MAF 261 - Estatística Experimental

Prof. Fernando de Souza Bastos

Instituto de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Campus UFV - Florestal

Sumário

- Teste de hipóteses para uma média populacional
 - Teste-z
 - Teste-t
- Teste de hipóteses para duas médias populacionais
 - Teste F para Comparação de Variâncias de Duas Populações
 - Variâncias populacionais conhecidas
 - Variâncias Desconhecidas e Desiguais
 - Variâncias Desconhecidas, porém iguais
- Teste de hipóteses para o caso de duas amostras dependentes
- lacktriangle Teste χ^2 para a variância
- Testes para a Proporção de uma População

Testes para a Média de uma Distribuição Normal, Variância Conhecida

Consideraremos teste de hipóteses acerca da média μ de uma única população normal, em que a variância da população σ^2 é conhecida. Consideraremos uma amostra aleatória X_1, X_2, \cdots, X_n sendo retirada da população. Lembre-se, a média amostral \bar{X} é um estimador não tendencioso de μ com variância $\frac{\sigma^2}{n}$.

Testamos as hipóteses H_0 : $\mu = \mu_0$ versus H_1 que pode ser unilateral ou bilateral. A estatística do teste z para uma média é:

$$z_{cal} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Podemos encontrar o valor tabelado de z usando uma tabela apropriada a partir do nível de significância e da hipótese alternativa ou encontrar o valor - p e concluir de acordo com os resultados obtidos. Ao usar o valor tabelado, a regra de decisão será:

- $|z_{cal}| \ge z_{tab} \Rightarrow \text{rejeitamos } H_0$;
- caso contrário não rejeitamos H_0 .

Os sistemas de escape da tripulação de uma aeronave funcionam por causa de um propelente sólido. A taxa de queima desse propelente é uma característica importante do produto. As especificações requerem que a taxa média de queima tem de ser 50 centímetros por segundo. Sabemos que o desvio-padrão da taxa de queima é $\sigma = 2$ centímetros por segundo. O experimentalista decide especificar uma probabilidade do erro tipo I ou nível de significância de $\alpha = 0.05$. Ele seleciona uma amostra aleatória de n=25 e obtém uma taxa média amostral de queima de $\bar{x}=51,3$ centímetros por segundo. Que conclusões poderiam ser tiradas?

$$H_0: \mu = 50 cm/s$$

 $H_1: \mu \neq 50 cm/s$

A estatística do teste z para uma média é:

$$z_{cal} = \frac{51.3 - 50}{\frac{2}{\sqrt{25}}} = 3.25$$

O p-valor do teste é p-valor= $2*(1-\Phi(3.25))=0.0012$. Os limites das regiões critícas são $z_{tab}=z_{0.025}=1.96$ e $-z_{tab}=-z_{0.025}=-1.96$

Aulas 5, 6 e 7

Conclusão: Como o p-valor é menor que α rejeita-se H_0 ao nível de $\alpha=5\%$ de significância. De outra forma, como $|z_{cal}|>|z_{tab}|$ rejeita-se H_0 ao nível de $\alpha=5\%$ de significância.

Testes para a Média de uma Distribuição Normal, Variância desconhecida

A aplicação do teste t é indicada quando o tamanho amostral é igual ou inferior a 30 elementos. Para amostras com tamanho superior a 30, recomenda-se o teste Z.

Testes para a Média de uma Distribuição Normal, Variância desconhecida

A aplicação do teste t é indicada quando o tamanho amostral é igual ou inferior a 30 elementos. Para amostras com tamanho superior a 30, recomenda-se o teste Z.

Ressalta-se que o uso do teste t pressupõe distribuição normal com variância populacional desconhecida.

Teste de hipóteses para uma média populacional

Este teste é usado para verificar se a média de uma característica de uma população assume um valor especificado, digamos μ_0 . Para aplicação deste teste devemos selecionar uma amostra aleatória de tamanho n da população. Digamos que os elementos amostrais sejam; X_1, X_2, \cdots, X_n . Com base nestes elementos amostrais, calculamos a sua média, \bar{x} , e seu desvio padrão, s. Estas estatísticas são então utilizadas para calcular o valor de t_{cal} usando a expressão:

$$t_{cal} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Esta estatística t, tem distribuição t de Student com n-1 graus de liberdade.

