## 4.5 Eşler Arası Farkın Önem Kontrolü

Aynı birey üzerinde iki kez ölçüm yapılıyor.

$$\begin{split} &X_1; X_{11}, X_{12}, \dots, X_{1n} {\sim} N(\mu_1, \sigma_1^2) \\ &X_2; X_{21}, X_{22}, \dots, X_{2n} {\sim} N(\mu_2, \sigma_2^2) \\ &(X_{11}, X_{21}), (X_{12}, X_{22}), \dots, (X_{1n}, X_{2n}) \\ &D_i = X_{1j} - X_{2j} \end{split}$$

1) Hipotez kurulur

$$H_0: \mu_D = 0$$
  
 $H_1: \mu_D < 0, \ \mu_D > 0, \ \mu_D \neq 0$ 

2) Test istatistiği hesaplanır.

$$t_h = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} \sim t_{n-1}$$

$$D = (X_{11} - X_{21}), (X_{12} - X_{22}), \dots, (X_{1n} - X_{2n})$$

$$\bar{D} = \frac{\sum_{i=1}^{n} D_i}{n}, S_D = \sqrt{\frac{\sum_{i=1}^{n} D_i^2 - \frac{\left(\sum_{i=1}^{n} D_i\right)^2}{n}}{n-1}}$$

3) Kritik bölgeye göre hipotez red edilir yada red edilemez.

$$H_1: \mu_D < 0$$

$$-t_{T(\alpha, n-1)}$$

 $H_0: \mu_D = 0$ 

$$t_H < -t_{T(\alpha, n-1)}$$
 ise  $H_0$  red  $t_H > t_{T(\alpha, n-1)}$  ise  $H_0$  red



 $H_0: \mu_D = 0$  $H_1: \mu_D > 0$ 

$$t_H > t_{T(\alpha, n-1)}$$
 ise  $H_0$  rec



 $H_0: \mu_D = 0$ 

$$t_H < -t_{T(\frac{\alpha}{2},n-1)}$$
 ya da $t_H > t_{T(\frac{\alpha}{2},n-1)}$  ise  $H_0$  red

Güven aralığı;

$$P\left(\overline{D} - t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}} \le \mu_D \le \overline{D} + t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}}\right) = 1 - \alpha$$

Örnek 4.6. Sigara içenler arasından rasgele olarak seçilen 10 kişinin günde ne kadar sigara içtikleri saptanmıştır. ( $X_{1i}$ : işlem öncesi) Sonra aynı kişilere bir sağlık uzmanı sağlık üzerine etkilerini konu edinen bir seminer vermiştir. Seminerden sonra aynı kişilerin günde ne kadar sigara içtikleri saptanmıştır. ( $X_{2i}$ : işlem sonrası)

*X*<sub>1*i*</sub> (adet): 30, 25, 25, 20, 20, 18, 17, 17, 15, 13

*X*<sub>2*i*</sub> (adet): 28, 25, 25, 18, 17, 18, 16, 16, 15, 12

 $\alpha=0.05$  anlam düzeyinde seminerin etkili olduğu söylenebilir mi? %95 güven düzeyinde güven aralığını oluşturunuz.

| $X_{1i}$ | $X_{2i}$ | $D_{j}$ |
|----------|----------|---------|
| 30       | 28       | 2       |
| 25       | 25       | 0       |
| 25       | 25       | 0       |
| 20       | 18       | 2       |
| 20       | 17       | 3       |
| 18       | 18       | 0       |
| 17       | 16       | 1       |
| 17       | 16       | 1       |
| 15       | 15       | 0       |
| 13       | 12       | 1       |

1) 
$$H_0$$
:  $\mu_D = 0$ 

$$H_1: \mu_D > 0$$

2) 
$$t_h = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}$$

$$\sum_{i=1}^{n} D_i = 10, \quad \sum_{i=1}^{n} D_i^2 = 20, \quad \overline{D} = \frac{\sum_{i=1}^{10} D_i}{10} = \frac{10}{10} = 1$$

$$S_D = \sqrt{\frac{\sum_{i=1}^n D_i^2 - \frac{\left(\sum_{i=1}^n D_i\right)^2}{n}}{n-1}} = \sqrt{\frac{20 - \frac{10^2}{10}}{10 - 1}} = \frac{\sqrt{10}}{3}$$

$$t_H = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} = \frac{1}{\frac{\sqrt{10}}{3} / \sqrt{10}} = 3$$

3)



 $t_H > t_{T(0.05,9)} = 1.833$  olduğundan  $H_0$  red edilir.

