^{nat}La(p,x) XS Review

Jonathan Morrell

June 10, 2018

Methodology

- Fitting calibration peaks
- Detector calibration
- Fitting monitor and target peaks
- Determining end-of-beam activities (A_0)
- Determining beam current and energies
- Generate cross-sections
- Compare results to EXFOR, TALYS and EMPIRE

Cross-section Equations

$$\begin{array}{l} A_0 = \frac{\lambda N_c}{(1 - e^{-\lambda t_m})e^{-\lambda t_c} I_{\gamma \epsilon}} \\ A_0 = \sigma I_p \rho \Delta r (1 - e^{-\lambda t_i}) \end{array}$$

 A_0 : End-of-beam activity t_m : Measurement time t_c : Cooling time

 t_i : Irradiation time I_p : Beam current

 $\rho\Delta r$: Areal density

Peak Fitting

Fit to a skewed Gaussian

$$F_{peak}(i) = m \cdot i + b + A \cdot \left[\exp\left(-\frac{(i-\mu)^2}{2\sigma^2}\right) + R \cdot \exp\left(\frac{i-\mu}{\alpha\sigma}\right) \operatorname{erfc}\left(\frac{i-\mu}{\sqrt{2}\sigma} + \frac{1}{\sqrt{2}\alpha}\right) \right]$$

Other Peak Examples

Calibration

$$E = m \cdot i + b$$

$$\epsilon(E) = \exp[a \cdot ln(E)^2 + b \cdot ln(E) + c]$$

Fitting Monitor Peaks

End-of-Beam Activities

MCNP - Anderson Ziegler Comparison

Aluminum Monitor Corrections

Determining Beam Current

Optimum $\Delta \rho$ determined by χ^2 minimization using MCNP

Optimized Beam Current

Optimum value of $\Delta \rho$: 1.15

Monitor Cross-Sections

Comparison to EXFOR Data

Comparison to EXFOR Data

Peak Fitting of Lanthanum Data

Peak Fitting of Lanthanum Data

Peak Fitting of Lanthanum Data

Calculate ^{134}Ce A_0 from ^{134}La $A(t_c)$

Comparison to previous analysis

Other Peak Fits

^{137*m*}Ce: E=254.29 [keV]
$$I_{\gamma}$$
=11.1% χ_{ν}^{2} =1.097

^{133g}Ba: E=356.01 [keV]
$$I_{\gamma}$$
=62.05% χ^2_{ν} =1.003

Daughter Nuclide Initial Activities

$$A_D(t_c) = A_{\rho 0} \frac{\lambda_D}{\lambda_D - \lambda_\rho} (e^{-\lambda_\rho t_c} - e^{-\lambda_D t_c}) + A_{D0} e^{-\lambda_D t_c}$$

¹³⁴Ce Cross-Section

¹³⁵Ce Cross-Section

^{137m}Ce Cross-Section

^{137g}Ce Cross-Section

¹³⁹Ce Cross-Section

¹³²Cs Cross-Section

^{133m}Ba Cross-Section

^{133g}Ba Cross-Section

