

РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД

Милоша Обилића 39 Бањалука, Тел/факс 051/430-110, 051/430-100; e-mail: pedagoski.zavod@rpz-rs.org

Датум: 30. март 2019.

Републичко такмичење из ИНФОРМАТИКЕ (СРЕДЊЕ ШКОЛЕ)

1. ФУНКЦИЈА Бодови: 20

Марко је у школи сазнао да ће ово полугодиште учити програмирање у језику С. Њему је програмирање толико занимљиво да је на интернету научио доста ствари те сад учи о функцији *printf*. Сазнао је да је то функција чији је један аргумент стринг, а од тог стринга зависе остале аргументи. Добио је идеју да направи своју врсту функције *printf* која се мало разликује од оне у програмском језику С.

Његова функција као аргумент прима стринг дужине n, ако се у стрингу појави "%и", тада функција као сљедећи аргумент очекује податак типа int који ће се исписати умјесто "%и". У случају да се у стрингу појави "%k", функција очекује и исписује податак типа char, а у случају да се појави "%t", функција исписује ријеч која ће се појавити као аргумент. Марка занима шта ће његова функција исписати.

Улаз:

На улазу се у првој линији налази стринг дужине n ($1 \le n \le 100$) који се састоји од малих и великих слова енглеске абецеде, знака % као и размака.

Ако се у почетном стрингу појави "%и", на улазу се у новој линији налази цијели број s ($1 \le s \le 100$), за случај да се у стрингу појави "%k", у новој линији се на улазу налази мало слово енглеске абецеде, а ако се у стрингу појави "%t", тада се на улазу у новој линији налази ријеч дужине m ($1 \le m \le 100$)

Излаз:

У једној линији исписати стринг који се тражи у задатку

Примјер:

УЛАЗ	ИЗЛАЗ
Danas je %t dan i te%kperatura je oko %u stepeni	Danas je divan dan i temperatura je oko 20 stepeni
divan	
m	
20	

Тестни примјери:

- У 20% тестних примјера у почетном стрингу појављиваће се само % и.
- У 20% тестних примјера у почетном стрингу појављиваће се само %k.
- У 20% тестних примјера у почетном стрингу појављиваће се само %t.
- У преосталих 40% важе ограничења из текста.

Временско ограничење је 2 секунде.

Задатак снимити под именом ZAD1.

2. МАТРИЦА Бодиви: 20

Пријатељ вас је замолио да му помогнете при имплементацији његове нове видео игре. На почетку игре задата вам је матрица $N \times N$ која је испуњена бројевима од **1** до N^2 , као на слици.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Наиме, ваш задатак је да имплементирате симулацију двије врсте упита који се могу примјењивати на матрицу $N \times N$:

- РОТАЦИЈА: Ротирање матрице око неке од четири могуће осе:
 - о Ротација типа 1: Ротација око хоризонталне осе;
 - о Ротација типа 2: Ротација око главне дијагонале;
 - о Ротација типа 3: Ротација око вертикалне осе;
 - о Ротација типа 4: Ротација око споредне дијагонале.
- **ЗАМЈЕНА:** Замјена позиција бројева **a** и **b** које матрица садржи.

Да бисте лакше разумјели типове ротације и упит замјене погледајте слику.

Типови ротација:				Примјер замјене:
Ротација типа 1:	Ротација типа 2:	Ротација типа 3:	Ротација типа 4:	Замјена 4 и 9:
Прије ротације:	Прије ротације:	Прије ротације:	Прије ротације:	Прије замјене:
1 2 3	1 2 3	1 2 3	1 2 3	1 2 3
4 5 6	4 5 6	4 5 6	4 5 6	4 5 6
7 8 9	7 8 9	7 8 9	7 8 9	7 8 9
Након ротације:	Након ротације:	Након ротације:	Након ротације:	Након замјене:
7 8 9	1 4 7	3 2 1	9 6 3	1 2 3
4 5 6	2 5 8	6 5 4	8 5 2	9 5 6
1 2 3	3 6 9	9 8 7	7 4 1	7 8 4

Ваш задатак је да након одређеног броја упита испишете изглед матрице.

