TensorFlow Parser Scope 融合规则参考 CANN

6.3.RC2

文档版本 01

发布日期 2023-07-26

版权所有 © 华为技术有限公司 2023。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

nuawe和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

目录

1 简介	
2 融合规则说明	
2.1 ScopeLayerNormPass	
2.2 ScopeLayerNormGradPass	
2.3 ScopeBasicLSTMCellPass	
2.4 ScopeDynamicLSTMPass	
2.5 ScopeClipBoxesPass	10
2.6 ScopeROIAlignPass	11
2.7 ScopeRpnProposalsPass	
2.8 ScopeFastrcnnPredictionsPass	
2.9 ScopeDecodeBboxPass	
2.10 ScopeToAbsoluteBBoxPass	
2.11 ScopeNormalizeBBoxPass	22
2.12 ScopeDecodeBboxV2Pass	25
2.13 ScopeBatchMultiClassNMSPass	27
2.14 ScopeKeepRatioResizeBilinearPass	29
2.15 ScopeBatchMultiClassNonMaxSuppressionPass	31
2.16 ScopeDynamicGRUPass	34
2.17 ScopeDynamicRNNPass	35

1 简介

概述

Scope融合是一种基于Scope来进行融合的能力,把Scope内的多个小算子替换为一个大算子或多个算子组合,以实现效率的提升。

本文主要介绍内置的Scope融合规则,同时开放Scope融合规则开发接口供用户自定义,具体请参考《TensorFlow Parser Scope融合规则开发指南》。

通用和定制化融合规则

融合规则通常分为通用和定制化融合规则两类:

- 通用融合规则(General):各网络通用的scope融合规则;默认生效,不支持用户指定失效。
- 定制化融合规则(Non-General): 特定网络适用的scope融合规则; 默认不生效,用户可以指定需要生效的融合规则,定制化融合规则生效方式可以参考如下生效方式。

表 1-1 定制化融合规则生效方式

场景	生效方式
离线推理场景下,使用 离线模型转换工具编译 TensorFlow原始模型	通过模型转换命令行参数 enable_scope_fusion_passes指定需要生效的融合 规则,多个用","分隔:enable_scope_fusion_passes = DecodeBboxV2ScopeFusionPass
离线推理场景下,解析 TensorFlow原始模型	通过aclgrphParseTensorFlow接口解析TensorFlow 原始模型时,通过
	ENABLE_SCOPE_FUSION_PASSES参数指定需要生效的融合规则,多个用","分隔: {ge::AscendString(ge::ir_option::ENABLE_SCOPE_FUSION_PASSES), ge::AscendString("DecodeBboxV2ScopeFusionPass")},

场景	生效方式
训练或在线推理场景 下,在TensorFlow框架 内执行	通过TensorFlow框架运行配置参数 enable_scope_fusion_passes指定需要生效的融合规则,多个用","分隔: import tensorflow as tf from npu_bridge.estimator import npu_ops from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig config = tf.ConfigProto() custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True custom_op.parameter_map["enable_scope_fusion_passes"].s = tf.compat.as_bytes("DecodeBboxV2ScopeFusionPass") config.graph_options.rewrite_options.remapping = RewriterConfig.OFF with tf.Session(config=config) as sess: sess.run()

2 融合规则说明

ScopeLayerNormPass

ScopeLayerNormGradPass

ScopeBasicLSTMCellPass

ScopeDynamicLSTMPass

ScopeClipBoxesPass

ScopeROIAlignPass

ScopeRpnProposalsPass

ScopeFastrcnnPredictionsPass

ScopeDecodeBboxPass

ScopeToAbsoluteBBoxPass

ScopeNormalizeBBoxPass

ScopeDecodeBboxV2Pass

ScopeBatchMultiClassNMSPass

ScopeKeepRatioResizeBilinearPass

Scope Batch Multi Class Non Max Suppression Pass

ScopeDynamicGRUPass

ScopeDynamicRNNPass

2.1 ScopeLayerNormPass

功能说明

将tf.layernorm生成的layernorm/batchnorm和layernorm/moments这两个Scope,融合为LayerNorm算子。

Scope 详情

batchnorm展开:

moments展开:

融合后的算子原型

LayerNorm,具体请参见《**算子清单**》。

融合对应关系

当有Cast节点时,首个cast的输入,作为融合后的第一个输入x。

Mul节点的gamma输入作为融合后后的第2个输入gamma。

最后一个Add节点beta输入作为融合后的第3个输入beta。

第4个begin_norm_axis使用默认值1。

第5个begin_param_axis使用默认值-1。

适用网络

Bert

融合规则类型

通用融合规则

2.2 ScopeLayerNormGradPass

功能说明

将tf.layernorm的反向Scope融合为LayerNormGrad算子。

Scope 详情

mul_grad展开:

sub_grad展开:

融合后的算子原型

LayerNormGrad,具体请参见《**算子清单**》。

融合对应关系

LayerNorm反向的输入作为融合后的第一个输入dy。

LayerNorm正向的输入作为融合后的第2个输入x。

正向的第3个输出variance作为反向的第3个输入variance。

正向的第2个输出mean作为反向的第3个输入mean。

正向的第2个输入gamma作为反向的第4个输入gamma。

反向的第1个输出连接到反向图最后的addN节点的输出上。

反向的第2个输出gamma_backprop连接到mul_grad中的到cast节点的Mul的输出上。 反向的第3个输出beta_backprop连接到sub_grad中的到cast节点的Sum的输出上。

适用网络

Bert

融合规则类型

通用融合规则

2.3 ScopeBasicLSTMCellPass

功能说明

将tf.nn.rnn_cell.BasicLSTMCell生成的Scope内的小算子组合融合为BasicLSTMCell算子。

Scope 详情

融合后的算子原型

BasicLSTMCell,具体请参见《**算子清单**》。

融合对应关系

Concat算子的第1个输入作为融合后的第1个输入x。

Concat算子的第2个输入作为融合后的第2个输入h。

Mul算子的第1个输入作为融合后的第3个输入c。

MatMul算子的第2个输入作为融合后的第4个输入w。

BiasAdd算子的第2个输入作为融合后的第5个输入b。

Add_1的输出作为融合后的第0个输出ct。

Mul_2的输出作为融合后的第1个输出ht。

适用网络

使用BasicLSTMCell单cell的非循环推理网络,例如NMT推理网络。

融合规则类型

定制化融合规则

2.4 ScopeDynamicLSTMPass

功能说明

将tf.nn.dynamic_rnn或tf.nn.bidirectional_dynamic_rnn生成的Scope内的小算子组合融合为DynamicLSTM算子。当前仅支持Cell结果为BasicLSTMCell的循环场景,且仅支持个别shape。

Scope 详情

dynamic rnn对应的Scope结构:

或者bidirectional_dynamic_rnn中对应的两个dynamic_rnn,分别为FW和BW:

融合后的算子原型

DynamicLSTM,具体请参见《**算子清单**》。

融合对应关系

当time_major为False时:

rnn/transpose节点的第1个输入作为融合后的第1个输入x。

rnn/while/basic_lstm_cell/MatMul/Enter节点的输入作为融合后的第2个输入w。

rnn/while/basic_lstm_cell/BiasAdd/Enter节点的输入作为融合后的第3个输入b。

rnn/transpose_1节点的输出作为融合后的输出output_h。

当time_major为True时:

rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3节点的第3个输入作为融合后的第1个输入x。

rnn/while/basic_lstm_cell/MatMul/Enter节点的输入作为融合后的第2个输入w。

rnn/while/basic_lstm_cell/BiasAdd/Enter节点的输入作为融合后的第3个输入b。

rnn/TensorArrayStack/TensorArrayGatherV3节点的输出作为融合后的输出output_h。

山 说明

上图的Scope是以time_major为True举例的。

适用网络

使用dynamic_rnn且单cell为BasicLSTMCell的推理网络。

融合规则类型

定制化融合规则

2.5 ScopeClipBoxesPass

功能说明

将clip_boxes Scope融合为ClipBoxes算子。Scope内包括tf.Maximum、tf.ReverseV2、tf.Tile和tf. Minimum这四个算子,不包含Gather_2、TopKV2、Reshape_2、Split、Greater、Squeeze、Gather、boolean_mask、decode_bbox_target等算子。

