Half-Plane Intersection

Definitions

Definition 1 (half-planes). A line l on 2D plane with function y = ax - b defines two *half-planes*: the *upper half-plane*: $y \ge ax - b$ and the *lower half-plane*: $y \le ax - b$.

Definition 2 (upper- and lower-envelop). Let $L = \{y = a_i x - b_i \mid 1 \le i \le n\}$ be a set of lines on 2D plane. We define the *upper-envelop* of L, denoted as UE(L), as the intersection of the corresponding n upper halfplanes $\{y \ge a_i x - b \mid 1 \le i \le n\}$. We define the *lower-envelop* of L, denoted as LE(L), as the intersection of the corresponding n lower half-planes $\{y \le a_i x - b \mid 1 \le i \le n\}$.

Either upper-envolop or lower-envelop of a set of lines can be represented as the list of lines that define its boundary from left to right. In the example below, we can write $UE(L) = (l_1, l_2, l_4, l_7)$ and $LE(L) = (l_7, l_5, l_1)$.

Figure 1: Illustration of upper-envelop and lower-envelop of lines $L = \{l_1, l_2, \dots, l_7\}$.

We want to design efficient algorithms to calculate the upper- and lower-envelop of a set of lines. In fact, we don't need to design any new algorithm here. Below we will show that, the problem of finding upper- and lower-envolop of a set of lines is equivalent to the problem of finding the convex hull of a set of points. Therefore, the algorithms we've designed for finding the convex hull can be directly used to find the upper- and lower-envelop of lines.

Duality

Definition 3 (dual of a point). Let $p = (p_x, p_y)$ be a point on 2D plane. We define the *dual* of p, denoted as p^* , as a line with function $y = p_x x - p_y$ on 2D plane.

Definition 4 (dual of a line). Let l be a line with function y = ax - b on 2D plane. We define its *dual*, denoted as l^* , as a point with coordinates (a,b) on 2D plane.

The following three properties are direct consequences of above definitions. (Think how to prove them.)

Property 1. For any point p, we have $(p^*)^* = p$. For any line l, we have $(l^*)^* = l$.

Property 2. Point p is on line l if and only if point l^* is on line p^* .

Property 3. Point p is above (resp. below) line l if and only if point l^* is above (resp. below) line p^* .

Half-plane Intersection vs. Convex Hull

Definition 5 (upper- and lower-hull). Let P be a set of points, and let CH(P) be the convex hull of P. Let $p_L \in CH(P)$ be the vertex with smallest x-coordinate, and $p_S \in CH(P)$ be the vertex with largest x-coordinate. Therefore p_L and p_S partition CH(P) into two parts: the list of vertices from p_L to p_S following the counter-clockwise order is called *lower hull* of P, denoted as LH(P); the list of vertices from p_S to p_L following the counter-clockwise order is called *upper hull* of P, denoted as UH(P).

We now show that upper- and lower-envelop of lines is essentially the same with lower- and upper-hull of points. We first prove the connection between upper-envelop and lower-hull; the other one, i.e., lower-envelop and upper-hull, can be proved symmetrically.

Let L be a set of lines, we define $L^* = \{l^* \mid l \in L\}$, i.e., the set of "dual points" of L.

Figure 2: Illustration of duality between upper-/lower-envelop and lower-/upper-hull.

Claim 1. A line $l \in L$ is part of the boundary of UE(L) if and only if l^* is one of the vertices of $LH(L^*)$.

Proof. Line l is part of UE(L), implies that a piece of l is above all other lines. This is equivalent to: there exists a point p, such that p is on l, and that p is above all lines in $L \setminus \{l\}$. This statement is also equivalent to the following statement, by translating everything to their dual counterparts (and applying above Properties of duality): there exists a line p^* , such that l^* is on p^* and that all points in $L^* \setminus \{l^*\}$ are above line p^* . Clearly, this statement is also equivalent to that l^* is one vertex of the lower-hull of L^* (think the Properties of convex hull).

The above claim shows that lines in UE(L) and vertices in $LH(L^*)$ are in a "dual" relationship. We now show how their ordering are connected. Recall that we represent UE(L) as a list of lines from left to right. Therefore, the *slope* of these lines are in increasing order. As the dual of line y = ax - b is point (a, b),

i.e., the slope of a line becomes the x-coordinate of its dual, we know that the corresponding "dual points" of UE(L) are in the increasing order of their x-coordinates.

The above two facts can be combined as the following: $UE(L) = (l_{p_1}, l_{p_2}, \cdots, l_{p_k})$ if and only if $LH(L^*) = (l_{p_1}^*, l_{p_2}^*, \cdots, l_{p_k}^*)$. Formally, we can write

Fact 1.
$$UE(L) = (LH(L^*))^*$$
.

Symmetrically, with the same reasonging, we can prove that $LE(L) = (l_{p_1}, l_{p_2}, \cdots, l_{p_k})$ if and only if $UE(L^*) = (l_{p_1}^*, l_{p_2}^*, \cdots, l_{p_k}^*)$. (Recall that LE(L) is represented as the list of lines from left to right, i.e., their slopes are decreasing, while $UH(L^*)$ is represented as the list of vertices from rightmost vertex to leftmost vertex in couter-clockwise order, i.e., their *x*-coordinates are also decreasing.) Formally, we can also write

Fact 2.
$$LE(L) = (UH(L^*))^*$$
.