Homework 5

Solutions: 21.05.2025

1. Let X_i are conditionally independent given a parameter θ . For each of the distributions:

- (a) $X_i | \theta \sim \text{Bern}(\theta)$;
- (b) $X_i | \theta \sim N(\mu, \theta)$ with μ known;
- (c) $X_i | \theta \sim \text{Maxwell}(\theta)$, the Maxwell distribution with parameter θ so that

$$f(x_i|\theta) = \left(\frac{2}{\pi}\right)^{1/2} \theta^{3/2} x_i^2 \exp\left\{-\frac{\theta x_i^2}{2}\right\}, \quad x_i > 0$$

and $E(X_i|\theta) = \frac{2\sqrt{2}}{\sqrt{\pi\theta}}$, $Var(X_i|\theta) = \frac{3\pi-8}{\pi\theta}$; answer the following questions.

- i. Show that $f(x_i|\theta)$ belongs to the 1-parameter exponential family and for $X=(X_1,\ldots,X_n)$ state the sufficient statistic for learning about θ .
- ii. By viewing the likelihood as a function of θ , which generic family of distributions (over θ) is the likelihood a kernel of?
- iii. By first finding the corresponding posterior distribution for θ given $x = (x_1, \dots, x_n)$, show that this family of distributions is conjugate with respect to the likelihood $f(x|\theta)$.

Hint: To find the kernel of the posterior distribution, you need to simplify the posterior distribution as possible so as the kernel depends only on the parameter.

(a) $X|\theta \sim Po(\theta)$.

$$f(x|\theta) = P(X = x|\theta) = \frac{\theta^x e^{-\theta}}{x!}, \quad x = 0, 1, \dots$$

 $\propto \theta^x e^{-x}.$

(b) $Y|\theta, \beta \sim \text{Beta}(\beta\theta, \beta)$.

$$f(y|\theta,\beta) = \frac{\Gamma(\beta\theta + \beta)}{\Gamma(\beta\theta)\Gamma(\beta)} y^{\beta\theta - 1} (1 - y)^{\beta - 1}, \quad y \in [0, 1]$$
$$\propto y^{\beta\theta - 1} (1 - y)^{\beta - 1}.$$

2. Let X_1, \ldots, X_n be exchangeable so that the X_i are conditionally independent given a parameter θ . Suppose that $X_i | \theta$ is geometrically distributed with probability density function

$$f(x_i|\theta) = (1-\theta)^{x_i-1}\theta, \quad x_i = 1, 2, \dots$$

- (a) Show that $f(x|\theta)$, where $x = (x_1, \dots, x_n)$, belongs to the 1-parameter exponential family. Hence, or otherwise, find the conjugate prior distribution and corresponding posterior distribution for θ .
- (b) Show that the posterior mean for θ can be written as a weighted average of the prior mean of θ and the maximum likelihood estimate, \bar{x}^{-1} .
- (c) Suppose now that the prior for θ is instead given by the probability density function

$$f(\theta) = \frac{1}{2B(\alpha+1,\beta)} \theta^{\alpha} (1-\theta)^{\beta-1} + \frac{1}{2B(\alpha,\beta+1)} \theta^{\alpha-1} (1-\theta)^{\beta},$$

where $B(\alpha, \beta)$ denotes the Beta function evaluated at α and β . Show that the posterior probability density function can be written as

$$f(\theta|x) = \lambda f_1(\theta) + (1 - \lambda)f_2(\theta)$$

where

$$\lambda = \frac{(\alpha + n)\beta}{(\alpha + n)\beta + (\beta - n + \sum_{i=1}^{n} x_i)\alpha}$$

and $f_1(\theta)$ and $f_2(\theta)$ are probability density functions.

3. Let X_i for i = 1, ..., n are conditionally independent given a parameter θ . Suppose that $X_i | \theta$ is distributed as a double-exponential distribution with probability density function

$$f(x_i|\theta) = \frac{1}{2\theta} \exp\left\{-\frac{|x_i|}{\theta}\right\}, \quad -\infty < x_i < \infty$$

for $\theta > 0$.

- (a) Find the conjugate prior distribution and corresponding posterior distribution for θ following observation of $x = (x_1, \dots, x_n)$.
- (b) Consider the transformation $\phi = \theta^{-1}$. Find the posterior distribution of $\phi | x$.

Assume that X is a random n-vector from the multivariate normal distribution

$$X \sim N(Z\beta, \sigma^2 I_n),$$

where Z is an $n \times p$ known matrix of rank $r \leq p < n$, β is a p-vector of unknown parameters, I_n is the identity matrix of order n, and $\sigma^2 > 0$ is unknown.

Find the UMVU estimators of

- 4. (a) $(l^{\top}\beta)^2$
 - (b) $\frac{l^{\top}\beta}{\sigma}$
 - (c) $\left(\frac{l^{\top}\beta}{\sigma}\right)^2$

for $l^{\top}\beta$.