Section 7 Math 2202

Directional Derivatives, Gradients and Local Extrema

$1.\ Stewart\ 11.6\ \#36,\ modified$

Consider a function f(x,y) whose level curves are shown below.

- (a) In what direction is the gradient vector $\nabla f(4,6)$? Sketch a vector in that direction at (4,6) and explain how you chose the direction.
- (b) Approximate the length of $\nabla f(4,6)$. Again, explain your reasoning.

Hint: remember that directional derivative at (x_0, y_0) in the direction \mathbf{v} is the rate of change of f at (x_0, y_0) with respect to distance (that is, distance between the inputs) in the direction of \mathbf{v} .

2. (Stewart 11.7 #3)

Let's consider

$$f(x,y) = 4 + x^3 + y^3 - 3xy$$

Use the level curves in the figures drawn below to predict the location of the critical points of f and whether f has a saddle point or a local maximum or minimum at each critical point. Explain your reasoning. Then use the Second Derivative Test to confirm your predictions.

3.
$$f(x, y) = 4 + x^3 + y^3 - 3xy$$

3. Consider a function f(x, y) which has a local minimum at (0, 0) and a whole circle of local maxima at $x^2 + y^2 = 1$. (In other words, f(x, y) is the same value on the circle and this is the highest value of f in a neighborhood of this circle.)

Sketch a possible contour plot of this function.

(Extra: Can you come up with a possible formula for a function with these properties? Hint: Think of a radial function, involving $x^2 + y^2$.)