CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/23/08

Finite-state transducers

- a : 0 is a notation for a mapping between two alphabets $a \in \Sigma_1$ and $0 \in \Sigma_2$
- Finite-state transducers (FSTs) accept pairs of strings
- Finite-state automata equate to regular languages and FSTs equate to regular relations
- e.g. L = { (x^n, y^n) : n > 0, $x \in \Sigma_1$ and $y \in \Sigma_2$ } is a regular relation accepted by some FST. It maps a string of x's into an equal length string of y's

1/23/08

1/23/08

Finite-state transducers

Regular relations

- A generalization of regular languages
- The set of regular relations is:
 - The empty set and (x,y) for all $x, y \in \Sigma_1 \times \Sigma_2$ is a regular relation
 - If R_1 , R_2 and R are regular relations then:

$$R_1 \cdot R_2 = \{(x_1 x_2, y_1 y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}$$

 $R_1 \cup R_2$

$$R^* = \bigcup_{i=0}^{\infty} R_i$$

- There are no other regular relations

1/23/08

• Formal definition:

- Q: finite set of states, $q_0, q_1, ..., q_n$
- Σ: alphabet composed of input/output pairs i:o where $i ∈ Σ_1$ and $o ∈ Σ_2$ and so $Σ ⊆ Σ_1 × Σ_2$
- $-q_0$: start state
- F: set of final states
- $-\delta(q, i:o)$ is the transition function which returns a set of states

1/23/08

Finite-state transducers: Examples

- (a^n, b^n) : map n a's into n b's
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. cipher → pvcure
- · reversal of a fixed set of words
- reversal of all strings upto fixed length k
- input: binary number n, and output: binary number n+1
- upcase or lowercase a string of any length
- *Pig latin: pig latin is goofy \rightarrow igpay atinlay is oofygay
- *convert numbers into pronunciations,

e.g. 230.34 two hundred and thirty point three four 1/23/08

- Following relations are cannot be expressed as a FST
 - $(a^n b^n, c^n)$: because $a^n b^n$ is not regular
 - reversal of strings of any length
 - $-a^{i}b^{j} \rightarrow b^{j}a^{i}$ for any i, j
- Unlike regular languages, regular relations are not closed under intersection
 - $-(a^n b^*, c^n) \cap (a^* b^n, c^n)$ produces $(a^n b^n, c^n)$
 - However, regular relations with input and output of equal lengths are closed under intersection

1/23/08

Regular Relations Closure Properties

- Regular relations (rr) are *closed* under some operations
- For example, if R_1 , R_2 are regular relns:
 - union $(R_1 \cup R_2 \text{ results in } R_3 \text{ which is a rr})$
 - concatenation
 - iteration (R_1 + = one or more repeats of R_1)
 - Kleene closure $(R_1^* = \text{zero or more repeats of } R_1)$
- However, unlike regular languages, regular relns are not closed under:
 - intersection (possible for equal length regular relns)
 - complement

Regular Relations Closure Properties

- New operations for regular relations:
 - composition
 - project input (or output) language to regular language; for FST t, input language = $\pi_1(t)$, output = $\pi_2(t)$
 - take a regular language and create the identity regular relation; for FSM f, let FST for identity relation be Id(f)
 - take two regular languages and create the cross product relation; for FSMs f & g, FST for cross product is $f \times g$
 - take two regular languages, and mark each time the first language matches any string in the second language

1/23/08

Regular Relation/FST Kleene Closure

Regular Expressions for FSTs

1/23/08

(a:c (b:d)*) | ((e:g)* f:h)

g:i ε:j (h:k)*

1/23/08 15

((a:0 | a:1) (b:0 | b:1))*

Subsequential FSTs

Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with *p* outputs on the final state is called a *p*-subsequential FST
- p-subsequential FSTs can produce ambiguous outputs for a given input string

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

1/23/08

FST Algorithms

- Compose: Given two FSTs f and g defining regular relations R_1 and R_2 create the FST $f \circ g$ that computes the composition: $R_1 \circ R_2$
- **Recognition**: Is a given pair of strings accepted by FST *t*?
- **Transduce**: given an input string, provide the output string(s) as defined by the regular relation provided by an FST

Composing FSTs or an

on input side: $a^n == a^*$

21

What is T_1 composed with T_2 , aka T_1 o T_2 ?

