Cours de MOMI Licence I Math-Info

Quelques informations

Responsable du cours: Ahmed LAGHRIBI

Contact: Bureau P 107-B // ahmed.laghribi@univ-artois.fr

Contrôle continu et examens:

- Un devoir surveillé de 2h se déroulera le jeudi 9 novembre 2023.
- Première session:
 - Un examen de 2h est prévu la semaine du 18 décembre 2023.
 - Calcul de la note:

$$\operatorname{Max}\!\left(\textit{EX}_{\!1},\frac{\textit{EX}_{\!1}+\textit{DS}}{2}\right)$$

où *EX*₁ est la note de l'examen de la première session et *DS* est la note du devoir surveillé.

Deuxième session:

- Un examen de 2h est prévu la semaine du 3 juin 2024.
- Calcul de la note:

$$\operatorname{Max}\!\left(\textit{EX}_{\!1}, \textit{EX}_{\!2}, \frac{\textit{EX}_{\!1} + \textit{DS}}{2}, \frac{\textit{EX}_{\!2} + \textit{DS}}{2}\right)$$

où EX_2 est la note de l'examen de la deuxième session.

Programme

- Eléments de logique.
- 2 Ensembles.
- Applications.
- Relations d'ordre.
- Récurrence.
- lacktriangle Arithmétique dans \mathbb{Z} .
- Nombres complexes.
- Polynômes.

Lien pour les notes du cours, exercices, sujets d'examens, etc

http://laghribi.perso.math.cnrs.fr/L1MI

Chapitre I: Éléments de logique

Rappel:

Un cours de mathématiques se constitue de:

- Définitions.
- Exemples, remarques, notations, · · ·
- Propositions: Ce sont des énoncés prouvés à l'aide de définitions ou d'autres propositions.

On distingue entre différents types de propositions:

- Une proposition importante est appelée théorème.
- Une proposition qui sert à préparer d'autres propositions est appelée lemme.
- Une proposition conséquence immédiate d'une autre proposition est appelée corollaire.

Un peu de logique:

I - Définition

Une proposition (ou assertion) est un énoncé dont on peut affirmer s'il est vrai ou faux.

À chaque proposition on associe une valeur de vérité: Vrai ou Faux.

Notation. Une proposition est souvent notée par une lettre de l'alphabet en capitale: P, Q, R, \cdots

Exemples.

- 1. "O est le plus petit entier naturel" est une proposition vraie.
- 2. "0,5 est un entier naturel" est une proposition fausse.
- 3. "Tout carré est un réctangle" est une proposition vraie.
- 4. "Deux droites sécantes sont perpendiculaires" est une proposition fausse.

II - Négation

Définition. La négation d'une proposition P est la proposition vraie si P est fausse, et fausse si P est vraie.

Exemples.

- 1. La négation de la proposition vraie " $2 \neq 3$ " est la proposition fausse "2 = 3".
- 2. La négation de la proposition fausse "3 < 2" est la proposition vraie " $3 \ge 2$ ".

Notations.

- 1. La négation de la proposition P est notée nonP (on utilise aussi la notation $\neg P$).
- 2. On note V et F à la place de Vrai et Faux.

3. Soit P une proposition. La définition de la proposition non P se résume dans la table suivante, *dite table de vérité*:

P	non <i>P</i>	non(non P)
V	F	V
F	V	F

Remarque. Les propositions P et $non(non\ P)$ ont la même valeur de vérité. On parle d'équivalence entre les propositions P et $non(non\ P)$ (voir ci-dessous).

III - Connecteur logique

Définition. Un opérateur qui permet d'associer à deux propositions P et Q une troisième proposition est appelée un connecteur logique.

Question. Combien de connecteurs logiques agissant sur deux propositions peut-on former?

Réponse

Soient P et Q deux propositions. Soit R une proposition associée à P et Q par un connecteur logique donné. On a la table de vérité suivante donnant les possibilités pour R:

P	Q	R	
V	V	V ou F	
V	F	V ou F	
F	V	V ou F	
F	F	V ou F	

Ainsi, R prend la valeur de vérité V ou F suivant chaque possibilité VV, VF, FV, FF donnée par P et Q.

