### **Avertissement**

Ce document est un DRAFT, les erreurs et les suggestions sont à envoyer à abdoulaziz.fall@uadb.edu.sn



### Matrices

#### Dr. Abdoul Aziz FALL

UFR Sciences Appliquées et Technologie de l'Information et de la Communication Université Alioune Diop de Bambey Copyright ©Février 2020

4 novembre 2020



### Plan du cours

- 1 Définitions et exemples
- 2 Opérations sur les matrices
- 3 Matrices particulières et sous-matrices
- 4 Diagonalisation d'une matrice carrée



#### Définition 1

On appelle matrice de type (n;m) (ou de taille  $n \times m$  ) un tableau à n lignes et m colonnes, comportant n.m nombres d'éléments de K. Une matrice M sera notée :

$$M = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1m} \\ a_{21} & a_{22} \cdots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} \cdots & a_{nm} \end{pmatrix}$$

où  $a_{ij}$  est l'élément à l'intersection de la ligne i et de la colonne j. On note par  $\mathcal{M}_{n,m}$  l'ensemble des matrices de type (n;m).

#### Définition 1

On appelle matrice de type (n;m) (ou de taille  $n \times m$  ) un tableau à n lignes et m colonnes, comportant n.m nombres d'éléments de K. Une matrice M sera notée :

$$M = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1m} \\ a_{21} & a_{22} \cdots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} \cdots & a_{nm} \end{pmatrix}$$

où  $a_{ij}$  est l'élément à l'intersection de la ligne i et de la colonne j. On note par  $\mathcal{M}_{n,m}$  l'ensemble des matrices de type (n;m).

#### Définition 2

• On appelle matrice-colonne ou un vecteur-colonne une matrice qui comporte une seule colonne (m=1) c'est-à -dire une matrice de type (n;1).



#### Définition 2

- On appelle matrice-colonne ou un vecteur-colonne une matrice qui comporte une seule colonne (m=1) c'est-à -dire une matrice de type (n;1).
- ② On appelle matrice-ligne ou un vecteur-ligne une matrice qui comporte une seule ligne (n=1) c'est-à -dire une matrice de type (1;m).



#### Définition 2

- On appelle matrice-colonne ou un vecteur-colonne une matrice qui comporte une seule colonne (m=1) c'est-à -dire une matrice de type (n;1).
- ② On appelle matrice-ligne ou un vecteur-ligne une matrice qui comporte une seule ligne (n=1) c'est-à -dire une matrice de type (1;m).

### Exemple 1



#### Exemple 2



$$A = \begin{pmatrix} 2 & 1 & 10 & 15 \\ 3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$

c'est une matrice de 3 lignes et 4 colonnes autrement dit c'est une matrice de taille  $3\times 4$  c'est-à -dire une matrice de type (3;4).



### Exemple 2

0

$$A = \begin{pmatrix} 2 & 1 & 10 & 15 \\ 3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$

c'est une matrice de 3 lignes et 4 colonnes autrement dit c'est une matrice de taille  $3\times 4$  c'est-à -dire une matrice de type (3;4).

2

$$B = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 5 \end{pmatrix}$$

c'est une matrice-colonne de type (4; 1).



### Exemple 2

0

$$A = \begin{pmatrix} 2 & 1 & 10 & 15 \\ 3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$

c'est une matrice de 3 lignes et 4 colonnes autrement dit c'est une matrice de taille  $3\times 4$  c'est-à -dire une matrice de type (3;4).

2

$$B = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 5 \end{pmatrix}$$

c'est une matrice-colonne de type (4; 1).



#### Exemple 3

$$C = \begin{pmatrix} -2 & 1 & 0 & 1 \end{pmatrix}$$

c'est une matrice-ligne de type (1;4).



#### Exemple 3

$$C = \begin{pmatrix} -2 & 1 & 0 & 1 \end{pmatrix}$$

c'est une matrice-ligne de type (1;4).

### Remarque 1

 $\checkmark$  Les indices  $i,\ j$  sont des variables muettes car nous pouvons les remplacer par d'autres indices.



#### Exemple 3

$$C = \begin{pmatrix} -2 & 1 & 0 & 1 \end{pmatrix}$$

c'est une matrice-ligne de type (1;4).

### Remarque 1

 $\checkmark$  Les indices  $i,\ j$  sont des variables muettes car nous pouvons les remplacer par d'autres indices.

√ Deux matrices sont égales si elles ont la même taille et si leurs éléments de même indices sont identiques.



#### Proposition 1

Soit A la matrice de taille  $m \times n$ 

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1m} \\ a_{21} & a_{22} \cdots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} \cdots & a_{nm} \end{pmatrix}$$

On appelle  $\$ matrice  $\$ transposée de  $\ A$  la matrice  $\ A^T$  de taille  $n \times m$  définie par :

$$A^{T} = (a_{ji})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = \begin{pmatrix} a_{11} & a_{21} \cdots & a_{n1} \\ a_{12} & a_{22} \cdots & a_{n2} \\ \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} \cdots & a_{nm} \end{pmatrix}$$



#### Remarque 2

Le coefficient à la place (i, j) de  $A^T$  est  $a_{ji}$ . Ou encore la i-ième ligne de A devient la i-ème colonne de  $A^T$  (et réciproquement la j-ème colonne de  $A^T$  est la j-ème ligne de A).



#### Remarque 2

Le coefficient à la place (i, j) de  $A^T$  est  $a_{ji}$ . Ou encore la i-ième ligne de A devient la i-ème colonne de  $A^T$  (et réciproquement la j-ème colonne de  $A^T$  est la j-ème ligne de A).

#### Example 1.1

Soit 
$$A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$
 alors  $A^T = \begin{pmatrix} 2 & -3 & 5 \\ 1 & 2 & 4 \\ -10 & 3 & 2 \\ 5 & 1 & 6 \end{pmatrix}$ 



#### Remarque 2

Le coefficient à la place (i, j) de  $A^T$  est  $a_{ji}$ . Ou encore la i-ième ligne de A devient la i-ème colonne de  $A^T$  (et réciproquement la j-ème colonne de  $A^T$  est la j-ème ligne de A).

