Σχεσιακός Λογισμός

- Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1^{ης} Τάξης (First Order Predicate Calculus)
- Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό
- Σχεσιακός Λογισμός και Σχεσιακή Άλγεβρα έχουν την ίδια εκφραστική δύναμη
- Μια γλώσσα επερωτήσεων είναι πλήρης αν έχει την ίδια εκφραστική δύναμη με τη Σχεσιακή Άλγεβρα ή με τον Σχεσιακό Λογισμό
- Διακρίνεται σε
 - Σχεσιακό Λογισμό Πλειάδων (Tuple Relational Calculus TRC)
 - Σχεσιακό Λογισμό Πεδίων (Domain Relational Calculus DRC)

Σχεσιακός Λογισμός

- Μεταβλητές: x, y, z, X, Y, Z, ... x₁, x₂, ... x_k
 - Οι τιμές των μεταβλητών είναι τιμές γνωρισμάτων των σχεσιακών πινάκων
- Σύμβολα Σχέσεων: R, S, T, ... ενός συγκεκριμένου βαθμού
 - αντιστοιχούν σε ονόματα σχέσεων
- > Ατομικές ή Βασικές Προτάσεις
 - $ightharpoonup R(x_1, x_2, ... x_k)$ όπου R είναι ένα σύμβολο για σχέση k-βαθμού
 - $ightarrow R(x_1, x_2, ... x_k)$ ισοδύναμη έκφραση με $(x_1, x_2, ... x_k) \in R$
 - επιτρέπεται η χρήση ίδιων μεταβλητών
 - \triangleright x θ y όπου x, y είναι μεταβλητές και $\theta \in \{\le, \ge, \ne, <, =, >\}$
 - $x \theta c όπου x είναι μεταβλητή, c είναι μια σταθερά, θ όπως πριν.$

Σχεσιακός Λογισμός

- Μεταβλητές
 - > Σχεσιακό Λογισμό Πλειάδων: μεταβλητές για πλειάδες
 - > Σχεσιακό Λογισμό Πεδίων: μεταβλητές για πεδία

3

Προτάσεις Σχεσιακού Λογισμού

- Κάθε ατομική πρόταση, είναι πρόταση σχεσιακού λογισμού.
- > Αν οι F1, F2 είναι προτάσεις σχεσιακού λογισμού, τότε και οι
 - ightharpoonup (F1 \wedge F2), (F1 \vee F2), \neg F1, (F1 \rightarrow F2) είναι προτάσεις σχεσιακού λογισμού
 - > (∃ x F) (υπάρχει μια τιμή ώστε η πρόταση F είναι αληθής)
 - ≻ (∀ x F) (για κάθε τιμή της x, η πρόταση F είναι αληθής)
 είναι προτάσεις σχεσιακού λογισμού

Η χρήση ενός ποσοδείκτη (\exists, \forall) δεσμεύει κάθε στιγμιότυπο μιας μεταβλητής μέσα σε μια πρόταση

Προτάσεις Σχεσιακού Λογισμού

- Προτεραιότητα τελεστών
 - 1. \neg , ∃, ∀ : από αριστερά προς τα δεξιά
 - Λ (σύζευξη) : από αριστερά προς τα δεξιά
 - 3. 🗸 (διάζευξη) : από αριστερά προς τα δεξιά

Παράδειγμα:

 \checkmark Η πρόταση $(\forall x_1) \neg P(x_1, x_2) \lor Q(x_2) \land R(x_1)$ ομαδοποιείται ως $(\forall x_1) (\neg P(x_1, x_2)) \lor (Q(x_2) \land R(x_1))$

Προτάσεις Σχεσιακού Λογισμού

- Οι προτάσεις του Σχεσιακού Λογισμού δηλώνουν σχέσεις (μπορεί και μη-πεπερασμένες)
- Κάθε πρόταση χρησιμοποιεί ένα σύνολο μεταβλητών
 - Ελεύθερες (free)
 - Δεσμευμένες (bound)

Η χρήση ενός ποσοδείκτη (\exists, \forall) δεσμεύει κάθε στιγμιότυπο της μεταβλητής που εισάγει ο ποσοδείκτης μέσα σε μια πρόταση

