Battle of the Cities

Applied Data Science Capstone

Introduction

Let's suppose that you want to relocate. You don't know where, yet.

You have enough money in order to relocate and then search for a job in your new city. You did a quick search for the most livable cities in the world.

In the website <u>cntraveler</u> you found that the top 10 cities to live are:

- 1. Vienna, Austria
- 2. Melbourne, Australia
- 3. Osaka, Japan
- 4. Calgary, Canada
- 5. Sydney, Australia
- 6. Vancouver, Canada
- 7. Toronto, Canada
- 8. Tokyo, Japan
- 9. Copenhagen, Denmark
- 10. Adelaide, Australia

This list seems ok. But it's not enough for you. It's not for me either. Good thing that i a m studying Data Science and I will help us both.

Description of the Problem

- I won't do a comparison on stability, healthcare, culture, environment, education and infrastructure. Let's observe cities with a different aspect.
- What i will do is to compare the cities in terms of venues, like coffee shops, restaurants, stadiums, playgrounds, parks, pubs, supermarkets banks, gyms etc.
- I will cluster the cities and it will be revealed which cities are similar based on their venues.
- I am curious to see which other cities belong to the same cluster as my hometown.
 Aren't you also curious about yours?
- I am also curious to see how cities from different countries and continents count.
 Is Tokyo similar to Beijing or New York?
- The clustering will be useful for enterprises. If one company has stores in a city and thrives, then why not expand in another city of the same cluster?

Data

What I will need for this project are:

- 1. Python Most used programming language for Data Science
- 2. Pandas Python's best library to deal with tabular data
- 3. Cities I will choose a lot of cities to cluster. I will put them in a Python list
- 4. Coordinates Using a Python's library called Geocoder, i will convert cities to their la titude and longitude
- 5. Venues Using Foursquare's API, i will get the venues for each city
- 6. Clusters Using scikit's learn k-means clustering algorithm I will cluster the cities. As features for the cluster, will be the mean of the frequency of occurrence of each cat egory in each city.
- 7. Map Using Folium i will create maps to visualize the clusters
- 8. In an future work, i will add more features for each city. Not only for venues, but for other factors. But at this point i am focusing on the similarity based on venues.

Methodology

- First, a list of cities of interest was hand-written, consisting of 94 cities all around the world.
- Using Geocoder the coordinates of every city was found by its name.
- All this information was inserted into a *Pandas* dataframe with 3 columns, namely 'City', 'Latitude', 'Longitude'.
- Using Foursquare up to 100 (limited by the api) venues of each city were derived and their category (e.g. Italian Restaurant) was stored in a dataframe.

A total of 8854 venues were collected. 14 cities had <100 venues.

Methodology

- A total of 459 venue categories were collected.
- Because we have categorical data, in order for k-means (clustering algorithm) to work, we have to transform them into numerical.

One-hot encoding was used for this reason.

After grouping the cities each row is a city, each venue category is a column and each cell has values of 0 or 1 if i has not or has a particular venue category.

Instead of zeros and ones, the mean of the frequency of occurrence of each category was used.

• The city with the highest frequency of each venue category is also reported.

Results

There are 2 small clusters consisting of 5 and 7 cities.

The other cities are grouped in 3 bigger clusters with comparable sizes of 29, 27 and 26.

Discussion

- Let's analyze each continent based on the map and the clusters.
- Central and North America All 5 clusters are encountered in this half-continent. We can clearly see a big variety and no cluster is dominant with much more cities.
- South America Cities here are divided between 2 clusters only. CLuster 3 and 4. This half-continent shows more homomorphy.
- Cluster 3 has more occurences in America than the rest of the world, where it is mor e spread and random distributed.

Discussion

- Europe Cluster 1 is the most common in Europe. This big cluster was never seen in Latin America. This indicates the differences of these two continents. Also cluster 4 h as a strong presence and there are small exceptions like Paris.
- Africa Cluster 0 that has a total of 5 members, has 3 of them in Africa.
- Asia This huge continent is by itself very different from west to east. All clusters are here with 1 and 4 being the most common.
- Oceania Although it is a small continent we can say that each city is different.

Conclusion

- So now I have a better view of the clusters of the cities of the world that interest me and I know which are similar based on their venues.
- I know which other cities are like my hometown and in fact i like these choices.
- Finally, a company that has several stores in a city and is doing a good job, now knows which other cities are potential candidates for an expansion.