Disappearing tracks

- From charged long-lived particles decaying to invisible products in the inner tracker, therefore may be identified by:
- → Missing hits in outer silicon tracker
- → No energy deposit in calorimeter
- → No muon hits

- Look at clean track collection in data, SM MC, and signal MC
 - MET PD, full Run2016D (Golden JSON)
 - tt+jets, semi-leptonic
 - \circ pMSSM with ct = 55 cm
 - NOTE: for signal, only tracks matched to a GEN chargino are selected
 - Matching criterion: dR<0.01
 - CAVEAT: for data, no specific trigger path is required
- → Apply basic track selection:
 - $p_T > 15 \text{ GeV } \& |\eta| < 2.4$
 - \circ dxy < 0.02 cm
 - \circ dz < 0.1 cm
- → Look at **PF isolation** after basic track selection

MS

Isolation requirements

Mario Masciovecchio (UCSD), 11 July 2017

Look at clean track collection, in data, SM MC and signal MC

→ Apply (loose) isolation requirements: PFRelIso03 < 0.2 & PFAbsIso03 < 5 GeV

What's next?

- 1. Apply basic selection & isolation requirements on tracks
 - $p_T > 15 \text{ GeV } \& |\eta| < 2.4$
 - \circ dxy < 0.02 cm
 - \circ dz < 0.1 cm
 - PFAbsIso03 < 5 GeV
 - \circ PFRellso03 < 0.2
- 2. Look at track-related variables
- 3. Identify (possible) disappearing track selection
- 4. Evaluate SM rejection + signal efficiency

6

Sum of charged candidates

Mario Masciovecchio (UCSD), 11 July 2017

Sum of charged PF candidates (non-PU) within dR < 0.01 from track

- → For signal, do not charged expect PF candidates from isolated track
 - Isolated (disappearing) tracks do not make it to PF collection (in 80X)
 - Why peak at 0 for data? Under investigation: may be 'dirty' tracks.
- \rightarrow Select tracks with charged sum (dR<0.01) < 10 GeV & charged sum (dR<0.01)/p_T < 0.2

- Sum of neutral candidates within dR < 0.05 from track
 - Photon + neutral hadrons

- → For signal, expect small energy deposits from neutral candidates
 - ~Replacement for small calorimeter deposit requirement
- \rightarrow Select tracks with neutral sum (dR<0.05) < 5 GeV & neutral sum (dR<0.05)/p_T < 0.1

0

Sum of photon candidates

Mario Masciovecchio (UCSD), 11 July 2017

Sum of neutral candidates within dR < 0.05 from track
Photon

- → For signal, expect small energy deposits from photon candidates
 - ~Replacement for small **EM** calorimeter deposit requirement
- \rightarrow Select tracks with photon sum (dR<0.05) < 5 GeV & photon sum (dR<0.05)/p_T < 0.1

Sum of neutral hadron candidates

- Sum of neutral candidates within dR < 0.05 from track
 - Neutral hadrons

- → For signal, expect small energy deposits from neutral hadron (neu. had.) candidates
 - o ~Replacement for small hadronic calorimeter deposit requirement
- \rightarrow Select tracks with neu. had. sum (dR<0.05) < 5 GeV & neu. had. sum (dR<0.05)/p_T < 0.1

Number of pixel hits

Mario Masciovecchio (UCSD), 11 July 2017

Number of pixel hits and number of pixel layers with measurement

→ Require at least 2 pixel hits & at least 2 pixel layers with measurement

ns (in the second

Number of valid hits

Mario Masciovecchio (UCSD), 11 July 2017

Number of hits and number of layers with measurement

- → May require a maximum number of hits, as the track is disappearing
- → However, large dependency on lifetime of SUSY LLP
- → Prefer not to apply selection on total number of hits