#### Example 1.1

Soit 
$$A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$
 alors  $A^T = \begin{pmatrix} 2 & -3 & 5 \\ 1 & 2 & 4 \\ -10 & 3 & 2 \\ 5 & 1 & 6 \end{pmatrix}$ 

#### Notation 1

La transposée de la matrice A se note aussi souvent  ${}^tA$ .



### Proposition 2

- **2**  $(A^T)^T = A$
- 3  $(AB)^T = B^T A^T$  (on le verra plus tard avec le produit matriciel)



# Matrice symétrique

#### Définition 3

Une matrice A de taille  $n \times n$  est symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A = A^T$$
 ou encore si  $a_{ij} = a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

Les coefficients sont donc symétriques par rapport à la diagonale.



# Matrice symétrique

#### Définition 3

Une matrice A de taille  $n \times n$  est symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A = A^T$$
 ou encore si  $a_{ij} = a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

Les coefficients sont donc symétriques par rapport à la diagonale.

### Example 1.2

Les matrices suivantes sont symétriques :

Soient 
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$
 et



# Matrice symétrique

#### Définition 3

Une matrice A de taille  $n \times n$  est symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A = A^T$$
 ou encore si  $a_{ij} = a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

Les coefficients sont donc symétriques par rapport à la diagonale.

### Example 1.2

Les matrices suivantes sont symétriques :

Soient 
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 1 & -3 & 5 \\ -3 & 2 & 4 \\ 5 & 4 & 3 \end{pmatrix}$ 



#### Définition 4

Une matrice A de taille  $n \times n$  est anti-symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A^T = -A$$
 ou encore si  $a_{ij} = -a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .



#### Définition 4

Une matrice A de taille  $n \times n$  est anti-symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A^T = -A$$
 ou encore si  $a_{ij} = -a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

### Example 1.3

Les matrices suivantes sont symétriques :

Soient 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 et



#### Définition 4

Une matrice A de taille  $n \times n$  est anti-symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A^T = -A$$
 ou encore si  $a_{ij} = -a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

### Example 1.3

Les matrices suivantes sont symétriques :

Soient 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 0 & -3 & 5 \\ 3 & 0 & 4 \\ -5 & -4 & 0 \end{pmatrix}$ 

### Remarque 3

Les éléments diagonaux d'une matrice antisymétrique sont toujours tous nuls.



#### Définition 4

Une matrice A de taille  $n \times n$  est anti-symétrique si elle est égale à sa transposée, c'est-à-dire si :

$$A^T = -A$$
 ou encore si  $a_{ij} = -a_{ji}$  pour tout  $i, j = 1, 2, ...n$ .

### Example 1.3

Les matrices suivantes sont symétriques :

Soient 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 0 & -3 & 5 \\ 3 & 0 & 4 \\ -5 & -4 & 0 \end{pmatrix}$ 

#### Remarque 3

Les éléments diagonaux d'une matrice antisymétrique sont toujours tous nuls. En effet  $a_{ij}=-a_{ji}$  pour tout i,j=1,2,...n. alors  $a_{ii}=-a_{ii}$  c'est-à-dire  $a_{ii}=0$ 





### Définition 5 (Somme de deux matrices)

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  deux matrices de type  $(n;m)$ . On appelle la somme de  $A$  et  $B$ , notée  $A+B$ , la matrice  $S=(s_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  telle que  $s_{ij}=a_{ij}+b_{ij}$  pour tout  $i,j$ .



### Définition 5 (Somme de deux matrices)

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  deux matrices de type  $(n;m).$  On appelle la somme de  $A$  et  $B$ , notée  $A+B$ , la matrice  $S=(s_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  telle que  $s_{ij}=a_{ij}+b_{ij}$  pour tout  $i,\ j.$ 

Soit 
$$A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$



#### Définition 5 (Somme de deux matrices)

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  deux matrices de type  $(n;m)$ . On appelle la somme de  $A$  et  $B$ , notée  $A+B$ , la matrice  $S=(s_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  telle que  $s_{ij}=a_{ij}+b_{ij}$  pour tout  $i,\ j$ .

Soit 
$$A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$
 et  $B = \begin{pmatrix} -2 & 1 & 6 & 1 \\ -1 & 4 & 2 & 1 \\ 0 & -5 & 2 & -6 \end{pmatrix}$ 



#### Définition 5 (Somme de deux matrices)

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  deux matrices de type  $(n;m).$  On appelle la somme de  $A$  et  $B$ , notée  $A+B$ , la matrice  $S=(s_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  telle que  $s_{ij}=a_{ij}+b_{ij}$  pour tout  $i,\ j.$ 



### Définition 6 (Produit d'une matrice par un scalaire)

Soit  $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  une matrice de type (n;m) et soit  $\lambda\in\mathbb{K}.$ 



### Définition 6 (Produit d'une matrice par un scalaire)

Soit  $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  une matrice de type (n;m) et soit  $\lambda\in\mathbb{K}$ . On appelle produit de  $\lambda$  par A la matrice  $\lambda A=(\lambda a_{ij})$ 



### Définition 6 (Produit d'une matrice par un scalaire)

Soit  $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  une matrice de type (n;m) et soit  $\lambda\in\mathbb{K}$ . On appelle produit de  $\lambda$  par A la matrice  $\lambda A=(\lambda a_{ij})$ 

Soit 
$$A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix}$$



### Définition 6 (Produit d'une matrice par un scalaire)

Soit  $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  une matrice de type (n;m) et soit  $\lambda\in\mathbb{K}$ . On appelle produit de  $\lambda$  par A la matrice  $\lambda A=(\lambda a_{ij})$ 

$$\text{Soit } A = \begin{pmatrix} 2 & 1 & -10 & 5 \\ -3 & 2 & 3 & 1 \\ 5 & 4 & 2 & 6 \end{pmatrix} \text{ alors } 3A = \begin{pmatrix} 6 & 3 & -30 & 15 \\ -9 & 6 & 9 & 3 \\ 15 & 12 & 6 & 18 \end{pmatrix}.$$



