Image Processing, Analysis, and Machine Vision

Second Edition

Milan Sonka Vaclav Hlavac Roger Boyle

Contents

Li	st of	algori	thms	xiii
Li	st of	symbo	ols and abbreviations	xvii
P	reface	e		xix
\mathbf{C}	Course contents			
1	\mathbf{Intr}	oducti	on	1
	1.1	Sumn	nary	8
	1.2	Exerc	ises	8
	1.3	Refere	ences	9
2	The	digiti	zed image and its properties	10
	2.1	Basic	concepts	10
		2.1.1	Image functions	10
		2.1.2	The Dirac distribution and convolution	13
		2.1.3	The Fourier transform	13
		2.1.4	Images as a stochastic process	15
		2.1.5	Images as linear systems	17
	2.2	Image	digitization	18
		2.2.1	Sampling	18
		2.2.2	Quantization	22
		2.2.3	Color images	23
	2.3	Digita	l image properties	27
		2.3.1	Metric and topological properties of digital images	27
		2.3.2	Histograms	32
		2.3.3	Visual perception of the image	33
		2.3.4	Image quality	35
		2.3.5	Noise in images	35
	2.4	Sumn	nary	37
	2.5	Exerc	ises	38
	2.6	Refere	ancas	40

vi Contents

3	Dat	a stru	ctures for image analysis	42
	3.1	Levels	s of image data representation	42
	3.2	Tradi	tional image data structures	43
		3.2.1	Matrices	43
		3.2.2	Chains	45
		3.2.3	Topological data structures	47
		3.2.4	Relational structures	48
	3.3	Hiera	rchical data structures	49
		3.3.1	Pyramids	49
		3.3.2	Quadtrees	51
		3.3.3	Other pyramidical structures	52
	3.4	Sumn	nary	53
	3.5	Exerc	ises	54
	3.6	Refer	55	
4	Ima	ige pre	e-processing	57
	4.1	Pixel	brightness transformations	58
		4.1.1	Position-dependent brightness correction	58
		4.1.2	Gray-scale transformation	59
	4.2	Geom	netric transformations	62
		4.2.1	Pixel co-ordinate transformations	63
		4.2.2	Brightness interpolation	65
	4.3	Local	pre-processing	68
		4.3.1	Image smoothing	69
		4.3.2	Edge detectors	77
		4.3.3	Zero-crossings of the second derivative	83
		4.3.4	Scale in image processing	88
		4.3.5	Canny edge detection	90
		4.3.6	Parametric edge models	93
		4.3.7	Edges in multi-spectral images	94
		4.3.8	Other local pre-processing operators	94
		4.3.9	Adaptive neighborhood pre-processing	98
	4.4	Image	e restoration	102
		4.4.1	Degradations that are easy to restore	105
		4.4.2	Inverse filtration	106
		4.4.3	Wiener filtration	106
	4.5	Sumn	nary	108
	4.6	Exerc	eises	111
	4.7	Refer	118	
5	Seg	menta [.]	tion	123
	5.1		sholding	124
		5.1.1	Threshold detection methods	127
		5.1.2	Optimal thresholding	128
		5.1.3	Multi-spectral thresholding	131
		5.1.4	Thresholding in hierarchical data structures	133

			Contents	vii
5.2	Edge-k	pased segmentation		134
0.2	5.2.1	Edge image thresholding		135
	5.2.1	Edge relaxation		137
	5.2.3	Border tracing		142
	5.2.4	Border detection as graph searching		148
	5.2.5	Border detection as dynamic programming		158
	5.2.6	Hough transforms		163
	5.2.7	Border detection using border location information		173
	5.2.8	Region construction from borders		174
5.3		n-based segmentation		176
0.0	5.3.1	Region merging		177
	5.3.2	Region splitting		181
	5.3.3	Splitting and merging		181
	5.3.4	Watershed segmentation		186
	5.3.5	Region growing post-processing		188
5.4	Match			190
	5.4.1	Matching criteria		191
	5.4.2	Control strategies of matching		193
5.5		ced optimal border and surface detection approaches		194
	5.5.1	Simultaneous detection of border pairs		194
	5.5.2	Surface detection		199
5.6	Summ	ary		205
5.7	Exerci	· ·		210
5.8	Refere	nces		216
Sha	pe repi	resentation and description		228
6.1	Region	n identification		232
6.2	Conto	ur-based shape representation and description		235
	6.2.1	Chain codes		236
	6.2.2	Simple geometric border representation		237
	6.2.3	Fourier transforms of boundaries		240
	6.2.4	Boundary description using segment sequences		242
	6.2.5	B-spline representation		245
	6.2.6	Other contour-based shape description approaches		248
	6.2.7	Shape invariants		249
6.3	Region	n-based shape representation and description		254
	6.3.1	Simple scalar region descriptors		254
	6.3.2	Moments		259
	6.3.3	Convex hull		262
	6.3.4	Graph representation based on region skeleton		267
	6.3.5	Region decomposition		271
	6.3.6	Region neighborhood graphs		272
6.4	Shape	classes		273
6.5	Summ	ary		274
6.6	Exerci	ses		276
6.7	Refere	nces		279

viii Contents

7	Obj	ect recognition	290
	7.1	Knowledge representation	291
	7.2	Statistical pattern recognition	297
		7.2.1 Classification principles	298
		7.2.2 Classifier setting	300
		7.2.3 Classifier learning	303
		7.2.4 Cluster analysis	307
	7.3	Neural nets	308
		7.3.1 Feed-forward networks	310
		7.3.2 Unsupervised learning	312
		7.3.3 Hopfield neural nets	313
	7.4	Syntactic pattern recognition	315
		7.4.1 Grammars and languages	317
		7.4.2 Syntactic analysis, syntactic classifier	319
		7.4.3 Syntactic classifier learning, grammar inference	321
	7.5	Recognition as graph matching	323
		7.5.1 Isomorphism of graphs and sub-graphs	324
		7.5.2 Similarity of graphs	328
	7.6	Optimization techniques in recognition	328
		7.6.1 Genetic algorithms	330
		7.6.2 Simulated annealing	333
	7.7	Fuzzy systems	336
		7.7.1 Fuzzy sets and fuzzy membership functions	336
		7.7.2 Fuzzy set operators	338
		7.7.3 Fuzzy reasoning	339
		7.7.4 Fuzzy system design and training	343
	7.8	Summary	344
	7.9	Exercises	347
	7.10	References	354
8	Ima	ge understanding	362
	8.1	Image understanding control strategies	364
		8.1.1 Parallel and serial processing control	364
		8.1.2 Hierarchical control	364
		8.1.3 Bottom-up control strategies	365
		8.1.4 Model-based control strategies	366
		8.1.5 Combined control strategies	367
		8.1.6 Non-hierarchical control	371
	8.2	Active contour models—snakes	374
	8.3	Point distribution models	380
	8.4	Pattern recognition methods in image understanding	390
		8.4.1 Contextual image classification	392
	8.5	Scene labeling and constraint propagation	397
		8.5.1 Discrete relaxation	398
		8.5.2 Probabilistic relaxation	400
		8.5.3 Searching interpretation trees	404

	8.6	Seman	tic image segmentation and understanding	404
		8.6.1	Semantic region growing	406
		8.6.2	Genetic image interpretation	408
	8.7	Hidden	n Markov models	417
	8.8	Summa	ary	423
	8.9	Exercis	ses	426
	8.10	Refere	nces	428
9	3D v	vision,	geometry, and radiometry	441
	9.1	3D visi	ion tasks	442
		9.1.1	Marr's theory	444
		9.1.2	Other vision paradigms: Active and purposive vision	446
	9.2	Geome	etry for 3D vision	448
		9.2.1	Basics of projective geometry	448
		9.2.2	The single perspective camera	449
		9.2.3	An overview of single camera calibration	453
		9.2.4	Calibration of one camera from a known scene	455
		9.2.5	Two cameras, stereopsis	457
		9.2.6	The geometry of two cameras; the fundamental matrix	460
		9.2.7	Relative motion of the camera; the essential matrix	462
		9.2.8	Fundamental matrix estimation from image point correspon-	
			dences	464
		9.2.9	Applications of epipolar geometry in vision	466
		9.2.10	Three and more cameras	471
		9.2.11	Stereo correspondence algorithms	476
		9.2.12	Active acquisition of range images	483
	9.3	Radion	netry and 3D vision	486
		9.3.1	Radiometric considerations in determining gray-level	486
		9.3.2	Surface reflectance	490
		9.3.3	Shape from shading	494
		9.3.4	Photometric stereo	498
	9.4	Summa	ary	499
	9.5	Exercis	ses	501
	9.6	Refere	nces	502
10	Use	of 3D	vision	508
	10.1	Shape	from X	508
		10.1.1	Shape from motion	508
		10.1.2	Shape from texture	515
		10.1.3	Other shape from X techniques	517
	10.2	Full 3I	O objects	519
		10.2.1	3D objects, models, and related issues	519
		10.2.2	Line labeling	521
		10.2.3	Volumetric representation, direct measurements	523
		10.2.4	Volumetric modeling strategies	525
		10.2.5	Surface modeling strategies	527

