Aperçu de l'étude des nombres premiers

Bodart Corentin Jonathan Dauwe Azalais Davin Thomas Lemaire Robin Petit Alex Ternes

Université Libre de Bruxelles

4 mai 2016

Plan de la présentation

- 1 Existence d'une infinité de nombres premiers
- Nombres de Wilson
- 3 Théorèmes de Fermat et Euler
- Nombres de Carmichaël
- 6 Les racines primitives
- Test de Lucas-Lehmer

Euclide

Nombres de Wilson

les nbres de Wilson

Objectif

Prouver le théorème suivant grâce à la théorie des groupes :

Théorème (Petit théorème de Fermat (1640))

Soient $a, p \in \mathbb{Z}$ tels que p est premier et a n'est pas divisible par p. Alors $a^{p-1}-1$ est un multiple de p, c'est-à-dire :

$$a^{p-1} - 1 \equiv 0 \pmod{p}$$
.

Préliminaires à la preuve

Définition

Soient G un groupe et $a \in G$. L'ordre de a est :

- le plus petit $m \in \mathbb{N}^*$ tel que $a^m = e$, où e est le neutre de G;
- le cardinal du sous-groupe engendré par a, c-à-d : $\langle a \rangle := \{e = a^0, a^1, \dots, a^{m-1}\}.$

L'ordre de a est noté ord(a).

Théorème (Thorème de Lagrange)

Si G est un groupe fini et $H \subseteq G$ un sous-groupe, alors |H| divise |G|.

Rappel (Petit théorème de Fermat)

$$\forall a, p \in \mathbb{Z} : (p \text{ premier } \land p \not| a) \Rightarrow (a^{p-1} - 1 \equiv 0 \pmod{p})$$

Preuve du petit théorème de Fermat - partie 1/2

On considère le groupe $(\mathbb{Z}/p\mathbb{Z}^*,\cdot,1)$. En effet,

 $\mathbb{Z}/p\mathbb{Z}^* = \{[1], [2], \dots, [p-1]\}$ car p est premier.

Soit maintenant $[a] \in \mathbb{Z}/p\mathbb{Z}^*$. a n'est pas divisible par p car

 $[0] = [p] = [kp] \notin \mathbb{Z}/p\mathbb{Z}^*$ pour $k \in \mathbb{Z}$.

Prenons $m := \operatorname{ord}([a])$. Alors on sait :

- $[a]^m = [1]$;
- $\bullet |\langle a \rangle| = m.$

Puisque $\langle a \rangle$ est un sous-groupe de $\mathbb{Z}/p\mathbb{Z}^*$, on sait par Lagrange que $m=\left|\langle a \rangle\right|$ divise $\left|\mathbb{Z}/p\mathbb{Z}^*\right|=p-1$.

Rappel (Petit théorème de Fermat)

$$\forall a, p \in \mathbb{Z} : (p \text{ premier } \land p \not | a) \Rightarrow (a^{p-1} - 1 \equiv 0 \pmod{p})$$

Preuve du petit théorème de fermat - partie 2/2.

On sait m|p-1, que l'on peut réécrire comme suit :

$$\exists k \in \mathbb{N} \text{ t.q. } m \cdot k = p-1.$$

Finalement, on a:

$$\left[a^{p-1}\right] = [a]^{p-1} = [a]^{mk} = \left([a]^m\right)^k = [1]^k = [1].$$

On a effectivement $\left[a^{p-1}\right]=[1]$, ce qui signifie :

$$a^{p-1} \equiv 1 \pmod{p}$$
.

_

Généralisation du petit théorème de Fermat

Théorème (Théorème d'Euler (1761))

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{N}$ tels que a, n soient premiers entre eux. Alors :

$$a^{\phi(n)} \equiv 1 (\bmod n)$$

Preuve.

La démonstration est assez similaire à celle du théorème de Fermat : on prend le groupe $(\mathbb{Z}/n\mathbb{Z}^*,\cdot,1)$ qui correspond aux classes d'entiers inversibles mod n et dont le cardinal vaut $\phi(n)$.

Nombres de Carmichaël

Carmichaël

racines primitives.

Nombres de Mersenne

Définition

Un nombre de Mersenne (nommé selon Marin Mersenne, 16-17e siècle) est nombre sous la forme $M_n=2^n-1$.

Lemme

Soit $p \in \mathbb{N}^*$. Si p est divisible par $m \in \mathbb{N}$, alors le nombre de Mersenne M_m divise M_p .

Remarque

Ce lemme veut dire qu'il n'est pas nécessaire de tester la primalité de M_n pour n non premier car si n n'est pas premier, alors M_n ne l'est pas non plus. La réciproque n'est pas vraie. Exemple : p=11 est premier, or $M_p=2^{11}-1=2047=23\times 89$.

Preuve.

