MAS350: Assignment 2

- 1. Determine if the following functions are Lebesgue integrable. Use the monotone convergence theorem to justify your answers.
 - (a) $f:(0,\infty)\to \mathbb{R}$ by $f(x)=1/x^2$.
 - (b) $g:(0,1)\to\mathbb{R}$ by $g(x)=\log x$
- 2. The following text describes the key steps of defining the Lebesgue integral on a measure space (S, Σ, m) . It contains three mistakes.
 - For indicator functions $\mathbb{1}_A$ where $A \in \Sigma$, set

$$\int_0^\infty \mathbb{1}_A \, dm = m(A). \tag{*}$$

- For simple functions $s=\sum_{i=1}^n c_i\mathbbm{1}_{A_i},$ where $c_i\geq 0$ and $A_i\in \Sigma$ for all $i\in \mathbb{N}$
- 4 $\{1,\ldots,n\}$, extend equation (\star) by linearity to give

$$\int_{S} s \, dm = \sum_{i=1}^{n} c_{i} m(A_{i}).$$

- For non-negative measurable functions $f: S \to [0, \infty)$, define
- $\int_S f \, dm = \sup \left\{ \int_S s \, dm \ : \ s \text{ is a continuous function and } 0 \le s \le f \right\}.$
- We therefore have that $\int_S f \, dm \in [0, \infty]$ for non-negative measurable functions f.
- For an arbitrary measurable function $f: S \to \mathbb{R}$, write $f = f_+ f_-$, where
- $f_{+}=0 \lor f$ and $f_{-}=-(f \land 0)$. Then f_{+} and f_{-} are non-negative measurable
- functions. If one or both of $\int_S f_+ dm$ and $\int_S f_- dm$ is not equal to $+\infty$ then we
- 12 define

$$\int_{S} f \, dm = \int_{S} f_{+} \, dm - \int_{S} f_{-} \, dm.$$

If both $\int_S f_+ dm$ and $\int_S f_- dm$ are equal to $+\infty$ then $\int_S f dm$ is equal to $+\infty$.

Each mistake is on a distinct line. Line numbers are included for convenience and to help you reference the text.

List the line numbers containing mistakes and, for each mistake, give a corrected version.

1

- 3. Let (S, Σ, m) be a measure space, and suppose that m is a probability measure.
 - (a) Let $f: S \to \mathbb{R}$ be a non-negative simple function. Show that f^2 is also a non-negative simple function.
 - (b) Let $f: S \to \mathbb{R}$ be a simple function. Write $f = \sum_{i=1}^n c_i \mathbb{1}_{A_i}$ where the A_i are pairwise disjoint and measurable and $c_i \geq 0$. Show that

$$\left(\int_{S} f \, dm\right)^{2} \le \int_{S} f^{2} \, dm. \tag{*}$$

Hint: You may use Titu's lemma, which states that for $u_i \geq 0$ and $v_i > 0$,

$$\frac{\left(\sum_{i=1}^{n} u_i\right)^2}{\sum_{i=1}^{n} v_i} \le \sum_{i=1}^{n} \frac{u_i^2}{v_i}.$$

- (c) In this question you should give two different proofs that equation (\star) holds when f is any non-negative measurable function. You may use your results from part (b) in both proofs.
 - i. Give a proof using the monotone convergence theorem.
 - ii. Give a proof based on the definition of the Lebesgue integral for non-negative measurable functions.
- (d) Does (\star) remain true if m is not necessarily a probability measure?