## Физические аспекты в моделях освещения

Быковских Дмитрий Александрович

23.11.2024

4□ > 4ⓓ > 4를 > 4를 > 를 ∽9,0°

Физические аспекты

2024-12-07

Физические аспекты в моделях освещения

Быковских Дмитрий Александрович

23.11.2024

#### Введение

Радиометрия — наука о измерении электромагнитного излучения в различных частях спектра, включая видимую световую область, инфракрасное и ультрафиолетовое излучение, радиоволны и другие формы излучения.

Радиометрия описывает количественные характеристики излучения, такие как поток энергии, интенсивность и яркость, и используется в различных областях, включая астрономию, фотометрию и измерения теплового излучения.

Оптика — раздел физики, изучающий свет и его взаимодействие с веществом, а также явления, связанные с распространением света, его преломлением, отражением, дифракцией и интерференцией.

4 D > 4 P > 4 E > 4 E > E 9 Q P

Физические аспекты

—Введение

2024

#### Введение

Радисметрия — наука о измерении зектуромагнитного излучения в различных частях спектра, яключая видимую световую обласи, инфражрасное и ультрафиолитовое излучения, радисиолны и другие формы излучения.

В дамометрия описывает изличественные изложтееристики излучения.

Радиометрия описывает количественные характеристики излучения, такие как поток энергии, интенсивность и эркость, и используется в различных областях, включая астрономию, фотометрию и измерения теплового излучения.

Оптика — раздел физики, изучающий свет и его взаимодействие с веществом, в также явления, связанные с распространениям света, его преломлением, отражением, дифракцией и интерференцией.

Быковских Д.А

### Модель

Модель освещения — математическая модель, описывающая, как свет взаимодействует с поверхностью объектов, чтобы создать реалистичное изображение.

Рассматривается простая геометрическая модель, являющаяся следствием уравнения Максвелла, согласно которой свет представляет собой поток лучистой энергии, распространяющийся вдоль геометрических лучей.

При этом используется ряд упрощений:

- 1. Выбранная модель является статической.
- 2. Энергия излучения (взято из оптики) определяется за время на много больше, чем период собственных колебаний электромагнитных волн оптического диапазона ( $10^{14}$   $\Gamma$ ц).

' 4).

Физические аспекты

–Модель

•

вазимодействует с поверхностью объектов, чтобы создать реалистичное изображение. Рассматривается простая геометрическая модель, являющаяся

следствиям уравнения Максвелла, согласно которой свет представляет собой поток лучистой энергии, распространяющийся вдоль геометрических лучай.

При этом используется ряд упрощений:

1. Выбранная модель является статической.

2. Энергия килучения (вато из оптики) опраделяется за время на много больши, чем период собственных комебаний электромагнитных воле оптического азыпаковы (10<sup>14</sup> гм.).

Модели освещения используются в компьютерной графике, чтобы вычислить цвет каждого пикселя, учитывая источники света, свойства материалов и расположение камеры.

Математическая модель — формализованное представление реального объекта, явления или процесса с использованием математического языка.

Математическая модель представляет собой компромисс между бесконечной сложностью изучаемого явления и желаемой простотой его описания.

Полнота модели связана с ее полезностью изучения свойств исследуемого явления.

Простота модели заключается в возможности численного исследования с помощью вычислительных систем и анализа существующими математическими средствами.

#### Геометрическая модель

В такой модели электромагнитное поле в однородных изотропных средах переносит **энергию** E, измеряемую в джоулях (Дж), в направлении, которое указывается оптическим лучевым вектором q.

Поток излучения (лучистый поток)  $\Phi_e$  — величина энергии, переносимой полем в единицу времени через данную площадку

$$\Phi_e = \frac{E}{t}, \qquad \left[\frac{\Pi \kappa}{c}\right] \equiv [B\tau]$$

Физические аспекты

2024

-Геометрическая модель

Геометрическая модель

В такой модели алектроматичное поле в однородных илотропных срадах первносит эмергика. С., измеряемую в джоулех (Дж), в направлания, которое указывается оптических лучевых выстором Поток излучения (лучестый поток)  $\Phi_{\sigma}$  — величина энергии,

$$\Phi_{\theta} = \frac{E}{t}, \qquad \left[\frac{\mathbf{B}\mathbf{x}}{c}\right] \equiv \left[\mathbf{B}\mathbf{r}\right]$$



Рис. 1: Поток излучения

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣へ○ □

#### Геометрическая модель

Поверхностная плотность потока энергии  $E_e$  — величина потока  $\Phi_e$ , приходящаяся на единицу площади S,

$$E_e = rac{\partial \Phi_e}{\partial S}, \qquad \left\lceil rac{\mathsf{B} \mathsf{T}}{\mathsf{M}^2} 
ight
ceil$$

или энергетическая освещенность  $E_e$ 

Но также может быть наоборот.

