Model Pruning: Weekly Report 8

Patricia Gschoßmann

1. Weekly Progress

In this week a new RGB autoencoder with a bottleneck of size $16\times16\times128$ was pruned to reduce 65% of its encoder's parameters. The original model's results can be seen in fig. 1b.

(a) Original image

(b) Original model output

Figure 1: Original and reconstructed image data

2. Results

2.1. Addendum to last week

Last week's model reached a validation loss of 2.57 at $\alpha=0$. The training was resumed repeatedly with different learning rates (0.01 and 0.1). Unfortunately, this did not improve the performance.

2.2. This week's results

In contrast to last week, only the encoder was pruned in this week, as this affects the latent space. The decoder then needs to be trained accordingly - this happens during the pruning process. Moreover, each convolutional layer in the encoder was pruned, regardless of whether a transposed convolution follows¹, leading to a reduced bottleneck.

The same setup as last week was used: Pruning with weight updates of the pretrained model and a learning rate of 0.001 were used, as well as a step scheduler, which reduces α by 0.1 at each iteration. The original model reached a minimum validation loss of 1.40.

For the validation development at each α -decay the

same behavior as last week could be observed: Except for $\alpha=0$, the validation loss was the highest for the model with $\alpha=0.9$ with $val_loss=2.12$. With each α -decay, the performance improved.

The model reached a validation loss of 2.05 at $\alpha=0.1$. At the first iteration for $\alpha=0$ it only reached a validation loss of 2.53. The training of the model was resumed with a learning rate of 0.01, however, the performance improved only slightly (2.48). Corresponding validation loss curves can be seen in fig. 2. Intermediate outputs for $\alpha=0.1$ and $\alpha=0$ before pruning are shown in figure 3. The differences are clearly visible. However, the silhouettes of the objects in the image are somehow still visible.

Figure 2: Validation loss development for $\alpha=0.1$ (red), $\alpha=0$ with lr=0.001 (blue) and the resumed training for $\alpha=0$ with lr=0.01 (green).

(a) Output at $\alpha=0.1$

(b) Output at $\alpha = 0$

Figure 3: Reconstructed image data during the pruning process. The original image is depicted in fig. 1a.

¹This only applies to the last convolution anyway

3. Plan

- Improve performance for $\alpha=0$ with learning rate approach (increase learning rate to 0.1) and smaller α -decays
- Prune encoder correctly
- If successfull: Start pruning corresponding decoder