Παραδείγματα προτάσεων σχεσιακού λογισμού πεδίων

- Έστω R μια σχέση βαθμού 2
 - 1. $(\exists x) R(x,x)$
 - 2. $(\forall x) (\forall y) (\exists z) (R(x,y) \land R(y,z))$
 - 3. $(\exists z_1) (\exists z_2) (R(x, z_1) \land R(z_1, z_2) \land R(z_2, y))$
 - 4. $(\exists y) (\exists z) (R(x, y) \land R(x, z) \land R(y \neq z))$
- Ελεύθερες και Δεσμευμένες Μεταβλητές
 - > Στις (1), (2) δεν υπάρχει ελεύθερη μεταβλητή
 - > Στην (3) ελεύθερες μεταβλητές είναι οι x,y
 - > Στην (4) ελεύθερη μεταβλητή είναι η χ

Μια μεταβλητή είναι <u>ελεύθερη</u> αν πρέπει να <u>δεσμευτεί</u> σε μια τιμή ώστε να μπορούμε να κρίνουμε την πρόταση ως αληθή Οι ελεύθερες μεταβλητές δεν σχετίζονται με ποσοδείκτες.

7

Προτάσεις Σχεσιακού Λογισμού Πεδίων

- Μια Έκφραση Σχεσιακού Λογισμού Πεδίων έχει τη μορφή $\{(x_1, x_2, ... x_k) : F(x_1, x_2, ... x_k)\}$ όπου F είναι μια πρόταση του σχεσιακού λογισμού και $x_1, x_2, ... x_k$
 - όπου F είναι μια πρόταση του σχεσιακού λογισμού και $x_1, x_2, \dots x_k$ είναι ελεύθερες μεταβλητές
- Όταν μια έκφραση Σχεσιακού Λογισμού Πεδίων {(x₁, x₂, ... x_k) : F(x₁, x₂, ... x_k)} αποτιμάται σε μια σχεσιακή βάση Ι επιστρέφει μια σχέση k-βαθμού η οποία περιέχει όλες εκείνες τις πλειάδες (a₁,a₂,... a_k) που κάνουν αληθή την πρόταση F στη βάση I.

Παράδειγμα:

ightharpoonup Έκφραση $\{(x, z) : \exists y \ R(x, y) \land R(y, z) \}$ επιστρέφει όλα τα ζεύγη τιμών (a,b) για τις οποίες υπάρχει τιμή για την μεταβλητή y ώστε R(a,y) και R(y,b) να είναι αληθή.

Παράδειγμα (1)

Customers(cid, cname,city,discount)

- ✓ «Βρείτε τους κωδικούς και τα ονόματα των πελατών»
 - ✓ Σχέση: Customers
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄
 - \checkmark Ατομική Πρόταση: Customers(x_1, x_2, x_3, x_4)
 - ✓ Έκφραση Σχεσιακού Λογισμού

 $\{(x_1, x_2) : (\exists x_3) (\exists x_4) \text{ Customers}(x_1, x_2, x_3, x_4) \}$

Παράδειγμα (2)

Customers(cid, cname,city,discount)

- ✓ «Βρείτε τους κωδικούς και τα ονόματα των πελατών που ζουν στη Νέα Υόρκη»
 - ✓ Σχέση : Customers
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄
 - \checkmark Ατομική Πρόταση: Customers(x_1, x_2, x_3, x_4)
 - ✓ Έκφραση Σχεσιακού Λογισμού

 $\{(x_1, x_2): (\exists x_3)(\exists x_4) \ \text{Customers}(x_1, x_2, x_3, x_4) \land x_3 = \text{'NY'}\}$

Παράδειγμα (3)

Customers(cid, cname,city,discount)

» «Βρείτε το <u>αναγνωριστικό</u> των <u>πελατών</u> με έδρα την Νέα Υόρκη που έχουν την <u>μεγαλύτερη έκπτωση</u>»

- ✓ Σχέση : Customers
- ✓ Μεταβλητές: x₁, x₂, x₃, x₄
- \checkmark Ατομική Πρόταση: Customers(x_1, x_2, x_3, x_4)
- ✓ Έκφραση Σχεσιακού Λογισμού

$$\{x_1 : (\exists x_2) (\exists x_3)(\exists x_4) (Customers(x_1, x_2, x_3, x_4) \land x_3 = 'NY' \land (\forall y_1, y_2, y_3, y_4) (Customers(y_1, y_2, y_3, y_4) \land y_3 = 'NY') \rightarrow y_4 \leq x_4)\}$$

