

SEQUENCE LISTING

<110> Hagen, Gustav
Siegmund, Hans-Ulrich
Weichel, Walter
Wick, Maresa
Zubov, Dmitry

<120> Human Catalytic Telomerase Sub-Unit and its Diagnostic and Therapeutic Use

<130> Bayer 10,203

<140> US 09/424,686

<141> 1999-11-29

<150> PCT/EP98/03468

<151> 1998-06-09

<160> 7

<170> Microsoft Word

B
C1
>

<210> 1
<211> 4042
<212> DNA
<213> Homo sapiens

<400> 1
gttccaggca ggcgtcgctc ctgctgcga cgtggaaagc cctggccccg gccacccccc 60
cgatgcccg cgctccccgc tgccgagccg tgcgtccct gctgcgcagc cactaccgcg 120
aggtgctgcc gctggccacg ttctgtcgcc gactggggcc ccagggctgg cggctggcgc 180
agcgcgggga cccggggct ttccgcgcgc tggtgccca gtgcctggc tgcgtccct 240
gggacgcacg gccgcacccccc gccgcacccct cttccgcac ggtgtccctgc ctgaaggagc 300
tggtgcccg agtgctgcac aggtgtgcg agcgcggcgc gaagaacgtg ctggccttcg 360
gtttcgcgct gctggacggg gcccgcgggg gcccccccgaa ggccttcacc accagcgtgc 420
gcagctacct gccaacacg gtgaccgacg cactgcgggg gagcggggcg tggggctgc 480
tgctgcgcgcg cgtggcgac gacgtgtgg ttcacctgtt ggcacgctgc ggcgtcttc 540
tgctggcgc tccctggcgc acgtgtgg ttcacctgtt ggcacgctgc ggcgtcttc 600
ctgccactca ggccggccc cggccacacg ctatggacc ccgaaggcgt ctggatgcg 660
aacgggcctg gaaccatagc gtcaggagg ccgggtccc octgggcctg ccagccccgg 720
gtgcgaggag ggcgggggc agtgcaccc gaaatctgcc gttgcacaag aggcccaggc 780

gtggcgctgc ccctgagccg gagcggacgc ccgttggca ggggtcctgg gcccacccgg 840
gcaggacgcg tggaccgagt gaccgtggtt tctgtgttgt gtcacctgcc agacccgccc 900
aagaagccac ctcttggag ggtgcgctct ctggcacgcg ccactcccac ccatccgtgg 960
gccgccagca ccacgcgggc cccccatcca catcgcgcc accacgtccc tggacacgc 1020
cttgcctccc ggtgtacgcc gagaccaagc acttcctcta ctcctcaggc gacaaggagc 1080
agctgcggcc ctccctccta cttagctctc tgaggccag cctgactggc gctcgaggc 1140
tcgtggagac catcttctg gttccaggc cctggatgcc agggactccc cgcaagggtgc 1200
cccgccctgcc ccagcgctac tggcaaatgc ggcccctgtt tctggagctg cttggaaacc 1260
acgcgcagtg cccctacggg gtgcctca agacgcactg cccgctgcga gctgcggta 1320
ccccagcagc cggtgtctgt gcccgggaga agccccaggg ctctgtggcg gcccccgagg 1380
aggaggacac agacccccgt cgcctggtgc agctgctccg ccagcacagc agccccctggc 1440
aggtgtacgg ctgcgtgcgg gcctgcctgc gcccggcttgt gccccccaggg ctctggggct 1500
ccaggcacaa cgaacgcgc ttcctcagga acaccaagaa gttcatctcc ctggggaaagc 1560
atgccaagct ctgcgtgcag gagctgacgt ggaagatgag cgtgcgggac tgcgcttggc 1620
tgcgcaggag cccaggggtt ggctgtgttc cggccgcaga gcaccgtctg cgtgaggaga 1680
tcctggccaa gttcctgcac tggctgatga gtgtgtacgt cgtcgagctg ctcaggtctt 1740
tctttatgt cacggagacc acgtttcaaa agaacaggct cttttctac cggaagagtg 1800
tctggagcaa gttgcaaagc attggaatca gacagcactt gaagagggtg cagctgcggg 1860
agctgtcgg a gcagagggtc aggcatc gggaaaggccag gccccccctg ctgacgtcca 1920
gactccgctt catccccaaag cctgacgggc tgcggccat tgtgaacatg gactacgtcg 1980
tgggagccag aacgttccgc agagaaaaga gggccgagcg tctcacctcg agggtaagg 2040
caacttttcag cgtgctcaac tacgagcggg cgcggcgccc cggccctctg ggcgcctctg 2100
tgctgggcct ggacgatac cacagggctt ggcgcacatt cgtgctgcgt gtgcgggccc 2160
aggacccgccc gcctgagctg tactttgtca aggtggatgt gacgggcgcg tacgacacca 2220
tccccccagga caggctcacg gaggtcatcg ccagcatcat caaacccat aacacgtact 2280
gcgtgcgtcg gtatgccgtg gtccagaagg ccccccattgg gcacgtccgc aaggcattca 2340
agagccacgt ctctacccctg acagacccctc agccgtacat ggcacagttc gtggctcacc 2400
tgcaggagac cagcccgctg agggatgccg tcgtcatcga gcagagctcc tccctgaatg 2460

