Математический анализ—2 Коллоквиум

Лектор: Зароднюк Алёна Владимировна LATEX by Винер Даниил @danya_vin

Версия от 27 ноября 2024 г.

Содержание

Осн	овные определения
1.1	Определение (замкнутого) бруса (координатного промежутка, параллепипеда)
1.2	Определение меры (объема) бруса
1.3	Определение разбиения бруса
1.4	Определение диаметра множества в \mathbb{R}^n
1.5	Определение ограниченного множества в \mathbb{R}^n
1.6	Определение масштаба (диаметра) разбиения
1.7	Определения отмеченных точек и размеченного разбиения
1.8	Определение интегральной суммы Римана
1.9	Определение интегрируемой по Риману функции на замкнутом брусе в \mathbb{R}^n
1.10	Определение множества меры нуль по Лебегу
1.11	Определение внутренней точки множества
1.12	Определение внешней точки множества
1.13	Определение граничной точки множества
1.14	Определение изолированной точки множества
1.15	Определение предельной точки множества
1.16	Определение точки прикосновения множества
1.17	Определение открытого множества
	Определение замкнутого множества
1.19	Определение компакта
1.20	[DELETE] Определение ограниченного множества
1.21	[DELETE] Определение расстояния между компактами
	Определение колебания функции на множестве
1.23	Определение колебания функции в точке
	Определение непрерывности функции в точке
1.25	Определение выполненения свойства почти всюду
1.26	Определение пересечения двух разбиений
	Определение измельчения разбиения
	Определение верхней и нижней суммы Дарбу
	Определение верхнего и нижнего интеграла Дарбу
	Определение допустимого множества
	Определение интеграла Римана по допустимому множеству
	Определение сходимости функциональной последовательности в точке
	Определение множества сходимости функциональной последовательности
	Определение предельной функции функциональной последовательности
1.35	Определение поточечной сходимости функциональной последовательности на множестве
1.36	Определение равномерной сходимости функциональной последовательности на множестве .
Осн	овные формулировки
	Свойства меры бруса в \mathbb{R}^n
	Необходимое условие интегрируемости функции по Риману
	Свойства интеграла Римана
	Свойства множества меры нуль по Лебегу
	Критерий замкнутости множества в \mathbb{R}^n
$\frac{2.6}{2.6}$	Теорема о компактности замкнутого бруса в \mathbb{R}^n
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 Och 2.1 2.2 2.3 2.4 2.5

	2.7	Критерий компактности в \mathbb{R}^n	9
	2.8	Теорема Вейерштрасса о непрерывной функции на компакте	9
	2.9	Теорема о связи непрерывности функции в точке с колебанием	9
	2.10	[DELETE] Теорема Кантора-Гейне о колебаниях функции на компакте	9
	2.11	Критерий Лебега интегрируемости функции по Риману	9
		Свойства интегральных сумм Дарбу	9
		Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу	9
		Критерий Дарбу интегрируемости функции на замкнутом брусе	9
	2.15	Утверждение о независимости определения допустимого множества от выбора бруса Теорема Фубини о переходе к повторному интегралу	9 10
		Супремальный критерий равномерной сходимости функциональной последовательности	10
		Критерий Коши равномерной сходимости функциональной последовательности	10
		Теорема о почленном переходе к пределу для функциональной последовательности	10
		Теорема о непрерывности предельной функции	10
		Утверждение о неравномерной сходимости фун. послед. при наличии разрыва	10
		Утверждение о неравномерной сходимости фун. послед. при наличии разрыва	11
		Теорема о почленном интегрировании функциональной последовательности	11
			11
		Теорема о замене переменных в кратном интеграле	11
	2.20	теорема о замене переменных в кратном интеграле	11
3	Воп	росы на доказательство	12
	3.1	[DELETE] Свойства меры бруса в \mathbb{R}^n	
	3.2	Необходимое условие интегрируемости	
	3.3	Свойства интеграла Римана: линейность, монотонность, оценка интеграла	
	3.4	Свойства множества меры нуль по Лебегу	
	3.5	Критерий замкнутости множества в \mathbb{R}^n	
	3.6	Теорема о компактности замкнутого бруса	
	3.7	Критерий компактности в \mathbb{R}^n	
	3.8	Теорема Вейерштрасса о непрерывной функции на компакте	
	3.9	Теорема о связи непрерывности функции в точке с колебанием	16
	3.10	Свойства интегральных сумм Дарбу	17
		3.10.1 Нижняя сумма Дарбу не больше верхней	17
		3.10.2 Монотонность сумм относительно измельчений разбиения	17
		3.10.3 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе	17
	3.11	Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу	18
	3.12	Критерий Дарбу интегрируемости функции на замкнутом брусе	18
	3.13		19
	3.14	Теорема Фубини о переходе к повторному интегралу	19
		Супремальный критерий равномерной сходимости функциональной последовательности	20
	3.16	Критерий Коши равномерной сходимости функциональной последовательности	20
	3.17	Теорема о почленном переходе к пределу для функциональной последовательности	21
	3.18	Теорема о непрерывности предельной функции	22
	3.19	Утверждение о неравномерной сходимости фун. послед. наличии разрыва	22
	3.20	Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке	23
	3.21	Теорема о почленном интегрировании функциональной последовательности	23
	3.22	[DELETE] Теорема о почленном дифференцировании функциональной последовательности	25
	3.23	[FOR KIARA] Критерий Лебега интегрируемости функции по Риману	26

1 Основные определения

Определение (замкнутого) бруса (координатного промежутка, параллепи-1.1 педа)

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \le x_i \le b_i, \ i \in \{1, ..., n\}\}\$$

= $[a_1, b_1] \times ... \times [a_n, b_n]$

Примечание. Просто брусом называется $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\} \ \forall i$ может быть отрезком, интервалом и т.д.

1.2 Определение меры (объема) бруса

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.3 Определение разбиения бруса

Определение. Пусть I — замкнутый, невырожденный брус и $\bigcup I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T}=\{I_i\}_{i=1}^k$ называется разбиением бруса I

Определение диаметра множества в \mathbb{R}^n

Определение. Диаметр произвольного ограниченного множества $M\subset \mathbb{R}^n$ будем называть

$$d(M) = \sup_{x,y \in M} ||x - y||,$$
 где

$$d(M) = \sup_{x,y \in M} \|x - y\|,$$
 где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Определение ограниченного множества в \mathbb{R}^n 1.5

Определение. Множество $M \subset \mathbb{R}^n$ называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

Определение масштаба (диаметра) разбиения 1.6

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}d(I_i)$

Определения отмеченных точек и размеченного разбиения

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi_i\}_{i=1}^k$ будем называть **отмечен**ными точками

3

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

1.8 Определение интегральной суммы Римана

Пусть I — невырожденный, замкнутый брус, функция $f:I \to \mathbb{R}$ определена на I

Определение. Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

1.9 Определение интегрируемой по Риману функции на замкнутом брусе в \mathbb{R}^n

Определение. Функция f интегрируема по Риману на замкнутом брусе I $(f: I \to \mathbb{R})$, если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta : \ \text{верно} \ |\sigma(f, \mathbb{T}, \xi) - A| < \varepsilon$$

Тогда A называется $\kappa pamным$ интегралом Pumaha и

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Обозначение: $f \in \mathcal{R}(I)$

1.10 Определение множества меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть *множеством меры нуль по Лебегу*, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

1.
$$M \subset \bigcup_i I_i$$

2.
$$\sum_{i} |I_i| < \varepsilon$$

1.11 Определение внутренней точки множества

Определение. Пусть имеется $M \subset \mathbb{R}^n$. Точку $x_0 \in M$ будем называть внутренней точкой M, если

$$\exists \, \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$$

1.12 Определение внешней точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *внешней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset (\mathbb{R}^n \setminus M)$$

1.13 Определение граничной точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *граничной* точкой M, если

$$\forall \varepsilon > 0 : (B_{\varepsilon}(x_0) \cap M) \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$$

1.14 Определение изолированной точки множества

Определение. Точку $x_0 \in M$ будем называть *изолированной* точкой M, если

$$\exists \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M = \varnothing$$

1.15 Определение предельной точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *предельной* точкой M, если

$$\forall \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}}(x_0) \cap M \neq \varnothing$$

1.16 Определение точки прикосновения множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть точкой прикосновения M, если

$$\forall \varepsilon > 0: B_{\varepsilon}(x_0) \cap M \neq \emptyset$$

1.17 Определение открытого множества

Определение. Множество $M \subset \mathbb{R}^n$ называется *открытым*, если все его точки внутренние

1.18 Определение замкнутого множества

Определение. Множество $M \subset \mathbb{R}^n$ называется замкнутым, если $\mathbb{R}^n \setminus M$ — открыто

1.19 Определение компакта

Определение. Множество $K \subset \mathbb{R}^n$ называется *компактом*, если из \forall его покрытия открытыми множествами можно выделить конечное подпокрытие

1.20 [DELETE] Определение ограниченного множества

Определение. Множество $M \subset \mathbb{R}^n$ называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

1.21 [DELETE] Определение расстояния между компактами

Определение. Расстоянием между двумя множествами X и Y, где $X,Y \subset \mathbb{R}^n$ будем называть число $\rho(X,Y)$:

$$\rho(X,Y) = \inf_{\substack{x \in X \\ y \in Y}} ||x - y||$$

1.22 Определение колебания функции на множестве

Определение. Колебанием функции f на множестве $M \subset \mathbb{R}^n$ будем называть число $\omega(f, M)$:

$$\omega(f,M) = \sup_{x,y \in M} |f(x) - f(y)| = \sup_{x \in M} f(x) - \inf_{y \in M} f(y)$$