Σχεσιακός Λογισμός: Πράξη Σύζευξης

- > Έστω R(A,B,C) και S(B, C, D) δυο σχέσεις βαθμού 3.
 - Η πράξη σύζευξης στην Σχεσιακή Άλγεβρα (Σ.Α.) R JOIN S εκφράζεται με τη χρήση των τελεστών επιλογής (σ), καρτεσιανού γινομένου (×) και προβολής (π)

R JOIN S =
$$\pi_{R.A, R.B, R.C, S.D}$$
 ($\sigma_{R.B=S.B \land R.C=S.C}$ (R × S))

Η έκφραση Σχεσιακού Λογισμού (Σ.Λ.) που εκφράζει την πράξη σύζευξης είναι

{
$$(x_1, x_2, x_3, x_4)$$
: $R(x_1, x_2, x_3) \land S(x_2, x_3, x_4)$ }
 $\checkmark (x_1, x_2, x_3, x_4) \rightarrow \pi_{R.A, R.B, R.C, S.D}$

- \checkmark R(....) \land S(....) \rightarrow R \times S
- \checkmark χρήση των ίδιων μεταβλητών \rightarrow σ _{R.B=S.B \land R.C =S.C}

Παράδειγμα (4a)

```
Products(pid, pname, city, quantity, price)
Orders(orderid, cid, aid, pid, qty, amt)
```

- ✓ «Βρείτε τα <u>ονόματα</u> και την <u>τιμή</u> των <u>προϊόντων</u> που <u>παραγγέλνει</u> πελάτης c002.»
 - ✓ Σχέση : Products
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄, x₅
 - ✓ <u>Σχέση</u>: Orders
 - ✓ Μεταβλητές: y₁, y₂, y₃, y₄, y₅, y₆
 - ✓ Έκφραση Σχεσιακού Λογισμού
 - $\checkmark \{ (x_{2}, x_{5}) \mid (\exists x_{1}) (\exists x_{3}) (\exists x_{4}) (\exists y_{1}) (\exists y_{2}) (\exists y_{3}) (\exists y_{4}) (\exists y_{5}) (\exists y_{6}) \}$

Products(x_1, x_2, x_3, x_4, x_5) \land Orders($y_1, y_2, y_3, y_4, y_5, y_6$) $\land y_2 = \text{``c002''} \land$

$$_{\text{HY360 - Lecture 71}} x_1 = y_4$$

Παράδειγμα (4b)

```
Products(pid, pname, city, quantity, price)
Orders(orderid, cid, aid, pid, qty, amt)
```

- ✓ «Βρείτε τα <u>ονόματα</u> και την <u>τιμή</u> των <u>προϊόντων</u> που <u>παραγγέλνει</u> ο πελάτης c002.»
 - ✓ Σχέση : Products
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄, x₅
 - ✓ Σχέση : Orders
 - ✓ Μεταβλητές: y₁, y₂, y₃, y₄, y₅, y₆
 - ✓ Έκφραση Σχεσιακού Λογισμού
 - $✓ \{ (x₂, x₅) | (∃ x₁) (∃ x₃) (∃ x₄) (∃ y₁) (∃ y₃) (∃ y₅) (∃ y₆)$ Products(x₁, x₂, x₃, x₄, x₅) ∧ Orders(y₁, c002, y₃, x₁, y₅, y₆) }

Παράδειγμα (5a)

- (P) Products (pid, pname, city, quantity, price)
- (0) Orders(orderid,cid,aid,pid,qty,amt)
- ✓ «Βρείτε τα <u>ονόματα</u> και την τιμή των προϊόντων που παραγγέλνει ο πελάτης c002 μέσω του πράκτορα a01»
 - \checkmark Σχέση : Products
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄, x₅
 - √ <u>Σχέση</u> : Orders
 - ✓ Μεταβλητές: y₁, y₂, y₃, y₄, y₅, y₆
 - ✓ Έκφραση Σχεσιακού Λογισμού
 - $✓ \{ (x₂, x₅) | (∃ x₁) (∃ x₃) (∃ x₄) (∃ y₁) (∃ y₂) (∃ y₃) (∃ y₄) (∃ y₅) (∃ y₆)$ Products(x₁, x₂, x₃, x₄, x₅) ∧ Orders(y₁, y₂, y₃, y₄, y₅, y₆) ∧ y₂ = "c002" ∧ y₃ = "a01" ∧ x₁ = y₄}

