# SCALAR PRODUCT OF VECTORS

### **OBJECTIVES**

1.  $(\mathbf{r}.\mathbf{i})^2 + (\mathbf{r}.\mathbf{j})^2 + (\mathbf{r}.\mathbf{k})^2 =$ 

(a)  $3r^2$ 

(b)  $r^2$ 

(c)0

(d) None of these

2. If a, b, c are mutually perpendicular unit vectors, then |a+b+c| =

(a)  $\sqrt{3}$ 

(b)3

(c) 1

(d)0

3. If vectors a,b,c satisfy the condition |a-c| = |b-c|, then  $(b-a) \cdot \left(c - \frac{a+b}{2}\right)$  is equal to

(a) 0

(b)-1

(c) 1

(d)2

4. If |a| = 3, |b| = 1, |c| = 4 and a+b+c=0, then a.b+b.c+c.a=

(a) - 13

(b) - 10

(c) 13

(d) 10

5. If a = i + 2j - 3k and b = 3i - j + 2k, then the angle between the vectors a + b and a - b is

(a) 30°

(b) 60°

(c) 90°

(d) 0°

6. If  $\theta$  be the angle between the unit vectors a and b, then  $\cos \frac{\theta}{2} =$ 

(a)  $\frac{1}{2}$  | **a** - **b**|

(b)  $\frac{1}{2}$  | a + b

 $(c)\frac{|\mathbf{a}-\mathbf{b}|}{|\mathbf{a}+\mathbf{b}|}$ 

 $(d) \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|}$ 

7. A vector whose modulus is  $\sqrt{51}$  and makes the same angle with  $\mathbf{a} = \frac{\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}}{3}$ ,  $\mathbf{b} = \frac{-4\mathbf{i} - 3\mathbf{k}}{5}$  and

c = j, will be

(a)  $5\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ 

(b) 5i + j - 5k

(c)  $5\mathbf{i} + \mathbf{j} + 5\mathbf{k}$ 

 $(d) \pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k})$ 

| 8.  | Let a, b and c be ve                                                                                                                                                                                                    | ctors with magnitudes 3, 4 and 5 respectively and $a + b + c = 0$ , then                                                              |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | the values                                                                                                                                                                                                              |                                                                                                                                       |  |  |
|     | (a) 47                                                                                                                                                                                                                  | (b) 25                                                                                                                                |  |  |
|     | (c) 50                                                                                                                                                                                                                  | (d) - 25                                                                                                                              |  |  |
| 9.  | If in a right angled triangle $ABC$ , the hypotenuse $AB = p$ , then $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ is |                                                                                                                                       |  |  |
|     | equal to                                                                                                                                                                                                                |                                                                                                                                       |  |  |
|     | (a) $2p^2$                                                                                                                                                                                                              | (b) $\frac{p^2}{2}$                                                                                                                   |  |  |
|     | (c) p <sup>2</sup>                                                                                                                                                                                                      | (d) None of these                                                                                                                     |  |  |
| 10. | The horizontal force                                                                                                                                                                                                    | te and the force inclined at an angle $60^{\circ}$ with the vertical, whose                                                           |  |  |
|     | resultant is in vertical direction of $P kg$ , are                                                                                                                                                                      |                                                                                                                                       |  |  |
|     | (a) <i>P</i> , 2 <i>P</i>                                                                                                                                                                                               | (b) $P, P\sqrt{3}$                                                                                                                    |  |  |
|     | (c) $2P, P\sqrt{3}$                                                                                                                                                                                                     | (d) None of these                                                                                                                     |  |  |
| 11. | If a is any vector in space, then                                                                                                                                                                                       |                                                                                                                                       |  |  |
|     | (a) $\mathbf{a} = (\mathbf{a} \cdot \mathbf{i})\mathbf{i} + (\mathbf{a} \cdot \mathbf{j})\mathbf{j} + (\mathbf{a} \cdot \mathbf{k})\mathbf{k}$                                                                          |                                                                                                                                       |  |  |
|     | (b) $\mathbf{a} = (\mathbf{a} \times \mathbf{i}) + (\mathbf{a} \times \mathbf{j}) + (\mathbf{a} \times \mathbf{k})$                                                                                                     |                                                                                                                                       |  |  |
|     | (C) $a = j(a.i) + k(a.j) + i(a.j)$                                                                                                                                                                                      | . k)                                                                                                                                  |  |  |
|     | (d) $\mathbf{a} = (\mathbf{a} \times \mathbf{i}) \times \mathbf{i} + (\mathbf{a} \times \mathbf{j}) \times \mathbf{j} + (\mathbf{a} \times \mathbf{j}) \times \mathbf{j}$                                               | $(\mathbf{a} \times \mathbf{k}) \times \mathbf{k}$                                                                                    |  |  |
| 12. | A unit vector which                                                                                                                                                                                                     | is coplanar to vector $i+j+2k$ and $i+2j+k$ and perpendicular to $i+j+k$ ,                                                            |  |  |
|     | is                                                                                                                                                                                                                      |                                                                                                                                       |  |  |
|     | (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$                                                                                                                                                                          | (b) $\pm \left(\frac{\mathbf{j} - \mathbf{k}}{\sqrt{2}}\right)$                                                                       |  |  |
|     | (c) $\frac{\mathbf{k} - \mathbf{i}}{\sqrt{2}}$                                                                                                                                                                          | (d) $\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$                                                                           |  |  |
| 13. | If ABCDEF is regul                                                                                                                                                                                                      | ar hexagon, the length of whose side is a, then $\overrightarrow{AB} \cdot \overrightarrow{AF} + \frac{1}{2} \overrightarrow{BC}^2 =$ |  |  |
|     | (a) <i>a</i>                                                                                                                                                                                                            | (b) $a^2$ (c) $2a^2$ (d)0                                                                                                             |  |  |
| 14. | If the angle between                                                                                                                                                                                                    | a and b be 30°, then the angle between 3 a and – 4 b will be                                                                          |  |  |
|     | (a) 150 °                                                                                                                                                                                                               | (b) 90°                                                                                                                               |  |  |
|     | (c) 120 °                                                                                                                                                                                                               | (d) 30°                                                                                                                               |  |  |
|     |                                                                                                                                                                                                                         |                                                                                                                                       |  |  |

