David Montaño Castro

Tarea 4: Ejercicio Proporciones

Muestreo

Se tiene la siguiente información (1200):

No		EDO CIVIL
	1	SOLTERO
	2	CASADO
	3	CASADO
	4	CASADO
	5	CASADO
	6	CASADO
	7	CASADO
	8	SOLTERO
	9	CASADO
1	LO	DIVORCIADO

a) Extraer una muestra aleatoria piloto de 40 personas.

Se utilizará el mismo método de muestreo aleatorio simple que se ha venido manejando en clase:

			MUESTRA
No	EDO CIVIL	ALEATORIO	PILOTO
1	SOLTERO	0.991983871	SOLTERO
2	CASADO	0.643612336	DIVORCIADO
3	CASADO	0.516499571	CASADO
4	CASADO	0.859970828	SOLTERO
5	CASADO	0.187764915	DIVORCIADO
6	CASADO	0.325470151	SOLTERO
7	CASADO	0.420886045	CASADO
8	SOLTERO	0.695032855	SOLTERO
9	CASADO	0.627964132	DIVORCIADO
10	DIVORCIADO	0.810999675	CASADO

Por espacio no se adjuntan los 40 registros pedidos.

b) Identificar las personas con estado DIVORCIADO en la muestra.

Por medio de la función **IF()** se etiquetaran a los casos **DIVORCIADO** con 1 y 0 para cualquier otro caso:

			MUESTRA	
No	EDO CIVIL	ALEATORIO	PILOTO	VALOR
1	SOLTERO	0.991983871	SOLTERO	0
2	CASADO	0.643612336	DIVORCIADO	1
3	CASADO	0.516499571	CASADO	0
4	CASADO	0.859970828	SOLTERO	0
5	CASADO	0.187764915	DIVORCIADO	1

David Montaño Castro

Tarea 4: Ejercicio Proporciones

Muestreo

6	CASADO	0.325470151	SOLTERO	0
7	CASADO	0.420886045	CASADO	0
8	SOLTERO	0.695032855	SOLTERO	0
9	CASADO	0.627964132	DIVORCIADO	1
10	DIVORCIADO	0.810999675	CASADO	0

c) Calcular tamaño de muestra para estimar la proporción de personas que viven DIVORCIADOS con una precisión de 0.04 y 90% de confianza.

Visto en clase, puedo calcular el mejor estimador para P calculando el promedio de la muestra de ceros y unos. Q se calcula como el complemento de P(Q = 1-P)

N	1200
n piloto	40
P piloto	0.175
q piloto	0.825

La función AVERAGE() fue utilizada para el promedio.

Se pide un nivel de confianza del 90% y una precisión de 0.04.

Se procede a calcular el auxiliar n0 para después calcular el tamaño de muestra definitiva con corrección:

$$n_o = \frac{Z^2(1-\alpha/2)PQ}{d^2}$$

$$n = \frac{n_o}{1 + \frac{n_{0-1}}{N}}$$

Z 90%=	1.645
d =	0.04
no	244
n final	203

N	1200		
n piloto	40		
P piloto	0.175		
q piloto	0.825		
Z 90%=	1.645		v
d =	0.04		
no	=L22*L22*L19*L2)/(L23*L2	3
n final	203		

N	1200
n piloto	40
P piloto	0.175
q piloto	0.825

Z 90%=	1.645
d =	0.04
no	244
n final	=L24/(1+(L24-1)/L17)

David Montaño Castro Tarea 4: Ejercicio Proporciones Muestreo

Se concluye que se necesita una muestra definitiva de 203 personas para culplir con las especificaciones planteadas.

d) Calcular un intervalo de 90% de confianza para P.

Se vuelve a calcular una muestra de 203 nuevos valores escogidos aleatoriamente:

MUESTRA DEFINITIVA	VALOR
SOLTERO	0
CASADO	0
SOLTERO	0
CASADO	0
DIVORCIADO	1

Esta vez la P y Q estimadas son:

P est	0.128
Q est	0.872

Para generar los intervalos de confianza se requiere del cálculo de la varianza, junto con la desviación estándar (raíz de la varianza).

Finalmente, se procede al cálculo de los intervalos:

$$P\!\!\left(\hat{P} - Z_{\left(1 - \frac{\alpha}{2}\right)}\sqrt{1 - \frac{n}{N}}\sqrt{\frac{pq}{n-1}} < P < \hat{P} + Z_{\left(1 - \frac{\alpha}{2}\right)}\sqrt{1 - \frac{n}{N}}\sqrt{\frac{pq}{n-1}}\right) = 1 - \alpha$$

Lim Inf P	0.093
Lim Sup	0.163

Z 90%=	1.645
d =	0.04
no	244
n final	203

Z 90%=	1.645
d =	0.04
no	244
n final	203

P est	0.128
Q est	0.872
Var P	0.00045923
EE p	0.02142972

P est	0.128
Q est	0.872
Var P	0.00045923
EE p	0.02142972

INTERVALO DE CONFIANZA PARA P

INTERVALO DE CONFIANZA PARA P

Lim Inf P	=L28-L22*L32
Lim Sup	0.163

Lim Inf P	0.093	
Lim Sup	=L28+L22*L32	2

Los límites contienen a la estimación. Bajo la suposición de que contamos con los datos de toda la población, se puede obtener el cálculo verdadero de la proporción de divorciados aplicando la misma formula condicional a toda la población. Se obtiene **0.11, el cual también queda contenido dentro del intervalo de confianza.**

e) Calcular el número de personas que son DIVORCIADOS.

$$\hat{T} = N\hat{P}$$

David Montaño Castro

Tarea 4: Ejercicio Proporciones

Muestreo

El estimador de la población de divorciados corresponde al producto del total por la proporción muestral.

Total Est	154
. Otal Est	154

f) Obtener intervalo de 90% de confianza para el total.

$$P\bigg(N\hat{P} - NZ_{\binom{1-\alpha/2}{2}}\sqrt{1-\frac{n}{N}}\sqrt{\frac{pq}{n-1}} < T < N\hat{P} + NZ_{\binom{1-\alpha/2}{2}}\sqrt{1-\frac{n}{N}}\sqrt{\frac{pq}{n-1}}\bigg) = 1-\alpha$$

Ya se contaba con el cálculo de la desviación estándar para P, para el total solo se multiplica por N (1200):

EE total	25.716	
Lim Inf	111	
Lim Sup	196	

El estimado del total se encuentra dentro del intervalo. Además, como se cuenta con la población total, se puede calcular la proporción real de divorciados. El resultado es de **132 divorciados**, **número que también cae dentro del intervalo de confianza.**