Geometric Buildup Methods for Protein Structure Determination

Zhenli Sheng

Institute of Computational Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences

June 12, 2012

Problem Introduction

Problem Introduction

- Problem Introduction
- Related Works
- Oistributed Geometric Buildup Method

- Problem Introduction
- Related Works
- 3 Distributed Geometric Buildup Method
- Two New Models

- Problem Introduction
- Related Works
- 3 Distributed Geometric Buildup Method
- Two New Models
- Conclusions and Future work

Distance Geometry(DG) Problem

Find the coordinate vectors x_1, x_2, \ldots, x_n that satisfy several given distances between them.

Distance Geometry(DG) Problem

Find the coordinate vectors x_1, x_2, \dots, x_n that satisfy several given distances between them.

- data given:
 - exact distances (error-free)
 - inexact distances (with noises)
 - distance bounds

Distance Geometry(DG) Problem

Find the coordinate vectors x_1, x_2, \dots, x_n that satisfy several given distances between them.

- data given:
 - exact distances (error-free)
 - inexact distances (with noises)
 - distance bounds
- applications:
 - graph realization
 - protein structure determination (3D)
 - sensor network localization (2D)
 - _ ...

▶ Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)

- Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ▶ The Embedding Algorithm (Crippen, Havel 1988)

- Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ► The Embedding Algorithm (Crippen, Havel 1988)
- ► Global Smoothing Algorithm (Moré, Wu 1997)

- ▶ Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ▶ The Embedding Algorithm (Crippen, Havel 1988)
- Global Smoothing Algorithm (Moré, Wu 1997)
- ► Geometric Buildup Method (Dong, Wu 2002)

- ▶ Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ▶ The Embedding Algorithm (Crippen, Havel 1988)
- Global Smoothing Algorithm (Moré, Wu 1997)
- ► Geometric Buildup Method (Dong, Wu 2002)
- ► SDP Relaxiation Method (Ye, et al., 2006)

- ▶ Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ▶ The Embedding Algorithm (Crippen, Havel 1988)
- Global Smoothing Algorithm (Moré, Wu 1997)
- ► Geometric Buildup Method (Dong, Wu 2002)
- ► SDP Relaxiation Method (Ye, et al., 2006)
- **...**

DG problem with full set of exact distances

Given a full set of distances, $d_{i,j} = \|x_i - x_j\|, \quad i, j = 1, 2, \dots, n.$

DG problem with full set of exact distances

Given a full set of distances, $d_{i,j} = ||x_i - x_j||, \quad i, j = 1, 2, \dots, n.$

► Set $x_n = (0, 0, 0)^T$, we have

$$d_{i,j}^{2} = \|x_{i} - x_{j}\|^{2}$$

$$= \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}$$

$$= d_{i,n}^{2} - 2x_{i}^{T}x_{j} + d_{j,n}^{2} \qquad i, j = 1, 2, \dots, n - 1$$
(1)

DG problem with full set of exact distances

Given a full set of distances, $d_{i,j} = ||x_i - x_j||, \quad i, j = 1, 2, \dots, n.$

▶ Set $x_n = (0, 0, 0)^T$, we have

$$d_{i,j}^{2} = \|x_{i} - x_{j}\|^{2}$$

$$= \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}$$

$$= d_{i,n}^{2} - 2x_{i}^{T}x_{j} + d_{j,n}^{2} \qquad i, j = 1, 2, \dots, n - 1$$
(1)

▶ Define $X = (x_1, x_2, \dots, x_n)^T$ and $D = \{ (d_{i,n}^2 - d_{i,j}^2 + d_{j,n}^2)/2 : i, j = 1, 2, \dots, n-1 \}, \text{ (1)} \Rightarrow \textbf{X} \textbf{X}^T = \textbf{D}.$

DG problem with full set of exact distances

Given a full set of distances, $d_{i,j} = ||x_i - x_j||, \quad i, j = 1, 2, \dots, n.$

▶ Set $x_n = (0, 0, 0)^T$, we have

$$d_{i,j}^{2} = \|x_{i} - x_{j}\|^{2}$$

$$= \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}$$

$$= d_{i,n}^{2} - 2x_{i}^{T}x_{j} + d_{j,n}^{2} \qquad i, j = 1, 2, \dots, n - 1$$
(1)

