Exploratory Data Analysis – 1

Module Overview

The topics in this module are briefly described below:

- Introduction to Data Visualization and EDA: This session will help you understand why we need
 data visualization and what its purpose is. Further, you will learn the various types of data and how
 to present it visually.
- Univariate Analysis: You will learn how to use Python's Seaborn library to create different types of visualizations, such as count plots, box plots, histograms, density plots, and strip plots.

Here is what you will learn in this session:

• Data visualization: Representing data visually helps to convey information in a simple, clear, and concise manner.

There are two purposes of data visualization:

- o Exploration
- o Explanation
- Tools for exploratory analysis: Data can be visualized with a range of tools from Python to Excel.
 The choice of a tool depends on the end goal and the types of visualizations required.
- Visual components: Coordinates, scales, and cues are the three visual components that help us
 present data visually.
- Types of data: We can create visualizations based on the data types available. For example, we can create visualizations based on numerical, categorical, geographic, and temporal data.
- Exploring data: This step involves you becoming familiar with your data and exploring initial
 patterns, outliers, and characteristics for further investigation. Visualizations can often be a useful
 tool to explore data.

The graphs above make it easy to infer relationships such as these:

- In Group A, x and y appear to be positively correlated since y appears to increase with an increase in x.
- In Group B, x and y appear to have an inverted U-shaped relationship, with a potential maximum y value at x=11.
- In Group C, x and y appear to have a strong positive relationship, with a potential outlier at x=13.
- In Group D, y increases while x remains at a fixed value, except for a single outlier at x=19.

These relationships would not have been readily visible to us and we could not have inferred them had the information been presented only as raw numerical data, as shown below.

Group A		Group B		Group C		Group D	
×	У	×	У	×	У	×	У
10.00	8.04	10.00	9.14	10.00	7.46	10.00	6.58
8.00	6.95	8.00	8.14	8.00	7.77	8.00	5.76
13.00	7.58	13.00	8.74	13.00	12.74	8.00	7.71
9.00	8.81	9.00	8.77	9.00	7.11	8.00	8.84
11.00	8.33	11.00	9.26	11.00	7.81	8.00	8.47
14.00	9.96	14.00	8.10	14.00	8.84	8.00	7.04
6.00	7.24	6.00	6.13	6.00	6.08	8.00	5.25
4.00	4.26	4.00	3.10	4.00	5.39	19.00	12.50
12.00	10.84	12.00	9.13	12.00	8.15	8.00	5.56
7.00	4.82	7.00	7.26	7.00	6.42	8.00	7.91
5.00	5.68	5.00	4.74	5.00	5.73	8.00	6.89

Purpose Of Data Visualization

Exploration Explanation

- Understand data
- Explore data in different ways to derive insights
- Find interesting areas to investigate further
- Identify relevant patterns and relationships in the data
- Convey interesting insights
- Present relevant findings to the audience

shows the relationships among three variables: x, y, and z.

This is an example of exploration since the scatterplot matrix shows the relationships among all possible pairs of the three variables in a This is an example of explanation since the scatterplot shows single plot.

The above chart is a scatterplot matrix containing nine scatterplots. It This scatterplot above shows a positive relationship between x and y. The title contains relevant information about the scatterplot.

only the relevant information.

Data Visualization

The graph below shows the monthly sales of a company for the year 2021.

Tools for data-visualization :-

Why Use Python	Why Use Tableau	Why Use Excel
 Reproducible and repeatable analysis More flexible visualizations 	Allows for creating attractive	 Commonly available Helps find patterns quickly in a small data set
than with the others		Allows for exploring data
Integrates data manipulation and analysis in		easily using pivot tables
one tool		

Visual Components:-

Cues

Visual cues help the audience to easily focus on the relevant parts of a visualization. The visual cues you incorporate in your visualization depend on the type of data and the type of graph on which you are plotting it. This image shows some commonly used visual cues.

Coordinates

The data in a chart can be shown on a two-dimensional (2D) plane using a coordinate system. Let's take a look at the types of coordinate systems.

Note: There are other coordinate systems, including the polar coordinate system, but they are out of the scope of this module. You can read more about them in the resources provided under "Additional Reading" at the end of this segment.

Scale

Scale means the size of something (e.g., an object) in comparison with something else. You can, for instance, use a linear or logarithmic scale to measure the distance between the points in a Cartesian coordinate system.

