week5_hw

March 14, 2018

1 Name: Hassan Mphammad

2 ID: 2131117616

Load the the data from:

https://github.com/vega/vega-datasets/raw/gh-pages/data/cars.json Then perform the proper steps to answer the questions in the cells

3 Report:

Variables	Description	Data type	Notes
Acceleration	tell the acceleration to each car with	continues,	_
	acceleration mean of 15.5	float	
Cylinders	describe the amount of cylinders in each car	categorical,	_
		float	
Displacement	tells Displacement the car can make	continues,	_
		float	
Horsepower	tells the power of each car engine in horses	continues,	6 values are
		float	missing
Miles_per_Gall	describe how many miles the car can travel for	continues,	8 values are
	gallon	float	missing
Name	tells the name of each car	continues,	_
		object	
Origin	the origin of the car, where the car was made	categorical,	_
		Object	
Weight_in_lbs	tells the weight of cars in lbs	continues,	_
		float	
Year	tells which year the car was made in	continues,	should be
	·	object	datetime

- The frequency of the 4 cylinders car are more in above average miles per gallon while the frequency of the 8 cylinders car are more in below average miles per gallon.
- Cars with 4 cylinders have more miles per gallon than cars with 6 or 8 cylinders, cars with 4 cylinders are more.

- USA is the most country that make 8 cylinders cars.
- Japan and Europe most of their cars are 4 and 6 cylinders.
- USA care more about the engine power more then the economic cars.
- Europe and Japan don't care about the power of the car engine as much of the car economic that doesn't burn to much fuel.
- 1- fuel in Japan and Europe are more expensive than USA.
 2- people in USA love speed and racing.
 clean_cars_df.Cylinders[(clean_cars_df.Miles_per_Gallon <= 15)].hist()
 clean_cars_df.Origin[(clean_cars_df.Miles_per_Gallon <= 15)].value_counts().plot(kind="bar")
 as the graphs shows:
- the cars that has low miles per gallon are 8 cylinder cars and made in USA and they are the lowest miles per gallon in the dataframe.

4 Analysis:

5 Data Preperation

This exercise will guide you through the typical steps that you are expected to perform when performing exploratory data analysis. Make sure you go through all the steps, and pay attention to the order. You will be expected to do this on your own in future exercise.

Note: You can add cells as needed

```
In [50]: # What columns are there?
In [6]: %matplotlib inline
        import numpy as np
        import pandas as pd
        cars_df = pd.read_json("https://github.com/vega/vega-datasets/raw/gh-pages/data/cars.ja
In [17]: cars_df.head()
Out[17]:
            Acceleration
                          Cylinders
                                      Displacement
                                                     Horsepower
                                                                 Miles_per_Gallon
                    12.0
                                   8
                                                          130.0
                                                                              18.0
                                              307.0
         1
                    11.5
                                   8
                                                          165.0
                                                                              15.0
                                              350.0
         2
                    11.0
                                   8
                                              318.0
                                                          150.0
                                                                              18.0
                    12.0
                                   8
                                              304.0
                                                          150.0
                                                                              16.0
                    10.5
                                             302.0
                                                          140.0
                                                                              17.0
                                  Name Origin Weight_in_lbs
                                                                     Year
         0
            chevrolet chevelle malibu
                                          USA
                                                         3504 1970-01-01
         1
                    buick skylark 320
                                          USA
                                                         3693
                                                               1970-01-01
         2
                                          USA
                   plymouth satellite
                                                         3436 1970-01-01
         3
                         amc rebel sst
                                          USA
                                                         3433 1970-01-01
                           ford torino
                                          USA
                                                         3449 1970-01-01
```

In [3]: # Which columns contain missing values? how many missing values are there

In [46]: cars_df[cars_df.isnull().any(axis=1)]

Out [46] :	Acceleration	Cylinders	Displace	ment. H	lorsenower	Miles	_per_Gallon	\
10	17.5	4	-	.33.0	115.0	111100	_por_ddrion NaN	`
11	11.5	8		50.0	165.0		NaN	
12	11.0	8		51.0	153.0		NaN	
13	10.5	8		83.0	175.0		NaN	
14	11.0	8		60.0	175.0		NaN	
17	8.0	8		02.0	140.0		NaN	
38	19.0	4		98.0	NaN		25.0	
39	20.0	4		97.0	48.0		NaN	
133	17.0	6	2	00.0	NaN		21.0	
337	17.3	4		85.0	NaN		40.9	
343	14.3	4	1	40.0	NaN		23.6	
361	15.8	4	1	0.00	NaN		34.5	
367	15.4	4	1	21.0	110.0		NaN	
382	20.5	4	1	51.0	NaN		23.0	
			Name	Origin	_		Year	
10		citroen ds-2	-	Europe		3090	1970-01-01	
11	chevrolet che			USA		4142	1970-01-01	
12		ford tor		USA		4034	1970-01-01	
13	plym	outh satell		USA		4166	1970-01-01	
14		amc rebel		USA		3850	1970-01-01	
17	fo	ord mustang		USA		3353	1970-01-01	
38			rd pinto	USA		2046	1971-01-01	
39	•	gen super be		Europe		1978	1971-01-01	
133			maverick	USA		2875	1974-01-01	
337		renault leca		Europe		1835	1980-01-01	
343		ford musta	_	USA		2905	1980-01-01	
361			ault 18i	Europe		2320	1982-01-01	
367			aab 900s	Europe		2800	1982-01-01	
382		amc co	ncord dl	USA	L	3035	1982-01-01	

