

SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY

DEPARTMENT OF STATISTICS
POSTGRADUATE PROGRAMM

APPENDIX

Written by Χατζόπουλος Γεράσιμος

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ως μέρος των απαιτήσεων για την απόκτηση Διπλώματος Μεταπτυχιακών Σπουδών στην Εφαρμοσμένη Στατιστική

Αθήνα, Αύγουστος 2023

2.2.1 LINEAR

```
# Set the seed for reproducibility
set.seed(123)
# Generate the simulated data
n <- 100 # number of observations</pre>
x \leftarrow runif(n, 0, 10) \# independent variable
noise <- rnorm(n, 0, 1) # some noise</pre>
beta0 <- 2 # true intercept</pre>
beta1 <- 3 # true slope
y <- beta0 + beta1 * x + noise # dependent variable
# Create a data frame
data <- data.frame (x = x, y = y)
# Fit a linear regression model
model < -lm(y \sim x, data = data)
# Print the summary of the model
summary(model)
# Plot the data and the fitted line
plot(data$x, data$y, main = "Linear Regression", xlab = "x", ylab
= "y")
abline(model, col = "red")
```


2.2.2 LOGISTIC

```
# Loading necessary libraries
library(ggplot2)
# Setting seed for reproducibility
set.seed(123)
# Generating independent variable
x < - runif(100, -10, 10)
# Generating dependent variable
z < -1 + 3*x \# Linear function
prob <-1/(1 + exp(-z)) # Logistic function
y <- rbinom(100, 1, prob) # Binary variable
# Fitting logistic regression model
model <- glm(y ~ x, family = "binomial")</pre>
# Creating sorted x values
sorted x <- sort(x)</pre>
# Making predictions (on the probability scale)
predicted probs <- predict(model, newdata = data.frame(x =</pre>
sorted x), type = "response")
# Creating dataframe of sorted x, y and predicted probabilities
df < - data.frame(x = sorted x, PredictedProbability =
predicted probs)
df actual <- data.frame(x = x, y = y)
# Creating the base plot
p <- ggplot() +</pre>
    geom point(data = df actual, aes(x = x, y = y), colour =
"blue", alpha = 0.5) +
    geom line(data = df, aes(x = x, y = PredictedProbability),
colour = "red") +
```

```
labs(title = "Logistic Regression", x = "X", y = "Y /
Predicted Probability") +
   theme_minimal()
# Printing the plot
print(p)
```

2.2.3 TIMES SERIES ANALYSIS

```
# Loading the necessary libraries
library(forecast)
library(ggplot2)
# Setting the seed for reproducibility
set.seed(123)
# Generating a time series
data <- arima.sim(n = 100, model = list(ar = c(0.6), ma = c(0.3)))
# Converting the data to a ts object
data ts <- ts(data)
# Fitting an ARIMA model
model <- auto.arima(data ts)</pre>
# Forecasting future values
forecast result <- forecast (model, h = 20)
# Visualizing the results
autoplot(forecast result) +
  ggtitle("ARIMA Model Forecast") +
 xlab("Time") +
  ylab("Values") +
  theme minimal()
```


2.2.4 DECISION TREES

```
# Load the required packages
library(rpart)
library(rpart.plot)
 # Create a sample dataset
data <- iris
 # Fit the decision tree model
 tree model <- rpart(Species ~ ., data = data)</pre>
 # Define a color palette for the nodes
box colors <- list("pink", "lightblue", "lightgray") # Specify</pre>
your desired colors
# Plot the decision tree with custom colors
rpart.plot(tree model, type = 2, extra = 101, under = TRUE,
fallen.leaves = FALSE,
              branch = 0.6, shadow.col = "gray", box.palette =
box colors,
            nn = TRUE, main = "Decision Tree")
```


2.2.5 RANDOM FORESTS

```
# Loading necessary libraries
library(randomForest)
library(ggplot2)
# Setting seed for reproducibility
set.seed(123)
# Generating independent variables
x1 < - runif(100, -10, 10)
x2 < - runif(100, -10, 10)
# Generating dependent variable
y < -1 + 2*x1 + 3*x2 + rnorm(100, 0, 0.5)
# Creating a data frame
data <- data.frame(x1 = x1, x2 = x2, y = y)
# Fitting a Random Forest model
model < - randomForest(y \sim x1 + x2, data = data)
# Making predictions
data$predicted <- predict(model, newdata = data)</pre>
# Visualizing the results
ggplot(data, aes(x = x1, y = y)) +
 geom point(aes(color = "Actual")) +
 geom point(aes(y = predicted, color = "Predicted")) +
  scale_color_manual(values = c("Actual" = "blue", "Predicted" =
"red")) +
  labs(title = "Random Forest Model", x = "X1", y = "Y / Predicted
Y", color = "Legend") +
  theme minimal()
```


2.2.6 SVM

```
# Loading necessary libraries
library(e1071)
library(ggplot2)
# Setting seed for reproducibility
set.seed(123)
# Generating independent variable
x < - runif(100, -10, 10)
# Generating dependent variable
y < -1 + 2*x + rnorm(100, 0, 0.5)
# Creating a data frame
data <- data.frame (x = x, y = y)
# Fitting an SVR model
model < - svm(y \sim x, data = data)
# Making predictions
data$predicted <- predict(model, newdata = data)</pre>
# Ordering data by 'x' for plotting
data <- data[order(data$x), ]</pre>
# Visualizing the results
ggplot(data, aes(x = x, y = y)) +
 geom point(aes(color = "Actual")) +
 geom line(aes(y = predicted, color = "Predicted")) +
  scale color manual(values = c("Actual" = "blue", "Predicted" =
"red")) +
  labs(title = "Support Vector Regression Model", x = "X", y =
"Y / Predicted Y", color = "Legend") +
  theme minimal()
```


2.2.7 NAÏVE BAYES

```
# Loading necessary libraries
library(e1071)
library(ggplot2)
# Setting seed for reproducibility
set.seed(123)
# Generating independent variable
x < - runif(100, -10, 10)
# Generating dependent variable based on a condition
y <- ifelse(x > 0, "positive", "negative")
# Creating a data frame
data <- data.frame(x = x, y = as.factor(y))
# Fitting a Naive Bayes model
model <- naiveBayes(y ~ x, data = data)</pre>
# Making predictions
data$predicted <- predict(model, newdata = data)</pre>
# Ordering data by 'x' for plotting
data <- data[order(data$x), ]</pre>
# Visualizing the results
ggplot(data, aes(x = x, y = y)) +
 geom point (aes (color = y), size = 3, alpha = 0.6) +
 geom rug(data = data[data$predicted == "positive", ], sides =
"t", col = "blue", alpha = 0.5, size = 1.2) +
  geom rug(data = data[data$predicted == "negative", ], sides =
"b", col = "red", alpha = 0.5, size = 1.2) +
  labs(title = "Naive Bayes Classification", x = "X", y = "Y
Predicted Y", color = "Actual Y") +
  theme minimal()
```

2.2.9 GRADIENT BOOSTING

```
# Loading necessary libraries
library(gbm)
library(ggplot2)
# Setting seed for reproducibility
set.seed(123)
# Generating independent variable
x < - runif(100, -10, 10)
# Generating dependent variable
y < -1 + 2*x + rnorm(100, 0, 0.5)
# Creating a data frame
data <- data.frame (x = x, y = y)
# Fitting a Gradient Boosting Model
model <- qbm(y ~ x, data = data, distribution = "gaussian",</pre>
n.trees = 100, interaction.depth = 4)
# Making predictions
data$predicted <- predict(model, newdata = data, n.trees = 100)</pre>
# Ensure that the predicted values are numeric
data$predicted <- as.numeric(data$predicted)</pre>
# Ordering data by 'x' for plotting
data <- data[order(data$x), ]</pre>
# Visualizing the results
ggplot(data, aes(x = x, y = y)) +
 geom point(aes(color = "Actual")) +
 geom line(aes(y = predicted, color = "Predicted")) +
  scale color manual(values = c("Actual" = "blue", "Predicted" =
"red")) +
  labs(title = "Gradient Boosting Model", x = "X",
Predicted Y", color = "Legend") +
```

2.3.4 COMPARTMENT

```
install.packages("deSolve")
library(deSolve)
library(ggplot2)
# Define the SIR model function
sir model <- function(time, state, parameters) {</pre>
    with(as.list(c(state, parameters)), {
        # Model equations
        dS <- -beta * S * I
        dI <- beta * S * I - gamma * I
        dR <- gamma * I
        # Return the derivative of each compartment
        return(list(c(dS, dI, dR)))
    })
# Set initial conditions and parameter values
initial state <-c(S = 999, I = 1, R = 0)
parameters <- c(beta = 0.2, gamma = 0.1)
# Set time points for prediction
times <- seq(0, 100, by = 0.1)
# Solve the differential equations using the SIR model
solution <- ode(y = initial state, times = times,</pre>
                                                           func =
sir_model, parms = parameters)
# Create a data frame with the solution
df <- as.data.frame(solution)</pre>
# Plot the predicted results
ggplot(df, aes(x = time)) +
```

```
geom_line(aes(y = S, color = "Susceptible"), size = 1) +

geom_line(aes(y = I, color = "Infected"), size = 1) +

geom_line(aes(y = R, color = "Recovered"), size = 1) +

labs(x = "Time", y = "Population", color = "Compartment") +

scale_color_manual(values = c("Susceptible" = "blue",

"Infected" = "red", "Recovered" = "green")) +

theme_minimal()
```


2.3.5 AGENT BASED

```
# Load necessary library
library(ggplot2)
library(gridExtra)
# Create a function to simulate agent movement
simulate agent movement <- function(num iterations) {</pre>
 agent positions <- data.frame(iteration = integer(), x =</pre>
integer(), y = integer())
 agent <- c(0, 0)
 for (iteration in 1:num_iterations) {
   move \leftarrow sample (c(-1, 1), 2, replace = TRUE)
    agent <- agent + move
    agent positions
                                          rbind(agent positions,
data.frame(iteration = iteration, x = agent[1], y = agent[2]))
 return(agent positions)
# Set the number of iterations
num iterations <- 4</pre>
# Simulate agent movement
agent positions <- simulate agent movement(num iterations)</pre>
# Create a custom color palette
```

```
colors <- c("#1f77b4", "#ff7f0e", "#2ca02c", "#d62728")</pre>
# Create plots for each iteration
plots <- list()</pre>
for (i in 1:num iterations) {
 plot <- ggplot(data = agent positions %>% filter(iteration <=</pre>
i), aes(x, y)) +
    geom path(aes(group = iteration), color = colors[i], size =
1.5, lineend = "round") +
    geom point(data = agent positions %>% filter(iteration == i),
size = 5, color = colors[i]) +
    geom text(data = agent positions %>% filter(iteration == i),
aes(label = paste("Iteration", i)),
              vjust = -1.5, color = colors[i]) + # Adjusted vjust
value
    geom path(data = agent positions %>% filter(iteration <= i),</pre>
linetype = "dashed", color = "gray", size = 0.5) +
    labs(title = paste("Agent Movement - Iteration", i), x = "X
Coordinate", y = "Y Coordinate") +
    theme minimal() +
    theme(legend.position = "none",
          plot.title = element text(size = 16, hjust = 0.5,
margin = margin(b = 15)),
          axis.title = element text(size = 14),
          axis.text = element text(size = 12),
          panel.grid.major = element blank(),
          panel.grid.minor = element blank(),
          panel.background = element rect(fill = "white"))
  plots[[i]] <- plot</pre>
```

```
# Display plots
grid.arrange(grobs = plots, ncol = 2)
```

2.3.6 SPATIAL

```
# Load packages
library(sp)
library(spdep)
library(ggplot2)
# Create a 10x10 grid
grid df \leftarrow expand.grid(x = seq(1, 10), y = seq(1, 10))
# Generate some random data for the grid
set.seed(123)
grid_df$vals <- rnorm(n = nrow(grid_df))</pre>
# Convert the grid to a spatial object
coordinates(grid df) <- ~x+y</pre>
class(grid df) <- "SpatialPointsDataFrame"</pre>
# Define neighbors (using dnearneigh function)
nb <- dnearneigh(coordinates(grid df), d1 = 0, d2 = sqrt(2))</pre>
# Create spatial weights matrix
listw <- nb2listw(nb, style = "W")</pre>
# Perform Moran's I test
moran.test(grid df@data$vals, listw)
```

```
# Calculate lagged values
grid df@data$vals.lag <- lag.listw(listw, grid df@data$vals)</pre>
# Perform the spatial regression
model <- lm(vals ~ vals.lag, data = as.data.frame(grid_df@data))</pre>
# Print the summary of the model
summary(model)
# Add residuals to the data frame
grid df@data$residuals <- residuals(model)</pre>
# Convert grid to data frame for ggplot
grid df <- as.data.frame(grid df)</pre>
# Plot the data
ggplot(grid df, aes(x = x, y = y, fill = vals)) +
 geom tile() +
 scale fill gradient2(low = "blue", high = "red", mid = "white",
                       midpoint = median(grid df$vals), limit =
range(grid df$vals)) +
 theme minimal() +
 ggtitle("Data")
# Plot residuals
ggplot(grid_df, aes(x = x, y = y, fill = residuals)) +
 geom tile() +
  scale fill gradient2(low = "blue", high = "red", mid = "white",
                       midpoint = median(grid df$residuals),
limit = range(grid df$residuals)) +
  theme minimal() +
  ggtitle("Residuals")
```


2.3.7 BAYESIAN

```
# Simulated data
cases <- c(10, 15, 20, 25, 30) # Number of cases over time
n <- length(cases) # Number of time points</pre>
# Prior distribution parameters
prior alpha <- 1</pre>
prior beta <- 1
# Bayesian updating
posterior alpha <- prior alpha + sum(cases)</pre>
posterior beta <- prior beta + n</pre>
# Posterior predictive distribution
new cases <- rbeta(1000, posterior alpha, posterior beta) * 100
# Summary statistics of the posterior predictive distribution
mean cases <- mean(new cases)</pre>
median cases <- median(new cases)</pre>
credible interval <- quantile(new cases, c(0.025, 0.975))</pre>
# Plot the posterior predictive distribution
hist(new cases, breaks = 20, col = "lightblue", xlab = "New
Cases", main = "Posterior Predictive Distribution", density = 10)
lines(density(new cases), col = "red", lwd = 2)
abline(v = mean cases, col = "red", lwd = 2, lty = 2)
legend("topright", legend = c("Mean", "95% Credible Interval"),
col = c("red", "black"), lty = c(2, 1), lwd = 2)
# Print results
cat("Mean new cases:", mean cases, "\n")
cat("Median new cases:", median_cases, "\n")
```

```
cat("95% Credible Interval:", credible_interval[1], "-",
credible_interval[2], "\n")
```

