Aprendizagem de Máquina: Atividade 06 – Pré-Processamento de Dados

Carlos Emmanuel Pereira Alves Curso de Bacharelado em Ciência da Computação Universidade Federal do Agreste de Pernambuco (UFAPE) Garanhuns, Brasil carlos.emmanuel.236@gmail.com

- 1) Nesta questão você deve utilizar a base Student Performance, archive.ics.uci.edu/ml/datasets/Student+Performance (ver arquivo student-mat.csv no student.zip). Assuma a última coluna (G3, que representa a nota final de cada estudante) como classe. Pode utilizar biblioteca.
 - a) Explique qual a forma mais adequada para converter todos os atributos da base para numéricos (exceto a classe).
 Primeiro vamos separar os dados que já são numéricos e não precisam ser convertidos, que são: age, Medu, Fedu, traveltime, studytime, failures, famrel, freetime, goout, Dalc, Walc, health, absences, G1, G2. Agora com os atributos restantes vamos fazer a conversão para os que são binários e não-binários.

Binários (nominais e ordinais): school, sex, address, famsize, Pstatus, schoolsup, famsup, paid, activities, nursery, higher, internet, romantic. Não binário (nominais): Mjob, Fjob, reason, guardian.

b) Converta todos os atributos da base para numéricos.

c) Calcule o intervalo de confiança do RMSE para o 100 repetições de holdout 50/50 utilizando o classificador 1-NN com distância Euclidiana.

```
cols = [ 'Mjob_at_home', 'Mjob_health', 'Mjob_other', 'Mjob_services', 'Mjob_teacher',
    'Fjob_at_home', 'Fjob_health', 'Fjob_other', 'Fjob_services', 'Fjob_teacher',
    'reason_course', 'reason_home', 'reason_other', 'reason_reputation',
    'guardian_father', 'guardian_mother', 'guardian_other',
    'school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu',
    'traveltime', 'studytime', 'failures', 'schoolsup',
    'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel',
    'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3']
 rmse_list = []
 for i in range(100):
   X_train, X_test, y_train, y_test = train_test_split(transformed_data[cols[:-1]], transformed_data['63'], test_size=0.5)
   knn = KNeighborsClassifier(n_neighbors=1, weights="distance", metric="euclidean")
   knn.fit(X_train, y_train)
   predict = knn.predict(X_test)
   rmse = mean_squared_error(y_test, predict, squared=False)
   rmse_list = np.append(rmse_list, rmse)
mean = np.mean(rmse list)
dev = np.std(rmse_list)
confidence_interval_n = round(mean - (1.96 * dev), 5) confidence_interval_p = round(mean + (1.96 * dev), 5)
print("Média do RMSE:", mean)
print("Desvio padrão do RMSE:", dev)
print(f"Intervalo de confiança do RMSE: {confidence_interval_n} {confidence_interval_p}")
Média do RMSE: 2.4295607474620673
Desvio padrão do RMSE: 0.2037829818323642
Intervalo de confiança do RMSE: 2.03015 2.82898
```

- d) Faça o teste de hipótese comparando o intervalo de confiança da letra anterior com o intervalo de confiança pareado do RMSE utilizando apenas a características originalmente numéricas (removendo as características originalmente categóricas).
- 2) Utilize a base Student Performance (ver arquivo student-mat.csv no student.zip) archive.ics.uci.edu/ml/datasets/Student+Performance. Assuma a última coluna (G3, que representa a nota nal de cada estudante) como classe.
 - a) Converta a coluna da classe (atributo numérico) para uma variável categórica binária. Após esta conversão é possível realizar as tarefas a seguir.
 - Converti utilizando o critério de que 14 é a nota mínima exigida para ser aprovado então se G3 < 14; G3 = Failed; e se G3 > 13; G3 = Approved. Utilizei o código da questão 1 letra B, e adicionei o código abaixo.

G1	G2	G3
5.0	6.0	Failed
5.0	5.0	Failed
7.0	8.0	Failed
15.0	14.0	Approved
6.0	10.0	Failed
15.0	15.0	Approved
12.0	12.0	Failed
6.0	5.0	Failed
16.0	18.0	Approved
14.0	15.0	Approved

b) Calcule o intervalo de confiança da acurácia para o 100 repetições de holdout 50/50 utilizando o classificador 1-NN com distância Euclidiana.

```
'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel',
         'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3']
scores = []
for i in range(100):
 X_train, X_test, y_train, y_test = train_test_split(transformed_data[cols[:-1]], transformed_data['63'], test_size=0.5)
 knn = KNeighborsClassifier(n_neighbors=1, weights="distance", metric="euclidean")
 knn.fit(X_train, y_train)
 score = knn.score(X_test, y_test)
 scores = np.append(scores, score)
med = np.average(scores)
dev = scores.std()
confidence_interval_n = round(med - (1.96 * dev), 5)
confidence_interval_p = round(med + (1.96 * dev), 5)
print("Média:", med)
print("Desvio padrão:", dev)
print(f"Intervalo de confiança: {confidence_interval_n} {confidence_interval_p}")
Média: 0.8968686868686868
Desvio padrão: 0.016768589484712344
Intervalo de confiança: 0.864 0.92974
```

