A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory

Andreas Nuyts, Dominique Devriese

KU Leuven, Belgium

LICS '18 Oxford, UK July 12, 2018

$$if: \forall X.\mathsf{Bool} \to X \to X \to X$$

Free Theorem

$$f(if_A c a a') = if_B c (f a) (f a') : B$$

- System F_ω, Haskell:
 Type-level args are parametric.
- DTT: Types can be values, values can be used at type-level.
 ⇒ Explicit parametricity annotations (par as a modality) 1

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

¹Nuvts, Vezzosi, Devriese (2017)

$$if: \forall X.\mathsf{Bool} \to X \to X \to X$$

Free Theorem

$$f(if_A c a a') = if_B c (f a) (f a') : B$$

- System F_ω, Haskell:
 Type-level args are parametric.
- DTT: Types can be values, values can be used at type-level.
 ⇒ Explicit parametricity annotations (par as a modality) 1

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

¹ Nuvts Vezzosi Devriese (2017)

$$if: \forall X.\mathsf{Bool} \to X \to X \to X$$

Free Theorem

$$f(if_A c a a') = if_B c(f a)(f a') : B$$

- System F_ω, Haskell:
 Type-level args are parametric.
- DTT: Types can be values, values can be used at type-level.
 ⇒ Explicit parametricity annotations (par as a modality) 1

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

¹Nuvts, Vezzosi, Devriese (2017)

$$if: \forall X.\mathsf{Bool} \to X \to X \to X$$

Free Theorem

$$f(if_A c a a') = if_B c(f a)(f a') : B$$

- System F_ω, Haskell:
 Type-level args are parametric.
- DTT: Types can be values, values can be used at type-level.
 ⇒ Explicit parametricity annotations (par as a modality) 1

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

¹Nuyts, Vezzosi, Devriese (2017)

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\mathsf{par} \mid X : \mathcal{U}) \to X) \uplus ((\mathsf{par} \mid X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Law of excluded middle (sound):

$$lem : (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

$$typecase: (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow \dots$$

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\textbf{par} \mid X : \mathcal{U}) \rightarrow X) \uplus ((\textbf{par} \mid X : \mathcal{U}) \rightarrow X \rightarrow \mathsf{Empty})$$

Law of excluded middle (sound):

$$lem : (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

$$typecase: (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow \dots$$

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\textbf{par} \mid X : \mathcal{U}) \rightarrow X) \uplus ((\textbf{par} \mid X : \mathcal{U}) \rightarrow X \rightarrow \mathsf{Empty})$$

Law of excluded middle (sound):

$$lem : (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

$$typecase: (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow \dots$$

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\textbf{par} \mid X : \mathcal{U}) \rightarrow X) \uplus ((\textbf{par} \mid X : \mathcal{U}) \rightarrow X \rightarrow \mathsf{Empty})$$

Law of excluded middle (sound):

$$lem : (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

$$typecase: (\mathbf{hoc} \mid X : \mathcal{U}) \rightarrow \dots$$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \mid n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \mid X \rightarrow List_n \mid X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- ullet cons_A ullet ullet _ a (nil_A ullet _) : List₅ $A \Rightarrow as_2 \equiv as_3$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \mid n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \mid X \rightarrow List_n \mid X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- $cons_A \bullet \bullet _ a (nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (\mathbf{irr} \mid m \ n : \mathbb{N}) \to (\mathbf{irr} \mid m < n) \to X \to \mathsf{List}_m \ X \to \mathsf{List}_n \ X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- $cons_A \bullet \bullet _ a (nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr + m \ n : \mathbb{N}) \to (irr + m < n) \to X \to List_m \ X \to List_n \ X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- $cons_A \bullet \bullet _ a (nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \ n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \ X \rightarrow List_n \ X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- $cons_A \bullet \bullet _a (nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr + m \ n : \mathbb{N}) \to (irr + m < n) \to X \to List_m \ X \to List_n \ X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A \ 2 \ 5 \ _ \ a \ (nil_A \ 2 \ _) : List_5 \ A,$ $nil_A \ 2 \ _ : List_2 \ A$
- $as_3 :\equiv cons_A \ 3 \ 5 \ _ \ a \ (nil_A \ 3 \ _) : List_5 \ A,$ $nil_A \ 3 \ _ : List_3 \ A$
- $cons_A \bullet \bullet _a (nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

That gives us 3 modalities:

par parametricity,

hoc ad hoc polym.,

irr irrelevance.

Can we handle that?

