Microarray Gene Expression Analysis with Python

Ahmed Moustafa

October 5, 2023

Table of contents

1	lmp	orting required libraries	2
2	Load	ding the data	2
3		cking the data behavior	3
	3.1	Transforming	4
4	Exp	loring the data	5
	4.1	Boxplot	5
		4.1.1 Using Matplotlib	5
		4.1.2 Using Pandas	7
		4.1.3 Using Seaborn	8
	4.2	Hierarchical clustering	8
5	Biol	logical signifiance	9
	5.1	Slicing the dataset by condition	9
	5.2	Gene-wise mean expression	10
	5.3	Scatter plot using Matplotlib	11
	5.4	Calculating the fold-change	12
	5.5	Scatter plot using Seaborn	13
	5.6	Historgram of the fold-change	13
		5.6.1 Using Matplotlib	13
		5.6.2 Using Seaborn	14
6	Stat	tistical significance	15
	6.1	Calculating t_test n_value	15

	6.2	Historgram of the p -value	(
		6.2.1 Using Matplotlib	(
		6.2.2 Using Seaborn	(
7	Biol	ogical & statistical signifiance	. 7
	7.1	Volcano Plot (p-value vs. fold-change)	. 7
		7.1.1 Using Matplotlib	17
		7.1.2 Using Seaborn	8
8	Diff	erentially expressed genes (DEGs)	9
	8.1	Genes with significant fold-change	(
	8.2	Genes with significant p-value	(
	8.3	Genes with significant fold-change & significant p-value	(
		Heatmap	

1 Importing required libraries

```
import pandas as pd
import numpy as np
from scipy import stats
from scipy.cluster import hierarchy
import matplotlib.pyplot as plt
import seaborn as sns
```

2 Loading the data

```
data = pd.read_table("https://media.githubusercontent.com/media/ahmedmoustafa/gene-express
data.head()
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Fu

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	KO1	KO2	КО3	WT1	WT2	WT3
ID						
1415670_at	6531.0	5562.8	6822.4	7732.1	7191.2	7551.9
1415671_at	11486.3	10542.7	10641.4	10408.2	9484.5	7650.2
1415672_at	14339.2	13526.1	14444.7	12936.6	13841.7	13285.7
1415673 _at	3156.8	2219.5	3264.4	2374.2	2201.8	2525.3
1415674_a_at	4002.0	3306.9	3777.0	3760.6	3137.0	2911.5

```
number_of_genes = data.shape[0]
number_of_genes
```

45101

3 Checking the data behavior

Check the behavior of the data (e.g., normal?, skewed?)

```
data.hist()

array([[<Axes: title={'center': 'K01'}>, <Axes: title={'center': 'K02'}>],
        [<Axes: title={'center': 'K03'}>, <Axes: title={'center': 'WT1'}>],
        [<Axes: title={'center': 'WT2'}>, <Axes: title={'center': 'WT3'}>]],
        dtype=object)
```


3.1 Transforming

log2 transformation

```
data2 = np.log2(data)
data2.head()
data2.hist()
```


4 Exploring the data

4.1 Boxplot

4.1.1 Using Matplotlib

```
plt.boxplot(data2)
```

```
<matplotlib.lines.Line2D at 0x13cc1d7d0>,
<matplotlib.lines.Line2D at 0x13cc8b090>,
<matplotlib.lines.Line2D at 0x13cc89d50>,
<matplotlib.lines.Line2D at 0x13cd154d0>,
<matplotlib.lines.Line2D at 0x13cd14ed0>,
<matplotlib.lines.Line2D at 0x13ccb5f90>,
<matplotlib.lines.Line2D at 0x13ccb7f90>,
<matplotlib.lines.Line2D at 0x13cd05610>,
<matplotlib.lines.Line2D at 0x13cd05c50>,
<matplotlib.lines.Line2D at 0x13cd5d590>,
<matplotlib.lines.Line2D at 0x13cd5fcd0>],
'boxes': [<matplotlib.lines.Line2D at 0x13c411710>,
<matplotlib.lines.Line2D at 0x13cc88910>,
<matplotlib.lines.Line2D at 0x13cd16750>,
<matplotlib.lines.Line2D at 0x13cd16710>,
<matplotlib.lines.Line2D at 0x13ccb6dd0>,
<matplotlib.lines.Line2D at 0x13cd04690>],
'medians': [<matplotlib.lines.Line2D at 0x13c4622d0>,
<matplotlib.lines.Line2D at 0x13cc89bd0>,
<matplotlib.lines.Line2D at 0x13cd14fd0>,
<matplotlib.lines.Line2D at 0x13ccb4450>,
<matplotlib.lines.Line2D at 0x13cd06c90>,
<matplotlib.lines.Line2D at 0x13cd5ced0>],
'fliers': [<matplotlib.lines.Line2D at 0x13c3234d0>,
<matplotlib.lines.Line2D at 0x13cc1df90>,
<matplotlib.lines.Line2D at 0x13cc1f190>,
<matplotlib.lines.Line2D at 0x13db2d2d0>,
<matplotlib.lines.Line2D at 0x13cd05590>,
<matplotlib.lines.Line2D at 0x13ccb4c10>],
'means': []}
```


4.1.2 Using Pandas

data2.boxplot()

<Axes: >

4.1.3 Using Seaborn

