

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Ullrich, Axel
Aoki, Naohito
Kim, Yeong Woong
Wang, Hong Yang
Chen, Zhengjun
Naylor, Oliver
Kharitonenkov, Alexei Igorevich

(ii) TITLE OF INVENTION: NOVEL PTP20, PCP-2, BDP1, CLK,
AND SIRP POLYPEPTIDES AND RELATED
PRODUCTS AND METHODS

(iii) NUMBER OF SEQUENCES: 38

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Lyon & Lyon
(B) STREET: 633 West Fifth Street
Suite 4700
(C) CITY: Los Angeles
(D) STATE: California
(E) COUNTRY: U.S.A.
(F) ZIP: 90071-2066

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: 3.5" Diskette, 1.44 Mb
storage
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: IBM P.C. DOS 5.0
(D) SOFTWARE: FastSEQ for Windows 2.0

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: 08/877,150
(B) FILING DATE: June 17, 1997
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: U.S. 60/019,629
(B) FILING DATE: June 17, 1996

(A) APPLICATION NUMBER: U.S. 60/023,485
(B) FILING DATE: August 9, 1996

(A) APPLICATION NUMBER: U.S. 60/030,860
(B) FILING DATE: November 13, 1996

(A) APPLICATION NUMBER: U.S. 60/034,286
(B) FILING DATE: December 19, 1996

(A) APPLICATION NUMBER: U.S. 60/030,964
(B) FILING DATE: November 15, 1996

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Warburg, Richard J.
(B) REGISTRATION NUMBER: 32,327
(C) REFERENCE/DOCKET NUMBER: 225/298

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600
(B) TELEFAX: (213) 955-0440
(C) TELEX: 67-3510

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in positions 3 and 5 stands for an unspecified amino acid.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Phe Trp Xaa Met Xaa Trp
1 5

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in position 6 stands for either Ser, Ile or Val.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

His Cys Ser Ala Gly Xaa Gly
1 5

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Phe Leu Glu Arg Leu Glu
1 5

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in positions 3 and 5 stands for an unspecified amino acid.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Arg Trp Xaa Met Xaa Trp
1 5

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in position 6 stands for either Ser, Ile or Val.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

His Cys Ser Ala Gly Xaa Gly
1 5

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CTCTGTGTCC ACAGCAGTGC TGGCTGT

27

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

His Arg Asp Leu Ala Ala Arg
1 5

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in position 2 stands for Val or Met. "Xaa" in position 5 stands for Tyr or Phe.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Asp Xaa Trp Ser Xaa Gly
1 5

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CGGGATCCCT TCGCCTTGCA GCTTTGTC

28

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CGGAATTCCCT AGACTGATAAC AGTCTGTAAG

30

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Asp Leu Lys Pro Glu Asn
1 5

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Ala Met Met Glu Arg Ile
1 5

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TATAGCGGCC GCTAGACTGA TACAGTCTGT

30

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TCCCCCGGGA TGCCCCATCC CCGAAGGTAC CA

32

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TATAGCGGCC GCTCACCGAC TGATATCCCG ACTGGAGTC

39

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

TCCCCCGGGG AGACGATGCA TCACTGTAAG

30

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TATAGCGGCC GCGCTGGCCT GCACCTGTCA TCTGCTGGG

39

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CGGAATTCAT CGGGCATTCC AAACGAACTC

30

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TATAGCGGCC GCCCTGACTC CCACTCATTT CCTTTTTAA

39

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 36 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CGGAATTCCG CCACCATGGC CCCTATACTA GGTTAT

36

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 36 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

GCCAAGCTTG CCACCATGGC CCCTATACTA GGTTAT

36

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

GTAGCAGTAA GAATAGTTAA A

21

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GTTGCCCTGA GGATCATTAA GAAT

24

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

GTTGCCCTGA GGATCATCCG GAAT

24

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TACAATTCTC ACTGCTACAT GTAAGCCATC

30

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Pro Ile Tyr Ser Phe Ile Gly Gly Glu His Phe Pro Arg
1 5 10

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Ile Val Glu Pro Asp Thr Glu Ile Lys
1 5

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Tyr Gly Phe Ser Pro Arg
1 5

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

Ile Lys Glu Val Ala His Val Asn Leu Glu Val Arg
1 5 10

(2) INFORMATION FOR SEQ ID NO: 30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Val Ala Ala Gly Asp Ser Ala Thr
1 5

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2226 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

GAATTCCGGC ACGAGGGCGGG	TTGCAGTATG AGTCGCCAAT CGGACCTAGT	GAGGAGCTTC	60
TTGGAGCAGC AGGAGGCCCG	GGACCACCGG AAGGGGGCAA	TCCTGCCCG TGAGTTCA	120
GACATTAAGG CCCGCTCAGT	GGCTTGGAAAG ACTGAAGGTG	TGTGCTCCAC TAAAGCCGGC	180
AGTCAGCAGG GAAACTCAAA	GAAGAACCGC TACAAAGACG	TGGTACCGTA TGATGAGACG	240
AGAGTCATCC TTTCCCTGCT	CCAGGAGGAA GGACACGGAG	ATTACATTAA TGCCAACCTC	300
ATCCGGGCA CAGATGGAAG	CCAGGCCTAC ATTGCACGC	AAGGACCCCT GCCTCACACT	360
CTGTTGGACT TCTGGCCT	GGTTTGGAG TTTGAATCA	AGGTGATCTT GATGGCCTGT	420
CAGGAGACAG AAAATGGACG	GAGGAAGTGT GAACGCTACT	GGGCCAGGA GCGGGAGCCT	480
CTACAGGCCG GGCCTTCTG	CATCACCCGT ACAAAAGGAGA	CAGCACTGAC TTCGGACATC	540
ACTCTCAGGA CCCTCCAGGT	TACATTCCAG AAGGAATCCC	GTCCTGTGCA CCAGCTACAG	600
TACATGTCTT GGCGGACCA	CGGGGTTCCC AGCAGTTCG	ATCACATTCT CACCATGGTG	660
GAGGAGGCC GTTGCCTCCA	AGGACTTGGA CCTGGACCCC	TCTGTGTCCA CTGCAGTGCT	720
GGCTGTGGAC GAACAGGTGT	CTTGTGTGCT GTTGAATTACG	TGAGGCAGTT GCTTCTGACT	780
CAGACAATCC CACCAATT	CAGGCTCTT GAAGTGGTCC	TGGAGATGCG GAAACAGCGA	840
CCTGCAGCGG TGCGACAGA	GGAGCAGTAC AGGTTCTGT	ACACACAGT GGCTCAGCTA	900
TTCTCCCGCA CTCTCCAGAA	CAACAGTCCC CTCTACAGA	ACCTCAAGGA GAACCGCGCT	960
CCAATCTGCA AGGACTCCTC	GTCCCTCAGG ACCTCCTCAG	CCCTGCCTGC CACATCCC	1020
CCACTGGGTG GCGTTCTCAG	GAGCATCTCG GTGCCCTGGGC	CACCGACCC TCCCCATGGCT	1080
GACACTTACG CTGTGGTGA	GAAGCGTGGC GCTTCCGGCA	GCACAGGGCC GGGCACGCGG	1140
GCGCCCAACA GCACGGACAC	CCCGATCTAC AGCCAGGTGG	CTCCACGTAT CCAGCGGCC	1200
GTGTACACACA CCGAAAACGC	GCAGGGGACA ACGGCACTGG	GCCGAGTTCC TGCGGATGAA	1260
AACCCTCCG GGCCTGATGC	CTATGAGGAA GTAACAGATG	GAGCGCAGAC TGGTGGGCTA	1320
GGCTTCAACT TGCGCATTGG	AAGACCTAAA GGGCCACGGG	ATCCTCCAGC GGAGTGGACA	1380
CGGGGTGTAAT GAGTGTGTA	CCAGTTCCAG CCTGTCACTC	AGTGGTGGCT GGGCGACTGC	1440
AACCCCCATG CTGCTGTGTG	CTGTCTTATG TATGAGTGGG	ACTCATGGC CTGAATCAA	1500
ATAAAAGTTT CTCAGGGTAG	AAAAAAACAA ATAGGGACTT	TGGCCAGTGG TTATAGCAGT	1560
CAAAGCCAGG GGCTAGGAGG	GGTAAGTGGG GGAGGTGGT	GATCTACTCT GAGAAAGTTT	1620
AGGAAAGCAC ATCAAGAGTG	AGCATGCCA CTCTCTCCC	CATACACCTA CTGGAAAGTG	1680
CACCCCAGAC AGAGTCCTAA	CTTGACAGTG CACCTCAGAC	AGGTCGCTAC CTGGATGGAC	1740
ATGCTGGCCC TACAGCTAGA	GACATGTCTA ATTAGATCCT	CATGTAAACT TGCAATGAGC	1800
TAGAAAGATC TCCGCTGGT	CAGGGAATG GATCACCTAG	TCAGGTAAAT AGTGTGCCAT	1860
CCAGAAAGACA GAACTGCAAG	ATACCGTCTT TCTCAAAATG	GAAGAAAATA GATCCTCAAG	1920
AATAAATGTA TGTACAATGC	TCTACGCCCT GATCCTGCC	TGCCTCACTG CCATAATGTC	1980
ACAAACAAGT CAGGGCTAT	ATGACAGTTG TTCATCTAGT	CAGTCCTGAC TGTGGCCTCT	2040
GCAGGCTCAG ATAGTGCCTT	CTGCAGACTG TTGGAATGCC	CGTCTTGAAC TTGATGAAAG	2100
CTTCTACCGG GAACTTGTAA	ACATCATTAA AATTATTAAT	GTAGAATTCA ATAAAGAGTG	2160
GGTCAAAAAC TCAAAAAAAA	AAAAAAAAA AAAAAAAAC	TCGAGAGTAC TTCTAGAGCG	2220
GGCGGG			2226

