Assignment -2

Python Programming

Assignment Date	23 september 2022
Student Name	Swetha.S
Student Roll Number	311419205044
Maximum Marks	2 Marks

Data Visualization and Pre-processing

Question-1: 1.

Load the dataset

Solution:

```
import pandas as pd import
seaborn as sns import
matplotlib.pyplot as plt import numpy
as np sns.set_style('darkgrid')
sns.set(font_scale=1.3)

In [2]:
df=pd.read excel("/content/Churn Modelling.xlsx")
```

```
In [1]:
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    sns.set_style('darkgrid')
    sns.set(font_scale=1.3)
In [2]:

df=pd.read_excel("/content/Churn_Modelling.xlsx")
```

Question-2:

- 2. Perform Below Visualizations.
- Univariate Analysis
- Bi Variate Analysis ●
 Multi Variate Analysis

```
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])
```


 ${\tt Out[7]:} \begin{tabular}{ll} & \tt Out[7]: \\ & \tt Out[7]$

#Perform Bivariate Analysis plt.scatter(df.Age,df.Balance)

#Perform Bivariate Analysis df.corr()

Out[9]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
	Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
	Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
	Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
	NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
	IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
	EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
	Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

#Perform Bivariate Analysis

import statsmodels.api as sm

```
#define response variable y
= df['CreditScore']

#define explanatory variable x =
df[['EstimatedSalary']]

#add constant to predictor variables x
= sm.add_constant(x)

#fit linear regression model model
= sm.OLS(y, x).fit()
```

#view model summary print(model.summary())

OF2 KERLEZZTOU KEZNITZ

Dep. Variable:	C	reditScore	R-squared:			0.000		
Model:		OLS	Adj. R-squa	red:	-0.000			
Method:	Lea	st Squares	F-statistic	:	0.01916			
Date:	Thu, 2	9 Sep 2022	Prob (F-sta	tistic):		0.890		
Time:		14:58:55	Log-Likelih	ood:	-5	9900.		
No. Observations:	8	10000	AIC:		1.19	8e+05		
Df Residuals:		9998	BIC:		1.198e+05			
Df Model:		1						
Covariance Type:		nonrobust						
==========	coef	std err		P> t	[0.025	0.975		
const	650.7617	1.940	335.407	0.000	646.958	654.56		
EstimatedSalary -	-2.326e-06	1.68e-05	-0.138	0.890	-3.53e-05	3.06e-0		
Omnibus:	========	132.939	Durbin-Wats	on:	========	2.014		
Prob(Omnibus):	Jarque-Bera	(JB):	84.242					
Skew:		-0.072	Prob(JB):		5.10e-19			
Kurtosis:		2.574	Cond. No.		2.32e+05			

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Question-3:

3. Perform descriptive statistics on the dataset.

```
#Perform Descriptive Statistics
df=pd.DataFrame(df) print(df.sum())
```

```
CreditScore
                                                       6505288.0
                    FranceSpainFranceFranceSpainSpainFranceGermany...
     Geography
     Gender
                     FemaleFemaleFemaleFemaleMaleMaleFemaleMa...
                                                        389218.0
     Age
     Tenure
                                                         50128.0
     Balance
                                                    764858892.88
     NumOfProducts
                                                         15302.0
     HasCrCard
                                                         7055.0
     IsActiveMember
                                                          5151.0
     EstimatedSalary
                                                    1000902398.81
     Exited
                                                          2037.0
     dtype: object
#Perform Descriptive Statistics print("----
Sum Value----") print(df.sum(1)) print("-----
-----") print("-----Product
Value----") print(df.prod())
print("----")
```

```
----Sum Value-----
      102015.88
       197002.44
      274149.37
        94567.63
4
      205492.92
       97088.64
9995
9996
      159633.38
9997
       42840.58
9998
      168784.83
      169159.57
Length: 10000, dtype: float64
-----Product Value-----
CreditScore
                inf
Tenure
                0.0
Balance
                0.0
NumOfProducts
              inf
                0.0
HasCrCard
IsActiveMember
EstimatedSalary inf
Exited
                0.0
dtype: float64
```

```
---") print(df.mode()) print("------
----")
    ------Mean Value-----
    CreditScore 650.528800
                     38.921800
     Age
            76485.889288
1.530200
     Tenure
     Balance
                     1.530200
     NumOfProducts
     HasCrCard
                       0.705500
                   0.515100
     IsActiveMember
     EstimatedSalary 100090.239881
     Exited
                      0.203700
     dtype: float64
     ------Median Value-----
                     652.000
     CreditScore
                      37.000
     Age
     Tenure
                       5.000
                   97198.540
     Balance
     NumOfProducts
                       1.000
     HasCrCard
                       1.000
                    1.000
     IsActiveMember
     EstimatedSalary 100193.915
     Exited
                       0.000
     dtype: float64
     ------
     ------Mode Value-----
      CreditScore Geography Gender Age Tenure Balance NumOfProducts
850.0 France Male 37.0 2.0 0.0 1.0
      HasCrCard IsActiveMember EstimatedSalary Exited
     0 1.0 1.0 24924.92 0.0
```

