- Let $A \in M_{n \times n}(\mathbb{F})$. Recall that A and its transpose A^t have the same characteristic
- ² polynomial, hence have the same eigenvalues. For any eigenvalue λ , let E_{λ} denote the
- λ -eigenspace of A and E'_{λ} the -eigenspace of A^t .
- 4 Note that we can have $E_{\lambda} \neq E_{\lambda}'$

Example

Take $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$. Then $f_A(\lambda) = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3$ and hence $\lambda = -1$ or $\lambda = 3$.

Thus, for $\lambda = 3$,

$$\begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2x + 4y \\ x - 2y \end{pmatrix} = 0 \tag{1}$$

Thus, x = 2y, and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ spans E_3 .

Consider now E_3' . $A^t = \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2x + y \\ 4x - 2y \end{pmatrix} = 0$, and thus $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ spans

 E'_{λ} . This means that $E'_{\lambda} \neq E_{\lambda}$, since $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ are linearly independent.

- 6 Suppose $T \in \text{Hom}(V, V)$ is a linear transformation corresponding to the matrix A, where
- ⁷ V is a vector space over \mathbb{F} .
- 8 Observe that $\operatorname{rank}(A \lambda I) = \operatorname{rank}(A^t \lambda I)$, since $(A \lambda I)^t = A^t \lambda I$. There-
- 9 fore, by Rank-Nullity Theorem, $\dim(E_{\lambda}) = \operatorname{nullity}(A \lambda I) = \operatorname{nullity}(A^t \lambda I) = \operatorname{nullity}(A^t \lambda I)$
- dim (E'_{λ}) .

11

Lemma

For a finite-dimensional vector space V and $T \in \text{Hom}(V, V)$ with the distinct eigenvalues denoted as $\lambda_1, \lambda_2, \ldots, \lambda_k$, T is diagonalisable if and only if $\dim V = \sum_{i=1}^m \dim E_{\lambda_m}$.

- Proof. Since T is diagonalisable, it has a basis consisting of eigenvectors of T. Since all
- λ_i are distinct, $E_{\lambda_i} \cap E_{\lambda_j} = \{0\}$ for any $i, j \in [1, k] \cap \mathbb{N}$. Therefore, all the eigenvectors
- are in one and only one eigenspace, and thus dim $V = \sum_{i=1}^{m} \dim E_{\lambda_m}$.
- Suppose now dim $V = \sum_{i=1}^m \dim E_{\lambda_m}$.
- 16 Choose a basis for each E_{λ_i} and take their union, obtaining a set of eigenvectors

$$\beta = \{v_1, v_2, \dots, v_n\}.$$

- $_{17}$ There are n of them by assumption. It has been proven earlier that it is linearly inde-
- pendent, and thus β is a basis of V. Therefore, T is diagonalisable.
- Since for all $\lambda \dim(E_{\lambda}) = \dim(E'_{\lambda})$, it follows that $\dim V = \sum_{i=1}^{m} \dim E'_{\lambda_m}$. Thus, by
- the Lemma, A^t is also diagonalisable.