

DATA ANALYTICS CASE STUDY

FMCG Warehouse: Optimizing Amazon's Distribution Efficiency

Presented BY

JAYA SUHANE | JOB AAJ LEARNINGS | 24/03/2025

Problem

Amazon is experiencing inefficiencies in its warehouse operations, which are affecting the supply chain, leading to stockouts, delivery delays, and increased costs. Your task is to analyse warehouse data to uncover the root causes of these issues and propose data-driven solutions to optimize warehouse performance.

Background

You are a data analyst at Amazon, which has an extensive network of warehouses across various regions. The company is facing challenges in ensuring efficient warehouse operations, resulting in frequent stockouts, delays in deliveries, and increased operational costs. The management has tasked you with analysing the data from these warehouses to identify key issues and provide actionable insights to enhance warehouse efficiency.

Solution

To solve Amazon's warehouse inefficiencies as a data analyst, we can take a systematic approach involving data exploration, root cause analysis, and optimization strategies.

1. Understand the Problem & Define Key Metrics

Pain Points:

- Stockouts → Lost sales & customer dissatisfaction
- Delivery delays → Reduced Prime efficiency & SLA breaches
- Increased costs → Inefficient labor & warehouse space usage

Key Performance Indicators (KPIs):

- Order Fulfilment Rate = (Orders shipped on time / Total orders) * 100
- Inventory Turnover = Cost of Goods Sold (COGS) / Average Inventory
- Warehouse Capacity Utilization = (Used storage space / Total storage space) * 100

- Picking Accuracy Rate = (Correctly picked orders / Total orders) * 100
- Average Order Processing Time = Time taken from order placement to dispatch
- **Dock-to-Stock Time** = Time taken to unload and store new inventory

2. Collect & Analyse Warehouse Data

Data Sources:

- Warehouse Management System (WMS) logs
- RFID & IoT sensor data for real-time tracking
- Labor productivity records
- Historical order & shipment data
- Inventory records & demand forecasts

Techniques for Analysis:

- Exploratory Data Analysis (EDA): Identify trends, outliers, and correlations
- Time Series Analysis: Detect seasonal demand fluctuations
- Process Mining: Map warehouse workflow bottlenecks
- Heatmaps: Visualize inefficient storage areas & high-traffic zones
- Predictive Analytics: Forecast demand and prevent stockouts
- Cluster Analysis: Identify fast-moving vs. slow-moving inventory

3. Identify Root Causes of Inefficiencies

Q Potential Issues & Data Insights

Issue	Data Indicators	Possible Solution
Stockouts	High demand volatility, poor forecasting	AI-driven demand prediction
Delivery Delays	Long pick & pack times, inefficient layout	Optimize warehouse zoning & automation
Inventory Inaccuracy	Mismatch between WMS and physical stock	RFID-based real-time tracking
Poor Labor Productivity	High idle time, overtime costs	Workforce optimization & task scheduling
Underutilized Space	Low storage density, poor slotting	Dynamic slotting & vertical storage

4. Implement Data-Driven Optimization Strategies

- Improve Inventory Management:
 - Demand Forecasting Models → ML-based demand prediction
 - ABC Analysis → Prioritize fast-moving SKUs near dispatch zones
 - Safety Stock Optimization → Adjust buffer stock dynamically
- Optimize Warehouse Layout & Storage:
 - Zone Picking → Reduce walking distance for pickers
 - Automated Storage & Retrieval Systems (ASRS) → Faster access to items
 - Heatmap Analysis → Relocate high-demand items near exits
- Enhance Order Fulfilment Process:
 - Task Assignment via AI \rightarrow Dynamic workforce allocation
 - Barcode/RFID Tracking → Reduce picking errors
 - Automated Packaging & Sorting → Improve throughput
- ♦ Improve Workforce Productivity:
 - Labor Performance Dashboards → Monitor efficiency

- Predictive Workforce Scheduling → Adjust shifts based on demand
- Gamification & Incentives → Motivate warehouse workers
- ♦ Use IoT & Robotics for Automation:
 - Robotic Process Automation (RPA) → Reduce manual work
 - Al-driven AGVs & Conveyor Systems → Improve material flow
- 5. Continuous Monitoring & Optimization
 - Real-time KPI Dashboards (e.g., Power BI, Looker Studio)
 - A/B Testing for Layout & Process Changes
 - Monthly Review of Performance Metrics
 - Automated Alerts for Stockouts & Delays

Project Scope And Methodology

Project Scope

This project aims to analyse Amazon's warehouse operations to identify inefficiencies contributing to stockouts, delivery delays, and increased costs. The focus will be on diagnosing operational bottlenecks, leveraging data analytics for insights, and proposing data-driven solutions to optimize performance.

