

PRELIMINARY April 2011

AR9341 Highly-Integrated and Feature-Rich IEEE 802.11n 2x2 2.4 GHz Premium SoC for Advanced WLAN Platforms

General Description

The Atheros AR9341 is a highly integrated and feature-rich IEEE 802.11n 2x2 2.4 GHz Systemon-a-Chip (SoC) for advanced WLAN platforms.

It includes a MIPS 74Kc processor, five port IEEE 802.3 Fast Ethernet Switch with MAC/PHY, one USB 2.0 MAC/PHY, and external memory interface for serial Flash, SDRAM, DDR1 or DDR2, I²S/SPDIF-Out audio interface, SLIC VOIP/PCM interface, two UARTs, and GPIOs that can be used for LED controls or other general purpose interface configurations.

The AR9341 supports 802.11n operations up to 144 Mbps for 20 MHz and 300 Mbps for 40 MHz respectively, and 802.11b/g data rates. Additional features include Maximal Likelihood (ML) decoding, Low-Density Parity Check (LDPC), Maximal Ratio Combining (MRC), Tx Beamforming (TxBF), and On-Chip One-Time Programmable (OTP) memory.

The AR9341 supports booting from NOR flash.

When connecting the AR9341 to an external host through the USB Device interface, the AR9341 can offload the host CPU from computation-intensive functions, allowing it to focus on its dedicated tasks.

Features

- 74Kc MIPS processor with 64 KB I-Cache and 32 KB D-Cache, operating at up to 533 MHz
- External 16-bit DDR1, DDR2 operating at up to 200 MHz (400 M transfers/sec), or 16-bit SDRAM memory interface operating at up to 200 MHz
- SPI NOR Flash memory support 10/100 Ethernet Switch with five IEEE 802.3

802.3az Energy Efficient Ethernet compliant Hardware-based NAT & ACL accelerators for

One USB 2.0 controller with built-in MAC/ PHY supports Host or Device mode Boot from external CPU via USB, eliminating

S/SPDIF-out audio interface

One low-speed UART (115 Kbps), one highspeed UART (3 Mbps), and multiple GPIO pins for general purpose I/O Fully integrated RF Front-End including PAs

Optional external LNA/PA
25 MHz or 40 MHz reference clock input
1.2 V switching regulator
Advanced power management with dynamic clock switching for ultra-low power modes
150-pin dual-row LPCC package

AR9341 System Block Diagram

COMPANY CONFIDENTIAL • 1

^{© 2011} by Atheros Communications, Inc. All rights reserved. Atheros®, Atheros Driven®, Align®, Atheros XR®, Driving the Wireless Future®, Intellon®, ETHOS®, IQUE®, No New Wires®, Orion®, PLC4Trucks®, Powerpacket®, Spread Spectrum Carrier®, SSC®, ROCm®, Super A/G®, Super C®, Super N®, The Air is Cleaner at 5-GHz®, Total 802.11®, U-Nav®, Wake on Wireless®, Wireless Future. Unleashed Now.®, and XSPAN®, are registered by Atheros Communications, Inc. Atheros SST™, Signal-Sustain Technology™, ROCm™, amp™, Install N Go™, Simpli-Fi™, SmartLink™, There is Here™, U-Map™, U-Tap™, and 5-UP™ are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc.

Table of Contents

1 Pin Descriptions19	3 Ethernet Subsystem47
2 Eurotional Description 27	3.1 GMAC0 and GMAC1
2 Functional Description	3.1.3 Ingress and Egress Flow of Data and Control Information
2.2 Bootstrap Options	3.2 GMAC Descriptor Structure: Rx 50
2.3 RESET	3.2.1 Start Address for Packet Data (PKT_START_ADDR)50
2.4 PLL and Clock Control	3.2.2 Packet Size and Flags (PKT_SIZE) 50
2.4.1 CPU PLL	3.2.3 Start Address Packet Data (PKT_START_ADDR)51
2.4.3 Audio PLL33	3.3 GMAC Descriptor Structure: Tx 51
2.5 MIPS Processor 33 2.5.1 Configuration 33	3.3.1 Start Address for Packet Data (PKT_START_ADDR)
2.6 Address MAP	3.3.2 Packet Size and Flags (PKT_SIZE)
2.7 DDR Memory Controller	3.3.3 Start Address Packet Data (PKT_START_ADDR) 52
2.7.2 Address Mapping 35 2.7.3 Refresh 35	3.4 NAT LUT Structure: Ingress and Egress
2.8 SLIC	3.5 Hardware Ager: Ingress and Egress 54
2.8.2 SLIC Interface	3.6 Setup and Data/Packet Flow54
2.8.3 Transmit	3.6.1 Ingress54
2.8.4 Receive	3.6.2 Egress55
2.8.5 SLIC Interface Signals37	3.7 ACL56
2.8.6 SLIC Master and Slave Modes 37	3.7.1 ACL Data Structure 56
2.9 Segmentation/Desegmentation/	3.7.2 Global Rules58
Checksum Accelerator 38	3.7.3 Entry Programming59
2.10 GPIO40	3.7.4 ACL Programming and Software
2.10.1 GPIO Output41	Flow
2.10.2 GPIO Input43	3.8 Ethernet Switch61
2.11 Serial Flash SPI/ROM44	3.9 Five-Port Ethernet Switch
2.11.1 SPI Operations44	3.9.1 Overview
2.11.2 Write Enable	3.9.2 Basic Switch Operation62
2.11.3 Page Program44	3.9.3 Media Access Controllers (MAC) 62
2.11.4 Page Read44	3.9.4 ACL62
2.12 High-Speed UART Interface45	3.9.5 Register Access63
2.12.1 Transmit (Tx)45	3.9.6 LED Control63
2.12.2 Receive (Rx)45	3.9.7 VLANs64
2.13 Low-Speed UART Interface45	3.9.8 IEEE Port Security
2.14 USB 2.0 Interface	3.9.9 Mirroring64
	3.9.10 Broadcast/Multicast/Unknown

	Unicast64	7 Radio Block97
	3.9.11 IGMP/MLD Snooping64	7.1 Receiver (Rx) Block98
	3.9.12 Spanning Tree65	7.2 Transmitter (Tx) Block
	3.9.13 MIB/Statistics Counters65	7.3 Synthesizer (SYNTH) Block100
	3.9.14 Atheros Header Configuration .67 3.9.15 IEEE 802.3 Reserved Group	7.4 Bias/Control (BIAS) Block100
	Addresses Filtering Control 67 3.9.16 PPPoE Header Removal 68	8 Register Descriptions101
		8.1 DDR Registers
	Audio Interface69	(DDR_CONFIG)103
4.1	Overview69	8.1.2 DDR DRAM Configuration 2
4.2	Audio PLL69	(DDR_CONFIG2)103
4.3	I ² S Interface70	
	4.3.1 External DAC70	(DDR_MODE_REGISTER) 103
	4.3.2 Sample Sizes and Rates70	(DDD EVERNIDED MODE DECIC
	4.3.3 Stereo Software Interface70	(DDR_EXTENDED_MODE_REGIS TER)104
4.4	SPDIF INTERFACE70	8.1.5 DDR Control (DDR_CONTROL) .
4.5	Mailbox (DMA Controller)71	01210 2211 00111201 (2211_00111102)
	4.5.1 Mailboxes71	8.1.6 DDR Refresh Control and
	4.5.2 MBOX DMA Operation71	Configuration (DDR_REFRESH) .
	4.5.3 Software Flow Control72	
	4.5.4 Mailbox Error Conditions72	8.1.7 DDR Read Data Capture Bit Mask
	4.5.5 MBOX-Specific Interrupts72	(DDR_RD_DATA_THIS_CYCLE)
	WLAN Medium Access Control	8.1.8 DQS Delay Tap Control for Byte 0
	(MAC) 73	(TAP_CONTROL_0)105 8.1.9 DQS Delay Tap Control for Byte 1
	Overview73	(TAP_CONTROL_1)105
	Descriptor	8.1.10 DQS Delay Tap Control for Byte 2
5.3	Descriptor Format74	(TAP_CONTROL_2)105
5.4	Queue Control Unit (QCU)92	8.1.11 DQS Delay Tap Control for Byte 3
5.5	DCF Control Unit (DCU)92	(TAP_CONTROL_3)106
	5.5.1 DCU State Information93	8.1.12 GMAC0 Interface Write Buffer
5.6	Protocol Control Unit (PCU)93	(DDR_WB_FLUSH_GMAC0) . 106
5.7	Register Programming Details for	8.1.13 GMAC1 Interface Write Buffer
	Observing WMAC Interrupts 94	Flush
6	Digital DHV Plants 05	(DDR_WB_FLUSH_GMAC1) . 106
	Digital PHY Block95 Overview95	8.1.14 USB Interface Write Buffer Flush
		(DDR_WB_FLUSH_USB) 106
0.4	802.11n (MIMO) Mode	8.1.15 WMAC Interface Write Buffer Flush (DDR_WB_FLUSH_WMAC) 107
	6.2.2 Receiver (Rx)	8.1.16 SRC1 Interface Write Buffer Flush
62		(DDR_WB_FLUSH_SRC1) 107
0.3	802.11b/g Legacy Mode	8.1.17 SRC2 Interface Write Buffer Flush
	6.3.2 Receiver	(DDR_WB_FLUSH_SRC2) 107
	0.0.2 Receiver	8.1.18 DDR2 Configuration

		(DDR_DDR2_CONFIG)108	8.3.9	GPIO Interrupt Pending
	8.1.19	DDR EMR2 (DDR_EMR2) 108		(GPIO_INT_PENDING) 119
	8.1.20	DDR EMR3 (DDR_EMR3) 108	8.3.10	GPIO Interrupt Mask
	8.1.21	AHB Master Timeout Control		(GPIO_INT_MASK) 119
		(AHB_MASTER_TIMEOUT_MAX)	8.3.11	GPIO Ethernet LED Routing Select
		108		(GPIO_IN_ETH_SWITCH_LED) . 119
	8.1.22	AHB Timeout Current Count	0 2 1 2	GPIO Function 0
		(AHB_MASTER_TIMEOUT_CUR NT)109	0.3.12	(GPIO_OUT_FUNCTION0) 120
	0 1 22	Timeout Slave Address	8 3 13	GPIO Function 1
	6.1.23	(AHB_MASTER_TIMEOUT_SLV_	0.0.10	(GPIO_OUT_FUNCTION1) 120
		ADDR)109	8.3.14	GPIO Function 2
	8.1.24	DDR Controller Configuration	0.0.1	(GPIO_OUT_FUNCTION2) 121
	0.1.21	(DDR_CTL_CONFIG)109		, – – ,
	8.1.25	DDR Self Refresh Control		(GPIO_OUT_FUNCTION3) 121
		(DDR_SF_CTL)110		
	8.1.26	Self Refresh Timer (SF_TIMER) 110		(GPIO_OUT_FUNCTION4) 121
	8.1.27	WMAC Flush (WMAC_FLUSH)		
		110		(GPIO_IN_ENABLE0)122
8.2	UAR	TO (Low-Speed) Registers111		(CDIO INI ENIADI E1) 122
	8.2.1	Receive Buffer (RBR)111		(GPIO_IN_ENABLE1) 122
	8.2.2	Transmit Holding (THR)111		(GPIO_IN_ENABLE4)122
	8.2.3	Divisor Latch Low (DLL) 112		(6116_114_2141151221)122
	8.2.4	Divisor Latch High (DLH) 112		(GPIO_IN_ENABLE9)123
	8.2.5	Interrupt Enable (IER)112		· – – /
	8.2.6	Interrupt Identity (IIR)113		(GPIO_FUNCTION)123
	8.2.7	FIFO Control (FCR)113	8.4 PLL 0	Control Registers124
	8.2.8	Line Control (LCR)114		CPU Phase Lock Loop
		Modem Control (MCR)114		•
		Line Status (LSR)115		(CPU_PLL_CONFIG) 125
	8.2.11	Modem Status (MSR)115	8.4.2	DDR PLL Configuration
8.3	GPIO	Registers116		(DDR_PLL_CONFIG) 125
	8.3.1	GPIO Output Enable (GPIO_OE) .	8.4.3	CPU DDR Clock Control
		117		(CPU_DDR_CLOCK_CONTROL) 126
		GPIO Input Value (GPIO_IN) . 117	8.4.4	
	8.3.3	GPIO Output Value (GPIO_OUT)	0.1.1	(SWITCH_CLOCK_CONTROL)
	0.0.4	117		127
		GPIO Per Bit Set (GPIO_SET) .117	8.4.5	Current Dither Logic Output
	8.3.5	GPIO Per Bit Clear (GPIO_CLEAR)		(CURRENT_PLL_DITHER) 127
	0.2.6	118	8.4.6	Audio PLL Configuration
	8.3.6	GPIO Interrupt Enable (GPIO_INT) 118		(AUDIO_PLL_CONFIG) 128
	837	GPIO Interrupt Type	8.4.7	Audio PLL Modulation Control
	0.0.7	(GPIO_INT_TYPE)118		(AUDIO_PLL_MODULATION)
	8.3.8	GPIO Interrupt Polarity	0.4.0	128
		(GPIO_INT_POLARITY) 118	8.4.8	Audio PLL Jitter Control (ALIDIO PLI MOD STEP) 129

	8.4.9	Current Audio Modulation Output (CURRENT_AUDIO_PLL_MODU		8.6.5	GMAC0 Valid RX Data CRC Value (GMAC0_RXDATA_CRC) 139
	8.4.10	LATION)129 DDR PLL Dither Parameter	8.7		C0 Ingress NAT /Egress NAT ters 140
		(DDR_PLL_DITHER)130 CPU PLL Dither Parameter		_	Egress CPU Requested LUT Entry Lookup (EG_CPU_REQ) 143
8.5	Reset	(CPU_PLL_DITHER)130 Registers131		8.7.2	Egress CPU Request Status (EG_CPU_REQ_STATUS) 143
		General Purpose Timers (RST_GENERAL_TIMERx) 131		8.7.3	Egress DW0 Information (EG_INFO_DW0)144
	8.5.2	General Purpose Timers Reload (RST_GENERAL_TIMER_RELOA Dx)132		8.7.4	Egress CPU Related DW0 Information (EG_CPU_REQUESTED_INFO_D
	8.5.3	Watchdog Timer Control (RST_WATCHDOG_TIMER_CON TROL)132		8.7.5	W0)
	8.5.4	Watchdog Timer (RST_WATCHDOG_TIMER) . 132		8.7.6	Egress DW1 Key (EG_KEY_DW1)
	8.5.5	Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS		8.7.7	Egress Ageout DW0 Key (EG_AGER_KEY_DW0) 144
	8.5.6)			Egress Ageout DW1 Key (EG_AGER_KEY_DW1) 145
		(RST_MISC_INTERRUPT_MASK) 134			Egress Ager FIFO Signals (EG_AGER_INFO)145
	8.5.7	(RST_GLOBAL_INTERRUPT_STA		8.7.10	Egress Memory (EG_MEM) 145
		TUS)			(EG_MEM_DW0)145
		Chip Revision ID (RST_REVISION_ID)136			(EG_MEM_DW1)146
	8.5.10	WMAC Interrupt Status (RST_WMAC_INTERRUPT_STAT US)136			(EG_MEM_DW2)146 List (EG_LINKLIST) .
		Reset Bootstrap (RST_BOOTSTRAP)137		8.7.15	Egress Sub-Table Data (EG_SUBTABLE)146
	8.5.12	Sticky Register Value (SPARE_STKY_REG[0:0]) 137		8.7.16	Egress Timer Ager Values (EG_AGER_TICK)147
8.6		C Interface Registers138 Ethernet Configuration		8.7.17	Egress Ager Timeout (EG_AGER_TIMEOUT)147
		(ETH_CFG)138 LUTs Ager Interrupt Status		8.7.18	Ingress CPU Requested LUT Entry Lookup (IG_CPU_REQ) 147
		(LUTs_AGER_INT)138 LUTs Ager Interrupt Mask		8.7.19	Ingress CPU Request Status (IG_CPU_REQ_STATUS) 148
		(LUTS_AGER_INTR_MASK) .139 GMAC0 Rx Data CRC Calculation		8.7.20	Ingress DW0 Information (IG_INFO_DW0)148
	0.0.1	Control (GMAC0_RXDATA_CRC_CONTR		8.7.21	Ingress DW1 Information (IG_INFO_DW1)
		OL)139		8.7.22	Ingress DW2 Information

(IG_INFO_DW2)149	8.7.43 Local MAC Address Dword1
8.7.23 Ingress DW3 Information	(LCL_MAC_ADDR_DW1) 154
(IG_INFO_DW3)149	8.7.44 Next Hop Router's MAC Address
8.7.24 Ingress CPU Related DW0	Dword0
Information	(NXT_HOP_DST_ADDR_DW0)
(IG_CPU_REQUESTED_INFO_DW	154
0)149	8.7.45 Next Hop Router's MAC Address
8.7.25 Ingress CPU Related DW1	Dword1
Information	(NXT_HOP_DST_ADDR_DW1)
(IG_CPU_REQUESTED_INFO_DW	154
1)149	8.7.46 Local Global IP Address 0
8.7.26 Ingress CPU Related DW2	(GLOBAL_IP_ADDR0)154
Information	8.7.47 Local Global IP Address 1
(IG_CPU_REQUESTED_INFO_DW	(GLOBAL_IP_ADDR1)154
2)149	8.7.48 Local Global IP Address 2
8.7.27 Ingress CPU Related DW3	(GLOBAL_IP_ADDR2)155
Information	8.7.49 Local Global IP Address 3
(IG_CPU_REQUESTED_INFO_DW	(GLOBAL_IP_ADDR3)
3)150	8.7.50 Egress NAT Control and Status
8.7.28 Ingress DW0 Key (IG_KEY_DW0)	(EG_NAT_CSR)155
150	
8.7.29 Ingress Ageout DW0 Key	8.7.51 Egress NAT Counter
(IG_AGER_KEY_DW0) 150	(EG_NAT_CNTR)156
	8.7.52 Ingress NAT Control and Status
8.7.30 Ingress Ager FIFO Signals (IG_AGER_INFO)150	(IG_NAT_CSR)156
	8.7.53 Ingress NAT Counter
8.7.31 Ingress Memory (IG_MEM) 151	(IG_NAT_CNTR) 156
8.7.32 Ingress Memory DW0	8.7.54 Egress ACL Control and Status
(IG_MEM_DW0)151	(EG_ACL_CSR)157
8.7.33 Ingress Memory DW1	8.7.55 Ingress ACL Control and Status
(IG_MEM_DW1)151	(IG_ACL_CSR)157
8.7.34 Ingress Memory DW2	8.7.56 Egress ACL CMD0 and Action
(IG_MEM_DW2)151	(EG_ACL_CMD0_AND_ACTION)
8.7.35 Ingress Memory DW3	
(IG_MEM_DW3)151	8.7.57 Egress ACL CMD1, CMD2, CMD3,
8.7.36 Ingress Link List (IG_LINKLIST) .	CMD4 (EG_ACL_CMD1234) 158
152	8.7.58 Egress ACL OPERAND0
8.7.37 Ingress Sub-Table Data	(EG_ACL_OPERAND0) 158
(IG_SUBTABLE)152	8.7.59 Egress ACL OPERAND1
8.7.38 Ingress Timer Ager Values	(EG_ACL_OPERAND1) 159
(IG_AGER_TICK)152	
	8.7.60 Egress ACL Memory Control
8.7.39 Ingress Ager Timeout (IG_AGER_TIMEOUT)152	(EG_ACL_MEM_CONTROL) 159
	8.7.61 Ingress ACL CMD0 and Action
8.7.40 Tx QoS Arbiter Configuration	(IG_ACL_CMD0_AND_ACTION)
(TxQOS_ARB_CFG)153	160
8.7.41 Tx Status and Packet Count	8.7.62 Ingress ACL CMD1, CMD2, CMD3,
(DMATXSTATUS)153	CMD4 (IG_ACL_CMD1234) 160
8.7.42 Local MAC Address Dword0	8.7.63 Ingress ACL OPERAND0
(LCL_MAC_ADDR_DW0) 153	(IG_ACL_OPERAND0) 160

8.7.64 Egress ACL OPERAND1 (EG_ACL_OPERAND1)161	8.7.88 Egress ACL Counter Group 6 (EG_ACL_COUNTER_GRP6) 167
8.7.65 Ingress ACL Memory Control (IG_ACL_MEM_CONTROL) 161	8.7.89 Egress ACL Counter Group 7 (EG_ACL_COUNTER_GRP7) 167
8.7.66 Ingress ACL Counter Group 0 (IG_ACL_COUNTER_GRP0) 162	8.7.90 Egress ACL Counter Group 8 (EG_ACL_COUNTER_GRP8) 168
8.7.67 Ingress ACL Counter Group 1 (IG_ACL_COUNTER_GRP1) 162	8.7.91 Egress ACL Counter Group 9 (EG_ACL_COUNTER_GRP9) 168
8.7.68 Ingress ACL Counter Group 2 (IG_ACL_COUNTER_GRP2) 162	8.7.92 Egress ACL Counter Group 10 (EG_ACL_COUNTER_GRP10) 168
8.7.69 Ingress ACL Counter Group 3 (IG_ACL_COUNTER_GRP3) 162	8.7.93 Egress ACL Counter Group 11 (EG_ACL_COUNTER_GRP11) 168
8.7.70 Ingress ACL Counter Group 4	8.7.94 Egress ACL Counter Group 12
(IG_ACL_COUNTER_GRP4) 163 8.7.71 Ingress ACL Counter Group 5	(EG_ACL_COUNTER_GRP12) 169 8.7.95 Egress ACL Counter Group 13
(IG_ACL_COUNTER_GRP5) 163 8.7.72 Ingress ACL Counter Group 6	(EG_ACL_COUNTER_GRP13) 169 8.7.96 Egress ACL Counter Group 14
(IG_ACL_COUNTER_GRP6) 163 8.7.73 Ingress ACL Counter Group 7	(EG_ACL_COUNTER_GRP14) 169 8.7.97 Egress ACL Counter Group 15
(IG_ACL_COUNTER_GRP7) 163 8.7.74 Ingress ACL Counter Group 8	(EG_ACL_COUNTER_GRP15) 169
(IG_ACL_COUNTER_GRP8) 164 8.7.75 Ingress ACL Counter Group 9	(CLEAR_ACL_COUNTERS) 170 8.7.99 Ingress ACL Rule Vector Lower
(IG_ACL_COUNTER_GRP9) 164	(IG_ACL_RULE_VECTOR_LOWE
8.7.76 Ingress ACL Counter Group 10 (IG_ACL_COUNTER_GRP10) 164	R)170 8.7.100 Ingress ACL Rule Vector Upper
8.7.77 Ingress ACL Counter Group 11 (IG_ACL_COUNTER_GRP11) 164	(IG_ACL_RULE_VECTOR_UPPER)170
8.7.78 Ingress ACL Counter Group 12 (IG_ACL_COUNTER_GRP12) 165	8.7.101 Egress ACL Rule Vector Lower (EG_ACL_RULE_VECTOR_LOWE
8.7.79 Ingress ACL Counter Group 13 (IG_ACL_COUNTER_GRP13) 165	R)170 8.7.102 Egress ACL Rule Vector Upper
8.7.80 Ingress ACL Counter Group 14 (IG_ACL_COUNTER_GRP14) 165	(EG_ACL_RULE_VECTOR_UPPE R)170
8.7.81 Ingress ACL Counter Group 15	8.7.103 Ingress ACL Rule Table0 Lower (IG_ACL_RULE_TABLE0_LOWER
(IG_ACL_COUNTER_GRP15) 165 8.7.82 Egress ACL Counter Group 0)
(EG_ACL_COUNTER_GRP0) 166 8.7.83 Egress ACL Counter Group 1	(IG_ACL_RULE_TABLE0_UPPER) 171
(EG_ACL_COUNTER_GRP1) 166 8.7.84 Egress ACL Counter Group 2	8.7.105 Ingress ACL Rule Table1 Lower (IG_ACL_RULE_TABLE1_LOWER
(EG_ACL_COUNTER_GRP2) 166 8.7.85 Egress ACL Counter Group 3) 171
(EG_ACL_COUNTER_GRP3) 166 8.7.86 Egress ACL Counter Group 4	8.7.106 Ingress ACL Rule Table1 Upper (IG_ACL_RULE_TABLE1_UPPER)
(EG_ACL_COUNTER_GRP4) 167	171 8.7.107 Ingress ACL Rule Table2 Lower
8.7.87 Egress ACL Counter Group 5 (EG_ACL_COUNTER_GRP5) 167	(IG_ACL_RULE_TABLE2_LOWER)171

	8.7.10	8 Ingress ACL Rule Table2 Upper		(MBOX_DMA_RX_CONTROL) 177
		(IG_ACL_RULE_TABLE2_UPPER)	8.8.7	Tx DMA Descriptors Base Address
		172		(MBOX_DMA_TX_DESCRIPTOR_
	8.7.10	9 Ingress ACL Rule Table3 Lower		BASE)
		(IG_ACL_RULE_TABLE3_LOWER	8.8.8	Tx DMA Control
) 172		(MBOX_DMA_TX_CONTROL) 178
	8.7.11	0 Ingress ACL Rule Table3 Upper	8.8.9	SLIC Rx DMA Descriptors Base
		(IG_ACL_RULE_TABLE3_UPPER)		Address
		172		(SLIC_DMA_RX_DESCRIPTOR_B
	8.7.11	1 Egress ACL Rule Table0 Lower		ASE) 178
		(EG_ACL_RULE_TABLE0_LOWE	8.8.10	SLIC Rx DMA Control
		R)172		(SLIC_DMA_RX_CONTROL) 179
	8.7.11	2 Egress ACL Rule Table0 Upper	8.8.11	SLIC Tx DMA Descriptors Base
		(EG_ACL_RULE_TABLE0_UPPER)		
		172		(SLIC_DMA_TX_DESCRIPTOR_B
	8.7.11	3 Egress ACL Rule Table1 Lower		ASE)
		(EG_ACL_RULE_TABLE1_LOWE	8.8.12	SLIC Tx DMA Control
		R)173		(SLIC_DMA_TX_CONTROL) 180
	8.7.11	4 Egress ACL Rule Table1 Upper	8.8.13	Mailbox FIFO Status
		(EG_ACL_RULE_TABLE1_UPPER)		(MBOX_FRAME) 180
		173	8.8.14	SLIC Mailbox FIFO Status
	8.7.11	5 Egress ACL Rule Table2 Lower		(SLIC_MBOX_FRAME) 180
		(EG_ACL_RULE_TABLE2_LOWE	8.8.15	FIFO Timeout Period
		R)173		(FIFO_TIMEOUT)181
	8.7.11	6 Egress ACL Rule Table2 Upper	8.8.16	MBOX Related Interrupt Status
		(EG_ACL_RULE_TABLE2_UPPER)		(MBOX_INT_STATUS) 181
		173	8.8.17	SLIC MBOX Related Interrupt
	8.7.11	7 Egress ACL Rule Table3 Lower		1
		(EG_ACL_RULE_TABLE3_LOWE		(SLIC_MBOX_INT_STATUS) . 182
		R)173	8.8.18	MBOX Related Interrupt Enables
	8.7.11	8 Egress ACL Rule Table3 Upper		(MBOX_INT_ENABLE) 182
		(EG_ACL_RULE_TABLE3_UPPER)	8.8.19	SLIC MBOX Related Interrupt
		173		1
8.8		X Registers174		(SLIC_MBOX_INT_ENABLE) 183
	8.8.1	Non-Destructive FIFO Status Query	8.8.20	Reset and Clear MBOX FIFOs
		(MBOX_FIFO_STATUS)174		(MBOX_FIFO_RESET)183
	8.8.2	Non-Destructive SLIC FIFO Status	8.8.21	SLIC Reset and Clear MBOX FIFOs
		Query		(SLIC_MBOX_FIFO_RESET) 183
		(SLIC_MBOX_FIFO_STATUS) 175	8 9 SI IC	Registers 184
	8.8.3	Mailbox DMA Engine Policy		SLIC Slots (SLIC_SLOT) 184
		Control (MBOX_DMA_POLICY) .		· · · · · · · · · · · · · · · · · · ·
		175	8.9.2	SLIC Clock Control
	8.8.4	SLIC Mailbox DMA Engine Policy	0.02	(SLIC_CLOCK_CONTROL) 184
		Control		SLIC Control (SLIC_CTRL) 185
		(SLIC_MBOX_DMA_POLICY) 176	8.9.4	SLIC Tx Slots 1 (SLIC_TX_SLOTS1)
	8.8.5	Rx DMA Descriptors Base Address		185
		(MBOX_DMA_RX_DESCRIPTOR_	8.9.5	SLIC Tx Slots 2 (SLIC_TX_SLOTS2)
		BASE)176		185
	8.8.6	Rx DMA Control	8.9.6	SLIC Rx Slots 1 (SLIC_RX_SLOTS1)

185	8.11.13 Global Tx Timeout Mode (GTTM)
8.9.7 SLIC Rx Slots 2 (SLIC_RX_SLC	OTS2) 197
185	8.11.14 Carrier Sense Timeout (CST) 198
8.9.8 SLIC Timing Control	8.11.15 Size of High and Low Priority
(SLIC_TIMING_CTRL)	,
8.9.9 SLIC Interrupt (SLIC_INTR) .	· .
8.9.10 SLIC Swap (SLIC_SWAP)	187 RXDP Pointer
8.10 Stereo Registers	188 (RX_QUEUE_HP_RXDP) 198
8.10.1 Configure Stereo Block (STEREO_CONFIG)	8.11.17 MAC Rx Low Priority Queue RXDP Pointer
8.10.2 Set Stereo Volume	(KA_QUEUE_LF_KADF) 190
(STEREO_VOLUME)	190 8.11.18 Primary Interrupt Status (ISR_P) 199
8.10.3 Stereo Master Clock (STEREO_MASTER_CLOCK)	8.11.19 Secondary Interrupt Status 0
8.10.4 Tx Sample Counter	(ISK_S0)200
(STEREO_TX_SAMPLE_CNT	· (15K 51) /110
	8.11.21 Secondary Interrupt Status 2
8.10.5 Tx Sample Counter	(ISR S2) 201
(STEREO_TX_SAMPLE_CNT)	_IVIOD
8.10.6 Rx Sample Counter	(ISR_S3)202
(STEREO_RX_SAMPLE_CNT	LSB) 8.11.23 Secondary Interrupt Status 4
(01EKE0_10(_01KVI EE_CIVI	191 (ISR_S4)202
8.10.7 Rx Sample Counter	8.11.24 Secondary Interrupt Status 5
(STEREO_RX_SAMPLE_CNT	_MSB (ISR_S5)202
)	
8.11 WDMA Registers	192
8.11.1 Command (CR)	8.11.26 Secondary Interrupt Mask 0
8.11.2 Configuration and Status (CF)	$(11VIR_50) \dots 204$
193	6.11.27 Secondary Interrupt Mask 1
8.11.3 Rx DMA Data Buffer Pointer	(IMR_S1)
Threshold (RXBUFPTR_THRI	8.11.28 Secondary Interrupt Mask 2 (IMR_S2)205
194	8.11.29 Secondary Interrupt Mask 3
8.11.4 Tx DMA Descriptor Pointer	(IMR S3) 205
Threshold (TXDPPTR_THRES	8.11.30 Secondary Interrupt Mask 4
194	(IMR S4) 206
8.11.5 Maximum Interrupt Rate Thre	SHOID 9.11.21 Cocondowy Interment Mode 5
(MIRT)8.11.6 Interrupt Global Enable (IER)	(IMR S5) 206
•	8 11 32 Primary Interrupt Status Read and
8.11.7 Tx Interrupt Mitigation Thres. (TIMT)	
8.11.8 Rx Interrupt Mitigation Thres	8 11 33 Secondary Interrupt Status ()
(RIMT)	(158 50 5)
8.11.9 Tx Configuration (TXCFG)	8.11.34 Secondary Interrupt Status 1
8.11.10 Rx Configuration (RXCFG)	106 (ISK_S1_S)207
8.11.11 MIB Control (MIBC)	6.11.55 Secondary Interrupt Status 2
8.11.12 Global Tx Timeout (GTT)	107
0.11.12 Global 17 Illicout (G11)	8.11.36 Secondary Interrupt Status 3

(ISR_S3_S)207	Duration (D_GBL_IFS_SIFS) 217
8.11.37 Secondary Interrupt Status 4	8.13.7 DCU-Global IFS Settings: Slot
(ISR_S4_S)207	Duration (D_GBL_IFS_SLOT) 217
8.11.38 Secondary Interrupt Status 5	8.13.8 DCU-Global IFS Settings: EIFS
(ISR_S5_S)207	Duration (D_GBL_IFS_EIFS) 218
8.12 WQCU Registers208	8.13.9 DCU-Global IFS Settings: Misc.
8.12.1 Tx Queue Descriptor (Q_TXDP) 208	Parameters (D_GBL_IFS_MISC) 218
8.12.2	8.13.10 DCU Tx Pause Control/Status
QCU_STATUS_RING_START_AD	(D_TXPSE)219
DRESS Lower 32 bits of Address	8.13.11 DCU Transmission Slot Mask
(Q_STATUS_RING_START) 209	(D_TXSLOTMASK)219
8.12.3	8.14 WMAC Glue Registers
QCU_STATUS_RING_END_ADD	8.14.1 Interface Reset Control
R Lower 32 Bits of Address	(WMAC_GLUE_INTF_RESET_CO
(Q_STATUS_RING_END) 209	NTROL)221
8.12.4 QCU_STATUS_RING_CURRENT	8.14.2 Power Management Control
Address	(WMAC_GLUE_INTF_PM_CTRL)
(Q_STATUS_RING_CURRENT) 209	
8.12.5 Tx Queue Enable (Q_TXE) 209	8.14.3 AXI Timeout Counter for DMA
8.12.6 Tx Queue Disable (Q_TXD) 210	(WMAC_GLUE_INTF_TIMEOUT)
8.12.7 CBR Configuration (Q_CBRCFG)	(WINDIC_GLOL_IIVII_IIIVILOO1)
210	8.14.4 Synchronous Interrupt Cause
8.12.8 ReadyTime Configuration	(WMAC_GLUE_INTF_INTR_SYN
(Q_RDYTIMECFG)210	C_CAUSE)
8.12.9 OneShotArm Set Control	8.14.5 Synchronous Interrupt Enable
(Q_ONESHOTARM_SC) 211	(WMAC_GLUE_INTF_INTR_SYN
8.12.10 OneShotArm Clear Control	C_ENABLE)222
(Q_ONESHOTARM_CC) 211	8.14.6 Asynchronous Interrupt Mask
8.12.11 Misc. QCU Settings (Q_MISC) 212	(WMAC_GLUE_INTF_INTR_ASY
8.12.12 Misc. QCU Status (Q_STS) 214	NC_MASK)222
8.12.13 ReadyTimeShutdown Status	8.14.7 Synchronous Interrupt Mask
(Q_RDYTIMESHDN)214	(WMAC_GLUE_INTF_INTR_SYN
8.12.14 Descriptor CRC Check	C_MASK)222
(MAC_QCU_DESC_CRC_CHK)	8.14.8 Asynchronous Interrupt Mask
214	(WMAC_GLUE_INTF_INTR_ASY
8.13 WLAN DCU Registers215	NC_CAUSE) 222
8.13.1 QCU Mask (D_QCUMASK) 215	8.14.9 Asynchronous Interrupt Enable (WMAC_GLUE_INTF_INTR_ASY
8.13.2 DCU-Specific IFS Settings	NC_ENABLE)222
(D_LCL_IFS)216	8.14.10 GPIO Input
8.13.3 Retry Limits (D_RETRY_LIMIT)	(WMAC_GLUE_INTF_GPIO_IN)
216	223
8.13.4 ChannelTime Settings	8.14.11 WMAC Glue GPIO Input Value
(D_CHNTIME)216	(WMAC_GLUE_INTF_GPIO_INP
8.13.5 Misc. DCU-Specific Settings	UT_VALUE) 223
(D_MISC)217	8.14.12 Output Values from MAC to GPIC
8.13.6 DCU-Global IFS Settings: SIFS	Pins

(WMAC_GLUE_INTF_GPIO_INP	8.15.9 Derived RTC Clock
UT_STATE)224	(DERIVED_RTC_CLK)232
8.14.13 WMAC Glue RF Silent	8.15.10 RTC Sync
(WMAC_GLUE_INTF_RFSILENT)	(RTC_SYNC_REGISTER) 232
224	8.15.11 RTC Sync Status
8.14.14 Synchronous Priority Interrupt	(RTC_SYNC_STATUS)232
Cause	8.15.12 RTC Interrupt Cause
(WMAC_GLUE_INTF_INTR_PRIO	(RTC_SYNC_INTR_CAUSE) 233
RITY_SYNC_CAUSE)225	8.15.13 RTC Interrupt Enable
8.14.15 Synchronous Priority Interrupt	(RTC_SYNC_INTR_ENABLE) 233
Enable	8.15.14 RTC Interrupt Mask
(WMAC_GLUE_INTF_INTR_PRIO RITY_SYNC_ENABLE)225	(RTC_SYNC_INTR_MASK) 233
•	8.16 WPCU Registers234
8.14.16 Asynchronous Priority Interrupt Mask	8.16.1 STA Address Lower 32 Bits
(WMAC_GLUE_INTF_INTR_PRIO	(WMAC_PCU_STA_ADDR_L32)
RITY_ASYNC_MASK)225	
8.14.17 Synchronous Priority Interrupt	8.16.2 STA Address Upper 16 Bits
Mask	(WMAC_PCU_STA_ADDR_U16)
(WMAC_GLUE_INTF_INTR_PRIO	
RITY_SYNC_MASK)226	
8.14.18 Asynchronous Priority Interrupt	(WMAC_PCU_BSSID_L32) 237
Cause	MATRIA C. DOLL DOCTO 144()
(WMAC_GLUE_INTF_INTR_PRIO	(WMAC_PCU_BSSID_U16) 237
RITY_ASYNC_CAUSE)226	(MIMAC DOLL DON DOLL AVE)
8.14.19 Asynchronous Priority Interrupt	(WMAC_PCU_BCN_RSSI_AVE) .
Enable (WMAC_GLUE_INTF_INTR_PRIO	8.16.6 ACK and CTS Timeout
RITY_ASYNC_ENABLE)226	(WMAC_PCU_ACK_CTS_TIMEO
8.14.20 AXI to MAC and MAC to AXI Byte	UT)
Swap Enable	,
(WMAC_GLUE_INTF_AXI_BYTE_	(WMAC_PCU_BCN_RSSI_CTL)
SWAP)227	
8.15 RTC Registers228	8.16.8 Ms Counter and Rx/Tx Latency
8.15.1 Reset Control (RESET_CONTROL)	(WMAC_PCU_USEC_LATENCY)
228	
8.15.2 WLAN PLL Control Settings	
(WLAN_PLL_CONTROL) 229	(WMAC_PCU_RESET_TSF) 239
8.15.3 PLL Settling Time (PLL_SETTLE)	8.16.10 Maximum CFP Duration
229	(WMAC_PCU_MAX_CFP_DUR)
8.15.4 Crystal Settling Time	239
(XTAL_SETTLE)230	8.16.11 Rx Filter (WMAC_PCU_RX_FILTER) 240
8.15.5 Pin Clock Speed Control	8.16.12 Multicast Filter Mask Lower 32 Bits
(CLOCK_OUT)230	(WMAC_PCU_MCAST_FILTER_L
8.15.6 Reset Cause (RESET_CAUSE) 231	32)240
8.15.7 System Sleep Status	8.16.13 Multicast Filter Mask Upper 32 Bits
(SYSTEM_SLEEP)231	(WMAC_PCU_MCAST_FILTER_U
8.15.8 Keep Awake Timer	32)240
(KEEP_AWAKE)231	

8.16.14 Diagnostic Switches	(WMAC_PCU_RX_CLEAR_CNT)
(WMAC_PCU_DIAG_SW) 241	246
8.16.15 TSF Lower 32 Bits (WMAC_PCU_TSF_L32) 242	8.16.34 Cycle Counter (WMAC_PCU_CYCLE_CNT) 246
8.16.16 TSF Upper 32 Bits	8.16.35 Quiet Time 1
(WMAC_PCU_TSF_U32) 242	(WMAC_PCU_QUIET_TIME_1)
8.16.17 AES Mute Mask 0	246
(WMAC_PCU_AES_MUTE_MASK	8.16.36 Quiet Time 2
_0)242	(WMAC_PCU_QUIET_TIME_2)
8.16.18 AES Mute Mask 1	247
(WMAC_PCU_AES_MUTE_MASK	8.16.37 QoS NoACK
_1)242	(WMAC_PCU_QOS_NO_ACK)
8.16.19 Last Rx Beacon TSF	247
(WMAC_PCU_LA	
SF)243	(WMAC_PCU_PHY_ERROR_MAS
8.16.20 Current NAV	K)248
(WMAC_PCU_NAV)243	8.16.39 Rx Buffer (WMAC_PCU_RXBUF)
8.16.21 Successful RTS Count	,
(WMAC_PCU_RTS_SUCCESS_CN	
T)243	(WMAC_PCU_MIC_QOS_CONTR
8.16.22 Failed RTS Count	OL)249
(WMAC_PCU_RTS_FAIL_CNT) .	8.16.41 Michael QoS Select
243	(WMAC_PCU_MIC_QOS_SELECT
8.16.23 FAIL ACK Count)249
(WMAC_PCU_ACK_FAIL_CNT)	8.16.42 Miscellaneous Mode
244	(WMAC_PCU_MISC_MODE) 250
8.16.24 Failed FCS Count	8.16.43 Filtered OFDM Counter
(WMAC_PCU_FCS_FAIL_CNT) .	LTER_OFDM_C
244	NT)250
8.16.25 Beacon Count	8.16.44 Filtered CCK Counter
(WMAC_PCU_BEACON_CNT)	LTER_CCK_CNT
244)251
8.16.26 Sleep 1 (WMAC_PCU_SLP1) 244	8.16.45 PHY Error Counter 1
-	(WMAC_PCU_PHY_ERR_CNT_1)
8.16.27 Sleep 2 (WMAC_PCU_SLP2) 245	(WMAC_1CO_1111_ERR_CN1_1)
8.16.28 Address 1 Mask Lower 32 Bits	9 16 46 DHV Ennon Country 1 Most
(WMAC_PCU_ADDR1_MASK_L3	8.16.46 PHY Error Counter 1 Mask
2)245	(WMAC_PCU_PHY_ERR_CNT_1_ MASK)251
8.16.29 Address 1 Mask Upper 16 Bits	8.16.47 PHY Error Counter 2
(WMAC_PCU_ADDR1_MASK_U1	
6)245	(WMAC_PCU_PHY_ERR_CNT_2) 251
8.16.30 Tx Power Control	
(WMAC_PCU_TPC)245	8.16.48 PHY Error Counter 2 Mask
8.16.31 Tx Frame Counter	(WMAC_PCU_PHY_ERR_CNT_2_
(WMAC_PCU_TX_FRAME_CNT)	MASK)
246	8.16.49 TSF Threshold
8.16.32 Rx Frame Counter	(WMAC_PCU_TSF_THRESHOLD)
(WMAC_PCU_RX_FRAME_CNT)	252
246	8.16.50 PHY Error EIFS Mask
8 16 33 Ry Claar Countar	(WMAC_PCU_PHY_ERROR_EIFS

_MASK)252	Enable
8.16.51 PHY Error Counter 3	(WMAC_PCU_WOW3_BEACON_
(WMAC_PCU_PHY_ERR_CNT_3)	FAIL)258
252	8.16.72 MAC PCU WoW Beacon Fail
8.16.52 PHY Error Counter 3 Mask	Timeout
(WMAC_PCU_PHY_ERR_CNT_3_	(WMAC_PCU_WOW3_BEACON)
MASK)252	259
8.16.53 MAC PCU Generic Timers 2	8.16.73 MAC PCU WoW Keep Alive
(WMAC_PCU_GENERIC_TIMERS	Timeout
2)253	(WMAC_PCU_WOW3_KEEP_ALI
8.16.54 MAC PCU Generic Timers Mode 2	VE)259
(WMAC_PCU_GENERIC_TIMERS	8.16.74 MAC PCU WoW Automatic Keep
	Alive Disable
2_MODE)253	(WMAC_PCU_WOW_KA) 259
8.16.55 SIFS, Tx Latency and ACK Shift	8.16.75 WoW Offset 1 (PCU_WOW4) 259
(WMAC_PCU_TXSIFS)253	,
8.16.56 TXOP for Non-QoS Frames	8.16.76 WoW Offset 2 (PCU_WOW5) 260
(WMAC_PCU_TXOP_X)254	(INTERIOR DOLL ON AN ANODEN OVA
8.16.57 TXOP for TID 0 to 3	(WMAC_PCU_20_40_MODE) 260
(WMAC_PCU_TXOP_0_3) 254	8.16.78 Difference RX_CLEAR Counter
8.16.58 TXOP for TID 4 to 7	(WMAC_PCU_RX_CLEAR_DIFF_
(WMAC_PCU_TXOP_4_7) 254	CNT)260
8.16.59 TXOP for TID 8 to 11	8.16.79 Control Registers for Block BA
(WMAC_PCU_TXOP_8_11) 254	
8.16.60 TXOP for TID 0 to 3	(WMAC_PCU_BA_BAR_CONTRO
(WMAC_PCU_TXOP_12_15) 255	L)261
8.16.61 Generic Timers	
(WMAC_PCU_GENERIC_TIMERS	(WMAC_PCU_LEGACY_PLCP_SP
[0:15])255	OOF)261
8.16.62 Generic Timers Mode	8.16.81 PHY Error Mask and EIFS Mask
(WMAC_PCU_GENERIC_TIMERS	(WMAC_PCU_PHY_ERROR_MAS
_MODE)255	K_CONT)261
8.16.63 32 KHz Sleep Mode	
(WMAC_PCU_SLP32_MODE) 256	(WMAC_PCU_TX_TIMER) 262
, – – ,	, – – – ,
8.16.64 32 KHz Sleep Wake	(WMAC_PCU_WOW6)262
(WMAC_PCU_SLP32_WAKE) 256	(VIMIC_I CC_IVO)202
8.16.65 32 KHz Sleep Increment	(WMAC_PCU_WOW5)262
(WMAC_PCU_SLP32_INC) 256	
8.16.66 Sleep MIB Sleep Count	8.16.85 Length of Pattern Match for
(WMAC_PCU_SLP_MIB1) 257	Pattern 0
8.16.67 Sleep MIB Cycle Count	(WMAC_PCU_WOW_LENGTH1)
(WMAC_PCU_SLP_MIB2) 257	262
8.16.68 Sleep MIB Control Status	8.16.86 Length of Pattern Match for
(WMAC_PCU_SLP_MIB3) 257	Pattern 1
8.16.69 MAC PCU WoW 1	(WMAC_PCU_WOW_LENGTH2)
(WMAC_PCU_WOW1)258	263
8.16.70 PCU WoW 2	8.16.87 Enable Control for Pattern Match
	Feature of WOW
(WMAC_PCU_WOW2)258	(WOW_PATTERN_MATCH_LESS
8.16.71 MAC PCU WoW Beacon Fail	_THAN_256_BYTES)263

8.16.88 PCU WoW 4	Configuration
(WMAC_PCU_WOW4)263	(DMATX_ARB_CFG) 271
8.16.89 Exact Length and Offset Requirement Flag for WoW	8.17.11 Channel 0 and 1 Round-robin Packet Count (RR_PKTCNT01) 271
Patterns (WOW2_EXACT) 263	8.17.12 Channel 2 and 3 Round-robin
8.16.90 WoW Offset 2 (PCU_WOW6) 264	Packet Count (RR_PKTCNT23) 271
8.16.91 WoW Offset 3 (PCU_WOW7) 264	8.17.13 Tx Packet Count (TXST_PKTCNT)
8.16.92 Length of Pattern Match for	271
Pattern 0 (WMAC_PCU_WOW_LENGTH3)	8.17.14 DMA Rx Transmit Control (DMARX_CONTROL)272
264	8.17.15 DMA Rx Descriptor
8.16.93 Length of Pattern Match for	(DMARX_DESC)272
Pattern 0	8.17.16 DMA Rx Descriptor Status
(WMAC_PCU_WOW_LENGTH4)	(DMARX_DESC_STATUS) 272
264	8.17.17 Checksum Interrupt (INTR) 273
8.16.94 TID Value Access Category	8.17.18 Checksum IMask (IMASK) 273
(WMAC_PCU_TID_TO_AC) 265 8.16.95 High Priority Queue Control	8.17.19 Checksum Burst Control (ARB_BURST)274
(WMAC_PCU_HP_QUEUE)265	8.17.20 DMA Reset (RESET_DMA) 274
8.16.96 Hardware Beacon Processing 1 (WMAC_PCU_HW_BCN_PROC1)	8.17.21 Checksum Configuration (CONFIG)274
266	8.18 UART1 (High-Speed) Registers 275
8.16.97 Hardware Beacon Processing 2 (WMAC_PCU_HW_BCN_PROC2)	8.18.1 UART1 Transmit and Rx FIFO
266	Interface (UART1_DATA) 275
8.16.98 Key Cache	8.18.2 UART1 Configuration and Status
(WMAC_PCU_KEY_CACHE[0:102	(UART1_CS)276
3])267	8.18.3 UART1 Clock (UART1_CLOCK) .
8.17 Checksum Registers268	
8.17.1 Checksum Transmit Control	8.18.4 UART1 Interrupt/Control Status
(DMATX_CONTROL)268	(UART1_INT)277
8.17.2 Checksum Transmit Control1	8.18.5 UART1 Interrupt Enable
(DMATX_CONTROL1)269	(UART1_INT_EN)278
8.17.3 Checksum Transmit Control2	8.19 GMAC0/GMAC1 Registers279
(DMATX_CONTROL2)269	8.19.1 MAC Configuration 1284
8.17.4 Checksum Transmit Control3	8.19.2 MAC Configuration 2 285
(DMATX_CONTROL3)269	8.19.3 IPG/IFG285
8.17.5 First Tx Descriptor Address	8.19.4 Half-Duplex286
(DMATX_DESC0)269	8.19.5 Maximum Frame Length 286
8.17.6 First Tx Descriptor Address 1 (DMATX_DESC1)270	8.19.6 MII Configuration287
	8.19.7 MII Command287
8.17.7 First Tx Descriptor Address 2 (DMATX_DESC2)270	8.19.8 MII Address
8.17.8 First Tx Descriptor Address 3	8.19.9 MII Control
(DMATX_DESC3)270	8.19.10 MII Status
8.17.9 DMA Tx Descriptor Status	8.19.11 MII Indicators
(DMATX_DESC_STATUS)270	8.19.12 Interface Control 289
8 17 10 DMA Ty Arbitration	8.19.13 Interface Status

8.19.14 STA Address 1291	(RUND)299
8.19.15 STA Address 2291	8.19.42 Receive Oversize Packet Counter
8.19.16 ETH_FIFO RAM Configuration 0	(ROVR)300
292	8.19.43 Receive Fragments Counter
8.19.17 ETH Configuration 1293	(RFRG)300
8.19.18 ETH Configuration 2293	8.19.44 Receive Jabber Counter (RJBR) 300
8.19.19 ETH Configuration 3293	8.19.45 Receive Dropped Packet Counter
8.19.20 ETH Configuration 4 294	(RDRP)300
8.19.21 ETH Configuration 5 294	8.19.46 Transmit Byte Counter (TXBT) 301
8.19.22 Tx/Rx 64 Byte Frame Counter	8.19.47 Transmit Packet Counter (TPKT)
(TR64)295	301
8.19.23 Tx/Rx 65-127 Byte Frame Counter	8.19.48 Transmit Multicast Packet Counter
(TR127)295	(TMCA)
8.19.24 Tx/Rx 128-255 Byte Frame	8.19.49 Transmit Broadcast Packet
Counter (TR255)295	Counter (TBCA)
8.19.25 Tx/Rx 256-511 Byte Frame	8.19.50 Transmit Pause Control Frame
Counter (TR511)295	Counter (TXPF)
8.19.26 Tx/Rx 512-1023 Byte Frame	8.19.51 Transmit Deferral Packet Counter (TDFR)302
Counter (TR1K)296	8.19.52 Transmit Excessive Deferral Packet
8.19.27 Tx/Rx 1024-1518 Byte Frame	Counter (TEDF)
Counter (TRMAX)296	8.19.53 Transmit Single Collision Packet
8.19.28 Tx/Rx 1519-1522 Byte VLAN	Counter (TSCL)302
Frame Counter (TRMGV) 296	8.19.54 Transmit Multiple Collision Packet
8.19.29 Receive Byte Counter (RXBT) 296	(TMCL)303
8.19.30 Receive Packet Counter (RPKT) . 297	8.19.55 Transmit Late Collision Packet
	Counter (TLCL)303
8.19.31 Receive FCS Error Counter (RFCS) 297	8.19.56 Transmit Excessive Collision
8.19.32 Receive Multicast Packet Counter	Packet Counter (TXCL)303
(RMCA)297	8.19.57 Transmit Total Collision Counter
8.19.33 Receive Broadcast Packet Counter	(TNCL)303
(RBCA)297	8.19.58 Transmit Pause Frames Honored
8.19.34 Receive Control Frame Packet	Counter (TPFH)
Counter (RXCF)298	8.19.59 Transmit Drop Frame Counter
8.19.35 Receive Pause Frame Packet	(TDRP)
Counter (RXPF)298	8.19.60 Transmit Jabber Frame Counter
8.19.36 Receive Unknown OPCode Packet	(TJBR)
Counter (RXUO)298	8.19.61 Transmit FCS Error Counter (TFCS)304
8.19.37 Receive Alignment Error Counter	8.19.62 Transmit Control Frame Counter
(RALN)298	(TXCF)305
8.19.38 Receive Frame Length Error	8.19.63 Transmit Oversize Frame Counter
Counter (RFLR)299	(TOVR)305
8.19.39 Receive Code Error Counter	8.19.64 Transmit Undersize Frame
(RCDE)	Counter (TUND)
8.19.40 Receive Carrier Sense Error Counter (RCSE)299	8.19.65 Transmit Fragment Counter
8.19.41 Receive Undersize Packet Counter	(TFRG)305
0.17.41 Receive Officersize I acker Counter	8.19.66 Carry Register 1 (CAR1) 306

8.19.67 Carry Register 2 (CAR2) 307	(DMATXSTATUS_123) 317
8.19.68 Carry Mask Register 1 (CAM1)	8.19.91 Local MAC Address Dword0
308	(LCL_MAC_ADDR_DW0) 317
8.19.69 Carry Mask Register 2 (CAM2)	8.19.92 Local MAC Address Dword1
309	(LCL_MAC_ADDR_DW1) 317
8.19.70 DMA Transfer Control for Queue 0	8.19.93 Next Hop Router MAC Address
(DMATXCNTRL_Q0)309	Dword0
8.19.71 Descriptor Address for Queue 0 Tx	(NXT_HOP_DST_ADDR_DW0)
(DMATXDESCR_Q0)310	317
8.19.72 Transmit Status	8.19.94 Next Hop Router MAC
(DMATXSTATUS)310	Destination Address Dword1
8.19.73 Receive Control (DMARXCTRL) 310	(NXT_HOP_DST_ADDR_DW1) 318
8.19.74 Pointer to Receive Descriptor	8.19.95 Local Global IP Address 0
(DMARXDESCR)311	(GLOBAL_IP_ADDR0)318
8.19.75 Receive Status (DMARXSTATUS)	8.19.96 Local Global IP Address 1
311	(GLOBAL_IP_ADDR1)318
8.19.76 Interrupt Mask	8.19.97 Local Global IP Address 2
(DMAINTRMASK)312	(GLOBAL_IP_ADDR2)318
8.19.77 Interrupts (DMAINTERRUPT) 313	8.19.98 Local Global IP Address 3
8.19.78 Ethernet TX Burst	(GLOBAL_IP_ADDR3)318
(ETH_ARB_TX_BURST) 313	8.19.99 Egress NAT Control and Status
8.19.79 Current Tx and Rx FIFO Depth	(EG_NAT_CSR)319
(ETH_XFIFO_DEPTH)314	8.19.100 Egress NAT Counter
8.19.80 Ethernet Transmit FIFO	(EG_NAT_CNTR)319
Throughput (ETH_TXFIFO_TH)	8.19.101 Ingress NAT Control and Status
314	(IG_NAT_CSR)320
8.19.81 Ethernet Receive FIFO Threshold	8.19.102 Ingress NAT Counter
(ETH_RXFIFO_TH)314	(IG_NAT_CNTR) 320
8.19.82 Ethernet Free Timer	8.19.103 Egress ACL Control and Status
(ETH_FREE_TIMER)315	(EG_ACL_CSR) 321
8.19.83 DMA Transfer Control for Queue 1	8.19.104 Ingress ACL Control and Status
(DMATXCNTRL_Q1)315	(IG_ACL_CSR) 321
8.19.84 Descriptor Address for Queue 1 Tx	8.19.105 Egress ACL CMD0 and Action
(DMATXDESCR_Q1)315	(EG_ACL_CMD0_AND_ACTION)
8.19.85 DMA Transfer Control for Queue 2	
(DMATXCNTRL_Q2)315	8.19.106 Egress ACL CMD1, CMD2,
8.19.86 Descriptor Address for Queue 2 Tx	CMD3 and CMD4
(DMATXDESCR_Q2)316	(EG_ACL_CMD1234) 322
8.19.87 DMA Transfer Control for Queue 3	8.19.107 Egress ACL OPERAND 0
(DMATXCNTRL_Q3)316	(EG_ACL_OPERAND0) 322
8.19.88 Descriptor Address for Queue 3 Tx	8.19.108 Egress ACL OPERAND 1
(DMATXDESCR_Q3)316	(EG_ACL_OPERAND1) 322
8.19.89 DMA Transfer Arbitration	8.19.109 Egress ACL Memory Control
Configuration (DMATXARBCFG)	(EG_ACL_MEM_CONTROL) 323
316	8.19.110 Ingress ACL CMD0 and Action
8.19.90 Tx Status and Packet Count for	(IG_ACL_CMD0_AND_ACTION)
Queues 1 to 3	324

8.19.111 Ingress ACL CMD1, CMD2,	(EG_ACL_COUNTER_GRP3) 330
CMD3 and CMD4	8.19.135 Egress ACL Counter Group 4
(IG_ACL_CMD1234)324	(EG_ACL_COUNTER_GRP4) 331
8.19.112 Ingress ACL OPERAND 0	8.19.136 Egress ACL Counter Group 5
(IG_ACL_OPERAND0)324	(EG_ACL_COUNTER_GRP5) 331
8.19.113 Ingress ACL OPERAND 1	8.19.137 Egress ACL Counter Group 6
(IG_ACL_OPERAND1)325	(EG_ACL_COUNTER_GRP6) 331
8.19.114 Ingress ACL Memory Control	8.19.138 Egress ACL Counter Group 7
(IG_ACL_MEM_CONTROL) 325	(EG_ACL_COUNTER_GRP7) 331
8.19.115 Ingress ACL Counter Group 0	8.19.139 Egress ACL Counter Group 8
(IG_ACL_COUNTER_GRP0) 326	(EG_ACL_COUNTER_GRP8) 332
8.19.116 Ingress ACL Counter Group 1	8.19.140 Egress ACL Counter Group 9
(IG_ACL_COUNTER_GRP1) 326	(EG_ACL_COUNTER_GRP9) 332
8.19.117 Ingress ACL Counter Group 2	8.19.141 Egress ACL Counter Group 10
(IG_ACL_COUNTER_GRP2) 326	(EG_ACL_COUNTER_GRP10) 332
8.19.118 Ingress ACL Counter Group 3 (IG_ACL_COUNTER_GRP3) 326	8.19.142 Egress ACL Counter Group 11
8.19.119 Ingress ACL Counter Group 4	(EG_ACL_COUNTER_GRP11) 332
(IG_ACL_COUNTER_GRP4) 327	8.19.143 Egress ACL Counter Group 12 (EG_ACL_COUNTER_GRP12) 333
8.19.120 Ingress ACL Counter Group 5	8.19.144 Egress ACL Counter Group 13
(IG_ACL_COUNTER_GRP5) 327	(EG_ACL_COUNTER_GRP13) 333
8.19.121 Ingress ACL Counter Group 6	8.19.145 Egress ACL Counter Group 14
(IG_ACL_COUNTER_GRP6) 327	(EG_ACL_COUNTER_GRP14) 333
8.19.122 Ingress ACL Counter Group 7	8.19.146 Egress ACL Counter Group 15
(IG_ACL_COUNTER_GRP7) 327	(EG_ACL_COUNTER_GRP15) 333
8.19.123 Ingress ACL Counter Group 8	8.19.147 Clear ACL Counters
(IG_ACL_COUNTER_GRP8) 328	(CLEAR_ACL_COUNTERS) 334
8.19.124 Ingress ACL Counter Group 9	8.20 USB Controller Registers 334
(IG_ACL_COUNTER_GRP9) 328	8.20.1 Identification (ID)
8.19.125 Ingress ACL Counter Group 10	8.20.2 General Hardware Parameters
(IG_ACL_COUNTER_GRP10) 328	(HWGENERAL)336
8.19.126 Ingress ACL Counter Group 11	8.20.3 Host Hardware Parameters
(IG_ACL_COUNTER_GRP11) 328	(HWHOST)336
8.19.127 Ingress ACL Counter Group 12 (IG_ACL_COUNTER_GRP12) 329	8.20.4 Device Hardware Parameters
	(HWDEVICE)337
8.19.128 Ingress ACL Counter Group 13 (IG_ACL_COUNTER_GRP13) 329	8.20.5 Tx Buffer Hardware Parameters
8.19.129 Ingress ACL Counter Group 14	(HWTXBUF)337
(IG_ACL_COUNTER_GRP14) 329	8.20.6 Rx Buffer Hardware Parameters
8.19.130 Ingress ACL Counter Group 15	(HWRXBUF)337
(IG_ACL_COUNTER_GRP15) 329	8.20.7 General Purpose Timer 0 Load
8.19.131 Egress ACL Counter Group 0	(GPTIMER0LD)
(EG_ACL_COUNTER_GRP0) 330	8.20.8 General Purpose Timer 0 Control
8.19.132 Egress ACL Counter Group 1	(GPTIMEROCTRL)
(EG_ACL_COUNTER_GRP1) 330	8.20.9 General Purpose Timer 1 Load
8.19.133 Egress ACL Counter Group 2	(GPTIMER1LD)
(EG_ACL_COUNTER_GRP2) 330	8.20.10 General Purpose Timer 1 Control (GPTIMER1CTRL)
8.19.134 Egress ACL Counter Group 3	8.20.11 Capability Register Length
	0.20.11 Capability Megister Length

(CAPLENGTH)339	(ENDPTCTRL0) 36	61
8.20.12 Host Interface Version Number	8.20.38 Endpoint Control 1	
(HCIVERSION)340	(ENDPTCTRL1)	62
8.20.13 Host Control Structural	8.21 Serial Flash SPI Controller Registers 36	63
Parameters (HCSPARAMS) 340	8.21.1 SPI Controller GPIO Mode Select	
8.20.14 Host Control Capability	(FUNCTION_SELECT_ADDR) 3	363
Parameters (HCCPARAMS) 341	8.21.2 SPI Address Control	
8.20.15 Device Interface Version Number	(SPI_CONTROL_ADDR) 36	63
(DCIVERSION)341	8.21.3 SPI I/O Address Control	
8.20.16 Device Control Capability	(SPI_IO_CONTROL_ADDR) 36	64
Parameters (DCCPARAMS) 341	8.21.4 SPI Read Data Address	
8.20.17 USB Command (USBCMD) 342	(SPI_READ_DATA_ADDR) 36	64
8.20.18 USB Status (USBSTS)344	8.21.5 SPI Data to Shift Out	
8.20.19 USB Interrupt Enable (USBINTR)	(SPI_SHIFT_DATAOUT_ADDR))
346	0.01 (CDI Cambari ta Chili Oni an Ia	
8.20.20 USB Frame Index (FRINDEX) 348	8.21.6 SPI Content to Shift Out or In (SPI_SHIFT_CNT_ADDR) 36	65
8.20.21 Frame List Base Address	8.21.7 SPI Data to Shift In	00
(PERIODICLISTBASE)349 8.20.22 USB Device Address	(SPI_SHIFT_DATAIN_ADDR) 3	65
(DEVICEADDR)349		
8.20.23 Next Asynchronous List Address	8.22 Global Control Registers	
(ASYNCLISTADDR)349		
8.20.24 Address at Endpointlist in	8.22.2 Operational Mode 0	
Memory	8.22.3 Operational Mode 1	
(ENEDPOINTLIST_ADDR)350	8.22.4 Global Interrupt	
8.20.25 TT Status and Control (TTCTRL)	8.22.5 Global Interrupt Mask 36	
350	8.22.6 Global MAC Address	
8.20.26 Programmable Burst Size	8.22.7 Loop Check Result	
(BURSTSIZE)350	8.22.8 Flood Mask	
8.20.27 Host Tx Pre-Buffer Packet Tuning	8.22.9 Global Control	
(TXFILLTUNING)351	8.22.10 Flow Control 0	
8.20.28 Endpoint NAK (ENDPTNAK) 352	8.22.11 Flow Control 1	
8.20.29 Endpoint NAK Enable	8.22.12 QM Control	
(ENDPTNAKEN)	8.22.13 VLAN Table Function 0 37	
8.20.30 Port/Status Control (PORTSC0).	8.22.14 VLAN Table Function 1 37	
353	8.22.15 Address Table Function 0 37	
8.20.31 USB Mode (USBMODE) 358	8.22.16 Address Table Function 1 37	
8.20.32 Endpoint Setup Status (ENDPTSETUPSTAT)359	8.22.17 Address Table Function 2 37	76
	8.22.18 Address Table Control 37	77
8.20.33 Endpoint Initialization (ENDPTPRIME)359	8.22.19 IP Priority Mapping 2 37	78
8.20.34 Endpoint De-Initialization	8.22.20 Tag Priority Mapping 38	80
(ENDPTFLUSH)360	8.22.21 Service Tag38	80
8.20.35 Endpoint Status	8.22.22 CPU Port38	80
(ENDPTSTATUS)360	8.22.23 MIB Function 0 38	81
8.20.36 Endpoint Complete	8.22.24 MDIO Control38	81
(ENDPTCOMPLETE)361	8.22.25 LED Control	82
8.20.37 Endpoint Control 0		

8.23	Port Control Registers 0x0100-0x012	24 383	10.2 DDR Input Timing	412
	8.23.1 Port Status	. 384	10.3 SPI Timing	412
	8.23.2 Port Control	. 385	10.4 Reset Timing	
	8.23.3 Port-Based VLAN	. 387	10.11.6000 1	
	8.23.4 Port-Based VLAN 2	.388	11 Package Dimensions	415
	8.23.5 Rate Limit	. 389		
	8.23.6 Priority Control	. 390	12 Ordering Information	417
	8.23.7 Storm Control	. 390		
	8.23.8 Queue Control	. 391		
	8.23.9 Rate Limit 1	. 392		
	8.23.10 Rate Limit 2	. 392		
	8.23.11 Rate Limit 3	. 393		
	8.23.12 Robin	. 393		
8.24	PHY Control Registers	.394		
	8.24.1 Control			
	8.24.2 Status	. 396		
	8.24.3 PHY Identifier	. 396		
	8.24.4 PHY Identifier 2	. 396		
	8.24.5 Auto-Negotiation Advertisem 397	ent		
	8.24.6 Link Partner Ability	. 398		
	$8.24.7~{ m Auto}$ -negotiation Expansion	. 399		
	8.24.8 Function Control	.399		
	8.24.9 PHY Specific Status	. 400		
	8.24.10 Interrupt Enable	. 401		
	8.24.11 Interrupt Status	. 402		
	8.24.12 Receive Error Counter	. 403		
	8.24.13 Virtual Cable Tester Control	. 403		
	8.24.14 Virtual Cable Tester Status	. 403		
	Electrical Characteristics			
	Absolute Maximum Ratings			
9.2	Recommended Operating Condition	s 405		
9.3	General DC Electrical Characteristics	s 4 06		
	25 MHz/40 MHz Clock Characterist 407	ics .		
9.5	Radio Characteristics	. 408		
	9.5.1 Receiver Characteristics	. 408		
	9.5.2 Transmitter Characteristics	. 409		
	9.5.3 Synthesizer Characteristics	. 409		
9.6	Power Consumption Parameters	. 410		
	Internal Voltage Regulators			
	AC Specifications DDR Interface Timing			

1. Pin Descriptions

This section contains both a package pinout and tabular listings of the signal descriptions.

The following nomenclature is used for signal names:

NC	No connection should be made to
	this pin

- _L At the end of the signal name, indicates active low signals
- P At the end of the signal name, indicates the positive side of a differential signal
- N At the end of the signal name indicates the negative side of a differential signal

The following nomenclature is used for signal types:

T 4	A 1				. 1
IA	Ana	lΩσ	inni	1† S	signal
11 1	1 11 101	~~	11100		7151141

- I Digital input signal
- IH Input signals with weak internal pull-up, to prevent signals from floating when left open
- IL Input signals with weak internal pull-down, to prevent signals from floating when left open
- I/O A digital bidirectional signal
- OA An analog output signal
- O A digital output signal
- P A power or ground signal

20

Figure 1-1 shows the AR9341 pinout.

Figure 1-1. Package Pinout (See-Through Top View)

Table 1-1 provides the signal-to-pin relationship information for the AR9341.

Table 1-1. Signal to Pin Relationships and Descriptions

	T	_	
Signal Name	Pins	Туре	Description
General			
RESET_L	A23	IH	External power on reset with weak pull up
SYS_RST_OUT_L	B51	OD	System reset out, open drain, pull up is required
XTALI	B52	I	40 MHz or 25 MHz crystal
XTALO	A59	I/O	When using an external clock, the XTALI pin is grounded and the XTALO pin should be driven with a square wave clock. AC coupling is recommended for the clock signal to the XTALO pin. The internal circuit provides the DC bias of approximately 0.6 V. The peak to peak swing of the external clock can be between 0.6 V to 1.2 V. Larger swing and sharper
Radio	1		
RFIN2GN_0			
RFIN2GP_0			
RFOUT2GN_0	B63	OA	Differential RF outputs for 2.4 GHz chain 0
RFOUT2GP_0	A73	OA	
RFIN2GN_1			
RFIN2GP_1			
RFOUT2GN_1	A62	OA	Differential RF outputs for 2.4 GHz chain 1
RFOUT2GP_1	B54	OA	
Analog Interface			
BIASREF	B65	IA	BIASREF voltage is 310 mV; must connect a 6.19 KÙ ± 1%
RBIAS			
XPABIAS2_0			
XPABIAS2_1			
External Switch Contro	ol		
ANTA	A64	О	External RF switch control
ANTB	B57	О	1
ANTC	B58	О	1
ANTD	A69	О	1
Ethernet Switch	1	1	,
RXN0	B37	IA	Ethernet port 0 receive pair, can be grounded if not used
RXP0	A41	IA	1
RXN1	A40	IA	Ethernet port 1 receive pair, can be grounded if not used
RXP1	B35	IA	1

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pins	Type	Description
RXN2	B32	IA	Ethernet port 2 receive pair, can be grounded if not used
RXP2	A36	IA	
RXN3	A35	IA	Ethernet port 3 receive pair, can be grounded if not used
RXP3	B30	IA	
RXN4	A31	IA	Ethernet port 4 receive pair, can be grounded if not used
RXP4	B26	IA	
TXN0	B38	OA	Ethernet port 0 transmit pair, can be left open if not used
TXP0	A42	OA	
TXN1	A39	OA	Ethernet port 1 transmit pair, can be left open if not used
TXP1			
TXN2	B33	OA	Ethernet port 2 transmit pair, can be left open if not used
TXP2			_
TXN3	A34	OA	Ethernet port 3 transmit pair, can be left open if not used
TXP3			
TXN4	A32	OA	Ethernet port 4 transmit pair, can be left open if not used
TXP4			
ternal Memory Inte	rface		
DDR_A_0			
DDR_A_1			-
DDR_A_2			
DDR_A_3			
DDR_A_4			
DDR_A_5			
DDR_A_6			
DDR_A_7			-
DDR_A_8			
DDR_A_9			
DDR_A_10	B16	О	
DDR_A_11	A10	О	
DDR_A_12	B8	О	
DDR_BA_0	B15	О	2-bit bank address to indicate which bank the chip is accessing
DDR_BA_1	A17	О	
DDR_CKE_L	B4	О	Deactivates the external memory clock when the signal is high
DDR_CK_N	B7	О	DDR_CK_P and DDR_CK_N are differential clock inputs. All
DDR_CK_P	A9	О	address and control signals timing are related to the crossing of the positive edge of DDR_CK_P and the negative edge of DDR_CK_N.
DDR_CS_L	A16	О	External memory chip select signal, active low

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pins	Туре	Description
DDR_CAS_L	A15	О	When this signal is asserted, it indicates the address is a column address. Active when the signal is low.
DDR_RAS_L	B14	О	When this signal is asserted, it indicates the address is a row address. Active when the signal is low.
DDR_DQM_0	A85	О	DDR data mask for data byte 0, 1, 2 and 3
DDR_DQM_1	A7	О	
DDR_DQS_0	B74	I/O	DDR data strobe for data byte 0, 1, 2 and 3
DDR_DQS_1	A6	I/O	
DDR_VREF	B5	I	DDR reference level for SSTL signals
DDR_WE_L	A14	О	When this signal is asserted, it indicates that the following transaction is write. Active when the signal is low.
DDR_DATA_0	A80	I/O	16-bit external memory data bus
DDR_DATA_1	B70	I/O	
DDR_DATA_2	A81	I/O	
DDR_DATA_3	B71	I/O	
DDR_DATA_4	A82	I/O	
DDR_DATA_5	B71	I/O	
DDR_DATA_6	B73	I/O	
DDR_DATA_7	A84	I/O	
DDR_DATA_8	B76	I/O	
DDR_DATA_9	A5	I/O	
DDR_DATA_10	В3	I/O	
DDR_DATA_11	A4	I/O	
DDR_DATA_12	A3	I/O	
DDR_DATA_13	B1	I/O	
DDR_DATA_14	A86	I/O	
DDR_DATA_15	B75	I/O	

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pins	Type	Description
GPIO			
GPIO0	B23	I/O	General purpose I/O, programmable, can to be used as JTAG,
GPIO1	A28	I/O	SPI, I2S, SLIC, UART, LED control.
GPIO2	B24	I/O	
GPIO3	A29	I/O	
GPIO4	B25	I/O	
GPIO5	A51	I/O	
GPIO6	B44	I/O	
GPIO7			
GPIO8			
GPIO9			
GPIO10			
GPIO11			
GPIO12			
GPIO13			
GPIO14			
GPIO15			
GPIO16			
GPIO17			
GPIO18			
GPIO19			
GPIO20			
GPIO21			
GPIO22			
USB			
USB_DM	B42	IA/OA	USB D- signal; carries USB data to and from the USB 2.0 PHY
USB_DP	A50	IA/OA	USB D+ signal; carries USB data to and from the USB 2.0 PHY
Regulator Control			
CTRL_DDR_XPNP	A20	OA	External PNP Control. Connect to the base of an external PNP: collector to VDD_DDR and emitter to VDD33.
CTRL20	A48	OA	External PNP control. Connect to the base of an external PNP: collector to AVDD20 and emitter to VDD33.
Internal Regulator			
AVDD12_SWREG_OUT	A26, B21	P	1.2 V switching regulator output; see Figure 9-1, "Output Voltages Regulated by the AR9341," on page 410
AVDD33_SWREG	A25, B20	P	3.3 V input to the internal switching regulator
AVDD12_SWREG_FB	B22	I	Feedback to the internal switching regulator

Symbol	Pin	Description
Power		
AVDD12	A72, A74, A76, B43, B53, B55	Analog 1.2 V supply
VDD12	A8, A27, A47, B13, B28, B31, B36, B47, B69	Digital 1.2 V supply
AVDD20	B40	Analog 2.0 V supply output from the AR9341
AVDD33	A49, A60, A61, B61, B62	Analog 3.3 V supply
VDD_DDR	A12, A18, A83, B2	Digital DDR1/DDR2 supply, 1.8 V or 2.6 V
VDD25	A30, A33, A38, A45, A58, A79, B41	Digital 2.5 V supply
VDD33	B19	Digital 3.3 V supply
NC		
Ground Pad		
Exposed Ground Pad		"Package Dimensions" on

2. Functional Description

2.1 Functional Block Diagram

Figure 2-1 illustrates the AR9341 functional block diagram.

The AR9341 is comprised of several internal functional blocks, as summarized in

Table 2-1. Functional Blocks

Block	Description
CPU	The 74Kc MIPS processor with 64 KByte I-Cache and 32 KByte D-Cache can run up to 533 MHz. It can boot either from internal ROM or an external SPI-based Flash device.
Clocking	The AR9341 can support 25 MHz or 40 MHz reference clock input. The AR9341 contains five internal PLLs: CPU, DDR, audio, BB, and Ethernet. The PLLs generate various internal clocks. Accuracy of the audio PLL can support up to a 200-ppb frequency change. The dynamic clock switching module is capable of quickly changing the clock (to any of its even divide values) to memory/CPU separately. Dithering is supported for CPU_CLK and DDR_CLK separately to reduce EMI interference.
DDR Memory Controller	The AR9341 allows an external memory interface that can support 16-bit SDRAM, 16-bit DDR1, or DDR2. The memory controller can enter DDR/SDRAM self refresh for low power modes.
USB	Supports USB 2.0 Host/Device interface, configured using a bootstrap option. In USB host mode, the AR9341 can support the full number of devices/endpoints allowed in the USB 2.0 specification. It can also interface to the USB hub. In USB device mode, the AR9341 is fully compliant to USB 2.0 specification and supports USB suspend mode.

Table 2-1. Functional Blocks

Block	Descripti	ion				
Ethernet Switch/ GMAC	The AR93	0/100 Ethernet switch with 4 LAN ports and one WAN port. 841 integrates two GB Ethernet MACs (GMAC0 and GMAC1). GMAC1 is d to the GB Ethernet switch, while GMAC0 can be directly connected to the FE is (port 0 or 4) of the switch. Please see "Ethernet Subsystem" on page 47 for nils.				
	GMAC0 Contains the Ethernet WAN port-specific accelerators.					
	GMAC1	Connects to the internal Ethernet switch Can be configured to run at 1000 Mbps speed or in 100 Mbps speed. This interface supports flow control between the CPU port and the switch.				
UART	Supports	a low-speed UART (up to 115.2 Kbps) and high-speed UART (up to 3 Mbps)				
GPIO	Contains 22 GPIO pins; 17 of them are highly configurable, can be any input/output to					
I ² S/SPDIF Audio Interface	S master and slave modes are supported. The master clock					
	Incorporates audio PLL, which supports accuracy of up to 200 ppb frequency change and has a separate audio clock adaptation module that can slowly change the clock assisted					
SLIC	A 8-bit, 64-slot SLIC interface with support for:					
	Supports various frame sync widths: half-bit clock width, one-bit clock width, etc.					
	Both in	nternal and external bit clock; the internal clock frequency is programmable				
Segmentation/ Checksum Accelerator	A dedicated hardware-based accelerator for segmentation/desegmentation of packets with auto Checksum computation. The hardware can read from the DDR and write back into a different location, simultaneously computing the checksum for the data chunk.					
Wireless MAC/BB/ Radio	Integrated 2.4 GHz 802.11n 2x2 two spatial stream MIMO MAC/baseband/radio. Additional features include the optional 802.11n features of Maximal Likelihood (ML) decoding, Low-Density Parity Check (LDPC), Maximal Ratio Combining (MRC), and					
	See "WL	AN Medium Access Control (MAC)" on page 73.				

2.2 Bootstrap Options

Table 2-2 details the AR9341 bootstrap options.

Table 2-2. Bootstrap Options

Bit	Name Pin		Description			
23	SOFTWARE_OPTION_8			Not used		
22	SOFTWARE_OPTION_7	GPIO8		Not used		
21	SOFTWARE_OPTION_6	GPIO5		Reserved; Should be set to 1		
20	SOFTWARE_OPTION_5	5 GPIO4		Can be used by software for any purpose		
19	SOFTWARE_OPTION_4	DDR_A_12		Can be used by software for any purpose		
18	SOFTWARE_OPTION_3	DDR_CKE_L		Can be used by software for any purpose		
17:16	SOFTWARE_OPTION_2	DDR_A_9 DDR_A_8	Interface	Selects the boot mode option. Only the USB option		
	SOFTWARE_OPTION_1			is support. Valid only if BOOT_SELECT (bit [2]) is		
15:11		1				
10:8						
7	USB_MODE					
,	COD_INICIDE					
				To enable USB device mode, GPIO20 should be tied		
				to 1. Otherwise by default, it is in host mode.		
6						
5	EJTAG_MODE					
				To enable EJTAG, GPIO18 should be tied to 1. Otherwise by default, it is in JTAG mode.		
4	REF_CLK			0 Selects REF_CLK 25 MHz (Default)		
-	KEI _CEK			1 Selects REF_CLK 40 MHz		
				To enable REF_CLK 40 MHz, GPIO22 should be		
				tied to 1. Otherwise by default, it is in REF_CLK		
3						
2	BOOT_SELECT			0 Selects boot from ROM (Default)		
				To enable boot from SPI, GPIO6 should be tied to 1. Otherwise by default, boot from ROM is selected.		
1	SDRAM_DISABLE	GPIO7		0 SDRAM enabled (Default)		
1	SDIG INI_DISHIBLE	GI 107		1 SDRAM disabled		
				To disable SDRAM, GPIO7 should be tied to 1.		
				Otherwise by default, SDRAM is enabled.		
0	DDR_SELECT	GPIO10		0 Selects DDR 2		
				1 Selects DDR 1 (Default)		
				To select DDR2, GPIO10 is tied to 0. Otherwise by		
				default, DDR1 is selected.		

All GPIOs used as bootstrap should have stable value at the pins until SYS_RST_L_OUT is deasserted.

See Figure 10-5 for bootstrap timing.

2.3 RESET

Figure 2-2 shows the AR9341 reset.

Each of the per-block resets can be issued by software by writing to the RST_RESET register. See "Reset (RST_RESET)" bit definitions for each per block reset.

2.4 PLL and Clock Control

2.4.1 Full Chip Clocking Structure

The AR9341 includes these PLLs:

PLL	Description
"Audio PLL"	
BB PLL	By default, this PLL generates clocks for the radio, baseband and WMAC.
"CPU PLL"	By default the source clock for the CPU_CLK, although it can also be derived from the DDR
"DDR PLL"	By default the source clock for DDR_CLK and AHB_CLK, though both can also be derived
ETH PLL	Generates the clock for all Ethernet interfaces, MAC, etc.
USB PLL	Generates the USB 30 MHz/480 MHz clock for USB controller.

2.4.1 CPU PLL

The CPU PLL is configured by the bit CPU_PLL_CONFIG in "CPU DDR Clock Control (CPU_DDR_CLOCK_CONTROL)". The clock can vary slightly by changing the divider's FRAC. The dithering is controlled through the "CPU PLL Dither Parameter (CPU_PLL_DITHER)" register. Note that if DDR_CLK is derived from the CPU PLL, it is better to turn off dithering.

The clock switcher and dynamic clock divider guarantee any change in inputs to this module is glitch-free; thus input to this block can change. Make sure that, when modifying the select to the clock switcher module, both clock inputs are present as switching from one clock to another depends on both clocks. Figure 2-4 details the derivation of the CPU_CLK that clocks the MIPS processor.

Figure 2-4. 74Kc Processor CPU Clock

2.4.2 DDR PLL

The DDR PLL is configured with Configuration (DDR_PLL_CONFIG)"
"CPU DDR Clock Control
(CPU_DDR_CLOCK_CONTROL)"
PLL clock is dithered by
Parameter (DDR_PLL_DITHER)"
immediately after issuing an auto refresh command to the DDR.
DDR_CLK and AHB_CLK select signal change to clock switching logic, which should be made only if both clock inputs are preset.

The FRAC part of the PLL is dynamic, but the INT part of the divider requires the PWD to go high and then low.

Thus, changing the PLL clocks dynamically

- 1. Asserting the PLL_BYPASS mode bit.
- 2. Asserting the PWD for that PLL.
- 3. Reconfiguring divider INT/FRAC values.
- 4. Deasserting the PWD for the PLL
- 5. Waiting for the clock to become stable by
- 6. Removing the PLL_BYPASS bit for this PLL. The CPU can do this procedure any time for CPU_CLK/AHB_CLK, which is useful to enter low power states leading to minimal chip power consumption. Another way to change the CPU/AHB/DDR_POST_DIV to shift down to lower clock for these clocks. An optimal DDR and CPU frequency can be dynamically chosen, and the PLL reprogrammed for optimal power. However, make sure that no DDR transaction is pending or in progress before changing the DDR_CLK frequency.

Figure 2-5. DDR_CLK and AHB_CLK

2.4.3 Audio PLL

The audio PLL is configured with "Audio PLL Configuration (AUDIO_PLL_CONFIG)". Hardware supports small variations in the PLL clock by dynamically changing the FRAC value using the "Audio PLL Modulation Control (AUDIO_PLL_MODULATION)" and "Audio PLL Jitter Control (AUDIO_PLL_MOD_STEP)" registers.

2.5 MIPS Processor

The AR9341 integrates an embedded MIPS 74Kc processor. For more information, visit: http://www.mips.com/products/cores/32-64-bit-cores/mips32-74k/

Under Processor Cores-74K Family, refer to:

- MIPS32® 74KcTM Processor Core Datasheet
- MIPS32® 74K® Processor Core Family Software User's Manual

2.5.1 Configuration

Table 2-3 summarizes the configuration settings used by the AR9341. Upon reset, the CPU puts out an address of 0xBFC00000 which is mapped to the flash address space. The AR9341 processor supports a clock frequency

Table 2-3. Core Processor Configuration Settings

Setting	Description
Cache Size	The AR9341 implements 64 KB 4-way set associative instruction cache and 32 KB four-way set associative data cache. It supports single cycle multiply-accumulate, MIPS32 and MIPS16 instruction sets and non-blocking cached reads.
Endian	The AR9341 implements big Endian addressing.
Block Addressing	The AR9341 implements sequential ordering.

2.6 Address MAP

Figure 2-6 shows the address space allocation.

Figure 2-6. Address Space Allocation

2.7 DDR Memory Controller

The AR9341 allows an external memory interface supporting 16-bit SDRAM, 16-bit DDR1, or DDR2. The memory controller can enter DDR/SDRAM self refresh for low power modes.

The SDRAM, DDR1, and DDR2 modes have small differences in read/write transactions. For a write transaction, DDR2 memory expects write data after a latency depending on CAS latency. DDR1 memory expects the first data immediately after the clock in which the write command is issued. SDRAM expects the write data to start with the write command itself.

The controller uses the configurable parameter DDR2 TWL in the (DDR_DDR2_CONFIG)"

parameter is applicable for DDR1 and DDR2 modes: it should be set to one for DDR1 mode, and to (CAS - 1) * 2 - 1 for DDR2 mode.

The controller handles SDRAM mode as needed depending on the Configuration (DDR_CTL_CONFIG)" SDRAM_MODE_EN bit.

On-Chip SRAM

The DDR controller provides 32 KBytes of onchip SRAM for access to critical information. This SRAM is mapped at the base address 0x1D000000 and is accessible by CPU and all other memory clients. The SRAM can be used for critical control and data information exchange between the CPU and memory clients, when DDR memory is not accessible

during low power modes and during initial boot from external hosts.

Enabling DDR2 Mode

Set the bit SDRAM MODE EN in "DDR Controller Configuration (DDR_CTL_CONFIG)" to zero, and ENABLE_DDR2 in "DDR2 Configuration (DDR_DDR2_CONFIG)" should be set to one. As only a 16-bit interface is supported, HALF_WIDTH should also be set. The VEC field in the register "DDR Read Data Capture Bit Mask (DDR_RD_DATA_THIS_CYCLE)"

"DDR

"DDR Controller Configuration (DDR_CTL_CONFIG)". As only a 16-bit interface is supported HALF_WIDTH should also be set, and the VEC bit in "DDR Read Data Capture Bit Mask (DDR_RD_DATA_THIS_CYCLE)" should be

shows the DDR configurations.

Table 2-4. DDR Configurations

Device on Board	Total Memory	Mode	DDR1	DDR2	Notes
512 Mbits x 16	64 MBytes	16 Bit	Yes	Yes	CPU address A26/A27 unused
512 Mbits x 8 512 Mbits x 8	128 MBytes	16 Bit	Yes	No	CPU address A27 unused

2.7.2 Address Mapping

Table 2-5 shows the correspondence of the internal CPU address, the DDR interface address, and the physical memory address.

Supported devices include:

- DDR1/DDR2 512 Mbits x 16
- DDR1 512 Mbits x 8

Table 2-5. CPU Address: DDR Interface Address Mapping

DDR Interface Address	Column Address:	Bank Address:	Row Address ^[1] :
DDR_A_0	0	_	CPU_ADDR[11]
DDR_A_1	CPU_ADDR[2]	_	CPU_ADDR[12]
DDR_A_2	CPU_ADDR[3]	_	CPU_ADDR[13]
DDR_A_3	CPU_ADDR[4]	_	CPU_ADDR[14]
DDR_A_4	CPU_ADDR[5]	_	CPU_ADDR[15]
DDR_A_5	CPU_ADDR[6]		CPU_ADDR[16]
DDR_A_6			CPU_ADDR[17]
DDR_A_7			CPU_ADDR[18]
DDR_A_8			CPU_ADDR[19]
DDR_A_9			CPU_ADDR[20]
DDR_A_10			CPU_ADDR[21]
DDR_A_11			CPU_ADDR[22]
DDR_A_12			CPU_ADDR[24]
DDR_BA_0			_
DDR_BA_1			_

^[1] Row address: DDR_A_O through DDR_A_12, when the row is accessed.

2.7.3 Refresh

DDR memory must refresh periodically. The DDR controller has an automatic 25- or 40-MHz refresh command generation module that clocks with REF_CLK. Because DDR_CLK is dynamic, the auto REFRESH_PERIOD works on the fixed REF_CLK.

2.7.3.1 Self Refresh

The AR9341 DDR controller supports a self refresh (SF) sequence; that is, it has hardware support to issue commands to place DDR memory into and to exit SF mode. The register "DDR Self Refresh Control (DDR_SF_CTL)" controls basic SF behavior.

If EN_SELF_REFRESH is set and no valid DDR transactions are in progress, the DDR controller initiates an SF enter sequence. If DDR clients have transactions in progress, the controller waits until no DDR activity is occurring. If EN_AUTO_SF_EXIT is set, the controller initiates an exit SF sequence upon detecting a DDR request from any DDR client. If this bit is not set, DDR is in SF, a DDR new request is seen, the controller generates a miscellaneous DDR_ACTIVITY_IN_SF interrupt (see the

"Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS)").

Software can alternatively force the controller to exit SF by setting EN_SELF_REFRESH to 0.

"Self Refresh Timer (SF_TIMER)" register bits SF_TIMER_RF_OUT_DPR_COUNT and SF_TIMER_IN_RF_DPR_COUNT indicate the REFRESH_PERIOD number that the controller was in SF and the duration for which it was out of SF. Using these variables, software can decide when to enable hardware to reenter SF.

The controller can also generate an interrupt to the CPU while entering SF, exiting SF, and while in SF if DDR activity is detected. Immediately after exiting SF, read commands should not be issued until TXSR is met and non-read commands should not be issued until TXSNR is met. These timing parameters can be programmed via the TXSNR and TXSR fields of the DDR_SF_CTL registers. Note that these are in terms of DDR_CLK and not REF_CLK.

While in SF, DDR_CK_P and DDR_CK_N clocks can be gated, optionally using the EN_SF_CLK_GATING bit.

^[2] The AR9341 does not support BA_2, which thus must be connected to GND at the memory if present.

2.8 SLIC

2.8.1 Overview

The AR9341 provides a single, 4-wired, multichannel PCM digital highway for connecting to a SLIC-based VOIP interface circuit. The SLIC interface is compatible with a standard PCM interface based on T1 (24 channels at 1.544 MHz) or E1 (32 channels at 2.048 MHz).

Trunk interfaces are suitable for VOIP applications. Other non-standard channel numbers up to 64 channels and a bit rate up to 8.092 MHz are supported via register configuration. In a VOIP application, the AR9341 SLIC controller can be configured as a bridge between the PCM voice interface and the LAN/WAN/WLAN IP packet interface.

The SLIC controller can transmit/receive on 1, 2, or multiple-time multiplexed 8-bit voice channels on the PCM trunk. Up to 64 channels are supported through the bit mask channel enable registers. All Tx/Rx operations are 8-bit PCM samples transferred using descriptor-based DMA controllers (mailboxes) between the system memory and the trunk interface. Each direction (Tx and Rx) has one mailbox DMA controller.

The major features include:

- Programmable number of SLIC_SLOTs
- Enabling multiple slots
- Master or slave programming
- Short/long frame sync
- Delayed or non-delayed data operation mode
- SLIC enable/disable
- Programmable divider clock
- 8-bits/slot (maximum of 64 slots); having 16 bits/slot requires enabling two consecutive slots. In 16-bit mode, the total number of slots available becomes 32.
- Separate interrupts for Rx and Tx DMA completion
- SLIC interrupt for unexpected frame sync in slave mode
- Bit swap across byte boundary
- Configurable options to send data at various edges after frame sync
- Variations in frame sync duration
 - Frame sync can last for a half clock duration of BIT_CLK
 - Frame sync can stay for more than one clock duration of BIT_CLK (the number of clocks for which frame sync should be high is configurable)

Figure 2-7 shows the SLIC block diagram.

Figure 2-7. SLIC Block Diagram

2.8.2 SLIC Interface

The SLIC interface utilizes a versatile mailbox DMA controller for all data transfers to and "Mailbox (DMA for more information.

In the Tx direction, software prepares suitable voice buffers from IP packets received from LAN/WAN/WLAN in system memory, and hands to the mailbox DMA using descriptors. The DMA controller reads the buffers from memory and puts them onto the Tx channels or time slots on the PCM interface. Only channels/time slots enabled by the Tx mask registers are used for sending Tx data. All Tx data synchronizes with respect to frame sync, which provides voice sample synchronization between the source and the voice data receiver. Channel numbering starts with respect to the frame sync being asserted and based on programmable number PCM clocks where

In the Rx direction, the SLIC controller receives voice samples from the channels/time slots reenabled by the Rx mask register. These 8-bit samples are then assembled and DMAed to system memory based on the buffer pointers provided in the Rx descriptors. Like Tx, all Rx sample operations synchronize with respect to frame sync. Channel numbering starts with frame sync being asserted and is based on the programmable number of PCM clocks where frame sync remains asserted.

2.8.5 SLIC Interface Signals

The SLIC interface uses the GPIO pins to implement the PCM highway. The GPIO must be programmed for the necessary SLIC signals (bit clock, frame sync, DI, DO) through the GPIO module. Table 2-6 shows the SLIC interface signals.

Table 2-6. **SLIC Interface Signals**

Signal Name	Туре	Description	
SLIC_PCM_FS_IN	I	PCM frame sync input in slave mode	
SLIC_PCM_DATA_IN	I	PCM serial data input	
SLIC_PCM_CLK_IN	I	PCM bit CLK input in slave mode	
SLIC_PCM_CLK_OUT	О	PCM bit CLK output in master mode	
SLIC_PCM_DATA_OUT	О	PCM serial data output	
SLIC_PCM_FS_OUT	O	PCM frame sync output in master mode	
SLIC_FS_OUT_EN	О	PCM frame sync drive enable to GPO pad	
SLIC_DATA_OUT_EN	O	PCM data out enable to GPO Pad	

2.8.6 SLIC Master and Slave Modes

Master Mode

The SLIC controller is the master of the PCM trunk interface and controls the interface clock (PCM CLK), frame sync, and the time slots. The SLIC controller requires a clock source (from the on-chip PLL block) and has an internal divider to generate the PCM clock and frame sync frequencies.

The SLIC uses the same clock source as the I^2S interface, therefore SLIC will not work at the correct bit clock when I slave mode.

The SLIC controller is a slave device on the PCM trunk interface and receives the interface clock (PCM CLK) and frame sync from an external PCM master.

The major programmable features include:

Time Slot	nerates (master mode) or looks for (slave mode)
Count	is programmable (1–64). Each 8-bit time slot is referenced from the frame sync pulse and starts at a programmable number of CLK edges from the CLK edge where frame sync is asserted
Programmable Active Slots	The SLIC controller can send data (in Tx) or sample incoming data (Rx) on one or more time slots in a PCM frame as per a programmable mask. Each time slot $(1-64)$ on the frame time is assigned a mask bit. Each direction (Tx/Rx) has a separate 64-bit mask register.
	The data from the internal buffer is sent only on time slots for which the corresponding mask bit is set. For remaining time slots, the Tx out line is tristated. Similarly, data is sampled from the Rx in line only on time slots for which the corresponding mask bit is set in the Rx mask register.
FrameSync Length and Delay	The frame sync (generated during master mode and sampled in slave mode) can have a programmable length (1/2 PCM CLK, or 1 to 8 PCM CLKs, i.e., one time slot in duration). It is programmable using the fields LONG_FS and LONG_FSCLKS of the register "SLIC Timing Control (SLIC_TIMING_CTRL)".
	The start of the first time slot in a PCM frame with reference to frame sync can be programmed to be 1–8 CLK edges from the first CLK edge where frame sync is asserted (master mode) or sampled high (slave mode).
Bit Endianness	The bit ordering within a byte (1 time slot data = 8 bits) can be programmed, with bit [0] (closest to frame sync) being the MSB OR bit [7] (farthest from frame sync) being MSB. The SLIC_SWAP register has one bit each for Tx and Rx direction to set the bit ordering.