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 453 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Met	Ser	Arg	Gln	Ser	Asp	Leu	Val	Arg	Ser	Phe	Leu	Glu	Gln	Gln	Glu
1				5			10					15			

Ala	Arg	Asp	His	Arg	Lys	Gly	Ala	Ile	Leu	Ala	Arg	Glu	Phe	Ser	Asp
				20				25				30			

Ile Lys Ala Arg Ser Val Ala Trp Lys Thr Glu Gly Val Cys Ser Thr
 35 40 45

Lys Ala Gly Ser Gln Gln Gly Asn Ser Lys Lys Asn Arg Tyr Lys Asp
 50 55 60

Val Val Pro Tyr Asp Glu Thr Arg Val Ile Leu Ser Leu Leu Gln Glu
 65 70 75 80

Glu Gly His Gly Asp Tyr Ile Asn Ala Asn Phe Ile Arg Gly Thr Asp
 85 90 95

Gly Ser Gln Ala Tyr Ile Ala Thr Gln Gly Pro Leu Pro His Thr Leu
 100 105 110

Leu Asp Phe Trp Arg Leu Val Trp Glu Phe Gly Ile Lys Val Ile Leu
 115 120 125

Met Ala Cys Gln Glu Thr Glu Asn Gly Arg Arg Lys Cys Glu Arg Tyr
 130 135 140

Trp Ala Gln Glu Arg Glu Pro Leu Gln Ala Gly Pro Phe Cys Ile Thr
 145 150 155 160

Leu Thr Lys Glu Thr Ala Leu Thr Ser Asp Ile Thr Leu Arg Thr Leu
 165 170 175

Gln Val Thr Phe Gln Lys Glu Ser Arg Pro Val His Gln Leu Gln Tyr
 180 185 190

Met Ser Trp Pro Asp His Gly Val Pro Ser Ser Ser Asp His Ile Leu
 195 200 205

Thr Met Val Glu Glu Ala Arg Cys Leu Gln Gly Leu Gly Pro Gly Pro
 210 215 220

Leu Cys Val His Cys Ser Ala Gly Cys Gly Arg Thr Gly Val Leu Cys
 225 230 235 240

Ala Val Asp Tyr Val Arg Gln Leu Leu Leu Thr Gln Thr Ile Pro Pro
 245 250 255

Asn Phe Ser Leu Phe Glu Val Val Leu Glu Met Arg Lys Gln Arg Pro
 260 265 270

Ala Ala Val Gln Thr Glu Glu Gln Tyr Arg Phe Leu Tyr His Thr Val
 275 280 285

Ala Gln Leu Phe Ser Arg Thr Leu Gln Asn Asn Ser Pro Leu Tyr Gln
 290 295 300

Asn Leu Lys Glu Asn Arg Ala Pro Ile Cys Lys Asp Ser Ser Ser Leu
 305 310 315 320

Arg Thr Ser Ser Ala Leu Pro Ala Thr Ser Arg Pro Leu Gly Gly Val
 325 330 335

Leu Arg Ser Ile Ser Val Pro Gly Pro Pro Thr Leu Pro Met Ala Asp
 340 345 350

Thr Tyr Ala Val Val Gln Lys Arg Gly Ala Ser Gly Ser Thr Gly Pro
 355 360 365
 Gly Thr Arg Ala Pro Asn Ser Thr Asp Thr Pro Ile Tyr Ser Gln Val
 370 375 380
 Ala Pro Arg Ile Gln Arg Pro Val Ser His Thr Glu Asn Ala Gln Gly
 385 390 395 400
 Thr Thr Ala Leu Gly Arg Val Pro Ala Asp Glu Asn Pro Ser Gly Pro
 405 410 415
 Asp Ala Tyr Glu Glu Val Thr Asp Gly Ala Gln Thr Gly Gly Leu Gly
 420 425 430
 Phe Asn Leu Arg Ile Gly Arg Pro Lys Gly Pro Arg Asp Pro Pro Ala
 435 440 445
 Glu Trp Thr Arg Val
 450

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5581 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