| 15.                                                                                                                                                                         | ii the angle between                                                                                                    | two vectors                                    | $i + k$ and $i - j + ak$ is $\pi$                                         | a/3, then the value of $a=$                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
|                                                                                                                                                                             | (a)2                                                                                                                    | (b)4                                           |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (c) - 2                                                                                                                 | (d) 0                                          |                                                                           |                                                                      |  |  |
| 16.                                                                                                                                                                         | <b>If</b> $  \mathbf{a}   = 3,   \mathbf{b}   = 4,   \mathbf{c}   = 5$                                                  | and $a + b + c =$                              | o, then the angle be                                                      | etween a and b is                                                    |  |  |
|                                                                                                                                                                             | (a) 0                                                                                                                   | (b) $\frac{\pi}{6}$                            |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (c) $\frac{\pi}{3}$                                                                                                     | (d) $\frac{\pi}{2}$                            |                                                                           |                                                                      |  |  |
| 17.                                                                                                                                                                         | a, b, c are three vectors, such that $a+b+c=0$ , $ a =1$ , $ b =2$ , $ c =3$ , then $a.b+b.c+c.a$ is equal to           |                                                |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (a) 0                                                                                                                   | (b) - 7                                        |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (c) 7                                                                                                                   | (d) 1                                          |                                                                           |                                                                      |  |  |
| 18. If a, b, c are non-zero vectors such that $a \cdot b = a \cdot c$ , then which statement is true                                                                        |                                                                                                                         |                                                |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (a) $\mathbf{b} = \mathbf{c}$                                                                                           | $(b)$ a $\perp (b-c)$                          | (*)                                                                       |                                                                      |  |  |
|                                                                                                                                                                             | (c) $\mathbf{b} = \mathbf{c}$ or $\mathbf{a} \perp (\mathbf{b} - \mathbf{c})$                                           | (d)None o                                      | of these                                                                  |                                                                      |  |  |
| 19. If $p=i-2j+3k$ and $q=3i+j+2k$ , then a vector along r which is linear combination                                                                                      |                                                                                                                         |                                                |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | and also perpendicular to q is                                                                                          |                                                |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (a) $\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$                                                                            | (b)i-5j+4                                      | k                                                                         |                                                                      |  |  |
|                                                                                                                                                                             | $(\mathbf{C}) - \frac{1}{2}(\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$                                                    | (d)None of                                     | of these                                                                  |                                                                      |  |  |
| 20.                                                                                                                                                                         | If a, b, c are three vo                                                                                                 | ectors such th                                 | at $a = b + c$ and the a                                                  | angle between b and c is $\pi/2$ , then                              |  |  |
|                                                                                                                                                                             | (a) $a^2 = b^2 + c^2$                                                                                                   | (b) $b^2 = c^2 + a^2$                          |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (c) $c^2 = a^2 + b^2$                                                                                                   | <b>(d)</b> $2a^2 - b^2 = c$                    | 2                                                                         |                                                                      |  |  |
| 21. The value of x for which the angle between the vectors $\mathbf{a} = -3\mathbf{i} + x\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = x\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ |                                                                                                                         |                                                |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | acute and the angle                                                                                                     | between b an                                   | d x-axis lies betwee                                                      | n $\pi/2$ and $\pi$ satisfy                                          |  |  |
|                                                                                                                                                                             | (a) $x > 0$                                                                                                             | (b) $x < 0$                                    |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (c) $x > 1$ Only                                                                                                        | (d) $x < -1$ only                              | y                                                                         |                                                                      |  |  |
| 22.                                                                                                                                                                         | A, B, C, D are any fo                                                                                                   | our points, the                                | en                                                                        |                                                                      |  |  |
| 4                                                                                                                                                                           | $\overrightarrow{AB}$ . $\overrightarrow{CD}$ + $\overrightarrow{BC}$ . $\overrightarrow{AD}$ + $\overrightarrow{CA}$ . | $\overrightarrow{BD} =$                        |                                                                           |                                                                      |  |  |
|                                                                                                                                                                             | (a) $2 \overrightarrow{AB} \cdot \overrightarrow{BC} \cdot \overrightarrow{CD}$                                         | $(b)\overrightarrow{AB} + \overrightarrow{BC}$ | $\overrightarrow{C} + \overrightarrow{CD}$                                |                                                                      |  |  |
|                                                                                                                                                                             | (c) $5\sqrt{3}$                                                                                                         | (d)0                                           |                                                                           |                                                                      |  |  |
| 23.                                                                                                                                                                         | If a, b, c are unit veo                                                                                                 | ctors such tha                                 | $\mathbf{t} \mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ , then $\mathbf{a}$ | $. \mathbf{b} + \mathbf{b} . \mathbf{c} + \mathbf{c} . \mathbf{a} =$ |  |  |
|                                                                                                                                                                             | (a) 1                                                                                                                   | (b) 3                                          | (c)-3/2                                                                   | (d)3/2                                                               |  |  |
|                                                                                                                                                                             |                                                                                                                         |                                                |                                                                           |                                                                      |  |  |

