NATO Advanced Research Workshop, Kiev, September 07-13, 2003

Metallic Materials with High Structural Efficiency

DYNAMIC RECRYSTALLIZATION OF LOW STACKING FAULT ENERGY METALS

Frank Montheillet and Jean-Philippe Thomas

Ecole des Mines (Center for Materials Science and Structures), Plasticity, Damage and Corrosion of Materials CNRS Laboratory, Saint-Etienne, France

maintaining the data needed, and coincluding suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar ombo.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Dynamic Recrystal	Metals	5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
Ecole des Mines (C	ZATION NAME(S) AND AD enter for Materials osion of Materials C	Science and Structu		8. PERFORMING REPORT NUMBI	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for public	ABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM0016	TES 72., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT NATO/unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 17	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Continuous and discontinuous dynamic recrystallization (DRX)
- DRX in a high purity base austenitic stainless steel
- DRX in a 718 grade nickel base superalloy. "Continuous nucleation"
- Conclusions

Continuous vs. discontinuous dynamic recrystallization

DDRX or "classical" DRX	CDRX or "rotation", "apparent", "in situ" DRX, or "extended dynamic recovery"			
occurs by local (rapid) cycles of strain- hardening → nucleation → growth of new grains	occurs by progressive (slow) transformation of subgrain boundaries (LAGB) into grain boundaries (HAGB)			
- dynamic recovery is weak	- dynamic recovery is strong (dislocation rearrangement and annihilation)			
- dislocation densities are inhomogeneous (strong $\Delta \rho$)	- dislocation densities are homogeneous (weak $\Delta \rho$)			
- the rate of grain boundary migration is high	- the rate of grain boundary migration is low			
low stacking fault energy materials: Cu, γ-iron and austenitic steels, Ni-base superalloys,	high stacking fault energy materials: Al, α -iron and ferritic steels, β -titanium,			

DDRX: transition from multiple peak (low Z) to single peak (high Z) DRX

$$Z = \dot{\varepsilon} \exp\left(\frac{Q}{RT}\right)$$

[Rossard & Blain, 1959]

[Blaz et al., 1983]

CDRX: "Smooth" stress-strain curves

Schematic representation of the CDRX crystallite microstructure

[Gourdet & Montheillet, 2003]

DRX in a high purity base austenitic stainless steel close to the A304 grade (18 %Cr, 12.2 %Ni, 15 ppm C, 10 ppm S, and 10 ppm N) [Gavard, 2001]

 $Q \approx 400 \text{ kJ/mol}$

Multiple to single peak transition $Z \approx 10^{13} - 10^{14} \text{ s}^{-1}$

Microstructural changes − 850 °C, 10⁻³ s⁻¹

Nucleation by (growth) twinning

increasing time and strain \rightarrow

Microstructural changes (cont'd)

Mixture of "young" and "old" grains

same area without SGB

 $\varepsilon = 1.5 (\approx \text{ steady state})$

Evolutions of the twin boundary area fractions

DRX in a 718 grade nickel base superalloy (after solution treatment of δ Ni₃Nb phase)

 $Q \approx 400 \text{ kJ/mol}$

Single peak type Grain refinement

Fragmentation of the initial microstructure (torsion at 900 °C, = 10^{-2} s⁻¹, ϵ = 0.4)

nucleation by (initial) grain boundary bulging

Microstructural changes − 980 °C, 10⁻² s⁻¹

 $\varepsilon = 1.0$

Evolution of the twin boundary area fraction

nucleation by (growth) twinning

Strain dependence of the subgrain boundary misorientation distributions

$$\varphi(\theta) = k \, \theta^{-q}$$

where q increases with strain

For the steady state $(q = q_s)$,

$$\varphi(\theta)\dot{\theta} = k\theta^{-q_S}\dot{\theta} = constant$$

$$\Rightarrow \dot{\theta}(\theta) = C \theta^{q_S}$$

(For Al alloys, $q_s = 0$)

"Continuous nucleation" (A)

Conclusions

- Discontinuous DRX in low stacking fault energy metals occurs with variable kinetics, e.g. much more slowly in 718 alloy than in 304 steel
- Nucleation of new grains takes place by three distinct mechanisms:
 - (initial) grain boundary bulging,
 - repeated (growth) twinning,
 - and, in alloy 718, "continuous nucleation", similar to CDRX
- Slower grain boundary migration rates in alloy 718 may be attributed to
 - smaller driving forces due to more efficient dynamic recovery,
 - grain boundary mobility reduced by niobium solutes
- Respective contributions of CDRX and DDRX in nickel base superalloys could be controlled by adjusting volume fractions of Nb or other addition elements