Claims

We claim:

- 1. A calcium channel blocker compound having at least one of the following characteristics:
 - a. the compound is metabolized both by CYP450 and by a non-oxidative metabolic enzyme or system of enzymes;
 - b. the compound has a short (up to four (4) hours) non-oxidative metabolic half-life;
 - c. the compound contains a hydrolysable bond that can be cleaved nonoxidatively by hydrolytic enzymes;
 - d. the primary metabolites of the compound result from the non-oxidative metabolism of the compound;
 - e. the primary metabolites are soluble in water at physiological pH;
 - f. the primary metabolites have negligible inhibitory activity at the IK_R (HERG) channel at normal therapeutic concentration of the parent drug in plasma;
 - g. the compound, as well as the metabolites thereof, does not cause metabolic DDI when co-administered with other drugs; and
 - h. the compound, as well as metabolites thereof, does not elevate LFT values when administered alone.
 - 2. The compound, according to claim 1, having the following structure:

$$R_2$$
 X
 OR_1
 OR_1
 OR_2
 $N-R_4$

wherein:

X = a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$, wherein n = 1-6; $R_1 = C_{1-6}$ alkyl, optionally substituted with OH or NH₂;

 $R_2 = F$ or $COOR_5$,

wherein R₅ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_3 = CH_3 \text{ or } (CH_2)_n - COOR_6,$

wherein n = 1-6 and R_6 is C_{1-6} alkyl, optionally substituted with OH or NH_2 ;

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

 $R_7 = O$, NH, or NR₉,

 R_8 = optionally substituted aryl or heterocycle,

 $R_9 = C_{1-6}$ alkyl,

 $R_{10} = O$, S, SO, SO₂, NH, NR_{12} or $N(CH_2)_m$ COOR₁₃,

 R_{11} = aryl or heterocyclyl optionally substituted with $(CH_2)_n$ COOR₁₄,

 $R_{12} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{13} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{14} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{15} = (CH_2)_n COOR_{16}$

 $R_{16} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 R_{17} = not present or COOR₁₈ wherein R_{18} is C_{1-6} alkyl, optionally substituted with

OH or NH₂, and

wherein n = 1-6.

3. The compound, according to claim 2, having a formula selected from the group consisting of:

 $X = bond, CH_2, or OCH_2$

R = lower alkyl optionally substituted OH or NH₂;

R = lower alkyl optionally substituted by OH or

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

X = O, NH, NR where R is lower alkyl

Y = optionally substituted aryl or heterocyclyl; and

n = 0 to 2

X = O, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y = aryl or heterocyclyl substituted with $(CH_2)_mCOOH$ where m is 0 to 2.

4. The compound, according to claim 3, having the following structure:

X = bond, CH_2 , or OCH_2

R = lower alkyl optionally substituted OH or NH₂.

5. The compound, according to claim 3, having the following structure:

 $X = bond, CH_2, or OCH_2$

R = lower alkyl optionally substituted OH or NH₂.

6. The compound, according to claim 3, having the following structure:

R = lower alkyl optionally substituted by OH or NH_2 .

7. The compound, according to claim 3, having the following structure:

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂.

8. The compound, according to claim 3, having the following structure:

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂.

9. The compound, according to claim 3, having the following structure:

22

R = lower alkyl optionally substituted by OH or NH₂.

10. The compound, according to claim 3, having the following structure:

n = 1 to 3

X = O, NH, NR where R is lower alkyl

Y = optionally substituted aryl or heterocyclyl.

11. The compound, according to claim 3, having the following structure:

n = 0 to 2

X = O, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y = aryl or heterocyclyl substituted with $(CH_2)_m$ COOH where m is 0 to 2.

- 12. A pharmaceutical composition comprising a calcium channel blocker compound having at least one of the following characteristics:
- a. the compound is metabolized both by CYP450 and by a non-oxidative metabolic enzyme or system of enzymes;
- b. the compound has a short (up to four (4) hours) non-oxidative metabolic half-life;

- c. the compound contains a hydrolysable bond that can be cleaved non-oxidatively by hydrolytic enzymes;
- d. the primary metabolites of the compound result from the non-oxidative metabolism of the compound;
 - e. the primary metabolites are soluble in water at physiological pH;
- f. the primary metabolites have negligible inhibitory activity at the IK_R (HERG) channel at normal therapeutic concentration of the parent drug in plasma;
- g. the compound, as well as the metabolites thereof, does not cause metabolic DDI when co-administered with other drugs; and
- h. the compound, as well as metabolites thereof, does not elevate LFT values when administered alone;

wherein said composition further comprises a pharmaceutical carrier.