Modalities interact with type dependencies

Given a modality μ , in order to talk about

$$(\mu \mid x : A) \rightarrow B x$$
,

what **modality cod** μ do we require for the dep. **codomain**

$$B: (\mathbf{cod} \ \mu \mid A) \rightarrow \mathcal{U}$$

?

$$nil_A : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

$$B \ n : \equiv (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

- cod irr = irr? 2 \Rightarrow Not usable for sized types.
- cod irr = hoc? 3 i.e. B can be anything? Problem with η -law. 4
- Solution:
 cod irr = shi (shape-irrelevance, .. in Agda)

²Pfenning (2001), Reed (2003)

³Mishra-Linger & Sheard (2008), Barras & Bernardo (2008)

⁴Abel & Scherer (2012), example 2.8

⁵Abel, Vezzosi & Winterhalter (2017)

$$nil_A : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

$$B \ n : \equiv (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

- cod irr = irr? $^2 \Rightarrow$ Not usable for sized types.
- cod irr = hoc? 3 i.e. B can be anything? Problem with η -law. 4
- Solution:
 cod irr = shi (shape-irrelevance, .. in Agda)

²Pfenning (2001), Reed (2003)

³Mishra-Linger & Sheard (2008), Barras & Bernardo (2008)

⁴Abel & Scherer (2012), example 2.8

⁵Abel. Vezzosi & Winterhalter (2017)

$$nil_A : (\mathbf{irr} + \mathbf{n} : \mathbb{N}) \to (\mathbf{irr} + 0 < \mathbf{n}) \to \mathsf{List}_{\mathbf{n}} A$$

$$B \ \mathbf{n} : \equiv (\mathbf{irr} + 0 < \mathbf{n}) \to \mathsf{List}_{\mathbf{n}} A$$

- cod irr = irr? $^2 \Rightarrow$ Not usable for sized types.
- cod irr = $\frac{\text{hoc}}{\text{noc}}$? i.e. B can be anything? Problem with η -law. 4
- Solution:
 cod irr = shi (shape-irrelevance, .. in Agda)

²Pfenning (2001), Reed (2003)

³Mishra-Linger & Sheard (2008), Barras & Bernardo (2008)

⁴Abel & Scherer (2012), example 2.8

⁵Abel. Vezzosi & Winterhalter (2017)

$$nil_A : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

$$B \ n := (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n A$$

- cod irr = irr? $^2 \Rightarrow$ Not usable for sized types.
- cod irr = $\frac{\text{hoc}}{\text{noc}}$? i.e. B can be anything? Problem with η -law. 4
- Solution:

²Pfenning (2001), Reed (2003)

³Mishra-Linger & Sheard (2008), Barras & Bernardo (2008)

⁴Abel & Scherer (2012), example 2.8

⁵Abel, Vezzosi & Winterhalter (2017)

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

$$B \mid X :\equiv \mathsf{Bool} \to X \to X \to X$$

• cod par = par? i.e. $B: (par \mid X: \mathcal{U}) \rightarrow \mathcal{U}$?

Free Theorem

B is constant.

• cod par = hoc? i.e. B can be anything?

Free Theorem!?

• Solution: $\mathbf{cod} \ \mathbf{par} = \mathbf{con} \ (\mathbf{continuity})^6$ e.g. $\times : * \to * \to *$ in System F_{ω}

⁶Nuvts. Vezzosi. Devriese (2017)

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

$$B \mid X :\equiv \mathsf{Bool} \to X \to X \to X$$

• cod par = par? i.e. $B: (par \mid X: U) \rightarrow U$?

Free Theorem

B is constant.

• cod par = hoc? i.e. B can be anything?

Free Theorem!?

Solution:
 cod par = con (continuity) ⁶
 e.g. × : * → * → * in System F_ω

⁶Nuvts Vezzosi Devriese (2017)

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

$$B \mid X :\equiv \mathsf{Bool} \to X \to X \to X$$

• cod par = par? i.e. $B: (par \mid X: U) \rightarrow U$?

Free Theorem

B is constant.

cod par = hoc? i.e. B can be anything?

Free Theorem!?

Solution:
 cod par = con (continuity) ⁶
 e.g. x : x → x → x in System F_g

⁶Nuvts, Vezzosi, Devriese (2017)

$$if: (\mathbf{par} \mid X : \mathcal{U}) \to \mathsf{Bool} \to X \to X \to X$$

$$B \mid X :\equiv \mathsf{Bool} \to X \to X \to X$$

• cod par = par? i.e. $B: (par \mid X: U) \rightarrow U$?

Free Theorem

B is constant.

cod par = hoc? i.e. B can be anything?

Free Theorem!?

Solution:

cod par = con (continuity) ⁶ e.g.
$$\times : * \rightarrow * \rightarrow *$$
 in System F_{ω} .

