

1. Lecture-3

Sensors:

- Cameras
- RGB-D Cameras
- ToF sensors

Fundamental

Data and Processing

1. Lecture-3

Lecture:

- Stereo Cameras
- RGB-D Cameras: principle and different models
- Applications of RGB-D Cameras

Active hands on:

- Play with Different RGB-D Cameras
- Display of RGB/Depth images and point clouds
- Image processing on RGB-D images

2.1 Stereo Cameras

Human eyes

Stereo vision

Anaglyphs

- Two images of complementary color are overlaid to generate one image.
- Glasses required (e.g. red/green)
- Each eye gets one image=> 3D impression

2.1 Stereo Cameras

Shutter glasses

- Display flickers between left and right image (i.e. each even frame shows left image, each odd frame shows right image)
- Uses a timing signal to synchronize the glass and the display
- Requires new displays of high frame rate (120Hz).

Autostereoscopic displays

- No glasses required!
- Matrix of many transparent lenses put on the display.
- Lenses distort pixels so that left eye gets a left image and right eye gets a right image (if you are standing in a proper spot) => 3D impression

Sharp 3D display

2.2 Stereo: Disparity

Disparity: the pixel difference in two images

Foreground disparity - large

Background disparity - small

2.2 Stereo: Disparity

Disparity

- The disparity of each pixel is encoded by a grey value.
- High grey values represent high disparities (and low gray values small disparities).
- The resulting image is called disparity map.
- The disparity map contains sufficient information about the depth map

2.3 Stereo: 3D Reconstruction

3D Reconstruction

 P can lie on anywhere along the C_I-p_I line.

- Let us assume we also know the 2D projection p_r of P onto the right image plane R. Can we now determine the pint P?
- The challenge is to find the matching p_l and p_r. It is called the stereo matching (correspondence) problem.

2.3 Stereo: 3D Reconstruction

Triangulation

- X, Z: 3D space
- B baseline of the cameras
- $-x_{\nu}, x_{r}$: Image coordinates
- f: focal length
- Using similar triangles

$$\frac{X}{Z} = \frac{x_l}{f}$$

$$\frac{X-B}{Z} = \frac{\chi_r}{f}$$

2.3 Stereo: 3D Reconstruction

Triangulation

$$\frac{X}{Z} = \frac{x_l}{f}$$

$$\frac{X-B}{Z} = \frac{\chi_r}{f}$$

$$X = \frac{Z.x}{f}$$

$$X = \frac{Z.x_l}{f} \qquad X = \frac{Z.x_r}{f} + B$$

$$\frac{Z.x_l}{f} = \frac{Z.x_r}{f} + B$$

$$Z.x_l = Z.x_r + B.f$$

$$Z.(x_l-x_r)=B.f$$

$$Z = \frac{B.f}{x_l - x_r} = \frac{B.f}{d}$$

Where *d* is the disparity

 It can be seen that the disparity is inversely proportional to the depth.

2.5 Stereo: Applications

 Stereo cameras are mounted on an airplane to obtain a terrain map.

http://www.robotic.de/Heiko.Hirschmueller/

2.5 Stereo: Applications

Reconstruct the surface of Mars using stereo vision

2.4 Stereo: Challenges

Stereo Correspondence - challenges

- Color inconsistencies:
- When solving the stereo matching problem, we typically assume that corresponding pixels have the same intensity/color (= Photo consistency assumption)
- It is not necessarily be always true:
 - Image noise
 - Different illumination conditions in left and right images
 - Different sensor characteristics of the two cameras.
 - Specula reflections (mirroring)
 - Sampling artifacts

2.4 Stereo: Challenges

Stereo Correspondence challenges

Textureless regions

URY DDLEBY

 The corresponding is infeasible. So disparities can not be calculated.

Left image

Right image

Disparity image

2.4 Stereo: Challenges

Stereo Correspondence - challenges

Occlusion Problem

- There are pixels that are only visible in exactly one view.
- We call this pixels occluded (or half-occluded)
- It is difficult to estimate depth for these pixels.
- Occlusion problem makes stereo more challenging than a lot of other computer vision problems

Occluded pixels

THANK YOU

Questions?

