Introducción a la computación cuántica

Día 2:

 \sim Algoritmos cuánticos y aplicaciones criptográficas \backsim

Alejandro Díaz-Caro

Universidad Nacional de Quilmes

XIII Jornadas de Ciencias de la Computación Rosario – 21 al 23 de octubre de 2015

Algoritmos más conocidos y criptografía

- Deutsch
- Deutsch-Jotza
- Grover
- ▶ BB84

Objetivo:

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$

Objetivo:

$$U_f|x,y\rangle=|x,y\oplus f(x)\rangle$$

Objetivo:

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$

Objetivo:

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$

$$0\rangle$$
 H U_f H

$$|01\rangle \xrightarrow{\text{Deustch alg.}} \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right] \xrightarrow{\text{Si es constante}} \pm |0\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

Objetivo:

$$U_f|\overline{x},y\rangle=|\overline{x},y\oplus f(\overline{x})\rangle$$

Objetivo:

$$U_f|\overline{x},y\rangle=|\overline{x},y\oplus f(\overline{x})\rangle$$

Objetivo:

$$U_f|\overline{x},y\rangle=|\overline{x},y\oplus f(\overline{x})\rangle$$

Objetivo:

Dado un "oráculo" U_f que implementa la función $f: \{0,1\}^n \to \{0,1\}$, determinar si f es constante o balanceada

$$U_f|\overline{x},y\rangle=|\overline{x},y\oplus f(\overline{x})\rangle$$

$$|0\rangle^{\otimes n}|1\rangle \xrightarrow{\text{D-J alg.}} \underbrace{\stackrel{\text{Si es}}{\underset{\text{constante}}{\text{constante}}} \pm |0\rangle^{\otimes n} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]}_{\substack{\text{Si es} \\ \text{balanceada}}} \pm |\psi\rangle \quad \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

donde $|\psi\rangle$ no incluye $|0\rangle^{\otimes n}$

Preliminares: Oráculo

$$U_f|x,y\rangle=|x,y\oplus f(x)\rangle$$

Tomar
$$y = |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
 entonces

$$\begin{aligned} U_f|x,y\rangle &= U_f\left(|x\rangle\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right) = \frac{1}{\sqrt{2}}\left(U_f|x,0\rangle - U_f|x,1\rangle\right) \\ &= \frac{1}{\sqrt{2}}(|x,f(x)\rangle - |x,1\oplus f(x)\rangle) = |x\rangle\frac{1}{\sqrt{2}}(|f(x)\rangle - |1\oplus f(x)\rangle) \\ &= (-1)^{f(x)}|x,y\rangle \end{aligned}$$

Preliminares: Oráculo

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$

Tomar $y = |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ entonces

$$\begin{aligned} U_f|x,y\rangle &= U_f \left(|x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right) = \frac{1}{\sqrt{2}} \left(U_f|x,0\rangle - U_f|x,1\rangle \right) \\ &= \frac{1}{\sqrt{2}} (|x,f(x)\rangle - |x,1 \oplus f(x)\rangle) = |x\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |1 \oplus f(x)\rangle) \\ &= (-1)^{f(x)} |x,y\rangle \end{aligned}$$

 U_f no modifica y... lo omitimos

Oráculo

$$U|x\rangle = (-1)^{f(x)}|x\rangle$$

Preliminares: Inversión sobre el promedio

$$|\phi
angle = rac{1}{\sqrt{2^n}} \sum_{\overline{x} \in \{0,1\}^n} |\overline{x}
angle$$

Preliminares: Inversión sobre el promedio

$$|\phi
angle = rac{1}{\sqrt{2^n}} \sum_{\overline{x} \in \{0,1\}^n} |\overline{x}
angle = egin{pmatrix} rac{1}{\sqrt{2^n}} \ dots \ rac{1}{\sqrt{2^n}} \end{pmatrix}_{2^n}$$

Preliminares: Inversión sobre el promedio

$$|\phi\rangle = \frac{1}{\sqrt{2^n}} \sum_{\overline{x} \in \{0,1\}^n} |\overline{x}\rangle = \begin{pmatrix} \frac{1}{\sqrt{2^n}} \\ \vdots \\ \frac{1}{\sqrt{2^n}} \end{pmatrix}_{2^n}$$

Inversión sobre el promedio

$$G = 2|\phi\rangle\langle\phi| - I$$

$$\begin{pmatrix} \frac{2}{2^{n}} - 1 & \frac{2}{2^{n}} & \cdots & \frac{2}{2^{n}} \\ \frac{2}{2^{n}} & \frac{2}{2^{n}} - 1 & \cdots & \frac{2}{2^{n}} \\ \vdots & \vdots & & \vdots \\ \frac{2}{2^{n}} & \frac{2}{2^{n}} & \cdots & \frac{2}{2^{n}} - 1 \end{pmatrix}_{2^{n} \times 2^{n}}$$

