-							
偏	微劣方程笔记:						
	37			ı de	42		
1.	- PTIPDE	函数 (40 LYCE:	袁某《常钧	烤市柱》)		
	67265						
	- 利安4457\:	(F) 11, 1/2,, 7			7=0		
		椒穀	田安量	偏暑.			
	- 3打打3线准P	DE \$323	15 花分十	34 7 55 24	46 24 OU.	3° HE 1 12:	
	F. JOW JEX THE P	NC: AXIDIL.	13 41/3	N DE XIII	1/2 px 3/2	EXITY CIETS	: 11/
	一部强力。	א מונאייאז	(۱۸ مرلایت سیر	10 = <u>N6</u>	71.72		
	P(X,(),(1=1 01 01 11 11 11 11 11 11 11 11 11 11 11	>) / 41G V/	971	171) 1321 7007		
	- 3行半经入1年 PDT	E: 2013	刘伟				
	-般码入:	Σ α; (λι, λ2	''사사 왕	= C(71/7)	z,, Xn, U)		
		17'					
	-所线准PDE:	マ 対決曲	र किर्य इ	京中山线	\l\ t .		
	56223	<u> </u>	الا و ر		-4 >		
	- HX4371:	X Qi (1/1, 1/2	1 1 2/1/2 24	= C (7)17)	12, ', 7n) N		
				2,3	的零剂	7	
	一阶级线准订	70 F BR: 1 117	a-27/27)		- 1 2 1 /	`	
	ואיגלאאויז	rup myrun (my	1(=2)	1.14,1:			
	C(X, X, X)	34 + b1x,4,0	DU = (1x	CALM.			
	S.C.N. 9 1007			7-11-07			
		$\frac{dx}{dt} = \alpha t$	רטימיג				
	75 7		1	变力oi)E			
	乃成级》	$\frac{dy}{dt} = b1$	(, y, u)				
		du = clx	,y,u)				
	7/47 5			zu dy a	tu		
	目目是沿	长起轻为 号	7 04 + -	3y dé = 7	At		
		=> 2	M WX + 3	$\frac{u}{y} dy = du$			
			01/01/0	۳ ا			

首尔依约: 考虑 000 组: 1 dy = f, (x,1y,y2,... yn) { dy = f2 (x, y1, y2, ..., yn) dyn = fn(x,y,,y2,...yn) 或中少1.192, ··, yn为用变量, f., f2, ··, fn 连续 Y., Yz, , Yn 对大连续可含数 例如果 Φ(π, y, y, y,)= c 程高報的解 就你 Q(X, y,, y,, ..., yn)=c为"首尔於台" 定理 1面的方线经有一个解,一个直次和各面十首次和各种各种名称全 $\frac{\partial h}{\partial h} = \frac{\partial h}{\partial h}$ #1 - 阶级线性后程解决: 清三のはかから、かいいるか。ここか、ない、い発化力: $\frac{dX_1}{dt} = (X_1(X_1, X_2, \dots, X_{n,1}))$ $\frac{d\lambda_2}{dt} = \alpha_2(\lambda_1, \lambda_2, \dots, \lambda_{n_1} u)$ dtn = an (x1, x2, ..., xn, u) du = c (71,72, ..., 7n, u)

$$\frac{dx_1}{dt} = O_1(x_1, x_2, ..., x_{n_1}u)$$

$$\frac{dx_2}{dt} = O_2(x_1, x_2, ..., x_{n_1}u)$$

$$\frac{dx_3}{dt} = O_2(x_1, x_2, ..., x_{n_1}u)$$

$$\frac{dx_4}{dt} = C_1x_1x_2, ..., x_{n_1}u$$

$$\frac{dx_4}{dt} = C_1x_1x_1, ..$$

$$\begin{array}{c} a = A\left(\frac{\partial \xi}{\partial x}\right)^2 + 2B\frac{\partial \xi}{\partial x}\frac{\partial \xi}{\partial y} + C\left(\frac{\partial \xi}{\partial y}\right)^2 \\ b = A\frac{\partial \xi}{\partial x}\frac{\partial \eta}{\partial x} + B\left(\frac{\partial \xi}{\partial x}\frac{\partial \eta}{\partial y} + \frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial x}\right) + C\frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial y} \\ c = A\left(\frac{\partial \eta}{\partial x}\right)^2 + 2B\frac{\partial \eta}{\partial x}\frac{\partial \eta}{\partial y} + C\left(\frac{\partial \eta}{\partial y}\right)^2 \\ d = A\frac{\partial^2 \xi}{\partial x^2} + 2B\frac{\partial^2 \xi}{\partial x}\frac{\partial \eta}{\partial y} + C\frac{\partial^2 \xi}{\partial y^2} + D\frac{\partial \xi}{\partial x} + E\frac{\partial \xi}{\partial y} \\ c = A\frac{\partial^2 \eta}{\partial x^2} + 2B\frac{\partial^2 \eta}{\partial x}\frac{\partial \eta}{\partial y} + C\frac{\partial^2 \eta}{\partial y^2} + D\frac{\partial \eta}{\partial x} + E\frac{\partial \eta}{\partial y} \\ f = F \\ g = G \end{array}$$