Restrições ≥ ou =

Exemplo

max
$$z = 2x_1 + 2x_2$$

$$\begin{cases} x_1 + x_2 & \leq 10 \\ x_1 + 2x_2 & \geq 8 \\ -x_1 + x_2 & = 2 \\ x_1, x_2 & \geq 0 \end{cases}$$

Forma padrão:

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 - x_4 = 8$
 $-x_1 + x_2 = 2$

X ₁	\mathbf{x}_2	X ₃	X_4	
1	1	1	0	10
1	2	0	-1	8
-1	1	0	0	2
-2	-2	0	0	0

Onde está a matriz identidade?

Restrições ≥ ou =

- Restrições do tipo ≥ ou = excluem a origem do sistema de coordenadas do espaço de solução e esta não pode mais ser usada como solução inicial.
- Artificio: adicionar as variáveis que "faltam":

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 - x_4 + y_1 = 8$
 $-x_1 + x_2 + y_2 = 2$

→ y₁ e y₂ são chamadas de <u>variáveis artificiais</u>

Restrições ≥ ou =

O quadro SIMPLEX fica então

X ₁			X_4			
1	1 2	1	0	0	0	10
1	2	0	-1	1	0	8
-1	1	0	0	0	1	2
-2	-2	0	0	0	0	0

- A variáveis artificiais não fazem parte do problema, portanto não podem fazer parte da solução ...
- Como "elimina-las" encontrando uma solução inicial válida?

 Para estes tipos de restrição, deve-se empregar o SIMPLEX em duas fases:

Fase I: encontrar uma solução factível inicial

Fase II : Otimizar função objetivo z

- Fase I:
- Além das variáveis de folga, adicionar as variáveis artificiais (y1, y2, ...) nas restrições ≥ e =

$$x_1 + x_2 \le 10$$

 $x_1 + 2x_2 \ge 8$
 $-x_1 + x_2 = 2$

Forma padrão:

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 - x_4 + y_1 = 8$
 $-x_1 + x_2 + y_2 = 2$

- No quadro SIMPLEX, adicionar uma nova linha de decisão (w) onde
 - Nas colunas das variáveis admissíveis (atividades e folga) temos - Σ aij
 - Nas colunas da variáveis artificiais temos 0,
 - Na coluna b temos - Σ bj,
 - Considerando nas somatórias as linhas onde existem variáveis artificiais.

x_1	x_2	X ₃	X_4	y ₁	y ₂		
1	1	1	0	0	0	10	
1	2 1	0	-1	1	0	8	
-1	1	0	0	0	1	2	
-2	-2	0	0	0	0	0	Z
0	-3	0	1	0	0	-10	W

Resolver, usando a linha w como linha de decisão

Se ao final da otimização w ≠ 0, o problema não tem solução;
 se w = 0, desprezamos a linha w e as colunas das variáveis artificiais.

- Fase II
 - Continuar resolvendo normalmente.

Resolver por SIMPLEX

1) max
$$z = 3x_1 + 2x_2$$

2) max
$$z = 2x_1 + 3x_2$$

S. A.
$$\begin{vmatrix} -4x_1 + 2x_2 & \leq 8 \\ -4x_1 + 4x_2 & \geq 4 \\ x_1 + x_2 & \geq 5 \\ x_{1,} & x_2 \geq 0 \end{vmatrix}$$

3) max
$$z = 2x_1 + x_2$$

S. A.
$$\begin{cases} x_1 - x_2 \leq 0 \\ x_2 \leq 2 \\ x_1 + 2x_2 \geq 8 \\ x_1, x_2 \geq 0 \end{cases}$$

4) min
$$z = 5x_1 + 8x_2 + 4x_3$$

S.A.
$$\begin{cases} x_1 + x_2 + x_3 \ge 2 \\ x_1 + x_2 \ge 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$