Digital Building Blocks

Arithmetic and Logical Operations using Digital Building Blocks

Chapter 4.1 and 4.2 "Digital Building Blocks" by R. Verrinder EEE2046F/EEE2050F Embedded Systems I notes

Arithmetic and Logical Operations Overview

- Digital processors are used to perform arithmetic and logical operations
- Logical circuits can be used to implement these operations
- Arithmetic operations
 - Addition
 - Subtraction

- Logical operations
 - Comparison: equality and magnitude comparators
 - Shifters and rotators: logical shift, arithmetic shift and rotators

Arithmetic and Logical Operations Design approach: digital circuits

- In digital processors, a CPU is responsible for performing the arithmetic and logical operations
- Two approaches to design circuits for n-bit operations
 - Exhaustive approach: construct the truth table for all possible inputs and outputs. Then use combinational logic techniques to produce the circuit
 - Simple, extendable approach: construct combinational circuits for 2-bit arithmetic and logical operations. Thereafter, extend to n-bit circuits
- The simple, extendable approach is the preferred approach

Simplified block diagram of generic CPU

Arithmetic and Logical Operations Addition: introduction

- Adders are used in digital circuits to perform binary addition
- Approach used to design a n-bit adder
 - 1-bit half adder: a 'carry out' output exists. No 'carry in' input
 - 1-bit full adder: possess both a 'carry out' and a 'carry in'
 - Multi-bit adder: add n-bit binary numbers with a 'carry out' and 'carry in'

Arithmetic and Logical Operations Addition: 1-bit half adder

 A 1-bit half adder is a digital circuit used to add two 1-bit numbers: A + B

Inputs

A: a 1-bit binary number

B: a 1-bit binary number

Output

S: sum

C_{out}: carry out bit

Input		O	utput
Α	В	S	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
Half Adder truth table			

Arithmetic and Logical Operations Addition: 1-bit half adder

- The truth table can be used to write out the logical expression for the outputs:
 - $-S = A \oplus B$
 - $C_{out} = A.B$
- The circuit diagram is made up of an XOR gate and a NAND gate
- Limitation: no 'carry in' input bit

Arithmetic and Logical Operations Addition: 1-bit full adder

 A 1-bit full adder is a digital circuit used to add two 1-bit numbers, A + B, while incorporating a 'carry in' bit

Inputs

A: a 1-bit binary number

B: a 1-bit binary number

- C_{in}: a 1-bit carry in bit

Output

- S : sum (S = A + B + C_{in})

C_{out}: carry out bit

put	Input		
Α	В	S	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0

Arithmetic and Logical Operations Addition: 1-bit full adder

 A 1-bit full adder can be constructed by connecting two half adders together

Circuit diagram of a 1-bit full adder (taken from [1])

Y. Abdul Gaffar

Arithmetic and Logical Operations Addition: n-bit full adder

- A n-bit full adder performs binary addition of two n-bit numbers
- This adder architecture is known as a ripple-carry adder
- Properties of a ripple-carry adder
 - Speed = n * speed of a 1-bit full adder
- Faster adder architecture: carry-look ahead adder

Arithmetic and Logical Operations Subtraction: 1-bit half subtractor

A 1-bit half subtract or is a digital circuit used to subtract two
 1-bit numbers, A and B, to output D = A - B

Inputs

A: a 1-bit binary number

B: a 1-bit binary number

Output

D: difference output

B_{out}: borrow out bit

Input		Ou	tput
Α	В	D	B_{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Half subtractor truth table

Arithmetic and Logical Operations Subtraction: 1-bit full subtractor

 A 1-bit full subtractor is a digital circuit used to subtract two 1-bit numbers, X and Y, while incorporating a 'borrow in' input B_{in}

Inputs

X: a 1-bit binary number

Y: a 1-bit binary number

B_{in}: a 1-bit borrow in bit

Output

- Diff: output (Diff = $X Y B_{in}$)
- B_{out}: borrow out bit

Circuit diagram of a 1-bit full subtractor (taken from [2])

