Actor-Critic method

- Управление устройством
- Аркада
- Торговый бот

https://t.me/devdvAI,

https://github.com/akumidv/startup-khv-ai-study

Машинное обучение

Понятие проблемы обучения с подкреплением

Виды обучения агентов

Задачи агента при обучении с подкреплением

• Автопилоты:

- Оптимизация траекторий и динамическое планирование
- Планирования движений
- Оптимизация управления (колеса, скорость, тормоз)

• Бизнес

- Оптимизация маршрутов бизнес-процессов
- Минимизация энергопотребления
- Максимизация прибыли от акций/криптовалют

• Прочие

- Управление климатом в датацентрах
- Персонифицированные рекомендации
- ИИ боты для персонажей компьютерных игр
- Сопровождение терапии на основе диагноза, лекарств и анализов

Q and Value based reinforcement learning: Q-learning

Источник: https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/

Пример: как роботу пройти из L9 в L1

L1-L9 состояния (s)

Переходы (а)

Награда (r)

	L1	L2	L3	L4	L5	L6	L7	L8	L9
L1	0		0	0	0	0	0	0	0
L2	1 🚛	0	1	0	1	0	0	0	0
L3	0	1	0	0	0	1	0	0	0
L4	0	0	0	0	0	0	1	0	0
L5	0	1 -	9	0		0	0	1	0
L6	0	0	1	0	0	0	0	0	0
L7	0	0	0	1	0	0	0	1	0
L8	0	0	0	0	1 🛨	0	6-60 6-60	0	
L9	0	0	0	0	0	0	0	1 👉	0

SARSA алгоритм

State - Action - Reward - State - Action

Typical RL scenario

Состояние и память для последовательного принятия решения

1		
1		
1	1	1

Память $V(s)=\max a(0+0.9*1)=0.9$

1		
0.9		
0.81	0.729	Starting point

Уравнение Беллмана – последовательное принятие решения

$$V(x_0) \ = \ \max_{\{a_t\}_{t=0}^\infty} \sum_{t=0} eta^t F(x_t, a_t),$$

$$V(s)=max (R(s,a)+\gamma V(s'))$$

- s = состояние (комната лабиринта)
- a = действие action
- s' = предыдущее состояние
- γ = дисконтирование (уменьшение ценности)
- R(s, a) = вознаграждение при действии**а**в состояние**s**
- V(s) = ценность состояния

V(s)=max a(0+0.9)	∗1)=0.9
-------------------	---------

	1	0.9
1	0.9	0.81
0.9	0.81	0.729
0.81	0.729	0.66

Если окружение меняется?

В одном и том же месте, но состояниями меняющимися со временем и награда будет разной

Временная разница – Temporal difference

$$TD(a,s) = Q(s,a) - Q_{t-1}(s,a)$$

PACHET 01_Q_Learning.ipynb


```
[62] route = get optimal route('L9', 'L1', Q)
  L1 [[3996. 2249.
                                                            0.]
                0. 1688.
          0. 2249.
                                                            0.]
                      0.
                                               0. 1267.
          0. 2249.
                0. 1688.
                         714.
                                                   1267.
                             0. 1688.
                      0.
                                             951.
                                                          951.]
                            0.
                                               0. 1267.
                                                            0.]]
                                 L5
     route
     ['L9', 'L8', 'L5', 'L2', 'L1']
```

Ограничение моделей с памятью

- Нужно рассчитать и хранить все состояния для всех действий
- Агент (робот) выбирает из заданных извне состояний, а не оценивает среду
- Не предусмотрена возможность (вероятность) сбоя
- Нет динамического формирования начальных условий. Если есть многомерное пространство (параметрическое)

• Решение — цепи Маркова — принятие решение в ситуациях частично случайного окружения и частично под контролем актора

Цепи Маркова

Беллман
$$V(s)=max (R(s,a)+\gamma V(s'))$$

перемещения в s из s' γ∑s'P(s,a,s')V(s')) - ожидание случайности выбора

Цепи Маркова – stochastic policy based RL

Цепи Маркова – в двух словах

P(future | present, past) = P(future | present, (markov property)

Следующее состояние зависит только от настоящего состояния и вероятности.

Цепи Маркова: формула вознаграждения

$$V(s) = max (R(s,a)+\gamma((0.8V(up)) + (0.1V(down))+...))$$

Расчет вознаграждения после достижения цели.

