Binary-to-BCD Converter

Double-Dabble Binary-to-BCD Conversion Algorithm

Basic Idea

Y←X, X is a 4-bit binary number

← 1011

Y is a 4-bit binary number (Binary to binary)
 ⇒ can be done by only shifting

ex: 1011 ← 1011 (shift left 4 times)

Vis a BCD number (Binary to BCD)

is a bob number (binary to bob)
:.`X: 0000~1111,
∴Y: 00~15 (two BCD digits, at least 5 bits
ex: 01000 ← 1000

if	(U	>	4)	
	the	en	U=U+	3;
Shi	ft	16	eft;	

Υ			Х				
				1	0	1	1
			1	0	1	1	
		1	0	1	1		
	1	0	1	1			
1	0	1	1				

at least E bita)		U			X			
s, at least 5 bits))					1	0	1	1
Clair Lar				1	0	1	1	
Shift left 🤇			1	0	1	1		
$U \leftarrow U^*2+X[3]$		1	0	1	1			
\wedge	1	0	1	1	•			
Out	t (of	ra	an	96	<u> </u>		

Double-Dabble Binary-to-BCD Conversion Algorithm

Shift and Add-3 Algorithm (consider 8-bit binary)

- Shift the binary number left one bit.
- If 8 shifts have taken place, the BCD number is in the Hundreds, Tens, and Units column.
- 3. If the binary value in any of the BCD columns is 5 or greater, add 3 to that value in that BCD column.

8 bits

4. Go to 1.

Operation	Hundreds	Tens	Units	Bin	ary
HEX				F	F
Start				1 1 1 1	1 1 1 1

Binary-to-BCD Converter 3

Steps to convert an 8-bit binary number to BCD

Operation	Hundreds	Tens	Units	Bin	ary
HEX				F	F
Start				1 1 1 1	1 1 1 1
Shift 1			1	1 1 1 1	1 1 1
Shift 2			1 1	1 1 1 1	1 1
Shift 3			1 1 1	1 1 1 1	1
Add 3			1 0 1 0	1 1 1 1	1
Shift 4		1	0 1 0 1	1 1 1 1	
Add 3		1	1 0 0 0	1 1 1 1	
Shift 5		1 1	0 0 0 1	1 1 1	
Shift 6		1 1 0	0 0 1 1	1 1	
Add 3		1 0 0 1	0 0 1 1	1 1	
Shift 7	1	0 0 1 0	0 1 1 1	1	
Add 3	1	0 0 1 0	1 0 1 0	1	
Shift 8	1 0	0 1 0 1	0 1 0 1		
BCD	2	5	5		

Example of converting hex E to BCD

Operation	Tens	Units	Binary
HEX			E
Start			1 1 1 0
Shift 1		1	1 1 0
Shift 2		1 1	1 0
Shift 3		1 1 1	0
Shift 4		1 1 1 0	
6		0 1 1 0	
Add 6	1	0 1 0 0	
BCD	1	4	

Binary-to-BCD Converter 5

Steps to convert a 6-bit binary number to BCD

- 1. Clear all bits of z to zero
- 2. Shift *B* left 3 bits z[8:3] = B[5:0];
- 3. Do 3 times

if
$$Units > 4$$

then add 3 to $Units$
(note: $Units = z[9:6]$)
Shift z left 1 bit

4. Tens = P[6:4] = z[12:10]Units = P[3:0] = z[9:6]

Operation	Tens	Units	Binary
В			5 4 3 2 1 0
HEX			3 F
Start			1 1 1 1 1 1
Shift 1		1	1 1 1 1 1
Shift 2		1 1	1 1 1 1
Shift 3		1 1 1	1 1 1
Add 3		1 0 1 0	1 1 1
Shift 4	1	0 1 0 1	1 1
Add 3	1	1 0 0 0	1 1
Shift 5	1 1	0 0 0 1	1
Shift 6	1 1 0	0 0 1 1	
BCD	6	3	
Р	7 4	3 0	
Z	13 10	9 6	5 0

How to implement?

Steps to convert a 6-bit binary number to BCD

1			_ /	9	.1	\
"	C	$\bigcap 1$	nı	٦´,	\cap	١
₹,		נט	Щ		u	,

Operation	Ten	s	Į	Jn	its	3		В	in	ar	у	
В							5	4	3	2	1	0
HEX							,	3		F	7	
Start							1	1	1	1	1	1
Shift 1						1	1	1	1	1	1	
Shift 2					1	1	1	1	1	1		
Shift 3				1	1	1	1	1	1			
Add 3			1	0	1	0	1	1	1			
Shift 4		1	0	1	0	1	1	1				
Add 3		1	1	0	0	0	1	1				
Shift 5	1	. 1	0	0	0	1	1					
Shift 6	1 1	. 0	0	0	1	1						
BCD	6			3	3							
Р	7	4	3			0						
z	13	10	9			6	5					0

Binary-to-BCD Converter 7

Truth table for Add-3 Module

$A_3 A_2 A_1 A_0$	$S_3 S_2 S_1 S_0$
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

K-Map for S_3

	$S_3 S_2 S_1 S_0$
A ₃ A ₂ A ₁ A ₀ 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	S ₃ S ₂ S ₁ S ₀ 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Binary-to-BCD Converter 9

exercise

 Design a Verilog module to convert an 8-bit binary number to the BCD form.

```
module Binary_to_BCD_8(P,B);
output [9:0] P; //BCD form of B
input [7:0] B;
. . .
endmodule
```