Distributed Algorithms for Local Potential Problems

Francesco d'Amore

Joint work with A. Balliu, T. Boudier, D. Olivetti, G. Schmid, and J. Suomela

Helsinki Algorithms & Theory Days

29 August 2025

The result

Theorem

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$.

The result

Theorem

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$.

derandomization [Ghaffari, Harris, and Kuhn, FOCS '18]

+

network decomposition [Ghaffari and Grunau, FOCS '24]

Corollary:

For any local potential problem Π , there exists a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \operatorname{poly}(\log\log n))$.

Input: - graph G = (V, E)

- two colors red and green

Input: - graph G = (V, E)

- two colors red and green

Output: - a (not necessarily proper) 2-coloring $c:V \to \{\text{red}, \text{green}\}\)$ of G

- for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

- Input: graph G = (V, E)
 - two colors red and green

locally checkable

- **Output**: a (not necessarily proper) 2-coloring $c:V \to \{\text{red}, \text{green}\}\)$ of G
 - for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

valid solution

Input: - graph G = (V, E)

- two colors red and green

Output:

- a (not necessarily proper) 2-coloring $c:V \to \{\text{red},\text{green}\}$ of G

- for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

valid solution

2-apx of MAX-CUT (locally optimal)

Input: - graph G = (V, E)

- two colors red and green

Output:

- a (not necessarily proper) 2-coloring $c:V \to \{\text{red},\text{green}\}$ of G

- for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

valid solution

2-apx of MAX-CUT (locally optimal)

invalid solution

Input: - graph G = (V, E)

- two colors red and green

Output: - a (not necessarily proper) 2-coloring $c: V \to \{\text{red}, \text{green}\}\$ of G

- for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

valid solution

2-apx of MAX-CUT (locally optimal)

invalid solution

fixing procedure

flip color of invalid node

Input: - graph G = (V, E)

- two colors red and green

- a (not necessarily proper) 2-coloring $c:V \to \{\text{red}, \text{green}\}$ of GOutput:

- for each $v \in V$, at least $\geq \deg(v)/2$ neighbors of different color (w.r.t. v)

valid solution

2-apx of MAX-CUT (locally optimal)

invalid solution

fixing procedure flip color of invalid node

Question: can we *always* solve the problem?

- Convergence? Potential function!
- # of monochromatic edges decreases

- Convergence? Potential function!
- # of monochromatic edges decreases

- Convergence? Potential function!
- # of monochromatic edges decreases
- Possibly, very long chains...

- Convergence? Potential function!
- # of monochromatic edges decreases
- Possibly, very long chains...
- O(|E|)-time sequential algorithm

- Convergence? Potential function!
- # of monochromatic edges decreases
- Possibly, very long chains...
- O(|E|)-time sequential algorithm
- With distributed algorithms?

The LOCAL model

[Linial FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm

The LOCAL model

[Linial FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints

The LOCAL model

[Linial FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)

The LOCAL model

[Linial FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)
- Possible randomness: i.i.d. infinite random bit strings to nodes

The LOCAL model

[Linial FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)
- Possible randomness: i.i.d. infinite random bit strings to nodes
- Complexity measure: number of communication rounds

Complexity measure: number of communication rounds

• What do we know after T rounds?

Complexity measure: number of communication rounds

• What do we know after T rounds?

Complexity measure: number of communication rounds

• What do we know after *T* rounds?

Complexity measure: number of communication rounds

What do we know after T rounds?

- knowledge after $oldsymbol{T}$ rounds of communication

Complexity measure: number of communication rounds

What do we know after T rounds?

• Locality T = diam(G) + 1 is always sufficient to solve any problem: gathering algorithm

Complexity measure: number of communication rounds

What do we know after T rounds?

- Locality T = diam(G) + 1 is always sufficient to solve any problem: gathering algorithm
- LOCAL algorithm A with locality T_A + LOCAL algorithm B with locality T_B = LOCAL algorithm C with locality $T_A + T_B$

Previous results about LOC

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees) $-\Omega(\log\log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

- reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO '19]
- fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC '25]

Previous results about LOC

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

- reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO '19]
- fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC '25]

Upper bound: -O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

Previous results about LOC

- **Lower bound**: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)
 - $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)
 - reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO '19]
 - fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC '25]

Upper bound: -O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

HUGE GAP!