Conclusion. On a $2^4 = 16$ connecteurs logiques possibles entre P et Q.

Pour la suite, on va considérer quelques connecteurs logiques parmi les plus importants.

IV - Conjonction

Définiton. Soient P et Q deux propositions. La conjonction de ces deux propositions est la proposition notée P et Q (ou $P \land Q$) qui est vraie lorsque P et Q sont vraies simultanément, et fausse dans les autres cas.

Exemple. Soient les deux propositions:

P: 0 < 3

Q: Tout quadrilatère est un réctangle.

La conjonction P et Q est fausse car Q est fausse.

<u>Table de vérité.</u> Soient deux propositions P et Q. Leur conjonction est résumée dans la table suivante:

P	Q	P et Q
V	V	V
V	F	F
F	V	F
F	F	F

V - Disjonction

Définiton. Soient P et Q deux propositions. La disjonction de ces deux propositions est la proposition notée P ou Q (ou $P \lor Q$) qui est fausse lorsque P et Q sont fausses simultanément, et vraie dans les autres cas.

Exemple. Soient les deux propositions:

P: 0 < 3

Q: Tout quadrilatère est un réctangle.

La disjonction P ou Q est vraie car P est vraie.

<u>Table de vérité.</u> Soient deux propositions P et Q. Leur disjonction est résumée dans la table suivante:

P	Q	P ou Q	
V	V	V	
V	F	V	
F	V	V	
F	F	F	

Remarque. La disjonction P ou Q est vraie lorsque l'une au moins des deux propositions P et Q est vraie. Cela signifie que le ou ne veut pas dire ou bien, c'est-à-dire, il n'est pas exclusif!

VI - Implication

Définiton. Soient P et Q deux propositions. La proposition (non P) ou Q est appelée l'implication entre P et Q, et est notée $P \Longrightarrow Q$ (on la note aussi: $Q \Longleftarrow P$).

La proposition $P \Longrightarrow Q$ se lit: P implique Q.

<u>Table de vérité.</u> Soit P et Q deux propositions. La proposition $P \Longrightarrow Q$ est résumée dans la table suivante:

P	Q	non P	$P\LongrightarrowQ$
V	V	F	V
V	F	F	F
F	V	V	V
F	F	V	V

Table (⋆)

Conclusion. La proposition $P \Longrightarrow Q$ est fausse uniquement lorsque P est vraie et Q est fausse. Cela correspond à la ligne en vert de la table (\star) .

Remarques.

- 1. L'implication $P\Longrightarrow Q$ est souvent utilisée au sens de la première ligne de la table (\star) . Plus précisément, pour montrer que $P\Longrightarrow Q$ est vraie, on suppose que P est vraie et on montre que Q est vraie. En effet, si P est fausse, on voit que l'implication est toujours vraie par la table (\star) .
- 2. L'implication $P \Longrightarrow Q$ peut s'énoncer sous les deux formes suivantes:
 - Si P alors Q.
 - Pour que Q, il suffit P.

Exemples.

- 1. La proposition "S'il pleut, alors je prends mon parapluie" s'écrit: Il pleut ⇒ je prends mon parapluie.
- 2. Quelle est la valeur de vérité de l'implication:

$$(0=1)\Longrightarrow (1=2)?$$

La proposition 0 = 1 est fausse, donc l'implication est **vraie** (voir la table (\star)).

3. Soit n un entier naturel. Montrer que l'implication $(n \text{ est impair}) \Longrightarrow (n^2 \text{ est imppair})$ est vraie. Cela revient à supposer que "n est impair" et montrer que " n^2 est impair".

Suppose que n soit impair. Alors, il existe un entier m tel que n=2m+1. Ainsi

$$n^2 = (2m+1)^2 = (2m)^2 + 2 \times (2m) \times 1 + 1^2 = 2(2m^2 + 2m) + 1.$$

Cela veut dire que n^2 est impair.

VII - Équivalence

Définition. Soient P et Q deux propositions.

- On dit que P et Q sont logiquement équivalentes si elles ont la même valeur de vérité.
- La proposition $P \iff Q$ est définie comme suit: Elle est vraie si P et Q sont logiquement équivalentes, et elle est fausse sinon.
- La proposition $P \iff Q$ se lit: P équivalent Q.

