CS669: Pattern Recognition

Programming Assignment 4
Instructor: Dileep A.D.

By-

Group 12

Ayush Garg (B13111)

Himanshu Singal (B13312)

Hitesh Tarani (B13139)

Introduction:

Datasets:

Dataset 1: 2-dimensional artificial data of 3 or 4 classes:

- (a) Linearly separable dataset
- (b) Nonlinearly separable data set (Only for SVM)

Dataset 2: Real world data set:

- (a) Two dimensional speech dataset (used in Assignment 1)
- (b) Image dataset

Classifiers to be built:

- 1. Bayes classifier using unimodal Gaussian distribution on Dataset-1(a) and Dataset-2.
- 2. Bayes classifier using GMM on Dataset-2. GMM is built using the K-means clustering to initialize the parameters.
- 3. Build Bayes classifier using unimodal Gaussian distribution on the 1-dimensional representation of Dataset-1(a) and Dataset-2(a) obtained using PCA.
- 4. Build Bayes classifier using unimodal Gaussian distribution and GMM on the reduced dimensional representations of Dataset-2 obtaind using PCA.
- 5. Fisher linear discriminant analysis (FDA) based classifier on Dataset-1 and Dataset-2. Use both Bayes classifier using unomodal Gaussian and GMM.
- 6. Perceptron-based classifier on Dataset-1.
- 7. SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on Dataset-1 and Dataset-2
- 8. SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on the reduced dimensional representations of Dataset-2 obtained using PCA.

Perform the experiments on different values of *K* in GMM for different reduced dimensions. Also perform experiments on different values of SVM and kernel parameters for different reduced dimensions.

Note: Concatenate the local feature vectors in each image to form a super vector. Now each image will become a vector with 36*23-dimension.

1. Bayes classifier using Unimodal Gaussian distribution on Dataset-1(a) and Dataset-2.

a. Dataset-1(a): Linearly Separable

- i. Classification Accuracy = 100%
- ii. Confusion Matrix based on performance for test data.

$$\begin{bmatrix} 125 & 0 & 0 \\ 0 & 125 & 2 \\ 0 & 0 & 125 \end{bmatrix}$$

b. Dataset-2

Two dimensional speech dataset (used in Assignment 1)

Classification Accuracy: - 82.698%

Confusion Matrix

	Class1	Class2	Class3
Class1	411	203	0
Class2	91	531	0
Class3	11	8	554

${f 2.}$ Bayes classifier using GMM on Dataset-2. GMM is built using the K-means clustering to initialize the parameters.

Dataset	Confusion Matrix	Accuracy
Two dimensional speech dataset	$ \begin{bmatrix} K = 8,8,4 \\ 404 & 214 & 4 \\ 45 & 573 & 4 \\ 7 & 13 & 552 \end{bmatrix} $	84%
Image dataset	K= 16 \[\begin{bmatrix} 80 & 3 & 7 \\ 2 & 80 & 0 \\ 3 & 2 & 72 \end{bmatrix} \]	93.173%

3. Build Bayes classifier using unimodal Gaussian distribution on the 1- dimensional representation of Dataset-1(a) and Dataset-2(a) obtained using PCA.

Dataset	Confusion Matrix	Accuracy
Linearly Separable	$\begin{bmatrix} 123 & 2 & 0 \\ 4 & 120 & 1 \\ 0 & 0 & 125 \end{bmatrix}$	98.133 %
Two dimensional speech dataset	$\begin{bmatrix} 312 & 302 & 0 \\ 73 & 549 & 0 \\ 13 & 7 & 553 \end{bmatrix}$	78.165%

4. Build Bayes classifier using unimodal Gaussian distribution and GMM on the reduced dimensional representations of Dataset-2 obtained using PCA.

a. Two dimensional speech dataset GMM

L	No. of Clusters	Confusion Matrix	Accuracy
1	3	499 115 0 98 524 0 16 10 547	86.78%

b. Image dataset Univariate

L	Confusion Matrix	Accuracy
1	$\begin{bmatrix} 26 & 34 & 30 \\ 12 & 70 & 0 \\ 21 & 2 & 54 \end{bmatrix}$	60.24%
2	$\begin{bmatrix} 26 & 37 & 27 \\ 9 & 70 & 3 \\ 9 & 3 & 65 \end{bmatrix}$	64.659%
4	[59 15 16] 5 73 4] 9 3 65]	79%
8	$\begin{bmatrix} 73 & 8 & 9 \\ 11 & 68 & 3 \\ 6 & 4 & 67 \end{bmatrix}$	83.53%
16	$\begin{bmatrix} 77 & 4 & 9 \\ 6 & 68 & 8 \\ 8 & 3 & 66 \end{bmatrix}$	84.73%

Multivariate

L	No. of Clusters	Confusion Matrix	Accuracy
1	3	$\begin{bmatrix} 39 & 21 & 30 \\ 15 & 66 & 1 \\ 22 & 0 & 55 \end{bmatrix}$	64.25%
4	3	$\begin{bmatrix} 67 & 9 & 14 \\ 11 & 66 & 5 \\ 6 & 2 & 69 \end{bmatrix}$	81.124%
8	3	$\begin{bmatrix} 77 & 6 & 7 \\ 13 & 65 & 4 \\ 7 & 3 & 67 \end{bmatrix}$	83.93%

5. Fisher linear discriminant analysis (FDA) based classifier on Dataset-1 and Dataset-2. Use both Bayes classifier using unimodal Gaussian and GMM.