Teste de hipóteses para uma média populacional

Para decidirmos entre Rejeitar ou Não-Rejeitar H_0 , comparamos o valor de t com o valor tabelado de t obtido por $t_{tab} = t_{\alpha}(n-1)$. Depois de obtido o valor calculado e o valor tabelado de t, usamos a seguinte regra decisória:

- $|t_{cal}| \ge t_{tab} \Rightarrow \text{rejeitamos } H_0$;
- caso contrário não rejeitamos H_0 .

A disponibilidade crescente de materiais leves com alta resistência tem revolucionado o projeto e a fabricação de tacos de golfe, particularmente os direcionadores. Tacos com cabeças ocas e faces muito finas podem resultar em tacadas muito mais longas, especialmente para jogadores de habilidades modestas. Isso é causado parcialmente pelo "efeito mola" que a face fina impõe à bola. Bater na bola de golfe com a cabeça do taco e medir a razão entre a velocidade de saída da bola e a velocidade de chegada pode quantificar esse efeito mola. A razão de velocidades é chamada de coeficiente de restituição do taco.

Um experimento foi feito, em que 15 tacos direcionadores, produzidos por determinado fabricante de tacos, foram selecionados ao acaso e seus coeficientes de restituição foram medidos. No experimento, bolas de golfe foram atiradas a partir de um canhão de ar, de modo que a velocidade de chegada e a taxa de giro da bola poderiam ser precisamente controladas. É de interesse determinar se há evidência (com $\alpha=0,05$) que suporte a afirmação de que o coeficiente médio de restituição excede 0,82. As observações seguem:

```
0,8411 0,8191 0,8182 0,8125 0,8750 0,8580 0,8532 0,8483 0,8276 0,7983 0,8042 0,8730 0,8282 0,8359 0,8660
```

A média e o desvio-padrão da amostra são $\bar{x} = 0,83725$ e s = 0,02456.

Aulas 5, 6 e 7

Fernando de Souza Bastos

```
> dados < c(0.8411, 0.8191, 0.8182, 0.8125, 0.8750, 0.8580,
             0.8532, 0.8483, 0.8276, 0.7983, 0.8042, 0.8730,
             0.8282,0.8359,0.8660)
> # Gráfico de probabilidade (QQ)
 ggnorm (dados,
         main = "", xlab = "Quantis teóricos N(0,1)",
         pch = 20,
         ylab = "coeficiente médio de restituição",
        xlim=c(-2,2),
         vlim=c(0.75,0.9)
 ggline(dados, lty = 2, col = "red")
```

O gráfico de probabilidade normal dos dados suporta a suposição de que o coeficiente médio de restituição é normalmente distribuído.

Logo, podemos utilizar o teste t:

$$H_0: \mu = 0.82$$

 $H_1: \mu > 0.82$

A estatística do teste t para uma média é:

$$t_{cal} = \frac{0.83725 - 0.82}{\frac{0.02456}{\sqrt{15}}} = 2.72$$

O limite da região critíca é $t_{tab} = t_{0.05}(14) = 1,76$ **Conclusão:** Como $|t_{cal}| > |t_{tab}|$ rejeita-se H_0 ao nível de $\alpha = 5\%$ de significância.

Teste de hipóteses para duas médias populacionais

O objetivo deste teste é verificar se duas populações, digamos população 1 e população 2 apresentam um mesmo valor médio para uma determinada característica, isto é, deseja-se verificar se $\mu_1 = \mu_2$. Com esta finalidade é necessário obter uma amostra de cada população. Estas duas amostras podem ser relacionadas ou não, ou seja, podem ser dependentes ou independentes uma da outra. Esta distinção no relacionamento das duas amostras gera dois testes distintos. Além disso, podemos ter variâncias populacionais conhecidas, iguais ou diferentes, ou variâncias populacionais desconhecidas, que também podem ser iguais ou diferentes. Para cada caso também temos um teste. Antes de ver tais testes, precisamos conhecer o teste F de Snedecor.

