PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/35, 16/12, C12Q 1/68, C12N 15/62, G01N 33/53

(11) International Publication Number:

WO 98/16645

A2

(43) International Publication Date:

23 April 1998 (23.04.98)

(21) International Application Number:

PCT/US97/18214

(22) International Filing Date:

7 October 1997 (07.10.97)

(30) Priority Data:

08/729,622 08/818,111 11 October 1996 (11.10.96)

13 March 1997 (13.03.97)

US US

- (71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).
- (72) Inventors: REED, Steven, G.; 2843 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 25th Avenue N.W., Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court N.E., Bainbridge Island, WA 98021 (US). HOUGHTON, Raymond; 2636 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 36th Avenue S.W., Seattle, WA 98126 (US).

- (74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).
- (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

(57) Abstract

Compounds and methods for diagnosing tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of one or more *M. tuberculosis* proteins, and DNA sequences encoding such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of *M. tuberculosis* infection in patients and biological samples. Antibodies directed against such polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	4.11	ES	Spain	LS	Lesotho	SI	Slovenia
AL	Albania		Spain Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FI		LU	Luxembourg	SN	Senegal
AT	Austria	FR	France		~	SZ.	Swaziland
ΑŬ	Australia	GA	Gabon	LV	Latvia	TD	Chad
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TG	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova		Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	- LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

TECHNICAL FIELD

The present invention relates generally to the detection of *Mycobacterium* tuberculosis infection. The invention is more particularly related to polypeptides comprising a *Mycobacterium tuberculosis* antigen, or a portion or other variant thereof, and the use of such polypeptides for the serodiagnosis of *Mycobacterium tuberculosis* infection.

BACKGROUND OF THE INVENTION

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis will require effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium for this purpose is Bacillus Calmette-Guerin (BCG), an avirulent strain of *Mycobacterium bovis*. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable incubation at the injection

10

20

25

site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of *M. tuberculosis* immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against *M. tuberculosis* infection is illustrated by the frequent occurrence of *M. tuberculosis* in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-γ), which, in turn, has been shown to trigger the anti-mycobacterial effects of macrophages in mice. While the role of IFN-γ in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN-γ or tumor necrosis factor-alpha, activates human macrophages to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN-γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review of the immunology of *M. tuberculosis* infection see Chan and Kaufmann, in *Tuberculosis*: *Pathogenesis*, *Protection and Control*, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved diagnostic methods for detecting tuberculosis. The present invention fulfills this need and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

(a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);

- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116); (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117); 5 (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118); Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID (e) NO: 119); (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID 10 NO: 120); (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121); Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (h) (SEQ ID NO: 122); 15 Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-(i) Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123); **(j)** Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: 129) 20 (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or **(l)** Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly;
- 25 wherein Xaa may be any amino acid.

(SEQ ID NO: 131)

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

20

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124)
- 5 wherein Xaa may be any amino acid.

In another embodiment, the soluble *M. tuberculosis* antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an antigenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 26-51, 133, 134, 158-178 and 196, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 26-51, 133, 134, 158-178 and 196 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, recombinant expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise: (a) contacting a biological sample with at least one of the above polypeptides; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides in combination with a detection reagent.

15

20

25

30

The present invention also provides methods for detecting *M. tuberculosis* infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least one oligonucleotide primer in a polymerase chain reaction, the oligonucleotide primer being specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of such a DNA sequence.

In a further aspect, the present invention provides a method for detecting *M. tuberculosis* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of such a DNA sequence.

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *M. tuberculosis* infection.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1A and B illustrate the stimulation of proliferation and interferon- γ production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figures 2A-D illustrate the reactivity of antisera raised against secretory *M. tuberculosis* proteins, the known *M. tuberculosis* antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with *M. tuberculosis* lysate (lane 2), *M. tuberculosis* secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).

20

25

Figure 3A illustrates the stimulation of proliferation in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen, TbRal 1.

Figure 3B illustrates the stimulation of interferon-γ production in a TbH-95 specific T cell clone by secretory *M. tuberculosis* proteins, PPD and recombinant TbH-9.

Figure 4 illustrates the reactivity of two representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate.

Figure 5 shows the reactivity of four representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of the 38 kD antigen.

Figure 6 shows the reactivity of recombinant 38 kD and TbRall antigens with sera from *M. tuberculosis* patients, PPD positive donors and normal donors.

Figure 7 shows the reactivity of the antigen TbRa2A with 38 kD negative sera.

Figure 8 shows the reactivity of the antigen of SEQ ID NO: 60 with sera from *M. tuberculosis* patients and normal donors.

Figure 9 illustrates the reactivity of the recombinant antigen TbH-29 (SEQ ID NO: 137) with sera from *M. tuberculosis* patients, PPD positive donors and normal donors as determined by indirect ELISA.

Figure 10 illustrates the reactivity of the recombinant antigen TbH-33 (SEQ ID NO: 140) with sera from *M. tuberculosis* patients and from normal donors, and with a pool of sera from *M. tuberculosis* patients, as determined both by direct and indirect ELISA

Figure 11 illustrates the reactivity of increasing concentrations of the recombinant antigen TbH-33 (SEQ ID NO: 140) with sera from M. tuberculosis patients and from normal donors as determined by ELISA.

- SEQ. ID NO. 1 is the DNA sequence of TbRa1.
- SEQ. ID NO. 2 is the DNA sequence of TbRa10.
- SEQ. ID NO. 3 is the DNA sequence of TbRal1.
- 30 SEQ. ID NO. 4 is the DNA sequence of TbRa12.

	SEQ. ID NO. 5 is the DNA sequence of TbRa13.
	SEQ. ID NO. 6 is the DNA sequence of TbRa16.
	SEQ. ID NO. 7 is the DNA sequence of TbRa17.
	SEQ. ID NO. 8 is the DNA sequence of TbRa18.
5	SEQ. ID NO. 9 is the DNA sequence of TbRa19.
	SEQ. ID NO. 10 is the DNA sequence of TbRa24.
	SEQ. ID NO. 11 is the DNA sequence of TbRa26.
	SEQ. ID NO. 12 is the DNA sequence of TbRa28.
	SEQ. ID NO. 13 is the DNA sequence of TbRa29.
10	SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
	SEQ. ID NO. 15 is the DNA sequence of TbRa3.
	SEQ. ID NO. 16 is the DNA sequence of TbRa32.
	SEQ. ID NO. 17 is the DNA sequence of TbRa35.
	SEQ. ID NO. 18 is the DNA sequence of TbRa36.
15	SEQ. ID NO. 19 is the DNA sequence of TbRa4.
	SEQ. ID NO. 20 is the DNA sequence of TbRa9.
	SEQ. ID NO. 21 is the DNA sequence of TbRaB.
	SEQ. ID NO. 22 is the DNA sequence of TbRaC.
	SEQ. ID NO. 23 is the DNA sequence of TbRaD.
20	SEQ. ID NO. 24 is the DNA sequence of YYWCPG.
	SEQ. ID NO. 25 is the DNA sequence of AAMK.
	SEQ. ID NO. 26 is the DNA sequence of TbL-23.
	SEQ. ID NO. 27 is the DNA sequence of TbL-24.
	SEQ. ID NO. 28 is the DNA sequence of TbL-25.
25	SEQ. ID NO. 29 is the DNA sequence of TbL-28.
	SEQ. ID NO. 30 is the DNA sequence of TbL-29.
	SEQ. ID NO. 31 is the DNA sequence of TbH-5.
	SEQ. ID NO. 32 is the DNA sequence of TbH-8.
	SEQ. ID NO. 33 is the DNA sequence of TbH-9.
30	SEQ. ID NO. 34 is the DNA sequence of TbM-1.

SEQ. ID NO. 35 is the DNA sequence of TbM-3. SEQ. ID NO. 36 is the DNA sequence of TbM-6. SEO. ID NO. 37 is the DNA sequence of TbM-7. SEQ. ID NO. 38 is the DNA sequence of TbM-9. 5 SEO. ID NO. 39 is the DNA sequence of TbM-12. SEO. ID NO. 40 is the DNA sequence of TbM-13. SEQ. ID NO. 41 is the DNA sequence of TbM-14. SEO. ID NO. 42 is the DNA sequence of TbM-15. SEO. ID NO. 43 is the DNA sequence of TbH-4. SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD. 10 SEQ. ID NO. 45 is the DNA sequence of TbH-12. SEO. ID NO. 46 is the DNA sequence of Tb38-1. SEQ. ID NO. 47 is the DNA sequence of Tb38-4. SEO. ID NO. 48 is the DNA sequence of TbL-17. SEO. ID NO. 49 is the DNA sequence of TbL-20. 15 SEO. ID NO. 50 is the DNA sequence of TbL-21. SEQ. ID NO. 51 is the DNA sequence of TbH-16. SEQ. ID NO. 52 is the DNA sequence of DPEP. SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP. SEO. ID NO. 54 is the protein sequence of DPV N-terminal Antigen. 20 SEO. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen. SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen. SEO. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen. SEO. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen. SEO, ID NO. 59 is the protein sequence of AEES N-terminal Antigen. 25 SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen. SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen. SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen. SEQ. ID NO. 63 is the deduced amino acid sequence of TbM-1 Peptide.

SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa1.

	SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa10.
	SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa11.
	SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa12.
	SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa13.
5	SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa16.
	SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa17.
	SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa18.
	SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa19.
	SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa24.
10	SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa26.
	SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa28.
	SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa29.
	SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa2A.
	SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa3.
15	SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa32.
	SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa35.
	SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa36.
	SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa4.
	SEQ. ID NO. 83 is the deduced amino acid sequence of TbRa9.
20	SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaB.
	SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaC.
	SEQ. ID NO. 86 is the deduced amino acid sequence of TbRaD.
	SEQ. ID NO. 87 is the deduced amino acid sequence of YYWCPG.
	SEQ. ID NO. 88 is the deduced amino acid sequence of TbAAMK.
25	SEQ. ID NO. 89 is the deduced amino acid sequence of Tb38-1.
	SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-4.
	SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-8.
	SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-9.
	SEQ. ID NO. 93 is the deduced amino acid sequence of TbH-12.
30	SEQ. ID NO. 94 is the DNA sequence of DPAS.

SEO. ID NO. 95 is the deduced amino acid sequence of DPAS.

SEQ. ID NO. 96 is the DNA sequence of DPV.

SEQ. ID NO. 97 is the deduced amino acid sequence of DPV.

SEO. ID NO. 98 is the DNA sequence of ESAT-6.

5 SEQ. ID NO. 99 is the deduced amino acid sequence of ESAT-6.

SEO, ID NO. 100 is the DNA sequence of TbH-8-2.

SEQ. ID NO. 101 is the DNA sequence of TbH-9FL.

SEQ. ID NO. 102 is the deduced amino acid sequence of TbH-9FL.

SEQ. ID NO. 103 is the DNA sequence of TbH-9-1.

SEQ. ID NO. 104 is the deduced amino acid sequence of TbH-9-1.

SEO. ID NO. 105 is the DNA sequence of TbH-9-4.

SEQ. ID NO. 106 is the deduced amino acid sequence of TbH-9-4.

SEQ. ID NO. 107 is the DNA sequence of Tb38-1F2 IN.

SEO. ID NO. 108 is the DNA sequence of Tb38-1F2 RP.

15 SEQ. ID NO. 109 is the deduced amino acid sequence of Tb37-FL.

SEQ. ID NO. 110 is the deduced amino acid sequence of Tb38-IN.

SEQ. ID NO. 111 is the DNA sequence of Tb38-1F3.

SEQ. ID NO. 112 is the deduced amino acid sequence of Tb38-1F3.

SEQ. ID NO. 113 is the DNA sequence of Tb38-1F5.

SEQ. ID NO. 114 is the DNA sequence of Tb38-1F6.

SEQ. ID NO. 115 is the deduced N-terminal amino acid sequence of DPV.

SEQ. ID NO. 116 is the deduced N-terminal amino acid sequence of AVGS.

SEQ. ID NO. 117 is the deduced N-terminal amino acid sequence of AAMK.

SEQ. ID NO. 118 is the deduced N-terminal amino acid sequence of YYWC.

SEQ. ID NO. 119 is the deduced N-terminal amino acid sequence of DIGS.

SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of AAES.

SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of DPEP.

SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of APKT.

SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of DPAS.

30 SEO. ID NO. 124 is the protein sequence of DPPD N-terminal Antigen.

SEQ ID NO. 125-128 are the protein sequences of four DPPD cyanogen bromide fragments.

SEQ ID NO. 129 is the N-terminal protein sequence of XDS antigen.

SEQ ID NO. 130 is the N-terminal protein sequence of AGD antigen.

5 SEQ ID NO. 131 is the N-terminal protein sequence of APE antigen.

SEQ ID NO. 132 is the N-terminal protein sequence of XYI antigen.

SEQ ID NO. 133 is the DNA sequence of TbH-29.

SEQ ID NO. 134 is the DNA sequence of TbH-30.

SEQ ID NO. 135 is the DNA sequence of TbH-32.

SEQ ID NO. 136 is the DNA sequence of TbH-33.

SEQ ID NO. 137 is the predicted amino acid sequence of TbH-29.

SEQ ID NO. 138 is the predicted amino acid sequence of TbH-30.

SEQ ID NO. 139 is the predicted amino acid sequence of TbH-32.

SEQ ID NO. 140 is the predicted amino acid sequence of TbH-33.

SEQ ID NO: 141-146 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 147 is the DNA sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 148 is the amino acid sequence of the fusion protein containing TbRa3,

20 38 kD and Tb38-1.

25

SEQ ID NO: 149 is the DNA sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO: 150 is the amino acid sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO: 151 is the DNA sequence of XP14.

SEQ ID NO: 152 is the DNA sequence of XP24.

SEQ ID NO: 153 is the DNA sequence of XP31.

SEQ ID NO: 154 is the 5' DNA sequence of XP32.

SEQ ID NO: 155 is the 3' DNA sequence of XP32.

SEQ ID NO: 156 is the predicted amino acid sequence of XP14.

SEQ ID NO: 157 is the predicted amino acid sequence encoded by the reverse

30 complement of XP14.

SEQ ID NO: 158 is the DNA sequence of XP27.

SEO ID NO: 159 is the DNA sequence of XP36.

SEQ ID NO: 160 is the 5' DNA sequence of XP4.

SEQ ID NO: 161 is the 5' DNA sequence of XP5.

5 SEQ ID NO: 162 is the 5' DNA sequence of XP17.

SEQ ID NO: 163 is the 5' DNA sequence of XP30.

SEQ ID NO: 164 is the 5' DNA sequence of XP2.

SEQ ID NO: 165 is the 3' DNA sequence of XP2.

SEQ ID NO: 166 is the 5' DNA sequence of XP3.

SEQ ID NO: 167 is the 3' DNA sequence of XP3.

SEQ ID NO: 168 is the 5' DNA sequence of XP6.

SEQ ID NO: 169 is the 3' DNA sequence of XP6.

SEQ ID NO: 170 is the 5' DNA sequence of XP18.

SEQ ID NO: 171 is the 3' DNA sequence of XP18.

SEQ ID NO: 172 is the 5' DNA sequence of XP19.

SEQ ID NO: 173 is the 3' DNA sequence of XP19.

SEQ ID NO: 174 is the 5' DNA sequence of XP22.

SEO ID NO: 175 is the 3' DNA sequence of XP22.

SEQ ID NO: 176 is the 5' DNA sequence of XP25.

SEQ ID NO: 177 is the 3' DNA sequence of XP25.

SEQ ID NO: 178 is the full-length DNA sequence of TbH4-XP1.

SEQ ID NO: 179 is the predicted amino acid sequence of TbH4-XP1.

SEQ ID NO: 180 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1.

SEQ ID NO: 181 is a first predicted amino acid sequence encoded by XP36.

SEO ID NO: 182 is a second predicted amino acid sequence encoded by XP36.

SEQ ID NO: 183 is the predicted amino acid sequence encoded by the reverse complement of XP36.

SEQ ID NO: 184 is the DNA sequence of RDIF2.

30 SEQ ID NO: 185 is the DNA sequence of RDIF5.

SEQ ID NO: 186 is the DNA sequence of RDIF8.

SEQ ID NO: 187 is the DNA sequence of RDIF10.

SEQ ID NO: 188 is the DNA sequence of RDIF11.

SEQ ID NO: 189 is the predicted amino acid sequence of RDIF2.

SEQ ID NO: 190 is the predicted amino acid sequence of RDIF5.

SEQ ID NO: 191 is the predicted amino acid sequence of RDIF8.

SEQ ID NO: 192 is the predicted amino acid sequence of RDIF10.

SEQ ID NO: 193 is the predicted amino acid sequence of RDIF11.

SEO ID NO: 194 is the 5' DNA sequence of RDIF12.

SEQ ID NO: 195 is the 3' DNA sequence of RDIF12.

SEQ ID NO: 196 is the DNA sequence of RDIF7.

SEQ ID NO: 197 is the predicted amino acid sequence of RDIF7.

SEQ ID NO: 198 is the DNA sequence of DIF2-1.

SEQ ID NO: 199 is the predicted amino acid sequence of DIF2-1.

SEQ ID NO: 200-207 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD, Tb38-1 and DPEP (hereinafter referred to as TbF-2).

SEQ ID NO: 208 is the DNA sequence of the fusion protein TbF-2.

SEQ ID NO: 209 is the amino acid sequence of the fusion protein TbF-2.

20

30

5

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one antigenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, soluble *M. tuberculosis* antigens. A "soluble *M. tuberculosis* antigen" is a protein of *M. tuberculosis* origin that is present in *M. tuberculosis* culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus,

a polypeptide comprising an antigenic portion of one of the above antigens may consist entirely of the antigenic portion, or may contain additional sequences. The additional sequences may be derived from the native *M. tuberculosis* antigen or may be heterologous, and such sequences may (but need not) be antigenic.

5

10

15

20

25

30

An "antigenic portion" of an antigen (which may or may not be soluble) is a portion that is capable of reacting with sera obtained from an *M. tuberculosis*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). An "*M. tuberculosis*-infected individual" is a human who has been infected with *M. tuberculosis* (*e.g.*, has an intradermal skin test response to PPD that is at least 0.5 cm in diameter). Infected individuals may display symptoms of tuberculosis or may be free of disease symptoms. Polypeptides comprising at least an antigenic portion of one or more *M. tuberculosis* antigens as described herein may generally be used, alone or in combination, to detect tuberculosis in a patient.

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-

10

15

20

25

30

translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above antigenic portions and one or more additional antigenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (*i.e.*, with no intervening amino acids) or may be joined by way of a linker sequence (*e.g.*, Gly-Cys-Gly) that does not significantly diminish the antigenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens may then be evaluated for a desired property, such as the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Such screens may be performed using the representative methods described herein. Antigens may then be partially sequenced using, for example, traditional Edman chemistry. *See* Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

15

20

25

30

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Regardless of the method of preparation, the antigens described herein are "antigenic." More specifically, the antigens have the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Reactivity may be evaluated using, for example, the representative ELISA assays described herein, where an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals is considered positive.

Antigenic portions of *M. tuberculosis* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for antigenic properties. The representative ELISAs described herein may generally be employed in these screens. An antigenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an antigenic portion of a *M. tuberculosis* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the

15

20

25

commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. For use in the methods described herein, however, such substantially pure polypeptides may be combined.

10

15

20

25

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen), where the antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence an encoding the antigen identified as (g) above is provided in SEQ ID NO: 52, the deduced

10

20

25

amino acid sequence of which is provided in SEQ ID NO: 53. A DNA sequence encoding the antigen identified as (a) above is provided in SEQ ID NO: 96; its deduced amino acid sequence is provided in SEQ ID NO: 97. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID NO: 24, a DNA sequence corresponding to antigen (c) is provided in SEQ ID NO: 25 and a DNA sequence corresponding to antigen (I) is disclosed in SEQ ID NO: 94 and its deduced amino acid sequence is provided in SEQ ID NO: 95.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124)

wherein Xaa may be any amino acid, preferably a cysteine residue.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID NOS: 26-51, 133, 134, 158-178 and 196, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M. tuberculosis* antigens include variants that are encoded DNA sequences which are substantially homologous to one

or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

5

10

15

20

25

30

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described above or ESAT-6 (SEQ ID NOS: 98 and 99), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic

25

30

or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene 40*:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA 83*:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose tuberculosis. In this aspect, methods are provided for detecting *M. tuberculosis* infection in a biological sample, using one or more of the above polypeptides, alone or in combination. In embodiments in which multiple polypeptides are employed, polypeptides other than those specifically described herein, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, may be included. As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient or a blood supply. The polypeptide(s) are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to mycobacterial antigens which may be indicative of tuberculosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *M. tuberculosis*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be

10

15

20

25

30

formulated that are capable of detecting infection in most, or all, of the samples tested. Such polypeptides are complementary. For example, approximately 25-30% of sera from tuberculosis-infected individuals are negative for antibodies to any single protein, such as the 38 kD antigen mentioned above. Complementary polypeptides may, therefore, be used in combination with the 38 kD antigen to improve sensitivity of a diagnostic test.

There are a variety of assay formats known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a

membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

5

10

15

20

30

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within a M. tuberculosis-infected sample. Preferably, the contact time is sufficient to achieve a level

of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

5

10

15

20

30

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

15

20

25

To determine the presence or absence of anti-M. tuberculosis antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for tuberculosis. In an alternate preferred embodiment, the cutoff value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for tuberculosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-M tuberculosis antibodies in the sample. Typically, the concentration of

WO 98/16645

5

10

15

20

25

30

detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

26

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the inventive polypeptides. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example,

from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

10

20

25

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of *M. tuberculosis* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *M. tuberculosis* infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *M. tuberculosis*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the

25

present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. Ibid, Ehrlich, Ibid). Primers or probes may thus be used to detect M. tuberculosis-specific sequences in biological samples. DNA probes or primers comprising oligonucleotide sequences described above may be used alone, in combination with each other, or with previously identified sequences, such as the 38 kD antigen discussed above.

The following Examples are offered by way of illustration and not by way of 20 limitation.

EXAMPLES

EXAMPLE 1

<u>PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES</u>

FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was then filtered through a 0.2 μ filter into a sterile 4 L bottle. NaN₃ was then added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

10

15

20

The culture filtrate was then dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were then dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected

20

25

to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μ g/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 μ g/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μ l, 50 μ l of medium was removed from each well for determination of IFN- γ levels, as described below. The plates were then pulsed with 1 μ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN- γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN- γ (Chemicon) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Jackson Labs.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto Biobrene™ (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

10

15

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 54);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 55);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 56);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 57);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 58);

20

25

- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 59);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala (SEQ ID NO: 60); and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 61);

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster

20

City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

(i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID NO: 62).

This polypeptide was shown to induce proliferation and IFN-y production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 μl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

5

10

25

30

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser;(SEQ ID NO: 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) and
- (1) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEO ID NO: 131), wherein Xaa may be any amino acid.

Using the assays described above, these polypeptides were shown to induce proliferation and IFN- γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a *M. tuberculosis* genomic library using ³²P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID NO: 96. The polypeptide encoded by SEQ ID NO: 96 is provided in SEQ ID NO: 97. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID NO: 52. The polypeptide encoded by SEQ ID NO: 52 is provided in SEQ ID NO: 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID NO: 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID NO: 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

10

15

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen an *M. tuberculosis* library and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID NO: 94).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN- γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

TABLE 1

RESULTS OF PBMC PROLIFERATION AND IFN-y ASSAYS

Sequence	Proliferation	IFN-γ	
(a)	+	-	
(c)	+++	+++	
(d)	++	++	
(g)	+++	+++	
(h)	+++	+++	

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 20 (compared to cells cultured in medium alone) were scored as +, as SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-γ assays. These results

25

indicate that these antigens are capable of inducing proliferation and/or interferon-y production.

EXAMPLE 2

USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

This example illustrates the isolation of antigens from *M. tuberculosis* lysate by screening with serum from *M. tuberculosis*-infected individuals.

Dessicated *M. tuberculosis* H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.

Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic M. tuberculosis Erdman strain library using labeled

degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO: 198. This sequence was found to encode the amino acid sequence provided in SEQ ID NO: 199. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. bovis*.

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

This example illustrates the preparation of DNA sequences encoding *M. tuberculosis* antigens by screening a *M. tuberculosis* expression library with sera obtained from patients infected with *M. tuberculosis*, or with anti-sera raised against *M. tuberculosis* antigens.

15 A. <u>Preparation of M. Tuberculosis Soluble Antigens using Rabbit Anti-sera</u> Raised against M. Tuberculosis Supernatant

Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis* cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 100 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

25

30

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in *M. tuberculosis*. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative partial sequences of DNA molecules identified in this screen are provided in SEQ ID NOS: 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID NOS: 64-88.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID NOS: 77, 69, 71, 76) show some 10 homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID NOS: 66, 74, 75, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRA19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID NOS: 64, 78, 82, 83, 65, 68, 76, 72, 76, 79, 81, 80, 67, respectively). The clone TbRa24 is overlapping with clone TbRa29.

B. <u>Use of Sera from Patients Having Pulmonary or Pleural Tuberculosis to</u> IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera

lacked increased reactivity with the recombinant 38 kD M. tuberculosis H37Ra phosphatebinding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID NOS:: 26-51 and 100. Of these, TbH-8-2 (SEQ. ID NO. 100) is a partial clone of TbH-8, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID NOS.: 89-93. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS: 107, 108, 111, 113, and 114). (SEQ ID NOS: 107 and 108 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 109), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 110). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 112. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 101), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 103), and TbH-8-2 (SEQ.

ID NO. 105) is a partial clone of TbH-8. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS: 102, 104 and 106.

Further screening of the M. tuberculosis genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different 5 genes. One of these genes was identified as the 38 Kd antigen discussed above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in M. tuberculosis, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and TbH-33) are provided in SEQ ID 10 NO: 133-136, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 137-140, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the M. tuberculosis cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified M. tuberculosis insertion element IS6110 and to the M. tuberculosis cosmid Y50, respectively. No significant homologies to TbH-30 were found.

Positive phagemid from this additional screening were used to infect E. coli XL-1 Blue MRF', as described in Sambrook et al., supra. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human M. tuberculosis sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of 125I-25 labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 2.

20

TABLE 2

5	Antigen	Human M. tb <u>Sera</u>	Anti-lacZ <u>Sera</u>
	ТЬН-29	45 Kd	45 Kd
	TbH-30	No reactivity	29 Kd
	TbH-32	12 Kd	12 Kd
	TbH-33	16 Kd	16 Kd

15

20

25

Positive reaction of the recombinant human *M. tuberculosis* antigens with both the human *M. tuberculosis* sera and anti-lacZ sera indicate that reactivity of the human *M. tuberculosis* sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human *M. tuberculosis* sera may be the result of the human *M. tuberculosis* sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*, B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 2A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards; 2) 5 µg of *M. tuberculosis* lysate; 3) 5 µg secretory proteins; 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine

residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In Figure 2D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by *M. tuberculosis*.

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9, secretory *M. tuberculosis* proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor. The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen, TbRa11, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in Figure 3A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 3B shows the production of IFN-γ by a second TbH-9-specific T cell clone (designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by *M. tuberculosis*.

20 C. USE OF SERA FROM PATIENTS HAVING EXTRAPULMONARY TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

25

Eighteen clones were purified. Of these, 4 clones (hereinafter referred to as XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID NOS: 151-

20

25

153, respectively, with the 5' and 3' DNA sequences for XP32 being provided in SEQ ID NOS: 154 and 155, respectively. The predicted amino acid sequence for XP14 is provided in SEQ ID NO: 156. The reverse complement of XP14 was found to encode the amino acid sequence provided in SEQ ID NO: 157.

Comparison of the sequences for the remaining 14 clones (hereinafter referred to as XP1-XP6, XP17-XP19, XP22, XP25, XP27, XP30 and XP36) with those in the genebank as described above, revealed no homologies with the exception of the 3' ends of XP2 and XP6 which were found to bear some homology to known M. tuberculosis cosmids. The DNA sequences for XP27 and XP36 are shown in SEQ ID NOS: 158 and 159, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID NOS: 160-163, respectively, and the 5' and 3' sequences for XP2, XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID NOS: 164 and 165; 166 and 167; 168 and 169; 170 and 171; 172 and 173; 174 and 175; and 176 and 177, respectively. XP1 was found to overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID NO: 178. This DNA sequence was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 179. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 180. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID NOS: 181 and 182, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 183.

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. Recombinant XP1 was found to stimulate cell proliferation and IFN- γ production in T cells isolated from an *M. tuberculosis*-immune donors.

D. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS FRACTIONATED PROTEINS

M. tuberculosis lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for

25

serological activity with a serum pool from *M. tuberculosis*-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit anti-sera was generated against the most reactive fraction using the method described in Example 3A. The anti-sera was used to screen an *M. tuberculosis* Erdman strain genomic DNA expression library prepared as described above. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, described above, and one was found to be the previously identified *M. tuberculosis* antigen, HSP60. Of the remaining eight clones, six (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF12) were found to bear some similarity to previously identified *M. tuberculosis* sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID NOS: 184-188, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NOS: 189-193, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID NOS: 194 and 195, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID NOS: 196 and 197, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5.

Recombinant RDIF6, RDIF8, RDIF10 and RDIF11 were prepared as described above. These antigens were found to stimulate cell proliferation and IFN-y production in T cells isolated from *M. tuberculosis*-immune donors.

EXAMPLE 4

PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

25

30

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941). M. tuberculosis Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100°C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cutoff membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID NO:: 124. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID NOS: 125-128.

EXAMPLE 5

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following 10 cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize a TbM-1 peptide that contains one and The TbM-1 peptide has the sequence a half repeats of a TbM-1 sequence. GCGDRSGGNLDQIRLRRDRSGGNL (SEQ ID NO: 63).

20

15

5

EXAMPLE 6

USE OF REPRESENTATIVE ANTIGENS FOR SERODIAGNOSIS OF TUBERCULOSIS

25 This Example illustrates the diagnostic properties of several representative antigens.

Assays were performed in 96-well plates were coated with 200 ng antigen diluted to 50 µL in carbonate coating buffer, pH 9.6. The wells were coated overnight at 4°C (or 2 hours at 37°C). The plate contents were then removed and the wells were blocked for 2 hours with 200 µL of PBS/1% BSA. After the blocking step, the wells were washed five times with PBS/0.1% Tween 20^{TM} . 50 μ L sera, diluted 1:100 in PBS/0.1% Tween $20^{TM}/0.1\%$ BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed again five times with PBS/0.1% Tween 20^{TM} .

The enzyme conjugate (horseradish peroxidase - Protein A, Zymed, San Francisco, CA) was then diluted 1:10,000 in PBS/0.1% Tween 20TM/0.1% BSA, and 50 μL of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed five times with PBS/0.1% Tween 20TM. 100 μL of tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for about 15 minutes.

The reaction was stopped with the addition of 100 μL of 1 N H₂SO₄ to each well, and the plates were read at 450 nm.

Figure 4 shows the ELISA reactivity of two recombinant antigens isolated using method A in Example 3 (TbRa3 and TbRa9) with sera from *M. tuberculosis* positive and negative patients. The reactivity of these antigens is compared to that of bacterial lysate isolated from *M. tuberculosis* strain H37Ra (Difco, Detroit, MI). In both cases, the recombinant antigens differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 56 out of 87 positive sera, and TbRa9 detected 111 out of 165 positive sera.

15

20

25

Figure 5 illustrates the ELISA reactivity of representative antigens isolated using method B of Example 3. The reactivity of the recombinant antigens TbH4, TbH12, Tb38-1 and the peptide TbM-1 (as described in Example 4) is compared to that of the 38 kD antigen described by Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989. Again, all of the polypeptides tested differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbH4 detected 67 out of 126 positive sera, TbH12 detected 50 out of 125 positive sera, 38-1 detected 61 out of 101 positive sera and the TbM-1 peptide detected 25 out of 30 positive sera.

The reactivity of four antigens (TbRa3, TbRa9, TbH4 and TbH12) with sera from a group of *M. tuberculosis* infected patients with differing reactivity in the acid fast stain of sputum (Smithwick and David, *Tubercle 52*:226, 1971) was also examined, and compared

to the reactivity of *M. tuberculosis* lysate and the 38 kD antigen. The results are presented in Table 3, below:

TABLE 3

REACTIVITY OF ANTIGENS WITH SERA FROM M. TUBERCULOSIS PATIENTS

	Acid Fast			ELISA	Values	··	
Patient	Sputum	Lysate	38kD	TbRa9	TbH12	TbH4	TbRa3
Tb01B93I-2	++++	1.853	0.634	0.998	1.022	1.030	1.314
Tb01B93I-19	++++	2.657	2.322	0.608	0.837	1.857	2.335
Tb01B93I-8	+++	2.703	0.527	0.492	0.281	0.501	2.002
Tb01B93I-10	+++	1.665	1.301	0.685	0.216	0.448	0.458
Tb01B93I-11	+++	2.817	0.697	0.509	0.301	0.173	2.608
Tb01B93I-15	+++	1.28	0.283	0.808	0.218	1.537	0.811
Tb01B93I-16	+++	2.908	>3	0.899	0.441	0.593	1.080
Tb01B93I-25	+ ++	0.395	0.131	0.335	0.211	0.107	0.948
Tb01B93I-87	+++	2.653	2.432	2.282	0.977	1.221	0.857
Tb01B93I-89	+++	1.912	2.370	2.436	0.876	0.520	0.952
Tb01B94I-108	+++	1.639	0.341	0.797	0.368	0.654	0.798
Tb01B94I-201	+++	1.721	0.419	0.661	0.137	0.064	0.692
Tb01B93I-88	++	1.939	1.269	2.519	1.381	0.214	0.530
Tb01B93I-92	++	2.355	2.329	2.78	0.685	0.997	2.527
Tb01B94I-109	++	0.993	0.620	0.574	0.441	0.5	2.558
Tb01B94I-210	++	2.777	>3	0.393	0.367	1.004	1.315
Tb01B94I-224	++	2.913	0.476	0.251	1.297	1.990	0.256

	Acid Fast			ELISA	Values		
Patient	Sputum	Lysate	38kD	TbRa9	TbH12	ТЬН4	TbRa3
Tb01B93I-9	+	2.649	0.278	0.210	0.140	0.181	1.586
Tb01B93I-14	+	>3	1.538	0.282	0.291	0.549	2.880
Tb01B93I-21	+	2.645	0.739	2.499	0.783	0.536	1.770
Ть01В93І-22	+	0.714	0.451	2.082	0.285	0.269	1.159
Tb01B93I-31	+	0.956	0.490	1.019	0.812	0.176	1.293
Tb01B93I-32	-	2.261	0.786	0.668	0.273	0.535	0.405
Tb01B93I-52	_	0.658	0.114	0.434	0.330	0.273	1.140
Tb01B93I-99	_	2.118	0.584	1.62	0.119	0.977	0.729
Tb01B94I-130	_	1.349	0.224	0.86	0.282	0.383	2.146
Tb01B94I-131	_	0.685	0.324	1.173	0.059	0.118	1.431
AT4-0070	Normal	0.072	0.043	0.092	0.071	0.040	0.039
AT4-0105	Normal	0.397	0.121	0.118	0.103	0.078	0.390
3/15/94-1	Normal	0.227	0.064	0.098	0.026	0.001	0.228
4/15/93-2	Normal	0.114	0.240	0.071	0.034	0.041	0.264
5/26/94-4	Normal	0.089	0.259	0.096	0.046	0.008	0.053
5/26/94-3	Normal	0.139	0.093	0.085	0.019	0.067	0.01

Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 23 out of 27 positive sera, TbRa9 detected 22 out of 27, TbH4 detected 18 out of 27 and TbH12 detected 15 out of 27. If used in combination, these four antigens would have a theoretical sensitivity of 27 out of 27, indicating that these antigens should complement each other in the serological detection of *M. tuberculosis* infection. In addition, several of the recombinant antigens detected positive sera that were not detected using the 38 kD antigen, indicating that these antigens may be complementary to the 38 kD antigen.

10

15

20

25

The reactivity of the recombinant antigen TbRa11 with sera from M. tuberculosis patients shown to be negative for the 38 kD antigen, as well as with sera from PPD positive and normal donors, was determined by ELISA as described above. The results are shown in Figure 6 which indicates that TbRa11, while being negative with sera from PPD positive and normal donors, detected sera that were negative with the 38 kD antigen. Of the thirteen 38 kD negative sera tested, nine were positive with TbRa11, indicating that this antigen may be reacting with a sub-group of 38 kD antigen negative sera. In contrast, in a group of 38 kD positive sera where TbRa11 was reactive, the mean OD 450 for TbRa11 was lower than that for the 38 kD antigen. The data indicate an inverse relationship between the presence of TbRa11 activity and 38 kD positivity.

The antigen TbRa2A was tested in an indirect ELISA using initially 50 µl of serum at 1:100 dilution for 30 minutes at room temperature followed by washing in PBS Tween and incubating for 30 minutes with biotinylated Protein A (Zymed, San Francisco, CA) at a 1:10,000 dilution. Following washing, 50 µl of streptavidin-horseradish peroxidase (Zymed) at 1:10,000 dilution was added and the mixture incubated for 30 minutes. After washing, the assay was developed with TMB substrate as described above. The reactivity of TbRa2A with sera from *M. tuberculosis* patients and normal donors in shown in Table 4. The mean value for reactivity of TbRa2A with sera from *M. tuberculosis* patients was 0.444 with a standard deviation of 0.309. The mean for reactivity with sera from normal donors was 0.109 with a standard deviation of 0.029. Testing of 38 kD negative sera (Figure 7) also indicated that the TbRa2A antigen was capable of detecting sera in this category.

TABLE 4

REACTIVITY OF TBRA2A WITH SERA FROM M. TUBERCULOSIS PATIENTS AND FROM NORMAL

Donors

Serum ID	Status	OD 450
Tb85	TB	0.680
Tb86	TB	0.450
Tb87	TB	0.263
Tb88	TB	0.275
Тъ89	TB	0.403

Tb91	TB	0.393
Tb92	TB	0.401
Tb93	TB	0.232
Tb94	TB	0.333
Tb95	TB	0.435
Tb96	TB	0.284
Tb97	ТВ	0.320
Ть99	TB	0.328
Tb100	TB	0.817
Tb101	ТВ	0.607
Tb102	TB	0.191
Tb103	ТВ	0.228
Tb107	TB	0.324
Tb109	ТВ	1.572
Tb112	TB	0.338
DL4-0176	Normal	0.036
AT4-0043	Normal	0.126
AT4-0044	Normal	0.130
AT4-0052	Normal	0.135
AT4-0053	Normal	0.133
AT4-0062	Normal	0.128
AT4-0070	Normal	0.088
AT4-0091	Normal	0.108
AT4-0100	Normal	0.106
AT4-0105	Normal	0.108
AT4-0109	Normal	0.105

The reactivity of the recombinant antigen (g) (SEQ ID NO: 60) with sera from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. Figure 8 shows the results of the titration of antigen (g) with four *M. tuberculosis* positive sera that were all reactive with the 38 kD antigen and with four donor sera. All four positive sera were reactive with antigen (g).

The reactivity of the recombinant antigen TbH-29 (SEQ ID NO: 137) with sera from *M. tuberculosis* patients, PPD positive donors and normal donors was determined by indirect ELISA as described above. The results are shown in Figure 9. TbH-29 detected 30 out of 60 *M. tuberculosis* sera, 2 out of 8 PPD positive sera and 2 out of 27 normal sera.

Figure 10 shows the results of ELISA tests (both direct and indirect) of the antigen TbH-33 (SEQ ID NO: 140) with sera from *M. tuberculosis* patients and from normal

donors and with a pool of sera from *M. tuberculosis* patients. The mean OD 450 was demonstrated to be higher with sera from *M. tuberculosis* patients than from normal donors, with the mean OD 450 being significantly higher in the indirect ELISA than in the direct ELISA. Figure 11 is a titration curve for the reactivity of recombinant TbH-33 with sera from *M. tuberculosis* patients and from normal donors showing an increase in OD 450 with increasing concentration of antigen.

The reactivity of the recombinant antigens RDIF6, RDIF8 and RDIF10 (SEQ ID NOS: 184-187, respectively) with sera from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. RDIF6 detected 6 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; RDIF8 detected 14 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; and RDIF10 detected 4 out of 27 *M. tuberculosis* sera and 1 out of 15 normal sera. In addition, RDIF10 was found to detect 0 out of 5 sera from PPD-positive donors.

15

10

5

EXAMPLE 7

PREPARATION AND CHARACTERIZATION OF M. TUBERCULOSIS FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 141 and 142), PDM-57 and PDM-58 (SEQ ID NO: 143 and 144), and PDM-69 and PDM-60 (SEQ ID NO: 145-146), respectively. In each case, the DNA amplification was performed using 10 μl 10X Pfu buffer, 2 μl 10 mM dNTPs, 2 μl each of the PCR primers at 10 μM concentration, 81.5 μl water, 1.5 μl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μl DNA at either 70 ng/μl (for TbRa3) or 50 ng/μl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec,

15

20

25

68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Tb38-1 denaturation at 94°C for 2 min was followed by 10 cycles of 96°C for 15 sec, 68°C for 15 sec and 72°C for 1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

The TbRa3 PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7^L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse8387I, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7^L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7^L2Ra3/38kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.

The expression construct was transformed to BLR pLys S *E. coli* (Novagen, Madison, WI) and grown overnight in LB broth with kanamycin (30 μg/ml) and chloramphenicol (34 μg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 μg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Pro-bond nickel resin (Invitrogen, Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialzyed against 10 mM Tris (8.0).

The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 147 and 148, respectively.

A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar

10

15

20

procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 151.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO:145 and PDM-83 (SEQ ID NO: 200) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a DraI site at the 3' end of the coding region that keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3/38kD/Tb38-1A fusion was then transferred to pET28b using NdeI and EcoR1 sites.

DPEP DNA was used to perform PCR using the primers PDM-84 and PDM-85 (SEQ ID NO: 201 and 202, respectively) and 1 μl DNA at 50 ng/μl. Denaturation at 94 °C was performed for 2 min, followed by 10 cycles of 96 °C for 15 sec, 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec, 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-1A construct which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 203 and 204, respectively.

EXAMPLE 8

USE OF M. TUBERCULOSIS FUSION PROTEINS FOR SERODIAGNOSIS OF TUBERCULOSIS

25

30

The effectiveness of the fusion protein TbRa3-38 kD-Tb38-1, prepared as described above, in the serodiagnosis of tuberculosis infection was examined by ELISA.

The ELISA protocol was as described above in Example 6, with the fusion protein being coated at 200 ng/well. A panel of sera was chosen from a group of tuberculosis patients previously shown, either by ELISA or by western blot analysis, to react with each of

the three antigens individually or in combination. Such a panel enabled the dissection of the serological reactivity of the fusion protein to determine if all three epitopes functioned with the fusion protein. As shown in Table 5, all four sera that reacted with TbRa3 only were detectable with the fusion protein. Three sera that reacted only with Tb38-1 were also detectable, as were two sear that reacted with 38 kD alone. The remaining 15 sera were all positive with the fusion protein based on a cut-off in the assay of mean negatives +3 standard deviations. This data demonstrates the functional activity of all three epitopes in the fusion protein.

Table 5

<u>Reactivity of Tri-Peptide Fusion Protein with Sera from M. Tuberculosis Patients</u>

Serum ID	Status	ELISA	and/or West	Fusion	Fusion	
		Reactivity	with Individ	ual proteins	recombinant	Recombinant
		38kd	Tb38-1	TbRa3	OD 450	Status
01B93I-40	ТВ	-	-	+	0.413	+
01B93I-41	ТВ	-	+	+	0.392	+
01B93I-29	ТВ	+	•	+	2.217	+
01B93I-109	ТВ	+	±	+	0.522	+
01B93I-132	TB	+	+	+	0.937	+
5004	ТВ	±	+	±	1.098	+
15004	ТВ	+	+	+	2.077	+
39004	TB	+	+	+	1.675	+
68004	ТВ	+	+	+	2.388	+
99004	ТВ	-	+	±	0.607	+
107004	TB	-	+	±	0.667	+
92004	ТВ	+	±	±	1.070	+
97004	TB	+	-	±	1.152	+
118004	TB	+	-	±	2.694	+
173004	ТВ	+	+	+	3.258	+
175004	ТВ	+	-	+	2.514	+
274004	TB	-	-	+	3.220	+
276004	ТВ	-	+	-	2.991	+
282004	ТВ	+	-	-	0.824	+

289004	TB	_	-	+	0.848	+
308004	TB	_	+	_	3.338	+
314004	ТВ	-	+		1.362	+
317004	ТВ	+			0.763	+
312004	ТВ	_	<u>-</u>	+	1.079	+
D176	PPD	-	-	-	0.145	-
D162	PPD	-	_	•	0.073	-
D161	PPD	-	-	-	0.097	-
D27	PPD	-	-	-	0.082	-
A6-124	NORMAL	-	-	-	0.053	-
A6-125	NORMAL	-	-	-	0.087	-
A6-126	NORMAL	<u>-</u>	-	-	0.346	±
A6-127	NORMAL	-	-	-	0.064	-
A6-128	NORMAL	-	-	-	0.034	-
A6-129	NORMAL	-	-		0.037	-
A6-130	NORMAL	•	-	-	0.057	<u>-</u>
A6-131	NORMAL	•	-	-	0.054	
A6-132	NORMAL	•	•		0.022	
A6-133	NORMAL	•	<u>-</u>		0.147	<u>-</u>
A6-134	NORMAL	-	-	_	0.101	
A6-135	NORMAL	-	-		0.066	•
A6-136	NORMAL	<u>-</u>	-		0.054	•
A6-137	NORMAL	<u>-</u>	-		0.065	
A6-138	NORMAL	-	-	-	0.041	-
A6-139	NORMAL	-	-	-	0.103	-
A6-140	NORMAL	-	-	-	0.212	-
A6-141	NORMAL	-	-	-	0.056	
A6-142	NORMAL	-		-	0.051	<u>-</u>

The reactivity of the fusion protein TbF-2 with sera from *M. tuberculosis*infected patients was examined by ELISA using the protocol described above. The results of
these studies (Table 6) demonstrate that all four antigens function independently in the fusion
protein.

 $\label{thm:continuous} \textbf{Table 6}$ Reactivity of TbF-2 Fusion Protein with TB and Normal Sera

Serum ID	Status	TbF OD450	Status	TbF-2 OD450	Status	ELISA Reactivity			
	 		 			38 kD	TbRa3	Tb38-1	DPEP
B931-40	TB	0.57	+	0.321	+	-	+	-	+
B931-41	ТВ	0.601	+	0.396	+	+	+	+	-
B931-109	TB	0.494	+	0.404	+	+	+	±	-
B931-132	TB	1.502	+	1.292	+	+	+	+	±
5004	TB	1.806	+	1.666	+	±	±	+	-
15004	TB	2.862	+	2.468	+	+	+	+	1-
39004	ТВ	2.443	+	1.722	+	+	+	+	-
68004	ТВ	2.871	+	2.575	+	+	+	+	-
99004	TB	0.691	+	0.971	+	1-	±	+	-
107004	TB	0.875	+	0.732	+	-	±	+	-
92004	TB	1.632	+	1.394	+	+	±	±	1-
97004	TB	1.491	+	1.979	+	+	±	-	+
118004	TB	3.182	+	3.045	+	+	±	-	ļ -
173004	TB	3.644	+	3.578	+	+	+	+	1-
175004	TB	3.332	+	2.916	+	+	+	-	-
274004	TB	3.696	+	3.716	+	1-	+	-	+
276004	TB	3.243	+	2.56	+	-	-	+	-
282004	TB	1.249	+	1.234	+	+	-	-	-
289004	TB	1.373	+	1.17	+	7-	+	-	1 -
308004	ТВ	3.708	+	3.355	+	-	-	+	-
314004	TB	1.663	+	1.399	+	-	-	+	1 -
317004	TB	1.163	+	0.92	+	+	-	-	-
312004	TB	1.709	+	1.453	+	1.	+	1-	-
380004	TB	0.238	1-	0.461	+	-	±	-	+
451004	TB	0.18	1-	0.2	-	-	-	-	±
478004	TB	0.188	1 -	0.469	+	-	-	-	±
410004	TB	0.384	+	2.392	+	±	-	-	+
411004	TB	0.306	+	0.874	+	-	+	-	+
421004	TB	0.357	+	1.456	+	-	+	-	+
528004	TB	0.047	-	0.196	-	-	-	-	+
A6-87	Normal	0.094	-	0.063	-	-	T -	-	-
A6-88	Normal	0.214	-	0.19	1.	-	-] -] -
A6-89	Normal	0.248	-	0.125	-	-	-	-	-
A6-90	Normal	0.179	-	0.206	-	-	-	-	-
A6-91	Normal	0.135	-	0.151	-	-	-	-	1-
A6-92	Normal	0.064	-	0.097	-	-	-	-	-
A6-93	Normal	0.072	-	0.098	-	-	-	-	-
A6-94	Normal	0.072	1-	0.064	-	-	-	-	-
A6-95	Normal	0.125	-	0.159	-	-	-	-	-
A6-96	Normal	0.121	-	0.12	1-	-	1-	1-	-
	1				1			1	
Cut-off	1	0.284		0.266	1	T	T	T	<u> </u>

PCT/US97/18214

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

5

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Reed, Steven G.
 Skeiky, Yasir A.W.
 Dillon, Davin C.
 Campos-Neto, Antonia
 Houghton, Raymond
 Vedvick, Thomas S.
 Twardzik, Daniel R.
 Lodes, Michael J.
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 209
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 01-OCT-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.417C7
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGAGGCACCG	GTAGTTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAGA	TGGTGAAATC	GATCGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGGCGCC	120
GCTGCGGCCG	GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATACCA	GATGCAGCCG	,180
GTCGTCTTCG	GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTGA	CCAGCCTGCT	CAACAGCCTC	GCCGATCCCA	ACGTGTCGTT	TGCGAACAAG	300
GGCAGTCTGG	TCGAGGGCGG	CATCGGGGGC	ACCGAGGCGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCCG	CCGAGCACGG	GGATCTGCCG	CTGTCGTTCA	GCGTGACGAA	CATCCAGCCG	420
GCGGCCGCCG	GTTCGGCCAC	CGCCGACGTT	TCCGTCTCGG	GTCCGAAGCT	CTCGTCGCCG	480
GTCACGCAGA	ACGTCACGTT	CGTGAATCAA	GGCGGCTGGA	TGCTGTCACG	CGCATCGGCG	540
ATGGAGTTGC	TGCAGGCCGC	AGGGNAACTG	ATTGGCGGGC	CGGNTTCAGC	CCGCTGTTCA	600
GCTACGCCGC	CCGCCTGGTG	ACGCGTCCAT	GTCGAACACT	CGCGCGTGTA	GCACGGTGCG	660
GTNTGCGCAG	GGNCGCACGC	ACCGCCCGGT	GCAAGCCGTC	CTCGAGATAG	GTGGTGNCTC	720
GNCACCAGNG	ANCACCCCCN	NNTCGNCNNT	TCTCGNTGNT	GNATGA		766

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 752 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC ATCACCATCA CGATGAAGTC ACGGTAGAGA CGACCTCCGT CTTCCGCGCA 60
GACTTCCTCA GCGAGCTGGA CGCTCCTGCG CAAGCGGGTA CGGAGAGCGC GGTCTCCGGG 120
GTGGAAGGGC TCCCGCCGGG CTCGGCGTTG CTGGTAGTCA AACGAGGCCC CAACGCCGGG 180
TCCCGGTTCC TACTCGACCA AGCCATCACG TCGGCTGGTC GGCATCCCGA CAGCGACATA 240

TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	AAACAACGAA	300
TTCAATGTCG	TCGATGTCGG	GAGTCTCAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGCA	AGCTCCGGTT	GGTGTTCTTG	420
ACCGGACCCA	AGCAAGGCGA	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCTCCG	ACCTGCTACG	ACCGGATTTT	540
CCCTGATGTC	CACCATCTCC	AAGATTCGAT	TCTTGGGAGG	CTTGAGGGTC	NGGGTGACCC	600
CCCCGCGGGC	CTCATTCNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660
TTGCNAATTC	NTTCTTCNCT	GCCCNNAAAG	GGACCNTTAN	CTTGCCGCTN	gaaanggtna	720
TCCNGGGCCC	NTCCTNGAAN	CCCCNTCCCC	CT			752

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 813 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATATGCATC ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA 60 CCACGCGACA CCGGGCCCGA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG 120 CAGCGCGATG CCCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT 180 GCGGCCGGCG GTGCTGCAAA CTACTCCCGG AGGAATTTCG ACGTGCGCAT CAAGATCTTC 240 ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCCAAG 300 ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC 360 GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG 420 GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCCTCAGCG CGGCCACATC GTCCACTCCA 480 CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG 540 CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG 600 ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG 660 CTGTGGCAGG CTGACACCGA TCCGCTGCCA GTCGTCTTCC CCATTGTTGC AAGGTGAACT 720

PCT/US97/18214

GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCC	N AATGCCGGCT	TGGAACCCNG	780
TGAAATTATC ACAACTTCGC AGTCACNAAA NAA			813
(2) INFORMATION FOR SEQ ID NO:4:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 447 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4	;		
CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC	CAGGGTGGGC	AGGGATTCGC	60
CATTCCGATC GGGCAGGCGA TGGCGATCGC GGGCCAGATC	CGATCGGGTG	GGGGGTCACC	120
CACCGTTCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGG	GTTGTCGACA	ACAACGGCAA	180
CGGCGCACGA GTCCAACGCG TGGTCGGGAG CGCTCCGGCC	GCAAGTCTCG	GCATCTCCAC	240
CGGCGACGTG ATCACCGCGG TCGACGGCGC TCCGATCAA	TCGGCCACCG	CGATGGCGGA	300
CGCGCTTAAC GGGCATCATC CCGGTGACGT CATCTCGGT	AACTGGCAAA	CCAAGTCGGG	360
CGGCACGCGT ACAGGGAACG TGACATTGGC CGAGGGACC	CCGGCCTGAT	TTCGTCGYGG	420
ATACCACCCG CCGGCCGGCC AATTGGA			447
(2) INFORMATION FOR SEQ ID NO:5:			
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 604 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5	:		
GTCCCACTGC GGTCGCCGAG TATGTCGCCC AGCAAATGT	TGGCAGCCGC	CCAACGGAAT	60

CCGGTGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT 120

AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGGGC 180

CCGGCGACGG	NGAGCGCCGG	AATGGCGCGA	GTGAGGAGGT	GGNCAGTCAT	GCCCAGNGTG	240
ATCCAATCAA	CCTGNATTCG	GNCTGNGGGN	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	300
TGAATGATGG	AAAACGGGNG	GNGACGTCCG	NTGTTCTGGT	GGTGNTAGGT	GNCTGNCTGG	360
NGTNGNGGNT	ATCAGGATGT	TCTTCGNCGA	AANCTGATGN	CGAGGAACAG	GGTGTNCCCG	420
NNANNCCNAN	GGNGTCCNAN	CCCNNNNTCC	TCGNCGANAT	CANANAGNCG	NTTGATGNGA	480
NAAAAGGGTG	GANCAGNNNN	AANTNGNGGN	CCNAANAANC	NNNANNGNNG	NNAGNT N GNT	540
NNNTNTTNNC	ANNNNNNTG	NNGNNGNNCN	NNNCAANCNN	NTNNNNGNAA	NNGGNTTNTT	600
NAAT						604

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 633 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTGCANGTCG	AACCACCTCA	CTAAAGGGAA	CAAAAGCTNG	AGCTCCACCG	CGGTGGCGGC	60
CGCTCTAGAA	CTAGTGKATM	YYYCKGGCTG	CAGSAATYCG	GYACGAGCAT	TAGGACAGTC	120
TAACGGTCCT	GTTACGGTGA	TCGAATGACC	GACGACATCC	TGCTGATCGA	CACCGACGAA	180
CGGGTGCGAA	CCCTCACCCT	CAACCGGCCG	CAGTCCCGYA	ACGCGCTCTC	GGCGGCGCTA	240
CGGGATCGGT	TTTTCGCGGY	GTTGGYCGAC	GCCGAGGYCG	ACGACGACAT	CGACGTCGTC	300
ATCCTCACCG	GYGCCGATCC	GGTGTTCTGC	GCCGGACTGG	ACCTCAAGGT	AGCTGGCCGG	360
GCAGACCGCG	CTGCCGGACA	TCTCACCGCG	GTGGGCGGCC	ATGACCAAGC	CGGTGATCGG	420
CGCGATCAAC	GGCGCCGCGG	TCACCGGCGG	GCTCGAACTG	GCGCTGTACT	GCGACATCCT	480
GATCGCCTCC	GAGCACGCCC	GCTTCGNCGA	CACCCACGCC	CGGGTGGGGC	TGCTGCCCAC	540
CTGGGGACTC	AGTGTGTGCT	TGCCGCAAAA	GGTCGGCATC	GGNCTGGGCC	GGTGGATGAG	600
CCTGACCGGC	GACTACCTGT	CCGTGACCGA	CGC			633

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1362 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC	GGCGCCGGAG	AGCGGGCGCG	AACGGCGATC	GACGCGGCCC	TGGCCAGAGT	60
CGGCACCACC	CAGGAGGGAG	TCGAATCATG	AAATTTGTCA	ACCATATTGA	GCCCGTCGCG	120
CCCCGCCGAG	ccgccgccc	GGTCGCCGAG	GTCTATGCCG	AGGCCCGCCG	CGAGTTCGGC	180
CGGCTGCCCG	AGCCGCTCGC	CATGCTGTCC	CCGGACGAGG	GACTGCTCAC	CGCCGGCTGG	240
GCGACGTTGC	GCGAGACACT	GCTGGTGGGC	CAGGTGCCGC	GTGGCCGCAA	GGAAGCCGTC	300
GCCGCCGCCG	TCGCGGCCAG	CCTGCGCTGC	CCCTGGTGCG	TCGACGCACA	CACCACCATG	360
CTGTACGCGG	CAGGCCAAAC	CGACACCGCC	GCGGCGATCT	TGGCCGGCAC	AGCACCTGCC	420
GCCGGTGACC	CGAACGCGCC	GTATGTGGCG	TGGGCGGCAG	GAACCGGGAC	ACCGGCGGGA	480
CCGCCGGCAC	CGTTCGGCCC	GGATGTCGCC	GCCGAATACC	TGGGCACCGC	GGTGCAATTC	540
CACTTCATCG	CACGCCTGGT	CCTGGTGCTG	CTGGACGAAA	CCTTCCTGCC	GGGGGCCCG	600
CGCGCCCAAC	AGCTCATGCG	CCGCGCCGGT	GGACTGGTGT	TCGCCCGCAA	GGTGCGCGCG	660
GAGCATCGGC	CGGGCCGCTC	CACCCGCCGG	CTCGAGCCGC	GAACGCTGCC	CGACGATCTG	720
GCATGGGCAA	CACCGTCCGA	GCCCATAGCA	ACCGCGTTCG	CCGCGCTCAG	CCACCACCTG	780
GACACCGCGC	CGCACCTGCC	GCCACCGACT	CGTCAGGTGG	TCAGGCGGGT	CGTGGGGTCG	840
TGGCACGGCG	AGCCAATGCC	GATGAGCAGT	CGCTGGACGA	ACGAGCACAC	CGCCGAGCTG	900
CCCGCCGACC	TGCACGCGCC	CACCCGTCTT	GCCCTGCTGA	CCGGCCTGGC	CCCGCATCAG	960
GTGACCGACG	ACGACGTCGC	CGCGGCCCGA	TCCCTGCTCG	ACACCGATGC	GGCGCTGGTT	1020
GGCGCCCTGG	CCTGGGCCGC	CTTCACCGCC	GCGCGGCGCA	TCGGCACCTG	GATCGGCGCC	1080
GCCGCCGAGG	GCCAGGTGTC	GCGGCAAAAC	CCGACTGGGT	GAGTGTGCGC	GCCCTGTCGG	1140
TAGGGTGTCA	TCGCTGGCCC	GAGGGATCTC	GCGGCGGCGA	ACGGAGGTGG	CGACACAGGT	1200
GGAAGCTGCG	CCCACTGGCT	TGCGCCCCAA	CGCCGTCGTG	GGCGTTCGGT	TGGCCGCACT	1260
GGCCGATCAG	GTCGGCGCCG	GCCCTTGGCC	GAAGGTCCAG	CTCAACGTGC	CGTCACCGAA	1320

WO 98/16645 PCT/US97/18214

64

GGACCGGACG GTCACCGGGG GTCACCCTGC GCGCCCAAGG AA

1362

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1458 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC	CGATATGCCG	GGCACCGTAG	CGAAAGCCGT	CGCCGACGCA	CTCGGGCGCG	60
GTATCGCTCC	CGTTGAGGAC	ATTCAGGACT	GCGTGGAGGC	CCGGCTGGGG	GAAGCCGGTC	120
TGGATGACGT	GGCCCGTGTT	TACATCATCT	ACCGGCAGCG	GCGCGCCGAG	CTGCGGACGG	180
CTAAGGCCTT	GCTCGGCGTG	CGGGACGAGT	TAAAGCTGAG	CTTGGCGGCC	GTGACGGTAC	240
TGCGCGAGCG	CTATCTGCTG	CACGACGAGC	AGGGCCGGCC	GGCCGAGTCG	ACCGGCGAGC	300
TGATGGACCG	ATCGGCGCGC	TGTGTCGCGG	CGGCCGAGGA	CCAGTATGAG	CCGGGCTCGT	360
CGAGGCGGTG	GGCCGAGCGG	TTCGCCACGC	TATTACGCAA	CCTGGAATTC	CTGCCGAATT	420
CGCCCACGTT	GATGAACTCT	GGCACCGACC	TGGGACTGCT	CGCCGGCTGT	TTTGTTCTGC	480
CGATTGAGGA	TTCGCTGCAA	TCGATCTTTG	CGACGCTGGG	ACAGGCCGCC	GAGCTGCAGC	540
GGGCTGGAGG	CGGCACCGGA	TATGCGTTCA	GCCACCTGCG	ACCCGCCGGG	GATCGGGTGG	600
CCTCCACGGG	CGGCACGGCC	AGCGGACCGG	TGTCGTTTCT	ACGGCTGTAT	GACAGTGCCG	660
CGGGTGTGGT	CTCCATGGGC	GGTCGCCGGC	GTGGCGCCTG	TATGGCTGTG	CTTGATGTGT	720
CGCACCCGGA	TATCTGTGAT	TTCGTCACCG	CCAAGGCCGA	ATCCCCCAGC	GAGCTCCCGC	780
ATTTCAACCT	ATCGGTTGGT	GTGACCGACG	CGTTCCTGCG	GGCCGTCGAA	CGCAACGGCC	840
TACACCGGCT	GGTCAATCCG	CGAACCGGCA	AGATCGTCGC	GCGGATGCCC	GCCGCCGAGC	900
TGTTCGACGC	CATCTGCAAA	GCCGCGCACG	CCGGTGGCGA	TCCCGGGCTG	GTGTTTCTCG	960
ACACGATCAA	TAGGGCAAAC	CCGGTGCCGG	GGAGAGGCCG	CATCGAGGCG	ACCAACCCGT	1020
GCGGGGAGGT	CCCACTGCTG	CCTTACGAGT	CATGTAATCT	CGGCTCGATC	AACCTCGCCC	1080
GGATGCTCGC	CGACGGTCGC	GTCGACTGGG	ACCGGCTCGA	GGAGGTCGCC	GGTGTGGCGG	1140
TGCGGTTCCT	TGATGACGTC	ATCGATGTCA	GCCGCTACCC	CTTCCCCGAA	CTGGGTGAGG	1200

PCT/US97/18214

CGGCCCGCGC	CACCCGCAAG	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA	CTGCTTGCCG	1260
CACTGGGTAT	TCCGTACGAC	AGTGAAGAAG	CCGTGCGGTT	AGCCACCCGG	CTCATGCGTC	1320
GCATACAGCA	GGCGGCGCAC	ACGGCATCGC	GGAGGCTGGC	CGAAGAGCGG	GGCGCATTCC	1380
CGGCGTTCAC	CGATAGCCGG	TTCGCGCGGT	CGGGCCCGAG	GCGCAACGCA	CAGGTCACCT	1440
CCGTCGCTCC	GACGGGCA					1458

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 862 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGGTGTAAT CGTGCTGGAT CTGGAACCGC GTGGCCCGCT ACCTACCGAG ATCTACTGGC 60 GGCGCAGGGG GCTGGCCCTG GGCATCGCGG TCGTCGTAGT CGGGATCGCG GTGGCCATCG 120 TCATCGCCTT CGTCGACAGC AGCGCCGGTG CCAAACCGGT CAGCGCCGAC AAGCCGGCCT 180 CCGCCCAGAG CCATCCGGGC TCGCCGGCAC CCCAAGCACC CCAGCCGGCC GGGCAAACCG 240 AAGGTAACGC CGCCGCGCC CCGCCGCAGG GCCAAAACCC CGAGACACCC ACGCCCACCG 300 CCGCGGTGCA GCCGCCGCG GTGCTCAAGG AAGGGGACGA TTGCCCCGAT TCGACGCTGG 360 CCGTCAAAGG TTTGACCAAC GCGCCGCAGT ACTACGTCGG CGACCAGCCG AAGTTCACCA 420 TGGTGGTCAC CAACATCGGC CTGGTGTCCT GTAAACGCGA CGTTGGGGCC GCGGTGTTGG 480 CCGCCTACGT TTACTCGCTG GACAACAAGC GGTTGTGGTC CAACCTGGAC TGCGCGCCCT 540 CGAATGAGAC GCTGGTCAAG ACGTTTTCCC CCGGTGAGCA GGTAACGACC GCGGTGACCT 600 GGACCGGGAT GGGATCGGCG CCGCGCTGCC CATTGCCGCG GCCGGCGATC GGGCCGGGCA 660 CCTACAATCT CGTGGTACAA CTGGGCAATC TGCGCTCGCT GCCGGTTCCG TTCATCCTGA 720 ATCAGCCGCC GCCCCCCC GGGCCGGTAC CCGCTCCGGG TCCAGCGCAG GCGCCTCCGC 780 CGGAGTCTCC CGCGCAAGGC GGATAATTAT TGATCGCTGA TGGTCGATTC CGCCAGCTGT 840 GACAACCCCT CGCCTCGTGC CG 862

WO 98/16645

PCT/US97/18214

	121	INFORMATION	FOR	SEO	TD	NO - 10	,
ı	~ 1	TIME OFFICE TON	LOL	טבע	ıυ	NO. LO	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 622 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTGATCAGCA	CCGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	CAATGACAAA	60
GACACCCCGG	GCGCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	GAACGCTGGA	120
GTGCCGAAGG	GCGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	CGCGGACGCG	180
TTGGTTGCCG	CCGTGCGGTC	CAAAGCGCCG	GGCGCCACGG	TGGCGCTAAC	CTTTCAGGAT	240
CCCTCGGGCG	GTAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	GTGATGAAGG	300
TCGCCGCGCA	GTGTTCAAAG	CTCGGATATA	CGGTGGCACC	CATGGAACAG	CGTGCGGAGT	360
TGGTGGTTGG	CCGGGCACTT	GTCGTCGTCG	TTGACGATCG	CACGGCGCAC	GGCGATGAAG	420
ACCACAGCGG	GCCGCTTGTC	ACCGAGCTGC	TCACCGAGGC	CGGGTTTGTT	GTCGACGGCG	480
TGGTGGCGGT	GTCGGCCGAC	GAGGTCGAGA	TCCGAAATGC	GCTGAACACA	GCGGTGATCG	540
GCGGGGTGGA	CCTGGTGGTG	TCGGTCGGCG	GGACCGGNGT	GACGNCTCGC	GATGTCACCC	600
CGGAAGCCAC	CCGNGACATT	CT				622

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1200 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGCGCAGCGG TAAGCCTGTT	GGCCGCCGGC	ACACTGGTGT	TGACAGCATG	CGGCGGTGGC	60
ACCAACAGCT CGTCGTCAGG	CGCAGGCGGA	ACGTCTGGGT	CGGTGCACTG	CGGCGGCAAG	120
AAGGAGCTCC ACTCCAGCGG	CTCGACCGCA	CAAGAAAATG	CCATGGAGCA	GTTCGTCTAT	180

240	GTCCGGTGCC	ACGCCAACGG	TTGGACTACA	GGGCTACACG	GATCGTGCCC	GCCTACGTGC
300	CCCGTTGAAT	GCTCGGATGT	GATTTCGCCG	CAACGAAACC	AGTTTCTCAA	GGGTGACCC
360	ATGGGACCTG	GTTCCCCGGC	GAGCGGTGCG	CCGGTCGGCG	GTCAACCTGA	CCGTCGACCG
420	CACGCTGAAT	AGGGCGTGAG	TACAATATCA	CGCGATCACC	TCGGCCCGAT	CCGACGGTGT
480	GAATGATCCA	TCACCGTGTG	AACGGCACCA	CAAGATTTTC	CCACTACCGC	CTTGACGGAC
540	CGTTATCTTC	CACCGATTAG	CTGCCGCCAA	CGGCACCGAC	CCCTCAACTC	CAGATCCAAG
600	TGTATCCAAC	ACCTCGACGG	TTCCAGAAAT	GTCGGACAAC	AGTCCGGTAC	CGCAGCGACA
660	CGGCGCCAGC	GCGTCGGCGT	TTCAGCGGGG	CAGCGAAACG	GCAAAGGCGC	GGGGCGTGGG
720	CTACAACGAG	GGTCGATCAC	ACGACCGACG	CCTACTGCAG	GAACGTCGGC	GGGAACAACG
780	GGCGGGTCCG	TCATCACGTC	ATGGCCCAGA	GCAGTTGAAC	CGGTGGGTAA	rggtcgtttg
840	CAAGATCATG	TCGCCGGGGC	GGTAAGACAA	CGAGTCGGTC	CGATCACCAC	GATCCAGTGG
900	CCAGCCTGGC	ACAGACCCAC	TCGTCGTTCT	ATTGGACACG	ACGACCTGGT	GGACAAGGCA
960	GGATGCGACG	CGAAATACCC	ATCGTCTGCT	GACCTATGAG	TCGTGCTGGC	TCTTACCCGA
1020	AGAAGGCCTG	GTCCAGGCCA	GCCGCGATTG	GTTTATGCAA	CGGTAAGGGC	ACCGGTACTG
1080	GGCCGCGGTG	CAAAATTGGC	TCGTTCCAAG	GTTGCCCAAA	GCTCCATTCC	GACCAATACG
1140	TCCGCAGGTA	GCGATGCCGT	TCGACGGTGA	TGAAGGGAAT	CTTGACCTAG	AATGCTATTT
1200	GATGGGCGAG	GCCGAGGCGG	CGGCTGCTGG	TCAGCTATTG	TTGGGCCGTA	GGGTCGCAAT

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1155 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGCT GCAGGTCGTG CTGTTCGACG AACTGGGCAT GCCGAAGACC AAACGCACCA 60

AGACCGGCTA CACCACGGAT GCCGACGCGC TGCAGTCGTT GTTCGACAAG ACCGGGCATC 120

CGTTTCTGCA ACATCTGCTC GCCCACCGCG ACGTCACCCG GCTCAAGGTC ACCGTCGACG 180

GGTTGCTCCA	AGCGGTGGCC	GCCGACGGCC	GCATCCACAC	CACGTTCAAC	CAGACGATCG	240
CCGCGACCGG	CCGGCTCTCC	TCGACCGAAC	CCAACCTGCA	GAACATCCCG	ATCCGCACCG	300
ACGCGGGCCG	GCGGATCCGG	GACGCGTTCG	TGGTCGGGGA	CGGTTACGCC	GAGTTGATGA	360
CGGCCGACTA	CAGCCAGATC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GACGAGGGCC	420
TCATCGAGGC	GTTCAACACC	GGGGAGGACC	TGTATTCGTT	CGTCGCGTCC	CGGGTGTTCG	480
GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTTA	CGGGTTGAGC	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	600
AAGCCAACGA	GCAGATGGAC	GCGTATTTCG	CCCGATTCGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC	CGAGCTGGAC	AGCAGCAACC	GTCAAGTGCG	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC	GCTCAACGAG	GCACAGCTGG	CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
AGCTGCTGTT	CGAAATCGCC	CCCGGTGAAC	GCGAGCGGGT	CGAGGCCCTG	GTGCGCGACA	960
AGATGGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTCGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1771 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCGCCGTC	TGGTGTTTGA	ACGGTTTTAC	CGGTCGGCAT	CGGCACGGGC	GTTGCCGGGT	60
TCGGGCCTCG	GGTTGGCGAT	CGTCAAACAG	GTGGTGCTCA	ACCACGGCGG	ATTGCTGCGC	120
ATCGAAGACA	CCGACCCAGG	CGGCCAGCCC	CCTGGAACGT	CGATTTACGT	GCTGCTCCCC	180

GGCCGTCGGA TGCCGATTCC	GCAGCTTCCC	GGTGCGACGG	CTGGCGCTCG	GAGCACGGAC	240
ATCGAGAACT CTCGGGGTTC	GGCGAACGTT	ATCTCAGTGG	AATCTCAGTC	CACGCGCGCA	300
ACCTAGTTGT GCAGTTACTG	TTGAAAGCCA	CACCCATGCC	AGTCCACGCA	TGGCCAAGTT	360
GGCCCGAGTA GTGGGCCTAG	TACAGGAAGA	GCAACCTAGC	GACATGACGA	ATCACCCACG	420
GTATTCGCCA CCGCCGCAGC	AGCCGGGAAC	CCCAGGTTAT	GCTCAGGGGC	AGCAGCAAAC	480
GTACAGCCAG CAGTTCGACT	GGCGTTACCC	ACCGTCCCCG	CCCCGCAGC	CAACCCAGTA	540
CCGTCAACCC TACGAGGCGT	TGGGTGGTAC	CCGGCCGGGT	CTGATACCTG	GCGTGATTCC	600
GACCATGACG CCCCCTCCTG	GGATGGTTCG	CCAACGCCCT	CGTGCAGGCA	TGTTGGCCAT	660
CGGCGCGGTG ACGATAGCGG	TGGTGTCCGC	CGGCATCGGC	GGCGCGGCCG	CATCCCTGGT	720
CGGGTTCAAC CGGGCACCCG	CCGGCCCCAG	CGGCGGCCCA	GTGGCTGCCA	GCGCGGCGCC	780
AAGCATCCCC GCAGCAAACA	TGCCGCCGGG	GTCGGTCGAA	CAGGTGGCGG	CCAAGGTGGT	840
GCCCAGTGTC GTCATGTTGG	AAACCGATCT	GGGCCGCCAG	TCGGAGGAGG	GCTCCGGCAT	900
CATTCTGTCT GCCGAGGGGC	TGATCTTGAC	CAACAACCAC	GTGATCGCGG	CGGCCGCCAA	960
GCCTCCCCTG GGCAGTCCGC	CGCCGAAAAC	GACGGTAACC	TTCTCTGACG	GGCGGACCGC	1020
ACCCTTCACG GTGGTGGGGG	CTGACCCCAC	CAGTGATATC	GCCGTCGTCC	GTGTTCAGGG	1080
CGTCTCCGGG CTCACCCCGA	TCTCCCTGGG	TTCCTCCTCG	GACCTGAGGG	TCGGTCAGCC	1140
GGTGCTGGCG ATCGGGTCGC	CGCTCGGTTT	GGAGGGCACC	GTGACCACGG	GGATCGTCAG	1200
CGCTCTCAAC CGTCCAGTGT	CGACGACCGG	CGAGGCCGGC	AACCAGAACA	CCGTGCTGGA	1260
CGCCATTCAG ACCGACGCCG	CGATCAACCC	CGGTAACTCC	GGGGGCGCGC	TGGTGAACAT	1320
GAACGCTCAA CTCGTCGGAG	TCAACTCGGC	CATTGCCACG	CTGGGCGCGG	ACTCAGCCGA	1380
TGCGCAGAGC GGCTCGATCG	GTCTCGGTTT	TGCGATTCCA	GTCGACCAGG	CCAAGCGCAT	1440
CGCCGACGAG TTGATCAGCA	CCGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	1500
CAATGACAAA GACACCCCGG	GCGCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	1560
GAACGCTGGA GTGCCGAAGG	GCGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	1620
CGCGGACGCG TTGGTTGCCG	CCGTGCGGTC	CAAAGCGCCG	GGCGCCACGG	TGGCGCTAAC	1680
CTTTCAGGAT CCCTCGGGCG	GTAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	1740
GTGATGAAGG TCGCCGCGCA	GTGTTCAAAG	С			1771

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1058 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG	GTGGCGGCCG	CTCTAGAACT	AGTGGATCCC	CCGGGCTGCA	GGAATTCGGC	60
ACGAGGATCC	GACGTCGCAG	GTTGTCGAAC	CCGCCGCCGC	GGAAGTATCG	GTCCATGCCT	120
AGCCCGGCGA	CGGCGAGCGC	CGGAATGGCG	CGAGTGAGGA	GGCGGGCAAT	TTGGCGGGGC	180
CCGGCGACGG	CGAGCGCCGG	AATGGCGCGA	GTGAGGAGGC	GGGCAGTCAT	GCCCAGCGTG	240
ATCCAATCAA	CCTGCATTCG	GCCTGCGGGC	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	300
TGAATGATGG	AAAACGGGCG	GTGACGTCCG	CTGTTCTGGT	GGTGCTAGGT	GCCTGCCTGG	360
CGTTGTGGCT	ATCAGGATGT	TCTTCGCCGA	AACCTGATGC	CGAGGAACAG	GGTGTTCCCG	420
TGAGCCCGAC	GGCGTCCGAC	CCCGCGCTCC	TCGCCGAGAT	CAGGCAGTCG	CTTGATGCGA	480
CAAAAGGGTT	GACCAGCGTG	CACGTAGCGG	TCCGAACAAC	CGGGAAAGTC	GACAGCTTGC	540
TGGGTATTAC	CAGTGCCGAT	GTCGACGTCC	GGGCCAATCC	GCTCGCGGCA	AAGGGCGTAT	600
GCACCTACAA	CGACGAGCAG	GGTGTCCCGT	TTCGGGTACA	AGGCGACAAC	ATCTCGGTGA	660
AACTGTTCGA	CGACTGGAGC	AATCTCGGCT	CGATTTCTGA	ACTGTCAACT	TCACGCGTGC	720
TCGATCCTGC	CGCTGGGGTG	ACGCAGCTGC	TGTCCGGTGT	CACGAACCTC	CAAGCGCAAG	780
GTACCGAAGT	GATAGACGGA	ATTTCGACCA	CCAAAATCAC	CGGGACCATC	CCCGCGAGCT	840
CTGTCAAGAT	GCTTGATCCT	GGCGCCAAGA	GTGCAAGGCC	GGCGACCGTG	TGGATTGCCC	900
AGGACGGCTC	GCACCACCTC	GTCCGAGCGA	GCATCGACCT	CGGATCCGGG	TCGATTCAGC	960
TCACGCAGTC	GAAATGGAAC	GAACCCGTCA	ACGTCGACTA	GGCCGAAGTT	GCGTCGACGC	1020
GTTGNTCGAA	ACGCCCTTGT	GAACGGTGTC	AACGGNAC			1058

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 542 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACAGGC 60 GGCGGCGGAG GCGGTCCAGC GGGCGCGGGA TAGCGTCGAT GACATCCGCG TCGCTCGGGT 120 CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC ACCTACCGCA TCAAGCTCGA 180 AGTGTCGTTC AAGATGAGGC CGGCGCAACC GCGCTAGCAC GGGCCGGCGA GCAAGACGCA 240 AAATCGCACG GTTTGCGGTT GATTCGTGCG ATTTTGTGTC TGCTCGCCGA GGCCTACCAG 300 GCGCGGCCCA GGTCCGCGTG CTGCCGTATC CAGGCGTGCA TCGCGATTCC GGCGGCCACG 360 CCGGAGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC GCCGGNGAGC TGATCGATGA 420 CCGTGGCCAG CCCGTCGATG CCCGAGTTGC CCGAGGAAAC GTGCTGCCAG GCCGGTAGGA 480 AGCGTCCGTA GGCGGCGGTG CTGACCGGCT CTGCCTGCGC CCTCAGTGCG GCCAGCGAGC 540 GG 542

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 913 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	GCCGATCAGC	TGCGCATCGC	60
CACCATCACC	GCCTTTGCCG	CCGGCACCGC	CGGTGGCGCC	GGGGCCGCCG	ATGCCACCGC	120
TTGACCCTGG	CCGCCGGCGC	CGCCATTGCC	ATACAGCACC	CCGCCGGGGG	CACCGTTACC	180
GCCGTCGCCA	CCGTCGCCGC	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC	GCCGGCACCG	TTGCCGCCTT	TTCCGCCCGC	CCCGCCGGCG	CCGCCAATTG	300
CCGAACAGCC	AMGCACCGTT	GCCGCCAGCC	CCGCCGCCGT	TAACGGCGCT	GCCGGGCGCC	360
GCCGCCGGAC	CCGCCATTAC	CGCCGTTCCC	GTTCGGTGCC	CCGCCGTTAC	CGGCGCCGCC	420

WO 98/16645

GTTTGCCGCC	AATATTCGGC	GGGCACCGCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
CACCGAAACA	ACAGCCCAAC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
TCACCGCCAG	CACCGCCGTT	AATGTTTATG	AACCCGGTAC	CGCCAGCGCG	GCCCCTATTG	600
CCGGGCGCCG	GAGNGCGTGC	CCGCCGGCGC	CGCCAACGCC	CAAAAGCCCG	GGGTTGCCAC	660
CGGCCCCGCC	GGACCCACCG	GTCCCGCCGA	TCCCCCGTT	GCCGCCGGTG	CCGCCGCCAT	720
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC	CGCSGGTTCC	GGCGGTGGCG	CCNTGGCCGC	780
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
TGCCGCCGTT	GCCGCCATTG	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
CGCCGGCGGC	CGC					913

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1872 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA 60 TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG 120 GTCATGGTTG CTGAGCGTGC TGGCTGCCGT CGGGCTGGGC CTGGCCACGG CGCCGGCCCA 180 GGCGGCCCCG CCGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA 240 CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG 300 CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT 360 GACCAACAAC CACGTGATCG CGGGCGCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG 420 CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA 480 GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA 540 GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG 600 CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA 660

GACATTGAAC	GGGTTGATCC	AGTTCGATGC	CGCAATCCAG	CCCGGTGATT	CGGGCGGCC	720
CGTCGTCAAC	GGCCTAGGAC	AGGTGGTCGG	TATGAACACG	GCCGCGTCCG	ATAACTTCCA	780
GCTGTCCCAG	GGTGGGCAGG	GATTCGCCAT	TCCGATCGGG	CAGGCGATGG	CGATCGCGGG	840
CCAAATCCGA	TCGGGTGGGG	GGTCACCCAC	CGTTCATATC	GGGCCTACCG	CCTTCCTCGG	900
CTTGGGTGTT	GTCGACAACA	ACGGCAACGG	CGCACGAGTC	CAACGCGTGG	TCGGAAGCGC	960
TCCGGCGGCA	AGTCTCGGCA	TCTCCACCGG	CGACGTGATC	ACCGCGGTCG	ACGGCGCTCC	1020
GATCAACTCG	GCCACCGCGA	TGGCGGACGC	GCTTAACGGG	CATCATCCCG	GTGACGTCAT	1080
CTCGGTGAAC	TGGCAAACCA	AGTCGGGCGG	CACGCGTACA	GGGAACGTGA	CATTGGCCGA	1140
GGGACCCCCG	GCCTGATTTG	TCGCGGATAC	CACCCGCCGG	CCGGCCAATT	GGATTGGCGC	1200
CAGCCGTGAT	TGCCGCGTGA	GCCCCCGAGT	TCCGTCTCCC	GTGCGCGTGG	CATTGTGGAA	1260
GCAATGAACG	AGGCAGAACA	CAGCGTTGAG	CACCCTCCCG	TGCAGGGCAG	TTACGTCGAA	1320
GGCGGTGTGG	TCGAGCATCC	GGATGCCAAG	GACTTCGGCA	GCGCCGCCGC	CCTGCCCGCC	1380
GATCCGACCT	GGTTTAAGCA	CGCCGTCTTC	TACGAGGTGC	TGGTCCGGGC	GTTCTTCGAC	1440
GCCAGCGCGG	ACGGTTCCGN	CGATCTGCGT	GGACTCATCG	ATCGCCTCGA	CTACCTGCAG	1500
TGGCTTGGCA	TCGACTGCAT	CTGTTGCCGC	CGTTCCTACG	ACTCACCGCT	GCGCGACGGC	1560
GGTTACGACA	TTCGCGACTT	CTACAAGGTG	CTGCCCGAAT	TCGGCACCGT	CGACGATTTC	1620
GTCGCCCTGG	TCGACACCGC	TCACCGGCGA	GGTATCCGCA	TCATCACCGA	CCTGGTGATG	1680
AATCACACCT	CGGAGTCGCA	CCCCTGGTTT	CAGGAGTCCC	GCCGCGACCC	AGACGGACCG	1740
TACGGTGACT	ATTACGTGTG	GAGCGACACC	AGCGAGCGCT	ACACCGACGC	CCGGATCATC	1800
TTCGTCGACA	CCGAAGAGTC	GAACTGGTCA	TTCGATCCTG	TCCGCCGACA	GTTNCTACTG	1860
GCACCGATTC	тт					1872

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1482 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

CTTCGCCGAA ACCTGATGCC	GAGGAACAGG	GTGTTCCCGT	GAGCCCGACG	GCGTCCGACC	60
CCGCGCTCCT CGCCGAGATC	AGGCAGTCGC	TTGATGCGAC	AAAAGGGTTG	ACCAGCGTGC	120
ACGTAGCGGT CCGAACAACC	GGGAAAGTCG	ACAGCTTGCT	GGGTATTACC	AGTGCCGATG	180
TCGACGTCCG GGCCAATCCG	CTCGCGGCAA	AGGGCGTATG	CACCTACAAC	GACGAGCAGG	240
GTGTCCCGTT TCGGGTACAA	GGCGACAACA	TCTCGGTGAA	ACTGTTCGAC	GACTGGAGCA	300
ATCTCGGCTC GATTTCTGAA	CTGTCAACTT	CACGCGTGCT	CGATCCTGCC	GCTGGGGTGA	360
CGCAGCTGCT GTCCGGTGTC	ACGAACCTCC	AAGCGCAAGG	TACCGAAGTG	ATAGACGGAA	420
TTTCGACCAC CAAAATCACC	GGGACCATCC	CCGCGAGCTC	TGTCAAGATG	CTTGATCCTG	480
GCGCCAAGAG TGCAAGGCCG	GCGACCGTGT	GGATTGCCCA	GGACGGCTCG	CACCACCTCG	540
TCCGAGCGAG CATCGACCTC	GGATCCGGGT	CGATTCAGCT	CACGCAGTCG	AAATGGAACG	600
AACCCGTCAA CGTCGACTAG	GCCGAAGTTG	CGTCGACGCG	TTGCTCGAAA	CGCCCTTGTG	660
AACGGTGTCA ACGGCACCCG	AAAACTGACC	CCCTGACGGC	ATCTGAAAAT	TGACCCCCTA	720
GACCGGGCGG TTGGTGGTTA	TTCTTCGGTG	GTTCCGGCTG	GTGGGACGCG	GCCGAGGTCG	780
CGGTCTTTGA GCCGGTAGCT	GTCGCCTTTG	AGGGCGACGA	CTTCAGCATG	GTGGACGAGG	840
CGGTCGATCA TGGCGGCAGC	AACGACGTCG	TCGCCGCCGA	AAACCTCGCC	CCACCGGCCG	900
AAGGCCTTAT TGGACGTGAC	GATCAAGCTG	GCCCGCTCAT	ACCGGGAGGA	CACCAGCTGG	960
AAGAAGAGGT TGGCGGCCTC	GGGCTCAAAC	GGAATGTAAC	CGACTTCGTC	AACCACCAGG	1020
AGCGGATAGC GGCCAAACCG	GGTGAGTTCG	GCGTAGATGC	GCCCGGCGTG	GTGAGCCTCG	1080
GCGAACCGTG CTACCCATTC	GGCGGCGGTG	GCGAACAGCA	CCCGATGACC	GGCCTGACAC	1140
GCGCGTATCG CCAGGCCGAC	CGCAAGATGA	GTCTTCCCGG	TGCCAGGCGG	GGCCCAAAAA	1200
CACGACGTTA TCGCGGGCGG	TGATGAAATC	CAGGGTGCCC	AGATGTGCGA	TGGTGTCGCG	1260
TTTGAGGCCA CGAGCATGCT	CAAAGTCGAA	CTCTTCCAAC	GACTTCCGAA	CCGGGAAGCG	1320
GGCGGCGCG ATGCGGCCCT	CACCACCATG	GGACTCCCGG	GCTGACACTT	CCCGCTGCAG	1380
GCAGGCGGCC AGGTATTCTT	CGTGGCTCCA	GTTCTCGGCG	CGGGCGCGAT	CGGCCAGCCG	1440
GGACACTGAC TCACGCAGGG	TGGGAGCTTT	CAATGCTCTT	GT		1482

(2) INFORMATION FOR SEQ ID NO:19:

(A) LENGTH: 876 base pairs

⁽i) SEQUENCE CHARACTERISTICS:

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA	CGAGCCGGCG	ATAGCTTCTG	GGCCGCGGCC	GACCAGATGG	CTCGAGGGTT	60
CGTGCTCGGG	GCCACCGCCG	GGCGCACCAC	CCTGACCGGT	GAGGGCCTGC	AACACGCCGA	120
CGGTCACTCG	TTGCTGCTGG	ACGCCACCAA	CCCGGCGGTG	GTTGCCTACG	ACCCGGCCTT	180
CGCCTACGAA	ATCGGCTACA	TCGNGGAAAG	CGGACTGGCC	AGGATGTGCG	GGGAGAACCC	240
GGAGAACATC	TTCTTCTACA	TCACCGTCTA	CAACGAGCCG	TACGTGCAGC	CGCCGGAGCC	300
GGAGAACTTC	GATCCCGAGG	GCGTGCTGGG	GGGTATCTAC	CGNTATCACG	CGGCCACCGA	360
GCAACGCACC	AACAAGGNGC	AGATCCTGGC	CTCCGGGGTA	GCGATGCCCG	CGGCGCTGCG	420
GGCAGCACAG	ATGCTGGCCG	CCGAGTGGGA	TGTCGCCGCC	GACGTGTGGT	CGGTGACCAG	480
TTGGGGCGAG	CTAAACCGCG	ACGGGGTGGT	CATCGAGACC	GAGAAGCTCC	GCCACCCCGA	540
TCGGCCGGCG	GGCGTGCCCT	ACGTGACGAG	AGCGCTGGAG	AATGCTCGGG	GCCCGGTGAT	600
CGCGGTGTCG	GACTGGATGC	GCGCGGTCCC	CGAGCAGATC	CGACCGTGGG	TGCCGGGCAC	660
ATACCTCACG	TTGGGCACCG	ACGGGTTCGG	TTTTTCCGAC	ACTCGGCCCG	CCGGTCGTCG	720
TTACTTCAAC	ACCGACGCCG	AATCCCAGGT	TGGTCGCGGT	TTTGGGAGGG	GTTGGCCGGG	780
TCGACGGGTG	AATATCGACC	CATTCGGTGC	CGGTCGTGGG	ccgcccgccc	AGTTACCCGG	840
ATTCGACGAA	GGTGGGGGGT	TGCGCCCGAN	TAAGTT			876

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CAGATTCATA	ACGAATTCAC	AGCGGCACAA	CAATATGTCG	CGATCGCGGT	TTATTTCGAC	120
AGCGAAGACC	TGCCGCAGTT	GGCGAAGCAT	TTTTACAGCC	AAGCGGTCGA	GGAACGAAAC	180
CATGCAATGA	TGCTCGTGCA	ACACCTGCTC	GACCGCGACC	TTCGTGTCGA	AATTCCCGGC	240
GTAGACACGG	TGCGAAACCA	GTTCGACAGA	CCCCGCGAGG	CACTGGCGCT	GGCGCTCGAT	300
CAGGAACGCA	CAGTCACCGA	CCAGGTCGGT	CGGCTGACAG	CGGTGGCCCG	CGACGAGGGC	360
GATTTCCTCG	GCGAGCAGTT	CATGCAGTGG	TTCTTGCAGG	AACAGATCGA	AGAGGTGGCC	420
TTGATGGCAA	CCCTGGTGCG	GGTTGCCGAT	CGGGCCGGGG	CCAACCTGTT	CGAGCTAGAG	480
AACTTCGTCG	CACGTGAAGT	GGATGTGGCG	CCGGCCGCAT	CAGGCGCCCC	GCACGCTGCC	540
GGGGCCGCC	TCTAGATCCC	TGGGGGGGAT	CAGCGAGTGG	TCCCGTTCGC	CCGCCCGTCT	600
TCCAGCCAGG	CCTTGGTGCG	GCCGGGGTGG	TGAGTACCAA	TCCAGGCCAC	CCCGACCTCC	660
CGGNAAAAGT	CGATGTCCTC	GTACTCATCG	ACGTTCCAGG	AGTACACCGC	CCGGCCCTGA	720
GCTGCCGAGC	GGTCAACGAG	TTGCGGATAT	TCCTTTAACG	CAGGCAGTGA	GGGTCCCACG	780
GCGGTTGGCC	CGACCGCCGT	GGCCGCACTG	CTGGTCAGGT	ATCGGGGGGT	CTTGGCGAGC	840
AACAACGTCG	GCAGGAGGGG	TGGAGCCCGC	CGGATCCGCA	GACCGGGGGG	GCGAAAACGA	900
CATCAACACC	GCACGGGATC	GATCTGCGGA	GGGGGTGCG	GGAATACCGA	ACCGGTGTAG	960
GAGCGCCAGC	AGTTGTTTTT	CCACCAGCGA	AGCGTTTTCG	GGTCATCGGN	GGCNNTTAAG	1020
Т						1021

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 321 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGTGCCGACG AACGGAAGAA CACAACCATG AAGATGGTGA AATCGATCGC CGCAGGTCTG 60

ACCGCCGCGG CTGCAATCGG CGCCGCTGCG GCCGGTGTGA CTTCGATCAT GGCTGGCGGN 120

CCGGTCGTAT ACCAGATGCA GCCGGTCGTC TTCGGCGCGC CACTGCCGTT GGACCCGGNA 180

PCT/US97/18214

TCCGCCCCTG	ANGTCCCGAC	CGCCGCCCAG	TGGACCAGNC	TGCTCAACAG	NCTCGNCGAT	240
CCCAACGTGT	CGTTTGNGAA	CAAGGGNAGT	CTGGTCGAGG	GNGGNATCGG	NGGNANCGAG	300
GGNGNGNATC	GNCGANCACA	A				321

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 373 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

•	PCTTATCGGT	TCCGGTTGGC	GACGGGTTTT	GGGNGCGGGT	GGTTAACCCG	CTCGGCCAGC	60
(CGATCGACGG	GCGCGGAGAC	GTCGACTCCG	ATACTCGGCG	CGCGCTGGAG	CTCCAGGCGC	120
•	CCTCGGTGGT	GNACCGGCAA	GGCGTGAAGG	AGCCGTTGNA	GACCGGGATC	AAGGCGATTG	180
ì	ACGCGATGAC	CCCGATCGGC	CGCGGGCAGC	GCCAGCTGAT	CATCGGGGAC	CGCAAGACCG	240
	GCAAAAACCG	CCGTCTGTGT	CGGACACCAT	CCTCAAACCA	GCGGGAAGAA	CTGGGAGTCC	300
1	GGTGGATCCC	AAGAAGCAGG	TGCGCTTGTG	TATACGTTGG	CCATCGGGCA	AGAAGGGGAA	360
	CTTACCATCG	CCG					373

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 352 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTGACGCCGT	GATGGGATTC	CTGGGCGGG	CCGGTCCGCT	GGCGGTGGTG	GATCAGCAAC	60
TGGTTACCCG	GGTGCCGCAA	GGCTGGTCGT	TTGCTCAGGC	AGCCGCTGTG	CCGGTGGTGT	120
TCTTGACGGC	CTGGTACGGG	TTGGCCGATT	TAGCCGAGAT	CAAGGCGGGC	GAATCGGTGC	180
TGATCCATGC	CGGTACCGGC	GGTGTGGGCA	TGGCGGCTGT	GCAGCTGGCT	CGCCAGTGGG	240

GCGTGGAGGT	TTTCGTCACC	GCCAGCCGTG	GNAAGTGGGA	CACGCTGCGC	GCCATNGNGT	300
TTGACGACGA	NCCATATCGG	NGATTCCCNC	ACATNCGAAG	TTCCGANGGA	GA	352

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 726 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GAAATCCGCG	TTCATTCCGT	TCGACCAGCG	GCTGGCGATA	ATCGACGAAG	TGATCAAGCC	60
GCGGTTCGCG	GCGCTCATGG	GTCACAGCGA	GTAATCAGCA	AGTTCTCTGG	TATATCGCAC	120
CTAGCGTCCA	GTTGCTTGCC	AGATCGCTTT	CGTACCGTCA	TCGCATGTAC	CGGTTCGCGT	180
GCCGCACGCT	CATGCTGGCG	GCGTGCATCC	TGGCCACGGG	TGTGGCGGGT	CTCGGGGTCG	240
GCGCGCAGTC	CGCAGCCCAA	ACCGCGCCGG	TGCCCGACTA	CTACTGGTGC	CCGGGGCAGC	. 300
CTTTCGACCC	CGCATGGGGG	CCCAACTGGG	ATCCCTACAC	CTGCCATGAC	GACTTCCACC	360
GCGACAGCGA	CGGCCCCGAC	CACAGCCGCG	ACTACCCCGG	ACCCATCCTC	GAAGGTCCCG	420
TGCTTGACGA	TCCCGGTGCT	GCGCCGCCGC	CCCCGGCTGC	CGGTGGCGGC	GCATAGCGCT	480
CGTTGACCGG	GCCGCATCAG	CGAATACGCG	TATAAACCCG	GGCGTGCCCC	CGGCAAGCTA	540
CGACCCCCGG	CGGGGCAGAT	TTACGCTCCC	GTGCCGATGG	ATCGCGCCGT	CCGATGACAG	600
AAAATAGGCG	ACGGTTTTGG	CAACCGCTTG	GAGGACGCTT	GAAGGGAACC	TGTCATGAAC	660
GGCGACAGCG	CCTCCACCAT	CGACATCGAC	AAGGTTGTTA	CCCGCACACC	CGTTCGCCGG	720
ATCGTG						726

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 580 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

580

(xi) SI	EQUENCE DESC	CRIPTION: SI	EQ ID NO:25	1		
CGCGACGACG	ACGAACGTCG	GGCCCACCAC	CGCCTATGCG	TTGATGCAGG	CGACCGGGAT	60
GGTCGCCGAC	CATATCCAAG	CATGCTGGGT	GCCCACTGAG	CGACCTTTTG	ACCAGCCGGG	120
CTGCCCGATG	GCGGCCCGGT	GAAGTCATTG	CGCCGGGGCT	TGTGCACCTG	ATGAACCCGA	180
ATAGGGAACA	ATAGGGGGGT	GATTTGGCAG	TTCAATGTCG	GGTATGGCTG	GAAATCCAAT	240
GGCGGGGCAT	GCTCGGCGCC	GACCAGGCTC	GCGCAGGCGG	GCCAGCCCGA	ATCTGGAGGG	300
AGCACTCAAT	GGCGGCGATG	AAGCCCCGGA	CCGGCGACGG	TCCTTTGGAA	GCAACTAAGG	360
AGGGGCGCGG	CATTGTGATG	CGAGTACCAC	TTGAGGGTGG	CGGTCGCCTG	GTCGTCGAGC	420
TGACACCCGA	CGAAGCCGCC	GCACTGGGTG	ACGAACTCAA	AGGCGTTACT	AGCTAAGACC	480
AGCCCAACGG	CGAATGGTCG	GCGTTACGCG	CACACCTTCC	GGTAGATGTC	CAGTGTCTGC	540

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 base pairs
 - (B) TYPE: nucleic acid

TCGGCGATGT ATGCCCAGGA GAACTCTTGG ATACAGCGCT

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AACGGAGGCG CCGGGGGTTT TGGCGGGGCC GGGGCGGTCG GCGGCAACGG CGGGGCCGGC 60
GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCGGAGGCAA CGGCATCGCC 120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG 160

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC	60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC	120
AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT	180
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: 	
GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA GCAGACGGAT CGCCTGCCGC GGTTCATGCG CTACCTGGCC GCTATCACCG	120
CGCAGGAGCT GAACGTGGCC GAAGCGGCGC GGGTCATCGG GGTCGACGCG GGGACGATCC	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA TCGCCTGCCC GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAAGCGGT CAAAGATCCA CGTCGTCGAC AGTGGCTTCG	300
CGGCCTGGTT GCGCGGG	317
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 182 base pairs(B) TYPE: nucleic acid	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG GCGGCCAGCA CGTCGGTGTA 60

WO 98/16645 PCT/US97/18214

^	-
v	1
റ	

GG							182
CGCTTC	GGGC	GCGCTACGAA	ACACCGCGAC	ACCGTGCGCG	GCGGCGCCGG	ACGCCGCCGT	180
GCAGCG	CCGG	ACCACCTCGC	CGGTGGGCAG	CATGGTGATG	ACCACGTCGG	CCTCGGCCAC	120

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GATCGCGAAG	TTTGGTGAGC	AGGTGGTCGA	CGCGAAAGTC	TGGGCGCCTG	CGAAGCGGGT	60
CGGCGTTCAC	GAGGCGAAGA	CACGCCTGTC	CGAGCTGCTG	CGGCTCGTCT	ACGGCGGCA	120
GAGGTTGAGA	TTGCCCGCCG	CGGCGAGCCG	GTAGCAAAGC	TTGTGCCGCT	GCATCCTCAT	180
GAGACTCGGC	GGTTAGGCAT	TGACCATGGC	GTGTACCGCG	TGCCCGACGA	TTTGGACGCT	240
CCGTTGTCAG	ACGACGTGCT	CGAACGCTTT	CACCGGTGAA	GCGCTACCTC	ATCGACACCC	300
ACGTTTGG						308

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CCGACGACGA	GCAACTCACG	TGGATGATGG	TCGGCAGCGG	CATTGAGGAC	GGAGAGAATC	60
CGGCCGAAGC	TGCCGCGCGG	CAAGTGCTCA	TAGTGACCGG	CCGTAGAGGG	CTCCCCGAT	120
GGCACCGGAC	TATTCTGGTG	TGCCGCTGGC	CGGTAAGAGC	GGGTAAAAGA	ATGTGAGGGG	180
ACACGATGAG	CAATCACACC	TACCGAGTGA	TCGAGATCGT	CGGGACCTCG	CCCGACGGCG	240
TCGACGCGGC	AATCCAGGGC	GGTCTGG				267

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1539 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CTC	GTGCCGA	AAGAATGTGA	GGGGACACGA	TGAGCAATCA	CACCTACCGA	GTGATCGAGA	60
TCG	TCGGGAC	CTCGCCCGAC	GGCGTCGACG	CGGCAATCCA	GGGCGGTCTG	GCCCGAGCTG	120
CGC	AGACCAT	GCGCGCGCTG	GACTGGTTCG	AAGTACAGTC	AATTCGAGGC	CACCTGGTCG	180
ACG	GAGCGGT	CGCGCACTTC	CAGGTGACTA	TGAAAGTCGG	CTTCCGCTGG	AGGATTCCTG	240
AAC	CTTCAAG	CGCGGCCGAT	AACTGAGGTG	CATCATTAAG	CGACTTTTCC	AGAACATCCT	300
GAC	GCGCTCG	AAACGCGGTT	CAGCCGACGG	TGGCTCCGCC	GAGGCGCTGC	CTCCAAAATC	360
CCI	'GCGACAA	TTCGTCGGCG	GCGCCTACAA	GGAAGTCGGT	GCTGAATTCG	TCGGGTATCT	420
GGI	CGACCTG	TGTGGGCTGC	AGCCGGACGA	AGCGGTGCTC	GACGTCGGCT	GCGGCTCGGG	480
GCG	GATGGCG	TTGCCGCTCA	CCGGCTATCT	GAACAGCGAG	GGACGCTACG	CCGGCTTCGA	540
TAT	CTCGCAG	AAAGCCATCG	CGTGGTGCCA	GGAGCACATC	ACCTCGGCGC	ACCCCAACTT	600
CCA	GTTCGAG	GTCTCCGACA	TCTACAACTC	GCTGTACAAC	CCGAAAGGGA	AATACCAGTC	660
ACT	AGACTTT	CGCTTTCCAT	ATCCGGATGC	GTCGTTCGAT	GTGGTGTTTC	TTACCTCGGT	720
GTT	CACCCAC	ATGTTTCCGC	CGGACGTGGA	GCACTATCTG	GACGAGATCT	CCCGCGTGCT	780
GAA	GCCCGGC	GGACGATGCC	TGTGCACGTA	CTTCTTGCTC	AATGACGAGT	CGTTAGCCCA	840
CAT	CGCGGAA	GGAAAGAGTG	CGCACAACTT	CCAGCATGAG	GGACCGGGTT	ATCGGACAAT	900
CCA	CAAGAAG	CGGCCCGAAG	AAGCAATCGG	CTTGCCGGAG	ACCTTCGTCA	GGGATGTCTA	960
TGG	CAAGTTC	GGCCTCGCCG	TGCACGAACC	ATTGCACTAC	GGCTCATGGA	GTGGCCGGGA	1020
ACC	CACGCCTA	AGCTTCCAGG	ACATCGTCAT	CGCGACCAAA	ACCGCGAGCT	AGGTCGGCAT	1080
CCG	GGAAGCA	TCGCGACACC	GTGGCGCCGA	GCGCCGCTGC	CGGCAGGCCG	ATTAGGCGGG	1140
CAG	SATTAGCC	CGCCGCGGCT	CCCGGCTCCG	AGTACGGCGC	CCCGAATGGC	GTCACCGGCT	1200
GGT	AACCACG	CTTGCGCGCC	TGGGCGGCGG	CCTGCCGGAT	CAGGTGGTAG	ATGCCGACAA	1260

WO 98/16645 PCT/US97/18214

AGCCTGCGTG	ATCGGTCATC	ACCAACGGTG	ACAGCAGCCG	GTTGTGCACC	AGCGCGAACG	1320
CCACCCCGGT	CTCCGGGTCT	GTCCAGCCGA	TCGAGCCGCC	CAAGCCCACA	TGACCAAACC	1380
CCGGCATCAC	GTTGCCGATC	GGCATACCGT	GATAGCCAAG	ATGAAAATTT	AAGGGCACCA	1440
ATAGATTTCG	ATCCGGCAGA	ACTTGCCGTC	GGTTGCGGGT	CAGGCCCGTG	ACCAGCTCCC	1500
GCGACAAGAA	CCGTATGCCG	TCGATCTCGC	CTCGTGCCG			1539

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 851 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTGCAGGGTG GCGTGGATGA GCGTCACCGC GGGGCAGGCC GAGCTGACCG CCGCCCAGGT 60 CCGGGTTGCT GCGGCGCCT ACGAGACGC GTATGGGCTG ACGGTGCCCC CGCCGGTGAT 120 CGCCGAGAAC CGTGCTGAAC TGATGATTCT GATAGCGACC AACCTCTTGG GGCAAAACAC 180 CCCGGCGATC GCGGTCAACG AGGCCGAATA CGGCGAGATG TGGGCCCAAG ACGCCGCCGC 240 GATGTTTGGC TACGCCGCG CGACGGCGAC GGCGACGGCG ACGTTGCTGC CGTTCGAGGA 300 GGCGCCGGAG ATGACCAGCG CGGGTGGGCT CCTCGAGCAG GCCGCCGCGG TCGAGGAGGC 360 CTCCGACACC GCCGCGGCGA ACCAGTTGAT GAACAATGTG CCCCAGGCGC TGAAACAGTT 420 GGCCCAGCCC ACGCAGGGCA CCACGCCTTC TTCCAAGCTG GGTGGCCTGT GGAAGACGGT 480 CTCGCCGCAT CGGTCGCCGA TCAGCAACAT GGTGTCGATG GCCAACAACC ACATGTCGAT 540 GACCAACTCG GGTGTGTCGA TGACCAACAC CTTGAGCTCG ATGTTGAAGG GCTTTGCTCC 600 GGCGGCGCC GCCCAGGCCG TGCAAACCGC GGCGCAAAAC GGGGTCCGGG CGATGAGCTC 660 GCTGGGCAGC TCGCTGGGTT CTTCGGGTCT GGGCGGTGGG GTGGCCGCCA ACTTGGGTCG 720 GGCGGCCTCG GTACGGTATG GTCACCGGGA TGGCGGAAAA TATGCANAGT CTGGTCGGCG 780 GAACGGTGGT CCGGCGTAAG GTTTACCCCC GTTTTCTGGA TGCGGTGAAC TTCGTCAACG 840 GAAACAGTTA C 851

PCT/US97/18214

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 254 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCGATCGG GCGGAAATTT GGACCAGATT CGCCTCCGGC GATAACCCAA TCAATCGAAC 60
CTAGATTTAT TCCGTCCAGG GGCCCGAGTA ATGGCTCGCA GGAGAGGAAC CTTACTGCTG 120
CGGGCACCTG TCGTAGGTCC TCGATACGGC GGAAGGCGTC GACATTTTCC ACCGACACCC 180
CCATCCAAAC GTTCGAGGGC CACTCCAGCT TGTGAGCGAG GCGACGCAGT CGCAGGCTGC 240
GCTTGGTCAA GATC 254

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1227 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

60	AGGGACGGGA	TTGGACCAGG	GAAGTCGCTG	CCGCCAAGGC	GAAGCGGCCG	GATCCTGACC
120	GCTATAACCT	GCTGGATTGC	GGGGGGGTGC	CGGTTCAGCC	CTGCGGATCG	CGATCTGGCG
180	GTGTCAGGTT	GAGTTCGGTG	CCAAACCGCG	TGGATGGTGA	GACCGGACGC	TTTCTTCGAC
240	TCGTCGACAC	TCGATCGATT	GGAAGGCGCG	CGCCGTATGT	CGGATGAGCG	GATCGTGGAC
300	CGCGTGCGGG	CCGGCTCCTG	CCCAACGCCA	CATCGACAAT	CAAGGTTCAC	TATTGAGAAG
. 360	TACGAGCACA	GCGCAACACG	ACCCCGCGGT	CGCTAGTACG	ACTGATAAAA	GATTCGTTCA
420	CCGCGTGGCG	TTGCACCTGA	GAGCGATGCC	AAAAGCAACT	ACCGCGCTGG	CCAAGACCTG
480	TATTGCGACC	CTGGGCCTGA	TGAACAGCAC	ACCTGCATGG	GGCAGGTGTC	GGCCGCCGGC
540	CGGAACGCGT	GAACTGCTTG	CGACCTGGGA	GAGGTCACTT	TTTGTCGATC	AGTACACGAT

CGCTGCTCAG	CTTGGCCAAG	GCCTGATCGG	AGCGCTTGTC	GCGCACGCCG	TCGTGGATAC	600
CGCACAGCGC	ATTGCGAACG	ATGGTGTCCA	CATCGCGGTT	CTCCAGCGCG	TTGAGGTATC	660
CCTGAATCGC	GGTTTTGGCC	GGTCCCTCCG	AGAATGTGCC	TGCCGTGTTG	GCTCCGTTGG	720
TGCGGACCCC	GTATATGATC	GCCGCCGTCA	TAGCCGACAC	CAGCGCGAGG	GCTACCACAA	780
TGCCGATCAG	CAGCCGCTTG	TGCCGTCGCT	TCGGGTAGGA	CACCTGCGGC	GGCACGCCGG	840
GATATGCGGC	GGGCGGCAGC	GCCGCGTCGT	CTGCCGGTCC	CGGGGCGAAG	GCCGGTTCGG	900
CGGCGCCGAG	GTCGTGGGGG	TAGTCCAGGG	CTTGGGGTTC	GTGGGATGAG	GGCTCGGGGT	960
ACGGCGCCGG	TCCGTTGGTG	CCGACACCGG	GGTTCGGCGA	GTGGGGACCG	GGCATTGTGG	1020
TTCTCCTAGG	GTGGTGGACG	GGACCAGCTG	CTAGGGCGAC	AACCGCCCGT	CGCGTCAGCC	1080
GGCAGCATCG	GCAATCAGGT	GAGCTCCCTA	GGCAGGCTAG	CGCAACAGCT	GCCGTCAGCT	1140
CTCAACGCGA	CGGGGCGGGC	CGCGGCGCCG	ATAATGTTGA	AAGACTAGGC	AACCTTAGGA	1200
ACGAAGGACG	GAGATTTTGT	GACGATC				1227

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 181 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGGTGTCGG	CGGATCCGGC	GGGTGGTTGA	ACGGCAACGG	CGGGGCCGGC	GGGGCCGGCG	60
GGACCGGCGC	TAACGGTGGT	GCCGGCGGCA	ACGCCTGGTT	GTTCGGGGCC	GGCGGGTCCG	120
GCGGNGCCGG	CACCAATGGT	GGNGTCGGCG	GGTCCGGCGG	ATTTGTCTAC	GGCAACGGCG	180
G						181

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 290 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCCGGGGCG	60
GCGACGGCGT CTTTGCCGGT GCCGGCGGCC AGGGCGGCCT CGGTGGGCAG GGCGGCAATG	120
GCGGCGGCTC CACCGGCGGC AACGGCGGTC TTGGCGGCGC GGGCGGTGGC GGAGGCAACG	180
CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGGCGGN ATTGGCGGCG	240
GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGA CGGCGGTGAC	290
(2) INFORMATION FOR SEQ ID NO:38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GATCGCTGCT CGTCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAGC	60
TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG	120
TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG	155
(2) INFORMATION FOR SEQ ID NO:40:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 53 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGGCGCG AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132
(2) INFORMATION FOR SEQ ID NO:42:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GATCGGCGGC CGGNACGGNC GGGGACGGCG GCAAGGGCGG NAACGGGGGC GCCGNAGCCA	60
CCNGCCAAGA ATCCTCCGNG TCCNCCAATG GCGCGAATGG CGGACAGGGC GGCAACGGCG	120
GCANCGGCGG CA	132
(2) INFORMATION FOR SEQ ID NO:43:	

	CHOURNOR	CHARACTERISTICS
(1)	SECUENCE	CHARACTERISTICS

(A) LENGTH: 702 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CGGCACGAGG	ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
CGAGGAAAGC	CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
AGCACTAAGG	AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240
AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
CCATCACACC	GTGCGAACTC	ACGGNGGNTA	AAAACGCCGC	CCAACAGNTG	GTNTTGTCCG	360
CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GNGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTGNG	660
GGGATGGGTG	GAACACTINC	ACCCTGACGC	TGCAAGGCGA	CG		702

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 298 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG	CGCTGTCGGG	CGACGTGGCG	GTCAAAGCGG	CATCGCTCGG	TGGCGGTGGA	60
GGCGGCGGG	TGCCGTCGGC	GCCGTTGGGA	TCCGCGATCG	GGGGCGCCGA	ATCGGTGCGG	120
CCCGCTGGCG	CTGGTGACAT	TGCCGGCTTA	GGCCAGGGAA	GGGCCGGCGG	CGGCGCCGCG	180

CTGGGCGGCG GTGGCATGGG AATGCCGATG GGTGCCGCGC ATCAGGGACA AGGGGGCGCC 240

AAGTCCAAGG GTTCTCAGCA GGAAGACGAG GCGCTCTACA CCGAGGATCC TCGTGCCG 298

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1058 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGGCACGAGG ATCGAATCGC GTCGCCGGGA GCACAGCGTC GCACTGCACC AGTGGAGGAG 60 CCATGACCTA CTCGCCGGGT AACCCCGGAT ACCCGCAAGC GCAGCCCGCA GGCTCCTACG 120 GAGGCGTCAC ACCCTCGTTC GCCCACGCCG ATGAGGGTGC GAGCAAGCTA CCGATGTACC 180 TGAACATCGC GGTGGCAGTG CTCGGTCTGG CTGCGTACTT CGCCAGCTTC GGCCCAATGT 240 TCACCCTCAG TACCGAACTC GGGGGGGGTG ATGGCGCAGT GTCCGGTGAC ACTGGGCTGC 300 CGGTCGGGGT GGCTCTGCTG GCTGCGCTGC TTGCCGGGGT GGTTCTGGTG CCTAAGGCCA 360 AGAGCCATGT GACGGTAGTT GCGGTGCTCG GGGTACTCGG CGTATTTCTG ATGGTCTCGG 420 CGACGTTTAA CAAGCCCAGC GCCTATTCGA CCGGTTGGGC ATTGTGGGTT GTGTTGGCTT 480 TCATCGTGTT CCAGGCGGTT GCGGCAGTCC TGGCGCTCTT GGTGGAGACC GGCGCTATCA 540 CCGCGCCGC GCCGCGCCC AAGTTCGACC CGTATGGACA GTACGGGCGG TACGGGCAGT 600 ACGGGCAGTA CGGGGTGCAG CCGGGTGGGT ACTACGGTCA GCAGGGTGCT CAGCAGGCCG 660 CGGGACTGCA GTCGCCCGGC CCGCAGCAGT CTCCGCAGCC TCCCGGATAT GGGTCGCAGT 720 ACGGCGGCTA TTCGTCCAGT CCGAGCCAAT CGGGCAGTGG ATACACTGCT CAGCCCCCGG 780 CCCAGCCGCC GGCGCAGTCC GGGTCGCAAC AATCGCACCA GGGCCCATCC ACGCCACCTA 840 CCGGCTTTCC GAGCTTCAGC CCACCACCAC CGGTCAGTGC CGGGACGGGG TCGCAGGCTG 900 GTTCGGCTCC AGTCAACTAT TCAAACCCCA GCGGGGGCGA GCAGTCGTCG TCCCCCGGGG 960 GGGCGCCGGT CTAACCGGGC GTTCCCGCGT CCGGTCGCGC GTGTGCGCGA AGAGTGAACA 1020 GGGTGTCAGC AAGCGCGGAC GATCCTCGTG CCGAATTC 1058

(2)	INFORMATION	FOR	SEQ	ID	NO:	46:	:
-----	-------------	-----	-----	----	-----	-----	---

1:1	CECHENCE	CHARACTERISTICS.	

(A) LENGTH: 327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA	GACCGATGCC	GCTACCCTCG	CGCAGGAGGC	AGGTAATTTC	GAGCGGATCT	60
CCGGCGACCT	GAAAACCCAG	ATCGACCAGG	TGGAGTCGAC	GGCAGGTTCG	TTGCAGGGCC	120
AGTGGCGCGG	CGCGGCGGGG	ACGGCCGCCC	AGGCCGCGGT	GGTGCGCTTC	CAAGAAGCAG	180
CCAATAAGCA	GAAGCAGGAA	CTCGACGAGA	TCTCGACGAA	TATTCGTCAG	GCCGGCGTCC	240
AATACTCGAG	GGCCGACGAG	GAGCAGCAGC	AGGCGCTGTC	CTCGCAAATG	GGCTTCTGAC	300
CCGCTAATAC	GAAAAGAAAC	GGAGCAA				327

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA 60

CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT 120

TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG 170

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 127 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127
(2) INFORMATION FOR SEQ ID NO:49:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 81 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
CGGCGGCTCC GGCCTCAACG G	81
(2) INFORMATION FOR SEQ ID NO:50:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 149 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG	60
GCAACGGCGG GGCCGGNGGT GCCGGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120
GAAACGGTGG TGCCGGTGGG CTGATCTGG	149
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 355 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CGGCACGAGA TCACACCTAC CGAGTGATCG AGATCGTCGG GACCTCGCCC GACGGTGTCG 60

ACGCGGNAAT CCAGGGCGGT CTGGCCCGAG CTGCGCAGAC CATGCGCGCG CTGGACTGGT 120

TCGAAGTACA GTCAATTCGA GGCCACCTGG TCGACGGAGC GGTCGCGCAC TTCCAGGTGA 180

CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA 240

GGTGCATCAT TAAGCGACTT TTCCAGAACA TCCTGACGCG CTCGAAACGC GGTTCAGCCG 300

ACGGTGGCTC CGCCGAGGCG CTGCCTCCAA AATCCCTGCG ACAATTCGTC GGCGG 355

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 999 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGCATCACC ATCACCATCA CATGCATCAG GTGGACCCCA ACTTGACACG TCGCAAGGGA 60 CGATTGGCGG CACTGGCTAT CGCGGCGATG GCCAGCGCCA GCCTGGTGAC CGTTGCGGTG 120 CCCGCGACCG CCAACGCCGA TCCGGAGCCA GCGCCCCGG TACCCACAAC GGCCGCCTCG 180 CCGCCGTCGA CCGCTGCAGC GCCACCCGCA CCGGCGACAC CTGTTGCCCC CCCACCACCG 240 GCCGCCGCCA ACACGCCGAA TGCCCAGCCG GGCGATCCCA ACGCAGCACC TCCGCCGGCC 300 GACCCGAACG CACCGCCGCC ACCTGTCATT GCCCCAAACG CACCCCAACC TGTCCGGATC 360 GACAACCCGG TTGGAGGATT CAGCTTCGCG CTGCCTGCTG GCTGGGTGGA GTCTGACGCC 420 GCCCACTTCG ACTACGGTTC AGCACTCCTC AGCAAAACCA CCGGGGACCC GCCATTTCCC 480 GGACAGCCGC CGCCGGTGGC CAATGACACC CGTATCGTGC TCGGCCGGCT AGACCAAAAG 540 CTTTACGCCA GCGCCGAAGC CACCGACTCC AAGGCCGCGG CCCGGTTGGG CTCGGACATG 600 GGTGAGTTCT ATATGCCCTA CCCGGGCACC CGGATCAACC AGGAAACCGT CTCGCTCGAC 660

GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGGCCCCCTC	AGCGCTGGTT	TGTGGTATGG	CTCGGGACCG	CCAACAACCC	GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	ccggcgccgg	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 332 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr

1 10 15

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 20 25 30

Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 35 40 45

Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55 60

Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro 65 70 75 80

Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90 95

Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro
100 105 110

Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 115 120 125

Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 130 135 140

Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro

PCT/US97/18214 WO 98/16645

94

										155					160
145					150										
Gly	Gln	Pro	Pro	Pro 165	Val	Ala	Asn	Asp	Thr 170	Arg	Ile	Val	Leu	Gly 175	Arg
Leu	Asp	Gln	Lys 180	Leu	Tyr	Ala	Ser	Ala 185	Glu	Ala	Thr	Asp	Ser 190	Lys	Ala
Ala	Ala	Arg 195	Leu	Gly	Ser	Asp	Met 200	Gly	Glu	Phe	Tyr	Met 205	Pro	Tyr	Pro
Gly	Thr 210	Arg	Ile	Asn	Gln	Glu 215	Thr	Val	Ser	Leu	Asp 220	Ala	Asn	Gly	Val
Ser 225	Glÿ	Ser	Ala	Ser	Tyr 230	Tyr	Glu	Val	Lys	Phe 235	Ser	Asp	Pro	Ser	Lys 240
Pro	Asn	Gly	Gln	Ile 245	Trp	Thr	Gly	Val	11e 250	Gly	Ser	Pro	Ala	Ala 255	Asn
Ala	Pro	Asp	Ala 260		Pro	Pro	Gln	Arg 265	Trp	Phe	Val	Val	Trp 270	Leu	Gly
Thr	Ala	Asn 275		Pro	Val	Asp	Lys 280	Gly	Ala	Ala	Lys	Ala 285	Leu	Ala	Glu
Ser	11e		Pro	Leu	Val	Ala 295		Pro	Pro	Ala	Pro 300	Ala	Pro	Ala	Pro
Ala 305		Pro	Ala	Pro	Ala 310		Ala	Pro	Ala	Gly 315	Glu	Val	Ala	Pro	Thr 320
Pro	Thr	Thr	Pro	325		Gln	Arg	Thr	330	Pro	Ala	l			
INFO	INFORMATION FOR SEQ ID NO:54:														

(2)

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val 15 10 5

Val Ala Ala Leu

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys

1 10 15

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1 5 10 15

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro 1 5 10 15

Ala

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser

1 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp 20 25 30

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Gly Cys Gly Asp Arg Ser Gly Gly Asn Leu Asp Gln Ile Arg Leu Arg 1 5 10 15

Arg Asp Arg Ser Gly Gly Asn Leu 20

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 187 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

1 5 10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25 30

Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala 35 40 45

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50 55 60

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln 65 70 75 80

Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100 105 110

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 155 160

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175

Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa 180 185

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:
- Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu

 1 5 10 15
- Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser 20 25 30
- Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg 35 40 45
- Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser 50 55 60
- Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val 65 70 75 80
- Ser Arg Arg His Ala Glu Phe Arg Leu Glu Asn Asn Glu Phe Asn Val85 90 95
- Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val
 100 105 110
- Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu 115 120 125
- Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser 130 135 140

Thr Gly Gly Pro 145

- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr 1 5 10 15

Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser 40

Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn

Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu 75

Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu

Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser 105

Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp 120

Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu 135 130

Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 150

Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln 165

Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr 185 180

Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile 200

Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val 220 210 215

Phe Pro Ile Val Ala Arg

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

WO 98/16645 PCT/US97/18214

101

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe
1 5 10 15

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 20 25 30

Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly 35 40 45

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55 60

Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80

Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95

Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 100 105 110

Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120 125

Gly Pro Pro Ala 130

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 1 5 10 15

Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Arg Leu Ser Asn Pro Pro 20 25 30

Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly

Met Ala Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 85 90 95

Ser Glu Arg Lys 100

- (2) INFORMATION FOR SEQ ID NO:69:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
 - Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr 1 5 10 15
 - Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20 25 30
 - Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp Asp 35
 - The Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly 50 55 60
 - Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 65 70 75 80
 - Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Asp Gln Arg 85 90 95
 - Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100 105 110
 - Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly 115 120 125
 - Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg 130 135 140
 - His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg 145 150 155 160

Asp Arg Arg

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
- Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Ala Gly
 1 5 10 15
- Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg 20 25 30
- Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr 35 40 45
- Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro 50 55 60
- Arg Gly Arg Lys Glu Ala Val Ala Ala Val Ala Ala Ser Leu Arg 65 70 75 80
- Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly 85 90 95
- Gln Thr Asp Thr Ala Ala Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala 100 \$105\$
- Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr 115 120 125
- Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 130 135 140
- Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 145 150 160
- Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu 165 170 175
- Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 180 185 190
- His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro 195 200 . 205
- Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe

104

220 215 210 Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro Pro 230 Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro 250 Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 265 Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala 275 Pro His Gln Val Thr Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 295 Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 315 310 305 Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln 330 Val Ser Arg Gln Asn Pro Thr Gly 340 (2) INFORMATION FOR SEQ ID NO:71: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 485 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Asp Asp Pro Asp Met S Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu Ala Arg Leu 35

Ala Arg Clu Arg Gln Arg Arg Ala Glu Leu Asp Asp Val Ala Lys Ala Leu Leu Leu

Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Leu 65 70 75 80

55

Arg	Glu	Arg	Tyr	Leu 85	Leu	His	Asp	Glu	Gln 90	Gly	Arg	Pro	Ala	Glu 95	Ser
Thr	Gly	Glu	Leu 100	Met	Asp	Arg	Ser	Ala 105	Arg	Cys	Val	Ala	Ala 110	Ala	Glu
Asp	Gln	Tyr 115	Glu	Pro	Gly	Ser	Ser 120	Arg	Arg	Trp	Ala	Glu 125	Arg	Phe	Ala
Thr	Leu 130	Leu	Arg	Asn	Leu	Glu 135	Phe	Leu	Pro	Asn	Ser 140	Pro	Thr	Leu	Met
Asn 145	Ser	Gly	Thr	Asp	Leu 150	Gly	Leu	Leu	Ala	Gly 155	Cys	Phe	Val	Leu	Pro 160
				165					170					Ala 175	
Glu	Leu	Gln	Arg 180	Ala	Gly	Gly	Gly	Thr 185	Gly	Tyr	Ala	Phe	Ser 190	His	Leu
Arg	Pro	Ala 195	Gly	Asp	Arg	Val	Ala 200	Ser	Thr	Gly	Gly	Thr 205	Ala	Ser	Gly
	210					215					220			Val	
225					230					235				Val	240
				245					250					Pro 255	
			260					265					270	Phe	
		275					280					285		Arg	
	290					295					300				Ile
305	-				310					315				Leu	320
				325					330					Glu 335	
			340					345					350	Суз	
Leu	Gly	Ser 355	Ile	Asn	Leu	Ala	Arg 360	Met	Leu	Ala	Asp	Gly 365	Arg	Val	Asp
Trp	Asp	Arg	Leu	Glu	Glu	Val	Ala	Gly	Val	Ala	Val	Arg	Phe	Leu	Asp

106

375 380 370 Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala 395 390 Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arq 425 Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp 455 Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 470 475 Val Ala Pro Thr Gly

- (2) INFORMATION FOR SEQ ID NO:72:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
 - Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu
 - Ile Tyr Trp Arg Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val
 - Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala
 - Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His
 - Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu
 - Gly Asn Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro 85 90

- Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp
 100 105 110

 Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro
 115 120 125
- Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn 130 135 140
- Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 165 170 175
- Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180 185 190
- Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 195 200 205
- Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 210 215 220
- Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 225 230 235 240
- Gln Pro Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln
 245 250 255
- Ala Pro Pro Pro Glu Ser Pro Ala Gln Gly Gly 260 265
- (2) INFORMATION FOR SEQ ID NO:73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
 - Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val 1 5 10 15
 - Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala 20 25 30
 - Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Thr 35 40 45

Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala 50 55 60

Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp 70 75 80

Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu 85 90 95

Gln

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 364 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala

Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser 20 25 30

Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser 35 40 45

Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55 60

Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80

Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85 90 95

Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg 100 105 110

Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125

Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro 130 135 140

Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro

145					150					155					160
Gln	Ile	Gln	Ala	Leu 165	Asn	Ser	Gly	Thr	Asp 170	Leu	Pro	Pro	Thr	Pro 175	Ile
Ser	Val	Ile	Phe 180	Arg	Ser	Asp	Lys	Ser 185	Gly	Thr	Ser	Asp	Asn 190	Phe	Gln
Lys	Tyr	Leu 195	Asp	Gly	Val	Ser	Asn 200	Gly	Ala	Trp	Gly	Lys 205	Gly	Ala	Ser
Glu	Thr 210	Phe	Ser	Gly	Gly	Val 215	Gly	Val	Gly	Ala	Ser 220	Gly	Asn	Asn	Gly
Thr 225	Ser	Ala	Leu	Leu	Gln 230	Thr	Thr	Asp	Gly	Ser 235	Ile	Thr	Tyr	Asn	Glu 240
Trp	Ser	Phe	Ala	Val 245	Gly	Lys	Gln	Leu	Asn 250	Met	Ala	Gln	Ile	Ile 255	Thr
Ser	Ala	Gly	Pro 260	Asp	Pro	Val	Ala	Ile 265	Thr	Thr	Glu	Ser	Val 270	Gly	Lys
Thr	Ile	Ala 275	Gly	Ala	Lys	Ile	Met 280	Gly	Gln	Gly	Asn	Asp 285	Leu	Val	Leu
Asp	Thr 290	Ser	Ser	Phe	Tyr	Arg 295	Pro	Thr	Gln	Pro	Gly 300	Ser	Tyr	Pro	Ile
Val 305	Leu	Ala	Thr	Tyr	Glu 310	Ile	Val	Cys	Ser	Lys 315	Tyr	Pro	Asp	Ala	Thr 320
Thr	Gly	Thr	Ala	Val 325	Arg	Ala	Phe	Met	Gln 330	Ala	Ala	Ile	Gly	Pro 335	Gly
Gln	Glu	Gly	Leu 340	Asp	Gln	Tyr	Gly	Ser 345	Ile	Pro	Leu	Pro	Lys 350	Ser	Phe
Gln	Ala	Lys 355	Leu	Ala	Ala	Ala	Val 360	Asn	Ala	Ile	Ser				

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 309 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser Gly Gly Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro 90 85 Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp 120 Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 135 Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly 170 Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 200 205 Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro 230 Leu Pro Ala Arg Ala Gly Gln Gln Pro Ser Ser Ala Gly Gly Arg 250 Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 265 His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr 275 280 Ala Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg

290 295 300

Asn Arg Pro Arg Arg 305

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly
1 5 10 15

Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys 20 25 30

Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala 35 40 45

Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys 50 55 60

Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr 65 70 75 80

Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85 90 95

Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His 100 105 110

Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln 115 120 125

Glu Glu Gln Pro Ser Asp Met Thr Asn His Pro Arg Tyr Ser Pro Pro 130 135 140

Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr 145 150 155 160

Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Gln
165 170 175

Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro 180 185 190

Gly	Leu	Ile 195	Pro	Gly	Val	Ile	Pro 200	Thr	Met	Thr	Pro	Pro 205	Pro	Gly	Met
Val	Arg 210	Gln	Arg	Pro	Arg	Ala 215	Gly	Met	Leu	Ala	11e 220	Gly	Ala	Val	Thr
11e 225	Ala	Val	Val	Ser	Ala 230	Gly	Ile	Gly	Gly	Ala 235	Ala	Ala	Ser	Leu	Val 240
Gly	Phe	Asn	Arg	Ala 245	Pro	Ala	Gly	Pro	Ser 250	Gly	Gly	Pro	Val	Ala 255	Ala
Ser	Ala	Ala	Pro 260	Ser	Ile	Pro	Ala	Ala 265	Asn	Met	Pro	Pro	Gly 270	Ser	Val
Glu	Gln	Val 275	Ala	Ala	Lys	Val	Val 280	Pro	Ser	Val	Val	Met 285	Leu	Glu	Thr
Asp	Leu 290	Gly	Arg	Gln	Ser	Glu 295	Glu	Gly	Ser	Gly	11e 300	Ile	Leu	Ser	Ala
Glu 305	Gly	Leu	Ile	Leu	Thr 310	Asn	Asn	His	Val	Ile 315	Ala	Ala	Ala	Ala	Lys 320
Pro	Pro	Leu	Gly	Ser 325	Pro	Pro	Pro	Lys	Thr 330	Thr	Val	Thr	Phe	Ser 335	Asp
Gly	Arg	Thr	Ala 340	Pro	Phe	Thr	Val	Val 345	Gly	Ala	Asp	Pro	Thr 350	Ser	Asp
Ile	Ala	Val 355	Val	Arg	Val	Gln	Gly 360	Val	Ser	Gly	Leu	Thr 365	Pro	Ile	Ser
Leu	Gly 370	Ser	Ser	Ser	Asp	Leu 375	Arg	Val	Gly	Gln	Pro 380	Val	Leu	Ala	Ile
Gly 385	Ser	Pro	Leu	Gly	Leu 390	Glu	Gly	Thr	Val	Thr 395	Thr	Gly	Ile	Val	Ser 400
Ala	Leu	Asn	Arg	Pro 405	Val	Ser	Thr	Thr	Gly 410	Glu	Ala	Gly	Asn	Gln 415	Asn
Thr	Val	Leu	Asp 420	Ala	Ile	Gln	Thr	Asp 425	Ala	Ala	Ile	Asn	Pro 430	Gly	Asn
Ser	Gly	Gly 435	Ala	Leu	Val	Asn	Met 440	Asn	Ala	Gln	Leu	Val 445	Gly	Val	Asn
Ser	Ala 450	Ile	Ala	Thr	Leu	Gly 455	Ala	Asp	Ser	Ala	Asp 460	Ala	Gln	Ser	Gly
Ser 465		Gly	Leu	Gly	Phe 470	Ala	Ile	Pro	Val	Asp 475	Gln	Ala	Lys	Arg	Ile 480
Ala	Asp	Glu	Leu	Ile	Ser	Thr	Gly	Lys	Ala	Ser	His	Ala	Ser	Leu	Gly

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu $1 \ 5 \ 10 \ 15$

Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30

Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro 35 40 45

Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu 50 60

Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu 65 70 75 80

Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala 85 90 95

Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg 100 105 110

Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn 120

PCT/US97/18214

Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 135

Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln 155 150

Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr 170

Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 185

Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val 200

Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser

Lys Trp Asn Glu Pro Val Asn Val Asp

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala 10

Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile 40

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln 55

Pro Arg 65

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:
- Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser 1 5 10 15
- Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala 20 25 30
- Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro 35
- Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro 50 55 60

Ser Pro Pro Leu Pro

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:
 - Met Ser Asn Ser Arg Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser 1 5 10 15
 - Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 20 25 30
 - Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
 - Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val 50 55 60
 - Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr 65 70 75 80

Gly	Ile	Val	Ile	Asp 85	Pro	Asn	Gly	Val	Val 90	Leu	Thr	Asn	Asn	His 95	Va]
Ile	Ala	Gly	Ala 100	Thr	Asp	Ile	Asn	Ala 105	Phe	Ser	Val	Gly	Ser 110	Gly	Glr
Thr	Tyr	Gly 115	Val	Asp	Val	Val	Gly 120	Tyr	Asp	Arg	Thr	Gln 125	Asp	Val	Ala
Val	Leu 130	Gln	Leu	Arg	Gly	Ala 135	Gly	Gly	Leu	Pro	Ser 140	Ala	Ala	Ile	Gly
Gly 145	Gly	Val	Ala	Val	Gly 150	Glu	Pro	Val	Val	Ala 155	Met	Gly	Asn	Ser	Gl ₃
Gly	Gln	Gly	Gly	Thr 165	Pro	Arg	Ala	Val	Pro 170	Gly	Arg	Val	Val	Ala 175	Leu
Gly	Gln	Thr	Val 180	Gln	Ala	Ser	Asp	Ser 185	Leu	Thr	Gly	Ala	Glu 190	Glu	Th
Leu	Asn	Gly 195	Leu	Ile	Gln	Phe	Asp 200	Ala	Ala	Ile	Gln	Pro 205	Gly	Asp	Ser
Gly	Gly 210	Pro	Val	Val	Asn	Gly 215	Leu	Gly	Gln	Val	Val 220	Gly	Met	Asn	Thi
Ala 225	Ala	Ser	Asp	Asn	Phe 230	Gln	Leu	Ser	Gln	Gly 235	Gly	Gln	Gly	Phe	Ala 240
Ile	Pro	Ile	Gly	Gln 245	Ala	Met	Ala	Ile	Ala 250	Gly	Gln	Ile	Arg	Ser 255	Gly
Gly	Gly	Ser	Pro 260	Thr	Val	His	Ile	Gly 265	Pro	Thr	Ala	Phe	Leu 270	Gly	Leu
Gly	Val	Val 275	Asp	Asn	Asn	Gly	Asn 280	Gly	Ala	Arg	Val	Gln 285	Arg	Val	Val
Gly	Ser 290	Ala	Pro	Ala	Ala	Ser 295	Leu	Gly	Ile	Ser	Thr 300	Gly	Asp	Val	Ilε
Thr 305	Ala	Val	Asp	Gly	Ala 310	Pro	Ile	Asn	Ser	Ala 315	Thr	Ala	Met	Ala	Asp 320
Ala	Leu	Asn	Gly	His 325	His	Pro	Gly	Asp	Val 330	Ile	Ser	Val	Asn	Trp 335	Glr
Thr	Lys	Ser	Gly 340	Gly	Thr	Arg	Thr	Gly 345	Asn	Val	Thr	Leu	Ala 350	Glu	Gl

Pro Pro Ala 355

(2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Ser Pro Lys Pro Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr 1 5 10 15

Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 20 25 30

Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys 35 40 45

Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala 50 55 60

Asn Pro Leu Ala Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly 65 70 75 80

Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp 85 90 95

Asp Trp Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val 100 105 110

Leu Asp Pro Ala Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn 115 120 125

Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys 130 135 140

Ile Thr Gly Thr Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly 145 150 155 160

Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser 165 170 175

His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln 180 185 190

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 286 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 55 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100 105 110

Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val 115 120 125

Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130 135 140

Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 145 150 155 160

Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 165 170 175

Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly 180 185 190

Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 195 200 205

Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp

225 230 235 240 Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 250 Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 Leu Pro Gly Phe Asp Glu Gly Gly Leu Arg Pro Xaa Lys (2) INFORMATION FOR SEQ ID NO:83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 173 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr 10 Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg 40 Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro Arg Glu Ala Leu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu Gly Glu Gln Fhe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val 120 Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn 130

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro

155

150

Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu 165

- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
 - Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile 5
 - Ala Ala Gly Leu Thr Ala Ala Ala Ile Gly Ala Ala Ala Gly
 - Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro
 - Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50
 - Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp
 - Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile
 - Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln 105 100
- (2) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:
 - Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn 10
 - Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr

 Arg
 Arg
 Ala Leu Glu Leu Gln
 Leu Gln
 Ala Ala Pro Ser Val Val Xaa Arg
 Arg Arg Ala Leu Gln
 Gln
 Gly

 Val
 Lys
 Glu Pro Leu Xaa Thr Gly
 Ile Lys
 Ala Ile Asp Ala Met Thr 60
 Arg Ala Met Thr 65

 Pro Gly
 Ile Gly Arg Gly Gln Arg Gln Arg Gln
 Leu Ile Ile Gly Asp Arg Arg Lys
 Arg Thr 80

 Gly
 Lys
 Asn Arg Arg Leu Cys
 Arg Thr 90
 Ser Ser Asn Gln Arg Glu 95

 Glu
 Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys
 Ala Cys Val Tyr 110

 Val
 His Arg Arg Ala Arg Arg Blu Arg 120
 Thr Tyr His Arg Arg Arg 125

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val 1 5 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu 35 40 45

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp 65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Arg Ala Xaa Xaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100 105 110

Arg Ser Ser Xaa Gly 115

- (2) INFORMATION FOR SEQ ID NO:87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 103 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 5

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 40

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro 85

Pro Ala Ala Gly Gly Gly Ala 100

- (2) INFORMATION FOR SEQ ID NO:88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly 10

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His 20 25 30

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35 40 45

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly 50 55 60

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly 65 70 75 80

Asp Glu Leu Lys Gly Val Thr Ser 85

- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile
1 5 10 15

Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly 20 25 30

Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala 35 40 45

Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu 50 55 60

Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70 75 80

Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85 90 95

- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
- Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Glu Ile Leu Asn 10
- Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val 25 20
- Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln 40
- Xaa Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala
- Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa
- Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 90
- Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser 105
- Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 120
- Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 135 130
- Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 155 150 145

Leu Thr Leu Gln Gly Asp 165

- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Arg Ala Glu Arg Met

(2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 263 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:
- Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 1 5 10 15
- Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 20 25 30
- Val Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu 35 40 45
- Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn 50 55 60
- Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe 70 75 80
- Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe
 85 90 95
- Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gl
n Ala 100 105 110
- Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met 115 120 125
- Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly 130 135 140
- Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 145 150 155 160
- His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met 165 170 175
- Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 180 185 190
- Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200 205
- Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly

210 215 220

Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 225 230 235 240

Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly 245 250 255

Arg Arg Asn Gly Gly Pro Ala 260

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala 1 5 10 15

Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly 20 25 30

Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr 50 55 60

Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85 90 95

Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 110

Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 115 120 125

Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 130 135 140

Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 145 150 155 160

Ala	Pro	Ala	Pro	Arg 165	Pro	Lys	Phe	Asp	Pro 170	Tyr	Gly	Gln	Tyr	Gly 175	Arg
Tyr	Gly	Gln	Tyr 180	Gly	Gln	Tyr	Gly	Val 185	Gln	Pro	Gly	Gly	Tyr 190	Tyr	G1 y
Gln	Gln	Gly 195	Ala	Gln	Gln	Ala	Ala 200	Gly	Leu	Gln	Ser	Pro 205	Gly	Pro	Gln
Gln	Ser 210	Pro	Gln	Pro	Pro	Gly 215	Tyr	Gly	Ser	Gln	Tyr 220	Gly	Gly	Tyr	Ser
Ser 225	Ser	Pro	Ser	Gln	Ser 230	Gly	Ser	Gly	Tyr	Thr 235	Ala	Gln	Pro	Pro	Ala 240
Gln	Pro	Pro	Ala	Gln 245	Ser	Gly	Ser	Gln	Gln 250	Ser	His	Gln	Gly	Pro 255	Ser
Thr	Pro	Pro	Thr 260	Gly	Phe	Pro	Ser	Phe 265	Ser	Pro	Pro	Pro	Pro 270	Val	Ser
Ala	Gly	Thr 275	Gly	Ser	Gln	Ala	Gly 280	Ser	Ala	Pro	Val	Asn 285	Tyr	Ser	Asn
Pro	Ser 290	Gly	Gly	Glu	Gln	Ser 295	Ser	Ser	Pro	Gly	Gly 300	Ala	Pro	Val	

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 507 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

ATGAAGATGG	TGAAATCGAT	CGCCGCAGGT	CTGACCGCCG	CGGCTGCAAT	CGGCGCCGCT	60
GCGGCCGGTG	TGACTTCGAT	CATGGCTGGC	GGCCCGGTCG	TATACCAGAT	GCAGCCGGTC	120
GTCTTCGGCG	CGCCACTGCC	GTTGGACCCG	GCATCCGCCC	CTGACGTCCC	GACCGCCGCC	180
CAGTTGACCA	GCCTGCTCAA	CAGCCTCGCC	GATCCCAACG	TGTCGTTTGC	GAACAAGGGC	240
AGTCTGGTCG	AGGGCGGCAT	CGGGGGCACC	GAGGCGCGCA	TCGCCGACCA	CAAGCTGAAG	300
AAGGCCGCCG	AGCACGGGGA	TCTGCCGCTG	TCGTTCAGCG	TGACGAACAT	CCAGCCGGCG	360
GCCGCCGGTT	CGGCCACCGC	CGACGTTTCC	GTCTCGGGTC	CGAAGCTCTC	GTCGCCGGTC	420

ACGCAGAACG	TCACGTTCGT	GAATCAAGGC	GGCTGGATGC	TGTCACGCGC	ATCGGCGATG	480
GAGTTGCTGC	AGGCCGCAGG	GAACTGA				507

- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:
 - Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala 1 5 10 15
 - Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro
 20 25 30
 - Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro Leu Pro Leu 35 40 45
 - Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 50 55 60
 - Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn Lys Gly 70 75 80
 - Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$
 - His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro Leu Ser Phe 100 105 110
 - Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala Thr Ala Asp 115 120 125
 - Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val 130 135 140
 - Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala Ser Ala Met 145 150 155 160
 - Glu Leu Leu Gln Ala Ala Gly Asn 165
- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 500 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CGTGGCAATG TCGTTGACCG TCGGGGCCGG GGTCGCCTCC GCAGATCCCG TGGACGCGGT 60 CATTAACACC ACCTGCAATT ACGGGCAGGT AGTAGCTGCG CTCAACGCGA CGGATCCGGG 120 GGCTGCCGCA CAGTTCAACG CCTCACCGGT GGCGCAGTCC TATTTGCGCA ATTTCCTCGC 180 CGCACCGCCA CCTCAGCGCG CTGCCATGGC CGCGCAATTG CAAGCTGTGC CGGGGGCGGC 240 ACAGTACATC GGCCTTGTCG AGTCGGTTGC CGGCTCCTGC AACAACTATT AAGCCCATGC 300 GGGCCCCATC CCGCGACCCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA 360 ACGGGCCGCA TCCCGCGACC CGGCATCGTC GCCGGGGCTA GGCCAGATTG CCCCGCTCCT 420 CAACGGGCCG CATCTCGTGC CGAATTCCTG CAGCCCGGGG GATCCACTAG TTCTAGAGCG 480 GCCGCCACCG CGGTGGAGCT 500

(2) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro 1 5 10 15

Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala
20 25 30

Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser 35 40 45

Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro 50 55 60

PCT/US97/18214

130

Gln	Arg	Ala	Ala	Met	Ala	Ala	Gln	Leu	Gln	Ala	Val	Pro	Gly	Ala	Ala
65					70					75					80

Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

ATGACAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGA 60 AATGTCACGT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA 120 GCGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC 154

(2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser 10

Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly 20

Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser 40

Glu Ala Tyr 50

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:

PCT/US97/18214

(A) LENGTH: 282 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO:100:

CGGTCGCGCA CTTCCAGGTG ACTATGAAAG TCGGCTTCCG NCTGGAGGAT TCCTGAACCT 60

TCAAGCGCGG CCGATAACTG AGGTGCATCA TTAAGCGACT TTTCCAGAAC ATCCTGACGC 120

GCTCGAAACG CGGCACAGCC GACGGTGGCT CCGNCGAGGC GCTGNCTCCA AAATCCCTGA 180

GACAATTCGN CGGGGGCGCC TACAAGGAAG TCGGTGCTGA ATTCGNCGNG TATCTGGTCG 240

ACCTGTGTGG TCTGNAGCCG GACGAAGCGG TGCTCGACGT CG 282

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3058 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT 60 GGCATACCCA GAGATGTTGG CGGCGGCGGC TGACACCCTG CAGAGCATCG GTGCTACCAC 120 TGTGGCTAGC AATGCCGCTG CGGCGGCCCC GACGACTGGG GTGGTGCCCC CCGCTGCCGA 180 TGAGGTGTCG GCGCTGACTG CGGCGCACTT CGCCGCACAT GCGGCGATGT ATCAGTCCGT 240 GAGCGCTCGG GCTGCTGCGA TTCATGACCA GTTCGTGGCC ACCCTTGCCA GCAGCGCCAG 300 CTCGTATGCG GCCACTGAAG TCGCCAATGC GGCGGCGGCC AGCTAAGCCA GGAACAGTCG 360 GCACGAGAAA CCACGAGAAA TAGGGACACG TAATGGTGGA TTTCGGGGCG TTACCACCGG 420 AGATCAACTC CGCGAGGATG TACGCCGGCC CGGGTTCGGC CTCGCTGGTG GCCGCGGCTC 480 AGATGTGGGA CAGCGTGGCG AGTGACCTGT TTTCGGCCGC GTCGGCGTTT CAGTCGGTGG 540 TCTGGGGTCT GACGGTGGGG TCGTGGATAG GTTCGTCGGC GGGTCTGATG GTGGCGGCGG 600

WO 98/16645 PCT/US97/18214

CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	GGCCGAGCTG	ACCGCCGCCC	660
AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	GCTGACGGTG	CCCCCGCCGG	720
IGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	GACCAACCTC	TTGGGGCAAA	780
ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGCGA	GATGTGGGCC	CAAGACGCCG	840
CCGCGATGTT	TGGCTACGCC	GCGGCGACGG	CGACGGCGAC	GGCGACGTTG	CTGCCGTTCG	900
AGGAGGCGCC	GGAGATGACC	AGCGCGGGTG	GGCTCCTCGA	GCAGGCCGCC	GCGGTCGAGG	960
AGGCCTCCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	TGTGCCCCAG	GCGCTGCAAC	1020
AGCTGGCCCA	GCCCACGCAG	GGCACCACGC	CTTCTTCCAA	GCTGGGTGGC	CTGTGGAAGA	1080
CGGTCTCGCC	GCATCGGTCG	CCGATCAGCA	ACATGGTGTC	GATGGCCAAC	AACCACATGT	1140
CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
CTCCGGCGGC	GGCCGCCCAG	GCCGTGCAAA	CCGCGGCGCA	AAACGGGGTC	CGGGCGATGA	1260
GCTCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
STCGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
GGCCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
CCGGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620
TTCCGCGGCC	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
GTTCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTTATG	ACGGATCCGC	ACGCGATGCG	1740
GGACATGGCG	GGCCGTTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1.800
GTGGGCGTCC	GCGCAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
GCTAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
GGTGCGTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980
GCAGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAT	ACTTTTACAA	GCGAAGGAGA	2040
ACAGGTTCGA	TGACCATCAA	CTATCAATTC	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
CGCGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
GCGAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
GGCCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCCC	ACGGGCAGAA	GGTGCAGGCT	2280

GCCGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGGC	CTGACACCAG	2340
GCCAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
CTAAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
CAGTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCCAGG	TAGCGCCGTC	CTTCGATCCA	2520
TTCGTCGTGT	TGTTCGGCGA	GGACGGCTCC	GACGAGGCGG	ATGATCGAGG	CGCGGTCGGG	2580
GAAGATGCCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGGTT	2640
GTTGGACCAG	ATTTGGCGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
GCGGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
CCGATCATAT	TGGGCAACAA	CTGATTCGGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820
GGTGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
GGTTCTGCAG	CGCTGCCAGG	CCGCTGCGGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
GGCGTGGGCG	TCGCTGGTGA	CCAGCGCGAC	CCCGGACAGG	CCGCGGGCGA	CCAGGTCGCG	3000
GAAGAACGCC	AGCCAGCCGG	CCCCGTCCTC	GGCGGAGGTG	ACCTGGATGC	CCAGGATC	3058

(2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met 1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala	Gly	Gln	Ala	Glu 85	Leu	Thr	Ala	Ala	Gln 90	Val	Arg	Val	Ala	Ala 95	Ala
Ala	Tyr	Glu	Thr 100	Ala	Tyr	Gly	Leu	Thr 105	Val	Pro	Pro	Pro	Val 110	Ile	Ala
Glu	Asn	Arg 115	Ala	Glu	Leu	Met	Ile 120	Leu	Ile	Ala	Thr	Asn 125	Leu	Leu	Gly
Gln	Asn 130	Thr	Pro	Ala	Ile	Ala 135	Val	Asn	Glu	Ala	Glu 140	Tyr	Gly	Glu	Met
Trp 145	Ala	Gln	Asp	Ala	Ala 150	Ala	Met	Phe	Gly	Tyr 155	Ala	Ala	Ala	Thr	Ala 160
Thr	Ala	Thr	Ala	Thr 165	Leu	Leu	Pro	Phe	Glu 170	Glu	Ala	Pro	Glu	Met 175	Thr
Ser	Ala	Gly	Gly 180	Leu	Leu	Glu	Gln	Ala 185	Ala	Ala	Val	Glu	Glu 190	Ala	Ser
Asp	Thr	Ala 195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205	Gln	Ala	Leu
Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Gln	Gly	Thr	Thr	Pro 220	Ser	Ser	Lys	Leu
Gly 225	Gly	Leu	Trp	Lys	Thr 230	Val	Ser	Pro	His	Arg 235	Ser	Pro	Ile	Ser	Asn 240
Met	Val	Ser	Met	Ala 245	Asn	Asn	His	Met	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val
Ser	Met	Thr	Asn 260	Thr	Leu	Ser	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala
Ala	Ala	Ala 275	Gln	Ala	Val	Gln	Thr 280	Ala	Ala	Gln	Asn	Gly 285	Val	Arg	Ala
Met	Ser 290	Ser	Leu	Gly	Ser	Ser 295	Leu	Gly	Ser		Gly 300	Leu	Gly	Gly	Gly
Val 305	Ala	Ala	Asn	Leu	Gly 310	Arg	Ala	Ala	Ser	Val 315	Gly	Ser	Leu	Ser	Val 320
Pro	Gln	Ala	Trp	Ala 325	Ala	Ala	Asn	Gln	Ala 330	Val	Thr	Pro	Ala	Ala 335	Arg
Ala	Leu	Pro	Leu 340	Thr	Ser	Leu	Thr	Ser 345	Ala	Ala	Glu	Arg	Gly 350	Pro	Gly
Gln	Met	Leu 355	Gly	Gly	Leu	Pro	Val 360	Gly	Gln	Met	Gly	Ala 365	Arg	Ala	Gly

Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met 370 375 380

Pro His Ser Pro Ala Ala Gly 385 390

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1725 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

GACGTCAGCA CCCGCCGTGC AGGGCTGGAG CGTGGTCGGT TTTGATCTGC GGTCAAGGTG 60 ACGTCCCTCG GCGTGTCGCC GGCGTGGATG CAGACTCGAT GCCGCTCTTT AGTGCAACTA 120 ATTTCGTTGA AGTGCCTGCG AGGTATAGGA CTTCACGATT GGTTAATGTA GCGTTCACCC 180 CGTGTTGGGG TCGATTTGGC CGGACCAGTC GTCACCAACG CTTGGCGTGC GCGCCAGGCG 240 GGCGATCAGA TCGCTTGACT ACCAATCAAT CTTGAGCTCC CGGGCCGATG CTCGGGCTAA 300 ATGAGGAGGA GCACGCGTGT CTTTCACTGC GCAACCGGAG ATGTTGGCGG CCGCGGCTGG 360 CGAACTTCGT TCCCTGGGGG CAACGCTGAA GGCTAGCAAT GCCGCCGCAG CCGTGCCGAC 420 GACTGGGGTG GTGCCCCGG CTGCCGACGA GGTGTCGCTG CTGCTTGCCA CACAATTCCG 480 TACGCATGCG GCGACGTATC AGACGGCCAG CGCCAAGGCC GCGGTGATCC ATGAGCAGTT 540 TGTGACCACG CTGGCCACCA GCGCTAGTTC ATATGCGGAC ACCGAGGCCG CCAACGCTGT 600 GGTCACCGGC TAGCTGACCT GACGGTATTC GAGCGGAAGG ATTATCGAAG TGGTGGATTT 660 CGGGGCGTTA CCACCGGAGA TCAACTCCGC GAGGATGTAC GCCGGCCCGG GTTCGGCCTC 720 GCTGGTGGCC GCCGCGAAGA TGTGGGACAG CGTGGCGAGT GACCTGTTTT CGGCCGCGTC 780 GGCGTTTCAG TCGGTGGTCT GGGGTCTGAC GGTGGGGTCG TGGATAGGTT CGTCGGCGGG 840 TCTGATGGCG GCGGCGCCT CGCCGTATGT GGCGTGGATG AGCGTCACCG CGGGGCAGGC 900 CCAGCTGACC GCCGCCAGG TCCGGGTTGC TGCGGCGGCC TACGAGACAG CGTATAGGCT 960 GACGGTGCCC CCGCCGGTGA TCGCCGAGAA CCGTACCGAA CTGATGACGC TGACCGCGAC 1020 CAACCTCTTG GGGCAAAACA CGCCGGCGAT CGAGGCCAAT CAGGCCGCAT ACAGCCAGAT 1080

GTGGGGCCAA	GACGCGGAGG	CGATGTATGG	CTACGCCGCC	ACGGCGGCGA	CGGCGACCGA	1140
GGCGTTGCTG	CCGTTCGAGG	ACGCCCCACT	GATCACCAAC	CCCGGCGGGC	TCCTTGAGCA	1200
GGCCGTCGCG	GTCGAGGAGG	CCATCGACAC	CGCCGCGGCG	AACCAGTTGA	TGAACAATGT	1260
GCCCCAAGCG	CTGCAACAGC	TGGCCCAGCC	AGCGCAGGGC	GTCGTACCTT	CTTCCAAGCT	1320
GGGTGGGCTG	TGGACGGCGG	TCTCGCCGCA	TCTGTCGCCG	CTCAGCAACG	TCAGTTCGAT	1380
AGCCAACAAC	CACATGTCGA	TGATGGGCAC	GGGTGTGTCG	ATGACCAACA	CCTTGCACTC	1,440
GATGTTGAAG	GGCTTAGCTC	CGGCGGCGGC	TCAGGCCGTG	GAAACCGCGG	CGGAAAACGG	1500
GGTCTGGGCG	ATGAGCTCGC	TGGGCAGCCA	GCTGGGTTCG	TCGCTGGGTT	CTTCGGGTCT	1560
GGGCGCTGGG	GTGGCCGCCA	ACTTGGGTCG	GGCGGCCTCG	GTCGGTTCGT	TGTCGGTGCC	1620
GCCAGCATGG	GCCGCGGCCA	ACCAGGCGGT	CACCCCGGCG	GCGCGGGCGC	TGCCGCTGAC	1680
CAGCCTGACC	AGCGCCGCCC	AAACCGCCCC	CGGACACATG	CTGGG		1725

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Gln Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95

- Ala Tyr Glu Thr Ala Tyr Arg Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110
- Glu Asn Arg Thr Glu Leu Met Thr Leu Thr Ala Thr Asn Leu Leu Gly
 115 120 125
- Gln Asn Thr Pro Ala Ile Glu Ala Asn Gln Ala Ala Tyr Ser Gln Met 130 135 140
- Trp Gly Gln Asp Ala Glu Ala Met Tyr Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160
- Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175
- Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190
- Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205
- Gln Gln Leu Ala Gln Pro Ala Gln Gly Val Val Pro Ser Ser Lys Leu 210 215 220
- Gly Gly Leu Trp Thr Ala Val Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240
- Val Ser Ser Ile Ala Asn Asn His Met Ser Met Met Gly Thr Gly Val 245 250 255
- Ser Met Thr Asn Thr Leu His Ser Met Leu Lys Gly Leu Ala Pro Ala 260 265 270
- Ala Ala Gln Ala Val Glu Thr Ala Ala Glu Asn Gly Val Trp Ala Met 275 280 285
- Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu 290 295 300
- Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser 305 310 315
- Leu Ser Val Pro Pro Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro 325 330 335
- Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340 345 350

Ala Pro Gly His Met Leu Gly 355

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 3027 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

AGTTCAGTCG	AGAATGATAC	TGACGGGCTG	TATCCACGAT	GGCTGAGACA	ACCGAACCAC	60
CGTCGGACGC	GGGGACATCG	CAAGCCGACG	CGATGGCGTT	GGCCGCCGAA	GCCGAAGCCG	120
CCGAAGCCGA	AGCGCTGGCC	GCCGCGGCGC	GGGCCCGTGC	CCGTGCCGCC	CGGTTGAAGC	180
GTGAGGCGCT	GGCGATGGCC	CCAGCCGAGG	ACGAGAACGT	CCCCGAGGAT	ATGCAGACTG	240
GGAAGACGCC	GAAGACTATG	ACGACTATGA	CGACTATGAG	GCCGCAGACC	AGGAGGCCGC	300
ACGGTCGGCA	TCCTGGCGAC	GGCGGTTGCG	GGTGCGGTTA	CCAAGACTGT	CCACGATTGC	360
CATGGCGGCC	GCAGTCGTCA	TCATCTGCGG	CTTCACCGGG	CTCAGCGGAT	ACATTGTGTG	420
GCAACACCAT	GAGGCCACCG	AACGCCAGCA	GCGCGCCGCG	GCGTTCGCCG	CCGGAGCCAA	480
GCAAGGTGTC	ATCAACATGA	CCTCGCTGGA	CTTCAACAAG	GCCAAAGAAG	ACGTCGCGCG	540
TGTGATCGAC	AGCTCCACCG	GCGAATTCAG	GGATGACTTC	CAGCAGCGGG	CAGCCGATTT	600
CACCAAGGTT	GTCGAACAGT	CCAAAGTGGT	CACCGAAGGC	ACGGTGAACG	CGACAGCCGT	660
CGAATCCATG	AACGAGCATT	CCGCCGTGGT	GCTCGTCGCG	GCGACTTCAC	GGGTCACCAA	720
TTCCGCTGGG	GCGAAAGACG	AACCACGTGC	GTGGCGGCTC	AAAGTGACCG	TGACCGAAGA	780
GGGGGGACAG	TACAAGATGT	CGAAAGTTGA	GTTCGTACCG	TGACCGATGA	CGTACGCGAC	840
GTCAACACCG	AAACCACTGA	CGCCACCGAA	GTCGCTGAGA	TCGACTCAGC	CGCAGGCGAA	900
GCCGGTGATT	CGGCGACCGA	GGCATTTGAC	ACCGACTCTG	CAACGGAATC	TACCGCGCAG	960
AAGGGTCAGC	GGCACCGTGA	CCTGTGGCGA	ATGCAGGTTA	CCTTGAAACC	CGTTCCGGTG	1020
ATTCTCATCC	TGCTCATGTT	GATCTCTGGG	GGCGCGACGG	GATGGCTATA	CCTTGAGCAA	1080
TACGACCCGA	TCAGCAGACG	GACTCCGGCG	CCGCCCGTGC	TGCCGTCGCC	GCGGCGTCTG	1140
ACGGGACAAT	CGCGCTGTTG	TGTATTCACC	CGACACGTCG	ACCAAGACTT	CGCTACCGCC	1200
AGGTCGCACC	TCGCCGGCGA	TTTCCTGTCC	TATACGACCA	GTTCACGCAG	CAGATCGTGG	1260
CTCCGGCGGC	CAAACAGAAG	TCACTGAAAA	CCACCGCCAA	GGTGGTGCGC	GCGGCCGTGT	1320
CGGAGCTACA	TCCGGATTCG	GCCGTCGTTC	TGGTTTTTGT	CGACCAGAGC	ACTACCAGTA	1380

AGGACAGC	CC	CAATCCGTCG	ATGGCGGCCA	GCAGCGTGAT	GGTGACCCTA	GCCAAGGTCG	1440
ACGGCAAT'	TG	GCTGATCACC	AAGTTCACCC	CGGTTTAGGT	TGCCGTAGGC	GGTCGCCAAG	1500
TCTGACGG	GG	GCGCGGGTGG	CTGCTCGTGC	GAGATACCGG	CCGTTCTCCG	GACAATCACG	1560
GCCCGACC'	TC	AAACAGATCT	CGGCCGCTGT	CTAATCGGCC	GGGTTATTTA	AGATTAGTTG	1620
CCACTGTA	TT	TACCTGATGT	TCAGATTGTT	CAGCTGGATT	TAGCTTCGCG	GCAGGGCGGC	1680
TGG T GCAC	TT	TGCATCTGGG	GTTGTGACTA	CTTGAGAGAA	TTTGACCTGT	TGCCGACGTT	1740
GTTTGCTG'	TC	CATCATTGGT	GCTAGTTATG	GCCGAGCGGA	AGGATTATCG	AAGTGGTGGA	1800
CTTCGGGG	CG	TTACCACCGG	AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	1860
CTCGCTGG	TG	GCCGCCGCGA	AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	1920
GTCGGCGT	TT	CAGTCGGTGG	TCTGGGGTCT	GACGACGGGA	TCGTGGATAG	GTTCGTCGGC	1980
GGGTCTGA	TG	GTGGCGGCGG	CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	2040
GGCCGAGC	TG	ACCGCCGCCC	AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	2100
GCTGACGG	TG	CCCCCGCCGG	TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	2160
GACCAACC	TC	TTGGGGCAAA	ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGGGA	2220
GATGTGGG	cc	CAAGACGCCG	CCGCGATGTT	TGGCTACGCC	GCCACGGCGG	CGACGGCGAC	2280
CGAGGCGT	TG	CTGCCGTTCG	AGGACGCCCC	ACTGATCACC	AACCCCGGCG	GGCTCCTTGA	2340
GCAGGCCG	TC	GCGGTCGAGG	AGGCCATCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	2400
TGTGCCCC.	AA	GCGCTGCAAC	AACTGGCCCA	GCCCACGAAA	AGCATCTGGC	CGTTCGACCA	2460
ACTGAGTG.	AA	CTCTGGAAAG	CCATCTCGCC	GCATCTGTCG	CCGCTCAGCA	ACATCGTGTC	2520
GATGCTCA	AC	AACCACGTGT	CGATGACCAA	CTCGGGTGTG	TCGATGGCCA	GCACCTTGCA	2580
CTCAATGT	TG	AAGGGCTTTG	CTCCGGCGGC	GGCTCAGGCC	GTGGAAACCG	CGGCGCAAAA	2640
CGGGGTCC	AG	GCGATGAGCT	CGCTGGGCAG	CCAGCTGGGT	TCGTCGCTGG	GTTCTTCGGG	2700
TCTGGGCG	CT	GGGGTGGCCG	CCAACTTGGG	TCGGGCGGCC	TCGGTCGGTT	CGTTGTCGGT	2760
GCCGCAGG	CC	TGGGCCGCGG	CCAACCAGGC	GGTCACCCCG	GCGGCGCGG	CGCTGCCGCT	2820
GACCAGCC	TG	ACCAGCGCCG	CCCAAACCGC	CCCCGGACAC	ATGCTGGGCG	GGCTACCGCT	2880
GGGGCAAC	TG	ACCAATAGCG	GCGGCGGGTT	CGGCGGGGTT	AGCAATGCGT	TGCGGATGCC	2940
GCCGCGGG	CG	TACGTAATGC	CCCGTGTGCC	CGCCGCCGGG	TAACGCCGAT	CCGCACGCAA	3000

PCT/US97/18214

TGCGGGCCCT CTATGCGGGC AGCGATC

3027

(2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
- Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
 1 5 10 15
- Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30
- Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45
- Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60
- Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80
- Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95
- Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110
- Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
 115 120 125
- Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
- Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160
- Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175
- Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190
- Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205

	Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Lys	Ser	Ile	Trp	Pro 220	Phe	Asp	Gln	Leu
	Ser 225	Glu	Leu	Trp	Lys	Ala 230	Ile	Ser	Pro	His	Leu 235	Ser	Pro	Leu	Ser	Asn 240
	Ile	Val	Ser	Met	Leu 245	Asn	Asn	His	Val	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val
	Ser	Met	Ala	Ser 260	Thr	Leu	His	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala
	Ala	Ala	Gln 275	Ala	Val	Glu	Thr	Ala 280	Ala	Gln	Asn	Gly	Val 285	Gln	Ala	Met
	Ser	Ser 290	Leu	Gly	Ser	Gln	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	Gly	Leu
	Gly 305	Ala	Gly	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320
	Leu	Ser	Val	Pro	Gln 325		Trp	Ala	Ala	Ala 330	Asn	Gln	Ala	Val	Thr 335	Pro
	Ala	Ala	Arg	Ala 340	Leu	Pro	Leu	Thr	Ser 345	Leu	Thr	Ser	Ala	Ala 350	Gln	Thr
	Ala	Pro	Gly 355	His	Met	Leu	Gly	Gly 360	Leu	Pro	Leu	Gly	Gln 365	Leu	Thr	Asn
	Ser	Gly 370	Gly	Gly	Phe	Gly	Gly 375	Val	Ser	Asn	Ala	Leu 380	Arg	Met	Pro	Pro
	Arg 385	Ala	Tyr	Val	Met	Pro 390	Arg	Val	Pro	Ala	Ala 395	Gly				
]	INFORMATION FOR SEQ ID NO:107:															

(2)

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1616 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGTAA	ATACCGCACG	60
GCTGATGGCC	GGCGCGGGTC	CGGCTCCAAT	GCTTGCGGCG	GCCGCGGGAT	GGCAGACGCT	120
TTCGGCGGCT	CTGGACGCTC	AGGCCGTCGA	GTTGACCGCG	CGCCTGAACT	CTCTGGGAGA	180

GGAGGTGGCA	GCGACAAGGC	GCTTGCGGCT	GCAACGCCGA	TGGTGGTCTG	240
GCGTCAACAC	AGGCCAAGAC	CCGTGCGATG	CAGGCGACGG	CGCAAGCCGC	300
CAGGCCATGG	CCACGACGCC	GTCGCTGCCG	GAGATCGCCG	CCAACCACAT	360
GTCCTTACGG	CCACCAACTT	CTTCGGTATC	AACACGATCC	CGATCGCGTT	420
GATTATTTCA	TCCGTATGTG	GAACCAGGCA	GCCCTGGCAA	TGGAGGTCTA	480
ACCGCGGTTA	ACACGCTTTT	CGAGAAGCTC	GAGCCGATGG	CGTCGATCCT	540
GCGAGCCAGA	GCACGACGAA	CCCGATCTTC	GGAATGCCCT	CCCCTGGCAG	600
GTTGGCCAGT	TGCCGCCGGC	GGCTACCCAG	ACCCTCGGCC	AACTGGGTGA	660
CCGATGCAGC	AGCTGACCCA	GCCGCTGCAG	CAGGTGACGT	CGTTGTTCAG	720
GGCACCGGCG	GCGGCAACCC	AGCCGACGAG	GAAGCCGCGC	AGATGGGCCT	780
AGTCCGCTGT	CGAACCATCC	GCTGGCTGGT	GGATCAGGCC	CCAGCGCGGG	840
CTGCGCGCGG	AGTCGCTACC	TGGCGCAGGT	GGGTCGTTGA	CCCGCACGCC	900
CAGCTGATCG	AAAAGCCGGT	TGCCCCCTCG	GTGATGCCGG	CGGCTGCTGC	960
GCGACGGGTG	GCGCCGCTCC	GGTGGGTGCG	GGAGCGATGG	GCCAGGGTGC	1020
GGCTCCACCA	GGCCGGGTCT	GGTCGCGCCG	GCACCGCTCG	CGCAGGAGCG	1080
GACGAGGACG	ACTGGGACGA	AGAGGACGAC	TGGTGAGCTC	CCGTAATGAC	1140
CCGGCCACCC	GGGCCGGAAG	ACTTGCCAAC	ATTTTGGCGA	GGAAGGTAAA	1200
AGTCCAGCAT	GGCAGAGATG	AAGACCGATG	CCGCTACCCT	CGCGCAGGAG	1260
TCGAGCGGAT	CTCCGGCGAC	CTGAAAACCC	AGATCGACCA	GGTGGAGTCG	1320
CGTTGCAGGG	CCAGTGGCGC	GGCGCGGCGG	GGACGGCCGC	CCAGGCCGCG	1380
TCCAAGAAGC	AGCCAATAAG	CAGAAGCAGG	AACTCGACGA	GATCTCGACG	1440
AGGCCGGCGT	CCAATACTCG	AGGGCCGACG	AGGAGCAGCA	GCAGGCGCTG	1500
TGGGCTTCTG	ACCCGCTAAT	ACGAAAAGAA	ACGGAGCAAA	AACATGACAG	1560
GAATTTCGCG	GGTATCGAGG	CCGCGGCAAG	CGCAATCCAG	GGAAAT	1616
	GCGTCAACAC CAGGCCATGG GTCCTTACGG GATTATTTCA ACCGCGGTTA GCGAGCCAGA GTTGGCCAGT CCGATGCAGC AGTCCGCTGT CTGCGCGCGG CAGCTGATCG GCGACGGGTG GCGCCACCC AGTCCACCA TCGAGCGAT TCGAGCGGAT CGTTGCAGGG TCCAAGAAGC AGGCCGGCGT TGGGCCGCGT TGGGCCTCTG	GCGTCAACAC AGGCCAAGAC CAGGCCATGG CCACCGACGCC GTCCTTACGG CCACCCAACTT GATTATTTCA TCCGTATGTG ACCGCGGTTA ACACGCTTTT GCGAGCCAGA GCACGACGAA GTTGGCCAGT TGCCGCCGGC CCGATGCAGC AGCTGACCCA AGTCCGCTGT CGAACCATCC CAGCTGATCG AAAAGCCGGT GCGACGGGG GCGCCGCTCC GGCTCCACCA GGCCGGCTCC GACCAGCAC ACTGGGACGA CCGGCCACC GGGCCGGCTC GACCACCA GCCCGGACG ACTCGCACCA GCCCGGACGA CCGGCCACC GGGCCGGACG ACTCGGCACGA CCGGCCACC GGGCCGGACG TCCAAGAAGC ACCCGCGAC TCCAAGAAGC ACCCGCTACT AGGCCGGCGT CCAATACTCG TGGGCTTCTG ACCCGCTAAT	GCGTCAACAC AGGCCAAGAC CCGTGCGATG CAGGCCATGG CCACCGACGCC GTCGCTGCCG GTCCTTACGG CCACCAACTT CTTCGGTATC GATTATTCA TCCGTATGTG GAACCAGGCA ACCGCGGTTA ACACGCTTTT CGAGAAGCTC GCGAGCCAGA GCACGACGA CCCGATCTTC GCGATGCAGC AGCTGACCA GCCGATCTTC GCGATGCAGC AGCTGACCCA GCCGCTGCAG GCACCGGCG GCGCAACCC AGCCGACGAG AGTCCGCTGT CGAACCATCC GCTGGCTGGT CAGCTGATCG AAAAGCCGGT TGCCCCCTCG GCGACGGGG GCGCGCCGC GGTGCAGC GCGACGGGG GCGCGCTCC GGTGGGTGCG GCGCCACCA GCCCGGTCC GGTGGGTGCG GCGCCACCA GGCCGGCTC GGTCGCCCC GACGAGGAC ACTGGGACGA AGAGGACGAC CCGGCCACCC GGGCCGGAAG ACTTGCCAAC AGTCCAGCAT GGCAGAGAGA ACTTGCCAAC AGTCCAGCAT CTCCGGCGAC CTGAAAACCC CGTTGCAGGG CCAGTGGCG GGCGCGGCG TCCAAGAAGC AGCCAATAAG CAGAAGCAGA AGGCCGGCT CCAATACTC AGGGCCGACG TCCAAGAAGC ACCCGCTAAT ACGAAAAGAA	GCGTCAACAC AGGCCAAGAC CCGTGCGATG CAGGCGACGG CAGGCCATGG CCACCAACTT CTTCGGTATC AACACGATCC GTCCTTACGG CCACCAACTT CTTCGGTATC AACACGATCC GATTATTTCA TCCGTATGTG GAACCAGGCA GCCCTGGCAA ACCGCGGTTA ACACGCTTTT CGAGAAGCTC GAGCCGATGG GCGAGCCAGA GCACGACGA CCCGATCTTC GGAATGCCCT GTTGGCCAGT TGCCGCCGGC GGCTACCCAG ACCCTCGGCC CCGATGCAGC AGCTGACCCA GCCGATCGAC CAGGTGACGT GGCACCGGCG GCGGCAACCC AGCCGACGAG GAAGCCGCGC CTGCGCGCG AGTCGCTCC GCTGGCTGG GGATCACGGC CTGCGCGCG AGTCGCTACC TGGCGCAGGT GGGTCGTTGA CAGCTGATCG AAAAGCCGGT TGCCCCCTCG GTGATGCCGG GCGCACGGG GCGCCGCTCC GGTGGTGGC GCACCGCTCG GACGAGGACG ACTGGGACGA AGAGGACGAC TGGTGAGCTC CCGGCCACC GGCCGGACGA AGAGGACGAC TGGTGAGCTC CCGGCCACC GGGCCGGAAG ACTTGCCAAC ATTTTGGCGA AGTCCAGCAT GCCAGAGAGA AAGACCGATG CCGCTCCT TCGAGCGGAT CTCCGGCGAC CTGAAAACCC AGATCGACCA CGTTGCAGGG CCAGTGGCGC GCGCGCGG GGACGGCCGC TCCAAGAAGC AGCCAATAAG CAGAAACCA AACTCGACCA AGGCCGCGCT CCAATACTC AGGACCACG AACTCGACCA AGGCCGCGC CCAATACCC AGGACCACA AACTCGACCA AGGCCGGCG CCAATACTC AGGACAAAACAC AGGAGCACAA	GGAGGTGGCA GGGACAAGGC GCTTGCGGCT GCAAGCCGA TGGTGGTCTG GCGTCAACAC AGGCCAAGAC CCGTGCGATC CAGGCCACCC CCAAACCACAT CAGGCCATGC CCACCAACTT CTTCGGTATC AACACGATCC CGATCGCGTT GTCCTTACGG CCACCAACTT CTTCGGTATC AACACGATCC CGATCGCGTT GATTATTCA TCCGTATGTG GAACCAGCA GCCCTGGCAA TGGAGGTCTA ACCGCGGTTA ACACGCTTTT CGAAAGCCT CCCCTGGCAG CCCCTGGCAG GTTGGCCAGT TGCCGCCGGC GGCTACCCAG ACCCTCGGCC AACTGGGTGA GTTGGCCAGT TGCCGCCGGC GCAGCGCGC AACTGGGTGA CCGTTGCAG GGCACCGCGC AGCCGACGAG CAGGCTGACC AGATCGGCGC AGATGGGCC GGCACCGCGC AGCCGCAGGT GGGTCGTTGA CCCGCACGCC CCAGCGCGC CCGCCACCC AGCCGCAGGT GGGTCGTTGA CCCGCACGCC CCGCAAGCGC GGCACGGCGG AGCCGCAGCG GGACCGCACC CGCCAGCGCC CCCAGGAGCGC GGCACGGCGG AGCCGGCACC AGCCGCACC CCCGCAGCAG ATTTTGGCGA<

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

	(xi)	SE	QUENCE	DESC	CRIPTION: SI	EQ ID NO:108	3:		
CTAC	GTGGAT	'G	GGACCAT	GGC	CATTTTCTGC	AGTCTCACTG	CCTTCTGTGT	TGACATTTTG	60
GCAC	CGCCGG	C	GGAAACG	AAG	CACTGGGGTC	GAAGAACGGC	TGCGCTGCCA	TATCGTCCGG	120
AGCI	TCCAT	'A	CCTTCGT	GCG	GCCGGAAGAG	CTTGTCGTAG	TCGGCCGCCA	TGACAACCTC	180
TCAG	GAGTGC	CG	CTCAAAC	GTA	TAAACACGAG	AAAGGGCGAG	ACCGACGGAA	GGTCGAACTC	240
GCCC	CGATCC	C	GTGTTTC	GCT	ATTCTACGCG	AACTCGGCGT	TGCCCTATGC	GAACATCCCA	300
GTGA	ACGTTG	C	CTTCGGT	CGA	AGCCATTGCC	TGACCGGCTT	CGCTGATCGT	CCGCGCCAGG	360
TTCI	rgcago	G	CGTTGTT	CAG	CTCGGTAGCC	GTGGCGTCCC	ATTTTTGCTG	GACACCCTGG	420
TAC	GCCTCC	G	AA						432

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met 1 $$ 5 $$ 10 $$ 15

Ala Gly Ala Gly Pro Ala Pro Met Leu Ala Ala Ala Ala Gly Trp Gln 20 25 30

Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val Glu Leu Thr Ala Arg 35 40 45

Leu Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Gly Ser Asp Lys Ala 50 55 60

Leu Ala Ala Ala Thr Pro Met Val Val Trp Leu Gln Thr Ala Ser Thr 65 70 75 80

Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Ala Tyr 85 90 95

Thr	Gln	Ala	Met 100	Ala	Thr	Thr	Pro	Ser 105	Leu	Pro	Glu	Ile	Ala 110	Ala	Asn
His	Ile	Thr 115	Gln	Ala	Val	Leu	Thr 120	Ala	Thr	Asn	Phe	Phe 125	Gly	Ile	Asn
Thr	Ile 130	Pro	Ile	Ala	Leu	Thr 135	Glu	Met	Asp	Tyr	Phe 140	Ile	Arg	Met	Trp
Asn 145	Gln	Ala	Ala	Leu	Ala 150	Met	Glu	Val	Tyr	Gln 155	Ala	Glu	Thr	Ala	Val 160
Asn	Thr	Leu	Phe	Glu 165	Lys	Leu	Glu	Pro	Met 170	Ala	Ser	Ile	Leu	Asp 175	Pro
Gly	Ala	Ser	Gln 180	Ser	Thr	Thr	Asn	Pro 185	Ile	Phe	Gly	Met	Pro 190	Ser	Pro
Gly	Ser	Ser 195	Thr	Pro	Val	Gly	Gln 200	Leu	Pro	Pro	Ala	Ala 205	Thr	Gln	Thr
Leu	Gly 210	Gln	Leu	Gly	Glu	Met 215	Ser	Gly	Pro	Met	Gln 220	Gln	Leu	Thr	Gln
Pro 225	Leu	Gln	Gln	Val	Thr 230	Ser	Leu	Phe	Ser	Gln 235	Val	Gly	Gly	Thr	Gly 240
Gly	Gly	Asn	Pro	Ala 245	Asp	Glu	Glu	Ala	Ala 250	Gln	Met	Gly	Leu	Leu 255	Gly
Thr	Ser	Pro	Leu 260	Ser	Asn	His	Pro	Leu 265	Ala	Gly	Gly	Ser	Gly 270	Pro	Ser
Ala	Gly	Ala 275	Gly	Leu	Leu	Arg	Ala 280	Glu	Ser	Leu	Pro	Gly 285	Ala	Gly	Gly
Ser	Leu 290	Thr	Arg	Thr	Pro	Leu 295	Met	Ser	Gln	Leu	11e 300	Glu	Lys	Pro	Val
Ala 305	Pro	Ser	Val	Met	Pro 310	Ala	Ala	Ala	Ala	Gly 315	Ser	Ser	Ala	Thr	Gly 320
Gly	Ala	Ala	Pro	Val 325	Gly	Ala	Gly	Ala	Met 330	Gly	Gln	Gly	Ala	Gln 335	Ser
Gly	Gly	Ser	Thr 340	Arg	Pro	Gly	Leu	Val 345	Ala	Pro	Ala	Pro	Leu 350	Ala	Gln
Glu	Arg	Glu 355	Glu	Asp	Asp	Glu	Asp 360	Asp	Trp	Asp	Glu	Glu 365	Asp	Asp	Trp

⁽²⁾ INFORMATION FOR SEQ ID NO:110:

240

	(i)	(B)	LEN TYP STP	NGTH: PE: a RANDI) ami o aci SS:	ino a id		3								
((xi)	SEQU	JENCE	E DES	ECRIE	TION	V: SI	EQ II	ONO:	110	:						
	Met 1	Ala	Glu	Met	Lys 5	Thr	Asp	Ala	Ala	Thr 10	Leu	Ala	Gln	Glu	Ala 15	Gly	
	Asn	Phe	Glu	Arg 20	Ile	Ser	Gly	Asp	Leu 25	Lys	Thr	Gln	Ile	Asp 30	Gln	Val	
	Glu	Ser	Thr 35	Ala	Gly	Ser	Leu	Gln 40	Gly	Gln	Trp	Arg	Gly 45	Ala	Ala	Gly	
	Thr	Ala 50	Ala	Gln	Ala	Ala	Val 55	Val	Arg	Phe	Gln	Glu 60	Ala	Ala	Asn	Lys	
	Gln 65	Lys	Gln	Glu	Leu	Asp 70	Glu	Ile	Ser	Thr	Asn 75	Ile	Arg	Gln	Ala	Gly 80	
	Val	Gln	Tyr	Ser	Arg 85	Ala	Asp	Glu	Glu	Gln 90	Gln	Gln	Ala	Leu	Ser 95	Ser	
	Gln	Met	Gly	Phe 100													
(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	NO:11	11:									
	(i)	(B)	LEN TYI	NGTH: PE: 1 RANDI	: 396 nucle	baseic a	se pa acid singl	airs									
:	(xi)	SEQU	JENCI	E DES	SCRII	OITS	V: SI	EQ II	NO:	111:							
GATC	rccg	GC GI	ACCTO	SAAA	A CCC	CAGAI	rcga	CCAC	GTGG	GAG 1	CGAC	GGCI	G GI	TCGI	TGCA	1	60
GGGC	CAGTO	GG C	GCGG	CGCGC	G CGC	GGA	CGGC	CGCC	CAG	CC C	GCGGI	GGT	C GC	CTTCC	AAGA	1	120
AGCA	GCCA!	A TA	AGCAG	SAAGO	C AGO	SAACT	rcga	CGA	SATCI	CG F	ACGAF	TATI	C GI	CAGO	CCGG	;	180

CGTCCAATAC TCGAGGGCCG ACGAGGAGCA GCAGCAGGCG CTGTCCTCGC AAATGGGCTT

4		-
	7	^
	~	w

110										
CTGACCCGCT AATACGAAAA GAAACGGAGC AAAAACATGA CAGAGCAGCA GTGGAATTTC 30	0									
GCGGGTATCG AGGCCGCGC AAGCGCAATC CAGGGAAATG TCACGTCCAT TCATTCCCTC 36	0									
CTTGACGAGG GGAAGCAGTC CCTGACCAAG CTCGCA 39										
(2) INFORMATION FOR SEQ ID NO:112:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 80 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear										
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:										
Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala 1 5 10 15										
Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln 20 25 30										
Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu 35 40 45										
Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser 50 55 60										
Arg Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 65 70 75 80										
(2) INFORMATION FOR SEQ ID NO:113:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 387 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear										
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:										
GTGGATCCCG ATCCCGTGTT TCGCTATTCT ACGCGAACTC GGCGTTGCCC TATGCGAACA 6	0									
TCCCAGTGAC GTTGCCTTCG GTCGAAGCCA TTGCCTGACC GGCTTCGCTG ATCGTCCGCG 12	0									

CCAGGTTCTG CAGCGCGTTG TTCAGCTCGG TAGCCGTGGC GTCCCATTTT TGCTGGACAC 180

CCTGGTACGC	CTCCGAACCG	CTACCGCCCC	AGGCCGCTGC	GAGCTTGGTC	AGGGACTGCT	240
TCCCCTCGTC	AAGGAGGGAA	TGAATGGACG	TGACATTTCC	CTGGATTGCG	CTTGCCGCGG	300
CCTCGATACC	CGCGAAATTC	CACTGCTGCT	CTGTCATGTT	TTTGCTCCGT	TTCTTTTCGT	360
ATTAGCGGGT	CAGAAGCCCA	TTTGCGA				387

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

CGGCACGAGG ATCTCGGTTG GCCCAACGGC GCTGGCGAGG GCTCCGTTCC GGGGGCGAGC 60 TGCGCGCCGG ATGCTTCCTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AGTTGCTACC 120 TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGCGCGC ACGTCGGGAG 180 TGTTGGGGGG CAGGCCGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACGGAACG 240 GGCGGGGGTT CGCCGATTGG CATCTTTGCC CA 272

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val 1 10

Val Ala Ala Leu

(2) INFORMATION FOR SEQ ID NO:116:

148

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys
1 10 15

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:118:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro

- (2) INFORMATION FOR SEQ ID NO:119:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:120:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:121:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino, acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro 1 5 10 15

Ser

- (2) INFORMATION FOR SEQ ID NO:122:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids

150

(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly 10

- (2) INFORMATION FOR SEQ ID NO:123:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 10

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn 25 20

- (2) INFORMATION FOR SEQ ID NO:124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro 5

Gly Gly Arg Arg Xaa Phe 20

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Asp Pro Gly Tyr Thr Pro Gly 1

- (2) INFORMATION FOR SEQ ID NO:126:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a Pro or Thr" $\ensuremath{\text{--}}$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr
1 5 10

- (2) INFORMATION FOR SEQ ID NO:127:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Third Residue Can Be Either a Gln or Leu"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Xaa Pro Xaa Val Thr Ala Tyr Ala Gly
1 5

- (2) INFORMATION FOR SEQ ID NO:128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg 1 5

- (2) INFORMATION FOR SEQ ID NO:129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids

153

(B)	TYPE:	amino	acid
(C)	STRANI	DEDNES	SS:
(D)	TOPOLO	OGY: 1	inear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Ala Pro Glu Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly 1 5 10 15

(2) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xaa Tyr Ile Ala Tyr Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile 1 $$ 5 $$ 10 $$ 15

Asn Val His Leu Val 20

(2) INFORMATION FOR SEQ ID NO:133:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 882 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

GCAACGCTGT	CGTGGCCTTT	GCGGTGATCG	GTTTCGCCTC	GCTGGCGGTG	GCGGTGGCGG	60
TCACCATCCG	ACCGACCGCG	GCCTCAAAAC	CGGTAGAGGG	ACACCAAAAC	GCCCAGCCAG	120
GGAAGTTCAT	GCCGTTGTTG	CCGACGCAAC	AGCAGGCGCC	GGTCCCGCCG	CCTCCGCCCG	180
ATGATCCCAC	CGCTGGATTC	CAGGGCGGCA	CCATTCCGGC	TGTACAGAAC	GTGGTGCCGC	240

GGCCGGGTAC	CTCACCCGGG	GTGGGTGGGA	CGCCGGCTTC	GCCTGCGCCG	GAAGCGCCGG	300
CCGTGCCCGG	TGTTGTGCCT	GCCCCGGTGC	CAATCCCGGT	CCCGATCATC	ATTCCCCCGT	360
TCCCGGGTTG	GCAGCCTGGA	ATGCCGACCA	TCCCCACCGC	ACCGCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	CGCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCGCC	GACCACGCCG	GTGACCACGC	CGCCAACGAC	GCCGCCGACC	ACGCCGGTGA	540
CCACGCCACC	AACGACCGTC	GCCCCGACGA	CCGTCGCCCC	GACGACGGTC	GCTCCGACCA	600
CCGTCGCCCC	GACCACGGTC	GCTCCAGCCA	CCGCCACGCC	GACGACCGTC	GCTCCGCAGC	660
CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882

(2) INFORMATION FOR SEQ ID NO:134:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

CCATCAACCA	ACCGCTCGCG	CCGCCCGCGC	CGCCGGATCC	GCCGTCGCCG	CCACGCCCGC	60
CGGTGCCTCC	GGTGCCCCCG	TTGCCGCCGT	CGCCGCCGTC	GCCGCCGACC	GGCTGGGTGC	120
CTAGGGCGCT	GTTACCGCCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCGCCGA	180
TGGCGCCGTT	GCCGCCGGCG	GCACCGTTGC	CACCGTTGCC	ACCGTTGCCA	CCGTTGCCGA	240
CCAGCCACCC	GCCGCGACCA	CCGGCACCGC	CGGCGCCGCC	CGCACCGCCG	GCGTGCCCGT	300
TCGTGCCCGT	ACCGCCGGCA	CCGCCGTTGC	CGCCGTCACC	GCCGACGGAA	CTACCGGCGG	360
ACGCGGCCTG	CCCGCCGGCG	CCGCCCGCAC	CGCCATTGGC	ACCGCCGTCA	CCGCCGGCTG	420
GGAGTGCCGC	GATTAGGGCA	CTGACCGGCG	CAACCAGCGC	AAGTACTCTC	GGTCACCGAG	480
CACTTCCAGA	CGACACCACA	GCACGGGGTT	GTCGGCGGAC	TGGGTGAAAT	GGCAGCCGAT	540

AGCGGCTAGC	TGTCGGCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
CCCCCGAAG	GAGGCGCTGA	ACTCGGCGTT	GAGCCGATCG	GCGATCGGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	CGGGTGTCNA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCGCG	720
ACNGTGGTCG	GGGTGGCCTG	TTACGCCGTT	GTCNTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TCCACCACGC	GTTGCGTCAG	CTCGT			815

(2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

ACCAGCCGCC	GGCTGAGGTC	TCAGATCAGA	GAGTCTCCGG	ACTCACCGGG	GCGGTTCAGC	60
CTTCTCCCAG	AACAACTGCT	GAAGATCCTC	GCCCGCGAAA	CAGGCGCTGA	TTTGACGCTC	120
TATGACCGGT	TGAACGACGA	GATCATCCGG	CAGATTGATA	TGGCACCGCT	GGGCTAACAG	180
GTGCGCAAGA	TGGTGCAGCT	GTATGTCTCG	GACTCCGTGT	CGCGGATCAG	CTTTGCCGAC	240
GGCCGGGTGA	TCGTGTGGAG	CGAGGAGCTC	GGCGAGAGCC	AGTATCCGAT	CGAGACGCTG	300
GACGGCATCA	CGCTGTTTGG	GCGGCCGACG	ATGACAACGC	CCTTCATCGT	TGAGATGCTC	360
AAGCGTGAGC	GCGACATCCA	GCTCTTCACG	ACCGACGGCC	ACTACCAGGG	CCGGATCTCA	420
ACACCCGACG	TGTCATACGC	GCCGCGGCTC	CGTCAGCAAG	TTCACCGCAC	CGACGATCCT	480
GCGTTCTGCC	TGTCGTTAAG	CAAGCGGATC	GTGTCGAGGA	AGATCCTGAA	TCAGCAGGCC	540
TTGATTCGGG	CACACACGTC	GGGGCAAGAC	GTTGCTGAGA	GCATCCGCAC	GATGAAGCAC	600
TCGCTGGCCT	GGGTCGATCG	ATCGGGCTCC	CTGGCGGAGT	TGAACGGGTT	CGAGGGAAAT	660
GCCGCAAAGG	CATACTTCAC	CGCGCTGGGG	CATCTCGTCC	CGCAGGAGTT	CGCATTCCAG	720
GGCCGCTCGA	CTCGGCCGCC	GTTGGACGCC	TTCAACTCGA	TGGTCAGCCT	CGGCTATTCG	780
CTGCTGTACA	AGAACATCAT	AGGGGCGATC	GAGCGTCACA	GCCTGAACGC	GTATATCGGT	840
TTCCTACACC	AGGATTCACG	AGGGCACGCA	ACGTCTCGTG	CCGAATTCGG	CACGAGCTCC	900

GCTGAAACCG	CTGGCCGGCT	GCTCAGTGCC	CGTACGTAAT	CCGCTGCGCC	CAGGCCGGCC	960
CGCCGGCCGA	ATACCAGCAG	ATCGGACAGC	GAATTGCCGC	CCAGCCGGTT	GGAGCCGTGC	1020
ATACCGCCGG	CACACTCACC	GGCAGCGAAC	AGGCCTGGCA	CCGTGGCGGC	GCCGGTGTCC	1080
GCGTCTACTT	CGACACCGCC	CATCACGTAG	TGACACGTCG	GCCCGACTTC	CATTGCCTGC	1140
GTTCGGCACG	AG					1152

(2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

CTCGTGCCGA	TTCGGCAGGG	TGTACTTGCC	GGTGGTGTAN	GCCGCATGAG	TGCCGACGAC	60
CAGCAATGCG	GCAACAGCAC	GGATCCCGGT	CAACGACGCC	ACCCGGTCCA	CGTGGGCGAT	120
CCGCTCGAGT	CCGCCCTGGG	CGGCTCTTTC	CTTGGGCAGG	GTCATCCGAC	GTGTTTCCGC	180
CGTGGTTTGC	CGCCATTATG	CCGGCGCGCC	GCGTCGGGCG	GCCGGTATGG	CCGAANGTCG	240
ATCAGCACAC	CCGAGATACG	GGTCTGTGCA	AGCTTTTTGA	GCGTCGCGCG	GGGCAGCTTC	300
GCCGGCAATT	CTACTAGCGA	GAAGTCTGGC	CCGATACGGA	TCTGACCGAA	GTCGCTGCGG	360
TGCAGCCCAC	CCTCATTGGC	GATGGCGCCG	ACGATGGCGC	CTGGACCGAT	CTTGTGCCGC	420
TTGCCGACGG	CGACGCGGTA	GGTGGTCAAG	TCCGGTCTAC	GCTTGGGCCT	TTGCGGACGG	480
TCCCGACGCT	GGTCGCGGTT	GCGCCGCGAA	AGCGGCGGGT	CGGGTGCCAT	CAGGAATGCC	540
TCACCGCCGC	GGCACTGCAC	GGCCAGTGCC	GCGGCGATGT	CAGCCATCGG	GACATCATGC	600
TCGCGTTCAT	ACTCCTCGAC	CAGTCGGCGG	AACAGCTCGA	TTCCCGGACC	GCCCA	655

(2) INFORMATION FOR SEQ ID NO:137:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi)	SEQU	JENC	E DES	SCRII	OITS	1: SI	EQ II) NO:	:137	:					
Asn 1	Ala	Val	Val	Ala 5	Phe	Ala	Val	Ile	Gly 10	Phe	Ala	Ser	Leu	Ala 15	Val
Ala	Val	Ala	Val 20	Thr	Ile	Arg	Pro	Thr 25	Ala	Ala	Ser	Lys	Pro 30	Val	Glu
Gly	His	Gln 35	Asn	Ala	Gln	Pro	Gly 40	Lys	Phe	Met	Pro	Leu 45	Leu	Pro	Thr
Gln	Gln 50	Gln	Ala	Pro	Val	Pro 55	Pro	Pro	Pro	Pro	Asp 60	Asp	Pro	Thr	Ala
Gly 65	Phe	Gln	Gly	Gly	Thr 70	Ile	Pro	Ala	Val	Gln 75	Asn	Val	Val	Pro	Arg 80
Pro	Gly	Thr	Ser	Pro 85	Gly	Val	Gly	Gly	Thr 90	Pro	Ala	Ser	Pro	Ala 95	Pro
Glu	Ala	Pro	Ala 100	Val	Pro	Gly	Val	Val 105	Pro	Ala	Pro	Val	Pro 110	Ile	Pro
Val	Pro	Ile 115	Ile	Ile	Pro	Pro	Phe 120	Pro	Gly	Trp	Gln	Pro 125	Gly	Met	Pro
Thr	Ile 130	Pro	Thr	Ala	Pro	Pro 135	Thr	Thr	Pro	Val	Thr 140	Thr	Ser	Ala	Thr
Thr 145	Pro	Pro	Thr	Thr	Pro 150	Pro	Thr	Thr	Pro	Val 155	Thr	Thr	Pro	Pro	Thr 160
Thr	Pro	Pro	Thr	Thr 165	Pro	Val	Thr	Thr	Pro 170	Pro	Thr	Thr	Pro	Pro 175	Thr
Thr	Pro	Val	Thr 180	Thr	Pro	Pro	Thr	Thr 185	Val	Ala	Pro	Thr	Thr 190	Val	Ala
Pro	Thr	Thr 195	Val	Ala	Pro	Thr	Thr 200	Val	Ala	Pro	Thr	Thr 205	Val	Ala	Pro
Ala	Thr 210	Ala	Thr	Pro	Thr	Thr 215	Val	Ala	Pro	Gln	Pro 220	Thr	Gln	Gln	Pro
Thr 225	Gln	Gln	Pro	Thr	Gln 230	Gln	Met	Pro	Thr	Gln 235	Gln	Gln	Thr	Val	Ala 240
Pro	Gln	Thr	Val	Ala 245	Pro	Ala	Pro	Gln	Pro 250	Pro	Ser	Gly	Gly	Arg 255	Asn

Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe 260 265

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 174 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:
 - Ile Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro 1 5 10 15
 - Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro 20 25 30
 - Ser Pro Pro Thr Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu 35 40 45
 - Ala Gly Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro 50 55 60
 - Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr 65 70 75 80
 - Ser His Pro Pro Arg Pro Pro Ala Pro Pro Ala Pro Pro Ala Pro Pro 85 90 95
 - Ala Cys Pro Phe Val Pro Val Pro Pro Ala Pro Pro Leu Pro Pro Ser 100 105 110
 - Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro 115 120 125
 - Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 135 140
 - Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg Ala 145 150 155 160
 - Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165 170
- (2) INFORMATION FOR SEQ ID NO:139:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly 1 5 10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg 35

- (2) INFORMATION FOR SEQ ID NO:140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu
1 5 10 15

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr 20 25 30

Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu 35 40 45

Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala 50 55 60

Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp 70 75 80

Gln His Thr Arg Asp Thr Gly Leu Cys Lys Leu Phe Glu Arg Ala 85 90 95

Gly Gln Leu Arg Arg Gln Phe Tyr

160

		100	
(2)	INFO	RMATION FOR SEQ ID NO:141:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:141:	
GGAT	CCAT	AT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC	53
(2)	INFO	RMATION FOR SEQ ID NO:142:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR Primer"	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:142:	
CCT	GAATT	CA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA	42
(2)	INFO	RMATION FOR SEQ ID NO:143:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: other nucleic acid

(vi) ORIGINAL SOURCE:

(A) DESCRIPTION: /desc = "PCR Primer"

(A) ORGANISM: Mycobacterium tuberculosis

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
GGA'	TCCTGCA GGCTCGAAAC CACCGAGCGG T	31
(2)	INFORMATION FOR SEQ ID NO:144:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"</pre>	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
CTC	TGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2)	INFORMATION FOR SEQ ID NO:145:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc ≈ "PCR primer"</pre>	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
GGA'	TCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2)	INFORMATION FOR SEQ ID NO:146:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"</pre>	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
GAGAGAATTC TCAGAAGCCC ATTTGCGAGG ACA	33
(2) INFORMATION FOR SEQ ID NO:147:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1521273	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA	60
AGCATGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGGG GGACGTCAAG GACGCCAAGC	120
GCGGAAATTG AAGAGCACAG AAAGGTATGG C GTG AAA ATT CGT TTG CAT ACG Val Lys Ile Arg Leu His Thr 1 5	172
CTG TTG GCC GTG TTG ACC GCT GCG CCG CTG CTG CTA GCA GCG GCC GGC Leu Leu Ala Val Leu Thr Ala Ala Pro Leu Leu Leu Ala Ala Ala Gly 10 15 20	220
TGT GGC TCG AAA CCA CCG AGC GGT TCG CCT GAA ACG GGC GCC GGC GCC Cys Gly Ser Lys Pro Pro Ser Gly Ser Pro Glu Thr Gly Ala Gly Ala 25 30 35	268
GGT ACT GTC GCG ACT ACC CCC GCG TCG TCG CCG GTG ACG TTG GCG GAG Gly Thr Val Ala Thr Thr Pro Ala Ser Ser Pro Val Thr Leu Ala Glu 40 45 50 55	316
ACC GGT AGC ACG CTG CTC TAC CCG CTG TTC AAC CTG TGG GGT CCG GCC Thr Gly Ser Thr Leu Leu Tyr Pro Leu Phe Asn Leu Trp Gly Pro Ala	364

WO 98/16645

		CCG Pro						412
		GCG Ala						460
		CTG Leu						508
		CTA Leu 125						556
		GAG Glu						604
		ACC Thr						652
		GTG Val						700
		TCC Ser						748
		GAG Glu 205						796
		GCG Ala						844
		GGT Gly						892
		CTC Leu						940
		AGC Ser						988
		GCG Ala						1036

164

280					285					290					295		
														CCG Pro 310			1084
														GCC Ala			1132
														GAC Asp			1180
														CCG Pro			1228
			AAG Lys														1273
TAG	CCTC	TT	GACCA	ACCAG	CG CC	GACA	GCAA(CTC	CCGT	CGGG	CCAT	rcggo	GCT (GCTT	rgCGG	A	1333
GCA!	rgcto	GGC (CCGT	GCCG	GT GA	AAGT	CGGC	C GCC	GCTGG	GCCC	GGC	CATCO	CGG '	TGGT	rgggi	'G	1393
GGA:	ragg:	rgc (GGTG	ATCC	CG C	rgc t '	rgcg	C TGO	STCTI	rggt	GCT	GTG	GTG (CTGG	CATC	:G	1453
AGG	CGATO	GG '	TGCG <i>I</i>	ATCAC	GG C	rcaa(CGGG'	r T G0	CATTI	CTT	CAC	CGCCA	ACC (GAATO	GAAT	C.C	1513
CAG	GCAA	CAC	CTAC	GGCG2	AA AA	CCGT	rgtc <i>i</i>	A CCC	GACGO	CGTC	GCC	CATCO	CGG '	TCGG	CGCCI	`A	1573
CTA	CGGGG	GCG '	TTGC	CGCT	GA TO	CGTC	GGA(C GC!	rggco	GACC	TCGC	CAAT	rcg (CCCT	SATCA	ΛT	1633
CGC	GGTG	CCG	GTCT	CTGTA	AG G	AGCG	GCGC:	r GG:	rgato	CGTG	GAA	CGGC1	rgc (CGAA	ACGGI	T	1693
GGC	CGAG	GCT (GTGG	GAAT	AG T	CCTG	GAATI	r GC:	rcgco	CGGA	ATC	CCA	GCG '	TGGT	CGTCG	G	1753
TTT	GTGG	GGG	GCAA	rgac(ST TO	CGGG	CCGT	r CA	rcgc	CAT	CAC	ATCG(CTC (CGGT	SATC	GC .	1813
TCA	CAAC	GCT	CCCG	ATGT	GC C	GGTG	CTGA	A CT	ACTT(GCGC	GGC	SACC	CGG (GCAA	CGGGG	SA	1873
GGG	CATG!	rtg (GTGT	CCGG	rc T	GGTG'	TTGG	GG.	rgat(GGTC	GTT	CCAI	TA '	TCGC	CACCA	vC	1933
CAC'	rcat(GAC	CTGT'	rccg	GC A	GGTG	CCGG:	r GT	rgcco	CCGG	GAG	GCG	CGA '	TCGG	GAATI	C.	1993

(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 374 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

PCT/US97/18214 WO 98/16645

165

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:
- Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro
- Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser
- Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser
- Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50
- Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr
- Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130
- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr
- Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 185 180
- Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 200
- Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210
- Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 230
- Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 250
- Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn 260

166

Phe	Leu	Leu	Pro	Asp	Ala	Gln	Ser	Ile	Gln	Ala	Ala	Ala	Ala	Gly	Phe
		275					280					285			

- Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 295
- Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn
- Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 325 330
- His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val 345
- His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 360
- Ile Ala Thr Ile Ser Ser 370
- (2) INFORMATION FOR SEQ ID NO:149:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

60	TCCTCGCCGA	ACAGCTGTTC	GGCCCACCGA	GTGGAGGAAG	CGGCAGGCTG	TGTTCTTCGA
120	GACGCCAAGC	GGACGTCAAG	GACTGTCGGG	TACGTCGCCG	AACCGCCCGA	AGCATGCGGA
180	CGCTGTTGGC	CGTTTGCATA	CGTGAAAATT	AAAGGTATGG	AAGAGCACAG	GCGGAAATTG
240	AACCACCGAG	TGTGGCTCGA	AGCGGCGGGC	TGCTGCTAGC	GCTGCGCCGC	CGTGTTGACC
300	CGTCGTCGCC	ACTACCCCCG	TACTGTCGCG	CCGGCGCCGG	GAAACGGGCG	CGGTTCGCCT
360	TGTGGGGTCC	CTGTTCAACC	GCTCTACCCG	GTAGCACGCT	GCGGAGACCG	GGTGACGTTG
420	GTTCTGGTGC	CAGGGCACCG	GATCACCGCT	CGAACGTCAC	GAGAGGTATC	GGCCTTTCAC
480	CCTATCTGTC	GCCTCCGACG	CAACATTGGG	CCGGGACGGT	CAGGCCGCCG	CGGGATCGCG
540	TCTCCGCTCA	GCGCTAGCCA	GATGAACATC	ACAAGGGGCT	ATGGCCGCGC	GGAAGGTGAT
600	GAAAAGTCCT	AAGCTGAACG	CGAGCACCTC	CCGGAGTGAG	TACAACCTGC	GCAGGTCAAC

GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	660
CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	720
FGACACCTTC	TTGTTCACCC	AGTACCTGTC	CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	780
GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	840
CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	900
CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	960
TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	1020
GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	GATCGACGGG	cccgccccgg	ACGGCTACCC	1080
GATCATCAAC	TACGAGTACG	CCATCGTCAA	CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	1140
GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	1200
CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	1260
GACGATTTCC	AGCTAGCCTC	GTTGACCACC	ACGCGACAGC	AACCTCCGTC	GGGCCATCGG	1320
GCTGCTTTGC	GGAGCATGCT	GGCCCGTGCC	GGTGAAGTCG	GCCGCGCTGG	CCCGGCCATC	1380
CGGTGGTTGG	GTGGGATAGG	TGCGGTGATC	CCGCTGCTTG	CGCTGGTCTT	GGTGCTGGTG	1440
GTGCTGGTCA	TCGAGGCGAT	GGGTGCGATC	AGGCTCAACG	GGTTGCATTT	CTTCACCGCC	1500
ACCGAATGGA	ATCCAGGCAA	CACCTACGGC	GAAACCGTTG	TCACCGACGC	GTCGCCCATC	1560
CGGTCGGCGC	CTACTACGGG	GCGTTGCCGC	TGATCGTCGG	GACGCTGGCG	ACCTCGGCAA	1620
TCGCCCTGAT	CATCGCGGTG	CCGGTCTCTG	TAGGAGCGGC	GCTGGTGATC	GTGGAACGGC	1680
TGCCGAAACG	GTTGGCCGAG	GCTGTGGGAA	TAGTCCTGGA	ATTGCTCGCC	GGAATCCCCA	1740
GCGTGGTCGT	CGGTTTGTGG	GGGGCAATGA	CGTTCGGGCC	GTTCATCGCT	CATCACATCG	1800
CTCCGGTGAT	CGCTCACAAC	GCTCCCGATG	TGCCGGTGCT	GAACTACTTG	CGCGGCGACC	1860
CGGGCAACGG	GGAGGGCATG	TTGGTGTCCG	GTCTGGTGTT	GGCGGTGATG	GTCGTTCCCA	1920
TTATCGCCAC	CACCACTCAT	GACCTGTTCC	GGCAGGTGCC	GGTGTTGCCC	CGGGAGGGCG	1980
CGAŢCGGGAA	TTC					1993

(2) INFORMATION FOR SEQ ID NO:150:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi)	SEOUENCE	DESCRIPTION:	SEO	ID	NO:150:
------	----------	--------------	-----	----	---------

- Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15
- Leu Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30
- Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
- Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60
- Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80
- Ile Thr Ala Gl
n Gly Thr Gly Ser Gly Ala Gly Ile Ala Gl
n Ala Ala 85 90 95
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140
- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160
- Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190
- Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205
- Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220
- Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240
- Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 245 250 255

169

Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	Ala	Gln 265	Leu	Gly	Asn	Ser	Ser 270	Gly	Asn
Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe
Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Ile	Ser	Met 300	Ile	Asp	Gly	Pro
Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	Asn 320
Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gln	Ala	Phe 335	Leu
His	Trp	Ala	Ile 340	Thr	Asp	Gly	Asn	Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Val
His	Phe	Gln 355	Pro	Leu	Pro	Pro	Ala 360	Val	Val	Lys	Leu	Ser 365	Asp	Ala	Leu
Ile	Ala 370	Thr	Ile	Ser	Ser				•						

(2) INFORMATION FOR SEQ ID NO:151:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1777 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

60	GGTACTCGTG	TTGAAGTCCA	GGTGCCCGGA	TGTCGAAGTC	ACCACCTGGG	GGTCTTGACC
120	CGTTGACGGT	CCGCGGTAGC	ATGCGAGCAG	AGCGACAAGC	GCGAAACAAT	GGTGGGGCGG
180	TGCACAACAC	AGCGCTGATT	CACCTTGTTC	CCGCGTTGGG	GGCAACGCGG	GTAGCGAAAC
240	GGCCGATCCG	CTGCGGACCA	CGCGCGAACG	CGAATTGTGG	GTGATGCCGT	CTCGTGGAAG
300	GCTTGCCGGG	CACCGCGACG	GCATCCCGTT	TCGTCAACGG	GCAGCGCCCG	CTGCAACCCG
360	GCCGCTACCG	GTCAACGCTG	TCTATACTTT	GAACAACCGT	ACCATTATTC	CCCAACGCAT
420	AGGCCTTATG	GACAGGAGCC	TGCCCGCACA	ATGCCATCTC	AGGATGTGAT	AGCGCCGCAC
480	CGGGAAGCGC	TAGAAATCGC	CCGAAGTACC	CTACGGGCAG	GCGTCGAGCC	ACAGCATTCG
540	CAACCCCACG	TTCAGCACGG	GCCATCGTCT	CAAGGGTGAC	TCGACGAAGG	ATGGCGTATA

rce	TCTTACT	TGTGGCGCAA	CATCATGCCG	CACTTGGAAG	GGCTGGGCCG	GCTGGTGGCC	600
TGC	GATCTGA	TCGGGATGGG	CGCGTCGGAC	AAGCTCAGCC	CATCGGGACC	CGACCGCTAT	660
AGC	TATGGCG	AGCAACGAGA	CTTTTTGTTC	GCGCTCTGGG	ATGCGCTCGA	CCTCGGCGAC	720
CAC	GTGGTAC	TGGTGCTGCA	CGACTGGGGC	TCGGCGCTCG	GCTTCGACTG	GGCTAACCAG	780
CAI	CGCGACC	GAGTGCAGGG	GATCGCGTTC	ATGGAAGCGA	TCGTCACCCC	GATGACGTGG	840
GCG	GACTGGC	CGCCGGCCGT	GCGGGGTGTG	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCA	ATGGCGT	TGGAGCACAA	CATCTTTGTC	GAACGGGTGC	TGCCCGGGGC	GATCCTGCGA	960
CAG	CTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGCCAT	TCGTGAACGG	CGGCGAGGAC	1020
CGI	CGCCCCA	CGTTGTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CGCCGAGGTC	1080
GTC	GCGTTGG	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATC	CAACGCCG	AGCCCGGCGC	GATCATCACC	GGCCGCATCC	GTGACTATGT	CAGGAGCTGG	1200
ccc	CAACCAGA	CCGAAATCAC	AGTGCCCGGC	GTGCATTTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTC	CGTATCGT	GGGCGGGCGC	TCGGCAGCAT	CGGCGACCTG	GGAGCGCTCT	CATTTCACGA	1320
GAC	CAAGAAT	GTGATTTCCG	GCGAAGGCGG	CGCCCTGCTT	GTCAACTCAT	AAGACTTCCT	1380
GC1	CCGGGCA	GAGATTCTCA	GGGAAAAGGG	CACCAATCGC	AGCCGCTTCC	TTCGCAACGA	1440
GG1	CGACAAA	TATACGTGGC	AGGACAAAGG	TCTTCCTATT	TGCCCAGCGA	ATTAGTCGCT	1500
GCC	CTTTCTAT	GGGCTCAGTT	CGAGGAAGCC	GAGCGGATCA	CGCGTATCCG	ATTGGACCTA	1560
TGG	SAACCGGT	ATCATGAAAG	CTTCGAATCA	TTGGAACAGC	GGGGGCTCCT	GCGCCGTCCG	1620
ATC	CATCCCAC	AGGGCTGCTC	TCACAACGCC	CACATGTACT	ACGTGTTACT	AGCGCCCAGC	1680
GC	CGATCGGG	AGGAGGTGCT	GGCGCGTCTG	ACGAGCGAAG	GTATAGGCGC	GGTCTTTCAT	1740
TAC	CGTGCCGC	TTCACGATTC	GCCGGCCGGG	CGTCGCT			1777

(2) INFORMATION FOR SEQ ID NO:152:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 324 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

171

(xi) SI	EQUENCE DESC	CRIPTION: SE	EQ ID NO:152	2:		
GAGATTGAAT	CGTACCGGTC	TCCTTAGCGG	CTCCGTCCCG	TGAATGCCCA	TATCACGCAC	60
GGCCATGTTC	TGGCTGTCGA	CCTTCGCCCC	ATGCCCGGAC	GTTGGTAAAC	CCAGGGTTTG	120
ATCAGTAATT	CCGGGGGACG	GTTGCGGGAA	GGCGGCCAGG	ATGTGCGTGA	GCCGCGGCGC	180
CGCCGTCGCC	CAGGCGACCG	CTGGATGCTC	AGCCCCGGTG	CGGCGACGTA	GCCAGCGTTT	240
GGCGCGTGTC	GTCCACAGTG	GTACTCCGGT	GACGACGCGG	CGCGGTGCCT	GGGTGAAGAC	300
CGTGACCGAC	GCCGCCGATT	CAGA				324

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1338 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

GCGGTACCGC	CGCGTTGCGC	TGGCACGGGA	CCTGTACGAC	CTGAACCACT	TCGCCTCGCG	60
AACGATTGAC	GAACCGCTCG	TGCGGCGGCT	GTGGGTGCTC	AAGGTGTGGG	GTGATGTCGT	120
CGATGACCGG	CGCGGCACCC	GGCCACTACG	CGTCGAAGAC	GTCCTCGCCG	CCCGCAGCGA	180
GCACGACTTC	CAGCCCGACT	CGATCGGCGT	GCTGACCCGT	CCTGTCGCTA	TGGCTGCCTG	240
GGAAGCTCGC	GTTCGGAAGC	GATTTGCGTT	CCTCACTGAC	CTCGACGCCG	ACGAGCAGCG	300
GTGGGCCGCC	TGCGACGAAC	GGCACCGCCG	CGAAGTGGAG	AACGCGCTGG	CGGTGCTGCG	360
GTCCTGATCA	ACCTGCCGGC	GATCGTGCCG	TTCCGCTGGC	ACGGTTGCGG	CTGGACGCGG	420
CTGAATCGAC	TAGATGAGAG	CAGTTGGGCA	CGAATCCGGC	TGTGGTGGTG	AGCAAGACAC	480
GAGTACTGTC	ATCACTATTG	GATGCACTGG	ATGACCGGCC	TGATTCAGCA	GGACCAATGG	540
AACTGCCCGG	GGCAAAACGT	CTCGGAGATG	ATCGGCGTCC	CCTCGGAACC	CTGCGGTGCT	600
GGCGTCATTC	GGACATCGGT	CCGGCTCGCG	GGATCGTGGT	GACGCCAGCG	CTGAAGGAGT	660
GGAGCGCGGC	GGTGCACGCG	CTGCTGGACG	GCCGGCAGAC	GGTGCTGCTG	CGTAAGGGCG	720
GGATCGGCGA	GAAGCGCTTC	GAGGTGGCGG	CCCACGAGTT	CTTGTTGTTC	CCGACGGTCG	780
CGCACAGCCA	CGCCGAGCGG	GTTCGCCCCG	AGCACCGCGA	CCTGCTGGGC	CCGGCGGCCG	840

CCGACAGCAC	CGACGAGTGT	GTGCTACTGC	GGGCCGCAGC	GAAAGTTGTT	GCCGCACTGC	900
CGGTTAACCG	GCCAGAGGGT	CTGGACGCCA	TCGAGGATCT	GCACATCTGG	ACCGCCGAGT	960
CGGTGCGCGC	CGACCGGCTC	GACTTTCGGC	CCAAGCACAA	ACTGGCCGTC	TTGGTGGTCT	1020
CGGCGATCCC	GCTGGCCGAG	CCGGTCCGGC	TGGCGCGTAG	GCCCGAGTAC	GGCGGTTGCA	1080
CCAGCTGGGT	GCAGCTGCCG	GTGACGCCGA	CGTTGGCGGC	GCCGGTGCAC	GACGAGGCCG	1140
CGCTGGCCGA	GGTCGCCGCC	CGGGTCCGCG	AGGCCGTGGG	TTGACTGGGC	GGCATCGCTT	1200
GGGTCTGAGC	TGTACGCCCA	GTCGGCGCTG	CGAGTGATCT	GCTGTCGGTT	CGGTCCCTGC	1260
TGGCGTCAAT	TGACGGCGCG	GGCAACAGCA	GCATTGGCGG	CGCCATCCTC	CGCGCGGCCG	1320
GCGCCCACCG	CTACAACC					1338

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 321 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

CCGGCGGCAC	CGGCGGCACC	GGCGGTACCG	GCGGCAACGG	CGCTGACGCC	GCTGCTGTGG	60
TGGGCTTCGG	CGCGAACGGC	GACCCTGGCT	TCGCTGGCGG	CAAAGGCGGT	AACGGCGGAA	120
TAGGTGGGGC	CGCGGTGACA	GGCGGGGTCG	CCGGCGACGG	CGGCACCGGC	GGCAAAGGTG	180
GCACCGGCGG	TGCCGGCGGC	GCCGGCAACG	ACGCCGGCAG	CACCGGCAAT	CCCGGCGGTA	240
AGGGCGGCGA	CGGCGGGATC	GGCGGTGCCG	GCGGGGCCGG	CGGCGCGGCC	GGCACCGGCA	300
ACGGCGGCCA	TGCCGGCAAC	С				321

(2) INFORMATION FOR SEQ ID NO:155:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 492 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

GAAGACCCGG	CCCCGCCATA	TCGATCGGCT	CGCCGACTAC	TTTCGCCGAA	CGTGCACGCG	60
GCGGCGTCGG	GCTGATCATC	ACCGGTGGCT	ACGCGCCCAA	CCGCACCGGA	TGGCTGCTGC	120
CGTTCGCCTC	CGAACTCGTC	ACTTCGGCGC	AAGCCCGACG	GCACCGCCGA	ATCACCAGGG	180
CGGTCCACGA	TTCGGGTGCA	AAGATCCTGC	TGCAAATCCT	GCACGCCGGA	CGCTACGCCT	240
ACCACCCACT	TGCGGTCAGC	GCCTCGCCGA	TCAAGGCGCC	GATCACCCCG	TTTCGTCCGC	300
GAGCACTATC	GGCTCGCGGG	GTCGAAGCGA	CCATCGCGGA	TTTCGCCCGC	TGCGCGCAGT	360
TGGCCCGCGA	TGCCGGCTAC	GACGGCGTCG	AAATCATGGG	CAGCGAAGGG	TATCTGCTCA	420
ATCAGTTCCT	GGCGCCGCGC	ACCAACAAGC	GCACCGACTC	GTGGGGCGGC	ACACCGGCCA	480
ACCGTCGCCG	GT					492

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

Phe Ala Gln His Leu Val Glu Gly Asp Ala Val Glu Leu Trp Arg Ala 1 5 10 15

Asn Ala Ala Asp Gln Ala Asp Pro Leu Gln Pro Gly Ser Ala Arg Arg 20 25 30

Gln Arg Ala Ser Arg Ser Pro Arg Arg Leu Ala Gly Pro Asn Ala Tyr 35 40 45

His Tyr Ser Asn Asn Arg Ser Ile Leu Cys Gln Arg Trp Pro Leu Pro 50 55 60

Ser Ala Ala Gln Asp Val Ile Cys His Leu Cys Pro His Arg Gln Glu 65 70 75 80

Pro Gly Leu Met Thr Ala Phe Gly Val Glu Pro Tyr Gly Gln Pro Lys 85 90 95

Tyr Leu Glu Ile Ala Gly Lys Arg Met Ala Tyr Ile Asp Glu Gly Lys

			100					105					110		
Gly	Asp	Ala 115	Ile	Val	Phe	Gln	His 120	Gly	Asn	Pro	Thr	Ser 125	Ser	Tyr	Le
Trp	Arg 130	Asn	Ile	Met	Pro	His 135	Leu	Glu	Gly	Leu	Gly 140	Arg	Leu	Val	Alá
Cys 145	Asp	Leu	Ile	Gly	Met 150	Gly	Ala	Ser	Asp	Lys 155	Leu	Ser	Pro	Ser	Gl ₅
Pro	Asp	Arg	Tyr	Ser 165	Tyr	Gly	Glu	Gln	Arg 170	Asp	Phe	Leu	Phe	Ala 175	Let
Trp	Asp	Ala	Leu 180	Asp	Leu	Gly	Asp	His 185	Val	Val	Leu	Val	Leu 190	His	Asp
Trp	Gly	Ser 195	Ala	Leu	Gly	Phe	Asp 200	Trp	Ala	Asn	Gln	His 205	Arg	Asp	Arq
Val	Gln 210	Gly	Ile	Ala	Phe	Met 215	Glu	Ala	Ile	Val	Thr 220	Pro	Met	Thr	Trp
Ala 225	Asp	Trp	Pro	Pro	Ala 230	Val	Arg	Gly	Val	Phe 235	Gln	Gly	Phe	Arg	Ser 240
Pro	Gln	Gly	Glu	Pro 245	Met	Ala	Leu	Glu	His 250	Asn	Ile	Phe	Val	Glu 255	Arç
Val	Leu	Pro	Gly 260	Ala	Ile	Leu	Arg	Gln 265	Leu	Ser	Asp	Glu	Glu 270	Met	Asr
His	Tyr	Arg 275	Arg	Pro	Phe	Val	Asn 280	Gly	Gly	Glu	Asp	Arg 285	Arg	Pro	Thi
Leu	Ser 290	Trp	Pro	Arg	Asn	Leu 295	Pro	Ile	Asp	Gly	Glu 300	Pro	Ala	Glu	Val
Val 305	Ala	Leu	Val	Asn	Glu 310	Tyr	Arg	Ser	Trp	Leu 315	Glu	Glu	Thr	Asp	Met 320
Pro	Lys	Leu	Phe	Ile 325	Asn	Ala	Glu	Pro	Gly 330	Ala	Ile	Ile	Thr	Gly 335	Arç
Ile	Arg	Asp	Tyr 340	Val	Arg	Ser	Trp	Pro 345	Asn	Gln	Thr	Glu	Ile 350	Thr	Va]
Pro	Gly	Val 355	His	Phe	Val	Gln	G1u 360	Asp	Ser	Asp	Gly	Val 365	Val	Ser	Trp
Ala	Gly 370	Ala	Arg	Gln	His	Arg 375	Arg	Pro	Gly	Ser	Ala 380	Leu	Ile	Ser	Arç
Asp 385	Gln	Glu	Cys	Asp	Phe 390	Arg	Arg	Arg	Arg	Arg 395	Pro	Ala	Cys	Gln	Let 400

- Ile Arg Leu Pro Ala Pro Gly Arg Asp Ser Gln Gly Lys Gly His Gln 405 410 415
- Ser Gln Pro Leu Pro Ser Gln Arg Gly Arg Gln Ile Tyr Val Ala Gly 420 425 430
- Gln Arg Ser Ser Tyr Leu Pro Ser Glu Leu Val Ala Ala Phe Leu Trp 435 440 445
- Ala Gln Phe Glu Glu Ala Glu Arg Ile Thr Arg Ile Arg Leu Asp Leu 450 455 460
- Trp Asn Arg Tyr His Glu Ser Phe Glu Ser Leu Glu Gln Arg Gly Leu 465 470 475 480
- Leu Arg Arg Pro Ile Ile Pro Gln Gly Cys Ser His Asn Ala His Met 485 490 495
- Tyr Tyr Val Leu Leu Ala Pro Ser Ala Asp Arg Glu Glu Val Leu Ala 500 505 510
- Arg Leu Thr Ser Glu Gly Ile Gly Ala Val Phe His Tyr Val Pro Leu 515 520 525
- His Asp Ser Pro Ala Gly Arg Arg 530 535

(2) INFORMATION FOR SEQ ID NO:157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:
- Asn Glu Ser Ala Pro Arg Ser Pro Met Leu Pro Ser Ala Arg Pro Arg 1 5 10 15
- Tyr Asp Ala Ile Ala Val Leu Leu Asn Glu Met His Ala Gly His Cys 20 25 30
- Asp Phe Gly Leu Val Gly Pro Ala Pro Asp Ile Val Thr Asp Ala Ala
- Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Phe Arg His Val
- Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu

176

65					70					75					80
Gly	Gly	Leu	Thr	Val 85	Asp	Trp	Lys	Val	Ser 90	Trp	Pro	Arg	Gln	Arg 95	Gly
Ala	Thr	Val	Leu 100	Ala	Ala	Val	His	Glu 105	Trp	Pro	Pro	lle	Val 110	Val	His
Phe	Leu	Val 115	Ala	Glu	Leu	Ser	Gln 120	Asp	Arg	Pro	Gly	Gln 125	His	Pro	Phe
Asp	Lys 130	Asp	Val	Val	Leu	Gln 135	Arg	His	Trp	Leu	Ala 140	Leu	Arg	Arg	Ser
Glu 145	Thr	Leu	Glu	His	Thr 150	Pro	His	Gly	Arg	Arg 155	Pro	Val	Arg	Pro	Arg 160
His	Arg	Gly	Asp	Asp 165	Arg	Phe	His	Glu	Arg 170	Asp	Pro	Leu	His	Ser 175	Val
Ala	Met	Leu	Val 180	Ser	Pro	Val	Glu	Ala 185	Glu	Arg	Arg	Ala	Pro 190	Val	Val
Gln	His	Gln 195	Tyr	His	Val	Val	Ala 200	Glu	Val	Glu	Arg	Ile 205	Pro	Glu	Arg
Glu	Gln 210	Lys	Val	Ser	Leu	Leu 215	Ala	Ile	Ala	Ile	Ala 220	Val	Gly	Ser	Arg
Trp 225	Ala	Glu	Leu	Val	Arg 230	Arg	Ala	His	Pro	Asp 235	Gln	Ile	Ala	Gly	His 240
Gln	Pro	Ala	Gln	Pro 245	Phe	Gln	Val	Arg	His 250	Asp	Val	Ala	Pro	Gln 255	Val
Arg	Arg	Arg	Gly 260	Val	Ala	Val	Leu	Lys 265	Asp	Asp	Gly	Val	Thr 270	Leu	Ala
Phe	Val	Asp 275	Ile	Arg	His		Leu 280	Pro	Gly	Asp	Phe				

(2) INFORMATION FOR SEQ ID NO:158:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 264 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

177

ATGAACATGT	CGTCGGTGGT	GGGTCGCAAG	GCCTTTGCGC	GATTCGCCGG	CTACTCCTCC	60
GCCATGCACG	CGATCGCCGG	TTTCTCCGAT	GCGTTGCGCC	AAGAGCTGCG	GGGTAGCGGA	120
ATCGCCGTCT	CGGTGATCCA	CCCGGCGCTG	ACCCAGACAC	CGCTGTTGGC	CAACGTCGAC	180
CCCGCCGACA	TGCCGCCGCC	GTTTCGCAGC	CTCACGCCCA	TTCCCGTTCA	CTGGGTCGCG	240
GCAGCGGTGC	TTGACGGTGT	GGCG				264

(2) INFORMATION FOR SEQ ID NO:159:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

TAGTCGGCGA CGATGACGTC GCGGTCCAGG CCGACCGCTT CAAGCACCAG CGCGACCACG 60 AAGCCGGTGC GATCCTTACC CGCGAAGCAG TGGGTGAGCA CCGGGCGTCC GGCGGCAAGC 120 AGTGTGACGA CACGATGTAG CGCGCGCTGT GCTCCATTGC GCGTTGGGAA TTGGCGATAC 180 TCGTCGGTCA TGTAGCGGGT GGCCGCGTCA TTTATCGACT GGCTGGATTC GCCGGACTCG 240 CCGTTGGACC CGTCATTGGT TAGCAGCCTC TTGAATGCGG TTTCGTGCGG CGCTGAGTCG 300 TCGGCGTCAT CATCGGCGAG GTCGGGGAAC GGCAGCAGGT GGACGTCGAT GCCGTCCGGA 360 ACCCGTCCTG GACCGCGGCG GGCAACCTCC CGGGACGACC GCAGGTCGGC AACGTCGGTG 420 ATCCCAGCC GGCGCAGCGT TGCCCCTCGT GCCGAATTCG GCACGAGGCT GGCGAGCCAC 480 CGGGCATCAC CAAGCAACGC TTGCCCAGTA CGGATCGTCA CTTCCGCATC CGGCAGACCA 540 ATCTCCTCGC CGCCCATCGT CAGATCCCGC TCGTGCGTTG ACAAGAACGG CCGCAGATGT 600 GCCAGCGGGT ATCGGAGATT GAACCGCGCA CGCAGTTCTT CAATCGCTGC GCGCTGCCGC 660 ACTATTGGCA CTTTCCGGCG GTCGCGGTAT TCAGCAAGCA TGCGAGTCTC GACGAACTCG 720 CCCACGTAA CCCACGGCGT AGCTCCCGGC GTGACGCGGA GGATCGGCGG GTGATCTTTG 780 CCGCCACGCT CGTAGCCGTT GATCCACCGC TTCGCGGTGC CGGCGGGGAG GCCGATCAGC 840 TTATCGACCT CGGCGTATGC CGACGGCAAG CTGGGCGCGT TCGTCGAGGT CAAGAACTCC 900 ACCATCGGCA CCGGCACCAA GGTGCCGCAC CTGACCTACG TCGGCGACGC CGACATCGGC 960

178

GAGTACAGCA	ACATCGGCGC	CTCCAGCGTG	TTCGTCAACT	ACGACGGTAC	GTCCAAACGG	1020
CGCACCACCG	TCGGTTCGCA	CGTACGGACC	GGGTCCGACA	CCATGTTCGT	GGCCCCAGTA	1080
ACCATCGGCG	ACGGCGCGTA	TACCGGGGCC	GGCACAGTGG	TGCGGGAGGA	TGTCCCGCCG	1140
GGGGCGCTGG	CAGTGTCGGC	GGGTCCGCAA	С			1171

(2) INFORMATION FOR SEQ ID NO:160:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 227 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG 60

ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGGCAACGC CGGCGCCGGC GGCACCAGCT 120

TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGCAACG 180

GCGGAAACGG CGGAAACGC GCAGACAACA CCACCACCGC CGCCGCC 227

(2) INFORMATION FOR SEQ ID NO:161:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 304 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

CCTCGCCACC ATGGGCGGC AGGGCGGTAG CGGTGGCGCC GGCTCTACCC CAGGCGCCAA 60

GGGCGCCCAC GGCTTCACTC CAACCAGCGG CGGCGACGGC GGCGACGGCG GCAACGGCGG 120

CAACTCCCAA GTGGTCGGCG GCAACGGCGG CGACGGCGC AATGGCGGCA ACGGCGGCAG 180

CGCCGGCACG GGCGCAACG GCGGCCGCG CGGCGACGGC GCGTTTGGTG GCATGAGTGC 240

CAACGCCACC AACCCTGGTG AAAACGGGCC AAACGGTAAC CCCGGCGGCA ACGGTGGCGC 300

179

CGGC 304

(2) INFORMATION FOR SEQ ID NO:162:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1439 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

GTGGGACGCT GCCGAGGCTG	TATAACAAGG	ACAACATCGA	CCAGCGCCGG	CTCGGTGAGC	60
TGATCGACCT ATTTAACAGT	GCGCGCTTCA	GCCGGCAGGG	CGAGCACCGC	GCCCGGGATC	120
TGATGGGTGA GGTCTACGAA	TACTTCCTCG	GCAATTTCGC	TCGCGCGGAA	GGGAAGCGGG	180
GTGGCGAGTT CTTTACCCCG	CCCAGCGTGG	TCAAGGTGAT	CGTGGAGGTG	CTGGAGCCGT	240
CGAGTGGGCG GGTGTATGAC	CCGTGCTGCG	GTTCCGGAGG	CATGTTTGTG	CAGACCGAGA	300
AGTTCATCTA CGAACACGAC	GGCGATCCGA	AGGATGTCTC	GATCTATGGC	CAGGAAAGCA	360
TTGAGGAGAC CTGGCGGATG	GCGAAGATGA	ACCTCGCCAT	CCACGGCATC	GACAACAAGG	420
GGCTCGGCGC CCGATGGAGT	GATACCTTCG	CCCGCGACCA	GCACCCGGAC	GTGCAGATGG	480
ACTACGTGAT GGCCAATCCG	CCGTTCAACA	TCAAAGACTG	GGCCCGCAAC	GAGGAAGACC	540
CACGCTGGCG CTTCGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAGCACA	600
TCCTGTACAA CTTGGCGCCG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
CGTCGAACTC CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	CGTGGAGGCG	GATTTGGTTT	720
CCTGCATGGT CGCGTTACCC	ACCCAGCTGT	TCCGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GGTTTTTCGC CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCGG	TGCGGGCAGG	840
TGCTGTTCAT CGACGCTCGT	GAACTGGGCG	ACCTAGTGGA	CCGGGCCGAG	CGGCCGCTGA	900
CCAACGAGGA GATCGTCCGC	ATCGGGGATA	CCTTCCACGC	GAGCACGACC	ACCGGCAACG	960
CCGGCTCCGG TGGTGCCGGC	GGTAATGGGG	GCACTGGCCT	CAACGGCGCG	GGCGGTGCTG	1020
GCGGGGCCGG CGGCAACGCG	GGTGTCGCCG	GCGTGTCCTT	CGGCAACGCT	GTGGGCGGCG	1080
ACGGCGGCAA CGGCGGCAAC	GGCGGCCACG	GCGGCGACGG	CACGACGGGC	GGCGCCGGCG	1140
GCAAGGGCGG CAACGGCAGC	AGCGGTGCCG	CCAGCGGCTC	AGGCGTCGTC	AACGTCACCG	1200

CCGGCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACGGCTCC	GCGGGCGCCG	1260	
GCGGCCAGGG	CGGTGCCGGC	GGCAGCGCCG	GCAACGGCGG	CCACGGCGGC	GGTGCCACCG	1320	
GCGGCGCCAG	CGGCAAGGGC	GGCAACGGCA	CCAGCGGTGC	CGCCAGCGGC	TCAGGCGTCA	1380	
TCAACGTCAC	CGCCGGCCAC	GGCGGCAACG	GCGGCAATGG	CCGCAACGGC	GGCAACGGC	1439	
(2) INFORMATION FOR SEC ID NO.163:							

(2) INFORMATION FOR SEQ ID NO:163:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 329 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

GGGCCGGCGG	GGCCGGATTT	TCTCGTGCCT	TGATTGTCGC	TGGGGATAAC	GGCGGTGATG	60
GTGGTAACGG	CGGGATGGGC	GGGGCTGGCG	GGGCTGGCGG	CCCCGGCGGG	GCCGGCGGCC	120
TGATCAGCCT	GCTGGGCGGC	CAAGGCGCCG	GCGGGGCCGG	CGGGACCGGC	GGGGCCGGCG	180
GTGTTGGCGG	TGACGGCGGG	GCCGGCGGCC	CCGGCAACCA	GGCCTTCAAC	GCAGGTGCCG	240
GCGGGGCCGG	CGGCCTGATC	AGCCTGCTGG	GCGGCCAAGG	CGCCGGCGGG	GCCGGCGGGA	300
CCGGCGGGGC	CGGCGGTGTT	GGCGGTGAC				329

(2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

GCAACGGTGG	CAACGGCGGC	ACCAGCACGA	CCGTGGGGAT	GGCCGGAGGT	AACTGTGGTG	60
CCGCCGGGCT	GATCGGCAAC					80

(2) INFORMATION FOR SEQ ID NO:165:

PCT/US97/18214

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 392 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

GGGCTGTGTC	GCACTCACAC	CGCCGCATTC	GGCGACGTTG	GCCGCCCAAT	ATCCAGCTCA	60
AGGCCTACTA	CTTACCGTCG	GAGGACCGCC	GCATCAAGGT	GCGGGTCAGC	GCCCAAGGAA	120
TCAAGGTCAT	CGACCGCGAC	GGGCATCGAG	GCCGTCGTCG	CGCGGCTCGG	GCAGGATCCG	180
CCCCGGCGCA	CTTCGCGCGC	CAAGCGGGCT	CATCGCTCCG	AACGGCGGCG	ATCCTGTGAG	240
CACAACTGAT	GGCGCGCAAC	GAGATTCGTC	CAATTGTCAA	GCCGTGTTCG	ACCGCAGGGA	300
CCGGTTATAC	GTATGTCAAC	CTATGTCACT	CGCAAGAACC	GGCATAACGA	TCCCGTGATC	360
CGCCGACAGC	CCACGAGTGC	AAGACCGTTA	CA			392

(2) INFORMATION FOR SEQ ID NO:166:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 535 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

60	CGGGCAGGGC	GCGGGGCCGG	GGTGGCGCCG	CGGGTTCGCC	CCGGCGGCAC	ACCGGCGCCA
120	CGGCGGACAA	CTGGCGGCAC	TCTGGTGGCG	CACCAACGGC	GTGCCGGCGG	GGTATCAGCG
180	CGGCGGCGCC	CCACCGGCAT	GCCGATAACC	CGGGGCCGGC	GGGGCGCTGG	GGCGGCGCCG
240	CGCCATCGGT	GGGCCGGTGG	GGAGCCGGCG	CGGAGCGGCC	GCGGCACCGG	GGCGGCACCG
300	CGGTACCGGC	CCGGGATCGG	GTCGGTAACG	GGTGGGCAGC	CCGGCGGCGC	ACCGGCGGCA
360	TGGCAGCAGC	CTGCGGCCGC	GCAGGTGCGG	TGCTGGTGGT	GTGTCGGTGG	GGTACGGGTG
420	GGGCGGCAAC	AAGGCGGACC	GCCGGCGGAG	CGCCGGCGGC	GCGCCGGGTT	GCTACCGGTG
480	CAAGGGCGGC	GTGCAGGCGG	GGCGCCGGCG	CGGCTCCGGC	GCGGCACCAA	AGCGGTGTGG

690

ACCGGAGGTG CCGGCGGGTC CGGCGCGGAC AACCCCACCG GTGCTGGTTT CGCCG	535
(2) INFORMATION FOR SEQ ID NO:167: (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 690 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:	

CCGACGTCGC CGGGGCGATA CGGGGGTCAC CGACTACTAC ATCATCCGCA CCGAGAATCG 60 GCCGCTGCTG CAACCGCTGC GGGCGGTGCC GGTCATCGGA GATCCGCTGG CCGACCTGAT 120 CCAGCCGAAC CTGAAGGTGA TCGTCAACCT GGGCTACGGC GACCCGAACT ACGGCTACTC 180 GACGAGCTAC GCCGATGTGC GAACGCCGTT CGGGCTGTGG CCGAACGTGC CGCCTCAGGT 240 CATCGCCGAT GCCCTGGCCG CCGGAACACA AGAAGGCATC CTTGACTTCA CGGCCGACCT 300 GCAGGCGCTG TCCGCGCAAC CGCTCACGCT CCCGCAGATC CAGCTGCCGC AACCCGCCGA 360 TCTGGTGGCC GCGGTGGCCG CCGCACCGAC GCCGCCGAG GTGGTGAACA CGCTCGCCAG 420 GATCATCTCA ACCAACTACG CCGTCCTGCT GCCCACCGTG GACATCGCCC TCGCCTGGTC 480 ACCACCTGC CGCTGTACAC CACCCAACTG TTCGTCAGGC AACTCGCTGC GGGCAATCTG 540 ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCGTAGGTT TAGGCACGAT CGATAGCGGG 600 CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG 660

(2) INFORMATION FOR SEQ ID NO:168:

CCTCGTCACC TAACGGATTC CCGACGGCAT

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 407 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

ACGGTGACGG	CGGTACTGGC	GGCGGCCACG	GCGGCAACGG	CGGGAATCCC	GGGTGGCTCT	60
TGGGCACAGC	CGGGGGTGGC	GGCAACGGTG	GCGCCGGCAG	CACCGGTACT	GCAGGTGGCG	120
GCTCTGGGGG	CACCGGCGGC	GACGGCGGGA	CCGGCGGGCG	TGGCGGCCTG	TTAATGGGCG	180
CCGGCGCCGG	CGGGCACGGT	GGCACTGGCG	GCGCGGGCGG	TGCCGGTGTC	GACGGTGGCG	240
GCGCCGGCGG	GGCCGGCGGG	GCCGGCGGCA	ACGGCGGCGC	CGGGGGTCAA	GCCGCCCTGC	300
TGTTCGGGCG	CGGCGGCACC	GGCGGAGCCG	GCGGCTACGG	CGGCGATGGC	GGTGGCGGCG	360
GTGACGGCTT	CGACGGCACG	ATGGCCGGCC	TGGGTGGTAC	CGGTGGC		407

(2) INFORMATION FOR SEQ ID NO:169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 468 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

GATCGGTCAG	CGCATCGCCC	TCGGCGGCAA	GCGATTCCGC	GGTCTCACCG	AAGAACATCG	60
TGCACGCGGC	GGCGCGGACC	AGCCCGCTGC	GCTGCGGCGC	GTCGAACGCC	TCCAGCAGGC	120
ACAGCCAGTC	CTTGGCGGCC	TGCGAGGCGA	ACACGTCGGT	GTCACCGGTG	TAGATCGCCG	180
GGATGCCCGC	CTCCGCCAAC	GCATTCCGGC	ACGCCCGCGC	GTCTTTGTGA	TGCTCGACGA	240
TCACCGCGAT	GTCTGCGGCC	ACCACGGGCC	GCCCGGCGAA	GGTGGCCCCG	CTGGCCAGTA	300
GCGCCGCGAC	GTCGGCGGCC	AGGTCGTCGG	GGATGTGCCG	GCGCAGCGCT	CCGGCGCGAC	360
GCCCGAAAAA	CGACCCCTCA	CCCAGCTGGG	TCCCGCTGGC	ATATCCCTTG	CCGTCCTGGG	420
CGATATTGGA	CGCGCATGCC	CCGACCGCGT	ACAGGCCGGC	CACCACCG		468

(2) INFORMATION FOR SEQ ID NO:170:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 219 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GGTGGTAACG GCGGCCAGGG TGGCATCGGC GGCGCCGGCG AGAGAGGCGC CGACGGCGCC	60
GGCCCCAATG CTAACGGCGC AAACGGCGAG AACGGCGGTA GCGGTGGTAA CGGTGGCGAC	120
GGCGGCGCCG GCGGCAATGG CGGCGCGGGC GGCAACGCGC AGGCGGCCGG GTACACCGAC	180
GGCGCCACGG GCACCGGCGG CGACGGCGGC AACGGCGGC	219
(2) INFORMATION FOR SEQ ID NO:171:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 494 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171: TAGCTCCGGC GAGGGCGGCA AGGGCGGCGA CGGTGGCCAC GGCGGTGACG GCGTCGGCGG 60 CAACAGTTCC GTCACCCAAG GCGGCAGCGG CGGTGGCGGC GGCGCCGGCGG 120 CAGCGGCTTT TTCGGCGGCA AGGGCGGCTT CGGCGGCGAC GGCGGTCAGG GCGGCCCCAA 180 CGGCGGCGGT ACCGTCGGCA CCGTGGCCGG TGGCGGCGGC AACGGCGGTG TCGGCGGCCG 240 GGGCGGCGAC GGCGTCTTTG CCGGTGCCGG CGGCCAGGGC GGCCTCGGTG GGCAGGGCGG 300 CAATGGCGGC GGCTCCACCG GCGGCAACGG CGGCCTTGGC GGCGCGGGCG GTGGCGGAGG 360 CAACGCCCCG GCTCGTGCCG AATCCGGGCT GACCATGGAC AGCGCGGCCA AGTTCGCTGC 420 CATCGCATCA GGCGCGTACT GCCCCGAACA CCTGGAACAT CACCCGAGTT AGCGGGGCGC ATTTCCTGAT CACC 494

(2) INFORMATION FOR SEQ ID NO:172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

185	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220
(2) INFORMATION FOR SEQ ID NO:173:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 388 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
MUCCCCCUTA OCCCCCCCC CCCCCCCCCCC CCCCCCCC CCACTACAAA MICCAACCA	CO

ATGGCGGCAA	CGGGGGCCCC	GGCGGTGCTG	GCGGGGCCGG	CGACTACAAT	TTCCAACGGC	60
GGGCAGGGTG	GTGCCGGCGG	CCAAGGCGGC	CAAGGCGGCC	TGGGCGGGGC	AAGCACCACC	120
TGATCGGCCT	AGCCGCACCC	GGGAAAGCCG	ATCCAACAGG	CGACGATGCC	GCCTTCCTTG	180
CCGCGTTGGA	CCAGGCCGGC	ATCACCTACG	CTGACCCAGG	CCACGCCATA	ACGGCCGCCA	240
AGGCGATGTG	TGGGCTGTGT	GCTAACGGCG	TAACAGGTCT	ACAGCTGGTC	GCGGACCTGC	300
GGGACTACAA	TCCCGGGCTG	ACCATGGACA	GCGCGGCCAA	GTTCGCTGCC	ATCGCATCAG	360
GCGCGTACTG	CCCCGAACAC	CTGGAACA				388

(2) INFORMATION FOR SEQ ID NO:174:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 400 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG 60
ACGGCGGCCA AGGCGGCACC GGCGCACCG GCGCAACGC CGGCGCCGGC GGCACCAGCT 120

TCACCCAAGG	CGCCGACGGC	AACGCCGGCA	ACGGCGGTGA	CGGCGGGGTC	GGCGGCAACG	180
GCGGAAACGG	CGGAAACGGC	GCAGACAACA	CCACCACCGC	CGCCGCCGGC	ACCACAGGCG	240
GCGACGGCGG	GGCCGGCGGG	GCCGGCGGAA	CCGGCGGAAC	CGGCGGAGCC	GCCGGCACCG	300
GCACCGGCGG	CCAACAAGGC	AACGGCGGCA	ACGGCGGCAC	CGGCGGCAAA	GGCGGCACCG	360
GCGGCGACGG	TGCACTCTCA	GGCAGCACCG	GTGG T GCCGG			400

(2) INFORMATION FOR SEQ ID NO:175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GGCAACGGCG	GCAACGGCGG	CATCGCCGGC	ATTGGGCGGC	AACGGCGTTC	CGGGACGGGC	60
AGCGGCAACG	GCGGCCAACG	GCGGCAGCGG	CGGCAACGGC	GGCAACGCCG	GCATGGGCGG	120
CAACAGCGGC	ACCGGCAGCG	GCGACGGCGG	TGCCGGCGGG	AACGGCGGCG	CGGCGGGCAC	180
GGGCGGCACC	GGCGGCGACG	GCGGCCTCAC	CGGTACTGGC	GGCACCGGCG	GCAGCGGTGG	240
CACCGGCGGT	GACGGCGGTA	ACGGCGGCAA	CGGAGCAGAT	AACACCGCAA	ACATGACTGC	300
GCAGGCGGGC	GGTGACGGTG	GCAACGGCGG	CGACGGTGGC	TTCGGCGGCG	GGGCCGGGGC	360
CGGCGGCGGT	GGCTTGACCG	CTGGCGCCAA	CGGCACCGGC	GGGCAAGGCG	GCGCCGGCGG	420
CGATGGCGGC	AACGGGGCCA	TCGGCGGCCA	CGGCCCACTC	ACTGACGACC	CCGGCGGCAA	480
CGGGGGCACC	GGCGGCAACG	GCGGCACCGG	CGGCACCGGC	GGCGCGGCA	TCGGCAGC	538

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 239 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

187

(xi) SEQUE	NCE DESCRIPTION	: SEQ ID	NO:176:
------------	-----------------	----------	---------

GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGT GCCGTTGGGG 60

TTGGCGGCAC CGGCGGCCAG GGTGGGGCT GCGGTGCCGG AGCGGCCGC GCCGACGCCC 120

CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG 180

GCCACGGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC CGGTGGTGCC GGCGCACC 239

(2) INFORMATION FOR SEQ ID NO:177:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 985 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

AGCAGCGCTA CCGGTGGCGC CGGGTTCGCC GGCGGCGCCG GCGGAGAAGG CGGAGCGGGC 60 GGCAACAGCG GTGTGGGCGG CACCAACGGC TCCGGCGGCG CCGGCGGTGC AGGCGGCAAG 120 GGCGGCACCG GAGGTGCCGG CGGGTCCGGC GCGGACAACC CCACCGGTGC TGGTTTCGCC 180 GGTGGCGCCG GCGCCACAGG TGGCGCGGCC GGCGCCGGCG GGCGACCGGT 240 ACCGGCGGCA CCGGCGGCGT TGTCGGCGCC ACCGGTAGTG CAGGCATCGG CGGGGCCGGC 300 GGCCGCGCG GTGACGCCG CGATGGGCCC AGCGGTCTCG GCCTGGGCCT CTCCGGCTTT 360 GACGGCGGCC AAGGCGGCCA AGGCGGGGCC GGCGCAGCG CCGGCGCCGG CGGCATCAAC 420 GGGGCCGGCG GGGCCGCGG CAACGGCGGC GACGGCGGGG ACGGCGCAAC CGGTGCCGCA GGTCTCGGCG ACAACGGCGG GGTCGGCGGT GACGGTGGGG CCGGTGGCGC CGCCGGCAAC 540 GGCGGCAACG CGGGCGTCGG CCTGACAGCC AAGGCCGGCG ACGGCGGCGC CGCGGGCAAT 600 GGCGGCAACG GGGGCGCCGG CGGTGCTGGC GGGGCCGGCG ACAACAATTT CAACGGCGGC 660 CAGGGTGGTG CCGGCGGCCA AGGCGGCCAA GGCGGCTTGG GCGGGGCAAG CACCACCTGA 720 TCGGCCTAGC CGCACCCGGG AAAGCCGATC CAACAGGCGA CGATGCCGCC TTCCTTGCCG 780 CGTTGGACCA GGCCGGCATC ACCTACGCTG ACCCAGGCCA CGCCATAACG GCCGCCAAGG 840 CGATGTGTGG GCTGTGTGCT AACGGCGTAA CAGGTCTACA GCTGGTCGCG GACCTGCGGG 900 AATACAATCC CGGGCTGACC ATGGACAGCG CGGCCAAGTT CGCTGCCATC GCATCAGGCG 960

188

CGTACTGCCC CGAACACCTG GAACA

985

(2) INFORMATION FOR SEQ ID NO:178:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2138 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

CGGCACGAGG	ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
CGAGGAAAGC	CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
AGCACTAAGG	AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240
AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
CCATCACACC	GTGCGAACTC	ACGGCGGCTA	AAAACGCCGC	CCAACAGCTG	GTATTGTCCG	360
CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GCGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTTTG	660
CGGATGGGTG	GAACACTTTC	AACCTGACGC	TGCAAGGCGA	CGTCAAGCGG	TTCCGGGGGT	720
TTGACAACTG	GGAAGGCGAT	GCGGCTACCG	CTTGCGAGGC	TTCGCTCGAT	CAACAACGGC	780
AATGGATACT	CCACATGGCC	AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATGTCG	840
CGCAGCTGCA	CGTGTGGGCT	AGGCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGCTCG	900
AACGGCTTTA	CGCGGAAAAC	CCTTCGGCCC	GCGACCAAAT	TCTCCCGGTG	TACGCGGAGT	960
ATCAGCAGAG	GTCGGAGAAG	GTGCTGACCG	AATACAACAA	CAAGGCAGCC	CTGGAACCGG	1020
TAAACCCGCC	GAAGCCTCCC	CCCGCCATCA	AGATCGACCC	GCCCCGCCT	CCGCAAGAGC	1080
AGGGATTGAT	CCCTGGCTTC	CTGATGCCGC	CGTCTGACGG	CTCCGGTGTG	ACTCCCGGTA	1140

CCGGGATGCC	AGCCGCACCG	ATGGTTCCGC	CTACCGGATC	GCCGGGTGGT	GGCCTCCCGG	1200
CTGACACGGC	GGCGCAGCTG	ACGTCGGCTG	GGCGGGAAGC	CGCAGCGCTG	TCGGGCGACG	1260
IGGCGGTCAA	AGCGGCATCG	CTCGGTGGCG	GTGGAGGCGG	CGGGGTGCCG	TCGGCGCCGT	1320
IGGGATCCGC	GATCGGGGGC	GCCGAATCGG	TGCGGCCCGC	TGGCGCTGGT	GACATTGCCG	1380
GCTTAGGCCA	GGGAAGGGCC	GGCGGCGGCG	CCGCGCTGGG	CGGCGGTGGC	ATGGGAATGC	1440
CGATGGGTGC	CGCGCATCAG	GGACAAGGGG	GCGCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500
ACGAGGCGCT	CTACACCGAG	GATCGGGCAT	GGACCGAGGC	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTCG	AAGTGAGCAT	GGACGAATTG	GACCCGCATG	TCGCCCGGGC	1620
GTTGACGCTG	GCGGCGCGT	TTCAGTCGGC	CCTAGACGGG	ACGCTCAATC	AGATGAACAA	1680
CGGATCCTTC	CGCGCCACCG	ACGAAGCCGA	GACCGTCGAA	GTGACGATCA	ATGGGCACCA	1740
GTGGCTCACC	GGCCTGCGCA	TCGAAGATGG	TTTGCTGAAG	AAGCTGGGTG	CCGAGGCGGT	1800
GGCTCAGCGG	GTCAACGAGG	CGCTGCACAA	TGCGCAGGCC	GCGGCGTCCG	CGTATAACGA	1860
CGCGGCGGGC	GAGCAGCTGA	CCGCTGCGTT	ATCGGCCATG	TCCCGCGCGA	TGAACGAAGG	1920
AATGGCCTAA	GCCCATTGTT	GCGGTGGTAG	CGACTACGCA	CCGAATGAGC	GCCGCAATGC	1980
GGTCATTCAG	CGCGCCCGAC	ACGGCGTGAG	TACGCATTGT	CAATGTTTTG	ACATGGATCG	2040
GCCGGGTTCG	GAGGGCGCCA	TAGTCCTGGT	CGCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GGTTCGGTTA	CGCTGGTTAA	TTATGACGTC	CGTTACCA			2138

(2) INFORMATION FOR SEQ ID NO:179:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn 1 5 10 15

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val 20 25 30

Pro Ile Thr Pro Cys Glu Leu Thr Ala Ala Lys Asn Ala Ala Gln Gln

		35					40					45			
Leu	Val 50	Leu	Ser	Ala	Asp	Asn 55	Met	Arg	Glu	Tyr	Leu 60	Ala	Ala	Gly	Ala
Lys 65	Glu	Arg	Gln	Arg	Leu 70	Ala	Thr	Ser	Leu	Arg 75	Asn	Ala	Ala	Lys	Ala 80
Tyr	Gly	Glu	Val	Asp 85	Glu	Glu	Ala	Ala	Thr 90	Ala	Leu	Asp	Asn	Asp 95	Gly
Glu	Gly	Thr	Val 100	Gln	Ala	Glu	Ser	Ala 105	Gly	Ala	Val	Gly	Gly 110	Asp	Ser
Ser	Ala	Glu 115	Leu	Thr	Asp	Thr	Pro 120	Arg	Val	Ala	Thr	Ala 125	Gly	Glu	Pro
Asn	Phe 130	Met	Asp	Leu	Lys	Glu 135	Ala	Ala	Arg	Lys	Leu 140	Glu	Thr	Gly	Asp
Gln 1 4 5	Gly	Ala	Ser	Leu	Ala 150	His	Phe	Ala	Asp	Gly 155	Trp	Asn	Thr	Phe	Asn 160
Leu	Thr	Leu	Gln	Gly 165	Asp	Val	Lys	Arg	Phe 170	Arg	Gly	Phe	Asp	Asn 175	Trp
Glu	Gly	Asp	Ala 180	Ala	Thr	Ala	Cys	Glu 185	Ala	Ser	Leu	Asp	Gln 190	Gln	Arg
Gln	Trp	Ile 195	Leu	His	Met	Ala	Lys 200	Leu	Ser	Ala	Ala	Met 205	Ala	Lys	Gln
Ala	Gln 210	Tyr	Val	Ala	Gln	Leu 215	His	Val	Trp	Ala	Arg 220	Arg	Glu	His	Pro
Thr 225	Tyr	Glu	Asp	Ile	Val 230	Gly	Leu	Glu	Arg	Leu 235	Tyr	Ala	Glu	Asn	Pro 240
Ser	Ala	Arg	Asp	Gln 245	Ile	Leu	Pro	Val	Tyr 250	Ala	Glu	Tyr	Gln	Gln 255	Arg
Ser	Glu	Lys	Val 260	Leu	Thr	Glu	Tyr	Asn 265	Asn	Lys	Ala	Ala	Leu 270	Glu	Pro
Val	Asn	Pro 275	Pro	Lys	Pro	Pro	Pro 280	Ala	Ile	Lys	Ile	Asp 285	Pro	Pro	Pro
Pro	Pro 290	Gln	Glu	Gln	Gly	Leu 295	Ile	Pro	Gly	Phe	Leu 300	Met	Pro	Pro	Ser
Asp 305	Gly	Ser	Gly	Val	Thr 310	Pro	Gly	Thr	Gly	Met 315	Pro	Ala	Ala	Pro	Met 320
Val	Pro	Pro	Thr	Gly 325	Ser	Pro	Gly	Gly	Gly 330	Leu	Pro	Ala	Asp	Thr 335	Ala

Ala Gln Leu Thr Ser Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp

Val Ala Val Lys Ala Ala Ser Leu Gly Gly Gly Gly Gly Gly Val

Pro Ser Ala Pro Leu Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg 375

Pro Ala Gly Ala Gly Asp Ile Ala Gly Leu Gly Gln Gly Arg Ala Gly 395

Gly Gly Ala Ala Leu Gly Gly Gly Met Gly Met Pro Met Gly Ala

Ala His Gln Gly Gln Gly Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu 425

Asp Glu Ala Leu Tyr Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile

Gly Asn Arg Arg Gln Asp Ser Lys Glu Ser Lys 455 450

(2) INFORMATION FOR SEQ ID NO:180:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro 5

Asp Arg Gly Ser Gln Arg Arg Arg His Pro Ala Ala Ser Thr Ala

Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly 45 40 35

Phe Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala 55

Thr Thr Arg Arg Ser Gly Arg Arg Asn His Arg Cys Gly Trp His Pro 75 70

Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala

				85					90					95	
Arg	Asp	Gln	Ser 100	Leu	Leu	Leu	Arg	Arg 105	Arg	Gly	Arg	Val	Asp 110	Leu	Asp
Gly	Gly	Gly 115	Arg	Leu	Arg	Arg	Val 120	Tyr	Arg	Phe	Gln	Gly 125	Cys	Leu	Val
Val	Val 130	Phe	Gly	Gln	His	Leu 135	Leu	Arg	Pro	Leu	Leu 140	Ile	Leu	Arg	Val
His 145	Arg	Glu	Asn	Leu	Val 150	Ala	Gly	Arg	Arg	Val 155	Phe	Arg	Val	Lys	Pro 160
Phe	Glu	Pro	qaA	Tyr 165	Val	Phe	Ile	Ser	Arg 170	Met	Phe	Pro	Pro	Ser 175	Pro
His	Val	Gln	Leu 180	Arg	Asp	Ile	Leu	Ser 185	Leu	Leu	Gly	His	Arg 190	Ser	Ala
Gln	Phe	Gly 195	His	Val	Glu	Tyr	Pro 200	Leu	Pro	Leu	Leu	Ile 205	Glu	Arg	Ser
Leu	Ala 210	Ser	Gly	Ser	Arg	Ile 215	Ala	Phe	Pro	Val	Val 220	Lys	Pro	Pro	Glu
Pro 225	Leu	Asp	Val	Ala	Leu 230	Gln	Arg	Gln	Val	Glu 235	Ser	Val	Pro	Pro	Ile 240
Arg	Lys	Val	Arg	Glu 245	Arg	Cys	Ala	Leu	Val 250	Ala	Arg	Phe	Glu	Leu 255	Pro
Cys	Arg	Phe	Phe 260	Glu	Ile	His	Glu	Val 265	Gly	Phe	Thr	Gly	Arg 270	Gly	His
Pro	Arg	Arg 275	Ile	Gly											
INFO	RMAT	ON I	FOR S	SEQ 1	D NO	0:183	L:								

- (2) IN
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:
 - Arg Val Ala Ala Ser Phe Ile Asp Trp Leu Asp Ser Pro Asp Ser Pro 10

- Leu Asp Pro Ser Leu Val Ser Ser Leu Leu Asn Ala Val Ser Cys Gly 25 20
- Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Asn Gly Ser Arg
- Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 55
- Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg 75
- Ser Val Ala Pro Arg Ala Glu Phe Gly Thr Arg Leu Ala Ser His Arg 90
- Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Ala Ser 105
- Gly Arg Pro Ile Ser Ser Pro Pro Ile Val Arg Ser Arg Ser Cys Val 120
- Asp Lys Asn Gly Arg Arg Cys Ala Ser Gly Tyr Arg Arg Leu Asn Arg 135
- Ala Arg Ser Ser Ser Ile Ala Ala Arg Cys Arg Thr Ile Gly Thr Phe 155 145
- Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro 170
- His Val Thr His Gly Val Ala Pro Gly Val Thr Arg Arg Ile Gly Gly 180
- (2) INFORMATION FOR SEQ ID NO:182:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 196 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:
 - Gln Glu Arg Pro Gln Met Cys Gln Arg Val Ser Glu Ile Glu Pro Arg 10
 - Thr Gln Phe Phe Asn Arg Cys Ala Leu Pro His Tyr Trp His Phe Pro 30 25
 - Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro

35 40 45

Arg Asn Pro Arg Arg Ser Ser Arg Arg Asp Ala Glu Asp Arg Arg Val
50 55 60

Ile Phe Ala Ala Thr Leu Val Ala Val Asp Pro Pro Leu Arg Gly Ala 65 70 75 80

Gly Gly Glu Ala Asp Gln Leu Ile Asp Leu Gly Val Cys Arg Arg Gln 85 90 95

Ala Gly Arg Val Arg Arg Gly Gln Glu Leu His His Arg His Arg His 100 105 110

Gln Gly Ala Ala Pro Asp Leu Arg Arg Arg Arg Arg His Arg Arg Val

Gln Gln His Arg Arg Leu Gln Arg Val Arg Gln Leu Arg Arg Tyr Val 130 135 140

Gln Thr Ala His His Arg Arg Phe Ala Arg Thr Asp Arg Val Arg His 145 150 155 160

His Val Arg Gly Pro Ser Asn His Arg Arg Arg Arg Val Tyr Arg Gly
165 170 175

Arg His Ser Gly Ala Gly Gly Cys Pro Ala Gly Gly Ala Gly Ser Val

Gly Gly Ser Ala 195

(2) INFORMATION FOR SEQ ID NO:183:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr

Ser Thr Asn Ala Pro Ser Leu Pro Ser Ala Tyr Ala Glu Val Asp Lys

Leu Ile Gly Leu Pro Ala Gly Thr Ala Lys Arg Trp Ile Asn Gly Tyr 35 40 45

- Glu Arg Gly Gly Lys Asp His Pro Pro Ile Leu Arg Val Thr Pro Gly
 50 55 60
- Ala Thr Pro Trp Val Thr Trp Gly Glu Phe Val Glu Thr Arg Met Leu 65 70 75 80
- Ala Glu Tyr Arg Asp Arg Arg Lys Val Pro Ile Val Arg Gln Arg Ala 85 90 95
- Ala Ile Glu Glu Leu Arg Ala Arg Phe Asn Leu Arg Tyr Pro Leu Ala 100 105 110
- His Leu Arg Pro Phe Leu Ser Thr His Glu Arg Asp Leu Thr Met Gly
 115 120 125
- Gly Glu Glu Ile Gly Leu Pro Asp Ala Glu Val Thr Ile Arg Thr Gly 130 135 140
- Gln Ala Leu Leu Gly Asp Ala Arg Trp Leu Ala Ser Leu Val Pro Asn 145 150 155 160
- Ser Ala Arg Gly Ala Thr Leu Arg Arg Leu Gly Ile Thr Asp Val Ala 165 170 175
- Asp Leu Arg Ser Ser Arg Glu Val Ala Arg Arg Gly Pro Gly Arg Val 180 185 190
- Pro Asp Gly Ile Asp Val His Leu Leu Pro Phe Pro Asp Leu Ala Asp 195 200 205
- Asp Asp Ala Asp Asp Ser Ala Pro His Glu Thr Ala Phe Lys Arg Leu 210 215 220
- Leu Thr Asn Asp Gly Ser Asn Gly Glu Ser Gly Glu Ser Ser Gln Ser 225 230 235 240
- Ile Asn Asp Ala Ala Thr Arg Tyr Met Thr Asp Glu Tyr Arg Gln Phe 245 250 255
- Pro Thr Arg Asn Gly Ala Gln Arg Ala Leu His Arg Val Val Thr Leu 260 265 270
- Leu Ala Ala Gly Arg Pro Val Leu Thr His Cys Phe Ala Gly Lys Asp 275 280 285
- Arg Thr Gly Phe Val Val Ala Leu Val Leu Glu Ala Val Gly Leu Asp 290 295 300

Arg Asp Val Ile Val Ala Asp 305 310

- (2) INFORMATION FOR SEQ ID NO:184:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2072 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

CTCGTGCCGA	TTCGGCACGA	GCTGAGCAGC	CCAAGGGGCC	GTTCGGCGAA	GTCATCGAGG	60
CATTCGCCGA	CGGGCTGGCC	GGCAAGGGTA	AGCAAATCAA	CACCACGCTG	AACAGCCTGT	120
CGCAGGCGTT	GAACGCCTTG	AATGAGGGCC	GCGGCGACTT	CTTCGCGGTG	GTACGCAGCC	180
TGGCGCTATT	CGTCAACGCG	CTACATCAGG	ACGACCAACA	GTTCGTCGCG	TTGAACAAGA	240
ACCTTGCGGA	GTTCACCGAC	AGGTTGACCC	ACTCCGATGC	GGACCTGTCG	AACGCCATCC	300
AGCAATTCGA	CAGCTTGCTC	GCCGTCGCGC	GCCCGTTCTT	CGCCAAGAAC	CGCGAGGTGC	360
TGACGCATGA	CGTCAATAAT	CTCGCGACCG	TGACCACCAC	GTTGCTGCAG	CCCGATCCGT	420
TGGATGGGTT	GGAGACCGTC	CTGCACATCT	TCCCGACGCT	GGCGGCGAAC	ATTAACCAGC	480
TTTACCATCC	GACACACGGT	GGCGTGGTGT	CGCTTTCCGC	GTTCACGAAT	TTCGCCAACC	540
CGATGGAGTT	CATCTGCAGC	TCGATTCAGG	CGGGTAGCCG	GCTCGGTTAT	CAAGAGTCGG	600
CCGAACTCTG	TGCGCAGTAT	CTGGCGCCAG	TCCTCGATGC	GATCAAGTTC	AACTACTTTC	660
CGTTCGGCCT	GAACGTGGCC	AGCACCGCCT	CGACACTGCC	TAAAGAGATC	GCGTACTCCG	720
AGCCCCGCTT	GCAGCCGCCC	AACGGGTACA	AGGACACCAC	GGTGCCCGGC	ATCTGGGTGC	780
CGGATACGCC	GTTGTCACAC	CGCAACACGC	AGCCCGGTTG	GGTGGTGGCA	CCCGGGATGC	840
AAGGGGTTCA	GGTGGGACCG	ATCACGCAGG	GTTTGCTGAC	GCCGGAGTCC	CTGGCCGAAC	900
TCATGGGTGG	TCCCGATATC	GCCCCTCCGT	CGTCAGGGCT	GCAAACCCCG	CCCGGACCCC	960
CGAATGCGTA	CGACGAGTAC	CCCGTGCTGC	CGCCGATCGG	TTTACAGGCC	CCACAGGTGC	1020
CGATACCACC	GCCGCCTCCT	GGGCCCGACG	TAATCCCGGG	TCCGGTGCCA	CCGGTCTTGG	1080
CGGCGATCGT	GTTCCCAAGA	GATCGCCCGG	CAGCGTCGGA	AAACTTCGAC	TACATGGGCC	1140
TCTTGTTGCT	GTCGCCGGGC	CTGGCGACCT	TCCTGTTCGG	GGTGTCATCT	AGCCCCGCCC	1200
GTGGAACGAT	GGCCGATCGG	CACGTGTTGA	TACCGGCGAT	CACCGGCCTG	GCGTTGÀTCG	1260
CGGCATTCGT	CGCACATTCG	TGGTACCGCA	CAGAACATCC	GCTCATAGAC	ATGCGCTTGT	1320
TCCAGAACCG	AGCGGTCGCG	CAGGCCAACA	TGACGATGAC	GGTGCTCTCC	CTCGGGCTGT	1380

TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TCCAGCAAGT	GTTGCACCAA	TCACCGATGC	1440
AATCGGGGGT	GCATATCATC	CCACAGGGCC	TCGGTGCCAT	GCTGGCGATG	CCGATCGCCG	1500
GAGCGATGAT	GGACCGACGG	GGACCGGCCA	AGATCGTGCT	GGTTGGGATC	ATGCTGATCG	1560
CTGCGGGGTT	GGGCACCTTC	GCCTTTGGTG	TCGCGCGGCA	AGCGGACTAC	TTACCCATTC	1620
TGCCGACCGG	GCTGGCAATC	ATGGGCATGG	GCATGGGCTG	CTCCATGATG	CCACTGTCCG	1680
GGGCGGCAGT	GCAGACCCTG	GCCCCACATC	AGATCGCTCG	CGGTTCGACG	CTGATCAGCG	1740
TCAACCAGCA	GGTGGGCGGT	TCGATAGGGA	CCGCACTGAT	GTCGGTGCTG	CTCACCTACC	1800
AGTTCAATCA	CAGCGAAATC	ATCGCTACTG	CAAAGAAAGT	CGCACTGACC	CCAGAGAGTG	1860
GCGCCGGGCG	GGGGGCGGCG	GTTGACCCTT	CCTCGCTACC	GCGCCAAACC	AACTTCGCGG	1920
CCCAACTGCT	GCATGACCTT	TCGCACGCCT	ACGCGGTGGT	ATTCGTGATA	GCGACCGCGC	1980
TAGTGGTCTC	GACGCTGATC	CCCGCGGCAT	TCCTGCCGAA	ACAGCAGGCT	AGTCATCGAA	2040
GAGCACCGTT	GCTATCCGCA	TGACGTCTGC	TT			2072

(2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1923 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

60	ATGGTCGAGA	CTCGCTGTCG	TGGACATCGA	GTCGACGACC	GAAGTCGTTC	TCACCCGGA
120	CTCGCCGGTC	CGACGAGGAC	TCAAGATCCC	AAGTACGGCG	GACCGAGGAC	TCGCCGTGCA
180	AACCCGGAGG	CGAGGAAGAA	TCCAGAAGCT	GTCGCCTACA	CGGTGACGTT	TGCGTACCGT
240	CGAGCAGATC	CGATGCGGCA	CGGAGAACCC	AAGATTGAGT	GTTGCGCGCG	CGGCTCAGGC
300	CGCTCAGCCA	TCCTCTTGCA	ACGCCCGTCG	CAAGCTCGAG	ACCCACATCG	GGTGCGTTTC
360	CCTCGCGAAA	ACGAAGGGAC	TTCCCACCAC	CCAGCAAGTG	TCGCCGCCTT	GGTTGGCGTG
420	CGCCGGGTCC	CTGACAATTG	GCCACCGTGG	CATAGTCGAT	CCGCGGACCA	GGTGACTGAT
480	GCCCCCCCC	AGCGGATCCC	GTCGAAGGCC	GCGGCATTGC	GGGCCGAATT	GAGTTGGCGG

CGGCGTGGCT	GGTGTTTTGG	GCCGCCGGAT	GGCCACGACG	AGAACGACGA	TGGCGGCGAT	540
GAACAGCGCC	ACGGCAATCA	CGACCAGCAG	ATTTCCCACG	CATACCCTCT	CGTACCGCTG	600
CGCCGCGGTT	GGTCGATCGG	TCGCATATCG	ATGGCGCCGT	TTAACGTAAC	AGCTTTCGCG	660
GGACCGGGGG	TCACAACGGG	CGAGTTGTCC	GGCCGGGAAC	CCGGCAGGTC	TCGGCCGCGG	720
TCACCCCAGC	TCACTGGTGC	ACCATCCGGG	TGTCGGTGAG	CGTGCAACTC	AAACACACTC	780
AACGGCAACG	GTTTCTCAGG	TCACCAGCTC	AACCTCGACC	CGCAATCGCT	CGTACGTTTC	840
GACCGCGCGC	AGGTCGCGAG	TCAGCAGCTT	TGCGCCGGCA	GCTTTCGCCG	TGAAGCCGAC	900
CAGGGCATCG	TAGGTTGCGC	CACCGGTGAC	ATCGTGCTCG	GCGAGGTGGT	CGGTCAAGCC	960
GCGATATGAG	CAGGCATCCA	GTGCCAGGTA	GTTGCTGGAG	GTGATGTCCG	CCAAGTAGGC	1020
GTGGACGGCA	ACAGGGGCAA	TACGATGCGG	CGGTGGTAGC	CGGGTCAAGA	CCGAATAGGT	1080
TTCCACAGCC	GCGTGCGCGA	TCAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CGGCGGCCTC	1140
GTGCCCTTCG	TGCCAGGTCG	CGAATCCGGC	AACCAGCACG	CTGGTGTCTG	GTGCGATCAC	1200
CGCCGTGTGC	GATCGAGCGT	TTCCCGAACG	ATTTCGTCGG	TCAACGGGGG	CAGGGGACGT	1260
TCTGGCCGTG	CGACGAGAAC	CGAGCCTTCC	CGAACGAGTT	CGACACCGGT	CGGGGCCGGC	1320
TCAATCTCGA	TGCGCCCATC	GCGCTCGGTG	ATCTCCACCT	GGTCGTTCCC	GCGCAAGCCA	1380
AGGCGCTCGC	GAATCCGCTT	GGGAATCACC	AGACGTCCTG	CGACATCGAT	GGTTGTTCGC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCGTGTC	CTGCGCGGGA	TGTCGGGACG	1500
ATCCGCTAGC	GTATCGAACG	ATTGTTTCGG	AAATGGCTGA	GGGAGCGTGC	GGTGCGGGTG	1560
ATGGGTGTCG	ATCCCGGGTT	GACCCGATGC	GGGCTGTCGC	TCATCGAGAG	TGGGCGTGGT	1620
CGGCAGCTCA	CCGCGCTGGA	TGTCGACGTG	GTGCGCACAC	CGTCGGATGC	GGCCTTGGCG	1680
CAGCGCCTGT	TGGCCATCAG	CGATGCCGTC	GAGCACTGGC	TGGACACCCA	TCATCCGGAG	1740
GTGGTGGCTA	TCGAACGGGT	GTTCTCTCAG	CTCAACGTGA	CCACGGTGAT	GGGCACCGCG	1800
CAGGCCGGCG	GCGTGATCGC	CCTGGCGGCG	GCCAAACGTG	GTGTCGACGT	GCATTTCCAT	1860
ACCCCCAGCG	AGGTCAAGGC	GGCGGTCACT	GGCAACGGTT	CCGCAGACAA	GGCTCAGGTC	1920
ACC						1923

(2) INFORMATION FOR SEQ ID NO:186:

(A) LENGTH: 1055 base pairs

(B) TYPE: nucleic acid

⁽i) SEQUENCE CHARACTERISTICS:

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

CTGGCGTGCC	AGTGTCACCG	GCGATATGAC	GTCGGCATTC	AATTTCGCGG	CCCCGCCGGA	60
CCCGTCGCCA	CCCAATCTGG	ACCACCCGGT	CCGTCAATTG	CCGAAGGTCG	CCAAGTGCGT	120
GCCCAATGTG	GTGCTGGGTT	TCTTGAACGA	AGGCCTGCCG	TATCGGGTGC	CCTACCCCCA	180
AACAACGCCA	GTCCAGGAAT	CCGGTCCCGC	GCGGCCGATT	CCCAGCGGCA	TCTGCTAGCC	240
GGGGATGGTT	CAGACGTAAC	GGTTGGCTAG	GTCGAAACCC	GCGCCAGGGC	CGCTGGACGG	300
GCTCATGGCA	GCGAAATTAG	AAAACCCGGG	ATATTGTCCG	CGGATTGTCA	TACGATGCTG	360
AGTGCTTGGT	GGTTCGTGTT	TAGCCATTGA	GTGTGGATGT	GTTGAGACCC	TGGCCTGGAA	420
GGGGACAACG	TGCTTTTGCC	TCTTGGTCCG	CCTTTGCCGC	CCGACGCGGT	GGTGGCGAAA	480
CGGGCTGAGT	CGGGAATGCT	CGGCGGGTTG	TCGGTTCCGC	TCAGCTGGGG	AGTGGCTGTG	540
CCACCCGATG	ATTATGACCA	CTGGGCGCCT	GCGCCGGAGG	ACGGCGCCGA	TGTCGATGTC	600
CAGGCGGCCG	AAGGGGCGGA	CGCAGAGGCC	GCGGCCATGG	ACGAGTGGGA	TGAGTGGCAG	660
GCGTGGAACG	AGTGGGTGGC	GGAGAACGCT	GAACCCCGCT	TTGAGGTGCC	ACGGAGTAGC	720
AGCAGCGTGA	TTCCGCATTC	TCCGGCGGCC	GGCTAGGAGA	GGGGGCGCAG	ACTGTCGTTA	780
TTTGACCAGT	GATCGGCGGT	CTCGGTGTTC	CCGCGGCCGG	CTATGACAAC	AGTCAATGTG	840
CATGACAAGT	TACAGGTATT	AGGTCCAGGT	TCAACAAGGA	GACAGGCAAC	ATGGCAACAC	900
GTTTTATGAC	GGATCCGCAC	GCGATGCGGG	ACATGGCGGG	CCGTTTTGAG	GTGCACGCCC	960
AGACGGTGGA	GGACGAGGCT	CGCCGGATGT	GGGCGTCCGC	GCAAAACATC	TCGGGNGCGG	1020
GCTGGAGTGG	CATGGCCGAG	GCGACCTCGC	TAGAC			1055

(2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

200

(xi)	SEOUENCE	DESCRIPTION:	SEQ	ΙD	NO:187:
------	----------	--------------	-----	----	---------

CCGCCTCGTT GTTGGCATAC TCCGCCGCGG CCGCCTCGAC CGCACTGGCC GTGGCGTGTG 60

TCCGGGCTGA CCACCGGGAT CGCCGAACCA TCCGAGATCA CCTCGCAATG ATCCACCTCG 120

CGCAGCTGGT CACCCAGCCA CCGGGCGGTG TGCGACAGCG CCTGCATCAC CTTGGTATAG 180

CCGTCGCGCC CCAGCCGCAG GAAGTTGTAG TACTGGCCCA CCACCTGGTT ACCGGGACGG 240

GAGAAGTTCA GGGTGAAGGT CGGCATGTCG CCGCCGAGGT AGTTGACCCG GAAAACCAGA 300

TCCTCCGGCA GGTGCTCGGG CCCGCCCAC ACGACAAACC CGACGCCGGG ATAGGTCAG 359

(2) INFORMATION FOR SEQ ID NO:188:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

AACGGGCCCG TGGGCACCGC TCCTCTAAGG GCTCTCGTTG GTCGCATGAA GTGCTGGAAG 60
GATGCATCTT GGCAGATTCC CGCCAGAGCA AAACAGCCGC TAGTCCTAGT CCGAGTCGCC 120
CGCAAAGTTC CTCGAATAAC TCCGTACCCG GAGCGCCAAA CCGGGTCTCC TTCGCTAAGC 180
TGCGCGAACC ACTTGAGGTT CCGGGACTCC TTGACGTCCA GACCGATTCG TTCGAGTGGC 240
TGATCGGTTC GCCGCGCTGG CGCGAATCCG CCGCCGAGCG GGGTGATGTC AACCCAGTGG 300
GTGGCCTGGA AGAGGTGCTC TACGAGCTGT CTCCGATCGA GGACTTCTCC 350

(2) INFORMATION FOR SEQ ID NO:189:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 679 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

201

Glu 1	Gln	Pro	Lys	Gly 5	Pro	Phe	Gly	Glu	Val 10	Ile	Glu	Ala	Phe	Ala 15	Asp
Gly	Leu	Ala	Gly 20	Lys	Gly	Lys	Gln	Ile 25	Asn	Thr	Thr	Leu	Asn 30	Ser	Let
Ser	Gln	Ala 35	Leu	Asn	Ala	Leu	Asn 40	Glu	Gly	Arg	Gly	Asp 45	Phe	Phe	Ala
Val	Val 50	Arg	Ser	Leu	Ala	Leu 55	Phe	Val	Asn	Ala	Leu 60	His	Gln	Asp	Asp
Gln 65	Gln	Phe	Val	Ala	Leu 70	Asn	Lys	Asn	Leu	Ala 75	Glu	Phe	Thr	Asp	Arg 80
Leu	Thr	His	Ser	Asp 85	Ala	Asp	Leu	Ser	Asn 90	Ala	Ile	Gln	Gln	Phe 95	Asp
Ser	Leu	Leu	Ala 100	Val	Ala	Arg	Pro	Phe 105	Phe	Ala	Lys	Asn	Arg 110	Glu	Val
Leu	Thr	His 115	Asp	Val	Asn	Asn	Leu 120	Ala	Thr	Val	Thr	Thr 125	Thr	Leu	Leu
Gln	Pro 130	Asp	Pro	Leu	Asp	Gly 135	Leu	Glu	Thr	Val	Leu 140	His	Ile	Phe	Pro
Thr 145	Leu	Ala	Ala	Asn	Ile 150	Asn	Gln	Leu	Tyr	His 155	Pro	Thr	His	Gly	Gly 160
Val	Val	Ser	Leu	Ser 165	Ala	Phe	Thr	Asn	Phe 170	Ala	Asn	Pro	Met	Glu 175	Phe
Ile	Cys	Ser	Ser 180	Ile	Gln	Ala	Gly	Ser 185	Arg	Leu	Gly	Tyr	Gln 190	Glu	Ser
Ala	Glu	Leu 195	Cys	Ala	Gln	Tyr	Leu 200	Ala	Pro	Val	Leu	Asp 205	Ala	Ile	Lys
Phe	Asn 210	Tyr	Phe	Pro	Phe	Gly 215	Leu	Asn	Val	Ala	Ser 220	Thr	Ala	Ser	Thr
Leu 225	Pro	Lys	Glu	Ile	Ala 230	Tyr	Ser	Glu	Pro	Arg 235	Leu	Gln	Pro	Pro	Asn 240
Gly	Tyr	Lys	Asp	Thr 245	Thr	Val	Pro	Gly	Ile 250	Trp	Val	Pro	Asp	Thr 255	Pro
Leu	Ser	His	Arg 260	Asn	Thr	Gln	Pro	Gly 265	Trp	Val	Val	Ala	Pro 270	Gly	Met
Gln	Gly	Val 275	Gln	Val	Gly	Pro	Ile 280	Thr	Gln	Gly	Leu	Leu 285	Thr	Pro	Glu

Ser	Leu 290	Ala	Glu	Leu	Met	Gly 295	Gly	Pro	Asp	Ile	300	Pro	Pro	Ser	Ser
Gly 305	Leu	Gln	Thr	Pro	Pro 310	Gly	Pro	Pro	Asn	Ala 315	Tyr	Asp	Glu	Tyr	Pro 320
Val	Leu	Pro	Pro	Ile 325	Gly	Leu	Gln	Ala	Pro 330	Gln	Val	Pro	Ile	Pro 335	Pro
Pro	Pro	Pro	Gly 340	Pro	Asp	Val	Ile	Pro 345	Gly	Pro	Val	Pro	Pro 350	Val	Leu
Ala	Ala	Ile 355	Val	Phe	Pro	Arg	Asp 360	Arg	Pro	Ala	Ala	Ser 365	Glu	Asn	Phe
Asp	Tyr 370	Met	Gly	Leu	Leu	Leu 375	Leu	Ser	Pro	Gly	Leu 380	Ala	Thr	Phe	Leu
385					390					395			Asp		400
				405					410				Ala	415	
			420					425					Met 430		
		435	-				440					445	Thr		
	450	_				455					460		Tyr		
465					470					475			Ile		480
				485					490				Ala	495	
ŕ	-		500					505					Met 510		
		515					520					525	Gln Met		
-	530					535					540				
545					550					555			Thr		560
				565					570				Leu	575	
val	OT A	GT A	O € 7	776	-xy	4414	*****	A ب س						- 4	~ Y ~

203

580 585 590

Gln Phe Asn His Ser Glu Ile Ile Ala Thr Ala Lys Lys Val Ala Leu 595 600 605

Thr Pro Glu Ser Gly Ala Gly Arg Gly Ala Ala Val Asp Pro Ser Ser 610 615 620

Leu Pro Arg Gln Thr Asn Phe Ala Ala Gln Leu Leu His Asp Leu Ser 625 630 630 635

His Ala Tyr Ala Val Val Phe Val Ile Ala Thr Ala Leu Val Val Ser 645 650 655

Thr Leu Ile Pro Ala Ala Phe Leu Pro Lys Gln Gln Ala Ser His Arg 660 665 670

Arg Ala Pro Leu Leu Ser Ala 675

(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 120 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

Thr Pro Glu Lys Ser Phe Val Asp Asp Leu Asp Ile Asp Ser Leu Ser 1 5 10 15

Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile 20 25 30

Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala 35 40 45

Tyr Ile Gln Lys Leu Glu Glu Glu Asn Pro Glu Ala Ala Gln Ala Leu 50 55 60

Arg Ala Lys Ile Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg 65 70 75 80

Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Leu Ala 85 90 95

Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr 100 105 110 204

Thr Arg Arg Asp Pro Arg Glu Arg 115 120

- (2) INFORMATION FOR SEQ ID NO:191:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 89 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:
 - Leu Ala Cys Gln Cys His Arg Arg Tyr Asp Val Gly Ile Gln Phe Arg 1 5 10 15
 - Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser 20 25 30
 - Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
 - Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 55 60
 - Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala 65 70 75 80
 - Gly Asp Gly Ser Asp Val Thr Val Gly 85
- (2) INFORMATION FOR SEQ ID NO:192:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:
 - Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala 1 5 10 15
 - Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp 20 25 30

205

His Leu Ala Met Ile His Leu Ala Gln Leu Val Thr Gln Pro Pro Gly 35 40 45

Gly Val Arg Gln Arg Leu His His Leu Gly Ile Ala Val Ala Pro Gln 50 55 60

Pro Gln Glu Val Val Leu Ala His His Leu Val Thr Gly Thr Gly 65 70 75 80

Glu Val Gln Gly Glu Gly Arg His Val Ala Ala Glu Val Val Asp Pro 85 90 95

Glu Asn Gln Ile Leu Arg Gln Val Leu Gly Pro Ala Pro His Asp Lys 100 105 110

Pro Asp Ala Gly Ile Gly Gln 115

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

Arg Ala Arg Gly His Arg Ser Ser Lys Gly Ser Arg Trp Ser His Glu
1 10 15

Val Leu Glu Gly Cys Ile Leu Ala Asp Ser Arg Gln Ser Lys Thr Ala 20 25 30

Ala Ser Pro Ser Pro Ser Arg Pro Gln Ser Ser Ser Asn Asn Ser Val 35 40 45

Pro Gly Ala Pro Asn Arg Val Ser Phe Ala Lys Leu Arg Glu Pro Leu 50 60

Glu Val Pro Gly Leu Leu Asp Val Gln Thr Asp Ser Phe Glu Trp Leu 65 70 75 80

Ile Gly Ser Pro Arg Trp Arg Glu Ser Ala Ala Glu Arg Gly Asp Val 85 90 95

Asn Pro Val Gly Gly Leu Glu Glu Val Leu Tyr Glu Leu Ser Pro Ile 100 105 110

Glu Asp Phe Ser 115

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 811 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

TGCTACGCAG	CAATCGCTTT	GGTGACAGAT	GTGGATGCCG	GCGTCGCTGC	TGGCGATGGC	60
GTGAAAGCCG	CCGACGTGTT	CGCCGCATTC	GGGGAGAACA	TCGAACTGCT	CAAAAGGCTG	120
GTGCGGGCCG	CCATCGATCG	GGTCGCCGAC	GAGCGCACGT	GCACGCACTG	TCAACACCAC	180
GCCGGTGTTC	CGTTGCCGTT	CGAGCTGCCA	TGAGGGTGCT	GCTGACCGGC	GCGGCCGGCT	240
TCATCGGGTC	GCGCGTGGAT	GCGGCGTTAC	GGGCTGCGGG	TCACGACGTG	GTGGGCGTCG	300
ACGCGCTGCT	GCCCGCCGCG	CACGGGCCAA	ACCCGGTGCT	GCCACCGGGC	TGCCAGCGGG	360
TCGACGTGCG	CGACGCCAGC	GCGCTGGCCC	CGTTGTTGGC	CGGTGTCGAT	CTGGTGTGTC	420
ACCAGGCCGC	CATGGTGGGT	GCCGGCGTCA	ACGCCGCCGA	CGCACCCGCC	TATGGCGGCC	480
ACAACGATTT	CGCCACCACG	GTGCTGCTGG	CGCAGATGTT	CGCCGCCGGG	GTCCGCCGTT	540
TGGTGCTGGC	GTCGTCGATG	GTGGTTTACG	GGCAGGGGCG	CTATGACTGT	CCCCAGCATG	600
GACCGGTCGA	CCCGCTGCCG	CGGCGGCGAG	CCGACCTGGA	CAATGGGGTC	TTCGAGCACC	660
GTTGCCCGGG	GTGCGGCGAG	CCAGTCATCT	GGCAATTGGT	CGACGAAGAT	GCCCCGTTGC	720
GCCCGCGCAG	CCTGTACGCG	GCAGCAAGAC	CGCGCAGGAG	CACTACGCGC	TGGCGTGGTC	780
GGAAACGAAT	GGCGGTTCCG	TGGTGGCGTT	G			811

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 966 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

GTCCCGCGAT	GTGGCCGAGC	ATGACTTTCG	GCAACACCGG	CGTAGTAGTC	GAAGATATCG	60
GACTTTGTGG	TCCCGGTGGC	GGGATAGAGC	ACCTGTCGGC	GTTGGTCAGC	GTCACCCGTT	120
GCTCGGACGC	CGAACCCATG	CTTTCAACGT	AGCCTGTCGG	TCACACAAGT	CGCGAGCGTA	180
ACGTCACGGT	CAAATATCGC	GTGGAATTTC	GCCGTGACGT	TCCGCTCGCG	GACAATCAAG	240
GCATACTCAC	TTACATGCGA	GCCATTTGGA	CGGGTTCGAT	CGCCTTCGGG	CTGGTGAACG	300
TGCCGGTCAA	GGTGTACAGC	GCTACCGCAG	ACCACGACAT	CAGGTTCCAC	CAGGTGCACG	360
CCAAGGACAA	CGGACGCATC	CGGTACAAGC	GCGTCTGCGA	GGCGTGTGGC	GAGGTGGTCG	420
ACTACCGCGA	TCTTGCCCGG	GCCTACGAGT	CCGGCGACGG	CCAAATGGTG	GCGATCACCG	480
ACGACGACAT	CGCCAGCTTG	CCTGAAGAAC	GCAGCCGGGA	GATCGAGGTG	TTGGAGTTCG	540
TCCCCGCCGC	CGACGTGGAC	CCGATGATGT	TCGACCGCAG	CTACTTTTTG	GAGCCTGATT	600
CGAAGTCGTC	GAAATCGTAT	GTGCTGCTGG	CTAAGACACT	CGCCGAGACC	GACCGGATGG	660
CGATCGTGGA	TCGCCCCACC	GGCCGTGAAT	GCAGGAAAAA	TAAGAGCCGC	TATCCACAAT	720
TCGGCGTCGA	GCTCGGCTAC	CACAAACGGT	AGAACGATCG	AGACATTCCC	GAGCTGAAGT	780
GCGGCGCTAT	AGAAGCCGCT	CTGCGCGATT	ATCAAACGCA	AAATACGCTT	ACTCATGCCA	840
TCGGCGCTGC	TCACCCGATG	CGACGTTTTT	GCCACGCTCC	ACCGCCTGCC	GCGCGACCTC	900
AAGTGGGCAT	GCATCCCACC	CGTTCCCGGA	AACCGGTTCC	GGCGGGTCGG	CTCATCGCTT	960
CATCCT						966

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2367 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

CCGCACCGCC	GGCAATACCG	CCAGCGCCAC	CGTTACCGCC	GTTTGCGCCG	TTGCCCCCGT	60
TGCCGCCCGT	CCCGCCGGCC	CCGCCGATGG	AGTTCTCATC	GCCAAAAGTA	CTGGCGTTGC	120
CACCGGAGCC	GCCGTTGCCG	CCGTCACCGC	CACCCCCCCC	GACTCCACCG	GCCCCACCGA	180

CTCCGCCGCT	GCCACCGTTG	CCGCCGTTGC	CGATCAACAT	GCCGCTGGCG	CCACCCTTGC	240
CACCCACGCC	ACCGGCTCCG	CCCACCCCGC	CGACACCAAG	CGAGCTGCCG	CCGGAGCCAC	300
CATCACCACC	TACGCCACCG	ACCGCCCAGA	CACCAGCGAC	CGGGTCTTCG	TGAAACGTCG	360
CGGTGCCACC	ACCGCCGCCG	TTACCGCCAA	CCCCACCGGC	AACGCCGGCG	CCGCCATCCC	420
CGCCGGCCCC	GGCGTTGCCG	CCGTTGCCGC	CGTTGCCGAA	CAACAACCCG	CCGGCGCCGC	480
CGTTGCCGCC	CGCGCCGCCG	GTCCCGCCGG	CGCCGCCGAC	GCCAAGGCCG	CTGCCGCCCT	540
TGCCGCCATC	ACCACCCTTG	CCGCCGACCA	CATCGGGTTC	TGCCTCGGGG	TCTGGGCTGT	600
CAAACCTCGC	GATGCCAGCG	TTGCCGCCGC	TTCCCCCGGG	CCCCCCGTG	GCGCCGTCAC	660
CACCGATACC	ACCCGCGCCA	CCGGCGCCAC	CGTTGCCGCC	ATCAÇCGAAT	AGCAACCCGC	720
CGGCGCCACC	ATTGCCGCCA	GCTCCCCTG	CGCCACCGTC	GGCGCCGGAG	GCGGCACTGG	780
CAGCCCCGTT	ACCACCGAAA	CCGCCGCTAC	CACCGGTAGA	GGTGGCAGTG	GCGATGTGTA	840
CGAAAGCGCC	GCCTCCGGCG	CCGCCGCTAC	CACCCCCACT	GCCGGCGGCT	ACACCGTCGG	900
ACCCGTTGCC	ACCATCACCG	CCAAAGGCGC	TCGCAATGTC	GCCCTGCGCG	ACTCCGCCGT	960
CGCCGCCGTT	GCCGCCGCCG	CCACCGGCAG	CGGCGGTACC	GCCGTCACCA	CCGGCACCGC	1020
CGGTGGCCTT	GCCCGAGCCT	GCCGTCGCGG	TGGCACCGTC	GCCGCCGGTG	CCACCGGTCG	1080
GCGTGCCGGC	AGTGCCATGG	CCGCCCGTGC	CGCCGTCGCC	GCCGGTTTGA	TCACCGATGC	1140
CGGACACATC	TGCCGGGCTG	TCCCCGGTGC	TGGCCGCGGG	GCCGGGCGTG	GGATTGACCC	1200
CGTTTGCCCC	GGCGAGGCCG	GCGCCGCCGG	TACCACCGGC	GCCGCCATGG	CCGAACAGCC	1260
CGGCGTTGCC	GCCGTTACCG	CCCGCACCCC	CGATGCCTGC	GGCCACGCTG	GTGCCGCCGA	1320
CACCGCCGTT	GCCGCCGTTG	CCCCACAACC	ACCCCCGTT	CCCACCGGCA	CCGCCGGCCG	1380
CGCCGGTACC	ACCGGCCCCG	CCGTTGCCGC	CGTTGCCGAT	CAACCCGGCC	GCGCCTCCGC	1440
TGCCGCCGGT	TTGACCGAAC	CCGCCAGCCG	CGCCGTTGCC	ACCGTTGCCA	AACAGCAACC	1500
CGCCGGCCGC	GCCAGGCTGC	CCGGGTGCCG	TCCCGTCGGC	GCCGTTTCCG	ATCAACGGGC	1560
GCCCCAAAAG	CGCCTCGGTG	GGCGCATTCA	CCGCACCCAG	CAGACTCCGC	TCAACAGCGG	1620
CTTCAGTGCT	GGCATACCGA	CCCGCGGCCG	CAGTCAACGC	CTGCACAAAC	TGCTCGTGAA	1680
ACGCTGCCAC	CTGTACGCTG	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCG	AACAACCCCG	1740
CAATCGCCGC	CGACACTTCA	TCGGCAGCCG	CAGCCACCAC	TTCCGTCGTC	GGGATCGCCG	1800

