Exemples du cours sur les complexes Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

16 mars 2020

Table des matières

- Exemple 7
- Exemple 8

Exemple 7: Question 1

Dans le plan complexe muni d'un repère orthonormal direct, les points A, B et C ont pour affixes respectives a=-4, b=2 et c=4. On considère les trois points A', B' et C' d'affixes respectives a'=ja, b'=jb et c'=jc où j est le nombre complexe $-\frac{1}{2}+\mathrm{i}\frac{\sqrt{3}}{2}$. On a $\mathrm{j}=-\frac{1}{2}+\mathrm{i}\frac{\sqrt{3}}{2}=\cos\left(\frac{2\pi}{3}\right)+\mathrm{i}\sin\left(\frac{2\pi}{3}\right)$.

On en déduit que la forme exponentielle de j est $j=e^{i\frac{2\pi}{3}}$. Il est plus simple ici de mettre en évidence directement le cosinus et le sinus.

Exemple 7: Question 2

En déduire les formes algébriques et exponentielles de a' = ja, b' = jb et c' = jc, sachant que $j = e^{j\frac{2\pi}{3}}$

- $a' = -4e^{i\frac{2\pi}{3}} = 4e^{i\pi}e^{i\frac{2\pi}{3}} = 4e^{i\frac{5\pi}{3}}$ sous forme exponentielle et $a' = 2 2i\sqrt{3}$ sous forme algébrique.
 - Dans une forme exponentielle, le coefficient multipliant $\cos(\theta) + i\sin(\theta)$ doit être positif. S'il est négatif, il faut écrire $-1 = e^{i\pi}$ et un argument est $\theta + \pi$.
- $b' = 2e^{i\frac{2\pi}{3}}$ sous forme exponentielle et $b' = -1 + i\sqrt{3}$ sous forme algébrique.
- $c' = 4e^{i\frac{2\pi}{3}}$ sous forme exponentielle et $c' = 2 + 2i\sqrt{3}$ sous forme algébrique.

