

ATTACHMENT A (Amendments to Claims)

1-16 (Cancelled)

- 17. (Currently Amended) A propylene copolymer composition comprising:
 - A) a propylene copolymer containing from 1 to 20% by weight of olefins other than propylene; and
 - B) at least one propylene copolymer containing from 10 to 30% by weight of olefins other than propylene,

where the propylene copolymer A and the propylene copolymer B are present as separate phases and a portion of n-hexane soluble material is \(\leq 2.6\) by weight, the propylene copolymer composition comprising a tensile E modulus ranging from 150 MPa to 800 MPa, and the propylene copolymer composition is obtained from a two stage or multistage polymerization process comprising at least two successive polymerization steps a catalyst system comprising a metallocene compound, wherein [[the]] a catalyst system comprising a metallocene compound is used in each successive polymerization step polymerization stage.

18. (Currently Amended) The propylene copolymer composition as claimed in claim 17, wherein the propylene copolymer composition has a haze value of \leq 30%, and [[a]] the tensile E modulus ranges from 200 MPa to 500 MPa is in the range from 100 to 1500 MPa.

- U.S. Patent Application Serial No. 10/517,588
- 19. (Previously Presented) The propylene copolymer composition as claimed in claim 17, wherein the olefin other than propylene in the propylene copolymer A), the propylene copolymer B), or both is ethylene.
- 20. (Previously Presented) The propylene copolymer composition as claimed in claim 17, wherein a weight ratio of propylene copolymer A to propylene copolymer B is in the range from 90:10 to 20:80.
- 21. (Previously Presented) The propylene copolymer composition as claimed in claim 17, comprising from 0.1 to 1% by weight, based on the total weight of the propylene copolymer composition, of a nucleating agent.
- 22. (Previously Presented) The propylene copolymer composition as claimed in claim 17, wherein a glass transition temperature of the propylene copolymer B determined by means of DMTA (dynamic mechanical thermal analysis) is in the range from -20°C to -40°C.
- 23. (Previously Presented) The propylene copolymer composition as claimed in claim 17, wherein a molar mass distribution Mw/Mn is in the range from 1.5 to 3.5.
- 24 (Previously Presented) The propylene copolymer composition as claimed in claim 17 which has a number average molecular mass Mn in the range from 50,000 g/mol to 500,000 g/mol.
- 25. (Currently Amended) A process for preparing a propylene copolymer composition comprising:

- A) a propylene copolymer containing from 1 to 20% by weight of olefins other than propylene; and
- B) at least one propylene copolymer containing from 10 to 30% by weight of olefins other than propylene,

where the propylene copolymer A and the propylene copolymer B are present as separate phases and a portion of n-hexane soluble material is ≤ 2.6 % by weight, the propylene copolymer composition comprising a tensile E modulus ranging from 150 MPa to 800 MPa;

the process comprising polymerizing monomers in a multistage polymerization <u>process</u> comprising at least two successive polymerization <u>steps</u> stages and a catalyst system comprising a metallocene compound, wherein the catalyst system is used in each <u>successive</u> polymerization step stage.

- 26. (Currently Amended) A process comprising producing fibers, films or moldings from a propylene copolymer composition, the process comprising extruding or injection-molding, the propylene copolymer composition, the propylene copolymer composition comprising:
 - A) a propylene copolymer containing from 1 to 20% by weight of olefins other than propylene; and
 - B) at least one propylene copolymer containing from 10 to 30% by weight of olefins other than propylene,

where the propylene copolymer A and the propylene copolymer B are present as separate phases and a portion of n-hexane soluble material is ≤ 2.6 % by weight, the propylene copolymer composition comprising a tensile E modulus ranging from 150 MPa to 800 MPa,

U.S. Patent Application Serial No. 10/517,588

and the propylene copolymer composition is obtained from a two stage or multistage polymerization process comprising at least two successive polymerization steps a catalyst system comprising a metallocene compound, wherein [[the]] a catalyst system comprising a metallocene compound is used in each successive polymerization step polymerization stage.

- 27. (Currently Amended) A fiber, film or molding comprising a propylene copolymer composition comprising
 - A) a propylene copolymer containing from 1 to 20% by weight of olefins other than propylene; and
 - B) at least one propylene copolymer containing from 10 to 30% by weight of olefins other than propylene,

where the propylene copolymer A and the propylene copolymer B are present as separate phases and a portion of n-hexane soluble material is ≤ 2.6 % by weight, the propylene copolymer composition comprising a tensile E modulus ranging from 150 MPa to 800 MPa, and the propylene copolymer composition is obtained from a two stage or multistage polymerization process comprising at least two successive polymerization steps a catalyst system comprising -a metallocene compound, wherein [[the]] catalyst system comprising a metallocene compound is used polymerization each successive polymerization step in stage.

28. (Previously Presented) The propylene copolymer composition as claimed in claim 17, wherein the metallocene compound comprises formula (I):

wherein

- M is zirconium, hafnium or titanium;
- X are identical or different and are each, independently of one another, hydrogen, halogen, -R, -OR, $-OSO_2CF_3$, -OCOR, -SR, $-NR_2$, $-PR_2$, or an -OR'O- group, or two X may be joined to one another;
- is linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted with at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond;
- R' is a divalent group selected from the group consisting of $C_1-C_{40}-$ alkylidene, $C_6-C_{40}-$ arylidene, $C_7-C_{40}-$ alkylarylidene, and $C_7-C_{40}-$ arylalkylidene;
- L is a divalent bridging group selected from the group consisting of C_1-C_{20} -alkylidene radicals, C_3-C_{20} -

U.S. Patent Application Serial No. 10/517,588

cycloalkylidene radicals, C_6 - C_{20} -arylidene radicals, C_7 - C_{20} -alkylarylidene radicals, and C_7 - C_{20} -arylalkylidene radicals, or a silylidene group comprising up to 5 silicon atoms, and wherein L optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements;

- is linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R^1 optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements, or at least one unsaturated bond;
- R^2 is $-C(R^3)_2R^4$;
- R³ are identical or different and are each, independently of one another, linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R³ optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond, or two R³ may be joined to form a saturated or unsaturated C_3 - C_{20} -ring;
- is hydrogen or linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalky, wherein R^4 optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond;

T and T' are divalent groups of formula (II), (III), (IV), (V) or (VI),

wherein

the atoms denoted by symbols * and ** are joined to the atoms of formula (I) which are denoted by the same symbol;

 R^5 are identical or different and are each, independently of one another, hydrogen, halogen, linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R^5 optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond; and

are identical or different and are each, independently of one another, halogen, linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R^6 optionally comprises at least one heteroatom of groups 13-17 of

U.S. Patent Application Serial No. 10/517,588

the Periodic Table of the Elements, or at least one unsaturated bond;

29. (Previously Presented) The propylene copolymer composition as claimed in claim 28, wherein R^6 is an aryl group of formula (VII),

$$R^7$$
 R^7
 R^8
(VII)

wherein

are identical or different and are each, independently of one another, hydrogen, halogen, linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R^7 optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond, or two R^7 may be joined to form a saturated or unsaturated C_3 - C_{20} ring; and

is hydrogen, halogen, linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radical, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl, wherein R^8 optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements, or at least one unsaturated bond;

- U.S. Patent Application Serial No. 10/517,588
- 30. (Previously Presented) The propylene copolymer composition as claimed in claim 29, wherein
 - R^8 is $-C(R^9)_3$; and
 - R^9 are identical or different and are each, independently of one another, a linear or branched C_1 - C_6 -alkyl group, or two or three of R^9 are joined to form at least one ring system.