生命科学基础 I

第二章 细胞的物质基础原子与化学键知识回顾+预习

孔宇 教授 西安交通大学生命科学与技术学院 2022年9月15日

~\<u>\</u>

课前知识回顾+学习目标

- ❖[回顾]构成生命物质的元素有哪些?
- ❖[回顾]原子结构如何?什么是电子轨道?
- ❖[回顾]碳原子能形成哪些形式的共价键?
- ❖[课堂互动] 生命相关物质中的化学键类型有哪些?

西安克通大學

1.1 生命化学基础-元素组成-知识回顾

- ❖常量<mark>11种</mark>, 99.95%
- ❖微量17种
- ❖作用举例

H 1,00% Hydrogen																	He 4,000 1900,m
Li tar Uhim	Be series berytium											B start book	C them Carton	N 14,007 Nitrogen	O stam Chygen	F	Ne 21.100 Neon
Na Eleko Sodum	Mg 31.30 Magnetium											AI SEMO Autorium	"Si	P SESTA PROSPROVA	S	"CI 33.450 Chlorive	Ar
K M 044 Polassium	Ca 45% Calcum	SC 44.000 Scandum	Ti our Tianum	V MI HO Vernedum	Cr	Mn Ann Anna Mangarana	Fe sa s	CO MARIO Coball	Ni man man man	Cu	Zn	Ga *******	Ge	As As As	Se	Br	Kr ss.se Kypten
Rb st.ess Robbium	Sr	Y M. SON Ythum	Zr 2r 11.234 Zhoonkun	Nb scare Notion	Mo II II	Tc.	Ru 191.07 Rottenium	Rh	Pd 1042 Paladum	Ag	Cd man cassor	În Name	Sn	Sb tit.71 Addresity	Te ura lahum	SO	Xe 171.29 Kanon
Cs 102.H Cestum	Ba	sr-™ La-Lu	Hf 171.40 Hahlum	Ta sess tartatum	W max beginn	Re mar sterium	Os 198.25 Comium	77 r 1822 160m	Pt 196.34 Patrium	Au Mari	Hg Markey	TI SNA Treflut	Pb	Bi 20.50 Sterooft	Po	At 210 Astrona	Rn Rn Ratio
Fr Fr Francium	Ra Ra Radium	Ac	Th	Pa Pa Procession	U 200-00 Ulawium												

Bulk biological elements

Trace elements believed to be essential for bacteria, plants or animals

Possibly essential trace elements for some species

3

1.1 生命化学基础-原子结构-知识回顾

原子=原子核(质子+中子)+电子

❖质子: 直径1.6~1.7×10⁻¹5 m,

质量1.67262×10⁻²⁷ Kg;

❖中子: 1.67493×10⁻²⁷Kg (稍重)

❖电子: 9.10938×10⁻³¹Kg;

❖电子轨道:统计学意义上电子在原子核附近的动态分布区域

原子的半径级别???

2

轨道杂化理论简介

https://baike.baidu.com/item/ %E7%94%B5%E5%AD%90% E8%BD%A8%E9%81%93 电子轨道百科

https://www.bilibili.com/video/BV1oh411W76J?share_source=copy_web
杂化理论百科
https://baike.baidu.com/item/%E8%BD%A8%E9%81
%93%E6%9D%82%E5%8C%96

生命相关的化学键类型

化学键类型

- ①离子键
- ②盐键
- 3共价键
- 4氢键
- 5疏水作用
- **⑥**范德华力
- $7)\cdots$

化学键的本质

- **(7)**NaCl
- ②分子内带点基团问静电作用
- 3有机化合物
- → ④成键氢原子与其他原子的作用(氧、氮)
 - 5 熵增过程
 - 6個极矩
 - **7**···

西安克通大学

6

碳原子形成的共价键举例

示例			
	甲烷	乙烯	乙炔
分子式	CH ₄	$\underline{C_2 H_4}$	$\underline{C_2 H_2}$
结构式	H H—C—H H	H C-C	Н—С≡С—Н
结构 简式	$\underline{\mathrm{CH_{4}}}$	<u>CH2</u> — <u>CH2</u>	СН≡СН

原子外电子的分布

C: 1s, 2s $2p_x 2p_y 2p_z$

电子数 2 2 1 1

西安克通大学

4⁸ ****

试—试

维持蛋白质分子构象的各种化学键

- ❖试着看看左图中a~c属于什 么类型的化学键?
- ❖选1种你熟悉的生物大分子 ,说说其分子中有哪些你 学过的化学键类型。

西安克通大学

~>>

【拔高】-试着说说下列分子中C原子的结构特征