

Technology Demonstration of the Zero Emissions Chromium Electroplating System

Appendix I: CHPPM Report on Air Sampling

K. James Hay, Stephen W. Maloney, John J. Cannon, Max R. Phelps, and Jason Modrell February 2008

Technology Demonstration of the Zero Emissions Chromium Electroplating System, Appendix I: CHPPM Report on Air Sampling

Final Report

Approved for public release; distribution is unlimited.

Prepared for U.S. Environmental Protection Agency

> 26 West Martin Luther King Drive Cincinnati, OH 45268-0001

Under Work Unit #CNE-B091 ABSTRACT: Volume 1 of this report documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating, the Zero Emissions System. The technology involves placing a blanket of a proprietary fluid, called PRD-EL1, on top of the plating bath. This fluid blanket prevents the formation of aerosols, which is the mechanism by which chromium is emitted from the plating bath to the air. The majority of the testing was directed at demonstration of the effectiveness of chromium plating in the presence of the immiscible blanket. Testing was conducted at Benét Laboratories on coupons and actual parts from Army vehicles. The results indicate that PRD-EL1 may cause deleterious effects on the plating process, as some of the parts failed qualitative tests performed at Benét. However, some parts, which were plated without the fluid blanket present as a baseline control, also failed the tests. Air sampling results indicate that the presence of the PRD-EL1 fluid reduced the chromium emissions to below the standard and the indoor air concentration below the previously established exposure limit but near the new exposure limit.. Overall, the results indicate that the use of the PRD process would require additional testing before it could be accepted for use in Army production and maintenance operations.

This second volume of the technical document is the Center for Health Promotion and Preventive Medicine's report on air sampling performed during the Zero Emission System's technology demonstration.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. **DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.**

Preface

This study was conducted for Headquarters, Department of the Army, under Program Element 063728A, "Environmental Technology Demonstration"; Project 002, "Environmental Compliance Technology"; Work Unit CNE-B091, "Hazardous Air Pollutants Technology Demonstrations." This project is part of the Army Environmental Quality Technology (EQT) Program. The ERDC technical reviewer was Hany Zaghloul, Program Manager.

The work was performed by the Environmental Processes (CN-E) Branch of the Installations Division (CN), Construction Engineering Research Laboratory (CERL). The CERL Principal Investigator was Dr. K. James Hay. Part of this work was done by Anniston Army Depot (POC: Tony Pollard), Benét Laboratories (POC: John Cannon), the Center for Health Promotion and Preventive Medicine (POC: Tim Hilyard), and PRD, Inc. (POC: Dr. Ramesh Melarkode). The technical editor was Linda L. Goersch, Information Technology Laboratory. Deborah Curtin is Chief, CN-E, and Dr. John T. Bandy is Chief, CN. Dr. Kirankumar V. Topudurti is Deputy Director of CERL and the Director of CERL is Dr. Ilker R. Adiguzel.

CERL is an element of the U.S. Army Engineer Research and Development Center (ERDC), U.S. Army Corps of Engineers. The Commander and Executive Director of ERDC is COL Richard B. Jenkins. The Director of ERDC is Dr. James R. Houston.

Appendix I: CHPPM Report on Air Sampling

DEPARTMENT OF THE ARMY
U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE
5158 BLACKHAWK ROAD
ABERDEEN PROVING GROUND, MARYLAND 21010-5403

ATTENTION OF

MCHB-TS-EAQ (40)

18 AUG 2003

MEMORANDUM FOR Commander, USACERL (W-ERDC-CERL-IL/Dr. Steve W. Maloney), U.S. Army Engineering Research and Development Center, Champaign, IL 61826-3482

SUBJECT: Air Pollution Management Study No. 43-EL-5116-03, PRD Zero-Emission Process, Building 114, Anniston Army Depot, Alabama, 3-5 June 2003

Two copies of subject report with Executive Summary are enclosed.

The point of contact is Mr. Timothy Hilyard or the undersigned, DSN 584-2509/3500 or commercial (410) 436-2509/3500.

FOR THE COMMANDER:

Encl

Frogram Manager

Air Quality Surveillance

CF:

CDR, ANAD (AMSTA-AN-PECE/JEREMY TURNER)

Readiness thru Health

U.S. Army Center for Health Promotion and Preventive Medicine

U

S

AIR POLLUTION MANAGEMENT STUDY
NO. 43-EL-5116-03
PRD ZERO-EMISSION PROCESS
BUILDING 114'
ANNISTON ARMY DEPOT
ANNISTON, ALABAMA
3-5 JUNE 2003

C

H

P

P

Distribution limited to U.S. Government agencies only; Protection of privileged information evaluating another Command; Aug 03. Requests for this document must be referred to Commander, USACERL (W-ERDC-CERL-IL), U.S. Army Engineering Research and Development Center, Champaign, IL 61826-3482

M

Readiness Thru Health

DEPARTMENT OF THE ARMY U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND, MARYLAND 21010-5403

MCHB-TS-EAQ

EXECUTIVE SUMMARY
AIR POLLUTION MANAGEMENT STUDY
NO. 43-EL-5116-03
PRD ZERO-EMISSION PROCESS
BUILDING 114
ANNISTON ARMY DEPOT
ANNISTON, ALABAMA
3-5 JUNE 2003

- PURPOSE. The purpose of this assessment is to determine the effectiveness of the Process Research and Development Technologies (PRD Tech. Inc) Zero-Emission Process in removing chromium (Cr) emissions from a full-scale chrome plating operation.
- 2. CONCLUSION. The average total Cr concentrations for each test series, as measured per the U.S. Environmental Protection Agency (USEPA) Method 306, was below the 0.015 milligram per dry standard cubic meter National Emission Standards for Hazardous Air Pollutants Cr standard.
- 3. RECOMMENDATIONS. Provide a copy of this report to the USEPA. If another demonstration is needed, conduct the testing without any other plating in progress during the demonstration. Also, a background test series should be conducted to determine how much Cr from the indoor air is exhausted out of the exhaust stack.

Readiness thru Health

	CONTENTS	
PAR	AGRAPH	
1.	REFERENCES	
2.	PURPOSE 1	
3.	GENERAL 1 a. Background 1 b. Facility Description 2 c. Exhaust System Description 2 d. USEPA RM 306 Sampling 2 e. Indoor Ambient Air Sampling 4 f. Test Series 7 g. Assessment Personnel 7 h. Nomenclature and Equations 7	
4.	FINDINGS AND DISCUSSION	
5.	CONCLUSION	
6.	RECOMMENDATIONS	

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003
TABLES
TABLE 1. TEST SERIES
FIGURES
FIGURE 1. CHROME VAT WITH 4 INCHES OF PRD LIQUID
APPENDICES
A - REFERENCES
DATA D-1 E - NOMENCLATURE AND EQUATIONS. E-1 F - SAMPLING TRAIN DATA SUMMARY. F-1 G - TSP SAMPLER DATA SUMMARY. G-1 H - ANALYTICAL PACKAGES. H-1 I - CALIBRATION PROCEDURES AND DATA I-1
J - SAMPLE CUSTODY SHEETSJ-1 K - CHROMIUM CONCENTRATION/EMISSION DATAK-1

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003 LIST OF ACRONYMS ANAD Anniston Army Depot C Celsius CO2 carbon dioxide Cr chromium DLS Directorate of Laboratory Sciences dscm dry standard cubic meter F Fahrenheit ft foot gram **GFAAS** Graphite Furnace Atomic Absorption Spectrometry H_2O water hr hour ICP-MS inductively coupled plasma-mass spectroscopy ID inside diameter in inch K Kelvin 1b pound m^3 cubic meter milligram mq mL milliliter mm millimeter N2 nitrogen NaOH sodium hydroxide NESHAP National Emission Standards for Hazardous Air Pollutants NIST National Institute of Standards and Technology 02 oxygen PRD Tech. Inc. Process Research and Development Technologies QA/QC quality assurance/quality control RM reference method TSP Total Suspended Particulate USACHPPM U.S. Army Center for Health Promotion and Preventive Medicine USEPA U.S. Environmental Protection Agency degree 8 percent micro μ

DEPARTMENT OF THE ARMY U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND, MARYLAND 21010-5403

MCHB-TS-EAO

AIR POLLUTION MANAGEMENT STUDY
NO. 43-EL-5116-03
PRD ZERO-EMISSION PROCESS
BUILDING 114
ANNISTON ARMY DEPOT
ANNISTON, ALABAMA
3-5 JUNE 2003

- 1. REFERENCES. See Appendix A for a listing of references.
- 2. PURPOSE. The purpose of this assessment is to determine the effectiveness of the Process Research and Development Technologies (PRD Tech. Inc) liquid in removing chromium (Cr) emissions from a full-scale chrome plating operation.

3. GENERAL.

a. Background. Chrome plating of machinery parts produces a surface coating that helps reduce wear and corrosion. The military uses this process as a cheap and effective way to combat the wear and corrosion that parts suffer during usage. The problem with chrome plating is the emission of a fine aerosol, during the plating process. Once in the atmosphere, the aerosol forms chromic acid. Chrome has long been known to be a carcinogen and a cause of perforated nasal passages, skin rashes and other medical problems. The Cr emissions are currently controlled by capturing the aerosols at the surface using airflow directed across the plating vat. The air is pulled through an exhaust duct manifold (located on the opposite side of the vat) by an induced draft fan through an entrainment separator, and then exhausted from a stack outside the building. PRD Tech. Inc has developed a proprietary immiscible liquid that covers the top of the chrome bath during the plating process (see Figure 1). This liquid is designed to prevent the aerosols of Cr from reaching the atmosphere by trapping the bubbles before they reach the liquid-air interface. If successful, this process may replace expensive scrubber technology currently used to deal with Cr emissions.

Readiness thru Health

FIGURE 1. CHROME VAT WITH 4-INCHES OF PRD LIQUID

- b. Facility Description. The Zero-Emission demonstration took place in Building 114 on the Anniston Army Depot (ANAD). This building houses the depot's metal finishing operations. Line 2 was used in this demonstration to allow for continued concurrent production on Line 1. Line 2 has a total of four chrome vats. For this demonstration only vats 12A and 12B were used.
- c. Exhaust System Description. The exhausts from all the chrome vats join into one duct. The fumes are pulled through an induced draft fan and exhausted through an entrainment separator to a 38-inch inside diameter (ID) stack. For this demonstration, Alabama Department of Environmental Management (ADEM) has allowed the separator to be removed from this system.
- d. $\underline{\text{U.S. Environmental Protection Agency (USEPA)}}$ Method 306 Sampling (Total Chrome).

(1) Sampling Location. Line 2 of the Chrome Plating Finishing Complex exhausts to a 38-inch ID stack (see Figure 2). Two 4-inch ID ports, located at right angles to each other, are 114 inches (3 duct diameters) downstream and 53 ½ inches (1.4 duct diameters) upstream from the nearest flow disturbances (the induced draft fan and top of the stack, respectively). Per USEPA Reference Method (RM) 1 (reference 1), a velocity traverse of 24 sampling points (12 per traverse) was conducted using a pitot tube/thermocouple assembly. A cyclonic flow check was performed per USEPA RM 1 and was found to be acceptable. Velocity traverse and the cyclonic flow data are found in Appendix D.

FIGURE 2. LINE 2 EXHAUST STACK

(2) Sampling Procedures and Equipment. All sampling was conducted according to USEPA sampling methods. The USEPA RMs 1-4 (reference 1) were used to verify sampling points, conduct velocity traverse and cyclonic flow checks, and to determine moisture and stack gas content. Total chromium samples were collected according to USEPA Method 306 (reference 2). A detailed description of the sampling procedures and equipment used in the test is included in Appendix B.

FIGURE 3. TSP-WEST LOCATION

FIGURE 4. TSP-EAST LOCATION

- (3) Sample Recovery and Analysis. The procedures for recovery and analysis of all samples are discussed in Appendix C. The U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) contract lab, Severn Trent Laboratory located in Sacramento, California, performed USEPA RM 306 analyses.
- e. <u>Indoor Ambient Air Sampling</u>. At the request of the USEPA, Total Suspended Particulate (TSP) samplers were used to determine the Cr levels in the indoor atmosphere.
- (1) Sampling Location. Two high-volume TSP samplers, were sited on the chrome plating line in Building 114. The West sampler was located approximately six feet west of chrome plating vat 12B (SN K0966). The East sampler was located approximately 12 feet east of chrome plating vat 12B. Both locations are shown in Figures 3-5.
- (2) Sampling Procedures and Equipment. High-Volume TSP samplers were used to collect air samples from the atmosphere inside of Building 114. The sampling was to determine the emissions generated from the chromic acid used in the chrome plating operation. The TSP is considered to be all airborne solid and low vapor pressure liquid particles (mist) with an aerodynamic particle size ranging from approximately 0.8 µm to greater then $100\mu m$. All TSP samples were collected according to Title 40, Code of Federal Regulations (CFR) 50, Appendix B, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) (reference 6). The sampling team used two Graseby-Andersen Model GT2200 high-volume TSP samplers to sample for Cr. The TSP sampler operated by drawing a measured quantity of ambient air into a covered housing and through an 8 x 10-inch quartz fiber filter for a two hour sample duration. Two-hour samples were collected to coincide with the stack sampling run times. A total of nine samples were collected with each sampler.

- (3) Sample Recovery and Analysis. The procedures for recovery and analysis of all samples are discussed in Appendix C. At the conclusion of the ambient air-sampling mission, all filters were hand-carried by the ambient air sampling team back to USACHPPM. The USACHPPM Directorate of Laboratory Sciences (DLS) Analytical Spectrometry Division (ASD) analyzed the filters for Cr.
- f. <u>Test Series</u>. The three test series conducted are described in Table 1.

TEST	SERIES		DESCRIPTION
Test	Series	1	4-inches of PRD Liquid
Test	Series	2	2-inches of PRD Liquid
Test	Series	3	No PRD Liquid

g. <u>Assessment Personnel</u>. The USACHPPM personnel participating in the field assessment are shown in Table 2.

TABLE 2. USACHPPM ASSESSMENT PERSONNEL

PERSONNEL	MAJOR DUTIES/RESPONSIBILITIES	
Tim Hilyard	Project Officer	
Joe Simonovitch	Engineering Technician	
Joe Sutphin	Engineering Technician	
Mike McCarter	Physical Science Technician	

- h. Nomenclature and Equations. The nomenclature and equations used for this assessment are found in Appendix E.
- 4. FINDINGS AND DISCUSSION.
 - a. Non-Standard Events.
- (1) Run 1. During Run 1, chrome plating was occuring in a vat on line 2 which was not being used for this demonstration. Because of this condition, the results for this run may be biased high. The vat was on line 2 and was covered with plastic for the duration of the study.
- (2) Run 4 was started at 0820, however vat 12B was not turned on until 0900. Thus, the plating was not maximized for this entire run. This could lead to the emissions being biased low.

- (3) Run 7, 8, and 9.
- (a) For the test series with no PRD-liquid (Runs 7, 8, and 9), there was still some left over PRD-liquid in the tanks. This could lead to a potential low bias in the emissions.
- (b) During Runs 7, 8, and 9 the large vat at the end of Line 1 was plating. Potential fumes from this operation, if introduced into the Line 2 exhaust stack, could bias the results high.
- b. $\underline{\text{Data Summary}}$. Field data sheets for all sampling runs are found in Appendix F and G.
- c. <u>Plating Items</u>. For this demonstration test coupons were plated for 12 hours.
- d. Emission Data. The average total Cr emission data, as tested, is summarized in Table 3. This data may have been biased by events discussed in section a. Cr emission data can be found in Appendix K.

TABLE 3. AVERAGE TOTAL CHROME CONCENTRATIONS

Test Series	4-Inches of PRD Liquid (Runs 1-3)	2-Inches No of PRD Liquid (Runs 4-6)	
Amperage			
Vat 12A	1,100	1,100	1,100
Vat 12B	267	300	300
Total Amperage	1,367	1,400	1,400
STACK EMISSION DATA			
Actual Total Cr			
Concentration (mg/ds	cm) 0.011	0.008	0.014
NESHAP Cr Standard (mg/d	scm) 0.015	0.015	0.015
TSP SAMPLER DATA		,	
Total Cr			
	0.046	0.016	0.100
TSP-West (mg/m3)			

- (1) Test Series 1. The first test series consisted of three runs with 4-inches of PRD liquid in the chromium vats. The average emission data for the 4-inches of PRD liquid Test Series can be found in Table 3. Individual run data is found in Table 4.
- (a) USEPA Method 306. The average concentration of total Cr for the three runs was 0.011 mg/dscm. The concentration for each individual run was 0.016 mg/dscm, 0.009 mg/dscm and 0.007 mg/dscm, respectively.
- (b) TSP Samplers. The average concentrations of total Cr for the three runs were 0.046 mg/m³ and 0.025 mg/m³ for the TSP-West and TSP-East respectively. The TSP-West had concentrations of 0.125 mg/m³, 0.010 mg/m³, and 0.004 mg/m³ for the individual run. The TSP-East had concentrations of 0.067 mg/m³, 0.005 mg/m³, and 0.002 mg/m³ for each run.

TABLE 4. TOTAL CHROME CONCENTRATIONS 4-INCHES OF PRD LIQUID

Run Number	Run 1	Run 2	Run 3
Amperage			
Vat 12A	1,100	1,100	1,100
Vat 12B	200	300	300
Total Amperage	1,300	1,400	1,400
STACK EMISSION DATA			
Total Cr			
Concentration (mg/dscm)	0.016	0.009	0.007
TSP SAMPLER DATA			
Total Cr			
TSP-West (mg/m3)	0.125	0.010	0.004
TSP-East (mg/m3)	0.067	0.005	0.002

- (2) Test Series 2. A two-inch thickness of PRD liquid was used for Series 2. Average emission data for the 2-inches of PRD liquid test series can be found in Table 3 and individual run data in Table 5.
- (a) USEPA Method 306. The average Cr concentration for the three runs was $0.008~\mathrm{mg/dscm}$. The concentrations were

 $0.011~{\rm mg/dscm},~0.004~{\rm mg/dscm},~{\rm and}~0.008~{\rm mg/dscm}~{\rm for}~{\rm Runs}~4-6~{\rm respectively}.$

(b) TSP Samplers. The average total Cr concentration for the three runs was $0.016~\text{mg/m}^3$ and $0.005~\text{mg/m}^3$ for TSP-West and TSP-East, respectively. TSP-West had concentrations of $0.020~\text{mg/m}^3$, $0.019~\text{mg/m}^3$, and $0.009~\text{mg/m}^3$ for each run. While TSP-East had concentrations of $0.006~\text{mg/m}^3$, $0.005~\text{mg/m}^3$, and $0.004~\text{mg/m}^3$ for each run.

TABLE 5. TOTAL CHROME CONCENTRATIONS 2-INCHES OF PRD Liquid

Run Number	Run 4	Run 5	Run 6
Amperage		•	
Vat 12A	1,100	1,100	1,100
Vat 12B	300	300	300
Total Amperage	1,400	1,400	1,400
STACK EMISSION DATA			
Total Cr			
Concentration (mg/dscm)	0.011	0.004	0.008
TSP SAMPLER DATA			
Total Cr			
TSP-West (mg/m3)	0.020	0.019	0.009
TSP-East (mg/m3)	0.006	0.005	0.004

- (3) Test Series 3. The third test series consisted of three runs with no PRD liquid in the chromium vats. Average Emission data is found in Table 3 and individual run data is found in Table 6.
- (a) USEPA RM 306. 0.014 mg/dscm was the average Cr concentration for the three runs. Runs 7-9 concentrations were 0.013 mg/dscm, 0.013 mg/dscm, and 0.015 mg/dscm, respectively.
- (b) TSP Samplers. The average total Cr concentration for the three runs was 0.100 mg/m 3 and 0.019 mg/m 3 for the TSP sampler West and TSP sampler East respectively. TSP sampler West had total chrome concentrations of 0.130 mg/m 3 , 0.098 mg/m 3 , and

0.071 mg/m 3 . TSP sampler East had concentrations of 0.027 mg/m 3 , 0.021 mg/m 3 , and 0.011 mg/m 3 for each run.

e. <u>Sampling/Analytical Techniques</u>. A summary of the sampling and analysis performed for this PRD Zero-Emission Study is found in Table 7.

TABLE 6. TOTAL CHROME CONCENTRATIONS NO PRD LIQUID

Run Number	Run 7	Run 8	Run 9
Amperage			3
Vat 12A Vat 12B Total Amperage	1,100 300 1,400	, 1,100 300 1,400	1,100 300 1,400
STACK EMISSION DATA Total Cr Concentration (mg/dscm) TSP SAMPLER DATA	0.013	0.013	0.015
Total Cr TSP-West (mg/m³) TSP-East (mg/m³)	0.130 0.027	0.098 0.021	0.071 0.011

TABLE 7. SAMPLING/ANALYTICAL TECHNIQUES

POLLUTANT CATEGORY	SAMPLING	ANALYSIS	CONSTITUENTS TO
	METHOD	METHOD	BE DETERMINED
Total Cr	USEPA	GFAAS	Total Cr
	Method 306		
Total Cr	TSP	ICP-MS	Total Cr
	Samplers		

- (1) Sampling Procedures. The sampling procedures used during the PRD Zero-Emission Study are detailed in Appendix B.
- (2) Sampling Duration/Volumes. The sampling durations and sample volumes for each of the trains can by found in Appendix F.

- f. Sampling/Analytical Quality Assurance (QA)/Quality Control (QC).
- (1) QA/QC objectives. The QA/QC objectives and methods for this Treatability Study are provided in the following paragraphs.
- (2) USEPA RM 306 Procedures. The QA/QC for emission sampling consisted primarily of performing necessary calibrations per references 1 and 7 and operating stack-sampling equipment per reference 1. Appendix I contains a summary of the calibration data. The QA/QC procedures for this train included analysis of media blanks such as the filter and reagents. The blank analytical results are provided in Appendix H.
 - (3) TSP Samplers.
- (a) Equipment Calibration. The high-volume TSP samplers were calibrated and checked for leaks at the staging area prior to set up at the sample sites. A calibrated orifice transfer standard kit, traceable to NIST, was used to calculate each sampler's flow parameters. Calibration of the two high-volume samplers yielded acceptable correlation coefficients (r) greater than 0.990, as required by 40 CFR Part 50, Appendix B (reference 6). Flow checks were performed at the beginning and end of each sampling event to ensure proper equipment operation. Periodic flow checks during sampling events were also performed. Valid samples had flow rates between 1.1 and 1.7 m³/minute, and a total sample time of 2 hrs. The results of the flow checks were entered on TSP field data sheets (see Appendix G).
 - (b) Sample Preservation. Prior to field use, all quartz fiber filters were visually inspected for tears and pinholes. Each filter was then placed in individual, protective filter envelopes. While at ANAD all filters were maintained in their envelopes and stored in the chemistry laboratory in Building 114. All filters were prepared and recovered in this same room.
 - (c) Sample Validation Criteria. All sample run times were within the two-hour sample duration as well as the required flow rate of 1.1 1.7 cubic meters per minute (m^3/min) . All calibration criteria were met, to include that no single point flow check was greater than +/- 10% deviation and sampler regression coefficients were greater than 0.99.

- g. Sample Custody. The integrity of the samples was maintained with completed sample chain-of-custody sheets. These sheets provided a unique sample number, volumes, and descriptions for each sample. The custody sheets also specified names of sample custodians, dates, and run numbers. Appendix J includes the sample custody sheets.
- 5. CONCLUSION. The average total Cr concentrations for each test series, as measured per USEAP Method 306, was below the 0.015 milligram per dry standard cubic meter (mg/dscm) National Emission Standards for Hazardous Air Pollutants (NESHAP) Cr standard.
- 6. RECOMMENDATIONS. Provide a copy of this report to the USEPA. If another demonstration is needed, conduct the testing without any other plating in progress during the demonstration. Also a background test series should be conducted to determine how much chromium from the indoor air is exhausted out of the exhaust stack.

TIMOTHY D. HILYARD

Environmental Protection

Z & D GA

Specialist

Air Quality Surveillance

Program

MICHAEL S. PATTISON

Supervisory Environmental Engineer

Air Quality Surveillance

Program

JAMES D. WOOD, P.E.

Program Manager

Air Quality Surveillance

APPENDIX A

REFERENCES

- 1. Title 40 CFR, 1998 Revision, Part 60 Appendix A, Reference Methods.
- 2. Title 40 CFR, 2001 Revision, Part 63 Appendix A, Test Methods.
- 3. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, December 1996, USEPA.
- 4. USEPA, Manual APTD-0576, March 1983, Maintenance, Calibration, and Operation of Isokinetic Source Sampling Equipment.
- 5. USEPA, Publication No. 600/4-77-027B, March 1983, Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Stationary Source Specific Methods.
- 6. Title 40 CFR, 1998 Revision, Part 50, Appendix B, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method).

APPENDIX B SAMPLING EQUIPMENT AND PROCEDURES

1. STACK SAMPLING EQUIPMENT. The USEFA RM 306 (reference 2) will be used to measure the Cr emissions being released to the atmosphere at the stack. The train configuration is as follows:

Pyrex® sample nozzle
Teflon® union
Pyrex lined probe sheath assembly
Teflon® flex line
90° elbow
Impinger No. 1-100 mL 0.1 N NaOH solution
180° glass connector
Impinger No. 2-100 mL 0.1 N NaOH solution
180° glass connector
Impinger No. 3-dry
180° glass connector
Impinger No. 4-silica gel

S-type pitot tubes and thermocouples will be attached to the sampling probe. The pitot tubes will be 0.75-in. from the probe nozzle, and the thermocouples will be placed to eliminate any disturbance in the velocity measurements. The probe will be attached to a sample box containing the impinger train by a Teflon flex line. The impingers will be packed in an ice bath to cool the gas and to remove the moisture from the gas sample. The sample box will be connected to an umbilical cord, which contains the vacuum line, pitot lines, electrical connections and thermocouple wires. The meter box has a calibrated dry gas meter and calibrated orifice. A vacuum pump will be used to draw the sample through the sampling equipment. Two manometers, mounted on the meter box, will measure the velocity pressure in the stack and the pressure differential across the meter box orifice.

