Входные данные

E_k , B	В	Is	R_1 , KOM	R_2 , KOM	$R_{\scriptscriptstyle m K}$, $R_{ m 9}$, кОм	R_{Γ} , KOM
9	80	Si	18	12	2	2

С _{бэ} , р F	С _{бк} , рF	fα	C_1 , C_2 , μF	С _{блок} , µF	$R_{\rm H}$, KOM
10	30	100	1	200	10

Часть 1 - Общий эмиттер

Рисунок 1.1 - Схема с общим эмиттером

Снятие значений параметров схемы:

Рисунок 1.2 — Измерение параметров цепи на входе и выходе при $R_n = 200 \; (\text{Ом})$

Рисунок 1.3 — Измерение параметров цепи на входе и выходе при $R_n = 1000 \, ({\rm OM})$

Рисунок 1.4 — Измерение параметров цепи на входе и выходе при $R_n=10000\;\mathrm{(OM)}$

Рисунок 1.5 — Измерение параметров цепи на входе и выходе при $R_n = 250000 \, ({\rm OM})$

R_n	$U_{\scriptscriptstyle m BX}$	$I_{\scriptscriptstyle m BX}$	$oldsymbol{U}_{ ext{ iny BbIX}}$	$I_{\scriptscriptstyle m BbIX}$	$R_{\scriptscriptstyle \mathrm{BX}}$	K _i	K_u	K_p
200	1,38E-02	1,0643E-05	1,27E-01	6,36E-04	1297,75	59,79	9,22	551,26
1000	1,38E-02	1,0644E-05	4,67E-01	4,67E-04	1297,73	43,85	33,79	1481,69
10000	1,38E-02	1,0646E-05	1,167	1,17E-04	1297,58	10,95	84,48	925,06
250000	1,38E-02	1,0647E-05	1,389	5,57E-06	1297,55	0,52	100,54	52,28

Выходное сопротивление $R_{\text{вых}} = \frac{U_{\text{xx}}}{I_{\text{к3}}} = \frac{1.4}{7*10^{-4}} = 2000(\text{Ом})$

Рисунок 1.6 - Снятие значения напряжения холостого хода

Рисунок 1.7 - Снятие значения тока короткого замыкания

Рисунок 1.8 – Снятие значения тока на эмиттере и на коллекторе

Аналитический расчёт

Сопротивление базы: $R_6 = \frac{R_1*R_2}{R_1+R_2} = \frac{18*12*10^6}{(18+12)*10^3} = 7\,200 \text{ (Ом)}$

$$I_{\rm 3M} = 1,464 * 10^{-3} \text{ (A)}$$

$$I_{\rm K} = 1,446 * 10^{-3} ({\rm A})$$

$$\alpha = \frac{B}{B+1} = \frac{80}{80+1} = 0,987654$$

$$\alpha = \frac{I_{\rm K}}{I_{\rm 3M}} = \frac{1,446 * 10^{-3}}{1,464 * 10^{-3}} = 0,987705$$

$$r_{\text{\tiny 3M}} = \frac{\varphi}{I_{\text{\tiny 3M}}} = \frac{2.6 * 10^{-2}}{1.464 * 10^{-3}} = 17.76 \text{ (OM)}$$

$$R_{\text{BX_TP_OO}} = (1 + B) * r_{\text{3M}} = (1 + 80) * 17,76 = 1438,56 \text{ (OM)}$$

Аналитически: $R_{\text{BX}} = \frac{R_{\text{BX_TP_03}}*R_6}{R_{\text{BX_TP_09}}+R_6} = \frac{1438,56*7200}{1438,56+7200} = 1256,99 \text{ (Ом)}$

