

Syllabus

B. Tech Computer Engineering (Third Year Semester V and VI)

From Academic Year 2022-23 (Revision-1)

Approved by FOET 08/05/2022 and AC 06/07/2022

TY B. Tech / COMP / Revision 1.0

K J Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Preamble

KJSCE as a constituent college of Somaiya Vidyavihar University has the academic flexibility to develop and implement its own curriculum *KJSCE-SVU-2020* with features such as inclusion of choice based Open Elective Courses, Add on Credit / Audit Courses, Exposure Courses, etc. Distinct assessment and evaluation methods are also designed based on focus of individual courses. The outcome of this entire exercises; either by way of student placements or the feedback received from all stakeholders is quite encouraging.

At present, Industry is moving towards Industrial revolution 4.0. Knowing very well that every country's education system forms the basis of its progress and the groundwork for its future, we need to be making engineering graduates equipped to take industrial challenges. A common feature in successful education systems is the balance between tradition and the capacity to be flexible and able to adapt to current social trends. To achieve this, Somaiya Vidyavihar University allows for the undergraduate courses to have a focus on the changing industrial scenario.

Our new revision in syllabus *KJSCE-SVU-2020*, introduced from the academic year 2020-21, has been designed based on the revised guidelines from various accrediting bodies.

The said syllabus is a result of expert advice from members of Board of Studies, Faculty of Engineering & Technology and Academic Council; both having due representation from academia as well as appropriate industries. Subsequently faculty members of the college have put in efforts to document it in the form which has been presented here.

Some of the highlights of the *KJSCE-SVU-2020* syllabus are: Introduction of wide choice for branch specific electives, more number of open or interdisciplinary electives, opportunity for internships, etc. Courses like Object Oriented Programming Methodology, Full Stack Development and Digital Design are designed as laboratory oriented courses and pay more attention to hands-on learning. There is also an emphasis on project based learning (PBL) through courses like Mini-projects and PBL is also encouraged through projects as part of various courses.

Focus of academic processes in KJSCE is such that, by the time student completes the requirements of the degree, he/ she will be able to acquire attributes required for profession as an engineer. Outcomes are defined to acquire these attributes which lead to development of curriculum, pedagogy and assessment tools. These tools need to be updated based on experiences of teacher and learner. Hence teaching -learning -evaluation paradigm is going to be a mix of traditional as well as use of ICT tools. Role of the faculty member changes from tutor to trainer / instructor/ facilitator / mentor based on the outcomes targeted.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

For measuring learning outcomes of students, traditional methods like tests, laboratory work and End Semester Examinations (ESE) are implemented. Continuous Assessment (CA) is carried out through tests and internal assessment (IA) like quizzes, case studies, mini projects etc. These IA tools enable the students to develop competencies through solutions discussed, improvisations suggested, feedbacks given by faculty members. Through these assessment methods students get opportunity for reading research papers, presenting ideas and working in a team.

Since the assessments are distributed throughout the term the learning process is continuously monitored and graded.

The Department of Computer Engineering courses focus on thrust areas of Department. These areas are Intelligent System and Data Processing, Network System and Security, Image Analysis and Interpretation and System & Software Engineering.

College promotes co-curricular, extra-curricular activities as well as sports; making life outside classroom exciting and rewarding. What makes these activities very effective is the fact that these do not focus only on winning trophies but try to nurture generic skills such as leadership, effective communication, teamwork etc. which are essential skills for a bright professional career.

Along with my colleagues, I welcome you to Department of Computer Engineering and look forward to lead you towards professional career.

Dr. Deepak Sharma Head Department of Computer Engineering

Dr. Shubha Pandit Principal and Dean Faculty of Engineering and Technology

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Vision

To become a center of excellence in discipline of Computer Engineering for developing technically adept professionals with ethical and leadership qualities in service of society.

Mission

- Provide sound technical foundation in Computer Engineering through comprehensive curriculum and application oriented learning.
- Provide ambience for professional growth and lifelong learning for adapting to challenges in rapidly changing technology
- Inculcate social and ethical values and leadership qualities

Program Educational Outcomes (PEO)

A graduate of Computer Engineering will

- **PEO1.** Solve problems in diverse fields using knowledge of Computer Engineering.
- **PEO2.** Excel in professional career, exhibit leadership qualities with ethics &soft skills.
- **PEO3.** Pursue higher education, research or entrepreneurship, engage in professional development, adapt to emerging technologies.

Program Outcomes (PO)

After successful completion of the program Computer Engineering Graduate will be able to:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

with an understanding of the limitations.

- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development
- **PO7. Multidisciplinary Competence:** Recognize/ study/ analyze/ provide solutions to real-life problems of multidisciplinary nature from diverse fields
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

- **PSO1:** Design, construct and implement hardware and software based modern Computing / Information systems with varying complexities
- **PSO2:** Demonstrate competence in designing, implementation and maintenance of computer based applications, computer-controlled equipment and networks of intelligent devices.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 5 of 128

Department of Computer Engineering

Acro	nym for category of courses	Acronyms used in syllabus document				
Acronym	Definition	Acronym	Definition			
BS	Basic Science Courses	CA	Continuous Assessment			
ES	Engineering Science	ESE	End Semester Exam			
HS	Humanities and Social Sciences	IA	Internal Assessment			
PC	including Management Courses Professional Core Courses	0	Oral			
PE	Professional Elective courses	P	Practical			
OE	Open Elective Courses	P&O	Practical and Oral			
LC	Laboratory Courses	TH	Theory			
PR	Project	TUT	Tutorial			
AC	Audit Course	TW	Term work			
AOCC	Add on Credit Course	ISE	In- Semester Examination			
AOAC	Add on Audit Course	CO	Course Outcome			
AVAC	Add on Value Audit Course	PO	Program Outcome			
EX	Exposure Course	PSO	Program specific Outcome			
I	Interdisciplinary courses					

Acronyms used for type of Course

Acronym used	Definition
С	Core Course
E	Elective Course
0	Open Elective Technical
Н	Open Elective Humanities/Management/SWAYAM-NPTEL
P	Project
L	Laboratory Course
T	Tutorial
X	Exposure course
A	Audit course

Acronyms used in Eight Digit Course code e.g. 116U06C101

Acronym	Definition
Serially as per code	
1	SVU 2000 First revision
16	College code
U	Alphabet code for type of programme
06	Programme code
С	Type of course
1	Semester I – semester number
01	First course of semester – course serial number
	It will be XX for the elective/choice based courses

Department of Computer Engineering

SVU_TY_2020 Semester V – Credit Scheme

Carrer Cada		ŗ	Teachin heme (I		Total	Cre	dits As	signed	Total	Course
Course Code	Course Name	ТН	P	TUT	(Hrs.)	ТН	P	TUT	credits	Catego - ry
116U01C501	Software Engineering	3	0	0	3	3	0	0	3	PC
116U01C502	Computer Networks	3	0	0	3	3	0	0	3	PC
116U01C503	Operating System	3	0	0	3	3	0	0	3	PC
116U06O5xx	OE Technical – I / NPTEL /SWAYAM/ Coursera	3	0	0	3	2	0	0	2	OE
116U06G/Y5xx	ОЕ НМ	2	0	0	2	2	0	0	2	HS
116U01E51x	Departmental Elective-I	3	0	0	3	3	0	0	3	PE
116U01L501	Software Engineering Lab.	0	2	0	2	0	1	0	1	PC
116U01L502	Computer Networks Lab.	0	2	0	2	0	1	0	1	PC
116U01L503	Operating System Lab.	0	2	0	2	0	1	0	1	PC
116U01L51x	Departmental Elective-I Lab	0	2	0	2	0	1	0	1	PE
116U01L504	Full Stack Development Lab.	1	2	0	3	1	1	0	2	PC
	Total	18	10	0	28	17	5	0	22	

A Constituent College of Somaiya Vidyavihar University **Department of Computer Engineering**

SVU_TY_2020 Semester V-Examination Scheme

				Exami	nation S	cheme			
			Theory I	Marks					
Course Code	Course Name	Continuous Assessment (CA) En				TW	Oral	/Pract and Oral	Total
		ISE	IA	Total	Exam				
116U01C501	Software Engineering	30	20	50	50				100
116U01C502	Computer Networks	30	20	50	50				100
116U01C503	Operating System	30	20	50	50				100
116U06O5xx	OE Technical – I / NPTEL /SWAYAM/ Coursera	30	20	50		1			50
116U06G/Y5xx	Open Elective HM	30	20	50					50
116U01E51x	Departmental Elective-I	30	20	50	50				100
116U01L501	Software Engineering Lab			-1-		25	25		50
116U01L502	Computer Networks Lab					25	25		50
116U01L503	Operating System Lab					25	25		50
116U01L51x	Departmental Elective-I Lab					25	25		50
116U01L504	Full Stack Development Lab			-1		50*			50
Total		180	120	300	200	150	100		750

^{*}Term work based on laboratory performance

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 8 of 128

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

List of Departmental Elective-I for V Semester (Offered by Department of Computer Engg.)

Sr. No.	Course Code	Course Name
1	116U01E511	Computer Graphics
2	116U01E512	Advanced Databases and Data Warehousing
3	116U01E513	Microprocessors
4	116U01E514	Soft Computing

List of Open Electives for V Semester

Sr. No.	Course Code	Course Name				
1	116U06O511	Mobile application Development – Flutter				
2	116U06O512	Virtual Reality & Augmented Reality Engine Development				
3	116U06O513	Data Base Management System				
4	116U06O514	Web Application Development using FLASK				

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 9 of 128

Department of Computer Engineering

SVU_TY_2020 Semester VI - Credit Scheme

Course Code	Course Name		TH		Total (Hrs.)	Cre	dits Ass	signed	Total credits	Course Catego-
		ТН	P	TUT	(1115.)	ТН	P	TUT	credits	ry
116U01C601	Digital Signal & Image Processing	3	0	0	3	3	0	0	3	PC
116U01C602	Information Security	3	0	0	3	3	0	0	3	PC
116U01C603	Artificial Intelligence	3	0	0	3	3	0	0	3	PC
116U01E62x	Departmental Elective-II	3	0	0	3	3	0	0	3	PE
116U06O6xx	OE Technical – II / NPTEL /SWAYAM/ Coursera	3	0	0	3	2	0	0	2	OE
116U06G/Y5xx	ОЕНМ	2	0	0	2	2	0	0	2	HS
116U01L601	Digital Signal & Image Processing Lab.	0	2	0	2	0	1	0	1	PC
116U01L602	Information Security Lab.	0	2	0	2	0	1	0	1	PC
116U01L603	Artificial Intelligence Lab.	0	2	0	2	0	1	0	1	PC
116U01L62x	Departmental Elective-II Lab.	0	2	0	2	0	1	0	1	PE
116U01P601	Mini Project	1	2	0	3	0	3	0	3	PR
	Total	18	10	0	28	17	6	0	23	
116U06N5xx	MNCC	1	0	0	1	0	0	0	0	MNCC

Page 10 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

SVU_TY_2020 Semester VI-Examination Scheme

Course	Course			Exai	mination	Schen	ne		
Code	Name	Theory Marks							
		Continu	ious Asses (CA)	ssment	End Sem. Exam	TW	TW Oral	/Pract. and Oral	Total
		ISE	IA	Total	Exam				
116U01C601	Digital Signal & Image Processing	30	20	50	50				100
116U01C602	Information Security	30	20	50	50				100
116U01C603	Artificial Intelligence	30	20	50	50				100
116U06O6xx	OE Technical – II / NPTEL /SWAYAM/ Coursera	30	20	50		1	-1-	-1	50
116U06G/Y5xx	ОЕНМ	30	20	50					50
116U01E62x	Departmental Elective-II	30	20	50	50	1			100
116U01L601	Digital Signal & Image Processing Lab	1	1	-		25	25	1	50
116U01L602	Information Security Lab					25	25		50
116U01L603	Artificial Intelligence Lab					25	25		50
116U01L62x	Departmental Elective-II Lab					25	25		50
116U01P601	Mini project					50		25^	75
Total		180	120	300	200	150	100	25	775

[^]Presentation and Demo based on mini project and viva based on implementation

Page 11 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Constituent College of Somaiya Vidyavihar University **Department of Computer Engineering**

List of Departmental Elective - II for VI Semester

Sr. No.	Course Code	Course Name	Remarks
1	116U01E621	Compiler Construction	
2	116U01E622	Data Mining and Business	
		Intelligence	
3	116U01E623	Software Testing and Quality	
		Assurance	
4	116U01E624	Wireless Sensor Networks and	
		IOT	
5	116U01E625	Mobile Communication and	
		Adhoc Networks	
6	116U01E626	Machine Learning	
7	116U01E627	Micro Services and Dev OPS	
8	116U01E628	Applied Cryptography	Not available to
			students with Honours
			in CSF
9	116U01E629	Cloud Computing	

List of Open Elective Technical - II for VI Semester (Offered by Department of Computer Engg.)