Παράδειγμα (5b)

- (P) Products(pid, pname,city,quantity, price)
- (0) Orders(orderid,cid,aid,pid,qty,amt)
- ✓ «Βρείτε τα <u>ονόματα</u> και την τιμή των προϊόντων που παραγγέλνει ο πελάτης c002 μέσω του πράκτορα a01»
 - ✓ Σχέση : Products
 - ✓ Μεταβλητές: x₁, x₂, x₃, x₄, x₅
 - √ <u>Σχέση</u> : Orders
 - ✓ Μεταβλητές: y₁, y₂, y₃, y₄, y₅, y₆
 - ✓ Έκφραση Σχεσιακού Λογισμού
 - $\checkmark \{ (x_2, x_5) \mid (\exists x_1) (\exists x_3) (\exists x_4) (\exists y_1) (\exists y_5) (\exists y_6) \}$

Products $(x_1, x_2, x_3, x_4, x_5) \land Orders(y_1, c002, a01, x_1, y_5, y_6)$

Σχεσιακός Λογισμός: Πράξη Διαίρεσης

- ✓ Η πράξη της διαίρεσης στην Σχεσιακή Άλγεβρα (Σ.Α.) R ÷ S εκφράζεται με τη χρήση των τελεστών καρτεσιανού γινομένου (×) προβολής (π) και αφαίρεσης (−).
 - \succ Έστω σχέσεις R, S με Head(R) = {A₁, A₂, ... A_r, B₁, B₂, ... B_s} και Head(S) = {B₁, B₂, ... B_s} με r,s \ge 0.

$$R \div S := \pi_{A1, A2, ... Ar} (R) - \pi_{A1, A2, ... Ar} ((\pi_{A1, A2, ... Ar} (R) \times S) - R)$$

- Η σχέση T = R ÷ S
 - έχει βαθμό r s όπου r, s είναι οι βαθμοί της R, S αντίστοιχα
 - ightharpoonup Περιέχει όλες τις πλειάδες (a_1 , a_2 , ... , a_{r-s}) τέτοιες ώστε, για κάθε πλειάδα (b_1 , b_2 , ... , b_s) της S, υπάρχει η πλειάδα (a_1 , a_2 , ... , a_{r-s} , b_1 , b_2 , ... , b_s) στην R.
- > Έστω R(A,B,C,D,E) και S(C, D, E) δυο σχέσεις βαθμού 5 και 3.
 - Η έκφραση Σχεσιακού Λογισμού (Σ.Λ.) που εκφράζει την πράξη διαίρεσης για τις $R(x_1,x_2,x_3,x_4,x_5)$, $S(x_3,x_4,x_5)$ είναι

$$\{(x_1,x_2): (\forall x_3)(\forall x_4)(\forall x_5)(S(x_3,x_4,x_5) \rightarrow R(x_1,x_2,x_3,x_4,x_5))\}$$

- Θεώρημα 1: Κάθε έκφραση της Σχεσιακής Άλγεβρας (Σ.Α.) μπορεί να εκφραστεί στον Σχεσιακό Λογισμό Πεδίων (Σ.Λ.Π.)
- Απόδειξη: Χρησιμοποιώντας επαγωγή στον αριθμό των τελεστών της αλγεβρικής έκφρασης ότι για κάθε έκφραση Ε της Σ.Α. η οποία ορίζει μια σχέση βαθμού k, υπάρχει μια πρόταση F του Σ.Λ.Π. η οποία ορίζει την ίδια σχέση.
 - ightharpoonup <u>Βάση Επαγωγής:</u> Αν Ε είναι μια σχέση R με βαθμό k, τότε η έκφραση Σ.Λ. είναι $\{(x_1,x_2,...x_k): R(x_1,x_2,...x_k)\}$
 - ightharpoonup Υπόθεση Επαγωγής: Έστω ότι για τις εκφράσεις Σ.Α. E_1 , E_2 , οι οποίες ορίζουν σχέσεις βαθμού k, υπάρχουν προτάσεις F_1 , F_2 του Σ.Λ. οι οποίες ορίζουν τις ίδιες σχέσεις.
 - ightharpoonup Επαγωγικό Βήμα: Θα δείξουμε ότι υπάρχουν προτάσεις του Σ.Λ.Π. οι οποίες ορίζουν τις ίδιες σχέσεις με τις εκφράσεις: $E_1 \cup E_2$, $E_1 E_2$, π_X (E_1), $E_1 \times E_2$, σ_F (E_1)

