

ENGR142 2018, 2nd Trimester Lecturers: B. Ruck, F. Natali, and C. Hollitt

Assignment 3 Due date: 11:59 PM, Thursday 16th August, 2018

Problem 1: Lego crane (8 Marks)

The diagram above illustrates two situations where a cart is pulled by a string up a slope of angle θ . In the first case the string pulls the cart directly up the slope, while in the second case it pulls at an angle β to the slope. The tension force \vec{F}_T , the weight force, the normal force, and the friction force are all shown in a free-body diagram for both cases. The friction force between the cart and the slope is $\vec{F}_f = \mu \vec{N}$, where μ is the coefficient of friction and \vec{N} is the normal force.

(a) By applying Newton's second law along the slope and perpendicular to the slope show that the acceleration of the cart along the slope is given by

$$a = \frac{F_T \left[\cos(\beta) + \mu \sin(\beta)\right] - mg \left[\sin(\theta) + \mu \cos(\theta)\right]}{m}$$

(b) If $F_T=4$ N, $\mu=0.5$, the cart has mass m=0.25 kg, and $\theta=30^\circ$ show that more rapid acceleration is achieved pulling at an angle $\beta=20^\circ$ than pulling directly up the slope $\beta=0^\circ$. Explain in one or two sentences why this is the case.

Consider a mass m connected to a spring with spring constant k. In addition to the spring force the mass experiences a drag force given by $F_d=-bv$, where b is a constant and v is the velocity. The resulting oscillations are described by the formula $x(t)=Ae^{-\alpha t}\cos{(\omega t+\phi)}$, where the constants α and ω are given by $\alpha=b/2m$ and $\omega=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$. In the following take m=1 kg and k=4 N/m, and for the initial amplitude and phase use A=2 m and $\phi=0$.

- (a) Consider the case b=0.4 kg/s. Calculate ω and α and plot x(t) between $t_i=0$ and $t_f=12$ seconds. Use as the initial position x(0)=1 m.
- (b) Now perform a numerical calculation of x(t) for the same values b=0.4 kg/s and x(0)=2 m, and use the same start and finish times. First calculate for a total of 100 data points between t_i and t_f , then repeat the calculation using 10000 points (i.e., use a much smaller time step in the second case).
 - (b.1) Plot the results on the same graph as you used for part (a) above.
 - (b.2) The two calculations will not be the same. Explain, using a basic physics principle, why the result of the first calculation (100 data points) cannot be correct (one or two sentences only).
- (c) Perform numerical calculations of x(t) using 10000 data points for b=0, 0.5, 2, 4, and 12 kg/s. Plot x(t) in each case (use a single graph to show all results). Use the values for t_i and t_f given above.