Teste F para Comparação de Variâncias de Duas Populações

Este teste é indicado para verificar se duas populações, digamos 1 e 2, apresentam igual valor para o parâmetro variância. Em termos de hipóteses estatísticas teríamos:

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 > \sigma_2^2 \end{cases} \quad \text{ou} \quad \begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 < \sigma_2^2 \end{cases} \quad \text{ou} \quad \begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases} \quad (1)$$

A estatística F usada para decidir entre Rejeitar ou Não-Rejeitar H_0 é dada pelo quociente entre as duas estimativas de variância, ou seja:

$$F_{cal} = \frac{S_1^2}{S_2^2}$$

Sob a hipótese de nulidade, este quociente tem distribuição F, de Fisher-Snedecor, com n_1 e n_2 graus de liberdade, ou seja a distribuição de probabilidades da estatística F depende dos números de graus de liberdade n_1 e n_2 . A conclusão do teste é feita mediante a comparação do valor de F_{cal} com o valor de $F_{tab} = F_{\alpha}(n_1, n_2)$. Se $F_{cal} > F_{tab}$ Rejeita-se H_0 ao nível α de probabilidade. Caso contrário Não-Rejeita-se H_0 .

Com o intuito de controlar a homogeneidade da produção de certas partes ao longo do tempo, amostras semanais são retiradas da produção corrente. Uma primeira amostra, de dez elementos, forneceu média $\bar{x}=284.55$ e desvio padrão $s_1=0.320$, ao passo que, numa segunda amostra, forneceu, nas mesmas unidades, os seguintes valores:

284.6 283.9 284.8 285.2 284.3 283.7 284.0

Ao nível de 5% de significância, podemos concluir que a semana 2 apresentou maior variabilidade que a semana 1?

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma 1^2 < \sigma_2^2$

$$F_{cal} = \frac{S_1^2}{S_2^2} = \frac{0,289}{0,1024} = 2,82 \tag{2}$$

O limite da região critíca é $F_{tab} = F_{6,9}(0,05) = 3,37$ **Conclusão:** Como $F_{cal} < F_{tab}$ não rejeita-se H_0 ao nível de $\alpha = 5\%$ de significância.

Aulas 5, 6 e 7

Variâncias populacionais conhecidas

Suponha $P_1 \sim N(\mu_1, \sigma_1^2)$ e $P_2 \sim N(\mu_2, \sigma_2^2)$. Queremos testar a hipótese $H_0: \mu_1 = \mu_2$. Se as variâncias populacionais são conhecidas (iguais ou diferentes), a estatística

$$Z_{cal} = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

tem distribuição normal padrão, sob a hipótese nula H_0 , e poderia ser usada para testar H_0 contra H_1 .

Contudo, nas situações de interesse prático, as variâncias não são conhecidas, devendo ser substituídas por estimativas convenientes. Aqui, a distribuição t de Student desempenha papel importante. Vejamos os próximos slides!

Variâncias Desconhecidas e Desiguais

Quando a hipótese de igualdade de variâncias for rejeitada pelo teste F, devemos usar a estatística

$$t_{cal}=rac{ar{X}-ar{Y}}{\sqrt{rac{S_1^2}{n}+rac{S_2^2}{m}}}$$

o número de graus de liberdade é dado aproximadamente por:

$$df = \frac{(A+B)^2}{\frac{A^2}{n-1} + \frac{B^2}{m-1}}, \ A = \frac{S_1^2}{n}, \ B = \frac{S_2^2}{m}$$

Variâncias Desconhecidas e Desiguais

Quando a hipótese de igualdade de variâncias for rejeitada pelo teste F, devemos usar a estatística

$$t_{cal} = rac{ar{X} - ar{Y}}{\sqrt{rac{S_1^2}{n} + rac{S_2^2}{m}}}$$

o número de graus de liberdade é dado aproximadamente por:

$$df = \frac{(A+B)^2}{\frac{A^2}{n-1} + \frac{B^2}{m-1}}, \ A = \frac{S_1^2}{n}, \ B = \frac{S_2^2}{m}$$

Como esse valor é geralmente fracionário, arredonde para o inteiro mais próximo para obter o número de graus de liberdade.

Aulas 5, 6 e 7

Teste de hipóteses para o caso de duas amostras independentes

Duas amostras são ditas serem independentes quando não existe nada que as relacione. Nesta situação, os valores amostrais foram obtidos em conjuntos amostrais distintos, ou seja, os elementos amostrais que originaram os valores de uma amostra são distintos dos elementos amostrais que originaram a segunda amostra.

