

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The parity has not actually been measured, but + is of course expected.

=⁰ MASS

The fit uses the Ξ^0 , Ξ^- , and $\overline{\Xi}^+$ masses and the $\Xi^- - \Xi^0$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1314.86±0.20 OUR FI	Т	-			
$1314.82 \pm 0.06 \pm 0.20$	3120	FANTI	00	NA48	p Be, 450 GeV
• • • We do not use the	ne following	data for average	s, fits	, limits, e	etc. • • •
1315.2 ± 0.92	49	WILQUET	72	HLBC	
1313.4 ± 1.8	1	PALMER	68	HBC	

$$m_{\equiv^-}-m_{\equiv^0}$$

The fit uses the Ξ^0 , Ξ^- , and $\overline{\Xi}^+$ masses and the $\Xi^- - \Xi^0$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
6.85 ± 0.21 OUR FIT					
6.3 ± 0.7 OUR AVERA	NGE				
6.9 ± 2.2	29	LONDON	66	HBC	
6.1 ± 0.9	88	PJERROU	65 B	HBC	
6.8 ± 1.6	23	JAUNEAU	63	FBC	
• • • We do not use the	e following	data for averages	s, fits,	limits,	etc. • • •
6.1 ± 1.6	45	CARMONY	64 B	HBC	See PJERROU 65B

≡⁰ MEAN LIFE

$VALUE (10^{-10} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
2.90±0.09 OUR AVE	RAGE				
$2.83\!\pm\!0.16$	6300	1 ZECH	77	SPEC	Neutral hyperon beam
$2.88^{igoplus 0.21}_{-0.19}$	652	BALTAY	74	НВС	$1.75~{ m GeV}/c~K^-p$
$2.90^{+0.32}_{-0.27}$	157	² MAYEUR	72	HLBC	$2.1~{\rm GeV}/c~K^-$
$3.07 {+0.22 \atop -0.20}$	340	DAUBER	69	НВС	
3.0 ± 0.5	80	PJERROU	65 B	HBC	
$2.5 \begin{array}{c} +0.4 \\ -0.3 \end{array}$	101	HUBBARD	64	НВС	
$3.9 \begin{array}{c} +1.4 \\ -0.8 \end{array}$	24	JAUNEAU	63	FBC	
ullet $ullet$ We do not use	the followin	g data for averages	s, fits,	limits,	etc. • • •
$3.5 \begin{array}{c} +1.0 \\ -0.8 \end{array}$	45	CARMONY	64 B	НВС	See PJERROU 65B

HTTP://PDG.LBL.GOV

Page 1

 1 The ZECH 77 result is $\tau_{=0}=\left[2.77-(\tau_{\Lambda}-2.69)\right]\times 10^{-10}$ s, in which we use $\tau_{\Lambda}=2.63\times 10^{-10}$ s. The MAYEUR 72 value is modified by the erratum.

=⁰ MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (μ_N)	EVTS	DOCUMENT I	TECN	
-1.250±0.014 OUR	AVERAGE			
$-1.253\!\pm\!0.014$	270k	COX	81	SPEC
$-1.20\ \pm0.06$	42k	BUNCE	79	SPEC

=⁰ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\Lambda\pi^0$	(99.524 ± 0.012)	%
Γ_2	$\Lambda\gamma$	(1.17 ± 0.07)	$\times 10^{-3}$
Γ_3	$\Lambda e^+ e^-$	(7.6 ± 0.6)	$\times 10^{-6}$
Γ_4	$\Sigma^0 \gamma$	(3.33 ± 0.10)	$\times 10^{-3}$
	$\Sigma^+ e^- \overline{ u}_e$	(2.52 ± 0.08)	\times 10 ⁻⁴
Γ_6	$\Sigma^+\mu^-\overline{ u}_{\mu}$	(2.33 ± 0.35)	\times 10 ⁻⁶
		$\Delta S = \Delta Q$ (SQ) violating modes or	

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 2$ forbidden (S2) modes

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 11 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=7.5$ for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

