Recurrent Neural Network is a sequence model, used mainly for Natural Language Processing task In overall CNN was typically used for image classification data While RNN is mainly used in NLP.

RNN are typically used in NLP related domains .. some of them are listed for your reference

- 1) Machine Translation: Google Translator is one of the applications build using RNN
- 2) Speech Recognition: Alexa, Google Duo, Siri
- 3) Sentiment Analysis: Predict a sentence whether it is positive or negative.
- 4) Text Auto Completion: Gmail

In []:

1

Types of RNN

- 1) One to One: where number of input is one and the number of output is one
- 2) One to Many: Number of input = 1 and number of output > 1
- 3) Many to one : Number of input > 1 and output is = 1
- 4) Many to Many: Number if input > 1 and number of output > 1

Example

```
In [102]: 1 import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [103]: 1 df = pd.read_csv('monthly_milk_production.csv',index_col='Date',parse_dates=True)
2 df.index.freq = 'MS'
```

In [104]: 1 df.head()

Out[104]:

Production

Date	
1962-01-01	589
1962-02-01	561
1962-03-01	640
1962-04-01	656
1962-05-01	727

In []: 1

```
In [105]: 1 df.plot(figsize=(12,6))
```

Out[105]: <AxesSubplot:xlabel='Date'>

<Figure size 864x432 with 0 Axes>


```
1 156-168
In [110]:
Out[110]: -12
             1 len(df)
In [111]:
Out[111]: 168
             1 train = df.iloc[:156]
In [112]:
In [113]:
             1 train
Out[113]:
                      Production
                 Date
            1962-01-01
                            589
            1962-02-01
                            561
            1962-03-01
                            640
            1962-04-01
                            656
            1962-05-01
                            727
            1974-08-01
                            867
            1974-09-01
                            815
            1974-10-01
                            812
            1974-11-01
                            773
            1974-12-01
                            813
           156 rows × 1 columns
             1 test = df.iloc[156:]
In [114]:
```

```
In [115]: 1 test
```

Out[115]:

Production

Date	
1975-01-01	834
1975-02-01	782
1975-03-01	892
1975-04-01	903
1975-05-01	966
1975-06-01	937
1975-07-01	896
1975-08-01	858
1975-09-01	817
1975-10-01	827
1975-11-01	797
1975-12-01	843

```
In [116]: 1 from sklearn.preprocessing import MinMaxScaler
In [117]: 1 scaler = MinMaxScaler()
In [118]: 1 scaler.fit(train)
Out[118]: MinMaxScaler()
In [119]: 1 scaled_train = scaler.transform(train)
2 scaled_test = scaler.transform(test)
```

```
In [120]:
            1 scaled test
Out[120]: array([[0.67548077],
                  [0.55048077],
                  [0.81490385],
                  [0.84134615],
                  [0.99278846],
                  [0.92307692],
                  [0.82451923],
                  [0.73317308],
                  [0.63461538],
                  [0.65865385],
                  [0.58653846],
                  [0.69711538]])
            1 scaled train
In [121]:
                  [0.05769231],
                  [0.
                  [0.06971154],
                  [0.11298077],
                  [0.03125
                  [0.24038462],
                  [0.28846154],
                  [0.45432692],
                  [0.39182692],
                  [0.25721154],
                  [0.15384615],
                  [0.07211538],
                  [0.08173077],
                  [0.02884615],
                  [0.10817308],
                  [0.18028846],
                  [0.15625
                  [0.32451923],
                  [0.36538462],
 In [ ]:
```

defining the model

```
1 from keras.preprocessing.sequence import TimeseriesGenerator
In [122]:
In [123]:
           2 \mid n \mid features = 1
           3 generator = TimeseriesGenerator(scaled_train,scaled_train,length=n_input,batch size=n features)
In [124]:
           1 print(len(scaled train))
           2 print(len(generator))
          156
          153
In [152]:
           1 x,y = generator[0]
In [155]:
           1 x
Out[155]: array([[[0.08653846],
                  [0.01923077],
                  [0.20913462],
                  [0.24759615],
                  [0.41826923],
                  [0.34615385],
                  [0.20913462],
                  [0.11057692],
                  [0.03605769],
                  [0.05769231],
                  [0.
                  [0.06971154]])
```

```
In [125]:
            1 \times y = generator[0]
            2 print(f'Given Array is \n{x.flatten()}')
            3 print(f'Predicted Array is \n {y}')
          Given Array is
          [0.08653846 0.01923077 0.20913462]
          Predicted Array is
           [[0.24759615]]
In [126]:
            1 x.shape
Out[126]: (1, 3, 1)
 In [ ]:
In [127]:
            1 | n input = 12
            2 \mid n \text{ features} = 1
            3 generator = TimeseriesGenerator(scaled train, scaled train, length=n input, batch size=n features)
 In [ ]:
           1
In [128]:
           1 \# x1, y1 = generator1[0]
            2 # print(f'Given Array is \n{x1.flatten()}')
            3 # print(f'Predicted Array is \n {v1}')
 In [ ]:
In [129]:
            1 from keras.models import Sequential
            2 from keras.layers import Dense
            3 from keras layers import LSTM
 In [ ]:
```

