Systèmes Distribués

Contrôle Terminal

31 mai 2013

Durée: 2h00

Aucun document autorisé. Chaque partie est indépendante.

Partie I : Questions de compréhension (8 points)

Justifiez vos réponses en utilisant des exemples si nécessaire (1 point par question).

- a- À quoi servent les différents types d'estampille vus en cours ?
- b- Illustrez la différence entre précédence causale et ordre causal.
- c- Dans une base de données répartie, quelles sont les différents niveaux de cohérence possible? Quel niveau utilise-t-on en fonction du contexte?
- d- Pour assurer une cohérence "à la carte" (comme étudié en cours), comment traiter les tableaux de messages (en particulier lorsqu'ils sont vides)? Pourquoi?
- e- Donnez une définition formelle d'un inter-blocage. Illustrez le phénomène et une manière simple d'y remédier (quelle est sa nature ?).
- f- Dans le contexte de l'évitement d'inter-blocage, expliquez les limites de l'algorithme du banquier sur un exemple.
- g- Quelle sont les solutions adpotées pour assurer un ordonnancement efficace lorsque le système de tâches n'est pas connu à l'avance ?
- h- Quels sont les avantages/inconvénients d'un chiffrement asymétrique par rapport à un chiffrement symétrique?

Partie II : Diffusion (4 points)

- a-(1 pts) Qu'est-ce qu'une diffusion atomique ? Citez deux méthodes simples pour y parvenir. Garantissent-elles l'uniformité ?
- b-(1 pts) Quelles sont les dates (i.e. le type et la nature des estampilles) utilisées pour assurer une diffusion atomique de type ABCAST? Pourquoi? Quand est-ce qu'un message est déclaré "utilisable" sans pour autant être traité?
- c-(2 pts) Considérons maintenant l'algorithme de diffusion distribué CBCAST (vérifiant l'ordre causal). Construisez un exemple simple où un message est mis en attente avant d'être effectivement délivré. Est-ce que le traitement des messages se fait dans le même ordre sur tous les sites ?

Partie III : Consensus (4 points)

- a-(1 pt) Quelles sont les différences entre des systèmes de communications synchrones ou asynchrones en fonction de la fiabilité des sites ? Donnez un exemple de contexte où une solution déterministe existe et inversement.
- b-(1 pt) Qu'est-ce qu'une panne byzantine? Comment parvenir à un consensus synchrone dans ce contexte (montrez sur un exemple simple la propriété qui caractérise la faisabilité de la résolution)?
- c-(2 pts) Qu'est-ce qu'un détecteur parfait et dans quel contexte est-ce utilisé (est-il si parfait que ça?)? Construisez un exemple simple avec deux processus défaillants sur trois. Combien de tours ont été nécessaires pour parvenir au consensus avec votre détection de classe P?

Partie IV: Ordonnancement (4 points)

Il s'agit ici d'étudier l'efficacité d'une solution d'ordonnancement.

- a-(1 pts) Si la somme temporelle de toutes les tâches divisée par le nombre de CPU est supérieure à la durée du chemin critique, que pouvez vous en conclure ? Et dans le cas contraire ? Justifiez vos réponses sur un exemple.
- b-(1 pts) Donnez le graphe de précédence correspondant au tableau 1. Calculez la durée du chemin critique et les dates au plus tôt et au plus tard de chaque tâche.
- c-(2 pts) Vous disposez de trois processeurs, donnez le meilleur ordonnancement possible pour résoudre le graphe de précédence de la question précédente (pensez à expliquer dans les grandes lignes votre démarche algorithmique). Est-il minimal? Optimal? Peut-on répondre à cette question dans le cas général?

Numéro de tâche	temps d'exécution	dépendances (au sens sucesseurs)
T_1	5	T_2, T_3
T_2	4	T_4, T_5
T_3	3	T_5, T_6
T_4	7	T_{10}
T_5	2	T_7
T_6	3	T_{8}, T_{9}
T_7	3	T_{10}
T_8	5	T_{10}
T_9	5	T_{10}
T_{10}	2	Ø

Table 1 – Un ensemble de tâches T_i et leurs dépendances