Programación dinámica

Brian Bokser

Objetivos

- Ver cómo encarar un problema de dinámica complejo.
- Foco en ideas.
- Entender patrones que se repiten en la técnica.

Ejercicio ccc

Una cadena de caracteres correcta (CCC) es una cadena s que cumple una de las siguientes condiciones:

- Es nula (||c|| = 0);
- Es de la forma "(c)", "[c]" o "{c}", donde "c" es una CCC;
- Es la concatenación de dos CCC

```
Ejemplos: "", "([]\{\})" y "()[]\{\}" No-ejemplos: "][", "((()", "\{\}]" y "(" .
```

Brian Bokser

Ejercicio ccc

Dada una cadena de caracteres de longitud par formada únicamente por los caracteres contenidos en "()[]{}", indicar la mínima cantidad de caracteres que es necesario modificar para transformarla en una CCC. Mostrar que el algoritmo propuesto es correcto y determinar su complejidad.

Ejemplos: "" \rightarrow 0 "][" \rightarrow 2 "((()" \rightarrow 1

Algunas propiedades

¿Siempre se puede convertir la cadena a una CCC?

5 Pasos para una Dinámica (más o menos)

```
* 5 easy steps to dynamic programming:

(1) define subproblems count # subprobs.
(2) guess (port of solution) count # choices
(3) relate subprob. solutions compute time/subprob.
(4) recurse + memoize time = time/subprob.
(5) Solve original problem: = a subproblem
or by combining subprob. solutions (> extra time)
```

De Eric Demaine [1]

¿Qué subproblema podemos plantear? Definamoslo en palabras

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¡Idea Importante!

¿Puedo resolver el problema original con estos subproblemas?

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¡Idea Importante!

¿Puedo resolver el problema original con estos subproblemas? Si! f(0, n). A veces no es trivial.

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¡Idea Importante!

¿Puedo resolver el problema original con estos subproblemas? Si! f(0, n). A veces no es trivial.

Si la respuesta es no, ¡Buscar otro subproblema!

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¡Idea Importante!

¿Puedo resolver el problema original con estos subproblemas? Si! f(0, n). A veces no es trivial.

Si la respuesta es no, ¡Buscar otro subproblema!

¿Cuantos subproblemas hay?

¿Qué subproblema podemos plantear? Definamoslo **en palabras** f(i,j) := "La mínima forma de convertir la subcadena [i...j) en CCC" $0 \le i \le j \le n$. Indexamos desde 0.

¡Idea Importante!

¿Puedo resolver el problema original con estos subproblemas? Si! f(0, n). A veces no es trivial.

Si la respuesta es no, ¡Buscar otro subproblema!

¿Cuantos subproblemas hay? $\mathcal{O}(n^{**}2)$

¡Adivina adivinador!

¡Idea Importante!

Tenemos que "adivinar" una parte de la estructura óptima. ¡Probamos todas las opciones!

¡Adivina adivinador!

¡Idea Importante!

Tenemos que "adivinar" una parte de la estructura óptima. ¡Probamos todas las opciones!

¿Que adivinamos?

¡Adivina adivinador!

¡Idea Importante!

Tenemos que "adivinar" una parte de la estructura óptima. ¡Probamos todas las opciones!

¿Que adivinamos? Cómo se conforma la CCC óptima.

- Parenteseado (c)
- Llaves {c}
- Corchetes [c]
- Concatenación

Ahora queremos relacionar los subproblemas. Usamos la "adivinanza"

¿Cómo calculo f(i,j) si es un parenteseado?

Ahora queremos **relacionar** los subproblemas. Usamos la "adivinanza" $\begin{tabular}{l} \textbf{¿Cómo calculo f(i,j) si es un parenteseado? f(i+1, j-1) + costo de} \\ \textbf{convertir primer y último caracter a paréntesis.} \end{tabular}$

Pero si tenemos '{' y ']', seguro que nos conviene convertir todo a llaves o corchetes, aprovechando lo que ya tenemos.

Ahora queremos relacionar los subproblemas. Usamos la "adivinanza"

¿Cómo calculo f(i,j) si es un parenteseado? f(i+1, j-1) + costo de

convertir primer y último caracter a paréntesis.

Pero si tenemos '{' y ']', seguro que nos conviene convertir todo a llaves o corchetes, aprovechando lo que ya tenemos.

g(i, j) := Costo de emparentar el primero y último caracter.