```
sns.boxplot(data2)
```

<Axes: >

4.2 Hierarchical clustering

```
linkage_matrix = hierarchy.linkage(data2.T, method='ward') # Transpose data with .T
hierarchy.dendrogram(linkage_matrix, labels = data2.columns)

{'icoord': [[15.0, 15.0, 25.0, 25.0],
```

```
[5.0, 5.0, 20.0, 20.0],
[45.0, 45.0, 55.0, 55.0],
[35.0, 35.0, 50.0, 50.0],
[12.5, 12.5, 42.5, 42.5]],
'dcoord': [[0.0, 219.95424812831652, 219.95424812831652, 0.0],
[0.0, 238.48396280958053, 238.48396280958053, 219.95424812831652],
[0.0, 231.7745678766896, 231.7745678766896, 0.0],
[0.0, 243.84222507735646, 243.84222507735646, 231.7745678766896],
[238.48396280958053,
```

```
281.5274405240738,

281.5274405240738,

243.84222507735646]],

'ivl': ['K02', 'K01', 'K03', 'WT1', 'WT2', 'WT3'],

'leaves': [1, 0, 2, 3, 4, 5],

'color_list': ['C0', 'C0', 'C0', 'C0'],

'leaves_color_list': ['C0', 'C0', 'C0', 'C0', 'C0']}
```


5 Biological signifiance

5.1 Slicing the dataset by condition

```
ko = data2[['K01', 'K02', 'K03']] # KO dataframe (K01,K02,K03)
ko.head()
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Fu

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S'

	KO1	KO2	KO3
ID			
1415670_at	12.673088	12.441596	12.736064
1415671_at	13.487627	13.363957	13.377400
1415672_at	13.807677	13.723458	13.818253
1415673 _at	11.624247	11.116019	11.672602
1415674_a_at	11.966505	11.691264	11.883025

```
wt = data2[['WT1', 'WT2', 'WT3']] # WT dataframe (WT1,WT2,WT3)
wt.head()
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Fu

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	WT1	WT2	WT3
ID			
1415670_at	12.916645	12.812017	12.882624
1415671_at	13.345433	13.211356	12.901282
1415672_at	13.659171	13.756734	13.697587
1415673_at	11.213226	11.104468	11.302239
1415674_a_at	11.876747	11.615170	11.507547

5.2 Gene-wise mean expression

Note: the mean function can take the axis parameter to determine the direction of computing the mean, where:

- $axis=0 \rightarrow vertical$ (by column), the default direction
- $axis=1 \rightarrow horizontal$ (by row), the direction that we want in this case.

ko_means = ko.mean(axis=1) # Compute the means of the KO samples
ko_means.head()

ID	0
ID	
1415670_at	12.616916
1415671_at	13.409661
1415672_at	13.783129
1415673 _at	11.470956
1415674_a_at	11.846931

```
wt_means = wt.mean(axis=1) # Compute the means of the WT samples
wt_means.head()
```

	0
ID	
1415670_at	12.870428
1415671_at	13.152690
1415672_at	13.704497
1415673_at	11.206644
1415674_a_at	11.666488

5.3 Scatter plot using Matplotlib

```
plt.scatter(x = wt_means, y = ko_means)
```

<matplotlib.collections.PathCollection at 0x13d39c250>

5.4 Calculating the fold-change

```
fold_change = ko_means - wt_means # The difference between means
fold_change.head()
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Further formatters.py:342: Further form