Preliminares: Inversión sobre el promedio

$$|\phi\rangle = \frac{1}{\sqrt{2^n}} \sum_{\overline{x} \in \{0,1\}^n} |\overline{x}\rangle = \begin{pmatrix} \frac{1}{\sqrt{2^n}} \\ \vdots \\ \frac{1}{\sqrt{2^n}} \end{pmatrix}_{2^n}$$

Inversión sobre el promedio

$$G = 2|\phi\rangle\langle\phi| - I$$

$$\begin{pmatrix} \frac{2}{2^n}-1 & \frac{2}{2^n} & \cdots & \frac{2}{2^n} \\ \frac{2}{2^n} & \frac{2}{2^n}-1 & \cdots & \frac{2}{2^n} \\ \vdots & \vdots & & \vdots \\ \frac{2}{2^n} & \frac{2}{2^n} & \cdots & \frac{2}{2^n}-1 \end{pmatrix}_{2^n\times 2^n} \qquad \qquad G\left(\sum_{\overline{x}\in\{0,1\}^n} a_{\overline{x}}|\overline{x}\right) \\ = \sum_{\overline{x}\in\{0,1\}^n} (2A-a_{\overline{x}})|\overline{x}\rangle$$

donde A es el promedio de los $a_{\overline{x}}$

El algoritmo

Objetivo:

Localizar el \overline{x}_0 tal que $f(\overline{x}_0) = 1$

- 1. Aplicar Hadamard a $|0\rangle^{\otimes n}$
- 2. Aplicar el oráculo U
- 3. Aplicar la inversión sobre el promedio G
- 4. Repetir pasos 2 y 3 durante $\left[\frac{\pi}{4 \text{arcsen}(\sqrt{\frac{1}{2^n}})}\right]$ iteraciones (cálculo del número óptimo de iteraciones, en el apunte, sección 2.3.4)

EXPLICACIÓN PASO A PASO EN EL PIZARRÓN (Y EJEMPLO)

One-time pad, un método clásico infalible...

b_1	<i>b</i> ₂	$b_1 \oplus b_2$
1	1	0
1	0	1
0	1	1
0	0	0

One-time pad, un método clásico infalible...

One-time pad, un método clásico infalible...

One-time pad, un método clásico infalible...

Probabilidad de adivinar el mensaje original a partir del cifrado: $\frac{1}{2^n}$

One-time pad, un método clásico infalible...

Probabilidad de adivinar el mensaje original a partir del cifrado: $\frac{1}{2^n}$ ilgual que la posibilidad de adivinar el mensaje original sin ninguna información extra!

One-time pad, un método clásico infalible...

Entonces, si es tan simple y seguro...¿porqué no es utilizado?

One-time pad, un método clásico infalible...

Entonces, si es tan simple y seguro...; porqué no es utilizado?

- ► Largo del mensaje = largo de la clave (para 100 % de seguridad)
- Clave de encriptación y desencriptación iguales (y secretas)
 - Dificultad para distribuir las claves

One-time pad, un método clásico infalible...

Entonces, si es tan simple y seguro...¿porqué no es utilizado?

- ► Largo del mensaje = largo de la clave (para 100 % de seguridad)
- Clave de encriptación y desencriptación iguales (y secretas)
 - Dificultad para distribuir las claves

Ahí entra el método BB84: es un método de *distribución* de claves de manera segura.

QKD-BB84

Objetivo: Crear y transmitir una clave de manera segura

Esquema	+	×
Base	$\{ 0 angle, 1 angle\}$	$\{ +\rangle, -\rangle\}$
Codif.	$egin{array}{c} 0 = \ket{0} \ 1 = \ket{1} \end{array}$	$egin{aligned} 0 &= \ket{-} \ 1 &= \ket{+} \end{aligned}$

- 1. A: secuencia aleatoria de 0s o 1s y elección aleatoria de esquemas para c/bit
- 2. B: elección aleatoria del esquema de medición para cada bit recibido
- 3. A: transmite la sucesión de esquemas empleada
- 4. B: informa en qué casos coincidieron
- 5. La clave queda definida por los bits donde se usaron los mismos esquemas
- 6. Intercambio de hashes para verificación

QKD-BB84: Ejemplo

$$|+: \quad 0 = |0\rangle, \quad 1 = |1\rangle \qquad \qquad \times: \quad 0 = |-\rangle, \quad 1 = |+\rangle$$

- 1. A: secuencia aleatoria de 0s o 1s y elección aleatoria de esquemas para c/bit
- 2. B: elección aleatoria del esquema de medición para cada bit recibido
- 3. A: transmite la sucesión de esquemas empleada
- 4. B: informa en qué casos coincidieron
- 5. La clave queda definida por los bits donde se usaron los mismos esquemas
- 6. Intercambio de hashes para verificación

