DECOMPOSITION OF *-HOMOMORPHISMS OF UNBOUNDED OPERATOR ALGEBRAS

ATSUSHI INQUE

Department of Applied Mathematics, Fukuoka, University, Fukuoka, 814-01, Japan

(Received 4 December 1990; accepted 29 August 1991)

We shall introduce a class of unbounded operator algebras called regular O^* -algebras which is a wider class than EW^* -algebras and closed O^* -algebras satisfying condition (I), and show that every *-homomorphism Φ of a closed O^* -algebra $\mathfrak M$ onto a regular O^* -algebra $\mathfrak M$ with a regular basis $\{\eta_\lambda\}_{\lambda\in\Lambda}$ such that $\omega_{\eta\lambda}\circ\Phi$ is a σ -vector form on $\mathfrak M$ for each $\lambda\in\Lambda$ is composed of an ampliation, an induction and a spatial isomorphism. This is an extension of the results of Inoue⁵ and Bhatt².

1. Introduction

The purpose of this paper is to extend the well-known result³ on von Neumann algebras: "Every normal *-homomorphism of a von Neumann algebra $\mathfrak N$ onto a von Neumann algebra $\mathfrak N$ is composed of an ampliation, an induction and a spatial isomorphism" to unbounded operator algebra (O^* -algebras). The difficulty of this problem due to what there are some pathologies between invariant subspaces $\mathcal E$ for O^* -algebras and the projections onto $\bar{\mathcal E}$. Inoue and Bhatt extended the above composition theorem on von Neumann algebras to EW^* -algebras and closed O^* -algebras satisfying condition (I) which don't spring up the pathologies, respectively.

In this paper we first show that every *-homomorphism Φ of a closed O^* -algebra $\mathfrak M$ onto a self-adjoint O^* -algebra $\mathfrak M$ with a strongly cyclic vector η_0 such $\omega\eta_0 \circ \Phi$ is a σ -vector form on $\mathfrak M$ is composed of an ampliation, an induction and a spatial isomorphism. Furthermore, we shall extend this result to regular O^* -algebras which are generalization of self-adjoint O^* -algebras with strongly cyclic vector. This is an extension of the results of Inoue 5 and Bhatt 2.

2. Preliminaries

For the sake of completeness we recall in this section some of the definitions and the basic properties of O^* -algebras, and refer to the papers^{4,7,8} for further details.

Let $\mathfrak D$ be a pre-Hilbert space and $\mathcal K(\mathfrak D)$ the completion of $\mathfrak D$. Let $\mathfrak L^\dagger$ ($\mathfrak D$) be the set of all linear operators X from $\mathfrak D$ into $\mathfrak D$ satisfying $\mathfrak D(X^*) \supset \mathfrak D$ and $X^*\mathfrak D \subset \mathfrak D$. Then $\mathfrak L^\dagger$ ($\mathfrak D$) is a *-algebra with the usual operations and the involution $X^\dagger = X^* \cap \mathfrak D$. A^* -subalgebra $\mathfrak M$ of $\mathfrak L^\dagger(\mathfrak D)$ is said to be an O^* -algebra on $\mathfrak D$. Let $\mathfrak M$ be an O^* -algebra on $\mathfrak D$. A locally convex topology on $\mathfrak D$ defined by a family $\{ \mathbb I \ \mathbb I_x; \ X \in \mathfrak M \}$ of seminorms:

 $\|\xi\|_{r} = \|\xi\| + \|X\xi\|, \, \xi \in \mathfrak{D}$

is said to be the induced topology and is denoted by $t_{\mathfrak{M}}$. If the locally convex space $\mathfrak{D}[t_{\mathfrak{M}}]$ is complete, then \mathfrak{M} is called closed. We denote by $\overline{\mathfrak{D}}(\mathfrak{M})$ the completion of $\mathfrak{D}[t_{\mathfrak{M}}]$ and put

$$\tilde{X}\xi = \bar{X}\xi, X \in \mathfrak{M}, \xi \in \mathfrak{D}(\mathfrak{M}).$$

Then $\tilde{M} = \{\tilde{X}; X \in \mathfrak{M}\}\$ is a closed O^* -algebra on $\tilde{\mathfrak{D}}(\mathfrak{M})$, which is the smallest closed extension of \mathfrak{M} , and so \mathfrak{M} is said to be the closure of \mathfrak{M} . It is well-known that \mathfrak{M} is closed iff $\mathfrak{D} = \hat{\mathfrak{D}}(\mathfrak{M})$.

