# **Amendments to the Claims**

#### WE CLAIM:

1. (Original) A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IA):

wherein

R and R' are independently  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP<sub>3</sub> and RB are independently selected from hydrogen, halo,  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, -O- $C_1$ - $C_5$  alkyl, -S- $C_1$ - $C_5$  fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S- $C_1$ - $C_5$  fluoroalkyl,  $C_2$ - $C_5$  alkenyl,  $C_3$ - $C_5$  cycloalkyl, or  $C_3$ - $C_5$  cycloalkenyl;

RP, RT<sub>3</sub>, and RB' are independently selected from hydrogen, halo, C<sub>1</sub>-C<sub>5</sub> alkyl, C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -O-C<sub>1</sub>-C<sub>5</sub> alkyl, -S-C<sub>1</sub>-C<sub>5</sub> alkyl, -O-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, C<sub>2</sub>-C<sub>5</sub> alkenyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, or C<sub>3</sub>-C<sub>5</sub> cycloalkenyl;

 $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{TB})$  are divalent linking groups independently selected from the group consisting of





where m is 0, 1, or 2, and each R40 is independently hydrogen,  $C_1$ - $C_5$  alkyl, or  $C_1$ - $C_5$  fluoroalkyl;

### Zp is

branched C<sub>3</sub>-C<sub>5</sub> alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

```
3,3-dimethyl-2-hydroxycyclohexylmethyl,
                         1-hydroxycycloheptyl, or
                         1-hydroxycyclooctyl;
provided, however, that when
          Zp is
                         3-methyl-3-hydroxypentyl,
                         3-methyl-3-hydroxypentenyl,
                         3-methyl-3-hydroxypentynyl,
                         3-ethyl-3-hydroxypentyl,
                         3-ethyl-3-hydroxypentenyl,
                         3-ethyl-3-hydroxypentynyl,
                         3-ethyl-3-hydroxy-4-methylpentyl,
                         3-ethyl-3-hydroxy-4-methylpentenyl,
                         3-ethyl-3-hydroxy-4-methylpentynyl,
                         3-propyl-3-hydroxypentyl,
                         3-propyl-3-hydroxypentenyl,
                         3-propyl-3-hydroxypentynyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentenyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
                         2-methyl-3-hydroxy-4-dimethylpentyl,
                         2-methyl-3-hydroxy-3-ethylpentyl,
                         2-ethyl-3-hydroxy-3-ethylpentyl,
                         2-ethyl-3-hydroxy-4-dimethylpentyl, or
                         1-hydroxy-2-methyl-1-(methylethyl)propyl;
          then (L_{P1}) and (L_{P2}) combine as a bond;
   Z<sub>TB</sub> is selected from
                         -O-(C_1-C_5 \text{ alkyl}),
                         -O-(C2-C5 alkenyl),
                         -O-(C3-C5 cycloalkyl),
```

```
3-ethyl-3-hydroxy-4-methylpentynyl,
3-propyl-3-hydroxypentyl,
3-propyl-3-hydroxypentenyl,
3-propyl-3-hydroxypentynyl,
1-hydroxy-2-methyl-1-(methylethyl)propyl,
2-methyl-3-hydroxy-4-dimethylpentyl,
2-methyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentenyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
1-hydroxycycyclopentenyl,
1-hydroxycyclohexenyl,
1-hydroxycycloheptenyl,
1-hydroxycyclooctenyl,
1-hydroxycyclopropyl,
1-hydroxycyclobutyl,
1-hydroxycyclopentyl,
1-hydroxycyclohexyl,
2-oxocyclohexyloxy,
2-oxocyclohexylmethyl,
3-methyl-2-oxocyclohexyloxy,
3-methyl-2-oxocyclohexylmethyl,
3,3-dimethyl-2-oxocyclohexyloxy,
3,3-dimethyl-2-oxocyclohexylmethyl,
2-hydroxycyclohexyloxy,
2-hydroxycyclohexylmethyl,
3-methyl-2-hydroxycyclohexyloxy,
3-methyl-2-hydroxycyclohexylmethyl,
```

3,3-dimethyl-2-hydroxycyclohexyloxy,

- -O-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -O-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
- $-O-(C_1-C_5 \text{ fluoroalkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
- -O- $(C_1$ - $C_5$  alkyl)-C(O)-NH- $(C_1$ - $C_5$  alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -O-( $C_1$ - $C_5$  alkyl)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-NH-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
- -O-( $C_1$ - $C_5$  alkyl)-N-pyrrolidine,
- $\hbox{-O-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}3\hbox{-yl}),$
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl,)}\\$
- -O-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-NH<sub>2</sub>,
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-SO$_2$-NH-(C$_1$-C$_5$ alkyl),}\\$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-S(O)-(C$_1$-C$_5$ alkyl,)}\\$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_{2}$
- $\hbox{-O-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-S(O)-NH-}(C_1\hbox{-}C_5 \text{ alkyl}),$

- -O-( $C_1$ - $C_5$  alkyl)-S(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>, -O-( $C_1$ - $C_5$  alkyl)-S(O)-( $C_1$ - $C_5$  alkyl), -O-( $C_1$ - $C_5$  alkyl)-P(O)-(O- $C_1$ - $C_5$  alkyl)<sub>2</sub>, -O-( $C_1$ - $C_5$  alkyl)-5-tetrazolyl, -O- $CH_2$ - $CO_2H$ ,
- -O-CH<sub>2</sub>-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- $-O-C(O)-NH_2$ ,
- $-O-C(O)-N-(CH_3)_2$ ,
- -O-C(S)-N-(CH<sub>3</sub>)<sub>2</sub>,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 alkyl,)$
- $-O-SO_2-NH_2$ ,
- $-O-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH<sub>2</sub>,
- -O-S(O)-NH-( $C_1$ - $C_5$  alkyl),
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-S-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_2-C_5 \text{ alkenyl}),$
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -S-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
- $-S-(C_1-C_5 \text{ hydroxyalkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,

```
-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
 -S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
 -S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
 -S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_2-C_5 \text{ alkenyl}),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
```

-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),

```
-SO_2-(C_1-C_5 fluoroalkyl),
 -SO_2-(C_1-C_5)-phenyl,
 -SO_2-NH_2
 -SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)OH,
-SO_2-NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl}),
-SO<sub>2</sub>-NHC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
-SO_2-NH-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-SO_2-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2,
-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-SO_2-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},
-SO_2-(C_1-C_5 alkyl)-SO_2-(C_1-C_5 alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
```

 $-SO_2$ -(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),

- $-SO_2$ -(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$ ,
- $-SO_2-(C_1-C_5 alkyl),$
- $-SO_2$ -( $C_2$ - $C_5$  alkenyl),
- -SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
- -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2$ -N=CHN(C<sub>1</sub>-C<sub>5</sub> alkyl) <sub>2</sub>
- $-S(O)-NH_2$
- $-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- -S(O)-NH-CH<sub>2</sub>-C(O)OH
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH$ ,
- $-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$
- -S(O)HC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
- $-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$

```
-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S(O)-(C_1-C_5 \text{ alkyl})-N-pyrrolidine,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2
-NHC(S)NH_{2}
-NHC(S)NH-(C_1-C_5 alkyl),
-NHC(S)N-(C_1-C_5 alkyl)<sub>2</sub>,
-NHC(S)NH-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-NHC(S)NH-(C3-C5 cycloalkyl),
-NHC(S)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(S)NH-C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl)
```

-NHC(S)NH-phenyl,

```
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-OH,
-NHC(S)NH-(C_1-C_5 alkyl)-O-(C_1-C_5 alkyl),
```

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-(O- $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH<sub>2</sub>

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-NH<sub>2</sub>

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-NH-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH-S(O)-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-(1-methylpyrrolidin-2-one-3-yl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-5-tetrazolyl,

$$\hbox{-NHC(S)NH-(C$_1$-C$_5 alkyl)-SO$_2$-(C$_1$-C$_5 alkyl),}\\$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$\hbox{-NHC(S)NH-(C$_1$-C$_5$ alkyl)-SO$_2$-NH-(C$_1$-C$_5$ alkyl),}\\$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-SO<sub>2</sub>-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-S(O)-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-S(O)-NH<sub>2</sub>,

$$\hbox{-NHC}(S)\hbox{NH-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-S}(O)\hbox{-NH-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-S(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>.

