弗兰克-赫兹实验

宋飞

15652772637

songfei_thu@mail.tsinghua.edu.cn

- ✓请签到,按照自己的实验编号就座。
- ✓微信扫码入群
- ✓先到的同学可以按电路图连线、阅读软件操作指南、ppt讲义

实验目的

- •理解弗兰克-赫兹实验的基本物理思想;
- 了解玻尔(Bohr)的原子模型理论,测量氩原子(Ar)的第一激发电位;
- 练习使用自动实验数据采集系统,巩固实验数据处理的能力。

实验背景——分离光谱

- 1666年,英国物理学家牛顿(Isaac Newton)通过三角棱镜将白光分解成7种颜色的连续光谱。较为遗憾的是,由于太阳光通过了圆孔而不是通过狭缝,并没有观察到分离的光谱线。
- 1802年,英国化学家渥拉斯顿(William Wollaston)将白光通过狭缝(峰宽不超过 0.05 inch)进而观察到7条暗条纹。
- 1814年, 德国物理学家夫琅和费(Joseph von Fraunhofer)在改进天文望远镜的过程中意外发现太阳中的分离光谱(可认为是最原始的分光计)。

实验背景——氢原子光谱

- 1853~1871年,瑞典物理学家A.J.埃斯特朗(Anders Jonas Ångström)详细测量了氢原子的四条发射光谱线,并给出了可见光的波长量级在 10^{-10} m($1\mathring{A}=10^{-10}$ m)
- 1885年,从事天文测量的瑞士数学家巴耳末找到一个经验公式(Balmer formula)来用以描述氢原子光谱可见光部分的规律,此后便把这一组线称为巴耳末系(Balmer series)。

$$\lambda = B \frac{n^2}{n^2 - 2^2}$$
 $(n = 3, 4, 5, 6, \dots)$

氢原子巴耳末系谱线图

实验背景——原子模型

- 早在牛顿时期,人们普遍认为原子是实心结构,直到1897年英国科学家汤姆森(Joseph John Thomson)发现了电子,提出了原子的"李子布丁模型"。
- 1909年,盖革(Hans Geiger)和马斯登(Ernest Marsden)在卢瑟福 (Ernest Rutherford)指导下完成了α粒子散射实验,但实验结果与汤姆森 所提出的模型不相符。
- 1911年, 卢瑟福根据实验结果提出了原子有核模型, 奠定现代原子模型基础。

实验背景——经典危机

- 经典电磁理论,电子绕核作匀速圆周运动,电子将不断 向外辐射与其运动频率相同的电磁波。
 - ✓原子不断地向外辐射能量,能量逐渐减小,电子绕核 旋转的频率也逐渐改变,原子光谱应是连续光谱;
 - ✓由于原子总能量减小,电子运动轨道越来越小,电子最终落到原子核上,因此原子结构是一个不稳定。
 - 实验: ①原子光谱是离散的线状光谱。
 - ②原子结构是稳定的。

实验原理——玻尔原子模型

• 为了解决经典理论遇到的困难, 1913年,玻尔将普朗克、爱因斯坦 的量子理论推广到卢瑟福的原子有 核模型中,并结合原子线光谱的实 验规律,提出了关于氢原子模型的 三个假设,奠定了原子结构的量子 理论基础。为此他获得1922年诺贝 尔物理学奖。

Niels Henrik David Bohr (1885.10.7~1962.11.18)

原子结构示意图 (玻尔模型)

实验原理——玻尔氢原子的理论

- ●定态假设:原子中的电子只能在一些半径不连续的轨道上做圆周运动,不 辐射能量,因而原子处于稳定状态(简称定态),并具有一定能量。
- ●跃迁假设: 电子从某一定态(能量为 E_n)向另一定态(能量为 E_m)跃迁时,将发射(或吸收)光子,其频率为 $\nu=rac{E_n-E_m}{h}$,h—普朗克常数。
- ●轨道角动量量子化假设:电子在定态轨道上运动时,其角动量只能取 $\frac{h}{2\pi}$ 的整

数倍,即

$$L = mvr = n\frac{h}{2\pi} \qquad n = 1, 2, 3, \Lambda$$

n = 3 n = 2 n = 1 $\Delta E = hv$

m为电子质量,v为电子运动的速率,r为轨道半径,n为量子数。

实验原理——弗兰克-赫兹实验

James Franck
German(1882-1964)

