1

Assignment 13

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment13

1 Problem

Suppose that **A** is a 2×2 matrix with real entries which is symmetric ($\mathbf{A}^t = \mathbf{A}$). Prove that **A** is similar over \mathbb{R} to a diagonal matrix.

2 Solution

Given	A is a 2×2 matrix with real entries and A is symmetric $(\mathbf{A}^t = \mathbf{A})$
To Prove	${f A}$ is similar to diagonal matrix over ${\Bbb R}$
Theory	A is similar to diagonal matrix Λ if \exists an invertible matrix P such that: $\mathbf{A} = \mathbf{P}\Lambda\mathbf{P}^{-1}$
Proof	Let $\mathbf{A} = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$, $a, b, c \in \mathbb{R}$ Characteristic polynomial: $p(t) = \mathbf{A} - \lambda \mathbf{I} $ $p(t) = \begin{vmatrix} a - t & c \\ c & b - t \end{vmatrix}$ $\Rightarrow p(t) = t^2 - (a + b)t + ab - c^2 = 0$ Roots of p(t) are eigenvalues of \mathbf{A} Discriminant of $p(t)$ is given by $(a + b)^2 - 4(ab - c^2) = a^2 + b^2 - 2ab + c^2$ $= (a - b)^2 + 4c^2 > 0$ We observe that the above equation has positive discriminant, hence λ has real values

Eigen vectors are obtained by:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{X} = 0$$

Let v_1 and v_2 be the eigen vectors corresponding to eigen values λ_1 and λ_2

$$\implies$$
 Av₁ = λ_1 **v**₁ and

$$\mathbf{A}\mathbf{v_2} = \lambda_2\mathbf{v_2}$$

Let linear combination of the two eigen vectors be,

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} = \mathbf{0}$$

Multiplying both sides by λ_1 , we have,

$$\implies c_1 \lambda_1 \mathbf{v_1} + c_2 \lambda_1 \mathbf{v_2} = 0 \qquad \dots (1)$$

Consider,

$$\mathbf{A.0} = \mathbf{0}$$

$$\implies$$
 A $(c_1\mathbf{v_1} + c_2\mathbf{v_2}) = \mathbf{0}$

$$\implies c_1(\mathbf{A}\mathbf{v_1}) + c_2(\mathbf{A}\mathbf{v_2}) = \mathbf{0}$$

$$\implies c_1 \lambda_1 \mathbf{v_1} + c_2 \lambda_2 \mathbf{v_2} = 0 \qquad \dots (2)$$

Subtracting equation (1) and (2), we have,

$$c_2 (\lambda_1 - \lambda_2) \mathbf{v_2} = \mathbf{0}$$

Since, λ_1 and λ_2 are real and distinct,

$$c_2 = 0$$

Similarly,

$$c_1 = 0$$

Therefore, eigen vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ are linearly independent.

Let
$$\mathbf{P} = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} \end{pmatrix}$$

$$\implies \mathbf{AP} = \begin{pmatrix} \lambda_1 \mathbf{v_1} & \lambda_2 \mathbf{v_2} \end{pmatrix}$$

$$\implies$$
 AP = $\dot{P}\Lambda$.

where
$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

$$\implies$$
 A = **P** $\hat{\Lambda}$ **P**⁻¹

Therefore, A is similar to diagonal matrix Λ

Hence, Proved.

TABLE 1: Proving that eigen vectors are linearly independent for real eigen values and symmetric matrix is similar to diagonal matrix