B1
cont.

part
C1
cont.

aggccagcag tggcctcttc gacgtcttcc tacgcttcat gtgccaccac gccgtgcgca 2520
tcagggcaa gtcctacgtc cagtgccagg ggatcccga gggctccatc ctctccacgc 2580
tgctctgcag cctgtgctac ggacatgg agaacaagct gtttgcgggg attcggcgaa 2640
acgggctgct cctgcgtttg gtggatgatt tcttgttgtt gacacccac 2700
cggaaaacctt cctcaggacc ctggcccgag gtgtccctga gtatggctgc gtggtaact 2760
tgcggaagac agtggtaac ttccctgttag aagacgaggc cctgggtggc acggctttg 2820
ttcagatgcc ggcccacggc ctattccctt ggtgcggcct gctgctggat acccgaccc 2880
tggaggtgca gagcgactac tccagatatg cccggaccc catcagagcc agtctcacct 2940
tcaaccgcgg cttcaaggct gggaggaaca tgcgtcgcaa actctttggg gtcttgcggc 3000
tgaagtgtca cagcctgttt ctggatttgc aggtgaacag cctccagacg gtgtgcacca 3060
acatctacaa gatcctcctg ctgcaggcgt acaggttca cgcatgttg ctgcagctcc 3120
catttcatca gcaagttgg aagaaccca cattttccct ggcgtcatc tctgacacgg 3180
cctccctctg ctactccatc ctgaaagcca agaacgcagg gatgtcgctg gggccaagg 3240
gcgcgcgcgg ccctctgccc tccgaggccg tgcaagtggct gtgccaccaa gcattcctgc 3300
tcaagctgac tcgacaccgt gtcacccatc tgccactcct ggggtcaactc aggacagccc 3360
agacgcagct gagtcggaag ctccgggga cgacgctgac tgccctggag gccgcagcca 3420
acccggcact gccctcagac ttcaagacca tcctggactg atggccaccc gcccacagcc 3480
aggccgagag cagacaccag cagccctgtc acgccccgt ctacgtccca gggagggagg 3540
ggcggccac acccaggccc gcaccgctgg gagtctgagg cctgagtgag tgtttggccg 3600
aggcctgcat gtccggctga aggctgagtg tccggctgag gcctgagcga gtgtccagcc 3660
aagggtgag tgtccagcac acctgcccgtc ttcaattccc cacaggctgg cgctcggctc 3720
caccccaagg ccagctttc ctcaccagga gcccggcttc cactccccac ataggaatag 3780
tccatccccca gattcgccat tgttcacccc tcgcctgccc ctcccttgcc ttccacccccc 3840
accatccagg tggagaccct gagaaggacc ctgggagctc tggaatttg gagtgaccaa 3900
aggtgtgccc tgtacacagg cgaggaccct gcacctggat ggggtccct gtgggtcaaa 3960
ttggggggag gtgctgtgg agtaaaatac tgaatatatg agttttcag ttttggaaaa 4020
aaaaaaaaaaaa aa 4042

b1
cont.

part
C1
cont.

<210> 2
<211> 1132
<212> amino acid
<213> Homo sapiens

<400> 2
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15
His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30
Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45
Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60
Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80
Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95
Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro
100 105 110
Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125
Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140
Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160
Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175
Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro His Ala Ser Gly
180 185 190
Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205
Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220
Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240
Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255
Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480

Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495

Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510

Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
515 520 525

Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
530 535 540

Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
545 550 555 560

Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575

b
cont

part
C
cont

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640

Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650 655

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
660 665 670

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
705 710 715 720

Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
725 730 735

Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
740 745 750

Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp
755 760 765

Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser
770 775 780

Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu
785 790 795 800

Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His
805 810 815

Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro
820 825 830

Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp
835 840 845

Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu
850 855 860

Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala
865 870 875 880

b
cont.

