Relatorio

Captura dos dados

Foi feita através da biblioteca do R quantmod. A nossa ideia foi fazer o balanceamento da carteira recomendada (10SIM) pelo BTG do mês de novembro. O horizonte temporal foi de 01-01-2019 a 30-11-2021.

Cálculo dos retornos

Primeiro calculos os retornos diários dos dados importados.

date	PRIO3	ITUB4	JPSA3	ARZZ3	ENGI11	SLCE3	WEGE3	GGBR4	PSSA3
2019-01-02	0.0567	0.0440	0.0346	0.0197	0.0179	0.0604	0.0204	0.0270	0.0060
2019-01-03	0.0022	0.0165	-0.0038	0.0049	0.0053	-0.0434	0.0228	-0.0066	-0.0317
2019-01-04	0.0084	-0.0168	-0.0089	-0.0405	0.0079	0.0066	0.0114	0.0265	-0.0425
2019-01-07	-0.0009	0.0019	0.0146	-0.0150	-0.0130	-0.0082	-0.0156	0.0026	0.0201
2019-01-08	0.0239	0.0127	-0.0025	0.0289	-0.0053	-0.0217	-0.0082	0.0013	0.0246

Avaliar as correlações dos retornos

Avaliando as correlações dos retornos podemos ver que...

Também temos a correlação média entre essas ações e os pares de ações que mais possuem correlação entre si.

corr_	_media				
0.3706831					

tk_1	tk_2	corr
PRIO3	GGBR4	0.5163699
ITUB4	GGBR4	0.5063974
JPSA3	ARZZ3	0.5441954
JPSA3	ENGI11	0.5209047
ARZZ3	JPSA3	0.5441954
ENGI11	JPSA3	0.5209047
GGBR4	PRIO3	0.5163699
GGBR4	ITUB4	0.5063974

Montando a carteira

Antes de partir para a construção da carteira, dividimos nossos dados em amostra e fora_amostra, o primeiro para montarmos a carteira e o segundo para testarmos, que abrange apenas o mês de novembro de 2021. Além disso, abaixo temos as estatísticas básicas da nossa amostra.

Stat	PRIO3	ITUB4	JPSA3	ARZZ3	ENGI11	SLCE3	WEGE3	GGBR4	PSSA3
Min.	-0.3654	-0.1796	-0.2278	-0.1667	-0.1433	-0.0994	-0.2062	-0.1796	-0.1181
1st Qu.	-0.0183	-0.0138	-0.0121	-0.0124	-0.0107	-0.0133	-0.0111	-0.0147	-0.0110
Median	-0.0002	-0.0004	0.0004	-0.0006	0.0011	-0.0008	0.0021	0.0003	0.0000
Mean	0.0047	-0.0003	0.0007	0.0008	0.0003	0.0014	0.0024	0.0013	0.0000
3rd Qu.	0.0250	0.0128	0.0135	0.0133	0.0119	0.0141	0.0157	0.0167	0.0107
Max.	0.3229	0.1106	0.1907	0.1662	0.1270	0.1340	0.1389	0.1745	0.0911

Para montar e avaliar a carteira utilizamos dos pacotes Portfolio
Analytics e Performance Analytics. Adicionamos 3 restrições a ela: totalmente investida, apenas posições compradas e pesos com mínimo de
 0.01 e máximo de 0.2 do tipo box. Abaixo está o gráfico da fronteira eficiente considerando o argumento de
 $\tt n.portfolios = 100$.

Efficient Frontier

Também é possível analisar o gráfico de Risco e Retorno da seguinte maneira:

Fronteira Eficiente

Processo de otimização

Para o processo de otimização, consideramos uma carteira de variância mínima, que foi montada da seguinte maneira:

```
## ***********
## PortfolioAnalytics Optimization
## **********
##
## Call:
  optimize.portfolio(R = xts_amostra, portfolio = carteira_cvm,
      optimize_method = "ROI", trace = TRUE)
##
## Optimal Weights:
  PRIO3 ITUB4 JPSA3 ARZZ3 ENGI11 SLCE3 WEGE3 GGBR4 PSSA3
## 0.0100 0.1998 0.0100 0.0481 0.2000 0.2000 0.1221 0.0100 0.2000
## Objective Measure:
   StdDev
## 0.01581
```

O retorno médio da carteira:

```
## [1] 0.08676089
```

Pesos em cada ativo:

```
PRIO3
           ITUB4
                  JPSA3
                         ARZZ3 ENGI11 SLCE3
                                               WEGE3
                                                      GGBR4
                                                             PSSA3
##
##
     1.00
           19.98
                   1.00
                          4.81
                                20.00
                                        20.00
                                               12.21
                                                       1.00
                                                             20.00
```

ROI.Portfolios

Alocações da minha carteira:

Teste fora da amostra

Agora que temos a carteira, iremos testar com o conjunto de dados fora_amostra, que definimos antes. Temos o seguintes resultados:

test_mean_return	$test_sd_return$	test_sharp
-0.0535808	1.431411	-0.0374322

Visualização

Retornos acumulados

Benchmark com pesos iguais

ew_mean_return	ew_sd_return	ew_sharp
-0.1597349	1.536623	-0.1039519

Visualização

Retornos acumulados

