

をx: (1)

$$S_{3} = 90_{A} = 9(0_{3} \times 0_{5}) = (90_{5} \times 0_{5}) \land (0_{2} \times 90_{5})$$

. کی:

$$=$$
 $\langle j > D_s \rangle \cup \langle j \times D_s \rangle$

$$= S^1 \times (O^2 \cup O^2)$$

$$U(10+91) = 5^{3} \times 10^{2} U_{4}$$

$$S = U(10) = 5^{3} \times 10^{2} U_{4}$$

$$S = U(10) = 5^{3} \times 10^{2} U_{4}$$

$$S = 0$$

$$S =$$

$$\frac{(3) + (3)}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) +$$

chich that group action preserves spury of 33 into the solid for

$$(4) + 0: \qquad = (212) = \mathbb{R}^3$$

Let
$$K$$
 be a Green first.

$$\frac{1}{2} = \frac{1}{1} + \frac{1}{2} \times \frac{1}{2}$$

$$\frac$$

$$(\mathcal{A}(\mathcal{P})) = \{1, \dots, \infty \mid (\mathcal{A}) = 1, \dots, \infty \}$$

$$\begin{cases} \ell = \frac{17}{2} \end{cases} \qquad \begin{cases} \ell = \frac{3}{2} \sqrt{11} \end{cases}$$

$$\frac{(s_1, s_2)}{(s_1, s_2)} = (s_1, s_2)$$

$$= (5^7 \times 5^7, 9_{sL})$$

Lemm 17:

$$17_{12} = 0$$
 an 07 (.5. on 53)

Proof:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 53)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

Report:

 $17_{12} = 0$ an 07 (.5. on 07)

2.3 Contact try nous Notata. k & for k & a lyonom push-off $\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left($ Ky: - K n - + mis Stabilized μ³ – 2/ Lemma 13 [cancellation lenna] Yne Z: $k(\gamma_n) \times k(-\gamma_n) = (C, q_{st})$ Proced: h' = (57, 9, v) 九= 人。 =) h(7n) = 57 x 02 1 04 53(v K m+n/c >) Sargery on K' is K(7/n)] surgery on A. >) h(1/n) \ K'(-1/n) = s1 x 02 U s3 (vh mo to pink mo (e.v.) = (3), (3), (3)Lenna 741 [Replacement Lanna] HAZA $k(\pm 1/n) \cong k(\pm 1) \times \cdots \times k(\pm 1)$ prof: AV

(All)

Let
$$r \in \mathbb{R} \setminus \{a\}$$
 $\forall k \in \mathbb{Z}$

$$|k(t)| = |k(1/h)| \times |k(1/h)|$$

7.4 The honotopical invariants
Det: Let L= L1 VV Ln be an or les. link in (53, 9,+).
(7,9) = contact nfd obtained by contact (+7/n;) - Surgery on ((n,62)
$+b_i = +b(L_i)_i$ $nL_i = rot(L_i)$ $L_{ij} = lh(L_i, L_j)$
Pi := ± /h. + ts; Linny nation:
$(2! = \begin{pmatrix} \rho_1 & q_2 R_1, & \dots & q_k & S_k \\ q_k \ell_2, \ell_2 & & & & & \\ & & & & & & \\ \end{pmatrix}$
qilha en
£.,
$e(5) = \sum_{i=1}^{n} h_i r d_i \mu_i \in \langle \mu_1, -, \mu_n Q(\frac{\mu_1}{\mu_n}) = 0 \rangle = \langle \mu_1 \alpha \rangle$
It e(1) is form (for ex. if $H_{\eta}(\wedge)$ torsing) $ \begin{array}{c} (\mu_{h}) \\ (\mu_{h}) \end{array} $ Synapore Then:
El Fibe Qh: Q-5= (rifi)
Then: d (9) = 2 7 / 2
Then: $d_{3}(9) = \frac{7}{4} \left(\frac{1}{2} h_{i} \cdot b_{i} \cot_{i} + (3-h_{i}) \cdot con_{i} \right) - \frac{3}{4} \cdot \sigma(Q)$
The 77 1 (1) e 2 dz one invariants of the industry favorable
2- Plane-Fre(d). (2) If $U_1(\cap)$ has no 2-topon (2 d), is refued) then
(2) It by (1) has no 2-toron (2 dz is retired) then
$q_1 = q_2 = (q_1) = e(q_2) + e(q_3) = e(q_3) = e(q_3) = e(q_3)$
(3) (f. H1(1)=0=) d3 EZ L faces all velye values
Eliash being 507 (.s.) (2- Plane Finds of 7-)/Hornday
Horning.
$\mathcal{A}_{3}(\mathcal{A})$
Under d_3 for the OT (.s. on \wedge (with $l_1(\wedge)=0$) and $d_3(l_1)=0$

Emple: (a)
$$d_3(s)(a) = 0$$
 (constraints)

$$= 0 \quad (a = \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}) = 1 \quad (a = 1 - 3) \quad (a =$$

Q: 1753 -) S(#n/) ->00 2

 $Q = S_{\mathcal{I}}(L(\rho, q)) = 2$

control somm mands of a control of (M, 3)

Cs (M, 3):= min { #(L) | L C (53, 3st) (og. 51.

(7/4) is obtained by control sugar on L (52(1/1):= Myer 4 (+7)-11 (2 2 (V) 2) (= $S(\cap) \leq S_{2}(\cap)$, $C_{2}(\cap, q) \leq C_{3}(\cap, q) \leq C_{3}(\cap, q)$ $\frac{Th_{n}}{s_{2}(n)} \leq (s_{i}, (n, q)) \leq s_{2}(n) + 3$ $S(C) \leq (S(C), 9) \leq S(C) + 3$ Commizo Let K be a small knot in an ot (1, 9). -) V + 62 9 leg. realization of K with to(L) = t proof: choose a les real [of K S.L MIVE, 5) Dot · if fb([) > (=) Shullize [to L else tb(= +) Do7)= +5(=) + +6(DD07) 11 = +5(=) 17 · (5) (5) (5) (5) (=0 · (5, 9,) = 1 · (5:1 (5), 9, 77) = 2 ld n +1 =) (s +, (53, 5,) > 7 [Let L((53, 8,,) be a les hat s.l. ([11) = (57, 8n) L= unlast & olope= pethols for some nCZ Ecoslos-Fraser] [is a stabilization of

$$|p + |K| = \frac{1}{2} + |p + |K| +$$

$$\frac{T_{4}}{L_{4}} \frac{\gamma_{5}}{(12)} = (7,2) \# (5,2) = (7,2)$$