# Environmental and Development Economics Module 3 - How does the environment affect development?

Raahil Madhok UMN Applied Economics

2024-09-12

## Lecture 4

How does the environment affect economic development?

### Housekeeping

Consider pitching your research idea to me during office hours

Next week, you have TWO options for the presentation paper

► Your class presentation grade is an average of each one

▶ Question about revealed preference WTP lecture (Sept 19)

### Today

▶ **Guiding question:** how does the environment affect economic development?

Start identifying envirodevonomics parameters

► Today's focus: health effects

Next time: productivity and direct income effects

### Recall our model of environment and development

$$MWTP_{e} = \frac{\lambda_{e}}{\lambda_{y}} = \frac{1}{\lambda_{y}} \left( \frac{\partial u}{\partial e} + \frac{\partial u}{\partial h} \frac{\partial h}{\partial e} \right) + \frac{\partial \Delta y}{\partial e} + \frac{\partial \Delta y}{\partial h} \frac{\partial h}{\partial e}$$

- Most research in environment/development economics seeks to identify  $\frac{\partial h}{\partial e}$ 
  - ▶ At this point,  $\frac{\partial h}{\partial e} > 0$  is unambiguous
  - Focus is on magnitudes
  - Less work on mechanisms and moderators
- ▶ What about indirect effects via productivity and health  $(\frac{\partial \Delta y}{\partial h} \frac{\partial h}{\partial e})$ ?
  - ► This is the research frontier
  - Next lecture

### Existing Work to Date

- ► Largely from developing countries (see Janet Currie papers)
  - ► Review paper: "What Do We Know About Short- and Long-Term Effects of Early-Life Exposure to Pollution?' '(Currie et al. 2014)
- ► Less in developing countries
  - Most benchmark magnitudes: Bharadwaj and Eberhard (2008); Jayachandran (2009); Chen et al. (2013); Greenstone and Hanna (2014); Arceo et al. (2016); Cesur et al. (2016); He et al. (2016); Barwick et al. (2018); Heft-Neal et al. (2018); Chang et al. (2019); Heft-Neal et al. (2019); Pullabhotla (2019); Bombardini and Li (2020); Fan et al. (2020); He et al. (2020); Adhvaryu et al. (Forthcoming); Madhok et al. (2024, Working Paper)
- Less work on non-health effects
  - See Aguilar-Gomez et al. (2022) for review
- Empirical innovations: new quasi-experiments for identifying pollution impacts
  - ► Thermal inversion, wind direction IV (see Oliva & Deryugina)
  - ► Newest technique: HYSPLIT dispersion model (NOAA)

### Existing Work to Date

- ► Consensus that there are large negative effects in developing countries
  - Little evidence on why

- Open questions:
  - ► Are marginal damages higher or lower in LMICs? (Colmer et al.,2021)
  - Are differences in marginal damages because of non-linear dose-response
  - Are differences in marginal damages because of weak institutions/development?
  - Long term effects of exposure?

Conceptual frameworks needed

#### Lets formalize our intuition

- ► Weather can harm health directly (physiological stress)
  - ▶ Or indirectly, e.g. by lowering incomes of those in weather-dependent (outdoor) jobs
- ▶ There is a market for defensive goods (e.g. medicine, AC, etc.) which  $\uparrow P(survival)$
- But in developing countries, credit constraints restrict consumption smoothing
- Lets incorporate this into a model and study the comparative statics
  - ► Goal: explain how weather affects health, considering financial constraints
  - ► Health is endogenously determined by consumption and health investments

### Setup

- ▶ **Agents:** value consumption  $c_{it}$  and health  $h_{it}$ .
- ► **Objective:** Maximize lifetime utility

$$\mathbb{E}_0\left[\sum_{t=0}^{\infty}\beta^t u_i(c_{it},h_{it})\right]$$

**Health Status**: Determined by health investments  $(q_{it})$  + exogenous weather  $(z_{it})$ 

$$h_{it} = h_i(\underbrace{q_{it}}_{(+)}, \underbrace{z_{it}}_{(-)})$$

#### Setup

#### **Production**

- $ightharpoonup c_{it}$  produced by  $f(\cdot)$ , which requires capital + labor
- ightharpoonup Assume defensive good  $q_{it}$  traded at price  $P_t$  (numeraire)