Ξ^0 branching ratios

	=	BRANCHING	KAI	105		
$\Gamma(\Lambda\gamma)/\Gamma(\Lambda\pi^0)$						Γ_2/Γ_1
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT II)	TECN	COMMENT	
1.17±0.07 OUR FIT						
1.17±0.07 OUR AVER	AGE	2				
$1.17 \pm 0.05 \pm 0.06$	672	³ LAI			p Be, 450 Ge	
$1.91 \pm 0.34 \pm 0.19$	31	⁴ FANTI	00		p Be, 450 Ge	
$1.06 \pm 0.12 \pm 0.11$	116	JAMES	90		FNAL hypero	
3 LAI 04A used our $\Gamma(\equiv^0 \to \Lambda\gamma)/\Gamma_{to}$ what was directly r 4 FANTI 00 used our $\Gamma(\equiv^0 \to \Lambda\gamma)/\Gamma_{to}$ what was directly r	$_{tal} = (1.16)$ measured. r 1998 val $_{tal} = (1.90)$	$6\pm0.05\pm0.06$) ue of 99.5% for t	$ imes$ 10 $^{-3}$ he $ar{ar{z}}^0$	3 . We ad $_{ ightarrow $	ljust slightly to branching frac	go back to
$\Gamma(\Lambda e^+ e^-)/\Gamma_{ m total}$						Г ₃ /Г
$VALUE$ (units 10^{-6})	EV	TS DOCUME	NT ID	TE	ECN COMMENT	Γ
$7.6 \pm 0.4 \pm 0.5$	397 ± 2	21 ⁵ BATLE	1	07C N	A48 <i>p</i> Be, 400) GeV
⁵ This BATLEY 07C	result is c	onsistent with int	ernal b	remsstra	hlung.	
$\Gamma(oldsymbol{\Sigma^0\gamma})/\Gamma(oldsymbol{\Lambda}\pi^0)$						Γ_4/Γ_1
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
3.35 ± 0.10 OUR FIT						
3.35 ± 0.10 OUR AVER	AGE					
$3.34 \pm 0.05 \pm 0.09$	4045				p nucleus, 800	
$3.16 \pm 0.76 \pm 0.32$	17	⁶ FANTI	00		p Be, 450 GeV	
$3.56 \pm 0.42 \pm 0.10$	85	TEIGE	89		FNAL hyperon	
6 FANTI 00 used out $\Gamma(\equiv^0 ightarrow \Sigma^0 \gamma)/\Gamma_0$ to what was direct	total = (3.	$14 \pm 0.76 \pm 0.32$				
$\Gamma(\Sigma^+e^-\overline{ u}_e)/\Gamma_{ m total}$						Γ_5/Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT II)	TECN	COMMENT	
2.52 ± 0.08 OUR FIT						
2.53±0.08 OUR AVER						
$2.51\pm0.03\pm0.09$	6101				p Be, 400 Ge'	
$2.55\pm0.14\pm0.10$	419				p Be, 400 Ge	
	176				p nucleus, 800) GeV
⁷ This BATLEY 07 r	esult is fo	$r \ \overline{\Xi}{}^0 o \ \overline{\Sigma}{}^- e^+ i$	e ever	nts.		
$\Gamma(\Sigma^+\mu^-\overline{ u}_\mu)/\Gamma_{tota}$						Γ_6/Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT II)	TECN	COMMENT	
2.3 ±0.4 OUR FIT 2.17±0.32±0.17	66	⁸ BATLEY	13	NA48	p Be, 400 Ge	V
⁸ BATLEY 13 used .	$\equiv^0 \rightarrow \Sigma$	$^{+}e^{-}\overline{ u}_{e}$ decay as	a nori	malizatio	n mode and its	branching
			1 -			·

fraction value of $(2.51 \pm 0.03 \pm 0.09) \times 10^{-4}$ from BATLEY 07.

VALUE EVTS DOCUMENT ID TECN COMMENT 0.0092±0.0015 OUR FIT	
0.018 $^{+0.007}_{-0.005}$ $^{+0.002}$ 9 ABOUZAID 05 KTEV p nucleus 800) GeV
$\Gamma(\Sigma^- e^+ \nu_e) / \Gamma(\Lambda \pi^0)$ Test of $\Delta S = \Delta Q$ rule.	Γ_7/Γ_1
VALUE (units 10 ⁻³) CL% EVTS DOCUMENT ID TECN COMMENT	
<0.9 90 0 YEH 74 HBC Effective deno	om.=2500
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$	
<1.5 DAUBER 69 HBC	
<6 HUBBARD 66 HBC	
$\Gamma(\Sigma^-\mu^+ u_\mu)/\Gamma(\Lambda\pi^0)$ Test of $\Delta S = \Delta Q$ rule.	Γ_8/Γ_1
VALUE (units 10 ⁻³) CL% EVTS DOCUMENT ID TECN COMMENT	
<0.9 90 0 YEH 74 HBC Effective deno	om.=2500
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$	
<1.5 DAUBER 69 HBC	
<6 HUBBARD 66 HBC	
$\Gamma(p\pi^-)/\Gamma(\Lambda\pi^0)$ $\Delta S=2$. Forbidden in first-order weak interaction.	Γ_9/Γ_1
VALUE (units 10 ⁻⁶) CL% EVTS DOCUMENT ID TECN COMMENT	
< 8.2 90 WHITE 05 HYCP <i>p</i> Cu, 800 Ge	٠V
• • • We do not use the following data for averages, fits, limits, etc. • •	
< 36 90 GEWENIGER 75 SPEC	
<1800 90 0 YEH 74 HBC Effective deno	om.=1300
< 900 DAUBER 69 HBC	
<5000 HUBBARD 66 HBC	
$\Gamma(\rho e^- \overline{\nu}_e)/\Gamma(\Lambda \pi^0)$ $\Delta S=2$. Forbidden in first-order weak interaction.	Γ_{10}/Γ_{1}
VALUE (units 10 ⁻³) CL% EVTS DOCUMENT ID TECN COMMENT	
<1.3 DAUBER 69 HBC	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$	
<3.4 90 0 YEH 74 HBC Effective deno	om.=670
<6 HUBBARD 66 HBC	
$\Gamma(\rho\mu^-\overline{ u}_\mu)/\Gamma(\Lambda\pi^0)$ $\Delta S=2$. Forbidden in first-order weak interaction.	Γ_{11}/Γ_1
VALUE (units 10 ⁻³) CL% EVTS DOCUMENT ID TECN COMMENT	
<1.3 DAUBER 69 HBC	
 • • We do not use the following data for averages, fits, limits, etc. 	
<3.5 90 0 YEH 74 HBC Effective deno	om –664
<6 HUBBARD 66 HBC	JIII.—00 4