Scope 详情

融合后的算子原型

ClipBoxes,具体请参见《**算子清单**》。

融合对应关系

clip_boxes/Maximum输入作为融合后的第一个输入boxes_input。

clip boxes/ReverseV2输入作为融合后的第二个输入im info。

clip_boxes/fastrcnn_all_boxes (Minimum)输出作为融合后的输出boxes_output。

clip_boxes/ReverseV2的输出作为clip_boxes/Tile的输入。

clip_boxes/Tile的输出作为clip_boxes/ToFloat的输入。

clip_boxes/ToFloat的输入作为clip_boxes/fastrcnn_all_boxes的第二个输入。

clip_boxes/Maximum的输出作为clip_boxes/fastrcnn_all_boxes的第一个输入。

适用网络

2D-H1

融合规则类型

定制化融合规则

2.6 ScopeROIAlignPass

功能说明

将tf.AvgPool和tf.image.CropAndResize这两个Scope融合为ROIAlign算子,不包含Merge算子。

Scope 详情

融合后的算子原型

ROIAlign, 具体请参见《**算子清单**》。

融合对应关系

crop_and_resize/Shape/Switch输入作为融合后的第一个输入features。

Shape输入作为融合后的第二个输入rois。

Avgpool输出作为融合后的输出y。

Shape的输出作为StridedSlice的输入。

StridedSlice的输出作为zeros的输入。

crop_and_resize/Shape/Switch的输出作为 crop_and_resize/Shape/Shape和 crop_and_resize/transpose的输入。

crop_and_resize/Shape/Shape的输出作为 crop_and_resize/strided_slice的输入。

crop_and_resize/strided_slice的输出作为crop_and_resize/transform_fpcoor_for_tf的输入。

crop_and_resize/transform_fpcoor_for_tf和crop_and_resize/transpose的输出作为CropAndResize的输入。

crop_and_resize/CropAndResize的输出作为crop_and_resize/transpose_1的输入。
crop_and_resize/transpose_1的输出作为AvgPool的输入。

适用网络

2D-H1

融合规则类型

定制化融合规则

2.7 ScopeRpnProposalsPass

功能说明

将generate_rpn_proposals Scope融合为RpnProposals算子。Scope内包括 tf.NonMaxSuppressionV2算子、tf.TopKV2算子、4的倍数个tf.Where算子、6的倍数个 tf.Gather算子,不包含ExpandDims、Switch和transpose算子。

Scope 详情

融合后的算子原型

RpnProposals,具体请参见《**算子清单**》。

融合对应关系

Transpose的输入作为融合后的第一个输入rois。

filtered_boxes、filtered_scores和Gather_1的输入作为融合后的第二个输入cls_bg_prob。

clip_boxes/ReverseV2输入作为融合后的第三个输入img_info。

boxes的输出作为融合后的输出sorted_box。

filtered boxes的输出作为Where的输入。

transpose和Where的输出作为Gather的输入。

Gather的输出作为Reshape的输入。

filtered_scores的输出作为Where_1的输入。

Where_1的输出作为Gather_1的输入。

Gather_1的输出作为 Reshape_1的输入。

Reshape_1的输出作为TopK V2和 size的输入。

Size的输出作为Minimum的输入。

Minimum的输出作为TopKV2的输入。

TopKV2的输出作为Gather_2和boolean_mask_1的输入。

Gather_2的输出作为clip_boxes/Maximum的输入。

clip_boxes/ReverseV2的输出作为clip_boxes/Tile的输入。

clip_boxes/Tile的输出作为clip_boxes/ToFloat的输入。

clip_boxes/Maximum和clip_boxes/ToFloat的输出作为clip_boxes/Minimum的输入。

clip_boxes/Minimum的输出作为Reshape_2的输入。

Reshape_2的输出作为boolean_mask和split的输入。

Split的输出作为sub的输入。

Sub的输出作为Squeeze的输入。

Squeeze的输出作为Greater的输入。

Greater的输出作为All的输入。

All的输出作为boolean_mask和boolean_mask_1的输入。

boolean_mask的输出作为Reshape_3和ReverseV2的输入。

ReverseV2的输出作为nms_input_boxes的输入。

nms_input_boxes的输出作为non_max_suppression的输入。

boolean mask 1的输出作为non max suppression的输入。

non_max_suppression和Reshape_3的输出作为Boxes的输入。

适用网络

2D-H1

融合规则类型

定制化融合规则

2.8 ScopeFastrcnnPredictionsPass

功能说明

将fastrcnn_predictions Scope融合为FastrcnnPredictions算子。Scope内包括2的倍数个tf.TopKV2算子、3的倍数个tf.Where算子、tf. NonMaxSuppressionV2算子、tf.Less算子、tf.LoopCond算子等,不包含ExpandDims、clip_boxes和decode_bbox_target。

