Comparison of semiconducting and superconducting hardware for optoelectronic neuromorphic systems

Bryce Primavera and Jeff Shainline

National Institute of Standards and Technology 325 Broadway, Boulder, CO, USA, 80305

Monday 1st June, 2020

Abstract

Contents			1	Introduction
	Introduction	1	2	Device requirements for neuro- morphic systems
2	Device requirements for neuromorphic systems	1	3	Light Sources
3	Light Sources	1	4	Detectors
4	Detectors	1	5	Interconnection network and
5	Interconnection network and fan-out	1	9	fan-out
6	Synaptic circuits and weighting	1	6	Synaptic circuits and weighting
7	Dendrites and fan-in	1	7	Dendrites and fan-in
8	Neural integration and threshold	1	8	Nounal integration and thresh
9	Transmitter driver circuits	1	0	Neural integration and threshold
10	Time constants and subthreshold oscillations	1	9	Transmitter driver circuits
11	Biasing	1	10	Time constants and subthresh-
	Power consumption, cooling, and system considerations Notes	1		old oscillations
		1	11	Biasing
			12	Power consumption, cooling,
	Acknowledgements	2		and system considerations
A	Appendix One	2	13	Notes
			l Diffe	erences between neural and digital optical communi-

cation:

- neural: mux/demux not required
- neural: high power optical signals not necessary (nor tolerable)
- neural: not point to point, one to many
- neural: asynchronous, no clock, no phase-locked loop, no clock recovery on receive
- neural: 1s and 0s not equally common; signals are sparse
- neural: TIA + limiting amplifier + decision circuit likely uses too much power
- neural: noise is more tolerable, decision circuit still potentially useful
- neural: speed can be much lower, as demonstrated by biology
- neural: with lower light levels, light-source driver circuits don't need to deliver as much current
- multi-chip partitioning required for digital due to high speed and sensitivity to timing jitter, multi-chip not tolerable for neural (cannot have multiple chips for each neuron) Tx and Rx amplifiers cannot remain in isolation ([1] pg. 5)

other notes:

• in conventional optical communication systems, package parasitics limit speed. optoelectronic integration crucial for overcoming this limitation ([1] pg. 5)

14 Acknowledgements

This is a contribution of NIST, an agency of the US government, not subject to copyright.

A Appendix One

Appendix One

References

[1] B. Razavi. Design of Integrated Circuits for Optical Communications. Wiley, second edition edition, 2012.