- 3V3
- 4MB Flash
- Clock 80/160MHz
- Formato Arduino

IoT Shield

- Sensor de temperatura
- Sensor de umidade
- Rele (10Amps)
- LDR
- OLED Display
- Push button
- * LED RGB

Programação com Arduino IDE

- Programação similar ao Arduino
- Reuso de códigos já desenvolvidos no Arduino
- Reaproveitamento de conhecimento

Programação com Arduino IDE

- IDE 1.8.0 ou superior
 - Windows, Linux ou MAC
- Pacote ESP8266
 - Versão 2.3.0
 - http://arduino.esp8266.com/stable/package_esp8266com_index.json
 - http://pedrominatel.com.br/pt/arduino/como-utilizar-o-esp8266-com-a-id e-arduino-instalando-o-modulo/
- Drive CH340 para alguns casos no windows
- GNU/LINUX
 - Manjaro, Ubuntu, Debian, Mint, ElementaryOS...

Platform 10

PlatformIO is an open source ecosystem for IoT development

Cross-platform IDE and unified debugger. Remote unit testing and

firmware updates

Professional development environment for

- Desenvolvimento direto do APP
- Código inicial usando o internet do Arduino
- Rede Local
- Token
- Recursos visuais

Blynk

∦ **∢× 🛜 ፤**' Ϊ' 💷 10:29 **+** R **|** M \oplus (Logger 2197 2749

O que é um GPIO?

"General Purpose Input/Output (GPIO) são portas programáveis de entrada e saída de dados que são utilizadas para prover uma interface entre os periféricos e os microcontroladores/microprocessadores".

Exercício - blink

Implementar um blink (hello world) utilizando o LED

Tempo: 5 minutos.

blink.ino

```
void setup(void) {
 //Configura o pino digital para saida/output
 pinMode(5, OUTPUT);
 digitalWrite(5, LOW);
void loop(void) {
 //envia o comando de escrita no pino digital
 digitalWrite(5, HIGH);
 //funcao de pausa/delay em mili-segundos
 delay(1000);
 digitalWrite(5, LOW);
 delay(1000);
```

Exercício - Push button

Implementar leitura do botão tact e acionar o LED.

Tempo: 5 minutos.

Extra: Implementar contato de selo

```
#define BOTAO D13
#define LED D10
Int botao_status = 0;
void setup(void) {
 pinMode(BOTAO, INPUT);
digitalWrite(LED, OUTPUT);
void loop(void) {
 Botao_status = digitalRead(BOTAO);
digitalWrite(LED,botao_status);
```


Modos do WiFi

STATION

Utilizado para a conexão entre o ESP e um Acess Point

SOFTAP

Utilizado para o ESP ser um Acess Pint

Bibliotecas: ESP8266Wifi.h & ESP8266WIFIMulti.h

GitHub

https://github.com/loTMakers/CPBA 2

ESP8266-webserver.ino

Página Web no ESP8266

ESP8266-site.ino

Conectar em uma plataforma online

ESP8266-SCAN.ino

Bônus

Referências

github

github.com/iotmakers

Pedro Minatel Blog

www.pedrominatel.com.br

Portal Embarcados

www.embarcados.com.br

Hackerspace LHC

www.lhc.net.br

Tlegram IoTMakers

https://t.co/sUjdiltWBI

Muito Obrigado

Contatos!

- **19** 98230-3616
- (a) _EstevesDouglas
- douglas@iotmakers.com.br

