20CSE02 - DATA SCIENCE

What you infer from this?

Unit 1

- Introduction
- Data Science
- Data Science Relate to Other Fields
- The Relationship between Data Science and Information Science
- Computational Thinking
- Issues of Ethics, Bias, and Privacy in Data
 Science

- Data Types
- Data Collections
- Data Pre-processing Techniques
- Data Analysis & Analytics
- Descriptive Analysis
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics
- Exploratory Analysis
- Mechanistic Analysis

- Frank Lo, the Director of Data Science at Wayfair, "Data science is a multidisciplinary blend of data inference, algorithm development, and technology in order to solve analytically complex problems."
- data science as a field of study and practice that involves the collection, storage, and processing of data in order to derive important insights into a problem or a phenomenon.

Data Science Process

DS Architecture

Data	Intelligence		Action	
Data Sources Apps Sensors and Devices	Information Management Databases Spark Hadoop	 Exploratory Data Analysis Statistical Inference Association Analysis Regression Analysis Time Series Analysis Machine learning 	Models	People Web Apps Bots Mobile Automated Systems
 Historic Business data that can be used to gain 	Cleaning the data Distributed/parallel computing environment for handling massive	Contains components that create a model based on the patterns in the training data.	 Is the pattern/knowle dge extracted from the data 	 Layer that uses the model to gain business insights.
business insights. • It can lead to gain in efficiency			 Given new data, it produces the desired result (Classification, regression etc) 	

DS Life Cycle

Define the goal
Identify the problem to be solved

Deploy model

Deploy the model to solve the problem in the real world

Present results and document
Establish how the problem can
be solved

Collect and manage data

Identify the information

needed

Build a model

Find patterns in the data that leads to the solution

Evaluate model

Validate whether the model solves the problem

- data may be generated by humans (surveys, logs, etc.) or machines (weather data, road vision, etc.), and
- could be in different formats (text, audio, video, augmented or virtual reality, etc.).
- Why is data science so important now?

"3V model"

3V model / Big Data

Data The speed at which data **Velocity** is accumulated.

Increase of data volume 2010 – 2025 (as on July 2022) https://www.statista.com/statistics/871513/worldwide-data-created/

Sources for exponential growth of data

- 1. Social media activity,
- 2. mobile interactions,
- 3. server logs,
- 4. Realtime market feeds,
- 5. customer service records,
- 6. transaction details, and
- 7. information from existing databases combine to create a rich and complex conglomeration of information

Where Do We See Data Science?

- Finance
- Public Policy -gain insights into citizen behaviours that affect the quality of public life, including traffic, public transportation, social welfare, community wellbeing, etc.
- Politics
- Healthcare
- Urban Planning
- Education
- Libraries Online Public Access Catalogues (OPACs)

What do financial data scientists do?

- Through capturing and analyzing new sources of data, building predictive models and running realtime simulations of market events, they help the finance industry obtain the information necessary to make accurate predictions
- banks and other loan sanctioning institutions
 => can minimize the chance of loan defaults via information such as customer profiling, past expenditures, other essential variables that can be used to analyze the probabilities of risk and default

How Does Data Science Relate to Other Fields? Data Science Is Multidisciplinary

The Relationship between Data Science & Information Science

- Information vs. Data
- Users in Information Science => usefullness
- Data Science in Information Schools (iSchools) iSchool curriculum helps students acquire diverse perspectives on data and information.

Computational Thinking

Computational thinking is using abstraction and decomposition when attacking a large complex task or designing a large complex system

visualize the consequence of thinking build simple model of gravity
Three-stage process describing computational thinking.

Pillars of Computational Thinking

- Decomposition: breaking down a complex problem into smaller parts
- Pattern recognition: finding the similarities among smaller problems
- Data representation and abstraction: describing data in a structured manner and generalizing details
- Algorithms: step by step instructions for solving the problem

Computational Thinking - Example

- We are given the following numbers and are asked to find the largest of them:
- 7, 24, 62, 11, 4, 39, 42, 5, 97, 54
- Second largest number?

 https://www.youtube.com/watch?v=qbnTZCj0 ugl

Computational Thinking - Example

Find the sum of all numbers between 1 and 100

- Decompose
- Identify the patterns or trends within a problem
- Identify specific similarities and differences among similar problems to work towards the solution
- Algorithm

Computational Thinking - Example

 Find the sum of all numbers between 1 and 200

```
Decompose
200+1 =201
199+2=201
198+3=201...
101+100=201
(Similarity last No. +1

No. of Pairs = 200/2=100

Difference => Last No. - First No.

No. of Pairs = 200/2=100

No. of Pairs = 200/2=100
```

Sum of all numbers = Sum of the pair * No. of Pairs =(200+1)*(200/2)=20100

https://www.youtube.com/watch?v=qbnTZCj0ugI

Skills for Data Science

- 1. willing to experiment,
- 2. proficiency in mathematical reasoning, and
- 3. data literacy

Tools for Data Science

Commonly Used Tools

- Python, R, and SQL
- C, Java, PHP
- MATLAB....