Sr. No.	Course Code	Course Name	Remarks
1	116U06O601	Social Mobile Analytics and Cloud	
2	116U06O602	Audio Signal Processing	
3	116U06O603	Applied Machine Learning using Tensor flow	Not available to students with Honours in Data Science and Analytics
4	116U06O604	Quantum Computing	
5		Digital Accessibility	

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 12 of 128

Department of Computer Engineering

Semester - V

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 13 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01C501	Software Engineering									
		TH P					TUT	Total		
Teaching Scheme(Hrs.)				•			03			
Credits Assigned	-	03			•			03		
		Marks								
Examination	CA		ECE	TX7		ъ	De-O	Total		
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total		
	30	20	50					100		

Course prerequisites (if any):

-

Course Objectives:

The Course focusses at developing an understanding of software process models such as the waterfall and evolutionary models. It Further provides, an understanding of software requirements and the SRS documents. The course aims at enabling the students to prepare the system design and test cases for proper testing of the software.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1 Understand the software development process and Estimate different types of resources for the given project.
- CO2 Analyze the software requirements and Model the defined problem with the help of UML diagram.
- CO3 Prepare the System Design and Model
- CO4 Identify and manage configuration items and risks for the software
- CO5 Test the given software for different test cases with proper test planning.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 14 of 128

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	The P	roduct and the Process:	08	CO 1
	1.1	Software life cycle models: Waterfall, RAD, Spiral,		
		Agile process.		
	1.2	Understanding software process, Process metric, CMM		
		Levels		
	1.3	Planning & Estimation: Product metrics Estimation-		
		LOC, FP, COCOMO models.		
	1.4	Project Management activities : Planning, Scheduling		
		and Tracking		
2	Requi	rement Engineering	08	CO 2
	2.1	Introduction to OO Methodologies :Booch,Rambaug and		
		Jacobson		
	2.2	Requirements Engineering Tasks, Requirement		
		Elicitation Techniques, Software Requirements:		
		Functional, Non- Functional		
	2.3	Requirements Characteristics, Requirement qualities,		
		Requirement Specification, Requirement Traceability,		
		System Analysis Model Generation, Documentation:		
		Use Case Diagram, Acitvity Diagram		
	2.4	Categorizing classes: entity, boundary and control		
		,Modeling associations and collections-Class Diagram		
	2.5	Dynamic Analysis - Identifying Interaction – Sequence		
		and Collaboration diagrams, State chart diagram		
3	Syster	n Design Engineering	7	CO 3
	3.1	Design quality, Classification of Design Activities,		
		Design Concepts: Modularity and Layering, Introduction		
		to Pattern-Based Software Design,		
	3.2	Software Architecture, Data Design, Object-Oriented		
		versus Function-Oriented Design, Design of Software		
		Objects, Methods, Cohesion and Coupling		
		between Objects,		
	3.3	User Interface Design: Rules, User Interface Analysis		
		and Steps in Interface Design, Design Evaluation		
	3.5	Software Reuse, Component-Based Software		
		Engineering		
4		n Implementation, Configuration Management & Risk	14	CO 4
	Mana	gement	1-1	

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	4.1	Packages and interfaces: Distinguishing between classes/interfaces, Exposing class and package interfaces		
	4.2	Mapping model to code , Mapping Object Model to Database Schema		
	4.3	Component and deployment diagrams: Describing Dependencies		
	4.4	Managing and controlling Changes, Managing and controlling version		
	4.5	Categories of Risks, Nature Of Risk, Types of Risk, Risk Identification, Risk Assessment, Risk planning and control, Risk management, Evaluating risk to schedule, PERT technique.		
5	Testin	ng and Maintenance	8	CO 5
	5.1	Testing Concepts: Purpose of Software Testing, Testing Principles, Goals of Testing, Testing aspects: Requirements, Test Scenarios, Test cases, Test scripts/procedures,		
	5.2	Strategies for Software Testing, Testing Activities: Planning Verification and Validation, Software Inspections,FTR		
	5.3	Levels of Testing: unit testing, integration testing, regression testing, product testing, acceptance testing and White-Box Testing		
	5.4	Black-Box Testing: Test Case Design Criteria, Requirement Based Testing, Boundary Value Analysis, Equivalence Partitioning		
	5.5	Object Oriented Testing: Review of OOA and OOD models, class testing, integration testing, validation testing		
	5.6	Reverse and re-engineering, types of maintenance		
	#Self-	Learning: Testing tools		
		Total	45	

#Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 16 of 128

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1	Roger Pressman	Software Engineering	Tata McGraw	Sixth edition,
			Hill.	2010
2	Bernd Bruegge	Object oriented software	Pearson	Third Edition,
		engineering	Education.	2009
3	Ian Sommerville	Software Engineering	Pearson	Sixth edition,
			Education	2001
4	John Nicholas,	Project Management for	Routledge	5th Edition,
	Herman Steyn	Business Engineering and		2017
		Technology		
5	Bob Hughes, Mike	Software Project	Tata McGraw	fifth Edition,
	cotterell, Rajib Mall	Management	Hill	2012

Page 17 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title								
116U01L501		Software Engineering Lab.							
	7	ТН				TUT	Total		
Teaching Scheme(Hrs.)			02		-	02			
Credits Assigned		-			01		01		
	Marks								
Examination	CA	CA		TW	0	De O	Total		
Scheme	ISE	IA	ESE	1 77		P&O	Total		
				25			25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Software Engineering". Students will be graded based on continuous assessment of their term work.

Page 18 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01C502	Computer Networks								
	TH			F		,	TUT	Total	
Teaching Scheme(Hrs.)	03							03	
Credits Assigned	03							03	
	Marks								
Examination Scheme	CA		ESE	TW	o	P	P&O	Total	
	ISE	IA	_~	_ ''				_ 3002	
	30	20	50					100	

Course prerequisites (if any): NA

Course Objectives:

- 1. To introduce concepts and fundamentals of data communication and computer networks.
- 2. To explore the inter-working of various layers of OSI.
- 3. To understand and apply IP addressing concepts in network design.
- 4. To assess the strengths and weaknesses of various routing algorithms.
- 5. To understand the transport layer and various application layer protocols.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1	Explain the fundamentals of the data communication networks, reference models,
:	topologies, physical media, devices, simulators and identify their use in day to day
	networks.
CO2	Demonstrate Data Link Layer, MAC layer technologies & protocols and implement
	the functionalities like error control, flow control.
CO3	Demonstrate various network layer protocols and network design using IP addressing,
	forwarding, routing concepts.
CO4	Demonstrate Transport layer concepts like socket, flow control, error control,
	congestion control, QoS.
CO5	Describe various features and operations of application layer protocols such as Telnet,
	HTTP, DNS, SMTP.

Page 19 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to networking	06	CO1
	1.1	Types of Networks: LAN, WAN, MAN. Network		
		Topology (types)		
	1.2	Network Software: Protocol hierarchy, Design Issues for		
		layers, Connection oriented and connectionless services,		
		Reliable and Un-reliable services		
	1.3	OSI and TCP/IP reference model,		
		Comparison of OSI and TCP/IP reference model		
	1.4	Overview of connecting devices, NIC, Repeater, Hub,		
		Bridge, Router, Gateway		
		# Self-Learning: Guided and Un-guided transmission		
		media		
2	Data 1	Link and MAC Layer	12	CO2
	2.1	Error Control: Types of Errors; Redundancy, Checksum,		
		Hamming Code and CRC.		
	2.2	Framing, and Flow Control; Flow control Protocols:		
		Stop-and-wait, Go-Back-N, Selective-Repeat,		
		Piggybacking		
	2.3	MAC address; Random Access: ALOHA, slotted		
		ALOHA, Efficiency; CSMA, CSMA/CD, CSMA/CA.		
	2.4	Controlled Access, Channelization, IEEE standards,		
		different Ethernets		
		# Self-Learning: Modular Arithmetic		
3	Netwo	ork Layer	10	CO3
	3.1	Network layer services, IPv4, strategies to bridge the		
		limitations (IP sub netting, CIDR, NAT, Addressing,		
		Options, Extension headers, Packet forwarding, Congestion Control)		
	3.2	ARP, RARP, DHCP and ICMP		
	3.3	IPV6 Addressing		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	3.4	Shortest Path routing, DV, Link state Routing. Unicast protocols:, OSPF, BGP.		
	3.5	Multicast routing protocols: IGMP; Hierarchical Routing , DVMRP		
		# Self Learning: RIP, MOSPF		
4	Trans	sport Layer: Protocols	08	CO4
	4.1	Services, Transport layer protocols, UDP, TCP: State Transition diagram, flow control, error control, TCP Timers, Queuing disciplines		
	4.2	TCP Congestion control, SCTP		
	4.3	Quality of Service		
5	Appli	cation Protocols	09	CO5
	5.1	HTTP, WWW		
	5.2	DNS		
	5.3	FTP, Telnet		
	5.4	SMTP		
		# Self Learning: POP and IMAP		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 21 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	B.A.Forouzan	Data Communication and Networking	Tata McGraw Hill edition	Third Edition
2.	A.S.Tanenbaum	Computer Networks	Pearson Education	Fourth Edition
3.	B. A. Forouzan	TCP/IP Protocol Suite	Tata McGraw Hill edition	Third Edition
4.	J. Schiller	Mobile Communications	Pearson Education	Second Edition

Page 22 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title								
116U01L502		Computer Network Lab.							
	7.	TH				TUT	Total		
Teaching Scheme(Hrs.)			02		-	02			
Credits Assigned		-			01		01		
	Marks								
Examination	CA		ECE	ESE TW	0	P&O	Total		
Scheme	ISE	IA	LSE			rau	Total		
				25			25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Computer Netwrok". Students will be graded based on continuous assessment of their term work.

Page 23 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01C503	Operating System							
	TH				P		TUT	Total
Teaching Scheme(Hrs.)							03	
Credits Assigned	(03	
	Marks							
Examination Scheme	CA		ECE	TEXX7	0	D	P&O	Total
2xammanon Scheme	ISE	IA	ESE	TW	U	P	rau	1 otal
	30	20	50					100

Course prerequisites (if any):

Basics of Computer Organization and architecture

Course Objectives:

- 1. To introduce basic concepts and functions of operating systems.
- 2. To understand the concept of process, thread and resource management.
- 3. To understand the concepts of process synchronization and deadlock.
- 4. To understand various Memory, I/O and File management techniques.
- 5. To understand the designing and implementation of system software like Assembler. Macro preprocessor and linker loader.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Identify the different system programs and their utility and Explain the fundamental concepts of operating system with extension to Unix and Mobile OS
- CO2: Illustrate and analyze the Process, threads, process scheduling and thread scheduling
- CO3: Describe the problems related to process concurrency and the different synchronization mechanisms available to solve them.
- CO4: Explain disk organization and file system structure with illustration of disk scheduling algorithms
- CO5: Understand Storage management with allocation, segmentation & virtual memory concepts

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 24 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1	1	uction to System software	7	
	1.1 1.2 1.3 1.4 1.5	Concept, introduction to various system programs such as assemblers, loaders, linkers, macro processors, compilers, interpreters, operating systems, device drivers Operating System Objectives and Functions, The Evolution of Operating Systems OS Design Considerations for Multiprocessor and Multicore architectures Operating system structures, System Calls Linux Kernel and Shell System boot		CO1
2	Proces	s Concept and scheduling	8	
	21 2.2 2.3 2.4	Process: Concept of a Process, Process States, Process Description, Process Control Block, Operations on Processes. Threads: Definition and Types, Concept of Multithreading Multicore processors and threads. Scheduling: Uniprocessor Scheduling - Types of Scheduling: Preemptive and, Non-preemptive, Scheduling Algorithms: FCFS, SJF, SRTN, Priority based, Round Robin, Multilevel Queue scheduling. Introduction to Thread Scheduling Linux Scheduling.		CO2
3		s Concurrency	10	
	3.1 3.2 3.3 3.4	Concurrency: Principles of Concurrency, InterProcess Communication, Process/Thread Synchronization. Mutual Exclusion: Requirements, Hardware Support, Operating System Support (Semaphores and Mutex), Programming Language Support (Monitors) Classical synchronization problems: Readers/Writers Problem, Producer and Consumer problem. Principles of Deadlock: Conditions and Resource Allocation Graphs, Deadlock Prevention, Deadlock Avoidance: Banker"s Algorithm for Single & Multiple Resources, Deadlock Detection and Recovery. Dining Philosophers Problem		CO3
4	Input	output and file management	8	
	4.1	File Management: Overview, File Organization and Access, File Directories, File Sharing, Secondary Storage Management, Linux Virtual File System. I/O Management and Disk Scheduling: I/O Devices, Organization of the I/O Function, Operating System Design Issues, I/O Buffering, Disk Scheduling algorithm: FCFS, SSTF, SCAN, CSCAN, LOOK, CLOOK. Disk Management, Linux		CO4

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	-	I/O.				
5	Storage	Storage management				
	5.2	Main Memory: Background, Swapping, Contiguous Memory Allocation, Paging, Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples Virtual Memory: Background, Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.		CO5		
Self Learn						
		Total	45			

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 26 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	William Stallings	Operating System: Internals and Design Principles	Prentice Hall	8th Edition, 2014
2.	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne	Operating System Concepts	John Wiley & Sons , Inc.	9th Edition, 2016
3.	Andrew Tannenbaum	Operating System Design and Implementation	Pearson	3rd Edition
4.	D.M Dhamdhere	Systems programming	Tata Mc-Graw Hill	2 nd Edition
5.	Maurice J. Bach	Design of UNIX Operating System	РНІ	2 nd Edition
6.	J.J Donovan	Systems Programming	Tata McGraw Hill Publishing Company	
7.	William Stallings	Computer organization and Architecture	Pearson Education	10th edition

Page 27 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title

Course Code	Course Title								
116U01L503	Operating System Lab.								
	TH			P		TUT	Total		
Teaching Scheme(Hrs.)	-			02		-	02		
Credits Assigned		-		01		-	01		
	Marks								
Examination	CA		ESE	TW	0	P&O	Total		
Scheme	ISE	IA	ESE	1 44	О	rau	Total		
				25	-		25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Operating System". Students will be graded based on continuous assessment of their term work.

Page 28 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Department Elective - I

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 29 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code				ourse Title				
116U01E511			Compu	ter Gr	r Graphics			
	ŗ		P		,	TUT	Total	
Teaching Scheme(Hrs.)		03						03
Credits Assigned							03	
	Marks							
Examination Scheme	CA		ESE	TW	o	P	P&O	Total
2son seneme	ISE	IA				_		1 3001
	30	20	50					100

Course Prerequisites (if any):

Basic familiarity with fundamental algorithms and data structures, Good programming skills, Basics of linear algebra and geometry

Course Objectives:

- 1. Explain hardware, software and OpenGL Graphics Primitives.
- 2. Illustrate interactive computer graphic using the OpenGL.
- 3. Design and implementation of algorithms for 2D graphics Primitives and attributes.
- 4. Demonstrate Geometric transformations, viewing on both 2D and 3D objects.
- 5. Infer the representation of curves, surfaces, Color and Illumination models

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand the basic concepts of computer graphics and OpenGL