2. STACK SAMPLING PROCEDURES. Traverse points were determined and a preliminary velocity, temperature, and cyclonic flow traverse was conducted in accordance with USEPA RMs 1 and 2 of reference 1. Following these initial traverses, nine separate sampling runs were performed according to USEPA RM 306. The USEPA RM 306 sampling train will be operated isokinetically. Sampling will be performed by controlling the sampling flow rates, so the velocities of the gases entering the sampling nozzle are equal (within $\pm 10\%$) to those of the undisturbed stack gas stream at the sampling points. Since this is not a fuel burning source, gas composition will be considered as ambient air (i.e., 79 percent N2, and 21 percent O2).

[®] Pyrex is registered trademark of Corning Glass Works, Houghton Park, Corning, New York

[®] Teflon is a registered trademark of E.I. DuPont de Nemours & Co., Inc., Wilmington, Delaware.

Impinger Contents

Impinger 1 - 100 mL 0.1 N NaOH
Impinger 2 - 100 mL 0.1 N NaOH
Impinger 3 - Initially Dry
Impinger 4 - Silica Gel

FIGURE 1. USEPA RM 306 Sampling Train

- 3. SAMPLING POINTS. The Line 2 stack is 38 inches ID. Two 4-inch ID sampling ports were installed on the exhaust stack approximately 53 ½ inches (1.4 duct diameters) from the nearest upstream disturbance (the top of the stack) and 114 inches (3 duct diameters) from the nearest downstream disturbance (the exhaust fan). Based on the disturbances and USEPA RM 1, a total of 24 traverse points were to be sampled. Stack velocity pressure and temperature readings were taken every 5 minutes throughout each 2-hour run. Figure B-3 shows the preliminary velocity/temperature traverse point locations within the stack and the approximate sampling location during the single point sampling runs.
- 4. STACK GAS MOISTURE, Moisture was collected in the impingers of each sample train. All impingers were kept in an ice bath so that the final impinger stack gas exit temperature did not exceed 68 °F. Total moisture was determined by weighing the impingers and contents before and after each run. The weight, in grams, gained by the impingers was equal to the volume, in mL, collected during the run. The impingers were weighed on a top loading balance accurate to 0.1 gram.
- 5. STACK GAS COMPOSITION. Since this is not a fuel burning source, gas composition will be considered as ambient air (i.e., 79 percent N_2 , and 21 percent O_2).
- 6. TSP SAMPLERS. High-Volume Total Suspended Particulate (TSP) samplers (see Figure 1) were used to collect air samples from the atmosphere inside of Building 114. The sampling was to evaluate the emissions generated from the chromic acid used in the chrome plating operation. TSP is considered to be all airborne solid and low vapor pressure liquid particles (mist) with an aerodynamic particle size ranging from approximately 0.8 µm to greater then 100µm. All TSP samples were collected according to Title 40, Code of Federal Regulations (CFR) 50, Appendix B, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) (reference 5). The sampling team used two Graseby-Andersen Model GT2200 high-volume TSP samplers to sample for Chromium. The TSP sampler operated by drawing a measured quantity of ambient air into a covered housing and through an 8 x 10 inch quartz fiber filter for a two hour sample duration. Two-hour samples were collected to coincide with the stack sampling run times. A total of nine samples were collected with each sampler.

Point No.	Percentage of Stack Diameter	Distance From Stack Wall
1,13	2.1	7/8"
2,14	6.7	2 1/2"
3,15	11.8	4 1/2"
4,16	17.7	6 3/4"
5,17	25.0	9 1/2"
6,18	35.6	13 1/2"
7,19	64.4	24 1/2"
8,20	75.0	28 1/2"
9,21	82.3	31 1/4"
10,22	88.2	33 1/2"
11,23	93.3	35 1/2"
12,24	97.9	37 1/8"

Figure B-3. Preliminary Traverse Point and Sampling Locations for ANAD Line 2 Exhaust Stack

APPENDIX C SAMPLE RECOVERY AND ANALYSIS

STACK GAS.

- a. Stack Gas Composition. Since this is not a fuel burning source, gas composition will be considered as ambient air (i.e., 79 percent N_2 , and 21 percent O_2).
- b. Stack Gas Moisture Determination. Moisture was collected in the impingers of each sample train. All impingers were kept in an ice bath so that the final impinger stack gas exit temperature did not exceed 68 °F. Total moisture was determined by weighing the impingers and contents before and after each run. The weight, in grams, gained by the impingers was equal to the volume, in mL, collected during the run. The impingers were weighed on a top loading balance accurate to 0.1 gram.
- 2. USEPA RM 306 DETERMINATION. Total chromium emissions were collected using RM 306 (reference 2) sampling trains.
- a. Sample 1. Measured the volume of the first, second, and third impingers, then quantitatively transferred the liquid into a labeled sample container (Container 1). Rinsed the probe nozzle, probe liner, flex line, the three impingers and connecting glassware with approximately 200 to 300 mL of 0.1 N NaOH. This rinse was added to Container 1. Then, placed a signed and dated sample custody seal over the lid and top of jar to ensure the lid is not removed prior to the analytical lab receiving the sample.
- 3. TSP SAMPLER. The indoor chromium was collected using TSP samplers. The sampler operates by drawing a measured quantity of ambient air into a covered housing and through an 8 x 10 inch QMA quartz fiber filter for a desired sample period. Chromium samples were prepared according to 40 CFR 50, Appendix G (reference 6). Any Chromium collected was leached off the filter with a diluted nitric acid solution on a hot plate for approximately 30 minutes and then analyzed by USEPA Method 200.8-Inductively Coupled Plasma-Mass Spectrometry (IPC-MS). The concentration of Chromium was determined by dividing the reported mass by the volume of air drawn through the filter during the sampling period. A field blank and a trip blank were submitted with the batch of samples.

APPENDIX D

TRAVERSE POINT, VELOCITY TRAVERSE AND CYCLONIC FLOW DATA

STACK GAS VELOCITY AND CYCLONIC FLOW DATA

INSTALLATION/PR Anniston Army D	DATE: 3 June 2003			
SAMPLING LOCATI Chrome Plating	TIME: 0845			
OPERATOR: H.lyan	AMBIENT TEMP (°F)	P _{bar} (in.Hg)	P _{stat} (in.H ₂ O)
MOLECULAR WT	EXHAUST S	TACK	ID (in.)	PITOT
(lb/lb mole)	ID SIDE 1	II	38"	0.84

TRAVERSE POINT		POSITION (in.)	STACK GAS VELOCITY HEAD (in. H ₂ O)		STACK GAS TEMPERATURE (°F)		YAW ANGLE	
1	13		0.310	0.430	76	77	13°8	129
2	14		0.316	0,430	76	77	16 12	18°
3	15		0.350	0.428	76	78	130	2"
4	16		0.360	0.360	76	76	150	550
5	17		0.350	6.31	77	76	16°	190
6	18		0.300	0.30	78	76	10	50
7	19		0.520	0.12	77	76	95.	ho
8	90		0.360	0.34	77	76	13°	150
9	31		0.340	0.34	77	76	il°	ಬೆಂ
19	93		6.400	0.36	77	77	180	180
11	2)		0.430	0.37	77	76	17°	180
12	24		6.470	0.37	77	77	15	180
						X		/
AVERAGES		U.359 "H.		77°F*		140		

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

TRAVERSE POINT LOCATION FOR CIRCULAR STACKS

INSTALLATION: Anniston Army Depot, Alabama PROJECT NUMBER: 43-EL-5116-03

DATE: 2 June 03 SAMPLING LOCATION: Chrome Plating Finishing Complex, BLDG 114

OF NIPPLE (DISTANCE A): 36

OUTSIDE OF NIPPLE (DISTANCE B): 0

STACK I.D. (A - B): 38" (51/2 (1.444)

NEAREST UPSTREAM DISTURBANCE: +14" (3dd) 641

NEAREST DOWNSTREAM DISTURBANCE: 53% (14%) the schematic of sampling location pitot tube blockage correction factor:

External Sheath and % Blockage > 3% K = 1.0197 - 0.0098 (% Blockage)

No External Sheath and % Blockage > 2% K = 1.0132 - 0.0101 (% Blockage)

% Blockage = (Stack Dia/2 - Nozzle Length) (Sheath Dia)/Stack Area X 100

 $C_{p_{core}} = 0.84 K$

Traverse Point Number	Fraction of Stack ID	Stack ID	Traverse Point Location (To Nearest 1/8")	Distance B	Traverse Point Location From Outside Nipple	
1/13	2.1	38"	7/8	0"	7/8	
2/14	6.7		21/2		21/2	
3/15	11.8		41/4		41/2	
4/16	17.7		63/4		63/4	
5/17	25.0		91/2		91/2	
6/18	35.6		131/2		15 1/2	
7/19	64.4	-,	2414		241/2	
8/20	75.0		281/2		281/2	
9/21	82.5		314		311/4	
10/22	88.2	- 12=	331/2		331/2	
11/25	93.3		351/2		351/2	
12/24	97.9	1	37'/8		371/8	

NOMENCLATURE

SYMBOL	UNITS	DESCRIPTION
A _n	ft ²	Cross-sectional area of nozzle
As	ft ²	Cross-sectional area of stack
Bwo	decimal	Mole fraction of stack as water content
Cm	mg/dscm	chromium concentration of stack gas
Cp	-	S-type pitot tube coefficient
CTSP	mg/m^3	chromium concentration of TSP Sampler
CO ₂	8	Concentration of ${\rm CO}_2$ in gas stream as measured by an orsat analyzer, dry basis
ΔН	inches H ₂ O	Average pressure drop across the meter box orifice
I	%	The ratio of the sampling velocity to the stack velocity, 100% when the two are equal
M _m	mg	Mass of chromium collected
Ms	lb/lb mole	Molecular weight of stack gas
N ₂	8	Concentration of $\ensuremath{\text{N}}_2$ in gas stream as determined by an orsat analyzer, dry basis
02	8	Concentration of ${\rm O}_2$ in gas stream as measured by an orsat analyzer, dry basis
ΔΡ	inches H ₂ O	Velocity head of stack gas
P _{bar}	inches Hg	Barometric pressure at local elevation
Pm	inches Hg	Absolute pressure (P_{bar} + $\Delta H/13.6$) at meter
Pa	Inches Hg	Absolute pressure (P_{bar} + $P_{stat}/13.6$) at stack

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

SYMBOL	UNITS	DESCRIPTION
P _{stat}	Inches	Static pressure in stack
Qs	dscf/hr	Average stack gas volumetric flow rate, dry, at standard conditions
T _m	°R	Average dry gas meter temperature (°F + 460)
T_s	°R	Average stack gas temperature (°F + 460)
Tstd	°R	Standard absolute temperature, 528°F
V _{lc}	g	Total mass of liquid collected in the impingers and silica gel
Vm	ft ³	Volume of gas through the dry gas meter at meter conditions
V _{m std}	dscf	Volume of dry gas sampled at standard conditions
Vs	ft/sec	Average stack gas velocity at sampling site
V _{std}	M^3	Volume pulled through the TSP samplers
V _{w std}	scf	Water vapor volume at standard conditions
Wn	mg/m^3	Net weight of TSP filters
θ	min	Total sampling time per run
γm _	-	Dry gas meter coefficient

EQUATIONS

1. ABSOLUTE PRESSURE, P_m and P_s (inches Hg).

$$P_m = P_{bar} + \frac{\Delta H}{13.6}$$

$$P_s = P_{bar} + \frac{P_{static}}{13.6}$$

2. DRY GAS METER VOLUME, STANDARD CONDITIONS, Vmstd (dscf).

$$V_{m_{sid}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m}$$

3. WATER VAPOR VOLUME, STANDARD CONDITIONS, Vwstd (scf).

$$V_{wad} = 0.04707 V_{lc}$$

4. MOISTURE CONTENT, Bwo (percent).

$$B_{wo} = \frac{V_{w_{md}}}{V_{m_{md}} + V_{w_{md}}}$$

5. STACK GAS MOLECULAR WEIGHT, Ms (lb/lb-mole).

$$M_s = (1 - B_{wo}) [0.44(\%CO) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO_2)] + 18 B_{wo}$$

6. AVERAGE STACK GAS VELOCITY, vs (ft/sec).

$$v_s = 85.48 C_p (\Delta P^{0.5})_{avg} (\frac{T_s}{P_s M_s})^{0.5}$$

7. AVERAGE STACK GAS VOLUMETRIC FLOW RATE, Qs (dscf/hr).

$$Q_{s} = \frac{63,529(I - B_{wo})(V_{s})(A_{s})(P_{s})}{T_{s}}$$

8. ISOKINETIC SAMPLING RATE, I (percent).

$$I = \frac{0.0945 (T_z) (V_{m_{stal}})}{\theta \ V_s P_s A_n (1 - B_{wo})}$$

9. STACK CHROMIUM CONCENTRATION, Cm (mg/dscm)

$$C_m = \frac{35,51M_m}{V_{m \text{ and}}}$$

10. TSP SAMPLER CHROMIUM CONCENTRATION, (mg/m^3)

$$C_{TSP} = \frac{W_N}{V_{STD}}$$

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

SAMPLING DATA AND ISOKINETIC SHEETS

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 3 June LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: /

FROM FIELD DATA SHEET:

$$C_p = 0.939$$
 $T_a = 516$ $A_a = 7.876$ $V_a = 79.23$ $P_{bar} = 29.13$ $\sqrt{\Delta P_{avg}} = 0.576$ $\theta = \frac{12.0}{29.231}$ $T_a = 540$ $A_a = 3.38246^{-3}\gamma_a = 1.009$ $P_{stat} = 40.20$ $\Delta H = 1.448$

FROM PHYSICAL SCIENCE:

$$v_{1c} = 46.3$$
 $M_{a} = 800_{2} = 0.0$ $v_{1c} = 30.9$ $v_{1c} = 79.1$

PRESSURE CALCULATIONS:

$$P_{ss} = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = 29.24 \text{ in. Hg}$$

$$P_{s} = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = 29.14 \text{ in. Hg}$$

DRY GAS VOLUME:

$$V_{m_{mil}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m} = \frac{17.65 \, () \, () \, ()}{()} = \frac{76.39 \, dscf}{.}$$

$$B_{wo} = \frac{V_{w_{ad}}}{V_{m_{ad}} + V_{w_{ad}}} = \frac{()}{() + ()} = \underline{0.028}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 3 Jan 2005

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: |

STACK GAS MOLECULAR WEIGHT:

$$M_{s} = (1 - B_{wo}) [0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)] + 18B_{wo}$$

$$= (1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.54 \frac{lb}{lb \ mole \ wet}$$

STACK GAS VELOCITY:

$$V_{z_{mg}} = 85.48 C_p \sqrt{\Delta P}_{svg} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()}()} = 33.16 \frac{ft}{sec}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_s = \frac{63,529 (1 - B_{wo}) V_{s_{max}} A_s P_s}{T_s} = \frac{63,529 (1 -)()()()}{()} = \frac{877,212}{hr} \frac{dscf}{hr}$$

PERCENT ISOKINETIC:

$$I = \frac{0.0945 \, T_s \, V_{m_{est}}}{\Theta \, V_s \, P_s \, A_n \, (1 - B_{wo})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{101.5}{\%} \%$$

5.5

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		RUN	NO.	DATÉ 3	Jan 03			
Project Number: 43-EL-5116-03		Installatio Anniston Arr	n: my Depot, Alabama	Simonovi				
Sample Location:	Chrome Plating	Finishing Co	mplex, BLDG 114	4-72				
Type of Sample:	Total Chrome	4 1	Moisture	32 31				
Nomograph/Ca	lculator	1	Nozzle	Pit	ot Tube			
Ан. 1.86	ΔPay 0.360	No.	D ₆	No.	C _p			
%H ₂ O 1	Ps/Pn 1.0	N-1	0.249	5-3	0.84			
T. 540	T. 537		0.248	Foloctage 1.	411			
"C" Factor	Kp 4.20	1	0.250	C _{p,eff}	0.84			
Ref AP	N 75	Da, avg	0. 249	A. 3.182	×10-7			
Meter Box No. 9	0496	Dry Gas Mete	er 7m 1.009	D. 38	A. 7.87			
. Fi	lter			Probe	gr - 24			
Туре	N	umber	Length	Liner	Heat Set			
NA	1	VA	3'EFF	QUARTE	240			
Initi	al Leak Check		Initial Pi	tot Tube Lea	k Check			
Vacuum (in. Hg)	Leak Ra	ate	0.0 10.1	in. H ₂ O	per 15 Sec.			
15	0.001 ft3 pe	er / Min.	at 5.	P 16.3	in. H_2O			
TABLE ALCOHOL	Leak Check		Final Pito	t Tube Leak	Check			
Vacuum (in. Hg)	Leak Ra	ate	0.0 10.	0 in. H ₂ O	per 15 Sec.			
5	0-00 ft3 pe	er Min.	at <u>5.3 / 5.7</u> in. H ₂ O					
Gas Bag S	ystem Leak Chec	ck	Component Leak Check					
Initial	Final		Vacuum (in Hg.)	Leak	Rate			
Pbar 29,13	Patat +0.20	1		ft ³	per Min.			
Start Time 115	End Time (1)	25		ft)	per Min.			

	Point No.	Θ (min)	V _n (ft ³) V ₁ = 394.793	ΔP ("H ₂ O)	(ΔP) 1/2	ΔH ("H ₂ O)		T _n °F) t _f	T _s (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remark Kp=
Noxit	1	5	378.23	0.38	0,616	1.60	71	72	74	2.0	53.	-	240
10-1-	2	10	401,67	0.38	0.616	1.60	77	72	76	20	52	-	241
	3	15	404.99	0.39	0.625	1,51	76	72	76	2.0	55	-	245
	4	20	408:18	0.34	0.533	1.43	76	72	76	2.0	54	-	251
+7	5	25	411.51	0.55	0,592	1.47	76	72	75	2.0	58	-	243
	6.	30.	414.83	0.34	0.533	1,43	13	73	76	2.0	59	-	240
9 1	7	35	48.13	0.34	0,533	1,43	84	23	76	2.0	58	-	238
1	8	40	421.47	0.33	0,574	1.39	83	72"	76	2.0	57	-	245
1	9	45	424.65	0.31	0.557	1.30	86	74	76	15	60	-	247
	- 10	50	428,35	0.42	6.648	1.76	86	75	76	2.0	58	1	239
9.9	11	55	432.37	0.47	0.686	1.97	88	75	77	2.5	58	1	250
- 1	12	60	436,130	0.47	0.686	1.97	89	76	77	25	58	1	246
,		1	456.151	+									
WEST	13	65	439.46	0.33	0,574	1.35	76	77	76	1.5	54	-	250
075	14	70	442.58	0,32	0.566	1.34	84	77	76	1.5	30	-	245
- 18.	15	75	445.85	0.32	0,566	1.34	86	77	77	1.5	52	-	-
	16	80	448.75	0.29	0.539	1.218	84	77	70	115	52	-	-
w 27	17	85	451.92	0,29	0.534	1.218	88	8	77	1.5	55	-	-
+ - +	18	90	454,90	0.25	0.529	1.176	88	78	77	1.5	57	-	-
3	19	95	457,97	0.28	0.529	1.176	68	78	71	1.5	55	-	-
10	28	100	461.13	0.34	0.533	1.43	88	79	77	1.5	54	-	-
a.	21	105	464. 43	0:33	0.574	1.39	89	79	77	1.5	55	-	-
	22	110	407,73	0.34	0.533	1.43	81	79	77	1.5	55	-	-
11	23 -	115	470.83	0.33	0.574	1.39	90	80	77	1.5	5%	-	-
3.4	24	120	474,024	0.03	0,574	1.39	89	80	.77	1.5	56	-	-
+ 1	TOTAL		79.251	0.330	13.821	24.748	263	93	1357				
	Ter .		AVERAGE		0.576	1.448	W 2		76 °F				
11 3							54	o or	536 °R				

START 1115 SMRT 1237 STOP 1215 STOP 1337 MID IT LK GREE 0.005 FN p. m. @ 3"Hg

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 3 Jan 2003

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 2

FROM FIELD DATA SHEET:

$$C_{p} = \underline{0.811} \qquad T_{a} = \underline{5}.77 \qquad A_{d} = \underline{7.871} \qquad V_{m} = \underline{78.676} \quad P_{bar} = \underline{29.15} \quad \sqrt{\Delta P}_{avg} = \underline{0.5}.77$$

$$\theta = \underline{120} \qquad T_{m} = \underline{545} \qquad A_{n} = \underline{3.3838} \quad Y_{n} = \underline{1.009} \quad P_{stat} = \underline{+0.20} \quad \Delta H = \underline{0.41} \cdot 1.40$$

FROM PHYSICAL SCIENCE:

$$V_{1c} = 48.1$$
 $M_n = 800_2 = 20.9$ $80_2 = 20.9$ $80_2 = 79.1$

PRESSURE CALCULATIONS:

$$P_{m} = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = 2.9.23 \text{ in. Hg}$$

$$P_{s} = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = 2.9.14 \text{ in. Hg}$$

$$V_{m_{ml}} = \frac{17.65 V_m \gamma_m P_m}{T_m} = \frac{17.65()()()}{()} = 74.58 \, dscf$$

$$B_{wo} = \frac{V_{w_{sid}}}{V_{m_{sid}} + V_{w_{sid}}} = \frac{()}{() + ()} = \underline{0.030}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE:) June LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 2

STACK GAS MOLECULAR WEIGHT:

$$M_{r} = (1 - B_{wo}) [0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)] + 18B_{wo}$$

$$= (1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = \frac{28.52}{lb \ mole \ wet}$$

STACK GAS VELOCITY:

$$V_{s_{avg}} = 85.48 C_p \sqrt{\Delta P_{avg}} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()}} = \frac{35.52}{\text{sec}} \frac{ft}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_{s} = \frac{63,529 (1 - B_{we}) V_{s_{we}} A_{s} P_{s}}{T_{s}} = \frac{63,529 (1 -)()()()}{()} = \frac{876,646}{hr}$$

$$I = \frac{0.0945 \, T_s \, V_{m_{\text{max}}}}{\Theta \, V_s \, P_s \, A_n \, (1 - B_{\text{mo}})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{99.1}{\%} \%$$

Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET	- A.	RUŃ	NO. 2	DATE 3	DATE 3 June 2007				
Project Number: 43-EL-5116-03		Installation Anniston Arm	ny Depot, Alabama	Meter Box	Operator:				
Sample Location:	Chrome Plating	Finishing Com	mplex, BLDG 114						
Type of Sample:	Total Chrome) ,- · · · · · · · · · · · · · · · · · ·	Moisture						
Nomograph/Ca	lculator	N	lozzle	Pi	tot Tube				
∆н. 1.86	ΔPavg 0.366	No.	Da	No.	C _p				
%H ₂ O /	P _m /P _m 1.0	N-1	0.249	5.3	0.84				
Tn 540	Ts 5)7		0.248	Fblockage	.41)				
"C" Factor	Kp 4.26		0.250	Cp,eff O.	84				
Ref. ΔP	1 1	D _{n, avg}	0.249	An 3.382 x	10-4				
Meter Box No. 9	0496	Dry Gas Mete	Σ Yn 009	Ds 38"	A. 7.876				
Fi	lter		1.1.1.	Probe	-15				
Туре	Nu	mber	Length	Liner	Heat Set				
			3 EST	Qual 2	-				
Initi	al Leak Check		Initial Pi	tot Tube Lea	k Check				
Wacuum (in. Hg)	Leak Ra	ate	0.010.	0 in. H ₂ O	per 15 Sec.				
15	0.00 ft3 pe	r / Min.	at _6.	3 16-1	in. H ₂ O				
Final	Leak Check		Final Pito	t Tube Leak	Check				
Vacuum (in. Hg)	Leak Ra	ite	0.0 / 0.0	in. H ₂ O	per 15 Sec.				
5	0.001 ft3 pe	r Min.	at 7.1 /6,5 in. H ₂ 0						
Gas Bag S	ystem Leak Chec	ek .	Componen	t Leak Check	178 XT				
Initial	Final		Vacuum (in Hg.)	Leak Rate					
Phar 28.13	Pstat + 0.20			ft ³	per Min.				
Start Time 1425	End Time /133	5		ft ³	per Min.				