2.3.8 GLM

```
# Load required libraries
library(ggplot2)
install.packages("scales")
library(scales)
# Simulated data for illustration purposes
set.seed(123)
date <- seq(as.Date("2022-01-01"), as.Date("2022-01-31"), by =
"day")
cases <- rpois(length(date), lambda = 10)</pre>
# Create a data frame
data <- data.frame(date, cases)</pre>
# Fit a GLM model
model <- glm(cases ~ date, data = data, family = poisson)</pre>
# Generate predictions
new_dates <- seq(as.Date("2022-02-01"), as.Date("2022-02-28"),</pre>
by = "day")
new data <- data.frame(date = new dates)</pre>
predicted cases <- predict(model, newdata = new data, type =</pre>
"response")
# Combine original and predicted data
combined data <- rbind(data, data.frame(date = new dates, cases</pre>
= predicted cases))
# Plot the actual and predicted cases
ggplot(combined_data, aes(x = date, y = cases)) +
    geom line(color = "blue") +
```


2.3.9 MACHINE LEARNING

```
# Load libraries
library(randomForest)
library(ggplot2)
# Generate a synthetic dataset
set.seed(123)
num samples <- 200
age <- rnorm(num_samples, mean = 50, sd = 10)</pre>
gender <- rbinom(num samples, 1, 0.5)</pre>
fever <- rbinom(num samples, 1, 0.3)</pre>
cough <- rbinom(num samples, 1, 0.4)</pre>
fatigue <- rbinom(num samples, 1, 0.6)</pre>
DiseaseStatus <- factor(rbinom(num samples, 1, 0.5), levels =</pre>
c(0, 1)) # Convert to factor
# Create the dataframe
data <- data.frame(age, gender, fever, cough, fatigue,
DiseaseStatus)
# Shuffle the data
data <- data[sample(nrow(data)),]</pre>
# Create 80-20 split
train index <- round(nrow(data) * 0.8)</pre>
# Create Training and Test set
data train <- data[1:train index, ]</pre>
data_test <- data[(train_index + 1):nrow(data), ]</pre>
# Train the random forest model
```

```
rf model <- randomForest(DiseaseStatus ~ ., data = data train,</pre>
ntree = 100)
# Make predictions on the test set
rf predictions <- predict(rf model, data test)</pre>
# Manually calculate the accuracy
accuracy <- sum(rf_predictions == data_test$DiseaseStatus)</pre>
nrow(data test)
print(paste("Accuracy: ", accuracy))
# Visualize feature importance
importance <- importance(rf model)</pre>
varImportance <- data.frame(Variables = row.names(importance),</pre>
Importance = round(importance[ ,'MeanDecreaseGini'],2))
# Use ggplot2 to visualize the relative importance of variables
ggplot(varImportance, aes(x = reorder(Variables, Importance), y
= Importance, fill = Importance)) +
    geom bar(stat='identity') +
    labs(x = 'Variables') +
    coord flip() +
    theme minimal()
```


2.5.1 POISSON

2.5.2 NEGATIVE BINOMIAL

```
# Example: Modeling the number of reported cases of dengue fever
size <- 10  # Size parameter

prob <- 0.3  # Probability of success

# Generate negative binomial-distributed data
data <- rnbinom(100, size, prob)

# Plotting the data
hist(data, breaks = 20, probability = TRUE, main = "Negative
Binomial Distribution",

    xlab = "Number of Reported Cases", ylab = "Probability")

# Plotting the probability mass function

x <- 0:40

pmf <- dnbinom(x, size, prob)

plot(x, pmf, type = "h", lwd = 2, ylim = c(0, max(pmf) + 0.05),
    main = "Negative Binomial PMF", xlab = "Number of Reported
Cases", ylab = "Probability")</pre>
```


2.5.3 NORMAL

```
# Example: Modeling the body temperature of individuals infected
with influenza
mean <- 98.6  # Mean body temperature</pre>
sd < -0.5
             # Standard deviation
# Generate normally-distributed data
data <- rnorm(100, mean, sd)</pre>
# Plotting the data
hist(data, breaks = 20, probability = TRUE, main = "Normal
Distribution",
     xlab = "Body Temperature", ylab = "Density")
# Plotting the probability density function
x < - seq(97, 100, 0.01)
pdf <- dnorm(x, mean, sd)</pre>
plot(x, pdf, type = "l", lwd = 2, ylim = c(0, max(pdf) + 0.05),
     main = "Normal PDF", xlab = "Body Temperature", ylab =
"Density")
```


2.5.4 BETA-BINOMIAL

2.5.5 GAMMA

```
# Example: Modeling the duration of symptoms for patients with
typhoid fever
shape <- 5  # Shape parameter</pre>
rate <- 0.5 # Rate parameter
# Generate gamma-distributed data
data <- rgamma(100, shape, rate)</pre>
# Plotting the data
hist(data, breaks = 20, probability = TRUE, main = "Gamma
Distribution",
     xlab = "Duration of Symptoms", ylab = "Probability")
# Plotting the probability density function
x < - seq(0, 20, 0.1)
pdf <- dgamma(x, shape, rate)</pre>
plot(x, pdf, type = "l", lwd = 2, ylim = c(0, max(pdf) + 0.05),
     main = "Gamma PDF", xlab = "Duration of Symptoms", ylab =
"Probability")
```


2.5.6 WEIBULL

2.5.7 LOG-NORMAL

```
# Example: Modeling the distribution of incubation periods for
norovirus infection
meanlog <- 2  # Mean of the logarithm of incubation periods</pre>
sdlog <- 0.5
                # Standard deviation of the logarithm of
incubation periods
# Generate log-normal-distributed data
data <- rlnorm(100, meanlog, sdlog)</pre>
# Plotting the data
hist(data, breaks = 20, probability = TRUE, main = "Log-Normal
Distribution",
     xlab = "Incubation Period", ylab = "Density")
# Plotting the probability density function
x < - seq(0, 10, 0.1)
pdf <- dlnorm(x, meanlog, sdlog)</pre>
plot(x, pdf, type = "l", lwd = 2, ylim = c(0, max(pdf) + 0.05),
     main = "Log-Normal PDF", xlab = "Incubation Period", ylab =
"Density")
```


2.5.8 BINOMIAL

2.5.9 MULTINOMIAL

2.5.10 DIRICHLET

```
# Install and load the required package
install.packages("ggtern")
library(ggtern)
# Example: Modeling the distribution of different serotypes of
poliovirus
proportions <-c(0.3, 0.4, 0.3) # Proportions of serotypes
sample size <- 100 # Number of samples</pre>
# Generate multinomial-distributed data
data <- t(apply(rmultinom(sample size, 1, proportions),</pre>
function(x) x/sum(x))
# Create a data frame with the normalized proportions
df <- data.frame(Serotype1 = data[, 1], Serotype2 = data[, 2],</pre>
Serotype3 = data[, 3])
# Plotting the data using a ternary plot
ggtern(data = df, aes(x = Serotype1, y = Serotype2, z =
Serotype3)) +
 geom_point() +
 theme bw() +
 labs(title = "Dirichlet Distribution", x = "Serotype 1", y =
"Serotype 2", z = "Serotype 3")
```


3.3.2 HHH4 MODEL SPECIFICATION-FITTING

```
#required packages for our model to work
library(surveillance)
library(lubridate)
data <- data.frame(</pre>
    Time = seq(as.Date("2008/01/01"), as.Date("2020/12/01"), by
= "month"),
    NumValue = c(5, 2, 4, 2, 6, 3, 4, 14, 2, 2, 10, 2, 6, 4, 6,
3, 4, 8, 5, 10, 4, 1, 9, 4, 10, 11, 16, 27, 28, 46, 111, 242,
77, 21, 3, 4, 3, 3, 5, 3, 7, 3, 4, 17, 2, 1, 3, 4, 6, 3, 7, 8,
4, 12, 26, 33, 16, 16, 12, 9, 18, 13, 16, 21, 40, 40, 46, 97,
69, 44, 39, 13, 19, 16, 18, 12, 42, 41, 42, 107, 39, 13, 9, 9,
2, 9, 16, 18, 30, 16, 41, 71, 31, 24, 16, 11, 15, 13, 17, 38,
55, 31, 50, 85, 30, 18, 16, 5, 1, 7, 14, 23, 36, 29, 36, 59,
18, 15, 24, 4, 7, 6, 11, 29, 40, 40, 40, 58, 29, 33, 23, 15,
16, 15, 40, 70, 117, 79, 96, 158, 77, 81, 105, 50, 79, 92, 85,
34, 29, 40, 70, 342, 233, 224, 115, 19)
# Extract the year from the Time column
data$Year <- lubridate::year(data$Time)</pre>
# Select training data indices based on the year
train inds <- which(data$Year %in% 2008:2018)</pre>
# Transform data to the sts class (space-time surveillance
data) to be used in #the surveillance package functions
train data <- sts(data$NumValue,
                  start = c(lubridate::year(data[1, "Time"]),
lubridate::month(data[1, "Time"])),
```

```
freq = 12L)
# Define different specification options to be used in the
model
family values <- c("Poisson", "NegBin1")</pre>
S ar values <- 0:3
S end values <- 0:3
lag ar values <- 1:3</pre>
# Dataframe for all combinations of the model specifications
model specifications <- as.data.frame(</pre>
    expand.grid(
        family = family values,
        S ar = S ar values,
        S end = S end values,
        lag ar = lag ar values,
        mean log score = NA real ,
        stringsAsFactors = FALSE),
    stringsAsFactors = FALSE)
# Create an empty list to store fitted models
fits <- vector("list", nrow(model specifications))</pre>
# Loop over all model specifications and fit models
for(specification ind in seq len(nrow(model specifications))) {
    family <- model specifications$family[specification ind]</pre>
    S ar <- model specifications$S ar[specification ind]</pre>
    lag ar <- model specifications$lag ar[specification ind]</pre>
    S_end <- model_specifications$S_end[specification_ind]</pre>
```

```
# Create a hhh4 model using the given specifications for
#monthly data
    fits[[specification ind]] <- hhh4(train data,</pre>
                                       control = list(
                                            ar = list(f =
addSeason2formula(f = ~ 1, S = S ar, period = 12), lag =
lag ar),
                                            end = list(f =
addSeason2formula(f = \sim 1, S = S end, period = 12)),
                                            subset = seq(from =
lag ar + 1, to = min(max(train inds), 131)),
                                            family = family
                                        ) )
# Generate one-step-ahead predictions for each fitted model
    one step ahead preds <-
oneStepAhead(fits[[specification ind]],
                                           tp =
min(nrow(train data) - 1, 129))
# Compute prediction scores for each prediction
    pred scores <- scores(one step ahead preds)</pre>
# Store the mean log score, mean ranked probability score
#(RPS), mean #Dawid-Sebastiani Score (DSS) and mean spherical
#error score (SES) for #each model in the model specifications
#dataframe
    model_specifications$mean_log_score[specification ind] <-</pre>
mean(pred scores[, "logs"])
    model_specifications$mean_rps[specification_ind] <-</pre>
mean(pred scores[, "rps"])
    model_specifications$mean_dss[specification_ind] <-</pre>
mean(pred scores[, "dss"])
```

3.3.3 MODEL SELECTION

```
selection_criteria <- "aic" # how to pick "best" hhh4 model

#Set the prediction horizon to 12 time steps ahead

all_prediction_horizons <- 1:12

all_prediction_statistics <- c("log_score",</pre>
```

```
"pt pred",
                                "AE",
                                "interval pred 1b 95",
                                "interval_pred_ub_95",
                                "interval pred lb 50",
                                "interval pred ub 50")
# Identify indices of the data that fall within specified
#years
prediction_time_inds <- which(data$season %in%</pre>
paste0(2008:2019, "/", 2009:2020))
# convert dates
data$time <- ymd(data$Time)</pre>
#Add time index column. This is used for calculating the
#periodic kernel.
## Here, this is calculated as the number of days since some
origin date (1970-1-1 in this case).
#The origin is conventional.
data$time index <- as.integer(data$time - ymd(paste("1970",</pre>
"01", "01", sep = "-")))
#load surveillance fits and choose best one
surveillance fits <- readRDS(file = file.path(</pre>
    "C:/Users/forta/OneDrive/Desktop/THESIS UNTIL NOW/r
results/surveillance-fits.rds"))
# Calculate AIC for each model
aic by surveillance fit <- sapply(surveillance fits$model fits,
function(sfit) {
    summary(sfit)$AIC
} )
```

```
Calculate BIC for each model
bic by surveillance fit <- sapply(surveillance fits$model fits,
function(sfit) {
    summary(sfit)$BIC
})
# Select the best model based on the selection criterias above
if(identical(selection criteria, "log score")) {
# If selection criteria is log score, select model with minimum
#mean log score
    best spec ind <-
which.min(surveillance fits$model specifications$mean log score
    surveillance fit <-</pre>
surveillance_fits$model_fits[[best_spec_ind]]
# If selection criteria is AIC, select model with minimum AIC
} else if(identical(selection criteria, "aic")) {
    best spec ind <- which.min(aic by surveillance fit)</pre>
    surveillance fit <-</pre>
surveillance fits$model fits[[best spec ind]]
# If selection criteria is BIC, select model with minimum BIC
} else if(identical(selection criteria, "bic")) {
    best spec ind <- which.min(bic by surveillance fit)</pre>
    surveillance fit <-</pre>
surveillance fits$model fits[[best spec ind]]
```

3.3.4 RESULTS

```
# Mean log score

best_model_mean_log_score <-
surveillance_fits$model_specifications$mean_log_score[best_spec__ind]</pre>
```

```
print(paste("Mean Log Score: ", best_model_mean_log_score))
```

```
summary(surveillance_fit)
```

```
# Predictions of the best model

best_predictions <- predict(surveillance_fit)

#DSS

model_specifications$mean_dss[specification_ind]
```

```
#SES
model_specifications$mean_ses[specification_ind]
```

```
#RPS
model_specifications$mean_rps[specification_ind]
```

```
# Show the predictions
print(best_predictions)

# Ensure that the ggplot2 package is installed
if(!require(ggplot2)) {
   install.packages("ggplot2")
}

# Load the package
library(ggplot2)

# Create a data frame for the predicted values
```

```
predicted data <- data.frame(</pre>
    Time = data$Time[1:130],
    NumValue = best predictions[,1]
# Plot the actual and predicted values
# Load the extrafont and ggthemes packages for additional fonts
and themes
library(extrafont)
library(ggthemes)
#one step ahead , it takes all the previous one to predict the
next #one
# Generate the plot
ggplot() +
    geom line(data = data[1:130,], aes(x = Time, y = NumValue,
color = "Actual"), size = 1) +
    geom line(data = predicted data, aes(x = Time, y =
NumValue, color = "Predicted"), size = 1, linetype = "twodash")
    scale color manual(values = c("Actual" = "#1C4E80",
"Predicted" = "#FF4500"),
                       name = " ",
                       labels = c("Actual Values", "Predicted
Values")) +
    labs(title = "Actual vs Predicted Values",
         subtitle = "Comparison of actual and predicted values
over time",
         x = "Time",
         y = "Number of Cases") +
    theme_minimal(base_family = "Arial") +
```

```
library(Metrics)

# Calculate the RMSE

rmse_val <- rmse(data$NumValue[1:130], predicted_data$NumValue)

print(paste("RMSE: ", rmse_val))</pre>
```

```
# Calculate the MAE
mae_val <- mae(data$NumValue[1:130], predicted_data$NumValue)
print(paste("MAE: ", mae_val))</pre>
```

```
# Calculate the MAPE
mape_val <- mape(data$NumValue[1:130], predicted_data$NumValue)
print(paste("MAPE: ", mape_val))</pre>
```

```
residuals <- data$NumValue[1:130] - predicted_data$NumValue
# Create a data frame with the residuals
residuals_data <- data.frame(</pre>
```

