# MSBD6000M Assignment 1

### WONG Chong Ki, 20978851

MSc in Big Data Technology, HKUST Email: ckwongch@connect.ust.hk

#### **WENG Yanbing**, 21091234

MSc in Big Data Technology, HKUST Email: ywengae@connect.ust.hk

#### Abstract

In this assignment, we investigate a finite-horizon discrete-time asset-allocation problem using tabular Q-learning under various market scenarios. We focus on a CARA utility function and a two-point risky asset return model, contrasting the agent's learning performance across different probabilities and return rates.

## 1 Analytical Solution

In this assignment, we study a discrete-time asset-allocation problem with a finite time horizon T=10. At each discrete time step  $t=0,1,\ldots,9$ , the agent holds a current wealth  $W_t$  and must decide how much  $x_t \in [0,W_t]$  to invest in a risky asset, while the remainder  $(W_t - x_t)$  goes into a riskless asset. Let:

• The risky asset yield  $Y_t$  be a random variable taking values

$$Y_t = \begin{cases} a, & \text{with probability } p, \\ b, & \text{with probability } (1-p), \end{cases}$$

- The riskless asset has a fixed interest rate r,
- The horizon is T = 10,
- The final utility at t = T is given by a negative exponential (CARA) utility function

$$U(W_{10}) = -\frac{1}{\alpha} \exp(-\alpha W_{10}).$$

#### 1.1 State Dynamics and Reward

Once we decide  $x_t$ , the next-state wealth is

$$W_{t+1} = x_t (1 + Y_t) + (W_t - x_t) (1 + r).$$

Because there is no intermediate consumption, the only nonzero reward occurs at the final stage  $t = 9 \rightarrow t = 10$ , when we realize the utility:

$$R_{10} = U(W_{10}) = -\frac{1}{\alpha} \exp(-\alpha W_{10}).$$

We treat this problem as a finite-horizon Markov Decision Process (MDP) with discount factor  $\gamma = 1$ . In any of the first T - 1 stages, the reward is 0, while at t = 10 the reward is  $U(W_{10})$ .

#### 1.2 Bellman Formulation

Let  $V_t(W)$  denote the value function at time t when the agent's wealth is W. For t = 0, 1, ..., 9, we have

$$V_t(W) = \max_{0 \le x \le W} E[V_{t+1}(W_{t+1})],$$

where

$$W_{t+1} = x (1 + Y_t) + (W - x) (1 + r).$$

At the terminal step,

$$V_{10}(W_{10}) = U(W_{10}) = -\frac{1}{\alpha} \exp(-\alpha W_{10}).$$

#### 1.3 Analytical Derivation under CARA Utility

With the negative-exponential utility (CARA), it is a standard result that the value function retains an exponential form. We outline the key steps:

1. Terminal condition: At t=10,

$$V_{10}(W) = U(W) = -\frac{1}{\alpha} \exp(-\alpha W).$$

2. Ansatz for  $V_t$ : Assume

$$V_t(W) = -b_t \exp(-c_t W),$$

for some parameters  $b_t$  and  $c_t$  that may depend on t but not on W.

3. Bellman recursion: For  $t = 0, 1, \dots, 9$ ,

$$V_t(W) = \max_{x} \left\{ p \left[ -b_{t+1} e^{-c_{t+1} \left[ x(1+a) + (W-x)(1+r) \right]} \right] + (1-p) \left[ -b_{t+1} e^{-c_{t+1} \left[ x(1+b) + (W-x)(1+r) \right]} \right] \right\}.$$

One factors out an exponential in  $-c_{t+1}W$ ; differentiating w.r.t. x yields a closed-form solution

$$x_t^* = \frac{1}{c_{t+1} \left[ (b-r) - (a-r) \right]} \ln \left( \frac{(1-p)(r-b)}{p(a-r)} \right).$$

Because the negative-exponential utility exhibits constant absolute risk aversion,  $x_t^*$  does not depend on the current wealth W.

4. **Parameters update:** One solves for  $(b_t, c_t)$  recursively, starting from  $(b_{10}, c_{10}) = (\frac{1}{\alpha}, \alpha)$ . With CARA and two-point returns, the solution remains exponential in form throughout backward induction.