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

Point No.	Θ (min)	V _m (ft ³)	ΔP ("H ₂ O)	(AP) 1/2	ΔH ("H ₂ O)		T _n °F) t _f	T _s (°F)	("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	K _p =
1	5	474:243	0.35	0.592	1.47	75	126	75	20	63	-	420
2	16	480.88	0.36	0.600	1.51	80	77	77	2.0	61	-	4.10
3	15	484.19	0.35	0.542	1,47	83	76	76	2.0	55	-	4.10
4	20	487.45	0.30	0.548	1.26	86	27	76	2.0	58	-	4.20
5	25	490.51	0.31	0.557	1.30	87	77	76	1.5	55	-	4.4
6	830	453.43	0.27	0,20	1.13	88	78	76	1.5	58	-	4.20
7.	75	496.36	0,26	0.510	1.09	88	78	76	1.5	56	-	41.2
8	40	499.33	6,30	0.548	1.26	88	78	77	1.5	55	•	4.20
4	45	50257	0.310	0.557	1.50	89	78	77	1.5	55	-	4.20
10	50	505.63	0.31	0.557	1,30	90	79	ウブ	1.5	54	-	4:2
u.	55	508:83	0.32	0.566	1.34	91	79	877	1.5	55	-	4.2
12	60	512,180	0.33	0.574	1.39	91	80	77	1.50	56	-	4.20
13	65	515.59	0.39	0.624	1.64	84	81.	77	2,0	58	-	4.20
14	70	519.09	0.38	0-016	1.60	87	80	77	20	53	-	4.20
15	75	522.61	0.39	0.624	1.64	91	81	77	2.0	54	-	4.20
16	80	525.66	0.28	0.529	1.18	92	81	78	1.5	55	-	4.2
17	85	528.75	0,28	0,529	1.18	92.	82	78	1.5	56	-	4.20
18	90	531.56	0.26	0.510	1.09	93	82	78	1.5	56	-	4.20
19	95	534.71	0.31	0.557	1.30	93	82	78	1.5	55	-	4.20
20	100	537.98	0.31	0.557	1-30	94	87	78	1.5	56	-	4.20
21	115	541.10	0.32	6.566	1.34	96	84	79	1.5	56	-	4.20
57	110	544.81	0.44	0.667	1.85	95	84	78	2.0	56	-	4.2
37	115	548.53	0.44	0.663	1.85	94	85	78	2.0	58	-'	4,2
24	121	552,319	0.43	0.656	181	94	85	78	2.0	58	TO THE PARTY OF TH	4.20
OTAL		78.076		13.841	33.60	406	4	1851				
		AVERAGE	-	0.577	1.40	85	°F	77 °F				
					1.5	545	°R	537°R				V.

SMOT 1415 STATE 1528 STAT 1525 STAT 1828

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 3) 4-2
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 3

FROM FIELD DATA SHEET:

$$C_{p} = 0.839 \qquad T_{s} = .549 \qquad A_{a} = 7.876 \qquad V_{w} = 77.909 \qquad P_{bar} = 29.17 \qquad \sqrt{\Delta P}_{dvg} = 0.595$$

$$\theta = 120 \qquad T_{m} = .549 \qquad A_{n} = 3.382810^{-3}Y_{m} = 1.009 \qquad P_{stat} = 0.20 \qquad \Delta H = 1.361$$

FROM PHYSICAL SCIENCE:

$$V_{1c} = \frac{47.7}{1}$$
 $M_{d} = \frac{1}{1}$ $80_2 = \frac{0.0}{1}$ $80_2 = \frac{20.9}{1}$

PRESSURE CALCULATIONS:

$$P_m = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = \frac{29.23}{in. Hg}$$

$$P_s = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = \frac{29.14}{in. Hg}$$

DRY GAS VOLUME:

$$V_{m_{md}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m} = \frac{17.65 \, () \, () \, ()}{()} = \underline{73.87} \, dscf$$

$$B_{wo} = \frac{V_{w_{md}}}{V_{m_{md}} + V_{w_{md}}} = \frac{()}{() + ()} = \underline{0.030}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 3) LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 3

STACK GAS MOLECULAR WEIGHT:

$$M_s = (1 - B_{wo}) [0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)] + 18B_{wo}$$

$$= (1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.52 \frac{lb}{lb \text{ mole wet}}$$

STACK GAS VELOCITY:

$$V_{t_{out}} = 85.48 C_p \sqrt{\Delta P_{ovg}} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()}()} = \frac{31.57}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_{s} = \frac{63,529 (1 - B_{wo}) V_{s_{wo}} A_{s} P_{s}}{T_{c}} = \frac{63,529 (1 -)()()()}{()} = \frac{825,699}{hr} \frac{dscf}{hr}$$

$$I = \frac{0.0945 \, T_s \, V_{m_{ad}}}{\Theta \, V_s \, P_s \, A_n \, (1 - B_{wo})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{104.2 \, \%}{}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET	*	RUN	NO. 3	DATE 3	2 0000				
Project Number: 43-EL-5116-03		Installation Anniston Arm	: y Depot, Alabama	Meter Box					
Sample Location: (Chrome Plating	Finishing Com	plex, BLDG 114						
Type of Sample: (Total Chrome		Moisture		A 14 A				
Nomograph/Cal	Lculator	No.	ozzle	Pit	ot Tube				
An. 1.86	ΔPavg 0,36	No.	D _n .	No.	Cp				
%H ₂ O /	P _s /P _n 1.0	N-1	0.249	5-3	0.84				
540	T. 537		0.248	F _{blockage} /.	41/				
"C" Factor v	Kp 4.20		0.250	Cp,eff U.	84				
Ref ΔP	150	D _{n, avg}	0.249	A. 3.182 A	10-4				
Meter Box No.	90496	Dry Gas Mete	r y. 1.019	D, 38"	A. 7.876				
Fi.	lter	- / 1	÷ , , ,	Probe					
Туре	- N	umber	Length	Liner	Heat Set				
			3 'E 84	Quant2	-				
Initia	al Leak Check		Initial Pi	tot Tube Lea	k Check				
Vacuum (in. Hg)	Leak Ra	ate 1	0.0 1.0.0	in. H ₂ O	per 15 Sec.				
O.003 15"	0.007 ft3 pe	er / Min.	at <u>6.4</u>	5 / 7.3	in. H ₂ O				
	Leak Check	. 6.	Final Pito	t Tube Leak	Check				
Vacuum (in. Hg)	Leak R	ate \-	0.0 1 0.0) in. H ₂ O	per 15 Sec.				
5"	0.∞(ft3 pe	er / Min.	at 7.3 / 7.1 in. H ₂ 0						
Gas Bag S	ystem Leak Che	ck .	Componen	t Leak-Check					
Initial	Final	The same	Vacuum (in Hg.)	Leak	Rate				
Phar 21.15	Pstat -0.20) -	A.	ft ³	per Min				
Start Time 1700	End Time 19	10		ft ³	per Min				

Point No.	(min)	v _i = (ft ³) V _i = (552.581	ΔP ("H ₂ O)	(ΔP) ^{1/2}	ΔH ("H ₂ O)		T _n °F) t _f	T _s (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Rer Kp
1	5	556.14	0.42	0.648	1-76	80	81	78	2.0	63	63	4.
2	/0	559.87	0.41	0.640	1.72	85	81	79	20	53	-	4.
3	15	563,40	0.42	0.648	1.76	91	82	79	2.0	52		4.
4	26	566.97	0.37	0.608	1.55	94	83	80	2.0	52	-	4.
5	25	570.48	0.38	0.616	1.60	94	83	80	2,0	52	-	4.
6	34	578.47	0.28	0.529-	1.18	94	93	80	1.5	52	1	4.
-7	75	576.50	0,28	0,529	1.18	95	84.	80	1.5	52	-	4.
8	40	579,47	0.27	0.520	1.13	95	841	80	1.5	52	The s	4.
9	45	582.51	0.28	0.529	1.18	97	85	801	7.5	54	-	4.
16	50	585.71	0.30	0.548	1.26	95	85	79	1.5	51.	-	4.
11.	55	589.10	0.35	0.592	1.47	95	85	79	1.5	53	-	4.
12	60	592.580	0.35	0,592	1.47	96	85	79	1.5	52	-	4.
	1						100			1 - 2		
13	65	595.67	0.31	0,548	1.30	90	85	79	1.5	56	-	4.
14-	70	548.93	0.32	0.566	1.39	94	86	80	1.5	57	-	4.8
15	75	602.14	0.32	0.566	1.34	94	85	80	1.5	52	-	4.
16	80	605,44	0:31	0.548	1,30	95	86	80	1.5	53	-	4,
17	85	608.68	0.32	0.566	1.34	96	86	80	1.5	54	-	H
18	90	811.52	0.26	0.509	1.10	96	86	80	1.5	54	-1	4.
19	95	614.51	0.27	0.520	1.13	95	85	80	1.5	54	100	4,2
30	100	67.64	0.29	0,539	1,22	95	86	80	1.5	55	-	4.
51	105	620.89	0.32	0.566	1.34	96	86	80	1.5	53	-	4.
37	100	624,11	0.33	0.574	1.39	96	86	80	1.5	54	-	4.2
27	105	627.29	0.31	0.548	1.30	96	86	80	1.5	53	-	4.
TOTAL	190	630.485	0.31	0.548	1.30	95	86	80	1.5	54	Salkalanean	4.
TOTAL	-	77.904		13.068	977	42	79	1912		-5		
		AVERAGE	Locul	0.545	1.361	89	°F	80 °F				ile.
						54	9 °R	540 °R				

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 4 July 2003

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 4

FROM FIELD DATA SHEET:

$$C_{p} = \frac{0.639}{120} \quad T_{s} = \frac{537}{120} \quad A_{s} = \frac{7.876}{120} \quad V_{n} = \frac{84.318}{120} \quad P_{bar} = \frac{39.19}{120} \quad \sqrt{\Delta P}_{dig} = \frac{0.621}{120} \quad A_{n} = \frac{1.822}{120} \text{ Apr} \quad V_{m} = \frac{1.009}{120} \quad P_{stat} = \frac{40.20}{120} \quad \Delta H = \frac{1.62}{120} \quad A_{m} = \frac{1.62}{1$$

FROM PHYSICAL SCIENCE:

$$V_{1c} = \frac{32.6}{1.0}$$
 $M_n = \frac{800}{1.0}$ $800_2 = \frac{20.9}{1.0}$ $80_2 = \frac{20.9}{1.0}$

PRESSURE CALCULATIONS:

$$P_m = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = 29.31 \text{ in. Hg}$$

$$P_s = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = 29.20 \text{ in. Hg}$$

DRY GAS VOLUME:

$$V_{m_{ml}} = \frac{17.65 V_m \gamma_m P_m}{T_m} = \frac{17.65 ()()}{()} = 79.16 dscf$$

$$B_{wc} = \frac{V_{w_{nd}}}{V_{m_{nd}} + V_{w_{nd}}} = \frac{()}{() + ()} = \underline{0.019}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 4 June 2000)

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 4

STACK GAS MOLECULAR WEIGHT:

$$M_{1} = (1 - B_{wo}) [0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)] + 18B_{wo}$$

$$= (1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.63 \frac{lb}{lb \text{ mole wet}}$$

STACK GAS VELOCITY:

$$V_{I_{max}} = 85.48 C_p \sqrt{\Delta P}_{avg} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()}} = \frac{$5.69}{$} \frac{ft}{$}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_{s} = \frac{63,529 (1 - B_{wo}) V_{s_{w_{s}}} A_{s} P_{s}}{T_{s}} = \frac{63,529 (1 -)()()()}{()} = \frac{952,742}{hr} \frac{dscf}{hr}$$

$$I = \frac{0.0945 \, T_s \, V_{m_{ad}}}{\Theta \, V_s \, P_s \, A_n \, (1 - B_{wo})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, () \, (1 -)} = \frac{96.8 \, \%}{}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		RUN	NO. 4	DATE 4	DATE 4 Jul 2001			
Project Number: 43-EL-5116-03		Installation Anniston Arm	: y Depot, Alabama	Meter Box	Meter Box Operator:			
Sample Location:		Finishing Com	plex, BLDG 114	1				
Type of Sample:	Total Chrome)	Moisture					
Nomograph/Ca	alculator	N	ozzle	Pi	tot Tube			
ΔНе 1.86	ΔPavg 0.36	No.	Dn	No.	C _p			
8H2O 2	P _s /P _m 10	N-1	0.249	5-3	0.84			
Tn 545	T. 537		0,248	F _{blockage}	1.4/1			
"C" Factor	Кр 4.16		0.250	Cp, eff 0.	84			
Ref ΔP		D _{n, avg}	0.249	An 3. 382	×10-4			
Meter Box No. 9	0489	Dry Gas Mete	r 7m 1.009	Ds 38"	As 7.871			
	lter			Probe				
Туре	N	umber	Length	Liner	Heat Set			
NA .	/	VA .	3'ESF	Questa	-			
Initi	al Leak Check		Initial P	itot Tube Le	ak Check			
Vacuum (in. Hg)	Leak R	ate	0.0 1 6.	∂ in. H ₂ 0	per 15 Sec.			
15	0.001 ft3 pe	er / Min.	. at <u>6</u> .	5 17.3	in. H ₂ O			
Final	Leak Check		Final Pite	ot Tube Leak	Check Par			
Vacuum (in. Hg)	Leak R	ate		.b in. H ₂ C				
2.6	0.001 ft3 pe	er / Min.	at <u>6</u> .	2 168	in. H ₂ O			
Gas Bag S	System Leak Che	ck	Componer	nt Leak Chec	k			
Initial	Final		Vacuum (in Hg.)	Leak	Rate			
Phar 29.19	Patat #0.20			ft	per Min.			
Start Time 0820	End Time [03	0		ft	per Min.			

	Point No.	Θ (min)	V _i - (ft ³) V _i - 630,644	ΔP ("H ₂ O)	(ΔP) 1/2	ΔH΄ -(**H ₂ O)		r _n °F) t _r	T _s (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remar K _p = 4.16
	- 1	5	634,08	0.38	01616	1.58	81	80	78	1.5	55	5	4.16
	2	10	637.42	0.37	0.608	1,54	81	80	78	15	54	7	4.16
	3	16	840.77	0,37	0.608	1.54	85	81	77	1.5	52	-	4.16
	4	20	844.12	0.39	0.624	1.62	89	82	77	1.5	54	2	4.16
	5	25	642,24	0.30	0.548	1.25	94	86	77	1.5	59	C.P	4.16
	6	30	650:32	0.29	0.539	1,20	96	87	77	1.5	58	-	4.16
	7	35,0	653.41	0.30	0,547	1,25	99	89	77	1.5	59	-	4.16
	8	46	656.75	0.38	0.574	1.37	100	90	77	1.5	56	-	4.16
1	9	45	660,02	0.34	6.583	1,41	100	92	77	1.5	55		4.16
	10	50	663.53	0.39	0.624	1,62	101	93	77	1.5	53	-	416
	11	55	667,02	0.38	0.016	1.58	103	94	77	1.5	53	-	4.16
	12	60	670.572	0.37	0.608	1.54	103	75	77	1.5	55	-	4.16
ŀ	13	65	674.15	0.42	0448	1.75	100	97	77	2.0	55	-	4.16
	14	70	677.99	0.44	0.667	1.83	101	98	77	20	54	-	4.16
	15	75	681.65	041	0.640	1.71	103	99	77	2,0	55	-	4.16
	16	80	685.40	0.42	0.648	1.75	103	99	77	2.0	53	-	4.16
	17	86	689.08	0,41	0.640	1.71	104	100	77	2-0	54	-	4.16
	18	90	692.57	0.39	0.624	1.62	104	100	76	2.0	56	-	4.16
	19	95	695.71	0.29	0.539	1.20	103	100	77	1.5	54	-	4.16
	20	100	699.10	0.37	0.608	1.54	103	100	76	1.5	55	-	4.16
	31	105	702.81	0.44	0.663	1.83	101	100	76	2.0	58	-	4.16
	35	110	706.91	0.53	0.728	221	103	101	77.	2,5	57		4.16
	91	115	710.92	0.50	0.707	2.08	105	101	77	2.5	56	-	4.16
	27	120	714.962	0.50	0.707	208	105	101	77	2.5	54	5.	4.16
	LATOT		84.318	9.72	14.91	38.81	461	2	1847				
I			AVERAGE	0.405	0.621	1.62	96	°F	77 °F				
							55	L or	537 °R				

Smrt 0825

SMET0930

STO1 0925

518F 1030

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 6/4/67 LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 5

FROM FIELD DATA SHEET:

$$C_{p} = \frac{0.839}{0.839} \qquad T_{s} = \frac{540}{0.600} \qquad A_{s} = \frac{7.876}{0.600} \qquad V_{m} = \frac{22.532}{0.009} \qquad P_{bar} = \frac{29.19}{0.200} \qquad \sqrt{\Delta P}_{dig} = \frac{0.600}{0.600} \qquad O_{stat} = \frac{1.59}{0.200} \qquad O_{s$$

FROM PHYSICAL SCIENCE:

$$V_{1c} = \frac{34.5}{10.0}$$
 $M_0 = \frac{1}{10.0}$ $8CO_2 = \frac{0.0}{10.0}$ $8O_2 = \frac{20.9}{10.0}$ $8N_2 = \frac{79.7}{10.0}$

PRESSURE CALCULATIONS:

$$P_m = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = 29.30$$
 in. Hg
 $P_s = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = 29.20$ in. Hg

DRY GAS VOLUME:

$$V_{m_{md}} = \frac{17.65 V_m \gamma_m P_m}{T_m} = \frac{17.65 ()()()}{()} = 76.80 \, dscf$$

$$B_{wo} = \frac{V_{w_{nd}}}{V_{m_{nd}} + V_{w_{nd}}} = \frac{()}{() + ()} = \underline{0.021}$$

Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 6/4/03

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 5

STACK GAS MOLECULAR WEIGHT:

$$M_{\star} = (1 - B_{wo}) [0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)] + 18B_{wo}$$

$$= (1 -) [0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.61 \frac{lb}{lb \text{ mole wet}}$$

STACK GAS VELOCITY:

$$V_{s_{mx}} = 85.48 C_p \sqrt{\Delta P}_{avg} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()}} = \frac{34.59}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_s = \frac{63,529 (1 - B_{wo}) V_{s_{wa}} A_s P_s}{T_s} = \frac{63,529 (1 -)()()()}{()} = \frac{916,783}{hr}$$

$$I = \frac{0.0945 \, T_{s} \, V_{m_{max}}}{\Theta \, V_{s} \, P_{s} \, A_{n} \, (1 - B_{wo})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{97.7 \, \%}{}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		RUN	NO. 5	DATE 4	Le 200)			
Project Number: 43-EL-5116-03		Installation Anniston Arm	n: ny Depot, Alabama	Meter Box Singgovit	Operator:			
Sample Location:	Chrome Plating	g Finishing Com	plex, BLDG 114					
Type of Sample:	Total Chrome	P .	Moisture					
Nomograph/Ca	lculator	N	ozzle	Pit	ot Tube			
∆н. /.86	APavg 0.36	No.	D _n	No.,	C _p			
8H ₂ O 2	P _s /P _n 1.0	N-1	0.249	-0:8:5-3	0.84			
T. 546	T _s 537		0.24)	Fblockage /	411			
"C" Factor .	Kp 4.19 4.24	1	0.250	C _{p,eff}				
Ref ΔP		D _{s,avg}	0.249	An 3.382	710-4			
Meter Box No.	1048	Dry Gas Mete	x 7= 1.009	D. 38"	A. 7.876			
Fi	lter			Probe				
Туре		Number	Length	Liner	Heat Set			
NA	n	14	3.E8+	Que, tz				
Initi	al Leak Check	, 1	Initial P	itot Tube Lea	k Check			
Vacuum (in. Hg)	Leak F	Rate	0.0 1 0	O in. H ₂ O	per 15 Sec			
15'	0.003 ft3 p	er Min.	at 7.5 / 6.8 in. H ₂ 0					
Final	Leak Check	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Final Pite	ot Tube Leak	Check			
Vacuum (in. Hg)	Leak F	late	00 1 0	0 in. H ₂ O	per 15 Sec			
2.0*	0.001 ft3 p	er / Min.	at _7	7.1 / 7.2 in. H ₂ O				
Gas Bag S	ystem Leak Che	eck	Compone	nt Leak Check				
Initial	Final	- 16	Vacuum (in Hg.)	Rate				
P _{bar} 24.19	Pstat + 0.2	0		ft ³	per Min			
Start Time 1/00	End Time /3	05	*	ft ³	per Min			

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

Point No.	⊕ (min)	V ₁ = (ft ³) V ₁ = 7/5.286	ΔP ("H ₂ O)	(ΔP) ^{1/2}	ΔH ("H ₂ O)		T _n °F) t _f	T _s (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remar Kp- tow
1	5	719.30	6.44	0.663	1.87	96	101	78	2.5	65	-	4.19
2	10	722.89	0.45	0.671	191	96	101	78	2.5	62	-	4.19
3	15	726,87	0.45	0.671	191	102	101	78	2.5	49	-	4.19
4	20	730.66	0.44	0.663	1,87	101	99	78	25	46	-	4.19
5	25	733.97	0.34	0.566	1.36	100	99	78	1.5	45	-	4.19
6	31	736.99	0,32	0.576	1.36	101	108	78	1.5	46	-	4-19
7.	35	740.46	027	0,520	1.14	102	99	79	1.5	47		4-19
8	40	743.28	0.26	0.509	1.11	102	99.	80	1.5	45	, .	4.19
- Q	45	746.36	0.28	0,529	1.19	102	99	81-	1.5	43	4	4.19
10	50	749.46	6.30	0.548	1.28	103	99	81	1.5	46	-	4.19
11 .	-55	752.75	0.34	0.583	1.45	165	100	82	20	50	- 30	4.19
12	60	756.053	0,74	0.583	1.45	105	99	82	2.0	51	-	4.19
17	65	759.59	0.37	0.608	1.57	99	99	81	2.0	55	-	4.19
14	70	763.13	0.59	0.624	1.66	99	98	81	2.0	47	-	4.19
15	75	766.81	0.40	0,652	100	10.0	98	81	2.0	46	1	4.19
16	80	770.36	0.39	0.625	1.66	102	98	81	20	50	•	4.19
17	85	773.49	0.50	0.548	1.28	102	98	82	1.5	47	•	4.19
18	90	776.51	0.28	0.529	1.19	102	97	82	1.5	49	-	4.14
18	95	779.65	0.30	0.548	1.28	104	97	83	1.5	48	-	4.14
24	100	783.05	0.38	0.616	1,62	106	98	82	2.0	49	*	4.19
21	105	786.44	0.36	0.606	153	103	97	81	2.0	48	-	4.19
33	100	790.22	0.45	0.671	1.91	104	97	81	2.0	49	-	4.19
3)	116	794.01	0.44	0.663	1.87	105	98	81	2.0	5.0		4.19
24 TOTAL	120	797.798	0.44	0.663	1.87	106	98	81	2.0	49		4.19
TOTAL		82.512	8.71	14.400	37.04	4816	-	1929				
		AVERAGE	0.36	0.600	1.54	100	°F	80 °F				
			e 1877 / E			561) °R	540 °R				

STALT 1106 1205 STALT 1200 1305

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 4 Ja-2 9005
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 6

FROM FIELD DATA SHEET:

$$C_p = 0.839$$
 $T_a = 599$ $A_a = 7.876$ $V_n = 80.795$ $P_{bar} = 29.19$ $\sqrt{\Delta P}_{erg} = 0.586$
 $\theta = 120$ $T_m = 560$ $A_a = 3.312 \times 10^{-9}$ $Y_a = 1.009$ $P_{stat} = 0.20$ $\Delta H = 1.47$

FROM PHYSICAL SCIENCE:

$$v_{1c} = 34.5$$
 $M_0 = 800_2 = 0.0$ $80_2 = 20.9$ $8N_2 = 79.1$

PRESSURE CALCULATIONS:

$$P_{\rm m} = P_{\rm ber} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = \frac{2.9.36}{13.6} \text{ in. Hg}$$

$$P_{\rm s} = P_{\rm ber} + \frac{P_{\rm stat}}{13.6} = () + \frac{()}{13.6} = \frac{2.9.26}{13.6} \text{ in. Hg}$$

DRY GAS VOLUME:

$$V_{m_{nd}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m} = \frac{17.65 \, () \, () \, ()}{()} = \frac{75.98 \, dscf}{}$$

$$B_{\text{HV}} = \frac{V_{w_{\text{old}}}}{V_{m_{\text{old}}} + V_{w_{\text{old}}}} = \frac{()}{() + ()} = \underline{0.021}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 4 Jac 2003

LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 6

STACK GAS MOLECULAR WEIGHT:

$$M_{s} = (1 - B_{wo}) [0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)] + 18B_{wo}$$

$$= (1 -) [0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.61 \frac{lb}{lb \ mole \ wet}$$

STACK GAS VELOCITY:

$$V_{s_{mix}} = 85.48 C_p \sqrt{\Delta P_{avg}} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () \sqrt{\frac{()}{()()}} = \frac{53.91}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_s = \frac{63,529 (1 - B_{yeo}) V_{s_{exg}} A_s P_s}{T_c} = \frac{63,529 (1 -)()()()}{T_c} = 891,684 \frac{dscf}{hr}$$

$$I = \frac{0.0945 T_s V_{m_{av}}}{\Theta V_s P_s A_n (1 - B_{wo})} = \frac{0.0945 ()()}{()()()()()(1 -)} = \frac{98.49\%}{()}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		NO. 6	DATE 4	DATE 4 July 2003				
Project Number: 43-EL-5116-03		Installation Anniston Arm	: y Depot, Alabama	Sinonovit	Operator:			
Sample Location:	Chrome Plating	Tinishing Com	plex, BLDG 114	1				
Type of Sample	Total Chrome		Moisture					
Nomograph/Ca	lculator	N	ozzle	Pi	tot Tube			
ΔНе 1.86	ΔPavg 0.36	No.	D _n	,No.	C _p			
8H₂О 2	Ps/Pm 1.0	N-1	10.249	5-3	0.84			
Tn S45	T _s 537		0.248	Falockage	1.41/			
"C" Factor	Kp TW 425		0.250	Cp. eff				
Ref ΔP		D _{n, avg}	0.249	An 3.382 7	K10-4			
Meter Box No. 9	0496	Dry Gas Mete	r γ. 1.019	D. 31"	A. 7.876			
Fi	lter			Probe	3 -			
Туре	N	umber	Length	Liner	Heat Set			
NA	NA		3'E&	Qu.tz				
Initi	al Leak Check	-	Initial P	itot Tube Le	ak Check			
Vacuum (in. Hg)	Leak Ra	ate	0.0 10.0	in. H ₂ C	per 15 Sec.			
15"	0.009 ft3 pe	er / Min.	at <u></u> 7.	at 7.1 / 6.8 in. H ₂ 0				
Final	Leak Check	34 - 13:	Final Pit	ot Tube Leak	Check			
Vacuum (in, Hg)	Leak R	ate	0.0 10	O in. H ₂ C	per 15 Sec.			
51	0.002 ft3 pe	er / Min.	at 7.3 /7.4 in. H ₂ 0					
Gas Bag S	ystem Leak Che	ck	Compone	k				
Initial	Final	- 1 - 1	Vacuum (in Hg.) Leak Rate					
Phar 29.19	Pstat 1 0.20	1	(A)	ft	per Min.			
Start Time 1330	End Time /53	3		ft	per Min.			

