MLR: Model Checking

Math 430, Winter

Toolkit

For model diagnostics, the car package is particularly useful:

library(car)

Assessing model assumptions

CAUTION: Residuals in MLR

CAUTION: Residuals in MLR

When there are many regressors in a model, we cannot necessarily associate shapes in a residual plot with a particular problem with the assumptions.

• Fitted: $E(Y|X = x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

Example: Fuel consumption

How does fuel consumption vary over the 50 states and the District of Columbia?

Variable Description

Drivers Number of licensed drivers in the state

FuelC Gasoline sold for road use (thousands of gallons)

Income Per person personal income (thousands of dollars)

Miles of Federal-aid highway miles in the state

Pop Population age 16 and over

Tax Gasoline state tax rate (cents per gallon)

MPC Estimated miles driven per capita

Dlic Number of licensed drivers in the state per 1,000 people age 16 and over $(1000 \times Drivers/Pop)$

Fuel consumption (thousands of gallons) per 1,000 people age 16 and over $(1000 \times FuelC/Pop)$

pairs(Fuel ~ Income + log(Miles) + Tax + MPC + Dlic, data = fuel2001)


```
mod1 <- lm(Fuel ~ Tax + Dlic + Income + log(Miles), data = fuel2001)</pre>
summary(mod1)
##
## Call:
## lm(formula = Fuel ~ Tax + Dlic + Income + log(Miles), data = fuel2001)
##
## Residuals:
       Min
##
                10 Median
                                 30
                                        Max
## -163.145 -33.039 5.895
                             31.989 183.499
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 154.192845 194.906161 0.791 0.432938
## Tax
              -4.227983 2.030121 -2.083 0.042873 *
             0.471871 0.128513 3.672 0.000626 ***
## Dlic
         ## Income
## log(Miles) 26.755176 9.337374 2.865 0.006259 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 64.89 on 46 degrees of freedom
## Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679
## F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07
```

Effects of a violation

- · coefficients and fitted values are biased
- inferences not valid

Diagnostics

- Residual plots
 - residuals vs. fitted values
 - residuals vs. each predictor
 - residuals vs. hypothetical new predictors
- Added variable plots
- Marginal model plots
- Test for curvature

residualPlots(mod1, layout = c(2, 3), type = "rstandard")

Added Variable Plots

- Display relationship of Y and X_i after adjusting for other variables
- Construction
 - e_i = residuals regressing Y on all Xs except X_i
 - u_i = residuals regressing X_i on all other Xs
 - Plot e_j vs. u_j

Added Variable Plots in R

avPlots(mod1, pch = 16)

Marginal Model Plots

- · Idea: check whether $E(Y|x_i)$ is well approximated by $E(\widehat{Y}|x_i)$
- Construction
 - Plot the response on the y-axis
 - Plot a predictor, or linear combination of the predictors (e.g. \hat{y}_i) on the x-axis
 - Add a nonparametric smoother to the plot
 - Use the fitted values from the model to plot the conditional mean (via nonparametric smoother)

Marginal Model Plots

Marginal Model Plots

Marginal Model Plots in R

mmps(mod1, layout = c(2,3))

Marginal model vs. added variable plots

- Marginal model plots: are useful in checking to see that you're doing a good job of modeling the marginal relationship between a given predictor and the response.
- Added variable plots: assess how much variation in the response can be explained by a given predictor <u>after</u> the other predictors have already been taken into account (links to p-values).

Test for curvature

- If predictor U is in question, refit the regression with an added U^2 term.
- Look at t-test for the slope associated with U^2 .

Test for curvature in R

Remedies for nonlinearity

- Nonlinear regression models (Grad school)
- Transformations of Y
- Transformations of *X*
- Polynomial regression

Model checking: Constant variance

Effects of a violation

- Coefficients are unbiased
- $se(\hat{\beta}_i)$ s are biased (often too small \Longrightarrow Cls too narrow)

Diagnostics

- Residual plots
 - residuals vs. fitted values
 - residuals vs. each predictor
- Breusch-Pagan test

Model checking: Constant variance

Breusch-Pagan test

- H_0 : constant error variance
- H_A : error variance changes with the level of the response (fitted values), or with a linear combination of predictors

```
library(car) # if not loaded
ncvTest(mod1)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.03196885    Df = 1    p = 0.858096

ncvTest(mod1, ~ Tax + Dlic + Income + log(Miles))

## Non-constant Variance Score Test
## Variance formula: ~ Tax + Dlic + Income + log(Miles)
## Chisquare = 17.1249    Df = 4    p = 0.001827869
```

Remedies for nonconstant variance

- Transformations of Y
 - \sqrt{Y} for counts
 - log of positive #s with large range
 - $\sin^{-1}(\sqrt{Y})$ or $\log(\frac{Y}{1-Y})$ for proportions $(0 \le Y \le 1)$
- Weighted least squares (nice idea, see chapter 4)
- Use "sandwich estimator" for to obtain ses (inefficient)
- Use a generalized linear model