$$-NHC(S)NH-(C_1-C_5 alkyl)-P(O)-(O-C_1-C_5 alkyl)_2$$
,

-NHC(O)NH-(
$$C_1$$
- $C_5$  alkyl),

-NHC(O)N-
$$(C_1-C_5 \text{ alkyl})_2$$
,

```
-NHC(O)NH-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-NHC(O)NH-(C_1-C_5 hydroxyalkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(O)NH-phenyl,
-NHC(O)NH-(C_1-C_5 alkyl)-NH<sub>2</sub>,
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-NHC(O)NH-(C1-C_5 alkyl)-O-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-NH-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-
         (1-methylpyrrolidin-2-one-3-yl),
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-OH,
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
```

-NHC(O)NH-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>

- -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-P(O)-O-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- $-NH_2$
- -NH-( $C_1$ - $C_5$  alkyl),
- -NH-CH<sub>2</sub>-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$ ,
- $-NH-C(O)-NH-(C_1-C_5 alkyl),$
- -NH-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- -NH-C(O)-( $C_1$ - $C_5$  alkyl),
- -NH-SO $_2$ -(C $_1$ -C $_5$  alkyl),
- -NH-S(O)-( $C_1$ - $C_5$  alkyl),
- -N(CH<sub>3</sub>)(OCH<sub>3</sub>),
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- $-C(O)CH_2S(O)Me$ ,
- $-C(O)CH_2S(O)Et$ ,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$ ,
- $-C(O)CH_2CH_2S(O)_2Et$ ,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,

- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- $-C(O)NH-CH_2-C(O)OH$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OMe,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- -C(O)NH-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,

- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OMe,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OEt,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)iPr,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH<sub>2</sub>-C(O)OMe,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,

- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2SO2Et,
- $-C(O)NHCH_2CH_2S(O)Me$ ,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$ ,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,

- -C(O)N(Me))SO<sub>2</sub>iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO<sub>2</sub>tBu,
- $-C(O)N(Me)CH_2S(O)Me$ ,
- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH<sub>2</sub>NHSO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- $-CH_2NHCH_2CH_2SO_2CH_3,\\$
- $-CH_2NH(CH_2CO_2H),$
- -CH<sub>2</sub>N(C(O)Me)(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,

- -CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CO<sub>2</sub>H, CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- -CH(OH)C(O)NH2,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- $\hbox{-CH$_2$CH$_2$CO$_2$Me},$
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,

- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- $-CH_2CH_2S(O)tBu,\\$
- $-CH_2CH_2S(O)_2tBu,\\$
- $-CH_2CH_2S(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2$ ,
- $-CH_2CH_2S(O)_2NHMe$
- $-CH_2CH_2S(O)_2NMe_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- $-CH_2CH_2CH_2S(O)_2Me$ ,
- $-CH_2CH_2CH_2S(O)_2Et,\\$

CH(Me)CH<sub>2</sub>C(O)OH,

-C(Me)<sub>2</sub>CH<sub>2</sub>C(O)OH,

-5-tetrazolyl,

- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when  $Z_{TB}$  is at the 6 position.; and

provided that -( $L_{TB}$ )- $Z_{TB}$  is substituted at either the 5 or 6 position of the benzothiophene ring; and

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when the group  $-(L_{TB})-Z_{TB}$  is at the 6 position.; and

provided that RB' is substituted at either the 4 or 5 position of the benzothiophene ring, except that RB' is substituted only at the 5 position of the benzothiophene ring when the group  $-(L_{TB})-Z_{TB}$  is at the 6 position of the phenyl ring; and

provided that RP is substituted at either the 2, or 5 or 6 position of the phenyl ring.

2. (Original) A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IB):

$$Z_{p} \xrightarrow{(L_{p2})} (L_{p1}) \xrightarrow{R} R^{R} R^{R} R^{R} \xrightarrow{R} R^{R} R^{R$$

wherein

R and R' are independently  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB<sub>4</sub>, RT<sub>3</sub>, and RB are independently selected from the group consisting of hydrogen, halo,  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, -O- $C_1$ - $C_5$  alkyl, -S- $C_1$ - $C_5$  alkyl, -O- $C_1$ - $C_5$  fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S- $C_1$ - $C_5$  fluoroalkyl,  $C_2$ - $C_5$  alkenyl,  $C_3$ - $C_5$  cycloalkyl, and  $C_3$ - $C_5$  cycloalkenyl;

RP<sub>3</sub> and RB<sub>7</sub> are independently selected from hydrogen, halo, C<sub>1</sub>-C<sub>5</sub> alkyl, C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -O-C<sub>1</sub>-C<sub>5</sub> alkyl, -S-C<sub>1</sub>-C<sub>5</sub> alkyl, -O-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, C<sub>2</sub>-C<sub>5</sub> alkenyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, or C<sub>3</sub>-C<sub>5</sub> cycloalkenyl;

 $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{BT})$  are divalent linking groups independently selected from the group consisting of



where m is 0, 1, or 2, and each R40 is independently hydrogen,  $C_1$ - $C_5$  alkyl, or  $C_1$ - $C_5$  fluoroalkyl;

Z<sub>P</sub> is

branched C<sub>3</sub>-C<sub>5</sub> alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

```
3-ethyl-3-hydroxypentyl,
3-ethyl-3-hydroxypentenyl,
3-ethyl-3-hydroxypentynyl,
3-ethyl-3-hydroxy-4-methylpentyl,
3-ethyl-3-hydroxy-4-methylpentenyl,
3-ethyl-3-hydroxy-4-methylpentynyl,
3-propyl-3-hydroxypentyl,
3-propyl-3-hydroxypentenyl,
3-propyl-3-hydroxypentynyl,
1-hydroxy-2-methyl-1-(methylethyl)propyl,
2-methyl-3-hydroxy-4-dimethylpentyl,
2-methyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentenyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
1-hydroxycycyclopentenyl,
1-hydroxycyclohexenyl,
1-hydroxycycloheptenyl,
1-hydroxycyclooctenyl,
1-hydroxycyclopropyl,
1-hydroxycyclobutyl,
1-hydroxycyclopentyl,
1-hydroxycyclohexyl,
2-oxocyclohexyloxy,
2-oxocyclohexylmethyl,
3-methyl-2-oxocyclohexyloxy,
3-methyl-2-oxocyclohexylmethyl,
3,3-dimethyl-2-oxocyclohexyloxy,
3,3-dimethyl-2-oxocyclohexylmethyl,
```

2-hydroxycyclohexyloxy,
2-hydroxycyclohexylmethyl,
3-methyl-2-hydroxycyclohexyloxy,
3-methyl-2-hydroxycyclohexylmethyl,
3,3-dimethyl-2-hydroxycyclohexyloxy,
3,3-dimethyl-2-hydroxycyclohexylmethyl,
1-hydroxycycloheptyl, or
1-hydroxycyclooctyl;

#### provided, however, that when

 $Z_P$  is

3-methyl-3-hydroxypentyl, 3-methyl-3-hydroxypentenyl, 3-methyl-3-hydroxypentynyl, 3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl, 3-ethyl-3-hydroxy-4-methylpentyl, 3-ethyl-3-hydroxy-4-methylpentenyl, 3-ethyl-3-hydroxy-4-methylpentynyl, 3-propyl-3-hydroxypentyl, 3-propyl-3-hydroxypentenyl, 3-propyl-3-hydroxypentynyl, 3-methyl-3-hydroxy-4,4-dimethylpentyl, 3-methyl-3-hydroxy-4,4-dimethylpentenyl, 3-methyl-3-hydroxy-4,4-dimethylpentyl, 3-ethyl-3-hydroxy-4,4-dimethylpentynyl, 3-ethyl-3-hydroxy-4,4-dimethylpentenyl, 3-ethyl-3-hydroxy-4,4-dimethylpentynyl, 2-methyl-3-hydroxy-4-dimethylpentyl, 2-methyl-3-hydroxy-3-ethylpentyl, 2-ethyl-3-hydroxy-3-ethylpentyl, 2-ethyl-3-hydroxy-4-dimethylpentyl, or 1-hydroxy-2-methyl-1-(methylethyl)propyl; then  $(L_{P1})$  and  $(L_{P2})$  combine as a bond;

