Math Problem Set 1

Matthew Brown OSM Boot Camp 2018

June 25, 2018

Problem 1.3. There are three things to check:

- G_1 is neither an algebra nor a sigma-algebra
- G_2 is only an algebra, but it is not a sigma-algebra as it is not closed under countable unions.
- G_3 is both an algebra and a sigma-algebra.

Problem 1.7. We already showed that both of these sets are sigma-algebras. Obviously no sigma-algebra can be larger than $\mathcal{P}(X)$, since this is the largest collection of subsets of X. And since any sigma-algebra S must contain \emptyset , $X \in S$, so $\{\emptyset, X\} \subset S$.

Problem 1.10. Proof. I'll check the three axioms of sigma-algebras on $S = \bigcap_{\alpha} S_{\alpha}$:

- $\emptyset \in S_{\alpha}$ for each α , so $\emptyset \in S$.
- Let $E \in S$. Then $E \in S_{\alpha}$ for each α . Since each S_{α} is a sigma-algebra, $E^c \in S_{\alpha}$ for each α , which means that $E^c \in S$.
- Very similar to the above. Let $\{E_i\}_{n=1}^{\infty} \in S$. Then $E_i \in S_{\alpha}$ for each α and each i, and $\bigcup_{i=1}^{\infty} E_i \in S_{\alpha}$ for each α , so $\bigcup_{i=1}^{\infty} E_i \in S$.

Problem 1.17. *Proof.* There are two parts.

• Monotonicity: Let $A, B \in S, A \subset B$. Then we can decompose B as follows

$$B = (B \cap A) \cup (B \cap A^c)$$

= $A \cup (B \cap A^c)$

And since now we have written B as a union of disjoint sets, we can say that $\mu(B) = \mu(A) + \mu(B \cap A^c)$ and, by the nonnegativaty of μ , $\mu(B) \ge \mu(A)$.

• Subadditivity:

Let $\{A_i\}_{i=1}^{\infty} \in S$. I will decompose $\bigcup_{i=1}^{\infty} A_i$ as follows:

$$\cup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \cap A_1^c) \cup (A_3 \cap A_1^c \cap A_2^c) \cup \dots \cup (A_i \cap A_1^c \cap \dots \cap A_{i-1}^c) \cup \dots$$

So that the $\bigcup_{i=1}^{\infty} A_i$ is written as a union of disjoint sets. Moreover, we see, for instance, that $\mu(A_2 \cap A_1^c) \leq \mu(A_2)$ by the monotonicty of μ . Combining these two facts, we see that:

$$\mu(\cup_{i=1}^{\infty} A_i) = \mu(A_1) + \mu(A_2 \cap A_1^c) + \dots + \mu(A_i \cap A_1^c \cap \dots \cap A_{i-1}^c) + \dots$$

$$\leq \mu(A_1) + \mu(A_2) + \dots + \mu(A_n) + \dots$$

Which is what we wanted to show.

Problem 1.20. *Proof.* . This proof is adapted from Dr. Richard Timoney's lectures for a measure theory course at Trinity College.

Let $\{A_i\}_{i=1^{\infty}}$ be a decreasing sequence of measurable sets, as in the statement. Define $B_n = A_1 \setminus A_n$ for each $n \in \mathbb{N}$. See that for each n, $A_1 = B_n \cup A_n$ Because this is a disjoint union, we have $\mu(A_1) = \mu(B_n) + \mu(A_n)$ and thus:

$$\mu(A_n) = \mu(A_1) - \mu(B_n) \tag{1}$$

Now, $\{B_i\}_{i=1}^{\infty}$ is an increasing sequence of functions. Define $B = \bigcup_{i=1}^{\infty} B_i$, and from part (i) of the theorem,

$$\mu(B) = \lim_{n \to \infty} \mu(B_n) \tag{2}$$

We'll use these two facts.

Now, note that

$$A_1 \setminus \bigcap_{i=1}^{\infty} A_i = A_1 \cap \left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} \left(A_1 \cap A_i^c\right) = \bigcup_{i=1}^{\infty} (A_1 \setminus A_i) = B$$

Therefore,

$$\mu(A_1) = \mu(A_1 \setminus \bigcap_{i=1}^{\infty} A_i i) + \mu(\bigcap_{i=1}^{\infty} A_i) = \mu(B) + \mu(\bigcap_{i=1}^{\infty} A_i)$$

Therefore, as in equation (1),

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1) - \mu(B)$$

and by equation (2) we see that

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1) - \lim_{n \to \infty} \mu(B_n)$$

And we can pass this limit outside and use equation (1), so that

$$\mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \left(\mu(A_1) - \mu(B_n)\right) = \lim_{n \to \infty} \mu(A_n) \tag{3}$$

And (3) was what we wanted to show.

