Análisis Matemático II

Tema 1: Ejercicios propuestos

1. Se considera la sucesión $\{f_n\}$ de funciones de \mathbb{R} en \mathbb{R} dada por:

$$f_n(x) = \frac{x}{n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que $\{f_n\}$ converge uniformemente en un conjunto no vacío $C \subset \mathbb{R}$ si, y sólo si, C está acotado.

2. Sea $\{g_n\}$ la sucesión de funciones de \mathbb{R}_0^+ en \mathbb{R} definida por:

$$g_n(x) = \frac{2 n x^2}{1 + n^2 x^4} \quad \forall x \in \mathbb{R}_0^+, \quad \forall n \in \mathbb{N}$$

Dado $\delta \in \mathbb{R}^+$, probar que $\{g_n\}$ converge uniformemente en $[\delta, +\infty[$, pero no en el intervalo $[0, \delta]$.

3. Para cada $n \in \mathbb{N}$, sea $h_n : [0, \pi/2] \to \mathbb{R}$ la función definida por

$$g_n(x) = n (\cos x)^n \sin x \qquad \forall x \in [0, \pi/2]$$

Fijado un $\rho \in \mathbb{R}$ con $0 < \rho < \pi/2$, probar que la sucesión $\{g_n\}$ converge uniformemente en el intervalo $[\rho, \pi/2]$, pero no en $[0, \rho]$.

4. Sea $\{\varphi_n\}$ la sucesión de funciones de $\mathbb R$ en $\mathbb R$ definida por

$$\varphi_n(x) = \frac{x^2}{1 + n |x|} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

Probar que $\{\varphi_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R} , pero no converge uniformemente en \mathbb{R} .

5. Se considera la sucesión $\{\psi_n\}$ de funciones de \mathbb{R}^+_0 en \mathbb{R} definida por

$$\psi_n(x) = \frac{x^n}{1+x^n} \quad \forall x \in \mathbb{R}_0^+, \quad \forall n \in \mathbb{N}$$

Dados $r, \rho \in \mathbb{R}$ con $0 < r < 1 < \rho$, estudiar la convergencia uniforme de $\{\psi_n\}$ en los conjuntos [0, r], $[r, \rho]$ y $[\rho, +\infty[$.