

ریاضی عمومی ۲

تهیه و تدوین:

دکتر داریوش کیانی، دکتر سارا سعیدی مدنی، دکتر امیر ساکی

نیمسال دوم سال تحصیلی ۱۴۰۰ - ۱۳۹۹ دانشکددی ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر Tiani, S

 \mathbb{R}^3 یادآوری هندسه تحلیلی در فضای دوبعدی \mathbb{R}^2 و سهبعدی

Madani-Saki

A بردار با نقطهی ابتدایی P و نقطهی انتهایی

جمع برداري:

$$\vec{u} = \overrightarrow{(x_1, y_1)}$$
 $\vec{v} = \overrightarrow{(x_2, y_2)}$
 $\vec{u} + \vec{v} = \overrightarrow{(x_1 + x_2, y_1 + y_2)}$

ضرب اسكالر:

$$t \in \mathbb{R}, \quad \overrightarrow{v} = \overrightarrow{(x_1, y_1)}$$

$$t\overrightarrow{v} = \overrightarrow{(tx_1, ty_1)}$$

تفاضل بردارها:

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

$:P_1=(x_1,y_1)$ فاصله دو نقطه $P_0=(x_0,y_0)$ و

$$|P_0P_1| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$

 $|tu| = |t||u|$

$$-(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2})$$
 و $-j$ ، i است. مثل i است که طول آن برابر i است. $\hat{v}=\frac{1}{|\vec{v}|}\vec{v}$ آنگاه $\vec{v}\neq 0$ آنگاه $\hat{v}=\frac{1}{|\vec{v}|}$

$$\vec{r} = (\overrightarrow{x,y}) = x \underbrace{(\overrightarrow{1,0})}_{i} + y \underbrace{(\overrightarrow{0,1})}_{j}$$

یک نقطه مانند P با سه مؤلفه، در \mathbb{R}^3 و بردار مکان آن، یعنی r مطابق شکل است.

جمع برداری و ضرب اسکالر در \mathbb{R}^3 به صورت زیر است:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

 $t(x, y, z) = (tx, ty, tz); t \in \mathbb{R}$

فاصله دو نقطهی P_1 و P_2 (مانند شکل) در \mathbb{R}^3 عبارتست از:

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

در \vec{k} ، مطابق شکل، بردارهای یکهی \vec{i} ، \vec{i} و \vec{j} را داریم:

$$\vec{i} = (1, 0, 0)$$

$$\vec{j} = (0, 1, 0)$$

$$\vec{k} = (0, 0, 1)$$

$$P = xi + yj + zk$$

مثال:

$$\begin{cases} \vec{u} = i - j + 2k & \vec{u} + \vec{v} = i + k \\ \vec{v} = j - k & -2\vec{v} = -2j + 2k \end{cases}$$
$$|\vec{u}| = \sqrt{6}$$
$$\hat{v} = \frac{1}{\sqrt{2}}(j - k)$$

ضرب داخلی/درونی/نقطهای:

$$\vec{u} = (x_1, y_1, z_1)$$

 $\vec{v} = (x_2, y_2, z_2)$
 $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$

خواص:

- 1. u.v = v.u
- 2. u.(v + w) = u.v + u.w
- 3. $(t \in \mathbb{R})$ (tu).v = t(u.v) = u.(tv)
- $4. u.u = |u|^2$

گزاره

فرض کنید u و v دو بردار در \mathbb{R}^2 (یا \mathbb{R}^3) باشند و فرض کنید θ زاویه ی بین آنها باشد $0 < \theta < \pi$). آنگاه:

$$u.v = |u||v|\cos\theta$$

$u.v=0 \Leftrightarrow u$ بردارهای u و v بر هم عمودند

تصوير بردار:

تصویر بردار \vec{u} بر بردار \vec{v} که آنرا با \vec{u}_v نمایش میدهیم، با توجه به شکل، بهصورت زیر است:

$$\vec{u}_v = (|u|\cos\theta)\frac{\vec{v}}{|v|}$$
$$= (|v||u|\cos\theta)\frac{\vec{v}}{|v|^2}$$
$$= \left(\frac{u \cdot v}{|v|^2}\right)\vec{v}$$

