IEEE 802.11be — Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax

Key features

- · Support 6G band
- · 320MHz maximum BW
- · Coordinated Communication
- · 16 Spatial stream
- · implicit CSI sounding
- Hybrid ARQ
- · Full duplex communication
- · data aggregation

Objective and Standard development time frame

Objectvie

- Enabling new MAC and PHY to maximum throughput(at least) 30Gbps
- 4x data service access wrt 802.11ax
- Using frequencies between 1 to 7.125 GHz
- backward support 11g/n/ac/ax in 2.4,5 and 6GHz

Time-frame

Figure 1: Illustration of the different standardization cycles considered by 802.11 stakeholders.

Candidate Technical Features

- 320MHz BW and more efficiently of non-contiguous spectrum
 - adoption of 160 MHz and 320 MHz communication bandwidth per AP in the 6 GHz band as mandatory and optional features
 - Moreover, a minimum channel size of 40 or even 80 MHz in the 6 GHz band.
 - Always schedule uplink transmissions in the 6 GHz band
- Multi-channel/multi-band aggregation and operation
 - Multi-band data aggregation: aggregation of 5G and 6G band data transmission
 - require device sync start of TXOP in different band
 - Simultaneous transmission and reception in different bands
 - multi-band full duplex
 - reducing latency and enhancing the throughput by enabling an asynchronous and simultaneous uplink/downlink operation in separate bands
 - · Simultaneous transmission and reception in the same band
 - in-band full duplex operation for Wi-Fi
 - Data and control plane separation
 - unprecedented opportunity of separating the data and management planes
 - immediate status feedback is possible in data and control plane separation.
 - reliable feedback channel on control plan is possible.
 - o 16 spatial streams and multiple-input multiple-output (MIMO) protocol enhancements
 - possible high speed back-haul provided by fiber-to-the-home (FTTH) solutions and the rich scattering in the indoor environments
 - implicit sounding procedure to solve hugh channel sounding feedback data rate
 - Multi-access point coordination Communication

(a) Coordinated OFDMA

(b) Coordinated null steering

- Coordinated OFDMA
- Coordinated Null Steering
 - APs can also leverage their antennas to place spatial radiation nulls from and towards nonassociated devices in their neighbor-hoods
- Distributed MIMO (D-MIMO)
 - multiple non-collocated APs perform a joint data transmission and/or reception from multiple STAs
- Enhanced link adaptation and retransmission protocol
 - hybrid ARQ (HARQ) capabilities

System performance comparison to 11ac

- Benefit
 - More bandwidth
 - More antenna and spatial stream
 - o implicit CSI acquisition

Table I: Detailed system-level parameters

Parameter	Description
Deployment	
Floor size	40 m × 40 m
AP positions	16 ceiling-mounted APs equally
	spaced ($d_x = d_y = 10 \mathrm{m}$)
AP/STA heights	h = 3/1 meters
STA distribution	512 uniformly deployed STAs
AP-STA association criterion	Strongest average received signal
PHY & MAC	
Carrier frequency	5.18 GHz (.11ax) / 6.2 GHz (EHT)
System bandwidth	320 MHz (.11ax) / 640 MHz (EHT)
Channel size	80 MHz (.11ax) / 160 MHz (EHT)
AP/STA maximum TX power	$P_{\rm max}=24/15{ m dBm}$
Number of antennas per AP	$4 \times 2 \text{ (.11ax) } / 4 \times 4 \text{ (EHT)}$
Number of antennas per STA	1
AP and STA antenna elements	Omnidirectional with 0 dBi
CCA energy detection threshold	$\gamma_{\mathrm{LBT}} = -62 \; \mathrm{dBm}$
Signal detection threshold	$\gamma_{\text{preamble}} = -82 \text{ dBm with } -0.8 \text{ dB}$
	of minimum SINR
MCS selection algorithm	Minstrel
AP/STA noise figure	$F_{\mathrm{dB}} = 7/9\mathrm{dB}$
Maximum # of scheduled STAs	8 (.11ax) / 16 (EHT)
STA scheduling	Round Robin with semi-orthogonal
	user selection (SUS)
Downlink power allocation	Equal power assigned per STA
MPDU payload size	1500 bytes
Maximum TXOP length	4 ms
Channel model	
Path loss and LOS probability	3GPP 3D InH [14] for all links
Shadowing	Log-normal with $\sigma = 3/8$ dB
7	(LOS/NLOS) [14]
Fast fading	Ricean with log-normal K factor
Thermal noise	-174 dBm/Hz spectral density

Traffic model	
Traffic model	FTP model 3 with a packet size of
	0.5 MBytes
Traffic generated per STA	75 Mbits/s
DL/UL traffic ratio	0.5/0.5

- Throughput enhance:
 - 3.2x enhance in 50% CDF,
 - 4.6x enhance in worst 5% CDF
- Throughput Comparison