Conforme mencionado anteriormente, para comparar as médias das duas populações, toma-se uma amostra de cada população. Suponha que as amostras geradas sejam $X_{11}, X_{12}, \cdots, X_{1n}$ e $X_{21}, X_{22}, \cdots, X_{2m}$, onde o tamanho das amostras podem ser diferentes, ou seja, n pode ser diferente de m. Para cada amostra, então calcula-se a sua média e variância. Se as variâncias populacionais são iguais (faça um teste f para verificar isso), um estimador comum para a variância é obtido tomando-se uma média ponderada das estimativas de variância obtidas para as duas amostras. O tamanho da amostra é utilizado como um peso para o cálculo desta variância média ponderada.

A obtenção de um estimador comum para a variância pressupõe que a variância das duas populações sejam idênticas, ou seja $\sigma_1^2 = \sigma_2^2$. A fórmula do estimador comum é:

$$s_c^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

em que s_1^2 e s_2^2 são as variâncias amostrais das populações 1 e 2, respectivamente.

Uma vez obtidas estas estimativas, calcula-se o valor da estatística t dada por:

$$t_{cal} = rac{(ar{x}_1 - ar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_c^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}}$$

Esta estatística tem distribuição t de Student com $(n_1 + n_2 - 2)$ graus de liberdade. Faz-se então a comparação do valor calculado de t com o valor tabelado dado por $t_{tab} = t_{\alpha}(n_1 + n_2 - 2)$, usando a regra:

- $|t_{cal}| \ge t_{tab} \Rightarrow \text{rejeitamos } H_0$;
- caso contrário não rejeitamos H_0 .

Os dados que seguem referem-se a cinco determinações da resistência de dois tipos de concreto. Ao nível de 5% de significância, há evidência de que o concreto 1 seja mais resistente que o concreto 2?

Concreto 1					
Concreto 2	50	54	56	52	53

*Procedemos o teste F e não rejeitamos H_0 : $\sigma_1^2 = \sigma_2^2$

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 > \mu_2$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_c^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(55 - 53)}{\sqrt{6.25 \left(\frac{1}{5} + \frac{1}{5}\right)}} = 1.265$$

O limite da região critíca é $t_{tab} = t_{0.05}(8) = 1,86$

Conclusão: Como $|t_{cal}| < |t_{tab}|$ não rejeita-se H_0 ao nível de $\alpha = 5\%$ de significância.

Teste de hipóteses para o caso de duas amostras dependentes

Duas amostras de elementos são ditas serem dependentes quando existe algo que as relacione. Por exemplo, se os valores de duas amostras foram obtidos de um mesmo conjunto de elementos amostrais, podemos dizer que as duas amostras de valores são dependentes uma vez que foram tomados de um conjunto de elementos amostrais comum.

Teste de hipóteses para o caso de duas amostras dependentes

Duas amostras de elementos são ditas serem dependentes quando existe algo que as relacione. Por exemplo, se os valores de duas amostras foram obtidos de um mesmo conjunto de elementos amostrais, podemos dizer que as duas amostras de valores são dependentes uma vez que foram tomados de um conjunto de elementos amostrais comum.

O objetivo neste caso é verificar se houve alteração na média de uma população quando a mesma é avaliada sob duas condições diferentes. Cada condição representa uma população distinta, embora se suponha que os elementos populacionais sejam os mesmos nas duas condições.

Para verificar se houve alteração na média, avalia-se uma característica de interesse do pesquisador num conjunto de elementos amostrais tomados ao acaso na população quando a mesma esteja sob a condição 1. Digamos que a avaliação da característica resulte nos seguintes valores amostrais $X_{11}, X_{12}, \cdots, X_{1n}$.

Depois de feita esta avaliação, os elementos amostrais que originaram a primeira amostra, sejam submetidos à condição 2. Os mesmos elementos amostrais são novamente avaliados para a mesma característica na nova condição 2. Digamos que esta nova avaliação resulte nos seguintes valores amostrais $X_{21}, X_{22}, \cdots, X_{2n}$. Se a condição 2 não tiver nenhum efeito, espera-se que em média os valores observados nas duas condições sejam iguais.

