TS1 Progress Report

Code Available HERE

Time Series Prediction

Time-Variant Analyses

N. Fazeli, A. Issaoui, P. Lerchi, M. Parent, S. Wei

Our Method

1. Select Optimal Features

- Simple, intuitive analysis
- Aligns with other team

2. Predict Feature Time Series

- Create stationary features
- Reasonable initial result

3. Linear Regression Baseline

Basic code complete

4. Validate on Real Price Data

Mixed results

5. Time Varying Weight Analysis

- Stanford paper implementation
- Useful tool for case studies

Project Goals

Goal One: Develop an initial framework for implementing time series prediction

Goal Two: Help users gain insight on disruptive market changes through dynamic feature impact analysis

Feature Selection

1. High Correlation with Price

- Understandable result
- Verify with PGE employee

2. Make Stationary

- Use Dickey-Fuller test
- First difference is sufficient

3. Decompose Seasonality

	Simplified	Original Defination
0	Υ	PrCaliforniaall.sectors.cents.per.kilowatthour
1	f3	GenCaliforniapetroleum.liquids.thousand.meg
2	f5	GenCalifornianatural.gas.thousand.megawatth
3	f6	GenCaliforniaother.gases.thousand.megawatth
4	f13	GenCaliforniaGeothermal.electric.utility
5	f15	GDP
6	f16	Av.Temp
7	f18	Av.Rel.Humid
8	f22	Hydro.Consumption.TrillBtu.
9	f26	WoodConsumpTrillBTU.
10	f37	Percentage.of.Industrial.Sector.Consumption.fo
11	f38	Natural.Gas.PriceElectric.Power.SectorDoll
12	f48	Electricity.Retail.SalesTotalBillion.Kilow
13	f49	Electricity.Direct.UseBillion.Kilowatthours.
14	f60	Natural.Gas.Consumed.by.the.Other.Industrial.S
15	f70	Retail.sales.of.electricity.monthly.California

Time Series

predicted=14.506427, expected=14.550000 predicted=14.401120, expected=14.300000 predicted=13.791988, expected=14.220000 predicted=13.408586, expected=12.640000 predicted=14.775977, expected=14.760000 predicted=16.455376, expected=16.120000 predicted=17.409834, expected=17.310000 predicted=17.827590, expected=17.190000 predicted=17.402254, expected=17.360000 predicted=16.247365, expected=15.620000 predicted=15.506575, expected=15.030000 predicted=15.184271, expected=14.410000 predicted=15.052558, expected=14.740000 predicted=14.856494, expected=14.530000 predicted=14.400784, expected=14.340000 predicted=14.377486, expected=12.670000 predicted=15.417520, expected=14.940000 predicted=16.865276, expected=16.240000 predicted=17.888186, expected=16.930000 predicted=18.257737, expected=17.150000 predicted=17.827553, expected=16.680000 predicted=16.883228, expected=14.180000 predicted=16.142433, expected=14.990000 predicted=15.819268, expected=14.880000

Prediction

Dynamic Forecast?

Linear Regression

```
# Linear Regression Model
from sklearn.linear model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)
print('Intercept: \n', linreg.intercept_)
print('Coefficients: \n', linreg.coef_)
Intercept:
 17.286327564830035
Coefficients:
 [ 2.66753464e+01 -3.30918520e+01 -2.66514194e+01 3.30789746e+01
  4.59779903e-01 3.19790609e-03 -9.70528617e-02 -3.21269468e-03
  6.43840211e+00 -6.43739008e+00 -1.52808447e-02
                                                  1.22266573e-02
  7.57754171e-02 7.57754171e-02 -4.68676657e-02 4.65264535e-02
 -1.87590994e+00 3.16047966e-03 1.69754023e-03 3.99995699e-03
 -1.97815416e-02 -1.34609875e-01]
```

```
MSE, Training Data: 0.05
MSE, Test Data: 16708.30
```

Time Varying Weight

$$\min_{\theta(t)} \sum_{t=1}^{N} \|y(t) - \varphi^{T}(t)\theta(t)\|^{2} + \lambda \sum_{t=2}^{N} w(t) \|\theta(t) - \theta(t-1)\|_{\text{reg}}$$

See Stanford Paper for additional detail

Impact

1. More realistic modeling

- Feature significance varies over time
- Results are intuitively displayed

2. Simplify complex feature analysis

- Algorithm auto-selects dominant features
- Consider a larger scope of variables

3. Clarify impact of disruption

- Separate baseline variables from disruptors
- Proportional effect of irregular behavior

4. Qualify future predictions

- Case studies
- Parametric sweep
- Confidence intervals

$$y(t) + ay(t-1) = b_1u(t-1) + b_2u(t-2)$$

Final Regression