Calculate the residuals HEATMAP

```
Time = data$Time[1:130],
  Month = format(data$Time[1:130], "%m"),
  Year = format(data$Time[1:130], "%Y"),
 Residuals = residuals
# Create the heatmap
ggplot(data = residuals_data, aes(x = Month, y = Year, fill =
Residuals)) +
 geom tile() +
  scale fill gradientn(colors = rev(heat.colors(10)), name =
"Residuals") +
  labs(x = "Month", y = "Year", title = "Heatmap of Residuals")
  theme minimal()
library(viridis)
library(scales)
# Generate the heatmap
ggplot(data = residuals data, aes(x = Month, y = Year, fill =
Residuals)) +
    geom tile(color = "white", size = 0.1) +
    scale fill viridis(option = "C", direction = -1, name =
"Residuals",
                       breaks = scales::pretty breaks(n = 5)) +
    labs(title = "Heatmap of Residuals",
         subtitle = "Comparing monthly residuals over years",
         x = "Month",
         y = "Year") +
```

```
# Create a residuals plot OVER TIME

residuals_data <- data.frame(Residuals = residuals)

ggplot(residuals_data, aes(x = 1:length(Residuals), y = Residuals)) +

geom_point() +

geom_hline(yintercept=0, linetype="dashed", color = "red") +

labs(x = "Time", y = "Residuals", title = "Residuals Plot") +

theme_minimal()

# Load the necessary libraries

library(ggthemes)

# Create the residuals plot

residuals_plot <- ggplot(residuals_data, aes(x = 1:length(Residuals), y = Residuals)) +</pre>
```

```
geom point(color = "steelblue", alpha = 0.5, size = 2) +
 geom smooth(method = "loess", se = FALSE, color =
"firebrick", linetype = "dashed") +
 geom hline(yintercept = 0, linetype = "dashed", color =
"red") +
 scale x continuous(breaks = seq(0,
length(residuals dataResiduals), by = 10)) +
 labs(
   x = "Time",
   y = "Residuals",
    title = "Residuals Over Time",
    subtitle = "A plot to check the residuals of the model over
time"
 ) +
 theme tufte() +
 theme (
   plot.title = element text(size = 18, face = "bold", hjust =
0.5),
   plot.subtitle = element text(size = 14, hjust = 0.5),
   axis.title = element text(size = 14, face = "bold")
 )
print(residuals plot)
```

```
# Create an ACF plot of the residuals

acf(residuals)
```

```
# Create a histogram of the residuals
ggplot(residuals_data, aes(x=Residuals)) +
```

```
geom histogram(binwidth=1, color="black", fill="white") +
  labs(x = "Residuals", y = "Frequency", title = "Histogram of
Residuals") +
  theme minimal()
# Load necessary libraries
library(ggthemes)
# Create the histogram
residuals_histogram <- ggplot(residuals_data, aes(x =</pre>
Residuals)) +
    geom_histogram(aes(y = ..density..), binwidth = 1, fill =
"steelblue", color = "black") +
    geom_density(alpha = .2, fill = "firebrick") +
    labs(
        x = "Residuals",
       y = "Density",
        title = "Histogram of Residuals",
        subtitle = "The red line represents the kernel density
estimation"
    ) +
    theme fivethirtyeight() +
    theme (
        plot.title = element text(size = 18, face = "bold",
hjust = 0.5),
        plot.subtitle = element text(size = 14, hjust = 0.5),
        axis.title = element text(size = 14, face = "bold")
```

```
# Create a Predicted vs Actual values plot
comparison data <- data.frame(Actual = data$NumValue[1:130],</pre>
Predicted = predicted data$NumValue)
ggplot(comparison data, aes(x = Actual, y = Predicted)) +
 geom point() +
 geom abline(intercept = 0, slope = 1, color = "red") +
 labs(x = "Actual", y = "Predicted", title = "Predicted vs
Actual Values") +
 theme minimal()
# Load necessary libraries
library(ggthemes)
# Create the comparison plot
comparison plot <- ggplot(comparison data, aes(x = Actual, y =
Predicted)) +
   geom point(color = "steelblue", alpha = 0.5, size = 2) +
   geom smooth(method = "loess", se = FALSE, color =
"firebrick", linetype = "dashed") +
   geom abline(intercept = 0, slope = 1, color = "red",
linetype = "dashed") +
   labs(
       x = "Actual Values",
        y = "Predicted Values",
       title = "Predicted vs Actual Values",
        subtitle = "A scatter plot showing the correlation
between predicted and actual values"
```

```
theme_fivethirtyeight() +
theme(

    plot.title = element_text(size = 18, face = "bold",
hjust = 0.5),

    plot.subtitle = element_text(size = 14, hjust = 0.5),
    axis.title = element_text(size = 14, face = "bold")
)

print(comparison_plot)
```

```
#Boxplot of Residuals
ggplot(residuals_data, aes(y=Residuals)) +
    geom_boxplot(fill="lightblue") +
    labs(y = "Residuals", title = "Boxplot of Residuals") +
    theme_minimal()

# Load necessary libraries
library(ggthemes)

# Create the boxplot of residuals
residuals_plot <- ggplot(residuals_data, aes(y = Residuals)) +
    geom_boxplot(fill = "steelblue", color = "black") +
    labs(
        y = "Residuals",
        title = "Boxplot of Residuals",
        subtitle = "Displaying the spread and skewness of residuals"</pre>
```

```
theme_minimal() +
theme(

    plot.title = element_text(size = 18, face = "bold",
hjust = 0.5),

    plot.subtitle = element_text(size = 14, hjust = 0.5),
    axis.title.y = element_text(size = 14, face = "bold")
)

print(residuals_plot)
```

```
#Scatter Plot of Predictions vs. Residuals

resid_pred_data <- data.frame(Predictions =
   predicted_data$NumValue, Residuals = residuals_data$Residuals)

ggplot(resid_pred_data, aes(x = Predictions, y = Residuals)) +
   geom_point() +

   geom_hline(yintercept=0, linetype="dashed", color = "red") +
   labs(x = "Predictions", y = "Residuals", title = "Scatter
Plot of Predictions vs. Residuals") +
   theme_minimal()

# Load necessary libraries

library(ggthemes)

# Create the residuals vs predictions plot

resid_pred_plot <- ggplot(resid_pred_data, aes(x = Predictions, y = Residuals)) +
   geom_point(color = "steelblue", alpha = 0.5, size = 2) +</pre>
```

```
geom smooth(method = "loess", se = FALSE, color =
"firebrick", linetype = "dashed") +
  geom hline(yintercept = 0, linetype = "dashed", color =
"red") +
  labs(
   x = "Predictions",
   y = "Residuals",
    title = "Predictions vs. Residuals",
    subtitle = "A scatter plot to assess the relationship
between model predictions and residuals"
  ) +
  theme fivethirtyeight() +
  theme (
   plot.title = element_text(size = 18, face = "bold", hjust =
0.5),
   plot.subtitle = element text(size = 14, hjust = 0.5),
   axis.title = element text(size = 14, face = "bold")
  )
print(resid pred plot)
```

```
#density plot of residuals
ggplot(residuals_data, aes(x=Residuals)) +
    geom_density(fill="lightblue") +
    labs(x = "Residuals", y = "Density", title = "Density Plot of Residuals") +
    theme_minimal()
# Load necessary libraries
```

```
library(ggthemes)
# Create the density plot of residuals
density_plot <- ggplot(residuals_data, aes(x = Residuals)) +</pre>
    geom density(fill = "steelblue", alpha = 0.7) +
    geom vline(aes(xintercept=mean(Residuals)),
               color="darkred", linetype="dashed", size=1) +
    labs(
        x = "Residuals",
        y = "Density",
        title = "Density Plot of Residuals",
        subtitle = "Visualizing the distribution of residuals"
    annotate ("text", x = Inf, y = Inf,
             label = paste("Mean =",
round(mean(residuals_data$Residuals), 2)),
             vjust = 2, hjust = 1.5, size = 4, color =
"darkred") +
    theme minimal() +
    theme (
        plot.title = element text(size = 18, face = "bold",
hjust = 0.5),
        plot.subtitle = element_text(size = 14, hjust = 0.5),
       axis.title = element text(size = 14, face = "bold")
print(density plot)
```


