MA-108 Ordinary Differential Equations

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 19th March, 2015 D1 - Lecture 9

Recall:

Theorem (Uniqueness Theorem to homogeneous IVP)

Consider the homogeneous IVP

$$y'' + p(x)y' + q(x)y = 0$$
, $y(x_0) = a, y'(x_0) = b$,

where p(x) and q(x) are continuous on an interval I containing x_0 . Then there is a unique solution to the IVP on I.

Theorem (Dimension Theorem)

If p(x), q(x) are continuous on an open interval I, then the set of solutions of the ODE

$$y'' + p(x)y' + q(x)y = 0 (1)$$

on I is a vector space of dimension 2. Any basis $\{y_1, y_2\}$ of solutions of (1) is called a **fundamental solutions** of (1)

Proof of Dimension Theorem

If y_1 and y_2 are solutions of (1), then $c_1y_1 + c_2y_2$ is also a solution of (1). To see this,

$$(c_1y_1 + c_2y_2)'' + p(x)(c_1y_1 + c_2y_2)' + q(x)(c_1y_1 + c_2y_2) =$$

$$c_1[y_1'' + p(x)y_1' + q(x)y_1] + c_2[y_2'' + p(x)y_2' + q(x)y_2] = 0$$

Thus the solution space is a vector space. Now

- (i) we need to produce two linearly independent solutions, say f and g, and
- (ii) show that any other solution is a linear combination of f and g.

Proof of Dimension Theorem Continued ...

(i) Proof of existence of f and g

Fix $x_0 \in I$. Let $y_1 = f(x)$ be the unique solution of the IVP

$$y'' + p(x)y' + q(x)y = 0$$
, $y(x_0) = 1$, $y'(x_0) = 0$

 y_1 exists on I by uniqueness theorem. Similarly, let $y_2=g(x)$ be the unique solution of the IVP

$$y'' + p(x)y' + q(x)y = 0$$
, $y(x_0) = 0$, $y'(x_0) = 1$

We need to show that f,g are linearly independent. Assume

$$af(x) + bg(x) \equiv 0 \implies af'(x) + bg'(x) \equiv 0$$

for some scalars a and b. Evaluate at $x = x_0$, we get

$$a = 0, \quad b = 0$$

This proves f and g are linearly independent. Now we show (ii) that any solution is a linear combination of f and g.

Proof of Dimension Theorem Continued ...

Let h(x) be an arbitrary solution of the given ODE. We want to find c and d in \mathbb{R} such that

$$h(x) = cf(x) + dg(x) \implies h'(x) = cf'(x) + dg'(x)$$
 on I

Therefore, evaluating at $x = x_0$ gives

$$h(x_0) = cf(x_0) + dg(x_0) = c$$
 and $h'(x_0) = cf'(x_0) + dg'(x_0) = d$

Let $\widetilde{h}(x) = h(x_0)f(x) + h'(x_0)g(x)$. Then $\widetilde{h}(x)$ is a solution of

$$y'' + p(x)y' + q(x)y = 0$$
, $\widetilde{h}(x_0) = h(x_0)$, $\widetilde{h}'(x_0) = h'(x_0)$ (2)

Since h(x) is also a solution of IVP (2), by uniqueness theorem, $\widetilde{h}=h$. Thus any solution is a linear combination of f and g. Therefore the solution space is 2-dimensional.

Nonhomogeneous 2nd order linear ODE

Consider 2nd order linear ODE y'' + p(x)y' + q(x)y = r(x)(1) with p(x), q(x), r(x) continuous on open interval I.

The homogeneous part is y'' + p(x)y' + q(x)y = 0 (2)

We have seen that solution space of (2) is a 2-dimensional vector space.