x Contents

model 10.3 3D model-based vision 10.3.1 General considerations 10.3.2 Goad's algorithm 10.3.3 Model-based recognition of curved objects from intensity images 10.3.4 Model-based recognition based on range images 10.4 2D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.5.1 Homotopic transformation 11.5.2 Skeletons and object marking 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Utimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.1 Exercises			10.2.6	Registering surface patches and their fusion to get a full 3D	
10.3.1 General considerations 10.3.2 Goad's algorithm 10.3.3 Model-based recognition of curved objects from intensity images 10.3.4 Model-based recognition based on range images 10.4.2 D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.1 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds				model	529
10.3.2 Goad's algorithm 10.3.3 Model-based recognition of curved objects from intensity images 10.3.4 Model-based recognition based on range images 10.4.2 D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11.1 Basic morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Geodesic transformations 11.5.6 Geodesic transformations 11.5.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.1 Binary morphological segmentation 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds		10.3	3D mo	del-based vision	535
10.3.3 Model-based recognition of curved objects from intensity images 10.4.4 Model-based recognition based on range images 10.4.2 D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11.1 Basic morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5.1 Homotopic transformation 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.1 Binary morphological segmentation 11.7.2 Summary			10.3.1	General considerations	535
ages 10.3.4 Model-based recognition based on range images 10.4 2D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.1 Binary morphological segmentation 11.7.2 Summary			10.3.2	Goad's algorithm	537
10.4.4 Model-based recognition based on range images 10.4.2 D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11.1 Basic morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.7.3 Gray-scale segmentation, watersheds			10.3.3	Model-based recognition of curved objects from intensity im-	
10.4 2D view-based representations of a 3D scene 10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11. Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.4.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary				ages	541
10.4.1 Viewing space 10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11. Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			10.3.4	Model-based recognition based on range images	543
10.4.2 Multi-view representations and aspect graphs 10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		10.4	2D vie	w-based representations of a 3D scene	544
10.4.3 Geons as a 2D view-based structural representation 10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation, marking, and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			10.4.1	Viewing space	544
10.4.4 Visualizing 3D real-world scenes using stored collections of 2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			10.4.2	Multi-view representations and aspect graphs	544
2D views 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			10.4.3	Geons as a 2D view-based structural representation	545
 10.5 Summary 10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 			10.4.4	Visualizing 3D real-world scenes using stored collections of	
10.6 Exercises 10.7 References 11 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary				2D views	546
11. Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		10.5	Summ	ary	551
11.1 Mathematical morphology 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		10.6	Exercis	ses	552
 11.1 Basic morphological concepts 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 		10.7	Refere	nces	553
 11.2 Four morphological principles 11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 	11	Mat	\mathbf{hemati}	ical morphology	559
11.3 Binary dilation and erosion 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds		11.1	Basic 1	morphological concepts	559
 11.3.1 Dilation 11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 		11.2	Four n	norphological principles	561
11.3.2 Erosion 11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds		11.3	Binary	dilation and erosion	563
11.3.3 Hit-or-miss transformation 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds			11.3.1	Dilation	563
 11.3.4 Opening and closing 11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 			11.3.2	Erosion	565
11.4 Gray-scale dilation and erosion 11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.3.3	Hit-or-miss transformation	568
11.4.1 Top surface, umbra, and gray-scale dilation and erosion 11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.3.4	Opening and closing	568
11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		11.4	Gray-s	cale dilation and erosion	569
dilation, opening and closing 11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.4.1	Top surface, umbra, and gray-scale dilation and erosion	570
11.4.3 Top hat transformation 11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.4.2	Umbra homeomorphism theorem, properties of erosion and	
11.5 Skeletons and object marking 11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary				dilation, opening and closing	573
11.5.1 Homotopic transformations 11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.4.3	Top hat transformation	574
11.5.2 Skeleton, maximal ball 11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		11.5	Skeleto	ons and object marking	576
11.5.3 Thinning, thickening, and homotopic skeleton 11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.5.1	Homotopic transformations	576
11.5.4 Quench function, ultimate erosion 11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.5.2	Skeleton, maximal ball	576
11.5.5 Ultimate erosion and distance functions 11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.5.3	Thinning, thickening, and homotopic skeleton	578
11.5.6 Geodesic transformations 11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.5.4	Quench function, ultimate erosion	581
11.5.7 Morphological reconstruction 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			11.5.5	Ultimate erosion and distance functions	584
 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 			11.5.6	Geodesic transformations	585
 11.6 Granulometry 11.7 Morphological segmentation and watersheds 11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary 			11.5.7	Morphological reconstruction	586
11.7.1 Particles segmentation, marking, and watersheds 11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		11.6	Granu	lometry	589
11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary		11.7	Morph	ological segmentation and watersheds	590
11.7.2 Binary morphological segmentation 11.7.3 Gray-scale segmentation, watersheds 11.8 Summary			-		590
11.7.3 Gray-scale segmentation, watersheds 11.8 Summary				, , , , , , , , , , , , , , , , , , , ,	592
11.8 Summary					594
·		11.8			595
		11.9		·	597

\sim			•
() (mt	en1	 v_1

	11.10	References	598
12	Line	ar discrete image transforms	600
	12.1	Basic theory	600
	12.2	Fourier transform	602
	12.3	Hadamard transform	604
	12.4	Discrete cosine transform	605
	12.5	Wavelets	606
	12.6	Other orthogonal image transforms	608
	12.7	Applications of discrete image transforms	609
	12.8	Summary	613
	12.9	Exercises	617
	12.10	References	619
13	Imag	ge data compression	$\boldsymbol{621}$
	13.1	Image data properties	622
	13.2	Discrete image transforms in image data compression	623
	13.3	Predictive compression methods	624
	13.4	Vector quantization	629
	13.5	Hierarchical and progressive compression methods	630
	13.6	Comparison of compression methods	631
	13.7	Other techniques	632
	13.8	Coding	633
	13.9	JPEG and MPEG image compression	634
		13.9.1 JPEG—still image compression	634
		13.9.2 MPEG—full-motion video compression	636
	13.10	Summary	637
	13.11	Exercises	640
	13.12	References	641
14	Text	ure	646
	14.1	Statistical texture description	649
		14.1.1 Methods based on spatial frequencies	649
		14.1.2 Co-occurrence matrices	651
		14.1.3 Edge frequency	653
		14.1.4 Primitive length (run length)	655
		14.1.5 Laws' texture energy measures	656
		14.1.6 Fractal texture description	657
		14.1.7 Other statistical methods of texture description	659
	14.2	Syntactic texture description methods	660
		14.2.1 Shape chain grammars	661
		14.2.2 Graph grammars	663
		14.2.3 Primitive grouping in hierarchical textures	664
		Hybrid texture description methods	666
	14.4	Texture recognition method applications	667
		Summary	668
	14 6	Exercises	670

xii Contents

	14.7	References	672
15	Mot	ion analysis	679
	15.1	Differential motion analysis methods	682
	15.2	Optical flow	685
		15.2.1 Optical flow computation	686
		15.2.2 Global and local optical flow estimation	689
		15.2.3 Optical flow computation approaches	690
		15.2.4 Optical flow in motion analysis	693
	15.3	Analysis based on correspondence of interest points	696
		15.3.1 Detection of interest points	696
		15.3.2 Correspondence of interest points	697
		15.3.3 Object tracking	700
	15.4	Kalman filters	708
		15.4.1 Example	709
	15.5	Summary	710
	15.6	Exercises	712
	15.7	References	714
16	Case	e studies	722
	16.1	An optical music recognition system	722
	16.2	Automated image analysis in cardiology	727
		16.2.1 Robust analysis of coronary angiograms	730
		16.2.2 Knowledge-based analysis of intra-vascular ultrasound	733
	16.3	Automated identification of airway trees	738
	16.4	Passive surveillance	744
	16.5	References	750
Inc	dex		755