- Excel
- PowerBI, Tableau, Looker etc. Visualization
- SQL For working with medium to big datasets
- 4. Python, R Advanced analytics
- Hadoop, Spark To store and process extremely large datasets (BIG Data)

Issues of Ethics, Bias, and Privacy in Data Science

- how, where, and why was the data collected?
 Who collected it?
- What did they intend to use it for?
- if the data was collected from people, did these people know?
- Eg Facebook and Google have collected enormous amounts of data about and from their users in order not only to improve and market their products, but also to share and/or sell it to other entities for profit

- Data Types
 - structured data
 - unstructured data
 - Challenges with Unstructured Data
- Data Collections

1.Open Data

- freely available in a public domain
- without restrictions from copyright, patents
- UCI Machine Learning Repository

Principles associated with open data

Public

Accessible

Described

Reusable

Complete

Timely

Managed Post-Release

- 2.Social Media Data Application Programming Interface (API) is used to collecting data from social meadia
- Social media data analyzed for research or marketing purposes

3. Multimodal Data

- IoT
 - Healthcare Applications
 - Agriculture
 - Industry

Data Storage and Presentation

- comma-separated values (CSV)
- tab-separated values (TSV)
- XML (eXtensible Markup Language)
- RSS (Really Simple Syndication)
 - Information provided by a website in an XML file in such a way is called an RSS feed.
 - Since RSS data is small and fast loading, it can easily be used with services such as mobile phones, personal digital assistants (PDAs), and smart watches.
 - RSS is useful for websites that are updated frequently

Data Storage and Presentation

- JSON (JavaScript Object Notation)
 - Key-value pair = In various languages, this is realized as an object, record, structure, dictionary, hash table, keyed list, or associative array.

What makes data "dirty"?

- Incomplete
 - lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation="" (missing data)

Noisy

- e.g., Salary="–10" (an error)
- Inconsistent
 - inconsistent: containing discrepancies in codes or names,
 - Age="42", Birthday="03/07/2018"
 - Grade "S,A,B,C,D,E,RA", now rating "O,A+,A,B+,B,RA"
 - discrepancy between duplicate records

Major Tasks in Data Preprocessing

Data cleaning

Fill in missing values, smooth noisy data, identify or remove outliers,
 and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

–17, 25, 39, 128, **–39 ►** 0.17, 0.25, 0.39, 1.28, –0.39

Reduction in number of Columns (Attributes) and No. of rows (instances)

Data Reduction

Data Munging

"Add two diced tomatoes, three cloves of garlic, and a pinch of salt in the mix."

 Munging is done either manually, automatically, or, in many cases, semi-automatically

Ingredient	Quantity	Unit/size
Tomato	2	Diced
Garlic	3	Cloves
Salt	1	Pinch

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

How to Handle Noisy Data?

Binning

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Binning is used for data discrtization

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15 Bin 2: 21, 21, 24 Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9 Bin 2: 22, 22, 22 Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15 Bin 2: 21, 21, 24 Bin 3: 25, 25, 34

Data Integration

Data integration:

- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g.,
 Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales,
 e.g., metric vs. British units
- Address redundant data in data integration

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Generalization : Concept hierarchy climbing

Normalization

Types

- Min-max normalization
- Z-score normalization
- Normalization by decimal scaling

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _max_A - new _min_A) + new _min_A$$

Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0].
 Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Normalization

- **Z-score normalization** (μ : mean, σ : standard deviation):
 - Ex. Let μ = 54,000, σ = 16,000. Then

$$v' = \frac{v - \mu_A}{\sigma_A}$$
 $\frac{73,600 - 54,000}{16,000} = 1.225$

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$

Where *j* is the smallest integer such that Max(|v'|) < 1

Consider the following is the age of 12 persons.

8 16, 9, 15, 21, 21, 24, 30, 26, 27, 30, 34 Normalize the age attribute using min-max, Z-score normalization

Data Reduction

Data Cube Aggregation

 Data cubes: They are multidimensional sets of data that can be stored in a spreadsheet. A data cube could be in two, three, or higher dimensions. Each dimension typically represents an attribute of interest.