**Энергетическая светимость**  $M_e$  — поверхностная плотность потока энергии, излучаемая поверхностью.

Физические аспекты

2024-12-07

Геометрическая модель

Поверхностная плотность потока энергии  $E_e$  — величина потока  $\Phi_e$ , приходищанся на адиници поцици  $S_e$ 

Геометрическая модель

- 35 [м²]

з энергетическая освещенность Е<sub>в</sub>

также может быть наоборог.

весетическая светимость М<sub>в</sub> — повединостная плотность-

Но также может быть насборот. Энергетическая светимость  $M_{\phi}$  — поверхностная плотность поток энергии, излучаемая поверхностью.

В реальных условиях свет не равномерен, поэтому, в действительности, требуется интегрировать, чтобы учесть влияние освещенности на каждую точку поверхности

$$\int E_e dS = \Phi_e$$

или

$$\int \int E_e dx dy = \Phi_e$$

Таким образом, такой способ точно вычислить световой поток в общем случае, даже если освещенность распределена неоднородно по поверхности.

### Обезразмеривание физических величин

Обезразмеривание физических величин — процесс приведения уравнений или величин к безразмерному виду, то есть к форме, где отсутствуют явные единицы измерения. Это достигается путём введения безразмерных переменных и масштабных величин.

Выбор масштабных величин (характерных масштабов).

Для начала необходимо определить характерные величины, которые будут использоваться для нормализации.

Эти величины должны быть выбраны таким образом, чтобы они описывали важнейшие аспекты системы. Например.

 $L_0$  — характерная длина (например, радиус объекта или размеры области, где расположены все объекты);

 $T_0$  — характерное время (например, время распространения волн);

 $U_0$  — характерная скорость (например, скорость движения потока частиц).

4 D F 4 P F 4 P F B

Физические аспекты

2024

-Обезразмеривание физических величин

Обезразмеривание физических величи

жен магитабицу велиции (уапаутелицу магитабов) я начала необходимо определить характерные величины, которы-Эти величины должны быть выбраны таким образом, чтобы они

описывали важнейшие аспекты системы.

To — характерное время (например, время распространения вол

Пример обезразмеривания модели освещения Ламберта.

$$I = I_L k_d (\vec{L} \cdot \vec{N}),$$

где I — интенсивность отражённого света;  $I_I$  — интенсивность источника;  $k_d$  — коэффициент диффузного отражения;  $\hat{L}$  — вектор направления на источник света; N — вектор нормали поверхности. Обезразмеривание:

- Нормализация интенсивности.  $I' = \frac{I}{I_{max}}, I'_{L} = \frac{I_{L}}{I_{max}},$
- ullet Нормализация векторов  $ec{L}$  и  $ec{N}$  (обычно, уже нормализованы, т.е.  $\|\vec{L}\| = \|\vec{N}\| = 1$ ).

Обезразмеренная модель имеет вид:

$$I' = I'_{L}k_{d}(\vec{L}\cdot\vec{N}).$$

Быковских Д.А

Физические аспекты

23.11.2024

### Телесный угол

Solid angle

**Телесный угол**  $\Omega$  (или твердый угол), измеряемый в стерадианах (ср), представляет собой меру пространственного угла, измеряемого в трехмерном пространстве.

Вычисляется как

Быковских Д.А

$$\Omega = \frac{S}{r^2}$$

где S — площадь проекции поверхности; r — радиус сферы.

Телесный угол определяется как соотношение площади проекции поверхности, заключенной между лучами, выпущенными из точки и пересекающими какой-то объект (обычно сферу), к квадрату радиуса этой сферы.

Таким образом, телесный угол измеряет, насколько много пространства охватывает объект относительно точки наблюдения.

Физические аспекты

 4 □ ▶ 4 ∰ ▶ 4 월 ▶ 4 월 ▶ 6 월 ▶ 9 Q ○

 23.11.2024
 7 / 20

Физические аспекты

2024

-Телесный угол

Телесный угол Solid angle

Телесный угол Ω (или твердый угол), измеряемый в стерадивных (cp), представляет собой меру пространственного угли измеряемого в тресмерном пространстве. В писоверо в тресмерном пространстве.

