Square

Description

Given a sequence of integers a_1,a_2,\ldots,a_n , A-Long wants to find another sequence b_1,b_2,\ldots,b_n , s.t.,

- 1. $orall 1 \leq i \leq n, b_i > 0$. 2. $orall 1 \leq i \leq n-1, (a_i \cdot b_i \cdot a_{i+1} \cdot b_{i+1})$ is a square number, i.e., $\exists n \in \mathbb{N}$, s.t. $a_i \cdot b_i \cdot a_{i+1} \cdot b_{i+1} = n^2$.
- 3. $\prod_{i=1}^{n} b_i$ is minimized.

Please help A-Long find such sequence b_i . You are only required to compute $\prod_{i=1}^n b_i \pmod{10^9+7}$ as it may be extremely large.

Input

The input data may contain multiple test cases, terminated by EOF.

For each test case:

- The first line contains an integer n.
- The second line contains n integer, the i-th of which is a_i .

Output

For each test case, print one integer - the answer modulo $10^9 + 7$ in a line.

Sample Input/Output

Input

3 2 6 3

Output

6

Explanation

The corresponding sequence b is (3, 1, 2).

Constraint

 $1 \leq n \leq 10^5, 1 \leq a_i \leq 10^5$. There are at most 5 test cases.