- 3) Utilizando a base Forest Fires. archive.ics.uci.edu/ml/datasets/Forest+Fires
 - a) Explique qual a forma mais adequada para converter todos os atributos da base para numéricos (exceto a classe).
 - Os únicos atributos que precisam ser convertidos são: month e day. A forma mais adequada vai ser a utilização de dados cíclicos, por se tratar de dias da semana e do mês.
 - b) Converta todos os atributos da base para numéricos.

```
import pandas as pd
import numpy as np
import math
from google.colab.data_table import DataTable
DAYS = {
  'mon': 2,
  'tue': 3,
  'wed': 4,
  'thu': 5,
  'fri': 6,
  'sat': 7,
MONTHS = {
  'jan': 1,
   'mar': 3,
   'apr': 4,
   'may': 5,
   'jun': 6,
   'aug': 8,
  'oct': 10,
  'nov': 11,
  'dec': 12,
cols = ['X', 'Y', 'month', 'day', 'FFMC', 'DMC', 'DC', 'ISI', 'temp', 'RH', 'wind', 'rain', 'area']
data = pd.read_csv('forestfires.csv', header=0, names=cols, sep= ',')
month_cos_all = []
month_sin_all = []
day_cos_all = []
day_sin_all = []
for i, row in data.iterrows():
  month = MONTHS[row['month']]
  month_cos = round(math.cos(2 * math.pi * month / 12), 2)
 month_cos_all = np.append(month_cos_all, month_cos)
  month_sin = round(math.sin(2 * math.pi * month / 12), 2)
  month_sin_all = np.append(month_sin_all, month_sin)
  day = DAYS[row['day']]
  day_cos = round(math.cos(2 * math.pi * day / 7), 2)
  day_cos_all = np.append(day_cos_all, day_cos)
  day_sin = round(math.sin(2 * math.pi * day / 7), 2)
  day_sin_all = np.append(day_sin_all, day_sin)
data['month_cos'] = month_cos_all
data['month_sin'] = month_sin_all
data['day_cos'] = day_cos_all
data['day_sin'] = day_sin_all
data.drop(['month', 'day'], inplace=True, axis=1)
data.head(n=10)
```

	x	Y	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	month_cos	month_sin	day_cos	day_sin
0	7	5	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.0	0.0	1.00	0.62	-0.78
1	7	4	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.0	0.5	-0.87	-0.90	0.43
2	7	4	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.0	0.5	-0.87	1.00	-0.00
3	8	6	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.0	0.0	1.00	0.62	-0.78
4	8	6	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.0	0.0	1.00	0.62	0.78
5	8	6	92.3	85.3	488.0	14.7	22.2	29	5.4	0.0	0.0	-0.5	-0.87	0.62	0.78
6	8	6	92.3	88.9	495.6	8.5	24.1	27	3.1	0.0	0.0	-0.5	-0.87	-0.22	0.97
7	8	6	91.5	145.4	608.2	10.7	8.0	86	2.2	0.0	0.0	-0.5	-0.87	-0.22	0.97
8	8	6	91.0	129.5	692.6	7.0	13.1	63	5.4	0.0	0.0	-0.0	-1.00	-0.90	0.43
9	7	5	92.5	88.0	698.6	7.1	22.8	40	4.0	0.0	0.0	-0.0	-1.00	1.00	-0.00

c) Calcule o intervalo de confiança do RMSE para o 100 repetições de holdout 50/50 utilizando o classificador 1-NN com distância Euclidiana.

```
rmse_list = []
data = data.reindex(columns=cols)
le = LabelEncoder()
data['area'] = le.fit_transform(data['area'])
for i in range(100):
  X_train, X_test, y_train, y_test = train_test_split(data[cols[:-1]], data['area'], test_size=0.5)
  knn = KNeighborsClassifier(n_neighbors=1, weights="distance", metric="euclidean")
  knn.fit(X_train, y_train)
  predict = knn.predict(X_test)
  rmse = mean_squared_error(y_test, predict, squared=False)
  rmse_list = np.append(rmse_list, rmse)
med = np.average(rmse_list)
dev = rmse_list.std()
confidence_interval_n = round(med - (1.96 * dev), 5)
confidence_interval_p = round(med + (1.96 * dev), 5)
print("Média:", med)
print("Desvio padrão:", dev)
print(f"Intervalo de confiança: {confidence_interval_n} {confidence_interval_p}")
Média: 112.27787730760838
Desvio padrão: 4.017962194121639
Intervalo de confiança: 104.40267 120.15308
```