(i) Suppose y_1 is a solution of (1) and y_2 is a solution of (2). Then $y_1 + y_2$ is a solution of (2). To see this

$$(y_1 + y_2)'' + p(x)(y_1 + y_2)' + q(x)(y_1 + y_2) =$$

$$(y_1'' + p(x)y_1' + q(x)y_1) + (y_2'' + p(x)y_2' + q(x)y_2)$$

$$= r(x) + 0 = r(x).$$

(ii) Fix a solution y_1 of (1). If y is a solution of (1), then $y = y_1 + y_2$, for some solution y_2 of (2).

To see this, note that $y-y_1$ is a solution of (2). Call $y-y_1=y_2$. Then $y=y_1+y_2$.

- **1**40020019 BANERJEE TANAY
- 2 140020031 ASHWIN GOHTE
- **140020042 PRANAY AGARWAL**
- 140020060 SHASHI KANT KUMAR
- 140020081 RAM PAL DAHIYA
- 140020093 MOHD FARHAN AKHLAQ
- 140020103 ABHISHEK ADITYA KASHYAP
- 140020111 ALLIKANTI TEJASWINI RAVINDER
- 140050005 RUPANSHU GANVIR
- 140050011 HIMANSHU PAYAL
- 140050028 VARRE ADITYA VARDHAN
- 140050050 UPPARA RAGHUVEER
- 140050074 KOPPISETTI NIKHILESWAR
- 40020002 JAIN DIVYAM HITESH
- 140020026 SAMBHUS RUTURAJ SUDHIR
- 140020034 BAMBODKAR SANKET KAILAS
- 140020059 RAJAT YADAV ABSENT
- 140020071 LALIT PRAKASH CHAUHAN

Wronskian and Linear Independence

Given two solutions f and g of y'' + p(x)y' + q(x)y = 0. How to check whether f and g are linearly independent? We have seen in numerical method that evaluating a solution at some point may not be possible. We start with a definition for this purpose.

Definition

Let f and g be two differentiable functions on I. The Wronskian of f(x) and g(x) is a function defined by

$$W(f,g;x) := \left| \begin{array}{cc} f(x) & g(x) \\ f'(x) & g'(x) \end{array} \right| = f(x)g'(x) - g(x)f'(x).$$

Proposition

Suppose I=(a,b) and $f(x),g(x)\in\mathcal{C}^1(I)$ are linearly dependent. Then, W(f,g;x)=0 for all $x\in I$.

Theorem (Abel's Formula)

Assume p(x) and q(x) are continuous on I=(a,b). Let f(x) and g(x) be solutions of y''+p(x)y'+q(x)y=0. Then Wronskian of f(x) and g(x) is given by

$$W(f, g; x) = W(f, g; a) e^{-\int_a^x p(t)dt},$$

for any $a \in I$.

- Thus $W(x_0) = 0$ for some $x_0 \in I \implies W(x) \equiv 0$ on I.
- Similarly, $W(x_0) \neq 0$ for some $x_0 \in I \implies W(x)$ does not take zero value on I.

Ex. Consider ODE $x^2y'' + xy' - 4y = 0$. Here $y_1 = x^2$ and $y_2 = \frac{1}{x^2}$ are solutions. Compute the Wronskian $W(y_1, y_2; x)$.

Direct method: $W = y_1 y_2' - y_1' y_2 = x^2 \left(\frac{-2}{r^3}\right) - (2x) \frac{1}{r^2} = \frac{-4}{r}$. Let's verify Abel's Formula: If x_0 and x both are in $(-\infty, 0)$ or in $(0, \infty)$, then

$$W(x) = W(x_0) \exp\left[-\int_{x_0}^x p(t) dt\right] = W(x_0) \exp\left[\int_{x_0}^x \frac{-1}{t} dt\right]$$
$$= W(x_0) \exp\left[-(\ln|x| - \ln|x_0|)\right] = W(x_0) \exp(\ln\frac{x_0}{x})$$
$$= \frac{-4}{x_0} \frac{x_0}{x} = -4/x$$

Theorem

Consider

$$y'' + p(x)y' + q(x)y = 0,$$

where p(x) and q(x) are continuous on I=(a,b). Suppose f and g are solutions on I. Then f and g are linearly independent on I if and only if W(f,g;x) has no zeros in I.