Dimensionality Reduction

Data Discretization

Divide the range of a continuous attribute into intervals

- Marks converted to Grade
- 2. Age mapped to => Young, Adult
- 3. Range of temperature values => cold, moderate, and hot

Types of attributes

- Categorical variables
 - Nominal: Values from an unordered set (Colors, Blood Groups, Gender)
 - Ordinal: Values from an ordered set (academic rank, Customer satisfaction [Excellent, good...])
- Continuous: Real numbers
- Ratio scaled: No. Male & females in a class 3:4

Data Pre-processing

Data Cleaning

- 1. Smooth Noisy Data
- 2. Handling Missing Data

Table 2.3 Excessive wine consumption and mortality data.					
#	Country	Alcohol	Deaths	Heart	Liver
1	Australia	2.5	785	211	15.30000019
2	Austria	3.000000095	863	167	45.59999847
3	Belg. and Lux.	2.900000095	883	131	20.70000076
4	Canada	2.400000095	793	NA	16.39999962
5	Denmark	2.900000095	971	220	23.89999962
6	Finland	0.800000012	970	297	19
7	France	9.100000381	751	11	37.90000153
8	Iceland	-0.800000012	743	211	11.19999981
9	Ireland	0.699999988	1000	300	6.5
10	Israel	0.600000024	-834	183	13.69999981
11	Italy	27.900000095	775	107	42.20000076
12	Japan	1.5	680	36	23.20000076
13	Netherlands	1.799999952	773	167	9.199999809
14	New Zealand	1.899999976	916	266	7.699999809
15	Norway	0.0800000012	806	227	12 10999981
16	Spain	6.5	724	NA	NA
17	Sweden	1.600000024	743	207	11.19999981
18	Switzerland	5.800000191	693	115	20.29999924
19	UK	1.299999952	941	285	10.30000019
20	US	1.200000048	926	199	22.10000038
21	West Germany	2.700000048	861	172	36.70000076

Data Pre-processing

	Part of the second		1 1 1 1 6		
Table 7.5	Data about alco	hal cansumption	and bealth T	rom various Sta	ates in India .
I AND DATE OF THE PARTY.	nama andare area	non companiiparon	and realen n	DILL LALLAND SO	accommunities

#	Name of the State	Alcohol consumption	Heart disease	Fatal alcohol- related accidents
1	Andaman and Nicobar Islands	1.73	20,312	2201
2	Andhra Pradesh	2.05	16,723	29,700
3	Arunachal Pradesh	1.98	13,109	11,251
4	Assam	0.91	8532	211,250
5	Bihar	3.21	12,372	375,000
6	Chhattisgarh	2.03	28,501	183,207
7	Goa	5.79	19,932	307,291

1. Data Cube Aggregation/Concept Hierarchy

Dimensionality Reduction => Sum up all

2. Data Integration from two different sources

Data Pre-processing - Data Discretization

Discretize the wine consumption per capita into four categories

- less than or equal to 1.00 per capita => (represented by 0),
- 2. more than 1.00 but less than or equal to 2.00 per capita (1),
- 3. more than 2.00 but less than or equal to 5.00 per capita (2), and
- 4. more than 5.00 per capita (3).

#	Country	Alcohol	Deaths	Heart	Liver
1	Australia	2	785	211	15.3
2	Austria	2	863	167	45.6
3	Belg. and Lux.	2	883	131	20.7
4	Canada	2	793	185	16.4
5	Denmark	2	971	220	23.9
6	Finland	0	970	297	19.0
7	France	3	751	11	37.9
8	Iceland	0	743	211	11.2
9	Ireland	0	1000	300	6.5
10	Israel	0	834	183	13.7
11	Italy	3	775	107	42.2
12	Japan	1	680	36	23.2
13	Netherlands	1	773	167	9.2
14	New Zealand	1	916	266	7.7
15	Norway	0	806	227	12.2
16	Spain	3	724	185	20.3
17	Sweden	1	743	207	11.2
18	Switzerland	3	693	115	20.3
19	UK	1	941	285	10.3
20	US	1	926	199	22.1
21	West Germany	2	861	172	36.7
22	India	2	750	171	20.3

Analysis is the detailed examination of the elements or structure of something.

"Analytics" is the systematic computational analysis of data or statistics.

