translatorbasic-

dictionary

translator-bibliography-dictionary translator-

environment-

dictionary

translator-months-dictionary translator-

numbers-

dictionary

translator-

theorem-

dictionary

Numerical Techniques 2022–2023

0. Welcome

Daan Degrauwe daan.degrauwe@meteo.be

Postgraduate Studies in Weather and Climate Modeling Ghent University

Content

- Welcome
- Context: why numerical techniques
- Objectives of this course
- Course material
- Practical information

Why numerical techniques?

Atmosphere

0. Welcome 3,

Why numerical techniques?

0. Welcome 3 / 8

Why numerical techniques?

0. Welcome 3 / 8

Course objectives

 Get hold of problems that occur due to solving equations numerically (with a computer)

0. Welcome 4 /

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analist

0. Welcome 4 ,

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analist
- Don't be frightened by code
 - ... but it's no course on Linux or Fortran either!

Course agenda

date	16h00 (Auditorium 3.1)	17h30 (PC-room Konrad Zuse)
27/09	Introduction, Stability	
04/10	Time discretization	Oscillation equation
18/10	Space discretization	Oscillation equation
25/10	Spectral models	Advection equation
08/11	Towards nontrivial models	Advection equation
15/11	Semi-Implicit Semi-Lagrangian models	
22/11	Parallel computing and Project assignment	
29/11	Project session (PC-room)	
06/12	Project session (PC-room)	
20/12	Presentations	

0. Welcome 5 /

Course material

• Slides and exercise guidelines will appear on Ufora

References:

- Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Dale R. Durran, Springer, 1999, ISBN 0-387-98376-7.
- Chebyshev and Fourier Spectral Methods, John P. Boyd, Springer, 2001, ISBN 978-3-540-51487-9.

• Some papers (depending on project)

Practical information

- Check Ufora for modifications to time schedule
- Exercises in Linux
 - helios server of UGent: create account on https://helpdesk.ugent.be/account/en/helios.php
 - access from Windows via PuTTY (installed in PC rooms)
 - ...or you can try to install Linux on your laptop
- Programs needed: gfortran, Rstudio
- Evaluation: student project (2/3/4 persons) on simple model
 - presentation for other students
 - ► (small) report

Questions?