Linear Algebra Primer

Matrices / Vectors A matrix is an $n \times p$ object. Matrices are often denoted by a capital letter (or Greek symbol). A few common matrices will be

Matrix Multiplication The most important component in matrix multiplication is tracking dimensions.

Consider a simple case with

$$\underline{\hat{y}} = X \times \underline{\hat{\beta}},$$

where X is a 2×2 matrix, $\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$ and $\hat{\underline{\beta}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

In R, we use %% for matrix multiplication.

```
y_hat <- X %*% beta_hat; y_hat</pre>
```

```
## [,1]
## [1,] 7
## [2,] 1
```

 $\textbf{Kronecker Product} \quad \text{Kronecker product} \, \otimes, \, \text{enables a different type of matrix multiplication}.$

If

$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

and
$$B = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
, then

More about matrices

Nonsingular matrix and Matrix Inverse If X is a square matrix, then X is nonsingular if there exists another matrix s.t.

$$XX^{-1} = I$$
 and $X^{-1}X = I$

 X^{-1} is the inverse of a matrix. We can calculate the inverse of a matrix for a 1×1 matrix, perhaps as 2×2 , matrix and maybe even a 3×3 matrix. However, beyond that it is quite challenging and time consuming. Furthermore, it is also (relatively) time intensive for your computer.

Orthogonal matrices If a matrix X has an inverse that is also the transpose, $XX^T = I$, then X is an orthogonal matrix.

Motivating Dataset: Washington (DC) housing dataset Hopefully the connections to statistics are clear, using X and β , but let's consider a motivating dataset.

This dataset contains housing information from Washington, D.C. It was used for a STAT532 exam, so apologize in advance for any scar tissue.

```
DC <- read_csv('https://math.montana.edu/ahoegh/teaching/stat532/data/DC.csv')
```

```
## Parsed with column specification:
## cols(
##
     BATHRM = col_double(),
##
     HF BATHRM = col double(),
##
     AC = col_character(),
     BEDRM = col_double(),
##
     STORIES = col_double(),
##
##
     PRICE = col_double(),
     CNDTN = col_character(),
##
     LANDAREA = col_double(),
##
     FULLADDRESS = col_character(),
##
##
     ASSESSMENT_NBHD = col_character(),
##
     WARD = col_character(),
##
     QUADRANT = col_character()
## )
DC %>% group_by(WARD) %>%
  summarize('Average Price (millions of dollars)' = mean(PRICE)/1000000, .groups = 'drop') %>%
  kable(digits = 3)
```

WARD	Average Price (millions of dollars)
Ward 1	0.879
Ward 2	1.919
Ward 3	1.294
Ward 4	0.693
Ward 5	0.592
Ward 6	0.856
Ward 7	0.321
Ward 8	0.306

```
DC %>% group_by(BEDRM) %>%
  summarize(`Average Price (millions of dollars)` = mean(PRICE)/1000000, .groups = 'drop') %>%
  kable(digits = 3)
```

BEDRM	Average Price (millions of dollars)
0	0.195
1	0.442
2	0.479
3	0.620
4	0.832
5	1.355
6	1.849
7	1.666
9	7.365

Regression Model

There are many factors in this dataset that can are useful to predict housing prices.

$$y_i = \beta_0 + \beta_1 * x_{SOFT,i} + \beta_2 x_{BEDRM,i} + \epsilon_i, \tag{1}$$

where y_i is the sales price of the i^{th} house, $x_{SQFT,i}$ is the living square footage of the i^{th} house, and $x_{BEDRM,i}$ is the number of bedrooms for the i^{th} house. Note this implies that we are treating bedrooms as continuous variables as opposed to categorical.

we usually write $\epsilon_i \sim N(0, \sigma^2)$. More on that soon.

In R we often write something like: price ~ LANDUSE + BEDRM.

Now let's write this model in matrix notation:

$$y = X\beta + \underline{\epsilon},\tag{2}$$

$$\text{where } \underline{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ X = \begin{bmatrix} 1 & x_{SQFT,1} & x_{BEDRM,1} \\ 1 & x_{SQFT,2} & x_{BEDRM,2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{SQFT,n} & x_{BEDRM,n} \end{bmatrix}, \underline{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}, \text{ and } \underline{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$