Grundlagen der Betriebssysteme

Tim Luchterhand, Paul Nykiel (Gruppe 017) 25. Mai 2018

1 Befehlsabarbeitung

- (a) Der Prozessor wiederholt jeden Befehlszyklus folgende Aufgaben:
 - a) Lade Befehlsregister aus PC (in Instruktionsregister)
 - b) Interpretiere den Befehl
 - c) Führe den Befehl aus
 - d) PC inkrementieren

(b)

Befehl	R_0	R_1	РС
	e6	04	00
00	a4	04	04
04	a4	04	a4
a4	02	04	a8
a8	02	02	ac
ac	02	02	b0
b0	02	02	b4
b4	02	02	a8
a8	02	00	ac
ac	02	00	b0
b0	02	00	08
08	02	00	00
0c	02	00	

2 Interrupts

- (a) Es kommt ein Syscall vor (durch Aufrufen des Stop Befehls bzw. des Ausgabe-Befehls), um dem Betriebssystem zu signalisieren, dass das Programm fertig ist bzw. eine Ausgabe zu tätigen.
- (b) Alle Register (auch PC und CCR) werden in Registern gesichert. Dann wird in den Kernel-Mode gewechselt und der PC für die ISR geladen.
- (c) Vor ausführen des Interrupts muss das passende Interrupt-Flag gelöscht werden (Befehl 5C₁₆), damit der Interrupt nach ausführen nicht sofort erneut ausgeführt wird.
 - Nach ausführen des Interrupts (Befehl 64_{16}) muss der Befehl RTI aufgerufen werden, um den ursprünglichen Zustand wiederherzustellen.
- (d) Der Interrupt vor B0₁₆ könnte einerseits ein externer Interrupt sein (ausgelöst durch Timer oder Peripherie), andererseits ein User-Interrupt (ausgelöst durch das Aufrufen des Ausgabe-Befehls).
- (e) Außer Trap und externem Interrupt gibt es noch den internen Interrupt, der bei internen Fehlern/Exceptions (z.B. Division durch Null) auftritt.