You can refer to this image to recall what each of these scales means.

Visual Cues Which of these options is <i>not</i> a visual cue?	
Shape	
Color	
O Area	
Outlier Feedback: Correct! An outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is a data point that differs significantly the correct and outlier is not a visual cue. An outlier is not a visual cue.	Correct

Visual Cues

The bar graph below shows the grades of a student in five subjects. Which among the following visual cues represents the grades obtained by the student in each subject in the graph?

(Note: More than one option may be correct.)

Types Of Data:-

The data you come across can be of four potential types:

- Temporal: A specific time associated with a record. Temporal data include information such as dates (e.g., *June 19*, 2021), time stamps (e.g., *Jan 4*, 2021 at 12:35 pm), and seasonality (e.g., *Winter 2021*).
- Categorical: A classification associated with a record. When imported, categorical data is often in the form of strings of text.
- Geographic: Location-related information about a record. Geographic data can be in multiple formats:
 - o Strings, such as the Region field, which describes a specific area, (e.g., a state),
 - o Numbers, such as zip codes.
- Numerical: A value associated with a record. Numerical data can be in multiple formats, such as
 integers, doubles, percentages, and currency.

Year	Channel	Region	Sales (#)	Revenue (\$)
2019	Retail	California	1,000	50,000
2019	Retail	New York	650	29,250
2019	Digital	California	500	27,500
2019	Digital	New York	120	6,600
2020	Retail	California	100	5,000
2020	Retail	New York	50	2,250
2020	Digital	California	2,000	110,000
2020	Digital	New York	1,500	82,500
2021	Retail	California	800	40,000
2021	Retail	New York	700	31,500
2021	Digital	California	1,900	104,500
2021	Digital	New York	1,600	88,000

In this data set:

- Year is a temporal field because it denotes a unit of time.
- Channel is a categorical field because it denotes qualitative information.
- Region is a geographic field because it denotes a location in a geographic coordinate system.
- **Sales** and **Revenue** are both numerical fields as they denote the values associated with the fields.

Categorical Attributes

Consider this data set

	car_name	price(\$)	date_of_sale	mileage	condition	meter_reading
0	Lamborghini	174,390	12/09/20	3.5	good	75,625
1	Lamborghini	119,780	29/07/21	4.5	better	45,400
2	Porsche	97,400	17/03/22	NaN	best	25,000
3	Honda Civic	71,432	NaN	12.0	bad	125,000

Which of these attributes are categorical? Note: More than one option may be correct.

Car_name and condition are categorical form of data from the above dataset.

Data Example and understanding.

Data exploration includes these levels:

- Considering interesting business questions
- $\bullet\,$ Translating the business needs to data questions
- Using visualization techniques to plot data
- Identifying interesting patterns

What makes a question interesting? Here are some characteristics of an interesting business question:

- The answers should have actionable implications.
- Data visualization should reveal novel insights.

 $To \ help \ you \ understand, let's \ take \ the \ example \ data \ set \ that \ you \ saw \ earlier, in \ the \ previous \ segment.$

Example

Here is the data set. Here are some potentially interesting questions that you can ask based on this data set.

Year	Channel	Region	Sales (#)	Revenue (\$)
2019 Retail		California	1,000	50,000
2019	Retail	New York	650	29,250
2019	Digital	California	500	27,500
2019	Digital	New York	120	6,600
2020	Retail	California	100	5,000
2020 Retail		New York	50	2,250
2020 Digital		California	2,000	110,000
2020	Digital	New York	1,500	82,500
2021	Retail	California	800	40,000
2021 Retail		New York	700	31,500
2021 Digital		California	1,900	104,500
2021 Digital		New York	1,600	88,000

Data Exploration – 1

Year	Channel	Sales(#)	Using data types :
2019	Retail	1000	 Categorial (Channel)
2019	Retail	650	 Temporal (Year)
2019	Digital	500	 Numerical (Sales)
2019	Digital	120	1
2020	Retail	100	4,000 Best option
2020	Retail	50	3,500
2020	Digital	2000	3,000
2020	Digital	1500	2,500
2021	Retail	800	2,000
2021	Retail	700	1,500
2021	Digital	1900	1,000
2021	Digital	1600	500

Data Exploration - 2

