Homework 1

1. Problem 2.1 on Sedra & Smith 8th ed.

The circuit of Fig. P2.1 uses an op amp that is ideal except for having a finite gain A. Measurements indicate $v_0 = 4.0 \text{ V}$ when $v_I = 1.0 \text{ V}$. What is the op-amp gain A?

2. Problem 2.9 on Sedra & Smith 8th ed..

Assuming ideal op amps, find the voltage gain vo/vi and input resistance R in of each of the circuits in Fig. P2.9.

- 3. Design an inverting amplifier using ideal opamp and the total resistance $R_1+R_2=110~k\Omega$.
 - (a) The gain V_O/V_I is -10 V/V.
 - (b) The gain $|V_O/V_I|$ is -20 dB.

(c) The gain $|V_O/V_I|$ is 40 dB.

4. Problem 2.24, Sedra & Smith 8th ed. (2.22 on 7th ed.)

The circuit in Fig. P2.22 is frequently used to provide an output voltage v_0 roportional to an input signal current i_i .

Derive expressions for the transresistance $R_m \equiv v_o/i_i$ and the input resistance $R_i \equiv v_i/i_i$ for the following cases:

- (a) A is infinite.
- (b) A is finite.

5. Problem 2.51 on Sedra & Smith.

The circuit shown in Fig. P2.51 utilizes a 10-k potentiometer to realize an adjustable-gain amplifier. Derive an expression for the gain as a function of the potentiometer setting x. Assume the op amp to be ideal. What is the range of gains obtained? Show how to add a fixed resistor so that the gain range can be 1 to 11 V/V. What should the resistor value be?

- 6. Problem P 2.30 on Sedra & Smith 8th ed. (P2.32 on 7th ed.). The circuit in Fig. P2.30 utilizes an ideal op amp.
- (a) Find I_1 , I_2 , I_3 , I_L , and Vx.
- (b) If V_O is not to be lower than -13 V, find the maximum allowed value for R_L .
- (c) If R_L is varied in the range 100 Ω to 1 k Ω , what is the corresponding change in I_L and in V_O ?

- 7. Problem 2.38 in Sedra & Smith 8th ed. (2.31 in 7th ed.)
 - (a) The circuit in Fig. P2.31 can be considered to be an extension of the circuit in Fig. 2.8.(a) Find the resistances looking into node 1, R_1 ; node 2, R_2 ; node 3, R_3 ; and node 4, R_4 .
 - (b) Find the currents I_1 , I_2 , I_3 , and I_4 , in terms of the input current I.
 - (c) Find the voltages at nodes 1, 2, 3, and 4, that is, V_1 , V_2 , V_3 , and V_4 in terms of (I_R) .