Q-learning от качества решения (Quality)

	0.8 (<i>V(s1)</i>)	
0.05 ← (V(s4))	0	→ 0.05 (<i>V</i> (s2))
	↓ 0.1 (<i>V</i> (s3))	

Сценностью

С качеством решения

Что такое качество решения?

Качество решения = Q-values

$$V(s) = \max a \left(R(s, a) + \gamma \sum_{s'} s' P\left(s, a, s'\right) V\left(s'\right) \right)$$

$$Q(s, a) = R(s, a) + \gamma \sum_{s'} \left(P\left(s, a, s'\right) V\left(s'\right) \right)$$

$$Q(s, a) = R(s, a) + \gamma \sum_{s'} \left(P\left(s, a, s'\right) \max_{a'} Q\left(s', a'\right) \right)$$

Policy-based reinforcement learning

Источник: https://medium.com/intro-to-artificial-intelligence/reinforce-a-policy-gradient-based-reinforcement-learning-algorithm-84bde440c816

Маршрут

Награда за следующий шаг

$$r_t = R(s_t, a_t, s_{t+1})$$

Маршрут с видимым горизонтом

$$R(\tau) = \sum_{t=0}^{I} r_t.$$

Маршрут с бесконечным горизонтом и дисконтированием

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t.$$

γ - Fog of war?

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t.$$

Сумма вознаграждений – определяет маршрут

С шага 0 до шага Т-1 перед финальным состоянием

$$R(\tau) = \sum_{t=0}^{T-1} R(s_t, a_t)$$

τ = (s0,a0, ..., sT-1,aT-1) состояния и переходы по маршруту

Различие ценности и политики

ЧЕМ ОТЛИЧАЕТСЯ ПОЛИТИК ОТ ШАХМАТИСТА?

Модель ценности и политики в формуле

$$V^*(s) = \max_a Q^*(s, a) \quad \forall s \in \mathbb{S}$$

$$\pi^*(s) = \arg\max_a Q^*(s, a) \quad \forall s \in \mathbb{S}$$

Политика (policy)

Вероятная для следующего состояния от текущего и действия

$$p(s_{t+1}|s,a)$$

$$\pi(a,s) = Pr(a|s)$$

Детерминированная, если вероятность 1

Заданная модель

$$\mu(s) = a$$

Вероятность траектории

Вероятность начального состояния Вероятность перехода в новое состояние из текущего с действием

Параметричес кая функция политики перехода в следующе состояние

Как найти политику

- Мы можем получать состояния
- У нас ограниченный набор действий
- Как найти π содержащую параметры θ?

Policy gradients: $\pi\theta(a|s)$

Источник:

Что такое градиент

Как посчитать градиент?

Градиент (∇, набла) - вектор показывающий направление наибольшего изменения функции. Сумма частных производных.

$$\varphi = f(x, y, z)$$

$$grad(\varphi) = \nabla \varphi = \frac{\partial \varphi}{\partial x} i + \frac{\partial \varphi}{\partial y} j + \frac{\partial \varphi}{\partial z} k$$

Производная - показывает скорость изменения функции в заданной точке или **тангенс угла** наклона касательной к графику функции.

ЕСЛИ НЕТ ФУНКЦИИ, НО ЕСТЬ ЗНАЧЕНИЯ ФУНКЦИИ?

Тангенс

Угловой коэффициент или тангенс угла наклона – отношение изменения у к х

$$\Upsilon = \frac{Y_2 - Y_1}{X_2 - X_1}$$

$$3 - 1 \qquad 2 \qquad - \qquad 0$$

$$m = \frac{3-1}{5-2} = \frac{2}{3} = 0.67$$

Тангенс

Угловой коэффициент или тангенс угла наклона – отношение изменения у к х

$$Y8_9 = 951$$
 $tg_a_9 = (951 - 0)/-1$
 $Y8_7 = 951$ $tg_a_7 = (1267 - 0)/1$
 $Y8_5 = 1688$ $th_a_5 = (1688-0)/1$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{3 - 1}{5 - 2} = \frac{2}{3} = 0.67$$

πθ(a|s) – параметризированная политика

• Задача её максимизации - поиск максимума функции $J(\pi\theta)$, где $E_{\pi\theta}$ ожидание траектории для политики с параметрами.

$$J(\pi_{\theta}) = E_{\pi_{\theta}} [\sum_{t=0}^{T-1} R(s_t, a_t)] = E_{\pi_{\theta}} [R(\tau)] = \sum_{\tau} P(\tau | \pi_{\theta}) R(\tau)$$
 Вероятная $\pi \theta$ (a|s)

Методом градиента ∇ - направления для возрастания(убывания) значения

$$\nabla J(\pi_{\theta}) = \nabla E_{\pi_{\theta}}[R(\tau)]$$

Градиент дает направление наибольшего (наименьшего) изменения. Значение указывает на максимальную степень изменения.

