Embedded AI: Principles, Algorithms, and Applications

Table of contents

Pr	eface		5			
ΤI	The Philosophy Behind the Book Prerequisites					
Pr						
Ca	Conventions Used in This Book					
Н	ow to	Contact Us	9			
Н	How to Contribute					
Ca	Contributors					
Cr	Credits					
2	1.1 1.2 1.3	Intended Audience	13 13 13 13			
3	3.1 3.2 3.3 3.4 3.5 3.6	AI for Beginners Machine Learning and Deep Learning Machine Learning Deep Learning Applications of Deep Learning Quiz P Learning	15 15 15 15 15 15 15			
4	$4.1 \\ 4.2$	What are Neural Networks	16 16			

5	5 Embedded Systems		17			
	5.1 Sensors		17			
	5.2 Power		17			
6	Embedded ML					
	6.1 CloudML		18			
	6.2 EdgeML		18			
	6.3 TinyML		18			
	6.3.1 TinyML for IoT Systems		18			
	6.3.2 How does TinyML Work		18			
	6.3.3 Resources are Limited, but so is the Competition	on	18			
	6.4 Exercises		18			
7	7 ML Workflow	MI Workflow				
	7.1 Data Collection		19			
	7.2 Pre-Processing		19			
	7.3 Training		19			
	7.4 Optimization		19			
	7.5 Deployment		19			
	7.6 Evaluation		19			
	7.7 Quiz		19			
8	8 Data Engineering		20			
	8.1 Data Sources		20			
	8.2 Training Data		20			
	8.3 Training Data Splits		20			
	8.4 Data Labeling		20			
	8.5 Types of Data		20			
9	9 Pre-processing		21			
•	9.1 What is Data Pre-processing?		21			
	9.2 What's Involved with Data Pre-processing?		21			
	9.3 What's The Importance Of Data Pre-Processing?		21			
10	10 ML Frameworks		22			
11	11 Model Training		23			
	11.1 Selecting a Training Dataset		24			
	11.2 Neural Network Architectures		$\frac{24}{24}$			
	11.2.1 Multilayer Perceptron (MLP)		$\frac{24}{24}$			
	11.2.2 Convolutional Neural Networks		$\frac{24}{24}$			
	11.2.3 Recurrent Neural Networks		$\frac{24}{24}$			
	11.2.4 Transformers		$\frac{24}{24}$			
	11.3 Back Propagation		$\frac{24}{24}$			
	11.0 DAWN LIVUARAUWH		_∠+			

	11.4 Convergence	24			
	11.5 Overfitting and Underfitting	24			
	11.6 Hyperparameters	24			
	11.6.1 Epochs	24			
	11.6.2 Learning Rate	24			
	11.7 Transfer Learning	24			
	11.7.1 Optimizer	24			
	11.8 Summary	24			
	11.9 Quiz	24			
12	Efficient AI	25			
13	Optimizations	26			
	13.1 Software Optimizations	26			
	13.1.1 Compression	26			
	13.1.2 Quantization	26			
	13.1.3 Weight Pruning	26			
	13.1.4 Knowledge Distillation	26			
	13.2 Hardware Optimizations	26			
	13.2.1 GPUs	26			
	13.2.2 TPUs	26			
	13.2.3 NPUs	26			
14	Deployment	27			
15	On-Device Learning	28			
	15.1 Federated Learning	28			
	15.2 On-Device Training	28			
16	Hardware Acceleration	29			
17	MLOps	30			
18	Al Sustainability	31			
19	Responsible AI	32			
20	Generative AI	33			
Re	References				
Ac	Acknowledgements				

Preface

In "Embedded AI: Principles, Algorithms, and Applications", we will embark on a critical exploration of the rapidly evolving field of artificial intelligence in the context of embedded systems, originally nurtured from the foundational course, tinyML from CS249r.

The goal of this book is to bring about a collaborative endeavor with insights and contributions from students, practitioners and the wider community, blossoming into a comprehensive guide that delves into the principles governing embedded AI and its myriad applications.

As a living document, this open-source textbook aims to bridge gaps and foster innovation by being globally accessible and continually updated, addressing the pressing need for a centralized resource in this dynamic field. With a rich tapestry of knowledge woven from various expert perspectives, readers can anticipate a guided journey that unveils the intricate dance between cutting-edge algorithms and the principles that ground them, paving the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an ecosystem of open collaboration and knowledge sharing stands as the cornerstone of innovation. This philosophy fuels the creation of "Embedded AI: Principles, Algorithms, and Applications." This is a venture that transcends conventional textbook paradigms to foster a living repository of knowledge. Anchoring its content on principles, algorithms, and applications, the book aims to cultivate a deep-rooted understanding that empowers individuals to navigate the fluid land-scape of embedded AI with agility and foresight. By embracing an open approach, we not only democratize learning but also pave avenues for fresh perspectives and iterative enhancements, thus fostering a community where knowledge is not confined but is nurtured to grow, adapt, and illuminate the path of progress in embedded AI technologies globally.