✓ Objectives:

- 1. **Identify key inefficiencies** in inventory management, order fulfillment, and warehouse operations.
- 2. **Analyse warehouse data** to uncover root causes of stockouts, delays, and cost escalations.
- 3. **Develop predictive models & optimization strategies** to enhance warehouse efficiency.
- 4. Implement data visualization to monitor KPIs and drive decision-making.

Key Focus Areas:

- **Inventory Management**: Stock replenishment, demand forecasting, inventory accuracy.
- Order Fulfilment: Picking, packing, sorting, and shipment processing times.
- Warehouse Layout & Storage: Space utilization, item placement, and traffic flow.
- **Labor Productivity**: Workforce allocation, task scheduling, and operational efficiency.
- Technology & Automation: RFID tracking, robotics, and real-time monitoring.

Phase 1: Problem Definition & Data Collection

Understanding the Business Challenge

- Conduct stakeholder interviews (warehouse managers, logistics teams).
- Identify major pain points: stockouts, delays, cost overruns.
- Define key performance indicators (KPIs).

Data Collection

- Extract historical warehouse data from Amazon's Warehouse Management System (WMS).
- Collect data from IoT sensors, barcode/RFID scanners, and order logs.
- Integrate labor productivity records, storage utilization data, and shipment tracking.

Data Sources:

Data Type	Source	Metrics Collected
Inventory Data	WMS, ERP	Stock levels, stockout rates, replenishment frequency
Order Fulfillment	WMS, OMS	Processing time, picking accuracy, delivery times
Warehouse Layout	IoT, RFID, Sensors	Heatmaps, item placement, congestion zones
Labor Productivity	HR Systems, Work Logs	Worker efficiency, idle time, task completion rates
Cost Analysis	Financial Reports	Storage costs, labor costs, operational expenses

Phase 2: Exploratory Data Analysis (EDA) & Root Cause Analysis

Data Cleaning & Preparation

- Handle missing values, duplicate records, and inconsistencies.
- Standardize data formats across different sources.

Exploratory Data Analysis (EDA)

- **Descriptive Analytics**: Identify trends, patterns, and outliers.
- **Correlation Analysis**: Find relationships between variables (e.g., stockouts vs. demand forecast errors).
- **Time Series Analysis**: Detect seasonality in demand and warehouse operations.
- **Process Mining**: Map workflows to identify inefficiencies in picking, packing, and shipping.

Root Cause Analysis (RCA) **Potential Cause Data-Driven Insight** Issue Forecast error rates, safety Stockouts Poor demand forecasting stock levels Inefficient order picking & Delivery High order processing times, congestion heatmaps Delays packing Labor inefficiencies & Overtime costs, idle time Increased underutilized space Costs analysis, storage density

Phase 3: Predictive Modelling & Optimization

Demand Forecasting

- Train **time-series forecasting models** (ARIMA, Boost, LSTM) on historical demand data.
- Optimize reorder points & safety stock levels to prevent stockouts.

Warehouse Layout Optimization

- Use **clustering algorithms (K-Means, DBSCAN)** to group high-demand SKUs together.
- Implement heatmap analysis for optimal item placement.

Workforce & Order Fulfilment Optimization

- Develop a predictive labour scheduling model based on peak demand hours.
- Implement **AI-driven picking route optimization** (e.g., shortest path algorithms).
- Recommend automation (robotic pickers, ASRS) for repetitive tasks.

Phase 4: Implementation & Data Visualization

Dashboard Development (Power BI / Looker Studio)

- Live KPI tracking (order processing time, fulfillment rates, cost trends).
- Real-time alerts for low inventory, delays, and bottlenecks.
- **Geospatial Analysis** for warehouse congestion & layout optimization.

A/B Testing & Continuous Monitoring

- Test proposed warehouse process improvements on a smaller scale.
- Monitor the impact using real-time dashboards.
- Iterate strategies based on results & stakeholder feedback.

Goals And KPI's

© Project Goals

The primary goal is to **optimize warehouse efficiency** by analysing data to identify bottlenecks, reduce costs, and improve order fulfilment.

