PROBLEM STATEMENT:- To predict the rainfall based on various feat of the dataset

In [1]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r"C:\Users\Teju\Downloads\RainFall.csv")
df
```

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	Α
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	27
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	42
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	46
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	42
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	71
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	52
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	63
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	35
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	59
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	21

641 rows × 19 columns

In [3]:

df.head()

Out[3]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0
			_	_	_						

In [4]:

df.tail()

Out[4]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217
4										

In [5]:

```
df.isnull().any()
```

Out[5]:

STATE_UT_NAME False False DISTRICT JAN False FEB False False MAR APR False MAY False JUN False False JUL AUG False SEP False False OCT NOV False DEC False ANNUAL False False Jan-Feb Mar-May False Jun-Sep False Oct-Dec False dtype: bool

In [7]:

```
df.isnull().sum()
```

Out[7]:

STATE_UT_NAME 0 DISTRICT 0 JAN 0 FEB 0 MAR 0 **APR** 0 0 MAY 0 JUN 0 JUL AUG 0 0 SEP OCT 0 0 NOV DEC 0 ANNUAL 0 Jan-Feb 0 0 Mar-May Jun-Sep 0 Oct-Dec 0 dtype: int64

In [8]:

df.describe()

Out[8]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000
4							•

In [9]:

df.shape

Out[9]:

(641, 19)

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [11]:

```
features=df[2:13]
target=df.columns[14]
```

In [12]:

```
df.fillna(method='ffill',inplace=True)
```

In [13]:

```
X = np.array(df['JAN']).reshape(-1,1)
y = np.array(df['ANNUAL']).reshape(-1,1)
```

In [14]:

```
X_train,x_test,y_train,y_test = train_test_split(X,y,train_size=0.65)
regr = LinearRegression()
regr.fit(X_train,y_train)
print(regr.score(x_test, y_test))
```

0.024794843823667034

In [15]:

```
y_pred = regr.predict(x_test)
plt.scatter(x_test, y_test, color = 'b')
plt.plot(x_test, y_pred, color = 'k')
plt.show()
```


In [16]:

coeff_df=pd.DataFrame(regr.coef_)
coeff_df

Out[16]:

0

0 6.748372

In [17]:

sns.pairplot(df)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x210f8602080>

In [18]:

```
sns.displot(df['ANNUAL'])
```

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x2108fb31210>

In [19]:

from sklearn.linear_model import Ridge,RidgeCV,Lasso

In [20]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(X_train,y_train)
train_score_ridge = ridgeReg.score(X_train,y_train)
test_score_ridge = ridgeReg.score(x_test,y_test)
print('\nRidge model\n')
print('Train score for ridge model is {}'.format(train_score_ridge))
print('Test score for ridge model is {}'.format(test_score_ridge))
```

Ridge model

Train score for ridge model is 0.025710107063416476 Test score for ridge model is 0.024795270334125208

```
In [21]:
lassoReg=Lasso(alpha=10)
lassoReg.fit(X_train,y_train)
train_score_lasso=lassoReg.score(X_train,y_train)
test_score_lasso=lassoReg.score(x_test,y_test)
print('\nLasso Model\n')
print('Train score for lasso model is {}'.format(train_score_lasso))
print('Test score for lasso model is {}'.format(test_score_lasso))
Lasso Model
Train score for lasso model is 0.025709834964721345
Test score for lasso model is 0.024820742347072322
In [22]:
from sklearn.linear_model import ElasticNet
regr = ElasticNet()
regr.fit(X,y)
Out[22]:
▼ ElasticNet
ElasticNet()
In [23]:
print(regr.coef_)
[6.48002837]
In [24]:
print(regr.intercept_)
[1228.02820315]
```

```
In [25]:
```

```
y_pred_elastic = regr.predict(X_train)
mean_squared_error = np.mean((y_pred_elastic-y_train)**2)
print('Mean squared error on test set', mean_squared_error)
```

Mean squared error on test set 826039.9941899101

```
In [26]:
```

```
regr.score(X_train,y_train)
```

Out[26]:

0.025435858893807617

CONCLUSION:

Based on accuracy of all models we can conclude that Linear Regression is the best model for given dataset $\,$

In []:		