Model checking: Uncorrelated errors

Effects of a violation

- coefficients are unbiased
- $se(\hat{\beta}_i)$ s are biased, often smaller than necessary
- inferences not valid

Diagnostics

- · Residual plots
 - residuals vs. time (or other factor inducing correlation)
 - residuals vs. lagged residuals
 - examine residuals in clusters (e.g., family, school)
- Think about data collection process

Model checking: Normal errors

Effects of a violation

- problems with prediction
- inference for coefficients OK in large samples
- inference for coefficients problematic in small samples

Diagnostics

- normal Q-Q plot
- case diagnostics (for outliers)

Model checking: Normal errors

```
qqPlot(mod1, dist = "norm", pch = 16, line = "quartiles")
```


Remedies for non-normality

- Transformations
- Generalized linear models (Grad school or IS)

Detecting outliers and influential points

Standardized residuals

Recall that standardized residuals are calculated by dividing by their standard deviation

$$r_i = \frac{\widehat{e}_i}{s\sqrt{1 - h_{ii}}}$$

Observations with <u>large</u> standardized residuals can be considered outliers.

Rule of thumb:

- $|r_i| > 2$ for small data sets
- $|r_i| > 4$ for large data sets

Case diagnostics: Leverage

Definition

Pull off the diagonal elements of the hat matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

- 2(k+1)/n
- 3(k+1)/n
- · Also a good idea to examine a histogram

Case diagnostics: DFFITS

Measures the effect of the i^{th} case on the fitted value for Y_i

$$DFFITS_{i} = \frac{\widehat{Y}_{i} - \widehat{Y}_{i(i)}}{\sqrt{MSE_{(i)}h_{ii}}}$$

where $MSE_{(i)} = RSS_{(i)}/(n-p-1)$

- $|DFFITS_i| > 1$ considered large in small or medium samples
- $|DFFITS_i| > 2\sqrt{\frac{p+1}{n}}$ considered large in big samples
- Judge by relative standing

Case diagnostics: Cook's D

Measures effect an observation has on <u>all</u> of the fitted values

$$D_{i} = \frac{\sum_{j=1}^{n} (\widehat{Y}_{j} - \widehat{Y}_{j(i)})^{2}}{(p+1)MSE} = \frac{r_{i}^{2}}{p+1} \frac{h_{ii}}{1 - h_{ii}}$$

- $D_i > F_{p+1,n-p-1,0.5}$ is of substantial concern
- Also can judge relative standing of D_i

Case diagnostics: DFBETAS

Measures the effect of an observation on a single coefficient

$$DFBETAS_{k,i} = \frac{\widehat{\beta}_k - \widehat{\beta}_{k(i)}}{SE_{\beta_{(i)}}}$$

- $DFBETA_i > 1$ in small or medium samples
- $DFBETA_i > 2/\sqrt{n}$ in large samples

Case diagnostics in R

```
case.infl <- influence.measures(mod1)

# print which observations "are" influential
which(apply(case.infl$is.inf, 1, any))

## 2 7 9 31 33 40 51

## 2 7 9 31 33 40 51

# We can also call the measure individually
hatvalues(mod1)
cooks.distance(mod1)
dffits(mod1)
dfbetas(mod1)</pre>
```

Detecting multicollinearity

Example: Car seat position

Research question:

- · Car designers would find it helpful to know where different drivers will position the seat depending on their size and age.
- Position can be measured by hip center

Hip point set as close to the center of gravity as possible

Example: Car seat position

Researchers at the HuMoSim laboratory at the University of Michigan collected data on 38 drivers:

Variable Description

Age (years)

Weight Weight (lbs)

HtShoes Height in shoes (cm)

Height in bare feet (cm)

Seated Seated height (cm)

Arm Lower arm length (cm)

Thigh Thigh length (cm)

Lower leg length (cm)

hipcenter horizontal distance of the midpoint of the hips from a fixed location in the car (mm)

Example: Car seat position

```
##
    Age Weight HtShoes
                         Ht Seated Arm Thigh Leg hipcenter
## 1
     46
           180
                187.2 184.9
                              95.2 36.1 45.3 41.3 -206.300
## 2
     31
           175
               167.5 165.5
                             83.8 32.9 36.5 35.9
                                                  -178.210
## 3 23
                             82.9 26.0 36.6 31.0 -71.673
           100
               153.6 152.2
## 4 19
           185
               190.3 187.4
                             97.3 37.4 44.1 41.0 -257.720
## 5 23
           159
               178.0 174.1
                             93.9 29.5 40.1 36.9 -173.230
## 6 47
           170
               178.7 177.0 92.4 36.0 43.2 37.4 -185.150
```

