Informe de Captura de Paquetes TCP

1. Identificación de Puertos Origen y Destino

- Puerto de Origen: En la captura, observamos que el puerto de origen del cliente es dinámico y asignado automáticamente por el sistema operativo (en este caso, 49452).
- Puerto de Destino: Es el puerto donde está escuchando el servidor, definido en el programa como 5000.

¿Cómo se elige el puerto de origen? El puerto de origen es asignado automáticamente por el sistema operativo desde el rango de puertos efímeros (generalmente del 49152 al 65535), asegurando que no haya conflictos con otros procesos.

2. Paquetes con Flag PSH

- En los paquetes capturados, se puede observar que algunos contienen el flag **PSH (Push)** en la cabecera TCP.
- Análisis:
 - Esto indica que el cliente o servidor solicitó al receptor que procesara inmediatamente los datos sin esperar más datos adicionales.
 - En este caso, los paquetes con PSH transportan los datos del mensaje enviado.

3. Análisis de la Etapa de Conexión (SYN y ACK)

La conexión TCP sigue el modelo de handshake de tres vías:

1. Primer Paquete (SYN):

 Paquete con el flag SYN enviado desde el cliente al servidor.

• Detalles:

- Secuencia inicial (Seq=0).
- Indicador de que el cliente desea iniciar la conexión.

2. Segundo Paquete (SYN-ACK):

 El servidor responde con un paquete con los flags SYN y ACK.

• Detalles:

- Confirma la solicitud del cliente (Ack=1).
- Envía su propia secuencia inicial (Seq=0).

3. Tercer Paquete (ACK):

El cliente envía un paquete con el flag ACK.

• Detalles:

 Confirma la recepción del paquete SYN-ACK (Ack=1).

Este intercambio establece la conexión TCP.

4. Análisis de la Etapa de Desconexión (FIN y ACK)

La desconexión TCP sigue un proceso de cuatro pasos:

1. Primer Paquete (FIN, ACK):

 El cliente envía un paquete con los flags FIN y ACK para indicar que desea cerrar la conexión.

Detalles:

- Secuencia del cliente (Seq=103).
- Confirmación de recepción de datos anteriores (Ack=103).

2. Segundo Paquete (FIN, ACK):

 El servidor envía un FIN para cerrar su lado de la conexión.

• Detalles:

- Secuencia del servidor (Seq=103).
- Confirmación (Ack=104).

3. Tercer Paquete (ACK):

 El cliente confirma el FIN del servidor con un paquete ACK (104).

5. Comprobación del Tamaño de los Datos

El número de bytes de datos transmitidos en los paquetes con PSH coincide con el tamaño del mensaje definido en el programa porque estamos enviando por ejemplo en uno de los segmentos 24 bytes. El wireshark pone que payload de ese paquete es 24.

6. Mensaje Grande y Segmentación TCP

1. Número de Paquetes Recibidos

- En la captura, se observa que el mensaje grande fue dividido en **3 paquetes con datos**:
 - Paquete con Seq=1 y longitud de datos (Len=1000).
 - Paquete con Seq=1001 y longitud de datos (Len=1000).
 - Paquete con Seq=2001 y longitud de datos (Len=553).

El resto de los paquetes capturados corresponden a la conexión inicial, los ACK y el cierre de la conexión.

2. Números de Secuencia y Segmentación

Números de Secuencia:

- Cada paquete transporta un bloque consecutivo del flujo de datos:
 - Paquete 1: Seq=1, longitud de datos 1000 → bytes del 1 al 1000.
 - Paquete 2: Seq=1001, longitud de datos 1000 → bytes del 1001 al 2000.
 - Paquete 3: Seq=2001, longitud de datos 553 → bytes del 2001 al 2553.
- Los números de secuencia se incrementan según el tamaño de los datos transportados en cada segmento.

Segmentación:

- El mensaje original fue dividido en segmentos de tamaño manejable por TCP:
 - Dos segmentos de 1000 bytes.
 - Un segmento final de 553 bytes, lo que indica el final del mensaje.

3. Segmentos con Flag PSH

- En la captura, los segmentos de datos (Len=1000 y Len=553) contienen el flag PSH (Push)
 - Esto sugiere que el remitente (servidor) está solicitando que los datos se procesen inmediatamente al ser recibidos, sin esperar más datos.

