МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа информационных технологий и робототехники Направление подготовки <u>09.04.01 Информатика и вычислительная техника</u> Отделение <u>Информационных технологий</u>

Отчет по Практической работе №4 по дисциплине «Параллельные и высокопроизводительные вычисления»

	Тема работы
Работа с фреймворком распределенных вычислений Apache Spark	

Вариант 5

Студент

Группа	ФИО	Подпись	Дата
8BM22	Ямкин Н.Н.		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент ОИТ	Аксёнов С.В.	к.т.н., доцент		

Ход работы

Данная работа выполнялась на облачной платформе Google Colaboratory. Ниже приведены характеристики выделенных вычислительных ресурсов.

Рисунок 1 – Характеристики виртуальной машины

Apache Spark можно использовать на Google Colab без настроенного кластера, но в ограниченном режиме для одного рабочего узла.

По умолчанию Spark будет использовать только один исполнитель и один поток на машине. Это ограничение связано с ограниченными вычислительными ресурсами в Colab, где у вас есть только одна виртуальная машина доступная для выполнения кода.

Использование Spark в Colab всё равно предоставляет возможность применять функциональность Spark, такую как чтение и обработка данных, выполнение анализа данных, машинного обучения и многое другое. Однако для обработки больших объемов данных или сложных вычислений это может быть недостаточно.

Таким образом, Spark на Google Colab будет работать в локальном режиме, чтобы обеспечить небольшую функциональность Spark, которая может быть полезной для демонстрации, прототипирования или решения небольших задач.

Задание

Написать 3 программы на одном из языков программирования (Python, Java, Scala) с использованием инструментов фреймворка Apache Spark.

Программа A (работа с компонентом Spark SQL) представляет собой набор запросов к базе данных 'brooklyn_sales_map.csv'.

Программа В (работа с компонентом Spark MLlib) осуществляет построение трёх моделей машинного обучения: логистическая регрессия, дерево решений и случайный лес для набора данных, указанного в варианте. Для каждого алгоритма необходимо получить лучшую модель, путем поиска наилучшего набора её параметров. Для алгоритма логистической регрессии это параметры maxIter=10...10000, regParam>0 (0.1, 0.5, 1, ...), elasticNetParam=0...1. Для дерева решений maxDepth > 0 (3, 5, 9, 12, ...). Для случайного леса maxDepth > 0 (3, 5, 9, 12, ...) и numTree > 0 (5, 11, 25, ...). Получить значения матриц ошибок (Confusion Matrix), верности (Accuracy), полноты (Recall) и точности (Precision) для всех моделей.

Программа С (работа с компонентом Spark Core) осуществляет получение данных из набора данных FIFA World Cup 2018 Tweets, доступный

по адресу: https://www.kaggle.com/datasets/rgupta09/world-cup-2018-tweets и выполняет обработку данных набора с помощью устойчивых распределенных наборов данных RDD.

1 Программа А

1.1 Задание

- Найдите средний год постройки жилья (year_built) и выведите новую таблицу, содержащую год постройки жилья и отклонение года постройки от среднего значения.
- Подсчитайте, сколько различных домов приходится на каждую улицу, и выведите результат в отдельную таблицу.
- Отсортировать датасет по возрастанию цены продажи (sale_price) и убыванию индексов (zip code) одновременно.
- Выведите таблицу с наибольшими ценами продажи (sale_price) и количеством зданий по каждому сочетанию соседства (neighborhood) и категории класса здания (building class category).