- ▶ Define $X = (x_1, x_2, ..., x_n)^T$ and $D = \{(d_{i,n}^2 d_{i,j}^2 + d_{j,n}^2)/2 : i, j = 1, 2, ..., n 1\}, (1) \Rightarrow XX^T = D.$
- Let $D=U\Sigma U^{\mathrm{T}}$, and $V=U(:,1:3), \Lambda=\Sigma(1:3,1:3)$. Then $X=V\Lambda^{1/2}$ solves the problem. [Eckart and Young 1936]

- Find four atoms to form a base
 - determine their coordinates to remove the possible translation and rotation/reflection

- Find four atoms to form a base
 - determine their coordinates to remove the possible translation and rotation/reflection

- Determine atoms one by one
 - at least four distances from the undetermined atom to determined atoms are known

- Find four atoms to form a base
 - determine their coordinates to remove the possible translation and rotation/reflection
- ▶ Determine atoms one by one
 - at least four distances from the undetermined atom to determined atoms are known

Zachary Voller, Zhijun Wu(2012), Distance Geometry Methods for Protein Structure Determination.

Given four determined atoms x_1, x_2, x_3 and x_4 , which $x_i = (x_{i1}, x_{i2}, x_{i3})^T$ are known, and four exact distances.

Given four determined atoms x_1, x_2, x_3 and x_4 , which $x_i = (x_{i1}, x_{i2}, x_{i3})^T$ are known, and four exact distances.

Given four determined atoms x_1, x_2, x_3 and x_4 , which $x_i = (x_{i1}, x_{i2}, x_{i3})^T$ are known, and four exact distances.

$$d_{i,j}^2 = ||x_i||^2 - 2x_i^{\mathrm{T}} x_j + ||x_j||^2 i = 1, 2, 3, 4.$$

$$\blacktriangleright \Rightarrow Ax_j = b,$$

$$\Rightarrow Ax_j = b,$$
where $A = 2$

$$\begin{pmatrix} x_{11} - x_{21} & x_{12} - x_{22} & x_{13} - x_{23} \\ x_{21} - x_{31} & x_{22} - x_{32} & x_{23} - x_{33} \\ x_{31} - x_{41} & x_{32} - x_{42} & x_{33} - x_{43} \end{pmatrix}$$

and
$$b = \begin{pmatrix} x_{31} - x_{41} & x_{32} - x_{42} & x_{33} - x_{23} \\ (\|x_1\|^2 - \|x_2\|^2) - (d_{1,j}^2 - d_{2,j}^2) \\ (\|x_2\|^2 - \|x_3\|^2) - (d_{2,j}^2 - d_{3,j}^2) \\ (\|x_3\|^2 - \|x_4\|^2) - (d_{3,j}^2 - d_{4,j}^2) \end{pmatrix}.$$

Given four determined atoms x_1, x_2, x_3 and x_4 , which $x_i = (x_{i1}, x_{i2}, x_{i3})^T$ are known, and four exact distances.

$$d_{i,j}^2 = ||x_i||^2 - 2x_i^{\mathrm{T}} x_j + ||x_j||^2 \qquad i = 1, 2, 3, 4.$$

$$\blacktriangleright \Rightarrow Ax_j = b,$$

$$\Rightarrow Ax_{j} = 0,$$
 where $A = 2$
$$\begin{pmatrix} x_{11} - x_{21} & x_{12} - x_{22} & x_{13} - x_{23} \\ x_{21} - x_{31} & x_{22} - x_{32} & x_{23} - x_{33} \\ x_{31} - x_{41} & x_{32} - x_{42} & x_{33} - x_{43} \end{pmatrix}$$
 and $b = \begin{pmatrix} (\|x_{1}\|^{2} - \|x_{2}\|^{2}) - (d_{1,j}^{2} - d_{2,j}^{2}) \\ (\|x_{2}\|^{2} - \|x_{3}\|^{2}) - (d_{2,j}^{2} - d_{3,j}^{2}) \\ (\|x_{3}\|^{2} - \|x_{4}\|^{2}) - (d_{3,j}^{2} - d_{4,j}^{2}) \end{pmatrix}.$

Inexact distances?

Linear and Nonlinear Least-squares Approximation

DG problem with inexact distances

Suppose $\it l$ distances between the unknown atom to the determined atoms are known.

Linear and Nonlinear Least-squares Approximation

DG problem with inexact distances

Suppose l distances between the unknown atom to the determined atoms are known.

