Claims

 A STAT 6 activation inhibitor which comprises a diaminopyrimidinecarboxamide derivative represented by a formula (I) or a salt thereof and a pharmaceutically acceptable carrier,

$$R^{4} \xrightarrow{A^{1}} (CH_{2})_{n}^{-} \xrightarrow{N} N$$

$$CO-NR^{1}R^{2}$$

$$(I)$$

10 (symbols in the formula have the following meanings: A^1 : CR^5 or N,

 $R^5\colon$ -H, -lower alkyl, -O-lower alkyl or -halogen, $A^2\colon\ CR^6\ \text{or}\ N,$

R⁶: -H or -halogen,

5

R³: -R⁰, -lower alkyl substituted with halogen, -halogen,
-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,
-lower alkylene-OH, -hetero ring, -O-hetero ring, -N(R⁰)hetero ring, -lower alkylene-hetero ring, -O-lower
alkylene-hetero ring, -S-lower alkylene-hetero ring, -SOlower alkylene-hetero ring, -SO₂-lower alkylene-hetero
ring, -N(R⁰)-lower alkylene-hetero ring, -lower alkyleneCO-hetero ring, -lower alkylene-N(R⁰)₂, -SO₂-N(R⁰)-lower
alkyl or -lower alkylene-N(R⁰)-CO₂-lower alkylene-phenyl,

 R^0 : the same or different from one another, and each is H or a lower alkyl,

n: 0 or 2,

 $(CH_2)_m - ,$

10

 R^4 : (i) when n = 2, $-R^0$, -lower alkyl substituted with 5 halogen, $-OR^0$, $-N(R^0)$ -CHO, $-N(R^0)$ -CO-lower alkyl or $-N(R^0)$ -SO₂-lower alkyl,

(ii) when n = 0, -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(\mathbb{R}^0)₂, -lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkyl, -lower alkylene-CN, or -CH(lower alkylene-CO₂-OH)₂, or a group represented by a formula -X^a-R^{4a},

X^a: single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-,
-N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene
N(R⁰)-, -lower alkylene-N(R⁰)CO-, -lower alkylene-N(R⁰)SO₂-,
-lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-,
-CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-,
-lower alkenylene-CON(R⁰)-, -lower alkenylene-CO₂-, -O(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R⁰)-(CH₂)_k-cycloalkylene
(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_kcycloalkylene-(CH₂)_m- or -N(R⁰)CO-(CH₂)_k-cycloalkylene-

k and m, the same or different from each other, and each is 0, 1, 2, 3 or 4,

25 R^{4a}: lower alkyl, phenyl, hetero ring, cycloalkyl, lower alkylene-phenyl, lower alkylene-hetero ring, lower

alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-hetero ring,

wherein the hetero rings in R3 and R4 may be substituted with 1 to 5 of lower alkyl, halogen, -OR0, -Slower alkyl, -S(0)-lower alkyl, -SO2-lower alkyl, lower 5 alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)_2 -SO_2$ -lower alkyl, $-N(R^0)_2 -CO_2N(R^0)_2$, $-N(R^0)_2 -CO_2N(R^0)_2$ CO2-lower alkyl, -N(R0)-CO2-cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents 10 selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH2, -O-phenyl, -CO-phenyl, $-N(R^0)$ -CO-lower alkyl, $-N(R^0)$ -CO-lower alkylene- $N(R^0)_2$, -lower alkylene- $N(R^0)$ -CO-lower alkylene- $N(R^0)_2$, -CO- $N(R^0)$ lower alkylene-N(R⁰)₂, -CO-lower alkylene-N(R⁰)₂, -CO-lower 15 alkylene-CO₂R⁰, -lower alkylene-N(R⁰)₂, -lower alkylene- CO_2R^0 , -lower alkylene-CO-N(R^0)₂, -lower alkylene-N(R^0)-COlower alkyl, -lower alkylene-N(R⁰)-CO₂-lower alkyl, -lower alkylene-N(R0)-SO2-lower alkyl,-lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 20 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O-R⁰ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or $N(R^0)_2$, and 25

wherein the lower alkylene in R^3 , R^4 , R^{4a} and X^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CON(R^0)_2$, $-N(R^0)COR^0$ or hetero ring, or

 R^3 and R^4 may together form $*-N(R^7)-(CH_2)_2-$, $*-(CH_2)_2-N(R^7)-$, $*-CH_2-N(R^7)-CH_2-$, $*-N(R^7)-(CH_2)_3-$, $*-(CH_2)_3-N(R^7)-$, $*-CH_2-$

