

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Minimization

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 19 @ 4 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Example: K-Map for the 2-1 Multiplexer

2-1 Multiplexer (Definition)

- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x₂

Circuit for 2-1 Multiplexer

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2	2			
s	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2					
s	00	01	11	10	
0	0	1	0	0	
1	0	1	1	1	

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	r r				
m_1	001	0	$s^{x_1x_2}$	2 00	01	11	10
m_2	010	1		00	01	11	10
m_3	0 1 1	1	0	0		0	0
m_4	100	0	1	0	$\left \left \begin{array}{c} 1 \end{array} \right $	1	1)
m_5	101	1					
m_6	110	0			_ I		
m_7	111	1	$f(s, x_{1}, x_{2})$) =	$\bar{x_1} x_2$	+ S	x_1

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	v v				
m_1	0 0 1	0	$s^{x_1x_2}$	2	01	11	10
m_2	010	1	$\langle \hspace{0.2cm} \rangle$		01		
m_3	0 1 1	1		0	1	0	0
m_4	100	0	1	0	$\left(\begin{array}{c}1\end{array}\right)$	1	1)
m_5	101	1					
m_6	110	0					
m_7	111	1	$f(s, x_1, x_2)$) =	$\overline{x}_1 x_2$	+ 3	x_1

Something is wrong!

Compare this with the SOP derivation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	1 2
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

•	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2				
s	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

ı	$(s x_1 x_2)$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	011	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

$\int_{S}^{x_1x_2}$	200	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

'	$(s x_1 x_2)$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

The order of the labeling matters.

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

$x x_1$				
x_2	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

$\mathcal{S} \mathcal{X}_{I}$					
x_2	00	01	11	10	
0	O	1	0	O	
1	0	1	1	1	

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

•	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	0 0 0	0	C V				
m_1	0 0 1	0	x_2	1 00	01	11	10
m_2	010	1	3.72	00	01	11	
m_3	0 1 1	1	0	0	(1)	0	0
m_4	100	0	1	0	$\left \left(\begin{array}{c} 1 \end{array} \right) \right $	1	1)
m_5	101	1					
m_6	110	0			_		
m_7	111	1	$f(s, x_{1}, x_{2})$) =	$\overline{s} x_1$	+ 5	x_2

This is correct!

Two Different Ways to Draw the K-map

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			ı

(a) Truth table

(b) Karnaugh map

Another Way to Draw 3-variable K-map

$\frac{x_1}{x_1}$	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			l

(a) Truth table

(b) Karnaugh map

x_1		
x_2x_3	0	1
00	m_0	m ₄
01	m ₁	m ₅
11	m_3	m ₇
10	m_2	m ₆

Gray Code

- Sequence of binary codes
- Consecutive lines vary by only 1 bit

	000
	001
00	011
01	010
11	110
10	111
	101
	100

Gray Code & K-map

_				
	$s x_1 x_2$			
m_0^-	000			
m_1	001			
m_2	010			
m_3	0 1 1			
m_4	100			
m_5	101			
m_6	110			
m_{7}	111			

$\times SX_1$						
x_2	00	01	11	10		
0	m_0	m_2	m_6	m_4		
1	m_1	m_3	m_7	m_5		

_	
	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_{7}	111

	S X	1			
x_2		00	01	11	10
(0	000	010	110	100
	1	001	011	111	101

_	
	$s x_1 x_2$
m_0^{-}	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	111

These two neighbors differ only in the LAST bit

_	
	$s x_1 x_2$
m_0^-	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7 _	111

These two neighbors differ only in the LAST bit

	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_7	111

These two neighbors differ only in the FIRST bit

	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_7	111

These two neighbors differ only in the FIRST bit

Adjacency Rules

_	
	$s x_1 x_2$
m_0^-	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	1 1 1

These four neighbors differ in the FIRST and LAST bit

They are similar in their MIDDLE bit

A four-variable Karnaugh map

A four-variable Karnaugh map

x1	x2	x 3	x4	
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

Adjacency Rules

Example of a four-variable Karnaugh map

Example of a four-variable Karnaugh map

[Figure 2.54 from the textbook]

Strategy For Minimization

Grouping Rules

- Group "1"s with rectangles
- Both sides a power of 2:
 - 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
 - Try to use as few groups as possible to cover all "1"s.
 - For each group, try to make it as large as you can (i.e., if you can use a 2x2, don't use a 2x1 even if that is enough).

Literal: a variable, complemented or uncomplemented

Some Examples:

- X₁
- X₂

- Implicant: product term that indicates the input combinations for which function output is 1
- Example

• x_1 - indicates that x_1x_2 and x_1x_2 yield output of 1

- Prime Implicant
 - Implicant that cannot be combined into another implicant with fewer literals
 - Some Examples

Not prime

Prime

- Essential Prime Implicant
 - Prime implicant that includes a minterm not covered by any other prime implicant
 - Some Examples

Cover

 Collection of implicants that account for all possible input valuations where output is 1

Ex.
$$x_1' x_2 x_3 + x_1 x_2 x_3' + x_1 x_2' x_3'$$

Ex.
$$x_1' x_2 x_3 + x_1 x_3'$$

x_1x_2	2			
x_3	00	01	11	10
0	0	0	1	1
1	0	1	0	0

- Give the Number of
 - Implicants?
 - Prime Implicants?
 - Essential Prime Implicants?

x_1x_2	2			
x_3	00	01	11	10
0	1	1	0	0
1	1	1	1	0

Why concerned with minimization?

- Simplified function
- Reduce the cost of the circuit
 - Cost: Gates + Inputs
 - Transistors

Three-variable function f $(x_1, x_2, x_3) = \Sigma m(0, 1, 2, 3, 7)$

x x 1 x 2					
x_3x_4	00	01	11	10	
00	1	1			
01		1	1		
11			1	1	
10	1			1	

Example: Another Solution

f $(x_1,...,x_4) = \Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14)$

$f(x_1,...,x_4) = \Sigma m(0, 4, 8, 10, 11, 12, 13, 15)$

Do You Still Remember This Boolean Algebra Theorem?

14a.
$$x \cdot y + x \cdot \overline{y} = x$$
 Combining
14b. $(x + y) \cdot (x + \overline{y}) = x$

х	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	
0	1	
1	0	
1	1	

х	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	0
0	1	1
1	0	1
1	1	1

x	у	(x +	y) • (x + \(\frac{1}{2} \)	<u>7</u>) = x
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	1	1	

х	у	(x	+	y)•(x	+ <u>y</u>)	=	x
0	0		0	0	1		
0	1		1	0	0		
1	0		1	1	1		
1	1		1	1	1		

х	у	(x	+	y)•(x	+ <u>y</u>)	= x
0	0		0	0	1	0
0	1		1	0	0	0
1	0		1	1	1	1
1	1		1	1	1	1

x	у	(x +	y)•(x + y) = x
0	0	0	0	1	0
0	1	1	0	0	O
1	0	1	1	1	1
1	1	1	1	1	1

They are equal.

 M_0

Property 14b (Combining)

POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$

POS minimization of f ($x_1,...,x_4$) = Π M(0, 1, 4, 8, 9, 12, 15)

Questions?

THE END