Example: Car seat position

seatpos mod <- lm(hipcenter ~ ., data = seatpos)</pre>

```
# the dot in the formula notation means 'all other variables'
broom::tidy(seatpos mod)
##
           term
                    estimate
                              std.error statistic
                                                      p.value
## 1 (Intercept) 436.43212823 166.5716187 2.62008697 0.01384361
## 2
            Age 0.77571620 0.5703288 1.36012113 0.18427175
## 3
         Weight 0.02631308 0.3309704 0.07950283 0.93717877
## 4
        HtShoes -2.69240774 9.7530351 -0.27605845 0.78446097
## 5
             Ht 0.60134458 10.1298739 0.05936348 0.95306980
## 6
         Seated 0.53375170 3.7618942 0.14188376 0.88815293
## 7
            Arm -1.32806864 3.9001969 -0.34051323 0.73592450
## 8
          Thigh -1.14311888 2.6600237 -0.42974011 0.67056106
## 9
            Leg -6.43904627 4.7138601 -1.36598163 0.18244531
broom::glance(seatpos mod)
    r.squared adj.r.squared
                              sigma statistic
                                              p.value df
                                                                logLik
## 1 0.6865535
                 0.6000855 37.72029 7.939971 1.305773e-05 9 -186.7317
         ATC
             BIC deviance df.residual
## 1 393.4634 409.8392 41261.78
                                       29
```

Multicollinearity

- Definition: situation where 1+ predictors are "nearly" linearly related to the others.
- · This is not a model violation, but we treat it like one because...
 - $se(\hat{\beta}_i)$ s are too big
 - it's difficult to interpret individual $se(\hat{\beta}_i)$ s
 - $se(\hat{\beta}_i)$ s change a lot with minor changes to the model/data (e.g., if we remove a case or a variable)

Diagnosing Multicollinearity

- Examine scatterplot matrix
- Examine pairwise correlations between predictors
- Look for $\hat{\beta}_i$ s with unusual signs
- Notice great sensitivity
- Calculate the Variance Inflation Factor (VIF)

cor(seatpos)

##		Age	Weight	HtShoes	Ht	Seated	Arm	Thigh	Leg	hipcenter
##	Age	1.000	0.081	-0.079	-0.09	-0.17	0.36	0.091	-0.042	0.21
##	Weight	0.081	1.000	0.828	0.83	0.78	0.70	0.573	0.784	-0.64
##	HtShoes	-0.079	0.828	1.000	1.00	0.93	0.75	0.725	0.908	-0.80
##	Ht	-0.090	0.829	0.998	1.00	0.93	0.75	0.735	0.910	-0.80
##	Seated	-0.170	0.776	0.930	0.93	1.00	0.63	0.607	0.812	-0.73
##	Arm	0.360	0.698	0.752	0.75	0.63	1.00	0.671	0.754	-0.59
##	Thigh	0.091	0.573	0.725	0.73	0.61	0.67	1.000	0.650	-0.59
##	Leg	-0.042	0.784	0.908	0.91	0.81	0.75	0.650	1.000	-0.79
##	hipcenter	0.205	-0.640	-0.797	-0.80	-0.73	-0.59	-0.591	-0.787	1.00

Variance Inflation Factor (VIF)

The variance of a given slope can be written

$$Var(\widehat{\beta}_j) = \frac{1}{1 - R_j^2} \times \frac{\sigma^2}{(n-1)s_{x_j}^2}$$

The first term is the VIF: $\frac{1}{1 - R_j^2}$

- VIF_j > 5 suspicions begin ($R_i^2 > .8$)
- VIF_j > 10 indicates a problem ($R_i^2 > .9$)
- VIF_j > 100 indicates a big problem ($R_i^2 > .99$)

Diagnosing Multicollinearity

```
vif(seatpos mod)
```

```
## Age Weight HtShoes Ht Seated Arm
## 1.997931 3.647030 307.429378 333.137832 8.951054 4.496368
## Thigh Leg
## 2.762886 6.694291
```

Remedies for collinearity

- Use model only for prediction
- Drop highly correlated variables (USE CAUTION!)
- Create composite variables
- Find new cases that "break" the observed correlation (i.e., have a different pattern)

Simplifying the model

```
seatpos mod2 <- lm(hipcenter ~ Age + Weight + Ht, data = seatpos)</pre>
summary(seatpos mod2)
##
## Call:
## lm(formula = hipcenter ~ Age + Weight + Ht, data = seatpos)
##
## Residuals:
      Min
               10 Median
                              30
                                     Max
## -91.526 -23.005 2.164 24.950 53.982
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 528.297729 135.312947 3.904 0.000426 ***
## Age
              0.519504 0.408039 1.273 0.211593
## Weight
          0.004271 0.311720 0.014 0.989149
           -4.211905 0.999056 -4.216 0.000174 ***
## Ht
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.49 on 34 degrees of freedom
## Multiple R-squared: 0.6562, Adjusted R-squared: 0.6258
## F-statistic: 21.63 on 3 and 34 DF, p-value: 5.125e-08
```

Simplifying the model

```
vif(seatpos_mod2)
## Age Weight Ht
## 1.093018 3.457681 3.463303
```

Diagnostics summary

Diagnostics summary

Before drawing any conclusions from a regression model, we must be confident it is a valid way to model the data. Our model assumes:

- **Linearity**: the conditional mean of the response is a linear function of the predictors.
- The errors have **constant variance** and are **uncorrelated**.
- The errors are normally distributed with mean zero.

It's also sensible to build a model with:

- No highly influential points.
- Low multicollinearity.