- 1. $E = E_1 \cup E_2$
 - \checkmark E_1 είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_1(x_1,x_2,...x_k)$
 - \checkmark E_2 είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση $F_2(x_1,x_2,...x_k)$

όπου $x_1, x_2, ... x_k \Sigma. \Lambda. \Pi.$ ελεύθερες μεταβλητές

 \checkmark Έκφραση Σ.Λ.Π. για $E = E_1 \cup E_2$. $\{(x_1, x_2, ..., x_k): F_1(x_1, x_2, ..., x_k) \lor F_2(x_1, x_2, ..., x_k)\}$

HY360 – Lecture 7

19

- 2. $E = E_1 E_2$
 - \checkmark E_1 είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_1(x_1,x_2,...x_k)$
 - \checkmark E_2 είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_2(x_1,x_2,...x_k)$

όπου $x_1, x_2, ... x_k$ ελεύθερες μεταβλητές

 \checkmark Έκφραση Σ.Λ.Π. για $E = E_1 - E_2$ {($x_1, x_2, ..., x_k$): $F_1(x_1, x_2, ..., x_k) \land \neg F_2(x_1, x_2, ..., x_k)$ }

20

- 3. $E = E_1 \times E_2$
 - \checkmark E_1 είναι σχέση η-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_1(x_1, x_2, ... x_n)$
 - \checkmark E_2 είναι σχέση m-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. F_2 (y_1 , y_2 , ... y_m)
 - $\checkmark \{x_1, x_2, ... x_k\} \cap \{y_1, y_2, ... y_m\} = \emptyset.$
 - \checkmark Έκφραση Σ.Λ. για $E = E_1 \times E_2$

 $\{(x_1, x_2, ... x_{n_i}, y_1, y_2, ... y_m): F_1(x_1, x_2, ... x_{n_i}) \land F_2(y_1, y_2, ... y_m)\}$

- 4. $E = \pi_{xi1, xi2, ... xin} (E_1)$
 - \checkmark E_1 είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_1(x_1,x_2,...x_k)$
 - \checkmark {x_{i1}, x_{i2}, ... x_{in}} \cap {x_{j1}, x_{j2}, ... x_{jm}} = \emptyset και
 - \checkmark {x_{i1}, x_{i2}, ... x_{in}} \cup {x_{j1}, x_{j2}, ... x_{jm}} = {x₁, x₂, ... x_k}
 - $\checkmark \{x_{i1}, x_{i2}, ... x_{in}\} \subseteq \{x_1, x_2, ... x_k\}$
 - $\checkmark \{x_{i1}, x_{i2}, ... x_{im}\} \subseteq \{x_1, x_2, ... x_k\}$
 - \checkmark Έκφραση Σ.Λ. για $\pi_{xi1, xi2, ..., xin}$ (E₁)

 $\{(x_{i1}, x_{i2}, ... x_{in}): (\exists x_{j1}) (\exists x_{j2}) ... (\exists x_{jm}) F_1(x_1, x_2, ... x_k)\}$

- 5. $E = \sigma_{xi \theta xi}(E1)$.
 - \checkmark είναι σχέση k-βαθμού αντιστοιχεί στην πρόταση Σ.Λ.Π. $F_1(x_1,x_2,...x_k)$
 - $\checkmark x_i, x_j \in \{x_1, x_2, ..., x_k\}$
 - √ Έκφραση Σ.Λ.
 - \checkmark {(x₁, x₂, ... x_k): F₁(x₁, x₂, ... x_k) \land (x_i θ x_i) }