CO2: Implement Fill area Primitives, 2D Geometric Transformations and 2D viewing

CO3: Implement Clipping,3D Geometric Transformations and 3D viewing

CO4: Understand the computer Input& interaction, Curves and Computer Animation

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 30 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	СО
1	Introd	uction to Computer Graphics	7	
	1.1	Basics of computer graphics, Application of Computer Graphics, Video Display Devices: Random Scan and Raster Scan displays		CO1
	1.2	Introduction to Graphics software OpenGL ,coordinate reference frames, specifying two-dimensional world coordinate reference frames in OpenGL, OpenGL point functions, OpenGL line functions, point attributes, line attributes, curve attributes, OpenGL point attribute functions, OpenGL line attribute functions, Line drawing algorithms(DDA, Bresenham's), circle generation algorithms (Bresenham's).		
2	Fill ar	ea Primitives, 2D Geometric Transformations and 2D viewing:	10	
	21	Fill area Primitives: Polygon fill-areas, OpenGL polygon fill area functions, fill area attributes, general scan line polygon fill algorithm, OpenGL fill-area attribute functions		CO2
	2.2	2DGeometric Transformations: Basic 2D Geometric Transformations, matrix representations and homogeneous coordinates. Inverse transformations, 2DComposite transformations, other 2D transformations, raster methods for geometric transformations, OpenGL raster transformations, OpenGL geometric transformations function		
	2.3	2D viewing: 2D viewing pipeline, OpenGL 2D viewing functions		
3	Clippi	ing,3D Geometric Transformations, Color and Illumination ls:	12	
	3.1	Clipping: clipping window, normalization and viewport transformations, clipping algorithms, 2D point clipping, 2D line clipping algorithms: cohen-sutherland line clipping only polygon fill area clipping: Sutherland-Hodgeman polygon clipping algorithm only.		CO3
	3.2	3DGeometric Transformations: 3D translation, rotation, scaling, composite 3D transformations, other 3D transformations, affine transformations, OpenGL geometric transformations functions.		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	3.3	Color Models: Properties of light, color models, RGB and CMY color models. Illumination Models: Light sources, basic illumination models-Ambient light, diffuse reflection, specular and phong model, Corresponding openGL functions.		
4	3D Vi	ewing and Visible Surface Detection:	8	
	4.1	3DViewing:3D viewing concepts, 3D viewing pipeline, 3D viewing coordinate parameters, Transformation from world to viewing coordinates, Projection transformation, orthogonal projections, perspective projections, The viewport transformation and 3D screen coordinates. OpenGL 3D viewing functions.		CO3
	4.2	Visible Surface Detection Methods: Classification of visible surface Detection algorithms, depth buffer method only and OpenGL visibility detection functions.		
5	Input&	the interaction, Curves and Computer Animation:	8	
	5.1	Input and Interaction: Input devices, clients and servers, Display Lists, Display Lists and Modeling, Programming Event Driven Input, Menus Picking, Building Interactive Models, Animating Interactive programs, Design of Interactive programs, Logic operations.		CO4
	5.2	Curved surfaces, quadric surfaces, OpenGL Quadric-Surface and Cubic-Surface Functions, Bezier Spline Curves, Bezier surfaces, OpenGL curve functions. Corresponding openGL functions.		
Self Learn OpenGL)				
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 32 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Donald Hearn & Pauline Baker	Computer Graphics with OpenGL	Pearson Education	3rd / 4th Edition, 2011
2.	Edward S. Angel.	Interactive Computer Graphics, A top-down approach with shader- based OpenGL	Pearson Education	6th Edition, 2011.
3.	Dave Shreiner, Graham Sellers, John Kessenich, and Bill Licea-Kane	OpenGL Programming Guide: The Official Guide to Learning OpenGL	Addison- Wesley	8th Edition, 2013.

Page 33 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L511	Computer Graphics Lab.								
	7	P		TUT	Total				
Teaching Scheme(Hrs.)	-			02		-	02		
Credits Assigned		-		01		-	01		
	Marks								
Examination	CA		ESE	/DXX/		P&O	Total		
Scheme	ISE	IA	LSE	TW	О	rau	Total		
				25			25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Computer Graphics". Students will be graded based on continuous assessment of their term work.

Page 34 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E512	Advance Database And Data Warehousing								
	ТН			P		TUT		Total	
Teaching Scheme(Hrs.)	03				•			03	
Credits Assigned		03						03	
	Marks								
Examination	CA	CA		CENTAL C		D	P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	rau	Total	
	30	20	50					100	

Course prerequisites (if any):

Database systems

Course Objectives:

The objectives of this course is to understand, design, manage data in Distributed, Parallel systems. Object Relational Databases ,Active, temporal, spatial, multimedia and deductive databases for managing different types of data . NOSQL system types to manage big data. Building and using data warehouse for Online Analytical Processing .

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Understand, design, analyze and process data in distributed, parallel, databases understand design.
- CO2 Understand the concepts and design of Active, temporal, spatial, multimedia and deductive databases.
- CO3 Understand and use NOSQL system types.
- CO4 Model and Build multidimensional data warehouse and apply ETL process to populate data to data warehouse.
- CO5 Perform Online Analytical Processing on the warehouse data.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 35 of 128

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Paralle	el and Distributed Databases	10	CO1
	1.1	Database system architectures- centralized, client server		
		,server system, parallel system, distributed system, network		
	1.2	types. Parallel databases – introduction, I/O parallelism, query		
		parallelism, Design of parallel systems, parallelism on		
	1.2	multicore processor.		
	1.3	Distributed databases – types, distibuted transactions		
		commit protocls, concurrency control, query processing Cloud based databases, directory systems		
2	Object	t based, Active, temporal, spatial, multimedia and		~~~
_	•	tive databases	10	CO2
	2.1	Object based Databases -overview complex data types,		
		inheritance, object identity, reference types, object oriented		
	2.2	versus object relational, implementing Active , temporal, spatial, multimedia and deductive		
	2.2	databases concepts		
3	NoSQ	L databases and Big data storage system	10	CO3
		Introduction to NOSQL systems, CAP theorm, NOSQL		
		systems- document basedand mongoDB, Key-value Stores,		
		Column based, Graph databases and Neo4j,		
4	Data v	vare house Modeling and ETL	10	CO4
	4.1	Data Warehouse: The Building Blocks		
		Defining Features, characteristics of DWH Deta Warshouses and Data Morts. Top Down Versus		
		Data Warehouses and Data Marts, Top-Down Versus Bottom-Up Approach, A Practical Approach, DWH		
		architecture, Types of Metadata		
		Principles of Dimensional Modeling		
		Dimensional Modeling Basics ,ER Modeling Versus		
		Dimensional Modeling, STAR Schema, snow flake		
		schema, The Fact less Fact Table ,Schema Keys		
		ETL Overview , ETL Requirements and Steps Data		
		Extraction Techniques, Data Transformation and Data		
		Loading		
5	OLAP		05	CO5
		Demand for Online Analytical Processing		
		Major Features and Functions, OLAP Models, OLAP Implementation Considerations		
		#Self-Learning: Study of any one OLAP Tool		
		Total	4	15

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 37 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Elmasri and Navathe	"Fundamentals of Database Systems", ,2015	Pearson Education	7th SEdition,2015
2	Paulraj Ponniah	"Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals",	Wiley India,	2nd Edition, 2017
3	Raghu Ramakrishnan and Johannes Gehrke	"Database Management Systems"	McGraw Hill,	3rd Edition,2018
4	Korth,Silberchatz,Sudarshan	"Database System Concepts".,	McGraw Hill,	6th Edition 2013
5	Reema Thareja	Data warehousing	Oxford	1 Edition, 2009

Page 38 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title						
116U01L512	Advance Database And Data Warehousing Lab.						
		P		TUT	Total		
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		TW	О	P&O	Total
Scheme	ISE	IA ESE	rau			Total	
				25	1		25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Advance Database And Data Warehousing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 39 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title Microprocessors							
116U01E513								
			P		TUT		Total	
Teaching Scheme(Hrs.)							03	
Credits Assigned							03	
	Marks							
Examination Scheme	CA		ESE	TW	0	P	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		1	140	Total
	30	20	50					100

Course Prerequisites (if any):

Digital Design, Basics of Computer Organization and Architecture

Course Objectives:

- 1.To explore internal architecture of microprocessor, interface with memory and I/O devices.
- 2.To build microprocessor-based systems.
- 3.To study the concept of multicore processors.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Explain the process of Compilation from Assembly language to machine language
- CO2: Build Microprocessor based system using memory chips and peripheral chips
- CO3: Analyze the techniques for faster execution of instructions and enhance performance of microprocessors.
- CO4: Identify and describe multicore processors

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 40 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	СО
1		8086 Architecture	4	
	1.1	Introduction to 80x86 microprocessor, Internal Architecture, Generation of physical address, Minimum & Maximum Mode, Ready and Reset pin significance.		CO1
	1.2	Study of 8086 supporting chips 8282(Latch), 8284(Clock Generator), 8286(Transreceiver), 8288(Bus Controller).		
2	Assen	nbly Language Programming	8	
	21	Instruction Set of 8086 microprocessor in details, Addressing modes of 8086/88, Programming the 8086 in assembly language, Far and Near procedures, Macros		CO1
	2.2	Mixed mode programming with C-language and assembly.		
3	Interru	ipt Structure	3	
	3.1	Interrupt Structure, Interrupt service Routine, Interrupt Vector Table, Hardware and Software Interrupts, INTR, NMI, Interrupt Response, Execution of an ISR, Priority of Interrupts.		CO3
4	Interf	facing with 8086	12	
	4.1	Functional Block Diagram and description, Control Word Formats, Operating Modes and Applications of the Peripheral Controller namely 8255-PPI, 8253-PIT, 8259-PIC and 8237-DMAC. Interfacing of the above Peripheral Controllers. Study of Multiprocessor Configurations namely Tightly Coupled System (TCS) and Loosely Coupled System (LCS).		CO2
5	Protec	eted Mode Architecture	9	
	5.1	Historical evolution of 80286, 386, 486 processor. Programming model and operating modes of 80386DX processor.		CO3
	5.2	Address translation mechanism in protected mode ,Memory Management, Protection Mechanism of 80386.		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

6	Introd	uction to Pentium microprocessor and ARM processor	9			
	6.1	Pentium RISC features, Pentium super-scalar architecture, Pipeline stages .Branch Prediction, Instruction and Data caches, read and write cycles. ARM processor: Instruction set, addressing modes, operating modes with ARM core. #Self learning: Comparison of Pentium 2, Pentium 3 and Pentium 4 Processors, Comparative study of Multicore Processors i3,i5 and i7,		CO4		
		Application of Qualcomm in various devices like smartphone, smartwatch etc				
Self Learn	Self Learning Component: Androind OS, Cloud OS					
		Total	45			

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 42 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	John Uffenbeck	8086/8088 families: Design Programming and Interfacing	Pearson Education	2 nd edition
2.	Tom shanley& Don Anderson	Pentium Processor System architecture	Addison- Wesley	2 nd edition
3.	Daniel Tabak	Advanced Microprocessor	Tata McGraw Hill	2 nd edition
4.	Barry B. Brey	Intel Microprocessors	Pearson Education India	8th edition
5.	Douglas Hall	Microprocessor and Interfacing	TMH Publication	3 rd edition
6	Andrew N. Sloss, Dominic Sysmes and Chris Wright – Elsevier Inc.	ARM System Developer's Guide Designing and Optimizing System Software	Elsevier Inc.	1 st edition

Page 43 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01L513	Microprocessors Lab.							
	r	TH P TUT Total						
Teaching	_			02			02	
Scheme(Hrs.)	-			02		-	02	
Credits Assigned		-		01		-	01	
				Marks	Marks			
Examination	CA	CA		TW	О	P&O	T-4-1	
Scheme	Scheme ISE IA		ESE				Total	
				25			25	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Microprocessors". Students will be graded based on continuous assessment of their term work.

Page 44 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E514	Soft Computing							
	,	P			TUT	Total		
Teaching Scheme(Hrs.)				•			03	
Credits Assigned		03						03
	Marks							
Examination	CA	CA		(T) X X		Ъ	De-O	Total
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	30	20	50					100

Course prerequisites (if any):

Familiarity with linear algebra, multivariate calculus, and probability theory, Knowledge of a programming language

Course Objectives:

The main objectives of this course are:

- To learn the key aspects of Soft Computing and Neural Network.
- To understand the features of neural networks and different learning methods.
- To study Fuzzy Logic concepts.
- To gain insight into Neuro Fuzzy Modeling.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Identify and describe soft computing techniques and their roles

CO2: Analyze various training algorithms of neural network and its architectures

CO3: Understand various special Neural Networks.

CO4: Design Fuzzy controller system.

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to soft Computing and Neural Network		
	1.1	Concept of computing systems, "Soft" computing versus		
		"Hard" computing, Characteristics of Soft computing, Some		
		applications of Soft computing techniques.	05	CO1
	1.2	Biological neurons and its working, ANN – Terminologies,		
		Basic Models, Linearly and non-linearly separable		
	-	classification, McCulloch Pitts Neuron Model		
2	Train	ing Techniques for ANNs		
	2.1	Introduction to supervised and unsupervised learning, Adaline		
		and Madaline		
	2.2	Hebbian learning, Perceptron Learning, Delta learning rule,	10	CO2
		Widrow Hoff learning, Winner take all Learning Rule, Out star		
		learning		
	2.3	Multilayer Feedforward Network, Error Back Propagation		
		Training, Learning factors.		
3	Differ	ent Neural Networks		
	3.1	Associative memory network – Basic Concepts, Types- Auto,		
		Hetro, Bidirectional (Discrete and continuous),	10	CO2,
		Testing	10	CO3
	3.2	Hopfield – Discrete, continuous, Counter propagation network,		
		ART, SOFM, Recurrent Network		
4		al Neural Networks	0.0	~~~
	4.1	Cognitron, Neocognitron, Boltzman Machine, Gaussian	08	CO3
		Machine, Simulated Annealing, SVM		
		#Self-Learning: Benefits of Multi-layer Neural Network		
5	Fuzzy	logic and Fuzzy system		
	5.1	Introduction to Fuzzy logic, Fuzzy sets and membership		
		functions, Operations on Fuzzy sets, Fuzzy relations, rules,		
		propositions, implications and inferences, Defuzzification	12	CO4
		techniques,		
	5.2	Fuzzy logic controller design, Neuro Fuzzy system, Some		
		applications of Fuzzy logic.		
		#Self-Learning: Application of Fuzzy system in various		
		appliances.		
		Total	45	

Page 46 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 47 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and	
No.			Publisher with	Year of	
			country	Publication	
1.	S.N. Sivanandam, S.	Introduction to neural	Tata Mcgraw-	3 rd Edition,	
	Sumathi, S. N. Deepa	networks	Hill	2019	
2.	Jacek. N. Zurada	Introduction to Artificial	Jaico	13 th Edition	
		Neural Network	Publishing	2016	
			House		
3.	J.S.R, Jang,	Neuro Fuzzy and Soft	PHI Learning		
	C.T.Sunand E.	Computing			
	Mizutan				
4.	Simon Haykin	Neural Networks and	PHI Learning	3 rd Edition,	
		Learning Machines The		2011	
5.	Timothy J. Ross	Fuzzy Logic with	Willey	3rd Edition,	
		Engineering Applications		2000	
6	F. Martin, , Mc neill,	Fuzzy Logic: A Pratical	AP	2010	
	and Ellen Thro	approach	Professional		

Page 48 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title						
116U01L514	Soft Computing Lab.						
	TH P TUT Total					Total	
Teaching Scheme(Hrs.)			02		-	02	
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		TPXX/	0	De O	T-4-1
Scheme	ISE	IA	ESE	TW	О	P&O	Total
				25			25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Soft Computing". Students will be graded based on continuous assessment of their term work.