3.4.2 KCDE R IMPLEMENTATION

```
#required packages
library(zoo)
library(tibble)
library("kcde")
library("HIDDA.forecasting")
library(caret)
data <- data.frame(</pre>
   Time = seq(as.Date("2008/01/01"), as.Date("2020/12/01"), by
= "month"),
   NumValue = c(5, 2, 4, 2, 6, 3, 4, 14, 2, 2, 10, 2, 6, 4, 6,
3, 4, 8, 5, 10, 4, 1, 9, 4, 10, 11, 16, 27, 28, 46, 111, 242, 77,
21, 3, 4, 3, 3, 5, 3, 7, 3, 4, 17, 2, 1, 3, 4, 6, 3, 7, 8, 4, 12,
26, 33, 16, 16, 12, 9, 18, 13, 16, 21, 40, 40, 46, 97, 69, 44,
39, 13, 19, 16, 18, 12, 42, 41, 42, 107, 39, 13, 9, 9, 2, 9, 16,
18, 30, 16, 41, 71, 31, 24, 16, 11, 15, 13, 17, 38, 55, 31, 50,
85, 30, 18, 16, 5, 1, 7, 14, 23, 36, 29, 36, 59, 18, 15, 24, 4,
7, 6, 11, 29, 40, 40, 40, 58, 29, 33, 23, 15, 16, 15, 40, 70,
117, 79, 96, 158, 77, 81, 105, 50, 79, 92, 85, 34, 29, 40, 70,
342, 233, 224, 115, 19)
# Creating a Date formatted index for the data
data$Index <- ymd(data$Time)</pre>
DENGUEFR <- zoo(data$NumValue, order.by = data$Time)</pre>
```

```
.T <- match(paste0(2018, "-12"), strftime(index(DENGUEFR), "%Y-
%m"))
index(DENGUEFR)[.T]
TEST <- lapply(.T, function (T) seq(from = T, by = 1,
length.out = 24))
#our train data
OWA <- (TEST[[1]][1]-1): (length(DENGUEFR)-1)
length (OWA)
format period <- function (index, fmt = "%Y-%m", collapse = "</pre>
to ") {
    paste0(strftime(index(DENGUEFR)[range(index)], fmt),
collapse = collapse)
# Fortify and rename
DENGUEFRdat <- as.data.frame(DENGUEFR)</pre>
names(DENGUEFRdat)[1] <- "DENGUEFR"</pre>
# Reset index and rename
DENGUEFRdat <- tibble::rownames to column(DENGUEFRdat, "Index")
Traindata <- 1:0WA[1]</pre>
DENGUEFRdat$Index <- ymd(DENGUEFRdat$Index)</pre>
prediction target var <- "DENGUEFR"</pre>
predictive vars <- "DENGUEFR"</pre>
prediction horizon <- 1</pre>
max lag <- 1L
max seasonal lag <- OL
init sample size <- length(Traindata) # "scott's rule"</pre>
bw parameterization <- "diagonal"</pre>
### **Full** Bandwidth KCDE cost over 80h estimation time with
#8 cores atmy machine with no significant better results
```

```
### So we use the diagonal variant (which took 14 minutes for
#the France Dengue data) in my machine
## setup list describing kernel components
kernel components <- list()</pre>
## add periodic kernel component capturing seasonality
kernel components <- c(kernel components, list(list(</pre>
    vars and offsets = data.frame(
        var name = "Index", offset value = OL, offset type =
"lag",
        combined name = "time index lag0", stringsAsFactors =
FALSE
    ),
    kernel fn = kcde::periodic kernel,
    theta_fixed = list(period = pi / 365.2425),
    theta est = list("bw"),
    initialize kernel params fn =
        kcde::initialize_params_periodic_kernel,
    initialize kernel params args = list(
        sample size = init sample size
    ),
    get_theta_optim_bounds_fn =
        kcde::get theta optim bounds periodic kernel,
    get theta optim bounds args = NULL,
    vectorize kernel params fn =
        kcde::vectorize params periodic kernel,
    vectorize kernel params args = NULL,
    update theta from vectorized theta est fn =
```

```
kcde::update theta from vectorized theta est periodic kernel,
    update theta from vectorized theta est args = NULL
    ))))
## Kernel components for observed values (NumValues)
## First step is setup: create list of data frames specifying
groups of
## variables and offsets included in each kernel component
lag values <- NULL
for(seasonal lag in seq(from = 0, to = max seasonal lag)) {
    lag values <- c(lag values,
        seq(from = 0, to = max lag) + 52 * seasonal_lag)
print(lag values)
if (bw parameterization == "diagonal") {
    vars_and_offsets_groups <- list()</pre>
    ## Group of variable names and offsets for our prediction
#target
    new vars and offsets group <- data.frame(</pre>
        var name = prediction target var,
        offset value = prediction horizon, offset type =
"horizon",
        stringsAsFactors = FALSE
    vars and offsets groups <- c(vars and offsets groups,
list(new vars and offsets group))
```

```
## Groups of variable names and offsets for lagged
predictive variables
    for(lag value in lag values) {
        for(predictive var in predictive vars) {
            ## No filtering: group for lagged "raw"/unfiltered
observed incidence
            new vars and offsets group <- data.frame(</pre>
                var name = predictive var,
                offset_value = lag_value, offset_type = "lag",
                stringsAsFactors = FALSE
            vars and offsets groups <-</pre>
c(vars and offsets groups,
list(new_vars_and_offsets_group))
    ## add combined name column
    for (i in seq along(vars and offsets groups)) {
        vars and offsets groups[[i]]$combined name <- with(</pre>
            vars_and_offsets_groups[[i]],
            paste0(var name, " ", offset type, offset value)
} else if (bw parameterization == "full") {
    ## Prediction target variable
    new_vars_and_offsets_group <- data.frame(</pre>
```

```
var_name = prediction_target_var,
        offset value = prediction horizon, offset type =
"horizon",
        stringsAsFactors = FALSE
    ## Lagged prediction target == predictive variables
    for(lag_value in lag_values) {
        for(predictive var in predictive vars) {
            ## No filtering: lagged "raw"/unfiltered observed
incidence
            new_vars_and_offsets_group <- rbind(</pre>
                new_vars_and_offsets_group,
                data.frame(
                    var name = predictive var,
                    offset value = lag value, offset type =
"lag",
                    stringsAsFactors = FALSE
    ## Add combined_name column and put in a list for further
processing below
    new_vars_and_offsets_group$combined_name <- with(</pre>
       new_vars_and_offsets_group,
        paste0(var name, " ", offset type, offset value)
    vars and offsets groups <- list(new vars and offsets group)</pre>
```

```
print(vars and offsets groups)
## configure discretization
log_exp_x_minus_0.5 <- function(x) {</pre>
    temp \leftarrow exp(x) - 0.5
    temp[temp < 0] <- 0
    return(log(temp))
log exp x plus 0.5 <- function(x) {</pre>
    return(log(exp(x) + 0.5))
log round to integer plus 0.5 exp <- function(x) {</pre>
    exp x < - exp(x) + 0.5
    inds ceil <- exp x - floor(exp x) >= 0.5
    exp x[inds ceil] <- ceiling(exp x[inds ceil])</pre>
    exp x[!inds ceil] <- floor(exp x[!inds ceil])</pre>
    return(log(exp x - 0.5))
in range fn <- function(x, tolerance = 0.5 *
.Machine$double.eps^0.5) {
    vapply(X = x, FUN = function(x_i) {
        isTRUE(all.equal.numeric(
            x_i
             log_round_to_integer_plus_0.5_exp(x_i),
             tolerance = tolerance
```

```
) )
    }, FUN. VALUE = TRUE, USE. NAMES = FALSE)
discrete var names <- unlist(lapply(predictive vars, function
(predictive var)
    c(paste0(predictive var, " lag", rep(seq(from = 0, to =
\max lag + 52 * \max seasonal lag), each=2)),
      paste0(predictive_var, "_horizon", rep(1:52, each=2)))))
discrete var range fns <- sapply(</pre>
    X = discrete var names,
    FUN = function(discrete var name) {
    list(a = log exp x minus 0.5,
         b = log exp x plus 0.5,
         in range = in range fn,
         discretizer = log round to integer plus 0.5 exp)
}, simplify = FALSE, USE.NAMES = TRUE)
## Second step is to actually append the kernel component
descriptions to the
## kernel components list
kernel components <- c(kernel components,
    lapply(vars_and_offsets_groups, function(vars_and_offsets)
        lower_trunc_bds <- rep(-Inf, nrow(vars_and_offsets))</pre>
        names(lower trunc bds) <-</pre>
vars and offsets$combined name
        upper trunc bds <- rep(Inf, nrow(vars and offsets))</pre>
        names(upper trunc bds) <-</pre>
vars and offsets$combined name
```

```
return(list(
            vars and offsets = vars and offsets,
            kernel fn = kcde::log pdtmvn mode centered kernel,
            rkernel fn =
kcde::rlog pdtmvn mode centered kernel,
            theta fixed = list(
                parameterization = "bw-chol-decomp",
                continuous vars = NULL,
                discrete vars = vars and offsets$combined name[
                    vars and offsets$combined name %in%
discrete var names],
                discrete var range fns =
discrete var range fns,
                lower = lower trunc bds,
                upper = upper trunc bds,
                validate_in_support = FALSE
            ),
            theta est = list("bw"),
            initialize_kernel_params_fn =
                kcde::initialize params log pdtmvn kernel,
            initialize kernel params args = list(
                sample size = init sample size
            ),
            get theta optim bounds fn =
                kcde::get theta optim bounds log pdtmvn kernel,
            get theta optim bounds args = NULL,
            vectorize kernel params fn =
                kcde::vectorize params log pdtmvn kernel,
            vectorize kernel params args = NULL,
```

```
update theta from vectorized theta est fn =
kcde::update theta from vectorized theta est log pdtmvn kernel,
            update theta from vectorized theta est args = NULL
       ) )
    })
kcde_control <- create_kcde_control(</pre>
    X_names = "Index", # seems to work, no need to supply
as.integer(Index)
    y names = "DENGUEFR",
    time name = "Index",
    prediction horizons = "this parameter is actually unused",
    kernel components = kernel components,
    filter control = NULL,
    crossval_buffer = 365,  # as in the original application
    prediction inds not included = NULL,
    loss fn = neg log score loss,
    loss_fn_prediction_args = list(
        prediction type = "distribution",
        log = TRUE),
    loss args = NULL,
    variable selection method = "all included",
    par cores = 3
##fit the kcde model
#it will take time
runtime <- system.time(</pre>
```

```
kcdefit <- kcde(data = DENGUEFRdat[Traindata,],</pre>
                     kcde control = kcde control)
#check the time of fitting the model
kcdefit$runtime <- runtime</pre>
#prediction and log scores
predict kcde owa <- function(kcdefit, data,</pre>
prediction_time_inds,
                               nsamples = 10000)
    prediction target var <- kcdefit$kcde control$y names</pre>
    prediction horizon <- 1 # this is actually a property of</pre>
kcdefit
    ## Allocate data frame to store results
    num rows <- length(prediction time inds)</pre>
    scores <- data.frame(</pre>
        prediction_time_ind = prediction_time_inds,
        observed = data[prediction time inds,
prediction_target_var],
        pt pred = rep(NA real , num rows),
        AE = rep(NA_real_, num_rows),
        log_score = rep(NA_real_, num_rows)
    samples <- matrix(NA_real_, num_rows, nsamples,</pre>
                       dimnames = list(prediction time inds,
NULL))
```

OF ECONOMICS ON THE PROPERTY OF THE PROPERTY O

```
results row ind <- 1L
    for(prediction time ind in prediction time inds) {
        ## Get index of analysis time in data set
        ## (time from which we predict forward)
        analysis time ind <- prediction time ind -
prediction horizon
        ## Compute log score
        observed prediction target <-
as.matrix(scores$observed[results row ind])
        colnames(observed prediction target) <-</pre>
            paste0 (prediction target var, " horizon",
prediction horizon)
        scores$log score[results row ind] <-</pre>
            kcde::kcde_predict(
                kcde_fit = kcdefit,
                prediction data =
                     data[seq len(analysis time ind), , drop =
FALSE],
                leading rows to drop = OL,
                trailing_rows_to_drop = 0L,
                prediction type = "distribution",
                prediction test lead obs =
observed prediction target,
                log = TRUE
        ## Sample from predictive distribution
        samples[results row ind,] <-</pre>
```

```
kcde::kcde_predict(
                n = nsamples,
                kcde fit = kcdefit,
                prediction_data =
                     data[seq_len(analysis_time_ind), , drop =
FALSE],
                leading_rows_to_drop = 0L,
                trailing rows to drop = 0L,
                prediction_type = "sample"
        ## Increment results row
        results row ind <- results row ind + 1L
    ## Correction by subtracting 0.5
    samples <- samples - 0.5</pre>
    ## Compute point predictions
    scores$pt_pred <- apply(samples, 1, median)</pre>
    ## Compute absolute error of point prediction
    scores$AE <- abs(scores$pt pred - scores$observed)</pre>
    ## fix orientation of the log-score
    scores$log score <- -scores$log score</pre>
    ## add DSS
```


3.4.3 results

```
summary(kcdeowa$scores[c("DSS", "log_score", "AE")])
```

```
#visualize

par(mar = c(5,5,1,1))

osaplot(
    quantiles = t(sapply(kcdeowa$pdists, quantile,
probs=1:99/100)),

    probs = 1:99/100,
    observed = kcdeowa$scores$observed,
    scores = as.matrix(kcdeowa$scores[c("DSS", "log_score")]),
    start = 1,
    xlab = "", # temporarily remove xlab
    ylim = range(kcdeowa$scores$observed), # changing the y-limits to match your data
    fan.args = list(ln = c(0.1,0.9), rlab = NULL),
```

```
xaxt = "n" # suppress automatic x-axis
# Here I extract the years from your dates
score years <- format(as.Date(DENGUEFRdat$Index[OWA + 1L]), "%Y")</pre>
# The unique years to be shown on the x-axis
unique years <- unique(score years)</pre>
# The positions where the years should be placed on the x-axis
year_positions <- sapply(unique_years, function(year) {</pre>
    # For each unique year, we find the first occurrence in
score years
    which (score years == year) [1]
})
# Add x-axis with the desired years
axis(1, at = year positions, labels = unique years, cex.axis =
0.7)
# Add x-axis label
mtext("Year", side = 1, line = 2.5)
```

```
#plot original vs predicted for 2019 to 2020
library(ggplot2)

# create a new dataframe with dates, observed and predicted values

df <- data.frame(
    Date = data$Time[(OWA[1] + 1):length(data$Time)],
    Observed = kcdeowa$scores$observed,
    Predicted = kcdeowa$scores$pt_pred
)</pre>
```

```
# plot observed and predicted values with ggplot
p \leftarrow ggplot(df, aes(x = Date)) +
    # observed values as blue area
    geom_ribbon(aes(ymin = 0, ymax = Observed), fill = "blue",
alpha = 0.4) +
    # predicted values as red area
    geom ribbon(aes(ymin = 0, ymax = Predicted), fill = "red",
alpha = 0.4) +
    # add observed and predicted lines to distinguish between
areas
    geom line(aes(y = Observed), colour = "blue", linewidth = 1)
    geom line(aes(y = Predicted), colour = "red", linewidth = 1)
    # add labels
    labs(x = "Year",
        y = "Value",
         title = "Observed vs Predicted Values (2019-2020)",
         caption = "Blue: Observed | Red: Predicted") +
    # improve the theme
    theme minimal() +
    theme (
```

```
plot.title = element_text(hjust = 0.5, face="bold",
size=20),

    axis.title = element_text(face="bold", size=14),
    plot.caption = element_text(hjust = 1, face="italic")
) +

# format x-axis
scale_x_date(date_breaks = "1 year", date_labels = "%Y")
print(p)
```

3.4.4 evaluation metrics

```
# Calculate Mean Absolute Error (MAE)
mae <- mean(kcdeowa$scores$AE)

# Calculate Root Mean Squared Error (RMSE)
rmse <- sqrt(mean(kcdeowa$scores$AE^2))

# Calculate Mean Absolute Percentage Error (MAPE)
mape <- mean(abs((kcdeowa$scores$observed -
kcdeowa$scores$pt_pred) / kcdeowa$scores$observed)) * 100

# Print the metrics
print(mae)</pre>
```

```
print(rmse)
```


