Verifiable Advice from a Conservative Agency

Anna Denisenko (University of Chicago), Catherine Hafer (NYU), and Dimitri Landa (NYU)

Bocconi - 2024

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information → full disclosure (Milgrom, 1981, Grossman, 1981)

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information → full disclosure (Milgrom, 1981, Grossman, 1981)
- → When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information → full disclosure (Milgrom, 1981, Grossman, 1981)
- → When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete
 - Higher preference misalignment
 - → less informative communication between policymakers and bureaucrats / receivers and senders (borne out in the classic cheap-talk models)

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information → full disclosure (Milgrom, 1981, Grossman, 1981)
- → When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete
 - Higher preference misalignment
 - → less informative communication between policymakers and bureaucrats / receivers and senders (borne out in the classic cheap-talk models)
- \rightarrow Higher degree of preference misalignment can lead to **more informative** communication

Related Literature

- Full disclosure in games of verifiable advice: seminal papers by Milgrom (1981), Grossman (1981); for review see Milgrom (2008)
- Partial disclosure in games of verifiable advice
 - uninformed sender Dye (1985), Jung and Kwon (1988)
 - uncertainty about sender's preferences Wolinsky (2003), Dziuda (2011), Seidmann and Winter (1997)
 - multidimensional advice Callander, Lambert and Matouschek (2021)
- Games of communication within hierarchy (cheap talk)
 - divergence in preferences → worse communication: seminal paper by Crawford and Sobel (1982), Gilligan and Kreihbiel (1987), Austen-Smith (1990, 1993)
 - except Callander (2008)

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Belief-Stable Equilibria
- Generalization
- Summary

There are two strategic players: the Agency (it) and the Policymaker (she).

 \bigcirc Nature determines the state of the world $(\omega) \mid \omega \sim U[-1,1]$

1	Nature determines the state of the world (ω)	$\omega \sim \textit{U}[-1,1]$
2	The Agency observes the state (ω)	ω

1	Nature determines the state of the world (ω)	$\omega \sim \textit{U}[-1,1]$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (m) to send to the Policymaker	$m(\omega) \in \{\omega,\varnothing\}$

1	Nature determines the state of the world (ω)	$\omega \sim \textit{U}[-1,1]$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$m(\omega) \in \{\omega,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p(m) \in \mathbb{R}$

Payoffs and Solution Concept

Agency:

$$u_A(p) = -(p-i)^2$$

Payoffs and Solution Concept

Agency:

$$u_A(p)=-(p-i)^2,$$

we assume $i \geq 0$.

Payoffs and Solution Concept

Agency:

$$u_A(p)=-(p-i)^2,$$

we assume $i \ge 0$.

Policymaker:

$$u_P(p) = -(p-\omega)^2.$$

Solution Concept: Sequential Equilibrium.

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Belief-Stable Equilibria
- Generalization
- Summary

Equilibrium Characterization

When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega | m = \emptyset; m^*(\omega)].$

Equilibrium Characterization

When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega | m = \emptyset; m^*(\omega)].$

The Agency discloses the state when
$$E[u_A(p^*(m))|m=\omega] > E[u_A(p^*(m))|m=\omega] \Rightarrow$$

Equilibrium Characterization

When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega | m = \emptyset; m^*(\omega)].$

The Agency discloses the state when $E[u_A(p^*(m))|m=\omega] > E[u_A(p^*(m))|m=\omega] \Rightarrow$ The Agency discloses states when

 $\omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1]$ and conceals otherwise.

Equilibrium Outcomes

There can be a maximum of three disclosure strategies supported in equilibrium

Full disclosure strategy;

Disclosure intervals for some $i \ge 0$

Equilibrium Outcomes

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure strategy (F)
- 2 Partial disclosure strategy:
 - Guarded disclosure (G);
 - Expansive disclosure (E).

Disclosure intervals for some $i \ge 0$

Equilibrium Outcomes

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure strategy;
- ② Partial disclosure strategy:
 - Guarded disclosure;
 - Expansive disclosure.