#### Labor

- ightharpoonup Agent endowed with labor  $a_{it}$  (random), sold at wage  $\omega_t$
- ▶ Labor can be affected by weather  $(z_{it})$

$$a_{it} = a_i(z_{it})$$

#### Financial Market

- ightharpoonup Agent can (partially) save/borrow to (partially) smooth consumption over t
- **Financial Constraints**: Savings  $(x_{it})$  and borrowing are limited by:
  - ▶ Borrowing constraint (mininum savings):  $x_{it} \ge -b_i(r_t)$
  - ▶ Saving constraint (maximum savings):  $x_{it} \le b_i(r_t)$
  - $\blacktriangleright$   $b(\cdot)$  unrestricted s.t. agent can be unconstrained

▶ Budget Constraint: income is used for consumption and health investments:

$$x_{i,t+1} \leq r_t x_{it} + w_t a_i(z_{it}) - P_t q_{it} - c_{it}$$

#### Equilibrium

- $\triangleright$  All markets must clear each t, which endogenously determines prices  $(r_t, w_t)$ 
  - ightharpoonup Note  $P_t$  is exogenously set in world market
- Returns to capital/labor are functions of their aggregate
  - ightharpoonup Capital demand: from production function  $f(\cdot)$
  - Capital supply: savings transformed into capital for production
- ► Market Equilibrium: set optimal demand for labor/capital = aggregate supply
  - where  $K_t = \int x_{it} di$
  - ightharpoonup wages  $w_t$  and interest rates  $r_t$  are determined in equilibrium as:

$$w_t = w(K_t), \quad r_t = r(K_t)$$

### Mechanisms relating weather to health

- **Direct health effect:** random shock  $z_{it}$  enters health directly:  $h_{it} = h_i(q_{it}, z_{it})$ 
  - ▶ Physiological channel: extreme temperature stresses cadiovascular/respiratory system
  - ▶ Impact can depend on region,  $h_i(\cdot)$
- ▶ **Indirect health effect:** through productivity  $a_i(z_{it})$ 
  - Likely in rural areas, where ag workers are outside
- ▶ **Mitigation:** agent minimizes neg. utility shock from  $z_{it}$  by purchasing  $q_{it}$ .
  - ▶ This could also be opp cost of working inside (at lower  $w_{it}$ ) to avoid outdoors
  - ▶ Effect of mitigation limited by  $\frac{\partial h_i(q_{it},z_{it})}{\partial q_{it}}$
- ► **Smoothing:** agent can also mitigate by reallocating resources b/w periods
  - ▶ Agents with near-binding borrowing constraints experience worse shocks

### Comparative Statics

▶ **Object of interest**: aggregate covariance b/w health  $h_{it}$  and weather  $z_{it}$ :

$$H_t = \left| \frac{\int h_{it} z_{it}^{(T)} di}{\int h_{it} di} \right|$$

- Rural Areas: Consider a set of changes that:
  - ightharpoonup ↑ responsiveness of  $a_i(z_{it})$  to  $z_{it}^T$  (more exposed to weather extremes).
  - ightharpoonup  $\uparrow$  prices for health goods  $P_t$  above that of urban (lower market access)
  - ightharpoonup incomes by reducing  $a_i(z_{it})$  for any  $z_{it}$
  - ightharpoonup Any one of these leads to increase in  $H_t$

**Prediction:** rural areas will have stronger correlation b/w weather and health

#### Effect of Bank Access

- ▶ Relaxing financial constraints increases either or both of  $(-b_i(r_t), b_i(r_t))$ 
  - Partial credit modeled as increase in  $b_i(r_t)$  only (i.e. can save more)
  - Allows agents to smooth consumption; draw down savings to mitigate weather shock
  - $\triangleright$  Reduces the correlation between weather shocks  $z_{it}$  and health outcomes  $h_{it}$ .