- ▶ linear least-squares
 - use only the l distances
 - $\min \|b Ax_j\|$

Linear and Nonlinear Least-squares Approximation

DG problem with inexact distances

Suppose l distances between the unknown atom to the determined atoms are known.

- ▶ linear least-squares
 - use only the $\it l$ distances
 - $-\min \|b Ax_j\|$
- ► nonlinear least-squares
 - use all the distances among the l+1 atoms
 - solve a matrix decomposition problem
 - move the same points in two different reference system coincide

Atilla Sit, Zhijun Wu and Ya-xiang Yuan(2009), A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation.

Given a graph (V,E), define its Laplacian matrix by L, whose entries $l_{i,j}$ are given by

Given a graph (V,E), define its Laplacian matrix by L, whose entries $l_{i,j}$ are given by

•

$$l_{i,j} = \begin{cases} deg(v_i) & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases} \rightarrow -sum(L(i,:))$$

Given a graph (V,E), define its Laplacian matrix by L, whose entries $l_{i,j}$ are given by

•

$$l_{i,j} = \begin{cases} deg(v_i) & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases} \rightarrow -sum(L(i,:))$$

ightharpoonup L = D - A, where D is degree matrix, and A is its adjacency matrix.

Given a graph (V,E), define its Laplacian matrix by L, whose entries $l_{i,j}$ are given by

•

$$l_{i,j} = \begin{cases} deg(v_i) & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases} \rightarrow -sum(L(i,:))$$

- ightharpoonup L = D A, where D is degree matrix, and A is its adjacency matrix.
- ► Properties:
 - L is always positive-semidefinite.
 - 0 is always its eigenvalue and its corresponding eigenvector is $(1,1,\dots,1)^{\mathrm{T}}.$
 - The number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph.

Eigenvector of smallest nonzero eigenvalue

a Conjecture

Conjecture

Given a graph (V,E), its Laplacian matrix is defined as before, then the eigenvector of the smallest nonzero eigenvalue, which can be viewed as a function of the vertexes, monotonically decrease or increase along the main trend/direction of the graph.

Figure: 1AX8

Implement Details

14 / 28

Implement Details

computational order:

IAX8, 1003 atoms, cutoff=5Å, 2.3% exact			
order	RmsdErr	CPU time (s)	
original	7.395926e+000	1.258295	
greedy	9.281000e-005	2.346640	
Laplacian	9.281000e-005	1.999627	
random	7.372537e-007	4.980335	
	1.726266e-007	2.946320	
	3.858138e-003	2.988656	
	2.437341e-008	3.517570	
	1.223379e-005	4.757714	
	1.169260e-003	5.339559	
	1.399711e-006	2.478225	
	1.771925e-005	4.957635	
	9.559394e-009	2.750663	
	8.637780e-007	5.196890	

computational order:

1MQQ, 5681 atoms, cutoff=6Å, 0.75%, exact			
order	RmsdErr CPU time (
original	1.130061e+001	11.262673	
greedy	4.310119e-003	53.904010	
Laplacian	5.039401e-005	135.032459	
random	5.315594e-003	23.218307	
	1.612265e-002	67.657580	
	2.928411e-004	142.834237	
	2.262457e-007	29.632780	
	3.823293e-006	70.646800	
	3.165929e-003	140.470924	
	8.535506e-001	254.812797	
	6.665072e-005	214.758550	
	4.334586e-001	141.894475	
	2.888975e-001	23.932108	

PDB ID	No.	greedy order			L	aplacian order	
		RmsdErr	CPU time	NumDet	RmsdErr	CPU time	NumD
1PTQ	402	1.15e-012	1.22e+000	402	8.97e-013	4.98e-001	402
1HOE	558	1.50 e-012	8.09e-001	558	1.08e-011	2.17e+000	558
1LFB	641	7.59e-010	9.10e-001	641	1.75e-010	1.51e+000	641
1PHT	811	1.61e-011	1.23e+000	811	1.67e-013	8.41e+001	4
1POA	914	6.17e-010	1.43e+000	914	3.31e-011	1.59e+000	914
1AX8	1003	1.24e-011	1.68e+000	1003	4.87e-007	3.62e+000	1003
1F39	1534	2.32e-006	3.86e+000	1534	4.03e-014	2.93e+002	1534
1RGS	461	2.61e-014	2.11e-001	4	3.33e-014	2.14e+000	4
1KDH	2846	7.15e-004	8.56e+000	2846	1.58e-001	5.17e+000	2846
1BPM	3671	4.45e-005	9.03e+000	3671	9.45e-013	9.92e+002	4
1RHJ	3740	3.47e-008	1.07e+001	3740	1.00e-006	1.19e+001	3740
1HQQ	3944	4.77e-006	1.22e+001	3944	2.76e+000	7.43e+000	3944
1TOA	4292	2.35e+001	2.79e+001	4292	1.09e-001	8.93e+000	4292
1MQQ	5681	4.31e-003	4.98e+001	5681	1.55e-002	5.48e+001	5681

