Lab 4 Jesse Layman SID: 861135479

Table of Contents

Task 1 (problem 1 & 2)	1
Problem 3	2
Problem 4	
Problem 5	4

Professor: Yingbo Hua, TA: Qiping Zhu, EE110B-023

Task 1 (problem 1 & 2)

```
%
응
% <<1.png>>
% plot was used for the frequency response.
clear all
j = sqrt(-1);
f = -1:.01:1;
w = 2*pi*f;
%From hand calculations
Y1 = 1-2*\cos(3*pi/4)*\exp(-j*w)+\exp(-2*j*w);
X1 = 1 - 1.8*\cos(pi/4)*\exp(-j*w)+0.81*\exp(-2*j*w);
H1 = Y1./X1;
figure
subplot(2,1,1)
stem(angle(H1));
title('Phase of H1')
subplot(2,1,2)
stem(abs(H1));
title('Magnatude of H1')
%The angle of h ocilates over the x axis, the plot of the magnatude
appears
%to be constant.
```


Problem 3

3) Assume y[-1] = y[-2] = 0 and $x[n] = \cos\left(\frac{3\pi}{4}n\right)u[n]$. Compute, plot and discuss y[n] for $n \ge 0$.

Problem 4

4) Assume $x[n] = \cos\left(\frac{3\pi}{4}n\right)$. Determine an analytical expression of y[n]. Plot this y[n] for $n \ge 0$ and compare it with the plot from 3).

Problem 5

Assume y[-1] = y[-2] = 0 and $x[n] = \cos\left(\frac{\pi}{4}n\right)u[n]$. Compute, plot and discuss y[n] for $n \ge 0$.

Published with MATLAB® R2016b