AATTCCGGGC	GCCAGTCCCC	CTCCGCGCCG	CGCCGCTCCG	CTCCGGCTCG	GGCTCCGGCT	60
CGCCTCGGGC	TGGGCTCGGG	CTCCGGGGGC	GGCGTCCCCG	CGCCGGGCC	CGGGACGCGC	120
CGACCTCCAA	CCATGGCCCG	TGCCCAGGCG	CTCGTGCTGG	CACTCACCTT	CCAGCTCTGC	180
GCGCCGGAGA	CCGAGACTCC	GGCAGCTGGC	TGCACCTTCG	AGGAGGCAAG	TGACCCAGCA	240
GTGCCCTGCG	AGTACAGCCA	GGCCCAGTAC	GATGACTTCC	AGTGGGAGCA	AGTGCAGAAC	300
CACCCCTGGCA	CCCAGGCACC	TGCGGACCTG	CCCCACGGCT	CCTACTTGAT	GGTCAACACT	360
TCCCAGCATG	CCCCAGGCCA	GCGAGCCAT	GTCATCTTCC	AGAGCCTGAG	CGAGAACATGAT	420
ACCCACTGTG	TGCAGTTCA	CTACTTCTG	TACAGCCGGG	ACGGCACAGG	CGGCACCCCTG	480
CGCGTCTACG	TGCGCGTTAA	TGGGGGCC	CTGGCGAGTG	CTGTGTGGAA	TATGACTGGAA	540
TCCCACGGCC	GTCAGTGGCA	CCAGGCTGAG	CTGGCTGTCA	GCACCTTCTG	GCCCAATGAA	600
TATCAGGTGC	TGTTTGAGGC	CCTCATCTCC	CCAGACCGCA	GGGGCTACAT	GGGCCTAGAT	660
GACATCCTGC	TTCTCAGCTA	CCCCCTCGCA	AAGGCCAAC	ACTTCTCCCG	CCTGGGCGAC	720
GTGGGAGGTCA	ACGGGGGCCA	GAACGCGTCG	TTCCAGTGCA	TGGCCGCGG	AGAGCCCAGT	780
CGCCAACGCT	TCCTCTTGCA	ACGGCAGAGC	GGGGCCCTGG	TGCCGGCCGG	GGCGTTCGGC	840
ACATCAGGCCA	CCGGCTTCC	GGCCACTTTC	CCGCTGGCTG	CCGTGAGCCG	CGCCGAGCAG	900
GACCTGTACC	GCTGTGTGTC	CCAGGCCCCG	CGCCGGCGCG	TCTCTAACCT	CCCGGAGCTC	960
ATCGTCAAGG	AGCCCCAAC	TCCCCTCGCG	CCCCCACAGC	TGCTCGTGC	TGGCCCCACC	1020
TACCTCATCA	TCCAGCTCAA	CACCAACTCC	ATCATTGGCG	ACGGGCCGAT	CGTGCAGAAC	1080
GAGATTGAGT	ACCGCATGGC	CGCGGGGCC	TGGGCTGAGG	TGCACGCCGT	CAGCCTGCAG	1140
ACCTACAAGC	TGTGGCACCT	CGACCCCGAC	ACAGACTATG	AGATCAGCGT	GCTGCTCAGC	1200
CGTCCCGGAG	ACGGCGGCAC	TGGCCGCTGG	GCCACCCCTC	ATCAGCCGA	CCAAATGCGC	1260
AGAGCCCAGT	AGGGCCCCAA	AGGCCTGGCT	TTTGCTGAGA	TCCAGGCCCG	TCAGCTGACC	1320
CTGCAGTGGG	AACCACGGG	CTACAACGTG	ACCGCTTGCC	ACACCTATAAC	TGTGTCGCTG	1380
TGCTATCACT	ACACCCCTGGG	CAGCAGCCAC	AACCAGACCA	TCCGAGAGTG	TGTGAAGACA	1440
GAGCAAGGTG	TCAGCCGCTA	CACCATCAAG	AACCTGCTGC	CCTATCGGAA	CGTTCACGTG	1500
AGGCTTGTCC	TCACTAACCC	TGAGGGGGC	AAAGAGGGCA	AGGAGGTAC	TTTCAGACG	1560
GATGAGGATG	TGCCAGTGG	GATTGAGCC	GAGTCCCTGA	CCTTCACTCC	ACTGGAGGAC	1620