Prerequisites

Venturing into "Embedded AI: Principles, Algorithms, and Applications" does not mandate you to be a maestro in machine learning from the outset. At its core, this resource seeks to nurture learners who bear a fundamental understanding of systems and harbor a curiosity to explore the confluence of disparate, yet interconnected domains: embedded hardware, artificial intelligence, and software. This confluence forms a vibrant nexus where innovations and new knowledge streams emerge, making a basic grounding in system operations a pivotal tool in navigating this dynamic space.

Moreover, the goal of this book is to delve into the synergies created at the intersection of these fields, fostering a learning environment where the boundaries of traditional disciplines blur to give way to a holistic, integrative approach to modern technological innovations. Your interest in unraveling embedded AI technologies and low-level software mechanics would be guiding you through a rich learning experience.

Conventions Used in This Book

Please follow the conventions listed in Conventions

How to Contact Us

Please contact vj@eecs.harvard.edu

How to Contribute

Please see instructions at here.

Contributors

Please see Credits.

Credits

1 About Us

This book is a collaborative effort started by the CS249r Tiny Machine Learning class at Harvard University. We intend for this book to become a community-driven effort to help educators and learners get started with TinyML. This living document will be continually updated as we continue to learn more about TinyML and how to teach it.

1.1 Intended Audience

This book is designed specifically for newcomers who wish to explore the fascinating and nascent world of tiny machine learning (tinyML). It provides the basic underpinnings of ML and embedded systems, and moves into more complex and broader topics relevant to both the tinyML and broader research community.

1.2 Book Structure

This book is specifically designed to serve both educators and learners in getting started with TinyML. The topics begin with a basic introduction to machine learning (ML) and embedded systems. Following this, readers will be introduced to the ML workflow in the context of tinyML, including data collection, data engineering, model development, model deployment, and then MLOps. Subsequently, special topics are covered such as on-device learning, secure and privacy-preserving ML, responsible AI, sustainability, and generative AI.

1.3 Key Takeaways

Users of this book will learn how to train and deploy deep neural network models on resourceconstrained microcontrollers and the broader challenges associated with their design, development, deployment, and use.

After completing the course, readers will be empowered with the capabilities to design and implement their own ML-enabled projects, starting from defining a problem to gathering data and training the neural network model and finally deploying it to the device to display inference results or control other hardware appliances based on inference data.

2 Dedication

3 Introduction

- 3.1 Al for Beginners
- 3.2 Machine Learning and Deep Learning
- 3.3 Machine Learning
- 3.4 Deep Learning
- 3.5 Applications of Deep Learning
- 3.6 Quiz

4 Deep Learning

- 4.1 What are Neural Networks
- 4.2 What is Deep Learning Training
- 4.3 What is Deep Learning Inference

5 Embedded Systems

- 5.1 Sensors
- 5.2 Power

6 Embedded ML

- 6.1 CloudML
- 6.2 EdgeML
- 6.3 TinyML
- 6.3.1 TinyML for IoT Systems
- 6.3.2 How does TinyML Work
- 6.3.3 Resources are Limited, but so is the Competition
- 6.4 Exercises

7 ML Workflow

- 7.1 Data Collection
- 7.2 Pre-Processing
- 7.3 Training
- 7.4 Optimization
- 7.5 Deployment
- 7.6 Evaluation
- **7.7 Quiz**

8 Data Engineering

- 8.1 Data Sources
- 8.2 Training Data
- 8.3 Training Data Splits
- 8.4 Data Labeling
- 8.5 Types of Data

9 Pre-processing

- 9.1 What is Data Pre-processing?
- 9.2 What's Involved with Data Pre-processing?
- 9.3 What's The Importance Of Data Pre-Processing?

10 ML Frameworks

11 Model Training

- 11.1 Selecting a Training Dataset
- 11.2 Neural Network Architectures
- 11.2.1 Multilayer Perceptron (MLP)
- 11.2.2 Convolutional Neural Networks
- 11.2.3 Recurrent Neural Networks
- 11.2.4 Transformers
- 11.3 Back Propagation
- 11.4 Convergence
- 11.5 Overfitting and Underfitting
- 11.6 Hyperparameters
- 11.6.1 Epochs
- 11.6.2 Learning Rate
- 11.7 Transfer Learning
- 11.7.1 Optimizer
- 11.8 Summary
- 11.9 Quiz

12 Efficient AI

13 Optimizations

13.1 Software Optimizations

- 13.1.1 Compression
- 13.1.2 Quantization
- 13.1.3 Weight Pruning
- 13.1.4 Knowledge Distillation
- 13.2 Hardware Optimizations
- 13.2.1 GPUs
- 13.2.2 TPUs
- 13.2.3 NPUs

14 Deployment

15 On-Device Learning

- 15.1 Federated Learning
- 15.2 On-Device Training

16 Hardware Acceleration

17 MLOps

18 AI Sustainability

19 Responsible Al

20 Generative AI

References

Acknowledgements