Out[7]:	Acceleration	Cylinders	Displacement	Horsepower	Miles_per_Gallon	\
count	14.000000	14.000000	14.000000	8.000000	6.000000	
mean	14.914286	5.571429	205.071429	135.125000	28.000000	
std	3.936781	1.949923	116.157363	43.165586	7.886951	
min	8.000000	4.000000	85.000000	48.000000	21.000000	
25%	11.125000	4.000000	105.250000	113.750000	23.150000	
50%	15.600000	4.000000	145.500000	146.500000	24.300000	
75%	17.450000	8.000000	338.000000	167.500000	32.125000	
max	20.500000	8.000000	383.000000	175.000000	40.900000	

```
Weight_in_lbs
                   14.000000
        count
                 3030.642857
        mean
        std
                  804.556219
        min
                 1835.000000
        25%
                 2440.000000
        50%
                 2970.000000
        75%
                 3725.750000
                 4166.000000
        max
In [323]: missing_cars_df.Acceleration.isnull().value_counts()
Out[323]: False
                   14
          Name: Acceleration, dtype: int64
In [324]: missing_cars_df.Cylinders.isnull().value_counts()
Out[324]: False
                   14
          Name: Cylinders, dtype: int64
In [325]: missing_cars_df.Displacement.isnull().value_counts()
Out[325]: False
          Name: Displacement, dtype: int64
In [326]: missing_cars_df.Horsepower.isnull().value_counts() # 6 missing values
Out[326]: False
                   8
          True
                   6
          Name: Horsepower, dtype: int64
In [327]: missing_cars_df.Miles_per_Gallon.isnull().value_counts() # 8 missing_values
Out[327]: True
          False
          Name: Miles_per_Gallon, dtype: int64
In [328]: missing_cars_df.Weight_in_lbs.isnull().value_counts()
Out[328]: False
          Name: Weight_in_lbs, dtype: int64
In [329]: missing_cars_df.Year.isnull().value_counts()
Out[329]: False
          Name: Year, dtype: int64
In [1]: # Which rows are duplicated?
In [51]: cars_df.duplicated().value_counts() # non are duplicated
```

In []: # Fix the data to exlude missing values and duplicate rows (hint: use filteration)

Out[8]:	Acceleration	Cylinders	Displacement	Horsepower	Miles_per_Gallon	\
0	12.0	8	307.0	130.0	18.0	
1	11.5	8	350.0	165.0	15.0	
2	11.0	8	318.0	150.0	18.0	
3	12.0	8	304.0	150.0	16.0	
4	10.5	8	302.0	140.0	17.0	
5	10.0	8	429.0	198.0	15.0	
6	9.0	8	454.0	220.0	14.0	
7	8.5	8	440.0	215.0	14.0	
8	10.0	8	455.0	225.0	14.0	
9	8.5	8	390.0	190.0	15.0	
15	10.0	8	383.0	170.0	15.0	
16	8.0	8	340.0	160.0	14.0	
18	9.5	8	400.0	150.0	15.0	
19	10.0	8	455.0	225.0	14.0	
20	15.0	4	113.0	95.0	24.0	
21	15.5	6	198.0	95.0	22.0	
22	15.5	6	199.0	97.0	18.0	
23	16.0	6	200.0	85.0	21.0	
24	14.5	4	97.0	88.0	27.0	
25	20.5	4	97.0	46.0	26.0	
26	17.5	4	110.0	87.0	25.0	
27	14.5	4	107.0	90.0	24.0	
28	17.5	4	104.0	95.0	25.0	
29	12.5	4	121.0	113.0	26.0	
30	15.0	6	199.0	90.0	21.0	
31	14.0	8	360.0	215.0	10.0	
32	15.0	8	307.0	200.0	10.0	
33	13.5	8	318.0	210.0	11.0	
34	18.5	8	304.0	193.0	9.0	
35	14.5	4	97.0	88.0	27.0	
375	19.6	4	112.0	88.0	28.0	
376	18.6	4	112.0	88.0	27.0	
377	18.0	4	112.0	88.0	34.0	
378	16.2	4	112.0	85.0	31.0	
379	16.0	4	135.0	84.0	29.0	
380	18.0	4	151.0	90.0	27.0	
381	16.4	4	140.0	92.0	24.0	
383	15.3	4	105.0	74.0	36.0	

384		91.0	68.0	37.0
385	17.6 4	91.0	68.0	31.0
386	14.7 4 1	05.0	63.0	38.0
387	17.3 4	98.0	70.0	36.0
388	14.5 4 1	20.0	88.0	36.0
389	14.5 4 1	07.0	75.0	36.0
390	16.9 4 1	08.0	70.0	34.0
391	15.0 4	91.0	67.0	38.0
392	15.7 4	91.0	67.0	32.0
393	16.2 4	91.0	67.0	38.0
394	16.4 6 1	81.0	110.0	25.0
395		62.0	85.0	38.0
396		56.0	92.0	26.0
397		32.0	112.0	22.0
398		44.0	96.0	32.0
399		35.0	84.0	36.0
400		51.0	90.0	27.0
401		40.0	86.0	27.0
402		97.0	52.0	44.0
403		35.0	84.0	32.0
404		20.0	79.0	28.0
405		19.0	82.0	31.0
100	10.1	10.0	02.0	01.0
	Name	Origin	Weight_in_lbs	Year
0	chevrolet chevelle malibu	_	3504	1970-01-01
1	buick skylark 320		3693	1970-01-01
2	plymouth satellite		3436	1970-01-01
3	amc rebel sst		3433	1970-01-01
4	ford torino		3449	1970-01-01
5	ford galaxie 500		4341	1970-01-01
6	chevrolet impala		4354	1970-01-01
7	plymouth fury iii		4312	1970-01-01
8	pontiac catalina		4425	1970-01-01
9	amc ambassador dpl		3850	1970-01-01
15	dodge challenger se		3563	1970-01-01
16	plymouth 'cuda 340		3609	1970-01-01
18	chevrolet monte carlo		3761	1970-01-01
19	buick estate wagon (sw)		3086	1970-01-01
20	toyota corona mark ii		2372	1970-01-01
21	plymouth duster	_	2833	1970-01-01
22	amc hornet		2774	1970-01-01
23	ford maverick		2587	1970-01-01
24			2130	1970-01-01
25	datsun pl510	_	1835	1970-01-01
25 26	volkswagen 1131 deluxe sedan	-	2672	1970-01-01
26 27	peugeot 504 audi 100 ls	_	2430	1970-01-01
28	saab 99e	-	2375	1970-01-01
		-		
29	bmw 2002	Europe	2234	1970-01-01

