RESEARCH

Application of deep metric learning to molecular similarity

Damien E. Coupry*
and Peter Pogány

*Correspondence:

damien.x.coupry@gsk.com

Data and Computational Sciences,
GlaxoSmithKline, Stevenage, UK

Full list of author information is
available at the end of the article

Abstract

Graph based methods are increasingly important in chemistry and drug discovery, with applications ranging from QSAR to molecular generation. Combining graph neural networks and deep metric learning concepts, we expose a framework for quantifying molecular similarity based on learned embeddings separate from any endpoint. Using a minimal definition of similarity, and data from the ZINC database of public compounds, this work demonstrate the properties of the embedding and its suitability for a range of applications, among them a novel reconstruction loss method for training deep molecular auto-encoders. We also compare the performance of the embedding to standard practices, with a focus on known failure points and edge cases.

Keywords: metric learning; similarity; graph neural networks; deep learning

²³Introduction

Quantifying the similarity of chemical structures has been a much used tool in drug discovery for decades[1], and has often been adopted as a design principle for lead optimization [2, 3], under the assumption that similar molecules have a higher probability of exhibiting similar properties than dissimilar ones [4, 5, 6]. Indeed, the successful use of bioisosterism in drug development makes heavy use of the concept [7, 8], to the point that similarity is sometimes defined as a consequence of the properties, rather than the cause[9]. Most of the benchmarks for chemical structure similarity rely on this definition to compare methods [10, 11, 12], driven in part by the availability of public activity datasets [13]. Yet, pitfalls such as so-called "activity cliffs" [14, 15, 16] should moderate the confidence in the underlying principle.

Coupry and Pogány Page 2 of 12

¹ Furthermore, other use cases of similarity exist, and are not captured by the sim- ¹
$^2 \mathrm{ilar}$ properties paradigm: patent mining and infringement prediction [17], building 2
3 block selection for synthesis, retrosynthesis and scaffold hopping[18, 19, 20], molec- 3
4 ular generation evaluation[21], etc. A "good" measure of similarity should ideally 4
$^5\mathrm{show}$ equal performance in all these applications, never relying too much on any^5
$^6\mathrm{one}$ definition or type of benchmark. On the practical side, similarity can be more^6
$^7\mathrm{generally}$ understood as the combination of a molecular representation and an $\mathrm{ap}\text{-}^7$
$^8\mathrm{propriate\ metric}[3].$ Today, the combination of two-dimensional molecular circular 8
⁹ fingerprints [22, 23] with the Tanimoto coefficient [24] is still the most widely used, ⁹
$^{10}{\rm and}$ generally hard to outperform in traditional benchmarks [25]. Still, these meth- 10
$^{11}\mathrm{ods}$ suffer from a number of identified drawbacks, regularly analysed but $\mathrm{difficult}^{11}$
$^{12}\mathrm{to}$ route around in the absence of a more general representation [26, 27]. Most of 12
$^{13}{\rm the}$ recent efforts to develop original molecular encodings focus on the relational 13
$^{14}\mathrm{nature}$ of molecules as seen in a 2D context. By considering structures as a graph 14
$^{15}\mathrm{with}$ atoms as nodes and bonds as edges, we can draw on the considerable field 15
$^{16}\mathrm{of}$ extant work on graph similarity in general: computationally expensive graph 16
$^{17}\mathrm{edit}$ distance, graph isomorphism quantification or maximum common subgraph 17
$^{18}[28,\ 29,\ 30,\ 31,\ 32],$ graph kernels for similarity [33], and the increasingly popular 18
$^{19}{\rm deep\ learning\ algorithms}[34].$ The latter rely on embeddings learned from variational 19
$^{20}{\rm reconstruction~tasks[35],~end-to-end~property~predictions~[36],~or~borrow~architec-^{20}$
21 tures from facial recognition [37]. In this work, we leverage the ability of graph 21
$^{22}\mathrm{neural}$ networks from the Deep Graph Library [38, 39] to learn chemical structures 22
$^{23}\mathrm{embeddings}$ using the triplet loss [40], to our knowledge the first such use of it. A^{23}
$^{24}{\rm training}$ dataset is constructed automatically using a minimal definition of molec- 24
$^{25}\mathrm{ular}$ similarity and public compounds. We show that these embeddings satisfy the 25
$^{26}\mathrm{conditions}$ to be considered an improved encoding of chemical information in both^{26}
²⁷ traditional benchmarks and novel applications.
28
²⁹ Experiments ²⁹
³⁰ Dataset generation
The ZINC database was downloaded (1.487 billion compounds)[41] and processed ³¹
as follows. Parent structures were created, bad valencies, compounds with poorly
defined bonds, isotope labelled compounds and compounds containing elements ³³