Yani, eşler arasında fark vardır. İçilen sigara miktarının seminerden sonra azaldığı %95 güvenle söylenebilir.

Güven aralığı;

$$P\left(\overline{D} - t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}} \le \mu_D \le \overline{D} + t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}}\right) = 1 - \alpha$$

$$\overline{D} \pm t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}} \Longrightarrow 1 \pm 2.262 \frac{1}{3} \right\} \stackrel{\rightarrow}{\rightarrow} 0.246$$

$$\rightarrow 1.754$$

**Yorum:** Bu aralığın  $\mu_D$ ' yi içeren aralıklardan biri olması olasılığı % 95 tir.

Örnek 4.7. 22 hastada ameliyattan önce ve sonraki sistolik kan basıncı aşağıdaki gibi verilmiştir. Ameliyattan önceki kan basıncının daha büyük olduğu iddia ediliyor. İddiayı  $\alpha = 0.05$  anlam düzeyinde test ediniz.

| Önce | Sonra | $D_{j}$ |
|------|-------|---------|
| 110  | 80    | 30      |
| 100  | 80    | 20      |
| 130  | 95    | 35      |
| 110  | 85    | 25      |
| 110  | 86    | 24      |
| 110  | 89    | 21      |
| 100  | 80    | 20      |
| 120  | 98    | 32      |
| 90   | 91    | -1      |
| 100  | 78    | 22      |
| 110  | 80    | 30      |
| 110  | 77    | 33      |
| 100  | 79    | 21      |
| 110  | 93    | 17      |
| 130  | 92    | 38      |
| 100  | 86    | 14      |
| 120  | 74    | 46      |
| 115  | 80    | 35      |
| 120  | 86    | 34      |
| 100  | 82    | 18      |
| 130  | 97    | 33      |
| 100  | 101   | -1      |

1)  $H_0$ :  $\mu_D = 0$  (Ameliyatın sistolik kan basıncına etkisi yoktur.)

 $H_1$ :  $\mu_D > 0$  (Ameliyattan önceki sistolik kan basıncının ortalaması ameliyattan sonraki sistolik kan basıncının ortalamasından büyüktür.)

2) 
$$t_h = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}$$

$$\sqrt{\frac{\sum_{i=1}^{n} D_{i}^{2} - \frac{\left(\sum_{i=1}^{n} D_{i}\right)^{2}}{n}}{n-1}}$$

$$\sum_{i=1}^{n} D_i = 546$$
,  $\sum_{i=1}^{n} D_i^2 = 16346$ 

$$\overline{D} = \frac{\sum_{i=1}^{22} D_i}{22} = \frac{546}{22} = 24.82$$

$$S_D = \sqrt{\frac{\sum_{i=1}^n D_i^2 - \frac{\left(\sum_{i=1}^n D_i\right)^2}{n}}{n-1}} = \sqrt{\frac{16346 - \frac{546^2}{22}}{22 - 1}} = 11.53$$

$$t_h = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} = \frac{24.82}{11.53 / \sqrt{22}} = 10.09$$

$$t_{0.05,22-1} = 1.721$$

3)



 $t_h > t_{\alpha,n-1}$  olduğundan  $H_0$  red edilir

Yani, eşler arasında fark vardır. Buna göre, ameliyat sistolik kan basıncını ortalama 24.82 birim düşürmektedir.

Güven aralığı;

$$P\left(\overline{D} - t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}} \leq \mu_D \leq \overline{D} + t_{(\frac{\alpha}{2}, n-1)} \frac{S_D}{\sqrt{n}}\right) = 1 - \alpha$$

$$\overline{D} \pm t_{(\frac{\alpha}{2},n-1)} \frac{S_D}{\sqrt{n}} \Longrightarrow 24.82 - 2.080 \frac{11.53}{\sqrt{22}} \right\} \stackrel{\rightarrow}{\to} 19.710$$

**Yorum:** Bu aralığın  $\mu_D$ ' yi içeren aralıklardan biri olması olasılığı % 95 tir.