Gustav Ludwig Hertz
German (1887-1975)

- 1914年,弗兰克(James Franck, 1882~1964)和赫兹(Gustar Hertz, 1887~1975)在研究中发现电子与原子发生非弹性碰撞时能量的转移是量子化的。他们的精确测定表明,电子与汞原子碰撞时,电子损失的能量严格地保持4.9eV,即汞原子只接收4.9eV的能量。
- 这个事实是对玻尔的原子量子化模型的第一个决定性的证据。由于他们的工作对原子物理学的发展起了重要作用,曾共同获得1925年的物理学诺贝尔奖。

实验原理——弗兰克-赫兹实验

- •原子能量状态改变有两种情况:
 - ✓原子本身吸收或放出电磁辐射
 - ✓ 原子与其它粒子发生碰撞而交换能量
- 本实验利用具有一定能量的电子与氩原子(Ar)相碰撞而发生能量交换来实现氩原子状态的改变。
- 临界能量: 电子从原子基态跃迁到第一受激态时所需的能量
- 当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。

实验原理——弗兰克-赫兹管

• 弗兰克-赫兹管是一个具有双栅极结构的柱面型充氩四极管。

实验原理——弗兰克-赫兹管

- 灯丝电流 I_f 加热灯丝F,使旁热式阴极K被加热,从而产生慢电子。
- 第一栅极 G_1 的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。第一栅极 G_1 与阴极K之间的电位差由栅极电压 U_G 提供。
- 扫描电压Ua加在栅极G2和阴极K间,建立一个加速场,使得从阴极发出的电子被加速,穿过管内氩气朝栅极G2运动。由于阴极到栅极G2之间的距离比较大,这些电子与氩原子可以发生多次碰撞。
- 拒斥电压 U_R 在栅极 G_2 和板极P之间建立 一拒斥场,到达 G_2 附近而能量小于 eU_R 的 电子不能到达板极。
- 板极电路中的电流强度*I_P*用微电流放大器*A*来测量,其值大小反映了从阴极到达板极的电子数。

实验原理——弗兰克-赫兹管

实验原理——拒斥电压UR

在收集极P与加速栅极 G_2 之间加了一个小而稳定的拒斥(减速)电压 U_R ,可筛去能量小于eUR的电子,从而能检测出入射电子在非弹性碰撞过程中能量损失的情况。

✓ 经过不同Ua 加速,发生非弹性碰撞后到达第二 栅极的电子的能量统计分布不一样,所以在极 板电路中形成的电流大小也不一样,而拒斥场 的存在就把这种差异放大。

实验仪器

- 弗兰克-赫兹实验仪
 - 包含: 微电流放大仪、电压源和电流源、数模转换模块等
- 弗兰克-赫兹管箱
- 弗兰克-赫兹管(亚克力板,两同学一个)
- 一体机电脑
- 导线若干

实验仪器——弗兰克-赫兹实验仪

"灯丝电流"

控制开关

扫描电压(U_a/V)

灯丝电流(I_t/A)

栅极电压(U_G/V)

拒斥电压 (U_R/V)

总电源开关

内部集成有整流稳 压模块、单片机最 小系统、A/D转换模 块、微电流放大模 块等。

实验仪器——弗兰克-赫兹管箱

- 可用于充汞(Hg)或充氩气(Ar) 弗兰克-赫兹管的实验测量
- 箱体下部是充汞管所用加热炉
- 本实验采用氩气(Ar)管,无需加热,不使用箱体下部的控温装置。

- $1、测试<math>I_P$ $\sim U_a$ 曲线,根据曲线得到氩原子第一激发电位 U_g
- 2、计算氩原子受激后回到基态辐射出的光波波长λ
- 3、定性研究栅极电压 U_G 和拒斥电压 U_R ,对 I_P 的影响
- 4、研究和测量氩原子更高激发态的 $I_P \sim U_a$ 曲线
- 5、课堂上,利用一体机电脑,完成数据处理