Coupry and Pogány Page 3 of 12

¹other than N, O, C, S, F, Cl, Br and I were removed. This initial filtering removed ¹ ²around 2 million compounds. Reduced Graphs[42, 43], Bemis-Murcko graph and ² ³detailed frames[44] were generated for each compound. In the Reduced Graph, the³ ⁴full molecular graph is reduced to pharmacophore feature type nodes. Whereas the ⁴ ⁵Bemis-Murcko graph frames contain the anonymous frame of the molecule without ⁵ ⁶the side chains, atom types and bond orders. The Bemis-Murcko detailed frame ⁶ ⁷contains the frame of the molecule (side chains removed) with atom types and ⁷ ⁸bonds marked. Comparison of these molecular representations is given on Figure 1.⁸ REOS[45] and PAINS A[46] filters were applied on the remaining compounds⁹ ¹⁰ and molecular weight (MW) was calculated to remove everything with MW>650¹⁰ ¹¹daltons, thus keeping 1.199 B compounds. Compounds were clustered in three ways: ¹¹ Having the same Reduced Graph and Graph Frame (GFRG) 13 13 Having the same Reduced Graph and Detailed Frame (DFRG) 14 Having the same Reduced Graph (RG) ¹⁵Most of the processing after this was done using BIOVIA Pipeline Pilot[47]. All ¹⁵ compounds belonging to a GFRG cluster with less than 4 members were removed. ¹⁶ ¹⁷In the case of compounds belonging to GFRG clusters with more than 10k members, ¹⁸DFRG clusters were used in place of GFRG. For DFRG clusters, a maximum size ¹⁸ 19 of 20k members was established, with random subsampling performed on clusters ²⁰ above this limit. 1.13 billion compounds remained and cluster centers were assigned ²⁰ to them. Cluster Molecules component of BIOVIA Pipeline Pilot[47] was used to determine the cluster centroids for each cluster defined above (ECFP4 and heavy ²³ atom count was used for getting the centroids). For every cluster the number of identities was calculated. If the number of identities was larger than 0.4, all the cluster elements were discarded. 1.113 billion compounds remaind in 16.71 million 26 clusters. The number of clusters for each Reduced Graph was calculated and only 27 Reduced Graphs which have at least 2 clusters were kept (1.059 billion compounds). The triplet loss trains networks by contrasting a reference structure with two additional compounds, called positive and negative controls. The positive control should be qualitatively similar to the reference. For this purpose, the two were selected randomly from within the same cluster (GFRG cluster for the initial smaller clusters, for the larger clusters, where GFRF cluster size \geq 10,000, DFRG clusters are used). The negative control should conversely be less similar to the reference

