Odds Ratios

Randy Johnson

3/9/2017

Quick review of probability

This Venn diagram represents the event space for two events, A and B. The area inside of the rectangle is 1.

Quick review of probability

This represents P(A).

Quick review of probability: Union

This represents $P(A \cup B)$.

Quick review of probability: Intersection

This represents $P(A \cap B)$.

Quick review of probability: Practice

$$P(!(A \cup B)) = 0.59$$

 $P(A) = 0.29$
 $P(A \cap B) = 0.06$
 $P(A|B) = \frac{0.06}{0.18} = 0.33$
 $P(A \cap B) = 0.23$
 $P(A|B) = \frac{0.23}{0.82} = 0.28$

Definition: Odds of D given E

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	$n_{1,ullet}$
E=0	$n_{0,1}$	n _{0,0}	<i>n</i> _{0,} •
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the odds of event D given exposure are

$$\begin{split} \mathsf{P}(D=1|E=1) & \mathsf{P}(D=0|E=1) \\ &= \frac{\mathsf{P}(D=1\cap E=1)}{\mathsf{P}(E=1)} & = \frac{\mathsf{P}(D=0\cap E=1)}{\mathsf{P}(E=1)} \\ &= \frac{n_{1,1}}{\mathcal{N}} \Big/ \frac{n_{1,\bullet}}{\mathcal{N}} & = \frac{n_{1,0}}{n_{1,\bullet}} \Big/ \frac{n_{1,\bullet}}{\mathcal{N}} \end{split}$$

Definition: Odds of D given E

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	<i>n</i> _{1,•}
E=0	$n_{0,1}$	<i>n</i> _{0,0}	<i>n</i> _{0,•}
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the odds of event D given exposure are

odds
$$(D = 1|E = 1) = \frac{P(D = 1|E = 1)}{P(D = 0|E = 1)}$$
$$= \frac{n_{1,1}}{n_{1,0}} / \frac{n_{1,0}}{n_{2,0}}$$
$$= \frac{n_{1,1}}{n_{1,0}}$$

Definition: Odds of D given !E

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	<i>n</i> _{1,•}
E=0	$n_{0,1}$	n _{0,0}	<i>n</i> _{0,} •
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the odds of event D given no exposure are

$$P(D = 1 | E = 1) P(D = 0 | E = 1) = \frac{P(D = 1 \cap E = 0)}{P(E = 0)} = \frac{P(D = 0 \cap E = 1)}{P(E = 1)} = \frac{n_{0,1}}{M} / \frac{n_{0,\bullet}}{M} = \frac{n_{0,0}}{n_{0,\bullet}} / \frac{n_{0,\bullet}}{M} = \frac{n_{0,0}}{n_{0,\bullet}}$$

Definition: Odds of D given !E

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	<i>n</i> _{1,•}
E=0	$n_{0,1}$	<i>n</i> _{0,0}	<i>n</i> _{0,•}
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the odds of event D given no exposure are

odds
$$(D = 1|E = 1) = \frac{P(D = 1|E = 0)}{P(D = 0|E = 0)}$$

= $\frac{n_{0,1}}{n_{0,\bullet}} / \frac{n_{0,0}}{n_{0,\bullet}}$
= $\frac{n_{0,1}}{n_{0,0}}$

Definition: Odds Ratio

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	<i>n</i> _{1,•}
E=0	$n_{0,1}$	<i>n</i> _{0,0}	<i>n</i> _{0,} •
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the ratio of the odds of disease comparing exposure vs no exposure is

$$OR(D|E) = \frac{odds(D = 1|E = 1)}{odds(D = 1|E = 0)}$$
$$= \frac{n_{1,1}}{n_{1,0}} / \frac{n_{0,1}}{n_{0,0}}$$
$$= \frac{n_{1,1}n_{0,0}}{n_{1,0}n_{0,1}}.$$

Definition: $se(\log OR)$

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	$n_{1,ullet}$
E = 0	<i>n</i> _{0,1}	<i>n</i> _{0,0}	<i>n</i> _{0,} •
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the log OR is normally distributed, and its standard error is

$$se(\log OR) = \sqrt{\frac{1}{n_{1,1}} + \frac{1}{n_{1,0}} + \frac{1}{n_{0,1}} + \frac{1}{n_{0,0}}}.$$

Putting everything together

Given a disease outcome, D, and exposure, E, and

	D=1	D = 0	row total
E=1	36	54	90
E = 0	32	89	121
col total	68	143	211

what is the OR and 95% CI for the exposure, $\it E$? Is this statistically significant?

$$OR(D|E) = \frac{36 * 89}{32 * 54}$$

$$= 1.85$$

$$\log OR = 0.617$$

$$se(\log OR) = \sqrt{\frac{1}{36} + \frac{1}{54} + \frac{1}{32} + \frac{1}{89}}$$

$$= 0.298$$

Putting everything together

Given a disease outcome, D, and exposure, E, and

	D=1	D=0	row total
E=1	36	54	90
E = 0	32	89	121
col total	68	143	211

what is the OR and 95% CI for the exposure, *E*? Is this statistically significant?

$$OR = 1.85$$
 $95\% \ CI(\log OR) = 0.617 \pm 1.96 * 0.298$
 $= (0.031, 1.199)$
 $95\% \ CI(OR) = (1.03, 3.32)$

Logistic Regression: Review

```
set.seed(934875)
n < -100
dat <- data_frame(ts = runif(100, 0, 10), # tumor size
                  lodds = rnorm(n, (ts - 5)), # log odds of metastisis
                  odds = exp(lodds),
                  p = odds / (1 + odds),
                  metastasis = rbinom(n, 1, p))
model <- glm(metastasis ~ ts. data = dat. family = binomial)
lodds.g <- ggplot(dat, aes(ts, lodds)) +</pre>
           geom_point() +
           vlab("log Odds") +
           geom_abline(intercept = model[[1]][1], slope = model[[1]][2])
set.seed(29384)
p.g <- ggplot(dat, aes(ts, metastasis)) +</pre>
       geom_jitter(width = 0, height = .05) +
       geom_smooth(method = 'loess', se = FALSE, linetype = 2) +
       geom_line(data = arrange(augment(model), .fitted),
                 aes(ts, exp(.fitted) / (1+exp(.fitted))))
```

Logistic Regression: Review

Logistic Regression: Review