 $\Omega = \frac{5}{r^2}$ ,

где 5 — площадь проекция поверхности; г — радиус сфоры. Телесный угол определяется как соотношение площади проекции поверхности, заключенной между лучами, выпущенными из точки пересекающими какой-то объект (обычно сферу), к квадрату радиу

Таким образом, телесный угол измеряет, насколько много пространства созатывает объект относительно точки наблод



Рис. 2: Телесный угол

### Угол и телесный угол

Angle and Solid Angle

Рассмотрим следующие формулы

$$d\theta = \frac{dL}{r}$$

где  $d\theta$  — изменение угла  $\theta$ ; dL — изменение длины дуги; r — радиус сферы.

Следующая формула используется при интегрировании по сферической поверхности и является результатом преобразования элемента площади проекции поверхности dS в сферических координатах.

$$d\Omega = \frac{dS}{r^2} = \frac{(rd\phi)(r\sin\theta d\theta)}{r^2} = \sin\theta d\theta d\phi,$$

где  $d\Omega$  — элемент телесного угла; dS — элемент площади проекции поверхности; r — радиус сферы;  $d\theta$  — элемент угла  $\theta$  (зенитного угла);  $d\phi$  — элемент угла  $\phi$  (азимутального угла).

Физические аспекты

∟Угол и телесный угол

Рассмотрям следующие формулы  $dt = \frac{dt}{dt}$ ,  $dt = \frac{dt}{dt}$ ,

Угол и телесный угол

 $d\Omega = \frac{dS}{r^2} = \frac{(rd\phi)(r\sin\theta d\theta)}{r^2} = \sin\theta d\theta d\phi,$ τge  $d\Omega =$  элемент телесного угла; dS = элемент площади провици

е dΩ — алемент телесного угла; dS — алемент площади проек верхности; r — радиус сферы; d $\theta$  — алемент угла  $\theta$  (аенятного  $\phi$  — алемент угла  $\phi$  (азимутального угла).



Рис. 3: Угол в полярных координатах (слева) и телесный угол в сферических координатах (справа)

# Площадь сферы

Differential Solid Angles

Итак, телесный угол описывается следующей формулой

$$d\omega = \frac{dS}{r^2} = \sin\theta d\theta d\phi$$

Площадь единичной сферы через телесный угол и в сферической системе координат

$$S_{\mathsf{sphere}} = \int_{\Omega} d\omega = \int_{0}^{2\pi} \int_{0}^{\pi} \sin \theta d\theta d\phi = \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\phi = 4\pi$$

Физические аспекты

2024-12-07

□Площадь сферы

Ποσιμαν cópesa Diferente field rejas Wha, πειοτικώ για ποιτοικωπείτο επιξηνομεί δροφορικό  $d_{\rm c} = \frac{d_{\rm c}^2}{d_{\rm c}^2} = \sin \theta \theta d_{\rm c}$  Πειοτικώ επιξηνομένου στο το το πολού για ν α οξοροφορικό στο το το το πολού το πολού  $d_{\rm c} = \frac{d_{\rm c}^2}{d_{\rm c}^2} = \frac{1}{d_{\rm c}} \sin \theta d_{\rm c} = \frac{1}{$ 



Рис. 4: Схема расчета площади сферы

# Ракурс

#### Foreshortening

Большой источник, рассмотренный под косым углом, должен создавать тот же эффект, что и маленький источник, расположенный перпендикулярно. Это явление известно как ракурс.

Физические аспекты

Большой асточик, рассмитринный под косму уголя, должны создавать тот их аффект, что я малемия асточик, рассмитринный под косму уголя, должны подраждент тот их аффект, что я малемия асточик, рассмитр



Рис. 5: Пример ракурса

2024-1

### Расчет телесного угла

Solid Angle Computing

Телесный угол  $\omega$  — мера пространства, определяемая проекцией заданной области поверхности на единичную сферу с центром в исходной точке.

Телесный угол характеризует долю сферической поверхности, на которую проецируется рассматриваемая область.

$$d\omega = dA_0 = \frac{dA \cdot \cos \theta}{r^2}$$

**4□ > 4₫ > 4 ≧ > 4 ≧ > 9 9 0** 

Физические аспекты

2024

-Расчет телесного угла

Темений угол  $\omega$  — меда пространства, опрадаленная проекцияй заданней объекте поверхности на «двиничную оферу с центром в основней точки. Темений угол характерирует довос обраченской поверхности, на отгорую проекцируется раскизтранамия объект  $d\omega = dA_0 = \frac{dA}{2}$ 

Расчет телесного угла



Рис. 6: Схема расчета телесного угла

## Энергетическая яркость

#### Radiance

Распределение света в пространстве зависит от положения и направления источников света (объектов, которые излучают свет), а также объектов, образующих сцену.