Графически: $R_{\text{BX}} = 1297,75$

R_n	$R_{\scriptscriptstyle \mathrm{BX}}$	$R_{\scriptscriptstyle m BbIX}$	K_i	K_u	K_p	$\Delta oldsymbol{k_i}$	Δk_u	$\Delta oldsymbol{k_p}$	σk_i , %	σk_u , %	σk_p , %
200		1257	60,62	8,29	502,54	0,83	0,93	48,72	0,0137	0,1122	0,0969
1000	1200		44,45	34,78	1545,97	0,6	0,99	64,28	0,0135	0,0285	0,0416
10000	1298		11,11	83,91	932,24	0,16	0,57	7,18	0,0144	0,0068	0,0077
250000			0,53	100,76	53,4	0,01	0,22	1,12	0,0189	0,0022	0,021

$$\tau_{\beta} = \frac{B+1}{2\pi * f_{\alpha}} = \frac{80+1}{2\pi * 10^8} = 1,298 * 10^{-7} \text{ (cek)}$$

$$R_{kn} = \frac{R_k * R_n}{R_k + R_n} = \frac{10000 * 2000}{12000} = 1666,667 \text{ (Om)}$$

$$R'_{\rm r} = \frac{R_{\rm r} * R_6}{R_{\rm r} + R_6} = \frac{2000 * 7200}{2000 + 7200} = 1565,22 \text{ (OM)}$$

$$G = \frac{R'_{\Gamma} + r_{\vartheta}}{R'_{\Gamma} + R_{\text{BX TD 09}}} = \frac{1565,22 + 17,76}{1565,22 + 1438,56} = 0,527$$

$$C_{K9} = C_{6K} * (B+1) = 3 * 10^{-11} * (80+1) = 2,43 * 10^{-9} (\Phi)$$

$$\tau_{\rm B} = G*\left(\tau_{\beta} + C_{_{\rm K3}}*R_{_{\rm KH}}\right) = 0.527*\left(1.298*10^{-7} + 2.43*10^{-9}*1666.667\right) = 2.77*10^{-7}~({\rm ce}\,{\rm K})$$

$$f_{\beta} = \frac{f_{\alpha}}{B+1} = \frac{10^8}{80+1} = 1,234 * 10^6 (\Gamma \text{H})$$

$$f_{\rm B} = \frac{1}{2\pi * \tau_{\rm B}} = \frac{1}{2\pi * 2,77 * 10^{-7}} = 1,746 * 10^5$$
 (Гц)

$$U_{max} = 34,812 (B)$$
$$\frac{U_{max}}{\sqrt{2}} = 24,564 (B)$$

Рисунок 1.9 - график АЧХ

Граничная частота $f_{\rm B} = 1,013*10^5~(\Gamma {\rm H})$

Часть 2 - Общая база

Рисунок 2.1 – Схема с общей базой

Снятие значений параметров схемы:

Рисунок 2.2 — Измерение параметров цепи на входе и выходе при $R_n = 200 \; (\mathrm{OM})$

Рисунок 2.3 — Измерение параметров цепи на входе и выходе при $R_n = 1000 \, ({\rm OM})$

Рисунок 2.4 — Измерение параметров цепи на входе и выходе при $R_n = 10000 \; ({\rm Ом})$

Рисунок 2.5 — Измерение параметров цепи на входе и выходе при $R_n = 250000 \, ({\rm OM})$

R_n	$U_{\scriptscriptstyle \mathrm{BX}}$	$I_{\scriptscriptstyle \mathrm{BX}}$	$U_{\scriptscriptstyle m BbIX}$	$I_{\scriptscriptstyle m BbIX}$	$R_{\scriptscriptstyle \mathrm{BX}}$	K_i	K_u	K_p
200	3,34E-04	1,73E-05	3,09E-03	1,54E-05	19,31	0,89	9,25	8,23
1000	3,34E-04	1,74E-05	1,13E-02	1,13E-05	19,25	0,65	33,89	22,03
10000	3,34E-04	1,74E-05	2,83E-02	2,83E-06	19,25	0,16	84,76	13,56
250000	3,34E-04	1,74E-05	3,37E-02	1,34E-07	19,25	0,01	100,87	1,01

Выходное сопротивление $R_{\rm BbIX} = \frac{U_{\rm xx}}{I_{\rm KS}} = \frac{33,96*10^{-3}}{16,98*10^{-6}} = 2000 \; {\rm (OM)}$

