WE CLAIM:

1. A method of inhibiting viral replication selected from the group consisting of cytomegalovirus (CMV), herpes simplex virus (HSV), influenza, HIV, rhinovirus (RV), Epstein-Barr virus (EBV) and varicella zoster virus (VZV) in a mammal comprising administering to said mammal an anti-viral amount of a compound of formula (I):

$$\begin{array}{c|c}
R_4 & X & P_Q \\
\hline
Z & W & B \\
\hline
 & T & Q
\end{array}$$
(I)

10

5

wherein

 ${\bf W}$ is selected from CH, CR $_3$, CH $_2$, C=O, CHR $_3$, N and NR $_5$; one of ${\bf X}$, ${\bf Y}$, and ${\bf Z}$ is N or NR $_5$ while the other two are independently selected from CH, CR $_4$, CH $_2$, C=O and CHR $_4$; ${\bf B}$ is selected from the group consisting of:

$$\begin{array}{c}
R_2 \\
N \\
\end{array}$$
; ; $\begin{array}{c}
A \\
N \\
\end{array}$; $\begin{array}{c}
A \\
\end{array}$

wherein,

20 **A** is 0 or S;

 $_{\bf T}$ and $_{\bf T^1}$ are independently selected from C $_{1-6}$ (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), C $_{2-6}$ alkenyl, C $_{2-6}$ alkynyl optionally substituted with OH, halogen, amino, mercapto, carboxy or a saturated or unsaturated C $_{3-10}$ (carbocycle or heterocycle) optionally substituted with OH, halogen, amino, mercapto, carboxy, C $_{1-4}$ (alkyl, alkoxy, alkylthio, acyl, acyloxy or alkoxycarbonyl);

 ${\bf Q}$ and ${\bf Q}^1$ are independently selected from N, NR $_5$, O, S, NH, CH, CHR, or a bond;

 $\mathbf{R_2}$ and $\mathbf{R^{\,\prime}_{\,2}}$ are independently selected from H or $\mathbf{C}_{_{1\text{-}4}}$ alkyl ;

 R_3 and R_4 are independently selected from H, OH, halogen, amino, cyano, C_{1-6} (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), C_{2-6} alkenyl, C_{2-6} alkynyl optionally substituted with OH, halogen, amino or C_{1-4} alkoxy, and saturated or unsaturated C_{3-10} (carbocycle or

heterocycle) optionally substituted with OH, halogen, amino, mercapto, $C_{_{1-4}}$ alkylthio, $C_{_{1-4}}$ alkoxycarbonyl, halo-substituted $C_{_{1-4}}$ alkyl or halo-substituted $C_{_{1-4}}$ alkoxy,

 C_{1-4} alkyl, C_{1-4} alkoxy or C_{1-4} carboxy;

25

 $\mathbf{R_5}$ is H, $\mathbf{C_{1-6}}$ alkyl or $\mathbf{C_{1-6}}$ acyl optionally substituted with OH, halogen, amino or $\mathbf{C_{1-4}}$ alkoxy; and

n is 0, 1, 2 or 3.

30

- 2. A method according to claim 1, wherein W is N or NR5.
- 3. A method according to claim 1, wherein Y is N or NR_5 and X and Y are independently selected from CH, CR_4 , CH_2 ,

C=0 and CHR_4 .

- 4. A method according to claim 1, wherein T is C_{1-6} alkyl optionally substituted with a saturated or unsaturated C_{3-10} (carbocycle or heterocycle).
- 5. A method according to claim 1, wherein T is C_{1-6} alkyl optionally substituted with a saturated or unsaturated C_{3-10} (carbocycle or heterocycle).
- 6. A method according to claim 1, wherein B is

$$\begin{array}{c}
R_2 \\
N \\
A
\end{array}$$
(II)

5

10

15

25

7. A method according to claim 1, wherein B is

$$\begin{array}{c}
R_2 \\
N \\
A
\end{array}$$
(II)

and A is O.