2.9 Segmentation/Desegmentation/ Checksum Accelerator

Three different operation modes are available:

- Compute checksum of a data buffer. Set the OFFTY field to 0x0. In this case, the CPU sets up one descriptor per data buffer in the Tx direction. Hardware computes the checksum for each data buffer individually, and updates the checksum in DWord1 of the descriptor. After processing a data buffer, hardware sets PktV bit in DWord1, showing hardware completed processing this data buffer.
- Read in a chunk of buffer and split it to many smaller chunks, computing the checksum for each smaller chunk. In this case the Tx descriptor has one descriptor, and receive would be a chain of descriptors one for each smaller chunk. It is the responsibility of the software to set the buffer sizes correctly for all the smaller
- chunks as well as the big source data chunk so that the sizes of all the smaller ones match the size of the big source chunk. For each smaller buffer, hardware computes the checksum and updates the STATUS field. Because hardware does not update the SOF/EOF fields, it is recommended that software queue desegmentation one chunk at a time. The OFFTY field is set to 0x001.
- Read in many small chunks of data, combine them into one, and compute the checksum of this big chunk. Each buffer chunk is associated with a descriptor. If many small pieces are present, the first has the SOF bit in its descriptor set and the last has the EOF bit set in its descriptor. Hardware reads all data from these data buffers and updates checksum in the Rx descriptor. It also writes back the data buffer size in the third word.

shows the Tx descriptor structure.

Table 2-7. Tx Descriptor Structure

DWord	Bits	Name	Description		
0	31:0	BUFFER_	Indicates the data buffer start address, supports non-word aligned addresses. The DMA can perform byte-write transactions, which help in segmentation/desegmentation on buffers on any address and any length.		
1 (CONTROL)	31	PKTV	Packet valid; Software must set PktV to 0, and after the descriptor is processed and checksum is updated, hardware sets it back to 1.		
	30:28	OFFTY	0 Compute checksum only. Bytes are not pushed to receive side for		
			1 Compute checksum and fill up Rx buffers and compute checksum on		
	27	EOF	The frame ends with this buffer. If the frame spans multiple descriptors, the first descriptor should have StartOfFrame set and last descriptor should		
	26	SOF	Should be set on the first descriptor, when more that one buffers are liked		
	25	PKTINTREN	If set, enables generation of interrupt after the descriptor is being processed.		
	24:19	RES	Reserved		
	18:0	PKTSIZE	Tx buffer size (initialized by the CPU) Supports up to 512 KByte buffers.		
1 (STATUS)	31	PKTV	Packet valid; After descriptor is processed and checksum is updated, hardware will set this bit to 1.		
	30	PKTINTREN	If set, indicates generation of interrupt for the processed descriptor.		
	29:25	RES	Reserved		
	15:0	CHKSUM	Checksum (written back by hardware); 16-bit checksum computed on bytes in the buffer associated with the descriptor.		
2	31:0	NEXTDESC	Next descriptor address; The descriptor chain is traversed until it reaches one with its PktV bit set to 1. If this descriptor is the last descriptor in the chain, point the next descriptor address to the first descriptor in the chain, which will already have PktV set by hardware.		
3 (STATUS	31:19	RES	Reserved		
ONLY)	18:0	HWPKTSIZE	Hardware Tx packet size; Remains the same as the one in control descriptor.		

Table 2-8 shows the Rx descriptor structure.

Table 2-8. Rx Descriptor Structure

DWord	Bits	Name	Description
0	31:0	BUFFER_ ADDR	Buffer address; Indicates the data buffer start address. Non-word aligned addresses are supported. The DMA can perform byte-write transactions, which help in segmentation and desegmentation on buffers on any address and on any length.
1 (CONTROL)	31	PKTV	Packet valid; Software must set PktV to 0, and after the descriptor is processed and checksum is updated, hardware sets it back to 1.
	30:26	RES	Reserved
	25	PKTINTREN	If set, enables generation of interrupt after the descriptor is being processed.
	24:19	RES	Reserved
1 (STATUS)			
(81711 08)	30	PKTINTREN	If set, indicates generation of interrupt for the processed descriptor.
	29:16	RES	Reserved
	15:0	CHKSUM	Checksum (written back by hardware); 16-bit checksum computed on
2	31:0	NEXTDESC	Next descriptor address; The descriptor chain is traversed until it reaches one with its PktV bit set to 1. If this descriptor is the last descriptor in the chain, point the next descriptor address to the first descriptor in the chain, which will already have PktV set by hardware.
3	31:19	RES	Reserved
(STATUS ONLY)	18:0	HWRXPKTSIZE	Hardware Rx packet size; the number of Bytes in the Rx buffer

2.10 GPIO

The GPIO module is structured in such a way that any signal listed in Table 2-10, "GPIO Output Select Values," on page 41 and Table 2-11, "GPIO Input Select Values," on page 43 can be available through any GPIO pin, except for the JTAG signals, which cannot be programmed on any other GPIO pins.

GPIO pins can be configured as input/output by programming the appropriate bits in the GPIO function registers. On reset, GPIO[17:0] are configured with certain default signals, as shown in Table 2-9.

See "GPIO Registers" on page 116 for more information on GPIO control and multiplexing.

NOTE: JTAG pins must use GPIO[3:0]. Apart from JTAG, all signals can use any GPIO and can use GPIO[3:0] by setting the DISABLE_JTAG bit to 1 in "GPIO Function (GPIO_FUNCTION)".

Table 2-9. Default GPIO Signals

GPIO			
GPIO0			
GPIO1			
GPIO2			
GPIO3			
GPIO4	CLK_OBS5		
GPIO5			
GPIO6	SPI_CLK		
GPIO7	SPI_MOSI		
GPIO8	SPI_MISO		
GPIO9	UART0_SIN		Low-speed UART0 serial input
GPIO10	UART0_SOUT	Output	Low-speed UART0 serial output
GPIO11			
GPIO12			
GPIO13			
GPIO14			
GPIO15	_	Input	Software configurable
GPIO16	_	Output	Software configurable
GPIO17	_	Input	Software configurable
GPIO18	_	Output	Software configurable
GPIO19	_	Output	Software configurable
GPIO20	_	Output	Software configurable
GPIO21	_	Output	Software configurable
GPIO22	_	Output	Software configurable

[1]See Table 8.3.21, "GPIO Function (GPIO_FUNCTION)," on page 123 for clock signals that can be observed through GPIO pins.

2.10.1 GPIO Output

GPIO is structured to output one of 128 signal through any GPIO pin. See Figure 2-8.

Figure 2-8. GPIO is Structured to Output 1 of 128 Signal Through Any GPIO

Each GPIO output is structured as 128:1 MUX. The MUX select is an 8-bit register that can be programmed with the values 0–127 that particular input signal through the GPIO pin, as shown in source from the registers. Each 32-bit register has select values for four GPIO pins (8 bits each).

Table 2-10. GPIO Output Select Values

To output the signal through the GPIO pin, use this register programming:

- 1. If using a non-JTAG signal on GPIO[3:0], write the bit DISABLE_JTAG of the "GPIO Function (GPIO_FUNCTION)" register to 1.
- 2. Set the corresponding GPIO bit in the "GPIO Output Enable (GPIO_OE)" register to 0.
- 3. Write the particular GPIO field in the "GPIO_OUT_FUNCTIONx" register with the corresponding output signal value from Table 2-10.

For example, to drive the SPI_CLK signal

"GPIO Output Enable

2. Set the 8-bit field ENABLE_GPIO4 (bits "GPIO Function 1 (GPIO_OUT_FUNCTION1)" register to 10.

MUX Select Value	Signal Name	
1	R	
2	R	
3	R	
4		
5	S	
6		SLIC reference clock
7		
8		
9		
10		
11		
12	I2S_CLK	I ² S reference clock
13	I2S_WS	I ² S word select for stereo
14	I2S_SD	I ² S serial audio data
15	I2S_MCK	I ² S master clock
16	CLK_OBS0	Clock observation, see "GPIO Function
17	CLK_OBS1	(GPIO_FUNCTION)" on page 123 for clock signals that
18	CLK_OBS2	can be observed through GPIO pins
19	CLK_OBS3	
20	CLK_OBS04	
21	CLK_OBS5	
22	CLK_OBS6	
23	CLK_OBS7	

Table 2-10. GPIO Output Select Values

24	UART0_SOUT	Low-speed UART0 serial data out
25	SPDIF_OUT	SPDIF data output
26	LED_ACTN[0]	5 port Ethernet switch activity LEDs
27	LED_ACTN[1]	
28	LED_ACTN[2]	
29	LED_ACTN[3]	
30	LED_ACTN[4]	
31	LED_COLN[0]	5 port Ethernet switch collision detect LEDs
32	LED_COLN[1]	
33	LED_COLN[2]	
34	LED_COLN[3]	
35		
36	LED_DUPLEXN[0]	5 port Ethernet switch full duplex/half duplex LEDs
37		
38		
39		
40		
41		5 port Ethernet switch link indicator LEDs
42		
43		
44		
45		
46		External LNA control for chain 0
47		External LNA control for chain 1
48		MAC Tx frame (indicates the MAC is transmitting)
49		
50		
51		
71:52		
72		MAC detected a WOW packet
73		
74		
78:75		
79	UART1_TD	High-speed UART1 transmit data
80	UART1_RTS	High-speed UART1 request to send
83:81	RES	Reserved
84	DDR_DQ_OE	DDR data output enable
86:85	RES	Reserved
87	USB_SUSPEND	USB suspend
91:88	RES	Reserved

2.10.2 GPIO Input

GPIO inputs are structured so that any signal listed in Table 2-11 can source from any GPIO pin. See Figure 2-9.

Figure 2-9. Any Signal Can Receive Input From Any GPIO

Each signal can receive its input from GPIO[22:0]. Each signal has an 8-bit register that can be programmed 0–22; the signal gets its input for the corresponding GPIO pin programmed in the "GPIO_IN_ENABLEX" See Table 2-11.

To route the GPIO input to a particular signal, use this register programming:

- 1. If using a non-JTAG signal on GPIO[3:0], write the bit DISABLE_JTAG of the "GPIO Function (GPIO_FUNCTION)" register to 1.
- 2. Set the corresponding GPIO bit in the "GPIO Output Enable (GPIO_OE)" register to 1.
- 3. Write the particular 8-bit GPIO field in the "GPIO_IN_ENABLEx" register with the corresponding output signal value from Table 2-11.

For example, to route the UARTO_SIN signal

"GPIO Output Enable

2. Set the UART0_SIN field (bits[15:8]) in the "GPIO In Signals 0 (GPIO_IN_ENABLE0)"

shows the GPIO input select values.

Table 2-11. GPIO Input Select Values

Signal Name	
SPI_MISO	
UART0_SIN	
I2S_MCLK	
I2S_CLK	
I2S_MIC_SD	
I2S_WS	
SLIC_PCM_FS	
SLIC_DATA_IN	SLIC data in
UART1_CTS	High-speed UART1 clear to send
UART1_RD	High-speed UART1 receive data

2.11 Serial Flash SPI/ROM

The SPI controller supports two ways of programming the SPI device:

- The bit blasting method by which data, CLK, and the CS are programmed directly by CPU bit in the controller register SPI_IO_CNTRL_ADDR, which is shifted on to the interface signals.
- Direct programming of the data and the number of bits to shift. The controller takes care of shifting the specified number of bits.

The SPI controller has a dedicated chip select available to an external flash for booting, as well as two more configurable chip selects.

2.11.1 SPI Operations

Before performing any SPI operation, the FUNCTION_SELECT and REMAP_DISABLE bits of the register SPI_FUNCTION_SELECT are set to 1. Any page program or erase operations on the SPI device must enable the write enable latch (WEL).

2.11.2 Write Enable

- Program the register SPI_SHIFT_DATAOUT_ADDR with the WREN CMD value.
- 2. Program SPI_SHIFT_CNT_ADDR:

SHIFT_CNT	8	Number of WREN
TERMINATE	1	After shifting 8-bit deassert
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

2.11.3 Page Program

- Send a write enable command before any page program or erase operations.
- Use the **send** command:
 - a. Program SPI_SHIFT_DATAOUT_ADDR with the PP CMD value.
 - b. Program SPI_SHIFT_CNT_ADDR:

SHIFT_CNT	8	Number of command bits
TERMINATE	0	Do not deassert CS; CMD is followed by address/data
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

- Send the address:
 - a. Program SPI_SHIFT_DATAOUT_ADDR with the address to be programmed.
 - b. Program SPI SHIFT CNT ADDR:

SHIFT_CNT	24	Number of address command bits
TERMINATE	0	Do not deassert CS; CMD is followed by address/data
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

Send the data:

- a. Program SPI_SHIFT_DATAOUT_ADDR with the data to be programmed.
- b. Program SPI_SHIFT_CNT_ADDR:

SHIFT_CNT	32	Number of data bits
TERMINATE	1	Deassert chip select after programming the data
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

The command and address can be

SPI_SHIFT_DATAOUT_ADDR in the order: SHIFT_CNT field in SPI_SHIFT_CNT_ADDR is set to 32.

- a. Program SPI_SHIFT_DATAOUT_ADDR command and address.
- b. Program SPI_SHIFT_CNT_ADDR:

SHIFT_CNT		Number of command and address bits
TERMINATE	0	Keep chip select asserted until the data is read
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

Read the data by programming SPI_SHIFT_CNT_ADDR:

SHIFT_CNT	32	Number of bits to be read
TERMINATE	1	Deassert the chip select
		after the data is read
SHIFT_CLKOUT	0	Initial value of clk
SHIFT_CHNL	001	Enable chip select 0
SHIFT_EN	1	Enable shifting

2.12 High-Speed UART Interface

The AR9341 supports a high speed Universal Asynchronous Receive and Transmit (UART) interface for connecting to high speed serial interface devices. This controller supports Tx and Rx speeds of up to 3 Mbps with RTS/CTS flow control. Data and control access is through a APB PIO interface. The UART supports a four-deep, byte-wide FIFO on both the Tx and Rx interfaces to improve throughput. The controller can be configured for either an RS232 DTE or for DCE equipment.

Figure 2-10. UART Block Diagram

The CPU can send and receive data through the UART using a set of control and data registers (see "UART1 (High-Speed) Registers" page 275). A FIFO is provided on both the Tx and Rx sides, to synchronize with the remote equipment without loss of data.

The operating mode of the UART is set using the "UART1 Configuration and Status (UART1_CS)" on

DCE mode. Flow control using RTS/CTS can be enabled or disabled using the same register. The baud rate for transmission and reception can be set using the (UART1_CLOCK)"

2.12.1 Transmit (Tx)

To send data on the serial interface, the CPU checks for Tx busy in the UART1_TX_BUSY bit in the "UART1 Configuration and Status (UART1_CS)" register. If Tx is idle, the CPU proceeds to write the bytes into the register "UART1 Transmit and Rx FIFO Interface (UART1_DATA)". The CPU can write data into the Tx FIFO (if enabled) as long as the bit TX_BUSY is reset (idle). The written bytes are sent over the UART0_SOUT pin. The UART1_TX_CSR bit must be set to enable the Tx operation with FIFO.

2.12.2 Receive (Rx)

Received data is available for reading out from the UART1_DATA register. Data availability is indicated by the UART1_RX_BUSY bit being set in the UART1_CS register. Data can be read from the Rx FIFO (if enabled) as long as the bit RX_BUSY is set. The UART1_RX_CSR bit must be set to enable the Rx operation with FIFO.

2.13 Low-Speed UART Interface

The AR9341 contains a 16550 equivalent UART controller/port for debug/console monitoring. The UART pins are multiplexed with GPIO page 41 describes the

multiplexed GPIO options. The UART controller can be programmed through a set of

"UART0 (Low-Speed)

defines the required registers and their descriptions for UART. The UART supports programmable baud rates and can support up to 115.2 KBps. This UART does not support hardware flow control.

2.14 USB 2.0 Interface

The USB controller supports a standard USB 2.0 host or device interface, configurable using bootstraps on power up. In USB host mode, the AR9341 can support the full number of devices/endpoints allowed in the USB 2.0 specification. It can also interface to a USB hub.

In USB device mode, the AR9341 is fully compliant to USB 2.0 specification and supports USB suspend mode. In device mode, AR9341 provides 6 end-points: 1 control endpoint and 5 endpoints configurable for bulk/isochronous/interrupt and in or out functions. See Figure 2-11

Figure 2-11. USB Interface

Table 2-12 describes the USB interface elements.

Table 2-12. USB Interface Elements

Name	Description
System Interface	The USB controller provides a AHB master interface for DMA transfer of descriptors and endpoint data between the System memory and the USB serial interface. AR9341 CPU can control the USB controller operation through an AHB Slave interface. In Host Mode, the controller registers and data structures are compliant to Intel EHCI specifications. In Device Mode of operation the controller registers and data structures are implemented as extensions to EHCI programmers interface. The AR9341 software needs to set the operation mode (Host Mode or Device mode) by writing into the CM bits of the USBMODE register. Also the bootstrap input signal GPIO20 needs to be set accordingly.
Device Data Structure	The device controller operates to transfer a request in the AR9341 system memory to and from the Universal Serial Bus. The device controller performs data transfers using a set of linked list transfer descriptors, pointed by a queue head one for each endpoint In and Out directions, The DMA engine performs master operations on the AHB system bus to transfer data to and fro.
Host Data Structure	The host data structures are used to communicate control, status, data and between software and the USB host controller. The data structure is compliant with EHCI specifications. A periodic frame list which is an array of pointers to a transfer list is used. There are Asynchronous transfer lists for bulk and control data transfers and Isochronous Transfer list for Isochronous data transfers.
XCVR Interface	The USB Controller interfaces with an on-chip USB 2.0 PHY through the UTMI standard interface.

Table 2-13 shows the USB interface signals.

Table 2-13. USB Interface Elements

Name	Туре	Description
USB_DP	IA/OA	USB D+ Signal
USB_DM	IA/OA	USB D– Signal

3. Ethernet Subsystem

3.1 GMACO and GMAC1

The two AR9341 GB Ethernet MACs connect to the Ethernet WAN port and switch.

GMAC1 connects to the internal Ethernet switch through a GMII/MII interface. GMAC0 connectivity can be configured multiple ways:

- GMAC0 could connect to P0 or P4 FE PHY port and GMAC1 connec switch that controls rest of the 4 FE ports.
- If SW_ONLY_MODE is set, GMAC0 does not connect anywhere. All five PHY ports connect to the Ethernet switch.

GMAC0 is treated as a WAN port and has several Ethernet specific accelerators. Each accelerator could be separately enabled/ disabled by software.

The major blocks in GMAC0 are:

Table 3-1. GMACO Blocks

Block	Description
MAC	Detects the SFD, takes care of IFG, and receives/transmits final data in MAC interface format
Parser	Parses the incoming data (from MAC in the case of ingress, or from DMA in the case of egress), detects the packet type, and isolates all L2, L3, and L4 related fields for NAT and ACL engine.
NAT Engine	Creates the lookup table (LUT) and supports lookup, addition, and deletion of entries in the LUT for CPU and the parser.
ACL Engine	Builds the ACL rule table. From the fields generated by the parser, this block checks all of the rules and gets back with the packet drop or accept decision. If ACL is disabled, then all packets are accepted.
Packet Control/Edit Block	Maintains the packet integrity in the FIFO, takes in the result from both the NAT and ACL engines, edits the packet for NAT, and drops/queues the packet depending on ACL decisions. It also takes care of generating control signals to the MAC/DMA, enabling these blocks to transmit the packet from the FIFO.

Table 3-2. GMAC Accelerator Types

Accelerator Type	Rx/Tx	Description
Ingress and Egress NAT Accelerator for IPv4	Rx/Tx	Type II/SNAP-tagged/untagged TCP/UDP/ICMP packets that can support up to 512 entries per direction. NAT is performed at wire-speed and is capable of
		"Setup and Data/Packet
Ingress and Egress ACL Accelerator	Rx/Tx	Can support up to 64 entries per direction, with each entry supporting up to 5 match commands per entry. Supports an ACL accelerator for WAN Rx and Tx
QoS	Tx	Supports Tx QoS with different queues: fixed or weighted round-robin algorithms

3.1.3 Ingress and Egress Flow of Data and Control Information

The flow of data and control information in the GMAC ingress and egress are detailed in Figure 3-2 and Figure 3-3.

Figure 3-3. Egress Data and Control in GMACO

GMAC Descriptor Structure: Rx 3.2

In the Rx descriptor, each descriptor comprises a sequence of three 32-bit memory locations:

Table 3-3. **Rx Descriptors**

Address	Name	Description	Page
0x0	PKT_START_ADDR	Start Address for Packet Data	page 50
0x4	PKT_SIZE	Packet Size and Flags	page 50
0x8	NEXT_DESCRIPTOR	Next Descriptor	page 51

3.2.1 Start Address for Packet Data (PKT_START_ADDR)

Address Offset: 0x0 Access: Read/Write

Bit	Name	Description
31:2	PKT_START_ ADDR	Top 30 bits of the packet start address. The built-in DMA controller reads this register to
		Note: The start addresses used in any sequence of descriptors must be spaced to add sufficient room in any location for a packet of the maximum size transferred.
1:0	RES	Ignored by the DMA controller, because it is a system requirement that all transfers are

3.2.2 Packet Size and Flags (PKT_SIZE)

Address Offset: 0x4

Access: See fields descriptions

Bit	Name	Access	Description		
31	EMPTY_FLAG	R/W	This bit indicates the availability of the specified location to store the received packet. Setting this flag validates the descriptor. This bit is		
			Note: On successful completion of an Rx operation, the DMA controller writes 0 to this location to indicate that this location has been used to store the received packet. This action ensures that received data is not		
30	NAT_STATUS	RO	Set by the DMA controller indicating the NAT Status for the packet.		
			0 NAT operation is not done. Valid only if Ingress NAT		
			1 Successfully NAT edit.		
29:28	RES	RO	Reserved		
27:26	SW_STATUS	RO	Provides the software status bits loaded into the LUT for the connection that the packet belongs to.		
25	NAT_UNSUPPORTED	RO	Indicates an ERROR status for NAT because the packet is unsupported		
			0 Supported packet type		
			1 Unsupported packet type; valid only if NAT_STATUS is set to 0 and ingress NAT functionality is enabled		
24	PER_PKT_INTR_EN	R/W	When set to 1 by software, the DMA controller generates an interrupt to the CPU after successful completion of the packet DMA.		
23	FRG	RO	Indicates whether this packet is fragmented		
22:14	RES	RO	Reserved		
13:0	PKT_SIZE	R/W	The DMA controller writes the number of bytes received to this field; the value of this field prior to the transfer being made is ignored.		

3.2.3 Start Address Packet Data (PKT_START_ADDR)

Address Offset: 0x0 Access: Read/Write

Bit	Name	Description
31:2	DESCRIPTOR_ ADDR	Top 30 bits of Packet the descriptor address. The built-in DMA controller reads this register to discover the location in host memory of the descriptor for the next packet in the sequence. The descriptors should form a closed linked list.
1:0	RES	Ignored by the DMA controller because it is a requirement of the system that all descriptors are 32-bit aligned in host memory. Default is 0.

GMAC Descriptor Structure: Tx

In the Tx descriptor, each descriptor comprises a sequence of three 32-bit memory locations:

Table 3-4. Tx Descriptors

Address Offset		Page
0x0		page 51
0x4		page 52
0x8		page 52

3.3.1 Start Address for Packet Data (PKT_START_ADDR)

Address Offset: 0x0 Access: Read/Write

Bit	Name	Description
31:2	PKT_START_ ADDR	The built-in DMA controller reads this register to discover the location in host memory
		Note: The start addresses used in any sequence of descriptors must be spaced to add sufficient room in any location for a packet of the maximum size transferred.
1:0	RES	Ignored by the DMA controller, because it is a system requirement that all transfers are 32-bit aligned in host memory. Default is 0.

3.3.2 Packet Size and Flags (PKT_SIZE)

Address Offset: 0x4

Access: See fields descriptions

Bit	Name	Access	Description					
31	EMPTY_FLAG	R/W	This bit indicates the availability of the specified location to store the received packet. Setting this flag validates the descriptor. Note: On successful completion of an Rx operation, the DMA controller writes 0 to this location to indicate that this location has been used to store the received packet. This action ensures that received data is not accidentally overwritten by a subsequent packet.					
30	PER_PACKET_NAT	R/W	Used to control NAT function for Tx Packets on per-packet basis.					
	_ENABLE		The Tx packet bypasses the egress NAT Engine. Valid only if egress NAT is enabled.					
			1 The Tx packet goes through the egress NAT engine.					
29	PER_PACKET_ACL	R/W	Used to control ACL function for Tx Packets on per-packet basis.					
	_ENABLE		0 The Tx packet bypasses the egress ACL Engine. Valid only if					
			1 The Tx packet goes through the egress NAT engine.					
28	NAT_STATUS	RO	Set by the DMA controller indicating the NAT Status for the packet.					
			0 NAT unsuccessful. Valid only if the egress NAT functionality is enabled and PER_PACKET_ACL_ENABLE is set.					
27	ACL_STATUS	RO	Set by the DMA controller indicating the ACL Status for the packet.					
			0 ACL allow. Valid only if the egress ACL functionality is enabled					
26	FRG							
25	NAT_UNSUPPORTED	RO	Indicates an ERROR status for NAT because the packet is unsupported					
20	IVIII_OIVOOITORILD	RO	Thereares are Errore status for 1971 because the packet is ansupported					
			1 Unsupported packet type; valid only if NAT_STATUS is set to 0					
24	PER_PKT_INTR_EN	R/W	When set to 1 by software, the DMA controller generates an interrupt to the CPU after successful completion of the packet DMA.					
23:14	RES							
13:0	PKT_SIZE	R/W	The DMA controller writes the number of bytes received to this field: the value of this field prior to the transfer being made is ignored.					

3.3.3 Start Address Packet Data (PKT_START_ADDR)

Address Offset: 0x0 Access: Read/Write

Bit	Name	Description
31:2	DESCRIPTOR_ ADDR	Top 30 bits of Packet the descriptor address. The built-in DMA controller reads this register to discover the location in host memory of the descriptor for the next packet in the sequence. The descriptors should form a closed linked list.
1:0	RES	Ignored by the DMA controller because it is a requirement of the system that all descriptors are 32-bit aligned in host memory. Default is 0.

3.4 NAT LUT Structure: Ingress and Egress

The ingress and egress NAT engines contain a lookup table (LUT) supporting up to 512 entries for ingress and 512 entries for egress and built by sets of KEY+INFO fields. Note:

- The CPU can lookup, insert, or delete an LUT entry, or it can initialize the LUT.
- The rising edge of the REQ is recognized as a new request. Setting the INIT bit initializes whole of the ingress LUT.
- The CPU can add or delete an LUT entry. If the INSERT_STATUS bit is set to one, the insert was successful. If it is unsuccessful, the reason for failure is indicated in BUCKET_FULL or BINS_FULL. It is possible for a particular bin to fill, in which case it is unable to add an LUT entry.

If the entry's KEY that they CPU is trying to add is already present in the LUT, only the INFO field is updated and the bit DUPLICATE_KEY is set in IG_CPU_REQ_STATUS.

Table 3-5. NAT LUT Structure

Ingress							
TCP/UDP Key[19:0] + TCP/UDO Info[100:0]							
KEY[19:0]							
INFO[100:0]							
ICMP Key[19:0	1 + ICMP	Info[100:0]					
	<u>,</u>						
KEY[19:0]							
	1:0	PRTCL					
	15:0	ICMP_SEQ_ID					
INFO[100:0]	1:0	SW_BITS ^[1]					
	3:0	L4_CONN_STATE ^[2]					
	47:0	L2_MAC_ADDR					
	15:0	L4_SEQ_ID					
	31:0	LCL_IP_ADDR					
IG Key[19:0] +	- IG Info[:	100:0]					
		Registers Used to Program					
		KEY+INFO					
KEY[19:0]	19:0	IG_KEY_DW0					
INFO[100:0]	31:0	IG_INFO_DW0					
	31:0	IG_INFO_DW1					
	31:0	IG_INFO_DW2					
	4:0	IG_INFO_DW3					

Egress	Egress							
TCP/UDP Key[4	TCP/UDP Key[49:0] + TCP/UDO Info[23:0]							
KEY[49:0]	31:0	L3_SRC_ADDR						
	1:0	PRTC						
	15:0	ICMP_DEQ_ID						
INFO[23:0]	0:0	SW_BITS ^[1]						
	4:0	L4_CONN_STATE ^[2]						
	1:0	GLOBAL_IP_INDEX						
	15:0	L4_DST_SEQ_NUM						
ICMP Key[49:0] + ICMP Info[23:0]								
KEY[49:0]	31:0	L3_SRC_ADDR						
	1:0	PRTC						
	15:0	ICMP_SEQ_ID						
		SW_BITS ^[1]						
		L4_CONN_STATE ^[2]						
	1:0	GLOBAL_IP_INDEX						
	15:0	L4_SEQ_ID						
	Registers Used to Program KEY+INFO							
	17:0	EG_KEY_DW						
	31:0	EG_KEY_DW0						
	23:0	EG_INFO_DW0						

- [1]Software bits: descriptor fields update with these bits if the current packet hits this LUT entry.
- [2]Used by the ACL engines to realize the rules based on the L4 connection state. Thus states are hot encoded and software can match it on an per-bit basis.

Each entry has an associated free running ager timer's timestamp field. When an entry is hit, the timestamp for that entry is updated with the current timestamp. Timer resolution is software configurable; hardware periodically scans all entries timestamps, and ages out the ones that exceeded their limits.

The LUT is totally configured by the CPU. Entries are added by software as sessions are set up (TCP/UDP/ICMP).

■ The CPU uses the register IG_CPU_REQ/ EG_CPU_REQ for any LUT operation. The CPU operation results to insert/lookup/ delete an entry return using the register IG_CPU_REQ_STATUS/ EG_CPU_REQ_STATUS. Once REQ_DONE is set, it implies the other register fields are valid for the request initiated:

COMMAND[2:0]	INIT	REQ	PKT_TYPE
0b2: Lookup	1: Init LUT	New	00: TCP
0b3: Insert		Request	01: UDP
0b4: Delete			02: ICMP

3.5 Hardware Ager: Ingress and Egress

The hardware-based ager counter ticks generate periodically. For every tick, all LUT entries are scanned. If any entry's timestamp is off by more than the specified maximum timeout, it deletes the entry. The deleted entry is logged in a FIFO, which is visible to the CPU through IG_AGER_FIFO/EG_AGER_FIFO. If the FIFO is not empty, the CPU can issue a read to delete the entry KEY in IG_AGER_KEY_DW0/EG_AGER_KEY_DW0.

Once ager registers are initialized:

- IG_AGER_TICK/EG_AGER_TICK indicate the of REF_CLK (25 or 40 MHz) pulses/ms.
- IG_AGER_TIME_OUT/ EG_AGER_TIME_OUT defines the maximum timeout for TCP, UDP, and ICMP separately in terms of IG_AGER_TICK/ EG_AGER_TICK.
- The hardware-based AGER can be disabled in bit [0] of IG_AGER_FIFO/ EG_AGER_FIFO.
- If more than 4 entries are deleted, an interrupt is generated to the CPU.
- Once an entry is deleted from the LUT, all packets for its KEY send with a NAT STATUS of 0.

3.6 Setup and Data/Packet Flow

3.6.1 Ingress

IG_NAT_CSR controls ingress NAT as it has ingress NAT enable, per-field edit enable, data swap, and other ACL global matching rules. Pass unedited fragmented packets to the CPU by setting IG_NAT_FRAG_EDIT to 1 (setting to 0 is not recommended). Software creates the LUT when:

- New TCP connections are established
- An ingress UDP data connection is known
- An ICMP ping request is sent out and packets expected at ingress.

Software sets up the descriptors for Rx packets.

Hardware parses and extracts packet fields, forms the KEY, and performs a LUT lookup If a lookup results in a hit, INFO is retrieved from the LUT. The packet is edited for the

If a lookup results in a miss, hardware

If the packet is fragmented, the FRG bit in the descriptor status word is set.

because the packet is not recognized by hardware, the descriptor status word bit NAT_UNSUPPORTED sets.

Software looks at the descriptor status field once it detects the ownership (OWN) bit cleared, it looks at the status fields to decide whether software-based NAT is needed or if hardware has already done NAT for this

If the NAT_STATUS bit is set, the hardware

If the NAT_STATUS bit is not set, software must do the NAT for this packet.

- If FRG is set, the packet was fragmented.
- If NAT_UNSUPPORTED is set, hardware did not recognize the packet type. If it is 0, this packet had no NAT entry. The CPU processes the packet then builds the NAT table if necessary (e.g., for unprogrammed entries when too many sessions are in progress).
- If PER_PKT_INTR_EN is set, it causes an interrupt to the CPU once the packet is sent to the DDR.

3.6.2 Egress

EG_NAT_CSR controls egress NAT as it has ingress NAT enable, per-field edit enable, data swap, and other ACL global matching rules. By default, ingress NAT edits the fields L2_DST_ADDR, L2_SRC_MAC_ADDR, L3_DST_ADDR, and L4_DST_SOCKET. It also computes and updates incremental CHECKSUM.

Because L3_SRC_ADDR is the IP address of this WAN port, it is assumed to be only one of the four values set in the Local Global IP Address 0, 1, 2, 3 registers. These addresses index to 0, 1, 2, and 3 and are is populated by the CPU while adding the entry.

Pass unedited fragmented packets to the CPU by setting EG_NAT_FRAG_EDIT_DISABLE to 1 (setting to 0 is not recommended). Software creates the LUT when:

- New TCP connections are established
- An ingress UDP data connection is known
- An ICMP ping request is sent out and packets expected at ingress.
- Software sets up the Tx packet descriptors. If, while deciding whether to forward to the WAN port, software already knows if the packet is unsupported (e.g. a fragmented or IPv6 packet), it can disable the hardware-based NAT for this packet by setting the bit PER_PKT_NAT_ENABLE to 0. Otherwise software can blindly the packet to transmit.
- Upon receiving a packet from the DDR, if the PER_PKT_NAT_ENABLE is set:
 - Hardware parses and extracts packet fields, forms the KEY, and performs a LUT lookup
 - If a lookup results in a hit, INFO is retrieved from the LUT. The packet is edited for the fields that are edit enabled.
 - If a lookup results in a miss, hardware updates NAT_STATUS to 0.
 - If the packet is fragmented, the FRG bit in the descriptor status word is set.
 - If NAT is unsuccessful because the packet is not recognized by hardware, the descriptor status word bit NAT_UNSUPPORTED sets.

Software could queue the packet to be transmitted out of the WAN port by default. When the ownership (OWN) bit of the descriptor is cleared by hardware, it can look at the descriptor status word to decide whether software-based NAT is required or hardware has already done NAT for this packet.

- If the NAT_STATUS bit is set (and PER_PKT_NAT_ENABLE was set by the CPU for this packet), the hardware NAT was successful and the packet is sent.
- If PER_PKT_NAT_ENABLE is not set by the CPU, hardware unconditionally transmits the packet.
 - If the NAT_STATUS bit is not set (and PER_PKT_NAT_ENABLE is set), the packet is not sent. Hardware just updates the status word of the descriptor and proceeds processing the next packet. In this case, software does the appropriate processing.
 - If either NAT_UNSUPPORTED or FRG is set, software must do the NAT for this packet and requeue this packet with PER_PKT_NAT_ENABLE set to 0.
 - If either NAT_UNSUPPORTED or FRG is not set but NAT_STATUS is 0, then hardware LUT lookup failed for this packet. CPU can check whether an entry must be added. After addition it can

The descriptor has a per-packet interrupt bit which, if set, causes an interrupt to the CPU once the packet is completely fetched from the DDR and processed by hardware. For example, this bit can be sent every 10 descriptors in a ring to indicate the CPU often enough, but not every packet.

3.7 ACL

3.7.1 ACL Data Structure

Ingress and egress ACLs have the same structures, but separate enables. ACL rules are a combination of the entries, each of which is a combination of the CMD_DATA+OPCODE structure. Table 3-8 defines supported OPCODES, including their widths.

Table 3-6. CMD DATA, OPCODE Structure

Ingress			
CMD_DATA[63:0]	63	3:0	IG_ACL_OPERAND1, IG_ACL_OPERAND0
OPCODE[33:0] 33			IG_ACL_CMD1234
Egress			
CMD_DATA[63:0]			
OPCODE[33:0]	33:0		EG_ACL_CMD1234
		4:0	NEP
		0:0	A
		0:0	R
		0:0	L
		0:0	Н

Table 3-7. ACL Rule Structure Example

	Size	Entry 1	•••	Entry 10
H (Head Entry)	1	1		0
L ^[1]	1	1		0
R (Reject) ^[2]	1	0		_
A (Accept) ^[2]	1	1		_
NEP (Next Entry Pointer)	5	10		_
	5	OP1		OP20
	5	OP2		OP21
	5	OP3		OP22
	5	OP4		_
	5	OP5		
	32	CD1		CD20
	16	CD3		
	16	CD4		CD23
	8	CD5	•••	_

^[1]If L is set, this entry is linked to another entry as indicated by NEP. When more than one entry is linked, the result of each entry is ANDed.

The total number of entries is 64 per direction. The width of the OPCODEs are fixed at 5 bits; the width of all the OPCODEs in an entry is

Depending on the OPCODE, the associated CMD_DATA is interpreted as described in Table 3-8.

CMD_DATA occurs in the same sequence as the OPCODE. It is interpreted based on the five OPCODES or commands.

^[2]Only A or R can be set; if one is set to 0, the other must be set to 1. A/R is valid only for entries where

^[3] The data definition is fixed for each OPCODE. The maximum number of OPCODEs per entry is 5. If any OPCODE is ORed, then both sides of the OR can-

Table 3-8. ACL OPCODE Definitions

	Quantized		Cmd	Data				
OpCode	Data Width	ACL Field Definition	OpD1 Width	OpD2 Width	Comments			
0	0	NOP	0	0	Used to fill up unused commands			
1	48	L2_DST_MAC_ADDR	48	0	Exact match of L2_DST_MAC_ADDR			
					OpD1	L2 M	AC_ADDR	
					OpD2	NULI		
2	48	L2_SRC_MAC_ADDR	48	0	Exact mate	ch of L	2_SRC_MAC_ADDR	
					OpD1		AC_ADDR	
					OpD2	NULI		
3	16	L2_ETHERTYPE	16	0		ch of L	2_ETHERTYPE	
					OpD1		Type to be matched	
4	16	L2_VLAN	12	0	Exact mate		2 VLAN tag	
					OpD1	Ether	Type to be matched	
5	48	L3_IP_DST_ADDR	32	6	Prefix-base	ed rang	ge	
					OpD2		per of MSB bits to match	
6	48	L3_IP_SRC_ADDR	32	6	Prefix-base	ed rang	ge	
					OpD2	Numl	per of MSB bits to match	
7	48	L3_IP_DST_ADDR +				-		
					OpD2	[5:0]	Number of MSB bits to match	
8	48	L3_IP_SRC_ADDR +						
					OpD2	[5:0]	Number of MSB bits to match	
9	16	L3_IP_TOS	8	8	Bit-wise m	nasking	<u>; </u>	
					OpD2	ToS bi	its to be enabled for match	
10	8	L3_PROTOCOL	3	0	•		TCP/UDP/ICMP	
10		TCP/UDP/ICMP			One on ca	cirior .	rei / ebi / reivii	
11	8	L3_PROTOCOL	8	0	Exact match of only one protocol value			
		Other			OpD1 Protocol Number to be matched with			
12	32	L4_DST_PORT	16	16	Specifies L4_DST_PORT range Start2End port numbers			
					OpD1 End port number			
					OpD2 Start port number			
13	32	L4_SRC_PORT	16	16	Specifies I	_4_SRC	PORT range Start2End Port numbers	
					OpD1 End port number			
					OpD2	Start p	port number	

Table 3-8. ACL OPCODE Definitions (continued)

	Quantized		Cmd	Data	
OpCode	Data Width	ACL Field Definition	OpD1 Width	OpD2 Width	Comments
14	32	L4_DST_PORT2	16	16	Specifies L4_DST_PORT2 match (two port numbers)
					OpD1 L4 port number 1
					OpD2 L4 port number 2
15	32	L4_SRC_PORT2	16	16	Specifies L4_SRC_PORT2 match (two port numbers)
					OpD1 L4 port number 1
					OpD2 L4 port number 2
16	16	L4_TCP_FLAGS	8	8	Indicates masked match of flag field
					OpD1 Per-bit enable
17	8	L3_ICMP_TYPE	8	0	Exact match
18	16	L3_ICMP_CODE	8	8	Mask based match
19	8	L4_CONNECTION	5	One b	it for each state; the rule matches any state for which bits
29:20	_	RES	Reserv	ved	
30	8	OR	All co	nditio	ns between two OR are understood as AND

CDATA = {OpD2, OpD1: CDATA forms the data part of the OPCODE

3.7.2 Global Rules

Apart from the ACL table rules, more generic global rules are also possible:

- In the ingress ACL, drop any packet not from the next hop router L2 MAC address. This rule is valid if a WAN port is connected to a upstream next hop router.
- If NAT lookup fails in ingress, then:
 - Allow/drop only TCP packets with the SYN bit set.
 - Allow/ drop TCP packets with the SYN+ACK bits set (new request/ACK).
 - Allow packets, but update the descriptor with NAT_FAILED. This scenario occurs when the NAT table is full and software must support more connections.
- If ICMP packets are received, follow the setup from the IG_NAT_CSR register:
 - Allow or drop the message if it is not a reply (0x0).
 - Allow or drop the message if it is not a request (0x8).

3.7.3 Entry Programming

An entry is programmed as follows:

- Each simple rule can have a maximum of 5 commands or 64 OPERAND bits.
- Multiple simple rules can be chained to form a complex rule. A rule has a head entry containing a link with NEP set to the entry to which it is linked. Any number of entries can link together to form one rule.
- Each Rule is associated with an action. The accept/reject action in the entry with the head bit set is taken as the action associated with the rule. Actions in the non-head linked rules are ignored.
- For all simple rules, a head bit is always set. For complex rules, the first rule in the chain has the head bit set.
- For all simple rules, the link bit is always unset. For complex rules, as long as the chain has more rules, the link bit is set. The last rule in the chain has this bit unset.
- When the link bit is set, the NEP bits point to a valid rule in the list of programmed rules. The rule pointed to by NEP is the next rule in the chain forming the complex rule.
- The rules are programmed in the order of their priority. Lower rules in table are of lesser priority than the higher ones.
- The rule action should generally negate the global ACL rule. The global rule can be enabled to drop all packets or accept all packets.
- Ingress ACL is enabled through the register IG_ACL_CSR. Egress ACL is enabled through the register EG_ACL_CSR.
- The registers IG_ACL_MEM_CONTROL and EG_ACL_MEM_CONTROL:
 - Determine whether the packet be is accepted or dropped, if none of the rules in the ACL is hit
 - Initialize the ACL
 - Determine whether the generic global drop rules are enabled.
- If the ACL is being dynamically enabled or disabled, a particular sequence of steps must be performed.
- If more than one rule is hit and the actions are different, the rule with the higher rule number takes effect.
- Note that the NOP should not be part of the OR command.

3.7.4 ACL Programming and Software Flow

To Program an Entry into the ACL Table:

- 1. Populate the CMD0_AND_ACTION, CMD1234, OPERAND0, and OPERAND1 registers with the actual rules and actions.
- 2. Set the rule location and write bit of MEM_CONTROL then wait for the ACK. Repeat until all but the last rule is added.
- 3. For the last rule, set the rule location, write bit, the last rule bit (bit [10]), and global rule preferences of MEM_CONTROL. Wait for the write ACK and RULE_MAP_DONE (bit [11]) to set themselves. For example:
 - To write a non-last rule to location 10, set MEM_CONTROL to 0x10A and wait for (MEM_CONTROL+0x200) to be true.
 - To write the last rule in location 10 to enable the global drop rule, set MEM_CONTROL to 0x350A and wait for a true (MEM_CONTROL+0xA00).
- 1. Upon reset, enable ingress and egress ACL.
- 2. For ingress, if ACL is used without NAT, bit [3] of IG_NAT_STATUS must be set. For egress, if ACL is used without NAT, bit [31] of EG_ACL_STATUS must be set.
- 3. Update the IG_ACL_MEM_CONTROL/EG ACL MEM CONTROL register.
 - Each modification causes internal logic to evaluate and act on the register.
 - This register sets the global rules and programs a rule to the table. Rules are written one at a time using these bits:

5:0	Indicates the location to write a rule to.
8	If set, writes the register contents to the ACL table location indicated by bits [5:0]. If not set, reads the rule at that location into the register.
9	Acknowledges completion of the read/write action initiated by bit [8].
10	Constructs the ACL table; should be set when the current rule is the last rule to program to the entire ACL table (it does not need to be set for the last rule in a linked rule).
11	Acknowledges the construction of the internal rule map initiated by setting bit [10].
12	Enables a global packet drop. If set, drops all packets from Tx/Rx if no ACL rules are hit.
13	Enables the action in bit [12]. If not set, the decision is made based on programmed rules.
14	If set, initializes the ACL by setting all rules to NOPs. Once this bit reverts to 0, the ACL is fully initialized.

- 4. The higher the rule number, the greater its priority. Sequence the rules from general to higher priority. Program all ACL rules.
- 5. Enable packet flow.
- For ingress, ACL dropped packets are silent drop (not seen by the CPU).
 For egress, check the egress ACL descriptor status word to check if the ACL engine dropped the egress packet.
- 7. If complex rules are used, even if only one rule is added, reinitialize all rules then write to the bit IG_ACL_LAST_ENTRY in IG_ACL_MEM_CONTROL, making hardware recompute the ACL table.
- 8. Software must enter the correct entry in bits [5:0] in the IG_ACL_MEM_CONTROL/EG ACL MEM CONTROL register.
- 9. For ingress, packets are silently dropped. For egress, a packet is dropped and the descriptor status field updates with the ACL status.
- 10. If the ACL table must be changed, this sequence must be followed:
 - a. Pause the Rx/Tx.
 - b. Wait for the packets to flush from the system.
 - c. Reprogram the ACL table.
 - d. Reenable Rx/Tx for ingress/egress.

To Set Up Ingress:

- 1. Disable packets from reaching the ingress FIFO by setting ETH_IG_NAT_STATUS bit [31], FRONTEND_DROP_ENABLE. Do not unset CHECKSUM_ENABLE (bit [3]) when enabling the front-end packet drop.
- 2. Wait for the FIFO to clear the existing rules by watching bits [26:16] of XFIFO_DEPTH.
- 3. Disable ACL by setting bit [0] of the IG_ACL_STATUS register.
- 4. Program the rules. The steps to program a rule are the same for egress and ingress.
- 5. For a new rule added without affecting existing rules, only the new entry can be programmed. For a new complex rule with multiple entries, it is recommended to do a IG_ACL_INT/EG_ACL_INT and
- 6. Reenable ACL by unsetting bit [0] of
- 7. Unset the FRONTEND_DROP_ENABLE bit to allow packets to reach the RX FIFO.
- 1. Pause packets from Tx by setting the DMA_PAUSE (bit [30]) in FREE_TIMER (0x1B8 offset from GMAC_GE0_BASE).
- 2. Wait for TxFIFO to empty to ensure all packets in the FIFO flush properly with the existing rules. FIFO empty is determined by XFIFO_DEPTH (0x1A8 offset from GMAC_GE0_BASE) bits [11:0].
- 3. Disable the ACL by setting the bit [0] of EG_ACL_STATUS. Do not unset the bit [31] of this register when disabling ACL.
- 4. Program the rules. The steps to program a rule are the same for egress and ingress.
- 5. For a new rule added without affecting existing rules, only the new entry can be programmed. For a new complex rule with multiple entries, it is recommended to do a IG_ACL_INT/EG_ACL_INT and reprogram all entries.
- 6. Reenable ACL by unsetting bit [0] of EG_ACL_STATUS. Do not unset bit [31] of this register when enabling ACL.
- 7. Unset the DMA_PAUSE bit to resume Tx with the new rules.

Ethernet Switch 3.8

The AR9341 integrates a 5-port fast Ethernet switch with these features:

- 802.3az (energy efficient Ethernet) compliant
- QoS support with four traffic classes based on arrival port, IEEE802.1p, IPv4 TOS, IPv6 TC and Destination MAC Address
- Supports strict priority, WRR, and mixed mode (1 SP + 3 WRR or 2 SP + 2 WRR)
- Full IEEE 802.1Q VLAN ID processing per port and VLAN tagging for 4096 VLAN IDs; and port based VLANs supported
- Support VLAN tag insert or remove function on per-port basis
- Support QinQ double tag, and 16 entry of VLAN translation table
- IGMPv1/v2/v3 and MLDv1/v2 Snooping with hardware join and fast leave function
- Support 32 ACL rules/rule-based counters
- Support 16 PPPoE sessions header remove
- Port states and BPDU handling support IEEE802.1D spanning tree protocol
- High performance lookup engine with 1024 MAC address with automatic learning and aging and support for static addresses
- Support 40 MIB counters per port
- Autocast MIB counters to CPU port
- Support ingress and egress rate limit
- Broadcast storm suppression
- Supports port mirror
- Support MAC and PHY loopback function for diagnosis
- Fully compliant with IEEE 802.3/802.3u auto-negotiation function
- Flow control fully supported IEEE 802.3x flow control for full duplex and back pressure for half duplex
- Supports port lock function
- Supports hardware looping detection
- Power saving on no link and low traffic rate for 10Base-T
- Access to switch internal registers through dedicated internal MDIO interface. The internal MDIO interface is controlled through GMAC1 MII registers described in "MII Configuration" on page 287 through "MII Indicators" on page 288.

3.9 Five-Port Ethernet Switch

The Ethernet switch is a highly integrated two-Gb MAC plus 5-port fast Ethernet switch with non-blocking switch fabric, a highperformance lookup unit with 1024 MAC address, 4096 VLAN table, 32 ACL rule table, and a 4-traffic class QoS engine. It supports various networking applications as well as many offload functions to increase system performance. The fast Ethernet in the Ethernet switch complies with IEEE 802.3 standards. The Ethernet switch implements power saving to facilitate low power consumption and is designed to work in all environments. True Plug-n-Play is supported with auto-crossover, auto-polarity, and auto- negotiation in PHYs.

5-Port Ethernet Switch

The 5-port Ethernet switch supports many operating modes configurable using the MDC/ MDIO interface and controlled by GMAC1 management interface registers. It also supports a CPU header mode that appends two bytes to each frame. The CPU can use headers to configure the switch register, address lookup table, VLAN, and receive auto-cast MIB frames. The fifth port (PHY4) supports a PHY interface as a WAN port. The first port (port0) supports a MAC interface and can be configured to connect to an external management CPU or an integrated CPU in a routing or xDSL/802.11n/PON engine. The Ethernet switch contains a 2-K entry address lookup table with two entries per bucket to avoid hash collision and maintain nonblocking forwarding performance. The address table provides read/write access from the serial and CPU interfaces; each entry can be configured as a static entry.

The Ethernet switch supports 4096 VLAN entries configurable as port-based VLANs or 802.1Q tag-based VLANs. It also supports a QinQ function and VLAN translation.

To provide non-blocking switching performance in all traffic environments, the Ethernet switch supports several QoS function types with four-level priority queues based on port, IEEE 802.1p, IPv4 DSCP, IPv6 TC, 802.1Q VID, MAC address, or ACL layer 1 to layer 4 rule result. Included back pressure and pause frame-based flow control schemes support zero packet loss in temporary traffic congestion. The QoS switch architecture supports ingress policing and egress rate limiting.

The Ethernet switch supports IPv4 IGMP snooping and IPv6 MLD snooping to significantly improve the performance of streaming media and other bandwidth-intensive IP multicast applications. The Ethernet switch also supports PPPoE header remove for multicast stream within 16 PPPoE session. That can offload the CPU loading and improve the system performance.

IEEE 802.3x full duplex flow control and back-pressure half duplex flow control schemes are supported to ensure zero packet loss during temporary traffic congestion. A broadcast storm control mechanism prevents the packets from flooding into other parts of the network. The Ethernet switch device has an intelligent switch engine to prevent head-of-line blocking problems on a per-CoS basis for each port.

3.9.2 Basic Switch Operation

The Ethernet switch automatically learns the port number of an attached end station by looking at the source MAC address of all incoming packets at wire speed. If the source address is not found in the address table, the Ethernet switch device adds it to the table. Once the MAC address/port number mapping is learned, all packets directed to that end station MAC address are forwarded to the learned port number only. When the Ethernet switch device receives incoming packets from one of its ports, it searches in its address table for the destination MAC address, then forwards the packet to the appropriate port within the VLAN group. If the destination MAC address is not found (a new, unlearned MAC address), the Ethernet switch handles the packet as a broadcast packet and transmits it to all ports within the VLAN group except to the port where it came in.

3.9.3 Media Access Controllers (MAC)

The Ethernet switch integrates six independent Fast Ethernet MACs that perform all functions in the IEEE 802.3 specifications, for example, frame formatting, frame stripping, CRC checking, CSMA/CD, collision handling, and back pressure flow control. Each MAC supports 10 Mbps, or 100 Mbps operation in either full-duplex or half-duplex mode. 1000 Mbps is supported in full-duplex mode.

3.9.4 ACL

The Ethernet switch supports up to 32 ACL rule table entries. Each rule can support filtering of the incoming packets based on these

Source TCP/UDP port number
Destination TCP/UDP port number

When the incoming packets match an entry in the rules table, these actions can be taken and

shows the ACL rule architecture. Each rule is defined by rule control and rule result. Rule control is 4 bytes wide, with four indexes in each control field. Each index points to one rule entry in the rule table. Each rule entry in the rule table can be one of these rules:

■ IPv6 rule

Figure 3-5. ACL Rule Architecture

Note that this ACL engine is available only when switch ports are being accessed through GMAC1, and is independent of the ACL engine available as part of the Ethernet subsystem accessed through GMAC0.

3.9.5 Register Access

The MDIO interface allows access to Ethernet switch and MII registers. The format to access MII registers in the embedded PHY is:

Start	OP	0x0	PHY_	REG_	TA	DATA
			ADDR[2:0]	ADDR[4:0]	[1:0]	[15:0]

Where the PHY address is 0x00–0x04. OP code 10 indicates the read command, 01 the write command. Ethernet switch internal registers are 32 bits wide, but MDIO access only 16 bits; thus it requires 2x access to complete internal register access. Also, the address spacing has more than 10 bits supported by MDIO, thus it must write the upper address bits to internal registers. For example:

1. Register address bits [18:9] are treated as page address and written out first as HIGH_ADDR[9:0]:

Start	OP	0x3	8'b0	TA	

Where HIGH ADDR[9:0] is ADDRESS[18:9] of the register.

2. Then LOW_ADDR can be re-accessed:

Sta	art	OP	2′b10	LOW_	TA	DATA
				ADDR[7:0]	[1:0]	[15:0]

Where LOW_ADDR[7:1] is the address bit [8:2] of the register and LOW_ADDR[0] is 0 for DATA[15:0] or 1 for DATA[31:16].

3.9.6 LED Control

LED control consists of five rules: two control PHY0-PHY3 LEDS, two control PHY4 LEDs. and one controls the MAC0, MAC5, and MAC6 LED. Each PHY port has two LEDs; default behavior is 100 LINK ACTIVITY and 10 LINK ACTIVITY. Each MAC0/5/6 has one LED; default LED behavior is LINK ACTIVITY. Thus two can be connected to indicate OR operation of the original LEDs. Another way to achieve this operation is to Table 3-9.

Table 3-9. LED Control Rules

				1	
Bit	Name				
15:14	PATTERN_EN	0xCF35	0xC935	0xCA35	00 LED always off
					11 LED controlled by the following bits
13	FULL_LIGHT_EN	0x3	0x3	0x3	The LED lights when linked up at full duplex
12	HALF_LIGHT_EN	0x0	0x0	0x0	The LED lights when linked up at half duplex
11	POWER_ON _LIGHT_EN	0x0	0x0	0x0	When set, the module should enter POWER_ON_RESET status after reset
10	LINK_1000M	0x1	0x1	0x1	When set, the LED will light when linked up at
10	_LIGHT_EN	UXI	UXI	UXI	when set, the LED will light when linked up at
9	LINK_100M	0x1	0x0	0x0	When set, the LED will light when linked up at
	_LIGHT_EN				
8	LINK_10M _LIGHT_EN	0x1	0x0	0x1	When set, the LED will light when linked up at
7	COL_BLINK_EN	0x1		0x0	When set, the LED will blink when a collision is detected
6	RES		_		Reserved
5	RX_BLINK_EN	0x1	0x1	0x0	When set, the LED will blink when a frame is being received
4	TX_BLINK_EN	0x1	0x1	0x0	The LED blinks when receiving a frame
3	RES		_		Reserved
2	LINKUP	0x1	0x1	0x1	0 Rx/Tx blinking ignored at LINKUP speed.
	_OVER_EN				1 If LINKUP LED is on, allow Tx/Rx
					blinking. Otherwise the LED is off.
1:0	LED_BLINK_FREQ	0x1:	0x1:	0x1:	LED blink frequency select. If linked up at
		4 Hz	4 Hz	4 Hz	1000 Mbps, use 4 Hz; at 10 Mbps, use 2 Hz.
					00 2 Hz
					01 4 Hz
					10 8 Hz

3.9.7 VLANs

The Ethernet switch supports many VLAN options including IEEE 802.1Q and port-based VLANs. The Ethernet switch supports 4096 IEEE 802.1Q VLAN groups and 4000 VLAN table entries, and it checks VLAN port membership from the VLAN ID extracted from the tag header of the frame. The port-based VLAN is enabled according to the user-defined PORT VID value. The Ethernet switch supports optional discards of tagged, untagged frames, and priority tagged frames; the AR9341 also supports untagging the VLAN ID for packets going on untagged ports on a per-port basis.

3.9.8 IEEE Port Security

The Ethernet switch supports 802.1Q security features. Its discards ingress frames that do not meet security requirements and ensures those frames that do meet the requirements are sent to the designated ports only. Levels of security can be set differently on each port, and options are processed using the ingress frame VID:

Mode	Description
Secure	The frame is discarded and its VID is not in the VLAN table, or the ingress port is not a member of the VLAN. The frame can exit only the ports that are members of the frame VLAN.
Check	The frame is discarded if its VID is not in the VLAN table. It can exit only the ports that are members of the frame VLAN.
Fallback	If the frame VID is in the VLAN table, the frame can exit only ports that are members of the frame VLAN. Otherwise the switch decides forwarding policy based on the port-based VLAN. If a frame arrives untagged, the AR9341 forwards it based on the port-based VLAN, even if the ingress port's 802.1Q mode is enabled.
Egress	The AR9341 supports port-based egress, both unmodified and force untagged.

The Ethernet switch identifies packet priority based on QoS priority information: port-based, 802.1p CoS, IPv4 TOS/diffserv, and IPv6 TC. It supports up to four queues per egress port. For tagged packets, incoming packet priority maps to one of four CoS queues based on either the priority field in the tag header or the result of classification lookup. For untagged packets, CoS priority comes from a configurable field in the VLAN address tables or from classification lookup results. After packets map to an egress queue, they are forwarded using either strict priority or weighted fair queuing scheduler.

3.9.9 Mirroring

Mirroring monitors traffic to gather information or troubleshoot higher-layer protocol operations. Users can specify that a desired mirrored-to port (sniffer port) receive a copy of all traffic passing through a designated mirrored port. The Ethernet switch supports mirror frames that:

- Come from an ingress specified port (ingress mirroring)
- Are destined for egress-specified port (egress mirroring)
- Mirror all ingress and egress traffic to a designated port Mirror frames to a specific MAC address

3.9.10 Broadcast/Multicast/Unknown Unicast

The Ethernet switch supports port-based broadcast suppression including unregistered multicast, unregistered unicast and broadcast. If broadcast/multicast strom control is enabled, all broadcast/ multicast/unknown unicast packets beyond the default threshold of 10 ms (for 100 Mbps operations) and 100 ms (for 10 Mbps operations) are discarded.

The Ethernet switch supports IPv4 IGMP (v1/ v2/v3) snooping and IPv6 MLD (v1/v2) snooping. By setting IGMP_MLD_EN in the port control registers, the Ethernet switch can look inside IPv4 and IPv6 packets and redirect IGMP/MLD frames to the CPU for processing. The Ethernet switch also supports hardware IGMP join and fast leave functions. By setting IGMP_JOIN_EN and IGMP_LEAVE_EN in the port control registers, the Ethernet switch updates the ARL table automatically when it receives an IGMP/MLD join or leave packet, then forwards it to the router port directly if the CPU is not acting as a router or when enabling multicast VLAN LEAKY to bypass multicast traffic directly from WAN to LAN.

The statistics counter block maintains 40 MIB counters per port; counters provide Ethernet statistics for frames received on ingress and transmitted on egress. The CPU can capture, read, or clear counter values via the registers. All MIB counters clear once read. Hardware join/fast leave supports these packet types:

- IGMPv1 join
- IGMPv2/MLDv1 join/leave
- IGMPv3/MLDv2 report (excluding NONE or including NONE)

3.9.12 Spanning Tree

IEEE 802.1D spanning tree allows bridges to automatically prevent and resolve Layer 2 forwarding loops. Switches exchange BPDUs and configuration messages and selectively enable and disable forwarding on specified ports. A tree of active forwarding links ensures an active path between any two nodes in the networks. Spanning tree can be enabled globally or on a per-port basis by configuring the port status registers.

3.9.13 MIB/Statistics Counters

The statistics counter block maintains a set of 40 MIB counters per port, which provide a set of Ethernet statistics for frames received on ingress and transmitted on egress. A register interface allows the CPU to capture, read, or clear the counter values. All MIB counters are cleared when read.

Table 3-10. MIB Counters

The counters support:

- RMON MIB
- Ethernet-like MIB
- MIB II
- Bridge MIB
- RFC2819

The CPU interface supports:

- Autocast MIB counters after half-full
- Autocast MIB counters after time out
- Autocast MIB counters when requested
- Clearing all MIB counters

Counter			
RxBroad	32	0x00	The number of good broadcast frames received
RxPause	32	0x04	The number of PAUSE frame received
RxMulti	32	0x08	The number of good multicast frames received
RxFCSErr	32	0x0C	The number of frames received with a valid length, but an invalid FCS and an
RxAlignErr	32	0x10	The total number of frame received with a valid length that do not have an
RxRunt	32	0x14	The number of frames received that are <64 bytes long and have a bad FCS
RxFragment	32	0x18	The number of frames received that are <64 bytes long and have a bad FCS
Rx64Byte	32	0x1C	The number of frames received that are exactly 64 bytes long including errors
Rx128Byte	32	0x20	The number of frames received whose length is between 65 and 127 bytes,
Rx256Byte	32	0x24	The number of frames received whose length is between 128 and 255 bytes, including those with errors
Rx512Byte	32	0x28	The number of frames received whose length is between 256 and 511 bytes, including those with errors
Rx1024Byte	32	0x2C	The number of frames received whose length is between 512 and 1023 bytes, including those with errors
Rx1518Byte	32	0x30	The number of frames received whose length is between 1024 and 1518 bytes, including those with errors
RxMaxByte	32	0x34	The number of frames received whose length is between 1519 and maxlength, including those with errors (Jumbo)
RxTooLong	32	0x38	The number of frames received whose length exceeds maxlength, including those with FCS errors
RxGoodByte	64	0x3C, 0x40	Total octets received in frame with a valid FCS. All frame sizes are included

Table 3-10. MIB Counters (continued)

RxBadByte	64	0x44 0x48	Total valid frames received that are discarded due to lack of buffer space
RxOverflow	32	0x4C	Total valid frames received that are discarded due to lack of buffer space
Filtered	32	0x50	Port disabled and unknown VID
TxBroad	32	0x54	The number of good broadcast frames transmitted
TxPause	32	0x58	The number of PAUSE frame transmitted
TxMulti	32	0x5C	The number of good multicast frames transmitted
TxUnderrun	32	0x60	Total valid frames discarded that were not transmitted due to transmit FIFO buffer underflow
Tx64Byte	32	0x64	The number of frames transmitted exactly 64 bytes long including errors
Tx128Byte	32	0x68	The number of frames transmitted whose length is between 65 and 127 bytes,
Tx256Byte	32	0x6C	The number of frames transmitted whose length is between 128 and 255
Tx512Byte	32	0x70	The number of frames transmitted whose length is between 256 and 511 bytes,
Tx1024Byte	32	0x74	The number of frames transmitted whose length is between 512 and 1023
Tx1518Byte	32	0x78	The number of frames transmitted whose length is between 1024 and 1518
TxMaxByte	32	0x7C	The number of frames transmitted whose length is between 1519 and
TxOversize	32	0x80	Total frames over maxlength but transmitted truncated with bad FCS
TxByte	64	0x84, 0x88	Total data octets transmitted from counted, including those with a bad FCS
TxCollision	32	0x8C	Total collisions experienced by a port during packet transmission
TxAbortCol	32	0x90	Total number of frames not transmitted because the frame experienced 16
TxMultiCol	32	0x94	Total number of successfully transmitted frames that experienced more than
TxSignalCol	32	0x98	Total number of successfully transmitted frames that experienced exactly one
TxExcDefer	32	0x9C	The number of frames that deferred for an excessive period of time
TxDefer	32	0xA0	Total frame whose transmission was delayed on its first attempt because the medium way was busy
TxLateCol	32	0xA4	Total number of times a collision is detected later than 512 bit-times into the transmission of a frame

3.9.14 Atheros Header Configuration

Table 3-11 describes the Atheros header configuration. The Atheros header is a twobyte header that the CPU uses to configure the Ethernet switch. The Atheros header will be located after the packet SA.

Table 3-11. Atheros Header Configuration

Bit	Name	Description						
15:14	VERSION	2′b10						
13:12	PRIORITY	Packet priority						
11:8	TYPE	Packet Type:						
			destination	port is dete	thernet inclermined by	luding mana the ARL an	ngement. The d VLAN tabl	e
			8-Byte	4-Byte	2-Byte	0-12-Byte	34-46-Byte	4-Byte
							Padding	CRC
			Read or wr	ite register .	ACK frame	e from the C	PU	
7	FROM_CPU	Indicates the forwarding method:						
		0 Forwarding ba	sed on the V	LAN table	result and l	PORT_NUM	I (bit [6:0])	
6:0	PORT_NUM	If bit [6] (FROM_CP If the packet is destinated	U) is set to 1, ned to the C	these bites PU, then PC	define the J DRT_NUM	port number indicates the	to send the personal	packet to. number.

3.9.15 IEEE 802.3 Reserved Group Addresses Filtering Control

The Ethernet switch supports the ability to drop/redirect/copy 802.1D specified reserved group MAC addresses 01-80-C2- 00-00-04 to 01-80-C2-00-00-0F by adding the address to the ARL table.

The Ethernet switch can be configured to prevent the forwarding of unicast frames and multicast frames with unregistered destination MAC address on per port base by setting UNI_FLOOD_DP and MULTI_FLOOD_DP, where a bit represents a port of the Ethernet switch.

3.9.16 PPPoE Header Removal

The Ethernet switch supports PPPoE header removal for multicast streaming to offload CPU loading and improve CPU performance. The PPPoE session supports is 16 sessions. See Figure 3-6:

Figure 3-6. PPPoE Header Removal

Table 3-12 shows the possible results.

Table 3-12. PPPoE Session ID

Bit	Name	Desc	ription	
19	Session ID Valid	0	No valid session ID to compare to	
		1	Session ID is valid (drop PPPoE header)	
18:16	RES	Reserved		
15:0	Session ID	Session ID to be compared with PPPoE session frame		

Table 3-13 shows the Ethernet switch memory

	Offset
Global Register	0x0000-0x000FC
Port Register	0z0100-0x0012C
MIB Register	0x20*00-0x20*A4
ACL Table	0x58000-0z58FEC
Translation Table	0x59000-0x5907C
Session ID Table	0x59100-0x5913F

4. Audio Interface

4.1 Overview

Figure 4-1 shows a block diagram of the AR9341 audio interface.

The AR9341 includes an I microphone interface as well as an SPDIF speaker interface. The I generated by the audio PLL block.

shows the AR9341 audio PLL block

The audio PLL can support generation of all the audio master clock frequencies. It accepts two inputs, SPDIFDIVINT and SPDIFDIVFRAC, which are generated by a clock adaptation module. The clock adaptation module enables slow changing of the audio clock by changing SPDIFDIVINT/ SPDIFDIVFRAC in small steps from the current value to a target value. The target TGT_DIV_INT/TGT_DIV_FRAC and step size are software programmable. The clock adaptation module changes the value of the SPDIFDIVINT/SPDIFDIVFRAC values with respect to a slow SPDIFCLKSDM clocks. This small step size ensures that the audio PLL tracks the small variation. The resolution of

DIVFRAC ensures that the clock can be varied with steps less than 200 ppb. Following the audio PLL come three dividers: postPLL divider and ExtDiv controlled through the register AUDIO_PLL_CONFIG, PostPLLDivide field, and another posedge divider inside the I²S STEREO_CONFIG register. The final clock relations is: (25 or 40 MHz/3) * (int.frac) = vcofreq

 $vcofreq/(2^{PostPLLDiv} * ExtDiv) = MCLK$ MCLK/posedge = SPDIF_CLK

If the master must be modified from the current value to another value, it is software's responsibility to recompute and program the new TGT_DIV_INT/TGT_DIV_FRAC values.

4.3 I²S Interface

The AR9341 I²S supports a two-channel digital audio subsystem. This interface uses the I²S pins listed in Table 1-1, "Signal to Pin Relationships and Descriptions," on page 21.

4.3.1 External DAC

An external DAC receives I²S digital audio streams and converts them to analog output to drive speaker or headphones. This data stream is PCM data which is serialized and sent with a left channel/right channel select and synchronization signal. The I²S serializer can be programmed to support a few different variants of the I²S data format to be compatible with a larger number of external DAC components, including various PCM data word sizes, serialization boundaries, and clocking options.

I²S can also operate in a slave mode where the stereo clock and word select are driven by external master (DAC or external controller). External DAC parts are often controlled by a separate serial 2-wire or 3-wire interface. This interface often controls volume and configuration of the external DAC. This can be attached to the AR9341 serial interface controllers.

4.3.2 Sample Sizes and Rates

The stereo audio path supports PCM sample sizes of 8, 16, 24, or 32 bits for speaker out and PCM sample sizes of 16 and 32 bits for MICIN. The serializer supports serialization sizes of 16 or 32 bits. The sample size and serialization size need not be the same, LSBs will be padded with 0's. If the AR9341 is programmed to be a slave, word select and stereo clock (the bit clock) are inputs from the external DAC/ADC.

Along with configuration information, a sample counter provides the number of samples transmitted per second through the I²S SpeakerOut interface. This sample counter can be used and cleared by software as required.

4.3.3 Stereo Software Interface

To play music, software configures the stereo subsystem and sends interleaved (LRLR....) PCM data to the mailbox DMA. To record music, software configures the stereo subsystem and the PCM samples (interleaved) are written into the memory.

To send data PCM samples on the I²S interface:

- 1. Program GPIO_FUNCTION register to enable I²S.
- 2. Program the STEREO_CONFIG register to enable the stereo.
- 3. Configure other parameters. For example, sample size, word size, mono/ stereo mode, master/slave mode, clk divider (if the AR9341 is master), and so on.
- 4. Issue a stereo reset.
- 5. Configure the DMA to send SpeakerOut from the AR9341.
- 1. Program the GPIO_FUNCTION register to
- 2. Program STEREO_CONFIG register to
- 3. Issue a MICIN reset to reset Micin buffers.

For example, sample size, word size, mono/ stereo mode, master/slave mode, clk divider (if the AR9341 is master), and so on.

5. Configure the DMA to receive PCM

The AR9341 also includes a SPDIF interface for audio. The SPDIF interface only includes SPDIF_OUT to the speakers. SPDIF_IN is not

The SPDIF interface operates on the same S, so it always in sync with audio S interface. All configuration information to the SPDIF block, such as the sampling frequency, sample size, word size, and so on, are inherited from the programming of the I²S interface. If only the SPDIF interface is required to operate and the I²S audio interface is not required, the programming still only needs to be done using I²S configuration registers. The I²S interface can be disabled using the GPIO function register.

The SPDIF specific data that forms part of each SPDIF audio subframe such as the valid, CSW, and user data are provided through the DMA descriptor directly to the SPDIF Module. The DMA controller describes how the data is provided through the descriptor.

4.5 Mailbox (DMA Controller)

The mailbox DMA controller is used in the AR9341 used for I2S, SPDIF, and the SLIC interfaces. The mailbox channel is a duplex channel that can operate simultaneously for Rx and Tx.

4.5.1 Mailboxes

The AR9341 supports one duplex mailbox to move data between the DDR memory and audio interfaces I²S and SPDIF through the AHB interface. Flow control of the DMA must be managed by software.

4.5.2 MBOX DMA Operation

The AR9341 MBOX DMA engine has one channel for Tx and one channel for Rx. Each mailbox DMA channel follows a list of linked descriptors.

Figure 4-3 and Table 4-1 show the descriptor format and description.

OWN	EOM	Rsvd[4	:0]	VUC	Size[11:0]	Length[11:0]		
Rsvd[3:0]				BufPtr[27:0]				
Rsvd[3:0]				NextPtr[27:0]				
VUC DWORD 1								
			۷U	C DWC	ORD 2			
	i .							
VUC DWORD 35								
			VUC	DWO	RD 36			

DMA Descriptor Structure

Table 4-1. Descriptor Fields

Name		
Length		
Size		
Size		
VUC	1	When this bit set, the SPDIF block uses the VUC data for the audio
EOM		
OWN		
BufPtr	28	Points to memory buffer pointer. Byte aligned address.
NextPtr	28	Points to next descriptor in the list. Must be word aligned.
VUC	36 * 32 bits	These are the VUC data for each audio block of the SPDIF.
DWORD 1 to 36		192 Bits each of Valid, UserData and Channel Status Word for two
		channels of audio corresponds to 36 Dwords. These data are SPDIF
		specific and software does not need to provide this data if I ² S is the only
		active interface and SPDIF is disabled.
		active interrace and of 211 to alleading.

Once the DMA engine is started, it will follow its descriptor chain until it arrives at a descriptor that has its owner bit set to CPU (bit [31] of the status word is not set). The DMA engine then stops until the CPU restarts it.

The DMA control registers include stop and start commands, a programmable descriptor chain base address, DMA policies to use, and so on. DMA status registers inform the CPU when the engine is running, done, or encountered an error.

4.5.3 Software Flow Control

To configure the MBOX channel to send data from the AR9341 (Rx as referred in MBOX):

- 1. Set up the MBOX Rx descriptors. The owner should be set to indicate it is owned by the DMA controller. Hardware resets this once DMA is complete.
- Load the corresponding buffers with the data to transmit.
- Program the register MBOX_DMA_TX_DESCRIPTOR_BASE_A DDRESS with the base descriptor address.
- 4. Reset the corresponding MBOX FIFO.
- Enable the DMA by setting the START bit in the MBOX_DMA_RX_CONTROL register. This register has a provision to stop and resume at any time.
- 6. On DMA completion, the RX_DMA_COMPLETE interrupt is asserted.

To configure the MBOX channel for the AR9341 to receive data (Tx as referred in MBOX):

- Set up the MBOX Tx descriptors. The owner should be set to indicate it is owned by the DMA controller. Hardware resets this once DMA is complete.
- Program the register MBOX_DMA_TX_DESCRIPTOR_BASE_A DDRESS with the base descriptor address.
- 3. Reset the corresponding MBOX FIFO.
- Enable the DMA by setting START bit in MBOX_DMA_TX_CONTROL register. This register has a provision to stop and resume at any time.
- 5. On DMA completion, the TX_DMA_COMPLETE interrupt is asserted.

4.5.4 Mailbox Error Conditions

If flow control synchronization is lost for any reason, these mailbox error conditions could arise:

Tx Mailbox Overflow

If no DMA descriptors are available on the AR9341 Tx side, but an message is coming in from the corresponding interface, the Tx mailbox stalls the host physical interface.

If the host interface remains stalled with the Tx FIFO full for a timeout period specified other than FIFO_TIMEOUT, a timeout error occurs. An interrupt is sent to CPU. As long as the host status overflow bit is set, any mailbox Tx bytes that arrive from the host when the mailbox is full are discarded. When the host clears the overflow interrupt, mailbox FIFOs return to normal operation. Software must then either resynchronize flow control state or reset the AR9341 to

S reads a mailbox that does not contain any data and this condition persists for more than a time-out period, the CPU is sent an underflow error interrupt. As long as status underflow bit is set, any mailbox reads which arrive when the mailbox is empty return garbage data. Software must then either resynchronize flow control state or reset the AR9341 to

All MBOX specific interrupts can be masked by control registers (MBOX_INT_ENABLE).

MBOX sends an interrupt to MIPS in these cases (if they are enabled):

- Tx DMA complete, Rx DMA complete
- Tx overflow, Tx not empty (incoming traffic)
- Rx underflow, Rx not full (outgoing traffic)
- MBOX Tx DMA EOM complete interrupt

The status of these interrupts can be read from the MBOX_INT_STATUS register.

5. WLAN Medium Access Control (MAC)

The WLAN MAC consists of the following major functional blocks: 10 queue control units (QCUs), 10 distributed coordination function

(DCF) control units (DCUs), a single DMA Rx unit (DRU), and a single protocol control unit (PCU). See Figure 5-1.

5.1 Overview

The WLAN MAC block supports full busmastering descriptor-based scatter/gather DMA. Frame transmission begins with the QCUs. QCUs manage the DMA of frame data from the host through the Host interface, and determines when a frame is available for transmission.

Each QCU targets exactly one DCU. Ready frames are passed from a QCU to its targeted DCU. The DCU manages the enhanced distributed coordination function (EDCF) channel access procedure on behalf of the QCUs associated with it.

Functionality of the WLAN MAC block includes:

- Tx frame data transfer from the DDR
- Rx frame data transfer the DDR
- Interrupt generation and reporting
- Sleep-mode sequencing
- Miscellaneous error and status reporting functions

Once the DCU gains access to the channel, it passes the frame to the PCU, which encrypts the frame and sends it to the baseband logic. The PCU handles both processing responses to the transmitted frame, and reporting the transmission attempt results to the DCU.

Frame reception begins in the PCU, which receives the incoming frame bitstream from the digital PHY. The PCU decrypts the frame and passes it to the DRU, which manages Rx descriptors and writes the incoming frame data

The WLAN MAC is responsible for transferring frames between the DDR and the digital PHY. For all normal frame transmit/receive activity, the CPU provides a series of descriptors to the WLAN MAC, and the WLAN MAC then parses the descriptors and performs the required set of data transfers.

5.3 Descriptor Format

The transmit (Tx) descriptor format contains twenty-three 32-bit words and the receive (Rx) descriptor contains twelve 32-bit words.

A descriptor must be aligned on a 32-bit boundary in host memory, although best performance is achieved if the descriptor is aligned on a cache-line boundary. The MAC uses the final nine words of the Tx descriptor and the twelve words of the Rx descriptor to report status information back to the host.

See these tables for more information:

Table	Words	Description
Table 5-1	0–14	Tx descriptor format
Table 5-4	15–22	Tx descriptor format
Table 5-5	0–8	Tx descriptor status format
Table 5-6	0–11	Rx descriptor format

The Tx descriptor format is described in Table 5-1. With certain exceptions as noted, all Tx descriptor fields must be valid in the first descriptor of a non-aggregate frame. The fields for all following descriptors are ignored. For aggregate frames only the first descriptor of the first frame of the aggregate is valid. The fields for all following descriptors are ignored.

Table 5-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description
0	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start
	15	desc_tx_rx	Indicates whether the descriptor is a transmit or receive descriptor. The
	14	desc_ctrl	Indicates whether the descriptor is a control or status descriptor. The value
	13:12	RES	Reserved
	11:8	tx_qcu_num	Tx QCU number
	7:0	desc_length	Descriptor length Indicates the number of Dwords in this descriptor. The value should be set
1	31:0	link_ptr	Link pointer address Contains the 32-bit next descriptor pointer. Must be 32-bit aligned (bits [1:0] 0) is only allowed at the end of a non-aggregate or non-RIFS packet. If the packet is part of an aggregate or RIFS burst, a null is only allowed on the last descriptor of the last packet. A legal null value causes the QCU to stop. Must be valid for all descriptors.
2	31:0	buf_ptr0	Data buffer pointer 0 Contains the 32-bits address of the first data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Must not be null (buf_ptr0 = 0x0) for all descriptors.

Table 5-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description
3	31:28	RES	Reserved
	27:16	buf_len0	Data buffer length associated with data buffer pointer 0. Specifies the length, in bytes, of the data buffer associated with buf_ptr0. buf_len0 must not be 0. Note: This field must be valid for all descriptors.
			<pre>case (header_length, gos packet) { 24, no : pad length = 0; 24, yes: pad-length = 2; 30, no : pad-length = 2; 30, yes: pad_length = 0; }</pre>
			<pre>case (encrypt_type) { wep : icv_length = 4; tkip nomic : icv length = 4; aes : icv_length = 8; tkip : icv_length = 12; wapi : icv_length = 16;</pre>
			<pre>frame_length = buf_len0 + buf_len1 + buf_len2 + buf_len3 +</pre>
	15:0	RES	Reserved
4	31:0	buf_ptr1	Data buffer pointer 1 Contains the 32-bits address of the second data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Only valid
5	31:28	RES	Reserved
	27:16	buf_len1	Data buffer length associated with data buffer pointer 1. buf_len1 can only be 0 if and only if buf_ptr1 is null. See buf_len0 for details.
	15:0	RES	Reserved
6	31:0	buf_ptr2	Data buffer pointer 2 Contains the 32-bits address of the third data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Only valid
7	31:28	RES	Reserved
	27:16	buf_len2	Data buffer length associated with data buffer pointer 2. buf_len2 can only be 0 if and only if buf_ptr2 is null. See buf_len0 for details.
	15:0	RES	Reserved
8	31:0	buf_ptr3	Data buffer pointer 3 Contains the 32-bits address of the third data buffer associated with this descriptor. A Tx data buffer may begin at any byte address. Only valid if
9	31:28	RES	Reserved
	27:16	buf_len3	Data buffer length associated with data buffer pointer 2. buf_len2 can only be 0 if and only if buf_ptr3 is null. See buf_len0 for details.
	15:0	RES	Reserved
10	31:16	tx_desc_id	Tx descriptor sequence number Software will select a unique sequence number associated with this descriptor. This value is copied to the tx_desc_id in the transmit status.
	15:0	ptr_checksum	Memory pointer checksum Verifies the integrity of the memory pointers/addresses in this descriptor. The equation looks like this:
			<pre>checksum[31:0] = TXC[0]+TXC[1]+TXC[2]+TXC[3]+TXC[4]+</pre>
			The carry bits above the MSB of the checksum or ptr_checksum will disappear.

Table 5-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description				
11	31	cts_enable	Self-CTS enable Precedes the frame with CTS flag. If set, the PCU first sends a CTS before sending the frame described by the descriptor; used mainly for 802.11g frames to quiet legacy stations before sending a frame the legacy stations cannot interpret, even at the PHY level. At most only one of the rts_enable and cts_enable bits may be set; it is illegal to set both.				
	30	dest_index _valid	Destination index valid flag Specifies whether the contents of the DestIdx field are valid.				
	29	int_req	Interrupt request flag Set to one by the driver to request that the DMA engine generate an interrupt upon completion of the frame to which this descriptor belongs. Note: This field must be valid and identical for all descriptors of the frame. That is, all descriptors for the frame must have this flag set, or all descriptors				
	28:25	beam_form	Tx beamforming in series 0–3. If this value is set, the current packet carries				
	24	clear_dest	If set, instructs the DCU to clear the destination mask bit at the index				
	23	veol	Virtual end-of-list flag When set, indicates that the QCU should act (mostly) as if this descriptor had a null link_ptr, even though its link_ptr field may be non-null. Note: This field must be valid in the final descriptor of a frame and must be clear				
	22	rts_enable	RTS enable If set, the PCU transmits the frame using the RTS/CTS protocol. If clear, the PCU transmits the frame without transmitting a RTS. At most only one of the rts_enable and cts_enable bits may be set; it is illegal to set both.				
	21:16	tpc_0	TPC for Tx series 0. These bits pass unchanged to the baseband, where they				
	15	clear_retry	Setting this bit disables the retry bit from being set in the Tx header on a frame retry; applies to both aggregate and non-aggregate frames.				
	14	low_rx_chain	When set to 1, indicates that switches the Rx chain mask to low power mode after transmitted this frame.				
	13	fast_ant _mode	Fast antenna mode If set to 0, this means that this Tx frame to use the omni antenna mechanism. if set to 1, then the opposite omni antenna should be used.				
	12	vmf	Virtual more fragment If this bit is set, bursting is enabled for this frame. If there is no burst in progress, it will initiate a CTS protected burst if cts_enable is set. If there is a previous burst in progress, it ignores the cts_enable bit assuming that this burst is protected.				
	11:0	frame_length	Frame length Specifies the length, in bytes, of the entire MAC frame, including the FCS, IC, and ICV fields.				

Table 5-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Descrip	otion					
12	31	more_rifs	last pac except t	More RIFS burst flag; When set, indicates that the current packet is not the last packet of an aggregate. All descriptors for all packets of a RIFS burst except the descriptors of the last packet must have this bit set. All descriptors of the last packet of a RIFS burst must have this bit clear.					
	30	is_agg		This packet is part of an aggregate flag. All descriptors of the all packets in an aggregate must have this bit set.					
	29	more_agg	last pac except t	More aggregate flag; When set, indicates that the current packet is not the last packet of an aggregate. All descriptors for all packets of an aggregate except the descriptors of the last packet must have this bit set. All descriptors of the last packet of an aggregate must have this bit clear.					
	ext_and_ctl Extension and control channel enable Only four combinations are allowed; otherwise desc_config_e When neither ext_only nor ext_and_ctl are set, the RTS/CTS a is sent based on the bandwidth: HT20 when 20_40 is set to 0 a shared when 20_40 is set to 1 (RTS/CTS frames are sent at in H mode if 20_40 is set to 1). When ext_and_ctl is set the RTS/CT frame is sent at HT40 duplicate. When ext_only is set the RTS/								
							RTS/CTS		
					0	HT20 Control	HT20 Control		
					1	HT40 Shared	HT40 Duplicate		
					1		HT40 Duplicate		
	27	RES	Reserve	Reserved					
	26	corrupt_fcs	Corrup	Corrupt packet FCS; When set, the FCS of the packet will be inverted to					
	25	RES	Reserve	Reserved					
	24	no_ack	receive frame th	No ACK flag; When set, indicates to the PCU that it should not expect to receive (and should not wait for) an ACK for the frame. Must be set for any frame that has the 802.11 NoACK bit set in the QoS field. Also must be set for all other frame types (such as beacons and other broadcast/multicast					
	23:20	frame_type	Frame t	ype indication; indica	ites what typ	e of frame is being	g sent:		
			2	PS-Poll					
			1	ATIM					
			0		an the types	listed in [15:1]			
	19:13	dest_index	Destina Specifie PCU fet uses thi	0 Frame type, other than the types listed in [15:1] Destination table index Specifies an index into an on-chip table of per-destination information. The PCU fetches the encryption key from the specified index in this table and uses this key to encrypt the frame. The DMA logic uses the index to maintain per-destination transmit filtering status and other related information.					
	12	more					descriptors (that r of a packet		
	11:9	pa	Pre-dist	Pre-distortion chain mask					
	8:0	RES	Reserve	ed					

Table 5-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description			
13	31:28	tx_tries3	Number of frame data exchange attempts permitted for Tx series 3. A value of zero means skip this transmission series.			
	27:24	tx_tries2	Number of frame data exchange attempts permitted for Tx series 2. A value of zero means skip this transmission series.			
	23:20	tx_tries1	Number of frame data exchange attempts permitted for Tx series 1. A value of zero means skip this transmission series.			
	19:16	tx_tries0	Number of frame data exchange attempts permitted for Tx series 0. A frame data exchange attempt means a transmission attempt in which the actual frame is sent on the air (in contrast to the case in which the frame has RTS enabled and the RTS fails to receive a CTS. In this case, the actual frame is not sent on the air, so this does not count as a frame data exchange attempt. Unlike TX_TRIES13, a value of zero is illegal for TX_TRIES0 field.			
	15	dur_update_en	Frame duration update control. If set, the MAC updates (overwrites) the duration field in the frame based on the current transmit rate. If clear, the			
	14:0	burst	Burst duration value in usec. If this frame is not part of a burst or the last frame in a burst, this value should be zero. In a burst, this value is the amount of time to be reserved (via NAV) after the completion of the current			
14	31:24	tx_rate3	Table 5-3			
	23:16	tx_rate2	Table 5-3			
	15:8	tx_rate1	Table 5-3			
	7:0	tx_rate0	Table 5-3			

Table 5-2. MAC Rate Encodings

MAC Rate Encoding	Protocol
0x01	Reserved
0x02	
0x03	
0x06	_
0x07	_
0x8	OFDM_48Mb
0x9	OFDM_24Mb
0xA	OFDM_12Mb
0xB	OFDM_6Mb
0xC	OFDM_54Mb
0xD	OFDM_36Mb
0xE	OFDM_18Mb

MAC Rate Encodings (continued)

0x1C	CCK_11Mb_S
0x1D	CCK_5_5Mb_S
0x1E	CCK_2Mb_S

Table 5-3. Tx Rates^[1]

Rate	Desc	Stream	HT20; GI= 0 Mbps	HT20; GI = 1 Mbps	HT40; GI= 0 Mbps	HT40; GI= 1 Mbps
0x80	MCS 0	1	6.5	7.2	13.5	15
0x81	MCS 1	1	13	14.4	27	30
0x82	MCS 2	1	19.5	21.7	40.5	45
0x83	MCS 3	1	26	28.9	54	60
0x84	MCS 4	1	39	43.3	81	90
0x85	MCS 5	1	52	57.8	108	120
0x86	MCS 6	1				135
0x87	MCS 7	1				150
0x88	MCS 8	2				30
0x89	MCS 9	2				60
0x8A	MCS 10	2				90
0x8B	MCS 11	2				120
0x8C	MCS 12	2				180
0x8D	MCS 13	2				240
0x8E	MCS 14	2				270
0x8F	MCS 15	2				300

^[1]All rates not listed are reserved. Note that for short guard interval (GI=1), HT20 mode is allowed.

The Tx descriptor format for words 15 through 22 is described in Table 5-4.

Table 5-4. DMA Tx Descriptor Format for Words 15-22

Word	Bits	Name	Description
15	31	rts_cts	Qualifies rts_enable or cts_enable in the Tx descriptor for Tx series 1
		_qual1	1 Default behavior with respect to rts_enable and cts_enable
	30:16	packet _duration1	Packet duration 1 (in μs); Duration of the actual Tx frame associated with TXRate1. This time does not include RTS, CTS, ACK, or any associated SIFS.
	15	rts_cts	Qualifies rts_enable or cts_enable in the Tx descriptor for Tx series 0
		_qual0	1 Default behavior with respect to rts_enable and cts_enable
	14:0	packet _duration0	Packet duration 0 (in µs); Duration of the actual Tx frame associated with TXRate0. This time does not include RTS, CTS, ACK, or any associated SIFS.
16	31	rts_cts	Qualifies rts_enable or cts_enable in the Tx descriptor for Tx series 3
			1 Default behavior with respect to rts_enable and cts_enable
	30:16	packet _duration3	s); Duration of the actual Tx frame associated with TXRate3. This time does not include RTS, CTS, ACK, or any associated SIFS.
	15	rts_cts	Qualifies rts_enable or cts_enable in the Tx descriptor for Tx series 2
			1 Default behavior with respect to rts_enable and cts_enable
	14:0	packet _duration2	s); Duration of the actual Tx frame associated with TXRate2. This time does not include RTS, CTS, ACK, or any associated SIFS.
17	31	RES	Reserved
	30	calibrating	Calibrating indication; causes the BB to apply the correct MCSD PPDU,
	29	dc_ap	Select for remaining the TBTT between TSF and TSF2, where 0 is from TSF and 1 is from TSF2. Should be used only when both ap_sta_enable and
	28:26	encrypt_type	Encryption type; DMA engine must add the number of necessary extra Dwords at the end of a packet to account for the encryption ICV generated by hardware. The encrypt type fields must be valid for all descriptors.
	25:18	pad_delim	Pad delimiters; Between each packet of an A-MPDU aggregate the hardware will insert a start delimiter which includes the length of the next frame. Sometimes hardware on the transmitter or receiver requires some extra time between packets which can be satisfied by inserting zero length delimiters. This field indicates the number of extra zero length delimiters to add.
	17:16	RES	Reserved
	15:0	agg_length	Aggregate (A-MPDU) length; the aggregate length is the number of bytes of the entire aggregate. This length should be computed as: delimiters = start_delim + pad_delim; frame_pad = (frame_length % 4) ? (4 - (frame_length % 4)) : 0 agg_length = sum_of_all (frame_length + frame_pad + 4 * delimiters) For the last packet of an aggregate the FRAME_PAD = 0 and delimiter = 0, frame_pad aligns to the next delimiter to be Dword aligned. Each delimiter is 4 bytes long. PAD_DELIM is the number of zero-length delimiters used to introduce an extra time gap between packets. START_DELIM is always 1 and

Table 5-4. DMA Tx Descriptor Format for Words 15–22 (continued)

Word	Bits	Name	Description			
18	31:28	stbc	STBC settings for all four series. If bit [0] is set, STBC is enabled for Tx series 03. Only supported for single stream rates, so only the lower bit is set.			
	27:20	rts_cts_rate	RTS or self-CTS rate selection. Specifies the rate the RTS sends at if rts_enable is set, or self CTS sends at if cts_enable is set; see Table 5-3.			
	19:17	chain_sel_3	Chain select for Tx series 3. 1 and 3 are the only valid values.			
	16	gi_3	Guard interval control for Tx series 3			
			0 Normal guard interval			
			1 Short guard interval			
	15	20_40_3	20_40 control for Tx series 3			
			0 HT20 Tx packet			
	14:12	chain_sel_2	Chain select for Tx series 2. 1 and 3 are the only valid values.			
	11	gi_2	Guard interval control for Tx series 2			
	10	20_40_2	20_40 control for Tx series 2			
	9:7	chain_sel_1	Chain select for Tx series 1. 1 and 3 are the only valid values.			
	6	gi_1	Guard interval control for Tx series 1			
	5	20_40_1	20_40 control for Tx series 1			
	4:2	chain_sel_0	Chain select for Tx series 0. 1 and 3 are the only valid values.			
	1	gi_0	Guard interval control for Tx series 0			
	0	20_40_0	20_40 control for Tx series 0			
19	31:30	ness_0	Number of Extension Spatial Streams (NESS) field of HT-SIG for Tx series 0.			
	29	not	Not sounding HT-SIG field; sends sounding PPDU in explicit feedback as BF. If rts_enable is set to 1, this field affects RTS only, not the next data frame.			
	28	rts_htc_trq	Sounding request of RTS frame; available when rts_enable is set to 1.			
		-	0 The responder is not requested to transmit a sounding PPDU			
			1 Request the responder to transmit a sounding PPDU			
	27	rts_htc_mrq	MCS request of RTS frame; available when rts_enable is set to 1			
		-	0 No MCS feedback is requested			
			1 MCS feedback is requested			
	26:24	rts_htc_msi	MCS Request Sequence Identifier (MSI) of RTS frame			
			0 Reserved			
			1 Contains a sequence number (0–6) to identify the specific request			
	23:0	antenna_0	Antenna switch for Tx series 0			

Table 5-4. DMA Tx Descriptor Format for Words 15–22 (continued)

Word	Bits	Name	Description		
20	31:30	ness_1	NESS field of HT-SIG for Tx series 1. This setting is valid when the transmission rate is HT rate.		
			0 No Extension HTLTF is transmitting PPDU		
			1 One Extension HTLTF is transmitting PPDU		
	29:24	tpc_1	TPC for Tx series 1. These bits pass unchanged to the baseband, where they control Tx power for the frame.		
	23:0	antenna_1	Antenna switch for Tx series 1		
21	31:30	ness_2	NESS field of HT-SIG for Tx series 2. This setting is valid when the transmission rate is HT rate.		
			0 No Extension HTLTF is transmitting PPDU		
	29:24	tpc_2	TPC for Tx series 2. These bits pass unchanged to the baseband, where they		
	23:0	antenna_2	Antenna switch for Tx series 2		
22	31:30	ness_3	NESS field of HT-SIG for Tx series 3. This setting is valid when the		
	29:24	tpc_3	TPC for Tx series 3. These bits pass unchanged to the baseband, where they		
	23:0	antenna_3	Antenna switch for Tx series 3		

The Tx descriptor status format for words 0 through 8 is described in Table 5-5.