Sub
C1
cont.

Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys
885 890 895

Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu
900 905 910

Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe
915 920 925

Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser
930 935 940

Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe
945 950 955 960

Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly
965 970 975

Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn
980 985 990

Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln
995 1000 1005

Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln
1010 1015 1020

Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala
1025 1030 1035 1040

Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu
1045 1050 1055

Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp
1060 1065 1070

Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val Thr
1075 1080 1085

Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu Ser
1090 1095 1100

Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Asn
1105 1110 1115 1120

Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1125 1130

<210> 3
<211> 1153
<212> DNA
<213> Homo sapiens

<400> 3
gtgcctgcag agaccgtct ggtgcactct gattctccac ttgcctgttg catgtcctcg 60
ttcccttgg tctcaccacc tcttgggttg ccatgtgcgt ttccctgccga gtgtgtttg 120

B
cont.

Self
C
cont.

atcctctcggtgcctgg tcactggca tttgctttta tttcttttgc cttagtgtta 180
ccccctgatc ttttattgt cgttgttgc ttttgttat tgagacagtc tcactctgtc 240
acccaggctg gagtgtaatg gcacaatctc ggctcaactgc aacctctgcc tcctcggttc 300
aaggagttct cattcctcaa cctcatgagt agctgggatt acaggcgccc accaccacgc 360
ctggctaatt tttgtatatt tagtagagat aggctttcac catgttggcc aggctggtct 420
caaactcctg acctcaagtgc atctgcccgc ctggcctcc cacagtgtg ggattacagg 480
tgcaagccac cgtgcccggc ataccttgat ctttaaaat gaagtctgaa acattgctac 540
ccttgtcctg agcaataaga cccttagtgt attttagctc tggccacccc ccagcctgtg 600
tgctgtttc cctgctgact tagttctatc tcaggcatct tgacacccccc acaagctaag 660
cattattaat attgtttcc gtgttgagtgc ttcttttagc tttgcccccc ccctgcttt 720
cctccttgcgtc tccccgtctg tcttctgtct caggcccgcc gtctggggtc cccttccttg 780
tcctttgcgt ggttcttctg tcttgttatt gctggtaaac cccagcttta cctgtgctgg 840
cctccatggc atctagcgac gtccggggac ctctgcttat gatgcacaga tgaagatgtg 900
gagactcacg aggagggcgg tcatcttggc ccgtgagtgt ctggagcacc acgtggccag 960
cgttccttag ccagggttgg ctgtgttccg gccgcagagc accgtctgctg tgaggagatc 1020
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgct caggtctttc 1080
tttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1140
tggagcaagt tgc 1153

B' cont.
Part C1
cont.

<210> 4
<211> 412
<212> DNA
<213> Homo sapiens

cagagccctg gtcctcctgt ctccatcgac acgtgggcac acgtggcttt tcgctcagga 60
cgtcgagtgg acacgggtat ctctgcctct gctctccctc ctgtccagtt tgcataaact 120
tacgaggttc accttcacgt tttgatggac acgcgggttc caggcaccga ggccagagca 180
gtgaacagag gaggctggc gcggcagtgg agccgggttg ccggcaatgg ggagaagtgt 240
ctggaagcac agacgctctg gcgagggtgc ctgcagagac ccgcctggc cactctgatt 300
ctccacttgc ctgttgcatg tcctcggtcc ctgtttctc accacctttt gggttgcatt 360