### Produit de deux matrices

Soit 
$$A = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 3 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 0 & 0 \\ 1 & -1 & 2 \end{pmatrix}$  alors  $AB = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 0 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ 



### Définition 7 (Produit de deux matrices)

Dr. Abdoul Aziz FALL

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq p\\1\leq j\leq m}}$  deux matrices de type  $(n;m).$  On appelle le produit de  $A$  et  $B$ , notée  $AB$ , la matrice  $P=(p_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  telle que  $p_{ij}=\sum_{j=1}^p a_{ik}b_{kj}$  pour tout  $i,\ j.$ 



### Définition 7 (Produit de deux matrices)

Dr. Abdoul Aziz FALL

Soit 
$$A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$$
 et  $B=(b_{ij})_{\substack{1\leq i\leq p\\1\leq j\leq m}}$  deux matrices de type  $(n;m).$  On appelle le produit de  $A$  et  $B$ , notée  $AB$ , la matrice  $P=(p_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  telle que  $p_{ij}=\sum_{j=1}^p a_{ik}b_{kj}$  pour tout  $i,\ j.$ 



## Produit de deux matrices

#### Remarque 4

✓ Le produit de deux matrices n'existe que si le nombre de colonnes de l'une est égale au nombre de lignes de l'autre.



## Produit de deux matrices

#### Remarque 4

✓ Le produit de deux matrices n'existe que si le nombre de colonnes de l'une est égale au nombre de lignes de l'autre.

✓ On retient que le produit s'obtient "ligne par colonne".

## Example 2.4

Soit 
$$A = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 3 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 0 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ 



## Produit de deux matrices

#### Remarque 4

✓ Le produit de deux matrices n'existe que si le nombre de colonnes de l'une est égale au nombre de lignes de l'autre.

✓ On retient que le produit s'obtient "ligne par colonne".

### Example 2.4

Soit 
$$A = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 3 \end{pmatrix}$$
 et  $B = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 0 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ 

alors 
$$AB = \begin{pmatrix} -1 & 3 & -6 \\ 3 & -4 & 8 \end{pmatrix}$$



### Proposition 3

• 
$$A + B = B + A$$
; (commutativité)



### Proposition 3

- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C); (associativité)



### Proposition 3

- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C); (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)



### Proposition 3

- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C); (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)



- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C): (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)



- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C): (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)

- (B+C)A = BA + CA; (distributivité)



- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C): (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)

- (B+C)A = BA + CA; (distributivité)
- $(A+B)^T = A^T + B^T$ ; (transposée)



- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C): (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)

- (B+C)A = BA + CA; (distributivité)
- $(A+B)^T = A^T + B^T$ ; (transposée)
- **3**  $(AB)^T = B^T A^T$ :



- $\bullet$  A + B = B + A; (commutativité)
- (A+B)+C=A+(B+C): (associativité)
- $\delta \lambda(A+B) = \lambda A + \lambda B$  avec  $\lambda \in \mathbb{K}$ ; (distributivité par rapport à un scalaire)

- (B+C)A = BA + CA; (distributivité)
- $(A+B)^T = A^T + B^T$ ; (transposée)
- **3**  $(AB)^T = B^T A^T$ ;



#### Définition 8

Une matrice  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  est dite nulle si  $a_{ij}=0$  pour tout  $i,\ j$ 



#### Définition 8

Une matrice  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  est dite nulle si  $a_{ij}=0$  pour tout  $i,\ j$  et on note

$$O_{nm} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$



#### Définition 8

Une matrice  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  est dite nulle si  $a_{ij}=0$  pour tout  $i,\ j$  et on note

$$O_{nm} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Autrement dit une matrice est nulle si tous ses éléments sont nuls.



#### Définition 8

Une matrice  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$  est dite nulle si  $a_{ij}=0$  pour tout  $i,\ j$  et on note

$$O_{nm} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Autrement dit une matrice est nulle si tous ses éléments sont nuls.

## Remarque 5

La matrice nulle  $O_{nm}$  est neutre pour l'addition c'est-à -dire pour toute matrice M de taille nm, on a

$$M + Q_{nm} = Q_{nm} + M = M$$
.



### Remarque 6

On peut avoir deux matrices non nulles dont le produit est nulle.

Pour s'en convaincre, considérons 
$$A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$$
 et  $B=\begin{pmatrix}0&0\\0&5\end{pmatrix}$ 

alors 
$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.



### Remarque 6

On peut avoir deux matrices non nulles dont le produit est nulle.

Pour s'en convaincre, considérons 
$$A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$$
 et  $B=\begin{pmatrix}0&0\\0&5\end{pmatrix}$ 

alors 
$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

### Définition 9

On appelle matrice carrée toute matrice de type (n; n) et note par  $\mathcal{M}_n$  l'ensemble des matrices carrées.



#### Définition 10

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite triangulaire supérieure (resp. inférieure) si  $a_{ij}=0$  pour tout i>j (resp. pour tout j>i)



#### Définition 10

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite triangulaire supérieure (resp. inférieure) si  $a_{ij}=0$  pour tout i>j (resp. pour tout j>i)

## Example 3.1

$$\begin{pmatrix} 5 & 1 & -2 \\ 0 & 8 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ est une matrice triangulaire supérieure}.$$



#### Définition 10

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite triangulaire supérieure (resp. inférieure) si  $a_{ij}=0$  pour tout i>j (resp. pour tout j>i)

## Example 3.1

$$\begin{pmatrix} 5 & 1 & -2 \\ 0 & 8 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ est une matrice triangulaire supérieure.}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 1 & 3 & 0 \\ 6 & 4 & 2 \end{pmatrix}$$
 est une matrice triangulaire inférieure



#### Définition 11

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite diagonale si  $a_{ij}=0$  pour tout  $i\neq j$ .