Рисунок 2.6 - Снятие значения напряжения холостого хода

Рисунок 2.7 - Снятие значения тока короткого замыкания

Рисунок 2.8 - Снятие значения тока эмиттере

Аналитический расчёт:

$$I_{9} = 1,462 * 10^{-3} (A)$$

$$r_{\text{\tiny 3}} = \frac{\varphi}{I_{\text{\tiny 3}}} = \frac{0,026}{1,462 * 10^{-3}} = 17,78 \, (\text{Om})$$

$$R_{\text{BX_TP_OG}} = (1 + B) * r_{3} = (80 + 1) * 17,78 = 1440,08 \text{ (OM)}$$

$$R_{\rm BX} = \frac{\frac{R_{\rm BX,TP_06}}{\rm B+1}*R_{\rm 3}}{\frac{R_{\rm BX,TP_06}}{\rm B+1}+R_{\rm 3}} = \frac{\frac{1440,08}{80+1}*2000}{\frac{1440,08}{80+1}+2000} = 17,622 \text{ (OM)}$$

R_n	$R_{\scriptscriptstyle \mathrm{BX}}$	$R_{\scriptscriptstyle m BbIX}$	K _i	K_u	K_p	$\Delta oldsymbol{k_i}$	Δk_u	$\Delta oldsymbol{k_p}$	σk_i , %	σk_u , %	σk_p , %
200			0,92	8,29	8,98	0,03	0,96	0,75	0,0326	0,1158	0,0835
1000			0,78	34,78	22,73	0,13	0,89	0,7	0,1667	0,0256	0,0308
10000	17,62	2000	0,23	83,91	15,01	0,07	0,85	1,45	0,3043	0,0101	0,0966
250000			0,03	100,7 6	1,43	0,02	0,11	0,42	0,6667	0,0011	0,2937

fв, Гц	<i>т</i> в, сек	G	<i>R</i> ′ _г , Ом	f_{β} , ГЦ	$τ_{\beta}$, сек	<i>C</i> ₁₀ , Φ	R _{KH} , OM
4,82E+06	3,34E-08	0,0123	1565,22	1,234E+06	1,289E-07	2,43E-9	1666,67

$$U_{max} = 8,087 * 10^{-1} (B)$$

$$\frac{U_{max}}{\sqrt{2}} = 5,706 * 10^{-1} (B)$$

Рисунок 2.9 - график АЧХ

Граничная частота $f_{\rm B} = 5,268*10^6~(\Gamma {\rm H})$

Часть 3 - Общий коллектор

Рисунок 3.1 - Схема с общим коллектором

Снятие значений параметров схемы:

Рисунок 3.2 – Измерение параметров цепи на входе и выходе при $R_n = 200 \; (\mathrm{OM})$

Рисунок 3.3 — Измерение параметров цепи на входе и выходе $npu\ R_n=1000\ ({\rm Om})$

Рисунок 3.4 — Измерение параметров цепи на входе и выходе $npu\ R_n=10000\ ({\rm OM})$

Рисунок 3.5 – Измерение параметров цепи на входе и выходе при $R_n = 250000 \, (\mathrm{OM})$

R_n	$oldsymbol{U}_{ ext{bx}}$	$I_{\scriptscriptstyle \mathrm{BX}}$	$oldsymbol{U}_{\scriptscriptstyle ext{BbIX}}$	$I_{\scriptscriptstyle m BbIX}$	$R_{\scriptscriptstyle \mathrm{BX}}$	K_i	K_u	K_p
200	2,50	5,01	2,47	1,14	4981	22,6	0,99	22,4
200	E-02	E-06	E-02	E-04	,45	8	0,99	5
1000	2,66	4,18	2,60	2,60	6370	18,6	0,97	18,0
1000	E-02	E-06	E-02	E-05	,4	3	0,97	7
1000	2,71	3,96	2,68	2,68	6837	0.69	0,99	0,67
0	E-02	E-06	E-02	E-06	,16	0,68	0,99	0,07
2500	2,71	3,94	2,69	1,08	6891	0.02	0.00	0 02
00	E-02	E-06	E-02	E-07	, 29	0,03	0,99	0,03