بنابراين داريم:

$$\vec{u}_v = \left(\frac{u.v}{|v|^2}\right) \vec{v}$$

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}$$

$$i \in \mathbb{R} \land X = (x_1, \dots, x_n) \land Y = (y_1, \dots, y_n)$$

$$.t\in\mathbb{R}$$
 فرض کنید $X=(x_1,\ldots,x_n)$ و $Y=(y_1,\ldots,y_n)\in\mathbb{R}^n$ فرض کنید

$$X+Y=(x_1+y_1,\ldots,x_n+y_n)$$

$$tX = (tx_1, \dots, tx_n)$$

$$tX = (tx_1, \dots, tx_n)$$

$$|Y - X| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

$$X.Y = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

$$X.Y = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

\mathbb{R}^n بردارهای یکه در

$$e_1=(1,0,\ldots,0)$$

$$e_2 = (0, 1, \dots, 0)$$

 $(\mathbb{R}^n$ پایه استاندارد)

:

$$e_n = (0, 0, \dots, 1)$$

ضرب خارجي:

$$u = u_1 i + u_2 j + u_3 k$$

$$v = v_1 i + v_2 j + v_3 k$$

$$u \times v = \det \begin{pmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

$$= (u_2 v_3 - u_3 v_2) i + (u_3 v_1 - u_1 v_3) j + (u_1 v_2 - u_2 v_1) k$$

خواص:

$$1) u.(u \times v) = v.(u \times v) = 0$$

$$|u \times v| = |u| |v| \sin \theta$$
 (v و u و ساحت متوازى الاضلاع توليد شده توسط و u

$$u imes v=0\Leftrightarrow u$$
 و v موازی هستند $u imes u$

یک سه وجهی راست دست تشکیل می دهند. $u \times v$ ، v ، u (۳

4)
$$i \times i = j \times j = k \times k = 0$$

5)
$$i \times j = k$$
 $j \times k = i$ $k \times i = j$

6)
$$u \times v = -v \times u$$

ياد جابهجايي

7)
$$u \times (v + w) = u \times v + u \times w$$

 $(v + w) \times u = v \times u + w \times u$

8)
$$(tu) \times v = u \times (tv) = t(u \times v)$$

\mathbb{R}^3 خط و صفحه در \mathbb{R}^2 و

$$L = \{(x, y) \in \mathbb{R}^2 : y = ax + b\}$$

$$= \{(x, ax + b) : x \in \mathbb{R}\}$$

$$= \{\underbrace{(x, ax)}_{x(1,a)} + (0, b) : x \in \mathbb{R}\}$$

$$= (0, b) + \underbrace{\{x(1, a) : x \in \mathbb{R}\}}_{<(1,a)>}$$

$: \mathbb{R}^3$ صفحه در

$$P_0 = (x_0, y_0, z_0)$$
$$\vec{n} = Ai + Bj + Ck$$

صفحه گذرنده از P=(x,y,z) و عمود بر $ec{n}$ مجموعه ینقاطی مانند

$$(\overrightarrow{P-P_0}).\overrightarrow{n}=0$$

بردار n را بردار نرمال صفحه گوییم.

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
$$Ax + By + Cz = D$$

$$D = Ax_0 + By_0 + Cz_0$$
 ک

اگر T و R و Q سه نقطه در صفحهای باشند که روی یک خط راست نیستند، آنگاه داریم:

$$u = Q - T$$

$$v = R - T$$

$$\vec{n} = u \times v$$

P و صفحه گذرنده از سه نقطه P و R و R عبارتست از مجموعه R نقاطی مانند R به طوری که:

$$\vec{n}.(P-Q) = 0$$

مثال

$: \mathbb{R}^3$ خط در

میخواهیم معادله خط ℓ ، گذرنده از نقطهی $P_0=(x_0,y_0,z_0)$ و موازی بردار ناصفر $ec{v}=ai+bj+ck$

$:\mathbb{R}^3$ خط در

$$P - P_0 = tv$$

$$P = P_0 + tv$$

$$\ell = \{P : P = P_0 + tv; t \in \mathbb{R}\} = P_0 + \langle v \rangle$$

101 (0)

بردار v را بردار هادی خط گوییم.