SA 2648 1970-01-	-01
SA 4615 1970-01-	-01
SA 4376 1970-01-	-01
SA 4382 1970-01-	-01
SA 4732 1970-01-	-01
n 2130 1971-01-	-01
SA 2605 1982-01-	-01
SA 2640 1982-01-	-01
SA 2395 1982-01-	-01
SA 2575 1982-01-	-01
SA 2525 1982-01-	-01
SA 2735 1982-01-	-01
SA 2865 1982-01-	-01
e 1980 1982-01-	-01
n 2025 1982-01-	-01
in 1970 1982-01-	-01
SA 2125 1982-01-	-01
SA 2125 1982-01-	-01
n 2160 1982-01-	-01
n 2205 1982-01-	-01
n 2245 1982-01-	-01
in 1965 1982-01-	-01
in 1965 1982-01-	-01
in 1995 1982-01-	-01
SA 2945 1982-01-	-01
SA 3015 1982-01-	-01
SA 2585 1982-01-	-01
SA 2835 1982-01-	-01
n 2665 1982-01-	-01
SA 2370 1982-01-	-01
SA 2950 1982-01-	-01
SA 2790 1982-01-	-01
e 2130 1982-01-	-01
SA 2295 1982-01-	-01
SA 2625 1982-01-	-01
SA 2720 1982-01-	-01
	A 2625 1982-01-

[392 rows x 9 columns]

6 Preliminary Data Exploration

You start by exploring single variable to gain a better understanding of it. The questions in the following cells are the typical questions that you might ask when doing exploratory data analysis.

In []: # Describe each columns, using statistical summaries and the appropriate visualization
What can you say about each variable? (write it in comments under each variable as y

In [66]: clean_cars_df.Acceleration.describe()
 # tell the acceleration to each car with mean acceleration of 15.5

0+ [00]		400 00000
Out [66]:	count	406.000000
	mean	15.519704
	std	2.803359
	min	8.000000
	25%	13.700000
	50%	15.500000
	75%	17.175000
	max	24.800000

Name: Acceleration, dtype: float64

In [64]: clean_cars_df.Acceleration.hist()

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0xa63adbf358>

In [56]: clean_cars_df.Cylinders.describe()

Out[56]:	count	406.000000
	mean	5.475369
	std	1.712160
	min	3.000000
	25%	4.000000
	50%	4.000000
	75%	8.000000
	max	8.000000

Name: Cylinders, dtype: float64

In [216]: clean_cars_df.Cylinders.hist()

Out[216]: <matplotlib.axes._subplots.AxesSubplot at 0xa6442e79b0>

In [242]: clean_cars_df.Cylinders.value_counts().plot(kind="pie")

Out[242]: <matplotlib.axes._subplots.AxesSubplot at 0xa6445cd518>

In [94]: clean_cars_df.Displacement.describe()

```
Out[94]: count
                  406.000000
         mean
                  194.779557
         std
                  104.922458
         min
                   68.000000
         25%
                  105.000000
         50%
                  151.000000
         75%
                  302.000000
                  455.000000
         max
```

Name: Displacement, dtype: float64

In [95]: clean_cars_df.Displacement.hist()

Out[95]: <matplotlib.axes._subplots.AxesSubplot at 0xa645d36710>

In [59]: clean_cars_df.Horsepower.describe()

Out[59]:	count	400.000000
	mean	105.082500
	std	38.768779
	min	46.000000
	25%	75.750000

50% 95.000000 75% 130.000000 max 230.000000

Name: Horsepower, dtype: float64

In [96]: clean_cars_df.Horsepower.hist()

Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0xa645e462e8>

In [60]: clean_cars_df.Miles_per_Gallon.describe()

Out[60]: count 398.000000 23.514573 mean std 7.815984 9.000000 min 25% 17.500000 50% 23.000000 75% 29.000000 46.600000 max

Name: Miles_per_Gallon, dtype: float64

In [271]: clean_cars_df.Miles_per_Gallon.hist()

Out[271]: <matplotlib.axes._subplots.AxesSubplot at 0xa6494e8828>


```
In [61]: clean_cars_df.Name.describe()
Out[61]: count
                          406
         unique
                          311
         top
                   ford pinto
         freq
         Name: Name, dtype: object
In [62]: clean_cars_df.Origin.describe()
Out[62]: count
                   406
         unique
                     3
                   USA
         top
         freq
                   254
         Name: Origin, dtype: object
In [285]: clean_cars_df.Origin.value_counts().plot(kind="pie")
Out[285]: <matplotlib.axes._subplots.AxesSubplot at 0xa6496f46a0>
```


In [63]: clean_cars_df.Weight_in_lbs.describe()

```
Out[63]: count
                   406.000000
                  2979.413793
         mean
         std
                   847.004328
         min
                  1613.000000
         25%
                  2226.500000
         50%
                  2822.500000
         75%
                  3618.250000
                  5140.000000
         max
```

Name: Weight_in_lbs, dtype: float64

In [109]: clean_cars_df.Weight_in_lbs.hist()

Out[109]: <matplotlib.axes._subplots.AxesSubplot at 0xa647023be0>


```
In [64]: clean_cars_df.Year.describe()
```

> freq 61 Name: Year, dtype: object

In [268]: cars_df_date = pd.to_datetime(clean_cars_df.Year)

cars_df_date.hist()

Out[268]: <matplotlib.axes._subplots.AxesSubplot at 0xa6491ddef0>

In [6]: # What are the top 5 cars that have the highest weight?

