In English Log ud

Søren Kegnæs

Vis rigtige svar

O Skjul rigtige svar

Spørgsmål 3

P, As, Ga, Sr, Cs, Ar

Vægtning 4%:

Opstil i rækkefølge efter forventet stigende 1. ioniseringsenergi følgende grundstoffer: Ar, As, Cs, Ga, P, Sr

Ar, Cs, P, Sr, Ga, As		
Ga, As, Ar, P, Sr, Cs		
Ar, P, As, Ga, Sr, Cs		
Cs, Sr, Ga, As, P, Ar		

https://dtu.onlineeksamen.dk/MultipleChoice/Administration/PrinterView.aspx?Assig... 09-05-2017

Side 2
Molekylorbitalteori
/edhæftet er molekylorbitaldiagrammet for F ₂
Filer: MO_for_F2.jpg
Spørgsmål 4
/ægtning 2%:
Molekylorbitalteori:
Angiv om F_2 er stabilt og angiv de magnetiske egenskaber for F_2 .
\square F ₂ er stabilt og paramagnetisk
F ₂ er ustabilt og diamagnetisk
\square F ₂ er ustabilt og paramagnetisk
▼ F₂ er stabilt og diamagnetisk
\square F ₂ er stabilt og antimagnetisk
Spørgsmål 5
/ægtning 2%:
Molekylorbitalteori:
Angiv bindingsordenen for C2 ²⁻
☐ Bindingsorden = 0
☐ Bindingsorden = 1
☐ Bindingsorden = 2
☑ Bindingsorden = 3
□ Pindingsordon – 4

Side 3
Lewisstrukturer
Spørgsmål 6 Vægtning 3%: Angiv hvilken af følgende forbindelser der er isoelektronisk med NaCl
BaO
☑ MgS
LiF
□ NaI
HCI
Spørgsmål 7 Vægtning 1%: Angiv antallet af lonepairs på O for forbindelsen OF ₂
□ o
<u> </u>
☑ 2
□ 3
□ 4
Spørgsmål 8 Vægtning 1%: Angiv antallet af lonepairs på hver F for forbindelsen OF ₂
□ °
□ 1
□ 2
☑ 3
□ 4
Spørgsmål 9 Vægtning 1%: Angiv antallet af lonepairs på P for forbindelsen PH ₃
□ °
☑ 1
□ 2
□ 3
□ 4

Spørgsmål 10
Vægtning 1%: $ \label{eq:loss} \mbox{Angiv antallet af lonepairs på hver H for forbindelsen PH}_3 $
☑ 0
□ 1
☐ 2
□ 3
□ 4

Side 4
Navngivning
Spørgsmål 11
Vægtning 1%: Navngiv HNO₃
☐ Saltsyre
☐ Svovlsyre
☑ Salpetersyre
☐ Kongevand
☐ Hydrogennitrit
Spørgsmål 12
Vægtning 1%: $Navnglv \ KO_2$
☐ Kaliumoxid
☐ Kaliumperoxid
☑ Kaliumsuperoxid
Calciumoxid
☐ Calciumdioxid
Spørgsmål 13
Vægtning 1%: Opskriv formlen for magnesiumcarbonat.
✓ MgCO ₃
□ MgCO ₂
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
□ MgCO ₄
Spørgsmål 14
Vægtning 1%: Opskriv formlen for tin(II)chlorid.
☑ SnCl ₂
☐ SbCl ₂
☐ TiCl₂
\square Sb ₂ Cl ₂
□ Sn ₂ Cl ₂

Vægtning 1%:		
Opskriv formlen for ammoniumnitrat.		
☐ NH ₃ (NO ₃) ₂		
✓ NH ₄ NO ₃		
☐ NH ₃ NO ₂		

Spørgsmål 15

☐ NH₄NO₂

☐ NH₃NO₃

Side 5
Navngivning
Spørgsmål 16
Vægtning 1%:
Opskriv formlen for jern(III)sulfid.
☐ FeS ₃
☐ FeS ₂
☐ FeS
Fe ₂ (SO ₄) ₃
√ Fe ₂ S ₃