Let's find a *better* distributed algorithm... (for bounded-degree graphs)

MPX subroutine

 (α,d) -decomposition of a graph G=(V,E):

- partition of V into clusters (sets) C_1, \ldots, C_k
- $\operatorname{diam}(C_i) \leq d$ for all i
- # inter-clusters edges ≤ $\alpha |E|$

MPX subroutine

 (α,d) -decomposition of a graph G=(V,E):

- partition of V into clusters (sets) C_1, \ldots, C_k
- $\operatorname{diam}(C_i) \leq d$ for all i
- # inter-clusters edges $\leq \alpha |E|$

MPX subroutine

(α,d) -decomposition of a graph G=(V,E):

- partition of V into clusters (sets) C_1, \ldots, C_k
- diam $(C_i) \le d$ for all i
- # inter-clusters edges $\leq \alpha |E|$

Theorem (adaptation of [Miller, Peng, and Xu, SPAA '13]):

There exists a randomized LOCAL algorithm \mathcal{MPX} that computes an (α,d) -decomposition of a graph G=(V,E) with the following properties:

- Running time $O(\log n/\alpha)$.
- UB on the diameter is $d = O(\log n/\alpha)$.
- For each $v \in V$, with probability $\geq 1/2$ it holds that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C_i$ for some i.

ullet Brute-force solution with minimum potential in each cluster (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))
 - distance from global minimum of the potential is O(lpha|E|)

- Brute-force solution with minimum potential in each cluster (time O(d))
 - distance from global minimum of the potential is $O(\alpha |E|)$
- Simulate "fixing procedure" (at most $O(\alpha |E|)$ rounds)

- Brute-force solution with minimum potential in each cluster (time O(d))
 - distance from global minimum of the potential is $O(\alpha|E|)$
- Simulate "fixing procedure" (at most $O(\alpha |E|)$ rounds)

Overall running time: $cost(\mathcal{MPX}) + O(d) + O(\alpha|E|) = O(\log n/\alpha + \alpha|E|)$

- Brute-force solution with minimum potential in each cluster (time O(d))
 - distance from global minimum of the potential is $O(\alpha|E|)$
- Simulate "fixing procedure" (at most $O(\alpha |E|)$ rounds)

Overall running time: $cost(\mathcal{MPX}) + O(d) + O(\alpha|E|) = O(\log n/\alpha + \alpha|E|)$

- bounded-degree graphs: running time $O(\sqrt{n\log n})$ (minimized by $\alpha = \sqrt{\log n/n}$)

- Brute-force solution with minimum potential in each cluster (time O(d))
 - distance from global minimum of the potential is $O(\alpha|E|)$
- Simulate "fixing procedure" (at most $O(\alpha |E|)$ rounds)

Overall running time: $cost(\mathcal{MPX}) + O(d) + O(\alpha|E|) = O(\log n/\alpha + \alpha|E|)$

- bounded-degree graphs: running time $O(\sqrt{n \log n})$ (minimized by $\alpha = \sqrt{\log n/n}$)
- still far from the lower bounds ... How to do better?

• Repeat:

- Run \mathcal{MPX} to get (α,d) -network decomposition (time O(d))
- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

- Run \mathcal{MPX} to get (α,d) -network decomposition (time O(d))
- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

- Run \mathcal{MPX} to get (α,d) -network decomposition (time O(d))
- Brute-force solution with minimum potential in each cluster (time O(d))

- Repeat:
 - Run \mathcal{MPX} to get (α,d) -network decomposition (time O(d))
 - Brute-force solution with minimum potential in each cluster (time O(d))
- Distance from global minimum of the potential keeps at $O(\alpha |E|)$

- Repeat:
 - Run \mathcal{MPX} to get (α,d) -network decomposition (time O(d))
 - Brute-force solution with minimum potential in each cluster (time O(d))
- Distance from global minimum of the potential keeps at $O(\alpha |E|)$
 - what to do?