1/23/08

1 1 2, 1 2

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:

```
\begin{split} & \mathsf{match}(s,t) = \\ & \{ \; (s,t) \to^{x:z} (s',t') : s \to^{x:y} s' \in S. \mathsf{edges} \; \mathsf{and} \; t \to^{y:z} t' \in T. \mathsf{edges} \; \} \; \cup \\ & \{ \; (s,t) \to^{x:\epsilon} (s',t) : s \to^{x:\epsilon} s' \in S. \mathsf{edges} \; \} \; \cup \\ & \{ \; (s,t) \to^{\epsilon:z} (s,t') : t \to^{\epsilon:z} t' \in T. \mathsf{edges} \; \} \end{split}
```

• Correctness: any path in composed transducer mapping *u* to *w* arises from a path mapping *u* to *v* in S and path mapping *v* to *w* in T, for some *v*

1/23/08

Complex FSTs with composition

- Take, for example, the task of constructing an FST for the Soundex algorithm
- Soundex is useful to map spelling variants of proper names to a single code (hashing names)
- It depends on a mapping from letters to codes

Soundex

• Mapping from letters to numbers:

$$b, f, p, v \rightarrow 1$$

 $c, g, j, k, q, s, x, z \rightarrow 2$
 $d, t \rightarrow 3$
 $l \rightarrow 4$
 $m, n \rightarrow 5$
 $r \rightarrow 6$

1/23/08 31

Soundex

- The Soundex algorithm:
 - If two or more letters with the same number are adjacent in the input, or adjacent with intervening h's or w's omit all but the first
 - Retain the first letter and delete all occurrences of a, e,
 h, i, o, u, w, y
 - Except for the first letter, change all letters into numbers
 - Convert result into LNNN (letter and 3 numbers), either truncate or add 0s

Soundex

• Example:

Losh-shkan, Los-qam Loshhkan, Losqam Lskn, Lsqm L225, L225

• Other examples:

Euler (E460), Gauss (G200), Hilbert (H416), **Knuth** (K530), Lloyd (L300), Lukasiewicz (L222), and Wachs (W200)

1/23/08 33

Soundex

- How can we implement Soundex as a FST?
- For each step in Soundex, the FST is quite simple to write
- Writing a single FST from scratch that implements Soundex is quite challenging
- A simpler solution is to build small FSTs, one for each step, and then use FST composition to build the FST for Soundex

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

1/23/08 35

Conversion to subsequential FST

Input: x^n

- Step1 output: (x1/x2)*x2 if *n* is even, else (x1/x2)*x1
- Step2 output: reversal of Step1 output
- Step3 output: a^n if n is even, else b^n

Interesting fact: this can be done for any non-subsequential FST to convert it into a subsequential FST

Recognition of string pairs

```
function FSTRecognize (input[], output[], q): 
 Agenda = { (start-state, 0, 0) } 
 Current = (state, i, o) = pop(Agenda) // i :- inputIndex, o :- outputIndex while (true) { 
 if (Current is an accept item) return accept else Agenda = Agenda \cup GenStates(q, state, input, output, i, o) if (Agenda is empty) return reject else Current = (state, i, o) = pop(Agenda) } 
 function GenStates (q, state, input[], output[], i, o): return { (q', i, o) : for all q' = q(state, \epsilon:\epsilon) } \cup { (q', i, o+1) : for all q' = q(state, input[i+1]) } \cup { (q', i+1, o) : for all q' = q(state, input[i+1]:\epsilon) } \cup { (q', i+1, o+1) : for all q' = q(state, input[i+1], output[i+1]) } \cup }
```

Transduction: input → output

- The **transduce** operation for a FST *t* can be simulated efficiently using the following steps:
 - 1. Convert the input string into a FSM f (the machine only accepts the input string, nothing else).
 - 2. Convert f into a FST by taking Id(f) and compose with t to give a new FST g = Id(f) o t. (note that g only contains those paths compatible with input f)
 - 3. Finally project the output language of g to give a FSM for the output of transduce: $\pi_2(g)$
 - 4. Optionally, eliminate any transitions that only derive the empty string from the $\pi_2(g)$ FST.
- What follows is an alternate version that attempts to _{1/23/08} produce all output strings

