

GCE

Physics A

Advanced Subsidiary GCE

Unit **G482:** Electrons, Waves and Photons

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Q	Question		Expected Answers	M	Additional Guidance
1					
	а	i	read off value of current (at V = 6.0 V)	B1	any reference to using gradient scores 0/2 accept I = 0.25 (A) or 250 (mA)
			calculate R using V/I	B1	accept R = 24 Ω
		ii	V is not proportional to I	B1	accept not a straight line; R is not constant
	b	i	Q = It = 0.25 x 1 = 0.25 C	B1	-
		ii	$E = VIt \text{ or } QV = 6 \times 0.25 = 1.5 \text{ J}$	B1	ecf(b)(i)
		iii	$E = VIt = 1.5 \times 4 \times 60 \times 60$	C1	ecf b(ii)
			$= 2.16 \times 10^4 \text{ J}$	A1	accept 2.2 x 10 ⁴ J; allow 360 J for 1 mark only
	С	i	energy transfer per unit charge	B1	or energy transfer/charge; work done /charge
			from electrical to other forms	B1	or across LED
		ii	30 mA	A1	
		iii	Use of P = VI	M1	3 x 0.030 = 0.090 W per LED so 0.090 x 4
			suitable method (may be expressed purely in numerical form)	A1	or 30 mA in two branches at 6 V or total current is 60
			= 0.36 W	A0	mA from 6 V battery
		iv		B1	symbol for LED
			16V	B1	correct orientation of LED
				B1	correct circuit
			N (N)		
			- 1/2 - 1/2.		
			(N)		
			(4) (4)		
			*		
	d		draws a lower current/ light lasts longer (before battery	B1	
			discharged/)AW		
			or LEDs more efficient (at converting electrical energy into light)		allow lower power consumption/AW
			or if one LED fails there are still two lit		
			or more robust/longer working life		
			Total question 1	16	

C	uesti	ion	Expected Answers	М	Additional Guidance
2			·		
	а	i	$12/2.0 = 6.0 (\Omega)$	B1	allow 6; do not apply the SF penalty (N.B. applied only
					once per paper) for any answer where the second SF is
					0
		ii	attempt to <u>use</u> resistors in parallel formula	C1	no mark for just quoting formula
			1/R = 8/6	C1	ecf (a)(i)
			$R = 0.75 (\Omega)$	A1	allow $\frac{3}{4}(\Omega)$
		iii	$P = V^2/R = 12^2/0.75$ or $8VI = 8 \times 12 \times 2$ or $I^2R = 16^2 \times 0.75$	C1	ecf (a)(ii)
			= 192 W	A1	
	b		$\rho = RA/I$	C1	correct rearrangement of formula
			$= 6.0 \times 0.24 \times 2.0 \times 10^{-6}/0.9$	C1	ecf (a)(i); substitution into a correct formula
			$= 3.2 \times 10^{-6}$	A1	2/3 marks for one or more POT errors
			Ω m	B1	accept 3.2 Ω μm; 4 x 10 ⁻⁷ scores 2/3
	С	i	(As V is the same) then R must be the same to give same P	B1	accept alternative wording producing same argument,
					e.g. same I, same V so same R
		ii	$0.75/8 = 0.094 (\Omega)$	B1	ecf (a)(ii)/8; accept 3/32 but NOT 0.09
		iii	for parallel circuit with break in one wire rest still work	B1	any sensible statement
			or series strips very wide (if use material of same resistivity as		
			such low resistance/ giving poor visibility))		
	d	i	14 V	B1	
		ii	e.g. V = 12 V; I = 20 A	C1	or any suitable pair of readings from graph
			substitution into $E = V + Ir$, e.g. $14 = 12 + 20 r$	C1	ecf(d)(i) ; accept r = gradient; = (14 – 10)/40 or similar;
			r = 0.1 Ω	A1	= 0.1 Ω
			Total question 2	17	

