- 1. Determinare, se è possibile:
 - i. una matrice $A \in M_2(\mathbb{R})$ con determinante 4 e traccia 3.
 - ii. Due matrici distinte $B, C \in M_3(\mathbb{R})$ a scala ridotta e equivalenti per righe.
 - iii. Due matrici $D, E \in M_3(\mathbb{R})$ aventi lo stesso determinante ma non lo stesso rango.
 - iv. Una matrice $F \in M_3(\mathbb{R})$ che possa essere la matrice di Gram associata (rispetto una base qualsiasi) a un prodotto interno φ che non ammette vettori isotropi e con $\text{Rad}(\varphi) = \text{Span}\{(2,3,4)\}.$
 - v. Una matrice $G \in M_3(\mathbb{R})$ priva di autovalori reali.
- 2. Si consideri l'endomorfismo f di \mathbb{R}^3 tale che

$$f((1,0,0)) = \left(0, \frac{1}{2}, -\frac{3}{2}\right)$$
 $f((0,1,0)) = (6,2,3)$ $f((2,1,1)) = (4,2,2)$

- i. Determinare la matrice canonicamente associata a f.
- ii. Stabilire se f è diagonalizzabile.
- iii. Determinare una base del complemento ortogonale di f(W) rispetto al prodotto scalare canonico, con $W = \text{Span}\{(1,0,0),(0,1,0)\}$.
- iv. Determinare una rappresentazione cartesiana di uno degli autospazi di f^{2016} .
- v. Stabilire se esiste un vettore $v \in \mathbb{R}^3$ tale che f(v) = v + (4, 2, 0).
- **3.** Nello spazio euclideo tridimensionale, si considerino i punti P(1, 1, 0), Q(1, 0, 1), R(0, 0, 2) e S(1, 3, 1). Si determini:
 - i. l'equazione del piano π contenente P,Q e R;
 - ii. l'equazione della retta t perpendicolare a π passante per S;
 - iii. la distanza di S dal piano π ;
 - iv. la posizione reciproca di t e del piano x-ay-z=3 al variare del parametro reale a.