# ECCS-3351 Embedded Realtime Applications (ERA)

#### Inductive device control

JONATHAN W. VALVANO

Modified by Drs. Kropp, Oun, and Youssfi

## Objectives

- Fundamental for Electromagnetic Fields
  - Ampere's Law
  - Faraday-Maxwell
- Brushed DC Motors



## If you leave college knowing anything...

Capacitors impede changes in voltage

Inductors impede changes in current

## without a capacitor

tine

while(1){

- 1) Set P5.3 high (turn on IR LED)
- 2) Make P7.0 an output, and set it high (charging the capacitor)
- 3) Wait 10 us, Clock\_Delay1us(10);
- 4) Make P7.0 an input
- 5) Run this loop 10,000 times
  - a) Read P7.0 (converts voltage on P7.0 into binary)
  - b) Output binary to P4.0 (allows you to see binary in real time)
- 6) Set P5.3 low (turn off IR LED, saving power)
- 7) Wait 10 ms, Clock\_Delay1ms(10);

}



**Inductive Devices** 

## **Electromagnetic Fields**

#### **Current induces a magnetic field**



#### What devices use coils?



**Inductive Devices** 

https://en.wikipedia.org/wiki/Electric\_motor#/media/File:Electric\_motor\_cycle\_2.png https://courses.lumenlearning.com/physics/chapter/23-5-electric-generators/ https://en.wikipedia.org/wiki/Loudspeaker#/media/File:Loudspeaker-bass.png

#### EF in action: Solenoid



## Theory of Electromagnetic Fields

#### **Current induces a magnetic field**

Derived from Ampere's Law:  $B = \mu \frac{NI}{L}$ 

- *I* is current (amps)
- L is the length of the coil (meters)
- N is the number of turns
- $\mu$  is the permeability  $(N/A^2)$
- B is magnetic field (Teslas)



broberts et gratar

## **DC Motor Physics**

#### Faraday-Maxwell Law:

Force = Current × Length × Magnetic Field

$$F = ILB$$

#### Right hand rule

Thumb = direction of current

Fingers = direction of magnetic field

Palm = direction of force





## Magnetisms to Movement







## Magnetisms to Movement





## Components

Brushes Commutator Rotor Stator (not shown)





## DC Motor Physics

#### **Electrical Model**

- *R* Resistance from long wires
- L Inductance because wires are coil (electromagnet)
- emf electromotive force
  - a function of the ultimate speed and torque of the motor
  - Opposite polarity of the voltage powering the motor



### Basic Model for a DC motor

#### **Considerations**

- Voltage (V)
- Current (A)
- Power (W = V\*A = J/sec)
- Force (N=kg\*m/sec2)
- Torque (N-m)
- Inductance (H)
- emf (V)
- Friction (coefficient)
- Speed (rps)



```
P = V^*I
```

$$\tau = F^*d$$

$$V = L dI/dt$$



#### Voltage

- Look up the required voltage of the motor, and supply it  $(V_m)$
- Regulate the voltage source if necessary



#### **Controlling by current**

- In this example, we provide a transistor to control the current of the motor
  - Bipolar junction transistor
  - These transistors can handle high current
- Driven by a GPIO pin
- Choose a driver pin with twice the required current of the motor



#### **Controlling by voltage**

- The TIP120 is controlled by current
- Use a MOSFET to control the motor by a voltage signal



#### **Dealing with inductance**

- All motors contain an inductance, since it's comprised of coiled wire
- When you switch off the motor, the motor is still spinning
- This is just like a small generator, which creates a voltage called back emf



#### **Dealing with inductance**

- All motors contain an inductance, since it's comprised of coiled wire
- When you switch off the motor, the motor is still spinning
- This acts just like a small generator, which creates a voltage called back emf
- This can send current into your MCU, possibly frying it!!



#### **Dealing with inductance**

Using a snubber diode
 prevents unwanted current
 from frying your MCU driver



## Flyback (or snubber) diodes



## Flyback (or snubber) diodes



#### **MOSFET Drive Circuit**



### Alternative MOSFET Driver Circuit



#### **MOSFET Drive Circuit**

What's a missing feature of this set up?



## Going forward and backwards: H Bridge

#### **Basic circuit inside the DRV8838**



**Inductive Devices** 

## Operational parameters of a motor

- Speed (using PWM)
- Direction of robot (varying the speed of the left and/or right motors)
- Direction of motor

## Integrated Version of an H bridge



What do all of these pins do?

## Let's hook everything up!



### Motor Interface on TI-RSLK Chassis Board



## Motor Interface on TI-RSLK Chassis Board



| PH/DIRL/P5.4 | EN/PWML/P2.7  | Left wheel action |
|--------------|---------------|-------------------|
| 1            | $\mathcal{O}$ | Stop              |
| 0            | $\bigcirc$    | Stop              |
|              | 1             | Forward           |
| 1            | 1             | Back              |

| PH/DIRL/P5.5 | EN/PWML/P2.6  | Right wheel action |
|--------------|---------------|--------------------|
| /            | 0             | Stop               |
| 0            | $\mathcal{O}$ | Stop               |
| $\bigcirc$   | /             | Forward            |
| /            | /             | Back               |

## Motor Interface on TI-RSLK Chassis Board



| PH/DIRL/P5.4 | EN/PWML/P2.7 | Left wheel action |
|--------------|--------------|-------------------|
| 0            | 0            | Stop              |
| 1            | 0            | Stop              |
| 0            | 1            | Forward           |
| 1            | 1            | Back              |

| PH/DIRL/P5.5 | EN/PWML/P2.6 | Right wheel action |
|--------------|--------------|--------------------|
| 0            | 0            | Stop               |
| 1            | 0            | Stop               |
| 0            | 1            | Forward            |
| 1            | 1            | Back               |

#### Drive circuit waveforms for DC Motors

