常微分方程

未知函数,未知函数的导数,未知函数的微分与自变量之间关系的方程为微分方程

通解: 含任意常数, 且常数的个数等于微分方程的阶数

可分离变量微分方程

$$\frac{dy}{g(y)} = f(x)dx \int g(y)dy = \int f(x)dx$$

齐次方程

$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$
 x, y 作为中间变量整体出现

齐次方程求解

- $\Rightarrow u = \frac{y}{x}$
- 求x与u的关系式y=xu
- 求y=xu 关于 $\frac{dy}{dx}=u+x\frac{du}{dx}$
- 转为可分离变量微分方程

一阶线性微分方程

$$\frac{dy}{dx} + P(x)y = Q(x)$$

$$Q(x) \equiv 0$$
时其通解为 $y = Ce^{-\int P(x)dx}$

$$y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C)$$

齐次微分方程 $Q(x) \equiv 0$

非齐次微方程 $Q(x) \neq 0$

可降阶的高阶方程

•
$$y^n = f(x)$$
 $y^{n-1} = \int f(x)dx + C$

$$\bullet \ y``=f(x,y`)$$

令
$$y`=p$$
 $y``=p`带入原式得到一阶线性微分方程求y$ $y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C)$

•
$$y'' = f(y, y')$$

令
$$y'=p$$
 $y''=rac{dp}{dx}=prac{dp}{dy}$,原函数: $prac{dp}{dy}=f(y,p)$

二阶线性微方程

二阶线性微方程一般形式

$$y'' + p(x)y' + q(x)y = f(x)$$

• 解结构: $\exists y_1(x), y_2(x)$ 不满足线性关系时, $y = C_1y_1(x) + C_2y_2(x)$ 是方程的通解

二阶常系数线性齐次微分方程的解

$$y$$
" $+p(x)y$ ' $+q(x)y=0$, 其中 $p(x)$, $q(x)$ 为常数

特征方程:
$$r^2 + pr + q = 0$$

- 特征方程存在根 r_1, r_2 方程通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
- 特征方程存在复数根 $r_{1,2}=a\pm ieta$ 方程通解为 $y=e^{ax}(C_1coseta x+C_2sineta x)$
- 特征方程存在根 $r_1=r_2$ 方程通解为 $y=(C_1+C_2x)e^{rx}$