List of algorithms

2.1	Chamfering	28
2.2	Computing the brightness histogram	32
2.3	Generate additive, zero mean Gaussian noise	36
3.1	Co-occurrence matrix $C_r(z,y)$ for the relation r	44
4.1	Histogram equalization	61
4.2	Smoothing using a rotating mask	74
4.3	Efficient median filtering	75
4.4	Canny edge detector	92
5.1	Basic thresholding	124
5.2	Iterative (optimal) threshold selection	129
5.3	Recursive multi-spectral thresholding	131
5.4	Hierarchical thresholding	134
5.5	Non-maximal suppression of directional edge data	135
5.6	Hysteresis to filter output of an edge detector	137
5.7	Edge relaxation	139
5.8	Inner boundary tracing	142
5.9	Outer boundary tracing	143
5.10	Extended boundary tracing	146
5.11	Border tracing in gray-level images	147
5.12	A-algorithm graph search	149
5.13	Heuristic search for image borders	157
5.14	Boundary tracing as dynamic programming	161
5.15	Curve detection using the Hough transform	167
5.16	Generalized Hough transform	172
5.17	Region forming from partial borders	175
5.18	Region merging (outline)	177
5.19	Region merging via boundary melting	179
5.20	Split and merge	182
5.21	Split and link to the segmentation tree	184
5.22	Single-pass split-and-merge	184
5.23	Removal of small image regions	190
5.24	Match-based segmentation	191
5.25	Three-dimensional graph searching	203
6.1	4-neighborhood and 8-neighborhood region identification	233
6.2	Region identification in run length encoded data	234
6.3	Quadtree region identification	235

xiv List of algorithms

6.4	Calculating area in quadtrees	255
6.5	Region area calculation from Freeman 4-connectivity chain code rep-	
	resentation	255
6.6	Region convex hull construction	262
6.7	Simple polygon convex hull detection	265
6.8	Skeleton by thinning	267
6.9	Region graph construction from skeleton	270
7.1	Learning and classification based on estimates of probability densities	
	assuming the normal distribution	306
7.2	Minimum distance classifier learning and classification	306
7.3	MacQueen k-means cluster analysis	308
7.4	Back-propagation learning	311
7.5	Unsupervised learning of the Kohonen feature map	313
7.6	Recognition using a Hopfield net	314
7.7	Syntactic recognition	316
7.8	Graph isomorphism	326
7.9	Maximal clique location	327
7.10	Genetic algorithm	332
7.11	Simulated annealing optimization	335
7.12	Fuzzy system design	343
8.1	Bottom-up control	365
8.2	Coronary border detection—a combined control strategy	371
8.3	Non-hierarchical control	372
8.4	Snake growing	378
8.5	Approximate alignment of similar training shapes	382
8.6	Fitting an ASM	387
8.7	Contextual image classification	395
8.8	Recursive contextual image classification	396
8.9	Discrete relaxation	399
8.10	Probabilistic relaxation	403
8.11	Updating a region adjacency graph and dual to merge two regions	405
	Semantic region merging	406
	Genetic image segmentation and interpretation	411
9.1	Ego-motion estimation	467
9.2	3D similarity reconstruction from two cameras	469
9.3	PMF stereo correspondence	483
9.4	Extracting shape from shading	497
10.1	Line labeling	522
10.2	Iterative closest reciprocal points	534
	Goad's matching algorithm	539
14.1	Autocorrelation texture description	649
	Co-occurrence method of texture description	653
	Edge-frequency texture description	654
	Primitive-length texture description	656
	Shape chain grammar texture generation	661
	Texture primitive grouping	665

List of algorithms xv

15.1	Relaxation computation of optical flow from dynamic image pairs	687
15.2	Optical flow computation from an image sequence	688
15.3	Velocity field computation from two consecutive images	698

List of symbols and abbreviations

angle (in radians) from x axis to the point (x, y)arg(x, y) $\operatorname{argmax}_{i}(\operatorname{expr}(i))$ the value of i that causes $\exp(i)$ to be maximal $\operatorname{argmin}_{i}(\exp(i))$ the value of i that causes $\exp(i)$ to be minimal div integer division mod remainder after integer division round(x)largest integer which is not bigger than x + 0.5empty set A^c complement of the set A $A \subset B, B \supset A$ set A is included in set B $A \cap B$ intersection between sets A and Bunion of sets A and B $A \cup B$ $A \mid B$ difference between sets A and BΑ (uppercase bold) matrices (lowercase bold) vectors \mathbf{x} magnitude (or modulus) of the vector \mathbf{x} X scalar product between vectors \mathbf{x} and \mathbf{y} $\mathbf{x} \cdot \mathbf{y}$ estimate of the value x \tilde{x} |x|absolute value of a scalar small finite interval of x, difference Δx $\partial f/\partial x$ partial derivative of the function f with respect to x ∇ f, grad f gradient of f $abla^2$ f Laplace operator applied to f f * qconvolution between functions f and qEuclidean distance (see Section 2.3.1) D_E D_4 city block distance (see Section 2.3.1) D_8 chessboard distance (see Section 2.3.1) complex conjugate of the complex function Frank(A)Rank of a matrix A T^* transformation dual to transformation T $\delta(x)$ Dirac function \mathcal{E} mean value operator \mathcal{L} linear operator

xviii List of symbols

 \mathcal{O} origin of the coordinate system

number of (e.g., pixels)

 $reve{B}$ point set symmetrical to point set B

 $\begin{array}{ccc} \oplus & & \text{morphological dilation} \\ \ominus & & \text{morphological erosion} \\ \circ & & \text{morphological opening} \\ \bullet & & \text{morphological closing} \end{array}$

 \otimes morphological hit-or-miss transformation

 \bigcirc morphological thinning \odot morphological thickening

1D one dimension(al) 2Dtwo dimension(al) 3Dthree dimension(al) artificial intelligence ΑI ASMactive shape model boundary representation B-rep CADcomputer-aided design CCD charge-coupled device CSGconstructive solid geometry CTcomputer tomography dof degrees of freedom electro-cardiogram ECG EEG electro-encephalogram FFT fast Fourier transform focus of expansion FOE GAgenetic algorithm hidden Markov model HMM

JPEG Joint Photographic Experts Group

MR magnetic resonance

MRI magnetic resonance imaging OCR optical character recognition

OS order statistics

IHS

PDM point distribution model PET positron emission tomography

PMF Pollard-Mayhew-Frisby (correspondence algorithm)

intensity, hue, saturation

RGB red, green, blue SNR signal-to-noise ratio

SVD singular value decomposition

TV television

Preface

Image processing, analysis and machine vision represent an exciting and dynamic part of cognitive and computer science. Following an explosion of interest during the 1970s, the 1980s and 1990s were characterized by the maturing of the field and the significant growth of active applications; remote sensing, technical diagnostics, autonomous vehicle guidance, medical imaging (2D and 3D) and automatic surveillance are the most rapidly developing areas. This progress can be seen in an increasing number of software and hardware products on the market, as well as in a number of digital image processing and machine vision courses offered at universities worldwide.

There are many texts available in the areas we cover—most (indeed, all of which we know) are referenced somewhere in this book. The subject suffers, however, from a shortage of texts which are 'complete' in the sense that they are accessible to the novice, of use to the educated, and up to date. Here we present the second edition of a text first published in 1993 in which we hope to include many of the very rapid developments that have taken and are still taking place, which quickly age some of the very good textbooks produced over the last two decades or so. The target audience is the undergraduate with negligible experience in the area through to the Master's and research student seeking an advanced springboard in a particular topic. Every section of this text has been updated since the first version (particularly with respect to references); additionally, wholly new sections are presented on: compression via JPEG and MPEG; fractals; fuzzy logic recognition; hidden Markov models; Kalman filters; point distribution models; three-dimensional vision; watershed segmentation; wavelets; and an entire chapter devoted to case studies. Additionally, each chapter now includes a concise Summary section. To help the reader to acquire practical understanding, newly added Exercise sections accompany each chapter; these are in the form of short-answer questions and problems of varying difficulty, frequently requiring practical usage of computer tools and/or development of application programs.

This book reflects the authors' experience in teaching one- and two-semester undergraduate and graduate courses in Digital Image Processing, Digital Image Analysis, Machine Vision, Pattern Recognition, and Intelligent Robotics at their respective institutions. We hope that this combined experience will give a thorough grounding to the beginner and provide material that is advanced enough to allow the more mature student to understand fully the relevant areas of the subject. We acknowledge that in a very short time the more active areas will have moved beyond this text.

This book could have been arranged in many ways. It begins with low-level processing and works its way up to higher levels of image interpretation; the authors have chosen this framework because they believe that image understanding originates from a common database of information. The book is formally divided into 16 chapters, beginning with low-level processing and working toward higher-level image representation, although this structure will be less apparent after Chapter 10, when we present transforms, compression, morphology, texture, and motion analysis which are very useful but often special-purpose approaches that may not always be included in the processing chain. The final chapter presents four live research projects which illustrate in practical use much of what has gone before.

Decimal section numbering is used, and equations and figures are numbered within each chapter. Each chapter is accompanied by an extensive list of references and exercises. A selection of algorithms is summarized formally in a manner that should aid implementation—not all the algorithms discussed are presented in this way (this might have doubled the length of the book); we have chosen what we regard as the key, or most useful or illustrative, examples for this treatment.

Each chapter presents material from an introductory level through to an overview of current work; as such, it is unlikely that the beginner will, at the first reading, expect to absorb all of a given topic. Often it has been necessary to make reference to material in later chapters and sections, but when this is done an understanding of material in hand will not depend on an understanding of that which comes later. It is expected that the more advanced student will use the book as a reference text and signpost to current activity in the field—we believe at the time of going to press that the reference list is full in its indication of current directions, but record here our apologies to any work we have overlooked. The serious reader will note that many references are very recent, and should be aware that before long more relevant work will have been published that is not listed here.

