Fundamentals of Solid State Physics

Introduction

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Goal of This Course

- Study the foundations of our world: solid materials
 - electronic, optical, magnetic, thermal, mechanical, ...
- Based on theories of physics
 - classical mechanics
 - electrodynamics
 - quantum mechanics
 - statistical mechanics
 - **-** ...
- Emerging applications: semiconductors, lasers, ...

Goal of This Course

Main Focus: Electrons

Department of Electronic Engineering

Other topics: Photons, Phonons, Magnetics, ...

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

10 core courses in EE department

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

maths, engineering, application, design, model, perfect,

. . .

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

observation, discovery, understanding, approximation, modified theory, imperfection,

. . .

Solid is very Complex

If we understand the basic physics of all the fundamental particles (electrons, photons, atoms, ...), can we understand everything?
No!

ARTICLES

More Is Different

By P. W. Anderson

+ See all authors and affiliations

Science 04 Aug 1972: Vol. 177, Issue 4047, pp. 393-396 DOI: 10.1126/science.177.4047.393

Philip W. Anderson 1923–2020

Example: Carbon

- Diamond 金刚石
 - hard
 - insulating
 - transparent

- Graphite 石墨
 - □ soft
 - conductive
 - black

Optical and Electronic Devices

integrated circuits

Nobel Prizes in Solid-State Physics

- Before 1950s
 - atoms, materials, radiation, quantum mechanics, ...
- 1956 Semiconductor transistors
- 1991 Liquid crystals
- 2000 Integrated circuits
- 2009 CCD imaging sensors
- 2009 Optical fibers
- 2014 GaN based blue LEDs

'Disruptive' Technologies 颠覆性技术

- Before 1950s
 - atoms, materials, radiation, quantum mechanics, ...

1956	Semiconductor transistors	← vacuum tubes
-------------	---------------------------	-----------------------

- 1991 Liquid crystals ← CRT displays
- 2009 CCD imaging sensors ← film cameras
- 2009 Optical fibers ← copper cables
- 2014 GaN based blue LEDs ir

Devices in a Smartphone

Transistors	1956
Liquid crystals	1991
Integrated circuits	2000
Semiconductor heterostructures	2000

CCD cameras 2009GaN blue LEDs 2014

Li ion batteries 2019 (Chemistry)

Computation

abacus

slide rule

- Ancient computers
- First 'electronic' computer
 - **ENIAC**, 1943
 - **□** 30 tons, 200 kW
 - □ 18000 vacuum tubes
 - □ 5000 times/sec
 - **cost \$480,000**

vacuum tube

Transistors

Germanium Bipolar Transistor

The first point contact transistor

William Shockley, John Bardeen, and Walter Brattain Bell Laboratories, Murray Hill, New Jersey (1947)

semiconductors

Shockley

1956 Nobel Prize in Physics

First Integrated Circuits

The First (2D) Integrated Circuit Jack Kilby, Texas Instruments, 1958

- Transistor, Resistors and Capacitors on the same piece of semiconductor
- Interconnects between components not integrated
 - → Low connectivity between components

Germanium

J. Kilby

Modern Integrated Circuits

Moore's law, Fairchild, 1965

Economist.com

Modern Electronics is a real Nanotechnology

Intel i7 CPU, ~ 10⁹ transistors

Lighting

Incandescent bulb

GaN blue LEDs

S. Nakamura, et al., Appl. Phys. Lett. **64**, 1687 (1994)

Fluorescent lamp

I. Akasaki H. Amano

S. Nakamura

Imaging

CCD and **CMOS** cameras

W. Boyle and G. Smith

Communication

silica (SiO₂)

copper cables

optical fibers

K. Kao (高锟) 2009 Nobel Prize in Physics

Displays

liquid crystal display (LCD)

de Gennes 1991 Nobel Prize in Physics

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
 - Overview, history, applications
 - Preliminary knowledge
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
 - Crystal structures, lattices
 - Reciprocal space, Brillouin zones
 - Materials Characterization: Wave diffraction, the Bragg law
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
 - Free electrons (the Drude and Sommerfeld models)
 - Electrons in a periodic potential (Bloch's Theorem)
 - The near-free electron model, the tight-binding model
 - Electronic band diagram, band gaps, effective mass
 - Metals, insulators, semiconductors
 - Devices: junctions, diodes, transistors
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
 - Crystal vibration, phonon band
 - Thermal conductivity and capacity
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
 - \Box Origin of Dielectric constant (ε) and Refractive index (n)
 - Optical absorption, reflection, refraction, emission
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)
 - Origin of Magnetics
 - Diamagnetism, Paramagnetism, Ferromagnetism
 - Superconductivity

- Introduction (Week 1)
 - Overview, history, applications
 - Preliminary knowledge
- Materials and Crystal Structures (Week 2–3)
 - Crystal structures, lattices
 - Reciprocal space, Brillouin zones
 - Materials Characterization: Wave diffraction, the Bragg law
- Electronic Properties (Week 4–12)
 - Free electrons (the Drude and Sommerfeld models)
 - Electrons in a periodic potential (Bloch's Theorem)
 - The near-free electron model, the tight-binding model
 - Electronic band diagram, band gaps, effective mass
 - Metals, insulators, semiconductors
 - Devices: junctions, diodes, transistors
- Thermal Properties (Week 13)
 - Crystal vibration, phonon band
 - Thermal conductivity and capacity
- Optical Properties (Week 14)
 - Origin of Dielectric constant (ε) and Refractive index (n)
 - Optical absorption, reflection, refraction, emission
- Magnetic Properties (Week 15)
 - Origin of Magnetics
 - Diamagnetism, Paramagnetism, Ferromagnetism
 - Superconductivity

Thank you for your attention