Examen Final - 07/09/2020

Apellido y Nombre:	Legajo:	Carrera:
Condición (Regular-Año / Libre):		

1. Sea $\mathbb{R}_1[x]$ el espacio vectorial de polinomios a coeficientes reales de grado a lo sumo 1 (incluyendo el polinomio nulo), con las operaciones habituales.

******** ******* ******

Para $p, q \in \mathbb{R}_1[x]$, se define el producto $\langle ., . \rangle$ tal que $\langle p, q \rangle = p(0)q(0) + p(1)q(1)$.

- a) Demostrar que $\langle ., . \rangle$ es un producto interno.
- b) Sea $W = \{ p \in \mathbb{R}_1[x] : p(x) = a_0 + a_1 x \land a_0 = 0 \}$. Hallar W^{\perp} y $proy_{s/W}(3x+1)$, respecto a $\langle ., . \rangle$
- 2. Sea A una matriz cuadrada real:
 - a) Probar que $A^T A$ tiene autovalores reales.
 - b) Probar que A^TA tiene autovalores no negativos. Sugerencia: Sea (λ, x) autovalor y autovector de A^TA . Probar que $\lambda \|x\|^2 = \|Ax\|^2$.
 - c) Probar que $I + A^T A$ es invertible.
- 3. El algoritmo RankPage de Google calcula un vector estocástico (entradas positivas que suman 1) v^* cuyas componentes que se usan para asignar un ranking de importancia entre las páginas de la red asociadas a una búsqueda. Dicho v^* es un autovector particular asociado a una matriz M definida por Page & Brin a partir de la matriz de transición asociada a las relaciones entre las páginas de la red.

Suponga que la red se conforma de las siguiente páginas con los respectivos links:

- Página 1: sin links
- Página 2 y 3: link a página 1
- Página 4 y 5 : link a página 2
- Página 6,7, 8: link a página 3
- a) Determine la matriz de transición A asociada a la red. y la matriz M asociada a esta red con dumping factor p = 0,15, escrita en función de A. ¿Cómo se interpreta el parámetro p?
- b) ¿Cómo se define v^* en función de M? ¿Qué resultado nos garantiza la existencia de un único tal v^* ?
- c) ¿Es posible utilizar el método de eliminación de Gauss para encontrar a v^* ? Justifique.
- d) ¿Qué método se emplea sobre redes de millones de páginas y por qué?
- 4. Sea *A* es una matriz real.
 - *a*) Pruebe que *A* es una matriz $m \times n$ de rango 1 si y solo si existen $u \in \mathbb{R}^m \setminus \{0\}$ y $v \in \mathbb{R}^n \setminus \{0\}$ tales que $A = uv^T$.
 - b) Pruebe que si $u \in \mathbb{R}^n$ y ||u|| = 1, la matriz $A = uu^T$ es una matriz de proyección, esto es, A es simétrica e idempotente $(A^2 = A)$.
 - c) Pruebe que si A es una matriz simétrica, entonces A es combinación lineal de matrices de rango 1. ¿Qué relación existe entre A y cada matriz de rango 1 en esta combinación lineal?
- 5. Describir el proceso de ortogonalización de Gram-Schmidt (G-S). ¿Qué relación existe entre el k-ésimo vector generado por G-S y los k-1 vectores generados anteriormente? Justifique.