The words status is only considered valid when the done bit is set.

Table 5-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description
0	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start of the descriptor.
	15	desc_tx_rx	Indicates whether the descriptor is a transmit or receive descriptor. The value should be set to 1 indicating transmit.
	14	desc_ctrl _stat	Indicates whether the descriptor is a control or status descriptor. The value should be set to 0 indicating status descriptor.
	13:12	RES	Reserved
	11:8	tx_qcu_num	Tx QCU number
	7:0	desc_length	Descriptor length Indicates the number of Dwords in this descriptor. The value should be set
1	31:16	tx_desc_id	Tx descriptor sequence number Software will select a unique sequence number associated with this descriptor. This value is copied to the tx_desc_id in the Tx status.
	15:0	RES	Reserved
2	31	RES	Reserved
	30	ba_status	Block ACK status If set, this bit indicates that the BA_BITMAP values are valid.
	29:24	RES	Reserved
	23:16	ack_rssi_ant02	Rx ACK signal strength indicator of control channel chain 2
	15:8	ack_rssi_ant01	Rx ACK signal strength indicator of control channel chain 1
	7:0	ack_rssi_ant00	Rx ACK signal strength indicator of control channel chain 0

Table 5-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description
3	31:20	RES	Reserved
	19	tx_timer _expired	Tx timer expired. This bit is set when the Tx frame is taking longer to send to the baseband than is allowed based on the TX_TIMER register. Some regulatory domains require that Tx packets may not exceed a certain amount of transmit time.
	18	RES	Reserved
	17	tx_data_underrun_ err	Tx data underrun error These error conditions occur on aggregate frames when the underrun condition happens while the MAC is sending the data portion of the frame or delimiters.
	16	tx_delmtr _underrun_err	These error conditions occur on aggregate frames when the underrun
	15:12	virtual_retry_cnt	Virtual collision count Reports the number of virtual collisions that occurred before transmission of the frame ended. The counter value saturates at 0xF. A virtual collision refers to the case, as described in the 802.11e QoS specification, in which two or more output queues are contending for a TXOP simultaneously. In such cases, all lower-priority output queues experience a virtual collision in which the frame is treated as if it had been sent on the air but failed to
	11:8	data_fail_cnt	Data failure count Reports the number of times the actual frame (as opposed to the RTS) was sent but no ACK was received for the final transmission series (see the
	7:4	rts_fail_cnt	RTS failure count Reports the number of times an RTS was sent but no CTS was received for the final transmission series (see the final_tx_index field). For frames that have the rts_enable bit clear, this count always will be zero. Note that this count is incremented only when the RTS/CTS exchange fails. In particular, this count is not incremented if the RTS/CTS exchange succeeds but the
	3	filtered	Frame transmission filter indication If set, indicates that the frame was not transmitted because the corresponding destination mask bit was set when the frame reached the PCU or if the frame violated TXOP on the first packet of a burst. Valid only if
	2	fifo_underrun	Tx FIFO underrun flag If set, transmission of the frame failed because the DMA engine was not able to supply the PCU with data as quickly as the baseband was requesting transmit data. Only valid for non-aggregate or non-RIFS underrun conditions unless the underrun occurred on the first packet of the aggregate or RIFS burst. See also the description for tx_delmtr_underrun_err and tx_data_underrun_err. Valid only if frm_xmit_ok is clear.
	1	excessive _retries	Excessive tries flag If set, transmission of the frame failed because the try limit was reached before the frame transmitted. Valid only if frm_xmit_ok is clear.
	0	frm_xmit_ok	Frame transmission success flag If set, the frame was transmitted successfully. If clear, no ACK or BA was received successfully.

Table 5-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description			
4	31:0	send _timestamp	Timestamp at start of transmit A snapshot of the lower 32 bits of the PCU timestamp (TSF value). This field can be used to aid the software driver in implementing requirements associated with the aMaxTransmitMSDULifetime MAC attribute. The transmit timestamp is sampled on the rising of tx_frame signal which goes from the MAC to the baseband. This value corresponds to the last attempt at packet transmission not the first attempt.			
5	31:0	ba_bitmap_0-31	Block ACK bitmap 0 to 31 These bits are the values from the block ACK received after the successful transmission of an aggregate frame. If set, bit [0] represents the successful reception of the packet with the sequence number matching the seq_num value.			
6	31:0	ba_bitmap_32-63	Block ACK bitmap 32 to 63 These bits are the values from the block ACK received after the successful transmission of an aggregate frame. If set, bit [32] represents the successful reception of the packet with the sequence number matching the seq_num			
7	31:24	ack_rssi	Rx ACK signal strength indicator of combination of all active chains on the control and extension channels. The value of 0x80 (–128) is used to indicate			
	23:16	RES	Reserved			
	15:8	ack_rssi_ant11	Rx ACK signal strength indicator of control channel chain 1			
	7:0	ack_rssi_ant10	Rx ACK signal strength indicator of control channel chain 0			
8	31:28	tid	Traffic Identifier (TID) of block ACK Indicates the TID of the response block ACK. This field is only valid on the			
	27:26	RES	Reserved			
	25	pwr_mgmt	Power management state Indicates the value of the PwrMgt bit in the frame control field of the			
	24	txbf_expired				
			The left-time of CV for this transmission destination is lower than the threshold set by software			
			2 CV is expired			
	23	txbf_dest_miss	Destination miss indication for TXBF When set, indicates there is no CV for this destination. The PPDU is transmitted out Tx without beamforming.			
	22:21	final_tx_index	Final transmission attempt series index Specifies the number of the Tx series that caused frame transmission to terminate.			
	20	RES	Reserved			

Table 5-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description
8 (Cont.)	19	txbf_stream _miss	Stream miss indication for TxBF When set, indicates that the CV information in CV cache is not enough for transmitting steered PPDU with current Tx rate, but still transmitting this PPDU out without Tx beamforming.
	18	txbf_bw _mismatch	Bandwidth mismatch indication for TxBF If set, shows that the bandwidth of CV data is not same as the bandwidth of transmitting PPDU, then HW will send the PPDU but without Tx beamforming.
	17	txop_exceeded	TXOP has been exceeded Indicates that this transmit frame had to be filtered because the amount of time to transmit this packet sequence would exceeded the TXOP limit. This should only occur when software programs the TXOP limit improperly.
	16:13	RES	Reserved
	12:1	seq_num	The starting sequence number is the value of the Block ACK Starting Sequence Control field in the response Block ACK. Only consulted if the Tx
	0	done	Descriptor completion flag Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid only for the final descriptor of a non-aggregate frame, regardless of the state of the FrTxOK flag. For an aggregate frame it is valid for only the final descriptor of the final packet of an aggregate. The driver is responsible for tracking what descriptors are associated with a frame. When the DMA engine sets the done flag in the final descriptor of a frame, the driver must be able to determine what other descriptors belong to the same frame and thus also have been consumed.

The DMA Rx logic (the DRU block) manages Rx descriptors and transfers the incoming frame data and status to the host through the Host interface.

Words 0, and 2 are valid for all descriptors. Words 0, 2, and 11 is valid for the last descriptor of each packets. Words 0–11 are valid for the last descriptor of an aggregate or last descriptor of a stand-alone packet. Additional validity qualifiers are described individually. See Table 5-6.

Table 5-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description		
0	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start of the descriptor.		
	15	desc_tx_rx	Indicates whether the descriptor is a transmit or receive descriptor. The value should be set to 1 indicating transmit.		
	14	desc_ctrl_stat	Indicates whether the descriptor is a control or status descriptor. The value		
	13:9	RES	Reserved		
	8	rx_priority	0 Low priority queue		
	7:0	desc_length	Descriptor length Indicates the number of Dwords in this descriptor. The value should be set to		
1	31:24	rx_rate	Rx rate indication Indicates the rate at which this frame was transmitted from the source. Encodings match those used for the tx_rate*' field in word 5 of the Tx descriptor. Valid only if the frame_rx_ok flag is set or if the frame_rx_ok flag		
	23:16	RES	Reserved		
	15:8	rssi_ant01	Received signal strength indicator of control channel chain 1		
	7:0	rssi_ant00	Received signal strength indicator of control channel chain 0		
2	31:23	RES	Reserved		
	22	hw_upload	Indicates the data carried by current descriptor is that hardware upload for TXBF using (H, V, or CV data). The upload data is valid only when the field hw_upload_data_valid at RXS 4 bit [7] is set. See RXS 11 bit [26:25] hw_upload_data_type to know which data type is uploaded. Valid for all		
	21:14	num_delim	Number of zero length pad delimiters after current packet This field does not include the start delimiter which is required between each packet in an aggregate. This field is only valid for aggregate packets except for the last packet of an aggregate.		
	13	RES	Reserved		
	12	more	More descriptors in this frame flag If set, then this is not the final descriptor of the frame. If clear, then this descriptor is the final one of the frame. Valid for all descriptors.		
	11:0	data_len	Received data length Specifies the length, in bytes, of the data actually received into the data buffer associated with this descriptor. The actual received data length will be between zero and the total size of the data buffer, as specified originally in this field (see the description for the buf_len field). Valid for all descriptors.		

Table 5-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description	Description			
3	31:0	rcv _timestamp	A snapshot of the PCU timestamp (TSF value), expressed in μ s (that is, bits [31:0] of the PCU 64-bit TSF). Intended for packet logging and packet sniffing. The timestamp is sampled on the rising edge of rx_clear, which goes from the baseband to the MAC.				
4	31:8	RES	Reserved				
	7	hw_upload _data_valid	Specifies whether	the contents of the	e hardware upload	l data are valid	
	6:5	ness	Receive packet NESS field Shows the number of Rx extension spatial steams.				
	4	not _sounding	Rx packet not sounding flag If this value is clear, then the Rx frame is a sounding PPDU. If this value is				
	3	stbc	Rx packet STBC in If this value is set	ndicator then the baseband	has received an S	TBC frames as	
	2	duplicate	Rx packet duplica If this value is set,	ate indicator , the baseband has	determined that the	his packet is a	
	1	20_40	Rx packet 20 or 40 MHz bandwidth indicator If this value is clear, then the receive frame was a HT20 packet (20 MHz bandwidth). If this value is set, then the receive frame was a HT40 pack				
	0	g	If this value is clear, then the Rx frame used a long guard interval. If this				
5	31:24	rx_combined				active chains on the 28) is used to indicate	
	23:16	RES	Reserved				
	15:8	rssi_ant11	Received signal st	trength indicator o	f extension channe	el chain 1	
	7:0	rssi_ant10	Received signal st	trength indicator o	f extension channe	el chain 0	
6	31:0	evm0	Rx packet error ve	ector magnitude 0			
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic	
			evm0[31:24]	pilot1_str0	pilot1_str0	legacy_plcp_byte_1	
			evm0[23:16]	RES	RES	legacy_plcp_byte_2	
			evm0[15:8]	pilot0_str1	pilot0_str1	legacy_plcp_byte_3	
			evm0[7:0]	pilot0_str0	pilot0_str0	service_byte_1	
7	31:0	evm1	Rx packet error vector magnitude 1				
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic	
			evm1[31:24]	pilot2_str1	pilot2_str1	service_byte_2	
			evm1[23:16]	pilot2_str0	pilot2_str0	ht_plcp_byte_1	
			evm1[15:8]	RES	RES	ht_plcp_byte_2	
			evm1[7:0]	pilot1_str1	pilot1_str1	ht_plcp_byte_3	

Table 5-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description			
8	31:0	evm2	Rx packet error v	ector magnitude 2		
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic
			evm2[31:24]	RES	RES	service_byte_4
			evm2[23:16]	pilot3_str1	pilot3_str1	ht_plcp_byte_5
			evm2[15:8]	pilot3_str0	pilot3_str0	ht_plcp_byte_6
			evm2[7:0]	RES	RES	0x0
9	31:0	evm3	Rx packet error v	ector magnitude 3		
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic
			evm3[31:24]	0x80	pilot5_str0	0x0
						0x0
						0x0
						0x0
10	31:22	noise_floor	For responding C	SI report in explic	it TXBF procedure;	software needs this
	21:16	RES	Reserved			
	15:0	evm4	Rx packet error v	ector magnitude 4		
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic
						0x0
						0x0
11 31 key_miss Key cache miss indication When set, indicates that the PCU could not locate a value of				ould not locate a val	lid decryption key for	
	30	RES	Reserved			
	29	first_agg	First packet of ag If set, indicates th	gregate at this packet is th	e first packet of an	aggregate.
	28	hi_rx_chain	If set indicates the	at the Rx chain cor	ntrol in high power	mode.
	27	RES	Reserved			

Table 5-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description			
11 (Cont.)	26:25	hw_upload_data _type	Indicates the hardware upload data (H, V, or CV). The only when the field hw_upload_data_valid at RXS 4 b			
			01 Upload is H			
			10 Upload is V			
			11 Upload is CV			
			To support a delay response at explicit TXBF, the upload data (H, V, or CV) a different registers configuration: regs_config = {MAC_PCU_H_XFER_TIMEOUT_EXTXBF_IMMEDIATE_RESP, MAC_PCU_H_XFER_TIMEOUT_DELAY_EXTXBF_ONLY_UPLOAD_H, MAC_PCU_H_XFER_TIMEOUT_EXTXBF_NOACK_NORPT} Request report:			
				Request V/CV		
				HW upload V/CV		
				HW upload H		
			If regs_config is {1,x,0}, it means hardware supports in even if it does not need to respond to ACK. Hardware	nmediate response		
			If regs_config is {1,0,1}, it means HW support immedia hardware will upload H/V/CV base on request report			
				Request V/CV		
				HW upload V/CV		
				HW upload H		
			If regs_config is {1,1,1}, the hardware supports immed hardware will only uploads H for a delay response if i	iate response but		
			For RTS, hardware only supports a delay response and	d will upload H, V, or		
	24:19	RES	Reserved			
	18	post_delim	Only occurs when the start delimiter of the last frame	in an aggregate is bad.		
	17	aggregate	Aggregate flag			
	16	more_agg	More aggregate flag Set to 1 in all packets of an aggregate that have anothe aggregate to follow. If clear, indicates that this packet i aggregate.			
	15:9	key_idx	If the FrRxOK bit is set, then this field contains the decindex. If KEY_IDX_VALID is set, then this field specifithe PCU located the frame's destination address in its key table. If key_idx_VALID is clear, the value of this fi FrRxOK bit is clear and the PHYErr bit is set, then this of the PHY error code.	ies the index at which on-chip decryption eld is undefined. If the		

Table 5-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description
11 (Cont.)	8	key_idx_valid	If frame_rx_ok is set, this field contains the decryption key table index valid flag. If set, indicates that the PCU successfully located the frame's source address in its on-chip key table and that the key_idx field reflects the table index at which the destination address was found. If clear, indicates that PCU failed to locate the destination address in the key table and that the contents of key_idx field are undefined. If the frame_rx_ok bit is clear and the phy_error bit is set, then this field contains bit [0] of the PHY error code.
	7	aspd_trig	Received APSD trigger frame The received frame matched the profile of an APSD trigger frame.
	6	pre_delim _crc_err	Delimiter CRC error detected before this current frame. May indicate that an entire packet may have been lost.
	5	mic_error	Michael integrity check error flag If set, then the frame TKIP Michael integrity check value did not verify
	4	phy_error	PHY error flag If set, then reception of the frame failed because the PHY encountered an error. In this case, bits [15:8] of this word indicate the specific type of PHY error; see the baseband specification for details. Valid only if the frame_rx_ok
	3	decrypt_crc_err	Decryption CRC failure flag If set, reception of the frame failed because the frame was marked as encrypted but the PCU was unable to decrypt the frame properly because the CRC check failed after the decryption process completed. Valid only if
	2	crc_error	CRC error flag If set, reception of the frame failed because the PCU detected an incorrect
	1	frame_rx_ok	Frame reception success flag. If set, the frame was received successfully. If
	0	done	Descriptor completion flag Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid for all descriptors.

5.4 Queue Control Unit (QCU)

The queue control unit performs two tasks:

- Managing the Tx descriptor chain processing for frames pushed to the QCU from the CPU by traversing the linked list of Tx descriptors and transferring frame data from the host to the targeted DCU.
- Managing the queue transmission policy to determine when the frame at the head of the queue should be marked as available for transmission.

The MAC contains ten QCUs. Each QCU contains all the logic and state registers needed to manage a single queue (linked list) of Tx descriptors. A QCU is associated with exactly one DCU. When a QCU prepares a new frame, it signals ready to the DCU. When the DCU accepts the frame, the QCU responds by getting the frame data and passing it to the DCU for eventual transmission to the PCU and on to the air.

The host controls how the QCU performs these tasks by writing to various QCU configuration registers.

5.5 DCF Control Unit (DCU)

Collectively, the ten DCUs implement the EDCF channel access arbitration mechanism defined in the Task Group E (TGe) QoS extension to the 802.11 specification. Each DCU is associated with one of the eight EDCF priority levels and arbitrates with the other DCUs on behalf of all QCUs associated with it. A central DCU arbiter monitors the state of all DCUs and grants one the next access to the PCU (that is, access to the channel).

Because the EDCF standard defines eight priority levels, the first eight DCUs (DCUs 0–7) map directly to the eight EDCF priority levels. The two additional DCUs handle beacons and beacon-gated frames for a total of ten DCUs.

The mapping of physical DCUs to absolute channel access priorities is fixed and cannot be

The highest-priority DCU is DCU 9. Typically, this DCU is the one associated with beacons.

The next highest priority DCU is DCU 8. Typically, this DCU is the one associated with

The remaining eight DCUs priority levels are filled with DCUs 7 through 0. Among these 8 DCUs, DCU 7 has highest priority, DCU 6 the next highest priority, and so on through DCU 0, which has the lowest priority. Typically, these DCUs are associated with EDCF priorities

5.5.1 DCU State Information

Each DCU maintains sufficient state information to implement EDCF channel arbitration. Table 5-7 lists basic DCU state registers. (See "DCF Control Unit (DCU)" on page 92).

Table 5-7. **DCU Registers**

Register	Size	Page
"QCU Mask (D_QCUMASK)"	32	page 215
"Retry Limits (D_RETRY_LIMIT)"	32	page 216
"ChannelTime Settings (D_CHNTIME)"	32	page 216
		page 217
"DCU-Global IFS Settings: SIFS Duration (D_GBL_IFS_SIFS)"		page 217
"DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT)"		page 217
"DCU-Global IFS Settings: EIFS Duration (D_GBL_IFS_EIFS)"		page 218
"DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)"		page 218
		page 219
"DCU Transmission Slot Mask (D_TXSLOTMASK)"		page 219

5.6 Protocol Control Unit (PCU)

The PCU is responsible for the details of sending a frame to the baseband logic for transmission, for receiving frames from the baseband logic and passing the frame data to the DRU, including:

- Buffering Tx and Rx frames
- Encrypting and decrypting
- Generating ACK, RTS, and CTS frames
- Maintaining the timing synchronization function (TSF)
- Forming aggregate

Maintaining sequence state and generating

Inserting and verifying FCS Generating virtual clear channel assessment

Updating and parsing beacons
The PCU is primarily responsible for
buffering outgoing and incoming frames
and conducting medium access compatible
with the IEEE 802.11 DCF protocol.

shows the PCU functional block

Figure 5-2. PCU Functional Block Diagram

5.7 Register Programming Details for Observing WMAC Interrupts

To configure the WMAC glue registers for observing WMAC interrupts:

- 1. Set bit [1] of these registers to observe MAC interrupts:
- "Synchronous Interrupt Enable (WMAC_GLUE_INTF_INTR_SYNC_ENAB LE)"
- "Synchronous Interrupt Mask
 (WMAC_GLUE_INTF_INTR_SYNC_MAS
 K)"
- "Asynchronous Interrupt Mask (WMAC_GLUE_INTF_INTR_ASYNC_MA SK)"
- "Asynchronous Interrupt Enable (WMAC_GLUE_INTF_INTR_ASYNC_EN ABLE)"
- Write 0xFFFF_FFFF to the
 Interrupt Cause
 (WMAC_GLUE_INTF_INTR_SYNC_CAUS E)" register to clear any pending interrupts.
- 3. Set bit [0] of the (RST_GLOBAL_INTERRUPT_STATUS)" register to enable MAC interrupts.
- 4. Enable primary MAC interrupts in the "Primary Interrupt Mask (IMR_P)" (for example: bit [6] (TXOK), bit [1] (RXOK(LP)), and bit [0] (RXOK(HP)).

- 5. Enable secondary interrupts by writing to the IMR_S* registers: "Secondary Interrupt Mask 0 (IMR_S0)" through "Secondary Interrupt Mask 5 (IMR_S5)".
- 6. Read bits [3:0] of the register "WMAC Interrupt Status (RST_WMAC_INTERRUPT_STATUS)":
 - Bit [0] = 1: Indicates a WMAC interrupt
 - Bit [0] = 1, bit [1] = 1: Indicates a WMAC
 - Bit [0] = 1, bit [2] = 1: Indicates a WMAC
 - Bit [0] = 1, bit [3] = 1: Indicates a WMAC

"Primary Interrupt Status (ISR_P)" act interrupt. Clear the interrupt by writing 1 to corresponding bit.

6. Digital PHY Block

The digital physical layer (PHY) block is described in 802.11n mode and 802.11 b/g legacy mode. Transmit and receive paths are provided and shown as block diagrams for 802.11n mode.

6.1 Overview

The digital PHY block is a half-duplex, OFDM, CCK, DSSS baseband processor compatible with IEEE 802.11n and 802.11b/g. The AR9382 supports both 20- and 40-MHz channel modes and data rates up to 300 Mbps defined by the IEEE 802.11b/g/n standards. Modulation schemes include BPSK, QPSK, 16-QAM, 64-QAM and forward error correction coding with rates of 1/2, 2/3, 3/4, 5/6.

All three 802.11n advanced features, Space Time Block Code (STBC), Low-Density Parity Check (LDPC) and Tx beamforming, are supported in the AR9341 chip. In addition, many new performance enhancing features are included, such as maximum likelihood (ML) MIMO receiver, and maximum ratio combining (MRC) for OFDM and 802.11b packet detection.

6.2 802.11n (MIMO) Mode

Frames beginning with training symbols are used for signal detection, automatic gain control, frequency offset estimation, symbol timing, and channel estimation. This process uses 56 sub-carriers for 20-MHz HT mode: 52 for data transmission and 4 for pilots. It uses 114 sub-carriers for 40-MHz HT mode: 108 for data transmission and 6 for pilots.

6.2.1 Transmitter (Tx)

Figure 6-1 shows the Tx path digital PHY 802.11n (MIMO mode) block diagram.

To Radio Block
Digital PHY 802.11n Tx

The PCU block initiates transmission. The digital PHY powers on the digital to analog converter (DAC) and transmit the training symbol. The training symbols are a fixed waveform and are generated within the digital PHY in parallel with the PCU sending the Tx header (frame length, data rate, etc.). The PCU must send transmitted data quickly enough to prevent buffers in the digital PHY from becoming empty. The PCU is prevented from sending data too quickly by pauses generated

shows a 2x2 MIMO system with three spatial data streams. The spatial parser splits the coded data into multiple data streams by allocating the proper number of bits to each data stream so that the number of data symbols resulted in each stream is the same. Then it interleaves coded bits across different data subcarriers followed by the modulation. To achieve the maximum spatial diversity for onestream and two-stream transmission, the Walsh matrix orthogonally spreads the modulated stream(s) into three Tx antennas before undergoing IFFT processing to produce time domain signals.

6.2.2 Receiver (Rx)

Figure 6-2 shows the Rx path digital PHY 802.11n (MIMO mode) block diagram.

Figure 6-2. Digital PHY 802.11n Rx

The receiver inverts the transmitter's steps, performing a fast Fourier transform (FFT), extracting bits from received constellations, deinterleaving, accounting for puncturing, decoding, and descrambling. The Rx block shows 2x2 MIMO configuration. shows a frequency-domain Maximum Likelihood (ML) equalizer handling degradation due to multi-path.

6.3 802.11b/g Legacy Mode

6.3.1 Transmitter

The AR9382 digital PHY incorporates an OFDM and DSSS transceiver that supports all data rates defined by IEEE 802.11b/g. Legacy mode is detected on per-frame basis. PLCP frames are detected for legacy network information. The transmitter switches dynamically to generate legacy signals (802.11b/g in 2.4 GHz.

6.3.2 Receiver

The receiver is capable of dynamically detecting legacy, HT 20 MHz or 40 MHz frames and will demodulate the frame according to the detected frame type. Maximum ratio combining (MRC) is used for OFDM and

7. Radio Block

The transceiver of the AR9341 solution consists of these major functional blocks:

- 2 x Receive chainEach chain = Radio + BB programmable gain filter
- 2 x Transmit chainEach chain = Radio + BB programmable gain filter
- Frequency synthesizer (SYNTH)
- Associated bias/control (BIAS)

See Figure 7-1.

7.1 Receiver (Rx) Block

The receiver converts an RF signal (with 20 MHz or 40 MHz bandwidth) to baseband I and Q outputs. The receiver operates in the 2.4 GHz band to support CCK and OFDM signals for 802.11b, 802.11g, and 802.11n.

The 2.4 GHz receiver implements a direct-conversion architecture.

The 2.4 GHz receiver consists of a low noise amplifier (LNA), a pair of quadrature radio frequency (RF) mixers, and in-phase (I) and quadrature (Q) baseband programmable gain filter/amplifiers (PGA). The mixers convert the output of the on-chip LNA to baseband I and Q signals. The I and Q signals are low-pass filtered and amplified by a baseband programmable gain filter controlled by digital logic. The baseband signals are sent to the ADC within the MAC/Baseband processor.

The DC offset of the receive chain is reduced using multiple DACs controlled by the MAC/Baseband processor. Additionally, the receive chain can be digitally powered down to conserve power.

Figure 7-2. Radio Receive Chain Block Diagram

7.2 Transmitter (Tx) Block

The transmitter converts baseband I and Q inputs to 2.4 GHz RF outputs as shown in Figure 7-3. The inputs to the transmitter are current outputs of the I and Q DAC within the MAC/Baseband processor. These currents are low-pass filtered through an on-chip reconstruction filter to remove spectral images and out-of-band quantization noise.

The I and Q signals are converted to RF signals using an integrated up-conversion architecture.

For 2.4 GHz transmitter, the baseband I and Q signals are up-converted directly to RF using a pair of quadrature mixers. The transmit chain can be digitally powered down to conserve power. To ensure that the FCC limits are observed and the output power stays close to the maximum allowed, the transmit output power is adjusted by a digitally programmed control loop at the start of each packet. The AR9341 provides an open loop power control based on an on-chip temperature sensor.

7.3 Synthesizer (SYNTH) Block

The radio supports an on-chip synthesizer to generate local oscillator (LO) frequencies for the receiver and transmitter mixers. The synthesizer has the topology shown in Figure 7-4. The AR9341 generates the reference input from a 40 MHz crystal for the synthesizer. An on-chip voltage controlled oscillator (VCO) provides the desired LO signal based on a phase locked loop.

7.4 Bias/Control (BIAS) Block

The bias/control block provides the reference voltages and currents for all other circuit blocks (see Figure 7-5). An on-chip band-gap reference circuit provides the needed voltage and current references based on an external 6.19 K resistor.

Figure 7-5. Bias/Control Block Diagram

8. Register Descriptions

These sections describe the internal registers for the various AR9341 blocks.

Table 8-1 summarizes the CPU mapped registers for the AR9341.

Table 8-1. CPU Mapped Registers Summary

Address	Description	Page
0x18000000-0x18000128	DDR Registers	page 102
0x18020000-0x18020018	UART0 (Low-Speed) Registers	page 111
0x18030000-	USB Registers	
0x18040000-0x1804006C	GPIO Registers	page 116
0x18050000-0x18050048	PLL Control Registers	page 124
0x18060000-0x180600AC		page 131
0x18070000-0x18070010		page 138
0x18080000-0x1808305C		page 140
0x180A0000-0x180A006C		page 174
0x180A9000-0x180A9024		page 184
0x180B0000-0x180B0018		page 188
0x18100008-0x18100104		page 192
0x18100800-0x18100A44		page 208
0x18101000-0x18101F04		page 215
0x18104000-0x1810409C		page 220
0x18107000-0x18107058		page 228
0x18108000-0x1810E000		page 234
0x18400000-0x18400054		page 268
0x18500000-0x18500010		page 275
0x19000000-0x190001D8 0x1A000000-0x1A0001D8		page 279
0x1B000100-0x1B00017C		page 334
0x1FFF0000-0x1FFF0018		page 363
0x0000-0x00FC 0x0100-0x0124	Ethernet Switch Registers	page 366

8.1 DDR Registers

Table 8-1 summarizes the DDR registers for the AR9341.

Table 8-2. **DDR Registers Summary**

Address	Name	Description	Page
0x18000000	DDR_CONFIG	DDR DRAM Configuration	page 103
0x18000004	DDR_CONFIG2	DDR DRAM Configuration 2	page 103
0x18000008	DDR_MODE_REGISTER	DDR Mode Value	page 103
0x1800000C	DDR_EXTENDED_MODE_REGISTER	DDR Extended Mode Value	page 104
0x18000010	DDR_CONTROL	DDR Control	page 104
0x18000014		DDR Refresh Control and Configuration	page 104
0x18000018	DDR_RD_DATA_THIS_CYCLE	DDR Read Data Capture Bit Mask	page 104
0x1800001C			page 105
0x18000020			page 105
0x18000024			page 105
0x18000028			page 106
0x1800009C	DDR_WB_FLUSH_GMAC0	GMAC0 Interface Write Buffer Flush	page 106
0x180000A0	DDR_WB_FLUSH_GMAC1	GMAC1 Interface Write Buffer Flush	page 106
0x180000A4			page 106
0x180000AC	DDR_WB_FLUSH_WMAC	WMAC Interface Write Buffer Flush	page 107
0x180000B0			page 107
0x180000B4			page 107
0x180000B8			page 108
0x180000BC			page 108
0x180000C0			page 108
0x180000CC	AHB_MASTER_TIMEOUT_MAX		page 108
0x180000D0	AHB_MASTER_TIMEOUT_CURNT	AHB Timeout Current Count	page 109
0x180000D4	AHB_MASTER_TIMEOUT_SLAVE_ADDR	Timeout Slave Address	page 109
0x18000108	DDR_CTL_CONFIG	DDR Control Configuration	page 109
0x18000110	DDR_SF_CTL	DDR Self Refresh	page 110
0x18000114	SF_TIMER	DDR Self Refresh Timer	page 110
0x18000128	WMAC_FLUSH	WMAC Flush	page 110

8.1.1 DDR DRAM Configuration (DDR_CONFIG)

Address: 0x18000000 Access: Read/Write Reset: See field description This register is used to configure the DDR DRAM parameters.

Bit	Bit Name	Reset	Description
31	CAS_LATENCY_MSB	0x0	DRAM CAS latency parameter MSB rounded up in memory core clock cycles
30	RES	0x1	Reserved
29:27	CAS_LATENCY	0x6	DRAM CAS latency parameter (first 3 bits) rounded up in memory core clock cycles. CAS_LATENCY is used by the hardware to estimate the internal DDR clock latency of a read. It should be greater than or equal to GATE_OPEN_LATENCY as specified in the DDR_CONFIG2 register. The value of this register should be memory cas_latency * 2 or
26:23	TMRD	0xF	DRAM tMRD parameter rounded up in memory core clock cycles
22:17	TRFC	0x1F	DRAM tRFC parameter rounded up in memory core clock cycles
16:13	TRRD	0x4	DRAM tRRD parameter rounded up in memory core clock cycles
12:9	TRP	0x6	DRAM tRP parameter rounded up in memory core clock cycles
8:5	TRCD	0x6	DRAM tRCD parameter rounded up in memory core clock cycles
4:0	TRAS	0x10	DRAM tRAS parameter rounded up in memory core clock cycles

8.1.2 DDR DRAM Configuration 2 (DDR_CONFIG2)

Address: 0x18000004 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:30			
29:26	GATE_OPEN_LATENCY	0x6	DRAM gate open latency parameter rounded up in memory
25:21		0xE	DRAM tWTR parameter rounded up in memory core clock cycles
20:17		0x8	DRAM read to precharge parameter rounded up in memory core clock cycles. The normal value is two clock cycles.
16:12		0x10	DRAM tRTW parameter rounded up in memory core clock cycles. The value should be calculated as CAS LATENCY + BURST LENGTH + BUS TURN AROUND TIME.
11:8	TWR	0x6	DRAM tWR parameter rounded up in memory core clock cycles
7	CKE	0x1	DRAM CKE bit
6:0	RES	0x28	Reserved

8.1.3 DDR Mode Value (DDR_MODE_REGISTER)

Address: 0x18000008 Access: Read/Write Reset: See field description This register is used to set the DDR mode register value.

Bit	Bit Name	Reset	Description
31:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	0x133	Mode register value. Reset to CAS 3, BL=8, sequential, DLL reset off.

8.1.4 DDR Extended Mode (DDR_EXTENDED_MODE_REGISTER)

Address: 0x1800000C This register is used to set the extended DDR

Access: Read/Write mode register value.

Reset: See field description

Bit	Bit Name	Reset	Description
31:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	0x2	Extended mode register value. Reset to weak driver, DLL on.

8.1.5 DDR Control (DDR_CONTROL)

Address: 0x18000010 This register is used to force update cycles in

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:6	RES	Reserved
5	EMR3S	Forces an EMR3 update cycle
4	EMR2S	Forces an EMR2 update cycle
3	PREA	Forces a PRECHARGE ALL cycle
2	REF	Forces an AUTO REFRESH cycle
1	EMRS	Forces an EMRS update cycle
0	MRS	Forces an MRS update cycle

8.1.6 DDR Refresh Control and Configuration (DDR_REFRESH)

Address: 0x18000014 This register is used to configure the settings to

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:15	RES	0x0	Reserved
14	ENABLE	0x0	Setting this bit to one will enable a DDR refresh
13:0	PERIOD	0x12C	Sets the refresh period intervals with respect to the ref clock (25 MHz/40 MHz)

8.1.7 DDR Read Data Capture Bit Mask (DDR_RD_DATA_THIS_CYCLE)

Address: 0x18000018 This register is used to set the parameters to Access: Read/Write read the DDR and capture bit masks.

Reset: See field description

Bit	Bit Name	Reset	Description
31:0	VEC	0xFF	DDR read and capture bit mask. Each bit represents a cycle of valid data. Set to 0xFFFF for 16-bit DDR memory systems. Set to 0xFFFF_FFFF for SDRAM x16 mode.

8.1.8 DQS Delay Tap Control for Byte 0 (TAP_CONTROL_0)

Address: 0x1800001C Access: Read/Write This register is used along with DQ Lane 0, DQ[7:0], DQS_0.

Reset: See field description

Bit	Bit Name	Reset	Description
31:17	RES	0x0	Reserved
16	TAP_H_BYPASS	0x0	Set to 1 to bypass the higher 4-level coarse delay line
15:10	RES	0x0	Reserved
9:8	TAP_H	0x0	Tap setting for higher 4-level coarse delay line
7:5	RES	0x0	Reserved
4:0	TAP_L	0x5	Tap setting for lower 4-level coarse delay line

8.1.9 DQS Delay Tap Control for Byte 1 (TAP_CONTROL_1)

Address: 0x18000020 This register is used along with DQ Lane 1,

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:17	RES		
16	TAP_H_ BYPASS	0x0	Set to 1 to bypass the higher 32-level delay chain
15:10	RES		
9:8	TAP_H	0x5	Tap setting for higher 4-level coarse delay line
7:5			
4:0	TAP_L	0x5	Tap setting for lower 32-level delay chain

8.1.10 DQS Delay Tap Control for Byte 2 (TAP_CONTROL_2)

Address: 0x18000024 This register is used along with DQ Lane 2,

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:17	RES	0x0	Reserved
16	TAP_H_ BYPASS	0x0	Set to 1 to bypass the higher 4-level coarse delay line
15:10	RES	0x0	Reserved
9:8	TAP_H	0x5	Tap setting for higher 4-level coarse delay line
7:5	RES	0x0	Reserved
4:0	TAP_L	0x5	Tap setting for lower 4-level coarse delay line

8.1.11 DQS Delay Tap Control for Byte 3 (TAP_CONTROL_3)

Address: 0x18000028 This register is used along with DQ Lane 3, Access: Read/Write DQ[31:24], DQS_3.

Reset: See field description

Bit	Bit Name	Reset	Description	
31:17	RES	0x0	Reserved	
16	TAP_H_ BYPASS	0x0	Set to 1 to bypass the higher 4-level coarse delay line	
15:10	RES	0x0	Reserved	
9:8	TAP_H	0x5	Tap setting for higher 4-level coarse delay line	
7:5	RES	0x0	Reserved	
4:0	TAP_L	0x5	Tap setting for lower 4-level coarse delay line	

8.1.12 GMACO Interface Write Buffer Flush (DDR_WB_FLUSH_GMACO)

Address: 0x1800009C This register is used to flush the write buffer for

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	Set this bit to 1 to flush the write buffer for the GMAC0 interface. This bit will reset to

8.1.13 GMAC1 Interface Write Buffer Flush (DDR_WB_FLUSH_GMAC1)

Address: 0x180000A0 This register is used to flush the write buffer for

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the GMAC1 interface.

8.1.14 USB Interface Write Buffer Flush (DDR_WB_FLUSH_USB)

Address: 0x180000A4 This register is used to flush the write buffer for

Access: Read/Write the USB interface.

Reset: 0x0

Bit	Bit Name	Type	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the USB interface. This bit will reset to 0 when the flush is complete.

8.1.15 WMAC Interface Write Buffer Flush (DDR_WB_FLUSH_WMAC)

Address: 0x180000AC Access: Read/Write

Reset: 0x0

This register is used to flush the write buffer for the WMAC interface.

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the WMAC interface. This bit will reset to 0 when the flush is complete.

8.1.16 SRC1 Interface Write Buffer Flush (DDR_WB_FLUSH_SRC1)

Address: 0x180000B0 Access: Read/Write

Reset: 0x0

This register is used to flush the write buffer for the SRC1 interface.

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the SRC1 interface. This bit will reset to 0 when the flush is complete.

8.1.17 SRC2 Interface Write Buffer Flush (DDR_WB_FLUSH_SRC2)

Address: 0x180000B4 Access: Read/Write

Reset: 0x0

This register is used to flush the write buffer for the SRC2 (checksum engine) interface.

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the SRC2 interface. This bit will reset to 0 when the flush is complete.

8.1.18 DDR2 Configuration (DDR_DDR2_CONFIG)

Address: 0x180000B8 Access: Read/Write Reset: 0x0858

Bit	Bit Name	Туре	RW	Description
31:14	RES	RO	0x0	Reserved
13:10	DDR2_TWL	RW	0x1	Delays driving the data signals for writing commands with respect to command issue by TWL DDR clocks
9:8	RES	RO	0x0	Reserved
7:2	DDR2_TFAW	RW	0x16	tFAW parameter in core DDR_CLK cycles
1	RES	RW	0x0	Reserved
0	ENABLE_DDR2	RW	0x0	0 DDR1

8.1.19 DDR EMR2 (DDR_EMR2)

Address: 0x180000BC Access: Read/Write

Reset: 0x0

This register is used set the extended mode

This register is used set the extended mode

Bit	Bit Name	Туре	Reset	Description
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	RW	0x0	Extended mode register 2 value, reset to weak driver, DLL on

8.1.20 DDR EMR3 (DDR_EMR3)

Address: 0x180000C0

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Type	Reset	Description
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	RW	0x0	Extended mode register 3 value, reset to weak driver, DLL on

8.1.21 AHB Master Timeout Control (AHB_MASTER_TIMEOUT_MAX)

Address: 0x180000CC Access: Read/Write

This register specifies the maximum timeout

value of the AHB master control.

Bit	Bit Name	Type	Reset	Description
31:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
19:0	VALUE	RW	0x8000	Maximum time out value

8.1.22 AHB Timeout Current Count (AHB_MASTER_TIMEOUT_CURNT)

Address: 0x180000D0 Access: Read/Write This register specifies the current AHB timeout value.

Reset: 0x0

Bit	Bit Name	Type	Reset	Description
31:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
19:0	VALUE	RO	0x0	Current time out value

8.1.23 Timeout Slave Address (AHB_MASTER_TIMEOUT_SLV_ADDR)

Address: 0x180000D4 Access: Read/Write This register specifies the maximum timeout value to access the slave address space.

Reset: 0x0

Bit	Bit Name	Type	Reset	Description
31:0	ADDR	RO	0x0	Maximum time out value

8.1.24 DDR Controller Configuration (DDR_CTL_CONFIG)

Address: 0x18000108 Access: Read/Write This register specifies the control bits for the

Bit	Bit Name	Туре	Reset	Description
31:30	SDRAM_TSEL	RW	0x1	Should not be modified.
29:21	CLIENT_ACTIVITY	RO	0x0	Indicates if there is currently any activity in each of the AHB/
20:7				
6	SEL_18	RW	0x0	Set to one for DDR2 configurations
5:2				
1	HALF_WIDTH	RW	0x1	Set to one for x16 DDR configurations
0	SDRAM_MODE_EN	RW	0x0	SDRAM mode enable

8.1.25 DDR Self Refresh Control (DDR_SF_CTL)

Address: 0x18000110 Access: Read/Write

Reset: 0x0

This register specifies the settings for the DDR self refresh mode.

Bit	Bit Name	Туре	Reset	Description
31	EN_SELF_REFRESH	RW	0x0	Setting this bit will initiate entering self refresh mode. This bit can be cleared by S/W or H/W if the auto exit is enabled
30	EN_AUTO_SF_EXIT	RW	0x0	Setting this bit will initiate exiting self refresh mode upon request from any AHB/AXI master
29	CUR_SR_STATE	RO	0x0	Indicates if the DDR is currently in self refresh mode
28	CUR_CKE_STATE	RO	0x0	Indicates if the DDR CKE is high or low
27	EN_SF_CLK_ GATING	RW	0x0	Setting this bit gates CK_P and CK_N during self refresh mode
26:25	CKE_GATE_DLY_ SEL	RW	0x0	Determines the delay of the CKE assertion from CK_P and stops
24:21	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
20:18	NO_ACTIVITY_ CNTR	RO	0x0	Indicates the duration on no activity in the AHB/AXI clients of
17:8	TXSRD	RW	0x1C2	Indicates XSND parameter of the memory in the number of
7:0	TXSNR	RW	0x3C	Indicates XSNR parameter of the memory in the number of

8.1.26 Self Refresh Timer

Address: 0x18000114 Access: Read/Write

Reset: 0x0

This register specifies the DDR refresh periods

Bit	Bit Name	Type	Reset	Description
31:16	RF_OUT_DPR_ COUNT	RO	0x0	Indicates the number of DDR_REFRESH_PERIODs for which
15:0	IN_RF_DPR_ COUNT	RO	0x0	Indicates the number of DDR_REFRESH_PERIODs for which

8.1.27 WMAC Flush (WMAC_FLUSH)

Address: 0x18000128 Access: Read/Write

Reset: 0x0

This register specifies the settings for the WMAC Flush.

Bit	Bit Name	Туре	Reset	Description
31:10	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
9	DONE	RW	0x0	Set to 1 by HW after the flush is completed and the adapter is ready. SW clears it back to 0 .
8:1	DDR_CLK_ CNTR	RW	0x28	Number of DDR clocks to count down after the last grant, ensuring all I/O reads are completed. The worst case value is for the SDRAM
0	FORCE	RW	0X0	Set to 1 by SW to start AXI flush. HW clears it back to 0

8.2 UARTO (Low-Speed) Registers

Table 8-3 summarizes the UART0 registers for the AR9341.

Table 8-3. UARTO (Low-Speed) Registers Summary

Address	Name	Description	Page
0x18020000	RBR	Receive Buffer	page 111
0x18020000	THR	Transmit Holding	page 111
0x18020000	DLL	Divisor Latch Low	page 112
0x18020004	DLH	Divisor Latch High	page 112
0x18020004	IER	Interrupt Enable	page 112
0x18020008	IIR	Interrupt Identity	page 113
0x18020008			page 113
0x1802000C			page 114
0x18020010			page 114
0x18020014			page 115
0x18020018			page 115

8.2.1 Receive Buffer (RBR)

Address: 0x18020000 Access: Read-Only

Reset: 0x0

This read-only register contains the data byte received on the serial input port (SIN). The data in this register is only valid if the Data Ready (DR) bit in the Line Status Register (LSR) is set. In the non-FIFO mode (FIFO_MODE = 0), the data in the RBR must be read before the next data arrives, otherwise it

will be overwritten, resulting in an overrun error. In FIFO mode (FIFO_MODE = 1), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already residing in the FIFO is full and this register will be preserved but any incoming data will be lost. An overrun error

Bit	Bit Name	Description
31:8	RES	Reserved. Must be written with zero. Contains zeros when read.
7:0	RBR	The receive buffer register value

8.2.2 Transmit Holding (THR)

Address: 0x18020000 Access: Write-Only

Reset: 0x0

This write-only register contains data to be transmitted on the serial port (s_{OUT}). Data can be written to the THR any time the THR Empty (THRE) bit of the Line Status Register is set. If FIFOs are not enabled and the THRE is set,

writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFOs are enabled and the THRE is set, up to sixteen characters of data may be written to the THR before the FIFO is full. Attempting to write data when the FIFO is full results in the write data being lost.

Bit	Bit Name	Description
31:8	RES	Reserved. Must be written with zero. Contains zeros when read.
7:0	THR	The transmit buffer value

8.2.3 Divisor Latch Low (DLL)

Address: 0x18020000 Access: Read/Write

Reset: 0x0

This register, in conjunction with the "Divisor Latch High (DLH)" register forms a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UARTO. It is

accessed by first setting the DLAB bit (bit [7]) in the "Line Control (LCR)" register. The output baud rate is equal to the input clock frequency divided by sixteen times (*16) the value of the baud rate divisor:

baud = (clock freq)/ (16 * divisor)

Bit	Bit Name	Туре	Reset	Description
31:8	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:0	DLL	RW	0x0	Divisor latch low

8.2.4 Divisor Latch High (DLH)

Address: 0x18020004 Access: Read/Write

Reset: 0x0

This register, in conjunction with the

Latch Low (DLL)"

read/write, Divisor Latch register that contains the baud rate divisor for the UARTO. It is

accessed by first setting the DLAB bit (bit [7])

register. The output baud rate is equal to the input clock frequency divided by sixteen times (*16) the

baud = (clock freq)/ (16 * divisor)

Bit	Bit Name	Description	
31:8	RES	Reserved. Must be written with zero. Contains zeros when read.	
7:0	DLH	DLH Divisor latch high	

8.2.5 Interrupt Enable (IER)

Address: 0x18020004 Access: Read/Write

Reset: 0x0

This register contains four bits that enable the

Bit	Bit Name	Description
31:4	RES	Reserved. Must be written with zero. Contains zeros when read.
3	EDDSI	Enable modem status interrupt
2	ELSI	Enable receiver line status interrupt
1	ETBEI	Enable register empty interrupt
0	ERBFI	Enable received data available interrupt

8.2.6 Interrupt Identity (IIR)

Address: 0x18020008 Access: Read-Only

Reset: 0x0

This register identifies the source of an interrupt. The two upper bits of the register are FIFO-enabled bits.

Bit	Bit Name	Description	
31:8	RES	Reserved	
7:6	FIFO_STATUS	FIFO e	nable status bits
		00	FIFO disabled
		11	FIFO enabled
5:4	RES	Reserved. Must be written with zero. Contains zeros when read.	
3:0	IID	Used to	o identify the source of the interrupt

8.2.7 FIFO Control (FCR)

Address: 0x18020008 Access: Write-Only

Reset: 0x0

This register sets the parameters for FIFO control. This register will also return current time values.

If FIFO mode is 0, this register has no effect. If FIFO mode is 1, this register will control the read and write data FIFO operation and the mode of operation for the DMA signals

If FIFO mode is enabled (FIFO mode = 1 and bit [0] is set to 1), bit [3], bit [6], and bit [7] are

Bit	Bit Name	Description	
31:8			
7:6	RCVR_TRIG		the trigger level in the receiver FIFO for both the RXRDY_N signal and the ble received data available interrupt (ERBFI)
		00	1 byte in FIFO
		01	4 bytes in FIFO
		10	8 bytes in FIFO
		11	14 bytes in FIFO
5:4	RES	Rese	rved
3	DMA_MODE		bit determines the DMA signalling mode for TXRDY_N and RXRDY_N ut signals
2	XMIT_FIFO_RST	Writ	ing this bit resets and flushes data in the transmit FIFO
1	RCVR_FIFO_RST	Writ	ing this bit resets and flushes data in the receive FIFO
0	FIFO_EN		ng this bit enables the transmit and receive FIFOs. The FIFOs are also reset time this bit changes its value.

8.2.8 Line Control (LCR)

Address: 0x1802000C Access: Read/Write

Reset: 0x0

This register controls the format of the data that is transmitted and received by the UART0 controller.

Bit	Bit Name	Description		
31:8	RES	Reserved		
7	DLAB	The divisor latch address bit. Setting this bit enables reading and writing of the "Divisor Latch Low (DLL)" and "Divisor Latch High (DLH)" registers to set the baud rate of the UARTO. This bit must be cleared after the initial baud rate setup in order to access the other registers.		
6	BREAK	Setting this bit sends a break signal by holding the SOUT line low (when not in loopback mode, as determined by "Modem Control (MCR)" register bit [4]), until the BREAK bit is cleared. When in loopback mode, the break condition is internally		
5	RES	Reserved		
4	EPS	Used to set the even/odd parity. If parity is enabled, this bit selects between even and odd parity. If this bit is a logic 1, an even number of logic 1s are transmitted or checked. If this bit is a logic 0, an odd number of logic 1s are transmitted or checked.		
3	PEN	Used to enable parity when set		
2	STOP	Used to control the number of stop bits transmitted. If this bit is a logic 0, one-stop bit is transmitted in the serial data. If this bit is a logic 1 and the data bits are set to 5, herwise, two stop bits are generated and		
1:0	CLS	Used to control the number of bits per character		

8.2.9 Modem Control (MCR)

Address: 0x18020010 Access: Read/Write Reset: See field description This register controls the interface with the

Bit	Bit Name	Reset	Description
31:6	RES	0x0	Reserved
5	LOOPBACK	0x1	When set, the data on the SOUT line is held HIGH, while the serial data output is looped back to the SIN line, internally. In this mode, all the interrupts are fully functional. This feature is also used for diagnostic purposes. The modem control inputs (DSR_L, CTS_L, RI_L, DCD_L) are disconnected and the four modem control outputs (DTR_L, RTS_L, OUT1_L, OUT1_L) are looped back to the inputs, internally.
4	RES	0x0	Reserved
3	OUT2	0x1	Used to drive the UART0 output UART0_OUT2_L
2	OUT1	0x1	Used to drive the UART0 output UART0_OUT1_L
1	RTS	0x1	Used to drive the UART0 output RTS_L
0	DTR	0x1	Used to drive the UART0 output DTR_L. Not supported.

8.2.10 Line Status (LSR)

Address: 0x18020014 Access: Read/Write

Reset: 0x0

This register contains the status of the receiver and transmitter data transfers. This status may be read by the user at any time.

Bit	Bit Name	Description
31:8	RES	Reserved
7	FERR	The error in receiver FIFO bit. This bit is only active when the FIFOs are enabled. This bit is set when there is at least one parity error, framing error or break in the FIFO. This bit is cleared when the LSR is read AND the character with the error is at the top of the receiver FIFO AND there are no subsequent errors in the FIFO.
6	TEMT	The transmitter empty bit. This bit is set in FIFO mode whenever the Transmitter Shift Register and the FIFO are both empty. In non-FIFO mode, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty.
5	THRE	The transmitter holding register empty bit. When set, indicates the UART0 controller can accept a new character for transmission. This bit is set whenever data is transferred from the THR to the transmit shift register and no new data has been written to the THR. This also causes a
4	BI	The break interrupt bit. This bit is set whenever the serial input (SIN) is held in a logic zero state for longer than the sum of (start time + data bits + parity + stop bits). A break condition on SIN causes one, and only one character, consisting of all zeros which will be received by the UARTO. In FIFO mode, the character associated with the break condition is carried through FIFO and revealed when the character reaches the top of FIFO. Reading the LSR clears the BI bit. In non-FIFO mode, the BI direction occurs immediately and continues until the LSR has been read.
3	FE	The framing error bit. This bit is set whenever there is a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data. In FIFO mode, the framing error associated with the character received will come to the top of FIFO so it can be noticed. The OE, PE and FE bits are reset when a read of the LSR is performed.
2	PE	The parity error bit. This bit is set whenever there is a parity bit error in the receiver if the Parity Enable (PEN) bit in the LCR is set. In FIFO mode, the parity error associated with the character
1	OE	The overrun error bit. When set, indicates an overrun error occurred because a new data character was received before the previous data was read. In non-FIFO mode, it is set when a new character arrives in the receiver before the previous character has been read from the RBR. In FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives in the receiver. The data in FIFO is retained and the data in the receive shift register is lost.
0	DR	The data ready bit. When set, indicates that the receiver contains at least one character in the RBR or the receiver FIFO. This bit is cleared when the RBR is read in the non-FIFO mode, or

8.2.11 Modem Status (MSR)

Address: 0x18020018 Access: Read/Write

Reset: 0x0

This register contains the current status of the modem control input lines and notes whether they have changed.

Bit	Bit Name	Description	
31:8	RES	Reserved	
7	DCD	Contains information on the current state of the modem control lines; complement of DCD_L	
6	RI	Contains information on the current state of the modem control lines; complement of RI_L	
5	DSR	Contains information on the current state of the modem control lines; complement of DSR_L	
4	CTS	Contains information on the current state of the modem control lines; complement of CTS_L	
3	DDCD	Notes whether modem control line DCD_L changed since the last time the CPU read the MSR	
2	TERI	Indicates whether RI_L changed from an active low to inactive high since the last time MSR was read	
1	DDSR	Notes whether DSR_L has changed since the last time the CPU read the MSR	
0	DCTS	Notes whether CTS_L has changed since the last time the CPU read the MSR	

8.3 GPIO Registers

Table 8-4 summarizes the GPIO registers for the AR9341.

Table 8-4. General Purpose I/O (GPIO) Registers Summary

Address	Name	Description	Page
0x18040000	GPIO_OE	GPIO Output Enable	page 117
0x18040004	GPIO_IN	GPIO Input Value	page 117
0x18040008	GPIO_OUT	GPIO Output Value	page 117
0x1804000C	GPIO_SET	GPIO Per Bit Set	page 117
0x18040010	GPIO_CLEAR	GPIO Per Bit Clear	page 118
0x18040014			page 118
0x18040018	GPIO_INT_TYPE		page 118
0x1804001C	GPIO_INT_POLARITY		page 118
0x18040020	GPIO_INT_PENDING		page 119
0x18040024	GPIO_INT_MASK		page 119
0x18040028	GPIO_IN_ETH_SWITCH_LED	GPIO Ethernet LED Routing Select	page 119
0x1804002C	GPIO_OUT_FUNCTION0	GPIO pins 0, 1, 2, 3 Output Multiplexing	page 120
0x18040030	GPIO_OUT_FUNCTION1	GPIO pins 4, 5, 6, 7 Output Multiplexing	page 120
0x18040034	GPIO_OUT_FUNCTION2	GPIO pins 8, 9, 10, 11 Output Multiplexing	page 121
0x18040038	GPIO_OUT_FUNCTION3	GPIO pins 12, 13, 14, 15 Output Multiplexing	page 121
0x1804003C	GPIO_OUT_FUNCTION4	GPIO pins 16, 17, 18, 19 Output Multiplexing	page 121
0x18040044	GPIO_IN_ENABLE0	UART0_SIN and SPI_DATA_IN Multiplexing	page 122
0x18040048	GPIO_IN_ENABLE1		page 122
0x18040054	GPIO_IN_ENABLE4		page 122
0x18040068	GPIO_IN_ENABLE9		page 123
0x1804006C	GPIO_FUNCTION		page 123

8.3.1 GPIO Output Enable (GPIO_OE)

Address: 0x18040000 Access: Read/Write Reset: 0x3F30B

Bit	Bit Name	Description	
31:23	RES	Reserved	
22:0	OE	Per bit output enable, where bit [22] sets GPIO22, bit [21] sets GPIO21, bit [20] GPIO20, and so on.	
		0	The bit is used as output
		1	Enables the bit as input

8.3.2 GPIO Input Value (GPIO_IN)

Address: 0x18040004 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:23		
22:0		Current values of each of the GPIO pins, where bit[22] sets GPIO22, bit [21]

8.3.3 GPIO Output Value (GPIO_OUT)

Address: 0x18040008 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:23		
22:0	OUT	Driver output value. If the corresponding bit in the GPIO_OE register is set to 0, the GPIO pin will drive the value in the corresponding bit of this register.

8.3.4 GPIO Per Bit Set (GPIO_SET)

Address: 0x1804000C Access: Write-Only

Bit	Bit Name	Description
31:23	RES	Reserved
22:0	SET	On a write, any bit that is set causes the corresponding GPIO bit to be set; any bit that is not set will have no effect.

8.3.5 GPIO Per Bit Clear (GPIO_CLEAR)

Address: 0x18040010 Access: Write-Only

Reset: 0x0

Bit	Bit Name	Description
31:23	RES	Reserved
22:0	CLEAR	On a write, any bit that is set causes the corresponding GPIO bit to be cleared; any bit that is not set will have no effect.

8.3.6 GPIO Interrupt Enable (GPIO_INT)

Address: 0x18040014 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:23	RES	
22:0	INT	Each bit that is set is considered an interrupt ORd into the GPIO interrupt

8.3.7 GPIO Interrupt Type (GPIO_INT_TYPE)

Address: 0x18040018 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description		
31:23	RES			
22:0	TYPE	Interrupt type		

8.3.8 GPIO Interrupt Polarity (GPIO_INT_POLARITY)

Address: 0x1804001C Access: Read/Write

Bit	Bit Name	Description	
31:23	RES	Reserved	
22:0	POLARITY	Interrupt polarity	
		0	Indicates that the interrupt is active low (level) or falling edge (edge)
		1	Indicates that the interrupt is active high (level) or rising edge (edge)

8.3.9 GPIO Interrupt Pending (GPIO_INT_PENDING)

Address: 0x18040020

Access: Read/Write (See field description)

Reset: 0x0

Bit	Bit Name	Description
31:23	RES	Reserved
22:0	PENDING	For each bit, indicates that an interrupt is currently pending for the particular GPIO; for edge-sensitive interrupts, this register is read-with-clear.

8.3.10 GPIO Interrupt Mask (GPIO_INT_MASK)

Address: 0x18040024 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:23		
22:0		For each bit that is set, the corresponding interrupt in the register "GPIO is passed on to the central

8.3.11 GPIO Ethernet LED Routing Select (GPIO_IN_ETH_SWITCH_LED)

Address: 0x18040028 Selects routing of the signal indication groups Access: Read-Only to the LED signals: activity, collision, link, or

Bit	Bit Name	Description
31:20		
19:15		_O and LED_LINK10n_O
14:10		
9:5		
4:0		

NOTE: The GPIO_OUT_FUNCTION[5:0] registers, along with the "GPIO Output Enable (GPIO_OE)" register, determine which internal signal is driven to the GPIO pins. Each 32-bit GPIO_OUT_FUNCTION*x* register has select values for four GPIO pins (8 bits each). Each signal to output through the GPIO pin has a select value programmed in the particular GPIO field through which it is output (see Table 2-9, "Default GPIO Signals," on page 40).

These defaults are the default signal settings on the GPIO pin. On reset, GPIO[17:0] are configured with these default settings.

Apart from JTAG, all signals can use any GPIO and can use GPIO[3:0] by setting the DISABLE_JTAG bit to 1 in the "GPIO Function (GPIO_FUNCTION)" register. A value of zero in these fields selects the signal from the "GPIO Output Value (GPIO_OUT)" register.

8.3.12 GPIO Function 0 (GPIO_OUT_FUNCTIONO)

Address: 0x1804002C Access: Read/Write

Note that JTAG pins are available only in

Reset: 0x0

Bit	Bit Name	GPI0		
31:24	ENABLE_GPIO_3	GPIO3	TMS	Selected programmed value is available in GPIO3
23:16	ENABLE_GPIO_2	GPIO2	TDO	Selected programmed value is available in GPIO2
15:8	ENABLE_GPIO_1	GPIO1	TDI	Selected programmed value is available in GPIO1
7:0	ENABLE_GPIO_0	GPIO0	TCK	Selected programmed value is available in GPIO0

8.3.13 GPIO Function 1 (GPIO_OUT_FUNCTION1)

Address: 0x18040030 Access: Read/Write

Bit	Bit Name	GPI0		
31:24	ENABLE_GPIO_7	GPIO7	SPI_MOSI	Selected programmed value is available in GPIO7
23:16	ENABLE_GPIO_6	GPIO6	SPI_CLK	Selected programmed value is available in GPIO6
15:8	ENABLE_GPIO_5	GPIO5	SPI_CS0	Selected programmed value is available in GPIO5
7:0	ENABLE_GPIO_4	GPIO4	CLK_OBS4 ^[1]	Selected programmed value is available in GPIO4

^[1]See Table 8.3.21, "GPIO Function (GPIO_FUNCTION)," on page 123 for clock signals that can be observed through GPIO pins.

8.3.14 GPIO Function 2 (GPIO_OUT_FUNCTION2)

Address: 0x18040034 Access: Read/Write

Reset: 0x0

MUX values for GPIO[11:8].

Bit	Bit Name	GPI0	Default Function	Description
31:24	ENABLE_GPIO_11	GPIO11	Reserved	Selected programmed value is available in GPIO11
23:16	ENABLE_GPIO_10	GPIO10	UART0_SOUT	Selected programmed value is available in GPIO10
15:8	ENABLE_GPIO_9	GPIO9	UART0_SIN	Selected programmed value is available in GPIO9
7:0	ENABLE_GPIO_8	GPIO8	SPI_MISO	Selected programmed value is available in GPIO8

8.3.15 GPIO Function 3 (GPIO_OUT_FUNCTION3)

Address: 0x18040038 Access: Read/Write

Reset: 0x0

MUX values for GPIO[15:12].

Bit	Bit Name	GPI0		
31:24	ENABLE_GPIO_15	GPIO15	Reserved	Selected programmed value is available in GPIO15
23:16	ENABLE_GPIO_14	GPIO14	Reserved	Selected programmed value is available in GPIO14
15:8	ENABLE_GPIO_13	GPIO13	Reserved	Selected programmed value is available in GPIO13
7:0	ENABLE_GPIO_12	GPIO12	Reserved	Selected programmed value is available in GPIO12

8.3.16 GPIO Function 4 (GPIO_OUT_FUNCTION4)

Address: 0x1804003C

Access: Read/Write

Reset: 0x0

MUX values for GPIO[19:16].

Bit	Bit Name	GPI0		
31:24	ENABLE_GPIO_19	GPIO19	_	Selected programmed value is available in GPIO19
23:16	ENABLE_GPIO_18	GPIO18	_	Selected programmed value is available in GPIO18
15:8	ENABLE_GPIO_17	GPIO17	Reserved	Selected programmed value is available in GPIO17
7:0	ENABLE_GPIO_16	GPIO16	Reserved	Selected programmed value is available in GPIO16

NOTE: The GPIO_IN_ENABLE[9:0] registers, along with the "GPIO Output Enable (GPIO_OE)" register, drive internal logic. The registers indicate through which GPIO pins the particular input signal is available. Program the GPIO pin number through which these signals are input.

See Table 2-11, "GPIO Input Select Values," on page 43.

NOTE: Apart from JTAG, all signals listed in Table 2-11 can use any GPIO. GPIO[3:0] can be used by setting the DISABLE_JTAG bit to 1 in the "GPIO Function (GPIO_FUNCTION)" register.

8.3.17 GPIO In Signals 0 (GPIO_IN_ENABLE0)

Address: 0x18040044 Access: Read/Write Reset: See field description Program the GPIO pin number through which these signals are input. Legal values for this register are 0–17 for GPIO0 to GPIO17.

Bit	Bit Name	Reset	Default GPIO	Description
31:16	RES	0x0	_	Reserved
15:8	UART0_SIN	0x9	GPIO9	Programmed value indicates the GPIO that inputs UART0_SIN
7:0	SPI_DATA_IN	0x8	GPIO8	Programmed value indicates the GPIO pin that inputs SPI_MISO

8.3.18 GPIO In Signals 1 (GPIO_IN_ENABLE1)

Address: 0x18040048 Access: Read/Write

Reset: 0x0

Program the GPIO pin number through which

Bit	Bit Name	Signal	Description
31:24	I2SEXT_MCLK	I2S_MCLK	Programmed value indicates the GPIO pin that inputs I2S_MCLK
23:16	I2SEXTCLK	I2S_CLK	Programmed value indicates the GPIO pin that inputs I2S_CLK
15:8	I2S0_MIC_SD	I2S_SD	Programmed value indicates the GPIO pin that inputs I2S_MIC_SD
7:0	I2S0_WS	I2S_WS	Programmed value indicates the GPIO pin that inputs I2S_WS

8.3.19 GPIO In Signals 4 (GPIO_IN_ENABLE4)

Address: 0x18040054 Access: Read/Write

Reset: 0x0

Program the GPIO pin number through which

Bit	Bit Name	Signal	Description
31:16	RES	_	Reserved
15:8	SLIC_PCM _FS_IN	_FS	Programmed value indicates the GPIO pin through which SLIC_PCM_FS is input. Note that the frame sync signal can be used as input or output
7:0	SLIC_DATA _IN	SLIC_DATA _IN	Programmed value indicates the GPIO pin through which SLIC_DATA_IN is input

8.3.20 GPIO In Signals 9 (GPIO_IN_ENABLE9)

Address: 0x18040068 Access: Read/Write

Reset: 0x0

Program the GPIO pin number through which these signals are input. UART1 is the high-speed UART.

Bit	Bit Name	Signal	Description
31:24	UART1_CTS	UART1_CTS	Programmed value indicates the GPIO pin that inputs UART1_CTS
23:16	UART1_RD	UART1_RD	Programmed value indicates the GPIO pin that inputs UART1_RD
15:8	RES	RES	Reserved
7:0	RES	RES	Reserved

8.3.21 GPIO Function (GPIO_FUNCTION)

Address: 0x1804006C Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:10			
9	CLK_OBS7_ENABLE	0x0	Enables observation of audio PLL_CLK
8	CLK_OBS6_ENABLE	0x0	Enables observation of USB_CLK
7	CLK_OBS5_ENABLE	0x0	Enables observation of CPU_CLK/4
6	CLK_OBS4_ENABLE	0x1	Enables observation of AHB_CLK/2
5	CLK_OBS3_ENABLE	0x0	Enables observation of GMAC1_TX_CLK
4:3			
2	CLK_OBS0_ENABLE	0x0	Enables observation of 25 MHz GMAC0 MII clock
1	DISABLE_JTAG	0x0	Disable JTAG port functionality to enable GPIO functionality
0			

8.4 PLL Control Registers

Table 8-5 summarizes the AR9341 PLL control registers.

Table 8-5. PLL Control Registers Summary

Address	Name	Description	Page
0x18050000	CPU_PLL_CONFIG	CPU PLL Configuration	page 125
0x18050004	DDR_PLL_CONFIG	DDR PLL Configuration	page 125
0x18050008	CPU_DDR_CLOCK_CONTROL	CPU DDR Clock Control	page 126
0x18050024	SWITCH_CLOCK_CONTROL	Switch Clock Source Control	page 127
0x18050030	AUDIO_PLL_CONFIG		page 128
0x18050034	AUDIO_PLL_MODULATION		page 128
0x18050038	AUDIO_PLL_MOD_STEP		page 129
0x1805003C	CURRENT_AUDIO_PLL_		page 129
0x18050044			page 130
0x18050048			page 130

8.4.1 CPU Phase Lock Loop Configuration (CPU_PLL_CONFIG)

Address: 0x18050000 This register configures the CPU PLL. Access: Read/Write

PLL Frequency = $\frac{\text{REFCLK FREQ}}{\text{REFDIV}} \times \left(\frac{\text{NFRAC}}{2^6} + \text{NINT}\right) \times \frac{1}{2^{\text{OUTDIV}}}$ Reset: See field description

Bit	Bit Name	Туре	Reset	Description		
31	UPDATING	RO	0x1	This bit is set during the PLL update process. After the software configures CPU PLL, it takes about 32 µsec for the update to be finished. Software may poll this bit to see if the update has completed.		
				0 PLL update is complete		
				1 PLL update is pending		
30	PLLPWD	RW	0x1	Power down control for CPU PLL, write zero to this bit to power up the PLL		
29:22	RES	RW	0x0	Reserved		
21:19	OUTDIV	RW	0x0	Define the ratio between VCO output and PLL output.		
18:17	RANGE	RW	0x3	Determines the VCO PLL frequency range of the CPU PLL:		
				Reflects a PLL frequency range of (580-880) MHz/2 ^(OUTDIV)		
				Reflects a PLL frequency range of (400-750) MHz/2 ^(OUTDIV)		
16:12	REFDIV	RW	0x20	Reference clock divider		
11:6	NINT	RW	0x0	The integer part of the DIV to CPU PLL		
5:0	NFRAC	RO	0x0	"CPU PLL Dither Parameter		

8.4.2 DDR PLL Configuration (DDR_PLL_CONFIG)

Address: 0x18050004 This register is used to configure the DDR PLL. Access: Read / Write $\left(\frac{\text{NFRAC}}{10} + \text{NINT}\right) \times \frac{1}{20 \text{UTDIV}}$ Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31	UPDATING	RO	0x1	This bit is set during the PLL update process. After the software configures CPU PLL, it takes about 32 µsec for the update to be finished. Software may poll this bit to see if the update has completed.	
30	PLLPWD	RW	0x1	Power up control for the PLL, write zero to this bit to power up the PLL.	
29:26	RES	RW	0x0	Reserved	
25:23	OUTDIV	RW	0x0	Define the ratio between VCO output and PLL output. OUTDIV > 4 is unsupported.	
22:21	RANGE	RW	0x3	Determines the VCO PLL frequency range of the DDR PLL:	
				0/2 Reflects a PLL frequency range of (580-880) MHz/2 ^(OUTDIV)	
				1/3 Reflects a PLL frequency range of(400-750) MHz/2 ^(OUTDIV)	
20:16	REFDIV	RW	0x2	Reference clock divider	
15:10	NINT	RW	0x0	The integer part of the DIV to DDR PLL	
9:0	NFRAC	RO	0x0	Reflects the current NFRAC. Use "DDR PLL Dither Parameter (DDR_PLL_DITHER)" on page 130 to set.	

8.4.3 CPU DDR Clock Control (CPU_DDR_CLOCK_CONTROL)

Address: 0x18050008 Access: Read / Write Reset: See field description This register is used to set the CPU and DDR clocks. Any field in this register can be dynamically modified.

D:+	Dit Name	T	D 4	Description.
Bit	Bit Name	Type	Reset	•
31:25	RES	RW	0x0	Reserved
24	AHBCLK_FROM _DDRPLL	RW	0x1	AHB_CLK setting
	_DDKFLL			0 AHB_CLK is derived from the CPU_PLL
				1 AHB_CLK is derived from the DDR_PLL
23	CPU_RESET_EN _BP_DEASRT	RW	0x0	Enables reset to the CPU when the CPU_PLL bypass bit is reset
22	CPU_RESET_EN _BP_ASRT	RW	0x0	Enables reset to the CPU when the CPU_PLL bypass bit is set
21	DDRCLK_FROM _DDRPLL	RW	0x1	DDR_CLK setting. The DDR clock should be a 50% duty cycle clock
20	CPUCLK_FROM _CPUPLL			
19:15	AHB_POST_DIV	RW	0x0	Division of the AHB clock:
14:10	DDR_POST_DIV	RW	0x0	Division of the DDR PLL clock:
				<pll frequency=""> / (DDR_POST_DIV+1) or <refclk frequency=""></refclk></pll>
9:5	CPU_POST_DIV	RW	0x0	Division of the CPU PLL clock:
				<pll frequency=""> / (CPU_POST_DIV+1) or <refclk frequency=""></refclk></pll>
4	AHB_PLL_ BYPASS			
3	DDR_PLL_ BYPASS			
2	CPU_PLL_ BYPASS			
1	RESET_SWITCH	RW	0x0	Reset during clock switch trigger
0	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.

8.4.4 Switch Clock Source Control (SWITCH_CLOCK_CONTROL)

Address: 0x18050024 Access: Read / Write This register controls the clock sources to the various blocks.

Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31:12	RES	RW	0x0	Reserved	
11:8	USB REFCLK	RW	0x5	Used to select the REFCLK input of 40- or 25-MHz to the USB PLL	
	_REFCLK _FREQ_SEL			2 25 MHz REFCLK	
				5 40 MHZ REFCLK	
7	UART1_CLK _SEL	RW	0x0	Select the clock for UART1 operation	
	_SEL			0 REFCLK	
6	MDIO_CLK_	RW	0x0	Selects the clock for the MDIO master operational clock	
5	OEN_CLK12 5M_PLL	RW	0x1	Enable for the PLL CLK 125M from the Ethernet PHY. Active low.	
4	EN_PLL_TOP	RW	0x1	Enable the Ethernet PHY PLL	
3	EW_ENABLE	RW	0x0	Enable for the switch	
2	SWITCHCLK _OFF				
1	RES	RW	0x0	Reserved	
0	SWITCHCLK _SEL	RW	0x1	Used to select between the 40 MHz or 25 MHz REFCLK input to the	

8.4.5 Current Dither Logic Output (CURRENT_PLL_DITHER)

Address: 0x18050028 This register sets the integer and fractional

Access: Read/ Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:21	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
20:15	INT	RW	0x0 The integer part of the divider	
14	RES	RO	0x0 Reserved. Must be written with zero. Contains zeros w	
13:0	FRAC	RW	0x3FFF	The fractional part of the divider

8.4.6 Audio PLL Configuration (AUDIO_PLL_CONFIG)

Address: 0x18050030 Access: Read / Write Reset: See field description This register configures the Audio Phase Look Loop.

$$\mathsf{PLL}\;\mathsf{Frequency} = \frac{\mathsf{REFCLK}\;\mathsf{FREQ}}{\mathsf{REFDIV}} \times \left(\frac{\mathsf{DIV}\;\mathsf{FRAC}}{2^{\mathsf{18}}} + \mathsf{DIV}\;\mathsf{INT}\right) \times \frac{1}{2^{\mathsf{POSTPLDIV}}}$$

$$MCLK Frequency = \frac{PLL Frequency}{EXT DIV}$$

The frequency range is $(400-750 \text{ MHz}) / 2^{\text{POSTPLLDIV}}$. Use the "Audio

PLL Modulation Control

(AUDIO_PLL_MODULATION)" on page 128

to set the DIV_INT and DIV_FRAC.

Bit	Bit Name	Туре	Reset	Description
31:15	RES	RO	0x0	Reserved. Contains zeros when read.
14:12	EXT_DIV	RW	0x1	Digital divider to derive the MCLK from the PLL output.
11:10	RES	RO	0x0	Reserved. Contains zeros when read.
9:7	POSTPLLPWD	RW	0x1	Post power up control for the PLL.
6	RES	RO	0x0	Reserved. Contains zeros when read.
5	PLLPWD	RW	0x1	Write 0 to this bit to power up the PLL
4	BYPASS	RW	0x1	Enables bypassing of the audio PLL
3:0	REFDIV	RW	0x1	Reference clock divider

8.4.7 Audio PLL Modulation Control (AUDIO_PLL_MODULATION)

Address: 0x18050034 This register controls the jitter behavior of the

Access: Read / Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:29	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
28:11	TGT_DIV_FRAC	RW	0x0	Target value of the DIV fractional part for Audio PLL
10:7	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:1	TGT_DIV_INT	RW	0x0	Target value of the integer part for Audio PLL
0	START	RW	0x0	Starts the audio modulation. If this bit is not set, then the DIV_INT and DIV_FRAC inputs to the PLL are TGT_DIV_INT and TGT_DIV_FRAC fields of this register. Otherwise, the PLL inputs receive the modulated values.

8.4.8 Audio PLL Jitter Control (AUDIO_PLL_MOD_STEP)

Address: 0x18050038 Controls the jitter behavior of the AUDIO PLL.

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:14	FRAC	RW	0x1	Fractional part of the divider step value
13:4	INT	RW	0x0	Unused
3:0	UPDATE_CNT	RW	0x0	Update frequency. 0 denotes an update every clock

8.4.9 Current Audio Modulation Output (CURRENT_AUDIO_PLL_MODULATION)

Address: 0x1805003C Sets the current audio modulation logic output.

Access: Read-Only Reset: See field description

Bit	Bit Name	Reset	Description
31:28	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
27:10	FRAC	0x1	The fractional part of the divider
9:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:1	INT	0x0	Integer part of the divider
0	RES	0x0	Reserved

8.4.10 DDR PLL Dither Parameter (DDR_PLL_DITHER)

Address: 0x18050044 Controls the FRAC of the DDR_PLL. Should be enabled only if the DDR_CLK is from the Access: Read/Write

DDR_PLL. Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31	DITHER_ EN	RW	0x0	The step value which increments every refresh period
30:27	UPDATE_COUNT	RW	0x0	The number of refresh periods between two updates
26:20	NFRAC_STEP	RW	0x0	7-bit LSB step value which increments every refresh period
19:10	NFRAC_ MIN	RW	0x0	The minimum NFRAC value
9:0	NFRAC_MAX	RW	0x0	The maximum NFRAC value

8.4.11 CPU PLL Dither Parameter (CPU_PLL_DITHER)

Address: 0x18050048 r the CPU PLL dither.

Access: Read/Write

Bit	Bit Name	Description
31	DITHER_ EN	The step value which increments every refresh period
30:24		Reserved. Must be written with zero. Contains zeros when read.
23:18	UPDATE_COUNT	The number of 512 CPU clocks between two updates in NFRAC
17:12	NFRAC_STEP	The step value increment
11:6	NFRAC_MIN	Minimum NFRAC value. If DITHER_EN is set to 0, the min would be used.
5:0	NFRAC_MAX	Maximum NFRAC value

8.5 Reset Registers

Table 8-6 summarizes the reset registers for the AR9341.

Table 8-6. Reset Registers Summary

Address	Name	Description	Page
0x18060000	RST_GENERAL_TIMER	General Purpose Timer	page 131
0x18060004	RST_GENERAL_TIMER1_RELAOD	General Purpose Timer Reload	page 132
0x18060008	RST_WATCHDOG_TIMER_CONTROL	Watchdog Timer Control	page 132
0x1806000C	RST_WATCHDOG_TIMER	Watchdog Timer	page 132
0x18060010	RST_MISC_INTERUPT_STATUS	Misc Interrupt Status	page 133
0x18060014	RST_MISC_INTERUPT_MASK		page 134
0x18060018	RST_GLOBAL_INTERUPT_STATUS		page 134
0x1806001C			page 135
0x18060090			page 136
0x18060094	RST_GENERAL_TIMER2		page 131
0x18060098	RST_GENERAL_TIMER2_RELOAD	General Purpose Timer2 Reload	page 132
0x1806009C	RST_GENERAL_TIMER3		page 131
0x180600A0	RST_GENERAL_TIMER3_RELOAD	General Purpose Timer3 Reload	page 132
0x180600A4	RST_GENERAL_TIMER4		page 131
0x180600A8	RST_GENERAL_TIMER4_RELOAD	General Purpose Timer4 Reload	page 132
0x180600AC	RST_WMAC_INTERRUPT_STATUS		page 136
0x180600B0			page 137
0x180600B8	SPARE_STKY_REG[0:0]		page 137

8.5.1 General Purpose Timers (RST_GENERAL_TIMERx)

Timer1 Address: 0x18060000 Timer2 Address: 0x18060094 Timer3 Address: 0x1806009C

Timer4 Address: 0x180600A4

Access: Read/Write

Reset: 0x0

This timer counts down to zero, sets,

interrupts, and then reloads from the register

"General Purpose Timers Reload

(RST_GENERAL_TIMER_RELOADx)". The timer operates with REF_CLK as reference

input.

This definition holds true for timer1, timer2,

	timers, and timera

Bit	Bit Name	Description
31:0	TIMER	Timer value

8.5.2 General Purpose Timers Reload (RST_GENERAL_TIMER_RELOADx)

Timer1 Reload Address: 0x18060004 This register contains the value that will be Timer2 Reload Address: 0x18060098 loaded into the register "General Purpose Timer3 Reload Address: 0x180600A0 Timers (RST_GENERAL_TIMERx)" when it Timer4 Reload Address: 0x180600A8 decrements to zero.

Access: Read/Write

Reset: 0x0

The timer operates with REF_CLK as reference

input.

This definition holds true for timer1, timer2,

timer3, and timer4.

Bit	Bit Name	Description	
31:0	RELOAD_VALUE	Timer reload value	

8.5.3 Watchdog Timer Control (RST_WATCHDOG_TIMER_CONTROL)

Address: 0x18060008 Access: See field description

Reset: 0x0

Sets the action to take when the watchdog timer reaches zero. The options are reset, nonmaskable interrupt and general purpose

The timer operates with REF_CLK as reference

Bit	Bit Name	Type	Description	
31	LAST	RO	Indicates if the last reset was due to a watchdog timeout	
30:2	RES	RO	Reserved. Must be written with zero. Contains zeros when read.	
1:0	ACTION	RW	The action to be taken after the timer reaches zero	

8.5.4 Watchdog Timer (RST_WATCHDOG_TIMER)

Address: 0x1806000C Access: Read/Write

Bit	Bit Name	Description
31:0	TIMER	Counts down to zero and stays at zero until the software sets this timer to another value. The timer operates with REF_CLK as reference input.
		These bits should be set to a non-zero value before updating the RST_WATCHDOG_TIMER_CONTROL register to a non-zero number.

8.5.5 Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS)

Address: 0x18060010 Access: Read/Write-to-Clear

Reset: 0x0

Sets the current state of the interrupt lines that are combined to form the MiscInterupt to the processor. All bits of this register need a write to clear.

Bit	Bit Name	Description
31:21	RES	Reserved. Must be written with zero. Contains zeros when read.
20	WOW_INTR	This interrupt is generated when the MAC detects a WOW event. This bit is cleared after a write of this register.
19	SLIC_INTR	This interrupt is generated from SLIC for an unexpected frame sync in slave mode. This bit is cleared after a write of this register.
18	DDR_ACTIVITY_ IN_SF	This interrupt is generated when the memory controller detects a DDR request when in self-refresh.
17	DDR_SF_EXIT	This interrupt is generated by the memory controller upon entering self-refresh
16	DDR_SF_ENTRY	This interrupt is generated by the memory controller upon entering self-refresh
15	CHKSUM_ACC_	
14	RES	Reserved
13	LUTS_AGER_INT	This interrupt is generated from the ETH_LUT_TOP. This bit is cleared after a write
12	SW_MAC_INT	The interrupt is generated from the Ethernet switch core. This bit is cleared after a
11	RES	Reserved
10	TIMER4_INT	The interrupt corresponding to General Purpose Timer4. This bit is cleared after "General Purpose register.
9	TIMER3_INT	The interrupt corresponding to General Purpose Timer3. This bit has been cleared after being read. The timer will be immediately reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOADx)" register.
8	TIMER2_INT	The interrupt corresponding to General Purpose Timer2. This bit has been cleared after being read. The timer will be immediately reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOADx)" register.
7	MBOX_INT	SLIC/I2S/SPDIF/MBOX controller interrupt. The MBOX controller register must
6	UART1_INT	This interrupt is generated by UART1. The UART1 interrupt registers must be read
5	PC_INT	CPU performance counter interrupt. Generated whenever either of the internal CPU performance counters have bit [31] set. The relevant performance counter must be reset to clear this interrupt.
4	WATCHDOG_ INT	The watchdog timer interrupt. This interrupt is generated when the watchdog timer reaches zero and the watchdog configuration register is configured to generate a general-purpose interrupt.
3	UART0_INT	The UART0 interrupt. UART0 interrupt registers must be read before this interrupt can be cleared.
2	GPIO_INT	The GPIO interrupt. Individual lines must be masked before this interrupt can be cleared.
1	ERROR_INT	The error interrupt.
0	TIMER_INT	Interrupt occurring in correspondence to the general purpose timer0. This bit is cleared after being read. The timer has already been reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOADx)" register.

8.5.6 Miscellaneous Interrupt Mask (RST_MISC_INTERRUPT_MASK)

Address: 0x18060014 Enables or disables a propagation of interrupts Access: Read/Write in the "Miscellaneous Interrupt Status

Reset: 0x0 (RST_MISC_INTERRUPT_STATUS)" register.

Bit	Bit Name	Description		
31:21	RES	Reserved. Must be written with zero. Contains zeros when read.		
20	WOW_INTR_MASK	Enable the WOW interrupt		
19	SLIC_INTR_MASK	nables the SLIC interrupt		
18	DDR_ACTIVITY_IN_SF_ MASK	Enables the interrupt generated when the memory controller detects a DDR request when in self-refresh		
17	DDR_SF_EXIT_MASK	Enables the interrupt generated when the memory controller enters self-refresh		
16	DDR_SF_ENTRY_MASK	Enables the interrupt generated when the memory controller enters self-		
15	CHKSUM_ACC_MASK	Enables the checksum interrupt		
14	RES			
13	LUTS_AGER_INT_MASK	Enables the LUT ager interrupt		
12	SW_MAC_INT_MASK	Enables the interrupt generated by the Ethernet switch core		
11	DDR_PERF_MASK	Enables the DDR performance hit interrupt		
10	TIMER4_MASK	When set, enables Timer3 interrupt		
9	TIMER3_MASK	When set, enables Timer2 interrupt		
8	TIMER2_MASK	When set, enables Timer1 interrupt		
7	MBOX_MASK	When set, enables MBOX interrupt		
6	UART1_MASK	When set, enables the UART1 interrupt		
5	PC_MASK	When set, enables CPU performance counter interrupt		
4	WATCHDOG_MASK	When set, enables watchdog interrupt		
3	UART0_MASK	When set, enables the UART0 interrupt		
2	GPIO_MASK	When set, enables GPIO interrupt		
1	ERROR_MASK	When set, enables the error interrupt		
0	TIMER_MASK	When set, enables timer interrupt		

8.5.7 Global Interrupt Status (RST_GLOBAL_INTERRUPT_STATUS)

Address: 0x18060018 This register indicates the cause of an interrupt to the CPU from various sources.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	TIMER_INT	Internal count/compare timer interrupt
4	MISC_INT	Miscellaneous interrupt; source of the interrupt available on the "Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS)" register
3	GMAC1_INT	Ethernet1 interrupt; information available in the Ethernet1 register space
2	GMAC0_INT	Ethernet0 interrupt; information available in the Ethernet0 register space
1	USB_INT	USB interrupt
0	WMAC_INT	WMAC interrupt

8.5.8 Reset (RST_RESET)

Address: 0x1806001C Access: Read/Write Reset: See field description This register individually controls the reset to each of the chip's submodules.

Bit	Bit Name	Reset	Туре	Description
31	HOST_RESET	0x0	RO	The host DMA reset status
30	SLIC_REST	0x0	RW	The SLIC reset
29	HDMA_RESET	0x1	RW	The host DMA reset
28	EXTERNAL_RESET	0x1	RW	Commands an external reset (SYS_RST_L pin) immediately;
		0.00	XVV	inverted before being sent to the pin.
27	RTC_RESET	0x1	RW	The RTC reset
26	RES	0x0	RO	Reserved. Must be written with 0. Contains zeroes when read.
25	CHKSUM_ACC_RESET	0x0	RW	Used to reset the checksum
24	FULL_CHIP_RESET	0x0	RW	Used to command a full chip reset. This is the software equivalent of pulling the reset pin. The system will reboot with
23	RESET_GMAC1_MDIO	0x1	RW	Resets the Ethernet 1 MDIO
22	RESET_GMAC0_MDIO	0x1	RW	Resets the Ethernet 0 MDIO
21	CPU_NMI	0x0	RW	Used to send an NMI to the CPU. Always zero when read. The watchdog timer can also be used to generate NMI/full chip
20	CPU_COLD_RESET	0x0	RW	Used to cold reset the entire CPU. This bit will be cleared automatically immediately after the reset. Always zero when
19	HOST_RESET_INT	0x0	RW	Host DMA reset interrupt. Cleared after a write to this bit
18	RES	0x0	RO	Reserved. Must be written with 0. Contains zeroes when read.
17	UART1_RESET	0x0	RW	Resets the DDR controller
16	DDR_RESET	0x0	RW	Resets the DDR controller. Self-cleared to 0 by hardware
15	USB_PHY_PLL_PWD_			
14		0x0	RO	Reserved. Must be written with 0. Contains zeroes when read.
13	GMAC1_MAC_RESET	0x1	RW	Used to reset the GMAC1 MAC
12	ETH_SWITCH_			
11	USB_PHY_ARESET	0x1	RW	Resets the USB PHY's analog
10	HOST_DMA_INT	0x0	RO	Host DMA interrupt occurred
9	GMAC0_MAC_RESET	0x1	RW	Used to reset the GMAC0 MAC
8	ETH_SWITCH_ RESET	0x1	RW	Resets the switch digital portion
7:6	RES	0x0	RO	Reserved. Must be written with 0. Contains zeroes when read.
5	USB_HOST_RESET	0x1	RW	Used to reset the USB Host Controller
4	USB_PHY_RESET	0x1	RW	Used to reset the USB PHYs
3	USB_PHY_SUSPEND_	0x0	RW	Used to set the USB suspend state
	OVERRIDE			0 Used to put the USB PHY in suspend state
				Delegates the Core to control the USB PHY suspend state
2	LUT_RESET	0x0	RW	Resets the lookup engine in the GMAC
1	MBOX_RESET	0x0	RW	Resets the MBOX controller
0	I2S_RESET	0x0	RW	Resets the I ² S controller

8.5.9 Chip Revision ID (RST_REVISION_ID)

Address: 0x18060090

This register is the revision ID for the chip.

Bit	Bit Name	Reset	Description
31:0	VALUE	0x011C0	Revision ID value

8.5.10 WMAC Interrupt Status (RST_WMAC_INTERRUPT_STATUS)

Address: 0x180600AC Access: Read-Only

This register is used to read the interrupt statuses for Host and WMAC interrupts.

Bit	Bit Name	escription	
31:4	RES	Reserved. Must be written with zero. Contains zeros when read.	
3	WMAC_RXHP_INT	Interrupt corresponding to the WMAC high priority receive queue	
2	WMAC_RXLP_INT	Interrupt corresponding to the WMAC low priority receive queue	
1	WMAC_TX_INT	Interrupt corresponding to the WMAC transmission	
0	WMAC_MISC_INT	Interrupt corresponding to the WMAC	

8.5.11 Reset Bootstrap (RST_BOOTSTRAP)

Address: 0x180600B0 Access: Read-Only

Reset: See field descriptions

This register contains the bootstrap values latched during reset.

Bit	Bit Name	Reset	Description	
31:24	RES	0x0	Reserved	
23	SW_OPTION8	0x0	Spare b	pootstrap pin
22	SW_OPTION7	0x0		
21	SW_OPTION6	0x0		
20	SW_OPTION5	0x0		
19	SW_OPTION4	0x0		
18	SW_OPTION3	0x0	=	
17	SW_OPTION2	0x0		
16	SW_OPTION1	0x0		
15:8				
7	USB_MODE	0x0	0	Selects USB HOST (Default)
6	R			
5	EJTAG_MODE	0x0	0	Selects JTAG mode (Default)
4	REF_CLK	0x0	0	Selects REF_CLK_25MHz (default)
3	R			
2	BOOT_SELECT	0x0	0	Selects boot from ROM (default)
1	SDRAM_DISABLE	0x0	0	SDRAM enabled (default)
0	DDR_SELECT	0x1	0	Selects DDR2

8.5.12 Sticky Register Value (SPARE_STKY_REG[0:0])

Address: 0x180600B8 Access: Read/Write Reset: 0x0

This register is a generic register only affected by power-cycling. This register can be used by the CPU to save and restore critical state bits during a suspend/resume event for example.

Bit	Bit Name	Description
31	USB_RESUME _RESET_DISABLE	If this bit is set to a 1, then USB will not be affected during a reset to bring it out of resume. This bit is a sticky register.
30:0	VALUE	Sticky register value This value is reset only with power on reset (not on any other reset).

8.6 GMAC Interface Registers

Table 8-7 summarizes the GMAC interface registers for the AR9341.

Table 8-7. GMAC Interface Registers Summary

Address	Name	Description	Page
0x18070000	ETH_CFG	Ethernet Configuration	page 138
0x18070004	LUTS_AGER_INTR	LUT4s Ager Interrupt Status	page 138
0x18070008	LUTS_AGER_INTR_MASK	LUTs Ager Interrupt Mask	page 139
0x1807000C	GMAC0_RX_DATA_CRC_CNTRL	GMAC0 RX Data CRC Calculation Control	page 139
0x18070010	GMAC0_RX_DATA_CRC	GMAC0 Valid Rx Data CRC Value	page 139

8.6.1 Ethernet Configuration (ETH_CFG)

Address: 0x18070000 Access: Read/Write Reset: 0x0

This register determines how GMAC0 is interfaced in the AR9341. If SW_ONLY_MODE FE ports attach to the

Bit	Bit Name	Description
31:14	RES	
13	SW_ACC_ MSB_FIRST	Enables MSB data first during the Switch register write
12:10	RES	
9	SW_APB_ACCESS	Enables APB access to the Switch registers instead of the MDIO
8	SW_PHY_ADDR_SWAP	Enables swapping of PHY0 and PHY4 in the Switch for the WAN
7	SW_PHY_SWAP	Enables swapping of PHY0 and PHY4 in the Switch for the WAN
6	SW_ONLY_MODE	Enables the WAN port PHY to be connected to the Switch instead of GMAC0
5:0	RES	

8.6.2 LUTs Ager Interrupt Status (LUTs_AGER_INT)

Address: 0x18070004 Access: Read/Write

This register configures the interrupt settings for the Look Up Table (LUT).

Bit	Bit Name	Descrip	ption		
31:4	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
3:0	INTR	Denote	Denotes the interrupt status		
		Bit[0]	Bit[0] Egress fragmentation LUT		
		Bit[1]	Bit[1] Egress LUT		
		Bit[2]	Bit[2] Ingress fragmentation LUT		
		Bit[3]	Ingress LUT		

8.6.3 LUTs Ager Interrupt Mask (LUTS_AGER_INTR_MASK)

Address: 0x18070008 Access: Read/Write

This register configures the interrupt mask settings for the Look Up Table (LUT).

Reset: See field description

Bit	Bit Name	Туре	Reset	Descrip	otion	
31:4	RES	RO	0x0	Reserve	Reserved. Must be written with zero. Contains zeros when read.	
3:0	INTR	RW	0xF	Denotes	Denotes the interrupt status mask	
				Bit[0] E	Egress fragmentation LUT	
				Bit[1] E	Egress LUT	
				Bit[2] I	ingress fragmenting LUT	
				Bit[3] I	Ingress LUT	

8.6.4 GMACO Rx Data CRC Calculation Control (GMACO_RXDATA_CRC_CONTROL)

Address: 0x1807000C

This register is used to set the CRC calculations

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description		
31:2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.		
1	RST	0x1	CRC configuration		
0	EN	0x0	CRC calculation configuration		

8.6.5 GMACO Valid RX Data CRC Value (GMACO_RXDATA_CRC)

Address: 0x18070010 Access: Read-Only

This register holds the CRC values for the FIFO

speed.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	VAL	When enabled, holds the CRC values for the valid data that goes into async $10/100/1000$ Mbps speed FIFO as per $x16 + x12 + x5 + 1$.

8.7 GMACO Ingress NAT /Egress NAT Registers

Table 8-8 summarizes the GMAC0 ingress/egress NAT registers for the AR9341.

