Tópicos de Matemática Discreta

______ 1.º teste — 5 de novembro de 2014 — _____ duração: 2 horas ______

- 1. Considere as fórmulas $\varphi: p_0 \to p_1$ e $\psi: (p_0 \leftrightarrow p_1) \lor (\neg p_0 \land p_1)$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) As fórmulas φ e ψ são logicamente equivalentes.
 - (b) Se o valor lógico de p_1 é 0, então o valor lógico de ψ é 0, independentemente do valor lógico da variável proposicional p_0 .
- 2. Considerando que A é um subconjunto de \mathbb{Z} , que p representa a proposição

$$\forall y \in A \ \exists \, x \in A \ \ y = x^2$$

e que q representa a proposição

$$\exists y \in A \ \forall x \in A \ y = x^2,$$

- (a) Dê exemplo de A para o qual apenas uma das proposições p, q é verdadeira. Justifique.
- (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. (a) Sejam p e q proposições. Diga, justificando, se a sequinte afirmação é ou não verdadeira: Para mostrar que $p \land q$ é falsa, basta mostrar que se p é verdadeira, então q é falsa.
 - (b) Prove que, para todo $m, n \in \mathbb{N}$, se $m \times n$ é impar, então m é impar ou n é impar.
- 4. Considere os conjuntos

$$A = \{2n \mid n \in \mathbb{N} \land n^3 \le 40\}, \quad B = \{1, \{2, 4\}\}, \quad C = \{1, 2, 4\} \text{ e } D = \{x \in \mathbb{Z} \mid x^2 - 3 \in B\}.$$

- (a) Determine $A \in D$.
- (b) Verifique se $(1, \{2, 4\}, 4) \in C \times (B \setminus C) \times C$. Justifique.
- (c) Verifique se $B \cap \mathcal{P}(C) = \emptyset$. Justifique.
- 5. Sejam A, B e C conjuntos. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$.
 - (b) Se $A \cup B = A$, então $B \subseteq A$.
 - (c) $(\emptyset, \{\emptyset\}) \in \mathcal{P}(\emptyset) \times \mathcal{P}(\emptyset)$.
 - (d) Se A é um conjunto com 2 elementos, então $A^2 \times \mathcal{P}(A)$ tem 16 elementos.
- 6. Sejam $A \in B$ conjuntos. Prove que $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

Cotações	1.	2.	3.	4.	5.	6.
	1,75+1,75	1,75 + 1,75	1,25+1,75	1+1+1	1,25+1,25+1,25+1,25	2