MS²PIP: Predicting peptide spectrum peak intensities to improve proteomics identification

Ralf Gabriels

In MS-based proteomics, peptides are identified by their fragmentation spectra

For every peptide, a fragmentation spectrum is generated

We can easily calculate the m/z values for any given peptide spectrum

Amino Acid	Chemical formula	Molecular mass
А	C ₃ H ₅ ON	71.03711
R	$C_6H_{12}ON_4$	156.10111
N	$C_4H_6O_2N_2$	114.04293
D	$C_4H_5O_3N$	115.02694
С	C ₃ H ₅ ONS	103.00919
E	$C_5H_7O_3N$	129.04259
Q	$C_5H_8O_2N_2$	128.05858
G	C ₂ H ₃ ON	57.02146
Н	$C_6H_7ON_3$	137.05891
I	$C_6H_{11}ON$	113.08406
L	$C_6H_{11}ON$	113.08406
K	$C_6H_{12}ON_2$	128.09496
M	C ₅ H ₉ ONS	131.04049
F	C_9H_9ON	147.06841
Р	C ₅ H ₇ ON	97.05276
S	$C_3H_5O_2N$	87.03203
Т	$C_4H_7O_2N$	101.04768
W	$C_{11}H_{10}ON_2$	186.07931
Υ	$C_9H_9O_2N$	163.06333
V	C ₅ H ₉ ON	99.06841

We can easily calculate the m/z values for any given peptide spectrum

Amino Acid	Chemical formula	Mass
A	C ₃ H ₅ ON	71.03711
R	C ₆ H ₁₂ ON ₄	156.10111
N	$C_4H_6O_2N_2$	114.04293
D	$C_4H_5O_3N$	115.02694
C	C ₃ H ₅ ONS	103.00919
E	$C_5H_7O_3N$	129.04259
Q	$C_5H_8O_2N_2$	128.05858
G	C ₂ H ₃ ON	57.02146
Н	C ₆ H ₇ ON ₃	137.05891
I	C ₆ H ₁₁ ON	113.08406
L	C ₆ H ₁₁ ON	113.08406
K	C ₆ H ₁₂ ON ₂	128.09496
M	C₅H₀ONS	131.04049
F	C ₉ H ₉ ON	147.06841
P	C ₅ H ₇ ON	97.05276
S	$C_3H_5O_2N$	87.03203
T	$C_4H_7O_2N$	101.04768
W	C ₁₁ H ₁₀ ON ₂	186.07931
Υ	$C_9H_9O_2N$	163.06333
V	C ₅ H _o ON	99.06841

ion	x-axis: m/z
A	72,04435
AC	175,0535
ACI	288,1376
ACID	403,1646
CIDS	437,17
I D S	334,1608
DS	221,0768
S	106,0498

But how do we get the intensity values?

ion	x-axis: m/z	y-axis: intensity
A	72,04435	?
AC	175,0535	?
ACI	288,1376	?
ACID	403,1646	?
CIDS	437,17	?
IDS	334,1608	?
DS	221,0768	?
S	106,0498	?

Every amino acid has known physicochemical properties

Helicity	Hydrophobicity	pl	Molecular mass
68	51	32	71.03711
23	75	23	156.10111
33	25	0	114.04293
29	35	4	115.02694
70	100	27	103.00919
58	16	32	129.04259
41	3	48	128.05858
73	94	32	57.02146
32	0	69	137.05891
66	82	29	113.08406
38	12	26	113.08406
0	0	35	128.09496
40	22	28	131.04049
39	22	79	147.06841
44	21	29	97.05276
53	39	28	87.03203
71	80	31	101.04768
51	98	31	186.07931
55	70	28	163.06333
	23 33 29 70 58 41 73 32 66 38 0 40 39 44 53 71 51	68 51 23 75 33 25 29 35 70 100 58 16 41 3 73 94 32 0 66 82 38 12 0 0 40 22 39 22 44 21 53 39 71 80 51 98	68 51 32 23 75 23 33 25 0 29 35 4 70 100 27 58 16 32 41 3 48 73 94 32 32 0 69 66 82 29 38 12 26 0 0 35 40 22 28 39 22 79 44 21 29 53 39 28 71 80 31 51 98 31

Machine learning enables us to predict intensities based on these properties

ion	x-axis: m/z	y-axis: intensity
A	72,04435	?
AC	175,0535	?
ACI	288,1376	?
ACID	403,1646	?
CIDS	437,17	?
I D S	334,1608	?
DS	221,0768	?
S	106,0498	?