1.23 Определение колебания функции в точке

Определение. Колебанием функции f в точке $x_0 \in M \subset \mathbb{R}^n$ будем называть число

$$\omega(f,x_0):=\lim_{r o 0+}\omega(f,B^M_r(x_0)),$$
 где $B^M_r=B_r(x_0)\cap M$

1.24 Определение непрерывности функции в точке

Определение. Функция $f: M \to \mathbb{R}$ непрерывна в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in M$$
 такого что $|x - x_0| < \delta$ верно $|f(x) - f(x_0)| < \varepsilon$

1.25 Определение выполненения свойства почти всюду

Определение. Если какое-то свойство не выполняется лишь на множестве меры нуль, то говорят, что это свойство выполняется почти всюду

1.26 Определение пересечения двух разбиений

Определение. Пусть $\mathbb{T}_1=\{I_k^1\}$ и $\mathbb{T}_2=\{I_m^2\}$ — два разбиения бруса $I\subset\mathbb{R}^n.$

Пересечением разбиений $(\mathbb{T}_1 \cap \mathbb{T}_2)$ будем называть множество всех брусов $\{I_{ij}\}: \forall I_{ij}$ выполняется

- $\bullet \ \exists k : I_{ij} \in \{I_k^1\}$
- $\bullet \ \exists m: I_{ij} \in \{I_m^2\}$
- $\{I_{ij}\}$ разбиение бруса I

1.27 Определение измельчения разбиения

Определение. Разбиение $\mathbb{T}_1=\{I_k^1\}$ будем называть измельчением разбиения $\mathbb{T}_2=\{I_m^2\}$, если $\forall k \; \exists m: I_k^1 \in I_m^2 \implies \mathbb{T}=\mathbb{T}_1 \cap \mathbb{T}_2$ является измельчением \mathbb{T}_1 и \mathbb{T}_2

1.28 Определение верхней и нижней суммы Дарбу

Определение. Пусть I — замкнутый брус, $f:I\mapsto \mathbb{R},\, \mathbb{T}=\{I_i\}_{i=1}^K$ — разбиение бруса $I,\, m_i=\inf_{I_i}(f),\,$ и $M_i=\sup_{I_i}(f)$

Тогда числа $\underline{S}(f,\mathbb{T})=\sum_{i=1}^K m_i|I_i|$ и $\overline{S}(f,\mathbb{T})=\sum_{i=1}^K M_i|I_i|$ будем называть *ниженей и верхней суммой Дарбу*

1.29 Определение верхнего и нижнего интеграла Дарбу

Определение. Верхним и ниженим интегралом Дарбу будем называть числа

$$\overline{I} := \inf_{\mathbb{T}} \overline{\mathbf{S}}(f, \mathbb{T}), \ \underline{I} := \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T})$$

1.30 Определение допустимого множества

Определение. Множество $D \subset \mathbb{R}^n$ называется допустимым, если

- D ограниченно
- \bullet ∂D множество меры нуль по Лебегу

1.31 Определение интеграла Римана по допустимому множеству

Определение. Пусть $D \subset \mathbb{R}^n$ — допустимое, $f:D \to \mathbb{R}$. Тогда, интегралом Римана f по D называется число \mathcal{I} :

$$\mathcal{I} = \int\limits_D f(\overline{x}) \mathrm{d}\overline{x} = \int\limits_{I \supset D} f \cdot \chi_D(\overline{x}) \mathrm{d}\overline{x},$$
 где $\chi_D = \begin{cases} 1, \overline{x} \in D \\ 0, \overline{x} \in D \end{cases}$

1.32 Определение сходимости функциональной последовательности в точке

Пусть $X \subset \mathbb{R}$ и $f_n : X \to \mathbb{R} \ \forall n \in \mathbb{N}$.

Определение. Последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится в точке $x_0 \in X$, если сходится соответствующая числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$:

$$x_0 \in X, \ \forall \varepsilon > 0 \ \exists N : \forall n > N \hookrightarrow |f_n(x_0) - a_{x_0}| < \varepsilon \Longrightarrow a_{x_0} = \lim_{n \to \infty} f_n x_0$$

1.33 Определение множества сходимости функциональной последовательности

Определение. Множество $D \subset X$ точек, в которых последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится называется множеством сходимости

1.34 Определение предельной функции функциональной последовательности

Определение. Пусть $D \subset X$ — множество сходимости $\{f_n(x)\}_{n=1}^{\infty}$ и $\forall x \in D$ $f_n(x) \to f(x)$. Тогда, $f(x) = \lim_{n \to \infty} f_n(x)$ будем называть npedenhoù функцией $\{f_n(x)\}$

1.35 Определение поточечной сходимости функциональной последовательности на множестве

Определение. $D \subset \mathbb{R}, f, f_n : D \to \mathbb{R}$. Будем говорить, что $\{f_n(x)\}$ сходится поточечно к f(x) на D, если

$$\forall x \in D, \ \forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n(x) \xrightarrow{D} f(x)$

1.36 Определение равномерной сходимости функциональной последовательности на множестве

Определение. Пусть $D \subset \mathbb{R}; \ f_n, f: D \longrightarrow \mathbb{R}$. Будем говорить, что $\{f_n(x)\}$ сходится равномерно к f(x) на D, Если

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N, \ \forall x \in D \ \text{такое, что} \ |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n \stackrel{D}{\rightrightarrows} f$

2 Основные формулировки

2.1 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имеют общих внтренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. **Монотонность**: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset\bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

2.2 Необходимое условие интегрируемости функции по Риману

Теорема. Пусть I — замкнутый брус

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.3 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

2. Монотонность

$$f, g \in \mathcal{R}(I); \ f|_{I} \leqslant g|_{I} \implies \int_{I} f dx \leqslant \int_{I} g dx$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

2.4 Свойства множества меры нуль по Лебегу

- 1. В определении множества меры нуль можно использовать открытые брусы
- 2. M множество меры нуль, $L \subset M \Longrightarrow L$ множество меры нуль
- 3. Не более чем счетное объединение множеств меры нуль является множеством меры нуль

8

2.5 Критерий замкнутости множества в \mathbb{R}^n

Теорема. M — замкнуто \iff M содержит **все** свои предельные точки

2.6 Теорема о компактности замкнутого бруса в \mathbb{R}^n

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

2.7 Критерий компактности в \mathbb{R}^n

Теорема. Пусть $K \subset \mathbb{R}^n$. K — компакт $\iff K$ замкнуто и ограниченно

2.8 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K\subset\mathbb{R}^n$ — компакт и функция $f:K\mapsto\mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшего и наименьшего значений

2.9 Теорема о связи непрерывности функции в точке с колебанием

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n$; $f: M \mapsto \mathbb{R}$. f — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$

2.10 [DELETE] Теорема Кантора-Гейне о колебаниях функции на компакте

не было у нас такого пон

2.11 Критерий Лебега интегрируемости функции по Риману

Теорема. Если $I \subset \mathbb{R}^n$ — замкнутый невырожденный брус, $f: I \to \mathbb{R}$, то $f \in R(I) \iff f$ ограничена и непрерывна почти всюду на I

2.12 Свойства интегральных сумм Дарбу

1.

$$\underline{\mathbf{S}}(f,\mathbb{T}) = \inf_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

2. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$S(f, \mathbb{T}) \leq S(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T})$$

3. $\forall \mathbb{T}_1, \mathbb{T}_2 : S(f, \mathbb{T}_1) < \overline{S}(f, \mathbb{T}_2)$

2.13 Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус, а $f: I \mapsto \mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\pi} \to 0} \overline{\mathbf{S}}(f, \mathbb{T})$$
 и $\underline{\mathcal{I}} = \lim_{\Delta_{\pi} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$

2.14 Критерий Дарбу интегрируемости функции на замкнутом брусе

Теорема. $I \in \mathbb{R}^n$ — замкнутый брус, $f: I \mapsto \mathbb{R}, f \in \mathcal{R}(I) \Longleftrightarrow f$ — ограничена на I и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

2.15 Утверждение о независимости определения допустимого множества от выбора бруса

Пусть $I_1 \supset D, I_2 \supset D$, тогда

$$\int_{D} f \cdot \chi_{D} \mathrm{d}x \,\,\mathrm{u} \,\, \int_{D} f \cdot \chi_{D} \mathrm{d}x$$

либо существуют и равны, либо оба не существуют вообще

2.16 Теорема Фубини о переходе к повторному интегралу

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^n, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и фиксированной $x \in I_x: f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

2.17 Супремальный критерий равномерной сходимости функциональной последовательности

Теорема.
$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \lim_{n \to \infty} \left(\sup_{D} |f_n(x) - f(x)| \right) = 0$$

2.18 Критерий Коши равномерной сходимости функциональной последовательности

Теорема.
$$f_n(x) \stackrel{D}{\Rightarrow} f(x) \Longleftrightarrow \forall \, \varepsilon > 0 \, \, \exists N: \, \, \forall n,m>N, \, \, \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$$

Примечание. Отрицание Критерия Коши:

$$f_n(x) \stackrel{D}{\not\rightrightarrows} f(x) \Longleftrightarrow \exists \varepsilon_0 > 0 \ \forall N: \ \exists n, m > N, \ \exists x_0 \in D \ |f_n(x) - f_m(x)| \geqslant \varepsilon_0$$

2.19 Теорема о почленном переходе к пределу для функциональной последовательности

Теорема. Пусть $f_n, f: D \longrightarrow \mathbb{R}, \ x_0$ — предельная точка $D, \ f_n \stackrel{D}{\Longrightarrow} f, \ \forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$

Тогда,

$$\begin{split} &\exists \lim_{n \to \infty} c_n = \lim_{x \to x_0} f(x) \\ &\left(\text{или } \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x)\right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x)\right)\right) \end{split}$$