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	0
ID	
1415670_at	-0.253513
1415671_at	0.256971
1415672_at	0.078632
1415673 _at	0.264312
1415674_a_at	0.180443

Note:

- +ve fold-change \rightarrow Up-regulation \uparrow
- -ve fold-change \rightarrow Down-regulation \downarrow

5.5 Scatter plot using Seaborn

```
sns.scatterplot(x = wt_means, y = ko_means, hue = fold_change, palette='RdBu_r')
plt.xlabel('WT')
plt.ylabel('KO')
plt.title('Irf6 KO vs. WT Gene Expression')
```

Text(0.5, 1.0, 'Irf6 KO vs. WT Gene Expression')

5.6 Historgram of the fold-change

5.6.1 Using Matplotlib

```
plt.hist (fold_change)

(array([3.0000e+00, 8.0000e+00, 6.0000e+00, 3.2000e+01, 4.0100e+02, 1.1552e+04, 3.1788e+04, 1.2640e+03, 3.4000e+01, 1.3000e+01]),

array([-11.17862753, -9.36607657, -7.55352561, -5.74097464, -3.92842368, -2.11587271, -0.30332175, 1.50922922,
```

 $3.32178018, \quad 5.13433114, \quad 6.94688211]), \\ < BarContainer object of 10 artists>)$

5.6.2 Using Seaborn

sns.histplot (fold_change)

<Axes: ylabel='Count'>

6 Statistical significance

6.1 Calculating t-test p-value

(a *p*-value for each gene i.e., horizontally)

```
t_stat, p_value = stats.ttest_ind(ko, wt, axis=1)
t_stat_df = pd.DataFrame({'t_stat': t_stat, 'p_value': p_value})
t_stat_df.head()
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Furnity for the state of the sta

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `States and `States are also becomes a superior of `States are also becomes a super

	t_stat	p_value
0	-2.677586	0.055367
1	1.872445	0.134450
2	1.904526	0.129561
3	1.413610	0.230364
4	1.321077	0.256980

6.2 Historgram of the *p*-value

6.2.1 Using Matplotlib

6.2.2 Using Seaborn

```
sns.histplot (-np.log10(t_stat_df['p_value']))
```

<Axes: xlabel='p_value', ylabel='Count'>

7 Biological & statistical signifiance

7.1 Volcano Plot (p-value vs. fold-change)

7.1.1 Using Matplotlib

```
plt.scatter (x = fold_change, y = -np.log10(t_stat_df['p_value']))
```

<matplotlib.collections.PathCollection at 0x13d2c4290>

7.1.2 Using Seaborn

sns.scatterplot (x = fold_change.values, y = -np.log10(t_stat_df['p_value']), hue = fold_c

<Axes: ylabel='p_value'>

8 Differentially expressed genes (DEGs)

8.1 Genes with significant fold-change

```
fold_change_cutoff = 2
np.sum(abs(fold_change.values) >= fold_change_cutoff)
1051
```

8.2 Genes with significant *p*-value

575

```
pvalue_cutoff = 0.001
np.sum(t_stat_df['p_value'] <= pvalue_cutoff)</pre>
```

8.3 Genes with significant fold-change & significant *p*-value

```
np.sum((abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

163

filtered = data2.reset_index().loc[(abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

filtered = data2.reset_index().loc[(abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

filtered = data2.reset_index().loc[(abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

filtered = data2.reset_index().loc[(abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

filtered = data2.reset_index().loc[(abs(fold_change.values) >= fold_change_cutoff) & (t_stat_df['p_value'] <= pvalue_color

filtered.set_index('ID', inplace=True)

filtered.shape

filtered.head()</pre>
```

/Users/ahmed/Library/Python/3.11/lib/python/site-packages/IPython/core/formatters.py:342: Further transfer of the state of

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	KO1	KO2	КО3	WT1	WT2	WT3
ID						
1416200_at	13.312004	12.973357	12.868456	7.404290	8.558803	8.683696
1416236_a_at	14.148397	14.039236	14.130007	12.236044	12.022402	11.495056
1417808_at	5.321928	5.442943	4.053111	15.169780	15.070087	14.753274
1417932 _at	10.602884	10.257152	10.496055	13.984454	14.203294	13.720960
1418050_at	10.622052	10.975490	10.795066	12.865134	13.012048	12.658122

8.4 Heatmap

```
sns.clustermap(filtered, cmap='RdYlGn_r', standard_scale = 0)
```