## **Z**<sub>RT</sub> is selected from

 $-O-(C_1-C_5 \text{ alkyl}),$  $-O-(C_2-C_5 \text{ alkenyl}),$ -O-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl), -O-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),  $-O-(C_1-C_5 \text{ hydroxyalkyl}),$  $-O-(C_1-C_5 fluoroalkyl)$ , -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-phenyl,  $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$ -O-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>  $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$  $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$  $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$  $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$ -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-OH, -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-5-tetrazolyl,  $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$  $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$ -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>  $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$  $-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$ -O-( $C_1$ - $C_5$  alkyl)-NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl), -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one, -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine, -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl), -O-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl,)  $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$  $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$  $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$ 

- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl},)$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$ ,
- -O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
- -O-CH<sub>2</sub>-CO<sub>2</sub>H,
- -O-CH<sub>2</sub>-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-C(O)-NH<sub>2</sub>,
- -O-C(O)-N-(CH<sub>3</sub>)<sub>2</sub>,
- $-O-C(S)-N-(CH_3)_2$ ,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 \text{ alkyl,})$
- -O-SO<sub>2</sub>-NH<sub>2</sub>,
- $\hbox{-O-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl}),$
- $\hbox{-O-SO}_2\hbox{-N-}(C_1\hbox{-}C_5 \text{ alkyl})_2,$
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- $-O-S(O)-NH_2$ ,
- $-O-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C2-C5 alkenyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -S-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),

```
-S-(C_1-C_5 \text{ hydroxyalkyl}),
-S-(C_1-C_5 \text{ alkyl})-phenyl,
-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O)-NH<sub>2</sub>
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
```

 $-SO_2-(C_1-C_5 \text{ alkyl}),$ 

```
-SO_2-(C_2-C_5 alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),
-SO_2-(C_1-C_5 fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO<sub>2</sub>-NH<sub>2</sub>
-SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-NH-CH<sub>2</sub>-C(O)OH,
-SO_2-NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
-SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NHC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
-SO_2-NH-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-O-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>.
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
```

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}3\hbox{-yl}),$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)\hbox{-}O\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

 $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,

 $-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$ 

-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH,$$

```
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
 -SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2
-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-SO_2-(C_3-C_5 \text{ cycloalkyl}),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),
-SO_2-(C_1-C_5 fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_2
-S(O)-NH<sub>2</sub>
-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-NH-CH_2-C(O)OH
-S(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),
-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
```

 $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$ 

 $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$ 

- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-pyrrolidine,$
- -S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,
- -S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-P(O)-(O-C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub> ,
- $-S(O)-N=CHN(C_1-C_5 \text{ alkyl})_{2,}$
- $-NHC(S)NH_{2}$
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl),
- -NHC(S)N- $(C_1-C_5 \text{ alkyl})_2$ ,
- -NHC(S)NH-(C2-C5 alkenyl),
- $\hbox{-NHC}(S) \hbox{NH-}(\hbox{C}_3\hbox{-C}_5 \ \hbox{cycloalkyl}),$
- $-NHC(S)NH-(C_3-C_5 \text{ cycloalkenyl}),$

```
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
```

-NHC(S)NH-
$$C_1$$
- $C_5$  hydroxyalkyl,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-O-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-(O- $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>.

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-NH-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-NHC}(S)NH\hbox{-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}N\hbox{-}pyrrolidin\hbox{-}2\hbox{-}one,$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-N-pyrrolidine,

$$\hbox{-NHC}(S)NH\hbox{-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}3\hbox{-}yl),$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-5-tetrazolyl,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-SO<sub>2</sub>-NH<sub>2</sub>,

$$\hbox{-NHC}(S)NH\hbox{-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-SO<sub>2</sub>-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-S(O)-( $C_1$ - $C_5$  alkyl),

$$\hbox{-NHC}(S)\hbox{NH-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-S}(O)\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-S(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-P(O)-(O- $C_1$ - $C_5$  alkyl)<sub>2</sub>,

-NHC(O)NH<sub>2</sub>,-NHC(O)NH-( $C_1$ - $C_5$  alkyl), -NHC(O)N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>, -NHC(O)NH-(C2-C5 alkenyl), -NHC(O)NH-(C3-C5 cycloalkyl), -NHC(O)NH-(C3-C5 cycloalkenyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl), -NHC(O)NH-phenyl, -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub> -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-NH-( $C_1$ - $C_5$  alkyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub> -NHC(O)NH-(C1-C $_5$  alkyl)-O-(C $_1$ -C $_5$  alkyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>  $-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$  $-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$ -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>  $-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$  $-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$ -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-C(O)-( $C_1$ - $C_5$  alkyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one, -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine, -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl), -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-OH,  $-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-O-(C_1-C_5 alkyl),$ 

-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,

 $-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$ 

- -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>.
- -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-NH-( $C_1$ - $C_5$  alkyl),
- -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>
- -NHC(O)NH-( $C_1$ - $C_5$  alkyl)-P(O)-O-( $C_1$ - $C_5$  alkyl) $_2$  ,
- -NH<sub>2</sub>.
- -NH-( $C_1$ - $C_5$  alkyl),
- -NH-CH<sub>2</sub>-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$ ,
- -NH-C(O)-NH-( $C_1$ - $C_5$  alkyl),
- -NH-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>
- $-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- -NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),
- -NH-S(O)-( $C_1$ - $C_5$  alkyl),
- -N(CH<sub>3</sub>)(OCH<sub>3</sub>),
- -N(OH)(CH<sub>3</sub>),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- -C(O)CH<sub>2</sub>S(O)Me,
- -C(O)CH<sub>2</sub>S(O)Et,
- -C(O)CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-C(O)CH_2S(O)_2Et$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)CH2CH2S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$ ,

- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- -C(O)NH-CH<sub>2</sub>-C(O)OMe,
- $-C(O)NH-CH_2-C(O)OEt$ ,

- -C(O)NH-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OMe$ ,
- $-C(O)NH-C(Me)_2-C(O)OEt$ ,
- -C(O)NH-C(Me)2-C(O)iPr,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$ ,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- $-C(O)NMe-CH_2-C(O)tBu$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,

- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,

- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- $-C(O)N(Me)SO_2tBu$ ,
- -C(O)N(Me)CH<sub>2</sub>S(O)Me,
- $-C(O)N(Me)CH_2S(O)Et$ ,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$ ,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)Me,
- -CH<sub>2</sub>NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH<sub>2</sub>NHSO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub>,
- -CH<sub>2</sub>NH(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>N(C(O)Me)(CH<sub>2</sub>CO<sub>2</sub>H),

- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>S(O)tBu,
- $-CH_2S(O)_2tBu$ ,
- -CH<sub>2</sub>CO<sub>2</sub>H, CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$ ,  $CH_2S(O)Me$ ,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- - $CH_2CH_2C(O)NMe_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,

## Docket No. X-16541 US

- - $CH_2CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- - $CH_2CH_2S(O)_2iPr$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- $-CH_2CH_2S(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NHMe
- $-CH_2CH_2S(O)_2NMe_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- $-CH_2CH_2CH_2S(O)_2Me$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- CH(Me)CH<sub>2</sub>C(O)OH,
- -C(Me)<sub>2</sub>CH<sub>2</sub>C(O)OH,
  - -5-tetrazolyl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

3. (Original) A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IC):

$$Z_{p}$$
 $(L_{P2})$ 
 $(L_{P1})$ 
 $RB_{q}$ 
 $RB_{q}$ 

wherein

R and R' are independently  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB<sub>4</sub>, RT<sub>3</sub> and RB are independently selected from the group consisting of hydrogen, halo,  $C_1$ - $C_5$  alkyl,  $C_1$ - $C_5$  fluoroalkyl, -O- $C_1$ - $C_5$  alkyl, -S- $C_1$ - $C_5$  alkyl, -CO- $C_1$ -C5 fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S- $C_1$ - $C_5$  fluoroalkyl,  $C_2$ - $C_5$  alkenyl,  $C_3$ - $C_5$  cycloalkyl, and  $C_3$ - $C_5$  cycloalkenyl;

