Proveedores (Suppliers)

			\		
	S#	SNombre	Situacion	Ciudad	
	S1	Salazar	20	Londres	
	S2	Jaimes	10	Paris	
	S3	Bernal	30	Paris	
	S4	Corona	20	Londres	
	S5	Aldana	30	Atenas	

Partes (Parts)

Ρ#	PNombre	Color	Peso	Ciudad
P1	Tuerca	Rojo	12	Londres
P2	Perno	Verde	17	Paris
Р3	Burlete	Azul	17	Roma
P4	$\operatorname{Burlete}$	Rojo	14	Londres
P5	Leva	Azul	12	Paris
P6	Engranaje	Rojo	19	Londres

Proyectos (Jobs)

J#	JNombre	Ciudad
J1	Clasificador	Paris
J2	Perforadora	Roma
J3	Lectora	Atenas
J4	Consola	Atenas
J5	Compaginador	Londres
J6	Terminal	Oslo
J7	Cinta	Londres

Envios (SPJ)

S#	Р#	J#	Cantidad
S1	P1	J1	200
S1	P1	J4	700
S2	Р3	J1	400
S2	Р3	J2	200
S2	Р3	J3	200
S2	Р3	J4	500
S2	Р3	J5	600
S2	Р3	J6	400
S2	Р3	J7	800
S2	P5	J2	100
S3	Р3	J1	200
S3	P4	J2	500
S4	P6	J3	300
S4	P6	J7	300
S5	P2	J2	200
S5	P2	J4	100
S5	P5	J5	500
S5	P5	J7	100
S5	P1	J4	100
S5	Р3	J4	200
S5	P4	J4	800
S5	P5	J4	400
S5	P6	J4	500

- 1. Para la base de datos definida, dar una solucion algebraica de los siguientes ejercicios:
 - (a) Obtener los detalles completos de todos los proyectos.

Solucion J.

(b) Obtener los detalles completos de todos los proyectos de Londres.

Solucion $\sigma_{JNombre=Londres}(J)$.

(c) Obtener los numeros de los proveedores que suministran partes al proyecto J1.

Solution
$$\pi_{S\#} [\sigma_{J\#=J1} (SPJ)].$$

(d) Obtener todos los envios en los cuales la cantidad esta en el intervalo de 300 a 750 inclusive.

Solucion
$$\sigma_{Cantidad \geq 300 \land Cantidad \leq 750} (SPJ)$$
.

(e) Obtener una lista de todas las combinaciones parte-color/parte-ciudad, eliminando todas las parejas color/ciudad repetidas.

Solution
$$\pi_{Color}(P) \times \pi_{Ciudad}(P)$$
.

(f) Obtener todas las 3-uplas numero de proveedor/numero de parte/numero de proyecto tales que el proveedor, la parte y el proyecto indicados esten todos en la misma ciudad (cosituados).

Solution
$$\pi_{S\#,P\#,J\#}(S | \times | P | \times | J)$$
.

(g) Obtener todas las 3-uplas numero de proveedor/numero de parte/numero de poryecto tales que el proveedor, la parte y el proyecto indicados no esten todos cosituados.

Solution
$$\pi_{S\#,P\#,J\#}(S \times P \times J) - \pi_{S\#,P\#,J\#}(S | \times |P| \times |J).$$

(h) Obtener los numeros de las partes suministradas por algun proveedor de Londres.

Solucion
$$\pi_{P\#} [\sigma_{Ciudad=Londres} (SPJ | \times | S)].$$

(i) Obtener los numeros de las partes suministradas por un proveedor de Londres a un proyecto en Londres.

Solucion
$$\pi_{P\#} [\sigma_{Ciudad=Londres} (SPJ | \times | S | \times | J)].$$

(j) Obtener los numeros de las partes suministradas a un proyecto por un proveedor situado en la misma ciudad que el proyecto.

Solution
$$\sigma_{P\#}(SPJ | \times | P | \times | J)$$
.

(k) Obtener los numeros de los proyectos a los cuales no suministra ninguna parte roja ninguno de los proveedores de Londres.

Solucion
$$\pi_{J\#} \left[\sigma_{Ciudad=Londres} \left(SPJ \mid \times \mid J \right) \right] - \pi_{J\#} \left[\sigma_{Color=Rojo} \left(SPJ \mid \times \mid P \right) \right]$$

(l) Obtener los numeros de los proyectos para los cuales S1 es el unico proveedor.

Solution
$$\pi_{J\#} \left[\sigma_{S\#=S1} \left(SPJ \right) \right] - \pi_{J\#} \left[\sigma_{S\#\neq S1} \left(SPJ \right) \right].$$

(m) Obtener los numeros de las partes suministradas a todos los proyectos en Londres.