24. The angle between the vectors i-j+k and i+2j+k is

(a) 
$$\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)$$

(a) 
$$\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)$$
 (b)  $\cos^{-1}\left(\frac{4}{\sqrt{15}}\right)$ 

(c) 
$$\cos^{-1}\left(\frac{4}{15}\right)$$
 (d)  $\frac{\pi}{2}$ 

(d) 
$$\frac{\pi}{2}$$

**25.** If  $\mathbf{d} = \lambda(\mathbf{a} \times \mathbf{b}) + \mu(\mathbf{b} \times \mathbf{c}) + \nu(\mathbf{c} \times \mathbf{a})$  and  $[\mathbf{a} \mathbf{b} \mathbf{c}] = \frac{1}{8}$ , then  $\lambda + \mu + \nu$  is equal to

- (a) 8d.(a+b+c)
- (b)  $8\mathbf{d} \times (\mathbf{a} + \mathbf{b} + \mathbf{c})$
- (c)  $\frac{\mathbf{d}}{8} \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c})$  (d)  $\frac{\mathbf{d}}{8} \times (\mathbf{a} + \mathbf{b} + \mathbf{c})$

a,b and c are three vectors with magnitude |a| = 4, |b| = 4, |c| = 2 and such that a is **26.** perpendicular to (b+c), b is perpendicular to (c+a) and c is perpendicular to (a+b). It follows that |a+b+c| is equal to

(a) 9

(b) 6

(c) 5

(d)4

27. If a, b and c are unit vectors such that a + b - c = 0, then the angle between a and b is

- (a)  $\pi/6$
- (b)  $\pi/3$
- (c)  $\pi/2$
- (d)  $2\pi/3$

28. If  $\vec{\lambda}$  is a unit vector perpendicular to plane of vector a and b and angle between them is  $\theta$ , then a.b will be

(a) 
$$|\mathbf{a}| |\mathbf{b}| \sin \theta \vec{\lambda}$$

(b) 
$$|\mathbf{a}| |\mathbf{b}| \cos \theta \vec{\lambda}$$

(c) 
$$|\mathbf{a}| |\mathbf{b}| \cos \theta$$

(d) 
$$|\mathbf{a}| |\mathbf{b}| \sin \theta$$

29. If three vectors a, b, c satisfy a+b+c=0 and |a|=3, |b|=5, |c|=7, then the angle between a and b is

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

30. If a = 4i + 6j and b = 3j + 4k, then the component of a along b is

(a) 
$$\frac{18}{10\sqrt{3}}(3\mathbf{j} + 4\mathbf{k})$$
 (b)  $\frac{18}{25}(3\mathbf{j} + 4\mathbf{k})$ 