13. The pharmaceutical composition, according to claim 12, wherein said compound has the following structure:

$$R_2$$
 X
 OR_1
 OR_1
 OR_2
 $N-R_4$

wherein:

 $X = a \text{ bond, } (CH_2)_n, O, S, \text{ or } O(CH_2)_n,$

wherein n = 1-6;

 $R_1 = C_{1-6}$ alkyl, optionally substituted with OH or NH_2 ;

 $R_2 = F \text{ or } COOR_5,$

wherein R_5 is C_{1-6} alkyl, optionally substituted with OH or NH_2 ;

 $R_3 = CH_3 \text{ or } (CH_2)_n - COOR_6,$

wherein n = 1-6 and R_6 is C_{1-6} alkyl, optionally substituted with OH or NH_2 ;

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

$$-(CH_2)_n$$
 R_{15}
 R_{17}

 $R_7 = O$, NH, or NR₉,

R₈ = optionally substituted aryl or heterocycle,

 $R_9 = C_{1-6} \text{ alkyl},$

 $R_{10} = O$, S, SO, SO₂, NH, NR_{12} or $N(CH_2)_m$ COOR₁₃,

 R_{11} = aryl or heterocyclyl optionally substituted with $(CH_2)_n$ COOR₁₄,

 $R_{12} = C_{1-6}$ alkyl, optionally substituted with OH or NH_2 ,

 $R_{13} = C_{1-6}$ alkyl, optionally substituted with OH or NH_2 ,

 $R_{14} = C_{1-6}$ alkyl, optionally substituted with OH or NH_2 ,

 $R_{15} = (CH_2)_n COOR_{16},$

 $R_{16} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 R_{17} = not present or COOR₁₈ wherein R_{18} is C_{1-6} alkyl, optionally substituted with

OH or NH2, and

wherein n = 1-6.

14. The composition, according to claim 13, comprising a compound having a formula selected from the group consisting of:

 $X = bond, CH_2, or OCH_2$

R = lower alkyl optionally substituted OH or NH₂;

R = lower alkyl optionally substituted by OH or

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

X = O, NH, NR where R is lower alkyl

Y = optionally substituted aryl or heterocyclyl; and

$$(CH_2)_n - X - Y$$

n = 0 to 2

X = O, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y = aryl or heterocyclyl substituted with $(CH_2)_mCOOH$ where m is 0 to 2.

15. The composition, according to claim 14, comprising a compound having the following structure:

X = bond, CH_2 , or OCH_2

R = lower alkyl optionally substituted OH or NH₂.

16. The composition, according to claim 14, having the following structure:

R = lower alkyl optionally substituted by OH or NH_2 .

17. The composition, according to claim 14, having the following structure:

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂.

18. The composition, according to claim 14, having the following structure:

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂.

19. The composition, according to claim 14, having the following structure:

R = lower alkyl optionally substituted by OH or NH₂.

20. The composition, according to claim 14, having the following structure:

n = 1 to 3

X = O, NH, NR where R is lower alkyl

Y =optionally substituted aryl or heterocyclyl.

21. The composition, according to claim 14, having the following structure:

$$(CH_2)_n - X - Y$$

n = 0 to 2

 $X = O, S, SO, SO_2, NH NR or N(CH_2)_mCOOH where m is 0 or 2$

Y = aryl or heterocyclyl substituted with $(CH_2)_mCOOH$ where m is 0 to 2.