But can make good use of it

Mario Masciovecchio (UCSD), 11 July 2017

Number of hits and number of layers with measurement

- → May use this variable(s) to categorize tracks in terms of length
 - ▶ I.e., ~categorization in terms of SUSY LLP decay length
- → Will look at it again after defining full disappearing track selection

Number of missing inner hits

Mario Masciovecchio (UCSD), 11 July 2017

Number of missing inner hits (pixel and all)

- > Expect signal tracks to disappear in outer hits, not to miss inner hits
- → Require no missing inner pixel hits & no missing inner hits

Number of missing outer hits

Mario Masciovecchio (UCSD), 11 July 2017

Number of missing outer hits (pixel and all)

- → Expect signal tracks to disappear in outer hits
- → Require at least 2 missing outer hits

MS

Track quality

Mario Masciovecchio (UCSD), 11 July 2017

Track quality: high purity tracks

- → Observe a large fraction of tracks in data with low quality
 - Despite basic selection & isolation requirements
- → Require tracks to be categorized as high purity tracks

p_T resolution

Mario Masciovecchio (UCSD), 11 July 2017

After basic track hit selection:

⇒ Safety selection: $\Delta p_T/p_T < 1.0$ at N(layers)≥7 (i.e., for 'long' tracks)

$1/p_T$ resolution

Mario Masciovecchio (UCSD), 11 July 2017

After basic track hit selection:

- $\rightarrow \Delta p_T/p_T^2 < 0.1$ for pixel-only tracks
- $\rightarrow \Delta p_T/p_T^2 < 0.02$ if N(layers) < 7
- $\rightarrow \Delta p_T/p_T^2 < 0.005$ if N(layers) ≥ 7

Full track selection

- o $p_T > 15 \text{ GeV } \& |\eta| < 2.4$
- \circ dxy < 0.02 cm
- \circ dz < 0.1 cm
- PFAbsIso03 < 5 GeV & PFRelIso03 < 0.2
- Ch. sum $(dR<0.01) < 10 \text{ GeV } \& \text{ ch. sum } (dR<0.01)/p_T < 0.2$
- \circ Neu. sum (dR<0.05) < 5 GeV & neu. sum (dR<0.05)/p_T < 0.1
- o Ph. sum $(dR < 0.05) < 5 \text{ GeV } \& \text{ ph. sum } (dR < 0.05)/p_T < 0.1$
- O N. h. sum $(dR < 0.05) < 5 \text{ GeV } \& \text{ n. h. sum } (dR < 0.05)/p_T < 0.1$
- N(pixel hits)≥2 & N(pixel layers w/ meas.)≥2
- N(missing inner hits)=0 & N(missing inner pixel hits)=0
- N(missing outer hits)≥2
- High purity
- p_T resolution ("safety" selections)
- → Bin in N(layers w/ meas.)?

A look back at N(layers)

Mario Masciovecchio (UCSD), 11 July 2017

Number of layers with measurement:

- \rightarrow May define **3 exclusive categories**, to maximize S/B:
- Pixel-only tracks (tracker layers = pixel layers)
- N(layers) < 7
- $N(layers) \ge 7$

MS

Additional handles

- Not forgetting of other handles we have talked about:
- → Number of disappearing tracks
 - Exactly 1
 - 0 >1
- \rightarrow dE/dx (see backup)
 - May depend on signal
 - \circ To be looked at again with (\sim final) SMS's
 - Could either cut or categorize

Selection efficiency

Mario Masciovecchio (UCSD), 11 July 2017

Notes:

- MET as read from AOD (pfMET)
- Jets w/ $|eta| < 2.4 \& p_T > 30 \text{ GeV}$
- HT as from selected jets
- 'Clean' track selection:
 - $p_T > 15 \text{ GeV } \& |\eta| < 2.4$
 - \circ dxy < 0.02 cm
 - \circ dz < 0.1 cm
- Isolated track selection:
 - o 'clean' track
 - abslso03 < 5 GeV
 - \circ rellso 03 < 0.2
- Short track selection:
 - \circ As in s. 18

