

- 1. Sea A una matriz inversible de $n \times n$, para la cual se desea aproximar la solución verdadera x_{sol} del sistema lineal Ax = b. Para dicho objetivo, se propone considerar alguna matriz inversible N adecuada, un vector inicial x_0 y definir una sucesión de vectores dada por: $x_{j+1} = x_j + y_j$. Donde cada y_j es la solución del sistema $Nx = Ae_j = A(x_{sol} x_j)$. Este método se conoce como Método de corrección residual.
 - a) Suponiendo N dada, hallar una matriz B y un vector c tales que el método se pueda escribir de la forma $x_{j+1} = Bx_j + c$. Mostrar que si x_j converge a un valor x^* , entonces x^* es solución del sistema Ax = b.
 - b) Sean

$$A = \begin{pmatrix} 1 & 0 & 1/2 \\ 1 & 2 & 1/2 \\ 1 & 1 & 3 \end{pmatrix}, \qquad N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Probar que el método resulta convergente para todo vector inicial x_0 . Sugerencia: considerar una norma matricial adecuada.

- 2. Dada la función $f(x) = \cos(\pi x) e^{-x}$ y $x_0, \dots, x_n \in [0, 1]$ tales que $x_0 = 0$ y $x_n = 1$, sea P_{n+2} el polinomio de grado menor o igual a n+2 que interpola a f en los x_i y que además cumple que $f'(0) = P'_{n+2}(0)$ y $f'(1) = P'_{n+2}(1)$.
 - a) Probar que el error de interpolación verifica

$$|f(x) - P_{n+2}(x)| \le \frac{\|f^{(n+3)}\|_{\infty,[0,1]}}{(n+3)!} \frac{|u(x)|}{16}$$

donde
$$u(x) = \prod_{i=1}^{n-1} (x - x_i)$$
.

- b) ¿Cómo hay que elegir a los x_i para que |u(x)| sea mínimo?
- c) Hallar n tal que $||f P_{n+2}||_{\infty,[0,1]} < 10^{-3}$.
- 3. Hallar la mejor aproximación en el sentido de cuadrados mínimos de la siguiente tabla de datos

con una función del tipo: $y(x) = a 2^x + b x$.

4. Se considera la función $f(x) = x^6 - 48x^2 + 3$

- a) Demostrar que f tiene exactamente una raíz en el intervalo $(2, +\infty)$.
- b) Sea r dicha raíz. Demostrar que el método de Newton-Raphson converge si se toma como valor inicial un $x_0 > r$.
- c) Generalizar el ítem anterior para un x_0 que sea mayor a 2.
- 5. Hallar una regla de cuadratura del siguiente tipo

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x)\cos(x)dx \sim A_0(f(x_0) + f(x_1)),$$

que tenga grado de precisión máximo. ¿Cuál es dicho grado? ¿Es una regla de cuadratura Gaussiana? $(Sugerencia: ((x^2-2)\sin(x)+2x\cos(x))'=x^2\cos(x))$