Linear Regression

Summary

- 1. Regression is all about prediction.
- 2. We can calculate the strength of an association (the correlation) between two variables.
- 3. "Fundamental Theorem of Statistics": Prediction = Reality + Error

Linear Correlation Coefficient

The **linear correlation coefficient**, r, is a numerical value with $-1 \le r \le 1$ that measures the type of linear correlation of a bivariate data set.

- r > 0: positive linear correlation
- r = 0: no linear correlation
- r < 0: negative linear correlation

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \cdot \sum (y - \overline{y})^2}}$$

- ullet Closer r is to 1 (or -1) \longrightarrow the more the data points "fall in line."
- Closer r is to $0 \longrightarrow$ the more the data points resemble a "cloud"

Note: These interpretations are not universal.

Example 1. Find and interpret the linear correlation coefficient.

X	У
7.6	19.1
9.2	22.9
3.3	10.3
1.1	6.6
3.7	10.6
3.9	11.3
4.6	12.9
2.3	8.6
5.1	15.2
5.3	15.1
2.5	13
3.4	11.2
3.1	10.6
1.7	6.8
3.7	13.7

Given our data set, we also want to be able to predict values.

To do this, we can create the **least squares regression equation**, (also called the *line of best fit*) Which **minimizes** the total squared distance each data point is from the prediction line:

$$\hat{y} = mx + b$$

$$m = r \left(\frac{\sigma_y}{\sigma_x} \right)$$
 and $b = \overline{y} - m(\overline{x})$

Coefficient of Determination

The value r^2 is called the **coefficient of determination**

- Tells what percentage of the variability in the response (y) variable is due to the relationship between x and y.
- The rest may be due to such things as lurking variables or confounding.
- Since $-1 \le r \le 1 \longrightarrow 0 \le r^2 \le 1$
- But what does r^2 actually do???
 - Without our regression equation, the best predictor for response variables (y values) would be the average of the y-coordinates, \overline{y} .
 - The value of r^2 represents how much of a decrease in prediction error we get from using our regression equation rather than \overline{y} .
 - If r (and hence r^2) is close to 0, then the linear regression equation is not going to be a good predictor. So you could just use \overline{y} .

Example 4. Interpret the value of r^2 from example 1.