RP<sub>3</sub> and RB<sub>7</sub> are independently selected from hydrogen, halo, C<sub>1</sub>-C<sub>5</sub> alkyl, C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -O-C<sub>1</sub>-C<sub>5</sub> alkyl, -S-C<sub>1</sub>-C<sub>5</sub> alkyl, -O-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, -CN, -NO<sub>2</sub>, acetyl, -S-C<sub>1</sub>-C<sub>5</sub> fluoroalkyl, C<sub>2</sub>-C<sub>5</sub> alkenyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, or C<sub>3</sub>-C<sub>5</sub> cycloalkenyl;

 $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{BT})$  are divalent linking groups independently selected from the group consisting of





where m is 0, 1, or 2, and each R40 is independently hydrogen,  $C_1$ - $C_5$  alkyl, or  $C_1$ - $C_5$  fluoroalkyl;

Z<sub>P</sub> is

branched C<sub>3</sub>-C<sub>5</sub> alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

```
3-propyl-3-hydroxypentyl,
3-propyl-3-hydroxypentenyl,
3-propyl-3-hydroxypentynyl,
1-hydroxy-2-methyl-1-(methylethyl)propyl,
2-methyl-3-hydroxy-4-dimethylpentyl,
2-methyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-3-ethylpentyl,
2-ethyl-3-hydroxy-4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentenyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
1-hydroxycycyclopentenyl,
1-hydroxycyclohexenyl,
1-hydroxycycloheptenyl,
1-hydroxycyclooctenyl,
1-hydroxycyclopropyl,
1-hydroxycyclobutyl,
1-hydroxycyclopentyl,
1-hydroxycyclohexyl,
2-oxocyclohexyloxy,
2-oxocyclohexylmethyl,
3-methyl-2-oxocyclohexyloxy,
3-methyl-2-oxocyclohexylmethyl,
3,3-dimethyl-2-oxocyclohexyloxy,
3,3-dimethyl-2-oxocyclohexylmethyl,
2-hydroxycyclohexyloxy,
2-hydroxycyclohexylmethyl,
3-methyl-2-hydroxycyclohexyloxy,
3-methyl-2-hydroxycyclohexylmethyl,
```

3,3-dimethyl-2-hydroxycyclohexyloxy,

3,3-dimethyl-2-hydroxycyclohexylmethyl,

```
1-hydroxycycloheptyl, or
                         1-hydroxycyclooctyl;
provided, however, that when
          Z<sub>P</sub> is
                         3-methyl-3-hydroxypentyl,
                         3-methyl-3-hydroxypentenyl,
                         3-methyl-3-hydroxypentynyl,
                         3-ethyl-3-hydroxypentyl,
                         3-ethyl-3-hydroxypentenyl,
                         3-ethyl-3-hydroxypentynyl,
                         3-ethyl-3-hydroxy-4-methylpentyl,
                         3-ethyl-3-hydroxy-4-methylpentenyl,
                         3-ethyl-3-hydroxy-4-methylpentynyl,
                         3-propyl-3-hydroxypentyl,
                         3-propyl-3-hydroxypentenyl,
                         3-propyl-3-hydroxypentynyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentenyl,
                         3-methyl-3-hydroxy-4,4-dimethylpentyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
                         3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
                         2-methyl-3-hydroxy-4-dimethylpentyl,
                         2-methyl-3-hydroxy-3-ethylpentyl,
                         2-ethyl-3-hydroxy-3-ethylpentyl,
                         2-ethyl-3-hydroxy-4-dimethylpentyl, or
                         1-hydroxy-2-methyl-1-(methylethyl)propyl;
          then (L_{P1}) and (L_{P2}) combine as a bond;
   ZBT is selected from
                         -O-(C_1-C_5 \text{ alkyl}),
                         -O-(C2-C5 alkenyl),
                         -O-(C3-C5 cycloalkyl),
                         -O-(C3-C5 cycloalkenyl),
```

```
-O-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
-O-(C_1-C_5 fluoroalkyl),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-phenyl,
-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-5-tetrazolyl,
-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
\hbox{-O-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)\hbox{-}(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl}),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)
-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl},)
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
```

 $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ 

```
-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-O-CH<sub>2</sub>-CO<sub>2</sub>H,
-O-CH<sub>2</sub>-5-tetrazolyl,
-O-(C_1-C_5 \text{ alkyl}),
-O-C(O)-NH<sub>2</sub>,
-O-C(O)-N-(CH<sub>3</sub>)<sub>2</sub>,
-O-C(S)-N-(CH_3)_2,
-O-C(O)-O-(C_1-C_5 \text{ alkyl}),
-O-(5-tetrazolyl),
-O-SO_2-(C_1-C_5 \text{ alkyl,})
-O-SO_2-NH_2,
-O-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2,
-O-S(O)-(C_1-C_5 \text{ alkyl,})
-O-S(O)-NH<sub>2</sub>,
-O-S(O)-NH-(C_1-C_5 alkyl),
-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl}),
-S-(C_2-C_5 \text{ alkenyl}),
-S-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-S-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-S-(C_1-C_5 \text{ fluoroalkyl}),
-S-(C_1-C_5 \text{ hydroxyalkyl}),
-S-(C_1-C_5 \text{ alkyl})-phenyl,
\hbox{-S-(C$_1$-C$_5$ alkyl)-O-(C$_1$-C$_5$ alkyl),}\\
-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
```

```
-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_2-C_5 alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
```

-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),

- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- $-SO_2$ -NH-( $C_1$ - $C_5$  alkyl),
- -SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)OH,
- $-SO_2$ -NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
- $-SO_2$ -NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
- $-SO_2$ -NH- $(C_1$ - $C_5$  alkyl)-C(O)(O- $C_1$ - $C_5$  alkyl),
- -SO<sub>2</sub>-NHC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
- $-SO_2$ -NH-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2$ - $(C_1$ - $C_5$  alkyl)-O- $(C_1$ - $C_5$  alkyl),
- $-SO_2$ -(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
- $-SO_2$ -(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})\text{-}\mathsf{C}(\mathsf{O})\text{-}\mathsf{N}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})_2,$
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-NH-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-N-pyrrolidin-2-one,$
- -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}3\hbox{-yl}),$
- -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-O-(C<sub>1</sub>-C<sub>5</sub> alkyl),
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)\hbox{-}OH,$
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}5\hbox{-}tetrazolyl,$
- $\hbox{-SO}_2\hbox{-(}C_1\hbox{-}C_5\hbox{ alkyl)}\hbox{-SO}_2\hbox{-(}C_1\hbox{-}C_5\hbox{ alkyl)},$
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$

```
-SO_2-(C_1-C_5 alkyl)-SO_2-(C_1-C_5 alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-P(O)-(O-C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>,
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_2-C_5 alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),
-SO_2-(C_1-C_5 fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO_2-N=CHN(C_1-C_5 \text{ alkyl}) 2,
-S(O)-NH<sub>2</sub>
-S(O)-NH-(C_1-C_5 alkyl),
-S(O)-NH-CH<sub>2</sub>-C(O)OH
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH,
-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),
-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
```

 $-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$ 

```
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2
-NHC(S)NH_2
-NHC(S)NH-(C_1-C_5 alkyl),
-NHC(S)N-(C_1-C_5 alkyl)<sub>2</sub>,
-NHC(S)NH-(C_2-C_5 alkenyl),
-NHC(S)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-NHC(S)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(S)NH-C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl)
-NHC(S)NH-phenyl,
```

