Computer Vision Interest Points

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Interest Points

What have we learned so far?

- Light and color
- What an image records
- Filtering in spatial domain
 - Filtering = weighted sum of neighboring pixels
 - Smoothing, sharpening, measuring texture
- Filtering in frequency domain
 - Filtering = change frequency of the input image
 - Denoising, sampling, image compression
- Image pyramid (Gaussian and Laplacian)
 - Multi-scale analysis
- Edge detection
- Canny edge = smooth -> derivative -> thin -> threshold -> link
 - · Finding straight lines

Today's class

What is interest point?

Corner detection

Handling scale and orientation

- Motivation: panorama stitching
 - We have two images how do we combine them?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract

features Step 2: match

features

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features Step 3: align

images

Applications

- Keypoints are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Advantages of local features

Locality

features are local, so robust to occlusion and clutter

Quantity

hundreds or thousands in a single image

Distinctiveness:

can differentiate a large database of objects

Efficiency

real-time performance achievable

Overview of Keypoint Matching
1. Find a set of

I. Find a set of distinctive key-points

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content

- 1. Find a set of distinctive keypoints
 - 2.Define a region around each keypoint
 - 3.Extract and normalize the region content
 - 4.Compute a local descriptor from the normalized region

 $d(f_A, f_B) < T$

- 1. Find a set of distinctive keypoints
 - 2.Define a region around each keypoint
 - 3.Extract and normalize the region content
 - 4.Compute a local descriptor from the normalized region

5.Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Corner Detection: Basic Idea

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":
significant change in all directions

Consider shifting the window W by (u,v)

Consider shifting the window W by (u,v)

•how do the pixels in W change?

Consider shifting the window W by (u,v)

- •how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- •this defines an SSD "error" E(u,v):

Consider shifting the window W by (u,v)

- •how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- •this defines an SSD "error" E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

$$\approx \sum_{(x,y)\in W} (I(x,y) + I_x(x,y)u + I_y(x,y)v - I(x,y))^2$$

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

$$\approx \sum_{(x,y)\in W} (I(x,y) + I_x(x,y)u + I_y(x,y)v - I(x,y))^2$$

$$\approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$E(u,v) \approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} \left(I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2\right)$$

$$E(u,v) \approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} \left(I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2\right)$$

$$\approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

$$E(u, v) \approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} (I_x^2u^2 + 2I_xI_yuv + I_y^2v^2)$$

$$\approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2 \quad B = \sum_{(x,y)\in W} I_xI_y \quad C = \sum_{(x,y)\in W} I_y^2$$

• Thus, E(u,v) is locally approximated as a quadratic form

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u, v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x, y) \in W} I_{x}^{2}$$

$$H$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \left[\begin{array}{ccc} u & v \end{array} \right] \left[\begin{array}{ccc} A & B \\ B & C \end{array} \right] \left[\begin{array}{ccc} u \\ v \end{array} \right]$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge: $I_x=0$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge:
$$I_x=0$$

$$H = \left[\begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right]$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge:
$$I_x=0$$

$$H = \left| \begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right|$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge: $I_y=0$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge:
$$I_y=0$$

$$H = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge:
$$I_{y}=0$$

$$H = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$

General case

The shape of *H* tells us something about the distribution of gradients around a pixel

We can visualize *H* as an ellipse with axis lengths determined by the *eigenvalues* of *H* and orientation determined by the *eigenvectors* of *H*

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} & H & \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

The **eigenvectors** of a matrix \mathbf{A} are the vectors \mathbf{x} that satisfy:

The scalar λ is the **eigenvalue** corresponding to **x**

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** = **H** is a 2x2 matrix, so we have

$$\det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** = **H** is a 2x2 matrix, so we have

$$\det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

• The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** = **H** is a 2x2 matrix, so we have

$$\det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

• The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know λ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$E(u,v) \approx \left[\begin{array}{ccc} u & v \end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right]$$

$$Hx_{\max} = \lambda_{\max}x_{\max}$$

$$Hx_{\min} = \lambda_{\min}x_{\min}$$

Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- x_{max} = direction of largest increase in E
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in E
- λ_{min} = amount of increase in direction x_{min}

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

What's our feature scoring function?

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

I

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.

Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the *H* matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features

J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the *H* matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features

The Harris operator

 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$= determinant(H) - \kappa (trace(H))^2$$

- The trace is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

¹C. Harris and M. Stephens (1988). <u>"A combi ned cor ner and edge detector"</u>. *Proceedings of the 4th Alvey Vision Conference*. pp. 147–151.

Noble's corner operator

The "Noble's operator" for feature detection is:

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The trace is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Noble's Corner Detector"

¹A. Noble (1989). Descriptions of Image Surfaces (Ph.D.). Department of Engineering Science, Oxford University. p. 45.

The Harris operator

Harris detector example

f value (red high, blue low)

f value (red high, blue low)

Threshold (f > value)

Find local maxima of f

Harris features (in red)

Weighting the derivatives

 In practice, using a simple window W doesn't work too well

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

 Instead, we'll weight each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Harris Detector — Responses [Harris88]

Harris Detector — Responses [Harris88]

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

- Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

- Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

- Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

x (image coordinate)

Partially invariant to affine intensity change

Scaling

Scaling

Scaling

Not invariant to scaling

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, Harris
 - Invariant to scale, rotation, etc.

- Harris Corner Detection
 - Rotation Invariant
 - Partial Intensity Change Invariant
 - Not Invariant to Scale

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - D. Lowe
 - A. Bobick
 - S. Lazebnik
 - K. Grauman
 - R. Zaleski
 - Leibe

Thank you

Next class: Region Detection and Local Descriptors

