Teoria da Probabilidade, Resumo da A2

jãopredo e artu 19/05/2025

Contents

1.	Variáveis Aleatórias Contínuas	2
	Variáveis Aleatórias Contínuas	2
	1.2. Propriedades da CDF e PDF	
	1.3. LOTUS (Law of The Unconscious Statistician)	
	1.4. Variância e Esperança	
	1.5. Propriedades da Esperança e Variância	
2.	Distribuições Contínuas	
	2.1. Distribuição Uniforme	
	2.2. Distribuição Exponencial	
	2.3. Distribuição Gamma	
	2.4. Distribuição Normal	
	2.5. Taxa de Falhas	
3.	Variáveis Aleatórias Contínuas Bidimensionais	
	3.1. Função de Densidade Conjunta	
	3.2. Distribuições Marginais e Condicionais	
	3.3. Covariância e Correlação	
	3.4. Mudança de Variáveis Contínuas	
4.	Soluções de Exercícios de Testes Anteriores	
	4.1. Teste 2022	
	4.2. Teste 2021	

1. Variáveis Aleatórias Contínuas

1.1. Definições

Definimos aqui o necessário sobre variáveis aleatórias contínuas para a compreensão dos conteúdos do teste:

Definição 1.1.1: (V.A Contínua)

Uma v.a contínua é uma variável aleatória $X:\Omega\to\mathbb{R}$ com CDF $F_X(\varphi)$ é diferenciável

Definição 1.1.2: (Função de Distribuição - CDF)

A função de distribuição de uma v.a contínua X é dada por:

$$F_X(\varphi) = P(X \le \varphi) \tag{1}$$

Definição 1.1.3: (Função de Densidade - PDF)

Calculamos a densidade de probabilidade calculando a probabilidade de X estar num intervalo, e dividimos pelo tamanho do intervalo:

$$\frac{P(X \in I = [\psi, \psi + \varepsilon])}{\|I\| = \varepsilon} = \frac{P(\psi \le X \le \psi + \varepsilon)}{\varepsilon} = \frac{F_X(\psi + \varepsilon) - F_X(\psi)}{\varepsilon}$$
(2)

Tomando o limite quando $\varepsilon \to 0$, obtemos a função de densidade de probabilidade PDF no ponto ψ :

$$\lim_{\varepsilon \to 0} \frac{F_X(\psi + \varepsilon) - F_X(\psi)}{\varepsilon} = F_X'(\psi) = f_X(\psi) \tag{3}$$

É importante notar que a PDF não é uma probabilidade, mas sim uma densidade de probabilidade. Veja:

$$P(X \in I) = P(a \le X \le b) = F_X(b) - F_X(a) \tag{4} \label{eq:4}$$

Usamos a PDF e o teorema fundamental do cálculo para calcular a probabilidade de X estar em um intervalo I = [a, b]:

$$P(X \in I) = F_X(b) - F_X(a) = \int_a^b f_X(\varphi) d\varphi \tag{5}$$

Logo a a integral definida da PDF é de fato uma probabilidade.

1.2. Propriedades da CDF e PDF

Dada uma v.a contínua X com PDF $f_X(\varphi)$ e CDF $F_X(\varphi)$, é intuitivo que com $\varphi \to \infty$, $P(X \le \varphi) = F_X(\varphi) \to 1$, e analogamente com $\varphi \to -\infty$, $P(X \le \varphi) = F_X(\varphi) \to 0$. Então enunciamos as seguintes propriedades:

Propriedade 1.2.1.:

$$\lim_{\varphi \to \infty} F_X(\varphi) = 1$$

$$\lim_{\varphi \to -\infty} F_X(\varphi) = 0$$
(6)

Logo, $F_X(\varphi)$ é uma função crescente, e $F_X(\varphi) \in [0,1].$

Propriedade 1.2.2.:

$$F_X(\varphi) = \int_{-\infty}^{\varphi} f_X(\psi) d\psi$$

$$\int_{-\infty}^{\infty} f_X(\psi) d\psi = 1$$
(7)

1.3. LOTUS (Law of The Unconscious Statistician)

Se X é uma v.a contínua com PDF $f_X(\varphi)$ e $g:\mathbb{R}\to\mathbb{R}$ é contínua, então a esperança de Y=g(X) é dada por:

$$E(g(X)) = \int_{-\infty}^{\infty} g(\varphi) f_X(\varphi) d\varphi \tag{8}$$

1.4. Variância e Esperança

Definição 1.4.1: (Esperança)

Dada uma v.a contínua X com PDF $f_X(\varphi)$, a esperança de X é dada por:

$$E(X) = \int_{-\infty}^{\infty} \varphi f_X(\varphi) d\varphi \tag{9}$$

Definição 1.4.2: (Variância, Desvio-Padrão)

A variância de uma v.a contínua X com PDF $f_X(\varphi)$ e esperança $\mu=E(X)$ é dada por:

$$V(X) = E[(X - E(X)^2] = \int_{-\infty}^{\infty} [\varphi - \mu]^2 f_X(\varphi) d\varphi \qquad (10)$$

O desvio padrão é:

$$\sigma(X) = \sqrt{V(X)} \tag{11}$$

1.5. Propriedades da Esperança e Variância

Dadas v.a's contínuas X,Y com PDF $f_X(\varphi),f_Y(\varphi)$ e $a,b\in\mathbb{R},$ temos:

Propriedade 1.5.1.:

$$E(aX + b) = aE(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$V(aX + b) = a^{2}V(X)$$

$$(12)$$

E caso X, Y sejam independentes:

$$E(XY) = E(X)E(Y)$$

$$V(X+Y) = V(X) + V(Y)$$
(13)

Propriedade 1.5.2.: Podemos calcular a variância de X usando a esperança:

$$V(X) = E(X^2) - E(X)^2 (14)$$

- 2. Distribuições Contínuas
- 2.1. Distribuição Uniforme
- 2.2. Distribuição Exponencial
- 2.3. Distribuição Gamma
- 2.4. Distribuição Normal
- 2.5. Taxa de Falhas
- 3. Variáveis Aleatórias Contínuas Bidimensionais
- 3.1. Função de Densidade Conjunta
- 3.2. Distribuições Marginais e Condicionais
- 3.3. Covariância e Correlação
- 3.4. Mudança de Variáveis Contínuas
- 4. Soluções de Exercícios de Testes Anteriores
- 4.1. Teste 2022
- 4.2. Teste 2021