Table 8-8. GMACO Ingress NAT/Egress NAT Registers Summary

Address	Name	Description	Page
0x18080000	EG_CPU_REQ	Egress CPU Requested LUT Entry Lookup	page 143
0x18080004	EG_CPU_REQ_STATUS	Egress CPU Request Status	page 143
0x18080008	EG_INFO_DW0	Egress DW0 Information	page 144
0x1808000C	EG_CPU_REQUESTED_INFO_DW0	Egress CPU Requested DW0 Information	page 144
0x18080010	EG_KEY_DW0	Egress DW0 Key	page 144
0x18080014			page 144
0x18080018	EG_AGER_KEY_DW0		page 144
0x1808001C	EG_AGER_KEY_DW1		page 145
0x18080020			page 145
0x18080024			page 145
0x18080028			page 145
0x1808002C			page 146
0x18080030			page 146
0x18080034			page 146
0x18080038			page 146
0x1808003C			page 147
0x18080040	EG_AGER_TIMEOUT		page 147
0x18081000		Ingress CPU Requested LUT Entry Lookup	page 147
0x18081004	IG_CPU_REQ_STATUS		page 148
0x18081008			page 148
0x1808100C			page 148
0x18081010			page 149
0x18081014			page 149
0x18081018	IG_CPU_REQUESTED_INFO_DW0	Ingress CPU Requested DW0 Information	page 149
0x1808101C	IG_CPU_REQUESTED_INFO_DW1	Ingress CPU Requested DW1 Information	page 149
0x18081020	IG_CPU_REQUESTED_INFO_DW2	Ingress CPU Requested DW2 Information	page 149
0x18081024	IG_CPU_REQUESTED_INFO_DW3	Ingress CPU Requested DW3 Information	page 150
0x18081028	IG_KEY_DW0	Ingress DW0 Key	page 150
0x1808102C	IG_AGER_KEY_DW0	Ingress Ageout DW0 Key	page 150
0x18081030	IG_AGER_INFO	Ingress Ager FIFO Signals	page 150
0x18081034	IG_MEM	Ingress Memory	page 151
0x18081038	IG_MEM_DW0	Ingress Memory DW0	page 151
0x1808103C	IG_MEM_DW1	Ingress Memory DW1	page 151
0x18081040	IG_MEM_DW2	Ingress Memory DW2	page 151
0x18081044	IG_MEM_DW3	Ingress Memory DW3	page 151
0x18081048	IG_LINKLIST	Ingress Linklist	page 152
0x1808104C	IG_SUBTABLE	Ingress Subtable Data	page 152

Table 8-8. GMACO Ingress NAT/Egress NAT Registers Summary (continued)

Address	Name	Description	Page
0x18081050	IG_AGER_TICK	Ingress Timer Ager Values	page 152
0x18081054	IG_AGER_TIMEOUT	Ingress Ager Timeout	page 152
0x180811D8	TxQOS_ARB_CFG	Tx QoS Arbiter Configuration	page 153
0x180811E4	DMATxStatus_123	Tx Status and Packet Count	page 153
0x18081200	LCL_MAC_ADDR_DW0	Local MAC Address Dword0	page 153
0x18081204	LCL_MAC_ADDR_DW0	Local MAC Address Dword1	page 154
0x18081208	NXT_HOP_DST_ADDR_DW0	Next Hope Router's MAC Address Dword0	page 154
0x1808120C	NXT_HOP_DST_ADDR_DW01	Next Hope Router's MAC Address Dword1	page 154
0x18081210	GLOBAL_IP_ADDR0	Local Global IP Address 0	page 154
0x18081214	GLOBAL_IP_ADDR1		page 154
0x18081218	GLOBAL_IP_ADDR2		page 155
0x1808121C	GLOBAL_IP_ADDR3		page 155
0x18081228		Egress NAT Control and Status	page 155
0x1808122C			page 156
0x18081230		Ingress NAT Control and Status	page 156
0x18081234			page 156
0x18081238		Egress ACL Control and Status	page 157
0x1808123C		Ingress ACL Control and Status	page 157
0x18081240	EG_ACL_CMD0_AND_ACTION	Egress ACL CMD0 and Action	page 158
0x18081244		Egress ACL CMD1, CMD2, CMD3, CMD4	page 158
0x18081248	EG_ACL_OPERAND0		page 158
0x1808124C	AG_ACL_OPERAND1		page 159
0x18081250	EG_ACL_MEM_CONTROL	Egress ACL Memory Control	page 159
0x18081254	IG_ACL_CMD0_AND_ACTION	Ingress ACL CMD0 and Action	page 160
0x18081258		Ingress ACL CMD1, CMD2, CMD3, CMD4	page 160
0x1808125C	IG_ACL_OPERAND0		page 160
0x1808125C	IG_ACL_OPERAND1		page 161
0x18081264	IG_ACL_MEM_CONTROL	Ingress ACL Memory Control	page 161
0x18081268	IG_ACL_COUNTER_GRP0	Ingress ACL Counter Group 0	page 162
0x18081268	IG_ACL_COUNTER_GRP1	Ingress ACL Counter Group 1	page 162
0x18081270	IG_ACL_COUNTER_GRP2	Ingress ACL Counter Group 2	page 162
0x18081274	IG_ACL_COUNTER_GRP3	Ingress ACL Counter Group 3	page 162
0x18081278	IG_ACL_COUNTER_GRP4	Ingress ACL Counter Group 4	page 163
0x1808127C	IG_ACL_COUNTER_GRP5	Ingress ACL Counter Group 5	page 163
0x18081280	IG_ACL_COUNTER_GRP6	Ingress ACL Counter Group 6	page 163
0x18081284	IG_ACL_COUNTER_GRP7	Ingress ACL Counter Group 7	page 163
0x18081288	IG_ACL_COUNTER_GRP8	Ingress ACL Counter Group 8	page 164
0x1808128C	IG_ACL_COUNTER_GRP9	Ingress ACL Counter Group 9	page 164
0x18081290	IG_ACL_COUNTER_GRP10	Ingress ACL Counter Group 10	page 164
0x18081294	IG_ACL_COUNTER_GRP11	Ingress ACL Counter Group 11	page 164
0x18081298	IG_ACL_COUNTER_GRP12	Ingress ACL Counter Group 12	page 165
0x1808129C	IG_ACL_COUNTER_GRP13	Ingress ACL Counter Group 13	page 165

Table 8-8. GMACO Ingress NAT/Egress NAT Registers Summary (continued)

Address	Name	Description	Page
0x180812A0	IG_ACL_COUNTER_GRP14	Ingress ACL Counter Group 14	page 165
0x180812A4	IG_ACL_COUNTER_GRP15	Ingress ACL Counter Group 15	page 165
0x180812A8	EG_ACL_COUNTER_GRP0	Egress ACL Counter Group 0	page 166
0x180812AC	EG_ACL_COUNTER_GRP1	Egress ACL Counter Group 1	page 166
0x180812B0	EG_ACL_COUNTER_GRP2	Egress ACL Counter Group 2	page 166
0x180812B4	EG_ACL_COUNTER_GRP3	Egress ACL Counter Group 3	page 166
0x180812B8	EG_ACL_COUNTER_GRP4	Egress ACL Counter Group 4	page 167
0x180812BC	EG_ACL_COUNTER_GRP5	Egress ACL Counter Group 5	page 167
0x180812C0	EG_ACL_COUNTER_GRP6	Egress ACL Counter Group 6	page 167
0x180812C4	EG_ACL_COUNTER_GRP7		page 167
0x180812C8	EG_ACL_COUNTER_GRP8		page 168
0x180812CC	EG_ACL_COUNTER_GRP9		page 168
0x180812D0	EG_ACL_COUNTER_GRP10		page 168
0x180812D4	EG_ACL_COUNTER_GRP11		page 168
0x180812D8	EG_ACL_COUNTER_GRP12		page 169
0x180812DC	EG_ACL_COUNTER_GRP13		page 169
0x180812E0	EG_ACL_COUNTER_GRP14		page 169
0x180812E4	EG_ACL_COUNTER_GRP15		page 169
0x180812E8	CLEAR_ACL_COUNTERS		page 170
0x18081320	IG_ACL_RULE_VECTOR_LOWER	Ingress ACL Rule Vector Lower	page 170
0x18081324	IG_ACL_RULE_VECTOR_UPPER	Ingress ACL Rule Vector Upper	page 170
0x18081328	EG_ACL_RULE_VECTOR_LOWER	Egress ACL Rule Vector Lower	page 170
0x1808132C	EG_ACL_RULE_VECTOR_UPPER	Egress ACL Rule Vector Upper	page 170
0x18081334	IG_ACL_RULE_TABLE0_LOWER	Ingress ACL Rule Table0 Lower	page 171
0x18081338	IG_ACL_RULE_TABLE0_UPPER		page 171
0x1808133C	IG_ACL_RULE_TABLE1_LOWER	Ingress ACL Rule Table1 Lower	page 171
0x18081340	IG_ACL_RULE_TABLE1_UPPER		page 171
0x18081344	IG_ACL_RULE_TABLE2_LOWER	Ingress ACL Rule Table2 Lower	page 171
0x18081348	IG_ACL_RULE_TABLE2_UPPER		page 172
0x1808134C	IG_ACL_RULE_TABLE3_LOWER	Ingress ACL Rule Table3 Lower	page 172
0x18081350	IG_ACL_RULE_TABLE3_UPPER	Ingress ACL Rule Table3 Upper	page 172
0x18081354	EG_ACL_RULE_TABLE0_LOWER	Egress ACL Rule Table0 Lower	page 172
0x18081358	EG_ACL_RULE_TABLE0_UPPER	Egress ACL Rule Table0 Upper	page 172
0x1808135C	EG_ACL_RULE_TABLE1_LOWER	Egress ACL Rule Table1 Lower	page 173
0x18081360	EG_ACL_RULE_TABLE1_UPPER	Egress ACL Rule Table1 Upper	page 173
0x18081364	EG_ACL_RULE_TABLE2_LOWER	Egress ACL Rule Table2 Lower	page 173
0x18081368	EG_ACL_RULE_TABLE2_UPPER	Egress ACL Rule Table2 Upper	page 173
0x1808136C	EG_ACL_RULE_TABLE3_LOWER	Egress ACL Rule Table3Lower	page 173
0x18081370	EG_ACL_RULE_TABLE3_UPPER	Egress ACL Rule Table3 Upper	page 173

8.7.1 Egress CPU Requested LUT Entry Lookup (EG_CPU_REQ)

Address: 0x18080000 Access: Read/Write Reset: See field description This register denotes the CPU request to insert, delete or lookup an entry in the LUT.

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:5	PKT_TYPE	0x1	Type of packet to be inserted into the LUT 1 TCP 2 UDP
4	REQ	0x0	3 ICMP This bit is to be asserted to issue any command. Transitioning this bit from 0 to 1 is treated as a new request.
3	INIT	0x0	Initializes the total LUT
2:0	COMMAND	0x0	Indicates the type of operation the CPU wants to perform

8.7.2 Egress CPU Request Status (EG_CPU_REQ_STATUS)

Address: 0x18080004 Access: Read/Write

This register denotes and sets status for CPU

Bit	Bit Name	Descriptio	n
31:7	RES	Reserved. I	Must be written with zero. Contains zeros when read.
6	BUCKET_FULL	Denotes the	e status of the insertion request.
5	REQ_ DONE		otes the CPU request was fulfilled. To know the statuses of other such as insert_status, bins_full, bucket_full, check their respective
4	INSERT_STATUS		ne status of the insert operation. This can be checked along with the ID_STATUS.
		0 Inse	ertion not successful
		1 Inse	ertion successful
3	BINS_FULL	Current en	try insertion failed due to bins_full
2	DUPLICATE_KEY	Denotes the	e status of the inserted duplicate key.
		1 Dup	plicate key inserted using the insert command
		2 Inse	erted key is not duplicate
1	DATA_ FOUND	This bit is c	hecked when the COMMAND_STATUS or REQ_DONE bit is set to 1.
		0 Data	a not found during lookup or deletion
		1 Data	a found during lookup or deletion
0	COMMAND_STATUS	This bit hol	lds the equivalency of a CPU issued request

8.7.3 Egress DWO Information (EG_INFO_DWO)

Address: 0x18080008 Access: Read/Write

Reset: See field description

This register holds 24 bits of Egress

information.

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:0	DWORD	0x7FFFF	24 bits of Egress information

8.7.4 Egress CPU Related DWO Information (EG_CPU_REQUESTED_INFO_DWO)

Address: 0x1808000C This register holds 24 bits of Egress information Access: Read/Write found during deletion or lockup operations.

Reset: See field description

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:0	DWORD	0x7FFFF	24 bits of Egress information found during deletion or lookup operations

8.7.5 Egress DWO Key (EG_KEY_DWO)

Address: 0x18080010 Access: Read/Write

Reset: 0x0

This register holds LSB bits of the Egress Key.

Bit	Bit Name	Description
31:0	DWORD	32 LSB bits of the Egress key

8.7.6 Egress DW1 Key (EG_KEY_DW1)

Address: 0x18080014 Access: Read/Write

Reset: 0x0

This register holds MSB bits of the Egress Key.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	DWORD	32 MSB bits of the Egress key

8.7.7 Egress Ageout DWO Key (EG_AGER_KEY_DWO)

Address: 0x18080018 This register holds LSB bits of the Egress Key. Access: Read-Only

Bit	Bit Name	Description
31:0	DWORD	32 LSB bits of the Egress key that were deleted during the ageout process

8.7.8 Egress Ageout DW1 Key (EG_AGER_KEY_DW1)

Address: 0x1808001C Access: Read/Write

Reset: 0x0

This register holds MSB bits of the Egress Key.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	DWORD	18 MSB bits of the key deleted during the ageout process

8.7.9 Egress Ager FIFO Signals (EG_AGER_INFO)

Address: 0x18080020 Access: Read/Write This register denotes the statuses for the Ager FIFO signals.

Reset: 0x0

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	DISABLE	Denotes the status of the ager	
1	EMPTY	Denotes is the ager FIFO is empty or not	
0	READ	A rising transition of this signal removes the key from the ager FIFO. This bit can only	

8.7.10 Egress Memory (EG_MEM)

Address: 0x18080024 Access: Read/Write

Reset: 0x0

This register is used to configure the settings

Bit	Bit Name	Desc	ription		
31:12	RES	Rese	Reserved. Must be written with zero. Contains zeros when read.		
11	ACK	Ackr	cknowledgement for a read/write		
10:9	RW	Set to	Set to read or write to the memory		
		0	Read		
		1	Write		
8:0	ADDR	Deno	Denotes the address of the MAIN_MEMORY for a read/write request		

8.7.11 Egress Memory DWO (EG_MEM_DWO)

Address: 0x18080028 Access: Read/Write This register is used to read or write to the main memory.

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD0 data to the main memory for a read/write request

8.7.12 Egress Memory DW1 (EG_MEM_DW1)

Address: 0x1808002C This register is used to read or write to the Access: Read-Only main memory.

Reset: 0x0

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD1 data to the main memory for a read/write request

8.7.13 Egress Memory DW2 (EG_MEM_DW2)

Address: 0x18080030 This register is used to read or write to the

Access: Read-Only main memory.

Reset: 0x0

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD2 data to the main memory for a read/write request

8.7.14 Egress Link List (EG_LINKLIST)

Address: 0x18080034 This register is used to read or write to the link

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description		
31:15	RES	Reserved. Must be written with zero. Contains zeros when read.		
14:8	DATA	ne Read/Write data of the linklist		
7	RW	Linklist Read/Write request		
6:0	ADDR	The linklist address		

8.7.15 Egress Sub-Table Data (EG_SUBTABLE)

Address: 0x18080038 This register is used to read or write to the sub-Access: Read/Write

Bit	Bit Name	Description
31:14	RES	Reserved. Must be written with zero. Contains zeros when read.
13:8	DATA	Holds the Read/Write data related to the subtable
7:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	RW	A Read/Write request for the subtable
4:0	ADDR	The address of the subtable Read/Write address

8.7.16 Egress Timer Ager Values (EG_AGER_TICK)

Address: 0x1808003C Access: Read/Write Reset: See field description This register denotes the ager timer related values.

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:0	TIME	0x100000	A nano-second timer which allows MSECTIMER increment by one when the free running counter reaches the end of the timer value

8.7.17 Egress Ager Timeout (EG_AGER_TIMEOUT)

Address: 0x18080040 Access: Read/Write

Access: Read/Write Reset: 0x20 This register denotes the ager timeout value.

Bit	Bit Name	Description
31:22	ICMP_ VALUE	"Egress Timer Ager
21:12	UDP_ VALUE	"Egress Timer Ager
11:0	TCP_VALUE	"Egress Timer Ager Values

8.7.18 Ingress CPU Requested LUT Entry Lookup (IG_CPU_REQ)

Address: 0x18081000 Access: Read/Write Reset: See field description This register denotes the CPU request to insert, delete or lookup an entry in the LUT.

Bit	Bit Name	Reset	Des	cription
31:7	31:7 RES 0x0 Reserved. M		Rese	erved. Must be written with zero. Contains zeros when read.
6:5	PKT_TYPE	0x1	Type of packet to be inserted into the LUT	
4	REQ	0x0		bit is to be asserted to issue any command. Transitioning this bit from 0 is treated as a new request.
3	INIT	0x0	0 Initializes the total LUT	
			0	Out of initialization
			1	Initialize
2:0	COMMAND	0x0	Indi	cates the type of operation the CPU wants to perform
			1	Idle
			2	Lookup
			3	Insert
			4	Delete

8.7.19 Ingress CPU Request Status (IG_CPU_REQ_STATUS)

Address: 0x18081004 This register denotes and sets status for CPU Access: Read/Write requests.

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	BUCKET_ FULL	Denotes the status of the insertion request.
		0 Indifferent
		1 Insertion failed because the bucket is full
5	REQ_ DONE	A one denotes the CPU request was fulfilled. To know the statuses of other commands such as insert_status, bins_full, bucket_full, check their status.
4	INSERT_STATUS	Indicates the status of the insert operation. This can be checked along with the
3	BINS_ FULL	Current entry insertion failed due to bins_full
2	DUPLICATE_KEY	Denotes the status of the inserted duplicate key.
1	DATA_ FOUND	This bit is checked when the COMMAND_STATUS or REQ_DONE bit is set to 1.
0	COMMAND_STATUS	This bit holds the equivalency of a CPU issued request

8.7.20 Ingress DWO Information (IG_INFO_DWO)

Address: 0x18081008 This register holds 32 bits of Ingress

Access: Read/Write Reset: 0xFFFFFFF

Bit	Bit Name	Description
31:0		24 bits of Ingress information which will be inserted into the LUT along with the key DWORD0 from the LSB

8.7.21 Ingress DW1 Information (IG_INFO_DW1)

Address: 0x1808100C This register holds 32 bits of Ingress Access: Read/Write information.

Reset: 0xFFFFFFF

Bit	Bit Name	Description
31:0	DWORD	24 bits of Ingress information which will be inserted into the LUT along with the key DWORD1 from the LSB

8.7.22 Ingress DW2 Information (IG_INFO_DW2)

Address: 0x18081010 This register holds 32 bits of Ingress information.

Reset: 0xFFFFFFF

Bit	Bit Name	Description	
31:0		24 bits of Ingress information which will be inserted into the LUT along with the key DWORD2 from the LSB	

8.7.23 Ingress DW3 Information (IG_INFO_DW3)

Address: 0x18081014 This register holds 32 bits of Ingress

Access: Read/Write information.
Reset: 0xFFFFFFF

Bit	Bit Name	Description
31:0	DWORD	24 bits of Ingress information which will be inserted into the LUT along with the key

8.7.24 Ingress CPU Related DWO Information (IG_CPU_REQUESTED_INFO_DWO)

Address: 0x18081018 This register holds 32 bits of Ingress

Access: Read/Write information found during deletion or lookup Reset: 0xFFFFFFF

 Bit
 Bit Name
 Description

 31:0
 DWORD
 32 bits of Ingress information found during deletion or lookup of the operation DWORD0

8.7.25 Ingress CPU Related DW1 Information (IG_CPU_REQUESTED_INFO_DW1)

Address: 0x1808101C This register holds 32 bits of Ingress

Access: Read/Write information found during deletion or lookup

Reset: 0xFFFFFFF

Bit	Bit Name	Description	
31:0	DWORD	32 bits of Ingress information found during deletion or lookup of the operation DWORD1	

8.7.26 Ingress CPU Related DW2 Information (IG_CPU_REQUESTED_INFO_DW2)

Address: 0x18081020 This register holds 32 bits of Ingress

Access: Read/Write information found during deletion or lookup

Reset: 0xFFFFFFF operations.

Bit	Bit Name	Description
31:0	DWORD	32 bits of Ingress information found during deletion or lookup of the operation DWORD2 from the LSB

8.7.27 Ingress CPU Related DW3 Information (IG_CPU_REQUESTED_INFO_DW3)

Address: 0x18081024 This register holds 32 bits of Ingress

Access: Read/Write information found during deletion or lookup Reset: 0xFFFFFFF operations.

Bit	Bit Name	Description
31:0	DWORD	32 bits of Ingress information found during deletion or lookup of the operation DWORD3 from the LSB

8.7.28 Ingress DWO Key (IG_KEY_DWO)

Address: 0x18081028 This register holds LSB bits of the Ingress Key.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19:0	DWORD	20 LSB bits of the Ingress key

8.7.29 Ingress Ageout DWO Key (IG_AGER_KEY_DWO)

Address: 0x1808102C This register holds LSB bits of the Ingress Key.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19:0	DWORD	20 LSB bits of the Ingress key deleted during the ageout process

8.7.30 Ingress Ager FIFO Signals (IG_AGER_INFO)

Address: 0x18081030 This register denotes the statuses for the Ager

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
2	DISABLE	0x0	Denotes the status of the ager
			0 Ager is active
			1 Ager is inactive
1	EMPTY	0x1	Denotes is the ager FIFO is empty or not
			0 Ager FIFO is not empty
			1 Ager FIFO is empty
0	READ	0x0	A rising transition of this signal removes the key from the ager FIFO. This bit can only be read when the previous EMPTY bit is 0.

8.7.31 Ingress Memory (IG_MEM)

Address: 0x18081034 Access: Read/Write

Reset: 0x0

This register is used to configure the settings

for a memory read or write.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11	ACK	Acknowledgement for a read/write
10:9	RW	Set to read or write to the memory
		0 Read
		1 Write
8:0	ADDR	Denotes the address of the MAIN_MEMORY for a read/write request

8.7.32 Ingress Memory DWO (IG_MEM_DWO)

Address: 0x18081038 Access: Read/Write

Reset: 0x0

This register is used to read or write to the

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD0 data to the main memory for a read/write request from the LSB

8.7.33 Ingress Memory DW1 (IG_MEM_DW1)

Address: 0x1808103C Access: Read/Write

Reset: 0x0

This register is used to read or write to the

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD1 data to the main memory for a read or write request from the LSB

8.7.34 Ingress Memory DW2 (IG_MEM_DW2)

Address: 0x18081040 Access: Read/Write

Reset: 0x0

This register is used to read or write to the

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD2 data to the main memory for a read or write request

8.7.35 Ingress Memory DW3 (IG_MEM_DW3)

Address: 0x18081044 This register is used to read or write to the Access: Read/Write main memory.

Bit	Bit Name	Description
31:0	DWORD	Read/Write the DWORD3 data to the main memory for a read or write request

8.7.36 Ingress Link List (IG_LINKLIST)

Address: 0x18081048 Access: Read/Write

Reset: 0x0

This register is used to read or write to the link

list.

Bit	Bit Name	Descrip	tion		
31:15	RES	Reserved	Reserved. Must be written with zero. Contains zeros when read.		
14:8	DATA	The Read/Write data of the linklist			
7	RW	Linklist Read/Write request			
		0	Read		
		1	Write		
6:0	ADDR	The link	list address		

8.7.37 Ingress Sub-Table Data (IG_SUBTABLE)

Address: 0x1808104C Access: Read/Write

Reset: 0x0

This register is used to read or write to the sub-

Bit	Bit Name	Description
31:14	RES	Reserved. Must be written with zero. Contains zeros when read.
13:8	DATA	Holds the Read/Write data related to the subtable
7:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	RW	A Read/Write request for the subtable
4:0	ADDR	The address of the subtable Read/Write address

8.7.38 Ingress Timer Ager Values (IG_AGER_TICK)

Address: 0x18081050 Access: Read/Write

This register denotes the ager timer related

Reset: See field description

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:0	TIME	0x100000	A nano-second timer which allows MSECTIMER increment by one when the

8.7.39 Ingress Ager Timeout (IG_AGER_TIMEOUT)

Address: 0x18081054 This register denotes the ager timeout value. Access: Read/Write

Bit	Bit Name	Description
31:22	ICMP_VALUE	The ICMP timeout value which depends on the TIME bit in "Ingress Timer Ager Values (IG_AGER_TICK)" on page 152
21:12	UDP_VALUE	The UDP timeout value which depends on the TIME bit in "Ingress Timer Ager Values (IG_AGER_TICK)" on page 152
11:0	TCP_VALUE	TCP timeout value which depends on the TIME bit in "Ingress Timer Ager Values (IG_AGER_TICK)" on page 152

8.7.40 Tx QoS Arbiter Configuration (TxQOS_ARB_CFG)

Address: 0x180811D8 Access: Read/Write Reset: See field description This register is used to set the arbitration for QoS Weighted Round-Robin (WRR) queues. Note that Wgt0/1/2/3 should not be 0 if WRR is selected.

Bit	Bit Name	Reset	Description
31:26	WGT3	0x1	Weight for queue 3, if WRR is selected
25:20	WGT2	0x2	Weight for queue 2, if WRR is selected
19:14	WGT1	0x4	Weight for queue 1, if WRR is selected
13:8	WGT3	0x8	Weight for queue 0, if WRR is selected
7:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	RRMODE	0x0	Used to select the QoS priority mode

8.7.41 Tx Status and Packet Count (DMATXSTATUS)

Address: 0x180811E4 Access: Read/Write

Reset: 0x0

This register is the Tx Status packet count register for QoS queues 1 to 3.

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:16	TXPKTCOUNT _CH3	8-bit transmit packet counter that is incremented whenever the built-in DMA controller successfully transfers a packet for Queue 3, and decremented whenever the host writes a 1 to bit TXPKTSENT_CH3 in the DMATxStatus register. (Default = 0)
15:8	TXPKTCOUNT _CH2	8-bit transmit packet counter that is incremented whenever the built-in DMA controller successfully transfers a packet for Queue 2, and decremented whenever the host writes a 1 to bit TXPKTSENT_CH2 in the DMATxStatus register. (Default = 0)
7:0	TXPKTCOUNT _CH1	8-bit transmit packet counter that is incremented whenever the built-in DMA controller successfully transfers a packet for Queue 1, and decremented whenever the host writes a 1 to bit TXPKTSENT_CH1 in the DMA Tx Status register. (Default = 0)

8.7.42 Local MAC Address DwordO (LCL_MAC_ADDR_DWO)

Address: 0x18081200 Access: Read/Write Reset: 0x0 This register contains bits for the Dword0 of the local MAC address. This register is available only for GE0 MAC.

Bit	Bit Name	Description
31:0	LOCAL_MAC _ADDR_DW0	Bits [31:0] of the local L2 MAC address

8.7.43 Local MAC Address Dword1 (LCL_MAC_ADDR_DW1)

Address: 0x18081204 This register contains bits for the Dword0 of Access: Read/Write the local MAC address. This register is

Reset: 0x0 available only for GE0 MAC.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	LOCAL_MAC_ADDR _DW0	Bits [47:32] of the local L2 MAC address

8.7.44 Next Hop Router's MAC Address Dword0 (NXT_HOP_DST_ADDR_DW0)

Address: 0x18081208 This register contains bits of the next hop router's MAC address Dword0, and is only

Reset: 0x0

Bit	Bit Name	Description
31:0	LOCAL_MAC_ DST_ADDR_DW0	

8.7.45 Next Hop Router's MAC Address Dword1

Address: 0x1808120C This register contains bits of the next hop router's MAC address Dword1, and is only

Reset: 0x0

Bit	Bit Name	Description
31:0	LOCAL_MAC_ DST_ADDR_DW1	

8.7.46 Local Global IP Address 0 (GLOBAL_IP_ADDRO)

Address: 0x18081210 This register contains the local global IP address: Read/Write address and is only available for GE0 MAC.

Reset: 0x0

Bit	Bit Name	Description
31:0	LOCAL_GLOBAL_ IP_ADDR0	Local IP address index 0. Up to 4 global IP addresses are supported for this interface

8.7.47 Local Global IP Address 1 (GLOBAL_IP_ADDR1)

Address: 0x18081214 This register contains the local global IP Access: Read/Write address and is only available for GE0 MAC.

Bit	Bit Name	Description
31:0	LOCAL_GLOBAL_ IP_ADDR1	Local IP address index 1. Up to 4 global IP addresses are supported for this interface

8.7.48 Local Global IP Address 2 (GLOBAL_IP_ADDR2)

Address: 0x18081218 Access: Read/Write

Reset: 0x0

This register contains the local global IP address and is only available for GE0 MAC.

Bit	Bit Name	Description
31:0	LOCAL_GLOBAL_ IP_ADDR2	Local IP address index 2. Up to 4 global IP addresses are supported for this interface

8.7.49 Local Global IP Address 3 (GLOBAL_IP_ADDR3)

Address: 0x1808121C Access: Read/Write

Reset: 0x0

This register contains the local global IP address and is only available for GE0 MAC.

Bit	Bit Name	Description
31:0	LOCAL_GLOBAL_	Local IP address index 3. Up to 4 global IP addresses are supported for this

8.7.50 Egress NAT Control and Status (EG_NAT_CSR)

Address: 0x18081228 This register configures NAT editing of egress

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6	EG_NAT_FRAG _EDIT_DISABLE		
5:2	EG_FIELD_EDIT _MASK	0x0	Setting the fill bits disables the editing of each of the fields of the egress
			Bit[0] Disables NAT editing of the L2 destination address field of the packet
			Bit[1] Disables NAT editing of the L2 source address field of the packet
			Bit[2] Disables NAT editing of the IP source address field of the packet
			Bit[3] Disables NAT editing of the L4 source port field in the packet
1	EG_LOOKUP_ DATA_SWAP	0x0	Enables byte swapping of the data given by the lookup table, before editing
0	EG_ANT_ DISABLE	0x1	Disables the egress NAT engine. Packets that are Tx DMA-ed are transmitted without going through the NAT Engine.

8.7.51 Egress NAT Counter (EG_NAT_CNTR)

Address: 0x1808122C Access: Read-Only

Reset: 0x0

This register counts NAT egress packets.

Bit	Bit Name	Description
31:16	EG_NAT_ERR_ COUNTER	Counter indicating the number of packets that were not NAT edited on egress.
15:0	EG_NAT_DONE_ COUNTER	Counter indicating the number of packets that were successfully NAT edited on egress.

8.7.52 Ingress NAT Control and Status (IG_NAT_CSR)

Address: 0x18081230 Access: Read/Write Reset: See field description This register is used to control and read the status of ingress packets and is only available

Bit	Bit Name	Reset	Description
31:14	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
13	IG_NAT_GLBL_ICMP _REQ_ DRP_EN	0x0	When set to 1, ICMP Packets that are REQUEST are dropped. Effective
12	IG_NAT_GLBL_ICMP _RPLY_DRP_EN	0x0	When set to 1, ICMP Packets that are neither REQUEST, nor REPLY are dropped. Effective only if bit [8] of this register is set to 1.
11	IG_NAT_GLBL_ TCP_ACK_ DRP_EN	0x0	When set to 1, TCP Packets received that fail NAT and have both the SYN and ACK flags set to 1 are dropped. Effective only if bit [8] of this
10	IG_NAT_GLBL_ TCP_SYN_DRP_EN	0x0	When set to 1, TCP packets received that fail NAT and have the 'SYN' flag set to 1 are dropped. Effective only if bit [8] of this register is set to 1.
9	IGNAT_GLBL_L2_ DROP_EN	0x0	When set to 1, Packets that do not match the L2 LOCAL_MAC_ADDR programmed in the registers 0x200 and 0x204 are dropped. Effective
8	IG_NAT_GLBL_ RULE_EN	0x0	Enables the basic firewall to drop packets for certain global rules based
7	IG_NAT_FRAG_EDIT _DISABLE		
6	IG_L4CKSUM_EN	0x0	Enables L4 checksum of the ingress fragmented packet
5:2	IG_FIELD_EDIT_	0x0	Setting the bits disables the edit of each of the fields in the ingress packet
	MASK		Bit[0] Disables NAT editing of L2 DA field in the packet
			Bit[1] Disables NAT editing of L2 SA field in the packet
			Bit[2] Disables NAT editing of IP DA field in the packet
			Bit[3] Disables NAT editing of L4 destination port field in the packet
1	IG_LOOKUP_DATA_ SWAP	0x0	Enables byte swapping of the data given by the lookup table, before editing the ingress packet
0	IG_ANT_DISABLE	0x1	Packets that are received are DMAed without going through the NAT engine

8.7.53 Ingress NAT Counter (IG_NAT_CNTR)

Address: 0x18081234 Reset: 0x0

Access: Read-Only

This register counts the number of NAT ingress packets.

Bit	Bit Name	Description
31:16	IG_NAT_ERR_C OUTNER	Counter indicating the number of packets that were not NAT edited on ingress
15:0	IG_NAT_DONE _COUNTER	Counter indicating the number of packets successfully NAT edited on ingress

8.7.54 Egress ACL Control and Status (EG_ACL_CSR)

Address: 0x18081238 Access: Read/Write

Reset: See field description

This register is used to disable the functionality of the egress ACL.

Bit	Bit Name	Reset	Description
31:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	EG_ACL_ DISABLE		

8.7.55 Ingress ACL Control and Status (IG_ACL_CSR)

Address: 0x1808123C This register is used to disable the ingress

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	IG_ACL_ DISABLE		

8.7.56 Egress ACL CMDO and Action (EG_ACL_CMDO_AND_ACTION)

Address: 0x18081240 Access: Read/Write

Reset: 0x0

This register is sued for programming the ACL table. Refer to the ACL section regarding the various fields of entry in the ACL table and

their significance.

Bit	Bit Name	Description
31:21	RES	Reserved. Must be written with zero. Contains zeros when read.
20:16	EG_ACL_CMD0	The CMD0 field in the entry in the ACL table
15:14	RES	Reserved. Must be written with zero. Contains zeros when read.
13:8	EG_ACL_NEP	ACL Next Entry Pointer: Points to the Next Entry in the ACL Table to which this entry is linked. Valid only if EG_ACL_LINKED is set to 1.
7:4	RES	Reserved. Must be written with zero. Contains zeros when read.
3	EG_ACL_ ALLOW	When set, this entry in the ACL table, the action associated with this entry/rule is
2	EG_ACL_ REJECT	Egress ACL reject: When set this entry in the ACL table, the action associated with
1	EG_ACL_ LINKED	When set this entry in the ACL table is Linked to another entry in the table
0	EG_ACL_ RULE_HD	When set this entry in the ACL table is considered the head of the rule.

8.7.57 Egress ACL CMD1, CMD2, CMD3, CMD4 (EG_ACL_CMD1234)

Address: 0x18081244 Access: Read/Write

This register is used for programming the ACL

Reset: 0x0

Bit	Bit Name	Description
31:29	RES	Reserved. Must be written with zero. Contains zeros when read.
28:24	EG_ACL_CMD4	The CMD4 field of the entry in the ACL table
23:21	RES	Reserved. Must be written with zero. Contains zeros when read.
20:16	EG_ACL_CMD3	The CMD3 field of the entry in the ACL table
15:13	RES	Reserved. Must be written with zero. Contains zeros when read.
12:8	EG_ACL_CMD2	The CMD2 field of the entry in the ACL table
7:5	RES	Reserved. Must be written with zero. Contains zeros when read.
4:0	EG_ACL_CMD1	The CMD1 field of the entry in the ACL table

8.7.58 Egress ACL OPERANDO (EG_ACL_OPERANDO)

Address: 0x18081248 Access: Read/Write

This register is used for programming the ACL

table.

Bit	Bit Name	Description
31:0	EG_ACL_OPERAND0	The lower order [31:0] bits of the operand field of the entry in the ACL table

8.7.59 Egress ACL OPERAND1 (EG_ACL_OPERAND1)

Address: 0x1808124C Access: Read/Write

Reset: 0x0

This register is used for programming the ACL table.

Bit	Bit Name	Description
31:0	EG_ACL_OPERAND1	The higher order [63:32] bits of the operand field of the entry in the ACL table

8.7.60 Egress ACL Memory Control (EG_ACL_MEM_CONTROL)

Address: 0x18081250 Access: Read/Write This register is used to control the ACL table operations.

cess. Read/ Wifte

Bit	Bit Name	Description
31:15	RES	Reserved. Must be written with zero. Contains zeros when read.
14	EG_ACL_INIT	When set to 1, the ACL table gets initialized to all 0s. Software should always initialize the ACL table before loading entries into the ACL Table. This bit clears
13	EG_ACL_GLOBAL	
	_RULE_VALID	0 Only individual rules determine the allow/drop of the packets
12	EG_ACL_GLOBAL_	
		The global rule indicates whether to allow the packet, and individual
		1 The global rule is to drop the packets, and individual rules indicate
11	EG_ACL_RULE_ MAP_DONE	After the last entry is loaded, when hardware sets this bit to 1, it indicates that the rule mapping is done. Only when hardware sets this bit to 1, the "Egress ACL Control and Status register will be set to 0 (ACL will be enabled).
10	EG_ACL_LAST_	Indicates if this is the last entry to be written to the ACL table.
9	EG_ACL_ACK_ REG	When software reads this bit as '1' indicates that the write or read operation to
8	EG_ACL_TABLE_WR	When software sets this bit to 1 during a write to this register, the entry as pointed by the entry address is written to the ACL table with the fields taken from the earlier registers such as commands, operands, etc. When set to 0 during a write to this register, a read from the ACL table is initiated to the entry pointed by the entry address and the entry fields are available in the above registers after the ACK bit is set to 1. For write operations, software makes sure all these registers and the fields of this register are correctly written.
7:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5:0	EG_ACL_ENTRY _ADDR	The entry address where this current entry is to be loaded in the ACL table.

8.7.61 Ingress ACL CMD0 and Action (IG_ACL_CMD0_AND_ACTION)

Address: 0x18081254 This register is sued for programming the ACL Access: Read/Write table.

Reset: 0x0

Bit	Bit Name	Description
31:21	RES	Reserved. Must be written with zero. Contains zeros when read.
20:16	IG_ACL_CMD0	The CMD0 field of the entry in ACL table.
15:14	RES	Reserved. Must be written with zero. Contains zeros when read.
13:8	IG_ACL_NEP	Points to the next entry in the ACL table to which this entry is linked. Valid only if IG_ACL_LINKED is set to 1.
7:4	RES	Reserved. Must be written with zero. Contains zeros when read.
3	IG_ACL_ ALLOW	When set, the action associated with this entry/rule in the ACL table is to allow the
2	IG_ACL_REJECT	When set, the action associated with this entry/rule in the ACL table is to reject the
1	IG_ACL_ LINKED	When set, this entry in the ACL table is linked to another entry in the table
0	IG_ACL_RULE_ HD	When set, this entry in the ACL table is considered the head of the rule

8.7.62 Ingress ACL CMD1, CMD2, CMD3, CMD4 (IG_ACL_CMD1234)

Address: 0x18081258 This register is used for programming the Access: Read/Write Ingress ACL rule in the ACL table.

Reset: 0x0

Bit	Bit Name	Description
31:29	RES	Reserved. Must be written with zero. Contains zeros when read.
28:24	IG_ACL_CMD4	The CMD4 field of the entry in the ACL table
23:21	RES	Reserved. Must be written with zero. Contains zeros when read.
20:16	IG_ACL_CMD3	The CMD3 field of the entry in the ACL table
15:13	RES	Reserved. Must be written with zero. Contains zeros when read.
12:8	IG_ACL_CMD2	The CMD2 field of the entry in the ACL table
7:5	RES	Reserved. Must be written with zero. Contains zeros when read.
4:0	IG_ACL_CMD1	The CMD1 field of the entry in the ACL table

8.7.63 Ingress ACL OPERANDO (IG_ACL_OPERANDO)

Address: 0x1808125C This register is used for programming the

Access: Read/Write Ingress rule for the ACL table.

Bit	Bit Name	Description
31:0	IG_ACL_OPERAND0	The lower order [31:0] bits of the operand field of the entry in the ACL table

8.7.64 Egress ACL OPERAND1 (EG_ACL_OPERAND1)

Address: 0x18081260 Access: Read/Write

Reset: 0x0

This register is used for programming the Ingress rule for the ACL table.

Bit	Bit Name	Description
31:0	IG_ACL_OPERAND1	The higher order [63:32] bits of the operand field of the entry in the ACL table

8.7.65 Ingress ACL Memory Control (IG_ACL_MEM_CONTROL)

Address: 0x18081264 Access: Read/Write This register controls the ACL table operations.

Bit	Bit Name	Description
31:15	RES	Reserved. Must be written with zero. Contains zeros when read.
14	IG_ACL_INIT	When set to '1', the ACL table gets initialized to all 0's. Software should always initialize the ACL table before loading entries into the ACL Table. This bit clears
13	IG_ACL_GLOBAL_ RULE_VALID	When set to '1', the Global Drop Bit[12] is valid. When set to '0', only individual
12	IG_ACL_ GLOBAL_ DROP	When set to '1', the global rule is to drop the packets and individual rules indicating whether to allow the packet or not. When set to '0', it is vice-versa.
11	IG_ACL_RULE_ MAP_DONE	After the last entry is loaded, when HW sets this bit to '1', indicates that the rule mapping is done. Only when HW sets this bit to '1', the 'ACL_DISABLE' bit in the EG_ACL_CSR register will be set to '0' (ACL will be enabled).
10	IG_ACL_LAST_	Indicates if this is the last entry to be written to the ACL table.
9	IG_ACL_ACK_	When software reads this bit as '1' indicates that the write or read operation to
8	IG_ACL_TABLE_W	When software sets this bit to '1' during a write to this register, the entry as pointed by the entry address is written to the ACL table with the fields taken from the earlier registers such as commands, operands, etc. When set to '0' during a write to this register, a read from the ACL table is initiated to the entry pointed by the entry address and the entry fields are available in the above registers after the ACK bit is set to '1'. For write operations, software makes sure all the above registers and the fields of this register are correctly written.
7:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5:0	IG_ACL_ENTRY_A DDR	The entry address where this current entry is to be loaded in the ACL table.

8.7.66 Ingress ACL Counter Group 0 (IG_ACL_COUNTER_GRP0)

Address: 0x18081268 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE3	Counter indicating the number of ingress packets that hit rule 3
23:16	COUNT_IG_RULE2	Counter indicating the number of ingress packets that hit rule 2
15:8	COUNT_IG_RULE1	Counter indicating the number of ingress packets that hit rule 1
7:0	COUNT_IG_RULE0	Counter indicating the number of ingress packets that hit rule 0

8.7.67 Ingress ACL Counter Group 1 (IG_ACL_COUNTER_GRP1)

Address: 0x1808126C This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE7	Counter indicating the number of ingress packets that hit rule 7
23:16	COUNT_IG_RULE6	Counter indicating the number of ingress packets that hit rule 6
15:8	COUNT_IG_RULE5	Counter indicating the number of ingress packets that hit rule 5
7:0	COUNT_IG_RULE4	Counter indicating the number of ingress packets that hit rule 4

8.7.68 Ingress ACL Counter Group 2 (IG_ACL_COUNTER_GRP2)

Address: 0x18081270 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE8	Counter indicating the number of ingress packets that hit rule 8
23:16	COUNT_IG_RULE9	Counter indicating the number of ingress packets that hit rule 9
15:8	COUNT_IG_RULE10	Counter indicating the number of ingress packets that hit rule 10
7:0	COUNT_IG_RULE11	Counter indicating the number of ingress packets that hit rule 11

8.7.69 Ingress ACL Counter Group 3 (IG_ACL_COUNTER_GRP3)

Address: 0x18081274 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE15	Counter indicating the number of ingress packets that hit rule 15
23:16	COUNT_IG_RULE14	Counter indicating the number of ingress packets that hit rule 14
15:8	COUNT_IG_RULE13	Counter indicating the number of ingress packets that hit rule 13
7:0	COUNT_IG_RULE12	Counter indicating the number of ingress packets that hit rule 12

8.7.70 Ingress ACL Counter Group 4 (IG_ACL_COUNTER_GRP4)

Address: 0x18081278 This register is used to count the packets that Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE19	Counter indicating the number of ingress packets that hit rule 19
23:16	COUNT_IG_RULE18	Counter indicating the number of ingress packets that hit rule 18
15:8	COUNT_IG_RULE17	Counter indicating the number of ingress packets that hit rule 17
7:0	COUNT_IG_RULE16	Counter indicating the number of ingress packets that hit rule 16

8.7.71 Ingress ACL Counter Group 5 (IG_ACL_COUNTER_GRP5)

Address: 0x1808127C This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE23	Counter indicating the number of ingress packets that hit rule 23
23:16	COUNT_IG_RULE22	Counter indicating the number of ingress packets that hit rule 22
15:8	COUNT_IG_RULE21	Counter indicating the number of ingress packets that hit rule 21
7:0	COUNT_IG_RULE20	Counter indicating the number of ingress packets that hit rule 20

8.7.72 Ingress ACL Counter Group 6 (IG_ACL_COUNTER_GRP6)

Address: 0x18081280 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE27	Counter indicating the number of ingress packets that hit rule 27
23:16	COUNT_IG_RULE26	Counter indicating the number of ingress packets that hit rule 26
15:8	COUNT_IG_RULE25	Counter indicating the number of ingress packets that hit rule 25
7:0	COUNT_IG_RULE24	Counter indicating the number of ingress packets that hit rule 24

8.7.73 Ingress ACL Counter Group 7 (IG_ACL_COUNTER_GRP7)

Address: 0x18081284 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE31	Counter indicating the number of ingress packets that hit rule 31
23:16	COUNT_IG_RULE30	Counter indicating the number of ingress packets that hit rule 30
15:8	COUNT_IG_RULE29	Counter indicating the number of ingress packets that hit rule 29
7:0	COUNT_IG_RULE28	Counter indicating the number of ingress packets that hit rule 28

8.7.74 Ingress ACL Counter Group 8 (IG_ACL_COUNTER_GRP8)

Address: 0x18081288 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE35	Counter indicating the number of ingress packets that hit rule 35
23:16	COUNT_IG_RULE34	Counter indicating the number of ingress packets that hit rule 34
15:8	COUNT_IG_RULE33	Counter indicating the number of ingress packets that hit rule 33
7:0	COUNT_IG_RULE32	Counter indicating the number of ingress packets that hit rule 32

8.7.75 Ingress ACL Counter Group 9 (IG_ACL_COUNTER_GRP9)

Address: 0x1808128C This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE39	Counter indicating the number of ingress packets that hit rule 39
23:16	COUNT_IG_RULE38	Counter indicating the number of ingress packets that hit rule 38
15:8	COUNT_IG_RULE37	Counter indicating the number of ingress packets that hit rule 37
7:0	COUNT_IG_RULE36	Counter indicating the number of ingress packets that hit rule 36

8.7.76 Ingress ACL Counter Group 10 (IG_ACL_COUNTER_GRP10)

Address: 0x18081290 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE43	Counter indicating the number of ingress packets that hit rule 43
23:16	COUNT_IG_RULE42	Counter indicating the number of ingress packets that hit rule 42
15:8	COUNT_IG_RULE41	Counter indicating the number of ingress packets that hit rule 41
7:0	COUNT_IG_RULE40	Counter indicating the number of ingress packets that hit rule 40

8.7.77 Ingress ACL Counter Group 11 (IG_ACL_COUNTER_GRP11)

Address: 0x18081294 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE47	Counter indicating the number of ingress packets that hit rule 47
23:16	COUNT_IG_RULE46	Counter indicating the number of ingress packets that hit rule 46
15:8	COUNT_IG_RULE45	Counter indicating the number of ingress packets that hit rule 45
7:0	COUNT_IG_RULE44	Counter indicating the number of ingress packets that hit rule 44

8.7.78 Ingress ACL Counter Group 12 (IG_ACL_COUNTER_GRP12)

Address: 0x18081298 This register is used to count the packets that Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE51	Counter indicating the number of ingress packets that hit rule 51
23:16	COUNT_IG_RULE50	Counter indicating the number of ingress packets that hit rule 50
15:8	COUNT_IG_RULE49	Counter indicating the number of ingress packets that hit rule 49
7:0	COUNT_IG_RULE48	Counter indicating the number of ingress packets that hit rule 48

8.7.79 Ingress ACL Counter Group 13 (IG_ACL_COUNTER_GRP13)

Address: 0x1808129C This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE55	Counter indicating the number of ingress packets that hit rule 55
23:16	COUNT_IG_RULE54	Counter indicating the number of ingress packets that hit rule 54
15:8	COUNT_IG_RULE53	Counter indicating the number of ingress packets that hit rule 53
7:0	COUNT_IG_RULE52	Counter indicating the number of ingress packets that hit rule 52

8.7.80 Ingress ACL Counter Group 14 (IG_ACL_COUNTER_GRP14)

Address: 0x180812A0 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE59	Counter indicating the number of ingress packets that hit rule 59
23:16	COUNT_IG_RULE58	Counter indicating the number of ingress packets that hit rule 58
15:8	COUNT_IG_RULE57	Counter indicating the number of ingress packets that hit rule 57
7:0	COUNT_IG_RULE56	Counter indicating the number of ingress packets that hit rule 56

8.7.81 Ingress ACL Counter Group 15 (IG_ACL_COUNTER_GRP15)

Address: 0x180812A4 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE63	Counter indicating the number of ingress packets that hit rule 63
23:16	COUNT_IG_RULE62	Counter indicating the number of ingress packets that hit rule 62
15:8	COUNT_IG_RULE61	Counter indicating the number of ingress packets that hit rule 61
7:0	COUNT_IG_RULE60	Counter indicating the number of ingress packets that hit rule 60

8.7.82 Egress ACL Counter Group 0 (EG_ACL_COUNTER_GRP0)

Address: 0x180812A8 This register is used to count the packets that

hit a certain ACL rule. Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE3	Counter indicating the number of ingress packets that hit rule 3
23:16	COUNT_IG_RULE2	Counter indicating the number of ingress packets that hit rule 2
15:8	COUNT_IG_RULE1	Counter indicating the number of ingress packets that hit rule 1
7:0	COUNT_IG_RULE0	Counter indicating the number of ingress packets that hit rule 0

8.7.83 Egress ACL Counter Group 1 (EG_ACL_COUNTER_GRP1)

Address: 0x180812AC This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE7	Counter indicating the number of ingress packets that hit rule 7
23:16	COUNT_IG_RULE6	Counter indicating the number of ingress packets that hit rule 6
15:8	COUNT_IG_RULE5	Counter indicating the number of ingress packets that hit rule 5
7:0	COUNT_IG_RULE4	Counter indicating the number of ingress packets that hit rule 4

8.7.84 Egress ACL Counter Group 2 (EG_ACL_COUNTER_GRP2)

Address: 0x180812B0 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE11	Counter indicating the number of ingress packets that hit rule 11
23:16	COUNT_IG_RULE10	Counter indicating the number of ingress packets that hit rule 10
15:8	COUNT_IG_RULE9	Counter indicating the number of ingress packets that hit rule 9
7:0	COUNT_IG_RULE8	Counter indicating the number of ingress packets that hit rule 8

8.7.85 Egress ACL Counter Group 3 (EG_ACL_COUNTER_GRP3)

Address: 0x180812B4 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE15	Counter indicating the number of ingress packets that hit rule 15
23:16	COUNT_IG_RULE14	Counter indicating the number of ingress packets that hit rule 14
15:8	COUNT_IG_RULE13	Counter indicating the number of ingress packets that hit rule 13
7:0	COUNT_IG_RULE12	Counter indicating the number of ingress packets that hit rule 12

8.7.86 Egress ACL Counter Group 4 (EG_ACL_COUNTER_GRP4)

Address: 0x180812B8 This register is used to count the packets that Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE19	Counter indicating the number of ingress packets that hit rule 19
23:16	COUNT_IG_RULE18	Counter indicating the number of ingress packets that hit rule 18
15:8	COUNT_IG_RULE17	Counter indicating the number of ingress packets that hit rule 17
7:0	COUNT_IG_RULE16	Counter indicating the number of ingress packets that hit rule 16

8.7.87 Egress ACL Counter Group 5 (EG_ACL_COUNTER_GRP5)

Address: 0x180812BC This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE23	Counter indicating the number of ingress packets that hit rule 23
23:16	COUNT_IG_RULE22	Counter indicating the number of ingress packets that hit rule 22
15:8	COUNT_IG_RULE21	Counter indicating the number of ingress packets that hit rule 21
7:0	COUNT_IG_RULE20	Counter indicating the number of ingress packets that hit rule 20

8.7.88 Egress ACL Counter Group 6 (EG_ACL_COUNTER_GRP6)

Address: 0x180812C0 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE27	Counter indicating the number of ingress packets that hit rule 27
23:16	COUNT_IG_RULE26	Counter indicating the number of ingress packets that hit rule 26
15:8	COUNT_IG_RULE25	Counter indicating the number of ingress packets that hit rule 25
7:0	COUNT_IG_RULE24	Counter indicating the number of ingress packets that hit rule 24

8.7.89 Egress ACL Counter Group 7 (EG_ACL_COUNTER_GRP7)

Address: 0x180812C4 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE31	Counter indicating the number of ingress packets that hit rule 31
23:16	COUNT_IG_RULE30	Counter indicating the number of ingress packets that hit rule 30
15:8	COUNT_IG_RULE29	Counter indicating the number of ingress packets that hit rule 29
7:0	COUNT_IG_RULE28	Counter indicating the number of ingress packets that hit rule 28

8.7.90 Egress ACL Counter Group 8 (EG_ACL_COUNTER_GRP8)

Address: 0x180812C8 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE35	Counter indicating the number of ingress packets that hit rule 35
23:16	COUNT_IG_RULE34	Counter indicating the number of ingress packets that hit rule 34
15:8	COUNT_IG_RULE33	Counter indicating the number of ingress packets that hit rule 33
7:0	COUNT_IG_RULE32	Counter indicating the number of ingress packets that hit rule 32

8.7.91 Egress ACL Counter Group 9 (EG_ACL_COUNTER_GRP9)

Address: 0x180812CC This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE39	Counter indicating the number of ingress packets that hit rule 39
23:16	COUNT_IG_RULE38	Counter indicating the number of ingress packets that hit rule 38
15:8	COUNT_IG_RULE37	Counter indicating the number of ingress packets that hit rule 37
7:0	COUNT_IG_RULE36	Counter indicating the number of ingress packets that hit rule 36

8.7.92 Egress ACL Counter Group 10 (EG_ACL_COUNTER_GRP10)

Address: 0x180812D0 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE43	Counter indicating the number of ingress packets that hit rule 43
23:16	COUNT_IG_RULE42	Counter indicating the number of ingress packets that hit rule 42
15:8	COUNT_IG_RULE41	Counter indicating the number of ingress packets that hit rule 41
7:0	COUNT_IG_RULE40	Counter indicating the number of ingress packets that hit rule 40

8.7.93 Egress ACL Counter Group 11 (EG_ACL_COUNTER_GRP11)

Address: 0x180812D4 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE47	Counter indicating the number of ingress packets that hit rule 47
23:16	COUNT_IG_RULE46	Counter indicating the number of ingress packets that hit rule 46
15:8	COUNT_IG_RULE45	Counter indicating the number of ingress packets that hit rule 45
7:0	COUNT_IG_RULE44	Counter indicating the number of ingress packets that hit rule 44

8.7.94 Egress ACL Counter Group 12 (EG_ACL_COUNTER_GRP12)

Address: 0x180812D8 This register is used to count the packets that Access: Read-Only hit a certain ACL rule.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE51	Counter indicating the number of ingress packets that hit rule 51
23:16	COUNT_IG_RULE50	Counter indicating the number of ingress packets that hit rule 50
15:8	COUNT_IG_RULE49	Counter indicating the number of ingress packets that hit rule 49
7:0	COUNT_IG_RULE48	Counter indicating the number of ingress packets that hit rule 48

8.7.95 Egress ACL Counter Group 13 (EG_ACL_COUNTER_GRP13)

Address: 0x180812DC This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE55	Counter indicating the number of ingress packets that hit rule 55
23:16	COUNT_IG_RULE54	Counter indicating the number of ingress packets that hit rule 54
15:8	COUNT_IG_RULE53	Counter indicating the number of ingress packets that hit rule 53
7:0	COUNT_IG_RULE52	Counter indicating the number of ingress packets that hit rule 52

8.7.96 Egress ACL Counter Group 14 (EG_ACL_COUNTER_GRP14)

Address: 0x180812E0 This register is used to count the packets that

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE59	Counter indicating the number of ingress packets that hit rule 59
23:16	COUNT_IG_RULE58	Counter indicating the number of ingress packets that hit rule 58
15:8	COUNT_IG_RULE57	Counter indicating the number of ingress packets that hit rule 57
7:0	COUNT_IG_RULE56	Counter indicating the number of ingress packets that hit rule 56

8.7.97 Egress ACL Counter Group 15 (EG_ACL_COUNTER_GRP15)

Address: 0x180812E4 This register is used to count the packets that

Access: Read-Only hit a certain ACL rule.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE63	Counter indicating the number of ingress packets that hit rule 63
23:16	COUNT_IG_RULE62	Counter indicating the number of ingress packets that hit rule 62
15:8	COUNT_IG_RULE61	Counter indicating the number of ingress packets that hit rule 61
7:0	COUNT_IG_RULE60	Counter indicating the number of ingress packets that hit rule 60

8.7.98 Clear ACL Counters (CLEAR_ACL_COUNTERS)

Address: 0x180812E8 This register is used to clear ingress and egress Access: Read/Write counters.

Reset: 0x0

Bit	Bit Name	Description	
31:2	RES	Reserved. Must be written with zero. Contains zeros when read.	
1	CLEAR_EG_ COUNTERS	Set to clear all egress ACL Counters. Software has to write a '0' to enable the ACL counters.	
0	CLEAR_IG_ COUNTERS	Set to clear all ingress ACL Counters. Software has to write a '0' to enable the ACL counters.	

8.7.99 Ingress ACL Rule Vector Lower (IG_ACL_RULE_VECTOR_LOWER)

Address: 0x18081320 This register contains the lower bits of the

Access: Read/Write

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_ VECTOR_LOWER	Lower bits [31:0] of the Ingress ACL Rule Vector

8.7.100Ingress ACL Rule Vector Upper (IG_ACL_RULE_VECTOR_UPPER)

Address: 0x18081324 This register contains the upper bits of the

Access: Read/Write

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_VECTOR_UPPER	Upper bits [63:32] of the ingress ACL Rule Vector

8.7.101Egress ACL Rule Vector Lower (EG_ACL_RULE_VECTOR_LOWER)

Address: 0x18081328 This register contains the lower bits of the

Access: Read/Write

Reset: 0x0

Bit		
31:0	EG_ACL_RULE_ VECTOR_LOWER	Lower bits [31:0] of the egress ACL 3Rule Vector

8.7.102Egress ACL Rule Vector Upper (EG_ACL_RULE_VECTOR_UPPER)

Address: 0x1808132C This register contains the upper bits of the

Access: Read/Write egress ACL rule vector.

Bit	Bit Name	Description
31:0	EG_ACL_RULE_ VECTOR_UPPER	Upper bits [63:32] of the egress ACL Rule Vector

8.7.103Ingress ACL Rule TableO Lower (IG_ACL_RULE_TABLEO_LOWER)

Address: 0x18081334 This register contains the ingress ACL Rule

Access: Read/Write Table0 entry lower bits.

Reset: 0x0

Bit	Bit Name	Description
31:0	IG_ACL_RULE_TABLE_ENTRY	Ingress ACL rule table entry bits[31:0]

8.7.104Ingress ACL Rule TableO Upper (IG_ACL_RULE_TABLEO_UPPER)

Address: 0x18081338 This register contains the ingress ACL Rule

Access: Read/Write Table0 entry upper bits.

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_TABLE_ENTRY	

8.7.105Ingress ACL Rule Table1 Lower (IG_ACL_RULE_TABLE1_LOWER)

Address: 0x1808133C This register contains the ingress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_TABLE_ENTRY	

8.7.106Ingress ACL Rule Table1 Upper (IG_ACL_RULE_TABLE1_UPPER)

Address: 0x18081340 This register contains the ingress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_TABLE_ENTRY	

8.7.107Ingress ACL Rule Table2 Lower (IG_ACL_RULE_TABLE2_LOWER)

Address: 0x18081344 This register contains the ingress ACL Rule

Access: Read/Write Table2 entry lower bits.

•	Bit	Bit Name	Description
	31:0	IG_ACL_RULE_TABLE_ENTRY	Ingress ACL rule table entry bits[159:128]

8.7.108Ingress ACL Rule Table2 Upper (IG_ACL_RULE_TABLE2_UPPER)

Address: 0x18081348 This register contains the ingress ACL Rule

Access: Read/Write Table2 entry upper bits.

Reset: 0x0

Bit	Bit Name	Description
31:0	IG_ACL_RULE_TABLE_ENTRY	Ingress ACL rule table entry bits[191:160]

8.7.109Ingress ACL Rule Table3 Lower (IG_ACL_RULE_TABLE3_LOWER)

Address: 0x1808134C This register contains the ingress ACL Rule

Access: Read/Write Table3 entry lower bits.

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_TABLE_ENTRY	

8.7.110Ingress ACL Rule Table3 Upper (IG_ACL_RULE_TABLE3_UPPER)

Address: 0x18081350 This register contains the ingress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	IG_ACL_RULE_TABLE_ENTRY	

8.7.111Egress ACL Rule TableO Lower (EG_ACL_RULE_TABLEO_LOWER)

Address: 0x18081354 This register contains the egress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	EG_ACL_RULE_TABLE_ENTRY	

8.7.112Egress ACL Rule TableO Upper (EG_ACL_RULE_TABLEO_UPPER)

Address: 0x18081358 This register contains the egress ACL Rule

Access: Read/Write Table0 entry upper bits.

Bit	Bit Name	Description
31:0	EG_ACL_RULE_TABLE_ENTRY	Egress ACL rule table entry bits[63:32]

8.7.113Egress ACL Rule Table1 Lower (EG_ACL_RULE_TABLE1_LOWER)

Address: 0x1808135C This register contains the egress ACL Rule

Access: Read/Write Table1 entry lower bits.

Reset: 0x0

-	Bit	Bit Name	Description
	31:0	EG_ACL_RULE_TABLE_ENTRY	Egress ACL rule table entry bits[95:64]

8.7.114Egress ACL Rule Table1 Upper (EG ACL RULE TABLE1 UPPER)

Address: 0x18081360 This register contains the egress ACL Rule

Access: Read/Write Table1 entry upper bits.

Reset: 0x0

Bit		
31:0	EG_ACL_RULE_TABLE_ENTRY	

8.7.115Egress ACL Rule Table2 Lower (EG_ACL_RULE_TABLE2_LOWER)

Address: 0x18081364 This register contains the egress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	EG_ACL_RULE_TABLE_ENTRY	

8.7.116Egress ACL Rule Table2 Upper (EG_ACL_RULE_TABLE2_UPPER)

Address: 0x18081368 This register contains the egress ACL Rule

Access: Read/Write

Reset: 0x0

Bit		
31:0	EG_ACL_RULE_TABLE_ENTRY	

8.7.117Egress ACL Rule Table3 Lower (EG_ACL_RULE_TABLE3_LOWER)

Address: 0x1808136C This register contains the egress ACL Rule

Access: Read/Write Table3 entry lower bits.

Reset: 0x0

Bit	Bit Name	Description
31:0	EG_ACL_RULE_TABLE_ENTRY	Egress ACL rule table entry bits[223:192]

8.7.118Egress ACL Rule Table3 Upper (EG_ACL_RULE_TABLE3_UPPER)

Address: 0x18081370 This register contains the egress ACL Rule

Access: Read/Write Table3 entry upper bits.

Bit	Bit Name	Description
31:0	EG_ACL_RULE_TABLE_ENTRY	Egress ACL rule table entry bits[255:224]

8.8 MBOX Registers

Table 8-9 summarizes the MBOX registers for the AR9341.

Table 8-9. MBOX Registers Summary

Address	Name	Description	Page
0x180A0008	MBOX_FIFO_STATUS	Non-Destructive FIFO Status Query	page 174
0x180A000C	SLIC_MBOX_FIFO_STATUS	Non-Destructive SLIC FIFO Status Query	page 174
0x180A0010	MBOX_DMA_POLICY	Mailbox DMA Engine Policy Control	page 175
0x180A0014	SLIC_MBOX_DMA_POLICY	SLIC Mailbox DMA Engine Policy Control	page 176
0x180A0018	MBOX_DMA_RX_DESCRIPTOR_ BASE	Mailbox Rx DMA Descriptors Base Address	page 176
0x180A001C	MBOX_DMA_RX_CONTROL		page 177
0x180A0020	MBOX_DMA_TX_DESCRIPTOR_	Mailbox Tx DMA Descriptors Base Address	page 177
0x180A0024	MBOX_DMA_TX_CONTROL		page 178
0x180A0028	SLIC_DMA_RX_DESCRIPTOR_B	SLIC Rx DMA Descriptors Base Address	page 178
0x180A002C	SLIC_DMA_RX_CONTROL		page 179
0x180A0030 SLIC_DMA_TX_DESCRIPTOR_B		SLIC Tx DMA Descriptors Base Address	page 179
0x180A0034	SLIC_DMA_TX_CONTROL		page 180
0x180A0038			page 180
0x180A003C	SLIC_MBOX_FRAME		page 180
0x180A0040			page 181
0x180A0044	MBOX_INT_STATUS		page 181
0x180A0048	SLIC_MBOX_INT_STATUS	SLIC_MBOX Related Interrupt Status	page 182
0x180A004C	MBOX_INT_ENABLE		page 182
0x180A0050	SLIC_MBOX_INT_ENABLE	SLIC_MBOX Related Interrupt Enables	page 183
0x180A0058	MBOX_FIFO_RESET		page 183
0x180A005C	SLIC_MBOX_FIFO_RESET	SLIC Reset and Clear MBOX FIFOs	page 183

8.8.1 Non-Destructive FIFO Status Query (MBOX_FIFO_STATUS)

Address: 0x180A0008 Access: Read-Only Reset: See field description This register returns the status of the mailbox FIFOs. This register may be read at any time without changing the mailbox state.

Bit	Bit Name	Reset	Description
31:3	RES	0x0	Reserved
2	EMPTY	0x1	MBOX 0 Tx FIFO is empty (I2S)
1	RES	0x0	Reserved
0	FULL	0x0	MBOX 0 Tx FIFO is full (I2S)

8.8.2 Non-Destructive SLIC FIFO Status Query (SLIC_MBOX_FIFO_STATUS)

Address: 0x180A000C Access: Read-Only Reset: See field description This register returns the status of the SLIC mailbox FIFOs. This register may be read at any time without changing the SLIC mailbox state.

Bit	Bit Name	Reset	Description
31:2	RES	0x0	Reserved
1	EMPTY	0x1	SLIC Mbox TX FIFO is empty (I2S)
0	FULL	0x0	MBOX 0 Tx FIFO is full (I2S0)

8.8.3 Mailbox DMA Engine Policy Control (MBOX_DMA_POLICY)

Address: 0x180A0010 Access: Read/Write Reset: See field description Controls the queue service policy of the mailbox DMA engines. The Rx and Tx engines can be programmed independently to service their queues in round robin or strict priority order. The engines can also be programmed to make a new queue choice at the end of messages or individual descriptors. The default mode is round robin decisions being made at

Bit	Bit Name	Reset	Description
31:12	RES		
11	TX_16BIT_SWAP	0x0	If set, will swap bytes within a 16-bit word in the Tx direction
10	RX_16BIT_SWAP	0x0	If set, will swap bytes within a 16-bit word in the Rx direction
9	TX_END_SWAP	0x0	If set, will swap bytes in a 32-bit word in the Tx Direction
8	RX_END_SWAP	0x0	If set, will swap bytes in a 32-bit word in the Rx Direction
7:4	TX_FIFO_THRESH0	0x4	Threshold for MBOX Tx FIFO in units of words (0 maps to 0 bytes, 1 maps to 4 bytes, etc). Reaching this threshold is a trigger for MBOX Tx
3:0			

8.8.4 SLIC Mailbox DMA Engine Policy Control (SLIC_MBOX_DMA_POLICY)

Address: 0x180A0014 Access: Read/Write Reset: See field description

Controls the queue service policy of the SLIC mailbox DMA engines. The Rx and Tx engines can be programmed independently to service

their queues in round robin or strict priority order. The engines can also be programmed to make a new queue choice at the end of messages or individual descriptors. The default mode is round robin decisions being made at the end of each message.

Bit	Bit Name	Reset	Description
31:12	RES	0x0	Reserved
11	TX_16BIT_SWAP	0x0	If set, will swap bytes within a 16-bit word in SLIC Tx direction
10	RX_16BIT_SWAP	0x0	If set, will swap bytes within a 16-bit word in SLIC Rx direction
9	TX_END_SWAP	0x0	If set, will swap bytes in a 32-bit word in SLIC Tx Direction
8	RX_END_SWAP	0x0	If set, will swap bytes in a 32-bit word in SLIC Rx Direction
7:4	TX_FIFO_THRESH0	0x4	Threshold for SLIC MBOX Tx FIFO in units of words (0 maps to 0 bytes, 1 maps to 4 bytes, etc). Reaching this threshold is a trigger for MBOX Tx
3:0	RES		

8.8.5 Rx DMA Descriptors Base Address (MBOX_DMA_RX_DESCRIPTOR_BASE)

Address: 0x180A0018 Access: Read/Write

Reset: 0x0

Holds the starting address of the descriptor chain for mailbox 0's Rx direction transfers. The DMA engine starts by fetching a descriptor from this address when the START bit in the DMA_RX_CONTROL register is set. All DMA descriptors must be 4-byte aligned, so the register's bottom two bits of the contents, as

well as the bottom two bits of the next descriptor field of the individual descriptors are ignored and assumed to be zeros by the DMA engine. For the purposes of the DMA engine, RX direction is defined to be transfers from the chip to the host interface (nominally, data received from the antenna) and the Tx direction is defined to be transfers from the host interface to the chip (nominally, data to be

Bit	Bit Name	Description
31:28	RES	Reserved
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved

8.8.6 Rx DMA Control (MBOX_DMA_RX_CONTROL)

Address: 0x180A001C Access: Read/Write

Reset: 0x0

Controls the operational state of the DMA engine for mailbox 0's Rx direction transfers. The register should always be written in a one shot manner (only one of the operations should be specified) and can be polled to see if the desired operation has taken effect (indicated by the clearing of the corresponding bit). The DMA engine starts out stopped and must be kicked off for the first time with a START operation. The START operation causes the DMA engine to start fetching a descriptor at the address specified by the **Descriptors Base Address**

(MBOX_DMA_RX_DESCRIPTOR_BASE)"

register. Once this first descriptor has been fetched, if the DMA engine ever catches up with a CPU-owned descriptor, it can be requested to re-fetch the descriptor that it stalled on by programming the RESUME operation. Software can stop the operation of the DMA engine by programming the STOP operation. When the STOP operation is programmed, the DMA engine stops transfers immediately if it was already idle or at the end of the transfer of the current descriptor it is working on if it was busy. Note that this may leave incomplete messages in the mailbox FIFOs if the message in progress is scattered or gathered across multiple descriptors.

Bit	Bit Name	Description
31:3	RES	Reserved
2	RESUME	Programming a 1 to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by refetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to add descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race-free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.
1	START	Programming a one to this field causes the DMA engine to start transferring data by "Rx DMA Descriptors Base Address register. The START operation should usually be used only when the DMA engine is known to be stopped (after power-on or
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer is already

8.8.7 Tx DMA Descriptors Base Address (MBOX_DMA_TX_DESCRIPTOR_BASE)

Address: 0x180A0020

See the description for the register "Rx DMA

Access: Read/Write Reset: 0x0

(MBOX_DMA_RX_DESCRIPTOR_BASE)", as applied to mailbox 0's Tx direction transfers.

Bit	Bit Name	Description
31:28	RES	Reserved
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved

8.8.8 Tx DMA Control (MBOX_DMA_TX_CONTROL)

Address: 0x180A0024 Access: Read/Write

Reset: 0x0

See the description for the register "Rx DMA Control (MBOX_DMA_RX_CONTROL)".

Bit	Bit Name	Description	
31:3	RES	Reserved	
2	RESUME	Programming a one to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by re-fetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to keep adding descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.	
1	START	Programming a one to this field causes the DMA engine to start transferring "Tx DMA Descriptors Base register. The START operation should usually be used only when the DMA engine is known to be stopped (after power-on or SOC reset) or after an explicit STOP operation.	
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if	

8.8.9 SLIC Rx DMA Descriptors Base Address (SLIC_DMA_RX_DESCRIPTOR_BASE)

Address: 0x180A0028 Access: Read/Write

Reset: 0x0

Holds the starting address of the descriptor chain for the mailbox's Rx direction transfers. The DMA engine starts by fetching a descriptor from this address when the START bit in the "SLIC Rx DMA Control

(SLIC_DMA_RX_CONTROL)"

All DMA descriptors must be 4-byte aligned, so the register's bottom two bits of the

bottom two bits of the next descriptor field of the individual descriptors are ignored and assumed to be zeros by the DMA engine. For the purposes of the DMA engine, RX direction is defined to be transfers from the chip to the host interface (nominally, data received from the antenna) and the Tx direction is defined to be transfers from the host interface to the chip (nominally, data to be transmitted to the antenna).

Bit	Bit Name	Description
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

8.8.10 SLIC Rx DMA Control (SLIC_DMA_RX_CONTROL)

Address: 0x180A002C Access: Read/Write

Reset: 0x0

Controls the operational state of the DMA engine for the mailbox's Rx direction transfers. The register should always be written in a one shot manner (only one of the operations should be specified) and can be polled to see if the desired operation has taken effect (indicated by the clearing of the corresponding bit). The DMA engine starts out stopped and must be kicked off for the first time with a START operation. The START operation causes the DMA engine to start fetching a descriptor at the address specified by the Descriptors Base Address

(SLIC_DMA_RX_DESCRIPTOR_BASE)" register. Once this first descriptor has been fetched, if the DMA engine ever catches up with a CPU-owned descriptor, it can be requested to re-fetch the descriptor that it stalled on by programming the RESUME operation. Software can stop the operation of the DMA engine by programming the STOP operation. When the STOP operation is programmed, the DMA engine stops transfers immediately if it was already idle or at the end of the transfer of the current descriptor it is working on if it was busy. Note that this may leave incomplete messages in the mailbox FIFOs if the message in progress is scattered or gathered across multiple descriptors.

Bit	Bit Name	Description
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.
2	RESUME	Programming a 1 to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by refetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to add descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race-free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.
1	START	Programming a one to this field causes the DMA engine to start transferring data by "SLIC Rx DMA Descriptors Base Address register. The START operation should usually be used only when the DMA engine is known to be stopped (after power on or SOC
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer is already

8.8.11 SLIC Tx DMA Descriptors Base Address (SLIC DMA TX DESCRIPTOR BASE)

Address: 0x180A0030 Access: Read/Write

Reset: 0x0

See the description for the register "Rx DMA Descriptors Base Address (MBOX_DMA_RX_DESCRIPTOR_BASE)", as applied to mailbox 0's Tx direction transfers.

Bit	Bit Name	Description
31:28	RES	Reserved
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved

8.8.12 SLIC Tx DMA Control (SLIC_DMA_TX_CONTROL)

Address: 0x180A0034 See the description for the register "Rx DMA Access: Read/Write Control (MBOX_DMA_RX_CONTROL)".

Reset: 0x0

Bit	Bit Name	Description	
31:3	RES	Reserved	
2	RESUME	Programming a one to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by re-fetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to keep adding descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.	
1	START	Programming a one to this field causes the DMA engine to start transferring data by "SLIC Tx DMA Descriptors Base register. The START operation should usually be used only when the DMA engine is known to be stopped (after	
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer	

8.8.13 Mailbox FIFO Status (MBOX_FRAME)

Address: 0x180A0038 Access: Read-Only

Reset: See field description

Bit	Bit Name	Reset	Description
31:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
2	RX_EOM	0x0	Rx FIFO contains a data byte with the EOM end of message marker set in the
1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	RX_SOM	0x1	Rx FIFO contains a data byte with the SOM start of message marker set in the corresponding mailbox; a SOM byte always follows an EOM byte from the

8.8.14 SLIC Mailbox FIFO Status (SLIC_MBOX_FRAME)

Address: 0x180A003C Access: Read-Only Reset: See field description

Bit	Bit Name	Reset	Description
31:2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
1	RX_EOM	0x0	Rx FIFO contains a data byte with the EOM end of message marker set in the corresponding SLIC mailbox
0	RX_SOM	0x1	Rx FIFO contains a data byte with the SOM start of message marker set in the corresponding SLIC mailbox; a SOM byte always follows an EOM byte from the previous message

8.8.15 FIFO Timeout Period (FIFO_TIMEOUT)

Address: 0x180A0040 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Descrip	tion
31:9	RES	0x0	Reserve	d. Must be written with zero. Contains zeros when read.
8	ENABLE	0x1	0	FIFO timeouts are disabled
			1	FIFO timeouts are enabled
7:0	VALUE	0xFF		value (in ms) when CORE_CLK = 40 MHz, or in 0.5 ms when CLK=80 MHz; should never be set to 0

8.8.16 MBOX Related Interrupt Status (MBOX_INT_STATUS)

Address: 0x180A0044

Access: Read/Write-1-to-Clear

Bit		
31:11		Reserved. Must be written with zero. Contains zeros when read.
10	RX_DMA_COMPLETE	MBOX Rx DMA completion (one descriptor completed) interrupts
9		Reserved. Must be written with zero. Contains zeros when read.
8	TX_DMA_EOM_COMPLETE	MBOX Tx DMA completion of EOM (descriptor with EOM flag
7		Reserved. Must be written with zero. Contains zeros when read.
6	TX_DMA_COMPLETE	MBOX Tx DMA completion (one descriptor completed) interrupts
5	TX_OVERFLOW	MBOX Tx overflow error; the overflow condition is the same as the host
4	RX_UNDERFLOW	MBOX Rx underflow error; the underflow condition is the same as the
3		Reserved. Must be written with zero. Contains zeros when read.
2	TX_NOT_EMPTY	TX_NOT_EMPTY pending interrupt for Tx mailboxes; bit sets when the
1		Reserved. Must be written with zero. Contains zeros when read.
0	RX_NOT_FULL	RX_NOT_FULL pending interrupt for Rx mailboxes; bit sets when one or more exist

8.8.17 SLIC MBOX Related Interrupt Status (SLIC_MBOX_INT_STATUS)

Address: 0x180A0048

Access: Read/Write-1-to-Clear

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	RX_DMA_COMPLETE	SLIC mailbox Rx DMA completion (one descriptor completed) interrupts
5	TX_DMA_EOM_COMPLETE	SLIC mailbox Tx DMA completion of EOM (descriptor with EOM flag completed) interrupts
4	TX_DMA_COMPLETE	SLIC mailbox Tx DMA completion (one descriptor completed) interrupts
3	TX_OVERFLOW	SLIC MBOX Tx overflow error; the overflow condition is the same as
2	RX_UNDERFLOW	SLIC MBOX Rx underflow error; the underflow condition is the same
1	TX_NOT_EMPTY	TX_NOT_EMPTY pending interrupt for SLIC Tx mailboxes; bit sets
0	RX_NOT_FULL	RX_NOT_FULL pending interrupt for SLIC Rx mailboxes; bit sets

8.8.18 MBOX Related Interrupt Enables (MBOX_INT_ENABLE)

Address: 0x180A0028 This register is used to mask/enable interrupts Access: Read/Write

Bit	Bit Name	Description	
31:12			
11:10	RX_DMA_COMPLETE	Enable per m	nailbox Rx DMA completion interrupts
9:8	TX_DMA_EOM_COMPLETE	Enable per m	nailbox Tx DMA completion of end of message interrupts
7:6	TX_DMA_COMPLETE	Enable per m	nailbox Tx DMA completion interrupts
5	TX_OVERFLOW	Enable MBO	X Tx overflow error
4	RX_UNDERFLOW	Enable MBO	X Rx overflow error
3:2	TX_NOT_EMPTY	Enable TX_N	IOT_EMPTY interrupts from MBOX Tx FIFOs
		Bit [0]	Enable MBOX 0 TX_NOT_EMPTY interrupt
		Bit [1]	Enable MBOX 1 TX_NOT_EMPTY interrupt
1:0	RX_NOT_FULL	Enable RX_N	NOT_EMPTY interrupts from MBOX RX FIFOs
		Bit [0]	Enable MBOX 0 RX_NOT_EMPTY interrupt
		Bit [1]	Enable MBOX 1 RX_NOT_EMPTY interrupt

8.8.19 SLIC MBOX Related Interrupt Enables (SLIC_MBOX_INT_ENABLE)

Address: 0x180A0050 Access: Read/Write

Reset: 0x0

This register is used to mask/enable interrupts to the CPU.

Bit	Bit Name	Description
31:7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	RX_DMA_COMPLETE	SLIC mailbox Rx DMA completion interrupts
5	TX_DMA_EOM_COMPLETE	Enable SLIC mailbox Tx DMA completion of end of message interrupts
4	TX_DMA_COMPLETE	Enable SLIC mailbox Tx DMA completion interrupts
3	TX_OVERFLOW	Enable SLIC MBOX Tx overflow error
2	RX_UNDERFLOW	Enable SLIC MBOX Rx overflow error
1	TX_NOT_EMPTY	Enable TX_NOT_EMPTY interrupts from SLIC MBOX Tx FIFOs
0	RX NOT FULL	Enable RX NOT EMPTY interrupts from SLIC MBOX RX FIFOs

8.8.20 Reset and Clear MBOX FIFOs (MBOX_FIFO_RESET)

Address: 0x180A0058 Access: Read/Write

Reset: 0x0

Resets and clears data from MBOX FIFOs. This register should only be written to when no DMAs are in progress. For stereo applications, it is recommended that MBOX FIFOs be reset at the beginning of each new audio stream (new VoIP call, new song, etc.) The stereo block should also be reset when the FIFOs are reset,

Bit	Bit Name	Description		
31:4				
3:2	RX_INIT	Writing a 1 causes a Rx FIFO reset. The register is automatically reset to 0, and		
1:0	TX_INIT	Writing a 1 will cause a TX FIFO reset. The register is automatically reset to 0,		

8.8.21 SLIC Reset and Clear MBOX FIFOs (SLIC_MBOX_FIFO_RESET)

Address: 0x180A005C Access: Read/Write Reset: 0x0 Resets and clears data from SLIC MBOX FIFOs. This register should only be written to when no DMAs are in progress.

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
1	RX_INIT	Writing a 1 causes a Rx FIFO reset. The register is automatically reset to 0, and will always return 0 on a read.	
0	TX_INIT	Writing a 1 will cause a Tx FIFO reset. The register is automatically reset to and will always return 0 on a read.	

8.9 SLIC Registers

Table 8-10 summarizes the SLIC registers for the AR9341.

Table 8-10. SLIC Registers Summary

Address	Name	Description	Page
0x180A9000	SLIC_SLOT	SLIC Slots	page 184
0x180A9004	SLIC_CLOCK_CONTROL	SLIC Clock Control	page 184
0x180A9008	SLIC_CTRL	SLIC Control	page 185
0x180A900C	SLIC_TX_SLOTS1	SLIC Tx Slots1 Control	page 185
0x180A9010	SLIC_TX_SLOTS2	SLIC Tx Slots2 Control	page 185
0x180A9014	SLIC_RX_SLOTS1		page 185
0x180A9018	SLIC_TX_SLOTS2		page 185
0x180A901C	SLIC_TIMING_CTRL		page 186
0x180A9020			page 187
0x180A9024			page 187

8.9.1 SLIC Slots (SLIC_SLOT)

Address: 0x180A9000 Access: Read/Write Reset: See field description This register indicates the maximum number of time slots supported by the connected SLIC device. The AR9341 supports 1 to 64 slots, each

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:0	SEL		

8.9.2 SLIC Clock Control (SLIC_CLOCK_CONTROL)

Address: 0x18090004 Access: Read/Write

Reset: 0x0

This register defines the divider value of AUDIO_PLL_CLK. A value of "1" indicates

division by 2, "2" indicates division by 4 and so on. This value needs to be programmed based on the PLL_CLK frequency and maximum number of slots programmed using the "SLIC Slots (SLIC_SLOT)" on page 184.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5:0	DIV	Defines the divider value of AUDIO_PLL_CLK.

8.9.3 SLIC Control (SLIC_CTRL)

Address: 0x18090008 Access: Read/Write Reset: See field description This register defines the various control signals of the SLIC controller.

Bit	Bit Name	Reset	Description		
31:4	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.		
3	CLK_EN	0x0	Acts as a clock gate enable. It gates the AUDIO_PLL/external clock.		
2	MASTER_SLAVE	0x1	Used to select the mode for SLIC control functionality		
			0 Slave mode. Indicates that the AR9341 is a device on the PCM Highway and FS and SLIC_PCM_CLK are inputs.		
			1 Master mode. Indicates that the AR9341 is the master on the PCM highway and will drive the Frame Sync and SLIC_PCM_CLK signal.		
1	SLIC_EN	0x0	Enables the total SLIC controller functionality either in master or slave mode		
0	RES	0x0	Reserved		

8.9.4 SLIC Tx Slots 1 (SLIC_TX_SLOTS1)

Address: 0x1809000C Access: Read/Write Reset: 0x0 This register defines the LSB 32 Tx slots, each bit corresponds to one of the 64 slots. Write a 1

Bit	Bit Name	Description
31:0	ONEHOT	Slots to be enabled. A 1 in any bit indicates the corresponding time slot is enabled.

8.9.5 SLIC Tx Slots 2 (SLIC_TX_SLOTS2)

Address: 0x18090010 Access: Read/Write

Reset: 0x0

This register defines the MSB 32 Tx slots, each bit corresponds to one of the 64 slots. Write a 1

Bit	Bit Name	Description
31:0	ONEHOT	Slots to be enabled. A 1 in any bit indicates the corresponding time slot is enabled.

8.9.6 SLIC Rx Slots 1 (SLIC_RX_SLOTS1)

Address: 0x18090014 Access: Read/Write Reset: 0x0 This register defines the LSB 32 Rx slots, each bit corresponds to one of the 64 slots. Write a 1 to enable a particular slot.

Bit	Bit Name	Description
31:0	ONEHOT	Slots to be enabled. A 1 in any bit indicates the corresponding time slot is enabled.

8.9.7 SLIC Rx Slots 2 (SLIC_RX_SLOTS2)

Address: 0x18090018 Access: Read/Write Reset: 0x0 This register defines the MSB 32 Rx slots, each bit corresponds to one of the 64 slots. Write a 1 to enable a particular slot.

Bit	Bit Name	Description	
31:0	ONEHOT	Slots to be enabled. A 1 in any bit indicates the corresponding time slot is enabled.	

8.9.8 SLIC Timing Control (SLIC_TIMING_CTRL)

Address: 0x1809001C Access: Read/Write Reset: See field description

This register sets the timing control related bits

for FRAME_SYNC and data.

Bit	Bit Name	Reset	Description			
31:12	RES	0x0	Rese	rved. Must be written with zero. Contains zeros when read.		
11	RXDATA_ SAMPLE_ POS_	0x0	This bit, along with RX_DATA_SAMPLE_POS, provides a 3-bit field which controls when data will be sampled with respect to the frame sync posedge.			
		000	Rx Data sampled at the second posedge of the BIT_CLK after the framesync			
EXTENDED			001	Rx Data sampled at the second negedge of BIT_CLK after framesync		
			010	Rx Data sampled at the third negedge of BIT_CLK after framesync		
			011	Rx Data sampled at the third posedge of BIT_CLK after framesync		
			100	Rx Data will be sampled at the fourth posedge of BIT_CLK after framesync		
			101	Rx Data will be sampled at the first posedge of BIT_CLK framesync		
10	TXDATA_FS_ SYNC_ EXTEND	0x0		bit (MSB), along with TXDATA_FS_SYNC field, provides a 3-bit field which rols software when Tx data will be shifted out with respect to the frame sync		
			000	Tx data will be sent at the first posedge of BIT_CLK after frame sync		
			001	Tx data will be sent at the first negedge of BIT_CLK after frame sync		
			010	Tx data will be sent in the second posedge of BIT_CLK after frame sync		
			011	Tx data will be sent at the second negedge of BIT_CLK after frame sync		
			100	Tx data will be sent in the third posedge of BIT_CLK after frame sync		
			101	Tx data will be sent in the third posedge of BIT_CLK after frame sync		
9	DATAOEN_ ALWAYS					
8:7	RXDATA_ SAMPLE_ POS	0x0	This field, along with the RXDATA_SAMPLE_POS_EXTEND bit, provides a 3 field which controls when data will be sampled with respect to frame sync posedge. See the descriptions for RXDATA_SAMPLE_POS_EXTEND.			
6:5	TXDATA_FS_ SYNC	0x1	This field, along with the TXDATA_FS_SYNC_EXTEND bit, provides a 3-bit field which controls when data will be sampled with respect to frame sync posedge. See			
4:2	LONG_ FSCLKS	0x0		field depends on the LONG_FS. If the LONG_FS = 1, then this field specifies number of BIT_CLKs for which FS is high.		
				1 BIT_CLK		
			7	8 BIT_CLKs		
1	FS_POS	0x1	This AR9	field determines the relation between BIT_CLK and Framesync when the 341 is in master mode		
			0	Send FS at the negative edge of the BIT_CLK		
			1	Send FS at the positive edge of the BIT_CLK		
0	LONG_FS	0x1	0	FS is high for a half bit clock		
			1	FS is high for more than 1 BIT_CLK duration		

8.9.9 SLIC Interrupt (SLIC_INTR)

Address: 0x18090020 Access: Read/Write Reset: See field description This register controls the SLIC interrupt and SLIC status registers.

Bit	Bit Name	Reset	Description		
31:6	RES	0x0	Reserved		
5	STATUS	0x0	Indicates unexpected Framesync received interrupt		
4:1	RES	0xF	Reserved		
0	MASK	0x1	0 Indicates the unexpected Framesync interrupt is MASKED		
			1 Indicates the interrupt is enabled		

8.9.10 SLIC Swap (SLIC_SWAP)

Address: 0x18090024 Access: Read/Write

Reset: 0x0

This register denotes the bit level swap registers at byte boundary for both Tx and Rx

Bit	Bit Name	Description		
31:2		Reserved. Must be written with zero. Contains zeros when read.		
1				
0				

8.10 Stereo Registers

Table 8-11 summarizes the stereo registers for the AR9341.

Table 8-11. Stereo Registers Summary

Address	Name	Description	Page
0x180B0000	STEREO_CONFIG	Configure Stereo Block	page 188
0x180B0004	STEREO_VOLUME	Set Stereo Volume	page 190
0x180B0008	STEREO_MASTER_CLOCK	Stereo Master Clock	page 191
0x180B000C	STEREO_TX_SAMPLE_CNT_LSB	Tx Sample Counter	page 191
0x180B0010	STEREO_TX_SAMPLE_CNT_MSB	Tx Sample Counter	page 191
0x180B0014	STEREO_RX_SAMPLE_CNT_LSB		page 191
0x180B0018	STEREO_RX_SAMPLE_CNT_MSB	Rx Sample Counter MSB	page 191

8.10.1 Configure Stereo Block (STEREO_CONFIG)

Address: 0x180B0000 This register controls the basic configuration of

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description	
31:24	RES	Reserv	red. Must be written with zero. Contains zeros when read.	
23	SPDIF_ENABLE	0x0	Enables the SP	
22	REFCLK_SEL	0x0	Enables stereo to choose from external reference clock through a GPIO input	
21	ENABLE	0x0		
20	MIC_RESET	0x0	Resets the MIC buffers	
19	RESET	0x0	S state; Should be written to 1 when any of the data word sizes change, or if data synchronization is lost. Hardware will	
18	I2S_DELAY	0x1	No delay: I2S_WS is available one clock cycle before data	
			0 No delay	
			1 One I2S_CK delay: I2S_WS is asserted on the same CLK edge as the data	
17	PCM_SWAP	0x0	This bit is used for swapping byte order of PCM samples	
16	MIC_WORD_SIZE	0x0	Causes configures microphone word size:	
			0 16-bit PCM words	
			1 32-bit PCM words	

15:14	STEREO_MONO	0x0	Causes configures stereo or mono
			0x0 Stereo
			0x1 Mono from channel 0
			0x2 Mono from channel 1
			0x3 Reserved
13:12	DATA_WORD_ SIZE	0x0	Controls the word size loaded into the PCM register from the MBOX FIFO. Data word size:
			0x0 8 bits/word
			0x1 16 bits/word
			0x2 24 bits/word
			0x3 32 bits/word
11	I2S_WORD_SIZE	0x0	S DAC. When set to 32 bit words, S word size:
10	MCK_SEL	0x0	When a DAC master clock is required, this field selects the raw clock source between divided audio clock and input master clock (MCLK_IN)
9	SAMPLE_CNT _CLEAR_TYPE	0x0	Indicates the strategy used to clear the sample counter Tx and Rx registers
	_CLL/111 L		0 Write an explicit zero data through software to the Tx and Rx sample
			1 A software read of the Tx and Rx sample counter registers clears the
8	MASTER	0x1	This field controls the I2S_CK and I2S_WS master
			0 External DAC is the master and drives I2S_CK and I2S_WS
			1 The AR9341 is the master and drives I2S_CK and I2S_WS
7:0	POSEDGE	0x2	Counts in units of MCLK and can be calculated as follows:
			S bit clock (I2S_SCK):
			Where DIV = MCLK/(SAMPLE_RATE * I2S_WORD_SIZE * 2 channels); a common example, a 44.1 KSps sample rate with 32 bits/word and a 11.2896 MHz MCLK would yield: DIV = 11.2896MHz/(44.1 KSps * 32 bits/word * 2) = 4 ■ Identify the relationship between I2S_SCK and SPDIF_SCK: If I2S_WORD_SIZE=16, then I2S_SCK = SPDIF_SCK / 4 If I2S_WORD_SIZE=32, then I2S_SCK = SPDIF_SCK / 2 Note that SPDIF is always 32 bits per word. ■ Determine the value of this register (POSEDGE): SPDIF_SCK = MCLK/POSEDGE

8.10.2 Set Stereo Volume (STEREO_VOLUME)

Address: 0x180B0004 Access: Read/Write

Reset: 0x0

This register digitally attenuates or increases the volume level of the stereo output. Volume is adjusted in 6-dB steps. If the gain is set too high, the PCM values saturate and waveform clipping occurs.

Bit	Bit Name	Description				
31:13	RES	Reserved. Must	be written with zero. Contains zeros when read.			
12:8	CHANNEL1	Channel 1 gain/ A 5 bit number;	Channel 1 gain/attenuation. Setting the gain above +7 is not supported. A 5 bit number; the MSB is a sign bit, the others are magnitude:			
		Binary (Decimal)	Result			
7:5	RES	Reserved. Must	be written with zero. Contains zeros when read.			
4:0	CHANNEL0	Channel 0 gain/ A 5 bit number;	attenuation. Setting the gain above +7 is not supported. the MSB is a sign bit, the others are magnitude:			
		10001 (-1)	_6 dB			
		10001 (1)	0 dB			
		00000 (0)	0 dB			
		00001 (+1)	+6 dB			
		00111 (+7)	+42 dB (maximum gain)			
		01000 (+8)	Reserved			
			 December 1			
		01111 (+15)	Reserved			

8.10.3 Stereo Master Clock (STEREO_MASTER_CLOCK)

Address: 0x180B0008 T Access: Read/Write b

Reset: 0x0

This register is used to configure the stereo block.

Bit Bit Name Description		Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MCK_SEL	Master clock select

8.10.4 Tx Sample Counter (STEREO_TX_SAMPLE_CNT_LSB)

Address: 0x180B000C Access: Read/Write This register counts the number of Tx samples transmitted by stereo. This register holds the 16

Reset: 0x0

15:0

Bit	Bit Name	Description
31:16		
15:0	CH0	Holds the 16 LSBs of Tx CH0 sample counter; also, these are the 16 LSBs of the

8.10.5 Tx Sample Counter (STEREO_TX_SAMPLE_CNT_MSB)

Address: 0x180B0010 Access: Read/Write Reset: 0x0

CH₀

This register counts the number of Tx samples transmitted by stereo. This register holds only the 16 MSBs of the sample counter.

Holds the 16 MSBs of Tx CH0 sample counter; also, these are the 16 LSBs of

Bit Bit Name Description
31:16

8.10.6 Rx Sample Counter (STEREO_RX_SAMPLE_CNT_LSB)

Address: 0x180B0014 Access: Read/Write Reset: 0x0 This register counts the number of Rx samples transmitted by stereo. This register holds only the 16 LSBs of the sample counter.

Bit	Bit Name	Description
31:16	CH1	Holds the 16 LSBs of Rx CH1 sample counter
15:0	CH0	Holds the 16 LSBs of Rx CH0 sample counter

8.10.7 Rx Sample Counter (STEREO_RX_SAMPLE_CNT_MSB)

Address: 0x180B0018 Access: Read/Write Reset: 0x0 This register counts the number of Rx samples transmitted by stereo. This register holds only the 16 MSBs of the sample counter.

Bit	Bit Name	Description
31:16	CH1	Holds the 16 MSBs of Rx CH1 sample counter
15:0	CH0	Holds the 16 MSBs of Rx CH0 sample counter

8.11 WDMA Registers

Table 8-12 shows the mapping of the general DMA and Rx-related (WMAC interface) registers.

