RAPORT - TESTOWANIE I OPTYMALIZACJA KODU

1. Dane.

Whole set	Train sa	mples	Validation samples	Test samples
15114	ALL	HEM	1867	2586
	7272	3389		
	1066	61		

2. Porównanie CPU vs GPU vs GPU + transfer learning.

Dla wstępnego porównania CPU vs GPU vs GPU + Transfer Learning użyto ograniczonego zbioru: **1 000 obrazów treningowych, 300 walidacyjnych** — aby przyspieszyć testy CPU.

	COMPARING GPU vs CPU													
	Model	Training time (min)	Epochs	Train/Validation samples	Accelerator	Transfer learning	Normalisation	Augmentation	Dropout	New data samples	Input size	Batch size	Train accuracy	Validation accuracy
1	ResNet50	83.64	10	1000/300	-		-	-	-	-	224x224	32	0.84	0.33
2	Res Net50	3.22	10	1000/300	GPU	-	-	-	-	-	224x224	32	0.842	0.66
3	ResNet50	1.01	10	1000/300	GPU	+					224x224	32	0.841	0.6667

Wnioski:

- Przejście z CPU na GPU znacznie skróciło czas treningu: z 84 min do ok. 1–3 min.
- Włączenie **transfer learningu (na GPU)** dodatkowo ustabilizowało wyniki i jeszcze bardziej skróciło czas.
- Brak normalizacji, augmentacji i dropout'u w tym etapie skutkował lekkim overfittingiem, ale GPU + TL częściowo ten problem ograniczyło.

GPU + transfer learning wypada tutaj najlepiej.

3. Optymalizacja (p. 4 wymagania projektu).

Na podstawie wyników z wstępnych testów, wybrano:

- GPU + Transfer Learning
- Input size: 224x224
- Batch size = 32

W kolejnych iteracjach:

- Użyto całego zbioru danych (10 661 obrazów treningowych i 1 867 walidacyjnych).
- Dodano stopniowo normalizację, augmentację (zbalansowanie klas by obie klasy ALL i HEM miały po 7 272 zdjęcia, aby zapobiec bias).

• Wprowadzono dropout 0.3.

OP	TIMALISATION																		
	Model	Training time (min)	Epochs	Train/Validation samples	Accelerator	Transfer learning	Normalisation	Augmentation	Dropout	New data samples	Input size	Batch size	Train accuracy	Validation accuracy					
4	ResNet50	9.63	10	10661/1867	GPU						224x224	32	0.841	0.6667	4d	from here all optim	sation techniqu	es will use 106	361/1867 set
5	ResNet50	10,26	10	10661/1867	GPU	+	+		-	-	224x224	32	0.8427	0,6952	4a	<- normalization alone		(normalised	whole datase
6	ResNet50	9.49	10	14544/1867	GPU	+		+			224x224	32	0.8914	0.699	4b.1	<- augmentation alone	(only for 'HEM') so the mode	d isn't biased
7	ResNet50	11.08	10	14544/1867	GPU	+	+	+	-	-	224x224	32	0.8862	0.6883	4b.2	<- augmentation (- -	+ normalisation	1	
8	ResNet50	11.56	10	14544/1867	GPU	+	+	+	included: 0.3		224x224	32	0.8698	0.6824	4c	<- dropout with augm	entation + norm	alisation	
9	ResNet50	8.39	10	14544/1867	GPU	+	+	+	included: 0.3		96x96	32	0.8656	0.6845	4e.1	< 96x96, 160x160, 2	24x224 input si	ize	
10	ResNet50	9.41	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.8675	0.6872	4e.2/4f (batch_size = 32)				
11	ResNet50	9.58	10	14544/1867	GPU	+	+		included: 0.3		160x160	64	0.8698	0.6797	4f.1	< 32/65/128 batch_s	ize		
12	ResNet50	11.1	10	14544/1867	GPU	+		+	included: 0.3		160x160	128	0.8639	0.6754	41.2				

Wnioski:

- **Normalizacja i augmentacja (szczególnie zbalansowanie klas)** mają największy wpływ na poprawę dokładności walidacyjnej.
- **Dropout** skutecznie ogranicza overfitting.
- **Zbyt duży batch size** obniża zdolność uogólniania i wydłuża czas obliczeń.
- **Rozmiar wejściowy ok. 160x160** jest najbardziej optymalny kompromis między jakością predykcji a czasem treningu.

e) różne rozmiary wejściowe (224x224, 96x96, 160x160)

InputSize comparison														
Model	Training time (min)	Epochs	Train/Validation samples	Accelerator	Transfer learning	Normalisation	Augmentation	Dropout	New data samples	Input size	Batch size	Train accuracy	Validation accuracy	1
ResNet50	11.56	10	14544/1867	GPU	+	+	+	included: 0.3		224x224	32	0.8698	0.6824	
ResNet50	8.39	10	14544/1867	GPU	+	+	+	included: 0.3		96x96	32	0.8656	0.6845	
ResNet50	9.41	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.8675	0.6872	<- best overall
														1

Wnioski:

- Dla ResNet50 mniejsze rozdzielczości (96x96, 160x160) skracają czas obliczeń bez pogorszenia jakości — a nawet delikatnie poprawiają dokładność walidacyjną (val_acc).
- **160x160**: najlepsza generalizacja + krótki czas treningu.

f) różny rozmiar Batch size (32, 64, 128)

BatchSize comparison														
Model	Training time (min)	Epochs	Train/Validation samples	Accelerator	Transfer learning	Normalisation	Augmentation	Dropout	New data samples	Input size	Batch size	Train accuracy	Validation accuracy	
ResNet50	9.41	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.8675	0.6872	<- most balanced
ResNet50	9.58	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	64	0.8698	0.6797	
ResNet50	11.1	10	14544/1867	GPU	+	+	+	included: 0.3	-	160x160	128	0.8639	0.6754	

Wnioski:

- Batch size 32 daje najlepszy balans między dokładnością a czasem treningu.
- Batch size powyżej 64 (np. 128) powoduje spadek dokładności walidacyjnej (val_acc) i dłuższy czas obliczeń.

g) różne struktury sieci (InceptionV3, ResNet101, DenseNet121, EfficientNetB0)

Different models	(took 'best' parameters b	ased on training time	e and train&validation accur	racy)										
Model	Training time (min)	Epochs	Train/Validation samples	Accelerator	Transfer learning	Normalisation	Augmentation	Dropout	New data samples	Input size	Batch size	Train accuracy	Validation accuracy	
InceptionV3	10.49	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.7967	0.661	
ResNet101	10.75	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.8647	0.7022	<- best overall
DenseNet121	10.67	10	14544/1867	GPU	+	+	+	included: 0.3		160x160	32	0.8302	0.6786	
EfficientNetB0	10.39	10	14544/1867	GPU	+	+	+	included: 0.3	-	160x160	32	0.827	0.6743	

Wnioski:

ResNet101 osiągnał najwyższe val_acc (0.7022) — najlepsza jakość predykcji.

- **InceptionV3** i **EfficientNetB0** są nieco *szybsze*, ale mają wyraźnie niższą dokładność.
- **DenseNet121** to kompromis, ale nie ma przewagi nad ResNet101.

4. Wnioski końcowe:

Najlepsza konfiguracja:

Architektura: ResNet101Input size: 160x160

• Batch size: 32

• GPU + Transfer Learning

• Normalizacja, augmentacja (zbalansowanie klas HEM, ALL), dropout 0.3