A vector $\xi \in \mathfrak{D}$ is said to be strongly cyclic for \mathfrak{M} if $\mathfrak{M}\xi$ is dense in $\mathfrak{D}[t_{\mathfrak{M}}]$. If $\mathfrak{D}^*(\mathfrak{M}) \equiv \bigcap_{X \in \mathfrak{M}} \mathfrak{D}(X^*) = \mathfrak{D}$, then \mathfrak{M} is said to be self-adjoint.

We next define a weak commutant of M by

$$\mathfrak{M}'_{w} = \{ C \in \mathfrak{B} (\mathfrak{JC}(\mathfrak{D})); (CX\xi|\eta) = (C\xi|X^{\dagger}\eta)$$

for all ξ , $\eta \in \mathfrak{D}$ and $X \in \mathfrak{M}$ }.

Then \mathfrak{M}'_{w} is a weakly closed *-invariant subspace of $\mathfrak{B}(\mathfrak{IC}(\mathfrak{D}))$, but it is not necessarily an algebra ⁷. If \mathfrak{M} is self-adjoint, then \mathfrak{M}'_{w} is a von Neumann algebra and $\mathfrak{M}'_{w} \mathfrak{D} \subset \mathfrak{D}$. There are some pathologies between invariant subspaces for \mathfrak{M} and the projections. It is known by Powers that the projection E'_{ξ} of $\mathfrak{IC}(\mathfrak{D})$ onto \mathfrak{M}'_{ξ} does not necessarily belong to \mathfrak{M}'_{w} , and so we need the notion of self-adjoint vectors A vector $\xi \in \mathfrak{D}$ is said to be self-adjoint for \mathfrak{M} if the closure of an O^* -algebra $\mathfrak{M} \upharpoonright \mathfrak{M} \xi$ is self-adjoint. If ξ is a self-adjoint vector for \mathfrak{M} , then $E'_{\xi} \in \mathfrak{M}'_{w}$ and $E'_{\xi}\mathfrak{D} = \tilde{\mathfrak{D}}(\mathfrak{M} \upharpoonright \mathfrak{M} \xi) \subset \mathfrak{D}^{7}$. We have obtained the result that \mathfrak{M} is decomposed into a direct sum $\mathfrak{M}_{1} \oplus \mathfrak{M}_{2}$ of a direct sum \mathfrak{M}_{1} of self-adjoint O^* -algebras with strongly cyclic vector and a closed O^* -algebra \mathfrak{M}_{2} which does not admit any nonzero self-adjoint vector. We remark that there exist self-adjoint O^* -algebras which do not admit any non-zero self-adjoint vector. An O^* -algebra \mathfrak{M} is said to be regular if $\mathfrak{M} = \mathfrak{M}_{1}$, that is, there exists a family $\{\eta_{\lambda}\}$ of self-adjoint vectors for \mathfrak{M} such that $\{E'_{\eta_{\lambda}}\}$ is mutually orthogonal and $\Sigma E'_{\eta_{\lambda}} = 1$, and $\{\eta_{\lambda}\}$ is said to be a regular basis for \mathfrak{M} .