Disclosure intervals for some $i \ge 0$

Road Map

- Introduction
- ② Example
- 3 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Effect of Policy Preferences on Policy Absent Disclosure
 - Effect of Policy Preferences on Disclosure
 - Belief-Stable Equilibria
- Generalization
- Summary

Effects of A's Policy Preferences (i) on Policy Absent Disclosure

Prop.1 Increasing i, the difference between the Agency's ideal point and the Policymaker's ex-ante expected ideal point,

 has no effect on x* in the fully revealing equilibrium;

Effects of A's Policy Preferences (i) on Policy Absent Disclosure

Prop.1 Increasing i, the difference between the Agency's ideal point and the Policymaker's ex-ante expected ideal point,

- ① has no effect on x^* in the fully revealing equilibrium;
- 2 increases x* in the expansive equilibrium;

Effects of A's Policy Preferences (i) on Policy Absent Disclosure

Prop.1 Increasing i, the difference between the Agency's ideal point and the Policymaker's ex-ante expected ideal point,

- ① has no effect on x^* in the fully revealing equilibrium:
- 2 increases x^* in the expansive equilibrium; and
- 3 decreases x* in the guarded equilibrium.

Effects of Policy A's Preference (i) on Equilibria

Prop.

- ① If $i \in [0, 1/4]$, there are three equilibria: fully-revealing, guarded, and expansive;
- ② If i > 1/4, there is a unique equilibrium fully revealing equilibrium.

The Agency is disclosing state to the Policymaker when

$$\omega \in [x, 2 \cdot i - x] \cap [-1, 1],$$

and conceals information otherwise.

The Agency is disclosing state to the Policymaker when

$$\omega \in [x, 2 \cdot \mathbf{i} - x] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct

The Agency is disclosing state to the Policymaker when

$$\omega \in [\mathbf{x}, 2 \cdot \mathbf{i} - \mathbf{x}] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

The Agency is disclosing state to the Policymaker when

$$\omega \in [\mathbf{x}, 2 \cdot \mathbf{i} - \mathbf{x}] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

- Direct effect always (weakly) improves communication between the Agency and the Policymaker
- Indirect effect
 - ightarrow Improves communication in the **guarded** equilibrium

The Agency is disclosing state to the Policymaker when

$$\omega \in [\mathbf{x}, 2 \cdot \mathbf{i} - \mathbf{x}] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

- Direct effect always (weakly) improves communication between the Agency and the Policymaker
- Indirect effect
 - → Improves communication in the guarded equilibrium
 - → Reduces communication in the expansive equilibrium

Effect of A's Policy Preferences (i) on Disclosure

Prop.2 Communication between actors

 \rightarrow deteriorates in *i* in expansive equilibrium;

Effect of A's Policy Preferences (i) on Disclosure

Prop.2 Communication between actors

- \rightarrow deteriorate in i in expansive equilibrium;
- \rightarrow *improves* in *i* in guarded equilibrium;

Effect of A's Policy Preferences (i) on Disclosure

Prop.2 Communication between actors

- \rightarrow deteriorate in i in expansive equilibrium;
- \rightarrow *improves* in *i* in guarded equilibrium;
- → not affected by i in the equilibrium with full disclosure.

Effects of A's Policy Preference (i) on Equilibrium Disclosure

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Effect of Policy Preferences on Default Policy
 - Effect of Policy Preferences on Disclosure
 - Belief-Stable Equilibria
- 3 Generalization
- 4 Summary

When $i \ge 0$, the lower bound of the Agency's disclosure must coincide with Policymaker's belief about state absent disclosure.

Three disclosure strs that can be supported in equilibrium:

- Full disclosure:
- ② Guarded partial disclosure;
- 3 Expansive partial disclosure.

When $i \ge 0$, the lower bound of the Agency's disclosure must coincide with Policymaker's belief about state absent disclosure.

Three disclosure strs that can be supported in equilibrium:

- Full disclosure:
- ② Guarded partial disclosure;
- 3 Expansive partial disclosure.

Imagine, there is slight perturbation to the Policymaker's beliefs in **expansive** equilibrium.

Imagine, there is slight perturbation to the Policymaker's beliefs in **expansive** equilibrium.

Regardless of the direction of perturbation, this equilibrium will 'collapse.'

