Topos of Creative Measurement (measurement as creation)

Olivier Croissant
Emerging Pricing Technologies, Paris, France

September 16, 2025

Core Idea

A quantum measurement is not a destructive "collapse" of information, but an act of creation: it enriches the universe of available truths by refining the logical context—without presupposing an external time. Formally, a measurement is modeled by a geometric morphism that transforms the topos of states before the measurement into a topos after the measurement, where the result becomes decidable (Boolean) in the relevant context. This operation is atemporal (no time parameter) and aligns with an interpretation of the Wheeler–DeWitt equation.

1 Starting Framework

- Quantum topos \mathcal{E} (e.g., contravariant presheaves on V(A)) with:
 - spectral presheaf Σ ,
 - subobject classifier Ω (Heyting algebra),
 - internal valuation $\mu : \operatorname{Sub}(\Sigma) \to [0,1]^{\leftrightarrow}$ (internalized Born rule).
- A measurement event is represented by a subobject $U \leftrightarrow \Sigma$ (the proposition "the result belongs to U").

2 Measurement = Localization + Slicing (Creation of Decidability)

Two canonical steps are associated with U:

2.1 1) Slicing (Internal Conditioning)

We pass to the slice topos \mathcal{E}/U , which internalizes the fact that the universe is considered under the condition U.

- The valuation is conditioned: $\mu \leftrightarrow \mu_{|U}$ on $\operatorname{Sub}(\Sigma)_{|U}$.
- Truths become contextual relative to U.

2.2 2) Logical Localization (Sheafification via Lawvere-Tierney)

We choose an internal topology $j_U: \Omega \to \Omega$ that makes the proposition U decidable (stable/closed).

- We form the sub-topos $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$ with sheafification functor $a_{j_U}: \mathcal{E}/U \to \operatorname{Sh}_{j_U}(\mathcal{E}/U)$ (left exact).
- In $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$, the proposition "U" is Boolean (we have created the decidability of the result).

Definition (Creative Measurement)

A creative measurement is the composed geometric morphism

$$\mathcal{E} \xrightarrow{[f_U]} \mathcal{E}/U \xrightarrow{a_{j_U}} \mathcal{E}_U^{\text{meas}} := \operatorname{Sh}_{j_U}(\mathcal{E}/U),$$

where j_U is chosen so that U becomes decidable in $\mathcal{E}_U^{\text{meas}}$.

Intuition. The passage $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ creates a new logical universe where the result is decided in the right context—without violating Kochen-Specker (we are not manufacturing a global section of Σ in \mathcal{E} ; we work in \mathcal{E}/U and then locally Booleanize).

3 Creation of Information (Independent of Entropy)

We distinguish contextual logical information from thermodynamic entropy.

Logical Information Created

The choice of a result U refines the internal Heyting algebra: we go from an open truth value ("possible") to a decidable value (yes/no) in $\mathcal{E}_U^{\text{meas}}$. We can quantify this gain (à la Shannon/algorithmic) by

$$\Delta \mathcal{I}(U) := -\log \mu(U)$$
 (in bits, internal via $[0,1]^{\leftrightarrow}$).

This is a semantic gain (refinement of truth), not a thermodynamic cost.

Independence from Entropy

The operation $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ is logical/categorical. It does not, in itself, imply a variation of the von Neumann entropy of a closed physical state.

4 Axioms (CM) for Creative Measurement

- (CM1) **Atemporality.** The functor $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ does not depend on any external temporal parameter.
- (CM2) Information Monotonicity. If $U \leq V$ (refinement), then $\Delta \mathcal{I}(U) \geq \Delta \mathcal{I}(V)$.
- (CM3) Internal Born Compatibility. $\mu_{|U}(X) = \mu(X \wedge U)/\mu(U)$.
- (CM4) Contextual Locality. The decidability created by j_U is local to the slice \mathcal{E}/U ; it does not generate a global point of Σ in \mathcal{E} .
- (CM5) Naturalism (GR Covariance). Under changes of frame (diffeomorphisms, refinement of region, change of abelian context), the construction is *pseudo-natural* (functorial): it does not depend on a temporal background.

5 "Timeless" Reading and Wheeler-DeWitt

In a theory where states satisfy a global constraint

$$\hat{H}\psi = 0$$
.

(Wheeler–DeWitt), the "evolution" is not temporal but an order of refinement of truths:

- The internal universe of solutions is an object $S = \ker(\hat{H})$ in \mathcal{E} .
- A creative measurement selects a decidable subobject $S_U \leftrightarrow S$ via $\mathcal{E} \to \mathcal{E}_U^{\mathrm{meas}}$.
- This passage does not evolve ψ in time; it refines the description in an atemporal manner: we condition the truth of propositions about S.

Moral. The meaning of Wheeler-DeWitt is preserved: the fundamental dynamics is timeless; what we call "becoming" is the ascent through the lattice of contexts (creative measurements) that increase the available logical information.

6 Interface with CFS

In CFS, ρ and the *closed chains* A_{xy} encode causality. With creative measurement:

- The result U (proposition on spectra/invariants) becomes **decidable** in $\mathcal{E}_U^{\text{meas}}$.
- The causal types (time-/space-/light-like) are *internal predicates* which, once localized, evaluate *unambiguously* for the measured context.
- The internal causal action $\mathbf{S}[\mu]$ is evaluated *conditionally* and can be re-optimized in $\mathcal{E}_U^{\text{meas}}$ (interpretation: informational back-reaction).

7 Minimal Example (Qubit, σ_z

- \mathcal{E} : presheaves on contexts $\{\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle\}$
- Result $U = {\sigma_z = +1} \leftrightarrow \Sigma$
- Slice \mathcal{E}/U : all propositions are conditioned by U
- j_U : internal topology making U decidable.
- $\mathcal{E}_U^{\text{meas}}$: topos where " $\sigma_z = +1$ " is **Boolean** (locally), without manufacturing a global truth for σ_x, σ_y
- Information created:

$$\Delta \mathcal{I}(U) = -\log \mu(U).$$

Summary

A creative measurement is a geometric morphism $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ (slicing + localization) which makes the result decidable in the appropriate context, increases logical information (without prejudging entropy), and respects the atemporality expected from a constrained theory like Wheeler-DeWitt.