Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Jan. 3 – 14, 2022

Python for Data Analytics

Data Preprocessing II

Data Scaling

Why Data Scaling?

- Features in a dataset can have very different scales
- Unscaled data can degrade the predictive performance of many machine learning algorithms
 - Many estimators assume that each feature takes values close to zero and all features vary on comparable scales
 - Metric-based and gradient-based estimators often assume approximately standardized data (normal distribution)
 - (cf.) Decision tree-based estimators are robust to arbitrary scaling of the data
- Unscaled data can slow down or even prevent the convergence of many gradient-based estimators

Data Scaling

■ Standard scaling: $\rightarrow \widetilde{x_i} \sim \text{Normal distribution } (\mu = 0, \sigma = 1)$ $\widetilde{x_i} = \frac{x_i - mean(x)}{std(x)}$

■ Min-Max Scaling: $\rightarrow \widetilde{x_i}$ in [0, 1] $\widetilde{x_i} = \frac{x_i - \min(x)}{\max(x) - \min(x)}$

■ Max-Abs Scaling: $\rightarrow |\widetilde{x_i}| \le 1$

■ Robust Scaling: → Based on median and IQR $\widetilde{x}_i = \frac{x_i - median(x)}{Q3(x) - Q1(x)}$

Data Scaling supported by SK-Learn

Scaling	Function	Class
Standard	scale(x)	StandardScaler
Min-Max	<pre>minmax_scale()</pre>	MinMaxScaler
Max-Abs	<pre>maxabs_scale()</pre>	MaxAbsScaler
Robust	<pre>robust_scale()</pre>	RobustScaler

Standard Scaling

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
df = pd.DataFrame({
        'x1': np.random.normal(0, 2, 10000),
        'x2': np.random.normal(5, 3, 10000),
        'x3': np.random.normal(-5, 5, 10000)
})
scaler = preprocessing.StandardScaler()
scaled df = scaler.fit transform(df)
scaled df = pd.DataFrame(scaled df, columns=['x1', 'x2', 'x3'])
sns.set style('darkgrid')
_, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6,5))
ax1.set title('Before Scaling')
sns.kdeplot(df['x1'], ax=ax1)
sns.kdeplot(df['x2'], ax=ax1)
sns.kdeplot(df['x3'], ax=ax1)
ax2.set title('After Scaling')
sns.kdeplot(scaled df['x1'], ax=ax2)
sns.kdeplot(scaled df['x2'], ax=ax2)
sns.kdeplot(scaled df['x3'], ax=ax2)
```

$$\widetilde{x}_i = \frac{x_i - mean(x)}{std(x)}$$

Min-Max Scaling

- All values are mapped in the range [0, 1]
- Very sensitive to the presence of outliers

```
df = pd.DataFrame({
        'x1': np.random.chisquare(8, 10000),
                                                # positive skew
        'x2': np.random.beta(8, 2, 10000)*40,
                                                # negative skew
        'x3': np.random.normal(50, 3, 10000)
                                                # no skew
})
scaler = preprocessing.MinMaxScaler()
scaled df = scaler.fit transform(df)
scaled df = pd.DataFrame(scaled df, columns=['x1', 'x2', 'x3'])
_, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6,5))
ax1.set_title('Before Scaling')
sns.kdeplot(df['x1'], ax=ax1)
sns.kdeplot(df['x2'], ax=ax1)
sns.kdeplot(df['x3'], ax=ax1)
ax2.set_title('After Min-Max Scaling')
sns.kdeplot(scaled_df['x1'], ax=ax2)
sns.kdeplot(scaled df['x2'], ax=ax2)
sns.kdeplot(scaled df['x3'], ax=ax2)
```

$$\widetilde{x}_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Max-Abs Scaling

- Doesn't change the shape of the distribution
- Also suffers from the presence of large outliers

```
df = pd.DataFrame({
        'x1': np.random.chisquare(8, 10000),
                                                # positive skew
        'x2': np.random.beta(8, 2, 10000)*40,
                                                # negative skew
        'x3': np.random.normal(50, 3, 10000)
                                                 # no skew
})
scaler = preprocessing.MaxAbsScaler()
scaled df = scaler.fit transform(df)
scaled df = pd.DataFrame(scaled df, columns=['x1', 'x2', 'x3'])
_, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6,5))
ax1.set title('Before Scaling')
sns.kdeplot(df['x1'], ax=ax1)
sns.kdeplot(df['x2'], ax=ax1)
sns.kdeplot(df['x3'], ax=ax1)
ax2.set title('After Max-Abs Scaling')
sns.kdeplot(scaled_df['x1'], ax=ax2)
sns.kdeplot(scaled_df['x2'], ax=ax2)
sns.kdeplot(scaled_df['x3'], ax=ax2)
```

$$\widetilde{x}_i = \frac{x_i}{\max(|x|)}$$

Robust Scaling (I)

Based on percentiles

 $\widetilde{x}_i = \frac{x_i - median(x)}{Q3(x) - Q1(x)}$

```
    Not influenced by a few number of very large marginal outliers
```

```
df = pd.DataFrame({
        # distribution with lower outliers
        'x1': np.hstack((np.random.normal(20,1,1000),
                         np.random.normal(1,1,25))),
        # distribution with upper outliers
        'x2': np.hstack((np.random.normal(30,1,1000),
                         np.random.normal(50,1,25))
})
robust scaler = preprocessing.RobustScaler()
robust df = robust scaler.fit transform(df)
robust df = pd.DataFrame(robust df, columns=['x1', 'x2'])
minmax scaler = preprocessing.MinMaxScaler()
minmax df = minmax scaler.fit transform(df)
minmax_df = pd.DataFrame(minmax_df, columns=['x1', 'x2'])
```

```
_, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(9,5))
ax1.set_title('Before Scaling')
sns.kdeplot(df['x1'], ax=ax1)
sns.kdeplot(df['x2'], ax=ax1)

ax2.set_title('After Robust Scaling')
sns.kdeplot(robust_df['x1'], ax=ax2)
sns.kdeplot(robust_df['x2'], ax=ax2)

ax3.set_title('After Min-Max Scaling')
sns.kdeplot(minmax_df['x1'], ax=ax3)
sns.kdeplot(minmax_df['x2'], ax=ax3)
```

Robust Scaling (2)

Min-Max Scaling

Significantly affected by outliers

Robust Scaling

- Inliers are in [-2, 2]
- Outliers still exist at the end of each distribution

Data Standardization

Data Skewness

A measure of asymmetry of a distribution

- Symmetrical (skewness = 0, e.g., normal distribution): mean == median == mode
- Positive skew (skewness > 0): tail at right, mode < median < mean
- Negative skew (skewness < 0): tail at left, mean < median < mode

Measuring Data Skewness

- df.skew([axis], [skipna], ...)
 - Return unbiased skew over requested axis
 - axis: axis for the function to be applied on
 - skipna: if True, exclude null values when computing the result (default True)

Meaning of skewness value

- -0.5 <= skewness <= 0.5: fairly symmetrical
- -I < skewness < -0.5 or 0.5 < skewness < I: moderately skewed
- skewness < -I or skewness > I: highly skewed

Handling Data Skewness

Linear model performs better when the dataset follows normal distribution

Dealing with positive skewness

- Square root transformation (x to $x^{1/2}$)
- Cube root transformation (x to $x^{1/3}$)
- Log transformation (x to $\log_2 x$, $\log_e x$, $\ln x$, ...)

Dealing with negative skewness

- Square transformation (x^2)
- Cube transformation (x^3)
- Reflect the values and apply the methods used to reduce the positive skewness

The Boston Housing Dataset

- Dataset for housing values in areas of Boston in 70's
- 506 rows, I4 columns (I3 attributes + housing value)
- Available in the SK-Learn datasets

CRIM: 범죄율

ZN: 25,000ft² 초과 거주지역 비율

INDUS: 비소매상업지역 면접 비율

CHAS: 찰스강 경계에 위치한 경우 1

NOX: 일산화질소 농도

AGE: 1940년 이전 건축된 주택 비율

RM: 주택당 방 수

RAD: 방사형 고속도로까지의 거리

LSTAT: 인구 중 하위 계층 비율

DIS: 직업 센터의 거리

B: 인구 중 흑인 비율

TAX: 재산세율

PTRATIO: 학생/교사 비율

MEDV: 주택 가격의 median (단위: \$1,000)

```
from sklearn import datasets
import pandas as pd
boston = datasets.load_boston()
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
(0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
•	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
;	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Skewness in Boston Housing Dataset

CRIM	5.223149			
ZN	2.225666			
INDUS	0.295022			
CHAS	3.405904			
NOX	0.729308			
RM	0.403612			
AGE	-0.598963			
DIS	1.011781			
RAD	1.004815			
TAX	0.669956			
PTRATIO	-0.802325			
В	-2.890374			
LSTAT	0.906460			
dtype: float64				

Transforming Data (I)

- sklearn.preprocessing.scale(X,...)
 - Standardize a dataset along any axis (standard scaler)
 - Center to the zero mean and component wise scale to unit variance
 - X: the data to center and scale

```
from sklearn import preprocessing

df['LSTAT_log'] = preprocessing.scale(np.log(df['LSTAT']+1))

df['LSTAT_sqrt'] = preprocessing.scale(np.sqrt(df['LSTAT']+1))

df[['LSTAT', 'LSTAT_log', 'LSTAT_sqrt']].skew()
```

```
LSTAT 0.906460

LSTAT_log -0.187195

LSTAT_sqrt 0.359606

dtype: float64
```

Transforming Data (2)

Original data

import matplotlib.pyplot as plt plt.hist(df['LSTAT'], bins=20) plt.show()

Square root transformation

Log transformation

```
import matplotlib.pyplot as plt
plt.hist(df['LSTAT_log'], bins=20)
plt.show()
```


Sampling for Imbalanced Data

Imbalanced Data

- A problem with classification where the classes are not represented equally
 - The model will be mostly tuned for the majority class

Example:

- A dataset with Class A : Class B = 9 : I
- The percentage of correct answers in the test dataset will also be 9: I
- Even if a model classifies everything to Class A, it will have a 90% of accuracy
- Solutions: Balance data using sampling
 - Oversampling: increase the amount of minority class
 - Undersampling: use only part of majority class

imbalanced-learn module

- A python package offering a number of re-sampling techniques
- Commonly used for datasets showing strong between-class imbalance
- Part of scikit-learn-contrib projects
- https://github.com/scikit-learn-contrib/imbalanced-learn

Installation

- pip install -U imbalanced-learn
- conda install -c conda-forge imbalanced-learn
- >>> import imblearn.under_sampling
- >>> import imblearn.over_sampling

Creating Imbalanced Data

```
def plot(X, y):
    plt.scatter(X[y==0, 0], X[y==0, 1], marker='x', label='Class 0')
    plt.scatter(X[y==1, 0], X[y==1, 1], marker='o', label='Class 1')
    plt.xlabel('X [0]')
    plt.ylabel('X [1]')
    plt.legend()
n0 = 450
n1 = 50
a = np.random.randn(n0, 2)*0.8 + 2 # N(2, 0.8)
b = np.random.randn(n1, 2)*0.5 + 1 # N(1, 0.5)
X = np.vstack([a, b])
y = np.hstack([np.zeros(n0), np.ones(n1)])
plot(X, y)
```


Undersampling: RandomUnderSampler()

Under-sample the majority class by randomly picking samples

1.0

0.5

0.0

0.0

0.5

1.0

1.5

Class 0

Class 1

3.5

×

2.5

3.0

×

2.0

X [0]

Undersampling: EditedNearestNeighbours()

Keep a sample if all or majority of the NN's belong to the same class

- *n_neighbors*: size of the neighbourhood to consider to compute the nearest neighbors
- kind_sel: 'all' (all have to agree to keep),
 'mode' (majority vote to keep)

Oversampling: RandomOverSampler()

Over-sample the minority class by picking samples at random

```
from imblearn.over_sampling import RandomOverSampler

X_samp, y_samp = RandomOverSampler(random_state=0).fit_sample(X, y)
print(X_samp.shape, y_samp.shape)
plot(X_samp, y_samp)
5 *
```

(900, 2) (900,)

 Graph looks same, but the count has increased to 450

Oversampling: SMOTE()

 A sample is created at a randomly selected point between a minority sample and its neighbor which is randomly selected among k neighbors

Oversampling: ADASYN()

 For a minority sample dominated by majority class samples, more synthetic minority class samples are generated

```
from imblearn.over_sampling import ADASYN
X_samp, y_samp = ADASYN(n_neighbors=3, random_state=0).fit_sample(X, y)
print(X_samp.shape, y_samp.shape)
                                                                ×
                                                                                     Class 0
                                                   5
plot(X_samp, y_samp)
                                                                                     Class 1
(908, 2) (908,)
                                                           0
                                                                      X [0]
```

Thank You!