- 8. A method according to claim 7, wherein T is methyl optionally substituted with a phenyl and Q is O and T is allyl and Q^1 is a bond.
 - 9. A method according to claim 7, wherein T is methyl optionally substituted with a phenyl and Q is O and T is methyl optionally substituted with a phenyl and Q¹ is a bond.
 - 10.A method according to any one claim 1 to 9, wherein R_3 and R_4 is H and R_2 and R'_2 is H.

11. The method of claim 1 wherein the compound of formula I is

12. The method of claim 1 wherein the compound of formula (I) is

13. The method of claim 1, wherein the compound of formula (I) is

15

14. The method of claim 1 wherein the viral infection is cytomegalovirus.

15. The method of claim 1 wherein the viral infection is herpes simplex virus.

16. The method of claim 1 wherein the viral infection is influenza.

10

- 17. The method of claim 1 wherein the viral infection is selected from the group consisting of HIV, HBV and HCV.
- 5 18. The method of claim 1 wherein the viral infection is rhinovirus.
 - 19. The method of claim 1 wherein the viral infection is Epstein-Barr virus.
- 20. The method of claim 1 wherein the viral infection is varicella zoster virus.
- 21.A pharmaceutical composition for treating or preventing
 viral infection selected from the group consisting of
 cytomegalovirus (CMV), herpes simplex virus (HSV),
 influenza, HIV, rhinovirus, Epstein-Barr virus (EBV) and
 varicella zoster virus (VZV) comprising a
 pharmaceutically acceptable carrier, diluent or adjunct
 and a compound of formula (I) or a pharmaceutically
 acceptable salt thereof:

wherein

w is selected from CH, CR_3 , CH_2 , C=O, CHR_3 , N and NR_5 ; one of \mathbf{X} , \mathbf{Y} , and \mathbf{Z} is N or NR_5 while the other two are independently selected from CH, CR_4 , CH_2 , C=O and CHR_4 ; \mathbf{B} is selected from the group consisting of:

wherein,

A is 0, or S;

5

 $\bf T$ and $\bf T^1$ are independently selected from $\rm C_{1-6}$ (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), $\rm C_{2-6}$ alkenyl, $\rm C_{2-6}$ alkenyl optionally substituted with OH, halogen, amino, mercapto, carboxy or a saturated or unsaturated $\rm C_{3-10}$ (carbocycle or heterocycle) optionally substituted with OH, halogen, amino, mercapto, carboxy, $\rm C_{1-4}$ (alkyl, alkoxy, alkylthio, acyl, acyloxy or alkoxycarbonyl);

 ${\bf Q}$ and ${\bf Q}^1$ are independently selected from N, NR₅, O, S, NH, CH, CHR, or a bond;

 $\mathbf{R_2}$ and $\mathbf{R^{\,\prime}_{_2}}$ are independently selected from H or $\mathbf{C}_{_{1\text{-}4}}$ alkyl ;

 ${f R_3}$ and ${f R_4}$ are independently selected from H, OH, halogen, amino, cyano, ${f C_{1-6}}$ (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), ${f C_{2-6}}$ alkenyl, ${f C_{2-6}}$ alkynyl optionally substituted with OH, halogen, amino or ${f C_{1-4}}$ alkoxy, and saturated or unsaturated ${f C_{3-10}}$ (carbocycle or heterocycle) optionally substituted with OH, halogen, amino, mercapto, ${f C_{1-4}}$ alkylthio, ${f C_{1-4}}$ alkoxycarbonyl,

halo-substituted C_{1-4} alkyl or halo-substituted C_{1-4} alkoxy,

 $C_{_{_{1-4}}}$ alkyl, $C_{_{_{1-4}}}$ alkoxy or $C_{_{_{1-4}}}$ carboxy;

- R_5 is H, C_{1-6} alkyl or C_{1-6} acyl optionally substituted with OH, halogen, amino or C_{1-4} alkoxy; and n is 0, 1, 2 or 3.
- viral infection selected from the group consisting of cytomegalovirus (CMV), herpes simplex virus (HSV), influenza, HIV, rhinovirus, Epstein-Barr virus (EBV) and varicella zoster virus (VZV) comprising at least one compound as defined in anyone of claims 11, 12 and 13 together with at least one pharmaceutically acceptable carrier or excipient.
 - 23.A compound of formula (I) and pharmaceutical acceptable salts thereof:

20

wherein, B is

20

25

 $\begin{array}{c}
R_2 \\
N \\
A
\end{array}$; $\begin{array}{c}
A \\
N \\
R_2
\end{array}$ (IIIa) $\begin{array}{c}
A \\
A
\end{array}$ (III) (IIIa)

A is 0, or S;

 $_{\mathbf{T}}$ and $_{\mathbf{T}^1}$ are independently selected from $\mathrm{C}_{_{1-6}}$ (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), $\mathrm{C}_{_{2-6}}$ alkenyl, $\mathrm{C}_{_{2-6}}$ alkynyl optionally substituted with OH, halogen, amino, mercapto, carboxy or a saturated or unsaturated $\mathrm{C}_{_{3-10}}$ (carbocycle or heterocycle) optionally substituted with OH, halogen, amino, mercapto, carboxy, $\mathrm{C}_{_{1-4}}$ (alkyl, alkoxy, alkylthio, acyl, acyloxy or alkoxycarbonyl);

 \mathbf{Q} and \mathbf{Q}^1 are independently selected from N, NR $_{_{5}},$ O, S, NH, CH, CHR $_{_{3}}$ or a bond;

 $_{\rm 15}$ $_{\rm R_2}$ and $_{\rm R^{\,\prime}_{\,2}}$ are independently selected from H or C $_{_{\rm 1-4}}$ alkyl ;

 ${f R}_3$ and ${f R}_4$ are independently selected from H, OH, halogen, amino, cyano, ${f C}_{1-6}$ (alkyl, alkoxy, acyl, acyloxy or alkoxycarbonyl), ${f C}_{2-6}$ alkenyl, ${f C}_{2-6}$ alkynyl optionally substituted with OH, halogen, amino or ${f C}_{1-4}$ alkoxy, and saturated or unsaturated ${f C}_{3-10}$ (carbocycle or heterocycle) optionally substituted with OH, halogen, amino, mercapto, ${f C}_{1-4}$ alkylthio, ${f C}_{1-4}$ alkoxycarbonyl, halo-substituted ${f C}_{1-4}$ alkyl or halo-substituted ${f C}_{1-4}$ alkoxy,

20

30

 C_{1-4} alkyl, C_{1-4} alkoxy or C_{1-4} carboxy;

 R_5 is H, C_{1-6} alkyl or C_{1-6} acyl optionally substituted with OH, halogen, amino or C_{1-4} alkoxy; and n is 0, 1, 2 or 3.

- 24.A compound according to claim 23, wherein W is N or NR₅.
- 25.A compound according to claim 23, wherein Y is N or NR_5 and X and Y are independently selected from CH, CR_4 , CH_2 , C=0 and CHR_4 .
- 26 .A compound according to claim 23, wherein T is C_{1-6} alkyl optionally substituted with a saturated or unsaturated C_{3-10} (carbocycle or heterocycle).
 - 27.A compound according to claim 23, wherein T^1 is C_{1-6} alkyl optionally substituted with a saturated or unsaturated C_{3-10} (carbocycle or heterocycle).

28.A compound according to claim 23, wherein A is O.

- 29.A compound according to claim 23, wherein A is O and T is methyl optionally substituted with a phenyl and Q is O and T¹ is allyl and Q¹ is a bond.
 - 30.A compound according to claim 23, wherein A is O and T is methyl optionally substituted with a phenyl and Q is O and T^1 is methyl optionally substituted with a phenyl and Q^1 is a bond.
 - 31.A compound according to any one claims 23 to 30, wherein R_3 and R_4 is H and R_2 and $R_{'2}$ is H.

32. The compound of claim 23 wherein the compound of formula I is

33. The compound of claim 23 wherein the compound of formula is

34. The compound of claim 23 wherein the compound of formula is

10

15

35. The use of a compound according to formula (I) as defined in anyone of claims 23 to 34 for the manufacture of a medicament for treating or preventing a viral infection selected from the group consisting of cytomegalovirus (CMV), herpes simplex virus (HSV), influenza, HIV, rhinovirus, Epstein-Barr virus (EBV) and varicella zoster virus (VZV).