ATGATCTTCC	TCAAGTGGGA	GGAGCCCCAG	GAGCCAATG	GTCTCATCAC	CCAGTATGAG	1680
ATCAGCTACC	AGAGCATCGA	GTCATCAGAC	CCGGCAGTGA	ACGTGCCAGG	CCCACGACGT	1740
ACCATCTCCA	AGCTCCGCAA	TGAGACCTAC	CATGTCTTCT	CCAACCTGCA	CCCAAGGCACC	1800
ACCTACCTGT	TCTCCGTGCG	GGCCCGCACA	GGCAAAGGCT	TCGGCCAGGC	GGCACTCACT	1860
GAGATAACCA	CTAACATCTC	TGCTCCCAGC	TTTGATTATG	CCGACATGCC	GTCACCCCTG	1920
GGCGAGTCTG	AGAACACCAT	CACCGTGCTG	CTGAGGCCGG	CACAGGGCCG	CGGTGCGCCC	1980
ATCAGTGTGT	ACCAGGTGAT	TGTGGAGGAG	GAGCGGGCGC	GAGGCTGCGG	CGGGACGAGG	2040
TGGACAGGAC	TGCTTCCCAG	TGCCATTGAC	CTTCGAGGCG	GCGCTGGCCC	CAGGCTGGTG	2100
CACTACTTCG	GGGCCGAACT	GGCGGCCAGC	AGTCTACCTG	AGGCCATGCC	CTTACCGTG	2160
GGTGACAACC	AGACCTACCG	AGGCTTCTGG	AACCCACCAC	TTGAGCCTAG	GAAGGCCTAT	2220
CTCATCTACT	TCCAGGCAGC	AAGCCACCTG	AAGGGGGAGA	CCCAGCTGAA	TTGCATCCGC	2280
ATTGCCAGGA	AAGCTGCCCTG	CAAGGAAAGC	AAGCGGCC	TGGAGGTGTC	CCAGAGATCG	2340
GAGGAGATGG	GGCTTATCCT	GGGCATCTGT	GCAGGGGGGC	TTGCTGTCCT	CATCCCTCTC	2400
CTGGGTGCCA	TCATTGTCAT	CATCCGCAAA	GGGAAGCCGG	TGAACATGAC	CAAGGCCACC	2460
GTCAACTACC	GCCAGGAGAA	GACACACATG	ATAGCGCCG	TGGACCGCAG	CTTCACAGAC	2520
CAGAGCACCC	TGCAAGGAGA	CGAGGGCTG	GGCCTGTCCT	TCATGGACAC	CCATGGCTAC	2580
AGCACCCGGG	GAGACCGAGC	CAGCGGTGGG	GTCACTGAGG	CCAGCAGCCT	CTGGGGGGGC	2640
TCCCCGAGGC	GTCCCTGTGG	CCGGAAGGGC	TCCCCATACC	ACACGGGGCA	GCTGCACCC	2700
GGGGTGCCTG	TCGCAGACCT	TCTGCAGCAC	ATCAACCAGA	TGAAGACGGC	CGAGGGTTAC	2760
GGCTTCAAGC	AGGAGTATGA	GAGCTCTTT	GAAGGCTGGG	ACGCCACAAA	GAAGAAAGAC	2820
AAGGTCAAGG	GCAGCCGGCA	GGAGCCAATG	CCTGCCTATG	ATCGGCACCG	AGTGAAACTG	2880
CACCCGATGC	TGGGAGACCC	CAATGCCGAC	TACATTAATG	CCAACATACAT	AGATGGTTAC	2940
CACAGGTCAA	ACCACTTCAT	AGCCACTCAA	GGGCCGAAGC	CTGAGATGGT	CTATGACTTC	3000
TGGCGTATGG	TGTGGCAGGA	GCACGTTC	AGCATCGTC	TGATCACCAA	GCTGGTCGAG	3060
GTGGGCAGGG	TGAAATGCTC	ACGGTACTGG	CCGGAGGACT	CAGACACCTA	CGGGGACATC	3120
AAGATTATGC	TGGTGAAGAC	AGAGACCCCTG	GCTGAGTATG	TCGTGCGCAC	TTTGCCCTG	3180
GAGCGGAGAG	GCTACTCTGC	CCGGCACGAG	GTCCGCCAGT	CCCACTTCAC	AGCGTGGCCA	3240
GAGCATGGCG	TCCCCTACCA	TGCCACGGG	CTGCTGGCTT	TCATCCGGCG	GGTGAAGGCC	3300
TCCACCCAC	CTGATGCCGG	GCCCATTGTC	ATCCACTGCA	GCGCGGCCAC	CGGCCGCACA	3360
CGTTGCTATA	TCGTCCTGGA	TGTGATGCTG	GACATGGCAG	AGTGTGAGGG	CGTCGTGGAC	3420
ATTTACAAC	GTGTGAAGAC	TCTCTGCTCC	CGGCGTGTCA	ACATGATCCA	GACTGAGGAG	3480
CAGTACATCT	TCATTCTATGA	TGCAATCTG	GAGGCCTGCC	TGTGTGGGA	GACCACCATC	3540
CCTGTCAGTG	AGTTCAAGG	CACCTACAA	GAGATGATCC	GCATTGATCC	TCAGAGTAAT	3600
TCCTCCCAAGC	TGCGGAAGA	GTTCCAGACG	CTGAACCTGG	TCACCCCGCC	GCTGGACGTG	3660
GAGGAGTGCA	GCATGCCCT	GTTCCCCCGG	AACCGCGACA	AGAACCGCAG	CATGGACGTC	3720
CTGCCGCCG	ACCGCTGCC	GCCCTCCCTC	ATCTCCACTG	ATGGGGACTC	CAACAACATAC	3780
ATTAATGCAG	CCCTGACTGA	CAGCTACACA	CGGAGGTGCG	CCTTCATGGT	GACCCCTGCAC	3840
CCGCTGCAGA	GCACCAAGCC	CGACTTCTGG	CGGCTGGTCT	ACGATTACGG	GTGCACCTCC	3900
ATCGTCATGC	TCAACCAGCT	GAACCAGTCC	AACTCCGCCT	GGCCCTGCCT	GCAGTACTGG	3960
CCAGAGCCAG	GCCGGCAGCA	ATATGGCCTC	ATGGAGGTGG	AGTTTATGTC	GGGCACAGCT	4020
GATGAAGACT	TAGTGGCTCG	AGTCTCCGG	GTGCAGAAC	TCTCTCGGTT	GCAGGAGGG	4080
GACCTGCTGG	TGCGCACTT	CCAGTTCTG	CGCTGGTCTG	CATACCGGGA	CACACCTGAC	4140
TCCAAGAAGG	CCTTCTTGCA	CCTGCTGGCT	GAGGTGGACA	AGTGGCAGGC	CGAGAGTGGG	4200
GATGGGCGCA	CCATCGTCA	CTGCCTAAAC	GGGGGAGGAC	GCAGCAGCAC	CTTCTGCGCC	4260
TGCGCCACGG	TCCTGGAGAT	GATCGCTGC	CACAACCTGG	TGGACGTTTT	CTTGCTGCGC	4320
CAAACCTCC	GGAACTACAA	ACCCAACATG	GTGGAGACCA	TGGATCAGTA	CCACTTTTG	4380
TACGATGTGG	CCCTGGAGTA	CTTGGAGGGG	CTGGAGTC	GATAGCGGGG	CCCTGGCCTG	4440
GGGCACCCAC	TGCACACTCA	GGGCCAGACC	CACCATCTG	GACTGGCGAG	GAAGATCAGT	4500
GCCTCCTGCT	CTGCCAACAC	ACACTCCCAT	GGGCAAGCA	CTGGAGTGG	TGCTGGGCTA	4560
TCTTGTCTCC	CCTTCCACTG	TGGGCAGGGC	CTTCGCTITG	TCCCAGGGG	GGGTGGTGGG	4620
CCAAGGAGGA	GCTTAGCAAG	TCTGCACCCC	ACCCCCACCT	CCATAGGGTC	CTGCAGGCCT	4680
GTGCTGAGAG	GCCTGGTGC	GCCTGGCAGA	GTGACAAAGG	CTCAGGACGG	CTGGCTCTGG	4740
GGGACTCAGG	CCAAGGGGGT	TGGCAGGATC	CTGGGTTTTG	GGAGGGATGA	GTGAGGCCCT	4800
GCAGAGAGCA	TCCCAGGCCA	AGGTTCCAC	TCAGCCTGCC	CCCTCTGCAT	GTGGGTAGAG	4860
GATGTAATGG	GAATGGCAT	TTAGGATTC	ATCTGGGGA	CCCCCTGAAG	GTCCCCCCCC	4920
AGCAGGTCTC	AATTCTGATA	GCCAGTGGGG	CACACTGACT	GTCCTCCCCA	GGGAACTGC	4980
AGCGCCCTCC	TCCCCACTGC	CCCCTCCAGC	CCCTGAGATA	TTTTGCTCAC	TATCCCTCCC	5040
CACTTGCTTC	CCTGATATGT	GCTCTGACTT	CCCTGAACCA	GGATCTGCCT	ATTACTGCTG	5100
TCCCATGGGG	GGCTCTTCC	CTGCCTGACC	CACTGTTGCA	GAATGAAGTC	ACCTCGCCCC	5160
CCTCTTCC	TAATCTTCAG	GCCTCACTGG	CCTGCTCTGC	TCAGCTGGG	CCAGTACAA	5220
TCTGCAAGGC	TGAACAACAG	CCCCTGGGGT	TGAGGCCCT	GTGGCTCTG	GTCAGGCTGC	5280
CCGTTGTGGG	GAGGGGCAGT	GTTAGAGCAG	GGCTGGTCAT	ACCCTCTGGA	GTTCAGAGCA	5340

AGAGGTAGGA CCAGTGCTT	TTTGTTCCTT TTGTTATTTT	TGGTTGGGTG GGTGGGAAGG	5400
TCTCTTAAA ATGGGGCAGG	CCACACCCCC ATTCCGTGCC	TCAATTCCC CATCTGAAA	5460
CTGTAGATAT GACTACTGAC	CTACCTCGCA GGGGGCTGTG	GGGAGGCATA AGCTGATGTT	5520
TGTAAAGCGC TTTGTAAATA	AACGTGCTCT CTGAATGCCA	AAAAAAAAAA AACAAAAAAA	5580
A			5581

(2) INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1430 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Met Ala Arg Ala Gln Ala Leu Val Leu Ala Leu Thr Phe Gln Leu Cys
 1 5 10 15