This is a long book and therefore contains material sufficient for much more than one course. Clearly, there are many ways of using it, but for guidance we suggest an ordering that would generate four distinct modules:

Digital Image Processing, an undergraduate course.

Digital Image Analysis, an undergraduate/graduate course, for which Digital Image Processing may be regarded as prerequisite.

Computer Vision I, an undergraduate/graduate course, for which Digital Image Processing may be regarded as prerequisite.

Computer Vision II, a graduate course, for which Computer Vision I may be regarded as prerequisite.

The important parts of a course, and necessary prerequisites, will naturally be specified locally; a suggestion for partitioning the contents follows this Preface.

Assignments should wherever possible make use of existing software; it is our experience that courses of this nature should not be seen as 'programming courses', but it is the case that the more direct practical experience the students have of the material discussed, the better is their understanding. Since the first edition was

published, an explosion of World Wide Web-based material has been made available, permitting many of the exercises we present to be conducted without the necessity of implementing from scratch—we do not present explicit pointers to Web material, since they evolve so quickly; however, pointers to specific support materials for this book and others may be located via the publisher, http://www.brookscole.com.

The book has been prepared using the LATEX text processing system. Its completion would have been impossible without extensive usage of the Internet computer network and electronic mail. We should like to acknowledge the University of Iowa, the Czech Technical University, and the School of Computer Studies at Leeds University for providing the environment in which this book was prepared.

Milan Sonka was a faculty member of the Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic for ten years, and is now an Associate Professor at the Department of Electrical and Computer Engineering, the University of Iowa, Iowa City, Iowa, USA. His research interests include medical image analysis, knowledge-based image analysis, and machine vision. Vaclav Hlavac is an Associate Professor at the Department of Control Engineering, Czech Technical University, Prague. His research interests are knowledge-based image analysis and 3D model-based vision. Roger Boyle is a Senior Lecturer in Artificial Intelligence in the School of Computer Studies at the University of Leeds, England, where his research interests are in low-level vision and pattern recognition. The first two authors have worked together for some years, and have been co-operating with the third since 1991.

The authors have spent many hours in discussions with their teachers, colleagues, and students, from which many improvements to early drafts of this text resulted. Particular thanks are due to Tomáš Pajdla, Petr Kodl, Radim Šára at the Czech Technical University; Steve Collins at the University of Iowa; Jussi Parkkinen at the University of Lappeenranta; Guido Prause at the University of Bremen; David Hogg at the University of Leeds; and many others whose omission from this list does not diminish the value of their contribution. The continuous support and encouragement we received from our wives and families, while inexplicable, was essential to us throughout this project—once again, we promise that our next book will not be written outside standard office hours or during holidays (but this time we mean it).

All authors have contributed throughout—the ordering on the cover corresponds to the weight of individual contribution. Any errors of fact are the joint responsibility of all, while any errors of typography are the responsibility of Roger Boyle. Jointly, they will be glad to incorporate any corrections into future editions.

Milan Sonka (milan-sonka@uiowa.edu) The University of Iowa, Iowa City, Iowa, USA

Vaclav Hlavac (hlavac@vision.felk.cvut.cz)
Czech Technical University, Prague, Czech Republic

Roger Boyle (roger@scs.leeds.ac.uk)
University of Leeds, Leeds, England

Course contents

In this section, one possible ordering of the material covered in the four courses proposed in the Preface is given. This coverage should not be considered the only possibility—on the contrary, the possibilities for organizing Image Processing and Analysis courses are practically endless. Therefore, what follows should only be regarded as suggestions, and instructors should tailor course content to fit the already acquired knowledge, abilities, and needs of the students enrolled.

Digital Image Processing. An undergraduate course.

- 1 Introduction
- 2 The digitized image and its properties
- 3 Data structures for image analysis
- 4 Image pre-processing (excluding 4.3.6–4.3.9, 4.4.3, limited coverage of 4.3.4, 4.3.5)
- 5 Segmentation
 - 5.1 Thresholding (excluding 5.1.3, 5.1.4)
 - 5.2 Edge-based segmentation (excluding 5.2.8, limited coverage of 5.2.4, 5.2.5)
 - 5.3 Region growing segmentation (excluding 5.3.4)
 - 5.4 Matching
- 12 Linear discrete image transforms
- 13 Image data compression
- 16 Case studies (selected topics)

Digital Image Analysis. An undergraduate/graduate course, for which Digital Image Processing may be regarded as prerequisite. Sections that were covered in the Digital Image Processing class and re-appear are intended to be discussed at more depth than is possible in the introductory course.

- 1 Introduction (brief review)
- 2 The digitized image and its properties (brief review)
- **5** Segmentation
 - 5.1.3 Multi-spectral thresholding
 - 5.1.4 Thresholding in hierarchical data structures

- 5.2.4 Edge following as graph searching
- 5.2.5 Edge following as dynamic programming
- 5.3.4 Watershed segmentation
- 6 Shape representation and description (excluding 6.2.7, 6.3.4–6.3.6, 6.4)
- 7 Object recognition
 - 7.1 Knowledge representation
 - 7.2 Statistical pattern recognition
 - 7.3 Neural networks
 - 7.4 Syntactic pattern recognition
- 11 Mathematical morphology
- 14 Texture
- 16 Case studies (selected topics)

Computer Vision I. An undergraduate/graduate course, for which Digital Image Processing may be regarded as prerequisite.

- 1 Introduction (brief review)
- 2 The digitized image and its properties (brief review)
- 4 Image pre-processing
 - 4.3.3 Zero-crossings of the second derivative
 - 4.3.4 Scale in image processing
 - 4.3.5 Canny edge detection
 - 4.3.6 Parametric edge models
 - 4.3.7 Edges in multi-spectral images
 - 4.3.8 Other local pre-processing operators
 - 4.3.9 Adaptive neighborhood pre-processing
- 6 Shape representation and description
- 7 Object recognition
- 8 Image understanding
- 16 Case studies (selected topics)

Computer Vision II. A graduate course, for which Computer Vision I may be regarded as prerequisite.

- 5 Segmentation
 - 5.2.4 Edge following as graph searching
 - 5.2.5 Edge following as dynamic programming
 - 5.5 Advanced border and surface detection approaches
- 9 3D Vision, geometry and radiometry
- 10 Use of 3D vision
- **15** Motion analysis

Practical 3D vision projects

Index

Bold text refers to major or defining entries. 2.5D sketch, 445–446, 520 2D co-ordinate system, 510, 538 2D projection, 231, 232, 521, 522, 541, 544, 680 2D shape, 43, 228, 231 3D co-ordinate system, 537 3D information, 228, 509 3D interpretation, 444, 510, 522 3D model, 520 3D object, 519 3D representation, 11, 445, 446, 520, 521 3D shape, 43, 228, 232 A-algorithm, 148–156, 160, 161 ACRONYM, 373, 527 active perception, 447 active sensor, 484 active shape model, see ASM active vision, 512 acuity, 34 adaptive neighborhood, 98–102 ADEOS, 621 albedo, 492 algorithm (in Marr's theory), 444 aliasing, 20 anti-aliasing, 22 anti-extensive transformation, 566 arc (of a graph), 47 area, 45, 51, 237, 254–256, 260, 292, 527, 560 area-based stereo, 480 ASM, 387–390, 722 aspect, 545 aspect graph, 545	back propagation, see neural nets back-projection, 538, 539 back-tracking, 160, 161, 320, 321, 326,
aspect, 545	46, 47, 52, 57-59, 61, 63, 72-
B-reps, 527	261, 394, 488, 495, 543, 621-