1、测试 $I_P \sim U_a$ 曲线,根据曲线得到氩原子第一激发电位 U_g

- ① 采用自动采集软件,绘制 $I_P \sim U_a$ 曲线,获取6个峰值电压。
- ② 由前面的讨论可知, $I_{P}\sim U_{a}$ 曲线上相邻两峰值之间的电位差就是氩原子的第一激发电 U_{g} 。用线性拟合方法处理数据,求出 U_{g} 。
- ③ 关于 U_g 的误差,应从测量过程中的随机误差和外接电压表的仪器误差两方面来考虑。 希望同学们能自己计算出 Δ_{U_g} 值。扫描电源数字电压表精度可以按($0.1\%U_g+0.01$) 来计算。

 $U_g \pm \Delta U_g$

2、计算氩原子受激后回到基态辐射出的光波波长λ

• 利用氩原子第一激发电位 U_g ,结合玻尔的原子模型(跃迁假设),计算受激Ar原子回到基态所辐射的光波波长 λ (nm)。分析为什么实验中观测不到发光现象,且用壳罩住管子。

3、定性研究栅极电压 U_G 、拒斥电压 U_R ,对 I_P 的影响(以 U_G 为例)

- 先手动调节 U_G ,观察指针电流表,摸索电流变化规律后,合理选取 U_G 的分布。
- 采用控制变量法,使用自动采集装置,在5组不同 U_G 下,分别测量出5条不同的 $I_{P}\sim U_a$ 曲线,并用软件导出测试数据。采用Excel或Origin等数据处理软件将5组曲线绘制于一张图中。分别绘制归一化和非归一化的 $I_{P}\sim U_a$ 曲线。
- U_R 对 I_P 的影响研究,与上述研究方法类似,同样也是要求测量5组实验数据。

4、研究和测量氩原子更高激发态的 $I_P \sim U_a$ 曲线

• 基于现有实验装置,改进实验电路,定性研究氩原子的更高激发态,测试 $I_P \sim U_a$ 曲线

5、课堂上,利用一体机电脑,完成数据处理

- 利用一体机电脑,使用Word、Excel、Origin等软件完成数据处理,打印2张A4数据记录纸,找老师签字。
- 实验完毕,将各电压调到最小,关电源,关机,折线。

- 开始实验前, 弗兰克-赫兹实验仪初始设置
 - "放大倍数" 档位选择 "×1" 档
 - "扫描选择"档位置于"手动"档。←
 - 打开一体机电脑。

1、接线和检查线路

- 按照右侧电路图,连接弗兰克-赫兹实验仪和管箱
- 同学间互检无误后,方可通电。
- · 通电时, 先打开背面 "(红色)总电源开关", 然后再按下弗兰克-赫兹实验仪前面的"灯丝电流开关"。

- 2、摸索实验条件,定性观察 $I_{P}\sim U_a$ 变化情况
 - 初始灯丝电流值已经给出
 - 初始参考电压和电流如下:
 - I_f=0.80A左右(0.75A~0.9A)
 - *U_G* =1.5V左右(1.2V~2.5V)
 - *U_R*=7V左右(4V~10V)

- 摸索最佳测试条件。缓慢增加 U_a ,观察板极电流 I_p 的变化情况,要求随着 U_a 的增加 $0\sim85$ V内能大致观察到 I_p 有6个峰,峰与谷的差别相对较明显。
- ・ 注意:电流最大峰值(约 U_a = $76\mathrm{V}$)不能超过电流表的 $50\mu\mathrm{A}$ 处(防止电流放大电路出现过饱和)

- 2、摸索实验条件,定性观察 $I_{P}\sim U_a$ 变化情况
 - 灯丝电流 I_f 对 I_p 的影响滞后性, I_f 不要一下子改变很多(一般改变 $0.01 \sim 0.02$ A左右)。
 - 每改变一次 I_f ,应等2~3分钟再观察 I_p 的变化。
 - 注意: U_a 较大时,氩原子会处于电离状态。长时间处于电离状态,会造成F-H管损坏或性能变差,使用中应注意,尽量使用自动挡位测量或使用完毕后电压 U_a 调零。
 - ・注意: 若发现电流表指针突然超出量程(打表现象),说明管子中有电离,应立即减小加速电压 U_a ,并关闭灯丝电流开关。
 - · 机械表盘的板极电流I_P数值接近20μA时,就可以进行自动采集。

