Work Done & Power Past Paper Questions

Jan 2002 to Jan 2009

5(a) decreases for the first four seconds ✓
zero for the remaining six seconds ✓
(2)

Q5 Jan 2002

(b) $E_{\rm k} = \frac{1}{2} \times 1.4 \times 10^3 \times 16^2 \checkmark$ = $1.8 \times 10^5 \,\text{J} \checkmark$ (accept $v = 15 \,\text{m s}^{-1}$ from misleading graph and $E_{\rm k} = 1.6 \times 10^5 \,\text{J}$) (2)

(c) (use of P = Fv gives) $20 \times 10^3 = F \times 30 \checkmark$ $F = 670 \text{ N} \checkmark$ (2)

5(a) (use of F = ma gives) $F = 1.3 \times 10^3 \times 2.5 \checkmark$ = 3250 N \checkmark (3.25 × 10³) (2)

(b)(i) driving force = $3250 + 410 = 3660 \text{ N} \checkmark$ (allow C.E. from (a)) **Q5 Jun 2002**

(ii) (use of P = Fv gives) $P = 3660 \times 2.2 \checkmark$ (allow C.E. from(i)) $= 8100 \text{ W} \checkmark (8.1 \times 10^3)$ (3)

(c) (component of) car's weight opposes motion
[or overcomes gravity
or more work is done as car gains potential energy] ✓ (1)
(6)

mark out (equal) distances along height being raised ✓
measure time taken to travel each of these distances ✓
times should be equal ✓

[or use a position sensor attached to a data logger
measure distance or speeds at regular intervals
increase in distance or speeds should be constant]

Q7 Jan 2003

(b) find work done by motor from gain in potential energy of metal block ✓
divide work done by time to find power ✓
measurements: mass of block, height block has risen and time taken ✓
[or power = Fv
force is weight of block
velocity is velocity of block
same measurements as above]

max(2)
(4)

(a)(i) (use of
$$E_p = mgh$$
 gives) $E_p = 70 \times 9.81 \times 150 \checkmark$
= 1.0(3) × 10⁵ J \checkmark Q4 Jun 2004

(ii) (use of
$$E_k = \frac{1}{2}mv^2$$
 gives) $E_k = \frac{1}{2} \times 70 \times 45^2 \checkmark$
= $7.1 \times 10^4 \text{ J} \checkmark$ (7.09 × 10⁴ J) (4)

(b)(i) work done (=
$$1.03 \times 10^5 - 7.09 \times 10^4$$
) = $3.2(1) \times 10^4$ J \checkmark (allow C.E. for values of E_p and E_k from (a))

(ii) (use of work done = Fs gives)
$$3.21 \times 10^4 = F \times 150 \checkmark$$

(allow C.E. for value of work done from (i))
 $F = 210 \text{ N} \checkmark (213 \text{ N})$ (3)

Question 3

(a) resultant force on crate is zero ✓
forces must have equal magnitudes or size ✓
(but) act in opposite directions ✓
correct statement of 1st or 2nd law ✓

Magnitudes or size ✓
max(3)

(b)(i) work done =
$$F \times d = 640 \times 9.81 \times 8.0 \checkmark$$

= $5.0(2) \times 10^4 \text{ J} \checkmark$

(ii) (use of
$$P = \frac{W}{t}$$
 gives) $P = \frac{5.02 \times 10^4}{4.5} = 1.1(2) \times 10^4 \text{ W}$ (allow C.E. for value of work done from (i)) (3)

Question 3	Q3 Jan 2007	7	
(a) (i)	(use of $F_H = F \cos \theta$ gives) resultant force = 2 × 6500 cos 35 resultant force = 11000 N (10649) (1 out of 2 if only one component given)	√ √	4
(ii)	(use of work = force × distance gives) work = 11 000 × 1.5 × 60 work = 990 000 J (958 408) (if use 10 649 then 960 000 J)	/ /	4
(b)	there is an opposing force or mention of friction/drag work is done on this force or overall resultant force is zero	//	2
(c)	initially accelerates as horizontal component increases (so) forward force now larger than drag or resultant force no longer zero or now a resultant forward force eventually reaches new higher constant speed	///	max 3
		Total	9

Question 5		
(i)	find students weight (or mass) ✓ measure (vertical) height (of stairs) ✓ time (how long it takes student to run up stairs) ✓	•
(ii)	using $E_p = mgh \checkmark$ link measurements to quantities used to calculate $E_p \checkmark$ divide gain in E_p (or work) by time to get power \checkmark	8
(iii)	not all work done goes to $E_p \checkmark$ ignoring gain in $E_k \checkmark$ or ignoring movement or ignoring fiction or athlete gets hot or body not 100% efficient	
	Total	8

Que	stion 2	Q2 Jan 2009		
(a)	(i)	vector has direction and a scalar does not ✓		
	(ii)	scalar examples; any two e.g. speed, mass, energy, time, power		
		vector examples; any two e.g. displacement, velocity, acceleration, force or weight	4	
		✓✓✓ for 4 correct, ✓✓ for 3 correct, ✓ for 2 correct		
(b)	(i)	horizontal component (= 2.8 cos 35) = 2.3 (kN) (2293.6) ✓		
		vertical component (= 2.8 sin 35) = 1.6 (kN) (1606.0) ✓		
	(ii)	power = force × velocity or $2.3 \mathrm{kN} \times 8.3 \mathrm{m s^{-1}} \checkmark (\mathrm{ecf from 2 (b) (i)})$	5	
		= 1.9 × 10⁴ (19037 or 19100) ✓ ecf		
		W (or J s ⁻¹) ✓ (or 19W (or kJ s ⁻¹))		
(c)		(area of cross-section of cable =) $\pi \times (\frac{1}{2} 0.014)^2 \checkmark = 1.5(4) \times 10^{-4} (\text{m}^2) \checkmark$		
		stress (= F/A) = $\frac{2800 \text{N}}{1.54 \times 10^{-4} \text{m}^2}$ (allow ecf here if attempt to calculate area) \checkmark	5	
		= 1.8(2) × 10 ⁷ ✓ ecf		
		Pa (or N m ⁻²) ✓		
		Total	14	