623, 630, 632, 649, 653, 655,	closing, 568–569
656, 659, 667, 682, 683	cluster analysis, 307, 308, 722
correction, 58	clustering, see cluster analysis
interpolation, 65–68	CMY, 25
transformation, 58–61	co-lineation, 449
brightness interpolation	co-occurrence matrix, 44
bi-cubic, 67	co-ordinate system
linear, 67	2D, see 2D co-ordinate system
nearest neighbor, 66	3D, see 3D co-ordinate system
nearest neignbor, oo	object-based, 11, 446, 520
calculus, 27, 77, 329, 559	polar, 235
camera, 10, 36, 43, 58, 103, 105, 250,	
253, 679, 680, 686	rectangular, 235
extrinsic parameters, 452	tangential, 235, 237
intrinsic parameters, 452	COBIUS, 372
self-calibration, 454	code
•	chain, see chain code
Canny edge detector, 80, 90–93	dictionary, 629, 633
center of gravity, 260, 272 chain, 45	Freeman, 45
•	leaf, 52
Markov, 659	run length, 46
chain code, 45, 146, 236–238 , 244, 255	coding
	Huffman, 633
chamfer matching, see matching, cham- fer	low and high frequencies, 632
chamfering, 27, 192, 193	region border, 632 color, 34
characteristic strip, 495	image, 23
characteristic view, 544	palette, 59, 633
chromaticity, 26	primary, 23
class, 297	secondary, 24
identifier, 298	colorimetry, 12
classification	compatibility function, 398 , 410
contextual, 392–397 , 403	compression, 3, 5, 621–637
recursive, 395	application
classifier, 297–306 , 319	asymmetric, 629, 636
Φ , 300 , 302	symmetric, 629, 636
best approximation, 302	dictionary-based, 633
learning, 302, 303–306 , 321	DPCM, 627 , 629
linear, 299	fractal, 632
maximum likelihood, 300	hierarchical, 630–632
minimum distance, 299, 306–308 ,	hybrid, 621, 629, 630, 632
724	JPEG, 606, 612, 633–635
minimum error, 300–306	Lempel-Ziv, 633
non-linear, 300	MJPEG, 635, 637
setting, 300–303	MPEG, 612, 634, 636–637
syntactic, 319	predictive, 621, 624–629 , 632
clique, 327, 328	progressive, 630–631
	r-5025551.5, 555 551

pyramid, 630	correlation, 16, 191–194 , 248, 621–
ratio, 623 , 624, 627, 630	624
region growing, 632	correlation-based correspondence, 480
smart, 630, 631	correspondence, 63, 97, 509, 510, 680,
transform, 621, 623 , 631, 632	681, 696, 697, 699, 704
vector quantization, 629, 632	problem, 97, 482, 509, 510
wavelet, 624	stereo, see stereo correspondence
computed tomography, 738	correspondence problem, 476
computer graphics, 11, 43, 62, 245,	cost function, 148–156, 722, 731, 735
663	automated design, 163
confidence, 395–413	cost transform, 154, 163
conic, 251, 252	crack edge, 31, 138, 139, 141, 144, 148,
constraint	178, 179
epipolar, see epipolar constraint	criterion
propagation, 397–401 , 405, 406,	detection, 90
521	localization, 90
constructive solid geometry, 525	one response, 90
context, 123, 137–139, 364, 367, 392 –	crossover, 331–333
397 , 405, 406	CSG, see constructive solid geometry
contour	CT imaging, 722
false, 23	curvature, 237
partitioning, 244	peak, 244
shape from, see shape from con-	primal sketch, 245
tour	curvature primal sketch, 542
contrast, 33, 34, 59, 60, 97, 99, 130,	curve
$135,\ 189,\ 543,\ 652,\ 654,\ 683$	decomposition, 245
enhancement, $100-102$	detection, 167, 169, 171, 173
control strategy, 291, 363–373 , 399	granulometric, 589
bottom-up, 157, 290, 365–366 , 367,	cyclopean image, 481
$368,\ 371,\ 400$	cyclopean separation, 482
combined, 367 , 371	
hierarchical, 364 , 371	daemon, 373, 399
hypothesize and verify, see hypoth-	data structure, 42
esize and verify	hierarchical, 49
model-based, 366-368	relational, 48
non-hierarchical, 371, 372	traditional, 43
parallel, 364 , 366, 371	de-centering, 456
m serial, 364	de-fuzzification, 339, 342
top-down, 365-368, 371	composite maximum, 342
convex hull, 31, 559	composite moments, 342
convolution, 13 , 192, 600, 602, 604,	decimation, 530
608, 609	decision rule, 298, 300, 304
mask, 69	deficit of convexity, 32
theorem, 14	deformable objects, 520
core, 269	degradation, 105
corner, 97	atmospheric turbulence, 105

relative motion of the camera and object, 105
wrong lens focus, 105
depth, 11, 515 Marr-Hildreth, 83 depth map, 445, 484, 514 parametric, 80, 93 diagram Prewitt, 81 Voronoi, 404 Roberts, 80 difference image, see image, difference Robinson, 83 difference of Gaussians, 86 Sobel, 82 dilation, 563-565, 745 zero-crossing, 83 conditional, 592 EGI, 543 geodesic, 586 ego-motion, 467 gray-scale, 569-574 elastics, 367 Dirac distribution, 13 entropy, 15, 621-623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298-302 epipolar plane, 458, 483 disparity, 459, 482 epipolar transfer, 476 gradient, 481, 482 epipole, 458
depth map, 445, 484, 514
diagram Prewitt, 81 Voronoi, 404 Roberts, 80 difference image, see image, difference Robinson, 83 difference of Gaussians, 86 Sobel, 82 dilation, 563–565, 745 zero-crossing, 83 conditional, 592 EGI, 543 geodesic, 586 ego-motion, 467 gray-scale, 569–574 elastics, 367 Dirac distribution, 13 entropy, 15, 621–623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298–302 epipolar plane, 458, 483 disparity, 459, 482 epipolar plane, 458 gradient, 481, 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
Voronoi, 404 difference image, see image, difference difference of Gaussians, 86 Gillation, 563–565, 745 conditional, 592 geodesic, 586 gray-scale, 569–574 Dirac distribution, 13 discrete topology, 30 discrimination function, 298–302 disparity, 459, 482 gradient, 481, 482 gradient limit, 481 Roberts, 80 Robinson, 83 Robinson, 83 Sobel, 82 geobinson, 83 EGI, 543 geore-crossing, 83 EGI, 543 geo-motion, 467 ego-motion, 467 elastics, 367 elastics, 367 epipolar constraint, 459, 477, 483 epipolar plane, 458, 483 epipolar plane, 458 epipolar transfer, 476 epipole, 458
difference image, see image, difference difference of Gaussians, 86 Gilation, 563–565, 745 conditional, 592 geodesic, 586 gray-scale, 569–574 Dirac distribution, 13 discrete topology, 30 discrimination function, 298–302 disparity, 459, 482 gradient, 481, 482 gradient limit, 481 Robinson, 83 Sobel, 82 Zero-crossing, 83 EGI, 543 ego-motion, 467 elastics, 367 elastics, 367 epipolar constraint, 459, 477, 483 epipolar line, 458, 483 epipolar plane, 458 epipolar transfer, 476 epipole, 458
difference of Gaussians, 86 dilation, 563–565, 745 conditional, 592 geodesic, 586 gray-scale, 569–574 Dirac distribution, 13 discrete topology, 30 discrimination function, 298–302 disparity, 459, 482 gradient, 481, 482 gradient limit, 481 Sobel, 82 zero-crossing, 83 EGI, 543 ego-motion, 467 elastics, 367 entropy, 15, 621–623, 654 epipolar constraint, 459, 477, 483 epipolar line, 458, 483 epipolar plane, 458 epipolar transfer, 476 epipole, 458
dilation, 563–565, 745
conditional, 592 EGI, 543 geodesic, 586 ego-motion, 467 gray-scale, 569–574 elastics, 367 Dirac distribution, 13 entropy, 15, 621–623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298–302 epipolar line, 458, 483 disparity, 459, 482 epipolar plane, 458 gradient, 481, 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
geodesic, 586 ego-motion, 467 gray-scale, 569–574 elastics, 367 Dirac distribution, 13 entropy, 15, 621–623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298–302 epipolar line, 458, 483 disparity, 459, 482 epipolar plane, 458 gradient, 481, 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
gray-scale, 569–574 elastics, 367 Dirac distribution, 13 entropy, 15, 621–623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298–302 epipolar line, 458, 483 disparity, 459, 482 epipolar plane, 458 gradient, 481, 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
Dirac distribution, 13 entropy, 15, 621–623, 654 discrete topology, 30 epipolar constraint, 459, 477, 483 discrimination function, 298–302 epipolar line, 458, 483 disparity, 459, 482 epipolar plane, 458 gradient, 481, 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
discrete topology, 30 discrimination function, 298–302 disparity, 459 , 482 gradient, 481 , 482 gradient limit, 481 epipolar constraint, 459, 477 , 483 epipolar line, 458, 483 epipolar plane, 458 epipolar transfer, 476 epipole, 458
discrimination function, 298–302 epipolar line, 458, 483 disparity, 459 , 482 epipolar plane, 458 gradient, 481 , 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
disparity, 459 , 482 epipolar plane, 458 gradient, 481 , 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
gradient, 481 , 482 epipolar transfer, 476 gradient limit, 481 epipole, 458
gradient limit, 481 epipole, 458
distance, 27 , 192 erosion, 565–567, 745
chessboard (D_8) , 27 geodesic, 586
city block (D_4) , 27 gray-scale, 569–574
Euclidean (D_E) , 27 ultimate, 582
geodesic, 585 errors
Levenshtein, 328 matching, 535
distance function, 584 essential matrix, 462
DoG, see difference of Gaussians Euler-Poincaré characteristic, 256, 560
duality (morphological), 561 evaluated graph, 47
dynamic programming, 158–161, 730 event (aspect), 545
live lane, 163 exemplar, 299 , 306–308, 313, 314
live wire, 162 expansion
$isotropic,\ \bf 563$
Ebbinghaus illusion, 34 extended boundary, see border, extended
edge, 3, 4, 30 , 445 extended Gaussian image, 543
chain, 134, 158 extrinsic parameters, 452
crack, 31
detector, 335 facet, 93
direction, 77 feature, 292
magnitude, 77 discriminativity, 303
relaxation, 137–142 , 156, 161 informativity, 303
edge detection, 722 space, 297
edge detector, 77–88, 445, 537, 730, vector, 292
feature synthesis, 91
Canny, 90–93, 655 feature-based correspondence, 481
compass, 81 feedback, 3, 135, 631
facet model, 93 fill, 563