(b) 
$$\frac{18}{25}(3\mathbf{j} + 4\mathbf{k})$$

(c) 
$$\frac{18}{\sqrt{3}}(3j+4k)$$

(d) 
$$(3\mathbf{j} + 4\mathbf{k})$$

31. Let a and b be two unit vectors inclined at an angle  $\theta$ , then  $\sin(\theta/2)$  is equal to

(a) 
$$\frac{1}{2} | \mathbf{a} - \mathbf{b} |$$

(b) 
$$\frac{1}{2}$$
 |  $\mathbf{a} + \mathbf{b}$  |

$$(c) \mid a - b \mid$$

$$(d) | \mathbf{a} + \mathbf{b} |$$

32. The vectors 2i+3j-4k and ai+bj+ck are perpendicular, when

(a) 
$$a = 2, b = 3, c = -4$$
 (b)  $a = 4, b = 4, c = 5$ 

(b) 
$$a = 4$$
,  $b = 4$ ,  $c = 5$ 

(c) 
$$a = 4, b = 4, c = -5$$
 (d)None of these

33. The projection of vector 2i+3j-2k on the vector i+2j+3k will be

(a) 
$$\frac{1}{\sqrt{14}}$$

(b) 
$$\frac{2}{\sqrt{14}}$$

(c) 
$$\frac{3}{\sqrt{14}}$$

(d) 
$$\sqrt{14}$$

34. The projection of the vector i-2j+k on the vector 4i-4j+7k

(a) 
$$\frac{5\sqrt{6}}{10}$$

(b) 
$$\frac{19}{9}$$

(c) 
$$\frac{9}{19}$$

(d) 
$$\frac{\sqrt{6}}{19}$$

35. If  $a \neq 0$ ,  $b \neq 0$  and |a+b| = |a-b|, then the vectors a and b are

- (a) Parallel to each other
- (b) Perpendicular to each other
- (c) Inclined at an angle of 60°
- (d) Neither perpendicular nor parallel

36. If the vectors  $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$  and  $p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$  are perpendicular, then

(a) 
$$(a+b+c)(p+q+r) = 0$$

(b) 
$$(a+b+c)(p+q+r) = 1$$

(c) 
$$ap + bq + cr = 0$$

$$(\mathbf{d})\,ap + bq + cr = 1$$

37. The angle between the vector 2i + 3j + k and 2i - j - k is

(a) 
$$\pi/2$$

(b) 
$$\pi/4$$

(c) 
$$\pi/3$$

38. If la + mb + nc = 0, where l, m, n are scalars and a, b, c are mutually perpendicular vectors,

then

(a) 
$$l = m = n = 1$$

(b) 
$$l + m + n = 1$$

(c) 
$$l = m = n = 0$$

(d) 
$$l \neq 0, m \neq 0, n \neq 0$$

| 39. | If vector $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$                                                   | and vector $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ , then | $\frac{\text{Projection of vector } \mathbf{a} \text{ on vector } \mathbf{b}}{\text{Projection of vector } \mathbf{b} \text{ on vector } \mathbf{a}} =$               |
|-----|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) $\frac{3}{7}$                                                                                                  | (b) $\frac{7}{3}$                                                        |                                                                                                                                                                       |
|     | (c) 3                                                                                                              | (d) 7                                                                    |                                                                                                                                                                       |
| 40. | If a and b are two u                                                                                               | nit vectors such that a + 2 b and                                        | 5a-4b are perpendicular to each other                                                                                                                                 |
|     | then the angle between                                                                                             | een a and b                                                              |                                                                                                                                                                       |
|     | (a) 45°                                                                                                            | (b) 60°                                                                  |                                                                                                                                                                       |
|     | (c) $\cos^{-1}\left(\frac{1}{3}\right)$                                                                            | (d) $\cos^{-1}\left(\frac{2}{7}\right)$                                  |                                                                                                                                                                       |
| 41. | The unit normal vec                                                                                                | etor to the line joining $i-j$ and                                       | 2i+3j pointing towards the origin is                                                                                                                                  |
|     | (a) $\frac{4\mathbf{i} - \mathbf{j}}{\sqrt{17}}$                                                                   | $(b) \frac{-4 \mathbf{i} + \mathbf{j}}{\sqrt{17}}$                       |                                                                                                                                                                       |
|     | $(c) \frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$                                                                  | $(d) \frac{-2i+3j}{\sqrt{13}}$                                           |                                                                                                                                                                       |
| 42. | If $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ | = $5i - 3j + k$ , then the projection o                                  | f b on a is                                                                                                                                                           |
|     | (a) 3                                                                                                              | (b) 4                                                                    |                                                                                                                                                                       |
|     | (c) 5                                                                                                              | (d) 6                                                                    | ) ·                                                                                                                                                                   |
| 43. | If in a right angled                                                                                               | I triangle $ABC$ , the hypotenu                                          | se $AB = p$ , then $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ is |
|     | equal to                                                                                                           |                                                                          |                                                                                                                                                                       |
|     | (a) $2p^2$                                                                                                         | (b) $\frac{p^2}{2}$ (c) $p^2$                                            | l)None of these                                                                                                                                                       |
| 44. | If a, b, c are non-zer                                                                                             | ro vectors such that $a \cdot b = a \cdot c$ ,                           | then which statement is true                                                                                                                                          |
|     | $(\mathbf{a})\mathbf{b} = \mathbf{c}$                                                                              | (b) $a \perp (b-c)$                                                      |                                                                                                                                                                       |
|     | (c) $\mathbf{b} = \mathbf{c}$ Or $\mathbf{a} \perp (\mathbf{b} - \mathbf{c})$                                      | (d) None of these                                                        |                                                                                                                                                                       |
| 45. | If $ a+b  >  a-b $ , then                                                                                          | the angle between a and b is                                             |                                                                                                                                                                       |
|     | (a) Acute                                                                                                          | (b) Obtuse                                                               |                                                                                                                                                                       |
|     | (c) $\frac{\pi}{2}$                                                                                                | (d) π                                                                    |                                                                                                                                                                       |
|     |                                                                                                                    |                                                                          |                                                                                                                                                                       |

