SVAR OCH ANVISNINGAR

1.

$$\lim_{x \to 0} \frac{e^{2x} - e^{-2x}}{e^x - e^{-x}} =$$

$$= \lim_{x \to 0} \frac{(1+2x+\ldots) - (1-2x+\ldots)}{1+x+\ldots - (1-x+\ldots)} = \lim_{x \to 0} \frac{4x+\ldots}{2x+\ldots} = \lim_{x \to 0} \frac{4+\ldots}{2+\ldots} = \frac{4}{2} = 2.$$

Alternativt kan man utnyttja att

$$e^{2x} - e^{-2x} = (e^x)^2 - (e^{-x})^2 = (e^x + e^{-x})(e^x - e^{-x})$$

i täljaren och därefter förkorta, dvs

$$\lim_{x \to 0} \frac{e^{2x} - e^{-2x}}{e^x - e^{-x}} = \lim_{x \to 0} \frac{(e^x + e^{-x})(e^x - e^{-x})}{e^x - e^{-x}} = \lim_{x \to 0} (e^x + e^{-x}) = 2.$$

Även en beräkning som stöder sig på en metod uppkallad efter en viss fransk markis godtas.

2. Eftersom funktionen f(x) är kontinuerlig på $-\infty < x < \infty$, $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$ och det finns en punkt x där f(x) > 0 så har funktionen ett största värde enligt en sats i Adams Calculus. Det största värdet finns i detta fall i en punkt x_0 där antingen $f'(x_0) = 0$, dvs i en kritisk punkt, eller där $f'(x_0)$ inte existerar, dvs i en singulär punkt. Några singulära punkter finns inte på intervallet.

$$f'(x) = \frac{(1 + e^{2x})e^x - e^x \cdot 2e^{2x}}{(1 + e^{2x})^2} = e^x \frac{1 - e^{2x}}{(1 + e^{2x})^2}.$$

Den enda kritiska punkten på intervallet är alltså $x_0 = 0$ och det största värdet är

$$2\frac{1}{1+1} = \frac{1}{2}.$$

3.

$$\int_{-\infty}^{\infty} \frac{e^x \, dx}{1 + e^{2x}} = \left[e^x = u, \, e^x \, dx = du \right] = \int_{0}^{\infty} \frac{du}{1 + u^2} = \tan^{-1} u \Big|_{0}^{\infty} = \frac{\pi}{2}.$$

4. Vi undersöker först intervallet $1 < x < \infty$. Eftersom $\lim_{x \to 1} f(x) = \lim_{x \to \infty} f(x) = 0$ och det finns en punkt där f(x) > 0 har den kontinuerliga funktionen f(x) ett största värde på intervallet enligt en sats i Adams Calculus. Detta återfinns antingen i en kritisk punkt x_0 , dvs där $f'(x_0) = 0$ eller i en singulär punkt. Vi har inga singulära punkter.

$$f'(x) = 2(x-1)e^{-x} - (x-1)^2e^{-x} = e^{-x}(x-1)(3-x).$$

Den enda kritiska punkten på intervallet är därför $x_0=3$ och det största värdet på $1 < x < \infty$ är alltså $\frac{4}{e^3}$.

Vi undersöker nu f(x) på det slutna intervallet $0 \le x \le 1$ på vilket det finns ett största värde då f(x) är kontinuerlig. Eftersom funktionen inte har någon kritisk eller singulär punkt i det inre av intervallet har funktionen sitt största värde i en ändpunkt, dvs f(0) = 1 måste vara det största värdet på $0 \le x \le 1$. Om vi nu jämför de största värdena på intervallen $0 \le x \le 1$ samt $1 < x < \infty$ finner vi att funktionens största värde är lika med 1 eftersom

$$1 > \frac{1}{2} > \frac{4}{e^3}.$$

5. Partiell integration ger

$$\int_0^\infty (x-1)^2 e^{-x} \, dx = (x-1)^2 (-e^{-x}) \Big|_0^\infty - \int_0^\infty 2(x-1)(-e^{-x}) \, dx = 1 + 2 \int_0^\infty (x-1)e^{-x} \, dx = 1 + 2(x-1)(-e^{-x}) \Big|_0^\infty - 2 \int_0^\infty (-e^{-x}) \, dx = 1 - 2 - 2e^{-x} \Big|_0^\infty = 1 - 2 + 2 = 1.$$

6. Definitionsområdet är $x \neq 0$. Funktionens nollställe är x = 1.

Vertikal asymptot är x = 0 ty $\lim_{x \to 0+} y = -\infty$ och $\lim_{x \to 0-} -\infty$.

