Worksheet n°1

Exercise 1. Let U and V be two independent random variables with distribution uniform over [0,1]. Let X=U+V and Y=U-V.

- 1. Compute the expectation and covariance matrix of $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$.
- 2. Prove that X and Y are uncorrelated but not independent.

Indications. Recall that the variance of the uniform distribution is 1/12. Compute E[X], E[Y], Var[X], Var[Y] and Cov(X,Y). The solution is $E[Z] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $K_Z = \begin{pmatrix} 1/6 & 0 \\ 0 & 1/6 \end{pmatrix}$. X and Y are uncorrelated but not independent. It is possible because the vector is not Gaussian.

Exercise 2. Let X be a random vector in \mathbb{R}^n and A be a deterministic $m \times n$ matrix.

- 1. Prove that $K_X = E[(X E[X])(X E[X])^T] = E[XX^T] E[X]E[X]^T$.
- 2. Prove that $K_{AX} = AK_XA^T$.
- 3. Use 2. to derive again the result of exercise 1.

Indications. For 1 and 2, this is just a manipulation of vectors and matrices. For 3, write $Z = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}$

Exercise 3. Let $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ be a Gaussian vector with mean $\mu = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and covariance matrix $\Sigma = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.

- 1. Compute the density of this distribution.
- 2. Using $f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_X(x)}$, compute the distribution of Y given X = x.
- 3. What is the best prediction of Y given X = x?

Indications.

1. Use the general formula of the density of a Gaussian vector.

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(2x^2 + y^2 + 2xy - 8x - 6y + 10)\right]$$

- 2. $f_{Y|X=x}(y) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y-(3-x)^2)\right]$ so the distribution of Y given X=x is $\mathcal{N}(3-x,1)$.
- 3. The best prediction of Y given X = x is 3 x.

Exercise 4. Let X be a random variable in $L^2 = \{X; E[X^2] < +\infty\}$. By definition, the best approximation of X by a constant is the orthogonal projection of X on the space D of constant random variables. Prove that this best approximation is E[X].

Indications. The orthogonal projection of X on D is the constant b such that $||X - b||^2 = \min_{a \in D} ||X - a||^2$. $||X - a||^2 = Var[X] + (E[X] - a)^2$, so this norm is minimal for a = E[X]. The last formula can be written $||X - a||^2 = ||X - E[X]||^2 + ||E[X] - a||^2$, which is the Pythagorean theorem applied to the triangle (X, E[X], a).

Exercise 5. Let $\begin{pmatrix} X \\ Y \end{pmatrix}$ be a Gaussian vector in \mathbb{R}^2 . Let $Z = Y - E[Y] - \frac{Cov(X,Y)}{Var[X]}[X - E[X]]$.

- 1. Compute E[Z] and Var[Z].
- 2. Prove that X and Z are independent.
- 3. Derive the distribution of Y given X = x.
- 4. Use 3. to derive again the result of exercise 3.

Indications.

1.
$$E[Z] = 0$$
 and $Var[Z] = Var[Y] - \frac{Cov(X,Y)^2}{Var[X]}$.

- 2. $\begin{pmatrix} X \\ Z \end{pmatrix}$ is a linear transform of $\begin{pmatrix} X \\ Y \end{pmatrix}$, so it is also a Gaussian vector. Cov(X,Z)=0, so X and Z are independent.
- 3. The distribution of Y given X = x can be derived from that of Z given X = x by a translation. The distribution of Z given X = x is the distribution of Z. Finally, the distribution of Y given X = x is normal with mean $E[Y] + \frac{Cov(X,Y)}{Var[X]}[x E[X]]$ and variance $Var[Y] \frac{Cov(X,Y)^2}{Var[X]}$. For Gaussian vectors, the best prediction of Y given X = x is affine.
- 4. In the case of exercise 3, the mean and variance are 3-x and 1.