A σ -weak topology on \mathfrak{M} is defined by a family $\{P_{\{\xi_n\},\{\eta_n\}}(\cdot); \{\xi_n\}, \{\eta_n\} \in \mathfrak{D}^{\infty}(\mathfrak{M})\}$ of seminorms:

$$P_{\{\xi_n\},\{\eta_n\}}(X) = |\sum_{n=1}^{\infty} (X\xi_n | \eta_n)|, X \in \mathfrak{M}$$

where

$$\mathfrak{D}^{\infty}(\mathfrak{M}) = \left\{ \{ \xi_n \} \subset \mathfrak{D}; \sum_{n=1}^{\infty} \| \xi_n \|^2 < \infty \text{ and} \right.$$
$$\left. \sum_{n=1}^{\infty} \| X \xi_n \|^2 < \infty \text{ for all } X \in \mathfrak{M} \right\}$$

Let φ be a linear functional on \mathfrak{M} . If $\varphi(X^{\dagger}X) \geq 0$ for all $X \in \mathfrak{M}$, then φ is called positive. If $\varphi(X) \geq 0$ for all $X \in \mathfrak{M}_+ = \{X \in \mathfrak{M}; (X\xi | \xi) \geq 0 \text{ for all } \xi \in \mathfrak{D}\}$, then φ is called strongly positive. A positive linear functional φ on \mathfrak{M} is said to be a

 σ -vector form if there exists an element $\{\xi_n\}$ of $\mathfrak{D}^{\infty}(\mathfrak{M})$ such that

$$\varphi(X) = \sum_{n=1}^{\infty} \omega_{\xi_n}(X) \equiv \sum_{n=1}^{\infty} (X\xi_n | \xi_n)$$

for all $X \in \mathfrak{M}$.

We finally review an ampliation of an O^* -algebra \mathfrak{N} , an induction of \mathfrak{M} and a spatial isomorphism of \mathfrak{M} onto an O^* -algebra \mathfrak{N} . Let \mathcal{K} be a Hilbert space and put

$$\mathfrak{D} \ \tilde{\otimes} \ \mathfrak{K} = \bigcap_{X \in \mathfrak{M}} \mathfrak{D}(\overline{X \otimes 1})$$

$$X \ \tilde{\otimes} \ 1 = \overline{X \otimes 1} \ \lceil \mathfrak{D} \ \tilde{\otimes} \ \mathfrak{K}, \ X \in \mathfrak{M}.$$

Then $\mathfrak{M} \otimes 1$ is a closed O^* -algebra on $\mathfrak{D} \otimes \mathfrak{K}$ in the Hilbert space $\mathfrak{K}(\mathfrak{D}) \otimes \mathfrak{K}$. The isomorphism $: X \in \mathfrak{M} \to X \otimes 1 \in \mathfrak{M} \otimes 1$ is said to be an ampliation of \mathfrak{M} . Suppose \mathfrak{M} is self-adjoint and E' is a projection in \mathfrak{M}'_w . Then $\mathfrak{M}_{E'} = \{XE' : X \in \mathfrak{M}\}$ is a self-adjoint O^* -algebra on $E'\mathfrak{D}$. The *-homomorphism $: X \in \mathfrak{M} \to XE' \in \mathfrak{M}_{E'}$ is said to be an induction of \mathfrak{M} . A *-isomorphism Φ of an O^* -algebra \mathfrak{M} on \mathfrak{D} onto an O^* -algebra \mathfrak{N} on \mathfrak{E} is called spatial if there exists a unitary transform U of $\mathfrak{K}(\mathfrak{D})$ onto $\mathfrak{K}(\mathfrak{E})$ such that $U\mathfrak{D} = \mathfrak{E}$ and $\Phi(X) = UXU^*$ for all $X \in \mathfrak{M}$.

3. A Decomposition of -- Homomorphisms

In this section we consider when a *-homomorphism of O^* -algebras is composed of an ampliation, an induction and a spatial isomorphism.

Lemma 3.1 — Let $\mathfrak M$ be a closed O^* -algebra on $\mathfrak D$, $\mathfrak N$ a self-adjoint O^* -algebra on $\mathfrak E$ with a strongly cyclic vector η_0 and Φ a *-homomorphism of $\mathfrak M$ onto $\mathfrak N$. Suppose that $\omega_{\eta_0} \circ \Phi$ is a σ -vector form on $\mathfrak M$. Then Φ is composed of an ampliation Φ_1 , an induction Φ_2 and a spatial isomorphism Φ_3 .