In [132]: clean_cars_df.Weight_in_lbs.sort_values(ascending=False).head()

Out[132]: 51 5140 110 4997 49 4955 97 4952 102 4951

Name: Weight_in_lbs, dtype: int64

In [7]: # Find the top 5 cars with the most cylinders, but the least horse power

In [75]: clean_cars_df[["Cylinders", "Horsepower"]].sort_values(by=["Cylinders", "Horsepower"]

Out[75]:	Cylinders	Horsepower
307	8	90.0
372	8	105.0
172	8	110.0
229	8	110.0
256	8	110.0

Ou+ [O] .	Accolomotion	Crolindona	Dianle coment	Uanganarian	Miles new Coller	`
Out[9]: 36	15.5	Cylinders 4	Displacement 140.0	Horsepower 90.0	Miles_per_Gallon 28.0	\
63	20.5	4	91.0	70.0	26.0	
65	17.0	4		80.0		
90	15.0	4	97.5 98.0	80.0	25.0 28.0	
137				80.0		
	16.5	4	122.0		26.0	
139 153	17.0 14.5	4	140.0 90.0	75.0	25.0	
191		4 4	140.0	75.0 92.0	28.0 25.0	
191	14.9 17.7	4	98.0	79.0	26.0	
200	17.6		200.0	81.0	24.0	
202		6	85.0			
	22.2	4 4		52.0	29.0	
203 213	22.1		98.0	60.0	24.5	
	13.6	4	140.0	72.0	26.5	
224 226	14.8 15.5	4 4	111.0 122.0	80.0 96.0	30.0 25.5	
241	16.0			88.0		
241	15.8	4 4	151.0 140.0	89.0	24.5 25.5	
					30.5	
244 245	17.0	4	98.0	63.0		
	15.9	4	98.0	83.0	33.5	
252 262	14.4	4 4	98.0 140.0	66.0 88.0	36.1 25.1	
273	15.4 16.5		98.0	68.0	30.0	
275 276	14.5	4 4	105.0	75.0	30.9	
279		4				
302	17.6	4	151.0 98.0	85.0 80.0	23.8 35.7	
303	14.4	4	121.0	80.0		
307	15.0 22.2	8	260.0	90.0	27.4 23.9	
308	13.2	4	105.0	70.0	34.2	
309	14.9	4	105.0	70.0	34.5	
312	16.0	4	151.0	90.0	28.4	
		7	131.0			
322	20.1	4	151.0	90.0	24.3	
330	14.4	4	156.0	105.0	27.9	
345	15.7	4	135.0	84.0	27.2	
346	16.4	4	151.0	84.0	26.6	
347	14.4	4	156.0	92.0	25.8	
348	12.6	6	173.0	110.0	23.5	
349	12.9	4	135.0	84.0	30.0	
351	16.4	4	86.0	64.0	39.0	
357	14.9	4	105.0	63.0	34.7	
358	16.2	4	98.0	65.0	34.4	
359	20.7	4	98.0	65.0	29.9	
372	19.0	8	350.0	105.0	26.6	
375	19.6	4	112.0	88.0	28.0	
376	18.6	4	112.0	88.0	27.0	
377	18.0	4	112.0	88.0	34.0	
378	16.2	4	112.0	85.0	31.0	

379	16.0 4	135.0	84.0	29.0
380	18.0 4	151.0	90.0	27.0
381	16.4 4	140.0	92.0	24.0
386	14.7 4	105.0	63.0	38.0
387	17.3 4	98.0	70.0	36.0
394	16.4	181.0	110.0	25.0
395	17.0	262.0	85.0	38.0
396		156.0	92.0	26.0
399	13.0 4	135.0	84.0	36.0
400	17.3 4	151.0	90.0	27.0
401	15.6 4	140.0	86.0	27.0
403	11.6 4	135.0	84.0	32.0
404	18.6 4	120.0	79.0	28.0
405	19.4 4	119.0	82.0	31.0
		me Origin	_	Year
36	chevrolet vega 23			1971-01-01
63	plymouth crick			1971-01-01
65	dodge colt hardt	-		1972-01-01
90	dodge colt (s			1972-01-01
137	ford pin	to USA	2451	1974-01-01
139	chevrolet ve	ga USA	2542	1974-01-01
153	dodge co	lt USA	2125	1974-01-01
191	capri	ii USA	. 2572	1976-01-01
192	dodge co	lt USA	. 2255	1976-01-01
200	ford maveri	ck USA	3012	1976-01-01
202	chevrolet chevet	te USA	2035	1976-01-01
203	chevrolet woo	dy USA	2164	1976-01-01
213	ford pin	to USA	2565	1976-01-01
224	buick opel isuzu delu	xe USA	2155	1977-01-01
226	plymouth arrow	gs USA	2300	1977-01-01
241	pontiac sunbird cou	•		1977-01-01
243	ford mustang ii 2	-		1977-01-01
244	chevrolet chevet			
245	dodge colt m			1977-01-01
252	ford fies			1978-01-01
262	ford fairmont (ma			1978-01-01
273	chevrolet chevet			1978-01-01
276	dodge om			1978-01-01
279	oldsmobile starfire			1978-01-01
302				1979-01-01
	dodge colt hatchback cust			
303	amc spirit			1979-01-01
307	oldsmobile cutlass salon brough			1979-01-01
308	plymouth horiz			1979-01-01
309	plymouth horizon t			1979-01-01
312	buick skylark limit			1979-01-01
	•			
322	amc conco	rd USA	3003	1980-01-01

```
330
                              dodge colt
                                             USA
                                                            2800
                                                                   1980-01-01
                       plymouth reliant
345
                                             USA
                                                            2490
                                                                   1982-01-01
346
                           buick skylark
                                             USA
                                                            2635
                                                                   1982-01-01
347
                 dodge aries wagon (sw)
                                             USA
                                                            2620
                                                                   1982-01-01
                     chevrolet citation
348
                                             USA
                                                            2725
                                                                   1982-01-01
                        plymouth reliant
                                             USA
                                                            2385
349
                                                                   1982-01-01
351
                          plymouth champ
                                             USA
                                                            1875
                                                                   1982-01-01
357
                     plymouth horizon 4
                                             USA
                                                            2215
                                                                   1982-01-01
                          ford escort 4w
                                             USA
                                                                   1982-01-01
358
                                                            2045
359
                          ford escort 2h
                                             USA
                                                            2380
                                                                   1982-01-01
372
                  oldsmobile cutlass ls
                                             USA
                                                            3725
                                                                   1982-01-01
                      chevrolet cavalier
375
                                             USA
                                                            2605
                                                                   1982-01-01
376
               chevrolet cavalier wagon
                                             USA
                                                            2640
                                                                   1982-01-01
377
              chevrolet cavalier 2-door
                                             USA
                                                            2395
                                                                   1982-01-01
378
             pontiac j2000 se hatchback
                                             USA
                                                            2575
                                                                   1982-01-01
379
                          dodge aries se
                                             USA
                                                            2525
                                                                   1982-01-01
380
                         pontiac phoenix
                                             USA
                                                            2735
                                                                   1982-01-01
381
                   ford fairmont futura
                                             USA
                                                            2865
                                                                   1982-01-01
                 plymouth horizon miser
                                                            2125
                                                                   1982-01-01
386
                                             USA
387
                          mercury lynx 1
                                             USA
                                                            2125
                                                                   1982-01-01
394
                  buick century limited
                                             USA
                                                            2945
                                                                   1982-01-01
     oldsmobile cutlass ciera (diesel)
395
                                             USA
                                                            3015
                                                                   1982-01-01
396
             chrysler lebaron medallion
                                             USA
                                                            2585
                                                                   1982-01-01
399
                      dodge charger 2.2
                                             USA
                                                            2370
                                                                   1982-01-01
400
                        chevrolet camaro
                                             USA
                                                            2950
                                                                   1982-01-01
401
                         ford mustang gl
                                             USA
                                                            2790
                                                                   1982-01-01
                                                                   1982-01-01
403
                                             USA
                                                            2295
                           dodge rampage
404
                             ford ranger
                                             USA
                                                            2625
                                                                   1982-01-01
405
                              chevy s-10
                                             USA
                                                            2720
                                                                   1982-01-01
```

