16,17p141, 31 et 33p 144-145 (corrigés)

NOTION DE REFERENTIEL

Revoir cette vidéo: https://www.youtube.com/watch?v=gRub5ExBtNg

EXERCICE 16 p 141

Andréa est immobile dans le référentiel ascenseur.

EXERCICE 17p141

- 1. Thomas Pesquet est immobile dans le référentiel ISS.
- **2.** Pour un observateur situé à la surface de la Terre, le spationaute a le mouvement de la station ISS, ce mouvement est rectiligne uniforme.

EXERCICE 31p144

- **1.** Dans la situation **A**, la valeur de la vitesse v_1 reste constante.
- **2.** Dans la situation **B**, la valeur de la vitesse v_2 augmente régulièrement (fonction de type affine).
 - a) 3 a. Selon la représentation graphique A de la vitesse, $v = 2.5 \text{m} \cdot \text{s}^{-1}$.
 - b) 3. Selon la représentation graphique **B** de la vitesse :
 - à l'instant t = 0 s, $v = 1.0 \text{ m} \cdot \text{s}^{-1}$;
 - à l'instant t = 5 s, v = 5.0 m · s⁻¹.
 - c) **b.** Ces deux valeurs sont différentes : $v_2(t = 5) > v_2(t = 0)$
- **3.** Dans la situation **A**, le mouvement est uniforme (la valeur de la vitesse ne varie pas). Dans la situation **B**, le mouvement est non uni- forme et accéléré (la valeur de la vitesse varie et augmente au cours du temps).
- **4.** Il est impossible ici de savoir si la trajectoire est rectiligne car on ne dispose pas des représentations des positions du point matériel étudié au cours du temps.

EXERCICE 33p75

1. La pomme mesure sur la chronophotographie 0,40 cm pour une grandeur réelle de 8 cm . On peut donc en déduire que :

Distance Schéma (en cm)	0,40	1
Distance Vraie vie (en	8	?
cm)		

ECHELLE : On peut donc en déduire que 1 cm sur le schéma correspond à 20 cm dans la vraie vie

- 2. Par définition, la vitesse instantanée en un point s'écrit $v = MM'/\Delta t$
- a) La vitesse instantanée au point 6 s'écrira : $v_6 = M_6 M_7 / \Delta t$

 $-M_6M_7$ = 0,5cm sur la photo => 0,5 x20 = 10 cm dans la vraie vie II faut convertir cette valeur en mètres. M6M7 = 10cm= 0,10 m .

 $-\Delta t = 0.033 \text{ s}.$

Application numérique :

 $V_6 = 0.10/0.033 = 3.0 \text{ m/s}$ (avec deux chiffres significatifs).

b) De même:

La vitesse instantanée au point 9 s'écrira : $v_9 = M_9 M_{10} / \Delta t$ <u>Avec</u>

```
-M_9M_{10}= 0,8 cm sur la photo => 0,8 x20 = 16 cm dans la vraie vie II faut convertir cette valeur en mètres. M_9M_{10} = 16cm= 0,16 m . -\Delta t = 0,033 s. Application numérique : V_6 = 0,16/0,033 = 4,8 m/s (avec deux chiffres significatifs).
```

3. La valeur de la vitesse augmente ici, le mouvement est donc rectiligne (ligne droite) non-uniforme (la vitesse augmente).