4) Utilizando a base Forest Fires. Realize uma transformação na variável que representa a classe do problema. Cada valor da classe deve ser substituído pelo valor do seu logaritmo na base b:

$$y_i' = log_b(y_i + 1),$$

em que y'_i e y_i são, respectivamente, valor transformado e o valor original da classe do exemplo i e b é a base do logaritmo. Calcule o intervalo de confiança do RMSE para o 100 repetições de holdout 50/50 utilizando o classificador 1-NN com distância Euclidiana.

Utilizei o código da Questão 3 Letra B adicionado do seguinte:

```
rmse_list = []
data = data.reindex(columns=cols)
data['area'] = np.log(data['area'] + 1) / np.log(10)
for i in range(100):
 X_train, X_test, y_train, y_test = train_test_split(data[cols[:-1]], data['area'], test_size=0.5)
 knn = KNeighborsRegressor(n_neighbors=1, weights="distance", metric="euclidean")
 knn.fit(X_train, y_train)
 predict = knn.predict(X_test)
 rmse = mean_squared_error(y_test, predict, squared=False)
 rmse_list = np.append(rmse_list, rmse)
med = np.mean(rmse_list)
dev = np.std(rmse_list)
confidence interval n = round(med - (1.96 * dev), 5)
confidence_interval_p = round(med + (1.96 * dev), 5)
print(f"Intervalo de confiança: {confidence interval n} {confidence interval p}")
Intervalo de confiança: 0.79495 0.91284
```

5) A transformação inversa em relação a questão anterior é

$$y_i = b^{y'_i} - 1.$$

Refaça a questão anterior calculando a transformação inversa após a classificação e antes de calcular o RMSE. O objetivo desta questão é utilizar o valor transformado da classe para fazer a previsão e calcular o RMSE utilizando a escala original dos dados.

```
rmse_list = []
data = data.reindex(columns=cols)
data['area'] = np.log(data['area'] + 1) / np.log(10)
for i in range(100):
 X_train, X_test, y_train, y_test = train_test_split(data[cols[:-1]], data['area'], test_size=0.5)
 knn = KNeighborsRegressor(n_neighbors=1, weights="distance", metric="euclidean")
 knn.fit(X_train, y_train)
 predict = knn.predict(X_test)
 y_test = (10 ** y_test) - 1
 predict = (10 ** predict) - 1
 rmse = mean_squared_error(y_test, predict, squared=False)
 rmse_list = np.append(rmse_list, rmse)
med = np.mean(rmse_list)
dev = np.std(rmse_list)
confidence_interval_n = round(med - (1.96 * dev), 5)
confidence_interval_p = round(med + (1.96 * dev), 5)
print(f"Intervalo de confiança: {confidence_interval_n}
                                                    {confidence_interval_p}")
Intervalo de confiança: 54.12053 128.80049
```

- 6) Utilizando a base Car Evaluation. archive.ics.uci.edu/ml/datasets/Car+Evaluation
 - a) Crie uma versão da base assumindo que todos os atributos são ordinais.

```
import <mark>pandas</mark> as pd
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
cols = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'class']
buying = ['low', 'med', 'high', 'vhigh']
maint = ['low', 'med', 'high', 'vhigh']
doors = ['2', '3', '4', '5more']
persons = ['2', '4', 'more']
lug_boot = ['small', 'med', 'big']
safety = ['low', 'med', 'high']
classification = ['unacc', 'acc', 'good', 'vgood']
data = pd.read_csv('car.data', header=None, names=cols, sep=',')
enc = OrdinalEncoder(categories=[buying, maint, doors, persons, lug_boot, safety, classification])
data = pd.DataFrame(enc.fit_transform(data), columns=cols)
data.head()
                                                                 1
                                                                       Ш
    buying maint doors persons lug_boot safety class
0
       30
               30
                      0.0
                                0.0
                                           0.0
                                                   0.0
                                                           0.0
 1
       3.0
               3.0
                      0.0
                                0.0
                                           0.0
                                                           0.0
       3.0
               3.0
                      0.0
                                0.0
                                           0.0
                                                   2.0
                                                           0.0
3
       3.0
               3.0
                      0.0
                                0.0
                                           1.0
                                                   0.0
                                                           0.0
       3.0
               3.0
                      0.0
                                0.0
                                                           0.0
```

b) Crie uma versão da base assumindo que todos os atributos NÃO são ordinais

c) Calcule, para cada versão da base, de forma pareada, os intervalos de confiança da acurácia para o 100 repetições de holdout 50/50 utilizando o classificador 1-NN com distância Euclidiana. Faça o teste de hipótese comparando os intervalos de confiança para verificar se há diferença significativa da acurácia entre os dois casos.