gtgcgttcc tgcogagtgt gtgttgatcc tctcggtgcc tcctggcac tg 412

<210> 5
<211> 1012
<212> DNA
<213> Homo sapiens

<400> 5
gggtcctgg gcccacccgg gcaggacgac tggaccgagt gaccgtggtt tctgtgtgg 60
gtcacctgcc agacccggcc aagaagccac ctctttggag ggtgcgtct ctggcacgac 120
ccactccac ccatccgtgg gccgccagca ccacgcgggc cccccatcca catcgccggcc 180
accacgtccc tgggacacgc cttgtcccc ggtgtacgcc gagaccaagc acttcctcta 240
ctcctcaggc gacaaggaggc agctgcggcc ctccttccta ctcagctctc tgaggccag 300
cctgactggc gctcgaggac tcgtggagac catcttctg gttccaggc cctggatgcc 360
aggactccc cgcaagggtgc cccgcctgcc ccagcgctac tggcaaattgc ggcccctgtt 420
tctggagctg cttgggaacc adgcgcagtg cccctacggg gtgcctctca agacgcactg 480
cccgctgcga gctgcggta cccctacgc cggtgtctgt gcccgggaga agccccagg 540
ctctgtggcg gcccccgagg aggaggacac agacccctgtc agctgctccg 600
ccagcacacgc agccctggc aggtgtacgg ctgcgtgcgg gcctgcctgc gcccggctgg 660
gccccccaggc ctctgggct ccaggcadaa cgaacgcccgc ttccctcagga acaccaagaa 720
gttcatctcc ctgggaaagc atgcctttttc ctcgcgtgcag gagctgacgt ggaagatgag 780
cgtgcgggac tgctgttggc tgctgcaggag cccaggttag gaggtgggtgg ccgtcgagg 840
cccaggcccc agagctaat gcagtagggg ctcagaaaag gggcaggca gagccctgg 900
cctcctgtct ccatcgtaac gtggcacac gtggctttc gctcaggacg tcgagtggac 960
acggtgatct ctgcctctgc tctccctcct gtccagtttgcataaactta cg 1012

B1
cont

Part C1
cont

<210> 6
<211> 3972
<212> DNA
<213> Homo sapiens

<400> 6
gaattcgcgg ccgcgtcgac gtttcaggca gcgcgtgcgc ctgcgtgcga cgtggaaagc 60
cctggccccc gcccacccgg cgatgcgcgc cgctccccgc tgctgcggc tgctgcctcc 120
gctgcgcagc cactaccgcg aggtgctgcc gctggccacg ttctgtgcggc gcctggggcc 180
ccagggtgg cggctggc agcgcgggaa cccggcggtt ttccgcgcgc tggtggccca 240

gtgcctggtg tgcgtgccct gggacgcacg gccgcccccc gccgccccct cttccgcca 300
ggtgtcctgc ctgaaggagc tggtgcccg agtgctgcag aggctgtgcg agcgccggcgc 360
gaagaacgtg ctggccttcg gttcgcgct gctggacggg gcccgcgggg gccccccga 420
ggcattcacc accagcgtgc gcagctacct gccaacacag gtgaccgacg cactgcgggg 480
gagcggggcg tggggctgc tgctgcgcg cgtggcgac gacgtgctgg ttcacactgct 540
ggcacgctgc gcgctcttg tgctggtggc tccagctgc gcctaccagg tgtgcgggcc 600
gccgctgtac cagctcggcg ctgccactca ggccggccc ccgccacacg ctagtggacc 660
ccgaaggcgt ctggatgct aacgggcctg gaaccatagc gtcagggagg ccgggtccc 720
cctgggcctg ccagccccgg gtgcgaggag ggcgggggc agtgcagcc gaagtctgcc 780
gttgcacaag aggcccaggc gtggcgctgc ccctgagccg gagcggacgc ccgttggca 840
gggtcctgg gcccacccgg gcaggacgcg tggaccgagt gaccgtggtt tctgtgtgg 900
gtcacctgcc agacccggc aagaagccac ctcttggag gtcgcgtct ctggcacgcg 960
ccactccac ccatccgtgg gcccggcagca ccacgcggc ccccatcca catcgccggcc 1020
accacgtccc tggacacgc cttgtcccc ggtgtacgcc gagaccaagc acttcctcta 1080
ctcctcaggc gacaaggagc agctgcggcc ctccttccta ctcagctctc tgaggcccag 1140
cctgactggc gtcggaggc tcgtggagac catcttctg gttccaggg cctggatgcc 1200
aggactccc cgcaagggtgc cccgcctgcc ccagcgtac tggcaaatgc ggccctgtt 1260
tctggagctg cttggaaacc acgcgcagtg cccctacggg gtgcctca agacgcactg 1320
cccgctgcga gtcgggtca cccagcagc cgggtctgt gcccggaga agccccagg 1380
ctctgtggcg gcccccgagg aggaggacac agaccccgat cgcctggcgc agctgctccg 1440
ccagcacagc agccctggc aggtgtacgg ttgcgtgcgg gcctgcctgc gccggctgg 1500
gcccccaggc ctctggggct ccaggcacaa cgaacgcgc ttcctcagga acaccaagaa 1560
gttcatctcc ctggggaaagc atgccaagct ctgcgtgcag gagctgacgt ggaagatgag 1620
cgtgcgggac tgcgtttggc tgcgcaggag cccaggtgag gaggtgggtgg ccgtcgagg 1680
cccaggcccc agagctgaat gcagtagggg ctcagaaaag gggcaggca gagccctgg 1740
cctcctgtct ccatcgac gtggcacac gtggctttc gtcaggacg tcgagtggac 1800
acgggtatct ctgcctctgc tctccctcct gtccagtttgcataaactta cgggttcac 1860
cttcacgttt tgatggacac gcggtttcca ggccgcggagg ccagagcgt gaacagagga 1920

