

5.3 图的矩阵表示

- ■无向图的关联矩阵
- ■有向图的关联矩阵
- ■有向图的邻接矩阵
- ■有向图的可达矩阵

无向图的关联矩阵

定义 设无向图 $G=\langle V,E\rangle$, $V=\{v_1, v_2, ..., v_n\}$, $E=\{e_1, e_2, ..., e_m\}$, 令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G的关联矩阵,记为M(G).

$$M(G) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

无向图的关联矩阵

定义 设无向图 $G=\langle V,E\rangle$, $V=\{v_1, v_2, ..., v_n\}$, $E=\{e_1, e_2, ..., e_m\}$, 令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G的关联矩阵,记为M(G).

性质 (1)每一列恰好有两个1或一个2

(2)
$$\sum_{i=1}^{m} m_{ij} = d(v_i)$$
 (i = 1,2,...,n)

$$(3) \sum_{i,j} m_{ij} = 2m$$

- (4) v_i为孤立点当且仅当第行全为0
- (5)平行边的列相同

有向图的关联矩阵

定义 设无环有向图D=<V,E>, $V=\{v_1, v_2, ..., v_n\}$, $E=\{e_1, e_2, ..., e_m\}$, 令

$$m_{ij} = \begin{cases} 1, & v_i \ge e_j \text{ 的始点} \\ 0, & v_i \le e_j \text{ 不关联} \\ -1, & v_i \ge e_j \text{ 的终点} \end{cases}$$

则称 $(m_{ij})_{n\times m}$ 为D的关联矩阵,记为M(D).

M

有向图的关联矩阵(续)

$$\mathbf{M}(\mathbf{D}) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix} \quad \begin{array}{c} v_1 \\ e_1 \\ v_2 \\ \end{array}$$

性质

- (1)每一列恰好有一个1和一个-1
- (2) 第i行1 的个数等于 $d^+(v_i)$, -1 的个数等于 $d^-(v_i)$
- (3) 1的总个数等于-1的总个数,且都等于m
- (4) 平行边对应的列相同

有向图的邻接矩阵

定义 设有向图D=<V,E>, $V=\{v_1, v_2, ..., v_n\}$, $E=\{e_1, e_2, ..., e_m\}$, 令 $a_{ij}^{(1)}$ 为顶点 v_i 邻接到顶点 v_j 边的条数,称($a_{ij}^{(1)}$)_{$n\times n$}为D的邻接矩阵,记作A(D),简记为A. 实例:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

有向图邻接矩阵的性质

(1)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \quad i = 1, 2, ..., n$$

(2)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \quad j = 1, 2, ..., n$$

- (3) $\sum_{i,j} a_{ij}^{(1)} = m - D$ 中长度为1的通路数
- (4) $\sum_{i=1}^{n} a_{ii}^{(1)} - D$ 中长度为1的回路数

M

D中的通路及回路数

定理 设A为n阶有向图D的邻接矩阵,则 $A^l(l \ge 1)$ 中元素

 $a_{ij}^{(l)}$ 为D中 v_i 到 v_j 长度为l的通路数, $a_{ii}^{(l)}$ 为 v_i 到自身长度为l的回路数,

 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$ 为D中长度为l的通路总数, $\sum_{i=1}^{n} a_{ii}^{(l)}$ 为D中长度为l的回路总数.

D中的通路及回路数(续)

推论 设 $B_l = A + A^2 + ... + A^l(l \ge 1)$,则 B_l 中元素 $\sum_{i=1}^n \sum_{j=1}^n b_{ij}^{(l)} \to D$ 中长度小于或等于l 的通路数, $\sum_{i=1}^n b_{ii}^{(l)} \to D$ 中长度小于或等于l 的回路数.

例 问在有向图D中

- (1) 长度为1, 2, 3, 4的通路各有多少条? 其中回路分别为多少条?
- (2) 长度小于或等于4的通路为多少条? 其中有多少条回路?

例(续)

有向图的可达矩阵

定义 设D=<V,E>为有向图, $V=\{v_1,v_2,...,v_n\}$, 令

$$p_{ij} = \begin{cases} \mathbf{1}, & v_i \overline{\exists} v_j \\ \mathbf{0}, & \overline{\oplus} \end{cases}$$

 $\mathfrak{R}(p_{ij})_{n\times n}$ 为D的可达矩阵,记作P(D),简记为P.