Proof. (i) (\Rightarrow) . It is enough to show that if $W(x_0) = 0$ for some $x_0 \in I$, then f and g are linearly dependent. Since f, g are linearly independent, $f(x_0) \neq 0$ for some $x_0 \in I$.

Choose an open interval J containing x_0 such that f does not take zero value on J. On J, we have:

$$\left(\frac{g}{f}\right)'(x) = \left(\frac{fg' - f'g}{f^2}\right)(x) = \frac{W(f, g; x)}{f^2(x)} = 0$$

since
$$W(x_0) = 0 \implies W(x) = W(x_0)e^{\int_{x_0}^x -p(t)dt} \equiv 0.$$

Proof continued ...

$$\left(\frac{g}{f}\right)' \equiv 0 \quad \text{ on } J \implies \frac{g}{f} = k$$

a constant on J. Hence g(x) = kf(x) on J.

But we want g(x) = kf(x) on I. For this, consider the IVP

$$y'' + p(x)y' + q(x)y = 0$$
, $y(x_0) = 0$, $y'(x_0) = 0$ (*)

 $y_1 \equiv 0$ and $y_2 = g - kf$ both are solutions of (*). By uniqueness theorem, $y_1 = y_2$ on I. Hence g(x) = kf(x) on I.

Now we have to prove (\Leftarrow) . It is enough to show that if f and g are linearly dependent, then $W(f,g,;x)\equiv 0$. This is proved earlier. \Box

Wronskian and Linear Independence

Remarks:

$$x^2y'' - 4xy' + 6y = 0.$$

Then, x^2 and x^3 are linearly independent solutions, but $W(x^2,x^3;0)=0.$

- ② W(f,g;a)=0 for some a with $\{f,g\}$ linearly independent implies that f and g together are not solutions of an ODE on any interval containing a.
- Similar is the case if Wronskian is zero at a point and not identically zero.

Consider second order linear homogeneous ODE

$$y'' + p(x)y' + q(x)y = 0.$$

As we remarked earlier, there is no general method to find a basis of solutions. However, if we know one non-zero solution f(x), then we have a method to find another solution g(x) such that f(x) and g(x) are linearly independent. To find such a g(x), set

$$g(x) = v(x)f(x).$$

We'll choose v such that f and g will be linearly independent. Can v be a constant? No. Now for g to be a solution of the given ODE, we need g'' + p(x)g' + q(x)g = 0.

$$\implies (vf)'' + p(x)(vf)' + q(x)(vf) = 0.$$

$$\implies (v'f + vf')' + p(v'f + vf') + qvf = 0$$

$$\implies (v'' + 2v'f' + vf'') + p(v'f + vf') + qvf = 0$$

$$\implies v(f'' + pf' + qf) + v'(2f' + pf) + v''f = 0$$

$$\implies v'(2f' + pf) + v''f = 0$$

Thus,

$$\frac{v''}{v'} = -\frac{2f' + pf}{f} = -\frac{2f'}{f} - p.$$

Therefore,

$$\ln|v'| = \ln\left(\frac{1}{f^2}\right) - \int p dx;$$

$$\implies v = \int \frac{e^{-\int p dx}}{f^2} dx.$$

Claim: f and vf are linearly independent.

Enough to check Wronskian!

$$W(f, vf) = f(v'f + f'v) - f'vf$$
$$= f^{2}v' = f^{2}\frac{e^{-\int pdx}}{f^{2}} = e^{-\int pdx} \neq 0$$

Theorem

If y_1 is one solution of y'' + p(x)y' + q(x)y = 0, then another solution is given by

$$y_2(x) = vy_1(x) = \left(\int \frac{e^{-\int pdx}}{y_1^2} dx\right) y_1(x)$$

Example: Find all solutions of

$$x^2y'' + xy' - y = 0.$$

Given that f(x) = x is one solution.