⁶Nuyts, Vezzosi, Devriese (2017)

Modalities interact with each other

Given

$$f: (\mu \mid A) \rightarrow B,$$

 $g: (v \mid B) \rightarrow C,$

what is the modality $\mathbf{v} \circ \boldsymbol{\mu}$ of

$$g \circ f : (\mathbf{v} \circ \boldsymbol{\mu} \mid A) \to C$$

Parametricity and shape-irrelevance

```
if_{(\mathsf{List_4}\ A)}: \mathsf{Bool} \to \mathsf{List_4}\ A \to \mathsf{List_4}\ A \to \mathsf{List_4}\ A \to \mathsf{List_5}\ A \to \mathsf{List_5}\ A \to \mathsf{List_5}\ A
```

- We can ignore irrelevant parts.
- if uses first arg. parametrically.
- List uses size index shape-irrelevantly.

So $par \circ shi = irr$?

Modalities interact with the type level

For example:

Theorem

All continuous (non-ad-hoc) functions with **small** codomain are **parametric**.

Takeuti (2001)

Krishnaswami & Dreyer (2013)

Atkey, Ghani & Johann (2014)

Hence, System F_{ω} has no use for $(\mathbf{con} \mid X : *) \rightarrow T(X)$.

We now have 5 modalities:

- par parametricity,
- con continuity,
 - irr irrelevance (. in Agda),
- shi shape-irrelevance (.. in Agda),
- hoc ad hoc polym.

These interact

- with type dependencies,
- with each other.
- with the type level.

Meaning? Rules? Soundness?

We now have 5 modalities:

```
par parametricity,con continuity,irr irrelevance (. in Agda),shi shape-irrelevance (.. in Agda),hoc ad hoc polym.
```

These interact:

- with type dependencies,
- with each other.
- with the type level.

Meaning? Rules? Soundness?

Equip types with **multiple**, **proof-relevant relations**:

- Just equality for small types (*Bool*, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(\mathcal{U}_0 \to \mathcal{U}_0, \text{Grp}, \dots)$.

(We can decouple level and "depth": $\mathcal{U}_{\ell}^d:\mathcal{U}_{\ell+1}^{d+1}.$)

Modality describes how functions act on relations.

Equip types with **multiple**, **proof-relevant relations**:

- Just equality for small types (*Bool*, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(\mathcal{U}_0 \to \mathcal{U}_0, \mathsf{Grp}, \ldots)$.

(We can decouple level and "depth": $\mathcal{U}_{\ell}^d:\mathcal{U}_{\ell+1}^{d+1}$.)

Modality describes how functions act on relations.

Equip types with **multiple**, **proof-relevant relations**:

- Just equality for small types (*Bool*, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(\mathcal{U}_0 \to \mathcal{U}_0, \text{Grp}, \dots)$.

(We can decouple level and "depth": $\mathcal{U}_{\ell}^d:\mathcal{U}_{\ell+1}^{d+1}.$)

Modality describes how functions act on relations

Equip types with **multiple**, **proof-relevant relations**:

- Just equality for small types (*Bool*, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(\mathcal{U}_0 \to \mathcal{U}_0, \mathsf{Grp}, \ldots)$.

(We can decouple level and "depth": $\mathcal{U}_{\ell}^d:\mathcal{U}_{\ell+1}^{d+1}.$)

Modality describes how functions act on relations.

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. if_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List_4} \kappa) \curvearrowright_0^{\operatorname{List_6} \kappa} ([] : \operatorname{List_6} \kappa)$
1-related	n/a	$ \begin{pmatrix} (A:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B:\mathcal{U}_0) \end{pmatrix} := \operatorname{Rel}(A,B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N}:\mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_6 A $

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be
0-related (het. eq.)		$ \begin{array}{c} ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_{0}}} (\operatorname{Bool} : \mathcal{U}_0) \\ ([] : \operatorname{List_4} \kappa) & \stackrel{\operatorname{List_6} \kappa}{{_{0}}} ([] : \operatorname{List_6} \kappa) \\ & \cdots \end{array} $
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \curvearrowright_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A \end{pmatrix} $

$$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$$
 because
$$2+5 \equiv 7$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)		$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

$$((\lambda X.X) \text{ Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\text{Bool} : \mathcal{U}_0)$$

because
 $(\lambda X.X) \text{ Bool} \equiv \text{Bool}$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \mathbf{K}: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R.if_{X} \curvearrowright_{0}^{Bool \rightarrow R \rightarrow R \rightarrow R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