UDP

No.	Time	Source	Destination	Protocol	Lengti	Info
4	51 9.238234418	127.0.0.1	127.0.0.0	UDP	68	5001 → 5000 Len=26
4	52 9.238375323	127.0.0.1	127.0.0.1	UDP	68	5000 → 5001 Len=26
4	53 9.238549910	127.0.0.1	127.0.0.1	UDP	87	5001 → 5000 Len=45
4	54 9.238689984	127.0.0.1	127.0.0.1	UDP	87	5000 → 5001 Len=45
4	55 9.238825558	127.0.0.1	127.0.0.1	UDP	65	5001 → 5000 Len=23
4	56 9.238918833	127.0.0.1	127.0.0.1	UDP	65	5000 → 5001 Len=23
4	57 9.238954718	127.0.0.1	127.0.0.1	UDP	60	5001 → 5000 Len=18
4	58 9.239049143	127.0.0.1	127.0.0.1	UDP	60	5000 → 5001 Len=18
4	59 9.239078152	127.0.0.1	127.0.0.1	UDP	56	5001 → 5000 Len=14
4	60 9.239167790	127.0.0.1	127.0.0.1	UDP	56	5000 → 5001 Len=14
4	61 9.239265910	127.0.0.1	127.0.0.1	UDP	74	5001 → 5000 Len=32
4	62 9.239368433	127.0.0.1	127.0.0.1	UDP	74	5000 → 5001 Len=32

1. Número de Paquetes Transmitidos

- Se observa que se transmitieron 13 paquetes UDP entre el cliente y el servidor.
- Cada paquete contiene un tamaño de datos específico (indicados en el campo Len).

2. Identificación de Puertos de Origen y Destino

Puerto de Origen:

 Los paquetes originados por el cliente utilizan el puerto dinámico 5001.

• Puerto de Destino:

 Los paquetes tienen como destino el puerto 5000, que es el puerto configurado en el servidor.

```
A adrianql5 > ~/Desktop/REDES/Practica3 git-[p main]- >> ./servidorUP
D 5000
Servidor UDP escuchando por el puerto 5000...
Mensaje recibido de 127.0.0.1:5001
Contenido convertido: SDFKJASFLKJASFKJ

Mensaje recibido de 127.0.0.1:5001
Contenido convertido: JKASDHFASKJH

Mensaje recibido de 127.0.0.1:5001
Contenido convertido: ADFASDFAFAFASFDASDFASFSAFASDFA

Mensaje recibido de 127.0.0.1:5001
Contenido convertido: ASDFJAHSJKASKJFADFSK

Mensaje recibido de 127.0.0.1:5001
Contenido convertido: ASDFJAHSJKASKJFADFSK
```

🗚 adrianql5 🗁 ~/Desktop/REDES/Practica3 git-[🏿 main]- >> ./cliente UDP asa.txt 5001 127.0.0.0 5000 Socket UDP creado. Cliente asociado al puerto 5001. Mensaje recibido: ASDFASFASDFAIJJHJFAHJSDF Bytes: 26 Mensaje recibido: ASFSJSFBSFBASASDFKLASDFASFASDFAIJJHJFAHJSDF Bytes: 45 Mensaje recibido: ASFSJSFBSFBASASDFKLJJ Bytes: 23 Mensaje recibido: SDFKJASFLKJASFKJ Bytes: 18 Mensaje recibido: JKASDHFASKJH Bytes: 14 Mensaje recibido: ADFASDFAFAFASFDASDFASFSAFASDFA Bytes: 32

¿Son los puertos los esperados? Sí, los puertos coinciden con los definidos en el programa:

- El puerto del cliente es asignado dinámicamente (5001).
- El puerto del servidor es el configurado como destino (5000).

3. Tamaño de los Mensajes y Bytes Transmitidos

 Los valores de longitud (Len) en la captura muestran que el tamaño de los datos transmitidos coincide con los mensajes definidos en el programa.

- Ejemplo:
 - Paquete inicial: Len=26.
 - Otros paquetes: Varían desde Len=18 hasta Len=87, dependiendo del tamaño del mensaje enviado.

La longitud del mensaje UDP corresponde al tamaño total de datos enviados por el cliente y recibidos por el servidor.

4. Transmisión de un Mensaje Grande

- Cuando se envió un mensaje de mayor tamaño, los resultados fueron los siguientes:
 - Tamaño del Paquete: No hubo segmentación en los mensajes UDP.
 - Paquete Único: Cada mensaje fue transmitido en un solo paquete.