## SCALAR PRODUCT OF VECTORS

### HINTS AND SOLUTIONS

1. (b) Let  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \Rightarrow \mathbf{r} \cdot \mathbf{i} = x$ ,  $\mathbf{r} \cdot \mathbf{j} = y$ ,  $\mathbf{r} \cdot \mathbf{k} = z$ 

$$\Rightarrow (\mathbf{r}.\mathbf{i})^2 + (\mathbf{r}.\mathbf{j})^2 + (\mathbf{r}.\mathbf{k})^2 = x^2 + y^2 + z^2 = r^2.$$

2. (a) Three mutually perpendicular unit vectors =  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$ .

Therefore  $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1$  and  $\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0$ .

We know that

$$|\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) = 1 + 1 + 1 + 0 = 3$$

Or  $| a + b + c | = \sqrt{3}$ .

3. (a)  $(b-a) \cdot \left(c - \frac{a+b}{2}\right) = b \cdot c - b \cdot \left(\frac{a+b}{2}\right) - a \cdot c + \frac{a}{2}(a+b)$ 

and  $|\mathbf{a} - \mathbf{c}| = |\mathbf{b} - \mathbf{c}| \implies |\mathbf{a} - \mathbf{c}|^2 = |\mathbf{b} - \mathbf{c}|^2$ 

$$\therefore$$
 a + b = 2c

Therefore,  $(\mathbf{b} - \mathbf{a}) \cdot \left(\mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{2}\right) = 0$ .

4. (a)  $(a + b + c)^2 = 0$ 

$$\Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2\mathbf{a} \cdot \mathbf{b} + 2\mathbf{b} \cdot \mathbf{c} + 2\mathbf{c} \cdot \mathbf{a} = 0$$

$$\Rightarrow$$
 9 + 1 + 16 + 2(**a**.**b** + **b**.**c** + **c**.**a**) = 0

$$\Rightarrow$$
 a.b + b.c + c.a =  $-\frac{26}{2}$  = -13.

5. (c) a+b=4i+j-k and a-b=-2i+3j-5k.

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 0$$
. Hence  $(\mathbf{a} + \mathbf{b}) \perp (\mathbf{a} - \mathbf{b})$ .

- **6.** (b)  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$  Or  $|\mathbf{a} + \mathbf{b}|^2 = 2.2 \cos^2 \frac{\theta}{2} \Rightarrow \cos \frac{\theta}{2} = \frac{1}{2} |\mathbf{a} + \mathbf{b}|$ .
- 7. (d) Verification

8. (d) : 
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \implies (\mathbf{a} + \mathbf{b} + \mathbf{c})^2 = 0$$

$$|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) = 0$$

$$\Rightarrow$$
 2(**a** · **b** + **b** · **c** + **c** · **a**) = -(9 + 16 + 25)

$$\Rightarrow$$
 **a** . **b** + **b** . **c** + **c** . **a** = -25.

#### www.sakshieducation.com

**9.** (c) We have  $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ 

$$(AB)(AC)\cos\theta + (BC)(BA)\cos(90^{\circ} - \theta) + 0$$



$$= AB(AC\cos\theta + BC\sin\theta) = AB\left(\frac{(AC)^2}{AB} + \frac{(BC)^2}{AB}\right)$$

$$=AC^2 + BC^2 = AB^2 = p^2$$
.