Coupry and Pogány Page 4 of 12

¹than the positive. Selecting a very different compound is not optimal, since the ¹ ²chemical space size increase towards larger dissimilarities. Thus, while it would be² ³correct to choose a negative control from a different cluster, choosing a compound ⁴that has *some* similar features to the reference is more valuable to the training ⁴ ⁵process. Therefore we have randomly selected the negative control from a different ⁵ ⁶cluster than the cluster of the reference, but their Reduced Graph should be the ⁶ ⁷same. This way 12'361'633 triplets were created. A detailed schema of the data⁷ ⁸preparation can be seen on Figure 2. 9 ¹⁰Model training ¹¹For all training and benchmarking purposes, the random seed is fixed at 42 for ¹¹ repeatability, and the hyperparameters have been kept unoptimized and to the de-12 ¹³ fault values to prevent bias. We used the DGL-Lifesci open source framework for ¹³ computations on graphs, and its message passing neural network implementation 14 ¹⁵(MPNNPredictor)[48] as model architecture. This type of model repeatedly accumulates bond information as well as node information based on connectivity, and 16 ¹⁷has been used with great effect in state of the art QSAR applications [49]. We ¹⁷ those to use the default parameters and an output size equal to 16 as an embedding to dimension $(n_{-}tasks)$. The input for such a model are molecular graphs, which are ¹⁹ ²⁰ obtained using the CanonicalAtomFeaturizer and CanonicalBondFeaturizer from ²⁰ ²¹DGL. The details of what is included in the graphs features can be found in the ²¹ ²²DGL-lifesci documentation. These representations are regularized with a node ab-²³lation probability of 1% and edge ablation probability of 5%. At each step of the ²³ training, an instance of the MPNN is used to embed each of the three graphs of the input (anchor, positive and negative); the triplet margin loss from pytorch[50] then²⁵ ²⁶ updates the weights of the network to maximize the distance between the anchor ²⁷ and negative, while minimizing the distance between the anchor and the positive, ²⁸ as seen in Figure 3. The training used the pytorch-lightning framework [51] with a 25 epochs early stopping criterion, the Adam optimizer with the default learning rate of 10.0^{-3} , and took two days on an Nyidia GEFORCE1080 GPU with a batch size of 128. 32 For more details, hyperparameters, and training curves, please refer to the project's github page.

Coupry and Pogány Page 5 of 12

¹ Benchmarks choice	1
$^2\mathrm{The}$ benchmarks for the present use case should optimally measure a number of	f^2
³ things:	3
4 $$ $$ The performance on popular applications; here the activity classification task	$_{ m S}^4$
such as the ones described in Riniker $et\ al[12]$.	5
$^{\sf 6}$ $$ $$ $$ $$ $$ $$ The performance on edge cases, such as the ones described in Flower $et~al[26]$],6
⁷ particularly when the failure of traditional fingerprint based similarity mea	7
sure is due to the basic technique of fragmentation.	8
9 $$ $$ $$ The condition of graph isomorphism: the ordering of the molecule atoms and	d^9
bonds should have no influence on the embedding.	10
Additionally, desired properties of an encoding come from the coupling with a met	11
ric. In particular, using a euclidean distance metric on a well defined euclidean	12
vector space gives rise to a number of interesting properties:	13
• very fast querying and operations	14
• Similarity can be defined with respect to geometric elements: around	15 a
barycentre, along a path between molecules, within a cone, etc.	16
• the space and metric together are unbound in value for dissimilarity: there	e ¹⁷
are many more ways of being dissimilar than similar, and the distances dis	18 3-
tribution could reflect that.	19
20	20
²¹ Results	21
²² Activity prediction tasks benchmarking	22
²³ While an imperfect measure of fitness for any new chemical embedding, the dom	23 I-
²⁴ inance of benchmarking platforms making use of a variety of activity prediction	
25 datasets makes it an obligatory step in evaluating any new contribution. In partic	25 ;-
ular, it enables two separate conclusions to be reached:	26
Whether the information contained in the embedding is sufficient to fit model	.S
successfully, regardless of compared performance	28
2 Whether these models are statistically different from references to demon	29 l-
strate the originality of the embedding	30
To answer the second query, it is necessary to benchmark models on a suitably	31 y
high number of instances for each class. For this purpose, a dataset of IC50 activities 32	32 S
33 was extracted from the ChEMBL28 database. All targets with a unique structur	33 e