No.	Time	Source	Destination	Protocol	Lengti Info
600	123.592574431	127.0.0.1	127.0.0.0	UDP	1042 5001 → 5000 Len=1000
600	123.592676761	127.0.0.1	127.0.0.1	UDP	1041 5000 → 5001 Len=999
6002	2 123.592760174	127.0.0.1	127.0.0.1	UDP	1042 5001 → 5000 Len=1000
6003	123.592924202	127.0.0.1	127.0.0.1	UDP	1041 5000 → 5001 Len=999
6004	123.592955523	127.0.0.1	127.0.0.1	UDP	648 5001 → 5000 Len=606
600	123.592991695	127.0.0.1	127.0.0.1	UDP	648 5000 → 5001 Len=606

¿UDP segmenta los mensajes? No. UDP no realiza segmentación como TCP. Si el mensaje es más grande que el tamaño máximo permitido la segmentación la realizan otros protocolos de otras capas como el protocolo IP.

Página web

1. Análisis de un mensaje DNS:

- Consulta DNS estándar: En el paquete, observamos una consulta del cliente al servidor DNS (IP de destino: 193.144.75.15). Por ejemplo:
 - Dominio consultado: citius.gal.
 - Tipo de consulta: A (IPv4) y AAAA (IPv6).
 - Resultado: El servidor responde con una dirección IPv4 (193.144.83.107).
- Consultas adicionales: El navegador también realiza consultas DNS para recursos externos como

fonts.googleapis.com y fonts.gstatic.com.