性质:

P(D)主对角线上的元素全为1.

D强连通当且仅当P(D)的元素全为1.

有向图的可达矩阵实例

例

$$P = egin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \end{bmatrix}$$

5.4 最短路径,关键路径与着色

- ■帯权图
- ■最短路径与Dijkstra标号法
- ■项目网络图与关键路径
- ■着色问题

最短路径

带权图G=<V,E,w>, 其中 $w:E\rightarrow R$.

 $\forall e \in E, w(e)$ 称作e的权. $e = (v_i, v_j)$, 记 $w(e) = w_{ij}$. $\dot{\Xi}v_i, v_j$ 不相邻, 记 $w_{ij} = \infty$.

通路L的权: L的所有边的权之和, 记作w(L).

u和v之间的最短路径: u和v之间权最小的通路.

例 $L_1=v_0v_1v_3v_5$, $w(L_1)=10$, $L_2=v_0v_1v_4v_5$, $w(L_2)=12$, $L_3=v_0v_2v_4v_5$, $w(L_3)=11$.

标号法(E.W.Dijkstra, 1959)

设带权图G=<V,E,w>, 其中 $\forall e \in E, w(e) \ge 0$. 设 $V=\{v_1,v_2,...,v_n\}$, 求 v_1 到其余各顶点的最短路径

- 1. $\diamondsuit l_1 \leftarrow 0, p_1 \leftarrow \lambda, l_j \leftarrow +\infty, p_j \leftarrow \lambda, j=2,3,...,n,$ $P=\{v_1\}, T=V-\{v_1\}, k\leftarrow 1, t\leftarrow 1.$ / λ 表示空
- 2. 对所有的 $v_j \in T$ 且 $(v_k, v_j) \in E$ 令 $l \leftarrow \min\{l_j, l_k + w_{kj}\},$ 若 $l = l_k + w_{kj}, 则 \Leftrightarrow l_j \leftarrow l, p_j \leftarrow v_k.$
- 3. $\Re l_i = \min\{l_j | v_j \in T_t\}$. $\Leftrightarrow P \leftarrow P \cup \{v_i\}, T \leftarrow T \{v_i\}, k \leftarrow i$.
- 4. 令*t←t*+1, 若*t<n*,则转2.

Dijkstra标号法实例

例 求v0到v5的最短路径

t	v_0	v_1	v_2	v_3	v_4	v_5
1	$(0,\lambda)^*$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
2		$(1,v_0)^*$	$(4,v_0)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
3			$(3,v_1)^*$	$(8,v_1)$	$(6,v_1)$	$(+\infty,\lambda)$
4				$(8,v_1)$	$(4,v_2)^*$	$(+\infty,\lambda)$
5				$(7,v_4)^*$	-	$(10,v_4)$
6				\ / T /		$(9,v_3)^*$

 v_0 到 v_5 的最短路径长度 $d(v_0, v_5)=9$

最短路径: $v_0v_1v_2v_4v_3v_5$,

项目网络图

项目网络图:表示项目的活动之间前后顺序一致的带权有向图.边表示活动,边的权是活动的完成时间,顶点表示事项(项目的开始和结束、活动的开始和结束).

要求: (1) 有一个始点(入度为0)和一个终点(出度为0).

(2) 任意两点之间只能有一条边.

- (3) 没有回路.
- (4) 每一条边始点的编号小于终点的编号.

例

活动	A	В	C	D	E	F	G	H	Ι	J	K	${f L}$
紧前活动	_	_	_	A	A	A,B	A,B	A,B	C,H	D,F	E,I	G,K
时间(天)	1	2	3	4	3	4	4	2	4	6	1	1

关键路径

关键路径: 项目网络图中从始点到终点的最长路径

关键活动: 关键路径上的活动

设D=<V,E,W>, $V=\{1,2,...,n\}$, 1是始点, n是终点.

