IX. Nemzetközi Magyar Matematika Verseny

Dunaszerdahely, 2000. március 23-27.

12. osztály

1. feladat: Oldjuk meg a valós számok körében a következő egyenletrendszert:

$$4xy(x^2 - y^2) = -1$$
$$x^2 + y^2 = 1$$

Katz Sándor (Bonyhád)

1. feladat I. megoldása: Mindkét egyenletet négyzetre emelve a következőt kapjuk:

$$\begin{cases} 16x^2y^2(x^4 - 2x^2y^2 + y^4) = 1\\ x^4 + 2x^2y^2 + y^4 = 1 \end{cases}$$

Vezessük be az $a = 2x^2y^2$ és $b = x^4 + y^4$ jelöléseket! Ekkor

$$\begin{cases} 8a(b-a) = 1\\ a+b = 1 \end{cases}$$

Ennek a másodfokúra vezető egyenletrendszernek a megoldása $a=\frac{1}{4},b=\frac{3}{4}$. Helyettesítsünk vissza!

$$\begin{cases} 2x^2y^2 = \frac{1}{4} \\ x^4 + y^4 = \frac{3}{4} \end{cases}$$

Kifejezve az első egyenletből x^2 -et és beírva a másodikba azt kapjuk, hogy $x^4=3\mp\sqrt{8}$, továbbá $y^4=3\pm\sqrt{8}$. Ez pedig azt jelenti, hogy $x^2=\frac{2\mp\sqrt{2}}{4}$ és $y^2=\frac{2\pm\sqrt{2}}{4}$. Ez összesen nyolc megoldáspárt enged meg, mivel $\sqrt{\frac{2\pm\sqrt{2}}{4}}=\frac{\sqrt{2\pm\sqrt{2}}}{2}$, és ennek az ellentettje is szóba jöhet. A lehetséges megoldáspárok közül négy fogja kielégíteni az eredeti egyenletet is: $x_1=\frac{\sqrt{2+\sqrt{2}}}{2}, y_1=-\frac{\sqrt{2-\sqrt{2}}}{2}; x_2=-\frac{\sqrt{2+\sqrt{2}}}{2}, y_2=\frac{\sqrt{2-\sqrt{2}}}{2}; x_3=\frac{\sqrt{2-\sqrt{2}}}{2}; x_4=-\frac{\sqrt{2-\sqrt{2}}}{2}, y_4=-\frac{\sqrt{2+\sqrt{2}}}{2}.$

2. feladat: Az ABCD konvex négyszög AC és BD átlói az O pontban metszik egymást, tegyük fel, hogy DO > BO. Legyen P az OD szakasznak az a pontja, amelyre $2 \cdot DP^2 = DO \cdot DB$ teljesül. Igazoljuk, hogy a P ponton át az AC átlóval párhuzamosan húzott egyenes a négyszöget két egyenlő területű részre bontja!

Szász Róbert (Marosvásárhely)

2. feladat I. megoldása: A bizonyításban felhasználjuk, hogy bármely trapézban a két szár az átlók metszéspontjával, mint harmadik csúccsal, egymással egyenlő területű háromszögeket alkot.

Jelöljük a négyszögünkben a BD átló felezőpontját Q-val! Mivel az ABD és BCD háromszögekben egyaránt a súlyvonal felezi a területet, azért az ABCQ és AQCD négyszögek területe megegyezik. Legyen a P-n át AC-vel húzott párhuzamos metszéspontja az AD szakasszal M, a CD szakasszal N! A feltételünk szerint $DP^2 = \frac{DO \cdot DB}{2}$, ami azt jelenti, hogy $DP^2 = DO \cdot DQ$, vagyis átrendezve $\frac{DQ}{DP} = \frac{DP}{DO}$. A párhuzamos szelők tétele szerint $\frac{DQ}{DP} = \frac{DP}{DO} = \frac{DM}{DA}$. Ez azt jelenti, hogy a tétel megfordítása miatt MQ és AP párhuzamosak egymással. Ez azt jelenti, hogy az APQM négyszög trapéz. Jelöljük AQ és PM metszéspontját R-rel, CQ-ét és PN-ét S-sel! A megoldás elején említett állítás szerint $T_{AMR} = T_{PQR}$, és hasonló gondolatmenet után $T_{PQS} = T_{NSC}$. Ez a két állítás pedig együtt már éppen az adja, amit

bizonyítani akartunk, hiszen azt már tudtuk, hogy az ABCQ és ADCQ négyszögek területe megegyezik.

