Lecture 4.

Informed Search

To obtain a solution more quickly, we use *additional information* to guide the node expansion.

4.1. Evaluation Function

One way to include the additional information is to used an **evaluation** function f(n) where n is a node. This evaluation function estimates the cost when a node is selected to be a part of solution. The node with the lowest evaluation value is chosen first.

4.2. Heuristic Functions

Heuristic function, h(n) estimates the cost of the cheapest path from node n to a goal node. It is a problem-specific function with one constraint: if n is a goal node, then h(n) = 0.

4.3. Greedy Best-first Search

Greedy Best-first search chooses to expand the node expected to be the closest to the goal since it is likely to lead to a solution quickly. GBFS always chooses the node with the *smallest* h(n) from the nodes in the frontier. Thus, we

$$f(n) \stackrel{ ext{ iny def}}{=} h(n)$$

In the route-finding problem, we can use *straight-line distance* as a heuristic function. The straight-line distance is basically shorter than the actual distance, but it roughly shows the distance between two cities.

Exercise 4.1 Use the *greedy best-first tree search* to find a route from A to H.

Node	Heuristic	Node	Heuristic	Node	Heuristic	Node	Heuristic
A	10	В	4	C	6	D	4
E	18	F	9	G	4	Н	0

4.3.1. Evaluating Greedy Best-first Search

Complete

Let's conduct the greedy best-first tree search and graph search using the following state space and heuristic function.

n	h(n)	n	h(n)
\boldsymbol{A}	40	B	50
C	20	D	5
E	0		

Optimality

n	h(n)	n	h(n)
A	10	B	20
C	20	D	5
\overline{E}	0		

4.4. A* Search

 A^* search minimizes the total cost from the initial node to a goal node.

$$f(n) \stackrel{ ext{ iny def}}{=} g(n) + h(n)$$

where g(n) is the actual cost to reach node n from the initial node, and h(n) is a heuristic function representing the estimated cheapest cost from the node n to a goal node. f(n) represents the estimated cost of the cheapest solution through n.

Example 4.1 Use A* search for the route-planning problem.

4.4.1. Evaluating A* Search

Optimality

Tree Search A* using Tree Search is optimal if h(n) is an *admissible* heuristic.

A heuristic function is *admissible* if it *never overestimates* the cost to reach the goal.

$$\forall n, h(n) \le C(n)$$

where n is a node, h(n) is an estimated cost to reach a goal from n, and C(n) is the actual cost to reach a goal from n.

Suppose a suboptimal goal node G_2 is appended to the *frontier*, and let the optimal cost be C^* , we have

$$f(G_2) = g(G_2) + h(G_2)$$

= $g(G_2) > C^*$

We also have a node n that is on an optimal path, we have

$$f(n) = g(n) + h(n) \le C^*$$

Then, $f(n) \leq C^* < f(G_2)$. G_2 will not be selected until the end of the search. A* returns an optimal solution.

Graph Search A* using Graph Search is optimal if h(n) is a *consistent* (or *monotone*) heuristic.

A heuristic function is consistent if, for every node n and every successor n' of n generated by any action a, the estimated cost to the goal from n is no greater than the step cost of getting to p plus the estimated cost of reaching the goal from p.

$$h(n) \le c(n, a, p) + h(p)$$

triangle inequality

From the consistency of h(n), we have

$$f(p) = g(p) + h(p)$$

= $g(n) + c(n, a, p) + h(p)$
 $\geq g(n) + h(n) = f(n)$

Exercise 4.2 Check the admissibility and consistency of the heuristic function shown in the following figure.

References

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd edition). Pearson/Prentice Hall.

Michalewicz, F. and Fogel, D. B. (1998). How to Solve It: Modern Heuristics. Springer.