Problem 2.10. We know from the countable subadditivity of the outer measure that

$$\mu^*(B) \le \mu^*(B \cap E) + \mu^*(B \cap E^c)$$

So the \geq in (*) will never actually be >, and it is equivalent to replace it with equality.

Problem 2.14. Most of the work has been done for us elsewhere in the notes. I will show a brief intermediate step:

Lemma 0.1. The sigma algebra generated by \mathcal{A} from Example 2.2 is the borel sigma algebra.

Proof. I know that there is an open set in (A), $\sigma(A)$ at least contains $\sigma(O)$. To show the other inclusion, recognize that intervals of the form (a,b] and $(-\infty,a]$ are in $\sigma(O)$ since we can get the closed edge of the interval by taking a complement of an open interval (Eventually. - there are certainly missing details here, my apologies...)

The pre-measure ν as defined in example 2.2 is still a pre-measure on $\sigma(\mathcal{A}) = \sigma(\mathcal{O})$. This means that we can apply the Caratheodory Extension Theorem 2.12 to see that $\sigma(\mathcal{O}) = \mathcal{M}$.

Problem 3.1. Proof. Let X be a countable set in \mathbb{R} . Then I can ennumerate the elements of X so that $\{x_1, ...\} = X$. Now, construct intervals I_{ϵ}^i for a given small ϵ and for each i so that $I_{\epsilon}^i = (x_i - \frac{\epsilon}{2^i}, x_i + \frac{\epsilon}{2^i})$. Now for

$$\mu(\bigcup_{i=1}^{\infty} I_{\epsilon}^{i}) \le \sum_{i=1}^{\infty} \frac{2\epsilon}{2^{i}} = 2\epsilon$$

We see that even if we make ϵ arbitrarily small, $\bigcup_{i=1}^{\infty} I_{\epsilon}^{i}$ covers X, so the infimum of the measures of these covers is zero, which is the measure of X.

Problem 3.4. This follows from the fact that the set of measurable sets is a sigma-algebra, and all these statements are equivalent.

Proof. I'll show that the sets being measurable are all equivalent statements. $f^{-1}((-\infty, a))$ is measurable $\iff f^{-1}([a, \infty))$ is measurable (they are complements). I will now show that:

$$f^{-1}((-\infty, a)) \in \mathcal{M} \iff f^{-1}((-\infty, a]) \in \mathcal{M}$$

 \Rightarrow : Suppose sets of the form $f^{-1}((-\infty, a]) \in \mathcal{M}$. Construct a sequence of sets $E_i n = f^{-1}((-\infty, a - frac_1n]) \in \mathcal{M}$. This countable union $\bigcup_{n=1}^{\infty} = f^{-1}((-\infty, a])$ is in \mathcal{M}

 \Leftarrow : Suppose sets of the form $f^{-1}((-\infty, a)) \in \mathcal{M}$. Then their complements, sets of the form $f^{-1}([a, \infty))$ are also $in\mathcal{M}$. We can use a similar argument, employing sets of the form $f^{-1}([a+\frac{1}{n},\infty))$ to show that sets of the form $f^{-1}((a,\infty)) \in \mathcal{M}$. This shows that the complements of these sets, $f^{-1}((-\infty, a])$, are also elements of \mathcal{M} .

To conclude, see that $f^{-1}((a,\infty)] \in \mathcal{M} \iff f^{-1}((-\infty,a]) \in \mathcal{M}$ because the sets are complements.

Problem 3.7. *Proof.* I'll go item by item.

- f + g: $f + g : X \to \mathcal{M}$ can be written as $F(f,g) : X \to \mathcal{M}$ where F(x,y) = x + y. This f is continuous, so it is measurable.
- fg: I can write fg similarly as F(f,g) = fg and use the same argument.
- min: Define $\{f_n\}_{n=1}^{\infty}$ so that $f_1 = f$, $f_2 = f + 2$, ... $f_i = f + i$. Similarly define $\{g_n\}_{n=1}^{\infty}$ so that $g_1 = g$, $g_2 = g + 2$, ... $g_i = g + i$. f and g are the smallest elements of their respective sequences by construction. Now make a sequence $\{h_n\}_{n=1}^{\infty}$ where the odd terms are the fs and the even terms the gs. $inf_{n\in\mathbb{N}}\{h_n\}_{n=1}^{\infty} = min(f,g)$, and all the terms h_i are lebesgue measurable so by (2) min(f,g) is lebesgue measurable.
- max: Just modify the above by making the sequences always be smaller that f and g, e.g, $f_1 = f, f_2 = f 2, ...$ and show that $max(f,g) = sup_{n \in \mathbb{N}} \{h_n\}_{n=1}^{\infty}$
- Absolute value: See that |f| = max(f, -f), and therefore by what we've just shown it is lebesgue measurable.