✓ Specific Goals:

- Reduce Stockouts → Improve inventory accuracy and demand forecasting.
- 2. **Minimize Delivery Delays** → Optimize order picking, packing, and dispatch.
- 3. **Decrease Operational Costs** → Enhance labor productivity and space utilization.
- 4. **Improve Warehouse Throughput** → Reduce order processing time and increase automation.
- 5. **Enhance Customer Satisfaction** → Faster and more accurate deliveries.

M Key Performance Indicators (KPIs)

To measure the success of warehouse optimization, we track **efficiency**, **accuracy**, **and cost-related KPIs**.

amazon			
Inventory Management KPIs			
KPI	Formula	Goal	
Stockout Rate	(Stockouts / Total SKUs) * 10	70 <5% (Reduce missed sales)	
Inventory Accura	cy (System Stock / Physical Stoo * 100	ck) >98% (Ensure correct inventory tracking)	
Inventory Turnov	er COGS / Average Inventory	>8-10x/year (Faster stock movement)	
Dead Stock Percentage	(Unsold Inventory >90 days , Total Inventory) * 100	/ <5% (Optimize stock levels)	
Replenishment Cycle Time	Time from reorder to shelf availability	Reduce by 30% (Faster restocking)	
🖪 Order Fulfilm	ent KPIs		
KPI	Formula	Goal	
Order Fulfilment Rate	(Orders shipped on time / Total orders) * 100	>98% (Meet SLAs)	
Order Processing Time	Time from order placement to shipment	Reduce by 40% (Faster order handling)	
Picking Accuracy	(Correctly picked orders / Total orders) * 100	>99.5% (Reduce returns due to wrong items)	
Dock-to-Stock Time	Time from truck unloading to inventory storage	Reduce by 25% (Faster stock availability)	

(Backordered items / Total

items ordered) * 100

Backorder Rate

<2% (Ensure in-stock

availability)

Warehouse Operations KPIs		
КРІ	Formula	Goal
Warehouse Capacity Utilization	(Used storage space / Total storage space) * 100	>90% (Optimize space)
Throughput Rate	Total orders processed per hour	Increase by 20% (Improve efficiency)
Order Cycle Time	Time from order receipt to shipping	Reduce by 35% (Faster processing)
Travel Time per Pick	Average time spent by workers retrieving items	Reduce by 30% (Optimize storage layout)
Automation Utilization Rate	(Automated tasks / Total tasks) * 100	>60% (Increase robotic picking efficiency)

S Cost & Productivity KPIs

KPI	Formula	Goal
Cost per Order Fulfilment	Total warehouse operating cost / Orders processed	Reduce by 25% (Lower expenses)
Labor Productivity	Orders fulfilled per worker per hour	Increase by 30% (Optimize workforce)
Shrinkage Rate	(Lost or damaged inventory / Total inventory) * 100	<1% (Improve handling & security)
Energy Consumption per Order	Energy used / Orders processed	Reduce by 20% (Enhance sustainability)
Return Rate Due to Warehouse Errors	(Returns due to picking errors / Total orders) * 100	<1% (Improve accuracy)

Concept Used

To analyse and optimize Amazon's warehouse operations, we apply various data-driven methodologies, optimization techniques, and predictive analytics. Below is the core concepts used:

Data Analytics & Business Intelligence (BI)

A Concepts Used:

- Exploratory Data Analysis (EDA) → Identifies patterns, trends, and outliers in warehouse data.
- Descriptive Analytics → Summarizes current warehouse performance through KPI tracking.
- Data Visualization → Power BI, Looker Studio, Tableau dashboards for real-time monitoring.

Example Application:

- Analysing warehouse throughput using heatmaps to detect congestion in picking routes.
- Creating real-time dashboards to monitor stock levels, fulfillment rates, and processing times.

2 Inventory Optimization & Demand Forecasting

- ABC Analysis → Categorizes inventory into fast-moving, slow-moving, and obsolete items.
- Safety Stock Optimization → Ensures buffer stock is set dynamically based on demand fluctuations.
- Time-Series Forecasting (ARIMA, Prophet, LSTM) → Predicts future demand trends to prevent stockouts.

III Example Application:

- **Stockout Reduction**: Using **machine learning** to improve demand forecasts and optimize reorder points.
- Warehouse Slotting Optimization: Placing frequently ordered SKUs near high-traffic picking zones.

