250 Homework #1

Aidan Chin *

February 23, 2024

P1.1.4 [10 pts]

Let C be the set $\{0, 1, ..., 15\}$. Let D be a subset of C and define the number f(D) as follows -f(D) is the sum, for every element i of D, of 2^i . For example, if D is 1, 6 then $f(D) = 2^1 + 2^6 = 66$.

- (a) What are $f(\emptyset)$, f(0,2,5), and f(C)?
- (b) Is there a D such that f(D) = 666? If so, find it.
- (c) Explain why, if D and E are any two subsets of C such that f(D) = f(E), then D = E.

- (a) $f(\emptyset) = \emptyset$ there is nothing in the set so you add nothing $f(0, 2, 5) = 2^0 + 2^2 + 2^5 = 37$ $f(C) = \sum_{n=0}^{15} 2^n = 65535$
- (b) yes, using this base 2 system, you can define every number f(1,3,6,7,9) = 666
- (c) in this function f() there is only 1 unique output per input, therefore if the inputs are the same, the output would be the same, order doesn't matter in sets

^{*}Collaborated with Nobody.

P1.2.5 [10 pts]

Let the alphabet C be $\{a, b, c\}$. Let the language X be the set of all strings over C with at least two occurrences of b. Let Y be the language of all strings over C that never have two occurrences of c in a row. Let Z be the language of all strings over C in which every c is followed by an a. (Recall that any string with no c's is thus in Z.)

- (a) List the three-letter strings in each of X, Y, and Z. The easiest way to do this may be to first list all 27 strings in C^3 and then see which ones meet the given conditions.
- (b) List the four-letter strings that are both in X and in Y, those that are both in X and in Z, those that are both in Y and in Z, and those that are in all three sets. How many total strings are in C^4 ?
- (c) Are any of X, Y, or Z subsets of any of the others?
- (d) Suppose u and v are two strings in X. Do we know that the strings u^R , v^R , uv, and vu are all in X? Either explain why this is always true, or give an example where it is not.
- (e) Repeat the previous question for the languages Y and Z.

- (b) the total strings in C^4 is equivalent to 3^4 or 81. $X^4 \cap Y^4 = \{aabb, abba, baab, bbaa, bbba, abbb, babb, bbbb, cabb, acbb, cbba, abbc, bcab, bacb, bbca, bbca, bbbc, cbbb, bcbb, bbcb, cbbc} <math>X^4 \cap Z^4 = \{bbbb, bbba, bbab, babb, abbb, abbb, bbca, bcab, cabb, aabb, baab, baba} \}$ $Y^4 \cap Z^4 = \{aaaa, aaab, aaba, abaa, abaabaaa, bbbb, bbba, babb, abbb, abbb, abbb, abab, aaba, abaa, abaa, abaa, caaa, caaa, caab, caba, cabb, bcab, aaca, acaa, caaa, baca, caab, caba, cabb, bcab}$
- (c) as it shows, $X \subset Y$
- (d) this is always true, the positions dont matter of the 2 b's as long as they're there it works. and reversing or concatenating does not affect the occurrences of the elements in the set
- (e) for Y this is not true, when $v = \{ac\}$ and $u = \{ca\}$ then $vu = \{acca\}$ which does not exist in Y for Z this is not true, when $v = \{ca\}$ then v^r does not exist in Z

P1.4.10 [10 pts]

Letting p denote "mackerel are fish" and q denote "trout live in trees", translate each of the following four statements into English: $\neg p \to q$, $\neg (p \to q)$, $\neg p \leftrightarrow q$, and $\neg (p \leftrightarrow q)$. Are any two of these four statements logically equivalent?

Solution:

 $\neg p \to q$ if mackerel arent fish, then trout live in trees $\neg (p \to q)$ it is not the case if mackerel are fish, then trout live in trees $\neg p \leftrightarrow q$ mackerel aren't fish, if and only if trout live in trees $\neg (p \leftrightarrow q)$ it is not the case that mackerel are fish, if and only if trout live in trees the truth table shows that $\neg p \leftrightarrow q$ and $\neg (p \leftrightarrow q)$ are equivalent

p	q	$\neg p \rightarrow q$	$\neg(p \to q)$	$\neg p \leftrightarrow q$	$\neg(p \leftrightarrow q)$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	1	1
1	1	1	0	0	0

P1.5.6 [10 pts]

Let Σ be the alphabet a, b, c, \ldots, z and let U be the set Σ^3 of three-letter strings with letters from Σ . Let X be the set of strings in U whose first letter is c. Let Y be the set of strings whose second letter is a, and let Z be the set of strings whose last letter is t. Describe each of the following sets in English, and determine the number of strings in each set.

- (a) $X \cap Y$
- (b) $X \cap Y \cap Z$
- (c) $Y \cup Z$
- (d) $X \cap (Y \cup Z)$

- (a) $X \cap Y =$ the set of strings in U whose first first letter is c and the second letter is a
- (b) $X \cap Y \cap Z = \{cat\}$
- (c) $Y \cup Z$ = the set of strings in U that either has a as the second letter or t as the last letter, or both
- (d) $X \cap (Y \cup Z)$ = the set of strings in U that have c as the first letter and either has a as the second letter or t as the last letter, or both a and t

P1.7.6 [10 pts]

Suppose we substitute $a \oplus b$ for p and $a \wedge b$ for q in the contrapositive rule to get $((a \oplus b) \to (a \wedge b)) \leftrightarrow ((\neg a \wedge b) \to (\neg a \oplus b))$. Verify that this result is *not* a tautology. Why didn't our substitution lead to a valid tautology?

