TD révision partiel

PIEP post-PACES

Exercice 1 : questions en vrac

(1) Calculer les sommes suivantes $(n \in \mathbb{N})$:

(a)
$$\sum_{i=1}^{n} \frac{2^{i}}{3^{2i-1}}$$

(b)
$$301 + 304 + 307 + \dots 739 + 742$$

(c)
$$\sum_{k=0}^{n-1} \binom{n}{k+1} 3^{k+1}$$

- (2) Démontrer que $n! \geq 2^n$ pour tout entier $n \geq 4$.
- (3) Soit x un élément d'un ensemble E. Déterminer $\mathcal{P}(\{x\})$ puis $\mathcal{P}(\mathcal{P}(\{x\}))$.
- (4) Soit P,Q deux assertions. Déterminer en justifiant une assertion A tel que:

$$(P \text{ ou } Q) \iff (\text{non}P \implies A)$$

(5) Pour chaque assertion, écrire sa négation puis présicer si l'assertion est vraie.

 $P_a: \forall n \in \mathbb{N}, \exists m \in \mathbb{N}, m^2 > 2017n$

 $P_b:$ $\exists x \in \mathbb{R}, \exists y \in [0, \infty[, -x < y < x]$ $P_c:$ $\forall x \in \mathbb{R}, (x^2 > 9 \implies x > 3)$

Exercice 2 : suites numériques

(1) On considère la suite $u = (u_n)_{n \in \mathbb{N}^*}$ définie par :

$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k}\right) = (1 + 1/2)(1 + 1/4)\dots(1 + 1/2^n)$$

- On rappel que $\ln(1+x) \leq x$. Montrer que $\ln(u_n) \leq 2$ (a)
- Montrer que u est majoré. (b)
- (c)En déduire que u converge.

(2) Soit $v=(v_n)_{n\in\mathbb{N}}$ la suite récurrente définie par :

$$v: \begin{cases} v_0 = x \\ v_{n+1} = \sin(v_n) \end{cases} \qquad x \in [0, \pi/2]$$

- (a) Soit $f(x) = \sin(x)$. Montrer que $[0, \pi/2]$ est stable par f. En déduire que $\forall n, v_n \in [0, \pi/2]$
- (b) Montrer que $f(x) x \le 0$ dans $[0, \pi/2]$. En déduire la monotonie de v.
- (c) Montrer qu'il existe une unique solution à l'équation f(x) = x dans $[0, \pi/2]$.
- (d) Démontrer que v converge et préciser sa limite.
 - (3) Soit $u=(u_n)_{n\in\mathbb{N}*}$ une suite quel conque et $v=(v_n)_{n\in\mathbb{N}*}$ définie par :

$$v_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{u_1 + u_2 + \dots u_n}{n}$$

- (a) Rappeler la définition de $\lim_{n\to\infty} u_n = l \in \mathbb{R}$.
- (b) On suppose que u converge vers $l = \lim_{n \to \infty} u_n$. Démontrer que v_n converge vers l.
- (c) La réciproque est-elle vraie?

Exercice 3: fonction et continuité

- (1) On pose $f: x \mapsto (x+3)e^x$
 - (a) Montrer que f est bijective sur $I = \mathbb{R}^+$ dans J à préciser.
 - (b) Justifier que f^{-1} est dérivable en x = 3 et préciser $(f^{-1})'(3)$.
- (2) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que :

$$\lim_{x \to -\infty} f(x) = l_1, \quad \lim_{x \to +\infty} f(x) = l_2, \qquad l_1, l_2 \in \mathbb{R}$$
On pose $g: \begin{cases}] - \pi/2; \pi/2 [\to \mathbb{R} \\ x \mapsto f(\tan(x)) \end{cases}$

- (a) Montrer que g admet un prolongement par continuité \tilde{g} sur l'intervalle fermé $[-\pi/2;\pi/2]$.
- (b) En déduire que \tilde{g} est bornée et atteint ses bornes.
- (c) La fonction f est-elle bornée? Atteint-elle ses bornes?
- (3) Soit x > 0, on se propose de calculer $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.
 - (a) Montrer que pour tout réel x positif on a :

$$x - \frac{x^2}{2} \le \ln(1+x) \le x$$

- (b) En déduire que $\lim_{n\to\infty} n \ln(1+\frac{x}{n}) = x$.
- (c) Conclure.