3. feladat: Igazoljuk, hogy ha $n \ge 1$, egész számok, akkor

$$1^5 + 2^5 + 3^5 + \dots + n^5 = \frac{1}{3} \Big(4(1+2+3+\dots+n)^3 - (1+2+3+\dots+n)^2 \Big).$$

Bencze Mihály (Brassó)

3. feladat I. megoldása: Teljes indukcióval bizonyítunk. Az állítás igaz n = 1-re. Tegyük most fel, hogy igaz egy n pozitív egészre, és lássuk be n + 1-re! A feltevés szerint

$$\sum_{k=1}^{n} k^{5} = -\frac{1}{3} \left(\sum_{k=1}^{n} k \right)^{2} + \frac{4}{3} \left(\sum_{k=1}^{n} k \right)^{3}$$

Írjuk fel az összeget n + 1-re!

$$\sum_{k=1}^{n+1} k^5 = \sum_{k=1}^{n} k^5 + (n+1)^5 = -\frac{1}{3} \left(\sum_{k=1}^{n} k \right)^2 + \frac{4}{3} \left(\sum_{k=1}^{n} k \right)^3 + (n+1)^5$$

Írjuk fel továbbá a bizonyítandó egyenlőtlenség másik felét is n + 1-re!

$$\begin{split} -\frac{1}{3} \left(\sum_{k=1}^{n+1} k \right)^2 + \frac{4}{3} \left(\sum_{k=1}^{n+1} k \right)^3 &= -\frac{1}{3} \left(\left(\sum_{k=1}^n k \right)^2 + 2(n+1) \sum_{k=1}^n k + (n+1)^2 \right) + \\ &+ \frac{4}{3} \left(\left(\sum_{k=1}^n k \right)^3 + 3(n+1) \left(\sum_{k=1}^n k \right)^2 + 3(n+1)^2 \sum_{k=1}^n k + (n+1)^3 \right) = \\ &= -\frac{1}{3} \left(\sum_{k=1}^n k \right)^2 + \frac{4}{3} \left(\sum_{k=1}^n k \right)^3 - \frac{2n+2}{3} \cdot \frac{n(n+1)}{2} - \frac{(n+1)^2}{3} + \\ &+ 4(n+1) \frac{n^2(n+1)^2}{4} + 4(n+1)^2 \frac{n(n+1)}{2} + \frac{4(n+1)^3}{3} = \\ &= -\frac{1}{3} \left(\sum_{k=1}^n k \right)^2 + \frac{4}{3} \left(\sum_{k=1}^n k \right)^3 + (n+1)^5, \end{split}$$

és ez láthatóan éppen az, amit be kellett bizonyítanunk.

4. feladat: Bizonyítsuk be, hogy ha $x_1 > x_2 > \cdots > x_n > 0$ valós számok (n > 1), akkor

$$\frac{x_1^3 - x_2^3}{x_1^4 + x_2^4} + \frac{x_2^3 - x_3^3}{x_2^4 + x_3^4} + \dots + \frac{x_{n-1}^3 - x_n^3}{x_{n-1}^4 + x_n^4} < \frac{3}{2} \cdot \frac{x_1 - x_n}{x_1 x_n}.$$

Kacsó Ferenc (Marosvásárhely)

4. feladat I. megoldása: Először is bizonyítsuk az egyenlőtlenséget két változóra. Vegyük észre, hogy a jobb oldali kifejezés második tényezője $\frac{1}{x_n} - \frac{1}{x_1}$ formába írható, bizonyítandó tehát, hogy ha $x_1 > x_2$, akkor igaz lesz az egyenlőtlenség:

$$\frac{x_1x_2(x_1^2 + x_1x_2 + x_2^2)}{a^4 + b^4} < \frac{3}{2}$$

Ezt beláthatjuk például a számtani és négyzetes közép közti egyenlőtlenség alapján:

$$\frac{x_1x_2(x_1^2+x_1x_2+x_2^2)}{x_1^4+x_2^4}<\frac{\frac{x_1^2+x_2^2}{2}\left(x_1^2+x_2^2+\frac{x_1^2+x_2^2}{2}\right)}{x_1^4+x_2^4}=\frac{3}{2}\cdot\frac{(x_1^2+x_2^2)^2}{2(x_1^4+x_2^4)}<\frac{3}{2},$$