#### Définition 11

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite diagonale si  $a_{ij}=0$  pour tout  $i\neq j$ .

#### Remarque 7

En d'autres termes, une matrice carrée est dite diagonale si elle est à la fois une matrice triangulaire supérieure et une matrice triangulaire inférieure.



#### Définition 11

Une matrice carrée  $M=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  est dite diagonale si  $a_{ij}=0$  pour tout  $i\neq j$ .

### Remarque 7

En d'autres termes, une matrice carrée est dite diagonale si elle est à la fois une matrice triangulaire supérieure et une matrice triangulaire inférieure.

## Example 3.2

$$\begin{pmatrix} 5 & 0 & -0 \\ 0 & 8 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 est une matrice diagonale.



#### Définition 12

La matrice identité est la matrice carrée notée  $I_n=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$  telle

$$\label{eq:que} \textit{que} \left\{ \begin{array}{ll} a_{ij} = 1 \ si & i = j \\ a_{ij} = 0 \ si & i \neq j \end{array} \right., \quad \text{, i.e.,}$$

$$I_n = \begin{pmatrix} 1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 1 \end{pmatrix}.$$



#### Définition 12

La matrice identité est la matrice carrée notée  $I_n = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$  telle

$$\text{que} \left\{ \begin{array}{ll} a_{ij} = 1 \; si & i = j \\ a_{ij} = 0 \; si & i \neq j \end{array} \right., \quad \text{, i.e.,}$$

$$I_n = \begin{pmatrix} 1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 1 \end{pmatrix}.$$

## Remarque 8

La matrice identité est neutre pour le produit matriciel c-à -d pour toute matrice  $M \in \mathcal{M}_n$ ,

$$MI_n = I_n M = M$$
.



#### Définition 13

Toute matrice construite à partir d'une matrice A par élimination de lignes ou de colonnes est dite sous-matrice de A. En particulier, toute ligne ou toute colonne de A est une sous matrice de A.



#### Définition 13

Toute matrice construite à partir d'une matrice A par élimination de lignes ou de colonnes est dite sous-matrice de A. En particulier, toute ligne ou toute colonne de A est une sous matrice de A.

#### Définition 14

La trace d'une matrice carrée A notée tr(A) est la somme des éléments sur le diagonal de A.



#### Définition 13

Toute matrice construite à partir d'une matrice A par élimination de lignes ou de colonnes est dite sous-matrice de A. En particulier, toute ligne ou toute colonne de A est une sous matrice de A.

#### Définition 14

La trace d'une matrice carrée A notée tr(A) est la somme des éléments sur le diagonal de A.

## Example 3.3

$$A = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \text{ alors } tr(A) = 3 + 0 + 2 = 5.$$





## Proposition 4

$$tr(A+B) = tr(A) + tr(B);$$



### Proposition 4

- tr(A+B) = tr(A) + tr(B);
- $2 tr(\lambda A) = \lambda tr(A);$



### Proposition 4

- tr(A+B) = tr(A) + tr(B);
- $2 tr(\lambda A) = \lambda tr(A);$
- tr(A') = tr(A);



### Proposition 4

- tr(A+B) = tr(A) + tr(B);
- $2 tr(\lambda A) = \lambda tr(A);$
- tr(A') = tr(A);
- tr(AB) = tr(BA);



## Déterminant d'une matrice carrée

### Définition 15

Toute matrice carrée  $A=(a_{ij})_{n\times n}$  admet un déterminant réel noté  $\det(A)$  ou |A|.



### Définition 15

Toute matrice carrée  $A=(a_{ij})_{n\times n}$  admet un déterminant réel noté  $\det(A)$  ou |A|.

 $\textbf{9} \ \, \textit{Pour } n=1 \text{, la matrice se réduit au seul élément } A=(a_{11}) \, \, \text{et} \\ \text{on a}$ 

$$\det(A) = a_{11}.$$



### Définition 15

Toute matrice carrée  $A=(a_{ij})_{n\times n}$  admet un déterminant réel noté  $\det(A)$  ou |A|.

 $\textbf{9} \ \ \textit{Pour } n=1 \text{, la matrice se réduit au seul élément } A=(a_{11}) \ \text{et} \\ \text{on a}$ 

$$\det(A) = a_{11}.$$

2 Pour n=2, la matrice se réduit à  $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ 



### Définition 15

Toute matrice carrée  $A=(a_{ij})_{n\times n}$  admet un déterminant réel noté  $\det(A)$  ou |A|.

 $\textbf{9} \ \ \textit{Pour } n=1 \text{, la matrice se réduit au seul élément } A=(a_{11}) \ \text{et} \\ \text{on a}$ 

$$\det(A) = a_{11}.$$

② Pour n=2, la matrice se réduit à  $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$  et on a

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}.$$



#### Définition 16

Pour 
$$n=3$$
, la matrice se réduit à  $A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$  et on a  $\det(A)=a_{11}a_{22}a_{33}+a_{21}a_{32}a_{13}+a_{31}a_{12}a_{23}-(a_{31}a_{22}a_{13}+a_{32}a_{23}a_{11}+a_{33}a_{21}a_{12}).$ 





$$A = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \text{ alors } \det(A) = (2)(3) - (-1)(-5) = 11.$$

$$\mathbf{2} \ B = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \text{ alors } \det(A) = (2)(3) - (-1)(-5) = 11.$$

$$B = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \text{ alors } \det(B) = \text{calcul à faire}$$



$$B = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \text{ alors } \det(B) = \text{calcul à faire}$$
 et on trouve  $\det(B) =$ 