Выходное сопротивление $R_{\text{вых}} = \frac{U_{\text{xx}}}{I_{\text{ks}}} = \frac{26,893*10^{-3}}{694,531*10^{-6}} = 38,68 \, (\text{Ом})$

Рисунок 3.6 – Снятие значения напряжения холостого хода **V2**

Рисунок 3.7 - Снятие значения тока короткого замыкания

Рисунок 3.8 - Снятие значения тока эмиттере

Аналитический расчёт:

$$r_{\text{\tiny 3}} = \frac{\varphi}{I_{\text{\tiny 3}}} = \frac{0,026}{1,462 * 10^{-3}} = 17,78 \, (\text{OM})$$

$$R_6 = \frac{R_1 * R_2}{R_1 + R_2} = \frac{18 * 12 * 10^6}{(18 + 12) * 10^3} = 7200 \text{ (OM)}$$

$$R_{\text{BX_TP_OK}} = (1+B) * r_{\text{3M}} = (80+1) * 17,78 = 1440,8 \text{ (OM)}$$

$$R_{\rm \tiny 3H} = \frac{R_{\rm \tiny 3}*R_{\rm \tiny H}}{R_{\rm \tiny 3}+R_{\rm \tiny H}} = \frac{2000*10000}{2000+10000} = 1666,\!67\,\rm{(OM)}$$

$$R_{\text{BX}} = \frac{\left[R_{\text{BX_TP_OK}} + (\text{B}+1)*R_{\text{3H}}\right]*R_{\text{6}}}{\left[R_{\text{BX_TP_OK}} + (\text{B}+1)*R_{\text{3H}}\right] + R_{\text{6}}} = \frac{\left[1440.8 + (80+1)*1666.67\right]*7200}{\left[1440.8 + (80+1)*1666.67\right] + 7200} = 6839.1\,\text{(Om)}$$

$$R_{\text{BbIX}} = \frac{\left(r_{\text{3}} + \frac{\dot{R'_{\text{F}}}}{B+1}\right) * R_{\text{3}}}{\left(r_{\text{3}} + \frac{\dot{R'_{\text{F}}}}{B+1}\right) + R_{\text{3}}} = 37,618 \text{ (OM)}$$

R_n	$R_{\scriptscriptstyle \mathrm{BX}}$	$R_{\scriptscriptstyle m BbIX}$	K _i	K_u	K_p	Δk_i	Δk_u	$\Delta oldsymbol{k_p}$	σk_i , %	σk_u , %	σk_p , %
200		37,62	22,69	0,91	20,65	0,01	0,08	1,8	0,0004	0,0879	0,0872
1000	6920 1		18,62	0,97	18,06	0,01	0	0,01	0,0005	0	0,0006
10000	6839,1		0,81	0,99	0,8	0,13	0	0,13	0,1605	0	0,1625
250000			0,03	0,99	0,03	0	0	0	0	0	0

	fв, Гц	$ au_{ m B}$, сек	G	<i>R</i> ′ _г , Ом	f_{eta} , Гц	$τ_{\beta}$, сек	<i>C</i> _№ , Φ	$R_{\rm KH}$, OM
I	4,624E+06	9,8E-08	0,0235	1565,22	1,234E+06	1,289E-07	2,43E-09	1666,67

$$\begin{split} &U_{max} = 2,148*10^{-5}~(B)\\ &\frac{U_{max}}{\sqrt{2}} = 14,904*10^{-5}~(B) \end{split}$$

Рисунок 3.9 - график АЧХ

Граничная частота $f_{\rm B} = 5,585*10^6~(\Gamma {\rm II})$

Вывод

Изучены влияния различных способов включения биполярного транзистора и найдена величина сопротивления нагрузки на свойства усилительного каскада.