Figure: 1MQQ, greedy, theoretical VS. real order

▶ not enough bases

- not enough bases
- ▶ bad condition number: say, $\operatorname{cond}(A^{\mathrm{T}}A) > 10^6$ \Leftarrow bases almost in the same plane!

- ▶ not enough bases
- ▶ bad condition number: say, $\operatorname{cond}(A^{\mathrm{T}}A) > 10^6$ \Leftarrow bases almost in the same plane!
- ➤ ~ move to last

Motivation

1MQQ, 5681 atoms, cutoff=6Å, 0.75%, exact distances

ltr	RmsdErr	ltr	RmsdErr
300	1.020647e-012	3000	1.186818e-004
600	1.805403e-010	3300	3.477342e-004
900	2.059775e-007	3600	1.953754e-003
1200	6.691896e-007	3900	1.973875e-003
1500	3.358551e-006	4200	2.162615e-003
1800	4.677271e-006	4500	2.231129e-003
2100	7.869284e-006	4800	2.790680e-003
2400	2.062700e-005	5100	3.084867e-003
2700	6.988388e-005	5400	4.277911e-003

Motivation

1MQQ, 5681 atoms, cutoff=6Å, 0.75%, exact distances

Error Accumulation!

ltr	RmsdErr	ltr	RmsdErr
300	1.020647e-012	3000	1.186818e-004
600	1.805403e-010	3300	3.477342e-004
900	2.059775e-007	3600	1.953754e-003
1200	6.691896e-007	3900	1.973875e-003
1500	3.358551e-006	4200	2.162615e-003
1800	4.677271e-006	4500	2.231129e-003
2100	7.869284e-006	4800	2.790680e-003
2400	2.062700e-005	5100	3.084867e-003
2700	6.988388e-005	5400	4.277911e-003

► Divide into small patches

- ▶ Divide into small patches
- ► Geometric Buildup at each patch

- Divide into small patches
- ► Geometric Buildup at each patch
- ► Stitch together

How to divide

How to divide

symrcm: minimize the bandwidth

Pratik Biswas, Kim-Chuan Toh and Yinyu Ye(2007), A Distributed SDP Approach for

Large-scale Noisy Anchor-free Graph Realization with Application to Molecular Conformation.

Given two 3D point sets $\{p_i\}$ and $\{q_i\}$, $i=1,2,\ldots,k$

22 / 28

Given two 3D point sets $\{p_i\}$ and $\{q_i\}$, $i=1,2,\ldots,k$.

$$\min_{R,T} \quad \sum_{i=1}^{k} \|p_i - (Rq_i + T)\|_2^2$$
 s.t. $R^T R = I$. (2

Given two 3D point sets $\{p_i\}$ and $\{q_i\}$, $i=1,2,\ldots,k$.

$$\min_{R,T} \quad \sum_{i=1}^{k} \|p_i - (Rq_i + T)\|_2^2$$
 s.t. $R^T R = I$. (2

► T: make their geometric center coincide

Given two 3D point sets $\{p_i\}$ and $\{q_i\}$, $i=1,2,\ldots,k$.

$$\min_{R,T} \quad \sum_{i=1}^{k} \|p_i - (Rq_i + T)\|_2^2$$
s.t. $R^T R = I$. (2)

- ► T: make their geometric center coincide
- ► R:

$$\min_{R} \quad \|P - RQ\|_F^2$$
 s.t. $R^{\mathrm{T}}R = I$. (3)

Let $C=PQ^{\rm T}$, and $C=U\Sigma V^{\rm T}$, then $R=VU^{\rm T}$ solves (3). [Matrix Computation, Golub]