Side 6
Kompleksforbindelser
Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 17
Vægtning 1%:
Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse: $\left[\text{NiCl}_4 ight]^{2-}$
□1
□ 3
☑ 4
□ 6
Spørgsmål 18
Vægtning 2%:
Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse: $\left[\text{Co(CN)}_{6}\right]^{3}\text{-}$
<u>+6</u>
□ -3
□ -6
☑ +3
□ +2
Spørgsmål 19
Vægtning 4%:
Angiv antallet af d-elektroner i e_g og t_{2g} for følgende kompleks:
[Fe(H ₂ O) ₆] ²⁺
e _g : 0
□ t _{2g} : 6
□ e _g : 3 t _{2g: 3}
e ₉ : 2
□ t _{2g:} 6
e _g ; 0
□ _{t2g: 2}
eg: 2 ☑ tan: 4

Spørgsmål 20	
Vægtning 3%:	
Navngiv følgende kompleksforbindelse: [Ni(NH ₃) ₆]Cl ₂ .	
Nikkelhexanammoniakchlorid	
☐ Hexaammindichloronikkel(II)	
✓ Hexaamminnikkel(II)chlorid	
☐ Heptaamminnikkel(II)chlorid	
☐ Nikkel(III)tetraammindichlorid	
Spørgsmål 21	
vægtning 3%:	
Opskriv formlen for hexacyanoferrat(III)-ionen.	
√ [Fe(CN) ₆] ³	
\square [Fe(CN) ₆] ³⁺	
☐ [Fe(CN) ₆] ²⁻	
\square [Fe(CN) $_{6}$] ²⁺	
☐ [Fe(CN) ₆]	

Side 7

Reaktionsskemaer

Spørgsmål 22

Vægtning 4%:

 $\label{prop:prop:condition} \textit{Færdiggør og afstem følgende reaktion}. \textit{ Afbrænding i overskud af dioxygen}.$

$$Li(s) + O_2(g) \rightharpoonup ?$$

- \checkmark 4Li(s) + O₂(g) \rightharpoonup 2Li₂O(s)
- $\ \ \, \bigsqcup \, 2 \mathrm{Li}(s) + \mathrm{O}_2(g) \rightharpoonup \mathrm{Li}_2\mathrm{O}_2(s)$
- \square Li(s) + O₂(g) \rightharpoonup LiO₂(s)
- \square 2Li(s) + O₂(g) \rightharpoonup 2LiO(s)
- \square 4Li(s) + 3O₂(g) \rightarrow 2Li₂O₃(s)

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori calcium reagerer med stort overskud af vand.

$$Ca(s) + H_2O(l) \rightarrow ?$$

- $\ \ \square \ \operatorname{Ca}(s) + \operatorname{H}_2O(l) \rightharpoonup \operatorname{CaO}(\operatorname{aq}) + \operatorname{H}_2(g)$
- $\ \ \, \bigsqcup \ \, 2Ca(s) + 2H_2O(l) \rightharpoonup 2CaH_2(s) + O_2(aq)$
- $\ \ \, \bigsqcup \ \, 2\mathrm{Ca}(s) + 2H_2\mathrm{O}(l) \rightharpoonup 2\mathrm{CaOH}(s) + H_2(g)$
- $\ \ \, \underline{\ \ }\ \ \, 2Ca(s)+3H_2O(l) \rightharpoonup Ca_2O_3(s)+3H_2(g)$
- $\label{eq:cases} \begin{tabular}{|c|c|c|c|c|c|c|}\hline \mathcal{Q} & $\operatorname{Ca}(s) + 2H_2O(l) \rightharpoonup \operatorname{Ca}(OH)_2(aq) + H_2(g)$ \\ \hline \end{tabular}$

Spørgsmål 24

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af zinkoxid ud fra zinksulfid ved afbrænding i overskud af dioxygen.