### Proposition 5



### Proposition 5

- $\bullet \det(\lambda A) = \lambda^n \det(A);$



### Proposition 5

- $\bullet \det(\lambda A) = \lambda^n \det(A);$



### Proposition 5

- $\bullet \det(\lambda A) = \lambda^n \det(A);$



## Proposition 5

Soit  $\lambda \in \mathbb{K}$  et soit  $A \in \mathcal{M}_n$  alors

- $\bullet \det(\lambda A) = \lambda^n \det(A);$

## Proposition 6

Soit  $A = (a_{ij})_{n \times n}$  alors  $\det(A) = 0$  si la matrice A a une des caractéristiques suivantes :

1 une ligne (ou une colonne ) est composée uniquement de zéro;



## Proposition 5

Soit  $\lambda \in \mathbb{K}$  et soit  $A \in \mathcal{M}_n$  alors

- $\bullet \det(\lambda A) = \lambda^n \det(A);$

## Proposition 6

Soit  $A = (a_{ij})_{n \times n}$  alors  $\det(A) = 0$  si la matrice A a une des caractéristiques suivantes :

- 1 une ligne (ou une colonne ) est composée uniquement de zéro;
- 2 deux lignes (ou deux colonnes ) sont proportionnelles;



### Proposition 5

Soit  $\lambda \in \mathbb{K}$  et soit  $A \in \mathcal{M}_n$  alors

- $\operatorname{det}(A') = \operatorname{det}(A)$ ;

### Proposition 6

Soit  $A = (a_{ij})_{n \times n}$  alors  $\det(A) = 0$  si la matrice A a une des caractéristiques suivantes :

- 1 une ligne (ou une colonne ) est composée uniquement de zéro;
- 2 deux lignes (ou deux colonnes ) sont proportionnelles;
- **1** une ligne ( ou une colonne ) est une combinaison linéaires des suites lignes ( colonnes).



#### Remarque 9

✓ Les déterminants ne change pas, on on ajoute une ligne ( une colonne) une combinaison linéaire d'autres lignes ( colonnes).



#### Remarque 9

- ✓ Les déterminants ne change pas, on on ajoute une ligne ( une colonne) une combinaison linéaire d'autres lignes ( colonnes).
- ✓ Le déterminant change de signe si on permute deux lignes (ou deux colonnes).



#### Remarque 9

- ✓ Les déterminants ne change pas, on on ajoute une ligne ( une colonne) une combinaison linéaire d'autres lignes (colonnes).
- ✓ Le déterminant change de signe si on permute deux lignes (ou deux colonnes).
- $\checkmark$  Le déterminant est multiplier par  $\lambda \in \mathbb{K}$ , si on multiplie une ligne (ou une colonne ) par  $\lambda$ .



#### Remarque 9

- ✓ Les déterminants ne change pas, on on ajoute une ligne ( une colonne) une combinaison linéaire d'autres lignes ( colonnes).
- ✓ Le déterminant change de signe si on permute deux lignes (ou deux colonnes).
- $\checkmark$  Le déterminant est multiplier par  $\lambda \in \mathbb{K}$ , si on multiplie une ligne (ou une colonne ) par  $\lambda$ .

#### Définition 17

Le rang d'une matrice  $A=(a_{ij})_{n\times m}$ , noté rg(A) est égale au nombre de colonnes ( ou de lignes) de A linéaires indépendantes.



#### Définition 18

Les lignes (colonnes) sont linéairement indépendantes si et si seulement si l'équation  $\lambda_1 L_1 + \lambda_2 L_2 + \cdots + \lambda_n L_n = 0_{\mathbb{R}^n}$  admet une unique solution  $(\lambda_1, \lambda_2, \cdots, \lambda_{n-1}, \lambda_n) = 0_{\mathbb{R}^n}$ .



#### Définition 18

Les lignes (colonnes) sont linéairement indépendantes si et si seulement si l'équation  $\lambda_1 L_1 + \lambda_2 L_2 + \dots + \lambda_n L_n = 0_{\mathbb{R}^n}$  admet une unique solution  $(\lambda_1, \ \lambda_2, \ \dots, \ \lambda_{n-1}, \ \lambda_n) = 0_{\mathbb{R}^n}$ .

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$



### Définition 18

Les lignes (colonnes) sont linéairement indépendantes si et si seulement si l'équation  $\lambda_1 L_1 + \lambda_2 L_2 + \cdots + \lambda_n L_n = 0_{\mathbb{R}^n}$  admet une unique solution  $(\lambda_1, \ \lambda_2, \ \cdots, \ \lambda_{n-1}, \ \lambda_n) = 0_{\mathbb{R}^n}$ .

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$

$$\lambda L_1 + \beta L_2 + \alpha L_3 = 0 \text{ alors } \begin{cases} \lambda + \beta + 3\alpha & = 0, \\ 2\lambda - \beta & = 0, \\ 2\beta + \alpha & = 0. \end{cases}$$



#### Définition 18

Les lignes (colonnes) sont linéairement indépendantes si et si seulement si l'équation  $\lambda_1 L_1 + \lambda_2 L_2 + \cdots + \lambda_n L_n = 0_{\mathbb{R}^n}$  admet une unique solution  $(\lambda_1, \lambda_2, \dots, \lambda_{n-1}, \lambda_n) = 0_{\mathbb{R}^n}$ .

### Example 3.5

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$

$$\lambda L_1 + \beta L_2 + \alpha L_3 = 0 \text{ alors } \begin{cases} \lambda + \beta + 3\alpha & = 0, \\ 2\lambda - \beta & = 0, \\ 2\beta + \alpha & = 0. \end{cases}$$

En résolvant le système on obtient :  $\alpha = \lambda = \beta = 0$ .



#### Définition 19

Le rang d'une matrice A, noté rg(A) est le nombre maximal de vecteurs lignes (ou colonnes) linéairement indépendants.

Soit 
$$A = (a_{ij})_{n \times m}$$

- $r(A) \leq \min(n, m).$



#### Définition 19

Le rang d'une matrice A, noté rg(A) est le nombre maximal de vecteurs lignes (ou colonnes) linéairement indépendants.