- ▶ **Prediction**: Prediction:  $H_t \downarrow$  as  $b_i(r_t) \uparrow$ 
  - ightharpoonup Areas with better financial access have smaller effect of  $z_{it}$  on health

### Aside: Climate change versus weather

- ► Climate change is long term, weather is short term
- Studying impacts of weather is easier:
  - Usually use high dimensional fixed effects
  - ▶ E.g. with district and state-year FEs, exploit monthly deviations from average
- Studying impacts of climate is harder:
  - ► There is no good counterfactual for climate change

### Deschenes et al. (2013): Weather and Death in India

- Research question: how do temperature shocks affect mortality?
  - ► How does that different between urban/rural areas?
  - ▶ What is the role of income as an intermediary?
- Setting: Indian districts from 1957-2000
- ▶ Data: daily gridded weather + annual infant mortality
- Design: panel fixed effects
  - Difference-in-differences with rural bank expansion
- Result: 1) heat ↑ mortality, 2) driven by rural populations, 3) credit access mitigates effect by facilitating consumption smoothing

#### Data

#### Rural

- ► Yields: annual, district level output/cultivated area (27 crops) (World Bank)
- ► Ag price index: mean crop price weighted by value in district (World Bank)
- Ag wages: daily wage rate (World Bank)

#### Urban

- Manufacturing productivity: output per worker (ASI)
- Urban CPI: NSS survey
- Manufacturing wages: ASI (nominal wage / CPI)

### **Empirical Strategy**

Flexible specification to model effect of daily temperature:

$$Y_{dt} = \sum_{j=1}^{11} \theta_j TMEAN_{dtj} + \sum_{k} \delta_k 1 \{RAIN_{dt} \text{ in tercile k}\} + \alpha_d + \gamma_t + \lambda_r^1 t + \lambda_r^2 t^2 + \epsilon_{dt}$$

- ightharpoonup r is a climatic region
- ► *TMEAN* is days in year *t* where:
  - ightharpoonup daily mean temp  $< 70^\circ$ ,  $\ge 97^\circ$ , or in the nine  $3^\circ$  bins in between
- $\triangleright$   $\theta_j$ 's capture non-linearities, despite having annual unit of analysis
- ► RAIN accounts for correlation b/w temperature and rainfall



### Secondary Approach

- Consolidates same information
- ► Workhorse model nowadays because more parsimonious

$$Y_{dt} = \beta \textit{CDD}80_{dt} + \sum_{k=1}^{3} \delta_k 1\{\textit{RAIN}_{dt} \text{ in tercile k}\} + \alpha_d + \gamma_t + \lambda_r^1 t + \lambda_r^2 t^2 + \epsilon_{dt}$$

- ▶ where CDD80 is cumulative degree days in district that exceeded 80°. e.g. if two days over 80, one at 82 and other at 84, then CDD=2+4=6
- ► All bins  $j < 80^{\circ}$  are zero
  - ► The three above 80° restricted to be linearly increasing in average temp
- Assumption: days when mean daily temp below 80 irrelevant for determining Y

#### Results: Yields

Test of indirect channel through labor productivity,  $a_i(z_{it})$ 



A single day with temperature over 85° reduces yields by 0.5%

### Results: Wages

Test of indirect channel through  $a_i(z_{it})$ 



A single day with temperature over 85° reduces ag wages by 0.25-0.5%

#### Results: Urban vs. Rural

Table 2: Weather and Incomes - Rural-Urban Differences, Exposure by Calendar Year Rural Urban Log (Real Wages) Log (Real Wages) Log (Productivity) Log (Productivity) Dependent Variable: (1) (2)(3)(4) A. Temperature (degree-days over 90F)/10 -0.0023\* -0.0023\*\*\* 0.0003 0.0012 (0.0006)(0.0033)(0.0036)(std error) (0.0009)[Effect of 1 std dev in CDD90] [-0.023] [-0.022] [0.002] [0.009] B. Temperature (degree-days over 80F)/10 -0.0034\*\*\* -0.0026\*\*\* -0.0006 0.0006 (std error) (0.0006)(0.0004)(0.0013)(0.0013)[Effect of 1 std dev in CDD80] I-0.1261 1-0.0981 Ī-0.0211 [0.021] C. Temperature (degree-days over 70F)/10 -0.0023\*\*\* -0.0018\*\*\* -0.0010 0.0005 (std error) (0.0004)(0.0003)(0.0008)(0.0008)[Effect of 1 std dev in CDD70] I-0.1321 I-0.1011 I-0.0531 [0.023] Observations 8.304 8.304 512 592

► This corroborates Prediction 1 from model!