Ala Pro Glu Thr Glu Thr Pro Ala Ala Gly Cys Thr Phe Glu Glu Ala
 20 25 30

Ser Asp Pro Ala Val Pro Cys Glu Tyr Ser Gln Ala Gln Tyr Asp Asp
 35 40 45

Phe Gln Trp Glu Gln Val Arg Ile His Pro Gly Thr Arg Ala Pro Ala
 50 55 60

Asp Leu Pro His Gly Ser Tyr Leu Met Val Asn Thr Ser Gln His Ala
 65 70 75 80

Pro Gly Gln Arg Ala His Val Ile Phe Gln Ser Leu Ser Glu Asn Asp
 85 90 95

Thr His Cys Val Gln Phe Ser Tyr Phe Leu Tyr Ser Arg Asp Gly Thr
 100 105 110

Gly Gly Thr Leu Arg Val Tyr Val Arg Val Asn Gly Gly Pro Leu Ala
 115 120 125

Ser Ala Val Trp Asn Met Thr Gly Ser His Gly Arg Gln Trp His Gln
 130 135 140

Ala Glu Leu Ala Val Ser Thr Phe Trp Pro Asn Glu Tyr Gln Val Leu
 145 150 155 160

Phe Glu Ala Leu Ile Ser Pro Asp Arg Arg Gly Tyr Met Gly Leu Asp
 165 170 175

Asp Ile Leu Leu Ser Tyr Pro Cys Ala Lys Ala Pro His Phe Ser
 180 185 190

Arg Leu Gly Asp Val Glu Val Asn Ala Gly Gln Asn Ala Ser Phe Gln
 195 200 205

Cys Met Ala Ala Gly Glu Pro Met Arg Gln Arg Phe Leu Leu Gln Arg
 210 215 220

Gln Ser Gly Ala Leu Val Pro Ala Gly Ala Phe Gly Thr Ser Ala Thr
 225 230 235 240
 Gly Phe Leu Ala Thr Phe Pro Leu Ala Ala Val Ser Arg Ala Glu Gln
 245 250 255
 Asp Leu Tyr Arg Cys Val Ser Gln Ala Pro Arg Gly Gly Val Ser Asn
 260 265 270
 Phe Pro Glu Leu Ile Val Lys Glu Pro Pro Thr Pro Ile Ala Pro Pro
 275 280 285
 Gln Leu Leu Arg Ala Gly Pro Thr Tyr Leu Ile Ile Gln Leu Asn Thr
 290 295 300
 Asn Ser Ile Ile Gly Asp Gly Pro Ile Val Arg Lys Glu Ile Glu Tyr
 305 310 315 320
 Arg Met Ala Arg Gly Pro Trp Ala Glu Val His Ala Val Ser Leu Gln
 325 330 335
 Thr Tyr Lys Leu Trp His Leu Asp Pro Asp Thr Asp Tyr Glu Ile Ser
 340 345 350
 Val Leu Leu Thr Arg Pro Gly Asp Gly Gly Thr Gly Arg Trp Ala Thr
 355 360 365
 Pro His Gln Pro His Gln Met Arg Arg Ala His Glu Gly Pro Lys Gly
 370 375 380
 Leu Ala Phe Ala Glu Ile Gln Ala Arg Gln Leu Thr Leu Gln Trp Glu
 385 390 395 400
 Pro Leu Gly Tyr Asn Val Thr Arg Cys His Thr Tyr Thr Val Ser Leu
 405 410 415
 Cys Tyr His Tyr Thr Leu Gly Ser Ser His Asn Gln Thr Ile Arg Glu
 420 425 430
 Cys Val Lys Thr Glu Gln Gly Val Ser Arg Tyr Thr Ile Lys Asn Leu
 435 440 445
 Leu Pro Tyr Arg Asn Val His Val Arg Leu Val Leu Thr Asn Pro Glu
 450 455 460
 Gly Arg Lys Glu Gly Lys Glu Val Thr Phe Gln Thr Asp Glu Asp Val
 465 470 475 480
 Pro Ser Gly Ile Ala Ala Glu Ser Leu Thr Phe Thr Pro Leu Glu Asp
 485 490 495
 Met Ile Phe Leu Lys Trp Glu Glu Pro Gln Glu Pro Asn Gly Leu Ile
 500 505 510
 Thr Gln Tyr Glu Ile Ser Tyr Gln Ser Ile Glu Ser Ser Asp Pro Ala
 515 520 525
 Val Asn Val Pro Gly Pro Arg Arg Thr Ile Ser Lys Leu Arg Asn Glu
 530 535 540

Thr Tyr His Val Phe Ser Asn Leu His Pro Gly Thr Thr Tyr Leu Phe
 545 550 555 560
 Ser Val Arg Ala Arg Thr Gly Lys Gly Phe Gly Gln Ala Ala Leu Thr
 565 570 575
 Glu Ile Thr Thr Asn Ile Ser Ala Pro Ser Phe Asp Tyr Ala Asp Met
 580 585 590
 Pro Ser Pro Leu Gly Glu Ser Glu Asn Thr Ile Thr Val Leu Leu Arg
 595 600 605
 Pro Ala Gln Gly Arg Gly Ala Pro Ile Ser Val Tyr Gln Val Ile Val
 610 615 620
 Glu Glu Glu Arg Ala Arg Gly Cys Gly Thr Arg Trp Thr Gly Leu
 625 630 635 640
 Leu Pro Ser Ala Ile Asp Leu Arg Gly Gly Ala Gly Pro Arg Leu Val
 645 650 655
 His Tyr Phe Gly Ala Glu Leu Ala Ala Ser Ser Leu Pro Glu Ala Met
 660 665 670
 Pro Phe Thr Val Gly Asp Asn Gln Thr Tyr Arg Gly Phe Trp Asn Pro
 675 680 685
 Pro Leu Glu Pro Arg Lys Ala Tyr Leu Ile Tyr Phe Gln Ala Ala Ser
 690 695 700
 His Leu Lys Gly Glu Thr Arg Leu Asn Cys Ile Arg Ile Ala Arg Lys
 705 710 715 720
 Ala Ala Cys Lys Glu Ser Lys Arg Pro Leu Glu Val Ser Gln Arg Ser
 725 730 735
 Glu Glu Met Gly Leu Ile Leu Gly Ile Cys Ala Gly Gly Leu Ala Val
 740 745 750
 Leu Ile Leu Leu Leu Gly Ala Ile Ile Val Ile Ile Arg Lys Gly Lys
 755 760 765
 Pro Val Asn Met Thr Lys Ala Thr Val Asn Tyr Arg Gln Glu Lys Thr
 770 775 780
 His Met Ile Ser Ala Val Asp Arg Ser Phe Thr Asp Gln Ser Thr Leu
 785 790 795 800
 Gln Glu Asp Glu Arg Leu Gly Leu Ser Phe Met Asp Thr His Gly Tyr
 805 810 815
 Ser Thr Arg Gly Asp Gln Arg Ser Gly Gly Val Thr Glu Ala Ser Ser
 820 825 830
 Leu Leu Gly Gly Ser Pro Arg Arg Pro Cys Gly Arg Lys Gly Ser Pro
 835 840 845
 Tyr His Thr Gly Gln Leu His Pro Ala Val Arg Val Ala Asp Leu Leu
 850 855 860
 Gln His Ile Asn Gln Met Lys Thr Ala Glu Gly Tyr Gly Phe Lys Gln
 865 870 875 880

Glu Tyr Glu Ser Phe Phe Glu Gly Trp Asp Ala Thr Lys Lys Lys Asp
 885 890 895

Lys Val Lys Gly Ser Arg Gln Glu Pro Met Pro Ala Tyr Asp Arg His
 900 905 910

Arg Val Lys Leu His Pro Met Leu Gly Asp Pro Asn Ala Asp Tyr Ile
 915 920 925

Asn Ala Asn Tyr Ile Asp Gly Tyr His Arg Ser Asn His Phe Ile Ala
 930 935 940

Thr Gln Gly Pro Lys Pro Glu Met Val Tyr Asp Phe Trp Arg Met Val
 945 950 955 960

Trp Gln Glu His Cys Ser Ser Ile Val Met Ile Thr Lys Leu Val Glu
 965 970 975

Val Gly Arg Val Lys Cys Ser Arg Tyr Trp Pro Glu Asp Ser Asp Thr
 980 985 990

Tyr Gly Asp Ile Lys Ile Met Leu Val Lys Thr Glu Thr Leu Ala Glu
 995 1000 1005

Tyr Val Val Arg Thr Phe Ala Leu Glu Arg Arg Gly Tyr Ser Ala Arg
 1010 1015 1020

His Glu Val Arg Gln Ser His Phe Thr Ala Trp Pro Glu His Gly Val
 1025 1030 1035 1040

