单球面反射和折射成像规律的分析

向德祥¹,刘庆军²

(1. 兰州理工大学,甘肃 兰州 730050;2. 甘肃工业大学机械工厂,甘肃 兰州 730050)

摘 要,单球面成像是光学成像系统的基础,文章依据单球面成像的基本公式,对处干不同位置的 物体经单球面折射和反射后所成像的性质进行了分析,对其规律进行了总结。

关键词:球面成像;像的性质;反射;折射

中图分类号:0435

1 引言

在一般的光学教材中[1,2],通常只讨论薄透镜 成像的性质,对一般球面成像的性质没有进行详细 的分析,实际上,单球面是几何光学成像系统的基本 单元,并且在实际中单球面成像也有着重要的应用。 本文依据单球面成像的基本公式和牛顿公式,对处 在不同位置的物体经单球面反射和折射成像的性质 进行了分析,对其规律进行了归纳和总结。

单球面成像的基本理论:

依据几何光学的基本原理,在近轴近似下,单球 面反射和折射成像都可归结为单球面折射成像,反 射可作为折射 n'=n 的特殊情形, 下面只讨论单球 面折射成像的规律。从费马原理或光的折射定律出 发,在近轴近似下,采用新笛卡尔坐标,可以推知单 球面折射的成像公式为[1]。

$$\frac{\mathbf{n}_{s}^{\prime} - \mathbf{n}_{s} = \frac{\mathbf{n}^{\prime} - \mathbf{n}_{s}}{\mathbf{r}_{s}} \tag{1}$$

其中,n和n¹分别为折射前后两种介质的折射 \mathbf{z} , \mathbf{s} 和 \mathbf{s}' 分别为物距和像距, \mathbf{r} 为球面的曲率半径。

依据焦距的定义可得像方焦距和物方焦距分别 为:

$$f' = \frac{n'}{n'-n}r \qquad f = -\frac{n}{n'-n}r \tag{2}$$

由此可得单球面成像的高斯公式:

$$\frac{\mathbf{f}'}{\mathbf{s}'} + \frac{\mathbf{f}}{\mathbf{s}} = 1 \tag{3}$$

的牛顿公式:

依据放大率的定义,可得单球面成像的放大率

为:

$$\beta = \frac{y'}{y} = -\frac{ns'}{n's} = \frac{f}{x} = -\frac{x'}{f'}$$
 (5)

3 单球面成像的性质分析

物体经光学系统成像后的性质主要包括像的虚 实、正立和倒立、放大和缩小。实像是由实际光线汇 聚而成的,虚像是由实际光线的反向延长线汇聚而 成的。对于单球面反射,由于入射光线和反射光线 都在镜面的同一侧,因而当像和入射光线在镜面的 同一侧时,像为实像,反之则像为虚像;对于单球面 折射,由于入射光线和折射光线在镜面的两侧,因而 当像和入射光线在镜面的两侧时,像为实像,反之则 像为虚像。对于像的正立和倒立,依据放大率的定 义, 当放大率为正时, 像和物的方向相同, 为正立的 像,当放大率为负时,像为倒立的像。对于像的放大 和缩小, 当放大率的绝对值大于1时, 为放大的像, 当放大率的绝对值小于1时,为缩小的像。下面,分 四种情形对单球面成像的性质进行分析。

凹球面反射成像示意图

3.1 凹球面反射成像的性质:

xx'=ff/1994-2021 China Academic Journal Flagtronic Pub科問樣更反射和图片表示。在新笛店尔维标enki.r 下, $\mathbf{r} < 0$, $\mathbf{f}' = \mathbf{f} < 0$,焦点为实焦点。对于像的性质, 有以下四种情形讨论:

1)物体位于焦点和球面顶点之间:

 $0>_x>|f|$,依据 $x'=\frac{ff'}{x}$, $|x'|=\frac{|ff'|}{|x|}$,可 (4x'>0, |x'|>|f'|,像的位置位于球面顶点 的右侧,在镜面的后面,为虚像;

依据 $\beta = -f/x$, 可得 $\beta > 0$, 为正立的像;

依据 $|\beta| = |f| / |x|$, 可得 $|\beta| > 1$, 为放大 的像。

2)物体位于焦点到 2 倍焦距之间:

 $x < 0, |x| < |f|, \exists x' < 0, |x'| > |f'|$ 1,像的位置位于2倍焦距以外,在镜面的前面,为 实像; $\beta < 0$,为倒立的像; $\beta > 1$,为放大的像。

3)物体位于2倍焦距以外.

x < 0, |x| > |f|, x' < 0, |x'| < |f'|,的位置位于焦点和球面顶点之间,在镜面的前面,为 实像; $\beta > 0$,为正立的像; $\beta \mid \beta \mid < 1$,为缩小的像。

4) 虚物

x > 0, |x| > |f|, x' > 0, |x'| < |f'|, 像的位置位于2倍焦距以外,在镜面的前面,为实 $(\mathfrak{g};\beta \leq 0)$,为倒立的像; $|\beta| > 1$,为放大的像。