## Proposition 7

Soit  $A = (a_{ij})_{n \times m}$ 

- $r(A) \leq \min(n, m)$ .

## Définition 20

Si la matrice  $A = (a_{ij})_{n \times m}$  est telle que  $rg(A) = \min(n, m)$  elle est dite de plein rang.



## Proposition 8

Le rang d'une matrice ne change pas lorsque :

les colonnes ( ou lignes) sont permutées ;



## Proposition 8

Le rang d'une matrice ne change pas lorsque :

- 1 les colonnes ( ou lignes) sont permutées ;
- 2 une colonne (ou ligne ) est multipliée par un réel non nul;



## Proposition 8

Le rang d'une matrice ne change pas lorsque :

- les colonnes ( ou lignes) sont permutées ;
- 2 une colonne (ou ligne ) est multipliée par un réel non nul;
- **3** une combinaison d'autres lignes ( ou colonnes ) est ajoutée à une ligne ( ou ) colonne donnée.



#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$  la matrice inverse de A.



#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$  la matrice inverse de A.

### Proposition 9

• Si  $A \in \mathcal{M}_n$  est inversible alors :

#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$ la matrice inverse de A.

- **1** Si  $A \in \mathcal{M}_n$  est inversible alors :
  - **1**  $A^{-1}$  est aussi inversible et  $(A^{-1})^{-1} = A$ ;

#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$ la matrice inverse de A.

- **1** Si  $A \in \mathcal{M}_n$  est inversible alors :
  - **1**  $A^{-1}$  est aussi inversible et  $(A^{-1})^{-1} = A$ ;
  - **2** A' est inversible et  $(A')^{-1} = (A^{-1})'$ ;

#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$ la matrice inverse de A.

- **1** Si  $A \in \mathcal{M}_n$  est inversible alors:
  - **1**  $A^{-1}$  est aussi inversible et  $(A^{-1})^{-1} = A$ ;
  - **2** A' est inversible et  $(A')^{-1} = (A^{-1})'$ ;
  - **3**  $\lambda \in \mathbb{K}, \ \lambda \neq 0, \ (\lambda A)$  est inversible et  $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$ .



#### Définition 21

Une matrice  $A \in \mathcal{M}_n$  est inversible (régulière) s'il existe une matrice  $A' \in \mathcal{M}_n$  telle que  $A'A = AA' = I_n$  et on note  $A' = A^{-1}$ la matrice inverse de A.

- **1** Si  $A \in \mathcal{M}_n$  est inversible alors:
  - **1**  $A^{-1}$  est aussi inversible et  $(A^{-1})^{-1} = A$ ;
  - **2** A' est inversible et  $(A')^{-1} = (A^{-1})'$ ;
  - **3**  $\lambda \in \mathbb{K}, \ \lambda \neq 0, \ (\lambda A)$  est inversible et  $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$ .
- $Si A, B \in \mathcal{M}_n$  sont inversibles alors le produit AB est inversible et  $(AB)^{-1} = B^{-1}A^{-1}$ .



## Remarque 10 (Inverse d'une matrice d'ordre 2)

Soit 
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 telle que  $\det(A) = a_{11}a_{22} - a_{12}a_{21} \neq 0$ .



## Remarque 10 (Inverse d'une matrice d'ordre 2)

Soit 
$$A=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$$
 telle que  $\det(A)=a_{11}a_{22}-a_{12}a_{21}\neq 0.$  Alors on a

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$



## inversibilité d'une matrice et application linéaire associée

## Définition 22 (application linéaire associée à une matrice )

On appelle système linéaire de n équations à p inconnues un système du type

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ & \vdots & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p &= b_n. \end{cases}$$

Les nombres (réels ou complexes)  $a_{i,j}$  et  $b_i$  sont donnés, on les appelle les coefficients du système. Les  $x_i$  sont les inconnues du système, résoudre le système revient à déterminer les valeurs possibles des  $x_i$ .



Soit 
$$A = \begin{pmatrix} -2 & 2 \\ 3 & 1 \end{pmatrix}$$



Soit 
$$A=\begin{pmatrix} -2 & 2 \\ 3 & 1 \end{pmatrix}$$
 alors  $\det(A)=-2(1)-3(2)=-8\neq 0$ 



Soit 
$$A = \begin{pmatrix} -2 & 2 \\ 3 & 1 \end{pmatrix}$$
 alors  $\det(A) = -2(1) - 3(2) = -8 \neq 0$  et donc  $A^{-1} = \frac{1}{-8} \begin{pmatrix} 1 & -2 \\ -3 & -2 \end{pmatrix}$ .



#### Définition 23

Deux matrices carrées A et B d'ordre n sont dites semblables s'il existe une matrice P carrée d'ordre n inversible telle que :  $A = P^{-1}BP$  ( ou  $B = PAP^{-1}$  ). P est appelée matrice de passage.



#### Définition 23

Deux matrices carrées A et B d'ordre n sont dites semblables s'il existe une matrice P carrée d'ordre n inversible telle que :  $A=P^{-1}BP$  ( ou  $B=PAP^{-1}$  ). P est appelée matrice de passage.

#### Définition 24

Une matrice carrée A d'ordre n est diagonalisable si elle est semblable à une matrice diagonale.



#### Définition 25

Soit A une matrice carrée d'ordre n.

1 Le vecteur colonne  $X \in \mathbb{R}^{n \times 1}$ , i.e,  $X \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$ 



#### Définition 25

Soit A une matrice carrée d'ordre n.

 $\textbf{1} \ \, \textit{Le vecteur colonne} \ \, X \in \mathbb{R}^{n \times 1}, \ i.e, \ X \left( \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{array} \right) \ \, \textit{est un}$   $\textit{vecteur propre de } A \ \, \textit{si et a...}$ 

$$X \neq 0;$$



#### Définition 25

Soit A une matrice carrée d'ordre n.