Bits de A	1	0	0	1	0	0	0	1
Esquemas de A	X	+	+	X	×	+	×	+
Valores de A	$ +\rangle$	0>	0>	$ +\rangle$	$ -\rangle$	0>	$ -\rangle$	$ 1\rangle$
Esquemas de B	+	X	+	X	+	+	X	X
Valores de B	0>	$ +\rangle$	0>	$ +\rangle$	$ 1\rangle$	0>	$ -\rangle$	$ -\rangle$

QKD-BB84: Ejemplo

$$+: \quad 0=|0
angle, \quad 1=|1
angle \qquad \qquad \times: \quad 0=|-
angle, \quad 1=|+
angle$$

- 1. A: secuencia aleatoria de 0s o 1s y elección aleatoria de esquemas para c/bit
- 2. B: elección aleatoria del esquema de medición para cada bit recibido
- 3. A: transmite la sucesión de esquemas empleada
- 4. B: informa en qué casos coincidieron
- 5. La clave queda definida por los bits donde se usaron los mismos esquemas
- 6. Intercambio de hashes para verificación

Bits de A	1	0	0	1	0	0	0	1
Esquemas de A	X	+	+	X	X	+	×	+
Valores de A	$ +\rangle$	0>	0>	$ +\rangle$	$ -\rangle$	0>	$ -\rangle$	$ 1\rangle$
Esquemas de B	+	X	+	X	+	+	X	X
Valores de B	0>	+>	0>	+>	$ 1\rangle$	0>	$ -\rangle$	$ -\rangle$
Coincidencias								

QKD-BB84: Ejemplo

$$+: \quad 0=|0\rangle, \quad 1=|1\rangle \qquad \qquad \times: \quad 0=|-\rangle, \quad 1=|+\rangle$$

- 1. A: secuencia aleatoria de 0s o 1s y elección aleatoria de esquemas para c/bit
- 2. B: elección aleatoria del esquema de medición para cada bit recibido
- 3. A: transmite la sucesión de esquemas empleada
- 4. B: informa en qué casos coincidieron
- 5. La clave queda definida por los bits donde se usaron los mismos esquemas
- 6. Intercambio de hashes para verificación

Bits de A	1	0	0	1	0	0	0	1
Esquemas de A	×	+	+	X	X	+	X	+
Valores de A	$ +\rangle$	0>	0>	+>	$ -\rangle$	0>	$ -\rangle$	$ 1\rangle$
Esquemas de B	+	X	+	X	+	+	X	×
Valores de B	$ 0\rangle$	$ +\rangle$	$ 0\rangle$	$ +\rangle$	$ 1\rangle$	0>	$ -\rangle$	$ -\rangle$
Coincidencias								
Clave			0	1		0	0	

QKD-BB84: Inviolabilidad (teórica)

QKD-BB84: Inviolabilidad (teórica)

Agregamos un espía: C

lackbox A envía 0 con esquema imes: |angle

QKD-BB84: Inviolabilidad (teórica)

- ▶ A envía 0 con esquema \times : $|-\rangle$
- lacktriangle Si C usa esquema +, el estado pasa a $|0\rangle$ o $|1\rangle$

QKD-BB84: Inviolabilidad (teórica)

- ▶ A envía 0 con esquema $\times: |-\rangle$
- ▶ Si C usa esquema +, el estado pasa a $|0\rangle$ o $|1\rangle$
- ▶ Si B usa esquema \times , obtiene $|-\rangle$ con probabilidad $\frac{1}{2}$ y $|+\rangle$ con probabilidad $\frac{1}{2}$

QKD-BB84: Inviolabilidad (teórica)

- ▶ A envía 0 con esquema \times : $|-\rangle$
- ightharpoonup Si C usa esquema +, el estado pasa a $|0\rangle$ o $|1\rangle$
- ▶ Si B usa esquema \times , obtiene $|-\rangle$ con probabilidad $\frac{1}{2}$ y $|+\rangle$ con probabilidad $\frac{1}{2}$
- Mientras más bits se envían, la probabilidad de no detectar a C decrece exponencialmente:

Bits	Probabilidad
1 bit	3/4 = 0.75
8 bits	$(3/4)^8 = 0.10011$
128 bits	$(3/4)^{128} = 1,018 \times 10^{-16}$
1Mb	$(3/4)^{1024} = 1{,}155 \times 10^{-128}$
1MB	$(3/4)^{8192} = 3.17 \times 10^{-1024}$

QKD-BB84 en la vida real

Investigación e interés en computación cuántica

- Como una nueva manera de entender la física
 ...con técnicas de las ciencias de la computación
- ► Como una nueva herramienta de cómputo ...mejoras en complejidad
- ► Como un problema ingenieril
 - ... desarrollo de la computadora