Proof: Since $\omega_{\eta_0} \circ \Phi$ is a σ -vector form on \mathfrak{M} , there exists an element $\{\xi_n\}$ of $\mathfrak{D}^{\infty}(\mathfrak{M})$ such that

$$\omega_{\eta_0} \circ \Phi = \sum_{n=1}^{\infty} \omega_{\xi_n}.$$

Let \mathcal{K} be a separable Hilbert space. We put

$$\Phi_1(X) = X \tilde{\otimes} 1, X \in \mathfrak{M}$$

$$\xi = \{\xi_n\} \in \mathfrak{D} \tilde{\otimes} \mathfrak{K}.$$

Then, we have

$$(\Phi(X) \ \eta_0|\eta_0) = (\Phi_1(X) \ \xi|\xi), \quad X \in \mathfrak{M}.$$
 ...(3.1)

Furthermore, $\xi \in \mathfrak{D} \otimes \mathcal{K}$ is a self-adjoint vector for the O^* -algebra $\Phi_1(\mathfrak{M})$. In fact, take an arbitrary $\eta \in \mathfrak{D}^*$ ($\Phi_1(\mathfrak{M}) \setminus \Phi_1(\mathfrak{M}) \xi$). By (3.1), the map:

$$\Phi(X)\eta_0 \to \Phi_1(X)\xi, X \in \mathfrak{M}$$

is extended to the unitary transform V of $\Re(\mathcal{E})$ onto $\overline{\Phi_1(\mathfrak{M})\xi}$, and

$$\begin{aligned} |(\Phi(X)\Phi(Y)\eta_{0}|V^{*}\eta)| &= |(\Phi_{1}(X)\Phi_{1}(Y)\xi|\eta)| \\ &= |(\Phi_{1}(Y)\xi|(\Phi_{1}(X)|\Phi_{1}(M)\xi)^{*}\eta| \\ &\leq ||(\Phi_{1}(X)|\Phi_{1}(M)\xi)^{*}\eta| ||\Phi(Y)\eta_{0}|| \end{aligned}$$

for all X, $Y \in \mathfrak{M}$, and so it follows since η_0 is strongly cyclic for $\mathfrak{N} = \Phi(\mathfrak{M})$ that $V^*\eta \in \mathfrak{D}(\Phi(X)^*)$. Hence, we have

$$V^*\eta \in \bigcap_{X \in \mathfrak{M}} \mathfrak{D}(\Phi(X)^*) = \mathfrak{D}^*(\mathfrak{N}) = \mathcal{E}.$$

Since η_0 is a strongly cyclic vector for \mathfrak{N} , there exists a net $\{X_{\alpha}\}$ in \mathfrak{M} such that

$$\lim_{\alpha} \Phi(X_{\alpha}) \eta_0 = V^* \eta$$

$$\lim_{\alpha} \Phi(X) \Phi(X_{\alpha}) \eta_0 = \Phi(X) V^* \eta$$

for each $X \in \mathfrak{M}$, and then

$$\lim_{\alpha} \Phi_1(X_{\alpha})\xi = \eta$$

$$\lim_{\alpha} \Phi_1(X) \Phi_1(X_{\alpha}) \xi = V \Phi(X) V^* \eta$$

for each $X \in \mathfrak{M}$. Hence $\eta \in \tilde{\mathfrak{D}}(\Phi_1(\mathfrak{M}) \mid \Phi_1(\mathfrak{M})\xi)$. Since ξ is a self-adjoint vector for $\Phi_1(\mathfrak{M})$, it follows that $E' \in \Phi_1(\mathfrak{M})'_w$ and $E'\mathfrak{D} \otimes \mathfrak{K} = \hat{\mathfrak{D}}\Phi_1(\mathfrak{M}) \mid \Phi_1(\mathfrak{M})\xi$, where E' is a projection of $\mathfrak{K}(\mathfrak{D}) \otimes \mathfrak{K}$ onto $\overline{\Phi_1(\mathfrak{M})\xi}$. We now put

$$\Phi_2(\Phi_1(X)) = (\Phi_1(X))_{E'}, X \in \mathfrak{M}.$$

Then Φ_2 is an induction of the O^* -algebra Φ_1 (M) and

$$(\Phi(X)\eta_0 \mid \eta_0) = (\Phi_1(X)\xi \mid \xi) = ((\Phi_2 \circ \Phi_1) \xi \mid \xi), X \in \mathfrak{M}. \qquad ...(3.2)$$