Coupry and Pogány Page 6 of 12

¹count between 5k and 20k were kept, with activity threshold automatically set at ¹ ²the 75th percentile of the PIC50 values if and only if this is superior by at least one² ³standard deviation from the minimum value and maximum value. This classification ³ ⁴task was modelled by a k-nearest neighbours classifier from the scikit-learn python⁴ ⁵package[52], trained on ECFP0 and ECFP4 fingerprints from the rdkit package[53], ⁵ ⁶as well as on learned embeddings. Only targets with an ECFP0 5-fold stratified ⁶ ⁷cross validation Cohen's Kappa score above 0.25 were kept, to constrain the bench-⁸mark tasks to be relatively hard but tractable, resulting in a set of 55 targets. ⁸ ⁹For each triplet of models, the Cochran's Q test was applied to verify statistical⁹ ¹⁰difference. The p-values of 30 tested targets were j0.05 and sufficient to reject the ¹⁰ ¹¹null hypothesis that all the models were equivalent. Subsequent confirmation with ¹¹ ¹²pairwise McNemar tests with Bonferroni correction show the embedding models to ¹² ¹³be the source of the statistical difference, thus answering our second point. The ¹³ ¹⁴performances on this final set of 30 targets are shown in Figure 4, and answers our ¹⁴ ¹⁵first point to our satisfaction. 16 16 18 Failure points of circular fingerprints 18 ¹⁹One noted effect of the bit-string fingerprints is the skewing effect of size on the dis-¹⁹ ²⁰tribution of similarities as illustrated in Figure 6 of Flowers et al [26]. Applying the²⁰ ²¹same reference set of compounds for comparison on a diverse set of molecules using²¹ ²²the MPNN learned embedding leads to a much better shape of the distributions. ²² ²³While the larger molecule has a more chaotic profile of similarity (probably due to²³ ²⁴the fact that the larger a structure, the more ways for something to be similar to²⁴ ²⁵it), it otherwise seems independent from the size of the molecules. This is shown in ²⁵ ²⁶Figure 5. Another point where fingerprints fail to accurately describe molecular similarity 28 is the case of molecules with repeated motifs. When using Tanimoto similarity of 28 circular fingerprints in bit string form, the similarity tapers off quickly to a fixed nonzero value. The learned embedding is immune to this effect. Likewise, the insertion of moieties within a scaffold has an unduly small effect when it does not perturb the 32 fragmentation of the structure by fingerprints, but is correctly shown to matter a lot $^{\tt 33}$ by the embedding. In addition, it also retains the concepts of fragments, aromaticity,

Coupry and Pogány Page 7 of 12

and some level of isosterism. Some examples illustrating these points are shown in	L
² Figure 6.	2
3	3
Additional properties	4
$_6$ As stipulated earlier, the distribution of similarities should be notably different be-	
tween positive examples and negative examples: the first distribution should show	7
a sharp peak around optimal similarity, and the second should display a long tail	i I
representing the many different sources of dissimilarity. After applying both the	9
ECFP4 Tanimoto coefficient comparison and the learned MPNN embedding to un-	-
seen triplets of our generated dataset, we indeed see such a behaviour illustrated in	1 11
$_{12}$ 7.	12
Another critical desired property for a novel molecular distance measure is the	13
14ability to correctly compare partial and <i>chemically invalid</i> molecular graphs and	l ₁₄
15 provide gradient information. This leads to the important fact that trained embed-	15
and a quadratic energy surface,	,16
₁₇ with widespread potential applications. For example:	17
Accelerated training of reconstruction based molecular generators such as vari-	-18
ational auto-encoders.	19
• Additional information in tasks such as missing edge and node prediction.	20
• Chemical subspace constraints for conditional molecular generators	21
²² These tasks are deeply unsuitable to traditional fingerprints or property based simi-	22
²³ larity: for most of the training process, the molecular graphs on which computation	23 1
²⁴ happens are completely invalid, the chemical information on what is a molecule still	l ²⁴
²⁵ being accrued. Yet a learned embedding, as is shown in Figure 8, is very robust to)25
²⁶ node and edge deletion, demonstrating a quasi linear distance relationship with the	26
²⁷ number of deleted elements. This is an exciting property, and we look forward to	27
²⁸ seeing it explored further.	28
Finally, a critical property of the embedding is its ability to be used in conjunction	29 1
with transfer learning[54, 55], and be retrained on particular subsets of the chemi-	30
cal space according to tailored similarities obtained from SAR, Molecular Matched	31 [
Pairs[56], or a more complex multiple-parameters function. Such a retrained model	32
33 would retain the general concepts of molecular graph similarity while quickly con-	