2.20 Теорема о непрерывности предельной функции

$$\left.\begin{array}{c} f_n,f:D\longrightarrow\mathbb{R},\\ \text{Теорема.}\ \Pi\text{усть имеется}\ f_n\stackrel{D}{\rightrightarrows}f,\\ \forall n\in\mathbb{N}\ f_n\in C(D) \end{array}\right\}\Longrightarrow f\in C(D)$$

2.21 Утверждение о неравномерной сходимости фун. послед. при наличии разрыва

$$\begin{array}{c} f_n \in C\left([a;b)\right), \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f \in C((a;b)) + \text{разрыв в т.} a, \\ f_n \overset{[a;b)}{\Longrightarrow} f \end{array} \\ \end{array} \right\} \Longrightarrow f_n \overset{(a;b)}{\not \rightrightarrows} f$$

То есть будет поточечная сходимость, но не будет равномерной:

$$f_n \stackrel{(a;b)}{\longrightarrow} f$$
, но не $f_n \stackrel{(a;b)}{\rightrightarrows} f$

2.22 Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке

Теорема. Пусть имеется
$$f_n \in C([a;b))$$
 $f_n \stackrel{(a;b)}{\to} f$ $f \stackrel{(a;b)}{\to} f_n(a)$ $f_n \stackrel{(a;b)}{\to} f$

2.23 Теорема о почленном интегрировании функциональной последовательности

Теорема. Пусть имеется
$$f_n, f: [a;b] \to \mathbb{R}$$

$$f_n \overset{[a;b]}{\Rightarrow} f$$

$$f_n \in \mathcal{R}([a;b]) \forall n \in \mathbb{N}$$
 $\Longrightarrow f \in \mathcal{R}([a;b])$ и $\lim_{n \to \infty} \int\limits_a^b f_n(x) \mathrm{d}x = \int\limits_a^b f(x) \mathrm{d}x$

2.24 Теорема о почленном дифференцировании функциональной последовательности

$$\left.\begin{array}{c} f_n,f,g:[a;b]\to\mathbb{R}\\ f_n\in D([a;b])\\ \exists c\in[a;b]:\exists\lim_{n\to\infty}f_n(c)\\ \exists g(x):\ f_n'\stackrel{[a;b]}{\rightrightarrows}g(x) \end{array}\right\}\Longrightarrow \exists f:\ f_n\stackrel{[a;b]}{\rightrightarrows}f\\ \oplus f'(x)=g(x)$$

2.25 Теорема о замене переменных в кратном интеграле

Теорема. Пусть имеются $M_1, M_2 \in \mathbb{R}^n$ — открытые множества. $\varphi: M_1 \longrightarrow M_2$ — биективно, φ, φ^{-1} — непрерывно дифференцируемые отображения

$$D: \overline{D} \subset M_1$$
 — допустимое множество

$$f: \varphi(D) \longrightarrow \mathbb{R}$$

$$f \in \mathcal{R}(\varphi(D)) \Longleftrightarrow f(\varphi(t)) \cdot |\det J_{\varphi}(t)| \in \mathcal{R}(D)$$
и

$$\int\limits_{\varphi(D)} f(x) \mathrm{d}x = \int\limits_{D} f(\varphi(t)) \cdot |\det J_{\varphi}(t)| \mathrm{d}t, \text{ где } J = \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial t_{1}} & \dots & \frac{\partial \varphi_{1}}{\partial t_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{n}}{\partial t_{1}} & \dots & \frac{\partial \varphi_{n}}{\partial t_{n}} \end{pmatrix}$$

Примечание. $(x_1,\ldots,x_n)\stackrel{arphi}{\longrightarrow} (t_1,\ldots,t_n),$ где $x_i=arphi_i(t_1,\ldots,t_n)$

3 Вопросы на доказательство

3.1 [DELETE] Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\ I_i,I_j$ не имеют общих внутренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset\bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

3.2 Необходимое условие интегрируемости

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. Пусть $f \in \mathcal{R}(I)$, тогда

$$\exists \underbrace{A_f}_{\text{volumes}} \in \mathbb{R} : \forall \, \varepsilon > 0 \, \exists \delta > 0 : \forall (\mathbb{T}, \Xi) : \Delta_{\mathbb{T}} < \delta \colon |\sigma_f - A_f| < \varepsilon$$

Значит, для $\varepsilon = 1$ это тоже верно, поэтому:

$$A_f - 1 < \sigma_f < A_f + 1 \implies \sigma_f$$
 — ограничена

2. Пусть f — неограничена на I, но $f \in \mathcal{R}(I) \implies \forall \mathbb{T} = \{I_i\}_{i=1}^K \ \exists i_0 : f$ неограничена на I_{i_0} . Тогда можно представить так:

$$\sigma_f = \sum_{i \neq i_0} f(\xi_i) |I_i| + f(\xi_{i_0}) |I_{i_0}|$$

Тогда, σ_f может принимать любые сколь угодно большие (малые) значения, в зависимости от I_{i_o} **противоречие**

Из пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

3.3 Свойства интеграла Римана: линейность, монотонность, оценка интеграла

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

(a)
$$f \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\forall (\mathbb{T}, \Xi): \, \Delta_{\mathbb{T}} < \delta_1$$

$$|\sigma(f, \mathbb{T}, \Xi) - \int_I f \mathrm{d}x| =: |\sigma_f - A_f| < \varepsilon$$

(b) По определению:

$$g \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \,\exists \delta_2 > 0 \,\, \forall (\mathbb{T}, \Xi) \colon \Delta_{\mathbb{T}} < \delta_2$$
$$|\sigma(g, \mathbb{T}, \Xi) - \int_I g \mathrm{d}x| =: |\sigma_g - A_g| < \varepsilon$$

(c) Пусть $\delta = \min\{\delta_1, \delta_2\}$. Тогда (a) и (b) верно для $\delta \Longrightarrow$

$$|\sigma_{\alpha f + \beta g} - A_{\alpha f + \beta g}| = |\alpha \sigma_f + \beta \sigma_g - \alpha A_f - \beta A_g| \leqslant |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \varepsilon$$

2. Монотонность

$$f, g \in \mathcal{R}(I); \ f|_{I} \leqslant g|_{I} \implies \int_{I} f dx \leqslant \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} : |\sigma_f - A_f| < \varepsilon \, (\forall \, \varepsilon > 0 \, \, \exists \delta : \forall (\mathbb{T}, \Xi) : \Delta_{\mathbb{T}} < \delta)$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f < A_g + 2\,\varepsilon \ \forall \, \varepsilon > 0 \implies A_f \leqslant A_g$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на I
$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup |f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup |f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

3.4 Свойства множества меры нуль по Лебегу

1. В определении множества меры 0 можно использовать открытые брусы

Доказательство. Пусть $\{I_i\}$ — открытые брусы $M\subset\bigcup_i I_i$, то есть $M\subset\mathbb{R}^n$ — множество меры 0 по Лебегу

Пусть $\{\bar{I}_i\}$ — замкнутые брусы I_i .

$$M \subset \bigcup_{i} I_{i} \subset \bigcup_{i} \bar{I}_{i}, |I_{i}| = |\bar{I}_{i}|$$

Если

$$\forall \varepsilon \ \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \, \varepsilon \,\, \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

Докажем в обратную сторону. Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_1^i, b_1^i] \times \ldots \times [a_n^i, b_n^i], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Пусть

$$D_{i} = \left(\frac{a_{1}^{i} + b_{1}^{i}}{2} - (b_{1}^{i} - a_{1}^{i}); \frac{a_{1}^{i} + b_{1}^{i}}{2} + (b_{1}^{i} - a_{1}^{i})\right) \times \dots \times \left(\frac{a_{n}^{i} + b_{n}^{i}}{2} - (b_{n}^{i} - a_{n}^{i}); \frac{a_{n}^{i} + b_{n}^{i}}{2} + (b_{n}^{i} - a_{n}^{i})\right)$$

$$\implies V_{2} = \sum_{i} |D_{i}| = 2^{n} V_{1} < \varepsilon$$

2. M — множество меры нуль, $L \subset M \Longrightarrow L$ — множество меры нуль

Доказательство. $L \subset M$ и $\forall \varepsilon > 0 \exists$ не более чем счетное $\{I_i\}$:

$$L\subset M\subset \bigcup_i I_i$$
 и $\sum |I_i|$

по транзитивности это верно и для L

3. Не более чем счетное объединение множеств меры нуль — множество меры нуль

Доказательство. Пусть $\{M_k\}_{k=1}^{\infty}$ — счетное, ¹ так как $\forall i \ M_k$ — множество меры нуль, то $\forall i, \forall \varepsilon_i \exists$ не более чем счетное $\{I_i^k\}$:

$$M_k\subset I_i^k$$
 и $\sum |I_i^k|0$

Рассмотрим $M = \bigcup_{k=1}^{\infty} M_k$, тогда $M \subset \bigcup_{i,k} I_i^k$ и

$$\sum_{i,k} \underbrace{|I_i^k|}_{>0} < \sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{\frac{1}{2}} = \varepsilon$$

• Пример. Пусть $\{M_i\}_{i=1}^N$ — конечный набор

$$\varepsilon_1 + \dots + \varepsilon_N = \frac{N}{N+1} \varepsilon < \varepsilon$$

$$\varepsilon_i = \frac{\varepsilon}{N+1}$$

3.5 Критерий замкнутости множества в \mathbb{R}^n

Теорема. M — замкнуто $\iff M$ содержит **все** свои предельные точки **Доказательство.** Докажем необходимость и достаточность

