МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича (СПбГУТ)»

СПб ГУТ)))

Формирование и обработка звуковых сигналов

ЛАБОРАТОРНАЯ РАБОТА № 3

Исследование характеристик расширителя (экспандера)

Выполнил:

Балан К. А.

Студент группы:

РЦТ-22

Преподаватель:

Ишутина О. Ю.

1. Формирование испытательного сигнала

1. Сформируем испытательные сигналы с параметрами, взятыми из Таблицы 1.

Таблица 1 – Параметры испытательного сигнала

Время	Сигнал	Примечание к сигналу	Амплитуда
0 – 9 сек	Последовательность	Длительность тональных	0,4
0 – 9 CCR	тональных сигналов	сигналов 1 сек	0,4
10 – 19 сек	Последовательность	Длительность тональных	0,2
10 – 19 cek	тональных сигналов	сигналов 1 сек	0,2
20 – 30 сек	Последовательность	Длительность тональных	0,3
	тональных сигналов	сигналов 1 сек	0,3
29 – 40 сек	Коричневый шум	-	0,05

- 2. Замкнем вход звуковой карты на выход.
- 3. Откроем приложение Звук и настроим уровень сигнала на Неусиленный.

2. Исследование влияния параметра порога срабатывания (threshold) на параметры сигнала

1. Загрузим полученный в п.1 испытательный сигнал в ПО Audacity.

Рисунок 1 – Испытательный сигнал.

- 2. Установим линейное отображение уровня сигнала
- 3. В приложении Easy Effect добавим Эффект Экспандер (расширитель) и добавим его в цепочку обработки сигнала.
- 4. В соответствии с таблицей 2 установим параметры инструмента экспандер и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 2 – Параметры инструмента экспандер.

Параметр	Значение
Режим	Повышающий
Время установления (attack), мс	27
Время восстановления (release), мс	112
Порог (attack threshold), дБ	-12
Степень сжатия (ratio)	8

- 5. Назовем записанную дорожку ТН(-12).
- 6. Повторим п. 4-5 для порога срабатывания -14 дБ.
- 7. Зафиксируем сигналограммы.

Рисунок 2 - Полученные сигналограммы.

3. Исследование влияния параметра время установления (attack) на параметры сигнала.

1. В соответствии с таблицей 3 установим параметры инструмента экспандер и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 3 —	Параметры	инструмента	экспандер.

Параметр	Значение
Режим	Повышающий
Время установления (attack), мс	47
Время восстановления (release), мс	112
Порог (attack threshold), дБ	-12
Степень сжатия (ratio)	8

- 2. Назовем записанную дорожку attack(47)
- 3. Повторим п. 1-2 для значения времени установления 207.
- 4. Зафиксируем сигналограммы в отчете.

Рисунок 3 – Полученные сигналограммы.

4. Исследование влияния параметра время восстановления (release) на параметры сигнала

1. В соответствии с таблицей 4 установите параметры инструмента экспандер и запустите обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Параметр	Значение
Режим	Повышающий
Время установления (attack), мс	47
Время восстановления (release), мс	112
Порог (attack threshold), дБ	-12
Степень сжатия (ratio)	8

Таблица 4 – Параметры инструмента экспандер.

- 2. Назовем записанную дорожку release(27).
- 3. Повторим п. 1-2 для значения времени установления 812.
- 4. Зафиксируем сигналограммы в отчете.

Рисунок 4 – Полученные сигналограммы.

5. Исследование влияния параметра степень сжатия (ratio) на параметры сигнала.

1. В соответствии с таблицей 5 установите параметры инструмента экспандер и запустите обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

ПараметрЗначениеРежимПовышающийВремя установления (attack), мс47Время восстановления (release), мс112Порог (attack threshold), дБ-12Степень сжатия (ratio)10

Таблица 5 – Параметры инструмента экспандер.

- 2. Назовем записанную дорожку ratio(-50).
- 3. Повторим п. 1-2 для значения степени сжатия 2.
- 4. Зафиксируем сигналограммы в отчете.

Рисунок 5 – Полученные сигналограмы.

6. Исследование влияния параметра режим работы на параметры сигнала.

1. В соответствии с таблицей 6 установите параметры инструмента экспандер и запустите обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 6 –	Параметры	инструмента	экспандер.
-------------	-----------	-------------	------------

Параметр	Значение
Режим	Понижающий
Время установления (attack), мс	47
Время восстановления (release), мс	112
Порог (attack threshold), дБ	-18
Степень сжатия (ratio)	10

- 2. Назовем записанную дорожку mode(down -18).
- 3. Повторим п. 1-2 для значения порога -24.
- 4. Зафиксируем сигналограммы в отчете.

Рисунок 6 – Полученные сигналограммы.