Question-4:

4. Handle the Missing values

Solution:

```
#Handling with missing Values df.isnull().values;
#Checking values are null
```

#Handling with missing Values df.notnull() #Checking values are not null

		57	12									
ut[16]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	True	True	True	True	True	True	True	True	True	True	True
	1	True	True	True	True	True	True	True	True	True	True	True
	2	True	True	True	True	True	True	True	True	True	True	True
	3	True	True	True	True	True	True	True	True	True	True	True
	4	True	True	True	True	True	True	True	True	True	True	True
			***	***			***	***	***	***	***	
	9995	True	True	True	True	True	True	True	True	True	True	True
	9996	True	True	True	True	True	True	True	True	True	True	True
	9997	True	True	True	True	True	True	True	True	True	True	True
	9998	True	True	True	True	True	True	True	True	True	True	True
	9999	True	True	True	True	True	True	True	True	True	True	True

10000 rows × 11 columns

Question-5:

5. Find the outliers and replace the outliers

Solution:

#Find outliers & replace the outliers sns.boxplot(df['Balance'])


```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))
(array([ 2, 4, 5, ..., 9987, 9993, 9999]),)

#Find outliers & replace the outliers from
scipy import stats import numpy as np z =
np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)
```

```
0 0.021886

1 0.216534

2 0.240687

3 0.108918

4 0.365276

...

9995 0.066419

9996 0.027988

9997 1.008643

9998 0.125231

9999 1.076370

Name: EstimatedSalary, Length: 10000, dtype: float64
```

Question-6:

6. Check for Categorical columns and perform encoding

```
#Check for categorical columns & performs encoding from
sklearn.preprocessing import LabelEncoder

df['Gender'].unique() df['Gender'].value_counts()
encoding=LabelEncoder()
df["Gender"]=encoding.fit_transform(df.iloc[:,1].values) df

l: #Check for categorical columns & performs encoding
    from sklearn.preprocessing import LabelEncoder
    df['Gender'].unique()

l: array(['Female', 'Male'], dtype=object)
```

```
#Check for categorical columns & performs encoding
df['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

Out[22]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	${\sf EstimatedSalary}$	Exited
	0	619.0	France	0	42.0	2,0	0.00	1.0	1.0	1.0	101348,88	1.0
	1	608.0	Spain	2	41.0	1.0	83807.86	1.0	0.0	1.0	112542.58	0.0
	2	502.0	France	0	42.0	8.0	159660.80	3.0	1.0	0.0	113931.57	1.0
	3	699.0	France	0	39.0	1.0	0.00	2.0	0.0	0.0	93826.63	0.0
	4	850.0	Spain	2	43.0	2,0	125510.82	1.0	1.0	1.0	79084.10	0.0
		***		***				***		***	***	
	9995	771.0	France	0	39.0	5.0	0.00	2.0	1.0	0.0	96270.64	0.0
	9996	516.0	France	0	35.0	10.0	57369.61	1.0	1.0	1.0	101699.77	0.0
	9997	709.0	France	0	36.0	7.0	0.00	1.0	0.0	1.0	42085.58	1.0
	9998	772.0	Germany	1	42.0	3,0	75075.31	2.0	1.0	0.0	92888.52	1.0
	9999	792.0	France	0	28.0	4.0	130142.79	1.0	1.0	0.0	38190.78	0.0

10000 rows × 11 columns

Question-7:

7. Split the data into dependent and independent variables.

Solution:

Question-8:

8. Scale the independent variables

Solution:

```
#Split the data into Dependent & Independent Variables
print("------Dependent Variables-----")
X=df.iloc[:,1:4] print(X) print("-----
Independent Variables-----") y=df.iloc[:,4]
print(Y)
print("-----")
```

Question-9:

9. Split the data into training and testing

In [34]:

		1300
1603	1.0	23305.85
8713	1.0	41248.80
4561	1.0	143317.42
6600	1.0	174123.16

In [32]:	#Spl y_tr	it the data into training & testing ain
Out[32]:	2558	727.0
Dur[52];	7642	811.0
	8912	623.0
	3319	430.0
	6852	600.0

	456	733.0
	6017	487.0
	709	686.0
	8366	637.0
	1146	614.0
	Name:	CreditScore, Length: 9996, dtype: float64

Out[34]:		const	EstimatedSalary
	2558	1.0	137903.54
	7642	1.0	121765.00
	8912	1.0	109470.34
	3319	1.0	2923.61
	6852	1.0	7312,25
		***	***
	456	1.0	7666.73
	6017	1.0	9085.00
	709	1.0	147794.63
	8366	1.0	102515.42
	1146	1.0	54776.64

9996 rows × 2 columns