™Warehouse Process Optimization & Automation

A Concepts Used:

- Lean Six Sigma → Eliminates inefficiencies (waste in storage, picking, and packing).
- Warehouse Layout Optimization → Uses clustering algorithms (K-Means, DBSCAN) to group high-demand SKUs together.
- Robotic Process Automation (RPA) → Automates repetitive tasks like sorting and packing.
- Digital Twin Technology → Creates a real-time warehouse simulation to test layout and efficiency improvements.

Example Application:

- Reducing Picking Time: Implementing zone picking and robotic pickers to optimize worker movement.
- Optimizing Space Utilization: Using Al-driven layout modeling to minimize dead space and congestion.

⚠ Order Fulfillment & Process Efficiency

S Concepts Used:

- Order Batching Algorithms → Groups similar orders together to reduce travel time.
- Shortest Path Algorithms (Dijkstra's, A)* → Optimizes picking routes for workers.
- Predictive Labor Scheduling → Uses regression models to adjust labor shifts based on demand surges.

Example Application:

- Reducing Delivery Delays: Implementing Al-powered order routing and dynamic workforce allocation.
- Minimizing Packing Errors: Using computer vision and barcode scanning for automated verification.

5 Supply Chain & Logistics Optimization

Concepts Used:

- Network Flow Optimization → Ensures inventory is allocated efficiently across distribution centers.
- IoT & RFID Tracking → Real-time tracking of inventory movement and shipment progress.
- Last-Mile Delivery Optimization → Al-driven route planning to reduce shipping delays and fuel costs.

III Example Application:

- **Dynamic Inventory Allocation**: Redistributing stock across fulfillment centers to **minimize shipping delays**.
- Reducing Lost Shipments: Implementing RFID-based tracking and anomaly detection.

€Predictive & Prescriptive Analytics

Concepts Used:

- Predictive Analytics (Regression, Decision Trees, XGBoost) → Forecasts warehouse demand and labor needs.
- Prescriptive Analytics (Optimization Models, Linear Programming) →
 Suggests best warehouse configuration and inventory allocation.

Example Application:

 Identifying Bottlenecks: Using process mining to track inefficient workflows.

• **Optimizing Cost Reduction**: Implementing Al-driven recommendations for **storage allocation and staffing levels**.

Conclusion

After analysing Amazon's warehouse operations, the key findings highlight inefficiencies in **inventory management**, **order fulfilment**, **warehouse layout**, **labour productivity**, **and logistics**. These inefficiencies contribute to **stockouts**, **delivery delays**, **and rising operational costs**.

By leveraging data-driven solutions, such as demand forecasting, Al-powered automation, warehouse layout optimization, and predictive labour scheduling, Amazon can significantly enhance efficiency, reduce costs, and improve customer satisfaction.

0			
G Key Takeaways & Solutions			
Identified Problem	Root Cause	Data-Driven Solution	Expected Impact
High Stockout Rate	Poor demand forecasting, inaccurate inventory tracking	Al-powered demand forecasting, real-time inventory monitoring	↓ 30-50% stockouts
Slow Order Fulfilment	Inefficient picking routes, high processing time	Optimized warehouse layout, robotic pickers, shortest-path algorithms	↓ 40% processing time
High Labor Costs & Idle Time	Inefficient workforce scheduling	Predictive labor allocation & automation	↓ 25% labor costs
Underutilized Warehouse Space	Poor slotting strategies, congestion in high-demand zones	Al-driven space optimization & heatmap analysis	† 20% space utilization
Delivery Delays	Inefficient last-mile logistics, delayed	Al-driven routing, automated sorting &	J 35%

Identified Problem	Root Cause	Data-Driven Solution	Expected Impact
	picking & packing	packing	delivery time

- **Business Impact & Next Steps**
- **Faster Order Fulfilment** → Customers receive products sooner, increasing satisfaction
- **Lower Operational Costs** → More efficient labor allocation and space utilization
- **✓ Higher Inventory Accuracy** → Reduces losses from overstocking or stockouts
- **Optimized Warehouse Layout** → Minimizes unnecessary movement and boosts productivity
- ✓ Al-Driven Automation → Streamlines warehouse operations and increases throughput

By continuously monitoring **real-time dashboards**, improving **predictive models**, and scaling **automation**, Amazon can **sustain long-term efficiency and cost savings**.

THANK YOU

For Any QUERY CONTACT US on

- suhane79jaya@gmail.com
- https://www.linkedin.com/in/jaya-suhane-776142275/
- Peerlist.io/jayasuhane/