Write this in standard form:

$$y'' + \frac{y'}{x} - \frac{y}{x^2} = 0.$$

Let g = vf = vx be another solution. Then,

$$v(x) = \int \frac{e^{-\int p dx}}{f^2} dx = \int \frac{e^{-\int \frac{dx}{x}}}{x^2} dx = \int \frac{dx}{x^3} = -\frac{1}{2x^2}.$$

Hence, any solution is of the form $cx + \frac{d}{x}$ for $c, d \in R$.

2nd Order Linear ODE's with constant coeff.

If $a, b, c \in \mathbb{R}$ with $a \neq 0$, then

$$ay'' + by' + cy = F(x),$$

is called a **constant coefficient equation**. We will begin with homogeneous constant coefficient equation

$$ay'' + by' + cy = 0.$$
 (*)

In this case, all solutions are defined $(-\infty, \infty)$. Why?

Therefore, we will omit the reference to the interval on which the solution is defined. It is always $(-\infty, \infty)$.

Suppose e^{mx} is a solution of (*), where m is a constant. Then,

$$am^2e^{mx} + bme^{mx} + ce^{mx} = 0,$$

The quadratic polynomial

$$p(m) = am^2 + bm + c$$

is the **characteristic polynomial** of (*), and

2nd Order Linear ODE's with constant coeff.

p(m) = 0 is the **characteristic equation**. Therefore, e^{mx} is a solution of (*) if and only if p(m) = 0.

The roots of the characteristic equation are given by

$$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We consider three cases:

Case 1: When $b^2 - 4ac > 0$. Then characteristic equation has two distinct real roots.

Case 2: When $b^2-4ac=0$. Then characteristic equation has two repeated real roots.

Case 1: When $b^2 - 4ac < 0$. Then characteristic equation has two distinct complex roots which are conjugates.

Distinct real roots case

Example. Find general solution of y'' + 6y' + 5y = 0 (1).

The characteristic polynomial is

$$p(m) = m^2 + 6m + 5 = (m+1)(m+5).$$

Thus roots of characteric equation are -1 and -5. Thus $y_1=e^{-x}$ and $y_2=e^{-5x}$ are solutions of (1).

Since $\frac{y_1}{y_2}$ is non-constant, $\{y_1, y_2\}$ is a fundamental solutions of (1). Therefore, the general solution of (1) is

$$y(x) = c_1 e^{-x} + c_2 e^{-5x}$$

Ex. Solve IVP y'' + 6y' + 5y = 0, y(0) = 3, y'(0) = 1.

From the general solution, $c_1 + c_2 = 3$ $-c_1 - 5c_2 = 1$

This gives $c_2 = -1$ and $c_1 = 4$. Thus the solution to IVP is

$$y(x) = 4e^{-x} - e^{-5x}$$

A repeated real root case

Example. Find general solution of y'' + 6y' + 9y = 0 (1).

Characteristic polynomial $p(m) = m^2 + 6m + 9 = (m+3)^2$.

The characteristic equation has repeated roots -3, -3. Hence $y_1 = e^{-3x}$ is one solution. For other solution, let $y = ue^{-3x}$.

$$y' = u'e^{-3x} - 3ue^{-3x}$$
 and $y'' = u''e^{-3x} - 6u'e^{-3x} + 9ue^{-3x}$

$$(1) \Rightarrow e^{-3x}[(u'' - 6u' + 9) + 6(u' - 3u) + 9u] = u''e^{-3x} = 0.$$

Therefore $y = uy_1$ is a solution if and only if u'' = 0. Hence $u = c_1 + c_2 x$. Therefore the general solution is

$$y(x) = e^{-3x}(c_1 + c_2 x)$$

Ex. Solve IVP y'' + 6y' + 9y = 0, y(0) = 3, y'(0) = 1. We get $c_1 = 3$ and $1 = -3(3) + c_2$ gives $c_2 = 10$.