23

Πεδίο Τιμών

- Κάθε μεταβλητή σε μια πρόταση του σχεσιακού λογισμού πεδίων παίρνει τιμές από ένα πεδίο τιμών
 - Περιλαμβάνει τις τιμές που εμφανίζονται στην ίδια την πρόταση σχεσιακού λογισμού πλειάδων και στη βάση δεδομένων
- > Το πεδίο τιμών πρότασης F dom(F) ορίζεται ως η ένωση
 - των συνόλων όλων των σταθερών που εμφανίζονται στην F
 - τις προβολές των γνωρισμάτων όλων των σχέσεων της F
- > dom(F): εξαρτάται από τις σχέσεις που βρίσκονται στην πρόταση F

Πεδία Τιμών - Παράδειγμα (9)

1. Πρόταση:

> F = P(x,y) \wedge Q (y,z) \vee x > 10 = (P(x,y) \wedge Q (y,z)) \vee (x > 10)

Πεδίο Τιμών:

 \rightarrow dom(F) = {10} $\cup \pi_x(P) \cup \pi_y(P) \cup \pi_y(Q) \cup \pi_z(Q)$

2. Πρόταση:

 \rightarrow F = \neg Reserves(x, y, z)

Πεδίο Τιμών:

 \succ dom(F) = π_x (Reserves) \cup π_y (Reserves) \cup π_z (Reserves)

Διαισθητικά, μια πρόταση λέγεται ανεξάρτητη πεδίου αν η σχέση η οποία την ορίζει δεν μπορεί να περιέχει πλειάδες οι οποίες περιλαμβάνουν σταθερές που δεν ανήκουν στο πεδίο της

Προτάσεις Ανεξάρτητες Πεδίου

- $ightharpoonup Oρισμός: Έστω F (x₁, x₂, ... x_n) μια πρόταση στου Σ.Λ.Π. και dom(F) <math>\subseteq$ D με D ένα σύνολο τιμών.
 - Ορίζουμε τη σχέση της F αναφορικά με το σύνολο τιμών D ως το σύνολο των πλειάδων $(a_1, a_2, ... a_n)$ του D^n οι οποίες είναι τέτοιες ώστε, όταν κάθε x_i αντικατασταθεί με την τιμή a_i τότε η $F(a_1, a_2, ... a_n)$ είναι αληθής.
- Πρόταση F λέγεται ανεξάρτητη πεδίου αν η σχέση της αναφορικά με το D δεν εξαρτάται από το ίδιο το D.
- Αν η F είναι ανεξάρτητη πεδίου, τότε η σχέση της αναφορικά με οποιοσδήποτε σύνολο D, είναι η ίδια με τη σχέση της με το σύνολο dom(F).

Παραδείγματα (10)

1. Πρόταση:

- $ightharpoonup F_1 = \neg R(x,y)$
- > Πεδίο Τιμών:
 - \triangleright dom(F1) = $\pi_x(R) \cup \pi_v(R)$
- ▶ F₁ δεν είναι ανεξάρτητη πεδίου.
 - ightharpoonup Av D \supseteq dom(F1), τότε η σχέση που ορίζει η F1 είναι όλες οι πλειάδες που ανήκουν στο D \times D και δεν ανήκουν στην R.
 - \succ Έστω τιμή α, ανήκει στο D, και δεν ανήκει στο dom(F_1).
 - ightharpoonup Η πλειάδα (α, α) ανήκει στη σχέση που ορίζει η F_1 αναφορικά με το D, αλλά όχι στη σχέση της F_1 αναφορικά με το dom(F_1).

Παραδείγματα (11)

2. Πρόταση:

 \triangleright $F_2 = (\exists y) (R(x,y) \lor Q(y,z))$

Πεδίο Τιμών:

- \triangleright dom(F2) = π_x (R) $\cup \pi_y$ (R) $\cup \pi_y$ (Q) $\cup \pi_z$ (Q)
- \succ Έστω R = {(a,b), (c,d)} και Q= {(e,f)}
- > dom(F2) = {a,b,c,d,e,f}
- F₂ δεν είναι ανεξάρτητη πεδίου.
 - > Av D = $\{a,b,c,d,e,f,g\} \supseteq dom(F2)$ τότε η πλειάδα $\{a,g\}$ ανήκει στη σχέση που ορίζει η F2 αναφορικά με το D αλλά όχι στη σχέση που ορίζει αναφορικά με το dom(F2).

