Machine Learning

Daniel Drake

May 19, 2020

1 Change

Definition 1.1. Metric

Let X be a non-empty set..

Let $d: X \times X \to \mathbb{R}_0^+$ such that:

- $(\forall x \in X)d(x,x) = 0$
- $(\forall x, y \in X)d(x, y) = 0 \Leftrightarrow x = y$
- $(\forall x, y \in X)d(x, y) = d(y, x)$
- $(\forall x, y, z \in X)d(x, z) \le d(x, y) + d(y, z)$

Then d is called a metric and (X, d) is called a metric space. Reference

Definition 1.2. Limit of a function

Let $T: X \to Y$ where (X, d_X) and (Y, d_Y) are metric spaces. Then fix $x_0 \in X$.

If:

$$(\exists L \in Y)(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in X)(d(x, x_0) < \delta \Rightarrow d(f(x), L) < \epsilon)$$

Then:

$$\lim_{x \to x_0} f(x) = L$$

Reference

Definition 1.3. Derivative

Let $f: \mathbb{R} \to \mathbb{R}$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}}$

Then f is said to be differentiable at $x \in U$ if there exists an L_x such that:

$$L_x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If L_x exists for all $x \in U$ then we write:

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Reference

Definition 1.4. Partial Derivative

Let $\hat{f}: \mathbb{R}^n \to \mathbb{R}$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}^n}$

Then f is said to be differentiable at $x \in U$ with respect to the i'th component of x if there exists an L_{x_i} such that:

$$L_{x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

If L_{x_i} exists for all $x \in U$ then we write:

$$\frac{\partial}{\partial x_i} f(x) = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

Reference

Definition 1.5. Differentiability of a multi-variable function.

Let $\hat{f}: \mathbb{R}^m \to \mathbb{R}^n$ such that:

$$\hat{f}(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix} \text{ and } (\forall j \in \mathbb{N}_n)(f_j : \mathbb{R}^m \to \mathbb{R})$$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}^m}$

Then f is said to be differentiable at $x \in U$ if there exists a linear operator $J_f : \mathbb{R}^m \to \mathbb{R}^n$ such that:

$$\lim_{h \to \vec{0}} \frac{||f(x+h) - f(x) + J_f(h)||_{\mathbb{R}^m}}{||h||_{\mathbb{R}^n}} = 0$$

Reference

Theorem 1.1. If a multi-variable function, f, is differentiable at x then the linear operator J is the Jacobian matrix.

So our quess is that:

$$J_f = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(x) & \cdots & \frac{\partial}{\partial x_n} f_1(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_m(x) & \cdots & \frac{\partial}{\partial x_n} f_m(x) \end{bmatrix}$$

since this form is a linear operator mapping from the appropriate space to the appropriate space. It should be noted that the transpose of this matrix can not satisfy the definition of differentiability of a multi-variable function and so it is not the correct linear operator.

Definition 1.6. Gradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a Differentiable function.

Then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ where:

$$\nabla f(x) := \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} \forall x \in \mathbb{R}^n$$

is called the Gradient of f.

Reference

Definition 1.7. Derivative with respect to a vector and the subspace gradient.

Let $X = \{X_j\}_{j=0}^{n-1}$ be a sequence of finite dimensional vector spaces where $\dim(X_j) = k_j = m_j \times n_j$ Let $T : \prod_{j=0}^{n-1} X_j \to Y$ where Y is a finite dimensional vector space with $\dim(Y) = k_y$ Let $x \in X_j$ for some $j \in \{0, ..., n-1\}$ Where

$$x = \begin{bmatrix} x_{1,1} & \cdots & x_{1,n_j} \\ \vdots & \ddots & \vdots \\ x_{m_j,1} & \cdots & x_{m_j,n_j} \end{bmatrix}$$

$$D_x T(z) = \begin{bmatrix} \frac{\partial}{\partial x_{1,1}} T_1(z) & \cdots & \frac{\partial}{\partial x_{1,n_j}} T_1(z) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{m_j,1}} T_1(z) & \cdots & \frac{\partial}{\partial x_{m_j,n_j}} T_1(z) \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{1,1}} T_{k_y}(z) & \cdots & \frac{\partial}{\partial x_{1,n_j}} T_{k_y}(z) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{m_j,1}} T_{k_y}(z) & \cdots & \frac{\partial}{\partial x_{m_j,n_j}} T_{k_y}(z) \end{bmatrix}$$

Definition 1.8. Product space Derivative

Let $X = \{X_j\}_{j=0}^{n-1}$ be a sequence of finite dimensional vector spaces where $dim(X_j) = k_j$ Let $T : \prod_{j=0}^{n-1} X_j \to Y$ where Y is a finite dimensional vector space with $dim(Y) = k_y$ Let $\{x_j\}_{j=0}^{n-1}$ be a sequence of vectors such that: $(\forall j \in \{0, ..., n-1\})(x_j \in X_j)$ The product space derivative at the point $z \in X$ is:

$$D_X T(z) = \begin{bmatrix} D_{x_0} T(z) \\ \vdots \\ D_{x_{n-1}} T(z) \end{bmatrix}$$

Definition 1.9. Fréchet derivative

Let V, W be normed vector spaces and $U \subset V$ be an open set.

