## **2-AMALIY TOPSHIRIQ**

## Mavzu:Termodinamika jarayonlari

#### 1-masala

Boshlang'ich ko'rsatkichlari  $P_I = 6.8$  MPa va  $t_I = 12$   $^0S$  bo'lgan V = 300 l hajmidagi karbonat angidridi (CO<sub>2</sub>)  $t_2 = 85$   $^0S$  gacha qizdirilgan.

Gazning keyingi bosimini, massasini va qizdirish uchun sarflangan issiqlik miqdorini izoxorik va izobarik jarayonlar uchun aniqlang. S = sonst deb qabul qilingan.

#### Yechish.

a) Izoxorik jarayon uchun gazning keyingi bosimi

$$P_2 = \frac{P_1 \cdot T_2}{T_1} = \frac{6.8 \cdot 358}{285} = 8.55$$
 MPa

Korbonat angidridning massasini ideal gazlarning holat tenglamasidan aniqlaymiz:

$$P_1 \cdot V_1 = M \cdot R \cdot T_1$$
 
$$M = \frac{P_1 \cdot V}{R \cdot T_1} = \frac{6.8 \cdot 10^6 \cdot 300 \cdot 10^{-3}}{189 \cdot 285} = 38 \text{ kg}$$

Sarflangan issiqlik miqdori

$$Q_v = Mc_v(t_2 - t_1) = 38 \cdot 0,66 \cdot (85 - 12) = 1834 \text{ kJ}$$

$$c_v = \frac{\mu c_v}{\mu} = \frac{29,31}{44} = 0,66 \text{ kJ/kg.}^0\text{S}$$

b) Izobarik jarayon uchun:

Bu jarayonda P = const bo'lgani uchun  $P_2 = P_1 = 6.8$  MPa, gaz miqdori ham o'zgarmas - M = 38 kg.

Sarflangan issiqlikning miqdori

$$Q_p = M \cdot c_p \cdot (t_2 - t_1) = 38 \cdot 0.86 \cdot (85 - 12) = 2380 \text{ kJ}$$

$$c_p = \frac{\mu c_p}{\mu} = \frac{37,68}{44} = 0,86 \text{ kJ/kg} ^{\circ}\text{S}$$

## 2-masala

Massasi M=115~kg, boshlang'ich holat ko'rsatkichlari  $P_1=3,7~MPa$  va  $\mathbf{t}_1=50~^0\mathbf{S}$  bo'lgan vodorod  $P_2=0,25~MPa$  gacha kengaygan.

Izotermik va adiabatik kengayish jarayonlari uchun vodorodning oxirgi holat ko'rsatkichlarini, issiqlik miqdorini, bajarilgan ishni va ichki energiyaning o'zgarishini aniqlang.

# Yechish.

a) Izotermik jarayon uchun:

Bu jarayonda T = const bo'lgani uchun  $t_2 = t_1 = 50^{\circ}S$ .

Ideal gazlarning holat tenglamasidan vodorodning keyingi hajmini aniqlaymiz:

$$V_2 = \frac{M \cdot R \cdot T_2}{P_2} = \frac{115 \cdot 4157 \cdot 323}{0,25 \cdot 10^6} = 617 \text{ m}^3$$

Vodorodni qizdirish uchun sarflangan issiqlik miqdori

$$Q = M \cdot R \cdot T_1 \cdot \ln \frac{P_1}{P_2} = 115 \cdot 4157323 \cdot \ln \frac{37}{0.25} = 424 \cdot 10^7 \text{ MJ}$$

Bajarilgan ishi L = Q = 424 MJ

Izotermik jarayonda  $T_1 = T_2$  bo'lganligi uchun ichki energiyaning o'zgarishi

$$\Delta u = c_v \cdot (T_2 - T_1) = 0$$

b) Adiabatik jarayon uchun:

Vodorodning keyingi harorati

$$T_2 = T_1 \cdot \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} = 323 \cdot \left(\frac{0,25}{3,7}\right)^{\frac{1,4-1}{1,4}} = 150 \text{ K}$$

Hajmi

$$V_2 = \frac{M \cdot R \cdot T_2}{P_2} = \frac{115 \cdot 4157 \cdot 150}{0.25 \cdot 10^6} = 287 \text{ m}^3$$

Adiabatik jarayonda Q = 0.