Def.1 Consider a sequential equilibrium (σ, μ) and a perturbed system of beliefs μ_i^{ε} . Let σ^{ε} be sequentially rational given the beliefs $(\mu_i^{\varepsilon}, \mu_{-i})$, and let $\hat{\mu}_i^{\varepsilon}$ be consistent with σ^{ε} . If there exists an $\varepsilon > 0$ such that, for every μ_i^{ε} that satisfies $|\mu_i^{\varepsilon}(x) - \mu_i(x)| < \varepsilon$, condition $|\hat{\mu_i^{\varepsilon}}(x) - \mu_i(x)| < |\mu_i^{\varepsilon}(x) - \mu_i(x)|$ is satisfied for all decision nodes x assigned to i, then we say that equilibrium (σ, μ) is belief-stable for player i. If equilibrium (σ, μ) is belief-stable for every player i, then we say it is belief-stable.

Prop.

- ① Fully revealing equilibrium is belief-stable when i > 0:
- ② Guarded equilibrium is always belief-stable;
- 3 Expansive equilibrium is never belief-stable.

Extent of Belief-Stability

Prop. As *i* decreases, $i \in [0, \frac{1}{4}]$,

- ① the extent of belief stability of the fully revealing SE decreases; and
- 2 the extent of belief stability of the guarded SE increases.

Road Map

- Introduction
- 2 Model
- 3 Generalization
- 4 Summary

General Model: Actors and Timing

There are two strategic players: the Agency (it) and the Policymaker (she).

1	Nature determines the state of the world $(\omega \in [\underline{\Omega}, \overline{\Omega}])$	$\omega \sim F(\cdot)$ such that $\int_{\overline{\Omega}}^{\overline{\Omega}} x \cdot f(x) dx = 0$
2	The Agency observes the state ω	ω
3	The Agency chooses which message (m) to send to the Policymaker	$m \in \{\omega,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy $(p(\omega))$ to implement	$p \in \mathbb{R}$

General Model: Characterization

Prop. In all sequential equilibria in this game

$$p^* = \begin{cases} m \text{ if } m \neq \varnothing, \\ x^* \text{ if } m = \varnothing \end{cases} ; \quad m^* = \begin{cases} m = \omega \text{ if } \omega \in [i - \sqrt{(i - x^*)^2}, i + \sqrt{(i - x^*)^2}], \\ m = \varnothing \text{ else}, \end{cases}$$

where $x^* \equiv E[\omega|m=\varnothing,m^*]$.

Full Disclosure: Uniqueness

Prop. There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full-disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

Full Disclosure: Uniqueness

Prop. There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full-disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

^{*}stylized image

Multiple Equilibria

Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:

$$X^* \equiv \{x^* : x^* = E[\omega | m = \varnothing, m^*]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, \ldots\}$.

Multiple Equilibria

Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:

$$X^* \equiv \{x^* : x^* = E[\omega | m = \varnothing, m^*]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, \ldots\}$.

Stylized image for some $i \ge 0$:

Stylized image for some $i \le 0$:

Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:

$$\underline{\Omega}$$
 x_k^* x_j^* 0 $\underline{\overline{\Omega}}$

Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:

$$\frac{i}{\Omega}$$
 x_k^* x_j^* 0 $\overline{\Omega}$

Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:

Multiple Equilibria: Comparative Statics

Prop. For all j, equilibrium policy selected absent disclosure x_i^*

- ① weakly decreases in *i* when $j = 2 \cdot k 1 : k \in \mathbb{N}$,
- ② weakly increases in i when $j = 2 \cdot k : k \in \mathbf{N}$.

Multiple Equilibria: Comparative Statics

Prop. For all j, equilibrium policy selected absent disclosure x_i^*

- ① weakly decreases in i when $j = 2 \cdot k 1 : k \in \mathbb{N}$,
- ② weakly increases in i when $j = 2 \cdot k : k \in \mathbf{N}$.

Stylized image for some $i \ge 0$:

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

The Agency is disclosing state to the Policymaker when

$$\omega \in [i - \sqrt{(i - x^*)^2}, i + \sqrt{(i - x^*)^2}] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

- Direct effect always (weakly) improves communication between the Agency and the Policymaker
- Indirect effect
 - → Improves communication in equilibria with **odd-indexed** policies absent disclosure
 - → Reduces communication in equilibria with **even-indexed** policies absent disclosure

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

Prop. The Agency's equilibrium disclosure

- ① increases in divergence between the Agency's and the Policymaker's ex ante ideal points, |i|, in equilibria with odd-indexed policies absent disclosure;
- ② decreases in divergence between the Agency's and the Policymaker's ex ante ideal points, |i|, in equilibria with even-indexed policies absent disclosure.

