

# 3. 모델 학습 및 평가

1 사이킷런을 이용한 모델 학습

## 지도 학습 모델

사이킷런은 다양한 지도 학습 모델 클래스를 지원하며, 모든 클래스의 사용 과정이 거의 비슷합니다.

| 모델 종류 (패키지명)            | 분류 모델 클래스                                                                                              | 예측 모델 클래스                                                                                           |
|-------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 선형 모델<br>(linear_model) | <ul> <li>LogisticRegression</li> </ul>                                                                 | <ul><li>LinearRegression</li><li>Ridge</li><li>Lasso</li><li>ElasticNet</li></ul>                   |
| 서포트 벡터 머신 (svm)         | • SVC                                                                                                  | • SVR                                                                                               |
| k-최근접 이웃 (neighbors)    | <ul> <li>KNeighborsClassifier</li> </ul>                                                               | KNeighborsRegressor                                                                                 |
| 나이브베이즈 (naïve_bayes)    | <ul><li>GaussianNB</li><li>MultinomialNB</li><li>BernoulliNB</li></ul>                                 | 해당없음                                                                                                |
| 결정 나무 (tree)            | DecisionTreeClassifier                                                                                 | DecisionTreeRegressor                                                                               |
| 앙상블 (ensemble)          | <ul><li>RandomForestClassifier</li><li>GradientBoostingClassifier</li><li>StackingClassifier</li></ul> | <ul><li>RandomForestRegressor</li><li>GradientBoostingRegressor</li><li>StackingRegressor</li></ul> |
| 신경망 (neural_network)    | MLPClassifier                                                                                          | MLPRegressor                                                                                        |



#### 예제 데이터 불러오기

사이킷런을 이용한 모델 학습

모델 학습에 사용할 예제 데이터를 불러옵니다.

#### 예제 데이터 불러오기

- 1 **import** os
- 2 **import** pandas **as** pd
- 3 **from** sklearn.model\_selection **import** train\_test\_split
- 4 os.chdir("../../data")
- 5 df1 = pd.read\_csv("classification/sonar.csv")
- 6 df2 = pd.read\_csv("classification/iris.csv")
- 7 df3 = pd.read\_csv("regression/wankara.csv")
- 8 X1 = df1.drop('y', axis = 1)
- 9 y1 = df1['y']
- 10 X1\_train, X1\_test, y1\_train, y1\_test = train\_test\_split(X1, y1, random\_state = 2022)
- 11 X2 = df2.drop('y', axis = 1)
- 12 y2 = df2['y']
- 13 X2\_train, X2\_test, y2\_train, y2\_test = train\_test\_split(X2, y2, random\_state = 2022)
- 14 X3 = df3.drop('y', axis = 1)
- 15 y3 = df3['y']
- 16 X3\_train, X3\_test, y3\_train, y3\_test = train\_test\_split(X3, y3, random\_state = 2022)

- df1: 이진 분류 데이터
- df2: 다중 분류 데이터
- df3: 회귀 데이터



#### 모델 인스턴스화

1 사이킷런을 이용한 모델 학습

모델 인스턴스화는 사이킷런의 지도 학습 클래스를 이용해 인스턴스를 만드는 것을 의미합니다. 이 과정에서 모델의 하이퍼 파라미터를 설정합니다.

#### 모델 인스턴스화 예시: 최대 깊이가 10인 결정 나무 모델

- 1 **from** sklearn.tree **import** DecisionTreeClassifier **as** DTC
- 2 model = DTC(max\_depth = 10)
- 3 print(model)

DecisionTreeClassifier(max\_depth=10)

#### 모델 인스턴스화 예시: 사전을 이용한 입력

- 1 parameter = {"max\_depth": 10}
- 2 model = DTC(\*\*parameter)
- 3 print(model)

DecisionTreeClassifier(max\_depth=10)

- 모델 클래스(DecisionTreeClassifier)와 설정한 하이퍼 파라미터 (max\_depth=10)만 출력됨
- 이렇게 만든 인스턴스는 하이퍼 파라미터를 통해 어떻게 학습할지만 설정됐고 아직 학습되지 않았으므로 예측과 학습된 모델 정보 확인 등을 할 수 없음

## 모델 인스턴스화 (계속)

1 사이킷런을 이용한 모델 학습

모델 인스턴스화는 사이킷런의 지도 학습 클래스를 이용해 인스턴스를 만드는 것을 의미합니다. 이 과정에서 모델의 하이퍼 파라미터를 설정합니다.

#### 이진 분류 모델, 다중 분류 모델, 회귀 모델 생성

- 1 **from** sklearn.tree **import** DecisionTreeRegressor **as** DTR
- 2 model1 = DTC(max\_depth = 10)
- 3 model2 = DTC(max\_depth = 10)
- 4 model3 = DTR(max\_depth = 10)

- 라인 2 3: 분류 모델의 유형은 학습된 후에 결정되므로 아직까진 model1과 model2는 차이가 없음
- **라인 4**: DecisionTreeRegressor 클래스로 회귀 나무 인스턴스를 생성했습니다.