ggctggcgc ggcagtggag ccgggttgc ggcaatgggg agaagtgtct ggaagcacag 1980
acgctctggc gaggggtgcct gcaggggttg gctgtttcc ggccgcagag caccgtctgc 2040
gtgaggagat cctggccaag ttcctgcact ggctgatgag tgtgtacgtc gtcgagctgc 2100
tcaggtcttt cttttatgtc acggagacca cgtttcaaaa gaacaggctc ttttctacc 2160
ggaagagtgt ctggagcaag ttgcaaagca ttggaatcag acagcacttg aagagggtgc 2220
agctgcggga gctgtcgaa gcagaggtca ggcagcatcg ggaagccagg cccgcctgc 2280
tgacgtccag actccgccttc atccccaaagc ctgacgggct gcggccgatt gtgaacatgg 2340
actacgtcgt gggagccaga acgttccgca gagaaaagag ggtggctgtc ctgggttta 2400
acttccttt taaacagaag tgcgttttag ccccacattt ggtatcagct tagatgaagg 2460
gcccgaggaa ggggccacgg gacacagcca gggccatggc acggcgccaa cccatttgt 2520
cgcacggta ggtggccgag gtgcgggtgc ctccagaaaa gcagcgtggg ggtgttaggg 2580
gagctcctgg ggcagggaca ggctctgagg accacaagaa gcagctggc cagggcctgg 2640
atgcagcacg gcccgagcgg gtggggccc accacgccc tctggtcaaa ggtgtttag 2700
tcgtaatagc cggcccaggc gctctgaacc ttcagagtct caaaagctgg gaccctcagg 2760
gccaaatggg gccacacctt gtcctggaaag aaatcatgtt ccacttccag gttgcccggg 2820
tccggttctt cctgctcagt gggctacga ccacctaggt agttgctacc taatccttcc 2880
cgcgaaaaat aggctccact ggtgtctgca acaagcggag tctctaggcc tggtccctgg 2940
gggcagtgcc acacatacac atacctttc ctcggctcca cagtagctt ggtgccctgc 3000
agggtgccag gcggccctc tccaacacca gccagtgctg cgatttgccg agaccaggct 3060
ccggctgcgt tgatcacaat ggccattcc acaggctgg actccaggct gcggccatc 3120
ttcacatgga cttcatggat cttttcaag accaccgctt tgtcatctgt ggtcaacatg 3180
cgttgagatg aagagacaaa acgtgtcacc tctccctggc agaaaaggac tcccaaggac 3240
tggaccttc gccgaagccc ctggagcaga caccaggggt caaaccaccc ttctccctcc 3300
atcccataag acgccaaagc cactccctct gtgttatcc agggaaacctt gttccgaagc 3360
tgatcaggag acatcagaga aactttggct ccctcctgcc tctgcacttt cacgttgctc 3420
tccatggctg cagcatcctt ttctgaagcc agcaagaggt agcccgagg gttgaaccgg 3480
aggccaggaa gaggagcatc gactacggcc aggtactcat tgatgttccg tagaaagctg 3540
gctgaaaaga gggagagctg gatgttctca ggcaatgaga actgctgaca aatcccacct 3600
actgagagcc cagtggaggc ctgtgaatac gtgtggtccc gttccaccac tagactcga 3660

B
Int.

