System

Transmissibility

1 System Response for Unforced SDOF Systems

Table 1: Steady State Solutions for Unforced SDOF Systems

System	Response
Undamped Spring Mass	$\frac{v_0}{p}\sin(pt) + x_0\cos(pt)$
Damped Spring Mass	$e^{-\zeta pt} \left[\frac{v_0 + \zeta p x_0}{\sqrt{1 - \zeta^2} p} \sin(\sqrt{1 - \zeta^2} pt) + x_0 \cos(\sqrt{1 - \zeta^2} pt) \right]$

2 Steady State Solutions for Forced SDOF Systems

Steady State

Table 2: Steady State Solutions for Forced SDOF Systems

DMF

System	Steady State	(or Amplitude Response)	1121151111551511109		
Undamped Forced Spring Mass					
Forced Spring Mass	$\left(\frac{F_0}{k}\right) \left(\frac{1}{1 - \left(\frac{\omega}{p}\right)^2}\right) \sin(\omega t)$	$rac{\mathbb{X}}{\delta_{ ext{ST}}} = rac{1}{\left 1-\left(rac{\omega}{p} ight)^2 ight }$	$\frac{F_{T_{\text{max}}}}{F_0} = \frac{1}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$		
Rotating Imbalance	$\frac{F_0/k}{\left 1 - \left(\frac{\omega}{p}\right)^2\right } \sin(\omega t - \phi)$	$rac{M\mathbb{X}}{ ilde{m}e} = rac{\left(rac{\omega}{p} ight)^2}{\left 1-\left(rac{\omega}{p} ight)^2 ight }$	$\frac{F_{T_{\text{max}}}}{\tilde{m}e\omega^2} = \frac{1}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$		
Base Excitation	$a\left(\frac{1}{1-\left(\frac{\omega}{p}\right)^2}\right)\sin(\omega t)$	$\frac{\mathbb{X}}{a} = \frac{1}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$	$\frac{F_{T_{\max}}}{ka} = \frac{\left(\frac{\omega}{p}\right)^2}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$		
	Damped Forced Spring Mass				
Forced Spring Mass	$\frac{F_0/k}{\sqrt{\left[1-\left(\frac{\omega}{p}\right)^2\right]^2+\left(2\zeta\frac{\omega}{p}\right)^2}}$	$\frac{\mathbb{X}}{\delta_{\mathrm{ST}}} = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^{2}\right]^{2} + \left(2\zeta\frac{\omega}{p}\right)^{2}}}$	$\frac{F_{T_{\text{max}}}}{F_0} = \frac{\sqrt{1 + \left(2\zeta \frac{\omega}{p}\right)^2}}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta \frac{\omega}{p}\right)^2}}$		
Rotating Imbalance	$\frac{\tilde{m}e\omega^2/k}{\sqrt{\left[1-\left(\frac{\omega}{p}\right)^2\right]^2+\left(2\zeta\frac{\omega}{p}\right)^2}}$	$\frac{M\mathbb{X}}{\tilde{m}e} = \frac{\left(\frac{\omega}{p}\right)^2}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$	$\frac{F_{T_{\text{max}}}}{\tilde{m}e\omega^2} = \frac{\sqrt{1 + \left(2\zeta\frac{\omega}{p}\right)^2}}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$		
Base Excitation	$\frac{a\sqrt{k^2 + (c\omega)^2}/k}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$	' 2	$\frac{F_{T_{\text{max}}}}{ka} = \frac{\left(\frac{\omega}{p}\right)^2 \sqrt{1 + \left(2\zeta\frac{\omega}{p}\right)^2}}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$		
		$\frac{\mathbb{Z}}{a} = \frac{\left(\frac{\omega}{p}\right)^2}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$			

General solution for forced damped SDOF system ¹

$$m_{\text{eff}}\ddot{x} + c_{\text{eff}}\dot{x} + k_{\text{eff}}x = F_0\sin(\omega t - \alpha)$$

is given by

$$x(t) = \mathbb{X}\sin(\omega t - \alpha - \phi)$$

 $^{^{1}}F_{0}$ for spring, imbalance, and excitation is F_{0} , $me\omega^{2}$, and $a\sqrt{k^{2}+(c\omega)^{2}}$, respectively.

where

$$\mathbb{X} = \frac{F_0}{\sqrt{\left(k_{\text{eff}} - m_{\text{eff}}\omega^2\right)^2 + \left(c_{\text{eff}}\omega\right)^2}} = \frac{F_0/k}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}}$$

3 Steady State Solutions for Forced Non-Harmonic SDOF Systems

The general steady state solution for a periodic $(\tau = 2\pi/\omega)$ forced damped SDOF system is given by:

$$x(t) = \frac{a_0}{2k} + \sum_{j=1}^{\infty} \frac{a_j/k}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}} \cos(j\omega t - \phi_j)$$
$$+ \sum_{j=1}^{\infty} \frac{b_j/k}{\sqrt{\left[1 - \left(\frac{\omega}{p}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{p}\right)^2}} \sin(j\omega t - \phi_j)$$

where

$$\phi_j = \tan^{-1} \left[\frac{2\zeta \frac{\omega}{p}}{1 - \left(\frac{j\omega}{p}\right)^2} \right]$$

$$a_0 = \frac{2}{\tau} \int_0^{\tau} F(t)dt = 2F_{\text{avg}}$$

$$a_j = \frac{2}{\tau} \int_0^{\tau} F(t)\cos(j\omega t)dt, \quad j = 1, 2, 3, \dots$$

$$b_j = \frac{2}{\tau} \int_0^{\tau} F(t)\sin(j\omega t)dt, \quad j = 1, 2, 3, \dots$$

Todo: add common solutions such as step, ramp. Ask TA if you can infer some coefficients are zero based on some symmetry.

4 Transient Response of Spring-Mass Systems

Table 3: Particular Response of Spring-Mass Systems

Input	F_0	Particular Response
Step	$F_0 = F_1$	$x_p(t) = \frac{F_1}{k}$
Ramp	$F_0 = \beta t$	$x_p(t) = \frac{\beta}{k}t$
Exponential	$F_0 = F_1 e^{-at}$	$x_p(t) = \frac{F_1}{ma^2 + k} e^{-at}$