print(mape)


```
#Residual Plot
# Calculate residuals
residuals <- kcdeowa$scores$pt_pred - kcdeowa$scores$observed
# Load necessary libraries
library(ggthemes)
# Create a new data frame for plotting
residuals data <- data.frame(Predicted =</pre>
kcdeowa$scores$pt pred, Residuals = residuals)
# Create the residuals vs predicted values plot
residuals plot <- ggplot(residuals data, aes(x = Predicted, y =
Residuals)) +
  geom point(color = "steelblue", alpha = 0.5, size = 2) +
 geom smooth(method = "loess", se = FALSE, color =
"firebrick", linetype = "dashed") +
  geom hline(yintercept = 0, linetype = "dashed", color =
"red") +
  labs(
   x = "Predicted Values",
    y = "Residuals",
    title = "Residuals vs Predicted Values",
    subtitle = "A plot to check the residuals of the model"
  ) +
  theme minimal() +
  theme (
    plot.title = element text(size = 18, face = "bold", hjust =
0.5),
```

```
plot.subtitle = element_text(size = 14, hjust = 0.5),
    axis.title = element_text(size = 14, face = "bold")
)
print(residuals_plot)
```

```
#Forecast Error Distribution:
# Plot histogram of forecast errors
# Ensure the Metrics and ggplot2 packages are installed and loaded
library(Metrics)
library(ggplot2)
# Calculate Mean Absolute Error (MAE)
mae <- mae(kcdeowa$scores$observed, kcdeowa$scores$pt pred)</pre>
print(paste("MAE: ", mae))
# Calculate Root Mean Squared Error (RMSE)
rmse <- rmse(kcdeowa$scores$observed, kcdeowa$scores$pt pred)</pre>
print(paste("RMSE: ", rmse))
# Calculate Mean Absolute Percentage Error (MAPE)
mape <- mape(kcdeowa$scores$observed, kcdeowa$scores$pt pred) *</pre>
100
print(paste("MAPE: ", mape, "%"))
# Calculate absolute errors for the plot
kcdeowa$scores$AE <- abs(kcdeowa$scores$observed
kcdeowa$scores$pt pred)
```

```
# Plot histogram of forecast errors
qqplot(kcdeowa\$scores, aes(x = AE)) +
 geom histogram(binwidth = 1, fill = "#2196F3", color =
"#0D47A1", alpha = 0.8) +
 labs(
   x = "Absolute Error",
   y = "Frequency",
    title = "Histogram of Forecast Errors",
    subtitle = paste("MAE =", round(mae, 2), " RMSE
round(rmse, 2), " MAPE =", round(mape, 2), "%")
 ) +
 theme minimal() +
 theme (
   plot.title = element text(size = 20, face = "bold"),
   plot.subtitle = element text(size = 14),
    axis.title = element text(size = 14, face = "bold"),
    axis.text = element_text(size = 12),
    axis.text.x = element text(angle = 45, vjust = 0.5, hjust =
1),
    panel.grid.major = element blank(),
   panel.grid.minor = element blank(),
   legend.position = "none"
```

```
# Plot CDF plot

ggplot(kcdeowa$scores, aes(x = observed)) +

stat_ecdf(geom = "step", color = "blue", size = 1.5) +
```

```
stat_ecdf(geom = "step", aes(x = pt_pred), color = "red",
size = 1.5) +
  labs(x = "Value", y = "Cumulative Probability") +
  scale_color_manual(values = c("blue", "red"), labels =
  c("Observed", "Predicted"))
```

```
# Plot density plot
# Load the required packages
library(ggplot2)
library(ggthemes)
# Create a density plot
density plot <- ggplot(kcdeowa$scores, aes(x = AE, fill =</pre>
"Error")) +
  geom density(alpha = 0.7, color = "#1C4E80") +
  labs(x = "Absolute Error", y = "Density", fill = "") +
  scale fill manual(values = c("#1C4E80")) +
 theme economist() +
  theme (
   panel.grid.major = element blank(),
   panel.grid.minor = element blank(),
    panel.border = element_blank(),
    axis.line = element line(color = "black"),
    legend.position = "none"
# Apply a theme for a visually stunning appearance
final plot <- density plot + theme few()</pre>
# Display the plot
```

```
# Plot box plot
# Load the required packages
library(ggplot2)
library(ggthemes)
# Create a box plot
box plot <- ggplot(kcdeowa$scores, aes(x = 1, y = AE)) +
 geom boxplot(fill = "lightblue", color = "black") +
 labs(x = "", y = "Absolute Error") +
 theme minimal() +
 theme (
   panel.grid.major = element blank(),
    panel.grid.minor = element blank(),
    panel.border = element_blank(),
    axis.text.y = element text(size = 12),
    axis.title.y = element text(size = 14, face = "bold"),
    plot.title = element text(size = 20, face = "bold"),
   plot.subtitle = element text(size = 16),
    plot.caption = element text(size = 10, hjust = 0)
# Apply a custom theme for a visually stunning appearance
final plot <- box plot +</pre>
  theme (
    plot.background = element rect(fill = "#F5F5F5"),
    panel.background = element_rect(fill = "#F5F5F5"),
    axis.line = element_line(color = "black"),
```

```
axis.ticks.y = element_line(color = "black")
)
# Display the plot
final_plot
```

```
# Plot scatter plot
library(ggplot2)
library(ggthemes)
# Create the scatter plot
scatter plot <- ggplot(kcdeowa$scores, aes(x = observed, y =</pre>
pt pred)) +
  geom point(color = "blue", size = 3, alpha = 0.7) +
  geom_abline(slope = 1, intercept = 0, color = "red", linetype
= "dashed", size = 1.2) +
  labs(x = "Observed", y = "Predicted") +
  theme minimal() +
  theme (
    plot.title = element text(size = 20, face = "bold"),
    axis.title = element text(size = 14, face = "bold"),
    axis.text = element text(size = 12),
    axis.line = element line(color = "black"),
    panel.grid.major = element blank(),
    panel.grid.minor = element_blank(),
    panel.border = element_blank(),
    legend.position = "none"
```

```
# Add a title and subtitle
scatter_plot <- scatter_plot +

ggtitle("Scatter Plot of Observed vs Predicted Values") +

labs(subtitle = "Comparison of Model Predictions")

# Display the scatter plot
scatter_plot</pre>
```

```
# load necessary packages
library(ggplot2)
library(gridExtra)
library(GGally)
# Q-Q plot
qqplot <- ggplot(kcdeowa$scores, aes(sample = observed)) +</pre>
 geom qq() +
 geom abline(slope = 1, intercept = 0, color = "red") +
 labs(x = "Theoretical Quantiles", y = "Observed Quantiles",
      title = "Q-Q Plot") +
 theme minimal()
# Residual analysis plot
residuals <- kcdeowa$scores$observed - kcdeowa$scores$pt pred</pre>
residual plot <- ggplot() +</pre>
 geom_point(data
                                  data.frame(Predicted
kcdeowa$scores$pt pred,
                                Residuals = residuals),
```

```
aes(x = Predicted, y = Residuals), color = "blue",
size = 3) +

geom_hline(yintercept = 0, color = "red") +

labs(x = "Predicted", y = "Residuals", title = "Residual
Analysis") +

theme_minimal()

# Combine plots into a single figure

combined_plot <- grid.arrange(qqplot, residual_plot, nrow = 1)

# Display the combined plot

print(combined_plot)</pre>
```


3.5.2.1 HHH4 WITH WEIGHTED SCHEMES

```
library(RColorBrewer)
library(surveillance)
library(devtools)
library(hhh4addon)
library(RColorBrewer)
library(surveillance)
library(devtools)
#the hhh4addon works only with sts structure so we convert
csv to sts <- function(file, names, start, end, ...) {</pre>
    # read data:
    dat <- read.csv2("D:/ECDC surveillance data Dengue.csv",</pre>
                       sep = ",", header = TRUE, stringsAsFactors
= FALSE)
    dat$year <- dat$week <- NA</pre>
    # handle month 12:
    is month12 <- which(grepl("m12", dat$time))</pre>
    dat <- dat[-is month12, ]</pre>
    # handle time variable:
    for(i in 1:nrow(dat)){
        temp <- as.numeric(strsplit(dat$time[i], "w", fixed =</pre>
TRUE) [[1]])
        dat$year[i] <- temp[1]</pre>
        dat$month[i] <- temp[2]</pre>
    dat$time <- NULL
    colnames(dat)[1:length(names)] <- names</pre>
    # restrict to selected range
```

```
if( (tail(dat$year, 1) < end[1]) ||</pre>
        (tail(dat$year, 1) == end[1]) & tail(dat$week, 1) <</pre>
end[2]){
        stop("Either start or end is outside of the range of the
provided data.")
    dat <- subset(dat, year >= start[1])
    dat <- subset(dat, !(year == start[1] & month < start[2]))</pre>
    dat <- subset(dat, year <= end[1])</pre>
    dat <- subset(dat, !(year == end[1] & month > end[2]))
    dat$month <- NULL
    dat$year <- NULL</pre>
    # to sts object:
    stsObj <- new("sts", observed = dat, start = start,...)</pre>
    return(stsObj)
# Load the libraries
library(RColorBrewer)
library(surveillance)
library(hhh4addon)
data <- data.frame(</pre>
    Time = seq(as.Date("2008/01/01"), as.Date("2020/12/01"), by
= "month"),
   NumValue = c(5, 2, 4, 2, 6, 3, 4, 14, 2, 2, 10, 2, 6, 4, 6,
3, 4, 8, 5, 10, 4, 1, 9, 4, 10, 11, 16, 27, 28, 46, 111, 242, 77,
```

```
21, 3, 4, 3, 3, 5, 3, 7, 3, 4, 17, 2, 1, 3, 4, 6, 3, 7, 8, 4, 12,
26, 33, 16, 16, 12, 9, 18, 13, 16, 21, 40, 40, 46, 97, 69, 44,
39, 13, 19, 16, 18, 12, 42, 41, 42, 107, 39, 13, 9, 9, 2, 9, 16,
18, 30, 16, 41, 71, 31, 24, 16, 11, 15, 13, 17, 38, 55, 31, 50,
85, 30, 18, 16, 5, 1, 7, 14, 23, 36, 29, 36, 59, 18, 15, 24, 4,
7, 6, 11, 29, 40, 40, 40, 58, 29, 33, 23, 15, 16, 15, 40, 70,
117, 79, 96, 158, 77, 81, 105, 50, 79, 92, 85, 34, 29, 40, 70,
342, 233, 224, 115, 19)
# Convert Time to date type and create sts object
data$Time <- as.Date(data$Time)</pre>
data sts <- sts(observed = matrix(data$NumValue, ncol = 1), epoch</pre>
= data$Time)
# Ensure there are no missing or infinite values in the data
if(any(is.na(data sts@observed))){
    stop("The observed data contains NA values")
if(any(is.infinite(data sts@observed))){
    stop("The observed data contains Inf values")
# Define controls for different lag weighting schemes
ctrls data <- list()</pre>
ctrls data$ar1 <- list(</pre>
    ar = list(f = addSeason2formula(f = ~ 1, S = 2), lag = 1),
    end = list(f = addSeason2formula(f = \sim 1, S = 1, period =
12)),
    family = "NegBin1"
```

```
ctrls data$geom <- ctrls data$ar1; ctrls data$geom$funct lag =</pre>
geometric lag; ctrls data$geom$max lag <- 10</pre>
ctrls data$pois <- ctrls data$ar1; ctrls data$pois$funct lag =</pre>
poisson lag; ctrls data$pois$max lag <- 10</pre>
ctrls data$ar2 <- ctrls data$ar1; ctrls data$ar2$funct lag</pre>
ar2 lag; ctrls data$ar2$max lag <- 2</pre>
ctrls data$lin <- ctrls data$ar1; ctrls data$lin$funct lag =</pre>
linear lag; ctrls data$lin$max lag <- 10</pre>
ctrls data$unres <- ctrls data$ar1; ctrls data$unres$funct lag =</pre>
unrestricted lag; ctrls data$unres$max lag <- 10
# Fit models
ctrls data$ar1$subset <- 3:length(data$NumValue)</pre>
fit_data_ar1 <- hhh4(data_sts, ctrls_data$ar1)</pre>
# Fit models varying order p
fits_data_vary_max_lag <- list()</pre>
fits data vary max lag$geom[[1]]
fits_data_vary_max_lag$pois[[1]]
fits data vary max lag$lin[[1]]
fits_data_vary_max_lag$unres[[1]] <- fit_data_ar1</pre>
# Adjust the max lag and run the model fits
for(max lag in 2:10){
    # Update the subset start point to be greater than max lag
    subset start point <- max lag + 1</pre>
    ctrls data$geom$max lag <- max lag</pre>
    ctrls data$geom$subset
                                                                   <-
subset_start_point:length(data$NumValue)
```

```
fits data vary max lag$geom[[max lag]]
profile par lag(data sts, ctrls data$geom)
    ctrls data$pois$max lag <- max lag
    ctrls data$pois$subset
                                                               <-
subset start point:length(data$NumValue)
    fits data vary max lag$pois[[max lag]]
profile_par_lag(data_sts, ctrls_data$pois)
    ctrls data$lin$max lag <- max lag
    ctrls data$lin$subset
                                                               <-
subset start point:length(data$NumValue)
    fits data vary max lag$lin[[max lag]]
                                                               < -
profile_par_lag(data_sts, ctrls data$lin)
    ctrls data$unres$max lag <- max lag
    ctrls data$unres$subset
subset start point:length(data$NumValue)
    start par lag <- if(max lag ==
                                                            else
c(fits data vary max lag$unres[[max lag - 1]]$par lag, -3)
    fits data vary max lag$unres[[max lag]]
                                                              <-
profile par lag(data sts, ctrls data$unres, start par lag
start_par_lag)
   print(max lag)
AICs vary max lag data <- matrix(ncol = 5, nrow = 10, dimnames =
list(NULL, c("max lag", "geom", "pois", "lin", "unres")))
AICs vary max lag data[, "max lag"] <- 1:10
AICs_vary_max_lag_data[,
                                        "geom"]
                                                              <-
unlist(lapply(fits data vary max lag$geom, AIC))
```

```
AICs_vary_max_lag_data[, "pois"] <-
unlist(lapply(fits_data_vary_max_lag$pois, AIC))

AICs_vary_max_lag_data[, "lin"] <-
unlist(lapply(fits_data_vary_max_lag$lin, AIC))

AICs_vary_max_lag_data[, "unres"] <-
unlist(lapply(fits_data_vary_max_lag$unres, AIC))

# Save the results to a csv file

write.csv(AICs_vary_max_lag_data, file =
"D:/AICs_data_vary_max_lag.csv", row.names = FALSE)
```


3.5.2.2

```
# Define controls for different lag weighting schemes
ctrls data <- list()
ctrls data$ar1 <- list(</pre>
    ar = list(f = addSeason2formula(f = ~ 1, S = 2), lag = 1),
    end = list(f = addSeason2formula(f = \sim 1, S = 1, period =
12)),
    subset = 133:(10*12),
    family = "NegBin1"
# Update the lag weightings based on different schemes
ctrls data$geom <- ctrls data$ar1; ctrls data$geom$funct lag <-
geometric lag; ctrls data$geom$max lag <- 5</pre>
ctrls data$pois <- ctrls data$ar1; ctrls data$pois$funct lag <-
poisson lag; ctrls data$pois$max lag <- 5</pre>
ctrls data$ar2 <- ctrls data$ar1; ctrls data$ar2$funct lag <-
ar2_lag; ctrls_data$ar2$max_lag <- 5</pre>
ctrls data$lin <- ctrls data$ar1; ctrls data$lin$funct lag <-
linear_lag; ctrls_data$lin$max_lag <- 5</pre>
ctrls data$unres <- ctrls data$ar1; ctrls data$unres$funct lag
<- unrestricted lag; ctrls data$unres$max lag <- 4
# Based on serial interval:
```

```
wgts siraj < c(0.001, 0.999*c(0.2, 0.425, 0.25, 0.125)) # cannot
asign probability 0 to lag 1
par lag siraj <- log(wgts siraj[-1]/(1 - sum(wgts siraj[-1])))</pre>
ctrls data$siraj <- ctrls data$geom; ctrls data$siraj$funct lag</pre>
<- unrestricted lag
ctrls data$siraj$par lag <- par lag siraj
# Fit models:
fits data <- list()</pre>
fits data$ar1 <- hhh4(data sts, ctrls data$ar1)</pre>
# Adjust the subset start point to be greater than max_lag and
fit the models
subset start point <- max(6, ctrls data$ar2$max lag) + 1</pre>
ctrls data$ar2$subset
                                                                  < -
subset start point:length(data$NumValue)
fits data$ar2 <- profile par lag(data sts, ctrls data$ar2)
subset start point <- max(6, ctrls data$geom$max lag) + 1</pre>
ctrls data$geom$subset
                                                                  < -
subset start point:length(data$NumValue)
fits data$geom <- profile par lag(data sts, ctrls data$geom)
subset start point <- max(6, ctrls data$pois$max lag) + 1</pre>
ctrls data$pois$subset
                                                                  <-
subset start point:length(data$NumValue)
fits data$pois <- profile par lag(data sts, ctrls data$pois)
subset_start_point <- max(6, ctrls_data$lin$max_lag) + 1</pre>
```

```
ctrls data$lin$subset
                                                                <-
subset start point:length(data$NumValue)
fits data$lin <- profile par lag(data sts, ctrls data$lin)
subset start point <- max(6, ctrls data\$unres\$max lag) + 1
ctrls data$unres$subset
                                                                <-
subset start point:length(data$NumValue)
fits data$unres <- profile par lag(data sts, ctrls data$unres)
fits data$siraj <- hhh4 lag(data sts, ctrls data$siraj)</pre>
# Compute AICs:
AICs data <- lapply(fits data, AIC)
AICs vary max lag dengue
                                                                < -
read.csv("D:/AICs data vary max lag.csv")
ref <-AICs_vary_max_lag_dengue[1, "geom"]</pre>
AICs vary max lag dengue <-AICs vary max lag dengue-ref
library(RColorBrewer)
# Define the color palette
n models <- 6 # Number of models
palette name <- "Set1" # Color palette name</pre>
cols models dengue <- brewer.pal(n models, palette name)</pre>
print(fits data$pois$distr lag[1:5])
print(fits data$lin$distr lag[1:5])
print(fits data$geom$distr lag[1:5])
print(fits data$unres$distr lag[1:5])
print(fits data$siraj$distr lag[1:5])
plot(1:10, AICs_vary_max_lag_dengue[1:10, "geom"], type = "b",
```

```
xlab = "p", ylab = "improvement in AIC", pch = 15, cex =
0.9,
     ylim = range(AICs vary max lag dengue[,2:5]))
# create figure:
par(mfrow = c(1, 2), las = 1, mar = c(4, 4, 0.5, 1))
#We can see the improvement in AIC per p
# Plot AICs for different values of p
plot(2:10, AICs_vary_max_lag_dengue[2:10, "geom"], type = "b",
     xlab = "p", ylab = "improvement in AIC", pch = 15, cex =
0.9,
     ylim = range(AICs vary max lag dengue[,2:5]))
lines(2:10, AICs vary max lag dengue[2:10, "pois"],
     type = "b", pch = 15, cex = 0.9)
lines(2:10, AICs vary max lag dengue[2:10, "lin"],
      type = "b", pch = 15, cex = 0.9)
lines(2:10, AICs_vary_max_lag_dengue[2:10, "unres"],
      type = "b", pch = 15, cex = 0.9)
```