Обновление параметров политики

$$\theta = \theta + \alpha \nabla E_{\pi_{\theta}}[R(\tau)]$$

α - Learning rate

$\nabla J(\pi\theta)$ - пропустим?

$$\begin{split} \nabla E_{\pi_{\theta}}[R(\tau)] &= \nabla_{\theta} \sum_{\tau} P(\tau|\theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau|\theta) R(\tau) \;, \; bring \; gradient \; under \; summation \\ &= \sum_{\tau} P(\tau|\theta) \frac{\nabla_{\theta} P(\tau|\theta)}{P(\tau|\theta)} R(\tau) \;, both \; multiply \; and \; divide \; by \; P(\tau|\theta) \\ &= \sum_{\tau} P(\tau|\theta) \nabla_{\theta} log P(\tau|\theta) R(\tau) \;, \; log-derivative \; trick \; based \; on \; \nabla_{\theta} log(z) = \frac{\nabla_{\theta} z}{z} \\ &= E_{\pi_{\theta}} (\nabla_{\theta} log P(\tau|\theta) R(\tau)), \; return \; to \; expectation \; form \end{split}$$

Вероятность, что траектория приведет к конечному состоянию

$$P(\tau|\theta) = p(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t, s_t)$$

$$\nabla J(\theta) = E_{\pi_{\theta}} \left(\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t, s_t) R(\tau) \right)$$

REINFORCE – метод усиления

ВЫБОР ГРАДИЕНТА ПОЛИТИКИ МЕТОДОМ МОНТЕ-КАРЛО

Поиск параметров для определения маршрута из среды

МЕТОД МОНТЕ-КАРЛО

$$P_1 = S_{\kappa p \gamma r} / S_{\kappa B a J p a \tau a} = \pi R^2 / a^2 = \pi R^2 / (2 R)^2 = \pi R^2 / (2 R)^2 = \pi / 4$$
 $P_2 = N_{nonab m \nu x \ B \ \kappa p \gamma r} / N_{to 4 e \kappa}$

РАСЧЕТ МАТ.ОЖДИДАНИЯ МОНТЕ-КАРЛО

$$\int_{a}^{b} f(x) \, dx$$

$$\mathbb{E} f(u) = \int\limits_a^b f(x) arphi(x) \, dx,$$

$$\mathbb{E} f(u)$$

математическое ожидание случайной величины

$$\varphi(x) = \frac{1}{b-a}$$

плотность распределения случайной величины

$$\mathbb{E} f(u) = rac{1}{N} \sum_{i=1}^N f(u_i)$$

Максимизация функции градиентом выборкой по Монте-карло

$$\nabla J(\theta) = E_{\pi_{\theta}}(\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_{t}, s_{t}) R(\tau))$$

$$\nabla J(\theta) \approx \frac{1}{N} \sum_{\tau \in N} \sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_{t}, s_{t}) R(\tau)$$

N – количество траекторий для одного обновления градиента

Алгоритм

- 1. Инициализируем параметры θ политики случайно
- 2. Рассчитываем для N траекторий в соответствии с параметрами политики πθ(a|s)
- 3. Рассчитываем награду для траекторий $R(\tau)$
- 4. Рассчитываем градиент

$$\nabla J(\theta) \approx \frac{1}{N} \sum_{\tau \in N} \sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t, s_t) R(\tau)$$

5. Обновляем параметры политики

 $\theta = \theta + \alpha \nabla J(\theta)$

6. Повторяем шаги 2-5 до N

Источник https://towardsdatascience.com/policy-gradient-methods-104c783251e0

Примеры

GYM

Разработка и сравнение обучающих алгоритмов с подкреплением

Аркада

Управление движением

Симуляция задач основанных на цели

Последовательное управление

Управление

Установка GYM под Windows

- https://towardsdatascience.com/how-to-install-openai-gym-in-a-windows-environment-338969e24d30
- Build Tools for Visual Studio, Windows SDK, MSVC C++ build tools,
 C++ CMake https://visualstudio.microsoft.com/downloads/
- Swig по ссылке http://www.swig.org/download.html
- pip install gym
- pip install git+https://github.com/Kojoley/atari-py.git # ToyText
- pip install Box2D # + swing для Atari environments
- pip install box2d box2d-kengz
- pip install gym[atari] # Atari
- pip install gym[accept-rom-license]
- pip install gym[box2d]
- Xming https://sourceforge.net/projects/xming/
- Перед запуском IDE: set DISPLAY=:0 (можно в окружении)

```
# Проверка
import gym

env = gym.make('CartPole-v0')
env.reset()

for _ in range(1000):
    env.render()
    env.step(env.action_space.sample())

env.close()
```

