JPEG Algorithm for Full-Color Still Image Compression

- average compression ratio 15:1
- 4 modes of operation
 - i. sequential DCT-based encoding
 - encoded in a single left-to-right, top-to-bottom
 - ii. progressive DCT-based encoding
 - encoded in multiple scans, in order to produce a quick, rough decoded image when the transmission time is long
 - iii. lossless encoding
 - encoded to guarantee the exact reproduction
 - iv. hierarchical encoding
 - encoded in multiple resolutions

CYH/MM JPEG /Page.3

• the source image is divided into 8x8 block, and transformed into the frequency domain using the **FDCT**

$$F(u,v) = \frac{C(u)C(v)}{4} \times \sum_{x=0,y=0}^{7} \sum_{y=0}^{7} f(x,y) \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

where

$$C(u) = \begin{cases} 1/\sqrt{2} & \text{for } u = 0\\ 1 & \text{for } u > 0 \end{cases}$$

- : DC coefficient the remaining 63 coefficients: AC coefficients
- for a grayscale image, DCT coefficients ∈ [-1024, 1023]
- fast DCT algorithms are available
- most spatial frequencies have zero or near-zero values

JPEG CODEC

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

• JPEG sequential encoder and decoder

JPEG Encoder

- consist of three main blocks
 - 1. forward discrete cosine transform (FDCT) block

 - 3. entropy encoder

• the input to the encoder is shifted $[0, 2^{P}-1] \rightarrow [-2^{P-1}, 2^{P-1}-1]$

$$[0, 2^{P}-1] \rightarrow [-2^{P-1}, 2^{P-1}-1]$$

CYH/MM JPEG/Page.4

- all 64 DCT coefficient are quantized using a 64element quantization table
 - ⇒ discard information which is not visually significant

$$F_q(u,v) = Round \left[\frac{F(u,v)}{Q(u,v)} \right]$$

where Q(u,v) are quantization coefficients specified by a quantization table

8	6	5	8	12	20	26	30
6	6	7	10	13	29	30	28
7	7	8	12	20	29	35	28
7	9	11	15	26	44	40	31
9	11	19	28	34	55	52	39
12	18	28	32	41	52	57	46
25	32	39	44	52	61	60	51
36	46	48	49	56	50	52	50

• after quantization, the 63 AC coefficients are ordered into the "zig-zag" sequence (for entropy encoding)

- the probability of coefficients being zero is an increasing monotonic function of the index
- the dc coefficients are encoded using the predictive coding techniques
 - : there is usually a strong correlation between dc coefficients of adjacent 8x8 blocks
- *entropy coding*: provide additional compression by encoding the quantized DCT coefficients into more compact form
- specified two entropy methods: *Huffman coding* and *arithmetic coding*

• Huffman encoder converts the DCT coefficients using 2 steps:

1.forming intermediate symbol sequence

 each ac coefficient is represented by a pair of symbols:

i. symbol-1 (RUNLENGTH, SIZE),

ii. symbol-2 (AMPLITUDE)

RUNLENGTH = the number of consecutive zero-valued ac coefficients preceding the nonzero ac coefficient $\in [0,15]$

SIZE = the number of bits used to encode $AMPLITUDE \in [0 \text{ to } 10 \text{ bits}]$

AMPLITUDE = in the range of [-1023, 1024]

e.g. if the sequence of ac coefficients is 0, 0, 0, 0, 0, 0, 476 $\Rightarrow (6, 9)(476)$

• if RUNLENGTH > 15, symbol-1 (15,0) \Rightarrow RUNLENGTH = 16 e.g. (15,0)(15,0)(7,4)(12)

> \Rightarrow RUNLENGTH = 39 SIZE = 4 AMPLITUDE = 12

• $(0,0) \Rightarrow End\ Of\ Block\ (EOB)$

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.7

• for dc coefficients:

symbol-1 (SIZE) symbol-2 (AMPLITUDE)

the range of dc coefficients = [-2048, 2047]

- 2. converting intermediate symbol sequence into binary sequence using Huffman tables
 - symbols are replaced with variable length codes: dc coefficient, then ac coefficients
 - each symbol-1 encoded with a *Variable-Length Code* (VLC)
 - symbol-2 are encoded using a Variable-Length Integer (VLI) code

e.g. $(1,4)(12) \rightarrow (1111101011100)$

Size	Amplitude range
1	(-1,1)
2	(-3,-2)(2,3)
3	(-74)(47)
4	(-158)(815)
5	(-3116)(1631)
6	(-6332)(3263)
7	(-12764)(64127)
8	(-255128)(128255)
9	(-511256)(256511)
10	(-1023512)(5121023)

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.8

JPEG Decoder

- all the steps from the encoding process are inversed and implemented in reverse order
- IDCT equation:

$$f(x,y) = \sum_{u=0}^{7} \sum_{v=0}^{7} \left\{ \frac{C(u)C(v)}{4} F(u,v) \times \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16} \right\}$$

where
$$C(u) = \begin{cases} 1/\sqrt{2} & \text{for } u = 0 \\ 1 & \text{for } u > 0 \end{cases}$$

CYH/MM_JPEG /Page.10

Compression Measures

- Compression Ratio, C_R $C_R = \frac{original\ data\ size}{compressed\ data\ size}$
- there is a trade-off between the compression ratio and the picture quality
- a measure for the quality of picture: Number of bits/pixel,

$$N_b = \frac{encoded \ number \ of \ bits}{number \ of \ pixels}$$

N _b (bits/pixel)	Picture Quality
0.25-0.50	Moderate to good quality
0.50-0.75	Good to very good quality
0.75-1.00	Excellent quality
1.50-2.00	Usually indistinguishable
	from the original

