Modelo de Solow

03

Soledad Cabrera

Supuestos

03

Rendimientos constantes a escala

$$Y = Af(K, L)$$
$$\lambda Y = Af(\lambda K, \lambda L)$$

Etapas del modelo

- 1. Acumulación de capital
- 2. **▲** K y **▲** L
- 3. ▲ K , ▲ L y ▲ A

Runción de producción

$$Y = f(K, L)$$

Rendimientos constantes a escala

$$\lambda Y = f(\lambda K, \lambda L)$$

$$\frac{Y}{L} = f\left(\frac{K}{L}, 1\right)$$

$$y = f(k)$$

03

$$Y = C + I$$

$$Y = C + S$$

$$Y = cY + I$$

$$y = cy + i$$

$$y - cy = i$$

$$(1 - c) y = i$$

$$sf(k) = i$$

$$\Delta k = sf(k) - \delta k$$

$$sf(k) = \delta k$$

03

> Aumento del ahorro

CB

$$\hat{k} = 0$$

$$\hat{k} = \left(\frac{\hat{K}}{L}\right) = 0$$

$$\widehat{Y} = 0$$

$$\widehat{\mathbf{y}} = \left(\frac{\widehat{Y}}{L}\right) = 0$$

Regla de oro

03

Maximizar el consumo

$$c = y - sf(k)$$

$$c = f(k) - \delta k$$

$$\frac{\partial c}{\partial k} = f'(k) - \delta$$

$$f'(k) = \delta$$

Regla de oro

CB

Crecimiento de la población

$$\widehat{L} = n$$

$$\Delta k = sf(k) - \delta k - nk$$

$$sf(k) = (\delta + n)k$$

Crecimiento de la población

Crecimiento de la población

CB

$$\hat{k} = 0$$

$$\hat{k} = \left(\frac{\hat{K}}{L}\right) = 0$$

$$\widehat{L} = n$$

$$\widehat{Y} = n$$

$$\hat{y} = \left(\frac{\hat{Y}}{L}\right) = 0$$

03

$$\widehat{A} = g$$

Runción de producción

$$Y = f(AL, K)$$

Rendimientos constantes a escala

$$\lambda Y = f(\lambda AL, \lambda K)$$

$$\frac{Y}{AL} = f\left(1, \frac{K}{AL}\right)$$
$$y = f(k)$$

$$\Delta k = sf(k) - \delta k - nk - gk$$

$$sf(k) = (\delta + n + g)k$$

03

$$\hat{k} = 0$$

$$\widehat{k} = \frac{\widehat{K}}{AL} = 0$$

$$\widehat{L} = n$$
 $\widehat{A} = g$

$$\widehat{y} = \frac{\widehat{Y}}{AL} = 0$$

$$\left(\frac{\widehat{Y}}{L}\right) = g$$