Игра в пинпонг. Простая НС

- Policy предсказывает вероятность вверх
- W1 200 нейронов с 80x80 весами
- W2 1 нейрон с 80x80 весами

2000 эпизодов.
 Winrate 18/3 (average -18.0)

02_pong_gradient.py

02. АЛГОРИТМ ДЛЯ КАЖДОГО ЭПИЗОДА ИГРЫ

- 1. Готовим изображение конвертируем в вектор размером 80х80
- 2. Определяем разницу с предыдущим вектором
- 3. Определяем вероятное действие на основе политики
- 4. Определяем случайное число и если оно меньше вероятности, действие ВВЕРХ, иначе вниз.
- 5. Сохраняем разницу текущего вектора и предыдущего вектора картинки (xs)
- 6. Сохраняем состояние слоя нейрона (hs)
- 7. Сохраняем коэффициент поощрения выбранного действия (dlogps)
- 8. Проводим наблюдение для выбранного действия
- 9. Сохраняем награду (drs)

02. ПОСЛЕ ОКОНЧАНИЯ ЭПИЗОДА

- 1. Преобразуем массив состояний по кол-ву действий в эпизоде в вектор (ерх)
- 2. Преобразум массив по ходам выходов нейронов в эпизоде в вектор (eph)
- 3. Преобразуем массив по ходам вероятностей действий в вектор epdlogp
- 4. Преобразуем массив наград в вектор
- 5. Рассчитываем награду в зависимости от количества шагов за которые $R(\tau)$ она получена (отрицательная проигрыш, положительная выигрыш партии) (discount_rewards) и нормализуем значения $log\pi_{\theta}(a_t,s_t)R(\tau)$
- 6. Модифицируем значение вероятности шага на основе награды epdlogp
- 7. Рассчитываем градиент и формируем изменение весов модели
- 8. Для каждого батча меняем веса модели на основе градиента и коэффициента обучения

Игра в пинпонг. Тензорфлоу

• Та же самая логика, но нейронная сеть на основе TensorFlow

03_Policy_Gradien_for_Pong.py

- Policy предсказывает вероятность вверх
- Входной слой 80х80
- Слой 1— 512 полносвязанных нейронов
- Выходной слой 1 нейрон

- 85/10000, average: -18.08
- 134/10000, average: -16.00

https://blog.floydhub.com/spinning-up-with-deep-reinforcement-learning/ - код для тензорфлоу с ноутбуком

Кривая обучения

PongDeterministic-v4

Actor-Critic

Policy Gradient и Actor-Critic

ПОЛИТИКА ГРАДИЕНТА

P(au| heta) Модель политики

R(au) Ценностная функция

Для определения направления обновления модели политики можно отдельно рассчитывать ценностную функцию

Источник: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Policy Gradient и Actor-Critic

Актор Обновляем параметры θ для πθ(a|s) на основе критики

Критик
_ Ценность на основе действия
_ Qw(a|s) или на основе состояния
Vw(s), где w параметры функции

Источник: https://pylessons.com/A2C-reinforcement-learning/

Модель работы

Алгоритм

- Инициализируем s состояния, параметры политики θ и параметры функции ценности w, получаем действие а ¬ π_θ(a|s)
- Цикл для t = 1...T
 - Определяем награду $r_t R(s,a)$ и следующее состоянияе s' P(s'|s,a)
 - Получаем следующее действие а' ¬ $\pi_{\theta}(a' \mid s')$
 - Обновляем параметры политики $\theta \leftarrow \theta + \alpha_{\theta} Q_{w(s,a)} \nabla_{\theta} \ln \pi_{\theta}(a \mid s)$
 - Вычисляем коррекцию временной разницы (TD error) для ценности

```
\delta t = rt + \gamma Qw(s',a') - Qw(s,a) и обновляем параметры функции ценности
```

```
w \leftarrow w + \alpha w \delta t \nabla w Q w(s,a)
```