Point No.	Θ (min)	V ₁ = (ft ³) 797,956	ΔP ("H ₂ O)	(ΔP) 1/2	ΔH ("H ₂ O)		T _n °F) t _r	T _s (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remar 4:49 K _p = 104 4:31
51	5	801.73	0.36	0.606	1.53	94	95	84	1.5	62	-	4.25
402	16	804.91	0.37	0.608	1.57	97	95	84	1.5	51	-	4.25
41	15	808.40	0.37	0.608	1.57	99	94	84	1.5	49	-	4.25
YOF	9.6	911,73	0,31	0.557	1.32	100	94	84	1.5	40	-	4-25
255	25	814.90	0.32	0.566	1.36	100	94	84	1.5	48	-	4.25
.6	30	818.03	0.29	0.534	1.23	101	94	84	1.5	50	-	4.25
7	35	821,10	0.28	0.525	1.19	101	95	84	1.5	49	- 1	4.25
8	40	823,99	0.25	0.500	1.06	102	95	83	1.0	50	1	4-25
9	45	827.35	0.27	0.520	1,15	102	95	83	1.0	48	-	4.15
10	56	830.52	0.34	0:583	1,44	103	95	83	1.5	49	-	4.25
11 3	55	833.69	0,36	0.600	1.53	103	95	83	1.5	49	-	4.25
12	66	937.00	0.34	0.583	1,44	103	95	83	1,5	48	-	4.25
13	65	840.57	0.39	0,624	1.66	98	95	83	1.5	54	~	4.25
14	76	844.12	0.39	0:624	1.66	99	95	84	1.5	50	-	4.25
15	75	847,77	0.40	0.632	1.70	103	95.	83	2.0	50	-,	4.25
16	80	851,13	0.31	0-557	1.32	103	15	83	1.5	50	-	4.25
17	85	834.18	0.32	0.56	1.36	103	96	83	1.5	57	-	4.8
18	₫6	857.38	0.52	0.566	1.36	103	95	83	7.5	49	-	4.25
19	95	860.57	0.29	0.534	1.23	103	96	83	1.5	47	-	4.25
36	101	863.68	0.27	0.520	1.15	102	96	83	1.0	49	-	4.25
31	105	867.20	6.37	0.608	1.57	103	96	83	1.5	49.	-	4.25
37	110	870,000	0.45	0.671	1,91	103	96	84	2.0	50	-	4.25
52	115	874,98.	0.48	0.693	2.14	104	96	84	20	50	-	4.25
24	120	878.751	0.46	5.678	1,96	104	96	84	20	50		4.25
OTAL	-	80.795	8.71	14,061	36.31	48	12	300				

14.06/ 36.31

635 0.586 1.47

4812

160 oF 84 oF 560 °R 544 °R

AVERAGE

8.71

START 1433

Son 19530 STOP 1537

START 1330

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE:5 Jack LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 7

FROM FIELD DATA SHEET:

$$C_p = 0.839$$
 $T_n = .539$ $A_n = 7.876$ $V_n = 85.137$ $P_{bar} = 29.57$ $\sqrt{\Delta P}_{avg} = 0.620$ $\theta = 120$ $T_n = .551$ $A_n = 3.381 \times 10^{-4} \gamma_n = 1.009$ $P_{stat} = 0.25$ $\Delta H = 1.64$

FROM PHYSICAL SCIENCE:

$$V_{1c} = \frac{31.2}{2}$$
 $M_{n} = \frac{800}{2} = \frac{6.0}{2}$ $80_{2} = \frac{20.9}{2}$ $8N_{2} = \frac{79.1}{2}$

PRESSURE CALCULATIONS:

$$P_{m} = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = \frac{29.46}{in. Hg}$$
 $P_{s} = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = \frac{29.35}{in. Hg}$

DRY GAS VOLUME:

$$V_{m_{\infty}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m} = \frac{17.65 \, () \, () \, ()}{()} = \frac{81.07 \, dscf}{}$$

$$B_{wo} = \frac{V_{w_{ad}}}{V_{m_{ad}} + V_{w_{ad}}} = \frac{()}{() + ()} = \frac{0.018}{}$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03, DATE: 5 June 200)
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 7

STACK GAS MOLECULAR WEIGHT:

$$M_{s} = (1 - B_{wo})[0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)] + 18B_{wo}$$

$$= (1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.64 \frac{lb}{lb \text{ mole wet}}$$

STACK GAS VELOCITY:

$$V_{s_{exp}} = 85.48 C_p \sqrt{\Delta P}_{evg} \sqrt{\frac{T_s}{P_t M_s}} = 85.48 () () \sqrt{\frac{()}{()}} = \frac{35.60}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_{s} = \frac{63,529 (1 - B_{wo}) V_{s_{ws}} A_{s} P_{s}}{T_{s}} = \frac{63,529 (1 -)()()()}{()} = \frac{952,843}{hr} \frac{dscf}{hr}$$

$$I = \frac{0.0945 \, T_{*} \, V_{m_{add}}}{\Theta \, V_{*} \, P_{*} \, A_{*} \, (1 - B_{um})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{99. \, f}{49. \, f} \, \%$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		RUN	NO. 7	DATE 5 June 2003					
Project Number: 43-EL-5116-03		Installation Anniston Arm	n: ny Depot, Alabama	Meter Box Operator:					
Sample Location:	Chrome Plating	Finishing Con	mplex, BLDG 114						
Type of Sample:	Total Chrome		Moisture	1					
Nomograph/Ca	alculator	b	lozzle	Pitot Tube					
∆не 1.86	ΔPavg 0.36	No.	D _n	No.	C _p				
8н₂о 2	Ps/Ps 1.0	N-1	0.249	'S-1	0.84				
T. 560	T. 540		0.248	Fbiockage 1.411					
"C" Factor	Кр 4.25		0.250	Cp, att D.84					
Ref ΔP	No.	Dnravg	0.249	An 3.382×10-1					
Meter Box No. 9	04 96	Dry Gas Mete	r Yn 1.009	D. 38"	A. 7.876				
Fi	lter		Probe						
Туре	No.	umber	Length	Liner	Heat Set				
NA	1	V/A	3'ES+	Quantz					
Initi	al Leak Check		Initial Pi	tot Tube Lea	ak Check				
Vacuum (in. Hg)	Leak Ra	ate	6.0 / 0.0 in, H ₂ O per 15 Sec. at 6.7 / 6.9 in, H ₂ O						
15"	0.004 ft3 pe	er / Min.							
Final	Leak Check		Final Pitot Tube Leak Check						
Vacuum (in. Hg)	Leak Re	ate	0.0 / 0.0 in. H ₂ O per 15 Sec.						
2"	0.001 ft3 pe	er / Min.							
Gas Bag S	ystem Leak Chec	ck	Component Leak Check						
Initial	Final	13,	Vacuum (in Hg.)	Leak	Rate				
Pbar 29 .34	Potat 0.2	40	- U.	ft ³	per Min				
Start Time 0927	End Time 113		- 1	ft ³	per Min				

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

Point O No. (min)		V ₁ (ft ³) V ₁ =	ΔP ("H ₂ O)	(AP) 1/2	ΔH ("H ₂ O)	t _i (°F)		T, (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remar Kp=
1	5	888.31	0.41	0.640	1.74	83	86	77	2.0	58	-	4.25
2	10	891.86	0.40	0.632	1.70	83	86	77	2.0	49	-	4.25
3	15	895.42	0.41	0.640	1.74	88	86	78	2:0	52	-	4.25
4	20	898.95	0,40	0.612	1,70	88	86	78	2.0	51	-	4.25
5	25	902.65	6.38	0.616	1.62	90	28	77	21	53		4.23
6	30	906.07	0.39	0.624	1.66	9.1	87	78	2.0	55	-	4.25
7	35	909.75	0.38	0,616	1.62	93	88	78	2.0	56	-	4.25
8	40	9/3,10	0.34	0.583	1,45	92	67	78	20	56	-	4.25
9	45	916.32	0.32	0.566	1.36	92	87	78	1.5	55	1	4.25
10	50	919.99	0.39	0.624	1,66	92	88	78	2.0	56	-	4.25
1/	6055	923,41	0.38	0.616	1.62	95	89	79	20	57	-	4.25
12	60	126.991	0.37	0.608	1,57	96	89	79	1.5	56	-	4.25
13	65	930-54	0.37	0.608	1.57	93	9/	78	1.5	56	-	4.15
14	70	93399	037	0.608	1.57	93	90	78	1.5	54	-	4.25
15	75	937.44	0.36	0.600	1.53	93	90	78	1.5	54	~	4.25
16	80	940.95	0.38	0.616	1.62	93	90	78	2.0	56	1	4.25
17	85	944.30	0.35	0.592	1.49	94	90	79	15	56	-	4.25
18	90	947.58	0.34	0.583	1.45	9.5	90	79	1.5	58		4.25
19	95	950.91	0.31	0.557	1.52	94	90	79	1.5	56		4.25
20	100	454.43	0.38	0.616	1.62	97	91	81	2.0	56	~	4.75
16	105	958.20	0.47	0.686	2.00	97	91	79	2.0	57	-	4.25
25	116	962.00	0.45	0.671	1.91	97	91	79	9.0	57	-	4.25
23	115	965.79	0.46	1.678	1.96	99	92	80	2.0	57	-	4.25
24	120	969.689	0.46	0.678	1.46	100	92	80	50	57	_	H.25
LATOT		85:137	9.27	14.89	39.44	436	1	1885				
		AVERAGE	0.39	0.620	1.64	91	°F	79 °F				
		发 等 能 原			F1 16 F	55	l •R	539 °R				

STOP 1627 | STOP 1131

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 5 Jac 200)
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 8

FROM FIELD DATA SHEET:

$$C_p = 6.839$$
 $T_a = 544$ $A_a = 7.876$ $V_n = 60.90$ $P_{bar} = 29.59$ $\sqrt{\Delta P_{ang}} = 0.597$ $\theta = 12.00$ $T_m = 557$ $A_n = 13826657$ $\gamma_n = 1009$ $P_{atat} = 0.30$ $\Delta H = 1.50$

FROM PHYSICAL SCIENCE:

$$V_{1c} = \frac{50.9}{10.9}$$
 $M_a = \frac{800}{10.9}$ $80_2 = \frac{20.9}{10.9}$ $80_2 = \frac{79.7}{10.9}$

PRESSURE CALCULATIONS:

$$P_m = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = \frac{29.45}{13.6} in. Hg$$

$$P_s = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = \frac{29.35}{13.6} in. Hg$$

DRY GAS VOLUME:

$$V_{m_{ml}} = \frac{17.65 V_m \gamma_m P_m}{T_m} = \frac{17.65 ()()()}{()} = \frac{76.18}{dsef}$$

$$B_{wo} = \frac{V_{w_{std}}}{V_{m_{std}} + V_{w_{std}}} = \frac{()}{() + ()} = \underline{0.019}$$

Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

FIELD DATA SHEET		RUN	NO. 8 DATE 5 June 200.					
Project Number: 43-EL-5116-03		Installation Anniston Arm	: y Depot, Alabama	Meter Box Operator:				
Sample Location:	Chrome Plating	Finishing Com	plex, BLDG 114	1				
Type of Sample:	Total Chrome	> .	Moisture					
Nomograph/Ca	lculator	N	ozzle	Pitot Tube				
ΔHe 1.86	1.86 APavg 0.36		D _n	No.	, C ^b			
8н20 Э	Pa/Pa 1.0	N-1	0.249	5-3	0.84			
T. 560	T, 540		0.248	Fblockage 1.4/1				
"C" Factor	Kp 4.25	1	0.250	Cp. eff 0.84				
Ref ΔP	4.	D _{n, avg}	0.249	An 3.382×10-4				
Meter Box No. 90	496	Dry Gas Mete	r yn 1.009	Da 38"	As 7.876			
Fi	lter		H	Probe	21 8			
Туре	N	lumber	Length	Liner	Heat Set			
NA	N	//A	3' ESF	Quetz	-			
Îniti	al Leak Check	100, 7	Initial P	itot Tube Le	ak Check			
Vacuum (in. Hg)	Leak P	late	0.0 / 0.	0 in. H ₂ C	per 15 Sec			
15"	0.008 ft P	er / Min.	at 6.1 / 7.3 in. H ₂ O					
Final	Leak Check	, i	Final Pitot Tube Leak Check					
Vacuum (in. Hg)	_ Leak P	Rate	0.0 / 0.0 in. H ₂ O per 15 Sec.					
2.0"	0.006 ft3 p	er Min.	at 7.1 16.8 in H ₂ O					
Gas Bag S	ystem Leak Che	ock	Compone	nt Leak Chec	k			
Initial	Final	1	Vacuum (in Hg.)	Leak Rate				
Phar 29.34	Pstat 0.20)		ft	3 per Min			
Start Time 1/55	End Time /L	106		ft	3 per Min			

V

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

Point No.	Θ (min)	V ₁ = (ft ³) V ₁ = 969.869	ΔP ("H ₂ O)	(ΔP) 1/2	ΔH ("H ₂ O)		r. F) tr	Ts (°F)	Vacuum ("Hg)	Final Imp. Temp. (°F)	Filter Temp. (°F)	Remar K _p =
1	5	913.72	0.36	0.600	1.53	93	93	80	2.0	62	-	4.25
2	10	977.69	0.37	0.608	1.57	94	93	81	2.0	60	-	4.25
3	15	980.35	0.38	0.616	1.62	97	93	81	2.0	53	-	4.25
4	20	983.75	0,38	0.616	1.62	99	93	82	2.0	52		4.25
5	25	987.29	0.37	0.608	1.57	101	94	83	2.0	51	-	4.25
6	30	990,87	0.29	0.539	1.23	101	94	83	2,0	52	-	4.25
7	>5	993.35	6.30	0.548	1,28	100	99	84	2.0	52	1.	4.25
8	40	996.39	0.26	0.570	1.11	100	93	84	2.0	50	-	4.15
q	45	999.28	0.25	0,500	1.06	100	94	84:	1.5	49	1	4.25
10	50	1002.27	0.29	0.534	1,23	100	94	85	1.5	49	-	4.25
11	55-	1005.07	0.29	0.534	1.23	100.	94	85	1.5	50	-7	4.25
12	60	1007.786	0.28	8.529	1.19	101	94	85	1.5	51	-	4.25
15	65	1011.59	0.4>	0.656	1.83	96	94	84	2.0	55	-	425
14	70	1015.27	0.42	6.648	1.79	97	94	84	2.0	53	-	4.25
15	75	1019.00	0.43	0.656	1-83	99	93	85	2.0	51	-	4.25
16	80	1022.74	0.43	0.656	1.87	102	93	85	2.0	51	-	4.25
17	85	1026.36	0.42	0.648	1.79	102	94	85	2.0	48	-	4.25
18	90	1029.87	0.38	0.616	1.62	103	94	85	2.0	49	-	4.25
19	95	1052.90	0.26	0.500	1.55	104	94	85	7.5	49	-	4.25
21	100	1038.07	0.29	0.539	1.23	101	94	86	1.5	49	-	4.25
3-1	105	1039.53	0.57	0.608	1.57	101	94	84	2.0	48	-	4.25
27	110	1643.14	0.41	1.640	1.74	103	95	84	2.0	49	- 1	4.25
57	115	1646.95	0.46	0.678	2.00	102	94	84	2.0	48	-	4.25
	120	1050,772	0.45	6.671	1.91	101	94	84	3-0	49		4.25
TOTAL	-	80.90)	8.57	14.528	36.49	464	1	2012				
		AVERAGE	0.36	0.597	1.52	97	°F	84 °F				
						557	°R	544°R				

SMALT 1155 SMAT 1900 SMALT 1255 STOP 1900

V

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET		RUN	NO. 8	DATE 5	June 2003
Project Number: 43-EL-5116-03		Installation Anniston Arm	: y Depot, Alabama		Operator:
Sample Location:	Chrome Plating	Finishing Com	plex, BLDG 114		
Type of Sample;	fotal Chrome	>	Moisture		
Nomograph/Ca	lculator	N	ozzle	Pi	tot Tube
∆на 1.86	ΔPavg 0.36	No.	D _n	No.	C _p
8H2O Д	Pa/Pa 1.0	N-1	0.249	5-3	0.84
Tm 560	T. 540		0.248	F _{blockage} [.411
"C" Factor	Kp 4.25	1	0.250	Cp,eff 0.	84
Ref AP		D _{n,avg}	0.249	An 3.382	×10-4
Meter Box No. 90	496	Dry Gas Mete	r yn 1.009	D. 38"	A. 7.876
Fi	lter	+-	7	Probe	-1 +
Type	N. N	lumber	Length	Liner	Heat Set
N/A	N	/A	3' ESF .	Qu-tz	
Initi	al Leak Check		Initial P	itot Tube Le	ak Check
Vacuum (in. Hg)	Leak. R	late	0.0 / 0.	0 in. H ₂	O per 15 Sec.
15"	0.008 ft3 p	er / Min.	at <u>6</u> .	1 / 7.3	_ in. H ₂ O
Final	Leak Check		Final Pito	ot Tube Leak	Check
Vacuum (in. Hg)	_ Leak F	late			o per 15 Sec
2.0"	0.006 ft3 p	er Min.	at _7	1 11.8	in. H ₂ O
The same of the same of the same of	ystem Leak Che	ck	Componer	nt Leak Chec	ek
Initial	Final		Vacuum (in Hg.)	Leak	Rate
Phar 29.54	Potat 0.20)		ft	3 per Min
Start Time 1/55	End Time /L	100		ft	3 per Min

ISOKINETIC DATA SHEET1

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 6/5/63
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 9

FROM FIELD DATA SHEET:

$$C_p = 0.839$$
 $T_s = 546$ $A_n = 7.876$ $V_n = 81.731$ $P_{bar} = 29.39$ $\sqrt{\Delta P}_{avg} = 0.591$ $\theta = 13.0$ $T_n = 561$ $A_n = 3.383 \text{ Mpc} = 1.009$ $P_{stat} = 0.36$ $\Delta H = 1.50$

FROM PHYSICAL SCIENCE:

$$V_{1c} = 29.2$$
 $M_n = ____ $CO_2 = 0.0$ $$O_2 = 20.9$ $$N_2 = 79.1$

PRESSURE CALCULATIONS:

$$P_{m} = P_{bar} + \frac{\Delta H}{13.6} = () + \frac{()}{13.6} = 29.45 \text{ in. Hg}$$

$$P_{s} = P_{bar} + \frac{P_{stat}}{13.6} = () + \frac{()}{13.6} = 29.35 \text{ in. Hg}$$

DRY GAS VOLUME:

$$V_{m_{ml}} = \frac{17.65 \, V_m \, \gamma_m \, P_m}{T_m} = \frac{17.65 \, () \, () \, ()}{()} = \frac{76.50 \, dscf}{}$$

MOISTURE CONTENT:

$$B_{wo} = \frac{V_{w_{ad}}}{V_{m_{ad}} + V_{w_{ad}}} = \frac{()}{() + ()} = \underline{0.01\%}$$

Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

ISOKINETIC DATA SHEET¹
(Continued)

INSTALLATION: Anniston Army Depot, AL PROJECT NUMBER: 43-EL-5116-03 DATE: 6/5/6 >
LOCATION: Chrome Plating Finishing Complex, BLDG 114 RUN NUMBER: 9

STACK GAS MOLECULAR WEIGHT:

$$M_s = (1 - B_{wo})[0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)] + 18B_{wo}$$

= $(1 -)[0.44 () + 0.32 () + 0.28 ()] + 18 () = 28.69 \frac{lb}{lb \ mole \ wet}$

STACK GAS VELOCITY:

$$V_{l_{max}} = 85.48 C_p \sqrt{\Delta P_{max}} \sqrt{\frac{T_s}{P_s M_s}} = 85.48 () () () \sqrt{\frac{()}{()}} = \frac{34.15}{\text{sec}} \frac{ft}{\text{sec}}$$

STACK GAS VOLUMETRIC FLOW RATE:

$$Q_{s} = \frac{63,529 (1 - B_{wo}) V_{s_{max}} A_{s} P_{s}}{T_{c}} = \frac{63,529 (1 -)()()()}{()} = \frac{902,542}{hr} \frac{dscf}{hr}$$

PERCENT ISOKINETIC:

$$I = \frac{0.0945 \, T_s \, V_{m_{ab}}}{\Theta \, V_s \, P_s \, A_n \, (1 - B_{wo})} = \frac{0.0945 \, () \, ()}{() \, () \, () \, (1 -)} = \frac{98.8^{\circ}}{} \%$$

¹ Standard Temperature = 68°F (528°R); Standard Pressure = 29.92 in. Hg

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

FIELD DATA SHEET	,	RUN	NO. 9	DATE 5	June 2005
Project Number: 43-EL-5116-03		Installation Anniston Arm	n: ny Depot, Alabama	Separate Sox	Operator:
Sample Location:	Chrome Plating	g Finishing Com	mplex, BLDG 114		
Type of Sample: (Total Chrome		Moisture	. 79	
Nomograph/Ca	lculator	1	Nozzle	Pi	tot Tube
∆н. 1.86	ΔPavg : 0.36	No.	-D _n	No.	Cp
%H ₂ O 2	Ps/Ps 1.0	N-I	0.249	5-3	0.84
Ta 560	T. 540		0.248	F _{blockage}	411
"C" Factor	Kp 4.28	1	0.250	C _{p,err} 0	.84
Ref ΔP	1	D _{n, avg}	0.249	A. 3.382	×10-4
Méter Box No. 9	0496	Dry Gas Mete	T 7= 1.009	D. 39"	A. 7.876
Fi	lter		1	Probe	
Туре	N	lumber	Length	Liner	Heat Set
. N/A	N/	A	3'ESF	Quartz	
Initi	al Leak Check		Initial P	itot Tube Lea	k Check
Vacuum (in. Ag)	Leak R	ate	0.0 1 0.	0 in. H ₂ O	per 15 Sec
15"	1.00 / ft3 po	er / Min.	at <u>6</u> .	4 1 6.8	in. H ₂ O
Final	Leak Check	. Y.S.	Final Pito	ot Tube Leak	Check
Vacuum (in. Hg)	Leak R	ate		in. H ₂ O	per 15 Sec
2.5"	0.001 ft3 po	er / Min.	at	1	in. H ₂ O
Gas Bag S	ystem Leak Che	ck	Componer	nt Leak Check	C = 1
Initial	Final		Vacuum (in Hg.)	Leak	Rate
Phar 29.34	Patet 0.20		2177	ft ³	per Min
Start Time /425	End Time /6	25		ft³	per Min

MOISTURE DATA SHEETS

Air Pollution Ma	magement beday	No. 15 22 5		
LAB DATA SHEET				
PART I - GENERAL:				
INSTALLATION: Annie	ston Army Depot	ANALYST:	Louis M. McCarte	г
SOURCE : Chrome Ele	ectroplating Facility	BAROMETE	RIC PRESSURE(In, H	lg): 29.13
SAMPLING DATE:	6/3/03	SAMPLING	SITE: LEVEL	
TIME OF SAMPLING :	1(15	RUN#:	AAD -	
		TRAIN:	RM 306	
PART II - MOISTURE D	DETERMINATION			
IMPINGER #	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica Gel
FINAL WEIGHT (g,):	718.6	601.8	593.8	842.6
INITIAL WEIGHT (g.):	700.1	593.0	591.2	826.2
DIFFERENCE (g.):	_18.5	8.8	2.6	16.4
		TOTAL	MOISTURE (g.) =	46,3
PART III - VOLUME OF	FIRST THREE IMPING	SERS.		
TOTAL FINAL VOLUME	m	ıl.	beg	145 pH= 11.0
TOTAL INITIAL VOLUM	IE: 200 m	il.	-	, ,,
DIFFERENCE:	m	ıl.	rink Heat	1 pH= 10.5
PART IV - TOTAL VOL	UME OF SAMPLE CON	ITAINER.	Emp	uges!
TOTAL FINAL VOLUME PROBE RINSE AND CO	OF IMPINGERS, DNNECTING GLASSWA	ARE RINSE :	525 m	il
AUTHENTICATION :	7		1	2.11
TECHNICIAN :	- mm-Carle	PROJECT OFFIC	ER:	V gr

