UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo vaje

Vaja 13 - Bernulijeva enačba

Luka Orlić

Kazalo

Se	Seznam uporabljenih simbolov	
1	Teoretični uvod	3
2	Naloga	4
3	Potrebščine	4
4	Skica	4
5	Meritve	5
6	Obdelava meritev	5
7	Analiza rezultatov	7

Seznam uporabljenih simbolov

Oznaka	Pomen
Δ	TEXT, enota: $UNIT$

1 Teoretični uvod

Pri stacionarnem gibanju nestisljive tekočine v cevi gibanje pojema zaradi viskoznosti in upora vsote tlakov ter povprečne gostote potencialne in kinetične energije v smeri toka. Za približen izračun si predstavljamo, da je hitrost po vsem preseku enaka in zapišemo:

$$p_1 + \rho g z_1 + \frac{1}{2} \rho v_{s1}^2 > p_2 + \rho g z_2 + \frac{1}{2} \rho v_{s2}^2$$
 (1)

Povprečna hitrost v_s je enaka Φ/S , kjer je Φ prostorninski tok, ki se vzdolž cevi ne spreminja, S pa je presek cevi na določenem mestu. Če mesti 1 in 2 med seboj nista preveč oddaljeni, smemo za približek račune neenačbe nadomestit z Bernulijevo enačbo:

$$p_1 + \rho g z_1 + \frac{1}{2} \rho v_{s1}^2 = p_2 + \rho g z_2 + \frac{1}{2} \rho v_{s2}^2, \tag{2}$$

ki je posebna oblika izreka o kinetični energiji. Za vodoravno cev $(z_1=z_2)$ veljav takem primeru:

$$p_{1} - p_{2} = \frac{1}{2} (\rho v_{s2}^{2} - \rho v_{s1}^{2})$$

$$= \frac{1}{2} \rho (\frac{1}{S_{2}^{2}} - \frac{1}{S_{1}^{2}}) \Phi^{2}$$

$$= k \Phi^{2}$$
(3)

Razlika tlakov je torej sorazmerna s kvadratom prostorninskega toka. Cev s spremenljivim presekom (Venturijeva cev) zato s pridom rabimo za merjenje prostorninskega toka. Pri tem merimo tlačno razliko, medtem ko konstanto k za dano Venturijevo cev enkrat za vselej izračunamo ali izmerimo. Pri naši vaji merimo tlačno razliko z živosrebrnim manometrom: $\Delta p = (\rho' - \rho_v)g\Delta h$, kjer je Δh razlika gladin živega srebra v krakih manometra, ρ' gostota živega srebra in ρ_v gostota vode. Zato zapišemo:

$$\Phi = K\sqrt{\Delta h},\tag{4}$$

kjer je $K^2 = (\rho' - \rho_v) \frac{g}{k}$.

2 Naloga

- i.) Določi prostorninski tok vode z Venturijevo cevjo
- ii.) Primerjaj iračunan tok s tokom direktno izmerjenim

3 Potrebščine

- Premična posoda (rezorvar) z dovodno in dvema odvodnima cevma,
- $\bullet\,$ Venturijeva cev $(d_1=6,0$ mm, $d_2=12,8{\rm mm})$ z dvema manometroma
- Steklena menzura
- $\bullet\,$ Štoparica

4 Skica

Slika 1: Shema poskusa

5 Meritve

Meritev 1					
Indeks	$\check{\operatorname{Cas}}\ [s]$				
1	14				
2	13.9				
3	13.7				
4	13.9				
5	14.1				
6	13				
Avg. čas	13.8				
$\Delta h \text{ [cm]}$	3.1				
Meritev 2					
Indeks	$\check{\operatorname{Cas}}\ [s]$				
1	18.2				
2	18				
3	18				
4	17.9				
5	18.3				
6	17.9				
Avg. čas	18.1				
$\Delta h \text{ [cm]}$	2.0				
Meritev 3					
Indeks	$\check{\operatorname{Cas}}\ [s]$				
1	25.6				
2	25.4				
3	25.2				
4	25.3				
5	25.5				
6	25.3				
Avg. čas	25.4				
$\Delta h \text{ [cm]}$	1				

6 Obdelava meritev

$$k = \frac{1}{2}\rho(\frac{1}{S_2^2} - \frac{1}{S_1^2})$$

$$K = \sqrt{(\rho' - \rho_v)\frac{g}{k}}$$

$$\Phi = \sqrt{\Delta h * \frac{g(\rho' - \rho_v)}{\frac{1}{2}\rho'(\frac{1}{S_2^2} - \frac{1}{S_1^2})}}$$

$$\Phi = \frac{V}{\overline{t}}$$
(5)

Rezultati					
Indeks	Pretok (Izr.) $[m^3/s]$	Pretok (Izm.) $[m^3/s]$	Napaka		
1	7.66E-05	7.26E-05	0.05		
2	6.16E-05	5.54E-05	0.10		
3	4.35E-05	3.94E-05	0.09		

7 Analiza rezultatov

Določili smo prostorninski pretok vode z Venturijevo cevjo ter to primerjali z direktno izmerjenemi vrednostmi. V povprečju dobimo napako okoli 8%.