-NHC(S)NH-( $C_1$ - $C_5$  alkyl)-C(O)-OH,

```
-NHC(S)NH-(C_1-C_5 alkyl)-O-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(O-C_1-C_5 alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(S)NH-(C_1-C_5 alkyl)-NH-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(S)NH-(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-
        3-yl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-NHC(S)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O)-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-NHC(S)NH-(C_1-C_5 alkyl)-P(O)-(O-C_1-C_5 alkyl)<sub>2</sub>,
-NHC(O)NH<sub>2</sub>,
-NHC(O)NH-(C_1-C_5 alkyl),
-NHC(O)N-(C_1-C_5 \text{ alkyl})_2,
```

-NHC(O)NH-(C2-C5 alkenyl),

```
-NHC(O)NH-(C3-C5 cycloalkyl),
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-NHC(O)NH-(C_1-C_5 hydroxyalkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(O)NH-phenyl,
-NHC(O)NH-(C_1-C_5 alkyl)-NH<sub>2</sub>.
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-N-(C_1-C_5 alkyl)<sub>2</sub>.
-NHC(O)NH-(C1-C5 alkyl)-O-(C1-C5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-NH-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(O)NH-(C1-C5 alkyl)-N-pyrrolidine,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-
         (1-methylpyrrolidin-2-one-3-yl),
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-OH,
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-P(O)-O-(C_1-C_5 alkyl)<sub>2</sub>,
```

- -NH<sub>2</sub>,
- -NH-( $C_1$ - $C_5$  alkyl),
- -NH-CH<sub>2</sub>-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-NH<sub>2</sub>,
- -NH-C(O)-NH-( $C_1$ - $C_5$  alkyl),
- -NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-( $C_1$ - $C_5$  alkyl),
- -NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),
- $-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -N(CH<sub>3</sub>)(OCH<sub>3</sub>),
- -N(OH)(CH<sub>3</sub>),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- -C(O)CH<sub>2</sub>S(O)Me,
- -C(O)CH<sub>2</sub>S(O)Et,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- $-C(O)CH_2CH_2S(O)Me$ ,
- $-C(O)CH_2CH_2S(O)Et$ ,
- $-C(O)CH_2CH_2S(O)_2Me$ ,
- $-C(O)CH_2CH_2S(O)_2Et$ ,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,

- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- $-C(O)NH-CH_2-C(O)OMe$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- -C(O)NH-CH2-C(O)OiPr,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,

- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- $-C(O)NH-C(Me)_2-C(O)OMe$ ,
- $-C(O)NH-C(Me)_2-C(O)OEt$ ,
- $-C(O)NH-C(Me)_2-C(O)iPr$ ,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH<sub>2</sub>-C(O)OMe,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)<sub>2</sub>-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,

- -C(O)NMe-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO<sub>2</sub>iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- $-C(O)NHCH_2CH_2S(O)Me$ ,
- $-C(O)NHCH_2CH_2S(O)Et$ ,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$ ,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$ ,
- $-C(O)N(Me)SO_2Et$ ,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,

- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- -C(O)N(Me)CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)Me,
- -CH<sub>2</sub>NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub>,
- -CH<sub>2</sub>NH(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>N(C(O)Me)(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,

- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,
- $-CH_2S(O)_2iPr$ ,
- -CH<sub>2</sub>S(O)tBu,
- $-CH_2S(O)_2tBu$ ,
- - $CH_2CO_2H$ ,  $CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me$ ,
- $-CH_{2}CH_{2}S(O)Me,\\$
- $-CH_2CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,

- -CH2CH2S(O)tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- $-CH_2CH_2S(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2,\\$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NHMe
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$
- $-CH_2CH_2CH_2S(O)_2Me,\\$
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)_2\hbox{Et},$

CH(Me)CH<sub>2</sub>C(O)OH,

 $-C(Me)_2CH_2C(O)OH$ ,

-5-tetrazolyl,



- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

4. (Original) A compound according to claim 1 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein

 $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{TB})$  are divalent linking groups independently selected from the group consisting of



where m is 0, 1, or 2, and each R40 is independently hydrogen,  $C_1$ - $C_5$  alkyl, or  $C_1$ - $C_5$  fluoroalkyl; and

- $-CH_2CH_2S(O)_2Me,\\$
- -CH2CH2S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH2CH2S(O)iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH2CH2S(O)tBu,
- -CH2CH2S(O)2tBu,

- $-CH_{2}CH_{2}S(O)NH_{2},\\$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2$ ,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{NHMe}$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S(O)}\hbox{Et,}\\$
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $\hbox{-CH$_2$CH$_2$CO)$_2$Et},$

-C(O)OH,

-5-tetrazolyl,



- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl.
- 5. (Original) A compound according to claim 2 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein  $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{BT})$  are divalent linking groups independently selected from the group consisting of



where m is 0, 1, or 2, and each R40 is independently hydrogen, C<sub>1</sub>-C<sub>5</sub> alkyl, or C<sub>1</sub>-

C<sub>5</sub> fluoroalkyl; and

**ZBT** is selected from

```
-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-5-\text{tetrazolyl},
-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-NH_2
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)
-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2.
-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl},)
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
```

 $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ 

 $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$ ,

 $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$ 

- -O-CH<sub>2</sub>-CO<sub>2</sub>H,
- -O-CH<sub>2</sub>-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- $-O-C(O)-NH_2$ ,
- -O-C(O)-N-(CH<sub>3</sub>)<sub>2</sub>,
- $-O-C(S)-N-(CH_3)_2$ ,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 \text{ alkyl},)$
- $-O-SO_2-NH_2$ ,
- -O-SO<sub>2</sub>-NH-( $C_1$ - $C_5$  alkyl),
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-O-S(O)-(C_1-C_5 alkyl,)$
- -O-S(O)-NH<sub>2</sub>,
- $-O-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- $-S-(C_1-C_5 fluoroalkyl)$ ,
- $-S-(C_1-C_5 \text{ hydroxyalkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$

```
-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O)-NH<sub>2</sub>
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-SO_2-(C_3-C_5 \text{ cycloalkyl}),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO<sub>2</sub>-NH<sub>2</sub>
```

 $-SO_2$ -NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),

```
-SO_2-NH-CH<sub>2</sub>-C(O)OH,
-SO_2-NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
-SO_2-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NHC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
-SO_2-NH-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-O-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2,
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-O-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-OH,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-SO_2-(C_1-C_5 \text{ alkyl}),
```

```
-SO_2-(C_2-C_5 alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_2
-S(O)-NH<sub>2</sub>
-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-NH-CH<sub>2</sub>-C(O)OH
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH,
-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),
-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-N-pyrrolidin-2-one,
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
```

-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),

```
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
```

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl}),$$

-NHC(S)N-(
$$C_1$$
- $C_5$  alkyl)<sub>2</sub>,

-NHC(S)NH-(
$$C_2$$
- $C_5$  alkenyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  fluoroalkyl),

$$-NHC(S)NH-C_1-C_5$$
 hydroxyalkyl,

$$-NHC(S)NH-(C_1-C_5 fluoroalkyl)$$

$$\hbox{-NHC}(S)NH\hbox{-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}O\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-( $C_1$ - $C_5$  alkyl),

-NHC(S)NH-(
$$C_1$$
- $C_5$  alkyl)-C(O)-(O- $C_1$ - $C_5$  alkyl),

- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-NH<sub>2</sub>,
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-NH-( $C_1$ - $C_5$  alkyl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>.
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-NH-S(O)-( $C_1$ - $C_5$  alkyl),
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-5-tetrazolyl,
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-N-(C_1-C_5 alkyl)_2$
- $-NHC(S)NH-(C_1-C_5 alkyl)-S(O)-(C_1-C_5 alkyl),$
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O)-NH<sub>2</sub>
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-S(O)-N-(C_1-C_5 alkyl)_2$
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-P(O)-(O- $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- $-NHC(O)NH_2$ ,
- -NHC(O)NH-( $C_1$ - $C_5$  alkyl),
- -NHC(O)N- $(C_1-C_5 \text{ alkyl})_2$ ,
- -NHC(O)NH-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),

```
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(O)NH-phenyl,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C1-C5 alkyl)-O-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-NH-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-
         (1-methylpyrrolidin-2-one-3-yl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-OH,
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-O-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-5-tetrazolyl,
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-P(O)-O-(C_1-C_5 alkyl)<sub>2</sub>,
-NH<sub>2</sub>
-NH-(C_1-C_5 alkyl),
-NH-CH<sub>2</sub>-C(O)OH,
```

- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$ ,
- -NH-C(O)-NH-( $C_1$ - $C_5$  alkyl),
- -NH-C(O)-N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- -NH-C(O)-( $C_1$ - $C_5$  alkyl),
- -NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),
- -NH-S(O)-( $C_1$ - $C_5$  alkyl),
- -N(CH<sub>3</sub>)(OCH<sub>3</sub>),
- -N(OH)(CH<sub>3</sub>),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- -C(O)CH<sub>2</sub>S(O)Me,
- $-C(O)CH_2S(O)Et$ ,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- $-C(O)CH_2CH_2S(O)Me$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$ ,
- $-C(O)CH_2CH_2S(O)_2Et$ ,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- $-C(O)CH(Me)CH_2CO_2Me$ ,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,

- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- $-C(O)NH-CH_2-C(O)OMe$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- $-C(O)NH-CH_2-C(O)OiPr$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,

- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OMe$ ,
- $-C(O)NH-C(Me)_2-C(O)OEt$ ,
- $-C(O)NH-C(Me)_2-C(O)iPr$ ,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- $-C(O)NMe-CH_2-C(O)OH$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OMe,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$ ,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$ ,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,

- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- $-C(O)NHSO_2Me$ ,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO<sub>2</sub>tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO<sub>2</sub>iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO<sub>2</sub>tBu,
- -C(O)N(Me)CH<sub>2</sub>S(O)Me,

- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH2CO2Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH<sub>2</sub>NHSO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub>,
- $-CH_2NH(CH_2CO_2H),$
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,

- -CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CO<sub>2</sub>H, CH<sub>2</sub>C(O)NH<sub>2</sub>,
- $-CH_2C(O)NMe_2$ ,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- $-CH_2CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $-CH_2CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S}(\hbox{O})_2\hbox{iPr},$
- $-CH_2CH_2S(O)tBu,\\$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NH<sub>2</sub>,

-CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,

 $\hbox{-CH$_2$CH$_2$S(O)NMe$_2$,}\\$ 

 $-CH_2CH_2S(O)_2NH_2$ ,

 $-CH_2CH_2S(O)_2NHMe$ 

-CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NMe<sub>2</sub>,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Et,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Et},$ 

-5-tetrazolyl,



-1,3,4-oxadiazolin-2-one-5-yl,

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl.

6. (Original) A compound according to claim 3 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein

 $(L_{P1})$ ,  $(L_{P2})$ , and  $(L_{BT})$  are divalent linking groups independently selected from the group consisting of



where m is 0, 1, or 2, and each R40 is independently hydrogen,  $C_1$ - $C_5$  alkyl, or  $C_1$ -

## C<sub>5</sub> fluoroalkyl; and

## ZBT is selected from

```
-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-5-tetrazolyl,
-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-NH_2
-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)
-O-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-O-(C_1-C_5 alkyl)-SO<sub>2</sub>-NH-(C_1-C_5 alkyl),
-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl},)
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
```

 $-O-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$ 

- -O-CH<sub>2</sub>-CO<sub>2</sub>H,
- -O-CH<sub>2</sub>-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- $-O-C(O)-NH_2$ ,
- -O-C(O)-N-(CH<sub>3</sub>)<sub>2</sub>,
- $-O-C(S)-N-(CH_3)_2$ ,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 alkyl,)$
- $-O-SO_2-NH_2$ ,
- $-O-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH2,
- $-O-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$ ,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C2-C5 alkenyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -S-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -S-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
- -S-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
- $-S-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$

```
-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl}) \text{ NH}_2
-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2
-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
-S-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2
-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO<sub>2</sub>-NH<sub>2</sub>
```

 $-SO_2$ -NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),

```
-SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)OH,
-SO_2-NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
-SO_2-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),
-SO<sub>2</sub>-NHC(O)-(C<sub>3</sub>-C<sub>6</sub> cycloalkyl),
-SO_2-NH-C(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-N-(C_1-C_5 \text{ alkyl})_2
-SO_2-(C_1-C_5 alkyl)-O-(C_1-C_5 alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2,
-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-3-yl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-O-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-SO_2-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2,
```

 $-SO_2-(C_1-C_5 \text{ alkyl}),$ 

```
-SO_2-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-SO_2-(C_1-C_5 hydroxyalkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-SO_2-(C_1-C_5)-phenyl,
-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_2
-S(O)-NH_2
-S(O)-NH-(C_1-C_5 alkyl),
-S(O)-NH-CH<sub>2</sub>-C(O)OH
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH,
-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),
-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),
-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2,
-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),
-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),
-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
```

-S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,

 $-S(O)-(C_1-C_5 \text{ alkyl})-(1-\text{methylpyrrolidin-}2-\text{one-}3-\text{yl}),$ 

- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$ ,
- -S(O)-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$ ,
- $-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$
- -NHC(S)NH<sub>2</sub>.
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl),
- -NHC(S)N-( $C_1$ - $C_5$  alkyl)<sub>2</sub>,
- -NHC(S)NH-(C<sub>2</sub>-C<sub>5</sub> alkenyl),
- -NHC(S)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
- -NHC(S)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
- -NHC(S)NH-C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl,
- -NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl)
- -NHC(S)NH-phenyl,
- $-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-OH$ ,
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-O-( $C_1$ - $C_5$  alkyl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-C(O)-( $C_1$ - $C_5$  alkyl),
- -NHC(S)NH-( $C_1$ - $C_5$  alkyl)-C(O)-(O- $C_1$ - $C_5$  alkyl),

```
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH<sub>2</sub>.
-NHC(S)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 alkyl)-N-(C_1-C_5 alkyl)<sub>2</sub>.
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-NHC(S)NH-(C_1-C_5 alkyl)-NH-S(O)-(C_1-C_5 alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-(1-methylpyrrolidin-2-one-
         3-yl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5-tetrazolyl,
-NHC(S)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-NH-(C_1-C_5 alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O)-NH<sub>2</sub>
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2
-NHC(S)NH-(C_1-C_5 alkyl)-P(O)-(O-C_1-C_5 alkyl)<sub>2</sub>,
-NHC(O)NH<sub>2</sub>,
-NHC(O)NH-(C_1-C_5 alkyl),
-NHC(O)N-(C_1-C_5 alkyl)<sub>2</sub>,
-NHC(O)NH-(C2-C5 alkenyl),
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-NHC(O)NH-(C3-C5 cycloalkenyl),
```

-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),

```
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
-NHC(O)NH-phenyl,
-NHC(O)NH-(C_1-C_5 alkyl)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2
-NHC(O)NH-(C1-C5 alkyl)-O-(C_1-C5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-NH<sub>2</sub>.
-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-NH-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidin-2-one,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-
         (1-methylpyrrolidin-2-one-3-yl),
-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-OH,
-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),
-NHC(O)NH-(C_1-C_5 alkyl)-5-tetrazolyl,
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-(C_1-C_5 alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-NH-(C_1-C_5 alkyl),
-NHC(O)NH-(C_1-C_5 alkyl)-SO<sub>2</sub>-N-(C_1-C_5 alkyl)<sub>2</sub>
-NHC(O)NH-(C_1-C_5 alkyl)-P(O)-O-(C_1-C_5 alkyl)<sub>2</sub>,
-NH<sub>2</sub>
-NH-(C_1-C_5 alkyl),
-NH-CH<sub>2</sub>-C(O)OH,
```

- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$ ,
- -NH-C(O)-NH-( $C_1$ - $C_5$  alkyl),
- $-NH-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- -NH-SO<sub>2</sub>-( $C_1$ - $C_5$  alkyl),
- -NH-S(O)-( $C_1$ - $C_5$  alkyl),
- -N(CH<sub>3</sub>)(OCH<sub>3</sub>),
- -N(OH)(CH<sub>3</sub>),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- -C(O)CH<sub>2</sub>S(O)Me,
- -C(O)CH<sub>2</sub>S(O)Et,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- $-C(O)CH_2CH_2S(O)Me$ ,
- -C(O)CH2CH2S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,

- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- $-C(O)NH-CH_2-C(O)OMe$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- $-C(O)NH-CH_2-C(O)OiPr$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,

- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-C(Me)2-C(O)OMe,
- $-C(O)NH-C(Me)_2-C(O)OEt$ ,
- $-C(O)NH-C(Me)_2-C(O)iPr$ ,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
  - -C(O)NMe-CH<sub>2</sub>-C(O)OH,
  - -C(O)NMe-CH<sub>2</sub>-C(O)OMe,
  - -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
  - -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
  - -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
  - -C(O)NMe-CH<sub>2</sub>-C(O)OH,
  - -C(O)NMe-CH(Me)-C(O)OH,
  - -C(O)NMe-CH(F)-C(O)OH,
  - -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,
  - -C(O)NMe-CH(OH)-C(O)OH,
  - -C(O)NMe-CH(cyclopropyl)-C(O)OH,
  - $-C(O)NMe-C(Me)_2-C(O)OH$ ,
  - -C(O)NMe-CF(Me)-C(O)OH,
  - $-C(O)NMe-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,

- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$ ,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$ ,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- $-C(O)N(Me)CH_2S(O)Me$ ,

- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)N(Me)CH2CH2S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)Me,
- -CH<sub>2</sub>NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH2NHSO2Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH<sub>2</sub>NHS(O)tBu,
- -CH<sub>2</sub>NHSO<sub>2</sub>tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH<sub>2</sub>NH(CH<sub>2</sub>CO<sub>2</sub>H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,

- $-CH_2S(O)_2iPr$ ,
- -CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- - $CH_2CO_2H$ ,  $CH_2C(O)NH_2$ ,
- $-CH_2C(O)NMe_2$ ,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe<sub>2</sub>,
- -CH(OH)C(O)NEt<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- $-CH_2CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- $\hbox{-CH$_2$CH$_2$-5-tetrazolyl},$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NH<sub>2</sub>,

-CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,

-CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,

 $-CH_2CH_2S(O)_2NH_2$ ,

 $-CH_2CH_2S(O)_2NHMe$ 

-CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NMe<sub>2</sub>,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,

- $CH_2CH_2CH_2S(O)Et$ ,

 $-CH_2CH_2CH_2S(O)_2Me,\\$ 

 $-CH_2CH_2CH_2S(O)_2Et,\\$ 

-5-tetrazolyl,





7. (Original) The compound of Claim 1 wherein for Formula IA;

R and R' are independently methy or ethyl;

RP and RT<sub>3</sub> are independently, hydrogen or methyl;

 $RP_3$  and RB are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;  $(L_{Pl})$  and  $(L_{TB})$  divalent linking groups are both bonds;

(L<sub>P2</sub>) is a bond, -CH<sub>2</sub>-, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

Z<sub>TB</sub> is

- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- $-C(O)CH_2S(O)Me$ ,
- $-C(O)CH_2S(O)Et$ ,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- $-C(O)CH_2CH_2S(O)Me$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-C(O)CH_2CH_2S(O)_2Et$ ,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,

- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO2Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- -C(O)NH-CH<sub>2</sub>-C(O)OMe,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- -C(O)NH-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OMe,
- $-C(O)NH-C(Me)_2-C(O)OEt$ ,
- $-C(O)NH-C(Me)_2-C(O)iPr$ ,
- $-C(O)NH-C(Me)_2-C(O)tBu$ ,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$ ,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,

- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH<sub>2</sub>-C(O)OMe,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$ ,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,

- -C(O)NHCH<sub>2</sub>S(O)Me,
- $-C(O)NHCH_2S(O)Et$ ,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $-C(O)NHCH_2CH_2S(O)Et$ ,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$ ,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- $-C(O)N(Me)SO_2tBu$ ,
- $-C(O)N(Me)CH_2S(O)Me$ ,
- $-C(O)N(Me)CH_2S(O)Et$ ,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$ ,
- $-C(O)N(Me)CH_2CH_2S(O)Et$ ,
- $-C(O)N(Me)CH_2CH_2SO_2Me$ ,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,

- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- $-CH_2NH(CH_2CO_2H),$
- -CH<sub>2</sub>N(C(O)Me)(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- $-CH_2S(O)_2Me$ ,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CO<sub>2</sub>H, CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,

- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe<sub>2</sub>,
- -CH(OH)C(O)NEt<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- $-CH_2CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-CH_2CH_2S(O)Me$ ,
- $-CH_2CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- $-CH_2CH_2S(O)_2iPr,\\$
- -CH<sub>2</sub>CH<sub>2</sub>S(O)tBu,
- $-CH_2CH_2S(O)_2tBu$ ,
- $-CH_2CH_2S(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2$ ,
- $-CH_2CH_2S(O)_2NH_2$ ,
- $\hbox{-CH}_2\hbox{CH}_2S(O)_2NHMe$
- $-CH_2CH_2S(O)_2NMe_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,

- -CH2CH2CH2S(O)Et,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me, or
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Et.
- 8. (Original The compound of claim 2 wherein for formula IB;

R and R' are independently methy or ethyl;

RP, RB, RB<sub>4</sub>, and RT<sub>3</sub> are independently, hydrogen or methyl;

RP<sub>3</sub> and RB<sub>7</sub> are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

 $(L_{P1})$  and  $(L_{BT})$  divalent linking groups are both bonds;

 $(L_{P2})$  is a bond, -CH<sub>2</sub>-, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

Z<sub>BT</sub> is

- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- $-C(O)CH_2S(O)Me$ ,
- $-C(O)CH_2S(O)Et$ ,
- -C(O)CH<sub>2</sub>S(O)<sub>2</sub>Me,
- $-C(O)CH_2S(O)_2Et$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)CH2CH2S(O)2Me,
- -C(O)CH2CH2S(O)2Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH2CO2Me,
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH2CO2iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,

- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>,
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- -C(O)NH-CH<sub>2</sub>-C(O)OMe,
- -C(O)NH-CH<sub>2</sub>-C(O)OEt,
- -C(O)NH-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,

- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OMe$ ,
- -C(O)NH-C(Me)2-C(O)OEt,
- $-C(O)NH-C(Me)_2-C(O)iPr$ ,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$ ,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- -C(O)NMe-CH<sub>2</sub>-C(O)tBu,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- $-C(O)NMe-CH(CF_3)-C(O)OH$ ,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)<sub>2</sub>-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,

- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)N(Me)SO<sub>2</sub>Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- $-C(O)N(Me)SO_2tBu$ ,
- $-C(O)N(Me)CH_2S(O)Me$ ,

- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH<sub>2</sub>NHSO<sub>2</sub>iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub>,
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH<sub>2</sub>-N-pyrrolidin-2-one,
- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,

- $-CH_2S(O)_2iPr$ ,
- -CH<sub>2</sub>S(O)tBu,
- $-CH_2S(O)_2tBu$ ,
- $-CH_2CO_2H$ ,  $CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$ ,  $CH_2S(O)Me$ ,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- $-CH_2CH_2CO_2H$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- $-CH_2CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $-CH_2CH_2S(O)_2Et$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- $-CH_2CH_2S(O)tBu$ ,
- $-CH_2CH_2S(O)_2tBu$ ,
- $-CH_2CH_2S(O)NH_2$ ,

- -CH2CH2S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NHMe
- $-CH_2CH_2S(O)_2NMe_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -CH2CH2CH2S(O)2Me, or
- -CH2CH2CH2S(O)2Et.
- 9. (Original) The compound of claim 3 wherein for formula IC;

R and R' are independently methy or ethyl;

RP, RB, RB<sub>4</sub>, and RT<sub>3</sub> are independently, hydrogen or methyl;

RP<sub>3</sub> and RB<sub>7</sub> are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

(L<sub>P1</sub>) and (L<sub>BT</sub>) divalent linking groups are both bonds;

 $(L_{P2})$  is a bond,  $-CH_2$ -, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

