Acoustics of Spanish and English coronal stops

Joseph V. Casillas, Yamile Díaz, Miquel Simonet

University of Arizona Tucson, Arizona

{jvcasill, ydiaz44, simonet}@email.arizona.edu

Introduction

Coronal stops (VOT)

- English and Spanish contrast fortis with lenis stops
- One acoustic correlate of contrast is VOT

	Lead	Short-lag	Long-lag
Spanish	d	t	
English		d	t

• English uses [spread glottis] while Spanish uses [voice] [1]

Spanish	[voice]	
English		[spread glottis]

Place of articulation

- Spanish /d/ and /t/ are "dental"
- English /d/ and /t/ are "alveolar"

Research questions

- What are the acoustic correlates of place in coronal stops?
- Can we measure the acoustics of the articulatory difference?
- How are short-lag stops manifested acoustically?
 - Question not addressed for Spanish vs. English
 - Coronal stop acoustics studied for French vs. English [2]

Goal of present study

Provide acoustic measurements of Spanish and English coronal stops to investigate further questions regarding these stops in different populations (bilinguals)

Method

Materials

- Consonants in utterance-initial position
- Consonant (/d t/) × Language (English, Spanish) × Stress (stressed, unstressed) [$\sigma.\sigma$] vs. [$\sigma.\sigma$]:
- 6 (items) \times 2 (consonants) \times 2 (stress) = 24 words

Speakers (N = 14)

Language	Origin	N
Spanish	Majorca, Spain	8
English	Arizona, US	8

Procedure

- Auditory stimuli: 6 'talkers' (3 Eng., 3 Sp.) each word produced 3 times. 24 words \times 3 iterations \times 2 languages = 144 stimuli
- 'Talkers' are male, experiment participants are female
- Delayed repetition: "_ is the word" or "_ es la palabra"

Acoustics

- 144 (observations) \times 14 (participants) = 2016 tokens
- Acoustic metrics (VOT, Relative intensity, Spectral moments)

$\overline{ ext{VOT}}$	Relative intensity	Center of gravity
Standard deviation	Skewness	Kurtosis

Note: Spectrum of burst (20 ms Gaussian window left-aligned)

Statistics

- Spectral moments and relative intensity regressed on VOT
 - 1. Residuals used as criterion in factorial analysis
 - 2. Residuals used as predictors in logistic regression

Results

1. Residuals used as criterion in factorial analysis

Metric	R^2	$p ext{-}value$
Relative Intensity	0.66	< 0.02
Center of Gravity	0.68	< 0.03
Standard Deviation	0.61	< 0.01
Skewness	0.45	< 0.03
Kurtosis	0.26	= 0.07

 $resid(DV) \sim Short-lag stop (Spanish /t/, English /d/)$

2. Residuals used as predictors in logistic regression

Data subset = short-lag VOT stops (Spanish /t/, English /d/)

Metric	R^2	R^2_{change}	χ^2_{change}	p- $value$
Standard Deviation	.353	.353	175.39	< 0.01
Center of Gravity	.376	.023	14.01	< 0.01
Relative Intensity	.425	.049	30.01	< 0.01
Skewness	.426	.001	0.08	> 0.05
Kurtosis	.432	.006	4.36	< 0.04
$\overline{\text{Short-lag stop(DV)} \sim \text{SD} + \text{COG} + \text{RI} + \text{SK} + \text{KT}}$				

Conclusion

- VOT accounts for differences between all coronal stops except for English /d/ and Spanish /t/.
 - English /d/ and Spanish /t/ do not differ in VOT.
- Phonetically voiceless coronal stops of English and Spanish can be distinguished by relative intensity and by the spectral shape of the stop burst.
- With regard to the spectral shape of stop burts, place of articulation differences described for Spanish /t/ and English /d/ are best accounted for using measures of standard deviation and center of gravity.
 - ✓ Center of Gravity, Standard Deviation
 - X Skewness, Kurtosis
- Present study contributes language-specific acoustic characteristics of bursts in the short-lag coronal stops in two monolingual varieties of English and Spanish.
- It provides base acoustic descriptions for future studies on Spanish-English bilinguals.

Selected references

- [1] Beckman, J and Helgason, P and McMurray, B and Ringen, C. Rate effects on Swedish VOT: Evidence for phonological overspecification. *Journal of Phonetics*, 39:39–49, 2011.
- [2] Megha Sundara. Acoustic-phonetics of coronal stops: A cross-language study of Canadian English and Canadian French. The Journal of the Acoustical Society of America, 118:1026, 2005.