Page 49 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01L504	Full Stack Development Lab MERN							
	TH			P		,	TUT	Total
Teaching Scheme(Hrs.)			02		-		03	
Credits Assigned		01		01		-		02
	Marks							
Examination	CA	CA		(E)XX/	0	ъ	P&O	Total
Scheme	ISE	IA	ESE	TW		P	100	Total
				50*				50

^{*}Term Work will consist of Practical covering entire syllabus of "MERN" -XXXXX. Students will be graded based on continuous assessment of their term work.

Course prerequisites (if any):

Basics of HTML, CSS, JavaScript and Concept of Database.

Course Objectives

MERN Stack (Mongo DB, ExpressJs, Reactis and Nodejs) is a very popular programming technology used for developing web apps as well as mobile Apps. MERN stack is many times faster than the traditional programming languages like PHP, ASP.NET, etc. Moreover, it can manage millions of users simultaneously without crashing the server.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Summarize the concepts of various front-end, backend web application
	development technologies & frameworks.
CO2	Illustrate the concepts of various front-end, back-end web application
	development technologies & frameworks using different web development
	tools.
CO3	Build a web app application, individually or in a team by combining various
	development technologies & frameworks for real-world problems.
CO4	Test the concepts and components of various front-end, back-end web app
	development technologies & frameworks using web development tools.

Page 50 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	СО
	Intro	duction To MERN		
1	1.1	Introduction to MERN, Architecture of MERN, Benefits of MERN, Application of MERN Revision of JavaScript's	08	1
	REAC	CT Part-1		
2	2.1	i. React Introduction ii. Install node iii. Create an app using create-react-app iv. Understanding basics of react app v. Understanding JSX vi. Understanding virtual DOMS, Single page apps	10	1, 2
	2.2	 i. React Lifecycle ii. States iii. Class components vs functions components iv. Event handling v. Props vi. Building a basic Forms using React 		
	REA(CT Part-2		
	 i. Routes ii. Conditional Rendering iii. Pure Components iv. High Order components v. Controlled vs Uncontrolled components 			
3	3.2	i. Redux ii. Babel, webpack iii. Add Redux in a Project and build using webpack	10	2
	3.3	i. Creating a Mock API Serverii. Axios.iii. Server-Side Rendering		
	Nodej	s and Express		
4	4.1	 i. Simple Server ii. Response Types – HTML, JSON iii. Routing iv. Express Intro v. Make a call from frontend to server. 		2,3
	4.2	i. Express Params and Query String ii. Express Middleware iii. API Authentication iv. JWT token, Passport.js v. Socket Programming		
5	Datab 5.1	i. SQL vs NO SQL	10	3,4

Department of Computer Engineering

	ii. MongoDB / DynamoDB overview		
	iii. Installing MongoDB		
	iv. Connecting and inserting data		
	v. Deleting and updating data		
	vi. CRUD		
	CODE REVIEW + DEPLOYMENT		
	i. Tools for code review		
5.3	ii. Standard coding conventions		
5.2	iii. Firebase		
	iv. Deploy using Netlify		
	v. Deploy using AWS Ec2		
	Total	48	

Page 52 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended books

Sr. No	Name/s of Author/s	Title of Book	Name of	Edition and Year
			Publisher with	of Publication
			country	
1	Shelly Powers	Learning Node	O' Reilly	2 nd Edition,
				2016
2	Azat Marden	Express .js Deep API	Apress	2 nd edition,
		reference		2015.
3	Krishna Chodorow	MongoDB The Definite	O'Reilly	2 nd edition, 2014
		Guide		
4	Vasan Subramanian	Pro MERN Stack: Full	Apress	2nd Edition, 2019
		Stack Web App		
		Development with		
		Mongo, Express, React,		
		and Node		

Page 53 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title							
116U01L504	Full Stack Development Lab- MEAN							
	Т	TH P TUT Tota						Total
Teaching Scheme(Hrs.)			02			-	03	
Credits Assigned	01			01		-		02
	Marks							
Examination	CA	CA		(DXX)	0	n	P&O	Total
Scheme	ISE	IA	ESE	TW	J	P	rau	1 Otal
				50*				50

Course Prerequisites:

Basics of HTML, CSS, JavaScript and Backend Technology, and familiar with new versions of Text Editor.

Course Objectives:

The overall aim of the course is to build Commercial Web Applications using the MEAN stack. This course is meant for anyone who wants to start building full stack JavaScript applications in Node.js, AngularJS, Express and MongoDB.

Course Outcomes:

On completion of the course students will be expected to:

CO1: Build full stack applications in JavaScript using the MEAN technologies.

CO2: Architect MEAN stack applications from scratch

CO3: Develop modular, maintainable Single Page Applications using Angular 2 technology.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 54 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	Outcome
1.0		Introduction to Mean stack	05	
	1.1	Introduction to MEAN, Architecture of MEAN, Benefits of MEAN, Application of MEAN,		CO1
2.0		Understanding of MongoDB and NoSQL	05	
	2.1	Scope of NoSQL, MongoDB: Structure and Applications, Commands, Mongo DB and Its connections, Getting started with Mongoshell, Interacting with data from the command line.		CO1
3.0		Nodejs and Express	12	
	3.1	Simple Server ii. Response Types – HTML, JSON iii. Routing iv. Express Intro v. Make a call from frontend to server		CO2,CO3
	3.2	ii. Express Params and Query String ii. Express Middleware iii. API Authentication iv. JWT token, Passport.js v. Socket Programming		
4.0		Mongoose, Schema and Validation	10	
	4.1	Mongoose Definition, connect MongoDB using Mongoose, Schema, Importing and exporting data, Connecting to a Node.js application, Querying the database from Node.js		CO3
5.0		Angular 2+ , MongoDB, Node.js	13	
	5.1	Introduction, Introduction to typescript, Environment Setup, Modules, Component, Template, Directives, Custom Directives, Pipes, Custom Pipes, Services, Routing, Dependency Injection, Change Detection, Advanced Routing, Template Driven Form, Model Driven Form, Advanced HTTP, Animation, CRUD operations in MongoDB, REST API.		CO3

Page 55 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

5.2	i. Tools for code review ii. Standard coding conventions iii. Firebase iv. Deploy using Netlify v. Deploy using AWS Ec2		
	Total	45	

Page 56 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Shelly Powers	Learning Node	O' Reilly	2 nd Edition, 2016
2.	Azat Marden	Express .js Deep API reference	Apress	2 nd edition, 2015.
3.	Krishna Chodorow	MongoDB The Definite Guide	O'Reilly	2 nd Edition, 2014
4.	Matt Frisbie	Angular 2 Cookbook	Packt>	2 nd Edition, 2017
5.	Shravan Kumar Kasagoni	Building Modern Web Applications Using Angular	Packt>	1st Edition, 2017

Page 57 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L504	Full Stack Development Lab Django								
	TH			P		TUT		Total	
Teaching Scheme(Hrs.)	01		02				03		
Credits Assigned	01			01				02	
	Marks								
	CA		ESE	TW	0	P	D.O.O.	TD 4 1	
Examination Scheme	ISE	IA					P&O	Total	
				50				50	

^{*} Batch wise Tutorial

Course prerequisites:

Basics of HTML, CSS, JavaScript and Concept of Database.

Course Objectives

This course is intended to obtain proficiency in Python programming and development of real-world web applications using Django by learning the basics and the advanced concepts like writing Python scripts, working with Databases, creating Views, Templates, Forms, Models and REST APIs in Django.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Understand the JQuery language & the Document Object Model along with Ajax usage which simplify data transfer to server
- CO2: Apply Django functionality and the Model-View-Template (MVT) paradigm for web development
- CO3: Develop Admin panel of web application along with database connectivity
- CO4: Discover advanced concepts such as REST API implementation and third-party module integration

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 58 of 128

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	jQuery	7	10	CO1
	1.1	Selecting Elements - Understanding the DOM, Using the \$() function, Selectors (CSS, Attribute, Custom), DOM Traversal methods		
	1.2	jQuery Web Page Manipulation - Handling Events and Styling Animating, Manipulating the DOM		
	1.3	Sending Data with Ajax		
2		– Part I	06	CO2
	2.1	Introduction to Django Creating a Django Project – Installing Django, Creating an application Configuring the application, Routing in Django, Regular Expressions		
	2.2	Working with Templates – Injecting the data from the view to template, creating dynamic templates, Integrating variables in templates, Using Filters		
3	Django	o - Part 2	10	CO2
	3.1	Models and Migrations - Databases, SQL CRUD operations (create, read, update, delete), Relationships		
	3.2	URL Mapping, Views, and Templates – Function-Based, Class-Based, URL Configuration, Django Template Language		
	3.3	Forms – Django Forms, Validating Forms & Retrieving Python Values		
4	Django	- Part 3	12	CO3
	4.1	Introduction to Django Admin – Creating superuser account, CRUD operation using Django Admin App, Customizing the ModelAdmin Classes		
	4.2	Serving Files – Statics, Media and File Uploads		
	4.3	Sessions and Authentication, Customizing Admin Site, Adding Views to the Admin Site		
5	Buildin	g API & Testing	07	CO4
	5.1	REST API, Serializers, ViewSets, Routers and Authentication		
	5.2	Testing in Django – Testing Models and Views, Django Request Factory, Test Case Classes, Deployment using Heroku		
_		Total	45	

Page 59 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and Year of
No.			Publisher	Publication
			with country	
	Ben Shaw, Saurabh	Web	Packt	Released February 2021
	Badhwar, Andrew Bird,	Development	Publishing	ISBN: 9781839212505
	Bharath Chandra K S,	with Django		
	Chris Guest			
2.	Jonathan Chaffer, Karl	Learning jQuery	Packt	June 2013
	Swedberg	- Fourth Edition	Publishing	ISBN
				9781782163145
	Antonio Melé	Django 3 By	Packt	Published:31 March 2020
		Example	Publishing	ISBN:9781838989323,
		_	_	1838989323
	Ryan Benedetti, Ronan	Head First	O'Reilly	Released September 2011
	Cranley	jQuery	Media, Inc.	ISBN: 9781449393212

Term-Work consists of programming assignments covering entire syllabus. Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 60 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Code Course Title								
116U01L504	Full Stack Development - Flask								
	ТН			P		TUT		Total	
Teaching Scheme(Hrs.)			0:	2			03		
Credits Assigned			01				02		
				Mar	·ks				
Examination Scheme	CA		ESE	TW	o	P	P&O	Total	
Examination scheme	ISE	IA						1000	
				50				50	

Course Prerequisites (if any):

Basics fundamentals of HTML, CSS, Python programming

Course Objectives:

Flask is known for being simple, lightweight and having a small learning curve. Basically, Flask is an API of Python used for developing web based Application.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand basic Flask configuration along with routes and views for developing first web application

CO2: Apply Jinja Template Engine for rendering dynamic web content

CO3: Implement flask-wtf module for creating forms and SQLAlchemy toolkit for database connectivity

CO4: Build admin interface for Flask application and ensure security by implementing different authentication strategy

CO5: Discover advanced concepts such as REST API implementation and third-party module integration for testing and deployment of application

Page 61 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1	Flask C	Configuration	05	CO1
	1.1	Introduction, Environment setup with virtualenv, Handling basic configurations and Initialization Routes and View Functions, Server startup, Sample application		
	1.3	Request Response Cycle, Flask Extension		
2	Templa	, · · · · · · · · · · · · · · · · · · ·	05	CO1,CO2
	2.1	The Jinja2 Template Engine, Bootstrap layout		
	2.2	Block composition and Layout Inheritance, Creating Custom context processor, creating custom Jinja2 filter		
	2.3	Custom Error Pages, Links, Static Files		
	# Self-l	earning: Advanced Date and Time formatting		
3	Webfor	rms with WTForms and Data Modeling in Flask	12	CO3
	3.1	SQLAlchemy model as data representation, Validation of fields on server, Common form set		
	3.2	Custom fields and validation, custom widgets, Uploading files, Cross-site Request Forgery Protection		
	3.3	Creating an SQL Alchemy DB instance, Create basic and relational database model, Database migration with Flask-Migrate		
	3.4	Model data indexing using Redis, Opting NoSQL database with MongoDB		
4	Admin	Interface for Flask Apps and Authentication in Flask	10	CO4
	4.1	CRUD interface, Flask Admin extension, registering models with Flask Admin		
	4.2	Creating custom forms and actions, WYSIWYG for textarea integration, creating user roles		
	4.3	Session-based authentication, Flask-Login extension, Authentication with Google, Facebook, Twitter		
5	RESTf	ul API building, Testing and Deployment	13	CO5
	5.1	Class-based and extension-based REST API		
	5.2 Code coverage reports, Flask Test Client, end-to-end testing with selenium			
	5.3	Deployment with Apache, Heroku		
Self Learn uploads	ing Com	ponent: SQLAlchemy REST API, S3 storage for file		
1		Total	45	

Page 62 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 63 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Shalabh Aggarwal	Flask Framework Cookbook	Packt Publishing	2 nd Edition, July 2019
2.	Miguel Grinberg	Flask Web Development	O'Rilley Media Inc.	2 nd Edition March 2018
3.	Miguel Grinberg	The New And Improved Flask Mega- Tutorial	O'Rilley Media Inc.	February 2018
4.	Gareth Dwyer	Flask By Example: Unleash the full potential of the Flask web framework by creating simple yet powerful web applications	Packt Publishing	March 2016

Page 64 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Semester - VI

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 65 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01C601	Digital Signal and Image Processing									
	,	F	•	,	TUT	Total				
Teaching Scheme(Hrs.)			-				03			
Credits Assigned			-				03			
	Marks									
Examination	CA		ESE	TW	0	P	P&O	Total		
Scheme	ISE	IA				_		10001		
	30	20	50					100		

Course prerequisites:

Basic mathematical background of matrices and complex numbers and programming skills

Course Objectives:

- 1. Comprehension of fundamentals of Digital Signal Processing 1-D and 2-D
- 2. Application of various enhancement methods in time/spatial and frequency domain
- 3. Analysis of Digital image using segmentation, Morphological operation
- 4. Evaluation methods for synthesis of the image for information interpretation and for application development

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1: Interpret fundamentals of discrete time signals and systems and signal manipulation methods.
- CO2: Apply various spatial and frequency domain enhancement techniques for 1-D signals and 2-D images.
- CO3: Analyze signals and images in frequency domain using various image transforms
- CO4: Evaluate extracted analyzed information for synthesis of digital signals and images.
- CO5: Design and develop applications based on 1-D & 2-D digital signals and images.