Improving set in a 2-colored graph G = (V, E)

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$\mathsf{IR}(A) = 2/1 = 2$$

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$\mathsf{Imp}(B) = 4$$

$$|R(A) = 2/1 = 2$$

$$\mathsf{IR}(B) = 4/3$$

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$|R(A) = 2/1 = 2$$

$$\mathsf{Imp}(B) = 4$$

$$IR(B) = 4/3$$

$$\mathsf{Imp}(C) = 2$$

$$\mathsf{IR}(C) = 1/2$$

Improving set in a 2-colored graph G = (V, E)

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$\mathsf{IR}(A) = 2/1 = 2$$

$$\mathsf{Imp}(B) = 4$$

$$IR(B) = 4/3$$

$$\mathsf{Imp}(C) = 2$$

$$\mathsf{IR}(C) = 1/2$$

Minimal improving set: improving set *A* such that

- There is no subset $A' \subseteq A$ with IR(A') > IR(A) —— "quality": is there "useless stuff"?

Improving set in a 2-colored graph G = (V, E)

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$\mathsf{IR}(A) = 2/1 = 2$$

$$\mathsf{Imp}(B) = 4$$

$$IR(B) = 4/3$$

C not minimal

$$\mathsf{Imp}(C) = 2$$

$$IR(C) = 1/2$$

$$\mathsf{Imp}(C') = 2$$

$$\mathsf{IR}(C') = 2/3$$

Minimal improving set: improving set *A* such that

- There is no subset $A' \subseteq A$ with IR(A') > IR(A) —— "quality": is there "useless stuff"?

Improving set in a 2-colored graph G = (V, E)

- Subset $A \subseteq V$ such that by flipping the colors of nodes in A the potential decreases
- Imp(A) = improvement in the potential
- Improving ratio: IR(A) = Imp(A)/|A|

$$Imp(A) = 3 - 1 = 2$$

$$\mathsf{IR}(A) = 2/1 = 2$$

$$\mathsf{Imp}(B) = 4$$

$$IR(B) = 4/3$$

C not minimal

An **error** is always a minimal improving set

$$\mathsf{Imp}(C) = 2$$

$$IR(C) = 1/2$$

$$\mathsf{Imp}(C') = 2$$

$$\mathsf{IR}(C') = 2/3$$

Minimal improving set: improving set *A* such that

- There is no subset $A' \subseteq A$ with IR(A') > IR(A) ——— "quality": is there "useless stuff"?

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i>1, A_i minimal improving set with $\text{IR}(A_i)\geq x$ after having flipped A_1,\ldots,A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Sequence of *x***-improving sets**:

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam $(A_i) = O(\log n/\varepsilon)$
- $-\varepsilon < x$
- $-A = \cup_i A_i$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Sequence of *x***-improving sets**:

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam $(A_i) = O(\log n/\varepsilon)$
- $-\varepsilon < x$
- $-A = \cup_i A_i$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Sequence of *x***-improving sets**:

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 2: on sequences of x-improving sets

- $-A_1, \dots, A_k \subseteq V$ sequence of x-improving sets
- diam $(A_i) = O(\log n/\varepsilon)$
- $-\varepsilon < x$
- $-A = \cup_i A_i$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Sequence of *x***-improving sets**:

- $-A_1,\ldots,A_k\subseteq V$
- $-A_1$ minimal improving set with $IR(A_1) \ge x$
- for all i > 1, A_i minimal improving set with $IR(A_i) \ge x$ after having flipped A_1, \ldots, A_{i-1}

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam $(A_i) = O(\log n/\varepsilon)$
- $-\varepsilon < x$
- $-A = \cup_i A_i$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment

G

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do

G

• Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})

- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition

• Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})

- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster
 - Find maximal sequence σ of λ_i -improving sets of diam. $O(\log n/\varepsilon)$ inside $G[\mathcal{C}]$ that do not contain border nodes

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster
 - Find maximal sequence σ of λ_i -improving sets of diam. $O(\log n/\varepsilon)$ inside $G[\mathcal{C}]$ that do not contain border nodes

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

 σ_1

G

- Find maximal sequence σ of λ_i -improving sets of diam. $O(\log n/\varepsilon)$ inside $G[\mathcal{C}]$ that do not contain border nodes
- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\epsilon$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\epsilon$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\epsilon$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

Claim 1: The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

Claim 1: The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$

Proof 1: $O(\log n)$ phases. Each phase costs O(d). By \mathcal{MPX} , $d = O(\log n/\alpha)$. By def. $\alpha = O(1/\log^4 n)$.

G

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
 - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

Claim 1: The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$

Claim 2: After phase i, any min. imp. set with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies "very close" to all previous border nodes

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})

- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do

- Run \mathcal{MPX} to get an (α,d) -decomposition
- -C = current cluster

- Find maximal sequence σ of λ_i -improving sets of diam. $O(\log n/\varepsilon)$ inside $G[\mathcal{C}]$ that do not contain border nodes
- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

Property 1 + Property 2

 \boldsymbol{G}

- **Claim 1:** The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$
- **Claim 2:** After phase i, any min. imp. set with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies "very close" to all previous border nodes

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})
- Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do

-C = current cluster

- Flip all sets in σ , in order

$$-\lambda_{i+1} = \lambda_i + 10\varepsilon$$

Return current coloring

Property 1 + Property 2

 \boldsymbol{G}

- **Claim 1:** The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$
- **Claim 2:** After phase i, any min. imp. set with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies "very close" to all previous border nodes
- **Claim 3:** With probability $\geq 1 1/n^{10}$, there is no error after $100 \log n$ phases

- Set $\lambda_1 = 1/4$ (initial IR), $\varepsilon = \lambda/(2000\log n)$ (Properties 1,2), $\alpha = \Theta(\varepsilon^2/\log^2 n)$ (\mathcal{MPX})

- - Start with a random coloring assignment
- For i = 1 to $100 \log n$ times, do
- - Run \mathcal{MPX} to get an (α,d) -decomposition
 - -C = current cluster

- Find maximal sequence σ of λ_i -improving sets of diam. $O(\log n/\varepsilon)$ inside $G[\mathcal{C}]$ that do not contain border nodes
- Flip all sets in σ , in order
- $-\lambda_{i+1} = \lambda_i + 10\varepsilon$
- Return current coloring

Property 1 + Property 2

 \boldsymbol{G}

- **Claim 1:** The running time of the algorithm is $O(d \cdot \log n) = O(\log^2 n/\alpha) = O(\log^6 n)$
- **Claim 2:** After phase i, any min. imp. set with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies "very close" to all previous border nodes

- **Claim 3:** With probability $\geq 1 1/n^{10}$, there is no error after $100 \log n$ phases
- $-\mathcal{MPX}$ guarantees + Claim 2

Local potential problems

- $r > 0, \Delta > 0$
- ullet ${\cal C}$ list of valid neighborhoods of radius ${m r}$ and max degree Δ

Local potential problems

- $r > 0, \Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

locally optimal cut with

$$\Delta = 3 \; (r = 1)$$

valid neighborhoods

Local potential problems

- $r > 0, \Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

locally optimal cut with

$$\Delta = 3 \ (r = 1)$$

valid neighborhoods

- $r > 0, \Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

locally optimal cut with

$$\Delta = 3 \ (r = 1)$$

valid neighborhoods

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \; (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \; (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \; (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \; (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

locally optimal cut with

$$\Delta = 3 \; (r = 1)$$

invalid neighborhoods

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ

$$\Delta = 3 \; (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ

$$\Delta = 3 \ (r = 1)$$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ
- For every invalid neighborhood, there is a way to relabel the central node to decrease the local (thus, global) potential

locally optimal cut with $\Delta = 3 \ (r = 1)$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ
- For every invalid neighborhood, there is a way to relabel the central node to decrease the local (thus, global) potential

locally optimal cut with $\Delta = 3$ (r = 1)

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ
- For every invalid neighborhood, there is a way to relabel the central node to decrease the local (thus, global) potential

locally optimal cut with $\Delta = 3 \ (r = 1)$

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ
- For every invalid neighborhood, there is a way to relabel the central node to decrease the local (thus, global) potential

locally optimal cut with $\Delta = 3$ (r = 1)

- r > 0, $\Delta > 0$
- ullet C list of valid neighborhoods of radius r and max degree Δ
- Pot: $\mathcal{G}_{r,\Delta} \to \mathbb{R}_{\geq 0}$ assigns a potential to every labeled neighborhood of radius r and max degree Δ
- For every invalid neighborhood, there is a way to relabel the central node to decrease the local (thus, global) potential

locally optimal cut with $\Delta = 3 \ (r = 1)$

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log \log n)).$

- $\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees) Lower bound:

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap

- Right randomized complexity? Exponential gap

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap

- Right randomized complexity? Exponential gap
- Dependency in Δ ? We actually give a $O(\text{poly}(\Delta)\text{poly}(\log n))$ -time randomized/deterministic algorithm

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap

- Right randomized complexity? Exponential gap
- Dependency in Δ ? We actually give a $O(\text{poly}(\Delta)\text{poly}(\log n))$ -time randomized/deterministic algorithm
 - some further assumption on the problem family: it includes locally optimal cut

Theorem:

For any local potential problem Π , there exists a randomized LOCAL algorithm that solves Π with high probability in time $O(\log^6 n)$. The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time $O(\log^8 n \text{ poly}(\log\log n))$.

Lower bound: $-\Omega(\log n)$ -rounds in deterministic LOCAL (in bounded-degree trees)

- $\Omega(\log \log n)$ -rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap

- Right randomized complexity? Exponential gap
- Dependency in Δ ? We actually give a $O(\text{poly}(\Delta)\text{poly}(\log n))$ -time randomized/deterministic algorithm
 - some further assumption on the problem family: it includes locally optimal cut

THANKS

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $-\operatorname{IR}(A) \geq x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

$$-S_i = \mathcal{N}_i[v] \cap A$$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Proof 1

$$-S_i = \mathcal{N}_i[v] \cap A$$

 $-\exists i = O(\log n/\varepsilon)$ such that # edges in the cut (S_i,A) is $\leq (\varepsilon/2)|S_i|$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

$$-S_i = \mathcal{N}_i[v] \cap A$$

- $-\exists i = O(\log n/\varepsilon)$ such that # edges in the cut (S_i,A) is $\leq (\varepsilon/2)|S_i|$
 - if not, exponential growth of S_i : $|S_i| \ge (1 + \varepsilon/(2\Delta))^i \implies |S_{100\Delta \log n/\varepsilon}| \ge e^{50\log n}$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon < x$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- $-S_i = \mathcal{N}_i[v] \cap A$
- $-\exists i = O(\log n/\varepsilon)$ such that # edges in the cut (S_i,A) is $\leq (\varepsilon/2)|S_i|$
 - if not, exponential growth of S_i : $|S_i| \ge (1 + \varepsilon/(2\Delta))^i \implies |S_{100\Delta \log n/\varepsilon}| \ge e^{50\log n}$
- $-\operatorname{Imp}(A) \leq \operatorname{Imp}(S_i) + \operatorname{Imp}(A \setminus S_i) + 2\operatorname{size}(S_i, A)$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon<\chi$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

$$-S_i = \mathcal{N}_i[v] \cap A$$

- $-\exists i = O(\log n/\varepsilon)$ such that # edges in the cut (S_i,A) is $\leq (\varepsilon/2)|S_i|$
 - if not, exponential growth of S_i : $|S_i| \ge (1 + \varepsilon/(2\Delta))^i \implies |S_{100\Delta \log n/\varepsilon}| \ge e^{50\log n}$
- $-\operatorname{Imp}(A) \leq \operatorname{Imp}(S_i) + \operatorname{Imp}(A \setminus S_i) + 2\operatorname{size}(S_i, A)$
- $-\operatorname{Imp}(S_i) \ge \operatorname{IR}(A)(|A| |A \setminus S_i|) \varepsilon |S_i|$

Property 1: on minimal improving sets

- $-A \subseteq V$ minimal improving set
- $|R(A)| \ge x$
- $-\varepsilon<\chi$

 \implies for all $v \in A$, $\exists r = O(\log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

$$-S_i = \mathcal{N}_i[v] \cap A$$

- $-\exists i = O(\log n/\varepsilon)$ such that # edges in the cut (S_i,A) is $\leq (\varepsilon/2)|S_i|$
 - if not, exponential growth of S_i : $|S_i| \ge (1 + \varepsilon/(2\Delta))^i \implies |S_{100\Delta \log n/\varepsilon}| \ge e^{50\log n}$
- $-\operatorname{Imp}(A) \leq \operatorname{Imp}(S_i) + \operatorname{Imp}(A \setminus S_i) + 2\operatorname{size}(S_i, A)$
- $-\operatorname{Imp}(S_i) \ge \operatorname{IR}(A)(|A| |A \setminus S_i|) \varepsilon |S_i|$
- $-\operatorname{Imp}(S_i) \ge \operatorname{IR}(|S_i|) \varepsilon |S_i| = (x \varepsilon)|S_i|$

