Types of Data + Text Data in Detail

CS 584 Data Mining (Spring 2022)

Prof. Sanmay Das George Mason University

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar, with additional input from Prof. Huzefa Rangwala

What is Data?

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

What is Data?

- Information that can be easily processed.
- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, Objects characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

)
_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
-	10	No	Single	90K	Yes

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit. (No true zero)
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts (True zero exists)

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, counts, or the set of words in a collection of documents
 - Often represented as integer variables.
 - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Practically, real values can only be measured and represented using a finite number of digits.
 - Continuous attributes are typically represented as floatingpoint variables.

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such datasets can be represented by m by n matrices, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Classification

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our tion of the world around the message sensory, brain, our eyes that the visual, perception point h retinal, cerebral cottex, brain: eye, cell, optical screen image | nerve, image the disc **Hubel, Wiesel** now know visual perc considerably events. By follow. ses along their path to the various co of the optical cortex, Hubel and W have been able to demonstrate that message about the image falling on retina undergoes a step-wise analysis system of nerve cells stored in column In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

Bag-of-words representation of a document

Of all the sensory impressions proceeding to the brain, the visual experiences are the Of all the sensory impressions proceeding to

Of all the sensory impressions proceeding to

es

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we

dictionary

w1 w2 wq

$$d = (d_1, d_2, ?, d_q)$$

 $TF(w_2,d)$

Term Frequency

Term Frequency Representation

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

ent is the sponding nt.	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TF-IDF

- Often combine TF with something that gives less importance to words that occur in most documents
- Typically use nonlinear scaling

$$_{\circ}$$
 1 + log($\frac{N}{docfreq(t)}$)

Other options

- N-grams (sequences of words in a row)
 - 2-grams are a common and useful choice
- Representations in topic space (what is a topic?)
- Representations in semantic space (sequences of word embeddings)

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

 Examples: Generic graph and HTML Links

Data Mining

<|i>

Graph Partitioning

<|i>

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Chemical Data

• Benzene Molecule: C₆H₆

Ordered Data

Sequences of transactions
 Items/Events

An element of the sequence

Ordered Data

Genomic sequence data

Ordered Data

Spatio-Temporal Data Jan

Average Monthly Temperature of land and ocean