Em termos de desvios, se a alteração das condições não resultasse em nenhum efeito significativo, poderíamos dizer que a diferença entre os valores observados na primeira condição e na segunda condição seria em média igual a zero. Portanto para verificar se houve alteração na média de uma população avaliada em duas condições diferentes, pode-se testar a hipótese de que o desvio médio ser estatisticamente igual a zero.

Portanto, a partir de duas amostras obtém-se uma outra baseada nos desvios, conforme é mostrado a seguir.

Elemento amostral i	1	2		n
amostra 1	X_{11}	X_{12}		X_{1n}
amostra 2	X_{21}	X_{22}	• • •	X_{2n}
$d_i = X_{1i} - X_{2i}$	d_1	d_2	• • •	d_n

Apresentado desta forma, o teste t para duas amostras dependentes reduzse teste t para uma média populacional, visto anteriormente. No presente caso, deseja-se testar se a média dos desvios é igual por exemplo a um valor μ_0 .

Para decidir entre Rejeitar ou Não-Rejeitar a hipótese de nulidade, deve-se calcular o valor da estatística t dada por

$$t_{cal} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \quad \text{em que} \quad \bar{x} = \frac{\sum_{i=1}^{n} d_i}{n} \quad \text{e} \quad s^2 = \frac{\sum_{i=1}^{n} d_i^2 - \frac{(\sum_{i=1}^{n} d_i)^2}{n}}{n-1}$$

Sob H_0 , esta estatística t tem distribuição t de Student com n-1 graus de liberdade. A comparação deste valor calculado com o valor de t_{tab} dado por $t_{tab}=t_{\alpha}(n-1)$ nos leva a conclusão do teste.

Com o objetivo de avaliar se determinado produto químico é eficiente para repelir insetos domésticos, foi realizada uma contagem do número de insetos, antes e após a aplicação deste produto químico, em 7 residências. O número de insetos observado em cada residência foi

Residência	1	2	3	4	5	6	7
Antes da aplicação	8	6	7	8	9	6	7
Após a aplicação	4	0	3	5	3	4	2
Diferença (d_i)	4	6	4	3	6	2	5

Por meio destes dados e ao nível de 5% de probabilidade, é possível concluir, em termos médios, que o produto utilizado é eficiente para repelir insetos?

$$H_0: \mu_d = 0$$
 $H_1: \mu_d > 0$
 $t_{cal} = \frac{(4.286 - 0)}{\sqrt{\frac{2.24}{7}}} = 7.58$

O limite da região critíca é $t_{tab} = t_{0.05}(6) = 1,94$ **Conclusão:** Como $|t_{cal}| > |t_{tab}|$ rejeita-se H_0 ao nível de $\alpha = 5\%$ de significância.

Aulas 5, 6 e 7

Teste χ^2 para a variância

Suponha que desejamos testar a hipótese de que a variância de uma população normal σ^2 seja igual a um valor específico, como σ_0^2 , ou equivalentemente, que o desvio-padrão σ seja igual a σ_0 . Seja X_1, X_2, \cdots, X_n uma amostra aleatória de n observações, proveniente dessa população. Para testar

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 > \sigma_0^2$

usaremos a estatística de teste:

$$\chi_{cal}^2 = \frac{(n-1)S^2}{\sigma_0^2} \tag{3}$$

Teste χ^2 para a variância

Se a hipótese nula H_0 : $\sigma^2=\sigma_0^2$ for verdadeira, então a estatística de teste χ^2 , definida na Equação (3), segue a distribuição qui-quadrado, com n-1 graus de liberdade.

Uma máquina de enchimento automático é usada para encher garrafas com detergente líquido. Uma amostra aleatória de 20 garrafas resulta em uma variância amostral de volume de enchimento de $s^2 = 0.0153 ml^2$. Se a variância do volume de enchimento exceder 0,01, existirá uma proporção inaceitável de garrafas cujo enchimento não foi completo e cujo enchimento foi em demasia. Há evidência nos dados da amostra sugerindo que o fabricante tenha um problema com garrafas cheias com falta e excesso de detergente? Use $\alpha = 0.05$ e considere que o volume de enchimento tenha uma distribuição normal.

$$H_0: \sigma^2 = 0.01$$

 $H_1: \sigma^2 > 0.01$

$$\chi_{cal}^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{19 \times 0.0153}{0.01} = 29.07 \tag{4}$$

O limite da região critíca é $\chi_{tab} = \chi_{0.05}(19) = 30,14$

Conclusão: Como $|\chi_{cal}| < |\chi_{tab}|$ não rejeita-se H_0 ao nível de $\alpha = 5\%$ de significância. Logo, não há forte evidência de um problema com garrafas preenchidas incorretamente.

