Devoir 5 : Théorie des champs I (PHY 6812)

Prof. W. Witczak-Krempa

À remettre : mercredi 14 décembre à 16h00. Valeur : les questions ont le même poids.

- 1. Fonctions de correlation pour QFT scalaire interagissante ϕ^4 . Calculez $\langle \Omega | T(\hat{\phi}(x)\hat{\phi}(y)\hat{\phi}(z)) | \Omega \rangle$, où $\hat{\phi}(x)$ est dans le point de vue d'Heisenberg.
- 2. Fonctions de correlation pour QFT scalaire interagissante ϕ^3 . Nous allons travaillez avec la QFT de Klein-Gordon augmentée du terme d'interaction suivant

$$\hat{H}_{\text{int}} = \int d^3 \mathbf{x} \frac{\lambda}{3!} \hat{\phi}(\mathbf{x})^3 \tag{1}$$

L'énergie classique n'est pas bornée par le bas, mais ne vous inquiétez pas. Nous pourrions ajouter un terme ϕ^4 pour rectifier la situation, mais ce ne sera pas nécessaire pour cette question.

- a) Déterminez $\langle 0|T\left\{\hat{\phi}_I(x)\hat{\phi}_I(y)\exp\left(-i\int_{-\infty}^{\infty}dt\hat{H}_I(t)\right)\right\}|0\rangle$ à l'ordre λ^2 inclusivement. Exprimez votre réponse en fonction de D_F . Donnez les diagrammes de Feynman pour chaque terme.
- b) Comme (b), mais pour $\langle 0|T \exp\left(-i\int_{-\infty}^{\infty} dt \hat{H}_I(t)\right)|0\rangle$.
- c) Calculez $\langle \Omega | T(\hat{\phi}(x)\hat{\phi}(y)\hat{\phi}(z)) | \Omega \rangle$ à l'ordre λ inclusivement. Ici, $\hat{\phi}(x)$ est dans le point de vue d'Heisenberg. $|\Omega\rangle$ est l'état fondamental de l'Hamiltonien complet $\hat{H}=\hat{H}_0+\hat{H}_{\rm int}$.
- 3. Scattering of bosons in ϕ^4 theory.

Work in D=4 spacetime dimensions. Pour la diffusion $\phi\phi\to\phi\phi$, déterminez l'élément de matrice invariant \mathcal{M} à l'ordre λ^2 inclusivement. Pour évaluer certaines intégrales, il peut s'avérer utile de faire la continuation analytique en fréquences imaginaires : $q^0\to iq_E$, où E veut dire Euclidien.