([]: List₄
$$A$$
) $\curvearrowright_0^{\text{List}_{\bullet}} A$ ([]: List₆ A)
where
List_• $A \in \text{Rel}(\text{List}_4 A, \text{List}_6 A)$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 \ A) \curvearrowright_{0}^{List_6} A ([]: List_6 \ A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. if_X \curvearrowright_{0}^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

$$([]: \mathsf{List}_4 \ \kappa) \frown_0^{\mathsf{List}_\bullet \ \kappa} ([]: \mathsf{List}_6 \ \kappa)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \textit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \textit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_{6} A \end{pmatrix} $	

(5:
$$\mathbb{N}$$
) \curvearrowright_0^R (true: Bool) for some $R \in \text{Rel}(\mathbb{N}, \text{Bool})$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_6 A \end{pmatrix} $	

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6}} A ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true : Bool)$ $\forall R.if_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \dots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} = \operatorname{Rel}(A, B) $	

$$(a:A) \curvearrowright_i^{\mathbf{R}} (b:B)$$
 is always w.r.t. $\mathbf{R}: (A:\mathcal{U}_n) \curvearrowright_{i+1}^{\mathcal{U}_n} (B:\mathcal{U}_n)$
$$\left((A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) := \text{Rel}(A,B)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_{6} A \end{pmatrix} $	

$$\mathbb{N} := \mathsf{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_* \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_6 A \end{pmatrix} $	

$$\mathsf{List}_{\bullet} \ A : \big(\mathsf{List}_4 \ A : \mathcal{U}_0\big) \frown^{\mathcal{U}_0}_1 \big(\mathsf{List}_6 \ A : \mathcal{U}_0\big)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_6 A \end{pmatrix} $	

See paper for \sim_2 (as of **kind-level**) and higher.

Four laws:

- Reflexivity: $(a:A) \frown_i^A (a:A)$
- Weakening: $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^{R} (b:B)$ presumes $R:A \curvearrowright_{i+1}^{U_n} B$
- Identity extension: $(a : A) \curvearrowright_0^A (b : A)$ means $a \equiv b : A$.

par: types → values

if:
$$(\mathbf{par} \mid X : \mathcal{U}_0) \to B X$$

$$R: X \curvearrowright_{0}^{BO} Y$$

$$\downarrow$$

$$R: X \curvearrowright_{1}^{U_{0}} Y \longrightarrow if_{X} \curvearrowright_{0}^{BR} if_{Y}$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$\downarrow$$

$$\uparrow$$

$$\downarrow$$

$$\uparrow$$

$$\downarrow$$

$$B: \mathcal{U}_0 \to \mathcal{U}_0$$

 $BX = \mathsf{Bool} \to X \to X \to X$

par: types \rightarrow values

if:
$$(\mathbf{par} \mid X : \mathcal{U}_0) \to B X$$

$$R: X \curvearrowright_{0}^{\mathcal{U}_{0}} Y$$

$$\downarrow$$

$$R: X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow if_{X} \curvearrowright_{0}^{BR} if_{Y}$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$B: \mathcal{U}_0 \to \mathcal{U}_0$$

 $BX = \mathsf{Bool} \to X \to X \to X$

$$X \curvearrowright_{0}^{\mathcal{U}_{0}} Y \longrightarrow B X \curvearrowright_{0}^{\mathcal{U}_{0}} B Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow B X \curvearrowright_{1}^{\mathcal{U}_{0}} B Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

par: types \rightarrow values

if:
$$(\mathbf{par} \mid X : \mathcal{U}_0) \to B X$$

$$R: X \curvearrowright_{0}^{\mathcal{U}_{0}} Y$$

$$\downarrow$$

$$R: X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow if_{X} \curvearrowright_{0}^{BR} if_{Y}$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$B: \mathcal{U}_0 \to \mathcal{U}_0$$

 $BX = \mathsf{Bool} \to X \to X \to X$

par: types \rightarrow values

if :
$$(\mathbf{par} \mid X : \mathcal{U}_0) \to B X$$

$$R: X \curvearrowright_{0}^{\mathcal{U}_{0}} Y$$

$$\downarrow$$

$$R: X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow if_{X} \curvearrowright_{0}^{BR} if_{Y}$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$B: \mathcal{U}_0 \to \mathcal{U}_0$$

 $BX = \mathsf{Bool} \to X \to X \to X$

par: types \rightarrow values

$$if: (\mathbf{par} \mid X : \mathcal{U}_0) \to B X$$

$$R: X \curvearrowright_{0}^{\mathcal{U}_{0}} Y$$

$$\downarrow$$

$$R: X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow if_{X} \curvearrowright_{0}^{BR} if_{Y}$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$B: \mathcal{U}_0 \to \mathcal{U}_0$$