[66 rows x 9 columns]

In [235]: above_average.Cylinders.value_counts()

Out[235]: 4 60 6 5 8 2

Name: Cylinders, dtype: int64

In [236]: above_average.Cylinders.value_counts().plot(kind="pie")

Out[236]: <matplotlib.axes._subplots.AxesSubplot at 0xa64453c4e0>

Out[239]:	Acceleration	Cylinders	Displacement	Horsepower	Miles_per_Gallon	\
0	12.0	8	307.0	130.0	18.0	
1	11.5	8	350.0	165.0	15.0	
2	11.0	8	318.0	150.0	18.0	
3	12.0	8	304.0	150.0	16.0	
4	10.5	8	302.0	140.0	17.0	
5	10.0	8	429.0	198.0	15.0	
6	9.0	8	454.0	220.0	14.0	
7	8.5	8	440.0	215.0	14.0	
8	10.0	8	455.0	225.0	14.0	
9	8.5	8	390.0	190.0	15.0	
15	10.0	8	383.0	170.0	15.0	
16	8.0	8	340.0	160.0	14.0	
18	9.5	8	400.0	150.0	15.0	
19	10.0	8	455.0	225.0	14.0	
21	15.5	6	198.0	95.0	22.0	
22	15.5	6	199.0	97.0	18.0	
23	16.0	6	200.0	85.0	21.0	
30	15.0	6	199.0	90.0	21.0	
31	14.0	8	360.0	215.0	10.0	

32	15.0	8	307.0	200.0		10.0
33	13.5	8	318.0	210.0		11.0
34	18.5	8	304.0	193.0		9.0
40	13.0	6	232.0	100.0		19.0
41	15.5	6	225.0	105.0		16.0
42	15.5	6	250.0	100.0		17.0
43	15.5	6	250.0	88.0		19.0
44	15.5	6	232.0	100.0		18.0
45	12.0	8	350.0	165.0		14.0
46	11.5	8	400.0	175.0		14.0
47	13.5	8	351.0	153.0		14.0
265	15.8	6	231.0	105.0		20.6
266	16.7	6	200.0	85.0		20.8
267	18.7	6	225.0	110.0		18.6
268	15.1	6	258.0	120.0		18.1
269	13.2	8	305.0	145.0		19.2
270	13.4	6	231.0	165.0		17.7
271	11.2	8	302.0	139.0		18.1
272	13.7	8	318.0	140.0		17.5
278	16.7	4	156.0	105.0		23.2
287	15.4	6	231.0	115.0		21.5
288	18.2	6	200.0	85.0		19.8
289	17.3	4	140.0	88.0		22.3
290	18.2	6	232.0	90.0		20.2
291	16.6	6	225.0	110.0		20.6
292	15.4	8	305.0	130.0		17.0
293	13.4	8	302.0	129.0		17.6
294	13.2	8	351.0	138.0		16.5
295	15.2	8	318.0	135.0		18.2
296	14.9	8	350.0	155.0		16.9
297	14.3	8	351.0	142.0		15.5
298	15.0	8	267.0	125.0		19.2
299	13.0	8	360.0	150.0		18.5
305	17.4	8	350.0	125.0		23.0
323	18.7	6	225.0	90.0		19.1
348	12.6	6	173.0	110.0		23.5
371	15.8	6	231.0	110.0		22.4
373	17.1	6	200.0	88.0		20.2
374	16.6	6	225.0	85.0		17.6
382	20.5	4	151.0	NaN		23.0
397	14.7	6	232.0	112.0		22.0
			Name Or	igin Weight	_in_lbs	Year
0	chevrole	et chevelle		USA	3504	1970-01-01
1		buick skyla		USA	3693	1970-01-01
2	ī	olymouth sa		USA	3436	1970-01-01
3	1		bel sst	USA	3433	1970-01-01
						-

