R square calculation for Multiple Linear Regression, SVM, Decision Tree

Dataset - 50_Startups

1. Multiple Linear Regression – R² value = 0.935

2. Support Vector Machine

Parameters:

- Cfloat, default=1.0
- kernel{'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'

Without Standardization:

S.No	Hyper Parameter C	Linear R2	RBF R2 value	Poly R2	Sigmoid R2 value
		value		value	
1	1	0.895	-0.057	-0.050	-0.057
2	10	-2.437	-0.055	0.025	-0.057
3	100	-357.079	-0.030	0.465	-0.058
4	1000	-36014.020	0.160	0.640	-0.070

With Standardization:

S.No	Hyper Parameter C	Linear R2	RBF R2 value	Poly R2	Sigmoid R2 value
		value		value	
1	1	-0.055	-0.057	-0.057	-0.057
2	10	-0.039	-0.056	-0.053	-0.054
3	100	0.106	-0.050	-0.019	-0.030
4	1000	0.780	0.006	0.266	0.185
5	2000	0.876	0.067	0.481	0.397

This **model** is **not suit** for this **dataset**. Because R² is not up to the level.

3. Decision Tree

Parameters:

- criterion{"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error"
- splitter{"best", "random"}, default="best"
- max_featuresint, float or {"sqrt", "log2"}, default=None

S.No.	Criterion	Splitter	max_features	R² Value
1. 1				0.910
2.	squared_error	Best	None	0.920
3.	squared_error	Best	Sqrt	0.402
4.	squared_error	Best	Log2	0.398
5.	squared_error	Random		0.835
6.	squared_error	Random	None	0.915
7.	squared_error	Random	Sqrt	0.608
8.	squared_error	Random	Log2	0.646
9.	friedman_mse	Best		0.937
10.	friedman_mse	Best	None	0.892
11.	friedman_mse	Best	Sqrt	0.711
12.	friedman_mse	Best	Log2	0.828
13.	friedman_mse	Random		0.874
14.	friedman_mse	Random	None	0.926
15.	friedman_mse	Random	Sqrt	0.336
16.	friedman_mse	Random	Log2	-0.433
17.	absolute_error	Best		0.921
18.	absolute_error	Best	None	0.924
19.	absolute_error	Best	Sqrt	-0.357
20.	absolute_error	Best	Log2	0.897
21.	absolute_error	Random		0.746
22.	absolute_error	Random	None	0.682
23.	absolute_error	Random	Sqrt	0.101
24.	absolute_error	Random	Log2	0.722
25.	poisson	Best		0.932
26.	poisson	Best	None	0.929
27.	poisson	Best	Sqrt	0.526
28.	poisson	Best	Log2	0.956
29.	poisson	Random		0.959
30.	poisson	Random	None	0.749
31.	poisson	Random	Sqrt	0.815
32.	poisson	Random	Log2	0.809

In decision tree, criterion='poisson', splitter='random' gives best R2 value as 0.959

4. Random Forest

Parameters:

- n_estimatorsint, default=100
- criterion{"squared_error", "absolute_error", "friedman_mse", "poisson"}, default="squared_error"
- max_features{"sqrt", "log2", None}, int or float, default=1.0

S.No.	n_estimators	Criterion	max_features	R² Value
1	<u>100</u>	squared_error	None	0.946
2	100	squared_error	Sqrt	0.759
3	100	squared_error	Log2	0.759
4	50	squared_error	None	0.944
5	50	squared_error	Sqrt	0.683
6	50	squared_error	Log2	0.683
7	10	squared_error	None	0.925
8	10	squared_error	Sqrt	0.519
9	10	squared_error	Log2	0.519
10	100	friedman_mse	None	0.941
11	100	friedman_mse	Sqrt	0.760
12	100	friedman_mse	Log2	0.760
13	50	friedman_mse	None	0.938
14	50	friedman_mse	Sqrt	0.688
15	50	friedman_mse	Log2	0.688
16	10	friedman_mse	None	0.920
17	10	friedman_mse	Sqrt	0.527
18	10	friedman_mse	Log2	0.527
19	100	absolute_error	None	0.945
20	100	absolute_error	Sqrt	0.785
21	100	absolute_error	Log2	0.785
22	50	absolute_error	None	0.940
23	50	absolute_error	Sqrt	0.722
24	50	absolute_error	Log2	0.722
25	10	absolute_error	None	0.928
26	10	absolute_error	Sqrt	0.721
27	10	absolute_error	Log2	0.721
28	100	poisson	None	0.941
29	100	poisson	Sqrt	0.771
30	100	poisson	Log2	0.771
31	<u>50</u>	poisson	None	0.946
32	50	poisson	Sqrt	0.720
33	50	poisson	Log2	0.720
34	10	poisson	None	0.930
35	10	poisson	Sqrt	0.752
36	10	poisson	Log2	0.752