Solution:

the reason this is not a valid tautology is because of the way that the \neg was distributed does not follow the identity, the $(a \oplus b)$ should become $\neg(a \oplus b)$ and not $(\neg a \oplus b)$ and the same could be said for q

by checking the truth table we can find that they are definitely not equivalent

a	b	original	negated
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	1

P1.8.2 [10 pts]

A variant of the Proof By Cases rule is as follows: Given the premises $p \lor q, p \to r$, and $q \to r$, derive r.

```
\begin{array}{l} p \vee q, \ p \rightarrow r, \ q \rightarrow r \\ \text{through definition of implication } \neg p \rightarrow q, \ p \rightarrow r, \ q \rightarrow r \\ \text{combining implications } \neg p \rightarrow r, \ p \rightarrow r \\ \text{tautology, } r \end{array}
```

P1.8.7 [10 pts]

Prove that the compound propositions $p \wedge (q \to r)$ and $\neg (p \to (q \wedge \neg r))$ are equivalent by using the Equivalence and Implication Rule and constructing two deductive sequence proofs.

```
Proof 1 p \land (q \rightarrow r) \rightarrow \neg (p \rightarrow (q \land \neg r)) p \land (q \rightarrow r) Given q \rightarrow r Given \neg q \lor r Implication rule p \land (\neg q \lor r) plug in \neg p \lor \neg (\neg q \lor r) implication rule \neg (p \rightarrow (q \neg r)) equivalence / demorgans, since they are the same, they are equivalent Proof 2 \neg (p \rightarrow (q \land \neg r)) \rightarrow p \land (q \rightarrow r) \neg (p \rightarrow (q \land \neg r)) given \neg p \lor \neg (\neg q \lor r) implication rule & demorgans \neg p \lor \neg (q \land \neg r) demorgans \land (q \rightarrow r) demorgans and implication rule they are logically identical, therefore they are equivalent
```

P1.10.6 [12 pts]

We can define binary relations on the naturals for each of the five relational operators. Let LT(x,y), LE(x,y), E(x,y), GE(x,y), and GT(x,y) be the predicates with templates x < y, $x \le y$, x = y, $x \ge y$, and x > y respectively.

- (a) Show how each of the five predicates can be written using only LE and boolean operators. Use your constructions to rewrite $(LE(a,b) \oplus (E(b,c) \vee GT(c,a)) \rightarrow (LT(c,b) \wedge GE(a,c))$ in such terms.
- (b) Express each of the five predicates using only LT and boolean operators, and rewrite the same compound statement in those terms.

```
(a) LT(x,y) = \neg LE(y,x)

LE(x,y) = LE(x,y)

E(x,y) = LE(x,y) \wedge LE(y,x)

GE(x,y) = LE(y,x)

GT(x,y) = \neg LE(x,y)

the original equation in the new terms LE(a,b) \oplus (LE(b,c) \wedge LE(c,b) \vee \neg LE(c,a)) \rightarrow (\neg (b,c) \wedge LE(c,a))

(b) LT(x,y) = LT(x,y)
```

```
(b) LT(x,y) = LT(x,y)

LE(x,y) = \neg LT(y,x)

E(x,y) = \neg LT(x,y) \land \neg LT(y,x)

GE(x,y) = \neg LT(x,y)

GT(x,y) = LT(y,x)

the original equation in the new terms \neg LT(b,a) \oplus (\neg LT(b,c) \land \neg LT(a,c) \lor LT(a,c) \to (LT(c,b) \land \neg LT(a,c))
```

P2.3.9 [12 pts]

Let D be a set of dogs and let T be a subset of terriers, so that the predicate T(x) means "dog x is a terrier". Let F(x) mean "dog x is fierce" and let S(x,y) mean "dog x is smaller than dog y". Write quantified statements for the following, using only variables whose type is D:

- (a) There exists a fierce terrier.
- (b) All terriers are fierce.
- (c) There exists a fierce dog who is smaller than all terriers.
- (d) There exists a terrier who is smaller than all fierce dogs, except itself.

- (a) $\exists x \in D : F(x) \land T(x)$
- (b) $\exists x \in D : F(x) \to T(x)$
- (c) $\exists x \in D : \forall T : S(F(x, D))$
- (d) $\exists x \in D : (T(x) \land \forall y \in D : (F(y) \land y \neq x) \rightarrow S(x,y))$

EC: P2.3.7 [10 pts]

Let D be a set of dogs, with R being the subset of retrievers, B being the subset of black dogs, and F being the subset of female dogs, with membership predicates R(x), B(x), and F(x) respectively. Suppose that the three statements $\forall x : \exists y : R(x) \oplus R(y), \forall x : \exists y : B(x) \oplus B(y),$ and $\forall x : \exists y : F(x) \oplus F(y)$ are all true. What can you say about the number of dogs in D? Justify your answer.

Solution:

 $\forall x: \exists y: R(x) \oplus R(y)$ - for every dog x, there is a dog y such that x is a retriever or y is a retriever, but not both

 $\forall x: \exists y: B(x) \oplus B(y)$ - for every dog x there is a dog y such that x is black or y is black but not both

 $\forall x: \exists y: F(x) \oplus F(y)$ - for every dog x there is a dog y such that x is female or y is female but not both from these we can conclude that for every dog, there is another dog that is a retriever, same for black dogs and female dogs we can see from this that the size of D must be at least 2x the size of either R, B, or F