Ichki energiyaning o'zgarishi

$$\Delta u = L = \frac{M \cdot R}{k-1} (T_1 - T_2) = \frac{115.4157}{14-1} (323-150) = -21, 2 \cdot 10^7 \text{ j}$$

# 3-masala

Harorati  $t_1 = 24$   $^{0}C$ , massasi 1 kg havo politropik jarayonda holati o'zgarishi natijasida bosimi  $P_2 = 2,4$  MPa va ichki energiyasining o'zgarishi  $\Delta u = 30$  kJ/kg ga teng bo'ldi. Bunda l = -52 J/kg miqdorda ish sarflandi.

Shu jarayon uchun politropik ko'rsatkichini, havoning avvalgi va keyingi holat ko'rsatkichlarini, entropiya va entalpiyalari o'zgarishini aniqlang.

#### Yechish:

Ichki energiyaning o'zgarishi tenglamasi  $\Delta u = s_v(T_2 - T_1)$  dan jarayon oxiridagi havoning haroratini topamiz:

$$T_2 = \frac{\Delta u}{c_v} + T_1 = \frac{30}{0.72} + 297 = 339 \text{ K}$$
, bu yerda

$$c_v = \frac{\mu c_v}{\mu} = \frac{20.93}{29} = 0.72$$
 kJ/kg<sup>0</sup>S

 $\mu s_v = 20,93 mol$  [Ilova, 2-jadval].

Bajarilgan ish tenglamasi  $l = \frac{R}{n-1} \cdot (T_1 - T_2)$  dan politropik ko'rsatkichni aniqlaymiz:

$$n = \frac{R}{l} \cdot (T_1 - T_2) + 1 = \frac{0.287}{-52} \cdot (297 - 339) + 1 = 1.23$$

bu yerda

$$R = \frac{8314}{\mu} = \frac{8314}{29} = 287$$
 J/ $\kappa z^0 C = 0.287$  kJ/ $\kappa z^0 C$ 

Havoning boshlang'ich bosimini quyidagi tenglamadan topamiz:

$$\left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}} = \frac{P_2}{P_1} ,$$

$$P_{1} = \frac{P_{2}}{\left(\frac{T_{2}}{T_{1}}\right)^{\frac{n}{n-1}}} = \frac{2,4}{\left(\frac{339}{297}\right)^{\frac{1,23}{1,23-1}}} = 1,2$$
 MPa

Havoning boshlang'ich solishtirma hajmi

$$v_1 = \frac{R \cdot T_1}{P_1} = \frac{287 \cdot 297}{1.2 \cdot 10^6} = 0.081 \text{ m}^3 / \kappa 2$$

keyingi solishtirma hajmi

$$v_2 = \frac{R \cdot T_2}{P_2} = \frac{287 \cdot 339}{2.4 \cdot 10^6} = 0.041 \text{ m}^3 / \kappa z$$

Politropik jarayonda entropiyaning o'zgarishi

$$\Delta S = c_v \frac{n-k}{n-1} \ln \frac{T_2}{T_1} = 0.72 \frac{1.23 - 1.4}{1.23 - 1} \ln \frac{339}{297} = -0.07 \text{ kJ/kg.}^{0} \text{S}$$

Entalpiyaning o'zgarishi

$$\Delta h = c_p \cdot (T_2 - T_1) = 1.01 \cdot (339 - 297) = 42.5 \text{ kJ/kg}$$

bu yerda

$$c_p = \frac{\mu c_p}{\mu} = \frac{29.31}{29} = 1.01 \text{ kJ/kg.} \, 0_{\text{S}}$$

 $\mu s_r = 29,31 \text{mol [ilova, 2-jadval]}.$ 

# 3-vazifa

Harorati  $\mathbf{t_1}$ , bosimi  $\mathbf{P_1}$  va massasi  $\mathbf{M}$  bo'lgan havo politropik jarayonda bosimi  $\mathbf{P_2}$  gacha kengaygan (siqilgan). Jarayonning politropik ko'rsatkichi -  $\mathbf{n}$ . Keyin esa  $\mathbf{P_2} = \mathbf{const}$  bo'lgan holda havoga  $\mathbf{Q}$  miqdorda issiqlik beriladi (olinadi).