Como mostrado abaixo, o 0 está fora do intervalo, então rejeitamos o H_0 , ou seja, os classificadores não tem o mesmo erro. Analisando os dados acima vemos que, a base ordinal tem uma taxa de acerto significativamente maior.

```
import numpy as np
 rom sklearn.preprocessing import OrdinalEncoder
 from sklearn.model_selection import train_test_split
 From sklearn.neighbors import KNeighborsClassifier
 from sklearn.preprocessing import OneHotEncoder
 from sklearn.compose import make_column_transformer
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
buying = ['low', 'med', 'high', 'vhigh']
maint = ['low', 'med', 'high', 'vhigh']
doors = ['2', '3', '4', '5more']
persons = ['2', '4', 'more']
lug_boot = ['small', 'med', 'big']
safety = ['low', 'med', 'high']
classification = ['unacc', 'acc', 'good', 'vgood']
data = pd.read_csv('car.data', header=None, names=cols, sep=',')
enc = OrdinalEncoder(categories=[buying, maint, doors, persons, lug_boot, safety, classification])
data1 = pd.DataFrame(enc.fit_transform(data), columns=cols)
transformer = make_column_transformer((OneHotEncoder(), ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']), remainder='passthrough', verbose_feature_names_out=False)
transformed = transformer.fit_transform(data)
 data2 = pd.DataFrame(transformed, columns=transformer.get_feature_names_out())
cols alt = transformer.get_feature_names_out()
data_x = data1[cols[:-1]]
data_y = data1['class']
data alt x = data2[cols alt[:-1]]
data_alt_y = data2['class']
data_scores = []
data_alt_scores = []
  train_X, test_X, train_y, test_y = train_test_split(data_x, data_y, test_size=0.5)
   knn = KNeighborsClassifier(n neighbors=1, weights="distance", metric="euclidean")
   knn.fit(train_X, train_y)
  data_score = knn.score(test_X, test_y)
  data_scores = np.append(data_scores, data_score)
   alt_train_X, alt_test_X, alt_train_y, alt_test_y = train_test_split(data_alt_x, data_alt_y, test_size=0.5)
   knn_alt = KNeighborsClassifier(n_neighbors=1, weights="distance", metric="euclidean")
   knn alt.fit(alt train X, alt train y)
   data_alt_score = knn_alt.score(alt_test_X, alt_test_y)
   data_alt_scores = np.append(data_alt_scores, data_alt_score)
```

```
Diferenca das 100 taxas de acerto:
[0.05092593 0.05092593 0.08912037 0.05902778 0.04513889 0.01041667
0.05671296 0.06712963 0.02662037 0.06944444 0.03703704 0.04976852
0.05208333 0.06481481 0.07407407 0.07175926 0.05787037 0.05439815
0.04861111 0.05555556 0.03703704 0.06597222 0.07291667 0.01967593
0.02893519 0.07407407 0.04976852 0.04513889 0.06944444 0.09606481
0.04513889 0.06134259 0.01851852 0.0625
                                            0.04282407 0.03587963
0.08796296 0.07060185 0.05787037 0.04166667 0.03356481 0.08333333
0.07407407 0.03587963 0.03125 0.09143519 0.0625 0.05902778
0.04282407 0.04976852 0.03703704 0.03935185 0.05555556 0.0162037
0.05902778 0.05902778 0.03009259 0.06481481 0.08333333 0.04050926
0.04166667 0.02314815 0.05555556 0.0462963 0.05439815 0.0462963
0.02777778 0.05787037 0.08564815 0.08333333 0.06134259 0.0787037
0.05092593 0.05902778 0.08333333 0.06134259 0.04861111 0.04861111
0.06018519 0.06828704 0.07060185 0.03356481 0.04050926 0.06018519
0.06712963 0.02430556 0.06481481 0.05555556 0.0787037 0.04282407
0.04398148 0.05092593 0.03472222 0.0462963 0.05787037 0.0474537
0.07523148 0.03240741 0.04513889 0.04398148]
```