Coupry and Pogány Page 8 of 12

verging to a more appropriate representation of the problem at hand, thus sparing	g
² resources in training and data gathering.	2
3	3
Conclusions	4
$_{5}\mbox{We}$ have shown that using the triplet margin loss jointly with molecular graph based	d ₅
$_{6}\mathrm{deep}$ neural networks trains latent representations that satisfy the many definitions	$^{ m S}_{ m 6}$
$_{7}\mathrm{of}$ chemical similarity. A naive example of such an embedding was trained with no	O ₇
$_8\mathrm{hyperparameters}$ optimization on a dataset constructed from public molecules and	d ₈
$_{9}\mathrm{some}$ basic concepts of graph similarity. This naive example compares acceptably our	t ₉
$_{10} \mbox{of the box}$ with the accepted standard of circular fingerprints Tanimoto scores, while	e ₁₀
$_{11}\mathrm{possessing}$ many additional properties such as being derivable or retrainable. We	e ₁₁
$_{12} \mathrm{believe}$ such properties may be of great use to train reconstruction based molecular	r
₁₃ generators.	13
14 Eigens	14
Figures 15	— 15
Figure 1 A comparison of the Reduced Graph (RG), Bemis-Murcko graph (GF) and detailed frames (DF) clusters. The numbers after the character show the cluster. RG1 is a cluster of aromatic ring containing compound which contain hydrogen bond donor and acceptor. RG2 are	16
aliphatic rings with hydrogen bond donors, RG3 are aliphatic rings without feature. There are only two graph frame clusters: 5-membered rings (GF1) and 6-membered rings (GF2). Detailed frames	18
are only identical, if the compounds differ in ring substituents connected to rings with single bonds (DF5 and DF7).	20
21	2:
Figure 2 The process diagram of data preparation.	22
23	23
Figure 3 The architecture of the triplet loss embedding during training.	24
26	26
Figure 4 Performance in activity classification tasks from ChEMBL28.	27
28	28
Figure 5 Distribution of embedding distances of 5 references compounds to a diverse set of 120k	29
compounds from the Zinc database.	30
31	31
1 Declarations 32 Availability of data and materials	32
All code and data is available on https://github.com/DCoupry/ChemDist_paper under an Apache 2 license (GlaxoSmithKline copyright) and is sufficient to reproduce our conclusions and graphs.	33