_				
4	ford torino	USA	3449	1970-01-01
5	ford galaxie 500	USA	4341	1970-01-01
6	chevrolet impala	USA	4354	1970-01-01
7	plymouth fury iii	USA	4312	1970-01-01
8	pontiac catalina	USA	4425	1970-01-01
9	amc ambassador dpl	USA	3850	1970-01-01
15	dodge challenger se	USA	3563	1970-01-01
16	plymouth 'cuda 340	USA	3609	1970-01-01
18	chevrolet monte carlo	USA	3761	1970-01-01
19	buick estate wagon (sw)	USA	3086	1970-01-01
21	plymouth duster	USA	2833	1970-01-01
22	amc hornet	USA	2774	1970-01-01
23	ford maverick	USA	2587	1970-01-01
30	amc gremlin	USA	2648	1970-01-01
31	ford f250	USA	4615	1970-01-01
32	chevy c20	USA	4376	1970-01-01
33	dodge d200	USA	4382	1970-01-01
34	hi 1200d	USA	4732	1970-01-01
40	amc gremlin	USA	2634	1971-01-01
41	plymouth satellite custom	USA	3439	1971-01-01
42	chevrolet chevelle malibu	USA	3329	1971-01-01
43	ford torino 500	USA	3302	1971-01-01
44	amc matador	USA	3288	1971-01-01
45	chevrolet impala	USA	4209	1971-01-01
46	pontiac catalina brougham	USA	4464	1971-01-01
47	ford galaxie 500	USA	4154	1971-01-01
	101d galaxie 500			19/1-01-01
065			2200	1070 01 01
265	buick century special	USA	3380	1978-01-01
266	mercury zephyr	USA	3070	1978-01-01
267	dodge aspen	USA	3620	1978-01-01
268	amc concord d/l	USA	3410	1978-01-01
269	chevrolet monte carlo landau	USA	3425	1978-01-01
270	buick regal sport coupe (turbo)	USA	3445	1978-01-01
271	ford futura	USA	3205	1978-01-01
272	dodge magnum xe	USA	4080	1978-01-01
278	plymouth sapporo	USA	2745	1978-01-01
287	pontiac lemans v6	USA	3245	1979-01-01
288	mercury zephyr 6	USA	2990	1979-01-01
289	ford fairmont 4	USA	2890	1979-01-01
290	amc concord dl 6	USA	3265	1979-01-01
291	dodge aspen 6	USA	3360	1979-01-01
292	chevrolet caprice classic	USA	3840	1979-01-01
293	ford ltd landau	USA	3725	1979-01-01
293 294		USA	3955	1979-01-01
	mercury grand marquis			
295	dodge st. regis	USA	3830	1979-01-01
296	buick estate wagon (sw)	USA	4360	1979-01-01
297	ford country squire (sw)	USA	4054	1979-01-01
298	chevrolet malibu classic (sw)	USA	3605	1979-01-01

299	chrysler lebaron town @ country (sw)	USA	3940	1979-01-01
305	cadillac eldorado	USA	3900	1979-01-01
323	dodge aspen	USA	3381	1980-01-01
348	chevrolet citation	USA	2725	1982-01-01
371	buick century	USA	3415	1982-01-01
373	ford granada gl	USA	3060	1982-01-01
374	chrysler lebaron salon	USA	3465	1982-01-01
382	amc concord dl	USA	3035	1982-01-01
397	ford granada l	USA	2835	1982-01-01

[182 rows x 9 columns]

In [241]: below_average.Cylinders.value_counts().plot(kind="pie")

Out[241]: <matplotlib.axes._subplots.AxesSubplot at 0xa64455f7b8>

In [288]: above_average.Cylinders.value_counts()

Out[288]: 4 60 6 5

Name: Cylinders, dtype: int64

In [289]: below_average.Cylinders.value_counts()

Out[289]: 8 101 6 69 4 12

Name: Cylinders, dtype: int64

In [286]: above_average.Cylinders.value_counts().plot(kind="pie")

Out[286]: <matplotlib.axes._subplots.AxesSubplot at 0xa649789b00>

In [287]: below_average.Cylinders.value_counts().plot(kind="pie")

Out[287]: <matplotlib.axes._subplots.AxesSubplot at 0xa64980f400>

In []: # the frequency of the 4 cylinders car are more in above average miles per gallon whil # cars with 4 cylinders have more miles per gallon than cars with 6 or 8 cylinders, ca In [387]: clean_cars_df[(clean_cars_df.Origin == "USA") & (clean_cars_df.Cylinders == 8)].desc: Out [387]: Acceleration Cylinders Displacement Horsepower Miles_per_Gallon count 103.000000 103.0 103.000000 103.000000 103.000000 12.955340 8.0 345.009709 158.300971 14.963107 mean std 2.224759 0.0 46.776376 28.453552 2.836284 min 8.000000 8.0 260.000000 90.000000 9.000000 25% 11.500000 8.0 305.000000 140.000000 13.000000 50% 13.000000 8.0 350.000000 150.000000 14.000000 75% 8.0 14.000000 360.000000 175.000000 16.000000 22.200000 8.0 455.000000 230.000000 26.600000 maxWeight_in_lbs 103.000000 count 4114.718447 mean std 448.833159 min 3086.000000 25% 3799.000000 50% 4140.000000 75% 4403.500000

In [389]: clean_cars_df[(clean_cars_df.Origin == "USA") & (clean_cars_df.Cylinders == 6)].desc