Intervalo de confiança: 0.01858 0.08906

	Ordinal	Não Ordinal	Diferença				
0	0.815972	0.765046	0.050926	50	0.810185	0.773148	0.037037
1	0.834491	0.783565	0.050926	51	0.819444	0.780093	0.039352
2	0.859954	0.770833	0.089120	52	0.825231	0.769676	0.055556
3	0.826389	0.767361	0.059028	53	0.813657	0.797454	0.016204
4	0.824074	0.778935	0.045139	54	0.835648	0.776620	0.059028
5	0.812500	0.802083	0.010417	55	0.815972	0.756944	0.059028
6	0.842593	0.785880	0.056713	56	0.828704	0.798611	0.030093
7	0.849537	0.782407	0.067130	57	0.846065	0.781250	0.064815
8	0.829861	0.803241	0.026620	58	0.866898	0.783565	0.083333
9	0.848380	0.778935	0.069444	59	0.825231	0.784722	0.040509
10	0.810185	0.773148	0.037037	60	0.829861	0.788194	0.041667
11	0.825231	0.775463	0.049769	61	0.820602	0.797454	0.023148
12	0.834491	0.782407	0.052083	62	0.839120	0.783565	0.055556
13	0.832176	0.767361	0.064815	63	0.817130	0.770833	0.046296
14	0.828704	0.754630	0.074074	64	0.829861	0.775463	0.054398
15	0.843750	0.771991	0.071759	65	0.828704	0.782407	0.046296
16	0.836806	0.778935	0.057870	66	0.817130	0.789352	0.027778
17	0.822917	0.768519	0.054398	67	0.833333	0.775463	0.057870
18	0.827546	0.778935	0.048611	68	0.856481	0.770833	0.085648
19	0.841435	0.785880	0.055556	69	0.839120	0.755787	0.083333
20	0.827546	0.790509	0.037037	70	0.834491	0.773148	0.061343
21	0.832176	0.766204	0.065972	71	0.841435	0.762731	0.078704
22	0.829861	0.756944	0.072917	72	0.828704	0.777778	0.050926
23	0.788194	0.768519	0.019676	73	0.819444	0.760417	0.059028
24	0.810185	0.781250	0.028935	74	0.832176	0.748843	0.083333
25	0.842593	0.768519	0.074074	75	0.844907	0.783565	0.061343
26	0.822917	0.773148	0.049769	76	0.832176	0.783565	0.048611
27	0.827546	0.782407	0.045139	77	0.825231	0.776620	0.048611
28	0.849537	0.780093	0.069444	78	0.826389	0.766204	0.060185
29	0.859954	0.763889	0.096065	79	0.844907	0.776620	0.068287
30	0.832176	0.787037	0.045139	80	0.850694	0.780093	0.070602
31	0.832176	0.770833	0.061343	81	0.817130	0.783565	0.033565
32	0.787037	0.768519	0.018519	82	0.820602	0.780093	0.040509
33	0.847222	0.784722	0.062500	83	0.832176	0.771991	0.060185
34	0.811343	0.768519	0.042824	84	0.826389	0.759259	0.067130
35	0.842593	0.806713	0.035880	85	0.821759	0.797454	0.024306
36	0.841435	0.753472	0.087963	86	0.846065	0.781250	0.064815
37	0.843750	0.773148	0.070602	87	0.817130	0.761574	0.055556
38	0.827546	0.769676	0.057870	88	0.834491	0.755787	0.078704
39	0.833333	0.791667	0.041667	89	0.811343	0.768519	0.042824
40	0.824074	0.790509	0.033565	90	0.804398	0.760417	0.043981
41	0.820602	0.737269	0.083333	91	0.829861	0.778935	0.050926
42	0.842593	0.768519	0.074074	92	0.805556	0.770833	0.034722
43	0.819444	0.783565	0.035880	93	0.818287	0.771991	0.046296
44	0.818287	0.787037	0.031250	94	0.848380	0.790509	0.057870
45	0.831019	0.739583	0.091435	95	0.849537	0.802083	0.047454
46	0.836806	0.774306	0.062500	96	0.847222	0.771991	0.075231
47	0 022176	0.773148	0.059028	97	0.811343	0.778935	0.032407
	0.832176	0.//5140	0.033020				
48	0.807870	0.765046	0.042824	98	0.814815 0.822917	0.769676 0.778935	0.045139 0.043981

- d) Faça o teste de hipótese comparando os intervalos de confiança da letra anterior com o intervalo de confiança pareado da acurácia calculado utilizando as características originais utilizando o 1-NN com distância de Hamming.
 - * hamming para letra (b)
 - * código termômetro (binário mantendo as características ordinais)