Coupry and Pogány Page 9 of 12

Figure 6 Selection of pairwise comparisons illustrating a diverse set of molecular similarities	5. 1 2
Figure 7 Comparison of the similarity distributions on unseen triplets	3
Figure 8 Effect of random element deletion on embedding distance. No comparison with E could be obtained due to the overwhelming rate of invalidity of the resulting structures.	CFP4 ⁵
7	7
8Acknowledgements	8
The authors thanks Darren Green and Kim Branson for their preliminary review; as well as the entire Mole	
⁹ Design team for their constructive feedback.	9
10	10
1.1 Funding 11Not Applicable	11
Not Applicable	
12 Competing interests	12
13The authors declare that they have no competing interests.	13
14	4.4
14 1.2 Authors' Contributions	14
$_{15}PP$ generated all datasets and wrote the paper, DC performed the ML study, the analysis and wrote the p	aper. All ₁₅
authors read and approved the final manuscript. 16	16
Abbreviations	
QSAR : Quantitative Structure Activity Relationship	17
GNN : Graph Neural Network	18
MPNN : Message Passing Neural Network	19
• RG : Reduced Graph	13
DF: Detailed Frame GF: Bemis Murcko Graph	20
21 • ECFP : Extended Connectivity Fingerprint	21
22References 1. Willott P. Raynard J.M. Douge C.M.: Chamical similarity coarching, Journal of chamical information	22 an and
 Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. Journal of chemical informatic computer sciences 38(6), 983–996 (1998) 	23
24 2. Kubinyi, H.: Similarity and dissimilarity: a medicinal chemist's view. Perspectives in Drug Discovery at	nd Design
9, 225–252 (1998)	- 21
²⁵ 3. Maggiora, G., Vogt, M., Stumpfe, D., Bajorath, J.: Molecular similarity in medicinal chemistry: minipe	rspective. ²⁵
Journal of medicinal chemistry 57 (8), 3186–3204 (2014)	26
4. Johnson, M.A., Maggiora, G.M.: Concepts and Applications of Molecular Similarity. Wiley, ??? (1990)	
27 5. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D., Weinberger, L.E.: Neighborhood behavio	
concept for validation of "molecular diversity" descriptors. Journal of medicinal chemistry 39 (16), 304 (1996)	19–3059 28
29 6. Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological	activity? ၁၀
Journal of medicinal chemistry 45 (19), 4350–4358 (2002)	20
The state of the s	30
31 3147–3176 (1996)	31
8. Lima, L.M., Barreiro, E.J.: Bioisosterism: a useful strategy for molecular modification and drug design	
medicinal chemistry 12 (1), 23–49 (2005)	32
 Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Organic & bion chemistry 2(22), 3204–3218 (2004) 	nolecular 33

Coupry and Pogány Page 10 of 12

10.	Irwin, J.J.: Community benchmarks for virtual screening. Journal of computer-aided molecular design 22(3),	-
2	193–199 (2008)	2
11. 3	Rohrer, S.G., Baumann, K.: Maximum unbiased validation (muv) data sets for virtual screening based on pubchem bioactivity data. Journal of chemical information and modeling 49 (2), 169–184 (2009)	3
4 ^{12.}		4
513	* / /	5