**10.** (c) Let  $\overrightarrow{OA} = P_1 \mathbf{i}$ ,  $\overrightarrow{CB} = -P_1 \mathbf{i}$ ,  $\overrightarrow{OB} = -P_1 \mathbf{i} + P \mathbf{j}$ 



$$\frac{\overrightarrow{OB} \cdot \mathbf{j}}{OB} = \cos 60^{\circ} \Rightarrow \frac{(-P_1 \mathbf{i} + P \mathbf{j}) \cdot \mathbf{j}}{\sqrt{P_1^2 + P^2}} = \frac{1}{2}$$

$$\Rightarrow 2P = \sqrt{P^2 + P_1^2} \Rightarrow P_1 = P\sqrt{3}$$

$$|\overrightarrow{OB}| = \sqrt{P^2 + P_1^2} = \sqrt{P^2 + 3P^2} = 2P.$$

**11.** (a) Let  $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ , then  $\mathbf{a}.\mathbf{i} = a_1$ ,  $\mathbf{a}.\mathbf{j} = a_2$ ,  $\mathbf{a}.\mathbf{k} = a_3$ 

$$\therefore \mathbf{a} = (\mathbf{a} \cdot \mathbf{i})\mathbf{i} + (\mathbf{a} \cdot \mathbf{j})\mathbf{j} + (\mathbf{a} \cdot \mathbf{k})\mathbf{k} .$$

- 12. (b) Verification
- **13.** (d)  $\overrightarrow{AB} \cdot \overrightarrow{AF} = |\mathbf{a}| |\mathbf{a}| \cos 120^{\circ} = \frac{-1}{2} a^2$  and  $\frac{1}{2} \overrightarrow{BC}^2 = \frac{1}{2} a^2$



Therefore, 
$$\overrightarrow{AB} \cdot \overrightarrow{AF} + \frac{1}{2} \overrightarrow{BC}^2 = \frac{1}{2} a^2 - \frac{1}{2} a^2 = 0.$$

**14.** (a) It is obvious from figure.



www.sakshieducation.com

**15.** (d) 
$$\cos \frac{\pi}{3} = \frac{1+a}{\sqrt{2}\sqrt{2+a^2}} \Rightarrow a = 0$$
.

**16.** (d) 
$$\mathbf{a} + \mathbf{b} = -\mathbf{c} \Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| \mathbf{b}| \cos \theta \neq \mathbf{c}|^2$$
  
$$\Rightarrow \cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}.$$

17. (b) 
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \Longrightarrow (\mathbf{a} + \mathbf{b} + \mathbf{c}).(\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0}$$

$$\Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 0$$

$$\Rightarrow \mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a} = \frac{-1 - 4 - 9}{2} = -7.$$

18. (c) 
$$\mathbf{a}.\mathbf{b} = \mathbf{a}.\mathbf{c} \Rightarrow \mathbf{a}.\mathbf{b} - \mathbf{a}.\mathbf{c} = 0 \Rightarrow \mathbf{a}.(\mathbf{b} - \mathbf{c}) = 0$$
  

$$\Rightarrow \text{Either } \mathbf{b} - \mathbf{c} = \mathbf{0} \text{ or } \mathbf{a} = \mathbf{0} \Rightarrow \mathbf{b} = \mathbf{c} \text{ Or } \mathbf{a} \perp (\mathbf{b} - \mathbf{c}).$$

19. (c) 
$$\mathbf{r} = \mathbf{p} + \lambda \mathbf{q} \Rightarrow \mathbf{r} \cdot \mathbf{q} = \mathbf{p} \cdot \mathbf{q} + \lambda \mathbf{q} \cdot \mathbf{q}$$
  

$$\Rightarrow 0 = 7 + 14 \lambda \Rightarrow \lambda = -\frac{1}{2}$$
Therefore,  $\mathbf{r} = -\frac{1}{2}(\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$ .

**20.** (a) Given that  $\mathbf{a} = \mathbf{b} + \mathbf{c}$  and angle between  $\mathbf{b}$  and  $\mathbf{c}$  is  $\frac{\pi}{2}$ .

So, 
$$\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 2 \mathbf{b} \cdot \mathbf{c}$$
  
Or  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 2 |\mathbf{b}| \mathbf{c} |\cos \frac{\pi}{2}$   
Or  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 0$ ,  $\therefore \mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2$   
 $i.e.$ ,  $a^2 = b^2 + c^2$ .

21. (b) For acute angle  $\mathbf{a} \cdot \mathbf{b} > 0$ 

*i.e.*, 
$$-3x + 2x^2 + 1 > 0 \Rightarrow (x - 1)(2x - 1) > 0$$

For obtuse angle between **b** and x-axis **b**.**i** < 0

$$\Rightarrow x < 0$$
.

22. (d) 
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \mathbf{a} + \mathbf{b} \quad \mathbf{Or} \quad \overrightarrow{CA} = -(\mathbf{a} + \mathbf{b})$$

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{b} + \mathbf{c}$$
Therefore,  $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD}$ 

$$= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) + (-\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} + \mathbf{c})$$

$$= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{c} = 0.$$

23. (c) Squaring (a + b + c) = 0,

We get 
$$a^2 + b^2 + c^2 + 2a.b + 2b.c + 2c.a = 0$$

$$\Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 0$$

$$\Rightarrow 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = -3 \Rightarrow \mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a} = -\frac{3}{2}.$$