filter, 57–107, 600–613	logic, 294, 336–344, 743–744
Gable, 691	membership function, 336
Gabor, 691	maximum normal form, 337
Gaussian, 445	minimum normal form, 337
median, 74-76	reasoning
filtering, 68	monotonic, 340
band-pass, $609-611$	set , 336
high-pass, 609, 611	hedge, 337
$inverse, \ 106$	space, 336
Kalman, 105	system, 336-344
low-pass, $609, 611$	model, 339
Wiener, 106	union, 339
fitness, 409	
focal point, 449	ganglion cell, 88
focus	Gaussian blur, see Gaussian, blur
shape from, see shape from focus	Gaussian filter, 84, 86, 445
forward algorithm, 420	generalized cones, see generalized cylin-
Fourier descriptor, see shape descrip-	ders
tion, Fourier	generalized cylinders, 526
Fourier transform, see transform, Fourier	genetic algorithm, 330–333, 344, 409–
fractal, 248, 661	416
dimension, 237 , 657	genus, 256
frame, 295, 296	geodesic transformation, 585
free-form surface, 519	Geographical Information Systems, 52
Freeman code, 45	geometric signals, 483
frequency	geometric transformation, 2, 62–68, 722
spatial, 14	geon, 545
function, 10	Gestaltist theory, 509
autocorrelation, 16	GIF, 633
autocovariance, 16	GIS, 52
cross correlation, 16	Golay alphabet, 579
cross covariance, 16	gradient descent, 310
Dirac, 13	gradient operator, 68, 77–88
distance, 584	approximated by differences, 79
distribution, 15	Kirsch, 83
point spread, 17	Laplace, 81
quench (morphology), 581	Prewitt, 81
fundamental matrix, 460	Roberts, 80
fuzzy	Robinson, 83
complement, 339	Sobel, 82
composition, 339	gradient space, 490
min-max, 340	grammar, 292 , 316–322, 660–664
correlation	context-free, 318
minimum, 340	context-nee, 316
product, 341	fuzzy, 319
- · · · · · · · · · · · · · · · · · · ·	5 /
intersection, 339	general, 318

inference, 316, 321–323 non-deterministic, 318 regular, 318 stochastic, 319 granulometry (morphological), 589 graph, 47 , 144, 148, 158, 194, 254, 267, 292, 293, 316, 320, 323– 328	Viterbi algorithm, 420, 423 histogram, 32 , 123, 127–129, 131, 178, 622, 623 bi-modal, 127–129 cumulative, 60 equalization, 25, 60–61 modification, 100 multi-dimensional, 132
arc, 47	multi-modal, 128
assignment, 327, 328	smoothed, 131
evaluated, 47 , 144 , 295 , 323 , 324	transformation, 128
isomorphism, $323-328$	hit-or-miss transformation, 568
neighborhood, 272	HMM, see hidden Markov model
node, 47	hole, 29
region, 267, 270	homogeneity, 176, 177, 181–190
region adjacency, 47, 53, 124, 180,	homogeneous co-ordinates, 448
182, 272, 401, 405, 406, 409–	homotopic substitute (of skeleton), 579
412, 742	homotopic transformation, 576
search, 148–156 , 161, 367, 368, 730, 734	Hopfield networks, see neural nets horizon, 516
advanced approaches, 194	Hough transform, see transform, Hough
heuristic, 151–157 , 161	HSI, 25, 34
three-dimensional, 194, 731	hue, 25
similarity, 323, 328	human visual system, 445
graph matching, 536	hypothesis, 362, 366, 409–416
graph search, 722	hypothesize and verify, 244, 273, 366 ,
gray-level, see brightness	367, 409, 536
gray-scale transformation, 59	hypothesize-and-verify, 538
grid, 22	hysteresis, 91, 92, 136
hexagonal, 22	
square, 22	ICP algorithm, 533
group, 250, 252	IHS, see HSI
Lie, 250	illumination, 488
plane-projective, 250	image, 10
grow, 563	binary, 23, 44
HEADCAV 272	co-ordinates, 12
HEARSAY, 373 heuristic, 5 , 151, 152, 156, 161, 177–	color, 23 compression, see compression, see
179, 190, 405, 406, 416	compression
hidden Markov model, 417–423	cyclopean, 481
Baum-Welch algorithm, 422, 423	difference, 682–684, 745
decoding, 418, 420–422	digitization, 18–26
evaluation, 418–420	dynamic, 12
forward algorithm, 420	enhancement, 57
Forward-Backward algorithm, 422	iconic, 42
learning, 418, 422	intensity, see intensity image

interpretation, 363–417 , 722	IYQ, see YIQ
multi-spectral, 23 pre-processing, 57–107	Kalman filter, 105, 708–710 , 722, 747–
quality, 35	749
reconstruction, 621–624, 631	Kalman gain matrix, 709
restoration, see restoration	knowledge, 3, 5, 291–296 , 330, 333
scale-space, 89, 245	a priori, 6 , 135, 148, 164, 173, 175,
segmented, 43	182, 230, 368, 373, 391, 406,
sharpening, 79	$409, \ 413, \ 735, \ 740$
skew, 62, 64, 65, 722, 723	base, 291, 293, 294
smoothing, see smoothing	procedural, 294
static, 12	representation, 291–296, 363
transform, 600–613	Kohonen feature maps, see neural nets
understanding, 5, 362–417	Kohonen networks, see neural nets
image irradiance equation, 493	
image plane, 449	label, 232–235, 373, 391–404, 406, 407,
image rectification, 466	410–412, 740–742
image sharpening, 3	collision, 233–235
imaging	labeling, 232, 233, 255, 373, 391, 393,
ultrasound, 734	395, 396, 397 – 417 , 722
implementation (in Marr's theory), 444	consistent, 397, 399
impossible objects, 522	discrete, 398 , 404
-	probabilistic, 397, 400
impulse Dirac, 13	semantic, 397
•	lacunarity, 657
limited, 20	Lagrange multipliers, 497, 687
increasing transformation, 564, 566	lake, 32
inference, 363	Lambertian surface, 492
intensity, see brightness, 25	landmarks, 274
intensity axis of symmetry, 269	Landsat, 621
intensity image, 11, 57, 83, 366, 496,	language, 316–322
537, 542, 543, 696	Laplacian, 78, 445
interest point, 97	Laplacian of Gaussian, 84
interpretation	learning, 299, 303–307 , 311, 317, 322,
3D, see 3D interpretation	333
genetic, 408	from experience, 363
tree, 404, 536	unsupervised, 307
interval tree, 89, 245	LIDAR, 484
intrinsic parameters, 452	light, 58, 88
invariants, 231, 249–252, 542	source, 11, 495
scalar, 250	line
inverse filtering, 106	detector, 537, 539
inverse transformation, 568	finding, 94
irradiance, 488	labeling, 400, 521–523, 536
irradiance equation, 493	thinning, 96
ISODATA, 308, 391	linear system, 17
isotropic expansion, 563	linguistic

variable, 294, 337, 340	short-term, 373
live lane, 163	Mexican hat, 85
live wire, 162	Minkowski algebra, 563
local pre-processing, 68–102	model, 123, 155, 156, 172, 176, 362,
local shading analysis, 497	363, 365–373 , 408
locus	3D, 520
visibility, 538–540	active contour, 174, 367, 374–380 , 681
logic	base, 536
fuzzy	,
training, 743	deformable, 367, 374–380
luminance, 25	facet, 93, 95, 97
luminous efficacy, 487	hidden Markov, see hidden Markov
luminous flux, 487	model
LZW, see Lempel-Ziv-Welch	Markov, see Markov model
700	partial, 535
magnetic resonance, 738	quadric surface, 529
map	surface, 520
region, 47	volumetric, 520, 523
marker, 591	model-based vision, 535
Markov chain, 659	modes of variation, 383
Markov model, 417 , 423	Moiré interferometry, 486
Marr (David), 5, 444	moment
Marr paradigm, see Marr's theory	invariant, 260
Marr's theory, 83, 366, 444–446, 520	affine, 261
Marr-Hildreth edge detector, 80, 83,	Moravec detector, 97
90, 739	morphological noise reduction, 722
matching, 190–194 , 328, 330, 363	morphological transformation, 561
chamfer, 27 , 192	quantitative, 562
errors, 535	morphology, $559-595$, 659
graphs, 191, 323	motion, 508 , $679-708$
relational structures, 321	analysis, $679-708$
sub-graphs, 328	correspondence of interest points,
mathematical morphology, 268	680, 681, 696 - 704
matrix, 43	differential, 681–684
camera calibration, 451	assumptions, 681 , 700 , 704
co-occurrence, 44	continuous, 512
essential, 462	correspondence of interest points,
fundamental, 460	705
projective, 453	cyclic, 705
maximal ball, 577	description length, 702
MDL, 531	events, 705
medial axis, 271	features, 705
medial axis transform, 268	field, 680
median filter, see filter, median	gesture interpretation, 705
memory	lipreading, 705
long-term, 373	object tracking, 700–708

