Intro Group Theory Cheat Sheet

Group Axioms

A group is an ordered pair (G, *) where G is a set and * is a binary operation on G satisfying the following axioms:

i. Closure: \forall a, b \in G, a * b, is also in G

ii. Associativity: $(a * b) * c = a * (b * c), \forall a, b, c \in G$

iii. Identity: \exists e \in G, called an identity of G,

s.t. \forall a \in G we have a * e = e * a = a

iv. Inverse \forall a \in G \exists a^{-1} \in G, called an inverse of a, s.t. a * a^{-1} = a^{-1} * a = e.

Some Properties of Groups

i. Abelian group A group G is abelian if $a * b = b * a \forall a, b \in G$

ii. Finite group A group G is finite if the number of elements in G are finite iii. Cancellation property suppose that a * b = a * c, $\forall a, b, c \in G$, $\Rightarrow b = c$

iv. Uniqueness of Inverse and Identity

• The identity of G is unique

• \forall a \in G, a^{-1} is uniquely determined

• $(a^{-1})^{-1} = a \ \forall \ a \in G$

 $\bullet (a * b)^{-1} = (b^{-1}) * (a^{-1})$

• for any $a_1, a_2, ..., a_n \in G$ the value of $a_1 * a_2 * * a_n$ is independent of how the expression is bracketed

Some Special Groups

i. Dihedral Group (D_n or D_{2n}) is a group of symmetries of a n-sided regular polygon. Order = 2n

ii. Symmetric Group (S_n) is the group whose elements are all the bijections from the set to itself.

Order = n!

iii. Klein-4 Group (K_4 or V) is a group with 4 elements in which each element is a self inverse.

Homomorphisms and Isomorphisms

i. Homomorphisms

Let (G, *) and (H, \circ) be groups.

A map $\varphi: G \to H$, s.t. $\varphi(x * y) = \varphi(x) \circ \varphi(y) \ \forall \ x, y \in G$ is called a **homomor**phism.

ii. Isomorphism

For $\varphi : G \to H$ is called an **isomorphism** if:

i. φ is a homomorphism

ii. φ is a bijection

Group Actions

A **group action** of a group G on a set A is a map from $G \times A$ to A satisfying the following properties

i. Identity: $e \cdot x = x$ and,

ii. Compatibility: $g \cdot (h \cdot x) = (gh) \cdot x$

Subgroups

For a Group G. The subset H of G, is a **Subgroup** of G, i.e. $H \le G$ if

i. H is non-empty

ii. H is closed under products and inverses

• A Normal subgroup N of G, (i.e. $N \triangleleft G$) iff $qnq^{-1} \in N \ \forall \ q \in G$ and $n \in N$. The Subgroup Criterion

A subset H of group G is a subgroup of G iff

i. H ≠ ∅

ii. $\forall x, y \in H \ xy^{-1} \in H$

Centralizers, Normalizers, Stabilizers and Kernels

• Centralizer of A in G is a subset of G defined as $C_G(A) = \{q \in G \mid qaq^{-1} = 1\}$

it is the set of all elements of *G* which commute with every element of *A*.

• **Center** of *G* is the subset of *G* defined as

 $Z(G) = \{ g \in G \mid gx = xg \ \forall \ x \in G \},\$

it is the set of elements commutating with all the elements of G. Note, this is case $Z(G) = C_G(G)$ so $Z(G) \leq G$.

• Normalizer of A in G is defined as the set

 $N_G(A) = \{ g \in G \mid gAg^{-1} = A \}$ where,

 $gAg^{-1} = \{gag^{-1} \mid a \in A\}$. Note that $C_G(A) \leq N_G(A)$.

• Stabilizer on a set S with element s in G is defined as the set

 $G_s = \{g \in G \mid g \cdot s = s\}$. Note that $G_S \leq G$.

• **Kernel** of G on S is defined as the set

 $Ker(f) = \{g \in G \mid g \cdot s = s \ \forall \ s \in S\}$

Cyclic Groups and Cycle Notation

A Group H is **Cyclic** if $\exists x \in H$ s.t. $H = \{x^n \mid n \in \mathbf{Z}\}$

For the above case we say $H\langle x\rangle$ and that H is generated by x.

• A cyclic group can have more than one generator.