Pro Tyr His Ala Thr Gly Leu Leu Ala Phe Ile Arg Arg Val Lys Ala
 1045 1050 1055

Ser Thr Pro Pro Asp Ala Gly Pro Ile Val Ile His Cys Ser Ala Gly
 1060 1065 1070

Thr Gly Arg Thr Arg Cys Tyr Ile Val Leu Asp Val Met Leu Asp Met
 1075 1080 1085

Ala Glu Cys Glu Gly Val Val Asp Ile Tyr Asn Cys Val Lys Thr Leu
 1090 1095 1100

Cys Ser Arg Arg Val Asn Met Ile Gln Thr Glu Glu Gln Tyr Ile Phe
 1105 1110 1115 1120

Ile His Asp Ala Ile Leu Glu Ala Cys Leu Cys Gly Glu Thr Thr Ile
 1125 1130 1135

Pro Val Ser Glu Phe Lys Ala Thr Tyr Lys Glu Met Ile Arg Ile Asp
 1140 1145 1150

Pro Gln Ser Asn Ser Ser Gln Leu Arg Glu Glu Phe Gln Thr Leu Asn
 1155 1160 1165

Ser Val Thr Pro Pro Leu Asp Val Glu Glu Cys Ser Ile Ala Leu Leu
 1170 1175 1180

Pro Arg Asn Arg Asp Lys Asn Arg Ser Met Asp Val Leu Pro Pro Asp
 1185 1190 1195 1200

Arg Cys Leu Pro Phe Leu Ile Ser Thr Asp Gly Asp Ser Asn Asn Tyr
 1205 1210 1215
 Ile Asn Ala Ala Leu Thr Asp Ser Tyr Thr Arg Arg Ser Ala Phe Met
 1220 1225 1230
 Val Thr Leu His Pro Leu Gln Ser Thr Thr Pro Asp Phe Trp Arg Leu
 1235 1240 1245
 Val Tyr Asp Tyr Gly Cys Thr Ser Ile Val Met Leu Asn Gln Leu Asn
 1250 1255 1260
 Gln Ser Asn Ser Ala Trp Pro Cys Leu Gln Tyr Trp Pro Glu Pro Gly
 1265 1270 1275 1280
 Arg Gln Gln Tyr Gly Leu Met Glu Val Glu Phe Met Ser Gly Thr Ala
 1285 1290 1295
 Asp Glu Asp Leu Val Ala Arg Val Phe Arg Val Gln Asn Ile Ser Arg
 1300 1305 1310
 Leu Gln Glu Gly Asp Leu Leu Val Arg His Phe Gln Phe Leu Arg Trp
 1315 1320 1325
 Ser Ala Tyr Arg Asp Thr Pro Asp Ser Lys Lys Ala Phe Leu His Leu
 1330 1335 1340
 Leu Ala Glu Val Asp Lys Trp Gln Ala Glu Ser Gly Asp Gly Arg Thr
 1345 1350 1355 1360
 Ile Val His Cys Leu Asn Gly Gly Arg Ser Gly Thr Phe Cys Ala
 1365 1370 1375
 Cys Ala Thr Val Leu Glu Met Ile Arg Cys His Asn Leu Val Asp Val
 1380 1385 1390
 Phe Phe Ala Ala Gln Thr Leu Arg Asn Tyr Lys Pro Asn Met Val Glu
 1395 1400 1405
 Thr Met Asp Gln Tyr His Phe Cys Tyr Asp Val Ala Leu Glu Tyr Leu
 1410 1415 1420
 Glu Gly Leu Glu Ser Arg
 1425 1430

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2810 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

GAATTCGGCA CGAGCGGGCT GGACCTTGCT CGCCCGCGGC GCCATGAGCC GCAGCCTGGA	60
CTCGGCGCCG AGCTTCTGG AGCGGCTGGA AGCGCGGGGC GGCCGGGAGG GGGCAGTCCT	120
CGCCGGCGAG TTCAGCGACA TCCAGGCCTG CTCGGCCGCC TGGAAGGCTG ACGGCGTGTG	180