La preuve est uniquement calculatoire. Supposons qu'il existe $m,t\in\mathbb{N}\setminus\{1,p\}$ tels que p=mt. On a alors :

$$M_n = 2^n - 1 = 2^{mt} - 1 = (2^m)^t - 1 = \sum_{i=0}^{t-1} (2^m)^i = \sum_{i=1}^t \left(2^{mi} - 2^{m(i-1)}\right)$$
$$= 2^m \sum_{i=1}^t 2^{m(i-1)} - \sum_{i=1}^t 2^{m(i-1)}$$
$$= (2^m - 1) \sum_{i=1}^t 2^{m(i-1)} = M_m \sum_{i=1}^t 2^{m(i-1)}.$$

13/1

Le test de Lucas-Lehmer permet de déterminer si un nombre de Mersenne est premier ou non. Il est basé sur la suite naturelle :

$$\begin{cases} L_0 &= 4 \\ L_n &= (L_{n-1})^2 - 2 \text{ si } n \geq 1 \end{cases}$$

dont les premiers termes sont les suivants :

$$4, 14, 194, 37634, 1416317954, \dots$$

Théorème (Test de Lucas-Lehmer)

Soit $p \in \mathbb{N}^*$. M_p est premier si et seulement si M_p divise L_{p-2} .

Remarque

Le théorème est une double implication. Il faut donc montrer les deux pour démontrer le théorème. Nous ne montrerons ici pas le fait que si M_p est premier, alors M_p divise L_{p-2} .

Lemme (Lemme préliminaire)

Soit G un groupe. Soit $a \in G$ un élément. Alors $\operatorname{ord}(a) \leq |G|$.

Preuve - partie 1/X

Montrons que $L_{p-2}=kM_p\Rightarrow M_p$ premier. Une manière d'exprimer la divisibilité de L_{p-2} par M_p est de dire que $L_{p-2}\equiv 0 \pmod{M_p}$. Premièrement, on remarque que l'on peut exprimer la suite (L_n) définie récursivement comme une suite directe. Posons $\omega=2+\sqrt{3}, \bar{\omega}=2-\sqrt{3}$. On trouve dès lors $L_n=\omega^{2^n}+\bar{\omega}^{2^n}$. On suppose qu'il existe $k\in\mathbb{N}$ tel que :

$$L_{p-2} = \omega^{2^{p-2}} + \bar{\omega}^{2^{p-2}} = kM_p.$$

En multipliant par $\omega^{2^{p-2}}$ des deux côtés et en réarrangeant les termes, on obtient :

$$\left(\omega^{2^{p-2}}\right)^2\omega^{2^{p-1}} = kM_p\omega^{2^{p-2}} - \bar{\omega}^{2^{p-2}}\omega^{2^{p-2}} = 1.$$

Preuve - partie 2/X

Supposons par l'absurde que M_p est composite (n'est pas premier). On prend donc $2 < q < M_p$ le plus petit diviseur premier de M_p . On prend alors $\mathbb{Z}_q \coloneqq \mathbb{Z}/q\mathbb{Z}$ l'ensemble des entiers modulo q, et on pose :

$$X := \{a + b\sqrt{3} \text{ t.q. } a, b \in \mathbb{Z}_q\},$$

οù

 $\forall x=(a+b\sqrt{3}), y=(c+d\sqrt{3})\in X: x\cdot y=(ac+3bd)+(ac+bd)\sqrt{3}.$ On pose $X^*=\{x\in X \text{ t.q. } \exists x^{-1}\in X\}$ le groupe des éléments de X admettant un inverse (preuve que X^* est un groupe est omise). On sait que $0\not\in X^*$, $\operatorname{donc}|X^*|\leq |X|-1=q^2-1.$

De plus, on sait q>2, donc $\omega, \bar{\omega}\in X^*$. Également, $M_p\equiv 0 \pmod{q}$, donc, dans X, on a :

$$kM_p\omega^{2^{p-2}}=0.$$

Preuve - partie 3/X

On a vu que $\omega^{2^{p-1}}=kM_p\omega^{2^{p-2}}-1=0-1=-1$ dans X. En mettant au carré l'équation, on obtient :

$$\left(\omega^{2^{p-1}}\right)^2 = \omega^{2^p} = 1.$$

Dès lors, on sait que $\omega \in X^*$ et est d'un ordre qui divise 2^p . Or, $\operatorname{ord}(\omega)$ ne divise pas $\omega^{2^{p-1}}$. Donc $\operatorname{ord}(\omega) = 2^p$. Par le lemme préliminaire, on a :

$$2^p \le |X^*| \le q^2 - 1.$$

Et comme q est un diviseur de M_p , on a $q^2 \leq M_p = 2^-1$. On a alors $2^p \leq 2^p - 1$, ce qui est une contradiction. Notre hypothèse disant que M_p est composite est donc fausse. M_p est bien premier.