A total-reflection x-ray fluorescence apparatus comprising: 1.1 an x-ray source for providing x-rays; a doubly-curved x-ray optic for diffracting the x-rays; a surface onto which at least some of the diffracted x-rays are directed; and an x-ray detector for detecting resultant x-ray fluorescence emitted by any THE ROLL foreign matter present on the surface. n 2. An apparatus as recited in claim 1 wherein the doubly-curved x-ray optic also focuses the x-rays on to the surface. 3. An apparatus as recited in claim 1 wherein the doubly-curved optic is a crystal or multi-layer optic. An apparatus as recited in claim 1 wherein the doubly-curved x-ray optic has one or more atomic planes. An apparatus as recited in claim wherein the atomic planes are curved to form a toroidal, ellipsoidal, spherical, parabolic, or hyperbolic shape. An apparatus as recited in claim 1, further comprising one or more apertures for 6. limiting a convergent angle of the diffracted x-rays, wherein the convergent angle comprises the angle subtending the upper and lower extents of the diffracted x-rays.

| A                                        | b. 7.              | An apparatus as recited in claim 6 wherein the one or more apertures are positioned       |
|------------------------------------------|--------------------|-------------------------------------------------------------------------------------------|
|                                          | 192                | at at least one of before the x-ray optic and after the x-ray optic.                      |
|                                          | <b>b</b> 8.        | An apparatus as recited in claim 6, wherein the one or more apertures comprise an         |
|                                          |                    | elongated slot.                                                                           |
| 5                                        | 9 %.               | An apparatus as recited in claim 2, wherein the one or more apertures produce a           |
|                                          | •                  | convergent angle for the diffracted x-rays which is less than the critical angle for the  |
|                                          |                    | total reflection of the x-rays from the surface for the wavelength of the x-rays.         |
| n <sub>id</sub> p                        | <b>9</b> 10.       | An apparatus as recited in claim 1, wherein the doubly-curved x-ray optic employs         |
| , Hr                                     |                    | Bragg's law in diffracting the x-rays.                                                    |
| 10                                       | ]<br>              | An apparatus as recited in claim 1, further comprising an analyzer for analyzing the      |
| 10 " " " " " " " " " " " " " " " " " " " |                    | x-ray fluorescence detected by the detector.                                              |
|                                          |                    | An apparatus as recited in claim 1, wherein the surface is an optical reflection surface. |
| ll Had at Hom the                        | <b>1</b> 213:      | An apparatus as recited in claim 1, wherein the surface is a surface of a semi-           |
|                                          |                    | conductor wafer.                                                                          |
| 15                                       | 14.                | An apparatus as recited in claim 1, wherein the locations of the doubly-curved x-ray      |
|                                          | 3                  | optic, x-ray source, and point of impingement upon the surface define an optical          |
|                                          | 4                  | circle of radius R wherein the doubly-curved x-ray optic has an optic surface of          |
| $\sim$                                   |                    | radius 2R and one or more atomic planes essentially parallel with the optic surface.      |
|                                          | 20 <del>15</del> . | An apparatus as in claim 14, wherein the doubly-curved x-ray optic provides one of        |

20

symmetric or asymmetric Bragg diffraction.

- An apparatus as recited in claim 14, wherein the atomic planes are curved to form a toroidal, ellipsoidal, spherical, parabolic, or hyperbolic shape.
- An apparatus as in claim 14, wherein the doubly-curved x-ray optic has a transverse plane perpendicular to the optic circle wherein in the transverse plane the atomic planes are circular.

18. A method for detecting presence of foreign matter on a surface using a doubly-curved x-ray optic, comprising:

providing a source of x-rays;

diffracting at least some of the x-rays using a doubly-curved x-ray optic and impinging the diffracted x-rays upon the surface;

detecting flourescent x-rays responsive to the impingement from any foreign matter present on the surface.

- 19. A method as recited in claim 18, wherein the diffracting focuses the at least some x-rays onto the surface.
- 20. A method as recited in claim 18, further comprising impinging the diffracted x-rays upon the surface so that the x-rays are totally-reflected from the surface with little or no x-ray scatter.
- A method as recited in claim 18, further comprising exciting foreign matter present on the surface with the diffracted x-rays so that the foreign matter emits the fluorescent x-rays.

20

5

10 📲

Hart Hill Hill Hart Hart



toroidal, ellipsoidal, spherical, parabolic, or hyperbolic in shape.

asymmetric Bragg diffraction. An apparatus as recited in claim 28, wherein the doubly-curved x-ray optic also 31. focuses the x-rays on to the surface. 32. A total-reflection x-ray fluorescence apparatus comprising: an x-ray source for providing x-rays; a doubly-curved x-ray optic for diffracting the x-rays having a surface and a plurality of atomic planes of radius  $R_p$  which intersect the surface at an angle  $\alpha$ ; a surface onto which at least some of the diffracted x-rays 10 are directed; and an x-ray detector for detecting resultant x-ray fluorescence emitted by foreign matter present on the surface; wherein the radius of the atomic planes R<sub>P</sub> of the doubly-curved optic is ĪΨ defined by the equation  $R_p = 2R \cos \alpha / \Omega$ 33. An apparatus as recited in claim 32, wherein the angle  $\alpha$  is grater than  $0^{\circ}$  and less than 90°. An apparatus as recited in claim 33, wherein the angle or is greater than 0° and less -34. than 20°. 35. An apparatus as recited in claim 32, wherein the optic is a doubly-curved optic. 36. An apparatus as recited in claim 35, wherein the doubly-curved optic is curved to a toroidal, ellipsoidal, spherical, parabolic, or hyperbolic in shape.

23

An apparatus as recited in claim 28, wherein the doubly-curved optic exhibits

30.

5

15

20

0444.035

- 37. An apparatus as recited in claim 32, wherein the doubly-curved optic exhibits asymmetric Bragg diffraction.
- 38. An apparatus as recited in claim 32, wherein the doubly-curved x-ray optic also focuses the x-rays on to the surface.
- 39. An apparatus as in claim 2, wherein the doubly-curved x-ray optic focuses to a footprint on the surface, the foot print having a largest dimension less than 1 mm.
- 40. An apparatus as in claim 39, wherein the doubly-curved x-ray optic focuses to a footprint on the surface, the foot print having a largest dimension less than 500 microns.