### Results: by Growing Season

Table 2: Impact of Daily Temperature on All-Age Mortality in Rural and Urban India.

| _                                            | Ru        | ıral      | Urban<br>Temperature |          |  |
|----------------------------------------------|-----------|-----------|----------------------|----------|--|
|                                              | Tempe     | erature   |                      |          |  |
|                                              | 75-89°F   | >90°F     | 75-89°F              | >90°F    |  |
|                                              | (1a)      | (1b)      | (2a)                 | (2b)     |  |
| A. Exposure over Calendar Year               |           |           |                      |          |  |
| Impact of Temperature                        | 0.0021**  | 0.0047*** | 0.0001               | 0.0012   |  |
| (std error)                                  | (0.0007)  | (0.0010)  | (0.0005)             | (0.0008) |  |
| B. Exposure over Agricultural Calendar       |           |           |                      |          |  |
| Impact of Growing Season Temperature         | 0.0028*** | 0.0067*** | 0.0005               | 0.0016   |  |
| (std error)                                  | (0.0008)  | (0.0016)  | (0.0006)             | (0.0013) |  |
| Impact of Non-Growing Season Temperature     | -0.0047*  | -0.0024   | -0.0032              | -0.0020  |  |
| (std error)                                  | (0.0023)  | (0.0023)  | (0.0017)             | (0.0016) |  |
| Test of equality across agricultural seasons | 0.002     | 0.001     | 0.058                | 0.060    |  |

<sup>▶</sup> This is also consistent with Prediction 1 from model!

#### Results: Mortality



Rural: years with more days with exceeding  $87^{\circ}$  have 0.5% higher mortality

#### **Bank Access**

- Prediction 2: bank access enables consumption smoothing
  - Relaxing borrowing/saving constraints should mute relationship

- ► Test: Between 1977-1990, central bank extends banking to the poor
  - Existing banked (urban) areas must open 4 branches in unbanked (rural) areas

- Method: difference in differences
  - iction. difference in differences
  - Compare mortality in hot and cold places before and after bank access

#### Results: Credit Access

|                                        | Panel Estimates, Rural<br>Temperature |           | 2SLS, Rural       |            | 2SLS, Urban |          |
|----------------------------------------|---------------------------------------|-----------|-------------------|------------|-------------|----------|
|                                        |                                       |           |                   | Tempe      | rature      |          |
|                                        | 75-89 °F                              | >90 °F    | 75-89 °F          | >90 °F     | 75-89 °F    | >90 °F   |
|                                        | (1a)                                  | (1b)      | (2a)              | (2b)       | (3a)        | (3b)     |
| Dependent Variable is Log Annual Mo    | rtality Rate                          |           |                   |            |             |          |
| Main Effect of Temperature             | 0.0024***                             | 0.0067*** | 0.0026***         | 0.0121***  | 0.0000      | 0.0017   |
| (std error)                            | (0.0009)                              | (0.0012)  | (0.0010)          | (0.0019)   | (0.0007)    | (0.0021) |
| Main Effect of Number of Bank Branches |                                       |           | 1.0633 0.126      |            | 262         |          |
| (std error)                            |                                       |           | (0.7407) (0.1143) |            | 143)        |          |
| Temperature x Bank Branches            |                                       |           | -0.0041*          | -0.0216*** | -0.0010     | -0.0013  |
| (std error)                            |                                       |           | (0.0021)          | (0.0055)   | (0.0006)    | (0.0014) |

- ▶ Effect of moderate and hot days on mortality is moderated by bank access
- ▶ Bank branches more than offset weather-death relationship

#### Takeaway: credit enables poor to withstand environmental shocks

#### Discussion

- Aggregate data entangles ambient means and experienced exposure
- What exactly makes rural areas more vulnerable?
- ▶ How much of the weather-death effect is direct vs. indirect?
  - Empirically, we did not identify model parameters separately
- Will weather shock be enough to affect remaining lifetime income?