CTCCACCGTG	GCCGGCAGTC	GGCCAGAGAA	CGTGAGGAAG	AACCGCTACA	AAGACGTGCT	240
GCCTTATGAT	CAGACGCGAG	TAATCCTCTC	CCTGCTCCAG	GAAGAGGGAC	ACAGCAGTA	300
CATTAATGGC	AACTCATCC	GGGGCGTGGG	TGGAAGCCTG	GCCTACATTG	CCACGCAAGG	360
ACCCTTGCT	CACACCCCTGC	TAGACTCTG	GAGACTGGTC	TGGGAGTTG	GGGTCAAGGT	420
GATCCTGATG	GCCTGTCGAG	AGATAGAGAA	TGGGCGGAAA	AGGTGTGAGC	GGTACTGGGC	480
CCAGGAGCAG	GAGCCACTGC	AGACTGGGCT	TTTCTGCATC	ACTCTGATAA	AGGAGAAGTG	540
GCTGAATGAG	GACATCATGC	TCAGGACCT	CAAGGTCACA	TTCCAGAAGG	AGTCCC GTTC	600
TGTGTACCAAG	CTACAGTATA	TGTCTGGCC	AGACCGTGGG	GTCCCCAGCA	GTCCTGACCA	660
CATGCTGCC	ATGGTGGAGG	AAGCCCCTCG	CCTCCAGGGG	TCTGGCCCTG	AACCCCTCTG	720
TGTCCACTGC	AGTGCGGGTT	GTGGGCGAAC	AGGCGTCCTG	TGCACC GTGG	ATTATGTGAG	780
GCAGCTGCTC	CTGACCCAGA	TGATCCCACC	TGACTTCAGT	CTCTTGTATG	TGGTCCTTAA	840
GATGAGGAAG	CAGCGGCCTG	CGGCCGTGCA	GACAGAGGAG	CAGTACAGGT	TCCTGTACCA	900
CACGGTGGCT	CAGATGTTCT	GCTCCACACT	CCAGAAATGCC	AGCCCCCACT	ACCAGAACAT	960
CAAAGAGAAT	TGTGCCAAC	TCTACGACGA	TGCCCTCTTC	CTCCGGACTC	CCCAGGCACT	1020
TCTCGCCATA	CCCCGCCAAC	CAGGAGGGT	CCTCAGGAGC	ATCTCTGTG	CCGGGTCCCC	1080
GGGGCACGCC	ATGGCTGACA	CCTACGGGA	GGAGCAGAAG	CGCGGGCTC	CAGCGGGCAGC	1140
CGGGAGTGGG	ACGCAGACGG	GGACGGGGAC	GGGGCGCGC	AGGGCGGAGG	AGGCGCCGCT	1200
CTACAGCAAG	GTGACGCCGC	GCGCCCGAGC	ACCCGGGGCG	CACCGGGAGG	ACGCAGGGGG	1260
GACGCTGCC	GGCCGGTTC	CTGCTGACCA	AAGTCTGCC	GGATCTGGCG	CCTACGAGGA	1320
CGTGGCGGGT	GGAGCTCAGA	CCGGTGGGCT	AGGTTTCAAC	CTGCGCATTG	GGAGGCCGAA	1380
GGGTCCCCGG	GACCCGCCCTG	CTGAGTGGAC	CCGGGTGTAA	GTCTAACGCC	AGTTCTGCG	1440
TGTTGCCTCT	TGTGAGCTCG	GACTGCTGAT	GCCCCGGTGC	TGCTGAGCGC	CGTGCCGAGA	1500
ATGGAAACAG	TGGGCCTGGA	TCAAAGTTAA	AGTTTCTCAG	GGTGGGAAAT	TGGGGGGCTT	1560
TGCCCAATGA	CTGTAGCATT	CAAGGCTG	GGCTGGAGGA	GGTAGCTAGG	GTATAGTGGC	1620
TGGTGAGGCT	GCACAGAGCA	GATTCAAGAA	AGAAGATCAG	GAAGGGGCAT	GACCCCTGAG	1680
TTATGAAGGG	GAGAAGGGAC	AGATGAGCTT	CCGGAGACTG	CTCTCCTCAC	CACACAGCAC	1740
TAGTCCATCC	TCAGCACCTG	AGCCTCCCTC	ACTTGGACAC	TCAGGGGACC	ACACAGAGAA	1800
GTGGATGGAC	ACTTCGCCAT	CCAGGCAGAA	CTAACGCCAG	CATAACCACA	GCCAAGCAGA	1860
TTAACCCCG	GCAGACCGAT	AAAAAGACCT	CCAGATAGGC	AGACAGACAG	ATGGACCACC	1920
AACCTGGACA	GACAGCCAAA	GCTTCAGAGA	TACAGTCCAC	AGGTGGACAA	AGGATCCCCC	1980
AGCCAGAGAG	AGAGAGACCA	GCCAACAGCT	TGATAGACCA	GTGCAGCCAG	AGAGACCACC	2040
AAACACAGCC	CCCCAAAGAC	AGACATCTCT	GCTAGCTGGA	CAGCCAGGTG	GACCCCTAA	2100
GTTAGTCAGA	TTACTAGACA	GATATAAACAA	GATCCCTG	TGAACAGATA	TACAGAGTT	2160
TCAGACCCCA	CTCCCTCAGG	TGGGCTGGCT	GGCTGACAGA	CCTTCTGGCC	AGACAGACTC	2220
CTAACCAACC	AGATGGACTG	CCAGACAGGC	AGACATCAGT	CCACATGGAA	TCCTGACATC	2280
CCAGCCAGCC	GGCCAGACTC	TCATCTTGAT	GTCTTGATGG	ATGGACCCCA	GCTAGTCAGA	2340
CATGATCCTC	CAGATTGACA	GACAAGTCCC	CCAAATGAGT	ACACATCTCC	AGCTATTCA	2400
ACAGATGGAG	CCCCAGCAAA	TCAGGACCTA	TCTAGGCAGA	CCCCAGCCAG	ACCCCCGCCA	2460
GACAGACTCC	CAACCAGACT	GACCCCTG	TGTTCACACA	GCCTGCCAG	TAGCTGGGAC	2520
TACAGGTCTA	ATTTTTTTTT	TTTTTAAGAA	ATGAGTTTTT	GCCATGTTGC	CCAGACTGGT	2580
CTTGAACCTCC	CAACCTCAAG	CAATCCTCCT	GCCTCAGCCT	CCCAAAGTGC	TGAGATTACA	2640
GGTGTGAGCC	ACCAGGCTCA	GCCCCCTAAG	ATTGAAACA	CTTTAAATGG	CCCATGGTAG	2700
GGTTCCCTGCT	AGGATAAAAC	ATTAAGTGGC	TGTTAAAAGA	AATAAAAGGA	GGACACGTCT	2760
CTGTGCAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAA	AAAAAAA	2810

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 458 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Met Ser Arg Ser Leu Asp Ser Ala Pro Ser Phe Leu Glu Arg Leu Glu
 1 5 10 15

Ala Arg Gly Gly Arg Glu Gly Ala Val Leu Ala Gly Glu Phe Ser Asp
 20 25 30

Ile Gln Ala Cys Ser Ala Ala Trp Lys Ala Asp Gly Val Cys Ser Thr
 35 40 45

Val Ala Gly Ser Arg Pro Glu Asn Val Arg Lys Asn Arg Tyr Lys Asp
 50 55 60

Val Leu Pro Tyr Asp Gln Thr Arg Val Ile Leu Ser Leu Leu Gln Glu
 65 70 75 80

Glu Gly His Ser Asp Tyr Ile Asn Gly Asn Phe Ile Arg Gly Val Asp
 85 90 95

Gly Ser Leu Ala Tyr Ile Ala Thr Gln Gly Pro Leu Pro His Thr Leu
 100 105 110

Leu Asp Phe Trp Arg Leu Val Trp Glu Phe Gly Val Lys Val Ile Leu
 115 120 125

Met Ala Cys Arg Glu Ile Glu Asn Gly Arg Lys Arg Cys Glu Arg Tyr
 130 135 140

Trp Ala Gln Glu Gln Glu Pro Leu Gln Thr Gly Leu Phe Cys Ile Thr
 145 150 155 160

Leu Ile Lys Glu Lys Trp Leu Asn Glu Asp Ile Met Leu Arg Thr Leu
 165 170 175

Lys Val Thr Phe Gln Lys Glu Ser Arg Ser Val Tyr Gln Leu Gln Tyr
 180 185 190

Met Ser Trp Pro Asp Arg Gly Val Pro Ser Ser Pro Asp His Met Leu
 195 200 205

Ala Met Val Glu Glu Ala Arg Arg Leu Gln Gly Ser Gly Pro Glu Pro
 210 215 220

Leu Cys Val His Cys Ser Ala Gly Cys Gly Arg Thr Gly Val Leu Cys
 225 230 235 240

Thr Val Asp Tyr Val Arg Gln Leu Leu Leu Thr Gln Met Ile Pro Pro
 245 250 255

Asp Phe Ser Leu Phe Asp Val Val Leu Lys Met Arg Lys Gln Arg Pro
 260 265 270

Ala Ala Val Gln Thr Glu Glu Gln Tyr Arg Phe Leu Tyr His Thr Val
 275 280 285

Ala Gln Met Phe Cys Ser Thr Leu Gln Asn Ala Ser Pro His Tyr Gln
 290 295 300

Asn Ile Lys Glu Asn Cys Ala Pro Leu Tyr Asp Asp Ala Leu Phe Leu
 305 310 315 320

Arg Thr Pro Gln Ala Leu Leu Ala Ile Pro Arg Pro Pro Gly Gly Val
 325 330 335
 Leu Arg Ser Ile Ser Val Pro Gly Ser Pro Gly His Ala Met Ala Asp
 340 345 350
 Thr Tyr Ala Glu Glu Gln Lys Arg Gly Ala Pro Ala Gly Ala Gly Ser
 355 360 365
 Gly Thr Gln Thr Gly Thr Gly Ala Arg Arg Ala Glu Glu Ala
 370 375 380
 Pro Leu Tyr Ser Lys Val Thr Pro Arg Ala Gln Arg Pro Gly Ala His
 385 390 395 400
 Ala Glu Asp Ala Arg Gly Thr Leu Pro Gly Arg Val Pro Ala Asp Gln
 405 410 415
 Ser Pro Ala Gly Ser Gly Ala Tyr Glu Asp Val Ala Gly Gly Ala Gln
 420 425 430
 Thr Gly Gly Leu Gly Phe Asn Leu Arg Ile Gly Arg Pro Lys Gly Pro
 435 440 445
 Arg Asp Pro Pro Ala Glu Trp Thr Arg Val
 450 455

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 503 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