- 22. A method for blocking a calcium channel in a patient in need of such treatment wherein said method comprises administering to said patient a calcium channel blocking compound having at least one of the following characteristics:
- a. the compound is metabolized both by CYP450 and by a non-oxidative metabolic enzyme or system of enzymes;
- b. the compound has a short (up to four (4) hours) non-oxidative metabolic half-life;
- c. the compound contains a hydrolysable bond that can be cleaved non-oxidatively by hydrolytic enzymes;
- d. the primary metabolites of the compound result from the non-oxidative metabolism of the compound;
 - e. the primary metabolites are soluble in water at physiological pH;

- f. the primary metabolites have negligible inhibitory activity at the IK_R (HERG) channel at normal therapeutic concentration of the parent drug in plasma;
- g. the compound, as well as the metabolites thereof, does not cause metabolic DDI when co-administered with other drugs; and
- h. the compound, as well as metabolites thereof, does not elevate LFT values when administered alone.
- 23. The method, according to claim 22, wherein said compound has the following structure:

$$R_2$$
 X
 OR_1
 $N-R_4$
 R_3

wherein:

X = a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$,

wherein n = 1-6;

 $R_1 = C_{1-6}$ alkyl, optionally substituted with OH or NH₂;

 $R_2 = F \text{ or COOR}_5$

wherein R₅ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_3 = CH_3$ or $(CH_2)_n$ - $COOR_6$,

wherein n = 1-6 and R_6 is C_{1-6} alkyl, optionally substituted with OH or NH_2 ;

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

$$-(CH_2)_n$$
 R_{15}
 R_{17}

 $R_7 = O$, NH, or NR₉,

 R_8 = optionally substituted aryl or heterocycle,

 $R_9 = C_{1-6}$ alkyl,

 $R_{10} = O, S, SO, SO_2, NH, NR_{12} \text{ or } N(CH_2)_m COOR_{13},$

 R_{11} = aryl or heterocyclyl optionally substituted with $(CH_2)_n$ COOR₁₄,

 $R_{12} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{13} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{14} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 $R_{15} = (CH_2)_n COOR_{16},$

 $R_{16} = C_{1-6}$ alkyl, optionally substituted with OH or NH₂,

 R_{17} = not present or COOR₁₈ wherein R_{18} is C_{1-6} alkyl, optionally substituted with

OH or NH₂, and

wherein n = 1-6.

24. The method, according to claim 23, wherein said compound has a formula selected from the group consisting of:

X = bond, CH_2 , or OCH_2

R = lower alkyl optionally substituted OH or NH₂;

R = lower alkyl optionally substituted by OH or

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂;

R = lower alkyl optionally substituted by OH or NH₂;

n = 1 to 3

X = O, NH, NR where R is lower alkyl

Y = optionally substituted aryl or heterocyclyl; and

$$CH_2$$

n = 0 to 2

X = O, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y = aryl or heterocyclyl substituted with $(CH_2)_mCOOH$ where m is 0 to 2.

25. The method, according to claim 24, wherein said compound has the following

structure:

 $X = bond, CH_2, or OCH_2$

R = lower alkyl optionally substituted OH or NH₂.

26. The method, according to claim 24, wherein said compound has the following

R = lower alkyl optionally substituted by OH or NH_2 .

27. The method, according to claim 24, wherein said compound has the following structure:

n = 1 to 3

structure:

R = lower alkyl optionally substituted by OH or NH₂.

28. The method, according to claim 24, wherein said compound has the following structure:

n = 1 to 3

R = lower alkyl optionally substituted by OH or NH₂.

29. The method, according to claim 24, wherein said compound has the following

34

COOR

R = lower alkyl optionally substituted by OH or NH₂.

30. The method, according to claim 24, wherein said compound has the following structure:

n = 1 to 3

structure:

X = O, NH, NR where R is lower alkyl

Y = optionally substituted aryl or heterocyclyl.

31. The method, according to claim 24, wherein said compound has the following structure:

n = 0 to 2

 $X = O, S, SO, SO_2$, NH NR or $N(CH_2)_mCOOH$ where m is 0 or 2

Y = aryl or heterocyclyl substituted with $(CH_2)_mCOOH$ where m is 0 to 2.

- 32. The method, according to claim 22, wherein the patient is a human.
- 33. The method, according to claim 22, wherein said method is used to treat a condition selected from the group consisting of hypertension, angina, ischemia, arrhythmia, congestive heart failure, and cardiac insufficiency.