Table 8-12. WDMA Registers

Offset	Name	Description	Page
0x18100008	CR	Command	page 193
0x18100014	CFG	Configuration and Status	page 193
0x18100018	RXBUFPTR_THRESH	Rx DMA Data Buffer Pointer Threshold	page 194
0x1810001C	TXDPPTR_THRESH	Tx DMA Descriptor Pointer Threshold	page 194
0x18100020	MIRT	Maximum Interrupt Rate Threshold	page 194
0x18100024			page 195
0x18100028	TIMT		page 195
0x1810002C	RIMT		page 195
0x18100030	TXCFG		page 196
0x18100034	RXCFG		page 196
0x18100040	MIBC		page 197
0x18100064			page 197
0x18100068	GTTM		page 197
0x1810006C			page 198
0x18100070	RXDP_SIZE		page 198
0x18100074	RX_QUEUE_HP_RXDP	Lower 32 bits of MAC Rx High Priority Queue RXDP Pointer	page 198
0x18100078	RX_QUEUE_LP_RXDP	Lower 32 bits of MAC Rx Low Priority Queue RXDP Pointer	page 198
0x18100080	ISR_P		page 199
0x18100084	ISR_S0		page 200
0x18100088	ISR_S1		page 200
0x1810008C	ISR_S2		page 201
0x18100090	ISR_S3		page 202
0x18100094	ISR_S4		page 202
0x18100098	ISR_S5		page 202
0x181000A0	IMR_P		page 203
0x181000A4	IMR_S0		page 204
0x181000A8	IMR_S1		page 204
0x181000AC	IMR_S2	Secondary Interrupt Mask 2	page 205
0x181000B0	IMR_S3	Secondary Interrupt Mask 3	page 205
0x181000B4	IMR_S4	Secondary Interrupt Mask 4	page 206
0x181000B8	IMR_S5	Secondary Interrupt Mask 5	page 206
0x181000C0	ISR_P_RAC	Primary Interrupt Status Read-and-Clear	page 206
0x181000C4	ISR_S0_S	Secondary Interrupt Status 0 (Shadow Copy)	page 207
0x181000C8	ISR_S1_S	Secondary Interrupt Status 1 (Shadow Copy)	page 207
0x181000D0	ISR_S2_S	Secondary Interrupt Status 2 (Shadow Copy)	page 207
0x181000D4	ISR_S3_S	Secondary Interrupt Status 3 (Shadow Copy)	page 207
0x181000D8	ISR_S4_S	Secondary Interrupt Status 4 (Shadow Copy)	page 207
0x181000DC	ISR_S5_S	Secondary Interrupt Status 5 (Shadow Copy)	page 207

8.11.1 Command (CR)

Offset: 0x18100008 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved
6	SWI	Software interrupt; this bit is one-shot/auto-cleared, so it always reads as 0
5	RXD	Rx disabled
4	RES	Reserved
3	RXE_HP	Receive enabled; this read-only bit indicates RxDMA status for HP frames. Set when software writes to the RxBP register and cleared when RxDMA runs out of RxBP or when RxD is asserted.
2	RXE_LP	Receive enabled; this read-only bit indicates RxDMA status for LP frames. Set when software writes to RXBUFPTR_THRESH register and cleared when RxDMA runs out of
1:0	RES	Reserved

8.11.2 Configuration and Status (CFG)

Offset: 0x18100014 Access: Read/Write Reset: See field description

	D*: 11		
Bit	Bit Name	Reset	Description
31:19	RES		
18:17	FULL_THRESHOLD	0x0	Host interface master request queue full threshold
16:13	RES		
12	CFG_HALT_ACK	0x0	DMA halt status
11	CFG_HALT_REQ	0x0	DMA halt in preparation for reset request
			1 Request DMA logic to stop so software can reset the MAC
			Bit [12] indicates when the halt has taken effect; the DMA halt is not
			recoverable; once software sets bit [11] to request a DMA halt,
10		0.0	software must wait for bit [12] to be set and reset the MAC.
10	CFG_CLKGATE DIS	0x0	Clock gating disable
	_DI3		0 Allow clock gating in all DMA blocks to operate normally
			1 Disable clock gating in all DMA blocks (for debug use)
9:6	RES	0x0	Reserved
5	REG_CFG_ADHOC	0x0	AP/ad hoc indication
			0 AP mode: MAC is operating either as an access point (AP) or as a
			station (STA) in a BSS
			1 Ad hoc mode: MAC is operating as a STA in an independent basic service set (IBSS)
4	MODE_MMR	0x0	Byteswap register access (MMR) data words
3	MODE_RCV_DATA	0x0	Byteswap Rx data buffer words
2	MODE_RCV_DESC	0x0	Byteswap Rx descriptor words
1	MODE_XMIT_DATA	0x0	Byteswap Tx data buffer words
0	MODE_XMIT_DESC	0x0	Byteswap Tx descriptor words

8.11.3 Rx DMA Data Buffer Pointer Threshold (RXBUFPTR_THRESH)

Offset: 0x18100018 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:15	RES	Reserved
14:8	LP_DATA	Indicates the Rx DMA data buffer pointer threshold. An interrupt will be asserted (if enabled) if the number of available data buffer pointers is less than this threshold. There is a separate threshold for high and low priority buffers.
7:4	RES	Reserved
3:0	HP_DATA	Indicates the Rx DMA data buffer pointer threshold. An interrupt will be asserted (if enabled) if the number of available data buffer pointers is less than this threshold.

8.11.4 Tx DMA Descriptor Pointer Threshold (TXDPPTR_THRESH)

Offset: 0x1810001C Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:4	RES	Reserved
3:0	DATA	Indicates the Tx DMA descriptor pointer threshold. An interrupt will be asserted (if enabled) if the number of available descriptor pointers for any of the 10 queues is less

8.11.5 Maximum Interrupt Rate Threshold (MIRT)

Offset: 0x18100020 Access: Read/Write

Bit	Bit Name	Description
31:16	RES	Reserved
15:0	INTR_RATE_THRESH	Maximum interrupt rate threshold This register is described in µs up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The maximum interrupt rate timer is started when either the TXINTM or RXIMTM status bits are set. TXMINTR or RXMINTR are asserted at this time. No future TXINTM or RXINTM events can cause the TXMINTR or TXMINTR to be asserted until this timer has expired. If both the TXINTM and RXINTM status bits are set while the timer is expired then the TXMINTR and RXMINTR will round robin between the two.

8.11.6 Interrupt Global Enable (IER)

Offset: 0x18100024 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved
0	REG_IER	Enable hardware signaling of interrupts

8.11.7 Tx Interrupt Mitigation Thresholds (TIMT)

Offset: 0x18100028 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:16	TX_FIRST_PKT _THRESH	s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx first packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The first Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet
15:0	TX_LAST_PKT_ THRESH	s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx last packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The last Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet

8.11.8 Rx Interrupt Mitigation Thresholds (RIMT)

Offset: 0x1810002C Access: Read/Write Reset: Undefined

Bit	Bit Name	Description	
31:16	RX_FIRST_PKT _THRESH	Receive first packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Rx first packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over. The first receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.	
15:0	RX_LAST_PKT_ THRESH	Receive last packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is $0x0$, the interrupt mitigation mechanism is disabled. The Rx last packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over. The last receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.	

8.11.9 Tx Configuration (TXCFG)

Offset: 0x18100030 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description		
31:18	RES	0x0	Reserved		
17			Disable retry of underrun packets		
	_UNDERRUN		0 Underrun packets will retry indefinitely		
			Underrun packets will quit after first underrun attempt and write status indicating underrun		
16:10	RES	0x0	Reserved		
9:4	TXCFG_TRIGLVL	0x1	Frame trigger level Specifies the minimum number of bytes, in units of 64 bytes, which must be DMAed into the PCU TXFIFO before the PCU initiates sending the frame on the air. Resets to 0x1 (meaning 64 Bytes or a full		
3	RES				
2:0	TXCFG_DMA_SIZE	0x5	Maximum DMA request size for master reads		

8.11.10Rx Configuration (RXCFG)

Offset: 0x18100034 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:5			
4:3	ZERO_LEN_DMA_EN	0x0	Zero-length frame DMA enable
			Disable DMA of all zero-length frames. In this mode, the DMA logic suppresses all zero-length frames. Reception of zero-length frames is invisible to the host (they neither appear in host memory nor consume a Rx descriptor).
			1 Reserved
			Enable DMA of all zero-length frames. In this mode, all zero-length frames (chirps, double-chirps, and non-chirps) are DMAed into host memory just like normal (non-zero-length) frames.
			3 Reserved
2:0	DMA_SIZE	0x4	Maximum DMA size for master writes; (See the encodings for the register "Tx Configuration (TXCFG)" on page 196)

8.11.11MIB Control (MIBC)

Offset: 0x18100040 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description	
31:4	RES	0x0	Reserved	
3	STROBE	0x0	MIB count	ter strobe. This bit is a one-shot and always reads as zero. For writes:
			0 N	No effect
			1 (Causes every MIB counter to increment by one
2	CLEAR	0x1	Clear all c	ounters
1	FREEZE	0x1	Freeze all	counters
0	RES	0x0	Reserved	

8.11.12Global Tx Timeout (GTT)

Offset: 0x18100064 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:16	LIMIT	Timeout limit (in TU: 1024
15:0	COUNT	Timeout counter (in TU: 1024 The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or else the counter s. If the timeout counter is equal to or greater than the timeout limit, the global transmit timeout interrupt is set in the ISR. This mechanism can be used to detect whether a Tx frame is ready and is unable to be transmitted.

8.11.13Global Tx Timeout Mode (GTTM)

Offset: 0x18100068 Access: Read/Write

Bit	Bit Name	Description
31:4		
3	CST_USEC_STROBE	CST μs strobe; if this bit is set, then the CST timer will not use the TU based strobe but rather use the μs strobe to increment the timeout counter.
2	RESET_ON_CHAN_IDLE	Reset count on chan idle low. Reset count every time channel idle is low.
1	IGNORE_CHAN_IDLE	Ignore channel idle; if this bit is set then the GTT timer does not increment if the channel idle indicates the air is busy or NAV is still counting down.
0	USEC_STROBE	μs strobe; if this bit is set then the GTT timer will not use the TU based strobe but rather use a μs strobe to increment the timeout counter.

8.11.14Carrier Sense Timeout (CST)

Offset: 0x1810006C Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:16	LIMIT	Timeout limit (in TU: $1024~\mu s$). On reset, this value is set to $0~TU$.
15:0	COUNT	Timeout counter (in TU: $1024\mu s$) The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or the counter increments every $1024\mu s$. If the timeout counter is equal to or greater than the timeout limit then carrier sense timeout (CST) interrupt is set in the ISR. This counter starts counting if any queues are ready for Tx. It continues counting when RX_CLEAR is low, which is useful to determine whether the transmit is stuck because RX_CLEAR is low for a long time.

8.11.15Size of High and Low Priority (RXDP_SIZE)

Offset: 0x18100070 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:13	RES	Reserved
12:8	HP	Indicates the size of high priority RXDP FIFO
7:0	LP	Indicates the size of low priority RXDP FIFO

8.11.16MAC Rx High Priority Queue RXDP Pointer (RX_QUEUE_HP_RXDP)

Offset: 0x18100074 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	ADDR	MAC Rx high priority queue RXDP pointer

8.11.17MAC Rx Low Priority Queue RXDP Pointer (RX_QUEUE_LP_RXDP)

Offset: 0x18100078 Access: Read/Write

Bit	Bit Name	Description
31:0	ADDR	MAC Rx low priority queue RXDP pointer

8.11.18Primary Interrupt Status (ISR_P)

Offset: 0x18100080

Access: Read/Write-One-to-Clear

Reset: 0x0

NOTE:

- The bits that are logical ORs of bits in the secondary ISRs are generated by logically ORing the secondary ISR bits after the secondary ISR bits have been masked with the appropriate bits from the corresponding secondary interrupt mask register.
- A write of one to a bit that is a logical OR of bits in a secondary ISR clears the secondary ISR bits from which the primary ISR bit is generated. E.g.: A write of a one to the TXOK bit (bit [6]) in ISR_P clears all 10 TXOK bits in ISR_S0 (bits [9:0] of "Secondary Interrupt Status 0 (ISR_S0)"
- Only the bits in this register (ISR_P) and the primary interrupt mask register ("Primary Interrupt Mask (IMR_P)") control whether the MAC's interrupt output is asserted. The bits in the several secondary interrupt status/mask registers control what bits are set in the primary interrupt status register; however, the IMR_S* registers do not determine whether an interrupt is asserted. That is, an interrupt is asserted only when the logical AND of ISR_P and IMR_P is non-zero. The secondary interrupt mask/ status registers affect which bits are set in ISR_P, but do not directly affect whether an interrupt is asserted.

Bit	Bit Name	Description
31	RXINTM	Rx completion interrupt after mitigation; either the first Rx packet or last Rx packet interrupt mitigation count has reached its threshold (see the register "Rx Interrupt
30	TXINTM	Tx completion interrupt after mitigation; either the first Tx packet or last Tx packet interrupt mitigation count has reached its threshold (see the register "Tx Interrupt
29	RES	Reserved
28	GENTMR	Logical OR of all GENERIC TIMER bits in the secondary ISR 5 which include the GENERIC_TIMER_THRESH[7:0],
27	QTRIG	Logical OR of all QTRIG bits in secondary ISR 4; indicates that at least one QCU's frame
26	QCBRURN	Logical OR of all QCBRURN bits in secondary ISR 3; indicates that at least one QCU's frame scheduling trigger event occurred when no frames were present on the queue
25	QCBROVF	Logical OR of all QCBROVF bits in secondary ISR 3; indicates that at least one QCU's CBR expired counter has reached the value of the QCU's CBR_OVR_THRESH register bits [31:24])
24	RXMINTR	RXMINTR maximum receive interrupt rate; same as RXINTM with the added requirement that maximum interrupt rate count has reached its threshold; this
23	BCNMISC	Miscellaneous beacon-related interrupts This bit is the Logical OR of the CST, GTT, TIM, CABEND, DTIMSYNC, BCNTO, CABTO, TSFOOR, DTIM, and TBTT_TIME bits in secondary ISR 2.
22:21	RES	Reserved
20	BNR	Beacon not ready Indicates that the QCU marked as being used for beacons received a DMA beacon alert when the queue contained no frames.
19	TXMINTR	TXMINTR maximum Tx interrupt rate
18	BMISS	The PCU indicates that is has not received a beacon during the previous N (N is programmable) beacon periods
17	BRSSI	The PCU indicates that the RSSI of a beacon it has received has fallen below a programmable threshold
16	SWBA	The PCU has signalled a software beacon alert
15	RXKCM	Key cache miss; a frame was received with a set key cache miss Rx status bit
14	RXPHY	The PHY signalled an error on a received frame

Bit	Bit Name	Description
13	SWI	Software interrupt signalled; see the register "Command (CR)" on page 193
12	MIB	One of the MIB regs has reached its threshold
11	TXURN	Logical OR of all TXURN bits in secondary ISR 2. Indicates that the PCU reported a txfifo underrun for at least one QCU's frame
10	TXEOL	Logical OR of all TXEOL bits in secondary ISR 1; indicates that at least one Tx desc fetch state machine has no more Tx descs available
9	RES	Reserved
8	TXERR	Logical OR of all TXERR bits in secondary ISR 1; indicates that at least one frame was completed with an error, regardless of whether the InterReq bit was set
7	RES	Reserved
6	TXOK	Logical OR of all TXOK bits in secondary ISR 0; indicates that at least one frame was completed with no errors and at the requested rate, regardless of whether the InterReq bit was set.
5	RXORN	RxFIFO overrrun
4	RXEOL	Rx descriptor fetch logic has no more Rx descs available
3	RXNOFR	No frame was received for RXNOFR timeout clocks
2	RXERR	The frame was received with errors
1	RXOK_LP	Low priority frame was received with no errors
0	RXOK_HP	High priority frame was received with no errors

8.11.19Secondary Interrupt Status 0 (ISR_S0)

Offset: 0x18100084

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Bit Name	Description
31:10	RES	Reserved
9	TXOK[9]	TXOK for QCU 9
1	TXOK[1]	TXOK for QCU 1
0	TXOK[0]	TXOK for QCU 0

8.11.20Secondary Interrupt Status 1 (ISR_S1)

Offset: 0x18100088

Access: Read/Write-One-to-Clear

Bit	Bit Name	Description
31:26	RES	Reserved
25	TXEOL[9]	TXEOL for QCU 9
17	TXEOL]1]	TXEOL for QCU 1
16	TXEOL[0]	TXEOL for QCU 0
15:10	RES	Reserved
9	TXERR[9]	TXERR for QCU 9
1	TXERR[1]	TXERR for QCU 1
0	TXERR[0]	TXERR for QCU 0

8.11.21Secondary Interrupt Status 2 (ISR_S2)

Offset: 0x1810008C

Access: Read/Write-One-to-Clear

Bit	Bit Name	Description
31	TBTT_TIME	TBTT-referenced timer interrupt; indicates the PCU's TBTT-referenced timer has elapsed.
30	TSFOOR	TSF out of range; indicates that the corrected TSF received from a beacon differs from the PCU's internal TSF by more than a (programmable) threshold
29	DTIM	A beacon was received with the DTIM bit set and a DTIM count value of zero. Beacons with a set DTIM bit but a non-zero DTIM count do not generate it.
28	САВТО	CAB timeout; a beacon was received that indicated that the STA should expect to receive CAB traffic. However, the PCU's CAB timeout expired either because the STA received no CAB traffic, or because the STA received some CAB traffic but never received a CAB frame with the more data bit clear in the frame control field (which
27	BCNTO	Beacon timeout; a TBTT occurred and the STA began waiting to receive a beacon, but no beacon was received before the PCU's beacon timeout expired
26	DTIMSYNC	DTIM synchronization lost; a beacon was received that was expected to be a DTIM but was not, or a beacon was received that was not expected to be a DTIM but was
25	CABEND	End of CAB traffic; a CAB frame was received with the more data bit clear in the
24	TIM	A beacon was received with the local STA's bit set in the TIM element
23	GTT	Global Tx timeout; indicates the GTT count
22	CST	Carrier sense timeout; indicates the CST count than the CST limit
21:10	RES	Reserved
9	TXURN[9]	TXURN for QCU 9
•••		
1	TXURN[1]	TXURN for QCU 1
0	TXURN[0]	TXURN for QCU 0

8.11.22Secondary Interrupt Status 3 (ISR_S3)

Offset: 0x18100090

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Bit Name	Description
31:26	RES	Reserved
25	QCBRURN[9]	QCBRURN for QCU 9
17	QCBRURN[1]	QCBRURN for QCU 1
16	QCBRURN[0]	QCBRURN for QCU 0
15:10	RES	Reserved
9	QCBROVF[9]	QCBROVF for QCU 9
1	QCBROVF[1]	QCBROVF for QCU 1
0	QCBROVF[0]	QCBROVF for QCU 0

8.11.23Secondary Interrupt Status 4 (ISR_S4)

Offset: 0x18100094

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Bit Name	Description
31:10	RES	Reserved
9	QTRIG[9]	QTRIG for QCU 9
1	QTRIG[1]	QTRIG for QCU 1
0	QTRIG[0]	QTRIG for QCU 0

8.11.24Secondary Interrupt Status 5 (ISR_S5)

Offset: 0x18100098

Access: Read/Write-One-to-Clear

Reset: 0x0

The trigger indicates that the TSF matched or exceeded the timer. The threshold is set when

GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by Timer + Period, indicating incorrect software programming. The GENERIC_TIMER 0 threshold was removed because timer 0 is special and does not generate threshold

Bit	Bit Name	Description
31	GENERIC_TIMER[15]	GENERIC_TIMER 15 threshold
17	GENERIC_TIMER[11]	GENERIC_TIMER 1 threshold
16	GENERIC_TIMER_OVERFLOW	GENERIC_TIMER overflow
15	GENERIC_TIMER_TRIGGER[15]	GENERIC_TIMER 15 trigger
1	GENERIC_TIMER_TRIGGER[1]	GENERIC_TIMER 1 trigger
0	GENERIC_TIMER_TRIGGER[0]	GENERIC_TIMER 0 trigger

event.

8.11.25Primary Interrupt Mask (IMR_P)

Offset: 0x181000A0 Access: Read/Write

Reset: 0x0

NOTE: Only the bits in this register control whether the MAC's interrupt outputs are asserted. The bits in the secondary interrupt mask registers control what bits are set in the "Primary Interrupt Mask (IMR_P)" register; however, the IMR_S* registers do not determine whether an interrupt is asserted.

Bit	Bit Name	Description
31	RXINTM	RXINTM interrupt enable
30	TXINTM	TXINTM interrupt enable
29	RES	Reserved
28	GENTMR	GENTMR interrupt enable
27	QTRIG	QTRIG interrupt enable
26	QCBRURN	QCBRURN interrupt enable
25	QCBROVF	QCBROVF interrupt enable
24	RXMINTR	RXMINTR interrupt enable
23	BCNMISC	BCNMISC interrupt enable
22:21	RES	Reserved
20	BNR	BNR interrupt enable
19	TXMINTR	TXMINTR interrupt enable
18	BMISS	BMISS interrupt enable
17	BRSSI	BRSSI interrupt enable
16	SWBA	SWBA interrupt enable
15	RXKCM	RXKCM interrupt enable
14	RXPHY	RXPHY interrupt enable
13	SWI	SWI interrupt enable
12	MIB	MIB interrupt enable
11	TXURN	TXURN interrupt enable
10	TXEOL	TXEOL interrupt enable
9	TXNOFR	TXNOFR interrupt enable
8	TXERR	TXERR interrupt enable
7	RES	Reserved
6	TXOK	TXOK interrupt enable
5	RXORN	RXORN interrupt enable
4	RXEOL	RXEOL interrupt enable
3	RXNOFR	RXNOFR interrupt enable
2	RXERR	RXERR interrupt enable
1	RXOK_LP	RXOK_LP interrupt enable
0	RXOK_HP	RXOK_HP interrupt enable

8.11.26Secondary Interrupt Mask 0 (IMR_S0)

Offset: 0x181000A4 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:10	RES	Reserved
9	TXOK[9]	TXOK for QCU 9 interrupt enable
1	TXOK[1]	TXOK for QCU 1 interrupt enable
0	TXOK[0]	TXOK for QCU 0 interrupt enable

8.11.27 Secondary Interrupt Mask 1 (IMR_S1)

Offset: 0x181000A8 Access: Read/Write

Bit	Bit Name	Description
31:26	RES	Reserved
25	TXEOL[9]	TXEOL for QCU 9 interrupt enable
17	TXEOL[1]	TXEOL for QCU 1 interrupt enable
16	TXEOL[0]	TXEOL for QCU 0 interrupt enable
15:10	RES	Reserved
9	TXERR[9]	TXERR for QCU 9 interrupt enable
1	TXERR[1]	TXERR for QCU 1 interrupt enable
0	TXERR[0]	TXERR for QCU 0 interrupt enable

8.11.28Secondary Interrupt Mask 2 (IMR_S2)

Offset: 0x181000AC Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31	TBTT_TIME	TBTT_TIME interrupt enable
30	TSFOOR	TSFOOR interrupt enable
29	DTIM	DTIM interrupt enable
28	CABTO	CABTO interrupt enable
27	BCNTO	BCNTO interrupt enable
26	DTIMSYNC	DTIMSYNC interrupt enable
25	CABEND	CABEND interrupt enable
24	TIM	TIM interrupt enable
23	GTT	GTT interrupt enable
22	CST	CST interrupt enable
21:10	RES	Reserved
9	TXURN[9]	TXURN for QCU 9 interrupt enable
•••		
1	TXURN[1]	TXURN for QCU 1 interrupt enable
0	TXURN[0]	TXURN for QCU 0 interrupt enable

8.11.29Secondary Interrupt Mask 3 (IMR_S3)

Offset: 0x181000B0 Access: Read/Write

Bit	Bit Name	Description
31:26	RES	Reserved
25	QCBRURN[9]	QCBRURN for QCU 9 interrupt enable
17	QCBRURN[1]	QCBRURN for QCU 1 interrupt enable
16	QCBRURN[0]	QCBRURN for QCU 0 interrupt enable
15:10	RES	Reserved
9	QCBROVF[9]	QCBROVF for QCU 9 interrupt enable
1	QCBROVF[1]	QCBROVF for QCU 1 interrupt enable
0	QCBROVF[0]	QCBROVF for QCU 0 interrupt enable

8.11.30Secondary Interrupt Mask 4 (IMR_S4)

Offset: 0x181000B4 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:10	RES	Reserved
9	QTRIG[9]	QTRIG for QCU 9 interrupt enable
1	QTRIG[1]	QTRIG for QCU 1 interrupt enable
0	QTRIG[0]	QTRIG for QCU 0 interrupt enable

8.11.31Secondary Interrupt Mask 5 (IMR_S5)

Offset: 0x181000B8

Access: Read/Write-One-to-Clear

Reset: 0x0

The trigger indicates the TSF matched or exceeded the timer; threshold is set when the TSF exceeds the timer by the GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by such a large amount Timer + Period, indicating incorrect software programming. The threshold GENERIC_TIMER 0 was removed because timer 0 is special and does not generate a threshold event.

Bit		
31	GENERIC_TIMER_THRESHOLD[15]	GENERIC_TIMER_THRESHOLD 15
30	GENERIC_TIMER_THRESHOLD[14]	GENERIC_TIMER_THRESHOLD 14
18	GENERIC_TIMER_THRESHOLD[2]	GENERIC_TIMER_THRESHOLD 2
17	GENERIC_TIMER_THRESHOLD[1]	GENERIC_TIMER_THRESHOLD 1
16	GENERIC_TIMER_OVERFLOW	GENERIC_TIMER overflow enable
15	GENERIC_TIMER_TRIGGER[15]	GENERIC_TIMER 15 trigger enable
1	GENERIC_TIMER_TRIGGER[1]	GENERIC_TIMER 1 trigger enable
0	GENERIC_TIMER_TRIGGER[0]	GENERIC_TIMER 0 trigger enable

8.11.32Primary Interrupt Status Read and Clear (ISR_P_RAC)

Offset: 0x181000C0

Access: Read-and-Clear (No Write Access)

Reset: 0x0

NOTE: A read from this location atomically:

- Copies all secondary ISRs into the corresponding secondary ISR shadow registers (ISR_SO is copied to ISR_SO_S, etc.)
- Clears all bits of the primary ISR (ISR_P) and all bits of all secondary ISRs (ISR_SO-ISR_S4)
- Returns the contents of the primary ISR (ISR_P)

Bit	Bit Name	Description
31:0	ISR_P	Same format as "Primary Interrupt Status (ISR_P)"

8.11.33Secondary Interrupt Status 0 (ISR_SO_S)

Offset: 0x181000C4 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 0 (ISR_S0)"

8.11.34Secondary Interrupt Status 1 (ISR_S1_S)

Offset: 0x181000C8 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:0		"Secondary Interrupt Status 1 (ISR_S1)"

8.11.35Secondary Interrupt Status 2 (ISR_S2_S)

Offset: 0x181000D0 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:0		"Secondary Interrupt Status 2 (ISR_S2)"

8.11.36Secondary Interrupt Status 3 (ISR_S3_S)

Offset: 0x181000D4 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:0		"Secondary Interrupt Status 3 (ISR_S3)"

8.11.37Secondary Interrupt Status 4 (ISR_S4_S)

Offset: 0x181000D8 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 4 (ISR_S4)"

8.11.38Secondary Interrupt Status 5 (ISR_S5_S)

Offset: 0x181000DC Access: Read-Only

Bit	Bit Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 5 (ISR_S5)"

8.12 WQCU Registers

The WQCU registers occupy the offset range 0x18100800 – 0x18100A40 in the AR9341 address space. The AR9341 has ten QCUs, numbered from 0 to 9.

Table 8-13. WQCU Registers

Offset	Name	Description	Page
$0x18100800 + (Q << 2)^{[1]}$	Q_TXDP	Tx Queue Descriptor Pointer	page 208
0x18100830	Q_STATUS_RING_START	QCU_STATUS_RING_START_ADDRESS Lower 32 bits of Address	page 209
0x18100834	Q_STATUS_RING_END	QCU_STATUS_RING_END_ADDR	page 209
0x18100838	Q_STATUS_RING_CURRENT	QCU_STATUS_RING_CURRENT	page 209
0x18100840			page 209
0x18100880			page 210
0x181008C0 + (Q << 2)			page 210
0x18100900 + (Q << 2)			page 210
0x18100940			page 211
0x18100980			page 211
0x181009C0 + (Q << 2)			page 212
0x18100A00 + (Q << 2)			page 214
0x18100A40			page 214
0x18100A44	Q_MAC_QCU_DESC_CRC_		page 214

^[1]The variable Q in the register addresses refers to the QCU number.

8.12.1 Tx Queue Descriptor (Q_TXDP)

Offset: 0x18100800 + (Q < 2)Access: Read/Write Cold Reset: Undefined Warm Reset: Unaffected

Bit	Bit Name	Description			
31:2	TXDP	Tx descriptor pointer			
1:0	RES	Reserved			

8.12.2 QCU_STATUS_RING_START_ADDRESS Lower 32 bits of Address (Q_STATUS_RING_START)

Offset: 0x18100830 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description		
31:0	ADDR	Lower 32 bits of QCU_STATUS_RING_START_ADDR		

8.12.3 QCU_STATUS_RING_END_ADDR Lower 32 Bits of Address (Q_STATUS_RING_END)

Offset: 0x18100834 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description			
31:0	ADDR	Lower 32 bits of QCU_STATUS_RING_END_ADDR			

8.12.4 QCU_STATUS_RING_CURRENT Address (Q_STATUS_RING_CURRENT)

Offset: 0x18100838 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:0	ADDR	MAC_QCU_STATUS_RING_CURRENT_ADDRESS	

8.12.5 Tx Queue Enable (Q_TXE)

Offset: 0x18100840 Access: Read/Write

Reset: 0x0

Writing a 1 in bit position N sets the TXE
. Writing a 0 in bit position N has
no effect; in particular, it does not clear the TXE

Bit	Bit Name	Description
31:10	RES	Reserved
9	QCU_EN[9]	Enable QCU 9
1	QCU_EN[1]	Enable QCU 1
0	QCU_EN[0]	Enable QCU 0

8.12.6 Tx Queue Disable (Q_TXD)

Offset: 0x18100880 Access: Read/Write

Reset: 0x0 **NOTE:**

To stop transmission for QCU Q:

1.Write a 1 to QCU Q's TXD bit

2.Poll the "Tx Oueue Enable (O TXE)" register until QCU Q's TXE bit is clear

3.Poll QCU Q's "Misc. QCU Status (Q_STS)" register until its pending frame count (Q_STS bits [1:0]) is zero

4. Write a 0 to QCU Q's TXD bit

At this point, QCU Q has shut down and has no frames pending in its associated DCU.

Software must not write a 1 to a QCU's TXE bit when that QCU's TXD bit is set; an undefined operation will result. Software must ensure that it sets a QCU's TXE bit only when the QCU's TXD bit is clear. It is fine to write a 0 to TXE when TXD is set, but this has no effect on the QCU.

Bit	Bit Name	Description
31:10	RES	Reserved
9	QCU_DIS[9]	Disable QCU 9
1	QCU_DIS[1]	Disable QCU 1
0	QCU_DIS[0]	Disable QCU 0

8.12.7 CBR Configuration (Q_CBRCFG)

Offset: 0x181008C0 + (Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:24	CBR_OVF_THRESH	CBR overflow threshold	
23:0	CBR_INTV	CBR interval in	

8.12.8 ReadyTime Configuration (Q_RDYTIMECFG)

Offset: 0x18100900 + (Access: Read/Write

Bit	Bit Name	Descrip	Description		
31:25	RES	Reserve	Reserved		
24	RDYTIME_EN	ReadyTime enable			
		0	Disable ReadyTime use		
		1	Enable ReadyTime use		
23:0	RDYTIME_DUR	ReadyTime duration in µs			

8.12.9 OneShotArm Set Control (Q_ONESHOTARM_SC)

Offset: 0x18100940 Access: Read/Write

Reset: 0x0

NOTE: A read to this register returns the current state of all OneShotArm bits (QCU Q's OneShotArm bit is returned in bit position Q).

Bit	Bit Name	Description		
31:10	RES	Reserved		
9	ONESHOTARM[9]	0	No effect	
		1	Set OneShot arm bit for QCU 9	
1	ONESHOTARM[1]	0	No effect	
0	ONESHOTARM[0]	0	No effect	

8.12.100neShotArm Clear Control (Q_ONESHOTARM_CC)

Offset: 0x18100980 Access: Read/Write

Reset: 0x0

A read to this register returns the current state of all OneShotArm bits (QCU Q's

OneShotArm bit is returned in bit position Q).

Bit	Bit Name	Description		
31:10				
9	ONESHOT_CLEAR[9]	0	No effect	
1	ONESHOT_CLEAR[1]	0	No effect	
0	ONESHOT_CLEAR[0]	0	No effect	

8.12.11Misc. QCU Settings (Q_MISC)

Offset: 0x181009C0 + (Q < 2)Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description	
31:12	RES	0x0	Reserved	
11			DCU frame early termination request control	
	_ABORT _REQ_EN		Never request early frame termination. Once a frame enters the DCU, it will remain active until its normal retry count has been reached or the frame succeeds.	
			Allow this QCU to request early frame termination. When requested, the DCU attempts to complete processing the frame	
10	CBR_EXP_CNT _CLR_EN	0x0	CBR expired counter force-clear control. Write-only (always reads as zero).	
9	TXE_CLR_ON_			
	CBR_END		On expiration of ReadyTime or on VEOL, the TXE bit is not cleared. Only reaching the physical end-of-queue (that is, a NULL	
			1 The TXE bit is cleared on expiration of ReadyTime, on VEOL, and	
8	CBR_EXP_INC_			
	LIMIT		The maximum CBR expired counter value is 255, but a CBROVF interrupt is generated when the counter reaches the value set in "CBR Configuration"	
			The maximum CBR expired counter is limited to the value of the "CBR Configuration register. Note that in addition to limiting the maximum CBR expired counter to this value, a CBROVF interrupt is also generated when the CBR expired counter reaches the CBR	
7	QCU_IS_BCN	0x0	Beacon use indication. Indicates whether the QCU is being used for beacons	
			0 QCU is being used for non-beacon frames only	
			1 QCU is being used for beacon frames (and possibly for non-beacon frames)	
6	CBR_EXP_INC_ DIS_NOBCNFR	0x0	Disable the CBR expired counter increment if the frame scheduling trigger occurs and the QCU marked as being used for beacon transmission (i.e., the QCU that has bit [7] set in its "Misc. QCU Settings (Q_MISC)" register) contains no frames	
			Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the beacon queue contains frames	
			Increment the CBR expired counter only when both the frame scheduling trigger occurs and the beacon queue is valid (the beacon queue is valid whenever its TXE is asserted)	

Bit	Bit Name	Reset	Descrip	tion
5	CBR_EXP_INC _DIS_NOFR	0x0		the CBR expired counter increment if the frame scheduling trigger nd the queue contains no frames
			0	Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the queue contains frames
			1	Increment the CBR expired counter only when both the frame scheduling trigger occurs and the queue is valid (the queue is valid whenever TXE is asserted)
4	ONESHOT_EN	0x0	OneSho	t enable
			0	Disable OneShot function
			1	Enable OneShot function
				Note that OneShot must not be enabled when the QCU is set to an
3:0	FSP	0x0	Frame s	cheduling policy setting
				The QCU is enabled under control of the settings in the "CBR
				The QCU will be enabled at each occurrence of a DMA beacon
				In STA mode, the PCU indicates that a beacon frame has been received with the local STA's bit set in the TIM element In IBSS mode, the PCU indicates that an ATIM frame has been
				The QCU will be enabled when the DCU that is marked as being used for beacon transmission (see bit [16] of the "Misc. DCU-register) indicates that it has sent
				The QCU will be enabled when the PCU indicates that it has received a beacon.
			6	HCF Poll gated The QCU will be enabled whenever the Rx HCF poll event occurs; the signals come from the PCU when a directed HCF poll frame type is received with valid FCS.
			15:7	Reserved

8.12.12Misc. QCU Status (Q_STS)

Offset: 0x18100A00 + (Q < 2)

Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description	
31:16	RES	Reserved	
15:8	CBR_EXP	Current value of the CBR expired counter	
7:2	RES	Reserved	
1:0	FC	Pending frame count; Indicates the number of frames this QCU presently has pending in its associated DCU.	

8.12.13ReadyTimeShutdown Status (Q_RDYTIMESHDN)

Offset: 0x18100A40 Access: Read/Write

Reset: 0x0

Bit		
31:10		
9	READYTIME_SHUTDOWN[9]	ReadyTimeShutdown status for QCU 9
•••		
1	READYTIME_SHUTDOWN[1]	ReadyTimeShutdown status for QCU 1
0	READYTIME_SHUTDOWN[0]	ReadyTimeShutdown status for QCU 0 On read, returns ReadyTimeShutdown indication. Write of:

8.12.14Descriptor CRC Check (MAC_QCU_DESC_CRC_CHK)

Offset: 0x18100A44 Access: Read/Write

Bit	Bit Name	Description		
31:1	RES	Reserved		
0	EN	QCU frame descriptor CRC check		
		0	Disable CRC check on the descriptor fetched from HOST	
		1	Enable CRC check on the descriptor fetched from HOST	

8.13 WLAN DCU Registers

The WLAN DCU registers occupy the offset range 0x18101000– 0x181012F0 in the AR9341 address space. The AR9341 has ten DCUs, numbered from 0 to 9.

Table 8-14. WLAN DCU Registers

Offset	Name	Description	Page
$0x18101000 + (D << 2)^{[1]}$	D_QCUMASK	QCU Mask	page 215
$0x18101040 + (D << 2)^{[1]}$	D_LCL_IFS	DCU-Specific IFS Settings	page 216
$0x18101080 + (D << 2)^{[1]}$	D_RETRY_LIMIT	Retry Limits	page 216
0x181010C0 + ([1]	D_CHNTIME	ChannelTime Settings	page 216
0x18101100 + (Miscellaneous DCU-Specific Settings	page 217
0x18101030	D_GBL_IFS_SIFS	DCU-Global IFS Settings: SIFS Duration	page 217
0x18101070	D_GBL_IFS_SLOT	DCU-Global IFS Settings: Slot Duration	page 217
0x181010B0	D_GBL_IFS_EIFS	DCU-Global IFS Settings: EIFS Duration	page 218
0x181010F0		DCU-Global IFS Settings: Misc.	page 218
0x18101270		DCU Transmit Pause Control/Status	page 219
0x181012F0		DCU Transmission Slot Mask	page 219

[1]The variable D

8.13.1 QCU Mask (D_QCUMASK)

Offset: 0x18101000 + (
Access: Read/Write
Cold Reset: 0x0

Warm Reset: Unaffected

To achieve lowest power consumption, software should set this register to 0x0 for all DCUs that are not in use. The hardware detects that the QCU mask is set to zero and shuts down certain logic in response, helping to save power.

Bit	Bit Name	Description
31:10	RES	Reserved
9:0	QCU_MASK	QCU mask Setting bit <i>Q</i> means that QCU <i>Q</i> is associated with (i.e., feeds into) this DCU. These register have reset values which corresponding to a 1 to 1 mapping between QCUs and DCUs. A register offset of 0x1000 maps to 0x1, 0x1004 maps to 0x2, 0x1008 maps to 0x4, etc.

8.13.2 DCU-Specific IFS Settings (D_LCL_IFS)

Offset: 0x18101040 + (D < 2)

Access: Read/Write

Cold Reset: See field description

Warm Reset: Unaffected

Bit	Bit Name	Reset	Description
When L	ong AIFS is 0:		
31:28	RES	0x0	Reserved
27:20	DATA_AIFS_D[7:0]	0x2	AIFS value, in slots beyond SIFS; e.g., a setting of 2 (the reset value) means AIFS is equal to DIFS.
			NOTE: This field is 17 bits wide (including the 9 MSBs accessed using the AIFS field), but the maximum supported AIFS value is 0x1FFFC. Setting AIFS to 0x1FFFD, 0x1FFFE, or 0x1FFFF causes the DCU to hang.
19:10	DATA_CW_MAX	0x3FF	CW_MAX value; must be equal to a power of 2, minus 1
9:0	DATA_CW_MIN	0xF	CW_MIN value; must be equal to a power of 2, minus 1
When L	ong AIFS is 1:		
31:29	RES		
28	LONG_AIFS [DCU_IDX_D]	0x0	Long AIFS bit; used to read or write to the nine MSBs of the AIFS value
27:9	RES		
8:0	DATA_AIFS_D[16:8]	0x2	Upper nine bits of the AIFS value (see bits [27:20] listed in this register)

8.13.3 Retry Limits (D_RETRY_LIMIT)

Offset: 0x18101080 + (Access: Read/Write

Cold Reset: See field description

Warm Reset: Unaffected

Bit	Bit Name	Reset	Description	
31:20	RES	0x20	Reserved	
19:14	SDFL	0x20	STA data failure limit: Specifies the number of times a frame's data exchange may fail before CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.	
13:8	SRFL	0x20	STA RTS failure limit: Specifies the number of times a frame's RTS exchange may fail before the CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.	
7:4	RES	0x0	Reserved	
3:0	FRFL	0x4	Frame RTS failure limit: Specifies the number of times a frame's RTS exchange may fail before the current transmission series is terminated. A frame's RTS exchange fails if RTS is enabled for the frame, but when the MAC sends the RTS on the air, no CTS is received. Note: A value of 0x0 is unsupported.	

8.13.4 ChannelTime Settings (D_CHNTIME)

Offset: 0x181010C0 + (D < 2)

Access: Read/Write Cold Reset: 0x0

Warm Reset: Unaffected

Bit	Bit Name	Description
31:21	RES	Reserved
20	CHANNEL_TIME_EN	ChannelTime enable
19:0	DATA_CT_MMR	ChannelTime duration in µs

8.13.5 Misc. DCU-Specific Settings (D_MISC)

Offset: 0x18101100 + (D < 2)Access: Read/Write

Cold Reset: See field description

Warm Reset: Unaffected

Bit	Bit Name	Reset	Description
31:19	RES	0x0	Reserved
18:17	DCU_ARB	0x0	DCU arbiter lockout control
	_LOCKOUT _IF_EN		No lockout. Allows lower-priority DCUs to arbitrate for access to the PCU concurrently with this DCU.
			1 Intra-frame lockout only. Forces all lower-priority DCUs to defer arbitrating for access to the PCU while the current DCU arbitrates for access to the PCU or doing an intra-frame backoff.
			rity DCUs to defer arbitration for
			At least one QCU feeding to the current DCU has a frame ready
			The DCU is actively processing a frame, including arbitrating for post-frame backoff, DMAing frame data to the PCU, or waiting for the PCU to complete the frame.
16	DCU_IS_BRN	0x0	Beacon use indication. Indicates whether the DCU is being used for beacons.
15:6	RES	0x0	Reserved
5:0	DATA _BKOFF _THRESH		Determines the backoff count at which the DCU will initiate arbitration for

8.13.6 DCU-Global IFS Settings: SI

Offset: 0x18101030 Access: Read/Write Cold Reset: 640 (16 Warm Reset: Unaffected

Bit	Bit Name	Description
31:16	RES	Reserved
15:0	SIFS_DUR	SIFS duration in core clocks (40 MHz for legacy or HT20, 80 MHz for HT40)

8.13.7 DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT)

Offset: 0x18101070 Access: Read/Write

Cold Reset: 360 (9 µs at 40 MHz)

Warm Reset: Unaffected

Bit	Bit Name	Description
31:16	RES	Reserved
15:0	SLOT_DUR	Slot duration in core clocks (40 MHz for legacy or HT20 mode, 80 MHz for HT40 mode)

8.13.8 DCU-Global IFS Settings: EIFS Duration (D_GBL_IFS_EIFS)

Offset: 0x181010B0 Access: Read/Write

Cold Reset: 3480 (87 µs at 40 MHz)

Warm Reset: Unaffected

Bit	Bit Name	Description
31:16	RES	Reserved
15:0	EIFS_DUR	EIFS duration in core clocks (40 MHz for legacy or HT20 mode, 80 MHz for HT40 mode)

8.13.9 DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)

Offset: 0x181010F0 Access: Read/Write

Cold Reset: See field description Warm Reset: Unaffected

Bit	Bit Name	Reset	Description
31:29	RES	0x0	Reserved
26:25	CHAN_SLO T _WIN_DUR		Specifies the number of core clocks after a slot boundary during which the MAC is permitted to send a frame. Specified in units of 8 core clocks, with the value 0x0 being special. If set to a value of 0x0 (the reset value), the MAC is permitted
28	IGNORE _BACKOFF		Allows the DCU to ignore backoff as well as EIFS; it should be set during fast
27	CHAIN _SLOT _ALWAYS		When bits [26:25] of this register are non-zero, the MAC transmits on slot boundaries as required by the 802.11 spec. When bits [26:25] are not 0x0 and this
24	LFSR_SLICE _RANDOM _DIS		O Allow the IFS logic to randomly generate the LFSR slice select value (see bits [2:0] of this register). Random selection ensures independence of LFSR output values for nodes on different Host busses and on the same network as well as for multiple nodes connected to the same physical Host bus. Disable random LFSR slice selection and use the value of the LFSR slice
23	AIFS_RST _UNCOND		Reset the AIFS counter only when PCU_RST_AIFS is asserted and the counter already has reached AIFS Reset the AIFS counter unconditionally when PCU_RST_AIFS is asserted
22	SIFS_RST _UNCOND	0x0	SIFS counter reset policy (debug use only) 0 Reset the SIFS counter only when PCU_RST_SIFS is asserted and the counter already has reached SIFS 1 Reset the SIFS counter unconditionally whenever PCU_RST_SIFS is asserted
21:3	RES	0x0	Reserved
2:0	LFSR_SLICE _SEL	0x0	LFSR slice select Determines which slice of the internal LFSR will generate the random sequence used to determine backoff counts in the PCU's DCUs and scrambler seeds. This allows different STAs to contain different LFSR slice values (e.g., by using bits from the MAC address) to minimize random sequence correlations among STAs in the same BSS/IBSS. NOTE: Affects the MAC only when random LFSR slice selection disable (bit [24]) is set. When random LFSR slice selection is enabled (default), it is ignored.

8.13.10DCU Tx Pause Control/Status (D_TXPSE)

Offset: 0x18101270 Access: Read/Write

Cold Reset: See field description

Warm Reset: Unaffected

Bit	Bit Name	Reset	Description
31:17	RES	0x0	Reserved
16	TX_PAUSED	0x1	Tx pause status
			Tx pause request has not yet taken effect, so some DCUs for which a transmission pause request has been issued using bits [9:0] of this register are still transmitting and have not paused.
			All DCUs for which a transmission pause request has been issued via bits [9:0] of this register, if any, have paused their transmissions. Note that if no transmission pause request is pending (i.e., bits [9:0] of this register are all set to 0), then this
15:10	RES		
9:0	DCU_REG_TXPSE	0x0	Request that some subset of the DCUs pause transmission.
			to continue to transmit normally
			pause transmission as soon as it is able

8.13.11DCU Transmission Slot Mask (D_TXSLOTMASK)

Offset: 0x181012F0 Access: Read/Write Cold Reset: 0x0

Warm Reset: Unaffected

When bits [26:25] of the "DCU-Global IFS Settings: Misc. Parameters

register are non-zero,
D_TXSLOTMASK controls the slots DCUs can start
frame transmission on. The slot occurring
coincident with SIFS elapsing is slot 0. Slot
numbers increase thereafter, whether the
channel was idle or busy during the slot. If bits
[26:25] of D_GBL_IFS_MISC are zero, this

Bit	Bit Name	Descrip	Description	
31:16	RES	Reserve	Reserved	
15	SLOT_TX[15]	Specifies whether transmission may start on slot numbers that are congruent to 15 (mod 16)		
		0	Transmission may start on such slots	
		1	Transmission may not start on such slots	
1	SLOT_TX[1]	Specifies whether transmission may start on slot numbers that are congruent to 1 (mod 16)		
		0	Transmission may start on such slots	
		1	Transmission may not start on such slots	
0	SLOT_TX[0]	Specifies whether transmission may start on slot numbers that are congruent (mod 16)		
		0	Transmission may start on such slots	
		1	Transmission may not start on such slots	

8.14 WMAC Glue Registers

Table 8-15 summarizes the WMAC glue control registers.

Table 8-15. WMAC Glue Register Summary

Offset	Name	Description	Page
0x18104000	WMAC_GLUE_INTF_RESET_CONTROL	Interface Reset Control	page 221
0x18104004	WMAC_GLUE_INTF_PM_CTRL	Power Management Control	page 221
0x18104008	WMAC_GLUE_INTF_TIMEOUT	AXI Timeout Counter for DMA Transfers	page 221
0x18104010	WMAC_GLUE_INTF_INTR_SYNC _CAUSE	Synchronous Interrupt Cause	page 221
0x18104014	WMAC_GLUE_INTF_INTR_SYNC	Synchronous Interrupt Enable	page 222
0x18104018	WMAC_GLUE_INTF_INTR_ASYNC		page 222
0x1810401C	WMAC_GLUE_INTF_INTR_SYNC		page 222
0x18104020	WMAC_GLUE_INTF_INTR		page 222
0x18104024	WMAC_GLUE_INTF_INTR		page 222
0x1810402C	WMAC_GLUE_INTF_GPIO_IN		page 223
0x1810403C	WMAC_GLUE_INTF_GPIO_INPUT		page 223
0x18104054	WMAC_GLUE_INTF_GPIO_INPUT	Output Values from MAC to GPIO Pins	page 224
0x18104060	WMAC_GLUE_INTF_RFSILENT		page 224
0x18104084	WMAC_GLUE_INTF_INTR	Synchronous Priority Interrupt Cause	page 225
0x18104088	WMAC_GLUE_INTF_INTR	Synchronous Priority Interrupt Enable	page 225
0x1810408C	WMAC_GLUE_INTF_INTR	Asynchronous Priority Interrupt Mask	page 225
0x18104090	WMAC_GLUE_INTF_INTR	Synchronous Priority Interrupt Mask	page 226
0x18104094	WMAC_GLUE_INTF_INTR _PRIORITY_ASYNC_CAUSE	Asynchronous Priority Interrupt Cause	page 226
0x18104098	WMAC_GLUE_INTF_INTR _PRIORITY_ASYNC_ENABLE	Asynchronous Priority Interrupt Enable	page 226
0x1810409C	WMAC_GLUE_INTF_AXI_BYTE_SWAP	AXI to MAC and MAC to AXI Byte Swap Enable	page 227

8.14.1 Interface Reset Control (WMAC_GLUE_INTF_RESET_CONTROL)

Offset: 0x18104000 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:1	RES	Reserve	d
0	APB_RESET	0	Normal operation of the MAC APB interface
		1	Hold the MAC APB interface in reset

8.14.2 Power Management Control (WMAC_GLUE_INTF_PM_CTRL)

Offset: 0x18104004 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:23		
22	WMAC_GLUE_PME_	
21	WMAC_GLUE_MAC_ WOW_CLEAR	
20:0		

8.14.3 AXI Timeout Counter for DMA Transfers (WMAC_GLUE_INTF_TIMEOUT)

Offset: 0x18104008 Access: Read/Write Reset: 0x1000

Bit	Bit Name	Description
31:16		
15:0	AXI_TIMEOUT_VAL	AXI timeout counter for DMA accesses (in

8.14.4 Synchronous Interrupt Cause (WMAC_GLUE_INTF_INTR_SYNC_CAUSE)

Offset: 0x18104010 Access: Read/Write Reset: Undefined

Bit	Bit Name	Description
31:0	DATA	Writing a 1 to any bit in this register clears the corresponding bit in the synchronous interrupt cause register. Any bit set to 1 in this register indicates that the corresponding interrupt has been triggered in synchronous mode. For any bit to be set in this register the corresponding bit in the synchronous interrupt enable register mentioned below must also be set.

8.14.5 Synchronous Interrupt Enable (WMAC_GLUE_INTF_INTR_SYNC_ENABLE)

Offset: 0x18104014 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:0	DATA	Writing a 1 to any bit in this register will allow the corresponding interrupt signal to	
		set its corresponding bit in the synchronous interrupt cause register.	

8.14.6 Asynchronous Interrupt Mask (WMAC_GLUE_INTF_INTR_ASYNC_MASK)

Offset: 0x18104018 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	DATA	A bit set to 1 in this register allows the corresponding interrupt signal to trigger a CPU interrupt provided that the corresponding asynchronous interrupt cause register bit is set. Note that for the asynchronous interrupt cause register bit to be set, the corresponding asynchronous interrupt enable register bit must also be set by the software.

8.14.7 Synchronous Interrupt Mask (WMAC_GLUE_INTF_INTR_SYNC_MASK)

Offset: 0x1810401C Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	DATA	A bit set to 1 in this register allows the corresponding interrupt signal to trigger a CPU interrupt provided that the corresponding interrupt cause register bit is set. Note that for the interrupt cause register bit to be set, the corresponding interrupt

8.14.8 Asynchronous Interrupt Mask (WMAC_GLUE_INTF_INTR_ASYNC_CAUSE)

Offset: 0x18104020 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	DATA	Any bit set to 1 in this register indicates that the corresponding interrupt has been triggered in async mode. In order for any bit to be set in this register, the corresponding bit in the asynchronous interrupt enable register must also be set.

8.14.9 Asynchronous Interrupt Enable (WMAC_GLUE_INTF_INTR_ASYNC_ENABLE)

Offset: 0x18104024 Access: Read/Write Reset: 0x00000002

Bit	Bit Name	Description	
31:0	DATA	Any bit set to 1 in this register allows the corresponding interrupt signal to set its corresponding bit in the asynchronous interrupt cause register.	

8.14.10GPIO Input (WMAC_GLUE_INTF_GPIO_IN)

Offset: 0x1810402C Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:11	RES	Reserved
10:0	IN	Input value of each GPIO

8.14.11WMAC Glue GPIO Input Value (WMAC_GLUE_INTF_GPIO_INPUT_VALUE)

Offset: 0x1810403C Access: Read/Write

Bit		
31:22		
21	BT_PRIORITY_3_ENABLE	0 Set BT_PRIORITY_3 to default value
		0 000 21_11001011_0 10 0000001 1000
20	BT_PRIORITY_3_VAL	0 Set BT_PRIORITY_2 to default value
19	BT_PRIORITY_2_ENABLE	0 Set BT_PRIORITY_2 to default value
18	BT_PRIORITY_2_VAL	Default value of BT_PRIORITY_2 input
17		
16	RTC_RESET_OVRD_ENABLE	0 RTC reset is entirely controlled by software
		1 RTC reset is controlled by GPIO input as well as software
15	RFSILENT_BB_L_ENABLE	0 Set RFSILENT_BB_L to default value
14		
14		
13		
12	BT_ACTIVE_ENABLE	0 Set BT_ACTIVE to default value
12	B1_ACTIVE_ENTINE	o Set B1_NeTivE to delitate value
11	BT_FREQUENCY_ENABLE	0 Set BT_FREQUENCY to default value
	_ ~ _	~
10	BT_PRIORITY_ENABLE	0 Set BT_PRIORITY to default value
		1 Connect BT_PRIORITY to GPIO input
9	GPIO_RST_AZM_TS_ENABLE	0 Set RST_AZM_TS to default value
		1 Connect RST_AZM_TS to GPIO input
8	GPIO_RST_TSF_ENABLE	0 Set RST_TSF to default value
		1 Connect RST_TSF to GPIO input
7	RFSILENT_BB_L_VAL	Default value of RFSILENT_BB_L input
6	CLK25_VAL	Default value of CLK25 input
5	RES	Reserved
4	BT_ACTIVE_VAL	Default value of BT_ACTIVE input
3	BT_FREQUENCY_VAL	Default value of BT_FREQUENCY input
2	BT_PRIORITY_VAL	Default value of BT_PRIORITY input
1	RST_AZM_TS_VAL	Default value of RST_AZM_TS input
0	RST_TSF_VAL	Default value of RST_TSF input

8.14.12Output Values from MAC to GPIO Pins (WMAC_GLUE_INTF_GPIO_INPUT_STATE)

Offset: 0x18104054 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved
6	TX_FRAME	Tx frame
5	RX_CLEAR_EXTERNAL	Rx clear external
4	LED_POWER_EN	LED power
3	LED_NETWORK_EN	LED network
2	RES	Reserved
1	PWR_LED	LED power
0	ATT_LED	ATT LED

8.14.13WMAC Glue RF Silent (WMAC_GLUE_INTF_RFSILENT)

Offset: 0x18104060 Access: Read/Write

Bit	Bit Name	Description
31:3	RES	Reserved
2	RTC_RESET_INVERT	Invert the value from GPIO input pin for RTC reset control
1	INVERT	Invert the value from GPIO input pin for RFSILENT_BB_L
0	FORCE	Force enabling of RFSILENT function

8.14.14Synchronous Priority Interrupt Cause (WMAC_GLUE_INTF_INTR_PRIORITY_SYNC_CAUSE)

Offset: 0x18104084 Access: Read/Write Reset: Undefined

Bit	Bit Name	Description	Description		
31:3	RES	Reserved	Reserved		
2:0	DATA	interrupt prior corresponding	any bit in this register clears the corresponding bit in the synchronous ity cause register. Any bit set to 1 in this register indicates that the interrupt has been triggered in synchronous mode. For any bit to be set in a corresponding bit in the synchronous priority interrupt enable register by software:		
		Bit[0] Tx interrupt triggered			
		Bit[1] Rx low priority interrupt triggered			

8.14.15Synchronous Priority Interrupt Enable (WMAC_GLUE_INTF_INTR_PRIORITY_SYNC_ENABLE)

Offset: 0x18104088 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description		
31:3	RES	Reserved		
2:0 DATA Writing a 1 to a bit in this register allows the corresponding in		Writing a 1 to a bit in this register allows the corresponding interrupt signal to set its corresponding bit in the synchronous priority interrupt cause register:		

8.14.16Asynchronous Priority Interrupt Mask (WMAC_GLUE_INTF_INTR_PRIORITY_ASYNC_MASK)

Offset: 0x1810408C Access: Read/Write

Bit	Bit Name	Descriptio	n	
31:3	RES	Reserved	Reserved	
2:0	DATA	A bit set to 1 in this register allows the corresponding interrupt signal to trigger a CPU interrupt provided that the corresponding asynchronous priority interrupt cause registe bit is set. For the priority asynchronous interrupt cause register bit to be set, the corresponding asynchronous priority interrupt enable register bit must also be set by software:		
		Bit[0]	Tx interrupt mask	
		Bit[1] Rx low priority interrupt mask		
		Bit[2]	Rx high priority interrupt mask	

8.14.17Synchronous Priority Interrupt Mask (WMAC_GLUE_INTF_INTR_PRIORITY_SYNC_MASK)

Offset: 0x18104090 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	Description		
31:3	RES	Reserved	Reserved		
2:0	DATA	interrupt pr bit is set. Fo	I in this register allows the corresponding interrupt signal to trigger a CPU ovided that the corresponding synchronous priority interrupt cause register r the priority synchronous interrupt cause register bit to be set, the ng synchronous priority interrupt enable register bit must also be set by		
		Bit[0]	Tx interrupt mask		

8.14.18Asynchronous Priority Interrupt Cause (WMAC_GLUE_INTF_INTR_PRIORITY_ASYNC_CAUSE)

Offset: 0x18104094 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:3	RES	Reserved	
2:0	DATA	· .	

8.14.19Asynchronous Priority Interrupt Enable (WMAC_GLUE_INTF_INTR_PRIORITY_ASYNC_ENABLE)

Offset: 0x18104098 Access: Read/Write

Bit	Bit Name	Description	n	
31:3	RES	Reserved	Reserved	
2:0	DATA	Any bit set to 1 in this register allows the corresponding interrupt signal to set its corresponding bit in the asynchronous priority interrupt cause register:		
		Bit[0] Tx interrupt enable		
		Bit[1]	Rx low priority interrupt enable	
		Bit[2] Rx high priority interrupt enable		

8.14.20AXI to MAC and MAC to AXI Byte Swap Enable (WMAC_GLUE_INTF_AXI_BYTE_SWAP)

Offset: 0x1810409C Access: Read/Write

Bit	Bit Name	Description		
31:1	RES	Reserved		
0	ENABLE	0	0 Do not swap the data between AXI and MAC	
		1	Swap the data between AXI and MAC	

8.15 RTC Registers

RTC registers occupy the offset range 0x18107000–0x18107FFC in the AR9341 address space. Within this address range, the 0x18107040–0x18107058 registers are always on and available for software access regardless of whether the RTC is asleep. Table 8-16 summarizes the RTC registers for the AR9341.

Table 8-16. **RTC Summary**

Address	Name	Description	Page
0x18107000	RESET_CONTROL	Reset Control	page 228
0x18107014	WLAN_PLL_CONTROL	WLAN PLL Control Settings	page 229
0x18107018			page 229
0x1810701C			page 230
0x18107020			page 230
0x18107028			page 231
0x1810702C			page 231
0x18107034			page 231
0x18107038			page 232
0x18107040	RTC_SYNC_REGISTER		page 232
0x18107044			page 232
0x18107050	RTC_SYNC_INTR_CAUSE		page 233
0x18107054	RTC_SYNC_INTR_ENABLE		page 233
0x18107058	RTC_SYNC_INTR_MASK		page 233

8.15.1 Reset Control (RESET_CONTROL)

Address: 0x18107000 Access: Read/Write

Reset: 0x0

This register is used to control individual reset pulses to functional blocks. Software can hold any target block in reset by writing a 1 to the corresponding bit in this register. Reset will be held asserted to the target block as long as the corresponding bit is set. Multiple blocks may be held in reset simultaneously.

Bit	Bit Name	Description	
31:4	RES	eserved. Must be written with zero. Contains zeros when read.	
3	COLD_RST	Cold reset	
2	WARM_ RESET	Warm reset	
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.	

8.15.2 WLAN PLL Control Settings (WLAN_PLL_CONTROL)

Address: 0x18107014 Access: Read/Write

Reset: See field description

This register contains the control settings for the WLAN PLL. Any write to this register freezes all WLAN clocks for $61~\mu secs$.

$$\text{PLL FREQUENCY} = \frac{\text{REFCLK FREQ}}{\text{REFDIV}} \times \left(\frac{\text{DIV FRAC}}{2^{14}} + \text{DIV INT}\right) \times \frac{1}{4} \times \frac{1}{\text{CLK SEL}}$$

The frequency range is (580–880 MHz)/4/CLK_SEL. The PLL frequency is to be set to 176 MHz for normal operation.

Bit	Bit Name	Туре	Reset	Description	
31	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
30	MAC_ OVERRIDE	RW	0x0	When set, a MAC clock request will deassert PLLBYPASS even if the BYPASS field is set to 1. This can be set when its the preferable time to select the ON state to use the PLL, instead of the SOC_ON state.	
29	NOPWD	RW	0x0	Prevents the PLL from being powered down when the PLLBYPASS is	
28	UPDATING	RO	0x0	This bit is set during the PLL update process. After software writes to the PLL_CONTROL, it takes about 45 secs for the update to occur. Software may poll this bit to see if the update has taken place.	
27	BYPASS	RW	0x00000001	Bypass PLL. This defaults to 1 for test purposes. Software must enable	
26:25	CLK_SEL	RW	0x0	Controls the final PLL select.	
24:20	REFDIV	RW	0x00000005	Reference clock divider	
19:6	DIV_FRAC	RW	0x0	Primary multiplier	
5:0	DIV_INT	RW	0x2C	Primary multiplier	

8.15.3 PLL Settling Time (PLL_SETTLE)

Address: 0x18107018 Access: Read/Write Reset: See field description

This register sets the PLL settling time. The PLL requires some time to settle once it is powered up or reprogrammed. Each time the PLL parameters change due to a write to the

PLL register or a system event which changes the PLL control, hardware will gate off the clocks for PLL_SETTLE time while the PLL stabilizes. Units are in REFCLK periods. Note: The reset values of this register must be kept in sync with the corresponding field in the baseband register 31.

Bit	Bit Name	Reset	Description
31:11	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
10:0	TIME	0x00000400	Time required for the PLL to settle. Units are in REFCLK periods, so the default value of 1024 will result in a 25.6 µsec settling time. This register should never be set less than 100.

8.15.4 Crystal Settling Time (XTAL_SETTLE)

Address: 0x1810701C Access: Read/Write Reset: See field description

This register sets the crystal settling time. The external crystal requires some time to settle once it is powered up. The power occurs as chip passes through the WAKEUP state, between OFF and ON or between SLEEP an ON. This exact time will vary and must be characterized, so this register is provided to allow the XTAL power up FSM to transition in the minimal correct time. The default value of

63 will always allow the XTAL to be fully settled before clocks are enabled, but this value can be set to a smaller value if hardware characterization approves. The timer will expire in (XTAL_SETTLE + 1) clocks. Unlike most registers, XTAL_SETTLE will retain its programmed value in the RTC block during reset. The value programmed in this register should be matched to the MAC register 'Sleep Clock 32KHz Wake', field 'SLEEP32_WAKE_XTL_TIME'. Note that the MAC register value is in microseconds.

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:0	TIME	0x00000001	Time required for the XTAL to settle. Units are in 30 secs, so the default value of 66 will result in 2.0 msec settling time. this register should never be

8.15.5 Pin Clock Speed Control (CLOCK_OUT)

Address: 0x18107020 Access: Read/Write Reset: See field description This register controls the CLK_OUT pin clock speed. The output clock can be used for testing

Bit	Bit Name	Reset	Description	
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
6:4	DELAY	0x00000000	Controls the tap selection point for CLK_OUT on a delay line when SELECT[2] is set. 000 corresponds to the least delay while 111 corresponds to	
3:0	SELECT	0x00000000	Controls the CLK_OUT speed. The binary MUX select decode is as follows: 0101 LCL40A (delayed as specified by the DELAY field) 0110 LCL80A (delayed as specified by the DELAY field) 0111 LCL160A (delayed as specified by the DELAY field) 1000 CLK128 1001 XTLCLK 1010 CLK80_ADC 1011 CLK160_DAC 1100 RTC_CLK_W (delayed as specified by the DELAY field) 1101 REFCLK_W (delayed as specified by the DELAY field) 1110 Reserved	
			1111 Reserved	

8.15.6 Reset Cause (RESET_CAUSE)

Address: 0x18107028 Access: Read/Write Reset: See field description This register holds the cause of the last reset event.

Bit	Bit Name	Reset	Description	
31:2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
1:0	LAST	0x00000000	The value of this register holds the cause of the last reset, as stated:	
			0 Hard reset of the RTC	
			1 Software wrote to the RTC_CONTOL_COLD_RST register	
			2 Software wrote to the RTC_CONTOL_WARM_RST register	
			3 Reserved	

8.15.7 System Sleep Status (SYSTEM_SLEEP)

Address: 0x1810702C Access: Read/Write Reset: See field description

This register contains the system sleep status bits. System sleep state is entered when all high frequency clocks are gated and the high frequency crystal is shut down. This register is used to indicate the status of each sleep control interface. If any bit in this control register is 0, sleep is not permitted. If all bits are 1, sleep is permitted. The system will enter sleep as soon as the CPU executes a WAIT instruction. The LIGHT field will gate clocks off in SLEEP, but will keep the crystal running for faster wakeup. The DISABLE field will prevent the chip from

Bit	Bit Name	Reset	Description	
31:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
2	MAC_IF	0x00000001	THE MAC block sleep state	
1	LIGHT	0x00000000	Controls whether or not the crystal is turned off during SLEEP. If the crystal is turned off, power consumption is lowered during sleep but the wakeup tim is controlled by XTAL_SETTLE. If the crystal remains on, power consumption	
			0 System sleep is DEEP, resulting in minimal power consumption	
0	DISABLE	0x0000000	Enables or disables the system sleep	
			0 System sleep is enabled	
			1 System sleep is disabled	

8.15.8 Keep Awake Timer (KEEP_AWAKE)

Address: 0x18107034 Access: Read/Write Reset: See field description This register ensures that the chip does not enter the SLEEP state until at least the COUNT cycles have passed from the time of the last CLK_REQ event.

Bit	Bit Name	Reset	Description
31:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:0	COUNT	0x00000000	The keep awake timer measured in 32 KHz (30.5 µsecs) cycles

8.15.9 Derived RTC Clock (DERIVED_RTC_CLK)

Address: 0x18107038 Access: Read/Write Reset: See field description

This register creates a 32 KHz clock, derived from the HF. This register controls a scaled output clock which can be used to generate lower frequency clocks based on the reference clock. For example, a 32.768 KHz clock can be generated by setting the divisor of the high

speed clock accordingly. The accuracy will depend on how the divisors align with this integer count. RTC will start up normally using the derived RTC_CLK, and will switch to the LF_XTAL if it detects an LF_XTAL (this behavior can be modified using the fields in the RTC_SYNC_DERIVED register) since the external LF_XTAL is mostly unsupported.

Bit	Bit Name	Туре	Reset	Description
31:19	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
18	EXTERNAL _DETECT	RO	0x0	Detects external 32 KHz XTALs; if a LF XTAL is detected and RTC_SYNC_DERIVED clear, the RTC automatically uses the external XTAL.
17:16	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
15:1	PERIOD	RW	0x262	The period of the derived clock is 2 * (PERIOD + 1). The reset value creates a s value is closer to 32.768 s, the PERIOD value should be 0x261. The rest value s clock if the REFCLK is 25 MHz. To set to 30.48 μs, the PERIOD should be 0x17C. HALF_CLK_LATENCY and TSF_INC fields in
0	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.

8.15.10RTC Sync (RTC_SYNC_REGISTER)

Address: 0x18107040 Access: Read/Write Reset: See field description This register sets the RTC reset, force sleep and

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	RESET	RW	0x0	Active low signal setting

8.15.11RTC Sync Status (RTC_SYNC_STATUS)

Address: 0x18107044 Access: Read-Only This register denotes the current use of RTC.

Reset:	0x0

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	PLL_CHANGING	PLL_CHANGING signal from RTC
4	WRESET	Denotes the RTC was accessed while the MAC is asleep
3	WAKEUP_STATE	RTC is in the wakeup state
2	SLEEP_STATE	RTC is in the sleep state
1	ON_STATE	RTC is in the on state
0	SHUTDOWN_STATE	RTC is in the shutdown state

8.15.12RTC Interrupt Cause (RTC_SYNC_INTR_CAUSE)

Address: 0x18107050 Access: Read/Write

Reset: 0x0

This register is a controller that works the same way as the host interface interrupt controller.

Each bit in the interrupt cause register pertains to an event as described here. A write of 1 to any bit in this register will clear that bit in the interrupt cause register until the corresponding event occurs again.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	PLL_CHANGING	PLL_CHANGING signal received from RTC
4	SLEEP_ACCESS	RTC accessed while MAC is asleep
3	WAKEUP_STATE	RTC is in wakeup state
2	SLEEP_STATE	RTC is in sleep state
1	ON_STATE	RTC is in on state
0	SHUTDOWN_STATE	RTC is in shutdown state

8.15.13RTC Interrupt Enable (RTC_SYNC_INTR_ENABLE)

Address: 0x18107054 Access: Read/Write

Reset: 0x0

This register is used for the RTC interrupts. Writing a 1 to any bit in this register allows that

bit in the interrupt cause register to be set when the corresponding event occurs. Writing a 0 to any bit in this register will automatically clear the corresponding bit in the interrupt cause register regardless of the corresponding event.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	PLL_CHANGING	PLL_CHANGING signal received from RTC
4	SLEEP_ACCESS	RTC accessed while MAC is asleep
3	WAKEUP_STATE	RTC is in wakeup state
2	SLEEP_STATE	RTC is in sleep state
1	ON_STATE	RTC is in on state
0	SHUTDOWN_STATE	RTC is in shutdown state

8.15.14RTC Interrupt Mask (RTC_SYNC_INTR_MASK)

Address: 0x18107058 Access: Read/Write

Reset: 0x0

This register is the mask for RTC interrupts. Writing a 1 to any bit in this register will allow

the corresponding event to generate an RTC Interrupt to the host interface, which can be programmed to generate a system interrupt. The corresponding bit in the RTC Interrupt Enable register must also be set.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	PLL_CHANGING	PLL_CHANGING signal received from RTC
4	SLEEP_ACCESS	RTC accessed while MAC is asleep
3	WAKEUP_STATE	RTC is in wakeup state
2	SLEEP_STATE	RTC is in sleep state
1	ON_STATE	RTC is in on state
0	SHUTDOWN_STATE	RTC is in shutdown state

8.16 WPCU Registers

Table 8-17 shows the mapping of the WPCU registers.

Table 8-17. WPCU Registers

Address	Name	Description	Page
0x18108000	WMAC_PCU_STA_ADDR_L32	STA Address Lower 32 Bits	page 236
0x18108004	WMAC_PCU_STA_ADDR_U16	STA Address Upper 16 Bits	page 237
0x18108008	WMAC_PCU_BSSID_L32	BSSID Lower 32 Bits	page 237
0x1810800C	WMAC_PCU_BSSID_U16	BSSID Upper 16 Bits	page 237
0x18108010	WMAC_PCU_BCN_RSSI_AVE	Beacon RSSI Average	page 238
0x18108014	WMAC_PCU_ACK_CTS_TIMEOUT	ACK and CTS Timeout	page 238
0x18108018	WMAC_PCU_BCN_RSSI_CTL		page 238
0x1810801C	WMAC_PCU_USEC_LATENCY	Millisecond Counter and Rx/Tx Latency	page 239
0x18108020			page 239
0x18108038	WMAC_PCU_MAX_CFP_DUR		page 239
0x1810803C			page 240
0x18108040	WMAC_PCU_MCAST_FILTER_L32	Multicast Filter Mask Lower 32 Bits	page 240
0x18008044	WMAC_PCU_MCAST_FILTER_U32	Multicast Filter Mask Upper 32 Bits	page 240
0x18108048			page 241
0x1810804C			page 242
0x18108050			page 242
0x1810805C	WMAC_PCU_AES_MUTE_MASK_0		page 242
0x18108060	WMAC_PCU_AES_MUTE_MASK_1		page 242
0x18108080	WMAC_PCU_LAST_BEACON_TSF		page 243
0x18108084			page 243
0x18108088	WMAC_PCU_RTS_SUCCESS_CNT		page 243
0x1810808C	WMAC_PCU_RTS_FAIL_CNT		page 243
0x18108090	WMAC_PCU_ACK_FAIL_CNT		page 244
0x18108094	WMAC_PCU_FCS_FAIL_CNT		page 244
0x18108098	WMAC_PCU_BEACON_CNT		page 244
0x181080D4			page 244
0x181080D8	WMAC_PCU_SLP2	Sleep 2	page 245
0x181080E0	WMAC_PCU_ADDR1_MASK_L32	Address 1 Mask Lower 32 Bits	page 245
0x181080E4	WMAC_PCU_ADDR1_MASK_U16	Address 1 Mask Upper 16 Bits	page 245
0x181080E8	WMAC_PCU_TPC	Tx Power Control	page 245
0x181080EC	WMAC_PCU_TX_FRAME_CNT	Tx Frame Counter	page 246
0x181080F0	WMAC_PCU_RX_FRAME_CNT	Rx Frame Counter	page 246
0x181080F4	WMAC_PCU_RX_CLEAR_CNT	Rx Clear Counter	page 246
0x181080F8	WMAC_PCU_CYCLE_CNT	Cycle Counter	page 246
0x181080FC	WMAC_PCU_QUIET_TIME_1	Quiet Time 1	page 246
0x18108100	WMAC_PCU_QUIET_TIME_2	Quiet Time 2	page 247
0x18108108	WMAC_PCU_QOS_NO_ACK	QoS NoACK	page 247

Table 8-17. WPCU Registers (continued)

Address	Name	Description	Page
0x1810810C	WMAC_PCU_PHY_ERROR_MASK	PHY Error Mask	page 248
0x18108114	WMAC_PCU_RXBUF	Rx Buffer	page 248
0x18108118	WMAC_PCU_MIC_QOS_CONTROL	QoS Control	page 249
0x1810811C	WMAC_PCU_MIC_QOS_SELECT	Michael QoS Select	page 249
0x18108120	WMAC_PCU_MISC_MODE	Miscellaneous Mode	page 250
0x18108124	WMAC_PCU_FILTER_OFDM_CNT	Filtered OFDM Counter	page 250
0x18108128	WMAC_PCU_FILTER_CCK_CNT	Filtered CCK Counter	page 251
0x1810812C	WMAC_PCU_PHY_ERR_CNT_1	PHY Error Counter 1	page 251
0x18108130	WMAC_PCU_PHY_ERR_CNT_1_MASK	PHY Error Counter 1 Mask	page 251
0x18108134	WMAC_PCU_PHY_ERR_CNT_2		page 251
0x18108138	WMAC_PCU_PHY_ERR_CNT_2_MASK	PHY Error Counter 2 Mask	page 252
0x1810813C	WMAC_PCU_TSF_THRESHOLD		page 252
0x18108144	WMAC_PCU_PHY_ERROR_EIFS_MASK	PHY Error EIFS Mask	page 252
0x18108168	WMAC_PCU_PHY_ERR_CNT_3		page 252
0x1810816C	WMAC_PCU_PHY_ERR_CNT_3_MASK	PHY Error Counter 3 Mask	page 252
0x18108180	WMAC_PCU_GENERIC_TIMERS2	MAC PCU Generic Timers 2	page 253
0x181081C0	WMAC_PCU_GENERIC_TIMERS2_MODE	MAC PCU Generic Timers Mode 2	page 253
0x181081D0		SIFS, Tx Latency and ACK Shift	page 253
0x181081EC		TXOP for Non-QoS Frames	page 254
0x181081F0			page 254
0x181081F4			page 254
0x181081F8			page 254
0x181081FC	WMAC_PCU_TXOP_12_15		page 255
0x18108200	WMAC_PCU_GENERIC_TIMERS[0:15]		page 255
0x18108240	WMAC_PCU_GENERIC_TIMERS_MODE		page 255
0x18108244	WMAC_PCU_SLP32_MODE		page 256
0x18108248	WMAC_PCU_SLP32_WAKE		page 256
0x1810824C		32 KHz Sleep Increment	page 256
0x18108250		Sleep MIB Sleep Count	page 257
0x18108254	WMAC_PCU_SLP_MIB2	Sleep MIB Cycle Count	page 257
0x18108258	WMAC_PCU_SLP_MIB3	Sleep MIB Control Status	page 257
0x1810825C	WMAC_PCU_WOW1	MAC PCU Wake-on-Wireless (WoW) 1	page 258
0x18108260	WMAC_PCU_WOW2	MAC PCU WOW 2	page 258
0x18108270	WMAC_PCU_WOW3_BEACON_FAIL	MAC PCU WoW Beacon Fail Enable	page 258
0x18108274	WMAC_PCU_WOW3_BEACON	MAC PCU WoW Beacon Fail Timeout	page 259
0x18108278	WMAC_PCU_WOW3_KEEP_ALIVE	MAC PCU WoW Keep Alive Timeout	page 259
0x1810827C	WMAC_PCU_WOW_KA	MAC PCU WoW Automatic Keep Alive Disable	page 259
0x18108294	PCU_WOW4	WoW Offset 1	page 259
0x18108298	PCU_WOW5	WoW Offset 2	page 260

Table 8-17. WPCU Registers (continued)

Address	Name	Description	Page
0x18108318	WMAC_PCU_20_40_MODE	Global Mode	page 260
0x18108328	WMAC_PCU_RX_CLEAR_DIFF_CNT	Difference RX_CLEAR Counter	page 260
0x18108330	WMAC_PCU_BA_BAR_CONTROL	Control Registers for Block BA Control Fields	page 261
0x18108334	WMAC_PCU_LEGACY_PLCP_SPOOF	Legacy PLCP Spoof	page 261
0x18108338	WMAC_PCU_PHY_ERROR_MASK_CONT	PHY Error Mask and EIFS Mask	page 261
0x1810833C	WMAC_PCU_TX_TIMER	Tx Timer	page 262
0x1810834C	WMAC_PCU_WOW6	MAC PCU WoW 6	page 262
0x1810835C	WMAC_PCU_WOW5	MAC PCU WoW 5	page 262
0x18108360	WMAC_PCU_WOW_LENGTH1	Length of Pattern Match for Pattern 0	page 262
0x18108364	WMAC_PCU_WOW_LENGTH2	Length of Pattern Match for Pattern 1	page 263
0x18108368	WOW_PATTERN_MATCH_LESS	Enable Control for Pattern Match Feature	page 263
0x18108370			page 263
0x18108374		Exact Length and Offset Requirement	page 263
0x18108378			page 264
0x1810837C			page 264
0x18108380	WMAC_PCU_WOW_LENGTH3	Length of Pattern Match for Pattern 0	page 264
0x18108384	WMAC_PCU_WOW_LENGTH4	Length of Pattern Match for Pattern 0	page 264
0x181083A4	WMAC_PCU_TID_TO_AC		page 265
0x181083A8	WMAC_PCU_HP_QUEUE		page 265
0x181083C8	WMAC_PCU_HW_BCN_PROC1		page 266
0x181083CC	WMAC_PCU_HW_BCN_PROC2		page 266
0x18108800	WMAC_PCU_KEY_CACHE[0:1023]		page 267

8.16.1 STA Address Lower 32 Bits (WMAC_PCU_STA_ADDR_L32)

Offset: 0x18108000

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	ADDR_31_0	Lower 32 bits of STA MAC address (PCU_STA_ADDR[31:0])

8.16.2 STA Address Upper 16 Bits (WMAC_PCU_STA_ADDR_U16)

Offset: 0x18108004 This register contains the lower 32 bits of the Access: Hardware = Read-Only STA address.

Software = Read/Write Reset Value: 0x2000_0000

Bit	Name	Description
31	REG_ADHOC_MCAST_SEARCH	Enables the key cache search for ad hoc MCAST packets
30	PCU_CBCIV_ENDIAN	Endianess of IV in CBC nonce
29	REG_PRESERVE_SEQNUM	Stops PCU from replacing the sequence number; must be set to 1
28	PCU_KSRCH_MODE	Search key cache first. If not, match use offset for $IV = 0, 1, 2, 3$.
		■ If KSRCH_MODE = 0 then do not search
		■ If IV = 1, 2, or 3, then search
27	REG_CRPT_MIC_ENABLE	Enables the checking and insertion of MIC in TKIP
26	RES	Reserved
25	PCU_BSRATE_11B	802.11b base rate
24	PCU_ACKCTS_6MB	Use 6 Mbps rate for ACK and CTS
23:21		
20		
19	PCU_NO_KEYSEARCH	Disable key search
18		
17		
16		
15:0	PCU_STA_ADDR[47:32]	Upper 16 bits of STA MAC address

8.16.3 BSSID Lower 32 Bits (WMAC_PCU_BSSID_L32)

Offset: 0x18108008

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

This register contains the lower 32 bits of the BSS identification information.

Bit		
31:0	PCU_BSSID[31:0]	Lower 32 bits of BSSID

8.16.4 BSSID Upper 16 Bits (WMAC_PCU_BSSID_U16)

Offset: 0x1810800C Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

This register contains the upper 32 bits of the BSS identification information.

Bit	Name	Description
31:17	RES	Reserved
26:16	PCU_AID	Association ID
15:0	PCU_BSSID[47:32]	Upper 16 bits of BSSID

8.16.5 Beacon RSSI Average (WMAC_PCU_BCN_RSSI_AVE)

Offset: 0x18108010

Access: Hardware = Read/Write Software = Read-Only

Reset Value: 0x800

Bit	Name	Description
31:12	RES	Reserved
11:0	REG_BCN_RSSI_AVE	Holds the average RSSI with 1/16 dB resolution. The RSSI is averaged over multiple beacons which matched our BSSID. AVE_VALUE is 12 bits with 4 bits below the normal 8 bits. These lowest 4 bits provide for a resolution of 1/16 dB. The averaging function is depends on the BCN_RSSI_WEIGHT; determines the ratio of weight given to the current RSSI value compared to the average accumulated value.

8.16.6 ACK and CTS Timeout (WMAC_PCU_ACK_CTS_TIMEOUT)

Offset: 0x18108014

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:30		
29:16	PCU_CTS_TIMEOUT	Timeout while waiting for CTS (in cycles)
15:14		
13:0	PCU_ACK_TIMEOUT	Timeout while waiting for ACK (in cycles)

8.16.7 Beacon RSSI Control (WMAC_PCU_BCN_RSSI_CTL)

Offset: 0x18108018

Access: Hardware = Read-Only Software = Read/Write

Bit		
31:30		
29	REG_BCN_RSSI_RST_ STROBE	The BCN_RSSI_RESET clears "BCN_RSSI_AVE" to aid in changing channels
28:24	REG_BCN_RSSI_WEIGHT	Used to calculate "BCN_RSSI_AVE"
23:16	RES	Reserved
15:8	PCU_BCN_MISS_THR	Threshold at which the beacon miss interrupt asserts. Because the beacon miss counter increments at TBTT, it increments to 1 before the first beacon.
7:0	PCU_RSSI_THR	The threshold at which the beacon low RSSI interrupt is asserted when the average RSSI ("BCN_RSSI_AVE") below this level

8.16.8 Ms Counter and Rx/Tx Latency (WMAC_PCU_USEC_LATENCY)

Offset: 0x1810801C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:29	RES	Reserved
28:23	PCU_RXDELAY	Baseband Rx latency to start of SIGNAL (in μs)
22:14	PCU_TXDELAY	Baseband Tx latency to start of timestamp in beacon frame (in µs)
13:0	RES	Reserved

8.16.9 Reset TSF (WMAC_PCU_RESET_TSF)

Offset: 0x18108020 Access: Hardware = Read/Write

Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Controls beacon operation by the PCU.

Contains the maximum time for a CFP.

Bit	Name	Description	
31:26	RES	Reserved	
25	ONE_SHOT	Setting this bit causes the TSF2 to reset. This register clears immediately after res	
24	ONE_SHOT	Setting this bit causes the TSF to reset. This register clears immediately after rese	
23:0	RES	Reserved	

8.16.10Maximum CFP Duration (WMAC_PCU_MAX_CFP_DUR)

Offset: 0x18108038

Access:Hardware = Read-Only

Software = Read/Write

Bit		
31:28		
27	USEC_FRAC _DENOMINATOR[27:24]	See description for the WMAC_PCU_USEC_LATENCY register bit USEC
23:20	RES	Reserved
16:16	USEC_FRAC _DENOMINATOR[19:16]	See description for the WMAC_PCU_USEC_LATENCY register bit USEC
15:0	VALUE[15:0]	Maximum contention free period duration (in μs)

8.16.11Rx Filter (WMAC_PCU_RX_FILTER)

Offset: 0x1810803C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

This register determines Rx frame filtering.

NOTE: If any bit is set, the corresponding packet types pass the filter and DMA. All filter conditions except the promiscuous setting rely on the no early PHY error and protocol version being checked to ensure it is version 0.

Bit	Name	Description
31:19	RES	Reserved
18	MGMT_ACTION_MCAST	Enable receive of multicast frames for management action frames
17	HW_BCN_PROC _ENABLE	If set, the beacon frame with matching BSSID is filtered per hardware beacon processing logic. See the HW_BCN_PROC register.
16	RST_DLMTR_CNT _DISABLE	Clearing this bit resets the ST_DLMTR_CNT to 0 when RXSM.STATE leaves the START_DELIMITER state.
15	MCAST_BCAST_ALL	Enables receipt of all multicast and broadcast frames
14	PS_POLL	Enables receipt of PS-POLL
13:10		
9	MY_BEACON	Retrieves any beacon frame with matching SSID
8	R	
7	PROBE_REQ	Probe request enable; enables reception of all probe request frames
6	R	
5	PROMISCUOUS	Promiscuous Rx enable; enables reception of all frames, including errors
4	BEACON	Beacon frame enable; enables reception of beacon frames.
3	CONTROL	Control frame enable; enables reception of control frames
2	BROADCAST	Broadcast frame enable; enables reception of non beacon broadcast frames that originate from the BSS whose ID matches BSSID
1	MULTICAST	Multicast frame enable; enables reception of multicast frames that match
0	UNICAST	Unicast frame enable; enables reception of unicast (directed) frames that

8.16.12Multicast Filter Mask Lower 32 Bits (WMAC_PCU_MCAST_FILTER_L32)

Offset: 0x18108040

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_MCAST_MASK	Multicast filter mask low. Lower 32 bits of multicast filter mask.

8.16.13Multicast Filter Mask Upper 32 Bits (WMAC_PCU_MCAST_FILTER_U32)

Offset: 0x18108044

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	PCU_MCAST_MASK	Multicast filter mask high. Upper 32 bits of multicast filter mask.

8.16.14Diagnostic Switches (WMAC_PCU_DIAG_SW)

Offset: 0x18108048

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Controls the operation of the PCU, including enabling/disabling acknowledgements, CTS, transmission, reception, encryption, loopback, FCS, channel information, and scrambler seeds.

Bit	Name	Description
31:30	RES	Reserved
29	RX_CLEAR_EXT_LOW	Force the RX_CLEAR_EXT signal to appear to the MAC as being low
28	RX_CLEAR_CTL_LOW	Force the RX_CLEAR_CTL signal to appear to the MAC as being low
27	RES	Reserved
26	SATURATE_CYCLE_CNT	The saturate cycle count bit, if set, causes the "Cycle Counter register to saturate instead of shifting to the right by 1 every time the count reaches 0xFFFFFFF. This saturate condition also holds the RX_CLEAR, RX_FRAME, and
25	FORCE_RX_ABORT	Force Rx abort bit in conjunction with Rx block aids quick channel change to shut down Rx. The force Rx abort bit kills with the Rx_abort any frame currently transferring between the MAC and baseband. while the RX block bit prevents any new frames from getting started.
24:23	RES	Reserved
22	CHAN_IDLE_HIGH	Force channel idle high
21		
20	RX_CLEAR_HIGH	Force RX_CLEAR high
19:18		
17	ACCEPT_NON_V0	Enable or disable protocol field
16:7		
6		
5		
4		
3		
2		
1		Enable or disable acknowledgement generation for all frames
0	PCU_INVALKEY_NOACK	Enable or disable acknowledgement when a valid key is not found for the received frames in the key cache.

8.16.15TSF Lower 32 Bits (WMAC_PCU_TSF_L32)

Offset: 0x1810804C

Access: Hardware = Read/Write Software = Read/Write Reset Value: 0xFFFFFFF

Bit	Name	Description
31:0	VALUE	The timestamp value in µs
		Writes to this register do not cause the TSF to change. Rather, the value is held in a temporary staging area until this register is written, at which point both the lower and upper parts of the TSF are loaded.
		A read result of 0xFFFFFFF indicates that the read occurred before TSF logic came out of sleep. It may take up to $45~\mu s$ after the chip is brought out of sleep for the TSF logic to wake.

8.16.16TSF Upper 32 Bits (WMAC_PCU_TSF_U32)

Offset: 0x18108050

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0xFFFFFFF

Bit	Name	Description	
31:0	VALUE	The timestamp value in	

8.16.17AES Mute Mask 0 (WMAC_PCU_AES_MUTE_MASK_0)

Offset: 0x1810805C

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name		
31:16	QOS_MUTEMASK	0xFFFF	AES mute mask for TID field
15:0	FC_MUTEMASK	0x478F	AES mute mask for frame control field

8.16.18AES Mute Mask 1(WMAC_PCU_AES_MUTE_MASK_1)

Offset: 0x18108060

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description
31:16	FC_MGMT	0xE7FF	AES mute mask for management frame control field
15:0	SEQ_MUTEMASK	0x000F	AES mute mask for sequence number field

8.16.19Last Rx Beacon TSF (WMAC_PCU_LAST_BEACON_TSF)

Offset: 0x18108080

Access: Hardware = Write-only Software = Read-Only

Reset Value: 0x0

This threshold register indicates the minimum amount of data required before initiating a

transmission.

Bit	Name	Description
31:0	LAST_TSTP	Beacon timestamp. Lower 32 bits of timestamp of the last beacon received.

8.16.20Current NAV (WMAC_PCU_NAV)

Offset: 0x18108084

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	
31:26	
25:0	

8.16.21Successful RTS Count (WMAC_PCU_RTS_SUCCESS_CNT)

Offset: 0x18108088 Access: Hardware = Read/Write

Software = Read-Only

This register counts the number of successful RTS exchanges. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Reset Value: 0x0

Bit	
31:16	
15:0	

8.16.22Failed RTS Count (WMAC_PCU_RTS_FAIL_CNT)

Offset: 0x1810808C

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed RTS exchanges. The counter stops at 0xFFFF. After a read, this register is automatically reset to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	RTS_FAIL	RTS/CTS exchange failure counter

8.16.23FAIL ACK Count (WMAC_PCU_ACK_FAIL_CNT)

Offset: 0x18108090 Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed acknowledgements. The counter stops at 0xFFFF. After a read, this register is

automatically reset to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	ACK_FAIL	DATA/ACK failure counter

8.16.24Failed FCS Count (WMAC_PCU_FCS_FAIL_CNT)

Offset: 0x18108094 Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed frame check sequences. The counter stops at 0xFFFF. After a read, this register is automatically reset

Bit	Name	Description
31:16	RES	Reserved
15:0	FCS_FAIL	FCS failure counter

8.16.25Beacon Count (WMAC_PCU_BEACON_CNT)

Offset: 0x18108098

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of valid beacon frames received. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	BEACONCNT	Valid beacon counter

8.16.26Sleep 1 (WMAC_PCU_SLP1)

Offset: 0x181080D4

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

The Sleep 1 register in conjunction with the "Sleep 2 (WMAC_PCU_SLP2)" register, controls when the AR9341 should wake when waiting for AP Rx traffic. Sleep registers are only used when the AR9341 is in STA mode.

Bit	Name	Reset	Description
31:21	CAB_TIMEOUT	0x5	Time in 1/8 TU the PCU waits for CAB after receiving the beacon or the previous CAB; insures that if no CAB is received after the beacon or if a long gap occurs between CABs, CAB powersave state returns to idle.
20	RES	0x0	Reserved
19	ASSUME_DTIM	0x0	A mode bit which indicates whether to assume a beacon was missed when the SLP_BEACON_TIMEOUT occurs with no received beacons, in which case is assumes the DTIM was missed, and waits for CAB.
18:0	RES	0x0	Reserved

8.16.27Sleep 2 (WMAC_PCU_SLP2)

Offset: 0x181080D8

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x2

Bit	Name	Description
31:21		Time in TU that the PCU waits for a beacon after waking up. If this time expires, the PCU woke due to SLP_NEXT_DTIM, and SLP_ASSUME_DTIM is active, then it assumes the beacon was missed and goes directly to watching for CAB. Otherwise when this time expires, the beacon powersave state returns to idle.
20:0	RES	Reserved

8.16.28Address 1 Mask Lower 32 Bits (WMAC_PCU_ADDR1_MASK_L32)

Offset: 0x181080E0 Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFFFFF

This STA register provides multiple BSSID support when the AR9341 is in AP mode.

Bit		
31:0	STA_MASK_L	STA address mask lower 32-bit register. Provides multiple BSSID support.

8.16.29Address 1 Mask Upper 16 Bits (WMAC_PCU_ADDR1_MASK_U16)

Offset: 0x181080E4 Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFF

This STA register provides multiple BSSID support when the AR9341 is in AP mode.

Bit		
31:16		
15:0	STA_MASK_L	STA address mask upper 16-bit register. Provides multiple BSSID support.

8.16.30Tx Power Control (WMAC_PCU_TPC)

Offset: 0x181080E8

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x3F

The 6-bit Tx power control sent from the MAC pically controlled using the Tx descriptor field. But self-generated response frames such as ACK, CTS, and chirp that do not have a Tx descriptor use the values in the Tx power control register instead.

Bit	Name	Description
31:30	RES	Reserved
29:24	RPT_PWR	Tx power control for self-generated action/NoACK frame
23:22	RES	Reserved
21:16	CHIRP_PWR	Tx power control for chirp
15:14	RES	Reserved
13:8	CTS_PWR	Tx power control for CTS
7:6	RES	Reserved
5:0	ACK_PWR	Tx power control for ACK

8.16.31Tx Frame Counter (WMAC_PCU_TX_FRAME_CNT)

Offset: 0x181080EC The Tx frame counter counts the number of Access: Hardware = Read/Write cycles the TX_FRAME signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	TX_FRAME_CNT	Counts the number of cycles the TX_FRAME signal is active

8.16.32Rx Frame Counter (WMAC_PCU_RX_FRAME_CNT)

Offset: 0x181080F0

The receive frame counter counts the number of gyelog the PX_EPAME cignal is active.

Access: Hardware = Read/Write of cycles the RX_FRAME signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_FRAME_CNT	Counts the number of cycles the RX_FRAME signal is active

8.16.33Rx Clear Counter (WMAC_PCU_RX_CLEAR_CNT)

Offset: 0x181080F4 The receive clear counter counts the number of

Access: Hardware = Read/Write cycles the RX_CLEAR signal is not active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_CLEAR_CNT	Counts the number of cycles the RX_CLEAR signal is low

8.16.34Cycle Counter (WMAC_PCU_CYCLE_CNT)

Offset: 0x181080F8 The cycle counter counts the number of clock

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	CYCLE_CNT	Counts the number of clock cycles

8.16.35Quiet Time 1 (WMAC_PCU_QUIET_TIME_1)

Offset: 0x181080FC The Quiet Time registers implement the quiet Access: Hardware = Read-Only time function specified in the proposed 802.11h

Software = Read/Write extension supporting radar detection.

Bit	Name	Description
31:18	RES	Reserved
17	QUIET_ACK_CTS_ENABLE	If set, then the MAC sends an ACK or CTS in response to a received frame
16:0	RES	Reserved

8.16.36Quiet Time 2 (WMAC_PCU_QUIET_TIME_2)

Offset: 0x18108100

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

The Quiet Time registers implement the quiet time function specified in the proposed 802.11h extension supporting radar detection.

NOTE: QUIET_ENABLE is implemented as GENERIC_TIMER_ENABLE and NEXT_QUIET as GENERIC_TIMER_NEXT. QUIET_PERIOD is implemented as GENERIC_TIMER_PERIOD.