5140.000000

max

```
Out [389]:
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                                                         Miles_per_Gallon
          count
                     73.000000
                                      73.0
                                                73.000000
                                                             73.000000
                                                                                 73.000000
                                       6.0
                     16.467123
                                               226.643836
                                                             99.671233
                                                                                 19.645205
          mean
                                       0.0
                                                             12.934724
          std
                      1.908974
                                                24.677571
                                                                                  3.394646
          min
                     11.300000
                                       6.0
                                               155.000000
                                                             72.000000
                                                                                 15.000000
          25%
                     15.500000
                                       6.0
                                               225.000000
                                                             90.000000
                                                                                 18.000000
          50%
                     16.400000
                                       6.0
                                               231.000000
                                                            100.000000
                                                                                 19.000000
          75%
                     17.700000
                                       6.0
                                               250.000000
                                                            107.000000
                                                                                 20.800000
                     21.000000
                                        6.0
                                               262.000000
                                                            165.000000
                                                                                 38.000000
          max
                  Weight_in_lbs
          count
                      73.000000
          mean
                    3218.547945
          std
                     332.879735
          min
                    2472.000000
          25%
                    2984.000000
          50%
                    3245.000000
          75%
                    3439.000000
                    3907.000000
          max
In [390]: clean_cars_df[(clean_cars_df.Origin == "USA") & (clean_cars_df.Cylinders == 4)].desc.
Out [390]:
                                                                         Miles_per_Gallon
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                      69.0
                     69.000000
                                                69.000000
                                                             69.000000
                                                                                 69.000000
          count
                     16.465217
                                        4.0
                                               124.050725
                                                             80.956522
                                                                                 28.013043
          mean
          std
                      2.180989
                                       0.0
                                                21.608166
                                                             10.540447
                                                                                  4.566596
                                       4.0
          min
                     11.600000
                                                85.000000
                                                             52.000000
                                                                                 19.000000
          25%
                     14.900000
                                       4.0
                                               105.000000
                                                             72.000000
                                                                                 25.000000
          50%
                                       4.0
                                               122.000000
                     16.200000
                                                             84.000000
                                                                                 27.200000
                                        4.0
                                                                                 30.900000
          75%
                     17.700000
                                               140.000000
                                                             88.000000
                     22.200000
                                        4.0
                                               156.000000
                                                            105.000000
                                                                                 39.000000
          max
                  Weight_in_lbs
          count
                      69.000000
          mean
                    2427.391304
          std
                     289.974351
          min
                    1800.000000
          25%
                    2164.000000
          50%
                    2408.000000
          75%
                    2640.000000
                    3003.000000
          max
In [381]: clean_cars_df[(clean_cars_df.Origin == "Japan") & (clean_cars_df.Cylinders == 8)].de
Out [381]:
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                                                         Miles_per_Gallon
          count
                            0.0
                                       0.0
                                                                                       0.0
                                                       0.0
                                                                    0.0
                            NaN
                                       NaN
                                                       NaN
                                                                   NaN
                                                                                       NaN
          mean
          std
                            NaN
                                       NaN
                                                       NaN
                                                                   NaN
                                                                                       NaN
```

NaN

NaN

NaN

NaN

NaN

min

```
25%
                            NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
                                       NaN
          50%
                            NaN
                                       NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          75%
                            NaN
                                       NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
                            NaN
                                       NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          max
                  Weight_in_lbs
          count
                             0.0
          mean
                             NaN
                             NaN
          std
          min
                             NaN
          25%
                             NaN
          50%
                             NaN
          75%
                             NaN
          max
                             NaN
In [391]: clean_cars_df[(clean_cars_df.Origin == "Japan") & (clean_cars_df.Cylinders == 6)].de
Out [391]:
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                                                         Miles_per_Gallon
          count
                      6.000000
                                       6.0
                                                 6.000000
                                                              6.000000
                                                                                  6.000000
                     13.550000
                                       6.0
                                               156.666667
                                                            115.833333
                                                                                 23.883333
          mean
          std
                      1.434922
                                       0.0
                                                 9.852242
                                                             12.106472
                                                                                  4.951936
                                       6.0
                                                             97.000000
          min
                     11.400000
                                               146.000000
                                                                                 19.000000
          25%
                     12.825000
                                       6.0
                                               148.500000
                                                            110.000000
                                                                                 20.500000
          50%
                                       6.0
                     13.650000
                                               156.000000
                                                            118.000000
                                                                                 23.100000
          75%
                                        6.0
                                               165.000000
                     14.325000
                                                            121.500000
                                                                                 25.100000
          max
                     15.500000
                                        6.0
                                               168.000000
                                                            132.000000
                                                                                 32.700000
                  Weight_in_lbs
                        6.00000
          count
                     2882.00000
          mean
          std
                       56.26722
          min
                     2807.00000
          25%
                     2836.25000
          50%
                     2905.00000
          75%
                     2925.00000
                     2930.00000
          max
In [392]: clean_cars_df[(clean_cars_df.Origin == "Japan") & (clean_cars_df.Cylinders == 4)].de
Out [392]:
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                                                         Miles_per_Gallon
                     69.000000
                                      69.0
                                                69.000000
                                                             69.000000
                                                                                 69.000000
          count
                                       4.0
          mean
                     16.569565
                                                99.768116
                                                             75.579710
                                                                                 31.595652
          std
                                       0.0
                                                16.929912
                                                             13.982558
                                                                                  5.435787
                      1.718182
                                       4.0
          min
                     13.500000
                                                71.000000
                                                             52.000000
                                                                                 20.000000
                                       4.0
          25%
                     15.000000
                                                86.000000
                                                             65.000000
                                                                                 27.500000
          50%
                     16.500000
                                       4.0
                                                97.000000
                                                             70.000000
                                                                                 32.000000
          75%
                     17.900000
                                        4.0
                                               113.000000
                                                             90.000000
                                                                                 35.000000
                     21.000000
                                        4.0
                                               144.000000
                                                            100.000000
                                                                                 46.600000
          max
```

```
Weight_in_lbs
                      69.000000
          count
                    2153.492754
          mean
          std
                     264.306786
          min
                    1613.000000
          25%
                    1975.000000
          50%
                    2130.000000
          75%
                    2300.000000
                    2711.000000
          max
In [384]: clean_cars_df[(clean_cars_df.Origin == "Europe") & (clean_cars_df.Cylinders == 8)].de
Out [384]:
                  Acceleration
                                 Cylinders
                                             Displacement
                                                            Horsepower
                                                                         Miles_per_Gallon
                            0.0
                                        0.0
                                                       0.0
                                                                    0.0
                                                                                       0.0
          count
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          mean
                            NaN
                                                                    NaN
          std
                                        NaN
                                                       NaN
                                                                                       NaN
          min
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          25%
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          50%
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          75%
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
          max
                            NaN
                                        NaN
                                                       NaN
                                                                    NaN
                                                                                       NaN
                  Weight_in_lbs
                             0.0
          count
          mean
                             NaN
          std
                             NaN
                             NaN
          min
          25%
                             NaN
          50%
                             NaN
          75%
                             NaN
                             NaN
          max
In [386]: clean_cars_df[(clean_cars_df.Origin == "Europe") & (clean_cars_df.Cylinders == 6)].de
Out[386]:
                                 Cylinders
                                                                         Miles_per_Gallon
                  Acceleration
                                             Displacement
                                                            Horsepower
                                                              4.000000
          count
                      4.000000
                                        4.0
                                                 4.000000
                                                                                  4.000000
          mean
                     16.425000
                                        6.0
                                               159.750000
                                                            113.500000
                                                                                 20.100000
          std
                      2.485122
                                        0.0
                                                             25.566906
                                                                                  7.074367
                                                10.111874
          min
                     13.600000
                                        6.0
                                               145.000000
                                                             76.000000
                                                                                 16.200000
          25%
                     15.250000
                                        6.0
                                               158.500000
                                                            109.000000
                                                                                 16.425000
          50%
                                        6.0
                                               163.000000
                                                            122.500000
                     16.250000
                                                                                 16.750000
          75%
                                        6.0
                     17.425000
                                               164.250000
                                                            127.000000
                                                                                 20.425000
                     19.600000
                                        6.0
                                               168.000000
                                                            133.000000
                                                                                 30.700000
          max
                  Weight_in_lbs
          count
                       4.000000
          mean
                    3382.500000
                     316.478014
          std
```

