Due: 08/02/2013

Math/Stat319 Homework 4

- 1. Let $X \sim \text{Binomial}(n, p)$. In order to estimate population proportion of "success" p, the natural estimator of p is the sample proportion of success $\hat{p}_1 = \frac{X}{n}$. Given E(X) = np and V(X) = npq,
 - 1. Is \hat{p}_1 an unbiased estimator for p ? Justify your answer.
 - 2. What is the variance of \hat{p}_1 ?
 - 3. What is the mean square error (MSE) of \hat{p}_1 for estimating p?

Now consider another estimator $\hat{p}_2 = \frac{X+2}{n+4}$.

- 1. Is \hat{p}_2 an unbiased estimator for p ? Justify your answer.
- 2. What is the variance of \hat{p}_2 ?
- 3. What is the mean square error (MSE) of \hat{p}_2 for estimating p?

[Comment:] This one is a book example. Please check the book also to see how to compare the two MSEs.

- 2. Let X_1, \ldots, X_n be random sample from $N(\mu, \sigma^2)$. The sample you collect is $X_1 = 4, X_2 = 7, X_3 = 5, X_4 = 8, X_5 = 6$. The probability of density function is $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
 - 1. If both μ and σ^2 are unknown, please (1) find the point estimator for μ and σ^2 by method of moment. (2) AND use the sample you collect to calculate the estimates.
 - 2. If both μ and σ^2 are unknown, please (1) find the point estimator for μ and σ^2 by maximum likelihood estimation. (2) AND use the sample you collect to calculate the estimates.
 - 3. If μ is known to be 2 and we want to estimate σ^2 , (1)what is the maximum likelihood estimator for σ^2 ? (2) AND use the sample you collect to calculate the estimate. (3) What is the maximum likelihood estimate for σ ?