## fit 메서드

1 사이킷런을 이용한 모델 학습

fit 메서드는 특징과 라벨 간 관계를 학습하며, fit 메서드를 사용한 다음에 모델을 활용할 수 있습니다.

모델 인스턴스화 예시: 최대 깊이가 10인 결정 나무 모델

- 1 model1.fit(X1\_train, y1\_train)
- 2 model2.fit(X2\_train, y2\_train)
- 3 model3.fit(X3\_train, y3\_train)



# 3. 모델 학습 및 평가

2 사이킷런을 이용한 모델 평가

## predict 메서드

2 사이킷런을 이용한 모델 평가

predict 메서드는 학습한 모델을 사용해 새로 입력된 특징 벡터의 라벨을 예측합니다. 이때 새로 입력된 데이터의 구조는 학습 데이터의 구조와 반드시 같아야 합니다.

#### predict 메서드 예시

- 1 y1\_pred = model1.predict(X1\_test)
- 2 y2\_pred = model2.predict(X2\_test)
- 3 y3\_pred = model3.predict(X3\_test)
- 4 display(y1\_pred[:5])

array([1, 1, 0, 1, 1], dtype=int64)

• **라인 1**: predict는 예측한 라벨을 ndarray로 반환하며 이 배열의 각 요소는 같은 위치에 있는 X1\_test의 요소에 대한 예측 결과로, y\_pred1[i]는 X1\_test[i]를 예측한 결과임

## predict\_proba 메서드

2 사이킷런을 이용한 모델 평가

predict\_proba 메서드는 각 샘플이 특정 클래스에 속할 확률을 계산합니다. 출력은 ndarray로 i행 j열 요소는 i번째 샘플이 j번째 클래스에 속할 확률을 나타냅니다.

#### predict 메서드 예시

- 1 y1\_prob = model1.predict\_proba(X1\_test)
- 2 y2\_prob = model2.predict\_proba(X2\_test)
- 3 display(y2\_prob[:5])

 • **라인 1**: predict는 예측한 라벨을 ndarray로 반환하며 이 배열의 각 요소는 같은 위치에 있는 X1\_test의 요소에 대한 예측 결과로, y\_pred1[i]는 X1\_test[i]를 예측한 결과임

### 이진 분류 모델 평가

분류 모델을 평가하는 데 사용하는 함수로는 metrics 모듈의 accuracy\_score, precision\_score, recall\_score, f1\_score 등이 있습니다. 이 모듈에 속한 모든 평가 함수는 순서대로 실제 라벨과 예측한 라벨을 입력받습니다.

#### 이진 분류 모델 평가 예시

- 1 from sklearn.metrics import \*
- 2 acc = accuracy\_score(y1\_test, y1\_pred)
- 3 pre = precision\_score(y1\_test, y1\_pred)
- 4 rec = recall\_score(y1\_test, y1\_pred)
- 5 f1 = f1\_score(y1\_test, y1\_pred)
- 6 print(acc, pre, rec, f1)

0.8076923076923077 0.7391304347826086 0.8095238095238095 0.7727272727272727

### 다중 분류 모델 평가

다중 분류 모델은 average 인자를 "micro", "macro", "weighted" 등으로 설정해야 합니다.

#### 잘못된 다중 분류 모델 평가 예시

1 f1\_score(y2\_test, y2\_pred)

ValueError Traceback (most recent call last)
<ipython-input-42-91a6632949be>in <module>
----> 1 f1\_score(y2\_test, y2\_pred)

#### (중략)

ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

## 다중 분류 모델 평가 (계속)

다중 분류 모델은 average 인자를 "micro", "macro", "weighted" 등으로 설정해야 합니다.

#### 다중 분류 모델 평가 예시

- 1 macro\_f1 = f1\_score(y2\_test, y2\_pred, average = "macro")
- 2 micro\_f1 = f1\_score(y2\_test, y2\_pred, average = "micro")
- 3 print(macro\_f1, micro\_f1)

0.9375 0.9473684210526315

## 회귀 모델 평가

MAE와 MSE는 각각 metrics 모듈의 mean\_absolute\_error와 mean\_squared\_error 함수로 계산할 수 있습니다.

#### 회귀 모델 평가 예시

1 mae = mean\_absolute\_error(y3\_test, y3\_pred)

2 mse = mean\_squared\_error(y3\_test, y3\_pred)

3 rmse = mse \*\* 0.5

4 print(mae, mse, rmse)

1.5658031900382647 3.9832470919211196 1.9958073784614385