1. Text Classification

Supervised learning basics

Empirical risk minimization (ERM)

We want to build a model: h : \mathcal{X} (input space) $\rightarrow \mathcal{Y}$ (output space)

- Assume a data generating distribution D over $\mathcal{X} imes \mathcal{Y}$
- We have access to a training set: m samples from $D\{(x^{(i)},y^{(i)}\}_{i=1}^m$
- We can measure the goodness of a prediction h(x) by comparing it against the ground truth yusing some loss function
- ullet Our goal is to minimize the expected loss over D (risk):

minimize
$$\mathbb{E}_{(x,y)\sim D}[\operatorname{error}(h,x,y)]$$

but it cannot be computed

• Instead, we minimize the average loss on the training set (empirical risk):

minimize
$$\frac{1}{m}\sum_{i=1}^{m} \operatorname{error}(h, x^{(i)}, y^{(i)})$$

Overfitting vs underfitting

- Trivial solution to (unconstrained) ERM: memorize the data points
- Solution: constrain the prediction function to a subset, i.e. a hypothesis space $h \in H$

1

Summary

- 1. Obtain training data $D_{ ext{train}} = \{(x^{(i)}), y^{(i)})\}_{i=1}^n$
- 2. Choose a loss function L and a hypothesis class H
- 3. Learn a predictor by minimizing the empirical risk

Generative models: naive Bayes

Text classification

- Input: text (sentence, paragraph, document)
- · Predict the category or property of the input text

Problem formulation

- Input: a sequence of tokens $x=(x_1,...x_n)$ where $x_i\in
 u$.
- Output: binary label $y \in \{0, 1\}$.
- Probabilistic model:

$$f(x) = egin{cases} 1 & p_{ heta}(y=1|x) > 0.5 \ 0 & ext{otherwise} \end{cases}$$

1. Text Classification

where p_{θ} is a distribution parametrized by $\theta \in \Theta$.

Naive Bayes assumption: The input features are **conditionally independent** given the lable: $p(x|y) = \prod_{i=1}^n p(x_i|y)$

· A strong assumption, but works surprisingly well in practice

Learning: maximum likelihood estimation

Likelihood function of θ given D:

$$L(heta;D) \stackrel{ ext{def}}{=} p(D; heta) = \prod_{i=1}^n p(y_i; heta)$$

Maximum (log-)likelihood estimator:

$$\hat{ heta} = rg \max_{ heta \in \Theta} L(heta; D) = rg \max_{ heta \in \Theta} \sum_{i=1}^n \log p(y_i; heta)$$

ERM:
$$\min \sum_{i=1}^N l(x^{(i)}, y^{(i)}, \theta)$$

MLE:
$$\max \sum_{i=1}^N \log p(y^{(i)}|x^{(i)}; heta)$$

MLE is equivalent to ERM with the **negative log-likelihood** (NLL) loss function: $l_{\mathrm{NLL}}(x^{(i)}, y^{(i)}, \theta) \stackrel{\mathrm{def}}{=} -\log p(y^{(i)}|x^{(i)}; \theta)$

Inference: make predictions using the model

$$y = rg \max_{y \in Y} p_{ heta}(y|x)$$

Discriminative models: logistic regression

generative models discriminaive models

modeling joint:
$$p(x,y)$$
 conditional: $p(y|x)$

assumption on y yes yes assumption on x yes no

development generative story feature extractor

Map $w\cdot\phi(x)\in\mathbb{R}$ to a probability by the logistic function

Binary:
$$p(y=1|x;w)=rac{1}{1+e^{-w\cdot\phi(x)}}$$
 $(y\in\{0,1\})$

Multiclass:
$$p(y=k|x;w)=rac{e^{w_k\cdot\phi(x)}}{\sum_{i\in y}e^{w_i\cdot\phi(x)}}$$
 $(y\in\{1,\ldots,K\})$ "softmax"

Inference:

$$\hat{y} = rg \max_{k \in \mathcal{Y}} p_{ heta}(y = k | x; w) = rg \max_{k \in \mathcal{Y}} w_k \cdot \phi(x)$$

BoW representation: a sentence is the "sum" of words

1. Text Classification 2

N-gram features: continuous sequences of n words

Regularization, model selection, evaluation

Error decomposition

 $risk(\hat{h}) - risk(h^*) = approximation error + estimation error$

- Approximation error: $risk(best\ hypo\ in\ H) risk(h^*)$ Does my hypothesis space contain the true hypothesis?
- Estimation error: $\operatorname{risk}(\hat{h}) \operatorname{risk}(\operatorname{best\ hypo\ in\ } H)$ Can I find the best hypothesis given limited data?

Larger hypothesis class: approximation error \downarrow , estimation error \uparrow

Smaller hypothesis class: approximation error \uparrow , estimation error \downarrow

Reduce the dimensionality

Linear predictors: reduce the number of features $H = \{w: w \in \mathbb{R}^d\}$

For other predictors: depth of decision trees, degree of polynomials, number of decision stumps in boosting...

Regularization

Regularization: reduce the "size" of \boldsymbol{w}

$$\min rac{1}{N} \sum_{i=1}^N l(x^{(i)}, y^{(i)}, w) + rac{\lambda}{2} ||w||_2^2$$

Validation

Validation set: a subset of the training data reserved for tuning the learning algorithm

K-fold cross validation

1. Text Classification 3