Подходящей единицей измерения для оценки распределения света в пространстве является энергетическая яркость L

$$L = rac{\partial^2 \Phi_e}{\cos heta \partial \omega \partial A}, \qquad \left[rac{\mathsf{B} au}{\mathsf{cp} \cdot \mathsf{m}^2}
ight] \equiv \left[\mathsf{ниT}
ight],$$

где L — энергетическая яркость (Radiance), описывает количество светового потока, излучаемого поверхностью в определенном направлении, на единичную площадку и в единичный угловой диапазон;  $d^2\Phi$  — элемент светового потока (Flux) через малую площадку dA в малом угловом диапазоне  $d\omega$ ;  $\cos\theta$  — косинус угла между нормалью к поверхности и направлением, в котором измеряется энергетическая яркость; dA — элемент площади поверхности, через которую измеряется световой поток;  $d\omega$  — элемент углового диапазона, в пределах которого измеряется световой поток.

Быковских Д.А Физические аспекты 23.11.2024 12 / 20 Физические аспекты

-Энергетическая яркость

Энергетическая яркость

Распределение света в пространстве зависит от положения в аправления источников света (объектов, которые излучают свет), гакже объектов, образующих сцену дурдящей единицей измерения для оценки распределения света в

метовтическая вомость: d4 — этемент плонали повельности, мето истоли



Рис. 7: Схема излучения из ds в dr

# Энергетическая яркость поверхности в конкретном направлении

Формула энергетической яркости поверхности в конкретном направлении

$$L\cos\theta d\omega = \frac{d^2\Phi}{dA}$$

где L — энергетическая яркость (Radiance), описывает количество светового потока, излучаемого поверхностью в определенном направлении, на единичную площадку и в единичный угловой диапазон  $(W/(m \cdot sr))$ ;  $d^2\Phi$  — элемент светового потока (Flux) через малую площадку dA в малом угловом диапазоне  $d\omega$ ;  $\cos\theta$  — косинус угла между нормалью к поверхности и направлением, в котором измеряется энергетическая яркость; dA — элемент площади поверхности, через которую измеряется световой поток;  $d\omega$  — элемент углового диапазона, в пределах которого измеряется световой поток.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕Q@

Физические аспекты

-Энергетическая яркость поверхности в конкретном направлении

Энергетическая яркость поверхности в конкретном

Формула энергетической яриости поверхности в конкретног

направлении

где L — энергетическая яркость (Radiance), описывает количеств циалазон ( $W/(m \cdot sr)$ );  $d^2\Phi$  — элемент светового потока (Flux) через малую площадку dA в малом угловом диапазоне du: cos  $\theta$  — косинус измеряется энергетическая яркость: dA — элемент площади товерхности, через которую измеряется световой поток;  $d\omega$  — элеме

Быковских Д.А

Физические аспекты

23.11.2024

# Бесконечно маленький источник света и участки поверхности

Энергетическая яркость поверхности в точке х1 в направлении точки x2 рассчитывается как

$$L(x_1, x_1 \to x_2) = \frac{d\Phi}{d\omega \cos \theta_1 dA_1} = \left[d\omega = \frac{\cos \theta_2 dA_2}{r^2}\right] = \frac{r^2 d\Phi}{\cos \theta_2 dA_2 \cos \theta_1 dA_1}$$

А в обратном направлении энергетическая яркость поверхности в точке x2 в направлении точки x2 из точки x1 рассчитывается как

$$L(x_2, x_1 \to x_2) = \frac{d\Phi}{d\omega \cos \theta_2 dA_2} = \left[d\omega = \frac{\cos \theta_1 dA_1}{r^2}\right] = \frac{r^2 d\Phi}{\cos \theta_1 dA_1 \cos \theta_2 dA_2}$$

Физические аспекты

2024-1

-Бесконечно маленький источник света и участки поверхности

Бесконечно маленький источник света и участки



Рис. 8: Излучение из ds в dr

### Расчет излученной энергии

Computing Irradiance

Рассчитать входящую освещенность в точки x для некоторой поверхности по заданной полусфере можно следующим образом:

$$E(x) = \int_{\Omega_+} L(x, \omega_i) (n \cdot \omega_i) d\omega_i = \int_0^{2\pi} \int_0^{\pi/2} L(x, \theta_i, \phi_i) \cos \theta_i \sin \theta_i d\theta_i d\phi_i$$

