```
Let a_1 = 1.
```

The following problem involves two numbers, \$a_2\$ and \$a_3\$, which are given by computer codes that represents them as computable numbers.

```
The code for $a_2$ is:
"Compute_a_2(n)
Input: natural number n
Output = 2*f(n) + 1/2 + 0.25^n
end
Compute_f(n)
Input: natural number n
k=2
for m = 1 to n
   k=k+1
   end
Output = sum
end"
The code for $a_3$ is:
"Compute_a_3(n)
Input: natural number n
Output = 1 + (1/2)^n - 72^(-n)
end
```

What are the values of \$a_1\$, \$a_2\$, and \$a_3\$? Are they all equal? Please provide a brief explanation of your answer.

Thought for 334 seconds >

The value of a_1 is given as 1.

The value of a_2 is defined as the limit of the output of Compute_a_2(n) as $n \to \infty$. Compute_a_2(n) depends on Compute_f(n), which includes very small terms involving powers of 72. Specifically, $a_2=1-2\sum_{j=3}^9\delta_j-2\sum_{j=11}^\infty\delta_j$ where $\delta_j=72^{-10^{23}\cdot j}$. This value is slightly less than 1 due to the subtraction of the δ_j terms.

The value of a_3 is defined as the limit of the output of Compute_a_3(n) as $n\to\infty$. Since $(1/2)^n\to 0$ and $72^{-n}\to 0$ as $n\to\infty$, $a_3=1$.

Therefore, $a_1=1$, $a_2<1$, and $a_3=1$. Thus, a_2 is not equal to a_1 or a_3 , so not all values are equal.

$$a_1 = 1 \setminus$$

$$a_2 < 1$$

$$a_3 = 1 \setminus$$

no