Woodbury Matrix Identity	$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$
Sherman Morrison Formula	Given invertible $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}^n$ vectors. Then $A + uv^T$ is invertible iff $1 + v^T A^{-1} u \neq 0$. Then $(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1} uv^T A^{-1}}{1 + v^T A^{-1} u}$
Cauchy Schwarz Inequality	$ \langle U, V \rangle \le \langle U, U \rangle \dot{\langle} V, V \rangle$
Markov Inequality	X is a non-negative rv and $a > 0$ then $P(X \ge a) \le \frac{E(X)}{a}$
Minkowski inequality	$ f+g _p \le f _p + g _p$
Holder Inequality	Let $p,q \in [1,\infty], 1/p + 1/q = 1$. Then for all real/complex functions $f,g,\ fg\ _1 \le \ f\ _p \ g\ _q$
Jensen Inequality	Given X is a rv and ϕ is convex. Then $\phi(E(X)) \leq E(\phi(X))$
Johnson Lindenstrauss Property	A distribution on matrices $S \in \mathbb{R}^{k \times n}$ has (ϵ, δ, l) -JL moment property if $\forall x \in \mathbb{R}^n, x _2 = 1, E_S(Sx _2^2 - 1 ^l) \le \epsilon^l \delta$
Hoeffding Inequality	Let X_1, \dots, X_n be independent rv in $[0,1]$. Let $\bar{X} = \frac{1}{n} \sum_i X_i$. Then $P(\bar{X} - E(\bar{X}) \ge t) \le \exp(-2nt^2)$
Chebyshev Inequality	$P(X - E(X) \ge a) \le \frac{Var(X)}{a^2}$
Golden Thompson	For Hermitian matrices A,B $tr \exp(A + B) \le tr(\exp(A) \exp(B))$