Размерность Вапника-Червоненкиса

Пусть $\mathcal{R} \subset \operatorname{Subsets}(X)$ — семейство подмножеств произвольного множества X. Множество $A \subset X$ называется дробящимся системой \mathcal{R} , если пересечения A с множествами из \mathcal{R} образуют все подмножества A. Размерностью Вапника-Червоненкиса $\operatorname{VC}(X,\mathcal{R})$ (или VC-размерностью) пары (X,\mathcal{R}) называется размер максимального (по мощности) подмножества $A \subset X$, дробящегося \mathcal{R} . Если максимального подмножества нет, то полагают $\operatorname{VC}(X,\mathcal{R}) := \infty$.

Теорема Радона. Любые n+2 точки в \mathbb{R}^n можно разбить на два множества, выпуклые оболочки которых пересекаются.

- **1.** (а) С помощью теоремы Радона докажите, что VC-размерность семейства всех полупространств в \mathbb{R}^n равна n+1.
 - (b) Докажите теорему Радона.
- **2.** Возможно ли равенство $VC(\mathbb{R}^2, \mathcal{R}) = \infty$ для некоторого набора $\mathcal{R} \subset 2^{\mathbb{R}^2} (= \operatorname{Subsets}(\mathbb{R}^2))$?
- **3.** Докажите, что в любом семействе VC-размерности d, в каждом множестве которого не более r элементов, найдутся такие подмножества X и Y, что
 - (a) $|X \cap Y| \leqslant r d$;
 - (b) $|X \cap Y| \ge d 1$.
- **4.** Докажите, что если $\mathcal{R} \subset 2^{[n]}$, то $|\mathcal{R}| \leqslant C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^{\text{VC}([n],\mathcal{R})}$.

Домашнее задание.

- **1.** Докажите, что если $\mathcal{R} \subset 2^{[n]}$ и $|\mathcal{R}| = n$, то для любого $k = 1, 2, \dots, n$ найдётся такое множество A, что $|\{R \cap A \mid R \in \mathcal{R}\}| \geqslant k = |A| + 1$.
- **2.** Докажите, что если $\mathcal{R} \subset 2^{[n]}$ семейство VC-размерности d, то существует наследственное (т. е. содержащее с каждым множеством все его подмножества) семейство $\mathcal{R}' \subset 2^{[n]}$ VC-размерности d, для которого
 - (a) $|\mathcal{R}'| \leqslant |\mathcal{R}|$;
 - (b) $|\mathcal{R}'| \geqslant |\mathcal{R}|$.