	Teste de Matemática A				
	2021 / 2022				
Teste N.º 1 Matemática A					
12.º Ano de Escolaridade					
Nome do aluno:	N.º: Turma:				
Utilize apenas caneta ou esferográfica de tinta azul ou preta	.				
Não é permitido o uso de corretor. Risque aquilo que preten	de que não seja classificado.				
É permitido o uso de calculadora.					
Apresente apenas uma resposta para cada item.					
As cotações dos itens encontram-se no final do enunciado.					
Na resposta aos itens de escolha múltipla, selecione a opça	ão correta. Escreva na folha de				
respostas o número do item e a letra que identifica a opção	escolhida.				
Na resposta aos restantes itens, apresente todos os cálcul	os que tiver de efetuar e todas				

as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base } \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n \, e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- 1. A turma X de uma determinada escola é constituída por 24 alunos, 12 rapazes e 12 raparigas.
 - 1.1. Pretende-se formar uma comissão para organizar uma festa de Halloween. A comissão terá quatro elementos e terá de ser constituída por rapazes e por raparigas.

Quantas comissões diferentes se poderão formar?

(A)
$$^{24}C_4 - ^{12}C_4$$

(B)
$$^{24}C_4 - (^{12}C_4)^2$$

(C)
$$^{12}C_3 \times 12 \times 2 + (^{12}C_2)^2$$

(D)
$$^{12}C_3 \times 12 \times 2 + ^{12}C_2 \times 2$$

- **1.2.** Considere agora que se pretende tirar uma fotografia com todos os elementos da turma X, colocados lado a lado. Os gémeos Pedro e Simão fazem parte da turma, mas não gostam de ficar juntos nas fotografias. Escreva uma expressão que dê o número de maneiras diferentes de o fazer, respeitando a vontade dos gémeos.
- 2. De uma determinada linha do triângulo de Pascal, sabe-se que o seu antepenúltimo elemento é 990. Quantos são os elementos dessa linha inferiores a 20 000?
 - (A) 4
- **(B)** 8
- **(C)** 5
- **(D)** 10
- 3. Considere todos os números de telefone da rede móvel que cumprem as seguintes condições:
 - são constituídos por 9 algarismos;
 - começam por 91;
 - têm exatamente quatro algarismos 1;
 - têm exatamente três algarismos 5;
 - o número de telefone formado é um número múltiplo de 5.

Quantos são esses números de telefone?

4. Na turma Y de uma determinada escola todos os alunos têm preferência por um dos três clubes de futebol da cidade. Sabe-se que 10 alunos preferem o clube A, n alunos preferem o clube B e m alunos preferem o clube C. Considere que se pretende colocar lado a lado todos os alunos desta turma.

Qual é a probabilidade de todos os alunos que preferem o clube B ficarem juntos, bem como ficarem juntos todos os alunos que preferem o clube C?

(A)
$$\frac{n! \times m! \times 10!}{n! + m! + 10!}$$

(B)
$$\frac{n! \times m! \times 11!}{(n+m+10)!}$$

(B)
$$\frac{n! \times m! \times 11!}{(n+m+10)!}$$
 (C) $\frac{n! \times m! \times 10! \times 3!}{n!+m!+10!}$ **(D)** $\frac{n! \times m! \times 12!}{(n+m+10)!}$

(D)
$$\frac{n! \times m! \times 12!}{(n+m+10)!}$$

- **5.** Considere, num plano, uma reta r e um ponto A exterior à reta. Assinala-se na reta um certo número n de pontos distintos. Sabe-se que, com o ponto A e com os pontos assinalados na reta r, é possível definir exatamente 156 vetores não nulos distintos. Determine o valor de n.
- 6. Um saco contém nove cartões, indistinguíveis ao tato, numerados de 1 a 9.
 - **6.1.** Colocam-se os nove cartões em cima de uma mesa, lado a lado, em linha reta. Qual é a probabilidade de os cartões numerados com um número primo ficarem juntos?
 - (A) $\frac{1}{504}$
- **(B)** $\frac{1}{126}$
- (C) $\frac{5}{126}$
- **(D)** $\frac{1}{21}$
- **6.2.** Considere agora, além dos nove cartões numerados de 1 a 9, sete peças pretas indistinguíveis entre si.

Considere também, como indica a figura ao lado, um tabuleiro com 16 casas, dispostas em quatro filas horizontais $(A, B, C \in D)$ e em quatro filas verticais $(1, 2, 3 \in 4)$.

Pretende-se dispor os nove cartões e as sete peças pretas no

tabuleiro, de modo a ocupar todas as casas. Quantas configurações diferentes do tabuleiro se podem obter, de modo que as peças pretas se disponham apenas em duas filas horizontais e os cartões com um número par inscrito ocupem também uma fila horizontal?

- **7.** Seja E o espaço amostral associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset E$ e $B \subset E$). Sabe-se que:
 - P(A) = 0.5
 - P(B) = 0.55
 - $P(\bar{A} \cap \bar{B}) = 0.2$

O valor da probabilidade condicionada $P(\bar{B}|(A \cup B))$ é igual a:

- **(A)** $\frac{3}{16}$
- **(B)** $\frac{5}{16}$
- (C) $\frac{7}{16}$
- **(D)** $\frac{9}{16}$
- 8. Numa determinada escola secundária, relativamente aos alunos de 12.º ano, sabe-se que:
 - 40% dos alunos são rapazes;
 - ²/₃ das raparigas estão inscritas em Biologia;
 - $\frac{3}{7}$ dos alunos inscritos em Biologia são rapazes.

Escolhe-se, ao acaso, um aluno desta turma.

Determine a probabilidade de o aluno escolhido ser um rapaz que não está inscrito em Biologia. Apresente o resultado na forma de percentagem.

9. Seja *E* o espaço amostral associado a uma certa experiência aleatória.

Sejam $A \in B$ dois acontecimentos $(A \subset E \in B \subset E)$.

Sabe-se que *A* e *B* têm ambos probabilidade não nula.

Prove que:

$$P(\overline{A \cap \overline{B}}) - P((\overline{A} \cap \overline{B}) \cup (A \cup B)) = P(A)(P(B|A) - 1)$$

10. Considere o desenvolvimento de $\left(\sqrt{x} + \frac{2a}{x}\right)^8$, com x > 0 e $a \in \mathbb{R}^-$.

Sabendo que o coeficiente do termo em x é igual a 1008, determine o valor da constante a.

11. Considere, num plano α , duas retas estritamente paralelas r e s.

Assinalaram-se, na reta r, sete pontos distintos e, na reta s, um certo número n de pontos, igualmente distintos.

Escolhem-se, ao acaso, três dos pontos assinalados nas duas retas.

A probabilidade de esses três pontos definirem um triângulo é igual a:

$$\frac{7 \times {}^{n}C_{2} + {}^{7}C_{2} \times n}{{}^{7+n}C_{3}}$$

Elabore uma composição na qual explique a expressão apresentada.

Na sua resposta:

- enuncie a regra de Laplace;
- explique o número de casos possíveis;
- explique o número de casos favoráveis.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.1.	1.2.	2.	3.	4.1.	4.2.	5.	6.	7.	8.	9.	10.	11.	TOTAL
10	18	10	18	10	18	10	18	10	18	20	20	20	200