Y. Abdul Gaffar

Arithmetic and Logical Operations Subtraction: 1-bit full subtractor

The truth table of a 1-bit full subtractor: Diff = X - Y - B_{in}

Truth Table					
B- in	Y	X	Diff.	B-out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	0	
1	1	0	0	1	
1	1	1	1	1	

Circuit diagram of a 1-bit full subtractor (taken from [2])

Truth table of a 1-bit full subtractor (taken from [2])

Arithmetic and Logical Operations Subtraction: binary numbers

- Subtraction of two binary numbers: A B
- Another approach to perform subtraction
 - Step 1: find the 2's complement of B, which can be expressed as B + 1
 - Step 2: add A and the 2's complement of B: A + B + 1

A	В	A – B	B	A + B + 1
0	0	0	1	0
0	1	1	0	1
1	0	1	1	1
1	1	0	0	0

Arithmetic and Logical Operations Subtraction: binary numbers

- Subtraction of two binary numbers: A B
- Another approach to perform subtraction
 - Step 1: find the 2's complement of B, which can be expressed as B + 1
 - Step 2: add A and the 2's complement of B: A + B + 1

Α	В	A – B	B	A + B + 1
0	0	0	1	0
0	1	1	0	1
1	0	1	1	1
1	1	0	0	0

$$\therefore A - B = A + B + 1$$

Arithmetic and Logical Operations Subtraction: 1-bit full subtractor

- ▲ 1-bit full adder can be used to perform subtraction: A B
 - $C_{in} = 1$
 - Invert B

Input		Ou	tput
Α	В	D	B_{out}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	1

1-bit subtractor truth table

a '0' represents a borrow from a higher significant bit

a '1' represents a non-borrow from a higher significant bit

• Observe:
$$A - B = A + (-B)$$

= $A + (\overline{B} + 1)$

Arithmetic and Logical Operations Subtractor: n-bit full subtractor

- A n-bit full adder can be modified to perform the subtraction of two n-bit binary numbers: A – B
- Use Sel line to configure the circuit to be either a n-bit adder or a n-bit subtractor

$$-$$
 Sel = 0: A + B

$$-$$
 Sel = 1: A + B + 1

Sel
$$\oplus$$
 B = B (Sel = 0)
Sel \oplus B = B (Sel = 1)

Arithmetic and Logical Operations Comparators: overview

- A comparator is a digital circuit that compares two inputs: A and B.
- Let's look at two types of comparators
 - Equality comparator: output Y is HIGH when inputs are equal: A == B
 - Magnitude comparator: output Y is HIGH when A < B

Arithmetic and Logical Operations Comparators: equality comparator

 The truth table of a 1-bit equality comparator can be used to write out the Boolean expression of the output Y:

$$Y = \overline{A}\overline{B} + AB$$

$$= \overline{(A \oplus B)}$$
XNOR gate

A n-bit equality comparator is constructed by connecting N
 1-bit equality comparators to a multi-input AND gate

Arithmetic and Logical Operations Comparators: magnitude comparator

 A magnitude comparator operation can be performed using a subtractor unit:

 $- B_{out} = 1: A < B$

- B_{out} = 0: A \geq B

Inp	Input		tput
Α	В	D	B _{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0
l			

Half subtractor truth table

Arithmetic and Logical Operations Shifters and Rotators: overview

- Shifters and rotators are logical operations that manipulate the position of bits in a binary string
- The operations shift bits one by one into or out of the MSB or LSB of a binary number
- We will cover two types of shifters and rotators:
 - Logical shift: used for division and multiplication by 2. Assumes unsigned numbers
 - Arithmetic shift: used for division and multiplication by 2. Assumes signed numbers
 - Rotation: circular shift operation

