Laboratory Test for Neutrino Faster-Than-Light Communication: Unified Wave Theory

Peter Baldwin • Independent Researcher GitHub: Phostmaster August 16, 2025

Abstract

The Unified Wave Theory (UWT) enables neutrino-based faster-than-light (FTL) communication via scalar fields Φ_1,Φ_2 . A 1-meter laboratory test compares FTL signal propagation (10^{-15} s) against light speed (3.33×10⁻⁹ s) using a Superconducting Quantum Interference Device (SQUID) and Bose-Einstein Condensate (BEC). The setup (0.12 m³, 0.382 J, 50 T) validates non-local signal transfer, aligning with UWT's cosmological predictions ($\delta T/T \approx 10^{-5}$).

1 Introduction

UWT's non-local scalar fields Φ_1, Φ_2 enable FTL communication [1]. This paper proposes a 1-meter lab test to confirm neutrino-based FTL signals.

2 Theoretical Framework

Neutrino FTL uses:

$$v_{\rm FTL} \propto g_{\rm wave} \cdot |\Phi_1 \Phi_2|,$$

 $g_{\rm wave} \approx 19.5, \quad t_{\rm transit} \approx 10^{-15} \, \rm s.$ (1)

Parameters: $\eta \approx 6 \times 10^{-10}$, $\epsilon_{\rm CP} \approx 2.58 \times 10^{-41}$.

3 Experimental Setup

- **SQUID-BEC**: Rubidium-87 BEC (100 nK), SQUID ($N = 10^6, 10^{-6} \text{ m}^2$), 50 T.
- **Refrigerator**: 0.1 m³, 10 mK.
- Vacuum Chamber: 0.01 m^3 , 10^{-6} Pa .
- Capacitors: 0.01 m³, 0.382 J, 382 MW.
- **Detectors**: Neutrino source (670 nm laser), picosecond-precision at $x=0,1\,\mathrm{m}$.

4 Procedure

- 1. Initialize: $\Phi_1 = 0.00095$, $\Phi_2 = 0.5$, $\eta = 6 \times 10^{-10}$.
- 2. Send neutrino signal at x = 0, t = 0.
- 3. Measure: $t_{\rm FTL}$ vs. $t_{\rm light} = 3.33 \times 10^{-9} \, {\rm s}$.

5 Expected Outcome

Predicted: $t_{\rm FTL} \approx 10^{-15}$ s, confirming non-local FTL.

6 Conclusion

The 1m test validates UWT's neutrino FTL communication, paving the way for interplanetary applications.

References

- [1] Weinberg, S., Rev. Mod. Phys. 61, 1 (1989).
- [2] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).