Corso di Laboratorio di Calcolo

Prova finale - 13 Settembre 2013, ore 10:00

Calcolo dell'area con il metodo Monte Carlo

Scrivere un programma, chiamato $\langle cognome \rangle - \langle nome \rangle$.c (avendo eliminato caratteri speciali dal nome e dal cognome, es: Marco D'Alì dali_marco.c) per il calcolo numerico dell'area di sovrapposizione tra un quadrato di lato 2L centrato nell'origine (0,0) ed un cerchio di raggio R con il centro nel punto (X_C,Y_C) .

Per determinare l'area di sovrapposizione A_{sovr} , generare le coordinate di N_{tot} punti all' interno del quadrato e contare quanti di essi (N_{in}) cadono anche all'interno del cerchio utilizzando la funzione **distanza**. L'area A_{sovr} si può stimare come $4 \cdot L^2 \cdot N_{in}/N_{tot}$.

A tal fine il programma deve:

- Chiedere all'utente di inserire il valore di L (metà del lato) compreso tra [1,7] e in caso di errore ripetere l'operazione
- Chiedere all'utente di inserire il valore del raggio $\frac{1}{3}L \leq R \leq L$ e in caso di errore ripetere l'operazione
- ullet Chiedere all'utente il numero N_{tot} di punti che si devono utilizzare per la stima dell'area, assicurandosi che N_{tot} sia compreso tra [100, 1000] e in caso di errore ripetere l'operazione.
- Generare in modo casuale le coordinate del centro del cerchio, X_C e Y_C , in modo che sia $|X_C| < \frac{5}{4}$ e $|Y_C| < \frac{3}{2}L$. Stampare dunque su schermo dette coordinate, insieme ai valori di L ed R.
- $\bullet\,$ Tramite un opportuno ciclo, stimare l'area A_{sovr} per 1000 volte generando N_{tot} punti e seguendo l'algoritmo descritto sopra. A tal fine si richiede di scrivere una funzione distanza per calcolare la distanza $d = \sqrt{(x_1 - x_2)^2 + (y_1^2 - y_2)^2}$ bidimensionale tra due punti di cui si conoscono le coordinate (x_1, y_1) e (x_2, y_2)
- ullet Salvare i 1000 valori di A_{sovr} in un array "dati". scrivere ed utilizzare una funzione **analisi** che prenda in input l'array dati e restituisca il valore medio e la deviazione standard delle stime dell'area definite come

$$\langle A \rangle = \frac{1}{N_{stime}} \sum_{i=1}^{N_{stime}} A_{sovr}^i$$
 (1)

$$\langle A \rangle = \frac{1}{N_{stime}} \sum_{i=1}^{N_{stime}} A_{sovr}^{i}$$

$$Var = \sqrt{\frac{\sum_{i=1}^{N_{stime}} (A_{sovr}^{i} - \langle A \rangle)^{2}}{N_{stime} - 1}}$$
(2)

dove $N_{stime} = 1000$.

• Infine, nella funzione main utilizzando i valori restituiti dalla funzione analisi, stampare sullo schermo il valore medio e la deviazione standard della stime dell'area