Անտենաների թերությունների և ճառագայթվող էլեկտրամագնիսական դաշտի հետազոտումը ջերմաառաձգական օպտիկական ինդիկատորով մանրադիտակի օգնությամբ

Ուսանող՝ Սիմոնյանց Դավիթ

ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆ / ՖԻՉԻԿԱՅԻ ԻՆՍՏԻՏՈՐՏ

Անտենաները կարևոր դեր են խաղում հեռահաղորդակցության ոլորտում, հնարավորություն տալով հաղորդել և ընդունել Էլեկտրամագնիսական ալիքներ։

Անտենաներում հայտնվող թերությունները բերում են անցանկայի խնդիրների, օրինակ`

- Ազդանշանների թուլացումներ կամ կորուստներ
- Ավելցուկային անցանկալի ինտերֆերենցիաներ
- Հաճախային շեղումներ
- Ազդանշանների աղավաղումներ

Ընդհանուր դեպքում` թերությունները ազդեցություն են թողնում անտենայից ճառագայթվող էլեկտրամագնիսական դաշտի վրա։

Էլեկտրամագնիսական դաշտը հետազոտելու միջոցներ՝

- Սկաևավորման տեխնիկա`
 - Սկանավորող ջերմային մանրադիտակ (Scanning thermal microscope (SThM))
 - Մերձադաշտի սկանավորման օպտիկական մանրադիտակ (Near-field scanning optical microscope (NSOM))
- Չերմաառաձգական օպտիկական ինդիկատորով մանրադիտակ (ՉԱՕԻՄ)

Սկանավորման տեխնիկայի առավելություններն են`

• Մեծ տարածական լուծունակություն

Սկանավորման տեխնիկայի թերություններն են`

- Պահանջում են թանկ և բարդ հասանելի նյութեր և սարքեր
- Չափումների խիստ պայմաններ
- Չափումների դանդաղ տևողություն
- SThM-ը պահանջում է հպում չափվող նմուշի հետ

ՉԱՕԻՄ-ի առավելություններն են`

- Մեծ տարածական լուծունակություն
- Մեծ ջերմային զգայունություն
- Պահանջվող սարքերը թանկ չեն և հեշտ հասանելի
- Չափումների արագ տևողություն
- Աշխատում է առանց չափվող նմուշի հետ հպվելու

ՁԱՕԻՄ-ի թերություններն են՝

• Ալիքների չափման հաճախային տիրույթը սահմանափակված է միկրոալիքային տիրույթում

ՁԱՕԻՄ-ի սզկբունքային սխեման`

2/4

Ֆոտոէլաստիկ երևույթը օպտիկական ինդիկատորում`

Կապը q ջերմային բաշխվածության և β_1 , β_2 գծային երկբեկման միջև`

$$q = \frac{\lambda}{2\pi dS} \frac{1 - \nu}{\alpha Ek} \left(2 \frac{\partial^2 \beta_2}{\partial x \partial y} + \frac{\partial^2 \beta_1}{\partial x^2} - \frac{\partial^2 \beta_1}{\partial y^2} \right)$$

որտեղ` S-ը լարման օպտիկական հաստատունն է, λ -ն ընկնող լույսի ալիքի երկարությունն է, d-ն ինդիկատորի հաստությունն է, α -ն ջերմային ընդարձակման գործակիցն է, ν -ն Պուասոնի գործակիցն է, E-ն Յունգի մոդուլն է,

*k-*և ինդիկատորի էֆեկտիվ ջերմահաղորդականությունն է։

Էլեկտրամագնիսական դաշտի կորուստները` դիէլեկտրիկ միջավայրում էլեկտրական դաշտի համար`

$$q = \frac{\omega}{2} \varepsilon'' |E|^2,$$

հաղորդիչ միջավայրում մագնիսական դաշտի համար`

$$q = \frac{P_{av}}{V} = \frac{R_s}{2t} |H_t|^2,$$

$$P_{av} = \int \frac{R_s}{2} |H_t|^2 dS,$$

$$R_s = \sqrt{\frac{\omega \mu}{2\sigma}} = \frac{1}{\sigma \delta_s} :$$

Տվյալների հավաքագրման քայլերի հերթականությունը՝

(a) Stationary state measurement

(b) Time resolved measurement

Հարթեցման և դիֆերենցման պրոցեսները՝

ՁԱՕԻՄ-ի միջոցով հետազոտվել է ալիքատարային անտենայի Էլեկտրամագնիսական ճառագայթումը։ Օգտագործվել է Pasternak արտադրության PE9804 WR-90 մոդելի ալիքատարը։

Ինդիկատորի թաղանթի նյութը	Ինդիում-անագի օքսիդ` In ₂ O ₃ ·SnO ₂ (Indium-tin oxide - ITO)
Թաղանթի հաստությունը	100 ևմ
Ալիքատարի հեռավորությունը ինդիկատորից	5 น์น์
Ալիքատարի կտրվածքի չափերը	22.86 น์บ×10.16 น์น์

Փորձի ընթացքը` ամեն մուտքային հզորության համար տրված հաճախային տիրույթում 9 հաճախություններով Էլեկտրամագնիսական ալիքների գեներացիայի դեպքում։

Մուտքային հզորությունը	Չափված ալիքների հաճախությունները
0 dBm	[6; 14] ԳՀց, 1 ԳՀց քայլով
3 dBm	[6; 14] ԳՀց, 1 ԳՀց քայլով
6 dBm	[6; 14] ԳՀց, 1 ԳՀց քայլով

Ամեն մուտքային հաճախության համար միջինացված ինտենսիվության կախումը հաճախությունից`

- Հզորության մեծացմանը զուգընթաց դաշտի ինտենսիվությունն աճել է, բայց դաշտի բաշխվածության տեսքը չի փոխվել
- Հաճախության աճմանը զուգընթաց փոխվել է ինչպես դաշտի ինտենսիվությունը, այնպես էլ բաշխվածության տեսքը
- Առավելագույն ինտենսիվությունը գրանցվել է ալիքի 11 ԳՀց հաճախության դեպքում