Machine Translation (Part I)

Peerachet Porkaew, NECTEC

Outline

- Rule-based Machine Translation
- Statistical Machine Translation (SMT)
- Neural Machine Translation (NMT)
 - Sequence-to-Sequence
 - RNN-based NMT + Attention
 - Transformer

Rule-based Machine Translation

Rule-based Machine Translation (RBMT)

- Linguistic Knowledge
- Three sub-module:
 - Analysis
 - Transfer
 - Generation
- Template-based Translation

Rule-based MT

The Vauquois Triangle

Rule-based Machine Translation (RBMT)

- Limitations :
 - Not Automatic
 - Time consuming
 - Conflicts
 - Less Clarity

Rule-based MT

The Vauquois Triangle

Simple RBMT Demo

Noisy Channel Model

Noisy Channel Model

- Source sentence t, e.g. Thai
- Target sentence e, e.g. English
- Probabilistic formulation using Bayes rule $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

```
\hat{e} = \operatorname{argmax}_{e} p(e|t)

\hat{e} = \operatorname{argmax}_{e} p(t|e)p(e)
```

Statistical Machine Translation (Cont.)

$$\hat{e} = \operatorname{argmax}_{e} p(t|e)p(e)$$

Statistical Decoder (Simplified version)

เมื่อวาน	น	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
Yesterday			went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	
เมื่อวาน	นื	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
Yesterday			went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	
เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
Yesterday			went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	

Translation Model p(t|e)

Word-based Translation Model

$$p(t|e) = p(\Im go) = 0.5$$

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)=p(เมื่อวาน นี้| previous day)=0.1$$

• We do not have alignments. No problem we assume alignment are uniformly paired. p(t|e) = c (constant)

• But, we do not have alignment. No problem we assume alignment are uniformly paired. p(t|e) = c (constant)

$$p(\bullet|\bullet) = 1/2$$
 $p(\bullet|\bullet) = 1/4$ $p(\bullet|\bullet) = 2/6$ $p(\bullet|\bullet) = 1/2$ $p(\bullet|\bullet) = 2/4$ $p(\bullet|\bullet) = 1/6$ $p(\bullet|\bullet) = 0/2$ $p(\bullet|\bullet) = 1/4$ $p(\bullet|\bullet) = 3/6$

Now, we can get the better alignment from previous knowledge.

Then, we can calculate p(t|e) again using these alignment information.

Expectation Maximization (EM)

Translation Model

Word-based Translation Model

$$p(t|e) = p(\Im go) = 0.5$$

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)=p(เมื่อวาน นี้| previous day)=0.1$$

Word-based Translation Model

Word-based Translation Model

$$p(t|e) = p(\Im go) = 0.5$$

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)=p(เมื่อวาน นี้| previous day)=0.1$$

How we get the P(t|e) for phrases?

- Phrase Extraction Algorithm
 - Expanding single word alignment pairs to multiple-word alignment.

How we get the P(t|e) for phrases?

- Phrase Extraction Algorithm
 - Expanding single word alignment pairs to multiple-word alignment.

Fill missing alignment pairs

How we get the P(t|e) for phrases?

Phrase Pairs

$$p(t|e) = \frac{count(t,e)}{count(e)}$$

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

Image from: www.statmt.org

Statistical Decoder (with Translation model)

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	l	go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(0.8)	(0.6)
Yesterday			went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(0.8)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Language Model p_{LM}(e)

- Language Model of the target language.
- Calculate the "fluency" of sentences

 $p_{LM}(I \text{ went to the sea}) > p_{LM}(I \text{ went to ocean})$

How can we estimate p_{LM}?

N-gram language model

```
    1-gram : p<sub>LM</sub>(I went to the sea) = p(I) x p(went) x p(to) x p(the) x p(sea)
    2-gram : p<sub>LM</sub>(I went to the sea) = p(I |<bos>) x p(went| I) x p(to|went) x p(the|to) x p(sea|the)
```

How can we estimate P_{LM}?

• Maximum Likelihood Estimation (MLE)

• p(I) = count("I") / N

• p(went|I) = count("I went") / count("I")

Smoothing

• if $p(x|y) = 0 ? \rightarrow P_{IM} = 0$

We can use smoothing technique to overcome this situation.