 $BX = \mathsf{Bool} \to X \to X \to X$

$$X \curvearrowright_{0}^{\mathcal{U}_{0}} Y \longrightarrow B X \curvearrowright_{0}^{\mathcal{U}_{0}} B Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \curvearrowright_{1}^{\mathcal{U}_{0}} Y \longrightarrow B X \curvearrowright_{1}^{\mathcal{U}_{0}} B Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

All modalities at lowest levels

$(\mu : A) o B$	$B:\mathcal{U}_0$	$B:\mathcal{U}_1$	$B:\mathcal{U}_n$
	values	types	
$A:\mathcal{U}_0$	hoc, irr	hoc, shi, irr	
values			
$A:\mathcal{U}_1$	hoc, par, irr	hoc, con, shi,	
types		par, shi∥, irr	
$A:\mathcal{U}_m$			
			$\frac{(m+n+2)!}{(m+1)!(n+1)!}$

$if_{(List_n A)}$ Irrelevant in n?

Yes if $par \circ shi = irr \sqrt{}$

 $if_{(List_n A)}$ Irrelevant in n? Yes if $par \circ shi = irr \checkmark$

$$if_{(List_n A)}$$

Irrelevant in n ?
Yes if $par \circ shi = irr \checkmark$

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - . irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
- Understanding of interactions with
 - each other.
 - type dependencies,
 - type level/depth ⁷
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

⁷Multi-mode type theory:

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - . irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
- Understanding of interactions with
 - · each other,
 - type dependencies,
 - type level/depth ⁷
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

⁷Multi-mode type theory:

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - . irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
- Understanding of interactions with
 - · each other,
 - type dependencies,
 - type level/depth ⁷
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

⁷Multi-mode type theory:

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
- Understanding of interactions with
 - · each other,
 - type dependencies,
 - type level/depth ⁷
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

⁷Multi-mode type theory:

Take home message

Describe function behaviour as action on degree of relatedness. **par**, **con**, **irr**, **shi**, **hoc** are instances of this.

Thanks!

Questions?

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

$$leak: (X:\mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$
$$leak \ X \ f \ x = X$$

Our solution:

$$(\mathbf{par} \mid X : \mathcal{U}) \to (X \to A) \to (X \to \mathcal{U})$$

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

leak :
$$(X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak X f x = X

Our solution:

$$(\mathbf{par} \mid X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

$$leak: (X: \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

$$leak \ X \ f \ x = X$$

Our solution:

$$(\operatorname{\textbf{par}}:X:\mathcal{U})\to (X\to A)\to (X\to \mathcal{U})$$

Comparison with HoTT

Degrees of Relatedness	HoTT
functions act on \frown_i	functions preserve \simeq
equality as \frown_0	equality as \simeq
relational HITs ⁸	groupoidal HITs
depth: \mathcal{U}_{ℓ}^d : $\mathcal{U}_{\ell+1}^{d+1}$	h -level: \mathcal{U}_{ℓ}^{h} : $\mathcal{U}_{\ell+1}^{h+1}$

⁸future work

$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be
$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$: List ₄ A) $\curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$ $\forall R. if_X \curvearrowright_0^{\text{Bool} \to R \to R} if_Y$	$ \begin{array}{c} ((\lambda X.X) \ Bool : \mathcal{U}_0) \ \frown_0^{\mathcal{U}_0} \ (Bool : \mathcal{U}_0) \\ \\ ([] : List_4 \ \kappa) \ \frown_0^{List_6 \ \kappa} \ ([] : List_6 \ \kappa) \\ \\ & \cdots \end{array} $	$ \begin{split} & ((\lambda\xi.\xi)\kappa:\mathcal{U}_1) \frown_0^{\mathcal{U}_1}(\kappa:\mathcal{U}_1) \\ & ([]:List_4\mathcal{A}) \frown_0^{List_6}\mathcal{A}([]:List_6\mathcal{A}) \\ & \dots \end{split} $
n/a	$\begin{split} &\left((A:\mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) := \operatorname{Rel}(A,B) \\ &\mathbb{N} := \operatorname{Eqn} : \left(\mathbb{N} : \mathcal{U}_0 \right) \curvearrowright_{1}^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) \\ &\operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ &A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ &A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{V} \left(M : \operatorname{Mon} \right) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$
	n/a	$R: (G: \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$ $R: (G: \operatorname{Grp}) \curvearrowright_{1}^{Y} (M: \operatorname{Mon})$