6	Michalovich, D., Al-Lazikani, B., et al.: Chembl: a large-scale bioactivity database for drug discovery. Nucleic	6
714	Mark CAM County III and the III and the County	7
	Stumpfe, D., Bajorath, J.: Exploring activity cliffs in medicinal chemistry: miniperspective. Journal of medicinal	
8		8
o16.	Stumpfe, D., Hu, Y., Dimova, D., Bajorath, J.: Recent progress in understanding activity cliffs and their utility	^
9	in medicinal chemistry: miniperspective. Journal of medicinal chemistry 57 (1), 18–28 (2014)	9
¹⁰ 17.		10
11 18	Böhm, HJ., Flohr, A., Stahl, M.: Scaffold hopping. Drug discovery today: Technologies 1(3), 217–224 (2004)	11
		12
1219.	accessible combinatorial chemistry spaces. Journal of medicinal chemistry 51(8), 2468–2480 (2008)	
13	Coley, C.W., Rogers, L., Green, W.H., Jensen, K.F.: Computer-assisted retrosynthesis based on molecular	13
14	similarity. ACS central science 3 (12), 1237–1245 (2017)	14
21.		
15	· · · · · · · · · · · · · · · · · · ·	15
16 ^{22.}	Courte Manageri A. Oirda M.I. Valla C. Mulara M. Courie Valla S. Duindag C. Malagular fin require	16
16	similarity search in virtual screening. Methods 71 , 58–63 (2015)	10
1723.	Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5),	,17
	742–754 (2010)	
18 24.	Bajusz, D., Rácz, A., Héberger, K.: Why is tanimoto index an appropriate choice for fingerprint-based similarity	18 /
19	calculations? Journal of cheminformatics 7 (1), 1–13 (2015)	19
25.	Raymond, J.W., Willett, P.: Effectiveness of graph-based and fingerprint-based similarity measures for virtual	
20	screening of 2d chemical structure databases. Journal of computer-aided molecular design $16(1)$, 59–71 (2002)	20
21 ²⁶ .	Flower, D.R.: On the properties of bit string-based measures of chemical similarity. Journal of chemical	21
	information and computer sciences 38(3), 379–386 (1998)	
²² 27.	Dixon, S.L., Koehler, R.T.: The hidden component of size in two-dimensional fragment descriptors: side effects	22
23	on sampling in bioactive libraries. Journal of medicinal chemistry 42(15), 2887–2900 (1999)	23
28.	Garcia-Hernandez, C., Fernández, A., Serratosa, F.: Ligand-based virtual screening using graph edit distance as	i
24	molecular similarity measure. Journal of chemical information and modeling 59(4), 1410–1421 (2019)	24
29. 25		25
20	letters 19 (3-4), 255–259 (1998)	
2630.	Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition	26
27	Letters 1(4), 245–253 (1983)	27
²⁷ 31.	Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity	21
28		28
32.		00
29	retrieval. IEEE Transactions on Fattern Analysis and Machine Intelligence 25(10), 1009–1103 (2001)	29
30 ^{33.}	Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Applied Network Science 5(1), 1–42 (2020)	30
3134.	Ma, G., Ahmed, N.K., Willke, T.L., Philip, S.Y.: Deep graph similarity learning: A survey. Data Mining and	31
32	Knowledge Discovery, 1–38 (2021)	32
35.	Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In:	
33	International Conference on Machine Learning, pp. 2323–2332 (2018). PMLR	33

