

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION

国际创新药学院

Fundamentals of Medicinal and Pharmaceutical Chemistry

FUNCHEM.10 Coordination Chemistry

Professor Dan Wu

DATE: 23rd October 2024

Learning outcomes

At the end of this lecture, the learner will be able to

- Define 'dative or coordinate bonds'.
- Define 'Lewis acids and bases', 'Arrhenius acids and bases', 'Bronsted-Lowry acids and bases'.
- Define 'coordination compounds'.
- Recall examples of Lewis acids and bases.
- Define 'ligand' and 'metal complex'.
- Determine 'coordination number' and 'oxidation number' of a metal ion in a metal complex formula or structure.
- Identify or predict geometry around a metal ion in various complexes.
- Define 'ligand denticity'.
- Recall and identify examples of monodentate and bidentate ligands.

Recommended reading

- General Chemistry The Essential
 Concepts by Chang and Goldsby 7e
- Chapter 20
- Chapter 10, Section 10.1 on molecular geometry

Recall: Ionic Bonding

In an **IONIC** bond, electrons are lost or gained, resulting in the formation of **IONS** in ionic compounds.

The ionic **bond** is the attraction between the positive K+ ion and the negative F- ion

Recall: Covalent Bonding

The octet is achieved by each atom sharing the electron pair in the middle

What is a dative or coordinate bond?

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$$

Recall the Lewis Dot Structure for CN⁻ (isoelectronic with CO):

This lone pair of electrons can be donated to the Fe³⁺ metal ion to generate a new complex

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$$

The substance above is a coordination compound or a coordination complex ion since it has a charge.

What is coordination chemistry and why study it?

 Coordination chemistry is the study of the interactions between transition metal ions and other molecules and/or ions

A coordination compound will generally contain one or more metal ions (usually transition metals) which is surrounded by a small number of small molecules or ions called ligands.

Why study coordination chemistry?

Many biomolecules contain transition metals which play a key role in the functions of these biomolecules

- Vitamin B12 contains Co
- Metalloenzymes such as matrix metalloproteinases and histone deacetylases contain Zn
- Hemoglobin, myoglobin contain Fe responsible for O₂ transport and storage

- Transition metal complexes can also be used as therapeutic agents
 - Pt complexes as anti-cancer agents; Gold complexes as anti-arthritic agents

What are transition metals?

Structure of Cisplatin – used to treat various types of cancers e.g. testicular, lung, ovarian

What are Lewis acids and Lewis bases?

- Lewis acid is a species that can accept a pair of electrons i.e. an electron pair acceptor
- Lewis base is a species that can donate a pair of electrons i.e. an electron pair donor

But I thought acids and bases donated H⁺ and OH⁻ ions in solution?

But I thought acids and bases donated H⁺ and OH⁻ ions in solution?

'Arrhenius' definitions of acids and bases:

Arrhenius acid - a substance that ionizes to produce H+ in aqueous solution

ca. 1885 - Svante Arrhenius

Arrhenius base - a substance that ionizes to produce OH in aqueous solution

Bronsted-Lowry Acids and Bases!

Bronsted-Lowry acid is a proton (H⁺) donor Bronsted-Lowry base is a proton acceptor

How do Lewis acids and bases combine to give coordination compounds?

Let's go back to our first example

 $Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$

Lewis acid - metal ion

Lewis bases – also called ligands

Recall electronic configurations of the first row transition elements

Sc	[Ar] 4s ² 3d ¹	
Ti	[Ar] $4s^23d^2$	
V	[Ar] 4s ² 3d ³	
Cr	[Ar] 4s ¹ 3d ⁵	
Mn	[Ar] 4s ² 3d ⁵	
Fe	[Ar] 4s ² 3d ⁶	
Co	[Ar] 4s ² 3d ⁷	
Ni	[Ar] 4s ² 3d ⁸	
Cu	[Ar] 4s ¹ 3d ¹⁰	
Zn	[Ar] 4s ² 3d ¹⁰	

where $[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6$

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$$

Fe [Ar] 4s²3d⁶

Fe³⁺ has lost 3 electrons

To get a d-block metal ion (1st row) from the neutral atom you remove the 4s electrons first before removing 3d electrons

Co
$$\rightarrow$$
 Co³⁺ + 3e⁻ [Ar]3d⁶

$$Mn \rightarrow Mn^{4+} + 4e^{-}$$
[Ar]3d⁵4s² [Ar]3d³

How do Lewis acids and bases combine to give coordination compounds?