In [131]:

1 model.summary()

Model: "sequential_2"

Layer (type)	Output Shape	Param #
lstm_2 (LSTM)	(None, 100)	40800
dense_2 (Dense)	(None, 1)	101

Total params: 40,901 Trainable params: 40,901 Non-trainable params: 0

In [132]: 1 model.fit(generator,epochs=50)

```
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
```

		=====]	-	1s	5ms/step	-	loss:	0.0032
Epoch 21,	/50 =============	1	_	1 c	5mc/ctan		1000	0 0027
Epoch 22,			-	13	21113/3 CCh	-		0.0027
	=======================================	====]	-	1s	5ms/step	-	loss:	0.0030
Epoch 23,	′50				•			
		=====]	-	1s	5ms/step	-	loss:	0.0027
Epoch 24,	750	_			- , .			
144/144 Epoch 25/		=====]	-	IS	5ms/step	-	loss:	0.0028
	=======================================	1	_	1 c	5ms/sten	_	1055.	0 0040
Epoch 26				13	311137 3 CCP			0.0040
	=======================================	=====]	-	1s	5ms/step	-	loss:	0.0033
Epoch 27,	′50				•			
		=====]	-	1s	5ms/step	-	loss:	0.0029
Epoch 28,	750			_			_	
		:====]	-	1s	5ms/step	-	loss:	0.002/
Epoch 29,	บบ ===================================	1		1 c	5mc/cton		10001	0 0024
Epoch 30,]	-	13	Jilis/ s ceh	-	1055.	0.0024
	=======================================	=====]	_	1s	6ms/step	_	loss:	0.0022
Epoch 31,	750				-			
		:====]	-	1s	5ms/step	-	loss:	0.0022
Epoch 32,		_					_	
	====================================	:====]	-	1s	5ms/step	-	loss:	0.0024
Epoch 33,	50 ====================================	1		1.0	Emc/ston		10001	0 0022
Epoch 34,			-	15	ollis/step	-	1055;	0.0023
	:=====================================	=====1	_	1s	5ms/step	_	loss:	0.0024
Epoch 35,	′50				•			
144/144	=======================================	=====]	-	1s	5ms/step	-	loss:	0.0022
Epoch 36,		_					_	
	====================================	=====]	-	1s	5ms/step	-	loss:	0.0023
Epoch 37,		1		1.0	6mc/ston		1000.	0 0020
Epoch 38,	์ ====================================	====]	-	15	ollis/step	-	1055:	0.0020
	======================================	=====1	_	1s	5ms/sten	_	loss:	0.0026
Epoch 39		,			ээ, э сор			3.0020
	=======================================	=====]	-	1s	5ms/step	-	loss:	0.0019
Epoch 40,	′50				-			
		=====]	-	1s	6ms/step	-	loss:	0.0020
Epoch 41,	750							

```
Epoch 42/50
Epoch 43/50
Epoch 44/50
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
Epoch 49/50
Epoch 50/50
```

Out[132]: <keras.callbacks.History at 0x7efca3f13ac0>

```
In [133]: 1 loss_per_epoch = model.history.history['loss']
```

```
In [134]:
              loss per epoch
Out[134]: [0.04006689414381981.
           0.021842949092388153,
           0.01788419671356678,
           0.012746957130730152,
           0.005774316843599081,
           0.0056803287006914616,
           0.004432339686900377,
           0.004116366617381573,
           0.0029001617804169655,
           0.003533754963427782,
           0.0035526466090232134,
           0.0035502261016517878,
           0.003515976946800947,
           0.0037142904475331306,
           0.003810893278568983,
           0.0035076248459517956,
           0.003002116922289133,
           0.0033142208121716976,
           0.002624667249619961,
           0.0032198664266616106,
           0.0026647131890058517,
           0.0029616085812449455,
           0.0026995078660547733,
           0.0027742411475628614,
           0.004015814512968063,
           0.0032504559494554996,
           0.0029056945350021124,
           0.0026901643723249435,
           0.0024448975455015898,
           0.002249694662168622,
           0.0021993413101881742,
           0.002367268083617091,
           0.002265089424327016,
           0.002371768467128277,
           0.0022283869329839945.
           0.002273865509778261,
           0.0020332641433924437,
           0.0026074135676026344,
           0.0019142826786264777,
```

```
0.001977734500542283,

0.0023750613909214735,

0.002119295997545123,

0.002193675609305501,

0.0020502954721450806,

0.002097403397783637,

0.002673913724720478,

0.0020592238288372755,

0.0021182475611567497,

0.0017006704583764076,

0.0023153924848884344]
```

```
In [135]: 1 plt.plot(range(len(loss_per_epoch)),loss_per_epoch)
2
```