General Model: Belief Stability

Prop. Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

General Model: Belief Stability

Prop. Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

 \Rightarrow Corrolary. Equilibria are belief-stable \Leftrightarrow equilibrium communication **improves** in preference divergence. Equilibria are not belief-stable \Leftrightarrow equilibrium communication **worsens** in preference divergence.

Road Map

- Introduction
- Model
- Generalization
- Summary

- Discrete Example
- Disclosure Reward
- Policymaker's bias
- Optimal Choice of Agency
- Perturbations to Agency's policy preferences TBA

Summary

A model of verifiable communication between a Policymaker and a Bureaucratic Agency

- When Sender's optimal policy is close to the mean of the distribution, unraveling can stop before being complete;
- Wigher ex-ante preference divergences can encourages the Agency to disclose more information:
- Sequilibria where communication deteriorate in preference divergence are not belief-stable.

Thank you!

There are two strategic players: the Agency (it) and the Policymaker (she).

There are two strategic players: the Agency (it) and the Policymaker (she).

Nature determines the state of the world (ω) , all states equally likely

 $\omega \in \{-A, -B, 0, B, A\}$

There are two strategic players: the Agency (it) and the Policymaker (she).

1	Nature determines the state of the world (ω) , all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
(2)	The Agency observes the state (ω)	ω

There are two strategic players: the Agency (it) and the Policymaker (she).

1	Nature determines the state of the world (ω) , all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (m) to send to the Policymaker	$ extit{ extit{m}}(\omega) \in \{\omega, arnothing\}$

There are two strategic players: the Agency (it) and the Policymaker (she).

1	Nature determines the state of the world (ω) , all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (m) to send to the Policymaker	$m(\omega) \in \{\omega,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p(m) \in \mathbb{R}$

Back to Road Map

Example: Payoffs and Solution Concept

Agency:

$$u_A(p)=-(p-i)^2.$$

Example: Payoffs and Solution Concept

Agency:

$$u_A(p) = -(p-i)^2.$$

Policymaker:

$$u_P(p) = -(p - \omega)^2.$$

Solution Concept: Sequential Equilibrium. Back to Road Map

Revelation Dynamics: Full Disclosure

- Let i = A
- The only equilibrium is one with full revelation

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

$$\begin{array}{c|ccccc}
 & & & & & & & & \\
\hline
 & & & & & & & & \\
 & & & & & & & \\
 & -A & & -B & 0 & B & A
\end{array}$$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

The Agency discloses B; but then $p(\varnothing) = p_1 \to \text{disclose } \omega = 0$ $p_1 \to p_1 \to p_1$ $p_1 \to p_1$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

ightarrow The Agency discloses B; but then $p(\varnothing) = p_1
ightarrow$ disclose $\omega = 0$

ightarrow Policymaker implements $p(\varnothing) = p_2$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

ightarrow The Agency discloses B; but then $p(\varnothing)=p_1
ightarrow$ disclose $\omega=0$

ightarrow Policymaker implements $p(\varnothing)=p_2$

ightarrow Equilibrium

Introducing Disclosure Reward, R

The Agency receives a lump sum gain R when it shares information

$$u_A(p) = \begin{cases} -(p-i)^2 + R, & m \neq \emptyset; \\ -(x-i)^2, & m = \emptyset. \end{cases}$$

Model with Reward: Equilibrium Characterization

The Policymaker implements $p^*(m) = m$, when she observes $m = \omega$.

She chooses a policy x^* otherwise.

The Agency discloses the state ω when $\omega \in [i - \sqrt{(i-x)^2 + R}, i + \sqrt{(i-x)^2 + R}]$, and conceals information otherwise.

Model with Reward: Effects on Communication

Lemma. Holding fixed Policymaker's choice absent disclosure, informativeness of communication between actors improves in R.

Model with Reward: Effects on Communication

Lemma. Holding fixed Policymaker's choice absent disclosure. informativeness of communication between actors improves in R.

