Improving Automotive Fuel Efficiency Through Engine Optimization

Nicholas Lee, Mike Varner, Zachary Galante, and Mark Herrera (8/2/2022)

Background

Data

Dataset*:

- 398 cars from 1970 1982
- Attributes (MPG, cylinders, displacement, horsepower, weight, acceleration, year, and name)
- For statistical software demonstration at the 1983 American Statistical Association Exposition

Cleaning:

- Removed: null horsepower values & duplicate models from previous years

Observations:

- 398 -> **302**

^{*}Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Auto+MPG)

Key Concepts

Displacement: the volume of air swept through an engine cylinder in a single revolution (in cubic inches)

Horsepower: refers to the power an engine produces - calculated through the power needed to move 550 pounds one foot in one second

Cylinders: chambers where fuel is combusted and power is generated - consists of a piston and inlet/exhaust valves

Weight: weight of entire vehicle (in pounds)

Acceleration: time for vehicle to go from 0 to 60 mph (in seconds)

Key Modeling Decisions

$$\widehat{MPG} = \beta_0 - \beta_1 \cdot displacement - \mathbf{Z}\gamma$$

Key Modeling Decisions Cont.

- Large Sample Assumptions (n > 100)
 - I.I.D
 - Clustering effects due to multiple models from one manufacturer
 - Clustering from manufacturing year
 - A Unique BLP
 - Impossible to have infinite mpg
 - No major clustering of data
 - Allows for one linear predictor

Results

Table 1: Summary Statistics of Models				
	Dependent variable: Miles Per Gallon (MPG)			
	(1)	(2)	(3)	(4)
Displacement (cubic inches)	-0.07***	-0.17^{***}	-0.11***	-0.09***
	(0.003)	(0.02)	(0.02)	(0.02)
Displacement (cubic inches) squared		0.0002***	0.0002***	0.0002***
		(0.0000)	(0.0000)	(0.0000)
Weight			-0.01***	-0.01***
			(0.001)	(0.001)
Acceleration				0.43**
				(0.15)
Model Year				0.77***
				(0.06)
Constant	37.03***	46.26***	52.23***	-13.52**
	(0.84)	(1.75)	(1.87)	(4.92)
Observations	202	202	202	202
\mathbb{R}^2	0.66	0.72	0.75	0.86
Residual Std. Error	4.92 (df = 200)	4.50 (df = 199)	4.22 (df = 198)	3.19 (df = 196)
Note:	*p<0.05; **p<0.01; ***p<0.001 HC_1 robust standard errors in parentheses.			

- Displacement coefficients are highly statistically significant across all models
- Model 2 Displacement squared increases magnitude of Displacement as well as explanatory power
- Model 3 adding Weight gives the model a similar increase in explanatory power
- Model 4 shows Acceleration is significant as well as our strongest effect (Model Year) and biggest increase in explanatory power

Limitations

- Data is limited would ideally have more observations
- Omitted variables:
 - Gearing/transmission: could make our model underpredict MPG
 - Aerodynamics: need more data could make model over or underpredict
 MPG

- Non-adjustable parameters such as model, origin and year

Limitations Cont.

- Later model years appear to have less displacement and high MPG
- Clustering of values around milestone numbers (i.e. 300, 350, 400)

Conclusion

- This study estimated the impact of a vehicle's engine displacement on its fuel efficiency (MPG).
- For every cubic inch reduction of displacement to a vehicle's engine, our models predict a **0.07** to **0.17** increase in MPG.
 - Ex: for cars with average displacement per the dataset (194 cu. in.) a 10% decrease in displacement will increase fuel efficiency by 1.27 to 3.27
 MPG or 5-13% of the dataset mean MPG (24.34)
- Future research can refine these models by collecting data on gearing/transmission, aerodynamics, fuel/engine type, etc and survey cars manufactured at the same point in time

Thank you