 $N(R^7) - (CH_2)_2 -$, $*-(CH_2)_2 - N(R^7) - CH_2 -$, $*-C(O) - N(R^7) - (CH_2)_2 -$,

*- $(CH_2)_2$ -N (R^7) -C (O)-, *-N (R^7) -CH=CH-, *-CH=CH-N (R^7) -,

*-N=CH-CH=CH-, *-CH=N-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-CH=N-,

*-N=CH-CH=N-, *-CH=N-N=CH-, $*-N(R^7)-N=CH-$, $*-CH=N-N(R^7)-$,

10 *-O-CH₂-O-, *-O-(CH₂)₂-O-, *-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(R⁷)-,

 $*-(CH_2)_2-C(O)-$, *-CH=CH-C(O)-O- or $*-N=C(CF_3)-NH-$,

wherein \star indicates bonding to the position shown by \mathbb{R}^3 ,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: H, lower alkenyl, lower alkynyl, lower alkyl substituted with halogen, CN, S-lower alkyl, aryl which may have a substituent(s), cycloalkyl which may have a substituent(s) or hetero ring which may have a substituent(s),

Y: single bond; or lower alkylene which may be substituted
with 1 to 5 groups selected from halogen, OH, O-lower
alkyl, -NH₂, -NH-lower alkyl and -N(lower alkyl)₂, and
R¹ and R²: the same or different from each other, and each
represents H, lower alkyl or O-lower alkyl which may have a
substituent(s)).

25

- 2. The STAT 6 activation inhibitor described in claim 1, which is a Th2 cell differentiation inhibitor.
- A diaminopyrimidinecarboxamide derivative
 represented by a formula (Ia) or a salt thereof,

(symbols in the formula have the following meanings: A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,
R³: -R⁰, -lower alkyl substituted with halogen, -halogen,
-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,
-lower alkylene-OH, -saturated hetero ring, -X^b-heteroaryl,
-X^b-saturated hetero ring, -X^b-heteroaryl, -lower alkyleneN(R⁰)₂, -SO₂-N(R⁰)-lower alkyl or -lower alkylene-N(R⁰)-CO₂lower alkylene-phenyl,

 X^b : -lower alkylene-, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -SO₂-lower alkylene-, -N(R^0)-lower alkylene- or -lower alkylene-CO-,

20 R⁰: the same or different from one another, and each represents H or a lower alkyl,

R4: -Xa-saturated hetero ring, -lower alkylene-saturated hetero ring or -lower alkenylene-saturated hetero ring,

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(R^0)-,

-N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene-N(R⁰)-, -lower alkylene-N(R⁰)CO- or -lower alkylene-N(R⁰)SO₂-, -lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-, -CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CO-, -lower alkenylene-COM(R⁰)-, -lower alkenylene-CO₂-, -O-(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m- or -N(R⁰)CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m-,

k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4,

wherein the saturated hetero rings in R3 and R4a may be substituted with 1 to 5 of lower alkyl, halogen, -OR0, -S-lower alkyl, -S(O)-lower alkyl, -SO2-lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, 15 $-SO_2N(R^0)_2$, $-N(R^0)-SO_2$ -lower alkyl, $-N(R^0)-CO-N(R^0)_2$, $-N(R^0)-CO-N(R^0)_2$ CO₂-lower alkyl, -N(R⁰)-CO₂-cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, saturated hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower 20 alkylene-OH), heteroaryl, -lower alkylene-NH-C(=NN)-NH2, -O-phenyl, -CO-phenyl, -N(\mathbb{R}^0)-CO-lower alkyl, -N(\mathbb{R}^0)-COlower alkylene-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkylene- $N(R^0)_2$, -CO- $N(R^0)$ -lower alkylene- $N(R^0)_2$, -CO-lower alkylene-N(R⁰)₂, -CO-lower alkylene-CO₂R⁰, 25

-lower alkylene-N(R⁰)₂, -lower alkylene-CO₂R⁰, -lower alkylene-CO-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkyl, -lower alkylene-N(R⁰)-CO₂-lower alkyl, -lower alkylene-N(R⁰)-SO₂-lower alkyl, -lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O-R⁰ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or N(R⁰)₂, and

wherein the lower alkylene in R^3 , R^4 and X^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CON(R^0)_2$, $-N(R^0)_2$, $-N(R^0)_2$ or hetero ring, or R^3 and R^4 may together form $*-N(R^7)_2 - (CH_2)_2 - (CH_2)_2 - (CH_2)_2 - (CH_2)_2 - (CH_2)_3 - (CH_$