For example, Add-one smoothing (Laplace Smoothing)

$$P_{\text{Laplace}}^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{\sum_{w} (C(w_{n-1}w) + 1)} = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

Smoothing

Back-off

if
$$p(w_i|w_{i-1}) = 0$$
 then $\hat{p}(w_i|w_{i-1}) = p(w_i)$

Interpolation

$$\hat{p}(w_i|w_{i-1}) = \lambda_1 p(w_i) + \lambda_2 p(w_i|w_{i-1}) \lambda_1 + \lambda_2 = 1$$

Statistical Decoder

$$\hat{e} = \operatorname{argmax}_{e} p(t|e)p(e)$$

Decoding

Decoding with Translation Model and Language Model

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	1	go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(8.0)	(0.6)
Yesterday			went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(8.0)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Score =
$$0.7 \times 0.8 \times 0.6 \times 0.7 \times 0.8 \times 0.6 \times 0.6 \times 0.6 \times 0.6 \times 0.6 \times 0.8 \times 0.6 \times 0.6 \times 0.8 \times 0.6 \times 0.8 \times 0.6 \times 0.8 \times 0.6 \times 0.8 \times 0.8 \times 0.6 \times 0.8 \times 0.$$

Decoding

Decoding with Translation Model and Language Model

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(8.0)	(0.6)
Yesterday			went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(8.0)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Score =
$$0.1 \times 0.2 \times 0.3 \times 0.05 \times 0.1x$$

 P_{LM} ("Previous day me went to ocean with my friend")

Beam Search

The Beam Search is a tree search algorithm but the data are filtered and sorted using a heuristic function.

Left-to-Right Beam Search

Beam Search

Beam Search in Statistical Decoder

SMT using NLTK Library

```
X Get Started
                   main_smt.py M X
tmapi > tmapi > 🕏 main_smt.py > 😭 test_smt
        from nltk.translate import PhraseTable, StackDecoder
        from collections import defaultdict
        from math import log
        def test_smt():
            phrase_table = PhraseTable()
   6
            phrase_table.add(('book',), ('หนังสือ',), log(0.1))
            phrase_table.add(('this','book',), ('หนังสือ','เล่ม','นี้',), log(0.8))
   8
            phrase_table.add(('this',), ('นี้',), log(0.8))
   9
            phrase_table.add(('costs',), ('snen',), log(0.1))
  10
            phrase_table.add(('300',), ('300',), log(0.1))
  11
  12
            phrase_table.add(('300',), ('สาม','ร้อย',), log(0.5))
            phrase_table.add(('baht',), ('บาท',), log(0.8))
  13
  14
  15
            language_prob = defaultdict(lambda: -999.0)
            language_prob[('\iota aiu',)] = log(0.5)
  16
  17
            language_prob[('หนังสือ',)] = log(0.4)
            language_prob[('หนังสือ', 'เล่ม', 'นี้')] = log(0.7)
  18
            language_prob[('บาท',)] = log(0.1)
  19
            language_prob[('สาม','ร้อย',)] = log(0.7)
  20
            language_model = type('',(object,),
                            {'probability_change': lambda self, context, phrase: language_prob[ph
  23
                             'probability': lambda self, phrase: language_prob[phrase]})()
  24
  25
            stack_decoder = StackDecoder(phrase_table, language_model)
  26
  27
            out = stack_decoder.translate("this book costs 300 baht".split())
  28
            print(out)
 PROBLEMS
             OUTPUT
                       DEBUG CONSOLE
                                        TERMINAL
 ['หนังสือ', 'เล่ม', 'นี้', 'ราคา', 'สาม', 'ร้อย', 'บาท_่]
```

Summary

- Statistical Machine Translation
- Translation Model
- Language Model

SMT Demo

Machine Translation (Part II)

Neural Machine Translation

Neural Machine Translation

- Deep Learning
- End-to-end training
- No word or phrase translation tables required

Background

- Recurrent Neural Network (RNN)
- Language model using long short-term memory (LSTM)
- Negative Log Likelihood (NLL)
- Seq2Seq model

Image courtesy of Chris Olah

Neural Network

Feed Forward Neural Network (FFN)

Simplified version of feed forward neural network

Recurrent Neural Network

Recurrent Neural Network (RNN)

$$egin{aligned} oldsymbol{a}^{(t)} &= oldsymbol{b} + oldsymbol{W} oldsymbol{h}^{(t-1)} + oldsymbol{U} oldsymbol{x}^{(t)} \ oldsymbol{o}^{(t)} &= oldsymbol{c} + oldsymbol{L} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}} \ \hat{oldsymbol{y}}^{(t)} \ \hat{oldsymbol{y}} \ \hat{oldsymbol{y}}^{(t)} &= oldsymbol{s} oldsymbol{f} oldsymbol{h}^{(t)} \ \hat{oldsymbol{y}} \ \hat{oldsymbol{y}}^{(t)} \ \hat{oldsymbol{y}$$