Table de vérité. La table de vérité de la proposition $P \iff Q$ est comme suit:

P	Q	$P \Longleftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

Exemples

- 1. La proposition $(1 = 1) \iff (0 = 0)$. Vraie
- 2. La proposition $(1 = 1) \iff (0 = 1)$. Fausse
- 3. La proposition $(1 = 0) \iff (2 = 1)$. Vraie
- 4. Soient P et Q deux propositions. Les propositions suivantes sont vraies:
 - non (non P) \iff P.
 - $(P \ et \ P) \iff P$.
 - $(P ou P) \iff P$.
 - $(P \ et \ Q) \iff (Q \ et \ P)$.
 - $(P ou Q) \iff (Q ou P)$.

Proposition.

Soient P et Q deux propositions. Alors, la proposition $P \Longleftrightarrow Q$ est logiquement équivalente à la proposition $(P \Longrightarrow Q)$ et $(Q \Longrightarrow P)$.

Preuve. Voir TD.

Conclusion. Pour montrer que $P \iff Q$ est vraie, cela revient à montrer que les deux propositions $(P \implies Q)$ et $(Q \implies P)$ sont vraies.

Remarque. La proposition $P \iff Q$ s'énonce aussi sous l'une des formes suivantes:

1. P si et seulement si Q.

(Explication:
$$\underbrace{\mathbf{si}}_{\Leftarrow}$$
 $\underbrace{\mathbf{seulement si}}_{\Rightarrow}$)

2. Pour que P il faut et il suffit Q.

(Explication:
$$\underbrace{\mathsf{il}\;\mathsf{faut}}_{\Longrightarrow}$$
 $\underbrace{\mathsf{il}\;\mathsf{suffit}}_{\leftrightharpoons}$)

3. P est une condition nécessaire et suffisante pour que Q.

$$(\mathsf{Explication} \colon \underbrace{\mathsf{n\acute{e}cessaire}}_{\sqsubseteq} \quad \underbrace{\mathsf{suffisante}}_{\Longrightarrow})$$

Pour la suite, on donne deux propositions très importantes pour le raisonnement mathématique.

Proposition. Soient P, Q et R trois propositions. Alors, les propositions suivantes sont vraies:

1.
$$((P \Longrightarrow Q) \text{ et } (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$$
.

2.
$$((P \iff Q) \text{ et } (Q \iff R)) \implies (P \iff R)$$
.

Preuve. On dresse la table de vérité pour voir que les deux propositions sont toujours vraies (Voir TD).

Cette proposition veut dire que les connecteurs implication et équivalence sont transitifs.

Proposition. Soient P, Q et R trois propositions. Alors, les équivalences suivantes sont vraies:

- 1. $non(P ou Q) \iff (nonP) et (nonQ)$.
- 2. $non(P \text{ et } Q) \iff (nonP) \text{ ou } (nonQ)$.
- 3. $P ou(Q et R) \iff (P ou Q) et (P ou R)$.
- 4. $P \operatorname{et} (Q \operatorname{ou} R) \iff (P \operatorname{et} Q) \operatorname{ou} (P \operatorname{et} R)$.
- 5. P et (Q et $R) \iff (P$ et Q) et R.
- 6. $P ou(Q ou R) \iff (P ou Q) ou R$.

Preuve. Pour chaque équivalence on dresse la table de vérité (voir TD).

VIII - Contraposée

La notion de contraposée est utile pour simplifier la preuve de certaines implications.

Définition. La contraposée de l'implication $P \Longrightarrow Q$ est l'implication $(non Q) \Longrightarrow (non P)$.

Remarque. À ne pas confondre la contraposée de $P \Longrightarrow Q$ avec la négation de $P \Longrightarrow Q$ (on peut le vérifier en dressant les tables de vérité).

Proposition. Soient P et Q deux propositions. L'implication $P \implies Q$ est logiquement équivalente à sa contraposée.

Preuve.

	Р	Q	non P	non Q	$P \Longrightarrow Q$	$non Q \Longrightarrow non P$
Ī	V	V	F	F	V	V
Ī	٧	F	F	V	F	F
ľ	F	V	V	F	V	V
ľ	F	F	V	V	V	V

Les deux dernières colonnes sont identiques, ce qui signifie que la proposition $P \Longrightarrow Q$ est logiquement équivalente à sa contraposée.