Met Glu Pro Ala Gly Pro Ala Pro Gly Arg Leu Gly Pro Leu Leu Cys
 1 5 10 15
 Leu Leu Leu Ala Ala Ser Cys Ala Trp Ser Gly Val Ala Gly Glu Glu
 20 25 30
 Glu Leu Gln Val Ile Gln Pro Asp Lys Ser Val Ser Val Ala Ala Gly
 35 40 45
 Glu Ser Ala Ile Leu His Cys Thr Val Thr Ser Leu Ile Pro Val Gly
 50 55 60
 Pro Ile Gln Trp Phe Arg Gly Ala Gly Pro Ala Arg Glu Leu Ile Tyr
 65 70 75 80
 Asn Gln Lys Glu Gly His Phe Pro Arg Val Thr Thr Val Ser Glu Ser
 85 90 95
 Thr Lys Arg Glu Asn Met Asp Phe Ser Ile Ser Ile Ser Asn Ile Thr
 100 105 110

Pro Ala Asp Ala Gly Thr Tyr Tyr Cys Val Lys Phe Arg Lys Gly Ser
 115 120 125
 Pro Asp Thr Glu Phe Lys Ser Gly Ala Gly Thr Glu Leu Ser Val Arg
 130 135 140
 Ala Lys Pro Ser Ala Pro Val Val Ser Gly Pro Ala Ala Arg Ala Thr
 145 150 155 160
 Pro Gln His Thr Val Ser Phe Thr Cys Glu Ser His Gly Phe Ser Pro
 165 170 175
 Arg Asp Ile Thr Leu Lys Trp Phe Lys Asn Gly Asn Glu Leu Ser Asp
 180 185 190
 Phe Gln Thr Asn Val Asp Pro Val Gly Glu Ser Val Ser Tyr Ser Ile
 195 200 205
 His Ser Thr Ala Lys Val Val Leu Thr Arg Glu Asp Val His Ser Gln
 210 215 220
 Val Ile Cys Glu Val Ala His Val Thr Leu Gln Gly Asp Pro Leu Arg
 225 230 235 240
 Gly Thr Ala Asn Leu Ser Glu Thr Ile Arg Val Pro Pro Thr Leu Glu
 245 250 255
 Val Thr Gln Gln Pro Val Arg Ala Glu Asn Gln Val Asn Val Thr Cys
 260 265 270
 Gln Val Arg Lys Phe Tyr Pro Gln Arg Leu Gln Leu Thr Trp Leu Glu
 275 280 285
 Asn Gly Asn Val Ser Arg Thr Glu Thr Ala Ser Thr Val Thr Glu Asn
 290 295 300
 Lys Asp Gly Thr Tyr Asn Trp Met Ser Trp Leu Leu Val Asn Val Ser
 305 310 315 320
 Ala His Arg Asp Asp Val Lys Leu Thr Cys Gln Val Glu His Asp Gly
 325 330 335
 Gln Pro Ala Val Ser Lys Ser His Asp Leu Lys Val Ser Ala His Pro
 340 345 350
 Lys Glu Gln Gly Ser Asn Thr Ala Ala Glu Asn Thr Gly Ser Asn Glu
 355 360 365
 Arg Asn Ile Tyr Ile Val Val Gly Val Val Cys Thr Leu Leu Val Ala
 370 375 380
 Leu Leu Met Ala Ala Leu Tyr Leu Val Arg Ile Arg Gln Lys Lys Ala
 385 390 395 400
 Gln Gly Ser Thr Ser Ser Thr Arg Leu His Glu Pro Glu Lys Asn Ala
 405 410 415
 Arg Glu Ile Thr Gln Asp Thr Asn Asp Ile Thr Tyr Ala Asp Leu Asn
 420 425 430

Leu Pro Lys Gly Lys Lys Pro Ala Pro Gln Ala Ala Glu Pro Asn Asn
 435 440 445

His Thr Glu Tyr Ala Ser Ile Gln Thr Ser Pro Gln Pro Ala Ser Glu
 450 455 460

Asp Thr Leu Thr Tyr Ala Asp Leu Asp Met Val His Leu Asn Arg Thr
 465 470 475 480

Pro Lys Gln Pro Ala Pro Lys Pro Glu Pro Ser Phe Ser Glu Tyr Ala
 485 490 495

Ser Val Gln Val Pro Arg Lys
 500

(2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 398 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Met Pro Val Pro Ala Ser Trp Pro His Leu Pro Ser Pro Phe Leu Leu
 1 5 10 15

Met Thr Leu Leu Leu Gly Arg Leu Thr Gly Val Ala Gly Glu Asp Glu
 20 25 30

Leu Gln Val Ile Gln Pro Glu Lys Ser Val Ser Val Ala Ala Gly Glu
 35 40 45

Ser Ala Thr Leu Arg Cys Ala Met Thr Ser Leu Ile Pro Val Gly Pro
 50 55 60

Ile Met Trp Phe Arg Gly Ala Gly Ala Gly Arg Glu Leu Ile Tyr Asn
 65 70 75 80

Gln Lys Glu Gly His Phe Pro Arg Val Thr Thr Val Ser Glu Leu Thr
 85 90 95

Lys Arg Asn Asn Leu Asn Phe Ser Ile Ser Ile Ser Asn Ile Thr Pro
 100 105 110

Ala Asp Ala Gly Thr Tyr Tyr Cys Val Lys Phe Arg Lys Gly Ser Pro
 115 120 125

Asp Asp Val Glu Phe Lys Ser Gly Ala Gly Thr Glu Leu Ser Val Arg
 130 135 140

Ala Lys Pro Ser Ala Pro Val Val Ser Gly Pro Ala Val Arg Ala Thr
 145 150 155 160

Pro Glu His Thr Val Ser Phe Thr Cys Glu Ser His Gly Phe Ser Pro
 165 170 175

Arg Asp Ile Thr Leu Lys Trp Phe Lys Asn Gly Asn Glu Leu Ser Asp
180 185 190

Phe Gln Thr Asn Val Asp Pro Ala Gly Asp Ser Val Ser Tyr Ser Ile
195 200 205

His Ser Thr Ala Arg Val Val Leu Thr Arg Gly Asp Val His Ser Gln
210 215 220

Val Ile Cys Glu Met Ala His Ile Thr Leu Gln Gly Asp Pro Leu Arg
225 230 235 240

Gly Thr Ala Asn Leu Ser Glu Ala Ile Arg Val Pro Pro Thr Leu Glu
245 250 255

Val Thr Gln Gln Pro Met Arg Ala Glu Asn Gln Ala Asn Val Thr Cys
260 265 270

Gln Val Ser Asn Phe Tyr Pro Arg Gly Leu Gln Leu Thr Trp Leu Glu
275 280 285

Asn Gly Asn Val Ser Arg Thr Glu Thr Ala Ser Thr Leu Thr Glu Asn
290 295 300

Lys Asp Gly Thr Tyr Asn Trp Met Ser Trp Leu Leu Val Asn Thr Cys
305 310 315 320

Ala His Arg Asp Asp Val Val Leu Thr Cys Gln Val Glu His Asp Gly
325 330 335

Gln Gln Ala Val Ser Lys Ser Tyr Ala Leu Glu Ile Ser Ala His Gln
340 345 350

Lys Glu His Gly Ser Asp Ile Thr His Glu Pro Ala Leu Ala Pro Thr
355 360 365

Ala Pro Leu Leu Val Ala Leu Leu Gly Pro Lys Leu Leu Leu Val
370 375 380

Val Gly Val Ser Ala Ile Tyr Ile Cys Trp Lys Gln Lys Ala
385 390 395