Data Analysis helps in understanding the data and provides required insights from the past to understand what happened so far

Data Analytics is the process of exploring the data from the past to make appropriate decisions in the future by using valuable insights

Descriptive Analysis => reveal what happened in
the past

- Typically, it is the first kind of data analysis performed on a dataset.
- Usually it is applied to large volumes of data, such as census data.
- Description and interpretation processes are different steps.
- Eg, to categorize customers by their likely product preferences and purchasing patterns
- social media marketing campaign, use descriptive analytics to assess the number of posts, mentions, followers, fans, page views, reviews, or pins

Descriptive Analysis

Type of Variable => categorical variable, Ordinal, continuous variable, ratio

- Independent variable/ Predictor variable,
- Dependent variable / Outcome var/ Decision var/ class label/ Target class

age	income	student	credit_rating	g k	uys_com	puter
<=30	high	no	fair		no	
<=30	high	no	excellent		no	
3140	high	no	fair		yes	
>40	medium	no	fair		yes	
>40	low	yes	fair		yes	
>40	low	yes	excellent		no	
3140	low	yes	excellent		yes	
<=30	medium	no	fair		no	
<=30	low	yes	fair	4	A	
>40	medium	yes	fair	1	ID	Age
<=30	medium	yes	excellent	2	54419	
3140	medium	no	excellent	3	62516	
3140	high	yes	fair	4	55509	
>40	medium	no	excellent	5	36489	

Dataset

4	A	В	C	D	E	F	G
1	ID	Age	Gender	District	SATV	SATM	GPA
2	54419	18	M	38	368	253	3.52
3	62516	22	М	5	670	496	1.11
4	55509	21	F	54	639	439	2.68
5	36489	19	M	49	368	465	3.11
6	36387	21	F	36	620	306	2.16
7	95507	20	F	13	512	593	2.83
8	16360	20	М	52	621	377	2.79
9	12838	18	F	44	571	544	2.13
10	73450	20	F	59	647	746	2.08
11	26869	18	F	28	337	371	2.28
12	48552	22	M	63	260	498	3.24
13	23416	19	M	51	476	294	2.31
14	42635	19	F	35	677	241	3.19
15	67448	19	F	55	335	533	1.81
16	34689	21	F	42	585	708	1.80
17	32763	22	F	20	556	787	1.18

Frequency Distribution

Histogram

Pie Chart

Distribution of Data

Normal & Skewed Distribution

Skewed Distribution

Cricket Score

Exam Results – online vs offline; Lab v Theory

Average Income distribution

Human Life cycle

Taxation Regimes

Record of Long Jumps at a Competition

Measures of Centrality

 Median, mean and mode of symmetric, positively and negatively skewed data

Dispersion of a Distribution

- Range => largest score smallest score.
 - Disadvantage: it uses only the highest and lowest values, extreme scores or outliers tend to result in an inaccurate picture of the more likely range.
- Interquartile range is defined as the difference between the 25th and 75th percentile

Measuring the Dispersion of Data

Quartiles, outliers and boxplots

Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)

Inter-quartile range: $IQR = Q_3 - Q_1$

Five number summary:

min, Q₁, median, Q₃, max

Boxplot: ends of the box are the

quartiles; median is marked; add

whiskers, and plot outliers individually

Outlier: usually, a value higher/lower

than 1.5 x IQR

Beyond this range - Outlier

Q1-1.5*IQR to Q3+1.5*IQR

P_x = The value at which x percentage of data lie below that value

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

The following are the scores of Coding test of 12 members. Draw the box plot & also find out is there any outliers, according to our rule of thumb?

3,40,41,45,40,60,61,62,63,65,70,99

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)
 - variance of a population (σ^2) $\sigma^2 = \frac{\sum \left(X_i X\right)^2}{N},$
 - variance of a sample (s²) $s^{2} = \frac{\sum (x_{i} x)^{2}}{(n-1)}$
 - Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

$$s = \sqrt{\frac{\sum (x_i - x)^2}{(n-1)}}$$

Diagnostic Analytics

- used for discovery, or to determine why something happened Eg "rain" vs "umbrella"
- Correlations statistical analysis that is used to measure and describe the strength and direction of the relationship between two variables.

$$r = \frac{N\sum xy - \sum x\sum y}{\sqrt{\left[N\sum x^2 - \left(\sum x\right)^2\right]\left[N\sum y^2 - \left(\sum y\right)^2\right]}}$$

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Diagnostic Analytics

Correlation coefficient	Type of relationship	Levels of measurement	Data distribution
Pearson's r	Linear	Two quantitative (interval or ratio) variables	Normal distribution
Spearman's rho	Non-linear	Two ordinal, interval or ratio variables	Any distribution
Point-biserial	Linear	One dichotomous (binary) variable and one quantitative (interval or ratio) variable	Normal distribution
Cramér's V (Cramér's φ)	Non-linear	Two nominal variables	Any distribution
Kendall's tau	Non-linear	Two ordinal, interval or ratio variables	Any distribution

