1 Point estimates

We begin with two examples.

Example 1 Let x_1, \ldots, x_n be the results obtained from measuring a certain distance.

Suppose that the true distance is μ and that each measurement has a measurement error. If the measurement error is assumed to be normally distributed with expectation 0 and standard deviation σ then the observations can be modelled as outcomes of independent random variables X_1, \ldots, X_n such that $X_i \in N(\mu, \sigma)$, $i = 1, \ldots, n$ since

$$X_i = \mu + Z_i$$

where $Z_i \in N(0, \sigma)$ denotes the measurement error for measurement number i and the Z_i 's are assumed to be independent.

A common estimate of the distance μ is the mean of the measurements/observations, i.e.

$$\mu_{obs}^* = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

Should you also need an estimate of σ^2 it is common to use the **sample variance**

$$(\sigma^2)_{obs}^* = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i - n\bar{x}^2 \right).$$

Compare this to the definition of variance $\sigma^2 = E[(X - \mu)^2]$. The standard deviation σ can be estimated by the sample standard deviation s.

Example 2 Opinion poll. Let p be the proportion of people supporting (s) in the electorate, so in all the people allowed to vote. Interview n = 3002 persons and let x be the number of persons claiming to support (s), say x = 1053.

An estimate of p is given by

$$p_{obs}^* = p^*(x) = \frac{x}{n} = \frac{1053}{3002} = 0.3508$$

Definition 1 A random sample x_1, \ldots, x_n (from F) consists of observations of independent random variables X_1, \ldots, X_n (with the distribution function F).

A point estimate of a parameter θ is a function of a random sample/the sample values.

$$\theta_{obs}^* = \theta^*(x_1, \dots, x_n).$$

The point estimate is described by the sample variable (or statistic)

$$\theta^* = \theta^*(X_1, \dots, X_n).$$

 $(\theta_{obs}^* \text{ is an outcome of } \theta^*).$

Remark 1 Oftentimes the random varibles X_1, \ldots, X_n are identically distributed (if the random sample is a sample from F), but they do not have to be.

Figur 1: Example of a density function of a sample variable θ^* (a sample distribution).

Which properties are desirable of a point estimate?

Definition 2 A point estimate $\theta_{obs}^* = \theta^*(x_1, \dots, x_n)$ of a parameter θ is said to be

• consistent if

$$P(|\theta^* - \theta| > \epsilon) \to 0$$
 as $n \to \infty$,

• unbiased if

$$E[\theta^*] = \theta.$$

• If both θ_{obs}^* and $\hat{\theta}_{obs}$ are unbiased point estimates of θ then θ_{obs}^* is said to be more efficient if

$$V(\theta^*) \le V(\hat{\theta}).$$

Example 3 Continuing with Example 1 we see that the estimate

$$\mu_{obs}^* = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

is described by the sample variable

$$\mu^* = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i.$$

For this variable we have that

$$E[\mu^*] = E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \underbrace{E[X_i]}_{=\mu} = \mu.$$

Figur 2: Exemples of density functions of estimates of θ . The estimate with the denisty function in drawn with a solid line is to be preferred, since its distribution is more concentrated around θ .

Since $E[\mu^*] = \mu$ the estimate $\mu^*_{obs} = \bar{x}$ is an unbiased estimate of μ . Furthermore, we have that

$$V(\mu^*) = V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}V\left(\sum_{i=1}^n X_i\right) = \{\text{independence}\}$$
$$= \frac{1}{n^2}\sum_{i=1}^n \underbrace{V\left(X_i\right)}_{-\sigma^2} = \frac{1}{n^2}\cdot n\sigma^2 = \frac{\sigma^2}{n} \to 0 \quad \text{as } n \to \infty$$

Recall Chebychev's inequality

$$P(|X - \mu| > k\sigma) \le \frac{1}{k^2}$$
 for all $k > 0$.

Recall Chebychev's inequality

$$P(|X - \mu| > k\sigma) \le \frac{1}{k^2}$$
 for all $k > 0$.

If we let $k = \epsilon/\sigma$ then Chebychev's inequality reads

$$P(|X - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

so with $X = \mu^*$ we obtain

$$P(|\mu^* - \mu| > \epsilon) \le \frac{V(\mu^*)}{\epsilon^2} \to 0 \text{ as } n \to \infty.$$

This implies that $\mu_{obs}^* = \bar{x}$ is a consistent estimate of μ .

It can be shown that $(\sigma^2)_{obs}^* = s^2$ is an unbiased estimate of σ^2 , i.e. that $E[S^2] = \sigma^2$ (this is the reason for dividing by n-1 rather than by n). See Theorem 2, Chapter 12 in [2].