(1)事项i的最早开始时间 $ES(v_i)$: i最早可能开始的时间,即从始点到i的最长路径的长度.

$$ES(1)=0$$

$$ES(i)=\max\{ES(j)+w_{ii}|< j,i>\in E\}, i=2,3,...,n$$

(2)事项i的最晚完成时间LF(i): 在不影响项目工期的条件下,事项i最晚必须完成的时间.

$$LF(n)=ES(n)$$

$$LF(i)=\min\{LF(j)-w_{ij}|< i,j>\in E\}, i=n-1,n-2,...,1$$

关键路径(续)

- (3) 活动 $\langle i,j \rangle$ 的最早开始时间ES(i,j): $\langle i,j \rangle$ 最早可能开始时间.
- (4) 活动 $\langle i,j \rangle$ 的最早完成时间EF(i,j): $\langle i,j \rangle$ 最早可能完成时间.
- (5) 活动 $\langle i,j \rangle$ 的最晚开始时间ES(i,j): 在不影响项目工期的条件下, $\langle i,j \rangle$ 最晚必须开始的时间.
- (6) 活动 $\langle i,j \rangle$ 的最晚完成时间ES(i,j): 在不影响项目工期的条件下, $\langle i,j \rangle$ 最晚必须完成的时间.
- (7) 活动 $\langle i,j \rangle$ 的缓冲时间SL(i,j):

$$SL(i,j)=LS(i,j)-ES(i,j)=LF(i,j)-EF(i,j)$$

显然,
$$ES(i,j)=ES(i)$$
, $EF(i,j)=ES(i)+w_{ij}$, $LF(i,j)=LF(j)$, $LS(i,j)=LF(j)-w_{ii}$,

例(续)

事项的最早开始时间

$$ES(1)=0$$

$$ES(2)=\max\{0+1\}=1$$

$$ES(3)=\max\{0+2,1+0\}=2$$

$$ES(4)=\max\{0+3,2+2\}=4$$

$$ES(5)=\max\{1+3,4+4\}=8$$

$$ES(6)=\max\{2+4,8+1\}=9$$

$$ES(7)=\max\{1+4,2+4\}=6$$

$$ES(8)=\max\{9+1,6+6\}=12$$

例(续)

事项的最晚完成时间

$$LF(8)=12$$

$$LF(7)=\min\{12-6\}=6$$

$$LF(6)=\min\{12-1\}=11$$

$$LF(5)=\min\{11-1\}=10$$

$$LF(4)=\min\{10-4\}=6$$

$$LF(3)=\min\{6-2,11-4,6-4\}=2$$

$$LF(2)=\min\{2-0,10-3,6-4\}=2$$

$$LF(1)=\min\{2-1,2-2,6-3\}=0$$

例(续)

活动	A	В	C	D	E	F	G	Н	I	J	K	L
ES	0	0	0	1	1	2	2	2	4	6	8	9
EF	1	2	3	5	4	6	6	4	8	12	9	10
LS	1	0	3	2	7	2	7	4	6	6	10	11
LF	2	2	6	6	10	6	11	6	10	12	11	12
SL	1	0	3	1	6	0	5	2	2	0	2	2

总工期:12天

关键路径: $v_1v_3v_7v_8$ 关键活动: B,F,J

着色

定义 设无向图G无环,对G的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图G的一种点着色,简称着色. 若能用k种颜色给G的顶点着色,则称G是k-可着色的.

图的着色问题:用尽可能少的颜色给图着色.

例

例2

应用

- 有n项工作,每项工作需要一天的时间完成.有些工作由于需要相同的人员或设备不能同时进行,问至少需要几天才能完成所有的工作?
- 计算机有k个寄存器, 现正在编译一个程序, 要给每一个变量分配一个寄存器. 如果两个变量要在同一时刻使用, 则不能把它们分配给同一个寄存器.如何给变量分配寄存器?
- 无线交换设备的波长分配. 有*n*台设备和*k*个发射波长,要给每一台设备分配一个波长. 如果两台设备 靠得太近,则不能给它们分配相同的波长,以防止干扰. 如何分配波长?

例

例3 学生会下设6个委员会,第一委员会={张,李,王},第二委员会={李,赵,刘},第三委员会={张,刘,王},第四委员会={赵,刘,孙},第五委员会={张,王},第六委员会={李,刘,王}.每个月每个委员会都要开一次会,为了确保每个人都能参加他所在的委员会会议,这6个会议至少要安排在几个不同时间段?

至少要4个时段

第1时段:一,四

第2时段:二,五

第3时段:三

第4时段:六