

DATA SCIENCE IMMERSIVE SYLLABUS

COURSE OVERVIEW

By the end of this course, students will be able to:

- Collect, extract, query, clean, and aggregate data for analysis
- Perform visual and statistical analysis on data using Python and its associated libraries and tools
- Build, implement, and evaluate data science problems using appropriate machine learning models and algorithms
- Use appropriate data visualization to communicate findings
- Create clear and reproducible reports to stakeholders
- Identify big data problems and articulate how distributed systems and parallel computing technologies are solving these challenges
- Apply question, modeling, and validation problem-solving processes to datasets from various industries in order to provide insight into real-world problems and solutions

UNIT 1: FUNDAMENTALS

Project 1	Students will apply their skills in NumPy and Python in order to answer several questions provided from a clean dataset.
Python & NumPy	Demonstrate introductory programming concepts using Python and NumPy as a tool to navigate data sources and collections
UNIX	Utilize UNIX commands to navigate file systems and modify files
git	$Learn\ to\ keep\ track\ of\ changes\ and\ iterations\ using\ git\ version\ control\ from\ your\ terminal$
Descriptive Statistics	Define and apply descriptive statistical fundamentals to sample datasets
Intro to Plotting and Visualization	$Practice\ plotting\ and\ visualizing\ data\ using\ Python\ libraries\ like\ matplot lib\ and\ Seaborn$

UNIT 2: EXPLORATORY DATA ANALYSIS

Project 2	Students will use Pandas to apply advanced NumPy and Python skills in order to clean, analyze, and test data from multiple messy datasets
Experiment Design	$Plan\ experimental\ study\ design\ with\ a\ well\ thought\ out\ problem\ statement\ and\ data\ framework$
Pandas & Pivot Tables	$\label{thm:continuous} Use Pandas to read, clean, parse, and plot data using functions such as boolean, indexing, math series, joins, and others$
SciPy & Statsmodels	Review statistical testing concepts (p-values, confidence intervals, lambda functions, correlation/causation) with SciPy and Statsmodels
Web Scraping	Learn to scrape website data using popular scraping tools
Bootstrapping	Practice resampling and building inferences about your data

DATA SCIENCE IMMERSIVE SYLLABUS

UNIT 3: CLASSICAL **STATISTICAL** MODELING

Project 3	Using a provided dataset, students will explore, clean, and model data, outlining their strategy and explaining their results.
Linear &, logistic regression	Use scikit learn and statsmodels to run linear and logistic regression models and learn to evaluate model fit
Bias-Variance Tradeoff	$Articulate\ the\ bias-variance\ trade-off\ as\ you\ practice\ evaluating\ classical\ statistical\ models$
Gradient Descent	Dive into the math and theory of how gradient descent helps to optimize loss function for regression models
Feature Selection	Use feature selection to deepen your knowledge of study design and model evaluation
Regularization & Optimization	$Learn\ to\ apply\ regularization\ and\ optimization\ when\ evaluating\ model\ fit$
K-Nearest Neighbors	Begin to look at classification models through an application of the kNN algorithm

UNIT 4: MACHINE LEARNING MODELS

Project 4	Students will scrape and model their own data using multiple methods, outlining their approach and evaluating any risks or limitations.
Clustering	$Define\ clustering\ and\ it's\ advantages\ and\ disadvantages\ from\ classification\ models$
Ensemble Models	Build and evaluate ensemble models, using decision trees, random forests, bagging, and boosting
NLP	$Get\ introduced\ to\ natural\ language\ processing\ through\ sentiment\ analysis\ of\ scraped\ website\ data.$
Naive Bayes	Learn how Naive Bayes can simplify the process of analyzing data for supervised learning algorithms
Hadoop & MapReduce	Get introduced to the history and use of Hadoop as well as the advantages and disadvantages of using parallel or distributed systems to store, access, and analyze big data
Hive & Spark	Gain an introductory understanding of how Hive interacts with Hadoop and learn about Spark's advantages through big data case studies
Time Series Analysis	Analyze and model time series data using the ARIMA model in Pandas

UNIT 5: ADVANCED TOPICS & TRENDS

Capstone Project	Students will choose a dataset to explore and model, providing detailed notebook of their technical approach and a public presentation on their findings.
Neural Network Basics	Learn the differences between different types of neural networks and demonstrate how they are fit with backpropogation.
Recommender Systems	Build and apply basic recommender systems in order to predict on sample user data
Multi-Armed Bandit	Practice split testing with Bayesian multi arm bandits
Portfolio Development	Work with career coaches to create and polish your portfolio for employers
Interview Prep	Practice data science case studies to prep for job interviews