Ejercicio Final Introducción Al \LaTeX

Autor Wilson Eduardo Jerez Hernández 20181167034 wejerezh@correo.udistrital.edu.co

Profesor Jhonatan Steven Mora Rodriguez.

Universidad Distrital Francisco José de Caldas Facultad de Ciencias y Educación Matemáticas

Índice

	Página
1. La Ecuación de Clase	3
2. Los teoremas de Sylow	4

1. La Ecuación de Clase

Antes de hablar de la Ecuación de clase vamos a demostar el siguiente teorema.

Teorema 1.1. Sea G un grupo finito y sea X un G-conjunto finito. si $x \in X$, entonces $|O_x| = [G:G_x]$.

Demostración.

Sabemos que $|G|/|G_x|$ es el número de clases laterales iz1quierdas de G_x en G por el Teorema de Lagrange. Definemos una función biyectiva ϕ de la órbita O_x de x al conjunto de clases laterales izquierdas L_{G_x} de G_x en G. Sea $y \in O_x$. Entonces existye g en G tal que gx = y. Definamos ϕ de forma que $\phi(y) = gG_x$. Para mostrar que ϕ es 1-1, supongamos que $\phi(y_1) = \phi(y_2)$. Entonces

$$\phi(y_1) = q_1 G_x = q_2 G_x = \phi(y_2),$$

donde $g_1x = y_1$ y $g_2x = y_2$. Como $g_1G_x = g_2G_x$, existe $g \in G_x$ tal que $g_2 = g_1g$,

$$y_2 = g_2 x = g_1 g x = g_1 x = y_1;$$

por lo tanto. la función ϕ es 1-1. Finalmente, debemos mostrar que ϕ es epiyectiva. sea gG_x una clase lateral izquierda. Si gx = y, entonces $\phi(y) = gG_x$. **QED**

Sea X un G- conjunto y X_G el conjunto de puntos fijos en X; es decir,

$$X_G = \{x \in X : gx = x \text{ para todo } g \in G\}.$$

Como las órbitas de la acción particionan a X,

$$|X| = |X_G| + \sum_{i=k}^{n} |O_{x_i}|$$

donde x_k, \dots, x_n son representantes de las distintas órbitas no triviales de X (aquellas órbitas que contienen más de un elemento).

Ahora consideremos el caso especial en el que G actua en sí mismo por conjugación, $(g, x) \rightarrow gxg^{-1}$. El **centro** de G,

$$Z(G) = \{x : xg = gx \text{ para todo } g \in G\},\$$

es el conjunto de puntos que quedan fijos por conjugación. La órbitas de la acción se llaman **clases de conjugación** de G. Si x_1, \dots, x_k on representantes de cada una de las clases de conjugación no-triviales de G y $|O_{x_1}| = n_1, \dots, |O_{x_k}| = n_k$, entonces

$$|G| = |Z(G)| + n_1 + \dots + n_k.$$

Cada uno de los subgrupos estabilizadores de uno de los x_i , $C(x_i) = \{g \in G : gx_i = x_ig\}$, se llama subgrupo centralizador de x_i . Por el **Teorema 1.1**, obtemos la **ecuación de clase**:

$$|G| = |Z(G)| + [G:C(x_1)] + \cdots + [G:C(x_k]].$$

Una de las conseciuencias de la ecuación de clase es que el orden de cada clase de conjugación divide al orden de G.

2. Los teoremas de Sylow

Recordemos Por un momento lo que significa que G actúe en si mismo por conjugación y cómo las clases de conjugación se distribuyen en el grupo de acuerdo a la ecuación de clase, discutida anterioremnte. Un grupo G actúa en si mismo por conjugación de manera que $(g,x) \to gxg^{-1}$. Sean x_1, \dots, x_k representantes de cada una de las distintas clases de conjugación de G que contiene más de un elemnto. Entonces la ecuación de clase se escribe como

$$|G| = |z(G)| + [G : C(x_1)] + \dots + [G : C(x_k)],$$

donde $Z(G) = \{g \in G : gx = xg \text{ para todo } x \in G\}$ es el centro de $G \text{ y } C(x_i) = \{g \in G : gx_i = x_ig\}$ es el subgrupo centralizador de x_i . low examinando los subgrupos de orden p, donde p es un primo.

Un grupo de G es un **P-grupo** si todo elemneto de G tiene orden potencia de p, donde p es un número primo. Un subgrupo de un grupo G es un **P-subgrupo** si es un p-grupo.

Teorema 2.1. (cauchy) sea G un grupo finito y P un primo tal que p divide el orden de G. Entonces G contiene un elemnto de orden p.

Demostraci'on

Procederemos por inducción sobre el orden de G. si |G| = p, entonces un generados de G es el elemnto requerido. Supongamos ahora que todo subgrupo de orden k, donde $p \le k < n$ y p divide a k, tiene un elemnto de orden p. supongamos que |G| = n y que p|n y consideremos la ecuación de clase de G:

$$|G| = |z(G)| + [G : C(x_1)] + \cdots + [G : C(x_k)]$$

Tenemos dos casos que considerar.

Caso 1. el orden de alguno de los subgrupos centralizadores, $C(x_i)$, es divisible por p para algún $i, i = 1, \dots, k$. En este caso, por hipótesis de inducción estamos listos. Como $C(x_i)$ es un subgrupo propio de G y p divide a $|C(x_i)|$, $C(x_i)$ contiene un elemnto de orden p. Por lo tanto, G contiene un elemnto de orden p.

Caso 2. Ninguno de los centralizadores tiene orden divisible por p. Entonces p divide a $[G:C(x_i)]$, el orden de cada clase de conjugación en la ecuación de clase; luego, p divide el orden del centro de G, Z(G). Como Z(G) es abeliano, tiene un subgrupo de orden p por el Teorema Fundamental de Los Grupos Abelianos Finitos. Por lo tanto, el centro de G contiene un elemnto de orde G.

Colorario 2.2. Sea G un grupo finito. Entonces G es un P-grupo si y solo si $|G| = p^n$.

Ejemplo 2.1. Consideremos el grupo A_5 . Sabemos que $|A_5| = 60 = 2^2 \cdot 3 \cdot 5$. por el Teorema de Cauchy, sabemos que A_5 tiene subgrupos de órdenes 2,3 y 5. Los teoremas de sylow nos daán aún más información sobre los posibles subgrupos de A_5

Podemos ahora enunciar el primer Teorma de Sylow. La demostración es muy similar a la del Teorema de Cauchy.

Teorema 2.3. (primer teorema de Sylow) Sea G un grupo finito y p un primo tal que p^r divide a |G|. Entonces G contiene un subgrupo de orden p^r **Demostración** Procederemos por inducción

sobre el orden de G una vez más. Si |G| = p, entonces estamos listos. Ahora supongamos que el orden de G es n con n > p y que el teorema es verdadero para todos los grupos de orden menor a n, donde p divide a n. Usaremos la ecuación de clase una vez más:

$$|G| = |Z(G)| + [G:C(x_1)] + \dots + [G:C(x_k)].$$

Supongamos primero que p no divide a $[G:C(x_i)]$ para algún i.Entonces $p^r - \|C(x_i)\|$, pues p^r divide a $|G| = |C(x_i)| \cdot [G:C(x_i)]$. Podemos aplicar la hipótesis de inducción a $C(x_i)$