- $\ \ \, \underline{\ \ } \ \, 2ZnS(s) + O_2(g) \rightharpoonup 2ZnO(s) + 2S(s)$
- $\ \ \, \underline{\hspace{1cm}} \ \, 2Zn_2S_3(s) + 9O_2(g) \rightharpoonup 2Zn_2O_3(s) + 6SO_2(g)$
- $\ \ \, \bigsqcup \, ZnS(s) + O_2(g) \rightharpoonup ZnO(s) + SO(g)$
- $\ \ \, \square \ \, ^{2Zn_{2}S(s) \, + \, O_{2}(g) \, \rightharpoonup \, 2Zn_{2}O(s) + 2S(s)}$

Spørgsmål 25

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for Al reduktion af nitrat til ammoniak i basisk opløsning

- \square 4Al(s) + NO₃⁻(aq) + 6H₂O(l) \rightharpoonup 4Al²⁺(aq) + NH₃(aq) + 9OH⁻(aq)
- $\ \ \, \square \ \, 3NO_3^-(aq) + 8Al(s) + 2OH^-(aq) + 21H_2O(l) \rightharpoonup 3NH_4^+(aq) + 8[Al(OH)_4]^-(aq)$

Side 8
Støkiometri
Spørgsmål 26
Vægtning 6%: Cisplatin (Pt(NH ₃) ₂ Cl ₂ bruges i behandling mod cancer. Det laves ved en reaktion mellem ammoniak og kaliumtetrachloroplatinat. Antag at 10,0 g K ₂ PtCl ₄ og 10,0 g NH ₃ sættes til at reagere. $K_2PtCl_4(aq) + 2NH_3(aq) \rightharpoonup Pt(NH_3)_2Cl_2(s) + 2KCl(aq)$ Hvor meget cisplatin dannes?
☑ 7,23 g —
□ 0,0241 g
☐ 300,1 g
□ 0,361 g
☐ 10,0 g

Side 9
Syre-base- og puffersystemer
Spørgsmål 27
Vægtning 7%: Hvilken af de følgende blandinger kan klassificeres som en puffer?
0,25 M HBr + 0,25 M HOBr
☐ 0,15 M HClO ₄ + 0,20 M RbOH
☑ 0,50 M Na ₂ CO ₃ + 0,35 M HCI
☐ 0,70 M KOH + 0,70 M HCI
0,85 M NaCl + 0,60 M HCl
Spørgsmål 28
Vægtning 7%: Du har 3 opløsninger: (1) 0,10 M opløsning af en svag monovalent syre (2) 0,10 M opløsning af en stærk monovalent syre (3) 0,10 M opløsning af en svag divalent syre Hver opløsning titreres med 0,15 M NaOH. Hvad vil være ens for de 3 titreringer? □ Det volumen NaOH opløsning der skal bruges for at nå det endelige ækvivalenspunkt. □ Det volumen NaOH opløsning der skal bruges for at nå det første ækvivalenspunkt. □ pH i syreopløsningen inden titreringen startes. □ pH ved første ækvivalenspunkt □ pH ved andet ækvivalenspunkt.
$\label{eq:Spørgsmål 29} $$ \end{subarray} $$ $\text{Vægtning 7\%:} $$ $$ Mælkesyre, CH_3CH(OH)COOH, har en Ka på $1,4\cdot10^{-4}$$ $$ 10 g mælkesyre opløses i 1 L vand (volumen uændret). Beregn pH: $
□ 10,1
7,0
□ 11,6
□ 3,9
√ 2,4

2,12

Side 10
Ligevægte
Spørgsmål 30
Vægtning 7%:
Opløselighedsproduktet $K_{\rm Sp}$ af sølvsulfat, Ag ₂ SO ₄ , i vand er $1,2\cdot 10^{-5}$. Beregn opløseligheden for Ag ₂ SO ₄ .
$\square 3,46 \times 10^{-3}$
$\boxed{2}$ 1,44 × 10 ⁻²
□ 3,67
\square 1, 2 × 10 ⁻⁵
\square $0,6 \times 10^{-5}$
Spørgsmål 31
Vægtning 7%:
Man har en container med ren PCI $_5$ gas med et start-tryk på 0,50 bar ved 523 K. PCI $_5$ dekomponerer til PCI $_3$ og CI $_2$ gas: $PCI_5(g) \Rightarrow PCI_3(g) + CI_2(g)$
Ved ligevægt er trykket 0,84 bar. Beregn ligevægtskonstanten, <i>K</i> .
□ 0,84
□ 0,34
□ 1
☑ 0,72