Kepler's Pred

1

3 mg or concepts related to TOF	,
1. How any does it take to get	
	2000 S C C C C C C C C C C C C C C C C C
=) 70F egn	
Known: OE, To, T, Valent	our: TOF
2. Given an orbit to an initial	otate, when will the 5/c be at sme later time?
=) Kepher's Pred Prob	
	Unknown: r.
known: OE, to, TOF	OK
3. Given 2 positions B a TOF	
=> Lambert's Prob	(also relevant to manuever design)
known: to to, Tot	Unknam: OE's
16,01	
der's Prediction Problem:	
know OE, To, TOF -> Tond To	f
Unfortunately, there is no as	nalytical solution to this problem. Must Herade.
Given Vo -> Eo (Eccentric	c Arramy)
= n (6-T)	Jar location of the 5/c if it's anythe Websity where Constant
n= mem motion = IM	
t-T = the sace last of	Periapsis paysage.
M: E-esm E	1 1 0
Know: OE's => n	
TOF is known	
Thus: DM is known:	M,=Mo+n (TOF)
	ilve for E, (E, = location of the o/c 7,)
	< carret be solved analytically for E. Must solve item
	, ,

Will not go thru the full derivation.	
Algorithm for solvey kepler's Prediction Prob:	
1. Guess I'm (a further of 5/c position)	
2. Calculate tn = f(xn)	
3. If (t,-tn) > tolerance	
Calculate Xnti	
4. Repeat steps 283 with (6,-tn) = tol	
5. Calculate Ti & V, usay lagrange Coeffici	ents (which are a f (Xn))
Define ix = VM/r	
Pseudo-Code:	
Input: To, To, At	
E: ½2- 4 → tells us the type	of Conic
Solve for a: E=- LA	
If Circle or Ellipse:	
Xn= M st	
If parabola	
ዀ <u>- ፫</u> × ὖ	
$p = k^2/M$ Cot $(2 \text{ s}) = 3\sqrt{\frac{2}{p^3}}$ by	Sit w have are just intermediate variables (not OE:
tam³(h)=tam(s)	
$\chi_n = \sqrt{p} \cdot Z \cot(2w)$	
If hyperbola:	
$\gamma_n = sign(\Delta t) \sqrt{-\alpha} ln \left[\frac{-2m\Delta}{(r_0 \cdot \vec{v}_0)} \right]$	t/a + 5:gn/at) -ma (1- 50/a)
Ψ= χ²/a	

Calculate C \$5: if 4>1E-6 C = 1- (0) (V) S= \\ - SM(\\\\) elseif 4<-1 E-6 C= 1- cosh (\(-\psi\) 5 - 3mh(J-4) - J-4 واعو C= 1/2 S= 1/6 while (t-Dt/>10 sec (You Can play with this tolerance) (Need to update 14) r= x2C+ 76. 76 (1- 42)+ 26 (1- 4C) dx = m/r t= 1 [x35+ 70 70 x2 C+ 00 x(1-45)] $x_{n+1} = x_n + (\Delta t - t) \frac{dx}{dt}$ (updates x) Mn+1 = xn+ dx (st-tn) end Newton-Raphson Method to update Non. 1 %tz Xnti

Lagrange Golff Cients: $f = 1 - \frac{X^2}{r_0} C$ $g = t - \frac{X^2}{\sqrt{\omega}} S$ $f = \frac{\sqrt{\omega}}{r_0} \chi (\varphi S - 1)$ $g = 1 - \frac{X^2}{r_0} C$ $T = f r_0 + g \vec{v}_0$ $V = f r_0 + g \vec{v}_0$