Property 2: on sequences of x-improving sets

- $-A_1, \dots, A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

Proof 2

-virtual graph H: nodes are A_i s, edges are between influencing A_i s

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- -virtual graph H: nodes are A_i s, edges are between influencing A_i s
- weights to nodes in V(H): for each A_i , $w(A_i) = |A_i|$

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $\mathsf{IR}(A') \ge x - \varepsilon$

- -virtual graph H: nodes are A_i s, edges are between influencing A_i s
- weights to nodes in V(H): for each A_i , $w(A_i) = |A_i|$
- $-S_i = \mathcal{N}_i [A_i] (i \cap H)$

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $IR(A') \ge x - \varepsilon$

- virtual graph H: nodes are A_i s, edges are between influencing A_i s
- weights to nodes in V(H): for each A_i , $w(A_i) = |A_i|$
- $-S_i = \mathcal{N}_i [A_i] \text{ (in } H)$
- $\exists i = O(\log n/\varepsilon)$ such that $\sum_{A_j \in S_{i+1} \setminus S_i} w(A_j) \le (\varepsilon/2) \sum_{A_j \in S_i} w(A_j)$

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $IR(A') \ge x - \varepsilon$

- virtual graph H: nodes are A_i s, edges are between influencing A_i s
- weights to nodes in V(H): for each A_i , $w(A_i) = |A_i|$
- $-S_i = \mathcal{N}_i [A_i] \text{ (in } H)$
- $\exists i = O(\log n/\varepsilon)$ such that $\sum_{A_j \in S_{i+1} \setminus S_i} w(A_j) \le (\varepsilon/2) \sum_{A_j \in S_i} w(A_j)$
 - if not, exponential growth of weights but total weight is O(n)

Property 2: on sequences of x-improving sets

- $-A_1, ..., A_k \subseteq V$ sequence of x-improving sets
- diam (A_i) ≤ d
- $-\varepsilon < x$
- $-A = \cup_i A_i$

 \implies for all i, for all $v \in A$, $\exists r = O(d \log n/\varepsilon)$ and minimal improving set $A' \subseteq \mathcal{N}_r[v] \cap A$ such that $IR(A') \ge x - \varepsilon$

- -virtual graph H: nodes are A_i s, edges are between influencing A_i s
- weights to nodes in V(H): for each A_i , $w(A_i) = |A_i|$
- $-S_i = \mathcal{N}_i [A_i] \text{ (in } H)$
- $\exists i = O(\log n/\varepsilon)$ such that $\sum_{A_j \in S_{i+1} \setminus S_i} w(A_j) \le (\varepsilon/2) \sum_{A_j \in S_i} w(A_j)$
 - if not, exponential growth of weights but total weight is O(n)
- Similar to Lemma 1, but now to go back to G we need to multiply by O(d) (diameter of the A_i s)

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

•
$$\lambda_1 = 1/4$$
, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Proof 2: By induction on the phases.

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Proof 2: By induction on the phases.

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained
- A must be inside $\mathcal{N}_{\Theta(\log n/arepsilon)}[B_i]$ otherwise we break maximality

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained
- A must be inside $\mathcal{N}_{\Theta(\log n/arepsilon)}[B_i]$ otherwise we break maximality
- $-\exists j \leq i-1$ such that A is not inside $\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \implies A$ is fully within some cluster C at phase j

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained
- A must be inside $\mathcal{N}_{\Theta(\log n/arepsilon)}[B_i]$ otherwise we break maximality
- $-\exists j \leq i-1$ such that A is not inside $\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \implies A$ is fully within some cluster C at phase j
- consider all the min. imp. sets flipped after phase j: sequence of λ_{j+1} -improving sets