Qı	Question		Expected Answers	M	Additional Guidance
3					
	а		energy per unit area per unit time	B1	accept power per unit area; allow second for unit time
	b		Small <u>changes</u> in R for high light intensities/daylight conditions	B1	accept low R by day, high R by night for 1 mark
			Large changes in R for low light intensities/dim light/night time		NOT comparison e.g. R by day smaller than R at night
			conditions	B1	
			to change circuit state need a significant change in R to be		max 2 marks from 3 marking points
			useful/reliable	B1	
	С	i	2.5 (kΩ)	A1	allow 2.4 to 2.6
		ii	$5.0 = 1 \times 2.5 \text{ k}\Omega$	C1	ecf (c)(i)
			giving I = $2.0 \times 10^{-3} \text{ A}$	A1	accept 2.0 mA
		iii	4.0 = 2.0 x 10 ⁻³ x R or potential divider argument	M1	ecf (c)(ii) or ecf (c)(i)
			giving R = $2.0 \times 10^3 \Omega$	A0	accept 2.0 kΩ
	d		R (of LDR) = $1(.0 \text{ k}\Omega)$	B1	
			potential divider of 1.0 k Ω and 2.0 k Ω	C1	accept I = 3.0 (mA)
			giving 3.0 V across LDR	A1	so V = 3.0 (mA) x 1.0 (k Ω) = 3.0 V
	е		light shining on the LDR will cause it to switch the illumination off	B1	two suitable qualifying statements for the 2 marks
			causing an ON/OFF oscillation/AW	B1	
			Total question 3	12	

Q	Question		Expected Answers	М	Additional Guidance
4					
	а	i	photoelectric effect/emission	B1	
		ii1	the <u>minimum</u> energy (required) to release an electron (from the surface of the metal)	B1	
		ii2	$3.5 \times 10^{-19} = 6.6 \times 10^{-34} \text{ f}$	C1	
			$f = 5.3 \times 10^{14} (Hz)$	A1	
		iii	$\varepsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 4.2 \times 10^{-7}$	C1	no second mark unless there is evidence of the
			$= 4.7 \times 10^{-19} (J)$	A1	calculation being done
		iv	$\frac{1}{2}$ mv ² = 4.7 x 10 ⁻¹⁹ – 3.5 x 10 ⁻¹⁹	C1	mark for using the p.e. equation
			$= 1.2 \times 10^{-19} (J)$	A1	accept 1.5 x 10 ⁻¹⁹ from those using 5 x 10 ⁻¹⁹ J
	b	i1	12 (eV)	B1	
		ii2	$\varepsilon = eV = 12 \times 1.6 \times 10^{-19} = 1.92 \times 10^{-18} (J)$	A1	ecf(b)(i)1
		ii	1/2mv ² = 2.0x 10 ⁻¹⁸	C1	$\frac{1}{2}$ mv ² = 12 scores 0/3
			$v^2 = 2 \times 2.0 \times 10^{-18}/9.1 \times 10^{-31} = 4.4 \times 10^{12}$	C1	accept 1.9 x 10 ⁻¹⁸ from (b)(i)2
			$v = 2.1 \times 10^6 \text{ (m s}^{-1})$	A1	giving $v = 2.0(5) \times 10^6$
	С		e's emitted/s = $1.2 \times 10^{-8}/5 \times 10^{-19} = 2.4 \times 10^{10}$	C1	using 4.7 x 10 ⁻¹⁹ gives 2.55 x 10 ¹⁰
			current = $2.4 \times 10^{10} \times 1.6 \times 10^{-19}$	C1	omitting 1% scores as a POT error
			$= 3.8 \times 10^{-9}$ (A) to 4.1×10^{-9} (A)	A1	allow 4 nA as the question states 'estimate'
			Total question 4	16	