- $0 = NEXT_QUIET = TSF[31:0]$
- 1 = QUIET_PERIOD
- 2 = QUIET_DURATION

(Chip remains awake during QUIET_DURATION)

Bit		
31:16	QUIET_DURATION	The length of time in TUs ($TU = 1024$ s) that the chip is required to be quiet
15:0		

8.16.37QoS NoACK (WMAC_PCU_QOS_NO_ACK)

Offset: 0x18108108

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x52

This register provides a mechanism to locate the NoACK information in the QoS field and determine which encoding means NoACK.

Bit			
31:9			
8:7	NOACK_BYTE_OFFSET	Number of bytes from the byte after er byte location where NoACK informati at byte offset 25 for 3-address packets	
6:4	NOACK_BIT_OFFSET	Offsets from the byte where the NoAC	K information should be stored; offset
3:0	NOACK_2_BIT_VALUES	These values are of a two bit field that	indicate NoACK
			Encoding Matching NoACK
			00
			01
		x1xx	10
		1xxx	11

8.16.38PHY Error Mask (WMAC_PCU_PHY_ERROR_MASK)

Offset: 0x1810810C Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x2

NOTE: Provides the ability to choose which PHY errors to filter from the BB; the number offsets into this register. If the mask value at the offset is 0, the error filters and does not show on the Rx queue.

Bit	Name	Description
31	ERROR CCK RESTART	CCK restart error
30	ERROR CCK SERVICE	CCK service error
29:28	RES	Reserved
27	ERROR CCK RATE_ILLEGAL	CCK illegal rate error
26	ERROR CCK HEADER_CRC	CCK CRC header error
25	ERROR CCK TIMING	False detection for CCK
24		
23	ERROR OFDM RESTART	OFDM restart error
22	ERROR OFDM SERVICE	OFDM service error
21	ERROR OFDM POWER_DROP	OFDM power drop error
20	ERROR OFDM LENGTH_ILLEGAL	OFDM illegal length error
19	ERROR OFDM RATE_ILLEGAL	OFDM illegal rate error
18	ERROR OFDM SIGNAL_PARITY	OFDM signal parity error
17	ERROR OFDM TIMING	False detection for OFDM
16:8		
7	ERROR TX_INTERRUPT_RX	Transmit interrupt
6	ERROR ABORT	
5	ERROR RADAR_DETECT	Radar detect error
4	ERROR PANIC	
3:1		
0	ERROR TRANSMIT_UNDERRUN	Transmit underrun error

8.16.39Rx Buffer (WMAC_PCU_RXBUF)

Offset: 0x18108114

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description
31:12	RES	0x0	Reserved
11	REG_RD _ENABLE	0x0	When reading WMAC_PCU_BUF with this bit set, hardware returns the contents of the receive buffer.
10:0	HIGH_PRIORITY _THRSHD	0x7FF	When number of valid entries in the receive buffer is larger than this threshold, the host interface logic gives the higher priority to receive side to prevent receive buffer overflow.

8.16.40QoS Control (WMAC_PCU_MIC_QOS_CONTROL)

Offset: 0x18108118

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xAA

Bit	Name	Descrip	tion
31:17	RES	Reserved	
16	MIC_QOS_ENABLE	Enable l	MIC QoS control
		0	Disable hardware Michael
		1	Enable hardware Michael
15:14	MIC_QOS_CONTROL [7]	MIC Qo	S control [7]. See options for "MIC_QOS_CONTROL [0]".
13:12	MIC_QOS_CONTROL [6]		"MIC_QOS_CONTROL [0]".
11:10	MIC_QOS_CONTROL [5]		"MIC_QOS_CONTROL [0]".
9:8	MIC_QOS_CONTROL [4]		"MIC_QOS_CONTROL [0]".
7:6	MIC_QOS_CONTROL [3]		"MIC_QOS_CONTROL [0]".
5:4	MIC_QOS_CONTROL [2]		"MIC_QOS_CONTROL [0]".
3:2	MIC_QOS_CONTROL [1]		"MIC_QOS_CONTROL [0]".
1:0	MIC_QOS_CONTROL [0]	MIC Qo	S control [0]
		2	Use MIC_QOS_SELECT when calculating Michael
		3	Use inverse of MIC_QOS_SELECT when calculating Michael

8.16.41Michael QoS Select (WMAC_PCU_MIC_QOS_SELECT)

Offset: 0x1810811C

Access: Hardware = Read-Only Software = Read/Write

Bit		
31:28	MIC_QOS_SELECT [7]	MIC QoS select [7]. Select the OOS TID bit when calculating Michael.
27:24	MIC_QOS_SELECT [6]	MIC QoS select [6]. Select the OOS TID bit when calculating Michael.
23:20	MIC_QOS_SELECT [5]	MIC QoS select [5]. Select the OOS TID bit when calculating Michael.
19:16	MIC_QOS_SELECT [4]	MIC QoS select [4]. Select the OOS TID bit when calculating Michael.
15:12	MIC_QOS_SELECT [3]	MIC QoS select [3]. Select the OOS TID bit when calculating Michael.
11:8	MIC_QOS_SELECT [2]	MIC QoS select [2]. Select the OOS TID bit when calculating Michael.
7:4	MIC_QOS_SELECT [1]	MIC QoS select [1]. Select the OOS TID bit when calculating Michael.
3:0	MIC_QOS_SELECT [0]	MIC QoS select [0]. Select the OOS TID bit when calculating Michael.

8.16.42Miscellaneous Mode (WMAC_PCU_MISC_MODE)

Offset: 0x18108120

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description	
31:29	RES	0x0	Reserved	
28	ALWAYS_PERFORM _KEY_SEARCH	0x0	If this bit is set, key search is performed for every frame in an aggregate. If this bit is cleared, key search is only performed for the first frame of an aggregate. Unless the transmitter address is different between the frames in an aggregate. This bit has no effect on non-aggregate frame packets.	
27	SEL_EVM	0x1	If set, the EVM field of the Rx descriptor status contains the EVM data received from the BB. If cleared, the EVM field of the Rx descriptor status contains 3 bytes of Legacy PLCP, 2 service bytes, and 6 bytes of HP PLCP.	
26	CLEAR_BA_VALID	0x0	If set, the state of the block ACK storage is invalidated.	
25:22	RES	0x0	Reserved	
21	TBTT_PROTECT	0x1	If set, then the time from TBTT to 20 s after TBTT is protected from transmit. Turn this off in ad hoc mode or if this MAC is used in the AP.	
20	RES	0x1	Reserved	
19	RES	0x0	Reserved	
18	FORCE_QUIET_ COLLISION	0x0	If set, the PCU thinks that it is in quiet collision period, kills any transmit frame in progress, and prevents any new frame from starting.	
17:13	RES	0x0	Reserved	
12	TXOP_TBTT _LIMIT_ENABLE	0x0	If this limit is set, then logic to limit the value of the duration to fit the time remaining in TXOP and time remaining until TBTT is turned on. This logic	
11:5	RES	0x0	Reserved	
4	CCK_SIFS_MODE	0x0	If set, the chip assumes that it is using 802.11g mode where SIFS is set to s and non-CCK frames must add 6 to SIFS to make it CCK frames. This bit is needed in duration calculation, as is the SIFS_TIME register.	
3	TX_ADD_TSF	0x0	If the TX_ADD_TSF bit is set, the TSF in the transmit packet will be added to the internal TSF value for transmit beacons and prob_response frames.	
2	MIC_NEW_LOCATI ON_ENABLE	0x0	If MIC_NEW_LOCATION_ENABLE is set, the Tx Michael Key is assumed to be co-located in the same entry where the Rx Michael key is.	
1	RES	0x0	Reserved	
0	BSSID_MATCH _FORCE	0x0	If the BSSID_MATCH_FORCE bit is set, all logic based on matching the	

8.16.43Filtered OFDM Counter (WMAC_PCU_FILTER_OFDM_CNT)

Offset: 0x18108124 The filtered OFDM counters use the MIB

Access: Hardware = Read/Write control signals. Software = Read/Write

Bit	Name	Description
31:24	RES	Reserved
23:0	_CNT	Counts the OFDM frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11,
		PCU_MIB_THRESHOLD is asserted and an interrupt generated.

8.16.44Filtered CCK Counter (WMAC_PCU_FILTER_CCK_CNT)

Offset: 0x18108128

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	RES	Reserved
23:0	FILTCCK_CNT	Counts the CCK frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

8.16.45PHY Error Counter 1 (WMAC_PCU_PHY_ERR_CNT_1)

Offset: 0x1810812C

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

The PHY error counters count any PHY error matching the respective mask. The bits of 32-bit

masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to provide flexibility in counting. For example, if setting the mask bits to 0xFF0000FF, then all PHY errors from 0–7 and 24–31 are counted.

Bit	Name	Description
31:24	RES	Reserved
23:0	_CNT1	Counts any PHY error1 using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. Counter saturates at the highest value and is writable. If the upper two counter bits are b11, PCU_MIB_THRESHOLD is

8.16.46PHY Error Counter 1 Mask (WMAC_PCU_PHY_ERR_CNT_1_MASK)

Offset: 0x18108130

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PHY_ERROR_	Counts any error that matches the PHY error1 mask. The values of any 32-bit masks
	CNT_MASK1	correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from [7:0] and [31:24] are counted).

8.16.47PHY Error Counter 2 (WMAC_PCU_PHY_ERR_CNT_2)

Offset: 0x18108134

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:24	RES	Reserved
23:0	PHY_ERRO R_CNT	Counts any error that matches the PHY error2 mask. The values of any 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from 0:7 and 24:31 are counted).

8.16.48PHY Error Counter 2 Mask (WMAC_PCU_PHY_ERR_CNT_2_MASK)

Offset: 0x18108138

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0		Counts any PHY error2 using MIB control signals.
	CNT_MASK2	The MIB freeze register holds all the values of these registers, and MIB zeros out all
		values of these registers. PIB MIB forces incrementation of all registers in each cycle.
		This counter saturates at the highest value and is writable. If the upper two bits of
		these counters are b11, PCU_MIB_THRESHOLD is asserted, generating an interrupt.

8.16.49TSF Threshold (WMAC_PCU_TSF_THRESHOLD)

Offset: 0x1810813C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xFFFF

Bit	Name	Description
31:16	RES	Reserved
15:0	TSF_THRESHOLD	Asserts the PCU_TSF_OUT_OF_RANGE_INTER if the corrected receive TSF in a beacon is different from the internal TSF by more than this threshold.

8.16.50PHY Error EIFS Mask (WMAC_PCU_PHY_ERROR_EIFS_MASK)

Offset: 0x18108144

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	VALUE	This mask provides the ability to choose which PHY errors from the baseband cause EIFS delay. The error number is used as an offset into this mask. If the mask value at

8.16.51PHY Error Counter 3 (WMAC_PCU_PHY_ERR_CNT_3)

Offset: 0x18108168

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	RES	Reserved
23:0	PHY_ERROR_CNT3	Count of PHY errors that pass the PHY_ERR_CNT_3_MASK filter

8.16.52PHY Error Counter 3 Mask (WMAC_PCU_PHY_ERR_CNT_3_MASK)

Offset: 0x1810816C

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	PHY_ERROR_CNT_MASK3	Mask of the PHY error number allowed to be counted

8.16.53MAC PCU Generic Timers 2 (WMAC_PCU_GENERIC_TIMERS2)

Offset: 0x18108180 Access: Read/Write Reset Value: Undefined

Bit	Name	Description
31:0	DATA	WMAC_PCU_GENERIC_TIMERS

8.16.54MAC PCU Generic Timers Mode 2 (WMAC_PCU_GENERIC_TIMERS2_MODE)

Offset: 0x181081C0

Access: See field description Reset Value: Undefined

Bit	Name	Access	Description
31:11			
10:8	OVERFLOW_INDEX	RO	Overflow index
7:0	ENABLE	RW	Enable

8.16.55SIFS, Tx Latency and ACK Shift (WMAC_PCU_TXSIFS)

Offset: 0x181081D0

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:15	RES	Reserved
14:12	ACK_SHIFT	ACK_SHIFT is used to generate the ACK_TIME, which is used to generate the ACK_SIFS_TIME. The ACK_TIME table in the hardware assumes a channel
11:8	TX_LATENCY	TX_LATENCY is the latency in s from TX_FRAME being asserted by the MAC to when the energy of the frame is on the air. This value is used to decrease the time to TBTT and time remaining in TXOP in the calculation to determine quiet
7:0	SIFS_TIME	SIFS_TIME is the number of μs in SIFS. This value is used to determine quiet collision and filtering due to TBTT and TXOP limits.

8.16.56TXOP for Non-QoS Frames (WMAC_PCU_TXOP_X)

Offset: 0x181081EC

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:8	RES	Reserved
7:0	SIFS_TIME	TXOP in units of 32 μ s. A TXOP value exists for each QoS TID value. When a new burst starts, the TID is used to select one of the 16 TXOP values. This TXOP decrements until the end of the burst to make sure that the packets are not sent out by the time TXOP expires. This register is used for legacy non QoS frames.

8.16.57TXOP for TID 0 to 3 (WMAC_PCU_TXOP_0_3)

Offset: 0x181081F0

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_3	Value in units of 32
23:16	VALUE_2	Value in units of 32
15:8	VALUE_1	Value in units of 32
7:0	VALUE_0	Value in units of 32

8.16.58TXOP for TID 4 to 7 (WMAC_PCU_TXOP_4_7)

Offset: 0x181081F4

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_7	Value in units of 32
23:16	VALUE_6	Value in units of 32
15:8	VALUE_5	Value in units of 32
7:0	VALUE_4	Value in units of 32 μ

8.16.59TXOP for TID 8 to 11 (WMAC_PCU_TXOP_8_11)

Offset: 0x181081F8

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:24	VALUE_11	Value in units of 32 μs
23:16	VALUE_10	Value in units of 32 µs
15:8	VALUE_9	Value in units of 32 μs
7:0	VALUE_8	Value in units of 32 µs

8.16.60TXOP for TID 0 to 3 (WMAC_PCU_TXOP_12_15)

Offset: 0x181081FC

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_15	Value in units of 32 μs
23:16	VALUE_14	Value in units of 32 μs
15:8	VALUE_13	Value in units of 32 μs
7:0	VALUE_12	Value in units of 32 µs

8.16.61Generic Timers (WMAC_PCU_GENERIC_TIMERS[0:15])

Offset: 0x18108200

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Address	Default	Description
0x8200- 0x821C		
0x8220- 0x823C		

NOTE: GENERIC _TIMER_O, unlike other generic timers, does not wake the MAC before timer expiration and its overflow mechanism does not generate an interrupt. Instead, it silently adds this period repeatedly until the next timer advances past the TSF. Thus when MAC wakes after sleeping for multiple TBTTs, the TGBTT does not assert repeatedly or cause the beacon miss count to jump.

7	No dedicated function

8.16.62Generic Timers Mode (WMAC PCU GENERIC TIMERS MODE)

Offset: 0x18108240

Access: Hardware = Read/Write Software = Read/Write

Bit	Name	Description
31:11	THRESH	Number of μs that generate a threshold interrupt if exceeded in TSF comparison
10:8	OVERFLOW_INDEX	Indicates the last generic timer that overflowed
7:0	ENABLE	Timer enable

8.16.6332 KHz Sleep Mode (WMAC_PCU_SLP32_MODE)

Offset: 0x18108244

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description
31:23	RES	0x0	Reserved
22	DISABLE_32KHZ	0x0	Indicates the 32 KHz clock is not used to control the TSF, but the MAC clock increments the TSF. Only used on AP class devices that do not go to sleep.
21	TSF_WRITE_STATUS	0x1	The TSF write status
20	ENABLE	0x1	When set, indicates that the TSF should be allowed to increment
19:0	HALF_CLK_LATENCY	0xF424	Time in s from the detection of the falling edge of the 32 KHz clk

8.16.6432 KHz Sleep Wake (WMAC_PCU_SLP32_WAKE)

Offset: 0x18108248

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x800

Bit	Name	Description
31:16		
15:0	XTL_TIME	Time in s before a generic timer should expire that the wake signal asserts s due to 32 KHz clock resolution.

8.16.6532 KHz Sleep Increment (WMAC_PCU_SLP32_INC)

Offset: 0x1810824C

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description	
31:20	RES	Reserved	
19:0	TSF_INC	Time in $1/2^{12}$ of a μ s the TSF increments on the rising edge of the 32 KHz clk (30.5176 μ s period). The upper 8 bits are at μ s resolution. The lower 12 bits are the fractional portion.	
		$\frac{1 \text{ unit}}{1/212 \text{ ms}} = \frac{X}{30.5176 \text{ ms}}$ Where $X = 125000$, or $0x1E848$ is the default setting for 32.768 MHz clock.	

8.16.66Sleep MIB Sleep Count (WMAC_PCU_SLP_MIB1)

Offset: 0x18108250

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	SLEEP_CNT	Counts the number of 32 KHz clock cycles that the MAC has been asleep

8.16.67Sleep MIB Cycle Count (WMAC_PCU_SLP_MIB2)

Offset: 0x18108254

Access:Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit		
31:0	CYCLE_CNT	Counts the absolute number of 32KHz clock cycles. When CYCLE_CNT bit 31 is 1, the MIB interrupt will be asserted. SLEEP_CNT and CYCLE_CNT are saturating counters when the value of CYCLE_CNT reaches

8.16.68Sleep MIB Control Status (WMAC_PCU_SLP_MIB3)

Offset: 0x18108258

Access: Hardware = Read/Write Software = Read/Write

Bit	Name	Description
31:2	RES	Reserved
1	PENDING	SLEEP_CNT, CYCLE_CNT, and CLR_CNT are writable for diagnostic purposes. Before every read/write, the pending bit should be polled to verify any pending
0	CLR_CNT	CLR_CNT clears both SLEEP_CNT and CYCLE_CNT. Pending is asserted while the

8.16.69MAC PCU WoW 1 (WMAC_PCU_WOW1)

Offset: 0x1810825C

Access: See field description Reset Value: See field description

Bit	Name	Access	Reset	Description
31:28	CW_BITS	RW	0x4	Indicates the number of bits used in the contention window.
				If = N, the random backoff is selected between 0 and $(2^N) - 1$. For example, if CS_BITS = 4, the random backoff is selected between 0 and 15. Values larger than 10 are assumed to be 10.
27:22	RES	RO	0x0	Reserved
21	BEACON_FAIL	RO	0x0	Beacon receive timeout
20	KEEP_ALIVE_FAIL	RO	0x0	Indicates excessive retry or other problems which cause the
19	INTR_DETECT	RO	0x0	Set when an interrupt was detected
18	INTR_ENABLE	RW	0x0	When set, indicates that MAC interrupts that are not masked
17	MAGIC_DETECT	RO	0x0	Set when a magic packet has been detected
16	MAGIC_ENABLE	RW	0x0	When set, indicates the magic packet detection has been enabled
15:8	PATTERN_DETECT	RO	0x0	Indicate the which of the 8 patterns were matched a receive
7:0	PATTERN_ENABLE	RW	0x0	Indicate the which of the 8 patterns are enabled for compare

8.16.70PCU WoW 2 (WMAC_PCU_WOW2)

Offset: 0x18108260 Access: Read/Write

Reset Value: See field description

Bit	Name	Reset	Description
31:24	RES		
23:16	TRY_CNT	0X00000008	Time in
15:8	SLOT	0X00000009	Time in
7:0	AIFS	0X000000CC	Time in

8.16.71MAC PCU WoW Beacon Fail Enable (WMAC_PCU_WOW3_BEACON_FAIL)

Offset: 0x18108270 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:1	RES	Reserved
0	ENABLE	Enable WoW if the AP fails to send a beacon

8.16.72MAC PCU WoW Beacon Fail Timeout (WMAC_PCU_WOW3_BEACON)

Offset: 0x18108274 Access: Read/Write Reset Value: 0x40000000

Bit	Name	Description	
31:0	TIMEOUT WoW beacon fail timeout value (REFCLK cycles)		

8.16.73MAC PCU WoW Keep Alive Timeout (WMAC_PCU_WOW3_KEEP_ALIVE)

Offset: 0x18108278 Access: Read/Write Reset Value: 0x3E4180

Bit	Name	Description	
31:0	TIMEOUT	WoW keep alive timeout value (REFCLK cycles)	

8.16.74MAC PCU WoW Automatic Keep Alive Disable (WMAC_PCU_WOW_KA)

Offset: 0x1810827C Access: Read/Write

Reset Value: See field description

Bit	Name	Reset	Description
31:3	RES		
2	BKOFF_CS _ENABLE	0x00000001	Enable carrier sense during KEEPALIVEBACKOFF state
1	FAIL_DISABLE	0x00000000	Disable WoW If there is a failure in sending keep-alive frames
0	AUTO_DISABLE	0x00000000	Disable automatic transmission of keep-alive frames

8.16.75WoW Offset 1 (PCU_WOW4)

Offset: 0x18108294 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET3	Offset for pattern 3
23:16	OFFSET2	Offset for pattern 2
15:8	OFFSET1	Offset for pattern 1
7:0	OFFSET0	Offset for pattern 0

8.16.76WoW Offset 2 (PCU_WOW5)

Offset: 0x18108298 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET7	Offset for pattern 7
23:16	OFFSET6	Offset for pattern 6
15:8	OFFSET5	Offset for pattern 5
7:0	OFFSET4	Offset for pattern 4

8.16.77Global Mode (WMAC_PCU_20_40_MODE)

Offset: 0x18108318

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:1	RES	Reserved
0	JOINED_RX_CLEAR	Setting this bit causes the RX_CLEAR used in the MAC to be the AND of the control channel RX_CLEAR and the extension channel RX_CLEAR. If this bit is clear then the MAC will use only the control channel RX_CLEAR.

8.16.78Difference RX_CLEAR Counter (WMAC_PCU_RX_CLEAR_DIFF_CNT)

Offset: 0x18108328

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	RX_CLEAR_DIFF_CNT	A cycle counter MIB register. On every cycle of the MAC clock, this counter increments every time the extension channel RX_CLEAR is low when the MAC is not actively transmitting or receiving. Due to a small lag between TX_FRAME and RX_CLEAR as well as between RX_CLEAR and RX_FRAME, the count may have some residual value even when no activity is on the extension channel.

8.16.79Control Registers for Block BA Control Fields (WMAC_PCU_BA_BAR_CONTROL)

Offset: 0x18108330

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description
31:13	RES	0x0	Reserved
12	UPDATE_BA_BITMAP _QOS_NULL	0x0	When set, it enables the update of BA_BITMAP on a QoS Null frame
11	TX_BA_CLEAR_BA _VALID	0x0	When set, enables the BA_VALID bits to be cleared upon transmit of the block ACK for an aggregate frame or on receiving a BAR
10	FORCE_NO_MATCH	0x0	Causes the BA logic to never find a match of previous saved
9	ACK_POLICY_VALUE	0x1	The value of the ACK policy bit
8	COMPRESSED_VALUE	0x1	The value of the compressed bit
7:4	ACK_POLICY_OFFSET	0x0	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the ACK policy bit.
3:0	COMPRESSED_OFFSET	0x2	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the COMPRESSED bit.

8.16.80Legacy PLCP Spoof (WMAC_PCU_LEGACY_PLCP_SPOOF)

Offset: 0x18108334

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Reset	Description
31:9	RES	0X0	Reserved
12:8	MIN_LENGTH	0xE	Defines the minimum spoofed legacy PLCP length
7:0	EIFS_MINUS _DIFS		s to be subtracted from the transmit packet duration to provide fairness for legacy devices as well as HT devices.

8.16.81PHY Error Mask and EIFS Mask (WMAC_PCU_PHY_ERROR_MASK_CONT)

Offset: 0x18108338

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:19	RES	Reserved
23:16	EIFS_VALUE	Continuation of WMAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All PHY errors above 39 cause EIFS delay.
15:8	RES	Reserved
7:0	MASK_VALUE	Continuation of WMAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All PHY errors above 39 are filtered.

8.16.82Tx Timer (WMAC_PCU_TX_TIMER)

Offset: 0x1810833C

Access:Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:16	RES	Reserved
15	TX_TIMER_ENABLE	Enabled when this bit is set to 1
14:0	TX_TIMER	Guarantees the transmit frame does not take more time than the values programmed in this timer. The unit for this timer is in μ s.

8.16.83MAC PCU WoW 6 (WMAC_PCU_WOW6)

Offset: 0x1810834C Access: Read-Only Reset Value: 0x0

Bit	Name	Description
31:16		
15:0	RXBUF_START_ADDR	Indicates the start address of the frame in RxBUF that caused the WoW event

8.16.84MAC PCU WoW 5 (WMAC_PCU_WOW5)

Offset: 0x1810835C Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:16		
15:0	RX_ABORT_ENABLE	Enables generation of RX_ABORT when a pattern is matched

8.16.85Length of Pattern Match for Pattern 0 (WMAC_PCU_WOW_LENGTH1)

Offset: 0x18108360 Access: Read/Write Reset Value: 0xFF

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:24	PATTERN_0	Used for pattern matching length of the WoW feature	
23:16	PATTERN_1	Used for pattern matching length of the WoW feature	
15:8	PATTERN_2	Used for pattern matching length of the WoW feature	
7:0	PATTERN_3	Used for pattern matching length of the WoW feature	

8.16.86Length of Pattern Match for Pattern 1 (WMAC_PCU_WOW_LENGTH2)

Offset: 0x18108364 Access: Read/Write Reset Value: 0xFF The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:24	PATTERN_4	Used for pattern matching length of the WoW feature	
23:16	PATTERN_5	Used for pattern matching length of the WoW feature	
15:8	PATTERN_6	Used for pattern matching length of the WoW feature	
7:0	PATTERN_7	Used for pattern matching length of the WoW feature	

8.16.87Enable Control for Pattern Match Feature of WOW (WOW_PATTERN_MATCH_LESS_THAN_256_BYTES)

Offset: 0x18108368 Access: Read/Write Reset Value: 0x0 The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:16	RES	Reserved	
15:0	EN	Used for turning on the feature of pattern matching length (<256 bytes) of the WOW	

8.16.88PCU WoW 4 (WMAC_PCU_WOW4)

Offset: 0x18108370 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:16	RES	Reserved	
15:8	PATTERN_DETECT	Indicates the which of the 8 patterns were matched a receive packet	
7:0	PATTERN_ENABLE	Indicates the which of the 8 patterns are enabled for compare	

8.16.89Exact Length and Offset Requirement Flag for WoW Patterns (WOW2_EXACT)

Offset: 0x18108374 Access: Read/Write

Reset Value: See field description

Bit	Name	Reset	Description
31:16	RES	0x0	Reserved
15:8	OFFSET	0x0	Exact offset requirement flag for WoW patterns; 1 bit for each pattern
7:0	LENGTH	0xFF	Exact length requirement flag for WoW patterns;1 bit for each pattern

8.16.90WoW Offset 2 (PCU_WOW6)

Offset: 0x18108378 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET11	Offset for pattern 11
23:16	OFFSET10	Offset for pattern 10
15:8	OFFSET9	Offset for pattern 9
7:0	OFFSET8	Offset for pattern 8

8.16.91WoW Offset 3 (PCU_WOW7)

Offset: 0x1810837C Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET15	Offset for pattern 15
23:16	OFFSET14	Offset for pattern 14
15:8	OFFSET13	Offset for pattern 13
7:0	OFFSET12	Offset for pattern 12

8.16.92Length of Pattern Match for Pattern 0 (WMAC_PCU_WOW_LENGTH3)

Offset: 0x18108380 Access: Read/Write Reset Value: 0xFF The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description
31:24	PATTERN_8	Used for pattern matching length of the WoW feature
23:16	PATTERN_9	Used for pattern matching length of the WoW feature
15:8	PATTERN_10	Used for pattern matching length of the WoW feature
7:0	PATTERN_11	Used for pattern matching length of the WoW feature

8.16.93Length of Pattern Match for Pattern 0 (WMAC_PCU_WOW_LENGTH4)

Offset: 0x18108384 Access: Read/Write Reset Value: 0x0 The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	me Description	
31:24	PATTERN_12 Used for pattern matching length of the WoW feature		
23:16	PATTERN_13	Used for pattern matching length of the WoW feature	
15:8	PATTERN_14	PATTERN_14 Used for pattern matching length of the WoW feature	
7:0	PATTERN_15	Used for pattern matching length of the WoW feature	

8.16.94TID Value Access Category (WMAC_PCU_TID_TO_AC)

Offset: 0x181083A4 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:0	DATA Maps the 16 user priority TID values to corresponding access category (A bits denote the AC for each TID. Bits [1:0] define the AC for TID 0 and new are used for AC of TID 1, and finally bits [31:30] define the AC for TID 15.		the 16 user priority TID values to corresponding access category (AC). Two note the AC for each TID. Bits [1:0] define the AC for TID 0 and next two bits and for AC of TID 1, and finally bits [31:30] define the AC for TID 15.
		Default values are as specified in the 11e specification: TID 1 and 3 are BK, TID 4 and 5 are VI, and TID 6 and 7 are V0. ACs:	
		00	BE
		01 BK	

8.16.95High Priority Queue Control (WMAC_PCU_HP_QUEUE)

Offset: 0x181083A8 Access: Read/Write

Reset Value: See field description

Bit			
31:21			
20		0x0	Enable detection and reporting in the Rx status of the UAPSD trigger frames and enable update of the PowerMgt bit in the key cache on error-free Rx-directed frames. If UAPSD enable is set for the AC of an error-free Rx directed QoS frame with the power management bit set, and the key cache entry of the sender has the PowerMgt bit set, it will be detected as a UAPSD trigger.
19:16	FRAME_SUBTYPE_MASK0	0x0	Frame subtype mask for FRAME_SUBTYPE0, to be matched for the frame to be placed in high priority receive queue
15:12	FRAME_SUBTYPE0	0x0	Frame sub type to be matched for the frame to be placed in high
11:10	FRAME_TYPE_MASK0	0x3	Frame type mask for FRAME_TYPE0, to be matched for the frame to be placed in high priority receive queue
9:8	FRAME_TYPE0	0x0	Frame type to be matched for the frame to be placed in high priority receive queue
7	FRAME_BSSID_MATCH0	0x0	If set to 1, frames with matching BSSID are only moved to high priority receive queue on a frame type match
6	FRAME_FILTER_ENABLE0	0x0	Enables the mode where a frame is moved to high priority receive queue based on frame type
5	HPQON_UAPSD	0x0	Set to 1 if the Rx UAPSD trigger frame must be placed in the high priority Rx queue. Any frame that has a STA power management state change is also placed in the HP queue. HPQON_UAPSD = 1 with UAPSD_EN = 0 is not supported.
4	AC_MASK_VO	0x0	Set to 1 if BK traffic needs to be placed in high priority Rx queue
3	AC_MASK_VI	0x0	Set to 1 if VI traffic needs to be placed in high priority Rx queue
2	AC_MASK_BK	0x0	Set to 1 if BK traffic needs to be placed in high priority Rx queue
1	AC_MASK_BE	0x0	Set to 1 if BE traffic needs to be placed in high priority Rx queue
0	ENABLE	0x0	Enables high priority Rx queue

8.16.96Hardware Beacon Processing 1 (WMAC_PCU_HW_BCN_PROC1)

Offset: 0x181083C8 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	ELM2_ID	Element ID 2
23:16	ELM1_ID	Element ID 1
15:8	ELM0_ID	Element ID 0
7	EXCLUDE_ELM2	Exclude information with element ID ELM2 in CRC calculation
6	EXCLUDE_ELM1	Exclude information with element ID ELM1 in CRC calculation
5	EXCLUDE_ELM0	Exclude information with element ID ELM0 in CRC calculation
4	EXCLUDE_TIM_ELM	Exclude beacon TIM element in CRC calculation
3	EXCLUDE_CAP_INFO	Exclude beacon capability information in CRC calculation
2	EXCLUDE_BCN_INTVL	Exclude beacon interval in CRC calculation
1	RESET_CRC	Reset the last beacon CRC calculated
0	CRC_ENABLE	Hardware beacon processing

8.16.97Hardware Beacon Processing 2 (WMAC_PCU_HW_BCN_PROC2)

Offset: 0x181083CC Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24		
23:16	ELM3_ID	Element ID 3
15:8	FILTER_INTERVAL	Filter interval for beacons
7:3		
2	EXCLUDE_ELM3	Exclude information with element ID ELM3 in CRC calculation
1	INTERVAL	Reset internal interval counter
0	FILTER_INTERVAL _ENABLE	

8.16.98Key Cache (WMAC_PCU_KEY_CACHE[0:1023])

Offset: 0x18108800

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Table 8-18. Offset to First Dword of Nth Key [1]

Intra Key	Offset Bits	Description
8*N + 00	31:0	Key[31:0]
8*N + 04	15:0	Key[47:32]
8*N + 08	31:0	Key[79:48]
8*N + 0C	15:0	Key[95:79]
8*N + 10	31:0	Key[127:96]
8*N + 14	14:3	Reserved
	9	Power Mgt bit of last error-free
	8:5	UAPSD mask for the four ACs.
	2:0	Key type:
8*N + 18	31:0	Addr[32:1]
8*N + 1C	17:16	Key ID for multicast keys
	15	Key valid
		0 Entry has multi/broadcast key 1 Entry has unicast key
	14:0	1 Entry has unicast key Addr[47:33]
	14:0	Auu1[47.33]

[1]Key = (Address: 8800 + 20*N)

When the key type is 4 (TKIP) and key is valid, this entry + 64 contains the Michael key.

Table 8-19. Offset to First Dword of Nth Key (Continued)

Intra Key	Offset Bits	Description
8*N + 800	31:0	Rx Michael key 0
8*N + 804	15:0	Tx Michael key 0 [31:16]
8*N + 808	31:0	Rx Michael key 1
8*N + 80C	15:0	Tx Michael key 0 [15:0]
8*N + 810	31:0	Tx Michael key 1
+ 814	RES	Reserved
+ 818	RES	Reserved
+ 81C	RES	Reserved
	15	Key Valid = 0

TKIP keys are not allowed to reside in the entries 64–127 because they require the Michael key. Entries 64–67 are always reserved for

Internally this memory is 50 bits wide, thus to write a line of the memory requires two 32-bit writes. All writes to registers with an offset of 0x0 or 0x8 actually write to a temporary holding register. A write to register with an offset of 0x4 or 0xC writes to the memory.

8.17 Checksum Registers

Table 8-20 summarizes the Checksum registers for the AR9341.

Table 8-20. Checksum Registers Summary

Address	Name	Description	Page
0x18400000	DMATX_CONTROL	Checksum Transmit Control	page 268
0x18400004	DMATX_CONTROL1	Checksum Transmit Control 1	page 269
0x18400008	DMATX_CONTROL2	Checksum Transmit Control 2	page 269
0x1840000C	DMATX_CONTROL3	Checksum Transmit Control 3	page 269
0x18400010	DMATX_DESC0	First Tx Descriptor Address	page 269
0x18400014	DMATX_DESC1		page 270
0x18400018	DMATX_DESC2		page 270
0x1840001C	DMATX_DESC3		page 270
0x18400020	DMATX_DESC_STATUS		page 270
0x18400024	DMATX_ARB_CFG		page 271
0x18400028	RR_PKTCNT01		page 271
0x1840002C	RR_PKTCNT23		page 271
0x18400030	TXST_PKTCNT		page 271
0x18400034	DMARX_CONTROL		page 272
0x18400038	DMARX_DESC		page 272
0x1840003C	DMARX_DESC_STATUS		page 272
0x18400040			page 273
0x18400044			page 273
0x18400048	ARB_BURST		page 274
0x18400050	RESET_DMA		page 274
0x18400054			page 274

8.17.1 Checksum Transmit Control (DMATX_CONTROL)

Address: 0x18400000 This register is used to enable DMA transmit Access: Read/Write packet transfers for channel 0.

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TXEN	Setting this bit enables DMA transmit packet transfers for channel 0. This bit is cleared by the built-in DMA controller whenever it encounters a Tx Underrun or Bus Error state.

8.17.2 Checksum Transmit Control1 (DMATX_CONTROL1)

Address: 0x18400004 This register is used to enable DMA transmit Access: Read/Write packet transfers for channel 1.

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TXEN	Setting this bit enables DMA transmit packet transfers for channel 1. This bit is cleared by the built-in DMA controller whenever it encounters a Tx Underrun or Bus Error state.

8.17.3 Checksum Transmit Control2 (DMATX_CONTROL2)

Address: 0x18400008 This register is used to enable DMA transmit Access: Read/Write packet transfers for channel 2.

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TXEN	Setting this bit enables DMA transmit packet transfers for channel 2. This bit is cleared by the built-in DMA controller whenever it encounters a Tx Underrun or

8.17.4 Checksum Transmit Control3 (DMATX_CONTROL3)

Address: 0x1840000C This register is used to enable DMA transmit Access: Read/Write packet transfers for channel 3.

Bit Name

RES

TXEN

Reset: 0x0

Bit

31:1

0

Description
Reserved. Must be written with zero. Contains zeros when read.
Setting this bit enables DMA transmit packet transfers for channel 3. This bit is

cleared by the built-in DMA controller whenever it encounters a Tx Underrun or

8.17.5 First Tx Descriptor Address (DMATX DESCO)

Address: 0x18400010 This register contains the first Tx descriptor Access: Read/Write address for channel 0.

Bit	Bit Name	Description
31:0	ADDR	The address of the first Tx descriptor in the chain for channel 0

8.17.6 First Tx Descriptor Address 1 (DMATX_DESC1)

Address: 0x18400014 This register contains the first Tx descriptor address for channel 1.

Reset: 0x0

Bit	Bit Name	Description
31:0	ADDR	The address of the first Tx descriptor in the chain for channel 1

8.17.7 First Tx Descriptor Address 2 (DMATX_DESC2)

Address: 0x18400018 This register contains the first Tx descriptor

Access: Read/Write address for channel 2.

Reset: 0x0

Bit	Bit Name	Description
31:0	ADDR	The address of the first Tx descriptor in the chain for channel 2

8.17.8 First Tx Descriptor Address 3 (DMATX_DESC3)

Address: 0x1840001C This register contains the first Tx descriptor

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	ADDR	The address of the first Tx descriptor in the chain for channel 3

8.17.9 DMA Tx Descriptor Status (DMATX_DESC_STATUS)

Address: 0x18400020 This register reflects the status of the DMA Tx

Access: Read/Write

Bit	Bit Name	Description	
31:26	RES	Reserved. Must be written with zero.	
25:24	CHAIN_NUM	Denotes an active chain	
23:16	PKTCNT	Packet count for channel 0	
15:9	RES	Reserved. Must be written with zero.	
8:5	DESC_INTR	When set, indicates that a Tx descriptor interrupt is pending for a corresponding chain (Ex. chain3, chain2, etc.)	
4	BUSERROR	When set, indicates that a host slave split, retry, or error response was received by the DMA controller	
3	UNDERRUN3	Set when the DMA controller reads a descriptor for channel 3 with the Empty flag set to 1	
2	UNDERRUN2	Set when the DMA controller reads a descriptor for channel 2 with the Empty flag set to 1	
1	UNDERRUN1	Set when the DMA controller reads a descriptor for channel 1 with the Empty flag set to 1	
0	UNDERRUN0	Set when the DMA controller reads a descriptor for channel 0 with the Empty flag set to 1	

8.17.10DMA Tx Arbitration Configuration (DMATX_ARB_CFG)

Address: 0x18400024 This register configures the Tx arbitration.

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:26	WGT3	0x8	Weight for channel 3
25:20	WGT2	0x4	Weight for channel 2
19:14	WGT1	0x2	Weight for channel 1
13:8	WGT0	0x1	Weight for channel 0
7:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	RRMODE	0x1	Round robin mode

8.17.11Channel O and 1 Round-robin Packet Count (RR_PKTCNTO1)

Address: 0x18400028 This register contains the round-robin packet

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Reset	Description
31:25	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
24:16	PKTCNT1	0x0	Packet count for channel 1
15:9		0x0	Reserved. Must be written with zero. Contains zeros when read.
8:0	PKTCNT0	0x0	Packet count for channel 0

8.17.12Channel 2 and 3 Round-robin Packet Count (RR_PKTCNT23)

Address: 0x1840002C This register contains the round-robin packet

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:25	RES	Reserved. Must be written with zero. Contains zeros when read.
24:16	PKTCNT3	Packet count for channel 3
15:9	RES	Reserved. Must be written with zero. Contains zeros when read.
8:0	PKTCNT2	Packet count for channel 2

8.17.13Tx Packet Count (TXST_PKTCNT)

Address: 0x18400030 This register contains the Tx packet count for channels 3, 2, and 1.

Bit	Bit Name	Description
31:24	PKTCNT3	Packet count for channel 3
23:16	PKTCNT2	Packet count for channel 2
15:8	PKTCNT1	Packet count for channel 1
7:0	RES	Reserved. Must be written with zero. Contains zeros when read.

8.17.14DMA Rx Transmit Control (DMARX_CONTROL)

This register enables DMA receive packets Address: 0x18400034 Access: Read/Write transfers.

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	RXEN	Setting this bit enables DMA receive packets transfers. When set, the built-in DMA controller will start to receive a new packet whenever the FIFO indicates that a new packet is available (FRSOF asserted). This bit is cleared by the built-in DMA controller whenever it encounters an Rx overflow or bus error.

8.17.15DMA Rx Descriptor (DMARX_DESC)

Address: 0x18400038 This register contains the first Rx descriptor

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	ADDR	When RXENABLE is set by the host, the built-in DMA controller reads this register to discover the location in the host memory of the first receive packet descriptor

8.17.16DMA Rx Descriptor Status (DMARX_DESC_STATUS)

Address: 0x1840003C This register sets the status for various DMA

Access: Read/Write Reset: 0x0

Bit	Bit Name	Description	
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.	
23:16	PKTCNT	An 8-bit transmit packet counter that is incremented whenever the built-in DMA controller successfully transfers a packet, and decremented whenever the host writes a	
15:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	DESC_INTR	When set, indicates that an Rx descriptor interrupt is pending	
1	BUSERROR	When set, indicates that a host slave split, retry or error response was received by the DMA controller	
0	OVERFLOW	Set whenever the DMA controller reads a set 1 Empty Flag in the descriptor it is processing	

8.17.17Checksum Interrupt (INTR)

Address: 0x18400040 Access: Read/Write

Reset: 0x0

This register is used to set the interrupts for Checksums.

Bit	Bit Name	Descrip	Description		
31:17	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
16:4	TX_VAL	Status	of Tx interrupts		
		16:13	Per-chain TxPktIntr[3:0]		
		12	TxPktCnt > 0 on chain 3		
		11	TxPktCnt > 0 on chain 2		
		10	TxPktCnt > 0 on chain 1		
		9	TxUnderrun on chain 3		
3:0	RX_VAL	Status	of Rx interrupts		

8.17.18Checksum IMask (IMASK)

Address: 0x18400044 Access: Read/Write

Reset: 0x0

This register is used to set the Checksum

Bit	Bit Name	Description		
31:17	RES	Reserved. Must be written with zero. Contains zeros when read.		
16:4	TX_VAL	Mask fo	Mask for Tx interrupts	
		10	TxPktCnt > 0 on chain 1	
		9	TxUnderrun on chain 3	
		8	TxUnderrun on chain 2	
		7	TxUnderrun on chain 1	
		6	BusError	
		5	TxUnderrun on chain 0	
		4	TxPktCnt > 0 on chain 0	
3:0	RX_VAL	Mask fo	r Rx interrupts	
		3	RxPktIntr	
		2	BusError	
		1	RxOverflow	
		0	RxPktCnt > 0	

8.17.19Checksum Burst Control (ARB_BURST)

Address: 0x18400048 This register is used to set the maximum burst size for Rx and Tx. Access: Read/Write

Reset: See field description

Bit	Bit Name	Reset	Description
31:26	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
25:16	MAX_RX	0x42	Rx Maximum burst size
15:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
9:0	MAX_TX	0x42	Tx Maximum Burst Size

8.17.20DMA Reset (RESET_DMA)

Address: 0x18400050 This register is used to reset parts of the DMA

Access: Read/Write Reset: 0x0

Bit **Bit Name Description** 31:2 **RES** Reserved. Must be written with zero. Contains zeros when read. RX Resets the Rx portion of the DMA engine 1 0 TX Resets the Tx portion of the DMA engine

8.17.21Checksum Configuration (CONFIG)

Address: 0x18400054 This register configures the checksum settings.

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:22	SPARE	0x16	Spare registers
21:16	TXFIFO_MIN_TH	0x16	Restarts the Tx DMA when the number of words are less than this value
15:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
9:4	TXFIFO_MAX_TH	0x19	Stops the Tx DMA and waits for the FIFO to be flushed when the number
3:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	CHKSUM_SWAP	0x0	Swap checksum computation

8.18 UART1 (High-Speed) Registers

Table 8-21 summarizes the UART1 registers for the AR9341.

Table 8-21. UART1 (High-Speed) Registers Summary

Address	Name	Description	Page
0x18500000	UART1_DATA	UART1 Transmit and Rx FIFO	page 275
0x18500004	UART1_CS	UART1 Configuration and Status	page 276
0x18500008	UART1_CLOCK	UART1 Clock	page 277
0x1850000C	UART1_INT	UART1 Interrupt	page 277
0x18500010	UART1_INT_EN	UART1 Interrupt Enable	page 278

8.18.1 UART1 Transmit and Rx FIFO Interface (UART1_DATA)

Address: 0x18500000 Access: Read/Write

Reset: 0x0

This register pushes data on the Tx FIFO and pop data off the Rx FIFO. This interface can be used only if all other interfaces are disabled in "UART1 Configuration and Status

Bit	Bit Name	Description
31:10	RES	Reserved. Must be written with zero. Contains zeros when read.
9	UART1_TX_	Read returns the status of the Tx FIFO. If set, the Tx FIFO can accept more transmit data. Setting this bit will push UART1_TX_RX_DATA on the Tx FIFO. Clearing this
8	UART1_RX_	UART1_TX_RX_DATA is valid. Setting this bit will pop the Rx FIFO if there is valid
7:0	UART1_TX_ RX_DATA	Read returns receive data from the Rx FIFO, but leaves the FIFO unchanged. The receive data is valid only if UART1_RX_CSR is also set. Write pushes the transmit

8.18.2 UART1 Configuration and Status (UART1_CS)

Address: 0x18500004 Access: Read/Write

Reset: 0x0

This register configures the UART1 operation and reports the operating status.

Bit	Bit Name	Туре	Description	
31:16	RES	RO	Reserved. Must be written with zero. Contains zeros when read.	
15	UART1_RX_ BUSY	RO	This bit is set whenever there is receive data or data is being received. It is clear when receive is completely idle.	
14	UART1_TX_ BUSY	RO	This bit is set whenever there is data ready to transmit or being transmitted. It is clear when transmit is completely idle.	
13	UART1_ HOST_INT_EN	RW	Enables an interrupt on the UART1 host	
12	UART1_HOST_ INT	RO	This bit will be set while the host interrupt is being asserted and will clear	
11	UART1_TX_ BREAK	RW	This bit blocks the Tx FIFO and causes a break to be continuously transmitted. The Tx FIFO will resume normal operation when this bit is	
10	UART1_RX_ BREAK	RO	This bit will be set while a break is being received. It will clear when the	
9	UART1_SERIAL_ TX_READY	RO	This bit will be set while Serial Tx Ready is asserted and is cleared when	
8	UART1_TX_ READY_ORIDE	RW	This bit overrides the transmit ready flow control. If clear, transmit ready is controlled by UART1_FLOW_CONTROL_MODE. If set, then transmit ready	
7	UART1_RX_ READY_ORIDE	RW	This bit overrides the receive ready flow control. If clear, receive ready is controlled by UART1_FLOW_CONTROL_MODE. If set, then receive ready	
6	RES	RO	Reserved	
5:4	UART1_FLOW_			
	CONTROL_ MODE		00 No flow control. Disable hardware flow control. Serial Transmit Ready	
			UART1_RX_READY_ORIDE and UART1_TX_READY_ORIDE.	
			10 Hardware flow control. Enable standard RTS/CTS flow control to	
			11 Inverted Flow Control. Enable inverted RTS/CTS flow control to	
3:2	UART1_			
	INTERFACE_ MODE		00 No interface. Disable serial port.	
	MODE		01 DTE interface. Configure serial port for DTE (Data Terminal Equipment) operation. Transmit on TD, receive on RD, flow control out on RTS, flow control in on CTS.	
			DCE interface. Configure serial port for DCE (Data Communication Equipment) operation. Transmit on RD, receive on TD, flow control out on CTS, flow control in on RTS.	
1:0	UART1_PARITY_	RW	Select the parity mode for transmit and receive data	
	MODE		00 No parity. Parity is not transmitted or received	
			10 Odd parity. Odd parity is transmitted and checked on receive	
			11 Even parity. Even parity is transmitted and checked on receive	

8.18.3 UART1 Clock (UART1_CLOCK)

Address: 0x18500008 Access: Read/Write

Reset: 0x0

This register sets the scaling factors use by the serial clock interpolator to create the transmit bit clock and receive sample clock.

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:16	UART1_ CLOCK_SCALE	The serial clock divisor used to create a scaled Serial Clock. This is used to bring the serial clock into a range that can be interpolated by UART1_CLOCK_STEP. The actual divisor is (1 + UART1_CLOCK_SCALE). Use the formula: UART1_CLOCK_SCALE = truncate(((1310*serialClockFreq)/(131072*baudClockFreq)))
15:0	UART1_ CLOCK_STEP	The ratio of the scaled serial clock to the baud clock, as expressed by a 17-bit fraction. This value should range between 1310–13107 to maintain a better than ±5% accuracy. Smaller is generally better, because interpolation errors caused by a small value are far less than quantization errors caused by a large value. Use the formula: UART1_CLOCK_STEP = round((131072*baudClockFreq)/(serialClockFreq/

8.18.4 UART1 Interrupt/Control Status (UART1_INT)

Address: 0x1850000C Access: Read/Write Reset: 0x0 This register when read, returns the current interrupt status. Setting a bit will clear the individual attempt. Clearing a bit has no effect.

Bit	Bit Name	Description
31:10	RES	Reserved. Must be written with zero. Contains zeros when read.
9	UART1_TX_ EMPTY_INT	This bit will be high while the Tx FIFO is almost empty. Setting this bit will clear
8	UART1_RX_FULL_	This bit will be high while the Rx FIFO is almost full, triggering hardware flow control, if enabled. Setting this bit will clear this interrupt. Clearing this bit has no
7	UART1_RX_ BREAK_OFF_INT	This bit will be high while a break is not received. Setting this bit will clear this
6	UART1_RX_ BREAK_ON_INT	This bit will be high while a break is received. Setting this bit will clear this
5	UART1_RX_ PARITY_ERR_INT	This bit will be high if receive parity checking is enabled and the receive parity does not match the value configured by UART1_PARITY_EVEN. Setting this bit will clear this interrupt. Clearing this bit has no effect.
4	UART1_TX_ OFLOW_ERR_INT	This bit will be high if the Tx FIFO overflowed. Setting this bit will clear this interrupt. Clearing this bit has no effect.
3	UART1_RX_ OFLOW_ERR_INT	This bit will be high if the Rx FIFO overflowed. Setting this bit will clear this interrupt. Clearing this bit has no effect.
2	UART1_RX_ FRAMING_ERR_ INT	This bit will be high if a receive framing error was detected. Setting this bit will clear this interrupt. Clearing this bit has no effect
1	UART1_TX_ READY_INT	This bit will be high while there is room for more data in the Tx FIFO. Setting this bit will clear this interrupt if there is room for more data in the Tx FIFO. Clearing this bit has no effect.
0	UART1_RX_VALID _INT	This bit will be high while there is data in the Rx FIFO. Setting this bit will clear this interrupt if there is no more data in the Rx FIFO. Clearing this bit has no effect.

8.18.5 UART1 Interrupt Enable (UART1_INT_EN)

Address: 0x18500010 Access: Read/Write

Reset: 0x0

This register enables interrupts in the UART1 Interrupt register.

Bit	Bit Name	Description
31:10	RES	Reserved. Must be written with zero. Contains zeros when read.
9	UART1_TX_ EMPTY_INT_EN	Enables UART1_TX_EMPTY_INT in "UART1 Interrupt/Control Status (UART1_INT)" on page 277.
8	UART1_RX_FULL_ INT_EN	Enables UART1_RX_FULL_INT in "UART1 Interrupt/Control Status (UART1_INT)" on page 277.
7	UART1_RX_BREAK_OFF_INT _EN	Enables UART1_RX_BREAK_OFF_INT in "UART1 Interrupt/ Control Status (UART1_INT)"
6	UART1_RX_BREAK_ON_INT	"UART1 Interrupt/
5	UART1_RX_PARITY_ERR _INT_EN	"UART1 Interrupt/Control
4	UART1TX_OFLOW_ERR_INT	"UART1 Interrupt/
3	UART1_RX_OFLOW_ERR_IN	"UART1 Interrupt/
2	UART1_RX_FRAMING_ERR_ INT_EN	"UART1 Interrupt/
1	UART1_TX_READY_INT_EN	"UART1 Interrupt/Control
0	UART1_RX_VALID_ INT_EN	"UART1 Interrupt/Control

8.19 GMACO/GMAC1 Registers

Table 8-22 summarizes the GMAC0/GMAC1 registers for the AR9341.

Table 8-22. Ethernet Registers Summary

GMACO Address	GMAC1 Address		Description	Page
0x19000000	0x1A000000	MA	AC Configuration 1	page 284
0x19000004	0x1A000004	MA	AC Configuration 2	page 285
0x19000008	0x1A000008		IPG/IFG	page 285
0x1900000C	0x1A00000C		Half-Duplex	page 286
0x19000010	0x1A000010	Max	imum Frame Length	page 286
0x19000020	0x1A100020			page 287
0x19000024	0x1A000024			page 287
0x19000028	0x1A000028			page 288
0x1900002C	0x1A00002C			page 288
0x19000030	0x1A000030			page 288
0x19000034	0x1A000034			page 288
0x19000038	0x1A000038			page 289
0x1900003C	0x1A00003C			page 290
0x19000040	0x1A000040			page 291
0x19000044	0x1A000044			page 291
0x19000048	0x1A000048			page 292
0x1900004C	0x1A00004C			page 293
0x19000050	0x1A000050			page 293
0x19000054	0x1A000054			page 293
0x19000058	0x1A000058			page 294
0x1900005C	0x1A00005C			page 294
0x19000080	0x1A000080		Tx/Rx 64 Byte Frame Counter	page 295
0x19000084	0x1A000084		Tx/Rx 65-127 Byte Frame Counter	page 295
0x19000088	0x1A000088	TR255	Tx/Rx 128-255 Byte Frame Counter	page 295
0x1900008C	0x1A00008C	TR511	Tx/Rx 256-511 Byte Frame Counter	page 295
0x19000090	0x1A000090	TR1K	Tx/Rx 512-1023 Byte Frame Counter	page 296
0x19000094	0x1A000094	TRMAX	Tx/Rx 1024-1518 Byte Frame Counter	page 296
0x19000098	0x1A000098	TRMGV	Tx/Rx 1519-1522 Byte VLAN Frame Counter	page 296
0x1900009C	0x1A00009C	RBYT	Receive Byte Counter	page 296
0x190000A0	0x1A0000A0	RPKT	Receive Packet Counter	page 297
0x190000A4	0x1A0000A4	RFCS	Receive FCS Error Counter	page 297
0x190000A8	0x1A0000A8	RMCA	Receive Multicast Packet Counter	page 297
0x190000AC	0x1A0000AC	RBCA	Receive Broadcast Packet Counter	page 297

Table 8-22. Ethernet Registers Summary (continued)

GMACO Address GMAC1 Address			Description		
0x190000B0	0x1A0000B0	RXCF	Receive Control Frame Packet Counter	page 298	
0x190000B4	0x1A0000B4	RXPF	Receive Pause Frame Packet Counter	page 298	
0x190000B8	0x1A0000B8	RXUO	Receive Unknown OPCode Packet Counter	page 298	
0x190000BC	0x1A0000BC	RALN	Receive Alignment Error Counter	page 298	
0x190000C0	0x1A0000C0	RFLR	Receive Frame Length Error Counter	page 299	
0x190000C4	0x1A0000C4	RCDE	Receive Code Error Counter	page 299	
0x190000C8	0x1A0000C8	RCSE	Receive Carrier Sense Error Counter	page 299	
0x190000CC	0x1A0000CC	RUND	Receive Undersize Packet Counter	page 299	
0x190000D0	0x1A0000D0		Receive Oversize Packet Counter	page 300	
0x190000D4	0x1A0000D4			page 300	
0x190000D8	0x1A0000D8			page 300	
0x190000DC	0x1A0000DC		Receive Dropped Packet Counter	page 300	
0x190000E0	0x1A0000E0			page 301	
0x190000E4	0x1A0000E4			page 301	
0x190000E8	0x1A0000E8	TMCA	Transmit Multicast Packet Counter	page 301	
0x190000EC	0x1A0000EC	TBCA	Transmit Broadcast Packet Counter	page 301	
0x190000F0	0x1A0000F0		Transmit Pause Control Frame	page 302	
0x190000F4	0x1A0000F4	Transmit Deferral Packet Counter		page 302	
0x190000F8	0x1A0000F8		Transmit Excessive Deferral Packet	page 302	
0x190000FC	0x1A0000FC		Transmit Single Collision Packet	page 302	
0x19000100	0x1A000100	TMCL	Transmit Multiple Collision Packet	page 303	
0x19000104	0x1A000104		Transmit Late Collision Packet	page 303	
0x19000108	0x1A000108	TXCL	Transmit Excessive Collision Packet Counter	page 303	
0x1900010C	0x1A00010C	TNCL	Transmit Total Collision Counter	page 303	
0x19000110	0x1A000110	TPFH	Transmit Pause Frames Honored Counter	page 304	
0x19000114	0x1A000114	TDRP	Transmit Drop Frame Counter	page 304	
0x19000118	0x1A000118	TJBR	Transmit Jabber Frame Counter	page 304	
0x1900011C	0x1A00011C	TFCS	Transmit FCS Error Counter	page 304	
0x19000120	0x1A000120	TXCF Transmit Control Frame Counter		page 305	
0x19000124	0x1A000124	TOVR	Transmit Oversize Frame Counter	page 305	
0x19000128	0x1A000128	TUND	Transmit Undersize Frame Counter	page 305	
0x1900012C	0x1A00012C	TFRG	Transmit Fragment Counter	page 305	

Table 8-22. Ethernet Registers Summary (continued)

GMACO Address GM	1164 111			
	IAC1 Address	Description		Page
0x19000130)x1A000130	CAR1	Carry Register 1	page 306
0x19000134)x1A000134	CAR2	Carry Register 2	page 307
0x19000138)x1A000138	CAM1	Carry Mask Register 1	page 308
0x1900013C 0	x1A00013C	CAM2	Carry Mask Register 2	page 309
0x19000180)x1A000180	DMATXCNTRL_Q0	DMA Transfer Control for Queue 0	page 309
0x19000184)x1A000184	DMATXDESCR_Q0	Descriptor Address for Queue 0 Tx	page 310
0x19000188)x1A000188	Di	MA Tx Status	page 310
0x1900018C 0	x1A00018C	DMARXCTRL	Rx Control	page 310
0x19000190)x1A000190	DMARXDESCR	Pointer to Rx Descriptor	page 311
0x19000194 0)x1A000194	DMARXSTATUS		page 311
0x19000198)x1A000198	DMAINTRMASK		page 312
0x1900019C 0	x1A00019C			page 313
0x190001A0 0	x1A0001A0	ETH_TX_BURST		page 314
0x190001A4 0	x1A0001A4	ETH_TXFIFO_TH	Ethernet Tx FIFO Max and Min	page 314
0x190001A8 0	x1A0001A8	ETH_XFIFO_DEPTH	Current Tx and Rx FIFO Depth	page 314
0x190001AC 0	x1A0001AC	ETH_RXFIFO_TH		page 314
0x190001B8 0)x1A0001B8	ETH_FREE_TIMER		page 315
0x190001C0 0	x1A0001C0	DMATXCNTRL_Q1	DMA Transfer Control for Queue 1	page 315
0x190001C4 0	x1A0001C4	DMATXDESCR_Q1	Descriptor Address for Queue 1 Tx	page 315
0x190001C8 0	x1A0001C8	DMATXCNTRL_Q2	DMA Transfer Control for Queue 2	page 316
0x190001CC 0	x1A0001CC	DMATXDESCR_Q2	Descriptor Address for Queue 2 Tx	page 316
0x190001D0 0	x1A0001D0	DMATXCNTRL_Q3	DMA Transfer Control for Queue 3	page 316
0x190001D4 0	x1A0001D4	DMATXDESCR_Q3	Descriptor Address for Queue 3 Tx	page 316
0x190001D8 0	x1A0001D8	DMATXARBCFG	DMA Tx Arbitration Configuration	page 316
0x190001E4 0	0x1A0001E4	DMATXSTATUS_123	Tx Status and Packet Count for	page 317
0x19000200	_	LCL_MAC_ADDR_DW0	Local MAC Address Dword0	page 317
0x19000204	_	LCL_MAC_ADDR_DW1	Local MAC Address Dword1	page 317
0x19000208		NXT_HOP_DST_ADDR _DW0	Next Hop Router MAC Address Dword0	page 317
0x1900020C	_	NXT_HOP_DST_ADDR _DW1	Next Hop Router MAC Destination Address Dword1	page 318
0x19000210	_	GLOBAL_IP_ADDR0	Local Global IP Address 0	page 318
0x19000214	_	GLOBAL_IP_ADDR1	Local Global IP Address 1	page 318
0x19000218	_	GLOBAL_IP_ADDR2	Local Global IP Address 2	page 318
0x1900021C	_	GLOBAL_IP_ADDR3 Local Global IP Address 3		page 318
0x19000228	_	EG_NAT_CSR	Egress NAT Control and Status	page 319
0x1900022C	_	EG_NAT_CNTR	Egress NAT Counter	page 319

Table 8-22. Ethernet Registers Summary (continued)

GMACO Address	GMAC1 Address		Page	
0x19000230	_	IG_NAT_CSR	Ingress NAT Control and Status	page 320
0x19000234	_	IG_NAT_CNTR	Ingress NAT Counter	page 320
0x19000238	_	EG_ACL_CSR	Egress ACL Control and Status	page 321
0x1900023C	_	IG_ACL_CSR	Ingress ACL Control and Status	page 321
0x19000240	_	EG_ACL_CMD0_AND_ ACTION	Egress ACL CMD0 and Action	page 321
0x19000244	_	EG_ACL_CMD1234	Egress ACL CMD1, CMD2, CMD3 and CMD4	page 322
0x19000248	_	EG_ACL_OPERAND0	Egress ACL OPERAND 0	page 322
0x1900024C				page 322
0x19000250				page 323
0x19000254			Ingress ACL CMD0 and Action	page 324
0x19000258		IG_ACL_CMD1234	Ingress ACL CMD1, CMD2, CMD3	page 324
0x1900025C				page 324
0x19000260				page 325
0x19000264				page 325
0x19000268				page 326
0x1900026C				page 326
0x19000270				page 326
0x19000274				page 326
0x19000278				page 327
0x1900027C				page 327
0x19000280	_	IG_ACL_COUNTER _GRP6	Ingress ACL Counter Group 6	page 327
0x19000284		IG_ACL_COUNTER _GRP7	Ingress ACL Counter Group 7	page 327
0x19000288	_	IG_ACL_COUNTER _GRP8	Ingress ACL Counter Group 8	page 328
0x1900028C	_	IG_ACL_COUNTER _GRP9	Ingress ACL Counter Group 9	page 328
0x19000290	_	IG_ACL_COUNTER _GRP10	Ingress ACL Counter Group 10	page 328
0x19000294	_	IG_ACL_COUNTER Ingress ACL Counter Group 11 _GRP11		page 328
0x19000298	_	IG_ACL_COUNTER _GRP12	Ingress ACL Counter Group 12	page 329

Table 8-22. Ethernet Registers Summary (continued)

GMACO Address	GMAC1 Address	Address Description		Page
0x1900029C	_	IG_ACL_COUNTER _GRP13	Ingress ACL Counter Group 13	page 329
0x190002A0	_	IG_ACL_COUNTER _GRP14	Ingress ACL Counter Group 14	page 329
0x190002A4	_	IG_ACL_COUNTER _GRP15	Ingress ACL Counter Group 15	page 329
0x190002A8	_	EG_ACL_COUNTER _GRP0	Egress ACL Counter Group 0	page 330
0x190002AC	_	EG_ACL_COUNTER _GRP1	Egress ACL Counter Group 1	page 330
0x190002B0			Egress ACL Counter Group 2	page 330
0x190002B4			Egress ACL Counter Group 3	page 330
0x190002B8			Egress ACL Counter Group 4	page 331
0x190002BC			Egress ACL Counter Group 5	page 331
0x190002C0			Egress ACL Counter Group 6	page 331
0x190002C4			Egress ACL Counter Group 7	page 331
0x190002C8			Egress ACL Counter Group 8	page 332
0x190002CC	_	EG_ACL_COUNTER	Egress ACL Counter Group 9	page 332
0x190002D0			Egress ACL Counter Group 10	page 332
0x190002D4			Egress ACL Counter Group 11	page 332
0x190002D8			Egress ACL Counter Group 12	page 333
0x190002DC	_	EG_ACL_COUNTER	Egress ACL Counter Group 13	page 333
0x190002E0	_	EG_ACL_COUNTER _GRP14	Egress ACL Counter Group 14	page 333
0x190002E4	_	EG_ACL_COUNTER _GRP15	Egress ACL Counter Group 15	page 333
0x190002E8	_	CLEAR_ACL _COUNTERS	Clear ACL Counters	page 334

8.19.1 MAC Configuration 1

GMAC0 Address: 0x19000000 GMAC1 Address: 0x1A000000 Access: See field description Reset: See field description

This register is used to set the actions for transmitting and receiving frames.

Bit	Bit Name	Туре	Reset	Description
31	SOFT_RESET	RW	0x1	Setting this bit resets all modules except the host interface. The host interface is reset via HRST.
30	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
29:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
19	RESET_RX_MAC_ CONTROL			
18	RESET_TX_MAC_ CONTROL			
17	RESET_RX_ FUNCTION			
16	RESET_TX_ FUNCTION			
15:9	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when
8	LOOP_BACK	RW	0x0	Setting this bit causes MAC Rx outputs to loop back to the MAC Rx inputs. Clearing this bit results in normal operation.
7:6	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when
5	RX_FLOW _CONTROL	RW	0x0	Setting this bit causes the Rx MAC control to detect and act on
4	TX_FLOW_ CONTROL	RW	0x0	Setting this bit causes the Tx MAC control to send requested flow control frames. Clearing this bit prevents the MAC from
3	SYNCHRONIZED_RX	RO	0x0	Rx enable synchronized to the receive stream
2	RX_ENABLE	RW	0x0	Setting this bit will allow the MAC to receive frames from the PHY. Clearing this bit will prevent the reception of frames.
1	SYNCHRONIZED_TX	RO	0x0	Tx enable synchronized to the Tx stream
0	TX_ENABLE	RW	0x0	Allows the MAC to transmit frames from the system. Clearing this bit will prevent the transmission of frames.

8.19.2 MAC Configuration 2

GMAC0 Address: 0x19000004 GMAC1 Address: 0x1A000004

Access: Read/Write Reset: See field description This register is used to set the parameters relating to the MAC, including duplex, CRC, and oversized frames.

Bit	Bit Name	Reset	Description		
31:16	RES	0x0	Reserved. Must be written with zero. Contains ze	eros when rea	d.
15:12	PREAMBLE_ LENGTH	0x7	Determines the length of the preamble field of the	e packet, in b	ytes.
11:10	RES	0x0	Reserved. Must be written with zero. Contains ze	eros when rea	d.
9:8	INTERFACE_	0x0	Determines the type of interface to which the MA	C is connecte	ed.
	MODE		Interface Mode	Bit [9]	Bit [8]
			RESERVED	0	0
			Nibble Mode (10/100 Mbps MII/RMII/SMII)	0	1
				1	0
				1	1
7:6	RES	0x0	Reserved. Must be written with zero. Contains ze	eros when rea	d.
5	HUGE_FRAME	0x0	Set this bit to allow frames longer than the MAXIMUM FRAME LENGTH to be transmitted and received. Clear this bit to have the MAC limit the length of frames at the MAXIMUM FRAME LENGTH value, which is register.		
4	LENGTH_FIELD	0x0	Set this bit to cause the MAC to check the frame's matches the data field length. Clear this bit for no	length field	checking.
3	RES	0x0	Reserved. Must be written with zero. Contains ze	eros when rea	d.
2	PAD/CRC ENABLE	0x0	Set this bit to have the MAC pad all short frames every frame whether or not padding was require presented to the MAC have a valid length and co	d. Clear this l	a CRC to oit if frames
1	CRC_ENABLE	0x0	Set this bit to have the MAC append a CRC to all frames. Clear this bit if frames presented to the MAC have a valid length and contain a valid CRC.		
0	FULL_DUPLEX	0x0	Setting this bit configures the MAC to operate in Clearing this bit configures the MAC to operate in		

8.19.3 IPG/IFG

GMAC0 Address: 0x19000008 GMAC1 Address: 0x1A000008

Access: Read/Write Reset: See field description This register is used to configure settings for the inter-packet gap and the inter-frame gap.

Bit	Bit Name	Reset	Description
31	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
30:24	NON_BACK_TO_ BACK_INTER _PACKET_GAP1	0x40	Represents the carrier sense window. If a carrier is detected, MAC defers to the carrier. If the carrier becomes active, MAC continues timing and Tx, knowingly causing a collision to ensure fair access to the medium.
23	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
22:16	NON_BACK_TO_ BACK_INTER _PACKET_GAP2	0x60	This programmable field represents the non-back-to-back inter-packet gap in bit times
15:8	MINIMUM_IFG_ ENFORCEMENT	0x50	Represents the minimum IFG size to enforce between frames (expressed in bit times). Frames with a IFG of less than programmed are dropped.
7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:0	BACK_TO_BACK_ INTER_PACKET_ GAP	0x60	Represents the IPG between back-to-back packets (expressed in bit times). This IPG parameter is used in full- duplex mode when two Tx packets are sent back-to-back. Set this field to the desired number of bits.

8.19.4 Half-Duplex

GMAC0 Address: 0x1900000C GMAC1 Address: 0x1A00000C

Access: Read/Write Reset: See field description This register is used to configure the settings for half-duplex, including back pressure, excessive defer and collisions.

	D'I N	ъ .	B
Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:20	ALTERNATE BINARY EXPONENTIAL BACKOFF TRUNCATION	0xA	Used when bit [19] is set. The value programmed is substituted for the Ethernet standard value of ten.
19	ALTERNATE BINARY EXPONENTIAL BACKOFF ENABLE	0x0	Setting this bit will configure the Tx MAC to use the setting of bits [23:20] instead of the tenth collision. Clearing this bit will cause the TX MAC to follow the standard binary exponential backoff rule, which specifies that any collision after the tenth uses 210-1 as the maximum
18	BACKPRESSURE_N O_BACKOFF	0x0	Setting this bit will configure the Tx MAC to immediately retransmit following a collision during backpressure operation. Clearing this bit will cause the Tx MAC to follow the binary exponential backoff rule.
17	NO_BACKOFF	0x0	Setting this bit will configure the Tx MAC to immediately retransmit following a collision. Clearing this bit will cause the Tx MAC to follow
16	EXCESSIVE_ DEFER	0x1	Setting this bit will configure the Tx MAC to allow the transmission of a packet that has been excessively deferred. Clearing this bit will cause the Tx MAC to abort the transmission of a packet that has been excessively
15:12	RETRANSMISSION _MAXIMUM	0xF	This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The maximum number of attempts is defined by
11:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
9:0	COLLISION_ WINDOW	0x37	This programmable field represents the slot time or collision window during which collisions might occur in a properly configured network. Since the collision window starts at the beginning of a transmission, the preamble and SFD are included. The reset value (0x37) corresponds to the count of frame bytes at the end of the window. If the value is larger

8.19.5 Maximum Frame Length

GMAC0 Address: 0x19000010 GMAC1 Address: 0x1A000010

Access: Read/Write

Reset: 0x600

This register is used to set the maximum allowable frame length.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MAX_FRAME _LENGTH	This programmable field sets the maximum frame size in both the Tx and Rx directions

8.19.6 MII Configuration

GMAC0 Address: 0x19000020 GMAC1 Address: 0x1A000020

Access: Read/Write

Reset: 0x0

This register is used to set the MII management parameters.

Bit	Bit Name	Description				
31	RESET_MII_ MGMT	Setting this bit resets the MII Management. Clearing this bit allows MII Management to perform management read/write cycles as requested by the Host interface.				
30:6	RES	Reserved. Must be written with zero. Contai	ns zeros v	vhen read		
5	SCAN_AUTO_ INCREMENT	Setting this bit causes MII Management to continually read from a set of contiguous PHYs. The starting address of the PHY is specified by the PHY address field recorded in the MII Address register. The next PHY to be read will be PHY address + 1. The last PHY to be queried in this read sequence will be the one residing at address 0x31, after which the read sequence will return to the PHY				
4	PREAMBLE_ SUPRESSION	reduce the management cycle from 64 clocks	Setting this bit causes MII Management to suppress preamble generation and reduce the management cycle from 64 clocks to 32 clocks. Clearing this bit causes MII Management to perform Management read/write cycles with the 64 clocks of			
3:0	MGMT_CLOCK_	This field determines the clock frequency of the management clock (MDC).				C).
		Management Clock Select	3	2	1	0
		Source clock divided by 4	0	0	0	0
		Source clock divided by 4	0	0	0	1
		Source clock divided by 6	0	0	1	0
		Source clock divided by 8	0	0	1	1
		Source clock divided by 10	0	1	0	0
		Source clock divided by 14	Source clock divided by 14 0		0	1
		Source clock divided by 20	0	1	1	0
		Source clock divided by 28	0	1	1	1
		Source clock divided by 34	1	0	0	0
		Source clock divided by 42	1	0	0	1
		Source clock divided by 50	1	0	1	0
		Source clock divided by 58	1	0	1	1
		Source clock divided by 66	1	1	0	0
		Source clock divided by 74	1	1	0	1
		Source clock divided by 82	1	1	1	0
		Source clock divided by 98	1	1	1	1

8.19.7 MII Command

GMAC0 Address: 0x19000024 GMAC1 Address: 0x1A000024

Access: Read/Write

Reset: 0x0

This register is used to cause MII management to perform read cycles.

Bit	Bit Name	Description	
31:2	RES	eserved. Must be written with zero. Contains zeros when read.	
1	SCAN_CYCLE	Causes MII management to perform read cycles continuously (e.g. to monitor link fail).	
0	READ_CYCLE	Causes MII management to perform a single read cycle.	

8.19.8 MII Address

GMAC0 Address: 0x19000028 GMAC1 Address: 0x1A000028

Access: Read/Write

Reset: 0x0

All MAC/PHY registers are accessed via the MII address and MII control registers of GMAC0 only. GMAC1 MII address and control registers are not used. The details of the Ethernet MAC/PHY that are accessible through the MAC 0 MII address.

Bit	Bit Name	Description		
31:13	RES	eserved. Must be written with zero. Contains zeros when read.		
12:8	PHY_ADDRESS	epresents the five-bit PHY address field used in management cycles. Up to 31 HYs can be addressed (0 is reserved).		
7:5	RES	Reserved. Must be written with zero. Contains zeros when read.		
4:0	REGISTER ADDRESS	Represents the five-bit register address field used in management cycles. Up to 32 registers can be accessed.		

8.19.9 MII Control

GMAC0 Address: 0x1900002C GMAC1 Address: 0x1A00002C

Access: Write-Only

Reset: 0x0

All MAC/PHY registers are accessed via the MII Address and MII Control registers.

This register is used to perform write cycles using the information in the MII Address

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MII_MGMT_ CONTROL	When written, an MII management write cycle is performed using the 16-bit data "MII Address"" (0x0A).

8.19.10 MII Status

GMAC0 Address: 0x19000030 GMAC1 Address: 0x1A000030

Access: Read-Only

Reset: 0x0

This register is used to read information following an MII management read cycle.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MII_MGMT_STATUS	After an MII management read cycle, 16-bit data can be read from this register.

8.19.11 MII Indicators

GMAC0 Address: 0x19000034 GMAC1 Address: 0x1A000034

Access: Read-Only

Reset: 0x0

This register is used indicate various functions of the MII management are currently being

performed.

Bit	Bit Name	Description	
31:3	RES	eserved. Must be written with zero. Contains zeros when read.	
2	NOT_VALID	When a 1 is returned, this bit indicates that the MII management read cycle has not yet completed and that the read data is not yet valid	
1	SCANNING	When a 1 is returned, this bit indicates that a scan operation (continuous MII management read cycles) is in progress	
0	BUSY	When a 1 is returned, this bit indicates that the MII management block is currently performing an MII management read or write cycle	

8.19.12 Interface Control

MAC 0 Address: 0x19000038 MAC 1 Address: 0x1A000038

Access: Read/Write

Reset: 0x0

This register is used to configure and set the interface modules.

Bit	Bit Name	Description		
31	RESET_ INTERFACE_ MODULE	Setting this bit resets the interface module. Clearing this bit allows for normal operation. This bit can be used in place of bits [23], [15] and [7] when any interface module is connected.		
30:25	RES	Reserved. Must be written with zero. Contains zeros when read.		
24	PHY_MODE	Setting this bit configures the serial MII module to be in PHY Mode. Link characteristics are taken directly from the RX segments supplied by the PHY.		
23	RESET_PERMII	Setting this bit resets the PERMII module. Clearing this bit allows for normal		
22:17	RES	Reserved. Must be written with zero. Contains zeros when read.		
16	SPEED	This bit configures the reduced MII module with the current operating speed.		
15	RESET_PE100X	This bit resets the PE100X module, which contains the 4B/5B symbol encipher/		
14:11	RES	Reserved. Must be written with zero. Contains zeros when read.		
10	FORCE_QUIET	Affects PE100X module only.		
		1 Tx data is quiet, allowing the contents of the cipher to be output		
9	NO_CIPHER	Affects PE100X module only.		
		1 The raw transmit 5B symbols are transmitting without ciphering		
8	DISABLE_LINK_			
		Disables the 330-ms link fail timer, allowing shorter simulations. Removes the 330-ms link-up time before stream reception is allowed.		
7	RESET GPSI	This bit resets the PE10T module which converts MII nibble streams to the serial bit stream of ENDEC PHYs. Affects PE10T module only.		
6:1	RES	Reserved. Must be written with zero. Contains zeros when read.		
0	ENABLE_ JABBER_ PROTECTION	This bit enables the Jabber Protection logic within the PE10T in ENDEC mode. Jabber is the condition where a transmitter is on for longer than 50 ms preventing other stations from transmitting. Affects PE10T module only.		

8.19.13 Interface Status

GMAC0 Address: 0x1900003C GMAC1 Address: 0x1A00003C

Access: Read-Only

Reset: 0x0

Identifies the interface statuses. The range of bits that are active are dependant upon the optional interfaces connected at the time.

Bit	Bit Name	Description			
31:10	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
9	EXCESS_DEFER	This bit sets when the MAC excessively defers a transmission. It clears when read. This bit latches high.			
8	CLASH	Used to	identify the serial MII module mode		
		0	In PHY mode or in a properly configured MAC to MAC mode		
		1	MAC to MAC mode with the partner in 10 Mbps and/or half-duplex		
7	JABBER	Used to	identify a jabber condition as detected by the serial MII PHY		
6	LINK_OK	Used to	identify the validity of a serial MII PHY link		
5	FULL_DUPLEX	Used to identify the current duplex of the serial MII PHY			
4	SPEED	Used to identify the current running speed of the serial MII PHY			
3	LINK_FAIL	Used to read the PHY link fail register. For asynchronous host accesses, this bit			
		0	The MII management module has read the PHY link fail register to be 0		
		1	The MII management module has read the PHY link fail register to be 1		
2	CARRIER_LOSS	Carrier status. This bit latches high.			
		1	Loss of carrier detection		
1	SQE_ERROR	0	Has not detected an SQE error. Latches high.		
-		1	Has detected an SQE error.		
0	JABBER	0	Has not detected a Jabber condition. Latches high.		
		1	Has detected a Jabber condition		

8.19.14 STA Address 1

GMAC0 Address: 0x19000040 GMAC1 Address: 0x1A000040

Access: Read/Write

Reset: 0x0

This register holds the first four octets of the station address.

Bit	Bit Name	Description
31:24	STATION_ ADDRESS_1	This field holds the first octet of the station address
23:16	STATION_ ADDRESS_2	This field holds the second octet of the station address
15:8	STATION_ ADDRESS_3	This field holds the third octet of the station address
7:0	STATION_ ADDRESS_4	This field holds the fourth octet of the station address

8.19.15 STA Address 2

GMAC0 Address: 0x19000044 GMAC1 Address: 0x1A000044

Access: Read/Write

Reset: 0x0

This register holds the last two octets of the

Bit Bi	t Name	Description
31:24 STATION	N_ADDRESS_5	This field holds the fifth octet of the station address
23:16 STATION	N_ ADDRESS_6	This field holds the sixth octet of the station address
15:0	RES	Reserved

8.19.16 ETH_FIFO RAM Configuration 0

GMAC0 Address: 0x19000048 GMAC1 Address: 0x1A000048 Access: See field description

Reset: 0x0

This register is used to assert and negate functions concerning the ETH module.

Bit	Bit Name	Access	Description	
31:21	RES	RO	Reserved. Mu	st be written with zero. Contains zeros when read.
20	FTFENRPLY	RO	Asserted	The eth_fab module is enabled
			Negated	The eth_fab module is disabled
19	STFENRPLY	RO	Asserted	The eth_sys module is enabled
			Negated	The eth_sys module is disabled
18	FRFENRPLY	RO	Asserted	The eth_fab module is enabled
17	SRFENRPLY	RO	Asserted	The eth_sys module is enabled
16	WTMENRPLY	RO	Asserted	The eth_wtm module is enabled
15:13	RES	RO	Reserved. Mu	st be written with zero. Contains zeros when read.
12	FTFENREQ	RW	Asserted	Requests enabling of the eth_fab module
11	STFENREQ	RW	Asserted	Requests enabling of the eth_sys module
10	FRFENREQ	RW	Asserted	Requests enabling of the eth_fab module
9	SRFENREQ	RW	Asserted	Requests enabling of the eth_sys module
8	WTMENREQ	RW	Asserted	Requests enabling of the eth_wtm module
7:5	RES	RW	Reserved. Mu	st be written with zero. Contains zeros when read.
4	HSTRSTFT	RW	When asserte	d, this bit places the eth_fab module in reset
3	HSTRSTST	RW	When asserted, this bit places the eth_sys module in reset	
2	HSTRSTFR	RW	When asserted, this bit places the eth_fab module in reset	
1	HSTRSTSR	RW	When asserted, this bit places the eth_sys module in reset	
0	HSTRSTWT	RW	When asserte	d, this bit places the eth_wtm module in reset

8.19.17 ETH Configuration 1

GMAC0 Address: 0x1900004C GMAC1 Address: 0x1A00004C

Access: Read/Write Reset: 0xFFFF This register is used to configure the ETH storage area.

Bit	Bit Name	Description
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.
27:16	CFGFRTH [11:0]	This hex value represents the minimum number of 4-byte locations to store simultaneously in the receive RAM, relative to the beginning of the frame being input, before FRRDY may be asserted. Note that FRRDY will be latent a certain amount of time due to fabric transmit clock to system transmit clock time domain crossing, and conditional on FRACPT assertion. When set to the maximum value, FRRD may be asserted only after the completion of the input frame. The value of this register must be greater than 18D when HSTDRPLT64 is asserted.
15:0	CFGXOFFRTX	This hexadecimal value represents the number of pause quanta (64-bit times) after an XOFF pause frame has been acknowledged until the ETH reasserts TCRQ if the ETH receive storage level has remained higher than the low watermark.

8.19.18 ETH Configuration 2

MAC 0 Address: 0x19000050 MAC 1 Address: 0x1A000050

Access: Read/Write Reset: See field description This register is used to number the minimum amount of 8-byte words in the Rx RAM before

pause frames are transmitted.

Bit	Bit Name	Reset	Description
31:29	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
28:16	CFGHWM [12:0]	0xAAA	This hex value represents the maximum number of 8-byte words to store simultaneously in the Rx RAM before TCRQ and PSVAL facilitates an XOFF
15:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	CFGLWM [12:0]	0x555	This hex value represents the minimum number of 8-byte words to store simultaneously in Rx RAM before TCRQ and PSVAL facilitate an XON pause control frame in response to a transmitted XOFF pause control frame.

8.19.19ETH Configuration 3

GMAC0 Address: 0x19000054 GMAC1 Address: 0x1A000054

Access: Read/Write Reset: See field description This register is used denote the minimum number of 4-byte locations to simultaneously store in the Tx RAM before assertion.

Bit	Bit Name	Reset	Description
31:28	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
27:16	CFGHWMFT [11:0]	0x555	This hex value represents the maximum number of 4-byte locations to store simultaneously in Tx RAM before FTHWM is asserted. Note that FTHWM has two FTCLK clock periods of latency before assertion or negation, as should be considered when calculating required headroom for maximum size packets.
15:12	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
11:0	CFGFTTTH [11:0]	0xFFF	This hex value represents the minimum number of 4-byte locations to store simultaneously in the Tx RAM, relative to the beginning of the frame being input, before TPSF is asserted. Note that TPSF is latent for a certain amount of time due to fabric Tx clock system Tx clock time domain crossing. When set to the maximum value, TPSF asserts only after the completion of the input frame.

8.19.20 ETH Configuration 4

GMAC0 Address: 0x19000058 GMAC1 Address: 0x1A000058

Access: Read/Write

Reset: 0x0

This register is used to signal drop frame conditions internal to the Ethernet.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17	Unicast MAC address match	In combination with "ETH Configuration 5", bits [17:0] of this
16	Truncated frame	register control which frames are dropped and which are sent to the DMA engine. If the bit is set in "ETH Configuration 5" and it
15	Long event	does not match the value in this bit, then the frame is dropped.
14	VLAN tag detected	
13	Unsupported op. code	
12	Pause frame	
11	Control frame	
10	Dribble nibble	
9	В	
8	M	
7	0	
6	Out of range	
5	Len	
4		
3		
2	F	
1	RX_DV event	
0		

8.19.21 ETH Configuration 5

GMAC0 Address: 0x1900005C GMAC1 Address: 0x1A00005C

Access: Read/Write Reset: See field description This register is used to assert or negate bits of

Bit	Bit Name	Reset	Description
31:20	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
19	Byte/Nibble	0x0	This bit should be set to 1 for GMAC0 or set to 0 for GMAC1.
18	Short Frame	0x0	If set to 1, all frames under 64 bytes are dropped.
17:0	Rx Filter[17:0]	0x3FFFF	If set in this vector, the corresponding field must match exactly in "ETH Configuration 4" for the packet to pass on to the DMA engine.

8.19.22 Tx/Rx 64 Byte Frame Counter (TR64)

GMAC0 Address: 0x19000080 GMAC1 Address: 0x1A000080

Access: Read/Write

Reset: 0x0

This register is used to count frames transmitted or received that were up to 64

bytes in length.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR64	The transmit and receive 64 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which is 64 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.23 Tx/Rx 65-127 Byte Frame Counter (TR127)

GMAC0 Address: 0x19000084 This register is used to count frames transmitted or received that were between 65-

GMAC1 Address: 0x1A000084

Access: Read/Write

Reset: 0x0

Bit

31:18 17:0

Bit Name	Description
RES	Reserved. Must be written with zero. Contains zeros when read.
TR127	The transmit and receive 65–127 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 65-127 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.24 Tx/Rx 128-255 Byte Frame Counter (TR255)

GMAC0 Address: 0x19000088 This register is used to count frames

GMAC1 Address: 0x1A000088 transmitted or received that were between 128-

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR255	The transmit and receive 128-255 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 128-255 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.25 Tx/Rx 256-511 Byte Frame Counter (TR511)

GMAC0 Address: 0x1900008C This register is used to count frames

GMAC1 Address: 0x1A00008C transmitted or received that were between 256-

Access: Read/Write 511 bytes in length.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR511	The transmit and receive 256–511 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 256–511 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.26 Tx/Rx 512-1023 Byte Frame Counter (TR1K)

GMAC0 Address: 0x19000090 This register is used to count frames

GMAC1 Address: 0x1A000090 transmitted or received that were between 512-

Access: Read/Write 1023 bytes in length.

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR1K	The transmit and receive 512–1023 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 512–1023 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.27 Tx/Rx 1024-1518 Byte Frame Counter (TRMAX)

GMAC0 Address: 0x19000094 This register is used to count frames GMAC1 Address: 0x1A000094 transmitted or received that were between

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TRMAX	The transmit and receive 1024-1518 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 1024-1518 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.28 Tx/Rx 1519-1522 Byte VLAN Frame Counter (TRMGV)

GMAC0 Address: 0x19000098 This register is used to count frames GMAC1 Address: 0x1A000098 transmitted or received that were between

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TRMGV	The transmit and receive 1519–1522 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 1519–1522 bytes in length inclusive (excluding framing bits but including FCS bytes).

8.19.29 Receive Byte Counter (RXBT)

GMAC0 Address: 0x1900009C GMAC1 Address: 0x1A00009C

Access: Read/Write

Reset: 0x0

This register is used to count incoming frames and then increment this register accordingly.

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:0	RBYT	The receive byte counter. This statistic count register is incremented by the byte count of all frames received, including bad packets but excluding framing bits but including FCS bytes.

8.19.30 Receive Packet Counter (RPKT)

GMAC0 Address: 0x190000A0 Access: Read/Write

GMAC1 Address: 0x1A0000A0 Reset: 0x0

This register is used to count packets received.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RPKT	The receive packet counter. This register is incremented for each received packet (including bad packets, all Unicast, broadcast and Multicast packets).

8.19.31 Receive FCS Error Counter (RFCS)

GMAC0 Address: 0x190000A4 GMAC1 Address: 0x1A0000A4

Access: Read/Write

Reset: 0x0

This register is used to count frames received between 64–1518 in length and has a FCS error.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RFCS	The received FCS error counter. This register is incremented for each frame received that has an integral 64–1518 length and contains a frame check sequence

8.19.32 Receive Multicast Packet Counter (RMCA)

GMAC0 Address: 0x190000A8 This register is use GMAC1 Address: 0x1A0000A8

Access: Read/Write

Reset: 0x0

This register is used to count received good

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RMCA	The receive multicast packet counter. This register is incremented for each multicast good frame of lengths smaller than 1518 (non-VLAN) or 1522 (VLAN) excluding broadcast frames. This does not include range/length errors.

8.19.33 Receive Broadcast Packet Counter (RBCA)

GMAC0 Address: 0x190000AC This register is used to count received good broadcast frames.

Access: Read/Write

Bit	Bit Name	Description
31:22	RES	Reserved. Must be written with zero. Contains zeros when read.
21:0	RBCA	The receive broadcast packet counter. This register is incremented for each broadcast good frame of lengths smaller than 1518 (non-VLAN) or 1522 (VLAN) excluding multicast frames. This does not include range or length errors.

8.19.34 Receive Control Frame Packet Counter (RXCF)

GMAC0 Address: 0x190000B0 This register is used to count received MAC GMAC1 Address: 0x1A0000B0

Access: Read/Write

Reset: 0x0

control frames.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RXCF	The receive control frame packet counter. This register is incremented for each MAC control frame received (pause and unsupported).

8.19.35 Receive Pause Frame Packet Counter (RXPF)

GMAC0 Address: 0x190000B4 This register is used to count received pause

GMAC1 Address: 0x1A0000B4

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RXPF	The receive pause frame packet counter. This register is incremented each time a

8.19.36 Receive Unknown OPCode Packet Counter (RXUO)

GMAC0 Address: 0x190000B8 This register is used to count received MAC GMAC1 Address: 0x1A0000B8 control frames that contain an opcode.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RXUO	The receive unknown OPcode counter. This bit is incremented each time a MAC control frame is received which contains an opcode other than a pause.

8.19.37 Receive Alignment Error Counter (RALN)

GMAC0 Address: 0x190000BC This register is used to count received packets GMAC1 Address: 0x1A0000BC

Access: Read/Write

Reset: 0x0

with an alignment error.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RALN	The receive alignment error counter. This register is incremented for each received frame from 64–1518 bytes that contains an invalid FCS and is not an integral number of bytes.

8.19.38 Receive Frame Length Error Counter (RFLR)

GMAC0 Address: 0x190000C0 This register is used to count received frames GMAC1 Address: 0x1A0000C0 that have a length error.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	RFLR	The received frame length error counter. this register is incremented for each received frame in which the 802.3 length field did not match the number of data bytes actually received (46–1500 bytes). The counter is not incremented if the length field is not a valid 802.3 length, such as an EtherType value.

8.19.39 Receive Code Error Counter (RCDE)

GMAC0 Address: 0x190000C4 GMAC1 Address: 0x1A0000C4

Access: Read/Write

Reset: 0x0

This register is used to count the number of received frames that had a code error counter.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RCDE	The receive code error counter. This register is incremented each time a valid carrier was present and at least one invalid data symbol was detected.

8.19.40 Receive Carrier Sense Error Counter (RCSE)

GMAC0 Address: 0x190000C8 GMAC1 Address: 0x1A0000C8

This register is used to count the number of frames received that had a false carrier.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RCSE	The receive false carrier counter. This register is incremented each time a false carrier is detected during idle, as defined by a 1 on RX_ER and an 0xE on RXD. This event is reported along with the statistics generated on the next received frame. Only one false carrier condition can be detected and logged between frames.

8.19.41 Receive Undersize Packet Counter (RUND)

GMAC0 Address: 0x190000CC GMAC1 Address: 0x1A0000CC This register is used to count the number of received packets that were undersized.

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RUND	The receive undersize packet counter. This register is incremented each time a frame is received which is less than 64 bytes in length and contains a valid FCS and were otherwise well formed. This does not include Range Length errors

8.19.42 Receive Oversize Packet Counter (ROVR)

GMAC0 Address: 0x190000D0 GMAC1 Address: 0x1A0000D0

Access: Read/Write

Reset: 0x0

This register is used to count received packets

that were oversized.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	ROVR	The receive oversize packet counter., This register is incremented each time a frame is received which exceeded 1518 (non-VLAN) or 1522 (VLAN) and contains a valid FCS and were otherwise well formed. This does not include Range Length errors.

8.19.43 Receive Fragments Counter (RFRG)

GMAC0 Address: 0x190000D4 GMAC1 Address: 0x1A0000D4

Access: Read/Write

Reset: 0x0

This register is used to count received

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RFRG	The receive fragments counter. This register is incremented for each frame received which is less than 64 bytes in length and contains an invalid FCS. This

8.19.44 Receive Jabber Counter (RJBR)

GMAC0 Address: 0x190000D8 GMAC1 Address: 0x1A0000D8

Access: Read/Write

Reset: 0x0

This register is used to count received jabber

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RJBR	The received jabber counter. This register is incremented for frames which exceed 1518 (non-VLAN) or 1522 (VLAN) bytes and contains an invalid FCS, including

8.19.45 Receive Dropped Packet Counter (RDRP)

GMAC0 Address: 0x190000DC GMAC1 Address: 0x1A0000DC

Access: Read/Write

Reset: 0x0

This register is used to count received dropped packets.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RDRP	The received dropped packets counter. this register is incremented for frames received which are streamed to the system but are later dropped due to a lack of system resources.

8.19.46 Transmit Byte Counter (TXBT)

GMAC0 Address: 0x190000E0 GMAC1 Address: 0x1A0000E0 This register is used to count transmitted bytes.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:0	TXBT	The transmit byte counter. This register is incremented by the number of bytes that were put on the wire including fragments of frames that were involved with collisions. This count does not include preamble/SFD or jam bytes.

8.19.47 Transmit Packet Counter (TPKT)

GMAC0 Address: 0x190000E4 GMAC1 Address: 0x1A0000E4 This register is used to count transmitted

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TPKT	The transmit packet counter. This register is incremented for each transmitted packet (including bad packets, excessive deferred packets, excessive collision packets, late collision packets, all Unicast, Broadcast and Multicast packets.

8.19.48 Transmit Multicast Packet Counter (TMCA)

GMAC0 Address: 0x190000E8 This register is used to count transmitted

GMAC1 Address: 0x1A0000E8

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TMCA	Transmit multicast packet counter. Incremented for each multicast valid frame

8.19.49 Transmit Broadcast Packet Counter (TBCA)

GMAC0 Address: 0x190000EC This register is used to count transmitted

GMAC1 Address: 0x1A0000EC broadcast packets.

Access: Read/Write

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TBCA	Transmit broadcast packet counter. Incremented for each broadcast frame transmitted (excluding multicast frames).

8.19.50 Transmit Pause Control Frame Counter (TXPF)

GMAC0 Address: 0x190000F0 This register is used to count transmitted pause

GMAC1 Address: 0x1A0000F0 control frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TXPF	Transmit pause frame packet counter. Incremented each time a valid pause MAC control frame is transmitted.

8.19.51 Transmit Deferral Packet Counter (TDFR)

GMAC0 Address: 0x190000F4 This register is used to count transmitted

GMAC1 Address: 0x1A0000F4

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TDFR	Transmit deferral packet counter. Incremented for each frame that was deferred on its first transmission attempt. Does not include frames involved in collisions.

