# Report.

Last time I reported to Zhou, I had the result

\*\*\*B, K, S: OBM(skew) consistency theorem. Started on 23 July 2018 and I started working on its chainization, kernelization and betification

What has been done since 15th August

- 1. Kernelized our results. Theorem 6 on page 188 K: L2 consistency of diagonal kernel OBM. MSE tends to zero.
- 2. Chainization. Theorem 7, page 240. K: kernel MSE uniform convergence with chaining
- **3.** Half of betification when beta is with the known moments. Conditions are not simplified. Theorem 8. Page 267

Need

- 1. Simplify the covariance conditions
- 2. Chainization of the betification.
- **3.** Analyze the case when we build  $\beta$  in a diagonal way.

**Question 1.** On what conditions on g,  $LRV(g(t,\xi))$  is  $L_{ip}$  in t?

It seems to me that if we just say, LRV is  $L_{ip}$  in t, is enough. If not, this question is valid.

## Zhou:

The easiest is to leave it as is. You could try to assume something like SL about g to get something like Holder continuity on LRV. But it is fine to leave it.

## Question 2.

Connection of  $\delta$  and  $\gamma$ .

$$\delta_p(k) = \|g(t, \xi_0) - g(t, \xi_0^{*,k})\|_p$$
$$\gamma_k = \text{Cov}(g(t, \xi_0), g(t, \xi_k))$$

The initial point of an answer is in supplement paper, page 11

**Lemma 1.** Let  $\{Z_j = G_n(t_j, \mathcal{F}_j)\}_{j=1}^n$  and  $\{W_j = H(t_j, \mathcal{F}_j)\}_{j=1}^n$  be two sequences with  $\max \|Z_j\| < \infty$  and  $\max \|W_j\| < \infty$ . Assume that

$$\sum_{j=0}^{\infty} \left[ \delta_Z(j,2) + \delta_W(j,2) \right] < \infty.$$

Then

$$|Cov[Z_i, W_j]| \leq \omega_{Z,W}(i, j, 2),$$

where 
$$\omega_{Z,W}(i,j,p) = \sum_{k=-\infty}^{\infty} \delta_Z(i-k,p) \delta_W(j-k,p)$$
.

And in the simple stationary case, it is described in notes 3, 5.6 redQuestions to Zhou on May 23, 2018,

from OneNote / LRV / communication / Questions to Zhou 22 May 2018 to

quest Zhou 2018 05 22

$$\gamma_{k} = \sum_{j=0}^{\infty} \mathbb{E}[P_{i-j}X_{i}P_{i-j}X_{i+k}] \leqslant \sum_{j=0}^{\infty} \|P_{i-j}X_{i}\|_{2} \cdot \|P_{i-j}X_{i+k}\|_{2} =$$

$$= \sum_{j=0}^{\infty} \theta_{j}(X) \cdot \theta_{k+j}(X) \leqslant \sum_{j=0}^{\infty} \delta_{j}(X) \cdot \delta_{k+j}(X)$$

We had the conditions

$$\begin{cases} 1) & \sum_{l=0}^{\infty} \sup_{t} \delta_{g(t,\xi_{0}),4}(l) < \infty \\ 2) & \sum_{l=1}^{\infty} l |\gamma_{l}| < \infty \end{cases}$$

Can we simplify this conjunction? One includes the other?

#### Zhou

You can leave them as is if you want to be general. They do not include each other. However, you could assume some power decline of  $\delta$  to get 2) decline of  $\gamma$ .

# Question 3.

For fixed k and t, for the following sequence  $\left\{\beta_{i,k}^{'}(t)\right\}_{i\geqslant 1}$  where

$$\beta_{i,k}^{'}(t) = \beta_{i-k,k}(t) = \frac{1}{\gamma_0} [g(t,\xi_{i-k})g(t,\xi_i) - \rho_k(t)g(t,\xi_{i-k})^2],$$

Find out when

$$\sum_{j=1}^{\infty} j |j_{\beta'}(j)| < \infty ?$$

It would be good to get an answer in terms of g function. Here

$$j_{\beta'}(j) = \text{Cov}(\beta'_{k,k}(t), \beta'_{k+j,k}(t))$$

## Zhou:

Again, you can formulate some sufficient condition in terms of  $\delta$  of  $\beta$ . For example, imposing

$$\delta_{\beta',q}(l) = O(l^{-2}) \tag{*}$$

will guarantee

$$\sum l \cdot j_{\beta'}(l) < \infty$$

And you can also try to transfer the assumption on  $\delta(\beta)$  onto  $\delta(X)$ 

### **Boris**

May be refresh V material. 5.10 Sum of lagged products operator. 5.13 Sum of lagged products operator continued.

supplement paper, page 11

S:

red point

find where we had the application of the quadratic operator. The inequality between  $\gamma$  and  $\delta$ .

\_\_\_\_\_