	Value-level objects	Type-level objects	Kind-level objects
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be
0-related	$(2+5:\mathbb{N}) \cap_0^{\mathbb{N}} (7:\mathbb{N})$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \cap_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \cap_{0}^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$
(het. eq.)	($[]$: List ₄ A) $\frown_0^{\text{List}_{\bullet}} A$ ($[]$: List ₆ A)	$([]: List_4 \ \kappa) \frown_0^{List_{\bullet} \ \kappa} ([]: List_6 \ \kappa)$	$([]: List_4 \ \mathcal{A}) \frown_0^{List_{\bullet}} \ \mathcal{A} \ ([]: List_6 \ \mathcal{A})$
	$\exists R. (5: \mathbb{N}) \curvearrowright_0^R (true : Bool)$		
	$\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$		
1-related	n/a	$(A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) := \operatorname{Rel}(A,B)$	$\left((\kappa : \mathcal{U}_1) \smallfrown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) := \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$
		$\mathbb{N} := Eq_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$	$\mathcal{U}_0: (\mathcal{U}_0:\mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0:\mathcal{U}_1)$
		List _• A : List ₄ $A \sim_1^{\mathcal{U}_0}$ List ₆ A	List _e κ : List ₄ $\kappa \sim_1^{\mathcal{U}_1}$ List ₆ κ
		$R: (G: Grp) \curvearrowright_1^{Grp} (H: Grp)$	$ \rho: (\alpha: Cat) \smallfrown_{1}^{Cat} (\beta: Cat) $
		$R: (G: Grp) \frown_1^V (M: Mon)$	
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}: \mathcal{U}_1)$
		$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ because $2+5 \equiv 7$	

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.M_X \curvearrowright_0^{Bool \to R \to R \to R} M_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \dots $	$ ((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1) $ $ ([] : List_4 \mathcal{A}) \curvearrowright_0^{List_8 \mathcal{A}} ([] : List_6 \mathcal{A}) $ $ \cdots $
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_{1}^{\mathcal{U}_0} \operatorname{List}_6 A \\ & A : (G : \operatorname{Grp}) \frown_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_{1}^{V} (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \frown_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \text{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \frown_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \text{List}_{4} \ \kappa \frown_{1}^{\mathcal{U}_1} \ \text{List}_{6} \ \kappa \\ & \rho : (\alpha : \text{Cat}) \frown_{1}^{\text{Cat}} (\beta : \text{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$
	([] : L	List ₄ A) $\frown_0^{\text{List}_{\bullet}} A$ ([]: List ₆ where	A)

List_• $A \in \text{Rel}(\text{List}_4 A, \text{List}_6 A)$

Type-level objects

Value-level objects

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. \#_X \curvearrowright_0^{Bool \to R \to R \to R} \#_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \dots $	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_8 \ \mathcal{A}} ([] : List_6 \ \mathcal{A})$ \cdots
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \frown_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : (G : \operatorname{Grp}) \frown_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_{1}^{V} (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \qquad \qquad \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \frown_1^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ & \qquad \qquad \rho : (\alpha : \operatorname{Cat}) \frown_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$

$$(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \mathsf{Bool})$$
 for some $R \in \mathsf{Rel}(\mathbb{N}, \mathsf{Bool})$

Value-level objects

0-related (het. eq.)	$(2+5:\mathbb{N}) \cap_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \cap_{0}^{List_{6}} A ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \cap_{0}^{R} (true: Bool)$ $\forall R.if_{X} \cap_{0}^{Bool \to R \to R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\operatorname{FO}} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda\xi,\xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{U_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([] : List_6 \$
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & A : (G : \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_1^V (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda) \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \ \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_{6} \ \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_1^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	$(if_X : Bool \to X \to X \to X)$	$(if_Y : B) \cap_0^{Bool \to R \to R \to R} (if_Y : B)$ for all $R \in Rel(X, Y)$	ool o Y o Y o Y)

 $A: \kappa: \mathcal{U}_1$ can be

Value-level objects

 $a:A:\mathcal{U}_0$ can be

Kind-level objects

 $\kappa: \mathcal{A}: \mathcal{U}_2$ can be

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R} if_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	$ \frac{((\lambda \xi. \xi) \kappa: \mathcal{U}_1)}{0} \sim_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1) $ $ ([]: List_4 \ \mathcal{A}) \sim_0^{List_6} \ \mathcal{A} \ ([]: List_6 \ \mathcal{A}) $ $ \cdots $
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \ \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \ \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright_2^{\mathcal{U}_1} (Mon: \mathcal{U}_1)$
	$((\lambda X.)$	(X) Bool : \mathcal{U}_0) $\frown_0^{\mathcal{U}_0}$ (Bool : because	\mathcal{U}_0)