Напомена:

У улазним подацима неће бити грешака, тј. све упите ће бити могуће извршити. Задаје се највише 30 упита.

Улаз:

У првој линији улаза уноси се број N ($2 \le N \le 10$), димензија матрице.

У другој линији улаза уноси се број M ($1 \le M \le 100$), који представлја број упита.

У сљедећих **М** редовима уносе се упити. Сви упити ће бити у једном од два формата:

- **R** a (гдје је **R** велико слово које нам указује да се ради о ротацији, док је a ($1 \le a \le 4$) број који представља тип ротације);
- **Z** a b (гдје је **Z** велико слово које нам указује да се ради о замјени, док су a и b ($1 \le a, b \le N^2$) бројеви чије је позиције потребно замјенити).

Излаз:

Потребно је исписати матрицу димензија $N \times N$ која представља изглед почетне матрице након извршавања свих ротација које су задане у улазним подацима.

Примјер:

УЛА3	ИЗЛАЗ	ОБЈАШЊЕЊЕ
3	3 8 7	Димензије матрице су 3х3 (прва линија).
6	154	Број упита је 6 (друга линија)
R 2	926	Упити који се редом извршавају на матрици су:
Z 1 6		 Ротација око главне дијагонале (тип 2);
R 1		 Замјена мјеста бројева 1 и 6;
R 3		 Ротација око хоризонталне осе (тип 1);
Z 3 9		 Ротација око вертикалне осе (тип 3);
R 2		 Замјена мјеста бројева 3 и 9;
K Z		 Ротација око главне дијагонале (тип 2).

Тестни примјери:

- У 20% тестних примјера појављиваће се само операције ЗАМЈЕНА.
- У 20% тестних примјера појављиваће се само операције РОТАЦИЈА.
- У преосталих 60% важе ограничења из текста.

Временско ограничење је 2 секунде.

Задатак снимити под именом ZAD2.

3. <u>МАГИЧНА СУМА</u> Бодови: 20

Дат је низ a који се састоји од n цијелих бројева $a_1, a_2, ..., a_n$ $(0 \le a[i] \le 1)$ и цијели број k. Сума S је децимална вриједност сегмента [l, r] дата формулом:

$$S = a[l] * 2^{r-l} + a[l+1] * 2^{r-l-1} + \dots + a[r-1] * 2^1 + a[r] * 2^0$$

Потребно је наћи дужину најдужег сегмента [l,r] таквог да важи да његова сума S није већа од k, тј. $S \le k$.

Улаз:

У првој линији се налазе два цијела броја n ($1 \le n \le 10^5$) и k ($1 \le k \le 10^9$) који су описани у задатку.

Друга линија садржи n цијелих бројева $a_1, a_2, ..., a_n$ ($0 \le a[i] \le 1$).

Излаз:

Исписати дужину најдужег траженог сегмента

Примјер:

УЛА3	ИЗЛАЗ	ОБЈАШЊЕЊЕ
731000010	6	Најдужи сегмент чија је децимална вриједност мања од 3 је сегмент [2, 7]. Његова сума је: $S = 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 = 2.$

Тестни примјери:

- У 10% тестних примјера важи $1 \le n \le 100$
- У 15% тестних примјера важи $1 \le n \le 1000$
- У 20% тестних примјера важи $1 \le n \le 10^5$ и неће бити више од 10 нула у низу
- У 20% тестних примјера важи $1 \le n \le 10^5$ и k = 1
- У преосталих 35% важе ограничења из текста.

Временско ограничење је 2 секунде.

Задатак снимити под именом ZAD3.

<u>ИГРА</u> Бодови: 20

Никола је био вриједан и након доласка из школе урадио је домаћи задатак. С обзиром да је завршио своје обавезе пронашао је једну интересантну математичку игру и кренуо да чита правила игре.

