Complex Numbers Problems 171-180

Shiv Shankar Dayal

October 7, 2022

171. If n > 1, show that the roots of the equation $z^n = (1+z)^n$ are collinear.

Solution: Given
$$z^n=(z+1)^n\Rightarrow |z|^n=|z+1|^n$$

$$\Rightarrow |z| = |z+1| \Rightarrow x^2 = (x^2 + 2x + 1) \Rightarrow 2x + 1 = 0$$

which is the equation of a straight line on which roots of the given equation will lie.

172. If A, B, C and D are four complex number then show that $AD.BC \leq BD.CA + CD.AB$.

Solution: Let z_1, z_2, z_3, z_4 be represented by the points A, B, C, D respectively.

$$\begin{split} : &AD = |z_1 - z_4| \text{ and } BC = |z_2 - z_3| \\ &\text{Let } a = (z_1 - z_4)(z_2 - z_3), b = (z_2 - z_4)(z_3 - z_1) \text{ and } c = (z_3 - z_4)(z_1 - z_2) \\ &b + c = (z_2 - z_4)(z_3 - z_1) + (z_3 - z_4)(z_1 - z_2) = -(z_1 - z_4)(z_2 - z_3) = -a \\ &|a| = |b + c| \le |b| + |c| \Rightarrow |-(z_1 - z_4)(z_2 - z_3)| = |(z_2 - z_4)(z_3 - z_1)| + |(z_3 - z_4)(z_1 - z_2)| \\ \Rightarrow &AD.BC \le BD.CA + CD.AB. \end{split}$$

173. If $a,b \in R$ and $a,b \ne 0$, then show that the equation of line joining a and ib is $\left(\frac{1}{2a} - \frac{i}{2b}\right)z + \left(\frac{1}{2a} + \frac{i}{2b}\right)\overline{z} = 1$.

Solution: Euqation of a line joining points a and ib is

$$\begin{vmatrix} z & \overline{z} & 1 \\ a & \overline{a} & 1 \\ ib & = i\overline{b} & 1 \end{vmatrix} = 0 \text{ or } (\overline{a} + i\overline{b}) - (a - ib)\overline{z} - i(a\overline{b} + \overline{a}b) = 0$$

$$\Rightarrow (a + ib)z - (a - ib)\overline{z} - 2abi = 0[\because a, b \in R \because a = \overline{a}, b = \overline{b}]$$

$$\Rightarrow (a + ib)z - (a - ib)\overline{z} = 2abi$$

$$\Rightarrow \left(\frac{1}{2a} - \frac{i}{2b}\right)z + \left(\frac{1}{2a} + \frac{i}{2b}\right)\overline{z} = 1$$

174. If z_1 and z_2 are two compelx numbers such that $|z_1|-|z_2|=|z_1-z_2|$, then show that $\arg(z_1)-\arg(z_2)=2n\pi$ where $n\in I$.

$$\begin{split} & \textbf{Solution: Let } z_1 = r_1 e^{i\theta_1} \text{ and } z_2 = r_2 e^{i\theta_2} \\ & \textbf{Then } r_1 - r_2 = \sqrt{(r_1 \cos\theta_1 - r_2 \cos\theta_2)^2 + (r_1 \sin\theta_1 - r_2 \sin\theta_2)^2} \\ & \Rightarrow 2r_1 r_2 = 2r_1 r_2 \cos(\theta_1 - \theta_2) \Rightarrow \cos(\theta_1 - \theta_2) = \cos 2n\pi \\ & \Rightarrow \arg(z_1) - \arg(z_2) = 2n\pi \end{split}$$

175. Let A,B,C,D,E be points in the complex plane representing complex numbers z_1,z_2,z_3,z_4,z_5 respectvely. If $(z_3-z_2)z_4=(z_1-z_2)z_5$, prove that $\triangle ABC$ and $\triangle DOE$ are similar.

Solution: $\triangle ABC$ and $\triangle DOE$ will be similar if

$$\frac{AC}{AB} = \frac{DE}{DO}$$
 and $\angle BAC = \angle ODE$

$$\Rightarrow \left|\frac{z_3 - z_1}{z_2 - z_1}\right| = \left|\frac{z_5 - z_4}{0 - z_4}\right| \text{ and } \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) = \arg\left(\frac{z_5 - z_4}{0 - z_4}\right)$$

$$\Rightarrow \frac{z_3 - z_1}{z_2 - z_1} = \frac{z_5 - z_4}{0 - z_4}$$

Solving this yields $(z_3-z_2)z_4=(z_1-z_2)z_5$ and hence triangles are similar.

