○ 정적 상호연결 네트워크(static interconnection network)

one-dimensional structure

Linear Array

two-dimensional structure

Ring, Star, Tree, Mesh, Systolic Array

three-dimensional structure

Completely connected, Chordal Ring

- 정적 상호연결 네트워크(static interconnection network)
 - 선형배열(Linear Array)

Properties	 가장 간단한 구조이다. 노드가 2일 때는 매우 경제적이지만 그 수에 따라 통신시간이 비례한다. 서로 다른 소스 및 목적지 노드 쌍에 대해서는 동시성이 존재한다. 	
Diameter	>>> N-1	
Degree	» 처음과 마지막 노드: 1, 중간 노드: 2	

- 정적 상호연결 네트워크(static interconnection network)
 - 원형배열(Ring and Chordal ring)

- 정적 상호연결 네트워크(static interconnection network)
 - 원형배열(Ring and Chordal ring)

Properties	 ** 선형배열의 양쪽 끝을 연결한 구조이다. ** 단방향 또는 양방향이다. ** Chordal ring은 ring 구조에 연결을 추가함으로써 각 노드의 degree는 증가하고 네트워크 지름은 감소한다. ** Barrel Shifter: 네트워크의 크기가 N=2ⁿ 이고, 연결의 추가하여 degree=2n-1 일 때, 네트워크 지름(D)= n/2 이 되는 것을 말한다.
Diameter	» [N/2], ··· , 1
Degree	>>> Ring: 2, Chordal Ring: 3, 4,, Completely connected: N-1

- 정적 상호연결 네트워크(static interconnection network)
 - 2진 트리와 성형 구조(Binary tree and Star)

- 정적 상호연결 네트워크(static interconnection network)
 - 2진 트리와 성형 구조(Binary tree and Star)

Properties	 ≫ Binary tree 2진 트리: 레벨이 k 이면 전체 노드의 수=2^k-1이다. 일정한 degree를 갖는다. 확장성이 가능한 구조이다. 네트워크 지름은 크다. >>> Star 2 레벨 트리구조이다. 중심 노드를 제외하면, 항상 네트워크 지름이 2이다. 	
Diameter	>>> Binary tree: 2(k-1), Star: 2	
Degree	>>> Binary tree: 3, Star: N-1	

- 정적 상호연결 네트워크(static interconnection network)
 - 팻트리구조(Fat tree)

- 정적 상호연결 네트워크(static interconnection network)
 - 팻트리구조(Fat tree)

Properties	 >>> 상위 레벨로 올라갈수록 노드 간의통신 채널 수가 증가하는 구조이다. >>> 병목현상 감소한다. >>> Thinking Machine사의 CM-5 시스템에서실제로 사용했다.
Diameter	>>> 2k-1
Degree	>>> undefined

- 정적 상호연결 네트워크(static interconnection network)
 - 기타구조

- 정적 상호연결 네트워크(static interconnection network)
 - 기타구조

○ 동적 상호연결 네트워크(dynamic interconnection network)

일반적으로 다용도를 목적으로 한다.

프로그램 요구에 따라 모든 통신 패턴이 설정된다.

고정 연결대신에 스위치(switch) 혹은 중재기(arbiter)를 사용한다.

Bus systems, MIN, crossbar switch 등을 사용한다.

- 동적 상호연결 네트워크(dynamic interconnection network)
 - Switch Modules

- >>> 이론적으로 a와 b는 항상 같을 필요는 없다.
- >>> 실질적으로는 a=b=2^k(k>1) 를 사용한다.
- >>> a=2, b=2 일 때, 즉 2×2 를 2진-스위치 (binary switch) 라고 한다.

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 2진-스위치(binary Switch)의 연결의 종류

직진 (Straight)	같은 위치의 입출력 단자들 간의 연결
교차 (Cross)	다른 위치의 입출력 단자들 간의 연결

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 2진-스위치(binary Switch)의 연결의 종류

상위 방송
(Upper Broadcast)상단의 입력 단자가 모든 출력 단자들로
연결하위 방송
(Lower Broadcast)하단의 입력 단자가 모든 출력 단자들로
연결

- 동적 상호연결 네트워크(dynamic interconnection network)
 - Bus system

- >>> 하드웨어가 매우 단순하다(선의 집합).
- >>> 다수가 사용하기 때문에 잦은 경합이 발생한다. 따라서 지연 시간이 발생한다.
- >>> 경합을 줄이기 위하여 버스의 수를 증가시킨다.
- >>> 계층적 버스 구조(Hierarchical Bus Structure) 도입한다.
- >>> System bus는 PCB 상에 backplane으로 구현한다.

- 동적 상호연결 네트워크(dynamic interconnection network)
 - MIN(Multistage Interconnection Network)
 - MIN의 일반적인 구조

- >>> MIN 구조는 주로 MIMD 와 SIMD 컴퓨터구조에서 사용된다.
- >>> 단계(stage)와 단계 사이에는 고정된 연결을 사용한다.
- >>> 스위치는 입력과 출력 사이에 원하는 연결 상태로 설정된다.
- >>> 많은 종류의 MIN은 스테이지간의 연결(ISC)의 선택과 스위치 모듈의 선택에 따라 다양한 형성된다.

- 동적 상호연결 네트워크(dynamic interconnection network)
 - MIN(Multistage Interconnection Network)

- 동적 상호연결 네트워크(dynamic interconnection network)
 - MIN(Multistage Interconnection Network)
 - >>> 각 스테이지가 2진-스위치(2×2)들로 구성되고 입력단과 출력단의 수가 각각 N개인 경우
 - >>> 요구되는 단계(Stage)의 수

$$\rightarrow$$
 s = log_2N

>>> 각 단계의 스위치들의 수

$$\rightarrow m = \frac{N}{2}$$

>>> 따라서 전체 스위치의 총 개수

$$\to \mathbf{t} = \frac{N}{2} \log_2 N$$

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 오메가 네트워크(Omega Network)의 라우팅 알고리즘
 - >>> Source node 번호의 2진수 표현: SRC =s_{n-1}, ..., s₁, s₀
 - >>> Destination node 번호의 2진수 표현: DST= d_{n-1} , ..., d_1 , d_0

$S_i = d_i$	Stage i 의 스위치 연결 → Straight
$S_i \neq d_i$	Stage i 의 스위치 연결 → Cross

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 오메가 네트워크(Omega Network)의 라우팅 알고리즘

Ex) SRC=5(101)과 DST=1(001) 사이의 경로 설정

$(s_2=1)\oplus(d_2=0)=1$	Stage 2 → Cross
$(s_1=0)\oplus (d_1=0)=0$	Stage 1 → straight
$(s_0=1)\oplus(d_0=1)=0$	Stage 0 → straight

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 오메가 네트워크(Omega Network)의 라우팅 알고리즘

Ex) SRC=5(101)과 DST=1(001) 사이의 경로 설정

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 오메가 네트워크(Omega Network)의 라우팅 알고리즘

Ex) SRC=5(101) 로 부터 모든 DST=0(000) ~ 7(111)까지 경로 설정 → Broadcast

- 동적 상호연결 네트워크(dynamic interconnection network)
 - 크로스바 스위치(Crossbar Switch)
 - >>> 프로세서들과 기억장치들 간의 완전 연결(Full Connectivity)
 - >>> 하드웨어가 복잡하므로 비용이 많이 증가한다.