Coupry and Pogány Page 11 of 12

¹ 36.	Brown, N.: Chemoinformatics—an introduction for computer scientists. ACM Computing Surveys (CSUR)	1
2	41 (2), 1–38 (2009)	2
37.	Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: Simgnn: A neural network approach to fast graph	
3	similarity computation. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data	3
4	Mining, pp. 384–392 (2019)	4
	$Wang,\ M.,\ Zheng,\ D.,\ Ye,\ Z.,\ Gan,\ Q.,\ Li,\ M.,\ Song,\ X.,\ Zhou,\ J.,\ Ma,\ C.,\ Yu,\ L.,\ Gai,\ Y.,\ et\ al.:\ Deep\ graph$	-
5	$library:\ A\ graph-centric,\ highly-performant\ package\ for\ graph\ neural\ networks.\ arXiv\ preprint\ arXiv:1909.01315$	5
6	(2019)	6
39.	Li, M., Zhou, J., Hu, J., Fan, W., Zhang, Y., Gu, Y., Karypis, G.: Dgl-lifesci: An open-source toolkit for deep	U
7	learning on graphs in life science. arXiv preprint arXiv:2106.14232 (2021)	7
_	Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. Advances in neural	
8	information processing systems 16, 41–48 (2004)	8
9 ^{41.}	$Sterling, \ T., \ Irwin, \ J.J.: \ Zinc\ 15-ligand \ discovery \ for \ everyone. \ Journal \ of \ Chemical \ Information \ and \ Modeling \ Additional \ Additi$	59
	55 (11), 2324–2337 (2015). doi:10.1021/acs.jcim.5b00559. PMID: 26479676	
¹⁰ 42.	Gillet, V.J., Willett, P., Bradshaw, J.: Similarity searching using reduced graphs. Journal of Chemical	10
11	$Information \ and \ Computer \ Sciences \ 43(2), \ 338-345 \ (2003). \ doi: 10.1021/ci025592e. \ PMID: \ 12653495$	11
	Harper, G., Bravi, G.S., Pickett, S.D., Hussain, J., Green, D.V.S.: The reduced graph descriptor in virtual	
12	screening and data-driven clustering of high-throughput screening data. Journal of Chemical Information and	12
40	Computer Sciences 44(6), 2145–2156 (2004). doi:10.1021/ci049860f. PMID: 15554685	
13 44.	Bemis, G.W., Murcko, M.A.: The properties of known drugs. 1. molecular frameworks. Journal of Medicinal	13
14	$\label{eq:chemistry 39 (15), 2887-2893 (1996). doi: 10.1021/jm9602928. PMID: 8709122.}$	14
	https://doi.org/10.1021/jm9602928	
¹⁵ 45.	Walters, W.P., Stahl, M.T., Murcko, M.A.: Virtual screening—an overview. Drug Discovery Today 3(4),	15
16	160–178 (1998). doi:10.1016/S1359-6446(97)01163-X	16
46.	Baell, J.B., Holloway, G.A.: New substructure filters for removal of pan assay interference compounds (pains)	
17	$from\ screening\ libraries\ and\ for\ their\ exclusion\ in\ bioassays.\ Journal\ of\ Medicinal\ Chemistry\ {\bf 53}(7),\ 2719–2740$	17
18	$(2010).\ doi: 10.1021/jm901137j.\ PMID:\ 20131845.\ https://doi.org/10.1021/jm901137j.$	18
47.	BIOVIA, D.S.: Discovery studio visualizer, Release 2020, San Diego: Dassault Systèmes, 2019 (2020).	10
19	http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php	19
	Accessed 07/07/2021	
²⁰ 48.	Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum	20
21	chemistry. In: International Conference on Machine Learning, pp. 1263–1272 (2017). PMLR	21
	Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., Hopper, T., Kelley, B.,	
22	Mathea, M., et al.: Analyzing learned molecular representations for property prediction. Journal of chemical	22
23	information and modeling 59 (8), 3370–3388 (2019)	23
50.	Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,	
24	Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,	24
25	B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In:	25
20	Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural	20
26	Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019)	26
51.	${\sf Falcon,\ e.a.\ WA:\ Pytorch\ lightning.\ GitHub.\ Note:\ https://github.com/PyTorch\ Lightning/pytorch-lightning\ 3}$	
27	(2019)	27
28 ^{52.}	$Pedregosa,\ F.,\ Varoquaux,\ G.,\ Gramfort,\ A.,\ Michel,\ V.,\ Thirion,\ B.,\ Grisel,\ O.,\ Blondel,\ M.,\ Prettenhofer,\ P.,$	28
	$Weiss,\ R.,\ Dubourg,\ V.,\ Vanderplas,\ J.,\ Passos,\ A.,\ Cournapeau,\ D.,\ Brucher,\ M.,\ Perrot,\ M.,\ Duchesnay,\ E.:$	
29	Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)	29
30 ^{53.}	$Landrum, \ G.: \ RDKit: \ Open-Source \ Cheminformatics \ Software. \ https://github.com/rdkit \ Accessed \ Accessed$	30
	June 2021	55
3154.	$Tan,\ C.,\ Sun,\ F.,\ Kong,\ T.,\ Zhang,\ W.,\ Yang,\ C.,\ Liu,\ C.:\ A\ survey\ on\ deep\ transfer\ learning.\ In:\ International$	31
30	Conference on Artificial Neural Networks, pp. 270–279 (2018). Springer	30
32 55.	Weiss,K.,Khoshgoftaar,T.M.,Wang,D.:Asurveyoftransferlearning.JournalofBigdata 3(1),140(2016)	32
3356.	Griffen, E., Leach, A.G., Robb, G.R., Warner, D.J.: Matched molecular pairs as a medicinal chemistry tool:	33

Coupry and Pogány Page 12 of 12

1

	miniperspective. Journal of medicinal chemistry 34(22), 1739–1730 (2011)	
2		2
3		3
4		4
5		5
6		6
7		7
8		8
9		9
10		10
11		11
12		12
13		13
14		14
15		15
16		16
17		17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33