 $g(i,\,j)\in\{0,\,1,\,2\}$ Se puede implementar con una tablita de 6 \times 6.

Ahora queremos relacionar los subproblemas. Usamos la "adivinanza"

¿Cómo calculo f(i,j) si es un parenteseado? f(i+1, j-1) + costo de

convertir primer y último caracter a paréntesis.

Pero si tenemos '{' y ']', seguro que nos conviene convertir todo a llaves o corchetes, aprovechando lo que ya tenemos.

g(i, j) := Costo de emparentar el primero y último caracter.

 $g(i,\,j)\in\{0,\,1,\,2\}$ Se puede implementar con una tablita de 6 \times 6.

Costo de convertir a (c), [c], $\{c\}$: f(i+1, j-1) + g(i, j)

Formulación recursiva: Concatenación

¿Cómo calculo f(i, j) si sabemos que es una concatenación?

Formulación recursiva: Concatenación

¿Cómo calculo f(i, j) si sabemos que es una concatenación?

¡Pruebo todas las formas de concatenar!

$$[i,j) = [i,k) + [k,j)$$

 $min\{ f(i, k) + f(k, j) Para todo k \}$

Formulación recursiva: Todo

$$f(i, j) = 0 \text{ si } i \ge j$$

$$f(i, j) = min \begin{cases} f(i+1, j-1) + g(i, j) \\ f(i, k) + f(k, j) \forall k \in [i+2..j-2] \end{cases}$$

Top-down

```
function MINIMOS CAMBIOS (i, j)
    if i > j then
        return 0
    end if
   if dp[i,j] \neq -1 then
       return dp[i,j]
    end if
    res \leftarrow minimosCambios(i+1, j-1) + g(i, j)
    for k \leftarrow i+2 to j-2 step 2 do
        res \leftarrow min(res, minimosCambios(i, k) + minimosCambios(k, j)))
    end for
    dp[i, j] \leftarrow res
    return res
end function
```

¿Complejidad?

¿Complejidad?

¡Idea Importante!

 $Total = \#Subproblemas \times Costo por subproblema$ Tomamos la recursión como O(1)

Costo total =
$$\mathcal{O}(n^2) \times \mathcal{O}(n) = \mathcal{O}(n^3)$$

Correctitud

Tenemos que mencionar que:

- Efectivamente resolvimos el problema. Por definición f(0, n) = problema original.
- Cálculo de f correcto. Porque miro todos los casos.
- Cada caso lo resuelvo correctamente.

Bottom-up

La implementación top-down es típicamente más clara, pero la bottom-up podría ser más eficiente (por ejemplo a nivel memoria) .

¡Idea Importante!

Cuando implementamos Bottom-Up tenemos que ocuparnos del orden de las dependencias.

Formalmente, seguimos un orden topológico en el DAG de subproblemas. En la materia no hacemos foco en esto.

15 / 18

Bottom-Up

 f(i, j) depende de subcadenas con i mayor y j menor. Decrezco i, incremento j.

```
\label{eq:continuous} \begin{array}{ll} \mbox{for } i \leftarrow n \mbox{ to } 0 \mbox{ step -1 do} \\ \mbox{ for } j \leftarrow i \mbox{ to } n \mbox{ do} \\ \mbox{ dp}[i,j] \leftarrow ... \\ \mbox{ end for} \\ \mbox{ end for } \end{array}
```

Notar que se puede invertir el orden de los for haciendo una leve modificación.

 f(i, j) depende de subcadenas de menor tamaño. Solo subcadenas de tamaño par.

```
\label{eq:constant} \begin{array}{l} \mbox{for } t \leftarrow 0 \mbox{ to n step } 2 \mbox{ do} \\ \mbox{for } i \leftarrow 0 \mbox{ to n-t do} \\ \mbox{dp}[i, \ i{+}t] \leftarrow ... \\ \mbox{end for} \\ \mbox{end for} \end{array}
```

Preguntas

¿Preguntas?

Biblografía + Extras

Erik Demaine, and Srinivas Devadas. Introduction to Algorithms. Dynamic Programming II. http://bit.ly/2esOte7

Ejercicio 3.11: Minimum edit distance (Ver DP III)

Ejercicio 3.9: Operaciones. Para pensar, ¿Por qué no hay problemas de dependencias?