Presentation for the Quantum Seminar

José Manuel Rodríguez Caballero

University of Tartu

Spring 2020

Subject

My presentation is about the paper¹:

Bouman, Niek J., and Serge Fehr. "Sampling in a quantum population, and applications." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010. URL = https://arxiv.org/pdf/0907.4246.pdf

¹I will not repeat the notation from the paper in this presentation. If someone needs a clarification, please, either ask me during the presentation or read Bouman-Fehr paper.

Outline

The main contributions of Bouman-Fehr paper are the following.

- (I) Introduction of a theory of sampling and estimate strategies for classical and quantum populations.
- (II) A new proof of the security of the protocol for quantum key distribution BB84 (and a version of it).
- (III) A new proof of the security of the protocol Quantum Oblivious Transfer² (QOT).

²We consider that (i) and (ii) are enough in order to understand the technique developed Bouman-Fehr paper. So, we will omit (iii) in this presentation because of time constrains.

Brief History

- (i) The protocol BB84 developed by Charles Bennett and Gilles Brassard³ in 1984, was the first quantum key distribution protocol.
- (ii) An entanglement-based version of BB84 was proposed by Artur K. Ekert⁴ in 1991. The security of this version of BB84 implies the security of the original protocol.
- (iii) The first security proof of BB84 was published by Dominic Mayers⁵ in 1996.

³C. H. Bennett and G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, (IEEE Press, 1984), pp. 175–179

⁴Artur K. Ekert. Quantum cryptography based on Bell's theorem. Physical Review Letter, 67(6):661–663, August 1991.

⁵Mayers, D. 1996. Quantum key distribution and string oblivious transfer in noisy channels. Advances in Cryptology–Proceedings of Crypto '96 (Aug.).

Springer-Verlag, New York, pp. 343–357

Description

Let $n \geq 2$ and $1 \leq k \leq \frac{n}{2}$ be the integer parameters of the following protocol. The entanglement-based BB84 protocol can be divided into the following steps⁶.

- (i) Qubit distribution.
- (ii) Error estimation.
- (iii) Error correction.
- (iv) Key distillation.

⁶The explanation of each step will be developed in the next slides ← ≥ → ○ ○ ○

Qubit distribution

- (i) Alice prepare *n* EPR pairs $\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)$.
- (ii) Alice sends one qubit for each pair to Bob.
- (iii) Bob confirms the receipt of the qubits.
- (iv) Alice picks random $\theta \in \{0,1\}^n$ and send it to Bob.
- (v) Alice and Bob measure their respective qubits in basis θ (0 for computational, 1 for Hadamard) and the results of the measurements are registered in x and y respectively.

Error estimation

- (i) Alice chooses a random subset $s \subset [n]$ of size k and send it to Bob.
- (ii) Alice and Bob exchange x_s and y_s .
- (iii) Alice and Bob both compute $\omega(x_s \oplus y_s)$.

Error correction

- (i) Alice send the syndrome **syn** of $x_{\overline{s}}$ to Bob with respect to a suitable linear error correcting code. Let m be the bit-size of **syn**.
- (ii) Bob uses **syn** to correct the errors in $y_{\overline{s}}$ and obtains $\hat{x}_{\overline{s}}$.

Key distillation

- (i) Alice chooses a random seed r for a universal hash function g with range $\{0,1\}^{\ell}$, where $\ell < (1-h(\beta)) \, n-k-m$ (or $\ell=0$ if the right-hand side is not positive).
- (ii) Alice sends r to Bob.
- (iii) Alice and Bob compute their keys $\mathbf{k} := g(r, x_{\overline{s}})$ and $\hat{\mathbf{k}} := g(r, \hat{x}_{\overline{s}})$.

Security claim (statement)

Consider an execution of the entanglement-based BB84 in the presence of an adversary Eve. Let \mathbf{K} be the key obtained by Alice, and let E be Eve's quantum system at the end of the protocol. Let $\tilde{\mathbf{K}}$ be chosen uniformly at random of the same bit-length as \mathbf{K} . Then, for any $0<\delta\leq\frac{1}{2}-\beta$, the inequality

$$\Delta\left(\rho_{\mathsf{K}E},\rho_{\mathsf{K}E}^{\bullet}\right) \leq \frac{1}{2} \cdot \exp\left[-\frac{\ln 2}{2}\left((1-h(\beta+\delta))n-k-m-\ell\right)\right] + 2\exp\left(-\frac{\delta^2 k}{6}\right)$$

holds.

Security claim (application)

Let $\varepsilon > 0$. The security claim can be used in order compute a possible value for ℓ such that $\Delta\left(\rho_{\mathbf{K}E}, \rho_{\mathbf{\tilde{K}}E}\right) \leq \varepsilon$.

Sketch of the proof

There is a quantum state

$$ho = \sum_{egin{subarray}{c} b \in \{0,1\}^n \ |\omega(b)-eta| \leq \delta \end{array}} |b
angle |arphi_{E}^b
angle$$

satisfying

(i) Quantum error inequality:

$$\Delta\left(
ho_{\mathsf{KE}},
ho\right)\leq 2\exp\left(-rac{\delta^2k}{6}
ight).$$

(ii) Privacy amplification:

$$\Delta\left(
ho,
ho_{ ilde{\mathsf{K}}\mathsf{E}}
ight) \leq \exp\left[-rac{\ln 2}{2}igg((1-h(eta+\delta))n-k-m-\elligg)
ight].$$

Applying triangular inequality we get the desired result.

End of my presentation