3140.000000

min

25%	3155.000000
50%	3285.000000
75%	3512.500000
max	3820.000000

In [394]: clean_cars_df[(clean_cars_df.Origin == "Europe") & (clean_cars_df.Cylinders == 4)].de

Out[394]:		Acceleration	Cylinders	Displacement	Horsepower	Miles_per_Gallon	\
	count	61.000000	61.0	61.000000	61.000000	61.000000	
	mean	16.727869	4.0	104.606557	78.311475	28.106557	
	std	3.157274	0.0	16.653607	18.218618	6.291075	
	min	12.200000	4.0	68.000000	46.000000	18.000000	
	25%	14.500000	4.0	90.000000	69.000000	24.000000	
	50%	15.500000	4.0	98.000000	76.000000	27.000000	
	75%	18.600000	4.0	120.000000	88.000000	30.000000	
	max	24.800000	4.0	146.000000	115.000000	44.300000	

	Weight_in_lbs
count	61.000000
mean	2338.295082
std	410.770428
min	1825.000000
25%	2000.000000
50%	2219.000000
75%	2600.000000
max	3270.000000

In [401]: clean_cars_df.Cylinders[(clean_cars_df.Origin == "USA")].value_counts().plot(kind="p
Out[401]: <matplotlib.axes._subplots.AxesSubplot at 0xa64af5c0f0>

In [399]: clean_cars_df.Cylinders[(clean_cars_df.Origin == "Europe")].value_counts().plot(kinden)
Out[399]: <matplotlib.axes._subplots.AxesSubplot at 0xa64a9b77b8>

In [400]: clean_cars_df.Cylinders[(clean_cars_df.Origin == "Japan")].value_counts().plot(kind='
Out[400]: <matplotlib.axes._subplots.AxesSubplot at 0xa64a9c5f60>

In [415]: clean_cars_df.Origin[(clean_cars_df.Miles_per_Gallon <= 15)].value_counts().plot(kind)
Out[415]: <matplotlib.axes._subplots.AxesSubplot at 0xa64d9397b8>

In [416]: clean_cars_df.Cylinders[(clean_cars_df.Miles_per_Gallon <= 15)].hist()</pre>

Out[416]: <matplotlib.axes._subplots.AxesSubplot at 0xa64da93fd0>

7 The Report

Your report should be written as markdown at the top of the notebook. To know more about markdown, read the following reference.

Perform the following tasks to prepare your report:

- 1. Split the notebook into 2 sections, Report and Analysis
 - Report will be at the top, and will contain the findings that you discover from your
 analysis and be completly written in markdown. You get the facts and figures from the
 analysis section. While the report is at the top, it is the last part your write.
 - The analysis will be everything you did in the above section. You copy the findings in your analysis and include interesting facts into the report.
- 2. Include the following sections in your report:
 - Variables: Include a table listing the names of the variables, a description of what the
 variable is, the data type, and a notes section about the missing values and problems in
 the distributions.
 - Summary of Findings: Based on the analysis perform, pick the interesting findings and list them as bullet points.
 - For each finding, list the plots/evidence from your analysis that supports the finding

8 Creating a pdf report and presentation

Here you will learn how to create a pdf report and presentation slides from your notebook.

8.1 Creating HTML slides

Type the following command in CMD or Terminal:

```
jupyter nbconvert week5_hw.ipynb --to slides --reveal-prefix '//cdn.jsdelivr.net/npm/reveal.js
```

In the same directory as your notebook file, look for **week5_hw.slides.html** and open it to view the presentation slides.

Note: Replace week5_hw.ipynb with the name of any other notebook file you want to convert into slides

8.2 Create PDF document

- 1. Download and install pandoc
- 2. run the following command in the command line, in the same directory as your notebook:

```
jupyter nbconvert --to pdf week3_lab.ipynb
```

3. Look for week3_lab.pdf, open it to examine the output, then **send it to your instructor instead of the notebook**.

Note: week3_lab.ipynb is the name of the notebook file, in the future replace it with the same of the file you want to convert.

In []: