CSCI 4150U - LAB 2

Thinh Le - 100741899

```
In [1]:
import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting import parallel_coordinates
```

Out[2]:

		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	class
Ī	0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ-spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
	3	53	Private	234721	11th	7	Married- civ-spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
	4	28	Private	338409	Bachelors	13	Married- civ-spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
	32556	27	Private	257302	Assoc- acdm	12	Married- civ-spouse	Tech-support	Wife	White	Female	0	0	38	United- States	<=50K
	32557	40	Private	154374	HS-grad	9	Married- civ-spouse	Machine-op- inspct	Husband	White	Male	0	0	40	United- States	>50K
	32558	58	Private	151910	HS-grad	9	Widowed	Adm-clerical	Unmarried	White	Female	0	0	40	United- States	<=50K
	32559	22	Private	201490	HS-grad	9	Never- married	Adm-clerical	Own-child	White	Male	0	0	20	United- States	<=50K
	32560	52	Self-emp- inc	287927	HS-grad	9	Married- civ-spouse	Exec- managerial	Wife	White	Female	15024	0	40	United- States	>50K

Part I:

```
In [3]: # For each continuous attribute, calculate its average, standard deviation, minimum, and maximum values
         for col in data.select_dtypes(exclude=['object']).columns.tolist():
    print('%s:' % (col))
             print('\t Mean = %.2f' % data[col].mean())
             print('\t Standard deviation = %.2f' % data[col].std())
             print('\t Minimum = %.2f' % data[col].min())
print('\t Maximum = %.2f' % data[col].max())
         age:
                   Mean = 38.58
                   Standard deviation = 13.64
                   Minimum = 17.00
                   Maximum = 90.00
         fnlwgt:
                   Mean = 189778.37
                   Standard deviation = 105549.98
                   Minimum = 12285.00
                  Maximum = 1484705.00
         education-num:
                  Mean = 10.08
                   Standard deviation = 2.57
                   Minimum = 1.00
                  Maximum = 16.00
         capital-gain:
                  Mean = 1077.65
                   Standard deviation = 7385.29
                   Minimum = 0.00
                  Maximum = 99999.00
         capital-loss:
                  Mean = 87.30
                   Standard deviation = 402.96
                  Minimum = 0.00
                  Maximum = 4356.00
         hours-per-week:
                  Mean = 40.44
                   Standard deviation = 12.35
                   Minimum = 1.00
                   Maximum = 99.00
```

```
In [4]: # For the discrete attribute, count the frequency for each of its distinct values
                     for col in data.select_dtypes(include=['object']).columns.tolist():
                           print('%s:' % (col))
                           print('%s \n' % data[col].value_counts())
                     workclass:
                                                                    22696
                     Private
                     Self-emp-not-inc 2541
Local-gov 2093
State-gov 1298
                     Self-emp-inc 1116
Federal-gov 960
Without-pay 14
Never-worked 7
                     Name: workclass, dtype: int64
                    education:
HS-grad 10501

      Some-college
      7291

      Bachelors
      5355

      Masters
      1723

      Assoc-voc
      1382

      11th
      1175

      Assoc-acdm
      1067

      10th
      933

      7th-8th
      646

      Prof-school
      576

      9th
      514

      12th
      433

      Doctorate
      413

      5th-6th
      333

      1st-4th
      168

      Preschool
      51

      Name: education, dtype:

                      Some-college 7291
```

Name: education, dtype: int64

marital-status:	
Married-civ-spouse	14976
Never-married	10683
Divorced	4443
Separated	1025
Widowed	993
Married-spouse-absent	418
Married-AF-spouse	23

Name: marital-status, dtype: int64

occupation:		
Prof-specialty	4140	
Craft-repair	4099	
Exec-managerial	4066	
Adm-clerical	3770	
Sales	3650	
Other-service	3295	
Machine-op-inspct	2002	
Transport-moving	1597	
Handlers-cleaners	1370	
Farming-fishing	994	
Tech-support	928	
Protective-serv	649	
Priv-house-serv	149	
Armed-Forces	9	
A		

Name: occupation, dtype: int64

relationship:

Husband	13193
Not-in-family	8305
Own-child	5068
Unmarried	3446
Wife	1568
Other-relative	981

Name: relationship, dtype: int64

race:

White	27816
Black	3124
Asian-Pac-Islander	1039
Amer-Indian-Eskimo	311
Other	271

Name: race, dtype: int64

sex:

Male 21790 Female 10771

Name: sex, dtype: int64

native country.	
native-country: United-States	29170
Mexico	643
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Guatemala	64
Japan	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43
Portugal	37
Nicaragua	34
Peru	31
France Greece	29 29
Ecuador	28
Ireland	24
Hong	20
Cambodia	19
Trinadad&Tobago	19
Laos	18
Thailand	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc)	14
Honduras	13
Hungary	13
Scotland	12
Holand-Netherlands	1
Name: native-country, dtype:	int64
class:	
<=50K 24720	
>50K 7841	
Name of the desired April 2	

Name: class, dtype: int64

Out[5]: <AxesSubplot: >

In [6]: # Class "<=50K" has significantly more records than class ">50K"
There are nearly triple amounts of people with income <=50K than people with income >50K

In [7]: # Draw the distribution of values for a continuous attribute using a histogram
data['age'].hist(bins=18)

Out[7]: <AxesSubplot: >

In [8]: # People recorded in the datasets are primarily in their 20s to 50s

```
In [9]: plt.scatter(data['age'], data['capital-gain'], s=5, color='red')
    plt.xlabel('age')
    plt.ylabel('capital-gain')
    plt.semilogy(10)
```

Out[9]: [<matplotlib.lines.Line2D at 0x1f5019b9d30>]

In [10]: # There is no relationship between age and capital gain of a person # Most people recoreded in the datasets have capital gain around 1000 to 10000

```
In [11]: plt.scatter(data['age'], data['capital-loss'], s=5, color='blue')
    plt.xlabel('age')
    plt.ylabel('capital-loss')
    plt.semilogy(10)
```

Out[11]: [<matplotlib.lines.Line2D at 0x1f5051b3eb0>]

In [12]: # There is no relationship between age and capital loss of a person # Most people recoreded in the datasets have capital loss around 1000 to 4000

```
In [13]: plt.scatter(data['education-num'], data['capital-gain'], s=5, color='green')
    plt.xlabel('education-num')
    plt.ylabel('capital-gain')
    plt.semilogy(10)
```

Out[13]: [<matplotlib.lines.Line2D at 0x1f5054525b0>]

In [14]: # There is no relationship between the number of years of education and capital gain of a person # The number of years of education doesn't affect the capital gain of a person

```
In [15]: plt.scatter(data['age'], data['hours-per-week'], s=5, color='orange')
   plt.xlabel('age')
   plt.ylabel('hours-per-week')
```

Out[15]: Text(0, 0.5, 'hours-per-week')

In [16]: # Most people recorded in the datasets work around 40 to 50 hours per week # Most people in their 20s work less, around 20 hours per week # As age increases, people work fewer hours per week

```
In [17]: # Draw a parallel diagram for some attributes in the data set
plot_data = data[['age', 'education-num', 'hours-per-week', 'class']]
plot_sample = plot_data.sample(frac=.005)
parallel_coordinates(plot_sample, 'class', color=['blue', 'red'])
```

Out[17]: <AxesSubplot: >

In [18]: # People with income >50K have a higher number of years of education and work more hours per week # Age doesn't affect the income of a person, a person can have an income >50K with very low years of age

Part II:

0

```
In [19]: # Identify which attributes have missing values
                     nan cols = []
                     for col in data.columns:
                         if data[col].isnull().values.any():
                             nan cols.append(col)
                     print(nan_cols)
                     ['workclass', 'occupation', 'native-country']
In [20]: # Draw a histogram of the attribute before replacing missing values
In [21]: data['workclass'].hist(bins=data['workclass'].nunique()*2, xrot=90)
Out[21]: <AxesSubplot: >
          20000
          15000
          10000
           5000
```

Private

Federal-gov

Local-gov

Self-emp-inc

Without-pay

Never-worked

Self-emp-not-inc

Out[22]: <AxesSubplot: >

Out[23]: <AxesSubplot: >


```
In [24]: # Replacing missing values by the average or mode of the attribute (based on attribute types)
fillna_data = data
for col in nan_cols:
    fillna_data[col].fillna_data[col].mode()[0], inplace=True)
```

In [25]: # Draw a histogram of the attribute after replacing missing values by the above method

In [26]: fillna_data['workclass'].hist(bins=fillna_data['workclass'].nunique()*2, xrot=90)

Out[26]: <AxesSubplot: >

Out[27]: <AxesSubplot: >

In [31]: # Draw a histogram of the attribute after replacing missing values by the above method

```
In [32]: fillna_data['workclass'].hist(bins=fillna_data['workclass'].nunique()*2, xrot=90)
```

Out[32]: <AxesSubplot: >

Out[33]: <AxesSubplot: >

Out[34]: <AxesSubplot: >

