[Aula 04] Linguagens regulares – Autômato finito não determinístico (AFN)

Prof. João F. Mari joaof.mari@ufv.br

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 3.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Autômato finito não determinístico
- Linguagem aceita, linguagem rejeitada
- [EX] aa ou bb como subpalavra
- [EX] aaa como sufixo
- Equivalência entre AFD e AFN
- Determinismo x Não determinismo
- [EX] AFN → AFD

Prof. João Fernando Mari (joaof.mari@ufv.br)

2

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

- Não-determinismo:
 - Importante generalização dos modelos de máquinas;
 - Fundamental em estudos:
 - Teoria da Computação,
 - Linguagens Formais,
 - Modelos para Concorrência, ...

- O não determinismo não aumenta o poder de reconhecimento de linguagens da classe de autômatos.
 - Qualquer autômato finito não determinístico pode ser simulado por um autômato finito determinístico.
- Não-determinismo no programa, é uma função parcial:
 - dependendo do estado corrente e do símbolo lido,
 - determina um conjunto de estados do autômato.
- O AFN assume um conjunto de estados alternativos:
 - Multiplicação da unidade de controle;
 - Uma para cada alternativa;
 - Unidades de Controle processando independentemente e sem compartilhar recursos.

Prof. João Fernando Mari (joaof.mari@ufv.br)

Ġ

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ: Alfabeto (de símbolos) de entrada
- Q: Conjunto de estados possíveis (finito)
- δ: Função programa ou Função de Transição
 - É uma função parcial.

$$\delta: Q \times \Sigma \rightarrow 2^Q$$

- Transição: $\delta(p, a) = \{ q_1, q_2, ..., q_n \}$
- q₀: Estado Inicial (é um elemento distinguido de Q)
- F: Conjunto de estados finais (um subconjunto de Q)

• Autômato como diagrama:

Prof. João Fernando Mari (joaof.mari@ufv.br)

•

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

- Computação (Função Programa Estendida) de um autômato finito não-determinístico:
 - Sucessiva aplicação da função programa...
 - para cada símbolo da entrada (da esquerda para a direita)...
 - até ocorrer uma condição de parada.
- Argumentos para computação:
 - Conjunto finito de estados e uma palavra.

• M = $(\Sigma, Q, \delta, q_0, F)$ autômato finito não-determinístico

$$\delta^*: 2^Q \times \Sigma^* \rightarrow 2^Q$$

- Indutivamente definida
 - $-\delta^*(P, \varepsilon) = P$
 - $\delta^*(P, aw) = \delta^*(\bigcup_{g \in P} \delta(q, a), w)$
- Transição estendida:
 - Para um conjunto de estados $\{q_1, q_2, ..., q_n\}$ e para o símbolo a:
 - $\delta^*(\{q_1, q_2, ..., q_n\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$

Prof. João Fernando Mari (joaof.mari@ufv.br)

c

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finito não determinístico

- Parada do processamento:
 - Aceita a entrada:
 - Após processar o último símbolo da fita, ...
 - existe pelo menos um estado final ...
 - pertencente ao conjunto de estados alternativos atingidos.
 - Rejeita a entrada. Duas possibilidades:
 - (1) Após processar o último símbolo da fita, todos os estados alternativos atingidos são **não finais**;
 - (2) Programa **indefinido** para o argumento (conjunto de estados e símbolo).

Linguagem Aceita, Linguagem Rejeitada

- Seja M = $(\Sigma, Q, \delta, q_0, F)$ um AFN:
- Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(\{ q_0 \}, w) \cap F \neq \emptyset \}$$

- Linguagem Rejeitada por M
 - − REJEITA(M) = { w | δ^* ({ q₀}, w) ∩ F = Ø ou δ^* ({ q₀}, w) é indefinida }

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

[EX] aa ou bb como subpalavra

L₅ = { w | w possui aa ou bb como subpalavra }

Autômato finito não-determinístico:

$$M_5 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_5, q_0, \{q_f\})$$

[EX] aa ou bb como subpalavra

- O ciclo em q₀ realiza uma varredura em toda a entrada:
 - O caminho $q_0/q_1/q_f$ garante a ocorrência de aa.
 - O caminho $q_0/q_2/q_f$ garante a ocorrência de bb.