Softmax Function

$$\sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Recurrent Neural Network

Recurrent Neural Network (RNN)

Limitations of Simple Recurrent Unit

- Difficult to train (gradient vanishing problem)
- Long distance dependency

เพิ่ง ลง จาก เครื่อง มา หิว มาก เดี๋ยว ช่วย พา ไป หา อะไร ____ หน่อย

{กิน, ทำ, เล่น, ชม, ...}

Long short-term memory

- Add "Cell Memory" (C_t) to RNN units
- Cell memory is controlled by forget gate and input gate.
- Output is controlled by an output gate.

Long short-term memory

$$egin{aligned} ilde{C}_t &= anh(x_t U^g + h_{t-1} W^g) \ C_t &= \sigma \Big(f_t * C_{t-1} + i_t * ilde{C}_t \Big) \end{aligned}$$

$$h_t = \tanh(C_t) * o_t$$

How gates work?

Forget gate
$$\leftarrow C_t = \sigma \left(f_t * C_{t-1} + i_t * \tilde{C}_t \right)$$
 Input gate $h_t = \tanh(C_t) * o_t$ Output gate

Element-wise multiplication

How gates work?

$$egin{aligned} i_t &= \sigmaig(x_tU^i + h_{t-1}W^iig) \ f_t &= \sigmaig(x_tU^f + h_{t-1}W^fig) \ o_t &= \sigma(x_tU^o + h_{t-1}W^o) \end{aligned}$$

σ = sigmoid function

$$egin{aligned} ilde{C}_t &= anh(x_t U^g + h_{t-1} W^g) \ C_t &= \sigma \Big(f_t * C_{t-1} + i_t * ilde{C}_t \Big) \ h_t &= anh(C_t) * o_t \end{aligned}$$

LSTM

RNN-based Language Model

RNN-based Language Model

Image taken from https://www.researchgate.net/figure/An-architecture-of-recurrent-neural-network-language-model-for-speech-recognition_fig2_333355077

Training RNN-based Language Model

H

 $\Theta = \operatorname{argmax}_{\Theta} p(\text{คุณ}|h_0; \Theta) x p(ป|h_1; \Theta) x p(ป|h_2; \Theta)$

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta)$$

Negative Log Loss (NLL)

• In many deep learning frameworks, we usually minimize loss functions.

$$\Theta = \operatorname{argmax}_{\Theta} p(\operatorname{คุณ}|h_0; \Theta) \times p(\operatorname{Id}|h_1; \Theta) \times (\operatorname{Inu}|h_2; \Theta)$$

$$\Theta = \operatorname{argmax}_{\Theta} \log p($$
คุณ|h₀; Θ) + log p(ไป|h₁; Θ) + log p(ไหน|h₂; Θ)

$$\Theta = \operatorname{argmin}_{\Theta}$$
 - $\log p($ คุณ $|h_0; \Theta)$ - $\log p($ ไป $|h_1; \Theta)$ - $\log p($ ใหน $|h_2; \Theta)$

$$NLL = -\sum_{t=1}^{T} \sum_{j=1}^{V} y_j^t \log \hat{y}_j^t$$

Negative Log Loss (NLL)

$$\text{NLL} = -\sum_{\text{t=1}}^{\text{T}} \sum_{j=1}^{V} y_j^t \log \hat{y}_j^t$$

• Because y^t are one-hot vectors [0,0,...,1,...,0,0], only the position of the ground truth is 1, therefore

$$NLL = -\sum_{t=1}^{T} \log p(y^t | h_t; \theta)$$

Negative Log Loss (NLL)

Sequence-to-Sequence

Image taken from https://medium.com/analytics-vidhya/seq2seq-models-french-to-english-translation-using-encoder-decoder-model-with-attention-9c05b2c09af8

Sequence-to-Sequence

- Encoder: reads source input tokens one-by-one and produce a context vector which represents the source sentence.
- Decoder: generates target tokens from left to right using the context vector and previous output (similar to what language modeling does)

Sequence-to-Sequence

Image taken from suriyadeepan.github.io

Training Sequence-to-Sequence

 $\Theta = \operatorname{argmax}_{\Theta} p(\text{คุณ}|h_0; \Theta) x p(ป|h_1; \Theta) x p(ป|h_2; \Theta)$ Maximum Likelihood Estimation Softmax Softmax Softmax $L(\theta) = \int f(x_i|\theta)$ คุณ $\Theta = \{\Theta_E, \Theta_D\}$ 哪儿

