- 1. Using Euler's Totient Theorem calculate $7^{63} \pmod{31}$, $5^{2021} \pmod{137}$, $4^{128} \pmod{125}$.
- 2. Find all elements of groups $\mathbb{Z}_7,\,\mathbb{Z}_7^*$, $\mathbb{Z}_8,\,\mathbb{Z}_8^*.$
- 3. Using Euclidean Algorithm find the inverse of 7 in \mathbb{Z}_{31}^* and \mathbb{Z}_{137}^* .
- 4. Knowing n = 5133 and

0	1	2	3	4	5	6	7	8	9
RY	SYS	TEM	О	TY	MA	GA	EK	WA	TE

encrypt the message SYSTEM, TEORY using Rabin method.

5. Using Rabin method decrypte the messege $E(M) = 17 \pmod{1121}$, if you know that $1121 = 19 \cdot 59$.

0	1	2	3	4	5	6	7	8	9
A	M	L	D	F	Т	Y	О	Z	K

- 6. Knowing that $n = 589 = 19 \cdot 31$, e = 53 and encrypting function for RSA cryptosystem is $E(M) = M^e \pmod{n}$ find decrypting function (for RSA method).
- 7. Knowing that $n = 589 = 19 \cdot 31$, d = 23 and decrypting function for RSA cryptosystem is $D(N) = N^d \pmod{n}$ find encrypting function (for RSA method).
- 8. Let day-23, nice-7, good-1, have-4, luck-3, the-59, always-54, reason-47. Using RSA method for $p=11,\,q=13,\,e=11$ decrypt the message "113,1".