Scope 详情

融合后的算子原型

FastrcnnPredictions,具体请参见《**算子清单**》。

融合对应关系

fastrcnn_predictions/transpose和fastrcnn_predictions/GatherNd的输入作为融合后的输入rois。

fastrcnn_predictions/strided_slice的输入作为融合后的输入score。

fastrcnn_predictions/TopKV2的输出作为融合的输出sorted_rois。

fastrcnn_predictions/GatherNd的输出作为融合后的输出sorted_scores。

fastrcnn predictions/Add的输出作为融合后的输出sorted classes。

fastrcnn_predictions/strided_slice的输出作为fastrcnn_predictions/transpose_1的输入。

fastrcnn_predictions/transpose_1的输出作为fastrcnn_predictions/map和 fastrcnn_predictions/boolean_mask的输入。

astrcnn_predictions/map的输出作为fastrcnn_predictions/Where的输入。

fastrcnn_predictions/Where的输出作为fastrcnn_predictions/Gather的输入。

fastrcnn_predictions/boolean_mask的输出作为fastrcnn_predictions/Size和fastrcnn_predictions/TopKV2的输入。

fastrcnn_predictions/Size的输出作为fastrcnn_predictions/Minimum的输入。

fastrcnn_predictions/Minimum的输出作为fastrcnn_predictions/TopKV2的输入。

fastrcnn_predictions/TopKV2作为融合后的输出(sorted_rois)和fastrcnn_predictions/Gather的输入。

fastrcnn_predictions/Gather的输出作为fastrcnn_predictions/filtered_indices的输入。

fastrcnn_predictions/filtered_indices的输出作为fastrcnn_predictions/GatherNd和 fastrcnn_predictions/ToFloat的输入。

fastrcnn_predictions/ToFloat的输出作为fastrcnn_predictions/strided_slice_1的输入。 fastrcnn_predictions/strided_slice_1的输出作为fastrcnn_predictions/Add的输入。

适用网络

2D-H1

融合规则类型

定制化融合规则

2.9 ScopeDecodeBboxPass

功能说明

将含有如下算子的Scope融合为DecodeBbox算子。Scope内包括: 3的倍数个tf.Reshape算子、2的倍数个tf.Split算子、tf.Minimum算子、3的倍数个tf.Add算子、tf. ConcatV2算子、2的倍数个tf.Sub算子,不包含Greater、Squeeze、Gather_2、TopKV2、boolean_mask等算子。

Scope 详情

根据是否包含Transpose算子,有两种Scope,如下所示:

不含Transpose算子:

含Transpose算子:

融合后的算子原型

DecodeBbox,具体请参见《**算子清单**》。

融合对应关系

● 不含Transpose算子:

Reshape的输入作为融合后的输入box_predictions。

Shape和Reshape_1的输入作为融合后的输入anchors。

Reshape_2的输出为融合后的输出decoded_boxes。

Reshape的输出作为Split的输入。

Split的输出作为Minimum和Mul的输入。

Minimum的输出作为Exp的输入。

Exp的输出作为mul的输入。

Reshape_1的输出作为split_1的输入。

split_1的输出作为Sub和Add输入。

Sub和Add的输出作为Mul的输入。

Mul的输出作为Add_1、Sub_1、Add_2的输入。

Add_1的输出作为Sub_1和Add_2的输入。

Sub_1和Add_2的输出作为Concat的输入。

Shape和Concat的输出作为Reshape_2的输入。

融合算子排除Greater、Squeeze、Gather_2、TopKV2、boolean_mask等算子。

• 含Transpose算子:

transpose的输入作为融合后的输入box_predictions。

transpose_1的输入作为融合后的输入anchors。

transpose_2的输出为融合后的输出decoded_boxes。

transpose的输出作为Reshape的输入。

Reshape的输出作为Split的输入。

Split的输出作为Minimum和Mul的输入。

Minimum的输出作为Exp的输入。

Exp的输出作为mul的输入。

transpose_1的输出作为Reshape_1和Shape的输入。

Reshape_1的输出作为split_1的输入。

split_1的输出作为Sub和Add输入。

Sub和Add的输出作为Mul的输入。

Mul的输出作为Add_1、Sub_1、Add_2的输入。

Add_1的输出作为Sub_1和Add_2的输入。

Sub_1和Add_2的输出作为Concat的输入。

Shape和Concat的输出作为Reshape_2的输入。

Reshape 2的输出作为transpose 2的输入。

适用网络

2D-H1

融合规则类型

定制化融合规则

2.10 ScopeToAbsoluteBBoxPass

功能说明

融合的scope为Map, Map下需要有while,while下需要有ToAbsoluteCoordinates,ToAbsoluteCoordinates下有scale,同时scope下有4个Mul算子,融合成ToAbsoluteBBox算子。