3、测量 I_{P} ~ U_a 曲线

- 找寻最佳条件后,将弗兰克-赫兹实验仪前面的"扫描选择"档位置于"自动"档。
- 注意:自动挡位,默认扫描电压 U_a 初始电压为0V。
- 打开一体机电脑上的弗兰克-赫兹测试软件,依次点击完成"签到"、"连接仪器"、"校准仪器"、设置"数据个数"和"点间延时",最后点击"开始采集"完成数据的自动采集。
- · "校准仪器"中的电压设置,为扫描电压的最大值。
- · 尝试改变不同"数据个数"和"点间延时",找到适合自己的采集数据模式。
- 具体软件操作见《软件操作指南》

4、数据测试

·熟悉实验原理、完成软件及设备基本操作后,开始定性研究 $U_{\rm G}$ 和 $U_{\rm R}$,对 $I_{\rm P}$ 、 $I_{\rm P}$ ~ $U_{\rm a}$ 曲线的影响,导出实验数据,并做分析解释。

4	Α	В	С	D	Е	F	G	Н	1
1	弗兰克赫兹实验数据记录								
2	姓名: 张三 学号:			2021010	111	仪器组号:	5		
3	实验条件								
4	灯丝电流(A): 0.799		拒斥场电压 (V)	10.014		控制栅电压 (V)	1.54		
5	实验日期:			2021年03月03日 版本号:			2.1.0		
6	开始扫描时间: 11:07:21		11:07:21	结束扫描时间:	11:07:41		扫描用时:	20秒	
7	扫描	扫描电压 (V) 90		数据点数:	200 点间延时 (ms)		100		
8	实验结果								
9	谷值数量: 7			相邻谷值电压					
10	峰值数量: 7 相邻峰值电压差(V): 12.143								
11	寻峰结果								
	序号	峰值电压	板极电流	实际电流值	序号	谷值电压	板极电流	实际电流值	
12	11. 2	(V)	(归一化值)	(uA)		(V)	(归一化值)	(uA)	
13	1	5.882	0.018	0.164	1	14.015	0.018		
14	2	20.295	0.192	1.774	2	24.784	0.117	0.906	
15	3	30.635	0.429	4.019	3	36.465	0.123		
16	4	41.869	0.619	5.829	4	48.158	0.116		
17	5	53.976	0.763	7.189	5	59.863	0.146		
18	6	66.115	0.865	8.062	6	71.948	0.235		
19	7	78.744	0.924	8.501	7	84.525	0.384	2.913	
20									

4	Α	В	С	D			
1	实验数据						
-	+ =		板极电流	实际电流值			
2	序号	扫描电压 (V)	(归一化值)	(uA)			
3	1	0.035	0.018	0.161			
4	2	0.116	0.018	0.161			
5	3	0.566	0.018	0.161			
6	4	1.012	0.018	0.161			
7	5	1.464	0.018	0.161			
8	6	1.913	0.018	0.161			
9	7	2.362	0.018	0.161			
10	8	2.811	0.018	0.164			
11	9	3.264	0.018	0.164			
12	10	3.713	0.01814286	0.164			
13	11	4.162	0.01830612	0.164			
14	12	4.611	0.01849271	0.164			
15	13	5.06	0.01870595	0.167			
16	14	5.509	0.0187864	0.167			
17	15	5.959	0.01871215	0.167			
18	16	6.408	0.0187435	0.167			
19	17	6.854	0.01860601	0.167			
20	18	7.303	0.01843738	0.164			
21	19	7.749	0.01839813	0.167			
22	20	8.198	0.01820593	0.164			
23	21	8.648	0.01814878	0.164			
24	22	9.097	0.01810755	0.164			
25	23	9.543	0.01806604	0.164			
26	24	9.992	0.01804605	0.164			
27	25	10.438	0.01803138	0.164			
28	26	10.887	0.01802049	0.164			
29	27	11.333	0.01801399	0.164			
30	28	11.78	0.01800941	0.164			
31	29	12.229	0.01800627	0.164			
32	30	12.675	0.01800424	0.164			
33	31	13.124	0.01800285	0.164			
34	32	13.57	0.01800191	0.164			
35	33	14.016	0.01800128	0.164			
36	34	14.45	0.026858	0.161			
37	35	14.911	0.03940874	0.164			
38	36	15.361	0.05632401	0.161			
39	37	15.807	0.07822725	0.701			
10	- an	Result Data	(+)	0.050			