Aulas 5, 6 e 7

Muitos experimentos são tais que os resultados apresentam ou não uma determinada característica. Por exemplo:

uma moeda é lançada: o resultado ou é cara, ou não (ocorrendo, então, coroa);

- uma moeda é lançada: o resultado ou é cara, ou não (ocorrendo, então, coroa);
- um dado é lançado: ou ocorre face 5 ou não (ocorrendo, então, uma das faces 1, 2, 3, 4 ou 6);

- uma moeda é lançada: o resultado ou é cara, ou não (ocorrendo, então, coroa);
- um dado é lançado: ou ocorre face 5 ou não (ocorrendo, então, uma das faces 1, 2, 3, 4 ou 6);
- uma peça é escolhida ao acaso de um lote contendo 500 peças: essa peça é defeituosa ou não;

- uma moeda é lançada: o resultado ou é cara, ou não (ocorrendo, então, coroa);
- um dado é lançado: ou ocorre face 5 ou não (ocorrendo, então, uma das faces 1, 2, 3, 4 ou 6);
- uma peça é escolhida ao acaso de um lote contendo 500 peças: essa peça é defeituosa ou não;
- uma pessoa escolhida ao acaso dentre 1.000 é ou não do sexo masculino;

- uma moeda é lançada: o resultado ou é cara, ou não (ocorrendo, então, coroa);
- um dado é lançado: ou ocorre face 5 ou não (ocorrendo, então, uma das faces 1, 2, 3, 4 ou 6);
- uma peça é escolhida ao acaso de um lote contendo 500 peças: essa peça é defeituosa ou não;
- uma pessoa escolhida ao acaso dentre 1.000 é ou não do sexo masculino;
- uma pessoa é escolhida ao acaso entre os moradores de uma cidade e verifica-se se ela é favorável ou não a um projeto municipal.

Em todos esses casos, estamos interessados na ocorrência de sucesso (cara, face 5 etc.) ou fracasso (coroa, face diferente de 5 etc.). Para cada experimento acima, podemos definir uma v.a. X, que assume apenas dois valores: 1, se ocorrer sucesso, e 0, se ocorrer fracasso. Indicaremos por p a probabilidade de sucesso, isto é, P(sucesso) = P(S) = p, 0 .

Definição: Uma variável aleatória X, que assume apenas os valores 0 e 1, com função de probabilidade (x, p(x)) tal que

$$p(0) = P(X = 0) = 1 - p;$$

 $p(1) = P(X = 1) = p$

é chamada variável aleatória de Bernoulli. Note que,

$$E(X) = p;$$

 $V(X) = p(1-p)$

Definição: Uma variável aleatória X, que assume apenas os valores 0 e 1, com função de probabilidade (x, p(x)) tal que

$$p(0) = P(X = 0) = 1 - p;$$

 $p(1) = P(X = 1) = p$

é chamada variável aleatória de Bernoulli. Note que,

$$E(X) = p;$$

 $V(X) = p(1-p)$

Observação: Experimentos que resultam numa v.a. de Bernoulli são chamados ensaios de Bernoulli. Usamos a notação $X \sim Ber(p)$ para indicar uma v.a. com distribuição de Bernoulli com parâmetro p.

Imagine, agora, que repetimos um ensaio de Bernoulli n vezes, ou, de maneira alternativa, obtemos uma amostra de tamanho n de uma distribuição de Bernoulli. Suponha ainda que as repetições sejam independentes, isto é, o resultado de um ensaio não tem influência nenhuma no resultado de qualquer outro ensaio. Uma amostra particular será constituída de uma seqüência de sucessos e fracassos, ou, alternativamente, de uns e zeros.