hiszen $2(x_1^4+x_2^4)>(x_1^2+x_2^2)^2$, ez ekvivalens azzal, hogy $(x_1^2-x_2^2)>0$, ami $x_1\neq x_2$ miatt nyilvánvaló. Ez azt jelenti, hogy bármely $1< k\leq n$ esetén $\frac{x_{k-1}^3-x_k^3}{x_{k-1}^4+x_k^4}<\frac{3}{2}\left(\frac{1}{x_k}-\frac{1}{x_{k-1}}\right)$. Összeadva ezen egyenlőtlenségek megfelelő oldalait

$$\sum_{k=2}^{n} \frac{x_{k-1}^3 - x_k^3}{x_{k-1}^4 + x_k^4} < \frac{3}{2} \sum_{k=2}^{n} \left(\frac{1}{x_k} - \frac{1}{x_{k-1}} \right) = \frac{3}{2} \left(\frac{1}{x_n} - \frac{1}{x_{n-1}} \right) = \frac{3(x_1 - x_n)}{2x_1 x_n},$$

és éppen ez volt a bizonyítandó állítás.

5. feladat: Igazoljuk, hogy ha P(x) egy legalább elsőfokú egész együtthatós polinom és x_1, x_2, \ldots, x_n $(n \ge 3)$ különböző egész számok, akkor a következő egyenlőségek nem lehetnek egyszerre igazak:

$$P(x_1) = x_2$$
; $P(x_2) = x_3$; ...; $P(x_n) = x_1$.

Pintér Ferenc (Nagykanizsa)

5. feladat I. megoldása: Ha létezne ilyen polinom és ilyen egészek, akkor, felhasználva azt a tételt, hogy egész együtthatós (nem azonosan nulla) polinom és a, b különböző egész számok esetén (a-b)|(P(a)-P(b)), teljesülne:

$$(x_1 - x_2)|(P(x_1) - P(x_2)),$$
 s így $(x_1 - x_2)|(x_2 - x_3),$ $(x_2 - x_3)|(P(x_2) - P(x_3)),$ s így $(x_2 - x_3)|(x_3 - x_4),$ \vdots $(x_n - x_1)|(P(x_n) - P(x_1)),$ s így $(x_n - x_1)|(x_1 - x_2).$

Ebből $|x_1 - x_2| \le |x_2 - x_3| \le \ldots \le |x_1 - x_2|$, így $|x_1 - x_2| = |x_2 - x_3| = \ldots = |x_1 - x_2|$ következik. Ez pedig n > 2 esetén különböző x_1, x_2, \ldots, x_n értékekre nem állhat fenn.

6. feladat: Az $A_1, A_2, A_3, \ldots, A_n$ pontok egy körvonalon helyezkednek el. Hányféleképpen lehet legfeljebb 100 szín felhasználásával kiszínezni a pontokat úgy, hogy a szomszédos pontok különböző színűek legyenek?

Erdős Gábor (Nagykanizsa)

6. feladat I. megoldása: Jelöljük a_n -nel a kérdéses számot! Nyilvánvalóan $a_2=100\cdot 99$ és $a_3=100\cdot 99\cdot 98.$ $n\geq 4$ esetén próbáljuk meg előállítani a_n -et a_{n-1} -ből és a_{n-2} -ből!

Ha az A_{n-2} és A_n pontok azonos színűek, akkor a köztük lévő A_{n-1} színe 99-féle lehet, és a fennmaradó n-2 pontot a_{n-2} -képp lehet színezni (A_{n-2} és A_n színe megegyezik). Ez $99a_{n-2}$ lehetőség.

Ha A_{n-2} és A_n színe nem egyezik meg, akkor A_{n-1} 98-féle színt kaphat, a maradék n-1 pontot pedig a_{n-1} -féleképp színezhetjük ki. Ez összesen $98a_{n-1}$ lehetőséget jelent.

Ezekből azt a következtetést vonhatjuk le, hogy $a_n = 98a_{n-1} + 99a_{n-2}$. A másodrendű rekurziót még meg kell oldanunk. A karakterisztikus egyenlet

$$x^2 - 98x - 99 = 0,$$

ennek a gyökei 99 és -1, tehát $a_n = A \cdot 99^n + B \cdot (-1)^n$. a_2 és a_3 vizsgálata alapján A = 1 és B = 99. Tehát $a_n = 99^n + (-1)^n \cdot 99$.