Scope 详情

map_1下有while:

while下有ToAbsoluteCoordinates:

ToAbsoluteCoordinates下有scale:

融合后的算子原型

ToAbsoluteBBox,具体请参见《**算子清单**》。

融合对应关系

Shape或者TensorArrayUnstack/Shape 输入作为融合后第一个输入while/strided_slice/Enter的输入作为融合后第二个输入TensorArrayStack/TensorArrayGatherV3的输出作为融合后第一个输出融合的scope中存在while/ToAbsoluteCoordinates/scale 子图结构

适用网络

Fast R-CNN

融合规则类型

定制化融合规则

2.11 ScopeNormalizeBBoxPass

功能说明

融合scope为Map, Map下需要有while,while下需要有ToNormalizedCoordinates,ToNormalizedCoordinates下有scale,同时scope下有4个Mul算子,融合成NormalizeBBox算子。

Scope 详情

Map下有while:

融合后的算子原型

NormalizeBBox,具体请参见《**算子清单**》。

融合对应关系

map/Shape 输入作为融合后第一个输入。
map/TensorArrayUnstack_1/Shape 输入作为融合后第二个输入。
TensorArrayStack/TensorArrayGatherV3 输入作为融合后第一个输出。
scope存在图结构 "while/ToNormalizedCoordinates/Scale/"。

适用网络

Fast R-CNN

融合规则类型

定制化融合规则

2.12 ScopeDecodeBboxV2Pass

功能说明

将含有如下两种Scope融合为DecodeBboxV2算子。

Scope1至少包括2个Exp, 4个Mul, 4个SUb, 2的倍数个RealDiv, 2个Unpack, 1个Pack, 3个Transpose算子, 不包括Softmax算子。

Scope2至少包括2个Exp, 4个Mul, 10个SUb, 2的倍数个RealDiv, 2个Unpack, 1个Pack, 3个Transpose, 3个Rank, 3个Range算子,不包括Sigmoid算子。

Scope 详情

scope1:

scope2:

融合后的算子原型

DecodeBboxV2,具体请参见《**算子清单**》。

融合对应关系

scope1:

transpose的输入作为融合后算子第一个输入。

get_center_coordinates_and_sizes/transpose的输入作为融合后算子第二个输入。

transpose_1的输出作为融合后算子第一个输出。

scope2:

transpose/Rank的输入作为融合后算子第一个输入。

get_center_coordinates_and_sizes/transpose/Rank的输入作为融合后算子第二个输入。

transpose_1的输出作为融合后算子第一个输出。

适用网络

Fast R-CNN

SSD-Resnet34

SSD-Resnet50V1-FPN

融合规则类型

定制化融合规则

2.13 ScopeBatchMultiClassNMSPass

功能说明

如下图结构进行融合成BatchMultiClassNonMaxSuppression算子,融合scope下有scope路径: map/while/MultiClassNonMaxSuppression/

Scope 详情

融合后的算子原型

BatchMultiClassNonMaxSuppression,具体请参见《 **算子清单** 》。

融合对应关系

map/TensorArrayUnstack/Shape,做为融合后算子第一个输入。 map/TensorArrayUnstack_1/Shape,做为融合后算子第二个输入。 map/TensorArrayUnstack_3/Shape,如果存在这个节点,做为融合后算子第三个输入。

map/TensorArrayUnstack_4/Shape,如果存在这个节点,做为融合后算子第四个输入。

map/TensorArrayStack/TensorArrayGatherV3,如果存在,做为融合后算子第一个输出。

map/TensorArrayStack_1/TensorArrayGatherV3,如果存在,做为融合后算子第二个输出。

map/TensorArrayStack_2/TensorArrayGatherV3,如果存在,做为融合后算子第三个输出。

map/TensorArrayStack_4/TensorArrayGatherV3,如果存在,做为融合后算子第四个输出。

适用网络

Fast R-CNN

SSD-Resnet50V1-FPN

Mask R-cnn

融合规则类型

定制化融合规则

2.14 ScopeKeepRatioResizeBilinearPass

功能说明

将特定Scope进行融合成KeepRationResizeBilinear + Shape + Slice*2 + Expandims + ConcatV2 + Tile + Const*4,Scope中包括图结构: map/while/ResizeToRange/, 包括算子Maximum,Minimum,Round,ResizeBilinear。