Since η_0 is a strongly cyclic vector for $\Phi(\mathfrak{M})$ and ξ is a strongly cyclic vector for $(\Phi_2 \circ \Phi_1)$ (\mathfrak{M}), it follows from (3.2) that there exists a unitary transform U of $\mathcal{K}(\mathcal{E})$ onto $\mathcal{K}(\mathfrak{D})$ $\hat{\otimes} \mathcal{K}$ such that $U\mathcal{E} = E'(\mathfrak{D} \hat{\otimes} \mathcal{K})$ and $\Phi(X) = U^*(\Phi_2 \circ \Phi_1)(X)$ U for all $X \in \mathfrak{M}$. We put

$$\Phi_3((\Phi_2 \circ \Phi_1) \ (X)) \ = \ U^*(\Phi_2 \circ \Phi_1) \ (X) \, U, \quad X \in \mathfrak{M}.$$

Then, Φ_3 is a spatial isomorphism of the O^* -algebra $(\Phi_2 \circ \Phi_1)$ (\mathfrak{M}) onto \mathfrak{N} and $\Phi = \Phi_3 \circ \Phi_2 \circ \Phi_1$. This completes the proof.

Theorem 3.2 — Let \mathfrak{M} be a closed O^* -algebra on \mathfrak{D} , \mathfrak{N} a regular O^* -algebra on \mathfrak{E} with a regular basis $\{\eta_{\lambda}\}_{{\lambda}\in\Lambda}$ and Φ a *-homomorphism of \mathfrak{M} onto \mathfrak{N} . Suppose that $\omega_{\eta_{\lambda}} \circ \Phi$ is a σ -vector form on \mathfrak{M} for each $\lambda \in \Lambda$. Then, $\Phi = \Phi_3 \circ \Phi_2 \circ \Phi_1$, where Φ_1 is an ampliation, Φ_2 is an induction and Φ_3 is a spatial isomorphism.

PROOF: Since $\{\eta_{\lambda}\}$ is a regular basis for \mathfrak{N} , it follows that $F'_{\lambda} \equiv Proj$. $\mathfrak{N}_{\eta_{\lambda}} \in \mathfrak{N}'_{w}$, $F'_{\lambda} \in \mathcal{E}$, $\mathfrak{N}_{F'_{\lambda}}$ is a self-adjoint O^* -algebra on $F'_{\lambda} \in \mathcal{E}$ for each $\lambda \in \Lambda$, and $\mathfrak{N} = \bigcup_{\lambda \in \Lambda}$ and $\mathfrak{N}_{F'_{\lambda}}$. We put

$$\Phi^{\lambda}(X) = \Phi(X)F'_{\lambda}, X \in \mathfrak{M}.$$

Then Φ^{λ} is a *-homomorphism of $\mathfrak M$ onto a self-adjoint O^* -algebra $\mathfrak N_{F_{\lambda}'}$ on $F_{\lambda}'\mathcal E$