PART I - GENERAL:				
INSTALLATION : Anniston	Army Donot	ANALYST:	Louis M. McCarte	,
			H-101-101-101-101-1	
SOURCE: Chrome Electro			IC PRESSURE(In, H	(g): _27.13
SAMPLING DATE :	6/3/03	SAMPLING S	SITE: LEVEL	
TIME OF SAMPLING:	1425	RUN#:	AAD - 2	
		TRAIN:	RM 306	
PART II - MOISTURE DETI	EDMINATION		- 1	
		,	2	5
IMPINGER#	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica Gel
FINAL WEIGHT (g,):	744.9	676.7	598.6	765.2
INITIAL WEIGHT (g.):	721.9	669.9	595.9	749.6
DIFFERENCE (g.):	23.0	6.8	2.7	15.6
		TOTAL M	IOISTURE (g.) =	48.1
PARTITI-VOLUME OF FIR	ST THREE IMPINGE	ERS.	6 e 7 1 45	pH = 11.0
TOTAL FINAL VOLUME :	ml.		FINAL	pH = 10.
TOTAL INITIAL VOLUME :	200 ml.		A-100000 ()	,
DIFFERENCE :	ml.	. 4		
PART IV - TOTAL VOLUME	OF SAMPLE CONT	AINER.		
TOTAL FINAL VOLUME OF PROBE RINSE AND CONN		RE RINSE :	450 m	ı.
-corrections and		re-Arrive Cr		

INSTALLATION: Anniston	Army Depot	ANALYST:	Louis M. McCarte	er
SOURCE: Chrome Electro	plating Facility	BAROMETR	IC PRESSURE(In, I	tg): 29.15
SAMPLING DATE:	6/3/03	SAMPLING	SITE: LEVEL	
TIME OF SAMPLING :	1700	RUN#:	AAD- 3	
		TRAIN:	RM 306	
PART II - MOISTURE DETE	RMINATION			
IMPINGER #	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica C
FINAL WEIGHT (g,):	723,8	674.5	590,9	731.1
INITIAL WEIGHT (g.):	696.9	670.1	588.8	716.8
DIFFERENCE (g.):	26.9	4.4	2.1	14.
		TOTAL N	MOISTURE (g.) =	47.
PART IN VOLUME OF FIR	ST THREE IMPING	ERS.	627(4) P	4 = 11.0
TOTAL FINAL VOLUME:	m	ı.	FILL pt	1 - 10.0
TOTAL INITIAL VOLUME :	200 m	l.	HE P	, - ,
DIFFERENCE :	m	L	色画画	
PART IV - TOTAL VOLUME	OF SAMPLE CON	TAINER.		
TOTAL FINAL VOLUME OF PROBE RINSE AND CONNI		RE RINSE :	<u>450</u> n	nļ. —

AB DATA SHEET				
PART I - GENERAL:				
NSTALLATION: Anniston	Army Depot	ANALYST:	Louis M. McCarter	
SOURCE: Chrome Electro	oplating Facility	BAROMETR	IC PRESSURE(In, H	g): 29.19
SAMPLING DATE:	6/4/03	SAMPLING S	SITE: LEVEL	
TIME OF SAMPLING :	0820	RUN#:	AAD- 4	
		TRAIN:	RM 306	
PART II - MOISTURE DET	ERMINATION	4.0		
MPINGER#	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica Gel
FINAL WEIGHT (g,):	731.0	692.7	620.5	803.0
NITIAL WEIGHT (g.):	718.8	688.9	618.9	788.0
DIFFERENCE (g.):	12.2	3.8	1.6	15
		TOTAL N	IOISTURE (g.) =	32.6
PARTHL VOLUME OF FIF	RST THREE IMPING	GERS.		100
TOTAL FINAL VOLUME :	m	ıl.	Besix	15 pH = 9.
OTAL INITIAL VOLUME	200 m	nt.	FIN	15 pH = 9.
DIFFERENCE :		d.		
PART IV - TOTAL VOLUM	E OF SAMPLE CON	ITAINER.		
OTAL FINAL VOLUME OF PROBE RINSE AND CONN		ARE RINSE:	<u>450</u> m	l

LAB DATA SHEET

PART I - GENERAL:

INSTALLATION: Anniston Army Depot ANALYST: Louis M. McCarter

SOURCE: Chrome Electroplating Facility BAROMETRIC PRESSURE(In, Hg): 29-19

SAMPLING DATE: 6/4/03 SAMPLING SITE: LEVEL

TIME OF SAMPLING: 1100 RUN#: AAD - 5

TRAIN: RM 306

PART II - MOISTURE DETERMINATION

IMPINGER# 1 2 3 4

 100 ml.
 100 ml.

 CONTENTS
 0.1 N NaOH
 0.1 N NaOH
 DRY
 Silica Gel

FINAL WEIGHT (g.): 734.7 673.9 620.5 747.3

INITIAL WEIGHT (g.): 7/9.0 670.2 6/8.9 734.0

DIFFERENCE (g.): 15.7 3.7 1.6 13.3

TOTAL MOISTURE (g.) = 34.3

PART ILL - VOLUME OF FIRST THREE IMPINGERS.

TOTAL FINAL VOLUME : _____ ml.

TOTAL INITIAL VOLUME: 200 ml.

DIFFERENCE : ml

Besins pH = 9.5 Final pH = 8.5

PART IV - TOTAL VOLUME OF SAMPLE CONTAINER.

TOTAL FINAL VOLUME OF IMPINGERS, PROBE RINSE AND CONNECTING GLASSWARE RINSE:

450 ml.

AUTHENTICATION:

TECHNICIAN: for M. M. Cute

PROJECT OFFICER:

et DIN

LAB DATA SHEET				
PART I - GENERAL:				
INSTALLATION : Annisto	n Army Denot	ANALYST:	Louis M. McCarter	
SOURCE: Chrome Electr		(04,00,000,000,000,000,000,000,000,000,0	RIC PRESSURE(In, H	12.1
	6 4/63			9):_&/-//
SAMPLING DATE:			SITE: LEVEL	
TIME OF SAMPLING :	1330	RUN#:	AAD- 6	
		TRAIN:	RM 306	
PART II - MOISTURE DET	TERMINATION			
IMPINGER#	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica Gel
FINAL WEIGHT (g,):	746.5	667.7	616.4	724.8
INITIAL WEIGHT (g.):	730.5	663.8	6 14.9	711.7
DIFFERENCE (g.):	16.0	3.9	1.5	13.1
		TOTAL M	MOISTURE (g.) =	34.5
PART III - VOLUME OF FI	RST THREE IMPING	ERS.		
TOTAL FINAL VOLUME:	m			Begins pH = 9
TOTAL INITIAL VOLUME:	200 m	L.		Final pH = 8
DIFFERENCE :				mar pin - o
PART IV - TOTAL VOLUM	IF OF SAMPLE CON	TAINED		
TOTAL FINAL VOLUME O		TAINLIN		
PROBE RINSE AND CON	TO THE PARTY OF TH	RE RINSE :	450 ml	-
AUTHENTICATION: /				
AUTHENTICATION:			-1	0.11

Air	Pollution	Management	Study	No.	43-EL-5116-03,	3-5	June	2003	
LAB	DATA SHEET								
	TI OFNEDAL.								

PART I - GENERAL: INSTALLATION: Anniston Army Depot ANALYST: Louis M. McCarter BAROMETRIC PRESSURE(In, Hg) : 29.34 SOURCE: Chrome Electroplating Facility SAMPLING DATE: SAMPLING SITE: LEVEL 0927 TIME OF SAMPLING: RUN#: AAD - 7 TRAIN: RM 306 PART II - MOISTURE DETERMINATION IMPINGER # 1 2 3 100 ml. 100 ml. CONTENTS 0.1 N NaOH DRY Silica Gel 0.1 N NaOH 630.8 778.3 FINAL WEIGHT (g,): 628.6 761.9 INITIAL WEIGHT (g.): 16.4 8.0 DIFFERENCE (g.): TOTAL MOISTURE (g.) = 31.2

PART IN VOLUME OF FIRST THR	EE IMPINGERS.	
TOTAL FINAL VOLUME:	ml.	Begins pH = 13.0
TOTAL INITIAL VOLUME: 2	00 ml.	
DIFFERENCE:	ml. ·	FINAL pH = 12.0

PART IV - TOTAL VOLUME OF SAMPLE CONTAINER.

TOTAL FINAL VOLUME OF IMPINGERS, PROBE RINSE AND CONNECTING GLASSWARE RINSE:

450

AU	THEN.	TICAT	TION:

TECHNICIAN: for 74 745 Carte

LAB DATA SHEET				
PART I - GENERAL:				
INSTALLATION : Anniston	Army Depot	ANALYST:	Louis M. McCarte	r
SOURCE: Chrome Electro	plating Facility	BAROMETRI	C PRESSURE(In, H	lg): 29.34
SAMPLING DATE :	6/5/03	SAMPLING S		
TIME OF SAMPLING :	1155	RUN#:	AAD- 8	
		TRAIN:	RM 306	
PART II - MOISTURE DETI	ERMINATION			4
IMPINGER#	1	2	3	4
CONTENTS	100 ml. 0.1 N NaOH	100 ml. 0.1 N NaOH	DRY	Silica Gel
FINAL WEIGHT (g,):	749.0	722.3	638.3	751.3
INITIAL WEIGHT (g.):	738.8	717.6	636.7	736.9
DIFFERENCE (g.):	10,2	4.7	1.6	14.4
		TOTAL M	OISTURE (g.) =	30.9
PART III - VOLUME OF FIF	RST THREE IMPING	ERS.		
TOTAL FINAL VOLUME :	ml.		n	- 11 - 12
TOTAL INITIAL VOLUME :	200 ml		j.	13.0 pH = 13.0
DIFFERENCE:	ml.		<i>r</i> (<i>x</i>	PH = 12.
PART IV - TOTAL VOLUME	OF SAMPLE CONT	TAINER.		
TOTAL FINAL VOLUME OF PROBE RINSE AND CONN		DE DINCE :	450 m	
THOSE KINGE AND CONN	LOTING GLASSWA	NE KINSE :	450 m	
AUTHENTICATION:				

LAB DATA SHEET

PART I - GENERAL:

INSTALLATION: Anniston Army Depot

ANALYST: Louis M. McCarter

SOURCE: Chrome Electroplating Facility

BAROMETRIC PRESSURE(In, Hg): 29.34

SAMPLING DATE:

6/5/03

SAMPLING SITE: LEVEL

TIME OF SAMPLING :

1423

RUN#: AAD- 9

TRAIN:

RM 306

PART II - MOISTURE DETERMINATION

IMPINGER #

2

3

CONTENTS

100 ml. 0.1 N NaOH 100 ml. 0.1 N NaOH

DRY

Silica Gel

FINAL WEIGHT (g.):

743.7

727.0

637.3

731.3

INITIAL WEIGHT (g.):

734.1

723.1

635.5

13.9

DIFFERENCE (g.):

9.6

3.9

1.8

TOTAL MOISTURE (g.) =

29.2

PART III - VOLUME OF FIRST THREE IMPINGERS.

TOTAL FINAL VOLUME

____ ml

Begins pH = 13.0

TOTAL INITIAL VOLUME:

200 ml.

FINAL pH = 12.5

DIFFERENCE:

ml.

PART IV - TOTAL VOLUME OF SAMPLE CONTAINER.

TOTAL FINAL VOLUME OF IMPINGERS,

PROBE RINSE AND CONNECTING GLASSWARE RINSE:

450 ml.

AUTHENTICATION :

TECHNICIAN:

PROJECT OFFICER :

CfD yh

APPENDIX G

TSP SAMPLER DATA SUMMARY

TSP SAMPLER WEST FIELD DATA SHEET

Installation:	Anniston Army Depot	Date:	06-03-03
	rome Plating Ficility	Run Number:	WEST 1
Operator:	Sutphin	Filter ID No.	Q0113427
Pa (mm Hg)	740.41	Sampler S/N:	0510
Ta(°K)	297.9	Start Time:	1112
The second secon	aseby TSP Sampler	Stop Time:	1312
	acces, i.e. campio.		1012
		1	
Sampler Motor Man	ometer Readings:	Sampler:	
		Regression	Values
Inital Pex (in. H ₂ O)	5.8	m=	1.4679
Final Pex (in. H ₂ O)		b=	0.0166
Mean Pex (in. H ₂ O)		, u=	0.9999
mount ox (iii. 1120)	0.1	1-	0.5555
Total Time:			
Minutes 1		Qa (m3/min)=	1.636
Total Time: Minutes 1 Laboratory Calcula		Qa (m3/min)= Filter Weigh	
Minutes 1	itions:	5.615.815	
Minutes 1 Laboratory Calcula Mean Qstd (m3/mir	itions:	Filter Weigh	its (grams):
Minutes 1 Laboratory Calcula Mean Qstd (m3/min	1.59 191.32	Final (Wf)	its (grams):
Minutes 1 Laboratory Calcula Mean Qstd (m3/min Vstd (m3)= TSP Concentration	1.59 191.32	Filter Weigh Final (Wf)	N/A N/A
Minutes 1 Laboratory Calcula Mean Qstd (m3/min Vstd (m3)= TSP Concentration Form Mean Qstd = [(Delta Mean Qa = Mean Qstd = (Qstd)*(Tota	1)= 1.59 191.32 = N/A ulas and Definitions a Pex)(Pa/760)(298/Ta)] std(760/Pa)(Ta/298)	Filter Weigh Final (Wf) Initial (Wi) Net (Wn)	N/A N/A

Site ID:	Anniston A	Army Depot	Date:		06-03-03	
		ting Ficility	Run Numbe	r:	WEST 2	
Operator:		phin	Filter ID No.	_	Q0113425	
Pa (mm Hg)		740.16	Sampler S/N	l:	0510	
Ta(°K)		297.7	Start Time:		1422	
Equip.Type:	Graseby T	SP Sampler	Stop Time:		1622	
Inital Pex (in. I Final Pex (in. I Mean Pex (in. I	I ₂ O)	5.6 5.5 5.6		mpler: gression m= b= r=	1.4679 0.0166 0.9999	
Check Point @ 1	0.00					
Total Time: Minutes	120 culations:	Mean	Qa (m3/min)=		1.614	
Minutes Laboratory Cal	culations:		Filt	er Weigh	ts (grams):	
Minutes Laboratory Cal	culations:	Mean	Filt		A	
Minutes	culations:		<u>Filt</u>	er Weigh	ts (grams):	
Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)=	culations: /min)=	1.57	Filt Fi	er Weigh	ts (grams):	
Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)= TSP Concentra	culations: /min)= [tion=	1.57	Filt Fi	er Weigh nal (Wf) tial (Wi)	ts (grams): N/A N/A	
Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)= TSP Concentra	culations: /min)= tion = cormulas and Delta Pex)(P	1.57 188.80 N/A d Definitions	Filt Fi Ini N	er Weigh nal (Wf) tial (Wi)	ts (grams): N/A N/A	

Installation:	Anniston A	Army Depot	Date:		06-03-03	7
Site ID:		ing Ficility	Run Number	r:	WEST 3	1
Operator:		phin	Filter ID No.		Q0113423	
Pa (mm Hg)		738.89	Sampler S/N		0510	
Ta(°K)		298	Start Time:		1700	7
Equip.Type:	Graseby TS	SP Sampler	Stop Time:	*	1900	1
Sampler Motor	Manometer I	Readings:	T-1	npler:	Values	
Inital Pex (in. I	10)	5.4	Ket	m=	1.4679	7
Final Pex (in. I		5.3		b=	0.0166	-
Mean Pex (in. I		5.4	,	r=	0.9999	-
						-
Total Time: Minutes Laboratory Cal	120	Mean	Qa (m3/min)= Filte	er Weigh	1.586 ats (grams):]
Minutes Laboratory Cal	culations:	<u>Mean</u>	Filte	er Weigh]
Minutes Laboratory Cal Mean Qstd (m3	culations:		Filte Fin		nts (grams):	
Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)=	culations:	1.54	Filte Fin	nal (Wf)	nts (grams):	
Minutes Laboratory Cal Mean Qstd (m3 Vstd (m3)= TSP Concentra	culations:	1.54 185.09 N/A	Filte Fin	nal (Wf)	N/A	
Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)= TSP Concentra	culations: /min)= tion = cormulas and Delta Pex)(Pan Qstd(760/	1.54 185.09 N/A 1 Definitions a/760)(298/Ta)	Filte Fin Init	nal (Wf)	N/A	

Installation:	Anniston /	Army Depot	Date:	06-04-03	
Site ID:		ting Ficility	Run Number:	WEST 4	
Operator:		phin	Filter ID No.	Q011342	
Pa (mm Hg)		741.43	Sampler S/N:	0510	
Ta(°K)		294.5	Start Time:	0825	7
Equip.Type:	Graseby T	SP Sampler	Stop Time:	1025	
Sampler Motor	Manometer	Readings:	Sample		
			-	ion Values	
Inital Pex (in. I	H ₂ O)	5.4	m=		
Final Pex (in. I		5.3	b=	0.0166	
Mean Pex (in.	-	5.4	r=	0.9999	
				1	-
	926 hrs, 5.3	in H2O			-
Total Time: Minutes	120		Qa (m3/min)=	1.574	
Total Time: Minutes	120			1.574	
Total Time: Minutes [Laboratory Cal	120			eights (grams):	
Total Time: Minutes [Laboratory Cal	120	Mean	Filter We	eights (grams):	
Total Time: Minutes [Laboratory Cal Mean Qstd (m3)	120 culations: 8/min)=	<u>Mean</u>	Filter We	eights (grams): Nf) N/A Wi) N/A	
Total Time: Minutes [Laboratory Cal Mean Qstd (m3) Vstd (m3)= TSP Concentra	120 culations: /min)=	Mean 1.55 186.51	Filter We	eights (grams): Nf) N/A Wi) N/A	
Total Time: Minutes [Laboratory Cal Mean Qstd (m3) Vstd (m3)=	120 culations: S/min)= stion = cormulas and	1.55 186.51 N/A d Definitions	Filter We Final (V Initial (V Net (W	eights (grams): Nf) N/A Wi) N/A	

Installation: Ann	niston Army Depot	Date:	06-03-03
The state of the s	me Plating Ficility	Run Number:	WEST 3
Operator:	Sutphin	Filter ID No.	Q0113423
Pa (mm Hg)	738.89	Sampler S/N:	0510
Ta(°K)	298	Start Time:	1700
Equip.Type: Gras	eby TSP Sampler	Stop Time:	1900
Sampler Motor Manon Inital Pex (in. H ₂ O) Final Pex (in. H ₂ O) Mean Pex (in. H ₂ O) Comments: Elapse	5.4 5.3 5.4 d Time; Start: 00206.	Sampler: Regressio m= , b= r=	1.4679 0.0166 0.9999
Minutes 120		Qa (m3/min)=	1.586
		3. 34. 3. 34	1.586 ghts (grams):
Minutes 120 Laboratory Calculation	ons:	3. 34. 3. 34	ghts (grams):
	ons:	Filter Weig	ghts (grams):
Minutes 120 Laboratory Calculation Mean Qstd (m3/min)= Vstd (m3)=	ons:	Filter Weig	hts (grams): N/A N/A
Minutes 120 Laboratory Calculation Mean Qstd (m3/min)= Vstd (m3)= TSP Concentration =	1.54 185.09	Filter Weig	hts (grams): N/A N/A

Installation: Anniston	Army Depot	Date:	06-04-03
- II - 4-1	lating Ficility	Run Number:	WEST 4
	utphin	Filter ID No.	Q0113421
Pa (mm Hg)	741.43	Sampler S/N:	0510
Ta(°K)	294.5	Start Time:	0825
Equip.Type: Graseby	TSP Sampler	Stop Time:	1025
Sampler Motor Manomete	r Readings:	Sampler:	
		Regression	n Values
Inital Pex (in. H ₂ O)	5.4	m=	1.4679
Final Pex (in. H ₂ O)	5.3	, b=	0.0166
Mean Pex (in. H ₂ O)	5.4	f=	0.9999
			1
Comments: Elapsed Tim	no: Start: 0020s	.79 End: 00210.79	
Check Point @ 0926 hrs, 5.		.ra Elia. 00210.ra	
prisoner ours 60 como ruol ou	O 111 1 100		
Total Time:			
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)=	-	n Qa (m3/min)= Filter Welg Final (Wf)	1.574 hts (grams):
Minutes 120 Laboratory Calculations:		Filter Welg	hts (grams):
Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= Vstd (m3)=	1.55	Filter Welg	hts (grams):
Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= Vstd (m3)= TSP Concentration =	1.55	Filter Welg Final (Wf)	hts (grams): N/A N/A
Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= Vstd (m3)= TSP Concentration =	1.55 186.51 N/A Ind Definitions (Pa/760)(298/Ta 0/Pa)(Ta/298) ograms/m3) = (Filter Weig Final (Wf) Initial (Wi) Net (Wn))] ^{1/2} -b)(1/m) Wn)(10 ⁶)/Vstd	hts (grams): N/A N/A

Installation:	Anniston Army Depot	Date:	06-04-03	
A comment of the comm	rome Plating Ficility	Run Number:	WEST 5	
Operator:	Sutphin	Filter ID No.	Q0113419	
Pa (mm Hg)	741.43	Sampler S/N:	0510	
Ta(°K)	294.5	Start Time:	1105	
Equip.Type: Gi	raseby TSP Sampler	Stop Time:	1305	
Sampler Motor Man	nometer Readings:	Sampler:		
			on Values	
Inital Pex (in. H ₂ O)		m=	1.4679	
Final Pex (in. H ₂ O)		, b=	0.0166	
Mean Pex (in. H ₂ O	5.3	1=	0.9999	
Comments: Elap	sed Time; Start: 00210	0.79 End: 00212.79		
Check Point @ 1205	hrs, 5.3 in H2O			
Check Point @ 1205 Total Time:	hrs, 5.3 in H2O			
Total Time: Minutes Laboratory Calcula Mean Qstd (m3/ml)	120 Meanations:	Final (W		
Total Time: Minutes 1	120 <u>Mean</u>	Filter Wei	ghts (grams):	
Total Time: Minutes Laboratory Calcula Mean Qstd (m3/ml)	120 Mean ations: n)= 1.54 184.75	Final (W	ghts (grams): N/A N/A	
Total Time: Minutes Laboratory Calcula Mean Qstd (m3/mli Vstd (m3)= TSP Concentration	120 Mean ations: n)= 1.54 184.75	Filter Wei	ghts (grams): N/A N/A	
Total Time: Minutes Laboratory Calcula Mean Qstd (m3/min Vstd (m3)= TSP Concentration Form Mean Qstd = [(Delta	120 Mean ations: 1.54 184.75 1.54 N/A nulas and Definitions a Pex)(Pa/760)(298/Ta/std(760/Pa)(Ta/298)	Filter Wei Final (W Initial (W Net (Wn	ghts (grams): N/A N/A	

Installation: Anniston Army D	lepot Date: 06-04-03
Site ID: Crome Plating Fig	opor
Operator: Sutphin	Filter ID No. Q0113415
	2.19 Sampler S/N: 0510
Ta (°K) 29	7.3 Start Time: 1330
Equip.Type: Graseby TSP Sar	mpler Stop Time: 1530
Final Pex (in. H ₂ O) 5	Sampler: Regression Values
Check Point @ 1433 hrs, 5.3 in H2O	
Total Time: Minutes 120	Mean Qa (m3/min)= 1.581
Total Time:	Mean Qa (m3/min)= 1.581 Filter Weights (grams):
Total Time: Minutes 120	Filter Weights (grams):
Total Time: Minutes 120 Laboratory Calculations:	Filter Weights (grams): Final (Wf) N/A
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= 1.5 Vstd (m3)= 185.	Filter Weights (grams): Final (Wf) N/A Initial (Wi) N/A
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= 1.5 Vstd (m3)= 185.	Filter Weights (grams): Final (Wf) N/A Initial (Wi) N/A Net (Wn) N/A

Installation:	Annisto	n Army Depot	Date:		06-05-03	3
Site ID:		lating Ficility	Run Numbe	er:	WEST 7	
Operator:		utphin	Filter ID No.		Q011341	3
Pa (mm Hg)	_	745.24	Sampler S/	N:	0510	
Ta(°K)		294.3	Start Time:		0925	
Equip.Type:	Graseby	TSP Sampler	Stop Time:		1125	
3						
Sampler Motor	Manomete	r Readings:	Sa	mpler:		
			Re	gression	Values	
Inital Pex (in. h	(zO)	5.3		m=	1.4679	
Final Pex (in. H	120)	5.2		b=	0.0166	
Mean Pex (in. I	H ₂ O)	5.3		re	0.9999	7
			•			_
						-
	Jameson Lie	no. Ctart- 0024	4 70 End- 00246			
			4.79 End: 00216.	79		_
Comments: [E Check Point @ 1			4.79 End: 00216.	79		_
			4.79 End: 00216.	79		=
			4.79 End: 00216.	79		
Check Point @ 10			4.79 End: 00216.	79		
Check Point @ 10	020 hrs, 5.	2 in H2O				
Total Time:		2 in H2O	4.79 End; 00216.		1.555	5
Total Time:	020 hrs, 5.	2 in H2O	an Qa (m3/min)=		A	_
Total Time:	020 hrs, 5.	2 in H2O	an Qa (m3/min)=		1.555 its (grams);	_
Total Time: Minutes Laboratory Cale	120 culations:	2 in H2O	an Qa (m3/min)=	ter Weigh	its (grams):	_
Total Time: Minutes Laboratory Cale	120 culations:	2 in H2O	an Qa (m3/min)=		A	_
Total Time: Minutes Laboratory Cale	120 culations:	2 in H2O	an Qa (m3/min)= Filt	ter Weigh	its (grams):	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3)	120 culations:	2 in H2O	nn Qa (m3/min)= Filt Fi Ini	ter Weigh	nts (grams):	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3) Vstd (m3)=	120 culations: /min)=	1.54 185.29	nn Qa (m3/min)= Filt Fi Ini	nal (Wf)	N/A	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3) Vstd (m3)= TSP Concentration	120 culations: /min)= tion =	1.54 185.29 N/A	nn Qa (m3/min)= Filt Fi Ini	nal (Wf)	N/A	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3) Vstd (m3)= TSP Concentrat File Mean Qstd = [(E	120 culations: /min)= tion = ormulas a	1.54 185.29 N/A nd Definitions (Pa/760)(298/Ta	nn Qa (m3/min)= Filt Fi Ini	nal (Wf)	N/A	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3) TSP Concentrat Mean Qstd = [(D) Mean Qstd = [(D) Mean Qstd = Mean Qstd = Mean Qstd = [(D) Mean Qstd = Mean Qstd = Mean Qstd = [(D) Mean Qstd = Mean Qstd = Mean Qstd = [(D) Mean Qstd = [(D) Mean Qstd = Mean Qstd = [(D) Mean Qstd = [120 culations: /min)= tion = ormulas a Delta Pex) n Qstd(76	1.54 1.54 185.29 N/A nd Definitions (Pa/760)(298/Ta 0/Pa)(Ta/298)	nn Qa (m3/min)= Filt Fi Ini	nal (Wf)	N/A	_
Total Time: Minutes Laboratory Calc Mean Qstd (m3) Vstd (m3)= TSP Concentrat File Mean Qstd = [(E	120 culations: /min)= tion = ormulas a Delta Pex) n Qstd(76	1.54 1.54 185.29 N/A nd Definitions (Pa/760)(298/Ta 0/Pa)(Ta/298)	nn Qa (m3/min)= Filt Filt Ini N a)] ^{1/2} -b)(1/m)	nal (Wf)	N/A	_