Transduction: input → output

Transduction: input → output

```
function FSTtransduce (input[], q):  Agenda = \{ \text{ (start-state, 0, []) } \} \text{ // each item contains list of partial outputs} \\ Current = (\text{state, i, out}) = pop(Agenda) \text{ // i :- inputIndex, out :- output-list} \\ \text{output} = () \\ \text{while (true) } \{ \\ \text{ if (Current is an accept item) output} \oplus \text{ out} \\ \text{ else Agenda} = Agenda \cup GenStates(q, state, input, out, i)} \\ \text{ if (Agenda is empty) return output} \\ \text{ else Current} = (\text{state, i, o}) = pop(Agenda) \\ \}
```

Transduction: input \rightarrow output

```
function FSTtransduce (input[], q):

Agenda = \{ (start-state, 0, []) \} // \text{ each item contains list of partial outputs} \\ Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list \\ output = () \\ while (true) \{ \\ if (Current is an accept item) output <math>\oplus out \\ else Agenda = Agenda \cup GenStates(q, state, input, out, i) \\ if (Agenda is empty) return output \\ else Current = (state, i, o) = pop(Agenda) \\ \}
U \text{ adds new output to output lists in items seen before}
```

1/23/08 41

Transduction: input → output

```
function FSTtransduce (input[], q):

Agenda = \{ \text{ (start-state, 0, []) } \text{ // each item contains list of partial outputs} \\ Current = (\text{state, i, out}) = pop(Agenda) \text{ // i :- inputIndex, out :- output-list} \\ \text{output} = () \\ \text{while (true) } \{ \\ \text{ if (Current is an accept item) output } \oplus \text{ out} \\ \text{ else Agenda} = Agenda \cup GenStates(q, state, input, out, i)} \\ \text{ if (Agenda is empty) return output} \\ \text{ else Current} = (\text{state, i, o}) = pop(Agenda) \\ \} \\ \text{function GenStates (q, state, input[], out, i):} \\ \text{ return } \{ \text{ (q', i, out) : for all q' = q(state, $\epsilon$:newOut) } \} \cup \\ \{ \text{ (q', i, out } \oplus \text{ newOut) : for all q' = q(state, input[i+1]:$\epsilon$) } \} \cup \\ \{ \text{ (q', i+1, out} \oplus \text{ newOut) : for all q' = q(state, input[i+1], newOut) } \}
```

Transduction: input → output

```
function FSTtransduce (input[], q):
     Agenda = \{ (start-state, 0, []) \} // each item contains list of partial outputs
     Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
     output = ()
     while (true) {
          if (Current is an accept item) output @ out
          else Agenda = Agenda \cup GenStates(q, state, input, out, i)
          if (Agenda is empty) return output
                                                                 ⊕ concatenates new
          else Current = (state, i, o) = pop(Agenda)
                                                                  output string to
     }
                                                                 each item in out (the
function GenStates (q, state, input[], out, i):
                                                                  output list for each item)
     return \{ (q', i, out) : \text{for all } q' = q(\text{state}, \epsilon : \epsilon) \} \cup
             \{ (q', i, out \oplus newOut) : for all q' = q(state, \epsilon:newOut) \} \cup
            \{ (q', i+1, out) : for all q' = q(state, input[i+1]:\epsilon) \} \cup
   1/23/08
             \{ (q', i+1, out \oplus newOut) : for all q' = q(state, input[i+1], newOut) \}
```

Cross-product FST

 For regular languages L₁ and L₂, we have two FSAs, M₁ and M₂

$$M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$$

 $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$

 Then a transducer accepting L₁×L₂ is defined as:

$$T=ig(\Sigma,Q_1 imes Q_2,\langle q_1,q_2
angle,F_1 imes F_2,\deltaig) \ \delta(\langle s_1,s_2
angle,a,b)=\delta_1(s_1,a) imes \delta_2(s_2,b) \ ext{for any } s_1\in Q_1,s_2\in Q_2 ext{ and } a,b\in \Sigma\cup\{\epsilon\}$$

Summary

- Finite state transducers specify regular relations
 - Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction
- Determinization, Minimization? (not all FSTs can be 1/23/08 determinized)

45