Algebraic Geometry

Kei Thoma

April 21, 2024

Contents

1	Basics?	7
2	Spectrum of a Ring?	11

4 CONTENTS

Housekeeping

Notes taken from

• my course

to-do

1.

6 CONTENTS

Chapter 1

Basics?

Let K be an arbitary field.

Definition 1 (Algebraic Subset). For a subset $M \subset K[X_1, \dots, X_n]$, we define

$$V(M) = \{\, p \in K^n \mid \text{ for all polynomials } f \in M \text{ it is } f(p) = 0 \,\}$$

called the algebraic subset in K^n or an affine algebraic set over K.

Intuition. Imagine the ring of polynomials $K[X_1, ..., X_n]$ to be a set of locks and the kartesian product of the field K^n to be a set of keys. Then, a subset M of $K[X_1, ..., X_n]$ is some combination of locks and the algebraic subset V(M) are the set of keys that open all the locks in M.

Example 1.1. 1. Let $\mathbb{K} = \mathbb{C}$ and $A = \mathbb{C}[X]$.

- (a) If we set $M=\left\{X^2-1\right\}\subset\mathbb{C}[X],$ then $V(\left\{X^2-1\right\})=\left\{-1,1\right\}\in\mathbb{C}$ is the algebraic subset.
- (b) Now, if we append the set above to $M=\left\{\,X^2-1,X-1\,\right\}\subset\mathbb{C}[X],$ we have

$$V(\{X^2 - 1, X - 1\}) = \{1\} \in \mathbb{C}$$

instead. This example illustrates that appending the set of polynomials makes its algebraic subset smaller.

- (c) In general, the finite subsets of \mathbb{K} are precisely the algebraic subsets of \mathbb{K} .
- 2. Let $\mathbb{K} = \mathbb{C}$ and $A = \mathbb{C}[X, Y]$.
 - (a) If $M = \{X 1, Y 1\} \subset \mathbb{C}[X, Y]$, then $V(\{X 1, Y 1\}) = \{(1, 1)\} \subset \mathbb{C}^2$.
 - (b) If we remove the second polynomial, we get $M = \{X 1\} \subset \mathbb{C}[X, Y]$ and

$$V(\{X-1\}) = \{(1,y) \mid y \in \mathbb{C}\}.$$

It is the first example of an infinite algebraic subset.

Lemma 2. If $M, N \subset K[X_1, \dots, X_n]$ with $N \subset M$, then it is $V(N) \supset V(M)$.

Intuition. N has less locks then M. If N has less locks, then more keys are able to open all locks in N.

Proof. Let $p \in V(M)$. For all $f \in M$, we have f(p) = 0. Now, $N \subset M$, thus for all $g \in N$ it is $g \in M$ and therefore g(p) = 0. That means $V(M) \subset V(N)$.

Proposition 3. 1. The empty set \emptyset is an algebraic subset of \mathbb{K}^n .

- 2. The whole set \mathbb{K}^n is an algebraic subset of \mathbb{K}^n .
- 3. An arbitary intersection of algebraic subsets of \mathbb{K}^n is an algebraic subset of \mathbb{K}^n .
- 4. A finite union of algebraic subsets of \mathbb{K}^n is an algebraic subset of \mathbb{K}^n .

Example 3.1. The union of non-finite union of algebraic subsets is not algebraic. Take $\mathbb{K} = \mathbb{C}$ and $A = \mathbb{C}[X]$. As we have seen before, the singleton sets $\{x\}$ are algebraic for each $x \in \mathbb{N}$, but their union

$$\bigcup_{x\in\mathbb{N}}\{x\}=\mathbb{N}$$

is not.

The above proposition justifies the following definition.

Definition 4. The unique topology on K^n whose closed subsets are the algebraic subsets are called the Zariski topology on K^n .

##missing I think we didn't prove the uniqueness yet.

Lemma 5. Let $M \subset K[X_1, \ldots, X_n]$ be a subset. Define I to be the ideal generated by M. Then we have V(M) = V(I).

^aBy Hilbert's Basis Theorem the polynomial ring is Noetherian and thus this ideal is finitely generated.

Thus, V(M) may be expressed by finite amount of generators $V(M) = V(f_1, \ldots, f_n)$.

Example 5.1. 1. Let $\mathbb{K} = \mathbb{C}$ and $A = \mathbb{C}[X]$.

(a) With the same example as above, set $M = \{X^2 - 1\} \subset \mathbb{C}[X]$, then $V(\{X^2 - 1\}) = \{-1, 1\} \in \mathbb{C}$ is the algebraic subset. Consider the ideal $(X^2 - 1)$. Some elements in this ideal are

$$3(X^2-1), \qquad X(X^2-1), \qquad (X+1)(X^2-1)$$

which all still have the roots $\{-1,1\}$.