- 5、研究氩原子更高激发态的 $I_P \sim U_a$ 曲线
 - · 每2个同学一组,完成本次实验,数据共享
 - 使用<mark>外置的弗兰克-赫兹管</mark>(亚克力塑料板),管箱不再使 用
 - · 采用BNC转接头连接弗兰克-赫兹实验仪的电流表。注意 BNC头有弹性,需要挤压后旋转,切勿直接拧转。
 - 关闭电源,按照右图所示电路图搭建电路。
 - 电路连接完成后,找老师查验电路连接,连接无误方可通电。
 - 只需扫描前两个峰,切记:扫描电压 U_a 不得超过30V!!!
 - 第二个峰的位置大约在 U_a =25V附近。
 - 先手动调节, I_P 最大峰值对应不超过 50μ A,然后利用软件自动采集。调整相应的 U_R ,观察并研究3组不同 U_R 下的 I_P ~ U_a 曲线。

微电流输入

- > 建议初始电压/流值
- ✓ *I_f*=0.78A左右
- ✓ U_R =2.5V左右

6、数据处理与打印

• 用Word将 I_{P} ~ U_{a} 曲线、线性拟合及相关参数数据计算、不同参量对 I_{P} 的影响的图、高激发态的 I_{P} ~ U_{a} 曲线、部分思考题简要思考等,打印 2张A4纸,找老师审核签字。

7、实验完毕后恢复原状

- 保持电脑桌面整洁
- 将各电压电流调到最小、关闭灯丝电流开关、关闭仪器电源、关一体机、将导线从设备取下,并折起来放好。

灯丝电流(A)

寻峰结果

3.501	<u> </u>	7 84.525		0.384	2.913			
4	Α	В		С	D			
			实	验数据				
	序号	扫描电压(v)	板极电流	实际电流值			
	11. 2	TIMPLE ((归一化值)	(uA)			
	1		0.035	0.018	0.161			
_	2		0.116	0.018	0.161			
	3		0.566	0.018	0.161			
	4		1.012	0.018	0.161			
	5		1.464	0.018	0.161			
_	6		1.913	0.018	0.161			
	7		2.362	0.018	0.161			
0	8		2.811	0.018	0.164			
1	9		3.264	0.018	0.164			
2	10		3.713	0.01814286	0.164			
3	11		4.162	0.01830612	0.164			
4	12		4.611	0.01849271	0.164			
5	13		5.06	0.01870595	0.167			
6	14		5.509	0.0187864	0.167			
7	15		5.959	0.01871215	0.167			
3	16		6.408	0.0187435	0.167			
9	17		6.854	0.01860601	0.167			
0	18		7.303	0.01843738	0.164			
1	19		7.749	0.01839813	0.167			
2	20		8.198	0.01820593	0.164			
3	21		8.648	0.01814878	0.164			
4	22		9.097	0.01810755	0.164			
5 <u> </u>	23		9.543	0.01806604	0.164			
7	24 25	4	9.992 .0.438	0.01804605 0.01803138	0.164 0.164			
8	26		.0.438	0.01803138	0.164			
9	27		1.333	0.01802049	0.164			
0	28	1	11.78	0.01801399	0.164			
1	29	1	2.229	0.01800941	0.164			
2	30		2.675	0.01800627	0.164			
3	31		3.124	0.01800424	0.164			
4	32		13.57	0.01800285	0.164			
5	33	14.016		0.01800191	0.164			
6	34	-	14.45	0.026858	0.161			
7	35	1	4.911	0.03940874	0.161			
3	36		5.361	0.05632401	0.161			
9	37		5.807	0.03032401	0.701			
	20	- 1	CAFC	0.01622123	0.701			
4	F	Result Da	ta	(+)				