path coherence, 700	description, 297
deviation, 700	formal, 297
function, 700, 701	qualitative, 297, 315
recognition, 705	quantitative, 297, 315
relative, 705	relational, 315
rotational, 510, 513, 686	identification, 232–235
shape from, see shape from mo-	impossible, 522
tion	labeling, 232, 233, 255
trajectory	recognition, 290–335
parametrization, 705	reconstruction, 228, 229
translational, 510, 513, 693, 694	objective function, 402, 403, 407–410
verb recognition, 705	occlusion, 229, 232, 242, 244, 253, 273,
multi-view representation, 544	522, 681, 749, 750
mutation, 331–333	occupancy grid, 523
,	OCR, 4, 62, 228, 418, 420, 423, 722,
Necker cube, 444	724
neighbor, 28	octrees, 52
neural nets, 308–315, 344	opening, 568–569
adaptive resonance theory, 313	operator
back-propagation, $310-311$	-
$\mathrm{epoch},311$	morphological, 562
feed-forward nets, 310–311	Zadeh, 339
gradient descent, 310	optical axis, 449
Hopfield, 313–315	optical center, 449
Kohonen networks, 312–313	optical character recognition, see OCR
momentum, 311	optical flow, 497, 512, 513, 680, 685 –
perceptron, 309	696 , 699
transfer function, 309	computation, 680, 681
unsupervised learning, 312–313	field, 512
node (of a graph), 47	global and local estimation, 689
noise, 3, 4, 35, 229, 236, 239, 255, 260,	optimization, 158, 159, 193, 303, 306,
$262,\ 269,\ 392$	313, 328–335 , 386
additive, 36	$\operatorname{orthographic}$
Gaussian, 35, 708	projection, 11, 510, 512
impulsive, 37	view, 510
multiplicative, 37	
quantization, 37	palette, see look-up table, $24, 59, 633$
salt-and-pepper, 37	parallel implementation, 5, 44, 49, 141,
suppression, 99	$142, \ 146, \ 162, \ 173, \ 364, \ 397,$
white, 35, 708	399, 403, 416, 417, 483, 564,
non-maximal suppression, 91, 96, 135	688, 690
NURBS, 527	path, 29
-:, -:	simple, 146
object	pattern, 297
coloring, 232	space, 297
connected component labeling, 148,	vector, 297
232	pattern recognition, 290–323
	,

statistical, 292–308 , 315	principal components analysis, 383
syntactic, 315–323	probability
PDM, 380–390 , 722, 746	density, 304
alignment, 381	estimation, 304
covariance matrix, 383, 384	production
eigen-decomposition, 383	rules, 293
landmark, 381 , 382–385, 387–389	system, 293, 294, 363, 373
modes of variation, 383	projection, 256, 510, 512, 538, 560,
polar, 390	608
polynomial regression, 390	2D, see 2D projection
perception, 33–35, 363, 660	histogram, 256, 722, 724
color, 34	orthographic, 11, 510, 512
human, 22, 33, 100, 515	parallel, 11
visual, 33	perspective, 11, 512
perceptron, see neural nets	projective matrix, 453
perimeter, 143, 178, 179, 232, 237, 560	projective transformation, 449
perspective	PROLOG, 293
projection, 11, 512, 542	pseudo-color, 61
perspective projection, 448	purposive vision, 448
photometric stereo, 498	pyramid, 49 , 133, 134, 182–184, 364,
photometry, 12, 487	630, 632
picture element, 22	equivalent window, 53
pigment, 25	irregular, 53
pixel, 22	Laplacian, 53
adjacency, 28	M-pyramid, 49
pixel co-ordinate transformation, 63	matrix, 49
planning, 363	reduction factor, 52
plausibility (of a match), 539, 541	reduction window, 52
point	regular, 52
representative, 560	T-pyramid, 49
sampling, 22	tree, 49
sets (morphological), 560	
point distribution model, see PDM	quadric surface model, 529
post-processing, 392, 393, 408, 416	quadrilinear constraint, 473
power spectrum, 17	quadtree, 51 , 182, 189, 235, 237, 255,
pre-processing, 57–107, 365, 393	272, 630
adaptive neighborhood, 98–102	qualitative vision, 447
classification, 57	quantization, 22
edge detector, see edge detector	quench function, 581
local, 68–102	DADAD 494
predicate logic, 293, 294	RADAR, 484
primal sketch, 445–446, 520	radial distortion, 456
curvature, 245	radiance, 488 radiant flux, 487
primitive	
-	radiometry, 486
texture, 515	random dot stereograms, 480
volumetric, 446	range image, 484, 529

. 6.11.00	. 500
receptive field, 88	unique, 520
reconstruction (morphological), 584, 586	reproduction, 331, 332
rectification, 466	resolution
reduce, 565	radiometric, 12
redundancy	spatial, 5, 12
information, 621–624	spectral, 12
reference view, 546	time, 12
reflectance, 11, 12, 490	restoration, 102–107
reflectance coefficient, 492	deterministic, 103
reflectance function, 492, 495	geometric mean filtration, 107
reflectance map, 492	inverse filtering, 106
region, 28 , 30	power spectrum equalization, 107
concavity tree, 266	stochastic, 103
decomposition, 254 , $271-272$	Wiener filtering, 106
identification, 232–235	RGB, 23
skeleton, 248 , 254 , $267-270$, 272	rigidity, 510
region adjacency graph, 47, 53	rigidity constraint, 510
region growing, see segmentation, re-	rim, 518
gion growing	rotating mask, 73
region map, 47	rotational movement, 510, 513, 686
regional extreme, 582	run length coding, 46 , 234, 272, 630
registration, 529	
relation	SAI, 543
neighborhood, 44	sampling, 18–22
spatial, 43	interval, 19
relational structure, 294, 315, 316, 321,	point, 22
$322,\ 363$	saturation, 25
relaxation, 128, 138, 139, 141, 189,	scale, 88–93, 229, 445, 646–648, 654,
398–404 , 407, 417, 482, 497,	660
687, 689, 690	scale-space, 88, 89, 229, 244, 245, 269,
discrete, $398-400$	274, 480
probabilistic, 400, 403	scene reconstruction, 471
reliability (of a match), 539	script, 295
remote sensing, 62, 65, 131, 132, 393,	seed pixel, 98
$397, \ 406, \ 621, \ 623, \ 705$	segmentation, 4, 123–194, 365
representation, 444	border detection, 148–156, 173, 727–
3D, 446	737
complete, 520	simultaneous, 731
geometric, 43	border tracing, 142–147, 161
iconic image, 42	extended, $144-146$
intermediate, 11, 42	inner, 142
level of, 42	outer, $142-145$
multi-view, 544	classification-based, 390–393
relational model, 43	complete, 4, 123, 124, 174
segmented image, 43	dynamic programming, 158–161
skeleton, 527	edge thresholding, 135

