Progetto Architetture degli Elaboratori

Nome e cognome: NOTARI KRISTIAN

Email: kristian.notari@studenti.unimi.it

Specifiche progetto

Descrizione generale progetto

Il circuito implementato avrà il compito di rappresentare graficamente su di una matrice led il polinomio $(x^2 + x + q)$, capace di formare rette e parabole, in un intervallo positivo di x (0-31), dati i coefficienti di x^2 , x e q in input. La matrice corrisponderà ad un grafico di soli punti interi, dove ogni led corrisponderà ad un numero tra 0 e 31.

Il circuito sarà regolato da un clock che, ad elevata frequenza, permetterà il rapido aggiornarsi della matrice led dati i nuovi valori in input in modo dinamico. Inoltre, avrà la possibilità di salvare un grafico in memoria così da confrontarlo con un altro attivo e modificabile, oltre ad effettuare operazioni di addizione e sottrazione tra i due (di base il circuito, qualora fossero selezionate queste due operazioni, non visualizzerà nulla fino a che almeno un grafico non è stato salvato).

Interfaccia utente (componenti Input/Output)

L'interfaccia sarà composta da un tastierino numerico da 0 a 9 con cui inserire i coefficienti del polinomio (a singola cifra) e da una matrice led capace di far vedere graficamente l'elemento geometrico desiderato. Inoltre il tastierino avrà una serie di comandi per la gestione degli input (come un tasto annulla e azzera), quelli per la gestione del grafico salvato (salva, elimina, carica) e uno di scelta dell'operazione da effettuare su due eventuali grafici. Vi saranno display per visualizzare i coefficienti attuali e quelli salvati, oltre all'operazione e al coefficiente selezionati.

Condizioni iniziali del circuito

Il circuito non è dotato di situazioni iniziali o finali pertanto avrà semplicemente i coefficienti del polinomio in input equivalenti a 0 e l'operazione impostata su "doppio grafico".

Condizioni finali del circuito

Il circuito non è dotato di situazioni iniziali o finali pertanto avrà semplicemente la matrice led in output corrispondente ai dati presenti all'interno del circuito in un dato momento.

Ciclo tipico di utilizzo descritto in termini di componenti di input/output

L'utente dovrà impostare i coefficienti del polinomio attraverso il tastierino numerico per poi visualizzare l'output sulla matrice di led. Se vorrà, in qualsiasi momento, potrà scegliere quale coefficiente modificare e se resettare il plotter allo stato iniziale o meno, oltre ad effettuare le operazioni sopracitate.

Sottocircuiti implementati

Gestore input

alt text

Si occupa di gestire l'input utente. Controlla l'inserimento dei coefficienti da tastierino, gestisce gli input di selezione coefficiente e operazione e inoltra al resto del circuito (organizzazione cablaggio) i segnali di controllo dei grafici.

In ingresso ci sono i segnali che determinano il coefficiente in uscita, da 0 a 9 compresi, i segnali di reset del circuito, azzera, annulla, inserisci per manipolare i coefficienti, left e right per selezionare il coefficiente da modificare, salva, carica e cancella per manipolare il circuito da salvare, di cui caricare i coefficienti nel grafico attivo o da cancellare, oltre al segnale per modificare l'operazione da effettuare sui due grafici.

In uscita inoltra i segnali di reset, azzera, annulla, inserisci, salva, carica e cancella, che serviranno al resto del circuito e interfaccia il numero inserito, un segnale di click che identifica quando viene premuto un pulsante del tastierino, e il codice operazione selezionato.

Possiede un sottocircuito interno "keypad" che fa corrispondere in modo univoco all'input a 1 di uno dei 10 segnali di ingresso (i numeri da 0 a 9) il numero associato attraverso semplici porte logiche, oltre a registrare in output quando è stato cliccato un pulsante del tastierino. Inoltre possiede due contatori interni a 2 bit con valore minimo 0 (00) e valore massimo 2 (10) che determinano il coefficiente e l'operazione selezionati, modificabili attraverso i segnali di leff/right (quando a 1 decrementano/incrementano il contatore, con limite ai valori minimi/massimi) e il segnale di op_code (che incrementa sempre quando a 1, senza limiti inferiori/superiori).

Memoria dati

alt text

La memoria dati gestisce i dati in input dei coefficienti del grafico attivo interfacciandoli con il resto del circuito e permettendo all'utente operazioni come l'annulla e il salvataggio dei coefficienti del grafico da salvare.

In ingresso ottiene il dato da salvare dal gestore dell'input (che sarebbe il coefficiente scelto), il click dello stesso e il dato di select che dirà quale coefficiente modificare. Inoltra riceverà i segnali di gestione dei dati, ovvero reset, azzera, annulla, inserisci, salva, carica e cancella. In uscita vi saranno i 3 dati riferiti ai coefficienti attuali e i 3 dati riferiti ai coefficienti del grafico salvato (questi solo per renderli visibili all'uetnete).

Questo componente contiene 3 sottocircuiti principali che gestiscono 3 funzioni separate ma agenti sugli stessi dati: l'inserimento dati da tastierino, la gestione dei coefficienti del grafico salvato e la funzione annulla.

Circuito di calcolo

alt text

Circuito di disegno

alt text

Circuito principale

aaaaaaaaaaaaaaaaaaaaa

COME FAR ANDARE AVANTI IL CONTATORE DELLE X (CON CLOCK) COSI' E' DINAMICO E SI AGGIORNA SEMPRE CON ALTA FREQUENZA

GESTIONE OVERFLOW PERCHE NON POSSO RAPPRESENTARE NUMERI OLTRE 0...31 PER LE Y

SICCOME AVREI DOVUTO SALVARE ANCHE L'OVERFLOW DEL NUMERO DA SALVARE, O PREFERITO SALVARLO IN RAPPRESENTAZIONE GRAFICA -> DA CUI TUTTA GESTIONE DEL MERGING

SCELTO UN CONTATORE PERCHE OGNI VOLTA CALCOLARE OGNY Y PER OGNI X AVREBBE RICHIESTO UN CIRCUITO LUNGO E COMPLESSO SENZA SENSO QUANDO POSSO

AGGIORNARE DINAMICAMENTE
@@@@@@@@@@@@@@@@@@@@@

Interazione tra sottocircuiti

 $Considerazioni\ /\ possibili\ estensioni\ o\ modifiche$