Dynamic Programming
Recall the maximum common subsequence problems
from last day TARMAC
CATAMARAN
More sophisticated: count # changes from 1st string to 2nd
e.g. You: Pythagorus You: recurance
Google: Pythagoras? Google: recurrence?
1 change z changes
a change 15 %
- add a letter 7 gap
- add a letter (gap - delete a letter)
-replace a letter — mismatch
This is called edit distance.
This problem comes up in bioinformatics for DNA strings.
DNA is a sequence of chromosomes, i.e. string over
A, C, T, Ġ
Two strings can be aligned in different ways
e.g. AACATZ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3 changes 2 changes
delete C change T to A

Problem: Given 2 strings x1. xmand y1. yn compute their edit distance i.e. find the alignment that gives min # changes. Dynamic Programming Algorithm Subproblem for zi. x; and yi. y; M(i,j) = min # changes from zi to y; choices: - match xi to y; , pay replacement cost - match zi to blank (delete zi) - match y; to blank (add y;) M(i,j) = $\begin{cases} M(i-1,j-1) & \text{if } x_i = y_j \text{ 7 match } x_i \\ \text{min } f + M(i-1,j-1) & \text{if } x_i \neq y_j \text{ 1 to } y_j \\ d + M(i-1,j-1) & \text{match } x_i \neq y_j \text{ 1 to } blank \\ a + M(i,j-1) & \text{match } y_j \neq blank \end{cases}$ where r = replacement cost d = delete cost a = add cost So far, we used r = d = a = 1 more sophisticated: r(x;, y;) - replacement cost depends on the letters e.g. r(A,S) = 1 because these keys are close on type writer r(A,C) = 2 --- not so close

Coin changing problem Recall: given coin denominations C, Cz., Ck (e.g. penny, nideel etc) and a value V make change for V using min. It coins. Greedy does not always work. A dynamic programming algorithm: Given V, we might try each coin ci = V Then must make change for V-ci Subproblems C(v) for each v=0..V C(o) = 0for v=1 .. V $\mathcal{C}(\sigma) = \min_{\xi} \{1 + M(\sigma - c_i) : i = 1 \cdot o_k \}$ end @ in more detail: $C(v) \leftarrow \infty$ for i= 100 R if c; ≤ v and (1+C(v-c;) < C(v)) end then $C(v) \leftarrow 1 + C(v - ci)$ Run Time O (V . k) time for each

An algorithm runs in polynomial time if run-lime is $O(n^2)$, a growstant on input of size n. The above algorithm is NOT polynom(al time. because size of V is log V but run time depends on V (not log V). This is called a pseudo-polynomial time algorithm. More on those ideas later in the course

Constructing optimum binary Search Trees Given Hems I ... n probabilities pir. Pn Construct a binary search tree (items in leaves) to minimize search cost I pidepth(i) # probes into tree to e.g. P1=100=P4=+ find itemi. search cost = 4.4,3 = 3 P1= , 7 P2= P3= P4= . 1 (.7) 2+(.1)3+2(.1)4 (.7)3 + 3(.1)3=1.4+.3+.8 In ose you've seen optimum Huffman trees, this is different in that leaf ordering is fixed] To apply dynamic programming: subproblems: opt. binary search tree for Hows io. j order supproblems by # items, i.e. by j-i to solve i.e. try all dioices for k

Details	ind. of
$M[i,j] = \min_{k=i,j-1} \{M[i,k] + M[k+1,j]\}$	3 + E Pt k
	ecouse every node lets 1 doeper
First compute P[i] = Ep;	
then we can get $\stackrel{\circ}{\underset{t=i}{\stackrel{\circ}{\sum}}}$ Pt as F	'GJ-P[i-i]
for $i=1$ 'n $M[i,i] \in Pi$ for $r=1$ 'n $n-1$	
for i = 1 N-r /* solve for M[i,i+r]	
host ← MI: i7 + MI: +	1, i+r]
for $k = i+1$. $i+r-1$	in dass, sorry.
temp < M[i,k] + M	
if temp < best then	best < temp
end	7 - 5 - 7
M[i,i+r] < best + P[itrl-Pli-1)
end # subproblem	
Runtime O(n2 · n) =	O(n²) rsubproblem