Out[135]: [<matplotlib.lines.Line2D at 0x7efca3afba00>]


```
In [156]: 1 len(scaled_train)
```

Out[156]: 156

In [136]: 1 last_train_batch = scaled_train[-12:]

```
In [137]:
           1 last train batch
Out[137]: array([[0.66105769],
                 [0.54086538],
                 [0.80769231],
                 [0.83894231],
                 [1.
                 [0.94711538],
                 [0.85336538],
                 [0.75480769],
                 [0.62980769],
                 [0.62259615],
                 [0.52884615],
                 [0.625
                             ]])
           1 last train batch = last train batch.reshape((1,n input,n features))
In [138]:
           1 last_train_batch.shape
In [157]:
Out[157]: (1, 12, 1)
In [140]:
           1 model.predict(last train batch)
Out[140]: array([[0.66922015]], dtype=float32)
In [141]:
           1 scaled_test[0]
Out[141]: array([0.67548077])
```

```
In [158]: 1 test
```

Out[158]:

Production predictions

Date		
1975-01-01	834	831.395582
1975-02-01	782	810.352978
1975-03-01	892	887.497755
1975-04-01	903	909.254545
1975-05-01	966	949.122810
1975-06-01	937	945.390984
1975-07-01	896	921.605249
1975-08-01	858	886.468988
1975-09-01	817	838.733150
1975-10-01	827	824.217772
1975-11-01	797	796.991980
1975-12-01	843	817.327415

```
In [164]: 1 test_prediction = []
    first_evaluation_batch = scaled_train[-n_input:]
    current_batch = first_evaluation_batch.reshape((1,n_input,n_features))
    # print(current_batch[0])

for i in range(len(test)):
    current_pred = model.predict(current_batch)[0]
    test_prediction.append(current_pred)
    current_batch = np.append(current_batch[:,1:,:],[[current_pred]],axis=1)
```

```
In [143]:
            1 test prediction
Out[143]: [array([0.66922015], dtype=float32),
            array([0.61863697], dtype=float32),
            array([0.80408114], dtype=float32),
            array([0.8563811], dtype=float32),
            array([0.9522183], dtype=float32),
            array([0.94324756], dtype=float32),
            array([0.8860703], dtype=float32),
            array([0.80160815], dtype=float32),
            array([0.68685853], dtype=float32),
            array([0.6519658], dtype=float32),
            array([0.5865192], dtype=float32),
            array([0.63540244], dtype=float32)]
In [144]:
            1 test.head()
Out[144]:
                     Production
                Date
            1975-01-01
                          834
            1975-02-01
                          782
            1975-03-01
                          892
            1975-04-01
                          903
            1975-05-01
                          966
In [167]:
            1 test prediction = scaler.inverse transform(test prediction)
```

```
1 test prediction
In [168]:
Out[168]: array([[831.3955822]],
                 [810.35297775],
                 [887.49775505],
                 [909.25454521],
                 [949.12281036],
                 [945.39098358],
                 [921.6052494],
                 [886.46898842],
                 [838.73315048],
                 [824.21777153],
                 [796.9919796],
                 [817.32741547]])
In [169]:
           1 test['predictions'] = test prediction
          <ipython-input-169-0f322b0ea925>:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row indexer,col indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
          #returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#retu
          rning-a-view-versus-a-copy)
            test['predictions'] = test prediction
```

In [170]: 1 test

Out[170]:

Production pr	edictions
---------------	-----------

Date		
1975-01-01	834	831.395582
1975-02-01	782	810.352978
1975-03-01	892	887.497755
1975-04-01	903	909.254545
1975-05-01	966	949.122810
1975-06-01	937	945.390984
1975-07-01	896	921.605249
1975-08-01	858	886.468988
1975-09-01	817	838.733150
1975-10-01	827	824.217772
1975-11-01	797	796.991980
1975-12-01	843	817.327415

In [148]: 1 test.plot(figsize=(14,5))

Out[148]: <AxesSubplot:xlabel='Date'>

In []: | 1