An operator $f: U \to W$ is said to be Fréchet differentiable if there exists a bounded linear operator $A: V \to W$ such that:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Reference

Theorem 1.2. Fréchet derivative of a bounded linear operator

Let V, W be normed vector spaces and $U \subset V$ be an open set.

Let $\hat{f}: V \to W$ be a bounded linear operator.

Then lets look at $f = \hat{f}|_U$

My guess is that $A = \hat{f}$

Let $x \in U$ and $h \in U \pitchfork ||h|| \neq 0$ and $x + h \in U$, Then:

$$\frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + \hat{f}(h)||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + f(h)||_W}{||h||_V} = 0$$

Thus let $\epsilon > 0$ and $\delta > 0$

Then if $0 < ||h|| < \delta$ we know that $\frac{||f(x+h)-f(x)+Ah||_W}{||h||_V} = 0 < \epsilon$

Therefore:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Thus $A = \hat{f}$ is the Fréchet derivative of f.

1.1 Finite Composition Operator

Definition 1.10. Finite Composition Operator

Let the collection $X = \{X_j\}_{j=0}^n$ be a finite sequence of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \to X_{j+1})$

Then $T^n: X_0 \to X_n$ defined by:

$$T^n := \bigcirc_{j=0}^{n-1} T_j$$

is called the Finite Composition Operator defined on X.

Definition 1.11. Multi-variable Finite Composition Iteration

Let the collection $X = \{X_j\}_{j=0}^n$ and $Y = \{Y_j\}_{j=0}^{n-1}$ be finite sequences of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that: $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \times Y_j \to X_{j+1})$

Let $T^n: X_0 \times \prod_{j=0}^{n-1} Y_j \to X_n$ where:

$$T^{n}(x,y) = z_{n}$$
 where $z_{j+1} = T_{j}(z_{j}, \pi_{j}(y))$ or $z_{j+1} = T_{j}(z_{j})$ and $z_{0} = x \in X_{0}$

Definition 1.12. Gradient Descent

Let $E: \mathbb{R}^n \to \mathbb{R}$ be a differentiable operator.

 $The \ method \ of \ Gradient \ Descent \ says \ that \ a \ local \ minimum \ of \ E \ can \ be \ found \ using \ the \ following \ iteration:$

$$a_{n+1} = a_n - \gamma \nabla E(a_n)$$

Where $\gamma > 0$

Example 1.1. Objective Operator for Data Set Defined Operator Approximation Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ such that $X \times Y$ defines an operator T.

$$E(a) = \sum_{x \in X} ||T(x) - T^{n}(x, a)||$$

2 Surjective Continuous Non-decreasing Bounded Functionals

Let $B = \{f : \mathbb{R} \to [0,1] | f \text{ is surjective, continuous, and non-decreasing.} \}$

Theorem 2.1. B is convex.

Let $f, g \in B$ and $h(x) := \lambda f(x) + (1 - \lambda)g(x)$ where $\lambda \in [0, 1]$

Then h is still continuous since the linear combination of continuous functions is continuous.

Since both f and g are surjective and non-decreasing, then there exists x_0, y_0, x_1, y_1 in \mathbb{R} such that:

$$f(x_0) = 0 = g(y_0)$$
 and $f(x_1) = 1 = g(y_1)$

Suppose WLOG that $x_0 \leq y_0$ and $x_1 \leq y_1$

Then we know that:

$$h(x_0) = \lambda f(x_0) + (1 - \lambda)g(x_0) = \lambda 0 + (1 - \lambda)0 = 0$$

and

$$h(y_1) = \lambda f(y_1) + (1 - \lambda)g(y_1) = \lambda 1 + (1 - \lambda)1 = 1$$

Now if we pick $\alpha \in [0,1]$ by the intermediate value theorem, we know that there exists an $x_{\alpha} \in [x_0, y_1]$ such that:

$$h(x_{\alpha}) = \alpha$$

Since α was arbitrary element, I have shown that h is surjective.

Finally, let $x_0 < x_1$ be elements in \mathbb{R}

Then we know that $f(x_0) \leq f(x_1)$ and $g(x_0) \leq g(x_1)$

$$\Rightarrow \lambda f(x_0) \leq \lambda f(x_1)$$
 and $(1 - \lambda)g(x_0) \leq (1 - \lambda)g(x_1)$

$$\Rightarrow \lambda f(x_0) + (1 - \lambda)g(x_0) \le \lambda f(x_1) + (1 - \lambda)g(x_1)$$

$$\Rightarrow h(x_0) \le h(x_1)$$

Thus h is non-decreasing.

Since h is surjective, continuous, and non-decreasing, then $h \in B$

Thus B is convex.

Theorem 2.2. B is translation invariant.

Let $f \in B$ and g(x) := f(x+c) where $c \in \mathbb{R}$

f is continuous and so is the addition operator so q is continuous.

Let $\alpha \in [0,1]$ since f is surjective then $\exists x \in \mathbb{R} \ \ \ \ \ f(x) = \alpha$

Then $g(x-c) = f(x+c-c) = f(x) = \alpha$ and so g is surjective.

Let x < y be elements in \mathbb{R}

Then $f(x) \le f(y) \Rightarrow f(x+c) \le f(y+c)$

 $\Rightarrow g(x) \leq f(y)$ and so g is non-decreasing.

Thus $q \in B$ and B is therefore translation invariant.

Theorem 2.3. B is not complete.

Theorem 2.4. Every element in B can be decomposed as a finite non-trivial convex combination from B