Обновляем а ← а' и состояния s ← s'

Коэффициенты обучения (learning rate) αθ и αw определяем ретроспективно

Actor-Critic

- A3C Asynchronous Advantage Actor-Critic
- A2C Asynchronous Actor-Critic

Отличия кода 04_Actor-Critic.ipynb

```
def OurModel(input shape, action space, lr):
  X input = Input(input shape)
  X = Flatten(input_shape=input_shape)(X_input)
  X = Dense(512, activation="elu", kernel_initializer='he_uniform')(X)
  action = Dense(action_space, activation="softmax", kernel_initializer='he_uniform')(X)
  value = Dense(1, kernel_initializer='he_uniform')(X)
  Actor = Model(inputs = X_input, outputs = action)
  Actor.compile(loss='categorical crossentropy', optimizer=RMSprop(lr=lr))
  Critic = Model(inputs = X_input, outputs = value)
  Critic.compile(loss='mse', optimizer=RMSprop(lr=lr))
  return Actor, Critic
```

Отличия кода 04_Actor-Critic.ipynb

```
def replay(self):
  # reshape memory to appropriate shape for training
  states = np.vstack(self.states)
  actions = np.vstack(self.actions)
  # Compute discounted rewards
  discounted r = self.discount rewards(self.rewards)
  # Get Critic network predictions
  values = self.Critic.predict(states)[:, 0]
  # Compute advantages
  advantages = discounted_r - values
  # training Actor and Critic networks
  self.Actor.fit(states, actions, sample_weight=advantages, epochs=1, verbose=0)
  self.Critic.fit(states, discounted_r, epochs=1, verbose=0)
  # reset training memory
  self.states, self.actions, self.rewards = [], [], []
```

Кривая обучения

Управление тележкой

05_actor_critic_cartpole.ipynb


```
running reward: 101.67 at episode 300 running reward: 134.66 at episode 310 running reward: 152.66 at episode 320 running reward: 165.53 at episode 330 running reward: 172.56 at episode 340 running reward: 183.57 at episode 350 running reward: 190.16 at episode 360 running reward: 189.86 at episode 370 running reward: 189.27 at episode 380 running reward: 193.57 at episode 390 Solved at episode 395!
```

Источник https://keras.io/examples/rl/actor_critic_cartpole/

Торговый бот

A2C

ГРАФИК КАКОГО ТИКЕРА?

Понятие окна для временного ряда

Торговый бот: 1000 данных, окно 10

Источник https://analyticsindiamag.com/creating-a-market-trading-bot-using-open-ai-gym-anytrading/

Торговый бот

ЭТО БЫЛИ СЛУЧАЙНЫЕ ДЕЙСТВИЯ(!)

Источник https://analyticsindiamag.com/creating-a-market-trading-bot-using-open-ai-gym-anytrading/

Результат обучения: 150 бар, окно 50

Та же модель, те же данные: 150 бар, окно 50

Пример АЗС из научной статьи

Deep Robust Reinforcement Learning for Practical Algorithmic Trading YANG LI, WANSHAN ZHENG, ZIBIN ZHENG

ТЕСТОВЫЙ ДАТАСЕТ Jan-2008 to Jan-2018

	APPL		IBM	
	AR	SR	AR	SR
Buy and Hold	33.48%	-	-2.75%	_
Basic DQN	41.13%	2.1	5.63%	1.3
SDAEs-LSTM DQN (ours)	66.69%	3.8	12.31%	2.1
Basic A3C	63.50%	3.6	10.02%	1.8
SDAEs-LSTM A3C (ours)	85.33%	4.3	18.93%	2.5

ПРОВЕРОЧНЫЙ ДАТАСЕТ Jan-2008 to Jan-2018

TABLE 3. The performance of ma

	APPL		IBM		
	ACC	AR(3)	ACC	AR(3)	
SVM	0.52	44.5%	0.50	-1.2%	
DNN	0.48	41.2%	0.52	1.4%	
CNN	0.52	45.2%	0.54	3.4%	
LSTM	0.57	50.5%	0.60	6.7%	

Что не так?

APLE: 911% 2008-2017, 60% 2017

КОНТАКТЫ

Обсуждаем

https://t.me/devdvAl

Репозиторий

https://github.com/akumidv/startup-khv-ai-study

Андрей Куминов

+7 914 770 5846

https://facebook.com/akuminov

https://vk.com/akumidv