with a strongly cyclic vector η_{λ} . It follows from Lemma 3.1 that $\Phi^{\lambda} = \Phi_{3}^{\lambda} \circ \Phi_{2}^{\lambda} \circ \Phi_{1}^{\lambda}$ for each $\lambda \in \Lambda$, that is, there exist a separable Hilbert space \mathcal{K}_{λ} , a projection E'_{λ} in $\Phi_{1}^{\lambda}(\mathfrak{M})'_{w}$ and a unitary transform U_{λ} of F'_{λ} $\mathcal{K}(\mathcal{E})$ onto $\mathcal{K}(\mathfrak{D}) \otimes \mathcal{K}_{\lambda}$ such that $\Phi_{1}^{\lambda}(X) = X \otimes 1$ on $\mathfrak{D} \otimes \mathcal{K}_{\lambda}$, $\Phi_{2}^{\lambda}(\Phi_{1}^{\lambda}(X)) = \Phi_{1}^{\lambda}(X)_{E'_{\lambda}}$ and $\Phi_{3}^{\lambda}((\Phi_{2}^{\lambda} \circ \Phi_{1}^{\lambda})(X)) = U^{\star}_{\lambda}(\Phi_{2}^{\lambda} \circ \Phi_{1}^{\lambda})(X)U_{\lambda}$ for all $X \in \mathfrak{M}$. We put

$$\mathcal{K} = \bigoplus_{\lambda \in \Lambda} \mathcal{K}_{\lambda}, \quad \Phi_{1} (\mathfrak{M}) = \mathfrak{M} \stackrel{\circ}{\otimes} 1 \text{ on } \mathfrak{D} \stackrel{\circ}{\otimes} \mathcal{K}$$

$$E' = (E'_{\lambda})_{\lambda \in \Lambda}, \quad \Phi_{2}(\Phi_{1}(X)) = \Phi_{1}(X)_{E'}, X \in \mathfrak{M}$$

$$U = (U_{\lambda})_{\lambda \in \Lambda}, \quad \Phi_{3}((\Phi_{2} \circ \Phi_{1})(X)) = U^{*}(\Phi_{2} \circ \Phi_{1}) (X)U, X \in \mathfrak{M}.$$

Then it is easily shown that Φ_1 is an ampliation, Φ_2 is an induction, Φ_3 is a spatial isomorphism and $\Phi = \Phi_3 \cdot \Phi_2 \cdot \Phi_1$. This completes the proof.

Proposition 3.3 – Let \mathfrak{M} , \mathfrak{N} , $\{\eta_{\lambda}\}_{{\lambda}\in\Lambda}$ and Φ be in Theorem 3.2. Suppose that $\Phi(\mathfrak{M}_+)\subset \mathfrak{N}_+$, and one of the following statements (i) and (ii) holds:

- (i) There exists an element N of \mathfrak{M} such that \overline{N}^{-1} is a compact operator.
- (ii) $\mathfrak{D}[t_{\mathfrak{M}}]$ is a Fréchet Montel space.

Then $\Phi = \Phi_3 \circ \Phi_2 \circ \Phi_1$, where Φ_1 is an ampliation, Φ_2 is an induction and Φ_3 is a spatial isomorphism.

Proof: Since $\Phi(\mathfrak{M}_+)\subset \mathfrak{N}_+$, it follows that $\omega_{\eta_\lambda}\circ \Phi$ is a strongly positive linear functional on \mathfrak{M} for each $\lambda\in \Lambda$. Suppose that either (i) or (ii) holds. Then it was shown by Schmüdgen⁸ that $\omega_{\eta_\lambda}\circ \Phi$ is a trace functional on \mathfrak{M} ; that is, it is a σ -vector form on \mathfrak{M} . Therefore, the corollary follows from Theorem 3.2.

Corollary 3.4 — Let \mathfrak{M} be a self-adjoint O^* -algebra on the Schwartz space $S(\mathbf{R})$ generated by

$$(Pf) (t) = -if'(t),$$

$$(Qf) (t) = tf(t), f \in S(\mathbb{R})$$

and $\mathfrak N$ a regular O^* -algebra on $\mathfrak E$. Then every *-homorphism Φ of $\mathfrak N$ onto $\mathfrak N$ such that $\Phi(\mathfrak N_+) \subset \mathfrak N_+$ is composed of an ampliation, an induction and a spatial isomorphism. In particular, such a composition is possible for every *-homomorphism Φ of $\mathfrak N$ onto $\mathfrak N$ such that $\Phi(\mathfrak N_+) \subset \mathfrak N_+$.