Proposition. Communication

- improves in R in guarded equilibrium;
- deteriorates in R in expansive

equilibrium;

Introducing Policymaker's Bias, b

The Policymaker wishes to implement policies co-aligned with her bias b

$$u_P(p) = -(p - \omega - b)^2,$$

we assume b > 0.

Model with Policymaker's bias: Equilibrium Characterization

The Policymaker implements $p^*(m) = m + b$, when she observes $m \neq \emptyset$.

She chooses a policy $E[\omega|m=\varnothing]+b$ otherwise.

The Agency discloses the state ω when

$$\omega \in \begin{cases} [2 \cdot (i-b) - x, x] \cap [-1, 1], \ i-b < 0; \\ [x, 2 \cdot (i-b) - x] \cap [-1, 1], \ i-b > 0, \end{cases}$$

and conceals information otherwise.

Model with Policymaker's bias: Equilibria

There can be a maximum of three equilibrium outcomes in this game

- Full disclosure;
- ② Partial disclosure:
 - Guarded disclosure strategy;
 - Expansive disclosure strategy.

Model with Policymaker's bias: Comparative Statics

Communication between actors

- (1) is not affected by the Policymaker's bias in fully revealing equilibrium;
- improves as Policymaker's bias departs from the Agency's ideal point in guarded equilibrium;
- 3 deteriorate as Policymaker's bias departs from the Agency's ideal point in expansive equilibrium.

Model with Policymaker's bias: Belief Stability

- Fully revealing equilibrium is belief stable when the Policymaker's bias is different from the Agency's ideal point and not belief stable otherwise;
- Quarded equilibrium is always belief stable;
- 3 Expansive equilibrium is never belief stable.

Agency's Competence: Game Modification

Companion paper: DHL 2024

1	Nature determines the state of the world (ω)	$\omega \sim \textit{N}(0,1)$
2	The Agency of known competence (θ) observes private signal (s) about the state	$egin{aligned} s &= \omega + arepsilon, \ arepsilon &\sim extstyle extstyle extstyle (0, 1/ heta) \end{aligned}$
3	The Agency chooses which message (m) to send to the Policymaker	$m \in \{s,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p \in \mathbb{R}$

Agency's Competence: Agency's Disclosure Strategy

Policymaker implements policy $p=\frac{m}{1+1/\theta},$ when observes informative message m.

Agency of competence $\boldsymbol{\theta}$ discloses its signal to the Policymaker if and only if

$$egin{aligned} s \geq -rac{\sqrt{R+d}\cdot(1+ heta)}{ heta} - b, \ & rac{ ext{and}}{ heta} \ & s \leq rac{\sqrt{R+d}\cdot(1+ heta)}{ heta} - b. \end{aligned}$$

Sequential Rationality of Reward Scheme

Assume the Policymaker can choose whether to award R to the Agency.

- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker never awards less than *R* for disclosure;
- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker always awards disclosure and never awards lack thereof.

PM's Choice of the Agency

- Why pursue conformity?
 - Cheap-talk literature (seminal paper by Crawford and Sobel, 1982): more divergence → less communication;
 - "Ally principal" (see Bendor and Meirowitz, 2004): more divergence → less delegation.
- Why avoid conformity?
 - Incentives to acquire information (Che and Kartik, 2009);
 - Incentives to acquire expertise (Gailmard and Patty, 2007);
 - Incentives to exert effort (Prendergast, 2007).

This paper's contribution: preference divergence guarantee full-disclosure uniqueness.

In shaded areas of the stylized image, full disclosure is the unique equilibrium.

PM's Choice of the Agency

- Why pursue conformity?
 - Cheap-talk literature (seminal paper by Crawford and Sobel, 1982): more divergence → less communication:
 - "Ally principal" (see Bendor and Meirowitz, 2004): more divergence → less delegation.
- Why avoid conformity?
 - Incentives to acquire information (Che and Kartik, 2009);
 - Incentives to acquire expertise (Gailmard and Patty, 2007);
 - Incentives to exert effort (Prendergast, 2007).

This paper's contribution: preference divergence guarantee full-disclosure uniqueness.

In shaded areas of the stylized image, full disclosure is the unique equilibrium.

Further, PM's utility is **weakly increasing** in the preference divergence in all belief-stable equilibria; It depends on preference divergence **non-monotonically** only in not belief-stable equilibria.