Definition 6 (Radical of an Ideal).

Proposition 7. Let I be an ideal in A, then:

- 1. $\sqrt{I} = \sqrt{\sqrt{I}}$
- 2. $I = \sqrt{I} \iff A/I$ is a reduced ring, i.e. there are no nilpotent elements in A/I.
- 3. $A \xrightarrow{\pi} A_{\text{red}} := A/\sqrt{I}$ has the following universial property:

Proof.

Lemma 8. $V(I) = V(\sqrt{I})$

Proof. " $V(I) \subset V(\sqrt{I})$ ": Let $p \in V(I)$ ##missing " $V(I) \supset V(\sqrt{I})$ ": This one follows immediately from $I \subset \sqrt{I}$.

Corollary 1. The map

{ radical ideals in
$$K[X_1, ..., X_n]$$
 } \rightarrow { algebraic sets of $\mathbb{A}^n(K)$ }
$$\sqrt{I} \mapsto V(\sqrt{I})$$

is surjective.

Example 8.1. The map above is not injective in general. ##missing

Theorem 9 (Hilbert Nullstellensatz). If K is algebraically closed, then the above map is a bijection with inverse $V \mapsto \operatorname{Ann}(V)$.

From now on, assume $K = \overline{K}$.

Corollary 2. For any proper ideal $I \subset K[X_1, \dots, X_n]$ there is a $p \in K^n$ with f(p) = 0 for all $p \in I$.

Definition 10 (A-algebra). Let A be a ring. An A-algebra is a ring B together with a rign homomorphism $f:A\longrightarrow B$, making B into an A-module such that scalar multiplication and the product on B are compatible.

If A = K is a field, f is injective, so a K-algebra is a ring containing K as a subring, for example $K[X_1, \ldots, X_n]$.

##missing something about two A-algebras

Definition 11 (Annihilator). Let R be a ring, and let M be a R-module. For a non-empty subset S of M, the set of all elements r in R such that for all s in S, it is rs = 0 is called the annihilator of S and is denoted by

$$\operatorname{Ann}_{R}(S) = \{ r \in R \mid rs = 0 \text{ for all } s \in S \}.$$

Definition 12 (Coordinate Ring). Let $V \subset K^n$ be an algebraic subset. Definite the coordinate ring to be

$$\mathcal{O}(V) := K[X_1, \dots, X_n] / \mathrm{Ann}(V)$$

which is a reduced, finitely generated K-algebra (underlying ring is reduced).

Proposition 13. $\mathcal{O}(V)$ is a reduced, finitely generated K-algebra.

Proof. " $\mathcal{O}(V)$ is a \mathbb{K} -algebra": Firstly, \mathbb{K} is a field and hence also a ring. Define the map

$$f: \mathbb{K} \longrightarrow \mathcal{O}(V) = \mathbb{K}[X_1, \dots, X_n] / \mathrm{Ann}_{\mathbb{K}}(V)$$

 $x \longmapsto x \mod \mathrm{Ann}_{\mathbb{K}}(V).$

Example 13.1. 1. Set $\mathbb{K} := \mathbb{C}$, and $A := \mathbb{C}[X]$. The algebraic subsets V of \mathbb{C} are the finite subsets and the whole set. For any such algebraic subset V, the annihilator is $\mathrm{Ann}_{\mathbb{C}}(V) = \{0\}$.

- 2. Set $\mathbb{K} := \mathbb{C}$, and $A := \mathbb{C}[X, Y]$.
 - (a) An algebraic subset of \mathbb{C}^2 is $\{(1,-2); (1,2)\}$. For this algebraic subset, the annihilator is again $\mathrm{Ann}_{\mathbb{C}}(V) = \{0\}$.
 - (b) Another algebraic subset of \mathbb{C}^2 is $\{(0,y) \mid y \in \mathbb{C}\}$. The annihilator is again $\mathrm{Ann}_{\mathbb{C}}(V) = \{0\}$.

Definition 14. Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{Y}^m$ be two algebraic sets. A morphism between those two is a map

$$f: X \longrightarrow Y$$

 $p \longmapsto (f_1(p), \dots, f_m(p))$

where f

Definition 15. A morphism between affine algebraic sets is a map

$$f: X \longrightarrow Y$$

 $p \longmapsto (f_1(p), \dots, f_m(p))$

where $f_i \in \mathbb{K}[X_1, \dots, X_n]$ and f(p) = Y

##missing blue text

End of 1. lecture. -

Chapter 2

Spectrum of a Ring?

Theorem 16 (Noether Normalization).