 $\lim_{x \to +\infty} (y(x) - x) = 0$ – Linjen y = x är alltså sned asymptot.

 $y'=1+\frac{2}{x^3}$ som har nollstället $x=-\sqrt{2}$. Eftersom $\lim_{x\to 0^-}f(x)=\lim_{x\to -\infty}f(x)=-\infty$ är detta en lokal extrempunkt enligt en sats i Adams Calculus.

7. Den homogena ekvationen y''-2y'-3y=0 har karakteristiska ekvationen $r^2-2r-3=0$ med rötterna $r_1=-1$ och $r_2=3$ så lösningarna till homogena ekvationen är $y_H=C_1e^{-x}+C_2e^{3x}$. För att bestämma en partikulärlösning y_P till den inhomogena ekvationen y''-2y'-3y=12 ansättes $y_P=A$. Derivering och insättning ger A=-4 så den allmänna lösningen till den givna ekvationen ges av

$$y = C_1 e^{-x} + C_2 e^{3x} - 4.$$

Man finner slutligen att villkoret y(0) = 0, y'(0) = 0 ger $C_1 = 3$, $C_2 = 1$ så lösningen är $y = 3e^{-x} + e^{3x} - 4$.

8. En integrerande faktor är $e^{2\ln x}=e^{\ln x^2}=x^2$. Efter multiplikation av ekvationen med denna erhålles ekvationen $(x^2y)'=3x^2$ som ger $x^2y=x^3+C$ så allmänna lösningen är $y=x+\frac{C}{x^2}$. Begynnelsevillkoret y(1)=2 ger lösningen

$$y = x + \frac{1}{x^2}.$$

- 9. Serien är geometrisk med kvoten $r=-\frac{2}{3}$. Summan är därför $\frac{1}{1-(-\frac{2}{3})}=\frac{3}{5}$.
- 10. Då konvergensradien är lika med 3 divergerar serien för alla x för vilka |x| > 3 och konvergerar absolut för alla x för vilka |x| < 3. Då x = 3 har vi serien $\sum_{n=1}^{\infty} \frac{1}{n^3}$ som konvergerar (p-serie). För x = -3 har vi den alternerande serien $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3}$ som givetvis konvergerar eftersom den ju till och med är absolutkonvergent.

PROBLEM

1. Tangenten genom $P=(a,(a+1)^2+1)$ och $Q=(b,(b-1)^2-1)$ på respektive parabel har lutningen

$$\frac{((a+1)^2+1)-((b-1)^2-1)}{a-b}.$$

Derivatorna ger att lutningen också kan uttryckas som 2(a+1) och 2(b-1), dvs

$$2(a+1) = 2(b-1)$$
 eller $a-b = -2$.

Vi utnyttjar att b = a + 2 samt att

$$\frac{((a+1)^2+1)-((b-1)^2-1)}{a-b}=2(a+1).$$

Detta ger $a=-\frac{3}{2}$ och $b=\frac{1}{2}$ som ger tangeringspunkterna

$$P = (-\frac{3}{2}, \frac{5}{4})$$
 respektive $Q = (\frac{1}{2}, -\frac{3}{4})$.

2. a)

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x} - x = 0,$$

ty $\left|\sin\frac{1}{x}\right| \le 1$ för alla $x \ne 0$.

b)

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} - 1 = -1.$$

c) Vi använder Maclaurinserien för $\sin \frac{1}{x}$.

$$\lim_{x\to\pm\infty}(x^2\sin\frac{1}{x}-x)=\lim_{x\to\pm\infty}(x^2(\frac{1}{x}-\frac{1}{3!x^3}+\ldots)-x)=\lim_{x\to\pm\infty}(x+\ldots-x)=\lim_{x\to\pm\infty}(\ldots)=0,$$

där ... givetvis betyder termer av formen $\frac{1}{x^n}$, $n \ge 1$.