3c. T-Tests Exercises

Q1

A random sample of laboratory mice is taken to see if the population mean weight is 25.0 g. The sample yields the following data: 24.2, 25.1, 23.0, 22.8, 24.5 and 23.8. Assume normality.

- a. Test the null hypothesis H_0 : μ (mean) = 25 versus H_1 : $\mu \neq 25$ using a level of significance of $\alpha = 0.10$.
- b. What is the *p*-value associated with the value of the test statistic?

$\mathbf{Q2}$

A random sample of six recent graduates of a local business school, all accounting majors, revealed salaries \$25,000, \$21,000, \$22,000, \$21,000, \$23,000 and \$26,000 per year. Assume normality and test the null hypothesis H_0 : $\mu = $25,000$ versus H_0 : $\mu \neq $25,000$ with $\alpha = 0.02$. State and interpret the *p*-value.

Q3

An office manager sends 10 randomly selected secretaries to a week-long course to improve their typing speed. The manager times their speed before and after the course to see if the course is worth the lost time and expense. State the appropriate null and alternative hypotheses and test the null hypothesis with $\alpha = 0.025$. State the *p*-value. Find a 95% confidence interval for the mean increase in typing speed.

Speed after Course	Speed before Course
55	50
46	42
78	70
61	63
52	58
45	35
47	46
57	52
71	60
58	49

Q4

Twenty randomly selected patients on a diet to loose weight had their weight recorded before starting the diet and after one month's time on the diet. The weight loss (before minus after) was recorded for each patient as follows:

7	-6	3	1	6	4	9	-5	9	7
-3	7	-9	8	6	-4	4	9	-6	1

State the appropriate null and alternative hypotheses to test the effectiveness of this diet. Use a significance level of $\alpha = 0.05$.

Q5

A college professor teaches two sections of the same subject. One section meets at 8 a.m. and the other meets at 10 a.m. with one hour separating the two classes. At examination time she gives identical exams to both classes but is concerned that the 10 a.m. section might have higher scores based on possible information received about the test from individuals in the 8 a.m. section. Test the null hypothesis H_0 : $\mu_8 = \mu_{10}$ versus H_1 : $\mu_8 \neq \mu_{10}$ with $\alpha = 0.10$ and state the *p*-value. Assume these test scores resemble two independent random samples from normal populations.

8 a.m. Scores			10 a.	10 a.m. Scores			
98	95	94	100	98	98		
91	90	89	97	96	94		
87	77	76	92	92	89		
75	73	70	86	85	85		
67	67	66	85	82	81		
65	57	56	79	79	78		
55	53	45	78	77	77		
43	39		74	72	67		
			65	62	56		
			56	49	47		