#### 1.4 Key Observations

- Optimal policy independent of W. The fraction (or absolute  $x_t^*$ ) does not scale with wealth.
- Closed-form solution. This is simpler than, e.g., CRRA utility, where the solution might scale with wealth.
- Numerical check via Q-learning. By discretizing wealth and actions, tabular Q-learning approximates the same policy, converging over enough episodes.

#### 1.5 Conclusion

Hence, for a finite-horizon discrete-time setting with CARA utility and a two-point risky asset distribution, the *optimal strategy*  $x_t^*$  is time-dependent but wealth-invariant. The value function is exponential, and the Q-learning code can reproduce this solution if properly discretized.

## 2 Q-learning Approach

### 2.1 Brief Introduction to Q-learning

Q-learning is an off-policy, model-free Reinforcement Learning (RL) algorithm based on temporal-difference (TD) learning. It maintains a table (or function approximation) of Q(s, a), representing the expected return (sum of discounted rewards) after

taking action a in state s, and thereafter following an optimal policy. Its update rule is:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right],$$

where r is the immediate reward, s' is the next state,  $\gamma$  is the discount factor, and  $\alpha$  is the learning rate. Even without a perfect model of the environment, Q-learning converges to the optimal action-value function, given sufficient exploration.

#### 2.2 Applying Q-learning to Our Asset-Allocation Problem

In our discrete-time CARA setting:

- States: (t, W), where  $t \in \{0, \dots, 9\}$  is the time step, and W is the discretized wealth.
- Actions:  $x \in \{0, 50, 100, \dots, W\}$ , i.e. how much to invest in the risky asset, in increments of some step size (e.g. 50).
- **Reward**: Zero until  $t = 9 \rightarrow t = 10$ , at which time reward is  $U(W_{10})$ . We discount with  $\gamma = 1$  for a finite horizon.
- Temporal Difference Update: After each step from (t, W) via action x to (t+1, W') with reward r, we perform

$$Q(t, W, x) \leftarrow Q(t, W, x) + \alpha \left[ r + \max_{x'} Q(t + 1, W', x') - Q(t, W, x) \right].$$

By repeating many episodes, Q-learning eventually approximates the optimal policy  $\pi^*(t, W)$  that maximizes expected utility at the end.

### 2.3 Implementation Details: Classes and Functions

Our Python code has three main classes:

- Environment: Manages discrete wealth levels up to  $W_{\text{MAX}}$ , with transitions given by the two-point return (a, b) and the riskless rate r. Also computes the final utility at t = 9.
- **Agent**: Maintains a tabular Q[t, w, a] array. Chooses actions via  $\varepsilon$ -greedy, calls update\_q\_table for each step to apply Q-learning. The method compute\_epsilon (episode does exponential decay from epsilon\_start to epsilon\_end.
- Trainer: Runs multiple episodes, logs Q-diff and final wealth. The method train() iterates over episodes, prints an average Q-diff and final wealth from the last 100 episodes every 1000 steps, and finally plots the training curves.

## 3 Experimental Results and Analysis

We ran four different market scenarios, each for **30,000 episodes**, investigating how the agent converges under different probabilities and returns. In the logs, we print "Avg Q-diff Last 100" and "Avg Wealth Last 100" for smoothing.

#### 3.1 Scenario 1 - High probability of large positive return

**Parameters:** p = 0.8,  $a_ret = 0.6$ ,  $b_ret = -0.3$ , riskless\_ret = 0.02.

| Episode | eps    | Avg Q-diff Last 100 | Avg Wealth Last 100 |
|---------|--------|---------------------|---------------------|
| 1000    | 0.0015 | 0.1999              | 1767.50             |
| 2000    | 0.0001 | 0.1243              | 2434.00             |
| 6000    | 0.0001 | 0.0944              | 3043.00             |
| 10000   | 0.0001 | 0.0570              | 4206.00             |
| 15000   | 0.0001 | 0.0325              | 5032.50             |
| 30000   | 0.0001 | 0.0417              | 5742.00             |

Table 1: Scenario 1 Training Log Excerpt

As seen in Table I, the agent's final wealth can exceed 5000–9000 range by the end. The training error eventually dips near 0.04. Figure 1 shows the Q-diff plot and the wealth plot.



