

Learning Robot Activities for mimicking human motion remotely from third-Person Videos ~ Toward Robot Avatar ~

한수희 교수님 20130394 주동욱

#Deep_Learning #Robotics #3D_vision

Motivation

Robot intuitively controlled by visual input

Robot controlled by complicated input interface

- [Real Steel], Shawn Levy, 2011
- Human can follow one's motion by watching it.
- (Goal) Make robot to follow person's motion only with camera!
- (Value) Reduce cost of robot control system with tradeoff of accuracy. Make robot control easy and intuitive.

Background

- Existing System
 - Toyota's T-HR3
 - Needs complicated, expensive, heavy sensor system
 - Uses torque sensors
 - Accurate

Toyota's T-HR3

• Human Pose Estimation

- 2D Pose Estimation is pretty much solved problem.
- 3D Pose Estimation is still struggling for performance.

Human 2D & 3D Pose Estimation

From [A simple yet effective baseline for 3d human pose estimation] by J. Martinez et al.(2017)

• Baxter Research Robot

- Two 7-DOF arms
- First-person view camera
- Provide high level API for position control

Baxter Research Robot

System

- Robot Control System
 - Control is implemented with 2D Pose Estimation.
 - Calibration process is needed to get robot arm angle state from 2D Pose.

Evaluation

• Quantitative evaluation

• Position Error of End Effector

	Statistic Axis	X axis	Y axis	Z axis
	Mean of Error	7.00	5.60	6.00
	Standard deviation of Error	4.42	3.53	4.02

• Qualitative evaluation

• Following various poses

• Lifting up objects

Conclusion & Future Works

- Built a low-cost and intuitive humanoid robot control system with a camera, in which a tradeoff is between accuracy and complexity of sensor system.
- Control performance can be improved by using decent 3D Pose Estimation and sophisticated Inverse Kinematics or Reinforcement Learning.