176. Let z and z_0 are two complex numbers and $z, z_0, z\overline{z_0}, 1$ are represented by points P, P_0, Q, A respectively. If |z|=1, show that the triangle POP_0 and AOQ are congruent and hence $|z-z_0|=|z\overline{z_0}-1|$, where O represents the origin.

Solution: Given
$$OA=1$$
 and $|z|=1=OP\Rightarrow OA=OP$
$$OP_0=|z_0| \text{ and } OQ=|z\overline{z_0}|=|z||\overline{z_0}|=|z_0|$$

$$\Rightarrow OP_0=OQ. \text{ Also give that } \angle P_0OP=\arg\frac{z_0}{z}$$

$$\angle AOQ=\arg\left(\frac{1}{z\overline{z_0}}\right)=\arg\left(\frac{\overline{z}}{\overline{z_0}}\right)[\because z\overline{z}=1]$$

$$=-\arg\left(\frac{\overline{z_0}}{\overline{z}}\right)=-\arg\left(\frac{\overline{z_0}}{\overline{z}}\right)=\arg\left(\frac{z_0}{z}\right)=\angle P_0OP \text{ and thus the triangles are congruent.}$$

177. If the line segment joining z_1 and z_2 is divided by P and Q in the ratio a:n internally and externally, then find $OP^2 + OQ^2$ where O is origin.

$$\begin{split} & \textbf{Solution: } P = \frac{az_2 + bz_1}{a + b}, Q = \frac{az_2 - bz_1}{a - b} \\ & OP^2 = \left| \frac{az_2 + bz_1}{a + b} \right|^2 = \left(\frac{az_2 + bz_1}{a + b} \right) \left(\frac{a\overline{z_2} + b\overline{z_1}}{a + b} \right) \\ & = \frac{1}{a^2 + b^2} [a^2 |z_2|^2 + b^2 |z_1|^2 + ab(z_1 \overline{z_2} + \overline{z_1} z_2)] \end{split}$$

Similarly OQ^2 can be computed and sum found.

178. Let z_1, z_2, z_3 be three complex numbers and a, b, c be real numbers not all zero such that a+b+c=0 and $az_1+bz_2+cz_3=0$, then show that z_1, z_2, z_3 are collinear.

Solution: Let $c \neq 0$, then c = -(a+b) so we can write

$$az_1+bz_2-(a+b)z_3=0\Rightarrow z_3=\tfrac{az_1+bz_2}{a+b}$$

Thus, we see that z_3 divides line segment z_1z_2 in the ratio of a:b making all three of them collinear.

179. If $z_1 + z_2 + ... + z_n = 0$, prove that if a line passes through origin then all these do not lie of the same side of the line provided they do not lie on the line.

Solution: Equation of a line passing through origin is $a\overline{z} + \overline{a}z = 0$. Let us assume that all the points lie on the same side of the above line, so we have

$$a\overline{z_i} + \overline{a}z_i > 0 \text{ or } < 0 \text{ for } i = 1, 2, 3, \dots, n$$

Thus,
$$a\sum_{i=1}^n \overline{z_i} + \overline{a}\sum_{i=1}^n z_i > 0$$
 or <0

But it is given that
$$\sum_{i=1}^{n} z_i = 0 \Rightarrow \sum_{i=1}^{n} \overline{z_i} = 0$$

$$a \sum_{i=1}^{n} \overline{z_i} + \overline{a} \sum_{i=1}^{n} z_i = 0$$

which in contradiction with equation above. So all points cannot lie on the same side of line.

180. The points $z_1=9+12i$ and $z_2=6-8i$ are given on a complex plane. Find the equation of the angle formed by the vector representing z_1 and z_2 .

Solution: Let OA and OB be the unit vectors representing z_1 and z_2 , then we have

$$\vec{OA} = \frac{z_1}{|z_1|}, \vec{OB} = \frac{z_2}{|z_2|}$$

Therefore equation of bisector will be $z=t\left(\frac{z_1}{|z_1|}+\frac{z_2}{|z_2|}\right)=\frac{6}{5}t$, where is an arbitrary positive integer.