Pick-Not Pick (Include-Exclude) Problems Sheet

S.N.	Problem Name	Detailed Problem Sheet
		Description: Given an array, find the maximum sum of elements such that
		no two elements are adjacent.
1		Input: n (size of array), array of integers.
	Maximum Sum of Non-	Output: Maximum sum
	Adjacent Elements	Constraints: $1 \le n \le 10^5$, $-10^4 \le arr[i] \le 10^4$
		Example: Input: [2, 1, 4, 9] → Output: 11
		Explanation: Pick 2 and 9 \rightarrow Sum = 11
		Approach: Pick current + dp[i-2] or skip current (dp[i-1])
2	Subset Sum Problem	Description: Check if there exists a subset with sum equal to the target.
		Input: n, array, target sum
		Output: true/false
		Constraints: $1 \le n \le 10^3$, $0 \le \text{target} \le 10^4$
		Example: Input: $[3, 34, 4, 12, 5, 2]$, target $= 9 \rightarrow 0$ utput: true
		Explanation: Subset {4, 5} sums to 9.
		Approach: Pick current (sum decreases) or skip current
	0/1 Knapsack Problem	Description: Given weights, values, and a capacity W, maximize value by
		picking/not picking items.
		Input: n, arrays of weights and values, capacity W
		Output: Maximum achievable value
3		Constraints: $1 \le n \le 10^3$, $1 \le W \le 10^4$
		Example: Input: weights = $[1,3,4,5]$, values = $[1,4,5,7]$, W=7 \rightarrow
		Output: 9
		Explanation: Pick items with weight 3 and $4 \rightarrow$ Total value = 9
		Approach: Pick current (if weight allows) or skip current
		Description: Check if the array can be partitioned into two subsets with
		equal sum.
		Input: n, array
4	Partition Equal Subset Sum	Output: true/false
	'	Constraints: $1 \le n \le 200, 1 \le arr[i] \le 100$
		Example: Input: $[1, 5, 11, 5] \rightarrow \text{Output: true}$
		Explanation: {1,5,5} and {11} both sum to 11.
		Approach: Reduce to subset sum with target = total_sum/2
		Description: Same as problem 1, but framed in a house-robbing
		scenario.
		Input: n, array of money in houses
5	House Robber Problem	Output: Maximum amount robbed
		Constraints: $1 \le n \le 10^5$, $0 \le money \le 10^4$
		Example: Input: [2, 7, 9, 3, 1] → Output: 12
		Explanation: Pick 2, 9, 1
		Approach: Standard pick-not pick DP
6	Target Sum Problem	Description: Assign '+' or '—' to each element to reach target sum.
		Input: n, array, target sum
		Output: Number of ways to assign signs to reach target
		Constraints: $1 \le n \le 20$, $-1000 \le arr[i] \le 1000$

S.N.	Problem Name	Detailed Problem Sheet
		Example: Input: nums = $[1,1,1,1,1]$, target = $3 \rightarrow 0$ utput: 5 Explanation: 5 ways to assign signs to get 3. Approach: At each step, add or subtract the current element
7	Maximum Subset with No Consecutive Elements	Description: Find maximum sum of non-consecutive elements. Input: n, array Output: Maximum sum Constraints: $1 \le n \le 10^5$, $-10^4 \le arr[i] \le 10^4$ Example: Input: $[3, 2, 5, 10, 7] \rightarrow 0$ utput: 15 Explanation: Pick $3, 10, 2 \rightarrow Sum = 15$ Approach: Same as house robber
8	Coin Change (Minimum Coins)	Description: Find minimum number of coins to make a target amount. Input: n, array of coins, target amount Output: Minimum coins needed Constraints: $1 \le n \le 12$, $1 \le \text{amount} \le 10^4$ Example: Input: coins = $[1, 2, 5]$, amount = $11 \rightarrow 0$ utput: $3 \leftarrow 11 \rightarrow 1$
9	Longest Increasing Subsequence (LIS)	Description: Find the length of the longest increasing subsequence. Input: n, array Output: Length of LIS Constraints: $1 \le n \le 2500$, $-10^4 \le arr[i] \le 10^4$ Example: Input: $[10, 9, 2, 5, 3, 7, 101, 18] \rightarrow Output: 4$ Explanation: LIS is $[2, 3, 7, 101]$ Approach: Pick current if it's increasing, else skip
10	Painting Fence Problem	Description: Given n fences and k colors, find the number of ways to paint such that no more than two adjacent fences have the same color. Input: n, k Output: Number of ways to paint Constraints: $1 \le n \le 10^4$, $1 \le k \le 100$ Example: Input: $n = 3$, $k = 2 \longrightarrow 0$ Output: 6 Explanation: Various combinations avoiding 3 adjacent same colors. Approach: Pick same color (limited) or pick different color

Common DP Approaches Across All:

- Recursion
- Memoization (Top-Down)
- Tabulation (Bottom-Up)
- Space Optimization (for linear index problems like House Robber)

Key Characteristics:

- **Decision Tree:** Pick or not pick at each step
- Intrinsic Value: When you pick the current item
- Extrinsic Value: When you skip the current item
- **State Parameters:** Usually involve index and sometimes additional parameters like remaining weight, sum, or target.