Find Correlation between the attributes

Advertising Expenditure (in 000 ₹):	165	166	167	168	167	169	170	172
Sales (in Lakh ₹)	167	168	165	172	168	172	169	171

Two interviewers ranked 12 candidates (A through L) for a position. Find Correlation among

Candidate	Interviewer 1	Interviewer 2
Α	1	1
В	2	2
С	3	4
D	4	3
E	5	6
F	6	5
G	7	8
Н	8	7
I	9	10
J	10	9
K	11	12
L	12	11

Predictive Analytics

- understanding the future using the data and the trends we have seen in the past
- no statistical algorithm can "predict" the future with 100% certainty because the foundation of predictive analytics is based on probability

predictive analytics software : SAS, IBM predictive analytics, RapidMiner .

Predictive model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Using the Model in Prediction

Dataset & Model **Predictive Analytics**

income

Prescriptive Analytics

- analyzes potential decisions, the interactions between decisions, the influences that bear upon these decisions, and the bearing all of this has on an outcome to ultimately prescribe an optimal course of action
- the process of using current and historical data to identify trends and relationships.
- Techniques include optimization, simulation, game theory, and decision-analysis methods
- [Gartner] 13% of organizations are using predictive analytics, but only 3% are using prescriptive analytics.

- Exploratory analysis is an approach to analyzing datasets to find previously unknown relationships.
- involves using various data visualization approaches.
- exploratory analysis is about the methodology or philosophy of doing the analysis, rather than a specific technique

Mechanistic Analysis

- understanding the exact changes in variables that lead to changes in other variables for individual objects(studying a relationship between two variables)
- Regression => process for estimating the relationships among variables
- Corelation vs Regression
- Correlation by itself does not provide any indication of how one variable can be predicted from another.
 But Regression provides

5 modes of analytics

If your business runs on data, you need analytics to turn it into a competitive advantage.

Learn the differences between these five types of analytics.

Descriptive

Gives an account of what has already occurred over the past days, months and years.

Real-time

Gives insight into up-to-the-minute data (requires sophisticated data management skills and processes).

Diagnostic

Looks at why something happened: What went wrong and what went right?

Predictive

Looks at what might happen in the future based on past results, driving future outcomes.

Prescriptive

Provides guidance on what to do next.

Source: https://www.techtarget.com/searchcio/definition/Prescriptive-analytics

Summary - Analytics

- Descriptive Analytics tells you what happened in the past.
- Diagnostic Analytics helps you understand why something happened in the past.
- **Predictive Analytics** predicts what is most likely to happen in the future.
- **Prescriptive Analytics** recommends actions you can take to affect those outcomes.

Al vs ML vs DL vs DS

Al, ML, DL and Data Science with Data Analysis, Data Analytics and Data Mining - all based on the foundation of #BigData

- **Data Science** Scientific methods, algorithms and systems to extract knowledge or insights from big data
- Also known as Predictive or Advanced Analytics
- Algorithmic and computational techniques and tools for handing large data sets
- Increasingly focused on preparing and modeling data for ML & DL tasks
- Encompasses statistical methods, data manipulation and streaming technologies (e.g. Spark, Hadoop)
- Key skill and tools behind building modern AI technologies
- **Data Analysis** Process of inspecting, cleansing, transforming and modeling data
- **Data Analytics** Discovery, interpretation, and communication of meaningful patterns in data
- **Data Mining** Process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems

Types of Data We Have

- Relational Data (Tables/Transaction/Legacy Data)
- Text Data (Web)
- Semi-structured Data (XML)
- Graph Data
- Social Network, Semantic Web (RDF), ...
- Streaming Data
- You can afford to scan the data once

What To Do With These Data?

- Aggregation and Statistics
 - Data warehousing and OLAP
- Indexing, Searching, and Querying
 - Keyword based search
 - Pattern matching (XML/RDF)
- Knowledge discovery
 - Data Mining
 - Statistical Modeling

Concentration in Data Science

- Mathematics and Applied Mathematics
- Applied Statistics/Data Analysis
- Solid Programming Skills (R, Python, Julia, SQL)
- Data Mining
- Data Base Storage and Management
- Machine Learning and discovery

 https://colab.research.google.com/drive/1kucNxA3sD 3A_qyZp9OwRi_V8HVkGsiOl#scrollTo=80zUqqGRuivN