- 1. (Необходимость) Докажем \Longrightarrow от противного
 - Пусть x_0 предельная для M и $x_0 \notin M$. Тогда, $\forall \varepsilon > 0$ $\stackrel{\circ}{B_{\varepsilon}}(x_0) \cap M \neq \varnothing$ и $x_0 \in \mathbb{R}^n$
 - По условию M замкнуто, то есть $\mathbb{R}^n \setminus M$ открыто \Longrightarrow все его точки внутренние и $\exists r > 0$:

$$B_r(x_0)\subset \mathbb{R}^n\setminus M\Longrightarrow B_r(x_0)\subset \mathbb{R}^n\setminus M$$
 и $\overset{\circ}{B_r}(x_0)\cap M=\varnothing$

Пришли к противоречию $\Longrightarrow M$ содержит все свои предельные точки

2. (Достаточность) Докажем \Leftarrow

Пусть y_0 — не является предельной для M и $y_0 \in \mathbb{R}^n \setminus M \Longrightarrow \exists r > 0$:

$$\begin{cases} \overset{\circ}{B_r}(y_0) \cap M = \varnothing \\ y_0 \in \mathbb{R}^n \setminus M \end{cases} \Longrightarrow B_r(y_0) \subset \mathbb{R}^n \setminus M$$

 $\Longrightarrow \mathbb{R}^n \setminus M$ — открытое и состоит из всех точек, не являющихся предельными $\Longrightarrow M$ — замкнуто по определению

 $^{^{1}}$ Для конечного доказательство трививально

3.6 Теорема о компактности замкнутого бруса

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

Доказательство. Пойдем от противного

Пусть
$$I = [a_1; b_1] \times \ldots \times [a_n; b_n]$$

- 1. Положим, что I не компакт. Значит, существует его покрытие $\{A_{\alpha}\}$ открытые множества, такие что $I \subset \{A_{\alpha}\}$, не допускающее выделения конечного подклорытия
- 2. Поделим каждую сторону пополам. Тогда, $\exists I_1$, такой что не допускает конечного подпокрытия. Иначе, I компакт
- 3. Аналогично, повторим процесс и получим систему вложенных брусов:

$$I\supset I_1\supset I_2\supset\ldots$$

То есть на каждой стороне возникает последовательность вложенных отрезков, которые стягиваются в точку $a = (a_1, \ldots, a_n)$

При этом,
$$a \in I_i \ \forall i$$
 или $a \in \bigcap_{i=1}^{\infty} I_i$

$$4. \ a \in I \Longrightarrow a \in \bigcup A_{\alpha} \Longrightarrow \exists \alpha_0 : a \in \underbrace{A_{\alpha_0}}_{\text{открытое}} \Longrightarrow \exists \, \varepsilon > 0 : B_{\varepsilon}(a) \subset A_{\alpha_0}$$

5. Мы знаем, что $d(I_i) \mapsto 0$ при $i \mapsto \infty$. Тогда,

$$\exists N : \forall i > N \ I_i \subset B_{\varepsilon}(a) \subset A_{\alpha_0}$$

Получается, что $\forall i>N$ I_i покрывается одним лишь A_{α_0} из системы $\{A_{\alpha}\}$

Получаем противоречие тому, что любое I_i не допускает конечного подпокрытия, а у нас получилось, что $I_i \in A_{\alpha_0} \forall i > N$

Примечание. Любое ограниченное множество можно вписать в замкнутый брус. Потому что можно вокруг него описать шарик, который точно можно вписать в брус

3.7 Критерий компактности в \mathbb{R}^n

Теорема. $K \subset \mathbb{R}^n$. K — компакт $\iff K$ замкнуто и ограниченно

Доказательство. Докажем необходимость (\Longrightarrow)

- Ограниченность. K компакт, значит монжо выбрать покрытие $\{B_m(0)\}_{m=1}^{\infty}$ открытые шары Тогда, $\exists m_0: K \subset \bigcup_{m=1}^{m_0} B_m(0) \Longrightarrow K \subset B_{m_0}(0) \Longrightarrow$ по определению K ограничено
- Замкнутость. Пойдем от противного. K компакт, тогда возьмем $\{B_{\frac{\delta(x)}{2}}(0)\}_{x \in K}$ покрытие открытыми шарами, где $\delta(x) = \rho(x, x_0)$. x_0 предельная точка, которая $\notin K$ (или же $\in \mathbb{R}^n \setminus K$)

Так как
$$K$$
 — компакт, $\exists x_1,\dots,x_s:K\subset \bigcup_{i=1}^s B_{\frac{\delta(x_i)}{2}}(x_i)$

Пусть $\delta = \min_{1 \leq i \leq s} \delta(x_i)$, тогда

$$B_{\frac{\delta}{2}}(x_0) \cap \bigcup_{i=1}^{s} B_{\frac{\delta(x_i)}{2}}(x_i) = \varnothing \Longrightarrow B_{\frac{\delta}{2}}(x_0) \subset \mathbb{R}^n \setminus K$$
$$\Longrightarrow \stackrel{\circ}{B}_{\frac{\delta}{2}}(x_0) \cap K = \varnothing$$

Значит, x_0 не является предельной точкой K, что противоречит нашему предположению

Доказательство. Докажем достаточность

K — замкнуто и ограничено $\Longrightarrow r > 0: B_r(0) \supset K \Longrightarrow \exists I$ — замкнутый брус, такой что

$$K \subset I$$
 и $I = [-r; r]^n \supset K$

Пусть $\{A_{\alpha}\}$ — произвольное покрытие открытыми множествами для K. Тогда, $I \subset \{A_{\alpha}\} \cup \underbrace{\{\mathbb{R}^n \setminus K\}}_{\text{открыто}}$

Так как I — компакт, то \exists конечное подпокрытие

$$\{A_{\alpha_i}\}_{i=1}^m \cup \{\mathbb{R}^n \setminus K\} \supset I \supset K$$
 — покрытие для I

Значит, $K\subset \{A_{\alpha_i}\}_{i=1}^m$ — конечное и $\{A_{\alpha}\}$ — произвольное, тогда K — компакт по определению — \square

3.8 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K \subset \mathbb{R}^n$ — компакт и функция $f: K \mapsto \mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшее и наименьшее значения.

Доказательство.

• Ограниченность. От противного: пусть существует последовательность $\{x^k\} \subset K: |f(x^k)| > k$. Из ограниченности K следует ограниченность последовательности $\{x^k\}$, и как следствие ограничены последовательности отдельных коордиант:

$$|x_i^k| \leq \sqrt{\sum_{j=1}^n (x_j^k)^2} = x^k \leq C$$
 для некоторого C

По теореме Больцано-Вейерштрасса у $\{x_1^k\}$ существует сходящаяся подпоследовательность $x_1^{k_{j_1}} \to a_1, j_1 \to \infty$. Для последовательности $\{x_2^{k_{j_1}}\}$ существует сходящаяся последовательность $x_2^{k_{j_2}} \to a_2, j_2 \to \infty$. И т.д. Получаем сходящуюся подпоследовательность:

$$x^{k_j} = (x_1^{k_j}, x_2^{k_j}, \dots, x_n^{k_j}) \to (a_1, a_2, \dots, a_n) = a$$

Точка a — предельная для K. В силу замкнутости K т. $a \in K$. А из непрерывности функции f получаем $f(x^{k_j}) \to f(a)$. А с другой стороны, $f(x^{k_j}) \to \infty$ из выбора исходной последовательности. противоречие

• Достижение наибольшего (наименьшего) значения. Итак, мы доказали, что f — ограничена на K. Выберем последовательность $\{x^k\}$:

$$\sup_{K} f - \frac{1}{k_j} \le f(x^{k_j}) \le \sup_{K} f$$

в силу непрерывности f:

$$\sup_{K} f \le f(a) \le \sup_{K} f$$

Получаем $f(a) = \sup_K f$, т.е. максимальное значение достиигается в точке x = a. Для $\inf_K f$ доказательство аналогично

3.9 Теорема о связи непрерывности функции в точке с колебанием

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n$; $f: M \mapsto \mathbb{R}$. f — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$ Доказательство.

• Необходимость

f — непрерывна в т. $x_0 \in M \implies \forall \, \varepsilon > 0 \,\, \exists \delta > 0: \,\, \forall x \in B_\delta(x_0) \cap M = B^M_\delta(x_0) \,\, \Longrightarrow \,\, |f(x) - f(x_0)| < \delta$

Рассмотрим $\omega(f,x_0):=\lim_{\delta\to 0+}\omega(f,B^M_\delta(x_0))$:

$$\omega(f, B_{\delta}^{M}(x_{0})) = \sup_{x, y \in B_{\delta}(x_{0})} |f(x) - f(y)| \le \sup_{x \in B_{\delta}(x_{0})} |f(x) - f(x_{0})| + \sup_{y \in B_{\delta}(x_{0})} |f(y) - f(x_{0})| \le \frac{2\varepsilon}{3} < \varepsilon$$

При
$$\varepsilon \to 0 \implies \delta \to 0$$
 и $\omega(f, B^M_\delta(x_0)) \to 0$, т.е. $\omega(f, x_0) = 0$

• Достаточность

Пусть
$$0 = \omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B_{\delta}^M(x_0))$$
, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad \forall x, y \in B_{\delta}^{M}(x_{0}) \quad \sup_{x, y \in B_{\delta}^{M}(x_{0})} |f(x) - f(y)| < \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B^M_\delta(x_0) \implies |f(x) - f(x_0)| < \varepsilon \implies$$

Свойства интегральных сумм Дарбу 3.10

3.10.1 Нижняя сумма Дарбу не больше верхней

Теорема.

$$\underline{\mathbf{S}}(f,\mathbb{T}) = \inf_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Доказательство.

