Médias Móveis

Prof. Renzo Flores-Ortiz

- Modelo de Médias Móveis (Moving Average MA) é um modelo estocástico de série temporal em que o valor atual da série (X_t) é expresso como uma combinação linear (ou média ponderada) de erros aleatórios passados, também chamados de choques ou inovações.
- Definição: O modelo de médias móveis de ordem q, denotado por MA(q), é definido como:

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

Onde:

- X_t : valor da série no tempo t
- μ: média da série
- ε_t : termo de erro aleatório assumido como ruído branco, ou seja, uma sequência de erros aleatórios com média zero, variância constante e ausência de autocovariância entre diferentes períodos.
- $\theta_1, \theta_2, \dots, \theta_n$: coeficientes do modelo
- q: ordem do modelo (quantos erros passados são usados)

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

• Isso significa que o valor observado em t depende do erro aleatório atual e do erro do período anterior.

Simulação de Série MA(1)

Exemplo: MA(2)

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

 Isso significa que o valor observado em t depende do erro aleatório atual e dos erros ocorridos nos dois períodos anteriores.

Simulação de Série MA(2)

Uma série que segue o modelo de médias móveis é estacionária?

• Um modelo MA(q) é definido como:

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

• Ou, de forma mais compacta:

$$X_t = \mu + \sum_{i=0}^{q} \theta_i \varepsilon_{t-i}$$

• A **média** de X_t é dada por:

$$E[X_t] = E\left[\mu + \sum_{i=0}^q \theta_i \varepsilon_{t-i}\right] = E[\mu] + E\left[\sum_{i=0}^q \theta_i \varepsilon_{t-i}\right] = \mu + \sum_{i=1}^q \theta_i E[\varepsilon_{t-i}] = \mu + \sum_{i=1}^q \theta_i 0 = \mu$$

- A média de X_t é constante ao longo do tempo e igual ao valor médio da série.

Se a média da série é constante, por que o modelo se chama média móvel (moving average)?

A expressão "média móvel", no nome "modelo de média móvel", não se refere à média da série X_t — que, de fato, é constante —, mas sim à forma como X_t é construído a partir de uma média (ou soma ponderada) de erros passados que se desloca no tempo.

6

• A imagem acima mostra, de forma intuitiva, como cada ponto da série X_t em um modelo ${\bf MA(2)}$ é construído como:

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

As linhas verde, laranja e roxa representam contribuições dos erros atuais e passados. Essas três contribuições se movem com o tempo, pois a cada novo t, os ruídos utilizados na fórmula são deslocados uma posição à frente. Por isso, chamamos o modelo de média móvel — mesmo que a média esperada da série X_t seja constante.

Uma série que segue o modelo de médias móveis é estacionária?

• Um modelo MA(q) é definido como:

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_a \varepsilon_{t-a}$$

· Ou, de forma mais compacta:

$$X_t = \mu + \sum_{i=0}^{q} \theta_i \varepsilon_{t-i}$$

• A **variância** de X_t é dada por:

$$\begin{aligned} Var[X_t] &= Var\left[\mu + \sum_{i=0}^q \theta_i \varepsilon_{t-i}\right] = Var[\mu] + Var\left[\sum_{i=0}^q \theta_i \varepsilon_{t-i}\right] = 0 + \sum_{i=0}^q Var(\theta_i \varepsilon_{t-i}) = \sum_{i=1}^q \theta_i^2 Var(\varepsilon_{t-i}) \\ &= \sigma^2 \sum_{i=1}^q \theta_i^2 \end{aligned}$$

- A variância de \boldsymbol{X}_t é constante ao longo do tempo.

Uma série que segue o modelo de médias móveis é estacionária?

- Um modelo MA(q) é definido como: $X_t = \mu + \sum_{i=0}^q \theta_i \varepsilon_{t-i}$
- Para simplificar o cálculo da autocovariância, usamos a série centralizada, subtraindo a média μ : $X_t \mu = \sum_{i=0}^q \theta_i \varepsilon_{t-i}$
- A autocovariância de lag h é: $\gamma(h) = Cov(X_t, X_{t+h}) = E[(X_t \mu)(X_{t+h} \mu)]$
- Substituímos os termos: $X_t \mu = \sum_{i=0}^q \theta_i \varepsilon_{t-i}$ e $X_{t+h} \mu = \sum_{j=0}^q \theta_j \varepsilon_{t+h-j}$
- Então: $\gamma(h) = E\left[\left(\sum_{i=0}^q \theta_i \varepsilon_{t-i}\right) \left(\sum_{j=0}^q \theta_j \varepsilon_{t+h-j}\right)\right]$
- Expandimos o produto duplo: $\gamma(h) = \sum_{i=0}^q \sum_{j=0}^q \theta_i \, \theta_j \, E\big[\varepsilon_{t-i}\varepsilon_{t+h-j}\big]$
- Agora usamos a propriedade do **ruído branco**: $E\left[\varepsilon_{t-i}\varepsilon_{t+h-j}\right] = \begin{cases} \sigma^2 \ se \ t-i=t+h-j \Rightarrow i=j-h \\ 0 \ caso \ cotrário \end{cases}$
- Portanto, a soma só tem termos diferentes de zero quando i=j-h. Substituímos isso:
- $\gamma(h) = \sum_{i=0}^{q} \sum_{j=0}^{q} \theta_i \, \theta_j \sigma^2 \mathbb{1}_{\{i=j-h\}}$
- Isso se reduz a: $\gamma(h) = \sigma^2 \sum_{i=0}^q \theta_i \theta_{i+h}$ (assumindo que $\theta_k = 0$ para k > q)
- Dessa expressão, temos que a autocovariância de um modelo MA(q) não depende de t apenas do lag h.

Uma série que segue o modelo de médias móveis é estacionária?

- A série X_t gerada por um modelo MA(q):
 - Tem **média constante** μ
 - Tem variância constante $\sigma^2 \sum_{i=1}^q {\theta_i}^2$
 - Tem **autocovariância** que depende apenas do lag h
- Portanto, é estacionária no sentido fraco.

Comparação com o Modelo AR (Auto-Regressivo)

Modelo	Depende de
MA (Média Móvel)	Erros passados ε_{t-1} , ε_{t-2} ,
AR (Auto-Regressivo)	Valores passados da série $X_{t-1}, X_{t-2},$

 Muitas vezes, os dois são combinados em um modelo ARMA ou ARIMA para melhor modelagem.