Dataset-1: Linearly Separable

Model	Confusion Matrix	Accuracy
Unimodal	$\begin{bmatrix} 125 & 0 & 0 \\ 0 & 125 & 0 \\ 0 & 0 & 125 \end{bmatrix}$	100%
GMM	$\begin{bmatrix} 125 & 0 & 0 \\ 0 & 125 & 0 \\ 0 & 0 & 125 \end{bmatrix}$	100%

Dataset-2: Speech Dataset

Model	Confusion Matrix	Accuracy
Unimodal	476 138 0 83 539 0 13 8 552	86.62%
GMM	[452 162 0 58 564 0 13 8 552	86.67%

Dataset-2: Image Dataset

Matrix was coming out to be singular.

7. SVM-based classifier using (a) linear kernel, (b) Gaussian/RBF kernel on Dataset-1 and Dataset-2.

Dataset-1(a): Linearly Separable

Kernel	Confusion Matrix	Accuracy
Linear	$\begin{bmatrix} 125 & 0 & 0 \\ 0 & 125 & 0 \\ 0 & 0 & 125 \end{bmatrix}$	100%
RBF/Gaussian	$\begin{bmatrix} 125 & 0 & 0 \\ 0 & 125 & 0 \\ 0 & 0 & 125 \end{bmatrix}$	100%

Dataset-1(b): Non-Linearly Separable

Ring

Kernel	Confusion Matrix	Accuracy
Linear	$\begin{bmatrix} 0 & 75 \\ 0 & 300 \end{bmatrix}$	80%
RBF/Gaussian	$\begin{bmatrix} 75 & 0 \\ 0 & 300 \end{bmatrix}$	100%

Spiral

Kernel	Confusion Matrix	Accuracy
Linear	[175 151] 151 175	53.68%
RBF/Gaussian	$\begin{bmatrix} 296 & 30 \\ 30 & 296 \end{bmatrix}$	90.798%

Interlock

Kernel	Confusion Matrix	Accuracy
Linear	$\begin{bmatrix} 118 & 7 \\ 1 & 124 \end{bmatrix}$	96.8%
RBF/Gaussian	$\begin{bmatrix} 125 & 0 \\ 0 & 125 \end{bmatrix}$	100 %

Dataset-2(a): Two dimensional Speech

Kernel	Confusion Matrix	Accuracy
Linear	$\begin{bmatrix} 415 & 199 & 0 \\ 20 & 602 & 0 \\ 0 & 15 & 558 \end{bmatrix}$	87.065%
RBF/Gaussian	$\begin{bmatrix} 402 & 211 & 1 \\ 40 & 580 & 2 \\ 3 & 12 & 558 \end{bmatrix}$	85.13%

Dataset-2(b): Image Dataset

Kernel	Confusion Matrix	Accuracy
Linear	$\begin{bmatrix} 86 & 2 & 2 \\ 1 & 81 & 0 \\ 4 & 2 & 71 \end{bmatrix}$	95.582%
RBF/Gaussian	$\begin{bmatrix} 90 & 0 & 0 \\ 82 & 0 & 0 \\ 77 & 0 & 0 \end{bmatrix}$	36.145%

8. SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on the reduced dimensional representations of Dataset-2 obtained using PCA.

Dataset-2(a): Speech Data

Kernel	L	Confusion Matrix	Accuracy
Linear	1	430 184 0 65 557 0 6 12 555	85.24%
RBF/Gaussian	1	[468 146 0 48 574 0 10 11 552	88.115%

Dataset-2(b): Image Data

Kernel	L	Confusion Matrix	Accuracy
Linear	1	$\begin{bmatrix} 54 & 26 & 10 \\ 14 & 68 & 0 \\ 33 & 2 & 42 \end{bmatrix}$	65.863%
RBF/Gaussian	1	$\begin{bmatrix} 44 & 25 & 21 \\ 14 & 68 & 0 \\ 30 & 0 & 47 \end{bmatrix}$	63.855%
Linear	16	$\begin{bmatrix} 66 & 12 & 12 \\ 5 & 75 & 2 \\ 7 & 3 & 67 \end{bmatrix}$	83.534%
RBF/Gaussian	16	$\begin{bmatrix} 44 & 4 & 42 \\ 10 & 34 & 38 \\ 2 & 1 & 74 \end{bmatrix}$	61.044%