• another statistical measure:

Root Mean Square (RMS) error

RMS =
$$\frac{1}{N} \sqrt{\sum_{i=1}^{N} (X_i - \hat{X}_i)^2}$$

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.11

(e) Block after quantization

61	- 2	0	2	0	0	-1
4	3 - 2	0	0	0	0	0
4	4	U	U	U	U	U
-1	- 0	0	-1	0	-1	0
	2					
0	0 1	0	0	0	0	0
0	0 0	0	0	0	0	0
0	0 -1	0	0	0	0	0
0	0 0	0	0	0	0	0
0	0 0	0	0	0	0	0

(f) Zig-zag sequence

(g) Intermediate symbol sequence

 $\begin{array}{l} (6)(61),(0,2)(-3),(0,3)(4),(0,1)(-1),(0,3)(-4),\\ (0,2)(2),\,(1,2)(2),(0,2)(-2),(\,5,2)(2),(3,1)(1),\\ (6,1)(-1),(2,1)(-1),(4,1)(-1),(7,1)(-1),(0,0) \end{array}$

Sequential JPEG Encoding Example

Encoding a Single Block

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

(a) Original 8x8 block

140	144	147	140	140	155	179	175
144	152	140	147	140	148	167	179
152	155	136	167	163	162	152	172
168	145	156	160	152	155	136	160
162	148	156	148	140	136	147	162
147	167	140	155	155	140	136	162
136	156	123	167	162	144	140	147
148	155	136	155	152	147	147	136

(b) Shifted block

12	16	19	12	11	27	51	47 51 44 32 34 34 19 8
16	24	12	19	12	20	39	51
24	27	8	39	34	34	24	44
40	17	28	32	27	27	8	32
34	20	28	20	8	8	19	34
19	39	12	27	12	12	8	34
8	28	-5	39	16	16	12	19
20	27	8	27	19	19	19	8

(c) Block after FDCT

185	-17	14	-8	23	-9	-13	-18
20	-34	26	-9	-10	10	13	6
-10	-23	-1	6	-18	3	-20	0
-8	-5	14	-14	-8	-2	-3	8
-3	9	7	1	-11	17	18	15
3	-2	-18	8	8	-3	0	-6
8	0	-2	3	-1	-7	-1	-1
0	-7	-2	1	1	4	-6	0

(d) Quantization table (quality=2)

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

• quantization table:

 $Q[i][j] = 1 + [(1+i+j) \times quality]$

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.12

(h) Encoded bit sequence (total 98 bits)
(110)(111101),(01)(00),(100)(100),(00)(0),
(100)(011),(01)(10),(11011)(10),(01)(01),
(01)(01),(111111110111)(10),(111010)(1),
(1111011)(0),(11100)(0),(111011)(0),
(11111010)(0),(1010)

(RUNLENGTH,SIZE)	Code Word
(0,0) EOB	1010
(0,1)	00
(0,2)	01
(0,3)	100
(1,2)	11011
(2,1)	11100
(3,1)	111010
(4,1)	111011
(5,2)	11111110111
(6,1)	1111011
(7,1)	11111010

$$C_R = \frac{original\ data\ size}{compressed\ data\ size} =$$

$$N_b = \frac{encoded\ number\ of\ bits}{number\ of\ pixels} =$$

JPEG Compression of Color Images

- the sequential JPEG algorithm can be easily expanded for multiple-component images
- the JPEG source image model consists of 1 to 255 image components, called color or spectral bands

• each component may have a different number of pixels in the horizontal (x_i) and vertical (y_i) axis

- the color components can be processed in two ways 1.non-interleaved data ordering processing is performed component by component from left-to-right and top-to-bottom
 - 2. interleaved data ordering different components are combined into Minimum Coded Units (MCUs)

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.15

Progressive JPEG Compression

- produce quickly a rough image, and then improve its quality using multiple scans
- the progressive JPEG mode of operation produces a sequence of scans, each scan coding a subset of DCT coefficients
 - ⇒ must have an additional buffer
- can be achieved using three algorithms:
 - 1. progressive spectral selection algorithm
 - the DCT coefficients are grouped into several spectral bands
 - typically, low-frequency DCT coefficients bands are sent first, and then higherfrequency coefficients
 - for example:

band 1: DC coefficient only

band 2: AC₁ and AC₂ coefficients

band 3: AC₃, AC₄, AC₅, AC₆ coefficients

band 4: AC₇, . . ., AC₆₃ coefficients

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.16

- 2. progressive successive approximation algorithm
 - all DCT coefficients are sent first with lower precision, and then refined in later scans
 - for example:

band 1: all DCT coefficients divided by 4

band 2: all DCT coefficients divided by 2

band 3: all DCT coefficients at full resolution

- 3. combined progressive algorithm
 - combine both spectral selection and successive approximation algorithms

Sequential Lossless JPEG Compression

• a simple predictive compression algorithm is used instead of the DCT-based technique

$$\hat{X} = f(A, B, C)$$
$$\Delta X = X - \hat{X}$$

ΔX is encoded using the Huffman coding

Hierarchical JPEG Compression

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

- offer a progressive representation of a decoded image similar to progressive JPEG, but also provide encoded images at multiple resolution
- create a set of compressed images beginning with small images, and then continuing with images with increased resolutions: *downsampling*, or *pyramidal coding*

Department of Electronic & Information Engineering The Hong Kong Polytechnic University

CYH/MM_JPEG /Page.19

Compressed Data Format

 various markers and parameters make up the baseline DCT-based JPEG format

 all markers are in the form of a 2-byte code:a 0×FF byte followed by a byte that is not equal to 0×FF or zero