#### Way Forward

- Bank access represents anything that relaxes budget constraint
- Policy could have been subsidies on  $q_{it}$ , encouraging seasonal migration, etc.
  - Opean areas for research

# Back to the main question

### Back to the question

- How does environmental quality affect economic development?
- ▶ Most reduced form studies identify  $\frac{\partial h}{\partial e}$
- Recall, this is an input into estimating benefits (MTWP) of  $\uparrow e$ 
  - which we need to know in order to set optimal environmental policy
  - optimal in the sense that agents decisions are first-best
- ▶ Is physical health the only thing that matters for estimating  $\frac{\partial h}{\partial e}$ ?

### Chen et al. (2024): Air Pollution and Mental Health

- ▶ **Research question:** What is the impact of air pollution on mental health?
  - Direct mechanism: oxidative stress
  - Indirect mechanism: labor productivity, income, physical activity
- ► **Setting:** China in 2014-2015
- ▶ Data: Kessler Physchological Distress Scale
  - PM2.5 from China National Environmental Monitoring Center
- Design: instrument pollution with thermal inversions
- ▶ Results: Pollution ↑ depression
  - ► Mechanisms: lower exercise, worse physical health
  - ► Total cost = \$22.88 billion, similar to mortality costs!

### Background

- ▶ Why do we care about mental health?
  - Poverty associated with life satisfaction and stress
  - ► These mechanisms affect productivity, which perpetuates poverty
  - ► See Haushofer and Salicath (2023); Haushofer and Fehr (2014)
- ► Frontier in development economics: RCTs on income and stress
  - ► Cash transfers ↑ subjective well-being (McGuire et al., 2022)
  - ► Cash transfers ↓ suicide in Indonesia (Christian et al., 2019)
  - ► Cash transfers ↓ depression (Haushofer and Shapiro, 2016)
- ► Toxicology literature: pollution ↑ oxidative stress (Calderon-Garciduenas et al., 2003; Sørensen et al., 2003; MohanKumar et al., 2008, Power et al., 2015)

#### Background

- ▶ Theory of change: **pollution**  $\rightarrow$  **stress**  $\rightarrow$  productivity
  - Poverty correlated with pollution and stress
  - ▶ Direct effect of pollution on productivity (Graff Zivin & Niedell, 2012; California)
  - ▶ Many parts of the chain are open areas for research!

#### Air Pollution and Mental Health

What are the empirical challenges?

- OVB: pollution correlated with economic activity
  - Richer counties more polluted
  - Induces negative bias
  - ► Solution: ?
- **2** ?
- **3** ?
- **4** ?

#### Instrumental Variable: Thermal Inversion



### Instrumental Variable: Thermal Inversion



#### Instrumental Variable: Thermal Inversion

- ▶ Air is warmer near surface, becomes cooler at higher altitudes
- ► Thermal inversion: temperature-altitude gradient is reversed
  - Rare phenomenon
  - Depends on random meteorological factors
- Cool air is denser and does not rise
- Pollution becomes trapped near surface



#### Data

- Mental health: 2014 China Family Panel Study Survey
  - ▶ 16,000 rural and 13,000 urban residents (162 counties out of 1,355)
  - ► Six questions about mental health on 0-24 Scale
  - Depression, nervousness, restlessness, hopelessness, effort, worthlessness
- Pollution: PM2.5
  - Webscraped
  - Validate with satellite data?
- ► Thermal inversion (MERRA-2 Air Temperature Layers)
  - ▶ Inversion = 1 if temperature of first layer (110m) < second layer (320m)
  - ► IV: number of inversions in month prior to each interview

#### Inversions and Pollution



Figure 1. Time Trend of PM<sub>2.5</sub> and Thermal Inversion

Do thermal inversions seem rare and random?