Installation:	Anniston	Army Depot	Date:	06-05-03
Site ID:		ating Ficility	Run Number:	WEST 8
Operator:		tphin	Filter ID No.	Q0113411
Pa (mm Hg)		745.49	Sampler S/N:	0510
Ta(°K)		296.8	Start Time:	1157
Equip.Type: [Graseby T	SP Sampler	Stop Time:	1357
19				
Sampler Motor	Manometer	Readings:	Sampler:	144
			Regression	
Inital Pex (in. I		5.3	m=	1.4679
Final Pex (in. I		5.2	, b=	0.0166
Mean Pex (in. I	H ₂ O)	5.3	r=	0.9999
Check Point @ 1	0011110, 0.2			
Total Time: Minutes	120		n Qa (m3/min)=	1.561
Total Time:	120		7a (7+3	1.561
Total Time: Minutes	120		7a (7+3	ghts (grams):
Total Time: Minutes	120	Меан	Filter Weld	ghts (grams):
Total Time: Minutes Laboratory Cal Mean Qstd (m3)	120 culations:	1.54 184.53	Filter Weld	nhts (grams): N/A N/A
Total Time: Minutes Laboratory Cal Mean Qstd (m3	120 culations:	Mean	Filter Weld	nhts (grams): N/A N/A
Total Time: Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)=	120 culations:	1.54 184.53	Filter Weld	nhts (grams): N/A N/A
Total Time: Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)=	120 culations: /min = tion = cormulas an cormulas an	1.54 1.54 184.53 N/A Ad Definitions Pa/760)(298/Ta//Pa)(Ta/298)	Filter Weld Final (Wf Initial (Wi	nhts (grams): N/A N/A

Installation:	Anniston Army Depot	Date:	06-05-	03
	Crome Plating Ficility	Run Number:		
Operator:	Sutphin	Filter ID No.	Q01134	
Pa (mm Hg)	744.47	Sampler S/N:	242.11.	
Ta(°K)	299.1	Start Time:	1425	_
Equip.Type: G	raseby TSP Sample	Stop Time:	1625	
Sampler Motor Ma	nometer Readings:	-	pler:	
Full nation		Req	ression Values	_
Inital Pex (in. H ₂ O		3	m= 1.467	
Final Pex (in. H ₂ O		× ×	b= 0.016	_
Mean Pex (In. H ₂ O	5.2		r= 0.999	9
Check Point @ 1530	hrs, 5.1 in H2O			3
	120 N	lean Qa (m3/min)≃	1.5	
Total Time:	120 N		1.55 r Weights (grams	
Total Time:	120 N	Filter		
Total Time: Minutes Laboratory Calcul	120 N	Filter	r Weights (grams	
Total Time: Minutes Laboratory Calcul Mean Qstd (m3/mi	120 <u>N</u> ations: n)= 1.52 181.92	Filter Fin	r Weights (grams	
Total Time: Minutes Laboratory Calcul Mean Qstd (m3/mi Vstd (m3)= TSP Concentration	120 <u>N</u> ations: n)= 1.52 181.92 1.52 N/A nulas and Definitio	Filter Fin. Initi	al (Wf) N/A	
Total Time: Minutes Laboratory Calcul Mean Qstd (m3/mi Vstd (m3)= TSP Concentration	120 Nations: n)= 1.52 181.92 1 N/A nulas and Definition a Pex)(Pa/760)(298 lstd(760/Pa)(Ta/298 al Time)	Filter Fin: Initial Net ns (Ta)] ^{1/2} -b)(1/m)	al (Wf) N/A	

Pollution Management Study No. 43-EL-5116-03, 3-5

Installation:	Anniston Ar	my Denot	Date:		06-03-	03
Site ID:	Crome Platin		Run Numbe	er:	EAST	
Operator:	Sutpl		Filter ID No	_	Q01134	
På (mm Hg)	T	740.41	Sampler S/		6631	
Ta(°K)	-	297.9	Start Time:		1113	
Equip.Type:	Graseby TSF	Sampler	Stop Time:		1311	
Sampler Motor N	lanometer R	eadings:		impler:		
1 mm 2 mm 2	-		Re	gression		_
Inital Pex (in. H		6.1		m=	1.5247	
Final Pex (in. H		5.9		b=	0.1084	
Mean Pex (in, H	20)	6.00		1=	0.0000	3
Check Point @ 12	lapsed Time; 209 hrs, 5.9 in		26 End: 00598.	22		
Check Point @ 12 Total Time: Minutes	118	H2O	Qa (m3/min)=		1.55	7
Check Point @ 12 Total Time: Minutes	118	H2O	Qa (m3/min)=		1.55	7
Check Point @ 12 Total Time: Minutes Laboratory Calc	118 sulations:	H2O	Qa (m3/min)=			7
Total Time: Minutes Laboratory Calc Mean Qstd (m3/	118 sulations:	H2O Mean	Qa (m3/min)= Fil	ter Weigh	nts (grams	7
Total Time: Minutes Laboratory Calc Mean Qstd (m3/	118 :ulations:	Mean 1.51	Qa (m3/min)= Fill E	ter Weigh	nts (grams	7
Total Time: Minutes Laboratory Calc Mean Qstd (m3/ Vstd (m3)=	118 :ulations:	Mean 1.51 178.75 N/A	Qa (m3/min)= Fill E	ter Weigh inal (Wf)	N/A	7
Total Time: Minutes Laboratory Calc Mean Qstd (m3/ Vstd (m3)= TSP Concentrat	118 ulations: min)= comulas and elta Pex)(Pa/ n Qstd(760/Pa	Mean 1.51 178.75 N/A Definitions 760)(298/Ta)	Qa (m3/min)= Fil- In	ter Weigh inal (Wf)	N/A	7

Installation: An	miston Army Depot	Date:	06-03-03	
-	ome Plating Ficility	Run Number:	EAST 2	
Operator:	Sutphin	Filter ID No.	Q0113424	
Pa (mm Hg)	740.16	Sampler S/N:	6631	
Ta(°K)	297.7	Start Time:	1424	
	seby TSP Sampler	Stop Time:	1623	
Sampler Motor Mano	meter Readings:	Sampler	or or has been a long as the	
		Regress	ion Values	
Inital Pex (in. H ₂ O)	6.0	m=	1.5247	
Final Pex (in. H ₂ O)	5.8	- b=	0.1084	
Mean Pex (in. H ₂ O)	5.9	r=	0.9999	
		3.23 End: 00600,22		
Check Point @ 1521 h Total Time: Minutes 11	rs, 5.9 in H2O	n Qa (m3/min)=	1.541	
Check Point @ 1521 h	rs, 5.9 in H2O	n Qa (m3/min)=	1.541	
Check Point @ 1521 h Total Time: Minutes 11	9 <u>Mea</u>	n Qa (m3/min)=	elghts (grams):	
Check Point @ 1521 h Total Time: Minutes 11 Laboratory Calculati	9 <u>Mea</u>	n Qa (m3/min)= Filter We	olghts (grams): N/A	
Total Time: Minutes 11 Laboratory Calculati	9 Mea ions: 1.50	n Qa (m3/min)= Filter We	N/A N/A	
Total Time: Minutes 11 Laboratory Calculati Mean Qstd (m3/min) Vstd (m3)= TSP Concentration =	9 Mea ions: 1.50	n Qa (m3/min)= Filter We Final (V	N/A N/A	
Total Time: Minutes 11 Laboratory Calculati Mean Qstd (m3/min) Vstd (m3)= TSP Concentration =	9 Mea ions: 1.50 178.72 N/A las and Definitions Pex)(Pa/760)(298/Ta	n Qa (m3/min)= Filter We Final (V Initial (V	N/A N/A	

Site ID:		Army Depot	Date:	06-03-03	
Omanatan		ating Ficility	Run Number:	EAST 3	
Operator:		tphin	Filter ID No.	Q0113422	
Pa (mm Hg)		739.89	Sampler S/N:	6631	
Ta(°K)		298	Start Time:	1702	
Equip.Type:	Graseby T	SP Sampler	Stop Time:	1903	
Sampler Motor	Manometer	Readings:	Sample	r: sion Values	
Inital Pex (in. i	H ₂ O)	6.0	m=		
Final Pex (in. I		5.8	, b=		
Mean Pex (in.		5.9	I=	0.9999	
Minutes	121	Mear	Qa (m3/min)=	1.542	
	loudations:		Filter vv	eights (grams):	
Laboratory Ca	lculations:				
		1.50	Final ()	Mn N/A	
Laboratory Ca		1.50	Final ()		
Laboratory Ca	3/min)=			W) N/A	
Laboratory Ca Mean Qstd (m3 Vstd (m3)= TSP Concentra	3/min)= ation =	181.59	Initial (W) N/A	
Laboratory Ca					

Installation:	Anniston Army	Depot !	Date:	06-04-03	
Site ID:	Crome Plating F		Run Number:	EAST 4	
Operator:	Sutphin		Filter ID No.	Q0113420	
Pa (mm Hg)	7.	41.43	Sampler S/N:	6631	
Ta(°K)	2	94.5	Start Time:	0826	
Equip.Type:	Graseby TSP S	ampler	Stop Time:	1027	
Sampler Motor M	anometer Read	lings:	Sampler:		
			Regression	n Values	
Inital Pex (in. H ₂	0)	5.9	m=	1.5247	
Final Pex (in. H ₂	0)	5.9	, b=	0.1084	
Mean Pex (in. H ₂	(0)	5.9	t=	0.9999	
Total Time:	27 hrs, 5.9 in H2		(m3/min)=	1.531	
Total Time:	121			1.531 hts (grams):	
Total Time: Minutes Laboratory Calcu	121 ulations:	Mean Qa	Filter Weig	hts (grams):	
Total Time:	121 ulations:			hts (grams):	
Total Time: Minutes Laboratory Calcu	121 ulations:	Mean Qa	Filter Weig	hts (grams):	
Total Time: Minutes Laboratory Calcument Mean Qstd (m3/n	121 ulations: nin)= 1	Mean Qa	Filter Weig	hts (grams):	
Total Time: Minutes Laboratory Calcument Qstd (m3/n) Vstd (m3)=	121 ulations: nin)= 1	Mean Qa .51 2.92	Filter Weig Final (Wf)	hts (grams): N/A N/A	
Total Time: Minutes Laboratory Calcument Qstd (m3/m Vstd (m3)= TSP Concentration	121 ulations: nin)= 1 18 on= N rmulas and Del ulta Pex)(Pa/760 Qstd(760/Pa)(1	Mean Qa .51 2.92 N/A finitions 0)(298/Ta)] ^{1/2}	Final (Wf) Initial (Wi) Net (Wn)	hts (grams): N/A N/A	

11	SHEE			
Installation: Anniston	<u>e:</u>		06-04-03	
Site ID: Crome Pla	n Numbe		EAST 5	
Operator: Su Pa (mm Hg)	ter ID No.		Q0113418 6631	
Ta(°K)	art Time:	* }	1106	
Equip.Type: Graseby TSP Samp		1	1306	
y				
Sampler Motor Manometer Reading	s: Sa	mpler:		
	Re	gression V	alues	
Inital Pex (in. H ₂ O) 5.9		m=	1.5247	
Final Pex (in. H ₂ O) 5.9		b=	0.1084	
Mean Pex (in. H₂O) 5.9		r=	0.9999	
Comments: Elapsed Time; Start:	00604.24 End: 00606.	25		
Check Point @ 1206 hrs, 5.9 in H2O				
CHECK FOIRT (B) 1200 HIS, 3.8 HT 1120				
Check Foling 1200 his, 3.8 in 120				
Total Time:				
	Mean Qa (m3/min)=		1.531	
Total Time:		. [
Total Time: Minutes 120	Filt			
Total Time: Minutes 120 Laboratory Calculations:	Filt	er Welghts	(grams):	
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= 1.51	Filt	er Weights	(grams):	
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= 1.51 Vstd (m3)= 181.4	Filt Film 7 Ini	er Weights	(grams): N/A N/A	
Total Time: Minutes 120 Laboratory Calculations: Mean Qstd (m3/min)= 1.51 Vstd (m3)= 181.4 TSP Concentration = N/A	Filt 7 Ini N lons 98/Ta)] ^{1/2} -b)(1/m)	er Weights	(grams): N/A N/A	

Installation: Anniston A	
	n Number: EAST 6
Operator: Su	ter ID No. Q0113414
Pa (mm Hg)	ampler S/N: 6631
Ta(°K)	tart Time: 1331
Equip.Type: Graseby TSP Sampro.	top Time: 1531
Sampler Motor Manometer Readings:	Sampler:
	Regression Values
Inital Pex (In. H ₂ O) 5.9	m= 1.5247
Final Pex (in. H ₂ O) 5.8	b= 0.1084
Mean Pex (in. H ₂ O) 5.9	r= 0.9999
Total Time:	
Total Time: Minutes 120 Mean Qa	(m3/min)= 1.531
Total Time:	(m3/min)= 1.531 Filter Weights (grams):
Total Time: Minutes 120 Mean Qa	320 2 12 12 12 12 12 12
Total Time: Minutes 120 Mean Qa Laboratory Calculations:	Filter Weights (grams):
Total Time: Minutes 120 Mean Qa Laboratory Calculations: Mean Qstd (m3/min)= 1.50	Filter Weights (grams): Final (Wf) N/A
Total Time: Minutes 120 Mean Qa Laboratory Calculations: Mean Qstd (m3/min)= 1.50 Vstd (m3)= 179.81	Filter Weights (grams): Final (Wf) N/A Initial (Wi) N/A
Total Time: Minutes 120 Mean Qa Laboratory Calculations: Mean Qstd (m3/min)= 1.50 Vstd (m3)= 179.81 TSP Concentration = N/A Formulas and Definitions Mean Qstd = [(Delta Pex)(Pa/760)(298/Ta)] ^{1/2} -	Filter Weights (grams): Final (Wf) N/A Initial (Wi) N/A Net (Wn) N/A
Total Time: Minutes 120 Mean Qa Laboratory Calculations: Mean Qstd (m3/min)= 1.50 Vstd (m3)= 179.81 TSP Concentration = N/A Formulas and Definitions	Filter Weights (grams): Final (Wf) N/A Initial (Wi) N/A Net (Wn) N/A

Installation:	Anniston	Army Depot	Date:	06-05	5-03
Site ID:		ating Ficility	Run Number:	EAS	T 7
Operator:		utphin	Filter ID No.	Q0113	3412
Pa (mm Hg)		745.24	Sampler S/N:	663	31
Ta(°K)		294.3	Start Time:	092	26
Equip.Type:	Graseby 7	TSP Sampler	Stop Time:	112	26
Sampler Motor	Manometer	r Readings:	Sample	er:	
			Regres	sion Values	
Inital Pex (In. F	120)	6.0	m	1.52	47
Final Pex (in. I-		6.1	b=	0.10	84
Mean Pex (In. I		6.1	Fo.	0.99	99
Check Point @ 1	022 hrs, 6.1	I In H2O			
Total Time:	120		Qa (m3/min)=	1.8	547
Total Time:	120			1.t	
Total Time:	120			/eights (gram	s):
Total Time: Minutes Laboratory Cal-	120] Mean	Filter W	/eights (gram	ns):
Minutes Laboratory Cal	120 culations:	1.54	Filter W	/eights (gram	s):
Total Time: Minutes Laboratory Cal Mean Qstd (m3) Vstd (m3)=	120 culations: //min)= tion =	1.54 184.37	Filter W	/eights (gram	s):

Installation:	Anniston	Army Depot	Date:	06-05-03
Site ID:		lating Ficility	Run Number:	EAST 8
Operator:		utphin	Filter ID No.	Q0113410
Pa (mm Hg)		745.49	Sampler S/N:	6631
Ta(°K)		296.8	Start Time:	1157
Equip.Type:	Graseby '	TSP Sampler	Stop Time:	1357
		no entire		
Sampler Motor	Manomete	r Readings:	Sampler:	No.
Initial Bay (In)	u 0)		Regression	
Inital Pex (in. I		6.1	m=	1.5247
Final Pex (in. I		6.0	b=	0.1084
Mean Pex (in.	H ₂ O)	6.1	r=	0.9999
anoun Form (g)	1302 hrs, 6.0	J 11 1 1 2 0		
Total Time:				4550
	120		n Qa (m3/min)=	1.553
Total Time:	120		V Control of the Cont	1.553 hts (grams):
Total Time:	120		V Control of the Cont	
Total Time: Minutes [Laboratory Ca	120	Mea	Filter Welg	hts (grams):
Total Time: Minutes [Laboratory Cal	120 culations:		Filter Weigl	hts (grams):
Total Time: Minutes [Laboratory Ca Mean Qstd (m3 Vstd (m3)=	120 culations: 3/min)=	1.53 183.59	Filter Weigl Final (Wf)	N/A N/A

Installation:	Anniston Army Depot	Date:		06-05-03
	rome Plating Ficility	Run Numb	or:	EAST 9
Operator:	Sutphin	Filter ID No	0.	Q0113408
Pa (mm Hg)	744.47	Sampler S	/N:	6631
Ta (°K)	299.1	Start Time		1426
Equip.Type: G	raseby TSP Sampler	Stop Time:		1627
Sampler Motor Mar	nometer Readings:	<u>s</u>	ampler:	
		<u>R</u>	egression Va	alues
Inital Pex (in. H ₂ O	5.9		m=	1,5247
Final Pex (in. H ₂ O	5.9		b=	0.1084
Mean Pex (in. H ₂ O	5.9		r=	0.9999
	hrs, 6.0 in H2O			
	121 <u>M</u>	ean Qa (m3/min):		1.540
Total Time:	121 <u>M</u>		tter Weights	
Total Time: Minutes Laboratory Calcul	121 M	E		
Total Time: Minutes	121 M	EI	lter Weights	(grams):
Total Time: Minutes Laboratory Calcul Mean Qstd (m3/mi	121 M ations: n)= 1.50	<u>.</u>	Iter Weights	(grams): N/A
Total Time: Minutes Laboratory Calcul Mean Qstd (m3/mi Vstd (m3)= TSP Concentration	121 M ations: n)= 1.50	<u>.</u>	iter Weights	(grams): N/A

Proponent of this form is USACHPPM (MCHB-TS-EAQ), APG, MD 21010-5422

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

APPENDIX H

ANALYTICAL PACKAGE

Air Pollution Management Study No. 43-EL-5116-03,

USEPA RM 306 ANALYTICAL PACKAGE

1 of 119

CASE NARRATIVE STL SACRAMENTO PROJECT NUMBER G3F110295 There were no anomalies associated with this project.

STL Sacramento (916) 373 - 5600

STL Sacramento Quality Control Definitions

QC Parameter	Definition			
QC Batch	A set of up to 20 field samples plus associated laboratory QC samples that are similar in composition (matrix) and that are processed within the same time period with the same reagent and standard lots.			
Duplicate Control Sample (DCS)	Consist of a pair of LCSs analyzed within the same QC batch to monitor precision and accuracy independent of sample matrix effects. This QC is performed only if required by client or when insufficient sample is available to perform MS/MSD.			
Duplicate Sample (DU)	A second aliquot of an environmental sample, taken from the sam sample container when possible, that is processed independently with the first sample aliquot. The results are used to assess the effect of the sample matrix on the precision of the analytical process. The precision estimated using this sample is not necessarily representative of the precision for other samples in the batch.			
Laboratory Control Sample (LCS)	A volume of reagent water for aqueous samples or a contaminant- free solid matrix (Ottawa sand) for soil and sediment samples which is spiked with known amounts of representative target analytes and required surrogates. An LCS is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects.			
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A field sample fortified with known quantities of target analytes that are also added to the LCS. Matrix spike duplicate is a second matrix spike sample. MSs/MSDs are carried through the entire analytical process and are used to determine sample matrix effect on accuracy of the measurement system. The accuracy and precision estimated using MS/MSD is only representative of the precision of the sample that was spiked.			
Method Blank (MB)	A sample composed of all the reagents (in the same quantities) in reagent water carried through the entire analytical process. The method blank is used to monitor the level of contamination introduced during sample preparation steps.			
Surrogate Spike	Organic constituents not expected to be detected in environmental media and are added to every sample and QC at a known concentration. Surrogates are used to determine the efficiency of the sample preparation and the analytical process.			

Source: STL Sacramento Laboratory Quality Manual

STL Sacramente Certifications:

Alasks (UST-055), Arizona (#AZ00616), Arkansas, California (NELAP #01119CA) (ELAP #1-2439),
Connecticut (#PE-0691), Florida (E87570), Hawaii, Louisiana (AI # 30612), New Jersey (Lgh ID 44005),
Nevada (#CA 044), New York (LAB ID 11666 serial # 107407), Oregon (LAB ID CA 044), South Carolina
(LAB ID 87014, Cert. # 870140), Utah (E-168), Virginia (#00178), Washington (# C087), West Virginia (#
9930C), Wisconsin (Lab 998204680), USNAVY, USACE, USDA Foreign Plant (Permit # 37-82605), USDA
Foreign Soil (Permit # S-46613).

Sample Summary G3F110295

WO#	Sample #	Client Sample ID	Sampling Date	Received Date
FQC6G	1	43ANAD001 DLS8455001	6/3/03	6/11/03 09:05 AM
FQC6G	1	43ANAD001 DLS8455001 DUP	6/3/03	6/11/03 09:05 AM
FQC6V	2	43ANAD004 DLS8455002	6/3/03	6/11/03 09:05 AM
FQC65	3	43ANAD007 DLS8455003	6/3/03	6/11/03 09:05 AM
FQC67	4	43ANAD013 DLS8455004	6/4/03	6/11/03 09:05 AM
FQC69	5	43ANAD016 DLS8455005	6/4/03	6/11/03 09:05 AM
FQC7C	6	43ANAD019 DLS8455018	6/4/03	6/11/03 09:05 AM
FQC7G	7	43ANAD023 DLS8455019	6/5/03-	6/11/03 09:05 AM
FQC7H	8	43ANAD026 DLS8455020	6/5/03	6/11/03 09:05 AM
FQC7P	9	43ANAD029 DLS8455021	6/5/03	6/11/03 09:05 AM
FQC7T	10	43ANAD010 DLS8455031	6/3/03	6/11/03 09:05 AM
FQC70	11	43ANAD022 DLS8455032	6/4/03	6/11/03 09:05 AM
FQC71	12	43ANAD032 DLS8455033	6/5/03	6/11/03 09:05 AM

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.

 Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

			DOM: HER	PI.		
14-1	c	lient Sample	ID: 43AN	AD001 DIS8455001		
		1	OTAL Met	als		
Lot-Sample #				Transition of	Matrix	AIR
Date Sampled	1 06/03/03	Date R	eceived.	.: 06/11/03		
		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	: 3170438					
Chronium	34.2 0	1.0 .	ug	SW846 6020	06/17-06/25/03	PQC6GLA
		Dilution Facto	are 1.	MDG-11-12-17-1-1 0-46		
NOTE (S)						

UDMLHPPM

Client Sample ID: 43AMAD007 DLS8455003

TOTAL Metals

Lot-Sample #...: G3F110295-003 Date Sampled...: 06/03/03

Date Received..: 06/11/03

Matrix....: AIR

REPORTING

LIMIT UNITS METHOD

PREPARATION- WORK
ANALYSIS DATE ORDER #

PARAMETER RESULT Prep Batch #...: 3170438 Chromium 14.5 J

0.90 ug SW846 6020 Dilution Factor: 1 MDG...... 0.41

06/17-06/25/03 FQC651AA

NOTE (E) :

J. Method black consumination. The associated method black consume the target analyse at a reportable level.

16 of 119

110295

STL Sacramento (916) 373 - 5600

110295

		UANLE			
	(Client Sample ID: 43	ANAD016 DLS8455005		
		TOTAL H	etals		
	: G3F110295		d: 06/11/03	Matrix:	AIR
Parametér	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #. Chromium	9.2 J	0.89 ug Dilution Factor: 1	SW846 6020 MDL 0,41	06/17-06/25/03	FQC693A
NOTE(S):	No.				=
Method blank contamin	usion. The associated meth	ed blank contains the surget analyte at a r	reportable level.		
		1151			
			*10		
			- H		
			,		

STL Sacramento (916) 373 - 5600

WATER

Client Sample ID: 43ANAD019 DLS8455018

TOTAL Metals

Lot-Sample #...: G3F110295-006 Date Sampled...: 06/04/03

Matrix..... AIR

Date Received..: 06/11/03

REPORTING PARAMETER RESULT LIMIT UNITS METHOD PREPARATION- WORK

ANALYSIS DATE ORDER #

Prep Batch 8 ...: 3170438

Chronium

17.9 J

0.90 ug Dilution Pactor: 1

SW846 6020 MDL..... 0.41 06/17-06/25/03 FQC7CLAA

NOTE(S):

Method blank consumination. The associated method blank contains the target analyse at a reportable level.

