Division algebras and spin groups

Daniel Miller

August 7, 2016

1 Totally unrelated but possibly interesting question

Let k be a field, D a division algebra with center k. One can define a norm map $N: D \to k$ that is multiplicative. Clearly $N(k^{\times}) = (k^{\times})^n$, where $n = \dim_k D$. So $N(D^{\times}) \supset (k^{\times})^n$, and it is natural to ask whether they are equal. Put $H(D) = N(D^{\times})/N(k^{\times})$. The question is: when is H(D) = 0?

This is essentially the same question as the following. Put $D^{(1)} = \ker(N: D^{\times} \to k^{\times})$. There is a natural isomorphism $D^{\times}/k^{\times} \xrightarrow{\sim} \operatorname{Aut}(D)$, sending $a \in D^{\times}$ to $b \mapsto aba^{-1}$. Hubbard asked whether $D^{(1)} \to \operatorname{Aut}(D)$ is surjective, i.e. whether $D^{(1)} \to D^{\times}/k^{\times}$ is surjective. Choosing $a \in D^{\times}$, we see that the only way that a can be in the image of $D^{(1)}$ is for $N(a) \in (k^{\times})^n$. So we could say that the failure of $D^{(1)} \to D^{\times}/k^{\times}$ to be surjective is measured by $N(D^{\times})/N(k^{\times})$. Alternatively, we could think of $D^{(1)}$ and D^{\times} as affine group schemes over k. The image of $D^{(1)} \to D^{\times}/\mathbf{G}_m$ is normal, so the quotient $D^{(1)} \setminus D^{\times}/\mathbf{G}_m$ exists as a variety over k, and we could ask about its structure.

Even better, the quotient $D^{\times}/\mathbf{G}_mD^{(1)}$ exists as a commutative group scheme over k. It should have dimension zero, so if it is étale, it will correspond to a G_k -module.

I think there is an easy solution. Write D^1 instead of $D^{(1)}$ and consider both D^1 and D^{\times} as algebraic groups over k. The sequence

$$1 \longrightarrow D^1 \longrightarrow D^{\times} \xrightarrow{N} \mathbf{G}_m \longrightarrow 1$$

of algebraic groups over *k* is exact in the étale topology, so we get a long exact sequence in cohomology.

$$1 \longrightarrow D^1 \longrightarrow D^\times \xrightarrow{N} k^\times \longrightarrow H^1(k, D^1) \longrightarrow H^1(k, D^\times) \longrightarrow 0$$

It follows that $N(D^\times) = \ker(k^\times \to H^1(k,D^1))$. That kernel is actually computable. Recall that $H^1(k,D^1) = H^1(G_k,D^1(k^s))$. An element $\lambda \in k^\times$ is send to the cocycle $\varphi_\lambda: G_k \to D^1(k^s)$ defined as follows. Choose a lift $\widetilde{\lambda} \in D^1(k^s)$ of λ , and put $\varphi_\lambda(\sigma) = \sigma(\widetilde{\lambda})/\widetilde{\lambda}$. It is easy to check that $\varphi_\lambda = 0$ in $H^1(k,D^1)$ if and only if there exists $\widetilde{\lambda}$ with $\sigma(\widetilde{\lambda}) = \widetilde{\lambda}$, i.e. if and only if λ is in the image of $N(D^1)$, i.e. I'm not sure where this proof is going. . . it turns out to be a rather sophisticated proof that $N(D^\times) = N(D^\times)$.

2 A problem of Hubbard

John Hubbard suggested the following problem to me. Let k be a field (the main example I have in mind is a number fields, but the problem can be stated in much greater generality). Let (V,q) be a "quadratic space over k," i.e. V is a finite-dimensional k-vector space and q is a quadratic form on V. For example, we could have $k = \mathbf{Q}$, $V = \mathbf{Q}^{\oplus 4}$, and $q(x_1, \dots, x_4) = x_1^2 + x_2^2 + x_3^2 - 7x_4^2$. We can form the *orthogonal group* of q, $O(q) \subset GL(V)$; this is an algebraic group over k. The subgroup $O^+(q) \subset O(q)$ of "isometries" with determinant one is called the special orthogonal group of q. It turns out that there is a natural embedding of $O^+(q)$ into the group of units of a particular associative algebra.

Let C(V,q) be the *Clifford algebra* of (V,q), i.e. the quotient

$$C(V,q) = T(V)/\langle v \otimes v - q(v) : x \in V \rangle$$

where $T(V) = \bigoplus_{n \geqslant 0} V^{\otimes n}$ is the Tensor algebra of V. The involution $-1: V \to V$ induces an involution γ of C(V,q), and we put

$$C^{\circ}(V,q) = C(V,q)^{\gamma}.$$

Key fact: $k^{\times}/(k^{\times})^2 = H^2(k, \mu_2) = H^2(k, \mathbf{G}_m)[2]$. Moreover, all division algebras associated to elements of $H^2(k, \mu_2)$ are quaternion algebras. We have the following exact sequences:

$$1 \longrightarrow O^{+}(q) \longrightarrow O(q) \xrightarrow{\det} \mu_{2} \longrightarrow 1$$

$$1 \longrightarrow \mathbf{G}_{m} \longrightarrow \Gamma(q) \xrightarrow{\alpha} O(q) \longrightarrow 1$$

$$1 \longrightarrow \operatorname{Pin}(q) \longrightarrow \Gamma(q) \xrightarrow{N} \mathbf{G}_{m} \longrightarrow 1$$

$$1 \longrightarrow \mu_{2} \longrightarrow \operatorname{Pin}(q) \xrightarrow{\alpha} O(q) \longrightarrow 1$$

From the last sequence, we get $H^1(O_n) \to H^2(\mu_2)$, which will associate a division algebra to each n-dimensional quadratic form over k.

In general, if D is an n^2 -dimensional division algebra over k, then the map $N: D^{\times} \to k^{\times}$ will factor through the n-th power map, i.e. $N = (-)^n \circ N_{rd}$, where N_{rd} is the so-called *reduced norm*.