• Le vecteur colonne 
$$X \in \mathbb{R}^{n \times 1}$$
,  $i.e$ ,  $X \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$  est un

vecteur propre de A si et seulement si

- $X \neq 0;$
- **2** il existe  $\lambda \in \mathbb{K}$  tel que  $AX = \lambda X$ .
- **2** On dit que  $\lambda$  est valeur propre associée au vecteur propre X.



Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$



Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et  $X = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$ .



## Example 4.2

Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et  $X = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$ . Déterminons la valeur

propre de  $\hat{A}$  associée à  $\hat{X}$ .

$$AX = \lambda X \iff \begin{pmatrix} -4\\2\\0 \end{pmatrix} = \lambda \begin{pmatrix} -2\\1\\0 \end{pmatrix} \iff \lambda = 2.$$



### Proposition 10

 $\lambda \in \mathbb{K}$  est valeur propre de A si et seulement si  $P_A(\lambda) := \det(A - \lambda I_n) = 0$ .



## Proposition 10

 $\lambda \in \mathbb{K}$  est valeur propre de A si et seulement si  $P_A(\lambda) := \det(A - \lambda I_n) = 0$ .

#### Définition 26

Soit A une matrice carrée d'ordre n.

**1** Le polynôme  $P_A(\lambda) = \det(A - \lambda I_n)$  de degré n est dit polynôme caractéristique de A.



## Proposition 10

 $\lambda \in \mathbb{K}$  est valeur propre de A si et seulement si  $P_A(\lambda) := \det(A - \lambda I_n) = 0$ .

#### Définition 26

Soit A une matrice carrée d'ordre n.

- Le polynôme  $P_A(\lambda) = \det(A \lambda I_n)$  de degré n est dit polynôme caractéristique de A.
- 2 L'équation  $P_A(\lambda) = 0$  est appelée équation caractéristique de A.



## Proposition 10

 $\lambda \in \mathbb{K}$  est valeur propre de A si et seulement si  $P_A(\lambda) := \det(A - \lambda I_n) = 0$ .

#### Définition 26

Soit A une matrice carrée d'ordre n.

- Le polynôme  $P_A(\lambda) = \det(A \lambda I_n)$  de degré n est dit polynôme caractéristique de A.
- ② L'équation  $P_A(\lambda) = 0$  est appelée équation caractéristique de A.
- ullet L'ensemble des solutions complexes de l'équation caractéristique de A constitue le spectre de A et est noté spec(A).



## Proposition 10

 $\lambda \in \mathbb{K}$  est valeur propre de A si et seulement si  $P_A(\lambda) := \det(A - \lambda I_n) = 0$ .

#### Définition 26

Soit A une matrice carrée d'ordre n.

- Le polynôme  $P_A(\lambda) = \det(A \lambda I_n)$  de degré n est dit polynôme caractéristique de A.
- ② L'équation  $P_A(\lambda) = 0$  est appelée équation caractéristique de A.
- **③** L'ensemble des solutions complexes de l'équation caractéristique de A constitue le spectre de A et est noté spec(A).
- 4 La multiplicité algébrique d'une valeur propre est sa multiplicité comme solution de l'équation caractéristique.



#### Définition 27

On appelle sous espace propre associée à une valeur propre  $\lambda \in \mathbb{K}$  d'une matrice carrée A le noyau de  $A\lambda - I_n$  i.e  $\ker(A - \lambda I_n)$  notée  $E_\lambda$ .  $E_\lambda$  contient 0 et le vecteur propre associé à  $\lambda$ , par suite  $\dim E_\lambda > 1$ .



#### Définition 27

On appelle sous espace propre associée à une valeur propre  $\lambda \in \mathbb{K}$  d'une matrice carrée A le noyau de  $A\lambda - I_n$  i.e  $\ker(A - \lambda I_n)$  notée  $E_\lambda$ .  $E_\lambda$  contient 0 et le vecteur propre associé à  $\lambda$ , par suite  $\dim E_\lambda \geq 1$ .

#### Remarque 11

Le spectre comporte n nombre complexes distincts ou non.



#### Proposition 11

Le spectre d'une matrice A admet les propriétés suivantes

lacktriangle A et  $A^{'}$  ont le même spectre



### Proposition 11

Le spectre d'une matrice A admet les propriétés suivantes

- A et A' ont le même spectre
- $\bigcirc$  Si A est inversible alors 0 n'est pas valeur propre de A.



## Proposition 11

Le spectre d'une matrice A admet les propriétés suivantes

- A et A' ont le même spectre
- $\bullet$  Si A est inversible alors 0 n'est pas valeur propre de A.
- **3** Si A est inversible  $\lambda$  une valeur propre de réelle de A alors  $\frac{1}{\lambda}$  est une valeur propre de  $A^{-1}$ .



## Proposition 11

Le spectre d'une matrice A admet les propriétés suivantes

- A et A ont le même spectre
- ② Si A est inversible alors 0 n'est pas valeur propre de A.
- **3** Si A est inversible  $\lambda$  une valeur propre de réelle de A alors  $\frac{1}{\lambda}$  est une valeur propre de  $A^{-1}$ .
- 4 Les matrices semblables ont toute le même le spectre.



#### Example 4.3

Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

• Déterminer  $P_A(\lambda)$ .



Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- **①** Déterminer  $P_A(\lambda)$ .
- **2** En déduire que  $spec(A) = \{1, 2, -1\}$



Soit 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- **①** Déterminer  $P_A(\lambda)$ .
- **2** En déduire que  $spec(A) = \{1, 2, -1\}$
- 3 Déterminer le sous espace propre de chaque valeur propre.



#### Définition 28

• Une matrice A d'ordre n est dite symétrique si A' = A.



#### Définition 28

- Une matrice A d'ordre n est dite symétrique si A' = A.
- ② Une matrice A d'ordre n est dite antisymétrique si  $A^{'}=-A$ .