Παραδείγματα (12)

2. Πρόταση:

 $ightharpoonup F_3 = (\exists y) (R(x,y) \land Q(y,z))$

Πεδίο Τιμών:

- \triangleright dom(F3) = $\pi_x(R) \cup \pi_y(R) \cup \pi_y(Q) \cup \pi_z(Q)$
- ▶ F₃ είναι ανεξάρτητη πεδίου.
 - 1. Έστω (a,b) μια πλειάδα στη σχέση της F₃ αναφορικά με το σύνολο D.
 - 2. Πρέπει να υπάρχει μια τιμή c τέτοια ώστε $R(a,c) \wedge Q(c,b)$ να είναι αληθής -- $(a,c) \in R$, $(c,b) \in Q$.
 - 3. $a \in \pi_x(P), b \in \pi_z(Q), \kappa\alpha\iota\{a, b\} \in dom(F_3).$
 - 4. Για οποιοδήποτε D \supset dom(F₃), το σύνολο των ζευγών τιμών στη σχέση της F₃ αναφορικά με το D θα είναι το ίδιο με τη σχέση της F₃ αναφορικά με το dom(F₃).

Ασφαλείς Προτάσεις

- Η ανεξαρτησία πεδίου είναι μια έννοια η οποία αφορά τη σημασιολογία των προτάσεων του σχεσιακού λογισμού.
- Δεν υπάρχει αλγόριθμος ο οποίος αποφασίζει αν μια πρόταση είναι ανεξάρτητη πεδίου
- Ασφαλείς προτάσεις: υποσύνολο των προτάσεων που είναι ανεξάρτητες πεδίου και ορίζουν πεπερασμένες σχέσεις.
 - ▶ Παράδειγμα: Η έκφραση { (x, y) | ¬R(x,y) } ορίζει μια μηπεπερασμένη σχέση
- Υπάρχει ένας αλγόριθμος ο οποίος εξετάζει την σύνταξη των προτάσεων για να αποφασίσει αν μια πρόταση είναι ασφαλής ή όχι.

Ασφαλείς Προτάσεις

- Ορισμός: Μια πρόταση του Σ.Λ.Π. είναι ασφαλής αν:
 - 1. Δεν χρησιμοποιείται ο καθολικός ποσοδείκτης ∀
 - 2. Av $F = F_1 \vee F_2$ τότε F_1 και F_2 έχουν τις ίδιες ελεύθερες μεταβλητές.
 - Για οποιαδήποτε υπο-πρόταση F₁ \F₂ \ ... F_m της F όλες οι ελεύθερες μεταβλητές των F_i πρέπει να είναι περιορισμένες:
 Μια μεταβλητή είναι περιορισμένη εάν
 - a. είναι ελεύθερη σε μια υπο-πρόταση F_i όπου η F_i δεν είναι αριθμητική σύγκριση και δεν προηγείται η άρνηση —
 - b. αν F_i είναι της μορφής X = c όπου c είναι μια σταθερά τότε η X είναι περιορισμένη μεταβλητή
 - c. αν F_i είναι της μορφής X = Y και η Y είναι περιορισμένη, τότε η X είναι περιορισμένη.
 - 4. Η F είναι ασφαλής αν είναι της μορφής $H_1 \wedge H_2 \wedge ... H_j \wedge \neg G \wedge I_1 \wedge I_2 \wedge ... I_j$ και οι συζεύξεις ικανοποιούν τον παραπάνω κανόνα και αν τουλάχιστον ένα από τα H ή I δεν έχει άρνηση.

Παραδείγματα (13)

- 1. Πρόταση: x=y: δεν είναι ασφαλής
 - ✓ καμία από τις x, y δεν είναι περιορισμένη
- 2. Πρόταση: $(x=y) \wedge R(x,y)$: είναι ασφαλής
- 3. Πρόταση : (x=y) ∨ R(x,y) : δεν είναι ασφαλής
- **4.** Πρόταση : $R(x,y,z) \land \neg (Q(x,y) \lor S(y,z)) : δεν είναι ασφαλής$
- 5. Πρόταση : $R(x,y,z) \land \neg Q(x,y) \land \neg S(y,z) : ασφαλής$
 - ✓ ισοδύναμη με την (4)