

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering.

Lab report

Course Code : ECE 1202

Course Title : Circuits and System-II Sessional

Date of Experiment :10/09/2024

Date of Submission :10/09/2024

Submitted To:	Submitted By:				
Oishi Jyoti Assistant Professor Department of ECE, RUET	Name : Shadman Zaman Roll : 2210018 Registration : 1072 Session : 2022-2023 Department of ECE, RUET				

Experiment No. 03

Experiment Name: Power Measurement of a Balanced 3-Phase System Using the Two Wattmeter Method.

Objective:

To understand and analyze the measurement of power in a balanced three-phase system using the two-wattmeter method and verify the theoretical relationships experimentally.

Theory:

In a three-phase electrical system, power measurement can be achieved using the two-wattmeter method, especially in balanced and unbalanced loads. The two-wattmeter method uses two wattmeters connected in a way that they can measure power even if the system is unbalanced. The total power in a balanced three-phase system is the sum of the readings of the two wattmeters.

• Wattmeter Readings (P1 and P2):

These measure power delivered to the load from two different lines of the three-phase system.

• Total Power (P):

The total power delivered to the load in a balanced system can be calculated by adding the readings of the two wattmeters: P=P1+P2.

Required Apparatus:

- Three-phase AC power supply.
- Balanced three-phase load (resistors).
- Two wattmeters.
- Voltmeter.
- Ammeter.
- Connecting wires.
- VARIAC.
- Multimeter.

Circuit Diagram:

Procedure:

- 1. Set up the circuit with two wattmeters connected as per the two-wattmeter method configuration for three-phase power measurement.
- 2. Ensure that the load is connected in a balanced three-phase configuration.
- 3. Apply the three-phase voltage using the AC power supply and gradually increase it using the VARIAC.
- 4. Record the readings of both wattmeters (P1 and P2).
- 5. Measure the line voltage (V_Line) and the line current (I_Line) using the voltmeter and ammeter, respectively.
- 6. Calculate the total power using the sum of the two wattmeter readings

Data Table:

Serial No	P 1	P 2	P _T (m) (P ₁ +P ₂)	$P_{T}(c) = \sqrt{3}$ $V_{L}I_{L}$	VL	It	Error = (PTc-PTm)/PTm *100%
1	40	40	80	97	87	.65	21.25
2	20	20	40	52.79	63.5	.42	31.6
3	30	30	60	71.7	74	.56	19.5
4	36	36	72	91.2	74	.62	26.67
5	64	64	128	176	105.2	.97	37.5

Result: The experimental measurements show that the total power calculated using the two-wattmeter method closely matches the expected values based on the theoretical calculations. The minor errors observed can be attributed to measurement inaccuracies, losses in the circuit, or external factors.

Discussion: Ignoring the small margin of errors which may have caused due to internal or external factors, the experiment was a success.

Data table from actual lab experiment:

<u>F</u>	p. name system	: Powers	measures	ment of	5 b.	alane	ed 3-P
SL	۶,	PL	Pot (m) (potPr)	P+ (0) = 43 VLJL	VL	IL ;	Eyror Pro-Pron X 100
1	40	40	80	97 -	87	0.65	21.25
2	20	20	40	52.79	63.5	0.49	31.9
3	30	30	60	71.7	74	0.56	19.5
4	36	36	72	91.2	85	0.62	26.67
3	64	64	128	176	103	.2 0.97	37.5
	Roll: 2 2 2 2 2 2 2	210013 210014 210015 210015 210017 210020 210021 210023	10.00	24			