Figure 1: Scenario 1: Q-diff (left) and Final Wealth (right).

## 3.2 Scenario 2 - Moderately favorable returns

**Parameters:** p = 0.7,  $a\_ret = 0.4$ ,  $b\_ret = -0.2$ , riskless\\_ret = 0.01.

Table 2: Scenario 2 Training Log Excerpt

| Episode | eps    | Avg Q-diff Last 100 | Avg Wealth Last 100 |
|---------|--------|---------------------|---------------------|
| 1000    | 0.0015 | 0.2521              | 1470.00             |
| 3000    | 0.0001 | 0.1381              | 2219.50             |
| 7000    | 0.0001 | 0.1014              | 2668.50             |
| 12000   | 0.0001 | 0.1065              | 2851.00             |
| 20000   | 0.0001 | 0.0653              | 3257.00             |
| 30000   | 0.0001 | 0.1168              | 2692.50             |

The final wealth is more modest, typically 2000–3000, with occasional spikes or dips. The Q-diff hovers around 0.06–0.12 near the end. Figure 2 confirms partial but not perfect convergence, reflecting a moderate positive expectation.



Figure 2: Scenario 2: Q-diff (left) and Final Wealth (right).

### 3.3 Scenario 3 - Balanced returns, moderate risk

**Parameters:** p = 0.6,  $a\_ret = 0.35$ ,  $b\_ret = -0.05$ , riskless\\_ret = 0.015.

Table 3: Scenario 3 Training Log Excerpt

| Episode | eps    | Avg Q-diff Last 100 | Avg Wealth Last 100 |
|---------|--------|---------------------|---------------------|
| 1000    | 0.0015 | 0.2099              | 1612.50             |
| 3000    | 0.0001 | 0.1162              | 2411.50             |
| 7000    | 0.0001 | 0.0930              | 2634.50             |
| 12000   | 0.0001 | 0.0852              | 2776.50             |
| 20000   | 0.0001 | 0.0885              | 2651.00             |
| 30000   | 0.0001 | 0.0950              | 2675.50             |

As shown in Table III, final wealth typically lies between 2000–3000. The risk is lower, so the agent's net returns are moderate. Q-diff around 0.08–0.10 indicates partial convergence (Figure 3).



Figure 3: Scenario 3: Q-diff (left) and Final Wealth (right).

#### 3.4 Scenario 4 - Very high probability, moderate high return

**Parameters:** p = 0.9,  $a\_ret = 0.5$ ,  $b\_ret = -0.2$ , riskless\\_ret = 0.03.

Table 4: Scenario 4 Training Log Excerpt

| Episode | eps    | Avg Q-diff Last 100 | Avg Wealth Last 100 |
|---------|--------|---------------------|---------------------|
| 1000    | 0.0015 | 0.0882              | 2607.50             |
| 3000    | 0.0001 | 0.0441              | 3697.50             |
| 7000    | 0.0001 | 0.0273              | 4420.50             |
| 12000   | 0.0001 | 0.0225              | 4975.50             |
| 20000   | 0.0001 | 0.0181              | 7346.50             |
| 30000   | 0.0001 | 0.0059              | 7677.00             |

With a 90% chance of +50%, the agent invests heavily. Final wealth surpasses 7000–8000 in the last episodes. The Q-diff dips below 0.01, as shown in Figure 4.



Figure 4: Scenario 4: Q-diff (left) and Final Wealth (right).

#### 3.5 Overall Observations

In all scenarios, Q-diff generally diminishes over time, validating that tabular Q-learning is converging. Final wealth depends on the net positivity of the risky asset distribution:

- **Higher** p and larger  $a\_ret$  lead the agent to invest more in the risky asset, raising final wealth (Scenarios 1 & 4).
- Moderate returns or probabilities yield more modest wealth, but stable partial convergence (Scenarios 2 & 3).

Hence, the tabular Q-learning approach successfully learns near-optimal policies for each set of parameters under negative-exponential (CARA) utility.