Universidad de los Andes

Departamento de Ingeniería Industrial

Probabilidad y Estadística I (IIND2106)

Profesor Coordinador: Mario Castillo

Profesores: Astrid Bernal, Carlos Castellanos, Fabio Lagos, María Alejandra López, Gonzalo Torres,

Universidad de los Andes

Hernando Mutis.

Segundo semestre de 2015

Complementaria 11 Propiedades de los estimadores. Distribuciones muestrales y uso de tablas.

Punto 1

Sea X₁, X₂,..., X_n una muestra aleatoria de una población con distribución normal. Se cuenta con 3 estimadores para la media poblacional:

$$\widehat{\mu_1} = \frac{2(X_1 + 2X_2 + \dots + nX_n)}{n(n+1)}$$

$$\widehat{\mu_2} = \frac{X_1 + 8X_3 + 4X_7 + 5X_{10}}{18}$$

$$\widehat{\mu_3} = \frac{X_1 + X_5 + X_8 + X_{10}}{10}$$

Tenga en cuenta que el valor esperado y la varianza para una variable aleatoria con distribución normal son:

$$E(X) = \mu$$
$$VAR(X) = \sigma^2$$

- a. ¿Son insesgados los estimadores?
- **b.** Calcule la varianza de los estimadores.
- c. Calcule el error cuadrático medio de los estimadores.
- d. ¿Cuál estimador escogería? Justifique su respuesta.

Punto 2

En un proyecto espacial se ha descubierto que la variación de temperatura cada hora en una determinada zona del planeta Krypton se distribuye como una variable aleatoria X con la siguiente función de densidad de probabilidad:

$$f_X(x,\omega) = \begin{cases} \frac{1}{\omega} e^{-\frac{1}{\omega}x} & x \geq 0 \\ 0 & \text{d.l. c} \end{cases}$$

Para continuar con el proyecto, es necesario realizar una estimación apropiada del parámetro ω , si se toma una muestra de n variaciones de temperatura independientes. Para esto, desarrolle los siguientes literales:

- **a.** Encuentre el estimador de máxima verosimilitud del parámetro ω .
- **b.** Una vez definido el estimador para el parámetro ω , el equipo del proyecto espacial tiene dudas sobre la consistencia del mismo. Pruebe sí el estimador encontrado en el literal anterior es consistente.
- c. Para las siguientes etapas del proyecto espacial es fundamental que el estimador del parámetro ω sea eficiente. Compruebe que el estimador con el que ha venido trabajando es eficiente.

Punto 3

a. Determine la distribución de probabilidad de los siguientes estadísticos:

$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$$
 para una población X con distribución normal de media μ y varianza σ^2

$$\frac{\overline{X}-\mu}{s/\sqrt{n}}$$
 para una población X con distribución normal de media μ y varianza σ^2

$$(n-1)\frac{{S_X}^2}{\sigma^2} + (m-1)\frac{{S_Y}^2}{\sigma^2} \text{ para dos poblaciones X, Y con distribución normal de varianza } \sigma^2$$

$$\frac{{S_X}^2{\sigma_Y}^2}{{S_Y}^2{\sigma_X}^2}$$
 para dos poblaciones X, Y con distribución normal de varianza ${\sigma_X}^2y~{\sigma_Y}^2$

b. Complete la siguiente tabla con base en la información suministrada:

Distribución	Parámetro(s)	Valor de la VA	Probabilidad Acumulada hasta el valor de VA	Notación
T-Student	GL=25		0.95	

T-Student	GL=12	b=2.1788		
F-Snedecor		c=3.511	0.95	
F-Snedecor	15 GL en el numerador, 7 GL en el denominador		0.05	
Chi-cuadrado	Grados de libertad=19	e=21.689		
Chi-cuadrado	GL=70		0.975	
Chi-cuadrado	GL=70		0.025	
T-Student	GL=20		0.1	