Solucion
$$\pi_{P\#,J\#}\left(SPJ\right)/\pi_{J\#}\left[\sigma_{Ciudad=Londres}\left(J\right)\right].$$

(n) Obtener los numeros de los proveedores que suministren la misma parte a todos los proyectos.

Solution
$$\pi \left[\pi_{S\#,P\#,J\#}\left(SPJ\right)/\pi_{J\#}\left(J\right)\right]_{S\#}$$
.

(o) Obtener los numeros de los proyectos a los cuales se suministren por lo menos todas las partes suministradas por el proveedor S1.

Solucion
$$\pi_{J\#,P\#}\left(SPJ\right)/\pi_{P\#}\left[\sigma_{S\#=S1}\left(SPJ\right)\right]$$

(p) Obtener los nombres de los proveedores que suministran la parte P2.

Solution
$$\pi_{SNombre} \left[\sigma_{P\#=P2} \left(SPJ \right) | \times | S \right]$$

(q) Obtener los nombres de los proveedores que suministran por lo menos una parte roja.

Solucion
$$\pi_{Snombre} \left\{ \pi_{S\#} \left[SPJ \left| \times \right| \sigma_{Color=Rojo} \left(P \right) \right] \left| \times \right| S \right\}$$

(r) Obtener los nombres de los proveedores que suministran todas las partes.

Solucion
$$\sigma_{SNombre} \left\{ \left[\pi_{S\#,P\#} \left(SPJ \right) / \pi_{P\#} \left(P \right) \right] | \times | S \right\}.$$

(s) Obtener los números de los proveedores que suministran al menos todas las partes suministradas por el proveedor S2.

Solution
$$\pi_{S\#,P\#}\left(SPJ\right)/\pi_{P\#}\left[\sigma_{S\#=S2}\left(SPJ\right)\right]$$

(t) Obtener los nombres de los proveedores que no suministran la parte P2.

Solucion
$$\pi_{SNombre}\left(\left\{\sigma_{S\#}\left(S\right)-\pi_{S\#}\left[\sigma_{P\#=P2}\left(SPJ\right)\right]\right\}\left|\times\right|S\right)$$

(u) Obtener todos los pares de números de proveedor tales que los dos proveedores en cuestion esten cosituados.

Solucion
$$\pi_{S.S\#,S'.S\#} \{ \sigma_{S.Ciudad=S'.Ciudad} [S \times \rho_{S'}(S)] \}.$$

2. Dadas las relaciones A y B, definir la reunion, la interseccion y la division en terminos de las cinco operaciones algebraicas primitivas: union, diferencia, producto, restriccion y proyeccion.

Soluciones

• Sean $a_1, \ldots, a_p, c_1, \ldots, c_n$ las columnas $A y b_1, \ldots, b_q, c_1, \ldots, c_n$ las columnas de B entonces:

$$A\left|\times\right|B=\pi_{a_{1},\dots,a_{p},c_{1},\dots,c_{n},b_{1},\dots,b_{q}}\left[\sigma_{a.c_{1}=b.c_{1}\wedge\dots\wedge a.c_{n}=b.c_{n}}\left(A\times B\right)\right]$$

- $A \cap B = A (A B)$.
- $A/B = \pi_{A-B}(A) \pi_{A-B}\{[\pi_{A-B}(A) \times B] A\}.$
- 3. Considere la expresion $A \times B$. Si las cabeceras de $A \times B$ son disjuntas (es decir, no tienen atributos en comun), esta expresion es equivalente a $A \times B$. ¿A que es equivalente si las cabeceras de $A \times B$ son identicas (es decir, tienen todos los mismos atributos en comun, y los atributos correspondientes estan definidos sobre el mismo dominio)?

Solucion $A \times B = A \cap B$.

- 4. Sean A y B dos relaciones. Supongamos que las dos son compatibles respecto a la union, producto, etc, en caso necesario. Indicar la clave primaria de cada una de las siguientes relaciones:
 - (a) Una restriccion arbitraria de A.
 - (b) Una proyeccion arbitraria de A.
 - (c) El producto $A \times B$.
 - (d) La union $A \cup B$.
 - (e) La diferencia A B.

Soluciones

- (a) Clave de A.
- (b) COMPLETAR.
- (c) Clave de A y clave de B.
- (d) COMPLETAR.
- (e) Clave de A.
- 5. Demostrar que SQL es "relacionalmente completo", en el sentido de que, para cualquier expresion arbitraria del algebra relacional, existe una expresion de SQL equivalente en lo semantico.

Solucion COMPLETAR.