Decoding - Greedy

Decoding - Greedy

Decoding - Greedy

Decoding – Beam Search

Summary

- Recurrent Neural Network
- RNN-based Language Model
- Seq2Seq

Neural Machine Translation with Attention

Limitations of Seq2Seq Model

- Inefficient for long sentences
- Only good for language pairs with less grammatical variations

Attention

$$egin{aligned} p(y_j \mid s_j, y_{j-1}, c_j) &= \operatorname{softmax}(W_o t_j) \ t_j &= anh(W_{t1} s_j + W_{t2} \mathrm{E}[y_{j-1}] + W_{t3} c_j) \end{aligned}$$

Attention

Intermediate state

$$e_{ij} = v_a^{\mathrm{T}} \mathrm{tanh}(U_a s_j' + W_a h_i)$$
 Intermediate state

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{I} \exp(e_{kj})}$$

$$e_{ij} = v_a^{\text{T}} \tanh(U_a s_j' + W_a h_i)$$

Attention – Step 5

Attention

RNNsearch (Bahdanau et al., 2015)

Illustrated Attention

Results

Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al., 2015)

Summary

- Limitation of Seq2Seq model
- Attention Mechanism

Transformer

Transformer

- Attention is all you need (Vaswani et al., 2017)
- An encoder-decoder framework for sequence-to-sequence modeling
- No recurrent units

From "Attention is all you need" paper by Vaswani, et al., 2017

Transformer Encoder

- N layers of Transformer blocks with residual connections
- Parameters in each layer are not shared
- Input tokens are processed in parallel

Positional Encoding

- Positional encoding provide the model about word order
- Sinusoidal position encoding

$$\mathbf{x}_t' = \mathbf{W}_{\mathrm{emb}}\left(\mathbf{x}_t\right) + \vec{p}_t$$

Positional Encoding

$$\mathbf{x}_t' = \mathbf{W}_{\mathrm{emb}}\left(\mathbf{x}_t\right) + \vec{p}_t$$

$$\omega_k=rac{1}{10000^{2k/d}}$$

Multi-head Attention

 Multi-head Attention is the concatenation of the outputs from self-attention network (SAN)

Multi-head Attention

Single head self-attention (m=1)

Multi head self-attention (m=2)

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

Multi head Self-Attention

Advantages of self-attention network

- Process in parallel
- Better in modeling long term dependencies, able to freely attend to other position.

Encoder: Add & Norm

- Residual Connection
- Layer Normalization

$$x' = \text{LayerNorm} \left(\text{SelfATT}(x) + x \right)$$

Layer Normalization – to normalize mean and variance of inputs (a^l) for a specific layer (l), assume that the layer has H hidden units.

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}} \qquad \bar{a}_{i}^{l} = \frac{g_{i}^{l}}{\sigma_{i}^{l}} (a_{i}^{l} - \mu_{i}^{l})$$

$$\bar{a}_i^l = \frac{g_i^l}{\sigma_i^l} \left(a_i^l - \mu_i^l \right)$$

Encoder: Feed Forward

- Feed forward network
- Followed by residual connection and layer normalization

Transformer: Decoder

- Auto Regressive Decoding
- Based on Transformer layers

Decoder: Masked Multi-head Attention

Auto Regressive Decoding

Current token can attend only left-side tokens because in decoding step the right-side tokens are not generated. Attention weights are multiplied by this mask matrix.

Decoder-Encoder Attention

- Query data from the encoder outputs.
- Encoder output (K,V), Decoder State (Q)

Decoder: Feed Forward and Softmax

Predict target word distribution

Optimization

Label Smoothed Regularization

$$ar{y}_j^t = (1-\epsilon)ar{y}_j + rac{\epsilon}{V}$$

For example, V = 3, $\epsilon = 0.3$

$$ar{y}_{ ext{true(smooth)}} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} - egin{bmatrix} 0 \ 0 \ \epsilon \end{bmatrix} + rac{1}{3} egin{bmatrix} \epsilon \ \epsilon \end{bmatrix} = egin{bmatrix} 0.1 \ 0.8 \end{bmatrix}$$