8.19.52 Transmit Excessive Deferral Packet Counter (TEDF)

GMAC0 Address: 0x190000F8 This register is used to count excessive

GMAC1 Address: 0x1A0000F8

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TEDF	Transmit excessive deferral packet counter. Incremented for frames aborted that

8.19.53 Transmit Single Collision Packet Counter (TSCL)

GMAC0 Address: 0x190000FC This register is used to count transmitted single

GMAC1 Address: 0x1A0000FC collision packets.

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TSCL	Transmit single collision packet counter. Incremented for each frame transmitted that experienced exactly one collision during transmission.

8.19.54 Transmit Multiple Collision Packet (TMCL)

GMAC0 Address: 0x19000100 This register is used to count transmitted GMAC1 Address: 0x1A000100

Access: Read/Write

Reset: 0x0

multiple collision packets.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TMCL	Transmit multiple collision packet counter. Incremented for each frame transmitted that experienced 2–15 collisions (including any late collisions) during transmission as defined using the RETRY[3:0] field of the Tx function control register.

8.19.55 Transmit Late Collision Packet Counter (TLCL)

GMAC0 Address: 0x19000104 This register is used to count transmitted late

GMAC1 Address: 0x1A000104

Reset: 0x0

Access: Read/Write

Bit **Bit Name Description** 31:12 RES Reserved. Must be written with zero. Contains zeros when read. 11:0 TLCL Transmit late collision packet counter. Incremented for each frame transmitted that experienced a late collision during a transmission attempt. Late collisions are defined using the LCOL[5:0] field of the Tx function control register.

8.19.56 Transmit Excessive Collision Packet Counter (TXCL)

GMAC0 Address: 0x19000108 This register is used to count excessive GMAC1 Address: 0x1A000108

Access: Read/Write

Reset: 0x0

transmitted collision packets.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TXCL	Transmit excessive collision packet counter. Incremented for each frame that experienced 16 collisions during transmission and was aborted.

8.19.57 Transmit Total Collision Counter (TNCL)

GMAC0 Address: 0x1900010C This register is used to count transmitted total

GMAC1 Address: 0x1A00010C collision packets.

Access: Read/Write

Bit	Bit Name	Description
31:13	RES	Reserved. Must be written with zero. Contains zeros when read.
12:0	TNCL	Transmit total collision counter. Incremented by the number of collisions experienced during the transmission of a frame as defined as the simultaneous presence of signals on the DO and RD circuits (i.e., transmitting and receiving at the same time). Note, this register does not include collisions that result in an excessive collision condition).

8.19.58 Transmit Pause Frames Honored Counter (TPFH)

GMAC0 Address: 0x19000110 GMAC1 Address: 0x1A000110

Access: Read/Write

Reset: 0x0

This register is used to count honored

transmitted pause frames.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TPFH	Transmit pause frames honored counter. Incremented each time a valid pause MAC control frame is transmitted and honored.

8.19.59 Transmit Drop Frame Counter (TDRP)

GMAC0 Address: 0x19000114 GMAC1 Address: 0x1A000114

Access: Read/Write

Reset: 0x0

This register is used to count transmitted drop

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TDRP	Transmit drop frame counter. Incremented each time input PFH is asserted.

8.19.60 Transmit Jabber Frame Counter (TJBR)

GMAC0 Address: 0x19000118 GMAC1 Address: 0x1A000118

Access: Read/Write

Reset: 0x0

This register is used to count transmitted jabber

This register is used to count transmitted FCS

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TJBR	Transmit jabber frame counter. Incremented for each oversized transmitted frame

8.19.61 Transmit FCS Error Counter (TFCS)

GMAC0 Address: 0x1900011C GMAC1 Address: 0x1A00011C

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TFCS	Transmit FCS error counter. Incremented for every valid sized packet with an incorrect FCS value.

8.19.62 Transmit Control Frame Counter (TXCF)

GMAC0 Address: 0x19000120 GMAC1 Address: 0x1A000120

This register is used to count transmitted control frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TXCF	Transmit control frame counter. Incremented for every valid size frame with a type field signifying a control frame.

8.19.63Transmit Oversize Frame Counter (TOVR)

GMAC0 Address: 0x19000124 This register is used to count transmitted

GMAC1 Address: 0x1A000124000128 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TOVR	Transmit oversize frame counter. Incremented for each oversized transmitted

8.19.64 Transmit Undersize Frame Counter (TUND)

GMAC0 Address: 0x19000128 This register is used to count transmitted

GMAC1 Address: 0x1A000128

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TUND	Transmit undersize frame counter. Incremented for every frame less then 64

8.19.65 Transmit Fragment Counter (TFRG)

GMAC0 Address: 0x1900012C GMAC1 Address: 0x1A00012C This register is used to count transmitted

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TFRG	Transmit fragment counter. Incremented for every frame less then 64 bytes, with an incorrect FCS value.

8.19.66 Carry Register 1 (CAR1)

GMAC0 Address: 0x19000130 GMAC1 Address: 0x1A000130

Access: Read-Only

Reset: 0x0

Carry register bits are cleared on carry register write while the respective bit is asserted.

Bit	Bit Name	Description
31	C1_64	Carry register 1 TR64 counter carry bit
30	C1_127	Carry register 1 TR127 counter carry bit
29	C1_255	Carry register 1 TR255 counter carry bit
28	C1_511	Carry register 1 TR511 counter carry bit
27	C1_1K	Carry register 1 TR1K counter carry bit
26	C1_MAX	Carry register 1 TRMAX counter carry bit
25	C1_MGV	Carry register 1 TRMGV counter carry bit
24:17	RES	Reserved. Must be written with zero. Contains zeros when read.
16	C1_RBY	Carry register 1 RBYT counter carry bit
15	C1_RPK	Carry register 1 RPKT counter carry bit
14	C1_RFC	Carry register 1 RFCS counter carry bit
13	C1_RMC	Carry register 1 RMCA counter carry bit
12	C1_RBC	Carry register 1 RBCA counter carry bit
11	C1_RXC	Carry register 1 RXCF counter carry bit
10	C1_RXP	Carry register 1 RXPF counter carry bit
9	C1_RXU	Carry register 1 RXUO counter carry bit
8	C1_RAL	Carry register 1 RALN counter carry bit
7	C1_RFL	Carry register 1 RFLR counter carry bit
6	C1_RCD	Carry register 1 RCDE counter carry bit
5	C1_RCS	Carry register 1 RCSE counter carry bit
4	C1_RUN	Carry register 1 RUND counter carry bit
3	C1_ROV	Carry register 1 ROVR counter carry bit
2	C1_RFR	Carry register 1 RFRG counter carry bit
1	C1_RJB	Carry register 1 RJBR counter carry bit
0	C1_RDR	Carry register 1 RDRP counter carry bit

8.19.67 Carry Register 2 (CAR2)

GMAC0 Address: 0x19000134 GMAC1 Address: 0x1A000134

Access: Read-Only

Reset: 0x0

Carry register bits are cleared on carry register write while the respective bit is asserted.

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19	C2_TJB	Carry register 2 TJBR counter carry bit
18	C2_TFC	Carry register 2 TFCS counter carry bit
17	C2_TCF	Carry register 2 TXCF counter carry bit
16	C2_TOV	Carry register 2 TOVR counter carry bit
15	C2_TUN	Carry register 2 TUND counter carry bit
14	C2_TFG	Carry register 2 TFRG counter carry bit
13	C2_TBY	Carry register 2 TBYT counter carry bit
12	C2_TPK	Carry register 2 TPKT counter carry bit
11	C2_TMC	Carry register 2 TMCA counter carry bit
10	C2_TBC	Carry register 2 TBCA counter carry bit
9	C2_TPF	Carry register 2 TXPF counter carry bit
8	C2_TDF	Carry register 2 TDFR counter carry bit
7	C2_TED	Carry register 2 TEDF counter carry bit
6	C2_TSC	Carry register 2 TSCL counter carry bit
5	C2_TMA	Carry register 2 TMCL counter carry bit
4	C2_TLC	Carry register 2 TLCL counter carry bit
3	C2_TXC	Carry register 2 TXCL counter carry bit
2	C2_TNC	Carry register 2 TNCL counter carry bit
1	C2_TPH	Carry register 2 TPFH counter carry bit
0	C2_TDP	Carry register 2 TDRP counter carry bit

8.19.68 Carry Mask Register 1 (CAM1)

GMAC0 Address: 0x19000138 GMAC1 Address: 0x1A000138

Access: Read/Write

Reset: 0x1

When one of these mask bits is set to zero, the corresponding interrupt bit is allowed to cause interrupt indications on output CARRY.

Bit	Bit NaM1e	Description
31	M1_64	Mask register 1 TR64 counter carry bit
30	M1_127	Mask register 1 TR127 counter carry bit
29	M1_255	Mask register 1 TR255 counter carry bit
28	M1_511	Mask register 1 TR511 counter carry bit
27	M1_1K	Mask register 1 TR1K counter carry bit
26	M1_MAX	Mask register 1 TRMAX counter carry bit
25	M1_MGV	Mask register 1 TRMGV counter carry bit
24:17	RES	Reserved. Must be written with zero. Contains zeros when read.
16	M1_RBY	Mask register 1 RBYT counter carry bit
15	M1_RPK	Mask register 1 RPKT counter carry bit
14	M1_RFC	Mask register 1 RFCS counter carry bit
13	M1_RMC	Mask register 1 RMCA counter carry bit
12	M1_RBC	Mask register 1 RBCA counter carry bit
11	M1_RXC	Mask register 1 RXCF counter carry bit
10	M1_RXP	Mask register 1 RXPF counter carry bit
9	M1_RXU	Mask register 1 RXUO counter carry bit
8	M1_RAL	Mask register 1 RALN counter carry bit
7	M1_RFL	Mask register 1 RFLR counter carry bit
6	M1_RCD	Mask register 1 RCDE counter carry bit
5	M1_RCS	Mask register 1 RCSE counter carry bit
4	M1_RUN	Mask register 1 RUND counter carry bit
3	M1_ROV	Mask register 1 ROVR counter carry bit
2	M1_RFR	Mask register 1 RFRG counter carry bit
1	M1_RJB	Mask register 1 RJBR counter carry bit
0	M1_RDR	Mask register 1 RDRP counter carry bit

8.19.69 Carry Mask Register 2 (CAM2)

GMAC0 Address: 0x1900013C GMAC1 Address: 0x1A00013C

Access: Read/Write

Reset: 0x1

When one of these mask bits is set to zero, the corresponding interrupt bit is allowed to cause interrupt indications on output CARRY.

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19	M2_TJB	Mask register 2 TJBR counter carry bit
18	M2_TFC	Mask register 2 TFCS counter carry bit
17	M2_TCF	Mask register 2 TXCF counter carry bit
16	M2_TOV	Mask register 2 TOVR counter carry bit
15	M2_TUN	Mask register 2 TUND counter carry bit
14	M2_TFG	Mask register 2 TFRG counter carry bit
13	M2_TBY	Mask register 2 TBYT counter carry bit
12	M2_TPK	Mask register 2 TPKT counter carry bit
11	M2_TMC	Mask register 2 TMCA counter carry bit
10	M2_TBC	Mask register 2 TBCA counter carry bit
9	M2_TPF	Mask register 2 TXPF counter carry bit
8	M2_TDF	Mask register 2 TDFR counter carry bit
7	M2_TED	Mask register 2 TEDF counter carry bit
6	M2_TSC	Mask register 2 TSCL counter carry bit
5	M2_TMA	Mask register 2 TMCL counter carry bit
4	M2_TLC	Mask register 2 TLCL counter carry bit
3	M2_TXC	Mask register 2 TXCL counter carry bit
2	M2_TNC	Mask register 2 TNCL counter carry bit
1	M2_TPH	Mask register 2 TPFH counter carry bit
0	M2_TDP	Mask register 2 TDRP counter carry bit

8.19.70 DMA Transfer Control for Queue 0 (DMATXCNTRL_Q0)

GMAC0 Address: 0x19000180 GMAC1 Address: 0x1A000180

Access: Read/Write

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TX_ENABLE	Enables queue 0

8.19.71 Descriptor Address for Queue 0 Tx (DMATXDESCR_Q0)

GMAC0 Address: 0x19000184 GMAC1 Address: 0x1A000184

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:2	DESCR_ADDR	The descriptor address to be fetched for queue 0
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

8.19.72 Transmit Status (DMATXSTATUS)

GMAC0 Address: 0x19000188 GMAC1 Address: 0x1A000188

Access: Read/Write

Reset: 0x0

This register is used to set the bits and flags regarding the DMA controller and its

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:16	TXPKTCOUNT	This 8-bit Tx packet counter increments when the DMA controller transfers a packet successfully, and decrements when the host writes a 1 to TXPKTSENT
15:12	RES	Reserved.
11	TX_UNDERRUN_Q3	Indicates TXUNDERRUN_Q3 as an interrupt source
10	TX_UNDERRUN_Q2	Indicates TXUNDERRUN_Q2 as an interrupt source
9	TX_UNDERRUN_Q1	Indicates TXUNDERRUN_Q1 as an interrupt source
8:4	RES	Reserved. Must be written with zero. Contains zeros when read.
3	BUS_ERROR	Indicates that the DMA controller received a host/slave split, error, or retry
2	RES	Reserved. Must be written with zero. Contains zeros when read.
1	TXUNDERRUN_Q0	This bit is set when the DMA controller reads a set (1) empty flag in the
0	TXPKTSENT	Indicates that one or more packets transferred successfully. This bit is cleared when TXPKTCOUNT (bits [23:16]) is zero. Writing a 1 to this bit reduces

8.19.73 Receive Control (DMARXCTRL)

GMAC0 Address: 0x1900018C GMAC1 Address: 0x1A00018C

Access: Read/Write

Reset: 0x0

This register is used to enable the DMA to receive packets.

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	RXENABLE	Allows the DMA to receive packet transfers. When set, the built-in DMA controller begins receiving packets as the FIFO indicates they are available (FRSOF asserted). The DMA controller clears this bit when it encounters an RX overflow or bus error state.

8.19.74 Pointer to Receive Descriptor (DMARXDESCR)

GMAC0 Address: 0x19000190 GMAC1 Address: 0x1A000190 This register is used to find the location of the first TX packet descriptor in the memory.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:2	DESCRIPTOR_ ADDRESS	The descriptor address. When the RXENABLE (bit [0] of the "Receive Control (DMARXCTRL)" register) is set by the host, the DMA controller reads this register to find the host memory location of the first receive packet descriptor.
1:0	RES	Ignored by the DMA controller, because it is a requirement of the system that all descriptors are 32-bit aligned in the host memory.

8.19.75 Receive Status (DMARXSTATUS)

GMAC0 Address: 0x19000194 GMAC1 Address: 0x1A000194

Access: Read/Write

Reset: 0x0

This register is used to set the bits and flags regarding the DMA controller and its receiving

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:16	RXPKTCOUNT	This 8-bit receive packet counter increments when the DMA controller transfers a packet successfully, and decrements when the host writes a 1 to
15:4	RES	Reserved. Must be written with zero. Contains zeros when read.
3	BUSERROR	Indicates that the DMA controller received a host/slave split, error, or retry
2	RXOVERFLOW	This bit is set when the DMA controller reads a set empty flag in the descriptor it
1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	RXPKT RECEIVED	Indicates that one or more packets were received successfully. This bit is cleared when the RXPKTCOUNT (bits [23:16]) is zero. Writing a 1 to this bit reduces

8.19.76 Interrupt Mask (DMAINTRMASK)

GMAC0 Address: 0x19000198 GMAC1 Address: 0x1A000198

Access: Read/Write

Reset: 0x0

This register is used to configure interrupt masks for the DMA. Setting a bit to 1 enables the corresponding status signal as an interrupt source. The register "DMA Interrupts" is the AND of DMA status bits with this register.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11	TX_UNDERRUN_Q3_MASK	Setting this bit 1 enables TXUNDERRUN_Q3(bit [11] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source
10	TX_UNDERRUN_Q2_MASK	Setting this bit 1 enables TXUNDERRUN_Q2 (bit [10] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source
9	TX_UNDERRUN_Q1_MASK	Setting this bit 1 enables TXUNDERRUN_Q1 (bit [9] in the "Transmit register) as an interrupt source
8		Reserved. Must be written with zero. Contains zeros when read.
7	BUS_ERROR_MASK	"Receive Status
6	RX_OVERFLOW_MASK	"Receive register) as in interrupt source
5	RES	Reserved. Must be written with zero. Contains zeros when read.
4	RXPKTRECEIVED_MASK	"Receive Status
3	BUSERROR_MASK	"Transmit Status
2	RES	Reserved. Must be written with zero. Contains zeros when read.
1	TX_UNDERRUN_Q0_MASK	Setting this bit 1 enables TXUNDERRUN_Q0 (bit [1] in the "Transmit register) as an interrupt source
0	TXPKTSENT_MASK	"Transmit Status

8.19.77 Interrupts (DMAINTERRUPT)

GMAC0 Address: 0x1900019C GMAC1 Address: 0x1A00019C

Access: Read/Write

Reset: 0x0

This register is used to configure interrupts for the DMA. Flags in this register clear when their corresponding Status bit is cleared.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11	TX_UNDERRUN_ Q3	Setting this bit 1 enables TXUNDERRUN_Q3(bit [11] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source
10	TX_UNDERRUN_ Q2	Setting this bit 1 enables TXUNDERRUN_Q2 (bit [10] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source
9	TX_UNDERRUN_ Q1	Setting this bit 1 enables TXUNDERRUN_Q1 (bit [9] in the "Transmit Status (DMATXSTATUS)"
8	RES	Reserved. Must be written with zero. Contains zeros when read.
7	BUS_ERROR _MASK	Setting this bit to 1 records an Rx bus error interrupt when BUS_ERROR (bit [3] in register) and BUS_ERROR_MASK (bit register) are both set
6	RX_OVERFLOW_ MASK	Setting this bit to 1 records an Rx overflow error interrupt when RX_OVERFLOW register) and "Interrupt Mask (DMAINTRMASK)"
5	RES	Reserved. Must be written with zero. Contains zeros when read.
4	RXPKT_ RECEIVED_ MASK	Records a RX_PKT_RECEIVED error interrupt when RX_PKT_RECEIVED (bit [0] in "Interrupt Mask (DMAINTRMASK)"
3	BUS_ERROR	"Transmit Status register) and BUSERROR_MASK (bit [3] of the "Interrupt
2	RES	Reserved. Must be written with zero. Contains zeros when read.
1	TX_UNDERRUN_ Q0	"Transmit Status register) and TX_UNDERRUN_MASK (bit [1] of the
0	TXPKTSENT	"Transmit Status register) and TXPKTSENT_MASK (bit [0] of the "Interrupt

8.19.78Ethernet TX Burst (ETH_ARB_TX_BURST)

GMAC0 Address: 0x190001A0 GMAC1Address: 0x1A0001A0

Access: Read/Write

Reset: 0x48

Tx and Rx requests are arbitrated based on these parameters. These parameters ensure DDR bandwidth is available to both Tx and Rx until the specified number of DWs transfer. Note that this affects the bandwidth/latency of the data for transmit and receive.

Bit	Bit Name	Description
31:26	RES	Reserved
25:16	MAX_RCV_BURST	Maximum number of DWs to be continuously allowed for Rx
15:10	RES	Reserved
9:0	MAX_TX_BURST	Maximum number of DWs to be continuously allowed for Tx

8.19.79 Current Tx and Rx FIFO Depth (ETH_XFIFO_DEPTH)

GMAC0 Address: 0x190001A8 GMAC1Address: 0x1A0001A8

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:26	RES	Reserved
25:16	CURRENT_RX_FIFO_DEPTH	Current Rx FIFO depth
15:10	RES	Reserved
9:0	CURRENT_TX_FIFO_DEPTH	Current Tx FIFO depth

8.19.80 Ethernet Transmit FIFO Throughput (ETH_TXFIFO_TH)

GMAC0 Address: 0x190001A4 GMAC1 Address: 0x1A0001A4

Access: Read/Write Reset: See field description This Ethernet register has a 2 KB Tx FIFO. It is use to determine the minimum and maximum levels of the transfer FIFO and correspondingly keep the transmit levels within the range to keep a continuous data transfer flowing.

Bit	Bit Name	Reset	Description
31:26	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
25:16	TXFIFO_MAXTH	0x1D8	This bit represents the maximum number of double words in the Tx FIFO, and once this limit is surpassed, this bit should be de-asserted
15:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
9:0	TXFIFO_MINTH	0x160	This bit specifies the minimum number of double words in the Tx FIFO, and if it is less than this value, this bit needs to be asserted.

8.19.81Ethernet Receive FIFO Threshold (ETH_RXFIFO_TH)

GMAC0 Address: 0x190001AC GMAC1 Address: 0x1A0001AC

Access: Read/Write

Reset: See field description

This Ethernet register has a 2 KB Rx FIFO. It is used to determine the minimum and maximum levels of the transfer FIFO and correspondingly keep the transmit levels within the range to keep a continuous data transfer flowing.

Bit	Bit Name	Reset	Description
31:10	SCRATCHREG_0	0x28	This bit is a pure scratch pad register that can be used by the CPU for any general purpose.
9:0	RCVFIFO_MINTH	0x0	The minimum number of double words in the receive FIFO. Once this number is reached, this bit needs to be asserted.

8.19.82Ethernet Free Timer (ETH_FREE_TIMER)

GMAC0 Address: 0x190001B8 GMAC1 Address: 0x1A0001B8

Access: Read/Write Reset: See field description This register updates the Ethernet descriptors with time stamps

Bit	Bit Name	Reset	Description	
31	TIMER_UPDATE	0x1	0	Timer update at the AHB_CLK
			1	Free timer at the AHB_CLK/4
30:21	SCRATCHREG_1	0x0	The pure general purpose register for use by the CPU	
20:0	FREE_TIMER	0x3FFFFF	Free timer	

8.19.83 DMA Transfer Control for Queue 1 (DMATXCNTRL_Q1)

GMAC0 Address: 0x190001C0 GMAC1 Address: 0x1A0001C0

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.	
0	TX_ENABLE	Enables queue 1	

8.19.84 Descriptor Address for Queue 1 Tx (DMATXDESCR_Q1)

GMAC0 Address: 0x190001C4 GMAC1 Address: 0x1A0001C4

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:2	DESCR_ADDR	The descriptor address to be fetched for queue 1	
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.	

8.19.85 DMA Transfer Control for Queue 2 (DMATXCNTRL_Q2)

GMAC0 Address: 0x190001C8 GMAC1 Address: 0x1A0001C8

Access: Read/Write

Bit	Bit Name	Description	
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.	
0	TX_ENABLE	Enables queue 2	

8.19.86 Descriptor Address for Queue 2 Tx (DMATXDESCR_Q2)

GMAC0 Address: 0x190001CC GMAC1 Address: 0x1A0001CC

Access: Read/Write

Reset: 0x0

Bit	Bit Name Description	
31:2	DESCR_ ADDR	The descriptor address to be fetched for queue 2
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

8.19.87 DMA Transfer Control for Queue 3 (DMATXCNTRL_Q3)

GMAC0 Address: 0x190001D0

GMAC1 Address: 0x1A0001D0 Access: Read/

Write Reset: 0x0

Bit	Bit Name	Description	
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.	
0	TX_ENABLE	Enables queue 3	

8.19.88 Descriptor Address for Queue 3 Tx (DMATXDESCR_Q3)

GMAC0 Address: 0x190001D4 GMAC1 Address: 0x1A0001D4

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31:2	DESCR_ ADDR	The descriptor address to be fetched for queue 3	
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.	

8.19.89 DMA Transfer Arbitration Configuration (DMATXARBCFG)

GMAC0 Address: 0x190001D8 GMAC1 Address: 0x1A0001D8

Access: Read/Write

Reset: See field description

This register is used to select the type of arbitration used for the QoS feature and the weight to be assigned to a particular queue. Note that a weight of zero is not permitted and

causes the hardware to misbehave.

Bit	Bit Name	Reset	Description	
31:26	WGT3	0x1	The weight for Queue 3, if WRR has been selected	
25:20	WGT2	0x2	The weight for Queue 2, if WRR has been selected	
19:14	WGT1	0x4	The weight for Queue 1, if WRR has been selected	
13:8	WGT0	0x8	The weight for Queue 0, if WRR has been selected	
7:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
0	RRMODE	0x4	Round robin mode	
			0 Simple priority (Q0 highest priority)	
			1 Weighted round robin (WRR)	

8.19.90Tx Status and Packet Count for Queues 1 to 3 (DMATXSTATUS_123)

GMAC0 Address: 0x190001E4 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Reset: 0x0

Bit	Bit Name	Description	
31:24	RES	Reserved	
23:16	TXPKTCOUNT _CH3	8-bit Tx packet counter that increments when the built-in DMA controller successfully transfers a packet for queue 3, and decrements when the host write a 1 to bit TXPKTSENT for chain 3 in the "Tx Status and Packet Count (DMATXSTATUS)" register. Default is 0.	
15:8	TXPKTCOUNT _CH2	8-bit Tx packet counter that increments when the built-in DMA controller successfully transfers a packet for queue 2, and decrements when the host writes a 1 to bit TXPKTSENT for chain 2 in the "Tx Status and Packet Count	
7:0	TXPKTCOUNT	8-bit Tx packet counter that increments when the built-in DMA controller successfully transfers a packet for queue 1, and decrements when the host writes "Tx Status and Packet Count"	

8.19.91Local MAC Address Dword0 (LCL_MAC_ADDR_DW0)

GMAC0 Address: 0x19000200 This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit		
31:0	LOCAL_MAC_ADDR_DW0	Bits [31:0] of the local L2 MAC address

8.19.92Local MAC Address Dword1 (LCL_MAC_ADDR_DW1)

GMAC0 Address: 0x19000204 This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit		
31:16		
15:0	LOCAL_MAC_ADDR_DW1	Bits [47:32] of the local L2 MAC address

8.19.93Next Hop Router MAC Address DwordO (NXT_HOP_DST_ADDR_DWO)

GMAC0 Address: 0x19000208 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Bit	Bit Name	Description
31:0	LOCAL_MAC_DST_ADDR_DW0	Bits [31:0] of the next hop router's local L2 MAC address

8.19.94Next Hop Router MAC Destination Address Dword1 (NXT_HOP_DST_ADDR_DW1)

GMAC0 Address: 0x1900020C NOTE: This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:16	RES	Reserved
15:0	LOCAL_MAC_DST_ADDR_DW1	Bits [47:32] of the local L2 MAC address

8.19.95Local Global IP Address 0 (GLOBAL_IP_ADDR0)

GMAC0 Address: 0x19000210 **NOTE:** This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit		
31:0	LOCAL_GLOBAL_IP_ADDR0	Local IP address 0 (up to 4 global IP addresses are supported)

8.19.96Local Global IP Address 1 (GLOBAL_IP_ADDR1)

GMAC0 Address: 0x19000214 This register is available only for GEO

GMAC1 Address: 0x1A000214

Access: Read/Write

Reset: 0x0

Bit		
31:0	LOCAL_GLOBAL_IP_ADDR1	Local IP address 1 (up to 4 global IP addresses are supported)

8.19.97Local Global IP Address 2 (GLOBAL_IP_ADDR2)

GMAC0 Address: 0x19000218 This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit		
31:0	LOCAL_GLOBAL_IP_ADDR2	Local IP address 2 (up to 4 global IP addresses are supported)

8.19.98 Local Global IP Address 3 (GLOBAL_IP_ADDR3)

GMAC0 Address: 0x1900021C **NOTE:** This register is available only for GEO

Access: Read/Write MAC.

Bit	Bit Name	Description
31:0	LOCAL_GLOBAL_IP_ADDR3	Local IP address 3 (up to 4 global IP addresses are supported)

8.19.99 Egress NAT Control and Status (EG_NAT_CSR)

GMAC0 Address: 0x19000228 **NOTE:** This register is available only for GEO MAC.

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved
6	EG_NAT_FRAG_ EDIT_DISABLE	0x0	Egress NAT fragmentation packet edit disable; Disables NAT editing of the egress fragmented packet
5:2	EG_FIELD_EDIT_ MASK	0x0	Egress field edit mask; Setting these bits disables the edit of each field in the egress packet.
			Bit [0] Disables NAT Edit of L2 DA field in the packet
			Bit [1] Disables NAT Edit of L2 SA field in the packet
			Bit [2] Disables NAT Edit of IP SA field in the packet
			Bit [3] Disables NAT Edit of L4 source port field in the packet
1	EG_LOOKUP _DATA_SWAP		Enables byte swapping of the data given by the lookup table before
0	EG_NAT _DISABLE		Disables the egress NAT engine. Packets that are Tx DMAed transmit

8.19.100 Egress NAT Counter (EG_NAT_CNTR)

GMAC0 Address: 0x1900022C

Access: Read-Only

Reset: 0x0

This register is available only for GEO

Bit		
31:16	EG_NAT_ERR_COUNTER	Counter indicating the number of packets that were not NAT edited
15:0	EG_NAT_DONE_COUNTER	Counter indicating the number of packets successfully NAT edited

8.19.101 Ingress NAT Control and Status (IG_NAT_CSR)

GMAC0 Address: 0x19000230

NOTE: This register is available only for GEO

Access: Read/Write

MAC.

Reset: See field description

Bit	Bit Name	Reset	Description
31:14	RES	0x0	Reserved
13	IG_NAT_GLBL_ICMP_ REQ_DRP_EN	0x0	Ingress NAT global rule ICMP request packet drop enable; When set to 1, ICMP request packets are dropped. Effective only if bit [8] of this register is set to 1.
12	IG_NAT_GLBL_ICMP_ RPLY_DRP_EN	0x0	Ingress NAT global rule ICMP reply packet drop enable; When set to 1, ICMP packets that are neither request nor reply are dropped. Effective only if bit [8] of this register is set to 1.
11	IG_NAT_GLBL_TCP_A CK_DRP_EN	0x0	Ingress NAT global rule TCP SYN/ACK packet drop enable; When set to 1, any TCP packet received that fails NAT and has both the SYN and ACK flags set to 1 are dropped. Effective only if bit [8] of this
10	IG_NAT_GLBL_TCP _SYN_DRP_EN		When set to 1, any TCP packet received that fails NAT and has the SYN flag set to 1 are dropped. Effective only if bit [8] of this register is set to 1.
9	IG_NAT_GLBL_L2 _DROP_EN	0x0	Ingress NAT global rule L2 drop enable; When set to 1, packets that do not match the L2 LOCAL_MAC_ADDR programmed in the "Local MAC Address Dword0 (LCL_MAC_ADDR_DW0)" and "Local MAC Address Dword1 (LCL_MAC_ADDR_DW1)" registers are dropped. Effective only if bit [8] of this register is set to 1.
8	IG_NAT_GLBL_RULE_ EN	0x0	Ingress NAT global rule enable; Enables the basic firewall to drop packets for certain global rules based on bits [13:9] of this register
7	IG_NAT_FRAG_EDIT_ DISABLE		
6	IG_L4CKSUM_EN	0x0	Ingress L4 checksum; Disables NAT editing of the ingress fragmented
5:2	IG_FIELD_EDIT _MASK[3:0]	0x0	Ingress field edit mask; setting the bits disables the edit of each of the
			Bit [3] Disables NAT edit of L4 dest port field in the packet
1	IG_LOOKUP_DATA _SWAP	0x0	Ingress lookup data swap; Enables byte swapping of the data given by
0	IG_NAT_DISABLE	0x1	Ingress NAT disable; Disables the ingress NAT engine. Packets that are received are DMAed without going through the NAT engine.

8.19.102 Ingress NAT Counter (IG_NAT_CNTR)

GMAC0 Address: 0x19000234

Access: Read-Only

Reset: 0x0

NOTE: This register is available only for GEO MAC.

Bit	Bit Name	Description
31:16	IG_NAT_ERR_COUNTER [EG_NAT_ERR_COUNTER]	Ingress NAT error counter; Counter indicating the number of packets that were not NAT edited on ingress.
15:0	IG_NAT_DONE_COUNTER	Ingress NAT done counter; Counter indicating the number of packets successfully NAT edited on ingress.

8.19.103 Egress ACL Control and Status (EG_ACL_CSR)

GMAC0 Address: 0x19000238 **NOTE:** This register is available only for GEO

Access: Read-Only MAC.

Reset: See field description

Bit	Bit Name	Reset	Description
31:1	RES	0x0	Reserved
0	EG_ACL_DISABLE	0x1	Egress ACL disable; Disables the egress ACL functionality. Default is 1.

8.19.104 Ingress ACL Control and Status (IG_ACL_CSR)

GMAC0 Address: 0x1900023C **NOTE:** This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:1			
0	IG_ACL_DISABLE	0x1	Ingress ACL disable; Disables the ingress ACL functionality. Default is 1.

8.19.105Egress ACL CMD0 and Action (EG_ACL_CMD0_AND_ACTION)

GMAC0 Address: 0x19000240 This register is used to program the ACL table.

This register is available only for GEO

Access: Read/Write Reset: 0x0

Bit	Bit Name	Description
31:21		
20:16	EG_ACL_CMD0	Egress ACL command 0;
15:14		
13:8	EG_ACL_NEP	Egress ACL next entry pointer Points to the next entry in the ACL Table this entry is linked to. Valid only if
7:4		
3	EG_ACL_ALLOW	Egress ACL allow; When set, the action associated with this entry/rule in the ACL table is to allow the packet.
2	EG_ACL_REJECT	Egress ACL reject; When set, the action associated with this entry/rule in the ACL table is to reject the packet.
1	EG_ACL_LINKED	Egress ACL linked; When set, this entry in the ACL table is linked to another entry in the table.
0	EG_ACL_RULE_HD	Egress ACL rule head; When set, this entry in the ACL table is considered the head of the rule.

8.19.106 Egress ACL CMD1, CMD2, CMD3 and CMD4 (EG_ACL_CMD1234)

GMAC0 Address: 0x19000244

Access: Read/Write

Reset: 0x0

This register is used to program the ACL table.

NOTE: This register is available only for GEO

MAC.

Bit	Bit Name	Description
31:29	RES	Reserved
28:24	EG_ACL_CMD4	Egress ACL command 4: the CMD4 field of the entry in ACL table
23:21	RES	Reserved
20:16	EG_ACL_CMD3	Egress ACL command 3: the CMD4 field of the entry in ACL table
15:13	RES	Reserved
12:8	EG_ACL_CMD2	Egress ACL command 2: the CMD4 field of the entry in ACL table
7:5	RES	Reserved
4:0	EG_ACL_CMD1	Egress ACL command 1: the CMD4 field of the entry in ACL table

8.19.107 Egress ACL OPERAND 0 (EG_ACL_OPERANDO)

GMAC0 Address: 0x19000248

Access: Read/Write

Reset: 0x0

This register is used to program the ACL table.

This register is available only for GEO

Bit	Bit Name	Description
31:0	EG_ACL	
	_OPERAND0	The lower order [31:0] bits of the Operand field of the entry in ACL table.

8.19.108 Egress ACL OPERAND 1 (EG_ACL_OPERAND1)

GMAC0 Address: 0x1900024C

Access: Read/Write

Reset: 0x0

This register is used to program the ACL table.

This register is available only for GEO

Bit	Bit Name	Description
31:0	EG_ACL _OPERAND0	The higher order [63:32] bits of the operand field of the entry in ACL table.

8.19.109 Egress ACL Memory Control (EG_ACL_MEM_CONTROL)

GMAC0 Address: 0x19000250 Access: See field description

Reset: 0x0

This register is used to control the ACL table operations.

NOTE: This register is available only for GEO

MAC.

Bit	Bit Name	Access	Description
31:15	RES	RO	Reserved
14	EG_ACL_INIT	RW	Egress ACL initialization; When set to 1, the ACL table is initialized to all 0s. Software should always initialize the ACL table before loading entries into the ACL table. This bit clears itself once initialization is done.
13	EG_ACL	RW	Egress ACL global rule valid
	_GLOBAL_RULE_		0 Only individual rules determine the allow/drop of the packets
12	EG_ACL _GLOBAL_DROP		0 The global rule indicates whether to allow the packet, and
			1 The global rule is to drop the packets, and individual rules
11	EG_ACL_RULE _MAP_DONE		After the last entry is loaded, when hardware sets this bit to 1, it indicates that the rule mapping is done. Only when hardware sets this bit to 1, the "Egress ACL Control and Status register shall be set to 0 (ACL shall be enabled).
10	EG_ACL_LAST		Indicates if this is the last entry to write to the ACL table.
9	EG_ACL_ACK		When this bit is ready by software as 1, it indicates that the write or read
8	EG_ACL_TABLE_		When software sets this bit to 1 during a write to this register, the entry as pointed by the entry address is written to the ACL table with the fields taken from the earlier registers (e.g., commands or operands). When software sets this bit to 0 during a write to this register, a read from the ACL table is initiated to the entry pointed by the entry address and the entry fields are available in these registers after the ACK bit is set to 1. For write operations, software ensure all these registers and the fields of this register are correctly written.
7:6	RES	RO	Reserved
5:0	EG_ACL_ENTRY_ ADDR	RW	Egress ACL entry addr; The entry address where this entry is to be loaded in the ACL table.

8.19.110 Ingress ACL CMDO and Action (IG_ACL_CMDO_AND_ACTION)

GMAC0 Address: 0x19000254

Access: Read/Write

Reset: 0x0

This register is used to program the ACL table.

NOTE: This register is available only for GEO

MAC.

Bit	Bit Name	Description
31:21	RES	Reserved
20:16	IG_ACL_CMD0	Ingress ACL command 0; The CMD0 field of the entry in ACL table.
15:14	RES	Reserved
13:8	IG_ACL_NEP	Ingress ACL next entry pointer; Points to the Next Entry in the ACL Table to which this entry is linked to. Valid only if bit [1] of this register is set to 1.
7:4	RES	Reserved
3	IG_ACL_ALLOW	Ingress ACL allow; When set, the action associated with this entry/rule is to allow the packet.
2	IG_ACL_REJECT	Ingress ACL reject; When set, the action associated with this entry/rule is to reject the packet.
1	IG_ACL_LINKED	Ingress ACL linked; When set, this entry in the ACL table is linked to another entry in the table.
0	IG_ACL_RULE _HD	When set, this entry in the ACL table is considered the head of the rule.

8.19.111 Ingress ACL CMD1, CMD2, CMD3 and CMD4 (IG_ACL_CMD1234)

GMAC0 Address: 0x19000258

Access: Read/Write

Reset: See field description

This register is used to program the ACL table.

This register is available only for GEO

Bit	Bit Name	Description
31:29		
28:24	IG_ACL_CMD4	Ingress ACL command 4: the CMD4 field of the entry in ACL table
23:21		
20:16	IG_ACL_CMD3	Ingress ACL command 3: the CMD4 field of the entry in ACL table
15:13		
12:8	IG_ACL_CMD2	Ingress ACL command 2: the CMD4 field of the entry in ACL table
7:5	RES	Reserved
4:0	IG_ACL_CMD1	Ingress ACL command 1: the CMD4 field of the entry in ACL table

8.19.112 Ingress ACL OPERAND 0 (IG_ACL_OPERANDO)

GMAC0 Address: 0x1900025C

Access: Read/Write

Reset: See field description

This register is used to program the ACL table.

NOTE: This register is available only for GEO

MAC.

Bit	Bit Name	Description
31:0	IG_ACL _OPERAND0	Ingress ACL operand 0; The lower order [31:0] bits of the operand field of the entry in ACL table.

8.19.113 Ingress ACL OPERAND 1 (IG_ACL_OPERAND1)

GMAC0 Address: 0x19000260

Access: Read/Write Reset: See field description This register is used to program the ACL table.

NOTE: This register is available only for GEO

MAC.

Bit	Bit Name	Description
31:0	IG_ACL _OPERAND0	Ingress ACL operand 1; The higher order [63:32] bits of the operand field of the entry in ACL table.

8.19.114 Ingress ACL Memory Control (IG_ACL_MEM_CONTROL)

GMAC0 Address: 0x19000264

This register is used to control the ACL table

Access: Read/Write Reset: See field description

This register is available only for GEO MAC.

Bit	Bit Name	Access	Description
31:15	RES	RO	Reserved
14	IG_ACL_INIT	RW	Ingress ACL initialization; When set to 1, the ACL table is initialized to all 0s. Software should always initialize the ACL table before loading entries into the ACL table.
13	IG_ACL _GLOBAL_RULE_		0 Only individual rules determine the allow/drop of the packets
12	IG_ACL _GLOBAL_DROP		0 The global rule indicates whether to allow the packet, and
			1 The global rule is to drop the packets, and individual rules
11	IG_ACL_RULE_M AP_DONE		After the last entry is loaded, when hardware sets this bit to 1, it indicates that the rule mapping is done. Only when hardware sets this bit to 1, the "Egress ACL Control and Status register shall be set to 0 (ACL shall be enabled).
10	IG_ACL_LAST		Indicates if this is the last entry to write to the ACL table.
9	IG_ACL_ACK _RIG	RO	Ingress ACL acknowledge; When this bit is ready by software as 1, it indicates that the write or read operation to the ACL table is done.
8	IG_ACL_TABLE_ WR	RW	Ingress ACL register write; When software sets this bit to 1 during a write to this register, the entry as pointed by the entry address is written to the ACL table with the fields taken from the earlier registers (e.g., commands or operands). When software sets this bit to 0 during a write to this register, a read from the ACL table is initiated to the entry pointed by the entry address and the entry fields are available in these registers after the ACK bit is set to 1. For write operations, software ensure all these registers and the fields of this register are correctly written.
7:6	RES	RO	Reserved
5:0	IG_ACL_ENTRY_ ADDR	RW	Ingress ACL entry addr; The entry address where this entry is to be loaded in the ACL table.

8.19.115 Ingress ACL Counter Group 0 (IG_ACL_COUNTER_GRP0)

GMAC0 Address: 0x19000268 **NOTE:** This register is available only for GEO

Access: Read-Only MA

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE3	Counter indicating the number of ingress packets that hit rule 3
23:16	COUNT_IG_RULE2	Counter indicating the number of ingress packets that hit rule 2
15:8	COUNT_IG_RULE1	Counter indicating the number of ingress packets that hit rule 1
7:0	COUNT_IG_RULE0	Counter indicating the number of ingress packets that hit rule 0

8.19.116 Ingress ACL Counter Group 1 (IG_ACL_COUNTER_GRP1)

GMAC0 Address: 0x1900026C This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE7	Counter indicating the number of ingress packets that hit rule 7
23:16	COUNT_IG_RULE6	Counter indicating the number of ingress packets that hit rule 6
15:8	COUNT_IG_RULE5	Counter indicating the number of ingress packets that hit rule 5
7:0	COUNT_IG_RULE4	Counter indicating the number of ingress packets that hit rule 4

8.19.117 Ingress ACL Counter Group 2 (IG_ACL_COUNTER_GRP2)

GMAC0 Address: 0x19000270 This register is available only for GE0

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE11	Counter indicating the number of ingress packets that hit rule 11
23:16	COUNT_IG_RULE10	Counter indicating the number of ingress packets that hit rule 10
15:8	COUNT_IG_RULE9	Counter indicating the number of ingress packets that hit rule 9
7:0	COUNT_IG_RULE8	Counter indicating the number of ingress packets that hit rule 8

8.19.118 Ingress ACL Counter Group 3 (IG_ACL_COUNTER_GRP3)

GMAC0 Address: 0x19000274 NOTE: This register is available only for GE0

Access: Read/Write MAC.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE15	Counter indicating the number of ingress packets that hit rule 15
23:16	COUNT_IG_RULE14	Counter indicating the number of ingress packets that hit rule 14
15:8	COUNT_IG_RULE13	Counter indicating the number of ingress packets that hit rule 13
7:0	COUNT_IG_RULE12	Counter indicating the number of ingress packets that hit rule 12

8.19.119 Ingress ACL Counter Group 4 (IG_ACL_COUNTER_GRP4)

GMAC0 Address: 0x19000278 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE19	Counter indicating the number of ingress packets that hit rule 19
23:16	COUNT_IG_RULE18	Counter indicating the number of ingress packets that hit rule 18
15:8	COUNT_IG_RULE17	Counter indicating the number of ingress packets that hit rule 17
7:0	COUNT_IG_RULE16	Counter indicating the number of ingress packets that hit rule 16

8.19.120 Ingress ACL Counter Group 5 (IG_ACL_COUNTER_GRP5)

GMAC0 Address: 0x1900027C This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE23	Counter indicating the number of ingress packets that hit rule 23
23:16	COUNT_IG_RULE22	Counter indicating the number of ingress packets that hit rule 22
15:8	COUNT_IG_RULE21	Counter indicating the number of ingress packets that hit rule 21
7:0	COUNT_IG_RULE20	Counter indicating the number of ingress packets that hit rule 20

8.19.121 Ingress ACL Counter Group 6 (IG_ACL_COUNTER_GRP6)

GMAC0 Address: 0x19000280 This register is available only for GE0

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE27	Counter indicating the number of ingress packets that hit rule 27
23:16	COUNT_IG_RULE26	Counter indicating the number of ingress packets that hit rule 26
15:8	COUNT_IG_RULE25	Counter indicating the number of ingress packets that hit rule 25
7:0	COUNT_IG_RULE24	Counter indicating the number of ingress packets that hit rule 24

8.19.122 Ingress ACL Counter Group 7 (IG_ACL_COUNTER_GRP7)

GMAC0 Address: 0x19000284 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE31	Counter indicating the number of ingress packets that hit rule 31
23:16	COUNT_IG_RULE30	Counter indicating the number of ingress packets that hit rule 30
15:8	COUNT_IG_RULE29	Counter indicating the number of ingress packets that hit rule 29
7:0	COUNT_IG_RULE28	Counter indicating the number of ingress packets that hit rule 28

8.19.123 Ingress ACL Counter Group 8 (IG_ACL_COUNTER_GRP8)

GMAC0 Address: 0x19000288 NOTE: This register is available only for GEO

Access: Read/Write MA

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE35	Counter indicating the number of ingress packets that hit rule 35
23:16	COUNT_IG_RULE34	Counter indicating the number of ingress packets that hit rule 34
15:8	COUNT_IG_RULE33	Counter indicating the number of ingress packets that hit rule 33
7:0	COUNT_IG_RULE32	Counter indicating the number of ingress packets that hit rule 32

8.19.124 Ingress ACL Counter Group 9 (IG_ACL_COUNTER_GRP9)

GMAC0 Address: 0x1900028C This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE39	Counter indicating the number of ingress packets that hit rule 39
23:16	COUNT_IG_RULE38	Counter indicating the number of ingress packets that hit rule 38
15:8	COUNT_IG_RULE37	Counter indicating the number of ingress packets that hit rule 37
7:0	COUNT_IG_RULE36	Counter indicating the number of ingress packets that hit rule 36

8.19.125 Ingress ACL Counter Group 10 (IG_ACL_COUNTER_GRP10)

GMAC0 Address: 0x19000290 This register is available only for GE0

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE43	Counter indicating the number of ingress packets that hit rule 43
23:16	COUNT_IG_RULE42	Counter indicating the number of ingress packets that hit rule 42
15:8	COUNT_IG_RULE41	Counter indicating the number of ingress packets that hit rule 41
7:0	COUNT_IG_RULE40	Counter indicating the number of ingress packets that hit rule 40

8.19.126 Ingress ACL Counter Group 11 (IG_ACL_COUNTER_GRP11)

GMAC0 Address: 0x19000294 NOTE: This register is available only for GE0

Access: Read/Write MAC.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE47	Counter indicating the number of ingress packets that hit rule 47
23:16	COUNT_IG_RULE46	Counter indicating the number of ingress packets that hit rule 46
15:8	COUNT_IG_RULE45	Counter indicating the number of ingress packets that hit rule 45
7:0	COUNT_IG_RULE44	Counter indicating the number of ingress packets that hit rule 44

8.19.127 Ingress ACL Counter Group 12 (IG_ACL_COUNTER_GRP12)

GMAC0 Address: 0x19000298 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE51	Counter indicating the number of ingress packets that hit rule 51
23:16	COUNT_IG_RULE50	Counter indicating the number of ingress packets that hit rule 50
15:8	COUNT_IG_RULE49	Counter indicating the number of ingress packets that hit rule 49
7:0	COUNT_IG_RULE48	Counter indicating the number of ingress packets that hit rule 48

8.19.128 Ingress ACL Counter Group 13 (IG_ACL_COUNTER_GRP13)

GMAC0 Address: 0x1900029C This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE55	Counter indicating the number of ingress packets that hit rule 55
23:16	COUNT_IG_RULE54	Counter indicating the number of ingress packets that hit rule 54
15:8	COUNT_IG_RULE53	Counter indicating the number of ingress packets that hit rule 53
7:0	COUNT_IG_RULE52	Counter indicating the number of ingress packets that hit rule 52

8.19.129 Ingress ACL Counter Group 14 (IG_ACL_COUNTER_GRP14)

GMAC0 Address: 0x190002A0 This register is available only for GEO

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_IG_RULE59	Counter indicating the number of ingress packets that hit rule 59
23:16	COUNT_IG_RULE58	Counter indicating the number of ingress packets that hit rule 58
15:8	COUNT_IG_RULE57	Counter indicating the number of ingress packets that hit rule 57
7:0	COUNT_IG_RULE56	Counter indicating the number of ingress packets that hit rule 56

8.19.130 Ingress ACL Counter Group 15 (IG_ACL_COUNTER_GRP15)

GMAC0 Address: 0x190002A4 NOTE: This register is available only for GEO

Access: Read/Write MAC.

Bit	Bit Name	Description
31:24	COUNT_IG_RULE63	Counter indicating the number of ingress packets that hit rule 63
23:16	COUNT_IG_RULE62	Counter indicating the number of ingress packets that hit rule 62
15:8	COUNT_IG_RULE61	Counter indicating the number of ingress packets that hit rule 61
7:0	COUNT_IG_RULE60	Counter indicating the number of ingress packets that hit rule 60

8.19.131 Egress ACL Counter Group 0 (EG_ACL_COUNTER_GRP0)

GMAC0 Address: 0x190002A8 NOTE: This register is available only for GEO

Access: Read/Write MA

Reset: 0x0

Bit	Bit Name	Description
31:24	COUNT_EG_RULE3	Counter indicating the number of egress packets that hit rule 3
23:16	COUNT_EG_RULE2	Counter indicating the number of egress packets that hit rule 2
15:8	COUNT_EG_RULE1	Counter indicating the number of egress packets that hit rule 1
7:0	COUNT_EG_RULE0	Counter indicating the number of egress packets that hit rule 0

8.19.132 Egress ACL Counter Group 1 (EG_ACL_COUNTER_GRP1)

GMAC0 Address: 0x190002AC This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE7	Counter indicating the number of egress packets that hit rule 7
23:16	COUNT_EG_RULE6	Counter indicating the number of egress packets that hit rule 6
15:8	COUNT_EG_RULE5	Counter indicating the number of egress packets that hit rule 5
7:0	COUNT_EG_RULE4	Counter indicating the number of egress packets that hit rule 4

8.19.133 Egress ACL Counter Group 2 (EG_ACL_COUNTER_GRP2)

GMAC0 Address: 0x190002B0 This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE11	Counter indicating the number of egress packets that hit rule 11
23:16	COUNT_EG_RULE10	Counter indicating the number of egress packets that hit rule 10
15:8	COUNT_EG_RULE9	Counter indicating the number of egress packets that hit rule 9
7:0	COUNT_EG_RULE8	Counter indicating the number of egress packets that hit rule 8

8.19.134 Egress ACL Counter Group 3 (EG_ACL_COUNTER_GRP3)

GMAC0 Address: 0x190002B4 NOTE: This register is available only for GEO Access: Read/Write MAC.

Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE15	Counter indicating the number of egress packets that hit rule 15
23:16	COUNT_EG_RULE14	Counter indicating the number of egress packets that hit rule 14
15:8	COUNT_EG_RULE13	Counter indicating the number of egress packets that hit rule 13
7:0	COUNT_EG_RULE12	Counter indicating the number of egress packets that hit rule 12

8.19.135 Egress ACL Counter Group 4 (EG_ACL_COUNTER_GRP4)

GMAC0 Address: 0x190002B8 NOTE: This register is available only for GEO

Access: Read/Write M

Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE19	Counter indicating the number of egress packets that hit rule 19
23:16	COUNT_EG_RULE18	Counter indicating the number of egress packets that hit rule 18
15:8	COUNT_EG_RULE17	Counter indicating the number of egress packets that hit rule 17
7:0	COUNT_EG_RULE16	Counter indicating the number of egress packets that hit rule 16

8.19.136 Egress ACL Counter Group 5 (EG_ACL_COUNTER_GRP5)

GMAC0 Address: 0x190002BC This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE23	Counter indicating the number of egress packets that hit rule 23
23:16	COUNT_EG_RULE22	Counter indicating the number of egress packets that hit rule 22
15:8	COUNT_EG_RULE21	Counter indicating the number of egress packets that hit rule 21
7:0	COUNT_EG_RULE20	Counter indicating the number of egress packets that hit rule 20

8.19.137 Egress ACL Counter Group 6 (EG_ACL_COUNTER_GRP6)

GMAC0 Address: 0x190002C0 This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE27	Counter indicating the number of egress packets that hit rule 27
23:16	COUNT_EG_RULE26	Counter indicating the number of egress packets that hit rule 26
15:8	COUNT_EG_RULE25	Counter indicating the number of egress packets that hit rule 25
7:0	COUNT_EG_RULE24	Counter indicating the number of egress packets that hit rule 24

8.19.138 Egress ACL Counter Group 7 (EG_ACL_COUNTER_GRP7)

GMAC0 Address: 0x190002C4 NOTE: This register is available only for GEO

Access: Read/Write MAC.
Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE31	Counter indicating the number of egress packets that hit rule 31
23:16	COUNT_EG_RULE30	Counter indicating the number of egress packets that hit rule 30
15:8	COUNT_EG_RULE29	Counter indicating the number of egress packets that hit rule 29
7:0	COUNT_EG_RULE28	Counter indicating the number of egress packets that hit rule 28

8.19.139 Egress ACL Counter Group 8 (EG_ACL_COUNTER_GRP8)

GMAC0 Address: 0x190002C8 **NOTE:** This register is available only for GEO

Access: Read/Write

Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE35	Counter indicating the number of egress packets that hit rule 35
23:16	COUNT_EG_RULE34	Counter indicating the number of egress packets that hit rule 34
15:8	COUNT_EG_RULE33	Counter indicating the number of egress packets that hit rule 33
7:0	COUNT_EG_RULE32	Counter indicating the number of egress packets that hit rule 32

8.19.140 Egress ACL Counter Group 9 (EG_ACL_COUNTER_GRP9)

GMAC0 Address: 0x190002CC This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE39	Counter indicating the number of egress packets that hit rule 39
23:16	COUNT_EG_RULE38	Counter indicating the number of egress packets that hit rule 38
15:8	COUNT_EG_RULE37	Counter indicating the number of egress packets that hit rule 37
7:0	COUNT_EG_RULE36	Counter indicating the number of egress packets that hit rule 36

8.19.141 Egress ACL Counter Group 10 (EG_ACL_COUNTER_GRP10)

GMAC0 Address: 0x190002D0 This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE43	Counter indicating the number of egress packets that hit rule 43
23:16	COUNT_EG_RULE42	Counter indicating the number of egress packets that hit rule 42
15:8	COUNT_EG_RULE41	Counter indicating the number of egress packets that hit rule 41
7:0	COUNT_EG_RULE40	Counter indicating the number of egress packets that hit rule 40

8.19.142 Egress ACL Counter Group 11 (EG_ACL_COUNTER_GRP11)

GMAC0 Address: 0x190002D4 **NOTE:** This register is available only for GEO MAC.

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE47	Counter indicating the number of egress packets that hit rule 47
23:16	COUNT_EG_RULE46	Counter indicating the number of egress packets that hit rule 46
15:8	COUNT_EG_RULE45	Counter indicating the number of egress packets that hit rule 45
7:0	COUNT_EG_RULE44	Counter indicating the number of egress packets that hit rule 44

8.19.143 Egress ACL Counter Group 12 (EG_ACL_COUNTER_GRP12)

GMAC0 Address: 0x190002D8 NOTE: This register is available only for GEO

Access: Read/Write M/

Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE51	Counter indicating the number of egress packets that hit rule 51
23:16	COUNT_EG_RULE50	Counter indicating the number of egress packets that hit rule 50
15:8	COUNT_EG_RULE49	Counter indicating the number of egress packets that hit rule 49
7:0	COUNT_EG_RULE48	Counter indicating the number of egress packets that hit rule 48

8.19.144 Egress ACL Counter Group 13 (EG_ACL_COUNTER_GRP13)

GMAC0 Address: 0x190002DC This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE55	Counter indicating the number of egress packets that hit rule 55
23:16	COUNT_EG_RULE54	Counter indicating the number of egress packets that hit rule 54
15:8	COUNT_EG_RULE53	Counter indicating the number of egress packets that hit rule 53
7:0	COUNT_EG_RULE52	Counter indicating the number of egress packets that hit rule 52

8.19.145 Egress ACL Counter Group 14 (EG_ACL_COUNTER_GRP14)

GMAC0 Address: 0x190002E0 This register is available only for GEO

Access: Read/Write Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE59	Counter indicating the number of egress packets that hit rule 59
23:16	COUNT_EG_RULE58	Counter indicating the number of egress packets that hit rule 58
15:8	COUNT_EG_RULE57	Counter indicating the number of egress packets that hit rule 57
7:0	COUNT_EG_RULE56	Counter indicating the number of egress packets that hit rule 56

8.19.146 Egress ACL Counter Group 15 (EG_ACL_COUNTER_GRP15)

GMAC0 Address: 0x190002E4 NOTE: This register is available only for GEO Access: Read/Write MAC.

Reset: See field description

Bit	Bit Name	Description
31:24	COUNT_EG_RULE63	Counter indicating the number of egress packets that hit rule 63
23:16	COUNT_EG_RULE62	Counter indicating the number of egress packets that hit rule 62
15:8	COUNT_EG_RULE61	Counter indicating the number of egress packets that hit rule 61
7:0	COUNT_EG_RULE60	Counter indicating the number of egress packets that hit rule 60

8.19.147 Clear ACL Counters (CLEAR_ACL_COUNTERS)

GMAC0 Address: 0x190002E8

NOTE: This register is available only for GEO MAC.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:2	RES	Reserved
1	CLEAR_EG_COUNTERS	Set to clear all the egress ACL counters; Software must write a 0 to enable the ACL counters
0	CLEAR_IG_COUNTERS	Set to clear all the ingress ACL counters Software must write a 0 to enable the ACL counters

8.20 USB Controller Registers

Table 8-23 summarizes the USB controller registers and the modes they support.

Table 8-23. USB Controller Registers

Offset	Access	Name		DEV	SPH	Page
Identification Declare the sla		ce presence				
0x1B000000	RO	ID	Identification		X	page 336
0x1B000004	RO	HWGENERAL	General Hardware Parameters		Х	page 336
0x1B000008	RO	HWHOST			Х	page 336
0x1B00000C	RO	HWDEVICE	Device Hardware Parameters			page 337
0x1B000010	RO	HWTXBUF	Tx Buffer Hardware Parameters		Х	page 337
0x1B000014	RO	HWRXBUF	Rx Buffer Hardware Parameters		Х	page 337
Device/Host Ti Measure time-	_					
0x1B000080	RW	GPTIMER0LD	General Purpose Timer 0 Load		Х	page 337
0x1B000084	Varies	GPTIMER0CTRL	General Purpose Timer 0 Control		Х	page 338
0x1B000088	RW	GPTIMER1LD	General Purpose Timer 1 Load		Х	page 338
0x1B00008C	RW	GPTIMER1CTRL	General Purpose Timer 1 Control	Х	Х	page 339
Device/Host Ca Specify the sof			abilities of the host/device controller im	pleme	ntatior	ı
0x1B000100	RO	CAPLENGTH	Capability Register Length	X	X	page 339
0x1B000102	RO	HCIVERSION	Host Interface Version Number		Х	page 340
0x1B000104	RO	HCSPARAMS	Host Control Structural Parameters		Х	page 340
0x1B000108	RO	HCCPARAMS	Host Control Capability Parameters		Х	page 341
0x1B000120	RO	DCIVERSION	Device Interface Version Number	Х		page 341
0x1B000122	RO	DCCPARAMS	Device Control Capability Parameters	Х		page 343

Table 8-23. USB Controller Registers (continued)^[1]

Offset	Access	Name	Description	DEV	SPH	Page
Device/Host Operational Registers						
0x1B000140	Varies	USBCMD	USB Command	X	Х	page 342
0x1B000144	Varies	USBSTS	USB Status	Х	Х	page 344
0x1B000148	RW	USBINTR	USB Interrupt Enable	Х	Х	page 346
0x1B00014C	Varies	FRINDEX	USB Frame Index	X	Х	page 348
0x1B000154	RW	PERIODICLISTBASE	Frame List Base Address		Х	page 349
_	RW	DEVICEADDR	USB Device Address	X		page 349
0x1B000158	RW	ASYNCLISTADDR	Next Asynchronous List Address		Х	page 349
_	RW	ENDPOINTLIST_				page 350
0x1B00015C	RW	TTCTRL			Х	page 350
0x1B000160	RW	BURSTSIZE			Х	page 350
0x1B000164	RW	TXFILLTUNING	Host Tx Pre-Buffer Packet Tuning		Х	page 351
0x1B000178	RWC	ENDPTNAK				page 352
0x1B00017C	RW	ENDPTNAKEN				page 352
0x1B000184	Varies	PORTSC0			Х	page 353
0x1B0001A8	RW	USBMODE			Х	page 358
0x1B0001AC	RWC	ENDPTSETUPSTAT	Endpoint Setup Status			page 359
0x1B0001B0	RWC	ENDPTPRIME				page 359
0x1B0001B4	WC	ENDPTFLUSH	Endpoint De-Initialization			page 360
0x1B0001B8	RO	ENDPTSTATUS				page 360
0x1B0001BC	RWC	ENDPTCOMPLETE				page 361
0x1B0001C0	RW	ENDPTCTRL0				page 361
0x1B0001C4	RW	ENDPTCTRL1				page 362
0x1B0001C8	RW	ENDPTCTRL2				page 362
0x1B0001CC	RW	ENDPTCTRL3	Endpoint Control 3			page 362
0x1B0001D0	RW	ENDPTCTRL4	Endpoint Control 4	Х		page 362
0x1B0001D4	RW	ENDPTCTRL5	Endpoint Control 5	Х		page 362

[1]DEV = Device Mode SPH = Single-Port Host

8.20.1 Identification (ID)

Offset: 0x1B000000 Access: Read-Only Reset Value: 0x42FA05 Provides a simple way to determine whether the system provides the USB-HS USB 2.0 core and identifies the USB-HS USB 2.0 core and revision number.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:16	REVISION[7:0]	Core revision number
15:14	RES	Reserved. Must be set to 1.
13:8	NID[5:0]	Complement version of ID bits [5:0]
7:6	RES	Reserved. Must be set to 0.
5:0		

8.20.2 General Hardware Parameters (HWGENERAL)

Offset: 0x1B000004 Access: Read-Only Reset Value: 0x22

Bit	Name	Description
31:10		
9		
8:6	PHYM	VUSB_HS_PHY_TYPE
5:4	PHYW	VUSB_HS_PHY16_8
3	R	
2:1	CLKC	VUSB_HS_CLOCK_CONFIGURATION
0		

8.20.3 Host Hardware Parameters (HWH0ST)

Offset: 0x1B000008 Access: Read-Only Reset Value: 0x1002001

Bit	Name	Description
31:24	TTPER	VUSB_HS_TT_PERIODIC_CONTEXTS
23:16	TTASY	VUSB_HS_TT_ASYNC_CONTEXTS
15:4	RES	Reserved. Must be set to 0.
3:1	NPORT	VUSB_HS_NUM_PORT - 1
0	НС	VUSB_HS_HOST

8.20.4 Device Hardware Parameters (HWDEVICE)

Offset: 0x1B00000C Access: Read-Only Reset Value: 0xD

Bit	Name	Description
31:6	RES	Reserved. Must be set to 0.
5:1	DEVEP	VUSB_HS_DEV_EP
0	DC	Device capable; [0 ≥ VUSB_HS_DEV]

8.20.5 Tx Buffer Hardware Parameters (HWTXBUF)

Offset: 0x1B000010 Access: Read-Only Reset Value: 0x80060908

Bit		
31:24		
23:16	TXCHANADD	VUSB_HS_TX_CHAN_ADD
15:8		
7:0		

8.20.6 Rx Buffer Hardware Parameters (HWRXBUF)

Offset: 0x1B000014 Access: Read-Only Reset Value: 0x608

Bit	
31:16	
15:8	
7:0	

8.20.7 General Purpose Timer O Load (GPTIMEROLD)

Offset: 0x1B000080 Access: Read/Write Reset Value: 0 Contains the timer duration or load value.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:0	GPTLD	General purpose timer load value The value to load into the GPTCNT countdown timer on a reset action. This value in this register represents the time (in ms minus 1) for the timer duration.

8.20.8 General Purpose Timer O Control (GPTIMEROCTRL)

Offset: 0x1B000084 Access: Read/Write Reset Value: 0

Contains the timer control. A data field can be queried to determine the running count value. This timer has granularity on 1 µs and can be programmed to over 16 s. This timer supports two modes: a one-shot and a looped count. When the timer counter value goes to zero an interrupt can be generated using the timer interrupts in the USBSTS and USBINTR registers.

Bit	Name	Description
31	GPTRUN	General purpose timer run (read/write) Enables the general-purpose timer to run. Setting or clearing this bit will not have an
30	GPTRST	General purpose timer reset (write-only)
		Writing a one to this bit reloads GPTCNT with the value in GPTLD.
29:25	RES	Reserved. Must be set to 0.
24	GPTMODE	General purpose timer mode (read/write) Selects between a single-timer (one-shot) countdown and a looped countdown.
		The timer counts down to zero, generates an interrupt, and stops until the
		The timer counts down to zero, generates an interrupt, and automatically
23:0	GPTCNT	General purpose timer counter (read-only)

8.20.9 General Purpose Timer 1 Load (GPTIMER1LD)

Offset: 0x1B000088 Access: Read/Write Reset Value: 0

See also "General Purpose Timer 0 Load (GPTIMER0LD)" on page 337.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:0	GPTLD	General purpose timer load value The value to load into the GPTCNT countdown timer on a reset action. This value in this register represents the time (in ms minus 1) for the timer duration.

8.20.10 General Purpose Timer 1 Control (GPTIMER1CTRL)

Offset: 0x1B00008C See also "General Purpose Timer 0 Control (GPTIMER0CTRL)" on page 338.

Reset Value: 0

Bit	Name	Descrip	Description		
31	GPTRUN	Enables	l purpose timer run (read/write) s the general-purpose timer to run. Setting or clearing this bit will not have an n the GPTCNT.		
		0	Timer stop		
		1	Timer run		
30	GPTRST	Genera	purpose timer reset (write-only)		
		0	No action		
			Writing a one to this bit reloads GPTCNT with the value in GPTLD.		
29:25	RES	Reserve	ed. Must be set to 0.		
24	24 GPTMODE General purpose timer mode (read/write)		l purpose timer mode (read/write)		
		Selects	between a single-timer (one-shot) countdown and a looped countdown.		
			The timer counts down to zero, generates an interrupt, and stops until the		
			The timer counts down to zero, generates an interrupt, and automatically		
23:0	GPTCNT	Genera	l purpose timer counter (read-only)		

8.20.11 Capability Register Length (CAPLENGTH)

Offset: 0x1B000100 Access: Read-Only Reset Value: 0x40

Bit	Name	Description
31:8	RES	Reserved. Must be set to 0.
7:0	CAPLENGTH	Capability register length Indicates which offset to add to the beginning of the register base address of the operational registers (see Table 8-23, "Device/Host Operational Registers" on page 335)

8.20.12 Host Interface Version Number (HCIVERSION)

Offset: 0x1B000102 Access: Read-Only

Bit	Name	Description
31:16	RES	Reserved. Must be set to 0.
15:0	HCIVERSION	This two-byte register contains a BCD encoding of the EHCI revision number supported by this host controller. The most significant byte of this register represents a major revision, and the least significant byte is the minor revision.

8.20.13 Host Control Structural Parameters (HCSPARAMS)

Offset: 0x1B000104 Access: Read-Only

Bit	Name	Description		
31:28	RES	Reserved. Must be set to 0.		
27:24	N_TT	Number of transaction translators Indicates the number of embedded transaction translators associated with the		
23:20	N_PTT	Number of ports per transaction translator Indicates the number of ports assigned to each transaction translator within the		
19:17	RES	Reserved. Must be set to 0.		
16	PI	Port indicator Indicates whether ports support port indicator control. This field is always set to 1, so the port status and control registers include a read/writable field for controlling the		
15:12	N_CC	Number of companion controllers Indicates the number of companion controllers associated with this USB 2.0 host controller. A value larger than zero in this field indicates there are companion USB1.1 host controller(s) and port-ownership hand-offs are supported. High, Full- and Low-		
11:8	N_PCC	Number of ports per companion controller Indicates the number of ports supported per internal companion controller; used to indicate the port routing configuration to the system software.		
7:5	RES	Reserved. Must be set to 0.		
4	PPC	Port power control Indicates whether the host controller implementation includes port power control.		
		Indicates the ports do not have port power switches. The value of this field affects the functionality of the port power field in each port status and control register.		
		1 Indicates the ports have port power switches		
3:0	N_PORTS	Number of downstream ports Specifies the number of physical downstream ports implemented on this host controller. The value determines how many port registers are addressable in the operational registers (see Table 8-23, "Device/Host Operational Registers" on page 335). Valid values range from 0x1–0xF. A zero in this field is undefined.		

8.20.14 Host Control Capability Parameters (HCCPARAMS)

Offset: 0x1B000108 Identifies multiple mode control addressing capability.

Reset Value: 0x0006

Bit	Name	Description		
31:16	RES	Reserved. Must be set to 0.		
15:8	EECP	EHCI extended capabilities pointer (default = 0)		
		This optional field indicates the existence of a capabilities list.		
7:4	IST	Isochronous scheduling threshold; Indicates where software can reliably update the isochronous schedule relative to the current position of the executing host controller.		
		bit [7] The value of the least significant three bits indicates the number of micro-frames a host controller can hold a set of isochronous data structures (one or more) before flushing the state		
		Host software assumes the host controller may cache an isochronous data structure		
3	RES	Reserved. Must be set to 0.		
2	ASP	Asynchronous schedule park capability (default = 1) The feature can be disabled or enabled and set to a specific level by using the asynchronous schedule park mode enable and asynchronous schedule park mode count fields in the		
		1 The host controller supports the park feature for high-speed queue heads in the		
1	PFL	Programmable frame list flag		
		O System software must use a frame list length of 1024 elements with this host "USB Command (USBCMD)"		
		1 System software can specify and use a smaller frame list and configure the host "USB Command"		
		. The frame list must always be aligned on a 4K-page boundary,		
0	ADC	64-bit addressing capability; must be set to 0. 64-bit addressing capability is not supported.		

8.20.15 Device Interface Version Number (DCIVERSION)

Offset: 0x1B000120 Access: Read-Only

Bit	Name	Description
31:16	RES	Reserved. Must be set to 0.
15:0	DCIVERSION	The device controller interface conforms to the two-byte BCD encoding of the interface version number contained in this register.

8.20.16 Device Control Capability Parameters (DCCPARAMS)

Offset: 0x1B000124 Access: Read-Only

Bit	Name	Description
31:9	RES	Reserved. Must be set to 0.
8	HC	Host capable; the controller can operate as an EHCI-compatible USB 2.0 host controller.
7	DC	Device capable; when set to 1, this controller is capable of operating as a USB 2.0 device.
6:5	RES	Reserved. Must be set to 0.
4:0	DEN	Device endpoint number Indicates the number of endpoints (0–16) built into the device controller. If this controller is not device capable, this field is zero.

8.20.17 USB Command (USBCMD)

Offset: 0x1B000140

Access: See field description
Reset Value: 00080B00h (host mode)
00080000h (device mode)

Description			Bit Name	Bit
ved. Must be set to zero.			31:24 RES	31:2
d to set the max. rate the host/device controller issues e maximum interrupt interval measured in micro-frames.	System software us	ITC RW	23:16 ITC	23:1
"Host Control Structural is set to one. Specifies the size of the frame "USB Frame Index (FRINDEX)" on e list current index. This field is made up of bits [15, 3:2] of	/RO		15 FS2	15
ode only) the the to proper addition of a new dTD to an active st. This bit is set and cleared by software. This bit shall also its state machine is hazard region for which adding a dTD	W Used as a semapho (primed) endpoint'		14 ATDT W	14
the 8-byte setup data payload is extracted from a QH by oted. If the setup lockout mode is off, a hazard exists when the DCD is copying the setup data payload from the QH his bit is set and cleared by software and cleared by	Used as a semapho the DCD without be new setup data arri	UTW RW	13 SUTW	13
			12 RES	12
mode enable (Host mode only) ability bit in the register "Host Control Structural")" is a one, this bit defaults to 0x1 and is read/write. ero and is RO. Software uses this bit to enable or disable	/RO If the asynchronous Parameters (HCS Otherwise the bit m park mode.		11 ASPE	11
:		RES Rese	10 RES	10
the to proper addition of a new dTD to an activity. This bit is set and cleared by software. This bit is its state machine is hazard region for which addirectly only) The the 8-byte setup data payload is extracted from orded. If the setup lockout mode is off, a hazard exist the DCD is copying the setup data payload from this bit is set and cleared by software and cleared its. The mode enable (Host mode only) The billity bit in the register "Host Control Structured its a one, this bit defaults to 0x1 and is read/writer and is RO. Software uses this bit to enable or orded.	W Used as a semapho (primed) endpoint' be cleared by hardw JTW RW Setup tripwire (dev Used as a semapho the DCD without be new setup data arrifor a previous setup hardware when a h RES Reserved. Must be set to a SPE RW Asynchronous sche If the asynchronous Parameters (HCS Otherwise the bit may park mode. O Park mode	W UTW RW RES Rese ASPE RW /RO	13 SUTW 12 RES 11 ASPE	

Bit	Name	Desc	Description			
9	ASP1	RW	Asynchronous schedule park mode count (optional)			
8	ASP0	/RO	Parame Otherw	synchronous park capability bit in the register "Host Control Structural eters (HCSPARAMS)" is a one, this field defaults to 0x3 and is read/write. ise it defaults to zero and is RO.		
			to execu	a a count of the number of successive transactions the host controller is allowed ate from a high-speed queue head on the asynchronous schedule before ing traversal of the asynchronous schedule. Valid values are 0x1–0x3. Software not write a zero to this bit when park mode is enabled.		
7	RES	Reser		st be set to zero.		
6	IAA	RW	Used as time it a doorbel	Interrupt on asynchronous advance doorbell (host mode only) Used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell. When the host controller has evicted all appropriate cached schedule states, it sets the interrupt on the asynchronous advance status bit in the register "USB Status . If the interrupt on synchronous advance enable bit in the register "USB is set to one, the host controller asserts an interrupt at		
			The hos	t controller sets this bit to zero after setting the interrupt on the synchronous to one. Software should not		
5	ASE	RW	Asynch	ronous schedule enable (host mode only)		
				"Next Asynchronous List Address (ASYNCLISTADDR)"		
4	PSE	RW	Periodic	c schedule enable (host mode only)		
				"Frame List Base Address (PERIODICLISTBASE)" on		
3	FS1					
2	FS0					
1	RST	RST	RW	Softwar	ler reset (RESET) re uses this bit to reset the controller. This bit is set to zero by the host/device re when the reset process is complete. Software cannot terminate the reset	
			Host	When this bit is set by software, the host controller resets internal pipelines, timers, etc. to the initial values. Any transaction in progress on USB is immediately terminated. A USB reset is not driven on downstream ports. SW "USB Status		
			Device	When software writes a 1 to this bit, the device controller resets internal pipelines, timers, etc. to the initial values. Writing a 1 to this bit when the device is in the attached state is not recommended. To ensure the device is not in attached state before initiating a device controller reset, primed endpoints must be flushed and the run/stop bit [0] set to 0.		
0	RS	RW		op (1 = Run, 0 = stop (default))		
			Host	When set to a 1, the host controller proceeds with the schedule and continues as long as this bit is set to 1. When this bit is set to 0, the host controller completes the current transaction on the USB then halts. The HCHalted bit in the register "USB Status (USBSTS)" indicates when the host controller has completed the transaction and stopped. Software should not write a one to this field unless the host controller is stopped.		
			Device	Writing a 1 to this bit causes the device controller to enable a pull-up on D+ and initiates an attach event. This bit is not connected to pull-up enable, as the pull-up becomes disabled on transitioning to high-speed mode. This bit to prevents an attach event before the device controller is properly initialized. Writing a 0 causes a detach event.		

8.20.18 USB Status (USBSTS)

Offset: 0x1B000144

Access: See field description

Reset Value: 0

Indicates various states of the host/device controller and pending interrupts. This register does not indicate status resulting from a transaction on the serial bus. Software clears some bits in this register by writing a 1 to them.

Bit	Name	Descr	Description		
31:26	RES	Reser	ved. Must be set to zero.		
25	TI	RWC	General purpose timer interrupt 1 Set when the counter in the register "General Purpose Timer 1 Control (GPTIMER1CTRL)" on page 339 transitions to zero. Write-one-to-clear.		
24	TI0	RWC	General purpose timer interrupt 0 "General Purpose Timer 0 Control transitions to zero. Write-one-to-clear.		
23:20	RES	Reser	ved. Must be set to zero.		
19	UPI	RWC	USB host periodic interrupt Set by the host controller when the cause of an interrupt is a completion of a USB transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit This bit is also set by the host controller when a short packet (the actual number of bytes received was less than the expected number of bytes) is detected and the packet		
			bytes received was less than the expected number of bytes) is detected and the packet		
18	UAI	RWC	USB host asynchronous interrupt Set by the host controller when the cause of an interrupt is a completion of a USB transaction where the TD has an interrupt on complete (IOC) bit set AND the TD was		
			This bit is also set by the host controller when a short packet (the actual number of bytes received was less than the expected number of bytes) is detected and the packet		
17	RES	Reser	ved. Must be set to zero.		
16	NAKI	RO Set by hardware when for one endpoint, both the Tx/Rx endpoint NAK bit and t corresponding Tx/Rx endpoint NAK enable bit are set. Automatically cleared by			
15	AS	RO	Reports the real status of the asynchronous schedule (host mode only) The host controller is not required to immediately disable or enable the asynchronous schedule when software transitions the asynchronous schedule enable bit in the . When this bit and the asynchronous schedule enable bit are the same value, the asynchronous schedule is either enabled (1) or disabled (0 = Default).		
14	PS	RO	Reports the real status of the periodic schedule (host mode only) The host controller is not required to immediately disable or enable the periodic schedule when software transitions the periodic schedule enable bit in the register "USB Command (USBCMD)". When this bit and the periodic schedule enable bit are the same value, the periodic schedule is either enabled (1) or disabled (0 = Default).		
13	RCL	RO	Reclamation (host mode only) Used to detect an empty asynchronous schedule.		
12	НСН	RO	HCHaIted (host mode only) This bit is a zero whenever the run/stop bit in the register "USB Command (USBCMD)" is set to one. The host controller sets this bit to one (default setting) after it has stopped executing because the run/stop bit is set to 0, either by software or by the host controller hardware.		

Bit	Name	Descrip	tion		
11	RES	Reserved	Reserved. Must be set to zero.		
10	ULPII	RWC U	ULPI interrupt Only present in designs where the configuration constant VUSB_HS_PHY_ULPI = 1.		
9	RES	Reserved	Reserved. Must be set to zero.		
8	SLI	W	DCSuspend When a device controller enters a suspend state from an active state, this bit is set to 1. Cleared by the device controller upon exiting from a suspend state. Write-one-to-clear.		
7	SRI	d th sy B			
6	URI	RWC U	ISB reset received (device controller only) When the device controller detects a USB Reset and enters the default state (0), this bit		
5	AAI	S	Interrupt on asynchronous advance (Host mode only) System software can force the host controller to issue an interrupt the next time the host controller advances the asynchronous schedule by writing a 1 to the interrupt on "USB Command (USBCMD)".		
4	RES	Reserved	d. Must be set to zero.		
3	FRI	Ti m lis	Frame list rollover (Host mode only) The host controller sets this bit to a 1 when the frame list index rolls over from its maximum value to 0. The exact value at which the rollover occurs depends on frame list size, e.g, if the size (as programmed in the frame list size field of the register "USB") is 1024, the frame index register rolls over every time FRINDEX [13] toggles. Similarly, if the size is 512, the host controller sets this bit to 1		
2	PCI	RWC P	ort change detect		
			Host The host controller sets this bit to 1 when on any port, a connect status or a port enable/disable change occurs, or the force port resume bit is set as the		
		Ι	Device The device controller sets this bit to1 when the port controller enters full- or high-speed operational state. When the port controller exits full- or high-speed operation states due to reset or suspend events, the notification mechanisms are the USB Reset Received bit and the DCSuspend bits respectively. Write-one-to-clear.		
1	UEI	W th	USB error interrupt When completion of a USB transaction results in an error condition, this bit along with the USBINT bit is set by the host/device controller if the TD on which the error interrupt occurred also had its interrupt on complete (IOC) bit set. Write-one-to-clear.		
0	UI	So U A			

8.20.19 USB Interrupt Enable (USBINTR)

Offset: 0x1B000148 Access: Read/Write Reset Value: 0

Interrupts to software are enabled with this register. An interrupt is generated when a bit is set and the corresponding interrupt is active. The "USB Status (USBSTS)" register still shows interrupt sources even if they are disabled by this register, allowing polling of interrupt events by software.

Bit	Name	Description		
31:26	RES	Reserved. Must be set to zero.		
25	TIE1	General p	ourpose timer interrupt	enable 1; when enabled:
		= 1	GPTINT1 = 1	Issues an interrupt at acknowledged by software clearing the general purpose timer interrupt 1 bit.
24	TIE0	General p	ourpose timer interrupt	enable 0; when enabled:
		= 1	GPTINT0 = 1	Issues an interrupt at acknowledged by software clearing the general purpose timer interrupt 0 bit.
23:20	RES	Reserved	. Must be set to zero.	
19	UPIE	USB host	periodic interrupt enab	ole; when enabled:
		= 1	USBHSTPERINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing
18	UAIE	USB host	asynchronous interrup	t enable; when enabled:
				Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB host asynchronous interrupt bit.
17	RES	Reserved	. Must be set to zero.	
16	NAKE	NAK inte	errupt enable. Set by sof	tware if it wants to enable the hardware interrupt for
		This bit:	USBSTS bit:	Interrupt:
		= 1	NAKI = 1	A hardware interrupt is generated.
15:11	RES	Reserved. Must be set to zero.		
10	ULPIE	ULPI ena	ble; when enabled:	
		This bit:	USBSTS bit:	Device Controller:
		= 1	ULPII = 1	Issues an interrupt acknowledged by software writing a one to the ULPI interrupt bit.
9	RES	Reserved. Must be set to zero.		

Bit	Name	Description	on			
8	SLE	DC suspend interrupt enable; when enabled: When this bit is 1, and the bit in the register "USB Status (USBSTS)" transitions, the device controller issues an interrupt acknowledged by software DCSuspend bit.				
		This bit:	USBSTS bit:	Device Controller:		
		= 1	SLI = 1	Issues an interrupt acknowledged by software writing a one to the DCSuspend bit.		
7	SRE	SOF receiv	ed enable; when ena	bled:		
		This bit:	USBSTS bit:	Device Controller:		
		= 1	SRI = 1	Issues an interrupt acknowledged by software clearing the interrupt on the SOF received bit.		
6	URE	USB reset	enable; when enable	d:		
			URI = 1	Issues an interrupt acknowledged by software		
5	AAE	Interrupt o	on asynchronous adv	ance enable; when enabled:		
			AAI = 1	Issues an interrupt acknowledged by software clearing the interrupt on the asynchronous advance		
4	SEE	System err	or enable; when enal	bled:		
			SEI = 1	Issues an interrupt acknowledged by software		
3	FRE	Frame list	rollover enable (host	controller only); when enabled:		
			FRI = 1	Issues an interrupt acknowledged by software clearing the frame list rollover bit.		
2	PCE	Port chang	ge detect enable; whe	n enabled:		
			PCE = 1	Issues an interrupt acknowledged by software clearing the port change detect bit.		
1	UEE	USB error	interrupt enable; wh	en enabled:		
		This bit:	USBSTS bit:	Host/Device Controller:		
		= 1	USBERRINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB error interrupt bit.		
0	UE	USB interr	upt enable; when en	abled:		
		This bit:	USBSTS bit:	Host/Device Controller:		
		= 1	USBINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB interrupt bit.		

8.20.20 USB Frame Index (FRINDEX)

Offset: 0x1B00014C

Access: Read/Write (host mode)
Read-Only (device mode)

Reset Value: Undefined (free-running counter)

Used by the host controller to index the periodic frame list. The register updates every 125 ms (once each micro-frame). Bits [N:3] are used to select a particular entry in the periodic frame list during periodic schedule execution. The number of bits used for the index depends on the size of the frame list as set by system software in the frame list size field in the register "USB Command (USBCMD)" page 342. This register must be written as a DWord. Byte writes produce-undefined results. This register cannot be Controller is in the halted state. A write to this register while the run/stop hit is set to a one produces undefined results. Writes to this register also affect the SOF value.

In device mode this register is read only and, the device controller updates the FRINDEX [13:3] register from the frame number indicated by the SOF marker. Whenever a SOF is received by the USB bus, FRINDEX [13:3] is checked against the SOF marker. If FRINDEX [13:3] is different from the SOF marker, FRINDEX [13:3] is set to the SOF value and FRINDEX [2:0] is set to 0 (i.e., SOF for 1 ms frame). If FRINDEX [13:3] is equal to the SOF value, FRINDEX [2:0] increments (i.e., SOF for 125-µs micro-frame.)

Bit	Name	Description				
31:14	RES	Reserved. Must be written to 0.				
13:0	FRINDEX					
		:3] are used for the frame l	crements at the end of each tir list current index, thus each lo nicro-frames) before moving t	cation of the frame list is		
			he current frame number of th			
			. th 1: f th f 1:-t -:-	o Coald in the manister "LICD		
		are based on	the value of the frame list siz	e field in the register "USB		
				e nera in the register CC2		
				Elements N		
				Elements N		
				Elements N 12		
		011	128	Elements <i>N</i> 12 11		
				Elements N 12 11 10		
		011	128	12 11 10 9		
		011 100	128 64	Elements N 12 11 10 9 8		

8.20.21 Frame List Base Address (PERIODICLISTBASE)

Offset: 0x1B000154

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:12	PERBASE	Contains the beginning address of the periodic frame list in the system memory. HCD loads this register prior to starting the schedule execution by the host controller. The memory structure referenced by this physical memory pointer is assumed to be 4-Kb aligned. The contents of this register are combined with the frame index register (FRINDEX) to enable the host controller to step through the periodic frame list in sequence. (Host mode only)
11:0	RES	Reserved. Must be written to zero.

8.20.22 USB Device Address (DEVICEADDR)

Access: Read/Write Reset Value: 0

Bit	Name	Description
31:25	USBADR	USB device address
		After any controller reset or a USB reset, the device address is set to the default address (0). The default address will match all incoming addresses. Software shall reprogram the address after receiving a SET_ADDRESS descriptor.
24	USBADRA	Device address advance (default=0)
		When this bit is written to 1 at the same time or before USBADR (bits [31:25]) is written, the write to the USBADR field is staged and held in a hidden register. After an IN occurs on endpoint 0 and is ACKed, USBADR is loaded from the holding
		IN is ACKed to endpoint 0 (USBADR is updated from staging register)
		Note: After the status phase of the SET_ADDRESS descriptor, the DCD has 2 ms to program the USBADR field. This mechanism ensures this specification is met when the DCD can not write of the device address within 2ms from the SET_ADDRESS status phase. If the DCD writes the USBADR with USBADRA = 1 after the SET_ADDRESS data phase (before the prime of the status phase), the USBADR is programmed instantly at the correct time and meets the 2 ms USB requirement.
23:0	RES	Reserved. Must be written to zero.

8.20.23Next Asynchronous List Address (ASYNCLISTADDR)

Offset: 0x1B000158

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:5	ASYBASE	Link pointer low (LPL) (Host mode only) Correspond to memory address signals [31:5], respectively.
4:0	RES	Reserved. Must be written to zero.

8.20.24 Address at Endpointlist in Memory (ENEDPOINTLIST_ADDR)

Access: Read/Write Reset Value: 0

Bit	Name	Description
31:11	EPBASE	Endpoint list pointer (low) These bits correspond to memory address signals [31:11], respectively. This field references a list of up to 32 queue heads, i.e., one queue head per endpoint and direction. In device mode, this register contains the address of the top of the endpoint list in
		system memory. Bits [10:0] of this register cannot be modified by the system software and will always return a zero when read. The memory structure referenced by this physical memory pointer is assumed 64-byte.
10:0	RES	Reserved. Must be written to zero.

8.20.25 TT Status and Control (TTCTRL)

Offset: 0x1B00015C

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31	RES Reserved. Must be written to zero.	
30:24	TTHA	Internal TT hub address representation Used to match against the hub address field in queue head and SITD to determine whether the packet is routed to the internal TT for directly attached FS/LS devices. If the hub address in the queue head or SITD does not match this address, the packet is broadcast on the high speed ports destined for a downstream high speed hub with This register contains parameters needed for internal TT operations. This register is
23:0	RES	Reserved. Must be written to zero.

8.20.26 Programmable Burst Size (BURSTSIZE)

Offset: 0x1B000160

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:16	RES	Reserved. Must be written to zero.
15:8	TXPBURST	Programmable Tx burst length Represents the maximum length of the burst in 32-bit words while moving data from system memory to the USB bus. The default is the constant VUSB_HS_TX_BURST.
7:0	RXPBURST	Programmable Rx burst length Represents the maximum length of the burst in 32-bit words while moving data from the USB bus to system memory. The default is the constant VUSB_HS_RX_BURST.

8.20.27 Host Tx Pre-Buffer Packet Tuning (TXFILLTUNING)

Offset: 0x1B000164

Access: Read/Write (writes must be DWord)

Reset Value: See field description

Definitions:

T_0	Standard packet overload
T_1	Time for send data payload
T_{FF}	Time to fetch a packet into Tx FIFO up to specified level
	Total packet flight time (send-only) packet $= T_0 + T_1$
T _P	Total packet time (fetch-and-send) packet $= T_{FF} + T$

Controls performance tuning associated with how the host controller posts data to the Tx latency FIFO before moving the data to the USB bus. The specific areas of performance include how much data to post into the FIFO and an estimate of how long the operation will take in the target system.

On discovery of a Tx packet (OUT/SETUP) in the data structures, the host controller checks whether T_P remains before the end of the (micro-)frame. If so, it pre-fills the Tx FIFO. If during the pre-fill operation the time remaining in the (micro-)frame is < T_S , the packet attempt ceases and the packet is tried at a later time. This condition is not an error and the host controller eventually recovers, but a note of a "back-off" occurrence is made on the scheduler health counter. When a back-off event is detected, the partial packet fetched may need to be discarded from the latency buffer to make room for periodic traffic that begins after the next SOF. Excessive back-off events can waste bandwidth and power on the system bus and thus should be minimized. Back-offs can be minimized with use of the

Bit	Name	Reset	Description
31:22	RES	0x0	Reserved. Must be written to zero.
21:16	TXFIFOTHRES	0x2	FIFO burst threshold Controls the number of data bursts posted to the Tx latency FIFO in host mode before the packet begins on to the bus. The minimum value is 2; this value should be a low as possible to maximize USB performance. A higher value can be used in systems with unpredictable latency and/or insufficient bandwidth where the FIFO may underrun because the data transferred from the latency FIFO to USB occurs before it can be replenished from system
15:13	RES	0x0	Reserved. Must be written to zero.
12:8	TXSCHEALTH	0x0	Scheduler health counter Increments when the host controller fails to fill the Tx latency FIFO to the level programmed by TXFIFOTHRES before running out of time to send the packet before the next SOF. This health counter measures how many times this occurs to aid in selecting a proper TXSCHOH. Writing to this register clears the counter and this counter maxes out at 31.
7	RES	0x0	Reserved. Must be written to zero.
6:0	TXSCHOH	0x0	Scheduler overload This register adds an additional fixed offset to the schedule time estimator described above as T_{FP} As an approximation, the value chosen for this register should limit the number of back-off events captured in the TXSCHHEALTH to less than 10 per second in a highly utilized bus. Choosing a value that is too high for this register is not desired as it can needlessly reduce USB utilization.

8.20.28 Endpoint NAK (ENDPTNAK)

Offset: 0x1B000178

Access: Read/Write-to-Clear

Reset Value: 0

Bit	Name	Description		
31:16	EPTN	Tx endpoint NAK		
		Each Tx endpoint has 1 bit in this field. The bit is set when the device sends a NAK handshake on a received IN token for the corresponding endpoint.		
		Bit [15] Endpoint 15		
		Bit [1] Endpoint 1		
		Bit [0] Endpoint 0		
15:0	EPRN	Rx endpoint NAK		
		Each Rx endpoint has 1 bit in this field. The bit is set when the device sends a NAK handshake on a received OUT or PING token for the corresponding endpoint.		

8.20.29 Endpoint NAK Enable (ENDPTNAKEN)

Offset: 0x1B00017C Access: Read/Write Reset Value: 0

Bit	Name	Description			
31:16	EPTNE	Tx endp	Tx endpoint NAK enable		
		Each bit is an enable bit for the corresponding Tx endpoint NAK bit. If this bit is seand the corresponding Tx endpoint NAK bit is set, the NAK interrupt bit is set.			
15:0	EPRNE	Rx endpoint NAK enable Each bit is an enable bit for the corresponding Rx endpoint NAK bit. If this bit and the corresponding Rx endpoint NAK bit is set, the NAK interrupt bit is set.			
		Bit [15]	Endpoint 15		
		Bit [1]	Endpoint 1		
		Bit [0]	Endpoint 0		

8.20.30 Port/Status Control (PORTSCO)

Offset: 0x1B000184

Access: See field description

Reset Value: 0x0

Host Controller

A host controller must implement one to eight port registers; the number is implemented by a instantiation of a host controller (see the register "Host Control Structural Parameters (HCSPARAMS)" on page 340). Software uses this information as an input parameter to determine how many ports need service. This register is only reset when power is initially applied or in response to a controller reset. The initial conditions of a port are:

- No device connected
- Port disabled

If the port has port power control, this state remains until software applies power to the port by setting port power to one.

Device Controller

A device controller must implement only port register one and does not support power control. Port control in device mode is only used for status port reset, suspend, and current connect status. It also initiates test mode or forces signaling and allows software to place the PHY into low power suspend mode and

Bit	Name	Access	Description		
31:30	PTS	RW/	This register bit pair is used in conjunction with the configuration constant VUSB_HS_PHY_TYPE to control which parallel transceiver interface is selected. If VUSB_HS_PHY_TYPE is set for 0–3 then this bit is read only If VUSB_HS_PHY_TYPE is set for 4–7, this bit is read/write		
29	RES	RO	Danson J		
28	PTW	RW/	Used in conjunction with the configuration constant VUSB_HS_PHY16_8 to control the data bus width of the UTMI transceiver interface. If VUSB_HS_PHY16_8 is set for 0 or 1, this bit is read only This bit resets to 1 if VUSB_HS_PHY16_8 selects a default UTMI interface width		
			0 Writing this bit to 0 selects the 8-bit [60MHz] UTMI interface		
			1 Writing this bit to 1 selects the 16-bit [30MHz] UTMI interface		
27:26	PSPD	RO	Port speed Indicates the speed at which the port is operating. For HS mode operation in the host controller and HS/FS operation in the device controller the port routing steers data to the protocol engine. For FS and LS mode operation in the host controller, the port routing steers data to the Protocol Engine with the embedded transaction translator.		
			00 Full Speed		
			01 Low Speed		
			10 High Speed		
	DEC	PO	11 Not used		
25	RES	RO	Reserved. Must be set to zero.		

