WDM Concept and Components

Part 1: WDM Concept

Why WDM?

- Capacity upgrade of existing fiber networks (without adding fibers)
- Transparency: Each optical channel can carry any transmission format (different asynchronous bit rates, analog or digital)
- Scalability— Buy and install equipment for additional demand as needed
- Wavelength routing and switching: Wavelength is used as another dimension to time and space

Wavelength Division Multiplexing

Each wavelength is like a separate channel (fiber)

TDM or OTDM mux

TDM Vs WDM

Wavelength Division Multiplexing

 Passive/active devices are needed to combine, distribute, isolate and amplify optical power at different wavelengths

WDM, CWDM and DWDM

- WDM technology uses multiple wavelengths to transmit information over a single fiber
- Coarse WDM (CWDM) has wider channel spacing (20 nm) – low cost
- Dense WDM (DWDM) has dense channel spacing (0.8 nm) which allows simultaneous transmission of 16+ wavelengths – high capacity

WDM and DWDM

- First WDM networks used just two wavelengths, 1310 nm and 1550 nm
- Today's DWDM systems utilize 16, 32,64,128 or more wavelengths in the 1550 nm window
- Each of these wavelength provide an independent channel (Ex: each may transmit 10 Gb/s digital or SCMA analog)
- The range of standardized channel grids includes 50, 100, 200 and 1000 GHz spacing
- Wavelength spacing practically depends on:
 - laser linewidth
 - optical filter bandwidth

ITU-T Standard Transmission DWDM windows

Principles of DWDM

- BW of a modulated laser: 10-50 MHz → 0.001 nm
- Typical Guard band: 0.4 1.6 nm
- 80 nm or 14 THz @1300 nm band
- 120 nm or 15 THz @ 1550 nm
- Discrete wavelengths form individual channels that can be modulated, routed and switched individually
- These operations require variety of passive and active devices

$$|\Delta \nu| = \left(\frac{c}{\lambda^2}\right) |\Delta \lambda|$$
 Ex. 10.1

Nortel OPTERA 640 System

TX: Optical transmitter

RX: Optical receiver

VA: Variable attenuator

64 wavelengths each carrying 10 Gb/s

1Tb/s Experiment: Channel Spectrum

DWDM Limitations

- Theoretically large number of channels can be packed in a fiber
- For physical realization of DWDM networks we need precise wavelength selective devices
- Optical amplifiers are imperative to provide long transmission distances without repeaters

Part II: WDM Devices

Key Components for WDM

Passive Optical Components

- Wavelength Selective Splitters
- Wavelength Selective Couplers

Active Optical Components

- Tunable Optical Filter
- Tunable Source
- Optical amplifier
- Add-drop Multiplexer and De-multiplexer

Photo detector Responsivity

Photo detectors are sensitive over wide spectrum (600 nm).

Hence, narrow optical filters needed to separate channels before the detection in DWDM systems

Passive Devices

- These operate completely in the optical domain (no O/E conversion) and does not need electrical power
- Split/combine light stream Ex: N X N couplers, power splitters, power taps and star couplers
- Technologies: Fiber based or
 - Optical waveguides based
 - Micro (Nano) optics based
- Fabricated using optical fiber or waveguide (with special material like InP, LiNbO₃)

Filter, Multiplexer and Router

Applications

- wavelength selection, channel add/drop
- reduction of amplifier noise
- basic building block of more advance components such as multiplexers and demultiplexers

Requirements

- low insertion loss
- low polarization dependent loss
- robust (temperature insensitive)
- flat passbands, steep slopes
- tunable (for dynamic operation)

Basic Star Coupler

May have N inputs and M outputs

- Can be wavelength selective/nonselective
- Up to N = M = 64, typically N, M < 10

Fused-Biconical coupler OR Directional coupler

- P3, P4 extremely low (-70 dB below Po)
- Coupling / Splitting Ratio = P2/(P1+P2)
- If $P_1 = P_2 \rightarrow$ It is called 3-dB coupler

Fused Biconical Tapered Coupler

- Fabricated by twisting together, melting and pulling together two single mode fibers
- They get fused together over length W;
 tapered section of length L; total draw length
 = L+W
- Significant decrease in V-number in the coupling region; energy in the core leak out and gradually couples into the second fibre

Definitions

Splitting (Coupling) Ratio = $P_2/(P_1 + P_2)$

Excess Loss = 10 Log[$P_0/(P_1+P_2)$]

Insertion Loss = 10 Log[P_{in}/P_{out}]

Crosstalk = $10 \text{ Log}(P_3/P_0)$

Coupler Characteristics

 power ratio between both output can be changed by adjusting the draw length of a simple fused fiber coupler

- It can be made a WDM de-multiplexer:
 - Example, 1300 nm will appear output 2 (p2) and 1550 nm will appear at output 1 (P1)
 - However, suitable only for few wavelengths that are far apart, not good for DWDM

Wavelength Selective Devices

These perform their operation on the incoming optical signal as a function of the wavelength

Examples:

- Wavelength add/drop multiplexers
- Wavelength selective optical combiners/splitters
- Wavelength selective switches and routers

Fused-Fiber Star Coupler

Splitting Loss = -10 Log(1/N) dB = 10 Log (N) dB Excess Loss = 10 Log (Total P_{in} /Total P_{out}) Fused couplers have high excess loss

8x8 bi-directional star coupler by cascading 3 stages of 3-dB Couplers

Number of 3-dB Couplers
$$N_c = \frac{N}{2} \log_2 N$$

There are N/2 elements in the vertical direction and log 2 N = log N/log 2 elements horizontally.

Contd

- Any higher order coupler can be constructed with 2x2couplers
- 32x32, 64X64 can be constructed with 2x2couplers

Polarization dependent Isolator

Polarization independent Isolator

CIRCULATORS

Optical circulators redirects light sequentially from port-to-port in a unidirectional path

To extract the desired wavelength, a circulator is used in conjunction with the rating

Fiber Bragg Grating

Fiber Bragg Grating

- This is invented at Communication Research Center, Ottawa, Canada
- The FBG has changed the way optical filtering is done
- The FBG has so many applications
- The FBG changes a single mode fiber (all pass filter) into a wavelength selective filter

Fiber Brag Grating (FBG)

- Basic FBG is an in-fiber passive optical band reject filter
- FBG is created by imprinting a periodic perturbation in the fiber core
- The spacing between two adjacent slits is called the pitch
- Grating play an important role in:
 - Wavelength filtering
 - Dispersion compensation
 - Optical sensing
 - EDFA Gain flattening
 - Single mode lasers and many more areas

Bragg Grating formation

FBG Theory

Exposure to the high intensity UV radiation changes the fiber core n(z) permanently as a periodic function of z

$$n(z) = n_{core} + \delta n[1 + \cos(2\pi z/\Lambda)]$$

z: Distance measured along fiber core axis

∧: Pitch of the grating

 n_{core} : Core refractive index

δn: Peak refractive index

Reflection at FBG

Simple De-multiplexing Function

Reflected Wavelength $\lambda_B = 2\Lambda n_{eff}$

Peak Reflectivity $R_{max} = tanh^2(kL)$

Wavelength Selective DEMUX

Dispersion Compensation