Let's go back to our first example

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$$

Crystal Field Theory (explained later!)

classified according to the number of donor atoms – in this case, each N in NH₃ and each Cl⁻ donates one pair of electrons, hence they are monodentate ligands

Coordination number is the number of donor atoms bonded to the central metal ion in the complex

Ligand Denticity

- classified according to the number of donor atoms
- Examples
 - monodentate = 1
 - bidentate = 2
 - Tridendate = 3
 - tetradentate = 4
 - hexadentate = 6
 - polydentate = 2 or more donor atoms

Examples of monodentate ligands

$$H_2\ddot{O}$$
: $H_2\ddot{S}$: $H\ddot{S}$: $CH_3\ddot{O}H$

Examples of bidendate ligands

- oxalate ion (ox) = $C_2O_4^{2-}$
- ethylenediamine (en)
 = NH₂CH₂CH₂NH₂
- 2,2'-bipyridine (bpy)

ethylenediamine (en)

ethylenediamine (en)

$$N:$$
 $N:$
 $2,2'$ -bipyridine oxalate (ox)

The bidentate ligand 1,2diaminoethane or ethylenediamine (en)

Oxidation State of the Metal Ion

$$Co + 3(0) = +3$$

Oxidation State of the Metal Ion

Each Cl is -1 i.e. Cl-Each NH₃ is neutral Complex is neutral

Each NH₃ is neutral Complex ion has a charge of 2+

Geometries in Complex Ions

Coordination Number	Shape	Model	Example
2	Linear		$\left[\mathrm{Ag}(\mathrm{NH_3})_2\right]^+$
4	Square planar		[PdCl ₄] ²⁻
4	Tetrahedral		$\left[Zn(NH_3)_4\right]^{2+}$
6	Octahedral		$\left[\mathrm{Fe}(\mathrm{H_2O})_6\right]^{3+}$

Geometries

Coordination Number: 2

Geometry: Linear

Example: $[Ag(NH_3)_2]^+$

Common Geometries of Complexes

Coordination Number: 4

Geometry: Tetrahedral (most common)

Examples: $[Zn(NH_3)_4]^{2+}$, $[FeCl_4]^{-}$

Geometry: Square planar (characteristic of metal ions with 8 d e⁻)

Example: $[Ni(CN)_4]^{2-}$

Geometry

Octahedral

If the coordination no is 6 the ligand donor atoms are arranged octahedrally around the metal ion (octahedral complex)

For 1st row d-block metal ions, coordination no = 6 (octahedral) is by far the most common

Geometry

Square planar

Oxidation State:
Coordination Number:

Octahedral

Oxidation State: Coordination Number:

Learning outcomes

At the end of this lecture, the learner will be able to

- Define 'dative or coordinate bonds'.
- Define 'Lewis acids and bases', 'Arrhenius acids and bases', 'Bronsted-Lowry acids and bases'.
- Define 'coordination compounds'.
- Recall examples of Lewis acids and bases.
- Define 'ligand' and 'metal complex'.
- Determine 'coordination number' and 'oxidation number' of a metal ion in a metal complex formula or structure.
- Identify or predict geometry around a metal ion in various complexes.
- Define 'ligand denticity'.
- Recall and identify examples of monodentate and bidentate ligands.

Thank Jack

FOR MORE INFORMATION

Professor Dan Wu

EMAIL: danwu@suda.edu.cn