C	Question		Expected Answers	М	Additional Guidance
5					
	а	i	0.60 m	B1	allow 0.6 another example of SF comment Q2
		ii1	the wave has moved along 0.5 wavelengths in 0.75 ms so will		can be answered in terms of phase
			move one wavelength in 1.5 ms which is the period/AW	B1	
		ii2	$f = 670 \text{ Hz so } v = f\lambda = 670 \text{ x } 0.60$	C1	ecf(a)(i)
			$= 400 \text{ (m s}^{-1})$	A1	accept $v = \lambda/T = 0.60/1.5 \times 10^{-3}$
	b		0	B1	
	С	i	displacement any distance moved from equilibrium of a		allow alternatives for equilibrium, e.g.
			point/particle (on a wave)	B1	mean/rest/undisturbed position
			amplitude maximum possible displacement (caused by wave	B1	
			motion)		
		ii	progressive a wave which transfers energy	B1	accept phase relationship descriptions between
			stationary a wave which traps/stores energy (in pockets)	B1	different points on wave;
					must be a comparison for same property to score both
			OR		marks
			progressive: transfers shape/information from one place to		
			another	B1	
			stationary where the shape does not move along/which has		
			nodes and antinodes/AW	B1	
	d	l i	the incident wave is <u>reflected</u> at the fixed ends of the wire	B1	must have reference to an end of the wire
			reflected wave interferes/superposes with the incident wave	B1	QWC mark
			to produce a resultant wave with nodes and antinodes/no	B1	
			energy transfer	1	
		ii1	0.70 (mm)	B1	allow 0.60 to 0.80 mm
		ii2	0.15 (m)/0.45 (m)	B1	anywhere on vertical line x = 0.15 or 0.45
		ii3	x = 0.2, y = -1.7	B1	
			Total question 5	15	

Qı	Question		Expected Answers	М	Additional Guidance
6			•		
	а	i	method of producing coherent sources at S ₁ and S ₂	B1	e.g. initial single slit
			light (waves) from the two slits/sources must be coherent;	B1	
			that is, they must have a constant phase relationship/difference	B1	
			slits must be narrow/close together (so that diffraction patterns		
			overlap)	B1	
			light (waves) from two slits must have similar amplitudes/intensities	B1	max 3 marks from 5 marking points
		ii	bright: constructive interference occurs/waves add to give a		
			maximum amplitude at the screen	B1	
			path difference between slits and screen is a whole/integer number	l	accept explanation in terms of distance or phase
			of wavelengths/waves arrive in phase at screen	B1	
			dark: destructive interference occurs/waves add to give a minimum	D.4	
			amplitude/zero at the screen	B1	
			path difference between slits and screen is an odd half number of	B1	accept explanation in terms of distance or phase
	b	:	wavelengths/waves arrive out of/in antiphase at screen $7.4/5 = 1.48 \times 10^{-3} \text{ (m)}$	B1	cocont 1 5 mm
	D	ii	$\lambda = xd/L$	C1	accept 1.5 mm
		"	x - xu/L $ = 1.48 \times 10^{-3} \times 0.6 \times 10^{-3}/1.5$	C1	using 1.5 mm gives 600 nm ecf(b)(i) e.g. 4 92 x 10 ⁻⁷ for 1.23 mm
			$= 5.9(2) \times 10^{-7} \text{ (m)}$	A1	accept 590 nm
	С		pattern/fringes vanish	B1	accept 390 mm
	٦		because there is now no interference from light from the two slits/AW	B1	
			light spreads out over whole/similar region	B1	
			light intensity (at screen) is less	B1	
			diffraction spreads light	B1	
			simple description of single slit pattern	B1	e.g. bright in middle and dim at edges/sketch of bell
					shape
			further features of single slit pattern	B2	max 3 marks from 8 marking points
			Total question 6	14	<u> </u>

C	uestic	Expected Answers		Additional Guidance
7				
	а	reference to a transverse wave or to vibrations in plane normal to the direction of (energy) propagation	B1	can be answered with suitable diagram(s)
		oscillations/vibrations in one direction only/confined to single plane (containing the direction of propagation)	B1	NOT the wave oscillating in one plane
	b	set up apparatus, e.g. tray of water on table with lamp/light from window rotate the filter rotation of filter changes the image intensity/brightness/AW correct orientation for maximum and minimum intensities of image move head up or down to change angle of reflected light observed use of protractor to measure angles image/reflection becomes partially plane polarised/ image changes	B1 B1 B1 B1 B1	QWC mark essential for full marks allow from bright to zero or vice versa transmission axis parallel to water surface for maximum and perpendicular for minimum can hold head still and move lamp
		from bright to dim but does not disappear	B1	max 3 from 6 marking points + QWC mark
	С	$I = I_0 \cos^2\theta$ where I_0 is the maximum intensity (of the polarised beam) when θ is zero maximum intensity transmitted/ image bright when θ is 90° minimum/zero intensity transmitted/image	B1 B1 B1 B1	allow incident/original/initial for maximum
		dim/vanished Total question 7	10	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU **Registered Company Number: 3484466 OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