**24.** (d)  $(i - j + k) \cdot (i + 2j + k) = \sqrt{3}\sqrt{6}\cos\theta$ 

$$\Rightarrow \cos \theta = \frac{0}{\sqrt{3}\sqrt{6}} \Rightarrow \theta = \frac{\pi}{2}.$$

**25.** (a)  $\mathbf{d} \cdot \mathbf{c} = \lambda(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} + \mu(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{c} + \nu(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{c}$ 

$$= \lambda [\mathbf{a} \mathbf{b} \mathbf{c}] + 0 + 0 = \lambda [\mathbf{a} \mathbf{b} \mathbf{c}] = \frac{\lambda}{8}$$

Hence  $\lambda = 8(\mathbf{d} \cdot \mathbf{c})$ ,  $\mu = 8(\mathbf{d} \cdot \mathbf{a})$  and  $\nu = 8(\mathbf{d} \cdot \mathbf{b})$ 

Therefore,  $\lambda + \mu + \nu = 8\mathbf{d} \cdot \mathbf{c} + 8\mathbf{d} \cdot \mathbf{a} + 8\mathbf{d} \cdot \mathbf{b}$ 

$$=8\mathbf{d}.(\mathbf{a}+\mathbf{b}+\mathbf{c}).$$

**26.** (b) Here  $|\mathbf{a}| = 4$ ;  $|\mathbf{b}| = 4$ ;  $|\mathbf{c}| = 2$ 

And 
$$\mathbf{a}.(\mathbf{b}+\mathbf{c})=0 \Rightarrow \mathbf{a}.\mathbf{b}+\mathbf{a}.\mathbf{c}=0$$
 .....(i)

$$\mathbf{b}.(\mathbf{c} + \mathbf{a}) = 0 \Rightarrow \mathbf{b}.\mathbf{c} + \mathbf{b}.\mathbf{a} = 0$$
 ..... (ii)

$$\mathbf{c}.(\mathbf{a} + \mathbf{b}) = 0 \Rightarrow \mathbf{c}.\mathbf{a} + \mathbf{c}.\mathbf{b} = 0$$
 ..... (iii)

Adding (i), (ii) and (iii), we get,  $2[\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}] = 0$ 

: 
$$|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a})}$$

$$=\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2} = \sqrt{16 + 16 + 4}$$

$$\Rightarrow |a+b+c|=6$$
.

27. (d) Given condition is a + b = c.

Using dot product,  $(a + b) \cdot (a + b) = c \cdot c$ 

$$\Rightarrow$$
 **a**.**a** + **b**.**b** + 2**a**.**b** = **c**.**c**

$$\Rightarrow$$
 |  $\mathbf{a}$  | .|  $\mathbf{a}$  |  $\cos 0^{\circ}$  + |  $\mathbf{b}$  | .|  $\mathbf{b}$  |  $\cos 0^{\circ}$  + 2|  $\mathbf{a}$  | .|  $\mathbf{b}$  |  $\cos \alpha$ 

$$|| \mathbf{c} | . | \mathbf{c} | \cos 0^{\circ}, \qquad (: |\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1)$$

$$\Rightarrow 1+1+2\cos\alpha=1 \Rightarrow \cos\alpha=-\frac{1}{2} \Rightarrow \alpha=\frac{2\pi}{3}$$
.

- **28.** (c) Concept
- **29.** (c)  $a+b+c=0 \Rightarrow a+b=-c$

$$\Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos \theta = -\mathbf{c}|^2$$

$$\Rightarrow 9 + 25 + 30 \cos \theta = 49$$
  $\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$ .

**30.** (b) The component of vector **a** along **b** is 
$$\frac{(\mathbf{a} \cdot \mathbf{b})\mathbf{b}}{|\mathbf{b}|^2} = \frac{18}{25}(3\mathbf{j} + 4\mathbf{k})$$
.

31. (a) 
$$|\mathbf{a} - \mathbf{b}| = \sqrt{1^2 + 1^2 - 2 \cdot 1^2 \cos \theta} = \sqrt{2(1 - \cos \theta)}$$
  
$$= \sqrt{2} \times \sqrt{2} \sin \frac{\theta}{2} = 2 \sin \frac{\theta}{2} \Rightarrow \sin \frac{\theta}{2} = \frac{|\mathbf{a} - \mathbf{b}|}{2}.$$

**32.** (b) To be perpendicular, 
$$2a+3b-4c=0$$
 and option (b) satisfies this equation.

**33.** (b) 
$$(2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) \cdot \frac{(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})}{\sqrt{14}} = \frac{2}{\sqrt{14}}$$
.

**34.** (b) Projection of **a** on **b** = 
$$|\mathbf{a}| \cos \theta = |\mathbf{a}| \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$$

$$=\frac{4+8+7}{\sqrt{16+16+49}}=\frac{19}{\sqrt{81}}=\frac{19}{9}.$$

35. (b) 
$$|\mathbf{a} + \mathbf{b}| \neq |\mathbf{a} - \mathbf{b}|$$
; Squaring both sides, we get  $|\mathbf{4a} \cdot \mathbf{b}| = 0 \Rightarrow \mathbf{a}$  is perpendicular to  $|\mathbf{b}|$ .

