MATH 601 (DUE 11/22)

HIDENORI SHINOHARA

Contents

	THEOREM			

1 1

Galois Theory VI

1. THE THEOREM ON SYMMETRIC POLYNOMIALS

Exercise. (Problem 1) By substituting $u_4 = 0$, we get $u_1^2 u_2 u_3 + u_1 u_2^2 u_3 + u_1 u_2 u_3^2 = s_3 s_1$. s_3s_1 with 4 variables expands to $u_1^2u_2u_3 + u_1^2u_2u_4 + u_1^2u_3u_4 + u_1u_2^2u_3 + u_1u_2^2u_4 + u_1u_2u_3^2 + 4u_1u_2u_3u_4 + u_1u_2u_4^2 + u_1u_3^2u_4 + u_1u_3u_4^2 + u_2^2u_3u_4 + u_2u_3^2u_4 + u_2u_3u_4^2$. Then $s_3s_1 - f$ where fis the original polynomial gives us $4u_1u_2u_3u_4 = 4s_4$. Therefore, $f = s_3s_1 - 4s_4$.

Exercise. (Problem 2) We are given that $|M - xI| = x^3 - ax^2 + bx - c$. This implies that $|M-(-x)I|=-x^3-ax^2-bx-c$. Since the determinant function preserves multiplication, $|M-xI||M-(-x)I| = |M^2-x^2I|$. This implies $|M^2-x^2I| = -x^6 + (a^2-2b)x^4 + (b^2+1)x^4 + (b$ $(2ac)x^2+c^2$. Therefore, the characteristic polynomial of M is $-x^3+(a^2-2b)x^2+(b^2+2ac)x+c^2$.

2. Galois Theory VI

Exercise. (Problem 3)

- (a) $\{(123), (132), e\}$ is clearly a subgroup of the stabilizer group S_v of v. Since $(12) \notin S_v$, $3 \leq |S_v| \leq 5$. By Lagrange's Theorem, $S_v = \langle (123) \rangle$.
- (b) By (i), S_3v contains only $[S_3:S_v]=2$ elements. Thus $v'=(12)\cdot v=u_2u_1^2+u_1u_3^2+u_2u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3$ $u_3u_2^2$.
- (c) By substituting $u_3 = 0$ for v + v', we get $u_1 u_2^2 + u_2 u_1^2 = s_1 s_2$. Then $v + v' s_1 s_2 = s_1 s_2$. $-3u_1u_2u_3 = -3s_3$. Therefore, $v + v' = s_1s_2 + 3s_3$.
- (d) We will use the fundamental theorem of Galois Theory. $F(v) = K^{\langle (123) \rangle}$, so $|\langle (123) \rangle| =$ 3 = [K: F(v)]. Moreover, $|\langle \operatorname{Gal}(K/F) \rangle| = [K: F]$. Therefore, [F(v): F] = [K: F] $F/[K:F(v)] = |\langle \operatorname{Gal}(K/F)\rangle|/3.$
- (e) Calculation shows that $vv' = 9s_3^2 + s_3s_1^3 6s_3s_1s_2 + s_2^3$. By substituting $s_1 = 0, s_2 =$ $p, s_3 = q$, we get $9q^2 + p^3$.

Exercise. (Problem 4)

(a) The discriminant can be expressed as $-4s_1^3s_3 + s_1^2s_2^2 + 18s_1s_2s_3 - 4s_2^3 - 27s_3^2$. By substituting $s_1 = 1, s_2 = -2, s_3 = -1$, we get 49.

from sympy.polys.polyfuncs import symmetrize from sympy import *

```
u1, u2, u3 = symbols('u1_u2_u3')

u = [u1, u2, u3]

discriminant = 1
for i in range(3):
    for j in range(i + 1, 3):
        discriminant *= (u[i] - u[j]) * (u[i] - u[j])

print(latex(symmetrize(discriminant, formal = True)[0]))
```

Exercise. (Problem 5)

- (a) **(**
- (b) $x^4 + x + 1$ is irreducible because
 - It does not have a linear factor by the rational root theorem.
 - If it factors into two rational quadratic polynomials, they will factor into two monic integer quadratic polynomials, namely, $x^2 + ax + b$ and $x^2 ax + 1/b$ based on the coefficients. This implies $b = \pm 1$. Since the coefficient of x is 1, -ab + a/b = 1, but this implies $b \neq \pm 1$.

We will use the discussion presented in the Galois Theory IV handout. By (i), the discriminant is 229, so $h(y) = y^2 - 229$. Also, $g(y) = y^3 - 4y - 1$ since a = b = 0, c = -1, d = 1. Therefore, both h(y) and g(y) are irreducible, so the Galois group is S_4 .

(c) It does not have a linear factor by the rational root theorem. Based on coefficients, if it factors into quadratic polynomials, it will be $(x^2 + ax + b)(x^2 - ax + c)$ for some $a, b, c \in \mathbb{Z}$ by Gauss' lemma. This gives bc = 12 and -ab + ac = -8, so a(c-12/c) = -8. This is a quadratic polynomial in c with the discriminant 64 - 48a. This must be a square for c to exist. By checking each possible value of a, we get $64-48\cdot -8 = 448, 64-48\cdot -4 = 256, 64-48\cdot -2 = 160, 64-48\cdot -1 = 112, 64-48\cdot 1 = 16$. (For other a, 64-48a < 0.) Thus the only two possible values are a = 1, -4. a = 1 gives c - b = -8 and bc = 12, which we can confirm to be impossible by examining the divisors of 12. Similarly, a = -4 gives c - b = 2 and bc = 12 and this is impossible to satisfy. Therefore, $x^4 - 8x + 12$ is irreducible over \mathbb{Q} .