Scope 详情

融合后的算子原型

KeepRationResizeBilinear + Shape + Slice*2 + Expandims + ConcatV2 + Tile + Const*4,具体请参见《**算子清单**》。

融合对应关系

"scope名字+/Shape" 的节点 输入作为融合后子图的输入。

TensorArrayStack/TensorArrayStack/TensorArrayGatherV3 输出作为融合后子图的第一个输出。

TensorArrayStack_1/TensorArrayStack_1/TensorArrayGatherV3 输出作为融合后子图的第二个输出。

融合后子图 KeepRationResizeBilinear算子 的输出连接到scope 第一个输出。

融合后子图 Tile 的输出连接到scope 第二个输出。

适用网络

Fast R-CNN

融合规则类型

定制化融合规则

2.15 ScopeBatchMultiClassNonMaxSuppressionPass

功能说明

如下图结构进行融合成BatchMultiClassNonMaxSuppression算子,融合scope下有scope路径:

该融合规则包含了两个匹配规则:

ScopeFaceBoxesBatchMultiClassNMSPattern:包括1个 NonMaxSuppressionV3 ,并且不包含Transpose

ScopeFilteredBatchMultiClassNMSPattern: 包括1个NonMaxSuppressionV3 ,5个Range,1个ConcatV2和80个Fill

Scope 详情

融合后的算子原型

BatchMultiClassNonMaxSuppression,具体请参见《 **算子清单** 》。

融合对应关系

map/TensorArrayUnstack/Shape,做为融合后算子第一个输入。 map/TensorArrayUnstack_1/Shape,做为融合后算子第二个输入。 map/TensorArrayUnstack_3/Shape,如果存在这个节点,做为融合后算子第三个输入。

map/TensorArrayUnstack_4/Shape,如果存在这个节点,做为融合后算子第四个输入。

map/TensorArrayStack/TensorArrayGatherV3,如果存在,做为融合后算子第一个输出。

map/TensorArrayStack_1/TensorArrayGatherV3,如果存在,做为融合后算子第二个输出。

map/TensorArrayStack_2/TensorArrayGatherV3,如果存在,做为融合后算子第三个输出。

map/TensorArrayStack_4/TensorArrayGatherV3,如果存在,做为融合后算子第四个输出。

适用网络

FaceBox

Retinanet

融合规则类型

定制化融合规则

2.16 ScopeDynamicGRUPass

功能说明

将含有如下算子的Scope融合为DynamicGRU算子。Scope内包括:5个AddV2算子、3个Mul算子、1个Tanh算子、不包含Transpose算子。

Scope 详情

例如,待融合的Scope为:

其中while内包含5个AddV2算子、3个Mul算子、1个Tanh算子、不包含Transpose算子,最终把上面红框中的所有算子融合为DynamicGRU算子。

融合后的算子原型

DynamicGRUV2,具体请参见《算子清单》。

融合对应关系

TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3的输入作为融合后算子的第一个输入。

while/ReadVariableOp_1/Enter的输入作为融合后算子的第二个输入。

while/ReadVariableOp_4/Enter的输入作为融合后算子的第三个输入。

while/ReadVariableOp_00/Enter的输入作为融合后算子的第四个输入。

while/ReadVariableOp_01/Enter的输入作为融合后算子的第五个输入。

TensorArrayStack/TensorArrayGatherV3的输出作为融合后算子的第一个输出。

适用网络

DeepSpeech2

融合规则类型

定制化融合规则

2.17 ScopeDynamicRNNPass

功能说明

将含有如下算子的Scope融合为DynamicRNN算子。Scope内包括: 1个名为while的子Scope,不包含Transpose算子; while子Scope内包括: 4的倍数个BiasAdd算子、2的倍数个Tanh算子、8个MatMul算子,1个Split算子。

Scope 详情

待融合的Scope:

其中while子Scope内包括: 4的倍数个BiasAdd算子、2的倍数个Tanh算子、8个MatMul算子,1个Split算子。

融合后的算子原型

DynamicRNN,具体请参见《**算子清单**》。

融合对应关系

TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3的输入作为融合后算子的第一个输入。

while/split/ReadVariableOp/Enter的输入作为融合后算子的第二个输入。

while/split_1/ReadVariableOp/Enter的输入作为融合后算子的第三个输入。

TensorArrayStack/TensorArrayGatherV3的输出作为融合后算子的第一个输出。

适用网络

TacoTron

融合规则类型

定制化融合规则