- 2. Another relevant aspect is the result of Riehl-Verity [10] about adjoint functor between quasicategories. Indeed, since we know that QS-objects also model $(\infty, 1)$ -categories, we have two two implication for a map $\sigma : \mathcal{F} \longrightarrow \mathcal{G}$ between QS-objects:
 - If the source σ_0 is an adjoint of quasicategories in the sense of Joyal-Lurie, then the target σ_1 should be a *coherent adjoint* between simplicial categories.
 - Conversely if σ_1 is part of a homotopy coherent adjunction, then σ_0 should be an adjoint between quasicategories.

The result of Riehl-Verity says this indeed the case.

Environment: We fix a combinatorial and left proper model category \mathscr{M} . We also fix a functor $\mathcal{U}:\mathfrak{A}\longrightarrow\mathscr{M}$ that is a right adjoint between locally presentable categories. In [1], we also required \mathcal{U} to be faithful, but this is not necessary. We need the faithfulness when we want to have an embedding $\mathfrak{A}\hookrightarrow(\mathscr{M}\downarrow\mathcal{U})$.

Let's recall the definition of our objects of study.

Definition 1.1. Let \mathcal{M} and \mathcal{U} be as above.

- 1. Define the category $\mathcal{M}_{\mathcal{U}}[\mathfrak{A}]$ of all \mathcal{U} -preobjects to be the comma category ($\mathcal{M} \downarrow \mathcal{U}$).
- 2. Define the category of Quillen-Segal U-objects, henceforth U-QS-objects, to be the full subcategory ($\mathcal{W} \downarrow \mathcal{U}$) $\subseteq (\mathcal{M} \downarrow \mathcal{U})$, where $\mathcal{W} \subseteq \mathcal{M}$ is the subcategory of weak equivalences. We will denote this category by $\mathcal{W}_{\mathcal{U}}[\mathfrak{A}]$.

The main theorem in [1] is the content of [1, Theorem 8.2]. We summarize the relevant information hereafter.

Theorem 1.2. Let \mathcal{M} be combinatorial and left proper model category. Let $\mathcal{U}: \mathfrak{A} \longrightarrow \mathcal{M}$ be a right adjoint between locally presentable categories. Then the following hold.

1. There are two combinatorial model structures on $\mathcal{M}_{\mathfrak{U}}[\mathfrak{A}]$, denoted by $\mathcal{M}_{\mathfrak{U}}[\mathfrak{A}]_{e}^{\mathbf{c}}$ and $\mathcal{M}_{\mathfrak{U}}[\mathfrak{A}]_{e+}^{\mathbf{c}}$. Both are left proper and the identity gives a Quillen equivalence:

$$\mathscr{M}_{\mathsf{U}}[\mathfrak{A}]_e^{\mathbf{c}} \longrightarrow \mathscr{M}_{\mathsf{U}}[\mathfrak{A}]_{e+}^{\mathbf{c}}$$
.

- 2. In the model category $\mathcal{M}_{\mathfrak{U}}[\mathfrak{A}]_{e+}^{\mathbf{c}}$, any fibrant object $\mathfrak{F}: s(\mathfrak{F}) \longrightarrow \underbrace{t(\mathfrak{F})}_{=\mathfrak{U}(b)}$ has the following properties.
 - $s(\mathfrak{F})$ is fibrant in \mathcal{M} ;
 - The map $\mathfrak F$ itself is a trivial fibration in $\mathscr M$. In particular, if $t(\mathfrak F)$ is cofibrant in $\mathscr M$, then there is a generic weak 'Voevodsky section' $\pi: t(\mathfrak F) \longrightarrow s(\mathfrak F)$ that is also a weak equivalence.