Given two 3D point sets $\{p_i\}$ and $\{q_i\}$, $i=1,2,\ldots,k$.

$$\min_{R,T} \quad \sum_{i=1}^{k} \|p_i - (Rq_i + T)\|_2^2$$
s.t. $R^T R = I$. (2)

- ► T: make their geometric center coincide
- ► R:

$$\begin{aligned} & \underset{R}{\min} & & \|P - RQ\|_F^2 \\ & \text{s.t.} & & & R^{\mathrm{T}}R = I. \end{aligned} \tag{3}$$

Let $C=PQ^{\rm T}$, and $C=U\Sigma V^{\rm T}$, then $R=VU^{\rm T}$ solves (3). [Matrix Computation, Golub]

► Remark: a fundamental problem in Machine Intelligence and Optical Science, and

Numerical experiments

Distributed Buildup:

PDB ID	No. of atoms	Rmsd Err	CPU time
1PTQ	402	1.781565e-012	0.912213
1HOE	558	6.620519e-011	1.974754
1LFB	641	4.849771e-012	1.660825
1PHT	811	6.675090e-012	1.769367
1POA	914	6.173696e-010	1.563789
1AX8	1003	4.161234e-008	1.793236
1F39	1534	3.480137e-012	4.303442
1RGS	2015	1.804018e-009	4.713639
1KDH	2923	5.424939e+002	18.708290

A generalized DG problem

DG problem with distance bounds

Given the lower bounds $l_{i,j}$ and upper bounds $u_{i,j}$, the problem can be formulated as:

$$\max_{x_{i}, r_{i}} \sum_{i=1}^{n} r_{i}$$
s.t. $||x_{i} - x_{j}|| + r_{i} + r_{j} \le u_{i,j}$

$$||x_{i} - x_{j}|| - r_{i} - r_{j} \ge l_{i,j} \quad \forall (i, j) \in S$$

$$r_{i} \ge 0, \quad i = 1, 2, \dots, n.$$

Atilla Sit, Zhijun Wu(2011), Solving a Generalized Distances Geometry Problem for Protein Structure Determination.

▶ Given distance matrix D, we have

$$DD = D.^{2} = (d_{i,j}^{2})$$

$$= (\|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2})$$

$$= E + E^{T} - 2XX^{T}.$$

where E is a rank one matrix.

▶ Given distance matrix D, we have

$$DD = D.^{2} = (d_{i,j}^{2})$$

$$= (\|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2})$$

$$= E + E^{T} - 2XX^{T}.$$

where E is a rank one matrix.

▶ rank(DD)=5.

▶ Given distance matrix D, we have

$$DD = D.^{2} = (d_{i,j}^{2})$$

$$= (\|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2})$$

$$= E + E^{T} - 2XX^{T}.$$

where E is a rank one matrix.

- ▶ rank(DD)=5.
- ► FPCA, LMaFit

$$\begin{aligned} & \min_{X,x_i} & & \|X - \sum_{i=1}^r x_i x_i^{\mathrm{T}}\|_F^2 \\ & \text{s.t.} & & X_{i,j} = M_{i,j}, & \forall (i,j) \in S, \end{aligned}$$

$$\begin{aligned} & \min_{X,x_i} & & \|X - \sum_{i=1}^r x_i x_i^{\mathrm{T}}\|_F^2 \\ & \text{s.t.} & & X_{i,j} = M_{i,j}, & \forall (i,j) \in S, \end{aligned}$$

▶ X is symmetric

$$\begin{aligned} & \min_{X,x_i} & & \|X - \sum_{i=1}^r x_i x_i^{\mathrm{T}}\|_F^2 \\ & \text{s.t.} & & X_{i,j} = M_{i,j}, & \forall (i,j) \in S, \end{aligned}$$

- ► X is symmetric.
- ▶ M has some special structure (not randomly sampled).

Conclusions and Future work

Conclusions and Future work

- ▶ What we have done:
 - propose a distributed idea and a new possible way to divide
 - propose a new model for DG
 - finish some preliminary numerical experiments

Conclusions and Future work

- ▶ What we have done:
 - propose a distributed idea and a new possible way to divide
 - propose a new model for DG
 - finish some preliminary numerical experiments
- ► Future work:
 - theoretical analysis on eigenvector of Laplacian matrix
 - make clear the advantage and limitation of our distributed method
 - work on the new models

Thank you for your attention!