Instructions:

- Due April 9 at 11:59pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1 (Product and quotient space).

- (a) For a positive integer m, show that $V^m = \underbrace{V \times V \times \cdots \times V}_{m \text{times}}$ is isomorphic to $\mathcal{L}(\mathbb{F}^m, V)$. Do not assume V is finite-dimensional.
- (b) Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subspaces U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subspace of V or is the empty set.
- (c) An equivalence relation is a binary relation that is reflexive, symmetric and transitive. Fix a subspace U of V. Show that $v \sim w$ if and only if $v w \in U$ is an equivalence relation on V.
- (d) Briefly explain how the previous problem relates to translates.
- (e) Suppose U is a subspace of V such that V/U is finite-dimensional. Prove that V is isomorphic to $U \times (V/U)$.

Problem 2 (Duality).

- (a) Explain why each linear functional is surjective or is the zero map.
- (b) Show that the dual map of the identity operator on V is the identity operator on V'.
- (c) Suppose $m \ge 0$. What is the dual basis of $\{1, x 5, (x 5)^2, \dots, (x 5)^m\}$ in \mathcal{P}_m ?
- (d) Suppose $T \in \mathcal{L}(V, W)$ and w_1, \ldots, w_m is a basis of range T. Hence for each $v \in V$, there exist unique numbers $\varphi_1(v), \ldots, \varphi_m(v)$ such that

$$Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m,$$

thus defining functions $\varphi_1, \ldots, \varphi_m$ from V to \mathbf{F} . Show that each of the functions $\varphi_1, \ldots, \varphi_m$ is a linear functional on V.

Problem 3.

- (a) Suppose v_1, \ldots, v_n and v_1, \ldots, u_n are such that span $\{v_1, \ldots, v_k\} = \text{span}\{u_1, \ldots, u_k\}$ for each k. problems
- (b) Suppose we have a independent set of vectors v_1, \ldots, v_n and apply Gram-Schmidt to obtain an orthonormal set u_1, \ldots, u_n such that

Set
$$u_1 = v_1/\|v_1\|$$
.
For $k = 2, \dots, n$, set:

$$\hat{u}_k = v_k - \langle v_k, u_1 \rangle u_1 - \dots - \langle v_k, u_{k-1} \rangle u_{k-1}.$$
and
$$u_k = \hat{u}_k/\|\hat{u}_k\|.$$

(c) Show that the upper triangular matrix R you described in part (a) can be obtained from the coefficients computed by the Gram–Schmidt algorithm. That is, that you get the matrix R "for free" from the Gram–Schmidt algorithm.

Problem 4. Consider the vector space \mathcal{P}_4 of polynomials of degree at most 4. Define an inner product on \mathcal{P}_4 by

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) \frac{1}{\sqrt{1-x^2}} dx, \quad \forall p, q \in \mathcal{P}_4.$$

- (a) Verify this is an inner product.
- (b) Apply the Gram-Schmidt process to the basis $\{1, x, x^2, x^3, x^4\}$ to obtain an orthonormal basis. You can use Wolfram alpha or similar to compute integrals, but should write down the integrals you are computing.
- (c) Make a plot of the polynomials you computed and a different plot of the Chebyshev polynomials (up to degree 4). How do they compare?

Problem 5. (a) Suppose V is a real inner product space and v_1, \ldots, v_m is a linearly independent list of vectors in V. Prove that there exist exactly 2^m orthonormal lists e_1, \ldots, e_m of vectors in V such that

$$\mathrm{span}(v_1,\ldots,v_k)=\mathrm{span}(e_1,\ldots,e_k)$$

for all $k \in \{1, ..., m\}$.

(b) Suppose C[-1,1] is the vector space of continuous real-valued functions on the interval [-1,1] with inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} fg$$

for all $f, g \in C[-1, 1]$. Let φ be the linear functional on C[-1, 1] defined by $\varphi(f) = f(0)$. Show that there does not exist $g \in C[-1, 1]$ such that

$$\varphi(f) = \langle f, g \rangle$$

for every $f \in C[-1,1]$.

(c) Suppose V is finite-dimensional. Suppose $\langle \cdot, \cdot \rangle_1, \langle \cdot, \cdot \rangle_2$ are inner products on V with corresponding norms $\| \cdot \|_1$ and $\| \cdot \|_2$. Prove that there exists a positive number c such that $\|v\|_1 \leq c\|v\|_2$ for every $v \in V$.