Sub
C1
Cmt

atagcacctc gtctgctctc cagttcttc agccaatagg ccacagacaa gccaaagcacc 3720
ccacacctca cgatcaccac atccgagtgc tcgggaggca ggtggctggt gtcttcagt 3780
agatcacagg accttccagg caggatcgac ttgatcttct tcttaatctc agacaccttt 3840
ccatcccagt ccagagaaaa gcctcctctg cgcgtgcctg gcctccgggt caagaggccc 3900
cgccccatgc cgtgcggcag aaccctccga atcatagccc ctctgagccc gggtcgacgc 3960
ggccgcgaat tc 3972

<210> 7
<211> 2089
<212> DNA
<213> Homo sapiens

<400> 7
ccggaagagt gtctggagca agttgcaaag cattggaatc agacagcact tgaagagggt 60
gcagctgcgg gagctgtcgg aagcagaggt caggcagcat cgggaagcca ggccgcgcct 120
gctgacgtcc agactccgct tcatacccaa gcctgacggg ctgcggccga ttgtgaacat 180
ggactacgtc gtgggagcca gaacgttccg cagagaaaag agggccgagc gtctcacctc 240
gagggtgaag gcactgttca gcgtgctcaa ctacgagcgg gcgcggcgcc ccggcctcct 300
gggcgcctct gtgctgggcc tggacgatat ccacagggcc tggcgcaccc tcgtgctgcg 360
tgtgcgggcc caggaccgcg cgcctgagct gtactttgtc aaggtggatg tgacgggcgc 420
gtacgacacc atccccagg acaggctcac ggaggtcatc gccagcatca tcaaacccta 480
gaacacgtac tgcgtgcgtc ggtatgccgt ggtccagaag gccgcgcctg ggcacgtccg 540
caaggccttc aagagccacg tctctaccc tgcacccatc cagccgtaca tgacacagtt 600
cgtggctcac ctgcaggaga ccagccgcgt gagggtgcc gtcgtcatcg agcagagctc 660
ctccctgaat gaggccagca gtggccttt cgacgtcttc ctacgcttca tgtgccacca 720
cgccgtgcgc atcaggggca agtcctacgt ccagtgcctag gggatccgc agggctccat 780
cctctccacg ctgctctgca gcctgtgcta cggcgacatg gagaacaagc tgttgcggg 840
gattcggcgg gacgggctgc tcctgcgttt ggtggatgtat ttcttggtgg tgacacctca 900
cctcacccac gcgaaaacct tcctcaggac cctggtccga ggtgtccctg agtatggctg 960
cgtggtaac ttgcggaaaga cagtggtaa cttccctgta gaagacgagg ccctgggtgg 1020
cacggctttt gttcagatgc cggcccacgg cctattcccc tggcgggcc tgatgctgga 1080
tacccggacc ctggaggtgc agagcgacta ctccagctat gcccggaccc ccatcagagc 1140

B
cont.

part
C
cont.

cagtctcacc ttcaaccgcg gcttcaaggc tgggaggaac atgcgtcgca aactcttg 1200
ggtcttgcgg ctgaagtgtc acagcctgtt tctggatttg caggtgaaca gcctccagac 1260
ggtgtgcacc aacatctaca agatcctcct gctgcaggcg tacaggtttc acgcatgcgt 1320
gctgcagctc ccatttcata agcaagtttgaagaacccc acattttcc tgcgctcat 1380
ctctgacacg gcctccctt gctactccat cctgaaagcc aagaacgcag gtatgtcag 1440
gtgcctggcc tcagtggcag cagtgcctgc ctgctggtgt tagtgtgtca ggagactgag 1500
tgaatctggg ctttaggaagt tcttaccctt tttcgcatca ggaagtgggttaacccaacc 1560
actgtcaggc tcgtctgccc gcctctcgt ggggtgagca gagcacctga tggaaggac 1620
aggagctgtc tgggagctgc catccttccc accttgctct gcctggggaa gcgctgggg 1680
gcctggtctc tcctgtttgc cccatggtgg gatttgggggccttc tcctgtttgc 1740
cctgtggtgg gattgggctg tctccctgtcc atggcactta gggcccttgt gcaaacccag 1800
gccaagggt taggaggagg ccaggccctag gctacccac ccctctcagg agcagaggcc 1860
gcgtatcacc acgacagagc cccgcgcgt cctctgcttc ccagtcaccg tcctctgccc 1920
ctggacactt tgtccagcat cagggaggtt tctgatccgt ctgaaattca agccatgtcg 1980
aacctgcggc cctgagctta acagcttcta ctttctgttc tttctgtgtt gtggagaccc 2040
tgagaaggac cctggagct ctggaaattt ggagtgacca aaggtgtgc 2089

full
cl
cont

b'

end