# **Empirical Strategy**

First Stage:

$$P_{ict} = \alpha_0 + \alpha_1 I_{ict} + f(W_{ict}) + \gamma_c + \sigma_t + \mu_{ict}$$

Second Stage:

$$H_{ict} = \beta_0 + \beta_1 P_{ict} + f(W_{ict}) + \gamma_c + \sigma_t + \epsilon_{ict}$$

- $ightharpoonup P_{ict}$  is PM2.5 in month prior to interview
- $ightharpoonup I_{ict}$  is instrument, number of thermal inversions in past month
- $ightharpoonup H_{ict}$  is total mental illness score (0-24)
- $ightharpoonup f(W_{ict})$  are flexible weather controls
- $ightharpoonup \sigma_t$  are year-month FEs (**important**!)

### Main Results: Mental Health

TABLE 1—FIRST-STAGE AND IV RESULTS

| Dep. var.                                                     | First                  | stage                     | Second-stage estimation |                    |                       |                    |
|---------------------------------------------------------------|------------------------|---------------------------|-------------------------|--------------------|-----------------------|--------------------|
|                                                               | PM <sub>2.5</sub>      |                           | K6 score                |                    | Severe mental illness |                    |
|                                                               | (1)                    | (2)                       | (3)                     | (4)                | (5)                   | (6)                |
| Thermal inversions                                            | 0.2118<br>(0.0469)     | 0.2638<br>(0.0357)        |                         |                    |                       |                    |
| PM <sub>2.5</sub>                                             |                        |                           | 0.1229<br>(0.0500)      | 0.1164<br>(0.0388) | 0.0047 $(0.0025)$     | 0.0042<br>(0.0019) |
| Mean [SD] of dep. var.<br>Weather controls<br>KP F-statistics | 47.7132<br>No<br>20.36 | [18.0450]<br>Yes<br>54.56 | 2.9556<br>No            | [3.7598]<br>Yes    | 0.0438<br>No          | [0.2047]<br>Yes    |

<sup>▶ 1</sup>  $\mu/m^3$  PM2.5 ↑ mental illness by 0.1164 units (4% of mean; 0.4 $\sigma$ )

<sup>▶ 1</sup>  $\mu/m^3$  PM2.5 ↑ prob. of several mental illness by 0.42pp (9.5% of mean)

# Main Results: Symptoms

Table 4. Effect of Air Pollution on Mental Health: By Symptom

|                   | About how often do you feel |             |              |              |            |               |  |
|-------------------|-----------------------------|-------------|--------------|--------------|------------|---------------|--|
|                   | Depression                  | Nervousness | Restlessness | Hopelessness | Difficulty | Worthlessness |  |
|                   | (1)                         | (2)         | (3)          | (4)          | (5)        | (6)           |  |
| PM <sub>2.5</sub> | 0.0155**                    | 0.0045      | 0.0134***    | 0.0150***    | 0.0183***  | 0.0123**      |  |
|                   | (0.0073)                    | (0.0062)    | (0.0044)     | (0.0048)     | (0.0055)   | (0.0049)      |  |
| Observations      | 12,657                      | 12,659      | 12,660       | 12,638       | 12,657     | 12,649        |  |
| County FE         | Yes                         | Yes         | Yes          | Yes          | Yes        | Yes           |  |
| Year-by-month FE  | Yes                         | Yes         | Yes          | Yes          | Yes        | Yes           |  |
| Weather controls  | Yes                         | Yes         | Yes          | Yes          | Yes        | Yes           |  |
| Sample weights    | Yes                         | Yes         | Yes          | Yes          | Yes        | Yes           |  |
| KP F-statistic    | 36.17                       | 36.19       | 36.20        | 36.11        | 36.15      | 36.09         |  |

► Not driven by any one particular symptom

#### Main Results: Persistence



Figure A.1: Impact of PM2.5 on the K6 score

Figure A.2: Impact of PM2.5 on  $K6 \ge 12$ 

▶ Effect of pollution exposure on mental health dissipates over time

#### **Mechanisms**

Focus on indirect effects (physical health, productivity, behavior)