Imagine, agora, que repetimos um ensaio de Bernoulli n vezes, ou, de maneira alternativa, obtemos uma amostra de tamanho n de uma distribuição de Bernoulli. Suponha ainda que as repetições sejam independentes, isto é, o resultado de um ensaio não tem influência nenhuma no resultado de qualquer outro ensaio. Uma amostra particular será constituída de uma seqüência de sucessos e fracassos, ou, alternativamente, de uns e zeros.

Por exemplo, repetindo um ensaio de Bernoulli cinco vezes (n = 5), um particular resultado pode ser FSSFS ou a quíntupla ordenada (0, 1, 1, 0, 1). Usando a notação P(S) = p, a probabilidade de tal amostra será:

$$(1-p)pp(1-p)p = p^3 * (1-p^2)$$

O número de sucessos nessa amostra é igual a 3, sendo 2 o número de fracassos.

Designamos por X o número total de sucessos em n ensaios de Bernoulli, com probabilidade de sucesso p, 0 . Os possíveis valores de <math>X são 0, 1, 2, ..., n e os pares (x, p(x)), onde p(x) = P(X = x), constituem a chamada distribuição binomial.

Assim, numa seqüência de n ensaios de Bernoulli, a probabilidade de obter x sucessos (e portanto n-x fracassos), x=0,1,2,...,n, com P(S)=p,P(F)=1-p=q, é dado por $p^x(1-p)^{n-x}=p^xq^{n-x}$, devido à independência dos ensaios. Mas qualquer seqüência com x sucessos e n-x fracassos terá a mesma probabilidade. Portanto resta saber quantas seqüências com a propriedade especificada podemos formar. É fácil ver que existem

$$\binom{n}{x} = \frac{n!}{x!(n-x)!},$$

logo,

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}, \ x = 0, 1, 2, ..., n.$$

Se X tem distribuição binomial com parâmetros n e p, indicamos $X \sim Bin(n,p)$. Nesse caso,

$$E(X) = np;$$

 $V(X) = np(1-p)$

Testes para a Proporção de uma População

Em muitos problemas de engenharia, estamos preocupados com uma variável aleatória que siga a distribuição binomial. Por exemplo, considere um processo de produção que fabrica itens que são classificados como aceitáveis ou defeituosos. É geralmente razoável modelar a ocorrência de defeitos com a distribuição binomial, em que o parâmetro binomial p representa a proporção de itens defeituosos produzidos. Consequentemente, muitos problemas de decisão em engenharia incluem teste de hipóteses para p.

Consideraremos o teste

$$H_0: p = p_0$$

 $H_1: p \neq p_0$

Seja X o número de observações em uma amostra aleatória de tamanho n que pertence à classe associada a p. Então, se a hipótese nula $H_0: p=p_0$ for verdadeira, teremos $X \sim N[np_0, np_0(1-p_0)]$, aproximadamente. Para testar $H_0: p=p_0$, calcule a estatística de teste:

$$z_{cal} = \frac{\bar{x} - np_0}{\sqrt{np_0(1 - p_0)}}, \ \bar{x} = n\hat{p}$$
 (5)

Se a hipótese nula $H0: p = p_0$ for verdadeira, então a estatística de teste z, definida na Equação (5), segue a distribuição normal padrão.

Um fabricante de semicondutores produz controladores usados em aplicações no motor de automóveis. O consumidor requer que a fração defeituosa em uma etapa crítica de fabricação não exceda 0,05 e que o fabricante demonstre uma capacidade de processo nesse nível de qualidade, usando $\alpha=0,05$. O fabricante de semicondutores retira uma amostra aleatória de 200 aparelhos e encontra que quatro deles são defeituosos. O fabricante pode demonstrar uma capacidade de processo para o consumidor?

$$H_0: p = 0,05$$

 $H_1: p < 0,05$

$$z_{cal} = \frac{\bar{x} - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{4 - 200 \times (0, 05)}{\sqrt{200 \times 0, 05 \times (0, 95)}} = -1,95$$
 (6)

O valor p é dado por valor-p= $\Phi(-1,95) = 0,0256$

Conclusão: Como p-valor< $\alpha=0,05$ rejeita-se H_0 ao nível de $\alpha=5\%$ de significância. Concluímos que a fração defeituosa do processo, p, é menor do que 0,05 e, portanto, o processo é capaz.

Aulas 5, 6 e 7