Selection efficiency

Mario Masciovecchio (UCSD), 11 July 2017

NO kinematic selection

HT>250 & MET > 250 GeV

- \rightarrow Can reach reduction \sim O(50) for background, while keeping large signal efficiency (≥ 70% for a particular signal model)
- \rightarrow Can then enhance S/B by categorizing events vs N(layers) [s.19] in addition of requiring ==1 or >1 disappearing tracks

Signal categorization

Mario Masciovecchio (UCSD), 11 July 2017

Fraction (%) of events per bin

- \rightarrow Can reach reduction \sim O(10³) for background for N(layers) \geq 7, while keeping significant signal efficiency ($\geq 1.5\%$ for such signal)
- → May need extra handles for very short tracks

Cut flows

Mario Masciovecchio (UCSD), 11 July 2017

Point 0: total amount of events for different kinematic selections

Selection	Signal (cτ=55 cm)	tt+jets (1-lep)	MET data
No selection	5720	11957043	20284873
MET>250	2633	64868	289396
HT>250	5346	6521178	5672255
HT>250 & MET>250	2612	63095	248429

CAVEATs:

- MET as read from AOD (pfMET)
- \circ Jets w/ |eta|<2.4 & p_T > 30 GeV
- HT as from selected jets

More cut flows

Mario Masciovecchio (UCSD), 11 July 2017

 Point 1: total amount of events for different kinematic selections and with a 'clean' track

Selection	Signal (cτ=55 cm)	tt+jets (1-lep)	MET data
'Clean' track selection	5540	11017765	15074023
MET>250	2560	64314	148023
HT>250	<i>5177</i>	6408983	5464928
HT>250 & MET>250	2539	62760	125487

'Clean' track selection:

- $p_T > 15 \text{ GeV } \& |\eta| < 2.4$
- \circ dxy < 0.02 cm
- \circ dz < 0.1 cm

More cut flows

27 Mario Masciovecchio (UCSD), 11 July 2017

 Point 2: total amount of events for different kinematic selections and with a 'clean' track that is also isolated

Selection	Signal (cτ=55 cm)	tt+jets (1-lep)	MET data
Isolated track selection	4731	6903290	7533949
MET>250	2214	30870	85202
HT>250	4398	4092360	2071955
HT>250 & MET>250	2197	30271	74420

Isolated track selection:

- o 'clean' track
- o abslso03 < 5 GeV
- o rellso03 < 0.2

More cut flows

Mario Masciovecchio (UCSD), 11 July 2017

Point 3: total amount of events for different kinematic selections and with a 'clean' track that is also isolated and pass full selection [s.18]

Selection	Signal (cτ=55 cm)	tt+jets (1-lep)	MET data
Isolated track selection	4025	191235	673873
MET>250	1832	1042	5921
HT>250	3749	105994	149410
HT>250 & MET>250	1817	1014	5070

- \rightarrow Can reach reduction \sim O(50) for background, while keeping signal efficiency ≥ 70%
- \rightarrow Can then enhance S/B by categorizing events vs N(layers) [s.19] in addition of requiring ==1 or >1 disappearing tracks

Signal samples: $c\tau(\chi_1^{\pm}) = 55$ cm

Mario Masciovecchio (UCSD), 11 July 2017

pMSSM12_MCMC1_10_374794

CMS

80X

Long-lived χ_1^{\pm}

Mario Masciovecchio (UCSD), 11 July 2017

- Generator level information
- \rightarrow Multiplicity of χ_1^{\pm} depends on benchmark scenario
- $\rightarrow \chi_1^{\pm}$ is always very energetic

From Akshansh

Event kinematics

80X

- Reconstruction level information
- For events with at least one χ_1^{\pm} w/ $p_T > 30$ GeV
- > Event kinematics strongly depends on benchmark scenario
 - Mostly on production mode

