Ujian Tengah Semester Fisika Komputasi 2 Program Studi S1 Reguler PTA 2015-2016

Hari/Tanggal: Selasa/10 November 2015 Waktu: 13.00-14.40 (100 menit)

Dosen: Dr. M. Aziz Majidi dan Dr. Imam Fachruddin

1. Problem untuk mengihitung energi keadaan-keadaan terikat (bound states) partikel bermassa m dalam sebuah sumur potensial satu dimensi dengan kedalaman V_0 dan lebar a dapat diselesaikan secara analitik hingga menghasilkan hubungan

$$\frac{\sqrt{\lambda - y^2}}{y} = \tan y$$
 untuk keadaan dengan paritas genap, dan (1.1)

$$\frac{\sqrt{\lambda - y^2}}{y} = \tan y$$
 untuk keadaan dengan paritas genap, dan (1.1)

$$\frac{\sqrt{\lambda - y^2}}{y} = -\frac{1}{\tan y}$$
 untuk keadaan dengan paritas ganjil. (1.2)

di mana

$$\lambda = \left(\frac{2ma^2}{\hbar^2}\right)V_0\tag{1.3}$$

Selesaikanlah persamaan (1.1) dan (1.2) di atas secara numerik dengan metode pencarian akar fungsi (metode bisection atau secant) untuk mendapatkan nilai y terendah (di mana y > 0) yang memenuhi masing-masing persamaan tersebut. Selanjutnya, dari nilai-nilai y tersebut hitunglah 2 (dua) nilai energi terendah dari problem di atas melalui hubungan

$$E = \left(\frac{\hbar^2}{2ma^2}\right)y^2 - V_0$$

Note: Untuk perhitungan Anda, ambil $V_0 = 10 \text{ eV}$, anggap m massa efektif partikel dan a dipilih sedemikian hingga $\frac{\hbar^2}{2ma^2}$ = 1 eV. (nilai: 25)

2. Berikut suatu set data spektroskopi hipotetik yang memuat 16 titik data:

Energi foton	Intensitas
(eV)	(satuan sembarang)
1.5	3.532
2.067	1.939
2.633	1.992
3.2	2.653
3.767	2.611
4.333	1.731
4.9	1.126
5.467	0.886

Energi foton	Intensitas
(eV)	(satuan sembarang)
6.033	0.913
6.6	1.145
7.167	1.185
7.733	0.815
8.3	0.504
8.867	0.331
9.433	0.235
10.0	0.176

- a. Lakukan interpolasi Lagrange kubik sehingga Anda dapati minimal 100 pasang titik data. Plot hasil interpolasi Anda dengan gnuplot. (nilai: 25)
- b. Integrasikan kurva hasil interpolasi di atas dengan metode Simpson antara 1.5 dan 10.0. (nilai: 25)
- 3. Dengan metode dekomposisi LU tentukan determinan (nilai: 10) dan inverse (nilai: 15) matrix berikut:

$$A = \begin{bmatrix} 9 & 11 & 7 & 6 & 8 \\ 12 & 2 & 10 & 3 & 5 \\ 13 & 14 & 15 & 16 & 4 \\ 17 & 18 & 19 & 20 & 21 \\ 22 & 23 & 24 & 25 & 26 \end{bmatrix}$$