1.2 Листинг программы А

```
%%bash
apt-get install openjdk-17-jdk-headless -qq > /dev/null
%%bash
apt-get install openjdk-17-jdk-headless -gg > /dev/null
import os
os.environ['JAVA HOME']='/usr/lib/jvm/java-1.17.0-openjdk-amd64'
os.environ['SPARK HOME']='/content/spark-3.3.0-bin-hadoop3'
%%bash
pip install findspark
import findspark
findspark.init()
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier
from google.colab import drive
drive.mount('/content/gdrive')
#### Программа А
spark = SparkSession.builder\
    .master('local')\
    .appName("My Spark Session").getOrCreate()
df = spark.read.csv(r"/content/gdrive/MyDrive/brooklyn sales map.csv", header=True)
df.show()
```

```
##### Задание 1
year built mean = df.select('year built').groupBy().agg(F.mean('year built').alias('mean'))
year built mean val = year built mean.collect()[0]['mean']
print("Средний год постройки жилья:", year built mean val)
df year buit and deviation = df.select('year built')
df year buit and deviation = df year buit and deviation.withColumn('deviation, %',
(df year buit and deviation.year built - year built mean val) / df year buit and deviation.year built * 100)
df year buit and deviation.show()
##### Задание 2
df street building = df.groupBy('address9').agg(F.countDistinct('building class category').alias("Number of unique
houses on the street"))
df street building.show()
##### Залание 3
# Сортировка датасета по возрастанию цены продажи и убыванию индексов
sorted df = df.orderBy('sale price', df['zip code'].desc())
sorted df.select('sale price','zip code').show()
#### Задание 4
# Группируем данные по соседству и категории класса здания и считаем максимальную цену продажи и количество зданий
sorted df = df.groupBy('neighborhood', 'building class category')\
    .agg(F.max('sale price').alias('max sale price'), F.count('*').alias('building count'))\
    .orderBy('neighborhood', 'building class category')
# Закрытие сессии
spark.stop()
```

1.3 Результаты

++			
year_built deviation, %			
++			
2002 15.001682977138547			
0 null			
1924 11.555805259995516			
1970 13.620999654939784			
1927 11.693497312003826			
j 0j nullj			
1928 11.739299439954031			
2012 15.424139821188554			
l 0 null			
1912 11.000716171669128			
i 0j nulli			
j 0j nullj			
2009 15.297844360493466			
1967 13.489257407336744			
1920 11.37154652095384			
1992 14.574984598509724			
1920 11.37154652095384			
2014 15.508127765755397			
l 0 null			
1962 13.268791702462474			
+			
only showing top 20 nows			
only showing top 20 rows			

Рисунок 2 — Таблица с годом постройки жилья и процентом его отклонения от среднего значения года постройки

+	+
address9 Number of unique houses on the st	reet
+	+
119 NORTH 11TH ST	0
6609 FORT HAMILTO	1
784 4 AVENUE	1
8704-08 18 AVENUE	3
228 QUINCY STREET	1
285 PROSPECT PLAC	1
1626-1628 UTICA A	1
2700 VOORHIES AVENUE	1
999 EAST 108TH ST	1
60 PINEAPPLE STRE	1
547 49TH STREET	1
6614 14TH AVENUE	1
151 11TH STREET	1
400 EAST 17TH STR	1
1577 EAST 17TH ST	1
1081 FULTON STREET	1
66 EAST 52ND STREET	1
38 EAST 16TH STREET	1
938 PRESIDENT STR	1
2041 WEST 7 STREET	1
+	+
only showing top 20 rows	

Рисунок 3 – Таблица с количеством уникальных домов на каждой улице

+	+
sale_price	zip_code
+	++
0	33803
0	33803
0	11416
0	11416
0	11416
0	11416
0	11416
0	11416
0	11416
0	11416
0	11416
0	11416
0	11249
0	11249
0	11249
0	11249
0	11249
0	11249
0	11249
0	11249
+	++
only showing	g top 20 rows

Рисунок 4 — Таблица с отсортированным по возрастанию цены продажи (sale_price) и убыванию индексов (zip_code) датасетом

+		+
neighborhood	building_count	max_sale_price
+		++
3004	2	346788
3019	1	0
BATH BEACH	6	0
BATH BEACH	509	9e+05
BATH BEACH	1808	9e+05
BATH BEACH	756	9e+05
BATH BEACH	450	753505
BATH BEACH	20	7e+05
BATH BEACH	28	960000
BATH BEACH	3	0
BATH BEACH	207	999988
BATH BEACH	11	850000
BATH BEACH	19	855421
BATH BEACH	406	94000
BATH BEACH	24	435000
BATH BEACH	102	98000
BATH BEACH	4	399000
BATH BEACH	69	550000
BATH BEACH	6	780000
BATH BEACH	71	840056
+		++
only showing t	op 20 rows	

Рисунок 5 — Таблица с наибольшими ценами продажи (sale_price) и количеством зданий по каждому сочетанию соседства (neighborhood) и категории класса здания (building_class_category)