 P_{ROOF} : It is well known⁷ that \mathfrak{M} is a self-adjoint O^* -algebra on $S(\mathbb{R})$ satisfying the condition (i) of Proposition 3.3. Therefore, the corollary follows from Proposition 3.3.

Proposition 3.5 — Let \mathfrak{M} be a closed O^* -algebra on \mathfrak{D} and \mathfrak{N} a regular O^* -algebra on \mathcal{E} . Suppose that one of the following conditions (i) and (ii) holds:

- (i) $\mathfrak{M}'_{w} = \mathfrak{M}'_{b}$ and $\mathfrak{M}'_{w} \mathfrak{D} \subset \mathfrak{D}$, where $\mathfrak{M}_{b} = \{X \in \mathfrak{M}; \overline{X} \text{ is bounded}\}.$
- (ii) M satisfies condition (I) in the sense of Araki and Jurzak¹.

Then every σ -weakly continuous *-homomorphism of \mathfrak{M} onto \mathfrak{N} is composed of an ampliation, an induction and a spatial isomorphism.

PROOF: Let $\{\eta_{\lambda}\}_{{\lambda}\in\Lambda}$ be a regular basis for ${\mathfrak N}$. Then $\omega_{\eta_{\lambda}} \circ \Phi$ is a σ -weakly continuous positive linear functional on ${\mathfrak M}$ for each ${\lambda}\in\Lambda$. Suppose that the condition (i) holds. Then it follows from Lemma 5.2 of Inoue et al.⁶ that $\omega_{\xi_{\lambda}} \circ \Phi$ is a σ -vector form on ${\mathfrak M}$, and hence the corollary follows from Theorem 3.2. Suppose that the condition (ii) holds. Then every vector $\xi\in {\mathfrak D}$ is self-adjoint for ${\mathfrak M}$ as seen in Lemma 2.4 of Bhatt², and so we can show in similar to the proof of Lemma 5.2 of Inoue et al.⁶ that $\omega_{\eta_{\lambda}} \circ \Phi$ is a σ -vector form on ${\mathfrak M}$ for each ${\lambda} \in {\Lambda}$. Therefore the corollay follows from Theorem 3.2.

We remark that every EW^* -algebra \mathfrak{M} is a regular O^* -algebra such that $\mathfrak{M}'_w = \mathfrak{M}'_b$ and $\mathfrak{M}'_w \mathfrak{D} \subset \mathfrak{D}$, and every closed O^* -algebra satisfying condition (I) is a regular O^* -algebra. Therefore, Corollary 3.5 implies the following results:

Corollary 3.6 [Theorem 5.5 of Inoue⁵] – Every σ -weakly continuous *-homomorphism of a closed EW^* -algebra $\mathfrak M$ onto a closed EW^* -algebra $\mathfrak M$ is composed of an ampliation, an induction and a spatial isomorphism.

Corollary 3.7 [Theorem of Bhatt²] – Every σ -weakly continuous *-homomorphism of a closed O*-algebra $\mathfrak M$ satisfying condition (I) onto a closed O*-algebra $\mathfrak M$ satisfying condition (I) is composed of an ampliation, an induction and a spatial isomorphism.

REFERENCES

- 1. H. Araki and J. P. Jurzak, Publ. RIMS Kyoto Univ. 18 (1982), 1013-44.
- 2. S. J. Bhatt, Indian J. pure appl. Math. 21 (1990), 150-54.
- 3. J. Dixmier, Von Neumann algebras, North Holand Publ. Co., 1981.
- 4. I. Ikeda and A. Inoue, Invariant subspaces for closed *-representations of *-algebras, to appear in proc Amer. Math Soc.
- 5. A. Inoue, Pacific J. Math. 65 (1975), 38-57.
- 6. A. Inoue, H. Ueda and T. Yamauchi, J. Math Phys. 28 (1987), 1-7.
- 7. R. T. Powers, Comm. Math. Phys. 21 (1971), 85-124.
- 8. K. Schmüdgen, Comm. Math. Phys. 63 (1978), 113-130.
- K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag Berlin, 1990.