$$\underline{\underline{S}}(f, \mathbb{T}) = \sum_{i=1}^{K} m_i |I_i| = \sum_{i} \inf_{\xi_i} (f(\xi_i)) |I_i| = \inf_{\xi} \sum_{i} f(\xi_i) |I_i| = \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \le \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = \sum_{i} \sup_{\xi} (f(\xi_i)) |I_i| = \sum_{i} M_i |I_i| = \overline{\underline{S}}(f, \mathbb{T})$$

3.10.2 Монотонность сумм относительно измельчений разбиения

Теорема. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$\underline{\mathbf{S}}(f, \mathbb{T}) \le \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \le \overline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \le \overline{\mathbf{S}}(f, \mathbb{T})$$

Доказательство. Если $L \subset M$, то $\inf L \ge \inf M$ и $\sup L \le \sup M$, тогда:

$$\underline{\mathbf{S}}(f,\mathbb{T}) \leq \underline{\mathbf{S}}(f,\tilde{\mathbb{T}}) \underset{\text{no } 6.2}{\leq} \overline{\mathbf{S}}(f,\tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f,\mathbb{T})$$

3.10.3 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе

Теорема. $\forall \mathbb{T}_1, \mathbb{T}_2 : S(f, \mathbb{T}_1) \leq \overline{S}(f, \mathbb{T}_2)$

Доказательство. $\forall \mathbb{T}_1, \mathbb{T}_2$ рассмотрим $\tilde{\mathbb{T}} = \mathbb{T}_1 \cap \mathbb{T}_2$, тогда по 6.3:

$$\underline{S}(f, \mathbb{T}_1) \leq \underline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T}_2)$$

3.11 Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус, а $f: I \mapsto \mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} o 0} \overline{\mathrm{S}}(f, \mathbb{T})$$
 и $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} o 0} \underline{\mathrm{S}}(f, \mathbb{T})$

Доказательство. Докажем, что $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{S}(f, \mathbb{T}) \quad (= \sup_{\mathbb{T}} \underline{S}(f, \mathbb{T}))$

- 1. f-ограничена на I, то $\exists C > 0 : \forall x \in I \mid |f(x)| < C$
- 2. т.к. по определению $\underline{I} = \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T})$, то $\forall \, \varepsilon > 0 \,\, \exists \, \mathbb{T}_1 = \{I_i^1\}_{i=1}^{m_1} : \,\, \underline{\mathcal{I}} \varepsilon < \underline{\mathbf{S}}(f, \mathbb{T}_1) \leq \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon \in \underline{\mathcal{I} + \varepsilon \in \underline{\mathcal{I}} +$
- 3. Пусть $G = \bigcup_{i=1}^{m_1} \partial I_i^1$ объединение границ брусов (без повторов). Тогда G множество меры нуль по Лебегу (т.к. границы множества меры нуль по Лебегу)
- 4. Пусть \mathbb{T}_2 произвольное разбиение $I: \mathbb{T}_2 = \{I_i^2\}_{i=1}^{m_2}$ Рассмотрим две кучки брусов:

$$A = \{I_i^2 \in \mathbb{T}_2 : I_i^2 \cap G \neq \varnothing\} \qquad \text{и} \qquad B = \mathbb{T}_2 \setminus A \implies$$
 $\forall \, \varepsilon > 0 \,\, \exists \delta > 0 : \forall \, \mathbb{T}_2 : \Delta_{\mathbb{T}_2} < \delta \,\, \text{верно, что} \,\, \sum_{I_i^2 \in A} |I_i^2| < \epsilon$

по определению множества меры нуль, а также т.к. A - покрытие замкнутыми брусами, а G — множество меры нуль.

5. С другой стороны $\forall I_i^2 \in B$ верно, что $I_i^2 \in \mathbb{T}_1 \cap \mathbb{T}_2$

Хотим рассмотреть

$$|\underline{\mathcal{I}} - \underline{\mathbf{S}}(f, \mathbb{T}_2)| = |I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) + \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| \leq \underbrace{|I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)|}_* + \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)|}_{**} + \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)|}_{**}$$

* из п.2:
$$\underline{\mathcal{I}} - \varepsilon < \underline{\mathrm{S}}(f, \mathbb{T}_1) \leq \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) \leq \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon \implies |\underline{\mathcal{I}} - \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)| < \varepsilon$$

**

$$\begin{split} |\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| &= \left| \sum_{I_i^2 \in B} m_i |I_i^2| + \sum_{I_i^2 \in \mathbb{T}_2 \cap A} m_i |I_i^2| - \sum_{I_i^2 \in B} m_i |I_i^2| - \sum_{I_i^2 \in A} m_i |I_i^2| \right| \\ &\leq \left| \sum_{I_i^2 \in \mathbb{T}_2 \cap A} m_i |I_i^2| \right| + \left| \sum_{I_i^2 \in A} m_i |I_i^2| \right| \\ &\leq 2 \left| \sum_{I_i^2 \in A} m_i |I_i^2| \right| \\ &< 2M \left| \sum_{I_i^2 \in A} |I_i^2| \right| \\ &\leq 2M \varepsilon \end{split}$$

3.12 Критерий Дарбу интегрируемости функции на замкнутом брусе

 $I\in\mathbb{R}^n$ — замкнутый брус, $f:I\mapsto\mathbb{R}, f\in\mathcal{R}(I)\Longleftrightarrow f$ — ограничена на I и $\underline{\mathcal{I}}=\overline{\mathcal{I}}$ Доказательство. Необходимость

18

- $f \in \mathcal{R}(I) \Longrightarrow$ по необходимому условию интегрируемости функции по Риману на замкнутом брусе, f ограничена на I
- Покажем, что $\underline{\mathcal{I}} = \mathcal{I}, \overline{\mathcal{I}} = \mathcal{I} \Longrightarrow \underline{\mathcal{I}} = \overline{\mathcal{I}}$

1.
$$f \in \mathcal{R}(I) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta \hookrightarrow |\sigma(f, \mathbb{T}, \xi) - \mathcal{I}| < \varepsilon$$

$$2. \ \ \underline{\mathcal{I}} = \sup_{\mathbb{T}} = \lim_{\Delta \to 0} = \underline{\mathbf{S}}(f, \mathbb{T}) \Longrightarrow |\, \underline{\mathcal{I}} - \underline{\mathbf{S}}\,| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta \ \exists \mathbb{T} : \Delta_{\mathbb{T}} < \delta : |\underline{\mathcal{I}} - \underline{S}| < \varepsilon$$

3. $\underline{\mathbf{S}}(\mathbb{T}, \xi) = \inf_{\xi} \sigma(f, \mathbb{T}, \xi)$

$$\forall \mathbb{T}, \ \forall \varepsilon > 0 \ \exists \xi : |S - \sigma| < \varepsilon$$

$$|\mathcal{I} - \underline{\mathcal{I}}| \leq |\mathcal{I} - \underline{\mathcal{I}} - \sigma + \sigma + \underline{S} - \underline{S}| \leq |\mathcal{I} - \sigma| + |\underline{\mathcal{I}} - \underline{S}| + |\sigma - \underline{S}| < 3\varepsilon$$

Доказательство. Достаточность

f — ограничена и $\mathcal{I} = \overline{\mathcal{I}}$. Имеем

$$\underline{\mathbf{S}}(f,\mathcal{T}) = \inf_{\xi} \leqslant \sigma(f,\mathbb{T},\xi) \leqslant \sup_{\xi} (f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Тогда, при
$$\lim_{\Delta \to 0} \underline{S} = \underline{\mathcal{I}}, \ \lim_{\Delta \to 0} \overline{\overline{S}} = \overline{\mathcal{I}}$$
 получаем $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

3.13 Утверждение о независимости определения допустимого множества от выбора бруса

Пусть $I_1 \supset D, I_2 \supset D$, тогда

$$\int_{L} f \cdot \chi_D \mathrm{d}x \,\,\mathrm{u} \,\, \int_{L_2} f \cdot \chi_D \mathrm{d}x$$

либо существуют и равны, либо оба не существуют вообще

Покажем существование

- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ ограничена на $I_1 \Longrightarrow f \cdot \chi_D$ ограничена на $D \Longrightarrow f \cdot \chi_D$ ограничена на I_2
- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ непрерывна почти всюду на $I_1 \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на $D \Longrightarrow$ в худшем случае для $f \cdot \chi_D$ на I_2 добавятся разрывы на $\partial D \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на I_2
- Тогда, $f \cdot \chi_D \in \mathcal{R}(I_1) \iff f \cdot \chi_D \in \mathcal{R}(I_2)$

Покажем равенство

- \bullet Пусть \mathbb{T}_i разбиение на $I_i:\mathbb{T}_1$ и \mathbb{T}_2 совпадают на общей части $I_1\cap I_2$
- Пусть ξ^i отмеченные точки I_i : совпадают на общей части

$$\bullet \ \ \sigma(f\chi_D, \mathbb{T}_1, \xi^1) = \sum_j f\chi_D(\xi^1_j) |I^1_j| = \sum_j f(\xi^1_j) |I^1_j| = \sum_j f(\xi^2_j) |I^2_j| = \sum_j f\chi_D(\xi^2_j) |I^2_j| = \sigma(f\chi_D, \mathbb{T}_2, \xi^2)$$

Примечание. Все свойства интеграла Римана и критерия Лебега для бруса справедливы и для других допустимых множеств

3.14 Теорема Фубини о переходе к повторному интегралу

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^n, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и фиксированной $x \in I_x: f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

Доказательство. Воспользуемся тем, что $f \in \mathcal{R}(I_x \times I_y), f \in \mathcal{R}(I_y)$, а также Критерием Дарбу