Z<sub>BT</sub> is

- -CO<sub>2</sub>H,
- -CO<sub>2</sub>Me,
- -CO<sub>2</sub>Et,
- -C(O)CH<sub>2</sub>S(O)Me,
- $-C(O)CH_2S(O)Et$ ,
- $-C(O)CH_2S(O)_2Me$ ,
- $-C(O)CH_2S(O)_2Et$ ,
- -C(O)CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)CH2CH2S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$ ,
- -C(O)CH2CH2S(O)2Et,

- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>H,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Me,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>Et,
- -C(O)CH(Me)CH<sub>2</sub>CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO<sub>2</sub>tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Me,
- -C(O)CH(Me)C(Me) 2CO<sub>2</sub>Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>H,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Me,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>Et,
- -C(O)CH(Me)CH(Et)CO<sub>2</sub>iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$ ,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$ ,
- -C(O)NH<sub>2</sub>
- $-C(O)NMe_2$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OH,
- -C(O)NH-CH<sub>2</sub>-C(O)OMe,
- $-C(O)NH-CH_2-C(O)OEt$ ,
- -C(O)NH-CH<sub>2</sub>-C(O)OiPr,

- -C(O)NH-CH<sub>2</sub>-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$ ,
- $-C(O)NH-C(Me)_2-C(O)OMe$ ,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OEt,
- -C(O)NH-C(Me)2-C(O)iPr,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF<sub>3</sub>)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-C(Me)<sub>2</sub>-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$ ,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO<sub>2</sub>H
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OEt,
- -C(O)NMe-CH<sub>2</sub>-C(O)OiPr,
- $-C(O)NMe-CH_2-C(O)tBu$ ,
- -C(O)NMe-CH<sub>2</sub>-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- $-C(O)NMe-CH(CF_3)-C(O)OH$ ,
- -C(O)NMe-CH(OH)-C(O)OH,

- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$ ,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF<sub>3</sub>)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO<sub>2</sub>Me,
- -C(O)NHSO<sub>2</sub>Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>S(O)Et,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)NHCH<sub>2</sub>SO<sub>2</sub>Et,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -C(O)NHCH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO<sub>2</sub>Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO<sub>2</sub>Me,

- $-C(O)N(Me)SO_2Et$ ,
- -C(O)N(Me)S(O)iPr,
- $-C(O)N(Me))SO_2iPr$ ,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO<sub>2</sub>tBu,
- -C(O)N(Me)CH<sub>2</sub>S(O)Me,
- -C(O)N(Me)CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>SO<sub>2</sub>Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$ ,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Me,
- -C(O)N(Me)CH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Et,
- -CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CO<sub>2</sub>Et,
- -CH<sub>2</sub>NHS(O)Me,
- -CH<sub>2</sub>NHS(O)Et,
- -CH<sub>2</sub>NHSO<sub>2</sub>Me,
- -CH2NHSO2Et,
- -CH<sub>2</sub>NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH<sub>2</sub>NH(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>N(C(O)Me)(CH<sub>2</sub>CO<sub>2</sub>H),
- -CH<sub>2</sub>-N-pyrrolidin-2-one,

- -CH<sub>2</sub>-(1-methylpyrrolidin-2-one-3-yl),
- -CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>S(O)Et,
- $-CH_2S(O)_2Me$ ,
- -CH<sub>2</sub>S(O)<sub>2</sub>Et,
- -CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH<sub>2</sub>S(O)tBu,
- -CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CO<sub>2</sub>H, CH<sub>2</sub>C(O)NH<sub>2</sub>,
- -CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>C(O)-N-pyrrolidine,
- -CH<sub>2</sub>S(O)<sub>2</sub>Me, CH<sub>2</sub>S(O)Me,
- -CH(OH) CO<sub>2</sub>H,
- $-CH(OH)C(O)NH_2$ ,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- $-CH(OH)C(O)NEt_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Et,
- $-CH_2CH_2C(O)NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>C(O)NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>-5-tetrazolyl,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- $-CH_2CH_2S(O)_2Et,\\$

- -CH<sub>2</sub>CH<sub>2</sub>S(O) Et,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)iPr,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>iPr,
- -CH2CH2S(O)tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>tBu,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NH<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NHMe,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)NMe<sub>2</sub>,
- $-CH_2CH_2S(O)_2NH_2$ ,
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NHMe
- -CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>NMe<sub>2</sub>,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Me,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)Et,
- -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>Me, or
- $\hbox{-CH$_2$CH$_2$CO)$_2$Et}.$

10. (Original) The compound represented by formula (C1) to (C22) or a pharmaceutically acceptable salt or prodrug derivative thereof:

C1)

C2)

C3)

C4)

C5)

C6)

C7)

C8)

C9)

C10)

C11)

C12)

C13)

C14)

C15)

C16)

C17)

C18)

C19)

C20)

C21)

C22)

11. (Original) The compound represented by the structural formula AA or a pharmaceutically acceptable salt or prodrug thereof:

12. (Original) A compound according to claim 1 or a pharmaceutically acceptable salt or prodrug thereof wherein said compound is selected from

- 13. (Currently Amended) The prodrug derivative of the compound according to any one of claims 1 to 12 claim 1 wherein the prodrug is a methyl ester; ethyl ester; N,N-diethylglycolamido ester; or morpholinylethyl ester.
- 14. (Currently Amended) The salt derivative of the compound according to any one of claims 1 to 13 claim 1 wherein the salt is sodium or potassium.
- 15. (Currently Amended) A pharmaceutical formulation comprising the compound according to any one of claims 1 to 14 claim 1 together with a pharmaceutically acceptable carrier or diluent.
  - 16. (Currently Amended) A formulation for treating osteoporosis comprising:Ingredient (A1): the vitamin D receptor modulator according to any one of claims 1 to 14 claim 1;

## Ingredient (B1):

one or more co-agents selected from the group consisting of:

- a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,
- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides; and

Ingredient (C1): optionally, a carrier or diluent.

17. (Original) The formulation of claim 16 wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000.

18. (Currently Amended) A formulation for treating psoriais comprising:

Ingredient (A2): the vitamin D receptor modulator according to any one of claims 1 to 14 claim 1;

Ingredient (B2):

one or more co-agents that are conventional for treatment psoriasis selected from the group consisting of:

- a. topical glucocorticoids,
- b. salicylic acid,
- c. crude coal tar; and

Ingredient (C2): optionally, a carrier or diluent.

- 19. (Original) The formulation of claim 18 wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000.
- 20. (Currently Amended) A method of treating a mammal to prevent or alleviate the pathological effects of Acne, Actinic keratosis, Alopecia, Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone

fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Host-graft rejection, Hypercalcemia, Type II diabetes, Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to any one of claims 1 to 14 claim 1.

- 21. (Original) The method of claim 20 for the treatment of psoriasis.
- 22. (Original) The method of claim 20 for the treatment of osteoporosis.
- 23. (Original) A method of claim 20 for treating a mammal to prevent or alleviate skin cell damage from Mustard vesicants.
- 24. (Currenlty Amended) A method of treating a mammal to prevent or alleviate the pathological effects of benign prostatic hyperplasia or bladder cancer wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to any one of claims 1 to 14 claim 1.
- 25. (Currently Amended) A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically effective amount of the compound of any one of claims 1 to 14 claim 1.
  - 26-30. (Canceled)
- 31. (New) The prodrug derivative of the compound according to claim 2 wherein the prodrug is a methyl ester; ethyl ester; N,N-diethylglycolamido ester; or morpholinylethyl ester.

- 32. (New) The salt derivative of the compound according to claim 2 wherein the salt is sodium or potassium.
- 33. (New) A pharmaceutical formulation comprising the compound according to claim 2 together with a pharmaceutically acceptable carrier or diluent.
  - 34. (New) A formulation for treating osteoporosis comprising:

Ingredient (A1): the vitamin D receptor modulator according to claim 2;

Ingredient (B1):

one or more co-agents selected from the group consisting of:

- a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,
- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides: and

Ingredient (C1): optionally, a carrier or diluent.

35. (New) A method of treating a mammal to prevent or alleviate the pathological effects of Acne, Actinic keratosis, Alopecia, Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Host-graft rejection, Hypercalcemia, Type II diabetes, Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to claim 2.