Math 225A Differential Topology: Homework 5

November 2nd, 2018

Professor Peter Petersen

Anish Chedalavada

Exercise 1. Find maps of the solid torus into itself having no fixed points. Where does the proof of the Brouwer theorem fail?

Proof. As the torus is given by $S^1 \times S^1$, we may assume the solid torus may be written as $S^1 \times D^2$, where D^2 is the closed ball of radius 1 in \mathbb{R}^2 . Let $f: S^1 \times D^2 \to S^1 \times D^2$ via $f: (\theta, x) \mapsto (\theta + \pi, x)$ where we parametrize S^1 by $\mathbb{R}/2\pi\mathbb{Z}$. Assume x is a fixed point of this map. Then we have that $\exists x \in [0, 2\pi)$ s.t. $x \equiv x \mod \pi$, which is not possible as $0 \not\equiv 0 \mod \pi$. Thus, this map has no fixed points. This is possible as the proof of the Brouwer theorem assumes that every line from x to f(x) (viewed via the parametrization to Euclidean space) must eventually intersect the boundary of the manifold, resulting in a retract to the boundary. However, for the parametrization of $S^1 \times D^2$, we have that this map yields a line from (θ, x) to $(\theta + \pi, x)$ lying entirely in $S^1 \times \{x\}$, which never leaves this subspace and thus never passes through the boundary. Thus, we cannot extend this map to a retract onto the boundary of a compact manifold and the proof fails.

Exercise 2. Prove that if the entries of an $n \times n$ matrix A are all nonnegative, then A has a real nonnegative eigenvalue.

Proof. We have that as all the entries of A are nonnegative, for any x s.t. $x_1,...,x_n \geq 0$ we have that for $Ax = b, b_1,...,b_n \geq 0$. Thus, we may view the map $f: x \mapsto \frac{Ax}{|Ax|}$ as a smooth map, normalizing the image, as a map $f: S^{n-1} \to S^{n-1}$ mapping the compact submanifold with boundary $M = \{x \in S^{n-1} | x_1,...,x_n \geq 0\}$ to itself. We have that the manifold M is homeomorphic to the closed ball $B^{n-1} \subset \mathbb{R}^{n-1}$. We now prove the following general result: If $f: B^{n-1} \to B^{n-1}$ is a continuous map, f has a fixed point.

If f is a continuous map from $\mathbb{R}^n \to \mathbb{R}^n$, we have that in a compact set it can be coordinatewise approximated by polynomials p_n s.t. $\forall \epsilon > 0 \; \exists \; N \in \mathbb{N} \; \text{s.t.} \; |p_n(x) - f(x)| < \epsilon \; \forall \; n > N.$ As polynomials are smooth, for each map p_n we have an associated fixed point c_n s.t. the c_n form a convergent sequence. We have that as B^{n-1} is compact, the function |f(x) - x| must be bounded from below by some value c > 0 (as no fixed points by assumption. However, we have that $\exists p_n$ s.t. $|p_n(x) - f(x)| < \frac{c}{2}$ for all $x \in B^{n-1}$. Thus, for associated fixed point $c_n \in B^{n-1}$, we have that $|c_n - f(c_N)| < \frac{c}{2}$, a contradiction. Thus, we have the lemma. Using the lemma, we have a map from a set homeomorphic to B^{n-1} to itself, resulting in the existence of a fixed point. Thus, the map $\frac{Ax}{|Ax|}$ must have a fixed point x, or that Ax = |Ax|x for some vector $x \in M$. Thus, A has a positive real eigenvalue.

Exercise 3. Let Y be a compact submanifold of \mathbb{R}^M , and let $w \in]mathbb{R}^M$. Show that there exists a closest point $y \in Y$, and $w - y \in N_v(Y)$.

Proof. We have that the function |w-y| is continuous and thus must attain a minimum at some point $y \in Y$. Let $c:[0,1] \to Y$ be an arbitrary curve s.t. c(0.5) = y (can select this by taking the straight line through 0 in the local parametrization of y, assuming Y is not a 0-manifold in which case the result clearly holds. The function $|c(t) - w|^2$ attains a minimum at 0.5, and so taking the derivative must yield 0 at 0.5 (local minimum). Thus, we take the derivative of $|c(t) - w|^2$, given by $2(w_1 - c_1(t))c'_1(t) + ... + 2(w_n - c_n(t))c'_n(t)|_{t=0.5}$. Thus, at 0.5, we have that w - c(0.5) is perpendicular to $c'(0.5) \in T_y(Y)$, and thus $w - y \in N_y(Y)$.

Exercise 4. Prove that if $w \in Y^{\epsilon}$, then $\pi(w)$ is the unique point closest to w in Y.