Optimization

Label Smoothed Regularization

$$ar{y}_j^t = (1-\epsilon)ar{y}_j + rac{\epsilon}{V}$$

For example, V = 3, $\epsilon = 0.3$

$$\overline{y}_{ ext{true(smooth)}} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} - egin{bmatrix} 0 \ 0 \ \epsilon \end{bmatrix} + rac{1}{3} egin{bmatrix} \epsilon \ \epsilon \end{bmatrix} = egin{bmatrix} 0.1 \ 0.8 \end{bmatrix}$$

Label Smoothed NLL

$$= -\sum_{t=1}^{T} \sum_{j=1}^{V} \bar{y}_{j}^{t} \log \hat{y}_{j}^{t}$$

Decoding: Auto Regressive

- Greedy search
- Beam Search

Summary

- Self-Attention Network
- Multi-Head Self Attention
- Positional Encoding
- Encoder
- Decoder
- Optimization

Data Preparation for MT

Data Preparation for MT

- Data Collection
- Data Cleansing and Tokenization
- Split Train / Validation / Test
- Additional Preprocessing Steps for NMT
 - Subword Preparation
 - Padding and Binarizing

Data Collection

Data Collection

OPUS is a growing collection of translated texts from the web. In the OPUS project we try to convert and ali online data, to add linguistic annotation, and to provide the community with a publicly available parallel corp is based on open source products and the corpus is also delivered as an open content package. We used seven

The OPUS collection is growing! Check this page from time to time to see new data arriving ... Contributions are very welcome! Please contact < jorg.tiedemann@helsinki.fi >

Data Cleansing and Tokenization

- Clean empty line
- Align parallel sentences
- Deduplicate
- Tokenize (Word, character segmentation)
- Filter low quality pairs
 - Alignment score
 - Length ratio (# of source tokens / # of target tokens)

Split Train / Validation / Test

- Shuffle
- Train / Validation / Test

Additional Steps for NMT

Subword Units (Sentence piece, Byte-pair encoding)

ซีรีย์ จีน เรื่อง ดาบมังกรหยก

ซีรีย์ จีน เรื่อง ดาบ@@ มังกร@@ หยก

Rico Sennrich, Barry Haddow and Alexandra Birch, Neural Machine Translation of Rare Words with Subword Units, ACL, 2016

Additional Steps for NMT

Padding

Binarizing – Convert strings to tensors

Summary

- Data Collection
- Data Cleansing and Tokenization
- Split Train / Validation / Test
- Additional Preprocessing Steps for NMT
 - Subword Preparation
 - Padding and Binarizing

Application of Seq2Seq Model

Possible Applications

- Machine Translation
- Text Summarization
- Paraphrasing
- Question and Answering
- Chat Bot

Line Bot Translation Service (Demo only)

Line Bot Web Hook (Python version)


```
@handler.add(MessageEvent, message=TextMessage)
def handle_text_message(event):
    text = event.message.text #message from user
   userid = str(event.source)
    print(json.loads(userid)["userId"])
    if detect(text) != "th":
      text = text[0:300]
      print("TRANSLATE ",text)
     now = datetime.now()
     # Format the date and time as a string
     date_time_str = now.strftime("%d/%m/%Y, %H:%M:%S")
      addlog(date_time_str,{"query" : text})
      response = requests.get(f"https://<your translation service url>/api.php?text={text}&
      lang=th")
      outtext = response.text
      line_bot_api.reply_message(
        event.reply_token,
        TextSendMessage(text=outtext)) #reply the same message from user
      return
```

LINE Developer Console

References

- StatMT.org
- https://archive.illc.uva.nl/ESSLLI2008/Materials/KoehnCallisonBurch/book.pdf
- Philipp Koehn, Statistical Machine Translation, 2009
- Christopher Olah, <u>Understanding LSTM Networks</u>, 2015
- Bahdanau, D., Cho, K. H., & Bengio, Y. <u>Neural machine translation by jointly learning</u> to align and translate. ICLR 20151
- Vaswani, Ashish & Shazeer, Noam & Parmar, Niki & Uszkoreit, Jakob & Jones, Llion & Gomez, Aidan & Kaiser, Luksz & Polosukhin, Illia, <u>Attention is all you need</u>, 2017
- Transformer: A Novel Neural Network Architecture for Language Understanding, 2017

References

- Jay Alammar, The Illustrated Transformer, 2018
- Rico Sennrich, Barry Haddow and Alexandra Birch, <u>Neural Machine Translation of</u> <u>Rare Words with Subword Units</u>, ACL, 2016
- บทที่1 ทำ LINE Bot สามารถโต้ตอบ หรือ Chatbot ด้วย Python (Official) Saixiii

Thankyou