• All cyclic groups are abelian.

• If $H = \langle x \rangle$ then |H| = |x|, if $|H| = n < \infty$ then $x^n = 1$

• Any two cyclic groups of the same order are isomorphic.

Two-Line to Cycle notation for permutations

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} = (125)(34) = (34)(125) = (34)(512) = (15)(25)(34)$

Here, the last form is a case of 2-cycle (transposition).

Cosets and Quotient Groups

For any $N \leq G$ and any $g \in G$

• $gN = \{gn \mid n \in N\} = \{g, gh_1, gh_2 \dots\}$ and,

• $Ng = \{ng \mid n \in N\} = \{g, h_1g, h_2g \dots\}$ are called a left coset and a right coset respectively.

For a Group G and $N \subseteq G$, the **quotient group** of N in G (i.e. G/N), is the set of cosets of N in G.

Lagrange's Theorem and some results

Lagrange's Theorem: For a finite group G and $H \leq G$,

The order of H divides the order of G, and,
The number of left cosets of H in G equals |G| |H|

Some important results

• If G is a finite group and $x \in G$, then the order of x divides the order of G, and $x^{|G|} = e \ \forall \ x \in G$

• If *G* is a group of prime order, then *G* is cyclic

Cauchy's Theorem

Cauchy's Theorem: If G is a finite group and p is a prime dividing |G| then G has an element of order p.

The Isomorphism Theorems

i. The First Isomorphism Theorem:

If $\varphi: G \to H$ is a homomorphism of groups. Then $\ker \varphi \subseteq G$ and, $G/ker\varphi \cong \varphi(G)$.

ii. The Second Isomoprhism Theorem:

For a group G with, $A, B \leq G$ and, $A \leq N_G(B)$. Then $AB \leq G$, $B \subseteq AB, A \cap B \subseteq A$ and, $AB/B \cong A/A \cap B$

iii. The Third Isomoprhism Theorem:

For a group G with, $H, K \subseteq G$ and, $H \subseteq K$. Then $K/H \subseteq G/H$ and, $\frac{G/H}{K/H} \cong G/K$

Parity of Permutations and Alternating Groups

The parity of any permutation σ is given by the parity of the number of its 2-cycles (transpositions).

Alternating Groups:

An alternating group is the group of even permutations of a finite set of length n. It is denoted by A_n it's order is $\frac{n!}{2}$

Equivalence Classes and Orbits

- If G is a group acting on the non-empty set A. Then $a \sim b \iff a = q \cdot b$ for some $q \in G$. Where \sim is an equivalence relation.
- The **orbit** of *G* containing *a* is given as $\mathcal{O}_a = \{g \cdot a \mid g \in G\}$
- The action of *G* on *A* is called transitive if there is only one orbit.
- **Conjugacy classes** of G is the equivalence classes of G when it acts on itself with conjugation. i.e. $gag^{-1} \mid g \in G$

Class equations and Orbit-stabilizer Theorem

Class equation of a finite group *G* is written as:

 $|G| = |Z(G)| + |\sum (Conjugancy classes of G)|$

Oribit-stabilizer Theorem:

For a group G acting on a set S, for any $s \in S$ we have, $|\mathcal{O}_s||G_s| = |G|$

Cayley's Theorem

Cavley's Theorem:

Every group is isomorphic to a subgroup of some symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of S_n

Automorphisms

Automorphism of *G* is defined as an isomorphism from *G* onto itself. The set of all automorphisms of G is denoted by Aut(G)

p-groups and Sylow p-groups

- p-group is defined as a group of order p^a for some a > 1. Sub-groups of Gwhich are p-groups are called p-subgroups.
- Sylow p-group is defined as a group of order $p^a m$, where $p \nmid m$, a subgroup of order p^a is called a Sylow p-subgroup of G. $Syl_p(G)$ is the set of Sylow p-subgroups of *G*.

The Sylow Theorems

i. The First Sylow Theorem:

If p divides |G|, then G has a Sylow p-subgroup.

ii. The Second Sylow Theorem:

All Sylow p-subgroups of G are conjugate to each other for a fixed p.

iii. The Third Sylow Theorem:

 $n_p \equiv 1 \pmod{p}$, where n_p is the number of Sylow p-subgroups of G.