**-(CH₂)₃-N(R⁷) -, *-CH₂-N(R⁷) - (CH₂)₂-, *-(CH₂)₂-N(R⁷) - CH₂-,

**-C(O) -N(R⁷) - (CH₂)₂-, *-(CH₂)₂-N(R⁷) -C(O) -, *-N(R⁷) - CH=CH-,

**-CH=CH-N(R⁷) -, *-N=CH-CH=CH-, *-CH=N-CH=CH-,

*-CH=CH-N=CH-, *-CH=CH-CH=N-, *-N=CH-CH=N-, *-CH=N-N=CH-,

**-CH=CH-N=CH-, *-CH=CH-CH=N-, *-O-CH₂-O-, *-O-(CH₂)₂-O-,

**-N(R⁷) -N=CH-, *-CH=N-N(R⁷) -, *-O-CH₂-O-, *-O-(CH₂)₂-O-,

**-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(R⁷) -, *-(CH₂)₂-C(O) -, *-CH=CH-

 $C(O) - O - CH_2)_3 - O - (CH_2)_2 - N(R) -$, $* - (CH_2)_2 - C(O) -$, * - CH = CH - $C(O) - O - Or * - N = C(CF_3) - NH -$, wherein * indicates bonding to the position shown by R^3 ,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which

25 may have a substituent(s), and

 R^1 and R^2 : the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

4. A diaminopyrimidinecarboxamide derivative represented by a formula (Ib) or a salt thereof,

$$R^4$$
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4
 R^4
 R^2
 R^4
 R^4

(symbols in the formula have the following meanings:

10 A^1 : CR^5 or N,

5

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,
R³: -saturated hetero ring or -X^b-saturated hetero ring,

 X^b : -lower alkylene-, -O-, -N(R^0)-, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -SO₂-lower

15 alkylene-, -N(R⁰)-lower alkylene- or -lower alkylene-CO-,

 ${\ensuremath{\mathsf{R}}}^0\colon$ the same or different from one another, and each represents H or a lower alkyl,

 R^4 : -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with

20 halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkyl,

-lower alkylene-CN, -CH(lower alkylene-OH)₂ or -X^a-R^{4a},

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(\mathbb{R}^0)-,

 $-N(R^0)$ CO-, $-N(R^0)$ SO₂-, -lower alkylene-O-, -lower alkylene- $N(R^0)$ -, -lower alkylene- $N(R^0)$ CO- or -lower alkylene- $N(R^0)$ SO₂-, -lower alkylene- $N(R^0)$ CO₂-, - $N(CO-R^0)$ -, - $N(SO_2$ -lower alkyl)-, - $CON(R^0)$ -, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CO-, -lower alkenylene- $CON(R^0)$ -, -lower alkenylene- $CON(R^0)$ -, - $CON(R^0)$ -, -

5

15

k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, heteroaryl, cycloalkyl, lower alkylene-phenyl, lower alkylene-heteroaryl, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-heteroaryl,

wherein the saturated hetero ring and heteroaryl in R³ and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, -OR⁰, -S-lower alkyl, -S(O)-lower alkyl, -SO₂-lower alkyl, lower alkylene-OR⁰, -N(R⁰)₂, -CO₂R⁰, -CON(R⁰)₂, -CN, -CHO, -SO₂N(R⁰)₂, -N(R⁰)-SO₂-lower alkyl, -N(R⁰)-CO-N(R⁰)₂, -N(R⁰)-CO₂-lower alkyl, -N(R⁰)-CO₂-cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH₂, -O-phenyl,

