Extreme Classification in Log-Memory using Count-Min Sketch: A Case Study of Amazon Search with 50MM products

Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, Anshumali Shrivastava

tharun.medini@rice.edu

24th Nov 2019

What is Extreme Classification?

- Classification with a large number of classes (often running into millions!).
- <u>Examples:</u> Product Search^[1,2], Search
 Query Suggestions^[3], Ad Predictions^[4]

^[4] Prabhu et al., Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising. WSDM 2018

^[1] Nigam et al., Semantic Product Search. KDD 2019

^[2] McAuley et al., Image-based Recommendations on Styles and Substitutes. SIGIR 2015

^[3] Jain et al., Slice: Scalable Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. WSDM 2019

Scale Challenge

- The state-of-art models scale linearly with the number of classes. Hence, they cannot train beyond million classes.
 - For 50 MM classes, a penultimate layer size of 2000 would require 100 billion parameters!
 - Momentum based optimizers require 2x additional memory.

Needs 1.2TB GPU memory!

Existing Methods

- Embedding Based Models: Learn a dense mapping for both inputs and labels and perform Approx-NN in the new embedding space.
 - Issues Pairwise loss leads to large number of training data points. Need to do smart negative sampling.
- Parabel Partial Tree Based Methods: Create a partial hierarchy of labels and train a 1-vs-all classifier for each of the leaf nodes.

 Issues - Tree Based Methods are not conducive to GPUs.

Our Proposal: MACH

- MACH stands for Merged Average Classifiers via Hashing.
- It is a generic classification framework that scales O(logK), K being the number of classes.
- MACH facilitates zero-communication model parallelism.
- MACH learns to predict the Count-Min Sketch (CMS)[1] matrix of the sparse K-dimensional label vector.
- Retrieve heavy hitters during inference.

[1] Cormode et al., An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms, 2005.

Schema

Experiments – Public Datasets

Imagenet (22K classes)

◆□▶ ◆圖▶ ◆圖▶ ◆圖♪

Dataset (B, R) Model size Training Time Prediction Time per Accuracy Reduction Query **ODP** (32, 25)125x 7.2hrs 2.85ms 15.446% (512, 20)2x23hrs 8.5ms 10 67 5% Imagenet

Table 1: Wall Clock Execution Times and accuracies for two runs of MACH on a single Tita... X.

Experiments – Amazon Search

- Anonymized, aggregated and sub-sampled Search Dataset from 5 different categories on Amazon Search Engine.
- 70 MM training samples, 50 MM classes, 20K test samples.

Model	epochs	wRecall	Total training time	Memory(Train)	Memory (Eval)	#Params
DSSM, 256	5	0.441	316.6 hrs	40 GB	286 GB	200 M
dim						
Parabel,	5	0.5810	232.4 hrs (all 16 trees	350 GB	426 GB	-
num_trees=16			in parallel)			
MACH,	10	0.6419	31.8 hrs (all 32 repe-	150 GB	80 GB	5.77 B
B=10K, R=32			titions in parallel)			
MACH,	10	0.6541	34.2 hrs (all 32 repe-	180 GB	90 GB	6.4 B
B=20K, R=32			titions in parallel)			

Nigam et al., Semantic Product Search. KDD 2019

Prabhu et al., Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising. V.S. 3N 2018

Further Discussions

- Please refer to our paper for detailed experiments, metrics and theoretical discussion about why MACH works.
- Our code is hosted at https://github.com/Tharun24/MACH/
- Please contact <u>tharun.medini@rice.edu/anshumali@rice.edu</u> for further discussions.