Page 66 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module No.	Unit No.	Hrs.	СО	
1	Discre	ete Time Signals and Systems	09	CO 1
	1.1	Introduction to digital signals and systems, Properties and operations on digital signals.		
	1.2	Classification of signals, system, LTI system		
	1.3	Convolution in time domain (linear & circular), Correlation.		
	Self-L	earning Topic: Correlation (Circular)		
2	Enhancement		09	CO2
	2.1	Digital image Representation, Elements of digital image processing systems, sampling and quantization, basic relationships between pixels, mathematical operations on images.		
	2.2	Spatial domain enhancement techniques: Point processing, Neighbourhood processing, spatial domain filtering, zooming.		
	2.3	Spatial enhancement: Global processing: Histogram Equalization.		
	Self-L	earning Topic: Histogram specification		
3	_	e Transform: Frequency Domain Representation and	10	CO3
	3.1	Introduction, DFT and its properties, radix-2 algorithm(2- DFT), FFT algorithm: divide and conquer approach, Decimination in Time(DIT)-FFT		
	3.2	Discrete Cosine Transform, Walsh Transform, Hadamard Transform, Haar Transform, Principal component Analysis (PCA/ Hotelling Transform), Introduction to Wavelet Transform		
	3.3	Low Pass and High Pass Frequency domain filters: Ideal, Butterworth, Homomorphic filter		
	Self-L	earning Topic: Discrete Sine Transform (DST)		

Page 67 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

4	Image Segmentation and Representation	08	CO4
	4.1 Image segmentation based on discontinuities: point, line and edge detection (Laplacian, Cany), edge linking, Thresholding (Global, local, optimum), Region based segmentation, edge based segmentation: Hough Transform.		
	4.2 Boundary descriptors: Signature, Chain code, Shape number, Moments		
5	Introduction to Morphology and Image Compression	10	CO 5
	5.1 Morphological operations: Dilation, Erosion, Opening, Closing, Hit or Miss Transform, Boundary extraction		
	5.2 Introduction, redundancies: coding, inter-pixel, psychovisual, compression ratio, fidelity criteria Lossless compression techniques: Run length coding, Arithmetic coding, Huffman coding, Differential PCM		
	5.3 Lossy Compression techniques: Improved grey scale quantization, Vector quantization, Transform coding, JPEG.		
	Self-Learning Topic: Morphological operation - Thinning and Thickening		
	Total	45	

Page 68 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	John G. Proakis and D.G. Manolakis	Introduction to Digital signal processing	Pearson	Fourth edition, 2015
2.	A. NagoorKani	Digital Signal Processing	McGraw Hill Publications	2 nd edition
3.	R. C. Gonsales and R. E. Woods	Digital Image Processing	Pearson Education	Second edition
4.	A.K. Jain	Fundamentals of Image processing	Prentice Hall of India Publication	
5.	S.Jayaraman, S Esakkirajan, T Veerakumar	Digital Image Processing	McGraw Hill	2018 Edition

Term-Work will consist of Practical experiments covering the entire syllabus. Students will be graded based on continuous assessment of their term work

Page 69 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title									
116U01L601	Digital Signal and Image Processing Lab.									
	TH P TUT Tota						Total			
Teaching Scheme(Hrs.)	-			02		-	02			
Credits Assigned	-			0	1	-	01			
				Marks						
Examination	CA		ESE	TW	0	P&O	Total			
Scheme	ISE	IA	LSE	1 1	U	rau	Total			
				25			25			

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Digital Signal and Image Processing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 70 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Title									
Information Security									
	TH			P		TUT	Total		
03							03		
						03			
Marks									
CA		FSF	TW		P	P&O	Total		
ISE	IA	LSE	***		1		Total		
30	20	50					100		
	ISE	TH 03 03 03	TH 03 03 CA ISE IA ESE	TH	TH	Th	TH		

Course Prerequisites (if any):

Basics of Operating System and Computer Network

Course Objectives:

- 1. To understand the fundamentals of Information Security
- 2. To acquire knowledge on malicious and non-malicious programme errors and apply counter measures
- 3. To understand the various web attack
- 4. To apply different techniques to secure data in transit across data networks
- 5. To study and analyse the ethical issues

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Explain various security goals, threats, vulnerabilities and controls

CO2: Apply various cryptographic algorithms for software security

CO3: Identify and analyse web attacks

CO4: Illustrate and Compare network security mechanisms

CO5: Interpret legal and ethical issues in security

Page 71 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module	Unit	Details	Hrs.	СО
No.	No.			
1	Introd	luction	7	
	1.1	What Is Computer Security?, Threats, Harm, Vulnerabilities, Controls		
	1.2		CO1	
2	Softwa	are Security	10	
	21	Unintentional (Non-malicious) Programming: Oversights - Buffer Overflow, Incomplete Mediation, Time-of-Check to Time-of-Use, Undocumented Access Point Off-by-One, Error Integer Overflow, Unterminated Null-Terminated String, Parameter Length, Type, and Number, Unsafe Utility Program, Race Condition		CO2
	2.2	Malicious Code—Malware- Malware—Viruses, Trojan Horses, and Worms, Technical Details: Malicious Code		CO2
	2.3	Countermeasures: Countermeasures for Users, Countermeasures for Developers, Countermeasure Specifically for Security, Countermeasures that Don't Work		
3	Web A	Attack	10	
	3.1	Browser Attacks : Browser Attack Types, How Browser Attacks Succeed: Failed Identification and Authentication		-
	3.2	Web Attacks Targeting Users - False or Misleading Content, Malicious Web Content, Protecting Against Malicious Web Pages		
	3.3	Obtaining User or Website Data- Code Within Data, Website Data: A User's Problem, Foiling Data Attacks		CO3
	3.4	Email Attacks - Fake Email, Fake Email Messages as Spam, Fake (Inaccurate) Email Header Data, Phishing, Protecting Against Email Attacks		
	3.5	Open Web Application Security Project		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

4	Netwo	ork Security	13	
	4.1	Threats to Network Communications - Interception: Eavesdropping and Wiretapping, Modification, Fabrication: Data Corruption, Interruption: Loss of Service Port Scanning Wireless Network Security - WiFi Background Vulnerabilities in Wireless Networks, Failed Countermeasure: WEP (Wired Equivalent Privacy), Stronger Protocol Suite: WPA (WiFi Protected Access)		
	4.2	Denial of Service- How service is Denied, Flooding Attacks, Network Flooding Caused by Malicious Code, Network Flooding by Resource Exhaustion, Denial of Service by Addressing Failures, Traffic Redirection, DNS Attacks, Exploiting Known Vulnerabilities Physical Disconnection Distributed Denial of-Service- Scripted Denial-of-Service Attacks, Bots, Botnets, Malicious Autonomous Mobile Agents, Autonomous Mobile Protective Agents		CO4
	4.3	Firewalls - What Is a Firewall?, Design of Firewalls, Types of Firewalls, Personal Firewalls, Comparison of Firewall, Types Example Firewall, Configurations Network Address Translation (NAT), Data Loss Prevention		
5	Legal	Issues and Ethics	05	CO5
	5.1	Protecting Programs and Data- Copyrights, Patents, Trade Secrets, Special Cases		
	5.2	Ethical Issues in Computer Security - Differences Between the Law and Ethics, Studying Ethics, Ethical Reasoning		
Self Lear	ning Co	imponent: Database Security, Operating System Security,		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 73 of 128

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Charles P. Pfleeger, Shari Lawrence Pfleeger, Jonathan Margulies	Security in Computing	Prentice Hall,	Fifth,
2.	Behrouz A Fourouzan, Debdeep Mukhopadhyay	Cryptography and Network Security	McGraw Hill	2nd edition
3.	William Stallings	Cryptography and Network Security: Principles and Practice	Pearson	5th edition
4.	Bernard Menezes	Network Security and Cryptography	Cengage Learning	2nd edition
5.	Mark Stamp	Information Security Principles and Practice	Wiley	2nd Edition

Page 74 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title							
116U01L602	Information Security Lab.							
	r	ТН				TUT	Total	
Teaching Scheme(Hrs.)		-			02		02	
Credits Assigned		-		0	1	-	01	
				Marks				
Examination	CA		ESE	TW	0	P&O	Total	
Scheme	ISE	IA	LSE	1 44		rau	Total	
				25			25	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "System Security". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 75 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01C603	Artificial Intelligence								
		TH		I	P	1	TUT	Total	
Teaching Scheme(Hrs.)	03							03	
Credits Assigned		03						03	
				Marks					
Examination Scheme	CA		ESE	TW	o	P	P&O	Total	
Examination Scheme	ISE	IA	LSE	1 **				Total	
	30	20	50					100	

Course Prerequisites (if any):

Data structures, analysis of algorithms

Course Objectives:

- 1. The objective of the course is to present an overview of artificial intelligence principles and approaches.
- 2. To enable students to develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning.
- 3. The knowledge of artificial intelligence plays a considerable role in some applications students develop for courses in the program.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Design AI solution with appropriate choice of agent architecture

CO2: Analyse and solve problems for goal based agent architecture (searching and planning algorithms).

CO3: Represent and formulate the knowledge to solve the problems using various reasoning techniques

CO4: Analyse applications of AI and understand planning & learning processes in advanced AI applications

Page 76 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introd	duction to Artificial Intelligence	3	CO1
	Introduction to Artificial Intelligence			
		technique*, Foundations of AI		
	1.2			
	1.3	Sub-areas of AI, Applications of AI, Current trends in AI.		
2	Introduction to Artificial Intelligence 1.1 History of Artificial Intelligence, The AI problem*, The AI technique*, Foundations of AI 1.2 Categorization of Intelligent System, Components of AI Program, 1.3 Sub-areas of AI, Applications of AI, Current trends in AI. 2 Intelligent Agents 21 Agents and Environments, The concept of rationality, The Task environment and their properties, PEAS, The structure of Agents, Types of Agents, Learning Agent, function of agent program 3 Problem Solving 3.1 Solving problem by Searching: Problem Solving Agent, Formulating Problems, Example Problems. *Defining problem as state space search, *production rules, *Problem characteristics, issues in design of search program, 3.2 Uninformed Search Methods: Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening depth first search 3.3 Informed Search Methods: Heuristic, properties of good heuristic, Greedy best first Search, A* Search, AO* search. 3.4 Local Search Algorithms and Optimization Problems: Hill-climbing search: concept, algorithm, problems and solutions in hill climbing Constraint satisfaction- concept, inferences in CSP, CSP Backtracking algorithm* Genetic algorithms*: The genetic algorithm process, solving problems with GA for optimization and learning, significance of genetic operators Adversarial Search: Games, Optimal strategies, The minimax algorithm, Alpha-Beta Pruning, #Self Learning — Online search algorithms, partially observable/imperfect information games	5	CO1	
	21	Task environment and their properties, PEAS, The structure of Agents, Types of Agents, Learning Agent, function of agent		
3	Introduction to Artificial Intelligence	15	CO2	
	3.1	Formulating Problems, Example Problems.		
	3.2	Search, Depth Limited Search, Iterative Deepening depth first		
	3.3			
	3.4	Hill-climbing search: concept, algorithm, problems and solutions in hill climbing Constraint satisfaction- concept, inferences in CSP, CSP Backtracking algorithm* Genetic algorithms*: The genetic algorithm process, solving problems with GA for optimization and learning, significance of genetic operators Adversarial Search: Games, Optimal strategies, The minimax		
4	1.1 History of Artificial Intelligence, The AI problem*, The AI technique*, Foundations of AI 1.2 Categorization of Intelligent System, Components of AI Program, 1.3 Sub-areas of AI, Applications of AI, Current trends in AI. 2 Intelligent Agents 21 Agents and Environments, The concept of rationality, The Task environment and their properties, PEAS. The structure of Agents, Types of Agents, Learning Agent, function of agent program 3 Problem Solving 3.1 Solving problem by Searching: Problem Solving Agent, Formulating Problems, Example Problems. *Defining problem as state space search, *production rules, *Problem characteristics, issues in design of search program, 3.2 Uninformed Search Methods: Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening depth first search 3.3 Informed Search Methods: Heuristic, properties of good heuristic, Greedy best first Search, A* Search, AO* search. 3.4 Local Search Algorithms and Optimization Problems: Hill-climbing search: concept, algorithm, problems and solutions in hill climbing Constraint satisfaction- concept, inferences in CSP, CSP Backtracking algorithm* Genetic algorithms*: The genetic algorithm process, solving problems with GA for optimization and learning, significance of genetic operators Adversarial Search: Games, Optimal strategies, The minimax algorithm, Alpha-Beta Pruning. #Self Learning - Online search algorithms, partially observable/imperfect information games 4 Knowledge and Reasoning 4.1 Knowledge based Agents, The Wumpus World, inference procedures, First Order Logic: Syntax and Semantic, Inference in FOL,	10	CO3	
	4.1	procedures, First Order Logic: Syntax and Semantic, Inference in FOL,		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	Resolution, Answer set programming		
	#Self Learning : Knowledge Engineering process, Propositional Vs Predicate logic		
	Uncertain Knowledge and Reasoning:Uncertainty, acting under uncertainty, Representing knowledge in an uncertain domain, The semantics of belief network, Inference in Bayesian network,		
5 Plan	ning and Learning	12	CO
5.1	The planning problem, Planning Vs Searching, STRIPS and ADL, Planning with state space search, Partial order planning, Hierarchical planning, Contingent Planning		
	#Self learning: Multiagent planning		
5.2	Learning: Forms of Learning, Inductive Learning, Learning Decision Tree, applications of learning		
	#Self learning : Practical machine learning		
\$ 5.3	Applications of AI and Current State of research in AI: Natural Language Processing(NLP):Language models, text classification, information retrieval, information extraction. Expert Systems: Components of expert systems, ES vs Traditional System. Characteristics of expert systems, roles in ES implementation, ES implementation process, applications, advantages and limitations of ES Live face de-identification in Video, ReAgent Serving Platform(RSP), AI habitat, Robust visual question answering		
	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 78 of 128

^{\$-} Teachers can choose from any state of art AI application and research work; these are suggestive contents. Based on the latest developments, these topics(minimum 2) could be chosen.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Stuart J. Russell and Peter Norvig	Artificial Intelligence : A Modern Approach	Pearson Education.	Second Edition
2.	*Elaine Rich and Kevin Knight	Artificial Intelligence	The McGraw- Hill	Third Edition
3.	George F Luger	Artificial Intelligence	Pearson Education	Fourth Edition

Page 79 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01L603		Artificial Intelligence Lab.						
	,	TH P					Total	
Teaching					02		02	
Scheme(Hrs.)		-		02		-	02	
Credits Assigned		-		0	1	-	01	
				Marks				
Examination	CA		ECE	TPXX7	0	De O	T-4-1	
Scheme	ISE	IA	ESE	TW	О	P&O	Total	
				25			25	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Artificial Intelligence". Students will be graded based on continuous assessment of their term work.

