Deep generative models for biologists

Clayton W. Seitz

January 18, 2022

Outline

Generative Models

Probabilistic Graphical Models

References

The logic of generative modeling

Say we have a set of variables $\mathbf{x} = (x_1, x_2, ..., x_n)$ which might have some statistical dependence

The variable **x** might be an amino acid sequence, DNA sequence, microscopy image, etc.

- ▶ Often we are handed a batch of empirical samples $\{x_i\}_{i=1}^N$
- ▶ We want to know the generating distribution p(x)

In supervised generative learning, we try to explicitly learn the joint distribution $p(\mathbf{x}) = p(x_1|x_2,...,x_n)p(x_2|x_3,...,x_n),...,p(x_n)$, which is generally more difficult than discriminative learning.

Sampling from a model

To find $p(\mathbf{x})$ we might fit a parametric model with parameters θ with MLE or some other method

Lets assume we already know the model type and parameters heta

As a toy example, perhaps $x \sim \mathcal{N}(\mu, \sigma^2)$ and we know $\theta = (\mu, \sigma)$

In this simple case, we can draw samples by rejection sampling

Rejection sampling with the uniform distribution

Let Ω be the state space or *support* of x. Let $U(\Omega)$ be the uniform distribution over Ω

Also notice that $p(x) \le 1 \ \forall x \in \Omega$

The following procedure produces a sample $x \sim p(x)$.

- 1. Sample $u \sim U(\Omega)$
- 2. Sample $y \sim U([0, 1])$
- 3. If y < p(u) return y as a sample of p(x)

This algorithm suffers from the curse of dimensionality. Generally, sampling becomes

The sampling problem

Dimensionality can make it difficult to sample from $p(\mathbf{x})$ directly. For example, the multivariate Gaussian distribution

$$p(\mathbf{x}) = \frac{1}{(2\pi)^n |\Sigma|} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Sampling must be achieved in another way e.g., Cholesky decomposition or Gibbs sampling

The sampling problem

We also may not know the proper normalization constant or partition function Z. Say we have

$$p(\mathbf{x}) = \frac{1}{Z}\tilde{p}(\mathbf{x})$$

where $p(\mathbf{x})$ is easy to compute but Z is (too) hard to compute.

This very important situation arises in several contexts:

- 1. In Bayesian models where $p(x_1, x_2) := p(x_1|x_2)p(x_2)$ is easy to compute but $Z = \int p(x_1|x_2)p(x_2)dx_2$ can be very difficult or impossible to compute.
- 2. In models from statistical physics, e.g. the Ising model, we only know $\tilde{p}(\mathbf{x}) = e^{-H(\mathbf{x})}$ where $H(\mathbf{x})$ is the Hamiltonian

Sampling the joint distribution

How to generate samples depends on our model

Variational methods can also be used to evaluate $p(\mathbf{x})$ by autoencoding \mathbf{x} (called a variational autoencoder or VAE)

If we have the model parameters we could use Monte-Carlo Markov Chain (MCMC) methods

We will discuss both in the following slides

The variational autoencoder (VAE)

Theory of the VAE

Monte-Carlo Markov Chain (MCMC)

- MCMC algorithms were originally developed in the 1940's by physicists at Los Alamos
- They were interested in modeling the probabilistic behavior of collections of atomic particles
- Simulation was difficult the normalization constant Z was not known
- ▶ The term "Monte-Carlo" was coined at Los Alamos.
- Ulam and Metropolis overcame this problem by constructing a Markov chain for which the desired distribution was the stationary distribution
- ▶ Introduced to statistics and generalized with the Metropolis-Hastings algorithm (1970) and the Gibbs sampler of Geman and Geman (1984).

Markov Chains

For a state space Ω s.t. $\mathbf{x}_t \in \Omega$. \mathbf{x}_t is a Markov process if:

$$P(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{t-2},...,\mathbf{x}_{t-N}) = P(\mathbf{x}_{t}|\mathbf{x}_{t-1})$$

which is commonly called the memoryless property.

- \triangleright \mathbf{x}_t can be generally be N-dimensional
- ▶ The chain is called *homogeneous* if $T(\mathbf{x}_t|\mathbf{x}_{t-1})$ is time-invariant.
- For discrete Ω, T is a matrix of probabilities with $T_{ij} = \Pr(i \rightarrow j)$
- For continuous Ω , T is the joint probability density $T(x_t, x_{t-1})$

Markov Chains

The Chapman-Kolmogorov equation marginalizes $T(x_t, x_{t-1})$:

$$P(\mathbf{x}_t) = \int T(x_t, x_{t-1}) d\mathbf{x}_{t-1}$$
$$= \int T(x_t | x_{t-1}) P(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}$$

The chain satisfies detailed balance if

$$T(x_t, x_{t-1})P(x_t) = T(x_{t-1}, x_t)P(x_{t-1})$$

which guarantees there is a unique stationary distribution $P_0(x_t)$

Monte-Carlo Markov Chain (MCMC)

A stationary distribution satisfies

$$P_0(\mathbf{x}_t) = \int T(x_t|x_{t-1})P_0(\mathbf{x}_{t-1})d\mathbf{x}_{t-1}$$

- ▶ If a process is Markov e.g., Brownian motion, Ornstein-Uhlenbeck, $P_0(x_t)$ is a solution to the SDE
- We can also design $T(x_t, x_{t-1})$ s.t. $P_0(x_t)$ is a distribution we cannot sample from easily such as the Ising model
- ▶ The notion of "time" in the second case is artificial
- ▶ There are several MCMC algorithms, we will focus on Gibbs MCMC

Gibbs sampling

- Suppose p(x) is a p.d.f. or p.m.f. that is difficult to sample from directly.
- Suppose, though, that we *can* easily sample from the conditional distributions e.g., $p(x_1|x_2,...,x_n)$.
- ► The Gibbs sampler proceeds as follows:
 - 1. set x to some initial starting values
 - 2. then sample $x_1|x_2,...,x_n$, then sample $x_2|x_1,...,x_n$, and so on.

Gibbs sampling

- 0. Set (x_0, y_0) to some starting value.
- 1. Sample $x_1 \sim p(x|y_0)$, that is, from the conditional distribution $X \mid Y = y_0$.

Current state: (x_1, y_0)

Sample $y_1 \sim p(y|x_1)$, that is, from the conditional distribution $Y \mid X = x_1$.

Current state: (x_1, y_1)

2. Sample $x_2 \sim p(x|y_1)$, that is, from the conditional distribution $X \mid Y = y_1$.

Current state: (x_2, y_1)

Sample $y_2 \sim p(y|x_2)$, that is, from the conditional distribution $Y \mid X = x_2$.

Current state: (x_2, y_2)

:

Repeat iterations 1 and 2, M times.

Bayesian inference using Gibbs sampling

Joint distributions factor according to

$$P(\mathbf{x}) = P(x_1|x_2,...,x_n)P(x_2|x_3,...,x_n),...,P(x_n)$$

 $P(x_1|x_2,...,x_n)$ may not include all n-1 variables

The useful information is called a Markov blanket

Learning graph structure

Learning the graph structure G = (V, E) is a common task in machine learning.

Applying deep generative models to biological data

Cool biological applications of VAEs

Sequencing, Imaging, Other stuff

References I