Table 6. Mechanism Tests

|                   | Exercise (past 1 week) |          |           | Sic         | kness (past 2 weeks)          | Self-rated health (past 1 month) |  |
|-------------------|------------------------|----------|-----------|-------------|-------------------------------|----------------------------------|--|
|                   | (1) (2)                |          | (3)       | (4)         | (5)                           | (6)                              |  |
|                   | 1-yes, 0-no            | times    | hours     | 1-yes, 0-no | 1-not serious, 5-very serious | 1-very healthy, 5-very unhealthy |  |
| PM <sub>2.5</sub> | -0.0049**              | -0.0068* | -0.0448** | 0.0020      | 0.0089*                       | 0.0092*                          |  |
|                   | (0.0022)               | (0.0035) | (0.0209)  | (0.0019)    | (0.0052)                      | (0.0056)                         |  |
| Observations      | 12,664                 | 12,663   | 12,670    | 12,670      | 3,806                         | 12,668                           |  |
| Mean of Dep. Var. | 0.4670                 | 2.4008   | 3.3681    | 0.2917      | 3.1140                        | 2.9698                           |  |
| S.D. of Dep. Var. | 0.4989                 | 3.1324   | 6.4268    | 0.4545      | 1.4053                        | 1.1816                           |  |
| County FE         | Yes                    | Yes      | Yes       | Yes         | Yes                           | Yes                              |  |
| Year-by-month FE  | Yes                    | Yes      | Yes       | Yes         | Yes                           | Yes                              |  |
| Weather controls  | Yes                    | Yes      | Yes       | Yes         | Yes                           | Yes                              |  |
| Sample weights    | Yes                    | Yes      | Yes       | Yes         | Yes                           | Yes                              |  |
| KP F-statistic    | 48.73                  | 48.57    | 48.72     | 44.92       | 59.36                         | 36.30                            |  |

- ▶ Driven by reduction in physical exercise, not other illness
- ▶ Very small impact compared to pollution effect  $(0.002\sigma \text{ vs. } 0.4\sigma)$

# Heterogeneity

|                   | The K6 Score |          |           |           |  |  |
|-------------------|--------------|----------|-----------|-----------|--|--|
|                   | (1)          | (2)      | (3)       | (4)       |  |  |
|                   | Male         | Female   | Age 16-60 | Age >= 60 |  |  |
| PM <sub>2.5</sub> | 0.0986***    | 0.0575*  | 0.0611**  | 0.1499**  |  |  |
|                   | (0.0268)     | (0.0342) | (0.0298)  | (0.0599)  |  |  |
| Observations      | 6,093        | 6,522    | 9,446     | 3,169     |  |  |
| Mean of Dep. Var. | 2.6378       | 3.2799   | 2.9504    | 3.0281    |  |  |
| S.D. of Dep. Var. | 3.5378       | 3.9405   | 3.5819    | 4.2683    |  |  |
| County FE         | Yes          | Yes      | Yes       | Yes       |  |  |
| Year-by-month FE  | Yes          | Yes      | Yes       | Yes       |  |  |
| Weather controls  | Yes          | Yes      | Yes       | Yes       |  |  |
| Sample weights    | Yes          | Yes      | Yes       | Yes       |  |  |
| KP F-statistic    | 25.14        | 43.22    | 32.11     | 27.20     |  |  |

<sup>►</sup> Why are effects larger for men?

## Economic Cost? Back of the Envelope

- ▶  $1\sigma \uparrow$  in PM2.5 leads to 9.5%  $\uparrow$  in prob. of severe mental illness
  - ightharpoonup About 0.095 imes 1.4 billion = 13.3 million additional people
- ► Annual cost per patient of mental illness in China is \$USD 3,665 (Xu et. al 2016)
- ► Assume 8% of patients with mental illness get treated (Phillips et al., 2009)
- **Economic cost of mental illness:**  $13.3 \times 3665 \times 0.008 \times 12 = 46.7$  billion USD
- ▶ Mortality cost of  $1\sigma$  PM2.5 is \$USD 30 billion in USA (Deryugina et al., 2016)

#### Issues with the back of the envelope calculation?

### Discussion

#### Next week

productivity and direct income effects

- ->
- ->