-CO-phenyl, $-N(R^0)$ -CO-lower alkyl, $-N(R^0)$ -CO-lower alkylene-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkylene- $N(R^{0})_{2}$, -CO- $N(R^{0})$ -lower alkylene- $N(R^{0})_{2}$, -CO-lower alkylene- $N(R^0)_2$, -CO-lower alkylene- CO_2R^0 , -lower alkylene- $N(R^0)_2$, -lower alkylene-CO₂R⁰, -lower alkylene-CO-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkyl, -lower alkylene-N(R⁰)-CO₂lower alkyl, -lower alkylene-N(R⁰)-SO₂-lower alkyl, -lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-10 phenyl, $=N-O-R^0$ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or $N(R^0)_2$, or the lower alkylene in \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^{4a} and \mathbb{X}^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CON(R^0)_2$, $-N(R^0)_2$, $-N(R^0)COR^0$ or 15 hetero ring, or R^3 and R^4 may together form *-N(R⁷) - (CH₂)₂-, *-(CH₂)₂-N(R⁷) -, $\star - CH_2 - N(R^7) - CH_2 - , \star - N(R^7) - (CH_2)_3 - ,$ $*-(CH_2)_3-N(R^7)-$, $*-CH_2-N(R^7)-(CH_2)_2-$, $*-(CH_2)_2-N(R^7)-CH_2-$, $*-C(O)-N(R^7)-(CH_2)_2-$, $*-(CH_2)_2-N(R^7)-C(O)-$, $*-N(R^7)-CH=CH-$, 20 $*-CH=CH-N(R^7)-$, *-N=CH-CH=CH-, *-CH=N-CH=CH-, *-CH=CH-N=CH- $, *-CH=CH-CH=N-, *-N=CH-CH=N-, *-CH=N-N=CH-, *-N(R^7)-N=CH-,$ *-CH=N-N(\mathbb{R}^7)-, *-O-CH₂-O-, *-O-(CH₂)₂-O-, *-O-(CH₂)₃-O-, *-O- $(CH_2)_2 - N(R^7) -$, *- $(CH_2)_2 - C(O) -$, *-CH = CH - C(O) - O - or *- $N = C(CF_3) -$ 25 NH-, wherein * indicates bonding to the position shown by \mathbb{R}^3 ,

R7: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which
may have a substituent(s), and

R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

5. A diaminopyrimidinecarboxamide derivative represented by a formula (Ic) or a salt thereof,

(symbols in the formula have the following meanings: R^5 : -H or -halogen,

B: phenyl which may have 1 to 3 substituents selected from lower alkyl and halogen,

Y: single bond or $-CH_2-$, and

 R^1 and R^2 : the same or different from each other, and each represents H or lower alkyl which may have a substituent(s)).

20

15

5

10

6. A diaminopyrimidinecarboxamide selected from the group consisting of 4-benzylamino-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 2-[(4-morpholin-4-ylphenyl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-

```
5-carboxamide, 4-[(2,6-difluorobenzyl)amino]-2-[(4-
    morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-
     [(2,6-difluorobenzyl)amino]-2-[(4-morpholin-4-
    ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-
 5
    methoxybenzyl)amino]-2-[(4-morpholin-4-
    ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-fluoro-6-
    methoxybenzyl)amino]-2-[(4-morpholin-4-
    ylphenyl)amino]pyrimidine-5-carboxamide, 2-({4-[(1-
    methylpiperidin-3-yl)oxy]phenyl}amino)-4-[(2,3,6-
10
    trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(1-
    azabicyclo[2.2.2]oct-3-yloxy) phenyl] amino}-4-[(2,3,6-
    trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-[(4-
    methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)amino]-4-[(2,3,6-
    trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-({4-[4-
15
    (2-amino-2-oxoethyl)piperazin-1-yl]phenyl}amino)-4-[(2,3,6-
    trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(2-
    morpholin-4-ylethoxy)phenyl]amino}-4-[(2,3,6-
    trifluorobenzyl) amino] pyrimidine-5-carboxamide, 2-\{[4-(\beta-D-
    glucopyranosyloxy) phenyl] amino}-4-[(2,3,6-
20
    trifluorobenzyl)amino]pyrimidine-5-carboxamide, 4-
    benzylamino-2-{[2-(3-chloro-4-
    hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 4-
    benzylamino-2-{[2-(3,5-dichloro-4-
    hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 2-[(4-
25
    morpholin-4-ylphenyl)amino]-4-[(2-
    thienylmethyl)amino]pyrimidine-5-carboxamide, 4-{[(3-
```

chloro-2-thienyl)methyl]amino}-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide and 2-{[3-(2-morpholin-4-ylethyl)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide or salts thereof.

5

10

25

and the second of the second o

- 7. A pharmaceutical composition which comprises the diaminopyrimidinecarboxamide derivative or a salt thereof described in claims 3 to 6 and a pharmaceutically acceptable carrier.
- 8. The composition described in claim 7, which is a preventive or therapeutic agent for respiratory diseases.
- 9. The composition described in claim 8, which is a preventive or therapeutic agent for asthma.
- preventive or therapeutic agent for a chronic obstructive pulmonary disease.
 - 11. Use of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, for the manufacture of an STAT 6 activation inhibitor.

12. Use of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, for the manufacture of a Th2 cell differentiation inhibitor.

5

10

15

- 13. A method for inhibitory activity for STAT 6 activation, which comprises administering an effective amount of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, to a mammal.
- 14. A method for inhibitory activity for Th2 cell differentiation, which comprises administering an effective amount of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, to a mammal.