=⁰ DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings.

$\alpha(\Xi^0) \alpha_-(\Lambda)$

This is a product of the $\Xi^0 \to \Lambda \pi^0$ and $\Lambda \to p \pi^-$ asymmetries.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.261±0.006 OUR AV	ERAGE		_		
$-0.276 \pm 0.001 \pm 0.035$	4M	BATLEY	10 B	NA48	p Be, 400 GeV
$-0.260\pm0.004\pm0.005$	300k	HANDLER	82	SPEC	FNAL hyperons
● ● We do not use the	following d	ata for averages,	fits, lin	nits, etc	. • • •
$-0.317\!\pm\!0.027$	6075	BUNCE	78	SPEC	FNAL hyperons
-0.35 ± 0.06	505	BALTAY	74	HBC	$K^- p \ 1.75 \ { m GeV}/c$
-0.28 ± 0.06	739	DAUBER	69	HBC	$K^- p 1.7-2.6 \text{ GeV}/c$

$\alpha \text{ FOR } \equiv^0 \rightarrow \Lambda \pi^0$

The above average, $\alpha(\Xi^0)\alpha_-(\Lambda) = -0.261 \pm 0.006$, divided by our current average $\alpha_-(\Lambda) = 0.642 \pm 0.013$, gives the following value for $\alpha(\Xi^0)$.

VALUE <u>DOCUMENT ID</u>

-0.406±0.013 OUR EVALUATION

ϕ ANGLE FOR $\Xi^0 \to \Lambda \pi^0$

 $(\tan\phi=\beta/\gamma)$

Created: 5/30/2017 17:22

VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
21±12 OUR AVER	AGE				
16 ± 17	652	BALTAY	74	HBC	$1.75 \; \text{GeV}/c \; K^- p$
$38\!\pm\!19$	739	⁹ DAUBER	69	HBC	
-8 ± 30	146	¹⁰ BERGE	66	HBC	

 $^{^{9}}$ DAUBER 69 uses $lpha_{f \Lambda}=$ 0.647 \pm 0.020.

A REVIEW GOES HERE - Check our WWW List of Reviews

$\alpha \text{ FOR } \equiv^0 \rightarrow \Lambda \gamma$

See the note above on "Radiative Hyperon Decays."

VALUE	EVIS	<u>DOCUMENT IL</u>	<u>) </u>	TECN	COMMENT	_
$-0.704\pm0.019\pm0.064$	52k	11 BATLEY	10 B	NA48	p Be, 400 GeV	
● ● We do not use the	e followi	ng data for averag	ges, fits,	limits, e	etc. • • •	
$-0.78 \ \pm 0.18 \ \pm 0.06$	672	LAI	04A	NA48	See BATLEY 10B	
-0.43 ± 0.44	87	¹² JAMES	90	SPEC	FNAL hyperons	

 $^{^{11}}$ BATLEY 10B also measured the $\overline{\Xi}{}^0\to \overline{\Lambda}\gamma$ asymmetry to be -0.798 ± 0.064 (no systematic error given) with 4769 events.

α FOR $\Xi^0 \rightarrow \Lambda e^+ e^-$

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
-0.8 ± 0.2	397 ± 21	¹³ BATLEY	07C NA48	p Be. 400 GeV	

¹³ This BATLEY 07C result is consistent with the asymmetry α for $\Xi^0 \to \Lambda \gamma$, as expected if the mechanism is internal bremsstrahlung.

 $^{^{10}}$ The errors have been multiplied by 1.2 due to approximations used for the Ξ polarization; see DAUBER 69 for a discussion.