Example 4 Continuing with Example 2 we see that the estimate

$$p_{obs}^* = p^*(x) = \frac{x}{n} = \frac{1053}{3002} = 0.3508$$

is described by the sample variable

$$p^* = p^*(X) = \frac{X}{n}$$
 where $X \in Bin(n, p)$

(since the sampling is performed without replacement X is really hypergeometrically distributed, but since the electorate is big in comparison to the sample size a binomial approximation should work well). We have that

$$E[p^*] = E\left[\frac{1}{n} \cdot X\right] = \frac{1}{n}E[X] = \frac{1}{n} \cdot np = p$$

i.e. $p_{obs}^* = x/n$ is an unbiased estimate of p. Furthermore we have that

$$V(p^*) = V\left(\frac{1}{n} \cdot X\right) = \frac{1}{n^2}V(X) = \frac{1}{n^2} \cdot np(1-p) = \frac{p(1-p)}{n} \to 0 \text{ as } n \to \infty$$

This means that you can show that $p_{obs}^* = x/n$ is a consistent estimate of p using Chebychev's inequality.

How good is the estimate? The variance/standard deviation will give you an indication of this. Here we have that

$$D(p^*) = \sqrt{\frac{p(1-p)}{n}}.$$

Now a problem arises since the standard deviation depends on the parameter that we are trying to estimate! We can then try to estimate the standard deviation by for instance

$$d(p^*) = \sqrt{\frac{p_{obs}^*(1 - p_{obs}^*)}{n}} = \sqrt{\frac{0.3508(1 - 0.3508)}{3002}} \approx 0.00871.$$

Definition 3 An estimate of $D(\theta^*)$ is called the **standard error** of θ^* and is denoted by $d(\theta^*)$.

Example 5 Do problem 1203 i [2].

1.1 Summary

Suppose that x_1, \ldots, x_n are outcomes of independent random variables X_1, \ldots, X_n , whose distributions depend on an unknown parameter. So far we have seen the following estimates.

Parameter	Estimate	Sample variable
$\mu = E[X]$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
$\sigma^2 = V(X)$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
$\sigma = D(X)$	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$	$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$
θ	$\theta_{obs}^* = \theta^*(x_1, \dots, x_n)$	$\theta^* = \theta^*(X_1, \dots, X_n)$

How do find suitable function of the sample values $\theta^*(x_1,\ldots,x_n)$ for your estimate? Here we will look at two standard methods.

1.2 The Maximum likelihood method (the ML method)

The Maximum likelihood estimate (ML estimate) of the parameter θ maximizes the likelihood function

$$L(\theta) = \begin{cases} P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n; \theta) = p_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n; \theta) \\ \{ \text{independence} \} = P(X_1 = x_1; \theta) P(X_2 = x_2; \theta) \cdots P(X_n = x_n; \theta) = \prod_{i=1}^n p_{X_i}(x_i; \theta) \\ f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n; \theta) \\ \{ \text{independence} \} = \prod_{i=1}^n f_{X_i}(x_i; \theta) \end{cases}$$

which in the discrete case is the probability of obatining the outcomes we actually got.

Example 6 Let x = 972 be an observation of X where $X \in Bin(n, p) = Bin(3002, p)$. Want: The ML estimate of p.

The ML estimate maximizes the likelihood function

$$L(p) = P(X = x; p) = \binom{n}{x} p^x (1-p)^{n-x}$$

Useful trick: the ML estimate also maximizes ln(L(p)) the so called log-likelihood function. This function is often easier to work with since the logarithm of a product is sum of logarithms. Here we have that

$$\ln L(p) = \ln \left(\binom{n}{x} p^x (1-p)^{n-x} \right) = \ln \binom{n}{x} + \ln(p^x) + \ln(1-p)^{n-x}$$
$$= \ln \binom{n}{x} + x \ln(p) + (n-x) \ln(1-p).$$

To find the maximum we solve

$$\frac{d}{dp}\ln L(p) = 0$$

i.e.

$$x \cdot \frac{1}{p} + (n-x)\frac{-1}{1-p} = 0$$

or

$$x(1-p) - (n-x)p = 0$$

which will result in the ML estimate $p_{obs}^* = x/n$ (you should really check the second derivative to make sure that you have found a maximum, and also the boundary values).

1.3 The method of least squares (the LS method)

Suppose that the random variables X_1, X_2, \ldots, X_n all have expectations which depend on the parameter θ and that they all have the same variance, i.e. $V(X_1) = \ldots = V(X_n)$. The least squares estimate (LS estiamte) of the parameter θ minimizes the function

$$Q(\theta) = \sum_{i=1}^{n} (x_i - E[X_i; \theta])^2.$$

Remark 2 In order to derive the LS estimate it is not necessary to know the whole distribution of the random variables X_i $i = \ldots, n$, you only need to know how their expectations depend on the parameter θ .

Example 7 Just as in Example 6 let x = 972 be an observation of X where $X \in Bin(n, p) = Bin(3002, p)$.

Want: the LS estimate of p.

Since E[X] = np the LS estimate should minimizes the function

$$Q(p) = (x - E[X])^2 = (x - np)^2 \ge 0$$

We can make the function Q(p) 0 by choosing p = x/n and therefore the LS estimate of p is $p_{obs}^* = x/n$.

Referenser

- [1] Blom, G., Enger, J., Englund, G., Grandell, J., och Holst, L., (2005). Sannolikhetsteori och statistikteori med tillämpningar.
- [2] Blom, Gunnar, (1989). Probability and Statistics. Theory and Applications.