12.143

寻谷结果

思考题

- 1. 为什么 $I_P \sim U_a$ 呈周期性变化?
- 2. 根据前面的实验原理,扫描电压达到 U_g 时就应该发生碰撞,为什么第一个峰 U_{a1} 大于 U_g ?
- 3. Ar原子的更高的激发电位大约比第一激发电位高0.1~2V左右,实验中加速电压会远大于第二激发电位,为什么只观察到第一激发态电位?
- 4. 根据高激发态电路和第一激发态测量电路的不同,试阐述弗兰克-赫兹管设计的巧妙之处。

实验报告要求

- 1、完整实验报告
 - 报告内容主要包括:实验题目、作者(姓名,院系、学号)、实验目的、实验原理、实验方法、实验结果和讨论、结论、参考文献
- 2、A4纸一般不要超过5页,独立于原始数据
- 3、原始数据作为附件
- 4、简明数据处理
- 5、实验报告1周之内上交网络学堂,要求文档为PDF版本。

Energy Levels of Neutral Argon (Ar I)

Configuration	Term	J	Level (cm ⁻¹)	
3p ⁶	1 _S	0	0.000	
3p ⁵ (² P° _{3/2})4s	² [³ / ₂]°	2	93143.7653 93750.6031	11.55eV 11.63eV
$3p^5(^2P^{\circ}_{1/2})4s$	² [¹ / ₂]°	0	94553.6705 95399.8329	11.72eV 11.83eV
-1270-0000 H20	AA 20			1110001
$3p^{5}(^{2}P^{\circ}_{3/2})4p$	² [¹ / ₂]	1	104102.1043	12.91eV
	1000 S	0	107054.2773	13.27eV
$3p^{5}(^{2}P^{\circ}_{3/2})4p$	² [⁵ / ₂]	3	105462.7649	13.08eV
5000000	100-20	2	105617.2753	13.10eV
$3p^{5}(^{2}P^{\circ}_{3/2})4p$	2[3/2]	1	106087.2651	13.15eV
3.57	3.73	2	106237.5571	13.17eV
3p ⁵ (² p° _{1/2})4p	2[3/2]	1	107131.7139	13.28eV
1/2		2	107289.7054	13.30eV
3p ⁵ (² P° _{1/2})4p	² [¹ / ₂]	1	107496.4219	13.33eV
		0	108722.6247	13.48eV

打印注意事项

- •连接WiFi信号: 6A510-Network
- •连接密码: phy123456
- 1~10号一体机, 连接6A510-PC-22台式机(22号一体机)打印机
- 11~22号一体机,连接6A510-PC-21台式机(21号一体机)打印机
- 打印机设备较老,打印速度慢,需等待半分钟左右才反应,切勿疯狂点击打印,最多点击两次,若仍无反应,找老师处理(打多了扣分)。
- 建议大家错峰打印, 待打印机没响动后再进行打印。

网络连接不上时,可以使用U盘打印

线性拟合处理数据

设:
$$U_{gi} = a + b \cdot i$$

用Origin对6个峰点进行线性拟合,得到结果如下图

拟合结果:
$$a = 5.05267$$
, $b = U_g = 12.12257$, $r = 0.99978$

【斜率的标准差】

$$\frac{S_b}{b} = \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}} \approx \sqrt{\frac{2(1 - r)}{n - 2}}$$

【不确定度】

$$\Delta_A = S_b = b \cdot \sqrt{\frac{2 \cdot (1 - r)}{n - 2}} = 12.12 \cdot \sqrt{\frac{2 \cdot (1 - 0.9998)}{6 - 2}} = 0.121(V)$$

$$\Delta_B = \Delta_{\text{QB}} = 0.1\% \cdot b + 0.01 = 0.022(V)$$

$$\Delta_{U_{\sigma}} = \sqrt{\Delta_A^2 + \Delta_B^2} = \sqrt{(0.121)^2 + (0.022)^2} = 0.123(V)$$

【结果】

$$U_g \pm \Delta_{U_g} = 12.12 \pm 0.12(V)$$

氩原子受激后回到基态辐射出的光波波长λ计算

由上述数据分析可知:

氩原子第一激发态电位 $U_g = 12.12 \text{ V}$ (线性拟合结果) 代入下式:

$$\lambda = \frac{h \cdot c}{e \cdot U_g} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.60 \times 10^{-19} \times 12.12} = 102.6nm$$