 $^{^{12}}$ The sign has been changed; see the erratum, JAMES 02.

$\alpha \ {\rm FOR} \ {\it \Xi^0} \ {\rightarrow} \ \ {\it \Sigma^0} \gamma$

See the note above on "Radiative Hyperon Decays."

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.69 ±0.06 OUR AV	/ERAGE				
$-0.729 \pm 0.030 \pm 0.076$	15k	¹⁴ BATLEY	10 B	NA48	p Be, 400 GeV
$-0.63\ \pm0.08\ \pm0.05$	4045	ALAVI-HARA	TI01C	KTEV	p nucleus, 800 GeV
\bullet \bullet We do not use th	e followi	ng data for average	es, fits,	limits, e	etc. • • •
$+0.20\ \pm0.32\ \pm0.05$	85	¹⁵ TEIGE	89	SPEC	FNAL hyperons

 $^{^{14}\, {\}rm BATLEY}~10{\rm B}$ also measured the $\overline{\Xi}{}^0~\to~\overline{\Sigma}{}^0~\gamma$ asymmetry to be $-0.786~\pm~0.104$ (no

$g_1(0)/f_1(0)$ FOR $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT IL)	TECN	COMMENT
1.22 ± 0.05 OUR AVE	RAGE				
$1.21\!\pm\!0.05$		BATLEY	13	NA48	p Be, 400 GeV
$1.32^{\begin{subarray}{c} +0.21 \\ -0.17 \end{subarray}} \pm 0.05$	487	¹⁶ ALAVI-HARA	ATI01ı	KTEV	p nucleus, 800 GeV
• • • We do not use t	he followi	ng data for averag	ges, fits,	limits,	etc. • • •
$1.20\!\pm\!0.04\!\pm\!0.03$	6520	¹⁷ BATLEY	07	NA48	See BATLEY 13

 $^{^{16}\,\}text{ALAVI-HARATI}$ 011 assumes here that the second-class current is zero and that the weak-magnetism term takes its exact SU(3) value.

$g_2(0)/f_1(0))$ FOR $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
$-1.7^{f +2.1}_{-2.0}{\pm}0.5$	487	¹⁸ ALAVI-HARATI01i	KTEV	p nucleus, 800 GeV

 $^{^{18}}$ ALAVI-HARATI 011 thus assumes that $g_2=0$ in calculating g_1/f_1 , above.

$f_2(0)/f_1(0)$ FOR $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

VALUE	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
2.0±0.9 OUR AVERAGE					
2.0 ± 1.3		BATLEY	13	NA48	p Be, 400 GeV
$2.0 \pm 1.2 \pm 0.5$	487	ALAVI-HARAT	1011	KTEV	p nucleus, 800 GeV

=⁰ REFERENCES

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV Page 6

systematic error given) with 1404 events.

 $^{^{15}\,\}mathrm{This}$ result has been withdrawn, due to an error. See the erratum, TEIGE 02.

 $^{^{17}}$ This BATLEY 07 result uses our 2006 value of V_{us} from semileptonic kaon decays as

BUNCE BUNCE ZECH GEWENIGER BALTAY YEH MAYEUR Also WILQUET DAUBER PALMER BERGE HUBBARD LONDON PJERROU Also CARMONY HUBBARD JAUNEAU	79 78 77 75 74 74 72 72 69 68 66 66 66 65 8 64 64 64 64 63	PL 86B 386 PR D18 633 NP B124 413 PL 57B 193 PR D9 49 PR D10 3545 NP B47 333 NP B53 268 (erratum) PL 42B 372 PR 179 1262 PL 26B 323 PR 147 945 Thesis UCRL 11510 PR 143 1034 PRL 14 275 Thesis PRL 12 482 PR 135 B183 PL 4 49	G.R.M. Bunce et al. G.R.M. Bunce et al. G. Zech et al. C. Geweniger et al. C. Baltay et al. N. Yeh et al. C. Mayeur et al. C. Mayeur et al. P.M. Dauber et al. R.B. Palmer et al. J.P. Berge et al. J.R. Hubbard G.W. London et al. G.M. Pjerrou et al. G.M. Pjerrou et al. J.R. Hubbard et al. L. Jauneau et al.	(BNL, MICH, RUTG+) (WISC, MICH, RUTG) (SIEG, CERN, DORT, HEIDH) (CERN, HEIDH) (COLU, BING) J (BING, COLU) (BRUX, CERN, TUFTS, LOUC) (BRUX, CERN, TUFTS+) (LRL) (BNL, SYRA) (LRL) (LRL) (BNL, SYRA) (UCLA) (UCLA) (UCLA) (UCLA) (LRL) (EPOL, CERN, LOUC+)
-	-			` ,