ME 460/660, Mechanical Vibration Final Exam, Fall 2006 Closed book, closed notes. Use one provided $8\frac{1}{2} \times 11$ formula sheet and turn in with exam. Test books will be provided. Problems are to be done in the test book.

rest books will be provided. Problems a	are to be done in the test book.
Fill in the blank with the appropria each answer only once!	te letter from the list below. One point each. Use
· ·	erved the of a measured using an (type of
sensor). By observing the period we we, we were able to estimate the I	re able to ascertain the, and by calculating the n the second lab, we obtained the by forcing the
observing the $\underline{}$. The damping ratio v	est data as a function of frequency can be rated by vas estimated using design is to set the natural frequency of the absorber
to be equal to the of the excited sys	tem.
against the material. The force that	neter on the next page, a hoop holds the masses the masses apply to that material is read as a mass, one can estimate the acceleration by applying
Use each answer only once (or a	not at all)!
a natural fraquancy	m. phase
a. natural frequency	n. accelerometer
b. damped natural frequency	o. pressure gauge
c. driving frequency	p. displacement sensor
d. damping ratio	
a guadratura maak nisking	q. load cell
e. quadrature peak picking	r. impulse hammer
f. log decrement	s. shaker
g. beam	t. displacement
h. truss	u. acceleration
i. shape memory alloy	v. voltage
j. free response	w. piezoelectric
k. frequency response function	x. Newton's Law
l. coherence	y. Coulomb's Law

Long problems. 10 points each.

1. A linear system is governed by the following equation of motion:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y}$$

where $y(t) = Y \sin(\omega_b t)$. Given m = 10 kg, c = 1.0 kg/s, and $k = 10,000 \text{kg/s}^2$.

- (a) Sketch the FRF $\frac{X(j\omega)}{Y(j\omega)}$ for $0 < \frac{\omega_b}{\omega_n} < 60$. Use decibels (20 \log_{10}) for the magnitude. label limit and key values
- (b) Fill in the following table (beware of units!):

Y (m)	f_b (Hz)	X (m)	$\angle X \text{ (deg)}$
10	0		
2	5		
1	10		

2. Find the Fourier series of F(t) shown below

where a = 1 and b = -2.

3. Given

$$M = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, and $K = \begin{bmatrix} 35 & -35 \\ -35 & 35 \end{bmatrix}$

find the natural frequencies and mode shapes of the system. The mode shapes do not need to be mass normalized. Describe the natural motions of the two modes/frequency pairs.

4. A MDOF system at rest with

$$S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

no damping, and natural frequencies of 3 rad/sec and 10 rad/sec is excited by an force of

$$\mathbf{F}(t) = \begin{bmatrix} \frac{1}{\sqrt{2}} \delta(t) \\ \frac{1}{\sqrt{2}} \delta(t) \end{bmatrix}$$

Find $\mathbf{x}(t)$

5. Obtain the equations of motion the following system. Assume a mass-less rod.

6. Graduate Students/Undergraduate Bonus (20%): Solve for the steady-state (particular) response of the following system if the boundary conditions are presumed to be fixed-fixed (0 < x < l) where $c = \sqrt{\tau/\rho}$.

$$w_{tt}(x,t) - c^2 w_{xx}(x,t) = 100\delta(t)\sin\left(\frac{3\pi x}{l}\right)$$

Recall that the integral of a Dirac delta function times another function is equal to the "another function" evaluated when the argument of the argument of the Dirac delta function is zero.

BONUS: What is h(t) called? What is $H(j\omega)$ called? What is the relationship between them? (4 points)