

DENSITY BASED CLUSTERING

DECEMBER 12, 2017

The central idea of K-means clustering is partitioning the space based on the closest mean.

The blue points are closer to the blue mean and so forth...

The central idea of K-means clustering is partitioning the space based on the closest mean.

The clusters are all convex regions

What if the clusters are not convex?

What if the clusters are not convex?

K-means does not handle such examples well

DENSITY-BASED CLUSTERING

The density-based clustering algorithm (DBSCAN) overcomes these deficiencies.

It has two hyper-parameters — radius and minpoints

Radius — distance that determines if points are close to each other

DENSITY-BASED CLUSTERING

For this particular radius, we have three reachable points

minpoints — number of reachable points needed to say a region is "dense"

— a point is said to be a "core point" if it has at least minpoints reachable points.

If minpoints = 3, then the centre is a core point.

DENSITY-BASED CLUSTERING

Each core point defines a cluster.

If two core points are reachable from one another, merge clusters.

If minpoints = 3, then the centre is a core point.

DBSCAN ALGORITHM

Initialize with an arbitrary point. Check if it is a core point.

If it is, add all reachable points to its cluster.

For each newly-added point, check if it is a core point and add its neighbors. Continue till every point has been checked in the cluster.

The centre is a core point, and all 3 points get added to cluster.

DBSCAN ALGORITHM

Initialize with an arbitrary point. Check if it is a core point.

If it is, add all reachable points to its cluster.

For each newly-added point, check if it is a core point and add its neighbors. Continue till every point has been checked in the cluster.

DBSCAN ALGORITHM

Initialize with an arbitrary point. Check if it is a core point.

If it is, add all reachable points to its cluster.

For each newly-added point, check if it is a core point and add its neighbors. Continue till every point has been checked in the cluster.

Not a core point, so no cluster assigned

PROS AND CONS

Pros

- Non-parameteric approach to clustering no need to pre-specify the number of clusters we are looking for
- Can identify non-convex clusters

Cons

- Some points are not assigned to a cluster
- Computationally expensive to identify which cluster a new observation belongs to

ACKNOWLEDGEMENTS

• Some of the figures and concepts in this presentation are adapted from "Density Based Clustering", Machine Learning and Data Mining, Mark Schmidt, UBC