ABSTRACT

Phishing attempts continue to be a serious concern to people as well as organisations at an age when cyber threats are constantly changing. Traditional techniques for identifying phishing URLs frequently cannot keep up with the everchanging tactics used by illicit organisations. This article presents Phish Not, a state-of-the-art cloud-based machine-learning system that has been painstakingly designed to improve the precision and quickness of phishing URL detection.

Phish Not employs sophisticated machine-learning algorithms that delve into the intricate dynamics of URLs, scrutinizing their characteristics to discern potential threats. Leveraging the power of cloud computing, the system conducts real-time analyses, enabling the prompt identification and neutralization of phishing threats. Through a combination of lexical analysis, content inspection, and the incorporation of historical URL behavior patterns, Phish Not aspires to provide a robust and adaptable solution to the ever-evolving landscape of phishing attacks.

The cloud-centric architecture of Phish Not not only ensures scalability but also facilitates seamless integration into existing security infrastructures for organizations. Furthermore, the system incorporates continuous learning mechanisms, enabling it to stay abreast of emerging phishing techniques. PhishNot's user-friendly interface and flexible integration capabilities empower security professionals with a potent tool to proactively defend against phishing threats.

In rigorous evaluations, Phish Not demonstrated impressive results, showcasing high accuracy rates in differentiating between legitimate and phishing URLs. The cloud-based deployment model enhances the system's adaptability and responsiveness to the evolving threat landscape, establishing it as a valuable asset in the ongoing battle against cyber threats.

ACRONYM

SDN Software Defined Networks

DPI Deep Packet Inspection

URL Uniform Resource Locator

NLP Natural Language Processing

HTML Hyper Text Markup Language

ReLU Rectified Linear Unit

SVM Support Vector Machine

CNN Convolutional Neural Network

DTOF Decision Tree and Optimal Features

ANN Artificial Neural Network

NLP Natural Language Processing

CBR-PDS A case-based reasoning Phishing detection system

TABLE OF CONTENTS

			Page No.
ABSTRACT			i
ACRONYMS			ii
TABLE OF CONTENTS			iii
LIST OF FIGURES			iv
CHAPTER 1	INRTRODUCTION		
	1.1	Introduction	01
	1.2	Objectives	02
	1.3	Phishing	03
CHAPTER 2	LIT	ERATURE REVIEW	06
	2.1	Existing System	06
	2.2	Drawbacks	06
CHAPTER 3	PRO	DPOSED SYSTEM	08
	3.1	Pre-Deployment Stage	09
	3.2	Deployment Stage	10
	3.3	Key Features	10
	3.4	Dataset	11
CHAPTER 4	DES	SIGN	13
	4.1	UML Diagram	13
		4.1.1 Use Case Diagram	13
		4.1.2 Activity Diagram	14
CHAPTER 5	IMI	PLEMENTATION	15
	5.1	Algorithms	15
	5.2	Software Requirement Specification	24
		5.2.1 Software Requirements	24
		5.2.2 Hardware Requirements	25
CHAPTER 6	EVALUATION DETAILS		26
	6.1	Sample Code	26
CHAPTER 7	FUT	FUTURE WORK	
CHAPTER 8	CONCLUSION		43
CHAPTER 9	REFERENCES		44

LIST OF FIGURES

Fig No	Name of Figure	Page No
1.1	Phishing	5
3.1	PhishNot System Overview	9
3.2	Phising attack features	12
4.1	Use case Diagram	13
4.2	Activity Diagram	14
6.1	Evaluation Process	26
6.2	Dataset	27
6.3	Correlation Heatmap	28
6.4	Data Pie Chart	29
6.5	Training & Testing Accuracy for Random Forest	31
6.6	Training & Testing Accuracy for Logistic Regression	33
6.7	Training & Testing Accuracy for Decision Tree	35
6.8	Training & Testing Accuracy for Gaussian Naïve Bayes	37
6.9	Training & Testing Accuracy for MLP	39
6.10	ML Model Comparisons	41
6.11	Various ML Models Results	41