• $\mathbb{T}_x=\{I_i^x\}$ — разбиение на I_x , $\mathbb{T}_y=\{I_j^y\}$ — разбиение на I_y , $\mathbb{T}_{x,y}=\{I_i^x\times I_j^y\}=\{I_{ij}\}$ — разбиение на $I_x\times I_y$

•

$$\underline{\underline{S}}(f, \mathbb{T}_{x,y}) = \sum_{i,j} \inf_{(x,y) \in I_{ij}} f(x,y) |I_{ij}| \leqslant \sum_{i,j} \inf_{x \in I_i^x} \left(\inf_{y \in I_j^y} f(x,y) \right) |I_i^x| |I_j^y| = \sum_{i} \inf_{I_i^x} \underbrace{\left(\sum_{j} \inf_{I_j^y} f(x,y) |I_j^y| \right)}_{\underline{\underline{S}}(f(y), \mathbb{T}_y)} |I_i^x|$$

$$\leqslant \sum_{i} \inf_{I_i^x} \underbrace{\left(\int_{I_y} f(x,y) dy \right)}_{g(x)} |I_i^x| = \underline{\underline{S}}(g(x), \mathbb{T}_x)$$

$$\leqslant \overline{\underline{S}}(g(x), \mathbb{T}_x)$$

$$\underline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \leqslant \underline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \Longrightarrow \exists \, \overline{\mathcal{I}} = \lim_{\delta \to 0} \underline{\mathbf{S}}(g(x), \mathbb{T}_x) = I$$

3.15 Супремальный критерий равномерной сходимости функциональной последовательности

Теорема.
$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \lim_{n \to \infty} \left(\sup_{D} |f_n(x) - f(x)| \right) = 0$$

Доказательство. Докажем необходимость (\Longrightarrow)

Заметим, что $\sup_{R} |f_n(x) - f(x)| \ge 0$. Тогда,

$$\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n > N, \forall x \in D \hookrightarrow \sup_{D} |f_n(x) - f(x)| < \varepsilon$$

$$f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \,\, \exists N : \forall n > N, \,\, \forall x \in D \hookrightarrow |f_n(x) - f(x)| < rac{\varepsilon}{2}$$
 В худшем случае, $\sup_D |f_n(x) - f(x)| \leqslant rac{\varepsilon}{2} < \varepsilon$

Доказательство. Докажем достаточность ()

$$\forall\,\varepsilon>0\,\,\exists N:\forall n>N\hookrightarrow\sup_{D}|f_n(x)-f(x)|<\varepsilon,\,\text{тем более}\,\,\forall x\in D\,\,\sup\geqslant|f_n(x)-f(x)|$$

Тогда,
$$f_n \stackrel{D}{\Rightarrow} f$$

Примечание. $f \rightrightarrows f \Longrightarrow f_n \longrightarrow f$, но в обратную сторону это не работает

3.16 Критерий Коши равномерной сходимости функциональной последовательности

Теорема.
$$f_n(x) \stackrel{D}{\rightrightarrows} f(x) \Longleftrightarrow \forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n,m>N, \,\, \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$$

Доказательство. \Longrightarrow Докажем необходимость

Так как $f_n(x) \stackrel{D}{\rightrightarrows} f(x)$, то

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Рассмотрим
$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Таким образом, мы показали, что $\forall \varepsilon > 0 \ \exists N: \ \forall n,m > N, \ \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$

Доказательство. ⇐ Докажем достаточность

Распишем определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n, m > N, \ \exists x \in D : \ |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$$

Зафиксируем $x_0 \in D \Longrightarrow \exists \lim_{n \to \infty} f_n(x_0) = f(x_0)^1$

$$x_0 \in D: \forall \varepsilon > 0 \exists N: \forall n, m > N: |f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$$

В худшем случае, $\forall x \in D$: при $m \to \infty \ |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$

Тогда,

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Примечание. Отрицание Критерия Коши:

$$f_n(x) \stackrel{D}{\not\rightrightarrows} f(x) \Longleftrightarrow \exists \varepsilon_0 > 0 \ \forall N: \ \exists n, m > N, \ \exists x_0 \in D \ |f_n(x) - f_m(x)| \geqslant \varepsilon_0$$

3.17 Теорема о почленном переходе к пределу для функциональной последовательности

Теорема. Пусть $f_n, f: D \longrightarrow \mathbb{R}, \ x_0$ — предельная точка $D, \ f_n \stackrel{D}{\rightrightarrows} f, \ \forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$

Тогда,

$$\exists \lim_{n \to \infty} c_n = \lim_{x \to x_0} f(x)$$
(или
$$\lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right)$$

Доказательство. Сначала покажем, что $\exists \lim_{n\to\infty} c_n = c$, а потом что $\exists c = \lim_{n\to\infty} c_n$

1. Рассмотрим
$$|c_n-c| \leq \underbrace{|c_n-f_n|}_{(a)} + \underbrace{|f_n-f_m|}_{(b)} + |\underbrace{f_m-c_m|}_{(c)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

(a), (c) По условию, $\forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$ получим

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \cap D \hookrightarrow |f_n(x) - c_n| < \frac{\varepsilon}{3}$$

(b) $f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow$ по Критерию Коши

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

Получаем, что $\forall x \in \overset{\circ}{B_{\delta}}(x_0)$

Собираем:
$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N : \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |c_n - c_m| < \varepsilon \Longrightarrow \exists c = \lim_{n \to \infty} c_n$$

2. Теперь покажем, что $\exists \lim_{x \to x_0} f(x) = c$, то есть $\forall \varepsilon > 0 \exists \delta : \forall x \in \overset{\circ}{B}_{\delta}(x_0) : |f(x) - c| < \varepsilon$

Рассмотрим
$$|f(x) - c| \le \underbrace{|f(x) - f_n(x)|}_{(a)} + \underbrace{|f_n(x) - c_n|}_{(b)} + \underbrace{|c_n - c|}_{(c)}$$

(a)
$$f_n \stackrel{D}{\rightrightarrows} f(x) \Longrightarrow \forall \varepsilon > 0 \exists N_1 : \forall n > N_1 \forall x \in D : |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

 $^{^{1}}$ по критерию Коши для числовой последовательности $f_{n}(x_{0})$

(b)
$$\forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) = c_n \Longrightarrow \forall \varepsilon > 0 \ \exists \delta : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \hookrightarrow |f_n(x) - c_n| < \frac{\varepsilon}{3}$$

(с) По доказанному в п. 1 следует, что

$$\exists \lim_{n \to \infty} c_n = c \Longrightarrow \forall \varepsilon > 0 \ \exists N_2 \ \forall n > N_2 \hookrightarrow |c_n - c| < \frac{\varepsilon}{3}$$

Собираем:
$$\forall \varepsilon > 0 \ (\exists N = \max(N_1, N_2)) \ \exists \delta > 0 : \ \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |f(x) - c| < \varepsilon$$

3.18 Теорема о непрерывности предельной функции

$$\left.\begin{array}{c} f_n,f:D\longrightarrow\mathbb{R},\\ \text{Теорема.}\ \text{Пусть имеется}\ f_n\stackrel{D}{\rightrightarrows}f,\\ \forall n\in\mathbb{N}\ f_n\in C(D) \end{array}\right\}\Longrightarrow f\in C(D)$$

Доказательство. Нужно доказать, что $f \in C(D)$. Значит, надо показать, что

$$\forall x_0 \in D : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)|$$

Рассмотрим
$$|f(x)-f(x_0)| \leq \underbrace{|f(x)-f_n(x)|}_{(1)} + \underbrace{|f_n(x)-f_n(x_0)|}_{(2)} + \underbrace{|f_n(x_0)-f(x_0)|}_{(3)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

1.
$$f_n \stackrel{D}{\Longrightarrow} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

2. Так как
$$\forall n \in \mathbb{N}$$
 $f_n \in C(D) \Longrightarrow \forall x_0 \in D, \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$

3.
$$f_n \stackrel{D}{\Longrightarrow} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x_0 \in D \hookrightarrow |f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3}$$

Тогда, собрав три части, получим, что $\forall x_0 \in D$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (\exists N : \forall n > N) \ \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)| < \varepsilon \Longrightarrow f(x) \in C(x_0) \ \forall x_0 \in D$$
$$\Longrightarrow f(x) \in C(D)$$

3.19 Утверждение о неравномерной сходимости фун. послед. наличии разрыва

$$\begin{array}{c} f_n \in C\left([a;b)\right), \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f \in C((a;b)) + \text{разрыв в т.} a, \\ f_n \overset{[a;b)}{\Longrightarrow} f \end{array} \\ \end{array} \right\} \Longrightarrow f_n \overset{(a;b)}{\not \Longrightarrow} f$$

То есть будет поточечная сходимость, но не будет равномерной:

$$f_n \stackrel{(a;b)}{\longrightarrow} f$$
, но не $f_n \stackrel{(a;b)}{\rightrightarrows} f$

Доказательство. От противного

1. Пусть
$$f_n \stackrel{(a;b)}{\Rightarrow} f \Longrightarrow \forall \, \varepsilon > 0 \,\, \exists N : \forall n > N \,\, \forall x \in [a;b) \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

2.
$$f_n \xrightarrow{[a;b)} f \Longrightarrow f_n(a) \longrightarrow f(a) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2 : \forall n > N_2 \hookrightarrow |f_n(a) - f(a)| < \varepsilon$$

3.
$$f_n \stackrel{[a;b)}{\rightrightarrows} f$$
, так как $\forall \, \varepsilon > 0 \,\, \exists N = \max(N_1,N_2) \,\, \forall n > N, \,\, \forall x \in [a;b) \hookrightarrow |f_n(x) - f(x)| < \varepsilon$

4. Получаем, что

$$\begin{cases} f_n \stackrel{[a;b)}{\Rightarrow} f \\ f_n \in C([a;b)) \end{cases}$$