Bit	Name	Access	Description			
24	PFSC	RW	Setting the chirp sec	re full speed connect; Default = 0 (debug mode only) his bit to 1 forces the port to only connect at Full Speed and disables the quence, allowing the port to identify itself as High Speed (useful for S configurations with a HS host, hub or device).		
23	PHCD	RW	PHY low	power suspend: clock disable (PLPSCD)		
			0	Disables the PHY clock (Default)		
			1	Enables the PHY clock		
			Reading this bit indicates the status of the PHY clock. NOTE: The PHY clock cannot be disabled if it is being used as the system clock.			
			Device Mode	The PHY can be put into Low Power Suspend – Clock Disable when the device is not running (USBCMD Run/Stop = 0) or the host has signaled suspend (PORTSC SUSPEND = 1). Low power suspend clears automatically when the host has signaled resume if using a circuit similar to that in 10. Before forcing a resume from the device, the device		
				The PHY can be put into Low Power Suspend – Clock Disable when the downstream device has been put into suspend mode or when no downstream device is connected. Low power suspend is completely		
22	WKOC	RW	Wake on	over-current enable (WKOC_E) (Host mode only)		
			1	Sensitizes the port to over-current conditions as wake-up events		
21	WKDS	RW		Disconnect Enable (WKDSCNNT_E) (Host mode only)		
	,,,,,,	2011	0	This field is zero if Port Power (PP) is zero or in device mode (Default)		
			1	Sensitizes the port to device disconnects as wake-up events		
20	WKCN	RW	Wake on	connect enable (WKCNNT_E) (Host mode only)		
			0	This field is zero if Port Power (PP) is zero or in device mode (Default)		
			1	Sensitizes the port to device connects as wake-up events		
19:16	19:16 PTC[3:0] RW		mode su LS} value speed. W Note: Lo	CCE_ENABLE_FS and FORCE ENABLE_LS are extensions to the test pport. Writing the PTC field to any of the FORCE_ENABLE_{HS/FS/es forces the port into the connected and enabled state at the selected writing the PTC field back to TEST_MODE_DISABLE will allow the port low speed operations are not supported as a peripheral device.		
			Any other	er value than zero indicates that the port is operating in test mode.		
			0000	TEST_MODE_DISABLE (Default)		
			0001	J_STATE		
			0010	K_STATE		
			0011	SE0 (host) / NAK (device)		
			0100	Packet		
			0101	FORCE_ENABLE_HS		
			0110	FORCE_ENABLE_FS		
			0111	FORCE_ENABLE_LS		
			1111: 1000	Reserved		

Bit	Name	Access	Description		
15:14	PIC	RW	Port indicator control		
			Writes to this field have no effect if the P_INDICATOR bit in the HCSPARAMS register is a zero. If P_INDICATOR bit is a one, then the bit is:		
			Value Specific Test		
			00 Port indicators off (Default)		
			01 Amber		
			10 Green		
			11 Undefined		
13	PO	RO	Port owner; default = 0		
			Port owner hand-off is not implemented in this design, therefore this bit always reads back as 0. System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-		
12	RES	RW	Reserved		
11:10	LS	RO	Line status; bit encoding is:		
			These bits reflect the current logical levels of the D+ (bit [11]) and D– (bit [10])		
			In device mode, the use of line-state by the device controller driver is		
			In host mode, the use of line-state by the host controller driver is not necessary (unlike EHCI), because the port controller state machine and the port routing manage the connection of LS and FS.		
9	HSP	RO	High-speed port; see also bits [27:26], PSPD		
			0 Connected host/device is not in a high-speed mode (Default)		
			1 The host/device connected to the port is in high-speed mode		
8	PR	RW/			
			When software writes a one to this bit, the bus-reset sequence as defined in USB2.0 is started. This bit automatically changes to zero after reset.		
			Device reset from the USB bus is also indicated in the register "USB Status (USBSTS)" on page 344.		
			Host Mode: Read/Write		
			0 Port is not in reset (Default)		
			1 Port is in reset		

Bit	Name	Access	Description			
7	SUSP	RW/	Suspend	d		
		RO	Port Enabled Bit and Suspend bit of this register define the port states:			
			Bits	Port State		
			0 <i>x</i>	Disable		
			10	Enable		
			11	Suspend		
			This fiel	ld is zero if Port Power (PP) is zero in host mode.		
				Read-Only		
			Mode	= 0=Port not in suspend state (Default)		
			**	■ 1=Port in suspend state		
			Host Mode	Read/Write		
				In suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction		
				The host controller unconditionally sets this bit to zero when software sets the force port resume bit to zero. The host controller ignores a write of zero to this bit. If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.		
6	FPR RW		Force po	ort resume		
				After the device has been in suspend state for 5 ms or more, software must set this bit to 1 to drive resume signaling before clearing. The device controller sets this bit to one if a J-to-K transition is detected while the port is in the suspend state. The bit will be cleared when the device returns to normal operation. Also, when this bit transitions to a one because a J-to-K transition detected, the port change detect bit in		
				Software sets this bit to one to drive resume signaling. The host controller sets this bit to one if a J-to-K transition is detected while the port is in the suspend state. When this bit transitions to a one because a J-to-K transition is detected, the port change detect bit in the register "USB Status (USBSTS)" is also set to one. This bit automatically changes to zero after the resume sequence is		
				complete. This behavior is different from EHCI where the host controller driver is required to set this bit to a zero after the resume duration is timed in the driver.		
5	OCC	RWC	Over-cu	rrent change. For device-only implementations this bit shall always be 0.		
			0	(Default)		
			1	This bit is set to 1 when there is a change to over-current active. Software clears this bit by writing a one to this bit position.		
4	OCA	RO		arrent active. For device-only implementations this bit shall always be 0.		
			0	This port does not have an over-current condition. This bit automatically transitions from one to zero when the over-current condition is removed. (Default)		
			1	This port currently has an over-current condition		

Bit	Name	Access	Descrip	tion
3	PEC	RWC	Port ena	ble/disable change
			0	No change (Default)
			1	Port enabled/disabled status has changed
			This fiel	d is zero if Port Power (PP) is zero.
			Device Mode	The device port is always enabled (this bit will be zero)
			Host Mode	For the root hub, this bit gets set to a one only when a port is disabled due to disconnect on the port or due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification). Software clears this by writing a one to it.
2	PE	RW	Port ena	bled/disabled
			0	Disabled (Default)
				The device port is always enabled (this bit will be one)
				Ports can only be enabled by the host controller as a part of reset and enable. Software cannot enable a port by writing a one to this field. Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by the host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and When the port is disabled, (0b) downstream propagation of data is
1	CSC	RWC	Connect	status change
				0
			1	Change in current connect status. Software clears this bit by writing a 1
0	CCS	RO	Current	Indicates a change has occurred in the port's Current Connect Status. The host/device controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be 'setting' an already-set bit (i.e., the bit will remain set). connect status
			Device Mode Host Mode	

8.20.31 USB Mode (USBMODE)

Offset: 0x1B0001A8 Access: Read/Write Reset Value: 0

Bit	Name	Description			
31:5	RES	Reserved. Must be written to zero.			
4	SDIS	Stream disable mode ■ 0 = Inactive (Default) ■ 1 = Active			
		Device Mode	Setting to a 1 disables double priming on both Rx and Tx for low bandwidth systems. This mode, when enabled, ensures that the Rx and Tx buffers are sufficient to contain an entire packet, so the usual double buffering scheme is disabled to prevent overruns/underruns in bandwidth limited systems.		
			Setting to a 1 ensures that overruns/underruns of the latency FIFO are eliminated for low bandwidth systems where the Rx and Tx buffers are sufficient to contain the entire packet. Enabling stream disable also has the effect of ensuring the Tx latency is filled to capacity before the packet is		
3	SLOM		ckout mode e mode, this bit controls behavior of the setup lock mechanism.		
	70				
2	ES	bus arch	nge the byte ordering of transfer buffers to match the host microprocessor itecture. The bit fields in the microprocessor interface and the DMA data es (including the setup buffer within the device QH) are unaffected by the		
1:0	CM	Controll implement controlle operation only be reset the	er mode er mode is defaulted to the proper mode for host only and device only entations. For those designs that contain both host and device capability, the er will default to an idle state and will need to be initialized to the desired ig mode after reset. For combination host/device controllers, this register can written once after reset. If it is necessary to switch modes, software must econtroller by writing to the RESET bit in the register "USB Command MD)" on page 342 before reprogramming this register.		
		Bit	Meaning		
		00	Idle (Default for combination host/device)		
		01	Reserved		
		10	Device Controller (Default for device-only controller)		
		11	Host Controller (Default for host-only controller)		

8.20.32 Endpoint Setup Status (ENDPTSETUPSTAT)

Offset: 0x1B0001AC

Access: Read/Write-One-to-Clear

Reset Value: 0x00000000

Bit	Name	Description
31:16	RES	Reserved
15:0	ENDPTSETUPSTAT	Setup endpoint status (Device mode only) For every setup transaction received, a corresponding bit in this register is set to 1. Software must clear or acknowledge the setup transfer by writing a one to a respective bit after it has read the setup data from Queue head. The response to a setup packet as in the order of operations and total response time is crucial to limit bus time outs while the setup lock our mechanism is engaged.

8.20.33 Endpoint Initialization (ENDPTPRIME)

Offset: 0x1B0001B0

Access: Read/Write-One-to-Clear

Reset Value: 0x00000000

Bit	Name	Description	
31:16	РЕТВ	Prime endpoint Tx buffer (Device mode only) For each endpoint a corresponding bit is used to request that a buffer prepared for a Tx operation in order to respond to a USB IN/INTERRUPT transaction. Software should write a 1 to the corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new transfer descriptor from the queue head and prepare a Tx buffer. Hardware clears this bit	
15:0	PERB	Prime endpoint Rx buffer For each endpoint a corresponding bit is used to request that a buffer prepared for a Rx operation in order to respond to a USB IN/INTERRUPT transaction. Software should write a 1 to the corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new transfer descriptor from the queue head and prepare a Rx buffer. Hardware clears this bit when the associated endpoint(s) are successfully primed.	
		Bit [15] Endpoint 15	
		Bit [1] Endpoint 1	
		Bit [0] Endpoint 0	

8.20.34 Endpoint De-Initialization (ENDPTFLUSH)

Offset: 0x1B0001B4 Access: Writing a 1 to a bit in this register

causes the associated endpoint(s) to

clear any primed buffers.

Reset Value: 0

Bit	Name	Description	
31:16	FETB	Flush endpoint Tx buffer	
		If a packet is in progress for one of the associated endpoints, that transfer continues until completion. Hardware clears this register after the endpoint flush operation.	
		Bit [15] Endpoint 15	
		Bit [1] Endpoint 1	
15:0 FERB		Flush endpoint Rx buffer	
If a packet is in progress for one of the associated endpoin until completion. Hardware clears this register after the endpoin		If a packet is in progress for one of the associated endpoints, that transfer continues until completion. Hardware clears this register after the endpoint flush operation.	

8.20.35 Endpoint Status (ENDPTSTATUS)

Offset: 0x1B0001B8 Access: Read-Only Reset Value: 0

This register is for device mode only.

This register is for device mode only.

Bit	Name	Description	
31:16	ETBR	Endpoint Tx buffer ready One bit for each endpoint indicates status of the respective endpoint buffer. This bit is set to a 1 by the hardware as a response to a command from a corresponding bit in page 359. A delay always occurs between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer ready is cleared by USB reset,	
		Bit [1] Endpoint 1	
		Bit [0] Endpoint 0	
15:0	ERBR	Endpoint Rx buffer ready One bit for each endpoint indicates status of the respective endpoint buffer. This bit is set to a 1 by the hardware as a response to a command from a corresponding bit in the register "Endpoint Initialization (ENDPTPRIME)". A delay always occurs between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer ready is cleared by USB reset, by the USB DMA system, or through the ENDPTFLUSH register.	
		Bit [15] Endpoint 15	
		Bit [1] Endpoint 1	
		Bit [0] Endpoint 0	

8.20.36 Endpoint Complete (ENDPTCOMPLETE)

Offset: 0x1B0001BC This register is for device mode only. Access: Read/Write-One-to-Clear

Reset Value: 0

Bit	Name	Description	
31:16	ETCE	Endpoint Tx complete event Indicates a Tx event (IN/INTERRUPT) occurred and software should read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set in the transfer descriptor, this bit is set simultaneously with the register USBINTR.	
		Bit [15] Endpoint 15	
15:0	ERCE	Endpoint Rx complete event Indicates a Rx event (IN/INTERRUPT) occurred and software should read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set in the transfer descriptor, this bit is set simultaneously	

8.20.37 Endpoint Control O (ENDPTCTRLO)

Offset: 0x1B0001C0 Access: Read/Write Reset Value: 0x0080008 Every device implements Endpoint0 as a

Bit	Name	Description	
31:24	RES	Reserved. Must be written to zero.	
23	TXE	Tx endpoint enable. Endpoint 0 is always enabled; this bit is always 1.	
22:20	RES	Reserved. Must be written to zero.	
19:18	TXT	Tx endpoint type ($0 = \text{Control}$). Endpoint 0 is always 0 ; this bit is always 0 .	
17	RES	Reserved. Must be written to zero.	
16	TXS	Tx endpoint stall	
		0 Endpoint OK (Default)	
		1 Endpoint stalled	
15:8	RES	Reserved. Must be written to zero.	
7	RXE	Rx endpoint enable. Endpoint 0 is always enabled; this bit is always 1.	
6:4	RES	Reserved. Must be written to zero.	
3:2	RXT	Rx endpoint type (0 = Control). Endpoint 0 is fixed as a control endpoint; this bit is always 0	
1	RES	Reserved. Must be written to zero.	
0	RXS	Rx endpoint stall	
		0 Endpoint OK (Default)	
		1 Endpoint stalled	

8.20.38 Endpoint Control 1 (ENDPTCTRL1)

Offset: 0x1B0001C4 (Endpoint Control 1) 0x1B0001C8 (Endpoint Control 2)

0x1B0001CC (Endpoint Control 3)

0x1B0001D0 (Endpoint Control 4)

0x1B0001D4 (Endpoint Control 5)

Access: Read/Write Reset Value: 0

Bit	Name	Description	
31:24	RES	Reserved. Must be written to zero.	
23	TXE	Tx endpoint enable	
		An Endpoint should be enabled only after it has been configured	
22	TXR	Tx data toggle reset	
		When a configuration event is received for this Endpoint, software must write a 1 to this bit in order to synchronize the data PIDs between the host and device.	
21	TXI	Tx data toggle inhibit	
20	RES	Reserved. Must be written to zero.	
19:18	TXT	Tx endpoint type	
17	TXD	Tx endpoint data source; should always be written to zero	
16	TXS	Tx endpoint stall	
15:8	RES	Reserved. Must be written to zero.	
7	RXE	Rx endpoint enable	
6	RXR	Rx data toggle reset	
		When a configuration event is received for this Endpoint, software must write a 1 to this bit in order to synchronize the data PIDs between the host and device.	
5	RXI	Rx data toggle inhibit	
		0 PID sequencing enabled (Default)	
		1 PID sequencing disabled	
4:3	RES	Reserved. Must be written to zero.	
2	RXT	Rx endpoint type	
		00 Control	
		01 Isochronous	
		10 Bulk	
		11 Interrupt	
1	RXD	Rx endpoint data source; should always be written to zero	
0	RXS	Rx endpoint stall	
		0 Endpoint OK (Default)	
		1 Endpoint stalled	

8.21 Serial Flash SPI Controller Registers

Table 8-24 summarizes the serial flash SPI controller registers for the AR9341.

Table 8-24. Serial Flash SPI Controller Registers Summary

Address	Name	Description	Page
0x1FFF0000	FUNCTION_SELECT_ADDR	SPI Controller GPIO Mode Select	page 363
0x1FFF0004	SPI_CONTROL_ADDR	SPI Address Control	page 363
0x1FFF0008	SPI_IO_CONTROL_ADDR	SPI I/O Address Control	page 364
0x1FFF000C	SPI_READ_DATA_ADDR	SPI Read Data Address	page 364
0x1FFF0010	SPI_SHIFT_DATAOUT_ADDR	SPI Data to Shift Out	page 364
0x1FFF0014	SPI_SHIFT_CNT_ADDR	SPI Content to Shift Out or In	page 365
0x1FFF0018	SPI_SHIFT_DATAIN_ADDR		page 365

8.21.1 SPI Controller GPIO Mode Select (FUNCTION_SELECT_ADDR)

Address: 0x1FFF0000 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:1		
0	FUNCTION_SELECT	Writing a non-zero value to this register selects the GPIO mode for the

8.21.2 SPI Address Control (SPI_CONTROL_ADDR)

Address: 0x1FFF0004 Access: Read/Write

Bit	Bit Name	Description
31:14	RES	Reserved
13:8	TSHSL_CNT	Minimum time for which CS has must be deasserted between two SPI transactions.
7	SPI_RELOCATE	When this bit is set, 16 MB of SPI is mapped to 0x1E00_0000.
6	REMAP_DISABLE	Disables the alias of the lower 4 MB of SPI space, enabling the ROM to boot from $0x1FC_0000$ to alias to $0x1F0_0000$ until software disables the aliasing.
5:0	CLOCK_DIVIDER	The clock divider is based on the AHB clock. The generated clock is AHBclock/((CLOCK_DIVIDER+1) * 2).

8.21.3 SPI I/O Address Control (SPI_IO_CONTROL_ADDR)

Address: 0x1FFF0008 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:19	RES	Reserved
18	IO_CS2	Chip select 2. Active low signal.
		0 Enable chip select 2
		1 Disable chip select 2
17	IO_CS1	Chip select 1. Active low signal.
16	IO_CS0	Chip select 0. Active low signal.
15:9	RES	Reserved
8	IO_	
7:1	RES	Reserved
0	IO_DO	Data out

8.21.4 SPI Read Data Address (SPI_READ_DATA_ADDR)

Address: 0x1FFF000C Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:0	READ_DATA	The SPI read data is shifted in and sampled every cycle

8.21.5 SPI Data to Shift Out (SPI_SHIFT_DATAOUT_ADDR)

Address: 0x1FFF0010 Access: Read/Write

Bit	Bit Name	Description	
31:0	SHIFT_DATAOUT	The data (either CMD, ADDR, or DATA) to be shifted out every clock cycle	

8.21.6 SPI Content to Shift Out or In (SPI_SHIFT_CNT_ADDR)

Address: 0x1FFF0014 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description	
31	SHIFT_EN	Enables shifting data out	
30	SHIFT_CHNL	If set to 1, enables chip select 2	
29		If set to 1, enables chip select 1	
28		If set to 1, enables chip select 0	
27	SHIFT_CLKOUT	Initial value of the clock signal	
26	TERMINATE	When set to 1, deasserts the chip select	
25:7			
6:0	SHIFT_COUNT	The number of bits to be shifted out or shifted in on the data line	

8.21.7 SPI Data to Shift In (SPI_SHIFT_DATAIN_ADDR)

Address: 0x1FFF0018 Access: Read/Write

Bit	Bit Name	Description
31:0	SHIFT_DATAIN	SPI read data

Ethernet Switch Registers

This section describes the internal registers of the Ethernet Switch registers. Table 8-25 summarizes the Ethernet registers for the Ethernet switch.

Table 8-25. Ethernet Switch Registers Summary

Address	Name	Page
0x0000-0x00FC	Global Control Registers	page 366
0x0100-0x0124	Port Control Registers	page 383
	PHY Registers	page 394

8.22 Global Control Registers

Table 8-26 summarizes the global control registers.

Table 8-26. **Global Control Register Summary**

Offset		Page
0x0000		page 367
0x0004		page 367
0x0008		page 367
0x0014		page 368
0x0018		page 369
0x0020 — 0x0024		page 369
0x0028		page 370
0x002C		page 370
0x0030		page 371
0x0034		page 372
0x0038		page 372
0x003C		page 373
0x0040 — 0x0044		page 374
0x0050 — 0x0058	Address Table Function	page 374
0x005C	Address Table Control	page 375
0x0060 — 0x006C	IP Priority Mapping 2	page 378
0x0070	Tag Priority	page 380
0x0074	Service Tag	page 380
0x0078	CPU Port	page 380
0x0080	MIB Function	page 381
0x0098	MDIO Control	page 381
0x00B0 — 0x00B8	LED Control	page 382

8.22.1 Mask Control

Address Offset: 0x0000 Access: See field description Reset: See field description

This register can only be reset by a hardware

reset.

Bit	Bit Name	Type	Reset	Description	
31	SOFT_RET	WO/ SC	0x0	Set to 1 for a software reset; set by the software to initiate the hardware. It should be self-cleared by the hardware after the initialization is done.	
30:17	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
16	LOAD_ EEPROM	RW	0x0	Load EEPROM enable. This bit is set to automatically load registers from an EEPROM. It should be cleared after the loading is complete.	
15:8	DEVICE_ID	RO	0x02	Device identifier	
7:0	REV_ID	RO	0x01	Revision identifier	

8.22.2 Operational Mode 0

Address Offset: 0x0004 Access: Read/Write

Reset: 0x0

This register can only be reset by a hardware

Bit	Bit Name	Description
31:11		Reserved. Must be written with zero. Contains zeros when read.
10	MAC0_PHY_MII_EN	Set to 1 to connect mac0 to CPU through MII interface, PHY mode
9:0		

8.22.3 Operational Mode 1

Address Offset: 0x0008 Access: Read/Write

Reset: 0x0

This register can only be reset by a hardware

Bit		
31:29		Reserved. Must be written with zero. Contains zeros when read.
28		Set to 1 to connect phy4 to CPU through MII interface
27:1	RES	Reserved
0	MAC5_MAC_MII_RXCLK_SEL	Set to 1 to select invert clock input for port0 MAC mode, MII interface RXCLK

8.22.4 Global Interrupt

Address Offset: 0x0014 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:19	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
18	LOOP_CHECK_INT	RW1C	0x0	Interrupt when loop checked by hardware
17:15	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
14	HARDWARE_INI_DONE	RW1C	0x1	Interrupt when hardware memory initialization is complete
13	MIB_INI_INT	RW1C	0x1	Interrupt when MIB memory initialization is complete
12	MIB_DONE_INT	RW1C	0x0	Interrupt when MIB access by CPU is complete
11	BIST_DONE_INT	RW1C	0x0	Interrupt when BIST test is complete
10	VT_MISS_VIO_INT	RW1C	0x0	Interrupt when the VID is not found in the VLAN table
9	VT_MEM_VIO_INT	RW1C	0x0	Interrupt when the VID is in the VLAN table, but the
8	VT_DONE_INT	RW1C	0x0	Interrupt when the CPU has completed an access of the
7	QM_INI_INT	RW1C	0x1	Interrupt when the QM memory initialization is
6	AT_INI_INT	RW1C	0x1	Interrupt when the Address table initialization is
5	ARL_FULL_INT	RW1C	0x0	Interrupt when a new address is "learned" by being added to the address table, but the two addresses are
4	ARL_DONE_INT	RW1C	0x0	Interrupt when the CPU access of the Address table is
3	MDIO_DONE_INT	RW1C	0x0	Interrupt when MDIO access of the switch register is
2	PHY_INT	RW1C	0x0	Physical layer interrupt
1	EEPROM_ERR_INT	RW1C	0x0	Interrupt when an error is detected during the loading of
0	EEPROM_INT	RW1C	0x0	Interrupt when the loading of an EEPROM is complete

8.22.5 Global Interrupt Mask

Address Offset: 0x0018 Access: Read/Write

Reset: 0x0

Each bit in this register is corresponding to a bit in the GLOBAL INTERRUPT REGISTER. Interrupts are allowed to be sent out when both the interrupt event and mask bit are set.

Bit	Bit Name	Туре	Description
31:19	RES	RW	Reserved. Must be written with zero. Contains zeros when read.
18	LOOP_CHECK_INT_EN	RW	Enable loop check interrupt
17:15	RES	RW	Reserved. Must be written with zero. Contains zeros when read.
14	HARDWARE_INI_DONE_ EN	RW	Enable interrupt when hardware memory initiation is complete
13	MIB_INI_INT_EN	RW	MIB was accessed by the CPU
12	MIB_DONE_INT_EN	RW	Enable the interrupt of MIB accesses done by CPU
11	BIST_DONE_INT_EN	RW	Enable BIST test complete interrupt
10	VT_MISS_VIO_INT_EN	RW	Interrupt when the VID of the received frame is not in the VLAN
9	VT_MEM_VIO_INT_EN	RW	Interrupt when the VID of the received frame is in the VLAN table, but the source port is not the member of the VID
8	VT_DONE_INT_EN	RW	The VLAN table was accessed by the CPU
7	QM_INI_INT_EN	RW	Enable interrupt when QM memory initiation is complete
6	AT_INI_INT_EN	RW	Enable interrupt when address table initiation is complete
5	ARL_FULL_INT_EN	RW	Interrupt when a new address to learn is in the address table, but
4	ARL_DONE_INT_EN	RW	The address table was accessed by the CPU
3	MDIO_DONE_INT_EN	RW	The MDIO access switch register was interrupted
2	PHY_INT_EN	RW	Physical layer interrupt
1	EEPROM_ERR_INT_EN	RW	Interrupt when an error occurred during load EEPROM
0	EEPROM_INT_EN	RW	Interrupt when an EEPROM load has completed

8.22.6 Global MAC Address

Address Offset: 0x0020, 0x0024

Access: Read/Write Reset: See field description These registers can only be reset by hardware.

Offset	Bit	Bit Name	Туре	Reset	Description
0x0020	31:16	Reserved	RO	0x0	
	15:8	MAC_ADDR_BYTE4	RW	0x0	Station address of switch. Used as source
	7:0	MAC_ADDR_BYTE5	RW	0x01	address in pause frame or other management frames
0x0024	31:24	MAC_ADDR_BYTE0	RW	0x0	Station address of the switch, used as source
	23:16	MAC_ADDR_BYTE1	RW	0x0	address in pause frame or other management frames
	15:8	MAC_ADDR_BYTE2	RW	0x0	
	7:0	MAC_ADDR_BYTE3	RW	0x0	

8.22.7 Loop Check Result

Address Offset: 0x0028 Access: Read Only

Reset: 0x0

These registers can only be reset by hardware.

Bit	Bit Name	Туре	Description
31:8	RES	RO	Reserved. Must be written with zero. Contains zeros when read.
7:4	PORT_NUM_NEW	RO	When hardware checked loops occur, these bits indicate MAC address new port number.
4:0	PORT_NUM_OLD	RO	When hardware checked loops occur, these bits indicate MAC address old port number.

8.22.8 Flood Mask

Address Offset: 0x002C Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31:25	BROAD_DP	RW	0x7E	If the MAC receives broadcast frames, use these bits to	
24	ARL_UNI_LEAKY EN				
	_EIN			0 USE LEAKY_EN bit in ARL table to control unicast frame leaky VLAN and ignore "UNI_LEAKY_EN"	
				1 Ignore LEAKY_EN bit in ARL table to control unicast	
				UNI_LEAKY_EN to control unicast frame leaky VLAN	
23	ARL_MULTI_				
	LEAKY_EN			0 Use LEAKY_EN bit in ARL table to control multicast frame leaky VLAN, and ignore MULTI_LEAKY_EN.	
				1 Ignore LEAKY_EN bit in ARL table to control multicast	
				MULTI_LEAKY_EN to control multicast frame leaky	
22:16	MULTI_FLOOD_ DP	RW	0x7E	If the MAC receives unknown a multicast frame which the DA is not contained in the ARL table, use these bits to determine the destination port.	
15:14	RES	RO	0	Reserved. Must be written with zero. Contains zeros when read.	
13:8	IGMP_JOIN_ LEAVE_DP	RW	0x6	If the MAC receives an IGMP/MLD fast join or leave frame, use these bits to determine the destination port	
7:6	RES	RO	0	Reserved. Must be written with zero. Contains zeros when read.	
6:0	UNI_FLOOD_DP	RW	0x7E	If the MAC receives unknown unicast frames in which the DA is not contained in the ARL table, use these bits to determine the destination port	

8.22.9 Global Control

Address Offset: 0x0030 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31:30	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
29	RATE_DROP_EN	RW	0x1	Drop packet enable due to rate limit.	
				O Switch would use flow control to the source port due to rate limit, if the port won't stop switch will drop frame from that port.	
				1 Switch will drop frames due to rate limit.	
28:26	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
25:24	ING_RATE_TIME_ SLOT			Note: If the port rate limit set to less than 96 Kbps, do not select	
23:20	RELOAD_TIMER	RW	0xF	Reload EEPROM timer	
				If the EEPROM can't be read from, the EEPROM should be reloaded when the timer is completed. The timer is set by multiplying the number here by 8 ms. If these bits are zero, the	
19	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
18	BROAD_DROP_				
				When broadcast storm occur, switch will use flow control to the source port first, if the port will not stop, the switch will	
				1 Switch will drop frames if broadcast storm occur.	
17:14	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
13:0	MAX_FRAME_	RW	0x5EE	Max frame sized can be received and transmitted by MAC. If a packet's size is larger than MX_FRAME_SIZE, it will be dropped by the MAC.	
				The value is for a normal packet. It should add 4 by MAC if VLANs are supported, add 8 for double VLANs, and add 2 for Atheros header.	
				For Jumbo frames, the maximum frame size is 9 Kbytes.	

8.22.10 Flow Control 0

Address Offset: 0x0034 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset Description		
31:24	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
23:16	GOL_XON_ THRES	RW	0x60	lobal-based transmit on threshold. When block memory used by I the ports is less that the value entered here, the MAC would end out a pause off frame and the link partner will start to ansmit frames	
15:8	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
7:0	GOL_XOFF_ THRES	RW	0x90	Global-based transmit off threshold. When block memory used by all the ports is more than the value entered here, the MAC will send out a pause on frame, and the link partner will stop	

8.22.11 Flow Control 1

Address Offset: 0x0038 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:24	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:16	PORT_XON_ THRES	RW	0x16	Port-based transmit on threshold. When block memory used by one port is less than this value, the MAC will send out a pause off frame and the link partner will begin to transmit frames
15:8	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:0	PORT_XOFF_ THRES	RW	0x20	Port-based transmit off threshold. When block memory used by one port is more than this value, the MAC will send out a pause on frame and the link partner will stop transmitting frames

8.22.12 QM Control

Address Offset: 0x003C Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description		
31:28	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.		
27:24	IGMP_JOIN_	RW	_	Use for IGMP packet learn in ARL table, define the status		
	STATUS			0 Indicates entry is empty		
				7:1 Indicates entry is dynamic and valid		
				14:8 Reserved		
				15 Indicates entry is static and will not be aged out or changed by the hardware		
23	IGMP_JOIN_	RW	0x1	IGMP join address leaky VLAN enable.		
	LEAKY_EN			0 IGMP join address should clear the LEAKY_EN bit in ARL table		
				1 IGMP join address should set the LEAKY_EN bit in ARL table		
22	IGMP_JOIN_ NEW_EN	RW	0	Enable hardware. Add a new address to ARL table when IGMP/MLD join frame are received and remove address from ARL when IGMP/		
21	ACL_EN	RW	0x0	ACL rule enable. If this bit is set to zero, ACL check is disable.		
20	PPPOE_ REDIRECT_EN	RW	0x0	Enable sending PPPoE discovery frames to the CPU. If this bit is set to 1, PPPoE discovery frames are sent to the CPU port. If this bit is set to 0, PPPoE discovery frames are transmitted as normal frames		
19	IGMP_V3_EN	RW	0x0	Set to 1 for hardware to acknowledge IGMP v3 frame and MLD v2 frame, and multicast address can join or leave hardware		
18	IGMP_JOIN_PR I_REMAP_EN	RW	0x0	Use for IGMP packet learning in ARL table. Defines DA priority remap		
17:16	IGMP_JOIN_PR	RW	0x0	Use for IGMP packet learning in ARL table. Defines the DA priority		
15	ARP_EN	RW	0x0	ARP frame acknowledge enable		
14	ARP_REDIREC T_EN	RW	0x0	Used to denote the destination of the redirected ARP frame		
13	RIP_COPY_EN	RW	0x0	Choose to copy or not copy the RIP v1 frame		
12	EAPOL_REDIR					
	ECT_EN					
11	ICMB CORV	RW	0.0	The late was all ICMP/MID (see a		
11	IGMP_COPY_ EN	KVV	0x0	Used to process the IGMP/MLD frames 0 QM will copy IGMP/MLD frames to the CPU port		
	211					
10	DDDOE EN	DIAI	00	1 QM will redirect IGMP/MLD frames to the CPU port		
10	PPPOE_EN	RW	0x0	Set to 1 to enable hardware acknowledgement of PPPoE frames		
9:7	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.		
6	MANAGE_VID _VIO_DROP _EN	RW	0x1	Used to configure management frames if a VLAN violation occurs Management frames are transmitted out if a VLAN violation occurs		
				1 Management frames should be dropped if a VLAN violation occurs		
5:0	FLOW_DROP_ CNT	RW	0xE	Max free queue could be use after the port has been flow control. Then packets should be drop except the highest priority.		
				Default value 0xE is set to normal packets which length is no more than 1518 bytes. For jumbo frame, 0x21 is commanded.		

8.22.13 VLAN Table Function 0

Address Offset: 0x0040 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Type	Description			
31	VT_PRI_EN	RW	When VT_PRI_EN is set, then VT_PRI will replace the VLAN priority in the frame as its QoS classification			
30:28	VT_PRI	RW	When VT_PRI_EN is set, the VT_PRI will replace VLAN priority in the frame as its QoS classification			
27:16	VID	RW	VLAN ID to be added or purged			
15:12	RES	RO	Reserved. Must be written with zero. Contains zeros when read			
11:8	VT_PORT_NUM	RW	Port number to be removed			
7:4	RES	RO	Reserved. Must be written with zero. Contains zeros when read			
3	VT_BUSY	RW	VLAN table is busy. This bit must be set to 1 to start a VT operation and cleared to 0 after the operation is done. If this bit is set to 1, the CPU can			
2:0	VT_FUNC	RW	O11 Load an entry. If these bits are set, the CPU will load an entry form O11 Purge an entry. If these bits are set, the CPU will purge an entry 100 Remove a port form the VLAN table. The port number which will			
			If VID is 12'b0 and VT_BUSY is set by software, hardware will If VID is 12'b0 and VT_Busy is reset by hardware, then there is no			

8.22.14 VLAN Table Function 1

Address Offset: 0x0044 Access: Read/Write

Bit	Bit Name	Туре	Description		
31:12	Reserved	RO	Reserved. Must be written with zero. Contains zeros when read		
11	VT_VALID	RW	Used to indicate the validity for the VLAN table		
			0 Indicates the entry is empty		
			1 Indicates entry is valid		
10:7	Reserved	RO	Reserved. Must be written with zero. Contains zeros when read		
6:0	VID_MEM	RW	VID member in the VLAN table. These bits are used to indicate which ports are members of the VLAN. Bit 0 is assigned to port0, 1 to port1, 2, to port2, and so on.		

8.22.15 Address Table Function 0

Address Offset: 0x0050 Access: Read/Write

Reset:0x0

Bit	Bit Name	Type	Description			
31:24	AT_ADDR_BYTE4	RW	Byte 4 of the address			
23:16	AT_ADDR_BYTE5	RW	The last byte of the address			
15:13	RES	RO	Reserved. Must be written with zero. Contains zeros when read			
12	AT_FULL_VIO	RW1C	ARL table-full violation. This bit is set to 1 if the ARL table is full when the CPU wants to add a new entry to the ARL table; it can also be set to 1 if the ARL table is empty when the CPU wants to purge and entry to the ARL table.			
11:8	AT_PORT_NUM	RW	Port number to be flushed. If AT_FUNC is set to 101, lookup module must flush all the unicast entries for the port (or flush the port from the ARL			
7:5	RES	RO	Reserved. Must be written with zero. Contains zeros when read			
4	FLUSH_STATIC_EN	RW	Used to select dynamic or static ACL entries			
			0 When AT_FUNC is set to 101, only dynamic entries in the ARL table			
			1 When AT_FUNC is set to 101, all static entries in the ARL table can			
3	AT_BUSY	RW	Address table busy. This bit must be set to 1 to start an AT operation and cleared to 0 when the operation is complete. If this bit is set to 1, the CPU			
2:0	AT_FUNC	RW	Address table function			
			010 Load an entry. If these bits are set to 3'b010, the CPU will load an			
			011 Purge an entry. If these bits are set, the CPU will purge an entry from			
			110 Get the next valid or static entry in the ARL table			
			If the address and AT_STATUS are all zero, the hardware will search			
			If the address and AT_STATUS is not zero, the hardware will search			
			If hardware returns with the address and AT_STATUS all zero, there is no next valid entry in the ARL table.			
			111 Search MAC address			

8.22.16 Address Table Function 1

Address Offset: 0x0054 Access: Read/Write

Bit	Bit Name	Туре	Description
31:24	AT_ADDR_BYTE0	RW	The first byte of the address to operate. This byte is the highest byte of the MAC address for the MSB.
23:16	AT_ADDR_BYTE1	RW	The second byte of the address
15:18	AT_ADDR_BYTE2	RW	The third byte of the address
7:0	AT_ADDR_BYTE3	RW	The forth byte of the address

8.22.17Address Table Function 2

Address Offset: 0x0058 Access: Read/Write

Bit	Bit Name	RW	Descrip	tion		
31:27	RES	RO	Reserve	d. Must be written with zero. Contains zeros when read		
26	COPY_TO_CPU	RW	Set to 1 so packets received with this address will be copied to the CPU port			
25	REDIRECT_TO_CPU	RW	Set to 1 so packets received with this address will be redirected to the CPU port. If no CPU is connected to the switch, this packet will be discarded			
24	LEAKY_EN	RW	This bit	Setting this bit to 1 enables leaky VLANs for this MAC address. This bit can be used for unicast and multicast frames, control by ARL_UNI_LEAKY_EN and ARL_MULTI_LEAKY_EN		
23:20		RO	Reserve	d. Must be written with zero. Contains zeros when read		
19:16	AT_STATUS	RW	Destination address status, associated to STATUS bits in the			
			15	Indicates entry is static and won't be aged out or changed		
15	MAC_CLONE	RW	MAC clone address. Set to 1 to clone this MAC address. CPU cannot age-out. Other ports learn and age as normal. If DA and VID result is CPU port,			
14	SA_DROP_EN	RW	SA drop enable Drop packet enable when source address in this entry. If this bit is set to 1, the packet with an Source Address (SA) of this entry will be			
13	MIRROR_EN	RW	Port mi	rror enable		
			0	Indicates packet will be sent only to the destination port		
			1	Indicates packets will be sent to the mirror port and the		
12	AT_PRIORITY_EN	RW	Set to 1	ority enable to indicate AT_PRIORITY can override any other priority ned by the frame's data		
11:10	AT_PRIORITY	RW	DA priority These priority bits can be used as a frame's priority when AT_PRIORITY_EN is set to one.			
9	HASH_HIGH_ADDR	RW	MAC hash address max bit, used for CPU_FUNC (get next valid)			
8	CROSS_PORT_STATE_EN	RW	Set to 1 to enable cross PORT_STATE.			
7	RES	RW	Reserved. Must be written with zero. Contains zeros when read			
6:0	DES_PORT	RW	These b	tion port bits for address. its indicate which ports are associated with the MAC when they are set to one. Bit 0 is assigned to port 0, 1 to to port2, and so on.		

8.22.18Address Table Control

Address Offset: 0x005C Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Descrip	ption	
31:27	RES	RO	0x0	Reserve	ed. Must be written with zero. Contains zeros when read	
26:24	LOOP_CHECK_	RW	0x0	Used to	set the loop back timer	
	TIMER			0	Disable loop back check	
				1	1 ms	
				2	10 ms	
				3	100 ms	
23	RES	RO	0x0	Reserve	ed. Must be written with zero. Contains zeros when read	
22	VID_4095_DROP_	RW	0x0	Set to 1 to drop a frame with VID ='d4095i, if received by the		
21	SWITCH_STAG_M					
20:19	RES	RW	0x0	Reserve	ed. Must be written with zero. Contains zeros when read	
18	LEARN_CHANGE	RW	0x0	Used to	select new address learning due to a hash violation.	
				0	If a hash violation occur when learning, no new	
				1	Enable new MAC address change if a hash violation	
17	AGE_EN	RW	0x1	Enable age operation. Set to 1 to use the lookup module to age		
16	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read		
15:0	AGE_TIME	RW	0x2B	Address Table Age Timer. These bits determine the time that each entry remains valid in the address table, since last accessed. mum age time is about 10,000 minutes. The default value is 'h2B for five minutes. If AGE_EN is set to 1, these bits should not be set to zero.		

8.22.19IP Priority Mapping 2

Address Offset: 0x0060,0x0064,0x0068,0x006C

Access: Read/Write

Offset	Bit	Bit Name	Туре	Reset	Description
0x0060	31:30	IP_0x3C	RW	0x0	Priority mapping value of IPv4 ToS or IPv6 TC field.
	29:28	IP_0x38	RW	0x0	Prist Prist . Prist
	27:26	IP_0x34	RW	0x0	Bit[7] to Bit[2] are used to map queue priority, but bit1 and bit0 are ignored.
	25:24	IP_0x30	RW	0x0	
	23:22	IP_0x2C	RW	0x0	If ToS[7:2] or TC[7:2] is equal to 0x3C, the queue priority should be mapped to value of these bits.
	21:20	IP_0x28	RW	0x0	
	19:18	IP_0x24	RW	0x0	
	17:16	IP_0x20	RW	0x0	
	15:14	IP_0x1C	RW	0x0	
	13:12	IP_0x18	RW	0x0	
	11:10	IP_0x14	RW	0x0	
	9:8	IP_0x10	RW	0x0	
	7:6	IP_0x0C	RW	0x0	
	5:4	IP_0x08	RW	0x0	
	3:2	IP_0x04	RW	0x0	
	1:0	IP_0x00	RW	0x0	
0x0064	31:30	IP_0x7C	RW	0x1	Priority mapping value of IPv4 TOS or IPv6 TC field
	29:28	IP_0x78	RW	0x1	Bits [7:2] map queue priority, but bits [1:0] are ignored.
	27:26	IP_0x74	RW	0x1	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority
	25:24	IP_0x70	RW	0x1	
	23:22	IP_0x6C	RW	0x1	
	21:20	IP_0x68	RW	0x1	
	19:18	IP_0x64	RW	0x1	
	17:16	IP_0x60	RW	0x1	
	15:14	IP_0x5C	RW	0x1	
	13:12	IP_0x58	RW	0x1	
	11:10	IP_0x54	RW	0x1	
	9:8	IP_0x50	RW	0x1	
	7:6	IP_0x4C	RW	0x1	
	5:4	IP_0x48	RW	0x1	
	3:2	IP_0x44	RW	0x1	
	1:0	IP_0x40	RW	0x1	

Offset	Bit	Bit Name	Type	Reset	Description
0x0068	31:30	IP_0xBC	RW	0x2	Priority mapping value of IPv4 TOS or IPv6 TC field
	29:28	IP_0xB8	RW	0x2	Bits [7:2] map queue priority, but bits [1:0] are ignored.
	27:26	IP_0xB4	RW	0x2	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority
	25:24	IP_0xB0	RW	0x2	should be mapped to value of these bits.
	23:22	IP_0xAC	RW	0x2	
	21:20	IP_0xA8	RW	0x2	
	19:18	IP_0xA4	RW	0x2	
	17:16	IP_0xA0	RW	0x2	
	15:14	IP_0x9C	RW	0x2	
	13:12	IP_0x98	RW	0x2	
	11:10	IP_0x94	RW	0x2	
	9:8	IP_0x90	RW	0x2	
	7:6	IP_0x8C	RW	0x2	
	5:4	IP_0x88	RW	0x2	
	3:2	IP_0x84	RW	0x2	
	1:0	IP_0x80	RW	0x2	
0x006C	31:30	IP_0xFC	RW	0x3	Priority mapping value of IPv4 TOS or IPv6 TC field
	29:28	IP_0xF8	RW	0x3	Bits [7:2] map queue priority, but bits [1:0] are ignored.
	27:26	IP_0xF4	RW	0x3	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority
	25:24	IP_0xF0	RW	0x3	
	23:22	IP_0xEC	RW	0x3	
	21:20	IP_0xE8	RW	0x3	
	19:18	IP_0xE4	RW	0x3	
	17:16	IP_0xE0	RW	0x3	
	15:14	IP_0xDC	RW	0x3	
	13:12	IP_0xD8	RW	0x3	
	11:10	IP_0xD4	RW	0x3	
	9:8	IP_0xD0	RW	0x3	
	7:6	IP_0xCC	RW	0x3	
	5:4	IP_0xC8	RW	0x3	
	3:2	IP_0xC4	RW	0x3	
	1:0	IP_0xC0	RW	0x3	

8.22.20 Tag Priority Mapping

Address Offset: 0x0070 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:16	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read
15:14	TAG_0X07	RW	0x3	Priority mapping value of TAG.
13:12	TAG_0X06	RW	0x3	If pri[2:0] in the tag is equal to 0x07, the queue priority should be
11:10	TAG_0X05	RW	0x2	mapped to value of these bits.
9:8	TAG_0X04	RW	0x2	
7:6	TAG_0X03	RW	0x1	
5:4	TAG_0X02	RW	0x1	
3:2	TAG_0X01	RW	0x0	
1:0	TAG_0X00	RW	0x0	

8.22.21 Service Tag

Address Offset: 0x0074 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:16	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read
15:0	SERVICE_TAG	RW	0x88A8	Service tag. These bits are used to recognize double tagged packets at ingress and inserts double tags on egress.

8.22.22 CPU Port

Address Offset: 0x0078 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset Description		
31:9	RES	RO	0x0	0x0 Reserved. Must be written with zero. Contains zeros when read	
8	CPU_PORT_EN	RW	0x0	Used to e	enable the CPU port
				0	No CPU is connected to switch
				1	CPU is connected to port0
7:4	MIRROR_PORT_ NUM	RW	0xF	OxF Port number which packet should be mirrored to. 0 is port0, 1 i port1,etc. If the value is more than 4, no mirror port is connected to the switch	
3:0	RES	RO	0x0	Reserved	l. Must be written with zero. Contains zeros when read

8.22.23 MIB Function 0

Address Offset: 0x0080 Access: Read/Write Reset: See field Description

Bit	Bit Name	Туре	Reset	Description	
31	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read	
30	MIB_EN	RW	0x0	Set to 1 to enable the MIB count	
				If this bit set to zero, the MIB module will not count.	
29:27	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read	
26:24	MIB_FUNC	RW	0x0	Used to set the MIB counters	
				000 No operation	
				001 Flush all counters for all ports	
				011 Capture all counters for all ports and auto-cast to CPU port	
23:18	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read	
17	MIB_BUSY	RW	0x0	Configures the MIB setting when busy	
				0 MIB module is busy now, and cannot access another new	
				1 MIB module is empty now, and can access new command	
16	MIB_AT_ HALF_EN	RW	0x1	MIB auto-cast enable due to half flow. If this bit is set to 1, MIB would be auto-cast when any counter's highest bit count to 1.	
15:0	MIB_TIMER	RW	0x15	MIB auto-cast timer. If these bits are set to zero, MIB will not automer is set in multiples of 8.4 ms,	

8.22.24 MDIO Control

Address Offset: 0x0098 Access: Read/Write

Bit	Bit Name	Type	Description	
31	MDIO_BUSY	RW	Set to 1 if the internal MDIO interface is busy.	
			This bit should be set to 1 when CPU reads or writes PHY register through the internal MDIO interface, and should be cleared after hardware finish the command.	
30	MDIO_MASTER_ EN	RW	Set to 1 to use the MDIO master to configure the PHY register. MDC should be changed to internal MDC to PHY.	
29:28	RES	RO	Reserved. Must be written with zero. Contains zeros when read	
27	MDIO_CMD	RW	Denotes the current MDIO command	
			0 Write	
			1 Read	
26	MDIO_SUP_PRE	RW	Set to 1 to enable suppose preamble	
25:21	PHY_ADDR	RW	PHY address	
20:16	REG_ADDR	RW	PHY register address	
15:0	MDIO_DATA	RW	When write, these bits are data written to the PHY register. When read, these bits are data read out from the PHY register.	

8.22.25 LED Control

Address Offset: 0x00B0, 0x00B4, 0x00B8,

0x00BC

Access: Read/Write Reset: See field description This register can be reset by hardware only.

Offset	Bit	Bit Name	Type	Reset	Description
0x00B0	31:16	LED_CTRL _RULE_1	RW	0XC935	WAN port LED_LINK1000n_4 control rule
	15:0	LED_CTRL _RULE_0	RW	0xC935	LAN port LED_LINK1000n_[3:0] control rule
0x00B4	31:16	LED_CTRL _RULE_3	RW	0xCA35	WAN port LED_LINK100n_4 control rule
	15:0	LED_CTRL	RW	0xCA35	LAN port LED_LINK100n_[3:0] control rule
0x00B8	31:16	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros
	15:0	MAC_LED _CTRL_RULE			[15:14] only control pattern enable for port0, other
0x00BC	31:26	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros
	25:24	LED_PATTERN			
	23:22	LED_PATTERN			
	21:20	LED_PATTERN			
	19:18	LED_PATTERN			
	17:16	LED_PATTERN			
	15:14	LED_PATTERN			
	13:12	MAC_LED_ PATTERN_EN_6			
	11:10	MAC_LED_PATTE RN_EN_5	RW	0x3	LED control pattern for MAC5
	9:2	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.
	1:0	BLINK_HIGH_ TIME	RW	0xCF35	When the LED is blinking, these bits determine the LED light time 00 50% of blinking period. 250 ms for 2 Hz, 125 ms for 4 Hz, 62.5 ms for 8 Hz 01 12.5% 10 25% 11 75%

8.23 Port Control Registers 0x0100-0x0124

Table summarizes the port control registers.

Table 8-27. Port Control Registers Summary

Port	Offset	Name	Page
Port 0	0x0100-0x01FC	Total Port O Control Memory Allocation	*
	0x0100	Port Status	page 384
	0x0104	Port Control	page 385
	0x0108	Port-Based VLAN	page 387
			page 388
	0x0110	Priority Control	page 390
	0x0114	Storm Control	page 390
	0x0118	Queue Control	page 391
	0x010C, 0x011C, 0x0120		page 392
Port 1	0x0200-0x01FC	Total Port 1 Control Memory Allocation	1
			page 384
			page 385
			page 387
			page 390
			page 390
			page 391
	0x020C, 0x021C, 0x0220		page 392
Port 2	0x0300-0x03FC	Total Port 2 Control Memory Allocation	
			page 384
			page 385
			page 387
			page 390
			page 390
			page 391
	0x030C, 0x031C, 0x0320		page 392
Port 3	0x0400-0x04FC	Total Port 3 Control Memory Allocation	
			page 384
			page 385
			page 387
			page 390
			page 390
	0x0418	Queue Control	page 391
	0x040C, 0x041C, 0x0420	Rate Limits	page 392
Port 4	0x0500-0x05FC	Total Port 4 Control Memory Allocation	
	0x0500	Port Status	page 384
	0x0504	Port Control	page 385
	0x0508	Port-Based VLAN	page 387
	0x0510	Priority Control	page 390
	0x0514	Storm Control	page 390
	0x0518	Queue Control	page 391
	0x050C, 0x051C, 0x0520	Rate Limits	page 392

Table 8-27. Port Control Registers Summary (continued)

Port	Offset	Name	Page
Port 5	0x0600-0x06FC	Total Port 5 Control Memory Allocation	
	0x0600	Port Status	page 384
	0x0604	Port Control	page 385
	0x0608	Port-Based VLAN	page 387
	0x0610	Priority Control	page 390
	0x0614	Storm Control	page 390
	0x0618	Queue Control	page 391
	0x060C, 0x061C, 0x0620	Rate Limits	page 392

8.23.1 Port Status

Address Offset: Port 0: 0x0100, Port 1 Port 3: 0x0400, Port 4 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
12	FLOW_LINK_EN	RW	0x1	PHY link mode enable.
				0 Enable MAC flow control. Configures auto-negotiation with
11	LINK_ASYN_			
	PAUSE_EN			
10	LINK_PAUSE_ EN			
9	LINK_EN	RW	0x1	PHY link mode enable
				1 Enable PHY link status to configure the MAC
8	LINK	RO	0x0	Link status
7	TX_HALF_ FLOW_EN	RW	0x1	Set to 1 to enable flow control, transmitting in half-duplex mode
6	DUPLEX_MODE	RW	0x0	Duplex mode
				0 Half-duplex mode
				1 Full-duplex mode
5	RX_FLOW_EN	RW	0x0	Enables RXMAC Flow Control
4	TX_FLOW_EN	RW	0x0	Enables TXMAC Flow Control
3	RXMAC_EN	RW	0x0	RXMAC enable
2	TXMAC_EN	RW	0x0	TXMAC enable
1:0	SPEED	RW	0x0	Speed mode
				00 10 Mbps
				01 100 Mbps
				10 1000 Mbps
				11 Error speed mode

8.23.2 Port Control

Address Offset:

Port 0: 0x0104, Port 1: 0x0204 Port 2: 0x0304, Port 3: 0x0404, Port 4: 0x0504, Port 5: 0x0604

Bit	Bit Name	Туре	Reset	Description	
31:24	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
23	EAPOL_EN	RW	0x0	Set to 1 so hardware acknowledges 802.1x frames, and sends a frame copy, or redirects to CPU controlled by EAPAL_REDIRECT_EN	
22	ARP_LEAKY_EN	RW	0x0 Sets the VLAN rule for ARP frames entering VLANs		
				1 If the MAC receives an ARP frame from this port, it can cross all VLANs (including port base VLAN and 802.1q)	
21	IGMP_LEAVE_EN	RW	0x0	Set to 1 to enable IGMP/MLD fast leave	
20	IGMP_JOIN_EN	RW	0x0	Set to 1 to enable MLD hardware join	
19	DHCP_EN	RW	0x0	Set to 1 to enable acknowledgement of DHCP frames	
18	IPG_DEC_EN	RW	0x0	Set to 1 mac will decrease two bytes of IPG when sending out	
17	ING_MIRROR_EN	RW	0x0	Ingress port mirror. If this bit is set to 1, all packets received from	
16	EG_MIRROR_EN	RW	0x0	0 Egress port mirror. If this bit is set to 1, all packets send out through this port should be copied to the mirror port.	
15	RES	RW	0x0	0x0 Reserved. Must be written with zero. Contains zeros when read	
14	LEARN_EN	RW	0x1	Enable learn operation. Set to 1 to enable the lookup module to learn new address in the	
13	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
12	MAC_LOOP_	RW	0x0	Set to 1 to enable MAC loop back at MII interface	
11	HEAD_EN	RW	0x0	Enables frames transmitted out and received to add the Atheros header. If this bit is set to 1, all frames transmitted and received	
10	IGMP_MLD_EN	RW	0x0	IGMP/MLD snooping enable. If this bit is set to 1'b1, the port will examine all received frames and copy or redirect to CPU port controlled by IGMP_COPY_EN.	
9:8	EG_VLAN_MODE	RW	0x0	Egress VLAN mode.	
				00 Egress transmits frames unmodified.	
				01 Egress transmits frames without VLAN	
				10 Egress transmits frames with VLAN	
7	LEARN_ONE_	RW	0x0	Used to configure the learning mode for source addresses	
	LOCK			0 Normal learning mode	
				1 This port should not learn the source address, except the first packet, and locked the address to static.	

Bit	Bit Name	Туре	Reset	Description	
6	PORT_LOCK_EN	RW	0x0	Set to 1 to enable port lock. All packets received with a source address not in the ARL table or the source address is in the AR table but no port members are the source port will redirect packets to the CPU or be dropped. Controlled by LOCK_DROP_EN.	
5	LOCK_DROP_EN	RW	0x0	Used to configure the port lock	
				0 If the source address is not in the ARL table or the source address is in the ARL but no port member is the source port, the packet should be redirected to the CPU when PORT_LOCK_EN is set to 1.	
				If the source address is not in the ARL table or the source address is in the ARL but no port member is the source port, the packet will be dropped when PORT_LOCK_EN is	
4:3	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read	
2:0	PORT_STATE	RW	RW 0x4	Port State. These bits are used to manage the port to determine what kind of frames are allowed to enter or leave the port for simple bridge loop detection or 803.1D Spanning Tree.	
				000 Disable mode. The port is completely disabled, and cannot	
				001 Blocking Mode. In this state, the port forwards received management frames to the designed port only. Any other frames cannot be transmitted or received by the port, and	
				010 Listening Mode. In this state, the port will receive and transmit only management frames, but without learning any source address. Any other frames cannot be	
				011 Learning Mode. In this state, the port will learning all source addresses, and discard all frames except management frames, and only management frames are	
				Forward Mode. In this state, the port will learning all source addresses, transmit and receive all frames as	

8.23.3 Port-Based VLAN

Address Offset:

Port 0: 0x0108, Port 1: 0x0208 Port 2: 0x0308, Port 3: 0x0408, Port 4: 0x0508, Port 5: 0x0608

Bit	Bit Name	Туре	Reset	Description
31:29	ING_PORT_PRI	RW	0x0	Port default priority for received frames.
28	FORCE_PORT_ VLAN_EN	RW	0x0	Set to 1 to force enable using port-base VLANs. If this bit is set to 1, use port-base VLANs and use this table to determine the destination port.
27:16	PORT_DEFAULT_	RW	0x1	Port Default VID. This field is used as Tagged VID added to untagged frames when transmitted from this port.
15	PORT_CLONE_EN	RW	0x0	Used to set the port cloning mechanism
14	PORT_VLAN_ PROP_EN	RW	0x0	Set to 1 to enable the port-base VLAN propagation function.
13	PORT_TLS_MODE	RW	0x0	Used to set the port TLS mode
12	FORCE_DEFAULT _VID_EN	RW	0x0	Used to set the default VID for received frames 1 Force using port default VID and priority for received frames, when 802.1Q mode is not disabled.
11:0	PORT_DEFAULT_	RW	0x1	Port Default VID. This field is used to add Tagged VIDs to untagged frames when received from this port.

8.23.4 Port-Based VLAN 2

Address Offset:

Port 0: 0x010C, *Port 1*: 0x020C *Port 2*: 0x030C, *Port 3*: 0x040C, *Port 4*: 0x050C, *Port 5*: 0x060C

Bit	Bit Name	Reset	Description				
31:30	802.1Q_MODE	0x0	Used to set the 802.1Q mode for this port				
			00 802.1Q disable. Use port base VLAN only.				
			01 Fallback. Enable 802.1Q for all received frames. Do not discard ingress				
			membership violations and use the port base VLAN if the frame's VID is				
			not contained in the VLAN Table.				
			10 Check. Enable 802.1Q for all received frames. Do not discard ingress membership violations but discard frames when the VID is not contained				
			11 Secure. Enable 802.1Q for all received frames. Discard frames with ingress membership violations or whose VID is not contained in the VLAN Table.				
29	CORE_PORT_EN	0x0	Used to enable core ports				
28:27	ING_VLAN_	0x0	Use to configure types of packets that can be received in the VLAN				
	MODE		00 All frames can be received, including untagged and tagged				
			10 Only untagged frames can be received by this port, including no VLAN				
26:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				
23	VLAN_PRI_PRO _EN						
22:16	PORT_VID_ MEM		Each bit restricts to which port frames can be sent. To send frames to port0, bit 16 must be set to 1, etc. These bits are set to one after reset except the port's bit.				
15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				
14	UNI_LEAKY_EN	0x0	Enable unicast frame leaky VLANs				
			Also use this bit and LEAKY_EN bit in the ARL table to control unicast leaky VLAN. If the MAC receives unicast frames from this port, which should forward packets as a leaky VLAN, the frame could be switched to the destination port defined in ARL table and cross all VLANs (including port base and 802.1q).				
			0 Only UNI_LEAKE_EN controls unicast frame leaky VLANs				
			1 Only frames with a destination address (DA) in the ARL table with the LEAKY_EN bit is set to 1 can be forwarded as leaky VLAN. Ignore UNI_LEAKY_EN.				
13	MULTI_LEAKY_ EN	0x0	LEAKY_EN bit in the ARL table to control unicast leaky VLAN. If the MAC receives multicast frames from this port which should forward as leaky VLAN, the frame could be switched to a destination port defined in the AR table, and cross all VLANs (include port-base VLANs and 802.1q).				
			0 Only MULTI_LEAKE_EN controls multicast frame leaky VLANs				
			1 Only frames with the destination address (DA) in the ARL table with LEAKY_EN bit set to 1, can be forwarded as leaky VLANs. Ignore MULTI_LEAKE_EN.				
12:0	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				

8.23.5 Rate Limit

Address Offset:

Port 0: 0x0110, Port 1: 0x0210 Port 2: 0x0310, Port 3: 0x0410, Port 4: 0x0510, Port 5: 0x0610

Bit	Bit Name	Туре	Reset	Description	
31:24	ADD_RATE_BYTE	RW	0x18	Byte number should be added to a frame when calculating the rate limit. The default is 24 bytes for IPG, preamble, CRC and SFD.	
23	EGRESS_RATE_EN	RW	0x0	Enable port-base rate limit. Rate should be set at EG_PRI3_RATE.Enables port-based rate limit. EG_PRI3_RATE is duplicated for port-based and queue-Also enables port-based max burst size. Max burst size should	
				(Enables port-based max burst size. MAX_BURST_SIZE_PRI3 is duplicated for port based and queue based	
22	EGRESS_MANAGE_ RATE_EN	RW	0x0	Enables management frames to be calculated to the egress rate	
21	INGRESS_MANAGE _RATE_EN	RW	0x0	Enables management frames to be calculated to the ingress	
20	INGRESS_MULTI_ RATE_EN	RW	0x0	Enables calculating the ingress rate limit of multicast frames in which the destination address (DA) can be found in ARL	
19:15		RO	0x0	Reserved. Must be written with zero. Contains zeros when	
14:0	ING_RATE	RW	0x7FFF	Ingress Rate Limit for all priorities. The rate is limited to	
				Default 15'h7FFF is used to disable rate limit for egress priority 2. If these bits are set to 15'h0, no frame should be	

8.23.6 Priority Control

Address Offset:

Port 0: 0x0114, *Port 1*: 0x0214 *Port 2*: 0x0314, *Port* 3: 0x0414, *Port* 4: 0x0514, *Port* 5: 0x0614

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description	
31:20	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
19	PORT_PRI_ EN	0x1	Set to 1 so port base priority can be used for QOS.	
18	DA_PRI_EN	0x0	Set to 1 so DA priority can be used for QOS.	
17	VLAN_PRI_EN	0x0	Set to 1 so VLAN priority can be used for QOS.	
16	IP_PRI_EN	0x0	Set to 1 for TOS/TC to be used for QOS.	
15:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
7:6	DA_PRI_SEL	0x0	DA priority selected level for QOS.	
			The others are selected by these bits. If these bits are set to zero, DA priority is selected after header. If these bits are set to n, DA priority is	
5:4	VLAN_PRI_SEL	0x1	VLAN priority selected level for QOS.	
3:2	IP_PRI_SEL	0x2	IP priority selected level for QOS.	
1:0	PORT_PRI_SEL	0x3	Port-base priority selected level for QOS	

8.23.7 Storm Control

Address Offset:

Port 0: 0x0118, **Port 1** Port 3: 0x0418, Port 4 Access: Read/Write

Bit	Bit Name	Descrip	Description				
31:11	RES	Reserved	d. Must be written with zero. Contains zeros when read.				
10	MULTI_STORM_EN	Set to 1 t	to enable unknown multicast frames to be calculated towards storm				
9	UNI_STORM_EN	Set to 1 t	o enable unknown unicast frame to be calculated towards storm control				
8	BROAD_STORM_EN	Set to 1 t	to enable broadcast frames to be calculated towards storm control				
7:4	RES	Reserved	Reserved. Must be written with zero. Contains zeros when read.				
3:0	STORM_RATE	Storm control rate					
		0x0	Storm control disable				
		0x1	1K frames per second				
		0x2	2K frame per second				
		0x3	4K frame per second				
		0x4	8K frame per second				
		0x5	16K frame per second				
		0x6 32K frame per second					
		0x7 64K frame per second					
		0xB	1M frame per second				

8.23.8 Queue Control

Address Offset:

Port 0: 0x011C, Port 1: 0x021C, Port 2: 0x031C, Port 3: 0x041C, Port 4: 0x051C, Port 5: 0x061C

Bit	Bit Name	Туре	Reset	Descrip	otion
31:28	ING_BUF_NUM	RW	Port 0:		number is times of 4
	_		0x6	0x0	0
			Other	0x1	No more than 4
			Ports:	0x2	No more than 8
			0x2	•••	
				0xF	No more than 60
27:26	RES	RO	0x0	Reserve	ed. Must be written with zero. Contains zeros when read.
25	PORT_QUEUE_ CTRL_EN	RW	0x1	Set to 1	to enable using PORT_QUEUE_NUM to control queue
24	PRI_QUEUE_ CTRL_EN	RW	0x1	Set to 1	to enable using PRI*_QUEUE_NUM to control queue
23:22	RES	RO	0x0	Reserve	ed. Must be written with zero. Contains zeros when read.
21:16	PORT_QUEUE_ NUM	RW	0x2A	Most bu	uffers can be used for this port. Buffer number is set in
15:12	PRI3_QUEUE_ NUM	RW	0x8	Most bu	uffer can be used for priority 3 queue. Buffer number is set
11:8	PRI2_QUEUE_ NUM	RW	0x8	Most bu	affer can be used for priority 2 queue. Buffer number is set
				0xF	No more than 60
7:4	PRI1_QUEUE_ NUM	RW	0x8	in mult	affer can be used for priority 1 queue. Buffer number is set iples of 4.
				0x0	0
				0x1	No more than 4
				0x2	No more than 8
				•••	
			_	0xF	No more than 60
3:0	PRIO_QUEUE_	RW	0x8	Most bu	affer can be used for priority 0 queue. Buffer number is set
	NUM			0x0	iples of 4.
				0x0 0x1	No more than 4
					No more than 4 No more than 8
				0x2	INO INOIE THAN 8
				0xF	 No more than 60
				UXF	INO ITIOTE ITIAIT OU

8.23.9 Rate Limit 1

Address Offset:

Port 0: 0x0120, *Port* 1: 0x0220, *Port* 2: 0x0320, Port 3: 0x0420, Port 4: 0x0520, Port 5: 0x0620

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
30:16	EG_PRI1_RATE	RW	0x7FFF	0x7FFF Egress Rate Limit for priority 1. Rate is limited to multiples of 32 Kbps. Default 0x7FFF is for disable rate limit for egress priority 2. If these bits are set to 0x0, no priority 1 frame should be send out	
15	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
14:0	EG_PRI0_RATE	RW	0x7FFF	Default 0x7FFF is for disable rate limit for egress priority 2. If these bits are set to 0x0, no priority 0 frame should be send out	

8.23.10 Rate Limit 2

Address Offset:

Port 0: 0x0124, Port 1 Port 3: 0x0424, Port 4 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
30:16	EG_PRI3_RATE	RW	0x7FFF	Egress Rate Limit for priority 3.
				Default $0x7FFF$ is for disable rate limit for egress priority 2. If these bits are set to $0x0$, no priority 3 frame should be send out
15	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
14:0	EG_PRI2_RATE	RW	0x7FFF	Egress Rate Limit for priority 2. Rate is limited to times of 32 kbps. Default 0x7FFF is for disable rate limit for egress priority 2. If these bits are set to 0x0, no priority 2 frame should be send out from this port.

8.23.11 Rate Limit 3

Address Offset:

Port 0: 0x0128, *Port 1*: 0x0228, *Port 2*: 0x0328, *Port 3*: 0x0428, *Port 4*: 0x0528, *Port 5*: 0x0628

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Туре	Description		
31:3	RES	RO	Reserved. Must be written with zero. Contains zeros when read.		
2:0	EG _TIME_SLOT	RW	Egress rate li	mit time slot control register	
			0x0 1/1	28 ms	
			0x1 1/64 ms		

8.23.12 Robin

Address Offset: **Port 0:** 0x012C, **Port 3:** 0x042C, Access: Read/Write

Reset: See field description

Bit	Bit Name	Type	Reset	Description	
31	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
30:29	WEIGHT_PRI_ CTRL				
				01 Only the highest queue uses strict priority, others use	
				The highest two queues use strict priority, other two queues use weighted-fair queuing scheme.	
				All queues use weighted-fair queuing scheme which is defined by WRR_PRI3/2/1/0.	
28:24	WRR_PRI3	RW	0x8	Weighted round-robin (WRR) setting for priority 3	
23:21	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
20:16	WRR_PRI2	RW	0x4	WRR setting for priority 2	
15:13	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
12:8	WRR_PRI1	RW	0x2	WRR setting for priority 1	
7:5	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.	
4:0	WRR_PRI0	RW	0x1	WRR setting for priority 0	

8.24 PHY Control Registers

Table 8-26 summarizes the PHY Control registers.

Table 8-28. PHY Register Summary

Offset	Description	Page
0	Control	page 395
1	Status	page 396
2	PHY Identifier	page 396
3	PHY Identifier 2	page 396
4	Auto-Negotiation Advertisement	page 397
5		page 398
6		page 399
16		page 399
17		page 400
18		page 401
19		page 402
21		page 403
22		page 403
28		page 403

8.24.1 Control

Address Offset: 0x00 Access: See field description

Bit	Bit Name	Access	Description
15	RESET	RW/ SC	PHY Software Reset. Writing a 1 to this bit causes the PHY the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately.
			0 Normal operation
			1 PHY reset
14	LOOPBACK	RW	When loopback is activated, the transmitter data presented on TXD is looped back to RXD internally. Link is broken when loopback is enabled.
13	SPEED_ SELECTION		
12	AUTO_ NEGOTIATION		
11	POWER_DOWN	RW	When the port is switched from power down to normal operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0.15) and Restart Auto-Negotiation (0.9) are not set by the user.
10	ISOLATE	RW	The MII output pins are tri-stated when this bit is set to 1. The MII inputs
9	RESTART_AUTO _ NEGOTIATION		Auto-Negotiation automatically restarts after hardware or software reset
	DUDLEY MODE	DIAZ /	1 Restart Auto-Negotiation Process
8	DUPLEX_MODE	RW/ SC	Selects the flow control mode 0 Half Duplex
			0 Half Duplex 1 Full Duplex
7	COLLISION_	RW	Setting this bit to 1 will cause the COL pin to assert whenever the TX_EN
,	TEST	1000	pin is asserted.
			0 Disable COL signal test
			1 Enable COL signal test
6	SPEED_	RW	Used to select the speed mode
	SELECTION (MSB)		00 10 Mbps
	, ,		01 100 Mbps
5:0	RES	RO	11:10 Reserved

8.24.2 Status

Address Offset: 0x01 Access: See field description Reset: See field description

Bit	Bit Name	Access	Reset	Description
15	100BASE_T4	RO	0x0	100BASE-T4. This protocol is not available. 0 = PHY not able to perform 100BASE-T4
14	100BASE_TX	RO	0x1	Capable of 100-Tx Full Duplex operation
13	10MBPS_FULL_DUPLEX	RO	0x1	Capable of 100-Tx Full Duplex operation
12	10MBPS_FULL_ DUPLEX	RO	0x1	Capable of 100-Tx Full Duplex operation
11	100BASE_T2 _HALF_DUPLEX	RO	0x1	Capable of 100-Tx Full Duplex operation
10	100BASE_T2 _FULL_DUPLEX	RO	0x0	Not able to perform 100BASE-T2
9	100 T2_HALF_DUPLEX			
8:7				
6	MF_PREAMBLE_ SUPPRESSION	RO	0x1	PHY accepts management frames with preamble
5	AUTO-NEGOTIATION_ COMPLETE	RO	0x0	Denotes the current status of the auto-negotiation process
4	REMOTE_FAULT	RO/		
3	AUTO-NEGOTIATION_	RO	0x1	Denotes the ability of the PHY to perform auto-negotiation
	ABILITY			0 PHY unable to perform auto-negotiation
2	LINK_STATUS	RO/LL	0x0	This register bit indicates whether the link was lost since the last read. For the current link status, read register bits
1	JABBER_DETECT	RO/		
0	EXTENDED_ CAPABILITY	RO	0x1	Denotes the availability of the register capabilities

8.24.3 PHY Identifier

Address Offset: 0x02 Access: Read-Only Reset: 0x004D

Bit	Bit Name	Description
15:0	Organizationally Unique Identifier Bit 3:18	Organizationally Unique Identifier bits [18:3]

8.24.4 PHY Identifier 2

Address Offset: 0x03 Access: Read-Only Reset: 0xD041

Bit	Bit Name	Description
15	OUI LSB Model Number Revision Number	Organizationally Unique Identifier bits [24:19]

8.24.5 Auto-Negotiation Advertisement

Address Offset: 0x04 Access: See field description Reset: 0x0

Bit	Bit Name	Access	Reset	Description
15	RES	RW	0x0	Always 0
14	ACK	RO	0x0	Must be 0
13	REMOTE_ FAULT	RW	0x0	Used to set the remote fault bit
12	RES	RO	0x0	Always 0
11	ASYMMETRIC_P AUSE	RW	0x1	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect until any one of the following occurs: Software reset is asserted (bit [15]) Restart auto-negotiation is asserted (bit [9]) Power down (register bit [11]) transitions from power down to
10	PAUSE	RW	0x1	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect
				Power down (register bit [11]) transitions from power down to
9	100BASE-T4	RO	0x0	Not able to perform 100BASE-T4
8	100BASE-TX	RW	0x1	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect
				Power down (register bit [11]) transitions from power down to
7	100BASE_TX _HALF _DUPLEX	RW	0x1	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect
				Power down (register bit [11]) transitions from power down to
6	10BASE_ TX_FULL _DUPLEX	RW	0x1	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect until any one of the following occurs: ■ Software reset is asserted (bit [15]) ■ Restart Auto-Negotiation is asserted (bit [9]) ■ Power down (register bit [11]) transitions from power down to normal operation ■ Link goes down
5	10BASE _TX_HALF_ DUPLEX	RW	0x1	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: Software reset is asserted (bit [15]) Restart Auto-Negotiation is asserted (bit [9]) Power down (register bit [11]) transitions from power down to normal operation Link goes down
4:0	SELECTOR_ FIELD	RO	0x00001	Selector field mode: 00001 = 802.3

8.24.6 Link Partner Ability

Address Offset: 0x05 Access: Read-Only

Bit	Bit Name	Description			
15	RES	Always 0			
14	ACK	Acknowledge Received code word bit [14]			
		0 Link partner does not have Next Page ability			
		1 Link partner received link code word			
13	REMOTE_ FAULT	Remote fault Received code word bit [13]			
12	TECHNOLOGY _ABILITY				
11	ASYMMETRIC_ PAUSE				
10	PAUSE	Technology ability field			
9	100BASE_T4	Technology ability field			
	100211012_11				
8	100BASE _TX_FULL _DUPLEX				
7	100BASE_TX _HALF				
	_DUPLEX	0 Link partner is not 100BASE-TX half-duplex capable			
		1 Link partner is 100BASE-TX half-duplex capable			
6	10BASE_TX _FULL	Technology ability field Received code word bit [6]			
	_DUPLEX	0 Link partner is not 10BASE-T full-duplex capable			
		1 Link partner is 10BASE-T full-duplex capable			
5	10BASE_TX _HALF _DUPLEX	Technology ability field Received code word bit [5]			
	_DUFLEX	0 Link partner is not 10BASE-T half-duplex capable			
		1 Link partner is 10BASE-T half-duplex capable			
4:0	SELECTOR_ FIELD	Selector field Received code word bit [4:0]			

8.24.7 Auto-negotiation Expansion

Address Offset: 0x06 Access: See field description

Reset: 0x0

Bit	Bit Name	Access	Description	
15:5	RES	RO	Reserved. Must be 0.	
4	PARALLEL_	RO/LH	Used to denote the parallel detection fault	
	DETECTION_ FAULT		0 No fault has been detected	
			1 A fault has been detect	
3:1	RES	RO	Always 0	
0	LINK_PARTNER_	RO	Used to denote the auto negational capability of the link partner	
	NEGOTIATION_			

8.24.8 Function Control

Address Offset: 0x10 Access: See field description Reset: See field description

Bit	Bit Name	Access	Reset	Description	
15:12	RES	RO	0x0	Always 0	
11	ASSERT_CRS_ON _TRANSIT				
10					
9:8	ENERGY_ DETECT				
6:5	MDI_ CROSSOVER_ MODE	RW	11	Changes to these bits are disruptive to the normal operation; therefore any changes to these registers must be followed by a	 l
				10 Reserved11 Enable automatic crossover for all modes	
4:3	RES	RO	0x0	Always 0	
2	SQE_TEST	RW	0x0	SQE test is automatically disabled in full-duplex mode	
				0 SQE test disabled	
				1 SQE test enabled	
1	POLARITY_ REVERSAL	RW	0x0	If polarity is disabled, then the polarity is forced to be normal 10BASE-T.	in
				0 Polarity Reversal Enabled	
				1 Polarity Reversal Disabled	
0	DISABLE_	RW	0x0	Jabber has effect only in 10BASE-T half-duplex mode.	
	JABBER			0 Enable jabber function	
				1 Disable jabber function	

8.24.9 PHY Specific Status

Address Offset: 0x11 Access: Read-Only

Bit	Bit Name	Description
15:14	SPEED	These status bits are valid when auto-negotiation is completed or auto-negotiation is disabled.
		00 10 Mbps
		01 100 Mbps
		10 Reserved
		11 Reserved
13	DUPLEX	This status bit is valid only if auto-negotiation is completed or auto-negotiation is
15	DOLLEX	disabled.
12	PAGE_RECEIVED (Real Time)	
11	SPEED_AND_	
11	DUPLEX_ RESOLVED	
10	LINK (Real Time)	Denotes the link status in real time
	,	
9:7	RES	Always 0
6	MDI_	This status bit is valid only when auto-negotiation is completed or auto-
	CROSSOVER_	
	STATUS	
5	WIRESPEED_	
	DOWNGRADE	
4	ENERGY_	
	DETECT_STATUS	
3	TRANSMIT_ PAUSE_ENABLE	This is a reflection of the MAC pause resolution. This bit is for information
		This status bit is valid only when Auto-Negotiation is completed or Auto-Negotiation is disabled.
		0 Transmit pause disabled
		1 Transmit pause enabled
2	RECEIVE_PAUSE _ENABLE	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device.
		This status bit is valid only when Auto-Negotiation is completed or Auto-Negotiation is disabled.
		0 Receive pause disabled
		1 Receive pause enabled
1	POLARITY	Denotes the status of the polarity in real time
	(Real Time)	0 Normal
		1 Reversed
0	JABBER	Denotes if the Jabber is present or not
	(Real Time)	0 No jabber
		1 Jabber

8.24.10 Interrupt Enable

Address Offset: 0x12 Access: Read/Write

Bit	Bit Name	Description
15	AUTO-NEGOTIATION_	Auto negotiation error interrupt
	ERROR_INTERRUPT_	0 Interrupt disable
	ENABLE	1 Interrupt enable
14	SPEED_CHANGED	Speed change interrupt
	INTERRUPT ENABLE	0 Interrupt disable
		1 Interrupt enable
13	RES	Reserved
12	PAGE_RECEIVED_	
	INTERRUPT_ ENABLE	
11	AUTO-NEGOTIATION_	
	INTERUPT_ ENABLE	
10	LINK_STATUS_ CHANGED_INTERRUPT_	
	CHANGED_INTERROLI_	
	OLA (DOL EDDO)	
9	SYMBOL_ERROR_ INTERRUPT_ENABLE	
	INTERRECT I_ ENTERED	
	EALOR CARRIER	
8	FALSE_CARRIER_ INTERRUPT_ ENABLE	
7	FIFO_OVERFLOW/	
/	UNDERFLOW_	
	INTERRUPT_ENABLE	
6	MDI_CROSSOVER_CHAN	
U	GED_INTERRUPT_	
5		
J	DOWNGRADE_	0 Interrupt disable
	INTERRUPT_ ENABLE	1 Interrupt enable
4	ENERGY_DETECT_ INTERRUPT_ ENABLE	Energy detection interrupt
	INTERRECT I_ ENTIDEE	0 Interrupt disable
	DEC	1 Interrupt enable
3:2	RES	Always 00
1	POLARITY_CHANGED_ INTERRUPT_ENABLE	Polarity changed interrupt
		0 Interrupt disable
	TADDED INTERDITION	1 Interrupt enable
0	JABBER INTERRUPT_ ENABLE	Jabber interrupt
	2. (. 1000	0 Interrupt disable
		1 Interrupt enable

8.24.11 Interrupt Status

Address Offset: 0x13

Access: See field description

Bit	Bit Name	Access	Description
15	AUTO_ NEGOTIATION_ ERROR	RO, LH	An error is said to occur if MASTER/SLAVE does not resolve, parallel detect fault, no common HCD, or link does not come up after negotiation is completed.
			0 No Auto-Negotiation Error
			1 Auto-Negotiation Error
14	SSPEED_	RO/LH	Denotes if the speed has changed or not
	CHANGED		0 Speed not changed
			1 Speed changed
13	RES	RO/LH	Reserved
12	PAGE_ RECEIVED		
11	AUTO _NEGOTIATION _COMPLETED	RO	Denotes the current completion status of the auto-negotiation
10	LINK_STATUS_ CHANGED		
9	SYMBOL_ ERROR		
	ERROR		
8	FALSE_		
	CARRIER		
7	FIFO_ OVERFLOW/ UNDERFLOW	RO/LH	FIFO underflow or overflow error, not always implemented, always 0.
6	MDI_ CROSSOVER_ CHANGED		
5	WIRESPEED_		
	DOWNGRADE _INTERRUPT		0 No Wirespeed-downgrade.
			1 Wirespeed-downgrade detected
4	ENERGY_	RO/LH	Denotes the change in the Energy Detect status.
	DETECT_ CHANGED		Not implement, always 0.
	CITITOLD		0 No Energy Detect state change
	DEC	DO /I II	1 Energy Detect state changed
3:2	RES		Always 0
1	POLARITY_ CHANGED	KU/LH	Denotes if the polarity changed or not
	CILI I (GED		0 Polarity not changed
0	JABBER	PO/ILI	1 Polarity Changed Denotes if there is a jabber or not
U	JADDEK	KU/LH	0 No jabber
			1 Jabber
			1 Javvei

8.24.12 Receive Error Counter

Address Offset: 0x15 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
15:0		Counter will peg at 0xFFFF and will not roll over. (When RX_DV is valid, count RX_ER numbers)

8.24.13 Virtual Cable Tester Control

Address Offset: 0x16 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description			
15:10	RES	served			
9:8	MDI_PAIR_SELECT	Virtual Cable Tester™ Control registers. Use the Virtual Cable Tester Control Registers to select which MDI pair is shown in the Virtual Cable Tester Status			
7:1	RES	Always 0			
0	ENABLE_TEST	When set, hardware automatically disable this bit when VCT is done.			

8.24.14Virtual Cable Tester Status

Address Offset: 0x1C Access: See field description

Bit	Bit Name	Access	Description			
15:10	RES	RO	Reserved.			
9:8	STATUS	RO	The content of the Virtual Cable Tester Status Registers applies to the cable pair selected in the Virtual Cable Tester TM Control Registers.			
			00 Valid test, normal cable (no short or open in cable)			
			01 Valid test, short in cable for MDI pair 0/2. Open in cable for MDI pair 1/3			
			10 Valid test, open in cable for MDI pair 0/2. Short in cable for MDI pair 1/3			
			11 linkup state, no open or short in cable.			
7:0	DELTA_ TIME	RW	Delta time to indicate distance. Length = Delta_Time * 0.824			

9. Electrical Characteristics

9.1 Absolute Maximum Ratings

Table 9-1 summarizes the absolute maximum ratings and Table 9-2 lists the recommended operating conditions for the AR9341.

Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 9-1. Absolute Maximum Ratings

Symbol		Max Rating	Unit
V_{DD33}		-0.3 to 4.0	V
V_{DD25}		-0.3 to 3.0	V
V _{DD12}		-0.3 to 1.8	V
T _{store}		-65 to 150	°C
T_j			°C
ESD	Electrostatic Discharge Tolerance	TBD	V

9.2 Recommended Operating Conditions

Table 9-2. Recommended Operating Conditions

Symbol		Conditions	Min	Тур	Max	Unit
V_{DD33}		10%	2.97	3.3	3.63	V
V_{DD25}		5%	2.49	2.62	2.75	V
V _{DD12}		5%	1.14	1.2	1.26	V
AV _{DD12}		5%	1.14	1.2	1.26	V
AV _{DD20}	Voltage for Ethernet PHY ^[1]	_	1.9	2.0	2.15	V
V _{DD_DDR}	DDR1 I/O Voltage ^[1]	±5%	2.47	2.6	2.73	V
	DDR2 I/O Voltage ^[1]	±5%	1.71	1.8	1.89	V
D _{DR_VREF}	DDR1 Reference Level for SSTL Signals ^[2]	_	1.24	1.3	1.37	V
	DDR2 Reference Level for SSTL Signals ^[2]	_	0.86	0.9	0.95	V
T _{case}	Case Temperature	_	0	_	110	°C
Psi _{JT}	Thermal Parameter ^[3]		_	_	2.5	°C/W

^[1]Voltage regulated internally by the AR9341

^[2]Divide VDD_DDR voltage by two externally, see reference design schematic

^[3] The thermal parameter is for the 18x18 mm BGA package

9.3 General DC Electrical Characteristics

Table 9-3 lists the GPIO, SYS_RST_OUT_L DC electrical characteristics. GPIO11, GPIO16, GPIO17 are open drain.

These conditions apply to all DC characteristics unless otherwise specified:

 $T_{amb} = 25 \, ^{\circ}\text{C}, \, V_{dd25} = 2.62 \, \text{V}$

Table 9-3. GPIO, SYS_RST_OUT_L DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High Level Input Voltage	_	1.8	_	2.8	V
$V_{\rm IL}$	Low Level Input Voltage	_	-0.3	_	0.3	V
V _{OH}		_	2.2	_	2.8	V
V _{OL}		_	0	_	0.4	V
I_{IL}		_	_	_	15	μΑ
I _{OH}		_	_	_	8	mA
V _{IH}	High Level Input Voltage (GPIO11, GPIO16, GPIO17)	_	2.4	_	3.6	V
$V_{\rm IL}$	Low Level Input Voltage (GPIO11, GPIO16, GPIO17)	_	-0.3	_	0.3	V
V _{OH}	High Level Output Voltage (GPIO11, GPIO16, GPIO17)	_	2.4	_	3.6	V
V _{OL}	Low Level Output Voltage (GPIO11, GPIO16, GPIO17)	_	0	_	_	V
I_{IL}	Low Level Input Current (GPIO11, GPIO16, GPIO17)	_	_	_	7	μΑ
C_{IN}		_	_	3	_	pF

Table 9-4 lists the DDR1 DC electrical characteristics:

 $T_{amb} = 25 \, ^{\circ}C, V$

Table 9-4. DDR1 Interface DC Electrical Characteristics

Symbol		Conditions	Min	Тур	Max	Unit
V_{IH}	High Level Input Voltage		1.8	_	2.8	V
V_{IL}	Low Level Input Voltage	_	-0.3	_	0.3	V
V _{OH}	High Level Output Voltage	_	2.2	_	2.8	V
V _{OL}	Low Level Output Voltage	_	0	_	0.4	V
I_{IL}	Low Level Input Current	_	_	_	5	μΑ

Table 9-5 lists the DDR2 DC electrical characteristics:

 $T_{amb} = 25 \, ^{\circ}\text{C}, \, V_{DD_DDR} = 1.8 \, \text{V}$

Table 9-5. DDR2 Interface DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	High Level Input Voltage	_	1.2	_	2.1	V
$V_{\rm IL}$	Low Level Input Voltage	_	-0.3	_	0.3	V
V _{OH}	High Level Output Voltage	_	1.6	_	2.0	V
V _{OL}	Low Level Output Voltage	_	0	_	0.4	V
I_{IL}	Low Level Input Current	_	_	_	3	μΑ

9.4 25 MHz/40 MHz Clock Characteristics

When using an external clock, the XTALI pin is grounded and the XTALO pin should be driven with a square wave clock.

The internal circuit provides the DC bias of approximately 0.6 V. The peak to peak swing of the external clock can be between 0.3 V to 1.2 V. In general, larger swings and sharper edges will reduce jitter, but introduce the potential of high frequency spurious.

The phase noise of oscillator should be lower than –145 dBc at 100 KHz carrier offset.

Table 9-6. 25 MHz/40 MHz Clock Characteristics

Symbol		Conditions	Min	Тур	Max	Unit
V _{IH}		_	0.9	_	1.4	V
V _{IL}		_	-0.2	_	0.2	V
T _{DCycle}			40	50	60	%
T_{Rise}		_	_	_	2	ns
T_{Fall}	Clock Fall Time	_	_	_	2	ns

^[1] V_{IL} of -0.2 V is limited by the ESD protection diode. If V_{IL} is less than -0.2 V, the ESD diode turns on and protects the chip. However, V_{IL} can go as low as -0.7 V without damage so long as the DC current sourced by the pin is limited by an AC coupling capacitor.

9.5 Radio Characteristics

The following conditions apply to the typical characteristics unless otherwise specified:

$$V_{\rm dd2} = 1.2 V$$

$$V_{dd3} = 3.3V, T_{amb} = 25 \, ^{\circ}C$$

9.5.1 Receiver Characteristics

Table 9-7 summarizes the AR9341 receiver characteristics.

Table 9-7. Receiver Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F_{rx}	Receive input frequency range	5 MHz center frequency	2.412	_	2.472	GHz
NF	Receive chain noise figure (max gain)	_	_	TBD	_	dB
S _{rf}	Sensitivity					
	CCK, 1 Mbps		-80	-100	_	dBm
	CCK, 11 Mbps		-76	-91	_	
	OFDM, 6 Mbps		-82	-92	_	
	OFDM, 54 Mbps		-65	-77	_	
	HT20, MCS0, 1 stream, 1 Tx, 1 Rx		-82	-93	_	dBm
	HT20, MCS7, 1 stream, 1 Tx, 1 Rx		-64	-75	_	
	HT20, MCS8, 2 stream, 2 Tx, 2 Rx		-82	-92	_	
	HT20, MCS15, 2 stream, 2 Tx, 2 Rx		-64	-73	_	
	HT40, MCS0, 1 stream, 1 Tx, 1 Rx	_	TBD	TBD	_	dBm
	HT40, MCS7, 1 stream, 1 Tx, 1 Rx		TBD	TBD	_	
	HT40, MCS8, 2 stream, 2 Tx, 2 Rx		TBD	TBD	_	
	HT40, MCS15, 2 stream, 2 Tx, 2 Rx		TBD	TBD	_	
IP1dB	Input 1 dB compression (min. gain)	_	_	-1	_	dBm
IIP3	Input third intercept point (min. gain)	_	_	-8	_	dBm
Z _{RFin_input}	Recommended LNA differential drive impedance	Ch 0, Ch 1	_	TBD	_	Ω
ER _{phase}	I,Q phase error	_	_	0.004	_	0
ERamp	I,Q amplitude error	_	_	0.554	_	dB
R _{adj}	Adjacent channel rejection			l	l	I .
,	CCK	10 to 20 MHz	TBD	TBD	_	dB
	OFDM, 6 Mbps		TBD	TBD	_	
	OFDM, 54 Mbps	_	TBD	TBD	_	-
	HT20, MCS0	10 to 20 MHz	TBD	TBD	_	dB
	HT20, MCS7	-	TBD	TBD	_	1
	HT20, MCS8	-	TBD	TBD	_	
	HT20, MCS15	-	TBD	TBD	_	-
TRpowup	Time for power up (from synthesizer on)	_	_	TBD	_	μs

^[1]Sensitivity performance based on an Atheros test board that includes a Tx/Rx antenna switch. Minimum values are based on IEEE 802.11 specifications.

9.5.2 Transmitter Characteristics

Table 9-8 summarizes the transmitter characteristics for the AR9341.

Table 9-8. Transmitter Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{tx}	Transmit output frequency range	5 MHz center frequency	2.412	_	2.472	GHz
P _{out}	Mask Compliant CCK output power	See Note [1]	_	17	_	dBm
	EVM Compliant OFDM output power for 64 QAM	_	_	TBD	_	dBm
	HT20, MCS15	_		9	_	dBm
	HT40, MCS15			8	_	
SPgain	PA gain step	_	_	TBD	_	dB
A _{pl}	Accuracy of power leveling loop	_	_	TBD	_	dB
Z _{RFout_load}	Recommended PA differential load impedance	_	_	TBD	_	Ω
OP1dB	Output P1dB (max. gain)	2.442 GHz		14.5	_	dBm
OIP3	Output third order intercept point (max. gain)	2.442 GHz	_	24.1	_	dBm
SS	Sideband suppression	_		-40	_	dBc
RS	Synthesizer reference spur		_	TBD	_	dBc
TTpowup	Time for power up (from synthesizer on)	_	_	TBD	_	μs

^[1] Measured using the balun recommended by Atheros.

9.5.3 Synthesizer Characteristics

Table 9-9 summarizes the synthesizer characteristics for the AR9341.

Table 9-9. Synthesizer Composite Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pn	Phase noise (at Tx_Out)		<u>l</u>			
	At 30 KHz offset	_	_	-98	_	dBc/
	At 100 KHz offset		_	-97		Hz
	At 500 KHz offset		_	-114		
	At 1 MHz offset		_	-123		
F _c	Center channel frequency	Center frequency at 5 MHz spacing ^[1]	2.412	_	2.472	GHz
F _{ref}	Reference oscillator frequency	± 20 ppm ^[2]		25/40	_	MHz
TS _{powup}	Time for power up	_	_	TBD		μs

^[1]Frequency is measured at the Tx output.

^[2]Over temperature variation and aging.

9.6 Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified:

$$V_{dd3} = 3.3V, T_{amb} = 25 \, {}^{\circ}C$$

Table 9-10 shows the typical power drain of the on-chip power supply as a function of the AR9341's operating mode.

Table 9-10. Power Consumption for 2.4 GHz Operation

Operating Mode ^[1]	3.3 V Supply (mA)
Tx and Rx (Two-chain)	635

[1]Internal 2.4 GHz radio, 5-port Ethernet switch in operating mode.

9.7 Internal Voltage Regulators

Figure 9-1 depicts the voltages regulated by the AR9341. Refer to the reference design schematics for details.

Figure 9-1. Output Voltages Regulated by the AR9341

10.AC Specifications

10.1 DDR Interface Timing

Figure 10-1 shows the DDR output timing. See Table 10-1 for timing values.

Table 10-1. DDR Output Timing Values

Parameter	Reference Signal	Min	Max	Comments
T _{CK}		_	3.75 ns	Normal period of CK_P clock output signal
T _{CS}	DDR_CK_P	1.0 ns	_	Control signals output setup time
T _{CH}				
T _{DQSS}	DDR_CK_P	_	300 ps	Maximum skew between edge of CK_P and DQS with respect to either edge of CK_P
T _{DS}	DDR_DQS_0/1	0.7 ns	_	DDR data/mask signal setup time
T_{DH}	DDR_DQS_0/1	0.7 ns	_	DDR data/mask signal hold time

^[1]These numbers assume a 200 MHz DDR_CK_P frequency. Control signals include all address, bank address, RAS, CAS, CS_L, and CKE WE_L signals. Data si

10.2 DDR Input Timing

Figure 10-2 shows the DDR input timing. See Table 10-2 for timing values.

Figure 10-2. DDR Input Timing

Table 10-2. DDR Input Timing Values

Parameter	Reference Signal	Min	Max	Comments
$T_{\rm skew}$		_	0.4 ns	Maximum skew from DQS to DQ being stable

10.3 SPI Timing

Figure 10-3 shows the SPI timing. See 3 for timing values.

Table 10-3. **SPI Timing Values**

Parameter	Min	Max	Comments
T_{DS}	11.0 ns	_	Minimum needed by the AR9341
T _{ST}	_	3 ns	Maximum time by which data is available
$T_{ m DH}$	1 ns	·—	Minimum hold duration

10.4 Reset Timing

The VDD33 voltage needs to come up first, VDD25 and VDD12 voltages can come up in any sequence. The last one to come up determines when the internal reset is deasserted.

- If an external VDD_DDR supply is used, it should be stable within 100 μs maximum with respect to the last of the three other power rails (VDD33, VDD25, and VDD12).
- If the internal regulator is used to generate VDD_DDR, typically VDD_DDR is available approximately 10 µs after VDD33, VDD25 and VDD12 are stable.

Figure 10-4 shows an example of a reset timing.

Figure 10-5 shows the bootstrap timing.

Figure 10-5. Bootstrap Timing

11.Package Dimensions

The AR9341 is packaged in a dual-row LPCC package. The body size is 12 mm by 12 mm. The package drawings and dimensions are provided in Figure 11-1 and Table 11-1.

Figure 11-1. AR9341 Package Drawing

Table 11-1. Package Dimensions

Dimension Label	Min	Nom	Max	Unit	Min	Nom	Max	Unit
A	0.80	0.85	0.90	mm	0.031	0.033	0.035	inches
A1 ^[8]	0.00	0.02	0.05	mm	0.00	0.0008	0.002	inches
A2	0.65	0.70	0.75	mm	0.026	0.028	0.030	inches
A3	0.15 REF			mm	0.006 REF			inches
b	0.18	0.22	0.30	mm	0.007	0.009	0.012	inches
D/E	11.90	12.00	12.10	mm	0.469	0.472	0.476	inches
D1/E1	11.75 BSC			mm	0.463 BSC			inches
D2/E2	5.30	5.40	5.50	mm	0.209	0.213	0.217	inches
D3/E3								inches
eR								inches
eT								inches
L	0.30	0.40	0.50	mm	0.012	0.016	0.020	inches
K	0				8	_	_	inches
R	0				4	_	_	inches
aaa								inches
bbb								inches
ссс								inches
ddd								inches
eee								inches
fff								inches
ggg								inches
θ	5	_	15	0	5	_	15	٥

Notes:

Controlling dimension: millimeter
 Reference Document: JEDEC MO-267

12.0rdering Information

The order number AR9341-AL1A specifies a lead-free standard-temperature version of the AR9341.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: MKG-1452 Ver. 1.0

Atheros Communications, Incorporated

1700 Technology Drive San Jose, CA 95110 tel: 408.773.5200 fax: 408.773.9940 www.atheros.com

COMPANY CONFIDENTIAL
Subject to Change without Notice