ip.addr == 193.144.75.15					
).	Time	Source	Destination	Protoco	Lengti Info
	8 3.672652181	172.18.11.199	193.144.75.15	DNS	81 Standard query 0x302f A citius.gal OPT
	9 3.672740340	172.18.11.199	193.144.75.15	DNS	81 Standard query 0x9079 AAAA citius.gal OPT
	10 3.672786640	172.18.11.199	193.144.75.15	DNS	81 Standard query 0x0bdf A citius.gal OPT
	11 3.681137747	193.144.75.15	172.18.11.199	DNS	146 Standard query response 0x9079 AAAA citius.gal SOA ns.dinahosting.com OPT
	12 3.681143497	193.144.75.15	172.18.11.199	DNS	97 Standard query response 0x0bdf A citius.gal A 193.144.83.107 OPT
	13 3.681151290	193.144.75.15	172.18.11.199	DNS	146 Standard query response 0xf8ee AAAA citius.gal SOA ns.dinahosting.com OPT
	14 3.681235035	193.144.75.15	172.18.11.199	DNS	97 Standard query response 0x302f A citius.gal A 193.144.83.107 OPT
	45 3.777481266	172.18.11.199	193.144.75.15	DNS	80 Standard query 0xe4bc HTTPS fonts.googleapis.com
	46 3.777915898	172.18.11.199	193.144.75.15	DNS	91 Standard query 0x2862 AAAA fonts.googleapis.com OPT
	47 3.777964139	172.18.11.199	193.144.75.15	DNS	91 Standard query 0xd8c4 AAAA fonts.googleapis.com OPT
	51 3.782220300	193.144.75.15	172.18.11.199	DNS	119 Standard query response 0x2862 AAAA fonts.googleapis.com AAAA 2a00:1450:4003:808::200a OPT
	52 3.782220681	193.144.75.15	172.18.11.199	DNS	119 Standard query response 0xd8c4 AAAA fonts.googleapis.com AAAA 2a00:1450:4003:808::200a OPT
	63 3.786698921	193.144.75.15	172.18.11.199	DNS	80 Standard query response 0xe4bc HTTPS fonts.googleapis.com
	136 3.957082416	172.18.11.199	193.144.75.15	DNS	88 Standard query 0x75ad AAAA fonts.gstatic.com OPT
	137 3.957150397	172.18.11.199	193.144.75.15	DNS	88 Standard query 0xe0af A fonts.gstatic.com OPT
	138 3.957197757	172.18.11.199	193.144.75.15	DNS	88 Standard query 0x7674 A fonts.gstatic.com OPT
	139 3.957232595	172.18.11.199	193.144.75.15	DNS	88 Standard query 0x12d2 AAAA fonts.gstatic.com OPT
	141 3.960024776	193.144.75.15	172.18.11.199	DNS	116 Standard query response 0x75ad AAAA fonts.gstatic.com AAAA 2a00:1450:4003:803::2003 OPT
	142 3.960026808	193.144.75.15	172.18.11.199	DNS	104 Standard query response 0x7674 A fonts.gstatic.com A 142.250.185.3 OPT
	143 3.960027266	193.144.75.15	172.18.11.199	DNS	116 Standard query response 0x12d2 AAAA fonts.gstatic.com AAAA 2a00:1450:4003:803::2003 OPT
	144 3.960076168	193.144.75.15	172.18.11.199	DNS	104 Standard query response 0xe0af A fonts.gstatic.com A 142.250.185.3 OPT
	145 3.962877084	172.18.11.199	193.144.75.15	DNS	77 Standard guery 0x39ba HTTPS fonts.gstatic.com
	162 3.991077129	193.144.75.15	172.18.11.199	DNS	77 Standard query response 0x39ba HTTPS fonts.gstatic.com
	306 4.175232194	172.18.11.199	193.144.75.15	DNS	89 Standard guery 0xc5d6 AAAA apps.citius.usc.es OPT
	307 4.175280980	172.18.11.199	193.144.75.15	DNS	89 Standard query 0x6758 A apps.citius.usc.es OPT
	308 4.175322640	172.18.11.199	193.144.75.15	DNS	89 Standard guery 0x3684 AAAA apps.citius.usc.es OPT
	309 4.175353820	172.18.11.199	193.144.75.15	DNS	89 Standard query 0xb9f0 A apps.citius.usc.es OPT
	312 4.179058101	193.144.75.15	172.18.11.199	DNS	139 Standard query response 0x6758 A apps.citius.usc.es CNAME ctcloud53.inv.usc.es A 172.16.242.53 OPT
	313 4.179096364	193.144.75.15	172.18.11.199	DNS	181 Standard query response 0x3684 AAAA apps.citius.usc.es CNAME ctcloud53.inv.usc.es SOA secus.usc.es OPT
	314 4.180506329	193.144.75.15	172.18.11.199	DNS	139 Standard query response 0xb9f0 A apps.citius.usc.es CNAME ctcloud53.inv.usc.es A 172.16.242.53 OPT
	315 4.180507398	193.144.75.15	172.18.11.199	DNS	181 Standard query response 0xc5d6 AAAA apps.citius.usc.es CNAME ctcloud53.inv.usc.es SOA secus.usc.es OPT
	321 4.180922240	172.18.11.199	193.144.75.15	DNS	91 Standard query 0x7415 AAAA ctcloud53.inv.usc.es OPT
	322 4.180994137	172.18.11.199	193.144.75.15	DNS	91 Standard query 0x5232 AAAA ctcloud53.inv.usc.es OPT
	329 4.187023703	193.144.75.15	172.18.11.199	DNS	149 Standard query response 0x7415 AAAA ctcloud53.inv.usc.es SOA secus.usc.es OPT
	330 4.187023709	193.144.75.15	172.18.11.199	DNS	149 Standard query response 0x5232 AAAA ctcloud53.inv.usc.es SOA secus.usc.es OPT
	331 4.189579035	172.18.11.199	193.144.75.15	DNS	78 Standard guery 0xa424 HTTPS apps.citius.usc.es
	333 4.192010400	193.144.75.15	172.18.11.199	DNS	170 Standard query response 0xa424 HTTPS apps.citius.usc.es CNAME ctcloud53.inv.usc.es SOA secus.usc.es

2. HTTP/HTTPS:

- Una vez que las resoluciones DNS son exitosas, es de esperar que el navegador inicie:
 - Peticiones HTTP/HTTPS: Para descargar contenido (HTML, CSS, imágenes, etc.).

 Respuesta del servidor: Generalmente incluye un código de estado (como 200 0K) y el contenido solicitado.

10169 188.793494190 172.18.11.199	185.199.109.153	HTTP	259 GET /pkgs/x86_64/gh0stzk-dotfiles.db HTTP/1.1
10178 188.819672591 185.199.109.153	172.18.11.199		228 HTTP/1.1 301 Moved Permanently (text/html)
10377 192.750298144 172.18.11.199	95.216.195.133	HTTP	154 GET /nm-check.txt HTTP/1.1
10379 192.824894529 95.216.195.133	172.18.11.199	HTTP	270 HTTP/1.1 200 OK (text/plain)