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained
- A must be inside $\mathcal{N}_{\Theta(\log n/arepsilon)}[B_i]$ otherwise we break maximality
- $-\exists j \leq i-1$ such that A is not inside $\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \implies A$ is fully within some cluster C at phase j
- consider all the min. imp. sets flipped after phase j: sequence of λ_{j+1} -improving sets
- Property 2: \exists min. imp. set A' inside $\mathcal{N}_{O(\log^2 n/\varepsilon^2)}[A]$ with $\mathsf{IR}(A') \geq \lambda_{j+1} \varepsilon \geq \lambda_j$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

- Base case phase i=1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_1]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_1$ is not contained
- Maximality of the λ_1 -improving sequence! Contradiction
- Suppose i>1, set $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i]\cap \left[\cap_{j\leq i-1}\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j]\right]$
- By contradiction, suppose min. imp. set A with IR $\geq \lambda_i$ is not contained
- A must be inside $\mathcal{N}_{\Theta(\log n/arepsilon)}[B_i]$ otherwise we break maximality
- $-\exists j \leq i-1$ such that A is not inside $\mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \implies A$ is fully within some cluster C at phase j
- consider all the min. imp. sets flipped after phase j: sequence of λ_{j+1} -improving sets
- Property 2: \exists min. imp. set A' inside $\mathcal{N}_{O(\log^2 n/\varepsilon^2)}[A]$ with $\mathsf{IR}(A') \geq \lambda_{j+1} \varepsilon \geq \lambda_j \Longrightarrow$ broken maximality in Phase j

•
$$\lambda_1 = 1/4$$
, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

Proof 3: By contradiction, there is an error at the end of phase $100 \log n$. Note that $\lambda_{100 \log n} \leq 3/4$.

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

Proof 3: By contradiction, there is an error at the end of phase $100 \log n$. Note that $\lambda_{100 \log n} \leq 3/4$.

- Node v colored with green with $> \deg(v)/2$ neighbors of color green

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

Proof 3: By contradiction, there is an error at the end of phase $100 \log n$. Note that $\lambda_{100 \log n} \leq 3/4$.

- Node v colored with green with $> \deg(v)/2$ neighbors of color green
- $\{v\}$ is an improving set, and $IR(\{v\}) \ge 1$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

Proof 3: By contradiction, there is an error at the end of phase $100 \log n$. Note that $\lambda_{100 \log n} \leq 3/4$.

- Node v colored with green with $> \deg(v)/2$ neighbors of color green
- $\{v\}$ is an improving set, and $\mathsf{IR}(\{v\}) \geq 1$
- By \mathcal{MPX} guarantees, $\exists i \leq 100\log n$ such that $\mathcal{N}_{\Theta(1/\alpha)}[v]$ is contained in some cluster in phase i w.p. $1-1/2^{100\log n-1} \geq 1-1/n^{99}$

• $\lambda_1 = 1/4$, $\varepsilon = \lambda/(2000 \log n)$, $\alpha = \Theta(\varepsilon^2/\log^2 n)$

From \mathcal{MPX} : For each $v \in V$, with probability $\geq 1/2$ there exists a cluster C such that $\mathcal{N}_{\Theta(1/\alpha)}[v] \subseteq C$.

Claim 2: After phase i, any MIS with $IR \ge \lambda_i$ of diameter $O(\log n/\varepsilon)$ lies in $\mathcal{N}_{\Theta(\log n/\varepsilon)}[B_i] \cap \left[\cap_{j \le i-1} \mathcal{N}_{\Theta(\log^2 n/\varepsilon^2)}[B_j] \right]$

Claim 3: With probability $\geq 1 - 1/n^{10}$, there is no error after $100 \log n$ phases

Proof 3: By contradiction, there is an error at the end of phase $100 \log n$. Note that $\lambda_{100 \log n} \leq 3/4$.

- Node v colored with green with $> \deg(v)/2$ neighbors of color green
- $\{v\}$ is an improving set, and $\mathsf{IR}(\{v\}) \geq 1$
- By \mathcal{MPX} guarantees, $\exists i \leq 100\log n$ such that $\mathcal{N}_{\Theta(1/\alpha)}[v]$ is contained in some cluster in phase i w.p. $1-1/2^{100\log n-1} \geq 1-1/n^{99}$
- $\alpha = \Theta(\varepsilon^2/\log^2 n)$ is chosen large enough so that Claim 2 is contradicted