 $(\lambda X.X)$ Bool \equiv Bool

Type-level objects

Value-level objects

ļ	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	Kind-level objects $\kappa : \mathcal{A} : \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	$((\lambda\xi,\xi)\kappa:\mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa:\mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \mathcal{A})$
1-related	n/a	$\begin{split} \left((A:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) &:= \operatorname{Rel}(A,B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N}:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N}:\mathcal{U}_0) \\ & \operatorname{List_6} A : \operatorname{List_4} A \frown_1^{\mathcal{U}_0} \operatorname{List_6} A \\ & A : (G:\operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H:\operatorname{Grp}) \\ & A : (G:\operatorname{Grp}) \frown_1^V (M:\operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	([] : L	$\operatorname{List}_4 \kappa) \frown_0^{\operatorname{List}_{\bullet} \kappa} ([] : \operatorname{List}_6)$	κ)

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \cap_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \cap_{0}^{List_{6}} ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \cap_{0}^{R} (true: Bool)$ $\forall R.if_{X} \cap_{0}^{Bool \to R \to R \to R} if_{Y}$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	$((\lambda\xi,\xi)\kappa:\mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa:\mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \mathcal{A})$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \end{pmatrix} := \text{Rel}(A, B) $ $ \mathbb{N} := \text{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) $ $ \text{List}_a \ A : \text{List}_4 \ A & \stackrel{\mathcal{U}_0}{{_1}} \text{List}_6 \ A $ $ A : (G: \text{Grp}) & \stackrel{\text{Grp}}{{_1}} (H: \text{Grp}) $ $ A : (G: \text{Grp}) & \stackrel{V}{{_1}} (M: \text{Mon}) $	$\begin{split} \left(\left(\kappa : \mathcal{U}_{1} \right) \curvearrowright_{1}^{\mathcal{U}_{1}} \left(\lambda : \mathcal{U}_{1} \right) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_{0} : \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \curvearrowright_{1}^{\mathcal{U}_{1}} \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \ \kappa \curvearrowright_{1}^{\mathcal{U}_{1}} \operatorname{List}_{6} \ \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_{1}^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$	
2-related	2-related n/a n/a $V: (\operatorname{Grp}: \mathcal{U}_1) \subset_2^{\mathcal{U}_1} (\operatorname{Mon}: \mathcal{U}_1)$ $(a:A) \curvearrowright_i^{\mathbf{R}} (b:B) \text{ is always w.r.t. } \mathbf{R}: (A:\mathcal{U}_n) \curvearrowright_{i+1}^{\mathcal{U}_n} (B:\mathcal{U}_n)$ $\left((A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) := \operatorname{Rel}(A,B)$			
	Andreas Nuyts, Dor	minique Devriese Degrees of Relatedne	ss 3/3	

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_4 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([] : List_6 \mathcal{A})$
1-related	n/a	$ \begin{split} \left(\left(A : \mathcal{U}_0 \right) \frown_1^{\mathcal{U}_0} \left(B : \mathcal{U}_0 \right) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : \left(\mathbb{N} : \mathcal{U}_0 \right) \frown_1^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) \\ & \text{List}_a \ A : \operatorname{List}_4 \ A \frown_1^{\mathcal{U}_0} \ \operatorname{List}_6 \ A \\ & A : \left(G : \operatorname{Grp} \right) \frown_1^{\operatorname{Grp}} \left(H : \operatorname{Grp} \right) \\ & A : \left(G : \operatorname{Grp} \right) \frown_1^{\operatorname{V}} \left(M : \operatorname{Mon} \right) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \qquad \qquad \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ & \qquad \qquad \rho : (\alpha : \operatorname{Cat}) \curvearrowright_{1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	№ :=	$Fq_{N}\cdot (\mathbb{N}\cdot \mathcal{U}_0) \curvearrowright^{\mathcal{U}_0} (\mathbb{N}\cdot \mathcal{U}_0)$	(6)

$$\mathbb{N} := \mathsf{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa : \mathcal{A} : \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6 \mathcal{A}} ([]: List_6 \mathcal{A})$ \cdots
1-related	n/a	$((A: \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B: \mathcal{U}_0)) := \text{Rel}(A, B)$ $\mathbb{N} := \text{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$ $\text{List}_{\bullet} A : \text{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \text{List}_6 A$ $A : (G: \text{Grp}) \curvearrowright_1^{\text{Grp}} (H: \text{Grp})$ $A : (G: \text{Grp}) \curvearrowright_1^{V} (M: \text{Mon})$	$ \begin{split} \left((\kappa : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \text{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ &\text{List}_{\bullet} \ \kappa : \text{List}_{4} \ \kappa \frown_1^{\mathcal{U}_1} \ \text{List}_{6} \ \kappa \\ & \rho : (\alpha : \text{Cat}) \frown_1^{\text{Cat}} (\beta : \text{Cat}) \end{split} $
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \smallfrown_2^{\mathcal{U}_1} (Mon:\mathcal{U}_1)$
	List. A: ((List ₄ A : \mathcal{U}_0) $\sim_1^{\mathcal{U}_0}$ (List ₆ A	$A:\mathcal{U}_0$