Физические аспекты

└-Расчет излученной энергии

Pасчет излученной энергии Computing Irradiance

Рассчитать входящую освещенность в точке x для некоторой поверхности по заданной полусфере можно следующим образом:

 $E(x) = \int_{\Omega_0} L(x, \omega_i) (n \cdot \omega_i) d\omega_i = \int_0^{2\pi} \int_0^{\pi/2} L(x, \theta_i, \phi_i) \cos \theta_i \sin \theta_i d\theta_i d\phi_i$ 

#### Двулучевая функция отражательной способности Bidirectional Reflectance Distribution Function, BRDF

Двулучевая функция отражательной способности (ДФОС) описывает какая доля световой энергии, приходящей из одного направления, уходит в другом направлении для произвольной пары таких направлений.

Математически выражается следующим образом:

$$f_r(x,\theta_o,\phi_o,\theta_i,\phi_i) = \frac{dL(x,\theta_o,\phi_o)}{dE(x,\theta_i,\phi_i)} = f_r(x,\omega_o,\omega_i) = \frac{dL(x,\omega_o)}{dE(x,\omega_i)}$$

Здесь  $\theta_i$  и  $\phi_i$  представляют углы направления входящего света (обычно относительно нормали к поверхности), а  $\theta_o$  и  $\phi_o$ представляют углы направления исходящего света.

BRDF является фундаментальным концептом, предоставляя способ моделирования взаимодействия света с поверхностями и его отражения в различных направлениях.

4 D F 4 P F 4 P F B

Физические аспекты

-Двулучевая функция отражательной способности

Двулучевая функция отражательной способность



Рис. 9: Двулучевая функция отражательной способности

Быковских Д.А

Физические аспекты

23.11.2024

Излученность в направлении наблюдения при условии всех входящих световых потоков.

$$L(x,\theta_o,\phi_o) = \int_0^{2\pi} \int_0^{\pi/2} f_r(x,\theta_o,\phi_o,\theta_i,\phi_i) L(x,\theta_i,\phi_i) \cos\theta_i \sin\theta_i d\theta_i d\phi_i$$

или

$$L(x,\omega_o) = \int_{\Omega_+} f_r(x,\omega_o,\omega_i) L(x,\omega_i) (n \cdot \omega_i) d\omega_i$$

Что пропорционально яркости пикселя для этого луча.



Marywhorth a simplemense submarghmen ope schouse ech engenye echouse och engenye echouse och som  $L(\epsilon,\theta_{\alpha},\phi_{\alpha}) = \int_{0}^{2\pi} \int_{0}^{L/2} L(\epsilon,\theta_{\alpha},\phi_{\alpha},\theta_{\gamma},\phi_{\gamma}) L(\epsilon,\theta_{\gamma},\phi_{\gamma})\cos\theta_{\gamma}\sin\theta_{\gamma}d\theta_{\gamma}d\phi_{\gamma}$  est  $L(\epsilon,\omega_{\alpha}) = \int_{0}^{\pi} L(\epsilon,\omega_{\alpha},\omega_{\gamma}) L(\epsilon,\omega_{\gamma})\cos\phi_{\gamma}$  "the oppositional explorit inscribe a part form during the property of the property deposition of explority property of explority and explorit inscribe a part form of dynamics."

Функция двустороннего распределения отраженного света (BRDF) обладает несколькими важными свойствами:

Физические аспекты

- 1. Положительность. Значения BRDF обычно неотрицательны для всех углов входа и выхода света.
- 2. Нормализация. Интеграл BRDF по всем направлениям входа и выхода света равен единице. Это свойство обеспечивает сохранение энергии в системе.
- 3. Ротационная инвариантность. BRDF не зависит от ориентации координатной системы, т.е. она инвариантна относительно поворотов.
- 4. Симметрия. BRDF симметрична относительно обмена направлений входа и выхода света  $(\theta_i, \phi_i$  и  $\theta_o, \phi_o)$ .
- 5. Локальная изотропия или анизотропия. BRDF может быть изотропной (не зависит от направления) или анизотропной (зависит от направления).
- 6. Монотонность. Поверхности с монотонной BRDF не могут сосредотачивать свет.
- 7. Микрогеометрическая зависимость. BRDF часто зависит от микрогеометрии поверхности (например, шероховатости или микронеровностей).