Тогда, по теореме о непрерывности предельной функции следует, что $f \in C([a;b))$, но f имеет разрыв в точке a. Противоречие

3.20 Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке

Теорема. Пусть имеется
$$f_n \in C([a;b))$$
 $f_n \stackrel{(a;b)}{\to} f$ $f \stackrel{(a;b)}{\to} f_n(a)$ $f_n \stackrel{(a;b)}{\to} f$

Доказательство. От противного

1. Пусть
$$f_n \stackrel{(a;b)}{\Rightarrow} f \Longrightarrow \forall \varepsilon > 0 \ \exists N : \forall n,m > N \ \forall x \in (a;b) \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

2. $f_n \in C([a;b))$, тогда

$$\forall x_0 \in [a;b): \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in B_\delta(x_0) \cap [a;b) \hookrightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$$

В частности, это верно для $x_0 = a$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{\circ}{B_{\delta}}(a) \cap (a;b)^2 \hookrightarrow |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}$$

3. Рассмотрим

$$|f_n(a) - f_m(a)| \leqslant \underbrace{|f_n(a) - f_n(x)|}_{\text{no n.2}} + \underbrace{|f_n(x) - f_m(x)|}_{\text{no n.1}} + \underbrace{|f_m(x) - f_m(a)|}_{\text{no n.2}} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

получаем, что

$$\forall \varepsilon > 0 \ \exists N(\exists \delta > 0) : \ \forall n, m > N(\forall x \in \overset{\circ}{B_{\delta}}(a) \cap (a;b)) \hookrightarrow |f_n(a) - f_m(a)| < \varepsilon$$

то есть, по Критерию Коши для числовой последовательности $\exists \lim_{n \to \infty} f_n(a)$, что противоречит условию, а значит $f_n \not \rightrightarrows f$

3.21 Теорема о почленном интегрировании функциональной последовательности

Теорема. Пусть имеется
$$f_n, f: [a;b] \to \mathbb{R}$$

$$f_n \overset{[a;b]}{\Rightarrow} f$$

$$f_n \in \mathcal{R}([a;b]) \forall n \in \mathbb{N}$$
 $f \in \mathcal{R}([a;b]) \Rightarrow f \in \mathcal{R}([a;b]) \Rightarrow f$

Доказательство. По Критерию Дарбу $f \in \mathcal{R}([a;b]) \Longleftrightarrow f$ — ограничена на [a;b] и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

• Покажем ограниченность

1.
$$\forall n \in \mathbb{N}: \ f_n \in \mathcal{R}([a;b]) \Longrightarrow f_n$$
 ограничена на $[a;b]$ и

$$\forall n \in \mathbb{N} \ \exists M_n \geqslant 0 \ \forall x \in [a;b] \hookrightarrow |f_n(x)| \leqslant M_n$$

²верно $\forall x \in B_{\delta}(a) \cap [a;b)$, а потому a выколота

2. $f_n \stackrel{[a;b]}{\Longrightarrow} f$, тогда $\forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall x \in [a;b] \hookrightarrow |f_n(x) - f(x)| < \varepsilon$ Рассмотрим $\varepsilon = 1$, тогда $\exists N_1 = N: \ \forall x \in [a;b] \hookrightarrow |f_{N_1+1}(x) - f(x)| < 1$ Тогда, для f(x) верно $\forall x \in [a;b]$

$$|f(x)| \le |f(x) - f_{N_1+1}(x)| + |f_{N_1+1}(x)| < 1 + M_{N_1+1},$$

то есть f(x) — ограничена

• Покажем интегрируемость

Напомним, что
$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T})$$
 и $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$

Рассмотрим \mathbb{T} — разбиение [a;b]

$$|\underline{\mathbf{S}}(f, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})| \leqslant \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}) - \underline{\mathbf{S}}(f_n, \mathbb{T})|}_{(1)} + \underbrace{|\underline{\mathbf{S}}(f_n, \mathbb{T}) - \overline{\mathbf{S}}(f_n, \mathbb{T})|}_{(2)} + \underbrace{|\underline{\overline{\mathbf{S}}}(f_n, \mathbb{T}) - \overline{\overline{\mathbf{S}}}(f, \mathbb{T})|}_{(3)}$$

(1) Распишем в виде неравенств

$$|\underline{S}(f, \mathbb{T}) - \underline{S}(f_n, \mathbb{T})| \leqslant \sum_{i} |\inf_{I_i}(f) - \inf_{I_i}(f_n)||I_i| \leqslant \sum_{i} \sup_{I_i} |f - f_n| \cdot |I_i| \leqslant \sup_{[a;b]} |f - f_n| \cdot |b - a| < \frac{\varepsilon}{3}$$

Так как $f_n \stackrel{[a;b]}{\rightrightarrows} f$, то по супремальному критерию:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \sup_{[a;b]} |f - f_n| < \frac{\varepsilon}{3|b - a|}$$

 $(2) f_n \in \mathcal{R}([a;b]) \Longrightarrow$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall \mathbb{T} : \ \Delta_{\mathbb{T}} < \delta \ |\underline{S}(f_n, \mathbb{T}) - \overline{S}(f_n, \mathbb{T})| < \frac{\varepsilon}{3}$$

(3) Аналогично (1):
$$|\overline{S}(f_n,\mathbb{T}) - \overline{S}(f,\mathbb{T})| \leqslant \sup_{[a;b]} |f - f_n| < \frac{\varepsilon}{3}$$

Получаем, что

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; (\exists N) \; \forall \, \mathbb{T} : \; \Delta_{\mathbb{T}} < \delta \; (\forall n > N) \hookrightarrow |\, \underline{\mathbf{S}}(f, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

$$\Longrightarrow f(x) \in \mathcal{R}([a; b])$$

• Покажем, что $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$

Рассмотрим

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f_n(x) - f(x)| dx \leqslant \sup_{[a;b]} |f_n(x) - f(x)| \cdot |b - a| < \varepsilon$$

Так как $f_n \overset{[a;b]}{\Rightarrow} f$, то $\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n > N \,\, \sup_{[a;b]} |f_n(x) - f(x)| < rac{arepsilon}{|b-a|}$ и получаем, что

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

3.22 [DELETE] Теорема о почленном дифференцировании функциональной последовательности

Теорема. Пусть имеется
$$\exists c \in [a;b] \to \mathbb{R}$$
 $f_n \in D([a;b])$ $\exists c \in [a;b] : \exists \lim_{n \to \infty} f_n(c)$ $\exists f : f_n \overset{[a;b]}{\Rightarrow} f$ $\oplus f'(x) = g(x)$

Доказательство. Покажем существование

Теорема. (Лагранжа) $f \in C([a,b]), f \in D((a,b)) \Longrightarrow \exists c \in (a,b): f(b)-f(a)=f'(c)(b-a)$

- 1. Рассмотрим $\varphi(x) = f_n(x) f_m(x)$
- 2. $\forall n \in \mathbb{N} \ f_n \in D([a;b]) \Longrightarrow f_n \in C([a;b]) \Longrightarrow \varphi(x) \in D([a;b]) \ \text{if} \ \varphi(x) \in C([a;b])$
- 3. Рассмотрим: для c из условия теоремы Лагранжа

$$\varphi(x) - \varphi(c) = \varphi'(\xi) \cdot (x - c)$$
, где $\xi \in [c; x]$ ([x; c])

Тогда, $\varphi(x) = \varphi'(\xi)(c-x) + \varphi(x)$

4. Оценим
$$|\varphi(x)| \leq |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{\star} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{\star\star}$$

$$\star f_n' \overset{[a;b]}{\Longrightarrow} g(x) \Longrightarrow \forall \varepsilon > 0 \ \exists N_1: \ \forall n,m > N_1 \ \forall x \in [a;b] \hookrightarrow |f_n'(\xi) - f_m'(\xi)| < \frac{\varepsilon}{2|b-a|}$$

$$\star \star \ \exists \lim_{n \to \infty} f_n(c) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2: \ \forall n,m > N_2 \hookrightarrow |f_n(c) - f_m(c)| < \frac{\varepsilon}{2}$$

 $n o \infty$ 7.70 Тогда,

$$|\varphi(x)| \leqslant |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{+} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{+} < \frac{\varepsilon}{2|b-a|} \cdot |c-x| + \frac{\varepsilon}{2} < \varepsilon$$

то есть

$$\forall \varepsilon > 0 \ \exists N = \max\{N_1, N_2\}: \ \forall n, m > N \ \forall x \in [a; b] \hookrightarrow |\varphi(x)| = |f_n(x) - f_m(x)| < \varepsilon \Longrightarrow \exists f : f_n \overset{[a; b]}{\Longrightarrow} f$$

Доказательство. Покажем, что f'(x) = g(x)

Пусть имеется $x_0 \in [a; b]$, но он произвольный

1. Рассмотрим
$$\psi_n(x) = \frac{f_n(x) - f_n(x_0)}{x - x_0}$$

Покажем по Критерию Коши, что $\psi_n(x) \stackrel{[a;b]}{\Rightarrow}$

$$|\psi_n(x) - \psi_m(x)| = \left| \frac{f_n(x) - f_n(x_0) - f_m(x) + f_m(x_0)}{x - x_0} \right|$$

$$= \left| \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0} \right|$$

$$= \left| \frac{\varphi(x) - \varphi(x_0)}{x - x_0} \right|$$

$$\exists \xi \in [x_0, x]$$

$$= \frac{|\varphi'(\xi)||x - x_0|}{|x - x_0|}$$

$$= |\varphi'(\xi)|$$

$$= |f'_n(\xi) - f'_m(\xi)| < \varepsilon$$

так как $f_n \stackrel{[a;b]}{\Longrightarrow}$, то есть

$$\forall \varepsilon > 0, \exists N, \forall n, m > N, \forall x \in [a, b] \hookrightarrow |f'_n(x) - f'_m(x)| < \varepsilon$$

то
$$\psi \stackrel{[a;b]}{\rightrightarrows}$$

2.
$$\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = \lim_{x \to x_0} \frac{f_n(x) - f_n(x_0)}{x - x_0} = f'_n(x_0), \text{ так как } f_n \in D([a,b])$$

Получаем, что $\psi_n(x) \stackrel{[a,b]}{\Rightarrow}$ и $\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = f'_n(x_0)$, тогда по теореме о почленном переходе к пределу

$$g(x_0) = \lim_{n \to \infty} f'_n(x_0)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \psi_n(x)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \lim_{n \to \infty} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= f'(x_0)$$

3.23 [FOR KIARA] Критерий Лебега интегрируемости функции по Риману

Теорема. Если $I\subset\mathbb{R}^n$ — замкнутый невырожденный брус, $f:I\to\mathbb{R},$ то $f\in R(I)\iff f$ ограничена и непрерывна почти всюду на I

Доказательство.