Machine learning enables us to predict intensities based on these properties

ion

x-axis:

m/z

y-axis:

intensity

Machine learning enables us to predict intensities based on these properties

ion	Target: intensities
A	0.002482
AC	0.729443
ACI	0.000000
ACID	0.003302
CIDS	0.004636
I D S	0.057674
DS	0.194737
S	0.007725

In MS²PIP, one input leads to multiple targets

In MS²PIP, one input leads to multiple targets, leading to multiple feature sets

Variable input length, requires creative feature engineering

ion	Feature 1	Feature 2	Feature 2	Feature 3	Feature 4	Feature 5	Feature 6	
A	Hydro 1	?	?	?	?	Basicity 1	?	
AC	Hydro 1	Hydro 2	?	?	?	Basicity 1	Basicity 2	
ACI	Hydro 1	Hydro 2	Hydro 3	?	?	Basicity 1	Basicity 2	•••
ACID	Hydro 1	Hydro 2	Hydro 3	Hydro 4	?	Basicity 1	Basicity 2	
CIDS	?	Hydro 2	Hydro 3	Hydro 4	Hydro 5	?	Basicity 2	
I D S	?	?	Hydro 3	Hydro 4	Hydro 5	?	?	
DS	?	?	?	Hydro 4	Hydro 5	?	?	•••
S	?	?	?	?	Hydro 5	?	?	

Target
int. b ₁
int. b ₂
int. b ₃
int. b ₄
int. y ₄
int. y ₃
int. y ₂
int. y ₁

Variable input length, requires creative feature engineering

Hydrophobicity Basicity Iso-electric point Helicity

Full peptide b-ion y-ion

Minimum Q1 Q2 Q3 Maximum

N-term
Fragmentation site - 1
Fragmentation site
Fragmentation site + 1
Fragmentation site + 2
C-term

Variable input length, requires creative feature engineering

ion	Charge	Length	Hydro min	Hydro Q1	Hydro Q2	Hydro Q3	Hydro max	
A	2	5	37	37	37	37	37	
AC	2	5	72	35	35	35	35	
ACI	2	5	153	35	35	37	37	•••
ACID	2	5	212	35	35	37	59	•••
CIDS	2	5	224	35	49	59	81	•••
IDS	2	5	189	49	49	59	81	•••
DS	2	5	108	49	49	59	59	•••
S	2	5	49	49	49	49	49	•••

Target
int. b ₁
int. b ₂
int. b ₃
int. b ₄
int. y ₄
int. y ₃
int. y ₂
int. y ₁

Given their shared fragmentation event, we can combine b- and y-ion features

lons (b and y)	Charge	Length	Hydro b min	Hydro b Q1	•••	Hydro y min	•••
A CIDS	2	5	37	37	•••	224	
AC IDS	2	5	72	35	•••	189	•••
ACI DS	2	5	153	35	•••	108	•••
ACID S	2	5	212	35	•••	49	•••

Target b	Target y
int. b ₁	int. y ₄
int. b ₂	int. y ₃
int. b ₃	int. y ₂
int. b ₄	int. y ₁

MS²PIP employs XGBoost, an ensemble decision tree algorithm

Decision tree

Ensemble of (weak learner) decision trees

The result is a predicted spectrum that is a much better resemblance of a real spectrum

MS²PIP is available on <u>iomics.ugent.be/ms2pip</u>

MS²PIP SERVER

HOW TO

RUN MS²PIP

CONTACT

MS²PIP SERVER

MS² Peak Intensity Prediction

MS²PIP is a tool to predict MS² signal peak intensities from peptide sequences. It employs the XGBoost machine learning algorithm and is written in Python.

You can install MS²PIP on your machine by following our extended install instructions found on the MS²PIP GitHub repository. For a more user friendly experience, we created this web server. Below, you can easily upload a list of peptide sequences, after which the corresponding predicted MS² spectra can be downloaded in a CSV or MGF file format.

More advanced users can also access MS²PIP Server through our <u>RESTful API</u>. Swagger-generated documentation can be found <u>here</u> and an example Python script to access the API can be found <u>here</u>.

If you use MS²PIP for your research, please cite the following papers:

• Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. *Nucleic Acids Research*, 43(W1), W326-W330.

Percolator employs a semi-supervised learning to improve target-decoy separation

Percolator's input comes from search engine derived metrics

Search engine features

- Search engine score
- Mass error of the peaks (theoretical vs measured)
- % of matched peaks
- **)** ...

We can add or replace these features with information from MS²PIP

Search engine features

- Search engine score
- Mass error of the peaks (theoretical vs measured)
- % of matched peaks
- **)** ...

Correlation of MS²PIP prediction and measured spectrum

- Dot product
- Pearson correlation
- Spearman rank correlation
- Absolute differences

) ...

MS²PIP + Percolator allows for more identifications at a more conservative FDR threshold

MS²PIP + Percolator allows for more identifications at a more conservative FDR threshold

MS²PIP within a search engine enables sensitive open modification searches

https://ionbot.cloud

MS²PIP can replace spectral libraries for Data-Independent acquisition (DIA)

- @RalfGabriels
- @CompOmics

www.compomics.com

References

- Sven Degroeve (2013). Bioinformatics. doi:10.1093/bioinformatics/btt544
- Ralf Gabriels (2019) Nucleic Acids Research doi:10.1093/nar/gkz299
- Bart Van Puyvelde*, Sander Willems*, Ralf Gabriels* (2019) bioRxiv. doi:10.1101/681429
- github.com/compomics/ms2rescore
- github.com/Biobix/proteoformer
- iomics.ugent.be/ms2pip
- ionbot.cloud