3.5.3

```
library(surveillance)
library(hhh4addon)

# create folder structure if necessary:
```

```
list.dirs()
dir.create("model fits")
for(lag structure in c("arl", "geom", "pois", "lin", "unres",
"end", "siraj")){
    dir.create(paste0("model fits/data ", lag structure))
plot(data sts)
names_lag_structures <- c("end", "ar1", "pois", "lin", "geom",</pre>
"unres", "siraj")
# define controls for different lag weighting schemes:
max lag param <- 5</pre>
max lag unres <- 4
ctrls data <- list(
    ar = list(f = addSeason2formula(f = ~ 1, S = 2), lag = 1),
    end = list(f = addSeason2formula(f = \sim 1, S = 1, period =
12)),
    family = "NegBin1",
    max lag = max lag param
ctrls data end <- list(
   ar = list(f = \sim -1),
    end = list(f = addSeason2formula(f = \sim 1, S = 1, period =
12)),
    family = "NegBin1"
```

```
# timepoints for which to fit models:
tps <- (133):(155)
# for the linear lag we adopt a grid-based optimization
vals kappa lin <- 1:99/100</pre>
vals_par_lag_lin <- log(vals_kappa_lin/(1 - vals_kappa_lin))</pre>
# weighting scheme based on serial intervals taken from Siraj:
wgts siraj \leftarrow c(0.001, 0.999*c(0.2, 0.425, 0.25, 0.125)) # cannot
asign probability 0 to lag 1.
par_lag_siraj <- log(wgts_siraj[-1]/(1 - sum(wgts_siraj[-1])))</pre>
# unrestricted lag(par lag siraj, 1, 5) # works
# fit models for all time points during the evaluation period
# we originally also experimented with models which have a min lag
larger than 1,
# i.e. force the first couple of weights to 0, but this did not
yield improvements.
# therefore only run min lag = 1
for(min lag in 1:1) {
    # adapt control settings to min_lag:
    ctrls data temp <- ctrls data
    ctrls data temp$subset <-
                                               (min lag
max lag param):nrow(data sts)
    ctrls data temp$ar$lag <- ctrls data temp$ne$lag <- min lag
    ctrls data temp$min lag <- min lag
    ctrls_data_temp$max_lag <- min_lag + max_lag_param - 1</pre>
```

```
# define controls with different weighting schemes:
    ctrls data pois temp
                                                 ctrls data temp;
ctrls_data_pois_temp$funct_lag <- poisson lag
   ctrls data lin temp
                                                 ctrls data temp;
ctrls data lin temp$funct lag <- linear lag</pre>
    ctrls_data_unres_temp
                                                 ctrls data temp;
ctrls data unres temp$funct_lag <- unrestricted_lag</pre>
    ctrls data unres temp$max lag <- min lag + max lag unres - 1
    ctrls data siraj temp
                                                 ctrls data temp;
ctrls data siraj temp$funct lag <- unrestricted lag
    ctrls data siraj temp$par lag <- par lag siraj
    # run over timepoints in validation period:
    for(ind in tps){
        # steer subset via NAs:
       data sts temp <- data sts
       if(ind < nrow(data sts)){</pre>
            data sts temp@observed[(ind
1):nrow(data_sts_temp), ] <- NA</pre>
        # fit endemic-only model
        fit data end temp <- hhh4(data sts temp, ctrls data end)</pre>
```

```
# fit ar1 model:
       fit data ar1 temp <- hhh4(data sts temp,
ctrls data temp)
       # fit model with geometric lags:
       start_par_lag <- ifelse(ind == tps[1], 0.5,</pre>
fit_data_geom_temp$par_lag)
       fit_data_geom_temp <- profile_par_lag(data_sts_temp,</pre>
ctrls_data_temp,
                                             start par lag =
start par lag)
       # fit model with Poisson lags:
       start par lag <- ifelse(ind == tps[1], 0.5,
fit_data_pois_temp$par_lag)
       fit_data_pois_temp <- profile_par_lag(data_sts_temp,</pre>
ctrls_data_pois_temp,
                                             start par lag =
start par lag)
       # fit model with linear lags using grid-based
optimization:
       fit data lin temp <- fit par lag(data sts temp,
ctrls data lin temp,
                                        range par
vals par lag lin, use update = FALSE) $best mo
       start_par_lag <- ifelse(ind == tps[1],</pre>
                                                        0.5,
fit_data_lin_temp$par_lag)
```

```
fit data lin temp <- profile par lag(data sts temp,
ctrls data lin temp,
                                               start par lag =
start par lag)
       # fit model with unconstrained weights:
       start_par_lag <- if(ind == tps[1]){
           rep(0.5, max_lag_unres - 1)
       }else{
           fit_data_unres_temp$par_lag
       fit_data_unres_temp <- profile_par_lag(data_sts_temp,</pre>
ctrls_data_unres_temp,
                                                 start_par_lag =
start_par_lag)
       # fit model with weights taken from Siraj 2017:
       fit_data_siraj_temp <- hhh4_lag(data_sts_temp,</pre>
ctrls data siraj temp)
       print(ind)
```

3.5.4

```
#fuction
forecasting_nStepAhead <- function(fit, stsObj, tp_cond, horizon,
n_sim) {</pre>
```

```
is hhh4 lag <- (class(fit)[1] == "hhh4lag") # check if hhh4 or
hhh4lag object
 n units <- ncol(stsObj@observed)</pre>
  fit$stsObj <- stsObj # replace stsObj in fit by original stsObj</pre>
(as subsets steered via NA)
 max lag <- ifelse(is hhh4 lag, fit$max lag, 1)</pre>
  # wrapper function to handle apply commands
  dnb <- function(mu, size, x){</pre>
   dnbinom(x = x, mu = mu, size = size)
  # for horizon h = 1 no simulation is necessary:
  if(horizon <= 1) {</pre>
    forecast <-
      if(is hhh4 lag){
        suppressMessages(
         oneStepAhead hhh4lag(fit, tp = rep(tp cond + horizon -
1, 2), type = "final")
      }else{
        oneStepAhead(fit, tp = rep(tp_cond + horizon - 1, 2),
type = "final")
    log score <- scores(forecast, which = "logs")</pre>
  }else{ # for horizons >= 2 we need to simulate:
    tp to simulate <- tp cond + 1:(horizon)</pre>
    # need to do one more time point due to bug in surveillance
```

```
# generate sample paths:
    sims <- simulate(fit, subset = tp to simulate,</pre>
                     y.start = fit$stsObj@observed[tp cond -
(max lag:1) + 1, , drop = FALSE],
                     simplify = TRUE, nsim = n sim)
    sims[length(tp to simulate),,] <- stsObj@observed[tp cond +</pre>
horizon, ] # put true observation back
    # obtain log scores for each sample path:
    sim log scores <- sim mu <- matrix(NA, ncol = n units, nrow</pre>
= n sim)
    for(i in 1:n sim){
     fit temp <- fit
      fit temp$stsObj@observed[tp to simulate, ] <- sims[,,i] #</pre>
plug simulated path into fit object
      # do one-step ahead forecast given the simulated path:
      forecast temp <-
       if(is hhh4 lag){
         suppressMessages(
            oneStepAhead_hhh4lag(fit_temp, tp = rep(tp_cond +
horizon - 1, 2), type = "final")
        }else{
          oneStepAhead(fit temp, tp = rep(tp cond + horizon - 1,
2), type = "final")
      # store the predictive means and size (in the
distribution) under the respective
```

```
# simulated path:
      sim mu[i, ] <- forecast temp$pred</pre>
      if(i == 1) size <- rep(exp(forecast temp$psi), length.out</pre>
= n units) # stays the same in all iterations
      # store the log score obtained under the respective
simulated path:
      scores temp <- scores(forecast temp, individual = TRUE)</pre>
      if(ncol(stsObj@observed) == 1){
       sim log scores[i, ] <- scores temp["logs"]</pre>
      }else{
       sim log scores[i, ] <- scores temp[, "logs"]</pre>
    # average over log scores obtained with different sample
paths:
    log score
                                                  -log(mean(exp(-
                               <-
rowSums(sim log scores))))/ncol(sim log scores)
  }
  # extract characteristics of predictive distributions and the
scores:
  templ vect <- numeric(n units); names(templ vect)</pre>
                                                               < -
colnames(stsObj@observed)
  unit wise log score <- pred mean <- pred var <- pred lb50 <-
pred_ub50 <-</pre>
    pred 1b95 <- pred ub95 <- unit wise pit 1 <- unit wise pit u
<- templ vect
  for(unit in 1:n_units){
```

```
# get observed value:
    obs unit temp <- stsObj@observed[tp cond + horizon, unit]</pre>
    if(horizon == 1) { # for horizon 1 can extract directly from
return of oneStepAhead
      mu unit <- forecast$pred[unit]</pre>
      size unit <- rep(exp(forecast$psi), length.out</pre>
n units)[unit] # catch case of NegBin1
      support temp <-0:max(qnbinom(p = 0.99,
                                     mu = mu unit,
                                     size = size unit),
                             obs unit temp + 2, na.rm = TRUE)
      pred densities temp <- dnbinom(support temp, size</pre>
size_unit, mu = mu_unit)
      pred mean[unit] <- mu unit</pre>
      pred var[unit] <- mu unit + 1/size unit*mu unit^2</pre>
    }else{ # otherwise need to average over samples:
      support temp <-0:max(qnbinom(p = 0.99,
                                     mu = max(sim mu[, unit]),
                                     size = size[unit]),
                             obs unit temp + 2, na.rm = TRUE)
      pred densities temp <- rowMeans(sapply(sim mu[, unit],</pre>
dnb,
                                               x = support temp,
                                               size = size[unit]))
      pred_mean[unit] <- sum(support_temp*pred_densities_temp)</pre>
```

```
pred var[unit] <- sum(support temp^2*pred densities temp)</pre>
- pred mean[unit]^2
    # compute limits of prediction intervals:
    pred cumul distr temp <- cumsum(pred densities temp)</pre>
    pred_lb50[unit] <- min(which(pred_cumul_distr_temp >= 0.25))
- 1 # -1 bc support includes 0
    pred_ub50[unit] <- max(which(pred_cumul_distr_temp <= 0.75))</pre>
# no -1 as we want to be slightly conservative
    pred lb95[unit] <- min(which(pred cumul distr temp</pre>
0.025)) - 1
    pred ub95[unit] <- max(which(pred cumul distr temp</pre>
                                                                 <=
0.975))
    # compute unit-wise log scores:
    unit wise log score[unit] <- -log(pred densities temp[</pre>
      obs unit temp + 1
     1)
    # and unit-wise PIT value:
    if(!is.na(obs unit temp)){
      unit_wise_pit_l[unit] <- if(obs_unit_temp == 0){</pre>
        0
      }else{
        pred cumul distr temp[obs unit temp] # + 1 bc support
includes 0
      unit wise pit u[unit]
pred cumul distr temp[obs unit temp + 1]
```

3.5.5

```
max_horizon <- 8

tps <- (133-max_horizon):(155)

n_units <- ncol(dengueSJ@observed)#data_sts?

names_lag_structures <- c("ar1", "pois", "lin", "geom", "unres",
"end", "siraj")

dir.create("logS")

dir.create("forecasts")</pre>
```

```
templ df <- data.frame(data set = rep("data",</pre>
n units*max horizon*length(tps)),
                       unit = 1,
                       prediction horizon = NA integer ,
                       lag structure = "NA",
                       prediction_time = NA_integer_,
                      pred_mean = NA, pred_var = NA,
                       1b50 = NA, ub50 = NA,
                       1b95 = NA, ub95 = NA,
                       obs = NA,
                       unit wise log score = NA,
                       unit wise pit l = NA,
                       unit wise pit u = NA,
                       multiv log score = NA)
templ df$lag structure <- as.character(templ df$lag structure)
results detailed data <- list() # Initialization here</pre>
logS data <- list() # Initialization here</pre>
for(lag_structure in names_lag_structures) {
    results detailed data[[lag structure]] <- templ df</pre>
   logS data[[lag structure]] <- matrix(ncol = max horizon, nrow</pre>
                  dimnames = list(paste0("t cond=", tps),
   length(tps),
paste0("h", 1:max horizon)))
    print(lag structure)
    for(ind in tps){
```

```
set.seed(ind)
        if (lag structure == 'ar1') {
            fit_data_temp <- fit_data_ar1_temp</pre>
        } else if (lag structure == 'end') {
            fit data temp <- fit data end temp</pre>
        } else if (lag structure == 'geom') {
            fit_data_temp <- fit_data_geom_temp</pre>
        } else if (lag structure == 'lin') {
            fit data temp <- fit data lin temp
        } else if (lag structure == 'pois') {
             fit data temp <- fit data pois temp</pre>
        } else if (lag structure == 'siraj') {
            fit data_temp <- fit_data_siraj_temp</pre>
        fit data temp$stsObj <- data sts</pre>
        for(horizon in 1:max horizon) {
            if(horizon <= nrow(data sts@observed) - ind){</pre>
                 capture.output(pred temp
                                                                  < -
forecasting nStepAhead(fit data temp, stsObj = data sts,
ind, horizon = horizon, n sim = 1000))
                 ind row
                                                                  < -
min(which(is.na(results detailed data[[lag structure]]$predicti
on horizon)))
results detailed data[[lag structure]]$prediction horizon[ind r
owl <- horizon
```

```
results detailed data[[lag structure]]$lag structure[ind row] <-</pre>
lag_structure
results_detailed_data[[lag_structure]]$prediction_time[ind_row]
<- ind
                results_detailed_data[[lag_structure]][ind_row,
names(pred temp)] <- pred temp</pre>
                logS data[[lag structure]][paste0("t cond=",
ind), horizon] <- pred temp$multiv log score</pre>
        print(ind)
#write our results to access them later
    write.csv(results detailed data[[lag structure]],
paste0("D:/detailed", lag_structure, ".csv"))
    write.csv(logS data[[lag structure]], paste0("D:/log",
lag structure, ".csv"))
```

