17—18 学年第 1 学期 计算机组成原理(理论)A 卷参考答案

出卷人:江爱文

一、选择题(15分,每题1分)

BADCD CBCBA BBCBB

- 二、填空题(20分,每空1分)
- (1) 1,8,23,127
- (2) 存取周期、存储器带宽
- (3) 24
- (4) 20, 9, 5, 13
- (5) 高速缓存 Cache, 主存,外存
- (6) 集中式,分散式,异步式
- (7) 运算器,存储器、控制器
- 三、问答题(15分)
- 1、(7分)总线是计算机多个系统部件之间进行数据传送的公共通路。单机系统中总线结构大致有三个基本类型:单总线结构、双总线结构、三总线机构。按照传输数据类型的不同分为数据总线、地址总线、控制总线三类。

(注:这道题出的不够严谨,请各位老师酌情给分)

- 2、(8分)一个完善的指令系统应该满足四方面的要求:
- (1)完备性:指令系统丰富,功能齐全,使用方便,即指令系统直接提供的指令足够使用,不必用软件来实现。
- (2)有效性:指令系统所编写的程序能高效率地运行,表现在程序占用存储空间小、执行速度快。
 - (3) 规整性:包括指令系统的对称性、匀齐性、指令格式和数据格式一致性。
- (4)兼容性:至少要能做到"向上兼容",即低档机上运行的软件能够在高档机上运行。

(注:答案回答出四个要点便可给分)

四、计算题(30分)

1、(6分)参考答案:

假设顺序存储器和交叉存储器连续读出 M=8 个字的信息总量均为

$$Q = 64 \dot{\Omega} \times 8 = 512 \dot{\Omega}$$

顺序存储器连续读出8个字所需的时间是:

$$t2 = MT = 8 \times 200 \text{ns} = 1600 \text{ns} = 16 \times 10^{-7} \text{s}$$

交叉存储器连续读出8个字所需的时间是:

$$t1 = T + (m-1)\tau = 200 + 7 \times 50 \text{ns} = 5.5 \times 10^{-7} \text{s}$$

因此,

顺序存储器带宽为: w2 = Q/t2 = 512/(16×10⁻⁷) = 32×10⁷ bit/s

交叉存储器带宽为: $w1 = Q/t1 = 512/(5.5 \times 10^{-7}) = 93.1 \times 10^{7}$ bit/s

2、(6分)参考答案:

$$[A]_{\hat{\uparrow}\hat{h}} = 0000 \ 1111 \ , \qquad [B]_{\hat{\uparrow}\hat{h}} = 0001 \ 1000 \ , \qquad [-B]_{\hat{\uparrow}\hat{h}} = 1110 \ 1000 \ .$$

[A+B]_补 = 0000 1111 + 0001 1000 = 0010 0111 , 因此 , A+B=39

3、(8分)参考答案:

先通过主频求出时钟周期,再求出机器周期和平均指令周期,最后通过平均指令周期的倒数求出平均指令执行速度。计算如下:

时钟周期=1/8 MHz = 0.125 x 10⁻⁶ = 125 ns

机器周期 = 125 ns x 2 = 250 ns

平均指令周期 = 250 ns x 2.5 = 625 ns

平均指令执行速度 = 1/625 ns = 1.6 MIPS

当参数改变之后,

机器周期 = 125 ns x 4 =500 ns = 0.5 μs

平均指令周期 = 0.5 μs x 5 = 2.5 μs

平均指令执行速度 = 1 / 2.5μs = 0.4 MIPS

结论:两个主频相同的机器,执行速度不一定一样

4、(10分)参考答案:

- (1)指令:4420H = (0100 0100 0010 0000)_B
- X=00,因此是直接寻址, EA = 0020H
- (2)指令: 2244H = (0010 0010 0100 0100)_B
- X=10, 因此是 R2 变址寻址, EA=(R₂)+D = 1122H + 44H = 1166H
- (3)指令:1322H = (0001 0011 0010 0010)_B
- X=11, 因此是相对寻址, EA = (PC) +D = 1234H + 22H = 1256H
- (4)指令: 3521H =(0011 0101 0010 0001)_B
- X=01, 因此是 R1 变址寻址, EA = (R₁) +D = 0037H +21H = 0058H
- (5)指令:6723H = (0110 0111 0010 0011)_B
- X=11,因此是相对寻址,EA = (PC)+D = 1234H + 23H = 1257H

五、设计题(20分,二选一)

1、根据主存地址空间分配为:

(2)选出所用芯片类型及数量

最大 4K 地址空间为系统程序区,选用 2 片 2K ×8 位 ROM 芯片;

相邻的 4K 地址空间为系统程序工作区,选用 2 片 4K ×4 位 RAM 芯片最小 16K 地址空间为用户程序区,选用 2 片 8K×8 位 RAM 芯片。

(3)CPU 与存储芯片的连接图如图所示

2、参考答案

(1) 微指令字长 12 位, 微指令格式如下

_() :	1	2	3	4	5	6	7	8	9	10	11
F	RA ₀R	A_1	WA (WA ₁	R	w	LDS_A	LDSB	S _B →ALU	_ S _B →ALU	CLR	~

各字段意义如下:

 RA_0RA_1 一读 R_0 一 R_3 的选择控制。

LDSA一打入 SA 的控制信号。

S_B→ALU一传送 S_B 的控制信号。

_ S_B→ALU一传送S_B的控制信号。

CLR - 清暂存器 SB 为零的信号。

~ - 一段微程序结束,转入取机器指令的控制信号。

R一 通用寄存器读命令

W一通用寄存器写命令

 WA_0WA_1 一写 R_0 一 R_3 的选择控制。

LDS_B一打入 SB 的控制信号。

(2)