Page 80 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Departmental Elective - II

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 81 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E621		Compiler Construction						
	Т	TH			P			Total
Teaching Scheme(Hrs.)	03			2				05
Credits Assigned		03		01				04
				Marks				
Examination	CA	CA		TOXXI	0	P	P&O	Total
Scheme	ISE	IA	ESE	TW		r	100	Tutai
	30	20	50	25	25			150

^{*}Term Work will consist of Practical covering entire syllabus of compiler construction. Students will be graded based on continuous assessment of their term work.

Course prerequisites (if any):

Finite automata, pushdown automata etc. from Theory of Computer science.

Course Objectives

The course aims to give knowledge of the principal structure of a compiler and about the basic theories and methods used to implement the different phases of the compiler.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Study phases of compiler and illustrate different parsing techniques and semantic analysis.
CO2	Illustrate and analyze the different intermediate code generation techniques and run time storage allocation.
CO3	Apply optimization techniques
CO4	Analyze and interpret the different issues in code generation phase

Page 82 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1	Intro	duction to Compiler	5	CO1
	1.1	Compilers: Introduction to Compilers,		
	1.2	Phases of a compiler,		
	1.3	Comparison of compilers and interpreters.		
	1.4	Compiler-compilers: JAVA compiler environment,		
		YACC compiler-compiler		
2	Lexic	al Analysis	3	CO1
	2.1	Role of a Lexical analyzer,		
	2.2	input buffering,		
	2.3	specification and recognition of tokens,		
	2.4	Finite Automata,		
	2.5	Designing a lexical analyzer generator,		
	2.6	Pattern matching based on NFA's.		
3	Synta	tax Analysis	8	CO1
	3.1	Role of Parser,		
	3.2	Top-down parsing: Recursive descent and predictive parsers (LL),		
	3.3	Bottom-Up parsing: Operator precedence parsing, LR, SLR and LALR parsers.		
4	Synta	x Directed Translation	5	CO1
	4.1	Syntax directed definitions,		
	4.2	construction of syntax tree,		
	4.3	Type checking		
	4.4	Top-down translation and Bottom-up evaluation of		
	4.5	inherited attributes, analysis of syntax directed definitions		
5	Run 7	Γime storage	6	CO2
	F 1	A cationation and and		
	5.1 5.2	Activation record,		
	5.2	handling recursive calls, management of variable length blocks,		
	5.3	garbage collection and compaction,		
	5.5			
		storage allocation strategies.		
6	Interi	nediate Code Generation	4	CO2

Page 83 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	6.1	Intermediate languages: graphical representations,		
		DAGs, Three address code,		
	6.2	Types of three address statements,		
	6.3	Syntax directed translation into three address code,		
	6.4	implementation of three address statements		
7	Code	Generation	8	CO4
	7.1	Semantic stacks, attributed translations,		
	7.2	evaluation of expressions, control structures, and		
		procedure calls		
8	Code	Optimization.	6	CO3
	8.1	Machine dependent and machine independent code		
		optimization		
	8.2	Sources of optimization		
	8.3	Data flow analysis		
	8.4	Tail call optimization and Tail Recursion Elimination,		
	8.5	Procedure Integration, Inline Expansion		
	8.6	Leaf Routine optimization and shrink wrapping		
	8.7	Register allocation and assignment, Graph coloring,		
		Unreachable Code Elimination, Straightening If		
		simplifications,		
	8.8	Loop Simplifications, Loop inversion, Un switching,		
		Branch optimizations,		
	8.9	Tail merging or cross jumping,		
	8.10	Conditional moves, Dead code Elimination, Branch		
		Prediction, Machine Idioms and Instruction		
		combining		
elf Lea	rning Co	omponent: Compilation of object-oriented languages		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 84 of 128

Department of Computer Engineering

Recommended books

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	A.V. Aho, and J.D.Ullman	Principles of compiler construction	Pearson Education	Second Edition, 2007
2.	Kenneth C. Louden	Compiler Construction, Principles and Practice	Cengage Learning	Fourth Edition, 2006
3.	Dick Grune, Koen G.L, Henri Bal	Modern Compiler Design	Wiley Publications	Second Edition, 2006
4.	D M Dhamdhere	System Programming	Tata McGraw Hill publication	First Edition, 2011

Page 85 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title						
116U01L621	Compiler Construction Lab.						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned	-			01		-	01
	Marks						
Examination	CA	CA		TW	0	Deo	Total
Scheme	ISE	IA	ESE	1 **		P&O	Total
				25			25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Compiler Construction". Students will be graded based on continuous assessment of their term work.

Page 86 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E622	Data Mining and Business Intelligence							
	ТН			P '		ГUТ	Total	
Teaching Scheme(Hrs.)	03							03
Credits Assigned	03							03
	Marks							
Examination Scheme	CA		БОБ	TW	W O	ъ	De o	Total
Examination Scheme	ISE	IA	ESE	1 44	O	P	P P&O	Total
	30	20	50					100

Course prerequisites (if any): Understanding of basic concepts of Database Management System and algorithms and Data structures.

Course Objectives:

- 1. To introduce the concept of data mining as an important tool for enterprise data management.
- 2. To enable students to effectively identify sources of data and process it for data mining.
- 3. To make students well versed in all data mining algorithms like classification clustering and association rule mining and their method of evaluation.
- 4. To approach business problems analytically by identifying opportunities to derive business values from data.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: To understand the concepts of data mining and its applications in business intelligence.

CO2: Preprocess and analyze data needed for data mining using different preprocessing techniques.

CO3: Apply & implement appropriate data mining algorithms like classification, clustering on larger data sets.

CO4: Discover interesting patterns from large amounts of data to analyse and extract patterns to solve problems.

CO5: Apply and analyze data mining for Business Intelligence Application.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 87 of 128

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to data mining (DM)		
	1.1	What is Data Mining; Knowledge Discovery in Database		
		(KDD), What can be Data to be Mined, Related Concept to	05	CO1
		Data Mining, Data Mining Technique, Application and Issues		
		in Data Mining		
2	Data l	Exploration and Data Preprocessing		
	2.1	Types of Attributes; Statistical Description of Data; Data		
		Visualization; Measuring similarity and dissimilarity.		
	2.2	Why Preprocessing? Data Cleaning; Data Integration; Data	10	CO2
		Reduction: Attribute subset selection, Histograms, Clustering		
		and Sampling; Data Transformation & Data Discretization:		
		Normalization, Binning, Histogram Analysis and Concept		
	<i>C</i> 1 ·	hierarchy generation.		
3	Classi	fication and Prediction		
	3.1	Basic concepts, what is supervised and unsupervised methods,		
		difference between classification and prediction tasks. Decision		
		Tree Induction: Attribute Selection Measures, Naïve Bayes'		
		Classifier, Linear and nonlinear regression, Logistic		
		Regression.	10	CO3
	3.2	Accuracy and Error measures, Precision, Recall, Holdout,		
		Random Sampling, Cross Validation.		
	3.3	Cluster Analysis: Basic Concepts, Partitioning Methods: K-		
		Means, KMediods and hierarchical methods: Agglomerative.		
		#Self-Learning: Divisive, BIRCH; Density-Based Methods:		
		DBSCAN		
4	Frequ	ent pattern mining		
	4.1	Market Basket Analysis, Frequent Itemsets, Closed Itemsets,		
		and Association Rules; Frequent Pattern Mining, The Apriori		
		Algorithm for finding Frequent Itemsets, pattern growth	10	CO4
		approach for mining Frequent Itemsets;		
	4.2	Mining Frequent Itemsets using vertical data formats;		
		Introduction to Mining Multilevel Association Rules and		
	D ·	Multidimensional Association Rules, Correlation Analysis, lift.		
5	Busin	ess Intelligence	10	CO5

Page 88 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

5.1	What is Business intelligence? Business intelligence					
	architectures; Definition of decision support system;					
	Development of a business intelligence system using Data					
	Mining Applications like Fraud Detection, Clickstream Mining,					
	Market Segmentation, retail industry, telecommunications					
	industry, banking & finance CRM etc.					
	#Self-learning: Data warehouse concepts & business					
	intelligence tools.					
	Total	45				

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 89 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Galit Shmueli, Nitin	Data mining For Business	Wiley Student	
	Patel, Peter Bruce	intelligence	Edition	
2.	Han, Kamber	Data Mining Concepts and	Elsevier	2nd edition
		Techniques		
3.	Alex berson &	Data Warehousing, Data	Tata McGraw	
	Stephen J Smith	Mining & OLAP	Hill	
4.	M.H. Dunham	Data Mining Introductory	Pearson	
		and Advanced Topics	Education	
5.	Rajiv Sabherwal,	Business Intelligence:	Wiley	1 edition
	Irma Becerra-	Practices, Technologies		
	Fernandez	and Management		

Page 90 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L622	Data Mining and Business Intelligence Lab.						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		(E)XX/		De O	Total
Scheme	ISE	IA	ESE	TW	rw o	P&O	Total
				25			25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Data Mining and Business Intelligence". Students will be graded based on continuous assessment of their term work.

Page 91 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E623	So	Software Testing & Quality Assurance						
	ТН			P	•		TUT	Total
Teaching Scheme(Hrs.)			-		-		03	
Credits Assigned			-		-		03	
	Marks							
Examination	CA	CA		TW	0	P	P&O	Total
Scheme	ISE	IA	ESE	1 44	U	r	TWO	Total
	30	20	50					100

Course prerequisites (if any):

Software Engineering, Programming Concepts & Algorithms.

Course Objectives

The objective of this course is to impart understanding of techniques for software testing and quality assurance. To help students to develop skills that will enable them to construct software of high quality - software that is reliable, and that is reasonably easy to understand, modify and maintain.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Explore the fundamentals of testing.
CO2	Describe the various levels of testing and their use in designing of various test
	cases.
CO3	Model various test cases for real life applications.
CO4	Outline software quality concepts
CO5	Identify software quality assurance goals and standards.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 92 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1100		amentals of Testing		
1	1.1	Human and errors, Testing and Debugging, Software Quality, Requirement Behavior and Correctness, Fundamentals of Test Process, Psychology of Testing, General Principles of Testing, The Tester's Role in a Software Development Organization, Origins of Defects, Defect Classes, The Defect Repository and Test Design.	6	CO 1
		# Self Learning - Defect Examples		
	Levels	s of Testing		
2	2.1	The Need for Levels of Testing, Unit Test, Unit Test Planning, Designing the Unit Tests. The Class as a Testable Unit, The Test Harness, Running the Unit tests and Recording results, Integration tests, Designing Integration Tests, Integration Test Planning, System Test – The Different Types, Regression Testing, Alpha, Beta and Acceptance Tests.	10	CO 2
		#Self-Learning -Junit Tool		
	Test (Case Design and Implementation:		
3	3.1	Introduction to Testing Design Strategies, Test Case Design Strategies, Using Black Box Approach to Test Case Design, Random Testing, Equivalence Class Partitioning, Boundary Value Analysis, , Using White-Box Approach to Test design, Coverage and Control Flow Graphs, Covering Code Logic, Additional White Box Test Design	10	CO 3
		#Self Learning – Other Black box & Whitebox Test Design Approaches		
	Quali	ty Assurance		
	4.1	Introduction The Software Quality Challenge. What is Software Quality? Software Quality Factors The Components of the Software Quality Assurance System - Overview.		
4	4.2	Pre-Project Software Quality Components Contract Review Development and Quality Plans	8	CO 4
	4.3	SQA Components in the Project Life Cycle Integrating Quality Activities in the Project Life Cycle Reviews. Software Testing – Strategies Software Testing – Implementation		

Department of Computer Engineering

		Assuring The Quality of Software Maintenance. Assuring The Quality of External Participants Parts Case Tools and their Effect on Software Quality.		
	Softw	are Quality Assurance		
5	5.1	Software Quality Infrastructure Components Procedures and Work Instructions. Supporting Quality Devices Staff Training, Instructing and Certification. Preventive and Corrective Actions. Configuration Management Documentation and Quality Records Controls.	0	60.5
	5.2 Software Quality Management Components Project Progress Control Software Quality Metrics	Project Progress Control	9	CO 5
	5.3 Standards, Certification and Assessment SQA Standards ISO 9001 Certification Software Process Assessment			
	•	Total	48	

Page 94 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended books

Sr. No	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Kshirsagar Naik, Priyadarshi	Software Testing & Quality	Wiley, India	1st Edition 2016
	Tripathy	Assurance		
2	Naresh Chauhan	Software Testing Principles& Practices	Oxford University	2nd Edition,2016
3	Daniel Galin	Software Quality Assurance: From Theory to Implementation	Press Pearson Publishers	1e Paperback,1 January 2008

Page 95 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L623	Software Testing & Quality Assurance Lab.						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		TW	0	P&O	Total
Scheme	ISE	IA	ESE	1 44		rau	Total
				25			25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Software Testing & Quality Assurance". Students will be graded based on continuous assessment of their term work.

Page 96 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E624	V	Wireless sensor networks and IOT							
	ТН			P		TUT		Total	
Teaching Scheme(Hrs.)	03							03	
Credits Assigned	(03						03	
		Marks							
Examination	CA	CA		(DXX/		Ъ	P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	100	1 Otal	
	30	20	50					100	

Course prerequisites (if any):Embedded system, Data networks and Adhoc networks

Course Objectives

To learn basic architecture of Wireless sensor networks and Internet of Things and understand WSN routing protocols and evaluate software, hardware platforms for IoT technology. Also create applications using IOT analytics.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Explain the basic architecture and working principle of wireless sensor
	networks and Internet of Things
CO ₂	Identify challenges and issues in WSN routing and suggest solutions.
CO3	To use different Operating system for Wirelese sensor networks and IoT
CO4	Evaluate the software and hardware platforms for IoT Technologies and
	design small IoT application.
CO5	Create IoT application data using IoT Analytics.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 97 of 128

Department of Computer Engineering

Module	Unit	Details	Hr	CO
No.	No.		S.	
1		Introduction to Wireless Sensor networks and IOT	12	CO1
	1.1	Characteristic requirements for WSN - Challenges for WSNs -		
		WSN vs Adhoc Networks		
	1.2	Sensor network architecture		
		Commercially available sensor nodes –Imote, IRIS, Mica Mote,		
	1.3.	EYES nodes, BTnodes, TelosB-		
	1.3.	IoT ARCHITECTURE: Various architectures of the IoT		
		middleware such as distributed, services oriented, centralized, M2M		
		Domain model, Information model, functional model, communication		
		model, IoT reference architecture		
	1.4	,		
		Self learning: Scenarios for WSN and IOT-		
		Home Control - Building Automation - Industrial Automation -		
		Medical Applications, Environmental Monitoring		
2		Medium Access Control and Routing Protocols	12	CO2
	2.1	Medium Access Control Protocols: Fundamentals of wireless MAC		
		protocols, Contention-based protocols - Schedule-based protocols;		
		SMAC-BMAC - The IEEE 802.15.4 MAC protocol.		
	2.2	Douting Ductocale a Douting Challenges and Design Issues in		
		Routing Protocols: Routing Challenges and Design Issues in Wireless Sensor Networks, Classification of Adhoc Routing		
		protocols, Flooding and gossiping - Data centric Routing – SPIN –		
		Directed Diffusion – Energy aware routing - Gradient-based routing -		
		Rumor Routing — Hierarchical Routing — Location Based Routing —		
		GF, GAF, GEAR, GPSR – Real Time routing Protocols		
3		Operating system and Sensors in WSN and IOT	08	CO3
	3.1	TinyOS, Raspbian, Debian		
	3.2	Perception layer of the IoT: Various sensors such as light sensors,		
		accelerometer, gyroscope, magnetometer, camera microphone, GPS,		
		proximity sensors. Etc		
4		IoT Physical Devices	08	CO4
	4.1	IoT Prototype design using microcontroller boards: Arduino,		
		Raspberry PI, Beagalbone,		
	4.2	Introduction to Actuators in IoT applications.		
	4.3	Case study: Home Automation, Industrial Automation	0.7	00-
5	<i>c</i> 1	IoT Analytics	05	CO5
	6.1	Business Process in IoT		
	6.2	IoT Analytics with cloud		
	6.3	Edge analytics	45	
		Total	45	

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Carlos De Morais	Adhoc and sensor	World	1 st edition
	Cordeiro, Dharma	networks:Theory and	Scientific	,2006
	Prakash Agarwal	Applications	Publishing	
2.	C.Siva Ram	Adhoc wireless networks	Pearson	1 st
	murthy, B.S. Manoj			edition,2006
3.	Arshdeep Bhaga and	"Internet of Things (A	Tata McGraw-	4 th edition
	Vijay Madisetti	Hands-on-	Hill ,India	,2015
		Approach)",University		
		Press		
4.	Hakima Chaouchi	"The Internet of Things	Wiley	1 st
		(Connecting objects to the web)"	publication	edition,2014
5.	Hakim Cassimally	"Designing the Internet of	Wiley	1 st
	and Adrian McEwen	things"	publication	edition,2013

Page 99 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L624	Wireless sensor networks and IOT Lab.						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		(DXX/		P&O	Total
Scheme	ISE	IA	ESE	1 **	TW O		Total
				25			25

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Wireless sensor networks and IOT". Students will be graded based on continuous assessment of their term work.

Page 100 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E625	Mobile Communication and Ad-Hoc Networks							
	,	ГН		P	•	,	TUT	Total
Teaching Scheme(Hrs.)							03	
Credits Assigned							03	
	Marks							
Examination Scheme	CA	ESE	TW	0	P	P&O	Total	
Danimation Scheme	ISE	IA		1 **		1	140	Total
	30	20	50					100

Course prerequisites (if any):

Basic Knowledge of Computer Networks, Layered Architecture, Structure and working related Protocols.

Course Objectives

- To provide an overview of Mobile & Cellular Communication networks area and its applications in communication engineering.
- To understand the various terminology, principles, concepts, Standards, algorithms and different methodologies used in Wireless Communication Networks specifically for Wireless Ad-Hoc Networks.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Explain the basic concepts of various wireless networks and their working characteristics with respect to mobile network generations such as 2G, 3G and beyond.
- CO₂ Compare infrastructure based and Ad hoc networks, elaborating characteristics and

Page 101 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	features of Ad hoc Networks
CO3	Inspect designing of Wireless MAC protocols for Ad hoc networks; and the working principle of different WLAN IEEE standards.
	principle of univient WEARY IEEE standards.
CO4	Describe various Network Layer & Transport layer mechanisms and Routing Protocols

- CO4 Describe various Network Layer & Transport layer mechanisms and Routing Protocols for Wireless networks.
- CO5 Explain various features and operations of Application Protocols of wireless Ad-hoc and Mesh Networks like sensor networks, VANETs etc.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 102 of 128

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	СО
1	Cellul	lar Mobile Networks	10	CO 1
	1.1	Cellular networks: Basic cellular system, Frequency allocation, Frequency re-use		
	1.2	GSM System Architecture: GSM Radio subsystem, Interfaces, Network and switching subsystem, Operation subsystem		
	1.3	GSM channels: Traffic Channel multiframe, Control (Signaling) Channel Multiframe, Frames, Multi-frames, Super-frames and Hyper-frames		
	1.4	GSM Call Set up Procedure		
	1.5	CDMA Networks		
	1.6	Handoff: Hard and soft		
		#Self Learning-VoIP		
2	2.5 G,	, 3 G Networks and beyond	09	CO1
	2.1	2.5G Networks: GPRS Architecture, GPRS Network Nodes: Mobile Station, Base Station System, GPRS Support Node, HLR and VLR, GPRS Interfaces		
	2.2	3G Networks: The Universal Mobile Telecommunication System (UMTS) - UMTS Network Architecture, UMTS FDD and TDD		
	2.3	Next generation networks; 3GPP LTE and beyond		
		#Self Learning - VoLTE		
3	Wirel	ess LAN	09	CO2 CO3
	3.1	Infrastructure & Ad hoc Networks; Introduction to ad hoc networks – definition, characteristics features.		

Page 103 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

	3.3	MAC Protocols for Ad hoc wireless Networks: Issues in designing a MAC protocol for Ad hoc wireless Networks, Design goals and Classification of MAC protocols, Contention based protocols with reservation mechanisms. IEEE standards: 802.11a, 802.11b, 802.11g, 802.11e, 802.11n;IEEE 802.16. #Self Learning – HIPERLAN, Bluetooth, WLAN Security-WEP, WPA, WPA2	-10	
4	Mobil	le Network and Transport layer	12	CO4
	4.1	Introduction to Mobile IP: Requirements, IP packet delivery, agent discovery, registration, tunneling and encapsulation.		
	4.2	Routing protocols for Ad hoc wireless Networks: Introduction, Issues in designing a routing protocol for Ad-hoc wireless Networks, Classification of routing protocols, Proactive Vs reactive routing protocols, Hybrid routing Algorithm		
	4.3	Unicast routing algorithms and Hierarchical Routing : DSR, AODV, OLSR, ZRP		
		#Self Learning-Energy Efficient Routing in Wireless Networks		
	4.4	Classical TCP improvements – methods of mobile TCP: Indirect TCP, snooping TCP, mobile TCP		
		#Self Learning –Fast Retransmit/Fast Recovery		
5	Mobil Netwo	le Application layer & Application domains of Ad hoc orks	05	CO5
	5.1	Wireless Application Protocol (WAP)		
		#Self Learning:- WML		
	5.2	Vehicular Ad hoc networks (VANETs)		
	5.3	Sensor Networks		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 105 of 128

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	J. Schiller	Mobile Communications	Pearson Education	2 nd Edition
2.	KavehPahlavan, Prashant Krishnamurthy	Principles of Wireless Networks	Pearson Education	2003
3.	DipankarRaychaudhuri, Mario Gerla	Emerging Wireless Technologies and the Future Mobile Internet	Cambridge University Press	1 st Edition, 2011
4.	MustafeErgen	Mobile Broadband Including Wi Max and LTE	Springer	2009
5.	Savoy G.Glisic	Advanced Wireless Comm& Internet	Wiley Publication	3rd Edition

Page 106 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title										
116U01L625	Mobile Communication and Ad-Hoc Networks Lab.										
	TH			P		TUT	Total				
Teaching Scheme(Hrs.)	-			02		-	02				
Credits Assigned	-			0	1	-	01				
	Marks										
Examination	CA		ESE	TW	0	P&O	Total				
Scheme	ISE	IA	LSE	1 44		rau	Total				
				25			25				

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Mobile Communication and Ad-Hoc Networks". Students will be graded based on continuous assessment of their term work.

Page 107 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title										
116U01E626	Machine Learning										
	ТН			P		TUT		Total			
Teaching Scheme(Hrs.)			-				03				
Credits Assigned	03			-				03			
	Marks										
Examination Scheme	CA		ECE	TW	0	P	P&O	Total			
	ISE	IA	ESE	1 44		Г	100	1 Otal			
	30	20	50	-			-	100			

Course prerequisites (if any):

Linear algebra

Probability and statistics

Multivariate calculus

Algorithms and complexity

Programming language such as C++, Java, Python

Course Objectives:

- 1. Introduction to fundamentals of Machine Learning
- 2. Study of application of various ML algorithms
- 3. Analysis Machine Learning algorithms
- 4. ML Algorithm based application development

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Comprehend the basics of Machine Learning.

CO2: Apply and implement machine learning methods

CO3: Analyze machine learning algorithms

CO4: Design Dimensionality reduction techniques

CO5: Develop Applications using Machine Learning methodologies

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 108 of 128

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Mach	ine Learning Basics	05	CO
	1.1	Introduction to Machine Learning, Key Terminology, Types, Introduction to applications of Machine Learning, Steps to choose the right ML algorithm, Steps in developing a Machine Learning Application.		1
	1.2	Feature Engineering : Data Collection, Data Exploration and Profiling, data cleaning for consistent data, Introduction to data preprocessing methods for improving data quality, Data Splitting for training and evaluation sets		
2	Super	vise Learning with Regression and Classification:	12	CO
	2.1 2.2 2.3	Linear Regression, Logistic Regression, Advanced Regression Techniques Decision Trees, Constructing Decision Trees, Classification and Regression Trees (CART), Random Forest Self-Learning – Ensemble Learning Support Vector Machines: Maximum Margin Linear Separators, Quadratic Programming solution, Kernels for learning non-linear functions Bayesian Belief networks, Hidden Markov Models. KNN supervised learning Applications of Bayesian Belief networks Self-Learning: Applications of HMM		2, 3, 5
3	Dime	nsionality Reduction :	07	CO
	3.1	Dimensionality Reduction Techniques: Principal Component Analysis, Independent Component Analysis. Backward feature elimination and forward feature construction		3, 4
4	Unsuj	pervised Learning :	08	CO
	4.1	K-means clustering, Hierarchical clustering, Expectation Maximization Algorithm, Supervised learning after clustering, Radial Basis functions		2, 3
5	Neura	al Network with Supervised and Unsupervised Learning	08	CO

Page 109 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	5.1	Introduction to Neural Network, Learning Parameters, Activation functions Supervised and unsupervised Neural Networks, Feed-Forward network and Back-Propagation		2.5
		Algorithms, Applications of Neural networks		3, 5
		# Self-Learning: Deep Belief Nets.		
6	6.1	Introduction to Reinforcement Learning:	04	CO
		Elements of Reinforcement Learning, Model based learning, Temporal Difference Learning.		1
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 110 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Peter Harrington	Machine Learning In	DreamTech	1 st , 2012
		Action	Press	
2.	Ethem Alpaydın	Introduction to Machine	MIT Pres	3 rd , 2014
		Learning		
3.	Tom M.Mitchell	Machine Learning	McGraw Hill	1 st , 2017
4.	Stephen Marsland	Machine Learning An	CRC Press	1 st , 2011
		Algorithmic Perspective		
5	M Gopal	Applied Machine Learning	Mc-Graw Hill	Print edition:
			Education	ISBN-13:
			India Pvt. Ltd.	978-93-5316-
				025-8,

Term-Work will consist of practical experiments covering entire syllabus. Students will be graded based on continuous assessment of their term work

Page 111 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title								
116U01L626	Machine Learning Lab.								
	TH]	P	TUT	Total		
Teaching Scheme(Hrs.)			02		-	02			
Credits Assigned	-			01		-	01		
	Marks								
Examination	CA		ESE	TW	0	P&O	Total		
Scheme	ISE	IA	ESE	1 **		rau	Total		
				25			25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Machine Learning". Students will be graded based on continuous assessment of their term work.

Page 112 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E627	Microservices and DevOps								
	ТН			F	•	,	TUT	Total	
Teaching Scheme(Hrs.)							03		
Credits Assigned		03						03	
	Marks								
Examination	CA	CA		TW	0	P	P&O	Total	
Scheme	ISE	IA	ESE	1 44		T	rau	1 Otal	
	30	20						50	

Course prerequisites (if any):

Practical knowledge of Java

Course Objectives:

DevOps and Microservices are the most important topics being used in IT industry. The main objective of this course is to provide in depth understanding of DevOps and Microservices concepts, frameworks, tools and technology. It also help students to practically build DevOps pipeline using Jenkins and build microservice based applications using Java, Spring Framework using best practices. This course shall make student ready to build modern applications as a part of their academic course curriculum and make them ready to get more opportunities in IT industry

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1 Explain concept, importance and usage of DevOps and Microservices
- CO2 Apply DevOps best practices which include Continuous Development, Continuous Testing, Configuration Management, Continuous Integration, Continuous Delivery, Continuous Deployment and Continuous Monitoring
- CO3 To set up a basic DevOps pipeline
- CO4 Differentiate between traditional monolithic and microservice based applications
- CO5 Apply the Microservices patterns & principles for building microservice based applications
- CO6 Implement microservices using Spring Boot Framework and Java

Page 113 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	DevO	ps: What and why	03	CO1
	1.1	o The History of Devops		
		o What is DevOps		
		o Linkage of Agile and DevOps		
		o DevOps Benefits		
		o DevOps Focus Areas		
		o DevOps people, processes and tools		
		o Understanding of How DevOps Works		
		#Self-Study: Understand Agile and Scrum Framework		
2	DevO	ps Principles, practices and tools	12	CO2
	2.1	o DevOps Principles		
		o DevOps Practices		
		Configuration ManagementVersion Control		
		Version Control Infrastructure Automation		
		System Provisioning		
		Continuous Integration		
		Test and Build Automation		
		 Continuous Delivery 		
		 Continuous Deployment 		
		Metrics		
		Logging		
		Continuous Monitoring		
		Alerting		
3	Buildi	ing DevOps Pipeline	10	CO3
	3.1	o What is pipeline		
		o What are different tools to build pipeline		
		o what are different tools to build pipeline		
		o How to start building pipeline		
		o How to start building pipeline		
		o How to start building pipeline o Create pipeline		
		o How to start building pipelineo Create pipelineo How to use the pipeline		
4	Micro	 o How to start building pipeline o Create pipeline o How to use the pipeline o How to optimize the pipeline 	12	CO4, CO5
4	Micro	o How to start building pipeline o Create pipeline o How to use the pipeline o How to optimize the pipeline #Self Learning –Understand Jenkins tool	12	·
4		o How to start building pipeline o Create pipeline o How to use the pipeline o How to optimize the pipeline #Self Learning –Understand Jenkins tool services: What and why O What is monolithic architecture?	12	·
4		o How to start building pipeline o Create pipeline o How to use the pipeline o How to optimize the pipeline #Self Learning –Understand Jenkins tool services: What and why O What is monolithic architecture? o Benefits of monolithic application	12	·
4		o How to start building pipeline o Create pipeline o How to use the pipeline o How to optimize the pipeline #Self Learning –Understand Jenkins tool services: What and why O What is monolithic architecture? O Benefits of monolithic application	12	·