3.5.6 RESUTLS

```
setwd("dengue")

library(surveillance)

names_lag_structures <- c("ar1", "pois", "lin", "geom",
"unres", "siraj")

source("../auxiliary_functions.R")</pre>
```

```
source("../basic settings.R")
# compute the mean log scores for our forecasts:
logS data <- list()</pre>
mean logS data <- matrix(NA, ncol = 6, nrow = 8,</pre>
                            dimnames = list(paste0("h", 1:8),
                                              c("ar1", "pois",
"lin", "geom",
                                                "unres",
"siraj")))
for(lag structure in colnames(mean logS data)){
    # read in results (generated in evaluate logS data.R)
    logS data temp <- read.csv(paste0("D:", lag structure,</pre>
".csv"))
    logS data[[lag structure]] <- matrix(nrow = 2*12, ncol = 8,</pre>
                                             dimnames =
list(paste("t=", (132 + 1):(156)),
paste0("h", 1:8)))
```

```
mean logS data[, lag structure] <-</pre>
colMeans(logS data[[lag structure]])
# meaningful column names:
colnames(mean logS data) <- paste0("log ",
colnames(mean logS data))
##CORRECTED PART
logS data <- list()
names lag structures <- c("ar1", "pois", "lin", "geom",</pre>
"unres", "siraj")
mean logS data <- matrix(NA, ncol =
length(names lag structures), nrow = 8,
                          dimnames = list(paste0("h", 1:8),
paste0("log ", names lag structures)))
for(lag structure in names lag structures) {
    # read in results (generated in evaluate logS data.R)
    logS data temp <- read.csv(paste0("D:/log ", lag structure,</pre>
".csv"))
```

```
logS_data[[lag_structure]] <- logS_data_temp

# evaluate and store mean logS

mean_logS_data[, paste0("log_", lag_structure)] <-
colMeans(logS_data[[lag_structure]][,2:9], na.rm = TRUE)

# meaningful column names:</pre>
```

```
colnames(mean_logS_data) <- paste0("hhh4_",
colnames(mean_logS_data))</pre>
```

##DETAILED CSV FILE

```
# You need to have 'Metrics' package installed for mae, rmse,
mape functions and 'DescTools' for mad.
library(Metrics)
library(DescTools)
evaluation_results <- list()</pre>
for(lag structure in names lag structures) {
    # Read detailed CSV files
    df <- read.csv(paste0("D:/detailed", lag structure, ".csv"))</pre>
    df <- df[!is.na(df$pred mean),] # Remove NAs</pre>
    mae val <- mae(df$obs, df$pred mean)</pre>
    rmse_val <- rmse(df$obs, df$pred_mean)</pre>
    residuals <- df$obs - df$pred mean
    sum squares residuals <- sum(residuals^2)</pre>
    total_sum_squares <- sum((df$obs - mean(df$obs))^2)</pre>
    r_squared <- 1 - (sum_squares_residuals / total_sum_squares)</pre>
    # Additional metrics
    mape val <- mape(df$obs, df$pred mean)</pre>
    mad_val <- mad(df$obs - df$pred_mean)</pre>
```

```
# More metrics
    mse val <- mean((df$pred mean - df$obs)^2)</pre>
    mpe val <- mean((df$pred mean - df$obs) / df$obs)</pre>
    md val <- DescTools::MeanAD(df$obs, df$pred mean)</pre>
    mape val <- mean(abs((df$pred mean - df$obs) / df$obs))</pre>
    evaluation_results[[lag_structure]] <- list(MAE = mae_val,</pre>
RMSE = rmse val, R Squared = r squared,
                                                    MAPE = mape val,
MAD = mad val, MSE = mse val,
                                                    MPE = mpe_val,
MD = md val, MAPE = mape val)
# Convert the evaluation results to a data frame
eval df <- data.frame(do.call(rbind, evaluation results))</pre>
# Make the rownames a column in the dataframe
eval_df$Model <- rownames(eval_df)</pre>
# Reorder the columns
eval_df <- eval_df[, c(ncol(eval_df), 1:(ncol(eval_df)-1))]</pre>
# Show the results in a table
print(eval df)
```

##LOG SCORES CSV FILE

log_evaluation_results <- list()</pre>


```
for(lag structure in names lag structures) {
    # Read log CSV files
    df <- read.csv(paste0("D:/log ", lag structure, ".csv"))</pre>
    # Compute statistics for each horizon
    for(i in 1:8){
        column name <- paste0("h",i)</pre>
        mean_val <- mean(df[[column_name]], na.rm = TRUE)</pre>
        median val <- median(df[[column name]], na.rm = TRUE)</pre>
        sd val <- sd(df[[column name]], na.rm = TRUE)</pre>
        iqr val <- IQR(df[[column_name]], na.rm = TRUE)</pre>
        log evaluation results[[paste0(lag structure,
column name)]] <- list(Mean = mean val, Median = median val,</pre>
SD = sd val, IQR = iqr val)
# Convert the evaluation results to a data frame
                                data.frame(do.call(rbind,
log eval df
log_evaluation_results))
# Make the rownames a column in the dataframe
log eval df$Model Horizon <- rownames(log_eval_df)</pre>
# Reorder the columns
```

```
log_eval_df <- log_eval_df[, c(ncol(log_eval_df),
1:(ncol(log_eval_df)-1))]

# Show the results in a table
print(log_eval_df)</pre>
```

```
# Boxplot: Distribution of Predicted Means for each
#model

boxplot <- ggplot() +
   theme_minimal() +
   labs(x = "Model", y = "Predicted Mean", fill = "Model") +
      ggtitle("Distribution of Predicted Means for each Model")

df_combined <- do.call(rbind, detailed_data_list)

df_combined$lag_structure <- factor(df_combined$lag_structure,
levels = names_lag_structures)</pre>
```

```
boxplot <- boxplot +
  geom_boxplot(data = df_combined, aes(x = lag_structure, y =
  pred_mean, fill = lag_structure))
boxplot</pre>
```

```
#scatter
library(ggplot2)
# List of lag structures
names lag structures <- c("ar1", "pois", "lin", "geom", "unres",</pre>
"siraj")
# Create an empty list to store the dataframes
detailed data list <- list()</pre>
# Read the detailed data for each lag structure
for (lag structure in names lag structures) {
  file name <- paste0("D:/detailed", lag structure, ".csv")</pre>
 df <- read.csv(file name)</pre>
  detailed data list[[lag structure]] <- df</pre>
# Scatter plot: Observed vs. Predicted Mean for each model
scatter_plot <- ggplot() +</pre>
  theme minimal() +
 labs(x = "Observed", y = "Predicted Mean", color = "Model") +
  ggtitle("Observed vs. Predicted Mean")
```

```
for (lag_structure in names_lag_structures) {
    df <- detailed_data_list[[lag_structure]]
    scatter_plot <- scatter_plot +
        geom_point(data = df, aes(x = obs, y = pred_mean, color = lag_structure))
}
scatter_plot</pre>
```

```
library(ggplot2)
##line plot
# List of lag structures
names_lag_structures <- c("ar1", "pois", "lin", "geom", "unres",</pre>
"siraj")
# Create an empty list to store the dataframes
detailed_data_list <- list()</pre>
# Read the detailed data for each lag structure
for (lag_structure in names_lag_structures) {
    file name <- paste0("D:/detailed", lag structure, ".csv")</pre>
    df <- read.csv(file name)</pre>
    detailed data list[[lag structure]] <- df</pre>
# Line graph: Predicted Mean vs. Prediction Horizon for each model
line plot <- ggplot() +</pre>
    theme minimal() +
```

```
labs(x = "Prediction Horizon", y = "Predicted Mean", color =
"Model") +

ggtitle("Predicted Mean vs. Prediction Horizon")

for (lag_structure in names_lag_structures) {
    df <- detailed_data_list[[lag_structure]]

    line_plot <- line_plot +

        geom_line(data = df, aes(x = prediction_horizon, y =
        pred_mean, color = lag_structure)) +

        geom_point(data = df, aes(x = prediction_horizon, y =
        pred_mean, color = lag_structure, shape = lag_structure))
}

line_plot</pre>
```

3.5.7 NAÏVE MODEL

```
naive_forecast_glmnb <- function(ts, t_cond, max_horizon = 1,
freq = 12) {

  dummies_season <- as.factor(rep(1:freq, length.out =
length(ts)))

# get training data:
  subset_training <- 1:t_cond
  dat_training <- ts[subset_training]
  dummies_season_training <- dummies_season[subset_training]

# fit model:</pre>
# fit model:
```

```
fit_nb <- glm.nb(dat_training ~ dummies_season_training)</pre>
  # subset test:
  subset_test <- t_cond + (1:max_horizon)</pre>
  dummies season test <- dummies season[subset test]</pre>
  # predict:
 mu <- predict.glm(fit_nb,</pre>
                     newdata = data.frame(dummies season training
= dummies_season_test),
                     type = "response")
 size <- fit nb$theta
 pred 1b50 <- qnbinom(0.25, mu = mu, size = size)</pre>
 pred ub50 <- qnbinom(0.75, mu = mu, size = size)</pre>
 pred 1b95 <- qnbinom(0.025, mu = mu, size = size)</pre>
 pred ub95 <- qnbinom(0.975, mu = mu, size = size)</pre>
 obs <- ts[t_cond + (1:max_horizon)]</pre>
  unit wise log score <- -dnbinom(x = obs, mu = mu, size = size,
log = TRUE)
 multiv log score <- NA
  return(list(prediction_time = t_cond,
               prediction horizon = 1:max horizon,
               pred mean = mu, pred_var = mu + mu^2/size,
```

```
1b50 = pred 1b50, ub50 = pred ub50,
              1b95 = pred 1b95, ub95 = pred ub95,
              obs = obs,
              unit_wise_log_score = unit_wise_log_score,
              multiv log score = multiv log score))
# function to obtain naive seasonal forecasts as suggesed by Leo:
naive forecast glmnb multiv <- function(ts, t_cond, max_horizon</pre>
= 1, freq = 12){
 n_units <- ncol(ts)</pre>
 n timepoints <- nrow(ts)</pre>
 dummies season <- matrix(as.factor(rep(1:freq, length.out =</pre>
length(ts))),
                            ncol = n_units, nrow = n_timepoints)
  dummies regions <- matrix(as.factor(1:n units),</pre>
                             ncol = n units, nrow = n timepoints,
                             byrow = TRUE)
 # get training data:
 subset training <- 1:t cond</pre>
 dat training <- as.vector(ts[subset training, ])</pre>
 dummies season training
                                                                  < -
as.vector(dummies season[subset training, ])
 dummies regions training
                                                                  <-
as.vector(dummies_regions[subset_training, ])
```

```
# fit model:
  fit nb <- glm.nb(dat training ~ dummies_season_training +</pre>
dummies regions training)
  # subset test:
  subset test <- t cond + (1:max horizon)</pre>
  dummies season test <- as.vector(dummies season[subset test,</pre>
])
  dummies regions test <- as.vector(dummies regions[subset test,</pre>
])
  # predict:
 mu <- predict.glm(fit nb,</pre>
                     newdata = data.frame(dummies season training
= dummies season test,
dummies regions training = dummies regions test),
                      type = "response")
  size <- fit nb$theta
  pred 1b50 <- qnbinom(0.25, mu = mu, size = size)</pre>
  pred ub50 <- qnbinom(0.75, mu = mu, size = size)</pre>
  pred 1b95 \leftarrow qnbinom(0.025, mu = mu, size = size)
  pred ub95 <- qnbinom(0.975, mu = mu, size = size)</pre>
  obs <- as.vector(ts[subset test, ])</pre>
```

```
unit wise log score <- -dnbinom(x = obs, mu = mu, size = size,
log = TRUE)
 matr unit wise log score <- matrix(unit wise log score, ncol =</pre>
n_units)
 multiv log score <- rep(rowMeans(matr unit wise log score),</pre>
n units)
  return(list(prediction time = t cond,
              unit = rep(1:n units, each = max horizon),
              prediction horizon = rep(1:max horizon, n units),
              pred mean = mu, pred var = mu + mu^2/size,
              1b50 = pred 1b50, ub50 = pred ub50,
              1b95 = pred 1b95, ub95 = pred ub95,
              obs = obs,
              unit wise_log_score = unit_wise_log_score,
              multiv log score = multiv log score))
##main
tps <- (133 - 8):(156 - 1)
max horizon <- 8</pre>
n_units <- ncol(data_sts@observed)</pre>
library(surveillance)
library(hhh4addon)
library (MASS)
```

```
# evaluation of log scores for order larger 1 involves simulation,
# therefore set.seed
seed <- 0
# get data:
data("data sts")
ts <- data_sts@observed</pre>
unit <- 1
t cond <- 141
max horizon <- 8
freq <- 12
logS_data_naive <- matrix(ncol = max_horizon, nrow = length(tps),</pre>
                           dimnames = list(paste0("t=", tps),
                                            paste0("h",
1:max horizon)))
results detailed data naive <- data.frame(data set = rep("data",
n units*max horizon*length(tps)),
                                            unit = 1,
                                            prediction horizon
NA_integer_,
                                            model = "naive",
                                            prediction_time
NA_integer_,
                                            pred mean
                                                                NA,
pred var = NA,
                                            1b50 = NA, ub50 = NA,
                                            1b95 = NA, ub95 = NA,
```

```
obs = NA,
                                            unit wise log score =
NA,
                                            multiv log score = NA)
for(ind in tps){
    ind rows0
min(which(is.na(results_detailed_data_naive$prediction_horizon)
) )
    inds rows <- seq(from = ind rows0, length.out = max horizon)</pre>
    pred naive data temp <- naive forecast glmnb(ts = ts, t cond</pre>
= ind,
                                                    max horizon
max horizon, freq = 12)
    results_detailed_data_naive[inds_rows,
names(pred naive data temp)] <- pred naive data temp</pre>
    # store log scores separately:
    logS data naive[paste0("t=",
                                        ind),
pred_naive_data_temp$unit_wise_log_score
    print(ind)
# add NAs at top for irrelevant forecasts:
for(i in 1:(max horizon - 1)){
    logS data naive[i, (1:(max horizon - i))] <- NA</pre>
}
```

```
tail(logS_data_naive)
#log mean scores
colMeans(logS_data_naive, na.rm = TRUE)
```

results

results 2

```
# Calculate evaluation metrics
            mean(abs(results detailed data naive$obs
results detailed data naive$pred mean), na.rm = TRUE)
               sqrt(mean((results detailed data naive$obs
results detailed data naive$pred mean)^2, na.rm = TRUE))
residuals
                         results detailed data naive$obs
results detailed data naive$pred mean
sum squares residuals <- sum(residuals^2, na.rm = TRUE)</pre>
total sum squares <- sum((results detailed data naive$obs
mean(results detailed data naive$obs))^2, na.rm = TRUE)
r squared <- 1 - (sum squares residuals / total sum squares)
                mean(abs((results_detailed_data_naive$obs
results detailed data naive$pred mean)
results detailed data naive$obs), na.rm = TRUE) * 100
                 mean(abs(results detailed data naive$obs
mad
results detailed data naive$pred mean), na.rm = TRUE)
pred var <- mean(results detailed data naive$pred var, na.rm =</pre>
TRUE)
```

```
# Calculate MAE
mae <- mean(abs(results_detailed_data_naive$obs -
results_detailed_data_naive$pred_mean), na.rm = TRUE)

# Calculate mean of observed values
mean_observed <- mean(results_detailed_data_naive$obs, na.rm =
TRUE)

# Calculate prediction accuracy
accuracy <- 1 - (mae / mean_observed)

# Print the prediction accuracy
print(accuracy)</pre>
```