7110295 STL Sacramento (916) 373 - 5600 19 of 119

Client Sample ID: 43ANAD026 DLS8455020 TOTAL Metals Lot-Sample #...: G3F110295-008 Matrix..... AIR Date Sampled...: 06/05/03 Date Received ..: 06/11/03 PREPARATION- WORK REPORTING PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 3170438 SW846 6020 06/17-06/25/03 FQC7BLAA 0.90 ug Dilution Pactor: 1 Chromium 30.0 J NOTE(S): Method blank contamination. The associated excited little contains the larget analyte as a reportable level.

Client Sample ID: 43ANAD029 DLS8455021

TOTAL Metals

Lot-Sample #...: G3F110295-009

Matrix....: AIR

Date Sampled...: 06/05/03

Date Received ..: 06/11/03

PREPARATION- WORK

REPORTING PARAMETÉR RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER #

Prep Batch #...: 3170438 Chromium 34.2 J

SW846 6020 0.90 ug Dilution Pactor: 1 MDL..... 0.41

06/17-06/25/03 FQC7P1AA

NOTE(S):

UDMUHENT

Client Sample ID: 43ANAD010 DLS8455031

TOTAL Metals

Lot-Sample #...: G3F110295-010

Date Received..: 06/11/03

Matrix..... AIR

Date Sampled...: 06/03/03

REPORTING LIMIT UNITS METHOD

PREPARATION- WORK

ANALYSIS DATE ORDER #

PARAMETER RESULT Prep Batch #...: 3170438

Chromium 0.66 B,J

J 0.99 ug SW846 6020 Dilution Factor: 1 MDL.................. 0.46

06/17-06/25/03 PQC7T1AA

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyse at a repor

			Open Contract and			
		Client Sample	E ID: 43AN	AD022 DLS8455032		
			TOTAL Meta	als		
Lot-Sample #. Date Sampled.			Received.	.: 06/11/03	Matrix	AIR
PARAMETER	RESULT	REPORTIN	UNITS	метнор	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #. Chromium	: 3170438 0.76 B,J	0.99 Dilution Fac	ug tor: 1	SW846 6020	06/17-06/25/03	PQC701A
NOTE (S):			2000			
B Estimated result. Result	is less than RL.					-
J Method blank contamina	sion. The associated meth	od blank contains the targ	et analyte at a report	able level.		
				46		
					.5.	
	-					
4.0						
					1/2	
	14					
				Α		

			Character	rs.		
		Client Sample	e ID: 43AN	AD032 DLS8455033		
			TOTAL Met	als		
Lot-Sample #.			2000	2222.22	Matrix	AIR
Date Sampled.	: 06/05/03	Date	Received.	. ± 06/11/03		
PARAMETER	RESULT	REPORTI	NG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER
Prep Batch #.	: 3170438					
Chromium	1.1 3	0.99 Dilution Fac	ug tox: 1	SW846 6020	06/17-06/25/03	PQC713
NOTE(S):	0					

QC DATA ASSOCIATION SUMMARY

G3F110295

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	BATCH #	PREP BATCH #	MS RUN#
001	AIR	SW846 6020		3170438	3170161
002	AIR	SW846 6020		3170438	3170181
003	AIR	SW846 6020		3170438	3170181
004	AIR	SW846 6020		3170438	3170181
005	AIR	SW846 6020		3170438	3170181
006	AIR	BW846 6020		3170438	3170181
007	AIR	SW846 6020		3170438	3170181
008	AIR	SW846 6020		3170438	3170181
009	AIR	SN846 6020		3170438	3170181
010	AIR	SW846 6020		3170438	3170181
011	AIR	SW846 6020		. 3170438	3170181
012	AIR	SW846 6020		3170438	3170181

STL Sacramento (916) 373 - 5000

26 of 119

		7	OTAL Metal	ls				
Client Lot	#: G3P110295				Matri	x	: AI	R
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		PREPARAT ANALYSIS		
	ple #: G3F190000-4 0.43 B		tch #:	3170438 SW846 6020		06/17-06	/25/03	PQVPS1
NOTE(S):				-				
	ooned before munding to avoid round Result is less than Rf.	-off errors is calculated	d nesulta.					
						(*)		
					4			
				+				
					+			
•								
				+				
	12							
						_		
	4							
								7
10295		STI Same	ramento (916) 37	es 6000				27 of 1

LABORATORY CONTROL SAMPLE DATA REPORT TOTAL Metals Lot-Sample #...: G3F110295 Matrix..... AIR PREPARATION- PREP ANALYSIS DATE BATCH # 06/17-06/25/03 3170438 SPIKE MEASURED PREPARATION-PERCMT PARAMETER Chromium AMOUNT AMOUNT UNITS 89.0 87.5 ug 89.0 86.5 ug RBCVRY RPD METHOD 98 SW846 6020 1.2 SW846 6020 06/17-06/25/03 3170438 97 NOTE (S) 1 Calculations are performed before rounding to avoid round-off errors in calculated results. G3F110295 28 of 119 STL Sacramento (916) 373 - 5600

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: G3F110295

Matrix..... AIR

| PERCENT | RECOVERY | RFD | PREPARATION | PREPARATION | PREPARAMETER | PECOVERY | LIMITS | RFD | LIMITS | METHOD | ANALYSIS DATE | EATCH # Chromium | 98 | (82 - 119) | . SW846 6020 | 06/17-06/25/03 3170438 | . SW846 6020 | 06/17-06/25/03 3170438 | . SW846 6020 | . SW846 6020 | . SW846 6020 | . SW846 8020 | . SW846 8020

NOTE (S):

Calcutations are performed before rounding to avoid round-off errors in calculated results.

G3F110295 . STL Secremente (916) 373 - 5900

29 of 119

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lot # ...: G3F110295 Date Sampled...: 06/03/03

Date Received..: 06/11/03

Matrix..... ATR

PREPARATION- WORK

PARAMETER AMOUNT AMT AMOUNT UNITS RECOVERY METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: G3F110295-001 Prep Batch #...: 3170438

SW846 6020 06/17-06/25/03 FQC6G1AC Chromium 34,2 100 129 ug 94

NOTE (S):

Calculations are performed before rounding so avoid round-off errors in calculated results.

110295 STL Sacramento (916) 373 - 5600 30 of 119

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: G3F110295 Date Sampled...: 06/03/03 Date Received..: 06/11/03

Matrix..... AIR

PERCENT

RECOVERY PARAMETER RECOVERY LIMITS METHOD PREPARATION-

ANALYSIS DATE WORK ORDER #

MS Lot-Sample #: G3F110295-001 Prep Eatch #...: 3170438 Chromium 94 (82 - 119) SW846 6020 06/17-06/25/03 FQC6GLAC

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated rounds.

110295

STL Sacramento (916) 373 - 5000

31 of 119

SAMPLE DUPLICATE EVALUATION REPORT

Metals

Client Lot #...: G3F110295 Work Order #...: PQC6G-SMP Matrix.....: AIR

FQC6G-DUP
Date Sampled...: 06/03/03 Date Received..: 06/11/03

NOTE(S):

Culculations are performed before rounding to avoid round-off errors in calculated resists.

J Mediod blank contamination. The associated method blank contains the target analyse at a reportable level.

10295 STL Sacramento (916) 373 - 5600 32 of 119

CASE NARRATIVE Microbac Laboratories, Inc., Gascoyne Division

Report Number: 0306390

July 8, 2003 page I of I

Report To: U.S. Army Center for Health Promotion and

Preventive Medicine (USACHPPM) Aberdeen Proving Ground, MD 21010-5422 Project #DAAD05-01-D-0006

Metals

Pick-Up Order: 051/3

Date Samples Received: 06/17/03

Sample Numbers: 8455006 - 8455017, 8455022 - 8455030

Matrix: Air Filter

Twenty-one samples were transported to Microbac Laboratories, Inc., Gascoyne Division via laboratory courier and were relinquished to lab personnel in the sample control department for log-in. The sample containers were checked and were noted to be in satisfactory condition. The Field ID for sample 8455025 was incorrectly identified on the Pick-up Order, compared to the sample container. The USACHPPM COR was notified and the laboratory was instructed to correct the ID on the paperwork.

Requested test parameters performed by Microbac Laboratories, Inc., Gascoyne Division:

* Metals analysis, using EPA SW-846 methodology

References:

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Office of Solid Waste and Emergency Response, USEPA, Wash., DC, November 1986; Final Update I, July 1992 Final Update II, September 1994 Final Update III, December 1996

FOTE: Exceptions to the requested test parameters are as follows: The requested analysis on the Pick-up Order was EPA 200.8. Since the samples were air filters, the USACHPPM COR was notified and the laboratory was instructed to change the requested test to EPA 6020.

All laboratory quality control parameters were met with the following exceptions:

The concentrations of the Matrix Spike and Matrix Spike Duplicate (0306390-001 8455006) were inappropriate compared to the native concentration in the sample. The sample was diluted and reanalyzed. Recoveries of Post Digestion Spikes were acceptable.

Enclosed are the following:

- Report of Analysis (original plus one copy)
- Chain-of-Custody (original plus one copy) 2.
- Pick-Up Order/Delivery Order (original plus one copy) 3.
- Laboratory Chronicle / Case Narrative (original plus one copy)
- 5. Quality Control Summary Report (original plus one copy)
- Raw data (one copy)

Microbac Laboratories, Inc., Gascoyne Division

June A. Main Quality Assurance Officer

CASE NARRATIVE Microbac Laboratories, Inc., Gascoyne Division

Report Number: 0306390

July 8, 2003 page 1 of 1

Report To: U.S. Army Center for Health Promotion and

Preventive Medicine (USACHPPM)
Aberdeen Proving Ground, MD 21010-5422
Project #DAAD05-01-D-0006 Metals

Pick-Up Order: 051/3

Date Samples Received: 06/17/03

Sample Numbers: 8455006 - 8455017, 8455022 - 8455030

Matrix: Air Filter

Twenty-one samples were transported to Microbac Laboratories, Inc., Gascoyne Division via laboratory courier and were relinquished to lab personnel in the sample control department for log-in. The sample containers were checked and were noted to be in satisfactory condition. The Field ID for sample 8455025 was incorrectly identified on the Pick-up Order, compared to the sample container. The USACHPPM COR was notified and the laboratory was instructed to correct the ID on the paperwork.

Requested test parameters performed by Microbac Laboratories, Inc., Gascoyne Division:

* Metals analysis, using EPA SW-846 methodology

References:

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Office of Solid Waste and Emergency Response, USEPA, Wash., DC, November 1986; Final Update I, July 1992. Final Update II, September 1994. Final Update III, December 1996.

IOTE: Exceptions to the requested test parameters are as follows: The requested analysis on the Pick-up Order was EPA 200.8. Since the samples were air filters, the USACHPPM COR was notified and the laboratory was instructed to change the requested test to EPA 6020.

All laboratory quality control parameters were met with the following exceptions:

 The concentrations of the Matrix Spike and Matrix Spike Duplicate (0306390-001 8455006) were inappropriate compared to the native concentration in the sample. The sample was diluted and reanalyzed. Recoveries of Post Digestion Spikes were acceptable.

Enclosed are the following:

- 1. Report of Analysis (original plus one copy)
- 2. Chain-of-Custody (original plus one copy)
- Pick-Up Order/Delivery Order (original plus one copy)
- Laboratory Chronicle / Case Narrative (original plus one copy)
- 5. Quality Control Summary Report (original plus one copy)
- 6. Raw data (one copy)

Microbac Laboratories, Inc., Gascoyne Division

June A. Main

Quality Assurance Officer

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

USACHPPM-Metals Contract #DAAD05-01-D-0006 Bldg E2100, Rm 201 APG, MD 21010-5422 Attn: Richard Puzniak

Page 1

Report No. 0306390

This report of analysis contains test results for samples received at Microbae Laboratories, Inc., Gascoyne Division on 6/17/2003

This Data Package contains the following:

- This Cover Page
- Sample Summary
- Test Results
- Case Narrative [Attachment]
- QC Report [Attachment]
- Terms and Conditions [Attachment]
- Chain of Custody [Attachment]

This Report of Analysis Contains 24 Pages plus Attachment(s)

Final report reviewed by: Wen H. Pan, Ph.D. Laboratory Director

Report issue date

Microbac Laboratories, Inc. Gasosyn: Division-laboratory accreditations: Maryland 109, Virginia 90152, New Josey 60637, Pensoylvania 68-339, New York 11158, AZLA 410.01, AJHA 100491 and US Annay Corps of Engineers.

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS Sample Summary

Page 2

Client: USACHPPM-Metals
Project: 27678-5116

Report No: 0306390

Date Received: 6/17/2003

Client Sample ID	Lab Sample ID	Collection Date, Collection	Tim
8455006 43ANAD002	0306390-001	6/3/2003 0:00	
8455007 43ANAD003	0306390-002	6/3/2003 0:00	
8455008 43ANAD005	0306390-003	6/3/2003 0:00	
8455009 43ANAD006	0306390-004	6/3/2003 0:00	
8455010 43ANAD008	0306390-005	6/3/2003 0:00	
8455011 43ANAD009	0306390-006	6/3/2003 0:00	
8455012 43ANAD011 (Field Blank)	0306390-007		
8455013 43ANAD012 (Trip Blank)	0306390-008		
8455014 43ANAD014	0306390-009	6/4/2003 0:00	
8455015 43ANAD015	0306390-010	6/4/2003 0:00	
8455016 43ANAD017	0306390-011	6/4/2003 0:00	
8455017 43ANAD018	0306390-012	6/4/2003 0:00	
8455022 43ANAD020	0306390-013	6/4/2003 0:00	
8455023 43ANAD021	0306390-014	6/4/2003 0:00	
8455024 43ANAD024	0306390-015	6/5/2003 0:00	
8455025 43ANAD025	0306390-016	6/5/2003 0:00	
8455026 43ANAD027	0306390-017	6/5/2003 0:00	
8455027 43ANAD028	0306390-018	6/5/2003 0:00	
8455028 43ANAD030	0306390-019	6/5/2003 0:00	

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553

www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

Sample Summary

Page 3

Client: USACHPPM-Metals

Project: 27678-5116

Report No: 0306390

Report No: 0306390 Date Received: 6/17/2003

 Client Sample ID
 Lab Sample ID
 Collection Date Collection Time

 8455029 43ANAD031
 0306390-020
 6/5/2003
 0:00

 8455030 43ANAD033 (Blank)
 0306390-021
 0.00
 0.00

Gascoyne Division

2101 Van Deman Street Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553

www.gascoyne.com

REPORT OF ANALYSIS

Page 5

USACHPPM-Metals Client:

Client Sample ID: 8455007 43ANAD003

Report No:

0306390

0306390-002

Project:

27678-5116

6/3/2003

Matrix:

FILTER

Collection Date:

Lab ID:

Reporting Limit Test Results Units Date/Time Analyzed Analyses Analyst: PBK ICPMS METALS-AIR FILTERS (EPA 6020)

Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Prep Analyst MCA

Chromium

12,000

60

ug/Filter 7/1/2003

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 6

Cliént:

USACHPPM-Metals

Client Sample ID: 8455008 43ANAD005

Report No:

0306390

Lab ID:

0306390-003

Project:

27678-5116

6/3/2003 0:00

Matrix:

FILTER

Collection Date:

Analyses

Test Results Reporting Limit

Units Date/Time Analyzed

ICPMS METALS-AIR FILTERS (EPA 6020) Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Analyst: PBK Prep Analyst MCA

Chromium

1,800

3.0

ug/Filter 7/1/2003 15:13

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

report of Analysis

Page 8

Client:

USACHPPM-Metals

Client Sample ID: 8455010 43ANAD008

Report No:

0306390

Lab ID:

0306390-005

Project:

27678-5116

6/3/2003

Matrix:

Chromium

FILTER

Collection Date:

3.0

ug/Filter 7/1/2003 15:22

Reporting Limit Test Units Date/Time Analyzed Results Analyses Analyst: PBK CPMS METALS-AIR FILTERS (EPA 6020) Prep. Method: 40 CFR-50 Prep. Date: 7/1/2003 9:31:08 AM Prep Analyst MCA

720

Gascoyne Division

2101 Van Deman Street Baltimore, MD 21224

Phone: 410-633-1800

Fax: 410-633-6553

www.gascoyne.com

Page 11

USACHPPM-Metals

Client Sample ID:

8455013 43ANAD012 (Trip Blank)

Report No:

0306390

Lab ID:

0306390-008

Project: Matrix:

Chromium

27678-5116 FILTER

Collection Date:

Test Reporting Results Units Date/Time Analyzed Analyses

ICPMS METALS-AIR FILTERS (EPA 6020) Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Analyst: PBK

Prop Analyst MCA

3.0

ug/Filter 7/1/2003

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 13

Client: **USACHPPM-Metals** Client Sample ID: 8455015 43ANAD015

Report No:

0306390

Project:

27678-5116

Lab ID:

0306390-010

Matrix:

Analyses

FILTER

Collection Date:

6/4/2003 0:00

Reporting Limit Test

Results

Units Date/Time Analyzed Analyst: PBK

ICPMS METALS-AIR FILTERS (EPA 6020)

Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Prep Analyst MCA

ug/Filter 7/1/2003

Chromium

1,100

3.0

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

Page 14

Client:

USACHPPM-Metals

Client Sample ID: 8455016 43ANAD017

Report No:

0306390

Lab ID:

0306390-011

Project: Matrix:

Analyses

27678-5116 FILTER.

Collection Date:

6/4/2003 0:00

Date/Time Analyzed

Reporting Limit Test

ICPMS METALS-AIR FILTERS (EPA 6020) Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Results

Analyst: PBK Prep Analyst MCA

Units

Chromium

3,600 3.0 ug/Filter 7/1/2003

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 15

Client:

USACHPPM-Metals

Client Sample ID: 8455017 43ANAD018

Report No:

0306390

Lab ID:

0306390-012

Project:

27678-5116

Collection Date:

6/4/2003

Matrix:

FILTER

Reporting Limit Test Analyses Units Date/Time Analyzed Results ICPMS METALS-AIR FILTERS (EPA 6020) Analyst: PBK

Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Prep Analyst MCA

3.0

ug/Filter 7/1/2003

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 16

Client:

USACHPPM-Metals

Client Sample ID: 8455022 43ANAD020

Report No:

0306390

Lab ID:

0306390-013

Project:

27678-5116

Electronic Services

6/4/2003 0:00

Matrix:

FILTER

Collection Date:

.....

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 17

Client: USACHPPM-Metals

Client Sample ID: 8455023 43ANAD021

Report No:

0306390

Lab ID:

0306390-014

Project:

27678-5116

6/4/2003

Matrix:

FILTER

Collection Date:

Reporting Limit Test Analyses Units Date/Time Analyzed Results ICPMS METALS-AIR FILTERS (EPA 6020) Analyst PBK Prep. Method: 40 CFR-50 Prep. Date: 7/1/2003 9:31:08 AM Prep Analyst MCA

Chromium

710

3.0

ug/Filter 7/1/2003

16:25

Gascoyne Division

Phone: 470-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

report restanalysis

Page 18

Client:

USACHPPM-Metals

Client Sample ID: 8455024 43ANAD024

Report No:

0306390

Lab ID:

0306390-015

Project:

27678-5116

6/5/2003

Matrix:

FILTER

Collection Date:

Reporting Limit Test Results Units Date/Time Analyzed Analyses

ICPMS METALS-AIR FILTERS (EPA 6020)

Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:05 AM

Analyst PBK Prep Analyst MCA

Chromium

24,000

7/1/2003

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 20

Client:

USACHPPM-Metals

Client Sample ID: 8455026 43ANAD027

Report No:

0306390

Lab ID:

Project:

27678-5116

0306390-017

Matrix:

FILTER

Collection Date:

6/5/2003

Units Date/Time Analyzed

ICPMS METALS-AIR FILTERS (EPA 6020) Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Reporting Limit

150

Analyst: PBK

Prep Analyst MCA

Chromium

18,000

Test Results

ug/Filter 7/1/2003 21:02

Gascoyne Division

Phone: 410-633-1800 Fax: 410-633-6553 www.gascoyne.com

2101 Van Deman Street Baltimore, MD 21224

REPORT OF ANALYSIS

Page 21

Client:

USACHPPM-Metals

Client Sample ID: 8455027 43ANAD028

Report No:

0306390

Lab ID:

3.0

0306390-018

Project:

27678-5116

Matrix:

Chromium

FILTER

Collection Date:

6/5/2003

7/1/2003 16:45

Reporting Limit Analyses Results Units Date/Time Analyzed ICPMS METALS-AIR FILTERS (EPA 6020) Analyst: PBK Prep. Method: 40 CFR-50 Prep. Date: 7/1/2003 9:31:08 AM Prep Analyst MCA

3,800

Gascoyne Division

2101 Van Deman Street Baltimore, MD 21224

Phone: 410-633-1800

Fax: 410-633-6553 www.gascoyne.com

REPORT OF ANALYSIS

Page 22

Client:

USACHPPM-Metals

Client Sample ID: 8455028 43ANAD030

Report No:

0306390

Lab ID:

0306390-019

Project:

27678-5116

Collection Date:

6/5/2003 0:00

Matrix:

Analyses

Chromium

FILTER

Reporting Limit

Units Date/Time Analyzed

ICPMS METALS-AIR FILTERS (EPA 6020)

Prep. Method: 40 CFR-50

Prep. Date: 7/1/2003 9:31:08 AM

Analyst: PBK Prep Analyst MCA

13,000

Test

60

ug/Filter 7/1/2003 21:07

APPENDIX I

CALIERATION PROCEDURES AND DATA

1. CALIBRATION SUMMARY. The calibration procedures are summarized in Table I-1.

Table I-1. Calibration Procedures

PARAMETER	METHOD/STANDARD	REFERENCE
Meter Box Orifice Dry Gas Meter Pyrometer Pitot Tube Thermometer/Thermocouple Nozzle Weights Orsat Analyzer reference 4 reference 1	Wet Test Meter Wet Test Meter NBS Reference Pyrometer Geometry Reference Pyrometer Micrometer Analytical Balance Calibration Gas	APTD-0576 ¹ APTU-0576 ¹ USEPA RM 5 ^{2,3} USEPA RM 2 ^{2,3} USEPA RM 5 ^{2,3} USEPA RM 5 ^{2,3} USEPA RM 5 ^{2,3} USEPA RM 3 ²

^{2.} DRY GAS METER. The dry gas meters were calibrated prior to the assessment using a wet test meter (Figure I-1) in accordance with USEPA approved procedures. Prior to the assessment, the average dry gas meter coefficient was 1.009 for meter box 90496. The posttest calibration check was performed with the orifice setting at the average ΔH experienced by the box during the test and the vacuum setting at the highest vacuum that occurred during the test. The posttest average dry gas meter coefficient was 1.004 for meter box 90496. All posttest calibration values were within the allowable 5-percent variation of the pretest value. The dry gas meter calibration data sheets are provided in this Appendix.

^{3.} ORIFICE. Prior to testing, the orifice of the dry gas meter system was calibrated at the orifice manometer settings of 0.0 to 4.0 inches of water. The posttest calibration values were within the allowable 5-percent variation limit.

$$Y = \frac{V_W P_b (t_a + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t_W + 460)}$$

$$\triangle H \otimes = \frac{0.0317 (\triangle H)}{P_b (t_d + 460)} \left[\frac{(t_W + 460) e}{V_W} \right]$$

WHERE:

AH = DRIFICE PRESSURE DROP (in H2O)

Vw = GAS VOLUME THROUGH WET TEST METER (ft3)

Ve = GAS VOLUME THROUGH DRY GAS METER (H3)

tw - WET TEST METER TEMP. ("F)

te = AVERAGE DRY TEST METER TEMP. (TF) (te = 11+10)

P. - BAROMETRIC PRESSURE (in Hg)

8 - TIME (min)

ΔH6= ORIFICE PRESSURE DROP THAT GIVES 0.75 ft³/min at 70°F, 29392 in Hg (in H₂O)

Y = TIMENSIONLESS DRY GAS METER-CALIBRATION-COEFFICIENT

Figure I-1. Dry Gas Meter Calibration

- 4. PITOT TUBE. The pitot tubes, located on the sampling probe assembly, were calibrated using the geometric standard (Figure I-2) noted in USEPA RM 2 (reference 1). Since the pitot tubes met the standard, a calibration coefficient of 0.84 was assigned to each tube. Pitot tube calibration sheets are included in this Appendix.
- 5. NOZZLE. As explained previously in this report, one-piece probe lines/nozzles were used in the test due to the high stack temperature. Two probe liners/nozzles were used during this assessment. The nozzle diameter for nozzle N-1 was measured with a micrometer accurate to 0.001 inch. The three measurements of the nozzle varied less than the maximum allowable tolerance of 0.004 inch. Nozzle N-1 averaged 0.249 inch diameter. These measurements were used in establishing isokinetic procedures.
- 6. TSP Equipment Calibration. The high-volume TSP samplers were calibrated and checked for leaks at the staging area prior to set up at the sample sites. A calibrated orifice transfer standard kit, traceable to NIST, was used to calculate each sampler's flow parameters. Calibration of the two high-volume samplers yielded acceptable correlation coefficients (r) greater than 0.990, as required by 40 CFR Part 50, Appendix B (see Appendix A). Flow checks were performed at the beginning and end of each sampling event to ensure proper equipment operation. Periodic flow checks during sampling events were also performed. Valid samples had flow rates between 1.1 and 1.7 m³/min, and a total sample time of 2 hrs. The results of the flow checks were entered on TSP field data sheets (see Appendix G).