معادله يارامتري خط:

$$\begin{cases} x=x_0+at\\ y=y_0+bt\\ z=z_0+ct \end{cases} (-\infty < t < \infty)$$
 ه اگر $a,b,c \neq 0$ آنگاه:
$$\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$$
 ه داريم:
$$a,b \neq 0 \ (c=0)$$
 شکلا اگر $a,b,c \neq 0$ ه داريم: $a,b \neq 0$ ه $a,b \neq 0$ ه داريم:

$$a,b,c
eq 0$$
 انگاه: $*$

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

:مثلا اگر
$$c=0$$
، $a,b
eq 0$ داریم *

$$\frac{x-x_0}{a} = \frac{y-y_0}{b}, \quad z = z_0$$

مثال

$$u=(0,1,-1)$$
 با بردار هادی $P_0=(1,0,-1)$ با بردار هادی $*$

$$\left\{ \begin{array}{ll} x=1 \\ y=t \\ z=-1-t \end{array} \right. \ \, \underline{y} = 1, \\ \frac{y-0}{1} = \frac{z+1}{-1} \ \, \underline{y} \ \, P = (1,0,-1) + t(0,1,-1) \\ \end{array} \right.$$

$$:P_1=(1,0,1)$$
 و $P_0=(1,0,-1)$ و $*$ معادلهی خط گذرنده از نقاط $*$

$$u = P_1 - P_0 = (0, 0, 2) \implies$$

$$\begin{cases} x = 1 \\ y = 0 \\ z = -1 + 2t \end{cases} \qquad P = (1, 0, -1) + t(0, 0, 2)$$

مفهوم پایه در \mathbb{R}^2 و \mathbb{R} :

بردارهایی ناصفر که همراستا نیستند در \mathbb{R}^2 را مستقل خطی گوییم.

نمادگذاری :
$$\langle A,B \rangle = \{tA+sB: t,s \in \mathbb{R}\}$$

اگر A,B دو بردار مستقل خطی باشند آنگاه:

$$\langle A, B \rangle = \mathbb{R}^2$$

* به هر دو بردار مستقل خطی در \mathbb{R}^2 یک پایه گفته می شود. مثال: i,j یک پایه برای \mathbb{R}^2 است.

میتوان دید که گزارههای زیر معادلند:

هستند. A و B دو بردار مستقل خطی در \mathbb{R}^2 هستند.

x=y=0 گر، آنگاه xA+yB=0، که x و y اعدادی حقیقی هستند، آنگاه x

$: \mathbb{R}^3$ در

سه بردار ناصفر $w=(w_1,w_2,w_3)$ ، $u=(v_1,v_2,v_3)$ ، $u=(u_1,u_2,u_3)$ و $w=(u_1,u_2,u_3)$ را در \mathbb{R}^3 مستقل خطی گوییم، هرگاه حجم متوازی السطوح تولید شده توسط این سه بردار ناصفر باشد: باشد یا معادلاً دترمینان ماتریس زیر ناصفر باشد:

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

مطابق شكل، دترمينان ماتريس مذكور، برابر است با:

حجم متوازیالسطوح $u.(v \times w)$

سه بردار ناصفر مستقل خطی در \mathbb{R}^3 را یک پایه برای \mathbb{R}^3 نیز مینامیم.

نمادگذاری :
$$\langle A,B,C \rangle = \{tA+sB+rC:t,s,r \in \mathbb{R}\}$$

ثابت می شود که اگر A,B,C مستقل خطی در \mathbb{R}^3 باشند، آنگاه

$$\langle A, B, C \rangle = \mathbb{R}^3$$

میتوان دید که گزارههای زیر معادلند:

سه بردار مستقل خطی در \mathbb{R}^3 هستند. A,B,C

۱۵. اگر
$$xA+yB+zC=0$$
 اعدادی حقیقی هستند، آنگاه ۲

$$x = y = z = 0.$$

مثال

نشان میدهیم که بردارهای
$$A=(1,1,0)$$
 همستقل $B=(1,0,1)$ همستقل خطی (و بنابراین پایهای برای \mathbb{R}^3) هستند.

روش اول: كافي است نشان دهيم كه دترمينان ماتريس زير ناصفر است:

$$\det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} - \det \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = -2$$

روش دوم: فرض کنید $x,y,z\in\mathbb{R}$ طوری هستند که $x,y,z\in\mathbb{R}$. باید نشان دهیم که x=y=z=0 داریم:

$$xA+yB+zC = x(1,1,0)+y(1,0,1)+z(0,1,1) = (x+y,x+z,y+z)$$

$$x = y = z = 0$$
یس باید $x + y = x + z = y + z = 0$ ، که نتیجه می دهد