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 \ A) \curvearrowright_0^{List_6 \ A} ([]: List_6 \ A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. \mathit{if}_X \curvearrowright_0^{Bool \to R \to R} \mathit{if}_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \dots	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([] : List_6 \mathcal{A})$ \cdots
1-related	n/a	$ \left((A : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \text{Rel}(A, B) $ $ \mathbb{N} := \text{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \text{List}_{\bullet} A : \text{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \text{List}_6 A $ $ A : (G : \text{Grp}) \curvearrowright_1^{\text{Grp}} (H : \text{Grp}) $ $ A : (G : \text{Grp}) \curvearrowright_1^{V} (M : \text{Mon}) $	$((\kappa : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1)) := \text{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$ $\mathcal{U}_0 : (\mathcal{U}_0 : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1)$ $\text{List}_{\bullet} \kappa : \text{List}_{4} \kappa \frown_1^{\mathcal{U}_1} \text{List}_{6} \kappa$ $\rho : (\alpha : \text{Cat}) \frown_1^{\text{Cat}} (\beta : \text{Cat})$
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$
		$G: \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$ \cong $(e_{G} \curvearrowright_{0}^{\underline{R}} e_{H}) \times (*_{G} \curvearrowright_{0}^{\underline{R}} e_{H})$	$(\underline{R} \rightarrow \underline{R} \rightarrow \underline{R} *_{H})$

Value-level objects

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. il_X \curvearrowright_0^{Bool \to R \to R} il_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \ \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \ \mathcal{A})$
1-related	n/a	$ ((A: \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B: \mathcal{U}_0)) := \text{Rel}(A, B) $ $ \mathbb{N} := \text{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \text{List}_{\bullet} A : \text{List}_{4} A \curvearrowright_{1}^{\mathcal{U}_0} \text{List}_{6} A $ $ A : (G : \text{Grp}) \curvearrowright_{1}^{\text{Grp}} (H : \text{Grp}) $ $ A : (G : \text{Grp}) \curvearrowright_{1}^{V} (M : \text{Mon}) $	$((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1)) := \text{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$ $\mathcal{U}_0 : (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1)$ $\text{List}_{\bullet} \kappa : \text{List}_{4} \kappa \curvearrowright_1^{\mathcal{U}_1} \text{List}_{6} \kappa$ $\rho : (\alpha : \text{Cat}) \curvearrowright_1^{\text{Cat}} (\beta : \text{Cat})$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \smallfrown_2^{\mathcal{U}_1} (Mon: \mathcal{U}_1)$
	,	$G: \operatorname{Grp}) \curvearrowright^{V}_{1} (M: \operatorname{Mon})$ $:=$ $1 \times (e_{G} \curvearrowright^{\underline{R}}_{0} e_{M}) \times (*_{G} \curvearrowright^{\underline{R}}_{0} e_{M})$	$\frac{R \rightarrow R \rightarrow R}{D} *_{M}$

Value-level objects

$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be		
$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6 \mathcal{A}} ([]: List_6 \mathcal{A})$		
n/a	$ \begin{split} \left(\left(A : \mathcal{U}_0 \right) \frown_{1}^{\mathcal{U}_0} \left(B : \mathcal{U}_0 \right) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} : \mathcal{U}_0 \right) \frown_{1}^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \frown_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : \left(G : \operatorname{Grp} \right) \frown_{1}^{\operatorname{Grp}} \left(H : \operatorname{Grp} \right) \\ & A : \left(G : \operatorname{Grp} \right) \frown_{1}^{V} \left(M : \operatorname{Mon} \right) \end{split} $	$ \begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \kappa \curvearrowright_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ \rho &: (\alpha : \operatorname{Cat}) \curvearrowright_{1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split} $		
n/a	$^{n/a}$ (Grp: \mathcal{U}_1) $\sim_2^{\mathcal{U}_1}$ (Mon: \mathcal{U}_1	$V: (Grp:\mathcal{U}_1) \smallfrown_2^{\mathcal{U}_1} (Mon:\mathcal{U}_1)$		
ν. (αιρ. α ₁) γ ₂ (Νιοπ. α ₁)				

Value-level objects

0-related

(het. eq.)

1-related

2-related