2 Программа В

2.1 Задание

2.2 Листинг программы В

```
#### Программа В
spark = SparkSession.builder\
    .master('local')\
    .appName("My Spark Session").getOrCreate()
df = spark.read.csv(r"/content/gdrive/MyDrive/smoke detection iot.csv", header=True)
df.show()
new column names = [' c0','UTC','Temperature[C]','Humidity[%]','TVOC[ppb]','eCO2[ppm]','Raw H2','Raw
Ethanol', 'Pressure[hPa]', 'PM10', 'PM25', 'NC05', 'NC10', 'NC25', 'CNT', 'Fire Alarm']
df = df.toDF(*new column names)
df.columns
feature columns = [' c0', 'UTC', 'Temperature[C]', 'Humidity[%]', 'TVOC[ppb]', 'eCO2[ppm]', 'Raw H2', 'Raw
Ethanol', 'Pressure[hPa]', 'PM10', 'PM25', 'NC05', 'NC10', 'NC25', 'CNT']
target column = ['Fire Alarm']
all columns = feature columns + target column
string col 2 float = ['PM10', 'NC10', 'PM25', 'NC05', 'NC25', 'Humidity[%]', 'Pressure[hPa]', 'Temperature[C]']
# Из string в numeric
for column in all columns:
 if column in string col 2 float:
    df = df.withColumn(column, F.col(column).cast('Double'))
 else:
    df = df.withColumn(column, F.col(column).cast('Integer'))
```

```
def df 2 vector(dataframe, inputCols, outputCol):
  assembler = VectorAssembler(
  inputCols=inputCols, outputCol=outputCol)
  assembled df = assembler.transform(dataframe)
  return assembled df.randomSplit([0.8, 0.2])
cols = feature columns
train df, test df = df 2 vector(df, cols, 'vectorized data')
##### Логистическая регрессия
logistic regression model = LogisticRegression(labelCol= 'Fire Alarm', featuresCol = 'vectorized data',
maxIter=10000, regParam=0.1, elasticNetParam=0.8)
model lr = logistic regression model.fit(train df)
predictions lr = model lr.transform(test df)
predictions lr.select('Fire Alarm', 'probability', 'prediction').show(truncate=False)
print('Модель Логистической регрессии. Правильные предсказания')
TP = predictions lr[(predictions lr['Fire Alarm']==1)&(predictions lr['prediction']==1)].count()
print('Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание):', TP)
TN = predictions lr[(predictions lr['Fire Alarm']==0)&(predictions lr['prediction']==0)].count()
print('Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание):', TN)
print ('Модель Логистической регрессии. Ошибки')
FP = predictions lr[(predictions lr['Fire Alarm']==0)&(predictions lr['prediction']==1)].count()
print('Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание):', FP)
FN = predictions lr[(predictions lr['Fire Alarm']==1)&(predictions lr['prediction']==0)].count()
print('Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание):',FN)
```

```
#Метрики качества моделей
#Accuracy - Bephoctb Acc. = (TP+TN) / (TP+TN+FP+FN)
acc lr = (TP+TN)/(TP+TN+FP+FN)
print('Верность модели (логистическая регрессия):', round(acc lr,2))
#Precision - Точность Prec. = TP/(TP+FP)
precision lr = TP/(TP+FP)
print('Точность модели (логистическая регрессия):', round(precision lr,2))
#Recall - Полнота Recall = TP/(TP+FN)
recall lr = TP/(TP+FN)
print('Полнота модели (логистическая регрессия):', round(recall lr,2))
##### Дерево решений
#Decision Tree Model
tree model = DecisionTreeClassifier(featuresCol='vectorized data',
                                  labelCol='Fire Alarm', maxDepth=3).fit(train df)
tree predictions = tree model.transform(test df)
tree predictions.select('Fire Alarm', 'probability', 'prediction').show(truncate=False)
print ('Модель Дерева решений. Правильные предсказания')
TP = tree predictions[(tree predictions['Fire Alarm']==1)&(tree predictions['prediction']==1)].count()
print('Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание):', TP)
TN = tree predictions[(tree predictions['Fire Alarm']==0)&(tree predictions['prediction']==0)].count()
print('Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание):', TN)
print ('Модель Дерева решений. Ошибки')
FP = tree predictions[(tree predictions['Fire Alarm']==0)&(tree predictions['prediction']==1)].count()
```

```
print('Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание):', FP)
FN = tree predictions[(tree predictions['Fire Alarm']==1)&(tree predictions['prediction']==0)].count()
print('Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание):', FN)
#Метрики качества моделей
#Accuracy - Bephoctb Acc. = (TP+TN)/(TP+TN+FP+FN)
acc tree = (TP+TN)/(TP+TN+FP+FN)
print('Верность модели (дерево решений):', round(acc tree,2))
#Precision - Точность Prec. = TP/(TP+FP)
precision tree = TP/(TP+FP)
print('Точность модели (дерево решений):', round(precision tree,2))
#Recall - Полнота Recall = TP/(TP+FN)
recall tree = TP/(TP+FN)
print('Полнота модели (дерево решений):', round(recall tree,2))
##### Случайный лес
rf model = RandomForestClassifier(featuresCol='vectorized data',
                                  labelCol='Fire Alarm', maxDepth=5, numTrees=5).fit(train df)
rf predictions = rf model.transform(test df)
rf predictions.select('Fire Alarm', 'probability', 'prediction').show(truncate=False)
print('Модель Случайного леса. Правильные предсказания')
TP = rf predictions[(rf predictions['Fire Alarm']==1)&(rf predictions['prediction']==1)].count()
print('Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание):', TP)
TN = rf predictions[(rf predictions['Fire Alarm']==0)&(rf predictions['prediction']==0)].count()
print('Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание):', TN)
```

```
print ('Модель Случайного леса. Ошибки')
FP = rf predictions[(rf predictions['Fire Alarm']==0)&(rf predictions['prediction']==1)].count()
print('Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание):',FP)
FN = rf predictions[(rf predictions['Fire Alarm']==1)&(rf predictions['prediction']==0)].count()
print('Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание):',FN)
#Метрики качества моделей
#Accuracy - Bephoctb Acc. = (TP+TN) / (TP+TN+FP+FN)
acc rf = (TP+TN)/(TP+TN+FP+FN)
print('Верность модели (случайный лес):', round(acc rf,3))
#Precision - Точность Prec. = TP/(TP+FP)
precision rf = TP/(TP+FP)
print('Точность модели (случайный лес):', round(precision rf,3))
#Recall - Полнота Recall = TP/(TP+FN)
recall rf = TP/(TP+FN)
print('Полнота модели (случайный лес):', round(recall rf,3))
# Закрытие сессии
spark.stop()
```