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	1	<u></u>		1
		o What are microservices?		
		o Principles of Microservices		
		o Characteristics of Microservices		
		o Industry adoption of microservices		
		o Benefits of Microservices		
		o Drawback of microservices		
		o Monolithic Vs Microservices		
	4.2	Microservices Pattern		
		o Core microservice development pattern		
		o Microservice routing patterns		
		o Microservice client resiliency patterns		
		o Microservice security patterns		
		o Microservice logging and tracing patterns		
		o Microservice build/deployment patterns		
5	Build	ing Microservices using Spring Boot and Java	8	CO 6
	5.1	o What is Spring Framework		
		o What is Spring Boot		
		o What is Spring Cloud		
		o Setting up a development environment		
		o Developing a RESTful service – the legacy approach		
		o Moving from traditional web applications to		
		microservices		
		o Using Spring Boot to build RESTful microservices		
		o Getting started with Spring Boot		
		o Developing the Spring Boot microservice using the		
		CLI		
		o Developing the Spring Boot Java microservice using		
		STS		
		o Examining the POM file		
		o Examining Application.java		
		o Examining application properties		
		o Examining ApplicationTests.java		
		o Testing the Spring Boot microservice		
		o Microservices using Spring Cloud		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 115 of 128

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
6.	Aniket Mhala	Fundamentals of	Emotive	October 2021
		Microservices	Publications	
7.	Jennifer Davis and	Effective DevOps	O'Relly	February 2016
	Katherine Daniels		Publications	
8.	Sanjay Sharma and	DevOps For Dummies	2 nd IBM	2015
	Bernie Coyne		limited edition	
9.	Rajesh V	Spring Microservices	Packt	June 2016
			Publication	
10.	Cloves Carneiro Jr.	Microservices from Day	APress	2016
	,Tim Schmelmer	One	Publication	
11.	Sam Newman	Building Microservices:	O'Reilly Media	Feb 2015
		Designing Fine-Grained		
		Systems		

Page 116 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title								
116U01L627	Microservices and DevOps Lab.								
	Г]	P	TUT	Total			
Teaching Scheme(Hrs.)			02		-	02			
Credits Assigned		-		01		-	01		
	Marks								
Examination	CA	CA		TW	0	P&O	Total		
Scheme	ISE	IA	ESE	1 **		rau	Total		
				25			25		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Microservices and DevOps". Students will be graded based on continuous assessment of their term work.

Page 117 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E628		Applied Cryptography							
	TH P		TUT		Total				
Teaching Scheme(Hrs.)							03		
Credits Assigned							03		
	Marks								
Examination Scheme	CA		ESE	TW	o	P	P&O	Total	
	ISE	IA	ESE	1 **		1	140	Total	
	30	20	50					100	

Course prerequisites (if any):

Some mathematical maturity, in terms of understanding and working with mathematical definitions, concepts, and proofs, and elementary notions of logic, set theory, number theory, probability and statistics;

Course Objectives

In the era of Digital Computers and internet ensuring confidentiality, authentication, integrity of data during communication is very critical. This course impart students the knowledge of cryptographic algorithms and techniques to achieve same. It also introduces students to the advances in the area of cryptography

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Explain fundamentals of Information Security and cryptography
CO2	Demonstrate various Cryptographic Algorithms for securing systems
CO3	Comprehend cryptographic hash functions, Message Authentication Codes and Digital Signatures for Authentication
CO4	Realize advances in the field of cryptography

Page 118 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Module Unit **Details** Hrs. CO No. No. 1 **Introduction to Information Security & Cryptography** CO **06** 1 1.1 Information Security and its goals, Vulnerability Threats and Attacks 1.2 Encryption and Decryption, Symmetric and Asymmetric Key Cryptography, Stream and Block Cipher, Cryptanalysis, Brute Force Attack 1.3 Mathematics of Cryptography: Integer Arithmetic, The Extended Euclidean Algorithm, Modular Arithmetic, Matrices, Linear Congruence Classical Cryptrography: Substitution and Transposition 1.4 Techniques: Any two from each 2 **Symmetric Key Cryptography** 09 CO₂ 2.1 Mathematics of Symmetric Key Cryptography: Algebraic Structures, Group, Ring, Field, GF Fields 2.2 Modern Block Ciphers: Components of Modern Block Cipher, Product Ciphers, Diffusion and Confusion, Classes of Product Cipher **DES**: DES Structure, DES Analysis: Properties, Design Criteria, DES Strength and Weaknesses, DES Security, Multiple DES, 3DES **AES**: AES Structure, Transformations, Key Expansion in 2.3 AES-128, Key Expansion in AES-192 and AES-256, Key-Expansion Analysis, Analysis of AES: Security, Implementation, Simplicity and Cost **#Self Learning – Stream Cipher, RC5, Block Cipher Modes** 3 10 CO₃ **Asymmetric Key Cryptography** Mathematics of Asymmetric Key Cryptography: Primes, 3.1 Primality Testing, Factorization, Quadratic Congruence, **Exponentiation and Logarithm** 3.2 Public key cryptography: Principles of public key cryptosystems, The RSA algorithm, attacks on RSA 3.3 **Key management:** Diffie Hellman Key exchange, Man-in Middle attack **#Self Learning: Rabin Cryptosystem** 4 **Message Authentication and Digital Signatures** CO₃ 11 Message Authentication Approaches, Hash Function, 4.1 Cryptographic Hash Function Requirements, Cryptographic Hash Function Security, Cryptographic Hash Function Structure, SHA, HMAC, MD5.

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 119 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	4.2	Using Symmetric Encryption for Message Authentication, Message Authentication Code (MAC), Digital Authentication Algorithm (DAA) Using Public Key for Authentication, Digital Signatures,		
		Properties of Digital Signatures beyondMessage Authentication, DSS, Authentication Applications: Kerberos, X.509 Authentication Service		
		#Self Learning: RSA and Schnorr Digital Signature		
5	Intro	duction to Advances in Cryptography	09	CO4
	5.1	Quantum Cryptography, Quantum key distribution-QKD		
	5.2	Homomorphic Encryption		
	5.3	Secure Multi-Party Computation (MPC) In particular, Zero-Knowledge Proofs		
	5.4	Cryptographic Obfuscation		
	1	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 120 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Constituent College of Somaiya Vidyavihar University

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Behrouz A. Forouzan	Cryptography and Network Security	Mc Graw Hill	3 [™] Edition, 2017
2.	William Stallings	Computer Security Principles and Practice	Pearson Education	2016. 5 th Edition
3.	Mark stamp	Information Security Principal and Practice	Wiley	2008, 3 rd Edition
4.	Bruce Schneier	Applied Cryptography	Wiley	2015, Second Edition
5.	Jaydip Sen	Theory and practice of cryptography and network security protocols and technologies	Intech Publishers, Croatia, Europe	2013. First Edition
6.	Oded Goldreich	Foundations of Cryptography – A Primer	Foundations and Trends® in Theoretical Computer Science: Vol. 1: No. 1, pp 1-116	2005

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 121 of 128

Department of Computer Engineering

Course Code	Course Title										
116U01L628	Applied Cryptography Lab.										
	7.	TH P TUT Tota									
Teaching Scheme(Hrs.)			02		-	02					
Credits Assigned			01		-	01					
	Marks										
Examination	CA	CA		TW		De O	Total				
Scheme	ISE	IA	ESE	1 **	O	P&O	Total				
				25			25				

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Applied Cryptography". Students will be graded based on continuous assessment of their term work.

Page 122 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01E629	Cloud Computing									
	ŗ	TH I					TUT	Total		
Teaching Scheme(Hrs.)			-				03			
Credits Assigned		03						03		
	Marks									
Examination Scheme	CA	CA		(DXX)		<u></u>	D.C.	TD 4 1		
2xammanon Scheme	ISE	IA	ESE	TW	O	P	P&O	Total		
	30	20	50					100		

Course Prerequisites (if any):

- 1. Fundamental knowledge on Operating system and Computer Networks
- 2. Basics of client/server programming and network protocols

Course Objectives:

Cloud computing has evolved as a very important computing model, which enables information, software, and other shared resources to be provisioned over the network as services in an ondemand manner. Students will be exposed to the current practices in cloud computing. Topics may include distributed computing models and technologies, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), virtualization, performance and systems issues, capacity planning, federated clouds, challenges in implementing clouds, data centers, hypervisor CPU and memory management, cloud hosted applications, and other advanced and research topics in cloud computing.

At the end of successful completion of the course the student will be able to

CO1: Comprehend the issues related to cloud computing and its application

CO2: Investigate the system virtualization and outline its role in enabling the cloud computing System model

CO3: Analyse and apply cloud programming models to solve problems

CO4: Build cloud services and applications

CO5: Configure and experiment with advanced cloud technologies

SVU 2020 - R 1.0 T Y B. Tech COMP. Page 123 of 128

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction	6	
	1.1	Cloud Computing at a Glance, Historical Developments, Building Cloud Computing Environments, Computing Platforms and Technologies - Microsoft Azure, Hadoop, Force.com and Salesforce.com, Manjrasoft Aneka		CO1
2	Virtua	alization	11	
	2.1	Introduction, Characteristics of Virtualized Environments , Taxonomy of Virtualization Techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization		
	2.2	Technology Examples:		CO2
		Xen: Para virtualization, VMware: Full Virtualization, Microsoft Hyper-V		002
	2.3	Cloud Computing Architecture : Cloud Reference Model, Types of Clouds, Economics of the Cloud, Open Challenges		
		#Self-Learning – Virtual Machine Provisioning and Migration services		
3	Cloud	Infrastructure and Platforms in Industry	09	
	3.1	Amazon Web Services – Compute Services, Storage Services, Communication Services, Additional Services		CO3
	3.2	Google Cloud Platform, Google AppEngine: Architecture and Core concepts; Application Life Cycle		
4	Cloud	Applications	09	
	4.1	Scientific Applications – Healthcare: ECG analysis in Cloud, Biology: Protein Structure Prediction, Geoscience: Satellite Image Processing		CO4
	4.2	Business and Consumer Applications – CRM and ERP, Productivity, Social Networking, Media Applications, Multiplayer Online Gaming		
		#Self-Learning – other Applications		
5	Advar	nced Topics in Cloud Computing	10	
	5.1	Energy Efficiency in Clouds, Market Based Management of Clouds, Federated Clouds / Inter Cloud, Third Party Cloud Services: MetaCDN, SpotCloud		CO5
	5.2	Dockers and Containers, Micro Services, Cloud automation tools and DevOps concepts		
	1			
		Total	45	
				•

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 124 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Rajkumar Buyya,	Mastering Cloud	McGraw Hill	2 nd , 2013
	Christian Vecchiola,	Computing	Education	
	S Thamarai Selvi		Private Limited	
2.	J.Vette, Toby J.	Cloud Computing: A	McGraw Hill	1 st , 2009
	Vette, Robert	Practical Approach	Education	
	Elsenpeter		Private Limited	
3.	Rajkumar Buyya,	Cloud Computing,	Wiley	1st ,2013
	James Broberg, Andrzej Goscinski	Principles and Paradigms		
4.	Tim Mathar, S.	Cloud Security & Privacy	O'REILLY	1st, 2009
	Kumaraswammy,			
	S.Latif			
5.	George Reese	Cloud Application	O'Reilly	1 st , 2009
		Architectures: Building	Publication	
		Applications and		
		Infrastructure in the Cloud		
6.	Aniket Mhala	Fundamentals of	Emotive	October 2021
		Microservices	Publications	

Page 125 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

Department of Computer Engineering

Course Code	Course Title										
116U01L629	Cloud Computing Lab.										
	7	TH P TUT TO									
Teaching Scheme(Hrs.)			02		-	02					
Credits Assigned		-		01		-	01				
	Marks										
Examination	CA	CA		TEXX?		De O	Total				
Scheme	ISE	IA	ESE	TW	О	P&O	Total				
				25			25				

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Cloud Computing". Students will be graded based on continuous assessment of their term work.

Page 126 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title										
116U01P601	Mini Project										
		7		P		TUT		Total			
Teaching Scheme(Hrs.)	01				02				03		
Credits Assigned			01		02				03		
	Marks										
Examination	CA			ESE	TW	o	P	P&O	Total		
Scheme	T-1	T-2	IA		1 **				1000		
					50			25^	75		

Course prerequisites: Fundamentals of software engineering.

Course Objectives: The objective of the Mini Project is to address the real-world problems, find, implement and demonstrate the solution for the same through the courses learned in earlier semesters. Identify various hardware and software requirements for problem solution. It will also inculcate qualities such as meeting deadlines, making and following work plan. The Mini Project may be beyond the scope of courses learnt and interdisciplinary in nature.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1 Define the problem statement and scope of problem.
- CO2 Identify various hardware and software requirements for problem solution.
- CO3 Implement and test the hardware/ software algorithms to meet the desired Specifications.
- CO4 Analyze, interpret results and correspondingly modify the designed system to get the desired results.
- CO5 Prepare a technical report based on the project.
- CO6 Present technical seminar based on the Mini Project work carried out.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	SRS D	02	CO 1	
	Prepar	e the basic documents required to develop a product, a		
	softwa	re system, a website or a mobile app to provide certain		
	service	es or facilities. Objective, Scope of the project,		
	Requir			
2	Design	04	CO 2	
	Levels	of designs: Frontend interface, Backend/ database design.		
	Heuris			
3	Imple	04	CO 3	
	Implen	mentation Plan, Process Design, Solution Design, Modules		
	Descri	ption, Integration, Prototyping.		
4	Testin	g.	03	CO 4
	Types	of testing: Black-box - ECP, BVA, White-box-		
	Cyclor	matic complexity.		
5	Repor	t Writing	03	CO 5
				CO 6
		iled report covering introduction, problem definition,		
		hardware-software requirements, literature survey, project		
	design	, implementation, testing, conclusion, future work etc.		
	•		15	

Term Work and Practical / Oral:

The mini project is a group project. Interdisciplinary projects are also permitted. Each project will be assigned to one faculty member as a supervisor.

There will be continuous assessment and progress report of the project that needs to be maintained by student(s). The final oral / Demo will be a presentation based on a demonstration of the project in front of a committee of examiners.

Page 128 of 128 SVU 2020 - R 1.0 T Y B. Tech COMP.