Arithmetic and Logical Operations Shifters and Rotators: Logical Shift

- A logical shift operation shifts binary bits either to the left or to the right and the empty bits are replaced by zeros
- Example: A = 1 1 1 0 1 0 1 1
 - Logical 1-bit right shift, A >> 1 gives 0 1 1 1 0 1 0 1
 - Logical 1-bit left shift, A << 1 gives 1 1 0 1 0 1 1 0
- A n-bit left logical shift is used for fast multiplication by 2ⁿ
- A n-bit right logical shift is used for fast division by 2ⁿ
- Unsigned binary numbers are assumed
- Example

```
    Let A = 8: 0 0 0 0 1 0 0 0 (decimal value of 8)
    A << 1: 0 0 0 1 0 0 0 0 (decimal value of 16)</li>
    A >> 1: 0 0 0 0 0 1 0 0 (decimal value of 4)
```

Arithmetic and Logical Operations Shifters and Rotators: Logical Shift

 A 2-bit logical shifter can be constructed using two 1-bit multiplexers

shift = 0

•
$$Y_1 = A_1$$

$$\bullet \quad Y_0 = A_0$$

shift = 1

$$Y_1 = A_0$$

•
$$Y_0 = 0$$

$$shift = 0$$

$$\bullet \quad Y_1 = A_1$$

$$\bullet \quad Y_0 = A_0$$

$$shift = 1$$

•
$$Y_1 = 0$$

•
$$Y_0 = A_1$$

Arithmetic and Logical Operations Shifters and Rotators: Arithmetic Shift

- There are two types of arithmetic shift operations:
 - Arithmetic right shift: bits are shifted to the right and empty bits are replaced by the original MSB
 - Arithmetic left shift: bits are shifted to the left and empty bits are replaced by zeros. An arithmetic left shift is equivalent to a logical left shift
- Example: A = 1 1 1 0 1 0 1 1
 - Arithmetic 1-bit right shift, A >>> 1 gives 1 1 1 1 0 1 0 1
 - Arithmetic 1-bit left shift, A <<< 1 gives 1101010

Arithmetic and Logical Operations Shifters and Rotators: Arithmetic Shift

- Where are arithmetic shifters used?
- A n-bit right arithmetic shift is used for fast division by 2ⁿ
 - Signed binary numbers are assumed
- A n-bit left arithmetic shift is used for fast multiplication by 2ⁿ
 - Signed binary numbers are assumed

Example

```
    Let A = -56 : 1 1 0 0 1 0 0 0 (decimal value of -56)
    A >>> 1: 1 1 1 0 0 1 0 0 (decimal value of -28) ÷ 2
    A <<< 1: 1 0 0 1 0 0 0 0 (decimal value of -112) x 2</li>
```

Y. Abdul Gaffar

Arithmetic and Logical Operations Shifters and Rotators: Arithmetic Shift

 A 2-bit arithmetic shifter can be constructed using two 1-bit multiplexers

$$shift = 0$$

- $Y_1 = A_1$
- $Y_0 = A_0$

shift = 1

- $Y_1 = A_0$
- $Y_0 = 0$

2-bit right arithmetic shifter

shift = 0

- $Y_1 = A_1$
- $\bullet \quad Y_0 = A_0$

shift = 1

- $Y_1 = A_1$
- $Y_0 = A_1$

Arithmetic and Logical Operations Shifters and Rotators: Rotators

- A rotator also performs shift operations and empty bits are replaced by the bits that were pushed out
- A rotator performs a circular shift operation
- Example
 - Let A = 11101010
 - Left rotate A: 11010101
 - Right rotate A: 01110101

Y. Abdul Gaffar

Arithmetic and Logical Operations Shifters and Rotators: Rotators

A 2-bit rotator can be constructed using two 1-bit multiplexers

$$shift = 0$$

•
$$Y_1 = A_1$$

$$\bullet \quad Y_0 = A_0$$

$$shift = 1$$

•
$$Y_0 = A_1$$

Arithmetic and Logical Operations Arithmetic Logic Unit: overview

 An Arithmetic Logic Unit (ALU) is the heart of a CPU that is responsible for performing a variety of arithmetic, logical and bit shifting operations