δ5	а	b
qo	{ q ₀ ,q ₁ }	{ q ₀ ,q ₂ }
q 1	{ q _f }	-
q 2	-	{ q _f }
qf	$\{q_f\}$	{ q _f }

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

[EX] aa ou bb como subpalavra

Computação da palavra abaa:

 $\bullet \quad \delta^*(\{q_0\}, abaa) =$

% Função estendida sobre **abaa**

 $\delta^*(\delta(q_0, a), baa) =$

% Processa <u>a</u>baa

 $\delta^*(\{q_0, q_1\}, baa) =$

% Função estendida sobre baa

• $\delta^*(\delta(q_0, b) \cup \delta(q_1, b), aa) =$

% Processa baa

• $\delta^*(\{q_0, q_2\} \cup \emptyset, aa) =$

• $\delta^*(\{q_0, q_2\}, aa)$

% Função estendida sobre aa

• $\delta^*(\delta(q_0, a) \cup \delta(q_2, a), a) =$

% Processa <u>a</u>a

• $\delta^*(\{q_0, q_1\} \cup \emptyset, a) =$

• $\delta^*(\{q_0, q_1\}, a) =$

% Função estendida sobre a

• $\delta^*(\delta(q_0, a) \cup \delta(q_1, a), \epsilon) =$

% Processa a

• $\delta^*(\{q_0, q_1\} \cup \{q_f\}, \epsilon)$

 $\delta^*(\{q_0, q_1, q_f\}, \epsilon)$

= $\{q_0, q_1, q_f\}$ % Função estendida sobre $\underline{\varepsilon}$

• A palavra abaa é aceita pois $\{q_0, q_1, q_f\} \cap F = \{q_f\} \neq \emptyset$

[EX] aaa como sufixo

 $L_6 = \{ w \mid w \text{ possui aaa como sufixo } \}$

Autômato finito não-determinístico:

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

Equivalência entre AFD e AFN

- Classe dos Autômatos Finitos Determinísticos:
 - É equivalente à classe dos Autômatos Finitos Não-Determinísticos.
- Não-determinismo:
 - Aparentemente, um significativo acréscimo ao poder computacional do autômato finito;
 - Na realidade não aumenta seu poder computacional.

Equivalência entre AFD e AFN

- Seja $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer.
- E $M_D = (\Sigma, Q_D, \delta_D, \langle q_0 \rangle, F_D)$ o AFD construído.
 - Q_D: todas as combinações, sem repetições, de estados de Q
 - Notação <q₁q₂...q_n>
 - A ordem não distingue combinações: <q_q, q, > = <q, q, >
 - Imagem de todos os estados alternativos de M.

$$- \delta_{D}: Q_{D} \times \Sigma \to Q_{D}$$

$$\delta_{D}(, a) = sse \ \delta^{*}(\{q_{1}, ..., q_{n}\}, a) = \{p_{1}, ..., p_{m}\}$$

- <q₀>: Estado inicial;
- F_D: Conjunto de estados <q₁q₂...q_n> pertencentes a Q_D:
 - alguma componente q_i pertence a F, para i em { 1, 2, ..., n }.

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

Equivalência entre AFD e AFN

- Portanto, linguagem aceita por AFN:
 - É Linguagem Regular ou Tipo 3.

Determinismo × Não Determinismo

- Muitas vezes é mais fácil desenvolver um AFN do que um AFD.
 - Solução determinista:
 - Não é trivial número grande de estados;
 - Solução não-determinista:
 - Mais simples poucos estados;
- Alternativa para construir um AFD:
 - Desenvolver inicialmente AFN;
 - Converter o AFN em AFD.

Prof. João Fernando Mari (joaof.mari@ufv.br)

19

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

[EX] AFN \rightarrow AFD

• $M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$

[EX] AFN → AFD

 $M_6 = (\{ a, b \}, \{ q_0, q_1, q_2, q_f \}, \delta_6, q_0, \{ q_f \})$

•
$$M_{6D} = (\{ a, b \}, Q_D, \delta_{6D}, , F_D)$$

 $-Q_D = \{ , , , , ,$
 $, , , ..., \}$
 $-F_D = \{ , , , ...,$
 $\}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Autômato finto não determinístico

[EX] AFN \rightarrow AFD

AFN

δ 6D	а	b
(90)	(q ₀ q ₁)	(q ₀)
(9091)	(909192)	(q ₀)
(909192)	(9091929f)	(q ₀)
(q0q1q2qf)	(q0q1q2qf)	(q ₀)

[EX] AFN \rightarrow AFD

AFD

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[AULA 04] LR – Autômato Finito Não Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

[FIM]

- FIM:
 - [AULA 04] LINGUAGENS REGULARES Autômato Finito Não Determinístico
- Próxima aula:
 - [AULA 05] LINGUAGENS REGULARES Autômato Finito com movimentos vazios