3.6 ARIMA-SARIMA

```
# Load necessary packages
library(forecast)
library(ggplot2)
data <- data.frame(
    Time = seq(as.Date("2008/01/01"), as.Date("2020/12/01"), by
= "month"),
    NumValue = c(5, 2, 4, 2, 6, 3, 4, 14, 2, 2, 10, 2, 6, 4, 6,
3, 4, 8, 5, 10, 4, 1, 9, 4, 10, 11, 16, 27, 28, 46, 111, 242, 77,
21, 3, 4, 3, 3, 5, 3, 7, 3, 4, 17, 2, 1, 3, 4, 6, 3, 7, 8, 4, 12,
26, 33, 16, 16, 12, 9, 18, 13, 16, 21, 40, 40, 46, 97, 69, 44,
39, 13, 19, 16, 18, 12, 42, 41, 42, 107, 39, 13, 9, 9, 2, 9, 16,
18, 30, 16, 41, 71, 31, 24, 16, 11, 15, 13, 17, 38, 55, 31, 50,</pre>
```

```
85, 30, 18, 16, 5, 1, 7, 14, 23, 36, 29, 36, 59, 18, 15, 24, 4,
7, 6, 11, 29, 40, 40, 58, 29, 33, 23, 15, 16, 15, 40, 70,
117, 79, 96, 158, 77, 81, 105, 50, 79, 92, 85, 34, 29, 40, 70,
342, 233, 224, 115, 19)
# Convert the data to a time series object
ts data <- ts(data\$NumValue, frequency = 12, start = c(2008, 1))
# Define maximum order
max_order <- 5</pre>
# Initialize variables to keep track of the best model
best aic <- Inf
best order <-c(0,0,0)
# Grid search for ARIMA parameters
for(p in 0:max_order) {
  for(d in 0:max order) {
    for(q in 0:max_order) {
      if(p+d+q \le max order) {
        arima fit <- arima(ts data, order=c(p,d,q), method="ML",</pre>
include.mean=FALSE)
        current_aic <- AIC(arima_fit)</pre>
        if(current_aic < best_aic) {</pre>
         best aic <- current aic
         best order <- c(p,d,q)</pre>
```

```
}
cat("Best ARIMA order: ", best_order, "\n")
```

```
cat("Best AIC for ARIMA: ", best_aic, "\n")
```

```
# Fit ARIMA model with best order
arima_fit <- arima(ts_data, order=best_order, method="ML",
include.mean=FALSE)
#Generate in-sample predictions using the fitted model
arima_pred_insample <- fitted(arima_fit)</pre>
```

```
# Predict for 2008 - 2020 (in-sample prediction)
library(ggplot2)
library(ggthemes)
library(dplyr)
library(scales)
library(zoo)
# Assuming 'ts_data' and 'arima_pred_insample' are correctly
generated from your code
# Creating a data frame with actual and predicted data
data <- tibble(
   Time = as.yearmon(time(ts_data), "%m/%Y"), # You need to have
the zoo package for as.yearmon
   Actual = as.numeric(ts_data),
   Predicted = as.numeric(arima_pred_insample)
)</pre>
```

```
# Create the plot
ggplot(data = data, aes(x = Time)) +
 geom line(aes(y = Actual), color = 'blue', alpha = 0.7, size =
1.1) +
 geom line(aes(y = Predicted), color = 'red', linetype =
"dashed", size = 1.1) +
 labs(
    title = "ARIMA: Actual vs Predicted NumValue",
    subtitle = "Best ARIMA order: (0, 1, 4) with AIC: 1538.351",
   x = "Time",
   y = "NumValue",
   color = "Series"
 ) +
  scale x yearmon(format = \%m/\%Y, n = 10,
                                                     labels
date format("%m/%Y")) +
  theme minimal() + # apply minimal theme
 theme (
   plot.title = element text(face = "bold"),
   text = element_text(size = 12),
   legend.position = "bottom",
    panel.grid.major = element line(colour = "gray", linetype =
"dashed"),
   panel.grid.minor = element blank()
 scale color manual(values = c("Actual" = "blue", "Predicted" =
"red")) +
 guides(color = guide_legend(title = "Series"))
```



```
# Load required libraries
library(Metrics)
library(forecast)
# Generate in-sample predictions using the fitted model
# Assuming you have actual and predicted data in 'ts data' and
'arima pred insample'
actual <- ts data
predicted <- arima pred insample</pre>
# Calculate RMSE
rmse <- sqrt(mean((actual - predicted)^2))</pre>
cat("RMSE: ", rmse, "\n")
# Calculate MAE
mae <- mean(abs(actual - predicted))</pre>
cat("MAE: ", mae, "\n")
# Calculate MAPE
mape <- mean(abs((actual - predicted) / actual)) * 100</pre>
cat("MAPE: ", mape, "%\n")
```

```
# Predict for 2021 - 2024 (out-of-sample forecast)
arima_forecast <- forecast::forecast(arima_fit, h=4*12) #
forecast for next 4 years
autoplot(arima_forecast, xlab="Time", ylab="NumValue", colour =
'blue', size = 1) +</pre>
```

```
ggtitle("ARIMA: Forecasted NumValue for 2021 - 2024") +
    theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5, face="bold", size
= 16),
        axis.title = element_text(face="bold", size = 14),
        plot.background = element_rect(fill = "white", color =
    "black")) +
    guides(colour = guide_legend(title = "Series"))
```

Now for SARIMA # Grid search for SARIMA parameters might be too time-consuming, so we'll use auto.arima instead sarima_fit <- auto.arima(ts_data, seasonal = TRUE) summary(sarima_fit)</pre>

```
# Check AIC and log likelihood
cat("AIC for SARIMA: ", AIC(sarima_fit), "\n")
```

```
cat("Log Likelihood for SARIMA: ", logLik(sarima_fit), "\n")
```

```
# Predict for 2008 - 2020 (in-sample prediction)
sarima_pred_insample <- fitted(sarima_fit)
# Plot actual vs predicted data</pre>
```

```
# Predict for 2021 - 2024 (out-of-sample forecast)
library(ggplot2)
library(forecast)
sarima forecast <- forecast (sarima fit, h = 4*12) # forecast for
next 4 years
# Create a visually appealing plot
autoplot(sarima forecast, series="Forecast", fill="#95d5b2",
colour="#1a1a2e") +
 xlab("Time") +
 ylab("NumValue") +
 ggtitle("SARIMA: Forecasted NumValue for 2021 - 2024") +
 theme_minimal() +
 theme (
   plot.title = element text(hjust = 0.5, face="bold", size=14),
   axis.title.x = element text(face="bold", size=12),
   axis.title.y = element text(face="bold", size=12),
    legend.title = element text(face="bold", size=12)
  ) +
  guides(fill=guide legend(title="Prediction
                                                     Interval"),
color=guide_legend(title="Series")))
```

```
cat("SARIMA Mean Log Score: ", sarima_mean_log_score, "\n")
```

```
arima_fit <- arima(ts_data, order=best_order, method="ML",
include.mean=FALSE)

cat("ARIMA Mean Log Score: ", arima_mean_log_score, "\n")</pre>
```

```
# Assuming you have actual and predicted data in 'ts_data' and
'sarima_pred_insample'
actual <- ts_data
predicted_sarima <- sarima_pred_insample

# Convert to numeric
actual <- as.numeric(actual)
predicted_sarima <- as.numeric(predicted_sarima)

# Calculate RMSE
rmse_sarima <- sqrt(mean((actual - predicted_sarima)^2))
cat("RMSE for SARIMA: ", rmse_sarima, "\n")</pre>
```

```
# Calculate MAE
mae_sarima <- mean(abs(actual - predicted_sarima))
cat("MAE for SARIMA: ", mae_sarima, "\n")</pre>
```

```
# Calculate MAPE
mape_sarima <- mean(abs((actual - predicted_sarima) / actual)) *
100
cat("MAPE for SARIMA: ", mape_sarima, "%\n")</pre>
```

4 MODEL COMPARISON

```
# Load required packages

# Load required packages

library(dplyr)

library(ggplot2)

library(DT)

# Define the data

data <- data.frame(

Model = c('HHH4', 'KCDE', 'AR1', 'Pois', 'Siraj', 'Naïve'),</pre>
```

```
Mean Log Score = c(4.9200325220223, 5.448, 4.946424,
4.946437, 5.480640, 7.883698),
    RMSE = c(17.4126455037778, 82.42, 83.224, 82.32461, 102.7528,
89.22906),
    MAE = c(10.2698091163071, 52.44, 55.714, 55.76565, 78.2803,
62.25116),
    MAPE = c(0.650968732264653, 47.95, 0.8936543, 0.8947496,
1.647, 62.12227)
# Create a ranking for each column
ranking <- data %>%
   mutate(Rank MLS = rank(Mean Log Score),
           Rank RMSE = rank(RMSE),
           Rank_MAE = rank(MAE),
           Rank MAPE = rank(MAPE))
# Display the table
datatable(ranking, options = list(pageLength = 10), rownames =
FALSE)
# Plot the graphs
p1 <- ggplot(data, aes(x = Model, y = Mean_Log_Score)) +</pre>
    geom bar(stat = "identity", fill = "steelblue") +
    theme minimal() +
    ggtitle("Mean Log Score by Model") +
    theme(axis.text.x = element text(angle = 45, hjust = 1))
p2 \leftarrow ggplot(data, aes(x = Model, y = RMSE)) +
```

```
geom bar(stat = "identity", fill = "steelblue") +
    theme minimal() +
    ggtitle("RMSE by Model") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
p3 \leftarrow ggplot(data, aes(x = Model, y = MAE)) +
    geom_bar(stat = "identity", fill = "steelblue") +
    theme_minimal() +
    ggtitle("MAE by Model") +
    theme(axis.text.x = element text(angle = 45, hjust = 1))
p4 \leftarrow ggplot(data, aes(x = Model, y = MAPE)) +
    geom bar(stat = "identity", fill = "steelblue") +
    theme_minimal() +
    ggtitle("MAPE by Model") +
    theme(axis.text.x = element text(angle = 45, hjust = 1))
print(p1)
print(p2)
print(p3)
print(p4)
```

AIC AND DSS

```
# Define the AIC values for each model
aic_values <- c(
   hhh4 = 910,
   ar1 = 1206,
   pois = 1206,</pre>
```

```
lin = 1206,
  geom = 1206,
  unres = 1206,
  siraj = 1206
# Define the DSS values for HHH4 and KCDE models
dss values <- c(
 hhh4 = 7.118514,
 kcde = 10.422
# Calculate the best model based on AIC
best_model_aic <- names(aic_values)[which.min(aic_values)]</pre>
# Calculate the best model based on DSS
best model dss <- names(dss values)[which.max(dss values)]</pre>
# Create an evaluation summary
evaluation summary <- paste(</pre>
  "Based on AIC, the best model is", best model aic,
  "with an AIC value of", aic_values[best_model_aic],
  "\nBased on DSS, the best model is", best model dss,
  "with a DSS value of", dss values[best model dss]
# Print the evaluation summary
cat(evaluation summary)
```

```
Based on AIC, the best model is hhh4 with an AIC value of 910 Based on DSS, the best model is kcde with a DSS value of 10.422
```

```
# Load required packages
library(dplyr)
library(ggplot2)
library(DT)
# Define the data
data <- data.frame(</pre>
   Model = c('HHH4', 'KCDE', 'AR1', 'Pois', 'Siraj', 'Naïve'),
    Mean Log Score = c(4.9200325220223, 5.448, 4.946424,
4.946437, 5.480640, 7.883698),
    RMSE = c(17.4126455037778, 82.42, 83.224, 82.32461, 102.7528,
89.22906),
    MAE = c(10.2698091163071, 52.44, 55.714, 55.76565, 78.2803,
62.25116),
   MAPE = c(0.650968732264653, 47.95, 0.8936543, 0.8947496,
1.647, 62.12227)
# Round numeric columns to two decimal places if needed
numeric cols <- c("Mean Log Score", "RMSE", "MAE", "MAPE")</pre>
data[numeric cols] <- lapply(data[numeric cols], function(x)</pre>
ifelse(x %% 1 != 0, round(x, 2), x))
# Create a ranking for each column
ranking <- data %>%
```

```
mutate(Rank_MLS = rank(Mean_Log_Score),
           Rank RMSE = rank(RMSE),
           Rank MAE = rank(MAE),
           Rank MAPE = rank(MAPE))
# Display the table with "bootstrap" style
datatable(ranking, options = list(pageLength = 10, style =
'bootstrap'), rownames = FALSE)
# Plot the graphs
p1 \leftarrow ggplot(data, aes(x = Model, y = Mean Log Score)) +
    geom_bar(stat = "identity", fill = "steelblue") +
    theme minimal() +
    ggtitle("Mean Log Score by Model") +
    theme(axis.text.x = element text(angle = 45, hjust = 1))
p2 \leftarrow ggplot(data, aes(x = Model, y = RMSE)) +
    geom bar(stat = "identity", fill = "steelblue") +
    theme minimal() +
    ggtitle("RMSE by Model") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
p3 \leftarrow ggplot(data, aes(x = Model, y = MAE)) +
    geom bar(stat = "identity", fill = "steelblue") +
    theme minimal() +
    ggtitle("MAE by Model") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

THE END ©

