《高等数学》单元自测题

第一章 函数与极限

专业	班级	姓夕	业 口	
	₩I+ 2 K7	70年 22	安 云	
7 11	<i>1</i> 11.7X	XT-/17	T 7	

一、填空题:

2.
$$\lim_{n\to\infty} \frac{2^n - 3^n}{2^n + 3^n} = \underline{\hspace{1cm}}$$

$$3. \quad \lim_{x\to\infty}\left(1-\frac{1}{x}\right)^{2x}=\underline{\hspace{1cm}}_{\circ}$$

4.
$$\lim_{x \to \infty} \frac{2x^2 + 3}{3x + 2} \sin \frac{1}{x} = \underline{\hspace{1cm}}$$

5. 已知
$$x \to 0$$
 时 $(1 + ax^2)^{\frac{1}{3}} - 1$ 与 $\cos x - 1$ 是等价无穷小,则 $a = \underline{\hspace{1cm}}$ 。

6. 函数
$$f(x) = \begin{cases} e^{\frac{1}{x}}, & x < 0, \\ 0, & x = 0, \text{ 的连续区间是} \\ x \sin \frac{1}{x}, & x > 0 \end{cases}$$

二、单项选择题:

1、函数
$$y = \frac{1}{\sqrt{4-x^2}} + \arcsin(\frac{x}{2} - 1)$$
 的定义域是(

(A)
$$[0,2)$$
; (B) $(-2,2)$; (C) $[0,4]$; (D) $(-2,4]$.

2、已知极限
$$\lim_{n\to\infty} (\frac{n^2+2}{n} + kn) = 0$$
,则常数 $k = ($)。

(A)
$$-1$$
; (B) 0 ; (C) 1 ; (D) 2 .

$$3$$
、若 $\lim_{x \to x_0} f(x) = A$,则下列选项中不正确的是()。

(A)
$$f(x) = A + \alpha$$
, 其中 α 为无穷小; (B) $f(x)$ 在 x_0 点可以无意义;

(C)
$$A = f(x_0)$$
; (D) 若 $A > 0$,则在 x_0 的某一去心邻域内 $f(x) > 0$ 。

$$4$$
、当 x → 0 时,下列哪一个函数不是其他函数的等价无穷小()。

(A)
$$\sin x^2$$
; (B) $1 - \cos x^2$; (C) $\ln (1 + x^2)$; (D) $x(e^x - 1)$.

 $\begin{cases} \frac{\sin ax}{x}, & x>0 \\ b, & x=0 \text{ 在点 } x=0 \text{ 处连续, 则常数 } a,b \text{ 的值为 } (). \end{cases}$ $\int_{-\infty}^{\infty} \frac{1}{r} \ln(1-x), x < 0$

- (A) a = 0, b = 0; (B) a = 1, b = 1;
- (C) a = -1, b = -1; (D) a = 1, b = -1

6、已知函数 $f(x) = x^3 + x - 3$ 在 $(-\infty, +\infty)$ 上单调增加,则方程 $x^3 + x - 3 = 0$ 必有一个根的区间是()。

- (A) (-1,0); (B) (0,1); (C) (1,2); (D) (2,3).

三、 计算下列各题:

1、求函数 $y = \frac{e^{x}}{e^{x} + 1}$ 的反函数,并求反函数的定义域。

2、 求极限
$$\lim_{n\to\infty}\sqrt{n}\left(\sqrt{n+1}-\sqrt{n-1}\right)$$
。

3、求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n} \right)$$
。

4、求极限
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{3}{x^3-1} \right)$$
。

5、设
$$\lim_{x\to\infty} \left(\frac{x+2a}{x-a}\right)^x = 8$$
,求常数 a 。

6、求极限
$$\lim_{x\to 0} (1+3\tan^2 x)^{\frac{1}{x^2}}$$
。

7、 讨论函数 $f(x) = \frac{|x|(x-1)}{x^2(x^2-1)}$ 的间断点及其类型。

四、证明题:

设函数 f(x)在 [a,b] 上连续,且 a < f(x) < b 。证明至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = \xi$ 。