2.3 Результаты

```
Модель Логистической регрессии. Правильные предсказания
Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание): 8770
Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание): 2794
Модель Логистической регрессии. Ошибки
Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание): 737
Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание): 236
Верность модели (логистическая регрессия): 0.92
Точность модели (логистическая регрессия): 0.92
Полнота модели (логистическая регрессия): 0.97
```

Рисунок 6 – Метрики качества модели логистической регрессии при следующих параметрах maxIter=10000, regParam=0.1, elasticNetParam=0.8

```
Модель Дерева решений. Правильные предсказания
Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание): 8716
Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание): 3486
Модель Дерева решений. Ошибки
Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание): 85
Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание): 238
Верность модели (дерево решений): 0.97
Точность модели (дерево решений): 0.99
Полнота модели (дерево решений): 0.97
```

Рисунок 7 – Метрики качества модели дерева решений при параметре maxDepth = 3

```
Модель Случайного леса. Правильные предсказания

Количество верно идентифицированных угроз пожарной тревоги (правильное предсказание): 8954

Количество верно идентифицированных не угроз пожарной тревоги (правильное предсказание): 3566

Модель Случайного леса. Ошибки

Количество ложно идентифицированных не угроз пожарной тревоги (ошибочное предсказание): 5

Количество ложно идентифицированных угроз пожарной тревоги (ошибочное предсказание): 0

Верность модели (случайный лес): 0.9996

Точность модели (случайный лес): 1.0
```

Рисунок 8 — Метрики качества модели случайного леса при параметре maxDepth = 5, numTrees = 5

3 Программа С

3.1 Задание

Получить десять наиболее упоминаемых хештегов (датафрейм **A**). Создать отдельный файл со списком столиц всех государств. Из этого списка выделить датафрейм **Б**, содержащий десять столиц, из которых твиты отправлялись наиболее часто. Выделить, в каких столицах из датафрейма **Б** самый часто используемый хештег принадлежит датафрейму **A**.

3.2 Листинг программы С

```
from itertools import islice
from pyspark.sql.functions import col
from pyspark import SparkContext
spark = SparkSession.builder.master('local[*]').getOrCreate()
# Создание SparkContext
sc = spark.sparkContext
def take(n, iterable):
    return list(islice(iterable, n))
def sort dict by value(dict, reverse=True):
    return {key: value for key, value in sorted(dict.items(), key=lambda x: x[1], reverse=reverse)}
main df = spark.read.csv('/content/gdrive/MyDrive/FIFA.csv', header=True, multiLine=True, escape="\"")
##### 10 самых популярных хештегов
groupedHashTagsByCount = main df.rdd \
    .filter(lambda x: x['Hashtags'] != None) \
    .flatMap(lambda x: x['Hashtags'].split(',')) \
    .countByValue()
groupedHashTagsByCountSorted = sort dict by value(groupedHashTagsByCount)
top10Hashtags =take(10, groupedHashTagsByCountSorted.items())
top10HashtagsDf = spark.createDataFrame(data=top10Hashtags, schema = ["hashtag", "count"])
print('Результат')
top10HashtagsDf.show()
```

```
##### 10 самых популярных столиц, из которых отправляли твиты
capitals df = spark.read.csv('country-list.csv', header=True, multiLine=True, escape="\"")
capitals df = capitals df.drop('country', 'type')
new df = main df.join(capitals df, capitals df.capital == main df.Place, "leftouter")
groupedCapitalsByCount = new df.rdd\
    .filter(lambda x: x['capital'] != None) \
    .map(lambda x: x['Place'])\
    .countByValue() \
groupedCapitalsByCountSorted = sort dict by value(groupedCapitalsByCount)
top10Capitals =take(10, groupedCapitalsByCountSorted.items())
top10CapitalsDf = spark\
    .createDataFrame(data=top10Capitals, schema = ["capital", "count"])
print('Результат')
top10CapitalsDf.show()
##### Столицы, с самыми популярными хештегами в топ 10 хештегов
new df = new df \setminus
.filter(col('capital').isNotNull())\
.drop(col('capital'))\
.join(top10CapitalsDf, top10CapitalsDf.capital == new df.Place, "leftouter")
capitalhashTagDf = new df.rdd\
.filter(lambda x: x['capital'] != None) \
.filter(lambda x: x['Hashtags'] != None) \
.flatMap(lambda x: [(x['capital'], hashtag) for hashtag in x['Hashtags'].split(',')])\
.toDF()\
.filter(col(' 2') != 'WorldCup')
```

```
countedCapitalHashTag = capitalhashTagDf.groupBy(' 1', ' 2').count()
counted = countedCapitalHashTag\
.groupBy(' 1')\
.agg(F.max('count').alias('num of hashtags'))\
.withColumnRenamed(" 1", "capital")
join conditions = [countedCapitalHashTag[' 1'] == counted['capital'], countedCapitalHashTag['count'] ==
counted['num of hashtags']]
topCapitalsHashTag = counted \
.join(countedCapitalHashTag, join conditions) \
.filter(col('num of hashtags').isNotNull()) \
.drop(col(' 1')) \
.drop(col('count'))
topCapitalsHashtagsWhichPopular = topCapitalsHashTag \
.join(top10HashtagsDf, \
    top10HashtagsDf['hashTag'] == topCapitalsHashTag[' 2']) \
.filter(col('hashTag').isNotNull()) \
.drop(col('count')) \
.drop(col(' 2'))
print('Результат')
topCapitalsHashtagsWhichPopular.show()
```

3.3 Результаты

++	+
hashtag	count
++	+
WorldCup	239007
FRA	31717
FRAARG	21408
ENG	19459
worldcup	18897
FRABEL	18810
CR0	15819
ARG	15172
FIFAStadiumDJ	14198
CRODEN	12478
++	+

Рисунок 9 – 10 наиболее упоминаемых хэштегов

++	+
capital	count
++	+
London	2212
Singapore	514
Nairobi	390
Paris	233
New Delhi	196
Abuja	188
Kuala Lumpur	162
Dublin	159
Jakarta	136
Accra	111
++	+

Рисунок 10-10 столиц, из которых твиты отправлялись наиболее часто

+	+	+
capital num_of_	hashtags	hashtag
+	+	+
New Delhi	27	FRA
Nairobi	55	FRA
Accra	13	FRA
Kuala Lumpur	31	FRA
Jakarta	29	FRA
Singapore	87	FRA
London	308	ENG
Dublin	21	worldcupj
Paris	55 İ	FRAARG
i Abujai	45	FRAARG
÷	· +	

Рисунок 11 — Столицы, у которых самый популярный хэштег относится к 10 самым популярным хэштегам в целом

4 Вывод

В ходе выполнения лабораторной работы были реализованы программы с использованием фреймфорка Apache Sark на языке Python. Были изучены и применены на практике следующие компоненты фреймворка: Spark SQL, Spark Mllib и Spark Core.