37. (a) Let 
$$a = 2i + 3j + k$$
 and  $b = 2i - j + k$ 

Since 
$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

$$= \frac{(2\mathbf{i} + 3\mathbf{j} + \mathbf{k}).(2\mathbf{i} - \mathbf{j} - \mathbf{k})}{\sqrt{(2)^2 + (3)^2 + (1)^2} \sqrt{(2)^2 + (-1)^2 + (-1)^2}}$$

$$= \frac{4-3-1}{\sqrt{(4+9+1)\sqrt{(4+1+1)}}} = 0 \qquad \therefore \theta = \frac{\pi}{2}.$$

38. (c) 
$$la + mb + nc = 0$$

$$\Rightarrow a^2 l^2 + m^2 b^2 + n^2 c^2 + 2l m \mathbf{a} \cdot \mathbf{b} + 2l n \mathbf{a} \cdot \mathbf{c} + 2m n \mathbf{b} \cdot \mathbf{c} = 0$$

But a,b,c are mutually perpendicular

So, a.b, b.c and c.a are equal to zero.

Therefore,  $a^2l^2 + m^2b^2 + n^2c^2 = 0$  i.e., l, m, n are equal to zero because  $a^2$ ,  $b^2$  and  $c^2$  cannot be equal to zero.

39. (b) Required value 
$$=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{b}|} / \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{|\mathbf{a}|}{|\mathbf{b}|} = \frac{7}{3}$$
.

**40.** (b) 
$$(\mathbf{a} + 2\mathbf{b}) \cdot (5\mathbf{a} - 4\mathbf{b}) = 0$$
 Or  $5\mathbf{a}^2 + 6\mathbf{a} \cdot \mathbf{b} - 8\mathbf{b}^2 = 0$ 

**Or** 
$$6 \, \mathbf{a} \cdot \mathbf{b} = 3$$
,  $(:: \mathbf{a}^2 = 1, \mathbf{b}^2 = 1)$ 

$$\therefore \mathbf{a} \cdot \mathbf{b} = \frac{1}{2} \quad \mathbf{Or} \mid \mathbf{a} \parallel \mathbf{b} \mid \cos \theta = \frac{1}{2}$$

$$\therefore \cos \theta = \frac{1}{2}, \qquad \therefore \theta = 60^{\circ}.$$

**41.** (b) 
$$\vec{L} = i + 4j$$

Therefore, vector perpendicular to  $\vec{L} = \lambda(4\mathbf{i} - \mathbf{j})$ 

$$\therefore$$
 Unit vector is  $\frac{4\mathbf{i} - \mathbf{j}}{\sqrt{17}}$ .

But it points towards origin

$$\therefore$$
 Required vector =  $\frac{-4\mathbf{i} + \mathbf{j}}{\sqrt{17}}$ .

**42.** (a) Vectors 
$$a = 2i + j + 2k$$
 and  $b = 5i - 3j + k$ .

We know that the projection of **b** on

$$\mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot (5\mathbf{i} - 3\mathbf{j} + \mathbf{k})}{\sqrt{(2)^2 + (1)^2 + (2)^2}} = \frac{10 - 3 + 2}{\sqrt{9}} = \frac{9}{3} = 3.$$

**43.** (c) We have 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$$

$$(AB)(AC)\cos\theta + (BC)(BA)\cos(90^{\circ} - \theta) + 0$$



$$= AB(AC\cos\theta + BC\sin\theta) = AB\left(\frac{(AC)^2}{AB} + \frac{(BC)^2}{AB}\right)$$

$$= AC^2 + BC^2 = AB^2 = p^2.$$

**44.** (c) 
$$\mathbf{a.b} = \mathbf{a.c} \Rightarrow \mathbf{a.b} - \mathbf{a.c} = 0 \Rightarrow \mathbf{a.(b-c)} = 0$$

$$\Rightarrow$$
 Either  $\mathbf{b} - \mathbf{c} = \mathbf{0}$  or  $\mathbf{a} = \mathbf{0} \Rightarrow \mathbf{b} = \mathbf{c}$  Or  $\mathbf{a} \perp (\mathbf{b} - \mathbf{c})$ .

**45.** (a) 
$$|a+b| > |a-b|$$

Squaring both sides, we get

$$a^2 + b^2 + 2\mathbf{a} \cdot \mathbf{b} > a^2 + b^2 - 2\mathbf{a} \cdot \mathbf{b}$$

$$\Rightarrow 4a.b > 0 \Rightarrow \cos \theta > 0$$
. Hence  $\theta < 90^{\circ}$ , (acute).