Inputs

- A: n-bit binary number
- B: n-bit binary number
- F: control bus that specifies the opcode

Outputs

- Y: n-bit output binary number
- S: status output bits

Arithmetic and Logical Operations Arithmetic Logic Unit: opcodes

- An opcode specifies the type of operation that must be done on inputs A and B
- An example of opcode values and operations

Opcode operations.				
Opcode	Operation			
000	A AND B			
001	A OR B			
010	A+B			
011	unused			
100	A AND \overline{B}			
101	A OR \overline{B}			
110	A-B			
111	SET LESS THAN $(A < B)$			

Arithmetic and Logical Operations Arithmetic Logic Unit: status bits

- An status bits S provide information about the last output Y
- Typical flags
 - Carry/Borrow (C):
 - For addition, X = A + B, the C flag is set when there
 is a carry out of the MSB of the output X. Both A and
 B are interpreted as unsigned numbers.
 - For subtraction, X = A B, the C flag is set when there a borrow from the higher significant bit has not taken place. Both A and B are interpreted as unsigned numbers.
 - Zero (Z): Z is set when the last operation resulted in a zero. Typically used to test equality (A == B)

Arithmetic and Logical Operations Arithmetic Logic Unit: status bits

Typical flags

- Negative or less than (N): N is set when the result of the last operation resulted in a negative value or the MSB is set. The result is interpreted as a signed number
 - If the last operation was an addition operation,
 N is set when the result is greater than
 (2ⁿ⁻¹ 1) and A and B are n-bit signed numbers
 - If the last operation was a subtraction, A B.
 N is set when A < B, where both A and B are unsigned numbers
- Overflow (V): assumes both A and B are n-bit signed numbers and the last operation caused an overflow: outside of the range [-(2ⁿ⁻¹) (2ⁿ⁻¹ 1)]. As a result, the 2's complement result of the last output value will be represented incorrectly.

Arithmetic and Logical Operations Arithmetic Logic Unit: Question 1

Design an arithmetic circuit for an ALU with the following instruction set. The opcodes for the instruction set are provided in the table below.

	OPCODES AND OPERATIONS					
F_1	F_0	$C_{in}=0$	$C_{in}=1$			
0	0	A	A+1			
0	1	A + B	A + B + 1			
1	0	A + B $A + \overline{B}$	A - B			
1	1	A-1	A			

Only design the system for the single-bit per input case. You have the following components available to you: 1-bit wide full adders, 2-to-1 multiplexors, AND, OR, NOT, NOR, NAND and XOR gates, decoders etc.

Arithmetic and Logical Operations Arithmetic Logic Unit: Question 2

Design an arithmetic circuit for an ALU with the following instruction set. The opcodes for the instruction set are provided in the table below.

OPCODES AND OPERATIONS					
$\boldsymbol{F_1}$	$\boldsymbol{F_0}$	$C_{in}=0$	$C_{in}=1$		
0	0	A + B	A - B		
0	1	$\overline{A} + B$	B-A		
1	0	A-1	A+1		
1	1	\overline{A}	$\overline{A} + 1$		

Only design the system for the single-bit case. You have the following components available to you: 1-bit full adders, multi-bit wide multiplexors, AND, OR, NOT, NOR, NAND and XOR gates, decoders etc.

Arithmetic and Logical Operations Arithmetic Logic Unit: Question 3

Design an arithmetic circuit for the ALU above, which has a 3-bit instruction set. The opcodes in the instruction set are provided in the table below. Only design the system for the 1-bit case. You have the following components available to you: 1-bit full adders, multi-bit wide multiplexors, AND, OR, NOT, NOR, NAND and XOR gates, decoders etc.

0 1 0 1				
Opcode			Operation	
F_2	F_1	F_0	F	
0	0	0	A+B	
0	0	1	A-B	
0	1	0	$\overline{A} + B$	
0	1	1	B-A	
1	0	0	A-1	
1	0	1	A+1	
1	1	0	\overline{A}	
1	1	1	$\overline{A}+1$	