Problem 3.14. Recall the definition of uniform convergence: We want to show that

$$\forall \epsilon > 0, \exists N = N(\epsilon) \text{ such that } n \geq N \implies |f(x) - s_n(x)| < \epsilon, \forall x \in X$$

Proof. Suppose that f(x) < M. Fix $\epsilon > 0$. We construct intervals and simple functions just as we did in the proof of 3.13. Let $N_1 > M$, $N_1 \in \mathbb{N}$. Then $f(x) < N_1$ for all x and $x \notin E_{\infty}^{N_1}$. We also see that there exists N_2 such that

$$N_2 > N_1$$
 and $\frac{1}{2^{N_2}} < \epsilon$

Now, it follows that for $n > N_2$,

$$\forall x \in X, x \in E_i^n \text{ for some index } 0 \le i \le N_2, i \in \mathbb{N}$$

Then $f(x) \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)$ and our simple function in this interval is $s_n(x) = \frac{i-1}{2^n}$ Recall now that we've chosen this same N_2 for ALL $x \in X$, and so $|f(x) - s_n(x)| < \frac{1}{2^n} < \frac{1}{2^{N^2}} < \epsilon$ implies uniform convergence.

Problem 4.13. To show that $f \in \mathcal{L}^1(\mu, E)$, it suffices to show that $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are both finite. The fact that ||f|| < M on E implies that $\int_E |f| d\mu < M$. Thus, $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are both finite, and we are done. (???)

Problem 4.14. I'll argue that the contrapositive is true.

Proof. Suppose that there exists a set A such that $\mu(A) > 0$ and $f(x) = \pm \infty$ Now, since $\mu(A) > 0$, either B the set on which $f(x) = \infty$ or C the set on which $f(x) = -\infty$ must have nonzero measure. So the proof splits into two cases.

Case 1: $\mu(B) \neq 0$. Then

$$\int_{B} f d\mu = \infty \implies \int_{B} f^{+} d\mu = \infty$$

And we see then that

$$\int_B f^+ d\mu = \infty \implies \int_E f^+ d\mu = \infty$$

because $B \subset E$ and f^+ is a positive function. And this means that $f \notin \mathcal{L}(E,\mu)$, which is what we wanted to show.

Case 2: $\mu(C) \neq 0$. This case is exactly similar... We have

$$\int_C f d\mu = -\infty \implies \int_C f^- d\mu = \infty$$

And we see then that

$$\int_C f^- d\mu = \infty \implies \int_E f^- d\mu = \infty$$

because $C \subset E$ and f^- is a positive function. And this means that $f \notin \mathcal{L}(E,\mu)$, which is what we wanted to show.

Problem 4.15. Proof. Define h = g - f. on E Because $g \ge f, h(x) \ge 0$ and $\int_E h d\mu \ge 0$. Consider now the following lemma.

Lemma 0.2. (Linearity of Integral)

For any $f, g \in \mathcal{L}^1(E, \nu), \alpha \in X$

$$\int_{E} \alpha f f \mu = \alpha \int_{E} d\mu$$
$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

I state this lemma without proof, since the property is somewhat intuitive (if this didn't hold, we would have quite a bad definition for an integral!). If a proof is desired, it can be found in the lecture notes to Richard Timoney's Lebesgue Integral course at Trinity College.

Using this fact, we see that

$$\int_E g d\mu = \int_E f + h d\mu \ge \int_E f d\mu$$

Which is what we wanted to show

Problem 4.16. Proof. Suppose that $f \in \mathcal{L}(E,\mu)$. Then by definition, $\int_E f^+ d\mu < \infty$, $\int_E f^- d\mu < \infty$. Since $A \subset E$ and we're taking the integral of a positive function over a more restrictive domain, we can now say that $\int_A f^+ d\mu < \infty$ and $\int_A f^- d\mu < \infty$. And this means that $f \in \mathcal{L}(A,\mu)$.

Problem 4.21. *Proof.* By the above theorem, $\lambda(\cdot) = \int_{\cdot} f d\mu$ is a measure on \mathcal{M} . So we know that it is countably additive, i.e,

$$\lambda(A) = \lambda(A \setminus B) + \lambda(A \cap B) = \lambda(A \setminus B) + \lambda(B)$$

and thus

$$\int_A f d\mu = \int_{A \backslash B} f d\mu + \int_B f d\mu = \int_B f d\mu$$

(which is even more than what we wanted to show!)