3D webservices - where do we stand?

Emmanuel Belo +41 21 619 10 25 emmanuel.belo@camptocamp.com

Google Maps

Google Maps

Here maps (Nokia)

www.camptocamp.com /

OpenWebGlobe

Cesium

Was wollen wir im Geospatial 3D Web?

- 3D Szenen
 - Luftbilder und Geländemodell
 - Gebäude mit Texturen
 - Label und Marker
 - Interaktivität (Navigate, pick, popup, measure, usw.)
 - Globaler Perimeter mit höherer lokalen Genauigkeit
- Technologie
 - Web (kein plugin), Cross Platform and Cross Device
 - Offene Standards und Formate
 - Open Source
- Was gibt's ?

Web?

WebGL!

- 3D-Grafik-Programmierschnittstelle für Webbrowser
- Ermöglicht Hardwarebeschleunigung (GPU)
- WebGL Programm
 - Kontrollen in Javascript (CPU)
 - Shader code (GPU)
- Erfordert kein Plugin! Auch für Internet Explorer 11
- Android Mobile fähig: Firefox, Sony Android Browser, Opera

Offene Standards?

Unterschiedliche Standard-Welten

- Geo: OGC
 - 3D Portrayal Services (Proposals: WVS WMS-Like & W3DS WFS-Like)
 - KML XML/COLLADA
 - CityGML representation, storage, and exchange
 - CZML (AGI/Cesium) ?
- Geo: OSGEO
 - TMS (Cesium Terrain Server z.B)
- Web: Web3d
 - X3D Extensible 3D Graphics
- Graphics: Khronos Group
 - COLLADA eXchange / interoperability
 - gITF graphic language Transmission Format

3D Portrayal Service (3DPS)

Ziel:

- Eine offene Schnittstelle für die Darstellung von grossen
 3D Geospatial Datenmengen im Web
- 3D Szenen sowie Bilder

OGC - W3DS

- OGC draft Spezifikation für eine 3D Szene, ~WFS
- Beispiel Abfrage :
 - http://xyz.org/geoserver/w3ds?

version=0.4&service=w3ds&

request=GetScene&

format=model/x3d+xml&

crs=EPSG:25833&

boundingbox=407255,5866253,483505,5940003&

layers=layername

Ergebnis: X3D Datei

Datenformate Challenges

- Kompakte Objekt Abbildung
 - Bandbreite
- Progressive Übertragung
 - Streaming
 - LOD
- Schnelle Objekt-Darstellung
 - Viel GPU, wenig CPU
- Anwendungs unabhängig
 - Shader code

Mesh encodings for X3DOM:Recent Advances by Max Limper and Johannes Behr, Fraunhofer IGD

X3D Geometrien

- Basic primitives (Box, Cone Cylinder, Sphere)
- IndexedFaceSet (3D shape formed by constructing faces
 polygons) <IndexedFaceSet coordIndex='0 11 12 -1
 12 1 0 -1 etc />
 - <Coordinate point='0.7000 1.2000 0.0000, 0.6930 1.2177 0.0000, etc />
 - => Riesige HTML Seiten, CPU + Lade Zeit
- X3dom Optimierungen
 - Binary Geometry employs several files to store the index and geometry data directly in the requested precision
- Progressively Ordered Primitive (POP) Buffer
 camptocamp
 www.camptocamp.com /

CZML - Cesium Language

Beschreibt

- Graphische Szenen
- Zeit-Dynamische Daten
- Merkmale
 - JSON Struktur
 - Linie, Punkte, Markers, Modelle
 - Zeitliche Änderungen
 - Unterstützt Datenstreaming
 - Erweiterbar

CZML Example

```
"id": "InternationalSpaceStation",
"position": {
 "referenceFrame": "INERTIAL",
 "epoch": "2012-05-02T12:00:00Z",
 "cartesian": [
   0.0, -6668447.2211117, 1201886.45913705, 146789.427467256,
    60.0, -6711432.84684144, 919677.673492462, -214047.552431458,
   90.0, -6721319.92231553, 776899.784034099, -394198.837519575,
   150.0, -6717826.447064, 488820.628328182, -752924.980158179,
   180.0, -6704450.41462847, 343851.784836767, -931084.800346031,
    240.0, -6654518.44949696, 52891.726433174, -1283967.69137678
 "nextTime": 300.0,
 "interpolationAlgorithm": "LAGRANGE",
 "interpolationDegree": 5
```


gITF graphic language Transmission Format

- JSON für die Beschreibung der Knoten Hierarchie
- Knoten verweisen auf EXTERNE binäre Daten
 - Geometry, Texturen, Material
- Unkomprimierte externe Binäre Daten
 - Daten direkt in WebGL laden
- Erweiterbar
 - Streaming und Komprimierung

© Copyright Khronos Group 2013 -

Open Source Software?

Open Source Implementierungen

- PostGIS speichert und exportiert 3D Daten
 - Export X3D data: ST_AsX3D
- Geoserver
 - Bietet eine W3DS API (getScene & getTile) an
 - Unterstützt X3D & Cesium Terrain API
- X3dom
 - JS API für die Darstellung und Interaktion mit X3D Daten
- CesiumJS
 - Komplettes Softwarepaket f
 ür die 3D Datenprozessierung sowie die Web Darstellung und Navigation

PostGIS/Geoserver W3DS/X3D/X3DOM

X3DOM – JS Library

X3DOM

- Experimental Open Source Framework
- Darstellung mit WebGL
- Web3D & W3C Standardisierungs Prozess
- Ziel: 3D Objekte im Web
- Einfach zu manipulieren (HTML5 DOM)
- Untersützt HTML Events (Bsp : OnClick)

X3dom - Hello World Example

```
<ht.ml>
<head>
   <script type="text/javascript" src="x3dom.js"></script>
</head>
<body>
<x3d xmlns="http://www.x3dom.org/x3dom ...>
   <scene>
      <viewpoint position='0 0 10' ></viewpoint>
      <shape>
        <appearance>
           <material diffuseColor='0.603 0.894 0.909' ></material>
        </appearance>
        <box DEF='box'></pox> //Würfeln
      </shape>
  </scene>
</x3d>
</body>
</html>
```

camptocamp

Cesium – 3 views, WebGL

CesiumJS

- Javascript Software mit WebGL für die Darstellung
 - Virtueller Globus
 - 2D map
 - 2.5D Collombus View
- Zeit dynamische Szenen mit CZML
- Unterschiedliche Geländemodellquellen
- Raster Overlays in WMS, TMS, OSM, Bing & Esri
- Vector Overlays KML & Shapefiles
- Erweiterbar mit Plugins

CZML 3D + dynamische Darstellung

Cesium – Gelände + Overlay

Cesium Sandcastle

OpenLayers 3 – Cesium Integration

Zusammenfassung

- Sehr grosse Aktivität im WebGL 3D Bereich
 - Big Players setzen neue Tendenzen
 - Standardisierung
 - Weitgehende/reife Prototypen
- WebGL Verbreitung (auch Microsoft ist dabei)
- Wichtige Elemente :
 - Datenmenge : Speichern / Prozessieren / Übertragen / Streamen
 - CPU/GPU Optimierung
 - Web3D Implementierungen & Encoding Möglichkeiten für eine optimale Geospatial Benutzung
 - Schwierigkeit : Datenformate und Darstellung sind eng gebunden.
 Interoperabilität ?

