

RFP30N06LE, RF1S30N06LE, RF1S30N06LESM

30A, 60V, ESD Rated, Avalanche Rated, Logic Level N-Channel Enhancement-Mode Power MOSFETs

July 1995

Features

- 30A, 60V
- r_{DS(ON)} = 0.047Ω
- · 2kV ESD Protected
- Temperature Compensating PSPICE Model
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve

Description

The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.

These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD.

PACKAGE AVAILABILITY

PART NUMBER	PACKAGE	BRAND
RFP30N06LE	TO-220AB	F30N06LE
RF1S30N06LE	TO-262AA	1S30N06L
RF1S30N06LESM	TO-263AB	1S30N06L

NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A.

Formerly developmental type TA49027.

Packages

Symbol

REPROVOELE REISSONDELE

Absolute Maximum Ratings $T_C = +25^{\circ}C$

	RF1S30N06LESM	UNITS
Drain Source Voltage	60	V
Drain Gate VoltageV _{DGR}	60	V
Gate Source Voltage	+10, -8	V
Drain Current RMS Continuous	30 Refer to Peak Current Curve	Α
Pulsed Avalanche Rating	Refer to UIS Curve	
$ \begin{array}{lll} \text{Power Dissipation} \\ & T_{\text{C}} = +25^{\text{O}}\text{C} & \\ & \text{Derate above } +25^{\text{O}}\text{C} & \\ & & \\ & & \\ &$	96 0.645	W W/°C
Electrostatic Discharge Rating, MIL-STD-883, Category B(2) ESD	2	kV
Operating and Storage Temperature	-55 to +175	°C
Soldering Temperature of Leads for 10s	260	°C

Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V$		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0V	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	-	1	μΑ
			T _C = +150°C	-	-	50	μΑ
Gate-Source Leakage Current	I _{GSS}	V _{GS} = +10, -8V		-	-	10	μΑ
On Resistance	r _{DS(ON)}	I _D = 30A, V _{GS} = 5V		-	-	0.047	Ω
Turn-On Time	t _{ON}	$\begin{aligned} &V_{DD}=30V,\ I_{D}=30A,\\ &R_{L}=1\Omega,\ V_{GS}=5V,\\ &R_{GS}=2.5\Omega \end{aligned}$		-	-	140	ns
Turn-On Delay Time	t _{D(ON)}			-	11	-	ns
Rise Time	t _R			-	88	-	ns
Turn-Off Delay Time	t _{D(OFF)}			-	30	-	ns
Fall Time	t _F			-	40	-	ns
Turn-Off Time	t _{OFF}			-	-	100	ns
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 0V to 10V	$V_{DD} = 48V,$ $I_{D} = 30A,$ $R_{L} = 1.6\Omega$	-	51	62	nC
Gate Charge at 5V	Q _{G(5)}	$V_{GS} = 0V \text{ to } 5V$		-	28	34	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 0V to 1V		-	1.8	2.6	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	1350	-	pF
Output Capacitance	C _{OSS}			-	290	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	85	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	1.55	°C/W
Thermal Resistance Junction to Ambient	$R_{ heta JA}$			-	-	80	°C/W

Source-Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Forward Voltage	V_{SD}	I _{SD} = 30A	-	-	1.5	V
Reverse Recovery Time	t _{RR}	$I_{SD} = 30A$, $dI_{SD}/dt = 100A/\mu s$	-	-	125	ns

Typical Performance Curves

FIGURE 1. SAFE OPERATING AREA CURVE

FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE

FIGURE 4. PEAK CURRENT CAPABILITY

FIGURE 5. TYPICAL SATURATION CHARACTERISTICS

FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS

Typical Performance Curves (Continued)

FIGURE 7. NORMALIZED $r_{\text{DS(ON)}}$ vs JUNCTION TEMPERATURE

FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE

FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE

FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE

FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE

FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260

Typical Performance Curves (Continued)

FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING

Test Circuits and Waveforms

BV_{DSS}

V_{DS}

V_{DD}

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT

FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE, RF1S30N06LESM SUBCKT RFP30N06LE 2 1 3; rev 6/2/93 CA 12 8 1 3.34e-9 CB 15 14 3.44e-9 CIN 6 8 0 1.343e-9 **DPLCAP** 5 DRAIN DBODY 7 5 DBDMOD 10 LDRAIN DBREAK 5 11 DBKMOD DESD1 91 9 DESD1MOD RSCL2 RSCL1 DESD2 91 7 DESD2MOD DBREAK T 51 DPLCAP 10 5 DPLCAPMOD **ESCL** 11 EBREAK 11 7 17 18 75.39 **EBREAK ESG** EDS 14 8 5 8 1 17 18 DBODY **₹** RDRAIN EGS 13 8 6 8 1 16 νто ₊ ESG 6 10 6 8 1 EVTO 20 6 18 8 1 21 MOS₂ **EVTO** GATE 20+ IT 8 17 1 MOS1 LGATE RGATE LDRAIN 2 5 1e-9 RIN **₹** CIN DESD1 LGATE 1 9 7.22e-9 **LSOURCE RSOURCE** DESD2 8 LSOURCE 3 7 6.31e-9 **~~~**3 ₩ SOURCE MOS1 16 6 8 8 MOSMOD M = 0.99 S1A S2A MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK <u>13</u> 8 14 13 15 18 RBREAK 17 18 RBKMOD 1 S1B S2B RDRAIN 50 16 RDSMOD 11.86e-3 **RVTO** 13 RGATE 9 20 2.52 СВ 19 IT RIN 6 8 1e9 VBAT RSCL1 5 51 RSLVCMOD 1e-6 8 **EDS EGS** RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 26.6e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD **VBAT 8 19 DC 1** VTO 21 6 0.5 ESCL 51 50 VALUE = $\{(V(5,51)/ABS(V(5,51)))^*(PWR(V(5,51)^*1e6/89,7))\}$.MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8) .MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5) .MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0) .MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7) .MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5) .MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6) .MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.