Politropik va izobarik jarayonlar oxiridagi havoning holat ko'rsatkichlarini, har bir jarayondagi issiqlikning miqdorini, bajarilgan (sarflangan) ishni va ichki energiyaning o'zgarishini aniqlang. Masalani yechish uchun ma'lumotlar 4-jadvalda keltirilgan.

4-jadval

| Shifrning oxirgi | P <sub>1</sub> , | P <sub>2</sub> , | n | Shifrning                | M, | $t_1$ , ${}^{\circ}S$ | Q, |
|------------------|------------------|------------------|---|--------------------------|----|-----------------------|----|
| soni             | MPa              | MPa              |   | oxiridan<br>oldingi soni | kg |                       | kJ |

| 0 | 0,1  | 5,0 | 1,3  | 0 | 10 | 17  | 4000   |
|---|------|-----|------|---|----|-----|--------|
| 1 | 2,5  | 0,2 | 1,28 | 1 | 20 | 27  | 7500   |
| 2 | 0,15 | 4,0 | 1,25 | 2 | 30 | 150 | - 4000 |
| 3 | 0,2  | 5,0 | 1,24 | 3 | 35 | 100 | - 5000 |
| 4 | 3,0  | 0,5 | 1,32 | 4 | 45 | 120 | 2000   |
| 5 | 0,3  | 0,1 | 1,2  | 5 | 50 | 110 | 6000   |
| 6 | 0,8  | 0,1 | 1,25 | 6 | 25 | 12  | - 7000 |
| 7 | 1,2  | 1,3 | 1,3  | 7 | 10 | 10  | 4500   |
| 8 | 0,15 | 3,0 | 1,25 | 8 | 25 | 37  | 3000   |
| 9 | 1,5  | 0,2 | 1,2  | 9 | 15 | 57  | 2500   |

# Nazorat savollari va topshiriqlari

1.qaytuvchan jarayon va qaytuvchan sikl nima ? 2.Tizim ichki energiyasi ma'nosi nima? U mikrozarralarning qaysi turdagi harakatlaridan iborat? Ichki energiya holat parametri ekanligini isbotlang. Ideal va real ishchi jism ichki energiyalari farqi nimada? 3.Ishni ifodasini ketirib chiqaring. Rv – koordinatlarda jarayon egri chizig'i ostidagi maydon son jihatdan ishga tengligini tasvirlang. 4.Ish va issiqlik nima? Ular orasidagi umumiylik va farqlanishlar nimalardan iborat? 5. Termodinamikaning birinchi tenglamasini keltirib chiqaring. 6. Haqiqiy va o'rtacha issiqlik sig'imi nima ? Ular orasidagi bog'lanishni (grafik va analitik) ko'rsating. Issiqlik sig'imining har xil turlarini sanang, ularning o'lchov birliklarini ayting. 7.Gaz aralashmalari issiqlik sig'imi, komponentlari massaviy va hajmiy ulushlari orqali qanday ifodalanadi? 8.Entalpiya nima, o'lchamlari qanday? Ichki energiya va entalpiya uchun hisoblash ifodalarini keltiring. Termodinamika birinchi qonunining entalpiya orqali ifodalanishini keltiring.10. Ts-koordinatalarida jarayon egri chizig'i ostidagi maydon son jihatdan ishchi jismga berilgan (yoki olingan) issiqlikka tengligini ko'rsating .Jarayonga kiritilgan yoki yoki chiqarilgan issiqlik

miqdori va entropiya o'zgarishi orasidagi bog'lanish qanday? 11.Termodinamika birinchi qonuni tenglamasining har xil ko'rinishlari, issiqlik sig'imi formulalarini, entalpiya, entropiya foriulalaridan foydalanib, issiqlik, issiqlik miqdorini hisoblash ifodalarini keltiring. 12.Yopiq tizimlar uchun ideal gazning asosiy dinamik jarayonlari tahlilini bering. Ish ,issiqlik miqdori, entropiya, holat asosiy parametrlarini orasidagi bog'lanishlarni keltirib chiqaring. 13.Politrop jarayon umumiy jarayon ekanligini isbotlang. *Rv*, *Ts*-koordinatalarda politropik kengayish va siqish jarayonlarining har xil guruhlari tahlilini keltiring.