Quantum Theory - Worksheet 7

Problem 1

You have encountered the orbital angular momentum operator $\hat{\mathbf{L}}$ earlier this academic year. $\hat{\mathbf{L}}$ is a geometrical vector whose x-, y- and z-components, respectively \hat{L}_x , \hat{L}_y and \hat{L}_z , are Hermitian operators. These three operators do not commute with each other. Instead

$$\begin{split} [\hat{L}_x,\hat{L}_y] &= i\hbar \hat{L}_z,\\ [\hat{L}_y,\hat{L}_z] &= i\hbar \hat{L}_x,\\ [\hat{L}_z,\hat{L}_x] &= i\hbar \hat{L}_y. \end{split}$$

Note that the last two of these commutation relations can be obtained from the equation $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$ by making the cyclic permutation $x \to y, y \to z, z \to x$.

- (a) We denote the dot product of $\hat{\mathbf{L}}$ with itself by the symbol $\hat{\mathbf{L}}^2$. Explicitly, $\hat{\mathbf{L}}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$. Show that the above commutation relations imply that $\hat{\mathbf{L}}^2$ commutes with \hat{L}_x , \hat{L}_y and \hat{L}_z . (You only need to show that $[\hat{\mathbf{L}}^2, \hat{L}_x] = 0$; that $[\hat{\mathbf{L}}^2, \hat{L}_y]$ and $[\hat{\mathbf{L}}^2, \hat{L}_z]$ are also zero follows by symmetry.)
- (b) The eigenvalues of \hat{L}_z and $\hat{\mathbf{L}}^2$ are, respectively, $m \hbar (m=0,\pm 1,\pm 2,\ldots)$ and $l(l+1) \hbar^2 (l=0,1,2,\ldots)$. If the orthonormal vectors $|l,m\rangle$ are joint eigenvectors of these two operators,

$$\begin{split} \hat{\mathbf{L}}^2|l,m\rangle &= l(l+1)\,\hbar^2|l,m\rangle,\\ \hat{L}_z|l,m\rangle &= m\,\hbar|l,m\rangle, \end{split}$$

and $\langle l', m' | l, m \rangle = \delta_{l'l}\delta_{m'm}$, with l = 0, 1, 2, ... and m = -l, -l + 1, ..., l - 1, l. [For a general angular momentum operator $\hat{\mathbf{J}}$, the eigenvalues or $\hat{\mathbf{J}}^2$ would be $j(j+1)\hbar^2$ where j is an integer or a half-integer $(j \geq 0)$; however, only integer values of j are possible if $\hat{\mathbf{J}}$ is an *orbital* angular momentum operator.]

- (i) Consider eigenvectors $|l,m\rangle$ such that $\hat{\mathbf{L}}^2|l,m\rangle=12\,\hbar^2|l,m\rangle$. What are the possible values of m for these eigenvectors?
- (ii) Does \hat{L}_z have eigenvectors that are not eigenvectors of $\hat{\mathbf{L}}^2$?
- (iii) Could $\hat{\mathbf{L}}^2$ also have eigenvectors in common with \hat{L}_x or \hat{L}_y ? (Justify your answer.)
- (c) In Classical Mechanics, the angular momentum of a particle is the cross product of its position vector and its momentum vector: $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, where

$$\mathbf{L} = L_x \,\hat{\mathbf{x}} + L_y \,\hat{\mathbf{y}} + L_z \,\hat{\mathbf{z}},$$

$$\mathbf{r} = x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} + z \,\hat{\mathbf{z}},$$

$$\mathbf{p} = p_x \,\hat{\mathbf{x}} + p_y \,\hat{\mathbf{y}} + p_z \,\hat{\mathbf{z}},$$

with $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ unit vectors in the x-, y- and z-directions. Show that

$$L_x = yp_z - zp_y,$$

$$L_y = zp_x - xp_z,$$

$$L_z = xp_y - yp_x.$$

(Note that making the cyclic permutation $x \to y$, $y \to z$, $z \to x$ transforms L_x into L_y , L_y into L_z and L_z into L_x .)

(d) One can pass from the classical angular momentum vector to the quantum mechanical orbital angular momentum operator in position representation by replacing x, y, z, p_x, p_y and p_z by the operators. This gives the three operators \hat{L}_x , \hat{L}_y and \hat{L}_z defined as follows:

$$\hat{L}_x = \hat{y}\hat{p}_z - \hat{z}\hat{p}_y,$$

$$\hat{L}_y = \hat{z}\hat{p}_x - \hat{x}\hat{p}_z,$$

$$\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x.$$

(The same equations as in Part (c), but here \hat{x} , \hat{y} , \hat{z} , \hat{p}_x , \hat{p}_y , \hat{p}_z , \hat{L}_x , \hat{L}_y and \hat{L}_z are operators.)

- (i) Using these equations and the commutation relations $[\hat{x}, \hat{p}_x] = i\hbar$ etc., show that $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$.
- (ii) Calculate the commutator $[\hat{L}_z, \hat{y}]$, using the expression of \hat{L}_z quoted above.

Problem 2

Consider two states, state a and state b, described by the ket vectors $|a\rangle$ and $|b\rangle$, respectively. Suppose that these two states are also described, in the position representation, by the wave functions $\psi_a(x)$ and $\psi_b(x)$. Thus

$$\langle a|b\rangle = \int_{-\infty}^{\infty} \psi_a^*(x)\psi_b(x) dx.$$

Passing to the momentum representation transforms $\psi_a(x)$ and $\psi_b(x)$ into the wave functions $\phi_a(p)$ and $\phi_b(p)$ such that

$$\phi_a(p) = \frac{1}{(2\pi\hbar)^{1/2}} \int_{-\infty}^{\infty} \exp(-ipx/\hbar) \psi_a(x) \, \mathrm{d}x,$$
$$\phi_b(p) = \frac{1}{(2\pi\hbar)^{1/2}} \int_{-\infty}^{\infty} \exp(-ipx/\hbar) \psi_b(x) \, \mathrm{d}x.$$

Show that

$$\langle a|b\rangle = \int_{-\infty}^{\infty} \phi_a^*(p)\phi_b(p) dp.$$

The upshot is that the probabilities predicted by quantum mechanics do not depend on whether the states are described in the position representation or in the momentum representation.

Problem 3

Consider an operator \hat{a} such that $[\hat{a}, \hat{a}^{\dagger}] = 1$, where \hat{a}^{\dagger} is the adjoint of \hat{a} , and a vector $|\alpha\rangle$ such that $\hat{a}|\alpha\rangle = \alpha |\alpha\rangle$, where α is a number (possibly complex) and $\langle \alpha | \alpha \rangle = 1$. Also, let $\hat{S} = (\hat{a} + \hat{a}^{\dagger})/2$ and $\hat{D} = (\hat{a} - \hat{a}^{\dagger})/(2i)$. Show that $\langle \alpha | \hat{S}^2 | \alpha \rangle = (\text{Re } \alpha)^2 + 1/4$ and $\langle \alpha | \hat{D}^2 | \alpha \rangle = (\text{Im } \alpha)^2 + 1/4$, as was stated in Question 2 of the progress test.