Exemple. Soit *n* un entier naturel. Montrer l'implication:

$$(n^2 \text{ est pair}) \Longrightarrow (n \text{ est pair}).$$

Par contraposée, cela revient à montrer l'implication $non(n \text{ est pair}) \Longrightarrow non(n^2 \text{ est pair})$, c'est-à-dire, l'implication $(n \text{ est impair}) \Longrightarrow (n^2 \text{ est impair})$. Mais cette dernière a été prouvée dans le paragraphe "VI-Implication".

IX- Techniques de preuves

Différentes preuves peuvent être utilisées pour démontrer des résultats mathématiques. Le type de preuve déployée dépend du problème mathématique à résoudre. On expliquera les techniques les plus utilisées.

1. Preuve directe.

Souvent l'assertion mathématique à prouver est de la forme $P \Longrightarrow Q$. La méthode naturelle pour la démontrer consiste à supposer P vraie et à utiliser des procédés logiques pour parvenir à Q. C'est ce qu'on appelle une preuve directe.

Exemple. Montrer que si x et y sont deux entiers impairs, alors x + y est un entier pair.

Supposons que x et y soient deux entiers impairs. Alors, il existe deux entiers k et l tels que x=2k+1 et y=2l+1. Ainsi, on obtient

$$x + y = 2k + 1 + 2l + 1 = 2k + 2l + 2 = 2(k + l + 1),$$

ce qui prouve que x + y est un entier pair.

Cours de MOMI

2. Preuve par contraposée.

Parfois, il est difficile de démontrer directement l'implication $P \Longrightarrow Q$ du fait que P n'est pas facile à exploiter pour aboutir à Q. Dans ce cas, on essaye de démontrer l'implication $(non Q) \Longrightarrow (non P)$. C'est la preuve par contraposée.

Exemple. Soit x un nombre réel. Montrer l'implication $x^3 + x^2 - 2x < 0 \implies x < 1$. On va montrer sa contraposée $non(x < 1) \implies non(x^3 + x^2 - 2x < 0)$, c'est-à-dire, l'implication $x \ge 1 \implies x^3 + x^2 - 2x \ge 0$.

Supposons que $x \ge 1$. On a $x^3 + x^2 - 2x = x(x^2 + x - 2)$. Puisque $x \ge 1$, alors $x^2 \ge 1$. Ainsi, $x^2 + x \ge 2$, c'est-à-dire, $x^2 + x - 2 \ge 0$. Comme x est positif (car $x \ge 1$), alors $x(x^2 + x - 2) = x^3 + x^2 - 2x \ge 0$, ce qu'on cherche.

3. Preuve par absurde.

La preuve par absurde (ou preuve par contradiction) se rapproche de la preuve par contraposée. Elle consiste, lorsqu'on veut montrer $P\Longrightarrow Q$, à supposer que P est vraie mais Q est fausse, et à aboutir à une contradiction. On déploie cette preuve lorqu'il est difficile de montrer Q directement. Il est alors plus simple de supposer que Q est fausse.

Exemples. (1) (Le principe des tiroirs)

On range (n+1) paires de chaussettes dans n tiroirs distincts. Montrer qu'il y a au moins un tiroir contenant au moins 2 paires de chaussettes.

On suppose que chaque tirroir contienne au plus une paire de chaussettes. Puisqu'il y a n tirroirs, on déduit qu'il existe au plus n paires de chaussettes, ce qui n'est pas possible car il y a (n+1) paires de chaussettes.

(2) L'aire d'un rectangle est $170m^2$. Montrer que la longueur est supérieure à 13m.

Notons L la longueur et I la largeur du rectangle. Supposons qu'on ait $L \le 13m$. On a $I \le L$. Donc, $L \times I \le L^2$. Par conséquent, $170m^2 \le 13^2m^2 = 169m^2$, ce qui n'est pas possible.

4. Preuve par récurrence.

Le raisonnement par récurrence (ou par induction) permet de démontrer des assertions qui dépendent d'un entier naturel. Voir le chapitre "Récurrence" consacré à ce type de raisonnement.