Дат је низ цијелих бројева величине n, као и почетни цијели број k. Играчу је дозвољена сљедећа операција:

• Тренутни број се може подијелити са било којим елементом датог низа са којим је дјељив.

Задатак играча је да користећи дозвољену операцију доведе почетни број k до јединице. Помозите Николи да одреди оптималну стратегију и пронађе **минималан** број операција да почетни број сведе до 1, ако је то могуће извести у датом примјеру.

Улаз:

У првом реду се уносе цијели бројеви n ($1 \le n \le 100\,000$) и k ($1 \le k \le 10^{12}$), који редом представљају дужину низа чији се елементи могу користити и почетни број игре.

Друга линија садржи n цијелих бројева $a_1, a_2, ..., a_n$ ($1 \le a[i] \le 10^9$), бројеви са којима смијемо дијелити. *Излаз*:

Исписати један цијели број који представља минимални број операција да се број k доведе до 1 користећи само чланове датог низа. Уколико не постоји начин да се дође до јединице исписати -1.

Примјер:

УЛА3	ИЗЛАЗ	ОБЈАШЊЕЊЕ
4 12	3	1. 12/3=4
3572		2. $4/2=2$
		3. $2/2=1$
3 18	-1	Не постоји начин да се број 18 сведе до 1.
583		

Тестни примјери:

- У 20% тестних примјера важиће n = 2 и $k \le 100$
- У 20% тестних примјера важиће $n \le 10$ и $k \le 1000$
- У 20% тестних примјера важиће $n \le 1000$ и $k \le 2 * 10^6$
- У 20% тестних примјера важиће $n \le 1000$ и $k \le 10^{12}$
- У преосталих 20% важе ограничења из текста.

Временско ограничење је 2 секунде.

Задатак снимити под именом ZAD4.

<u>ГРУПЕ</u> Бодови: 20

Професор физичог васпитања је добио идеју за вјежбе спремности које жели да спроведе у свом разреду. Да би вјежбе биле успјешне потребно је формирати неколико група ученика с тим да свака група има најмање \boldsymbol{k} чланова. Пошто вјежбе захтјевају доста интеракције између свих чланова једне групе, професор жели да направи баланс како би олакшао вјежбе свим ученицима. Његова идеја је да подијели ђаке у групе тако да би разлика у вјештини између највјештијег ђака и најмање вјештог ђака једне групе буде сведена на минимум. На овај начин професор би постигао да се у свакој групи налазе ђаци сличних вјештина.

Познат је број ученика n као и њихов ниво вјештине који је представљен цијелим бројем. Потребно је пронаћи минималну разлику вјештина у оквиру групе, при чему би свака група садржала бар k ђака.

Улаз:

Прва линија улаза садржи цијеле бројеве n и k ($1 \le k \le n \le 300\,000$), број ученика у разреду и минималан број ученика у једној групи.

У другој линији се налази низ цијелих бројева A, гдје сваки елемент A_i ($1 \le A_i \le 10^9$) представља ниво вјештине i-тог ученика.

Излаз:

Исписати цијели број који представља минималну разлику вјештина у једној групи, при чему свака група има бар \boldsymbol{k} чланова.

Примјер:

УЛА3	ИЗЛАЗ	ОБЈАШЊЕЊЕ
5 2	20	Оптимална је подјела у двије групе: [50, 40] и [110, 130, 120].
50 110 130 40 120		Разлика у првој групи је 10, а у другој групи 20. Максимум од
		те двије вриједности је 20 што је и коначан одговор.
4 1	0	Ученици могу бити распоређени у четири групе од по једног
60 65 70 72		члана. То нам даје минималну разлику 0.

Тестни примјери:

- У 20% тестних примјера важиће n = k
- У 20% тестних примјера важиће $n \le 10$
- У 20% тестних примјера важиће $n \le 1000$
- У 20% тестних примјера важиће $n \le 50\ 000$
- У преосталих 20% важе ограничења из текста.

Временско ограничење је 2 секунде.

Задатак снимити под именом ZAD5.