edg	ge-based, 123, 134–175 , 176, 188	sequential thinning, see thinning, sequential
glo	bal, 123, 124	set difference, 560
_	ugh transform, 162, 163–173	shading, 494
	generalized, 165, 171, 172	shape from, see shape from shad-
_	tch-based, 190–194	ing
		Shannon sampling theorem, 20
	rphological, 590	shape, 228–273, 519
	lti-thresholding, 128	-
_	tial, 4, 123, 134, 135, 174	2D, see 2D shape
0	ion construction	3D, see 3D shape
f	rom borders, 174	class, 229, 273
f	rom partial borders, 175	description
reg	ion growing, 123, 176–186, 188,	area, 237, 241, 254–256 , 257,
	189, 404, 406, 408, 416, 722,	258, 260, 271
	739	bending energy, 237
\mathbf{c}	olor image, 176	border length, $237-238$
n	nerging, 144, 177–181	chord distribution, 239
О	over-growing, 188	compactness, 144, 254, 259 , 292,
	emantic, 405, 406–408	412
	plit-and-merge, 181, 182	contour-based, 229, 232, 235 —
	plitting, 177, 178, 181	253
	inder-growing, 188	convex hull, 262, 266
	ion-based, 123, 146, 176–186	${\rm cross\ ratio},\ 250,\ 251$
	ion-growing, 99	curvature, 232, 237 , 242–248,
_		271
	nantic, 404	direction, 254, 258
	egion growing, 406–408	eccentricity, 256
	ni-thresholding, 126	elongatedness, 229, 254, 257 , 258,
-	perslice, 174	269
	ture, 335	Euler's number, 256
thr	esholding, 124–134 , 174, 175,	external, 229 , 232
	180, 181, 739	Fourier descriptors, 238, 240 –
h	ierarchical, 134	${\bf 242}$
n	ninimum error, 129	graph, 254, 267
n	nulti-spectral, 131	height, 256
p	o-tile, 127, 135	internal, 229, 232
${ m tree}$	e, 182–184	invariants, 249–252
wat	tersheds, 186, 408	moments, 241, 248, 258, 259 –
self-cali	brtion, 454	262 , 272
self-occ	lusion, 476	moments, area-based, 262
semant	ic net, 294–295, 363, 397	moments, contour-based, 261, 262
semant	ics, 291, 294, 400, 405, 408, 416,	perimeter, 143, 178, 179, 232,
	722	237
sequent	ial matching, 538	polygonal, 242–244 , 245, 271
sequent	ial thickening, see thickening,	projection-invariant, 231, 249
	sequential	projections, 256

rectangularity, 254, 258	slant, 515
region concavity tree, 266	smart snake, 387
region-based, 229, 232, 248, 254 –	smoothing, 69–77
273	averaging, 69
run length, 234, 272	averaging according to inverse gra-
segment sequence, 239, 242	dient, 72
signature, 239	averaging with limited data valid-
sphericity, 258	ity, 71
spline, 245–248 , 722, 745, 746	edge preserving, 69
statistical, 229, 254	Gaussian, 244
syntactic, 228, 229, 243, 272	Gaussianr, 244
width, 256	median, see filter, median
shape from	non-linear mean filter, 77
contour, 518	order statistics, 76
de-focus, 517	rank filtering, 76
focus, 517	rotating mask, 73
motion, 508–515	snake, 174, 367, 374–380 , 681
optical flow, 512	growing, 377
shading, 494–497, 516	SNR, 36
stereo, 476–483	spatial angle, 488
texture, 515–517	spectral density, 17
vergence, 517	spectrum, 17
X, 445	band-limited, 20
shape from X, 508	frequency, 589, 603, 611
shape primitive, 271	granulometric, 589
sharpening, 79	phase, 603
shrink, 565	power, 603
sieving analysis, 589	spline, see shape, description, spline
sifting, 13	state space search, 178
signal-to-noise ratio, see SNR	stereo
silhouette, 518	shape from, see shape from stereo
simplex angle image, 543	stereo correspondence, 335, 509
simulated annealing, 333–335	stereo vision, 457, 458, 509
singular point, 496	stereopsis, 457
singular value decomposition (SVD),	stochastic process, 15–17
456	ergodic, 17
skeleton, 248, 254, 267–270, 272, 527,	stationary, 16
559, 576-579	uncorrelated, 16
by influence zones, 585	structure from motion theorem, 510
by maximal balls, 577	structured light, 484
sketch	structuring element (morphological),
2.5D, see 2.5D sketch	560
primal, see primal sketch	super-quadrics, 525
skew, 62, 64, 65, 722, 723	supergrid, 144, 178, 179
skewing, see skew	surface
SKIZ, skeleton by influence zones, 585	detection, 194

free-form, 519	texture transform, 659
surface features, 542	element, 646
surface models, see B-reps	fine, 646 , $648-651$, 655 , 659
surface reflectance, 490	generation, 661, 662
surveillance, 744	gradient, 515, 516
SVD, singular value decomposition, 456	hierarchical, 664
sweep representations, see generalized	primitive, 175, 515, 646 , 648, 649,
cylinders, 526	$660,\ 661,\ 663,\ 665,\ 667$
symbol	segmentation, 654 , 659 , 660 , $664-$
non-terminal, 317	666
terminal, 317	shape from, see shape from tex-
symmetric axis transform, 268	${ m ture}$
syntactic analysis, 316–322 , 660, 662,	strong, 648 , 666
663, 722	structure, 646 , 648
syntax, 291	tone, 646 , 648 , 667
system approach, 88	weak, 648, 666
system theory, 443	theory
	computational, 444
texel, 515, 646	Gestaltist, see Gestaltist theory
texton, 649, 654	Marr's, see Marr's theory
texture, 123, 127, 134, 177, 335, 390,	thickening, 559, 578–579
393, 397, 515, 646–668 , 705	sequential, 579
Brodatz, 651	thinning, 254 , 267 , 268 , 559 , $578-579$
coarse, 646 , $648-651$, 655 , 659	sequential, 579
$\operatorname{description}$	three dimensions, $see 3D$
autocorrelation, 649, 660	threshold, 124
autoregression model, 659	optimal, 129
chain grammar, 661	selection, 124, 127, 129
$ co\text{-}occurrence,\ 651,\ 653,\ 660 $	mode method, 128
discrete transform, 650	optimal, 128
edge frequency, 653	thresholding, 59
fractal, 657, 661	adaptive, 125
grammar, 660	optimal, 128
$graph\ grammar,\ 663,\ 664,\ 666$	with hysteresis, 91
hybrid, 649, 660, 666-667	TIFF, 633
Laws' energy measures, 656	tilt, 515
morphology, 659	tolerance interval, 242
optical transform, 650	top surface (morphological), 570
peak and valley, 659	top-down approach, $319, 321, 365, 366,$
primitive grouping, 664	538
primitive length, 655	topographic characterization, 543
run length, 655	topographic primal sketch, 543
shape rules, 661	topology, 31
statistical, 648–660, 664, 666	training set, 302–303 , 304, 306, 307,
syntactic, 648, 660–666	$310,\ 311,\ 322,\ 323,\ 380,\ 391,$
texture properties, 654	395

transform	hat, 67
binary, 624	homotopic, 576
cosine, 605 , 624, 632	increasing, 564, 566
distance, 269	inverse, 568
Fourier, 12–20, 30, 68, 79, 105–	morphological, see morphological
107, 192, 229, 240, 241, 423,	transformation, 561
600, 602 , 604, 606, 608–611,	pixel brightness, 58–61
613, 624, 650	projective, 449
inverse, 14	top hat, 574
Gabor, 660	translation (morphological), 561
Haar, 608	translational movement, 510, 513, 693,
Hadamard, 604–605 , 608, 624, 632	694
	transmission
Hadamard-Haar, 608	progressive, 630, 631
hat, 85	smart, 631, 632
Hough, 162, 163–173 , 248, 516,	tree
608	interval, 245
image, 600–613	,
Karhunen-Loeve, 608, 623, 624	tree pruning, 154, 320
linear discrete, 600–613	trilinear constraint, 475
orthogonal, 601, 605	two dimensions, see 2D
Paley, 608	two-dimensional, see 2D
Radon, 608	ultimate erosion, 582
recursive block coding, 624	ultrasound, 734
sine, 608	intra-vascular, 734
Slant-Haar, 608	,
Walsh, 608, 624	umbra (morphological), 570
Walsh-Hadamard, 605	unit ball, 577
wavelet, 660	unsharp masking, 79
wavelets, 606, 611	unsupervised learning, 307
transformation	upper semi-continuinty, 563
affine, 64	vanishing points, 516
anti-extensive, 566	velocity
bilinear, 64	field, 681
brightness correction, 58	computation, 698
geodesic, 585	smoothness constraint, 686, 689,
geometric, 62–68	690
brightness interpolation, 65	vector, 680
change of scale, 64	vergence, 517
pixel co-ordinate, 63	9 ,
rotation, 64	shape from, see shape from ver-
skewing, 65	gence
	vertex, 521
gray-scale, 59–61	view
histogram equalization, 60–61	reference, 546
logarithmic, 61	topographic (morphology), 570
pseudo-color, 61	virtual, 546
thresholding, 59	viewing space, 544

```
viewing sphere, 544
viewpoint, 11
vignetting, 490
virtual view, 546
visibility, 540
visibility classes, 549
visibility locus, 538–540
vision
    active, 512
    model-based, 535
    stereo, 458, 509
    view-based, 544
VISIONS, 372, 374
visual
    potential, 545
visual system
    human, 33, 445, 457, 510, 512, 631,
        660
Viterbi algorithm, 420, 423
volume
    partial, 131
volumetric model, 523
volumetric primitives, 446
voxel, 130, 523
watersheds, 592
wavelength, 23
wavelets, 606-607, 611, 660
Wiener filtering, 106
WINSOM, 525
Χ
    shape from, see shape from X
YIQ, 25
Zadeh operators, 339
zero crossing, 445
zero-crossing, 80, 83, 90, 244, 245, 445,
        480, 605, 654, 690
Zuniga-Haralick operator, 97, 696
```