Copyright Reserved by Quan Yuhui, South China Univ. of Tech.

数据通信原理

绪论

全宇晖 二零一九年秋

数字通信

什么是通信?

通信=传递信息

什么是通信系统?

• 狭义的通信系统

利用电信号和光信号来传递信息的电通信、光通信或电光混合的通信系统。

•广义的通信系统

电通信、光通信,普通邮件、报纸、杂志、各种介质的记录与重放的方式等等。

通信相关的基本概念

消息: 文字、符号、数据、图片、音频和视频信号;

信息: 信息是消息的内涵, 消息是信息的载体;

信号:与消息对应的电、声、光等物理量,它是消息的物质载体;

数字信号: 时间和幅度取值均为离散的信号;

通信系统: 传递信息所需的一切技术设备的总和;

数字通信系统: 传输数字信号的通信系统。

传个信,很难吗?

通信系统须考虑的因素

- •两个障碍
 - 时间障碍
 - 空间障碍
- •四个因素
 - 准确性(高质量、抗干扰、抗噪声、自纠错)
 - •高效性(时效)
 - •安全性(加密、防串改)
 - 可实现性(便于大规模集成电路实现)

什么是数字通信?

定义域连续值域均连续

定义域离散值域离散有限

常见的数字信号

音频

```
fs = 44100;
time_dur = 1;
time note = 40000;
len = time_note*time_dur;
len_mix = 1000;
w = note_transfer(notes, tone);
v = zeros(1, len_mix);
amp = sin(pi/time_note*linspace(1,len,len));
for i = 1 : length(w)
   v0 = (notes(i)^=0)*sin(2*pi*w(i)/fs*linspace(1, len, len));
   v = [v(1:end-len\_mix), \ v(end) + amp(1:len\_mix). \\ *v0(1:len\_mix), \ amp(len\_mix + 1:end). \\ *v0(1:end\_mix + 1:end)];
- end
sound (v, fs);
```


常见的数字信号

3	144	109	115	176
5	233	194	181	121
8	121	47	40	41
13	98	241	221	162
21	219	32	5	203

ட					[
\vdash					ь ^Б
3	144	109	115	176	\vdash
5	233	194	181	121	1
8	121	47	40	41	
13	98	241	221	162	2
21	219	32	5	203	ВШ

灰度图像

彩色图像

常见的数字信号

带噪信号

模拟通信系统模型

数字通信系统模型

数字通信与模拟通信

- 在很多领域,数字通信逐步取代模拟通信
- 数字通信优点
 - 抗噪声和抗干扰能力强
 - 便于提高消息传输效率
 - 便于进行差错控制
 - 便于对信息进行加密处理
 - 便于大规模集成电路实现
- 数字通信缺点
 - 同步复杂
 - "错了就错了"

数字通信优点: 抗噪抗干扰能力强

数字信号只有有限种状态, 易于识别和重构

数字通信优点(1): 抗噪抗干扰能力强

只有有限种状态, 易于识别和重构

(a) 理想的接收信号星座图

(b) 受噪声干扰的接收信号星座图

数字通信优点(2): 便于传输效率提升

定义域离散, 易于汇并多路数据

时分复用系统

数字通信优点(3): 便于进行差错控制

状态有限,容易纠错

原信息码组:100

- → 通过纠错编码生成的码字: 110100
- → 传输,码字受到噪声和信道非理想等影响 因受干扰接收端收到出错的码字:110000
- → 纠错译码可恢复正确的码字: 110100
- → 译码后得到原信息码组: 100

数字通信优点(4): 便于信息加密和保护

用"古典置换密码"进行编译码

密钥	C	H	I	N	A
	D	i	g	i	t
	a	1	C	0	m
	m	u	n	i	c
	a	t	i	O	n
	I	S	F	u	n

明文: DigitalCommunicationIsFun

密文: tmcnnDamaiIilutsgCniFioiou

数字通信优点(5): 大规模集成电路实现

- 利用专用的集成电路芯片(ASIC)构建
- •利用通用的集成电路芯片(FPGA)构建
- 利用专用的数字信号处理器 (DSP) 构建
- 利用通用的数字信号处理器 (DSP) 构建
- 利用通用计算机系统构建
- 利用云计算的方法构建

课程相关

相关材料

- •《数字通信原理》, 冯穗力, 电子工业出版社.
- A Scientist and Engineers' Guide to Digital Signal Processing, Steven W. Smith, California Technical Publishing.
- Some notes.
- Search Engines.

分数设置

• 平时 (40%): 出勤、作业、实验等

•考试(60%): 涵盖课上所讲知识点

分组讨论

先备知识

- •微积分
- 线性代数
- •矩阵分析
- •概率论
- 随机过程
- •最优化
- •信号处理
- 物理硬件

特点:

要求知识面广 要求基础知识扎实 "死记硬背"无用

若不足,如何补?

数字通信系统的性能指标

数字通信系统的主要性能指标及度量

(1)比特率 R_b :单位时间内可传输的0/1位数。

单位:比特/秒(bits/s, b/s, bps)。

无损时, 比特率也称为信息速率。

(2) 码元速率 R_s : 单位时间内可传输的码元(符号)的个数。

单位: 波特 (Baud)

码元速率也称为符号速率、波特率

 $R_b = R_S \log_2 M$

假设传输M个符号,波特率 R_b 与比特率 R_s 间的关系??

数字通信系统的主要性能指标及度量

(3) 带宽W(单位: 赫茲):

信号带宽:信号频率成分所占据的频谱宽度;

信道带宽:信道可利用的频谱宽度。

(4) 带宽利用率

定义1 每秒每赫兹可传输的比特位数: $\eta = \frac{R_b}{W}$

定义2 每秒每赫茲可传输的符号数: $\eta = \frac{R_s}{W}$

数字通信系统主要性能指标及度量参数

(5)信噪比(SNR, Signal-to-Noise Ratio) 信号功率S和噪声功率N的比值

$$SNR = \frac{S}{N}$$

SNR的分贝值(dB): $(SNR)_{dB} = 10lg \frac{S}{N}$

峰值信噪比 (PSNR, Peak Signal-to-Noise Ratio) $(PSNR)_{dB} = 10lg \frac{MAX_VALUE}{N}$

数字通信系统主要性能指标及度量参数

(5) 信噪比 实际如何计算?

噪声图像 \hat{f}

无噪图像f

Signal to Noise Ratio (SNR)

SNR (dB) =
$$10 \cdot \log_{10} \left[\frac{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y))^2}{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y) - \hat{f}(x,y))^2} \right]$$
 PSNR (dB) = $10 \cdot \log_{10} \left[\frac{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (255)^2}{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y) - \hat{f}(x,y))^2} \right]$

Peak Signal to Noise Ratio (PSNR)

PSNR (dB) =
$$10 \cdot \log_{10} \left[\frac{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (255)^2}{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y) - \hat{f}(x,y))^2} \right]$$

数字通信系统主要性能指标及度量参数

(6) 误码率

$$P_S = \frac{$$
出错的码元数}{发送的总码元数}

(7)误比特率

$$P_b = \frac{\text{出错的比特数}}{\text{发送的总比特数}}$$

End