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003 DRY GAS METER PRE/POST TEST CALIBRATION DATA SHEETS

3

Vacuum

in. Hg.

Air Pollution Nanagement Study No. 43-EL-5116-03, 3-5 June 2003

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Calibration

Date 1/30/03 Meter box number 90496 Calibrated by D Bramer Barometric pressure, Pb = 30.15 in. Hg Gas volume Temperatures Orifice Wet test Dry gas Wet test Dry gas meter manometer meter meter meter Outlet Avg Time Inlet petting (V.) (Val. (Tu), (Tai) . (Tgo), (Te), (0). AHE, (ΔH), ft2 ft1 °p op. op. op. in. H₂O min in. H₂0 73 79 90 9.06 151 5,030 1.013 5.0 73 79 1.010 1.85 5.048 93 86 6.51 2.0 5.0 73 96 67.5 4.68 80 1.005 5.061

ΔH, in. H ₂ O	ДН 13.6	$Y_{t} = \frac{V_{*}P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6})(t_{*} + 460)}$	$\Delta H@=\frac{0.0317 \Delta H}{P_b(t_d+460)} \left[\frac{(t_w+460) \theta}{V_w}\right]^2$
1.0	0.074	Neter Box	Wet Test Meter
2.0	0.147	Front Half Leak Check Ck	Meter No. 11944
4.0	0.294	Back Half Leak Check	Capacity 1 cf/rev.
		Vacuum Gauge Check	Calibration Data 310000
	1.	Thermometer Check(+/-)3° F	Leak Check 84
		of ASTM HG) INCE OUT OK	

1.009

1.86

 $^{^{\}circ}$ If there is only one thermometer on the dry gas meter, record the temperature ccb under t_a .

(English units)

Fost Calibration

Date 6/12/03

Meter box number 90496

Wet test	Share many		olume Temperatures					
meter (V _w), ft ³	Dry gas meter (V _d); ft ³	Wet test meter (T _v), °F	Inlet (T _{dI}),	outlet (T _{dc}),	Avg (I _d),	Time (0),	Y,	ΔH0, in. H ₂ C
5, 0	5.096	71.5	92	79'	85.5	7.58	1,003	1.89
5.0	5.088	71.5	72	80	86	7.57	1.006	1,88
5.0	5,097	71.5	92	80	86-	7.58	1.004	1.87
	(V _w), ft ³ 5, o	(V _a), (V _d), ft ³ ft ³ 5, 0 5.096 5.0 5.088	(V _w), (V _d), (T _v), ft ³ ft ³ °F 5, 0 5,096 7/.5 5, 0 5,088 7/.5	(V _w), (V _d), (T _v), (T _{dL}), ft ³ ft ³ °F °F 5, 0 5,096 7/, 5 92 5. 0 5.088 7/.5 92	(V _w), (V _d), (T _v), (T _{dl}	(V _w), (V _d), (T _v), (T _{dt}), (T _{dt}), (T _d	(V _w), (V _d), (T _w), (T _d), (T _d), (T _d), (Ø), ft ³ ft ³ °F °F °F °F min 5, 0 5.096 7/.5 92 79' 85.5 7.58 5.0 5.088 7/.5 92 80 86 7.57	(V _w), (V _d), (T _w), (T _d), (T _d), (T _d), (0), Y ₁ ft ³ ft ³ °F °F °F °F min 5, 0 5.096 7/.5 92 79' 85.5 7.51 1.003 5.0 5.088 7/.5 92 80 86 7.57 1.006

ΔH, in. H ₂ O	ΔH 13.6	$Y_{i} = \frac{V_{w}P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6})(t_{w} + 460)}$	$\Delta H@=\frac{0.0317 \ \Delta H}{P_b(t_d+460)} \left[\frac{(t_w+460) \ \theta}{V_w}\right]^2$
1.5	0.110	Meter Box	Wet Test Meter
3		Front Balf Leak Check Off	Meter No. 11 A L 4
		Back Half Leak Check of	Capacity 1 Cf/rev
		Vacuum Gauge Check of	Calibration Data 31 oct 02
	-	Thermometer Check(+/-)3° F	Leak Check of
77		of ASTM HG) In oh out of	Water Level Check of

 $^{^{\}rm a} {\rm If}$ there is only one thermometer on the dry gas meter, record the temperature under $t_{\rm d}.$

llution Management Study No. 43-EL-5116-03, 3-5 PITOT TUBE CALIBRATION DATA SHEETS

PITOT NUMBER: 1-5-3
INSPECTOR: D. SEEMER
DATE: 4(1/03)

PITOT-NOZZLE-THERMOCOUPLE-PROBE CONFIGURATION

 External Tubing Diameter, D_t(3/16" to 3/8") 	3/8
2. Base of Pitot to Opening Plane Distance, Impact, $P_A(1.05 \text{ to } 1.5D_i)$	0.557
0.3938 - 0.5625 A= 1.114	
Static, P _B (1.05 to 1.5D _i)	0.557
3. Angle between plane of impact face of pitot tube and transverse tube axis, $\alpha_1(<\!10^\circ)$	_(°
 Angle between plane of static pitot tube face and transverse tube axis, α₂(<10°) 	0_
 Angle between plane of impact pitot tube face and longitudinal axis, β₁(< +/- 5°) 	10
 Angle between plane of static pitot tube face and longitudinal axis, β₂(< +/- 5°) 	_ 0_
 Distance between leading tip of the impact and static tubes Z(<1/8") γ = Ο A= 1-1(ψ 	z = 0
8. Distance between the transverse axes for the impact and static pitot faces, w(<1/32") $\theta = O$ A= 1.114	w= 0
9. Pitot - Nozzle Separation, x (>3/4")	X > 3/4"
10. Pitot plane above nozzle entry (yes)	YES
11. Nozzie type (button hook)	YES
12. Distance between thermocouple and pitot, Z (>3/4*)	z > 3/4"
 Distance between tangent to thermocouple body and centerline of impact opening, w (>3") 	ω×3°
 Distance between gas line and centerline of impact opening, Z (>2") 	2>0"
 Distance between sample probe ferrule and centerline of impact opening, Y (>3") 	Y>3'

TSP SAMPLER CALIBRATION DATA SHEET WEST Cal Date: Installation: Anniston Army Depot 24 Mar 03 N/A Site ID: Chrome Plating Facility Site Elev. (Ft): Operator: Sutphin Sampler S/N: 0510 OrificeS/N: Pa (mm Hg): 763.0 0113 Ta (°K): 299.0 Graseby TSP Sampler Equip. Type: Orifice Calibration Values: 2.0134 Orifice Cal Date: 03/14/03 -0.0610 b= 0.9997 Plate Delta H Qstd (X) Delta Pex Y cal. Dev Number (in H2O) (m3/min) (in H2O) (%) 2.379 2.374 -0.185 18 10.10 1.609 6.20 1.444 5.00 2.132 2.137 -0.207 13 8.10 10 6.50 1.297 4.10 1.931 1.920 0.543 1.508 3.90 1.011 2.50 1.501 0.427 2.50 0.816 1.60 1.206 1.214 -0.660 Standard Condition Regression Samplers Regression Values: Correlation Coeff. (R) 0.9999 1.4679 m= b= 0.0166 Intercept Coefficient (b) 0.9999 0.0166 (Fig. Slope (m) 1.4679 Observations 5 Formulas and Definitions Qstd=[Delta H(Pa/760)(298/Ta)] 1/2 -b (1/m) Site Elev. = Used For Bp Correction Y = [Delta Pex (Pa/760)(298/Ta+30)] 1/2 Qstd = X-axis Delta H= Cal. Orifice Pressure Drop. Y = Y-axis Delta Pex= Sampler Motor Pressure Drop Dev = (Y- Ycal)/Ycal(100) Ycal = Sampler (m) x Qstd + Sampler (b) Dev = + or - 5% Pa & Ta=Ambient Bp & Temp. During Cal. Baro. pressure (Bp) elevation correction is -0.1 Inch Hg per 100 feet above Sea Level.

TSP SAMPLER CALIBRATION DATA SHEET EAST Installation: Cal Date: Anniston Army Depot 24 Mar 03 Site Elev. (Ft): Site ID: Chrome Plating Facility N/A Operator: Sutphin Sampler S/N: 6631 Pa (mm Hg): Orifice6/N: 763.0 0113 Ta (°K): 299.0 Equip. Type: Graseby TSP Sampler Orifice Calibration Values: 2.0134 Orifice Cal Date: 03/14/03 -0.0610 b= 0.9997 Plate Delta H Qstd (X) Delta Pex Y cal. Dev Number (in H2O) (m3/min) (in H2O) (%) 9.20 1.537 6.60 18 2.450 2.452 -0.097 13 7.60 1,400 5.50 2.236 2.243 -0.290 1.277 2.056 6.30 4.70 2.067 0.557 10 3.90 1:011 3.00 1.652 1.651 0.069 5 2.50 0.816 2.00 1.349 1.352 -0.275 Standard Condition Regression Samplers Regression Values: Correlation Coeff. (R) 0.9999 1.5247 m= b= 0.1084 Intercept Coefficient (b) 0.9999 0.1084 Slope (m) 1.5247 Observations 5 Formulas and Definitions Qstd=[Delta H(Pa/760)(298/Ta)] 12 -b (1/m) Site Elev. = Used For Bp Correction Y = [Delta Pex (Pa/760)(298/Ta+30)] 1/2 Qstd = X-axis Delta H= Cal. Orifice Pressure Drop. Y = Y-axis Delta Pex= Sampler Motor Pressure Drop Dev = (Y- Ycal)/Ycal(100) Ycal = Sampler (m) x Qstd + Sampler (b) Dev = + or - 5% Pa & Ta=Ambient Bp & Temp. During Cal.

Baro. pressure (Bp) elevation correction is -0.1 inch Hg per 100 feet above Sea Level.

ir Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003 APPENDIX J SAMPLE CUSTODY SHEETS

SAMPLE CUSTODY SHEET (USEPA RM 306 - TOTAL CHROMIUM) RUN SAMPLES

Installation: Anniston Army Depot, Alabama

Date: 4 June 2007

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	WT.	NO.	REMARKS
43ANADOU	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	2367	ı	0.1 N NaOH Rinse
43ANAD004	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	45021	a	0.1 N NaOH Rinse
43ANAD 007	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	4501	3	0.1 N NaOH Rinse
43ANAD 0 (')	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	450~1	4	0.1 N NaOH Rinse
43ANADOI6	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	4501	5	0.1 N NaOH Rinse

Samples Recovered By. Jon 7474 Last	Samples Received By. EfD he
·····	***************************************
Relinquished By: For M 20 Scarter	Received By: for M M Stack
	Received By: Alpan Dushie
Relinquished By:	Received By:

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003 SAMPLE CUSTODY SHEET (TSP SAMPLERS - TOTAL CHROMIUM) RUN SAMPLES

Installation: Anniston Army Depot, Alabama Date: 3 June 2003

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	VOL/ WT	RUN NO.	REMARKS
SANAD 602	TSP Filter	N/A	1	Q0113427 Vest
SANADOB3	TSP Filter	N/A	1	Q0113426 East
13ANAD 005	TSP Filter	N/A	2	QUIBYRS West
900 DYKYE	TSP Filter	N/A	2	00113424 East
SANAD OO §	TSP Filter	N/A	3	Q 0413423 Vest
BOO DANAS	TSP Filter	N/A	3	Q0113422 East

Samples Recovered By SAB Jeff	Samples Received By: The Dyn
pelinguished By: FFD MA	Pecetived By: 1 20 26 Cal
Relinquished By: 50 14 Farts	Received By: Son In m Caile Received By Augon Bulshie
Relinquished By1	Received By:

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

SAMPLE CUSTODY SHEET

(TSP SAMPLERS - TOTAL CHROMIUM)

RUN SAMPLES

Installation: Anniston Army Depot, Alabama

Date: 4 June 2005

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	VOL/ WT	RUN' NO.	REMARKS
43ANADO II	TSP Filter Q01134/6	N/A	BILL	Freld Blank
43ANAD612	TSP Filter QUIINIT	N/A	H.k	Trip Black
13ANAD 014	TSP Filter QUH349.1	N/A	4	West
3ANAD 015	TSP Filter QUINY20	N/A	4	East
I SANADOIT	TSP Filter QUI[]419	N/A	5	West.
SANAD 0/8	TSP Filter QUITY18	N/A	5	East

Samples Recovered By	Samples Received By: 5041
	M
Relinquished By: for 74 M Can	Received By: Syson Birlished
Relinquished By:	Received By:

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

SAMPLE CUSTODY SHEET
(USEPA RM 306 - TOTAL CHROMIUM)

RUN SAMPLES

Installation: Anniston Army Depot, Alabama

Date: 4 June 2003

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	WT/	RUN NO.	REMARKS
43ANAD 019	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	450.6	6	0.1 N NaOH Rinse
43ANAD 025	Probe/FR Rinse plus Impinger Contents plus Impinger Rinse	450_1	7	0.1 N NaOH Rinse
43ANAD026	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse	450~	8	0.1 N NaOH Rinse
43ЛИАДИ 29	Probe/FE Rinse plus Impinger Contents plus Impinger Rinse	450-1	9	0.1 N NaOH Rinse
43ANAD	Probe/FH Rinse plus Impinger Contents plus Impinger Rinse			0.1 N NaOH Rinse

Samples Recovered By: for 71 74 %	samples Received By: Oyl

Relinquished By:	Received By: Jon M. M. Cut Received By: Alpon Bukohin
Relinquished By: for My &	Le Received By: Alpon Bukohin
Relinquished By:	Received By:

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003 SAMPLE CUSTODY SHEET
(TEP SAMPLERS - TOTAL CHROMIUM)
RUN SAMPLES

Installation: Anniston Army Depot, Alabama Date: 4 Jage 2003

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	VOL/ WT	NO.	REMARKS
43VMVD 070	TSP Filter Q0H1415	N/A	6	LEST
43ANAD 63-1	TSP Filter Q043414	N/A	6	EAST
43ANAD02-Y	TSP Filter Qouly 13	N/A	7	WEST
43ANAD () 25,	TSP Filter Q011347	N/A	7	EAST
43ANAD 627	TSP Filter Q 0 1541	M/A	8	WEST
43ANAD 628	TSP Filter Q0113410	N/A.	8	EAST
Total Chromi	METTOI Prep		×	×

Samples Recovered By: Joynt Bay	Samples Received By:
Relinquished By:	Received By: Apon Belghin
Relinquished By: for 72 74 5 Carl	Received By: Supon Belghin
Relinquished By:	_ Received By:

Air Pollution Management Study No. 43-EL-5116-03, 3-5 June 2003

SAMPLE CUSTODY SHEET

(TSF SAMPLES - TOTAL CHROMIUM)

RUN SAMPLES

Installation: Anniston Army Depot, Alabama

Date: 6 June 2003

Project Officer: HILYARD

SAMPLE NO.	COMPONENT DESCRIPTION	WT	RUN NO.	RBHARKS
43ANAD 630	TSP Filter Q011) Yel	N/A	9	WEST
43ANAD 0 3/	TSP Filter Q0113468	N/A	9	EAST
43ANAD033	TSP Filter Q 0113728	N/A	Dat	Las Black
43ANAD	TSP Filter	N/A	Table !	
43ANAD	TSP Filter	N/A	Mark	
43ANAD	TSP Filter	N/A		

	Samples Received By:
Relinquished By: 3 DUA	Received By: Supon Bulling Received By:
Relinquished By: for MM Stark	· Received By: Supon Bulahi
Relinquished By:	Received By:

*(USEPA RM 306 - Total Chromium) BLANK SAMPLES

Installation: Anniston Army Depot, Alabama , Date: 3 June 2003

Project Officer: HILYARD Project No.: 43-EL-5116-03

SAMPLE NO.	COMPONENT DESCRIPTION	WT VOL/	RUN NO.	REMARKS
43ANAD 810	0.1 N NaOH	500 ml	Dr.t	Run 1,2,3
43 ANAPORA	0.1 N N.OH	500~	Bleak	Runs 4-6
43 ANAPOSZ	O.I W NaOH	500-1	BlF	Rus 7-8

Samples Recovered By: frankist	Samples Received By: == \$py
*****************************	************
Relinquished By:	Received By: L. M. M. Ent
Relinquished By: for m Water	Received By: Algon Bukshin
Relinquished By:	Received By:

PROJECT: 43 EL-5116-03 - Zero Chromium Emission Study INSTALLATION: ANNISTON ARMY DEPOT, AL

SOURCE: CHROME PLATING FINISHING COMPLEX, BLDG 114

Filter Dia = 0.00 in FH Amicro = 0.00 micrograms Filter Area = 0,00 sq In BH micro = 0.00 micrograms

Blank Data:

	Cr		Mass (ug)
NaOH Blank Runs 1-3	0.6600	TSP Field Blank	29
NaOH Blank Runs 4-6	0.7600	TSP Trip Blank	31
NaOH Blank Runs 7-9	1.1000	TSP Lab Blank	43

non-declects reported at 0.00 to allow for highest concentration

Method	306		
Run#	EH/BH	MBlank	TRAIN TOTAL
1	34.20	0.66	33.54
2	20.40	0.66	19.74
3	14.50	0.66	13.84
4	25.20	0.76	24.44
5	9.20	0.76	8.44
6	17.90	0.76	17.14
7	31.70	1.10	30.60
8	30.00	1.10	28.90
9	34.20	1.10	33.10

TSP Sampler (West)

Run#	Mass (ug)	Field Blank	Trip Blank	Lab Blank	Total
1	24000	29.000	31.000	43.000	24000
2	1800	29.000	31.000	43.000	1800
3	720	29.000	31.000	43.000	720
4	3800	29.000	31,000	43.000	3800
5	3600	29.000	31.000	43.000	3600
6	1600	29.000	31.000	43.000	1600
7	24000	29.000	31.000	43.000	24000
8	18000	29.000	31.000	43.000	18000
9	13000	29.000	31.000	43.000	13000

TSP Sampler (East)

Run#	Mass (ug)	Field Blank	Trip Blank	Lab Blank	Total
1	12000	29.000	31,000	43.000	12000
2	810	29.000	31.000	43.000	810
3	290	29.000	31.000	43.000	290
4	1100	29.000	31.000	43.000	1100
5	840	29.000	31.000	43.000	840
6	710	29.000	31.000	43.000	710
7	4900	29.000	31.000	43.000	4900
8	3800	29.000	31.000	43,000	3800
9	2000	29.000	31,000	43,000	2000

K-2

lues in Italics Indicate Samples that were Below Analytical Detection Limit

Metrico 300 TSP Sampler (Viest) TSP Sampler (East) Run 2	PLATING FINI / EMISSION R Cix (dacUnr) = Total Wt ung) 0.0335 24.00	### SHING CO	Vm (dscf)	DG 114		
Metals Deta Run 1 Metals 306 TSP Sampler (Viest) TSP Sampler (East) Run 2	Ox (dact/hr) = Total W: (ing) 0.0335 24.00	871.212 E (b/hr) 8.49E-07		76:39		
Run 1 Metrico 300: TSP Sampler (Vest) TSP Sampler (East) Run 2	Total Wt (ing) 0.0335 24:00	E (b/hr) 8.49E-07		76.39		
Metrica 300 TSP Sampler (West) TSP Sampler (East) Run 2	Total Wt (ing) 0.0335 24:00	E (b/hr) 8.49E-07		76.39		
Metrica 300 TSP Sampler (West) TSP Sampler (East) Run 2	Total Wt (ing) 0.0335 24:00	E (b/hr) 8.49E-07		1,00,000	TSP West Volume (m3)=	191.32
Metrica 306 TSP Sampler (West) TSP Sampler (East) Run 2	0.0335 24:00	8.49E-07		Cus (ministrani)	TSP East Volume (m3)= TSP Concentration (mg/m3)	178.70.
TSP Sampler (East) Run 2			1.93E+02	0.016		
Run 2	12.00				0.125	
					M.CE7	
	Os (dsc/hr) =	876,645	V/m (dscf)=	74,98	TSP Wast Volume (m3)= TSP East Volume (m3)=	198,60
	Total W. (mm)	E (b/br)	E (matri)	Cm (mp/dscm)	TSP Concerns on (mym3)	117 D.T.A.
Method 308	0,0197	5.12E-07	1.18E±02			
TSP Sampler (West) TSP Sampler (East)	1,80				0.010	
			har balan		-	
Run 3	Os (dselfhr) =	625,609	Vm (dscl)=	73.87	TSP West Volume (m3)= TSP East Volume (m3)=	181.56
200.00	Total WL (mp)	E (b/hr)	E (mate)	Cm (maldson)	TSP Concentration (mg/m3)	4.44
Method 306 TSP Sampler (West)		3.41E-07	7,73E+01	0.007	0.004	
TSP Sampler (East)					0,002	
Run 4	Os (dacithr) =	OFT 747	Vm Mach	79.66	TSP Wast Voume (m3)=	186.51
					TSP East Volume (m3)=	102.92
Method 308	Total Wt (mg)	E (th/hr)	E (mg/hr) 1.47E+02	Cm (mg/dscm) 0.011	TSP Concentration (mg/m3)	
TSP Sampler (West)	3,80	0.400-07	1.4/6102	0,0)1	0.020	
TSP Sampler (East)	1.10				0.006	
Run-5	Os (decility) =	910,763	Vm (dscf)=	70.00	TSP West Volume (m3)=	104,75
		-	2 / 6 2		TSP East Valume (m3)=	101.47
Method 300	Total WI (mg) 0.0084		5.04E+01	0.004	TSP Concentration (mg/m3)	
TSP Sampler (West)	3.60		2000	- 2007	0.019	
TSP Sampler (East)	0,84	_			0.005	
Run 6	Os (dsawir) =	891,684	Vm (dscf)=		TSP West Volume (m2)=	185.72
	Total Wi. (mr)	E (Bas)	E (mode)		TSP East Volume (m3)* TSP Concentration (mg/m3)	579.63
Method 305	0.0171	4.40E-07	1.02E+02	0.008		
TSP Sampler (West) TSP Sampler (East)	1,60				0.009	
			- 17	97		
Run 7	Qs (dsciffir) =	952,843	Vm (dscf)~	87,07	TSP West Volume (m3)* TSP East Volume (m3)*	184.37
	Total Wt (mg)	E (b/hr)	E (mgftr)	Cm (maktson)	TSP Concentration (mg/m3)	104.90
Method 306 TSP Sampler (West)	0.0306	7.93E-07	1.80E+02	0.013	0.130	
TSP Sampler (West)					0,027	
Run 8	Os (decity) =	Distance.	Vin Idea	70.50	TSP West Volume (m3)=	184.53
That d	Ca (cocara)=	DIZBOF	sur (cases)a	70.10	TSP East Volume (m3)*	183.59
					TSP Concentration (mg/m3)	
Method 306 TSP Sempler (Week)		7,63E-07	1.73E+02	0,013	0.098	
TSP Sampler (East)	3,80	_			D 021	
Run 9	Os (daditir) =	902 543	Vm (ciscle	76.60	TSP West Volume (ml)=	161 92
					TSP East Volume (m3)*	100,00
Method 300	Total Vit (mg)	6.61E-07	E (mg/hr)	Cm (maldacin) 0.015	TSP Concennation (mg/m3)	
TSP Sampler (West)	15.00	ale de est	A more very	0.015	0.071	

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
2-2008	Final	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Technology Demonstration of the Zero		
Appendix I: CHPPM Report on Air Sa	5b. GRANT NUMBER	
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) K. James Hay, Stephen W. Maloney, Jo	5d. PROJECT NUMBER	
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
		CNE-B091
7. PERFORMING ORGANIZATION NAME(S U.S. Army Engineer Research and Dev	8. PERFORMING ORGANIZATION REPORT NUMBER	
Construction Engineering Research Laboratory (CERL)		ERDC/CERL TR-08-5, Vol. 2
PO Box 9005		
Champaign, IL 61826-9005		
O CRONCORING / MONITORING ACENCY	NAME(C) AND ADDDECC(EC)	40 CRONCOR/MONITORIC ACRONIVACO
9. SPONSORING / MONITORING AGENCY	NAME(5) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
USEPA Facilities		
26 West Martin Luther King Drive		
Cincinnati, OH 45268-0001		11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

14. ABSTRACT

This volume is an Appendix to the main report, Volume 1, which documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating, the Zero Emissions System. The technology involves placing a blanket of a proprietary fluid, called PRD-EL1, on top of the plating bath. This fluid blanket prevents the formation of aerosols, which is the mechanism by which chromium is emitted from the plating bath to the air. The majority of the testing was directed at demonstration of the effectiveness of chromium plating in the presence of the immiscible blanket. Testing was conducted at Benét Laboratories on coupons and actual parts from Army vehicles. The results indicate that PRD-EL1 may cause deleterious effects on the plating process, as some of the parts failed qualitative tests performed at Benét. However, some parts, which were plated without the fluid blanket present as a baseline control, also failed the tests. Air sampling results indicate that the presence of the PRD-EL1 fluid reduced the chromium emissions and indoor air concentration below standard levels. Overall, the results indicate that the use of the PRD process would require additional testing before it could be accepted for use in Army production and maintenance operations.

15. SUBJECT TERMS hazardous air pollutants (HAPs) air pollution emissions chromium		plating			
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON K. James Hay	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	SAR	185	19b. TELEPHONE NUMBER (include area code) (217) 373-3485

NSN 7540-01-280-5500