• Необходимость

Если f интегрируема, то она ограничена по необходимому условию интегрируемости. Осталось показать, что множества разрыва меры нуль. От противного: пусть это не так.

Обозначим множество всех точек разрыва ф-ии f на I за T и заметим, что $T=\bigcup_{k\in\mathbb{N}}T_k$, где

 $T_k = \{x \in I | \omega(f, x) \ge \frac{1}{k}\}$. Если T не меры нуль, то существует T_{k_0} не меры нуль (если они все меры нуль, то по свойству множеств меры нуль счетное объединение таких множеств тоже было бы меры нуль).

Для произвольного разбиения $\mathbb{T}=\{I_i\}_{i=1}^m$ бруска I разобъем эти бруски на две кучи: первая $A=\{I_i|I_i\cap T_{k_0}\neq\varnothing,\omega(f,I_i)\geq\frac{1}{2k_0}\}$ и вторая $B=\mathbb{T}\setminus A$. Покажем что A является покрытием множества T_{k_0} , т.е. $T_{k_0}\subset\bigcup_{i:I_i\in A}I_i$ любая точка $x\in T_{k_0}$ является либо

- а) внутренней для некоторого бруска I_i . В этом случае $\omega(f,I_i) \geq \omega(f,x) \geq \frac{1}{k_0} > \frac{1}{2k_0}$, т.е. $I_i \in A$, либо
- b) точка x лежит на границе некоторого количества брусков (не более чем 2^n штук). Тогда хотя бы на одном из них колебание $\omega(f,I_i)\geq \frac{1}{2k_0}$ (т.е. $I_i\in A$): если бы такого не нашлось, то в любой малой окрестности $B_{\varepsilon}(x)$ выполняется следующее:

$$\omega(f,x) \le \sup_{x',x'' \in B_{\varepsilon}(x)} |f(x') - f(x'')| \le \sup_{x' \in B_{\varepsilon}(x)} |f(x') - f(x)| + \sup_{x'' \in B_{\varepsilon}(x)} |f(x) - f(x'')| < \frac{1}{2k_0} + \frac{1}{2k_0} = \frac{1}{k_0}$$

т.е. $x \notin T_{k_0}$ — противоречие.

Таким образом, каждая точка $x\in T_{k_0}$ покрывается некоторым бруском $I_i\in A$, т.е. A - покрытие T_{k_0} . Тогда существует $c:\sum_{i:I_i\in A}|I_i|\geq c>0$ для всех разбиений $\mathbb T$ (если бы меняя разбиения мы

могли получить сумму объемов этих брусков сколь угодно маленькую, то получилось бы, что T_{k_0} меры нуль)

Возьмем два набора отмеченных точек ξ^1 и ξ^2 . На брусках из кучки B будем их брать одинаковыми, т.е. для $I_i \in B$ $\xi^1_i = \xi^2_i$. А на брусках из кучки A будем брать такие, чтобы

$$f(\xi_i^1) - f(\xi_i^2) \ge \frac{1}{3k_0}$$
 (у нас там колебания $\ge 1/2k_0$, так что такие найдутся)

Получаем:

$$\begin{split} |\sigma(f, \mathbb{T}, \xi^1) - \sigma(f, \mathbb{T}, \xi^2) &= \left| \sum_i (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right| \\ &= \left| \sum_{i: I_i \in A} (f(\xi_i^1) - f(\xi_i^2)) |I_i| + \sum_{i: I_i \in B} (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right| \\ &= \left| \sum_{i: I_i \in A} (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right| \ge \frac{1}{3k_0} \sum_{i: I_i \in A} |I_i| \ge \frac{c}{3k_0} > 0 \end{split}$$

т.е. интегральные суммы не могут стремиться к одному и тому же числу, значит f не интегрируема — **противоречие**.

• Достаточность

Для любого $\varepsilon > 0$ рассмотрим $T_{\varepsilon} = \{x \in I | \omega(f, x) \geq \varepsilon\}$. Покажем, что это множество - компакт. Ограниченность очевидна (подмножества бруска), а замкнутость проверим от противного. Пусть a - предельная точка $T_{\varepsilon} : a \notin T_{\varepsilon}$. Т.к. она предельная, то существует $\{x^k\} : x^k \in B_{\frac{1}{k}}(a)$. Т.к. $B_{\frac{1}{k}}$ - открытые шары, то наши точки лежат в них с окрестностями, т.е. сущесвтуют $\delta_k : B_{\delta_k}(x_K) \subset B_{\frac{1}{k}}(a)$. Тогда

$$\omega(f, B_{\frac{1}{k}}(a)) \ge \omega(f, B_{\delta_k}(x_K)) \ge \omega(f, x_k) \ge \varepsilon$$

Переходя к пределу $k \to \infty$: $\omega(f,a) \ge \varepsilon$, т.е. $a \in T_\varepsilon$ - противоречие. Значит T_ε - замкнуто, и, следовательно, компактно.

Множество T_{ε} - множество меры нуль (как подмножество множества меры нуль). Значит, его можно покрыть не более чем счетным объединением открытых брусков $I_i:\sum_i |I_i|<\varepsilon$. Т.к. это

открытое покрытие, а T_{ε} - компакт, то существует конечное подпокрытие: $T_{\varepsilon} \subset \bigcup_{i=1}^{m} I_{i}$, при этом

$$\sum_{i=1}^{m} |I_i| < \varepsilon.$$

Обозначим три множества: $C_1 = \bigcup_{i=1}^m I_i$, $C_2 = \bigcup_{i=1}^m I_i'$, $C_3 = \bigcup_{i=1}^m I_i''$, где I_i' , где I_i' , I_i'' - бруски, полученные гомотетией с центром в центре I_i с коэффициентом 2 и 3 соответственно.

Заметим, что

a)
$$|C_3| \le \sum_{i=1}^m |I_i''| = 3^n \sum_{i=1}^m |I_i| < 3^n \varepsilon$$

- b) расстояние $\rho(\partial C_2, \partial C_3) = \delta_1 > 0$ (теорема про расстояние между компактами)
- с) Множество $K = I \setminus (C_2 \setminus \partial C_2)$ компакт. Кстати, любое множество с диаметром меньше δ_1 либо польностью лежит в C_3 , либо полностью в K.
- d) $T_{\varepsilon} \cap K = \emptyset$, т.к. $T_{\varepsilon} \subset C_1 \subset C_2$. Следовательно, $\forall x \in K \ \omega(f,x) < \varepsilon$. Тогда по теореме Кантора-Гейне $\exists \delta_2 > 0: \ \forall x \in K \ \omega(f,B_{\delta_2}(x)) < \varepsilon + \varepsilon = 2 \ \varepsilon$

Выберем $\delta = \min\{\delta_1, \delta_2\}$. Тогда для любых разбиений $\mathbb{T}_1 = \{I_k^1\}, \mathbb{T}_2 = \{I_i^2\} : \lambda \mathbb{T}_1 < \delta, \lambda(\mathbb{T}_2) < \delta$ Рассмотрим пересечение этих разбиений $\mathbb{T} = \mathbb{T}_1 \cap \mathbb{T}_2$, т.е. такое разбиение $\mathbb{T} = \{I_{ik}\}$, что $I_k^1 = I_{ik} \sqcup \ldots \sqcup I_{imk}$ и $I_i^2 = I_{ik_1} \sqcup \ldots \sqcup I_{ik_l}$. Очевидно $\lambda(\mathbb{T}) < \delta$.

Для произвольных наборов отмеченных точек:

$$|\sigma(f,\mathbb{T}_1,\xi^1) - \sigma(f,\mathbb{T}_2,\xi^2)| \leq |\sigma(f,\mathbb{T}_1,\xi^1) - \sigma(f,\mathbb{T},\xi)| + |\sigma(f,\mathbb{T}_2,\xi^2) - \sigma(f,\mathbb{T},\xi)|$$

Рассмотрим отдельное слагаемое:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| = \left| \sum_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \sum_{I_{ij} \in C_3} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| + \sum_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \leq 2M \cdot \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \frac{1}{2} \left| \int_{i,j} (f(\xi_i^1) - f(\xi_{ij}) |I_{ij}| \right| \leq \frac{1}{2$$

т.к. f ограничена некоторой константой M и см пункты a), d), то

Т.к. для (\mathbb{T}_2,ξ^2) все выкладки аналогичные, то получаем:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| \le \epsilon (2M \cdot 3^n + 2|I|)$$

Следовательно, существует предел $\lim_{\lambda(\mathbb{T})\to 0}\sigma(f,\mathbb{T},\xi)$ (Критерий Коши для функций)