以上结果归纳起来可用表 1 表示。

表 1 不同位置的物体经凹球面反射成像的性质

物距	$f <_s < 0$	$2f <_s <_f s < 2f$	s>0
像距	s'>0	$_{s}'>_{2f}$ $_{2f}<_{s}'<_{f}$	$f <_s < 0$
像的虚实	虚像	实像 实像	实像
像的正和倒	正立	倒立 倒立	正立
像的缩和放	放大	放大 缩小	缩小

3.2 凸球面反射成像的性质

对凸球面反射, $\mathbf{r} > 0$, $\mathbf{f}' = \mathbf{f} > 0$,焦点为虚焦点, 采用和前面相同的分析方法,可得不同情形下成像 的性质如表 2.

不同位置的物体经凸球面反射成像的性质 表 2

物距	s<0	$0 <_s <_f$	$_{\rm f}<_{\rm s}<2_{\rm f}$	$_{ m s}>_{ m 2f}$
像距	$0 <_{\mathbf{s}}' <_{\mathbf{f}}'$	s' < 0	s>2f'	$f' <_s < 2f'$
像的虚实	虚像	实像	虚像	虚像
像的正和倒	正立	正立	倒立	倒立
像的缩和放	缩小	放大	放大	缩小

3.3 凹球面折射成像的性质

对凹球面折射, $\mathbf{r} < 0$,设 $\mathbf{n}_2 > \mathbf{n}_1$,则 $\mathbf{f}' < 0$, $\mathbf{f} > 0$, 像方焦点和物方焦点均为虚焦点,采用和前面相同 的分析方法,可得不同情形下成像的性质见表3。

表 3 凹球面折射成像的性质

物距	s<0	$0 <_s <_f$	$_{\mathrm{f}}<_{\mathrm{s}}<2_{\mathrm{f}}$	$_{ m s}>2_{ m f}$
像距	$0 <_{\mathbf{s}}' <_{\mathbf{f}}'$	s'>0	s'>2f'	$2\mathbf{f}' \leq \mathbf{s}' \leq \mathbf{f}'$
像的虚实	虚像	实像	虚像	虚像
像的正和倒	正立	正立	倒立	倒立
像的缩和放	缩小	放大	放大	缩小

3.4 凸球面折射成像的性质:

当球面为凸球面, $\mathbf{r} > 0$,设 $\mathbf{n}_2 > \mathbf{n}_1$,则 $\mathbf{f}' > 0$, $\mathbf{f} <$ 0,像方焦点和物方焦点均为实焦点,采用和前面相 同的分析方法,可得不同情形下成像的性质见表 4。

表 3 凸球面折射成像的性质

物距	$_{\rm f}<_{\rm s}<0$	$2f \le s \le f s \le 2f$	s>0
像距	s'>0	$s'>2f'$ $f'<_s<2f'$	$0 <_{\mathbf{s}}' <_{\mathbf{f}}'$
像的虚实	虚像	实像 实像	实像
像的正和倒	正立	倒立 倒立	正立
像的缩和放	放大	放大 缩小	缩小

结论

通过以上分析,可以看出:对单秋反射和折射成 像,像的放大和缩小取决于物体到物方焦点的距离, 当物体到物方焦点的距离小于物方焦距的绝对值 时,所成的像为放大的,物体到物方焦点的距离大干 物方焦距的绝对值时,所成的像为缩小的。像的正 立和倒立同焦点的虚实有关,对于实焦点,当物体位 于物方焦点的左侧时,像为倒立的,物体位于物方焦 点的右侧时,像为正立的;对于虚焦点,当物体位于 物方焦点的左侧时,像为正立的,物体位于物方焦点 的右侧时,像为倒立的。

参考文献:

- [1] 姚启钧·光学教程[M]·北京:高等教育出版社,1989.
- [2] 赵凯华·光学[M]·北京:高等教育出版社,2004

(上接第22页)

动信息服务.情报杂志,2005(10):59-61

- [3] 曾维宏,陈铁军等.基于 Push 技术的主动信息服务系 统设计与实现. 计算机工程与设计, 2005, 26(11): 2893 —2895 (C)1994-2021 China Academic Journal Electronic Pub情报理论与实践,名996。39t∢5≥s€45 ed€17 http://www.cnki.r
- [4] 黄晓斌、网络信息过滤原理与应用、北京、北京图书馆 出版社,2005
- [5] 索传军.论基于网络环境的主动信息服务系统.河南图 书馆学刊,2006,23(3):10-13
- [6] 王咏·基于 Push 技术的信息获取方式及其应用·情报 学报,2000,19(4):363-368
- [7] 崔虹燕,蒋念平.一种改进的多级信息安全过滤模型.
- [8] 焦玉英,李进华.网上信息服务的主动性及其相关技 术.现代图书情报技术,2002,92(2):56-58