Normalizing Flows

Abdul Fatir

Abstract

Notes on normalizing flows.

1 Planar Flow

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^{\top}\mathbf{z} + b)$$

$$\frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} = \mathbf{I} + \mathbf{u}h'(\mathbf{w}^{\top}\mathbf{z} + b)\mathbf{w}^{\top}$$

Now, using the matrix determinant lemma

$$\det \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} = (1 + h'(\mathbf{w}^{\top}\mathbf{z} + b)\mathbf{w}^{\top}\mathbf{I}^{-1}\mathbf{u})\det(\mathbf{I})$$
$$= (1 + h'(\mathbf{w}^{\top}\mathbf{z} + b)\mathbf{w}^{\top}\mathbf{u})$$

2 Radial Flow

$$f(\mathbf{z}) = \mathbf{z} + \beta h(\alpha, r)(\mathbf{z} - \mathbf{z}_0)$$

where $h(\alpha, r) = (\alpha + r)^{-1}$ and $r = ||\mathbf{z} - \mathbf{z}_0||$.

$$\begin{split} \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} &= \mathbf{I} + \beta \left((\mathbf{z} - \mathbf{z}_0) h'(\alpha, r) \frac{\partial r}{\partial \mathbf{z}} + h(\alpha, r) \mathbf{I} \right) \\ &= (1 + \beta h(\alpha, r)) \mathbf{I} + \beta h'(\alpha, r) (\mathbf{z} - \mathbf{z}_0) \frac{(\mathbf{z} - \mathbf{z}_0)^{\top}}{||\mathbf{z} - \mathbf{z}_0||} \end{split}$$

Again, using the matrix determinant lemma

$$\det \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} = \left(1 + \beta h'(\alpha, r) \frac{(\mathbf{z} - \mathbf{z}_0)^{\top}}{||\mathbf{z} - \mathbf{z}_0||} \frac{\mathbf{I}}{(1 + \beta h(\alpha, r))} (\mathbf{z} - \mathbf{z}_0)\right) \det((1 + \beta h(\alpha, r))\mathbf{I})$$

$$= \left(\frac{1 + \beta h(\alpha, r) + \beta h'(\alpha, r)||\mathbf{z} - \mathbf{z}_0||}{(1 + \beta h(\alpha, r))}\right) (1 + \beta h(\alpha, r))^d$$

$$= (1 + \beta h(\alpha, r) + \beta h'(\alpha, r)r) (1 + \beta h(\alpha, r))^{d-1}$$