#### Световые и энергетические величины

Быковских Д.А.

Таблица 1: Сравнение энергетических и световых величин

| Энергетические              |                |                             | Световые       |   |                             |
|-----------------------------|----------------|-----------------------------|----------------|---|-----------------------------|
| Поток излучения             | Фе             | Вт                          | Световой поток | Ф | лм                          |
| Энергетическая сила света   | I <sub>e</sub> | <u>Вт</u><br>ср             | Сила света     | 1 | кд                          |
| Энергетическая освещенность | E <sub>e</sub> | <u>Вт</u><br>м <sup>2</sup> | Освещенность   | Ε | лк                          |
| Энергетическая светимость   | M <sub>e</sub> | <u>Вт</u><br>м <sup>2</sup> | Светимость     | М | <u>лм</u><br>м <sup>2</sup> |
| Энергетическая яркость      | Le             | <u>Вт</u> ср⋅м²             | Яркость        | L | <u>кд</u><br>м <sup>2</sup> |

Примечание. Световой поток измеряется в лм (люменах) и представляет собой полную видимую энергию, излучаемую источником света за единицу времени.

Физические аспекты 23.11.2024 18 / 20

Физические аспекты

-Световые и энергетические величины

| Энергетические              |                |     | Световые       |   |  |
|-----------------------------|----------------|-----|----------------|---|--|
| Поток излучения             | Фа             | Вт  | Световой поток | Ф |  |
| Энергетическая сила света   | l,             | 野   | Сила света     | I |  |
| Энергетическая освещенность | E <sub>e</sub> | 9   | Освещенность   | Е |  |
| Энергетическая светимость   | M <sub>e</sub> | 9   | Светимость     | м |  |
| Энергетическая яркость      | L,             | By. | Яркость        | L |  |

**Люмен** (лм) измеряет световой поток, представляя собой общее количество света, излучаемого источником света в одну секунду; используется для оценки яркости светильников и ламп.

**Кандела** (кд) измеряет световой поток в заданном направлении, представляя собой интенсивность света в конкретном угловом направлении; введена для оценки яркости источников света, особенно в направленных световых системах.

**Люкс** (лк) измеряет освещенность, представляя собой количество света, падающего на поверхность в один люкс, равный одному люмену на квадратный метр; введен как метрика для оценки комфортного освещения.

Историческая справка. Люкс и люмен стали стандартами измерения света в 20 веке, с развитием технологий освещения. В 1948 году была введена спецификация лм для измерения светового потока. Кандела была предложена в 1946 году в ходе разработки стандартов единиц измерения света, утвержденных в 1979 году.

#### Освещенность и светимость

Освещенность и светимость — разные величины, связанные с освещением:

- Освещенность (E) измеряет количество света, падающего на единицу площади. Единица измерения: люкс  $(лм/м^2)$ . Пример. лампа с потоком 1000 люмен освещает поверхность в 10 м, создавая освещенность 100 люкс.
- Светимость (M) характеризует общее количество света, излучаемого источником во всех направлениях. Единица измерения: люмен (лм). Пример. лампа с потоком 1000 люмен имеет светимость 1000 люмен.

Разница. Освещенность описывает свет на поверхности, а светимость — общий свет, излучаемый источником. ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○○ Физические аспекты

Освещенность и светимость

Освещенность и светимост

Единица измерения: люкс (лм/м<sup>2</sup>) Пример, лампа с потоком 1000 люмен освещает поверхность в 10

м. создавая освещенность 100 люкс. Светимость (M) — характеризует общее количество света

Единица измерения: люмен (лм) Пример, лампа с потоком 1000 люмен имеет светимость 100

Разница. Освещенность описывает свет на поверхности, а светимості общий свет, излучаемый источником

Быковских Д.А

Физические аспекты

23.11.2024

#### Заключение

#### Литература

- Bahadir K. Gunturk Radiometry, photometric stereo
- 2 Родионов С.А. Основы оптики. Конспект лекций
- 3 Jinxiang C. Computer Graphics: Radiometry and Illumination
- 9 Взаимосвязь силы света, светового потока и освещенности

Физические аспекты

2024

—Заключение

Заключение

Литература Ваhadir K. Gunturk Radiometry, photometric stereo

Вапаdir R. Gunturk Radiometry, photometric stereo
 Родионов С.А. Основы оптики. Конспект лекций

Jinxiang C. Computer Graphics: Radiometry and Illumination

Взаимосяязь силы света, светового потока и освещенности