#### Définition 28

- Une matrice A d'ordre n est dite symétrique si A' = A.
- ② Une matrice A d'ordre n est dite antisymétrique si A' = -A.

## Proposition 12

• Si D est une matrice carrée diagonale alors ses valeurs propres sont les n valeurs se trouvant sur la diagonales c'est-à -dire si

$$D = \begin{pmatrix} d_1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & d_n \end{pmatrix}$$



#### Définition 28

- Une matrice A d'ordre n est dite symétrique si  $A^{'}=A$ .
- ② Une matrice A d'ordre n est dite antisymétrique si A'=-A.

## Proposition 12

• Si D est une matrice carrée diagonale alors ses valeurs propres sont les n valeurs se trouvant sur la diagonales c'est-à -dire si

$$D = \begin{pmatrix} d_1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & d_n \end{pmatrix} \text{ alors }$$

$$spec(D) = \{d_1, d_2, \cdots, d_{n-1}, d_n\}.$$



#### Définition 28

- Une matrice A d'ordre n est dite symétrique si  $A^{'}=A$ .
- ② Une matrice A d'ordre n est dite antisymétrique si A' = -A.

## Proposition 12

• Si D est une matrice carrée diagonale alors ses valeurs propres sont les n valeurs se trouvant sur la diagonales c'est-à -dire si

$$D = \begin{pmatrix} d_1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & d_n \end{pmatrix} \text{ alors }$$

$$spec(D) = \{d_1, d_2, \cdots, d_{n-1}, d_n\}.$$

② Si une matrice carrée d'ordre n est symétrique alors elle est diagonalisable.



## Proposition 13 (Condition nécessaire de diagonalisation)

Si A admet n valeurs propres distinctes 2 à 2 alors A est diagonalisable.



## Proposition 13 (Condition nécessaire de diagonalisation)

Si A admet n valeurs propres distinctes 2 à 2 alors A est diagonalisable.

# Proposition 14 (Condition nécessaire et suffisante de diagonalisation)

Pour chaque matrice carrée A d'ordre n les assertions suivantes sont équivalentes

A est diagonalisable



## Proposition 13 (Condition nécessaire de diagonalisation)

Si A admet n valeurs propres distinctes 2 à 2 alors A est diagonalisable.

# Proposition 14 (Condition nécessaire et suffisante de diagonalisation)

Pour chaque matrice carrée A d'ordre n les assertions suivantes sont équivalentes

- A est diagonalisable
- 2 Les deux conditions suivantes sont vérifiées



## Proposition 13 (Condition nécessaire de diagonalisation)

Si A admet n valeurs propres distinctes 2 à 2 alors A est diagonalisable.

# Proposition 14 (Condition nécessaire et suffisante de diagonalisation)

Pour chaque matrice carrée A d'ordre n les assertions suivantes sont équivalentes

- A est diagonalisable
- 2 Les deux conditions suivantes sont vérifiées
  - $P_A(\lambda)$  est totalement réductible



## Proposition 13 (Condition nécessaire de diagonalisation)

Si A admet n valeurs propres distinctes 2 à 2 alors A est diagonalisable.

# Proposition 14 (Condition nécessaire et suffisante de diagonalisation)

Pour chaque matrice carrée A d'ordre n les assertions suivantes sont équivalentes

- A est diagonalisable
- 2 Les deux conditions suivantes sont vérifiées
  - $P_A(\lambda)$  est totalement réductible
  - 2 La dimension de chaque sous-espace propre est égale à la multiplicité de sa valeur propre associée



#### Remarque 12

Dire qu'une matrice carrée d'ordre n est diagonalisable revient à dire que  $\sum_{i=1}^n \dim E_{\lambda_i} = n$  avec  $E_{\lambda_i}$  est le sous espace propre associée à la valeur propre  $\lambda_i \in \mathbb{K}$ .



#### Remarque 13

 $Si\ A$  est diagonalisable alors :



#### Remarque 13

Si A est diagonalisable alors :

① l'une des matrices semblable à A est la matrice diagonale D constituée des valeurs propres de A :

$$D = \begin{pmatrix} \lambda_1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & \lambda_n \end{pmatrix};$$



#### Remarque 13

Si A est diagonalisable alors :

① l'une des matrices semblable à A est la matrice diagonale D constituée des valeurs propres de A :

$$D = \begin{pmatrix} \lambda_1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 \cdots & \lambda_n \end{pmatrix};$$

② les colonnes de la matrice de passage P sont constituées des vecteurs propres  $v_i$  associée à chaque valeur propre  $\lambda_i$ .

## Example 4.4

Soit 
$$A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$$

**①** Déterminer le polynôme caractéristique  $P_A(\lambda)$ .



Soit 
$$A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$$

- **①** Déterminer le polynôme caractéristique  $P_A(\lambda)$ .
- ② Donner l'ensemble spec(A).



Soit 
$$A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$$

- **1** Déterminer le polynôme caractéristique  $P_A(\lambda)$ .
- ② Donner l'ensemble spec(A).
- **3** Déterminer le sous-espace propre  $E_{\lambda}$  associée à chaque valeur propre  $\lambda$ .



Soit 
$$A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$$

- **①** Déterminer le polynôme caractéristique  $P_A(\lambda)$ .
- ② Donner l'ensemble spec(A).
- **3** Déterminer le sous-espace propre  $E_{\lambda}$  associée à chaque valeur propre  $\lambda$ .
- $oldsymbol{4}$  Montrer que A est diagonalisable.



Soit 
$$A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$$

- ① Déterminer le polynôme caractéristique  $P_A(\lambda)$ .
- ② Donner l'ensemble spec(A).
- **3** Déterminer le sous-espace propre  $E_{\lambda}$  associée à chaque valeur propre  $\lambda$ .
- $oldsymbol{4}$  Montrer que A est diagonalisable.
- lacktriangle Donner la matrice diagonale D semblable à A et la matrice de passage P associée à D.



## Merci de votre attention

Merci de votre attention

