



#### AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

# Analiza obszarów istotności w ocenie działania głębokich sieci neuronowych

Saliency maps in the analysis of deep learning methods

Autor: Kacper Motyka

Promotor: dr hab. inż. Wojciech Chmiel





# Plan prezentacji

- Wstęp do tematyki pracy, dotychczasowy stan wiedzy
- Cel pracy
- Wykorzystane narzędzia
- Zastosowane sieci neuronowe oraz metody analizy obszarów istotności
- Testy manualne: metodologia i wyniki
- Testy statystyczne: metodologia i wyniki
- Podsumowanie





# Wstęp do tematyki pracy

- Pojęcie interpretowalności
- Znaczenie interpretowalności dla medycyny
- Obszary istotności
- Transfer learning
- Cel pracy





### Wykorzystane narzędzia

#### Podstawowe narzędzia



#### Obliczenia



#### Wizualizacja







#### Uczenie maszynowe











### Wykorzystany zbiór danych

#### **Brian Tumor Dataset - Kaggle**

#### Przykładowe zdjęcia wejściowe



#### Cechy:

- 4600 zdjęć
- 55% stanowią osoby chore
- 98% zdjęć w formacie JPEG
- różne wymiary
- 97% obrazów w modelu RGB
- podział na klasy za pomocy folderów

#### Preprocessing:

- Skalowanie zdjęć do rozmiaru (150, 150, 3)
- Nadanie etykiet
- Podział na zbiór treningowy oraz testowy
- Augumentacja danych
- Podział na paczki (z ang. batches)





### Wybrane architektury sieci

|                                   | Uczenie przez transfer wiedzy |           |                |                 |
|-----------------------------------|-------------------------------|-----------|----------------|-----------------|
| Nazwa sieci                       | VGG-16                        | ResNet50  | EfficientNetB7 | CNN (4 warstwy) |
| Precyzja – zbiór<br>treningowy    | 98,42%                        | 98,99%    | 98,37%         | 90,92%          |
| Precyzja – zbiór<br>testowy       | 97,88%                        | 97,66%    | 98,88%         | 91,96%          |
| Liczba<br>zmiennych<br>parametrów | 263 682                       | 2 359 682 | 2 949 506      | 97 458          |





### Analizowane metody wyznaczania obszarów istotności

#### Metody:

- Grad-CAM
- CAM
- Nadzorowana Propagacja Wstecz
- Guided Grad-CAM



#### Przykładowe wyniki







### Testy manualne

#### Analizowane obrazy



#### Wnioski

- niedziałająca Nadzorowana Propagacja Wstecz dla sieci bazującej na EfficientNetB7 nie tylko dla analizowanego zbioru danych, bardziej szczątkowe wyniki dla prostej sieci CNN
- Niepoprawne działanie metody Grad-CAM dla obrazów wejściowych wykonanych z tyłu bądź z boku mózgu
- Grad-CAM zwraca mniejszy, bardziej konkretny obszar niż CAM
- Oczodoły często są mylone z guzem mózgu
- Metody analizy istotności mogą rozstrzygnąć, które sieci zwróciły poprawne wyniki
- Obszary istotności mogą uwidocznić złą detekcję cech pomimo wysokiej skuteczności sieci
- W przypadku zdrowych mózgów często obszarem istotności są oczodoły





### Testy manualne - wyniki

- Nadzorowana Propagacja Wstecz nie działa dla sieci bazującej na EfficientNetB7, bardziej szczątkowe wyniki dla prostej sieci CNN
- W przypadku zdrowych mózgów często obszarem istotności są oczodoły









### Testy manualne - wyniki

 Grad-CAM zwraca mniejszy, bardziej konkretny obszar niż CAM



 Oczodoły często są mylone z guzem mózgu (szczególnie przez sieć VGG)







### Testy manualne - wyniki

- Metody analizy istotności mogą rozstrzygnąć, które sieci zwróciły poprawne wyniki



Obszary istotności mogą uwidocznić złą detekcję cech pomimo wysokiej skuteczności sieci







### Testy manualne - wyniki

 Niepoprawne działanie metody Grad-CAM dla obrazów wejściowych wykonanych z tyłu bądź z boku mózgu



| Sieć konwolucyjna | Poprawnie wyznaczone mapy istotności (Grad-CAM) |  |
|-------------------|-------------------------------------------------|--|
| ResNet            | 454 (94%)                                       |  |
| CNN               | 483 (100%)                                      |  |
| VGG               | 452 (93,58%)                                    |  |
| EfficientNet      | 474 (98,14%)                                    |  |





Testy statystyczne – porównywane parametry

Środek ciężkości

#### Intersection over Union









## Wyniki testów statystycznych

### Testy statystyczne – wyniki dla *Grad-CAM*













# Wyniki testów statystycznych

### Testy statystyczne – wyniki dla CAM













### Podsumowanie

- Dogłębna analiza dostępnej literatury
- Wyuczone sieci neuronowe o wysokiej precyzji
- Testy wielu scenariuszy połączenia rezydualne, sieć głęboka, płytka, transfer learning...
- Grad-CAM zawodny, najdokładniejsze wyniki
- Grad-CAM + Nadzorowana Propagacja Wstecz = Guided Grad-CAM metoda dokładna o wysokiej rozdzielczości
- CAM niezawodność
- Dalszy kierunek rozwoju testy na innych zbiorach danych





# Dziękuję za uwagę!