# Speed-Accuracy Tradeoffs in Tagging with Variable-Order CRFs and Structured Sparsity

Tim Vieira,\* Ryan Cotterell\* and Jason Eisner

Johns Hopkins University

### **Variable-Order CRFs**

Goal: Define a good conditional distribution over tag sequences.

$$p_{ heta}(\mathbf{D},\mathbf{N},\mathbf{V},\mathbf{P},\mathbf{D},\mathbf{N},\mathbf{X})$$

Certain combinations go well together, some don't.

label-word: D-the ✓, V-the ✗ label-label: D-N ✓, D-V ✗

Sometimes, it's useful to look at larger label combinations.



**The problem**: For features to look at output contexts of size k, we need  $\mathcal{O}(n\cdot|Y|^k)$  time for inference even if most combinations don't improve the model, e.g., combinations that are easily ruled out by local features.

$$p_{\theta}(y \mid x) = \frac{1}{Z_{\theta}(x)} \exp\left(\sum_{t=1}^{n+1} \theta^{\top} f(x, t, y_{t-k-1} \dots y_t)\right)$$

The VoCRF idea: Remove output contexts that aren't necessary!



# **Very flexible**

- No need to specify a fixed size.
- Covers semi-Markov & higher-order
- (Ye et al., 2009, Cuong et al., 2014)
- Can use any subset of Y\*.
- Easy to implement!
  One alg. many models.

# "Correcting" prior work

Original algorithm for computing gradients and expectations was unnecessarily slow and complicated. Our revised algorithm is  $\mathcal{O}(|\overline{\mathcal{W}}|)$  times faster  $\mathcal{O}(\text{a few pages})$  simpler!

- Just run autodiff on their forward algorithm!
- Protip: Evaluating the gradient should be as fast as the function!
- Check out Jason's paper at the structured prediction workshop for more on the connection between autodiff and inference.



# **Structured Sparsity**

**Goal**: Select higher-order features W, which gives us the best possible accuracy under a budget for runtime.

**How**: Augmenting the training objective with a penaltiy for runtime!

$$\sum_{i=1}^{m} -\log p_{\theta}(y^{(i)} \, | \, x^{(i)}) \ + \ \lambda \, ||\theta||_{2}^{2} \ + \ \gamma \, \mathcal{R}(\theta)$$
 loss regularizer runtime

 $\theta$  implicitly encodes  $\mathcal W$  in its nonzero entries.

### Sparsity -> Speed

Dependencies among features

- prefix closure

 $NNV \rightarrow NN \rightarrow N \rightarrow \varepsilon$ 

- last tag subst. closure

NN<u>V</u> -> NN<u>N</u>



# Ideal runtime

$$\mathcal{R}^*(\theta) = |\overline{\mathcal{W}}| = \sum_{w \in Y^*} \|\theta_{G_w}\|_0$$

too hard to optimize!



# **Convex surrogate**

$$\mathcal{R}(\theta) = \sum_{w \in Y^*} \lVert \theta_{G_w} \rVert_2 \quad \text{group lasso}$$



# **Experiments**

- Part of speech tagging with Universal Tags in 5 languages.
- Best system in **bold**.
- Superscript k indicates a significant difference from the k-CRF's accuracy (paired-permutation p < 0.5), color indicates better or worse.
- <u>Underlined</u> system is the fastest "statistically indistinguishable" model compared to the 2-CRF.

|    | k-CRF                | $F( \overline{W}  =$ | $17^{k+1}$ )                | VoCRF at different model sizes $ \overline{W} $ (which is proportional to runtime) |                           |                           |                      |                             |                             |                                    |                                    |                      |                      |
|----|----------------------|----------------------|-----------------------------|------------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------|-----------------------------|-----------------------------|------------------------------------|------------------------------------|----------------------|----------------------|
|    | 0 (17)               | 1 (289)              | 2 (4913)                    | ≤ 34                                                                               | ≤ 85                      | <b>≤</b> 170              | <b>≤</b> 340         | ≤ 850                       | ≤ 1700                      | ≤ 2550                             | ≤ 3400                             | ≤ 4250               | ≤ 5100               |
| Ba | 91.61 <sup>1,2</sup> | 92.35 <sup>0</sup>   | 92.49 <sup>0</sup>          | 92.25 <sup>0,2</sup>                                                               | 92.25 <sup>0,2</sup>      | 92.38 <sup>0</sup>        | 92.34 <sup>0</sup>   | 92.44 <sup>0</sup>          | 92.44 <sup>0</sup>          | 92.44 <sup>0</sup>                 | <b>92</b> . <b>54</b> <sup>0</sup> | 92.54 <sup>0</sup>   | 92.54 <sup>0</sup>   |
| Bu | 96.48 <sup>1,2</sup> | 97.11 <sup>0,2</sup> | <u>97.29</u> <sup>0,1</sup> | 96.75 <sup>0,1,2</sup>                                                             | 96.78 <sup>0,1,2</sup>    | 96.99 <sup>0,1,2</sup>    | 97.08 <sup>0,2</sup> | <u>97.18</u> <sup>0,1</sup> | 97.25 <sup>0,1</sup>        | <b>97.34</b> <sup>0,1</sup>        | 97.34 <sup>0,1</sup>               | 97.34 <sup>0,1</sup> | 97.34 <sup>0,1</sup> |
| Hi | 95.96 <sup>1,2</sup> | 96.22 <sup>0</sup>   | 96.21 <sup>0</sup>          | 95.97 <sup>1,2</sup>                                                               | <u>96.22</u> <sup>0</sup> | $96.22^{0}$               | 96.26 <sup>0</sup>   | $96.13^{\circ}$             | 96.13 <sup>0</sup>          | <b>96</b> . <b>24</b> <sup>0</sup> | 96.24 <sup>0</sup>                 | 96.24 <sup>0</sup>   | 96.24 <sup>0</sup>   |
| No | $96.00^{1,2}$        | <u>96.64</u> 0       | 96.66 <sup>0</sup>          | 96.07 <sup>1,2</sup>                                                               | 96.26 <sup>0,1,2</sup>    | <u>96.41</u> <sup>0</sup> | $96.60^{0}$          | 96.62 <sup>0</sup>          | 96.64 <sup>0</sup>          | <b>96</b> . <b>67</b> <sup>0</sup> | 96.64 <sup>0</sup>                 | 96.64 <sup>0</sup>   | 96.64 <sup>0</sup>   |
| Sl | $  94.46^{1,2} $     | 95.41 <sup>0,2</sup> | 95.62 <sup>0,1</sup>        | 94.82 <sup>1,2</sup>                                                               | 95.18 <sup>0,2</sup>      | 95.36 <sup>0,2</sup>      | 95.39 <sup>0,2</sup> | 95.39 <sup>0,2</sup>        | <b>95.69</b> <sup>0,1</sup> | $95.69^{0,1}$                      | 95.69 <sup>0,1</sup>               | 95.69 <sup>0,1</sup> | 95.67 <sup>0,1</sup> |