209

CGGCCGCATT	AGCCGCGCTC	ACCTGCGAAC	CAATAGTCGA	TAAATCCAAA	GCCGCAGTTG	1860
CCAGCAGCTG	CGGCGTCGCG	ATCACCAAGG	ACACCTCGCA	CCTCCGGATA	CCCCATATCG	1920
CCGCACCGTG	TCCCCAGCGG	CCACGTGACC	TTTGGTCGCT	GGCTGGCGGC	CCTGACTATG	1980
GCCGCGACGG	CCCTCGTTCT	GATTCGCCCC	GGCGCGCAGC	TTGTTGCGCG	AGTTGAAGAC	2040
GGGAGGACAG	GCCGAGCTTG	GTGTAGACGT	GGGTCAAGTG	GGAATGCACG	GTCCGCGGCG	2100
AGATGAATAG	GCGGACGCCG	ATCTCCTTGT	TGCTGAGTCC	CTCACCGACC	AGTAGAGCCA	2160
CCTCAAGCTC	TGTCGGTGTC	AACGCGCCCC	AGCCACTTGT	CGGGCGTTTC	CGTGCACCGC	2220
GGCCTCGTTG	CGCGTACGCG	ATCGCCTCAT	CGATCGATAA	CGCAGTTCCT	TCGGCCCAGG	2280
CATCGTCGAA	CTCGCTGTCA	CCCATGGATT	TTCGAAGGGT	GGCTAGCGAC	GAGTTACAGC	2340
CCGCCTGGTA	GATCCCGAAG	CGGACCG				2367

(2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val 1 5 10 15

Gly Ala Gly Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala 20 25 30

Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser 35 40 45

Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro 50 60

Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp 65 70 75 80

Ser Ala Val Ala Ala Ala Ala Ala Thr Gly Ser Gly Gly Thr 85 90 95

Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg 100 105 110

Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly 135 His Ile Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly Ile Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala 195 200 Val Ala Pro Gln Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala 215 Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg 235 Ala Ser Ala Ala Ala Gly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala 250 245 Thr Val Ala Lys Gln Gln Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ala Pro Gln Lys Arg Leu Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe 295 Ser Ala Gly Ile Pro Thr Arg Gly Arg Ser Gln Arg Leu His Lys Leu 305 310 315 Leu Val Lys Arg Cys His Leu Tyr Ala Glu Arg Leu Ile Leu Pro Ser Met Gly Pro Glu Gln Pro Arg Asn Arg Arg Arg His Phe Ile Gly Ser Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg

360

(2) INFORMATION FOR SEQ ID NO:198:

355

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2852 base pairs

Ala His Leu Arg Thr Asn Ser Arg

211

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GGCCAAAACG CCCCGGCGAT	CGCGGCCACC	GAGGCCGCCT	ACGACCAGAT	GTGGGCCCAG	60
GACGTGGCGG CGATGTTTGG	CTACCATGCC	GGGGCTTCGG	CGGCCGTCTC	GGCGTTGACA	120
CCGTTCGGCC AGGCGCTGCC	GACCGTGGCG	GGCGGCGGTG	CGCTGGTCAG	CGCGGCCGCG	180
GCTCAGGTGA CCACGCGGGT	CTTCCGCAAC	CTGGGCTTGG	CGAACGTCCG	CGAGGGCAAC	240
GTCCGCAACG GTAATGTCCG	GAACTTCAAT	CTCGGCTCGG	CCAACATCGG	CAACGGCAAC	300
ATCGGCAGCG GCAACATCGG	CAGCTCCAAC	ATCGGGTTTG	GCAACGTGGG	TCCTGGGTTG	360
ACCGCAGCGC TGAACAACAT	CGGTTTCGGC	AACACCGGCA	GCAACAACAT	CGGGTTTGGC	420
AACACCGGCA GCAACAACAT	CGGGTTCGGC	AATACCGGAG	ACGGCAACCG	AGGTATCGGG	480
CTCACGGGTA GCGGTTTGTT	GGGGTTCGGC	GGCCTGAACT	CGGGCACCGG	CAACATCGGT	540
CTGTTCAACT CGGGCACCGG	AAACGTCGGC	ATCGGCAACT	CGGGTACCGG	GAACTGGGGC	600
ATTGGCAACT CGGGCAACAG	CTACAACACC	GGTTTTGGCA	ACTCCGGCGA	CGCCAACACG	660
GGCTTCTTCA ACTCCGGAAT	AGCCAACACC	GGCGTCGGCA	ACGCCGGCAA	CTACAACACC	720
GGTAGCTACA ACCCGGGCAA	CAGCAATACC	GGCGGCTTCA	ACATGGGCCA	GTACAACACG	780
GGCTACCTGA ACAGCGGCAA	CTACAACACC	GGCTTGGCAA	ACTCCGGCAA	TGTCAACACC	840
GGCGCCTTCA TTACTGGCAA	CTTCAACAAC	GGCTTCTTGT	GGCGCGGCGA	CCACCAAGGC	900
CTGATTTTCG GGAGCCCCGG	CTTCTTCAAC	TCGACCAGTG	CGCCGTCGTC	GGGATTCTTC	960
AACAGCGGTG CCGGTAGCGC	GTCCGGCTTC	CTGAACTCCG	GTGCCAACAA	TTCTGGCTTC	1020
TTCAACTCTT CGTCGGGGGC	CATCGGTAAC	TCCGGCCTGG	CAAACGCGGG	CGTGCTGGTA	1080
TCGGGCGTGA TCAACTCGGG	CAACACCGTA	TCGGGTTTGT	TCAACATGAG	CCTGGTGGCC	1140
ATCACAACGC CGGCCTTGAT	CTCGGGCTTC	TTCAACACCG	GAAGCAACAT	GTCGGGATTT	1200
TTCGGTGGCC CACCGGTCTT	CAATCTCGGC	CTGGCAAACC	GGGGCGTCGT	GAACATTCTC	1260
GGCAACGCCA ACATCGGCAA	TTACAACATT	CTCGGCAGCG	GAAACGTCGG	TGACTTCAAC	1320
ATCCTTGGCA GCGGCAACCT	CGGCAGCCAA	AACATCTTGG	GCAGCGGCAA	CGTCGGCAGC	1380

TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCG	GTTCCGGAAG	CCTGGGAAAC	1440
TACAACATCG	GATCCGGAAA	CCTCGGGATC	TACAACATCG	GTTTTGGAAA	CGTCGGCGAC	1500
TACAACGTCG	GCTTCGGGAA	CGCGGGCGAC	TTCAACCAAG	GCTTTGCCAA	CACCGGCAAC	1560
AACAACATCG	GGTTCGCCAA	CACCGGCAAC	AACAACATCG	GCATCGGGCT	GTCCGGCGAC	1620
AACCAGCAGG	GCTTCAATAT	TGCTAGCGGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTCGG	GCACCAATAA	CGTTGGCATC	TTCAACGCGG	GCACCGGAAA	CGTCGGCATC	1740
GCAAACTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCGGCATC	1800
CTCAATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GCGACTTCAA	CACGGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGCGGC	TTCAACGTCG	GTAACACCAA	CACCGGCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCGGCAGC	TATAACCCGG	GTGACACCAA	CACCGGCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATGGCTTC	2040
TTGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCGGTCAC	CACTCCATTC	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCTT	CGGCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCGACCGTT	TTCCCCCAAA	CCTTCTATCT	GAGCGGTTTG	2220
TTCTTCTTCG	GCCCGGTCAA	TCTCAGCGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCTC	2280
ACCATCGGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TCGGTGCTCT	GGAGAGCCGC	2340
ACGATTACCT	TCCTCAAGAT	CGATCCGGCG	CCGGGCATCG	GAAATTCGAC	CACCAACCCC	2400
TCGTCCGGCT	TCTTCAACTC	GGGCACCGGT	GGCACATCTG	GCTTCCAAAA	CGTCGGCGGC	2460
GGCAGTTCAG	GCGTCTGGAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGGCG	AACCTGGGCA	ACTCCGTATC	GGGCTTTTTC	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	GCCAATGTCT	CGGGCCTGAA	CAACATCGGC	2640
ACCAACCTGT	CCGGCGTGTT	CCGCGGTCCG	ACCGGGACGA	TTTTCAACGC	GGGCCTTGCC	2700
AACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TCGTGCCGAA	TTCGGCACGA	GTTAGATACG	2760
GTTTCAACAA	TCATATCCGC	GTTTTGCGGC	AGTGCATCAG	ACGAATCGAA	CCCGGGAAGC	2820
GTAAGCGAAT	AAACCGAATG	GCGGCCTGTC	AT			2852

⁽²⁾ INFORMATION FOR SEQ ID NO:199:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 943 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln
1 5 10 15

Met Trp Ala Gln Asp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala 20 25 30

Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr 35 40 45

Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gln Val Thr $_{\rm 50}$ $\,$ 55 $\,$ 60

Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn 65 70 75 80

Val Arg Asn Gly Asn Val Arg Asn Phe Asn Leu Gly Ser Ala Asn Ile 85 90 95

Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly 100 105 110

Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn Ile Gly 115 120 125

Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser 130 135 140

Asn Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Asn Arg Gly Ile Gly 145 150 155 160

Leu Thr Gly Ser Gly Leu Leu Gly Phe Gly Gly Leu Asn Ser Gly Thr 165 170 175

Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly 180 185 190

Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr 195 200 205

Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn 210 215 220

Ser Gly Ile Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr 225 230 235 240

Gly	Ser	Tyr	Asn	Pro 245	Gly	Asn	Ser	Asn	Thr 250	Gly	Gly	Phe	Asn	Met 255	Gly
Gln	Tyr	Asn	Thr 260	Gly	Tyr	Leu	Asn	Ser 265	Gly	Asn	Tyr	Asn	Thr 270	Gly	Leu
Ala	Asn	Ser 275	Gly	Asn	Val	Asn	Thr 280	Gly	Ala	Phe	Ile	Thr 285	Gly	Asn	Phe
Asn	Asn 290	Gly	Phe	Leu	Trp	Arg 295	Gly	Asp	His	Gln	Gly 300	Leu	Ile	Phe	Gly
Ser 305	Pro	Gly	Phe	Phe	Asn 310	Ser	Thr	Ser	Ala	Pro 315	Ser	Ser	Gly	Phe	Phe 320
Asn	Ser	Gly	Ala	Gly 325	Ser	Ala	Ser	Gly	Phe 330	Leu	Asn	Ser	Gly	Ala 335	Asn
Asn	Ser	Gly	Phe 340	Phe	Asn	Ser	Ser	Ser 345	Gly	Ala	Ile	Gly	Asn 350	Ser	Gly
Leu	Ala	Asn 355	Ala	Gly	Val	Leu	Val 360	Ser	Gly	Val	Ile	Asn 365	Ser	Gly	Asn
Thr	Val 370	Ser	Gly	Leu	Phe	Asn 375	Met	Ser	Leu	Val	Ala 380	Ile	Thr	Thr	Pro
Ala 385	Leu	Ile	Ser	Gly	Phe 390	Phe	Asn	Thr	Gly	Ser 395	Asn	Met	Ser	Gly	Phe 400
Phe	Gly	Gly	Pro	Pro 405	Val	Phe	Asn	Leu	Gly 410	Leu	Ala	Asn	Arg	Gly 415	Val
Val	Asn	Ile	Leu 420	Gly	Asn	Ala	Asn	Ile 425	Gly	Asn	Tyr	Asn	Ile 430	Leu	Gly
Ser	Gly	Asn 435	Val	Gly	Asp	Phe	Asn 440	Ile	Leu	Gly	Ser	Gly 445	Asn	Leu	Gly
Ser	Gln 450	Asn	Ile	Leu	Gly	Ser 455	Gly	Asn	Val	Gly	Ser 460	Phe	Asn	Ile	Gly
Ser 465	Gly	Asn	Ile	Gly	Val 470	Phe	Asn	Val	Gly	Ser 475	Gly	Ser	Leu	Gly	Asn 480
Tyr	Asn	Ile	Gly	Ser 485	Gly	Asn	Leu	Gly	11e 490	Tyr	Asn	Ile	Gly	Phe 495	Gly
Asn	Val	Gly	Asp 500	Tyr	Asn	Val	Gly	Phe 505	Gly	Asn	Ala	Gly	Asp 510	Phe	Asn
Gln	Gly	Phe 515	Ala	Asn	Thr	Gly	Asn 520	Asn	Asn	Ile	Gly	Phe 525	Ala	Asn	Thr
Gly	Asn	Asn	Asn	Ile	Gly	Ile	Gly	Leu	Ser	Gly	Asp	Asn	Gln	Gln	Gly

530	535		540
Phe Asn Ile Ala	Ser Gly Trp	Asn Ser Gly Thr	Gly Asn Ser Gly Leu
545	550	555	560
Phe Asn Ser Gly	Thr Asn Asn	Val Gly Ile Pho	e Asn Ala Gly Thr Gly
	565	570	575
Asn Val Gly Ile		Gly Thr Gly Ass	n Trp Gly Ile Gly Asn
580		585	590
Pro Gly Thr Asp	Asn Thr Gly	Ile Leu Asn Al	a Gly Ser Tyr Asn Thr
595		600	605
Gly Ile Leu Asn	Ala Gly Asp	Phe Asn Thr Gl	y Phe Tyr Asn Thr Gly
610	615		620
Ser Tyr Asn Thr 625	Gly Gly Phe	Asn Val Gly As	n Thr Asn Thr Gly Asn 5 640
Phe Asn Val Gly	Asp Thr Asn	Thr Gly Ser Ty	r Asn Pro Gly Asp Thr
	645	650	655
Asn Thr Gly Phe	e Phe Asn Pro	o Gly Asn Val As 665	n Thr Gly Ala Phe Asp 670
Thr Gly Asp Pho	e Asn Asn Gly	y Phe Leu Val Al 680	a Gly Asp Asn Gln Gly 685
Gln Ile Ala Il	e Asp Leu Sei	r Val Thr Thr P:	ro Phe Ile Pro Ile Asn
690	69	5	700
Glu Gln Met Va	l Ile Asp Va	l His Asn Val M	et Thr Phe Gly Gly Asn
705	710	7	15 720
Met Ile Thr Va	1 Thr Glu Al	a Ser Thr Val P	he Pro Gln Thr Phe Tyr
	725	730	735
Leu Ser Gly Le	eu Phe Phe Ph	e Gly Pro Val A	sn Leu Ser Ala Ser Thr
	10	745	750
Leu Thr Val Pi	o Thr Ile Th	nr Leu Thr Ile G	ly Gly Pro Thr Val Thr
755		760	765
Val Pro Ile Se	er Ile Val Gl	ly Ala Leu Glu S	Ser Arg Thr Ile Thr Phe
770	77	75	780
Leu Lys Ile A	sp Pro Ala Pi	ro Gly Ile Gly I	Asn Ser Thr Thr Asn Pro
785	790		195 800
	805	910	Gly Thr Ser Gly Phe Gln 815
	ly Gly Ser S	er Gly Val Trp	Asn Ser Gly Leu Ser Ser
	20	825	830

216

Ala	Ile	Gly 835	Asn	Ser	Gly	Phe	Gln 840	Asn	Leu	Gly	Ser	Leu 845	Gln	Ser	Gly
Trp	Ala 850	Asn	Leu	Gly	Asn	Ser 855	Val	Ser	Gly	Phe	Phe 860	Asn	Thr	Ser	Thr
Val 865	Asn	Leu	Ser	Thr	Pro 870	Ala	Asn	Val	Ser	Gly 875	Leu	Asn	Asn	Ile	Gly 880
Thr	Asn	Leu	Ser	Gly 885	Val	Phe	Arg	Gly	Pro 890	Thr	Gly	Thr	Ile	Phe 895	Asn
Ala	Gly	Leu	Ala 900	Asn	Leu	Gly	Gln	Leu 905	Asn	Ile	Gly	Ser	Ala 910	Ser	Cys
Arg	Ile	Arg 915	His	Glu	Leu	Asp	Thr 920	Val	Ser	Thr	Ile	Ile 925	Ser	Ala	Phe
Cys	Gly 930	Ser	Ala	Ser	Asp	Glu 935	Ser	Asn	Pro	Gly	Ser 940	Val	Ser	Glu	

- (2) INFORMATION FOR SEQ ID NO:200:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

- (2) INFORMATION FOR SEQ ID NO:201:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CCTGAATTCA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

42

(2) INFORMATION FOR SEQ ID NO:202:

(i) SEQUENCE CHARACTERISTICS:

217

(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO	
GGATCCTGCA GGCTCGAAAC CACCGAGCGG T	31
(2) INFORMATION FOR SEQ ID NO:203: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO	:203:
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:204:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO	: 204 :
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:205:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 38 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:	
GGATATCTGC AGAATTCAGG TTTAAAGCCC ATTTGCGA	38
(2) INFORMATION FOR SEQ ID NO: 206:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION FOR SEQ ID NO:207:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:	
CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCGG	37
(2) INFORMATION FOR SEQ ID NO:208:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7676 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

WO 98/16645

CAGCGTGAC	C GCTACACTTG	CCAGCGCCCT	AGCGCCCGCT	CCTTTCGCTT	TCTTCCCTTC	120
CTTTCTCGC	C ACGTTCGCCG	GCTTTCCCCG	TCAAGCTCTA	AATCGGGGGC	TCCCTTTAGG	180
GTTCCGATT	T AGTGCTTTAC	GGCACCTCGA	CCCCAAAAAA	CTTGATTAGG	GTGATGGTTC	240
ACGTAGTGG	G CCATCGCCCT	GATAGACGGT	TTTTCGCCCT	TTGACGTTGG	AGTCCACGTT	300
CTTTAATAG	T GGACTCTTGT	TCCAAACTGG	AACAACACTC	AACCCTATCT	CGGTCTATTC	360
TTTTGATTT	A TAAGGGATTT	TGCCGATTTC	GGCCTATTGG	TTAAAAAATG	AGCTGATTTA	420
АСААААТТ	T AACGCGAATT	TTAACAAAAT	ATTAACGTTT	ACAATTTCAG	GTGGCACTTT	480
TCGGGGAAA	T GTGCGCGGAA	CCCCTATTTG	TTTATTTTTC	TAAATACATT	CAAATATGTA	540
TCCGCTCAT	G AATTAATTCT	TAGAAAAACT	CATCGAGCAT	CAAATGAAAC	TGCAATTTAT	600
TCATATCAG	G ATTATCAATA	CCATATTTT	GAAAAAGCCG	TTTCTGTAAT	GAAGGAGAAA	660
ACTCACCGA	G GCAGTTCCAT	AGGATGGCAA	GATCCTGGTA	TCGGTCTGCG	ATTCCGACTC	720
GTCCAACAT	C AATACAACCT	ATTAATTTCC	CCTCGTCAAA	AATAAGGTTA	TCAAGTGAGA	780
AATCACCAT	G AGTGACGACT	GAATCCGGTG	AGAATGGCAA	AAGTTTATGC	ATTTCTTTCC	840
AGACTTGTT	C AACAGGCCAG	CCATTACGCT	CGTCATCAAA	ATCACTCGCA	TCAACCAAAC	900
CGTTATTCA	T TCGTGATTGC	GCCTGAGCGA	GACGAAATAC	GCGATCGCTG	TTAAAAGGAC	960
AATTACAAA	C AGGAATCGAA	TGCAACCGGC	GCAGGAACAC	TGCCAGCGCA	TCAACAATAT	1020
TTTCACCTG	A ATCAGGATAT	TCTTCTAATA	CCTGGAATGC	TGTTTTCCCG	GGGATCGCAG	1080
TGGTGAGTA	A CCATGCATCA	TCAGGAGTAC	GGATAAAATG	CTTGATGGTC	GGAAGAGGCA	1140
TAAATTCCG	T CAGCCAGTTT	AGTCTGACCA	TCTCATCTGT	AACATCATTG	GCAACGCTAC	1200
CTTTGCCAT	G TTTCAGAAAC	AACTCTGGCG	CATCGGGCTT	CCCATACAAT	CGATAGATTG	1260
TCGCACCTG	A TTGCCCGACA	TTATCGCGAG	CCCATTTATA	CCCATATAAA	TCAGCATCCA	1320
TGTTGGAAT	T TAATCGCGGC	CTAGAGCAAG	ACGTTTCCCG	TTGAATATGG	CTCATAACAC	1380
CCCTTGTAT	T ACTGTTTATG	TAAGCAGACA	GTTTTATTGT	TCATGACCAA	AATCCCTTAA	1440
CGTGAGTTT	T CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	1500
GATCCTTTT	T TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	1560
GTGGTTTGT	T TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC	1620
AGAGCGCAG	а тассааатас	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	1680

AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	1740
AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	1800
CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	1860
ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	1920
AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	1980
CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	2040
CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	2100
GCCTTTTTAC	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	2160
TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	2220
AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	2280
TATTTTCTCC	TTACGCATCT	GTGCGGTATT	TCACACCGCA	TATATGGTGC	ACTCTCAGTA	2340
CAATCTGCTC	TGATGCCGCA	TAGTTAAGCC	AGTATACACT	CCGCTATCGC	TACGTGACTG	2400
GGTCATGGCT	GCGCCCCGAC	ACCCGCCAAC	ACCCGCTGAC	GCGCCCTGAC	GGGCTTGTCT	2460
GCTCCCGGCA	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC	GGGAGCTGCA	TGTGTCAGAG	2520
GTTTTCACCG	TCATCACCGA	AACGCGCGAG	GCAGCTGCGG	TAAAGCTCAT	CAGCGTGGTC	2580
GTGAAGCGAT	TCACAGATGT	CTGCCTGTTC	ATCCGCGTCC	AGCTCGTTGA	GTTTCTCCAG	2640
AAGCGTTAAT	GTCTGGCTTC	TGATAAAGCG	GGCCATGTTA	AGGGCGGTTT	TTTCCTGTTT	2700
GGTCACTGAT	GCCTCCGTGT	AAGGGGGATT	TCTGTTCATG	GGGGTAATGA	TACCGATGAA	2760
ACGAGAGAGG	ATGCTCACGA	TACGGGTTAC	TGATGATGAA	CATGCCCGGT	TACTGGAACG	2820
TTGTGAGGGT	AAACAACTGG	CGGTATGGAT	GCGGCGGGAC	CAGAGAAAAA	TCACTCAGGG	2880
TCAATGCCAG	CGCTTCGTTA	ATACAGATGT	AGGTGTTCCA	CAGGGTAGCC	AGCAGCATCC	2940
TGCGATGCAG	ATCCGGAACA	TAATGGTGCA	GGGCGCTGAC	TTCCGCGTTT	CCAGACTTTA	3000
CGAAACACGG	AAACCGAAGA	CCATTCATGT	TGTTGCTCAG	GTCGCAGACG	TTTTGCAGCA	3060
GCAGTCGCTT	CACGTTCGCT	CGCGTATCGG	TGATTCATTC	TGCTAACCAG	TAAGGCAACC	3120
CCGCCAGCCT	AGCCGGGTCC	TCAACGACAG	GAGCACGATC	ATGCGCACCC	GTGGGGCCGC	3180
CATGCCGGCG	ATAATGGCCT	GCTTCTCGCC	GAAACGTTTG	GTGGCGGGAC	CAGTGACGAA	3240
GGCTTGAGCG	AGGGCGTGCA	AGATTCCGAA	TACCGCAAGC	GACAGGCCGA	TCATCGTCGC	3300
GCTCCAGCGA	AAGCGGTCCT	CGCCGAAAAT	GACCCAGAGC	GCTGCCGGCA	CCTGTCCTAC	3360

GAGTTGCATG	ATAAAGAAGA	CAGTCATAAG	TGCGGCGACG	ATAGTCATGC	CCCGCGCCCA	3420
CCGGAAGGAG	CTGACTGGGT	TGAAGGCTCT	CAAGGGCATC	GGTCGAGATC	CCGGTGCCTA	3480
ATGAGTGAGC	TAACTTACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	AGTCGGGAAA	3540
CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	3600
TGGGCGCCAG	GGTGGTTTTT	CTTTTCACCA	GTGAGACGGG	CAACAGCTGA	TTGCCCTTCA	3660
CCGCCTGGCC	CTGAGAGAGT	TGCAGCAAGC	GGTCCACGCT	GGTTTGCCCC	AGCAGGCGAA	3720
AATCCTGTTT	GATGGTGGTT	AACGGCGGGA	TATAACATGA	GCTGTCTTCG	GTATCGTCGT	3780
ATCCCACTAC	CGAGATATCC	GCACCAACGC	GCAGCCCGGA	CTCGGTAATG	GCGCGCATTG	3840
CGCCCAGCGC	CATCTGATCG	TTGGCAACCA	GCATCGCAGT	GGGAACGATG	CCCTCATTCA	3900
GCATTTGCAT	GGTTTGTTGA	AAACCGGACA	TGGCACTCCA	GTCGCCTTCC	CGTTCCGCTA	3960
TCGGCTGAAT	TTGATTGCGA	GTGAGATATT	TATGCCAGCC	AGCCAGACGC	AGACGCGCCG	4020
AGACAGAACT	TAATGGGCCC	GCTAACAGCG	CGATTTGCTG	GTGACCCAAT	GCGACCAGAT	4080
GCTCCACGCC	CAGTCGCGTA	CCGTCTTCAT	GGGAGAAAAT	AATACTGTTG	ATGGGTGTCT	4140
GGTCAGAGAC	ATCAAGAAAT	AACGCCGGAA	CATTAGTGCA	GGCAGCTTCC	ACAGCAATGG	4200
CATCCTGGTC	ATCCAGCGGA	TAGTTAATGA	TCAGCCCACT	GACGCGTTGC	GCGAGAAGAT	4260
TGTGCACCGC	CGCTTTACAG	GCTTCGACGC	CGCTTCGTTC	TACCATCGAC	ACCACCACGC	4320
TGGCACCCAG	TTGATCGGCG	CGAGATTTAA	TCGCCGCGAC	AATTTGCGAC	GGCGCGTGCA	4380
GGGCCAGACT	GGAGGTGGCA	ACGCCAATCA	GCAACGACTG	TTTGCCCGCC	AGTTGTTGTG	4440
CCACGCGGTT	GGGAATGTAA	TTCAGCTCCG	CCATCGCCGC	TTCCACTTTT	TCCCGCGTTT	4500
TCGCAGAAAC	GTGGCTGGCC	TGGTTCACCA	CGCGGGAAAC	GGTCTGATAA	GAGACACCGG	4560
CATACTCTGC	GACATCGTAT	AACGTTACTG	GTTTCACATT	CACCACCCTG	AATTGACTCT	4620
CTTCCGGGCG	CTATCATGCC	ATACCGCGAA	AGGTTTTGCG	CCATTCGATG	GTGTCCGGGA	4680
TCTCGACGCT	CTCCCTTATG	CGACTCCTGC	ATTAGGAAGC	AGCCCAGTAG	TAGGTTGAGG	4740
CCGTTGAGCA	CCGCCGCCGC	AAGGAATGGT	GCATGCAAGG	AGATGGCGCC	CAACAGTCCC	4800
CCGGCCACGG	GGCCTGCCAC	CATACCCACG	CCGAAACAAG	CGCTCATGAG	CCCGAAGTGG	4860
CGAGCCCGAT	CTTCCCCATC	GGTGATGTCG	GCGATATAGG	CGCCAGCAAC	CGCACCTGTG	4920
GCGCCGGTGA	TGCCGGCCAC	GATGCGTCCG	GCGTAGAGGA	TCGAGATCTC	GATCCCGCGA	4980

WO 98/16645

AATTAATACG	ACTCACTATA	GGGGAATTGT	GAGCGGATAA	CAATTCCCCT	CTAGAAATAA	5040
TTTTGTTTAA	CTTTAAGAAG	GAGATATACA	TATGGGCCAT	CATCATCATC	ATCACGTGAT	5100
CGACATCATC	GGGACCAGCC	CCACATCCTG	GGAACAGGCG	GCGGCGGAGG	CGGTCCAGCG	5160
GGCGCGGGAT	AGCGTCGATG	ACATCCGCGT	CGCTCGGGTC	ATTGAGCAGG	ACATGGCCGT	5220
GGACAGCGCC	GGCAAGATCA	CCTACCGCAT	CAAGCTCGAA	GTGTCGTTCA	AGATGAGGCC	5280
GGCGCAACCG	AGGGGCTCGA	AACCACCGAG	CGGTTCGCCT	GAAACGGGCG	ccgcccccg	5340
TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	5400
GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	5520
CAACATTGGG	GCCTCCGACG	CCTATCTGTC	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	5580
GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	5640
CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5700
CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	5760
AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	TGACACCTTC	TTGTTCACCC	AGTACCTGTC	5820
CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	5880
GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	6000
ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	6060
CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	6120
GATCGACGGG	CCCGCCCCGG	ACGGCTACCC	GATCATCAAC	TACGAGTACG	CCATCGTCAA	6180
CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	6240
CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	6300
GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	GACGATTTCC	AGCGCTGAGA	TGAAGACCGA	6360
TGCCGCTACC	CTCGCGCAGG	AGGCAGGTAA	TTTCGAGCGG	ATCTCCGGCG	ACCTGAAAAC	6420
CCAGATCGAC	CAGGTGGAGT	CGACGGCAGG	TTCGTTGCAG	GGCCAGTGGC	GCGGCGCGC	6480
GGGGACGGCC	GCCCAGGCCG	CGGTGGTGCG	CTTCCAAGAA	GCAGCCAATA	AGCAGAAGCA	6540
GGAACTCGAC	GAGATCTCGA	CGAATATTCG	TCAGGCCGGC	GTCCAATACT	CGAGGGCCGA	6600
CGAGGAGCAG	CAGCAGGCGC	TGTCCTCGCA	AATGGGCTTT	GTGCCCACAA	CGGCCGCCTC	6660

GCCGCCGTCG	ACCGCTGCAG	CGCCACCCGC	ACCGGCGACA	CCTGTTGCCC	CCCCACCACC	6720
GGCCGCCGCC	AACACGCCGA	ATGCCCAGCC	GGGCGATCCC	AACGCAGCAC	CTCCGCCGGC	6780
CGACCCGAAC	GCACCGCCGC	CACCTGTCAT	TGCCCCAAAC	GCACCCCAAC	CTGTCCGGAT	6840
CGACAACCCG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GGCTGGGTGG	AGTCTGACGC	6900
CGCCCACTTC	GACTACGGTT	CAGCACTCCT	CAGCAAAACC	ACCGGGGACC	CGCCATTTCC	6960
CGGACAGCCG	CCGCCGGTGG	CCAATGACAC	CCGTATCGTG	CTCGGCCGGC	TAGACCAAAA	7020
GCTTTACGCC	AGCGCCGAAG	CCACCGACTC	CAAGGCCGCG	GCCCGGTTGG	GCTCGGACAT	7080
GGGTGAGTTC	TATATGCCCT	ACCCGGGCAC	CCGGATCAAC	CAGGAAACCG	TCTCGCTTGA	7140
CGCCAACGGG	GTGTCTGGAA	GCGCGTCGTA	TTACGAAGTC	AAGTTCAGCG	ATCCGAGTAA	7200
GCCGAACGGC	CAGATCTGGA	CGGGCGTAAT	CGGCTCGCCC	GCGGCGAACG	CACCGGACGC	7260
CGGGCCCCT	CAGCGCTGGT	TTGTGGTATG	GCTCGGGACC	GCCAACAACC	CGGTGGACAA	7320
GGGCGCGGCC	AAGGCGCTGG	CCGAATCGAT	CCGGCCTTTG	GTCGCCCCGC	CGCCGGCGCC	7380
GGCACCGGCT	CCTGCAGAGC	CCGCTCCGGC	GCCGGCGCCG	GCCGGGGAAG	TCGCTCCTAC	7440
CCCGACGACA	CCGACACCGC	AGCGGACCTT	ACCGGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7560
CCGAAAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	AACCCCTTGG	7620
GGCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	GCTGAAAGGA	GGAACTATAT	CCGGAT	7676

(2) INFORMATION FOR SEQ ID NO:209:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 802 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

Met Gly His His His His His Wal Ile Asp Ile Ile Gly Thr Ser 1 5 10 15

Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg 20 25 30

Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr 105 Pro Leu Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln 135 Ala Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser 155 Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His 185 Leu Lys Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val 265 Pro Gly Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp 295 Gln Ala Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala

				325					330					335	
Gly	Phe	Ala	Ser 340	Lys	Thr	Pro	Ala	Asn 345	Gln	Ala	Ile	Ser	Met 350	Ile	Asp
Gly	Pro	Ala 355	Pro	Asp	Gly	Tyr	Pro 360	Ile	Ile	Asn	Tyr	Glu 365	Tyr	Ala	Ile
Val	Asn 370	Asn	Arg	Gln	Lys	Asp 375	Ala	Ala	Thr	Ala	Gln 380	Thr	Leu	Gln	Ala
Phe 385	Leu	His	Trp	Ala	Ile 390	Thr	Asp	Gly	Asn	Lys 395	Ala	Ser	Phe	Leu	Asp 400
Gln	Val	His	Phe	Gln 405	Pro	Leu	Pro	Pro	Ala 410	Val	Val	Lys	Leu	Ser 415	Asp
Ala	Leu	Ile	Ala 420	Thr	Ile	Ser	Ser	Ala 425	Glu	Met	Lys	Thr	Asp 430	Ala	Ala
Thr	Leu	Ala 435	Gln	Glu	Ala	Gly	Asn 440	Phe	Glu	Arg	Ile	Ser 445	Gly	Asp	Leu
Lys	Thr 450	Gln	Ile	Asp	Gln	Val 455	Glu	Ser	Thr	Ala	Gly 460	Ser	Leu	Gln	Gly
Gln 465	Trp	Arg	Gly	Ala	Ala 470	Gly	Thr	Ala	Ala	Gln 475	Ala	Ala	Val	Val	Arg 480
Phe	Gln	Glu	Ala	Ala 485	Asn	Lys	Gln	Lys	Gln 490	Glu	Leu	Asp	Glu	Ile 495	Ser
Thr	Asn	Ile	Arg 500	Gln	Ala	Gly	Val	Gln 505	Tyr	Ser	Arg	Ala	Asp 510	Glu	Glu
Gln	Gln	Gln 515	Ala	Leu	Ser	Ser	Gln 520	Met	Gly	Phe	Val	Pro 525	Thr	Thr	Ala
Ala	Ser 530	Pro	Pro	Ser	Thr	Ala 535	Ala	Ala	Pro	Pro	Ala 540	Pro	Ala	Thr	Pro
Val 545	Ala	Pro	Pro	Pro	Pro 550	Ala	Ala	Ala	Asn	Thr 555	Pro	Asn	Ala	Gln	Pro 560
Gly	Asp	Pro	Asn	Ala 565	Ala	Pro	Pro	Pro	Ala 570	Asp	Pro	Asn	Ala	Pro 575	Pro
Pro	Pro	Val	Ile 580	Ala	Pro	Asn	Ala	Pro 585		Pro	Val	Arg	Ile 590	Asp	Asn
Pro	Val	Gly 595	Gly	Phe	Ser	Phe	Ala 600	Leu	Pro	Ala	Gly	Trp 605	Val	Glu	Ser
Asp	Ala 610	Ala	His	Phe	Asp	Tyr 615	Gly	Ser	Ala	Leu	Leu 620	Ser	Lys	Thr	Thr

Pro Ala

Asp	Pro	Pro	Phe	Pro 630	Gly	Gln	Pro	Pro	Pro 635	Val	Ala	Asn	Asp	Thr 640
Ile	Val	Leu	Gly 645	Arg	Leu	Asp	Gln	Lys 650	Leu	Tyr	Ala	Ser	Ala 655	Glu
Thr	Asp	Ser 660	Lys	Ala	Ala	Ala	Arg 665	Leu	Gly	Ser	Asp	M et 670	Gly	Glu
Tyr	Met 675	Pro	Tyr	Pro	Gly	Thr 680	Arg	Ile	Asn	Gln	Glu 685	Thr	Val	Ser
Asp 690	Ala	Asn	Gly	Val	Ser 695	Gly	Ser	Ala	Ser	Tyr 700	Tyr	Glu	Val	Lys
Ser	Asp	Pro	Ser	Lys 710	Pro	Asn	Gly	Gln	Ile 715	Trp	Thr	Gly	Val	Ile 720
Ser	Pro	Ala			Ala	Pro	Asp	Ala 730	Gly	Pro	Pro	Gln	Arg 735	Trp
Val	. Val			Gly	Thr	Ala	Asn 745	Asn	Pro	Val	Asp	Lys 750	Gly	Ala
Lys			ı Ala	Glu	Ser	760	e Arg	Pro	Leu	ı Val	Ala 765	Pro	Pro	Pro
		a Pro	Ala	a Pro	775	a Glu	ı Pro	Ala	a Pro	780	Pro	Ala	Pro	Ala
	ı Va	l Ala	a Pro	790	r Pro	Thi	c Thi	r Pro	79!	r Pro	Glr	n Arg	J Thr	E Let 800
	Thr Tyr Asp 690 Ser Val	Thr Asp Tyr Met 675 Asp Ala 690 Ser Asp Ser Pro Val Val Lys Ala 755 A Pro Ala 770 y Glu Val	Thr Asp Ser 660 Tyr Met Pro 675 Asp Ala Asn 690 Ser Asp Pro Ala Val Val Trp 740 Lys Ala Leu 755 Pro Ala Pro 770 y Glu Val Ala	Ile Val Leu Gly 645 Thr Asp Ser Lys 660 Tyr Met Pro Tyr 675 Asp Ala Asn Gly 690 Ser Asp Pro Ser Ser Pro Ala Ala 725 Val Val Trp Leu 740 Lys Ala Leu Ala 755 Pro Ala Pro Ala 770 y Glu Val Ala Pro	Thr Asp Ser Lys Ala 660 Tyr Met Pro Tyr Pro 675 Asp Ala Asn Gly Val 690 Ser Asp Pro Ser Lys 710 Ser Pro Ala Ala Asn 725 Val Val Trp Leu Gly 740 Lys Ala Leu Ala Glu 755 Pro Ala Pro Ala Pro Tho	Thr Asp Ser Lys Ala Ala 660 Tyr Met Pro Tyr Pro Gly 675 Asp Ala Asn Gly Val Ser 690 Ser Asp Pro Ser Lys Pro 710 Ser Pro Ala Ala Asn Ala 725 Val Val Trp Leu Gly Thr 740 Lys Ala Leu Ala Glu Ser 755 Pro Ala Pro Ala Pro Ala 775 Glu Val Ala Pro Thr Pro 770 Glu Val Ala Pro Thr Pro 770	Thr Asp Ser Lys Ala Ala Ala Ala 660 Tyr Met Pro Tyr Pro Gly Thr 675 Asp Ala Asn Gly Val Ser Gly 690 Ser Asp Pro Ser Lys Pro Asn 710 Ser Pro Ala Ala Asn Ala Pro 725 Val Val Trp Leu Gly Thr Ala 740 Lys Ala Leu Ala Glu Ser Ile 755 Pro Ala Pro Ala Pro Thr Pro Thr 770 Glu Val Ala Pro Thr Pro Thr	Ile Val Leu Gly Arg Leu Asp Gln 645 Thr Asp Ser Lys Ala Ala Ala Arg 660 Tyr Met Pro Tyr Pro Gly Thr Arg 675 Asp Ala Asn Gly Val Ser Gly Ser 690 Ser Asp Pro Ser Lys Pro Asn Gly 710 Ser Pro Ala Ala Asn Ala Pro Asp 725 Val Val Trp Leu Gly Thr Ala Asn 745 Lys Ala Leu Ala Glu Ser Ile Arg 755 Pro Ala Pro Ala Pro Ala Glu Pro 770 Glu Val Ala Pro Thr Pro Thr Thr	Ser Pro Ala Ala	11e Val Leu Gly Arg Leu Asp Gln Lys Leu 645	San	Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala 645 Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp 660 Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu 685 Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr 700 Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr 710 Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro 730 Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp 745 Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala 755 Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro 770 Glu Val Ala Pro Thr Pro Thr Thr Pro Thr Pro Gli 795	Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser 645 Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met 660 Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr 675 Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr Glu 700 Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr Gly 710 Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro Gln 730 Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys 740 Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro 755 Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala 770 Glu Val Ala Pro Thr Pro Thr Thr Pro Gln Arg 780	The Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser Ala G55

CLAIMS

We claim:

- 1. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
 - (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 17);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123); and
 - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131)

wherein Xaa may be any amino acid.

- 2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124) and
 - (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an antigenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 26-51, 133, 134, 158-178 and 196, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 26-51, 133, 134, 158-178 and 196 or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.

- 6. A recombinant expression vector comprising a DNA molecule according to claim 5.
 - 7. A host cell transformed with an expression vector according to claim 6.
- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides according to any of claims 1-4; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 10. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 11. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198; and

- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 12. The method of any one of claims 9-11 wherein step (a) additionally comprises contacting the biological sample with a 38 kD *M. tuberculosis* antigen and step (b) additionally comprises detecting in the sample the presence of antibodies that bind to the 38 kD *M. tuberculosis* antigen.
- 13. The method of any one of claims 9-11 wherein the polypeptide(s) are bound to a solid support.
- 14. The method of claim 13 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 15. The method of any one of claims 9-11 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
- 16. The method of claim 15 wherein the biological sample is whole blood or serum.
- 17. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting *M. tuberculosis* infection.

231

18. The method of claim 17, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 5.

- 19. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting *M. tuberculosis* infection.
- 20. The method of claim 19, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 21. The method of claims 17 or 19 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 22. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.

- 23. The method of claim 22 wherein the probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 24. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198; and
 - (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 25. The method of claim 24 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 26. The method of claims 22 or 24 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 27. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1-4; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting *M. tuberculosis* infection in the biological sample.
- 28. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 29. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 30. The method of any one of claims 27-29 wherein the binding agent is a monoclonal antibody.
- 31. The method of any one of claims 27-29 wherein the binding agent is a polyclonal antibody.
 - 32. A diagnostic kit comprising:
 - (a) one or more polypeptides according to any of claims 1-4; and
 - (b) a detection reagent.
 - 33. A diagnostic kit comprising:
- (a) one or more polypeptides having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
 - (b) a detection reagent.

- 34. A diagnostic kit comprising:
- (a) one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198; and
 - (b) a detection reagent.
- 35. The kit of any one of claims 32-34 wherein the polypeptide(s) are immobilized on a solid support.
- 36. The kit of claim 35 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 37. The kit of any one of claims 32-34 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 38. The kit of claim 37 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 39. The kit of claim 37 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
- 40. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a DNA molecule according to claim 5.

- 41. A diagnostic kit according to claim 40, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotide of a DNA molecule according to claim 5.
- 42. A diagnostic kit comprising a at least two oligonucleotide primers, at least one of the primers being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 43. A diagnostic kit according to claim 42, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotide of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 44. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA molecule according to claim 5.
- 45. A kit according to claim 44, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 46. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 47. A kit according to claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195 and 198.
- 48. A monoclonal antibody that binds to a polypeptide according to any of claims 1-4.

- 49. A polyclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 50. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- 51. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6 (SEQ ID NO: 99).
- 52. A fusion protein comprising a polypeptide having an N-terminal sequence selected from the group of sequences provided in SEQ ID NOS: 129 and 130.
- 53. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the *M. tuberculosis* antigen 38 kD (SEQ ID NO: 150).
 - 54. A diagnostic kit comprising:
 - (a) one or more fusion proteins according to any one of claims 50-53; and
 - (b) a detection reagent.

Fig. 1A-1

Fig. 1A-2

SUBSTITUTE SHEET (RULE 26)

Fig. 1B-1

Fig. 1B-2

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Fig. 3B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)